

1		1 2 3 4	2	<pre>solve(problem: unary constraints)</pre>
1 2 3 4	2	1 2 3 4	1 2 3 4	
			3	

1	3	$3 \mid 4 \mid$	2	solve(problem: unary constraints)
				$-$ domains = init_domains()
				<pre>- restrict_domains(problem, domains)</pre>
				- initialize stack as an empty stack
$\boxed{3} \boxed{4}$	2	1 3 4	4	- while true:
				- if propagate(domains) reports no conflict:
				- if $ domains[spot] = 1$ for all spots, this is a consistent assignment
				$- \text{ orig_domains} = \text{copy}(\text{domains})$
3	$\lfloor 4 \rfloor$	2	1	- spot, num = search(domains)
				- add (spot, num, orig_domains) to stack
				- otherwise:
				- if stack is empty, there is no consistent assignment
2	1	$\boxed{4}$	3	<pre>- domains = backtrack(stack)</pre>
				propagate(domains: tile domains)
				- do until domains doesn't change:
				- for each spot on the board:
				- if $ domains[spot] = 1$, remove spot's num from its peers' domains
				– if the above caused any domain to be empty, there is a conflict

1	3	$3 \mid 4 \mid$	2	solve(problem: unary constraints)
				$-$ domains = init_domains()
				<pre>- restrict_domains(problem, domains)</pre>
				- initialize stack as an empty stack
3 4	2	1 3 4	4	- while true:
				- if propagate(domains) reports no conflict:
				- if $ domains[spot] = 1$ for all spots, this is a consistent assignment
				$- \text{ orig_domains} = \text{copy}(\text{domains})$
3	4	2	1	$- \mathtt{spot}, \mathtt{num} = \mathtt{search}(\mathtt{domains})$
				- add (spot, num, orig_domains) to stack
				- otherwise:
				- if stack is empty, there is no consistent assignment
2	1	4	3	- domains = backtrack(stack)
				propagate(domains: tile domains)
				- do until domains doesn't change:
				- for each spot on the board:
				- if $ domains[spot] = 1$, remove spot's num from its peers' domains
				– if the above caused any domain to be empty, there is a conflict

1	3	3 4	2	solve(problem: unary constraints)
				$-$ domains = init_domains()
				<pre>- restrict_domains(problem, domains)</pre>
				- initialize stack as an empty stack
3 4	2	1 3 4	4	- while true:
				- if propagate(domains) reports no conflict:
				- if $ domains[spot] = 1$ for all spots, this is a consistent assignment
				<pre>- orig_domains = copy(domains)</pre>
3	4	2	1	- spot, num = search(domains)
				- add (spot, num, orig_domains) to stack
				- otherwise:
				- if stack is empty, there is no consistent assignment
2	1	$\boxed{4}$	3	- domains = backtrack(stack)
				propagate(domains: tile domains)
				- do until domains doesn't change:
				- for each spot on the board:
				- if $ domains[spot] = 1$, remove spot's num from its peers' domains
				– if the above caused any domain to be empty, there is a conflict

1	3	3	2	solve(problem: unary constraints)
				$-$ domains = init_domains()
				- restrict_domains(problem, domains)
				- initialize stack as an empty stack
3 4	2	1 3	4	- while true:
				- if propagate(domains) reports no conflict:
				- if $ domains[spot] = 1$ for all spots, this is a consistent assignment
				$- \text{ orig_domains} = \text{copy}(\text{domains})$
3	$\lfloor 4 \rfloor$	2	1	- spot, num = search(domains)
				- add (spot, num, orig_domains) to stack
				- otherwise:
				- if stack is empty, there is no consistent assignment
2	1	4	3	- domains = backtrack(stack)
				propagate(domains: tile domains)
				- do until domains doesn't change:
				- for each spot on the board:
				- if $ domains[spot] = 1$, remove spot's num from its peers' domains
				– if the above caused any domain to be empty, there is a conflict

