Quantum Machine Learning

Gennaro De Luca, PhD Arizona State University

Overview

Artificial Neural Networks for Deep Learning

Introduction to Quantum Computing

Quantum Programming

Quantum Machine Learning

Artificial Neural Networks Deep Learning

Building Artificial Neural Networks

What does this "neuron" do?

$$g_P(\mathbf{x_i}, \mathbf{w}) = \begin{cases} 1, & \text{if } \mathbf{w}^T \mathbf{x_i} > 0 \\ 0, & \text{otherwise} \end{cases}$$

The Perceptron Model

Building Artificial Neural Networks

What does this "neuron" do?

$$g_P(\mathbf{x_i}, \mathbf{w}) = \begin{cases} 1, & \text{if } \mathbf{w}^T \mathbf{x_i} > 0 \\ 0, & \text{otherwise} \end{cases}$$

The Perceptron Learning Algorithm

Input:

Training set

$$D = \{(x_i, y_i), i \in [1, 2, ...n]\}. y_i = [0, 1].$$

Initialization:

- Initialize the weights w(0)(and some thresholds)
- Weights may be set to 0 small random values

What is Quantum Computing?

Quantum Computing (QC) involves qubits, with the special properties of superposition and entanglement.

The computing capacity of quantum computers grows exponentially with the # of qubits.

Electronic computer's computing capacity grows linearly with the # of bits.

Quantum Computing Applications

QC can be used where superpower is needed!

- Machine Learning
- Security: Can break the current security system
- Autonomous Decentralized Systems, with complex computing in real time
- Drug design and discovery
- Finance, ...

Quantum Vs. Classical Computing

Qubits vs. Bits:

- Bits can be 0 or 1.
- A qubit stores a quantum state (point on the Bloch sphere).
- Qubits can be in a superposition of
 0 and 1, but give a 0 or 1 when measured.

Quantum Vs. Classical Computing (cont'd)

Measurement:

- Classical bits are not probabilistic.
- Quantum bits change probabilistically when measured.

$$|\Phi\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$\alpha^2 + \beta^2 = 1$$

$$P(|\Phi\rangle = |0\rangle) = |\alpha|^2$$

$$P(|\Phi\rangle = |1\rangle) = |\beta|^2$$

Quantum Entanglement

The result of a measurement on one qubit can immediately determine the result if another qubit were to be measured.

$$|\Phi\rangle = 1/\sqrt{2} |00\rangle + 1/\sqrt{2} |11\rangle$$

If the first qubit is measured, the second qubit's value is immediately known.

- Either **both** are 0 or **both** are 1.

The power of quantum computing comes from superposition and entanglement.

Quantum Programming

Quantum computing requires a new programming paradigm: Quantum Programming.

Many text-based APIs exist, including IBM's Qiskit, Microsoft's Q#, and Google's Cirq.

Several visual programming languages exist, including IBM's Circuit Composer and ASU VIPLE (Visual IoT/Robotics Programming Language Environment).

Facilitate the introduction of quantum computing and quantum programming.

Quantum Programming in ASU VIPLE

Quantum Programming Example

Quantum Programming Example

Quantum Programming Example

