Задачи по лекции 1

1. Пусть задан вектор $u \in \mathbb{C}^n$: $||u||_2 = 1$. Найдите все $\alpha \in \mathbb{C}$, для которых $A = I - \alpha u u^*$ является: 1) эрмитовой 2) косоэрмитовой 3) унитарной 4) нормальной. Для пункта 3) также нарисуйте найденные α на комплексной плоскости.

Пусть
$$u = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} \Rightarrow u^* = \begin{bmatrix} \overline{u_1} & \dots & \overline{u_n} \end{bmatrix}, uu^* = \begin{bmatrix} |u_1|^2 & \dots & u_1\overline{u_n} \\ \vdots & \ddots & \vdots \\ u_n\overline{u_1} & \dots & |u_n|^2 \end{bmatrix}, A = I - \alpha uu^* = \begin{bmatrix} 1 - \alpha|u_1|^2 & \dots & \alpha u_1\overline{u_n} \\ \vdots & \ddots & \vdots \\ \alpha u_n\overline{u_1} & \dots & 1 - \alpha|u_n|^2 \end{bmatrix}$$

1) $I - \alpha u u^* = A$ - эрмитова $\Leftrightarrow A = A^*$.

$$\begin{bmatrix} 1 - \alpha |u_1|^2 & \dots & \alpha u_1 \overline{u_n} \\ \vdots & \ddots & \vdots \\ \alpha u_n \overline{u_1} & \dots & 1 - \alpha |u_n|^2 \end{bmatrix} = \begin{bmatrix} \overline{1 - \alpha |u_1|^2} & \dots & \overline{\alpha u_1 \overline{u_n}} \\ \vdots & \ddots & \vdots \\ \overline{\alpha u_n \overline{u_1}} & \dots & \overline{1 - \alpha |u_n|^2} \end{bmatrix}^T = \begin{bmatrix} \overline{1 - \alpha |u_1|^2} & \dots & u_1 \overline{\alpha u_n} \\ \vdots & \ddots & \vdots \\ u_n \overline{\alpha u_1} & \dots & \overline{1 - \alpha |u_n|^2} \end{bmatrix}$$

$$\Rightarrow A - эрмитова \Leftrightarrow \begin{cases} \overline{1-\alpha|u_1|^2} = 1-\alpha|u_1|^2 \ \forall i \\ \\ u_i \overline{\alpha u_j} = \alpha u_i \overline{u_j} \ \forall \ i \neq j \end{cases} \Leftrightarrow \begin{cases} \overline{1-\alpha|u_1|^2} = 1-\alpha|u_1|^2 \ \forall i \\ \\ \alpha = \overline{\alpha} \end{cases}$$

Из второго уравнения следует, что $\alpha \in \mathbb{R}$. Заметим, что при всех $\alpha \in \mathbb{R}$ выполняется и первое.

Итого: $\alpha \in \mathbb{R}$

2) $I - \alpha u u^* = A$ - косоэрмитова $\Leftrightarrow A = -A^*$.

$$\begin{bmatrix} 1 - \alpha |u_1|^2 & \dots & \alpha u_1 \overline{u_n} \\ \vdots & \ddots & \vdots \\ \alpha u_n \overline{u_1} & \dots & 1 - \alpha |u_n|^2 \end{bmatrix} = \begin{bmatrix} -\overline{1 - \alpha |u_1|^2} & \dots & -\overline{\alpha u_1 \overline{u_n}} \\ \vdots & \ddots & \vdots \\ -\overline{\alpha u_n \overline{u_1}} & \dots & -\overline{1 - \alpha |u_n|^2} \end{bmatrix}^T = \begin{bmatrix} -\overline{1 - \alpha |u_1|^2} & \dots & -u_1 \overline{\alpha u_n} \\ \vdots & \ddots & \vdots \\ -u_n \overline{\alpha u_1} & \dots & -\overline{1 - \alpha |u_n|^2} \end{bmatrix}$$

$$\Rightarrow A$$
 - косоэрмитова $\Leftrightarrow egin{cases} \overline{1-lpha|u_1|^2}+1-lpha|u_1|^2=0 \ orall i \ u_i\overline{lpha u_j}+lpha u_i\overline{u_j}=0 \ orall \ i
eq j \end{cases}$

