Language and IDE Modularization and Composition with MPS

Markus Voelter

Received: date / Accepted: date

Abstract Language and IDE modularization and composition is an important building block for working efficiently with DSLs. Historically, this has been a challenge because many grammar formalisms are not closed under composition, hence syntactic composition of languages is challenging. Composing static and dynamic semantics can also be hard, at least in the general case. Finally, a lot of existing work does not consider IDEs for the composed and extended languages. In this paper, I will show how the projectional language workbench JetBrains MPS solves most of these issues. The main part of the paper is a set of extensive examples that show the various kinds of Extension and modularization. The last section contains an evaluation that identifies the strong and weak aspects of modularization, composition and Extension in MPS, and suggests a couple of improvements.

Keywords DSLs · language composition · language Extension · JetBrains MPS · Language Workbench

1 Introduction

Programmers typically use general purpose languages (GPLs) for developing software systems. The term "general-purpose" refers to the fact that they can be used for any programming task. They are Turing complete, and provide means to build custom abstractions using classes, higher-order functions, or logic predicates, depending on the particular language. Traditionally, a complete software system has been implemented using a single GPL, plus a number of configuration files. However, more recently this has started to change; systems are built using a multitude of languages.

Markus Voelter Oetztaler Strasse 38, Stuttgart, Germany E-mail: voelter@acm.org

One reason is the rising level of sophistication and complexity of execution infrastructures. For example, web applications consist of business logic on the server, a database backend, business logic on the client as well as presentation code on the client, most of these implemented with their own set of languages. A particular language stack could use Java, SQL, JavaScript and HTML. The second reason driving multi-language programming is the increasing popularity of domain-specific languages (DSLs). These are specialized, often small languages that are optimized for expressing programs in a particular application domain. Such an application domain may be a technical domain (e.g. database querying, user interface specification or scheduling) or a business domain (such as insurance contracts, refrigerator cooling algorithms or state-based programs in embedded systems). DSLs support these domains more effectively than GPLs because they provide linguistic abstractions for common idioms encountered in those domains. Using custom linguistic abstractions makes the code more concise, more accessible to formal analysis, verification, transformation and optimization, and possibly usable by non-programmer domain experts.

The use of multi-language programming raises the question how the syntax, semantics, and Integrated Development Environments (IDEs) of the various languages can be integrated. Especially syntactic integration has traditionally been very hard [24] and hence is often not supported for a particular combination of languages, so program parts expressed in different languages reside in different files. References among "common" things in these different program parts are implemented by using name-based references. For some combinations of languages, the IDE may be aware of the "integration by name" and check the consistency. In some rare cases, syntactic integration between specific pairs of languages has been built, for example, embedded SQL in Java [4].

However, building specialized integrations between two languages is very expensive, especially if IDE support like code completion, syntax coloring, static error checking, refactoring or debugging is to be provided as well. So this is done only for combinations of very widely used languages, if at all. Building such an integration between Java and a company-specific DSL for financial calculations is infeasible. A more systematic approach for language and IDE modularization and composition is required. Such an approach has to address the following concerns:

- The concrete and the abstract syntax of the two languages have to be composed. This may require the Embedding of one syntax into another one. This, in turn, requires modular syntax definitions.
- The static semantics (constraints and type system) have to be integrated. For example, new types have to be "made valid" for existing operators.
- The execution semantics have to be combined as well. In practice, this may mean mixing the code generated from the composed languages, or composing the generators.
- Finally, the IDE that provides code completion, syntax coloring, static checks and other relevant services has to be composed as well.

In this paper we focus on JetBrains MPS ¹ as a means of demonstrating language composition approaches. Language composition is the integration of language modules regarding syntax, static semantics, execution semantics and the IDE. MPS is a projectional editor and no grammars or parsers are used. Instead, editing gestures *directly* modify the abstract syntax tree (AST), and the representation on the screen is projected from the changing AST. As we show in this paper, this simplifies the syntactic aspect of language composition. Also, MPS been designed to be used for developing sets of integrated languages, and not just one or more standalone languages. This is exemplified by its extensible transformation and type checking frameworks.

1.1 Contribution and Structure of the paper

In this paper we make the following contributions. First, we identify four different composition approaches (Referencing, Extension, Reuse and Embedding) and classify them regarding dependencies and syntactic mixing. Second, we demonstrate how to implement these four approaches with JetBrains MPS. While other, parser-based approaches can do language composition to some extent as well, it is especially simple to do with projectional editors. So our third contribution is an implicit illustration of the benefits of using projectional editors in the context of language composition, based on the MPS example.

The paper is structured as follows. In Section 1.3 we define a set of terms and concepts used throughout the paper. Section 1.4 outlines the various kinds of language and IDE modularization and composition discussed in this paper, and provides rationale why we discuss those for approaches, and not others. Then we describe how projectional editors work in general, and how MPS works specifically (Section 2). We develop the core language which acts as the basis for the Extension and composition examples in Section 3. This section also serves as a very brief tutorial on language definition in MPS. The main part of the paper, the implementation of the various Extension and composition approaches, is discussed in Section 4. We discuss related work in Section ??. Finally, Section 5 discusses what works well and at what could be improved in MPS with regards to language and IDE modularization and composition.

1.2 Additional Resources

The example code used in this paper can be found at github.com² and works with MPS 2.0. A set of screencasts that walk through all the example code is available on Youtube³. This paper is not a complete MPS tutorial. We refer to the Language Workbench Competition (LWC 11) MPS tutorial⁴ for details.

 $^{^{1}}$ http://www.jetbrains.com/mps/

² https://github.com/markusvoelter/MPSLangComp-MPS2.0

³ http://www.youtube.com/watch?v=lNMRMZk8KBE

 $^{^4~\}rm http://code.google.com/p/mps-lwc11/wiki/GettingStarted$

1.3 Terminology

Programs are represented in two ways: concrete syntax (CS) and abstract syntax (AS). Users use the CS as they write or change programs. The AS is a data structure that contains all the data expressed with the CS, but without the notational details. The AS is used for analysis and downstream processing of programs. A language definition includes the CS as well as the AS, as well as rules for mapping one to the other. Parser-based systems map the CS to the AS. Users interact with a stream of characters, and a parser derives the abstract syntax tree (AST) by using a grammar. Projectional editors go the other way round. User editing gestures directly change the AST, the concrete syntax being a mere projection that looks (and mostly feels) like text. MPS is a projectional editor.

The AS of programs are primarily trees of program *elements*. Every element (except the root) is contained by exactly one parent element. Syntactic nesting of the CS corresponds to a parent-child relationship in the AS. There may also be any number of non-containing cross-references between elements, established either directly during editing (in projectional systems) or by a linking phase that follows parsing.

A program may be composed from several program fragments that may reference each other. Each fragment f is a standalone AST. In file-based tools, a fragment corresponds to a file. E_f is the set of program elements in a fragment.

A language l defines a set of language concepts C_l and their relationships. We use the term concept to refer to CS, AS plus the associated type system rules and constraints as well as some definition of its semantics. In a fragment, each program element e is an instance of a concept c defined in some language l. We define the concept-of function co to return the concept of which a program element is an instance: $co(element) \Rightarrow concept$. Similarly we define the language-of function lo to return the language in which a given concept is defined: $lo(conept) \Rightarrow language$. Finally, we define a fragment-of function fo that returns the fragment that contains a given program element: $fo(element) \Rightarrow fragment$.

We also define the following sets of relations between program elements. Cdn_f is the set of parent-child relationships in a fragment f. Each $c \in C$ has the properties parent and child. $Refs_f$ is the set of non-containing cross-references between program elements in a fragment f. Each reference r in $Refs_f$ has the properties from and to, which refer to the two ends of the reference relationship. Finally, we define an inheritance relationship that applies the Liskov Substitution Principle [28] to language concepts. A concept c_{sub} that extends another concept c_{super} can be used in places where an instance of c_{super} is expected. Inh_l is the set of inheritance relationships for a language l. Each $i \in Inh_l$ has the properties super and sub.

An important concern in language and IDE modularization and composition is the notion of independence. An *independent language* does not depend on other languages. An independent language l can be defined as a language

for which the following hold:

$$\forall r \in Refs_l \mid lo(r.to) = lo(r.from) = l \tag{1}$$

$$\forall s \in Inh_l \mid lo(s.super) = lo(s.sub) = l \tag{2}$$

$$\forall c \in Cdn_l \mid lo(c.parent) = lo(c.child) = l \tag{3}$$

An *independent fragment* is one where all references stay within the fragment:

$$\forall r \in Refs_f \mid fo(r.to) = fo(r.from) = f \tag{4}$$

We distinguish *homogeneous* and *heterogeneous* fragments. A homogeneous fragment is one where all elements are expressed with the same language:

$$\forall e \in E_f \mid lo(e) = l \tag{5}$$

$$\forall c \in Cdn_f \mid lo(c.parent) = lo(c.child) = l \tag{6}$$

In this paper we consider the semantics of a language l_1 to be defined via a transformation that maps a program expressed in l_1 to a program in another language l_2 that has the same observable behavior. The observable behavior can be determined in various ways, for example using a sufficiently large set of test cases. A discussion of alternative ways to define language semantics is beyond the scope of this paper, and, in particular, we do not discuss interpreters as an alternative to transformations. In our experience, transformations are by far the most used approach for defining semantics, so the focus on transformations is not a significant limitation in practice.

The paper emphasizes *IDE* modularization and composition in addition to language modularization and composition. When referring to IDE services, we mean syntax highlighting, code completion and static error checking. Other concerns are relevant in IDEs, including refactoring, quick fixes, support for testing, debugging and version control integration. While all of these are supported by MPS in a modular and composable way, we do not discuss those aspects in this paper to keep the paper reasonable is length.

1.4 Classification of Composition Approaches

In this paper we have identify the following four modularization and composition approaches: Referencing, Extension, Reuse and Embedding. Below is an intuitive description of each approach; stricter definitions follow in the remainder of the paper.

■ Referencing. Referencing refers to the case where a program is expressed in two languages A and B, but the parts expressed in A and B are kept in separate homogeneous fragments (files), and only name-based references connect the fragments. The Referencing language has a direct dependency on the referenced language. An example for this case is a language that defines user interface (UI) forms for data structures defined by another language. The UI language references the data structures defined in a separate program.

■ Extension. Extension also allows a dependency of the extending language to the extended languages (also called base language). However, in this case the code written in the two languages resides in a single, heterogeneous fragments, i.e. syntactic composition is required. An example would be the Extension of Java or C with new types, operators or literals.

- Reuse. Reuse is similar to Referencing in that the respective programs reside in separate fragments and only references connect those fragments. However, in contrast to Referencing, no direct dependencies between the languages are allowed. An example would be a persistence mapping language that can be used together with different data structure definition languages. To make this possible, it cannot depend on any particular data definition language.
- Embedding. Embedding combines the syntactic integration introduced by Extension with not having dependencies introduced by Reuse. So independent languages can still be used in the same heterogeneous fragment. An examples includes the Embedding of a reusable expression language into another DSL. Since neither of the two composed languages can have direct dependencies, the same expression language can be embedded into different DSLs, and a specific DSL could integrate different expression languages.

independent language dependencies dependent	Reuse	Embedding
	Referencing	Extension
,	homogeneous	heterogeneous
	fragment structure	

Fig. 1 We distinguish the four modularization and composition approaches regarding their consequences for fragment structure and language dependencies. The dependencies dimension captures whether the languages have to be designed specifically for a specific composition partner or not. Fragment structure captures whether the composition approach supports mixing of the concrete syntax of the composed languages or not.

