

Research paper

Effective separation and transfer of carriers into the redox sites on $\text{Ta}_3\text{N}_5/\text{Bi}$ photocatalyst for promoting conversion of CO_2 into CH_4

Shaomang Wang^{a,b}, Yuan Guan^b, Lei Lu^a, Zhan Shi^a, Shicheng Yan^{a,*}, Zhigang Zou^a^a Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, PR China^b School of Environment and Safety Engineering, School of Petrochemical Engineering, School of Huai De, Changzhou University, Changzhou 213164, PR China

ARTICLE INFO

Keywords:
 Artificial photosynthesis
 CH_4
 CO_2 reduction
 $\text{Ta}_3\text{N}_5/\text{Bi}$

ABSTRACT

Improving separation efficiency of carriers and inhibiting the inverse reaction are key challenges for achieving efficient sunlight driven conversion of CO_2 by H_2O as reducing agent into CH_4 . Here, we proposed using metal Bi with low work function to modify *n*-type Ta_3N_5 , thus building an ohmic junction photocatalyst of $\text{Ta}_3\text{N}_5/\text{Bi}$. It achieved an about 5 times increase in CH_4 yield compared with Ta_3N_5 . The enhanced photocatalytic activity was ascribed to the following two effects: (1) The junction electric field drove the injection of conduction-band electrons of Ta_3N_5 to Bi, greatly improving separation efficiency of carriers; (2) The oxidation and reduction reaction sites were respectively constructed over Ta_3N_5 and Bi, effectively separating the oxidation reaction of H_2O and the reduction reaction of CO_2 , which distinctly suppressed the reverse reaction during CH_4 generation.

1. Introduction

Photocatalytic reduction of CO_2 by H_2O into CH_4 is a promising solar conversion and storage technique [1–10]. This energy conversion route is achieved by two half-reactions [11–16]. Firstly, H_2O is oxidized by photo-induced holes in the valence band (VB) of semiconductor photocatalyst to generate hydrogen ions via the reaction of $4\text{H}_2\text{O} + 8\text{h}^+ \rightarrow 2\text{O}_2 + 8\text{H}^+$ ($E_{\text{ox}}^{\circ} = 0.82$ V vs. normal hydrogen electrode, NHE). Secondly, CO_2 is reduced by photo-generated electrons in the conduction band (CB) of semiconductor photocatalyst into CH_4 via the reaction of $\text{CO}_2 + 8\text{e}^- + 8\text{H}^+ \rightarrow \text{CH}_4 + 2\text{H}_2\text{O}$ ($E_{\text{red}}^{\circ} = -0.24$ V vs NHE). Therefore, the photocatalyst with excellent ability in separating carriers and suppressing the inverse reaction is needed for efficient solar energy conversion.

Tantalum nitride (Ta_3N_5) has received increasing attention because it exhibited good photocatalytic activity in water splitting and degradation of organic pollutants [17–28]. The CB and VB energy level for Ta_3N_5 are about -0.29 and 1.81 V vs. reversible hydrogen electrode (RHE), which meets the thermodynamic requirements for photocatalytic reduction of CO_2 by H_2O into CH_4 . Modifying Ta_3N_5 by metal particles is a facile route to improve the separation efficiency of carriers [29–32]. For example, after the modification of Pt particles, a surface band bending upward at junction region between *n*-type Ta_3N_5 and metal particles is formed for reaching the thermodynamic equilibrium, owing to that work function of Pt (5.7 eV) is higher than that of Ta_3N_5

(4.5 eV) [33]. The band bending upward will obstruct the injection of conduction-band electrons of Ta_3N_5 into Pt particles, where usually are the catalytic reduction sites with low over-potential. This means that, when the work function of semiconductor is lower than that of metal, transferring the electrons in the CB of semiconductor into metal particles is highly depending on the height of Schottky barrier. Although high height of Schottky barrier means large band bending which greatly enhances the charge separation, the higher electron energy was required to cross the barrier for transferring electrons into metal particles. Thus, a surface band bending downward is expected for facilitating electron injection into metal particles.

