THE
HANDBOOK
FOR
PHYSICS AND CHEMISTRY
DRAFT #1

* *	85.488 cassium 555 CS (132.91 francium 87 FT	potassium 19 39.098 rubidium 37	hydrogen 1,0079 ithlum 3 6,941 sodium 11 22,990
*Lanthanide series **Actinide series	100 CONTROL AND ADD	- K	
ide se	87.62 barium 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6	calcium 20 Ca 40.078 strontium 38	beryllium 4 9 90122 10122 10122 10122 10122 10123
Š	57-70 * * * * *	10 10 10 10 10	P
La 138.91 actinium 89 Ac	88.906 Illuetum 71 174.97 Iawrenolum 103	scandium 21 SC 44.956 yttrium 39	rio
cerium 58 Ce (140.12 thorium 90 232.04	91.224 hafinum 72 178.49 rutherfoorlum 104	tttanium 22 11 47.867 zirconium 40	₫
praseodymium 59 Pr 140,91 protactinium 91 Pa 231,04	92,906 tantalum 73 Ta 18,95 dubnium 105 Db	vanadium 23 V 50.942 niobium 41	ਹ ਹ
neodymium 60 Nd 144.24 uranium 92 238.03	95.94 Umgsten 74 183.84 seaborglum 106 Sgg 1269	chromium 24 Cr 51.996 molybdenum 42	Periodic Table
Pm [145] neplunium 93	188 21 107 1	manganese 25 Mn 54.938 1 technetium 43	0
Sm 150.36 phutonium 94 Pu	101.07 OSTAIUM 76 OS 190.23 hassium 108 HS		of the
europium 63 Eu 151,96 americium 95 Am	102.91 indium 77 77 192.22 melinerium 109 Mt	cobalt 27 CO 58.933 rhodium 45	
gadolinium 64 Gd 157.25 curlum 96 Cm		nickel 28 28 58.693 palladium	E e
188.93 berkelium 97	106.42 107.87 112.41 12.	copper 29 Cu 63.546 silver 47	Elements
dysprosium 66 Dy 162.50 californium 98 Cf	112.41 mercury 80 Hg 200.59 ununbium 112	zinc 30 30 65.39 cadmium 48	nts
164.93 einsteinium 99	A		10.811 boton
erbium 68 68 167.26 167.26 17.00 17.	118.71 lead 82 Pb 207.2 ununquadium 114 Uuq	germanuun 32 72.61 50	carbon 12.011 silicon 28.086
168 93 mendelevium 101 Md	40 111 11 11 11 11		nitrogen 7
ytterblum 70 Yb 173.04 mm nobellum 102 No [259]	-		OXYONN 15.999 Sulfur 32.065
- 10000000	2000		fluorine 9 9 18.998 chlorine 17.7
			helium 2 He 4,0026 naon 100 Ne 20.180 argon 18

General Information

Table 1. Useful Data

Constant	Description	Value
M_e	Mass of Earth	$5.98 \times 10^{24} \mathrm{kg}$
R_e	Radius of Earth	$6.37 \times 10^6 \mathrm{m}$
g	Freefall acceleration on Earth	9.80 m/s^2
G	Gravitational constant	$6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
k_B	Boltzmann's Constant	$1.38 \times 10^{-23} \text{ J/K}$
R	Gas constant	$8.314 \text{ J/mol}\cdot\text{K}$
N_A	Avogadro's number	$6.02 \times 10^{23} \text{ parts/mol}$
T_0	Absolute Zero	-273° C
σ	Stefan-Boltzmann constant	$5.67 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$
p_{atm}	Standard atmosphere	101300 Pa
v_{sound}	Speed of sound in air (20° C)	343 m/s
m_e	Mass of electron	$9.11 \times 10^{-31} \text{ kg}$
m_p	Mass of proton	$1.67 \times 10^{-27} \text{ kg}$
m_n	Mass of neutron	$1.67 \times 10^{-27} \text{ kg}$
K	Coulomb's law constant	$8.99 \times 10^9 \mathrm{M \cdot m^2/C^2}$
ϵ_0	Permittivity constant	$8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2$
μ_0	Permeability constant	$1.26 \times 10^{-6} \text{ T} \cdot \text{m/A}$
e	Fundamental unit of charge	$1.60 \times 10^{-19} \mathrm{C}$
С	Speed of light in vacuum	$3.00 \times 10^8 \text{ m/s}$
h	Planck's constant	$6.63 \times 10^{-34} \mathrm{J\cdot s}$
$ar{h}$	Planck's constant	$1.05 \times 10^{-34} \text{ J} \cdot \text{s}$
a_B	Bohr radius	$5.29 \times 10^{-11} \text{ m}$

