## under Graduate Homework In Mathematics

AlgebraicGeometry 3

白永乐

202011150087

202011150087@mail.bnu.edu.cn

2023年10月11日



ROBEM I Let R be a Abel ring,  $\mathfrak{a}$  is an ideal of R, and  $\sqrt{\mathfrak{a}} := \{x \in R : \exists n \in \mathbb{N}, x^n \in \mathfrak{a}\}$ . Prove that:

- 1.  $\sqrt{\mathfrak{a}}$  is ideal.
- 2.  $\sqrt{\sqrt{\mathfrak{a}}} = \sqrt{\mathfrak{a}}$ .
- 3.  $\sqrt{\mathfrak{a}}$  is the smallest radical ideal contain  $\mathfrak{a}$ .
- 4. If  $\mathfrak{p}$  is prime ideal, then  $\mathfrak{p}$  is radical.
- 5.  $\sqrt{\mathfrak{a}} = \bigcap_{\mathfrak{p} \in \mathcal{P}} \mathfrak{p}$ , where  $\mathcal{P}$  is the set of all prime ideal contains  $\mathfrak{a}$ .
- SOUTION. 1.  $\forall a, b \in \sqrt{\mathfrak{a}}, \exists m, n \in \mathbb{N}, a^m, b^n \in \mathfrak{a}$ . Consider a-b, we have  $(a-b)^{m+n} = \sum_{k=0}^{m+n} {m+n \choose k} a^k b^{m+n-k}$ . Since k+m+n-k=m+n, so  $k \geq m$  or  $m+n-k \geq n$ . So  $(a-b)^{m+n} \in \mathfrak{a}$  and thus  $a-b \in \sqrt{\mathfrak{a}}$ .

 $\forall a \in \sqrt{\mathfrak{a}}, b \in R, (ab)^n = a^n b^n. \text{ So } ab \in \sqrt{\mathfrak{a}}.$ 

- 2. Obviously  $\sqrt{\mathfrak{a}} \subset \sqrt{\sqrt{\mathfrak{a}}}$ , so only need to prove  $\sqrt{\sqrt{\mathfrak{a}}} \subset \sqrt{\mathfrak{a}}$ . Consider  $a \in \sqrt{\sqrt{\mathfrak{a}}}, \exists n \in \mathbb{N}, a^n \in \sqrt{\mathfrak{a}}, \exists m \in \mathbb{N}, (a^n)^m \in \mathfrak{a}$ . Thus  $a^{mn} \in \mathfrak{a}$ , so  $a \in \sqrt{\mathfrak{a}}$ . So  $\sqrt{\mathfrak{a}} = \sqrt{\sqrt{\mathfrak{a}}}$ .
- 3. Let  $\mathfrak{b}$  is a radical ideal contains  $\mathfrak{a}$ , then  $\forall a \in \sqrt{\mathfrak{a}}, \exists n \in \mathbb{N}, a^n \in \mathfrak{a} \subset \mathfrak{b}$ . Since  $\mathfrak{b}$  is radical, we get  $a \in \mathfrak{b}$ . So  $\sqrt{\mathfrak{a}} \subset \mathfrak{b}$ . Noting we have proved  $\sqrt{\mathfrak{a}}$  is radical in I.2, so it's the smallest.
- 4.  $\forall a \in \sqrt{\mathfrak{p}}, \exists n \in \mathbb{N}, a^n \in \mathfrak{p}.$  Since  $\mathfrak{p}$  is prime, so  $a \in \mathfrak{p}$ .
- 5. From I.3 and I.4 we get  $\sqrt{\mathfrak{a}} \subset \mathfrak{p}$ , so we only need to prove  $\bigcap_{\mathfrak{p} \in \mathcal{P}} \mathfrak{p} \subset \sqrt{\mathfrak{a}}$ . If not, then  $\exists a \notin \sqrt{\mathfrak{a}}, \forall \mathfrak{p} \in \mathcal{P}, a \in \mathfrak{p}$ . Let  $\mathcal{I}$  is the set of all ideal contains  $\mathfrak{a}$  and not contains any of  $a^n, n \in \mathbb{N}$ . Since  $(\mathcal{I}, \subset)$  is partial order, and obviously every chain has upper bound(use union), and  $\mathcal{I} \neq \emptyset(\mathfrak{a} \in \mathcal{I})$ . So there is a maximal element in  $\mathcal{I}(\mathfrak{b} \vee \mathbb{Z})$  is maximal element, we will prove  $\mathfrak{q}$  is prime ideal. If not, then  $\exists x, y \notin \mathfrak{q}, xy \in \mathfrak{q}$ . Since  $\mathfrak{q}$  is maximal, then  $(\mathfrak{q}, x), (\mathfrak{q}, y)$  contians some  $a^n$ . Assume  $a^n = q_1 + xt_1, a^m = q_2 + yt_2, q_1, q_2 \in \mathfrak{q}, t_1, t_2 \in \mathbb{R}$ . Then  $a^{m+n} = q_1(q_2 + yt_2) + q_2xt_1 + xyt_1t_2 \in \mathfrak{q}$ , contradiction with the definition of  $\mathcal{I}$ ! So  $\mathfrak{q} \in \mathcal{P}$ . But  $a \notin \mathfrak{q}$ , contradiction with the assumption that  $a \in \mathfrak{p} \vee \mathfrak{p} \in \mathcal{P}$ ! So  $\bigcap_{\mathfrak{p} \in \mathcal{P}} \mathfrak{p} \subset \sqrt{\mathfrak{a}}$ .