As can be seen from the above descriptions, we distinguish the four approaches regarding fragment structure and language dependencies, as illustrated in Fig. 1. Fig. 2 shows the relationships between fragments and languages in these cases. We used these two criteria as the basis for this paper because we consider them essential for the following reasons. Language dependencies capture whether a language has to be designed with knowledge about a particular composition partner in mind in order to be composable with that partner. It is desirable in many scenarios that languages be composable without previous knowledge about all possible composition partners. Fragment Structure captures whether the two composed languages can be syntactically mixed. Since modular concrete syntax can be a challenge, this is not always easily possible, though often desirable.

Other classification approaches have been proposed. In particular, in [32], Mernik et al. propose a number of modularization approaches, among them

Fig. 2 The relationships between fragments and languages in the four composition approaches. Boxes represent fragments, rounded boxes are languages. Dotted lines are dependencies, solid lines references/associations. The shading of the boxes represent the two different languages.

extension and restriction. In the context of the classification proposed in our paper, restriction is a form of Extension in the following sense: to restrict a language, we create an Extension that prohibits the use of some language concepts in certain contexts. We discuss this at the end of Section 4.2. Mernik et al. also propose Piggybacking and Pipelining as ways to Reuse existing generators or interpreters. We don't include these approaches in our discussion here because they don't compose languages — they just chain their transformations.

1.5 Case Study

In this paper we illustrate the language and IDE modularization and composition approaches with MPS based on a set of example languages. At the center is a simple entities language. We then build additional languages to illustrate the composition approaches introduced above (Fig. 3). The uispec language illustrates Referencing with entities. relmapping is an example of Reuse with separated generated code. rbac illustrates Reuse with intermixed generated code. uispec_validation demonstrates Extension (of the uispec language) and Embedding with regards to the expressions language. We also show Extension by extending MPS' built in BaseLanguage, a variant of Java.

Fig. 3 entities is the central language. uispec defines UI forms for the entities. uispec_validation adds validation rules, and composes a reusable expressions language. relmapping provides a reusable database mapping language, relmapping_entities adapts it to the entities language. rbac is a reusable language for specifying permissions; rbac_entities adapts this language to the entities language.

2 How MPS works

The JetBrains Meta Programming System⁵ is a projectional language workbench available as Open Source software under the Apache 2.0 license. The term Language Workbench was coined by Martin Fowler in 2004. In [15] he defines a language workbench as a tool with the following characteristics:

- 1. Users can freely define languages which are fully integrated with each other.
- 2. The primary source of information is a persistent abstract representation.
- 3. A DSL is defined in three main parts: schema, editor(s), and generator(s).
- 4. Language users manipulate a DSL through a projectional editor.
- 5. A language workbench can persist incomplete or contradictory information.

MPS exhibits all of these characteristics. MPS' most distinguishing feature is its projectional editor. This means that all text, symbols, and graphics are projected, and not parsed. Projectional editing is well-known from graphical modeling tools (UML, Entity-Relationship, State Charts): only the model structure is persisted, often using XML or a database. For editing purposes, graphical editors project the abstract syntax using graphical shapes. Users use mouse gestures and keyboard actions tailored to graphical editing to modify the abstract model structure directly. While the CS of the model does not have to be stored because it is specified as part of the language definition and hence known by the projection engine, graphical modeling tools usually also store information about the visual layout.

Projectional editing can also be used for textual syntax. However, since the projection looks like text, users expect editing gestures known from "real text" to work. MPS achieves this quite well (it is beyond the scope of this paper to describe how MPS achieves this). The following is a list of benefits of the projectional editing approach:

- No grammar or parser is required. Editing directly changes the underlying structure. Projectional editors can handle unparseable code. Language composition is made easy, because it cannot result in ambiguous grammars.
- Graphical, symbolic, tabular and textual notations can be mixed and combined, and defined with the same formalism and approach. For example, a graphical tool for editing state machines can embed a textual expression language for editing the guard conditions on transitions⁶.
- Since projectionally defined languages by definition need an IDE for editing (it has to do the projection!), language definition and extension always implies IDE definition and extension. The IDE will provide code completion, error checking and syntax highlighting for all languages, even when they are composed.

⁵ http://jetbrains.com/mps

⁶ Intentional's Domain Workbench has demonstrated this repeatedly, for example in [44]. As of 2012, MPS can do text, symbols (such as big sum signs or fraction bars) and tables. Graphics will be supported in 2013.

Because the model is stored independent of its concrete notation, it is possible to represent the same model in different ways simply by providing several projections. Different viewpoints of the overall program can be stored in one model, but editing can still be viewpoint-specific. It is also possible to store out-of-band data (i.e. annotations on the core model/program). Examples of this include documentation, pointers to requirements (traceability) or feature dependencies in the context of product lines.

Projectional editors also have drawbacks. The first one is that editing the projected representation as opposed to "real text" needs some time to get used to. Without specific customization, every program element has to be selected from a drop-down list to be "instantiated". However, MPS provides editor customizations to enable an editing experience that resembles modern IDEs that use automatically expanding code templates. This makes editing in MPS quite convenient and productive in all but the most exceptional cases. The second drawback is that models are not stored as readable text, but rather as an XML-serialized AST. Integrating XML files with an otherwise ASCIIbased development infrastructure can be a challenge. MPS addresses the most critical aspect of this drawback by supporting diff and merge on the level of the projected CS. A final drawback is that MPS is proprietary in the sense that it is not based on any industry standards. For example, it does not rely on EMF⁷ or another widely used modeling formalism. However, since MPS' meta-metamodel is extremely close to EMF Ecore, it is trivial to build an EMF exporter. Also, all other language workbenches also do not support portability of the language definition beyond the abstract syntax — which is the simplest aspect in terms of implementation effort.

MPS has been designed to work with sets of integrated languages. This makes MPS particularly well suited to demonstrate language and IDE modularization and composition techniques. In particular, the following three characteristics are important in this context:

- Composable Syntax. Depending on the particular composition approach, composition of the CS is required. In traditional, grammar-based systems, combining independently developed grammars can be a problem: many grammar classes are not closed under composition, and various invasive changes (such as left-factoring or redefinition of terminals or non-terminals), or unwanted syntactic escape symbols are required [24]. As we will see, this is not the case in MPS. Arbitrary languages can be combined syntactically.
- Extensible Type Systems. All of the composition techniques require some degree of type system extension or integration. MPS' type system specification is based on declarative type system rules that are executed by a solver. This way, additional typing rules for additional language constructs can be defined without invasively changing the existing typing rules of the composed languages.

 $^{^7}$ http://eclipse.org/emf

■ Modular Transformation Framework. Transformations can be defined separately for each language concept. If a new language concept is added via a composition technique, the transformation for this new concept is modular. If existing transformation must be overridden or a certain program structure must be treated specially, a separate transformation for these cases can be written, and, using generator priorities, it can be configured to run before an existing transformation.

The examples discussed in this paper will elaborate on these characteristics. This is why for each technique, we discuss structure and syntax, type system and transformation concerns.

3 Implementing a DSL with MPS

This section illustrates the definition of a language with JetBrains MPS. Like other language workbenches, MPS comes with a set of DSLs for language definition, a separate DSL for each language aspect such as structure, editor, type systems, generators as well as things like quick fixes or refactorings. MPS is bootstrapped, so these DSLs are built with MPS itself.

We illustrate language definition with MPS based on a simple entities language (some example code is shown below). *Modules* are root nodes they live as top-level elements in *models*. According to the terminology introduced in Section 1.3 root nodes (and their descendants) are considered *fragments*.

■ Structure and Syntax. Language definition starts with the AS, called structure in MPS. Fig. 4 shows a UML diagram of the entities language AS. The following code shows the definition of the Entity concept⁸. Entity extends BaseConcept, the root concept, similar to java.lang.Object in Java. It implements the INamedConcept interface to inherit a name field. It declares a list of children of type Attribute in the attributes role. A concept may also have references to other concepts (as opposed to children).

```
concept Entity extends BaseConcept implements INamedConcept is root: true children:
Attribute attributes 0..n
```

⁸ In addition to properties, children and references, concept definition can have more characteristics such as concept properties or concepts links. However, these are not needed for this example, so we don't show them here. The code above shows all the characteristics used in this example

Fig. 4 The abstract syntax of the entities language. Entities have attributes which have types and names. EntityType extends Type and references Entity. This adapts entities to types (cf. the Adapter pattern [16]). Concepts like EntityType which have exactly one reference are called smart references and are treated specially by MPS: the code completion menu shows the possible targets of the reference directly, instead of first instantiating the reference concept and then selecting the target.

Editors in MPS are based on cells. Cells are the smallest unit relevant for projection. Consequently, defining an editor consists of arranging cells and defining their content. Different cell types are available to compose editors. Fig. 5 explains the editor for Entity. The editors for the other concepts are defined similarly.

Fig. 5 The editor for Entity. The outermost cell is a vertical list. In the first line, we use a horizontal list that contains the keyword entity, the name property and an opening curly brace. In the second line we use indentation and a vertical arrangements of the contents of the attributes collection. Finally, the third line contains the closing curly brace.

■ Type System. As we have explained in Section 2, language developers only have to specify typing rules for language concepts. MPS' type system engine applies the rules to all applicable program elements, solves the resulting set of type equations, and if equations run into contradictions, this is annotated on the offending program element as a type error. For the entities language, we specify two simple typing rules. The first one specifies that the type of a Type (such as int or string) is a clone of itself.

```
rule typeof_Type for Type as t {
   typeof(t) :==: t.copy;
}
```

The only other typing rule defines the type of the Attribute as a whole to be the type of the attribute's type property, defined as typeof(attribute)

:==: typeof(attribute.type). No other typing rules apply in this simple language.

■ Generator. From entities models we generate Java Beans. Since Java is available in MPS as the BaseLanguage, the generation is actually a model-to-model transformation: from the entities model we generate a Java model. MPS supports several kinds of transformations. The default case is the template-based transformation which maps ASTs onto other ASTs, so they are essentially model-to-model transformations. Alternatively, one can use an API to manually construct the target tree. Finally, the textgen DSL is available to generate ASCII text (at the end of the transformation chain). Throughout this paper we use the template-based approach.

MPS templates look like text generation templates known from tools such as $Xpand^9$, Jet 10 or StringTemplate 11 since they use the CS of the target language in the template. However, the CS of the target language in the template is projected like any other program, and the IDE can provide support for the target language in the template. However, this also means that the template code itself must be valid in terms of the target language.

Template-based generators consist of mapping configurations and templates. Mapping configurations define which elements are processed with which templates. For the entities language, we need a root mapping rule and reduction rules. Root mapping rules can be used to create new root nodes from existing root nodes (so they map fragments to other fragments). In our case we generate a Java class from an Entity. Reduction rules are in-place transformations. Whenever the engine encounters an instance of the specified source concept somewhere in a model tree, it removes that source node and replaces it with the result of the associated template. In our case we reduce the various types (int, string, etc.) to their Java counterparts. Fig. 6 shows a part of the mapping configuration for the entities language.