Units and Conversions

Table 2. Common Prefixes

Prefix	Symbol	Multiplier
yocto-	У	10 ⁻²⁴
zepto-	Z	10^{-23}
atto-	a	10^{-18}
femto-	f	10^{-15}
pico-	p	10^{-12}
nano-	n	10^{-9}
micro-	μ	10^{-6}
milli-	m	10^{-3}
centi-	c	10^{-2}
kilo-	k	10^{3}
mega-	M	10^{6}
giga-	G	10^{9}
tera-	T	10^{12}
peta-	P	10^{15}
exa-	E	10^{18}
zeta-	Z	10^{21}
yotta-	Y	10^{24}

Table 3. Conversion Factors

Length			
1 in	2.54 cm		
1 mi	1.609 km		
1 m	39.37 in		
1 km	0.621 mi		
	Velocity		
1 mph	0.447 m/s		
1 m/s	2.24 mph		
	Energy		
1 cal	4.186 J		
1 eV	$1.60 \times 10^{-19} \mathrm{J}$		
	Times		
1 day	86400 s		
1 year	$3.16 \times 10^7 \text{ s}$		
	Pressure		
1 atm	101.3 kPa		
1 atm	14.7 psi		
1 atm	760 mmHg		
	Rotation		
1 rad	180°/π		
1 rev	360°		

Symbols

Table 4. Greek Letters

Letter	Capital	Lower	Letter	Capital	Lower
Alpha	A	α	Nu	N	ν
Beta	В	β	Xi	Ξ	ξ
Gamma	Γ	γ	Omicron	O	o
Delta	Δ	δ	Pi	П	π
Epsilon	E	€	Rho	P	ρ
Zeta	Z	ζ	Sigma	Σ	σ
Eta	Н	η	Tau	T	τ
Theta	Θ	θ	Upsilon	Y	υ
Iota	I	ι	Phi	Φ	φ
Kappa	K	κ	Chi	X	χ
Lambda	Λ	λ	Psi	Ψ	Ψ
Mu	M	μ	Omega	Ω	ω

Table #. Value of Some numbers

Number	Value	
π	3.1415927	
e	2.7182818	
$\sqrt{2}$	1.4142136	
$\sqrt{3}$	1.7320508	
ln 2	0.6931472	
ln 10	2.3025851	
$\log e$	0.4342945	

Derived Units in SI

Table 5. Derive Units for Physics

Quantity	Unit	Abbreviation	Base Unit
Area	_	_	m^2
Volume	_	_	m^3
Density	_	_	kg/m³
Force	newton	N	$kg \cdot m/s^2$
Energy and Work	joule	J	$kg \cdot m^2/s^2$
Power	watt	W	$kg \cdot m^2/s^3$
Pressure	pascal	Pa	$kg/(m\cdot s^2)$
Frequency	hertz	Hz	s^{-1}
Electric Charge	coulomb	C	A·s
Electric Potential	volt	V	$kg \cdot m^2/(A \cdot s^3)$
Electric Resistance	ohm	Ω	$kg \cdot m^2 / (A^2 \cdot s^3)$
Capacitance	farad	F	$A^2 \cdot s^4 / (kg \cdot m^2)$
Magnetic Field	tesla	T	$kg/(A \cdot s^2)$
Magnetic Flux	weber	Wb	$kg \cdot m^2 / (A \cdot s^2)$
Inductance	henry	Н	$kg \cdot m^2 / (A^2 \cdot s^2)$

