HW 1

0.6 Let $A = (a_{ij})$ be a real $n \times n$ matrix with $a_{ij} > 0$ for all i, j. Prove that A has a positive eigenvalue λ ; moreover there is a corresponding eigenvector $x = (x_i)$ with $x_i > 0$ for all i. (Hint: First define $\sigma : \mathbb{R}^n \to \mathbb{R}$ by $\sigma((x_i)_{i=1}^n) = \sum_i x_i$. Then define $g : \Delta^{n-1} \to \Delta^{n-1}$ by $g(x) = Ax/\sigma(Ax)$. Apply the Brouwer fixed point theorem.)

Proof. First note that A maps the positive orthant into the positive orthant, and $A(\Delta^{n-1})$ does not meet 0. Hence $\sigma(Ax) > 0$ for all x, so g is continuous. Moreover, $\sigma(g(x)) = \sigma(Ax)/\sigma(Ax) = 1$. Hence g maps into Δ^{n-1} since g(x) also maps the positive orthant to itself.

Thus, by the Brouwer fixed point theorem, g(x) = x for some $x = (x_i) \in \Delta^{n-1}$. This means $Ax = \sigma(Ax)x$. As mentioned before, $\sigma(Ax) > 0$. To see that $x_i > 0$ for all i, first pick some j such that $x_j > 0$ (we can do this since $x \in \Delta^{n-1}$). Then for all i, we have $\sigma(Ax)x_i = \langle Ax, e_i \rangle \geq \langle Ax_j, e_i \rangle > 0$.

0.17 Let \mathcal{C} and \mathcal{A} be categories, and let \sim be a congruence on \mathcal{C} . If $T:\mathcal{C}\to\mathcal{A}$ is a functor with T(f)=T(g) whenever $f\sim g$, then T defines a functor $T':\mathcal{C}'\to\mathcal{A}$ (where \mathcal{C}' is the quotient category) by T'(X)=T(X) for every object X and T'([f])=T(f) for every morphism f.

Proof. T' is well-defined, and takes identity maps to identity maps. Lastly, T'([g][f]) = T(gf) = T(g)T(f) = T'([g])T'([f]).

0.20(ii) Show that $X \mapsto C(X)$ gives a functor $\mathbf{Top} \to \mathbf{Rings}$.

Proof. Define the functor $F: \mathbf{Top} \to \mathbf{Rings}$ by F(X) = C(X) and if $\phi: X \to Y$ define $F(\phi): C(Y) \to C(X)$ by $F(\phi)(f) = f(\phi(x))$. Then F is well-defined and takes identities to identities. Suppose $\phi: X \to Y$, $\psi: Y \to Z$, and $f \in C(Z)$. Then $F(\psi\phi)(f) = f(\psi(\phi(x))) = F(\phi)f(\psi(x)) = F(\phi)F(\psi)(f)$.