Fig. 7 shows the map_Entity template. It generates a complete Java class from an input Entity. To understand how templates work in MPS we discuss in more detail the generation of Java fields for each Entity Attribute:

- Developers first write structurally correct example code in the target language. To generate a field into a class for each Attribute of an Entity, one would first add a field to a class (see aField; in Fig. 7).
- Then macros are attached to those program elements is the example code that have to be replaced with elements from the input model as the transformation executes. In the Attribute example in Fig. 7 we first attach a LOOP macro to the whole field. It contains an expression node.attributes; where node refers to the input Entity (this code is entered in the Inspector window and is not shown in the screenshot). This expression returns the

⁹ http://www.eclipse.org/modeling/m2t/?project=xpand

 $^{^{10}\ \}mathrm{http://www.eclipse.org/modeling/m2t/?project=jet}$

 $^{^{11}}$ http://www.stringtemplate.org/

Fig. 6 The mapping configuration for the entities language. The root mapping rule for Entity specifies that instances of Entity should be transformed with the map_Entity template (which produces a Java class and is shown in Fig. 7). The reduction rules use inline templates, i.e. the template is embedded in the mapping configuration. For example, the IntType is replaced with the Java int and the EntityRefType is reduced to a reference to the class generated from the target entity. The ->\$ is a so-called reference macro. It contains code (not shown) that "rewires" the reference (that points to the Double class in the template code) to a reference to the class generated from the target entity.

set of Attributes from the current Entity, making the LOOP iterate over all attributes of the entity and create a field for each of them.

At this point, each created field would be identical to the example code to which we attached the LOOP macro (private int aField;). To make the generated field specific to the particular Attribute we iterate over, we use more macros. A COPY_SRC macro is used to transform the type. COPY_SRC copies the input node (the inspector specifies the current attribute's type as the input here) and applies reduction rules (those defined in Fig. 6) to map types from the entities language to Java types. We then use a property macro (the \$ sign around aField) to change the name property of the field we generate to the name of the attribute we currently transform.

Instead of mixing template code and target language code (and separating them with some kind of escape character) we annotate macros to regular, valid target language code. Macros can be attached to arbitrary program elements. This way, the target language code in templates is always structurally correct, but it can still be annotated to control the transformation. Annotations are a generic MPS mechanism not specific to transformation macros and are discussed in Section 4.5.

4 Language Composition with MPS

In this section we discuss the four language and IDE modularization and composition techniques introduced in Section 1.4, plus an additional one that works

Fig. 7 The template for creating a Java class from an Entity. The generated class contains a field, a getter and a setter for each of the Attributes of the Entity. The running text explains the details.

only with a projectional editor such as MPS. For the first four, we provide a concise prose definition plus a set of formulas. We then illustrate each technique with a detailed MPS-based example based on the entities language introduced earlier.

4.1 Language Referencing

Language Referencing enables *homogeneous* fragments with cross-references among them, using *dependent* languages (Fig. 8).

Fig. 8 Referencing: Language l_2 depends on l_1 , because concepts in l_2 reference concepts in l_1 . (We use rectangles for languages, circles for language concepts, and UML syntax for the lines: dotted = dependency, arrows = associations, hollow-triangle-arrow for inheritance.)

A fragment f_2 depends on f_1 . f_2 and f_1 are expressed with languages l_2 and l_1 . We call l_2 the referencing language, and l_1 the referenced language. The referencing language l_2 depends on the referenced language l_1 because at least one concept in the l_2 references a concept from l_1 . While equations (2)

and (3) (from Section 1.3) continue to hold, (1) does not. Instead

$$\forall r \in Refs_{l_2} \mid lo(r.from) = l_2 \land (lo(r.to) = l_1 \lor lo(r.to) = l_2)$$
 (7)

As an example, for language Referencing we define a language uispec for defining UI forms for entities. Below is an example. Note how the form is a separate fragment. It is a *dependent* fragment, since it references elements from another fragment (expressed in the entities language). Both fragments are *homogeneous* since they consist of sentences expressed in a single language.

```
form CompanyStructure
  uses Department
  uses Employee
  field Name: textfield(30) -> Employee.name
  field Role: combobox(Boss, TeamMember) -> Employee.role
  field Freelancer: checkbox -> Employee.freelancer
  field Office: textfield(20) -> Department.description
```


Fig. 9 The abstract syntax of the uispec language. Dotted boxes represent classes from another language (here: the entities language). A Form contains EntityReferences that connect to an entities model. A Form also contains Fields, each Referencing an Attribute from an Entity and containing a Widget.

■ Structure and Syntax. The AS for the uispec language is shown in Fig. 9. The uispec language extends¹² the entities language. This means that concepts from the entities language can be used in the definition of the uispec language. A Form owns a number of EntityReferences, which in turn reference an Entity. Below is the definition of the Field concept. It owns a Widget and refers to the Attribute it edits.

```
concept Field extends BaseConcept
properties:
  label : string
children:
  Widget widget 0..1
references:
  Attribute attribute 0..1
```

 $^{^{12}}$ MPS uses the term "extension" whenever the definition of one language uses or refers to concepts defined in another language. This is not necessarily an example of language Extension as defined in this paper.

Note that there is no composition of concrete syntax, since the programs written in the two composed languages remain separated into their own fragments. No clashes between names of concepts may occur in this case.

■ Type System. There are limitations regarding which widget can be used with which attribute type. The typing rule below implements these checks and is defined in the uispec language. It references types from the entities language. We use a checking rule to illustrate how constraints can be written that do not use the inference engine introduced earlier.

```
checking rule checkTypes for Field as field {
  node\Widget> w = field.widget;
  node\Type> t = field.attribute.type;
  if (w.isInstanceOf(CheckBoxWidget) && !(t.isInstanceOf(BooleanType))) {
    error "checkbox can only be used with booleans" -> w;
  }
  if (w.isInstanceOf(ComboWidget) && !(t.isInstanceOf(StringType))) {
    error "combobox can only be used with strings" -> w;
} }
```

■ Generator. The defining characteristic of language Referencing is that the two languages only reference each other, and the instance fragments are dependent, but homogeneous. No syntactic integration is necessary in this case. In this example, the generated code exhibits the same separation. From a Form we generate a Java class that uses Java Swing to build render the UI. It uses the Beans generated from the entities: they are instantiated, and the setters are called. The generators are separate but they are dependent, since the uispec generator knows about the names of the generated Java Beans, as well as the names of the setters and getters. This is implemented by defining a set of behaviour methods on the Attribute concept that are called from both generators (the colon represents the node cast operator and binds tightly; the code below casts the attribute's parent to Entity and then accesses the name property).

```
concept behavior Attribute {
  public string qname() { this.parent : Entity.name + "." + this.name; }
  public string setterName() { "set" + this.name.toFirstUpper(); }
  public string getterName() { "get" + this.name.toFirstUpper(); }
}
```

4.2 Language Extension

Language Extension enables heterogeneous fragments with dependent languages (Fig. 10). A language l_2 extending l_1 adds additional language concepts to those of l_1 . We call l_2 the extending language, and l_1 the base language. To allow the new concepts to be used in the context of l_1 , some of them typically extend concepts in l_1 . While l_1 remains independent, l_2 is dependent on l_1 :

$$\exists i \in Inh(l_2) \mid i.sub = l_2 \land i.super = l_1 \tag{8}$$

A fragment f contains language concepts from both l_1 and l_2 :

$$\forall e \in E_f \mid lo(e) = l_1 \lor lo(e) = l_2 \tag{9}$$

In other words, $C_f \subseteq (C_{l_1} \cup C_{l_2})$, so f is heterogeneous. For heterogeneous fragments (3) does not hold anymore, since

$$\forall c \in Cdn_f \mid (lo(co(c.parent)) = l_1 \lor lo(co(c.parent)) = l_2) \land (lo(co(c.child)) = l_1 \lor lo(co(c.child)) = l_2)$$
(10)

Note that copying a Language definition and changing it does not constitute a case of language Extension, because the Extension is not modular, it is invasive. Also, a native interfaces that supports calling one language from another, like calling C from Perl or Java, is not language Extension; rather it is a form of language Referencing. The fragments remain homogeneous.

Fig. 10 Extension: l_2 extends l_1 . It provides additional concepts B3 and B4. B3 extends A3, so it can be used as a child of A2, plugging l_2 into the context provided by l_1 . Consequently, l_2 depends on l_2 .

As an example we extend the MPS base language with block expressions and placeholders. These concepts make writing generators that generate base language code much simpler. Fig. 11 shows an example. We use a screenshot instead of text because we use non-textual notations and color.

Fig. 11 Block Expressions (rendered with a shaded background) are basically anonymous inline methods. Upon transformation, an actual method is generated that contains the block content, and the block expression is replaced with a call to this generated method. Block expressions are used mostly when implementing generators; this screenshot shows a generator that uses a block expression.

A block expression is a block that can be used where an Expression is expected [6]. The block can contain any number of statements; yield can be used to "return values" from within the block. So, in some sense, a block expression is an "inlined method", or a closure that is defined and called directly. The generator of the block expression used in Fig. 11 transforms it into a method and a call to it:

```
okButton.addActionListener(new ActionListener() {
   public void actionPerformed(ActionEvent p0) {
      Employee aEmployee = new Employee();
      aEmployee.setName(retrieve_name(aEmployee, widget0));
   }
   public String retrieve_name(Employee aEmployee, JComponent widget0) {
      String newValue = ((JTextField) widget0).getText();
      return newValue;
}
```

■ Structure and Syntax. The jetbrains.mps.baselanguage.exprblocks language extends MPS' BaseLanguage. The block expression is used in places where the base language expects an Expression. This is why a BlockExpression extends Expression. Consequently, fragments that use the exprblocks language, can now use BlockExpressions in addition to the concepts provided by the base language. The fragments become heterogeneous.

```
concept BlockExpression extends Expression implements INamedConcept children:
StatementList body 1
```

■ Type System. The type of the yield statement is the type of the expression that is yielded, specified by typeof(aYield) :==: typeof(aYield.result) (so the type of yield 1; would be int, because the type of 1 is int). Since the BlockExpression is used as an expression, it has to have a type as well. Since it is not explicitly specified, the type of the BlockExpression is the common super type of the types of all the yields. The following rule implements this:

```
var resultType;
for (node<BlockExpressionYield> y : blockExpr.descendants<BlockExpressionYield>) {
   resultType :>=: typeof(y.result);
}
typeof(blockExpr) :==: resultType;
```

This equation iterates over all yield statements in a block expression and establishes an equation between the current yield's type and a type variable resultType. It uses the :>=: operator to express that the resultType must be the same or a supertype of the type of each yield. The only way to make all of these equations true (which is what the type system solver attempts to do) is to assign the common supertype of all yield types to resultType. We then associate this resultType with the type of the overall block expression.

■ Generator. The generator for BlockExpressions reduces the new concept to pure base language. It transforms a heterogeneous fragment (using Base-Language and exprblocks) to a homogeneous fragment (using only Base-Language). The first step is the creation of the additional method for the block expression as shown in Fig. 12.

Fig. 12 We use a weaving rule to create an additional method for a block expression. A weaving rule processes an input element (BlockExpression) by creating another node in a different location. The context function defines the target location. In this example, it simply gets the class in which we have defined the particular block expression, so the additional method is generated into that same class.

The template shown in Fig. 13 shows the creation of the method. The mapping label (b2M) creates a mapping between the BlockExpression and the created method. We will use this label to refer to this generated method when we generate the method call that replaces the BlockExpression (Fig. 14).

```
    public $copy_SRC$[string] $[amethod]($LOOP$v2P[$copy_SRC$[int] $[a]]) {
        $copy_SRCL$[return "hallo";]
}
```

Fig. 13 This generator template creates a method from the block expression. It uses COPY_SRC macros to replace the dummy string type with the computed return type of the block expression, inserts a computed name, adds a parameter for each referenced variable outside the block, and inserts all the statements from the block expression into the body of the method. The b2M (block-to-method) mapping label is used later when generating the call to this generated method (shown in Fig. 14).

```
public void caller() {
  int j = 0;
  <TF [->$[callee]($LOOP$[$COPY_SRC$[j]])] TF>;
}
```

Fig. 14 Here we generate the call to the method generated in Fig. 13. We use the mapping label b2M to refer to the correct method (not shown; happens inside the reference macro). We pass in the variables from the call's environment as actual arguments using the LOOP and COPY_SRC macros.

