Chap 2. Scanning

COMP321 컴파일러

2007년 가을학기

경북대학교 전자전기컴퓨터학부

© 2004-7 N Baek @ GALab, KNU

The Front End

- The purpose of the front end is to deal with the input language
 - syntax check: code ∈ source language?
 - semantics check:
 - Is the program well-formed (semantically)?
 - Build an **IR version** of the code for the rest of the compiler

Scanner

- Maps stream of characters into words
- token: basic unit of syntax
- x = x + y; becomes < id, x > < eq, = > < id, x > < pl, + > < id, y > < sc, ; >
- Scanner discards white space & (often) comments

2.1 Introduction

Scanner

- also known as lexical analyzer
 - a stream of characters → a stream of words (tokens)
- 궁극적인 문제는 pattern matching
 - regular expression : pattern 표현 방법
 - lexical analysis : pattern matching 수행
- 응용 분야
 - UNIX grep command
 - Web search
 - find in word processors

왜 scanner 를 분리하는가?

- scanner / parser를 분리하는 이유
 - blank, new line, comment 제거를 전담
 - lexical rule을 적용해서 automation 가능
 - automata 이론 적용에 편리
 - parser의 부담을 줄인다.
 - parser는 syntax check만 해도 heavy-weighted!

```
1. goal \rightarrow expr

2. expr \rightarrow expr op term

3. | term

4. term \rightarrow \underline{number}

5. | \underline{id}

6. op \rightarrow +

7. | -
```

```
\underline{\text{number}} \rightarrow 0 \mid 1 \mid 2 \mid \dots \mid 9 \\
\mid 1 \text{ number} \\
\mid 2 \text{ number} \\
\mid \dots \\
\mid 9 \text{ number}

\underline{\text{id}} \rightarrow \dots
```

scanner가 해 줄 수 있는 일

2.2 Recognizing Words

Hand-Written Scanner

- for the word "for"
 - NextChar(): **function** to input the next character

```
• c ← NextChar()

if (c ≠ 'f')

then do something else

else

c ← NextChar()

if (c ≠ 'o')

then do something else

else

c ← NextChar()

if (c ≠ 'r')

then do something else

else

else report success
```


Hand-Written Scanners

• "for" case

• "while" case

• "for" and "while" case

Finite Automata

- transition diagram → more formalized → finite automata
 - FA와 transition diagram은 equivalent!
- FA is a five-tuple $(S, \Sigma, \delta, s_0, S_F)$
 - -S is the set of states. (must be finite)

•
$$S = \{ s_0, s_1, s_2, s_3 \}$$

 $-\Sigma$ is the alphabet. (must be finite)

•
$$\Sigma = \{ \underline{\mathbf{f}}, \underline{\mathbf{o}}, \underline{\mathbf{r}} \}$$

 $-\delta(s,c)$ is a transition function

•
$$\delta = \{ s_0 \xrightarrow{\underline{f}} s_1, s_1 \xrightarrow{\underline{o}} s_2, s_2 \xrightarrow{\underline{r}} s_3 \}$$

- $-s_0 \in S$ is the designated start state.
- $-S_F$ is the set of final states. $S_F \subseteq S$

•
$$S_F = \{ s_3 \}$$

Finite Automata

another example

$$-S = \{ s_0, s_1, \dots, s_8, s_e \}$$

$$-\Sigma = \{ \underline{e}, \underline{f}, \underline{h}, \underline{i}, \underline{l}, \underline{o}, \underline{r}, \underline{w} \}$$

$$-\delta = \{ s_0 \xrightarrow{\underline{f}} s_1, s_0 \xrightarrow{\underline{w}} s_4, \dots \}$$

$$-s_0$$

$$-S_F = \{ s_3, s_8 \}$$

- s_e : the designated error state
- FA accepts a word $x_1 x_2 x_3 ... x_n$ - $\delta(\delta(...\delta(\delta(s_0, x_1), x_2), ..., x_{n-1}), x_n) \in S_F$
- lexical error : $\delta(s_i, x_j)$ is undefined or the word ends at a non-final state.

