

TRANSMITTAL LETTER TO THE UNITED STATES
DESIGNATED/ELECTED OFFICE (DO/EO/US)
CONCERNING A FILING UNDER 35 U.S.C. 371

ATTORNEY DOCUMENT

S-31005A

U.S. APPLICATION NO. (If known, see 37 CFR 1.5)

10/018929

INTERNATIONAL APPLICATION NO.
PCT/EP00/05761INTERNATIONAL FILING DATE
June 21, 2000PRIORITY DATE CLAIMED
June 23, 1999

TITLE OF INVENTION

Gene Involved in Epigenetic Gene Silencing

APPLICANT(S) FOR DO/EO/US

Yoshiki Habu et al.

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

- This is a **FIRST** submission of items concerning a filing under 35 U.S.C. 371.
- This is a **SECOND** or **SUBSEQUENT** submission of items concerning a filing under 35 U.S.C. 371.
- This is an express request to begin national examination procedures (35 U.S.C. 371(f)). The submission must include items (5), (6), (9) and (21) indicated below.
- The US has been elected by the expiration of 19 months from the priority date (Article 31).
- A copy of the International Application as filed (35 U.S.C. 371(c)(2))
 - a. is attached hereto (required only if not communicated by the International Bureau).
 - b. has been communicated by the International Bureau.
 - c. is not required, as the application was filed in the United States Receiving Office (RO/US).
- An English language translation of the International Application as filed (35 U.S.C. 371(c)(2))
 - a. is attached hereto.
 - b. has been previously submitted under 35 U.S.C. 154(d)(4).
- Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3))
 - a. are attached hereto (required only if not communicated by the International Bureau).
 - b. have been communicated by the International Bureau.
 - c. have not been made; however, the time limit for making such amendments has NOT expired.
 - d. have not been made and will not be made.
- An English language translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).
- An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)).
- An English language translation of the annexes of the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).

Items 11 to 20 below concern document(s) or information included:

- An Information Disclosure Statement under 37 CFR 1.97 and 1.98.
- An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.
- A **FIRST** preliminary amendment.
- A **SECOND** or **SUBSEQUENT** preliminary amendment.
- A substitute specification.
- A change of power of attorney and/or address letter.
- A computer-readable form of the sequence listing in accordance with PCT Rule 13ter.2 and 35 U.S.C. 1.821 - 1.825.
- A second copy of the published international application under 35 U.S.C. 154(d)(4).
- A second copy of the English language translation of the international application under 35 U.S.C. 154(d)(4).
- Other items or information: Certified Copy of Priority Document GB 9914623.5

21. The following fees are submitted:

BASIC NATIONAL FEE (37 CFR 1.492 (a) (1) - (5)):

Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO and International Search Report not prepared by the EPO or JPO \$1040.00

International preliminary examination fee (37 CFR 1.482) not paid to USPTO but International Search Report prepared by the EPO or JPO \$890.00

International preliminary examination fee (37 CFR 1.482) not paid to USPTO but international search fee (37 CFR 1.445(a)(2)) paid to USPTO \$740.00

International preliminary examination fee (37 CFR 1.482) paid to USPTO but all claims did not satisfy provisions of PCT Article 33(1)-(4) \$710.00

International preliminary examination fee (37 CFR 1.482) paid to USPTO and all claims satisfied provisions of PCT Article 33(1)-(4) \$100.00

ENTER APPROPRIATE BASIC FEE AMOUNT =

CALCULATIONS PTO USE ONLY

Surcharge of \$130.00 for furnishing the oath or declaration later than 20 30 months from the earliest claimed priority date (37 CFR 1.492(c)).

CLAIMS	NUMBER FILED	NUMBER EXTRA	RATE	\$
Total claims	16 - 20 =		x \$18.00	\$
Independent claims	2 - 3 =		x \$84.00	\$
MULTIPLE DEPENDENT CLAIM(S) (if applicable)			+ \$280.00	\$
TOTAL OF ABOVE CALCULATIONS =				\$
<input type="checkbox"/> Applicant claims small entity status. See 37 CFR 1.27. The fees indicated above are reduced by 1/2.				\$
+				
SUBTOTAL =				\$
Processing fee of \$130.00 for furnishing the English translation later than <input type="checkbox"/> 20 <input type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.492(f)).				\$
TOTAL NATIONAL FEE =				\$
Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31). \$40.00 per property +				\$40.00
TOTAL FEES ENCLOSED =				\$ 930.00
				Amount to be refunded: \$
				charged: \$

- a. A check in the amount of \$ _____ to cover the above fees is enclosed.
- b. Please charge my Deposit Account No. _____ in the amount of \$ _____ to cover the above fees. A duplicate copy of this sheet is enclosed.
- c. The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. 50-1744. A duplicate copy of this sheet is enclosed.
- d. Fees are to be charged to a credit card. **WARNING:** Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.

NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137 (a) or (b)) must be filed and granted to restore the application to pending status.

SEND ALL CORRESPONDENCE TO:
Customer Number 22847

Marcia R. Morton
SIGNATURE
Marcia R. Morton
NAME
46,942
REGISTRATION NUMBER

1.00103929 . 12223.04

531 Rec'd PCT

21 DEC 2001

FILING BY "EXPRESS MAIL" UNDER 37 § C.F.R. 1.10

I hereby certify that the following correspondence is being deposited with the United States Postal Service as "Express Mail Post Office to Addressee" in an envelope addressed to: BOX PCT, U.S. Patent and Trademark Office, P.O. Box 2327, Arlington VA, 22202 under Express Mail Label No. ET327548859US on December 21, 2001.

- 1) Transmittal Letter to the United States Designated/Elected Office (DO/EO/US) Concerning a Filing Under 35 U.S.C. 371 (FORM PTO-1390)
- 2) Copy of International Application As Filed
- 3) Amendment to the Claims of the International Application under PCT Article 19
- 4) Certified Copy of Priority Document GB 9914623.5
- 5) Recordation Form Cover Sheet
- 6) Assignment (2 sheets total)
- 7) Declaration and Power of Attorney for United States Application (2 total)
- 8) First Preliminary Amendment
- 9) A Computer-Readable Form and Paper Copy of the Sequence Listing and Statement of Verification
- 10) Credit Card Payment Form

Melissa Hardy
Name

Melissa Hardy
Signature

531 Rec'd PCT/F 21 DEC 2001

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:

Habu *et al.*

Serial Number: TBA

Filed: December 21, 2001

For: Gene Involved in Epigenetic Gene
Silencing

Art Unit: TBA

Examiner: TBA

Atty Docket: S-31005A

PRELIMINARY AMENDMENT

BOX PCT
U.S. Patent and Trademark Office
P.O. Box 2327
Arlington, VA 22202

Sir:

Applicants respectfully request that the above-captioned application be amended as follows in advance of prosecution:

IN THE SPECIFICATION:

At page 1, after the title, please insert:

This application is a § 371 of International Application No. PCT /EP00/05761, filed June 21, 2000.

IN THE CLAIMS

Please amend claim 8 as follows:

8. (Amended) The protein encoded by the open reading frame of claim 1.

Please add the following new claims:

11. (New) The protein encoded by the open reading frame of claim 2.

12. (New) The protein encoded by the open reading frame of claim 3.

Habu et al.
Attorney Docket No. S-31005A

13. (New) The protein encoded by the open reading frame of claim 4.
14. (New) The protein encoded by the open reading frame of claim 5.
15. (New) The protein encoded by the open reading frame of claim 6.
16. (New) The protein encoded by the open reading frame of claim 7.

REMARKS

The claims have been amended to eliminate multiple dependency and to ensure that they are in compliance with the rules of U.S. practice. No new matter has been added by these amendments.

If in the opinion of the Examiner, a telephone conference would expedite the prosecution of the subject application, the Examiner is invited to call the undersigned attorney.

The Commissioner has been authorized to charge the fees associated with the filing of the application which this amendment accompanies and associated papers to Applicant's credit card. If there are any additional fees required, authorization is hereby provided to charge such fees to Applicant's Deposit Account No. 50-1744 (in the name of Syngenta Biotechnology, Inc.).

Respectfully submitted,

Syngenta Biotechnology, Inc.
Patent Department
P.O. Box 12257
Research Triangle Park, NC 27709-2257
(919) 541-8566
December 21, 2001

Marcia R. Morton

Marcia R. Morton
Attorney for Applicants
Reg. No. 46,942

Habu et al.
Attorney Docket No. S-31005A

Version With Markings To Show Changes Made

The claims have been amended as follows:

8. (Amended) The protein encoded by the open reading frame of claim 1 [any one of claims 1 to 7].
- 11. (New) The protein encoded by the open reading frame of claim 2.
12. (New) The protein encoded by the open reading frame of claim 3.
13. (New) The protein encoded by the open reading frame of claim 4.
14. (New) The protein encoded by the open reading frame of claim 5.
15. (New) The protein encoded by the open reading frame of claim 6.
16. (New) The protein encoded by the open reading frame of claim 7.

10018929 1222001

10/018929 S-31005A

531 Rec'd PCT

21 DEC 2001

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF

ART UNIT: TBA

Habu et al.

EXAMINER: TBA

SERIAL NO: TBA

FILED: Even Date Herewith

FOR: Gene Involved in Epigenetic Gene Silencing

BOX PCT

U.S. Patent and Trademark Office
P.O. Box 2327
Arlington, VA 22202

SUBMISSION OF SEQUENCE LISTING
INCLUDING STATEMENT OF VERIFICATION

Sir:

Applicant hereby provides a Computer Readable Form of the Sequence Listing as well as the Paper Copy thereof. The undersigned states that the Paper Copy and the Computer Readable Form, submitted in accordance with 37 CFR §1.821(c) and (e), respectively, are the same.

Respectfully submitted,

Syngenta Biotechnology, Inc.
Patent Department
P.O. Box 12257
Research Triangle Park, NC 27709-2257

Marcia R. Morton

Marcia R. Morton
Attorney for Applicants
Reg. No. 46,942
(919) 541-8566

Date: December 21, 2001

10/018929

531 Rec'd PCT 21 DEC 2001

SEQUENCE LISTING

<110> Novartis AG
Novartis Research Foundation

<120> Gene involved in epigenetic gene silencing

<130> S-31005A

<140>

<141>

<150> GB 9914623.5

<151> 1999-06-23

<160> 33

<170> PatentIn Ver. 2.1

<210> 1

<211> 10329

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> intron

<222> (1009)..(1295)

<220>

<221> intron

<222> (2551)..(2673)

<220>

<221> intron

<222> (2753)..(2867)

<220>

<221> intron

<222> (3114)..(3506)

<220>

<221> intron

<222> (3681)..(3973)

<220>

<221> intron

<222> (4896)..(4975)

<220>

<221> intron

<222> (5218)..(5777)

<220>

<221> intron

<222> (5883)..(6082)

<220>
<221> intron
<222> (7481)..(7615)

<220>
<221> intron
<222> (7772) .. (7914)

<220>
<221> intron
<222> (8071)..(8153)

<220>
<221> intron
<222> (8319) .. (8451)

<220>
<221> intron
<222> (8630) .. (8718)

<220>
<221> intron
<222> (8919) .. (9000)

<220>
<221> intron
<222> (9212)..(9284)

<400> 1

aatatttaag tttggtttat attcttctca gtaatcttg aaatattgtt agagataatg 60
cttctaataa ataacattgg atttatttggaa attaatgtat tgaaaaaaact atgcaaatac 120
tacagtgtat ttggaaacga cccaaaatgtat atatgtaaac ttgcgttctca gtcttctaca 180
tagtgtaata ggatagcgga caagggttcat cgactctaaa cattatgggt acgtattcc 240
cgactgggtt cagttctactg tcgaggccaa actggtaatt aaacgttga agtttagaga 300
aatattttga tggatgagttac cacaatcaaa gatgataggt gttaatctact gtaaaaatgt 360
tgattgaata ctacgaatgc agaacatata catatttta atctcttgg aattttgtt 420
tttggtttttca tcattttga atacacgaaag agctcgttta tatttcataat tggatatgaa 480
tttggttctat ttaatcttca attctagcaa cataactctta tgcttaattcg tttcatat 540
tagtatagta taaaaaattac aaatttcaaa acaaactata agtaatatac taacatagtc 600
ggtgttaacat ttgcgttatt tcacataaca tatgttaatt acatatgtac actattttg 660
aagtattttta taacttaaaa tatataaatt taaatctaag aaatcacaag catgagtttt 720
tccttccggtaatcgtaaaa tcaaaaatcg ctcgctcgag aaacgcccgt gctagaagag 780
gaaagtaccgtacataatcc tgcaaaccca attctcgct tcttcaact cagttttccg 840
aaaccccaaa caccgcgagg attgcgttgc ctgaagaacc acttaatcga gaattgtgct 900
ggaattctca aattttccct cgcgttttc tttcacactc tcggaaatcgaaatttccac 960
caagctccgt caagcgatag attctgacaa ttacacactt tcgcgcaggatgcttccctt 1020
ccctgtttta ggttgggttta aatctatcggtgaatcgaaag gttttggcc tcgggctttg 1080
cggttttaggt tttcagaga atcttatctatcttgcgttgc gatcttaggc gtttgggtttaga 1140
tgtaactcat tagttttgca tataggaatt ttgatttgaa agtttagtgc ccggattttgt 1200
agacattttg tttgtatggtc ttcttcgggtc ctcacattct ttgtttttaa gtgttgcgtt 1260
tggttgctaa ggttcccttcc gttgcgtgtc ctcagtgaaatgaaagaag atgaaaagat 1320
tggtttgacggggagaacca ttacaccag atcccttagca gcttcatttc ctgcctcagt 1380
tgaacaagaa acccctgggt tgaggaggtc aqgccccqqqqq acaccatctca cqaaqgttaat 1440

aactccagct tctgtctacta gaaagtccaga gagactggct ccctcacctg cttcagtttc 1500
aaaaaagtcc ggttgaatcg tcaagaattc cacaccaagt tctttgcgaa ggtccaatag 1560
ggggaagact gaagtatcct tgcatggatc caaaggatca gataattcta tcaggaaagg 1620
agatacttca cccgatattg agcagagaaa ggatagtggtt gaagagtcg aagataagat 1680
caaggctata atgtcagccc gaagttacag ggcattgttt agagggaaagc tcaaggaatc 1740
tgaggcatta gttatgtctt ccccaaata gaggaaacta gtagttgttgc gttgttctcg 1800
ccgcataacct gcaggcaatg atgatgttca aggtaaaaca gattgtccac cacctgcaga 1860
tgcaggatca aaaaggctgc cagttgacga aactagttt gacaaggcga ctgattttcc 1920
tttggaaatca gttacggaga ccgagaagat agtgcgttat gcatccccca tagttgaaac 1980
tggggatgac agtgttatag gttcaccatc tgagaattta gagacacaaa agcttcaaga 2040
tggttaagaca gattgttca caccgtcaaa tgcaaatcg aaaacgctgc cagttggtga 2100
aactagttt gaaaaagaat atccacaaaaa gttcaagat gataacacag attgtctacc 2160
acctgcaaat gcagaatcaa aaaggctgcc agttggcgaa actagtttag aaaaggacac 2220
tgatccccct ttggaaatcaa ctacggagac tgggaaagatg gttctttagt catccccat 2280
agttgaaact aggatgaca gcgttatatg ttcaaccatct acaaatttag aaacccaaaa 2340
gcttcttgc agtaaaactg gcttagaaaac cgacatagtt ttgccttga aaagaaaaaag 2400
agacactgca gaaattgagc tggatgcgt tgctacagtt gcaaatggag atgatcacgt 2460
tatgatgttct gatgggggtca ttccatctcc atctgggtgc aaaaatgata atcgacctga 2520
aatgtgcaac acgtgtaaaaa aacggcaaaa gtaagagtt ttttagtgtt gtctgtctat 2580
tgaaaacgatc tgccaatgtt gaatgttggg cagatgggtt tgattcttag gatatatgtt 2640
ctgtattgtt atgagttgtt caaaattttg aagggtcaac ggtgattgtc aaaataggag 2700
tggttgcctc tgcattgtcc agccagttga agaatctgtat aacgtgacac aggttggttt 2760
ctaattactt tcggagaccc gttaatcagt ggactcttaa atagttagat actagattta 2820
cttacccctt tacttgtaat ctgcaattct attttgcatt tgatttagat atgaaaagaaa 2880
ctggaccagt tacgagcaga gaatatgagg agaacggcga aatacaacat ggttaaatcaa 2940
gtgatcccaa attctattct tcggtgtacc cagagtattg gttcctgtg cagctatcag 3000
atgtacagct ggagcaatac tgcagactc tcttctccaa atccttatct ctttcttcac 3060
tttcaagat tgatcttggg gctctagaag aaactctcaa ttctgttaaaga aagtaagtt 3120
acttgatttt aaaaacactt attcttcaat gcacttgtga gttaaagtacc cagttattac 3180
tggtgataag ataaaagaaa caatagaaaa attgataagg tgttcaccgc attgcagcca 3240
aaaaaaacaat tctgtgttcc atgcttcaa gaggttgtca catagggttt atgccttct 3300
gtttgatgtt tggtagagca aagggtttgg gcttatttgtt tttatgtttt tttgaaacac 3360
atagaacctg gcaaaacttga cagtttggg gttgcttaga tatacgacta ttgtcggtca 3420
gcatcacatt ttctcaaggc ctcttctgc atgtaatgt gtgaatataat taaaatctc 3480
tttatgtgtt tgcacttgc tgcagaccc tgcatttgc atacgtttagt gatgcatttt 3540
tgaacaact gctcaccagg aatctggagt tgcatgaaat cctggatgtt gaaattaaag 3600
cgagcggaa acttcaccc tttgataaaaa tgcttactca tataaaaaaag aatggtttaa 3660
aagcagggtt ctcttaccag gtgcattttc tattacttgc gaatgtgaat agctctatgt 3720
ttgtcatgaa tacgtcactt tgcatttgc caatataatgt gcatttctt tttgacaatg 3780
gaattctgtc ttgtattgaa atttgagtgg gatgaaagta tgcttttat cgtgcatttt 3840
tgaagtgtaa gttagccttc agcagtcgc tagcattatg agatatgttgc aactaaaatg 3900
tttctttctt ctcttcttgc ttgcatttgc tgcatttgc atatgtttga attacagttt 3960
ttatttcag caggcaacac aaacccctga agggttctg cttggtaata ttctcgaaga 4020
ttttgtgggt caaagatttgc gtccaaaatc ttatgagcat gggatataatt cctcaagaa 4080
gaactccgct ataaaacaatt tcaacaagg gagtcaatgc tgcatttgc tggtaaaac 4140
acgtgcctgc agtcaaacc ttaaaacttgc gcgagctgtat gcgtttattc ttttggaaag 4200
cagcttgc atgttgcattgc atgttaagca cgttagagaag ataaaaatcg agtcatgtt 4260
tgaagaact aagatattcc gattgtactc agtgcgttaca gttgaagaaa aagccctgtat 4320
tctggctagg caaaatatgc ggcaaaataa agctgttagag aacctaaacc gctctctcac 4380
gcacgcactg ctcatgtggg gggcgtcata cttatgttgc aaactgatc attttcacag 4440
cagtggaaact ccagattcag gagtttcatt tgaacaatctt attatggacg gctgttattca 4500
tgaattctcg tccatacttt cttccaaagg tgagaagaa aatgaagtca agctgtgttct 4560
acttttgag gccaaggatcg ctcaggaaac ttacagcgtt gattctactc tattttggtga 4620
agaccatatt aagttgtcag atgaagagag tccaaatataa ttttggtaaa agctgttggg 4680
ggggaaaaat cctatgttggaa aatacccttgc agatactccc caaaggaatc gaaaacgatg 4740

tcgttatttt gagggttctg aagcgagtcc caaaaactggc gatggtgaa atgcaaagaa 4800
gcgaaagaag gcttctgatg atgtcaactga tccccgggtc actgatccgc cagtagatg 4860
tgcataaaga aaggcctctg ggaaggatca catgggtaaa atagttaat ttctgctccg 4920
atacctctag tgttcattga ttatgcaact actttgctga ctatcttcc tacaggggct 4980
ttggagtcac caaaagtcat aacactccag tcatacatgta aatcttctgg tacagatgg 5040
acattggatg gaaatgatgc ttttgcttg tattctatgg gcagccatat ctctggaaatc 5100
ccagaggata tgtagctag tcaagattgg ggaaaataac cgatgaatc acagaggagg 5160
ctccacactg tttaaagcc gaagatggca aaaccttgc aagtttgca tcttcagta 5220
agtggccctt ttcacctcca tgcactgta gtttacactt aacttatt tagccttgc tatgcttata 5280
actatatcca tccgttaag catatttat ttcttatatc gtttgcgtt accaatgcac 5400
tgtaaaatg agcaactgct gcacaaaaca gtaggttagt atgtgcctca tgcattcat 5460
tgtttattga agcaaagaaa ttctgtcta ctttacatgta tgcagatggc gacatgtcaa aagtttatct 5580
actatatata accttaggcc tttgtacctg gctgatcaaa gacatgttca aagtttatct 5520
gttcgctgtt ggtatagaaa ctaatacagt gtctgatgct attttaaggt agtcttatgt 5640
cttcacatata tggtaatag atgttccgc tgcgtgtcc atatacttct gtgattatca 5700
cggtgctccg tctatcaaaa ttgtactaaa aggtattttg caatgtgtga ttgtttaaca 5760
gattattttg tttcaggat gctgcacaa gcatggtcgg aaatttctc gaatatgtt 5820
ttgaaaatca cggaaatctac gaagagccag ccactacttt tcaggcattc cagatagccc 5880
tggtatgaca gcatttactt tgataattt tgcattgttt cttcatcat ctgccttigt 5940
ttagaatgtc ctcagaaggc agcactcctt tagtttaac ttccaatca taggattcaa 6000
atatccatta actggcctt gatcgctgca taatatatgta atagttgaca tactgaatac 6060
gttgttaata atgcattttc agagttggat tgcagccctg ttggtaaagc aaattcttag 6120
ccacaaagaa tctctggtcc ggtggattat atttattcga tttgtcctg catgaagagt ttcaaatgct ctagagtaga 6180
aggtttgcag ttcgattgct ttggtaactaa ttctaaacag gtcgttccat ctgttccctgg 6240
agtaaatgaa agtctctcag gggctacagt gcgtgacgaa agatgttagcc attatagcac 6420
gcgaaatagc tcagaggatg aagagtgcatt gactgagaag aagaataca agaagcaagt 6480
agcaacaaga gatatcgaaa agactattag tggcataaaa ctgttaataa tgcataatc 6540
gcaaaaagctt gtacaagagc atgaggaaaa gaaaatggag gtcgttccat gtattacctg 6600
caagaagcag aaactgaaa ctgtaaaag tggtaagaca gtcgttccat gtattacctg 6660
ttcacggacc agtactcaag tgggtgatct caaactgctg gatcataatt atgaaagaaa 6720
gtttgatgaa atcaaaagtg agaaaaatga atgcctcaaa ctgaggatga agcctgttgg gtcgttccat tgcataatc 6780
ggttgcaaaag aagaagttgg cttcatcaac atgctctgatg aataacaagc attttagtgg 6840
ggcagctaaa ttaaaagttt agctacttac gctgatacga aatcaatc tgcataatc 6900
aaacacattt ggaaccatgt gtcgttccat tgcataatc 6960
aagaaatgac gagacaatgg tttctctaa tagagaggag gtcgttccat tgcataatc 7020
gtccaatgag cacgttctca gttttgatac tgataacatt gtcgttccat tgcataatc 7080
ggaatttgcg gccttgaacg tgcggcatca gatgaagatg atgctctgatg aatcaatc 7140
tgcggcatca gatgaagatg tttcatcaag ggtgcccagag gtcgttccat tgcataatc 7200
tctttctgcc tccccggatg tttctctaa tagagaggag gtcgttccat tgcataatc 7260
tagaagaaca agtcatgtgg gtttgatac tgataacatt gtcgttccat tgcataatc 7320
agattgttct ctgaccaag gttttgatac tgataacatt gtcgttccat tgcataatc 7380
gtctgtggta gagacttaggg agattctgatc cgagtttagcg gtcgttccat tgcataatc 7440
atagttgatg ccttgttcat gtgcgtctg atctgatcag gtcgttccat tgcataatc 7500
acgggttagt atcagatgtc ttttttctc ttattaaatt ttcgttccat tgcataatc 7560
tcaagatata tgccttatgc cttcttcaact ggctggaaag gtcgttccat tgcataatc 7620
cactgagagc gaaaatcttg aagaagcaat tgagcctcag ttcgttccat tgcataatc 7680
agagactact gattttgcgt agtttaaagt tatcaatctg ttcgttccat tgcataatc 7740
aatgtggtt actgatcaag aagaagcaat tgagcctcag ttcgttccat tgcataatc 7800
caagttacat gtccttgcgt cttcttcaact gtcgttccat tgcataatc 7860
attgaaggcc aaaatatcaa cttcttcaact gtcgttccat tgcataatc 7920
tagcgggtcc agatgcagta

gagagtgggtt attatgcagt aatagatcg gttattgcct taactaaaga caaaatgtct 8100
tttgtgttta aaagtcttac atctttgtaa tgctcggtct ggatatcctg caggaaacaa 8160
tgggtgctca gcatgc tctctccat ctggatcggt tggaaactcg tctgacccat 8220
gagcaaacat tgagggtcaa aatgtcacaa cagtggctca acttcccaca gatggatcg 8280
atgcagggtt aaccgggttga tctcctgtat cagatcagggt acctgcctct gctcaaggac 8340
tttcttatgt gtgggtttaa aggtctagtc ctttagtaatg ttgaaactaa gcaaacagt 8400
gatagtgtatc atatggttat ttttgcgttgaatttaata tttctggaca gtgtgcccag 8460
gatgcatttc ctatgccatt atcttcgcct gaaaatcacc ctgatacagc agttaatattc 8520
gagggtttag ataacacatc agtagctgag cctcatataa gtggatcaga tgcgtgtgaa 8580
atggaaattt cagaacctgg tccccaaagta gagcggtcaa cctttgcaag tcagtaactg 8640
ccttggcat ttttaagtat cacctaggc gacatatgtg attgccaac agctaacaag 8700
gagatgcctt ttgtcagat ctttccatg aagggtggcgt ggagcattca gcagggtgaa 8760
cagctttgt tccatcaattt ctttacaatg gtacggaaaca gattgcgtt caacctgttc 8820
ctcaaatacc tttccctgtg ttcaacgacc cgtttctgca tgaactggag aagttgcgg 8880
gagaatcaga gaactcaaag aagactttt aagaaaaagt cagtttccct cattacccag 8940
ttacctttt ttttggttta ttttcttagt gcccattgc tctcagttgc ttgtgagcag 9000
aatcaatct taaaagctga actcgaggagg aagatggcgt aagtacaagc agagttcga 9060
agaaaaattt atgaggtaga agccgagcat aacaccagaa cgacaaagat agagaaggat 9120
aagaatctt tataatgaa caaactgttg gcaatgcgt tcttgccttca atgtactgac 9180
aagaaggat tccccctcagg agtcccaagg ggttaagtgtc gaataatata gcaaattgg 9240
tttaaaaaata aggcgcacgaa gtcataatag cactttttt ccaggtaaaa tttagcagct 9300
agcacagaga gcgcacacaag tgagtgcact gagaattac attgctcctc agcagcttca 9360
ggcatcttct ttccctgtc ctgctctgg ttcggctcct ctgcaacttc agcaatcatc 9420
atccctgtt cctggccgg ctccctgtca gctcaggca tcttcgtttc ctcttcagt 9480
ctctcgccca tcagcccttc ttctgaattt tgccgtctgt ccaatgcctc agccccagaca 9540
gcctctcata tccaacatag ctccaaactcc atcagttact cctgcaacaa atccaggct 9600
gcgttctctt gcaccacacc taaactcata tagaccatcc tcttcaactc cggcgccac 9660
agctactcca acctcgtag tgcctcctca agctttgaca tattcaactg tgtcaattca 9720
gcagcagcaa gaacaacaac cgcaacagag cttagcgtt ggattgcaga gcaacaatga 9780
agtgggttgc ttttctgtc acgagtgcacc taagaggaga gatggtttagg gtcttagtt 9840
ttgatttttta gagagttaat aatagtatat atatatatgt ataagtaggt tacctaattct 9900
ctgtcgtaa tctaattttt tgagtccagg accgactcg tggcttaagg ctctcccttt 9960
gaaacgcaac gttctacttt catgtatata aatacagtct gatcacacaa cacaattgt 10020
tgattgaaaa tactactgt ttaactttt agaaaaacccca aattatagag cgacaactt 10080
ataaacatgt ccaaacttcga agttaaaatt taagacccca taattttaca attatagatt 10140
ttaatactcc aactatttt tgatgttaaa agaagtatcc gagtcctttc ttccagttt 10200
ccccaccgtc ccatgactcc cccagccgtt agaaaaagcc aaaaaagtaa acaaaaaagtc 10260
gttaaaaaaaag taaaattaaa aaaaaaatag atagttgcacg tttactaaag tgatttgaat 10320
tgaacaatt 10329

