Demo of My LATEX Style

Hassium

1	Packages	7	Other Environments and Commands
2	Title Page Setup	8	Quiver
3	Page Geometry	9	Theorem Styles
4	More on Table of Contents	10	Invisible Proofs
5	Index Page	11	Simple Commands in Math Mode
6	Darkmode	12	Acknowledgement

1 Packages

This style contains the following packages:

```
\usepackage[T1]{fontenc}
\usepackage[explicit]{titlesec}
\usepackage[utf8]{inputenc}
\usepackage{amsmath, amsthm, amssymb, amsfonts, mathrsfs, mathtools, nicematrix, chngcntr,
    centernot, ytableau, tikz-cd}
\usepackage{imakeidx, textcomp, tocloft, environ, setspace, geometry, enumerate,
    enumitem, blindtext, multicol, xcolor, fancyhdr, calligra, graphicx, wrapfig, pgfplots,
    mdframed, tabularx, lipsum, comment, csquotes, verbatim, transparent, scalerel, halloweenmath}
    \usepackage[hidelinks]{hyperref}
\usepackage{chemfig}

How to insert it?

\documentclass{article}
\input{hassium.tex} % Download and input it using its path
```

2 Title Page Setup

After inserting the package, you should define the title and author name. Here is an example, which is the code of this demo:

```
\documentclass{article}
\input{hassium.tex}
\begin{document}
    \def\htitle{Demo of Hassium Style}
    \def\hauthor{Hassium}
    \def\hfauthor{Hassium}
    \hsetup
    \htoc
    \hmain
\end{document}
```

Here the "hfauthor" is the left part of the header. Also, feel free to use "hstart" command to include all three setup.

```
\documentclass{article}
\input{hassium.tex}
\begin{document}
    \def\htitle{Demo of Hassium Style}
    \def\hauthor{Hassium}
    \def\hfauthor{Hassium}
    \hstart
\end{document}
```

3 Page Geometry

There are some commands that adjust the geometry of the document:

```
\geometry{letterpaper, top=54pt,bottom=46.8pt,marginparsep=5.67pt,marginparwidth=56.69pt, voffset=0pt,hoffset=0pt,left=54pt,right=54pt,headheight=24pt,headsep=10pt} \setstretch{1.25} % spacing
```

4 More on Table of Contents

You can add descriptions to each section and the description will appear in the table of contents, directly below the section name:

```
\section{This is a Sample Section}
\descr{This is a description to the section}
```

The table of contents only shows the section names, but no subsections and numberless sections. If you want a numberless section in the table of contents, use the "newsection" command:

```
\newsection{This is a numberless section}
```

Note that the section names in the table of contents are hyperlinks; click on any section name to navigate directly to that section. You can do the converse to navigate to the first page as well.

5 Index Page

This style has a customized index page. Check the code:

```
This is a \hdef{defintiion}. This is another \hdef{vocabulary}. \hindex
```

The command "hdef" mark the word and print it. The command "hindex" is a customized index page that print words in three columns. Each page number in the index page contains a hyperlink to that page.

6 Darkmode

Darkmode commands change the background color to black and the text to white.

```
\begin{document}
      \darkhsetup
      \darkhmain
\end{document}
```

7 Other Environments and Commands

The line-spacing in "enumerate" environment is changed:

```
\setlist[enumerate]{topsep=0pt,itemsep=-1ex,partopsep=1ex,parsep=1ex}
```

The "level" environment is used in "enumerate" environment, consider the following code:

```
\begin{enumerate}
  \item This is the first line.
  \begin{level}
    \item This is the second line.
  \begin{level}
    \item This is the third line.
  \end{level}
  \item This is another line.
  \end{level}
\end{enumerate}
```

This code gives:

- 1. This is the first line.
 - 2. This is the second line.
 - 3. This is the third line.
 - 4. This is another line.

The command "circled" draws a small circle and you can add something inside the circle:

```
\circled{1}
```

The output is ①. You can write any Romam numerals by:

```
\rom108
```

There are two simple commands for hand-written fonts:

```
\cfd{font 1}
\cfc{font 2}
```

The outputs are font 1 and font 2.

8 Quiver

Quiver is done by varkor and AndréC, check their github for more information. I include quiver to draw curve arrows in a commutative diagram. To draw a diagram with quiver, check this website. An example is given below:

```
% chktex-file 15 % the three lines enables useless warnings
% chktex-file 17
% chktex-file 18
\begin{center}
  \begin{tikzcd}
    Hello &&&& World \\
    \\
    \\
    && Hassium
    \arrow["\shortmid"{marking}, curve={height=-6pt}, tail reversed, from=1-1, to=1-5]
    \arrow[curve={height=6pt}, squiggly, from=1-1, to=4-3]
    \arrow[curve={height=-6pt}, dashed, hook', from=1-5, to=4-3]
  \end{tikzcd}
\end{center}
```

The diagram looks like:

