## CZ2007 Introduction to Database Systems (Week 5)

**Topic 5: Relational Algebra (1)** 



#### **Copyright Notice**

All course materials (including and not limited to lecture slides, handouts, recordings, assessments and assignments), are solely for your own educational purposes at NTU only. All course materials are protected by copyright, trademarks or other rights.

All rights, title and interest in the course materials are owned by, licensed to or controlled by the University, unless otherwise expressly stated. The course materials shall not be uploaded, reproduced, distributed, republished or transmitted in any form or by any means, in whole or in part, without written approval from the University.

You are also not allowed to take any photograph, video recording, audio recording or other means of capturing images and/or voice of any of the course materials (including and not limited to lectures, tutorials, seminars and workshops) and reproduce, distribute and/or transmit in any form or by any means, in whole or in part, without written permission from the University.

Appropriate action(s) will be taken against you (including and not limited to disciplinary proceedings and/or legal action) if you are found to have committed any of the above or infringed copyright.

## **This Lecture**

- Motivation for relational algebra
- Relational algebraic operators
  - Selection:  $\sigma_{A>100} R_1$
  - $lue{}$  Projection:  $\Pi_{A, B} R_1$
  - □ Union:  $R_1 \cup R_2$
  - □ Intersection:  $R_1 \cap R_2$
  - □ Difference:  $R_1 R_2$
  - Natural Join:  $R_1 \bowtie R_2$
  - □ Theta Join:  $R_1 \bowtie_{R1.A=R2.A \text{ AND } R1.B < R2.B} R_2$

## Relational Algebra: Motivation

- We have <u>specification</u> of an DB application
- We use <u>ER-diagram</u> for a <u>conceptual design</u> of database
- We transform ER-diagram into <u>database schema</u> (i.e., the schemas of a set of tables)
- We <u>normalize</u> the schema, and then insert some tuples into the tables
- Now what?
- How do we perform queries on those tables?
  - Database side: Relational Algebra (RA)
  - User side: Structured Query Language (SQL)

## Relational Algebra: Motivation



## Relational Algebra

- A mathematical way to formulate queries on relations (i.e., tables)
- Has numerous operators for query formulation
- Example
  - $\square$  Given: Two relations R<sub>1</sub>(A, B, C), R<sub>2</sub>(A, B, C)
  - □ Selection:  $\sigma_{A>100} R_1$
  - ightharpoonup Projection:  $\Pi_{A, B} R_1$
  - □ Union:  $R_1 \cup R_2$
  - □ Intersection:  $R_1 \cap R_2$
  - And a few others...

## Selection σ (row-wise operation)

| <u>ID</u> | Name  | Age | School |
|-----------|-------|-----|--------|
| 1234      | Alice | 20  | SCSE   |
| 5678      | Bob   | 20  | EEE    |
| 3742      | Cathy | 22  | SCSE   |
| 9413      | David | 21  | CEE    |

- Query: "Find me the <u>student</u> named <u>Alice</u>"
- $\sigma_{\text{Name} = 'Alice'}$  Students

| <u>ID</u> | Name  | Age | School |
|-----------|-------|-----|--------|
| 1234      | Alice | 20  | SCSE   |

## Selection o

| <u>ID</u> | Name  | Age | School |
|-----------|-------|-----|--------|
| 1234      | Alice | 20  | SCSE   |
| 5678      | Bob   | 20  | EEE    |
| 3742      | Cathy | 22  | SCSE   |
| 9413      | David | 21  | CEE    |

- Query: "Find the <u>students</u> in <u>SCSE</u>"
- $\sigma_{School = 'SCSE'}$  Students

| <u>ID</u> | Name  | Age | School |
|-----------|-------|-----|--------|
| 1234      | Alice | 20  | SCSE   |
| 3742      | Cathy | 22  | SCSE   |

### Selection o

| <u>ID</u> | Name  | Age | School |
|-----------|-------|-----|--------|
| 1234      | Alice | 20  | SCSE   |
| 5678      | Bob   | 20  | EEE    |
| 3742      | Cathy | 22  | SCSE   |
| 9413      | David | 21  | CEE    |