1	3	3	2	solve(problem: unary constraints)
				$-$ domains = init_domains()
				<pre>- restrict_domains(problem, domains)</pre>
				- initialize stack as an empty stack
3 4	2	1 3	4	- while true:
				- if propagate(domains) reports no conflict:
				- if $ domains[spot] = 1$ for all spots, this is a consistent assignment
				$- \text{ orig_domains} = \text{copy}(\text{domains})$
3	$\lfloor 4 \rfloor$	2	1	$- \ \mathtt{spot}, \mathtt{num} = \mathtt{search}(\mathtt{domains})$
				- add (spot, num, orig_domains) to stack
				- otherwise:
				- if stack is empty, there is no consistent assignment
2	1	4	3	- domains = backtrack(stack)
				<pre>propagate(domains: tile domains)</pre>
				- do until domains doesn't change:
				- for each spot on the board:
				- if $ domains[spot] = 1$, remove spot's num from its peers' domains
				– if the above caused any domain to be empty, there is a conflict

1	3	3	2	solve(problem: unary constraints)
				$-$ domains = init_domains()
				- restrict_domains(problem, domains)
				- initialize stack as an empty stack
$\boxed{3} \boxed{4}$	2	1 3	4	- while true:
				- if propagate(domains) reports no conflict:
				- if $ domains[spot] = 1$ for all spots, this is a consistent assignment
				$- \text{ orig_domains} = \text{copy}(\text{domains})$
3	4	2	1	- spot, num = search(domains)
				$- \ \mathrm{add} \ (\mathtt{spot}, \mathtt{num}, \mathtt{orig_domains}) \ \mathrm{to} \ \mathtt{stack}$
				- otherwise:
				- if stack is empty, there is no consistent assignment
2	1	4	3	- domains = backtrack(stack)
				propagate(domains: tile domains)
				- do until domains doesn't change:
				- for each spot on the board:
				- if $ domains[spot] = 1$, remove spot's num from its peers' domains
				 if the above caused any domain to be empty, there is a conflict

1	3	3	2	solve(problem: unary constraints)
				$-$ domains = init_domains()
				<pre>- restrict_domains(problem, domains)</pre>
				- initialize stack as an empty stack
3 4	2	1 3	4	- while true:
				- if propagate(domains) reports no conflict:
				- if $ domains[spot] = 1$ for all spots, this is a consistent assignment
				$- \text{ orig_domains} = \text{copy}(\text{domains})$
3	$\lfloor 4 \rfloor$	$\lfloor 2 \rfloor$	1	$- \ \mathtt{spot}, \mathtt{num} = \mathtt{search}(\mathtt{domains})$
				- add (spot, num, orig_domains) to stack
				- otherwise:
				- if stack is empty, there is no consistent assignment
2	1	$\boxed{4}$	3	- domains = backtrack(stack)
				propagate(domains: tile domains)
				- do until domains doesn't change:
				- for each spot on the board:
				- if $ domains[spot] = 1$, remove spot's num from its peers' domains
				– if the above caused any domain to be empty, there is a conflict

1	3	3	2	solve(problem: unary constraints)
				$-$ domains = init_domains()
				<pre>- restrict_domains(problem, domains)</pre>
				- initialize stack as an empty stack
3 4	2	1 3	4	- while true:
				- if propagate(domains) reports no conflict:
				- if $ domains[spot] = 1$ for all spots, this is a consistent assignment
				$-$ orig_domains = copy(domains)
3	$\lfloor 4 \rfloor$	2	1	- spot, num = search(domains)
				$-\operatorname{add}$ (spot, num, orig_domains) to stack
				- otherwise:
				- if stack is empty, there is no consistent assignment
2	1	$\boxed{4}$	3	- domains = backtrack(stack)
				propagate(domains: tile domains)
				- do until domains doesn't change:
				- for each spot on the board:
				- if $ domains[spot] = 1$, remove spot's num from its peers' domains
				– if the above caused any domain to be empty, there is a conflict

1	3	3	2	solve(problem: unary constraints)
				<pre>- domains = init_domains()</pre>
				<pre>- restrict_domains(problem, domains)</pre>
				- initialize stack as an empty stack
3 4	2	1	4	- while true:
				- if propagate(domains) reports no conflict:
				- if domains[spot] = 1 for all spots, this is a consistent assignment
				$- \text{ orig_domains} = \text{copy}(\text{domains})$
3	4	2	1	<pre>- spot, num = search(domains)</pre>
				- add (spot, num, orig_domains) to stack
				- otherwise:
				- if stack is empty, there is no consistent assignment
2	1	$\boxed{4}$	3	- domains = backtrack(stack)
				<pre>propagate(domains: tile domains)</pre>
				- do until domains doesn't change:
				- for each spot on the board:
				- if domains spot = 1, remove spot's num from its peers' domains

