Scratchwork: Multiplication

Example Furstenburg shows in 1967, that the only closed infinite subset of \mathbb{R}/\mathbb{Z} invariant under $S:(\cdot)\mapsto \cdot \times a$ and $T:(\cdot)\mapsto \cdot \times b$ is all of \mathbb{R}/\mathbb{Z} itself. For any irrational $\theta\notin\mathbb{Q}$,

$$\overline{\{a^k \times b^\ell \times \theta : k, \ell \ge 0\}} = \mathbb{R}/\mathbb{Z}$$

I don't know how such a basic point could be under argument in this first place. No non-expert would even question such a thing. It takes a small bit of analysis and topology to *state* that the closure of an infinite set is something. And then we need to consult a resource on "commuting automorphisms", here $\theta \mapsto \theta \times a$ and $\theta \mapsto \theta \times b$.

For example, Let's find k and ℓ such that $\left|2^k \times 3^\ell \times \sqrt{2} - \sqrt{3}\right| < 10^{-2}$. These questions (even to me) seem like novelties, and each single case can be solved with a computer, given enough time and resources.

Example Weyl's Law (say for $H=\partial_x^2+\sqrt{n}\,\partial_y^2$) gives an estimate for the distribution of eigenvalues (in \mathbb{R}):

$$\#\{j: \lambda_j < X\} = \#\{(a,b): a^2 + \sqrt{n} b^2 < X\} \sim \frac{\pi}{4\sqrt{n}} X$$

We notice the distribution is approximately a line. Perhaps we could find the "doubling constant":

$$A + A \approx kA$$

The paper introduces all sorts of interesting measurable sets. Starting with $\mu(\mathbb{Q})=0$ and yet $\overline{\mathbb{Q}}=\mathbb{R}$. The paper also computes the gaps:

$$\delta_{min}(N) = \min(\{\lambda_{i+1} - \lambda_i : 1 \le i \le N\})$$

Here the λ_i are the sorted vales of $a^2 + \sqrt{n} b^2 \in \mathbb{Z}[\sqrt{n}]$. Notice we do not even need all of \mathbb{R} to define this thing.

Let's even take a step further and remind ourselves that the numbers $\overline{\{a^2+b^2-\sqrt{2}c^2:a,b,c\geq 0\}}=\mathbb{R}$ and we could have an exercise:

$$|a^2 + b^2 - \sqrt{2}c^2| < 10^{-6}$$

Finding such integers one time, is certainly tractable. I think the difficulty is showing this can *always* happen to arbitrary accuracy that requires the Ratner theory. In other words, that there is something complicated about these numbers.

We have a dilemma, no matter how many times we use a computer, no matter how much data we have, we are no closer to a proof. This problem and many others, originated in this use of computers, where $\mathbb{R} \approx 2^{-N} \mathbb{Z}$ where we only get N=20 or 30 decimal places and the addition is truncated towards the end. Maybe we can find other measurable subsets $X\subseteq\mathbb{R}$ that show why this elementary result might offer such difficulty.

If we don't have enough decimal places, the approximate relation $a^2+b^2 \approx \sqrt{2}c^2$ becomes an equality $a^2+b^2=\sqrt{2}c^2$ or $\sqrt{2}=\frac{a^2+b^2}{c^2}\in\mathbb{Q}$. This is a standard geometric exercise from Euclid that $\sqrt{2}\notin\mathbb{Q}$.

abcd

Example For a generic irrational point, $x \notin \mathbb{Q}$, the orbit under $S : \theta \mapsto \{a \times \theta\}$ and $T : \theta \mapsto \{b \times \theta\}$ as elements of \mathbb{R}/\mathbb{Z} is still a set of measure zero, yet it is dense in \mathbb{R}/\mathbb{Z} .

$$\overline{\{a^k \times b^\ell \times x : k, \ell \ge 0\}} = \mathbb{R}/\mathbb{Z}$$

This is just like when $\mu(\mathbb{Q})=0$ and yet $\overline{\mathbb{Q}}=\mathbb{R}$, in its entirety. Let's see a quantitative statement of this result:

Let a,b be multiplicative independent. Suppose $\alpha\in\mathbb{R}/\mathbb{Z}$ be diophantine-generic; there exists k such that

$$\left|\alpha - \frac{p}{q}\right| \ge q^{-k} \text{ with } q \ge 2, \quad p, q \in \mathbb{Z}$$

Then $\{a^k \times b^\ell \times \alpha : 0 < k, \ell < N\}$ is $(\log \log N)^{-\kappa}$ dense in \mathbb{R}/\mathbb{Z} for some constant $\kappa > 0$.