Пусть $u_i = x_i + y_i i, \alpha = a + bi, x_i, y_i, a, b \in \mathbb{R}$. Система примет вид

$$\begin{cases} 2 - a(x_i^2 + y_i^2) + b(x_i^2 + y_i^2)i - a(x_i^2 + y_i^2) - b(x_i^2 + y_i^2)i = 0 \ \forall \ i \\ (x_j - y_j i)(a + bi + a - bi) = 0 \ \forall \ j \end{cases}$$

Второе уравнение имеет 2 решения - $\alpha = bi$ и $x_j - y_j i = 0 \ \forall j$. Второе возможно только при $x_j = y_j = 0 \ \forall j$, что невозможно в силу $\|u\|_2 = 1$

Итого: $\alpha \in \mathbb{R}i$

3) $I - \alpha u u^* = A$ - унитарная $\Leftrightarrow AA^* = A^*A = I$.

$$AA^* = (I - \alpha uu^*)(I - \alpha uu^*)^* = (I - \alpha uu^*)(I - \overline{\alpha} uu^*) = II - \alpha uu^* - \overline{\alpha} uu^* + |\alpha|^2 (uu^*)^2 = I - uu^*(\alpha - \overline{\alpha} + |\alpha|^2)$$

Заметим, что в силу $||u||_2 = 1$, $uu^* \neq 0$ Тогда:

$$I = AA^* \Leftrightarrow uu^*(|\alpha|^2 - \alpha - \overline{\alpha}) = 0 \stackrel{\alpha = a + bi}{\Longleftrightarrow} a^2 - 2a + b^2 = 0 \Leftrightarrow b = \pm \sqrt{2a - a^2}$$

Итого: $\alpha = a \pm \sqrt{2a - a^2}i, a \in \mathbb{R}$

Картинка к ситуации:

4) $I - \alpha u u^* = A$ - нормальная $\Leftrightarrow AA^* = A^*A$.

$$AA^* = I - \alpha - \overline{\alpha} + |\alpha|^2$$

$$A^*A = (I - \overline{\alpha}uu^*)(I - \alpha uu^*) = I - \alpha - \overline{\alpha} + |\alpha|^2 = AA^* \quad \forall \alpha \in \mathbb{C}$$

Итого: $\alpha \in \mathbb{C}$

2. Пусть $e=(1,1,1)^{\top}$ и $e_1=(1,0,0)^{\top}$. Найдите $\|A\|_{2023},$ где $A=ee_1^{\top}.$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \|A\|_{2023} = \sup_{\|x\|_{2023} = 1} \|Ax\|_{2023} = \sup_{x \neq 0} \frac{\|Ax\|_{2023}}{\|x\|_{2023}}$$

Пусть $x = (x_1, x_2, x_3)^T$, тогда:

$$\|x\|_{2023} = (|x_1|^{2023} + |x_2|^{2023} + |x_3|^{2023})^{1/2023}; Ax = (x_1, x_1, x_1)^T, \|Ax\|_{2023} = (3|x_1|^{2023})^{1/2023} = |x_1|^{2023}\sqrt[3]{3}$$

При $\|x\|_{2023}=1 \ \forall \ i \in [0,1]; \ x_i=1 \ \Rightarrow x_j=0 \ \forall \ j \neq i.$ Тогда

$$||A||_{2023} = \sup_{||x||_{2023}=1} |x_1|^{2023}\sqrt{3} = \sqrt[2023]{3}$$

OMB-2023, ТДЗ-1 Даша Оникова

3.

1. Докажите, что

$$||x||_2 \le ||x||_1 \le \sqrt{n} ||x||_2 \quad \forall x \in \mathbb{C}^n.$$

На каких векторах x достигаются равенства?

