Document 1 (JP2002-297089 A)

Publication number: 2002-297089

Date of publication of application: October 9, 2002

Application number: 2001-099310

Date of filing: March 30, 2001

Applicant: Matsushita Electric Industrial Co., Ltd.

Inventor: Tetsuro Nakamura

[Title of the Invention]

Display Device and Input System

[Summary]

The display device has an electrically and mechanically simple structure, and the display update is performed from the display screen of the display device by using an input device such as electronic pen.

This display device is provided with leads (contact electrodes) 103 for every pixel on its display screen. Each contact electrode 103 is connected to a row electrode or a column electrode, through which voltage is applied to the ferroelectric high-molecular liquid crystal. When the contactor 118 of the electronic pen with a built-in power source is in contact with the contact electrode 103, a voltage is applied between a row electrode and a column electrode through the contact electrode 103. As a result, the orientation of the ferroelectric polymer liquid crystal is changed and the display is updated.

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-297089 (P2002-297089A)

(43)公開日 平成14年10月9日(2002.10.9)

(51) Int.Cl.7		識別記号		FΙ			Ť	7]1*(参考)
G09G	3/20	691		G09G	3/20		691B	2H089
		680					680H	2H092
G02F	1/1333			G 0 2 F	1/1333			5B087
	1/1345				1/1345			5 C 0 0 6
G06F	3/033	350		G06F	3/033		350F	5 C 0 8 0
			審査請求	水髓 水龍未	項の数9	OL	(全 10 頁)	最終頁に続く

(21)出願番号

特願2001-99310(P2001-99310)

(22)出廣日

平成13年3月30日(2001.3.30)

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72)発明者 中村 哲朗

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 100083172

弁理士 福井 豊明

最終頁に続く

(54) 【発明の名称】 表示装置及び入力システム

(57)【要約】

【課題】 電気的にも機械的にも簡素な構成により、電子ペンなどの入力装置を用いて表示装置の表示面から表示を更新する。

【解決手段】 上記表示装置は、表示面上に画素毎にリード(接触電極)103を備えている。接触電極103は、強誘電性高分子液晶に電圧を印加する列電極、又は行電極に接続されており、電源を内蔵した電子ペン114の接触子118を接触電極103に接触させれば、接触電極103を通じて列電極と行電極との間に電圧が印加される。これによって、強誘電性高分子液晶の配向が変わり、表示が更新される。

【特許請求の範囲】

【請求項1】 不揮発性の表示媒体の表裏両面から電圧 を印加することによって表示可能な表示装置において、 表示面上に表示単位毎に配置され上記表裏の電極のいず れかに導通する導電性部材であって、当該導電性部材と 導通しない電極と当該導電性部材の間に電圧を印加する ことによって上記表示が可能な導電性部材を備えたこと を特徴とする表示装置。

【請求項2】 上記導電性部材が導通する電極を表示単 をさらに備えた請求項1記載の表示装置。

【請求項3】 上記スイッチ手段を制御する制御ライン を配設した請求項2記載の表示装置。

【請求項4】 記憶手段の記憶に従った表示を揮発性の 表示媒体により行う表示装置において、

表示面上に表示単位毎に配置された導電性部材と、

上記導電性部材から入力された電気信号を検出し、検出 結果に基づいて上記記憶手段の記憶を更新する検出手段 とを備えたことを特徴とする表示装置。

【請求項5】 上記表示媒体は、シャッター機能を有し 20 た媒体である請求項1乃至4のいずれかに記載の表示装

【請求項6】 上記表示媒体は、自発的に発光すること の可能な媒体である請求項4に記載の表示装置。

【請求項7】 不揮発性の表示媒体の表裏両面から電圧 を印加することによって表示可能な表示装置を備えた入 カシステムにおいて.

