U3

Part 2: Discrete Fourier transform (DFT)

- The DTFT provides a continuous function: It is not suitable for computer processing
- □ The DFT provides a sampling representation of the frequency domain

Definition of DFT and inverse DFT

U3

The discrete Fourier transform (DFT) of size N converts finite sequences x[0], ..., x[N-1] of N complex numbers into other finite sequences X[0], ..., X[N-1]

TIME DOMAIN

$$X_N[k] = \sum_{n=0}^{N-1} x_N[n] e^{-j2\pi \frac{k}{N}n}, \quad 0 \le k \le N-1$$
 FREQUENCY DOMAIN

x_N[n]: sequence of length N

DFT_N

X_N[k]: sequence of length N

 $\begin{array}{c}
\text{IDFT}_{N} \\
1 \sum_{N=1}^{N-1} V_{N} \int_{\mathbb{R}^{N}} d^{n} d^{n} \\
1 \sum_{N=1}^{N} V_{N} \int_{\mathbb{R}^{N}} d^{n} d^{n} d^{n} \\
1 \sum_{N=1}^{N} V_{N} \int_{\mathbb{R}^{N}} d^{n} d^{n} d^{n} \\
1 \sum_{N$

Unit 3: Discrete-time signals and systems in the frequency domain

Relation between DFT and DTFT (1)

U3

□ The DFT of size N of a signal x[n] of length $L \le N$:

$$X_N[k] = DFT_N\{x[n]\} = \sum_{n=0}^{N-1} x[n]e^{-j2\pi\frac{k}{N}n} = X(F)|_{F=\frac{k}{N}}, \quad 0 \le k \le N-1$$

$$k: \text{ discrete frequency variable/index}$$

Sampling of the Fourier transform with N points in the interval [0,1)

1 not included!

Unit 3: Discrete-time signals and systems in the frequency domain

41

Implicit windowing of the DFT

U3

Given a general signal, an implicit windowing in the interval [0,N-1] is applied when computing the DFT:

 $x_w[n] = x[n] \cdot p_N[n]$ Unit 3: Discrete-time signals and systems in the frequency domain

Relation between DFT and DTFT (2)

U3

□ The DFT of size N of a signal x[n] of length L > N:

Define
$$x_w[n] = x[n] \cdot p_N[n] \longleftrightarrow X_w(F) = X(F) \circledast W(F)$$

$$X_N[k] = DFT_N\{x[n]\} = \sum_{n=0}^{N-1} x[n]e^{-j2\pi \frac{k}{N}n} = X(F) \circledast W(F)|_{F=\frac{k}{N}}, \quad 0 \le k \le N-1$$

k: discrete frequency variable/index

Now $X_N[k]$ is composed of N points of $X_w(F) \neq X(F)$ in the interval [0,1)

Unit 3: Discrete-time signals and systems in the frequency domain

43

Windowing of signals for DFT computation

Keeping fixed the size of the window and increasing the number of points of DFT (zero-padding):

 $x[n] = \cos(2\pi \frac{5.2}{20}n)$

|X(F)|

Fourier transform of sinusoid $|X_N[k]|$

50 60 70

20 40 60 80 100 120 140 160 180 200 220 k

D.F.T. of length N=220 44

Unit 3: Discrete-time signals and systems in the frequency domain

Windowing of signals for DFT computation

Increase the size of the window (and the size of the DFT):

$$x[n] = \cos(2\pi \frac{5.2}{20}n)$$

$$x_w[n] = x[n] \cdot p_N[n] = \begin{cases} x[n], 0 \le n < N \\ 0, \text{ otherwise} \end{cases}$$

Unit 3: Discrete-time signals and systems in the frequency domain

Inverse DFT (proof)