Another concept introduced by the exprblocks language is the Placehol-derStatement. It extends Statement so it can be used inside method bodies. It is used to mark locations at which subsequent generators can to add additional code. These subsequent generators will use a reduction rule to replace the placeholder with whatever they want to put at this location. It is a means to building extensible generators, as we will see later.

In the classification (Section 1.4) we mentioned that we consider language restriction as a form of Extension. To illustrate this point we prevent the use of return statements inside block expressions (the reason for this restriction

is that the way we generate from the block expressions cannot handle return statements). To achieve this, we add a can be ancestor constraint to the BlockExpression:

```
concept constraints for BlockExpression {
   can be ancestor:
      (operationContext, scope, node, childConcept, link)->boolean {
      childConcept != concept/ReturnStatement/;
}
}
```

The childConcept variable represents the concept of which an instance is about to be added under a BlockExpression. The constraint expression has to return true if the respective childConcept is valid in this location. We return true if the childConcept is not a ReturnStatement. Note how this constraint is written from the perspective of the ancestor (the BlockExpression). MPS also supports writing constraints from the perspective of the child. This is important to keep dependencies pointing in the right direction.

Extension comes in two flavors. One really feels like Extension, and the other one feels more like Embedding. In this section we have described the one that feels like Extension: we provide (a little, local) additional syntax to an otherwise unchanged language (block expressions and placeholders). The programs still essentially look like Java programs, and in a few particular places, something is different. Extension with Embedding flavor is where we create a completely new language, but use some of the syntax provided by a base language in that new language. For example, we could create a state machine language that reuses Java's expression and types in guard conditions. This use case feels like Embedding (we embed syntax from the base language in our new language), but in terms of our classification (Section 1.4) it is still Extension. Embedding would prevent a dependency between the state machine language and Java.

4.3 Language Reuse

Language Reuse (Fig. 15) enables homogenous fragments with independent languages. Given are two independent languages l_2 and l_1 and two fragment f_2 and f_1 . f_2 depends on f_1 , so that

$$\exists r \in Refs_{f_2} \mid fo(r.from) = f_2 \land (fo(r.to) = f_1 \lor fo(r.to) = f_2)$$
(11)

Since l_2 is independent, its concepts cannot directly reference concepts in l_1 . This makes l_2 reusable with different languages, in contrast to language Referencing, where concepts in l_2 reference concepts in l_1 . We call l_2 the *context* language and l_1 the *reused* language.

A way of realizing dependent fragments while retaining independent languages is with an adapter language (cf. [16]) l_A that extends l_2 and

$$\exists r \in Refs_{l_A} \mid lo(r.from) = l_A \land lo(r.to) = l_1$$
 (12)

One could argue that in this case Reuse is just a clever combination of Referencing and Extension. While this is true from an implementation perspective, it is worth describing as a separate approach, because it enables the combination of two *independent languages* by adding an adapter *after the fact*, so no pre-planning during the design of l_1 and l_2 is necessary.

Fig. 15 Reuse: l_1 and l_2 are independent languages. Within an l_2 fragment, we still want to be able to reference concepts in a fragment expressed with l_1 . To do this, an adapter language l_A is added that uses Extension and Referencing to adapt l_1 to l_2 .

Language Reuse covers the case where a language has been developed independent of its reuse context. The respective fragments remain homogeneous. In this paper, we cover two alternative cases: the first case addresses a persistence mapping language. The generated code is separate from the code generated from the entities language. The second case describes a language for role-based access control. The generated code has to be "woven into" the entities code to check permissions when setters are called.

4.3.1 Separated Generated Code

relmapping is a reusable language for mapping arbitrary data to relational tables. It supports the definition of relational table structures, but leaves the actual mapping to the source data unspecified. When the language is adapted to a specific context, one has to specify this mapping. The following code shows the reusable part. A database is defined that contains tables with columns. Columns have (database-specific) data types.

```
Database CompanyDB
table Departments
number id
char descr
table People
number id
char name
char nole
char isFreelancer
```

■ Structure and Syntax. Fig. 16 shows the structure of the relmapping language. The abstract concept ColumnMapper serves as a hook: if we reuse this language in a different context, we extend this hook in a context-specific way.

Fig. 16 A Database contains Tables which contain Columns. A column has a name and a type. A column also has a ColumnMapper. This is an abstract concept that determines where the column gets its data from. It is a hook intended to be specialized in sublanguages, specific to the particular Reuse context.

The relmapping_entities language extends relmapping and adapts it for reuse with the entities language. To this end, it provides a subconcept of ColumnMapper, the AttributeColMapper, which references an Attribute from the entities language as a means of expressing the mapping from the attribute to the column. The relmapping language projects the column mapper—and its context-specific subconcepts—on the right of the field definition, resulting in the following (heterogeneous) code fragment:

```
Database CompanyDB

table Departments

number id <- Department.id

char descr <- Department.description

table People

number id <- Employee.id

char name <- Employee.name

char role <- Employee.role

char isFreelancer <- Employee.freelancer
```

■ Type System. The type of a column is the type of its type property. In addition, the type of the column must also conform to the type of the column mapper, so the concrete subtype must provide a type mapping as well. This "typing hook" is implemented as an abstract behaviour method typeMappedToDB on the ColumnMapper. The typing rules then look as follows:

The AttributeColMapping concept from the relmapping_entities implements this method by mapping IntType to Number, and everything else to CharType.

```
public node<> typeMappedToDB() overrides ColumnMapper.typeMappedToDB {
  node<> attrType = this.attribute.type.type;
  if (attrType.isInstanceOf(IntType)) { return new node<NumberType>(); }
  return new node<CharType>();
}
```

■ Generator. The generated code is also separated into a reusable base class generated by the generator of the relmapping language and a context-specific subclass of that class, generated by relmapping_entities. The generic base class contains code for creating the tables and for storing data in those tables. It contains abstract methods for accessing the data to be stored in the columns. The dependency structure of the generated fragments, as well as the dependencies of the respective generators, resembles the dependency structure of the languages: the generated fragments are dependent, and the generators are dependent as well (they share the name and implicitly the knowledge about the structure of the class generated by the reusable relmapping generator).

```
public abstract class CompanyDBBaseAdapter {
   private void createTableDepartments() { // SQL to create the Departments table }
   private void createTablePeople() { // SQL to create the People table }

public void storeDepartments(Object applicationData) {
   Insert i = new Insert("Departments");
   i.add( "id", getValueForDepartments_id(applicationData));
   i.add( "descr", getValueForDepartments_descr(applicationData));
   i.execute();
  }

public void storePeople(Object applicationData) { // like above }
  public abstract String getValueForDepartments_id(Object applicationData);
  public abstract String getValueForDepartments_descr(Object applicationData);
  // abstract getValue methods for the People table
}
```

The subclass generated by the generator (shown below) in the relmapping_entities language implements the abstract methods defined by the generic superclass. The interface, represented by the applicationData object, has to be kept generic so any kind of user data can be passed in. Note how this class references the Beans generated from the entities. The generator for entities and the generator for relmapping_entities are dependent. The information shared between the two generator is the names of the classes generated from the entities.

```
public class CompanyDBAdapter extends CompanyDBBaseAdapter {
  public String getValueForDepartments_id(Object applicationData) {
    Object[] arr = (Object[]) applicationData;
    Department o = (Department) arr[0];
    return o.getId();
}

public String getValueForDepartments_descr(Object applicationData) {
    Object[] arr = (Object[]) applicationData;
    Department o = (Department) arr[0];
    return o.getDescription();
} }
```

4.3.2 Interwoven generated code

rbac is a language for specifying role-based access control for entities. The code below shows an example.

■ Structure and Syntax. The structure is shown in Fig. 17. Like relmapping, rbac provides a hook Resource to adapt it to context languages. The sublanguage rbac_entities provides two subconcepts of Resource, namely AttributeResource to reference to an Attribute, and EntityResource to refer to an Entity, to define permissions for entities and their attributes.

Fig. 17 Language structure of the rbac language. An RBACSpec contains Users, Roles and Permissions. Users can be members in several roles. A permission assigns a role and right (read, write) to a Resource (such as an Entity or an Attribute).

- Type System. No type system rules apply here, because none of the concepts added by the rbac language are typed.
- Generator. What distinguishes this case from the relmapping case is that the code generated from the rbac_entities language is not separated from the code generated from the entities (we cannot use the convenient base class/subclass approach). Instead, a permission check is required inside the setters of the Java Beans. Here is some example code:

```
public void setName(String newValue) {
   // check permissions (from rbac_entities)
   if (new RbacSpecEntities().hasWritePermission("Employee.name")) {
      throw new RuntimeException("no permission");
   }
   this.name = newValue;
}
```

The generated fragment is homogeneous (it is all Java code), but it is *multi-sourced*, since several generators contribute to the same fragment. To implement this, several approaches are possible:

- We could use AspectJ¹³. This way, we could generate separate Java artifacts (all single-sourced) and then use the aspect weaver to "mix" them. While this would be a simple approach in terms of MPS (because we only generate singled-sourced artifacts), it fails to illustrate advanced MPS generator concepts. So we don't use this approach here.
- An interceptor framework (see the Interceptor pattern in [9]) could be added to the generated Java Beans, with the generated code contributing specific interceptors (effectively building a custom aspect oriented programming (AOP) solution). We will not use this approach either, for the same reason we don't use Aspect J in this paper.
- We could "inject" additional code generation templates to the existing entities generator from the rbac_entities generator. This would make the generators woven as opposed to just dependent. However, weaving generators in MPS is not supported, so we cannot use this approach.
- We could define a hook in the generated Java beans code and then have the rbac_entities generator contribute code to this hook. This is the approach we will use. The generators remain dependent because they share knowledge about the way the hook works.

Notice that only the AspectJ solution would work without any pre-planning from the perspective of the entities language, because it avoids mixing the generated code artifacts (it is handled "magically" by AspectJ). All other solutions require the original entities generator to "expect" extensions. In our case we have modified the entities generator to generate a PlaceholderStatement (Fig. 18) into the setters. The placeholder acts as a hook at which subsequent generators can add statements. While we have to pre-plan that we want to extend the generator in this location, we do not have to predefine how.

Fig. 18 This generator fragment creates a setter method for each attribute of an Entity. The LOOP iterates over all Attributes. The \$ macro computes the name of the method, and the COPY_SRC macro on the argument type computes the type. The placeholder is used later to insert the permission check.

The rbac_entities generator contains a reduction rule for Placeholder-Statements. If the generator encounters a placeholder (that has been put there by the entities generator) it removes it replaces it with code that checks for the permission (Fig. 19). To make this work we have to specify in the generator priorities that this generator runs strictly after the entities generator (since the entities generator has to create the placeholder before this generator can replace it) and strictly before the BaseLanguage generator (which transforms BaseLanguage code into Java text for compilation). Priori-

¹³ http://www.eclipse.org/aspectj/

ties specify a partial ordering (cf. the strictly before and strictly after) on generators and can be set in the generator priorities dialog (not shown). Note that specifying the priorities does not introduce additional language dependencies, modularity is retained.

reduction rules:

Fig. 19 This reduction rule replaces PlaceholderStatements with a permission check. Using the condition, we only match those placeholders whose identifier is pre-set (notice how we have defined this identifier in the template shown in Fig. 18). The inserted code queries another generated class that contains the actual permission check. A runtime exception is thrown if the permission check fails.