<210> 2
<211> 6571
<212> DNA
<213> *Arabidopsis thaliana*

<220>
<221> CDS
<222> (310) .. (6312)

<400> 2
cacaaggcatg agtttttcct tccggtaatc gtaaaaatcaa aaatcgctcg ctcgagaaaac 60

gccggtgcta gaagaggaaa gtaccgtaca taatcctgcg aacccaaattc tcgtcttctt 120

caaactcagt tttccgaaac cccaaacacc gcgaggattg catggcctga agaaccactt 180
 aatcgagaat tgtgctggaa ttctcaaatt ttccctcgcg tttttcttc acactctcg 240
 aatcgaaaat ttccaccaag ctccgtcaag cgatagattc tgacaattac acacttcgc 300
 gcagtgaat atg aag aaa gat gaa aag att ggt ttg acg ggg aga acc att 351
 Met Lys Lys Asp Glu Lys Ile Gly Leu Thr Gly Arg Thr Ile
 1 5 10

tac acc aga tcc cta gca gct tca att cct gcc tca gtt gaa caa gaa	399
Tyr Thr Arg Ser Leu Ala Ala Ser Ile Pro Ala Ser Val Glu Gln Glu	
15 20 25 30	
acc cct ggt ttg agg agg tca agc cgg ggg aca cca tct acg aag gta	447
Thr Pro Gly Leu Arg Arg Ser Ser Arg Gly Thr Pro Ser Thr Lys Val	
35 40 45	
ata act cca gct tct gct act aga aag tca gag aga ctg gct ccc tca	495
Ile Thr Pro Ala Ser Ala Thr Arg Lys Ser Glu Arg Leu Ala Pro Ser	
50 55 60	
cct gct tca gtt tca aaa aag tcc ggt gga atc gtc aag aat tcc aca	543
Pro Ala Ser Val Ser Lys Lys Ser Gly Gly Ile Val Lys Asn Ser Thr	
65 70 75	
cca agt tct ttg cga agg tcc aat agg ggg aag act gaa gta tcc ttg	591
Pro Ser Ser Leu Arg Arg Ser Asn Arg Gly Lys Thr Glu Val Ser Leu	
80 85 90	
cag agt tcc aaa gga tca gat aat tct atc agg aaa gga gat act tca	639
Gln Ser Ser Lys Gly Ser Asp Asn Ser Ile Arg Lys Gly Asp Thr Ser	
95 100 105 110	
ccg gat att gag cag aga aag gat agt gtt gaa gag tcg aca gat aag	687
Pro Asp Ile Glu Gln Arg Lys Asp Ser Val Glu Glu Ser Thr Asp Lys	
115 120 125	
atc aag cct ata atg tca gcc cga agt tac agg gca ttg ttt aga ggg	735
Ile Lys Pro Ile Met Ser Ala Arg Ser Tyr Arg Ala Leu Phe Arg Gly	
130 135 140	
aag ctc aag gaa tct gag gca tta gtt gat gct tcc cca aat gaa gag	783
Lys Leu Lys Glu Ser Glu Ala Leu Val Asp Ala Ser Pro Asn Glu Glu	
145 150 155	
gaa cta gta gtt gtt ggt tct cgc cgc ata cct gca ggc aat gat	831
Glu Leu Val Val Val Gly Cys Ser Arg Arg Ile Pro Ala Gly Asn Asp	
160 165 170	
gat gtt caa ggt aaa aca gat tct cca cct gca gat gca gga tca	879
Asp Val Gln Gly Lys Thr Asp Cys Pro Pro Pro Ala Asp Ala Gly Ser	
175 180 185 190	
aaa agg ctg cca gtt gac gaa act agt ttg gac aag ggc act gat ttt	927

Lys Arg Leu Pro Val Asp Glu Thr Ser	Leu Asp Lys Gly Thr Asp Phe	
195	200	205
cct ttg aaa tca gtt acg gag acc gag aag ata gtg ctt gat gca tcc		975
Pro Leu Lys Ser Val Thr Glu Thr Glu Lys Ile Val Leu Asp Ala Ser		
210	215	220
ccc ata gtt gaa act ggg gat gac agt gtt ata ggt tca cca tct gag		1023
Pro Ile Val Glu Thr Gly Asp Asp Ser Val Ile Gly Ser Pro Ser Glu		
225	230	235
aat tta gag aca caa aag ctt caa gat ggt aag aca gat tgt tca cca		1071
Asn Leu Glu Thr Gln Lys Leu Gln Asp Gly Lys Thr Asp Cys Ser Pro		
240	245	250
cct gca aat gca gaa tcg aaa acg ctg cca gtt ggt gaa act agt tta		1119
Pro Ala Asn Ala Glu Ser Lys Thr Leu Pro Val Gly Glu Thr Ser Leu		
255	260	265
270		
gaa aaa gaa tat cca caa aag ttt caa gat gat aac aca gat tgt cta		1167
Glu Lys Glu Tyr Pro Gln Lys Phe Gln Asp Asp Asn Thr Asp Cys Leu		
275	280	285
cca cct gca aat gca gaa tca aaa agg ctg cca gtt ggc gaa act agt		1215
Pro Pro Ala Asn Ala Glu Ser Lys Arg Leu Pro Val Gly Glu Thr Ser		
290	295	300
tta gaa aag gac act gat ttt cct ttg aaa tca act acg gag act gga		1263
Leu Glu Lys Asp Thr Asp Phe Pro Leu Lys Ser Thr Glu Thr Gly		
305	310	315
aag atg gtt ctt tat gca tcc ccc ata gtt gaa act agg gat gac agc		1311
Lys Met Val Leu Tyr Ala Ser Pro Ile Val Glu Thr Arg Asp Asp Ser		
320	325	330
gtt ata tgt tca cca tct aca aat tta gaa acc caa aag ctt ctt gtc		1359
Val Ile Cys Ser Pro Ser Thr Asn Leu Glu Thr Gln Lys Leu Leu Val		
335	340	345
350		
agt aaa act ggc tta gaa acc gac ata gtt ttg cct ttg aaa aga aaa		1407
Ser Lys Thr Gly Leu Glu Thr Asp Ile Val Leu Pro Leu Lys Arg Lys		
355	360	365
aga gac act gca gaa att gag ctg gat gca tgt gct aca gtt gca aat		1455
Arg Asp Thr Ala Glu Ile Glu Leu Asp Ala Cys Ala Thr Val Ala Asn		
370	375	380
gga gat gat cac gtt atg agt tct gat ggg gtc att cca tct cca tct		1503
Gly Asp Asp His Val Met Ser Ser Asp Gly Val Ile Pro Ser Pro Ser		
385	390	395
400		
405		
410		

aca cgt gcc tgc agt caa acc att aaa ctc ttg cga gct gat gcg ttt Thr Arg Ala Cys Ser Gln Thr Ile Lys Leu Leu Arg Ala Asp Ala Phe 640 645 650	2271
att ctt ttt gga agc agc ttg aat cca tcg cat gat gtt aag cac gta Ile Leu Phe Gly Ser Ser Leu Asn Pro Ser His Asp Val Lys His Val 655 660 665 670	2319
gag aag ata aaa atc gag tca tgt tct gaa aga act aag ata ttc cga Glu Lys Ile Lys Ile Glu Ser Cys Ser Glu Arg Thr Lys Ile Phe Arg 675 680 685	2367
ttg tac tca gta tgt aca gtt gaa gaa aaa gcc ctg att ctg gct agg Leu Tyr Ser Val Cys Thr Val Glu Glu Lys Ala Leu Ile Leu Ala Arg 690 695 700	2415
caa aat atg cgg caa aat aaa gct gta gag aac cta aac cgc tct ctc Gln Asn Met Arg Gln Asn Lys Ala Val Glu Asn Leu Asn Arg Ser Leu 705 710 715	2463
acg cac gca ctg ctc atg tgg ggg gcg tca tac tta ttt gat aaa ctg Thr His Ala Leu Leu Met Trp Gly Ala Ser Tyr Leu Phe Asp Lys Leu 720 725 730	2511
gat cat ttt cac agc agt gaa act cca gat tca gga gtt tca ttt gaa Asp His Phe His Ser Ser Glu Thr Pro Asp Ser Gly Val Ser Phe Glu 735 740 745 750	2559
caa tct att atg gac ggc gtg att cat gaa ttc tcg tcc ata ctt tct Gln Ser Ile Met Asp Gly Val Ile His Glu Phe Ser Ser Ile Leu Ser 755 760 765	2607
tcc aaa ggt gga gaa gaa aat gaa gtc aag ctg tgt cta ctt ttg gag Ser Lys Gly Gly Glu Asn Glu Val Lys Leu Cys Leu Leu Glu 770 775 780	2655
gcc aag cat gct cag gga act tac agc agt gat tct act cta ttt ggt Ala Lys His Ala Gln Gly Thr Tyr Ser Ser Asp Ser Thr Leu Phe Gly 785 790 795	2703
gaa gac cat att aag ttg tca gat gaa gag agt cca aat ata ttt tgg Glu Asp His Ile Lys Leu Ser Asp Glu Glu Ser Pro Asn Ile Phe Trp 800 805 810	2751
tca aag ctg ttg ggg gga aaa aat cct atg tgg aaa tac cct tca gat Ser Lys Leu Leu Gly Gly Lys Asn Pro Met Trp Lys Tyr Pro Ser Asp 815 820 825 830	2799
act ccc caa agg aat cga aaa cga gtt cag tat ttt gag ggt tct gaa Thr Pro Gln Arg Asn Arg Lys Arg Val Gln Tyr Phe Glu Gly Ser Glu 835 840 845	2847
gcg agt ccc aaa act ggc gat ggt gga aat gca aag aag cga aag aag Ala Ser Pro Lys Thr Gly Asp Gly Asn Ala Lys Lys Arg Lys Lys	2895

- 10 -

850	855	860	
gct tct gat gat gtc act gat ccc cgg gtc act gat ccg cca gta gat Ala Ser Asp Asp Val Thr Asp Pro Arg Val Thr Asp Pro Pro Val Asp			2943
865	870	875	
gat gat gaa aga aag gcc tct ggg aag gat cac atg ggg gct ttg gag Asp Asp Glu Arg Lys Ala Ser Gly Lys Asp His Met Gly Ala Leu Glu			2991
880	885	890	
tca cca aaa gtc ata aca ctc cag tca tca tgt aaa tct tct ggt aca Ser Pro Lys Val Ile Thr Leu Gln Ser Ser Cys Lys Ser Ser Gly Thr			3039
895	900	905	910
gat ggt aca ttg gat gga aat gat gct ttt ggc ttg tat tct atg ggc Asp Gly Thr Leu Asp Gly Asn Asp Ala Phe Gly Leu Tyr Ser Met Gly			3087
915	920	925	
agc cat atc tct gga atc cca gag gat atg tta gct agt caa gat tgg Ser His Ile Ser Gly Ile Pro Glu Asp Met Leu Ala Ser Gln Asp Trp			3135
930	935	940	
ggg aaa ata ccg gat gaa tca cag agg ctc cac act gtt tta aag Gly Lys Ile Pro Asp Glu Ser Gln Arg Arg Leu His Thr Val Leu Lys			3183
945	950	955	
ccg aag atg gca aaa ctt tgc caa gtt ttg cat ctt tca gat gct tgc Pro Lys Met Ala Lys Leu Cys Gln Val Leu His Leu Ser Asp Ala Cys			3231
960	965	970	
aca agc atg gtc gga aat ttt ctc gaa tat gtt att gaa aat cac cga Thr Ser Met Val Gly Asn Phe Leu Glu Tyr Val Ile Glu Asn His Arg			3279
975	980	985	990
atc tac gaa gag cca gcc act act ttt cag gca ttc cag ata gcc ctg Ile Tyr Glu Glu Pro Ala Thr Thr Phe Gln Ala Phe Gln Ile Ala Leu			3327
995	1000	1005	
agt tgg att gca gcc ttg ttg gta aag caa att ctt agc cac aaa gaa Ser Trp Ile Ala Ala Leu Leu Val Lys Gln Ile Leu Ser His Lys Glu			3375
1010	1015	1020	
tct ctg gtc cgt gca aat tct gaa tta gct ttc aaa tgc tct aga gta Ser Leu Val Arg Ala Asn Ser Glu Leu Ala Phe Lys Cys Ser Arg Val			3423
1025	1030	1035	
gag gtg gat tat att tat tcg ata ttg tcc tgc atg aag agt ctg ttc Glu Val Asp Tyr Ile Tyr Ser Ile Leu Ser Cys Met Lys Ser Leu Phe			3471
1040	1045	1050	
ctg gag cat aca caa ggt ttg cag ttc gat tgc ttt ggt act aat tct Leu Glu His Thr Gln Gly Leu Gln Phe Asp Cys Phe Gly Thr Asn Ser			3519
1055	1060	1065	1070
aaa cag tca gtg gtt agc aca aaa cta gta aat gaa agt ctc tca ggg			3567

Lys Gln Ser Val Val Ser Thr Lys Leu Val Asn Glu Ser Leu Ser Gly			
1075	1080	1085	
gct aca gtg cgt gac gaa aag att aat acg aag tcg atg cga aat agc			
Ala Thr Val Arg Asp Glu Lys Ile Asn Thr Lys Ser Met Arg Asn Ser			3615
1090	1095	1100	
tca gag gat gaa gag tgc atg act gag aag aga tgt agc cat tat agc			
Ser Glu Asp Glu Glu Cys Met Thr Glu Lys Arg Cys Ser His Tyr Ser			3663
1105	1110	1115	
aca gca aca aga gat atc gaa aag act att agt ggc ata aaa aag aaa			
Thr Ala Thr Arg Asp Ile Glu Lys Thr Ile Ser Gly Ile Lys Lys Lys			3711
1120	1125	1130	
tat aag aag caa gtg caa aag ctt gta caa gag cat gag gaa aag aaa			
Tyr Lys Lys Gln Val Gln Lys Leu Val Gln Glu His Glu Glu Lys Lys			3759
1135	1140	1145	1150
atg gag ctg tta aat atg tat gca gac aag aag cag aaa ctt gaa act			
Met Glu Leu Leu Asn Met Tyr Ala Asp Lys Lys Gln Lys Leu Glu Thr			3807
1155	1160	1165	
agt aaa agt gtg gaa gca gca gta att cgt att acc tgt tca cg acc			
Ser Lys Ser Val Glu Ala Ala Val Ile Arg Ile Thr Cys Ser Arg Thr			3855
1170	1175	1180	
agt act caa gtg ggt gat ctc aaa ctg ctg gat cat aat tat gaa aga			
Ser Thr Gln Val Gly Asp Leu Lys Leu Leu Asp His Asn Tyr Glu Arg			3903
1185	1190	1195	
aag ttt gat gaa atc aaa agt gag aaa aat gaa tgc ctc aaa agt ctg			
Lys Phe Asp Glu Ile Lys Ser Glu Lys Asn Glu Cys Leu Lys Ser Leu			3951
1200	1205	1210	
gag caa atg cac gag gtt gca aag aag ttg gct gag gat gaa gcc			
Glu Gln Met His Glu Val Ala Lys Lys Leu Ala Glu Asp Glu Ala			3999
1215	1220	1225	1230
tgt tgg att aat cgg ata aag agc tgg gca gct aaa tta aaa gtt tgt			
Cys Trp Ile Asn Arg Ile Lys Ser Trp Ala Ala Lys Leu Lys Val Cys			4047
1235	1240	1245	
gtt ccc att caa agt ggc aat aac aag cat ttt agt ggt tca tca aac			
Val Pro Ile Gln Ser Gly Asn Asn Lys His Phe Ser Gly Ser Ser Asn			4095
1250	1255	1260	
att tcc caa aat gct cct gat gta caa att tgc aat aat gct aac gtt			
Ile Ser Gln Asn Ala Pro Asp Val Gln Ile Cys Asn Asn Ala Asn Val			4143
1265	1270	1275	
gaa gct act tac gct gat acg aat tgc atg gct tcc aag gtt aat caa			
Glu Ala Thr Tyr Ala Asp Thr Asn Cys Met Ala Ser Lys Val Asn Gln			4191
1280	1285	1290	

gtg cca gaa gca gaa aac aca tta gga acc atg tcg ggt ggc agc act Val Pro Glu Ala Glu Asn Thr Leu Gly Thr Met Ser Gly Gly Ser Thr 1295	1300	1305	1310	4239
caa caa gtt cat gaa atg gtg gat gta aga aat gac gag aca atg gat Gln Gln Val His Glu Met Val Asp Val Arg Asn Asp Glu Thr Met Asp 1315	1320	1325		4287
gtc tca gct ttg tct cgt gaa cag ctt aca aag agc cag tcc aat gag Val Ser Ala Leu Ser Arg Glu Gln Leu Thr Lys Ser Gln Ser Asn Glu 1330	1335	1340		4335
cac gct tct atc act gtg cct gag att ttg att cct gct gac tgt caa His Ala Ser Ile Thr Val Pro Glu Ile Leu Ile Pro Ala Asp Cys Gln 1345	1350	1355		4383
gag gaa ttt gcg gcc ttg aac gtg cat ttg tca gaa gac cag aat tgt Glu Glu Phe Ala Ala Leu Asn Val His Leu Ser Glu Asp Gln Asn Cys 1360	1365	1370		4431
gac aga ata aca tct gcg gca tca gat gaa gat gtt tca tca agg gtg Asp Arg Ile Thr Ser Ala Ala Ser Asp Glu Asp Val Ser Ser Arg Val 1375	1380	1385	1390	4479
cca gag gta tcc cag tca ctc gaa aat ctt tct gcc tcc ccc gag ttt Pro Glu Val Ser Gln Ser Leu Glu Asn Leu Ser Ala Ser Pro Glu Phe 1395	1400	1405		4527
tct cta aat aga gag gag gct ttg gtt aca aca gaa aat aga aga aca Ser Leu Asn Arg Glu Glu Ala Leu Val Thr Thr Glu Asn Arg Arg Thr 1410	1415	1420		4575
agt cat gtg ggt ttt gat act gat aac att ttg gac cag cag aat aga Ser His Val Gly Phe Asp Thr Asp Asn Ile Leu Asp Gln Gln Asn Arg 1425	1430	1435		4623
gaa gat tgt tct ctt gac caa gag att cct gac gag tta gcg atg cct Glu Asp Cys Ser Leu Asp Gln Glu Ile Pro Asp Glu Leu Ala Met Pro 1440	1445	1450		4671
gtg caa cat ctt gcg tct gtg gta gag act agg ggt gct gct gaa tct Val Gln His Leu Ala Ser Val Val Glu Thr Arg Gly Ala Ala Glu Ser 1455	1460	1465	1470	4719
gat cag tat ggt caa gat ata tgt cct atg cct tct tca ctg gct gga Asp Gln Tyr Gly Gln Asp Ile Cys Pro Met Pro Ser Ser Leu Ala Gly 1475	1480	1485		4767
aag caa cct gac cca gca gca aac act gag agc gaa aat ctt gaa gaa Lys Gln Pro Asp Pro Ala Ala Asn Thr Glu Ser Glu Asn Leu Glu Glu 1490	1495	1500		4815
gca att gag cct cag tct gct ggt tca gaa aca gta gag act act gat Ala Ile Glu Pro Gln Ser Ala Gly Ser Glu Thr Val Glu Thr Thr Asp 1505	1510	1515		4863

ttt gct gca tca cat cag ggt gat caa gtt aca tgt cct ttg cta tct			4911
Phe Ala Ala Ser His Gln Gly Asp Gln Val Thr Cys Pro Leu Leu Ser			
1520	1525	1530	
tca ccg act gga aat cag cct gcg cca gaa gca aat att gaa ggc caa			4959
Ser Pro Thr Gly Asn Gln Pro Ala Pro Glu Ala Asn Ile Glu Gly Gln			
1535	1540	1545	1550
aat atc aac aca tca gct gag ccc cat gta gcg ggt cca gat gca gta			5007
Asn Ile Asn Thr Ser Ala Glu Pro His Val Ala Gly Pro Asp Ala Val			
1555	1560	1565	
gag agt ggt gat tat gca gta ata gat cag gaa aca atg ggt gct cag			5055
Glu Ser Gly Asp Tyr Ala Val Ile Asp Gln Glu Thr Met Gly Ala Gln			
1570	1575	1580	
gat gca tgc tct ctg cca tct gga tcg gtt gga act cag tct gac cta			5103
Asp Ala Cys Ser Leu Pro Ser Gly Ser Val Gly Thr Gln Ser Asp Leu			
1585	1590	1595	
gga gca aac att gag ggt caa aat gtc aca aca gtg gct caa ctt ccc			5151
Gly Ala Asn Ile Glu Gly Gln Asn Val Thr Thr Val Ala Gln Leu Pro			
1600	1605	1610	
aca gat gga tca gat gca gtt gta acc ggt gga tct cct gta tca gat			5199
Thr Asp Gly Ser Asp Ala Val Val Thr Gly Gly Ser Pro Val Ser Asp			
1615	1620	1625	1630
cag tgt gcc cag gat gca tct cct atg cca tta tct tcg cct gga aat			5247
Gln Cys Ala Gln Asp Ala Ser Pro Met Pro Leu Ser Ser Pro Gly Asn			
1635	1640	1645	
cac cct gat aca gca gtt aat atc gag ggt tta gat aac aca tca gta			5295
His Pro Asp Thr Ala Val Asn Ile Glu Gly Leu Asp Asn Thr Ser Val			
1650	1655	1660	
gct gag cct cat ata agt gga tca gat gca tgt gaa atg gaa att tca			5343
Ala Glu Pro His Ile Ser Gly Ser Asp Ala Cys Glu Met Glu Ile Ser			
1665	1670	1675	
gaa cct ggt ccc caa gta gag cgg tca acc ttt gca aat ctt ttc cat			5391
Glu Pro Gly Pro Gln Val Glu Arg Ser Thr Phe Ala Asn Leu Phe His			
1680	1685	1690	
gaa ggt ggc gtg gag cat tca gca ggt gta aca gca gct ctt gtt cca tca			5439
Glu Gly Gly Val Glu His Ser Ala Gly Val Thr Ala Leu Val Pro Ser			
1695	1700	1705	1710
ctt ctt aac aat ggt acg gaa cag att gcc gtt caa cct gtt cct caa			5487
Leu Leu Asn Asn Gly Thr Glu Gln Ile Ala Val Gln Pro Val Pro Gln			
1715	1720	1725	
ata cct ttc cct gtg ttc aac gac ccg ttt ctg cat gaa ctg gag aag			5535
Ile Pro Phe Pro Val Phe Asn Asp Pro Phe Leu His Glu Leu Glu Lys			

- 14 -

1730	1735	1740	
ttg cggtt gaa tca gag aac tca aag aag act ttt gaa gaa aaa aaa Leu Arg Arg Glu Ser Glu Asn Ser Lys Lys Thr Phe Glu Glu Lys Lys 1745	1750	1755	5583
tca atc ttg aaa gct gaa ctc gag agg aag atg gct gaa gta caa gca Ser Ile Leu Lys Ala Glu Leu Glu Arg Lys Met Ala Glu Val Gln Ala 1760	1765	1770	5631
gag ttt cga aga aaa ttt cat gag gta gaa gcc gag cat aac acc aga Glu Phe Arg Arg Lys Phe His Glu Val Glu Ala Glu His Asn Thr Arg 1775	1780	1785	5679
acg aca aag ata gag aag gat aag aat ctt gtt ata atg aac aaa ctg Thr Thr Lys Ile Glu Lys Asp Lys Asn Leu Val Ile Met Asn Lys Leu 1795	1800	1805	5727
ttg gcg aat gcg ttc ttg tcc aaa tgt act gac aag gta tct ccc Leu Ala Asn Ala Phe Leu Ser Lys Cys Thr Asp Lys Lys Val Ser Pro 1810	1815	1820	5775
tca gga gct cca agg ggt aaa att cag cag cta gca cag aga gca gca Ser Gly Ala Pro Arg Gly Lys Ile Gln Gln Leu Ala Gln Arg Ala Ala 1825	1830	1835	5823
caa gtg agt gca ctg aga aat tac att gct cct cag cag ctt cag gca Gln Val Ser Ala Leu Arg Asn Tyr Ile Ala Pro Gln Gln Leu Gln Ala 1840	1845	1850	5871
tct tct ttt cct gct cct ctg gtt tcg gct cct ctg caa ctt cag Ser Ser Phe Pro Ala Pro Ala Leu Val Ser Ala Pro Leu Gln Leu Gln 1855	1860	1865	5919
caa tca tca ttt cct gct cct ggt ccg gct cct ctg cag cct cag gca Gln Ser Ser Phe Pro Ala Pro Gly Pro Ala Pro Leu Gln Pro Gln Ala 1875	1880	1885	5967
tct tcg ttt cct tct tca gtc tct cgt cca tca gcc ctt ctt ctg aat Ser Ser Phe Pro Ser Ser Val Ser Arg Pro Ser Ala Leu Leu Leu Asn 1890	1895	1900	6015
ttt gcg gtc tgt cca atg cct cag ccc aga cag cct ctc ata tcc aac Phe Ala Val Cys Pro Met Pro Gln Pro Arg Gln Pro Leu Ile Ser Asn 1905	1910	1915	6063
ata gct cca act cca tca gtt act cct gca aca aat cca ggt ctg cgt Ile Ala Pro Thr Pro Ser Val Thr Pro Ala Thr Asn Pro Gly Leu Arg 1920	1925	1930	6111
tct cct gca cca cac cta aac tca tat aga cca tcc tct tca act ccc Ser Pro Ala Pro His Leu Asn Ser Tyr Arg Pro Ser Ser Ser Thr Pro 1935	1940	1945	6159
gtc gcc aca gct act cca acc tcg tca gtg cct cct caa gct ttg aca			6207

