Stochastik für Informatiker

Dr. rer. nat. Johannes Riesterer

σ -Algebra

Es sei Ω eine Menge und $\mathcal{A} \subset \mathcal{P}(\Omega)$ ein System von Teilmengen. \mathcal{A} heißt σ -Algebra falls gilt:

(i)
$$\Omega \subset \mathcal{A}$$

(ii) $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$
(iii) $A_i \in \mathcal{A} \Rightarrow \bigcup_i A_i \in \mathcal{A}$

$$(A^c = \Omega - A)$$

Axiome von Kolmogorov

Axiome von Kolmogorov

Ein Wahrscheinlichkeitsraum ist ein Tripel (Ω, \mathcal{A}, P) bestehend aus der Grundmenge Ω , einer σ -Algebra $\mathcal{A} \subset \mathcal{P}(\Omega)$ und einer Abbildung $P: \mathcal{A} \to [0,1]$

(i)
$$P(\Omega) = 1$$

(ii) $P\left(\bigcup_{i} A_{i}\right) = \sum_{i} P(A_{i}), \text{ mit } A_{i} \cap A_{j} = \emptyset \text{ für } i \neq j$

Die Elemente von Ω werden elementare Ereignisse und die von \mathcal{A} Ereignisse genannt. Mengen mit P(M)=0 werden Nullmengen genannt.

Beispiel

 Ω endlich, $\mathcal{A} = \mathcal{P}(\Omega)$ und $P(A) := \frac{\#A}{\#\Omega}$.

Zufallsvariable

Ein Zufallsvariable ist eine Abbildung $X:\Omega\to R$ zwischen einem Wahrscheinlichkeitsraum (Ω,\mathcal{A},P) und einer σ -Algebra (R,\mathcal{B}) , so dass

$$X^{-1}(B) \in \mathcal{A}$$
 für alle $B \in \mathcal{B}$

gilt. (Urbilder von Ereignissen sind Ereignisse).

Lebesgue Maß

Für $a, b \in \mathbb{R}^n$ nennen wir (a, b) einen Quader und definiere sein Volumen durch

$$\mu(a,b) := \prod_i b_i - a_i$$
 falls $a_i < b_i$ und 0 sonst

Mit \mathbb{I}^n bezeichnen wir die Menge der Quader im \mathbb{R}^n .

Lebesgue Maß

Für $A \subset \mathbb{R}^n$ definiere

$$\mu(A) := \inf \left\{ \sum_{j} \mu(I_j) \mid A \subset \bigcup_{j} I_j; \ I_j \in \mathbb{I}^n \right\}$$

Lebesgue Maß

Eine Menge $A \subset \mathbb{R}^n$ heißt Lebesgue messbar, falls

$$\mu(D) \ge \mu(A \cap D) + \mu(A^c \cap D)$$

für alle $D \subset \mathbb{R}^n$ gilt. Grob gesprochen bedeutet dies, dass A von innen und von aussen mit Quadern approximiert werden kann und diese Approximationen übereinstimmen.

Lebesgue Maß

Die Menge der Lebesgue messbaren Mengen bilden eine σ -Algebra und es gilt

(ii)
$$\mu\left(\bigcup_{i}A_{i}\right)=\sum_{i}\mu(A_{i}), \text{ mit } A_{i}\cap A_{j}=\emptyset \text{ für } i\neq j$$

Offene Mengen im \mathbb{R}^n

Eine Menge $U \subset \mathbb{R}^n$ heißt offen, falls für jeden Punkt $x \in U$ ein Radius $\epsilon > 0$ existiert, so dass der Ball $B_{\epsilon}(x)$ in U enthalten ist, also $B_{\epsilon}(x) \subset U$ gilt.

Figure: Quelle: Wikipedia

Borelle'sche σ -Algebra

Borellsche σ -Algebra

Die Borel'sche σ -Algebra über \mathbb{R}^n ist die kleinste σ -Algebra, die alle offenen Mengen \mathcal{U} enthält, also

$$\mathcal{A}_{\sigma}(\mathcal{U}) := \bigcap \{ \mathcal{A} \subset \mathcal{P}(\mathbb{R}^n); \ \mathcal{U} \subset \mathcal{A}, \ \mathcal{A} \ \text{ist} \ \sigma\text{-Algebra} \}$$

Borellsche σ -Algebra existiert

Die Borel'sche σ -Algebra existiert, da die Potenzmenge eine σ -Algebra ist.

Borellsche σ -Algebra is Lebesgue messbar

Die Borel'sche σ -Algebra ist in der σ -Algebra der Lebesgue messbaren Mengen enthalten.

Indikatorfunktion

Für eine Menge $A \in \mathcal{A}$ einer σ -Algebra heißt

$$1_A(x) := \begin{cases} 1 \text{ falls } x \in A \\ 0 \text{ sonst} \end{cases}$$

die Indikatorfunktion der Menge A.

Integration

Für eine reelle Zufallsvariable $X:\Omega\to\mathbb{R}$ existiert eine endliche Reihe $s_n(x):=\sum_{i=1}^n c_i\cdot 1_{A_j}$, so dass $s_n(x)\le X(x)$ und $\lim_{n\to\infty} s_n(x)\to X(x)$ für alle $x\in\Omega$. Man nennt s_n auch einfache Funktion. Für eine einfache Funktion definiere

$$\int_{\Omega} s_n(x) d\mu = \sum_{i=1}^n c_i \mu(A_i)$$

Integration

Für eine positive, reelle Zufallsvariable $X:\Omega \to [0,\infty]$ definiere

$$\int_{\Omega} X \ d\mu = \sup(\int_{\Omega} s_n(x) \ d\mu; s_n(x) \text{ einfach mit } s_n(x) \leq X(x))$$

Integration

Für allgemeines X zerlege $X = X^+ - X^-$ mit $X^+ := \max(0, X)$ und $X^- := -\min(0, X)$ und definiere

$$\int_{\Omega} X(x) d\mu = \int_{\Omega} X^{+}(x) d\mu - \int_{\Omega} X^{-}(x) d\mu$$

Integration

$$\int_{\Omega} 1_A \ d\mu = \mu(A)$$

Satz von Fubuni

Ist $f: X \times Y \to \mathbb{R}$ messbar und integrierbar, so ist

$$\int_{X\times Y} f(x,y) \ d(x,y) = \int_{Y} \int_{X} f(x,y) \ dx \ dy$$

Beispiel

$$A := \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$$
 (Kreisscheibe). $A_x = \{y \in \mathbb{R} \mid -1 \le y \le 1\}$ $A_y = \{x \in \mathbb{R} \mid -\sqrt{1-y^2} \le x \le \sqrt{1-y^2}\}$

Beispiel

$$\mu(A) = \int_{A} 1 \ d(x, y) := \int_{-1}^{1} \left(\int_{-\sqrt{1 - y^{2}}}^{\sqrt{1 - y^{2}}} 1 \ dx \right) dy$$

$$= 2 \int_{-1}^{1} \sqrt{1 - y^{2}} \ dy$$

$$(substitution \ y = sin(u)) = 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(u)^{2} \ du = 2 \cdot \frac{\pi}{2} = \pi$$