ROBEM II An algebraically field is not finite field.

SOUTON. Assume F is a finite, consider  $f(x) = \prod_{a \in F} (x-a) + 1 \in F[x]$ , easily prove f(x) has no root in F.

ROBEM III Let  $A = K[x_1, x_2, \dots x_n]$ , and  $m_p = (x_1 - a_1, \dots x_n - a_n), p = (a_1, a_2, \dots a_n) \in \mathbb{A}_K^n$ . Then m is max ideal.

Lemma 1. If  $f(x_1, x_2, \dots x_n) \in K[x_1, x_2, \dots x_n], f(a_1, a_2, \dots a_n) = 0$ , then  $f = \sum_{k=1}^n (x_k - a_k) f_k(x_1, x_2, \dots x_n)$ .

if  $\emptyset$ . Use MI to n. When n=1 it's obvious. If for some certain n it's right, when goes to n+1: Let  $g(x_1,x_2,\cdots x_n):=f(x_1,x_2,\cdots x_n,a_{n+1})\in K[x_1,x_2,\cdots x_n]$ . Then  $g(a_1,a_2,\cdots a_n)=0$ , so  $g(x_1,x_2,\cdots x_n)=\sum_{k=1}^n(x_k-a_k)g_i(x_1,x_2,\cdots x_n)$ . Let  $h(x_{n+1}):=f(x_1,x_2,\cdots x_{n+1})-g(x_1,x_2,\cdots x_n)\in K[x_1,x_2,\cdots x_n][x_{n+1}]$ , then  $h(a_{n+1})=0$ . So  $h(x_{n+1})=(x_{n+1}-a_{n+1})h_1(x_{n+1})$  for some  $h_1(x_{n+1})\in K[x_1,x_2,\cdots x_n][x_{n+1}]$ . Then  $f(x_1,x_2,\cdots x_{n+1})=\sum_{k=1}^{n+1}(x_i-a_i)f_i(x_1,x_2,\cdots x_{n+1})$ , where  $f_k(x_1,x_2,\cdots x_{n+1})=g_k(x_1,x_2,\cdots x_n), k=1,2,\cdots n$ , and  $f_{n+1}(x_1,x_2,\cdots x_{n+1})=h_1(x_{n+1})$ .

SOLION. Obviously  $m_p$  is ideal, so we only need to prove it's max. Consider  $\phi: K[x_1, x_2, \cdots x_n] \to K$ ,  $f(x_1, x_2, \cdots x_n) \mapsto f(a_1, a_2, \cdots a_n)$ . Obviously it's a homomorphism, consider  $\ker \phi$ . Obviously  $m_p \subset \ker \phi$ , now we prove  $\ker \phi \subset m_p$ . Assume  $f \in \ker \phi$ , then  $f(a_1, a_2, \cdots a_n) = 0$ . Use Lemma 1 we get  $f \in \ker \phi$ . So  $m_p = \ker \phi$ . So  $R/m_p \cong K$  is a field, thus  $m_p$  is max ideal.

ROBEM IV  $A \subset B \subset C$  are Abel rings. If B is f.g. A-module and C is f.g. B-module, then C is f.g. A-module, too.