Recognizing Natural Numbers

• a natural number, 32767

• any natural number : intuitive approach

• any natural number: correct answer with a cycle

Recognizing Natural Numbers

- $S = \{ s_0, s_1, s_2 \}$
- $\Sigma = \{ \underline{0}, \underline{1}, \underline{2}, ..., \underline{9} \}$
- $\bullet \quad \delta = \{ s_0 \xrightarrow{0} s_1, s_0 \xrightarrow{1...9}, s_2 \xrightarrow{0...9}$ $\bullet \quad S_F = \{ s_1, \overline{s_2} \}$

δ	0	19	other
s_0	s_1	S_2	s_e
<i>s</i> ₁	s_e	s_e	s_e
s_2	s_2	s_2	s_e
s_e	s_e	s_e	s_e

implementation

```
ch 		NextChar()
state \leftarrow s_0
while (ch \neq eof and state \neq s_{\rho})
    state \leftarrow \delta(\text{state, ch})
    ch ← NextChar()
end while
if (state \in S_F)
    then report acceptance
    else report failure
```

- automatic scanner construction?
 - 가능! → next sections

2.3 Regular Expressions

FA and RE

- F: a finite automata (FA)
- L(F): a language accepted by an FA
 - the set of (all) words accepted by a FA
- RE: regular expression for an FA
 - -L(F) 를 표현하는 intuitive expression
- L(F)를 정확하게 표현하는 방법 : FA itself
 - but, not intuitive, not efficient
- RE: L(F)를 직관적으로 표현하는 방법

RE Examples

• RE: for

• RE: for | while

• RE?

- · 0 | ([1..9]) ([0..9])*
 - [1..9] = 1 | 2 | ... | 8 | 9
- Kleene closure x*
 - zero or more occurrencesof x

Regular Expression

- Σ is the **alphabet** augmented with empty string ε
- L(r): the language accepted by a regular expression r
- ε is a RE denoting the set $\{\varepsilon\}$
- If $\underline{a} \in \Sigma$, then \underline{a} is a RE denoting $\{\underline{a}\}$
- If x and y are REs denoting L(x) and L(y) then
 - (priority 3) alternation: $x \mid y$ is an RE denoting $L(x) \cup L(y)$
 - (priority 2) concatenation : xy is an RE denoting L(x)L(y)
 - (priority 1) closure : x^* is an RE denoting $L(x)^*$
 - positive closure : $x^+ = xx^*$

$$x^* = \bigcup_{i=0}^{\infty} x^i \qquad x^+ = \bigcup_{i=1}^{\infty} x^i$$

RE Examples

Identifiers:

```
Letter \rightarrow (\underline{a}|\underline{b}|\underline{c}| \dots |\underline{z}|\underline{A}|\underline{B}|\underline{C}| \dots |\underline{Z})

Digit \rightarrow (\underline{0}|\underline{1}|\underline{2}| \dots |\underline{9})

Identifier \rightarrow Letter (Letter | Digit)*
```

Numbers:

```
Integer \rightarrow (\pm |\underline{=}|\mathbf{E}) (\underline{0}| (\underline{1}|\underline{2}|\underline{3}| \dots |\underline{9})(Digit^*))

Decimal \rightarrow Integer \underline{.} Digit ^*

Real \rightarrow (Integer | Decimal ) \underline{E} (\pm |\underline{=}|\mathbf{E}) Digit ^*

Complex \rightarrow (Real \underline{.} Real \underline{.}
```

Numbers can get much more complicated!

RE Examples

- quoted character string : " 와 " 로 묶인 string
 - [^c] : character c, ε 을 제외한 모든 alphabet → an example RE : "[^"]*"
- C string : \" 가능! $\rightarrow complex RE \dots$
- line comment : // 로 시작, \n 으로 끝 → RE : //[^\n]*
- C-style comment : /* 로 시작, */ 로 끝 → complex RE ...

Limits of RE's

- we have 32 registers: r0, r1, r2, ..., r30, r31
- complex RE approach
 - r0 | r00 | r1 | r01 | ... | r10 | r11 | r12 | ... | r30 | r31
 - 사람이 이해하기는 쉽지만, 구현은 복잡하다...

