

Quantum Reinforcement Learning to Solve Cart Pole Environment

Unidade curricular de ciência de dados quântica 14/06/2023

Maria Gabriela Jordão Oliveira, PG 50599 Miguel Caçador Peixoto, PG 50657

Conteúdos

- 01 → Introdução e Motivação
- 02 --- Quantum Machine Learning
- 03 --- Reinforcement Learning
- 04 → Implementação
- 05 → Resultados
- 06 → Conclusão

01 →

Introdução e Motivação

(+) Interesse na Computação Quântica --->

Explorando as propriedades intrínsecas da mecânica quântica e com aplicações em diversas áreas.

(+) Aparecimento de paradigmas de ML ----

Aparecimento de paradigmas poderosos, tal como o reinforcement learning.

Problemas de escalabilidade e eficiência das máquinas clássicas ao resolver tarefas complexas.

Quantum Reinforcement Learning

02 →

Quantum Machine Learning

Circuitos Quânticos Variacionais

03 — Reinforcement Learning

Q - Learning

Q - Learning

Policy Gradient

Policy Gradient

03 → Implementação

Ambiente - Cart Pole (v1)

Action Space	Discrete(2)	
Observation Shape	(4,)	
Observation High	[4.8 inf 0.42 inf]	
Observation Low	[-4.8 -inf -0.42 -inf]	

Posição e velocidade do carrinho e ângulo e velocidade angular do poste

O jogo termina quando o poste ultrapassa um certo ângulo, o carrinho ultrapassa os limites do jogo ou se excede os 500 passos temporais.

Arquitetura dos Circuitos Quânticos

Embedding dos dados

$$|\psi_X\rangle = \bigotimes_{i=1}^N R_X(x_i) = \bigotimes_{i=1}^N \left[\cos\left(\frac{x_i}{2}\right)|0\rangle - i\sin\left(\frac{x_i}{2}\right)|1\rangle\right]$$

Entrelaçamento

Modelo clássico

DNN convencional com 10 neurônios por camada escondida, 4 na camada de input e 2 na de saída.

Treino

Q-Learning **Policy Gradient Epsilon Greedy** Start GRAND OPENING! Exploration Exploitation Select Best Known Action Select Random Action

Treino

Variable HP	Values	
Data Re-Uploading	{0, 1}	
Entanglement Type	$\{CX, CZ\}$	
Entanglement Format	{Ladder, C	ircular}
Number of Layers	[1, 8]	
Fixed HP		Values
Batch Size		16
Learning Rate (LR)		0.001
Learning Rate (IO Scali	ng)	0.01
ϵ_0		1
ϵ_{decay}		0.99
ϵ_{min}		0.01
Buffer Size		0.01
Target Update Frequency (Steps)		5
Online Train Frequency (Steps)		1
Win Threshold (Episodes)		100

As diferentes arquiteturas são treinadas ao longo de 5000 episódios, com condições de 'early stopping' de ganhar 100 episódios consecutivos.

Teste

100 jogos tendo em conta os modelos previamente treinados.

05 → Resultados

05 → Conclusão

