Inference rules in natural deduction.

Name	$\frac{1}{rule}$	coq forward	coq backward
	H1:A	1	1
$\wedge I$	$\cfrac{H2:B}{A\wedge B}$	pose proof(conj H1 H2).	split.
$\wedge E_1$	$\frac{H1:A\wedge B}{A}$	${ t pose proof(proj1 \ H1)}$.	_
$\wedge E_2$	$\frac{H1:A\wedge B}{B}$	${ t pose proof(proj2 \ H1)}$.	_
$\vee I_1$	$\frac{H1:C}{C\vee X}$	<pre>pose proof(or_introl (B:=X) H1). or pose proof(@or_introl _ X H1).</pre>	left.
$\lor I_2$	$\frac{H1:C}{X\vee C}$	pose proof(or_intror (A:= X) $H1$). or pose proof(@or_intror $X = H1$).	right.
$\vee E$	$\begin{array}{c} H1: A \vee B \\ H2: A \Rightarrow C \\ \underline{H3: B \Rightarrow C} \\ \hline C \end{array}$	destruct $H1$. ($H2$ and $H3$ are not needed)	_
$\Rightarrow I$	assumption/discharge	assert(A->B). intros Hn .	intros Hn .
$\Rightarrow E$	$ \begin{array}{c} H1: A \Rightarrow B \\ H2: A \\ \hline B \end{array} $	$ exttt{pose proof}(H1\;H2)$.	apply $H1$.
$\neg I$	$\frac{H1:A\Rightarrow\bot}{\neg A}$	pose proof $(H1: \tilde{\ }A)$.	_
$\neg E$	$\frac{H1:\neg A}{A\Rightarrow\bot}$	unfold not in *.	unfold not.
$\Leftrightarrow I$	$\begin{array}{c} H1:A\Rightarrow B\\ H2:B\Rightarrow A\\ \hline A\Leftrightarrow B \end{array}$	pose proof(conj H1 H2:A <->B).	split.
⇔E	$\frac{H1:A\Leftrightarrow B}{H2:(\dots A\dots)}$ $\frac{\dots B\dots)}{(\dots B\dots)}$	rewrite $H1$ in $H2$. or rewrite <- $H1$ in $H2$.	rewrite $H1$. or rewrite <- $H1$.
$\perp E$	$\frac{H1:\bot}{X}$	$\mathtt{destruct}\ H1.$	exfalso.
op I	T	${ t pose proof}({ t I}).$	_
$\forall I$	assumption/discharge	_	$\verb"intros"c$
$\forall E$	$\frac{H1: \forall x, Px}{c \text{ is a constant}}$	${\tt pose\ proof}(H1\ c).$	_
$\exists I$	$ \begin{array}{c} c \text{ is a constant} \\ H1: Pc \\ \hline \exists x, Px \end{array} $	${\tt pose\ proof(ex_intro}\ P\ c\ H1).$	exists c .
$\exists E$	$ \frac{H1: \exists x, Px}{c \text{ is a constant (fresh)}} $ $ Pc $	$\mathtt{destruct}\ H1.$	_
=I	$\frac{c \text{ is a constant}}{c = c}$	${\tt pose\;proof(eq_refl\;} c).$	reflexivity
=E	c is a constant d is a constant $H1:c=d$ $H2:Pc$ Pd	rewrite $H1$ in $H2$. or rewrite <- $H1$ in $H2$.	rewrite $H1$. or rewrite <- $H1$.
LEM	$\overline{X \vee \neg X}$	pose proof (classic X).	_