Elektrik Devre Temelleri

2024-2025 Bahar Dönemi

Hafta 11 2 Mayıs 2025

Sibel ÇİMEN
Umut Engin AYTEN

Süperpozisyon Teoremi

Çarpımsallık ve toplamsallık teoremlerinin her ikisine birden kullanıldığında süperpozisyon teoremi olarak adlandırılır.

Toplamsallık Teoremininden Faydalanarak Elektrik Devrelerinin Analizinin Gerçekleştirilmesi

i₂ akımını toplamsallık teoremini kullanarak hesaplayalım.

Devrede her seferinde sadece bir tane **BAĞIMSIZ KAYNAK** bırakılır. Devrede kalan bağımsız kaynağın dışındaki bağımsız gerilim kaynakları kısa devre yapılarak devre dışı bırakılır. Akım kaynakları açık devre yapılarak devre dışı bırakılır.

ilk olarak, devrede sadece i3 kaynağı bırakılır. Bu durumda i2_3 hesaplanır. İkinci olarak, devrede sadece v4 kaynağı kaynağı bırakılır. Bu durumda i2_4 hesaplanır. Son olarak, devrede sadece v6 kaynağı kaynağı bırakılır. Bu durumda i2_6 hesaplanır. İ2 akımının değeri bulunan akımlar toplanarak elde edilir.

$$i_2 = i_{2_3} + i_{2_4} + i_{2_6}$$

Yanda verilen devre için;

- a) i_2 akımını toplamsallık teoreminden faydalanarak bulunuz.
- b) v_4 =4.5 V, i_3 = 3A, v_6 =3 V olması durumunda i_2 akımını hesaplayınız.

Devrede sadece i₃ kaynağı varken;

2. Satırdan;

$$-\frac{1}{8}v_{d1} + \left(\frac{1}{8} + \frac{1}{3}\right)v_{d2} = -2$$

$$v_{d2} = -4V$$

Düğüm gerilimleri yöntemini kullanalım.

$$\begin{bmatrix} G_1 & -G_1 \\ -G_1 & G_1 + G_2 \end{bmatrix} \begin{bmatrix} v_{d1} \\ v_{d2} \end{bmatrix} = \begin{bmatrix} i_3 - i_5 \\ -i_3 \end{bmatrix}$$

Ek denklem:

$$v_5 = 2i_1 \implies v_{d1} = 2\frac{v_{d1} - v_{d2}}{R_1}$$

 $3v_{d1} = -v_{d2}$

$$i_{2_3} = \frac{v_{d2}}{3} = -\frac{4}{3} A$$

Devrede sadece v₄ kaynağı varken;

Çevre akımları yöntemini kullanalım.

$$+v_4 + R_1 i_{\varsigma} + R_2 i_{\varsigma} - v_5 = 0$$

$$3 + 8i_{\varsigma} + 3i_{\varsigma} - 2i_{\varsigma} = 0$$

$$i_{\varsigma} = -\frac{1}{3}A \qquad \Rightarrow \qquad i_{2_4} = -\frac{1}{3}A$$

Ek denklem;

$$v_5 = 2i_1 \quad \rightarrow \quad v_5 = 2i_{\varsigma}$$

Devrede sadece v₆ kaynağı varken;

Çevre akımları yöntemini kullanalım.

$$R_1 i_{\varsigma} + R_2 i_{\varsigma} - v_6 - v_5 = 0$$

$$8i_{c} + 3i_{c} - 2 - 2i_{c} = 0$$

$$i_{c} = \frac{2}{9}A$$
 \rightarrow $i_{2_{-6}} = \frac{2}{9}A$

Ek denklem;

$$v_5 = 2i_1 \quad \rightarrow \quad v_5 = 2i_{\varsigma}$$

Toplamsallık teoremine göre:
$$i_2 = i_{2,3} + i_{2,4} + i_{2,6}$$

$$i_2 = -\frac{4}{3} - \frac{1}{3} + \frac{2}{9} = -\frac{13}{9} A$$

Thevenin Teoremi

 $V_{ab} - i_a$ grafiğini çizelim:

Çevre için KGY'nı uygulayalım.

$$-v_{ab} + i_a R_{Th} + v_{Th} = 0$$

N₁ devresinde a-b açık devre yapılırsa;

$$v_{Th} = v_{ab}|_{i_a = 0}$$

 N_1 devresinde tüm bağımsız kaynaklar devre dışı bırakıldığında v_{Th} =0 elde edilir. Bu durumda;

$$R_{Th} = \frac{v_{ab}}{i_a}|_{v_{Th}=0}$$

Thevenin Teoremi

a-b açık devre yapılır.

