Integration Manual

for S32K1 CRYPTO Driver

Document Number: IM2CRYPTOASR4.4 Rev0000R1.0.1 Rev. 1.0

1 Revision History	2
2 Introduction	3
2.1 Supported Derivatives	3
2.2 Overview	4
2.3 About This Manual	5
2.4 Acronyms and Definitions	6
2.5 Reference List	6
3 Building the driver	7
3.1 Build Options	7
$3.1.1~\rm GCC~Compiler/Assembler/Linker~Options~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.$	7
3.1.2 GHS Compiler/Assembler/Linker Options	10
3.1.3 IAR Compiler/Assembler/Linker Options	13
3.2 Files required for compilation	15
3.3 Setting up the plugins	17
4 Function calls to module	18
4.1 Function Calls during Start-up	18
4.2 Function Calls during Shutdown	18
4.3 Function Calls during Wake-up	18
5 Module requirements	19
5.1 Exclusive areas to be defined in BSW scheduler	19
5.2 Exclusive areas not available on this platform	21
5.3 Peripheral Hardware Requirements	25
$5.4~\mathrm{ISR}$ to configure within Autosar OS - dependencies $\ldots\ldots\ldots\ldots\ldots\ldots$	25
5.5 ISR Macro	25
5.5.1 Without an Operating System	25
5.5.2 With an Operating System	25
	26
5.6 Other AUTOSAR modules - dependencies	20
5.6 Other AUTOSAR modules - dependencies	
	26
5.7 Data Cache Restrictions	26 26 26
5.7 Data Cache Restrictions	26 26 26
5.7 Data Cache Restrictions	26 26 26 27
5.7 Data Cache Restrictions	26 26 26 27
5.7 Data Cache Restrictions	26 26 26 27 27
5.7 Data Cache Restrictions	26 26 26 27 27 28 28

7 Memory allocation	2 9
7.1 Sections to be defined in Crypto_MemMap.h	29
7.2 Linker command file	30
8 Integration Steps	31
9 External assumptions for driver	32

Revision History

Revision	Date	Author	Description
1.0	24.02.2022	NXP RTD Team	Prepared for release RTD S32K1 Version 1.0.1

Introduction

- Supported Derivatives
- Overview
- About This Manual
- Acronyms and Definitions
- Reference List

This Integration Manual describes NXP Semiconductor AUTOSAR Crypto driver for S32K1 platforms.

AUTOSAR CRYPTO driver configuration parameters and deviations from the specification are described in $CR \leftarrow YPTO$ Driver chapter of this document. AUTOSAR CRYPTO driver requirements and APIs are described in the AUTOSAR CRYPTO driver software specification document.

2.1 Supported Derivatives

The software described in this document is intended to be used with the following microcontroller devices of NXP Semiconductors:

- $s32k116_qfn32$
- $s32k116_lqfp48$
- s32k118_lqfp48
- s32k118_lqfp64
- s32k142_lqfp48
- s32k142_lqfp64
- s32k142_lqfp100
- $\bullet \hspace{0.1cm} s32k142w_lqfp48$
- $s32k142w_lqfp64$

Introduction

- s32k144_lqfp48
- $s32k144_lqfp64$
- s32k144_lqfp100
- s32k144_mapbga100
- s32k144w_lqfp48
- $s32k144w_lqfp64$
- $\bullet \hspace{0.1cm} s32k146_lqfp64$
- s32k146_lqfp100
- s32k146_mapbga100
- $s32k146_lqfp144$
- $s32k148_lqfp100$
- s32k148_mapbga100
- s32k148_lqfp144
- s32k148_lqfp176

All of the above microcontroller devices are collectively named as S32K1.

2.2 Overview

AUTOSAR (AUTomotive Open System ARchitecture) is an industry partnership working to establish standards for software interfaces and software modules for automobile electronic control systems.

AUTOSAR:

- paves the way for innovative electronic systems that further improve performance, safety and environmental friendliness.
- is a strong global partnership that creates one common standard: "Cooperate on standards, compete on implementation".
- is a key enabling technology to manage the growing electrics/electronics complexity. It aims to be prepared for the upcoming technologies and to improve cost-efficiency without making any compromise with respect to quality.
- facilitates the exchange and update of software and hardware over the service life of the vehicle.

2.3 About This Manual

This Technical Reference employs the following typographical conventions:

- Boldface style: Used for important terms, notes and warnings.
- *Italic* style: Used for code snippets in the text. Note that C language modifiers such "const" or "volatile" are sometimes omitted to improve readability of the presented code.

Notes and warnings are shown as below:

Note

This is a note.

Warning

This is a warning

2.4 Acronyms and Definitions

Term	Definition
AES	Advanced Encryption Standard
API	Application Programming Interface
AUTOSAR	Automotive Open System Architecture
CMAC	Cipher-based Message Authentication Code
C/CPP	C and C++ Source Code
DET	Development Error Tracer
ECB	Electronic Code Book (refers to AES-ECB mode)
ECU	Electronic Control Unit
FLS	Flash
MAC	Message Authentication Code
N/A	Not Applicable
NVM	Non-Volatile Memory
RAM	Random Access Memory
RNG	Random number generator
ROM	Read-only Memory
SHE	Secure Hardware Extension

• The term "Application" is used for the software utilizing the Crypto Driver.

2.5 Reference List

#	Title	Version
1	Specification of Crypto Driver	AUTOSAR CP Release 4.←
		4.0
2	S32K1xx Series Reference Manual	Rev. 14, 09/2021
2	S32K1xx Data Sheet	Rev. 14, 08/2021
3	Errata S32K116 (0N96V)	Rev. 22/OCT/2021
4	Errata S32K118 (0N97V)	Rev. 22/OCT/2021
5	Errata S32K142 (0N33V)	Rev. 22/OCT/2021
6	Errata S32K144 (0N57U)	Rev. 22/OCT/2021
7	Errata S32K144W (0P64A)	Rev. 22/OCT/2021
8	Errata S32K146 (0N73V)	Rev. 22/OCT/2021
9	Errata S32K148 (0N20V)	Rev. 22/OCT/2021

Building the driver

- Build Options
- Files required for compilation
- Setting up the plugins

This section describes the source files and various compilers, linker options used for building the driver. It also explains the EB Tresos Studio plugin setup procedure.

3.1 Build Options

- GCC Compiler/Assembler/Linker Options
- GHS Compiler/Assembler/Linker Options
- IAR Compiler/Assembler/Linker Options

The RTD driver files are compiled using:

- NXP GCC 9.2.0 20190812 (Build 1649 Revision gaf57174)
- IAR ANSI C/C++ Compiler V8.40.3.228/W32 for ARM Functional Safety
- Green Hills Multi 7.1.6d / Compiler 2020.1.4

The compiler, assembler, and linker flags used for building the driver are explained below.

