designing poly-time algorithms

example problem: max subarray

given array of small integers $a[1,\ldots,n],$ compute

$$\max_{i \le j} \sum_{k=i}^{j} a[k]$$

e.g. $MaxSubarray([31, -41, \mathbf{59}, \mathbf{26}, -\mathbf{53}, \mathbf{58}, \mathbf{97}, -93, -23, 84]) = 187$

algorithmic design techniques

- 1. enumeration
- 2. iteration
- 3. simplification & delegation (aka divide & conquer)
- 4. recursion inversion (aka dynamic programming)

enumeration for max subarray

evaluate every possible solution

```
\begin{split} \operatorname{MaxSubarray}(a[1,\ldots,n]) \\ & \text{for each pair } (i,j) \text{ with } 1 \leq i < j \leq n \\ & \text{compute } a[i] + a[i+1] + \cdots + a[j-1] + a[j] \\ & \text{keep max sum found so far} \\ & \text{return max sum found} \end{split}
```

analysis $(O(n^2) \text{ pairs}) \times (O(n) \text{ time to compute each sum}) = O(n^3) \text{ time}$

iteration for max subarray

```
don't compute sums from scratch: \sum_{k=i}^{j} a[k] \text{ can be computed from } \sum_{k=i}^{j-1} a[k] \text{ in } O(1) \text{ time} (really just clever enumeration)  \begin{aligned} \text{MAXSUBARRAY}(\mathbf{a}[1,\ldots,\mathbf{n}]) \\ \text{for } \mathbf{i} &= 1,\ldots,\mathbf{n} \\ \text{sum} &= 0 \\ \text{for } \mathbf{j} &= \mathbf{i},\ldots,\mathbf{n} \\ \text{sum} &= \text{sum} + \mathbf{a}[\mathbf{j}] \\ \text{keep max sum found so far } \end{aligned}  return max sum found  \begin{aligned} \mathbf{analysis} &\quad (O(n) \text{ $i$-iterations}) \times (O(n) \text{ $j$-iterations}) \times (O(1) \text{ time to update sum}) = O(n^2) \end{aligned}
```

simplification & delegation for max subarray

max subarray either has value

- MaxSubarray $(a[1, \dots, \frac{n}{2}]),$
- or MaxSubarray $(a[\frac{n}{2},\ldots,n]),$
- or MaxSuffix $(a[1,\ldots,\frac{n}{2}])$ +MaxPrefix $(a[\frac{n}{2},\ldots,n])$

compute MaxSuffix and MaxPrefix in linear time by modifying previous algorithm

divide & conquer

$$\begin{aligned} \text{MaxSubarray}(a[1,\dots,n]) &= \max \left\{ \begin{array}{l} \text{MaxSubarray}(a[1,\dots,\frac{n}{2}]) \\ \text{MaxSubarray}(a[\frac{n}{2},\dots,n]) \\ \text{MaxSuffix}(a[1,\dots,\frac{n}{2}]) + \text{MaxPrefix}(a[\frac{n}{2},\dots,n]) \end{array} \right. \end{aligned}$$

analysis $(O(n) \text{ time for non-recursive work}) \times (O(\log n) \text{ depth}) = O(n \log n)$

recursion inversion for max subarray

the max subarray either uses the last element or doesn't:

$$\text{MaxSubarray}(a[1,\ldots,n]) = \max \left\{ \begin{array}{l} \text{MaxSubarray}(a[1,\ldots,n-1]) \\ \text{MaxSuffix}(a[1,\ldots,n] \end{array} \right.,$$

$$\text{MaxSuffix}(a[1,\ldots,n]) = \max\{0, \text{MaxSuffix}(a[1,\ldots,n-1]) + a[n]\}$$

dynamic programming evaluate this non-recursively by computing

- first MaxSubarray(a[1]) and MaxSuffix(a[1])
- then MaxSubarray(a[1,2]) and MaxSuffix(a[1,2]) from above
- then MaxSubarray(a[1,2,3]) and MaxSuffix(a[1,2,3]) from above
- and so on

analysis computing MaxSubarray(
$$a[1,\ldots,n]$$
) and MaxSuffix($a[1,\ldots,n]$ from MaxSubarray($a[1,\ldots,n-1]$) and MaxSuffix($a[1,\ldots,n-1]$) takes $O(1)$ time

O(n) things to compute = O(n) time

does algorithm design matter?

TABLE I. Summary of the Algorithms

Algorithm		1	2	3	4
Lines of C Code		8	7	14	7
Run time in microseconds		3.4N³	13N²	46N log N	33 <i>N</i>
Time to solve	10 ²	3.4 secs	130 msecs	30 msecs	3.3 msecs
problem of size	10^{3}	.94 hrs	13 secs	.45 secs	33 msecs
	10⁴	39 days	22 mins	6.1 secs	.33 secs
	10 ⁵	108 yrs	1.5 days	1.3 min	3.3 secs
	10 ⁶	108 mill	5 mos	15 min	33 secs
Max problem	sec	67	280	2000	30,000
solved in one	min	260	2200	82,000	2,000,000
	hr	1000	17,000	3,500,000	120,000,000
	day	3000	81,000	73,000,000	2,800,000,000