Here, metal Bi was selected to modify the Ta_3N_5 due to its low work function. It can be predicted that the surface band bending downward will be formed at the interface junction region between Bi and Ta_3N_5 , resulting from that the work function of Bi (4.2 eV) is lower than that of Ta_3N_5 (4.5 eV). The surface band bending downward facilitates transferring the conduction-band electrons of Ta_3N_5 into Bi particles. To verify this hypothesis, we have synthesized the $\text{Ta}_3\text{N}_5/\text{Bi}$ composite photocatalyst by directly nitriding BiTaO_4 , achieving an about 5 times increase in CH_4 yield. The enhanced photocatalytic activity can be attributed to the enhanced electron transfer from Ta_3N_5 to Bi and the effective separation of the redox sites. Theoretical calculations indicate that the H_2O and CO_2 tend to activate on surface of Ta_3N_5 and Bi, respectively, inducing the separation of the redox sites. For the CO_2 reduction into CH_4 , 8-electron transfer is needed. This means that CH_4

* Corresponding author.

E-mail address: yscfei@nju.edu.cn (S. Yan).

generation is slow kinetically. A possible reverse reaction is the degradation of reduced carbon-containing intermediate species by photogenerated holes. Therefore, spatially separated reaction sites were beneficial to suppress the possible reverse reaction during the CH₄ generation. The proposed strategy may offer a new route to design the efficient photocatalysts for solar energy conversion.

2. Experimental section

2.1. Photocatalyst preparation

To synthesize the Ta₃N₅/Bi composite photocatalyst, the BiTaO₄ was first fabricated by molten-salt method [34]. Typically, 0.51 g of Bi₂O₃ and 0.48 g of Ta₂O₅ with the eutectic molten salt (0.32 g of NaCl and 0.41 g of KCl) were fully ground for 30 min after adding 5 mL of ethanol. The mixture was dried at 80 °C for 2 h and then calcined at 850 °C for 5 h with a heating rate of 5 °C min⁻¹ in a muffle furnace. After the furnace was naturally cooled to room temperature, the product was washed with deionized water, filtrated and dried at 80 °C for 4 h. Ta₃N₅/Bi was synthesized by heating BiTaO₄ under ammonia atmosphere. In a typical experiment, 1 g of BiTaO₄ powders were uniformly dispersed on the bottom of an alumina crucible, and then calcined in a tube furnace (inner diameter 50 mm) at 750 °C for 10 h with a heating rate of 10 °C min⁻¹ under 500 mL min⁻¹ flowing NH₃. The sample was naturally cooled to room temperature. Using the similar nitriding procedure, Ta₃N₅/Bi with different molar ratio of Bi/Ta was prepared by adjusting the amount of Bi₂O₃ and Ta₂O₅. For comparison, the Ta₃N₅ was prepared by nitriding the Ta₂O₅ using the above-mentioned procedure. A mixture of Ta₃N₅ and Bi (M-Ta₃N₅/Bi) was fabricated via heating the mixture of Bi₂O₃ (0.51 g) and Ta₂O₅ (0.48 g) with the similar nitridation procedure for preparing Ta₃N₅/Bi.

2.2. Characterization

The crystal structures of the samples were identified by powder X-ray diffraction (XRD) (Rigaku Ultima III, Japan) with Cu K α radiation ($\lambda = 1.5418 \text{ \AA}$). The scanning electron microscope (SEM) images were collected on FEI NOVA Nano SEM 230. The elemental compositions of the samples were analyzed by X-ray energy dispersive spectroscopy (EDS). Transmission electron microscope (TEM) characterizations were performed on JEM-200CX. X-ray photoelectron spectroscopy (XPS) studies were conducted on a PHI5000 Versa Probe (ULVAC-PHI, Japan) with monochromatized Al K α X-ray radiation (1486.6 eV). The optical absorption spectra were recorded on a UV-vis diffuse reflection spectrophotometer (UV-vis DRS 2550, Shimadzu). The photoluminescence spectra (PL) were obtained via Fluoromax-4 (HORIBA, USA) with an excitation wavelength at 450 nm. Photoelectrochemical measurements were performed on an electrochemical analyzer (CHI-660D, Shanghai Chenhua, China) in a standard three-electrode system with a bias potential of 0.23 V vs. saturated calomel electrode. A platinum wire and a saturated calomel electrode were used as counter electrode and reference electrode, respectively. Working electrode was prepared as follows: 30 mg of the sample and 10 mg of iodine were added to 25 mL of acetone with ultrasonic shock for half an hour. Then, the sample was deposited on a fluorine-doped tin oxide conducting substrate with a fixed area of 1 cm² by a voltage of 15 V for 5 min. NaOH (1 mol L⁻¹) aqueous solution was utilized as the electrolyte. A 500 W Xe lamp was used as the light source for photocurrent measurement.