$$v_{Th} = v_{ab}|_{i_a = 0}$$

Düğüm gerilimleri yöntemini kullanalım.

$$\begin{bmatrix} G_1 & -G_1 \\ -G_1 & G_1 + G_2 + G_3 \end{bmatrix} \begin{bmatrix} v_{d1} \\ v_{d2} \end{bmatrix} = \begin{bmatrix} -i_4 \\ i_5 \end{bmatrix}$$
 2. Satırdan;

Ek denklem:

$$v_{d1} = v_4 = 10V$$

$$i_5 = 0.5v_1 \implies i_5 = 0.5(v_{d1} - v_{d2})$$

$$-\frac{1}{5}v_{d1} + \left(\frac{1}{5} + \frac{1}{10} + \frac{1}{10}\right)v_{d2} = 0.5(v_{d1} - v_{d2})$$

$$v_{d2} = \frac{7}{9}v_{d1} = \frac{70}{9}V$$

$$v_{Th} = v_{d2} = \frac{70}{9}V$$

Thevenin Teoremi

Devredeki bağımsız kaynaklar devre dışı bırakılır. Böylece v_{Th} =0 elde edilir. Bu durumda v_{ab}/i_a bulunur.

Düğüm gerilimleri yöntemini kullanalım.

$$-i_{1} + i_{2} + i_{3} - i_{5} - i_{a} = 0$$

$$-\frac{(-v_{d1})}{5} + \frac{v_{d1}}{10} + \frac{v_{d1}}{10} - 0.5(-v_{d1}) - i_{a} = \delta^{d1} = v_{ab}$$

$$v_{ab} \left(\frac{9}{10}\right) = i_{a} \implies R_{Th} = \frac{v_{ab}}{i_{a}} = \frac{10}{9}\Omega$$

Norton Teoremi

 $V_{ab} - i_a$ grafiğini çizelim:

Düğüm için KAY'nı uygulayalım.

$$-i_a - i_N + \frac{v_{ab}}{R_N} = 0$$

N₁ devresinde a-b kısa devre yapılırsa;

$$i_N = -i_a|_{v_{ab}=0}$$

 N_1 devresinde tüm bağımsız kaynaklar devre dışı bırakıldığında i_N=0 elde edilir. Bu durumda;

$$R_{Th} = \frac{v_{ab}}{i_a}|_{i_N = 0}$$

Norton Teoremi

a-b kısa devre yapılır.

Devredeki bağımsız kaynaklar devre dışı bırakılır. Böylece i_N =0 elde edilir. Bu durumda v_{ab}/i_a bulunur.

Düğüm gerilimleri yöntemini kullanalım.

$$-i_{1} + i_{2} + i_{3} - i_{5} - i_{a} = 0$$

$$-\frac{(-v_{d1})}{5} + \frac{v_{d1}}{10} + \frac{v_{d1}}{10} - 0.5(-v_{d1}) - i_{a} = \delta^{d1} = v_{ab}$$

$$v_{ab} \left(\frac{9}{10}\right) = i_{a} \implies R_{N} = \frac{v_{ab}}{i_{a}} = \frac{10}{9}\Omega$$

Bu işleme aynı zamanda kaynak dönüşümü de denir. Yani Thevenin eşdeğer devresinden Norton eşdeğer devresi elde edilebilir. Tersi de geçerlidir.

İki devrenin eşdeğer olabilmesi için her t anı için tüm akım ve gerilim değerleri birbirine eşit olmalıdır.

$$v_{Th} = i_N R_N$$

$$\frac{v_{Th}}{R_{Th}} = i_N$$

$$R_{Th} = R_N$$

$$\frac{v_{Th}}{I_N} = R_{Th} = R_N$$

Maksimum Güç Teoremi

Maksimum güç teoremi, bir devreye bağlı olan yüke (R_{yük} ile modellenmektedir) maksimum güç aktarılabilmesi için yük direncinin direncinin değerinin ne olması gerektiğini ifade eden teoremdir.