- 15 -

Val Ala Thr Ala Thr Pro Thr Ser Ser Val Pro Pro Gln Ala Leu Thr			
1955	1960	1965	
tat tca gct gtg tca att cag cag cag caa gaa caa caa ccg caa cag			6255
Tyr Ser Ala Val Ser Ile Gln Gln Gln Glu Gln Gln Pro Gln Gln			
1970	1975	1980	
agc ttg agc agt gga ttg cag agc aac aat gaa gtg gtt tgt ctt tct			6303
Ser Leu Ser Ser Gly Leu Gln Ser Asn Asn Glu Val Val Cys Leu Ser			
1985	1990	1995	
gac gac gag tgacctaga ggagagatgg ttagggtctt agttattgtat			6352
Asp Asp Glu			
2000			
tttttagagag ttaataatag tatatatata tatgtataag taggttacct aatctctgtc			6412
gttaatctaa ttttgtgagt caggaaccga ctcgttggct aaggctcttc ctgttggaaac			6472
gcacacgttct actttcatgt atataaatac agtctgtatca cacaacacaa attgtatgatt			6532
gaaaatacta ctgatttaac ttaaaaaaaaaaaaaaa			6571
<210> 3			
<211> 2001			
<212> PRT			
<213> Arabidopsis thaliana			
<400> 3			
Met Lys Lys Asp Glu Lys Ile Gly Leu Thr Gly Arg Thr Ile Tyr Thr			
1	5	10	15
Arg Ser Leu Ala Ala Ser Ile Pro Ala Ser Val Glu Gln Glu Thr Pro			
20	25	30	
Gly Leu Arg Arg Ser Ser Arg Gly Thr Pro Ser Thr Lys Val Ile Thr			
35	40	45	
Pro Ala Ser Ala Thr Arg Lys Ser Glu Arg Leu Ala Pro Ser Pro Ala			
50	55	60	
Ser Val Ser Lys Lys Ser Gly Gly Ile Val Lys Asn Ser Thr Pro Ser			
65	70	75	80
Ser Leu Arg Arg Ser Asn Arg Gly Lys Thr Glu Val Ser Leu Gln Ser			
85	90	95	
Ser Lys Gly Ser Asp Asn Ser Ile Arg Lys Gly Asp Thr Ser Pro Asp			
100	105	110	
Ile Glu Gln Arg Lys Asp Ser Val Glu Glu Ser Thr Asp Lys Ile Lys			
115	120	125	
Pro Ile Met Ser Ala Arg Ser Tyr Arg Ala Leu Phe Arg Gly Lys Leu			

- 16 -

130	135	140
Lys Glu Ser Glu Ala Leu Val Asp Ala Ser Pro Asn Glu Glu Glu Leu		
145	150	155
Val Val Val Gly Cys Ser Arg Arg Ile Pro Ala Gly Asn Asp Asp Val		
165	170	175
Gln Gly Lys Thr Asp Cys Pro Pro Ala Asp Ala Gly Ser Lys Arg		
180	185	190
Leu Pro Val Asp Glu Thr Ser Leu Asp Lys Gly Thr Asp Phe Pro Leu		
195	200	205
Lys Ser Val Thr Glu Thr Glu Lys Ile Val Leu Asp Ala Ser Pro Ile		
210	215	220
Val Glu Thr Gly Asp Asp Ser Val Ile Gly Ser Pro Ser Glu Asn Leu		
225	230	235
240		
Glu Thr Gln Lys Leu Gln Asp Gly Lys Thr Asp Cys Ser Pro Pro Ala		
245	250	255
Asn Ala Glu Ser Lys Thr Leu Pro Val Gly Glu Thr Ser Leu Glu Lys		
260	265	270
Glu Tyr Pro Gln Lys Phe Gln Asp Asp Asn Thr Asp Cys Leu Pro Pro		
275	280	285
Ala Asn Ala Glu Ser Lys Arg Leu Pro Val Gly Glu Thr Ser Leu Glu		
290	295	300
Lys Asp Thr Asp Phe Pro Leu Lys Ser Thr Thr Glu Thr Gly Lys Met		
305	310	315
320		
Val Leu Tyr Ala Ser Pro Ile Val Glu Thr Arg Asp Asp Ser Val Ile		
325	330	335
Cys Ser Pro Ser Thr Asn Leu Glu Thr Gln Lys Leu Leu Val Ser Lys		
340	345	350
Thr Gly Leu Glu Thr Asp Ile Val Leu Pro Leu Lys Arg Lys Arg Asp		
355	360	365
Thr Ala Glu Ile Glu Leu Asp Ala Cys Ala Thr Val Ala Asn Gly Asp		
370	375	380
Asp His Val Met Ser Ser Asp Gly Val Ile Pro Ser Pro Ser Gly Cys		
385	390	395
400		
Lys Asn Asp Asn Arg Pro Glu Met Cys Asn Thr Cys Lys Lys Arg Gln		
405	410	415
Lys Val Asn Gly Asp Cys Gln Asn Arg Ser Val Cys Ser Cys Ile Val		
420	425	430

Gln Pro Val Glu Glu Ser Asp Asn Val Thr Gln Asp Met Lys Glu Thr
 435 440 445
 Gly Pro Val Thr Ser Arg Glu Tyr Glu Glu Asn Gly Gln Ile Gln His
 450 455 460
 Gly Lys Ser Ser Asp Pro Lys Phe Tyr Ser Ser Val Tyr Pro Glu Tyr
 465 470 475 480
 Trp Val Pro Val Gln Leu Ser Asp Val Gln Leu Glu Gln Tyr Cys Gln
 485 490 495
 Thr Leu Phe Ser Lys Ser Leu Ser Leu Ser Ser Leu Ser Lys Ile Asp
 500 505 510
 Leu Gly Ala Leu Glu Glu Thr Leu Asn Ser Val Arg Lys Thr Cys Asp
 515 520 525
 His Pro Tyr Val Met Asp Ala Ser Leu Lys Gln Leu Leu Thr Lys Asn
 530 535 540
 Leu Glu Leu His Glu Ile Leu Asp Val Glu Ile Lys Ala Ser Gly Lys
 545 550 555 560
 Leu His Leu Leu Asp Lys Met Leu Thr His Ile Lys Lys Asn Gly Leu
 565 570 575
 Lys Ala Val Val Phe Tyr Gln Ala Thr Gln Thr Pro Glu Gly Leu Leu
 580 585 590
 Leu Gly Asn Ile Leu Glu Asp Phe Val Gly Gln Arg Phe Gly Pro Lys
 595 600 605
 Ser Tyr Glu His Gly Ile Tyr Ser Ser Lys Lys Asn Ser Ala Ile Asn
 610 615 620
 Asn Phe Asn Lys Glu Ser Gln Cys Cys Val Leu Leu Leu Glu Thr Arg
 625 630 635 640
 Ala Cys Ser Gln Thr Ile Lys Leu Leu Arg Ala Asp Ala Phe Ile Leu
 645 650 655
 Phe Gly Ser Ser Leu Asn Pro Ser His Asp Val Lys His Val Glu Lys
 660 665 670
 Ile Lys Ile Glu Ser Cys Ser Glu Arg Thr Lys Ile Phe Arg Leu Tyr
 675 680 685
 Ser Val Cys Thr Val Glu Glu Lys Ala Leu Ile Leu Ala Arg Gln Asn
 690 695 700
 Met Arg Gln Asn Lys Ala Val Glu Asn Leu Asn Arg Ser Leu Thr His
 705 710 715 720

Ala Leu Leu Met Trp Gly Ala Ser Tyr Leu Phe Asp Lys Leu Asp His
 725 730 735

Phe His Ser Ser Glu Thr Pro Asp Ser Gly Val Ser Phe Glu Gln Ser
 740 745 750

Ile Met Asp Gly Val Ile His Glu Phe Ser Ser Ile Leu Ser Ser Lys
 755 760 765

Gly Gly Glu Glu Asn Glu Val Lys Leu Cys Leu Leu Glu Ala Lys
 770 775 780

His Ala Gln Gly Thr Tyr Ser Ser Asp Ser Thr Leu Phe Gly Glu Asp
 785 790 795 800

His Ile Lys Leu Ser Asp Glu Glu Ser Pro Asn Ile Phe Trp Ser Lys
 805 810 815

Leu Leu Gly Gly Lys Asn Pro Met Trp Lys Tyr Pro Ser Asp Thr Pro
 820 825 830

Gln Arg Asn Arg Lys Arg Val Gln Tyr Phe Glu Gly Ser Glu Ala Ser
 835 840 845

Pro Lys Thr Gly Asp Gly Gly Asn Ala Lys Lys Arg Lys Ala Ser
 850 855 860

Asp Asp Val Thr Asp Pro Arg Val Thr Asp Pro Pro Val Asp Asp Asp
 865 870 875 880

Glu Arg Lys Ala Ser Gly Lys Asp His Met Gly Ala Leu Glu Ser Pro
 885 890 895

Lys Val Ile Thr Leu Gln Ser Ser Cys Lys Ser Ser Gly Thr Asp Gly
 900 905 910

Thr Leu Asp Gly Asn Asp Ala Phe Gly Leu Tyr Ser Met Gly Ser His
 915 920 925

Ile Ser Gly Ile Pro Glu Asp Met Leu Ala Ser Gln Asp Trp Gly Lys
 930 935 940

Ile Pro Asp Glu Ser Gln Arg Arg Leu His Thr Val Leu Lys Pro Lys
 945 950 955 960

Met Ala Lys Leu Cys Gln Val Leu His Leu Ser Asp Ala Cys Thr Ser
 965 970 975

Met Val Gly Asn Phe Leu Glu Tyr Val Ile Glu Asn His Arg Ile Tyr
 980 985 990

Glu Glu Pro Ala Thr Thr Phe Gln Ala Phe Gln Ile Ala Leu Ser Trp
 995 1000 1005

Ile Ala Ala Leu Leu Val Lys Gln Ile Leu Ser His Lys Glu Ser Leu

- 19 -

1010	1015	1020
Val Arg Ala Asn Ser Glu Leu Ala Phe Lys Cys Ser Arg Val Glu Val		
025	1030	1035
Asp Tyr Ile Tyr Ser Ile Leu Ser Cys Met Lys Ser Leu Phe Leu Glu		
1045	1050	1055
His Thr Gln Gly Leu Gln Phe Asp Cys Phe Gly Thr Asn Ser Lys Gln		
1060	1065	1070
Ser Val Val Ser Thr Lys Leu Val Asn Glu Ser Leu Ser Gly Ala Thr		
1075	1080	1085
Val Arg Asp Glu Lys Ile Asn Thr Lys Ser Met Arg Asn Ser Ser Glu		
1090	1095	1100
Asp Glu Glu Cys Met Thr Glu Lys Arg Cys Ser His Tyr Ser Thr Ala		
105	1110	1115
Thr Arg Asp Ile Glu Lys Thr Ile Ser Gly Ile Lys Lys Lys Tyr Lys		
1125	1130	1135
Lys Gln Val Gln Lys Leu Val Gln Glu His Glu Glu Lys Lys Met Glu		
1140	1145	1150
Leu Leu Asn Met Tyr Ala Asp Lys Lys Gln Lys Leu Glu Thr Ser Lys		
1155	1160	1165
Ser Val Glu Ala Ala Val Ile Arg Ile Thr Cys Ser Arg Thr Ser Thr		
1170	1175	1180
Gln Val Gly Asp Leu Lys Leu Leu Asp His Asn Tyr Glu Arg Lys Phe		
185	1190	1195
Asp Glu Ile Lys Ser Glu Lys Asn Glu Cys Leu Lys Ser Leu Glu Gln		
1205	1210	1215
Met His Glu Val Ala Lys Lys Leu Ala Glu Asp Glu Ala Cys Trp		
1220	1225	1230
Ile Asn Arg Ile Lys Ser Trp Ala Ala Lys Leu Lys Val Cys Val Pro		
1235	1240	1245
Ile Gln Ser Gly Asn Asn Lys His Phe Ser Gly Ser Ser Asn Ile Ser		
1250	1255	1260
Gln Asn Ala Pro Asp Val Gln Ile Cys Asn Asn Ala Asn Val Glu Ala		
265	1270	1275
Thr Tyr Ala Asp Thr Asn Cys Met Ala Ser Lys Val Asn Gln Val Pro		
1285	1290	1295
Glu Ala Glu Asn Thr Leu Gly Thr Met Ser Gly Gly Ser Thr Gln Gln		
1300	1305	1310

- 20 -

Val His Glu Met Val Asp Val Arg Asn Asp Glu Thr Met Asp Val Ser
 1315 1320 1325

Ala Leu Ser Arg Glu Gln Leu Thr Lys Ser Gln Ser Asn Glu His Ala
 1330 1335 1340

Ser Ile Thr Val Pro Glu Ile Leu Ile Pro Ala Asp Cys Gln Glu Glu
 345 1350 1355 1360

Phe Ala Ala Leu Asn Val His Leu Ser Glu Asp Gln Asn Cys Asp Arg
 1365 1370 1375

Ile Thr Ser Ala Ala Ser Asp Glu Asp Val Ser Ser Arg Val Pro Glu
 1380 1385 1390

Val Ser Gln Ser Leu Glu Asn Leu Ser Ala Ser Pro Glu Phe Ser Leu
 1395 1400 1405

Asn Arg Glu Glu Ala Leu Val Thr Thr Glu Asn Arg Arg Thr Ser His
 1410 1415 1420

Val Gly Phe Asp Thr Asp Asn Ile Leu Asp Gln Gln Asn Arg Glu Asp
 425 1430 1435 1440

Cys Ser Leu Asp Gln Glu Ile Pro Asp Glu Leu Ala Met Pro Val Gln
 1445 1450 1455

His Leu Ala Ser Val Val Glu Thr Arg Gly Ala Ala Glu Ser Asp Gln
 1460 1465 1470

Tyr Gly Gln Asp Ile Cys Pro Met Pro Ser Ser Leu Ala Gly Lys Gln
 1475 1480 1485

Pro Asp Pro Ala Ala Asn Thr Glu Ser Glu Asn Leu Glu Glu Ala Ile
 1490 1495 1500

Glu Pro Gln Ser Ala Gly Ser Glu Thr Val Glu Thr Thr Asp Phe Ala
 505 1510 1515 1520

Ala Ser His Gln Gly Asp Gln Val Thr Cys Pro Leu Leu Ser Ser Pro
 1525 1530 1535

Thr Gly Asn Gln Pro Ala Pro Glu Ala Asn Ile Glu Gly Gln Asn Ile
 1540 1545 1550

Asn Thr Ser Ala Glu Pro His Val Ala Gly Pro Asp Ala Val Glu Ser
 1555 1560 1565

Gly Asp Tyr Ala Val Ile Asp Gln Glu Thr Met Gly Ala Gln Asp Ala
 1570 1575 1580

Cys Ser Leu Pro Ser Gly Ser Val Gly Thr Gln Ser Asp Leu Gly Ala
 585 1590 1595 1600

Asn Ile Glu Gly Gln Asn Val Thr Thr Val Ala Gln Leu Pro Thr Asp
 1605 1610 1615

 Gly Ser Asp Ala Val Val Thr Gly Gly Ser Pro Val Ser Asp Gln Cys
 1620 1625 1630

 Ala Gln Asp Ala Ser Pro Met Pro Leu Ser Ser Pro Gly Asn His Pro
 1635 1640 1645

 Asp Thr Ala Val Asn Ile Glu Gly Leu Asp Asn Thr Ser Val Ala Glu
 1650 1655 1660

 Pro His Ile Ser Gly Ser Asp Ala Cys Glu Met Glu Ile Ser Glu Pro
 665 1670 1675 1680

 Gly Pro Gln Val Glu Arg Ser Thr Phe Ala Asn Leu Phe His Glu Gly
 1685 1690 1695

 Gly Val Glu His Ser Ala Gly Val Thr Ala Leu Val Pro Ser Leu Leu
 1700 1705 1710

 Asn Asn Gly Thr Glu Gln Ile Ala Val Gln Pro Val Pro Gln Ile Pro
 1715 1720 1725

 Phe Pro Val Phe Asn Asp Pro Phe Leu His Glu Leu Glu Lys Leu Arg
 1730 1735 1740

 Arg Glu Ser Glu Asn Ser Lys Lys Thr Phe Glu Glu Lys Lys Ser Ile
 745 1750 1755 1760

 Leu Lys Ala Glu Leu Glu Arg Lys Met Ala Glu Val Gln Ala Glu Phe
 1765 1770 1775

 Arg Arg Lys Phe His Glu Val Glu Ala Glu His Asn Thr Arg Thr Thr
 1780 1785 1790

 Lys Ile Glu Lys Asp Lys Asn Leu Val Ile Met Asn Lys Leu Leu Ala
 1795 1800 1805

 Asn Ala Phe Leu Ser Lys Cys Thr Asp Lys Lys Val Ser Pro Ser Gly
 1810 1815 1820

 Ala Pro Arg Gly Lys Ile Gln Gln Leu Ala Gln Arg Ala Ala Gln Val
 825 1830 1835 1840

 Ser Ala Leu Arg Asn Tyr Ile Ala Pro Gln Gln Leu Gln Ala Ser Ser
 1845 1850 1855

 Phe Pro Ala Pro Ala Leu Val Ser Ala Pro Leu Gln Leu Gln Gln Ser
 1860 1865 1870

 Ser Phe Pro Ala Pro Gly Pro Ala Pro Leu Gln Pro Gln Ala Ser Ser
 1875 1880 1885

 Phe Pro Ser Ser Val Ser Arg Pro Ser Ala Leu Leu Leu Asn Phe Ala

- 22 -

	1890	1895	1900
Val Cys Pro Met Pro Gln Pro Arg Gln Pro Leu Ile Ser Asn Ile Ala			
905		1910	1915
			1920
Pro Thr Pro Ser Val Thr Pro Ala Thr Asn Pro Gly Leu Arg Ser Pro			
	1925	1930	1935
Ala Pro His Leu Asn Ser Tyr Arg Pro Ser Ser Ser Thr Pro Val Ala			
	1940	1945	1950
Thr Ala Thr Pro Thr Ser Ser Val Pro Pro Gln Ala Leu Thr Tyr Ser			
	1955	1960	1965
Ala Val Ser Ile Gln Gln Gln Glu Gln Gln Pro Gln Gln Ser Leu			
	1970	1975	1980
Ser Ser Gly Leu Gln Ser Asn Asn Glu Val Val Cys Leu Ser Asp Asp			
985	1990	1995	2000
Glu			

<210> 4
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 4
catctacqgc aatgttaccag c 21

<210> 5
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Oligonucleotide

<400> 5
gatggaaatt ggctgagtgcc 21

<210> 6
<211> 21
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic
Oligonucleotide

<400> 6

cagttccaaa cgtaaaaacgg c

21

<210> 7

<211> 15

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic
Oligonucleotide

<400> 7

ntcgastwts gwgtt

15

<210> 8

<211> 16

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic
Oligonucleotide

<400> 8

ngtcgaswga nawgaa

16

<210> 9

<211> 16

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic
Oligonucleotide

<400> 9

wgtgnagwan canaga

16

<210> 10

<211> 16

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic

Oligonucleotide

<400> 10
wggwancwga wangca 16

<210> 11
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 11
wcaawwqawca ngncga 16

<210> 12
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 12
wicnaqtuaq wanaaq 16

```
<210> 13
<211> 16
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 13
awqangncw ganata 16

```
<210> 14  
<211> 24  
<212> DNA  
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 14

ctgtacatac tgagtacaat cgga

24

<210> 15
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Oligonucleotide

<400> 15
gcttcaattc ctgcctcagt tgaac

25

<210> 16
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Oligonucleotide

<400> 16
ctctacgtgc ttaacatcat gcga

24

<210> 17
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Oligonucleotide

<400> 17
ccagcttctg ctactagaaa gtcag

25

<210> 18
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Oligonucleotide

<400> 18
ctggagttgc atgaaatcct ggatg

25

<210> 19
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 19
gcttttgc agctgttcac gagac

25

<210> 20
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 20
tcgcatgatg ttaaggcacgt agag

24

<210> 21
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 21
gagtactggc ccgtgaacag gtaat

25

<210> 22
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 22
atgcttgac aagcatggtc ggaaa

25

<210> 23
<211> 25
<212> DNA

- 27 -

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 23

tgcaacatcg tgcatttgct ccaga

25

<210> 24

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 24

cacaaggcatg agttttcct tccgg

25

<210> 25

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 25

ctgactttct agtagcagaa gctgg

25

<210> 26

<211> 519

<212> DNA

<213> Brassica oleracea

<220>

<223> seq1-23

<400> 26

gaattcctgn nttacggcat ccttaataga ctgttcaa at ggaactcctg aacctggggt 60
tccactccca tggaagtgtt ccagcttatac aaataaatat gatgcccccc acatgagcaa 120
tgcatgtgtg agaggacggt ttaggttctc tagaggctta ttttgcctag caagaatcag 180
gttttttct tcaactgtaa acactgagta caaccggaaa atcttagttc tttcagaaca 240
cgactcaacc tttatcttct ctaagagctt aacgtcatgc gatggattca ggctgcttcc 300
aaaaagtata aaagactcag cgcgtaagag tttaatgctt tgactacagg cacgtatttc 360
cagcagcaga ataaaaact cactctccctt gttgaaattg tttatagcgt tcttcttcga 420
gaggcagacc ccatgctcat aggaatttg accaaatctt tgcatcagaa aatcttcgag 480
aatattacca agcagaagcc cctcaggct atgtatttc 519

<210> 27
<211> 419
<212> DNA
<213> Brassica oleracea

<220>
<223> seq1-27

<400> 27
gaattcagga tcaaaagggt tgccgggttgg agaaaactggg tttagagaaaag gctctgattt 60
tcctgtggaa gtaactaagg atatagagaa gacagtggtt gattcatccc ccatggttga 120
aactgaggat ggcagtgtta taggttcacc atccgagaat ccagaaccac aaaagcttcg 180
tgacagtgaa actagttgg aaaccgatat agacttggct ctgaaaagaaa aaagagacac 240
tgcagaaaatt gtgatggatg catgtacaaa tgcagatgac cgcattatga gtactgatgg 300
gttattccct tttccaccccg ttgtcacaaa tattaatcaa cccgaaagggt gtggcacatg 360
tcaaaaacgg caaaaagtaag aatttccgac tgggtctgt cgaaaaaaa ccatttgcc 419

<210> 28
<211> 467
<212> DNA
<213> Brassica oleracea

<220>
<223> seq1-43

<400> 28
gaattctcgccataactttc ttccgatgtt ggagaagaaaa atgaaggcaa gctgtgtcta 60
cttttggaaag ccaaggcatgc tcagggaaagt tacagcaactg atgctactct atttgggtgaa 120
gaacatgtca agttatcaga tggaaagtcca aatatgtttt ggtcaaaagct gttgaatgg 180
aagaacccta tggaaataat cttttccggat actccctcaaa ggagtcgaaaa aagagtacgg 240
catcttcagg gctatgagga gactaccaaa gttggcaatg gggaaaactt aaagaagaaaa 300
aagaaggctt cagatgtatgt cacagttagat aacgctgaga gaaaaggcctc tggaaaggat 360
cacatgggtt aacatgttca ctttctgtc ctttacctct agtgggttcatg gaatgttcca 420
tttactttgc ttactatctt tccttcaggg cattttggagt cacaaaaa 467

<210> 29
<211> 490
<212> DNA
<213> Brassica oleracea

<220>
<223> seq1-47

<400> 29
gaattcagct tttaaaaactg atctctgtc acagataatt taagagtcag tgaaaattga 60
gataaaaacga accaaaactg gaggtaacag atactctgag aacaactaac cttttcttca 120
taagtcttct ttgtgttctc tgattctctc cgcagttctc ccagttcatg ctgaaaatggg 180
tcactgaaca caggaaaagg tacttgagga acaggtggag tggcattctg tcccgtagca 240
ttgttaagct gtgaagaaaac aggagctgtt acacctgtc gaggctccac aacacattca 300
tcgacaacgt ctgcgtaaaa ggtattacca gattgtcagt ttctctggca aacacatacg 360
ttatacttaa atgcaaaaaga gcagttactg acttgcaaaag gttgggttggc 420

- 29 -

atcaggttct gctacttcca tttcacatgc ttctgatcca gttgtgcag gcgagccat 480
tgttgtgttg 490

<210> 30
<211> 515
<212> DNA
<213> Brassica oleracea

<220>
<223> 2-33

<400> 30
tctagagaag aggtggatta tgtatattct tttctgtact gcatgaagag tctattcgtg 60
gggcgcacac aaggttcca agaaaagggt gaagaatgca tggctgagaa aagaggtagc 120
cattatacgct cagtaaccaa ggatgttgaa aagactatta ggcacatcaa aaagaaatgc 180
agtaagagcc tgcataagct tgtacaaacc ctgcaggaag aaaagatgga cctgatgaat 240
aggaatgctg tcaagaagca ggaacttcag aattgtaaaa aggtggaaagc atcatttatt 300
cgtgtcacct attcaggtat aaatactcag agcttacatg atgctctcca acggctggaa 360
tgtacttttggaaagtt tgatgatctc aaaggagagt tggatgaatg cttgaaagt 420
tttagagcaa taaacgaggc tggaaagaag aagttggctg aagatgaagc ctgttggatt 480
agtccgatag agaaatgggc acgagctgaa ttaag 515

<210> 31
<211> 574
<212> DNA
<213> Brassica oleracea

<220>
<223> seq2-37

<400> 31
tctagaccaa actattaaac gctaaacata agaagattag atcactcgctc atcagagaga 60
cagaccacat cattgctcct ctgcaatcca ctccccaaagt tctgtggtttgc 120
tgaataaacg catttgaata tggtaaagggt ttggagatga gaggttgc 180
atttgtcagt acggagccga agcagtatgaa ttccctcagtg cgcttacttg tggttgc 240
tgtgcttagct gctggattct aactggagaa agaaaaaaag aaaaaaaagg tgttattatg 300
acttcataaac cttatatctt taaaaaaacaa ttatgcttctt attattcgaa cacttgccc 360
ttggagttgc tgctgaggaa tgagaggaga ttctgctcgat acattnagac aagaacgcac 420
tcgacaacag cttgttcttt ataacaagat tcttcctcgat ctgtaaacttc gtcttctgg 480
ctgcatgtac agcttgtaacc tcatgaaact ttctctgata ctcttctgt aattcagcta 540
tcttccttcgaatttagct ttcaagactg cttt 574

<210> 32
<211> 466
<212> DNA
<213> Brassica oleracea

<220>
<223> seq2-53

<400> 32
tctagattgt aattttaaat ttacaacaaa ttttggaaagg gtcagcgatg agtttgcaaa 60

tctccgtgtt	tcctccagca	ttgctcagcc	agttcaagaa	cctgatcaact	tggcacaggt	120
tggtttcttc	ttgtttaact	ttggacacct	gtttaatatt	ggcctgtcaa	atttacttat	180
ccttttactt	ctaaactgca	aattctggtc	tgcatcgat	tgtgatatga	aggtatctgg	240
acccgcttca	agcagagact	atggggagga	caggcagaat	atgcaacaag	ataaatcaca	300
tgaccgaaaag	ttgtcatcgat	tgtatccaga	gtattgggtt	ccagtgcagc	tatcatatgt	360
acagatagag	caatactgtc	ggactcttt	ctccaaatct	tcatctctt	cttcgctgtc	420
gaggactgtat	cctgttcgag	ctcttgaaca	aactctcagt	tctgtat		466

<210> 33
<211> 417
<212> DNA
<213> *Brassica oleracea*

<220>
<223> seq2-57

<400> 33
tctagagcaa ttgaaaccta attccgattt tgccgcgggcc agagattctt cacggttgaa 60
cttttgctta acgaaagaga ctgcaatcca aatcttggaaag tgcattatta agaacgtatt 120
cagcaatatt cataaaattat gcaacaatca aaggccttac gtttgtggcct acaaagcatg 180
gattttgtta gatatttagta gctagtcataa ttcaagcaat taatggaaagt ttctatccta 240
tgactggaaa gttaaacatt cccacaaaag cagtgtatgcc acagatgtat aagaagaaaa 300
atgcataatac tatggaaagtgt aatgttatca taccacagct atctggaaagg cttgtcaatgt 360
tcttagctggc tctttgcaga cacggtggtt gtcaataata tattcaagaa ctttttc 417

Gene involved in epigenetic gene silencing

The present invention relates to DNA which encodes proteins that control gene silencing, and particularly the silencing of plant genes.

