

IPGuard: Protecting Intellectual Property of Deep Neural Networks via Fingerprinting the Classification Boundary

Xiaoyu Cao, Jinyuan Jia, Neil Zhenqiang Gong Duke University

ASIA CCS 2021

Intellectual Property

• Effort in Training DNN Model

Large-scale datasets

\$1.6 million to train a BERT model on Wikipedia and Book corpora (15 GB)

Significant computational resources

Model Stealing

Model "Thief"

Threat Model

Model owner and attacker

Fingerprinting

• The Classification Boundary

Predicted label

Fingerprint

$$f_{C_t} = \{(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)\}$$

Extract Fingerprinting

Classification Boundary:

Finding data points near the classification boundary

$$\min_{x} ReLU(Z_i(x) - Z_j(x) + k) + ReLU(\max_{t \neq i, j} Z_t(x) - Z_i(x))$$

Verify Fingerprinting

Fingerprinting

Fingerprint

matching rate $\frac{m}{n}$ $y'_i = y_i$ for m data points

• Target Model and Positive Suspect Model

Fine-tune last layer (FTLL)
Fine-tune all layer (FTAL)

Retrain last layer (RTLL)
Retrain all layers (RTAL)

Weight pruning (WP)
Filter pruning (FP).

Classifier type			CIFAR-10	CIFAR-100	ImageNe
		ResNet20	0.91	s c	(-
Target classifier	1	WRN-22-4	=	0.75	(
		ResNet50	-	r a	0.75
		FTLL	0.92	0.75	0.75
		FTAL	0.92	0.75	0.76
	i.	RTLL	0.92	0.75	0.72
	P	RTAL 0.92		0.75	0.72
	3 8	p=0.1	0.91	0.74	0.75
Positive		p=0.2	0.91	0.75	0.75
Positive	WP	p=0.3	0.90	0.74	0.75
suspect		p=0.4	0.90	0.74	0.73
		p=0.5	=	0.73	0.72
	0 33	c=1/16	0.91	0.75	0.73
		c=2/16	0.91	S 5550.50	0.73
		c=3/16	0.91	0.74	0.72
	FP	c=4/16	0.90	0.73	- 25
		c=5/16	0.89	0.73	=
		c=6/16	0.89	:=	·-
		c=7/16	0.88	5 	-

• Negative Suspect Model

Same-architecture neural network classifiers

Different-architecture neural network classifiers

Random forest (RF)

	Same architecture	ResNet20	[0.91,0.92]	-	<u>-</u> 8
	DNNs	WRN-22-4		[0.74,0.76]	=
		LeNet-5	[0.64,0.67]	[0.31,0.34]	-
		VGG16	[0.93,0.94]	[0.68,0.70]	0.71
Magativo		ResNet152	2 50 0	=	0.77
Negative	Different	ResNet152V2	7 2	-	0.78
avanaat		InceptionV3	_	-	0.78
suspect	architecture	InceptionResNetV2	_	- E	0.80
classifiers		Xception	=	-	0.79
classifiers	DNNs	MobileNet(α=1.0)	-	-	0.70
		MobileNetV2(α=1.4)	-	-	0.75
		DenseNet201	_	=	0.77
		NASNetLarge	-	-	0.83
	Random forests	RF	[0.40,0.41]	[0.15,0.16]	_3

Matching Rate

Suspect classifier		FGSM	IGSM	$\text{CW-}L_2$	IPGuard	
	F	TLL	0.90	0.99	1.00	1.00
	F	TAL	0.92	0.90	1.00	1.00
	RTLL		0.87	0.99	1.00	1.00
	R	TAL	0.90	0.66	1.00	1.00
		p=0.1	0.86	0.91	1.00	1.00
Positive	WP	p=0.2	0.86	0.91	1.00	1.00
	VVI	p=0.3	0.89	0.88	1.00	1.00
suspect		p=0.4	0.90	0.70	1.00	1.00
		c=1/16	0.78	0.67	1.00	1.00
classifiers		c=2/16	0.80	0.41	1.00	1.00
	FP	c=3/16	0.87	0.37	1.00	1.00
		c=4/16	0.82	0.18	0.99	0.99
		c=5/16	0.79	0.17	0.97	0.94
		c=6/16	0.74	0.14	0.89	0.85
		c=7/16	0.77	0.09	0.70	0.71

Matching Rate

Nagativa	Same architecture DNNs	ResNet20	[0.06,0.66]	[0.00,0.01]	[0.00,0.07]	[0.00,0.09]
Negative suspect classifiers	Different architecture	LeNet-5	[0.08,0.49]	[0.00,0.03]	[0.00,0.03]	[0.00,0.03]
ciassifiers	DNNs	VGG16	[0.08,0.78]	[0.00,0.01]	[0.00,0.00]	[0.00,0.01]
	Random forests	RF	[0.02,0.09]	[0.00,0.01]	[0.00,0.00]	[0.00,0.00]

• Effectiveness

	CIFAR-10	CIFAR-100	ImageNet
Random	<1	<1	<1
FGSM	4.9	4.6	11.6
IGSM	11.2	15.6	47.9
CW-L ₂	20,006.3	30,644.6	121,955.7
IPGuard	37.8	249.9	7,634.3

Metrics——ARUC

$$ARUC = \int_0^1 \min\{R(\tau), U(\tau)\}d\tau$$

Area under the Robustness-Uniqueness Curves (ARUC)

• Impact of k on ARUC for IPGuard

