MATH 663 - Subfactors, Knots, and Planar Algebras (Fall 2017)

HW 4

1 Let (M, τ) be a finite von Neumann algebra, let $1 \in N \subset M$ be a von Neumann subalgebra, and let $E: M \to N$ be the unique τ -preserving conditional expectation. Prove that E is continuous and completely positive.

Proof. The conditional expectation E is a positive linear map between C-* algebras, so E is bounded. Moreover, E(x) = exe where $e: L^2(M) \to L^2(N)$ is the projection. This implies that E is completely positive (by the converse to Stinespring's theorem).

2 Let $\pi, \sigma \in NC_2(2n)$. Let $\beta \in \mathbb{C} \setminus \{0\}$ and consider the canonical trace $\tau: D_n(\beta) = TL_n(\beta^{-2}) \to \mathbb{C}$. Show that $\tau(D_{\sigma}^*D_{\pi}) = \beta^{|\pi \vee \sigma| - n}$.

Proof. Write down the diagram for $D_{\sigma}^*D_{\pi}$ as the vertical concatenation of its two factor diagrams. Label points on the boundary of D_{π} by $1, \ldots, 2n$ in the usual way as if D_{σ}^* was not there. Label the D_{σ}^* part according to the usual D_{σ} labelling, i.e. reflect the usual D_{σ}^* labelling through its horizontal midline. The σ -labels n+1 through 2n should agree with the π -labels. Moreover, the "braid closure" of $D_{\sigma}^*D_{\pi}$ connects the points labeled 1 to n for π to the correspondingly labeled points for σ . Thus, the connected components of the braid closure correspond to the blocks of $\sigma \vee \pi$.

3 Prove that the canonical trace τ_n on $TL_n(\lambda)$ is positive semidefinite for all $\lambda \in (0, \frac{1}{4}]$.

Proof. Let

$$\xi_{\pi} = \sum_{i \in \{1,2\}^{[2n]}} \prod_{\substack{r \sim \pi^s \\ r < s}} F_{i(s)i(r)} e_i,$$

where $F = \beta^{-1/2} \begin{pmatrix} 0 & q^{-1} \\ q & 0 \end{pmatrix}$, and $\beta = q^2 + q^{-2}$ with $q \in \mathbb{R}$. We have

$$\langle \xi_{\pi}, \xi_{\sigma} \rangle = \sum_{i} \prod_{\substack{r \sim_{\pi} s \\ r < s}} \prod_{\substack{t \sim_{\sigma} u \\ t < u}} F_{i(s)i(r)} F_{i(t)i(u)} = \sum_{i} \prod_{\substack{b \in \pi \vee \sigma \\ r \sim_{\pi} s \\ t \sim_{\pi} u}} F_{i(s)i(r)} F_{i(t)i(u)}$$

Let b be a block in $\pi \vee \sigma$, and let $x_1 \in [2n]$ be the minimal number in the block b. Every element of b is related to two other numbers by π and σ respectively, and the group generated by $\pi, \sigma \subset S_{2n}$ acts transitively on b. Letting $x_{j+1} = \pi x_j$ if $j \geq 1$ is even and $x_{j+1} = \sigma x_j$ if $j \geq 1$ is odd, we have $b = \{x_j\}_{j=1}^{|b|}$. Thus,

$$\langle \xi_{\pi}, \xi_{\sigma} \rangle = \sum_{i} \prod_{b \in \pi \vee \sigma} \prod_{j=1}^{|b|} F_{i(x_{j})i(x_{j+1})}$$

For the last product to be nonvanishing, we must have $i(x_{j+1}) \neq i(x_j)$ for all j. Thus, for every block we get exactly two nonvanishing values of i corresponding to the values $i(x_1)$ at the block's minimal element x_1 . Moreover, the map $j \mapsto x_j$ for $1 \leq j \leq |b|+1$ defines a piecewise linear map $\phi: (1,|b|+1) \to \mathbb{R}_{\geq 0}$ by connecting consecutive points with line segments. It is easy to check that

$$\prod_{j=1}^{|b|} F_{i(x_j)i(x_{j+1})} = \beta^{\frac{-|b|}{2}} q^{\#(\text{local maxima of }\phi) - \#(\text{local minima of }\phi)}$$

if $i(x_1) = 1$. If $i(x_1) = 2$, the sign of the exponent of q flips. Since $x_1 = x_{|b|+1}$ is minimal, the first and last local extrema of ϕ in (1, |b| + 1) are local maxima. Thus, the previous product is q^2 or q^{-2} , depending on $i(x_1)$. Since the choice of $i(x_1)$ is independent for each block b, we have

$$\langle \xi_{\pi}, \xi_{\sigma} \rangle = \prod_{b \in \pi \vee \sigma} \beta^{\frac{-|b|}{2}} (q^2 + q^{-2})$$
$$= \beta^{-n} \prod_{b \in \pi \vee \sigma} \beta$$
$$= \beta^{|\pi \vee \sigma| - n}$$

Thus, the Gram matrix for τ_n wrt to $(D_{\pi})_{\pi}$ is same as the Gram matrix for the vectors $(\xi_{\pi})_{\pi}$. Thus, τ_n is positive semidefinite.

