

Multivariate Model

S.Lan

Multivariate spatial modeling for point-referenced data

Co-kriging Separable models

Multivariate models for areal data

Lecture 6 Multivariate Spatial Modeling

Shiwei Lan¹

¹School of Mathematical and Statistical Sciences Arizona State University

STP598 Spatiotemporal Analysis Fall 2020

Multivariate spatial modeling

Multivariate Model

S.Lan

Multivariate spatial modeling for point-referenced data

Co-kriging Separable models

- *Multivariate*: multiple (i.e. more than one) outcomes are measured at each spatial unit.
- Multivariate point-referenced data:
 - Levels of pollutants including ozone, nitric oxide, carbon monoxide, $PM_{2.5}$ etc. are measured at monitoring station
 - Surface temperature, precipitation, and wind speed in atmospheric modeling.
 - In examining real estate markets, both selling price and total rental income observed for individual property...
- Multivariate areal data:
 - In public health, supplies counts or rates for a number of diseases for each county or administrative unit.

Table of Contents

Multivariate Model

S.Lan

Multivariate spatial modeling for point-referenced data

Co-kriging Separable models

Multivariate models for area data

 Multivariate spatial modeling for point-referenced data Co-kriging
 Separable models

Multivariate spatial modeling for point-referenced data

Multivariate Model

S.Lan

Multivariate spatial modeling for point-referenced data

Co-kriging Separable model

- We model multivariate point-referenced data by either a conditioning approach (kriging with external drift) or a joint approach (co-kriging).
- Inference focuses upon three major aspects:
 - 1 estimate associations among the processes
 - estimate the strength of spatial association for each process
 - g predict the processes at arbitrary locations
- Let $\mathbf{Y}(\mathbf{s}) = (Y_1(\mathbf{s}), \dots, Y_p(\mathbf{s}))^T$ be a $p \times 1$ vector of process referenced at $\mathbf{s} \in \mathcal{D}$.
- We seek to capture the association both within components of $\mathbf{Y}(\mathbf{s})$ and across \mathbf{s} .

Cross- variograms and covariances

Multivariate Model S.Lan

Multivariate spatial modeling for point-referenced

Co-kriging Separable models

Multivariate models for area data • Assume E(Y(s + h) - Y(s)) = 0. The joint second order (weak) stationarity hypothesis defines the *cross-variogram* as

$$\gamma_{ij}(\mathbf{h}) = \frac{1}{2} \mathrm{E}(Y_i(\mathbf{s} + \mathbf{h}) - Y_i(\mathbf{s}))(Y_j(\mathbf{s} + \mathbf{h}) - Y_j(\mathbf{s})) \tag{1}$$

- $\gamma_{ij}(\mathbf{h}) = \gamma_{ij}(-\mathbf{h})$.
- $|\gamma_{ij}(\mathbf{h})|^2 \leq \gamma_{ii}(\mathbf{h})\gamma_{jj}(\mathbf{h})$.
- The cross-covariance function is defined as

$$C_{ij}(\mathbf{h}) = \mathrm{E}(Y_i(\mathbf{s} + \mathbf{h}) - \mu_i)(Y_j(\mathbf{s}) - \mu_j)$$
 (2)

- $C_{ii}(\mathbf{h}) \neq C_{ii}(\mathbf{h})$.
- $|C_{ij}(\mathbf{h})|^2 \le C_{ii}(0)C_{ij}(0)$. $|C_{ij}(\mathbf{h})|^2 \le C_{ii}(\mathbf{h})C_{jj}(\mathbf{h})$?
- Eg: spatial delay models (Wackernagel, 2003): $Y_2(\mathbf{s}) = aY_1(\mathbf{s} + \mathbf{h}_0) + \epsilon(\mathbf{s})$.

Cross- variograms and covariances

Multivariate Model

S.Lan

Multivariate spatial modeling for point-referenced data

Co-kriging Separable models

Multivariate models for area

• How to express $\gamma_{ij}(\mathbf{h})$ in terms of C_{ij} ?

Cross- variograms and covariances

Multivariate Model

S.Lan

Multivariate spatial modeling for point-referenced data

Co-kriging Separable models

Multivariate models for area data

• How to express $\gamma_{ii}(\mathbf{h})$ in terms of C_{ii} ?

$$\gamma_{ij}(\mathbf{h}) = C_{ij}(0) - \frac{1}{2}(C_{ij}(\mathbf{h}) + C_{ij}(-\mathbf{h}))$$
(3)

- Cross-variogram only captures the even term of the cross-covariance function!
- Pseudo cross-variogram:
 - Clark et al. (1989) proposed $\pi_{ii}^c(\mathbf{h}) = \mathrm{E}(Y_i(\mathbf{s}+\mathbf{h})-Y_i(\mathbf{s}))^2$
 - Myers (1991) defined $\pi_{ii}^m(\mathbf{h}) = \operatorname{Var}(Y_i(\mathbf{s} + \mathbf{h}) Y_j(\mathbf{s}))$
 - $\pi_{ii}^c(\mathbf{h}) = \pi_{ii}^m(\mathbf{h}) + (\mu_i \mu_j)^2$
- Positive, may not be even. Co-kriging uses $\pi_{ii}^m(\mathbf{h})$.