The TS_T40D2M10I1R0 part of the plugin name is composed as follows:

- T = Target_Id (e.g. T40 identifies Cortex-M architecture)
- D = Derivative Id (e.g. D2 identifies S32K1 platform)
- $M = SW_Version_Major and SW_Version_Minor$
- $I = SW_Version_Patch$
- R = Reserved

3.1.1 GCC Compiler/Assembler/Linker Options

3.1.1.1 GCC Compiler Options

Building the driver

Compiler Option	Description
-mcpu=cortex-m4	Targeted ARM processor for which GCC should tune the performance of the code (for S32K14x devices)
-mcpu=cortex-m0plus	Targeted ARM processor for which GCC should tune the performance of the code (for S32K11x devices)
-mthumb	Generates code that executes in Thumb state
-mlittle-endian	Generate code for a processor running in little-endian mode
-mfpu=fpv4-sp-d16	Specifies the floating-point hardware available on the target (for S32K14x devices)
-mfloat-abi=hard	Specifies the floating-point ABI to use. "hard" allows generation of floating-point instructions and uses FPU-specific calling conventions (for S32K14x devices)
-mfpu=auto	Specifies the floating-point hardware available on the target (for S32K11x devices)
-mfloat-abi=soft	Specifies the floating-point ABI to use. Specifying "soft" causes GCC to generate output containing library calls for floating-point operations (for S32K11x devices)
-std=c99	Specifies the ISO C99 base standard
-Os	Optimize for size. Enables all -O2 optimizations except those that often increase code size
-ggdb3	Produce debugging information for use by GDB using the most expressive format available, including GDB extensions if at all possible. Level 3 includes extra information, such as all the macro definitions present in the program
-Wall	Enables all the warnings about constructions that some users consider questionable, and that are easy to avoid (or modify to prevent the warning), even in conjunction with macros
-Wextra	This enables some extra warning flags that are not enabled by -Wall
-pedantic	Issue all the warnings demanded by strict ISO C. Reject all programs that use forbidden extensions. Follows the version of the ISO C standard specified by the aforementioend -std option
-Wstrict-prototypes	Warn if a function is declared or defined without specifying the argument types
-Wundef	Warn if an undefined identifier is evaluated in an #if directive. Such identifiers are replaced with zero
-Wunused	Warn whenever a function, variable, label, value, macro is unused
-Werror=implicit-function-declaration	Make the specified warning into an error. This option throws an error when a function is used before being declared
-Wsign-compare	Warn when a comparison between signed and unsigned values could produce an incorrect result when the signed value is converted to unsigned.
-Wdouble-promotion	Give a warning when a value of type float is implicitly promoted to double
-fno-short-enums	Specifies that the size of an enumeration type is at least 32 bits regardless of the size of the enumerator values.

Compiler Option	Description
-funsigned-char	Let the type char be unsigned by default, when the declara-
	tion does not use either signed or unsigned
-funsigned-bitfields	Let a bit-field be unsigned by default, when the declaration
	does not use either signed or unsigned
-fomit-frame-pointer	Omit the frame pointer in functions that dont need one.
	This avoids the instructions to save, set up and restore the
	frame pointer; on many targets it also makes an extra register available.
-fno-common	Makes the compiler place uninitialized global variables in
-ino-common	the BSS section of the object file. This inhibits the merging
	of tentative definitions by the linker so you get a multiple-
	definition error if the same variable is accidentally defined in
	more than one compilation unit
-fstack-usage	Makes the compiler output stack usage information for the
	program, on a per-function basis
-fdump-ipa-all	Enables all inter-procedural analysis dumps
-с	Stop after assembly and produce an object file for each source file
-DS32K1XX	Predefine S32K1XX as a macro, with definition 1
-DS32K148	Predefine S32K148 as a macro, with definition 1
-DGCC	Predefine GCC as a macro, with definition 1
-DUSE_SW_VECTOR_MODE	Predefine USE_SW_VECTOR_MODE as a macro, with
	definition 1. By default, the drivers are compiled to handle
	interrupts in Software Vector Mode
-DI_CACHE_ENABLE	Predefine I_CACHE_ENABLE as a macro, with defini-
	tion 1. Enables instruction cache initalization in source file
	system.c under the Platform driver (for S32K14x devices)
-DENABLE_FPU	Predefine ENABLE_FPU as a macro, with definition 1. En-
	ables FPU initalization in source file system.c under the
DAGAL ENABLE HORD MODE CHESCOT	Platform driver (for S32K14x devices)
-DMCAL_ENABLE_USER_MODE_SUPPORT	Predefine MCAL_ENABLE_USER_MODE_SUPPO
	RT as a macro, with definition 1. Allows drivers to be configured in user mode.
	configured in user mode.

3.1.1.2 GCC Assembler Options

Assembler Option	Description
-Xassembler-with-cpp	Specifies the language for the following input files (rather than letting the compiler choose a default based on the file name suffix)
-mcpu=cortex-m4	Targeted ARM processor for which GCC should tune the performance of the code (for S32K14x devices)
-mcpu=cortex-m0plus	Targeted ARM processor for which GCC should tune the performance of the code (for S32K11x devices)
-mthumb	Generates code that executes in Thumb state
-с	Stop after assembly and produce an object file for each source file

Building the driver

3.1.1.3 GCC Linker Options

Linker Option	Description
-Wl,-Map,filename	Produces a map file
-T linkerfile	Use linkerfile as the linker script. This script replaces the default linker script (rather than adding to it)
-entry=Reset_Handler	Specifies that the program entry point is Reset_Handler
-nostartfiles	Do not use the standard system startup files when linking
-mcpu=cortex-m4	Targeted ARM processor for which GCC should tune the performance of the code (for S32K14x devices)
-mcpu=cortex-m0plus	Targeted ARM processor for which GCC should tune the performance of the code (for S32K11x devices)
-mthumb	Generates code that executes in Thumb state
-mfpu=fpv4-sp-d16	Specifies the floating-point hardware available on the target (for S32K14x devices)
-mfloat-abi=hard	Specifies the floating-point ABI to use. "hard" allows generation of floating-point instructions and uses FPU-specific calling conventions (for S32K14x devices)
-mfpu=auto	Specifies the floating-point hardware available on the target (for S32K11x devices)
-mfloat-abi=soft	Specifies the floating-point ABI to use. Specifying "soft" causes GCC to generate output containing library calls for floating-point operations (for S32K11x devices)
-mlittle-endian	Generate code for a processor running in little-endian mode
-ggdb3	Produce debugging information for use by GDB using the most expressive format available, including GDB extensions if at all possible. Level 3 includes extra information, such as all the macro definitions present in the program
-lc	Link with the C library
-lm	Link with the Math library
-lgcc	Link with the GCC library
-n	Turn off page alignment of sections, and disable linking against shared libraries

3.1.2 GHS Compiler/Assembler/Linker Options

3.1.2.1 GHS Compiler Options

Compiler Option	Description
-cpu=cortexm4	Selects target processor: Arm Cortex M4 (for S32K14x devices)
-cpu=cortexm0plus	Selects target processor: Arm Cortex M0+ (for S32K11x devices)
-thumb	Selects generating code that executes in Thumb state
-fpu=vfpv4_d16	Specifies hardware floating-point using the v4 version of the VFP instruction set, with 16 double-precision floating-point registers (for S32K14x devices)
-fsingle	Use hardware single-precision, software double-precision FP instructions (for S32K14x devices)

Compiler Option	Description
-fsoft	Specifies software floating-point (SFP) mode. This setting causes your target to use integer registers to hold floating-point data and use library subroutine calls to emulate floating-point operations (for S32K11x devices)
-C99	Use (strict ISO) C99 standard (without extensions)
-ghstd=last	Use the most recent version of Green Hills Standard mode (which enables warnings and errors that enforce a stricter coding standard than regular C and C++)
-Osize	Optimize for size
-gnu_asm	Enables GNU extended asm syntax support
-dual_debug	Generate DWARF 2.0 debug information
-G	Generate debug information
-keeptempfiles	Prevents the deletion of temporary files after they are used. If an assembly language file is created by the compiler, this option will place it in the current directory instead of the temporary directory
-Wimplicit-int	Produce warnings if functions are assumed to return int
-Wshadow	Produce warnings if variables are shadowed
-Wtrigraphs	Produce warnings if trigraphs are detected
-Wundef	Produce a warning if undefined identifiers are used in #if preprocessor statements
-unsigned_chars	Let the type char be unsigned, like unsigned char
-unsigned_fields	Bitfelds declared with an integer type are unsigned
-no_commons	Allocates uninitialized global variables to a section and initializes them to zero at program startup
-no_exceptions	Disables C++ support for exception handling
-no_slash_comment	C++ style // comments are not accepted and generate errors
-prototype_errors	Controls the treatment of functions referenced or called when no prototype has been provided
-incorrect_pragma_warnings	Controls the treatment of valid #pragma directives that use the wrong syntax
-с	Stop after assembly and produce an object file for each source file
-DS32K1XX	Predefine S32K1XX as a macro, with definition 1
-DS32K148	Predefine S32K148 as a macro, with definition 1
-DGHS	Predefine GHS as a macro, with definition 1
-DUSE_SW_VECTOR_MODE	Predefine USE_SW_VECTOR_MODE as a macro, with definition 1. By default, the drivers are compiled to handle interrupts in Software Vector Mode
-DI_CACHE_ENABLE	Predefine I_CACHE_ENABLE as a macro, with definition 1. Enables instruction cache initalization in source file system.c under the Platform driver (for S32K14x devices)
-DENABLE_FPU	Predefine ENABLE_FPU as a macro, with definition 1. Enables FPU initalization in source file system.c under the Platform driver (for S32K14x devices)

