

Московский Физико-Технический Институт (национальный исследовательский университет)

Отчет по эксперименту

Измерение теплопроводности воздуха при атмосферном давлении

Работа №2.2.3; дата: 25.03.22

Семестр: 2

1. Аннотация

Цель работы:

Измерить коэффициент теплопроводности воздуха при атмосферном давлении в зависимости от температуры.

Схема установки:

Рис. 1: Схема установки

Рис. 2: Электрическая схема установки

В работе используются:

Цилиндрическая колба с натянутой по оси нитью, термостат, вольтметр и амперметр (цифровые мультиметры), эталонное сопротивление, источник постоянного напряжения, реостат (или магазин сопротивлений).

2. Теоретические сведения

Тепловой поток через воздух в цилиндрическом сосуде можно рассчитать по формуле:

$$q = \frac{2\pi L}{\ln(\frac{r_0}{r_1})} \kappa \Delta T = \frac{1}{\beta} \kappa \Delta T$$

Теперь продифференцируем это выражение:

$$\kappa = \beta \frac{\mathrm{d}q}{\mathrm{d}(\Delta T)}$$

Таким образом, если построить график зависимости теплового потока от нити от температуры окружающей среды, то коэффициент наклона графика будет пропорционален коэффициенту теплопроводности k.

Используя схему 2 теплоту, производимую на нити можно определить по закону Джоуля-Ленца:

$$a = IU$$

Сопротивление же нити получим по закону Ома:

$$R = \frac{U}{I}$$

Также отметим, что сопротивление нити меняется по температурному закону:

$$R = R_0(1 + \alpha t)$$

3. Проведение эксперимента

Основные параметры при проведении эксперимента

Основными параметрами в данной ряботе являются эталонное сопротивление $R_{\mathfrak{s}}=10\,\mathrm{Om},$ логарифм отношения радиусов цилиндра $\ln\frac{r_0}{r_1}=5.30$ и длина нити $L=365\,\mathrm{mm}.$

Проверка линейности зависимости сопротивления от температуры

$t = 21.4^{\circ}\mathrm{C}$								
U_0 , MB	$U_{\rm h}$, мВ	$R_{\rm h}$, Om	q, mBt					
107.8 ± 0.1	107.4 ± 0.1	9.96 ± 0.01	1.16 ± 0.01					
208.8 ± 0.1	208.2 ± 0.1	9.97 ± 0.01	4.35 ± 0.01					
555.8 ± 0.1	558.8 ± 0.1	10.05 ± 0.01	31.05 ± 0.03					
739.8 ± 0.1	749.3 ± 0.1	10.13 ± 0.01	55.43 ± 0.06					
1104.0 ± 0.1	1141.3 ± 0.1	10.34 ± 0.01	126.00 ± 0.13					
1269.0 ± 0.1	1327.8 ± 0.1	10.46 ± 0.01	168.50 ± 0.17					
$t = 30.1^{\circ}\mathrm{C}$								
U_0 , MB	$U_{\rm h}$, мВ	$R_{\rm h}$, Om	q, м B т					
107.7 ± 0.1	110.7 ± 0.1	10.28 ± 0.01	1.19 ± 0.01					
208.5 ± 0.1	214.5 ± 0.1	10.29 ± 0.01	4.47 ± 0.01					
553.7 ± 0.1	574.2 ± 0.1	10.37 ± 0.01	31.79 ± 0.03					
736.2 ± 0.1	768.8 ± 0.1	10.44 ± 0.01	56.60 ± 0.06					
1095.5 ± 0.1	1166.6 ± 0.1	10.65 ± 0.01	127.80 ± 0.13					
1250.8 ± 0.1	1355.0 ± 0.1	10.83 ± 0.01	169.48 ± 0.17					
$t = 40.0^{\circ}\text{C}$								
U_0 , MB	$U_{\rm h}$, мВ	$R_{\rm h}$, Om	q, м B т					
128.3 ± 0.1	136.6 ± 0.1	10.65 ± 0.01	1.75 ± 0.01					
208.3 ± 0.1	221.9 ± 0.1	10.65 ± 0.01	4.62 ± 0.01					
552.3 ± 0.1	593.0 ± 0.1	10.74 ± 0.01	32.75 ± 0.04					
733.9 ± 0.1	793.0 ± 0.1	10.81 ± 0.01	58.20 ± 0.06					
1091.0 ± 0.1	1200.9 ± 0.1	11.01 ± 0.01	131.02 ± 0.13					
1250.8 ± 0.1	1393.2 ± 0.1	11.13 ± 0.01	174.37 ± 0.18					
	t = 5	0.0 °C						
U_0 , MB	$U_{\rm h}$, мВ	$R_{\rm H}$, Om	q, м B т					
107.6 ± 0.1	118.4 ± 0.1	11.00 ± 0.01	1.27 ± 0.01					
208.0 ± 0.1	229.2 ± 0.1	11.02 ± 0.01	4.77 ± 0.01					
550.9 ± 0.1	611.4 ± 0.1	11.10 ± 0.01	33.68 ± 0.03					
731.1 ± 0.1	816.6 ± 0.1	11.17 ± 0.01	59.70 ± 0.06					
1084.5 ± 0.1	1233.7 ± 0.1	11.38 ± 0.01	133.79 ± 0.12					
1243.5 ± 0.1	1429.5 ± 0.1	11.50 ± 0.01	177.76 ± 0.16					
$t = 60.0^{\circ}\text{C}$								
U_0 , мВ	$U_{\rm h}$, мВ	$R_{\rm h}$, Om	q, м B т					
107.5 ± 0.1	122.3 ± 0.1	11.38 ± 0.01	1.31 ± 0.01					
207.8 ± 0.1	236.7 ± 0.1	11.39 ± 0.01	4.92 ± 0.01					
549.2 ± 0.1	630.0 ± 0.1	11.47 ± 0.01	34.60 ± 0.03					
728.2 ± 0.1	840.5 ± 0.1	11.54 ± 0.01	61.21 ± 0.05					
1078.3 ± 0.1	1266.5 ± 0.1	11.75 ± 0.01	136.57 ± 0.12					
1258.2 ± 0.1	1495.1 ± 0.1	11.88 ± 0.01	188.11 ± 0.16					