- Query: "Find the SCSE students under 21"
- $\sigma_{\text{School}} = \sigma_{\text{SCSE'}} = \sigma_{\text{AND Age}} < 21 \text{ Students}$

|  | R | e | S | u | lt | :S |
|--|---|---|---|---|----|----|
|  |   |   |   |   |    |    |

| <u>ID</u> | Name  | Age | School |
|-----------|-------|-----|--------|
| 1234      | Alice | 20  | SCSE   |

### Selection σ

| <u>ID</u> | Name  | Age | School |
|-----------|-------|-----|--------|
| 1234      | Alice | 20  | SCSE   |
| 5678      | Bob   | 20  | EEE    |
| 3742      | Cathy | 22  | SCSE   |
| 9413      | David | 21  | CEE    |

- Query: "Find the <u>students</u> who are either in <u>SCSE</u> or <u>under 21</u>"
- $\sigma_{School = 'SCSE' OR Age < 21}$  Students

## Projection $\Pi$ (column-wise)

| <u>ID</u> | Name  | Age | School |
|-----------|-------|-----|--------|
| 1234      | Alice | 20  | SCSE   |
| 5678      | Bob   | 20  | EEE    |
| 3742      | Cathy | 22  | SCSE   |
| 9413      | David | 21  | CEE    |

- Query: "Find the <u>ID</u>s and <u>Names</u> of all <u>students</u>"
- $\blacksquare$   $\Pi_{\text{ID, Name}}$  Students

|   |   | _ |    | . 1 | 1 | _ |  |
|---|---|---|----|-----|---|---|--|
|   | K | e | SI | Ш   |   | S |  |
| • |   |   |    |     | _ | _ |  |
|   |   |   |    |     |   |   |  |

| <u>ID</u> | Name  |
|-----------|-------|
| 1234      | Alice |
| 5678      | Bob   |
| 3742      | Cathy |
| 9413      | David |
|           |       |

## **Combining Operators**

#### **Students**

| <u>ID</u> | Name  | Age | School |
|-----------|-------|-----|--------|
| 1234      | Alice | 20  | SCSE   |
| 5678      | Bob   | 20  | EEE    |
| 3742      | Cathy | 22  | SCSE   |
| 9413      | David | 21  | CEE    |

- Query: "Find the <u>ID</u>s and <u>Name</u>s of all students in SCSE"
- $\blacksquare$   $\Pi_{ID, Name}$  ( $\sigma_{School = 'SCSE'}$  Students)

| <u>ID</u> | Name  |
|-----------|-------|
| 1234      | Alice |
| 3742      | Cathy |

## **Combining Operators**

| <u>ID</u> | Name  | Age | School |
|-----------|-------|-----|--------|
| 1234      | Alice | 20  | SCSE   |
| 5678      | Bob   | 20  | EEE    |
| 3742      | Cathy | 22  | SCSE   |
| 9413      | David | 21  | CEE    |

- Query: "Find the <u>ID</u>s and <u>Name</u>s of all <u>students</u> in <u>SCSE</u>"
- How about  $\sigma_{School = 'SCSE'}(\Pi_{ID. Name} Students)$ ?
- Wrong
- The projection goes before the selection here
- Since the projection eliminates "School', the selection cannot be performed

#### **Union** ∪

#### **Students**

| <u>Name</u> | Age |
|-------------|-----|
| Alice       | 20  |
| Bob         | 21  |
| Cathy       | 22  |
| David       | 21  |

#### Volunteer

| <u>Name</u> | Age |
|-------------|-----|
| Cathy       | 22  |
| David       | 21  |
| Eddie       | 43  |
| Fred        | 35  |

| Name  | Age |
|-------|-----|
| Alice | 20  |
| Bob   | 21  |
| Cathy | 22  |
| David | 21  |
| Eddie | 43  |
| Fred  | 35  |

- Query: "Find the persons who are either students or volunteers"
- Students U Volunteer

#### **Union** $\cup$

#### **Students**

| <u>Name</u> | Age |
|-------------|-----|
| Alice       | 20  |
| Bob         | 21  |
| Cathy       | 22  |
| David       | 21  |