Building the driver

Compiler Option	Description
-DMCAL_ENABLE_USER_MODE_SUPPORT	Predefine MCAL_ENABLE_USER_MODE_SUPPO←
	RT as a macro, with definition 1. Allows drivers to be
	configured in user mode

${\bf 3.1.2.2}\quad {\bf GHS\ Assembler\ Options}$

Assembler Option	Description	
-cpu=cortexm4	Selects target processor: Arm Cortex M4 (for S32K14x devices)	
-cpu=cortexm0plus	Selects target processor: Arm Cortex M0+ (for S32K11x devices)	
-preprocess_assembly_files	Controls whether assembly files with standard extensions such as .s and .asm are preprocessed	
-list	Creates a listing by using the name and directory of the object file with the .lst extension	
-c	Stop after assembly and produce an object file for each source file	

3.1.2.3 GHS Linker Options

Linker Option	Description		
-e Reset_Handler	Make the symbol Reset_Handler be treated as a root symbol and the start label of the application		
-T linker_script_file.ld	Use linker_script_file.ld as the linker script. This script replaces the default linker script (rather than adding to it)		
-map	Produce a map file		
-keepmap	Controls the retention of the map file in the event of a link error		
-Mn	Generates a listing of symbols sorted alphabetically/numerically by address		
-delete	Instructs the linker to remove functions that are not referenced in the final executable. The linker iterates to find functions that do not have relocations pointing to them and eliminates them		
-ignore_debug_references	Ignores relocations from DWARF debug sections when using -delete. DWA \leftarrow RF debug information will contain references to deleted functions that may break some third-party debuggers		
-Llibrary_path	Points to library_path (the libraries location) for thumb2 to be used for linking		
-larch	Link architecture specific library		
-lstartup	Link run-time environment startup routines. The source code for themodules in this library is provided in the src/libstartup directory		
-lind_sd	Link language-independent library, containing support routines for features such as software floating point, run-time error checking, C99 complex numbers, and some general purpose routines of the ANSI C library (for S32K14x devices)		
-lind_sf	Link language-independent library, containing support routines for features such as software floating point, run-time error checking, C99 complex numbers, and some general purpose routines of the ANSI C library (for S32K11x devices)		
-V	Prints verbose information about the activities of the linker, including the libraries it searches to resolve undefined symbols		
-keep=C40_Ip_AccessCode	Avoid linker remove function C40_Ip_AccessCode from Fls module because it is not referenced explicitly		

Linker Option	Description
-nostartfiles	Controls the start files to be linked into the executable

$3.1.3 \quad IAR\ Compiler/Assembler/Linker\ Options$

3.1.3.1 IAR Compiler Options

Compiler Option	Description		
-cpu=Cortex-M4	Targeted ARM processor for which IAR should tune the performance of the code (for S32K14x devices)		
-cpu=Cortex-M0+	Targeted ARM processor for which IAR should tune the performance of the code (for S32K11x devices)		
-cpu_mode=thumb	Generates code that executes in Thumb state		
-endian=little	Generate code for a processor running in little-endian mode		
-fpu=FPv4-SP	Use this option to generate code that performs floating-point operations using a Floating Point Unit (FPU). Single-precision variant. (for S32K14x devices)		
-fpu=none	Use this option to generate code that performs floating-point operations using a Floating Point Unit (FPU). No FPU. (for S32K11x devices)		
-е	Enables all IAR C language extensions		
-Ohz	Optimize for size. the compiler will emit AEABI attributes indicating the requested optimization goal. This information can be used by the linker to select smaller or faster variants of DLIB library functions		
-debug	Makes the compiler include debugging information in the object modules. Including debug information will make the object files larger		
-no_clustering	Disables static clustering optimizations. Static and global variables defined within the same module will not be arranged so that variables that are accessed in the same function are close to each other		
-no_mem_idioms	Makes the compiler not optimize certain memory access patterns		
-no_explicit_zero_opt	Do not treat explicit initializations to zero of static variables as zero initializations		
-require_prototypes	Force the compiler to verify that all functions have proper prototypes. Generates an error otherwise		
-no_wrap_diagnostics	Does not wrap long lines in diagnostic messages		
-diag_suppress=Pa050	Suppresses diagnostic message Pa050		
-DS32K1XX	Predefine S32K1XX as a macro, with definition 1		
-DS32K148	Predefine S32K148 as a macro, with definition 1		
-DIAR	Predefine IAR as a macro, with definition 1		
-DUSE_SW_VECTOR_MODE	Predefine USE_SW_VECTOR_MODE as a macro, with definition 1. By default, the drivers are compiled to handle interrupts in Software Vector Mode.		

Building the driver

Compiler Option	Description
-DI_CACHE_ENABLE	Predefine I_CACHE_ENABLE as a macro, with defini-
	tion 1. Enables instruction cache initalization in source file
	system.c under the Platform driver (for S32K14x devices)
-DENABLE_FPU	Predefine ENABLE_FPU as a macro, with definition 1. En-
	ables FPU initalization in source file system.c under the
	Platform driver (for S32K14x devices)
-DMCAL_ENABLE_USER_MODE_SUPPORT	Predefine MCAL_ENABLE_USER_MODE_SUPPO↔
	RT as a macro, with definition 1. Allows drivers to be
	configured in user mode.

3.1.3.2 IAR Assembler Options

Assembler Option	Description
-cpu=Cortex-M4	Targeted ARM processor for which IAR should tune the performance of the code (for S32K14x devices)
-cpu=Cortex-M0+	Targeted ARM processor for which IAR should tune the performance of the code (for S32K11x devices)
-cpu_mode thumb	Selects the thumb mode for the assembler directive CODE
-g	Disables the automatic search for system include files
-r	Generates debug information

3.1.3.3 IAR Linker Options

Linker Option	Description
-map filename	Produces a map file
-config linkerfile	Use linkerfile as the linker script. This script replaces the default linker script (rather than adding to it)
-cpu=Cortex-M4	Targeted ARM processor for which IAR should tune the performance of the code (for S32K14x devices)
-cpu=Cortex-M0+	Targeted ARM processor for which IAR should tune the performance of the code (for S32K11x devices)
-fpu=FPv4-SP	Use this option to generate code that performs floating-point operations using a Floating Point Unit (FPU). Single-precision variant. (for S32K14x devices)
-fpu=none	Use this option to generate code that performs floating-point operations using a Floating Point Unit (FPU). No FPU. (for S32K11x devices)
-entry _start	Treats _start as a root symbol and start label
-enable_stack_usage	Enables stack usage analysis. If a linker map file is produced, a stack usage chapter is included in the map file
-skip_dynamic_initialization	Dynamic initialization (typically initialization of C++ objects with static storage duration) will not be performed automatically during application startup
-no_wrap_diagnostics	Does not wrap long lines in diagnostic messages

3.2 Files required for compilation

This section describes the include files required to compile, assemble and link the AUTOSAR Crypto Driver for S32K1 family of microcontrollers.

To avoid integration of incompatible files, all the include files from other modules shall have the same $AR_MAJO \leftarrow R_VERSION$ and $AR_MINOR_VERSION$, i.e. only files with the same AUTOSAR major and minor versions can be compiled.

