PURDUE UNIVERSITY

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Homework 10 (Apr 11 - Apr 18)

- 1 (10+10+5+5) Let $K, E, F \subseteq L$ be fields, E: K, F: K be finite extensions. Prove:
 - a) if E: K is separable, then EF: F is separable;
 - b) if E: K and F: K are both separable, then EF: K and $E \cap F: K$ are both separable;
 - c) if E: K is Galois, then EF: F is Galois;
 - d) if E: K and F: K are both Galois, then EF: K and $E \cap F: K$ are both Galois.
- **2** (5+5+10) a) Find the splitting field L of the polynomial $f(t) = t^4 4t^2 + 5$.
 - b) Prove that $[L:\mathbb{Q}]$ is either 4 or 8.
 - c) Find 10 intermediate fields of the extension $L:\mathbb{Q}$ and their degrees.
 - d) (for enthusiasts) Draw the lattice of subfields and corresponding lattice of subgroups of $Gal_{\mathbb{Q}}(f)$.
- 3 (30) Draw the lattice of subfields and corresponding lattice of subgroups of $Gal_{\mathbb{Q}}(t^6+3)$. *Hint*: Use the calculations (and the notation, if you like) from Lecture 18.

Solutions

General remark. If there is a typo in any task, then the maximum score will be awarded for that task.

- 1 (10+10+5+5) Let $K, E, F \subseteq L$ be fields, E: K, F: K be finite extensions. Prove:
 - a) if E: K is separable, then EF: F is separable;
 - b) if E: K and F: K are both separable, then EF: K and $E \cap F: K$ are both separable;
 - c) if E: K is Galois, then EF: F is Galois;
 - d) if E: K and F: K are both Galois, then EF: K and $E \cap F: K$ are both Galois.

Solution. a) By assumption E: K is separable hence using the primitive element theorem, we see that $E = K(\theta)$, where $\theta \in E$ is separable over K. In particular, θ is separable over F. Further, we have $EF = F(\theta)$ (see lectures) and by the main result on separability (Theorems 1,1' of Lecture 14) $F(\theta): F$ is separable.

b) By assumption F:K is separable and by the first part we know that EF:F is separable. Hence EF:K is also separable (Theorems 1,1' of Lecture 14). As for the second part, consider the extension $K-E\cap F-E$ and by assumption K-E is separable. Then $K-E\cap F$ is also separable (Theorems 1,1' of Lecture 14).

Finally, to obtain c, d combine a, b and parts 3,4 of the first lemma of Lecture 22.

- 2 (5+5+10) a) Find the splitting field L of the polynomial $f(t) = t^4 4t^2 + 5$.
 - b) Prove that $[L:\mathbb{Q}]$ is either 4 or 8.
 - c) Find 10 intermediate fields of the extension $L:\mathbb{Q}$ and their degrees.
 - d) (for enthusiasts) Draw the lattice of subfields and corresponding lattice of subgroups of $Gal_{\mathbb{Q}}(f)$.

Solution. a), b). One has $f(t) = t^4 - 4t^2 + 5 = (t^2 - 2)^2 + 1$ and hence the splitting field of f is $L = \mathbb{Q}(\alpha_1, \alpha_2)$, where $\alpha_1 = \sqrt{2+i}$ and $\alpha_2 = \sqrt{2-i}$. Also, $\alpha_1\alpha_2 = \sqrt{5}$ therefore $L = \mathbb{Q}(\alpha_1, \sqrt{5})$. Thus $[L : \mathbb{Q}]$ is either 4 or 8.