9 Theorem Styles

Several theorem styles are offered:

```
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem*{proposition}{Proposition}
\newtheorem*{lemma}{Lemma}
\newtheorem*{corollary}{Corollary}
\newtheorem*{example}{Example}
\newtheorem*{example}{Example}
\newtheorem*{remark}{Remark}
\newtheorem*{notation}{Notation}
```

There is a "hdefinition" environment, which works exactly the same as "definition" if you write:

```
\begin{hdefinition}

This is a definition of Hassium.
\end{hdefinition}
```

If you include a name variable, it gives an index to the name.

```
\begin{hdefinition} [Hassium]
    This is a definition of Hassium
\end{hdefinition}
\hindex % This will print Hassium
```

The environment name can be customized by using:

```
\customtheorem{This is a custom theorem}
\begin{This is a custom theorem}
The proof is trivial.
\end{This is a custom theorem}
```

The output environment is:

This is a custom theorem. The proof is trivial.

You can put any number or label in "exercise" environment:

```
\begin{exercise}[8.6]
   The proof is trivial.
\end{exercise}
```

The environment looks like:

Exercise 8.6. The proof is trivial.

10 Invisible Proofs

The environment "reviewmode" is originally done by my friend ETwilight. It replaces your "proof" environment by three empty lines:

```
\begin{reviewmode}
    \begin{proof}
        The proof is trivial.
    \end{proof}
\end{reviewmode}
```

11 Simple Commands in Math Mode

I will give a table of all commands in math mode.

\bs	\	\Sym	Sym
\N	\mathbb{N}	\GL	GL
$\setminus Z$	${\mathbb Z}$	\SL	SL
\Q	$\mathbb Q$	$\backslash \mathrm{Mod}$	Mod
\R	\mathbb{R}	\Sg	$\mathfrak S$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\mathbb C$	$\setminus \mathrm{Ag}$	$\mathfrak A$
\bb{H}	\mathbb{H}	\Cay	Cay
$\operatorname{Ca}\{H\}$	${\cal H}$	\uni	∃!
$fr\{H\}$	\mathfrak{H}	\al	α
\T	${\mathcal T}$	\be	eta
\Ps{n}	\mathbb{P}^n	\ga	γ
$\CP\{n\}$	\mathbb{CP}^n	\de	δ
$\mathbb{RP}\{n\}$	\mathbb{RP}^n	\ep	ϵ

Hassium	Demo of My	MEX Style	p.6
\si	σ	\cp	П
∖la	λ	\Cp	Ш
\ka	κ	\ot	\otimes
$\backslash om$	ω	$\operatorname{\backslash op}$	\oplus
\Ga	Γ	\acts	\curvearrowright
\De	Δ	\sgn	sgn
\Si	Σ	\nsg	⊴
$\backslash \mathrm{LA}$	Λ	\defa	≔
$\backslash \mathrm{Om}$	Ω	\sl_{sdp}	×
\vp	arphi	$\inf\{f\}$	f^{-1}
\vt	ϑ	$x \mod y$	$x \mod y$
\ve	arepsilon	\Cl	Cl
\ua	↑	\Hol	Hol
\da	\downarrow	$\backslash comp$	0
\Ra	\Rightarrow	\Gal	Gal
\La	⇐	$\backslash \operatorname{card}\{S\}$	S
\Ua	\uparrow	\im	im
\Da	\downarrow	$\operatorname{Norm}\{M\}$	$\ M\ $
\nRa	⇒	\po	\prec
\nLa	#	\poe	\preceq
\hra	\hookrightarrow	$\langle cyc\{g\} \rangle$	$\langle g angle$
\hla	\leftarrow	\Spec	Spec
\lt	~ →	\Syl	Syl
$\mbox{\em mt}$	\mapsto	\iso	\approx
\rat	\rightarrowtail	\niso	≉
\lat	\leftarrow	\Mor	Mor
\thra	\rightarrow	$\setminus \mathrm{Aut}$	Aut
\thla	«	\End	End
\bij	$\xrightarrow{\sim}$	\Hom	Hom
$ackslash \mathrm{A}$	$ar{A}$	\Inn	Inn
\id	id	\Out	Out
\sub	\subset	\Iso	Iso
\sube	\subseteq	\Ob	Ob
\supe	\supseteq	\tri	\triangle
\nsub	$\not\subset$	\pa	∂
\nsup	$ ot \supset ot ot ot ot ot ot ot ot ot ot$	$\backslash \mathrm{Ann}$	Ann
\nsube	⊈	$\backslash dom$	dom
\nsupe	⊉	\ran	ran
\subn	Ç	\cod	cod
\supn	\supseteq	$A{n}$	\mathbb{A}^n
\es	Ø	\sq	
$\backslash \mathrm{sm}$	\	$\backslash CAT$	CAT
$\protect\operatorname{ps}$	\mathscr{P}	$\{A\}$	$\lfloor A floor$
\U n	U	\can	can
\In	\cap	\Can	Can
\Du	□ '	$\setminus \operatorname{cat}\{A\}$	А

12 Acknowledgement

Special thanks to \mathcal{FSG} . His advice on this style has been invaluable.