Табл. 2: Рассчет сопротивления и мощности

Из построения по предыдущей таблице получаем нагрузочные кривые R(Q) для разных температур. Сами графики приводить не будем, оформим в таблицу полученные аппроксимацией значения R(0), соответствующие сопротивлению при данных температурах.

t, °C	21.4 ± 0.1	30.1 ± 0.1	40.0 ± 0.1	50.0 ± 0.1	60.0 ± 0.1
$R, O_{\rm M}$	9.958 ± 0.005	10.270 ± 0.005	10.644 ± 0.005	11.003 ± 0.005	11.377 ± 0.004

Табл. 3: Зависимость R(t)

Построим график зависимости R(t) для проверки теоретической зависимости.

Рис. 3: График зависимости R(t)

В самом деле, зависимость получается линейной, как и предполагается теоретически. Можем подсчитать R_0 – сопротивление при реперной температуре и α – коэффициент наклона.

$$R_0 = (9.168 \pm 0.014) \,\mathrm{Om}$$

 $\alpha = (0.0368 \pm 0.0003) \,\mathrm{Om/^\circ C}$

Определение коэффициента теплопроводности

По графикам для конкретных температур из предыдущего пункта в таблице выпишем соответствующие значения κ и построим график зависимости $\kappa(T)$ в линейных и двойных логарифмических координатах.

T, K	294.5 ± 0.1	303.2 ± 0.1	313.1 ± 0.1	323.1 ± 0.1	333.1 ± 0.1	
$\ln T/T_0$	0.0758 ± 0.0003	0.1049 ± 0.0003	0.1371 ± 0.0003	0.1685 ± 0.0003	0.1990 ± 0.0003	
$\frac{\mathrm{d}R}{\mathrm{d}Q}$, Ом/мДж	0.0030 ± 0.0001	0.0032 ± 0.0002	0.0031 ± 0.0002	0.0028 ± 0.0001	0.0027 ± 0.0001	
$\frac{\mathrm{d}R}{\mathrm{d}T}$, OM/K	0.0368 ± 0.0003					
κ , Bt/M·K	0.027 ± 0.001	0.028 ± 0.002	0.028 ± 0.002	0.031 ± 0.001	0.032 ± 0.001	
$\ln \kappa / \kappa_0$	0.093 ± 0.011	0.130 ± 0.012	-	0.231 ± 0.012	0.263 ± 0.013	

Табл. 4: Таблица зависимости $\kappa(T)$

Рис. 4: Зависимость $\kappa(T)$

Рис. 5: Зависимость $\ln \kappa / \kappa_0 (\ln T/T_0)$

Если считать заранее известным вид зависимости. можно экстраполировать график Рис. 4 и получить значение κ_0 соответствующее 0°С. Явно заметна точка, значение которой – случайный выброс. Ее уберем из рассмотрения. Таким образом, из этих графиков получаем зависимость

$$\kappa \sim T^{\lambda}, \quad \lambda = (1.42 \pm 0.13)$$

4. Выводы

- 1) В результате работы получены и представлены в таблице 4 значения теплопроводности воздуха.
- 2) В предположении $\kappa \sim T^{\lambda}$ получено значение $\lambda = \lambda = (1.42 \pm 0.13)$. Этот результат не согласуется с теорией, т.к теоретически зависимость вида $\kappa \sim \sqrt{T}$. Объяснить такую ошибку можно случайными ошибками при проведении эксперимента, или неучтенными систематическими эффектами, влияющими на результат.