4.4 Language Embedding

Language Embedding enables heterogeneous fragments with independent languages (similar to Fig. 15, but with a containment link between B5 and A3). It is similar to Reuse in that there are two independent languages l_1 and l_2 , but instead of establishing references between two homogeneous fragments, we now embed instances of concepts from l_2 in a fragment f expressed with l_1 , so

$$\forall c \in Cdn_f \mid lo(co(c.parent)) = l_1 \land (lo(co(c.child)) = l_1 \lor lo(co(c.child)) = l_2))$$
(13)

Unlike language Extension, where l_2 depends on l_1 because concepts in l_2 extend concepts in l_1 , there is no such dependency in this case. Both languages are independent. We call l_2 the *embedded* language and l_1 the *host* language. Again, an adapter language l_A that extends l_1 can be used to achieve this:

$$\exists c \in Cdn_{l_A} \mid lo(c.parent) = l_A \land lo(c.child) = l_1 \tag{14}$$

As an example we embed an existing expressions language into the uispec language. To do this, we do not modify either the uispec language or the expression language, since, in case of Embedding, none of them may have a dependency on the other. Below is an example program using the resulting language that uses expressions after the validate keyword:

■ Structure and Syntax. We create a new language uispec_validation that extends uispec and it also extends expressions. Fig. 20 shows the structure. To be able to use the expressions, the user has to instantiate a ValidatedField instead of a Field. ValidatedField is also defined in uispec_validation and is a subconcept of Field.

Fig. 20 The uispec_validation language defines a subtype of uispec.Field that contains an Expression from a reusable expressions language. The language also defines a couple of additional expressions, specifically the AttributeRefExpr, which can be used to refer to attributes of entities.

To support the migration of existing models that use Field instances, we provide an intention. An intention (known as a quick fix in Eclipse) is an inplace model transformation that can be triggered by the user by selecting it from the intentions menu accessible via Alt-Enter. This particular intention is defined for a Field, so the user can press Alt-Enter on a Field and select Add Validation¹⁴. This transforms an existing Field into a ValidatedField, so that validation expressions can be entered. The core of the intention is the following script, which performs the actual transformation:

```
execute(editorContext, node)->void {
   node<ValidatedField> vf = new node<ValidatedField>();
   vf.widget = node.widget;
   vf.attribute = node.attribute;
   vf.label = node.label;
   node.replace with(vf);
}
```

¹⁴ We could alternatively also implement a way for people to just type validate on the right side of a field to trigger this transformation

As mentioned, the uispec_validation language extends the uispec and expressions languages. ValidatedField has a property expr that contains the actual Expression. As a consequence of polymorphism, we can use any existing subconcept of Expression defined in the expressions language here. So without doing anything else, we could write 20 + 40 > 10, since integer literals and the + operator are defined as part of the embedded expressions language. However, to write anything useful, we have to be able to reference entity attributes from within expressions. To achieve this, we create the AttributeRefExpr as shown in Fig. 20. We also create LengthOfExpr and IsSetExpression as further examples of how to adapt an embedded language to its new context — i.e. the uispec and entities languages. The following is the structure definition of the LengthOfExpr.

```
concept LengthOfExpr extends Expression
  properties:
    alias = lengthOf
  children:
    Expression expr 1
```

Note how it defines an alias. The alias is used to pick the concept from the code completion menu. If the user is in expression context, he must type the alias of a concept to pick it from the code completion menu. Typically, the alias is similar to the leading keyword of the concept's CS. The LengthOfExpr is projected as lengthOf(something), so by choosing the alias to also be lengthOf, the concept can be entered naturally.

The AttributeRefExpr references entity attributes. However, it may only reference attributes of entities that are used in the Form within which we define the validation expression. The code below defines the necessary scoping rule:

```
(model, scope, referenceNode, enclosingNode) -> sequence<node< >> {
    nlist<Attribute> res = new nlist<Attribute>;
    node<Form> form = enclosingNode.ancestor<Form>;
    for (node<EntityReference> er : form.usedEntities) {
        res.addAll(er.entity.attributes);
    }
    return res;
}
```

Notice that the actual syntactic embedding of the expressions in the uispec_validation language is not a problem because of how projectional editors work. No ambiguities may arise. We simply define Expression to be a child of the ValidatedField.

■ Type System. The general challenge here is that primitive types such as int and string are defined in the entities language and in the reusable expression language. Although they have the same names, they are not the same concepts, so the two sets of types must be mapped. Here are a couple of examples. The type of the IsSetExpression is by definition expressions.BooleanType.

The type of the LengthOfExpr, which takes an AttrRefExpression as its argument, is expressions.IntType. The type of an attribute reference is the type of the attribute's type property, as in typeof(attrRef) :==: typeof(attrRef.attr.type). However, consider the following code:

```
field Freelancer: checkbox -> Employee.freelancer
  validate if (isSet(Employee.worksAt))
  then Employee.freelancer == true
  else Employee.freelancer == false
```

This code states that if the worksAt attribute of an employee is set, then its freelancer attribute must be true else it must be false. It uses the == operator from the expressions language. However, that operator expects two expressions.BooleanType arguments, but the type of the Employee.freelancer is entities.BooleanType. In effect, we have to override the typing rules for the expressions language's == operator. In the expressions language, we define overloaded operation rules. We specify the resulting type for an EqualsExpression depending on its argument types. Below is the code in the expressions language that defines the resulting type to be boolean if the two arguments are expressions.BooleanType:

```
operation concepts: EqualsExpression
  left operand type: new node<BooleanType>()
  right operand type: new node<BooleanType>()
operation type: (operation, leftOperandType, rightOperandType)->node< > {
   new node<BooleanType>;
}
```

We have to tie this overloaded operation specification into a regular type inference rule:

To override these typing rules to work with entities.BooleanType, we simply provider another overloaded operation specification in the uispec_validation language:

```
operation concepts: EqualsExpression
  one operand type: new node<BooleanType> // this is the entities.BooleanType!
operation type: (operation, leftOperandType, rightOperandType)->node< > {
    node<BooleanType>; // this is the expressions.BooleanType
}
```

■ Generator. The generator has to create BaseLanguage code, which is then subsequently transformed into Java text. To deal with the transformation of the expressions language, we can do one of two things:

- We can use the expression's language existing to-text generator and wrap the expressions in some kind of TextHolderStatement. Remember that we cannot simply embed text in BaseLanguage, since that would not work structurally. A wrapper is necessary.
- Alternatively, we can write a (reusable) transformation from expressions code to BaseLanguage code; these rules would be used as part of the transformation of uispec_validation code to BaseLanguage.

Since many DSLs will map code to BaseLangauge, it is worth the effort to write a reusable generator from expressions to BaseLanguage expressions. We choose this second alternative. The generated Java code is multi-sourced, since it is generated by two independent code generators.

The actual expressions defined in the expressions language and those of BaseLanguage are almost identical, so this generator is trivial. We create a new language project expressions.blgen and add reduction rules. Fig. 21 shows some of these reduction rules.

reduction rules:

```
concept MultiExpression
inheritors false
condition <always>

concept FalseLiteral
inheritors false
condition <always>

concept BooleanType
inheritors false
condition <always>

concept BooleanType
inheritors false
condition <always>

concept IfExpression
inheritors false
condition <always>

concept IfExpression
inheritors false
condition <always>

concept Scopy_srcs[true]: $copy_srcs[true] T>
```

Fig. 21 A number of reduction rules that map the reusable expression language to Base-Language (Java). Since the languages are very similar, the mapping is trivial. For example, a PlusExpression is mapped to a + in Java, the left and right arguments are reduced recursively through the COPY_SRC macro.

We also need reduction rules for the new expressions added in the uispec_validation language (AttrRefExpression, isSetExpression, LengthOf-Expr). Those rules are defined in uispec_validation. As an example, Fig. 22 shows the rule for handling the AttrRefExpression. The validation code itself is "injected" into the UI form via the same placeholder reduction as in the case of the rbac_entities language.

Just as in the discussion on Extension (Section 4.2), we may want to use constrains to restrict the embedded language in the context of a validation

reduction rules:

Fig. 22 References to entity attributes are mapped to a call to their getter method. The template fragment (inside the <TF .. TF>) uses reference macros (->\$) to "rewire" the reference to the Java Bean instance, and the toString method call to a call to the getter.

rule. Consider the case where we wanted to embed the expressions part of C. It defines all kinds of operators relating to pointers, bit shifting and other C-specifics that are not relevant in the validation of UI fields. In this case we may want to use a can be ancestor constraint to restrict the use of those operators in the validation expressions.

As a consequence of MPS' projectional editor, no ambiguities may arise if multiple independent languages are embedded. Let us consider the potential cases for ambiguity:

Same Concpet Name: Embedded languages may define concepts with the same name as the host language. This will not lead to ambiguity because concepts have a unque ID as well. A program element will use this ID to refer to the concept whose instance it represents.

Same Concrete Syntax: The projected representation of a concept is not relevant to the functioning of the editor. The program would still be unambiguous to MPS even if *all elements had the same notation*. Of course it would be confusing to the users.

Same Alias: If two concepts that are valid at the same location use the same alias, then, as the user types the alias, it is not clear which of the two concepts should be instantiated. This problem is solved by MPS opening the code completion window and requiring the user to explicitly select which alternative to choose. Once the user has made the decision, the unique ID is used to create an unambiguous program tree.

4.5 Language Annotations

In a projectional editor, the CS of a program is projected from the AST. A projectional system always goes from AS to CS, never from CS to AS (as parsers do). This has the important consequence that the CS does not have to contain all the data necessary to build the AST (which in case of parsers, is necessary). This has two consequences:

A projection may be partial in the sense that the AS contains data that is not shown in the CS. The information may, for example, only be changeable via intentions (discussed in Section 4.4), or the projection rule may project some parts of the program only in some cases, controlled by some kind of configuration data.

— It is also possible to project additional CS that is not part of the CS definition of the original language. Since the CS is never used as the information source, such additional syntax does not confuse the tool (in a parser-based tool the grammar would have to be changed to take into account this additional syntax to not derail the parser).

In this section we discuss the second alternative since it constitutes a form of language composition: the additional CS is composed with the original CS defined for the language. The mechanism MPS uses for this is called annotations. We have seen annotations when we discussed templates: an annotation is something that can be attached to arbitrary program elements and can be shown together with CS of the annotated element. In this section we use this approach to implement an alternative approach for the entity-to-database mapping. Using this approach, we can store the mapping from entity attributes to database columns directly in the Entity, resulting in the following code:

```
module company
  entity Employee {
    id : int -> People.id
    name : string -> People.name
    role : string -> People.role
    worksAt : Department -> People.departmentID
    freelancer : boolean -> People.isFreelancer
}
entity Department {
    id : int -> Departments.id
    description : string -> Departments.descr
}
```

This is a heterogeneous fragment, consisting of code from entities, as well as the annotations (e.g. -> People.id). From a CS perspective, the column mapping is "embedded" in the Entity. In the AST the mapping information is also actually stored in the entities model. However, the definition of the entities language does not know that this additional information is stored and projected "inside" entities. No modification to the entities language is necessary.

■ Structure and Syntax. We define an additional language relmapping_annotations which extends the entities language as well as the relmapping language. In this language we define the following concept:

```
concept AttrToColMapping extends NodeAnnotation
references:
   Column column 1
properties:
   role = colMapping
concept links:
   annotated = Attribute
```

AttrToColMapping concept extends NodeAnnotation, a concept predefined by MPS. Concepts that extend NodeAnnotation have to provide a role property

and an annotated concept link. Structurally, an annotation is a child of the node it annotates. So the Attribute has a new child of type AttrToColMapping, and the reference that contains the child is called <code>@colMapping</code> — the value of the role property. The annotated concept link points to the concept to which this annotation can be added. AttrToColMappings can be annotated to instances of Attribute.