– if the above caused any domain to be empty, there is a conflict

1	3		2	solve(problem: unary constraints)
				<pre>- domains = init_domains()</pre>
				<pre>- restrict_domains(problem, domains)</pre>
				- initialize stack as an empty stack
3 4	2	1 3	4	- while true:
				- if propagate(domains) reports no conflict:
				- if $ domains[spot] = 1$ for all spots, this is a consistent assignment
				$- \text{ orig_domains} = \text{copy}(\text{domains})$
3	$\lfloor 4 \rfloor$	2	1	- spot, num = search(domains)
				$- \ \mathrm{add} \ (\mathtt{spot}, \mathtt{num}, \mathtt{orig_domains}) \ \mathrm{to} \ \mathtt{stack}$
				- otherwise:
				- if stack is empty, there is no consistent assignment
2	1	$\boxed{4}$	3	- domains = backtrack(stack)
				propagate(domains: tile domains)
				- do until domains doesn't change:
				- for each spot on the board:
				- if $ domains[spot] = 1$, remove spot's num from its peers' domains

– if the above caused any domain to be empty, there is a conflict

1	4	3	2	solve(problem: unary constraints)
				$-$ domains = init_domains()
				<pre>- restrict_domains(problem, domains)</pre>
				- initialize stack as an empty stack
3	2	1	4	- while true:
				<pre>- if propagate(domains) reports no conflict:</pre>
				- if domains[spot] = 1 for all spots, this is a consistent assignment
				<pre>- orig_domains = copy(domains)</pre>
4	3	2	1	- spot, num = search(domains)
		_		- add (spot, num, orig_domains) to stack
				- otherwise:
				- if stack is empty, there is no consistent assignment
2	1	4	3	- domains = backtrack(stack)
				→
				propagate(domains: tile domains)
				- do until domains doesn't change:
				- for each spot on the board:
				- if domains[spot] = 1, remove spot's num from its peers' domains

1	4	3	2	solve(problem: unary constraints)
				$-$ domains = init_domains()
				<pre>- restrict_domains(problem, domains)</pre>
				- initialize stack as an empty stack
3	2	1	4	- while true:
				<pre>- if propagate(domains) reports no conflict:</pre>
				- if domains[spot] = 1 for all spots, this is a consistent assignment
				<pre>- orig_domains = copy(domains)</pre>
4	3	2	1	- spot, num = search(domains)
		_		- add (spot, num, orig_domains) to stack
				- otherwise:
				- if stack is empty, there is no consistent assignment
2	1	4	3	- domains = backtrack(stack)
1				
				propagate(domains: tile domains)
				- do until domains doesn't change:
				- for each spot on the board:
				- if domains spot = 1, remove spot's num from its peers' domains

1	4	3	2	solve(problem: unary constraints)
				$- domains = init_domains()$
				<pre>- restrict_domains(problem, domains)</pre>
				- initialize stack as an empty stack
3	2	1	4	- while true:
				- if propagate(domains) reports no conflict:
				- if $ domains[spot] = 1$ for all spots, this is a consistent assignment
				$- \ \mathtt{orig_domains} = \mathtt{copy}(\mathtt{domains})$
4	3	2	1	- spot, num = search(domains)
				- add (spot, num, orig_domains) to stack
				- otherwise:
				- if stack is empty, there is no consistent assignment
2	1	$oxed{4}$	3	<pre>- domains = backtrack(stack)</pre>
				<u> </u>
				propagate(domains: tile domains)
				- do until domains doesn't change:
				- for each spot on the board:
				- if $ domains[spot] = 1$, remove spot's num from its peers' domains

1	4	3	2	solve(problem: unary constraints)
				$- domains = init_domains()$
				<pre>- restrict_domains(problem, domains)</pre>
				- initialize stack as an empty stack
3	2	1	4	- while true:
				- if propagate(domains) reports no conflict:
				- if $ domains[spot] = 1$ for all spots, this is a consistent assignment
				$- \ \mathtt{orig_domains} = \mathtt{copy}(\mathtt{domains})$
4	3	2	1	- spot, num = search(domains)
				- add (spot, num, orig_domains) to stack
				- otherwise:
				- if stack is empty, there is no consistent assignment
2	1	$oxed{4}$	3	<pre>- domains = backtrack(stack)</pre>
				↓
				propagate(domains: tile domains)
				- do until domains doesn't change:
				- for each spot on the board:
				- if $ domains[spot] = 1$, remove spot's num from its peers' domains