上記表示装置の表示面上に表示単位毎に配置され上記表 裏の電極のいずれかに導通する導電性部材と、

上記導電性部材に導通しない電極と上記導電性部材の間 30 に電圧を印加することの可能な入力装置とを備えたこと を特徴とする入力システム。

【請求項8】 上記導電性部材が導通する電極を表示単 位毎に分離するか否かを切り替えるためのスイッチ手段 をさらに備えた請求項7記載の入力システム。

【請求項9】 記憶手段の記憶に従った表示を揮発性の 表示媒体により行う表示装置を備えた入力システムにお

上記表示装置の表示面上に表示単位毎に配置された導電

上記導電性部材から電気信号を入力することの可能な入 力装置と、

上記電気信号を検出し、検出結果に基づいて上記記憶手 段の記憶を更新する検出手段とを備えたことを特徴とす る入力システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、例えば電子ペンな どの入力装置により表示の更新が可能なフラットパネル 表示装置、及び該表示装置と入力装置を備えた入力シス テムに関するものである。

[0002]

【従来の技術】情報化社会の発展に伴い、パーソナルコ ンピュータだけでなく、情報携帯端末やインターネット アプライアンスなど、様々な種類の情報機器が広く利用 されるようになってきた。それに伴い、入力装置も多様 化している。例えばキーボードは、主に文字入力に用い … られる代表的な入力装置の一種であるが、利用者自身の 位毎に分離するか否かを切り替えるためのスイッチ手段 10 打鍵によって人間が利用する文字とコンピュータが利用 するコードとを置き換えるため直感的とは言い難い面が ある。また、人間の指の大きさを考慮すると、キーボー ドを小さくするのには限界がある。このため、情報機器 によっては、CRT(Cathode Ray Tube)ディスプレイやフ ラットパネルディスプレイ、電子ペーパなどの表示装置 の表示面に、文字や図形をそのまま描けるような入力装 置が好まれることもある。表示装置の表示面に文字や図 形をそのまま描くには、入力装置の表示面上の位置とそ の位置における表示内容を何らかの形で関連付ける必要 がある。そのためには、例えば入力装置の表示面上の位 置を特定し、特定された位置に従って表示用データを更 新すればよい。面上の位置を特定することの可能な入力 装置に、ディジタイザやライトペンがある。

> 【0003】ディジタイザは、利用者が平板上の位置を 指定するためのスタイラス又はカーソルと、該平板に格 子状に配設された回路とを含む。ディジタイザでは、ス タイラス側か回路側のいずれか一方が、他方から発せら れた電界や磁界、電磁界信号を検出することにより、利 用者が指定した平板上の位置が特定される。また、ディ ジタイザには、スタイラスを平板に押し付けたときの圧 力を平板側に設けた圧力センサを用いて検出したり、カ ーソルから発振された超音波信号を平板側で受信するな どして、平板上の位置を特定するものもある。

【0004】ライトペンは、主にCRTの表示面上の位置 を特定するために用いられる入力装置である。ライトベ ンのペン先には、光センサが設けられている。CRTで は、既定の周波数で表示面に対して電子ビームが走査さ れているから、ライトペンのペン先の光センサによって 電子ピームを検出することにより、表示面上の位置を特 40 定することができる。

【0005】上述のようなディジタイザやライトペンな どを用いて特定した面上の位置に対応して、表示用デー タを更新すれば、表示装置の表示面に文字や図形をその まま描くことが可能である。

[0006]

【発明が解決しようとする課題】ところで、ディジタイ ザやライトペンのような入力装置は、表示装置の表示回 路に物理的に接続されるわけではない。電磁界信号や超 音波信号、光、圧力信号などが表示装置と入力装置とを ディスプレイや紙様のフレキシブルな電子ペーパなどの 50 媒介するため、その分、応答速度や検出分解能に限界が

生じる。また、入力装置からの信号を検出する表示装置側の回路やソフトウェアも煩雑なものとなりがちであり、その分、コストが増大してしまう。

【0007】本発明は、上記従来の事情に基づいて提案されたものであって、安価でしかも高い応答速度と入力精度とを確保した表示装置、及び該表示装置と入力装置を備えた入力システムを提供することを目的とする。 【0008】

【課題を解決するための手段】本発明は、上記目的を達成するために以下の手段を採用している。該手段を、ま 10 ず、不揮発性の表示媒体の表示両面から電圧を印加することによって表示可能な例えば電子ペーパなどの表示装置、及び該表示装置と電子ペンなどの入力装置を備えた入力システムを前提として説明する。