3.2.0.0.1 CRYPTO Driver Files:

- Crypto_TS_T40D2M10I1R0\include\Crypto.h
- Crypto_TS_T40D2M10I1R0\include\Crypto_Ipw.h
- $\bullet \quad Crypto_TS_T40D2M10I1R0\\ \\ include\\ \\ Crypto_KeyManagement.h$
- Crypto_TS_T40D2M10I1R0\include\Crypto_Types.h
- Crypto_TS_T40D2M10I1R0 $\cline{Crypto_Util.h}$
- Crypto_TS_T40D2M10I1R0\include\Csec_Ip.h
- Crypto_TS_T40D2M10I1R0\include\Csec_Ip_Pram.h
- Crypto_TS_T40D2M10I1R0\src\Crypto.c

- Crypto_TS_T40D2M10I1R0\src\Crypto_Util.c
- Crypto_TS_T40D2M10I1R0\src\Csec_Ip_Irq.c

3.2.0.0.2 CRYPTO Driver Generated Files (must be generated by the user using a configuration tool):

- Csec_Ip_Cfg.h
- Crypto Cfg.h
- Crypto Cfg.c

NXP Semiconductors 15

S32K1 CRYPTO Driver

Building the driver

3.2.0.0.3 BASE Files:

- Base_TS_T40D2M10I1R0 $\$ include $\$ Devassert.h
- Base TS $T40D2M10I1R0\include\Mcal.h$
- Base_TS_T40D2M10I1R0\include\Platform_Types.h
- Base_TS_T40D2M10I1R0\include\StandardTypes.h

- Base TS T40D2M10I1R0\header\S32K142W FTFM.h
- Base_TS_T40D2M10I1R0 $\header\S32K144$ _FTFC.h
- Base TS T40D2M10I1R0\header\S32K144W FTFM.h
- Base_TS_T40D2M10I1R0 $\header\S32K146$ _FTFC.h
- Base TS $T40D2M10I1R0\header\S32K148$ FTFC.h

3.2.0.0.4 DET Files:

- Det_TS_T40D2M10I1R0\include\Det.h
- $Det_TS_T40D2M10I1R0\src\Det.c$

3.2.0.0.5 RTE Files:

- Rte_TS_T40D2M10I1R0\include\SchM_Crypto.h
- Rte_TS_T40D2M10I1R0 $\src\SchM$ _Crypto.c

3.2.0.0.6 CRYIF Files:

- $CryIf_TS_T40D2M10I1R0\include\CryIf.h$
- CryIf TS $T40D2M10I1R0\src\CryIf.c$

3.2.0.0.7 CSM Files:

• Csm TS T40D2M10I1R0\include\Csm Types.h

3.3 Setting up the plugins

The Crypto Driver was designed to be configured by using the EB Tresos Studio (version 27.1.0 b200625-0900 or later)

3.3.0.0.1 Location of various files inside the CRYPTO module folder:

- VSMD (Vendor Specific Module Definition) file in EB Tresos Studio XDM format:
 - Crypto TS T40D2M10I1R0\config\Crypto.xdm
- VSMD (Vendor Specific Module Definition) file(s) in AUTOSAR compliant EPD format:
 - Crypto_TS_T40D2M10I1R0\autosar\Crypto_<subderivative_name>.epd
- Code Generation Templates :
 - $\ Crypto_TS_T40D2M10I1R0 \backslash generate_PC \backslash src \backslash Crypto_Cfg.c$
 - $\ Crypto_TS_T40D2M10I1R0 \backslash enerate_PC \backslash Crypto_Cfg.h$
 - $\ Crypto_TS_T40D2M10I1R0 \backslash enerate_PC \backslash Csec_Ip_Cfg.h$

3.3.0.0.2 Steps to generate the configuration:

- 1. Copy the following module folders into the Tresos plugins folder:
 - Crypto_TS_T40D2M10I1R0
 - Base TS T40D2M10I1R0
 - $\bullet \quad \mathrm{Det_TS_T40D2M10I1R0}$
 - EcuC TS T40D2M10I1R0
 - Rte TS T40D2M10I1R0
 - \bullet Resource_TS_T40D2M10I1R0
- 2. Set the desired Tresos Output location folder for the generated sources and header files.
- 3. Use the EB Tresos Studio GUI to modify ECU configuration parameters values.
- 4. Generate the configuration files

Function calls to module

- Function Calls during Start-up
- Function Calls during Shutdown
- Function Calls during Wake-up

4.1 Function Calls during Start-up

CRYPTO driver shall be initialized during STARTUP phase of EcuM initialization. The API member to be called to accomplish this is Crypto_Init.

The MCU module should be initialized before CRYPTO module is initialized.

4.2 Function Calls during Shutdown

None.

4.3 Function Calls during Wake-up

None.

Module requirements

- Exclusive areas to be defined in BSW scheduler
- Exclusive areas not available on this platform
- Peripheral Hardware Requirements
- ISR to configure within AutosarOS dependencies
- ISR Macro
- Other AUTOSAR modules dependencies
- Data Cache Restrictions
- User Mode support
- Multicore support

5.1 Exclusive areas to be defined in BSW scheduler

In the current implementation, CRYPTO driver is using the services of Run-TimeEnvironment (RTE) for entering and exiting the critical regions. RTE implementation is done by the integrators of the MCAL using OS or non-OS services. For testing the CRYPTO driver, stubs are used for RTE. The following critical regions are used in the CRYPTO driver:

Exclusive Areas implemented in High level driver layer (HLD)

 $\label{lem:crypto_exclusive_area} \textbf{CRYPTO_EXCLUSIVE_AREA_00} \ \ is \ used in function \ Crypto_ProcessJob to protect the \ Crypto_aObject \ QueueList[ObjIndex]. u32HeadOfQueuedJobs, \ Crypto_aObjectQueueList[ObjIndex]. u32HeadOfFreeJobs, \ Crypto \ _aDriverObjectList[ObjectIdx]. pQueuedJobs[IdxQueueElementJob] \ global \ variables \ from \ read/write \ operation.$

 $\label{lem:crypto_exclusive_area} \textbf{CRYPTO}_{\textbf{EXCLUSIVE}} \textbf{_AREA}_\textbf{01} \text{ is used in function } \textbf{ISR}(\textbf{Csec}_\textbf{Ip}_\textbf{Isr}) \text{ to protect the Crypto}_\textbf{a}\textbf{Object} \leftarrow \textbf{QueueList}[\textbf{ObjIndex}].\textbf{u32HeadOfQueuedJobs}, \textbf{Crypto}_\textbf{a}\textbf{ObjectQueueList}[\textbf{ObjIndex}].\textbf{u32HeadOfFreeJobs}, \textbf{Crypto} \leftarrow \textbf{a}\textbf{DriverObjectList}[\textbf{ObjectIdx}].\textbf{p}\textbf{QueuedJobs}[\textbf{Idx}\textbf{QueueElementJob}] \text{ global variables from read/write operation.}$

CRYPTO_EXCLUSIVE_AREA_01 is used in function Crypto_MainFunction to protect the Crypto_← aObjectQueueList[ObjIndex].u32HeadOfQueuedJobs, Crypto_aObjectQueueList[ObjIndex].u32HeadOfFreeJobs,

Module requirements

 $\label{lementJob} Crypto_aDriverObjectList[ObjectIdx].pQueuedJobs[IdxQueueElementJob] \ global \ variables \ from \ read/write \ operation.$

 $\label{lem:control_exclusive_area} \begin{tabular}{ll} $\tt CRYPTO_EXCLUSIVE_AREA_02$ is used in function $\tt Crypto_CancelJob$ to protect the $\tt Crypto_aObject $\tt QueueList[ObjIndex].u32HeadOfQueuedJobs, $\tt Crypto_aObjectQueueList[ObjIndex].u32HeadOfFreeJobs, $\tt Crypto_aDriverObjectList[ObjectIdx].pQueuedJobs[IdxQueueElementJob] global variables from read/write operation. \end{tabular}$

CRYPTO_EXCLUSIVE_AREA_12 is used in function Crypto_ProcessJob to protect the CSEC_IP_FL← ASH->FCNFG register from read/modify/write operation in Csec_Ip_SetInterrupt.

