

- ☐ The HT93LC46 is a 1K-bit low voltage nonvolatile, serial electrically erasable programmable read only memory device using the CMOS floating gate process.
- ☐ The HT93LC46 is accessed via a three-wire serial communication interface.
- ☐ The device is arranged into 64 words by 16 bits or 128 words by 8 bits depending whether the ORG pin is connected to VCC or VSS. $2^6 \times 2^4$ $2^7 \times 2^3$
- ☐ The HT93LC46 contains seven instructions: READ, ERASE, WRITE, EWEN, EWDS, ERAL and WRAL.
- \square When the user selectable internal organization is arranged into 64×16 (128×8), these instructions are all made up of 9(10) bits data: 1 start bit, 2 op code bits and 6(7) address bits.

Pin	I/O	Description
Name		
CS	I	Chip select input
SK	I	Serial clock input
DI	I	Serial data input
DO	0	Serial data output
VSS	_	Negative power supply,
		ground
ORG	I	Internal Organization
		When ORG is connected to
		VDD or ORG is floated , the
		(16) memory organization is
		selected.
		When ORG is tied to VSS,
		the (8) memory organization
		is selected.
		There is an internal pull-up
		resistor on the ORG pin.
VCC		Positive power supply

								•
Symbol	Parameter	V _{CC} =5V±10%		V _{CC} =3V±10%		V _{CC} =2.2V		I In it
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
f _{SK}	Clock Frequency	0	2000	0	1000	0	500	kHz
t _{SKH}	SK High Time	250	_	500	_	1000	_	ns
t _{SKL}	SK Low Time	250	_	500	_	1000	_	ns
t _{CSS}	CS Setup Time	50	_	100	_	100	_	ns
t _{CSH}	CS Hold Time	0	_	0	_	0	_	ns
t _{CDS}	CS Deselect Time	250	_	250	_	500	_	ns
t _{DIS}	DI Setup Time	100	_	150	_	200	_	ns
t _{DIH}	DI Hold Time	100	_	150	_	200	_	ns
t _{PD1}	DO Delay to "1"	_	250	_	500	_	1000	ns
t _{PD0}	DO Delay to "0"	_	250	_	500	_	1000	ns
tsv	Status Valid Time	_	250	_	250	_	250	ns
t _{HZ}	DO Disable Time	_	100	_	200	_	400	ns
t _{PR}	Write Cycle Time	_	5	_	5	_	5	ms
	1 1	<u> </u>		<u> </u>		<u> </u>		<u> </u>

Instruction	Comments	Start bit	Op Code	Address ORG=0 ORG=1 X8 X16	Data ORG=0 ORG=1 X8 X16
READ	Read data	1	10	A6~A0 A5~A0	D7~D0 D15~D0
ERASE	Erase data	1	11	A6~A0 A5~A0	_
WRITE	Write data	1	01	A6~A0 A5~A0	D7~D0 D15~D0
EWEN	Erase/Write Enable	1	00	11XXXXX 11XXXX	_
EWDS	Erase/Write Disable	1	00	00XXXXX 00XXXX	_
ERAL	Erase All	1	00	10XXXXX 10XXXX	_
WRAL	Write All	1	00	01XXXXX 01XXXX	D7~D0 D15~D0

Note: X stands for don't care

Data should be written to the EEPROM in the format (8-bit or 16-bit mode) in which it is to be read.

VVIOLE	VVIICO / MI	'	00	
Read CS	?/	**	<i>?</i> /	▼ tcps
SK		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	1) 1\ 0 \/AN\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	₩	~~	
DO	High−Z		×\\	→ tHZ High-Z
Write CS	*	*	*	tcos verify Standby
SK				
DI/(1		\A0\DX\		→ tsv → thz
DO	High-Z			busy ready

* Address pointer automatically cycles to the next word

Mode	(X16)	(X8)		
AN	A5	A6		
DX	D15	D7		

Symbol	Parameter		V _{CC} =5	Unit	
Symbol			Min.	Max.	Onit
f_{SK}	Clock Frequency		0	2000	kHz
t _{SKH}	SK High Tir	me	250	_	ns
t _{SKL}	SK Low Tin	ne	250	_	ns
t _{CSS}	CS Setup Time		50	_	ns
t _{CSH}	CS Hold Time		0	_	ns
t _{CDS}	CS Deselect Time		250	_	ns
t _{DIS}	DI Setup Time		100	_	ns
t _{DIH}	DI Hold Time		100	_	ns
t _{PD1}	DO Delay to "1"		_	250	ns
t _{PD0}	DO Delay to "0"		_	250	ns
tsv	Status Valid Time		_	250	ns
t _{HZ}	DO Disable Time			100	ns
t _{PR}	Write Cycle Time		_	5	ms

Holtek - Serial EEPROM (HT93LC46) / Read

Holtek – Serial EEPROM (HT93LC46) / Write


```
void EEPROM_Serial_WR(unsigned char ee_addr, unsigned char ee_data)
                                                 CS
                                                                                              verify
                                                                                                    Standby
         unsigned char get_sda;
         get_sda=0b01000000;
         CS0=0; SK0=0;
                                                               delay_rom();
                                                       Start bit
         CS0=1;
                                                                 High-Z
                                                                                             busy/ ready
         DI0=1; delay_rom(); SK0=1; //send '1'
         delay rom(); SK0=0;
         DI0=0; delay_rom(); SK0=1; //send '0'
         delay_rom(); SK0=0;
         DI0=1; delay_rom(); SK0=1; //send '1'
         delay_rom(); SK0=0;
         do
                   if (ee addr & get sda)
                                                                 do
                             DI0=1;
                   else
                                                                           DI0=ee_data & get_sda;
                             DI0=0;
                                                                           delay_rom(); SK0=1;
                    delay_rom(); SK0=1;
                                                                           delay_rom(); SK0=0;
                    delay_rom(); SK0=0;
                                                                           get sda>>=1; //send DATA
                    get_sda>>=1;
                                       //send ADDR
                                                                  } while (get_sda!=0);
          } while (get_sda!=0);
                                                                 delay_rom(); CS0=0; delay_rom();
         get sda=0b10000000;
                                                                 delay(1000);
```


