# Naive Bayes Classifier with Discretization Techniques

João Soares João Vieira

## Naive Bayes is a probabilistic machine learning algorithm grounded in Bayes' Theorem.

- It is a **probabilistic** predictive model
- It is primarily used for **classification tasks** due to its simplicity and efficiency



#### **Applications of Naive Bayes**

- 1. Text Classification
- 2. Medical Diagnosis
- 3. Customer Segmentation
- 4. Fraud Detection
- 5. Recommendation Systems

## **Advantages and Disadvantages**

## **Advantages**

- **Efficient:** Can handle large dataset fast and with low computational cost.
- Interpretable: Provides probabilistic insights into predictions.
- Resilient to noise and irrelevant attributes: Performs well even with limited training data.
- Works Well for Categorical Data:
   Particularly effective for text
   classification and other categorical
   datasets.

## Disadvantages

- Strong Independence Assumption:
   Real-world features are rarely
   independent
- Sensitivity to Imbalanced Data: May perform poorly when class distributions are skewed
- Poor Handling of Continuous
   Variables: The assumption of a specific distribution (e.g., Gaussian) often does not hold, leading to inaccuracies.

# Datasets used vary in size, the number of features, the ratio of continuous to categorical features, and the number of target classes.

#### OpenML Datasets

| Datasets | Instances | Features | Continuous<br>Features | Classes |
|----------|-----------|----------|------------------------|---------|
| Diabetes | 789       | 9        | 9                      | 2       |
| Credit_g | 1000      | 20       | 7                      | 2       |
| Blood    | 748       | 4        | 4                      | 2       |
| Glass    | 214       | 9        | 9                      | 6       |
| ILPD     | 583       | 10       | 9                      | 2       |
| Spambase | 4601      | 57       | 57                     | 2       |

## **Preprocessing and Discretization**

## 1. Missing Values

2. Encoding Categorical Data

3. Discretization

 Elimination of Missing Values  Encoding Categorical Data using One-Hot Encoding

Day of Week

Tuesday

**Monday**False

Tuesday
True

**Wednesday** False

#### **Equal Width**



#### **Equal Depth**



10 bins

## **Multinomial vs Gaussian Naive Bayes**

#### **Multinomial**



#### Gaussian



## Multinomial Naive Bayes: Discretization Impact

#### **Key Insights**

- Discretization consistently improves model performance
- Equal depth outperforms
   equal width in most cases. It
   creates balanced bins,
   addressing skewed
   distributions effectively.

#### **Accuracy**

|          |                      | _              |                |
|----------|----------------------|----------------|----------------|
| Datasets | No<br>Discretization | Equal<br>Width | Equal<br>Depth |
| Diabetes | 0.6003               | 0.6498         | 0.6835         |
| Credit_g | 0.6300               | 0.6870         | 0.7040         |
| Blood    | 0.7097               | 0.7620         | 0.7379         |
| Glass    | 0.5199               | 0.5762         | 0.5251         |
| ILPD     | 0.4804               | 0.6052         | 0.6603         |
| Spambase | 0.7903               | 0.8068         | 0.8724         |

**Test: 10-Fold Cross Validation** 

## **Results: Gaussian Naïve Bayes**

#### **Key Insights**

- Gaussian NB excels with continuous data
- Discretization often reduces the performance slightly, however, it can increase by a big margin in some cases.
- Equal depth handles skewed data effectively.