While structurally the annotation is a child of the annotated node, in the CS the relationship is reversed: The editor for AttrToColMapping wraps the editor for Attribute, as Fig. 23 shows. Since the annotation is not part of the original language, it must be attached to nodes via an intention.

```
editor for concept AttrToColMapping
node cell layout:

[- [> attributed node <] -> ( % column % -> * R/O model access * ) -]
```

Fig. 23 The editor for the AttrToColMapping embeds the editor of the concept it is annotated to (using the attributed node cell). It then projects the reference to the referenced column. This way the editor of the annotation has control of if and how the editor annotated element is projected.

It is also possible to define the annotation source to be BaseConcept, which means the annotation can be attached to *any* node. The language that contains the annotation then has no dependency to any other language. This is useful for generic "metadata" such as documentation, requirements traces or presence conditions in product line engineering. We describe this in [49] and [47].

- Type System. The same typing rules are necessary as in the relmapping_entities language described previously. They reside in relmapping_annotations.
- Generator. The generator is also broadly similar to the previous example with relmapping_entities. It takes the entities model as the input, and then uses the column mappings in the annotations to create the entity-to-database mapping code.

5 Discussion

In this section we discuss limitations of MPS in the context of language and IDE modularization and composition and discuss an approach for improving some of these shortcomings. We also look at real world use of MPS.

5.1 Limitations

The paper paints a very positive picture about the capabilities of MPS regarding language and IDE modularization and composition. However, there are some limitations and shortcomings in the system. Most of them are not conceptual problems, but missing features. However, it is clearly evident that

MPS has been developed over a long time, different problems have been solved in different ways, as the problem arose, instead of implementing a consistent, unified approach. I propose such an approach in Section 5.2.

■ Syntax. The examples in this paper show that meaningful language and IDE modularization and composition is possible with MPS. The challenge of grammar composition is not an issue in MPS, since no grammars and parsers are used. The fact that we hardly ever discuss syntactic issues in the above discussions is testament to this. Potential ambiguities are resolved by the user as he enter the program (discussed at the end of Section 4.4) — once entered, a program is always unambiguous. The luxury of not running into syntactic composition issues comes at the price of the projectional editor and the XML-based storage (we have discussed the drawbacks of projectional editors in Section 2).

One particular shortcoming of MPS is that it is not possible to override the projection rule of a concept in a sublanguage (this feature is on the roadmap for MPS 3.0). If this were possible, ambiguities for the user in terms of the CS could be solved by changing the notation (or color or font) of existing concepts if they are used together with a particular other language. Such a new CS would be defined in the respective adapter language.

- This paper emphasizes IDE composition in addition to language composition. Regarding syntax highlighting, code completion, error marks on the program and intentions, all the composition approaches automatically compose those IDE aspects. No additional work is necessary by the language developer. However, there are additional concerns an IDE may address including version control integration, profiling and debugging. Regarding version control integration, MPS provides diff/merge for most of today's version control systems on the level of the projected syntax — including for heterogeneous fragments. No support for profiling is provided, although a profiler for language *implementations* is on the roadmap. MPS comes with a debug framework that lets language developers create debuggers for languages defined in MPS. However, this framework is relatively low-level and does not provide specific support for language composition and heterogeneous fragments. However, as part of the mbeddr project that develops an extensible version of the C programming language ([48]) we have developed a framework for extensible C debuggers. Developers of C Extensions can easily define the how the Extension integrates into the C debugger so that debugging on the syntax of the Extension becomes possible for heterogeneous fragments. Visser et al. also describe debuggers for DSLs in [27].
- Evolution. Composing languages leads to coupling. In the case of Referencing and Extension the coupling is direct, in the case of Reuse and Embedding the coupling is indirect via the adapter language. As a consequence of a change of the referenced/base/context/host language, the referencing/extending/reused/embedded language may have to change as well. MPS, at this time, provides no automatic way of versioning and migrating languages, so

co-evolution has to be performed manually. In particular, a process discipline must be established in which dependent languages are migrated to new versions of a changed language they depend on.

- Type System. Regular typing rules cannot be overridden in a sublanguage. Only the overloaded operations container can be overloaded (as their name suggests) from a sublanguage. As a consequence it requires some thought when designing a language to make the type system extensible in meaningful ways.
- Generators. In the case of generators, language designers have to specify a partial ordering of mapping configurations using priorities. It is not easily possible to "override" an existing generator, but generators can run before or after existing ones. Generator extension is not possible directly. This is why we use the placeholders that are put in by earlier generators to be reduced by later ones. Obviously, this requires preplanning on the part of the developer of the generator that adds the placeholder.

5.2 A unified approach

Looking at the limitations discussed in the previous subsection it is clear that a consistent approach for addressing the modularization, extension and composition of all language aspects would be useful. In this section we propose such a unified approach based on the principles of component-based design ([45]). In this approach, all language aspects would use components as the core structural building block. Components have types. The type of the component determines the kinds of facets it has. A facet is a kind of interface that exposes the (externally visible) ingredients of the component. The kinds of ingredients depend on the component type: a component of type structure exposes language concepts. A component of type editor exposes editors, type type system exposes type system rules, and so on. To support modularization, a component (in a sublanguage) can specify an advises relationship to another component (from a super language). Then each of the facets can determine which facets from the advised component it wants to preempt, enhance or override:

- preemption means that the respective behavior is contributed before the behavior from the base language. A generator may use this to reduce a construct before the original generator gets a chance to reduce the construct.
- enhancement means that the sublanguage component is executed after the advised component from the base language. Notice that for declarative aspects where ordering is irrelevant, preempt and enhance are exchangable.
- overriding means that the original facet is completely shadowed by the new one. For example, this could be used to define a new editor for an existing construct.

This approach would provide the *same* way of packaging behavior for all language aspects, as well as a *single* way of changing that behavior in a sublanguage. To control the granularity at which preemption, enhancement or

overriding is performed, the base language designer would have to group the structures or behaviors into suitably cut facets. This amount of preplanning is acceptable: it is just as in object-oriented programming, where behavior that should be overridable has to be packaged into its own method.

The approach could be taken further. Components could be marked as *abstract* and define a set of parameters for which values need to be provided by non-abstract subcomponents. A language is abstract as long as it has at least one abstract component, for which no concrete subcomponent is provided. Component parameters could even be usable in structure definitions, for example as the base concept; this would make a language parameterizable regarding the base language it extends.

5.3 Real-World use of MPS

The examples in this paper are toy examples — the simplest possible languages that can illustrate the composition approaches. However, MPS scales to realistically sized systems, both in terms of language complexity and in terms of program size. The composition techniques — especially those involving syntactic composition — are used in practice. We illustrate this with two examples: embedded software and web applications.

- Embedded Software. Embedded systems are becoming more software intensive and the software becomes bigger and more complex. Traditional embedded system development approaches use a variety of tools for various aspects of the system, making tool integration a major challenge. Some of the specific problems of embedded software development include the limited capability for meaningful abstraction in C, some of C's "dangerous" features (leading to various coding conventions such as Misra-C [17]), the proprietary and closed nature of modeling tools, the integration of models and code, traceability to requirements, long build times as well as management of product line variability. The mbeddr project (15) addresses the challenges with a different approach: incremental, modular extension of C with domain-specific language concepts. mbeddr uses Extension to add interfaces and components, state machines, and measurement units to C. mbeddr is based on MPS, so users of mbeddr can build their own Extensions. mbeddr implements all of C in less than 10.000 lines of code. Scalability tests have shown that the system scales to at least 100.000 lines of equivalent C code. A detailed description, including more details on language and program sizes and implementation effort can be found in [48].
- Web Development. JetBrains' YouTrack issue tracking system is an interactive web application with many UI features known from desktop applications. YouTrack is developed completely with MPS and comprises thousands of Java classes, web page templates and other artifacts. The effort for building the necessary MPS-based languages will be repaid by future applications that

 $^{^{15}}$ http://mbeddr.com

build on the same web platform architecture and hence use the same set of languages. Language Extension and Embedding is used to provide an integrated web development environment¹⁶.

For example, the dnq language extends Java class definitions with all the information necessary to persist instances in a database via an object-relational mapper. This includes real associations (specifying navigability and composition vs. reference) or length specifications for string properties. dnq also includes a collections language which supports the manipulation of collections in a way similar to .NET's Linq [31]. Other languages include webr, a language used for implementing interactions between the web page and the backend. It supports a unified programming model for application logic on the server and on the browser client. webr also provides first-class support for controllers. For example, controllers can declare actions and attach them directly to events of UI components. webr is well-integrated with dnq. For example, it is possible to use a persistent entity as a parameter to a page. The database transaction is automatically managed during request processing.

In email communication with the author, JetBrains reported significant improvements in developer productivity for web applications. In particular, the time for new team members to become productive on the Youtrack team is reported to have been reduced from months to a few weeks, mostly because of the very tight integration in a single language of the various aspect of web application development.

6 Related Work

This paper addresses language and IDE modularization and composition with MPS, a topic that concerns many different aspects. In this section we discuss related work focusing on modular parsers, projectional editing, modular compilers and modular IDEs. We conclude with a section on related work that does not fit these categories.

6.1 Modular Parsers

As we have seen in this paper, modular composition of concrete syntax is the basis for several of the approaches to language composition. Hence we start by discussing modularization and composition of grammars.

In [24] Kats, Visser and Wachsmut describe nicely the trade-offs with nondeclarative grammar specifications and the resulting problems for composition of independently developed grammars. Grammar formalisms that cover only subsets of the class of context-free grammars are not closed under composition: resulting grammars are likely to be outside of the respective grammar class. Composition (without invasive change) is prohibited. Grammar formalisms that implement the full set of context-free grammars do not have this problem

 $^{^{16}\ \} Some\ details\ can\ be\ found\ in\ http://www.jetbrains.com/mps/docs/MPS_YouTrack_case_study.pdf$

and support composition much better. In [43] Schwerdtfeger and van Wyk also discuss the issues surrounding grammar composition. They also describe a way of verifying early (i.e. before the actual composition attempt) whether two grammars are composable or not .

An example of a parser generator the supports the full set of context-free grammars is the Syntax Definition Formalism [19]. SDF is a scannerless GLR parser. Since it parses tokens and characters in a context-aware fashion, there will no ambiguities if grammars are composed that both define the same token or production in different contexts. This allows, for example, to embed SQL into Java (as Bravenboer et al. discuss in [4]). However, if the same syntactic form is used by the composed grammars in the same location, then some kind of disambiguation is necessary. Such disambiguations are typically called quotations and antiquotations and are defined in a third grammar that defines the composition of two other independent grammars (discussed in [7]). The SILVER/COPPER system described by van Wyk in [50] solves these ambiguities via disambiguation functions written specifically for each combination of ambiguously composed grammars. Note that in MPS such disambiguation is never necessary. We discuss the potential for ambiguity and the way MPS solves the problem at the end of Section 4.4.

Given a set of extensions for a language, SILVER/COPPER allows users to include a subset of these extensions into a program as needed (this has been implemented for Java (AbleJ [52]) and and for SPIN's Promela language (AbleP [29]). A similar approach is discussed for an SDF-based system in [8]. However, ad-hoc inclusion only works as long as the set of included extensions (which have presumably been developed independent from each other) are not ambiguous with regards to each other. In case of ambiguities, disambiguations have to be defined as described above.