【0009】図1に示すように、電子ペーパ10の表示面上には画素毎にリード(接触電極)103が備えられている。とのリード103は、図10に示すように、不揮発性の表示媒体の表異にある行電極と列電極のうちの行電極A5とスルーホール100を介して導通している。一方、列電極には電池を備えた電子ペン114の一20端が接続されている。電子ペン114のペン先(接触子)118がとのリード103に接触すると、行電極A5と列電極との間に電圧が印加され、不揮発性の表示媒体による表示が更新される。との更新には、書き込みだけでなく、消去も含まれる。

【0010】さらに、上述のような表示装置においては、図10に示すように、リード103が導通する行電極A,を画素毎に分離するか否かを切り替えるスイッチ手段101を備えておくのが好ましい。

【0011】外部からの入力データや、記憶手段19に 30 記憶された表示用データを表示させる場合には、スイッチ手段101によって行電極A,を画素毎に分離せず、表示を更新する場合には、スイッチ手段101によって行電極A,を画素毎に分離すればよい。これによって、外部からの入力データなどの表示と、電子ペン114による画素毎の表示の更新を両立させることが可能となる。

【0012】スイッチ手段101のオン、オフ(画素毎 に分離するか否か)の制御は例えば制御ライン105によって行う。

【0013】次に、上述の手段を、記憶手段の記憶に従った表示を揮発性の表示媒体により行う例えばフラットパネルディスプレイなどの表示装置、及び入力システムを前提として説明する。

【0014】揮発性の表示媒体を表示に利用する場合、 それのみでは表示用データを記憶することができないの で、図13に示すように、別途記憶手段19が必要にな る。

【0015】フラットパネルディスプレイ30の表示 側のベースフィルムB。上に金属共通電極(陰極)B,は、記憶手段19に記憶された表示用データに従って行 50 を形成する。当該共通電極B,の上に、絶縁層B,を用

われる。

【0016】また、図12、13に示すように、上述の電子ペーパ10と同様、このフラットパネルディスプレイ30の表示面上にも画素毎にリード103が備えられている。さらに、このフラットパネルディスプレイ30は、検出手段106を備えている。電子ペン114の接触子118がリード103に接触することにより、リード103から入力された電気信号は、この検出手段106により検出される。記憶手段19の表示用データが検出手段106により検出結果に基づいて更新されると、フラットパネルディスプレイ30の表示も更新される。【0017】なお、上述の表示媒体は、シャッター機能を有した媒体であってもよいし、自発的に発光することの可能な媒体であってもよい。

[0018]

【発明の実施の形態】以下に本発明の実施の形態を図面 に従って説明する。

(実施の形態1)との実施の形態1では、本発明は、例えば紙様のフレキシブルな表示装置である電子ペーパ及 び電子ペンに適用される。

【0019】図2に示す如く、電子ペーパ10は、データが表示される表示面が配置される表示部11と、この表示部11を駆動するための表示駆動部12とからなり、図3に示す如く、上記表示部11は、不揮発性の表示媒体を配置した表示層Aと、この表示層Aを照明するための発光層Bとを有する。

【0020】表示層Aについては、図4に示すように、 まず、ベースフィルムA、上に列電極A、となる互いに 平行な複数の線状の電極を形成し、またベースフィルム A,上に行電極A、となる互いに平行な複数の線状の電 極を形成する。さらに、行電極A、となる電極上には強 誘電性高分子液晶A、を一定の厚みで塗布しておく。次 いで、ベースフィルムAzとベースフィルムAaとを両者 の電極が対向し且つ直交する状態で貼り合わせる。とれ により、図面で上側にあるベースフィルムA₂と下側に あるベースフィルムA。との間に配置された両者の電極 は、マトリクス状の列電極A」と行電極A」とを構成す るととになる。更に、上記強誘電性高分子液晶A、の分 子を所定の配向とした後、ベースフィルムAzとベース フィルムAgの両側から偏光板Ag・Agで挟むように してそれらを貼り合わせる。これによって、例えば図5 に示すように、Cmax列Rmax行のマトリクスで配列された 画素からなる表示層Aが構成される。尚、上記行電極、 列電極の上下位置関係は逆でもかまわないことは当然で

【0021】 とれに対し、上記発光層 Bは、その全面が一様に発光すればよいため、上側のベースフィルム B, 上に透明共通電極 (陽極) B, を形成するとともに、下側のベースフィルム B, 上に金属共通電極 (陰極) B, を形成する。当該共通電極 B, の上に、絶縁層 B, を用