SOLTION. Let  $\{b_i: i=1,2,\cdots n\}$  is a basis of B over A, and  $\{c_i: i=1,2,\cdots m\}$  is a basis of C over B. Then for  $c\in C$ ,  $\exists x_i\in B$  such that  $c=\sum_{i=1}^m x_ic_i$ . And  $\exists y_{ij}\in A$  such that  $x_i=\sum_{j=1}^n y_{ij}b_j$ . So  $c=\sum_{i=1}^m \sum_{j=1}^n y_{ij}b_jc_i$ . That means  $\{b_jc_i: j=1,2,\cdots n, i=1,2,\cdots m\}$  is a basis of C over A.

ROBEM V If x is integral over A then A[x] is f.g. A-module.

SOLITION. Assume  $x^n + \sum_{k=0}^{n-1} -a_k x^k = 0$ ,  $a_k \in A$ . Then we prove  $\{x^k : k = 0, 1, \cdots n - 1\}$  is a basis of A[x]. Only need to prove  $x^m, m \in \mathbb{N}$  can be reperesented. Use MI to m. When  $m \leq n-1$  it's obvious. Assume for certain  $m \geq n, \forall k < m, x^k$  can be repersented, then for m, we have  $x^m = x^{m-n}x^n = x^{m-n}\sum_{t=0}^{n-1} a_t x^t = \sum_{t=0}^{n-1} a_t x^{t+m-n}$ . Since  $t+m-n \leq n-1+m-n = m-1 < m$ , we get  $x^k$  can be repersented, so  $\sum_{t=0}^{n-1} a_t x^{t+m-n}$  can be repersented. i.e.,  $x^m$  can be repersented. So  $\{x^k : k = 0, 1, \cdots n - 1\}$  is basis.

ROBEM VI Let R be an integral domain, finitely generated over a field k. If R has transcendence degree n over k, then there exist elements  $x_1, \ldots, x_n \in R$ , algebraically independent over k, such that R is integrally dependent on the subring  $k[x_1, \ldots, x_n]$  generated by the x 's.

SOLION. Since R is f.g. over k, we can assume  $R := k[x_1, \dots x_m]/I$ . We use induction on m. If m = 0, there is nothing to do. If I = (0), then we can set  $c_i = x_i + I$  for  $i = 1, \dots, m$ , and again there is nothing to show. If  $I \neq (0)$ , then choose  $f \in I \setminus \{0\}$ . If  $f \in k$  then  $I = k[x_1, \dots, x_m]$ . Then  $R = \{0\}$ . Else,  $\deg f > 0$ . Write f as

$$f = \sum_{i=(i_1, i_2, \dots i_m) \in S} \alpha_i \prod_{t=1}^m x_t^{i_t} \tag{1}$$

Where  $\emptyset \neq S \subset \mathbb{N}^m$  is a finite set and  $\alpha_i \in k^*$ . Choose d greater than all  $x_i$ -degrees of f, then the function  $\phi: S \to \mathbb{N}, i \mapsto \sum_{j=1}^m i_j d^{j-1}$  is injective. For  $i = 2, \dots, m$ , let  $y_i = x_i - x_1^{d^{i-1}}$ , then:

$$f = f\left(x_1, y_2 + x_1^d, \dots, y_m + x_1^{d^{m-1}}\right) = \sum_{i \in S} \alpha_i \left(x_1^{\phi(i)} + g_i(x_1, y_2, \dots, y_m)\right)$$
(2)

where  $g_i$ 's are polynomials satisfying  $\deg_{x_1} g_i < \phi(i)$ . Since  $\phi$  is injective, we have exactly one  $i \in S$  such that  $\phi(i)$  is maximum, assume the maximum value is  $u = \phi(i)$ . Since f is not constant, u > 0. Thus we obtain:

$$f = \alpha_i x_1^u + h(x_1, y_2, \cdots, y_m) \tag{3}$$

with  $\deg_{x_1} h < u$ . Therefore

$$x_1^u + \alpha_i^{-1} h(x_1, y_2, \dots, y_m) \in I$$
 (4)

Let  $B := k[y_2 + I, \dots, y_m + I] \subset R$ , then  $R = B[x_1 + I]$ , and above equation shows R is integral over B. By induction, there exists algebraically independent  $c_1, \dots, c_n \in B$  such that B is integral over  $k[c_1, \dots, c_n]$ . Thus R is integral over  $k[c_1, \dots, c_n]$ , too.