The loss of expression of previously active genes in plants, also referred to as gene silencing, is observed in response to developmental, environmental or unknown signals. It occurs at a frequency higher than that of mutations, yet it is markedly stable during somatic transmission. Gene silencing, initially perceived as an unwanted source of instability of transgene expression, is now regarded as a molecular tool to intentionally regulate gene expression.

It appears that chromosomal position or structure of the affected loci are factors determining the frequency and strength of silencing. Inactivation seems to preferentially affect genes present in multiple copies and is thought to be a consequence of sequence redundancy. Many examples of homology-dependent gene silencing have been reported. Closer analysis has allowed the classification of silencing events according to the relative position of the affected loci (*cis*, *trans*, allelic, ectopic), the origin of the affected genes (endogenous or transgenic), and the level of interaction (transcriptional or post-transcriptional). While post-transcriptional silencing seems to mainly involve the formation of aberrant RNA molecules and is occasionally, but not necessarily, accompanied by DNA methylation, silencing interfering with transcription initiation is more strictly correlated with hypermethylation of the DNA and possibly with alteration of chromatin structure at the silent loci. It is, however, not clear whether these molecular events are a prerequisite for gene silencing or a consequence of the silent state.

In the case of transcriptional silencing, the inactive state of silenced genes is stably transmitted through mitotic and meiotic divisions. As in other organisms, trans-acting modifier loci are assumed to be responsible for the stability of the inactive state of the silenced genes. Mutations in such loci resulting in mutated proteins are expected to result in reduced gene silencing and reactivation of previously silent loci by interfering with the maintenance of the silent state, or by a failure to recognize sequence redundancy. It has been reported that mutations in the DDM1 gene of *Arabidopsis thaliana* release

- 2 -

transcriptional gene silencing and that this genes encodes a SWI2/SNF2-like protein involved in chromatin remodeling. However, mutation of the DDM1 gene causes severe pleiotropic effects. Therefore, to be able to modify such effects making use of gene technology, it is necessary to identify further specific modifier loci and characterize the corresponding wild-type and mutant proteins. It is the main objective of the present invention to provide DNA comprising an open reading frame encoding such a protein.

Trans-acting modifier loci according to the present invention can be identified by T-DNA insertion mutagenesis as described in Example 1 for an *Arabidopsis* line carrying a heritably inactivated, methylated hygromycin resistance gene. A mutation of a silencing modifier locus results in release of silencing of the hygromycin resistance gene and restores hygromycin resistance. Plants homozygous for the silent resistance gene are subjected to transformation with a selectable marker gene different from the hygromycin resistance gene, which is under the control of the T-DNA 1'-2' dual promoter. Transformants are selected and their progeny screened for hygromycin resistance. The mutant phenotype (hygromycin resistance) is screened for genetic co-segregation with a specific T-DNA insert. Cloning of the tagged gene using routine methods of recombinant DNA technology allows to characterize the mutant and wild-type DNA sequence of the silencing modifier locus as well as the encoded protein.

Within the context of the present invention reference to a gene is to be understood as reference to a DNA coding sequence associated with regulatory sequences, which allow transcription of the coding sequence into RNA such as mRNA, rRNA, tRNA, snRNA, sense RNA or antisense RNA. Examples of regulatory sequences are promoter sequences, 5' and 3' untranslated sequences, introns, and termination sequences.

A promoter is understood to be a DNA sequence initiating transcription of an associated DNA sequence, and may also include elements that act as regulators of gene expression such as activators, enhancers, or repressors.

Expression of a gene refers to its transcription into RNA or its transcription and subsequent translation into protein within a living cell. In the case of antisense constructs expression refers to the transcription of the antisense DNA only.

The term transformation of cells designates the introduction of nucleic acid into a host cell, particularly the stable integration of a DNA molecule into the genome of said cell.

- 3 -

Any part or piece of a specific nucleotide or amino acid sequence is referred to as a component sequence.

DNA according to the present invention comprises an open reading frame encoding a protein characterized by an amino acid sequence comprising a component sequence of at least 150 amino acid residues having 40% or more identity with SEQ ID NO: 3. In particular the protein encoded by the open reading frame can be described by the formula R₁-R₂-R₃, wherein

- R₁, R₂ and R₃ constitute component sequences consisting of amino acid residues independently selected from the group of the amino acid residues Gly, Ala, Val, Leu, Ile, Phe, Pro, Ser, Thr, Cys, Met, Trp, Tyr, Asn, Gln, Asp, Glu, Lys, Arg, and His,
- R₁ and R₃ consist independently of 0 to 3000 amino acid residues;
- R₂ consists of at least 150 amino acid residues; and
- R₂ is at least 40% identical to an aligned component sequence of SEQ ID NO: 3.

In most cases the total length of the protein will be in the range of 1000 to 3000 amino acid residues. In preferred embodiments of the invention the component sequence R₂ consists of at least 200 amino acid residues. Specific examples of the component sequence R₂ are component sequences of SEQ ID NO: 3 represented by the following range of amino acids:

- 1 - 416 (corresponding to exon 2);
- 418 - 583 (corresponding to exons 3 to 5);
- 584 - 890 (corresponding to exon 6);
- 892 - 1472 (corresponding to exons 7 to 9);
- 1007 - 1472 (corresponding to exon 9);
- 1473 - 1631 (corresponding to exons 10 to 12);
- 1632 - 1827 (corresponding to exons 13 to 15); and
- 1829 - 2001 (corresponding to exon 16).

In a preferred embodiment of the present invention at least one of the component sequences R₁ or R₃ comprises one or more additional component sequences with a length of at least 50 amino acids and at least 60% identical to an aligned component sequence of SEQ ID NO: 3. Specific examples of such additional component sequences are component sequences of SEQ ID NO: 3 represented by the following range of amino acids:

- 4 -

420 - 525 (corresponding to exons 3 and 4);
444 - 525 (corresponding to exon 4);
526 - 583 (corresponding to exon 5);
892 - 971 (corresponding to exon 7);
892 - 1006 (corresponding to exons 7 and 8);
1473 - 1524 (corresponding to exon 10);
1525 - 1576 (corresponding to exon 11);
1577 - 1631 (corresponding to exon 12);
1632 - 1690 (corresponding to exons 13);
1692 - 1757 (corresponding to exons 14); and
1758 - 1827 (corresponding to exons 15).

Particularly preferred embodiments of the DNA according to the present invention encode a protein having a component sequence defined by amino acids 478-490, 584-600, 617-630, 654-668, 676-690, 718-734, 776-788, 1222-1233, 1738-1749 or 1761-1770 of SEQ ID NO: 3. Preferably, the encoded protein comprises at least two, three or more different representatives of said component sequences. Specific examples of said embodiments encode a protein characterized by the amino acid sequence of SEQ ID NO: 3, an allelic amino acid sequence having amino acid residue K instead of M at position 705 of SEQ ID NO: 3, or an amino acid residue D instead of E at position 1219 of SEQ ID NO: 3.

Dynamic programming algorithms yield different kinds of alignments. In general there exist two approaches towards sequence alignment. Algorithms as proposed by Needleman & Wunsch and by Sellers align the entire length of two sequences providing a global alignment of the sequences. The Smith-Waterman algorithm on the other hand yields local alignments. A local alignment aligns the pair of regions within the sequences that are most similar given the choice of scoring matrix and gap penalties. This allows a database search to focus on the most highly conserved regions of the sequences. It also allows similar domains within sequences to be identified. To speed up alignments using the Smith-Waterman algorithm both BLAST (Basic Local Alignment Search Tool) and FASTA place additional restrictions on the alignments.

Within the context of the present invention alignments are conveniently performed using BLAST, a set of similarity search programs designed to explore all of the available

- 5 -

sequence databases regardless of whether the query is protein or DNA. Version BLAST 2.0 (Gapped BLAST) of this search tool has been made publicly available on the internet (currently <http://www.ncbi.nlm.nih.gov/BLAST/>). It uses a heuristic algorithm which seeks local as opposed to global alignments and is therefore able to detect relationships among sequences which share only isolated regions. The scores assigned in a BLAST search have a well-defined statistical interpretation. Particularly useful within the scope of the present invention are the blastp program allowing for the introduction of gaps in the local sequence alignments and the PSI-BLAST program, both programs comparing an amino acid query sequence against a protein sequence database, as well as a blastp variant program allowing local alignment of two sequences only. Said programs are preferably run with optional parameters set to the default values.

Sequence alignments using BLAST can also take into account whether the substitution of one amino acid for another is likely to conserve the physical and chemical properties necessary to maintain the structure and function of the protein or is more likely to disrupt essential structural and functional features of a protein. Such sequence similarity is quantified in terms of a percentage of "positive" amino acids, as compared to the percentage of identical amino acids and can help assigning a protein to the correct protein family in border-line cases.

Sequence alignments using such computer programs reveal the presence of an ATP/GTP-binding motif A (amino acids 460 to 467 in SEQ ID NO:3), the consensus sequence of which is (Ala/Gly)XaaXaaXaaXaaGlyLys(Ser/Thr), wherein (Ala/Gly) indicates Ala or Gly, Xaa indicates any naturally occurring amino acid and (Ser/Thr) indicates Ser or Thr. Alignment additionally reveals a region (amino acid position 479 to 719 in SEQ ID: 3), similar to part of the ATPase/helicase domain of proteins in the SWI2/SNF2 family which are involved in chromatin remodeling but no significant overall sequence identity with known proteins.

Specific examples of DNA according to the present invention are described in SEQ ID NO: 1 and SEQ ID NO: 2 encoding an Arabidopsis protein described in SEQ ID NO: 3. Stretches of SEQ ID NO: 3 having 50 to 500 amino acids length can show between 20 and 50% sequence identity to stretches of known protein sequences after alignment. Overall alignments of SEQ ID NO: 3, however, result in sequence identities lower than 30%. Thus,

- 6 -

the present invention defines a new protein family the members of which are characterized by an amino acid sequence comprising a component sequence of at least 150 amino acid residues having 40% or more identity with an aligned component sequence of SEQ ID NO: 3. Preferably the amino acid sequence identity is higher than 50% or even higher than 55%.

DNA encoding proteins belonging to the new protein family according to the present invention can be isolated from monocotyledonous and dicotyledonous plants. Preferred sources are corn, sugarbeet, sunflower, winter oilseed rape, soybean, cotton, wheat, rice, potato, broccoli, cauliflower, cabbage, cucumber, sweet corn, daikon, garden beans, lettuce, melon, pepper, squash, tomato, or watermelon. However, they can also be isolated from mammalian sources such as mouse or human tissues. The following general method, can be used, which the person skilled in the art knows to adapt to the specific task. A single stranded fragment of SEQ ID NO: 1 or SEQ ID NO: 2 consisting of at least 15, preferably 20 to 30 or even more than 100 consecutive nucleotides is used as a probe to screen a DNA library for clones hybridizing to said fragment. The factors to be observed for hybridization are described in Sambrook et al, Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, chapters 9.47-9.57 and 11.45-11.49, 1989. Hybridizing clones are sequenced and DNA of clones comprising a complete coding region encoding a protein characterized by an amino acid sequence comprising a component sequence of at least 150 amino acid residues having 40% or more sequence identity to SEQ ID NO: 3 is purified. Said DNA can then be further processed by a number of routine recombinant DNA techniques such as restriction enzyme digestion, ligation, or polymerase chain reaction analysis.

The disclosure of SEQ ID NO: 1 and SEQ ID NO: 2 enables a person skilled in the art to design oligonucleotides for polymerase chain reactions which attempt to amplify DNA fragments from templates comprising a sequence of nucleotides characterized by any continuous sequence of 15 and preferably 20 to 30 or more basepairs in SEQ ID NO: 1 or SEQ ID NO: 2. Said nucleotides comprise a sequence of nucleotides which represents 15 and preferably 20 to 30 or more basepairs of SEQ ID NO: 1 or SEQ ID NO: 2. Polymerase chain reactions performed using at least one such oligonucleotide and their amplification products constitute another embodiment of the present invention.

EXAMPLES:**Example 1: T-DNA Insertion**

Transgenic line A of *Arabidopsis thaliana* ecotype Zürich with a transcriptionally silenced locus containing multiple copies of a chimeric hygromycin phosphotransferase gene (*hpt*) has been described in Mittelsten Scheid et al, Mol Gen Genet 228: 104-112, 1991 and Mittelsten Scheid et al, Proc Natl Acad Sci USA 93: 7114-7119, 1996. A homozygous, diploid genotype of said line is subjected to *Agrobacterium* mediated gene transfer by *in planta* vacuum infiltration (Bechtold et al., C R Acad Sci Paris Life Science 316: 1194-1199, 1993) generating more than 4000 independent T-DNA transformants. The binary vector with T-DNA consisting of the coding region of the *bar* gene transcriptionally fused to the 1' promoter (p1'barbi), the *Agrobacterium* strain (C58CIRif^R) and the transformation protocol are described by Mengiste et al, Plant J 12: 945-948, 1997. Transformants (T1 plants) are selected by repeated spraying of germinated seedlings with Basta solution (150 mg/l) and grown to maturity.

Example 2: Mutant Selection

Selfed seeds (T2 families) are collected from individual transformants. Prior to screening for revertants of the silenced phenotype, seeds are dried for one week at room temperature and cold-treated at 4°C for a minimum of one week. Pooled aliquots of approximately 1000 seeds (consisting of 50 seeds from 20 T2 families) are surface-sterilized twice (with 5% sodium hypochlorite containing 0.1% Tween 80) for 7 min and washed with sterile double-distilled water. For selection, each aliquot is plated on 14-cm Petri dishes containing 75 ml germination medium (according to Masson et al, Plant J 2: 829-933, 1992) solidified with 0.8% agar and containing 10 mg/l hygromycin B (Calbiochem). To ensure equal distribution during sowing, seeds are mixed with 30 ml of the same medium containing 0.4% agar. As positive control two seeds from a hygromycin-resistant line are sown at marked locations on each plate. Plates are cold-treated at 4°C for 2 days and subsequently subjected to alternating periods of 16 hours light at 21°C and 8 hours darkness at 16°C. Hygromycin resistance is evaluated each day for 8-15 days after sowing.

Example 3: Molecular and Genetic Analysis of the Mutant

Following identification of 11 hygromycin-resistant seedlings in one of the pools, the families forming this pool are re-screened individually. One family contains approximately 25% hygromycin-resistant seedlings. Six resistant plantlets of this family are transferred to larger vessels containing germination medium without hygromycin. After rosette formation and development of the root system, plants are transferred to soil for further growth and seed setting. Prior to potting, tissue explants are taken from each plant to generate callus cultures on RCA medium (Table 1) with or without 10 mg/l hygromycin B. Callus cultures are used as a source of material for DNA and RNA analyses and for a further confirmation of hygromycin resistance in this tissue.

Genomic DNA is isolated using a CTAB based method as described by Mittelsten Scheid et al, Mol Gen Genet 244: 325-330, 1994, and incubated with restriction enzymes *BamHI*, *HpaII*, *MspII*, *DraI*, *EcoRV*, *RcaI* or *HindIII*. Total RNA is obtained using a RNAeasy kit (Qiagen) according to the supplier's recommendation. Southern and northern blot analysis are performed under conditions described by Church and Gilbert, Proc Natl Acad Sci USA 81: 1991-1995, 1984, using DNA fragments labeled with ^{32}P by random prime labeling. The coding region of the *hpt* gene, or DNA consisting of the P35S promoter, *hpt* coding and terminator region, or the coding region of the *bar* gene together with the 1' promoter are used as probes.

Northern blot analysis of 4 hygromycin-resistant siblings shows restoration of transcription of the *hpt* gene. Southern blot analysis of said siblings indicates that there is no detectable rearrangement within the complex *hpt* insert. The *hpt* transgene complex in the mutant is still hypermethylated like in the original line A, as judged by Southern blot analysis with the methylation-sensitive restriction enzymes *HpaII* and *MspI*, and by genomic sequencing of the promoter region after treatment with bisulfate. There is also no influence of the mutation on the methylation of repetitive genomic DNA in contrast to that observed for the *som* mutations.

The hygromycin-resistant plants, as well as non-selected siblings from the same family are grown to set seeds, checked for Basta resistance in the next generation, and scored for the number and size of the T-DNA inserts by Southern analysis. The results demonstrate that the original T-DNA transformant must have contained 2 T-DNA insertions segregating

- 9 -

independently in the siblings. One insert co-segregates with the hygromycin resistant mutant phenotype. A plant homozygous for this insert and lacking the other T-DNA insert, is used for cloning the corresponding T-DNA insertion site.

Histochemical GUS staining of crosses between plants with mutant phenotype and the transgenic plant line GUS-TS (obtainable from Dr. H. Vaucheret, INRA, Versailles Cedex, France) of *Arabidopsis thaliana* ecotype Colombia containing a transcriptionally silenced locus with multiple copies of a chimeric beta-glucuronidase (*gus*) gene reveals reactivation of the silent GUS gene in the F2 progeny which are homozygous for the mom allele.

Inbreeding of plants with the *mom1* mutant phenotype does not result in any morphological abnormalities even in the 9th generation of inbreeding. This is in contrast to the *som* mutants.

Backcrossing of the mutant phenotype of *mom1* with line A (see example 1) results in immediate resilencing of the reactivated *hpt* gene upon introduction of a wild-type MOM allele in F1 hybrids. This also is in contrast to the *som* mutants.

Table 1: Composition of RCA medium

RCA medium	
MS macro 10 x	100 ml
B5 micro 1000 x	1 ml
ferric citrate	5 ml
NT vitamins 100 x	10 ml
sucrose	10 g
MES	5 ml
agar	10 g
NAA	0.1 mg
BAP	1 mg
pH 5.8 (KOH)	
ad 1 l	

- 10 -

MS macro 10 x

potassium nitrate	19 g
ammonium nitrate	16.5 g
calcium chloride (x 2 H ₂ O)	4.4 g
magnesium sulfate (x 7 H ₂ O)	3.7 g
potassium dihydrogen phosphate	1.7 g
ad 1 l	

B5 micro 1000 x

magnesium sulfate (x H ₂ O)	1000 mg
boric acid	300 mg
zinc sulfate (x 7 H ₂ O)	200 mg
potassium iodide	75 mg
sodium molybdate (x 2 H ₂ O)	25 mg
copper sulfate (x 5 H ₂ O)	2.5 mg
cobalt chloride (x 6 H ₂ O)	2.5 mg
ad 100 ml	

ferric citrate

ammonium iron citrate	10 g
ad 1 l	

NT vitamins 100 x

myo-inositol	1000 mg
thiamine HCl	10 mg
ad 1 l	

MES

MES	14 g
pH 6 (NaOH)	
ad 100 ml	

- 11 -

Example 4: Cloning of the "Silencing Gene"

Genomic DNA from the plant containing only the T-DNA co-segregating with the hygromycin resistant mutant phenotype is isolated. The DNA is subjected to TAIL (thermal asymmetric interlaced) PCR according to Liu et al, Plant J 8: 457-463, 1995, using 3 specific, nested primers close to the right border of the T-DNA (5'-CAT CTA CGG CAA TGT ACC AGC-3' (SEQ ID NO: 4), 5'-GAT GGG AAT TGG CTG AGT GGC-3' (SEQ ID NO: 5), 5'-CAG TTC CAA ACG TAA AAC GGC-3' (SEQ ID NO: 6)) which are directed outwards, and one of several degenerate primers which might bind in flanking plant DNA. Two out of the following seven degenerate primers

AD1	5' -NTC GAS TWT SGW GTT-3' (Liu et al supra; SEQ ID NO: 7)
AD2	5' -NGT CGA SWG ANA WGA A-3' (Liu et al supra; SEQ ID NO: 8)
AD3	5' -WGT GNA GWA NCA NAG A-3' (Liu et al supra; SEQ ID NO: 9)
AD4	5' -WGG WAN CWG AWA NGC A-3' (SEQ ID NO: 10)
AD5	5' -WCG WWG AWC ANG NCG A-3' (SEQ ID NO: 11)
AD6	5' -WGC NAG TNA GWA NAA G-3' (SEQ ID NO: 12)
AD7	5' -AWG CAN GNC WGA NAT A-3' (SEQ ID NO: 13)

actually result in amplification of specific fragments. The larger one obtained using AD7 is cloned and sequenced. It contains 50 bp of the T-DNA and 275 bp of flanking plant DNA. In Southern blot analysis it is shown that this PCR fragment contains the plant DNA flanking the T-DNA. The PCR fragment is used to screen a genomic library (Stratagene) of wild type *Arabidopsis thaliana* ecotype Columbia. Three genomic clones hybridizing to the PCR fragment are identified. The genomic clones are further mapped with restriction enzymes, hybridized to the PCR fragment and aligned to each other. In one of the genomic clones obtained (p4A-11), the sequence found to flank the T-DNA of the insertion mutation is located approximately in the middle of the genomic sequence. An approximately 800 bp EcoRI-Sall fragment of p4A-11 is used to obtain the overlapping genomic clone p5-6, and an approximately 700 bp EcoRI fragment of p5-6 is used to obtain genomic clone p30-1 overlapping with p5-6. An approximately 700 bp HindIII fragment of p30-1 is used to obtain the genomic clone p33-19 overlapping with p30-1. Said clones are sequenced to design primers for RT-PCR. The approximately 700 bp EcoRI fragment of p5-6 is further used for screening of a cDNA library of wild type *Arabidopsis thaliana* ecotype Zurich according to

- 12 -

Elledge et al, Proc Natl Acad Sci USA 88: 1731-1735, 1991). Nine cDNA clones are obtained and the longest clone p17-8 having a length of 2.6 kb is sequenced.

Example 5: Sequence Analysis and Alignments

Taking into account the large size of the *Arabidopsis* silencing gene cloned above it cannot be entirely excluded that the authentic nucleotide and amino acid sequences of the gene and protein, respectively, might deviate from the sequences given in SEQ ID NO: 1, SEQ ID NO: 2, and SEQ ID NO: 3 at a few positions due to mutations arising from the cloning procedure or due to ambiguities in the sequencing reactions. Additionally, sequencing of DNA derived from a different ecotype can reveal allelic differences. Thus, the sequences of SEQ ID NO: 1, SEQ ID NO: 2, and SEQ ID NO: 3 represent the corresponding genes and proteins of *Arabidopsis thaliana* ecotype Zurich, whereas genomic sequences obtained from *Arabidopsis thaliana* ecotype Columbia reveal two mismatches at nucleotide positions 4338 (A instead of T) and 6721 (T instead of G) of SEQ ID NO: 1, which result in an amino acid residue K instead of M at position 705 of SEQ ID NO: 3 and an amino acid residue D instead of E at position 1219 of SEQ ID NO: 3.

The 2.6 kb cDNA clone is analyzed sequentially from both ends and is shown to contain one large ORF as well as a 3' untranslated sequence.