$$p_{y\ddot{\mathbf{u}}k} = v_{y\ddot{\mathbf{u}}k}.i_{y\ddot{\mathbf{u}}k}$$

$$p_{y\ddot{u}k} = \frac{v_{TH}}{R_{Th} + R_{y\ddot{u}k}} R_{y\ddot{u}k} \frac{v_{TH}}{R_{Th} + R_{y\ddot{u}k}} = \frac{v_{Th}^2 R_{y\ddot{u}k}}{(R_{Th} + R_{y\ddot{u}k})^2}$$

P_{vük} ifadesinin R_{vük} direncine göre maksimum noktasını bulmak için:

$$\frac{dp_{y\ddot{\mathbf{u}}k}}{dR_{y\ddot{\mathbf{u}}k}} = 0 \qquad \text{Olmalidir.}$$

$$\frac{dp_{y\ddot{u}k}}{dR_{y\ddot{u}k}} = \frac{v_{Th}^2 (R_{Th} + R_{y\ddot{u}k})^2 - v_{Th}^2 \cdot 2 \cdot (R_{Th} + R_{y\ddot{u}k})}{(R_{Th} + R_{y\ddot{u}k})^4} = 0 \qquad \Rightarrow \qquad R_{y\ddot{u}k} = R_{Th} \qquad \text{olmalidir.}$$

Maksimum Güç Teoremi

Yüke maksimum güç aktarımı için:

$$R_{y\ddot{\mathbf{u}}k}=R_{Th}$$

Bu durumda;

$$p_{y\ddot{u}k} = \frac{v_{Th}^2 R_{y\ddot{u}k}}{(R_{Th} + R_{y\ddot{u}k})^2} = \frac{v_{Th}^2}{4R_{y\ddot{u}k}}$$

$$p_{kaynak_Th} = v_{Th} \left(-\frac{v_{Th}}{(R_{Th} + R_{y\ddot{u}k})} \right) = \frac{v_{Th}^2}{2R_{y\ddot{u}k}}$$

Verim:

$$\eta = \% \frac{|p_{y\ddot{\mathbf{u}}k}|}{|p_{kaynak}|}$$

$$R_{y\ddot{u}k} = R_{Th}$$
 iken verim:

$$\eta = \%50$$

- 1. Aşağıda verilen devrede α =2'dir.
- a) N_A 1-kapılısının a-b uçları açık devre olması halinde, v_{ab} açık devre gerilimini hesaplayınız (15p).
- b) N_A 1-kapılısının a-b uçlarına bir kısa devre elemanının bağlanması durumunda, bu kısa devreden geçen i_{SC} akımını hesaplayınız (i_{SC} akımının yönü a ucundan b ucuna doğru olacaktır) (15p).
- c) N_A 1-kapılısının Norton ve Thévenin eşdeğerlerini bulunuz ve çiziniz (5p).
- d) N_B 1- kapılısında harcanan gücün maksimum olabilmesi için r parametresi ne olmalıdır? Bu 1-kapılıda harcanan maksimum gücü hesaplayınız (5p).

 N_A 1-kapılısının a-b uçları açık devre olması halinde, v_{ab} açık devre gerilimini hesaplayınız.

$$\begin{bmatrix} 5+5 & -5 & 0 \\ -5 & 20+5 & -20 \\ 0 & -20 & 20 \end{bmatrix} \begin{bmatrix} i_{\varsigma 1} \\ i_{\varsigma 2} \\ i_{\varsigma 3} \end{bmatrix} = \begin{bmatrix} -1 \\ v_{ab} \\ v_7 \end{bmatrix} \qquad i_7 = 2i_1 \\ -i_{\varsigma 3} = 2(-i_{\varsigma 1})$$

$$v_{Th} = v_{ab}|_{i_a = 0}$$

$$i_{c2} = 0A$$

1. Satırdan:

$$10i_{\varsigma 1} + 0 = -1$$
 \rightarrow $i_{\varsigma 1} = -\frac{1}{10}A$

$$10i_{\varsigma 1} + 0 = -1 \quad \Rightarrow \quad i_{\varsigma 1} = -\frac{1}{10}A$$
$$-i_{\varsigma 3} = 2(-i_{\varsigma 1}) \quad \Rightarrow \quad i_{\varsigma 3} = -\frac{2}{10}A$$

