Лекция 3

Асимптота кривой. Вертикальные и наклонные асимптоты графика функции

Определение. Прямая l называется *асимптотой* данной кривой, если расстояние от точки M этой кривой до прямой l стремится к нулю при неограниченном удалении точки M по кривой (т.е. при $OM \to +\infty$, где O – некоторая фиксированная точка).

График функции y = f(x) может иметь вертикальные асимптоты x = a и наклонные асимптоты y = kx + b. Если k = 0, то наклонные асимптоты превращаются в горизонтальные с уравнением y = b.

Для существования вертикальной асимптоты x = a необходимо и достаточно, чтобы хотя бы один из односторонних пределов $\lim_{x \to a \pm 0} f(x)$ был равен ∞ . При этом либо в точке a функция y = f(x) имеет разрыв второго рода, либо точка a является граничной точкой области определения функции.

Пример. $y = \frac{4}{(3-x)(x+1)}$. Вертикальные асимптоты x = -1, x = 3.

Пример. $y = \operatorname{tg} x$.

Вертикальные асимптоты $x = \pi/2 + \pi k, k \in \mathbb{Z}$.

Пример. $y = \log_a x, a > 1.$

 $\lim_{x\to +0} \log_a x = -\infty$, асимптота x=0, x=0 является граничной точкой области определения функции.

Теорема.

- 1) Для существования правой (при $x \to +\infty$) наклонной асимптоты y = kx + b необходимо и достаточно, чтобы существовали конечные пределы $\lim_{x \to +\infty} \frac{f(x)}{x} = k$ и $\lim_{x \to +\infty} \left(f(x) kx \right) = b$.
- 2) Для существования левой (при $x \to -\infty$) наклонной асимптоты y = kx + b необходимо и достаточно, чтобы существовали конечные пределы $\lim_{x \to -\infty} \frac{f(x)}{x} = k$ и $\lim_{x \to -\infty} (f(x) kx) = b$.

Замечание. Если хотя бы один из указанных пределов не существует или является бесконечным, то график функции не имеет соответствующей асимптоты.

Замечание. Указанные в пунктах 1) и 2) теоремы пределы различны, вообще говоря, при $x \to +\infty$ (для правой асимптоты) и при $x \to -\infty$ (для левой асимптоты)

Доказательство. Пусть существует правая асимптота y = kx + b кривой y = f(x) при $x \to +\infty$. Расстояние d от точки M(x, f(x)) до прямой y - kx - b = 0 равно $\frac{|f(x) - kx - b|}{\sqrt{1 + k^2}}$ и стремится к нулю в силу определения асимптоты. Условие $d \to 0$ при $x \to +\infty$ эквивалентно существованию предела $\lim_{x \to +\infty} \left[f(x) - (kx + b) \right] = 0$, или представлению $f(x) = kx + b + \alpha(x)$, где $\alpha(x) - \beta(x) = kx + b + \alpha(x)$ при $x \to +\infty$. Тогда $\frac{f(x)}{x} = k + \frac{b}{x} + \frac{\alpha(x)}{x}$ и

 $\lim_{x \to +\infty} \frac{f(x)}{x} = k + \lim_{x \to +\infty} \frac{b}{x} + \lim_{x \to +\infty} \frac{\alpha(x)}{x} = k$. Если k конечно, то $b + \alpha(x) = f(x) - kx$, откуда, переходя к пределу получаем, что $b = \lim_{x \to +\infty} (f(x) - kx)$.

Пример. Найти асимптоты графика функции $y = \frac{x^2 - 8x + 20}{x - 4}$.

◀ Так как $\lim_{x\to 4} \frac{x^2 - 8x + 20}{x - 4} = \infty$, то прямая x = 4 является вертикальной асимптотой графика.

Найдем наклонную асимптоту:

$$4 k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^2 - 8x + 20}{x(x - 4)} = \lim_{x \to \infty} \frac{x^2 - 8x + 20}{x^2 - 4x} = 1,$$

$$b = \lim_{x \to \infty} \left(f(x) - kx \right) = \lim_{x \to \infty} \left(\frac{x^2 - 8x + 20}{x - 4} - x \right) = \lim_{x \to \infty} \frac{x^2 - 8x + 20 - x^2 + 4x}{x - 4} = 1$$

$$= \lim_{x \to \infty} \frac{-4x + 20}{x - 4} = -4.$$

Таким образом, y = x - 4 — наклонная асимптота графика.

Otbet: x = 4, y = x - 4.

Пример. Найти асимптоты графика функции $y = \sqrt[3]{x^3 - x^2}$.

Функция является непрерывной на всей числовой прямой и ее график не имеет вертикальных асимптот.

Найдем наклонную асимптоту.

$$k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{\sqrt[3]{x^3 - x^2}}{x} = \lim_{x \to \infty} \sqrt[3]{1 - \frac{1}{x}} = 1,$$

$$b = \lim_{x \to \infty} \left(f(x) - kx \right) = \lim_{x \to \infty} \left(\sqrt[3]{x^3 - x^2} - x \right) = \lim_{x \to \infty} \left(\sqrt[3]{x^3 \left(1 - \frac{1}{x} \right)} - x \right) = \lim_{x \to \infty} x \left(\sqrt[3]{\left(1 - \frac{1}{x} \right)} - 1 \right) = \lim_{x \to \infty} x \cdot \left(-\frac{1}{3}x \right) = -\frac{1}{3}.$$

Мы воспользовались здесь эквивалентностью

$$(1+t)^{\alpha}-1 \sim \alpha t, t \to 0,$$
 где $\alpha = \frac{1}{3}, t = -\frac{1}{x}$.