Exercise 10 of Speicher Let $p,q \in B(H)$ be orthogonal projections on a separable complex Hilbert space H.

(a) Show that

$$s\text{-}\lim_{n\to\infty}(pqp)^n=p\wedge q.$$

Proof. Since pqp is self-adjoint, $C^*(1,pqp)$ is a unital commutative C^* -algebra, hence isometrically *-isomorphic to $C(\operatorname{Spec}(pqp))$ via a map ϕ with $\phi(pqp) = \operatorname{id}_{\operatorname{Spec}(pqp)}$. It is easy to check that pqp is a contractive positive operator. Hence, $\operatorname{Spec}(pqp) \subset [0,1]$. Thus, $\phi((pqp)^n) = \operatorname{id}_{\operatorname{Spec}(pqp)}^n \to \chi_{\{1\}}$ strongly. Thus, $(pqp)^n$ converges strongly to some projection e.

We have $pe = \lim_n p(pqp)^n = e$, so $p \le e$. We also have, for all $\xi \in H$,

$$eqe\xi = \lim_{n} (pqp)^{n} q \lim_{m} (pqp)^{m} \xi$$

$$= \lim_{n} \lim_{m} (pqp)^{n} q (pqp)^{m} \xi$$

$$= \lim_{n} \lim_{m} (pqp)^{n+m+1} \xi \qquad = \lim_{n} e\xi$$

$$= e\xi.$$

Thus, for all $\xi \in H$,

$$\langle (e-q)\xi, \xi \rangle = \langle (e^2 - eqe)\xi, \xi \rangle$$
$$= \langle (1-q)e\xi, e\xi \rangle$$
$$> 0,$$

so $q \leq e$. Thus, $p \wedge q \leq e$

On the other hand,
$$(p \wedge q)e\xi = \lim_n (p \wedge q)(pqp)^n\xi = \lim_n (p \wedge q)\xi = p \wedge q\xi$$
. Thus, $e \leq p \wedge q$. Thus, $e = p \wedge q$.

(b) Deduce that $\operatorname{s-lim}_{n\to\infty}(pq)^n = p \wedge q$.

Proof. We have
$$(pq)^n\xi = (pqp)^{n-1}q\xi \to (p \land q)q\xi = p \land q\xi$$
 for all $\xi \in H$. \square

(c) Discuss the statements (a) and (b) in the case $H = \mathbb{C}^3$ for the projections $p = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ and $q = u \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} u^*$, where $u = \begin{pmatrix} \cos(\theta) & 0 & -\sin(\theta) \\ 0 & 1 & 0 \\ \sin(\theta) & 0 & \cos(\theta) \end{pmatrix}$ for some $0 \le \theta \le \pi$.

Answer:

The matrix u is a rotation by θ about the y axis. The matrix q is a projection onto the space spanned by the y axis and rotation of the x-axis by θ around the y-axis. The matrix p projects back onto the x and y axis. Each time you do this the x-coordinate shrinks by a value of $\cos^2(\theta)$, but the y coordinate remains the same.

More explicitly, we have
$$(pq)^n = \begin{pmatrix} \cos(\theta)^{2n} & 0 & \cos(\theta)^{2n-1}\sin(\theta) \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 and $(pqp)^n = \begin{pmatrix} \cos(\theta)^{2n} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

The limit in both cases is the projection onto the y-axis.

Exercise 11 of Speicher Let $(S_n)_{n=0}^{\infty}$ be the sequence of Chebyshev polynomials of the second kind, which are recursively defined by $S_0(x) = 1$, $S_1(x) = x$ and

$$xS_n(x) = S_{n+1}(x) + S_{n-1}(x)$$
 for all $n \ge 1$.

Prove the following statements.