CRYPTO_EXCLUSIVE_AREA_12 is used in function Crypto_CancelJob to protect the CSEC_IP_FLA← SH->FCNFG register from read/modify/write operation in Csec_Ip_SetInterrupt.

CRYPTO_EXCLUSIVE_AREA_12 is used in function Crypto_MainFunction to protect the CSEC_IP_← FLASH->FCNFG register from read/modify/write operation in Csec_Ip_SetInterrupt.

Exclusive Areas implemented in Low level driver layer (IPL)

CRYPTO_EXCLUSIVE_AREA_12 is used in function Csec_Ip_EncryptEcb to protect the CSEC_IP_F \leftarrow LASH->FCNFG register from read/modify/write operation in Csec_Ip_SetInterrupt.

 $\label{lem:crypto_exclusive_area_12} \textbf{ is used in function Csec_Ip_DecryptEcb to protect the CSEC_IP_F \leftarrow LASH->FCNFG register from read/modify/write operation in Csec_Ip_SetInterrupt.}$

 $\label{lem:cryptCbc} \textbf{CRYPTO_EXCLUSIVE_AREA_12} \text{ is used in function Csec_Ip_EncryptCbc to protect the CSEC_IP_F} \leftarrow \text{LASH->FCNFG register from read/modify/write operation in Csec_Ip_SetInterrupt.}$

 $\begin{tabular}{ll} $\textbf{CRYPTO_EXCLUSIVE_AREA_12}$ is used in function $\texttt{Csec_Ip_DecryptCbc}$ to protect the $\texttt{CSEC_IP_F} \leftarrow \texttt{LASH->FCNFG}$ register from $\texttt{read/modify/write}$ operation in $\texttt{Csec_Ip_DecryptCbc}$. \\ \end{tabular}$

CRYPTO_EXCLUSIVE_AREA_12 is used in function Csec_Ip_GenerateMac to protect the CSEC_IP_← FLASH->FCNFG register from read/modify/write operation in Csec_Ip_SetInterrupt.

CRYPTO_EXCLUSIVE_AREA_12 is used in function Csec_Ip_VerifyMac to protect the CSEC_IP_FL← ASH->FCNFG register from read/modify/write operation in Csec_Ip_SetInterrupt.

CRYPTO_EXCLUSIVE_AREA_12 is used in function Csec_Ip_GenerateRnd to protect the CSEC_IP_← FLASH->FCNFG register from read/modify/write operation in Csec_Ip_SetInterrupt.

CRYPTO_EXCLUSIVE_AREA_12 is used in function Csec_Ip_CancelCommand to protect the CSEC_← IP_FLASH->FCNFG register from read/modify/write operation in Csec_Ip_SetInterrupt.

Critical Region Exclusive Matrix

Below is the table depicting the exclusivity between different critical region IDs from the CRYPTO driver. If there is an "X" in the table, it means that those 2 critical regions cannot interrupt each other.

#	CRYPTO_EA↔	$\mathbf{CRYPTO}\mathbf{_EA} \leftarrow$	CRYPTO_EA←	CRYPTO_EA←
	_00	_01	_02	_12
CRYPTO_EA_00	X	X	X	
CRYPTO_EA_01	X	X	X	
CRYPTO_EA_02	X	X	X	
CRYPTO_EA_12				X

21

Note

CRYPTO EA xx means CRYPTO EXCLUSIVE AREA xx

5.2 Exclusive areas not available on this platform

List of exclusive areas which are not available on this platform (or blank if they're all available).

CRYPTO_EXCLUSIVE_AREA_03 is used in function Crypto_MainFunction to protect the Crypto_a← CryptoHseMuState[MuInstance].u8StreamBusyBitMap global variable from read/modify/write operation.

CRYPTO_EXCLUSIVE_AREA_03 is used in function ISR(Mu_Ip_Mu0_OredRx_Isr) to protect the Crypto_aCryptoHseMuState[MuInstance].u8StreamBusyBitMap global variable from read/modify/write operation.

CRYPTO_EXCLUSIVE_AREA_03 is used in function ISR(Mu_Ip_Mu1_OredRx_Isr) to protect the Crypto_aCryptoHseMuState[MuInstance].u8StreamBusyBitMap global variable from read/modify/write operation.

CRYPTO_EXCLUSIVE_AREA_03 is used in function ISR(Mu_Ip_Mu2_OredRx_Isr) to protect the Crypto_aCryptoHseMuState[MuInstance].u8StreamBusyBitMap global variable from read/modify/write operation.

CRYPTO_EXCLUSIVE_AREA_03 is used in function ISR(Mu_Ip_Mu3_OredRx_Isr) to protect the Crypto_aCryptoHseMuState[MuInstance].u8StreamBusyBitMap global variable from read/modify/write operation.

 $\label{lem:crypto_exclusive_area} \textbf{CRYPTO}_\textbf{EXCLUSIVE}_\textbf{AREA}_\textbf{03} \text{ is used in function Crypto}_\textbf{ProcessJob to protect the Crypto}_\textbf{aCrypto} \leftarrow \textbf{HseMuState}[\textbf{MuInstance}]. \\ \textbf{uSStreamBusyBitMap global variable from read/modify/write operation.}$

CRYPTO_EXCLUSIVE_AREA_04 is used in function Crypto_MainFunction to protect the Crypto_a← CryptoHseMuState[MuInstance].u8StreamBusyBitMap global variable from read/modify/write operation.

CRYPTO_EXCLUSIVE_AREA_04 is used in function ISR(Mu_Ip_Mu0_OredRx_Isr) to protect the Crypto aCryptoHseMuState[MuInstance].u8StreamBusyBitMap global variable from read/modify/write operation.

CRYPTO_EXCLUSIVE_AREA_04 is used in function ISR(Mu_Ip_Mu1_OredRx_Isr) to protect the Crypto aCryptoHseMuState[MuInstance].u8StreamBusyBitMap global variable from read/modify/write operation.

CRYPTO_EXCLUSIVE_AREA_04 is used in function ISR(Mu_Ip_Mu2_OredRx_Isr) to protect the Crypto aCryptoHseMuState[MuInstance].u8StreamBusyBitMap global variable from read/modify/write operation.

CRYPTO_EXCLUSIVE_AREA_04 is used in function ISR(Mu_Ip_Mu3_OredRx_Isr) to protect the Crypto_aCryptoHseMuState[MuInstance].u8StreamBusyBitMap global variable from read/modify/write operation.

CRYPTO_EXCLUSIVE_AREA_04 is used in function Crypto_ProcessJob to protect the Crypto_aCrypto← HseMuState[MuInstance].u8StreamBusyBitMap global variable from read/modify/write operation.

CRYPTO_EXCLUSIVE_AREA_10 is used in function Crypto_MainFunction to protect the Crypto_a← CryptoHseMuState[MuInstance].Hse_Ip_MuState.abChannelAllocated[Channel] global variable from read/write operation in Hse_Ip_GetFreeChannel.