DFT

$$IDFT_{N}[X_{N}[k]] = \frac{1}{N} \sum_{k=0}^{N-1} X_{N}[k] e^{j\frac{2\pi}{N}kn} = \frac{1}{N} \sum_{k=0}^{N-1} \left(\sum_{l=0}^{N-1} x_{N}[l] e^{-j\frac{2\pi}{N}kl} \right) e^{j\frac{2\pi}{N}kn} = \sum_{l=0}^{N-1} x_{N}[l] \left(\frac{1}{N} \sum_{k=0}^{N-1} e^{j\frac{2\pi}{N}k(n-l)} \right) e^{j\frac{2\pi}{N}kn}$$

$$= \sum_{l=0}^{N-1} x_N[l] \sum_{r=-\infty}^{\infty} \delta[n-l-rN] = \sum_{l=0}^{N-1} x_N[l] t_N[n-l]$$

$$\frac{1}{N} \frac{1 - e^{j2\pi(n-l)}}{1 - e^{j\frac{2\pi}{N}(n-l)}} = \begin{cases} 1, & n-l = r \cdot N \\ 0, & \text{otherwise} \end{cases}$$

$$\boxed{\frac{1}{N} \frac{1 - e^{j2\pi(n-l)}}{1 - e^{j\frac{2\pi}{N}(n-l)}} = \begin{cases} 1, & n-l = r \cdot N \\ 0, & \text{otherwise} \end{cases}}$$

$$= x_{N}[n] * t_{N}[n] = \sum_{r=-\infty}^{\infty} x_{N}[n-rN] = \tilde{x}_{N}[n] = x_{N}[n]$$

$$t_N[n] = \sum_{r=-\infty}^{\infty} \delta[n-rN]$$

$$= x_N[n] * t_N[n] = \sum_{r=-\infty}^{\infty} x_N[n-rN] = \tilde{x}_N[n] = x_N[n]$$

$$0 \le n \le N - 1$$

$$x_N[n] = 0, n < 0, n \ge N$$

$$0 \le n \le N - 1$$

Definition: $\tilde{a}_N[n]$ periodic extension of a $\tilde{a}_N[n] = a[n] * t_N[n] = \sum_{r=-\infty}^{\infty} a[n-rN]$ sequence a[n] with period N sequence a[n] with period N

Unit 3: Discrete-time signals and systems in the frequency domain

Frequency sampling

- □ Let us assume that we have a general signal x[n] (taking values at any time instant n, and not only in [0,N-1]):

 - 1. We calculate its Fourier transform: $X(F) = \sum_{l=-\infty}^{\infty} x[l]e^{-j2\pi Fl}$ 2. We sample the Fourier transform in the interval $F \in [0,1)$ with N samples: $X[k] = X(F)|_{F = \frac{k}{N}}, \quad 0 \le k \le N - 1$ 3. We apply the IDFT of N points (use similar proof as before):

$$\begin{split} IDFT_{N}\left\{X[k]\right\} &= \frac{1}{N}\sum_{k=0}^{N-1}X[k]e^{j\frac{2\pi}{N}kn} = \frac{1}{N}\sum_{k=0}^{N-1}\left(\sum_{l=-\infty}^{\infty}x[l]e^{-j\frac{2\pi}{N}kl}\right)e^{j\frac{2\pi}{N}kn} \\ &= \sum_{l=-\infty}^{\infty}x[l]\left(\frac{1}{N}\sum_{k=0}^{N-1}e^{j\frac{2\pi}{N}k(n-l)}\right) = x[n]*t_{N}[n] = \sum_{r=-\infty}^{\infty}x[n-rN] = \tilde{x}_{N}[n] \end{split}$$

In general $\tilde{x}_N[n] \neq x[n]$ in the interval $n \in [0, N-1]$ (temporal aliasing):

--- if the signal has non-zero samples out of the interval [0, N-1], the periodic extension is not equal to the original signal ---

Unit 3: Discrete-time signals and systems in the frequency domain

47

Check yourself (1)

Consider x[n] = [1, -1, 0, 1, 1], L = 5.Take the DFT of size N of x[n], then the IDFT of size N is:

- \Box For N=6
- \Box For N=4
- \square For N=3

Unit 3: Discrete-time signals and systems in the frequency domain

Check yourself (2)

113

Consider $x[n] = [\underline{1}, -1, 0, 1, 1]$, L = 5. Take N samples of the Fourier transform of x[n], then the IDFT of size N is:

- \square For N=6
- \Box For N=4
- \Box For N = 3

Unit 3: Discrete-time signals and systems in the frequency domain