#### Volunteer

| <u>Name</u> | Age |
|-------------|-----|
| Cathy       | 22  |
| David       | 21  |
| Eddie       | 43  |
| Fred        | 35  |

| Name  | Age |
|-------|-----|
| Alice | 20  |
| Bob   | 21  |
| Cathy | 22  |
| David | 21  |
| Eddie | 43  |
| Fred  | 35  |

- Query: "Find the persons who are either <u>students</u> or <u>volunteers</u>"
- Students U Volunteer
- Note 1: Duplicate tuples are automatically removed

#### **Union** ∪

#### **Students**

| <u>Name</u> | Age |
|-------------|-----|
| Alice       | 20  |
| Bob         | 21  |
| Cathy       | 22  |
| David       | 21  |

#### **Volunteer**

| <u>Name</u> | Age |
|-------------|-----|
| Cathy       | 22  |
| David       | 21  |
| Eddie       | 43  |
| Fred        | 35  |

#### **Results**

Name

Alice

Bob

Cathy

**David** 

Eddie

Fred

- Query: "Find the <u>names</u> of the persons who are either <u>students</u> or <u>volunteers</u>"
- $\blacksquare$   $\Pi_{\text{Name}}$  (Students  $\cup$  Volunteer)
- ( $\Pi_{\mathsf{Name}}$  Students)  $\cup$  ( $\Pi_{\mathsf{Name}}$  Volunteer)

## **Union** $\cup$

#### **Students**

| <u>Name</u> | Age |
|-------------|-----|
| Alice       | 20  |
| Bob         | 21  |
| Cathy       | 22  |
| David       | 21  |

#### Volunteer

| <u>ivame</u> |
|--------------|
| Cathy        |
| David        |
| Eddie        |
| Fred         |

#### **Results**

Name

Alice

Bob

Cathy

David

Eddie

Fred

- Query: "Find the <u>persons</u> who are either <u>students</u> or <u>volunteers</u>"
- Students U Volunteer ?
- Wrong
- Note 2: The two sides of a union must have the same schema (i.e., the same set of attributes)
- Correct solution: ( $\Pi_{\mathsf{Name}}$  Students)  $\cup$  Volunteer

#### Intersection

#### **Students**

| <u>Name</u> | Age |
|-------------|-----|
| Alice       | 20  |
| Bob         | 21  |
| Cathy       | 22  |
| David       | 21  |

#### Volunteer

| <u>Name</u> | Age |
|-------------|-----|
| Cathy       | 22  |
| David       | 21  |
| Eddie       | 43  |
| Fred        | 35  |

| Name  | Age |
|-------|-----|
| Cathy | 22  |
| David | 21  |

- Query: "Find the persons who are both <u>students</u> and <u>volunteers</u>"
- Students Volunteer
- Note 1: Duplicate tuples are automatically removed

#### Intersection

#### **Students**

| <u>Name</u> | Age |
|-------------|-----|
| Alice       | 20  |
| Bob         | 21  |
| Cathy       | 22  |
| David       | 21  |

#### Volunteer

Name
Cathy
David
Eddie
Fred



Name

Cathy

David

- Query: "Find the persons who are both <u>students</u> and <u>volunteers</u>"
- $(\Pi_{\mathsf{Name}} \mathsf{Students}) \cap \mathsf{Volunteer}$
- Note 2: The two sides of an intersection must have the same schema (i.e., the same set of attributes)

#### Difference –

#### **Students**

| <u>Name</u> | Age |
|-------------|-----|
| Alice       | 20  |
| Bob         | 21  |
| Cathy       | 22  |
| David       | 21  |

#### Volunteer

| <u>Name</u> | Age |
|-------------|-----|
| Cathy       | 22  |
| David       | 21  |
| Eddie       | 43  |
| Fred        | 35  |

| Name  | Age |
|-------|-----|
| Alice | 20  |
| Bob   | 21  |

- Query: "Find the persons who are <u>students</u> but not <u>volunteers</u>"
- Students Volunteer
- Note 1: Duplicate tuples are automatically removed

#### Difference –

#### **Students**

| <u>Name</u> | Age |
|-------------|-----|
| Alice       | 20  |
| Bob         | 21  |
| Cathy       | 22  |
| David       | 21  |