2. Используя неравенство из (а), покажите, что

$$\frac{1}{\sqrt{n}}\|A\|_2 \leq \|A\|_1 \leq \sqrt{m}\|A\|_2 \quad \forall A \in \mathbb{C}^{m \times n}.$$

1. $||x||_2 \stackrel{?}{\leq} ||x||_1$:

$$||x||_{2}^{2} = \sum_{i=1}^{n} |x_{i}|^{2} \leq \sum_{i=1}^{n} |x_{i}|^{2} + 2 \underbrace{\sum_{i \neq j}^{n} |x_{j}| |x_{i}|}_{>0} = ||x||_{1}^{2} \Rightarrow ||x||_{2} \leq ||x||_{1} \quad \forall x \in \mathbb{C}^{n}$$

Равенство достигается на векторах с ровно одной ненулевой координатой - иначе $\sum\limits_{i \neq j}^{n} |x_j| |x_i| > 0$

 $\cdot \|x\|_1 \stackrel{?}{\leq} \sqrt{n} \|x\|_2$

$$\frac{\sum\limits_{i=1}^{n}|x_i|}{n} \overset{\text{H-BO O CP.}}{\leq} \sqrt{\frac{\sum\limits_{i=1}^{n}|x_i|^2}{n}} \overset{n \in \mathbb{N}}{\Leftrightarrow} \sum_{i=1}^{n}|x_i| \leq \sqrt{n} \sqrt{\sum_{i=1}^{n}|x_i|^2} \Rightarrow \|x\|_1 \leq \sqrt{n} \|x\|_2 \quad \forall x \in \mathbb{C}^n$$

Равенство достигается на векторах, в которых все координаты равны между собой Итого равенство достигается на нулевых векторах

2. $\cdot \frac{1}{\sqrt{n}} ||A||_2 \stackrel{?}{\leq} ||A||_1$

$$\frac{1}{\sqrt{n}} \|A\|_2 = \sup_{x \neq 0} \frac{\|Ax\|_2}{\sqrt{n} \|x\|_2} \le \sup_{x \neq 0} \frac{\|Ax\|_2}{\|x\|_1} \le \sup_{x \neq 0} \frac{\|Ax\|_1}{\|x\|_1} = \|Ax\|_1$$

 $||A||_1 \stackrel{?}{\leq} \sqrt{m} ||A||_2$

$$||Ax||_1 = \sup_{x \neq 0} \frac{||Ax||_1}{||x||_1} \le \sup_{x \neq 0} \frac{||Ax||_1}{||x||_2} \le \sup_{x \neq 0} \frac{\sqrt{m} ||Ax||_2}{||x||_2} = \sqrt{m} ||A||_2$$

OMB-2023, ТДЗ-1 Даша Оникова

4. Обозначим
$$A=\begin{bmatrix}0&1\\0&0\end{bmatrix}$$
 и $A_n=\begin{bmatrix}0&1\\1/n&0\end{bmatrix}, n\in\mathbb{N}.$

- 1. Обоснуйте сходимость $A_n \to A, n \to \infty$.
- 2. Найдите собственные разложения $A_n = S_n \Lambda_n S_n^{-1}$ и проверьте существование пределов для каждой из S_n, Λ_n и S_n^{-1} . Почему не у всех из этих матриц существует предел?
- 3. Найдите разложения Шура $A_n = U_n T_n U_n^{-1}$ и проверьте существование пределов для каждой из U_n, T_n и U_n^{-1} .

Замечание: построить разложение Шура поможет доказательство теоремы Шура. При проверке сходимости используйте удобную норму и определение сходимости из лекции.