- simple FA + extra check approach
 - $RE : r[0..9]^+$
- 어느 쪽이든, 수행 시간은 거의 비슷함

Check Points

- Regular expressions can be used to specify the tokens recognized by a lexical analyzer
- Using results from automata theory
 and theory of algorithms,
 we can automatically build
 recognizers from regular expressions
- We study REs and associated theory to automate scanner construction!

2.4 From RE to Scanner and BACK

Our Goal

 We will show how to construct a finite state automaton to recognize any RE

© N Baek @ GAL, KNU

Global View

- NFA: non-deterministic finite automata
- DFA: deterministic finite automata
- RE를 공부한 이유: FA를 자동으로 만들기 위해!

NFA

- Each **RE** corresponds to a deterministic finite automaton (**DFA**)
 - May be hard to directly construct the right DFA
- What about an RE such as (a | b)*abb?

- This is a little different
 - $-s_0$ has a transition on ε
 - $-s_1$ has two transitions on <u>a</u>
- This is a non-deterministic finite automaton (NFA)

NFA

• ε의 존재

- hand-written FA 에서는 사실상 불필요
- automated FA 생성에서는 필수
 - RE 끼리의 결합에 사용
- multiple transition의 존재
 - An NFA accepts a string x iff \exists a path though the transition graph from s_0 to a final state such that the edge labels spell x
 - -x를 accept 하는 path만 존재하면, accept 판정

DFA and **NFA**

- Why study NFAs?
 - They are the key to automating the RE \rightarrow DFA construction
 - We can paste together NFAs with ε -transitions
- DFA is a special case of an NFA
 - DFA has no *E*-transitions
 - DFA's transition function is single-valued
 - Same rules will work
- DFA can be simulated with an NFA
 - obvious!
- NFA can be simulated with a DFA
 - We will show it!

Automating Scanner Construction

To convert a specification into code:

- 1 Write down the **RE** for the input language
- 2 Build a big NFA
- 3 Build the **DFA** that simulates the NFA
- 4 Systematically shrink the DFA
- 5 Turn it into code

Scanner generators

- Lex / Flex work along these lines
- Algorithms are well-known and well-understood
- Key issue is interface to parser
- You could build one in a weekend!

Thompson's Construction (RE → NFA)

Key idea

- NFA pattern for each symbol & each operator
- Join them with E moves in precedence order

NFA for $\underline{a} \mid \underline{b}$

NFA for $\underline{\mathbf{a}}^*$

Example of Thompson's Construction

Let's try $\underline{a} (\underline{b} | \underline{c})^*$

1. <u>a</u>, <u>b</u>, & <u>c</u>

2. <u>b</u> | <u>c</u>

3. $(\underline{b} | \underline{c})^*$

Example of Thompson's Construction

Of course, a human would design something simpler ...

But, we can automate production of the more complex one ...

- subset construction : $NFA \rightarrow DFA$ algorithm
 - NFA: $(N, \Sigma, \delta_n, n_0, N_F)$
 - DFA : $(D, \Sigma, \delta_d, d_0, D_F)$
 - 핵심은 $N \rightarrow D$ 로의 계산
- 기본 아이디어
 - NFA에서 주어진 input으로 갈 수 있는 모든 state를 다 따라간다.

- 그 모든 state를 DFA의 하나의 state가 되게 한다.

© N Baek @ GAL, KNU

Need to build a simulation of the NFA

Two key functions

- ε -closure(s_i) is set of states reachable from s_i by ε
- $Delta(s_i, \underline{a})$ is set of states reachable from s_i by \underline{a}
 - ε -closure $(q_0) = \{ q_0 \} \rightarrow d_0$
 - $Delta(d_0, \underline{\mathbf{a}}) = \{ q_1 \}$
 - ε -closure $(q_1) = \{ q_1, q_2, q_3, q_4, q_6, q_9 \} \rightarrow d_1$
 - $Delta(d_1, \underline{b}) = \{ q_5 \}$

The algorithm:

- Start state derived from s_0 of the NFA
- Take its ε -closure $S_0 = \varepsilon$ -closure S_0
- Take the image of S_0 , $Delta(S_0, \alpha)$ for each $\alpha \in \Sigma$, and take its ε -closure
- Iterate until no more states are added

Sounds more complex than it is...