Таким образом, график функции имеет наклонную асимптоту y = x - 1/3.

Пример .
$$y = \frac{4}{(3-x)(x+1)}$$
.

Пример . $y = \frac{4}{(3-x)(x+1)}$. Поскольку $\lim_{x\to\infty} \frac{4}{(3-x)(x+1)} = 0$, график имеет горизонтальную асимптоту y = 0.

Пример. $y = e^{1/x}$.

Поскольку $\lim e^{1/x} = 1$, график имеет горизонтальную асимптоту y = 1.

Пример. $y = \operatorname{arctg} x$.

Поскольку $\lim_{x\to\pm\infty} \arctan x = \pm \frac{\pi}{2}$, то график функции имеет левую асимптоту

$$y = -\frac{\pi}{2}$$
 и правую асимптоту $y = \frac{\pi}{2}$.

План исследования функции с помощью производной и построение графика по данному исследованию

Для построения графика функции используем следующий план исследования. В левом столбце таблицы предложен общий план. В правом столбце таблицы приведен пример исследования конкретной функции $y = x^2 + 3x$.

	y = f(x)	$y = x^2 + 3x$
1.	Область определения	$x \in R$.
	функции.	
2.	= 7	$f(-x) = (-x)^2 - 3x = x^2 - 3x$
	четная или нечетная,	$f(-x) \neq f(x); f(-x) \neq -f(x)$
	периодическая.	значит, функция общего вида.
3.	Нули функции и	Находим нули функции:
	интервалы ее	$x^2 + 3x = 0;$
	знакопостоянства.	x(x+3) = 0;
		x = 0 $x = -3$
		Интервалы знакопостоянства:

		y $+$ $ +$ $+$ $+$ $+$ $+$ $+$ $ -$
4.	1	Точек разрыва нет, поэтому вертикальных асимптот
	асимптоты.	нет
5.	Наклонные асимптоты.	y = kx + b

		Найдем k: $k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^2 + 3x}{x} = \infty,$ значит, наклонных асимптот нет. (Функция является многочленом, следовательно, асимптот нет)
6.	Критические точки,	Вычислим первую производную:
	интервалы	f'(x) = 2x + 3.
	монотонности, точки	Найдем критические точки
	экстремума,	2x + 3 = 0.
	экстремумы	x = -1.5.
		Определим интервалы возрастания и убывания:
		y' - + x
		Значит, $x = -1.5$ - точка минимума. $f(-1.5) = -2.25$ - минимум функции.

7.	Интервалы выпуклости	Для нахождения интервалов выпуклости вниз (вверх)
	вниз (вверх), точки	исследуем знак второй производной:
	перегиба	f''(x) = 2 > 0, значит, график функции выпуклый
		вниз на всей области определения функции, точек
		перегиба нет.

По результатам исследования построим график функции $y = x^2 + 3x$.

Пример. Исследовать функцию
$$y = \frac{(x-1)^2}{x-3}$$
 и построить ее график.

- 1) Область определения функции: $x \in (-\infty; 3) \cup (3; +\infty)$
- 2) Выясним, является ли функция четной или нечетной:

$$f(-x) = \frac{(-x-1)^2}{-x-3} \; ;$$

 $f(-x) \neq f(x); \ f(-x) \neq -f(x)$, значит, функция общего вида.

3) Найдем нули функции:

$$\frac{(x-1)^2}{x-3} = 0 ;$$

$$x = 1$$

Найдем интервалы знакопостоянства функции:

4) Найдем вертикальные асимптоты.

Так как x=3 точка разрыва, найдем $\lim_{x\to 3\pm 0} f(x) = \lim_{x\to 3\pm 0} \frac{(x-1)^2}{x-3} = \pm \infty$, значит, x=3 - вертикальная асимптота.

5) Найдем наклонные асимптоты:

Общий вид уравнения асимптоты y = kx + b Найдем k:

$$k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{(x-1)^2}{(x-3)x} = 1$$

найдем b:

$$b = \lim_{x \to \infty} (f(x) - kx) = \lim_{x \to \infty} \left(\frac{(x-1)^2}{x-3} - x \right) = \lim_{x \to \infty} \frac{x^2 - 2x + 1 - x^2 + 3x}{x-3} = 1$$

значит, y = x + 1 - наклонная асимптота.

6) Найдем критические точки:

$$f'(x) = \frac{2(x-1)(x-3) - (x-1)^2}{(x-3)^2} = \frac{(x-1)(x-5)}{(x-3)^2} = 0;$$

 $x = 1 : x = 5$

Следовательно, функция возрастает при $x \in (-\infty;1); x \in (5;+\infty)$ и убывает при $x \in (1;3); x \in (3;5)$.

x = 1 - точка максимума, f(1) = 0 - максимум функции.

x = 5 - точка минимума, f(5) = 8 - минимум функции.

7) Найдем интервалы выпуклости вниз и вверх графика функции:

$$f''(x) = \frac{(2x-6)(x-3)^2 - 2(x-3)(x^2 - 6x + 5)}{(x-3)^4} = \frac{8}{(x-3)^3} \neq 0$$

значит, точек перегиба нет.

Из этого следует, что график выпуклый вверх при $x \in (-\infty;3)$ и выпуклый вниз при $x \in (3;+\infty)$.

Построим график функции.

