

Security Vulnerabilities, Challenges and Opportunities in Hardware Design for IoT Devices

物联网设备硬件设计的安全隐患、挑战和机遇

Gang Qu University of Maryland, College Park

> 2015 中国互联网安全大会 September 30, 2015

Hardware in Security and Trust

Evolving role of HW

Enabler

Enhancer

Enforcer

M. Smarrip

Physical Attacks

- Reverse engineering
- Side channel attacks
- Microprobing
- Fault generation
- Software attacks

•

Be careful where you store the key

[Ross Anderson, Security Engineering 2001]

SCA: Attackers with Good Ears ...

- Side channel analysis attacks:
 - Monitor/measure chip's physical characteristics during its normal operation
 - Perform data analysis to learn information
- Side channels:
 - cache memory, power/current, timing, scan chain, EM radiation output signal ...

Development of a Cipher

- Design and implementation of a cipher
 - Algorithm/protocol design
 - Software implementation

```
    binary: k<sub>s</sub>k<sub>s-1</sub>...k<sub>1</sub>k<sub>0</sub>
    b = 1;
    for (i=s; i>=o; i--)
    { b = b*b (mod n);
    if (k<sub>i</sub> == 1)
    b = b * a (mod n)
    }
    b = b * a (mod n)
```

RSA:
C = Pe (mod n)
P = Cd (mod n)

Cryptographer
Mathematician

Software engineer

General purpose computing platform

Modular Exponentiation: ae (mod n)

- Goal: Compute a^e (mod n)
 - 1. convert e to binary: $k_s k_{s-1} ... k_1 k_0$
 - 2. b = 1;
 - 3. for (i=s; i>=o; i--)
 - 4. $\{b = b*b \pmod{n};$
 - $5 (if (k_i == 1))$
 - 6. b = b * a (mod n)
 - 7. }
 - 8. return b;

Side channel attacks!

Observable side channel info during hardware execution: current, power, timing, ...

The value of bit k_i determines whether this non-trivial operation will be required.

Power Analysis Attacks

http://www.eetimes.com/document.asp?doc_id=1278081

Security comes by design, not by default!

0/1

Trust in Hardware Design

What I get works, but is untrusted. There are backdoors!

What I want						
	A	В	×	A'	B'	A
	0	0	0	0	1	0/0
	0	0	1	1	0	
	0	1	0	0	0	
	0	1	1	1	0	
	1	0	0	1	0	
	1	0	1	0	0	
	1	1	0	1	0	
	1	1	1	0	0	

数据驱动安全 2015中国互联网安全大会

Malicious Design

 Hardware Trojan horse: adding hidden access to state 00

[Dunbar and Qu, TECS'14] [Dunbar and Qu, IWLS'13]

Optical Fault Injection Attacks

Hardware in Security and Trust

Evolving role of HW in security:

Weakest Link?

Secure Systems based on Trusted Hardware

Trust Platform Module (TPM)

TPM refers to

- the set of specifications for a secure crypto-processor, and
- chip implementation of these specifications.

TPM chips

- can be installed on the motherboard and is used in almost all PCs, laptops, and tablets; most smart phones.
- Best to be used together with: firewall, antivirus software, smart card, biometric verification
- Vendors: Atmel, Broadcom, Infineon, Sinosun,
 STMicroelectronics, Winbond, Toshiba, Intel, etc.

Main Functions of TPM

- hardware authentication
- cryptographic key generation
- protection of cryptographic keys
- hardware pseudo-random number generation
- sealed storage (passwords, encryption keys and digital certificates)
- remote attestation

Does TPM solves all the problems?

Physical Unclonable Function

Physical Unclonable Function

Each challenge creates two paths through the circuit that are excited simultaneously. The digital response is based on a (timing) comparison of the path delays.

PUF: Unclonable Key

A Silicon PUF can be used as an unclonable key.

The lock has a database of challenge-response pairs.

To open the lock, the key has to show that it knows the response to one or more challenges.

PUF: Secret Share

- If a remote chip stores a private key, Alice can <u>share a secret</u> with the chip if she knows the public key corresponding to the stored private key
 - Alice encrypts the Secret using chip's public key, only the right chip can decrypt the Secret using the stored private key.
 - The chip encrypts the Secret using chip's private key, it can only be decrypted when the correct public key is used.

PUF: Device Authentication

- Alice wishes to authenticate a chip
- She has a challenge response pair that no one else knows, which can authenticate the silicon PUF on the chip
- She asks for the response to the challenge
- Chip authenticated if response is correct

But only the genuine chip can generate the right response

Anyone can see response if it is not encrypted

Data Embedding in Binary Code

- How much data can be embedded?
- How to ensure the code is still executable?

Trusted Execution Environment

数据驱动安全

[Taylor, Yin, Wu, and Qu, HOST 2008]

EDA Meets Designing the Things

Needs:

EDA tools

Function

Miniature/sizé√

Performance \

Cost

Low power

Reliability

Safety

More Needs:

- Security
- Privacy
- Trust
- Lower power

Hardware has advantages in meeting these needs!

数据驱动安全 2015增基网络

Nobody is An Island

- Security, privacy, trust issues remain as long as currency exists
- Attacking surface grows faster than countermeasures
- No system is an island,
 - a holistic approach to build secure system
 - Cryptography, software, hardware, communication, device, ...
- Hardware is the root of security, trust, privacy Enabler, Enhancer, Enforcer

Conclusions

数据驱动安全 2015:增基检验