1.

$$A_n \xrightarrow[n \to \infty]{} A \Leftrightarrow ||A_n - A|| \quad \forall ||\cdot||$$

$$||A_n - A||_F = ||\begin{bmatrix} 0 & 0 \\ 0 & 1/n \end{bmatrix}||_F = \sqrt{\frac{1}{n^2}} = \frac{1}{n} \xrightarrow{n \to \infty} 0$$

2. • Ищем характеристический многочлен и собственные значения:

$$\det\begin{pmatrix} 0 & 1 \\ 1/n & 0 \end{pmatrix} - \lambda I = \det \begin{bmatrix} -\lambda & 1 \\ 1/n & -\lambda \end{bmatrix} = \lambda^2 - \frac{1}{n} = 0 \Leftrightarrow \lambda = \pm \frac{1}{\sqrt{n}}$$

• Ищем собственные векторы:

$$\lambda_1 = \frac{1}{\sqrt{n}}; \quad \begin{bmatrix} -1/\sqrt{n} & 1\\ 1/n & -1/\sqrt{n} \end{bmatrix} \stackrel{\text{K YCB}}{\longrightarrow} \begin{bmatrix} 1 & -\sqrt{n}\\ 0 & 0 \end{bmatrix} \stackrel{\Phi \text{CP}}{\longrightarrow} \begin{bmatrix} \sqrt{n}\\ 1 \end{bmatrix} = v_1$$

$$\lambda_2 = -\frac{1}{\sqrt{n}}; \quad \begin{bmatrix} 1/\sqrt{n} & 1\\ 1/n & 1/\sqrt{n} \end{bmatrix} \overset{\text{K YCB}}{\longrightarrow} \begin{bmatrix} 1 & \sqrt{n}\\ 0 & 0 \end{bmatrix} \overset{\Phi \text{CP}}{\longrightarrow} \begin{bmatrix} -\sqrt{n}\\ 1 \end{bmatrix} = v_2$$

• Подставляем:

$$A_n = \begin{bmatrix} v_1 & v_2 \end{bmatrix} \cdot \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \cdot \begin{bmatrix} v_1 & v_2 \end{bmatrix}^{-1} = \underbrace{\begin{bmatrix} \sqrt{n} & -\sqrt{n} \\ 1 & 1 \end{bmatrix}}_{S_n} \cdot \underbrace{\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}}_{\Lambda_n} \cdot \underbrace{\begin{bmatrix} \frac{1}{2\sqrt{n}} & \frac{1}{2} \\ -\frac{1}{2\sqrt{n}} & \frac{1}{2} \end{bmatrix}}_{S_n^{-1}}$$

- Почему не у всех \exists предел: Заметим, что у матриц Λ_n и S_n^{-1} пределы есть это нулевая матрица и матрица со столбцами нулей и $^{1}/_{2}$, соответственно. Однако S_n-B будет стремиться к ∞ при любых B
- 3. Возьмем собственный вектор v_1
 - Нормируем и дополняем до ортонормированного базиса:

$$u_1 = \frac{1}{\sqrt{n+1}} \begin{bmatrix} \sqrt{n} \\ 1 \end{bmatrix}, u_2 = \frac{1}{\sqrt{n+1}} \begin{bmatrix} 1 \\ -\sqrt{n} \end{bmatrix}$$

• Ищем $U_n, U_n^* = U_n^{-1}$

$$U_n = \frac{1}{\sqrt{n+1}} \begin{bmatrix} \sqrt{n} & 1\\ 1 & -\sqrt{n} \end{bmatrix}; \quad U_n^* = \frac{1}{\sqrt{n+1}} \begin{bmatrix} \sqrt{n} & 1\\ 1 & -\sqrt{n} \end{bmatrix} = U_n^{-1}$$

• Заметим, что $U_n = U_n^{-1}$. T_n :

$$A_n = U_n T_n U_n^{-1} \Leftrightarrow T_n = U_n A_n U_n = \frac{1}{n+1} \begin{bmatrix} n+1/\sqrt{n} & -n^2+1/n \\ 0 & -n-1/\sqrt{n} \end{bmatrix} = \begin{bmatrix} 1/\sqrt{n} & -n+1/n \\ 0 & -1/\sqrt{n} \end{bmatrix}$$