Analysis of the genomic clones reveals that clones p4A-11 and p5-6 contain sequences homologous to the cDNA sequence as well as 7 intron sequences. Comparing the genomic sequences with the DNA sequences flanking the T-DNA insert, it turns out that the T-DNA insertion causes a deletion of about 2 kb of genomic DNA. The 5' end of the deletion is located in an intron (intron 12) and the 3' end of the deletion is located downstream of the 3' end of the cDNA. The sequence of 5' end of the cDNA clone terminates in the middle of the sequence of the genomic clone p5-6. Three independent nested RT-PCR reactions are performed to obtain additional cDNA sequences further upstream. The sequences of the primers used for these RT-PCRs are as follows:

RT1-1	5' -CTGTACATACTGAGTACAATCGGA-3'	(SEQ ID NO: 14)
RT1-2	5' -GCTTCAATTCCCTGCCTCAGTTGAAC-3'	(SEQ ID NO: 15)
RT1-3	5' -CTCTACGTGCTAACATCATGCGA-3'	(SEQ ID NO: 16)
RT1-4	5' -CCAGCTTCTGCTACTAGAAAGTCAG-3'	(SEQ ID NO: 17)

- 13 -

RT2/3-1	5' -CTGGAGTTGCATGAAATCCTGGATG-3'	(SEQ ID NO: 18)
RT2/3-2	5' -GCTCTTGTAAGCTGTTACCGAGAC-3'	(SEQ ID NO: 19)
RT2-3	5' -TCGCATGATGTTAACGACGTAGAG-3'	(SEQ ID NO: 20)
RT2-4	5' -GAGTACTGGTCCGTGAACAGGTAAT-3'	(SEQ ID NO: 21)
RT3-3	5' -ATGCTTGCACAAGCATGGTCGGAAA-3'	(SEQ ID NO: 22)
RT3-4	5' -TGCAACATCGTGCATTGCTCCAGA-3'	(SEQ ID NO: 23)
RT4-1	5' -CACAAAGCATGAGTTTCCTCCGG-3'	(SEQ ID NO: 24)
RT4-2	5' -CTGACTTTCTAGTAGCAGAACGCTGG-3'	(SEQ ID NO: 25)

Sequences of several parts of the genomic clones are found to be deposited in the *Arabidopsis* database (accession numbers B67281, B62563, B20434, B20425, B21274, B08967, B11993, B20116, B12496 and B10852 as end sequences of BAC, and Z18494 and AA597930 as partial cDNA sequences, on 13 Apr 1999). A comparison of the encoded protein sequence with the Swiss Protein Database reveals partial similarity with ATPase/helicase proteins of the SWI2/SNF2 family (amino acid position 479 to 719 in SEQ ID NO: 3). The encoded protein consists of 2001 amino acids and is calculated to have a molecular weight of 219 kD and a pI of 5.1. An ATP/GTP-binding motif (amino acid position 460 to 467 in SEQ ID NO: 3) and three nuclear localization motifs (amino acid positions 362 to 367, 832 to 838 and 858 to 862 in SEQ ID NO: 3) are found in the encoded protein. Subcellular immunodetection of HA-tagged MOM protein confirms its nuclear localization. Similarity to the actin binding domain of chicken tensin (amino acid position 1899 to 1941 in SEQ ID NO: 3) and a predicted membrane spanning domain (amino acid position 995 to 1015 in SEQ ID NO: 3) are also detected. Additionally, the encoded protein contains three types of repetitive regions or internal repeats essentially defined by amino acid positions 177 to 350, 1462 to 1672 and 1848 to 1894 OF SEQ ID NO: 3.

Example 6: *Homologous genes in other species*

A putative proline/hydroxyproline-rich glycoprotein of *Arabidopsis thaliana* showing partial similarity to the MOM protein is disclosed as GenBank accession nubmer AAD29829). The similarity is 34-47% depending on the region and is only seen in the second half of the MOM protein (i.e. amino acids 1368 to 1944).

- 14 -

The *MOM* cDNA clone is used to probe genomic DNA from turnip, tomato, tobacco, maize, mouse, fruit fly and man for the presence of homologous genes by Southern blot analysis. Hybridization under conditions of low stringency is found in all cases. Cross-hybridizing clones from libraries can be identified and sequenced.

A genomic library of the *Brassica oleracea* var. acephala (obtained from Dr. Mark Cock, INRA, CNRS, Lyon, France) are screened with the *MOM* cDNA under stringent conditions. Two positive clones are obtained, subcloned, and partially sequenced. Partial sequences of clone 1 show similarity to different regions in the *MOM* gene (80-86% at DNA level and 62-80% at amino acid level) which encode the N-terminal, ATPase, and C-terminal parts of the *MOM* protein. All three putative nuclear localization sequences of the *MOM* protein are fully conserved in clone 1. Partial sequences of clone 2 also show similarity regions in the *MOM* gene (64-76% at DNA level and 55-64% at amino acid level) which encode the ATPase, putative transmembrane, and C-terminal parts of the *MOM* protein. The sequences of clones 1 and 2 are not identical, suggesting the presence of, at least, two homologous genes in *Brassica oleracea*. Examples of partial sequences obtained from clone 1 and 2 are given in SEQ ID Nos: 26-33.

Additionally a genomic library of *Brassica rapa* (obtained from Dr. Kinya Toriyama, Tohoku University, Sendai, Japan) is screened with the *MOM* cDNA under stringent conditions. Positive signals hybridizing to both a 5' and a 3' part of the *MOM* cDNA are obtained.

Furthermore, a genomic library of *Petunia hybrida* (obtained from Dr. Jan Kooter, Vrije Universiteit, Amsterdam, The Netherlands) is screened with *MOM* cDNA under less stringent conditions. Positive signals hybridizing to both the 5' and 3' part of the *MOM* cDNA are obtained.

Example 7: *Manipulating marker gene expression by antisense constructs*

The 2.6 kb cDNA fragment and a 1.8 kb RT-PCR fragment amplified by a nested RT-PCR using primers RT1-1 and RT1-2 for the first PCR and primers RT1-3 and RT1-4 for the second PCR, are each inversely cloned into the multiple cloning site of the binary vector pbarbi53 to generate antisense RNA. pbarbi53 is a modified vector of p1'barbi and carries

- 15 -

an expression cassette consisting of the 35S promoter of cauliflower mosaic virus, a multiple cloning site containing Xho I, SnaBI, Hpa I and Cla I restriction sites and the 35S terminator of cauliflower mosaic virus at the HindIII site of p1'barbi. The resulting recombinant plasmids are introduced into Agrobacterium as described in Example 1. The transgenic plant line GUS-TS (obtainable from Dr. H. Vaucheret, INRA, Versailles Cedex, France) of *Arabidopsis thaliana* ecotype Colombia containing a transcriptionally silenced locus with multiple copies of a chimeric beta-glucuronidase (gus) gene, is transformed with the recombinant plasmids as described in Example 1 and transformants are selected as described by Mengiste et al, Plant J 12: 945-948, 1997. pbarbi53 vector DNA is used in control transformations. The transformants are examined for reactivation of the gus gene by histochemical staining. A cotyledon leaf is soaked in gus staining solution (100 mM sodium phosphate buffer (pH 7.0), 0.05% 5-bromo-4-chloro-3-indolyl-beta-D-glucuronidase, 0.1% sodium azide) under vacuum for 10 min and then incubated at 37°C overnight. While strong gus activity is observed in the plants transformed with the recombinant plasmid carrying the 2.6 kb cDNA, plants transformed with the recombinant plasmid carrying the 1.8 kb RT-PCR fragment or pbarbi53 do not show any gus activity above background. Therefore, expression of the antisense RNA of the 2.6 kb cDNA mimicks the mutant phenotype and confirms that sequences shown in SEQ ID NO: 1, SEQ ID NO: 2 and SEQ ID NO: 3 represent the genetic information for a component of the transcriptional gene silencing system.

PX 34

- 16 -

What is claimed is:

1. DNA comprising an open reading frame encoding a protein characterized by an amino acid sequence comprising a component sequence of at least 150 amino acid residues having 40% or more identity with an aligned component sequence of SEQ ID NO: 3.
2. The DNA according to claim 1 comprising an open reading frame encoding a protein having the formula R₁-R₂-R₃, wherein
 - R₁, R₂ and R₃ constitute component sequences consisting of amino acid residues independently selected from the group of the amino acid residues Gly, Ala, Val, Leu, Ile, Phe, Pro, Ser, Thr, Cys, Met, Trp, Tyr, Asn, Gln, Asp, Glu, Lys, Arg, and His,
 - R₁ and R₃ consist independently of 0 to 3000 amino acid residues;
 - R₂ consists of at least 150 amino acid residues; and
 - R₂ is at least 40% identical to an aligned component sequence of SEQ ID NO: 3.
3. The DNA according to claim 1 comprising an open reading frame encoding one or more SWI2/SNF2-like ATPase/helicase motifs.
4. The DNA according to claim 1 comprising an open reading frame encoding a protein having a component sequence defined by amino acids 478-490, 584-600, 617-630, 654-668, 676-690, 718-734, 776-788, 1222-1233, 1738-1749 or 1761-1770 of SEQ ID NO: 3.
5. The DNA according to claim 1, wherein the open reading frame encodes a protein characterized by the amino acid sequence of SEQ ID NO: 3, an allelic amino acid sequence having amino acid residue K instead of M at position 705 of SEQ ID NO: 3, or an amino acid residue D instead of E at position 1219 of SEQ ID NO: 3.
6. The DNA according to claim 1 characterized by the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 2.
7. The DNA according to claim 1, wherein expression of RNA, complementary to mRNA transcribed therefrom, characterized in that expression of corresponding anti-sense RNA in a cell releases silencing of a transgenic marker gene.
8. The protein encoded by the open reading frame of any one of claims 1 to 7.

AMENDED SHEET

- 17 -

9. A method of producing DNA according to claim 1, comprising

- screening a DNA library for clones which are capable of hybridizing to a fragment of the DNA defined by SEQ ID NO: 1 or SEQ ID NO: 2, wherein said fragment has a length of at least 15 nucleotides;
- sequencing hybridizing clones;
- purifying vector DNA of clones comprising an open reading frame encoding a protein characterized by an amino acid sequence comprising a component sequence of at least 150 amino acid residues having 40% or more sequence identity to SEQ ID NO: 3
- optionally further processing the purified DNA.

10. A polymerase chain reaction wherein at least one oligonucleotide used comprises a sequence of nucleotides which represents 15 or more basepairs of SEQ ID NO: 1 or SEQ ID NO: 2.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
4 January 2001 (04.01.2001) ✓

PCT

(10) International Publication Number
WO 01/00801/A2

(51) International Patent Classification⁷: C12N 15/00 (CH). PASZKOWSKI, Jerzy [PL/CH]; Blauenweg 10, CH-4224 Nenzlingen (CH).

(21) International Application Number: PCT/EP00/05761

(22) International Filing Date: 21 June 2000 (21.06.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
9914623.5 23 June 1999 (23.06.1999) GB

(71) Applicant (for all designated States except AT, US): NOVARTIS AG [CH/CH]; Schwarzwaldallee 215, CH-4058 Basel (CH).

(71) Applicant (for AT only): NOVARTIS-ERFINDUNGEN VERWALTUNGSGESELLSCHAFT M.B.H. [AT/AT]; Brunner Strasse 59, A-1230 Vienna (AT).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HABU, Yoshiki [JP/CH]; Im Niederholzboden 54, CH-4125 Riehen (CH). MITTELSTEN SCHEID, Ortrun [DE/CH]; Martinskirchplatz 15, CH-4051 Basel (CH). AMEDEO, Paolo [IT/CH]; Eimeldingerweg 45, CH-4057 Basel

(74) Agent: BECKER, Konrad; Novartis AG, Patent and Trademark Dept., Agribusiness, Site Rosental, CH-4002 Basel (CH).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— Without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/00801 A2

(54) Title: GENE INVOLVED IN EPIGENETIC GENE SILENCING

(57) Abstract: The present invention relates to DNA which encodes proteins involved in gene silencing. Related genes encoding proteins characterized by an amino acid sequence comprising a component sequence of at least 150 amino acid residues having 40% or more identity with an aligned component sequence of SEQ ID NO:3 can be isolated from different sources such as mammalian or plant cells. Further disclosed is a method for isolating DNA according to the invention.

DECLARATION AND POWER OF ATTORNEY FOR UNITED STATES PATENT APPLICATION Original Supplemental Substitute

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name, and

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if more than one name is listed below) of the subject matter which is claimed and for which a United States patent is sought on the invention entitled

GENE INVOLVED IN EPIGENETIC GENE SILENCING

the specification of which:

is attached hereto.

was filed on _____ as Application No. _____
(day/month/year)

and, if this box () contains an *

was amended on _____
(day/month/year)

was filed as Patent Cooperation Treaty international Application No.

PCT/EP00/05761 on 21.06.00
(day/month/year)

and, if this box () contains an *

entered the national stage in the United States and was accorded Application No.

_____ and, if this box () contains an *

was amended, subsequent to entry into the national stage, on

_____ (day/month/year)

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment(s) referred to above and, if this application was filed as a Patent Cooperation Treaty international application, by any amendments made during the international stage (including any made under Patent Cooperation Treaty Rule 91, Article 19 and Article 34).

I acknowledge my duty to disclose all information which is known by me to be material to the patentability of this application as defined in 37 C.F.R. § 1.56.

I hereby claim the benefit under 35 U.S.C. §119(a)-(d) or §365(b) of any foreign application(s) for patent or inventor's certificate listed below and under 35 U.S.C. §365(a) of any Patent Cooperation Treaty international application(s) designating at least one country other than the United States listed below and have also listed below any foreign application(s) for patent or inventor's certificate and Patent Cooperation Treaty international application(s) designating at least one country other than the United States for the same subject matter and having a filing date before that of the application the priority of which is claimed for that subject matter:

COUNTRY/REGION (OR P.C.T.)	APPLICATION No.	FILING DATE (day/month/year)	PRIORITY CLAIMED	
GB	9914623.5	23.06.99	<input checked="" type="checkbox"/> Yes	<input type="checkbox"/> No
			<input type="checkbox"/> Yes	<input type="checkbox"/> No
			<input type="checkbox"/> Yes	<input type="checkbox"/> No
			<input type="checkbox"/> Yes	<input type="checkbox"/> No
			<input type="checkbox"/> Yes	<input type="checkbox"/> No

I hereby claim the benefit under 35 U.S.C. § 119 (e) of any United States provisional application(s) listed below:

APPLICATION NO.	FILING DATE (day/month/year)

I hereby claim the benefit under 35 U.S.C. §120 of any United States application(s) listed below and under 35 U.S.C. §365(c) of any Patent Cooperation Treaty international application(s) designating the United States listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in said prior application(s) in the manner required by the first paragraph of 35 U.S.C. §112, I acknowledge my duty to disclose all information known to me to be material to patentability as defined in 37 C.F.R. §1.56 which became available between the filing date(s) of the prior application(s) and the national or Patent Cooperation Treaty international filing date of this application:

United States Application No.	United States Filing Date (day/month/year)	Status (Pending, Abandoned or U.S. Patent No.)	International Application No. and Filing Date (day/month/year)

I hereby appoint the registered practitioners associated with Customer No. 022847, respectively and individually, as my attorneys and agents, with full power of substitution and revocation, to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith.

If these brackets contain an X [X], I hereby authorize the registered practitioners associated with Customer No. 022847 and any others acting on my behalf to take any action relating to this application based on communications from the Patents and Trademarks Division of Syngenta Crop Protection AG, Basle, Switzerland, or an affiliate thereof or a successor thereto, without direct communication from me.

Please address all communications to the address associated with Customer No. 022847, which is currently Larry W. Stults, Syngenta, Patent and Trademark Department, 3054 Cornwallis Road, Research Triangle Park, NC 27709.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. §1001 and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Full name of sole
or first joint inventor

Yoshiki HABU

Inventor's signature

Yoshiki HABU

Date

20.11.2001
(day/month/year)

Residence

4125 Riehen, Switzerland CH

Citizenship

Japanese

Post Office Address

Gstaltenrainweg 71
4125 Riehen
CH

IMPORTANT: Before this declaration is signed, the patent application (the specification, the claims and this declaration) must be read and understood by each person signing it, and no changes may be made in the application after this declaration has been signed.

Full name of second joint inventor, if any

Ortrun MITTELSTEN SCHEID

Inventor's signature

Ortrun Mittelsten Scheid Date 20.11.2001
(day/month/year)

Residence

4051 Basel, Switzerland CHX

Citizenship

German

Post Office Address

Martinskirchplatz 15
4051 Basel
CH

Full name of third joint inventor, if any

Paolo AMEDEO

Inventor's signature

 Date
(day/month/year)

Residence

San Diego, CA 92121-1125, USA

Citizenship

Italian

Post Office Address

Torrey Mesa Research Institute Inc.
3115 Merryfield Row
San Diego, CA 92121-1125
USA

Full name of fourth joint inventor, if any

Jerzy PASZKOWSKI

Inventor's signature

J. Paszkowski Date 20.11.2001
(day/month/year)

Residence

4224 Nenzlingen, Switzerland CHX

Citizenship

Polish

Post Office Address

Blauenweg 10
4224 Nenzlingen
CH

CE 124/24480040

DECLARATION AND POWER OF ATTORNEY FOR UNITED STATES PATENT APPLICATION

Original

Supplemental

Substitute

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name, and

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if more than one name is listed below) of the subject matter which is claimed and for which a United States patent is sought on the invention entitled

GENE INVOLVED IN EPIGENETIC GENE SILENCING

the specification of which:

is attached hereto.

was filed on _____ as Application No. _____
(day/month/year) _____

and, if this box (□) contains an *

was filed as Patent Cooperation Treaty international Application No.:

PCT/EP00/05761 on **21.06.00**
(day/month/year)

and, if this box (□) contains an x

entered the national stage in the United States and was accorded Application No.

and, if this box (□) contains an **x**

was amended, subsequent to entry into the national stage, on

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment(s) referred to above and, if this application was filed as a Patent Cooperation Treaty international application, by any amendments made during the international stage (including any made under Patent Cooperation Treaty Rule 91, Article 19 and Article 34).

I acknowledge my duty to disclose all information which is known by me to be material to the patentability of this application as defined in 37 C.F.R. § 1.56.

I hereby claim the benefit under 35 U.S.C. §119(a)-(d) or §365(b) of any foreign application(s) for patent or inventor's certificate listed below and under 35 U.S.C. §365(a) of any Patent Cooperation Treaty international application(s) designating at least one country other than the United States listed below and have also listed below any foreign application(s) for patent or inventor's certificate and Patent Cooperation Treaty international application(s) designating at least one country other than the United States for the same subject matter and having a filing date before that of the application the priority of which is claimed for that subject matter:

COUNTRY/REGION (OR P.C.T.)	APPLICATION No.	FILING DATE (day/month/year)	PRIORITY CLAIMED	
GB	9914623.5	23.06.99	<input checked="" type="checkbox"/> Yes	<input type="checkbox"/> No
			<input type="checkbox"/> Yes	<input type="checkbox"/> No
			<input type="checkbox"/> Yes	<input type="checkbox"/> No
			<input type="checkbox"/> Yes	<input type="checkbox"/> No
			<input type="checkbox"/> Yes	<input type="checkbox"/> No

I hereby claim the benefit under 35 U.S.C. § 119 (e) of any United States provisional application(s) listed below:

APPLICATION NO.	FILING DATE (day/month/year)

I hereby claim the benefit under 35 U.S.C. §120 of any United States application(s) listed below and under 35 U.S.C. §365(c) of any Patent Cooperation Treaty international application(s) designating the United States listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in said prior application(s) in the manner required by the first paragraph of 35 U.S.C. §112, I acknowledge my duty to disclose all information known to me to be material to patentability as defined in 37 C.F.R. §1.56 which became available between the filing date(s) of the prior application(s) and the national or Patent Cooperation Treaty international filing date of this application:

United States Application No.	United States Filing Date (day/month/year)	Status (Pending, Abandoned or U.S. Patent No.)	International Application No. and Filing Date (day/month/year)

I hereby appoint the registered practitioners associated with Customer No. 022847, respectively and individually, as my attorneys and agents, with full power of substitution and revocation, to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith.

If these brackets contain an X [X], I hereby authorize the registered practitioners associated with Customer No. 022847 and any others acting on my behalf to take any action relating to this application based on communications from the Patents and Trademarks Division of Syngenta Crop Protection AG, Basle, Switzerland, or an affiliate thereof or a successor thereto, without direct communication from me.

Please address all communications to the address associated with Customer No. 022847, which is currently Larry W. Stults, Syngenta, Patent and Trademark Department, 3054 Cornwallis Road, Research Triangle Park, NC 27709.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. §1001 and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Full name of sole
or first joint inventor

Yoshiki HABU

Inventor's signature

Date

(day/month/year)

Residence **4125 Riehen, Switzerland**

Citizenship **Japanese**

Post Office Address **Gstaltenrainweg 71
4125 Riehen
CH**

IMPORTANT: Before this declaration is signed, the patent application (the specification, the claims and this declaration) must be read and understood by each person signing it, and no changes may be made in the application after this declaration has been signed.

Full name of second
joint inventor, if any

Ortrun MITTELSTEN SCHEID

Inventor's signature

Date

(day/month/year)

Residence **4051 Basel, Switzerland**

Citizenship **German**

Post Office Address
Martinskirchplatz 15
4051 Basel
CH

Full name of third
joint inventor, if any

Paolo AMEDEO

Inventor's signature

Date

05/12/2001
(day/month/year)

Residence **San Diego, CA 92121-1125, USA**

Citizenship **Italian**

Post Office Address
Torrey Mesa Research Institute Inc.
3115 Merryfield Row
San Diego, CA 92121-1125
USA

Full name of fourth
joint inventor, if any

Jerzy PASZKOWSKI

Inventor's signature

Date

(day/month/year)

Residence **4224 Nenzlingen, Switzerland**

Citizenship **Polish**

Post Office Address
Blauenweg 10
4224 Nenzlingen
CH

- 1 -

SEQUENCE LISTING

<110> Novartis AG
Novartis Research Foundation

<120> Gene involved in epigenetic gene silencing

<130> S-31005A

<140>
<141>

<150> GB 9914623.5

<151> 1999-06-23

<160> 33

<170> PatentIn Ver. 2.1

<210> 1
<211> 10329
<212> DNA
<213> Arabidopsis thaliana

<220>
<221> intron
<222> (1009) .. (1295)

<220>
<221> intron
<222> (2551) .. (2673)

<220>
<221> intron
<222> (2753) .. (2867)

<220>
<221> intron
<222> (3114) .. (3506)

<220>
<221> intron
<222> (3681) .. (3973)

<220>
<221> intron
<222> (4896) .. (4975)

<220>
<221> intron
<222> (5218) .. (5777)

<220>
<221> intron

- 2 -

<222> (5883) .. (6082)

<220>

<221> intron

<222> (7481) .. (7615)

<220>

<221> intron

<222> (7772) .. (7914)

<220>

<221> intron

<222> (8071) .. (8153)

<220>

<221> intron

<222> (8319) .. (8451)

<220>

<221> intron

<222> (8630) .. (8718)

<220>

<221> intron

<222> (8919) .. (9000)

<220>

<221> intron

<222> (9212) .. (9284)

<400> 1

aatattttaag tttggtttat attctttcta gtaatcttg aaatattgtt agagataatg 60
cttctaaataa ataacattgg atttatttggg attaatgtat tgaaaaaaact atgcaaatac 120
tacagtgtat tttggAACGA ccaaaaatgat atatgtaaac ttgcgttcta gtcttctaca 180
tagtgtataa ggatagcgga caaggttgat cgactctaaa cattatgggt acgttaattcc 240
gcagtggta cagtctactg tcgaggccaa actggtaatt aaacgtttga agtttagaga 300
aatattttga tgatgagtac cacaatcaaa gatgataggt gttaatcaact gtaaaaatgt 360
tgattgaata ctacgaatgc agaacatata catatttta atctctttgg aatttttgtt 420
tttggTTTta tcattttta atacacgaaag agctcagttt tatttcataat tgtatatgaa 480
tttggTTCTat ttaatcttca attctagcaa catactctt tgctaattcg tttcatatTTT 540
tagtatacgta taaaaattac aaatttcaaa acaaaactata agtaatatac taacatagtc 600
ggtgtaaacat ttgcgttaatt tcacataaca tatgttaatt acatatgtac actatTTTg 660
aagtatTTta taactaaaa tatataaatt taaatctaag aaatcacaag catgagTTT 720
tccttccggta aatcgtaaaa tcaaaaatcg ctcgctcgag aaacgcccggt gctagaagag 780
gaaaagtaccg tacataatcc tgcgAACCCa attctcgctt tcttcaaact cagTTTCCG 840
aaaccccaaa caccgcgagg attgcattggc ctgaaAGACC acttaatcg gaatttggtc 900
ggaattctca aattttccct cgcgttttc ttacacactc tcggaaatcg aaatttccac 960
caagctccgt caagcgatag attctgacaa ttacacactt tcgcgcaggt atgcttcctt 1020
ccctgtttta ggttgggtt aatctatcg tgaatcgaa gttttgggcc tcgggctttg 1080
cgTTTtaggt tttcagaga atcttatcta cttggggatg gatcttaggc gtttggtaga 1140
tgtaactcat tagtttgca tataggaatt ttgattgaa agtttaggtcg ccggattttgt 1200
agacattttg ttgtatggtc ttcttcgggt ctcacattct ttgttttaa gtgcttgatt 1260
tggttgctaa ggtccTTCC gttgcgtgc ctcagtgaaat atgaagaaaat atgaaaagat 1320
tggTTTgacg gggagaacca tttacaccag atccctagca gcttcaattc ctgcctcagt 1380
tgaacaagaa acccctgggt tgaggaggtc aagccggggg acaccatcta cgaaggtaat 1440

aactccagct tctgctacta gaaaagtcaga gagactggct ccctcacctg cttcagttc 1500
aaaaaaagtcc ggtggaatcg tcaagaattc cacaccaagt tcttgcgaa ggtccaatag 1560
ggggaaagact gaagtatcct tgcatagttc caaaggatca gataattcta tcagggaaagg 1620
agatacttca ccggatattg agcagagaaa ggatagtgtt gaagagtcga cagataagat 1680
caagcctata atgtcagccc gaagttacag ggcattgtt agagggaaagc tcaaggaatc 1740
tgaggcatta gttgatgtt ccccaaatga agaggaacta gtagttgtt gttgttctcg 1800
ccgcataacct gcaggcaatg atgatgttca aggtaaaaca gattgtccac cacctgcaga 1860
tgcaggatca aaaaggctgc cagttgacga aactagttt gacaagggca ctgattttcc 1920
tttggaaatca gttacggaga ccgagaagat agtgcttgat gcatccccca tagttgaaac 1980
tggggatgac agtggatata gttcaccatc tgagaattt gagacacaaa agttcaaga 2040
tggtaagaca gattgttac cacctgc当地 tgcagaatcg aaaacgctgc cagttggta 2100
aactagttt gaaaaagaat atccacaaa gttcaagat gataacacag attgtctacc 2160
acctgc当地 gcaatcaa aaaggctgcc agttggcgaa actagtttag aaaaggacac 2220
tgatccccct ttgaaatcaa ctacggagac tggaaagatg gttctttatg catccccat 2280
agttgaaact agggatgaca gcgttatatg ttcaccatc acaaattttag aaacccaaaa 2340
gcttc当地 agtaaaactg gcttagaaaac cgacatagtt ttgc当地 aaagaaaaag 2400
agacactgca gaaattgagc tggatgc当地 tgctacagtt gcaaattggag atgatcacgt 2460
tatgaggatc gatggggatc ttccatctcc atctgggtgc aaaaatgata atcgacactga 2520
aatgtgcaac acgtgtaaaa aacggcaaaa gtaagagttt ttttagtggat gtctgtctat 2580
tgaaaacgatc tgccatgtt gaatgttggg cagatgggtt tgattcttag gatatatgtt 2640
ctgtattgtt atgagttgtt caaaattttt aagggtcaac ggtgattgtc aaaaataggag 2700
tggatctcc tgcattgtcc agccagttga agaatctgtt aacgtgacac aggttgggtt 2760
ctaattactt tcggagaccc gtaatcagt ggactctaa atagtttagat actagattt 2820
cttattccctt tacttgtat ctgcaattct atttgcatt tgatttaggat atgaaagaaa 2880
ctggaccagt tacgaggcaga gaatatgagg agaacgggc当地 aatacaacat ggttaatcaa 2940
gtgatcccaa attctattct tcgggttacc cagagtattt ggttctgtc cagctatcag 3000
atgtacagct ggagcaatac tgc当地 tccaa atccttatct ctttcttc当地 3060
tttgc当地 tgatcttggg gctctagaag aaactctcaa ttctgtt当地 aaagtaagtt 3120
acttgatccccctt aaaaacactt attcttcaat gcacttgc当地 gtttaagtacc cagttattac 3180
tggatctcc tggatataag ataaagaaaag caatagaaaa attgataagg tggatctcc当地 attgc当地 3240
aaaaaaacaat tctgttcc atgcttccaa gaggttgc当地 cataggtgtt atgc当地 3300
gtttgatgtt tggatgagca aagggttggg gcttattttt当地 tttatgtt当地 tttgaaacac 3360
atagaacactg gcaaaacttgc cagtttggg gttgctt当地 tatacgacta ttgtcggtca 3420
gcatcacatt ttctcaaggc ctcttctgc atgtaatgt gtaatataat taaaatctt 3480
tttatgtt当地 tgcaacttgc当地 tgacagaccc atacgtt当地 gatgc当地 3540
tggatctcc gctc当地 aactctggatg tgc当地 aat cctggatgtt当地 gaaattaaag 3600
cgagcgggaa acttc当地 cttgataaa tgctt当地 tataaaaaaaag aatgggtt当地 3660
aagcagttgtt ct当地 taccag gtc当地 attttt当地 tattacttgc当地 gaatgtgaat agctctatgt 3720
ttgtcatgaa tacgtactt tgc当地 atttgc当地 caatataatgt gcatttt当地 tttgacaatg 3780
gaattctgtc ttgtattgtt当地 atttgc当地 gatgaaatgta tgctttt当地 cgtc当地 atttgc当地 3840
tggatgtt当地 gtttagctt当地 agcagtc当地 tagcattatg agatatgtc当地 aactaaaatg 3900
tttctttctt ct当地 tttt当地 ttgtgtt当地 tttgtt当地 tttgtt当地 attacagttt 3960
ttatccccctc caggcaacac aaacccctgc当地 agggctt当地 ct当地 ttctcg当地 4020
ttttgtgggtt caaagatatttgc当地 ttatgagcat gggatataattt cctcaagaa 4080
gaactccgctt ataaacaatt tcaacaaggc gagtcaatgc当地 tttgtt当地 tttgtt当地 4140
acgtgc当地 agtcaaaacca tttaaacttgc当地 gcgagctgtat gctt当地 tttttt当地 4200
cagcttgc当地 cc当地 tccatgc当地 atgtaatgc当地 cgtagagaag ataaaaatcg当地 agtcatgtt当地 4260
tggatgtt当地 aagatatttgc当地 gtttgc当地 agtatgtaca gtttgc当地 aagccctgtat 4320
tctggctt当地 caaaatattgc当地 ggcaaaaataa agctgttagag aacctaaacc gctctt当地 4380
gcaaggcactg ctc当地 tttt当地 ttgtgtt当地 tttgtt当地 tttgtt当地 attttt当地 4440
cagtttgc当地 cc当地 tccatgc当地 atgtaatgc当地 cgtagagaag ataaaaatcg当地 gctt当地 4500
tggatgtt当地 tccatatttgc当地 ttccaaaaggc tggatgtt当地 aatgtt当地 agctgtt当地 4560
acttttggat gccaaggcactg ctc当地 tttt当地 ttacagcactg gtttgc当地 ttttgc当地 4620
agaccatattt aagtttgc当地 atgaaagagag tccaaaatata ttttgc当地 agctgtt当地 4680
ggggaaaaat cctatgtt当地 aataccctt当地 agatactccc caaaggaaatc gaaaacgact 4740