2.3. Evaluation of photocatalytic activity

The photocatalytic reactions were performed in a gas sealed container with a volume of 230 mL (Fig. S1). The as-prepared photocatalyst (0.1 g) was uniformly dispersed on a quartz disk with an area of 4.20 cm². After the reaction container was evacuated, CO₂ was purged with initial pressure of about 705 bar and then 0.4 mL of deionized

water was injected into the reaction container. The system was kept in the dark for 2 h to ensure that the adsorption-desorption equilibrium was established between gaseous molecules and the photocatalyst. A 300 W Xenon arc lamp was used as light source. During the irradiation, 1 mL of gas withdrawn from the above system was analyzed by a GC-2014 (Shimadzu, Japan) gas chromatograph every hour.

2.4. Computational methods

The Cambridge Sequential Total Energy Package (CASTEP) code was used to perform the density functional theory (DFT) computations. The general gradient approximation (GGA) with PBE was used to describe the exchange-correlation effects for the calculations of work function and adsorption energy. The attractive energy between nuclear and electrons was calculated by ultrasoft pseudo-potential. The convergence threshold of geometric optimization was set at $2.0 \times 10^{-5} \text{ eV atom}^{-1}$ for total energy, 0.05 eV \AA^{-1} for maximum force, 0.1 GPa for stress and 0.002 Å for maximum displacement. For the calculations of work function, the structure of Bi (024) was built including 5 atoms of Bi, and lattice parameter was $a = 6.0 \text{ \AA}$, $b = 12.7 \text{ \AA}$, $c = 23.1 \text{ \AA}$ and $\alpha = \beta = \gamma = 90^\circ$. The structure of Ta₃N₅ (023) contained 18 atoms of Ta and 30 atoms of N, and lattice parameter was $a = 18.5 \text{ \AA}$, $b = 3.9 \text{ \AA}$, $c = 28.2 \text{ \AA}$, $\alpha = \beta = 90^\circ$ and $\gamma = 84^\circ$. For the calculations of adsorption energy, the interface structure of Ta₃N₅ (023)/Bi (024) was constructed including 12 atoms of Ta, 20 atoms of N and 4 atoms of Bi, and lattice parameter was $a = 18.8 \text{ \AA}$, $b = 8.7 \text{ \AA}$, $c = 15.9 \text{ \AA}$, $\alpha = \beta = 90^\circ$ and $\gamma = 87^\circ$ (Fig. S2).

3. Results and discussion

The XRD patterns of Ta₃N₅, Ta₃N₅/Bi and M-Ta₃N₅/Bi are presented in Fig. 1a. The XRD peaks of sample prepared by nitriding Ta₂O₅ can be assigned to the single-phase Ta₃N₅ with orthorhombic structure (JCPDS card No.79-1533). Ta₃N₅/Bi and M-Ta₃N₅/Bi clearly exhibited the XRD patterns of Ta₃N₅ and hexagonal Bi (JCPDS card No.85-1329), demonstrating that BiTaO₄ or a mixture of Ta₂O₅ and Bi₂O₃ can be converted to Ta₃N₅ and metal Bi after being calcined at 750 °C for 10 h under a NH₃ flow of 500 mL min⁻¹. This means that the phase separation, formation of Ta₃N₅ and Bi metal particles, occurs during the nitridation of BiTaO₄ due to the strong reducibility of NH₃ at high temperature. Indeed, under the same conditions, the Bi₂O₃ powders can be completely reduced into Bi metal particles (Fig. S3).

Fig. 1b-d present the chemical states of Bi, Ta and N. The binding energies of Bi 4f_{7/2} and Bi 4f_{5/2} in the Ta₃N₅/Bi were 158.1 and 163.4 eV, which were about 1 eV higher than those in the metal Bi (Bi 4f_{7/2} = 157.1 and Bi 4f_{5/2} = 162.4 eV), and were about 2.4 eV lower than those in the Bi₂O₃ (Bi 4f_{7/2} = 159.5 and Bi 4f_{5/2} = 164.9 eV) [35]. In addition, the binding energies of Ta 4f_{7/2}, Ta 4f_{5/2} and N 1 s were 24.0, 25.7 and 395.4 eV in the Ta₃N₅/Bi, respectively, which were slightly lower than those of Ta 4f_{7/2} (24.2 eV), Ta 4f_{5/2} (25.9 eV) and N 1 s (395.6 eV) in the Ta₃N₅. For Ta₃N₅/Bi, the binding energy increment for Bi and decrease for Ta and N would reflect that the surface band bending downward formed, resulting from the electron transfer from Bi to Ta₃N₅ for building up thermodynamic equilibrium. However, no obvious changes in binding energies for Bi, Ta and N in the M-Ta₃N₅/Bi were observed if compared to Ta₃N₅ and Bi metal (Fig. S4), confirming that the Ta₃N₅/Bi composite photocatalyst prepared by nitriding BiTaO₄ is beneficial to form a high-quality Ta₃N₅-Bi junction interface with strong interaction.