• Пределы:

$$\| \begin{bmatrix} \sqrt{n/n+1} & 1/\sqrt{n+1} \\ 1/\sqrt{n+1} & -\sqrt{n/n+1} \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \|_F = \| \begin{bmatrix} \sqrt{1/1+1/n} & 1/\sqrt{n+1} \\ 1/\sqrt{n+1} & -\sqrt{1/1+1/n} \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \|_F \xrightarrow{n \to \infty} 0$$

$$T_n = \| \begin{bmatrix} 1/\sqrt{n} & -n+1/n \\ 0 & -1/\sqrt{n} \end{bmatrix} - \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix} \|_F \xrightarrow{n \to \infty} 0$$

Задачи по лекции 2

5. Докажите, что нормальная матрица является унитарной тогда и только тогда, когда все ее собственные значения по модулю равны 1.

$$A$$
 — унитарная $\Leftrightarrow AA^* = A^*A = I; A$ — нормальная $\Leftrightarrow AA^* = A^*A$

Пусть $\lambda_1, ..., \lambda_n$ - собственные значения A

⇐ (имеем нормальность и условие на с/з, хотим унитарность)

Пусть $A=U\Sigma V^*$ - svd (U,V - унитарные, $\Sigma=\mathrm{diag}(\lambda_1,..,\lambda_n))$. Заметим, что в силу нормальности $A,U,\Sigma,V\in\mathbb{C}^{n\times n}$

$$A^* = (U\Sigma V^*)^* = V\Sigma^* U^* \Rightarrow AA^* = U\Sigma \underbrace{V^* V}_{I} \Sigma U^* = U\Sigma \Sigma^* U^*$$

$$\Sigma = \operatorname{diag}(\lambda_1, ..., \lambda_n), \Sigma^* = \operatorname{diag}(\overline{\lambda_1}, ..., \overline{\lambda_n}) \Rightarrow \Sigma \Sigma^* = \operatorname{diag}(|\lambda_i|^2, ..., |\lambda_n|^2) = I$$

$$\Rightarrow AA^* = UU^* = I \Rightarrow A$$
 — унитарная

 \Rightarrow (имеем унитарность, хотим нормальность и условие на с/з). Заметим, что A- унитарная \Rightarrow A- нормальная - следует из определения

Пусть $A = UT^*U^*$ - разложение Шура (U - унитарная, T - верхнетреугольная, на диагонали - собственные значения)

$$A^* = (UT^*U^*)^* = UT^*U^*, AA^* = UT U^*U T^*U^* = UTT^*U^*$$

$$I = UTT^*U^* \Leftrightarrow \underbrace{U^{-1}}_{U^*} = TT^*U^* \Leftrightarrow \underbrace{U^*(U^*)^{-1}}_{I} = TT^* \Rightarrow T^* \stackrel{\star}{=} T^{-1}$$

Осталось заметить, что T - верхнетреугольная, тогда и T^{-1} - верхнетруегольная, но $T*=(\overline{T})^T$ - нижнетреугольная. Из равенства * получаем T - диагональная и $T=\mathrm{diag}(\lambda_1,..,\lambda_n)$. Но тогда и $T^*=\mathrm{diag}(\overline{\lambda_1},..,\overline{\lambda_n})$. Отсюда, $TT^*=\mathrm{diag}(|\lambda_i|^2,..,|\lambda_n|^2)=I$. Итого: $|\lambda_i|=1$ $\forall i$

6. Найдите сингулярное разложение матрицы с элементами $a_{ij} = ij + j$ и запишите его в компактном и полном представлениях. **Замечание:** при записи полного SVD не обязательно явно строить векторы, ортогональные данному.

$$A = \begin{bmatrix} 2 & 4 & 6 & \dots & 2n \\ 3 & 6 & 9 & \dots & 3n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ (m+1) & 2(m+1) & 3(m+1) & \dots & n(m+1) \end{bmatrix} \in \mathbb{R}^{m \times n}$$

$$A^* = A^T = \begin{bmatrix} 2 & 3 & \dots & (m+1) \\ 4 & 6 & \dots & 2(m+1) \\ 6 & 9 & \dots & 3(m+1) \\ \vdots & \vdots & \ddots & \vdots \\ 2n & 3n & \dots & n(m+1) \end{bmatrix} \in \mathbb{R}^{n \times m}$$