 $\label{located_continuous_conti$

NXP Semiconductors

S32K1 CRYPTO Driver

Module requirements

- **CRYPTO_EXCLUSIVE_AREA_10** is used in function Crypto_Exts_FormatKeyCatalogs to protect the Crypto_aCryptoHseMuState[MuInstance].Hse_Ip_MuState.abChannelAllocated[Channel] global variable from read/write operation in Hse_Ip_GetFreeChannel.
- $\label{lem:crypto_exclusive_area_10} \textbf{ is used in function Crypto_Exts_MPCompression to protect the Crypto_aCryptoHseMuState[MuInstance]. Hse_Ip_MuState. abChannelAllocated[Channel] global variable from read/write operation in Hse_Ip_GetFreeChannel.}$
- $\label{lem:crypto_exclusive_area_10} \textbf{crypto_exts_SHE_BootFailure} \ \ \textbf{to} \ \ \textbf{protect} \ \ \textbf{the} \ \ \ \textbf{Crypto_aCryptoHseMuState[MuInstance].Hse_Ip_MuState.abChannelAllocated[Channel]} \ \ \textbf{global} \ \ \ \textbf{variable} \ \ \ \textbf{from} \ \ \ \ \ \textbf{read/write} \ \ \textbf{operation} \ \ \textbf{in} \ \ \textbf{Hse_Ip_GetFreeChannel}.$
- $\label{located_expression} \begin{tabular}{ll} $\tt CRYPTO_EXCLUSIVE_AREA_10$ is used in function $\tt Crypto_Exts_SHE_BootOk$ to protect the $\tt Crypto-Lambda CryptoHseMuState[MuInstance]. Hse_Ip_MuState.abChannelAllocated[Channel] global variable from read/write operation in $\tt Hse_Ip_GetFreeChannel. \end{tabular}$
- CRYPTO_EXCLUSIVE_AREA_10 is used in function Crypto_Exts_SHE_DebugAuth to protect the Crypto_aCryptoHseMuState[MuInstance].Hse_Ip_MuState.abChannelAllocated[Channel] global variable from read/write operation in Hse_Ip_GetFreeChannel.
- CRYPTO_EXCLUSIVE_AREA_10 is used in function Crypto_Exts_SHE_DebugChal to protect the Crypto_aCryptoHseMuState[MuInstance].Hse_Ip_MuState.abChannelAllocated[Channel] global variable from read/write operation in Hse_Ip_GetFreeChannel.
- CRYPTO_EXCLUSIVE_AREA_10 is used in function Crypto_Exts_SHE_GetId to protect the Crypto← _aCryptoHseMuState[MuInstance].Hse_Ip_MuState.abChannelAllocated[Channel] global variable from read/write operation in Hse_Ip_GetFreeChannel.
- $\label{located_continuous_conti$
- $\label{located_control_exclusive_area} \textbf{CRYPTO}_\textbf{EXCLUSIVE}_\textbf{AREA}_\textbf{10} \text{ is used in function Crypto}_\textbf{KeyCopy to protect the Crypto}_\textbf{aCrypto} \leftarrow \textbf{HseMuState}[\textbf{MuInstance}]. \textbf{Hse}_\textbf{Ip}_\textbf{MuState}. \textbf{abChannelAllocated}[\textbf{Channel}] \text{ global variable from read/write operation in Hse}_\textbf{Ip}_\textbf{GetFreeChannel}.$
- $\label{located_control_exclusive_area} \textbf{CRYPTO}_\textbf{EXCLUSIVE}_\textbf{AREA}_\textbf{10} \text{ is used in function Crypto}_\textbf{KeyDerive to protect the Crypto}_\textbf{aCrypto} \leftarrow \textbf{HseMuState}[\textbf{MuInstance}]. \textbf{Hse}_\textbf{Ip}_\textbf{MuState}. \textbf{abChannelAllocated}[\textbf{Channel}] \text{ global variable from read/write operation in Hse}_\textbf{Ip}_\textbf{GetFreeChannel}.$
- $\label{located_continuous_conti$
- **CRYPTO_EXCLUSIVE_AREA_10** is used in function Crypto_KeyElementCopyPartial to protect the Crypto_aCryptoHseMuState[MuInstance].Hse_Ip_MuState.abChannelAllocated[Channel] global variable from read/write operation in Hse_Ip_GetFreeChannel.
- $\label{located_control} \begin{tabular}{ll} $\tt CRYPTO_EXCLUSIVE_AREA_10$ is used in function $\tt Crypto_KeyElementGet$ to protect the $\tt Crypto_Located_Crypto_ExcLusive_AREA_10$ is used in function $\tt Crypto_KeyElementGet$ to protect the $\tt Crypto_Located_Crypto_SeyElementGet$ to protect the $\tt Crypto_Located_Crypto_ExcLusive_Crypto_Located_Crypto_ExcLusive_Crypto_Located_Crypto_ExcLusive_Crypto_Located_Crypto_ExcLusive_Crypto_Located_Crypto_Crypto_Located_Crypto_Located_Crypto_Crypto_Located_Crypto_Crypto_Crypto_Crypto_Located_Crypto_Located_Crypto_Crypto_Crypto_Crypto_Crypto_Crypto_Crypto_Crypto_Located_Crypto_Cryp$
- $\label{located_continuous_conti$

23

- **CRYPTO_EXCLUSIVE_AREA_10** is used in function Crypto_KeyExchangeCalcPubVal to protect the Crypto_aCryptoHseMuState[MuInstance].Hse_Ip_MuState.abChannelAllocated[Channel] global variable from read/write operation in Hse_Ip_GetFreeChannel.
- $\label{lem:crypto_exclusive_area_10} \textbf{crypto}_\textbf{Exclusive}_\textbf{area} \textbf{10} \textbf{ is used in function Crypto}_\textbf{KeyExchangeCalcSecret} \textbf{ to protect the Crypto}_\textbf{aCryptoHseMuState}[\textbf{MuInstance}]. \textbf{Hse}_\textbf{Ip}_\textbf{MuState.abChannelAllocated}[\textbf{Channel}] \textbf{ global variable from read/write operation in Hse}_\textbf{Ip}_\textbf{GetFreeChannel}.$
- **CRYPTO_EXCLUSIVE_AREA_10** is used in function Crypto_KeyGenerate to protect the Crypto_a CryptoHseMuState[MuInstance].Hse_Ip_MuState.abChannelAllocated[Channel] global variable from read/write operation in Hse_Ip_GetFreeChannel.
- $\label{located_continuous_conti$
- $\label{located_continuous_conti$
- CRYPTO_EXCLUSIVE_AREA_10 is used in function ISR(Mu_Ip_Mu0_OredRx_Isr) to protect the Crypto_aCryptoHseMuState[MuInstance].Hse_Ip_MuState.abChannelAllocated[Channel] global variable from read/write operation in Hse_Ip_GetFreeChannel.
- $\label{located_continuous_conti$
- $\label{located_continuous_conti$
- **CRYPTO_EXCLUSIVE_AREA_11** is used in function Crypto_ProcessJob to protect the Receive Control Register (RCR) from read/modify/write operation in Hse_Ip_ServiceRequest.
- **CRYPTO_EXCLUSIVE_AREA_11** is used in function Crypto_KeyElementGet to protect the Receive Control Register (RCR) from read/modify/write operation in Hse_Ip_ServiceRequest.
- **CRYPTO_EXCLUSIVE_AREA_11** is used in function Crypto_MainFunction to protect the Receive Control Register (RCR) from read/modify/write operation in Hse_Ip_ServiceRequest.
- **CRYPTO_EXCLUSIVE_AREA_11** is used in function Crypto_KeyGenerate to protect the Receive Control Register (RCR) from read/modify/write operation in Hse_Ip_ServiceRequest.
- **CRYPTO_EXCLUSIVE_AREA_11** is used in function Crypto_KeyDerive to protect the Receive Control Register (RCR) from read/modify/write operation in Hse_Ip_ServiceRequest.
- **CRYPTO_EXCLUSIVE_AREA_11** is used in function Crypto_KeyExchangeCalcSecret to protect the Receive Control Register (RCR) from read/modify/write operation in Hse_Ip_ServiceRequest.