いて所定のパターンで有機エレクトロルミネセンス層B ◆を形成した後、この共通電極B、と共通電極B、とが 対向するように貼り合わせて、上記発光層Bを構成す る。

【0022】最後に、発光層Bが表示層Aを照明するよ う、上記のように生成した発光層Bを表示層Aの下側に 貼り合わせる。

【0023】上記表示層Aにおける、各画素のオン、オ フ制御は、以下に説明するシャッター機能を利用したマ トリクス制御によって行う。すなわち、表示層Aの行電 10 極A、・列電極A、間に所定電圧を印加すると、上記発 光層Bからの光を透過しない方向に強誘電性高分子液晶 A、の分子の配向が変化し(シャッターがオンとな り)、この行電極A、及び列電極A、によって特定され る画素が黒に表示される。一方、上記所定電圧の逆電圧 を印加した場合は、光を透過する方向に強誘電性高分子 液晶A、の分子の配向が変化し(シャッターがオフとな り)、との画素は白く表示される。

【0024】なお、強誘電性高分子液晶A、は、電源を オフにしてもその表示状態に変化をきたさないため、以 20 下に説明するように電子ペーパ10が本体20から取り 外され、行電極、列電極に所定の電圧が印加されない状 態であっても、その表示は保持されることになる。

【0025】一方、発光層Bの共通電極B、・B、間に 電圧を印加すると、有機エレクトロルミネセンス層B。 の全面が発光して表示層Aを下から照明する。すなわ ち、有機エレクトロルミネセンス層B、が発光すると、 との光を透過する画素 (シャッターがオフとなっている 画素)が黒で表示されるようになっている。

ることを前提としているため、上下の電極はいずれも共 通電極になっているが、上下の共通電極B、・B、をマ トリクス状に構成して、表示層Aの特定の部分のみを照 射できるように制御することによって、例えばタイトル 部分のみを表示(あるいは強調)するようなことも可能 である。

【0027】また、発光層Bをモノカラーで発光させる 場合は、上記のように全面一様に単色のエレクトロルミ ネッセンス層を形成しておけばよいが、フルカラーで発 光させる場合はマトリクス状にRGB(Red Green Blu e) の光源を配置しておく。フルカラーであっても全面 一様に発光させる場合は、上記のように個別電極とする までもなく共通電極B、・B、でRGBのエレクトロル ミネッセンス層を同時に発光させることで足りる。

【0028】更に、表示層AのベースフィルムA、・A。 、又は、発光層BのベースフィルムB,の表面のいず れかは、粗く形成しておくのが好ましい。このようにす れば、図6に示すように、有機エレクトロルミネセンス 層B。の発光した光は粗面Sによって散乱し、ユーザの 目に優しい表示を提供することができることになる。

【0029】上述のような電子ペーパ10を複数枚綴れ ば、ファイル様の電子ペーパファイルを構成することが できる。本実施の形態1では、電子ペーパファイルの本 体20と電子ペーパ10とが物理的・電気的に着脱可能 に構成されている。

【0030】図7に示すように、上記電子ペーパファイ ルでは、電子ペーパ10の表示駆動部12にコネクタの 一方の接続端子13(ここでは雌型)が備えられてお り、本体20側に他方の接続端子21(ここでは雄型) が備えられる。とのように、電子ペーパ10側の接続端 子13を雌型とし、本体20側の接続端子21を雄型と したのは、本体20から取り外した電子ペーパ10を持 ち運ぶ際に、この電子ペーパ10の接続端子13を破損 や錆びつきから防止するためである。

【0031】また、上記のようなCmax列Rmax行のマトリ クスで配列された画素を制御する場合、 "Cmax+Rmax" の数のピンを備えた接続端子13("Cmax+Rmax" の数 のピン受けを備えた接続端子21)が少なくとも必要で ある。しかしながら、多数のピンを備えた接続端子13 は破損しやすいという欠点があるだけでなく、電子ペー パファイルの薄型化・軽量化の観点からも好ましくな