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations were performed to visualize the morphology and interface structure between Ta₃N₅ and Bi. As shown in Fig. 2a, the Ta₃N₅ obtained by nitriding Ta₂O₅ exhibited the porous particles with apparent size of 500–800 nm, well consistent with the previous reports [25]. After nitriding, the BiTaO₄ plate (Fig. 2b) was converted to a porous plate composed of Ta₃N₅ nanoparticles with

Fig. 1. (a) XRD patterns of Ta₃N₅, Ta₃N₅/Bi and M-Ta₃N₅/Bi. XPS core-level spectra of (b) Bi 4f, (c) Ta 4f and (d) N 1s.

Fig. 2. SEM images of (a) Ta₃N₅, (b) BiTaO₄ and (c and d) Ta₃N₅/Bi. (e) TEM image of Ta₃N₅/Bi. (f) SAED pattern of Ta₃N₅/Bi.

particle size of 50–100 nm (Fig. 2c and d, and Fig. S5a). In addition, the large agglomerate microspheres of about 5–6 μm were observed in the products (Fig. 2c and d), which can be assigned to the Bi metal by energy dispersive spectrometry (EDS) analysis (Fig. S5b). A lot of porous Ta₃N₅ plate tightly anchored on Bi microspheres. These evidences imply that the Ta₃N₅ plate inherits the apparent profile of BiTaO₄ precursor and porous structure originates from the phase separation of Bi metal. At the high temperature, the Bi metal tends to agglomerate into larger particles due to its low melting point (271.3 °C). However, the high-resolution TEM lattice image clearly revealed the smooth particle interface between (024) facet of Bi and (023) facet of Ta₃N₅ (Fig. 2e). This fact means that the Bi metal nanoparticles except the large agglomerate particles exist in the porous framework of Ta₃N₅ with high-quality interface with Ta₃N₅. Indeed, selected area electron diffraction on the particle interface confirms that both Ta₃N₅ and Bi nanoparticles are single crystal (Fig. 2f). SEM analysis indicates that larger Bi microspheres (about 7–8 μm) and Ta₃N₅ nanoparticles (about 200–300 nm) formed in the M-Ta₃N₅/Bi (Fig. S6a).

As confirmed by XPS, the weak interaction between Ta₃N₅ and Bi particles in the M-Ta₃N₅/Bi may be attributed to that the larger particle size of Ta₃N₅ and Bi and the particle contact achieved by sintering effect, not similar to the simultaneous phase separation of Bi and Ta₃N₅ from BiTaO₄ inducing the high-quality interface. Obviously, for the M-Ta₃N₅/Bi, the particle size of Ta₃N₅ is significantly smaller than that of Ta₂O₅ precursor (about 500–800 nm) (Fig. S6b). This is due to that the Bi flux formed during the nitridation, which plays the flux role in the nucleation and growth of Ta₃N₅ crystal.