- c) Clearly, L contains three distinct quadratic subfields $\mathbb{Q}(\sqrt{5})$, $\mathbb{Q}(\alpha_1^2) = \mathbb{Q}(i)$ and hence $\mathbb{Q}(i\sqrt{5})$. Also, the composite field $\mathbb{Q}(i,\sqrt{5})$ contains all these fields and obviously the degree $[\mathbb{Q}(i,\sqrt{5}):\mathbb{Q}]$ is 4. Other fields of degree four are $\mathbb{Q}(\alpha_1)$, $\mathbb{Q}(\alpha_2)$ (they both contain $\mathbb{Q}(i)$) and $\mathbb{Q}(\alpha_1 + \alpha_2)$, $\mathbb{Q}(\alpha_1 \alpha_2)$ (they both contain $\mathbb{Q}(\sqrt{5})$, consider $(\alpha_1 + \alpha_2)^2$ and $(\alpha_1 \alpha_2)^2$). Of course, it remains to be proven that all these intermediate fields are distinct, but full score goes to just pointing out the above fields.
- d) We claim that $[L:\mathbb{Q}]=8$ and that above we have found the complete list of intermediate fields of L (plus \mathbb{Q} and L, of course). To prove this we need to determine the structure of $G:=\operatorname{Gal}_{\mathbb{Q}}(f)$. We will look at this later in class (time permitting) but the fact that $[L:\mathbb{Q}]=8$ is not so hard to see. Indeed, if $|G|=[L:\mathbb{Q}]=4$, then all fields of degree 4 coincide with $\mathbb{Q}(i,\sqrt{5})$ and this field has the Galois group V_4 (see lectures). Namely, put $\alpha_1'=-\alpha_1$, $\alpha_2'=-\alpha_2$ and $\rho_1(i)=-i$, $\rho_2(\sqrt{5})=-\sqrt{5}$, then $\rho_1^2=\rho_2^2=Id$ and $G=\langle \rho_1,\rho_2\rangle=V_4$. Moreover, $\rho_1(\alpha_1)=\alpha_1'$, $\rho_1(\alpha_2)=\alpha_2'$ and for G to be transitive we must either swap α_1,α_2 , swap α_1,α_2' , or swap α_2,α_1' using ρ_2 . All these possibilities are impossible. Indeed, let us take, say, the pair α_1,α_2 (the reasoning for α_1,α_2' and for α_2,α_1' is similar). Then we have $\alpha_1\alpha_2=\sqrt{5}$ and therefore

$$\rho_2(\alpha_1)\rho_2(\alpha_2) = \rho_2(\sqrt{5}) = -\sqrt{5} = -\alpha_1\alpha_2.$$

If $\rho_2(\alpha_1) = \alpha_2$ and $\rho_2(\alpha_2) = \alpha_1$, then we obtain a contradiction. Thus $|G| = [L : \mathbb{Q}] = 8$ (and above we found the complete list of intermediate fields of L).

3 (30) Draw the lattice of subfields and corresponding lattice of subgroups of $Gal_{\mathbb{Q}}(t^6+3)$. *Hint*: Use the calculations (and the notation, if you like) from Lecture 18.

Solution. By Lecture 18 we know that $G := \operatorname{Gal}_{\mathbb{Q}}(t^6 + 3) \cong D_3 \cong S_3$. This group contains $A_3 \cong \mathbb{Z}_3$ and three groups generated by transpositions τ_1, τ_2 and τ_3 . None of these groups are contained in the other. We know that the splitting

field L is $\mathbb{Q}(r,\varepsilon) = \mathbb{Q}(i3^{1/6})$, where $r = i3^{1/6}$, $\varepsilon = \varepsilon_6 = (1+i\sqrt{3})/2$ and as we have seen in lectures (or one can easily check) $r^3 = -i\sqrt{3}$. Clearly, L corresponds to $\{e\}$ and \mathbb{Q} corresponds to the whole Galois group G. Also, we know that G is generated by the rotation ρ^2 which moves $r \to r\varepsilon^2$ and $\varepsilon \to \varepsilon$ and by the symmetry σ , where $\sigma(r) = r\varepsilon$, $\sigma(\varepsilon) = \varepsilon^{-1}$. Now $A_3 \cong \langle \rho^2 \rangle$ corresponds to $\mathbb{Q}(i\sqrt{3}) = \mathbb{Q}(\varepsilon)$ (notice that $i\sqrt{3} = -r^3$ and clearly ρ^2 fixes $\varepsilon = (1+i\sqrt{3})/2$). The remaining subgroups $\langle \tau_1 \rangle, \langle \tau_2 \rangle, \langle \tau_3 \rangle$ can be alternatively denoted as $\langle \sigma \rangle, \langle \sigma \rho^2 \rangle, \langle \rho^2 \sigma \rangle$, it is easy to see that these groups of order two. Now

$$\sigma(r+r\varepsilon) = r\varepsilon + r\varepsilon\varepsilon^{-1} = r + r\varepsilon,$$

and

$$\sigma \rho^2 (r + r\varepsilon^{-1}) = \sigma (r\varepsilon^2 + r\varepsilon) = r\varepsilon\varepsilon^{-2} + r\varepsilon\varepsilon^{-1} = r + r\varepsilon^{-1}$$
.

Thus $\langle \sigma \rangle$ fixes $\mathbb{Q}(r(1+\varepsilon))$ and $\langle \sigma \rho^2 \rangle$ fixes $\mathbb{Q}(r+r\varepsilon^{-1})$. Finally, clearly, $\rho^2 \sigma(\varepsilon) = \varepsilon^{-1} = \overline{\varepsilon}$ and

$$\rho^2 \sigma(r) = \rho^2 r \varepsilon = r \varepsilon^3 = -r.$$

Thus $\rho^2 \sigma$ is just the complex conjugation and hence $\langle \rho^2 \sigma \rangle$ preserves $\mathbb{Q}(r^2) = \mathbb{Q}(3^{1/3})$.