

Artificial Intelligence Rough Set

Task Report 3

Harun GÜLEÇ

Task 1

At this task our main object is proposing inconsistent data, where the set of objects includes at least ten elements, the set of condition attributes includes at least three elements, and the number of decision classes must be at least three. For this purpose, I create a table that composed of basketball player success criteria's. And then I wrote required expressions.

1 2	4			-	Success
2		1 4	Y	и	т
-	Y	Y	И	N	I
3	Ч	Z	4	7	T
4	N	Y	4	N	TV
5	Y	Y	Y	4	Т
6	N	И	У	4	7
7	Y	Y	И	4	2
8	У	N	Y	Y	τ_
9	N	Y	×	4	I
10	N	N	N	Y	И
x] IND	(B) = { 9	€U = (x,y) € 1m	s k(x) = k(y) } for 10(8)}, y€U am} X = { × €U		
N = 8	x € U : S	uccess (x) = N	one 3		
ow (f	458, XT) =	{x & u : [x]] IND (B)) & XT }		
PP (F	Asg , XT)	= { x eu: [x]	INO (8) 0 X+ ≠ Ø }		
	asa, xgl	= { x 6 0 ; [x]	(BX Z (A) ONI		
ow (1					
	ISA, ×B)	= {xev : [>	[(= 8 × n (A) ON)		

```
Accuracy of approximation: & (ASB, XT) = cord (LOW (ASB, XT)) /cord (UPP(ASB, XT))
                         card {1,3,5,8} / card {1,3,5,8,10}
                                       415 = 08
                                  a(ASA, Xg) = card (LOW (ASA, Xg)) / card (UPP(ASA, Xg))
                                 card { 2,7 } / card { 1,2,5,6,7,10}
                                           2/6 = 0,33
           region: POS (ASB, { XT, XNO }) = LOW (ASB, XT) U LOW (ASB, XNO)
                                          $ 1,3,5,8} U $ 10}
                                          {1,3,5,8,10}
                    POS (ASA, { X8, X4 }) = LOW (ASA, X8) U LOW (ASA, XN)
                                         { 2,7} U {6,10}
                                          {2,7,6,10 }
Quality of appoximation : & (ASB, (XT, XN)) = cord (POS (ASB, (XT, XN)))/ cord (U)
                      8 (ASA, (XB, XN)) = cord (POS (ASA, (XB, XN))) / cord(u)
                                                  4/10 = 940
```

Task 2

At this task our main object is classifying data CreditCards.tab using the RSES application. Firstly, I classified data using *exhaustive*, *genetic*, *cover*, *lem2 algorithms* without discretization and the results shown below.

Results	of experiments by	train&te	est metho	od: Test_exha	ustive	r d X				
	Predicted									
		0	1	No. of obj.	Accuracy	Coverage				
Actual	0	21	6	29	0.778	0.931				
	1	11	1	27	0.083	0.444				
	True positive rate	0.66	0.14							
***********			0000000000000							
Total num	ber of tested of	bjects	: 56							
Total acc	uracy: 0.564									
Total cov	erage: 0.696									

Results	of experiments by	train&te	est metho	od: Test_gene	tic	o o				
	Predicted									
		0	1	No. of obj.	Accuracy	Coverage				
Actual	0	21	6	29	0.778	0.931				
	1	11	1	27	0.083	0.444				
	True positive rate	0.66	0.14							
Total num	ber of tested of	objects	: 56							
Total acc	uracy: 0.564									
Total cov	verage: 0.696									

Results	of experiments by	train&te	est metho	od: Test_cove	г	r d X			
		Predicted							
		0	1	No. of obj.	Accuracy	Coverage			
Actual	0	10	2	29	0.833	0.414			
	1	6	1	27	0.143	0.259			
	True positive rate	0.62	0.33						

Total num	ber of tested of	objects	: 56						
Total acc	uracy: 0.579								
Total cov	erage: 0.339								

Results	of experiments by train&test method: Test_lem2										
	Predicted										
		0	1	No. of obj.	Accuracy	Coverage					
Actual	0	11	0	29	1	0.379					
	1	3	0	27	0	0.111					
	True positive rate	0.79	0								
Total acc	mber of tested ocuracy: 0.786	objects	: 56								

As we can understand clearly that biggest accuracy rate is for lem2 algorithm. It means lem2 algorithm better than others to make exact decision, but coverage is not enough. And then, I test same algorithms with discrete table. The results shown below.

	Results	of experiments by	/ train&te	est metho	od: TestD_gen	etic	r o X
			edicted				
I							
ı			0	1	No. of obj.	Accuracy	Coverage
ı	Actual	0	21	8	29	0.724	1
ı		1	12	13	27	0.52	0.926
ı		True positive rate	0.64	0.62			
C			000000000000				
П	Total num	mber of tested	objects	: 56			
	Total acc	curacy: 0.63					
IJ	Total cov	verage: 0.964					

r., Results	of experiments by	tramote	_	edicted		- 6 Z			
		0	1	No. of obj.	Accuracy	Coverage			
Actual	0	14	7	29	0.667	0.724			
	1	11	9	27	0.45	0.741			
	True positive rate	0.56	0.56						
Total number of tested objects: 56 Total accuracy: 0.561 Total coverage: 0.732									

Results	of experiments by	train&te	st metho	od: TestD_lem	2					
			edicted							
		0	1	No. of obj.	Accuracy	Coverage				
Actual	0	14	4	29	0.778	0.621				
	1	9	8	27	0.471	0.63				
	True positive rate	0.61	0.67							
Total num	ber of tested of	objects	: 56							
Total acc	otal accuracy: 0.629									
Total cov	erage: 0.625									

After discretization process, Genetic and Exhaustive algorithms are better than others because accuracy value is higher. So these can make decision more exactly.

Also when we compare the results of after discretization and before, After discretization coverage value bigger than before. It means our circle more closer to main objective circle.

Conclusion

When we are working on rough data set, we cannot say exact definitions but we can be in a different approximity. There are 2 approximation lower and upper approximations. In lower approximation we only take into account the situations that we are sure about that. In upper approximation we don't take into account the situations that we are sure about it is not in our circle. In addition, in both approximation when we discrete the table we can achieve more clear results.