Physical Properties Table. Density

		Density
Material	State	$[kg/m^3]$
Air (20° C)	Gas	1.293
Water	Liquid	~1000
Ice	Solid	920
Sea Water	Liquid	~1030
blood	Liquid	1600
Ethanol	Liquid	810
THF	Liquid	889
Mercury	Liquid	13600
Magnesium	Solid	1700
Aluminum	Solid	2700
Diamond	Solid	3500
Steel / Iron	Solid	7800
Brass	Solid	8600
Copper	Solid	8960
Lead	Solid	11300

Table. Heat Capacity

		Heat Capacity
Material	State	[kJ/kg·K ⁻¹]
Air (20° C)	Gas	1.012
Water	Liquid	4.186
Ice	Solid	2.05
Ammonia	Liquid	4.700
Ethanol	Liquid	2.42
Mercury	Liquid	0.1395
Magnesium	Solid	1.02
Aluminum	Solid	0.903
Diamond	Solid	0.5091
Iron	Solid	0.449
Steel	Solid	0.466
Polyethylene	Solid	2.30
Copper	Solid	0.385
Lead	Solid	0.128
Gold	Solid	0.128
Silver	Solid	0.235
Glass (Pyrex)	Solid	0.75
Granite	Solid	0.79
Sand	Solid	0.84

Table. Vapor Pressure of water

Temperature	Vapor Pressure	Vapor Pressure
[° C]	[torr]	[kPa]
0	4.58	0.610
10	9.21	1.23
20	17.54	2.34
30	31.82	4.24
40	55.3	7.37
50	92.5	12.3
60	149.4	19.9
70	233.7	31.2
80	355.1	47.3
90	525.8	70.1
100	760	101.3
110	1074.6	143.4

Chemical Properties

Table. Heat of Vaporization

	Normal B.P.	ΔH_{vap} at B.P.	ΔH_{vap} at 25° C
Material	[° C]	[kJ/mol]	[kJ/mol]
Water, H ₂ O	100	40.7	44.0
Rubbing Alcohol, C ₃ H ₈ O	82.3	39.9	45.4
Acetone, C ₃ H ₆ O	56.1	29.1	31.0
Diethyl Ether, C ₄ H ₁₀ O	34.6	26.5	27.1

Table. Heat of Fusion

	Normal M.P.	ΔH_{fus}
Material	[° C]	[kJ/mol]
Water, H ₂ O	0	6.02
Rubbing Alcohol, C ₃ H ₈ O	-89.5	5.37
Acetone, C ₃ H ₆ O	-94.8	5.69
Diethyl Ether, C ₄ H ₁₀ O	-116.3	7.27

Table. Bond Energy

	Bond Energy		Bond Energy		Bond Energy
Bond	[kJ/mol]	Bond	[kJ/mol]	Bond	[kJ/mol]
H - H	436	N - N	163	Br – F	237
H - C	414	N = N	418	Br – Cl	218
H - N	389	$N \equiv N$	946	Br — Br	193
H - 0	464	N - O	222	I — Cl	208
H - S	368	N = 0	590	I – Br	175
H - F	565	N - F	272	I - I	151
H - Cl	431	N-Cl	200	Si — H	323
H – Br	364	N – Br	243	Si — Si	226
H - I	297	N - I	159	Si — C	301
C - C	347	0 - 0	142	S - O	265
C = C	611	0 = 0	498	Si = O	368
$C \equiv C$	837	0 - F	190	S = O	523
C - N	305	O - Cl	203	Si — Cl	464
C = N	615	I - O	234	S = S	418
$C \equiv N$	891	F - F	159	S - F	327
C - O	360	Cl – F	253	S-Cl	253
C = 0	736	Cl - Cl	243	S - Br	218
$C \equiv O$	1072			S - S	266
C - Cl	339				

Table. Standard Enthalpies of formation at 298K.

