Assume that (ii) holds. Then there exists a continuous mapping ϕ_{+} : K \rightarrow K such that T(t)f = f \circ ϕ_{+} for all f \in C(K) (see B-I,Sec.3). The semigroup property implies that $(\phi_+)_{+\geq 0}$ is a continuous semiflow. This shows (iii) to hold.

If (iii) holds, then T(t)1 = 1 for all $t \ge 0$ hence $1 \in D(A)$ and A1 = 0 . Let $f,g \in D(A)$. Then $d/dt|_{t=0} T(t)(f \cdot g) =$

 $d/dt|_{t=0}$ $(T(t)f) \cdot (T(t)g) = (Af) \cdot g + f \cdot (Ag)$. Thus $f \cdot g \in D(A)$ (3.4) holds. Hence A is a derivation.

Finally assume that (iv) holds. We prove (ii), i.e., we have to show that $T(t)(f \cdot g) = T(t)f \cdot T(t)g$ for t > 0. Since D(A) is a dense subalgebra, we can assume that $f,g \in D(A)$. Define $n: [0,t] \rightarrow C(K)$ by $\eta(s) := T(t-s)[T(s)f \cdot T(s)g]$. Then $\eta(0) = T(t)(f \cdot g)$ and $\eta(t) = T(t) f \cdot T(t) q$. Since A is a derivation, $\eta'(s) = 0$

 $s \in [0,t]$. Hence $\eta(0) = \eta(t)$. This shows (ii) to hold.

If δ is the generator of a semigroup $(T(t))_{t\geq 0}$ given by $T(t) f = f \circ \phi_{t}$, then we call ϕ given by $\phi(t,x) = \phi_{t}(x)$ the semiflow associated with $(T(t))_{t\geq 0}$ (or associated with δ). We now can describe the generator of any lattice semigroup as a perturbation of a derivation. If 1 is in the domain of the generator, an additive perturbation (by a multiplication operator) suffices; in general a similarity transformation has to be applied in addition. This is the assertion of the following two theorems.

Theorem 3.5. Let A be a generator of a semigroup $(T(t))_{t\geq 0}$ C(K) . Suppose that 1 \in D(A) . Then the following assertions are equivalent.

- (i) $(T(t))_{t\geq 0}$ is a lattice semigroup.
- (ii) There exist a derivation δ (generating a semigroup of algebra homomorphisms) and a multiplier $h \in C(K)$ such that $A = \delta + h$ (i.e., $D(A) = D(\delta)$ and $Af = \delta f + h \cdot f$ for $f \in D(A)$).

Moreover, if (ii) holds, then $(T(t))_{t\geq 0}$ is given by

(3.6)
$$(T(t)f)(x) = \exp(\int_0^t h(\phi(s,x))ds) \cdot f(\phi(t,x))$$

where ϕ is the semiflow associated with δ .

<u>Proof.</u> Let h = A1 and $\delta = A - h$. Then the semigroup $(T_O(t))_{t \ge 0}$ generated by δ is a lattice semigroup if and only if $(T(t))_{t\geq 0}$ a lattice semigroup [since $T_O(t) f = \lim_{n \to \infty} (e^{-t/n \cdot h} \cdot T(\frac{t}{n}))^n f$ and $T(t) f = \lim_{n \to \infty} (e^{t/n \cdot h} \cdot T_O(\frac{t}{n}))^n f$ for all $t \ge 0$, $f \in C(K)$