# **Block ciphers**

## **Block ciphers**

#### Intro

Intuition:

A block cipher is an encryption method that applies a deterministic algorithm along with a symmetric key to encrypt a block of text,
rather than encrypting one bit at a time as in stream ciphers



#### **Block cipher - Definition**

Functionally, a block cipher is a deterministic cipher (E,D) whose message space and ciphertext space are the same (finite) set  $\mathcal{X}$ . If the key space of (E,D) is  $\mathcal{K}$ , we say that (E,D) is a block cipher defined over  $(\mathcal{K},\mathcal{X})$ . We call an element  $x\in\mathcal{X}$  a data block, and refer to  $\mathcal{X}$  as the datablock space of (E,D)

Encryption:  $orall k \in \mathcal{K}$  we define  $E(k,\cdot) = f_k: \mathcal{X} \longrightarrow \mathcal{X}$ 

- We want the function to be one-to-one =>  $f_k$  is a permutation on  ${\mathcal X}$ 

Decryption:  $D(k,\cdot)=f_k^{-1}$ 

## Security - black box test

- An adversary can give the challenger a value  $x \in \mathcal{X}$  and receive y = f(x)
- · The challenger will respond by applying one of the functions
  - $f_k = E(k, \cdot)$
  - $\,\circ\,\,\, f$  = truly random function chose uniformly from all permutations on  ${\mathcal X}$
- The adverary mustn't be able to distinguish which function was used => Computationaly indistinguishable
- The block cipher is secure if any efficient adversary have negligible advantages

#### Proprieties:

- A secure block cipher is **unpredictable**. This means that an adversary can submit adaptive queries  $(x_0, ... x_n)$  and gets their encryption mustn't be able to compute the encryption of a an extra query  $x_{n+1}$ .
- If a block cipher is unpredictable then it's **secure against key recovery** (finding the key k used for encryptions). If we have an adversary A that can recover the key, another adversary B can use A's attack to recover the key. This means that B can compute the encryption of an extra message  $E(x_{n+1}, k)$ . This makes B an adversary that breaks unpredictability.

### Constructing block ciphers

- Pick a block cipher (E,D) round cipher
- Pick a PRG to expand the key  $\boldsymbol{k}$  into more keys  $\mathbf{key}$  expansion function
  - $\bullet$   $(k_1,...,k_d) \longleftarrow G(k)$

· Apply iteratively

• 
$$c = E(k_d, E(k_{d-1}, ... E(k_2, E(k_1, x))...))$$

· Decrypt by applying the round keys in reverse order



#### Remark

- · Linear functions never lead to secure block ciphers.
- non-linear functions *appear* to give a secure block after a few iterations. We want a *fast round cipher* that converges to a secure block cipher within a few rounds.

### **Pseudo-random functions**

#### Pseudo random function

A pseudo-random function (PRF)  $F:\mathcal{K}\times\mathcal{X}\longrightarrow\mathcal{Y}$  is a deterministic algorithm that has two inputs:

- a key  $k \in \mathcal{K}$
- an input data block  $x \in \mathcal{X}$

and its output y := F(k, x)

Idea: for a randomly chosen key k F must look like a random function from  ${\mathcal X}$  to  ${\mathcal Y}$ 

## PRF Security

A PRF F is secure if it's indistinguishable from a random function (The advantage for all efficient adversaries is negligible)

#### **PRF** Weak security

A PRF F is secure if it's indistinguishable from a random function when the queries are limited(The advantage for all efficient adversaries is negligible)

#### When is a secure block cipher a PRF?

Let

- (E,D) be a block cipher defined over  $(\mathcal{K},\mathcal{X})$
- $N=|\mathcal{X}|$
- E be a PRF over  $(\mathcal{K},\mathcal{X},\mathcal{X})$

If N is super-poly then (E,D) is secure  $\iff E$  is a secure PRF

## Resources

- Computerphile feister ciphers
- A graduate course in applied cryptography