- How many states in DFA?
 - NFA has $N = \{ q_0, q_1, ..., q_k \}$
 - DFA has $D = \{ d_0, d_1, ..., d_m \} \subseteq 2^N$
- 2^N : power set of N = all possible subsets of N
 - example : $A = \{ 1, 2 \}$
 - $-2^{A} = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$
- $|N| = k \rightarrow |2^N| = 2^k$: finite!

The algorithm: $q_0 \leftarrow \varepsilon\text{-}closure(q_0)$ $S \leftarrow \{ q_0 \}$ while (S is still changing) for each $s_i \in S$ for each $\alpha \in \Sigma$ $t \leftarrow \varepsilon\text{-}closure(Delta(s_i, \alpha))$

add t to S as s_j $T[s_i, \alpha] \leftarrow s_i$

if $(t \notin S)$ then

a fixed point iteration!

The algorithm halts:

- S contains no duplicates
- 2^N is finite: power set
- while loop adds to S,
 but does not remove from S (monotone)
- \rightarrow the loop halts!

S contains all the reachable NFA states:

- It tries each character in each s_i .
- every possible NFA configuration 을 시도
- \rightarrow S and T form the DFA

Subset Construction (NFA \rightarrow DFA)

Example of a *fixed-point* computation

- Monotone construction of some finite set
- Halts when it stops adding to the set
- Proofs of halting & correctness are similar
- These computations arise in many contexts

Other fixed-point computations

- Canonical construction of sets of LR(1) items
 - Quite similar to the subset construction
- Many numerical analysis algorithms
 - example: Newton method

Applying the subset construction:

		E-closure(Delta(s,*))		
	NFA states	<u>a</u>	<u>b</u>	<u>c</u>
s_0	q_0	$q_1, q_2, q_3, q_4, q_6, q_9$	none	none

Applying the subset construction:

		E-closure(Delta(s,*))		
	NFA states	<u>a</u>	<u>b</u>	<u>c</u>
s_0	q_0	$q_1, q_2, q_3, q_4, q_6, q_9$	none	none
S_I	<i>q</i> ₁ , <i>q</i> ₂ , <i>q</i> ₃ , <i>q</i> ₄ , <i>q</i> ₆ , <i>q</i> ₉	none	95, 98, 99, 93, 94, 96	97, 98, 99, 93, 94, 96

		ε-closure(Delta(s,*))		
	NFA states	<u>a</u>	<u>b</u>	<u>c</u>
s_0	q_0	$q_1, q_2, q_3, q_4, q_6, q_9$	none	none
s_I	9 ₁ , 9 ₂ , 9 ₃ , 9 ₄ , 9 ₆ , 9 ₉	none	95, 98, 99, 93, 94, 96	97, 98, 99, 93, 94, 96
S ₂	95, 98, 99, 93, 94, 96	none	95, 98, 99, 93, 94, 96	$q_7, q_8, q_9, q_3, q_4, q_6$

		ε-closure(Delta(s,*))		
	NFA states	<u>a</u>	<u>b</u>	<u>c</u>
s_0	q_0	$q_1, q_2, q_3, q_4, q_6, q_9$	none	none
s_I	91, 92, 93, 94, 96, 99	none	<mark>9</mark> 5, 98, 99, 93, 94, 96	97, 98, 99, 93, 94, 96
<i>S</i> ₂	95, 98, 99, 93, 94, 96	none	95, 98, 99, 93, 94, 96	<i>q</i> ₇ , <i>q</i> ₈ , <i>q</i> ₉ , <i>q</i> ₃ , <i>q</i> ₄ , <i>q</i> ₆
S 3	97, 98, 99, 93, 94, 96	none	q 5, q8, q9, q 3, q 4, q 6	$q_{7}, q_{8}, q_{9},$ q_{3}, q_{4}, q_{6}

Applying the subset construction:

		ε-closure(Delta(s,*))		
	NFA states	<u>a</u>	<u>b</u>	<u>c</u>
s_0	q_0	s_I	none	none
S_I	$q_1, q_2, q_3, q_4, q_6, q_9$	none	S ₂	S ₃
S ₂	95, 98, 99, 93, 94, 96	none	s_2	S3
S 3	97, 98, 99, 93, 94, 96	none	S_2	S ₃

The DFA for $\underline{a} (\underline{b} | \underline{c})^*$

	a	ь	c
d_0	d_1		
d_1	_	d_2	d_3
d_2	_	d_2	d_3
d_3	_	d_2	d_3

- Ends up smaller than the NFA
- All transitions are deterministic
- Use same code skeleton as before

• Remember $(\underline{a} | \underline{b})^* \underline{abb}$? - hand-driven NFA!

subset construction

Iter.	State	Contains	ϵ -closure(Delta(s_{i} , \underline{a}))	ϵ -closure(Delta(s_i , \underline{b}))
0	s_0	q_0 , q_1	q_1, q_2	q_I

• Remember $(\underline{a} | \underline{b})^* \underline{abb}$?

subset construction

Iter.	State	Contains	ε-closure(Delta(s _i , <u>a</u>))	ε-closure(Delta(s _i , <u>b</u>))
0	s_0	q_0, q_1	q_1, q_2	q_I
1	S_I	q_1, q_2	q_1, q_2	q_1, q_3
	s_2	q_I	q_1, q_2	q_I

• Remember $(\underline{a} | \underline{b})^* \underline{abb}$?

• subset construction

Iter.	State	Contains	ε-closure(Delta(s _i , <u>a</u>))	E-closure(Delta(s _i , <u>b</u>))
0	s_0	q_0, q_1	q_1, q_2	q_1
1	s_I	q_1, q_2	q_1, q_2	q_1, q_3
	s_2	q_I	q_1, q_2	q_{I}
2	S3	q_{1}, q_{3}	q_1, q_2	q_1, q_4

• Remember $(\underline{a} | \underline{b})^* \underline{abb}$?

• subset construction

Iter.	State	Contains	ε-closure(Delta(s _i , <u>a</u>))	ε-closure(Delta(s _i , <u>b</u>))
0	s_0	q_0, q_1	q_1, q_2	q_I
1	s_I	q_1, q_2	q_1, q_2	q_1, q_3
	s_2	q_{I}	q_1, q_2	q_{I}
2	S3	q_1, q_3	q_1, q_2	q_1, q_4
3	S ₄	q_1, q_4	q_1, q_2	q_I

	a	b
d_0	d_1	d_2
d_1	d_1	d_3
d_2	d_1	d_2
d_3	d_1	d_4
d_4	d_1	d_2

- Ends up smaller than the NFA
- All transitions are deterministic
- Use same code skeleton as before

- key idea
- Two states are **equivalent** if and only if:
 - The set of paths leading to them are equivalent
 - $\forall \alpha \in \Sigma$, transitions on α lead to equivalent states
 - α-transitions to distinct sets
 - → states must be in distinct sets
- 실제 알고리즘 : 반대로 구현
 - 모든 set을 equivalent 하다고 가정하고,
 - equivalence가 깨어질 때마다, 새로운 state 추가

- input: a DFA with states $D = \{ d_0, d_1, ..., d_n \}$
- output: another DFA with states $P = \{p_0, p_1, ..., p_m\}$
 - $-p_l$ contains a set of one or more DFA states d_i 's

•
$$p_l = \{ d_i \} \text{ or } p_l = \{ ..., d_i, d_j, ... \}$$

$$-P \operatorname{covers} D: \bigcup_{l=1}^{m} p_{l} = D$$

- key idea
 - Discover sets of equivalent states
 - Represent each such set with just one state

- equivalence test
 - let d_i ∈ p_l and d_j ∈ p_l
 - for all $c \in \Sigma$, we know that: $d_i \xrightarrow{c} d_x, d_j \xrightarrow{c} d_y$
 - if d_x ∈ p_t and d_y ∈ p_t : equivalent
 - otherwise, split p_l into two states

equivalent 만족

split 필요!

