Matematica Discreta e Algebra Lineare 22 Gennaio 2018

Cognome e nome:
Numero di matricola:
<u>IMPORTANTE</u> : Scrivere il nome su ogni foglio. Mettere <u>TASSATIVAMENTE</u> nei riquadri le risposte, e nel resto del foglio lo svolgimento. Punti 5 ad esercizio, più un punto extra ad esercizio per la qualità, la chiarezza, la precisione.
 Esercizio 1 (AL). Siano v₁ = (2,3,4) e v₂ = (1,0,2) due vettori in R³. (1) Si trovi un vettore (a,b,c) con c = 3 ortogonale sia a v₁ sia a v₂. (2) Stabilire se esistono due vettori w₁, w₂ linearmente indipendenti tra loro e ortogonali sia a v₁ sia a v₂ (rispondere SI o NO, e motivare la risposta).
Scrivere qui il vettore (a,b,c) Scrivere qui SI o NO:

Esercizio 2 (MD).	Determinare tutte le soluz	zioni della congruenza $3^x \equiv 4 \pmod{5}$
		Scrivere qui il risultato final

Esercizio 3 (AL). Si determini l'inversa della matrice

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 3 & 1 \end{bmatrix}$$

Scrivere	qui	la	mat	rice	A^{-}	-1:

Esercizio 4 (MD). Sia p(x) il polinomio $x^3 + 5x^2 + 4x + 20$.

- (1) Si trovino le radici razionali di p(x).
- (2) Si trovi la fattorizzazione completa di p(x) in $\mathbb{R}[x]$. (3) Si trovi la fattorizzazione completa di p(x) in $\mathbb{C}[x]$.

Radici razionali	Fattorizzazione in $\mathbb{R}[x]$	Fattorizzazione in $\mathbb{C}[x]$

Esercizio 5 (AL). Si consideri un'applicazione lineare $L: \mathbb{R}^2 \to \mathbb{R}^2$ con nucleo uguale al sottospazio $\left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x+y=0 \right\}$ e tale che $L\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

(1) Si trovino gli autovalori di L e dei corrispondenti autovettori.

- (2) Si scriva la matrice A di L rispetto alla base standard di \mathbb{R}^2 .
- (3) Si determini se L è diagonalizzabile e in caso di risposta positiva si trovi una matrice diagonale D e una matrice M tale che $M^{-1}AM = D$.

Autovalori	Matrice A	Matrice M

Esercizio 6 (MD). Si considerino delle matrici $n \times n$ con coefficienti in $\{0,1\}$.

- (1) Quante sono le matrici con queste caratteristiche?
- (2) Quante di queste matrici hanno esattamente n-1 coefficienti uguali ad 1?
- (3) Quante delle matrici hanno esattamente un 1 in ciascuna riga e in ciascuna colonna?
- (4) Quante delle matrici hanno esattamente n-1 coefficienti uguali ad 1, supponendo che non vi possano essere due 1 nella stessa riga o nella stessa colonna?

SOLUZIONI: (1) Ogni coefficiente può essere 0 o 1 e ci sono n^2 coefficienti, quindi ho 2^{n^2} possibilità.

- (2) Devo scegliere n-1 posizioni su n^2 dove mettere gli 1, quindi ho in tutto $\binom{n-1}{n^2}$ matrici con queste caratteristiche.
- (3) Ci sono n scelte per la posizione dell'1 nella prima riga, poi n-1 per la posizione dell'1 nella seconda riga poiché devo evitare la colonna già occupata, poi n-2 per la posizione dell'1 nella terza riga perché devo evitare due colonne, e così via, fino ad arrivare ad una sola scelta obbligata per l'1 nell'ultima riga. In totale ho quindi $n \cdot (n-1) \cdot \ldots \cdot 1 = n!$ scelte. La risposta è n!
- (4) Se invece di n-1 fossero n, per il punto precedente dell'esercizio avrei n! modi di scegliere in quali posizioni mettere gli 1. Siccome però ne devo sistemare solo n-1, dopo averne sistemati n ne tolgo uno, e ho n modi di scegliere quale togliere. Quindi la risposta è n! n!

Un altro modo per arrivare alla stessa soluzione è il seguente: prima scelgo la riga e la colonna che non contengono 1. Ho n scelte per la riga e n per la colonna, quindi n^2 scelte. Tolta quella riga e quella colonna, ho (n-1)! modi di sistemare gli 1. Quindi in tutto ho $n^2 \cdot (n-1)!$ possibilità, che è la stessa cosa di $n \cdot n!$.