Co-kriging

Multivariate Model

S.Lan

Multivariate spatial modeling for point-referenced data

Co-kriging Separable models

Multivariate models for area data

- Given $\mathbf{Y} = (\mathbf{Y}(\mathbf{s}_1), \cdots, \mathbf{Y}(\mathbf{s}_p))^T$, we want to know $\mathbf{Y}(\mathbf{s}_0)$.
- Different from multi-output kriging for a univariate spatial process at multiple locations!
- In the regression framework, we could require the predicted value $\hat{\mathbf{Y}}(\mathbf{s}_0)$

$$\hat{\mathbf{Y}}(\mathbf{s}_0) = \sum_{i=1}^n \Lambda_i \mathbf{Y}(\mathbf{s}_i), \quad \sum_{i=1}^n \Lambda_i = I$$
 (4)

$$\min_{\Lambda} \operatorname{trE}(\hat{\mathbf{Y}}(\mathbf{s}_0) - \mathbf{Y}(\mathbf{s}_0))(\hat{\mathbf{Y}}(\mathbf{s}_0) - \mathbf{Y}(\mathbf{s}_0))^T$$
 (5)

 $\bullet \ \operatorname{trE}(\hat{\boldsymbol{Y}}(\boldsymbol{s}_0) - \boldsymbol{Y}(\boldsymbol{s}_0))(\hat{\boldsymbol{Y}}(\boldsymbol{s}_0) - \boldsymbol{Y}(\boldsymbol{s}_0))^T = \operatorname{E}(\hat{\boldsymbol{Y}}(\boldsymbol{s}_0) - \boldsymbol{Y}(\boldsymbol{s}_0))^T(\hat{\boldsymbol{Y}}(\boldsymbol{s}_0) - \boldsymbol{Y}(\boldsymbol{s}_0)).$

Co-kriging

Multivariate Model

S.Lan

Multivariate spatial modeling for point-referenced data

Co-kriging Separable models

- Assume a multivariate Gaussian spatial process **Y**(**s**) with zero mean.
- Suppose we have a finite cross-covariance function (permissible cross-variogram).
- Denote $\mathbf{Y} = (\mathbf{Y}(\mathbf{s}_1)^T, \dots, \mathbf{Y}(\mathbf{s}_p)^T)^T$. Then we have $np \times np$ covariance matrix $\Sigma_{\mathbf{Y}}$.
- Denote $np \times 1$ vector \mathbf{c}_0 with jl-th element $c_{0j,l} = \operatorname{Cov}(Y_1(\mathbf{s}_0), Y_l(\mathbf{s}_j))$. Then

$$E(Y_1(\mathbf{s}_0)|\mathbf{Y}) = \mathbf{c}_0^T \Sigma_{\mathbf{Y}}^{-1} \mathbf{Y}$$
 (6)

$$\operatorname{Var}(Y_1(\mathbf{s}_0)|\mathbf{Y}) = C_{11}(0) - \mathbf{c}_0^T \Sigma_{\mathbf{Y}}^{-1} \mathbf{c}_0$$
 (7)

Co-kriging

Multivariat Model

S.Lan

Multivariate spatial modelin for point-referenced data

Co-kriging Separable models

Multivariate models for area data

• *Intrinsic* co-kriging assumes $C(\mathbf{h}) = \rho(\mathbf{h})T$ with a valid correlation function $\rho(\cdot)$ and a positive definite covariance matrix T.

• Therefore $\Sigma_{\mathbf{Y}} = R \otimes T$, and

$$E(Y_1(\mathbf{s}_0)|\mathbf{Y}) = \mathbf{c}_0^T \Sigma_{\mathbf{Y}}^{-1} \mathbf{Y} = t_{11} \mathbf{r}_0^T R^{-1} \tilde{\mathbf{Y}}_1$$
(8)

where $\mathbf{r}_0 = (\rho(\mathbf{s}_0 - \mathbf{s}_j))$ and $\tilde{\mathbf{Y}}_1$ is formed by the first components of $\mathbf{Y}(\mathbf{s}_j)$'s.

- Data availability (missing data):
 - isotopy: data is available for each variable at all sampling points
 - partial *heterotopy*: some variables share some sample locations
 - entirely *heterotopic*: the variables have no sample locations in common
- Collocated co-kriging makes use of $Y_1(\mathbf{s}_i)$ to help predict $Y_1(\mathbf{s}_0)$.

