MA1214 Extra Exercises 1

- (0) Prove some of the results that were stated but not (completely) proved in the lectures. For example:
 - (i) range($q \circ f$) = q(range(f)).
 - (ii) If $g \circ f$ and $h \circ g$ are defined, then $h \circ (g \circ f)$ and $(h \circ g) \circ f$ are defined and equal.

:

- (1) Consider the sine and cosine function $\sin, \cos : \mathbb{R} \to \mathbb{R}$. Are they injective? What is their range?
- (2) Consider the exponential map $\exp : \mathbb{R} \to \mathbb{R}$. Is it injective? What is its range? When you replace the codomain of \exp by its range, does the resulting map have an inverse?
- (3) Answer the same questions as in (2) for the complex exponential $\exp : \mathbb{C} \to \mathbb{C}$. Hint. $\exp(x+iy) = \exp(x) \exp(iy) = \exp(x) (\cos(y) + i\sin(y))$. If you are really ambitious, answer the same questions as in (2) for the complex sine $\sin(z) = 1/2i (\exp(iz) - \exp(-iz))$ and $\cos(z) = 1/2 (\exp(iz) + \exp(-iz))$.
- (4) A congruence on a semigroup S is a relation \equiv on S such that $x_1 \equiv x_2$ and $y_1 \equiv y_2$ implies $x_1y_1 \equiv x_2y_2$ for all $x_1, x_2, y_1, y_2 \in S$. Now let \equiv be a congruence on a semigroup S. We denote the set of equivalence classes by S/\equiv .
 - (i) Show that the map $([x]_{\equiv}, [y]_{\equiv}) \mapsto [xy]_{\equiv} : S/\equiv \times S/\equiv \to S/\equiv$ is well-defined and show that this turns S/\equiv into a semigroup. Show that if S is a monoid or a group, then so is S/\equiv .
 - (ii) Consider the monoid $M = \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ with operation (k,l)(m,n) = (km,ln). Show that the relation $(k,l) \equiv (m,n) \Leftrightarrow \exists_{s,t \in \mathbb{Z}} (s,t \neq 0 \land (sk,sl) = (tm,tn))$ (or: kn = lm) is a congruence on M. Denote $[(k,l)]_{\equiv}$ by k/l and denote $[(1,1)]_{\equiv}$ and $[(0,1)]_{\equiv}$ by 1 (one) and 0 (zero). Show that M/\equiv is a monoid and that all nonzero elements in M/\equiv are invertible. The monoid M/\equiv is nothing but the multiplicative monoid of \mathbb{Q} , the field of rational numbers.
- (iii) The notation is as in (ii). Show that \mathbb{Z} embeds in M/\equiv via $k\mapsto k/1$. How would you extend the addition of the integers to M/\equiv ?