Module requirements

- **CRYPTO_EXCLUSIVE_AREA_11** is used in function Crypto_KeyElementSet to protect the Receive Control Register (RCR) from read/modify/write operation in Hse_Ip_ServiceRequest.
- **CRYPTO_EXCLUSIVE_AREA_11** is used in function Crypto_KeyElementCopy to protect the Receive Control Register (RCR) from read/modify/write operation in Hse_Ip_ServiceRequest.
- **CRYPTO_EXCLUSIVE_AREA_11** is used in function Crypto_CancelJob to protect the Receive Control Register (RCR) from read/modify/write operation in Hse_Ip_ServiceRequest.
- **CRYPTO_EXCLUSIVE_AREA_11** is used in function Crypto_KeyExchangeCalcPubVal to protect the Receive Control Register (RCR) from read/modify/write operation in Hse_Ip_ServiceRequest.
- **CRYPTO_EXCLUSIVE_AREA_11** is used in function Crypto_CopyKeyElements to protect the Receive Control Register (RCR) from read/modify/write operation in Hse_Ip_ServiceRequest.
- **CRYPTO_EXCLUSIVE_AREA_11** is used in function Crypto_KeyElementCopyPartial to protect the Receive Control Register (RCR) from read/modify/write operation in Hse Ip ServiceRequest.
- **CRYPTO_EXCLUSIVE_AREA_11** is used in function Crypto_KeyCopy to protect the Receive Control Register (RCR) from read/modify/write operation in Hse_Ip_ServiceRequest.
- **CRYPTO_EXCLUSIVE_AREA_11** is used in function Crypto_KeySetValid to protect the Receive Control Register (RCR) from read/modify/write operation in Hse Ip ServiceRequest.
- **CRYPTO_EXCLUSIVE_AREA_11** is used in function Crypto_Init to protect the Receive Control Register (RCR) from read/modify/write operation in Hse Ip ServiceRequest.
- **CRYPTO_EXCLUSIVE_AREA_11** is used in function Crypto_Exts_FormatKeyCatalogs to protect the Receive Control Register (RCR) from read/modify/write operation in Hse Ip ServiceRequest.
- **CRYPTO_EXCLUSIVE_AREA_11** is used in function Crypto_Exts_SHE_BootFailure to protect the Receive Control Register (RCR) from read/modify/write operation in Hse_Ip_ServiceRequest.
- **CRYPTO_EXCLUSIVE_AREA_11** is used in function Crypto_Exts_SHE_BootOk to protect the Receive Control Register (RCR) from read/modify/write operation in Hse_Ip_ServiceRequest.
- **CRYPTO_EXCLUSIVE_AREA_11** is used in function Crypto_Exts_SHE_GetId to protect the Receive Control Register (RCR) from read/modify/write operation in Hse_Ip_ServiceRequest.
- **CRYPTO_EXCLUSIVE_AREA_11** is used in function Crypto_Exts_SHE_DebugChal to protect the Receive Control Register (RCR) from read/modify/write operation in Hse_Ip_ServiceRequest.
- **CRYPTO_EXCLUSIVE_AREA_11** is used in function Crypto_Exts_SHE_DebugAuth to protect the Receive Control Register (RCR) from read/modify/write operation in Hse_Ip_ServiceRequest.
- $\label{lem:crypto_exclusive_area_11} \textbf{is used in function Crypto_Exts_MPCompression to protect the Receive Control Register (RCR) from read/modify/write operation in Hse_Ip_ServiceRequest.}$
- **CRYPTO_EXCLUSIVE_AREA_11** is used in function ISR(Mu_Ip_Mu0_OredRx_Isr) to protect the Receive Control Register (RCR) from read/modify/write operation in Hse_Ip_ServiceRequest.
- **CRYPTO_EXCLUSIVE_AREA_11** is used in function ISR(Mu_Ip_Mu1_OredRx_Isr) to protect the Receive Control Register (RCR) from read/modify/write operation in Hse_Ip_ServiceRequest.
- CRYPTO_EXCLUSIVE_AREA_11 is used in function ISR(Mu_Ip_Mu2_OredRx_Isr) to protect the Receive Control Register (RCR) from read/modify/write operation in Hse_Ip_ServiceRequest.
- **CRYPTO_EXCLUSIVE_AREA_11** is used in function ISR(Mu_Ip_Mu3_OredRx_Isr) to protect the Receive Control Register (RCR) from read/modify/write operation in Hse_Ip_ServiceRequest.

5.3 Peripheral Hardware Requirements

For S32K1 family of microcontrollers, the CRYPTO driver functionality is provided with the help of the CSEc hardware module.

5.4 ISR to configure within AutosarOS - dependencies

The following ISRs are used by the Crypto Driver when interrupts are switched on (the driver can also be run in polling mode):

ISR Name	NVIC Interrupt ID
Csec_Ip_Isr	18

5.5 ISR Macro

RTD drivers use the ISR macro to define the functions that will process hardware interrupts. Depending on whether the OS is used or not, this macro can have different definitions.

5.5.1 Without an Operating System The macro USING_OS_AUTOSAROS must not be defined.

5.5.1.1 Using Software Vector Mode

The macro USE_SW_VECTOR_MODE must be defined and the ISR macro is defined as:

#define ISR(IsrName) void IsrName(void)

In this case, the drivers' interrupt handlers are normal C functions and their prologue/epilogue will handle the context save and restore.

5.5.1.2 Using Hardware Vector Mode

The macro USE_SW_VECTOR_MODE must not defined and the ISR macro is defined as:

#define ISR(IsrName) INTERRUPT_FUNC void IsrName(void)

In this case, the drivers' interrupt handlers must also handle the context save and restore.

5.5.2 With an Operating System Please refer to your OS documentation for description of the ISR macro.

NXP Semiconductors 25

S32K1 CRYPTO Driver

5.6 Other AUTOSAR modules - dependencies

- BASE: Contains the common files/definitions needed by all RTD modules.
- **CRYIF**: Is the interface to the services of the Crypto Driver(s) for the upper service layer.
- CSM: Provides synchronous or asynchronous services to enable a unique access to basic cryptographic functionalities for all software modules.
- **DET**: Is required for implementing the development error detection (parameters out of range, null pointers, etc). The activation / deactivation of development error detection is configurable using the CryptoDeverexter configuration parameter.
- RTE: Is needed for implementing data consistency of exclusive areas that are used by Crypto module.
- ECUC: The ECUC module is used for ECU configuration. RTD modules need ECUC to retrieve the variant
 information.
- **OS**: The OS module is used for OS configuration. RTD modules need OS to define a mapping between EcuC partitions and EcuC core ids when multicore support is enabled.
- RESOURCE: The RESOURCE module is used to select microcontroller's derivatives.

5.7 Data Cache Restrictions

To avoid possible coherency issues when D-CACHE is enabled, the user shall ensure that the buffers used as input and output parameters to driver's APIs are allocated in the NON_CACHEABLE area (by means of Crypto_MemMap).

5.8 User Mode support

- User Mode configuration in the module
- User Mode configuration in AutosarOS

5.8.1 User Mode configuration in the module

The Crypto driver can be run in user mode if the following steps are performed:

- Enable CryptoEnableUserModeSupport from the configuration.
- The Crypto driver can be run in user mode, no special measures needed.

5.8.2 User Mode configuration in AutosarOS

When User mode is enabled, the driver may has the functions that need to be called as trusted functions in AutosarOS context. Those functions are already defined in driver and declared in the header <IpName>_Ip←_TrustedFunctions.h. This header also included all headers files that contains all types definition used by parameters or return types of those functions. Refer the chapter User Mode configuration in the module for more detail about those functions and the name of header files they are declared inside. Those functions will be called indirectly with the naming convention below in order to AutosarOS can call them as trusted functions.

Call_<Function_Name>_TRUSTED (parameter1, parameter2, ...)

