Árvores de Decisão

Douglas E. de Oliveira, Fabio Porto, João Guilherme R. Nobre, DEXL Lab - LNCC

Aprendizado de Máquina

- Um sub-domínio da Inteligência Artificial que avalia estratégias computacionais para obter conhecimentos novos de maneira automática e também atualizar o conhecimento já existente;
- Apoiado em experiências anteriores que formam um conjunto de treinamento fornecidos ao algoritmo de aprendizado;
- O conjunto de treinamento fornecido é rotulado com suas respectivas classes;
- O objetivo do algoritmo de aprendizado é determinar corretamente a classe de novos exemplos ainda não rotulados;

Aprendizado de Máquina

- Um conjunto de exemplos é dividido em dois subconjuntos disjuntos denominados de conjunto de treinamento e de teste;
- O conjunto de treinamento é usado para o aprendizado do conceito;
- O conjunto de teste é usado para medir o grau de efetividade do conceito aprendido;

Etapas do aprendizado

 Etapa do pré-processamento de dados, cujo objetivo é transformar atributos contínuos em atributos discretos;

Val.Cont.	4,5	5,3	5,4	5,6	5,75	6,05	6,2	6,3	7
Param.	k = 3								
Val./Part.	9/3, cada grupo terá 3 valores								
Val.Disc.	Α	Α	Α	В	В	В	С	С	С

Tabela: Exemplo de discretização utilizando o método Equal-Frequency

ÁRVORES DE DECISÃO

- Modelos de aprendizado de máquina supervisionado que usa de expressões lógicas sobre os valores de características disponíveis para classificar o conjunto de entrada em rótulos em função de um alvo;
- A partir do modelo treinado, pode-se predizer a **classe** de novas instâncias com base nos conjuntos definidos;

ÁRVORES DE DECISÃO

- Muitas vezes são produzidos dados com grandes quantidades de parâmetros e valores, tornando necessário realizar análises complexas que por vezes geram resultados de difícil interpretação;
- Um dos modelos mais populares em aprendizado de máquina;
- São expressivas e fáceis de se entender e interpretar;
- Produz um conjunto de regras, expresso com conjunções;

Definição

• Em uma árvore cada nó interno, não folha, é rotulado com uma característica e cada aresta partindo do nó tem anotado um literal. Cada nó folha da árvore representa uma expressão lógica que corresponde à conjunção dos literais no caminho da raiz à folha. A esta conjunção chama-se regra ou conceitos.

Espaço de Regras

- Expressões de regras em lógica conjuntiva refinam o espaço de dados coberto em função do número de predicados
 - taxa-alfabetização15 ≤ 10 n renda-percapita < 90

Efeito sobre as instâncias

Até quando descer?? |Cobertura| =1 , qual a consequência?

Implicação sobre número de predicados

- Aumentando o número de predicados:
 - especializa o conjunto, eventualmente excluindo positivos
- Reduzindo o número de predicados:
 - generaliza o conjunto, incluindo negativos

Exemplo

correspondência com expressão lógica:

```
(Alfabetizado=não ^ rendamensal <90 ^ mortalidade<20) ∨ (Alfabetizado=não ^ rendamensal <90 ^ mortalidade 20) ∨ (Alfabetizado=sim) ∨ (Alfabetizado=não ^ rendamensal 90 )
```


Arvore de Decisão, altura=3

Validação do Método de Classificação

- O maior desafio é, a partir de um conjunto de treinamento, montar uma árvore de classificação que possua um poder preditivo satisfatório;
- Para avaliação da capacidade preditiva podem ser utilizadas algumas métricas como: Precision, Recall e F-Measure (F1);

Método	Accuracy	F1	Precision	Recall
Árvore de Classificação	0,942	0,942	0,944	0,942

Validação do Método de Classificação

 A Matriz de Confusão de uma hipótese h oferece uma medida efetiva do modelo de classificação ao mostrar o número de classificações corretas versus as classificações preditas para cada classe, sobre um conjunto de exemplos ou dados de treinamento T.

		1-BAIXO	2-MEDIO	3-ALTO	Σ
Actual	1-BAIXO	100.0 %	0.0 %	0.0 %	83
	2-MEDIO	28.8 %	71.2 %	0.0 %	59
	3-ALTO	0.0 %	100.0 %	0.0 %	3
	Σ	100	45		145

Exercício

- A partir deste ponto podemos criar nossa árvore de decisão utilizando:
 - python 3.6
 - scikit-learn package
 - Jupyter
- O objetivo do trabalho é construir uma árvore de decisão para o dataset compartilhado
 - avaliar a árvore construída e verificar o impacto sob a modificação da altura da árvore

