(20pt) Show that the following problem is decidable:

Given $\Sigma = \{a, b\}$ and α a regular expression, is it true that $L(\alpha)$ contains only non-empty even-length strings in Σ^* and no string consisting only of b's?

3.

We'll show that the problem is decidable by defining a decision procedure to answer it:

- 1. From α , use **Thompson's Construction Algorithm** to build FSM M_{α} such that $L(M_{\alpha}) = L(\alpha)$
- 2. Let regular expression $\beta = (bb)^*(ba+a(b+a))((b+a)(b+a))^*)$. β is such that $L(\beta)$ exclusively accepts all non-empty, even-length strings in Σ^* and no string consisting only of b's.
- 3. From β , use **Thompson's Construction Algorithm** to build FSM M_{β} such that $L(M_{\beta}) = L(\beta)$
- 4. Construct M_A to accept $L(M_\alpha) L(M_\beta)$ (Difference Closure)
- 5. Return **emptyFSM**(M_A)

Algorithms and closure properties used:

- Thompson' Construction to create FSM from a regular expression.
- Difference Closure to create a set which is Set α without all the non-empty, even-length strings in Σ^* that have at least one a
- emptyFSM algorithm. This will return true if the set is empty, and false otherwise. This makes sense because the set would only have elements in it that are not in M_{β} which means it has elements that don't make the requirements.