Formula	ΔH_f^o [kJ/mol]	ΔG_f^o [kJ/mol]	ΔS_f^o [J/mol·K]
Br (g)	111.9	82.4	175.0
$Br_2(l)$	0	0	152.2
HBr (l)	-36.3	-53.4	198.7
Ca (s)	0	0	41.6
CaO(s)	-634.9	-603.3	38.1
CaCO ₃ (s)	-1207.6	-1129.1	91.7
C (s, graphite)	0	0	5.7
C (s, diamond)	1.88	2.9	2.4
CO (g)	-110.5	-137.2	197.7
$CO_2(g)$	-393.5	-394.4	213.8
CH ₄ (g)	-74.6	-50.5	186.3
CH ₃ OH (l)	-238.6	-166.6	126.8
$C_2H_2(g)$	227.4	209.9	200.9
C ₂ H ₄ (g)	52.4	68.4	219.3
$C_2H_6(g)$	-84.68	-32.0	229.2
C ₂ H ₅ OH (l)	-277.6	-174.8	160.7
C_3H_8 (g)	-103.85	-23.4	270.3
$C_3H_6O(l, acetone)$	-248.4	-155.6	199.8
C ₃ H ₈ O (l, isopropanol)	-318.1	100.0	181.1
C ₆ H ₆ (l)	49.1	124.5	173.4
$C_6H_1O_6$ (s, glucose)	-1273.3	-910.4	212.1
$C_{12}H_{22}O_{11}$ (s, sucrose)	-2226.1	-1544.3	360.24
Cl (g)	121.3	105.3	165.2
$Cl_2(g)$	0	0	223.1
HCl (g)	-92.3	-95.3	186.9
F (g)	79.38	62.3	158.75
$F_2(g)$	0	00	202.79
HF (g)	-273.3	-275.4	173.8
H(g)	218.0	203.3	114.7
$H_2(g)$	0	0	130.7
$N_2(g)$	0	ő	191.6
NH ₃ (g)	-45.9	-16.4	192.8
NH4NO ₃ (s)	-365.6	-183.9	151.1
NO (g)	91.3	87.6	210.8
$N_2O(g)$	81.6	103.7	220.0
$O_2(g)$	0	0	205.2
$O_2(g)$ $O_3(g)$	142.7	163.2	238.9
$H_2O(g)$	-241.8	-228.6	188.8
H ₂ O (l)	-241.8 -285.5	-237.1	70.0
Ag (s)	0	0	42.6
AgCl (s)	-127.0	-109.8	96.3
	0	0	51.3
Na (s)	107.5		
Na (g)		77.0 384.1	153.7
NaCl (s)	-411.2	-384.1	72.1
Na ₂ CO ₃ (s)	-1130.7	-1044.4	135.0
NaHCO3 (s)	-950.8	-851.0	101.7
S ₈ (s, rhombic)	0	0	32.1
S ₈ (s, monoclinic)	0.3	0.096	32.6
$SO_2(g)$	-296.8	-300.1	248.2
$SO_3(g)$	-395.7	-371.1	256.8
H_2SO_4 (1)	-814.0	-690.0	156.9

Electromagnetic Spectrum

Standard Reduction Potentials of Half-Cells (Ionic concentrations are at 1M in water @ 25°C)