#### **Accuracy**

| Datasets | No<br>Discretization | Equal<br>Width | Equal<br>Depth |
|----------|----------------------|----------------|----------------|
| Diabetes | 0.7552               | 0.7512         | 0.7460         |
| Credit_g | 0.7130               | 0.6800         | 0.6960         |
| Blood    | 0.7446               | 0.7406         | 0.7366         |
| Glass    | 0.4532               | 0.3173         | 0.3173         |
| ILPD     | 0.5643               | 0.4512         | 0.6756         |
| Spambase | 0.8203               | 0.6805         | 0.9011         |

**Test: 10-Fold Cross-Validation** 

### **Conclusion and Future Work**



#### **Conclusions**

Multinomial Naive Bayes showed clear **benefits** from discretization

**Equal depth** generally **outperformed**equal width in both models when
discretization was applied.

The effectiveness of each model and preprocessing technique was **highly**dataset-dependent

Testing with **Different Bin Sizes** 

Exploring Additional **Discretization**Methods

Evaluating on **Diverse Datasets** 

Incorporating **Hybrid Models** 

**AHEAD** 



## **KDE Naive Bayes**

## **KDE Naive Bayes**

- **KDE Naive Bayes** is an adaptation of the Naive Bayes classifier that **replaces the Gaussian or categorical assumptions** for feature distributions with a **KDE** approach.
- **Kernel Density Estimation (KDE)** is a non-parametric method to estimate the probability density function of data.

#### When to Consider KDE Naive Bayes?

- When you have continuous data that doesn't conform to common assumptions (e.g., non-normality).
- If discretization would lead to a loss of feature information.
- For datasets where traditional Naive Bayes approaches struggle due to distributional complexity.

## **KDE Naive Bayes**

#### **Advantages:**

- Flexible with different data distributions.
- Non-parametric approximation.
- Works well with complex continuous data.
- Works better than Gaussian Naive Bayes for complex/non-normal data distributions.

#### **Disadvantages:**

- Higher computational cost due to KDE.
- Sensitive to bandwidth selection.
- Complex Parameter Tuning

## **KDE Naive Bayes Vs Gaussian Naive Bayes**

#### **KDE Naive Bayes:**

- Outperforms in 4 out of 6 datasets
- In the Glass dataset, KDE Naive Bayes achieves 0.13 higher accuracy than GNB, demonstrating that it models multiple classes better.

The Credit\_g dataset has higher accuracy in GNB because the data fits the Gaussian assumption.

**Conclusion**: KDE Naive Bayes improves accuracy for complex datasets by handling complicated data distributions better.

#### **Accuracy**

| Datasets | Gaussian<br>Naive Bayes | KDE Naive<br>Bayes |
|----------|-------------------------|--------------------|
| Diabetes | 0.73                    | 0.76               |
| Credit_g | 0.72                    | 0.69               |
| Blood    | 0.76                    | 0.76               |
| Glass    | 0.53                    | 0.66               |
| ILPD     | 0.67                    | 0.70               |
| Spambase | 0.84                    | 0.85               |

## 10-fold cross-validation with hyperparameter tuning for both models

## Thanks

João Soares João Viterbo

## Different bin sizes applied to Multinomial Naive Bayes with Equal Depth Discretization

| Datasets\Bins | 5      | 10     | 15     | 20     |
|---------------|--------|--------|--------|--------|
| Diabetes      | 0.6770 | 0.6835 | 0.6653 | 0.6717 |
| Credit_g      | 0.7020 | 0.7040 | 0.6650 | 0.7020 |
| Blood         | 0.7647 | 0.7379 | 0.7272 | 0.7632 |
| Glass         | 0.5353 | 0.5251 | 0.5154 | 0.5473 |
| ILPD          | 0.6808 | 0.6603 | 0.6602 | 0.6741 |
| Spambase      | 0.8550 | 0.8724 | 0.8870 | 0.8555 |

## **ROC for the Multinomial Naive Bayes and Gaussian Naive Bayes and discretization techniques**





#### Performance Metrics Comparisson between Gaussian Naive Bayes and KDE Naice Bayes for Ilpd Dataset

| Models\Metrics | Accuracy | Precision | Recall |
|----------------|----------|-----------|--------|
| Gaussian       | 0.6722   | 0.6280    | 0.6430 |
| KDE            | 0.7015   | 0.6485    | 0.6654 |