UV-vis absorption spectra display that Ta₃N₅, Ta₃N₅/Bi and M-Ta₃N₅/Bi exhibited the slight difference in optical absorption edge to be around 603–605 nm (Fig. 3a), resulting from the band gap excitation from N 2p orbitals to Ta 5d orbitals. For Ta₃N₅/Bi and M-Ta₃N₅/Bi, an enhanced background absorption was observed in the wavelength longer than 600 nm, which can be ascribed to the light absorption of Bi metal (Fig. S7). The CO₂ reduction was carried out in CO₂ and H₂O vapor system under 300 W Xe lamp light irradiation. As shown in Fig. S8, the photocatalytic activity of Ta₃N₅/Bi gradually enhanced with increasing molar ratio of Bi/Ta. The optimal molar ratio of Bi/Ta was 1. After 8 h light irradiation, metal Bi powders obtained by nitriding Bi₂O₃ exhibited almost no photocatalytic activity for CO₂ reduction into CH₄ (Fig. 3b and c). And the total CH₄ generation is about 0.89 for Ta₃N₅, 1.14 for M-Ta₃N₅/Bi and 4.52 μmol g⁻¹ catalyst for Ta₃N₅/Bi, respectively. Obviously, the CH₄ generation rate over Ta₃N₅/Bi (0.57 μmol g⁻¹ h⁻¹) is about 5.2 and 4.1 times higher than those over Ta₃N₅ (0.11 μmol g⁻¹ h⁻¹) and M-Ta₃N₅/Bi (0.14 μmol g⁻¹ h⁻¹), respectively. The same experiments of CO₂ reduction performed in the dark or in the absence of the photocatalysts showed no appearance of CH₄, indicating that the reaction of CO₂ reduction is driven by light with the photocatalysts. Isotope labeling experiment was conducted by

using ¹³CO₂. ¹³CH₄ signal was detected by gas chromatography-mass spectrometry in the gas products (Fig. S9). This confirms that CH₄ formation originates from photocatalytic reduction of CO₂.

The specific surface area and average pore diameter analyzed by N₂ adsorption-desorption were 9.1 cm² g⁻¹ and 11.1 nm for Ta₃N₅, 6.0 cm² g⁻¹ and 7.7 nm for M-Ta₃N₅/Bi, and 11.8 cm² g⁻¹ and 15.2 nm for Ta₃N₅/Bi (Fig. S10). The Ta₃N₅/Bi exhibited a similar specific surface area to the Ta₃N₅. Therefore, the difference in CH₄ generation rate does not result from the difference in specific surface area. A 615 nm emission peak, near to the absorption edge at about 603–605 nm, was observed in photoluminescence (PL) spectra of these as-prepared Ta₃N₅ samples, which would originate from the band edge recombination. The PL peak intensity is in the order of Ta₃N₅ > M-Ta₃N₅/Bi > Ta₃N₅/Bi (Fig. 4a), indicating that the modifying Ta₃N₅ by metal Bi can effectively decrease the carrier recombination. In particular, the low PL peak intensity for Ta₃N₅/Bi would mean that the high-quality interface between Bi and Ta₃N₅ with the band bending downward is greatly contributable to the charge separation, thus decreasing their recombination. As displayed in Fig. 4b, the steady-state photocurrent exhibited the order of Ta₃N₅/Bi > M-Ta₃N₅/Bi > Ta₃N₅, confirming the highest separation efficiency of Ta₃N₅/Bi, in good agreement with PL results.

To obtain the nature of charge separation at the interface between Bi and Ta₃N₅, surface slab model for (024) facet of Bi (Fig. 5a) and (023) facet of Ta₃N₅ (Fig. 5c), well consistent with the TEM observations, was built to calculate their surface work functions. Surface potential analysis (Fig. 5b and d) demonstrated that the work function of Bi (024) was approximately 4.02 eV, which was evidently lower than 4.95 eV for Ta₃N₅ (023). When the Bi (024) contacted with Ta₃N₅ (023), the electrons of Bi (024) will diffuse to Ta₃N₅ (023) until they share the same Fermi level. A built-in electric field with the direction from the surface to bulk is constructed on the side of Ta₃N₅. This makes the surface energy band of Ta₃N₅ bend downward [33]. Under irradiation, electrons from space charge layer of Ta₃N₅ are driven by built-in electric field to Bi and then react with CO₂, which process greatly inhibits the carrier recombination of Ta₃N₅/Bi (Fig. 6). Compared to M-Ta₃N₅/Bi, the electron migration-efficiency of Ta₃N₅/Bi from Ta₃N₅ to Bi is higher due to the smooth interface between Ta₃N₅ and Bi formed during in situ crystal growth. Thence, carrier-separation efficiency of Ta₃N₅/Bi is significantly higher than those of M-Ta₃N₅/Bi and Ta₃N₅.

To further verify that the electrons of Bi will move toward Ta₃N₅ when they were in contact under dark. An interface model of Ta₃N₅ (023)/Bi (024) was built (Fig. S2). Electron density difference clearly showed that the Bi atoms lost electrons and Ta₃N₅ gained electrons (Fig. 7), well consistent with the XPS analysis. At Ta₃N₅ (023)/Bi (024) interface, a Bi atom averagely offers 0.67 electrons for Ta₃N₅. It confirms that the electrons of Bi will migrate to Ta₃N₅ under dark until they share the same Fermi level.