1	4	3	2	solve(problem: unary constraints)
				$-$ domains = init_domains()
				$- \ \mathtt{restrict_domains}(\mathtt{problem}, \mathtt{domains})$
				- initialize stack as an empty stack
3	2	1	4	- while true:
				- if propagate(domains) reports no conflict:
				- if $ domains[spot] = 1$ for all spots, this is a consistent assignment
				$-$ orig_domains = copy(domains)
4	3	2	1	- spot, num = search(domains)
				$-\operatorname{add}$ (spot, num, orig_domains) to stack
				- otherwise:
				- if stack is empty, there is no consistent assignment
2	1	$\boxed{4}$	3	- domains = backtrack(stack)
				propagate(domains: tile domains)
				- do until domains doesn't change:
				- for each spot on the board:
				- if domains spot = 1, remove spot's num from its peers' domains

1	4	3	2	solve(problem: unary constraints)
				$-$ domains $=$ init_domains $()$
				$- \ \mathtt{restrict_domains}(\mathtt{problem}, \mathtt{domains})$
				- initialize stack as an empty stack
3	2	1	4	- while true:
				- if propagate(domains) reports no conflict:
				- if $ domains[spot] = 1$ for all spots, this is a consistent assignment
				$-$ orig_domains = copy(domains)
4	3	2	1	- spot, num = search(domains)
				$-\operatorname{add}$ (spot, num, orig_domains) to stack
				- otherwise:
				- if stack is empty, there is no consistent assignment
2	1	[4]	3	<pre>- domains = backtrack(stack)</pre>
				<u> </u>
				propagate(domains: tile domains)
				- do until domains doesn't change:
				- for each spot on the board:
				- if domains spot = 1, remove spot's num from its peers' domains

1	4	3	2	solve(problem: unary constraints)
				$-$ domains = init_domains()
				$- \ \mathtt{restrict_domains}(\mathtt{problem},\mathtt{domains})$
				- initialize stack as an empty stack
3	2	1	4	- while true:
				- if propagate(domains) reports no conflict:
				- if $ domains[spot] = 1$ for all spots, this is a consistent assignment
				<pre>- orig_domains = copy(domains)</pre>
4	3	2	1	- spot, num = search(domains)
				$-\operatorname{add}$ (spot, num, orig_domains) to stack
				- otherwise:
				- if stack is empty, there is no consistent assignment
2	1	$\boxed{4}$	3	- domains = backtrack(stack)
				propagate(domains: tile domains)
				- do until domains doesn't change:
				- for each spot on the board:
				- if domains[spot] = 1, remove spot's num from its peers' domains

1	4	3	2	solve(problem: unary constraints)
				$- domains = init_domains()$
				<pre>- restrict_domains(problem, domains)</pre>
				- initialize stack as an empty stack
3	2	1	$\boxed{4}$	- while true:
				- if propagate(domains) reports no conflict:
				- if domains[spot] = 1 for all spots, this is a consistent assignment
				- orig_domains = copy(domains)
4	3	2	1	<pre>- spot, num = search(domains)</pre>
				- add (spot, num, orig_domains) to stack
				- otherwise:
				- if stack is empty, there is no consistent assignment
2	1	4	3	- domains = backtrack(stack)
	1	1	o l	domains — backtrack(stack)
				V
				propagate(domains: tile domains)
				- do until domains doesn't change:
				- for each spot on the board:
				- if $ domains[spot] = 1$, remove spot's num from its peers' domains

- if the above caused any domain to be empty, there is a conflict

1	4	3	2	solve(problem: unary constraints)
				$-$ domains = init_domains()
				<pre>- restrict_domains(problem, domains)</pre>
				- initialize stack as an empty stack
3	2	1	4	- while true:
				- if propagate(domains) reports no conflict:
				- if $ domains[spot] = 1$ for all spots, this is a consistent assignment
				<pre>- orig_domains = copy(domains)</pre>
4	3	2	1	- spot, num = search(domains)
				- add (spot, num, orig_domains) to stack
				- otherwise:
				- if stack is empty, there is no consistent assignment
2	1	$\boxed{4}$	3	- domains = backtrack(stack)
				V
				propagate(domains: tile domains)
				- do until domains doesn't change:
				- for each spot on the board:
				- if $ domains[spot] = 1$, remove spot's num from its peers' domains

- if the above caused any domain to be empty, there is a conflict

SUPREME BENEVOLENT