- 4 -

tcagtat~~ttt~~ gaggg~~tt~~tctg aagcgagtcc caaaactggc gatgg~~tgg~~aa atgcaaagaa 4800
gcgaaaagaag gcttctgatg atgtcactga tccccgg~~tc~~ actgatccgc cagtagatga 4860
t~~gat~~gaaaga aaggc~~c~~tctg ggaaggatca catggtaaa atagtt~~ta~~at ttctgctccg 4920
at~~ac~~c~~c~~ttag t~~gtt~~cattga ttatgcaact ac~~ttt~~ctg~~a~~ ctatcttcc tacaggg~~ct~~ 4980
ttggagtcac caaaagtcat aacactccag tc~~at~~cat~~gt~~a aatcttctgg tacagat~~gt~~ 5040
acattggatg gaaaatgatgc ttttg~~g~~ctt~~g~~ tattctatgg gcagccat~~at~~ ctctggaatc 5100
ccagaggata tg~~t~~tagct~~g~~ tcaagattgg gggaaaatac cggat~~g~~aatc acagaggagg 5160
ctccacactg ttttaaagcc gaagatggc~~a~~ aaacttgc~~c~~ a~~g~~ttttgc~~a~~ tcttc~~g~~ 5220
ag~~t~~ggc~~c~~ttt ttcac~~c~~ca caactt~~at~~tt tagc~~c~~ttg~~a~~ t~~at~~gcttata tata~~g~~tat 5280
tgcaact~~gt~~ta gttgttac~~c~~ gat~~tt~~c~~c~~t~~g~~t~~g~~ tacagccaaa t~~g~~t~~g~~agagtt ttattttc~~a~~ 5340
actat~~at~~atcca tccg~~t~~ttaag catat~~ttt~~at ttcttat~~at~~tc tggcttc~~g~~tt accaatgcac 5400
tg~~t~~aaaatg agcaact~~g~~t~~c~~ gcacaaaaca gtag~~g~~at~~g~~tt at~~g~~tgc~~c~~tc~~a~~ t~~g~~t~~c~~att~~c~~at 5460
tg~~t~~tatt~~g~~a ag~~c~~aaagaaa tttctgt~~c~~ta ctttac~~at~~ga tccatctgt~~g~~ ggagtatata 5520
actat~~at~~atata ac~~c~~ttag~~g~~cc tttgtac~~c~~tt~~g~~ gctgat~~c~~aaa gacat~~g~~t~~c~~aa a~~g~~tttat~~c~~t 5580
gttcgct~~gt~~tt~~g~~ g~~t~~at~~g~~aaa~~aa~~ ctaatac~~g~~t~~c~~ gtctgat~~g~~ct attttaag~~g~~tt agtcttat~~g~~t 5640
cttcacat~~at~~at tggcttaat~~g~~at atg~~t~~ttccgc t~~g~~t~~c~~gt~~g~~t~~c~~cc atatactt~~c~~t gtgattat~~c~~a 5700
cggtgctccg tctat~~aaaa~~tt~~g~~tact~~aa~~aa aggtat~~ttt~~g~~a~~ caat~~g~~t~~g~~t~~a~~ ttgg~~t~~taaca 5760
gattat~~ttt~~tt~~g~~ tttcaggat gcttgcac~~aa~~aa gcat~~g~~gt~~c~~gg aaat~~ttt~~ctc~~a~~ gaat~~at~~gt~~t~~ta 5820
ttgaaaat~~c~~ca ccgaatctac~~a~~ gaagagccag ccactactt~~t~~ t~~c~~aggcattc~~a~~ cagat~~g~~agccc 5880
t~~g~~gtat~~g~~aca~~a~~ gcatttact~~t~~ tg~~t~~ataat~~t~~tt~~g~~ t~~g~~catt~~g~~ttt~~c~~ ctttcat~~c~~at~~t~~ ctgc~~c~~ttt~~g~~t 5940
tt~~g~~aaat~~g~~t~~c~~tc~~a~~ ctcagaaggc agcact~~c~~tt tag~~t~~tt~~aa~~ac tttcaat~~c~~ca taggatt~~c~~aa 6000
at~~at~~ccatta~~a~~ actgg~~c~~ttt~~g~~ gat~~c~~g~~t~~g~~c~~ca taat~~at~~at~~g~~ta at~~g~~tt~~g~~aca tact~~g~~aaat~~c~~ac 6060
gtt~~g~~ttaata~~a~~ at~~g~~cattttc ag~~g~~at~~g~~gat~~t~~ t~~g~~caggc~~t~~tt~~g~~ ttgg~~t~~aaag~~c~~ aaat~~t~~tt~~g~~ 6120
ccacaaaagaa tctctgg~~t~~cc~~g~~ gt~~c~~caaattc~~a~~ t~~g~~aattt~~g~~at~~c~~ t~~c~~caa~~a~~at~~g~~t~~c~~ ct~~g~~ag~~g~~t~~a~~ 6180
g~~t~~ggattat~~a~~tttatt~~c~~ga tatt~~g~~t~~c~~ct~~g~~ cat~~g~~ag~~g~~at~~t~~ ct~~g~~tt~~c~~ct~~g~~ agcatacaca 6240
agg~~t~~tg~~c~~ag~~t~~ t~~c~~cgatt~~g~~ct~~t~~ tt~~g~~tact~~aa~~aa t~~t~~c~~t~~aaac~~g~~ t~~c~~ag~~t~~g~~g~~t~~t~~ta gcacaaaact 6300
ag~~t~~aaaat~~g~~aa~~a~~ agtctct~~c~~ag~~t~~ gggctac~~g~~at~~t~~ g~~c~~gt~~g~~ac~~g~~aa a~~g~~attaata~~a~~ cgaag~~t~~cgat 6360
g~~c~~gaaat~~g~~at~~c~~gc~~t~~ a~~g~~ag~~t~~g~~c~~at~~t~~ g~~a~~c~~t~~g~~a~~ga~~g~~ agat~~g~~t~~a~~g~~c~~cc attat~~g~~ac~~c~~ 6420
ag~~c~~acaaca~~g~~aa~~a~~ gat~~at~~cg~~aaa~~aa agactatt~~g~~ t~~g~~gcataaaaa a~~g~~aaat~~a~~ca~~a~~ agaag~~c~~aa~~g~~t 6480
g~~c~~aaaag~~c~~t~~t~~ gtacaag~~g~~ac~~t~~ at~~g~~aggaaaaa gaaaat~~g~~g~~g~~ ct~~g~~t~~aa~~ata~~t~~ t~~g~~t~~at~~g~~c~~aga 6540
caagaag~~c~~ag~~t~~ aaact~~g~~aaa~~a~~ c~~t~~ag~~t~~aaaag~~t~~ t~~g~~t~~g~~aaag~~c~~a~~a~~ g~~c~~ag~~t~~aaat~~t~~ t~~g~~t~~at~~ac~~c~~ 6600
ttc~~c~~ac~~g~~g~~a~~cc agtact~~c~~aa~~g~~ tgg~~t~~gat~~c~~t~~t~~ c~~aa~~act~~g~~ct~~g~~ g~~a~~c~~t~~ata~~t~~tt~~g~~ at~~g~~aaaag~~aaaa~~ 6660
gtt~~t~~gat~~g~~aa~~a~~ at~~c~~aaaat~~g~~t~~a~~ agaaaaat~~g~~ta at~~g~~c~~c~~t~~aaa~~ a~~g~~t~~c~~tg~~g~~ag~~c~~ aaat~~g~~c~~a~~c~~g~~a 6720
g~~t~~tt~~g~~c~~aa~~ag~~t~~ aagaag~~t~~tt~~g~~ t~~c~~gaggat~~g~~ta a~~g~~c~~c~~t~~g~~tt~~g~~ atta~~t~~c~~g~~ga taaagag~~c~~t~~g~~ 6780
g~~g~~cag~~c~~taaa~~a~~ t~~t~~aaaat~~g~~tt~~g~~ gt~~t~~tt~~cc~~cat~~t~~ t~~c~~aa~~a~~gt~~g~~gc~~a~~ a~~a~~taaca~~g~~c~~a~~ at~~t~~ttt~~g~~at~~g~~ 6840
tt~~c~~at~~ca~~aa~~ac~~ at~~t~~tt~~cc~~aa~~aa~~ at~~g~~et~~c~~t~~g~~ta t~~g~~t~~ac~~aa~~at~~t~~g~~ t~~g~~c~~aa~~taat~~g~~t~~a~~ ctaac~~g~~tt~~g~~a 6900
ag~~c~~t~~act~~ta~~c~~ c~~g~~t~~g~~ata~~c~~ga at~~g~~tc~~at~~g~~g~~c tt~~c~~caag~~g~~tt~~t~~ a~~at~~ca~~at~~g~~t~~c~~a~~ cagaag~~c~~aga 6960
aa~~a~~ac~~ac~~at~~tt~~ta~~a~~ g~~g~~aa~~c~~accat~~g~~t~~c~~ c~~gg~~gt~~g~~gg~~c~~ag~~t~~ c~~a~~ct~~ca~~ac~~aa~~aa gtt~~cat~~g~~aa~~aa t~~g~~gt~~g~~gat~~gt~~t 7020
a~~g~~aa~~aa~~at~~g~~ac~~t~~ gagacaat~~g~~gg at~~g~~t~~c~~tc~~g~~ t~~tt~~gt~~c~~t~~g~~tt~~g~~ gaacag~~c~~tt~~a~~ c~~aa~~agag~~g~~cc~~a~~ 7080
gt~~c~~caat~~g~~ag~~t~~ c~~a~~cg~~c~~t~~t~~ct~~a~~ t~~c~~act~~g~~t~~g~~cc tg~~g~~at~~ttt~~tg~~t~~ atte~~t~~ct~~g~~ct~~g~~ act~~g~~t~~c~~aga~~g~~ 7140
g~~g~~aa~~ttt~~tg~~g~~cg~~t~~ g~~c~~c~~t~~tg~~g~~aa~~c~~g t~~g~~c~~at~~tt~~g~~tc~~g~~ agaag~~g~~acc~~g~~ a~~t~~t~~g~~t~~g~~aca~~g~~ gaataa~~ac~~at~~c~~ 7200
t~~g~~c~~gg~~g~~c~~at~~ca~~ gat~~g~~aa~~g~~at~~t~~g~~t~~ t~~tt~~cat~~c~~aa~~g~~ g~~g~~gt~~g~~cc~~g~~ag~~t~~ g~~t~~at~~cc~~c~~g~~t~~a~~ c~~a~~ct~~cg~~aaaaa 7260
t~~ttt~~t~~c~~g~~cc~~ t~~cccc~~g~~at~~g~~t~~ t~~ttt~~t~~c~~taaa~~a~~ tag~~g~~agg~~g~~ g~~c~~ttt~~g~~g~~t~~ta caacagaaaa 7320
tagaagaaca~~a~~ agt~~c~~at~~g~~t~~g~~gg~~t~~ g~~t~~ttt~~g~~at~~ac~~ tg~~t~~ataa~~c~~at~~t~~ tt~~g~~g~~g~~acc~~g~~ c~~g~~aa~~at~~ag~~g~~aga 7380
ag~~at~~t~~ttt~~c~~t~~ c~~t~~tg~~g~~cca~~a~~ag~~t~~ a~~g~~ttt~~c~~ct~~g~~ta cg~~g~~at~~t~~tg~~g~~cg~~t~~ a~~a~~cat~~t~~tt~~g~~c~~t~~ 7440
gt~~c~~t~~g~~tg~~g~~gt~~t~~ gagact~~g~~agg~~t~~ g~~t~~g~~c~~t~~g~~ct~~g~~ta at~~c~~t~~g~~at~~c~~ag~~t~~ g~~t~~act~~t~~act~~g~~ g~~c~~c~~c~~tt~~g~~t~~g~~ 7500
at~~at~~tt~~g~~at~~g~~t~~t~~ c~~c~~tt~~g~~tt~~c~~at~~t~~ t~~ta~~at~~c~~tt~~t~~ t~~ct~~at~~g~~tt~~c~~ t~~tt~~g~~t~~aaa~~a~~ 7560
ac~~gg~~g~~tt~~at~~g~~tg~~t~~ g~~t~~at~~g~~at~~g~~tc~~t~~ t~~ttt~~tt~~c~~tc~~t~~ tt~~g~~at~~aa~~at~~g~~tt~~g~~ g~~a~~c~~g~~at~~t~~tg~~g~~ 7620
t~~c~~aa~~g~~at~~at~~g~~t~~ t~~gt~~cc~~t~~at~~g~~tc~~t~~ c~~tt~~ct~~g~~tc~~t~~act~~g~~ gg~~c~~t~~g~~aaa~~a~~g~~t~~ caac~~c~~ct~~g~~acc~~a~~ 7680
ca~~c~~ct~~g~~g~~ag~~ac~~t~~ gaaaat~~c~~ct~~g~~ a~~a~~ga~~g~~ca~~a~~at~~t~~ tg~~g~~ac~~c~~ct~~g~~ag~~t~~ t~~c~~t~~g~~ct~~g~~g~~t~~tt~~g~~ c~~g~~ag~~aa~~ac~~g~~at~~t~~ 7740
ag~~ag~~act~~act~~ g~~t~~ttt~~g~~ct~~g~~ g~~t~~at~~c~~ac~~at~~ca~~t~~ g~~g~~tt~~c~~ct~~g~~t~~t~~tt~~g~~ g~~a~~ag~~act~~tt~~c~~ t~~ttt~~tt~~t~~act~~t~~ 7800
ag~~t~~tt~~aa~~at~~g~~ g~~t~~at~~c~~at~~g~~tc~~t~~ tg~~g~~tt~~at~~g~~t~~tc~~t~~ att~~c~~ta~~g~~tt~~c~~tt~~g~~ t~~c~~c~~g~~tt~~g~~g~~t~~tt~~g~~ g~~a~~ag~~gt~~gg~~gg~~ 7860
aa~~at~~gt~~gg~~tt~~t~~ act~~g~~at~~c~~aa~~g~~ t~~t~~c~~g~~tt~~g~~tt~~t~~ g~~t~~tt~~aa~~at~~c~~ g~~a~~c~~t~~tt~~t~~tt~~g~~ ac~~ag~~gg~~gt~~tt~~g~~ 7920
ca~~a~~g~~t~~ta~~c~~at~~t~~ g~~t~~c~~c~~tt~~g~~ct~~t~~ at~~c~~t~~t~~ca~~c~~cc~~t~~ act~~g~~g~~aa~~at~~c~~ t~~g~~c~~c~~ct~~g~~gc~~c~~cc~~t~~ ag~~a~~ag~~c~~aa~~a~~at~~t~~ 7980
at~~tg~~aa~~gg~~cc~~t~~ aaaat~~at~~ta~~c~~aa~~a~~ cac~~a~~at~~c~~ag~~t~~ g~~g~~ag~~cccc~~at~~g~~ t~~g~~ag~~c~~gg~~gg~~t~~c~~cc~~t~~ ag~~a~~at~~g~~c~~ag~~ta~~t~~ 8040

- 5 -

gagagtgggtt attatgcagt aatagatcag gttattgcct taactaaaga caaatgtctt 8100
ttgttgttta aaagtcttac atctttgtaa tgctcggtct ggatatccctg caggaaacaa 8160
tggtgcgtca ggatgcgtgc tctctgccat ctggatcggt tggaaactcag tctgacccatg 8220
gagcaaacat tgagggtcaa aatgtcacaa cagtggctca acttcccaca gatggatcag 8280
atgcagttgt aaccgggtgga tctcctgtat cagatcaggc acctgcctct gctcaaggac 8340
tttcttatgt gttggtttaa aggtctagtc cttagtaatg ttgaaactaa gcaaacagtg 8400
gatagtgtatc atatggttat tttgcttgcgtaa gaatttaata ttctggaca gtgtccccag 8460
gatgcatctc ctatgccatt atcttcgcct gggaaatcacc ctgatacagc agttaatatc 8520
gagggtttag ataacacatc agtagctgag cctcatataa gtggatcaga tgcatgtgaa 8580
atggaaattt cagaacactgg tccccaagta gagcggtaa ccttgcgaag tcagtaactg 8640
ccttgggcat ttttaagttat cacctaggc gacatatgtg attgccaac agctaacaag 8700
gagatgcctt ttgtgcagat ctttccatg aaggtggcgt ggagcattca gcaggtgtaa 8760
cagctcttgt tccatcactt cttaaacaatg gtacggaaca gattgcgtt caacctgttc 8820
ctcaaatacc tttccctgtg ttcaacgacc cgtttctgca tgaactggag aagttgcgga 8880
gagaatcaga gaactcaaaag aagactttt aagaaaaagt cagttccct cattaccagg 8940
ttacctttt tttggttta tttcttagct gccattgac tctcagttgc ttgtgagcag 9000
aaatcaatct tgaaaagctga actcgagagg aagatggctg aagtacaagc agagttcga 9060
agaaaaattt atgaggtaga agccgagcat aacaccagaa cgacaaagat agagaaggat 9120
aagaatcttgc ttataatgaa caaactgttg gcaatgcgt tcttgcctaa atgtactgac 9180
aagaaggatct ctcctcagg agctccaagg ggttaagtgtc gaataatata gcaaattgg 9240
tttaaaaaata aggcgacgaa gtcataatag cacttttct ccaggtaaaa tttagcagct 9300
agcacagaga gcagccacaag tgagtgcact gagaattac attgctcctc aggacgttca 9360
ggcatcttct tttctgtc ctgctctggg ttccgcctt ctgcaacttc agcaatcatc 9420
atttctgtct cctggtccgg ctccctgtca gcctcaggca tcttcgttcc ctcttcagt 9480
ctctcgcca tcagccctt ttctgaattt tgccgtctgt ccaatgcctc agcccgacaca 9540
gcctctcata tccaacatag ctccaaactcc atagttact cctgcaacaa atccaggct 9600
gcttgcgtct gcaccacacc taaactcata tagaccatcc tcttcaactc ccgtcgccac 9660
agctactcca acctcgtag tgcctcctca agctttgaca tattcagctg tgtcaattca 9720
gcagcagcaa gaacaacaac cgcaacagag cttagcgtt ggattgcaga gcaacaatga 9780
agtggtttgt cttctgtc acgagtgacc taagaggaga gatgggttagg gtcttagtt 9840
ttgattttta gagagttat aatagtatata atatataatgt ataagtaggt tacctaattct 9900
ctgtcgtaa tctaatttag tgagtcagga accgactcgt tggctaaagg ctctcccttt 9960
gaaacgcaac gttctacttt catgtatata aatacagtct gatcacacaa cacaatttg 10020
tgattgaaaa tactactgtat ttaactttt agaaaaacca aattatagag cgacaacttt 10080
ataaacatgt caaacttcga agttaaaaatt taagacccca taattttaca attatagatt 10140
ttaatactcc aactattttgcgtaa agaagttatcc gagtctttc ttccagttt 10200
ccccaccgtc ccatgactcc cccagccagt agaaaaagcc aaaaaaagtaa aaaaaaagtc 10260
gttaaaaaaaatgg ttaaattttaa aaaaaaatacg atagttgcg tttactaaag tgatttgaaat 10320
tgaacaattt 10329

<210> 2
<211> 6571
<212> DNA
<213> *Arabidopsis thaliana*

<220>
<221> CDS
<222> (310) .. (6312)

<400> 2

- 6 -

caaactcagt tttccgaaac cccaaacacc gcgaggattt catggcctga agaaccactt	180		
aatcgagaat tgtgtggaa ttctcaaatt ttccctcgcg ttttttttc acactctcg	240		
aatcgaaat ttccaccaag ctccgtcaag cgatagattc tgacaattac acactttcgc	300		
gcagtgaat atg aag aaa gat gaa aag att ggt ttg acg ggg aga acc att	351		
Met Lys Lys Asp Glu Lys Ile Gly Leu Thr Gly Arg Thr Ile			
1	5	10	
tac acc aga tcc cta gca gct tca att cct gcc tca gtt gaa caa gaa	399		
Tyr Thr Arg Ser Leu Ala Ala Ser Ile Pro Ala Ser Val Glu Gln Glu			
15	20	25	30
acc cct ggt ttg agg agg tca agc cgg ggg aca cca tct acg aag gta	447		
Thr Pro Gly Leu Arg Arg Ser Ser Arg Gly Thr Pro Ser Thr Lys Val			
35	40	45	
ata act cca gct tct gct act aga aag tca gag aga ctg gct ccc tca	495		
Ile Thr Pro Ala Ser Ala Thr Arg Lys Ser Glu Arg Leu Ala Pro Ser			
50	55	60	
cct gct tca gtt tca aaa aag tcc ggt gga atc gtc aag aat tcc aca	543		
Pro Ala Ser Val Ser Lys Lys Ser Gly Gly Ile Val Lys Asn Ser Thr			
65	70	75	
cca agt tct ttg cga agg tcc aat agg ggg aag act gaa gta tcc ttg	591		
Pro Ser Ser Leu Arg Arg Ser Asn Arg Gly Lys Thr Glu Val Ser Leu			
80	85	90	
cag agt tcc aaa gga tca gat aat tct atc agg aaa gga gat act tca	639		
Gln Ser Ser Lys Gly Ser Asp Asn Ser Ile Arg Lys Gly Asp Thr Ser			
95	100	105	110
ccg gat att gag cag aga aag gat agt gtt gaa gag tcg aca gat aag	687		
Pro Asp Ile Glu Gln Arg Lys Asp Ser Val Glu Glu Ser Thr Asp Lys			
115	120	125	
atc aag cct ata atg tca gcc cga agt tac agg gca ttg ttt aga ggg	735		
Ile Lys Pro Ile Met Ser Ala Arg Ser Tyr Arg Ala Leu Phe Arg Gly			
130	135	140	
aag ctc aag gaa tct gag gca tta gtt gat gct tcc cca aat gaa gag	783		
Lys Leu Lys Glu Ser Glu Ala Leu Val Asp Ala Ser Pro Asn Glu Glu			
145	150	155	
gaa cta gta gtt gtt ggt tct cgc cgc ata cct gca ggc aat gat	831		
Glu Leu Val Val Val Gly Cys Ser Arg Arg Ile Pro Ala Gly Asn Asp			
160	165	170	
gat gtt caa ggt aaa aca gat tct cca cca cct gca gat gca gga tca	879		
Asp Val Gln Gly Lys Thr Asp Cys Pro Pro Ala Asp Ala Gly Ser			
175	180	185	190
aaa agg ctg cca gtt gac gaa act agt ttg gac aag ggc act gat ttt	927		