Fig. 3. (a) UV-vis diffuse reflectance spectra of Ta₃N₅, Ta₃N₅/Bi and M-Ta₃N₅/Bi. (b) Photocatalytic CH₄ evolution amount over Ta₃N₅, Ta₃N₅/Bi, M-Ta₃N₅/Bi and Bi powers as a function of irradiation time. (c) Average yield of CH₄ over Ta₃N₅, Ta₃N₅/Bi, M-Ta₃N₅/Bi and Bi powers.

Fig. 4. (a) Photoluminescence spectra of Ta_3N_5 , $\text{Ta}_3\text{N}_5/\text{Bi}$ and $\text{M-Ta}_3\text{N}_5/\text{Bi}$. (b) Photocurrents of Ta_3N_5 , $\text{Ta}_3\text{N}_5/\text{Bi}$ and $\text{M-Ta}_3\text{N}_5/\text{Bi}$.Fig. 5. The surface slab models and work functions of (a and b) Bi (024) and (c and d) Ta_3N_5 (023).

To verify above proposed redox sites, adsorption energy and geometric parameter change before and after adsorption of CO_2 and H_2O over different surface of Ta_3N_5 (023)/ Bi (024) were calculated. Adsorption energy of an adsorbate over a photocatalyst can be calculated by the following Eq. (1).

$$E_{\text{ads}} = E_{\text{ads/pho}} - (E_{\text{pho}} + E_{\text{adsorbate}}) \quad (1)$$

E_{ads} is adsorption energy. $E_{\text{ads/pho}}$, E_{pho} and $E_{\text{adsorbate}}$ are energy of adsorption system, energy of a photocatalyst and energy of an adsorbate, respectively. The calculated results are illustrated in Fig. 8 and Table 1.

For H_2O adsorption over Ta_3N_5 (023)/ Bi (024), E_{ads} of H_2O over Ta_3N_5 (023) and Bi (024) were -2 eV and -1.7 eV, respectively. The bond length of H_2O and the $\text{H}-\text{O}-\text{H}$ bond angle were 0.975 \AA and 105.2° over Ta_3N_5 (023) and Bi (024) before adsorption. After the adsorption reached a steady state, the bond length of H_2O over Ta_3N_5 (023) and Bi (024) was 0.983 \AA and 0.978 \AA , respectively. The $\text{H}-\text{O}-\text{H}$

bond angle over Ta_3N_5 (023) and Bi (024) was 107.4° and 104.1° , respectively. The E_{ads} , bond length of H_2O and the $\text{H}-\text{O}-\text{H}$ bond angle over Ta_3N_5 (023) were greater than those over Bi (024) after the adsorption reached a steady state.

For CO_2 adsorption over Ta_3N_5 (023)/ Bi (024), E_{ads} of CO_2 over Ta_3N_5 (023) and Bi (024) were -1.8 eV and -2.2 eV, respectively. The bond length of CO_2 and the $\text{O}=\text{C}=\text{O}$ bond angle were 1.182 \AA and 178.3° over Ta_3N_5 (023) and Bi (024) before adsorption. After the adsorption reached a steady state, the bond length of CO_2 over Ta_3N_5 (023) and Bi (024) was 1.181 \AA and 1.186 \AA , respectively. The $\text{O}=\text{C}=\text{O}$ bond angle over Ta_3N_5 (023) and Bi (024) was 178.5° and 178.6° , respectively. The E_{ads} , bond length of CO_2 and the $\text{O}=\text{C}=\text{O}$ bond angle over Ta_3N_5 (023) were smaller than those over Bi (024) after the adsorption reached a steady state. The results clearly suggest that H_2O is oxidized over Ta_3N_5 and CO_2 is reduced over Bi . The stability test of the photocatalyst has been carried out (Fig. S11). After cycling reaction three times, the CH_4 yield over the reused photocatalyst remained

Fig. 6. Schematic illustration of the ohmic-junction formation between Ta₃N₅ and Bi, and CH₄ evolution over Ta₃N₅/Bi.

Fig. 7. Electron density difference of Ta₃N₅ (023)/Bi (024).

Fig. 8. (a) The energies of H₂O, H₂O over Ta₃N₅ (023) and H₂O over Bi (024). (b) The energies of CO₂, CO₂ over Ta₃N₅ (023) and CO₂ over Bi (024). The energy of Ta₃N₅ (023)/Bi (024) calculated was -7655.2 eV.