	Oxidizing Agents		Reducing Agents	E ⁰ (Volts)
	$F_2(g) + 2e^{-}$	\rightarrow	2F ⁻ (aq)	+2.87
	$PbO_2(s) + SO_4^{2-}(aq) + 4H^+(aq) + 2e^{-}$	\rightarrow	$PbSO_4(s) + 2H_2O(\ell)$	+1.69
	$MnO_4^-(aq) + 8H^+(aq) + 5e^-$	\rightarrow	$Mn^{2+}(aq) + 4H_2O(\ell)$	+1.51
	$Au^{3+}(aq) + 3e^{-}$	\rightarrow	Au(s)	+1.50
	$\text{ClO}_4^{\text{-}}(\text{aq}) + 8\text{H}^{\text{+}}(\text{aq}) + 8\text{e}^{\text{-}}$	\rightarrow	$Cl^{-}(aq) + 4H_2O(\ell)$	+1.39
Τ	$\text{Cl}_2(g) + 2e^{-}$	\rightarrow	2Cl ⁻ (aq)	+1.36
	$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^-$	\rightarrow	$2Cr^{3+}(aq) + 7H_2O(\ell)$	+1.33
	$2HNO_2(aq) + 4H^+(aq) + 4e^-$	\rightarrow	$N_2O(g) + 3H_2O(\ell)$	+1.30
	$O_2(g) + 4H^+(aq) + 4e^-$	\rightarrow	$2H_2O(\ell)$	+1.23
	$MnO_2(s) + 4H^+(aq) + 2e^{-1}$	\rightarrow	$Mn^{2+}(aq) + 2H_2O(\ell)$	+1.22
	$Br_2(aq) + 2e^{-}$	\rightarrow	2Br ⁻ (aq)	+1.07
	$Hg^{2+}(aq) + 2e^{-}$	\rightarrow	$\mathrm{Hg}(\ell)$	+0.85
	$\text{ClO}^{\text{-}}(\text{aq}) + \text{H}_2\text{O}(\ell) + 2\text{e}^{\text{-}}$	\rightarrow	$Cl^{-}(aq) + 2OH^{-}(aq)$	+0.84
	$Ag^{+}(aq) + e^{-}$	\rightarrow	Ag(s)	+0.80
	$NO_3^-(aq) + 2H^+(aq) + e^-$	\rightarrow	$NO_2(g) + H_2O(\ell)$	+0.80
S	$\mathrm{Fe^{3+}(aq)} + \mathrm{e^{-}}$	\rightarrow	Fe ²⁺ (aq)	+0.77
II	$O_2(g) + 2H^+(aq) + 2e^{-}$	\rightarrow	$H_2O_2(\ell)$	+0.70
ge	$I_2(s) + 2e^{-}$	\rightarrow	2I ⁻ (aq)	+0.54
Ž	$O_2(g) + 2H_2O(\ell) + 4e^{-1}$	\rightarrow	4OH ⁻ (aq)	+0.40
ac	$Cu^{2+}(aq) + 2e^{-}$	\rightarrow	Cu(s)	+0.34 50
E.	$SO_4^{2-}(aq) + 4H^+(aq) + 2e^{-}$	\rightarrow	H_2SO_3 (aq) + $H_2O(\ell)$	+0.17
į	$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-}$	\rightarrow	$\operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
<u>:</u>	$S(s) + 2H^{+}(aq) + 2e^{-}$	\rightarrow	H_2S (aq)	+0.14
X	$AgBr(s) + e^{-s}$	\rightarrow	Ag(s) + Br(aq)	+0.77 +0.70 +0.54 +0.40 +0.34 +0.17 +0.15 +0.14 +0.07 0.00 -0.13 -0.14 -0.15 -0.26 -0.28 -0.26 -0.28 -0.36 -0.40 -0.40 -0.40 -0.40 -0.41 -0.45
<u> </u>	$2H^{+}(aq) + 2e^{-}$	\rightarrow	$H_{2(g)}$	0.00
0	$Pb^{2+}(aq) + 2e^{-}$	\rightarrow	Pb(s)	-0.13
TP	$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-}$	\rightarrow	Sn(s)	-0.14
<u>5</u> 0	$AgI(s) + e^{-s}$	\rightarrow	Ag(s) + I(aq)	-0.15 5.0
en	$Ni^{2+}(aq) + 2e^{-}$	\rightarrow	Ni(s)	-0.26
ţ	$Co^{2+}(aq) + 2e^{-}$ $PbSO_4(s) + 2e^{-}$	\rightarrow	Co(s)	-0.28 -0.36
S	$Se(s) + 2H^{+}(aq) + 2e^{-}$	\rightarrow \rightarrow	$Pb(s) + SO_4^{2-}(aq)$ $H_2Se (aq)$	-0.40
ည်	$Cd^{2+}(aq) + 2e^{-}$	\rightarrow	Cd(s)	-0.40
Ë	$\operatorname{Cr}^{3+}(\operatorname{aq}) + \operatorname{e}^{-}$	\rightarrow	Cr ²⁺ (aq)	-0.41
easing Strength of Oxidizing Agents	$Fe^{2+}(aq) + 2e^{-}$	\rightarrow	Fe(s)	-0.45
ľ	$NO_2^{-}(aq) + H_2O(\ell) + e^{-\ell}$		$NO(g) + 2OH^{-}(aq)$	-0.46 J
Incr		\rightarrow		
Ŧ	$Ag_2S(s) + 2e^{-s}$	\rightarrow	$2Ag(s) + S^{2}(aq)$	-0.69
	$Zn^{2+}(aq) + 2e^{-}$	\rightarrow	Zn(s)	-0.76
	$2H_2O(\ell) + 2e^{-1}$	\rightarrow	$H_2(g) + 2OH^-(aq)$	-0.83
	$Cr^{2+}(aq) + 2e^{-}$	\rightarrow	Cr(s)	-0.91
	$Se(s) + 2e^{-s}$	\rightarrow	Se ²⁻ (aq)	-0.92
	$SO_4^{2-}(aq) + H_2O(\ell) + 2e^{-\ell}$	\rightarrow	SO_3^2 (aq) + 2OH (aq)	-0.93
	$A1^{3+}(aq) + 3e^{-}$	\rightarrow	Al(s)	-1.66
	$Mg^{2+}(aq) + 2e^{-}$	\rightarrow	Mg(s)	-2.37
	$Na^+(aq) + e^-$	\rightarrow	Na(s)	-2.71
	$\operatorname{Ca}^{2+}(\operatorname{aq}) + 2e^{-}$	\rightarrow	Ca(s)	-2.87
	$Ba^{2+}(aq) + 2e^{-}$	\rightarrow	Ba(s)	-2.91
ı	$Li^{+}(aq) + e^{-}$	\rightarrow	Li(s)	-3.04