-7-

Lys Arg Leu Pro Val Asp Glu Thr Ser	Leu Asp Lys Gly Thr Asp Phe	
195	200	205
cct ttg aaa tca gtt acg gag acc gag aag ata gtg ctt gat gca tcc	Pro Leu Lys Ser Val Thr Glu Thr Glu Lys Ile Val Leu Asp Ala Ser	975
210	215	220
ccc ata gtt gaa act ggg gat gac agt gtt ata ggt tca cca tct gag	Pro Ile Val Glu Thr Gly Asp Asp Ser Val Ile Gly Ser Pro Ser Glu	1023
225	230	235
aat tta gag aca caa aag ctt caa gat ggt aag aca gat tgt tca cca	Asn Leu Glu Thr Gln Lys Leu Gln Asp Gly Lys Thr Asp Cys Ser Pro	1071
240	245	250
cct gca aat gca gaa tcg aaa acg ctg cca gtt ggt gaa act agt tta	Pro Ala Asn Ala Glu Ser Lys Thr Leu Pro Val Gly Glu Thr Ser Leu	1119
255	260	265
gaa aaa gaa tat cca caa aag ttt caa gat gat aac aca gat tgt cta	Glu Lys Glu Tyr Pro Gln Lys Phe Gln Asp Asp Asn Thr Asp Cys Leu	1167
275	280	285
cca cct gca aat gca gaa tca aaa agg ctg cca gtt ggc gaa act agt	Pro Pro Ala Asn Ala Glu Ser Lys Arg Leu Pro Val Gly Glu Thr Ser	1215
290	295	300
tta gaa aag gac act gat ttt cct ttg aaa tca act acg gag act gga	Leu Glu Lys Asp Thr Asp Phe Pro Leu Lys Ser Thr Glu Thr Gly	1263
305	310	315
aag atg gtt ctt tat gca tcc ccc ata gtt gaa act agg gat gac agc	Lys Met Val Leu Tyr Ala Ser Pro Ile Val Glu Thr Arg Asp Asp Ser	1311
320	325	330
gtt ata tgt tca cca tct aca aat tta gaa acc caa aag ctt ctt gtc	Val Ile Cys Ser Pro Ser Thr Asn Leu Glu Thr Gln Lys Leu Leu Val	1359
335	340	345
agt aaa act ggc tta gaa acc gac ata gtt ttg cct ttg aaa aga aaa	Ser Lys Thr Gly Leu Glu Thr Asp Ile Val Leu Pro Leu Lys Arg Lys	1407
355	360	365
aga gac act gca gaa att gag ctg gat gca tgt gct aca gtt gca aat	Arg Asp Thr Ala Glu Ile Glu Leu Asp Ala Cys Ala Thr Val Ala Asn	1455
370	375	380
gga gat gat cac gtt atg agt tct gat ggg gtc att cca tct cca tct	Gly Asp Asp His Val Met Ser Ser Asp Gly Val Ile Pro Ser Pro Ser	1503
385	390	395
ggg tgc aaa aat gat aat cga cct gaa atg tgc aac acg tgt aaa aaa	Gly Cys Lys Asn Asp Asn Arg Pro Glu Met Cys Asn Thr Cys Lys Lys	1551
400	405	410

- 8 -

cg ^g ca ^a a ^a g ^c a ^a c ^c g ^g t ^t g ^t c ^a a ^a t ^t a ^a g ^g a ^g t ^t g ^t t ^c c ^t c ^t g ^c	1599
Arg Gln Lys Val Asn Gly Asp Cys Gln Asn Arg Ser Val Cys Ser Cys	
415 420 425 430	
att gtc cag cca gtt gaa gaa tct gat aac gtg aca cag gat atg aaa	1647
Ile Val Gln Pro Val Glu Glu Ser Asp Asn Val Thr Gln Asp Met Lys	
435 440 445	
gaa act gga cca gtt acg agc aga gaa tat gag gag aac ggg caa ata	1695
Glu Thr Gly Pro Val Thr Ser Arg Glu Tyr Glu Glu Asn Gly Gln Ile	
450 455 460	
caa cat ggt aaa tca agt gat ccc aaa ttc tat tct tcg gtg tac cca	1743
Gln His Gly Lys Ser Ser Asp Pro Lys Phe Tyr Ser Ser Val Tyr Pro	
465 470 475	
gag tat tgg gtt cct gtg cag cta tca gat gta cag ctg gag caa tac	1791
Glu Tyr Trp Val Pro Val Gln Leu Ser Asp Val Gln Leu Glu Gln Tyr	
480 485 490	
tgt cag act ctc ttc tcc aaa tcc tta tct ctt tct tca ctt tcg aag	1839
Cys Gln Thr Leu Phe Ser Lys Ser Leu Ser Ser Leu Ser Lys	
495 500 505 510	
att gat ctt gga gct cta gaa gaa act ctc aat tct gta aga aaa acc	1887
Ile Asp Leu Gly Ala Leu Glu Glu Thr Leu Asn Ser Val Arg Lys Thr	
515 520 525	
tgt gac cat cca tac gtt atg gat gca tct ttg aaa caa ctg ctc acc	1935
Cys Asp His Pro Tyr Val Met Asp Ala Ser Leu Lys Gln Leu Thr	
530 535 540	
aag aat ctg gag ttg cat gaa atc ctg gat gta gaa att aaa gcg agc	1983
Lys Asn Leu Glu Leu His Glu Ile Leu Asp Val Glu Ile Lys Ala Ser	
545 550 555	
ggg aaa ctt cac ctc ctt gat aaa atg ctt act cat ata aaa aag aat	2031
Gly Lys Leu His Leu Leu Asp Lys Met Leu Thr His Ile Lys Lys Asn	
560 565 570	
ggt tta aaa gca gtt gtc ttc tac cag gca aca caa acc cct gaa ggg	2079
Gly Leu Lys Ala Val Val Phe Tyr Gln Ala Thr Gln Thr Pro Glu Gly	
575 580 585 590	
ctt ctg ctt ggt aat att ctc gaa gat ttt gtg ggt caa aga ttt ggt	2127
Leu Leu Leu Gly Asn Ile Leu Glu Asp Phe Val Gly Gln Arg Phe Gly	
595 600 605	
cca aaa tct tat gag cat ggg ata tat tcc tca aag aag aac tcc gct	2175
Pro Lys Ser Tyr Glu His Gly Ile Tyr Ser Ser Lys Lys Asn Ser Ala	
610 615 620	
ata aac aat ttc aac aag gag agt caa tgc tgt gtt ctg ctg ttg gaa	2223
Ile Asn Asn Phe Asn Lys Glu Ser Gln Cys Cys Val Leu Leu Glu	
625 630 635	

- 9 -

aca cgt gcc tgc agt caa acc att aaa ctc ttg cga gct gat gcg ttt Thr Arg Ala Cys Ser Gln Thr Ile Lys Leu Leu Arg Ala Asp Ala Phe 640 645 650	2271
att ctt ttt gga agc agc ttg aat cca tcg cat gat gtt aag cac gta Ile Leu Phe Gly Ser Ser Leu Asn Pro Ser His Asp Val Lys His Val 655 660 665 670	2319
gag aag ata aaa atc gag tca tgt tct gaa aga act aag ata ttc cga Glu Lys Ile Lys Ile Glu Ser Cys Ser Glu Arg Thr Lys Ile Phe Arg 675 680 685	2367
ttg tac tca gta tgt aca gtt gaa gaa aaa gcc ctg att ctg gct agg Leu Tyr Ser Val Cys Thr Val Glu Glu Lys Ala Leu Ile Leu Ala Arg 690 695 700	2415
caa aat atg cgg caa aat aaa gct gta gag aac cta aac cgc tct ctc Gln Asn Met Arg Gln Asn Lys Ala Val Glu Asn Leu Asn Arg Ser Leu 705 710 715	2463
acg cac gca ctg ctc atg tgg ggg gcg tca tac tta ttt gat aaa ctg Thr His Ala Leu Leu Met Trp Gly Ala Ser Tyr Leu Phe Asp Lys Leu 720 725 730	2511
gat cat ttt cac agc agt gaa act cca gat tca gga gtt tca ttt gaa Asp His Phe His Ser Ser Glu Thr Pro Asp Ser Gly Val Ser Phe Glu 735 740 745 750	2559
caa tct att atg gac ggc gtg att cat gaa ttc tcg tcc ata ctt tct Gln Ser Ile Met Asp Gly Val Ile His Glu Phe Ser Ser Ile Leu Ser 755 760 765	2607
tcc aaa ggt gga gaa aat gaa gtc aag ctg tgt cta ctt ttg gag Ser Lys Gly Gly Glu Asn Glu Val Lys Leu Cys Leu Leu Glu 770 775 780	2655
gcc aag cat gct cag gga act tac agc agt gat tct act cta ttt ggt Ala Lys His Ala Gln Gly Thr Tyr Ser Ser Asp Ser Thr Leu Phe Gly 785 790 795	2703
gaa gac cat att aag ttg tca gat gaa gag agt cca aat ata ttt tgg Glu Asp His Ile Lys Leu Ser Asp Glu Glu Ser Pro Asn Ile Phe Trp 800 805 810	2751
tca aag ctg ttg ggg gga aaa aat cct atg tgg aaa tac cct tca gat Ser Lys Leu Leu Gly Gly Lys Asn Pro Met Trp Lys Tyr Pro Ser Asp 815 820 825 830	2799
act ccc caa agg aat cga aaa cga gtt cag tat ttt gag ggt tct gaa Thr Pro Gln Arg Asn Arg Lys Arg Val Gln Tyr Phe Glu Gly Ser Glu 835 840 845	2847
gcg agt ccc aaa act ggc gat ggt gga aat gca aag aag cga aag aag Ala Ser Pro Lys Thr Gly Asp Gly Asn Ala Lys Lys Arg Lys Lys	2895

- 10 -

850	855	860	
gct tct gat gat gtc act gat ccc cgg gtc act gat ccg cca gta gat Ala Ser Asp Asp Val Thr Asp Pro Arg Val Thr Asp Pro Pro Val Asp 865	870	875	2943
gat gat gaa aga aag gcc tct ggg aag gat cac atg ggg gct ttg gag Asp Asp Glu Arg Lys Ala Ser Gly Lys Asp His Met Gly Ala Leu Glu 880	885	890	2991
tca cca aaa gtc ata aca ctc cag tca tca tgt aaa tct tct ggt aca Ser Pro Lys Val Ile Thr Leu Gln Ser Ser Cys Lys Ser Ser Gly Thr 895	900	905	3039
gat ggt aca ttg gat gga aat gat gct ttt ggc ttg tat tct atg ggc Asp Gly Thr Leu Asp Gly Asn Asp Ala Phe Gly Leu Tyr Ser Met Gly 915	920	925	3087
agc cat atc tct gga atc cca gag gat atg tta gct agt caa gat tgg Ser His Ile Ser Gly Ile Pro Glu Asp Met Leu Ala Ser Gln Asp Trp 930	935	940	3135
ggg aaa ata ccg gat gaa tca cag agg agg ctc cac act gtt tta aag Gly Lys Ile Pro Asp Glu Ser Gln Arg Arg Leu His Thr Val Leu Lys 945	950	955	3183
ccg aag atg gca aaa ctt tgc caa gtt ttg cat ctt tca gat gct tgc Pro Lys Met Ala Lys Leu Cys Gln Val Leu His Leu Ser Asp Ala Cys 960	965	970	3231
aca agc atg gtc gga aat ttt ctc gaa tat gtt att gaa aat cac cga Thr Ser Met Val Gly Asn Phe Leu Glu Tyr Val Ile Glu Asn His Arg 975	980	985	3279
atc tac gaa gag cca gcc act act ttt cag gca ttc cag ata gcc ctg Ile Tyr Glu Glu Pro Ala Thr Phe Gln Ala Phe Gln Ile Ala Leu 995	1000	1005	3327
agt tgg att gca gcc ttg ttg gta aag caa att ctt agc cac aaa gaa Ser Trp Ile Ala Ala Leu Leu Val Lys Gln Ile Leu Ser His Lys Glu 1010	1015	1020	3375
tct ctg gtc cgt gca aat tct gaa tta gct ttc aaa tgc tct aga gta Ser Leu Val Arg Ala Asn Ser Glu Leu Ala Phe Lys Cys Ser Arg Val 1025	1030	1035	3423
gag gtg gat tat att tat tcg ata ttg tcc tgc atg aag agt ctg ttc Glu Val Asp Tyr Ile Tyr Ser Ile Leu Ser Cys Met Lys Ser Leu Phe 1040	1045	1050	3471
ctg gag cat aca caa ggt ttg cag ttc gat tgc ttt ggt act aat tct Leu Glu His Thr Gln Gly Leu Gln Phe Asp Cys Phe Gly Thr Asn Ser 1055	1060	1065	3519
aaa cag tca gtg gtt agc aca aaa cta gta aat gaa agt ctc tca ggg			3567

- 11 -

Lys Gln Ser Val Val Ser Thr Lys Leu Val Asn Glu Ser Leu Ser Gly			
1075	1080	1085	
gct aca gtg cgt gac gaa aag att aat acg aag tgc atg cga aat agc			3615
Ala Thr Val Arg Asp Glu Lys Ile Asn Thr Lys Ser Met Arg Asn Ser			
1090	1095	1100	
tca gag gat gaa gag tgc atg act gag aag aga tgt agc cat tat agc			3663
Ser Glu Asp Glu Glu Cys Met Thr Glu Lys Arg Cys Ser His Tyr Ser			
1105	1110	1115	
aca gca aca aga gat atc gaa aag act att agt ggc ata aaa aag aaa			3711
Thr Ala Thr Arg Asp Ile Glu Lys Thr Ile Ser Gly Ile Lys Lys Lys			
1120	1125	1130	
tac aag aag caa gtg caa aag ctt gta caa gag cat gag gaa aag aaa			3759
Tyr Lys Lys Gln Val Gln Lys Leu Val Gln Glu His Glu Glu Lys Lys			
1135	1140	1145	1150
atg gag ctg tta aat atg tat gca gac aag aag cag aaa ctt gaa act			3807
Met Glu Leu Leu Asn Met Tyr Ala Asp Lys Lys Gln Lys Leu Glu Thr			
1155	1160	1165	
agt aaa agt gtg gaa gca gca gta att cgt att acc tgt tca cgg acc			3855
Ser Lys Ser Val Glu Ala Ala Val Ile Arg Ile Thr Cys Ser Arg Thr			
1170	1175	1180	
agt act caa gtg ggt gat ctc aaa ctg ctg gat cat aat tat gaa aga			3903
Ser Thr Gln Val Gly Asp Leu Lys Leu Leu Asp His Asn Tyr Glu Arg			
1185	1190	1195	
aag ttt gat gaa atc aaa agt gag aaa aat gaa tgc ctc aaa agt ctg			3951
Lys Phe Asp Glu Ile Lys Ser Glu Lys Asn Glu Cys Leu Lys Ser Leu			
1200	1205	1210	
gag caa atg cac gag gtt gca aag aag aag ttg gct gag gat gaa gcc			3999
Glu Gln Met His Glu Val Ala Lys Lys Lys Leu Ala Glu Asp Glu Ala			
1215	1220	1225	1230
tgt tgg att aat cgg ata aag agc tgg gca gct aaa tta aaa gtt tgt			4047
Cys Trp Ile Asn Arg Ile Lys Ser Trp Ala Ala Lys Leu Lys Val Cys			
1235	1240	1245	
gtt ccc att caa agt ggc aat aac aag cat ttt agt ggt tca tca aac			4095
Val Pro Ile Gln Ser Gly Asn Asn Lys His Phe Ser Gly Ser Ser Asn			
1250	1255	1260	
att tcc caa aat gct cct gat gta caa att tgc aat aat gct aac gtt			4143
Ile Ser Gln Asn Ala Pro Asp Val Gln Ile Cys Asn Asn Ala Asn Val			
1265	1270	1275	
gaa gct act tac gct gat acg aat tgc atg gct tcc aag gtt aat caa			4191
Glu Ala Thr Tyr Ala Asp Thr Asn Cys Met Ala Ser Lys Val Asn Gln			
1280	1285	1290	

- 12 -

gtg cca gaa gca gaa aac aca tta gga acc atg tcg ggt ggc agc act Val Pro Glu Ala Glu Asn Thr Leu Gly Thr Met Ser Gly Gly Ser Thr 1295 1300 1305 1310	4239
caa caa gtt cat gaa atg gtg gat gta aga aat gac gag aca atg gat Gln Gln Val His Glu Met Val Asp Val Arg Asn Asp Glu Thr Met Asp 1315 1320 1325	4287
gtc tca gct ttg tct cgt gaa cag ctt aca aag agc cag tcc aat gag Val Ser Ala Leu Ser Arg Glu Gln Leu Thr Lys Ser Gln Ser Asn Glu 1330 1335 1340	4335
cac gct tct atc act gtg cct gag att ttg att cct gct gac tgt caa His Ala Ser Ile Thr Val Pro Glu Ile Leu Ile Pro Ala Asp Cys Gln 1345 1350 1355	4383
gag gaa ttt gcg gcc ttg aac gtg cat ttg tca gaa gac cag aat tgt Glu Glu Phe Ala Ala Leu Asn Val His Leu Ser Glu Asp Gln Asn Cys 1360 1365 1370	4431
gac aga ata aca tct gcg gca tca gat gaa gat gtt tca tca agg gtg Asp Arg Ile Thr Ser Ala Ala Ser Asp Glu Asp Val Ser Ser Arg Val 1375 1380 1385 1390	4479
cca gag gta tcc cag tca ctc gaa aat ctt tct gcc tcc ccc gag ttt Pro Glu Val Ser Gln Ser Leu Glu Asn Leu Ser Ala Ser Pro Glu Phe 1395 1400 1405	4527
tct cta aat aga gag gag gct ttg gtt aca aca gaa aat aga aga aca Ser Leu Asn Arg Glu Glu Ala Leu Val Thr Thr Glu Asn Arg Arg Thr 1410 1415 1420	4575
agt cat gtg ggt ttt gat act gat aac att ttg gac gag cag aat aga Ser His Val Gly Phe Asp Thr Asp Asn Ile Leu Asp Gln Gln Asn Arg 1425 1430 1435	4623
gaa gat tgt tct ctt gac caa gag att cct gac gag tta gcg atg cct Glu Asp Cys Ser Leu Asp Gln Glu Ile Pro Asp Glu Leu Ala Met Pro 1440 1445 1450	4671
gtg caa cat ctt gcg tct gtg gta gag act agg ggt gct gct gaa tct Val Gln His Leu Ala Ser Val Val Glu Thr Arg Gly Ala Ala Glu Ser 1455 1460 1465 1470	4719
gat cag tat ggt caa gat ata tgt cct atg cct tct tca ctg gct gga Asp Gln Tyr Gly Gln Asp Ile Cys Pro Met Pro Ser Ser Leu Ala Gly 1475 1480 1485	4767
aag caa cct gac cca gca gca aac act gag agc gaa aat ctt gaa gaa Lys Gln Pro Asp Pro Ala Ala Asn Thr Glu Ser Glu Asn Leu Glu Glu 1490 1495 1500	4815
gca att gag cct cag tct gct ggt tca gaa aca gta gag act act gat Ala Ile Glu Pro Gln Ser Ala Gly Ser Glu Thr Val Glu Thr Thr Asp 1505 1510 1515	4863

- 13 -

ttt gct gca tca cat cag ggt gat caa gtt aca tgt cct ttg cta tct Phe Ala Ala Ser His Gln Gly Asp Gln Val Thr Cys Pro Leu Leu Ser	1520	1525	1530	4911
tca ccg act gga aat cag cct gcg cca gaa gca aat att gaa ggc caa Ser Pro Thr Gly Asn Gln Pro Ala Pro Glu Ala Asn Ile Glu Gly Gln	1535	1540	1545	4959
aat atc aac aca tca gct gag ccc cat gta gcg ggt cca gat gca gta Asn Ile Asn Thr Ser Ala Glu Pro His Val Ala Gly Pro Asp Ala Val	1555	1560	1565	5007
gag agt ggt gat tat gca gta ata gat cag gaa aca atg ggt gct cag Glu Ser Gly Asp Tyr Ala Val Ile Asp Gln Glu Thr Met Gly Ala Gln	1570	1575	1580	5055
gat gca tgc tct ctg cca tct gga tcg gtt gga act cag tct gac cta Asp Ala Cys Ser Leu Pro Ser Gly Ser Val Gly Thr Gln Ser Asp Leu	1585	1590	1595	5103
gga gca aac att gag ggt caa aat gtc aca aca gtg gct caa ctt ccc Gly Ala Asn Ile Glu Gly Gln Asn Val Thr Thr Val Ala Gln Leu Pro	1600	1605	1610	5151
aca gat gga tca gat gca gtt gta acc ggt gga tct cct gta tca gat Thr Asp Gly Ser Asp Ala Val Val Thr Gly Gly Ser Pro Val Ser Asp	1615	1620	1625	5199
cag tgt gcc cag gat gca tct cct atg cca tta tct tcg cct gga aat Gln Cys Ala Gln Asp Ala Ser Pro Met Pro Leu Ser Ser Pro Gly Asn	1635	1640	1645	5247
cac cct gat aca gca gtt aat atc gag ggt tta gat aac aca tca gta His Pro Asp Thr Ala Val Asn Ile Glu Gly Leu Asp Asn Thr Ser Val	1650	1655	1660	5295
gct gag cct cat ata agt gga tca gat gca tgt gaa atg gaa att tca Ala Glu Pro His Ile Ser Gly Ser Asp Ala Cys Glu Met Glu Ile Ser	1665	1670	1675	5343
gaa cct ggt ccc caa gta gag cgg tca acc ttt gca aat ctt ttc cat Glu Pro Gly Pro Gln Val Glu Arg Ser Thr Phe Ala Asn Leu Phe His	1680	1685	1690	5391
gaa ggt ggc gtg gag cat tca gca ggt gta aca gct ctt gtt cca tca Glu Gly Gly Val Glu His Ser Ala Gly Val Thr Ala Leu Val Pro Ser	1695	1700	1705	5439
ctt ctt aac aat ggt acg gaa cag att gcc gtt caa cct gtt cct caa Leu Leu Asn Asn Gly Thr Glu Gln Ile Ala Val Gln Pro Val Pro Gln	1715	1720	1725	5487
ata cct ttc cct gtg ttc aac gac ccg ttt ctg cat gaa ctg gag aag Ile Pro Phe Pro Val Phe Asn Asp Pro Phe Leu His Glu Leu Glu Lys				5535

- 14 -

1730	1735	1740	
ttg cg ^g aga gaa tca gag aac tca aag aag act ttt gaa gaa aaa aaa Leu Arg Arg Glu Ser Glu Asn Ser Lys Lys Thr Phe Glu Glu Lys Lys 1745	1750	1755	5583
tca atc ttg aaa gct gaa ctc gag agg aag atg gct gaa gta caa gca Ser Ile Leu Lys Ala Glu Leu Glu Arg Lys Met Ala Glu Val Gln Ala 1760	1765	1770	5631
gag ttt cga aga aaa ttt cat gag gta gaa gcc gag cat aac acc aga Glu Phe Arg Arg Lys Phe His Glu Val Glu Ala Glu His Asn Thr Arg 1775	1780	1785	5679
acg aca aag ata gag aag gat aag aat ctt gtt ata atg aac aaa ctg Thr Thr Lys Ile Glu Lys Asp Lys Asn Leu Val Ile Met Asn Lys Leu 1795	1800	1805	5727
ttg gcg aat gc ^g ttc ttg tcc aaa tgt act gac aag aag gta tct ccc Leu Ala Asn Ala Phe Leu Ser Lys Cys Thr Asp Lys Val Ser Pro 1810	1815	1820	5775
tca gga gct cca agg ggt aaa att cag cag cta gca cag aga gca gca Ser Gly Ala Pro Arg Gly Lys Ile Gln Gln Leu Ala Gln Arg Ala Ala 1825	1830	1835	5823
caa gtg agt gca ctg aga aat tac att gct cct cag cag ctt cag gca Gln Val Ser Ala Leu Arg Asn Tyr Ile Ala Pro Gln Gln Leu Gln Ala 1840	1845	1850	5871
tct tct ttt cct gct cct gct ctg gtt tcg gct cct ctg caa ctt cag Ser Ser Phe Pro Ala Leu Val Ser Ala Pro Leu Gln Leu Gln 1855	1860	1865	5919
caa tca tca ttt cct gct cct ggt ccg gct cct ctg cag cct cag gca Gln Ser Ser Phe Pro Ala Pro Gly Pro Ala Pro Leu Gln Pro Gln Ala 1875	1880	1885	5967
tct tcg ttt cct tct tca gtc tct cgt cca tca gcc ctt ctt ctg aat Ser Ser Phe Pro Ser Ser Val Ser Arg Pro Ser Ala Leu Leu Leu Asn 1890	1895	1900	6015
ttt gcg gtc tgt cca atg cct cag ccc aga cag cct ctc ata tcc aac Phe Ala Val Cys Pro Met Pro Gln Pro Arg Gln Pro Leu Ile Ser Asn 1905	1910	1915	6063
ata gct cca act cca tca gtt act cct gca aca aat cca ggt ctg cgt Ile Ala Pro Thr Pro Ser Val Thr Pro Ala Thr Asn Pro Gly Leu Arg 1920	1925	1930	6111
tct cct gca cca cac cta aac tca tat aga cca tcc tct tca act ccc Ser Pro Ala Pro His Leu Asn Ser Tyr Arg Pro Ser Ser Ser Thr Pro 1935	1940	1945	6159
gtc gcc aca gct act cca acc tcg tca gtg cct cct caa gct ttg aca			6207

- 15 -

Val Ala Thr Ala Thr Pro Thr Ser Ser Val Pro Pro Gln Ala Leu Thr			
1955	1960	1965	
tat tca gct gtg tca att cag cag cag caa gaa caa caa ccg caa cag			6255
Tyr Ser Ala Val Ser Ile Gln Gln Gln Glu Gln Gln Pro Gln Gln			
1970	1975	1980	
agc ttg agc agt gga ttg cag agc aac aat gaa gtg gtt tgt ctt tct			6303
Ser Leu Ser Ser Gly Leu Gln Ser Asn Asn Glu Val Val Cys Leu Ser			
1985	1990	1995	
gac gac gag tgaccttaaga ggagagatgg ttagggtctt agttattgtat			6352
Asp Asp Glu			
2000			
tttttagagag ttaataatag tatatatata tatgtataag taggttaccc aatctctgtc			6412
gttaatctaa ttttagtgagt caggaaccga ctgcgtggct aaggctcttc cttttgaaac			6472
gcaacgttct actttcatgt atataaatac agtctgtatca cacaacaccaa attgatgatt			6532
gaaaatacta ctgatttaac taaaaaaaaaaaaaaa			6571
<210> 3			
<211> 2001			
<212> PRT			
<213> Arabidopsis thaliana			
<400> 3			
Met Lys Lys Asp Glu Lys Ile Gly Leu Thr Gly Arg Thr Ile Tyr Thr			
1	5	10	15
Arg Ser Leu Ala Ala Ser Ile Pro Ala Ser Val Glu Gln Glu Thr Pro			
20	25	30	
Gly Leu Arg Arg Ser Ser Arg Gly Thr Pro Ser Thr Lys Val Ile Thr			
35	40	45	
Pro Ala Ser Ala Thr Arg Lys Ser Glu Arg Leu Ala Pro Ser Pro Ala			
50	55	60	
Ser Val Ser Lys Lys Ser Gly Gly Ile Val Lys Asn Ser Thr Pro Ser			
65	70	75	80
Ser Leu Arg Arg Ser Asn Arg Gly Lys Thr Glu Val Ser Leu Gln Ser			
85	90	95	
Ser Lys Gly Ser Asp Asn Ser Ile Arg Lys Gly Asp Thr Ser Pro Asp			
100	105	110	
Ile Glu Gln Arg Lys Asp Ser Val Glu Glu Ser Thr Asp Lys Ile Lys			
115	120	125	
Pro Ile Met Ser Ala Arg Ser Tyr Arg Ala Leu Phe Arg Gly Lys Leu			