#### Volunteer

| <u>Name</u> | Age |
|-------------|-----|
| Cathy       | 22  |
| David       | 21  |
| Eddie       | 43  |
| Fred        | 35  |

| Name  | Age |
|-------|-----|
| Eddie | 43  |
| Fred  | 35  |

- Query: "Find the persons who are <u>volunteers</u> but not <u>students</u>"
- Volunteer Students

#### Difference –

#### **Students**

| <u>Name</u> | Age |
|-------------|-----|
| Alice       | 20  |
| Bob         | 21  |
| Cathy       | 22  |
| David       | 21  |

#### Volunteer

Name
Cathy
David
Eddie
Fred



- Query: "Find the persons who are <u>students</u> but not <u>volunteers</u>"
- $(\Pi_{Name}$  Students) Volunteer
- Note 2: The two sides of a difference must have the same schema (i.e., the same set of attributes)

| <u>Name</u> | <u>Course</u> | Grade |
|-------------|---------------|-------|
| Alice       | DB            | Α     |
| Bob         | DB            | В     |

| <u>Name</u> | Course | Grade |
|-------------|--------|-------|
| Alice       | DM     | С     |

| <u>Name</u> | Course | Grade |
|-------------|--------|-------|
| Bob         | Al     | В     |
| Cathy       | CG     | Α     |

| <u>Name</u> | Course | Grade |
|-------------|--------|-------|
| Alice       | DB     | Α     |
| Alice       | DM     | С     |
| Bob         | DB     | В     |
| Bob         | Al     | В     |
| Cathy       | CG     | Α     |
| David       | NN     | С     |

- Query: "Find the students who have taken DB and DM, but not AI or CG"
- $((\sigma_{\text{Course = 'DB'}} \text{Grades}) \cap (\sigma_{\text{Course = 'DM'}} \text{Grades})) ((\sigma_{\text{Course = 'AI'}} \text{Grades}) \cup (\sigma_{\text{Course = 'CG'}} \text{Grades}))$
- Result is empty set
- Wrong

| <u>Name</u> | <u>Course</u> | Grade |
|-------------|---------------|-------|
| Alice       | DB            | Α     |
| Bob         | DB            | В     |

| <u>Name</u> | Course | Grade |
|-------------|--------|-------|
| Alice       | DM     | С     |

| Name  | Course | Grade |
|-------|--------|-------|
| Bob   | Al     | В     |
| Cathy | CG     | Α     |

| <u>Name</u> | Course | Grade |
|-------------|--------|-------|
| Alice       | DB     | Α     |
| Alice       | DM     | С     |
| Bob         | DB     | В     |
| Bob         | Al     | В     |
| Cathy       | CG     | Α     |
| David       | NN     | С     |

- Query: "Find the students who have taken DB and DM, but not AI or CG"
- $((\Pi_{\mathsf{Name}} \, \sigma_{\mathsf{Course} \, = \, '\mathsf{DB'}} \, \mathsf{Grades}) \cap (\Pi_{\mathsf{Name}} \, \sigma_{\mathsf{Course} \, = \, '\mathsf{DM'}} \, \mathsf{Grades})) \\ ((\Pi_{\mathsf{Name}} \, \sigma_{\mathsf{Course} \, = \, '\mathsf{AI'}} \, \mathsf{Grades}) \cup (\Pi_{\mathsf{Name}} \, \sigma_{\mathsf{Course} \, = \, '\mathsf{CG'}} \, \mathsf{Grades}))$

| <u>Name</u> | Course | Grade |
|-------------|--------|-------|
| Alice       | DB     | Α     |
| Bob         | DB     | В     |
| Bob         | Al     | В     |
| Cathy       | CG     | Α     |
| David       | NN     | С     |

| <u>Name</u> | Course | Grade |
|-------------|--------|-------|
| Alice       | DB     | Α     |
| Alice       | DM     | С     |
| Bob         | DB     | В     |
| Bob         | Al     | В     |
| Cathy       | CG     | Α     |
| David       | NN     | С     |