【0032】そとで、電子ペーパ10では、図3(a) に示すように通常のLCD表示装置に使用される表示用 ドライバ12aを電子ペーパ10側の接続端子13と表 示部11との間(すなわち表示駆動部12)に積載し、 この接続端子13のピン数を減じるようにしている(後 述する)。

【0033】なお、電子ペーパ10と本体20との着脱 【0026】なお、上記発光層Bは全面を同時に発光す 30 が容易にできるよう、図3(b)に示すように、表示駆 動部12の厚みは表示部11の厚みより大きくし、ま た、表示駆動部12に使用する部材には、そのヤング率 が表示部11のヤング率より大きい部材を用いるのが好 ましい。とれによって、半導体チップで形成される上記 表示用ドライバ12aを保護することができることにな る。更に、表示駆動部12の幅を表示部11の幅より広 くしておけば、図8に示すように、矢印Φの方向から表 示駆動部12を指で押す等の容易な方法で、確実に、電 子ペーパ10の接続端子13を本体20の接続端子21 40 に装着することができる。

> 【0034】また、図7に示す如く、電子ペーパファイ ルの本体20側には信号授受手段23(23a及び23 b) が設けられている。

【0035】上記信号授受手段23は表示用データを受 け取るための手段であり、具体的には、図7に示すよう に、フラッシュカード・スマートメディア等の信号格納 媒体を読み出すドライバ23aや、あるいは外部からの 信号をケーブルを介して直接にあるいはデータを蓄積す るための記憶手段19を介して電子ペーパに取り込むシ 50 リアルポート・パラレルポート・RS-232Cなどのコネク

タ23bなどをいう。

【0036】電子ペーパファイルに綴られた各電子ペー バ10の表示部11に表示されるデータは、上記信号授 受手段23を通じて外部から入力された表示用データで ある。また、図1に示す如く、上記信号授受手段23と 電子ペーパ10との間の経路には、上記信号授受手段2 3から入力されたデータを記憶する記憶手段19が設け られることもある。記憶手段19を備える場合は、当該 記憶手段19に格納されたデータを表示してもよい。

部11に表示させるには、上記表示用データに応じて、 表示層Aや発光層Bに電圧を印加したり、あるいは表示 のための制御を実行する必要がある。これらの発光制御 や表示制御は、図9に示すように本体20の背板24内 に備えた表示発光制御手段(表示発光制御手段:表示制 御手段22aと発光制御手段22bよりなるが、この2 つの手段は1体であっても別体であってもよい)22で 実行するようにしている。

【0038】表示発光制御手段22と表示部10(の行 電極A、、列電極A,あるいは共通電極B、·B、)は、 上記コネクタ(すなわち、接続端子21と接続端子1 3)を通じて接続される。なお、この表示発光制御手段 22(もしくは発光制御手段22b)が行う表示制御は 本発明の本質ではないのでことでは詳しい説明を省略す る。

【0039】電子ペーパ10は、外部から、あるいは記 憶手段19に格納されたデータを、表示発光制御手段2 2の制御の下に表示するようになっているが、更に、表 示部10の表示面から電子ペン114を利用してユーザ の希望する事項を自在に書き込み、または消去し、それ 30 らを表示部10に表示させることが可能である。

【0040】図10(a)、図10(b) に示すよう に、電子ペーパ10の表面側のベースフィルムA₂の裏 側に配設されている列電極A,を各画素に対応して、ス ルーホール100を介して偏光板A₁の表面に導出し、 ことでリード103 (接触電極)を介してスイッチ手段 101の一端に接続する。このスイッチ手段101の他 端から再びリード104とスルーホール100を介して 上記ベースフィルムA、の裏側に導く構成とする。従っ て、列方向に隣接する画素間にスイッチ手段101が挿 入され、全部のスイッチ手段101がオンされたときに 本来の列電極を構成し、オフされたときは、上記接触電 極が所定の画素に固有の接触電極を形成することにな る。もちろん上記表示発光制御手段22が目的に応じて とのスイッチ手段101群をオン、オフできるように、 制御ライン105を偏光板A、上に配設しておく。尚、 上記スルーホール100間の間隔は現在の技術では、1 0 μ m程度にできるので、上記の構成で表示状態に支障 をきたすことはない。

