Problemas del cálculo de variaciones

Fernando Mazzone

Dpto de Matemática
Facultad de Ciencias Exactas Físico-Químicas y Naturales
Universidad Nacional de Río Cuarto Dpto de Matemática
Facultad de Ciencias Exactas y Naturales
Universidad Nacional de La Pampa
CONICET

7 de julio de 2015

ÍNDICE

CÁLCULO DE VARIACIONES Y MECÁNICA

ÍNDICE

CÁLCULO DE VARIACIONES Y MECÁNICA

ECUACIONES DE NEWTON

Sistema mecánico: n-puntos masa en un espacio euclideano tridimensional. Supuesto un sistema de coordenadas cartesiano, sean $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in \mathbb{R}^3$ las coordenadas de los puntos masa, $\mathbf{x}_i = (x_{i,1}, x_{i,2}, x_{i,3}), i = 1, \dots, n$. Vamos a poner $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n) \in \mathbb{R}^{3n}$.

Fuerzas: Supongamos que actúan fuerzas $f_i = f_i(t, \mathbf{x}(t), \dot{\mathbf{x}}(t))$ sobre cada masa m_i .

Leyes de movimiento de Newton

Suponiendo que el sistema satisface la segunda Ley de Newton

$$m_i\ddot{\boldsymbol{x}}_i=\boldsymbol{f}_i, \quad i=1,\ldots,n.$$

SISTEMAS CONSERVATIVOS

DEFINICIÓN

El sistema se llama conservativo si existe una función $U = U(\mathbf{r}, \dot{\mathbf{r}})$, con $U : \mathbb{R}^{3n} \times \mathbb{R}^{3n} \to \mathbb{R}$ tal que

$$f_i = \frac{\partial U}{\partial \mathbf{x}_i}, \quad i = 1, \dots, n.$$

Las derivadas de la expresión vectorial de la derecha hay que entenderlas como que presuponen las tres identidades escalares

$$f_{i,j}=\frac{\partial U}{\partial x_{i,i}}, \quad i=1,\ldots,n; j=1,2,3.$$