- Query: "Find the students who have never taken DM"
- $\sigma_{\text{Course} \neq 'DM'}$  Grades
- Alice has taken DM but still appear in the result
- Wrong

| <u>Name</u> | Course | Grade |
|-------------|--------|-------|
| Alice       | DB     | Α     |
| Bob         | DB     | В     |
| Bob         | ΑI     | В     |
| Cathy       | CG     | Α     |
| David       | NN     | С     |

| Name  | Course | Grade |
|-------|--------|-------|
| Alice | DM     | С     |

| <u>Name</u> | Course | Grade |
|-------------|--------|-------|
| Alice       | DB     | Α     |
| Alice       | DM     | С     |
| Bob         | DB     | В     |
| Bob         | Al     | В     |
| Cathy       | CG     | Α     |
| David       | NN     | C     |

- Query: "Find the students who have never taken DM"
- Grades  $(\sigma_{\text{Course} = 'DM'}, \text{Grades})$
- Alice has taken DM but still appear in the result
- Wrong

| <u>Name</u> |
|-------------|
| Alice       |
| Bob         |
| Bob         |
| Cathy       |
| David       |

| <u>Name</u> | Course | Grade |
|-------------|--------|-------|
| Alice       | DB     | Α     |
| Alice       | DM     | С     |
| Bob         | DB     | В     |
| Bob         | Al     | В     |
| Cathy       | CG     | Α     |
| David       | NN     | С     |



- Query: "Find the students who have never taken DM"
- $(\Pi_{\text{Name}} \text{ Grades}) (\Pi_{\text{Name}} \sigma_{\text{Course} = 'DM'} \text{ Grades})$

#### Natural Join ⋈

#### **Students**

| <u>NRIC</u> | Name  |
|-------------|-------|
| 11          | Alice |
| 2           | Bob   |
| 33          | Cathy |
| 4           | David |

#### **Phones**

| <u>NRIC</u> | <u>Number</u> |
|-------------|---------------|
| 11          | 9123234       |
| 11          | 8635168       |
| 33          | 8213654       |
| 5           | 9653154       |

| NRIC | Name  | Number  |
|------|-------|---------|
| 11   | Alice | 9123234 |
| 11   | Alice | 8635168 |
| 33   | Cathy | 8213654 |

- Query: "Find the NRIC, Name, and Phone of each student, omitting those without a phone" (those without phone will not appear in table)
- Students ⋈ Phones
- Note 1: The join is performed based on the common attributes of the two relations
- Note 2: Each common attribute appears only once in the result

#### Natural Join ⋈

#### **Students**

| <u>Name</u> | School |
|-------------|--------|
| Alice       | SCSE   |
| Bob         | EEE    |
| Cathy       | CEE    |
| David       | SCSE   |

#### **Donations**

| <u>Name</u> | Amount |
|-------------|--------|
| Cathy       | 100    |
| David       | 200    |
| Eddie       | 300    |
| Fred        | 400    |

| Name  | School | Amount |
|-------|--------|--------|
| Cathy | CEE    | 100    |
| David | SCSE   | 200    |

- Students ⋈ Donations
- Meaning: "For those students who have made donation, find their names, schools, and amounts of their donations"

#### Natural Join ⋈

#### **Students**

Name School
Alice SCSE
Bob EEE
Cathy CEE
David SCSE

#### **Donations**

| <u>Name</u> | Amount |
|-------------|--------|
| Cathy       | 100    |
| David       | 200    |
| Eddie       | 300    |
| Fred        | 400    |

| Name  | School | Amount |
|-------|--------|--------|
| David | SCSE   | 200    |

- $(\sigma_{School = 'SCSE'})$  Students)  $\bowtie$  Donations
- Meaning: "For those SCSE students who have made a donation, find their names, schools, and amounts of their donations"

**Results** 

Name

Alice

#### Grades

| <u>Name</u> | Course | Grade |
|-------------|--------|-------|
| Alice       | DB     | Α     |
| Alice       | DM     | С     |
| Bob         | DB     | В     |
| Bob         | NN     | В     |
| Cathy       | SP     | В     |
| Cathy       | NN     | Α     |

#### CrsSch

| Course | School |
|--------|--------|
| DB     | SCSE   |
| DM     | SCSE   |
| Al     | SCSE   |
| NN     | EEE    |
| SP     | EEE    |