Polyglot, an extensible compiler framework for Java [37] also uses an extensible grammar formalism and parser to supports adding, modifying or removing productions and symbols defined in a base grammar. However, since Polyglot uses LALR grammars, users must make sure manually that the base language and the extension stays in the LALR subclass.

6.2 Projectional Editing

Projectional editing (also known as structural editing) is an alternative approach for handling the relationship between CS and AS, i.e. it is an alternative to parsing. As we have seen, it simplifies modularization and composition.

Projectional editing is not a new idea. An early example is the Incremental Programming Environment (IPE, [30]). It uses a structural editor for users to interact with the program and then incrementally compiles and executes the resulting AST. It supports the definition of several notations for the same program as well as partial projections. However, the projectional editor forces users to build the program tree top-down. For example, to enter 2 + 3 users first have to enter the + and then fill in the two arguments. This is very tedious and forces users to be aware of the language structure all the time.

MPS in contrast goes a long way in supporting editing gestures that much more resemble text editing. The IPE also does not address language modularity. In fact it comes with a fixed, C-like language and does not come with a built-in facility to define new languages. It is not bootstrapped. Another projectional system is GANDALF [36]. Its ALOEGEN component generates projectional editors from a language specification. It has the same usability problems as described for IPE. This is nicely expressed in [39]: Program editing will be considerably slower than normal keyboard entry although actual time spent programming non-trivial programs should be reduced due to reduced error rates.

The synthesizer generator described in [42] also supports structural editing. However, at the fine-grained expression level, textual input and parsing is used. This removes many of the advantages of projectional editing in the first place, because simple language composition at the expression level is prohibited. MPS does not use this "trick", and instead supports projectional editing also on expression level, with convenient editing gestures.

Bagert and Friesen describe a multi-language syntax directed editor in [3]. However, this tool supports only Referencing, syntactic composition is not supported.

The Intentional Domain Workbench [44] is another contemporary projectional editor that has been used in real projects. An impressive demonstration about its capabilities can be found in an InfoQ presentation titled "Domain Expert DSL" 17.

6.3 Modular Compilers

Modular compilers make use of modular parsers and add modular specification of semantics, including static semantics (constraints and type systems) as well as execution semantics.

Most systems describe static semantics using attribute grammars. Attribute grammars associate attributes with AST elements. These attributes can capture arbitrary data about the element (such as its type). Attributes of one element can be computed from attributes of related elements (often its children). Example of systems that make use of attribute grammars for type computation and type checking include SILVER (mentioned above) JastAdd [18] and LISA (discussed in more detail in the next section). Forwarding (introduced in [51]) is a mechanism that improves the modularity of attribute grammars by delegating the lookup of an attribute value to another element.

While MPS' type system specification language can be seen as associating a type attribute with AST elements using the typeof function, MPS' type system is different from attribute grammars. Attributes values are calculated by explicitly referring to the values of other attributes, often recursively MPS' type system rules are declarative: users specify typing rules for language concepts and MPS "instantiates" each rule for each AST node. A solver then solves

 $^{^{17}\ \}mathrm{http://www.infoq.com/presentations/DSL-Magnus-Christerson-Henk-Kolk}$

all type equations in that AST. This way, the typing rules of elements contributed by language extensions can *implicitly* affect the overall typing of the program.

As we have seen, for language Extension the execution semantics is defined via transformation to the base language. In [50], van Wyk discusses under which circumstances such transformations are valid: the changes to the overall AST must be local. No global changes are allowed to avoid unintended interactions between several independently developed extensions used in the same program. In MPS such purely local changes are called reduction rules. In our experience, it is also feasible to add additional elements to the AST in select places. In MPS, this is achieved using weaving rules. However, in both cases (local reduction and selective adding) there is no way to detect in advance whether using two extensions used in the same program will lead to conflicts.

More formal ways of defining semantics include denotational semantics, operational semantics and and a mapping to a formally defined action language. These have been modularized to make them composable. For example, Mosses describes modular structural operational semantics [35] and language composition by combining action semantics modules [11].

Aspect orientation supports the modularization of cross-cutting concerns. This has also been applied to language development. For example, in [40] Rebernak et al. discuss AspectLISA and AspectG. AspectLISA supports adding new, cross-cutting attribute grammar attributes into a LISA language definition. AspectG allows weaving additional action code into ANTLR grammars. Note that both AspectLISA and AspectG address semantics do not support aspect-oriented extension of the concrete syntax.

6.4 Modular IDEs

Based on the fundamentals that enable modular syntax we can take at tools that, from a language definition, also create a language aware-editor.

Among the early examples are the Synthesizer Generator [42], mentioned above, as well as the Meta Environment [25]. The latter provides an editor for languages defined via and ASF+SDF, i.e. it is parser-based. More recent tools in the ASF+SDF family include Rascal [26] and Spoofax [23]. Both provide Eclipse-based IDE support for languages defined via SDF. In both cases the IDE support for the composed languages is still limited (for example, at the time of this writing, Spoofax only provides syntax highlighting for an embedded language, but no code completion), but will be improved. For implementing semantics, Rascal uses a Java-like language that has been extended with features for program construction, transformation and analyses. Spoofax uses term rewriting based on the Stratego [5] language. An interesting tool is SugarJ [14] also based on SDF, which supports library based language extension. [13] adds Spoofax-based IDE support.

SmartTools [1] supports generating editors for XML schemas. Based on assigning UI components to AS elements, it can project an editor for programs. However, this projectional editor does not try to emulate text-like editing as

MPS does, so there is no convenient way for editing expressions. To do this, a grammar-based concrete syntax can be associated with a the AS elements defined in the schema. Based on this definition, SmartTools then provides a text-based representation for the language. However, this prevents syntax composition (as in used in Extension and Embedding) and SmartTools only supports homogeneous files. Different UI components and grammars can be defined for the same AS, supporting multi-notation editing. Static semantics is implemented based on the Visitor pattern [16]. SmartTools provides support for much of the infrastructure and makes using Visitors simple. For transformation, SmartTools provides Xpp, a transformation language that provides a more concise syntax for XSLT-based XML transformations.

LISA [33] (mentioned earlier) supports the definition of language syntax in a BNF-like way and semantics via attribute grammars in one integrated specification language. It then then derives, among other things, a syntax-aware text editor for the language, as well as various graphical and structural viewing and editing facilities. Users can use inheritance and aspect-orientation to define sub-grammars. The use of this approach for incremental language development is detailed in [34]. However, users have to make sure manually that those sub-grammars remain unambiguous. Combination of independently developed grammars (or sub-grammars) is not supported. LISA supports interactive debugging and program state visualization based on interpreting programs based on the semantic parts of the language specification.

Eclipse Xtext (¹⁸) generates sophisticated text editors from an EBNF-like language specification. Syntactic composition is limited since Xtext is based on antlr [38] which is a two phase LL(*) parser. It is possible for a language to extend *one* other language. Concepts from the base language can be used in the sub language and it is possible to redefine grammar rules defined in the base language. Combination of independently defined extensions or Embedding is not supported. Xtext's abstract syntax is based on EMF Ecore ¹⁹, so it can be used together with any EMF-based model transformation and code generation tool (examples include Xpand, ATL, and Acceleo, all located at the Eclipse Modeling site²⁰. Static semantics is based on constraints written in Java or on third-party frameworks that support declarative description of type systems such as XTS²¹. Xtext comes with Xbase, an expression language that can be used as the base language for custom DSL. Xbase also comes with an interpreter and compiler framework that makes creating interpreters and compilers for DSLs that extend Xbase relatively simple.

The Helvetia system [41] by Renggli et al. supports language extension of Smalltalk using a *homogeneous* approach, which means that the host language (Smalltalk) is also used for *defining* the extensions. The authors argue that the approach is independent of the host language and could be used with other host

 $^{^{18}}$ http://eclipse.org/Xtext

¹⁹ http://eclipse.org/emf

²⁰ http://eclipse.org/modeling

 $^{^{21}\ \}mathrm{http://code.google.com/a/eclipselabs.org/p/xtext-typesystem/}$

languages as well. While this is true in principle, the implementation strategy heavily relies on aspects of the Smalltalk system that are not present for other languages. Also, since extensions are defined in the host language, the complete implementation would have to be redone if the approach were to be used with another host language. This is particularly true for IDE support, where the Smalltalk IDE is extended using this IDE's APIs. MPS uses a heterogeneous approach which does not have these limitations: MPS provides a language-agnostic framework for language and IDE extension that can be used with any language, once the language is implemented in MPS.

Cedalion [?] is a host language for defining internal DSLs. It uses a projectional editor and semantics based on logic programming. Both Cedalion and MPS aim at combining the best of both worlds from internal DSLs (combination and extension of languages, integration with a host language) and external DSLs (static validation, IDE support, flexible syntax). Cedalion starts out from internal DSLs and adds static validation and projectional editing, the latter avoiding ambiguities resulting from composed syntaxes. MPS starts from external DSLs and add modularization, and, as a consequence of implementing base languages with the same tool, optional tight integration with general purpose host languages.

For a general overview of language workbenches, please refer to the Language Workbench Competition²². Participating tools have to implement a common example language and document the implementation strategy. This serves as a good tutorial of the tool and makes them comparable. As of June 2012, the site contains 15 submissions.

6.5 Other Related Work

We already discussed the language modularization and composition approaches proposed by Mernik et al. [32] in Section ??. In the Helvetia paper [41] Renggli and his colleagues introduce three different flavors of language extension. A *pidgin* creatively bends the existing syntax of the host language to to extend its semantics. A *creole* introduces completely new syntax and custom transformations back to the host language. An *argot* reinterprets the semantics of valid host language code. In terms of this classification, both Extension and Embedding as defined in this paper are creoles.

The idea of incremental Extension of languages was first popularized in the context of Lisp, where definition of language extensions to solve problems in a given domain is a well-known approach. Guy Steele's Growing a Language keynote explains the idea well [22]. Sergey Dmitriev discusses the idea of language and IDE Extension in his article on Language Oriented Programming [10], which uses MPS as the tool to achieve the goal.

Macro Systems support the definition of additional syntax for existing languages. Macro expansion maps the new syntax to valid code in the extended language, and this mapping is expressed with host language code instead of a

 $^{^{22}}$ http://languageworkbenches.net

separate transformation language. They differ with regard to degree of freedom they provide for the extension syntax, and whether they support extensions of type systems and IDEs. The most primitive macro system is the C preprocessor which performs pure text replacement during macro expansion. The Lisp macro system is more powerful because it is aware of the syntactic structure of Lisp code. An example of a macro system with limited syntactic freedom is the The Java Syntactic Extender [2] where all macros have to begin with names, and a limited set of syntactic shapes is supported. In OpenJava [46], the locations where macros can be added is limited. More fine-grained Extensions, such as adding a new operator, are not possible. SugarJ, discussed above, can be seen as a sophisticated macro system.

Language cascading refers to a form of language combination where a program expressed in language l_1 is translated into a program expressed in language l_2 . Essentially this is what every code generator or compiler does; the languages themselves are not related in any way except through the transformation engine, which is why we don't consider this as an example of language modularization and composition. Cascading is referred to as Piggybacking and Pipelining in Mernik et al.'s classification [32].

A particular advantage of projectional editing is that it can combine several notational styles in one fragment; examples include text, tables, symbols (fraction bars, square roots or big sums). All of these notations are seamlessly integrated in one fragment and can be defined with the same formalism, as part of the same language (as mentioned earlier, MPS supports text, tables and syntax. Graphics will supported in 2013). Other approaches for integrating different notational styles exist. For example, [12] integrates textual and graphical notations based on grammarware and Eclipse modeling technologies. However, such an approach requires dealing with separate tools for the graphical and the textual aspects, leading to a high degree of accidental complexity in the resulting implementation and mismatches in the resulting tool, as the author knows from personal experience.