【0041】一方、図11に示すように、先端に接触子 50 べきデータが生成され、当該データで記憶手段19の内

118を形成した電子ペン114の後端からリードを導 出し、該リードを上記電子ペーパの行電極A,に共通に 接続する。また、上記電子ペン114の接触子118と 上記リードの間には電源が接続されている構成とする (例えば電子ペン114に電池を内蔵しておく)。 【0042】上記電子ペーパ10(又は上記電子ペーパ 10及び電子ペン114を備えた入力システム)におい て、外部から入力されるデータ、あるいは、記憶手段1… 9に蓄積されたデータを電子ペーパ10の表示面に表示 【0037】上記表示用データを電子ペーパ10の表示 10 するときには、上記スイッチ手段101群をオン状態に しておく。

> 【0043】一方、上記電子ペン114を用いて電子ペ ーパ10の表示内容を更新するときには、各スイッチ手 段101をオフ状態にしておく。上記電子ペン114の 接触子118が、上記のように偏光板 A1の表面に導出 されたリード(接触電極)103に接触すれば、リード 103に電位が印加される。これによって、上記共通電 極にした行電極A,と、当該電子ペン114の接触子1 18が当接したリード103に対応する列電極A,の対 20 応位置との間に電圧が印加され、その画素について書き 込みができることになる。消去のときは書き込み時と逆 の電圧を印加すればよい。

【0044】 ことで、上記電子ペン114の接触子11 8を正電圧または逆電圧のいずれにも切り替え可能とし たスイッチ等の切り替え手段107を、当該ペン114 の所定の位置に備えることにより、当該切り替え手段1 07の操作のみで簡単に「書き込み」または「消去」の 選択が可能となる。更に、電子ペーパ10の所定の箇所 に、例えば当該電子ペーパ10の表示層Aの全面に逆電 圧を印加するスイッチ等を備えれば、当該表示層A上の データの一括消去ができることになる。

【0045】上記の構成は、単に電子ペーパ10に直接 書き込み、あるいは消去ができる構成を示したにすぎな いが、このようにして書き込みあるいは消去された状態 を、記憶手段19の記憶内容に反映させようとすると以 下のようになる。

【0046】すなわち、手の動きより著しく早い速度で 上記電子ペン114のリードと、上記行電極A,の接続 を上の行から下の行に切り替えて、上記電子ペン114 の接触子118が当接した位置を行単位で検出する。更 に、上記電子ペン114の接触子118が上記偏光板A 1上のリード103に当接した状態を上記制御ライン1 05あるいは別途配設した検出ラインを介して列単位で 検出する。図1に示すように、上記行単位での検出信号 S1と列単位での検出信号Srは、検出手段106に入 力され、ととで、書き込み位置(消去位置)が検出され るとともに、上記切り替え手段107よりの切り替え信 号に基づいて、書き込み消去のいずれが指示されたのか の判断がなされる。との結果記憶手段19に記憶される

容が更新されることになる。

【0047】上記において、どの電子ペーパ10が更新の対象になっているかを、上記表示発光制御手段22あるいは記憶手段19は認識しておく必要があるが、上記制御ライン104によってスイッチ手段101がOFFになっている電子ペーパ10を確認すればよいことになる。

【0048】上述の実施の形態1では、たとえ行電極A, 列電極A, あるいは共通電極B, B, に電源が接続されていなくても(背光は自然光で足りる)、電子ペー 10パ10自体の表示は上記電子ペン114により印加される電圧に基づいてなされることになる。

【0049】とのように、電子ペーパ10の表示は、表示面に露出したリード113に電子ペン114の接触子118を接触させるだけで更新される。表示更新のための構成は簡素であり、またリード103によって行電極A,に接触子118が物理的に接続されるため、電磁界信号や超音波信号などを媒介させる必要はなくなる。従って、高い応答速度や入力精度を確保しながらも、安価な表示装置、及び入力システムを提供することができる。

(実施の形態2)上記実施の形態1では、本発明を電子ペーパ10について適用したが、これに限られるものではなく、本発明は、例えば図12に示すようなフラットパネルディスプレイ30などの他の表示装置に適用することも可能である。

【0050】 とのフラットパネルディスプレイ30の表示面上にも、上記電子ペーパ10と同様に、リード103が画素毎に配置されている。

【0051】但し、電子ペーパ10と異なり、本体から 30 パネルだけを着脱させることは通常ないので、図1に示した表示発光制御手段22と表示用ドライバ12aは、図13に示すように、接続端子21,13を介しないで直接接続しておけばよい。