- 16 -

130	135	140
Lys Glu Ser Glu Ala Leu Val Asp Ala Ser Pro Asn Glu Glu Glu Leu		
145	150	155
Val Val Val Gly Cys Ser Arg Arg Ile Pro Ala Gly Asn Asp Asp Val		
165	170	175
Gln Gly Lys Thr Asp Cys Pro Pro Ala Asp Ala Gly Ser Lys Arg		
180	185	190
Leu Pro Val Asp Glu Thr Ser Leu Asp Lys Gly Thr Asp Phe Pro Leu		
195	200	205
Lys Ser Val Thr Glu Thr Glu Lys Ile Val Leu Asp Ala Ser Pro Ile		
210	215	220
Val Glu Thr Gly Asp Asp Ser Val Ile Gly Ser Pro Ser Glu Asn Leu		
225	230	235
Glu Thr Gln Lys Leu Gln Asp Gly Lys Thr Asp Cys Ser Pro Pro Ala		
245	250	255
Asn Ala Glu Ser Lys Thr Leu Pro Val Gly Glu Thr Ser Leu Glu Lys		
260	265	270
Glu Tyr Pro Gln Lys Phe Gln Asp Asp Asn Thr Asp Cys Leu Pro Pro		
275	280	285
Ala Asn Ala Glu Ser Lys Arg Leu Pro Val Gly Glu Thr Ser Leu Glu		
290	295	300
Lys Asp Thr Asp Phe Pro Leu Lys Ser Thr Thr Glu Thr Gly Lys Met		
305	310	315
Val Leu Tyr Ala Ser Pro Ile Val Glu Thr Arg Asp Asp Ser Val Ile		
325	330	335
Cys Ser Pro Ser Thr Asn Leu Glu Thr Gln Lys Leu Leu Val Ser Lys		
340	345	350
Thr Gly Leu Glu Thr Asp Ile Val Leu Pro Leu Lys Arg Lys Arg Asp		
355	360	365
Thr Ala Glu Ile Glu Leu Asp Ala Cys Ala Thr Val Ala Asn Gly Asp		
370	375	380
Asp His Val Met Ser Ser Asp Gly Val Ile Pro Ser Pro Ser Gly Cys		
385	390	395
Lys Asn Asp Asn Arg Pro Glu Met Cys Asn Thr Cys Lys Lys Arg Gln		
405	410	415
Lys Val Asn Gly Asp Cys Gln Asn Arg Ser Val Cys Ser Cys Ile Val		
420	425	430

- 17 -

Gln Pro Val Glu Glu Ser Asp Asn Val Thr Gln Asp Met Lys Glu Thr
435 440 445

Gly Pro Val Thr Ser Arg Glu Tyr Glu Glu Asn Gly Gln Ile Gln His
450 455 460

Gly Lys Ser Ser Asp Pro Lys Phe Tyr Ser Ser Val Tyr Pro Glu Tyr
465 470 475 480

Trp Val Pro Val Gln Leu Ser Asp Val Gln Leu Glu Gln Tyr Cys Gln
485 490 495

Thr Leu Phe Ser Lys Ser Leu Ser Leu Ser Ser Leu Ser Lys Ile Asp
500 505 510

Leu Gly Ala Leu Glu Glu Thr Leu Asn Ser Val Arg Lys Thr Cys Asp
515 520 525

His Pro Tyr Val Met Asp Ala Ser Leu Lys Gln Leu Leu Thr Lys Asn
530 535 540

Leu Glu Leu His Glu Ile Leu Asp Val Glu Ile Lys Ala Ser Gly Lys
545 550 555 560

Leu His Leu Leu Asp Lys Met Leu Thr His Ile Lys Lys Asn Gly Leu
565 570 575

Lys Ala Val Val Phe Tyr Gln Ala Thr Gln Thr Pro Glu Gly Leu Leu
580 585 590

Leu Gly Asn Ile Leu Glu Asp Phe Val Gly Gln Arg Phe Gly Pro Lys
595 600 605

Ser Tyr Glu His Gly Ile Tyr Ser Ser Lys Lys Asn Ser Ala Ile Asn
610 615 620

Asn Phe Asn Lys Glu Ser Gln Cys Cys Val Leu Leu Leu Glu Thr Arg
625 630 635 640

Ala Cys Ser Gln Thr Ile Lys Leu Leu Arg Ala Asp Ala Phe Ile Leu
645 650 655

Phe Gly Ser Ser Leu Asn Pro Ser His Asp Val Lys His Val Glu Lys
660 665 670

Ile Lys Ile Glu Ser Cys Ser Glu Arg Thr Lys Ile Phe Arg Leu Tyr
675 680 685

Ser Val Cys Thr Val Glu Glu Lys Ala Leu Ile Leu Ala Arg Gln Asn
690 695 700

Met Arg Gln Asn Lys Ala Val Glu Asn Leu Asn Arg Ser Leu Thr His
705 710 715 720

- 18 -

Ala	Leu	Leu	Met	Trp	Gly	Ala	Ser	Tyr	Leu	Phe	Asp	Lys	Leu	Asp	His
725									730			735			
Phe	His	Ser	Ser	Glu	Thr	Pro	Asp	Ser	Gly	Val	Ser	Phe	Glu	Gln	Ser
740								745				750			
Ile	Met	Asp	Gly	Val	Ile	His	Glu	Phe	Ser	Ser	Ile	Leu	Ser	Ser	Lys
755							760				765				
Gly	Gly	Glu	Glu	Asn	Glu	Val	Lys	Leu	Cys	Leu	Leu	Glu	Ala	Lys	
770						775			780						
His	Ala	Gln	Gly	Thr	Tyr	Ser	Ser	Asp	Ser	Thr	Leu	Phe	Gly	Glu	Asp
785					790			795			800				
His	Ile	Lys	Leu	Ser	Asp	Glu	Glu	Ser	Pro	Asn	Ile	Phe	Trp	Ser	Lys
805						810			815						
Leu	Leu	Gly	Gly	Lys	Asn	Pro	Met	Trp	Lys	Tyr	Pro	Ser	Asp	Thr	Pro
820						825			830						
Gln	Arg	Asn	Arg	Lys	Arg	Val	Gln	Tyr	Phe	Glu	Gly	Ser	Glu	Ala	Ser
835						840			845						
Pro	Lys	Thr	Gly	Asp	Gly	Gly	Asn	Ala	Lys	Lys	Arg	Lys	Lys	Ala	Ser
850						855			860						
Asp	Asp	Val	Thr	Asp	Pro	Arg	Val	Thr	Asp	Pro	Pro	Val	Asp	Asp	Asp
865						870			875			880			
Glu	Arg	Lys	Ala	Ser	Gly	Lys	Asp	His	Met	Gly	Ala	Leu	Glu	Ser	Pro
885						890			895						
Lys	Val	Ile	Thr	Leu	Gln	Ser	Ser	Cys	Lys	Ser	Ser	Gly	Thr	Asp	Gly
900						905			910						
Thr	Leu	Asp	Gly	Asn	Asp	Ala	Phe	Gly	Leu	Tyr	Ser	Met	Gly	Ser	His
915						920			925						
Ile	Ser	Gly	Ile	Pro	Glu	Asp	Met	Leu	Ala	Ser	Gln	Asp	Trp	Gly	Lys
930						935			940						
Ile	Pro	Asp	Glu	Ser	Gln	Arg	Arg	Leu	His	Thr	Val	Leu	Lys	Pro	Lys
945						950			955			960			
Met	Ala	Lys	Leu	Cys	Gln	Val	Leu	His	Leu	Ser	Asp	Ala	Cys	Thr	Ser
965						970			975						
Met	Val	Gly	Asn	Phe	Leu	Glu	Tyr	Val	Ile	Glu	Asn	His	Arg	Ile	Tyr
980						985			990						
Glu	Glu	Pro	Ala	Thr	Thr	Phe	Gln	Ala	Phe	Gln	Ile	Ala	Leu	Ser	Trp
995						1000			1005						
Ile	Ala	Ala	Leu	Leu	Val	Lys	Gln	Ile	Leu	Ser	His	Lys	Glu	Ser	Leu

- 19 -

1010	1015	1020
Val Arg Ala Asn Ser Glu Leu Ala Phe Lys Cys Ser Arg Val Glu Val		
025	1030	1035
Asp Tyr Ile Tyr Ser Ile Leu Ser Cys Met Lys Ser Leu Phe Leu Glu		
1045	1050	1055
His Thr Gln Gly Leu Gln Phe Asp Cys Phe Gly Thr Asn Ser Lys Gln		
1060	1065	1070
Ser Val Val Ser Thr Lys Leu Val Asn Glu Ser Leu Ser Gly Ala Thr		
1075	1080	1085
Val Arg Asp Glu Lys Ile Asn Thr Lys Ser Met Arg Asn Ser Ser Glu		
1090	1095	1100
Asp Glu Glu Cys Met Thr Glu Lys Arg Cys Ser His Tyr Ser Thr Ala		
105	1110	1115
Thr Arg Asp Ile Glu Lys Thr Ile Ser Gly Ile Lys Lys Tyr Lys		
1125	1130	1135
Lys Gln Val Gln Lys Leu Val Gln Glu His Glu Glu Lys Lys Met Glu		
1140	1145	1150
Leu Leu Asn Met Tyr Ala Asp Lys Lys Gln Lys Leu Glu Thr Ser Lys		
1155	1160	1165
Ser Val Glu Ala Ala Val Ile Arg Ile Thr Cys Ser Arg Thr Ser Thr		
1170	1175	1180
Gln Val Gly Asp Leu Lys Leu Leu Asp His Asn Tyr Glu Arg Lys Phe		
185	1190	1195
Asp Glu Ile Lys Ser Glu Lys Asn Glu Cys Leu Lys Ser Leu Glu Gln		
1205	1210	1215
Met His Glu Val Ala Lys Lys Leu Ala Glu Asp Glu Ala Cys Trp		
1220	1225	1230
Ile Asn Arg Ile Lys Ser Trp Ala Ala Lys Leu Lys Val Cys Val Pro		
1235	1240	1245
Ile Gln Ser Gly Asn Asn Lys His Phe Ser Gly Ser Ser Asn Ile Ser		
1250	1255	1260
Gln Asn Ala Pro Asp Val Gln Ile Cys Asn Asn Ala Asn Val Glu Ala		
265	1270	1275
Thr Tyr Ala Asp Thr Asn Cys Met Ala Ser Lys Val Asn Gln Val Pro		
1285	1290	1295
Glu Ala Glu Asn Thr Leu Gly Thr Met Ser Gly Gly Ser Thr Gln Gln		
1300	1305	1310

- 20 -

Val His Glu Met Val Asp Val Arg Asn Asp Glu Thr Met Asp Val Ser			
1315	1320	1325	
Ala Leu Ser Arg Glu Gln Leu Thr Lys Ser Gln Ser Asn Glu His Ala			
1330	1335	1340	
Ser Ile Thr Val Pro Glu Ile Leu Ile Pro Ala Asp Cys Gln Glu Glu			
345	1350	1355	1360
Phe Ala Ala Leu Asn Val His Leu Ser Glu Asp Gln Asn Cys Asp Arg			
1365	1370	1375	
Ile Thr Ser Ala Ala Ser Asp Glu Asp Val Ser Ser Arg Val Pro Glu			
1380	1385	1390	
Val Ser Gln Ser Leu Glu Asn Leu Ser Ala Ser Pro Glu Phe Ser Leu			
1395	1400	1405	
Asn Arg Glu Glu Ala Leu Val Thr Thr Glu Asn Arg Arg Thr Ser His			
1410	1415	1420	
Val Gly Phe Asp Thr Asp Asn Ile Leu Asp Gln Gln Asn Arg Glu Asp			
425	1430	1435	1440
Cys Ser Leu Asp Gln Glu Ile Pro Asp Glu Leu Ala Met Pro Val Gln			
1445	1450	1455	
His Leu Ala Ser Val Val Glu Thr Arg Gly Ala Ala Glu Ser Asp Gln			
1460	1465	1470	
Tyr Gly Gln Asp Ile Cys Pro Met Pro Ser Ser Leu Ala Gly Lys Gln			
1475	1480	1485	
Pro Asp Pro Ala Ala Asn Thr Glu Ser Glu Asn Leu Glu Ala Ile			
1490	1495	1500	
Glu Pro Gln Ser Ala Gly Ser Glu Thr Val Glu Thr Thr Asp Phe Ala			
505	1510	1515	1520
Ala Ser His Gln Gly Asp Gln Val Thr Cys Pro Leu Leu Ser Ser Pro			
1525	1530	1535	
Thr Gly Asn Gln Pro Ala Pro Glu Ala Asn Ile Glu Gly Gln Asn Ile			
1540	1545	1550	
Asn Thr Ser Ala Glu Pro His Val Ala Gly Pro Asp Ala Val Glu Ser			
1555	1560	1565	
Gly Asp Tyr Ala Val Ile Asp Gln Glu Thr Met Gly Ala Gln Asp Ala			
1570	1575	1580	
Cys Ser Leu Pro Ser Gly Ser Val Gly Thr Gln Ser Asp Leu Gly Ala			
585	1590	1595	1600

- 21 -

Asn Ile Glu Gly Gln Asn Val Thr Thr Val Ala Gln Leu Pro Thr Asp			
1605	1610	1615	
Gly Ser Asp Ala Val Val Thr Gly Gly Ser Pro Val Ser Asp Gln Cys			
1620	1625	1630	
Ala Gln Asp Ala Ser Pro Met Pro Leu Ser Ser Pro Gly Asn His Pro			
1635	1640	1645	
Asp Thr Ala Val Asn Ile Glu Gly Leu Asp Asn Thr Ser Val Ala Glu			
1650	1655	1660	
Pro His Ile Ser Gly Ser Asp Ala Cys Glu Met Glu Ile Ser Glu Pro			
665	1670	1675	1680
Gly Pro Gln Val Glu Arg Ser Thr Phe Ala Asn Leu Phe His Glu Gly			
1685	1690	1695	
Gly Val Glu His Ser Ala Gly Val Thr Ala Leu Val Pro Ser Leu Leu			
1700	1705	1710	
Asn Asn Gly Thr Glu Gln Ile Ala Val Gln Pro Val Pro Gln Ile Pro			
1715	1720	1725	
Phe Pro Val Phe Asn Asp Pro Phe Leu His Glu Leu Glu Lys Leu Arg			
1730	1735	1740	
Arg Glu Ser Glu Asn Ser Lys Lys Thr Phe Glu Glu Lys Lys Ser Ile			
745	1750	1755	1760
Leu Lys Ala Glu Leu Glu Arg Lys Met Ala Glu Val Gln Ala Glu Phe			
1765	1770	1775	
Arg Arg Lys Phe His Glu Val Glu Ala Glu His Asn Thr Arg Thr Thr			
1780	1785	1790	
Lys Ile Glu Lys Asp Lys Asn Leu Val Ile Met Asn Lys Leu Leu Ala			
1795	1800	1805	
Asn Ala Phe Leu Ser Lys Cys Thr Asp Lys Lys Val Ser Pro Ser Gly			
1810	1815	1820	
Ala Pro Arg Gly Lys Ile Gln Gln Leu Ala Gln Arg Ala Ala Gln Val			
825	1830	1835	1840
Ser Ala Leu Arg Asn Tyr Ile Ala Pro Gln Gln Leu Gln Ala Ser Ser			
1845	1850	1855	
Phe Pro Ala Pro Ala Leu Val Ser Ala Pro Leu Gln Leu Gln Gln Ser			
1860	1865	1870	
Ser Phe Pro Ala Pro Gly Pro Ala Pro Leu Gln Pro Gln Ala Ser Ser			
1875	1880	1885	
Phe Pro Ser Ser Val Ser Arg Pro Ser Ala Leu Leu Leu Asn Phe Ala			

- 22 -

1890	1895	1900
Val Cys Pro Met Pro Gln Pro Arg Gln Pro Leu Ile Ser Asn Ile Ala		
905	1910	1915
Pro Thr Pro Ser Val Thr Pro Ala Thr Asn Pro Gly Leu Arg Ser Pro		
1925	1930	1935
Ala Pro His Leu Asn Ser Tyr Arg Pro Ser Ser Ser Thr Pro Val Ala		
1940	1945	1950
Thr Ala Thr Pro Thr Ser Ser Val Pro Pro Gln Ala Leu Thr Tyr Ser		
1955	1960	1965
Ala Val Ser Ile Gln Gln Gln Glu Gln Gln Pro Gln Gln Ser Leu		
1970	1975	1980
Ser Ser Gly Leu Gln Ser Asn Asn Glu Val Val Cys Leu Ser Asp Asp		
985	1990	1995
Glu		2000

<210> 4
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Oligonucleotide

<400> 4
catctacggc aatgttaccag c 21

<210> 5
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Oligonucleotide

<400> 5
gatgggaatt ggctgagtgg c 21

<210> 6
<211> 21
<212> DNA
<213> Artificial Sequence

- 23 -

<220>
<223> Description of Artificial Sequence:Synthetic
Oligonucleotide

<400> 6
cagttccaaa cgtaaaaacgg c

21

<210> 7
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic
Oligonucleotide

<400> 7
ntcgastwts gwgtt

15

<210> 8
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic
Oligonucleotide

<400> 8
ngtcgaswga nawgaa

16

<210> 9
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic
Oligonucleotide

<400> 9
wgtgnagwan canaga

16

<210> 10
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic

- 24 -

Oligonucleotide

<400> 10
wggwancwga wangca 16

<210> 11
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 11
wcgwwgawca ngncga 16

<210> 12
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 12
wgcnagttag wanaag 16

<210> 13
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 13
awgcangncw ganata 16

<210> 14
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 14

- 25 -

ctgtacatac tgagtacaat cgga

24

<210> 15
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 15
gcttcaattc ctgcctcagt tgaac

25

<210> 16
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 16
ctctacgtgc ttaacatcatcg

24

<210> 17
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 17
ccagcttctg ctactagaaa gtcag

25

<210> 18
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 18
ctggagttgc atgaaatcct ggatg

25

- 26 -

<210> 19
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Oligonucleotide

<400> 19
gctctttgtat agctgttcac gagac

25

<210> 20
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Oligonucleotide

<400> 20
tcgcattatgtat ttaaggcacgt agag

24

<210> 21
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Oligonucleotide

<400> 21
gagtactggat ccgtgaacag gtaat

25

<210> 22
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Oligonucleotide

<400> 22
atgcttgac aagcatggtc ggaaa

25

<210> 23
<211> 25
<212> DNA

- 27 -

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 23

tgcacatcg tgcatttgct ccaga

25

<210> 24

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 24

cacaaggcatg agtttttcct tccgg

25

<210> 25

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 25

ctgactttctt agtagcagaa gctgg

25

<210> 26

<211> 519

<212> DNA

<213> Brassica oleracea

<220>

<223> seq1-23

<400> 26

gaattcctgn nttacggcat ccttaataga ctgttcaa at ggaactcctg aacctgggt 60
tccactccca tggaagtgtt ccagcttatac aaataaatat gatgccccc acatgagcaa 120
tgcatgtgtg agaggacggt ttaggttctc tagaggctt ttttgcctag caagaatcag 180
gttttttct tcaactgtaa acactgagta caaccggaaa atcttagttc ttccagaaca 240
cgactcaacc tttatcttct ctaagagctt aacgtcatgc gatggattca ggctgcttcc 300
aaaaagtata aaagactcag cgcgtaaagag tttaatgctt tgactacagg cacgtatttc 360
cagcagcaga ataaaacact cactctcctt gttgaaattg tttatagcgt tcttcttcga 420
gaggcagacc ccatgctcat aggaatttg accaaatctt tgcatcagaa aatcttcgag 480
aatattacca agcagaagcc cctcagggt atgtattgc 519

- 28 -

<210> 27
<211> 419
<212> DNA
<213> Brassica oleracea

<220>
<223> seq1-27

<400> 27
gaattcagga tcaaaaagggt tgccgggttgg agaaaactgggt ttagagaaaa gctctgattt 60
tcctgtggaa gtaactaagg atatagagaa gacagtggtt gattcatccc ccatgggttga 120
aactgaggat ggcagtgta taggttcacc atccgagaat ccagaaccac aaaagcttcg 180
tgacagtgaa actagcttgg aaaccgatat agacttggct ctgaaaaagaa aaagagacac 240
tgcagaaaatt gtgatggatg catgtacaaa tgcagatgac cgcatatgtatgtt 300
ggttattcct tttccaccccg ttgtgcacaaa tattaatcaa cccgaaaagggt gtggcacatg 360
tcaaaaaacgg caaaagtaag aatttccgac tggatgtctgtt cgttttgaaa ccatttgcc 419

<210> 28
<211> 467
<212> DNA
<213> Brassica oleracea

<220>
<223> seq1-43

<400> 28
gaattctcggtt ccataactttc ttccgatgtt ggagaagaaaa atgaaggcaa gctgtgtcta 60
cttttggaaag ccaagcatgc tcagggaaagt tacagcaactg atgtctactt atttgggtgaa 120
gaacatgtca agttatcaga tgaaagtcca aatatgtttt ggtcaagact gttgagtggaa 180
aagaacccta tggaaata ctgttcggat actccctaaa ggagtcgaaa aagagtacgg 240
catcttcagg gctatgagga gactacaaa gttggcaatg gcgaaaactt aaagaagaaa 300
aagaaggctt cagatgtatg cacagtagat aacgctgaga gaaaagcctc tggaaaaggat 360
cacatgggta aaacagttca cttcctgctc ctttacctct agtgttcatt gaatgttcca 420
tttactttgc ttactatctt tccttcaggg catttggagt cacaaaa 467

<210> 29
<211> 490
<212> DNA
<213> Brassica oleracea

<220>
<223> seq1-47

<400> 29
gaattcagct tttaaaaactg atctctgctc acagataatt taagagttagt tgaaaaattga 60
gataaaaacga accaaaaactg gaggtAACAG atactctgag aacaactaac ctttttcttca 120
taagtcttct ttgtgttctc tgattctctc cgccagttctt ccagttcatg ctgaaaatggg 180
tcactgaaca caggaaaagg tacttgagga acagggtggag tggcattctg tccctgtac 240
ttgttaagct gtgaagaaaac aggagctgtt acacctgctg gaggctccac aacaccttca 300
tcgacaacgt ctgcgtaaaa ggtattacca gattgtcagt ttctctggca aacacatacg 360
ttataacttaa atgcaaaaaga gcagttactg acttgcaaag gttgggttgtt ctacttgagc 420
atcaggttct gctacttcca tttcacatgc ttctgtatcca gttgtgcgag ggcgcacat 480

- 29 -

tgttgtttg

490

<210> 30
<211> 515
<212> DNA
<213> Brassica oleracea

<220>
<223> 2-33

<400> 30
tctagagaag aggtggatta tgttatattct tttctgtact gcatgaagag tctattcgtg 60
gggcgcacac aaggttcca agaaaagggt gaagaatgca tggctgagaa aagaggtagc 120
cattatacgct cagtaaccaa ggatgttcaa aagactatta gcgcacatcaa aaagaaaatgc 180
agtaagagcc tgcataaagct tgtacaaacc ctcgaggaag aaaagatgga cctgatgaat 240
aggaatgctg tcaagaagca ggaacttcag aattgtaaaa aggtggaagc atcattttt 300
cgtgtcacct attcaggtat aaataactcag agcttacatg atgctctcca acggctggaa 360
tgtacttttg aaagaaaagt tgatgatctc aaaggagagt tgatgaatg ccttggaaagt 420
tttagagcaaa taaacgaggc tggaaagaag aagttggctg aagatgaagc ctgttggatt 480
agtcggatag agaaaatgggc acgagctgaa ttaag 515

<210> 31
<211> 574
<212> DNA
<213> Brassica oleracea

<220>
<223> seq2-37

<400> 31
tctagaccaa actattaaac gctaaacata agaagattag atcaactcgcc atcagagaga 60
cagaccacat cattgctcct ctgcaatcca ctcggcaagt tctgtggttt ttcttgctgc 120
tgaataaaacg catttgaata tggtaaagggt ttggagatga gaggttgtct tggttgaggc 180
attgtgcagt acggagccga agcagtatga ttccctcagtg cgcttacttg tggctctc 240
tggcttagct gctggattct aactggagaa agaaaaaaaaaag aaaaaaaaaagg tgttattatg 300
acttcataac cttatatctt aaaaaaaaaa ttatgcttctt attattcgaa cacttgccca 360
ttggagttgc tgctgaggaa tgagaggaga ttctgctcgt acatttagac aagaacgcac 420
tcgacaacag cttgttcttt ataacaagat tcttcctcgt ctgtaaacttgcgtt 480
ctgcgtac agcttgtacc tcatgaaact ttctctgata ctcttcttgcgtt aattcagcta 540
tcttcctcgtt gaatttagct ttcaagactg cttt 574

<210> 32
<211> 466
<212> DNA
<213> Brassica oleracea

<220>
<223> seq2-53

<400> 32
tctagattgt aattttaaat ttacaacaaa ttttggaaagg gtcagcgatg agtttgcaaa 60
tctccgttgc tcctccagca ttgctcagcc agttcaagaa cctgatcact tggcacaggt 120

- 30 -

tggtttcttc ttgctttact ttggacacct gtttaatatt ggcctgtcaa atttacttat 180
ccttttactt ctaaaactgca aattctggtc tgcattgcat tgtgatatatga aggtatctgg 240
acccgcttca agcagagact atggggagga caggcagaat atgcaacaag ataaatcaca 300
tgaccgaaag ttgtcatcga tgtatccaga gtattgggtt ccagtgcagc tatcagatgt 360
acagatagag caatactgtc ggactctctt ctccaaatct tcatctctt ctgcgtgtc 420
gaggactgat cctgttcgag ctcttgaaca aactctcagt tctgta 466

<210> 33
<211> 417
<212> DNA
<213> Brassica oleracea

<220>
<223> seq2-57

<400> 33
tcttagagcaa ttgaaaccta attccgattt tgccggggcc agagattctt cacggttcaa 60
cttttgctta acgaaaagaga ctgcaatcca aatctggaag tgcattatta agaacgtatt 120
cagcaatatt cataaaattat gcaacaatca aaggccttac gttgtggcct acaaagcatg 180
gattttgtta gatatttagta gctagtctaa ttcaagcaat taatgaaagt ttctatccta 240
tgactggaaa gttaaacatt cccacaaaag cagtgtatgcc acagatgtg aagaagaaaa 300
atgcatataac tatggaagtg aatgctatca taccacagct atctggaagg cctgcaatgt 360
ttagctggc tctttgcaga cacggtggtt gtcaataata tattcaagaa ctttttc 417