Internal DSLs are languages embedded in general purpose host languages. Suitable host languages are those that provide a flexible syntax, as well as meta programming facilities to support the definition of new abstractions with a custom concrete syntax. For example [20] describes Embedding DSLs in Scala. The landmark work of Hudak [21] introduces embedded DSLs as language extensions of Haskell. While Haskell provides advanced concepts that enable such extensions, the new DSLs are essentially just libraries built with the host language and are not first class language entities: they do not define their own syntax, compiler errors are expressed in terms of the host language, no custom semantic analyses are supported and no specific IDE-support is provided. Essentially all internal DSLs expressed with dynamic languages such as Ruby or Groovy, but also those embedded in static languages such as Scala suffer from these limitations. Since we consider IDE modularization and composition essential, we don't address internal DSLs in this paper.

7 Summary

MPS is powerful environment for language engineering, in particular where modular language and IDE composition is concerned. We have seen in this paper how the challenges of composing the concrete syntax are solved by MPS and how it is also capable of addressing modularity and composition of type systems and generators. Code completion, syntax highlighting and error marks for composed languages are essentially free in MPS. The major drawback of MPS is its non-trivial learning curve. Because it works so differently than traditional language engineering environments, and because it addresses so many aspects of languages (incl. type systems, data flow and refactorings) mastering the tool takes a significant investment in terms of time: experience shows that ca. 4 weeks are necessary. I hope that in the future this investment will be reduced by better documentation and better defaults, to keep simple things simple and complex things tractable. There are initial ideas on how this could be done.

References

- I. Attali, C. Courbis, P. Degenne, A. Fau, D. Parigot, and C. Pasquier. SmartTools: A Generator of Interactive Environments Tools. In R. Wilhelm, editor, Compiler Construction, 10th International Conference, CC 2001 Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2001 Genova, Italy, April 2-6, 2001, Proceedings, volume 2027 of Lecture Notes in Computer Science, pages 355–360. Springer, 2001.
- J. Bachrach and K. Playford. The Java syntactic extender (JSE). In OOPSLA '01: Proceedings of the 16th ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications, 2001.
- D. J. Bagert and D. K. Friesen. A multi-language syntax-directed editor. In P. Davis and V. McClintock, editors, Proceedings of the 15th ACM Annual Conference on Computer Science, St. Louis, Missouri, USA, February 16-19, 1987, pages 300–302. ACM, 1987.
- 4. M. Bravenboer, E. Dolstra, and E. Visser. Preventing injection attacks with syntax embeddings. In *GPCE*, pages 3–12, 2007.
- M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Stratego/XT 0.17. A language and toolset for program transformation. SCP, 72(1-2):52-70, 2008.
- 6. M. Bravenboer, R. Vermaas, J. J. Vinju, and E. Visser. Generalized Type-Based Disambiguation of Meta Programs with Concrete Object Syntax. In R. Glck and M. R. Lowry, editors, Generative Programming and Component Engineering, 4th International Conference, GPCE 2005, volume 3676 of Lecture Notes in Computer Science, pages 157–172, Tallinn, Estonia, 2005. Springer.
- M. Bravenboer and E. Visser. Concrete syntax for objects: domain-specific language embedding and assimilation without restrictions. In OOPSLA, pages 365–383, 2004.
- 8. M. Bravenboer and E. Visser. Designing Syntax Embeddings and Assimilations for Language Libraries. In H. Giese, editor, Models in Software Engineering, Workshops and Symposia at MoDELS 2007, Nashville, TN, USA, September 30 October 5, 2007, Reports and Revised Selected Papers, volume 5002 of Lecture Notes in Computer Science, pages 34–46. Springer, 2007.
- 9. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. *Pattern-Oriented Software Architecture: A System of Patterns.* Wiley, 1996.
- 10. S. Dmitriev. Language Oriented Programming: The Next Programming Paradigm, 2004.
- 11. K.-G. Doh and P. D. Mosses. Composing programming languages by combining action-semantics modules. *Science of Computer Programming*, 47(1):3–36, 2003.

- L. Engelen and M. van den Brand. Integrating Textual and Graphical Modelling Languages. Electronic Notes in Theoretical Computer Science, 253(7):105–120, 2010.
- 13. S. Erdweg, L. C. L. Kats, Rendel, C. Kastner, K. Ostermann, and E. Visser. Growing a Language Environment with Editor Libraries. In GPCE , 2011.
- S. Erdweg, T. Rendel, C. Kstner, and K. Ostermann. SugarJ: Library-based Syntactic Language Extensibility. In OOPSLA, 2011.
- M. Fowler. Language Workbenches: The Killer-App for Domain Specific Languages?, 2005.
- E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of reusable object-oriented software. Addison-Wesley Professional, 1995.
- 17. L. Hatton. Safer language subsets: an overview and a case history, MISRA C. Information & Software Technology, 46(7):465–472, 2004.
- G. Hedin and E. Magnusson. JastAdd-an aspect-oriented compiler construction system. SCP, 47(1):37–58, 2003.
- J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syntax definition formalism SDF - reference manual. SIGPLAN, 24(11):43–75, 1989.
- C. Hofer, K. Ostermann, T. Rendel, and A. Moors. Polymorphic embedding of DSLs. In GPCE, pages 137–148, 2008.
- 21. P. Hudak. Modular Domain Specific Languages and Tools. In *Proceedings of the 5th International Conference on Software Reuse, ICSR '98*, jun 1998.
- 22. G. L. S. Jr. Growing a Language. lisp, 12(3):221-236, 1999.
- 23. L. C. L. Kats and E. Visser. The Spoofax language workbench: rules for declarative specification of languages and IDEs. In W. R. Cook, S. Clarke, and M. C. Rinard, editors, Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2010, pages 444–463, Reno/Tahoe, Nevada, 2010. ACM. (best student paper award).
- 24. L. C. L. Kats, E. Visser, and G. Wachsmuth. Pure and declarative syntax definition: paradise lost and regained. In *OOPSLA*, pages 918–932, 2010.
- P. Klint. A Meta-Environment for Generating Programming Environments. TOSEM, 2(2):176–201, 1993.
- P. Klint, T. van der Storm, and J. J. Vinju. RASCAL: A Domain Specific Language for Source Code Analysis and Manipulation. In Ninth IEEE International Working Conference on Source Code Analysis and Manipulation, SCAM 2009, Edmonton, Alberta, Canada, September 20-21, 2009, pages 168-177. IEEE Computer Society, 2009.
- 27. R. T. Lindeman, L. C. L. Kats, and E. Visser. Declaratively Defining Domain-Specific Language Debuggers. In E. Denney and U. P. Schultz, editors, Proceedings of the 10th ACM international conference on Generative programming and component engineering (GPCE 2011), pages 127–136, New York, NY, USA, 2011. ACM.
- 28. B. Liskov and J. M. Wing. A Behavioral Notion of Subtyping. ACM Transactions on Programming Languages and Systems, 16(6):1811–1841, 1994.
- Y. Mali and E. V. Wyk. Building Extensible Specifications and Implementations of Promela with AbleP. In A. Groce and M. Musuvathi, editors, Model Checking Software - 18th International SPIN Workshop, Snowbird, UT, USA, July 14-15, 2011. Proceedings, volume 6823 of Lecture Notes in Computer Science, pages 108-125. Springer, 2011.
- R. Medina-Mora and P. H. Feiler. An Incremental Programming Environment. IEEE Trans. Software Eng., 7(5):472–482, 1981.
- 31. E. Meijer, B. Beckman, and G. M. Bierman. LINQ: reconciling object, relations and XML in the .NET framework. In S. Chaudhuri, V. Hristidis, and N. Polyzotis, editors, Proceedings of the ACM SIGMOD International Conference on Management of Data, Chicago, Illinois, USA, June 27-29, 2006, page 706. ACM, 2006.
- 32. M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-specific languages. *ACM Comput. Surv.*, 37(4):316–344, 2005.
- 33. M. Mernik, M. Lenic, E. Avdicausevic, and V. Zumer. LISA: An Interactive Environment for Programming Language Development. In R. N. Horspool, editor, Compiler Construction, 11th International Conference, CC 2002, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2002, Grenoble, France, April 8-12, 2002, Proceedings, volume 2304 of Lecture Notes in Computer Science, pages 1-4. Springer, 2002.

34. M. Mernik and V. Zumer. Incremental programming language development. Computer Languages, Systems & Structures, 31(1):1–16, 2005.

- P. D. Mosses. Modular structural operational semantics. Journal of Logic and Algebraic Programming, 60-61:195–228, 2004.
- D. Notkin. The GANDALF project. Journal of Systems and Software, 5(2):91–105, 1985.
- 37. N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An Extensible Compiler Framework for Java. In cc, pages 138–152, 2003.
- 38. T. J. Parr and R. W. Quong. ANTLR: A Predicated-LL(k) Parser Generator. Software: Practice and Experience, 25(7):789–810, 1995.
- S. W. Porter. Design of a syntax directed editor for psdl. Master's thesis, Naval Postgraduate School, Monterey, CA, USA, 1988.
- D. Rebernak, M. Mernik, H. Wu, and J. G. Gray. Domain-specific aspect languages for modularising crosscutting concerns in grammars. *IEE Proceedings - Software*, 3(3):184– 200, 2009.
- 41. L. Renggli, T. Girba, and O. Nierstrasz. Embedding Languages Without Breaking Tools. In ECOOP'10: Proceedings of the 24th European Conference on Object-Oriented Programming., 2010.
- 42. T. W. Reps and T. Teitelbaum. The Synthesizer Generator. In *sde*, pages 42–48, 1984.
- A. Schwerdfeger and E. V. Wyk. Verifiable composition of deterministic grammars. In M. Hind and A. Diwan, editors, Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009, pages 199-210. ACM, 2009.
- 44. C. Simonyi, M. Christerson, and S. Clifford. Intentional software. In P. L. Tarr and W. R. Cook, editors, Proceedings of the 21th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2006, October 22-26, 2006, Portland, Oregon, USA, pages 451–464. ACM, 2006.
- C. A. Szyperski. Component software beyond object-oriented programming. Addison-Wesley-Longman, 1998.
- M. Tatsubori, S. Chiba, K. Itano, and M.-O. Killijian. OpenJava: A Class-Based Macro System for Java. In *oorase*, pages 117–133, 1999.
- M. Voelter. Implementing feature variability for models and code with projectional language workbenches. 2010.
- 48. M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb. mbeddr: an Extensible C-based Programming Language and IDE for Embedded Systems. In *Accepted for Publication at SPLASH/Wavefront 2012*, 2012.
- 49. M. Voelter and E. Visser. Product Line Engineering using Domain-Specific Languages. In *Software Product Line Conference*, 2011.
- E. V. Wyk, D. Bodin, J. Gao, and L. Krishnan. Silver: an Extensible Attribute Grammar System. Electronic Notes in Theoretical Computer Science, 203(2):103–116, 2008.
- 51. E. V. Wyk, O. de Moor, K. Backhouse, and P. Kwiatkowski. Forwarding in Attribute Grammars for Modular Language Design. In *CC*, pages 128–142, 2002.
- E. V. Wyk, L. Krishnan, D. Bodin, and A. Schwerdfeger. Attribute Grammar-Based Language Extensions for Java. In ECOOP, pages 575–599, 2007.