2. Satırdan:

$$-5i_{\varsigma 1} + 0 - 20i_{\varsigma 3} = v_{ab} \quad \Rightarrow \quad v_{ab} = 4.5 V$$

$$v_{Th} = v_{ab}|_{i_a = 0} = 4.5V$$

 N_A 1-kapılısının a-b uçlarına bir kısa devre elemanının bağlanması durumunda, bu kısa devreden geçen i_{SC} akımını hesaplayınız (i_{SC} akımının yönü a ucundan b ucuna doğru olacaktır)

$$\begin{bmatrix} 5+5 & -5 & 0 \\ -5 & 20+5 & -20 \\ 0 & -20 & 20 \end{bmatrix} \begin{bmatrix} i_{\varsigma 1} \\ i_{\varsigma 2} \\ i_{\varsigma 3} \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ v_7 \end{bmatrix} \qquad i_7 = 2i_1 \\ -i_{\varsigma 3} = 2(-i_{\varsigma 1})$$

a-b kısa devre yapılır.

$$i_N = -i_a|_{v_{ab}=0}$$

1. Satırdan:

$$10i_{\varsigma 1} - 5i_{\varsigma 2} = -1 \quad \Rightarrow \quad i_{\varsigma 1} = \frac{-1 + 5i_{\varsigma 2}}{10}$$
$$-i_{\varsigma 3} = 2(-i_{\varsigma 1}) \qquad \Rightarrow \quad i_{\varsigma 3} = 2\frac{-1 + 5i_{\varsigma 2}}{10}$$

2. Satırdan:

$$-5i_{c1} + 25i_{c2} - 20i_{c3} = 0$$

$$-5\frac{-1+5i_{\varsigma 2}}{10} + 25i_{\varsigma 2} - 20\frac{-1+5i_{\varsigma 2}}{10} = 0 \quad \Rightarrow \quad i_{\varsigma 2} = -\frac{9}{5}A$$

$$i_{kd} = -i_{\varsigma 2} \qquad \Rightarrow \qquad i_N = i_{kd} = \frac{9}{5} A$$

 N_A 1-kapılısının Norton ve Thévenin eşdeğerlerini bulunuz ve çiziniz.

$$v_{Th} = v_{ab}|_{i_a = 0} = 4.5V$$

$$i_N = i_{kd} = \frac{9}{5}A$$

$$R_{Th} = \frac{v_{Th}}{i_N} = 2.5\Omega$$

 N_R 1- kapılısında harcanan gücün maksimum olabilmesi için r parametresi ne olmalıdır? Bu 1-kapılıda harcanan maksimum gücü hesaplayınız.

Düğüm gerilimleri yöntemini kullanalım:

$$\begin{bmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} v_{d1} \\ v_{d2} \end{bmatrix} = \begin{bmatrix} i_{y\ddot{u}k} - i_8 \\ i_8 \end{bmatrix} \quad v_{d1} - v_{d2} = r \frac{v_{d1}}{3} \quad \Rightarrow \quad v_{d2} = (1 + \frac{r}{3})v_{d1}$$

$$R_{y\ddot{u}k} = \frac{v_{ab}}{i_{y\ddot{u}k}}$$

1. ve 2. satır toplanırsa ve vd2 ifadesi yerine yazılırsa;

$$\frac{1}{3}v_{d1} + \frac{1}{2}\left(\frac{3+r}{3}\right)v_{d1} = i_{y\ddot{u}k}$$

$$v_{d1}(5+r) = 6i_{y\ddot{u}k} \quad \Rightarrow \quad R_{y\ddot{u}k} = \frac{v_{ab}}{i_{y\ddot{u}k}} = \frac{v_{d1}}{i_{y\ddot{u}k}} = \frac{6}{5+r}$$

Yüke maksimum güç aktarımı için:

$$v_{d1}(5+r) = 6i_{y\ddot{u}k} \implies R_{y\ddot{u}k} = \frac{v_{ab}}{i_{y\ddot{u}k}} = \frac{v_{d1}}{i_{y\ddot{u}k}} = \frac{6}{5+r}$$

$$R_{y\ddot{u}k} = R_{Th} = 2.5\Omega$$

$$\frac{6}{5+r} = 2.5 \implies r = -\frac{13}{5}$$

Örnek: a-b uçlarının solunda kalan kısmın Thevenin eşdeğerini bulun.

Örnek: Devrenin Norton eşdeğerini bulunuz.

Örnek: a-b uçlarının solunda kalan kısmın Thevenin ve Norton eşdeğerlerini bulun.

Örnek: $v_o{'}$ yu hesaplayınız.

Örnek: $v_o{'}$ yu hesaplayınız.

Örnek: $v_o{'}$ yu hesaplayınız.