Cross-covariance function

Multivariate Model

S.Lan

Multivariate spatial modelin for point-referenced data

Co-kriging Separable models

- Consider a vector-valued spatial process $\{\mathbf{w}(\mathbf{s}) \in \mathbb{R}^p : \mathbf{s} \in \mathcal{D}\}$. Assume $\mathrm{E}[bw(\mathbf{s})] = 0$.
- The cross-covariance function is a matrix-valued function $\mathbf{C}(\mathbf{s},\mathbf{s}')$ with (i,j)-th entry

$$C_{ij}(\mathbf{s}, \mathbf{s}') = \operatorname{Cov}(w_i(\mathbf{s}), w_j(\mathbf{s}')) = \operatorname{E}[w_i(\mathbf{s})w_j(\mathbf{s}')]$$
(9)

- Let $w_i(\mathbf{s}) = Y_i(\mathbf{s}) \mu_i$. Then $C(\mathbf{s}, \mathbf{s}') = \text{Cov}(\mathbf{w}(\mathbf{s}), \mathbf{w}(\mathbf{s}')) = \text{E}[\mathbf{w}(\mathbf{s})\mathbf{w}(\mathbf{s}')^T]$.
- We require $C(\mathbf{s}, \mathbf{s}') = C(\mathbf{s}', \mathbf{s})^T$.
- $\mathbf{w}(\mathbf{s})$ is stationary if $C_{ij}(\mathbf{s}, \mathbf{s}') = C(\mathbf{h})$ is a function of $\mathbf{h} = \mathbf{s} \mathbf{s}'$. Symmetric cross-covariance implies $C(-\mathbf{h}) = C(\mathbf{h})$.
- **w**(**s**) is *isotropy* if further $C_{ij}(\mathbf{s}, \mathbf{s}') = C_{ij}(\|\mathbf{h}\|)$, which directly implies symmetry in cross-covariance function.

Separable models

Multivariate Model

S.Lan

Multivariate spatial modeling for point-referenced data

Co-kriging
Separable models

Multivariate models for area data

• Separable models for p-dimensional $\mathbf{Y}(\mathbf{s})$ assume the following cross-covariance function

$$C(\mathbf{s}, \mathbf{s}') = \rho(\mathbf{s}, \mathbf{s}') \cdot T \tag{10}$$

The covariance matrix for Y has the following Kronecker product structure

$$\Sigma_{\mathbf{Y}} = H \otimes T \tag{11}$$

where $H_{ij} = \rho(\mathbf{s}_i, \mathbf{s}_j)$.

- Pros: $|\Sigma_{\mathbf{Y}}| = |H|^p \cdot |T|^n$, $\Sigma_{\mathbf{Y}}^{-1} = H^{-1} \otimes T^{-1}$.
- Cons: coherence $\frac{\operatorname{Cov}(Y_{\ell}(\mathbf{s}), Y_{\ell'}(\mathbf{s}+\mathbf{h}))}{\sqrt{\operatorname{Cov}(Y_{\ell}(\mathbf{s}), Y_{\ell}(\mathbf{s}+\mathbf{h}))\operatorname{Cov}(Y_{\ell'}(\mathbf{s}), Y_{\ell'}(\mathbf{s}+\mathbf{h}))}} = \frac{T_{\ell\ell'}}{T_{\ell\ell}T_{\ell'\ell'}}$ regardless of \mathbf{s} and \mathbf{h} : identical spatial dependence for each component of $\mathbf{Y}(\mathbf{s})$!

Interpolation, (spatial) prediction and regression

Multivariate Model

S.Lan

Multivariate spatial modeling for point-referenced data

Co-kriging
Separable models

- Consider response process Z(s) and a vector of covariates x(s).
- Partition our set of sites into three mutually disjoint groups
 - \bigcirc S_Z : the sites where only the response $Z(\mathbf{s})$ has been observed
 - Q S_X : the the set of sites where only the covariates have been observed
 - 3 S_{ZX} : the set where both Z(s) and the covariates have been observed
 - $\bigcirc S_U$: the set of sites where no observations have been taken.
- Formalize three types of inference questions:
 - **1** *interpolation*: concerns $Y(\mathbf{s})$ when $\mathbf{s} \in S_X$
 - **2** *prediction*: concerns $Y(\mathbf{s})$ when $\mathbf{s} \in S_U$
 - § spatial regression: concerns the functional relationship between X(s) and Y(s) at an arbitrary site s, along with other covariate information U(s), E[Y(s)|X(s),U(s)].

Interpolation, (spatial) prediction and regression

Multivariate Model

S.Lan

Multivariate spatial modeling for point-referenced

Co-kriging Separable models

Figure 9.1 A graphical representation of the S sets. Interpolation applies to locations in S_X , prediction applies to locations in S_U , and regression applies to all locations. $\mathbf{X}_{aug} = (\mathbf{X}, \mathbf{X}')$, $\mathbf{Y}_{aug} = (\mathbf{Y}, \mathbf{Y}')$.

Table of Contents

Multivariate Model

S.Lan

Multivariate spatial modeling for point-referenced data

Co-kriging Separable models

Multivariate models for areal data Multivariate spatial modeling for point-referenced data Co-kriging
 Separable models