Exercise sheet 4

Knots and Braids, MTH436

- 1. Prove that two vector fields X and Y on a smooth manifold M are equal if and only if X(f) = Y(f) for every continuous function $f: M \to \mathbb{R}$
- 2. Prove that given a smooth vector field X on a smooth manifold M so that $X_p \neq 0$ for some point $p \in M$, there exists a chart $\phi : U \to \mathbb{R}^n$ for some open neighbourhood U of p so that $X|_U = \frac{\partial}{\partial x_1}$. Here x_1 denotes the first coordinate function of the chart.
- 3. Consider a Lie Group, i.e. a smooth manifold G which is also a group and the multiplication and inverse is smooth, i.e. the map $\mu: G \times G \to G$ defined by $\mu(x,y) = xy$ and the map $\iota: G \to G$ defined by $\iota(x) = x^{-1}$ are smooth. Let $l_g: G \to G$ denote the (smooth) map $l_g(x) = gx$. Define a vector field X on G to be left invariant if $l_{g_*}(X) = X$.
 - (a) Prove that there is a natural bijective correspondence between the tangent space at the identity element, $T_e(G)$, and left invariant vector fields on G.
 - (b) Prove that a vector field is left invariant if and only if it is l_g —related to itself.
 - (c) Prove that if X and Y are left invariant vector fields, then so is [X, Y].