Table 1

Adsorption energy and geometric parameter change before and after adsorption of H₂O and CO₂ over different surface of Ta₃N₅ (023)/Bi (024).

H ₂ O over Ta ₃ N ₅ (023)		H ₂ O over Bi (024)	
Before adsorption	After adsorption	Before adsorption	After adsorption
E _{ads} /eV	–	–2.0	–1.7
d _{O-H} /Å	0.975	0.983	0.978
∠(HOH)/°	105.2	107.4	104.1
CO ₂ over Ta ₃ N ₅ (023)		CO ₂ over Bi (024)	
Before adsorption	After adsorption	Before adsorption	After adsorption
E _{ads} /eV	–	–1.8	–2.2
d _{C=O} /Å	1.182	1.181	1.186
∠(OCO)/°	178.3	178.5	178.6

above 91% of that over the fresh sample, exhibiting the excellent stability of Bi/Ta₃N₅ photocatalyst.

4. Conclusions

In summary, a composite catalyst of Ta₃N₅/Bi with excellent photocatalytic activity for CO₂ reduction into CH₄ was successfully prepared by heating BiTaO₄ in an ammonia atmosphere. Bi metal particles obviously improved carrier-separation efficiency of Ta₃N₅. Ta₃N₅ was the catalytic oxidation site and Bi was the catalytic reduction site, thus effectively inhibiting the inverse reaction during CH₄ generation. Our work provided a promising strategy for designing and developing highly efficient photocatalysts of CO₂ conversion.

Acknowledgments

This work was supported primarily by the National Basic Research Program of China (2013CB632404), the National Natural Science Foundation of China (51572121, 21603098, 21633004 and 11504162), the State Key Laboratory of NBC Protection for Civilian (SKLNBC2014-09), the Natural Science Foundation of Jiangsu Province (BK20151265, BK20150580 and BK20161277), the Natural Science Foundation of Jiangsu Education Department (16KJB610002), the Postdoctoral Science Foundation of China (2017M611784) and the Fundamental Research Funds for the Central Universities (021314380084). We are grateful to the High Performance Computing Center (HPCC) of Nanjing University for doing the numerical calculations in this paper on its IBM Blade cluster system.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the

online version, at <http://dx.doi.org/10.1016/j.apcatb.2017.10.043>.