【0052】また、不揮発性の表示媒体を表示層Aに配置する必要も特になくなる。このフラットパネルディスプレイ30の表示に、表示層Aと発光層Bとを有する表示部を利用する場合でも、表示層Aに、強誘電性高分子液晶の代わりに揮発性の液晶を配置してもよい。

【0053】不揮発性の表示媒体の代わりに揮発性の表 40 示媒体を用いる場合、表示媒体自体によって表示内容は記憶されないから、電子ペン114により表示を更新する場合でも、その更新結果を記憶させるために、記憶手段19は必要になる。

【0054】また、記憶手段19の表示用データに更新結果を反映させる為に、検出手段106も必要である。

[0055] 電子ペン114の接触子118がリード103に接触することによって、リード103から入力された電圧信号を検出手段106により検出し、検出手段106は、検出結果に基づいて記憶手段19の表示用デ 50

ータを更新する。フラットパネルディスプレイ30の表示が、記憶手段19に記憶された更新後の表示用データ により行われると、フラットパネルディスプレイ30の表示は更新される。

(実施の形態3)上記実施の形態1、2では、表示層Aと発光層Bを有する表示部のうち、表示層Aの液晶の配向状態を変化させて更新結果などの表示を行っていた。本発明は、シャッター機能を有した媒体だけでなく、自発的に発光することの可能な表示媒体にも適用が可能である

【0056】例えばエレクトロルミネセントパネルは、液晶を配置した表示層Aを利用せず、図14に示すような発光層Cのみによって表示を行うことが可能である。【0057】発光層Cは、例えば表示装置Aの強誘電性高分子液晶A、を、有機エレクトロルミネセンス層で置き換えたような構成を有している。すなわち、図14に示すように、発光層Cでは、基板C、上に行電極C、、有機エレクトロルミネセンス層C、、列電極C、、透明平板C、が配置される。行電極C、と列電極C、との間に、有20機エレクトロルミネセンス層C、が配置されるわけである。

【0058】 このエレクトロルミネセンス層C,の発光、非発光を上記実施の形態1におけるシャッターのオン、オフと同様に、電子ペン114の接触子118をリード103に接触させることによって画素毎に制御すればよい。

【図面の簡単な説明】

【図1】本発明の基本的な構成を示すブロック図。

【図2】本発明を適用した電子ペーパの外観図である。

【図3】本発明を適用した電子ペーパの構成図である。

【図4】表示層及び発光層の構成例である。

【図5】マトリクスの説明図である。

【図6】粗面の説明図である。

【図7】本発明を適用した電子ペーパファイルの**外観**図である。

【図8】本発明を適用した電子ペーパの他の形態を示す 図である。

【図9】電子ペーパファイルの表示発光制御手段を示し た図である。

→ 【図10】リードと電極との関係を示す図である。

【図11】直接書き込みの場合の電子ペンと電子ペーパ の関係を示す図。

【図12】本発明を適用したフラットバネルディスプレイの外観図である。

【図13】本発明を適用したフラットパネルディスプレイの基本的な構成を示すブロック図。

【図14】本発明を適用したフラットパネルディスプレ イの発光層の構成図である。

【符号の説明】

50 10 電子ペーパ

【図13】

フロントページの続き

(51)Int.Cl. ⁷		識別記号	FΙ			ティコート' (参考)
G09F	9/00	366	G09F	9/00	366A	5 C O 9 4
	9/30	3 4 3		9/30	3 4 3 Z	5G435
	9/40			9/40	Z	
G09G	3/36		G09G	3/36		

F ターム(参考) 2H089 HA18 QA12 RA13 TA02 TA18

2H092 GA62 NA01 NA29 PA13 QA13

RA10

5B087 AA01 AA02 AE09 BC22 CC01

5C006 AF31 AF33.BA11 BB11

5C080 AA06 AA10 BB05 DD08 DD27

GG06 JJ02 JJ06

5C094 AA44 BA03 BA09 BA27 BA49

CA19 CA24 DA06 DA08 HA08

5G435 BB05 CC09 DD16 EE49 LL08