(a) For all $n \ge 0$ and all $0 < \theta < \pi$, it holds true that

$$S_n(2\cos(\theta)) = \frac{\sin((n+1)\theta)}{\sin(\theta)}.$$

Proof. The base cases n=0,1 are easy to check. The inductive step reduces to checking the identity

$$\sin((n+2)\theta) = 2\cos(\theta)\sin((n+1)\theta) - \sin(n\theta).$$

Letting $q = e^{i\theta}$, this reduces to checking

$$q^{n+2} - q^{-(n+2)} = (q+q^{-1})(q^{n+1} - q^{-(n+1)}) - (q^n - q^{-n}).$$

(b) We have for all $n, m \ge 0$ that

$$\int_{-2}^{2} S_n(x) S_m(x) \frac{1}{2\pi} \sqrt{4 - x^2} \, dx = \delta_{n,m}.$$

Proof. We have

$$\begin{split} & \int_{-2}^{2} S_{n}(x) S_{m}(x) \frac{1}{2\pi} \sqrt{4 - x^{2}} \, dx \\ & = \frac{2}{\pi} \int_{0}^{\pi} S_{n}(2 \cos(\theta)) S_{m}(2 \cos(\theta)) \sin^{2}(\theta) \, d\theta \\ & = \frac{2}{\pi} \int_{0}^{\pi} \sin((n+1)\theta) \sin((m+1)\theta) \, d\theta \\ & = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin((n+1)\theta) \sin((m+1)\theta) \, d\theta \\ & = -\frac{1}{4\pi} \int_{-\pi}^{\pi} (e^{i(n+1)\theta} - e^{-i(n+1)\theta}) (e^{i(m+1)\theta} - e^{-i(m+1)\theta}) \, d\theta, \\ & = -\frac{1}{4\pi} \int_{-\pi}^{\pi} e^{i(m-n)\theta} + e^{i(n-m)\theta} \, d\theta, & = \delta_{nm}, \end{split}$$

using the fact that $\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-ik\theta} d\theta = \delta_{0k}$ for all integers k.

(c) For all $x \in [-2, 2]$ and all $z \in \mathbb{C}$ with |z| < 1, we have

$$\frac{1}{1 - xz + z^2} = \sum_{n=0}^{\infty} S_n(x)z^n$$

Proof. The function $f(z)=1-xz+z^2$ has roots at $\frac{x\pm\sqrt{x^2-4}}{2}$. For $x\in[-2,2]$, we have $\left|\frac{x\pm\sqrt{x^2-4}}{2}\right|^2=\frac{1}{4}\left(x^2+(4-x^2)\right)=1$. Thus, the power series for f centered at z=0 has radius of convergence 1.

Letting $x = 2\cos(\theta)$, we have

$$\sum_{n=0}^{\infty} S_n(x) z^n = \sum_{n=0}^{\infty} \frac{\sin((n+1)\theta)}{\sin \theta} z^n$$

$$= \frac{1}{2i \sin(\theta)} \sum_{n=0}^{\infty} (e^{in\theta} - e^{-in\theta}) z^n$$

$$= \frac{1}{2i \sin(\theta)} \sum_{n=0}^{\infty} (e^{i\theta} z)^n - (e^{-i\theta} z)^n$$

$$= \frac{1}{2i \sin(\theta)} \left(\frac{1}{1 - (e^{i\theta} z)} - \frac{1}{1 - (e^{-i\theta} z)} \right)$$

$$= \frac{1}{2i \sin(\theta)} \left(\frac{2i \sin(\theta)}{1 - 2\cos(\theta)z + z^2} \right)$$

$$= \frac{1}{1 - xz + z^2}.$$

(d) For $x, y \in [-2, 2]$ and all $n \ge 0$, we have

$$\frac{S_n(x) - S_n(y)}{x - y} = \sum_{k=1}^n S_{k-1}(x) S_{n-k}(y).$$

Proof. We have

$$\sum_{n=0}^{\infty} S_n(x) - S_n(y)x - yz^n = \frac{1}{x - y} \left(\frac{1}{1 - xz + z^2} - \frac{1}{1 - yz + z^2} \right)$$

$$= \frac{1}{x - y} \left(\frac{(x - y)z}{(1 - xz + z^2)(1 - yz + z^2)} \right)$$

$$= z \left(\sum_{n=0}^{\infty} S_n(x)z^n \right) \left(\sum_{n=0}^{\infty} S_n(y)z^n \right)$$

$$= z \sum_{n=0}^{\infty} \sum_{k=0}^{n} S_k(x)S_{n-k}(y)z^n \right)$$

$$= \sum_{n=0}^{\infty} \sum_{k=1}^{n+1} S_{k-1}(x)S_{n-k+1}(y)z^{n+1} \right)$$

$$= \sum_{n=0}^{\infty} \sum_{k=1}^{n} S_{k-1}(x)S_{n-k}(y)z^n \right)$$