Kinematics

$$\vec{a} = \vec{a}(t)$$

$$\vec{v} = \int \vec{a} \, dt$$

$$\vec{x} = \iint \vec{a} \, dt = \int \vec{v} \, dt$$

$$\vec{a} = \frac{d^2 \vec{x}}{dt^2} = \frac{d\vec{v}}{dt}$$

$$\vec{v} = \frac{d\vec{x}}{dt}$$

$$\vec{x} = \vec{x}(t)$$

$$s = r\theta$$

$$\omega = \frac{d\theta}{dt}$$

$$v_t = \frac{ds}{dt} = \omega r$$

$$a = \frac{v^2}{r} = \omega^2 r$$

$$\alpha = \frac{d\omega}{dt}$$

Mechanics

$$\vec{F}_{net} = \vec{F}_1 + \vec{F}_2 + \dots = \sum \vec{F}_i$$

$$\vec{F} = m\vec{a} = \frac{d\vec{p}}{dt}$$

$$f_i = \mu_i n$$

$$\vec{D} = \left(\frac{1}{2}C\rho A v^2, opposite\right)$$

$$\vec{F}_{AB} = \vec{F}_{BA}$$

$$\vec{p} = m\vec{v}$$

$$\Delta p_x = \int F_x(t) dt$$

$$\vec{P} = \vec{p}_1 + \vec{p}_2 + \dots = \sum \vec{p}_i$$

$$\vec{P}_f = \vec{P}_i$$

$$K = \frac{1}{2}mv^2$$

$$U_g = mgh$$

$$F = -k\Delta s$$

$$U_s = \frac{1}{2}k (\Delta s)^2$$

$$E_{sys} = P = \frac{dE_{sys}}{dt}$$

Calculus

$$\frac{d}{dt}(ct^n) = nct^{n-1}$$
$$\frac{d}{dt}(u+w) = \frac{du}{dt} + \frac{dw}{dt}$$

Vectors

$$\vec{C} = \vec{A} + \vec{B}$$

$$C = \sqrt{A^2 + B^2}$$

$$\theta = \tan^{-1} \left(\frac{B}{A}\right)$$

$$\vec{A} = A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}$$