Details of the algorithm

- Group states into maximal size sets, *optimistically*
- Iteratively subdivide those sets, as needed
- States that remain grouped together are equivalent

 → fixed point iteration!

Initially, two states:

```
-p_0 = D_F: final states in original DFA
```

$$-p_1 = D - D_F$$
: non-final states

The algorithm:

```
P \leftarrow \{D_F, D - D_F\}
while ( P is still changing)
    T \leftarrow \emptyset
   for each set p \in P
       for each \alpha \in \Sigma
         if split needed,
             split p into p_1 and p_2
             T \leftarrow T \cup p_1 \cup p_2
          else
             T \leftarrow T \cup p
   if T \neq P then
       P \leftarrow T
```

Why does this work?

- Partition $P \in 2^D$
- Start off with 2 subsets: D_F and $D D_F$
- While loop takes $P_i \rightarrow P_{i+1}$ by splitting 1 or more sets
- P_{i+1} is at least one step closer to the partition with |D| sets
- Maximum of |D| splits

• Remember $(\underline{a} | \underline{b})^* \underline{abb}$?

• subset construction

Iter.	State	Contains	E-closure(Delta(s _i , <u>a</u>))	ε-closure(Delta(s _i , <u>b</u>))
0	s_0	q_0, q_1	q_1, q_2	q_1
1	s_I	q_1, q_2	q_1, q_2	q_1, q_3
	s_2	q_I	q_1, q_2	q_1
2	S3	q_{1}, q_{3}	q_1, q_2	q_1, q_4
3	S_4	q_1, q_4	q_1, q_2	q_{I}

	Current Partition	target	Split on <u>a</u>	Split on <u>b</u>
P_{θ}	$\{d_4\}\ \{d_0,d_1,d_2,d_3\}$	$\{d_0,d_1,d_2,d_3\}$	none	

	Current Partition	target	Split on <u>a</u>	Split on <u>b</u>
P_0	$\{d_4\}\ \{d_0,d_1,d_2,d_3\}$	$\{d_0,d_1,d_2,d_3\}$	none	$\{d_0, d_1, d_2\}$ $\{d_3\}$
P_1	$\{d_4\}\ \{d_3\}\ \{d_0,d_1,d_2\}$	$\{d_0,d_1,d_2\}$	none	$\{d_0, d_2\} \ \{d_1\}$

	Current Partition	target	Split on <u>a</u>	Split on <u>b</u>
P_{0}	$\{d_4\}\ \{d_0,d_1,d_2,d_3\}$	$\{d_0,d_1,d_2,d_3\}$	none	
P_1	$\{d_4\}\ \{d_3\}\ \{d_0,d_1,d_2\}$	$\{d_0,d_1,d_2\}$	none	$\{d_0, d_2\} \ \{d_1\}$
P_2	$ \{d_4\} \ \{d_3\} \ \{d_1\} \ \{d_0,d_2\} $		none	none

• NFA for $\underline{a} (\underline{b} | \underline{c})^*$:

• DFA for $\underline{a} (\underline{b} | \underline{c})^*$:

• DFA for $\underline{a} (\underline{b} | \underline{c})^*$:

		Split on		
	Current Partition	<u>a</u>	<u>b</u>	<u>c</u>
P_0	$\{d_1, d_2, d_3\} \{d_0\}$	none	none	none

DFA to RE

- DFA: a graph!
- use dynamic programming technique
 - $-R^{k}_{ij}$: RE for all paths from state i to state j using only states from 1 to k
 - iterate on k, i, j and finally get R^{n}_{1n}
- see Figure 2.10 for the algorithm
 - see Algorithm Text book for behind idea!