References

- [1] S.N. Haberreuter, L. Schmidt-Mende, J.K. Stolarczyk, Angew. Chem. Int. Ed. 52 (2013) 7372–7408.
- [2] Y.T. Liang, B.K. Vijayan, K.A. Gray, M.C. Hersam, Nano Lett. 11 (2011) 2865–2870.
- [3] F. Sastre, A.V. Puga, L.C. Liu, A. Corma, H. Garcia, J. Am. Chem. Soc. 136 (2014) 6798–6801.
- [4] I. Shown, H.C. Hsu, Y.C. Chang, C.H. Lin, P.K. Roy, A. Ganguly, C.H. Wang, J.K. Chang, C.I. Wu, L.C. Chen, K.H. Chen, Nano Lett. 14 (2014) 6097–6103.
- [5] B. Mei, A. Pougin, J. Strunk, J. Catal. 306 (2013) 184–189.
- [6] Y.F. Xu, M.Z. Yang, B.X. Chen, X.D. Wang, H.Y. Chen, D.B. Kuang, C.Y. Su, J. Am. Chem. Soc. (2017).
- [7] R. Long, Y. Li, Y. Liu, S.M. Chen, X.S. Zheng, C. Gao, C.H. He, N.S. Chen, Z.M. Qi, L. Song, J. Jiang, J.F. Zhu, Y.J. Xiong, J. Am. Chem. Soc. 139 (2017) 4486–4492.
- [8] W.K. Wang, D.F. Xu, B. Cheng, J.G. Yu, C.J. Jiang, J. Mater. Chem. A 5 (2017) 5020–5029.
- [9] Y. Ji, Y. Luo, J. Am. Chem. Soc. 138 (2016) 15896–15902.
- [10] C. Dong, M. Xing, J. Zhang, Mater. Horiz. 3 (2016) 608–612.
- [11] S.C. Yan, S.X. Ouyang, J. Gao, M. Yang, J.Y. Feng, X.X. Fan, L.J. Wan, Z.S. Li, J.H. Ye, Y. Zhou, Z.G. Zou, Angew. Chem. Int. Ed. 49 (2010) 6400–6404.
- [12] P. Li, Y. Zhou, Z.Y. Zhao, Q.F. Xu, X.Y. Wang, M. Xiao, Z.G. Zou, J. Am. Chem. Soc. 137 (2015) 9547–9550.
- [13] W.G. Tu, Y. Zhou, Z.G. Zou, Adv. Mater. 26 (2014) 4607–4626.
- [14] V.P. Indrakanti, J.D. Kubicki, H.H. Schobert, Energ. Environ. Sci. 2 (2009) 745–758.
- [15] Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Chem. Rev. 114 (2014) 9987–10043.
- [16] Q. Liu, Y. Zhou, J.H. Kou, X.Y. Chen, Z.P. Tian, J. Gao, S.C. Yan, Z.G. Zou, J. Am. Chem. Soc. 132 (2010) 14385–14387.
- [17] Y.B. Li, T. Takata, D. Cha, K. Takanabe, T. Minegishi, J. Kubota, K. Domen, Adv. Mater. 25 (2013) 125–131.
- [18] S.S.K. Ma, K. Maeda, T. Hisatomi, M. Tabata, A. Kudo, K. Domen, Chem-Eur. J. 19 (2013) 7480–7486.
- [19] E. Nurlaela, S. Ould-Chikh, I. Llorens, J.L. Hazemann, K. Takanabe, Chem. Mater. 27 (2015) 5685–5694.
- [20] L. Wang, N.T. Nguyen, X.M. Zhou, I. Hwang, M.S. Killian, P. Schmuki, Chemsuschem 8 (2015) 2615–2620.
- [21] R. Gao, S.X. Zhou, M. Chen, L.M. Wu, J. Mater. Chem. 21 (2011) 17087–17090.
- [22] L. Yuliati, J.H. Yang, X.C. Wang, K. Maeda, T. Takata, M. Antonietti, K. Domen, J. Mater. Chem. 20 (2010) 4295–4298.
- [23] S. Khan, M.J.M. Zapata, D.L. Baptista, R.V. Goncalves, J.A. Fernandes, J. Dupont, M.J.L. Santos, S.R. Teixeira, J. Phys. Chem. C 119 (2015) 19906–19914.
- [24] X.J. Feng, T.J. LaTempa, J.I. Basham, G.K. Mor, O.K. Varghese, C.A. Grimes, Nano Lett. 10 (2010) 948–952.
- [25] S.S.K. Ma, T. Hisatomi, K. Maeda, Y. Moriya, K. Domen, Am. Chem. Soc. 134 (2012) 19993–19996.
- [26] T. Hisatomi, M. Otani, K. Nakajima, K. Teramura, Y. Kako, D.L. Lu, T. Takata, J.N. Kondo, K. Domen, Chem. Mater. 22 (2010) 3854–3861.
- [27] J. Cao, L. Ren, N. Li, C. Hu, M. Cao, Chem-Eur. J. 19 (2013) 12619–12623.
- [28] R. Gao, S. Zhou, M. Chen, L. Wu, J. Mater. Chem. 21 (2011) 17087–17090.
- [29] S. Chen, Y. Qi, Q. Ding, Z. Li, J. Cui, F. Zhang, C. Li, J. Catal. 339 (2016) 77–83.
- [30] S. Li, L. Zhang, H. Wang, Z. Chen, J. Hu, K. Xu, J. Liu, Sci. Rep. 4 (2014) 3978.
- [31] B.A. Pinaud, P.C.K. Vesborg, T.F. Jaramillo, J. Phys. Chem. C 116 (2012) 15918–15924.
- [32] S.J. Li, J.L. Zhang, S.W. Hu, K.B. Xu, W. Jiang, J.S. Liu, J. Alloy Compd. 695 (2017) 1137–1144.
- [33] S. Bai, J. Jiang, Q. Zhang, Y. Xiong, Chem. Soc. Rev. 44 (2015) 2893–2939.
- [34] Y.D. Hu, G. Chen, C.M. Li, Y.S. Zhou, J.X. Sun, S. Hao, Z.H. Han, J. Mater. Chem. A 4 (2016) 5274–5281.
- [35] W.J.S.W.E. Morgan, J.R. Vanwazer, Inorg. Chem. 12 (1973) 953–955.