Quiz Week 3 - Expectation - Questions

FIT5197 teaching team

Question 1

X is a discrete random variable over $\chi \in \{1, 2, 3\}$ with probability mass function $P(X=1)=0.5, \ P(X=2)=0.4, \ P(X=3)=0.1$

- (a) What is $E[\ln X]$?
- (b) What is $E\left[\ln\left(\frac{1}{P(X)}\right)\right]$?

Question 2

Consider the triangular distribution p(x) = 1 - |x| defined on the interval $x \in [-1, 1]$ (Tip: draw p(x))

- (a) What is E[X]?
- (b) What is $E[X^2]$?

Question 3

$$P(X = 1) = 0.5, P(X = 2) = 0.4, P(X = 3) = 0.1$$

What is V[X]?

Question 4

Show $V[X] = E[X^2] - E[X]^2$

Question 5

P(X = x, Y = y) is defined as

$$X = 1$$
 $X = 2$ $X = 3$
 $Y = 1$ 0.05 0.15 0.1
 $Y = 2$ 0.25 0.15 0.3

What is cov(X, Y)?

Question 6

The wealth of an individual is random variable with probability density function:

$$f(x) = \frac{C}{x^{\alpha+1}}, \ x \in [2, \infty), \ \alpha > 1$$

Furthermore you are given the following integral:

$$\int_{2}^{\infty} \frac{1}{x^{n}} = \begin{cases} \infty, & \text{if } n \leq 1\\ \frac{2^{1-n}}{n-1}, & \text{if } n > 1 \end{cases}$$

- (a) What is the value of *C* to make the distribution normalise to 1?
- (b) What is the mean of x?

Question 7

Let E[Z] = 1 and $E[Z^2] = 6$, E[Y] = -2 and $E[Y^2] = 5$, and Z and Y are independent, then what is V[3Z + 2Y]?

Question 8

In a lottery a four-digit number is chosen at random from the range 0000-9999. A lottery ticket costs \$2. You win \$50 if your ticket matches the last two digits but not the last three, \$500 if your ticket matches the last three digits but not last four, and \$5,000 if your ticket matches all four digits. What is the expected payoff on a lottery ticket? How much money does the lotto make on average per ticket sold?

R hackers mini power punch challenge

Using numerical integration in R with the built-in 'integrate' function, calculate the expected value of the mean and variance for a normal distribution with mean 2 and standard deviation 2.