© N Baek @ GAL, KNU

DFA as Scanner

- DFA를 scanner로 쓸 때의 문제점
 - DFA: for a single word
 - scanner : sequence of words
 - 어디서 끊어야 하는가?
 - 예: in C, '<' and '<=' are both valid
- 해결책
 - language-level : 모든 word는 delimiter 로 끝난다.
 - '< =' → '<' and '=', '<=' → '<='
 - recognizer level : scanner에서 longest match를 선택
 - error 발생 시, 최후의 valid final state로 backup
 - 문제점: final state를 계속 trace 해야 된다

DFA as Scanner

- 또 하나의 문제점
 - 2개 이상으로 인식될 때, 어느 쪽을 택하나?
 - 'if': keyword and a valid identifier
 - 해결책 1: in most programming languages
 - 'if' is always keyword → reserved word
 - 이런 유형은 모두 priority를 부여해서 해결
 - 해결책 2: in ForTran
 - context sensitive
 - if i .eq. 3 goto 4 → if 문
 - -if = 3 \rightarrow identifier

2.5 Implementing Scanners

Table-Driven Scanners

 모든 DFA table 과 동작하는 code 사용

```
ch \leftarrow NextChar()

state \leftarrow s_0

while (char \neq eof)

state \leftarrow \delta(state, ch)

ch \leftarrow NextChar()

end while

if (state \in S_F)

then report acceptance

else report failure
```

• DFA for $\underline{a} (\underline{b} | \underline{c})^*$:

• DFA table:

	a	b	c
s_0	s_1	s_e	s_e
s_1	s_e	s_1	s_1

- example input
 - "abbcc" + delimiter

Direct-Coded Scanners

- table 대신,
 code 형태로 직접 쓰는 방식
 - 장점 : faster
 - 단점 : longer and complicated
- 실제로는 이 방식을 선호
 - scanner generator가 사용
 - 편의상, goto를 많이 씀
- DFA for $\underline{a}(\underline{b}|\underline{c})^*$:

• Example Code:

```
goto s0
s0: ch ← NextChar()
   if (ch = 'a')
      then goto s1
      else goto error
s1: ch ← NextChar()
    if (ch = 'b' \text{ or } ch = 'c')
      then goto s1
      else if (ch = eof)
        then report acceptance
        else goto error
error:
    report failure
```

Scanner Result

• 보통, <type, word/value> pair로 return

- operator : <+, NULL>, <*, NULL>
- keyword: <if, NULL>
- identifier : <iden, "hello">
- number : <int, 36>
- string : <string, "world">
- 저장해 둘 필요 있음 → symbol table

Handling Keyword

- 대부분의 programming language 에서, keyword 와 identifier 정의는 겹침
 - keywords ⊆ identifier
 - 어떻게 효과적으로 처리할 것인가?
- 모든 keyword를 scanner가 인식한다
 - large scanner, but faster
- symbol table lookup
 - 모두 identifier로 인식
 - symbol table 에서, keyword 인지 search
 - speed-up: no linear or binary search, use hashing!

Handling Numbers

- scanner 처리가 끝나면, number 라는 사실보다, number value가 중요하다.
 - 어떻게 value를 계산할 것인가?
- final state 에서 계산
 - input 전체를 새로 읽어야 한다
 - buffer를 사용해도, 여전히 2번 읽어야 한다
- each state 마다 계산
 - complicated, but faster
- see Lex or Flex for more details

Handling Strings

- string 인식 ? "[^"]*"
 - 그 내용이 중요하다
 - each state에서 buffer를 update 해야 한다
- 문제점?
 - 대형 program 에서는 duplicated string이 많다
 → string 저장 공간 증가
 - 해결책: symbol table 에 저장

2.6 Advanced Topics

ForTran: a Nightmare

no reserved word

- if(x) = 1 : 배열 if의 x 번째 값을 1로

- if (x) 120, 130 : x값이 negative → goto 120, else 130

no delimiters

- do 9 i = 1, 23 : i값이 1~23 반복해서 9번까지 수행

- do9i = 1,23 : same

- do9i=1.23 : do9i 에 1.23 assign

- do 9 i = 1.23 : same

• and more!

• 해결책: two-pass scanners

Building Scanners

The point

- All this technology lets us automate scanner construction
- Implementer writes down the regular expressions
- Scanner generator builds **NFA**, **DFA**, **minimal DFA**, and then writes out the (table-driven or direct-coded) **code**
- This reliably produces fast, robust scanners

For most modern language features, this works

- You should think twice before introducing a new feature that defeats a DFA-based scanner
- 실패한 예들: insignificant blanks, non-reserved keywords