Holtek – Serial EEPROM (HT93LC46) / Erase/Write Enable

X16

```
void EEPROM_Serial_EWEN(unsigned char en_dn)
                                                              //en dn=1:enable/0:DI0sable
            unsigned char get_sda;
                                                                                                     Address
                                                                                                                        Data
                                                                                      Start
                                                                                            Op
                                                                                                                    ORG=0 ORG=1
                                                          Instruction
                                                                        Comments
                                                                                                   ORG=0 ORG=1
            unsigned char fun_data;
                                                                                       bit
                                                                                           Code
                                                                                                          X16
                                                                                                                     X8
            get_sda=0b01000000;
                                                          EWEN
                                                                    Erase/Write Enable
                                                                                       1
                                                                                            00
                                                                                                  11XXXXXX 11XXXX
            if (en_dn==1)
                                                          EWDS
                                                                    Erase/Write Disable
                                                                                            00
                                                                                                  00XXXXX 00XXXX
                                                                                                                    D7~D0 D15~D0
                        fun_data=0b01100000;
                                                          WRITE
                                                                                            01
                                                                                                  A6~A0
                                                                                                         A5~A0
                                                                    Write data
            else
                                                            CS
                                                                                                                 Standby
                        fun data=0b00000000;
            CS0=0; SK0=0;
            delay rom();
            CS0=1;
            DI0=1; delay rom(); SK0=1; //send '1'
                                                                    Start bit
                                                                              11=EWEN
            delay_rom(); SK0=0;
                                                                              00=EWDS
            DI0=0; delay rom();
                                     SK0=1; //send '0'
            delay_rom(); SK0=0;
            DI0=0; delay_rom(); SK0=1; //send '0'
            delay rom(); SK0=0;
            do
                        if (fun_data & get_sda)
                                     DI0=1;
                         else
                                     DI0=0;
                        delay_rom(); SK0=1;
                         delay rom(); SK0=0;
                         get sda >>=1;
                                                 //send ADDR(6)
            } while (get_sda!=0);
            delay rom(); CS0=0; delay rom();
```


A.C. Characteristics

8 DIP-A/SOP-A/TSSOP-A

Symbol	Parameter	V _{CC} =5V±10%		V _{CC} =3V±10%		V _{CC} =2.2V		I I mit
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
f _{SK}	Clock Frequency	0	2000	0	1000	0	500	kHz
t _{SKH}	SK High Time	250	_	500	_	1000	_	ns
t _{SKL}	SK Low Time	250	_	500	_	1000	_	ns
t _{CSS}	CS Setup Time	50	_	100	_	100	_	ns
t _{CSH}	CS Hold Time	0	_	0	_	0	_	ns
t _{CDS}	CS Deselect Time	250	_	250	_	500	_	ns
t _{DIS}	DI Setup Time	100	_	150	_	200	_	ns
t _{DIH}	DI Hold Time	100	_	150	_	200	_	ns
t _{PD1}	DO Delay to "1"	_	250	_	500		1000	ns
t _{PD0}	DO Delay to "0"	_	250	_	500	_	1000	ns
tsv	Status Valid Time	_	250	_	250	_	250	ns
t _{HZ}	DO Disable Time	_	100	_	200	_	400	ns
t _{PR}	Write Cycle Time	_	5	_	5	_	5	ms

Pin Name	I/O	Description
CS	I	Chip select input
SK	I	Serial clock input
DI	I	Serial data input
DO	О	Serial data output
VSS		Negative power supply, ground
ORG	I	Internal Organization When ORG is connected to VDD or ORG is floated, the (16) memory organization is selected. When ORG is tied to VSS, the (8) memory organization is selected. There is an internal pull-up resistor on the ORG pin.
VCC	_	Positive power supply


```
EEPROM Serial EWEN(1):
                                                for(i_chg=0; i_chg<4; i_chg++)
for(i_chg=0; i_chg<4; i_chg++)
                                                          EEPROM_Serial_ER(i_chg);
   pwd[i_chg]=key_bcd[i_chg];
                                                for(i_chg=0; i_chg<4; i_chg++)
   EEPROM_WR(i_chg, key_bcd[i_chg]);
                                                          data_bcd[i_chg]=dig_bcd[i_chg];
                                                          EEPROM_Serial_WR(i_chg, dig_bcd[i_chg]);
                                                          dig_bcd_show[i_chg]=dig_bcd[i_chg];
                                                EEPROM_Serial_EWEN(0);
                                                for(i_chg=0; i_chg<4; i_chg++)
for(i_chg=0; i_chg<4; i_chg++)
                                                         data_bcd[i_chg]=EEPROM_Serial_RD(i_chg);
   pwd[i_chg]=EEPROM_RD(i_chg);
                                                         dig_bcd_show[i_chg]=data_bcd[i_chg];
```