Even if we restrict to a single map, our entire decimal system is based on the map $T: \theta \mapsto 10 \times \theta$. Here is a set of measure zero, where every other decimal is zero and the other numbers are in $\{1, 2, \dots, 9\}$.

$$A=\{0.x_1\,0\,x_2\,0\,x_3\,0\cdots:1\leq x_i\leq 9\}$$
 can we show that $A+A=\mathbb{R}/\mathbb{Z}$

We have that $\mu(A) = 0$ can we show that $\mu(A + A) > 0$? Or let's construct a measurable function. What happens if we stop after N digits?

$$A_n = \{0.x_1 \, 0 \, x_2 \, 0 \, x_3 \, 0 \, \dots \, 0 \, x_n : 1 \le x_i \le 9\} \text{ with } \mu(A_n) = \left(1 - \frac{1}{10}\right)^n \times \frac{1}{10^n}$$

Then we could write down a measurable function by adding functions supported on these subsets in various ways:

$$f(x) = \sum \mathbf{1}_{A_n}(x)$$
 and $g(x) = \sum_{n \text{ squarefree}} 2^n \mathbf{1}_{A_n}(x)$

I have not checked for convergence. The next question would be $\mu(f^{-1}([0,\frac{1}{2}]))$ this set is measurable.

What happens if we try to take derivatives of these functions? We could try to find a limit $\frac{1}{\epsilon}(f(x+\epsilon)-f(x))$ for these functions which are roughly straight lines and have that $f'(x)\approx 1$.

Given a dynamical system $T:X\to X$ we could define a smaller subset of the orbit: $\{T^nx:n \text{ squarefree}\}$ and since the density of square-free numbers in $\mathbb Z$ is roughly $\frac{6}{\pi^2}\approx \frac{2}{3}$, we could have a shift-map related to these partial orbits. This might already have a name, like an "factor" or "return-map".

The measurable sets in this paper of $\times a \times b$ are

$$A_{M,N} = \left\{ \{5^k \times 7^\ell \times \sqrt{2}\} : 0 < k < M, 0 < \ell < N \right\} + [-\epsilon, \epsilon]$$

for small enough $0 < \epsilon \ll 1$. The paper seems to be concerned with deviations from uniformity (since that's what we expect) and attempting to quantify that. Here's a sample. What can we say about this series?

$$h(x) = \sum_{M,N \ge 0} (-1)^{M+N} 1_{\mathbf{A}_{M,N}}(x)$$

and any other imaginable statistic. What is the correct averaging factor?

References

[1] Proofs that $\sqrt{2} \notin \mathbb{Q}$

https://math.stackexchange.com/q/2382318 https://math.stackexchange.com/q/451700

Proof that $\sqrt{2} + \sqrt{3} \notin \mathbb{Q}$

https://math.stackexchange.com/q/452078 https://math.stackexchange.com/q/457382

[2] Commuting Automorphisms

Jean Bourgain, Philippe Michel, Elon Lindenstrauss, Akshay Venkatesh **Some Effective Results in** $\times a \times b$ Ergodic Theory and Dynamical Systems, Volume 29, Issue 6, December 2009, pp 1705-1722.

Daniel J. Rudolph $\times 2 \times 3$ invariant measures and entropy Ergodic Theory and Dynamical Systems, Volume 10, Issue 2, June 1990, pp. 395-406.

Harry Furstenburg Disjointness in Ergodic Theory, Minimal Sets, and a Problem in Diophantine Approximation Mathematical Systems Theory, March 1967, Volume 1, Issue 1, pp. 1-49.

[3] ...