Заметим, что i строка A^* - i*(2,3,..,m+1)

будем искать svd по наивному алгоритму с лекции. для начала поймем, как будет выглядеть A^*A

$$(A^*A)_{ij} = ij \sum_{k=2}^{m+1} k^2 \Rightarrow A^*A = \underbrace{\frac{m(2m^2 + 9m + 13)}{6}}_{\text{обозн. } c_m} \begin{bmatrix} 1 & 2 & \dots & n \\ 2 & 4 & \dots & 2n \\ \vdots & \vdots & \ddots & \vdots \\ n & 2n & \dots & n^2 \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Получиои матрицу ранга 1, у которой, соответственно, будет одно ненудевое с/з λ_1 . Найдем его:

$$\lambda_1 + \underbrace{\lambda_2 + \dots + \lambda_n}_{0} = \operatorname{tr}(A^*A) \Leftrightarrow \lambda_1 = c_m \sum_{k=1}^n k^2 = c_m \frac{n(n+1)(2n+1)}{6}$$

теперь необходимо подобрать собственный вектор w_1 для λ_1 . Он должен удволетворять уравнению

$$A^*Aw_1 = \lambda_1 Iw_1$$

идеально подойдет вектор $w_1 = (1, 2, ..., n)^T$ - по обе стороны от равно будут векторы, в строках которых будет $ic_m c_n$, где i - номер строки.

Компактное разложение будет иметь вид $u_1 \sigma_1 v_1^T$, где:

$$\sigma_1 = \sqrt{\lambda_1} = \sqrt{c_n c_m}; v_1 = \frac{w_1}{\sqrt{c_n}};$$

$$u_1 = Av_1 \cdot \frac{1}{\sigma_1} = Aw_1 \cdot \frac{1}{c_n \sqrt{c_m}} = \frac{1}{c_n \sqrt{c_m}} \cdot \begin{bmatrix} 2 \sum\limits_{k=1}^n k^2 \\ \vdots \\ (m+1) \sum\limits_{k=1}^n k^2 \end{bmatrix} = \frac{1}{\sqrt{c_m}} \begin{bmatrix} 2 \\ \vdots \\ m+1 \end{bmatrix} - \ \text{уже нормированный}$$

Итого, компактное svd:

$$A = \frac{1}{\sqrt{c_m}} \begin{bmatrix} 2 \\ \vdots \\ m+1 \end{bmatrix} \cdot \sqrt{c_n c_m} \cdot \frac{1}{\sqrt{c_n}} \begin{bmatrix} 1 & \dots & n \end{bmatrix} = \begin{bmatrix} 2 \\ \vdots \\ m+1 \end{bmatrix} \begin{bmatrix} 1 & \dots & n \end{bmatrix}$$

Полное svd:

$$A = \begin{bmatrix} u_1 & \text{"что-то, ортогональное } u_1 \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} \begin{bmatrix} v_1^T \\ \text{"что-то, ортогональное } v_1 \end{bmatrix}$$

7.

1. Докажите, что для любой $A \in \mathbb{C}^{m \times n}, \, m \geq n,$ справедливо:

$$||A||_2 \le ||A||_F \le \sqrt{n} ||A||_2.$$

- 2. Покажите, что все матрицы $A \in \mathbb{C}^{n \times n}$, удовлетворяющие $||A||_F = \sqrt{n} ||A||_2$, являются унитарными, умноженными на некоторую константу.
- 1. Пусть r ранг A

 $||A||_2 \stackrel{?}{\leq} ||A||_F$:

$$||A||_2 = \sigma_1(A) = \sqrt{\sigma_1^2(A)} \le \sqrt{\sigma_1^2(A) + \dots + \sigma_r^2(A)} = ||A||_F$$