That is the result of macro expansion OsIf_Trusted_Call in driver code:

#define OsIf_Trusted_Call[1-6params](name,param1,...,param6) Call_##name##_TRUSTED(param1,...,param6) So, the following steps need to be done in AutosarOS:

- Ensure MCAL_ENABLE_USER_MODE_SUPPORT macro is defined in the build system or somewhere global.
- Define and declare all functions that need to call as trusted functions follow the naming convention above in Integration/User code. They need to visible in Os.h for the driver to call them. They will do the marshalling of the parameters and call CallTrustedFunction() in OS specific manner.
- CallTrustedFunction() will switch to privileged mode and call TRUSTED_<Function_Name>().
- TRUSTED_<Function_Name>() function is also defined and declared in Integration/User code. It will unmarshalling of the parameters to call <Function_Name>() of driver. The <Function_Name>() functions are already defined in driver and declared in <IpName>_Ip_TrustedFunctions.h. This header should be included in OS for OS call and indexing these functions.

See the sequence chart below for an example calling Linflexd_Uart_Ip_Init_Privileged() as a trusted function.

Figure 5.1 Example sequence chart for calling Linflexd_Uart_Ip_Init_Privileged as trusted function

5.9 Multicore support

The **Crypto** driver on S32K1 platform does not support multicore.

Main API Requirements

- Main function calls within BSW scheduler
- API Requirements
- Calls to Notification Functions, Callbacks, Callouts

6.1 Main function calls within BSW scheduler

The **Crypto** driver supports one main function that can be configured to be scheduled by BSW scheduler: void Crypto_MainFunction (void). The period is configured by the following parameter: #define CRYPTO_MAIN_← FUNCTION PERIOD 1U

6.2 API Requirements

The function Crypto_KeySetValid() must be called after the function Crypto_KeyElementSet() in order to validate the key.

6.3 Calls to Notification Functions, Callbacks, Callouts

For each asynchronous request the **Crypto** Driver shall notify CRYIF about the completion of the job by calling the CryIf_CallbackNotification function passing on the job information and the result of cryptographic operation. The CryIf_CallbackNotification should be defined within the CryIf module, which is provided as stub.

Memory allocation

- $\bullet\,$ Sections to be defined in Crypto_MemMap.h
- Linker command file

7.1 Sections to be defined in Crypto_MemMap.h

Section name	Type of section	Description
CRYPTO_START_SEC_CODE	Code	Start of memory section for code.
CRYPTO_STOP_SEC_CODE	Code	Stop of memory section for code.
CRYPTO_START_SEC_RAM_CODE	Code	Start of memory section for code to be placed and executed from RAM.
CRYPTO_STOP_SEC_RAM_CODE	Code	Stop of memory section for code to be placed and executed from RAM.
CRYPTO_START_SEC_CONST_8	Constant Data	Used for constants that have to be aligned to 8 bit.
CRYPTO_STOP_SEC_CONST_8	Constant Data	End of above section.
CRYPTO_START_SEC_CONST_32	Constant Data	Used for constants that have to be aligned to 32 bit.
CRYPTO_STOP_SEC_CONST_32	Constant Data	End of above section.
CRYPTO_START_SEC_CONST_UNS↔ PECIFIED	Constant Data	Used for constants, does not fit the criteria of 8,16 or 32 bit.
CRYPTO_STOP_SEC_CONST_UNSP← ECIFIED	Constant Data	End of above section.
CRYPTO_START_SEC_VAR_INIT_↔ 8_NO_CACHEABLE	Variables	Used for variables which have to be aligned to 8 bit and be placed in a non cacheable memory area. For instance used for variables of size 8 bit or used for composite data types: arrays, structs containing elements of maximum 8 bits. These variables are initialized with values after every reset.
CRYPTO_STOP_SEC_VAR_INIT_8← _NO_CACHEABLE	Variables	End of above section.
CRYPTO_START_SEC_VAR_CLEA↔ RED_8	Variables	Used for variables which have to be aligned to 8 bit. These variables are cleared to zero by start-up code.

S32K1 CRYPTO Driver

Memory allocation

Section name	Type of section	Description
CRYPTO_STOP_SEC_VAR_CLEAR←	Variables	End of above section.
ED_8		
CRYPTO_START_SEC_VAR_CLEA↔	Variables	Used for variables which have to be aligned
RED_8_NO_CACHEABLE		to 8 bit and be placed in a non-cacheable
		memory area. These variables are cleared to
		zero by start-up code.
CRYPTO_STOP_SEC_VAR_CLEAR↔	Variables	End of above section.
ED_8_NO_CACHEABLE		
CRYPTO_START_SEC_VAR_CLEA↔	Variables	Used for variables, structures, arrays when
RED_UNSPECIFIED		the SIZE (alignment) does not fit the criteria
		of 8, 16 or 32 bit. These variables are cleared
		to zero by start-up code.
CRYPTO_STOP_SEC_VAR_CLEAR↔	Variables	End of above section.
ED_UNSPECIFIED		

7.2 Linker command file

Memory shall be allocated for every section defined in the driver's "<Module>"_MemMap.h.

Integration Steps

This section gives a brief overview of the steps needed for integrating this module:

- 1. Generate the required module configuration(s). For more details refer to section Files Required for Compilation
- 2. Allocate the proper memory sections in the driver's memory map header file ("<Module>"_MemMap.h) and linker command file. For more details refer to section Sections to be defined in <Module>_MemMap.h
- 3. Compile & build the module with all the dependent modules. For more details refer to section Building the Driver

External assumptions for driver

The section presents requirements that must be complied with when integrating the CRYPTO driver into the application.

External Assumption Req ID	External Assumption Text
SWS_Crypto_00043	Range: 0x02 - The service request failed because the service is still busy - CRYPTO_E_SMALL_BUFFER - 0x03 - The service request failed because the provided buffer is too small to store the result - CRYPTO_ E_ENTROPY_EXHAUSTION - 0x04 - The service request failed because the entropy of the random number generator is exhausted - CRYPTO_ E_QUEUE_FULL - 0x05 - The service request failed because the queue is full - CRYPTO_E_KEY_READ_FAIL - 0x06 - The service request failed, because key element extraction is not allowed - CRYPTO_E_KEY_W RITE_FAIL - 0x07 - The service request failed because the writing access failed - CRYPTO_E_KEY_NOT_AVAILABLE - 0x08 - The service request failed because the key is not available - CRYPTO_E_KEY_NOT VALID - 0x09 - The service request failed because the key is invalid CRYPTO_E_KEY_SIZE_MISMATCH - 0x0A - The service request failed because the key size does not match CRYPTO_E_JOB_CANCELED - 0x0C - The service request failed because the Job has been canceled C RYPTO_E_KEY_EMPTY - 0x0D - The service request failed because of uninitialized source key element Description: Available via: - CryIf.h
SWS_Crypto_00215	The Configuration pointer configPtr shall always have a null pointer value.
CSEC_IP_037_001	For asynchronous polling requests sent to CSEc, the application shall call periodically the function Csec_Ip_MainFunction() in order to be notified when the service request is completed through the associated callback.
EA_RTD_00071	If interrupts are locked, a centralized function pair to lock and unlock interrupts shall be used.
EA_RTD_00082	When caches are enabled and data buffers are allocated in cacheable memory regions the buffers involved in DMA transfer shall be aligned with both start and end to cache line size. Note: Rationale : This ensures that no other buffers/variables compete for the same cache lines.
EA_RTD_00106	Standalone IP configuration and HL configuration of the same driver shall be done in the same project
EA_RTD_00107	The integrator shall use the IP interface only for hardware resources that were configured for standalone IP usage. Note: The integrator shall not directly use the IP interface for hardware resources that were allocated to be used in HL context. S32K1 CRYPTO Driver

External assumptions for driver

External Assumption Req ID	External Assumption Text
EA_RTD_00108	The integrator shall use the IP interface to a build a CDD, therefore the
	BSWMD will not contain reference to the IP interface

S32K1 CRYPTO Driver

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and Vision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2022 NXP B.V.