- Query: "Find the students who have taken SCSE courses but not EEE courses"
- $\Pi_{\text{Name}}$  ( Grades  $\bowtie$  ( $\sigma_{\text{School} = 'SCSE'}$  CrsSch) )  $\Pi_{\text{Name}}$  ( Grades  $\bowtie$  ( $\sigma_{\text{School} = 'EEE'}$  CrsSch) )

#### **Grades**

| <u>Name</u> | Course | Grade |
|-------------|--------|-------|
| Alice       | DB     | Α     |
| Alice       | DM     | С     |
| Bob         | DB     | В     |
| Bob         | NN     | В     |
| Cathy       | SP     | В     |
| Cathy       | NN     | Α     |

#### CrsSch

| Course | School |
|--------|--------|
| DB     | SCSE   |
| DM     | SCSE   |
| ΑI     | SCSE   |
| NN     | EEE    |
| SP     | EEE    |

- Query: "Find the students who have taken only EEE courses"
- How to eliminate Bob who has taken SCSE courses?

Results

**Name** 

Cathy

#### **Grades**

| Name  | Course | Grade |
|-------|--------|-------|
| Alice | DB     | Α     |
| Alice | DM     | С     |
| Bob   | DB     | В     |
| Bob   | NN     | В     |
| Cathy | SP     | В     |
| Cathy | NN     | Α     |

#### CrsSch

| Course | School |
|--------|--------|
| DB     | SCSE   |
| DM     | SCSE   |
| ΑI     | SCSE   |
| NN     | EEE    |
| SP     | EEE    |

- Query: "Find the students who have only taken EEE courses"
- $\Pi_{\text{Name}}$  Grades  $(\Pi_{\text{Name}}$  Grades  $\bowtie$   $(\sigma_{\text{School}} <> 'EEE'$  CrsSch))

## Theta Join ⋈ condition

#### **Students**

| <u>SName</u> | School |
|--------------|--------|
| Alice        | SCSE   |
| Bob          | EEE    |
| Cathy        | CEE    |
| David        | SCSE   |

#### **Donations**

| <u>Name</u> | Amount |
|-------------|--------|
| Cathy       | 100    |
| David       | 200    |
| Eddie       | 300    |
| Fred        | 400    |

| SName | Name  | School | Amount |
|-------|-------|--------|--------|
| Cathy | Cathy | CEE    | 100    |
| David | David | SCSE   | 200    |

- Query: "For those students who have made donations, find their names, schools, and amounts of their donations"
- Students ⋈<sub>Sname=Name</sub> Donations
- Difference from natural join: Duplicate attributes will NOT be removed from the results
- In general, the join condition in a theta join can also be inequalities

## Theta Join ⋈ condition

#### Quiz1

| <u>Name</u> | Score |
|-------------|-------|
| Alice       | 70    |
| Bob         | 90    |
| Cathy       | 80    |
| David       | 100   |

#### Quiz2

| <u>Name</u> | Score |
|-------------|-------|
| Alice       | 80    |
| Bob         | 90    |
| Cathy       | 90    |
| David       | 70    |

| Name  | Score | Name  | Score |
|-------|-------|-------|-------|
| Alice | 70    | Alice | 80    |
| Cathy | 80    | Cathy | 90    |

- Query: "Find the students who score higher in quiz 2 than quiz 1"
- Quiz1 ⋈<sub>Quiz1.Name</sub> = Quiz2.Name AND Quiz1.Score < Quiz2.Score Quiz2
- Note: In the join condition, whenever there are ambiguous attribute names (e.g., Score), we need to add the table names along with the attribute names to eliminate the ambiguity (e.g., by using Quiz1.Score instead of Score)

#### Cartesian Product ×

# Students Name Age Alice 19 Bob 22



#### **Results** Age ID Name Name Alice 19 DB C2 19 Algo Alice 22 C1 DB Bob

22

Bob

- Effect: Theta join without a condition
- Query: "Create a table that provides all possible student-course combinations"
- Students × Donations

Algo

## Next lecture:

**Topic 5: Relational Algebra (2)**