• $||A||_F \stackrel{?}{\leq} \sqrt{n} ||A||_2$:

$$\|A\|_F = \sqrt{\frac{\sigma_1^2(A)}{\sigma_1^2(A)} + \ldots + \sigma_r^2(A)} \leq \sqrt{r\sigma_1^2(A)} \stackrel{m \geq n \geq r}{\leq} \sqrt{n}\sqrt{\sigma_1^2(A)} = \sqrt{n}\|A\|_2$$

2.

$$\|A\|_F = \sqrt{n} \|A\|_2 \Leftrightarrow \sigma_1^2 + \ldots + \sigma_r^2 = n\sigma_1^2 \Leftrightarrow n = 1 + (\frac{\sigma_2}{\sigma_1})^2 + \ldots + (\frac{\sigma_r}{\sigma_1})^2$$

Заметим, что тк σ_1 - старшее с.з, $(\frac{\sigma_i}{\sigma_1})^2 \leq 1$, равенство достигается только при $\sigma_i = \sigma_1$ Тогда, получается, $\|A\|_F = \sqrt{n} \|A\|_2$ достигается только при $\mathrm{rk}(A) = n$ и $\sigma_1 = \sigma_i \quad \forall i$ Пусть $A = U \Sigma V^* - \mathrm{svd}(A)$. Тогда $\Sigma = \sigma_1 I$ - унитарная, умноженная на константу. Тогда:

$$AA^* = U\sigma_1 IV^* (U\sigma_1 IV^*)^* = U\sigma_1 V^* V\sigma_1^* U^* = |\sigma_1|^2 UU^* = |\sigma_1|^2 I \Leftrightarrow \frac{1}{|\sigma_1|^2} AA^* = I$$

Итого, A - унитарная, умноженная на константу (для полного кайфа заметим, что $\sigma_1 \neq 0$ при $b \neq 0$)

OMB-2023, ТДЗ-1 Даша Оникова

- 8. Дана нормальная матрица $A \in \mathbb{C}^{n \times n}$ и её разложение Шура $A = U \Lambda U^*$.
 - 1. Запишите сингулярное разложение матрицы A с использованием матриц U и $\Lambda.$
 - 2. Покажите, что $\sigma_1(A) = \max_i |\lambda_i(A)|$.
 - 3. Приведите пример матрицы $A \in \mathbb{C}^{2 \times 2}$, не являющейся нормальной и для которой полученное в (b) выражение неверно.

1.

$$A^* = (U\Lambda U^*)^* = U\Lambda^* U^*$$

$$AA^* \stackrel{\text{нормальность}}{=\!\!\!=\!\!\!=} A^*A \Leftrightarrow U\Lambda U^*U\Lambda^*U^* = U\Lambda^*U^*U\Lambda U^* \Leftrightarrow U\Lambda\Lambda^*U^* = U\Lambda^*\Lambda U^* \Leftrightarrow \Lambda\Lambda^* = \Lambda^*\Lambda$$

Вспомним, что Λ - верхнетреугольная, тогда Λ^* - нижнетреуголльная, но в силу равенства выше - они обе диагональные, причем на диагонали - собственные значения A

В силу нормальности A, $\sigma_i = |\lambda_i| \Rightarrow \Lambda \Lambda^* = \Lambda^* \Lambda = \operatorname{diag}(\sigma_1^2, ...)$. А нам нужна матрица, на диагонали которой будут просто σ_i , так что сингулярное разложение A будет иметь вид UBU^* ,

$$B = \begin{bmatrix} \sqrt{(\Lambda \Lambda^*)_{11}} & 0 & \dots & 0 \\ 0 & \sqrt{(\Lambda \Lambda^*)_{22}} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sqrt{(\Lambda \Lambda^*)_{nn}} \end{bmatrix}$$

