comparing two independent means hypothesis testing

Dr. Merlise Clyde

question

do the data provide convincing evidence of a difference between the average post-meal snack consumption between those who eat with and without distractions?

biscuit intake in grams

	ybar	S	n
solitaire	52.10	45.10	22
no distraction	27.10	26.40	22

question

 $H_0: \mu_A = \mu_B = \mu$

 $H_1: \mu_A \neq \mu_B$

biscuit intake in grams

	ybar	S	n
solitaire	52.10	45.10	22
no distraction	27.10	26.40	22

model and priors

model under
$$H_0$$
 $Y_{A,i} \stackrel{\mathrm{iid}}{\sim} \mathsf{N}(\mu, \sigma_{A0}^2)$ $Y_{B,i} \stackrel{\mathrm{iid}}{\sim} \mathsf{N}(\mu, \sigma_{B0}^2)$

- model under H_1 $Y_{A,i} \stackrel{\mathrm{iid}}{\sim} \mathsf{N}(\mu_A, \sigma_A^2)$ $Y_{B,i} \stackrel{\mathrm{iid}}{\sim} \mathsf{N}(\mu_B, \sigma_B^2)$
- intrinsic prior for parameters
- prior probability of H_0 is 0.5
- use Markov Chain Monte Carlo (MCMC) to sample from posteriors

MCMC estimates

summary

- compared two independent means using
 Bayesian null hypothesis testing
- weak evidence in favor of hypothesis that distractions increase snack intake
- credible intervals under uncertainty
- MCMC and JAGS