2. Кажется, в прошлом пункте мы поняли, что $\sigma_1 = \sqrt{|\lambda_1|^2},...,\sigma_n = \sqrt{|\lambda_n|^2}$

$$\sigma_1 = \max_i \sigma_i = \max_i \sqrt{|\lambda_i|^2} = \max_i |\lambda_i|$$

3. Сначала поймем, как может выглядеть не нормальная матрица:

$$\exists A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}; \exists a, b, c \in \mathbb{R} \Rightarrow A^* = A^T;$$

$$AA^* = \begin{bmatrix} a^2 + b^2 & bc \\ bc & c^2 \end{bmatrix}; A^*A = \begin{bmatrix} a^2 & ab \\ ab & b^2 + c^2 \end{bmatrix}.$$

Тогда для того, чтобы матрица такого вида не была нормальной необходимо $b \neq 0$

$$\exists A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \Rightarrow AA^* = \begin{bmatrix} 5 & 6 \\ 6 & 9 \end{bmatrix}$$

- Сингулярные значения: $\det(AA * \sigma I) = 0 \Leftrightarrow \sigma = 7 \pm 2\sqrt{10}$
- Собственные значения: $\det(A \lambda I) = 0 \Leftrightarrow \lambda_1 = 1, \lambda_2 = 3$

кстати, то, что равенство выполняться не будет, было понятно из пункта 1, так как мы использовали там диагональность Λ , которая следует из нормальности A

Бонусные задачи

1. Пусть $|x| \in \mathbb{R}^n$ обозначает вектор, компоненты которого являются абсолютными значениями компонент вектора $x \in \mathbb{R}^n$, n > 1. Для каждого $n \geq 2$ приведите пример нормы на \mathbb{R}^n , для которой $||x|| \neq |||x|||$ для некоторого $x \in \mathbb{R}^n$.

Рассмотрим норму $||x|| = \max_{i \neq j} |x_i + x_j| + \max_i |x_i|$ Сначала покажем, что это норма:

$$\cdot \|x\| = \max_{i \neq j} \frac{\geq 0}{|x_i + x_j|} + \max_{i} |x_i| \geq 0 \quad \forall x$$

 $|x| = 0 \Leftrightarrow x = 0$:

Второе слагаемое зануляется только на нулевых векторах. Первое - на нулевых векторах и векторах длины 2 с противоположными координатами. Тогда все выражение обращается в 0 только на нулевых векторах.

•
$$\|\alpha x\| = \max_{i \neq j} |\alpha(x_i + x_j)| + \max_{i} |\alpha(x_i)| = |\alpha| \max_{i \neq j} |x_i + x_j| + |\alpha| \max_{i} |x_i| = |\alpha| \|x\|$$

•
$$||x + y|| = \max_{i \neq j} |(x_i + y_i) + (x_j + y_j)| + \max_i |x_i + y_i| =$$

Зафиксируем i_0, j_0 , при которых достигается максимум в 1-ом слагаемом и k_0 , в котором достигается максимум во вторм слагаемом

$$\boxed{ } \boxed{ } \|(x_{i_0} + y_{i_0}) + (x_{j_0} + y_{j_0})| + |x_{k_0} + y_{k_0}| \leq |x_{i_0} + x_{j_0}| + |y_{i_0} + y_{j_0}| + |x_{k_0}| + |y_{k_0}| \leq \max_{i \neq j} |x_i + x_j| + \max_{i \neq j} |x_i| + \max_{i \neq j} |y_i + y_j| + \max_{i} |y_i| = ||x|| + ||y||$$

Итак, это действительно норма. Теперь проверим, что $\forall n>1 \quad \exists x \in \mathbb{R}^n: \|x\| \neq \||x|\|:$ Возьмем $x = (1, -1, \underbrace{0, ..., 0}_{n-2 \geq 0 \text{ шт.}})^T; \quad |x| = (1, 1, \underbrace{0, ..., 0}_{n-2 \geq 0 \text{ шт.}})^T. \ \|x\| = 1 + 1 = 2, \||x|\| = 2 + 1 = 3$