2024 암호분석경진대회 - 비밀분쇄기팀 5번 문제 풀이

Table 1: 실험 결과.

Round	Model	Accuracy	평문-암호문 쌍 개수에 따른 키 순위				
			32	64	128	256	512
4	Baseline	0.6950	3.5	0.4	0.4	0.4	0.4
	Hou et al.	0.5778	8.7	1.8	0.6	0.6	0.6
	Ours	0.6617	6.0	0.4	0.4	0.4	0.4
5	Baseline	0.5609	19.1	12.9	6.4	3.9	2.9
	Hou et al.	0.5100	11.3	18.4	20.7	19.2	15.9
	Ours	0.5069	16.0	19.1	15.8	14.4	13.9

Notation. 문제 풀이에 다음과 같은 notation을 사용한다.

• P:64-bit 평문

• C:64-bit 암호문

● *P_H* : 평문의 상위 32-bit

● *P_L* : 평문의 하위 32-bit

● *C_H* : 암호문의 상위 32-bit

● *C_L* : 암호문의 하위 32-bit

• X_i : i번째 라운드에서 F_i 의 입력으로 사용되는 32-bit 중간 계산 결과

• K_i : i번째 라운드에 사용되는 48-bit subkey

• $F_i(X_i, K_i) : i$ 번째 라운드의 F-function

• A[i]: A의 i 번째 bit

• $A[i, j, ..., k] : A[i] \oplus A[j] \oplus ... \oplus A[k]$

• A < i, j, ..., k > : A[i]||A[j]||...||A[k]. ||는 bit concatenation이다.

질문 1. Feistel 구조 블록 암호 알고리즘에서 선형 공격을 통한 1-bit 키 복구를 위한 알고리즘을 기술하시오. 답변 1.

어떤 Feistel 구조 블록 암호 알고리즘에 대해서 다음과 같은 선형 등식을 생각해볼 수 있다.

$$P[i_1, i_2, ..., i_a] \oplus C[j_1, j_2, ..., j_b] = K[k_1, k_2, ..., k_c]$$
(1)

여기서 $i_1, ..., i_a, j_1, ..., j_b, k_1, ..., k_c$ 는 각각 평문, 암호문, 키에서의 bit index이다. 즉, 평문에서 a개 bit, 암호문에서 b개 bit를 뽑아 xor 하였을때 키에서 c개 bit을 뽑아 xor 한 것과 같음을 나타내는 등식이다. 선형 근사 공격의 핵심 아이디어는 위 식이 랜덤한 P 와 C에 대해서는 1/2 확률로 성립하지만, P만 랜덤하고 C가 P에 대한 암호문이라면 특정 bit index 집합에 대해 위 식이 성립할 확률이 $p \neq 0.5$ 라는 것이다. 예를 들어, 3-round DES에서 아래 식이 성립할 확률은 69.5%임을 유도할 수 있다 [3].

$$L_3: P_H[7, 18, 24, 29] \oplus P_L[15] \oplus C_H[7, 18, 24, 29] \oplus C_L[15] = K_1[22] \oplus K_3[22]$$
 (2)

식의 형태가 조금 다르지만 P_H , P_L , C_H , C_L , K_1 , K_3 는 결국 P, C, K의 비트 중 일부이므로 같은 꼴로 변형이 가능하다. 만약 많은 수의 평문-암호문 쌍을 가지고 있다면 다음과 같은 알고리즘으로 1-bit information을 얻어낼 수 있다.

- 1. 평문-암호문 쌍의 개수를 N이라고 하자.
- 2. 평문-암호문 쌍을 식 1의 좌변에 대입하여 결과가 0인 쌍의 개수를 T라고 하자.
 - (a) 만약 T > N/2 and p > 1/2 또는 T <= N/2 and p < 1/2이면 $K[k_1, k_2, ..., k_c] = 0$ 으로 추측한다.
 - (b) 만약 T > N/2 and p < 1/2 또는 T <= N/2 and p > 1/2이면 $K[k_1, k_2, ..., k_c] = 1$ 으로 추측한다.

위 알고리즘의 추측이 맞을 확률은 |p-1/2|가 클수록 높아지기 때문에 그러한 식(i.e., $i_1,...,i_a,j_1,...,j_b,k_1,...,k_c$)를 찾는 것이 중요하며, Matsui et al [3]는 $3\sim 20$ 라운드 DES에 대해 |p-1/2|가 최대인 식을 밝혔다. 또한 평문-암호문 쌍을 많이 가지고 있어도 추측이 맞을 확률이 높아진다.

질문 2. n-라운드로 축소된 DES에서 평문, 암호문, 키의 bit location mask를 선택하고, 선택한 bit location mask를 이용하여 구성한 선형 근사식 L을 기술하시오.

답변 2.

실질적으로 n-라운드 DES를 공격하기 위해서는 위의 1-bit 알고리즘보다는 multi-bit 정보를 얻을 수 있도록 아래와 같이 변형된 알고리즘을 사용한다. (n – 1)-라운드 선형근사식에 첫번째 라운드의 영향을 적용하여 아래와 같은 식을 생각할 수 있다.

$$P[i_1, i_2, ..., i_a] \oplus C[j_1, j_2, ..., j_b] \oplus F_1(P_L, K_1)[l_1, l_2, ..., l_d] = K[k_1, k_2, ..., k_c]$$
(3)

위 식을 가지고 아래와 같은 알고리즘을 적용할 수 있다.

- 1. 모든 가능한 K_1 값을 순회하면서 평문-암호문 쌍을 식 3의 좌변에 대입하여 결과가 0인 쌍의 개수를 센다. 그 중 가장 큰 값을 T_{max} , 가장 작은 값을 T_{min} 이라고 하자.
- 2. 평문-암호문 쌍을 4 1의 좌변에 대입하여 결과가 0인 쌍의 개수를 T라고 하자.
 - (a) 만약 $|T_{max} N/2| > |T_{min} N/2|$ 를 만족하면 T_{max} 에 대응되는 K_1 값을 취하고, 우변은 p > 1/2라면 0, p < 1/2라면 1로 추측하다.
 - (b) 만약 $|T_{max} N/2| < |T_{min} N/2|$ 를 만족하면 T_{min} 에 대응되는 K_1 값을 취하고, 우변은 p > 1/2라면 1, p < 1/2라면 0로 추측한다.

여기서 K_1 은 48-bit이지만 $F_1(P_L,K_1)[l_1,l_2,...,l_d]$ 의 값에 실제로 영향을 미치는 비트는 더 적으므로 전수조사가 가능하다. 영향을 미치는 비트의 수를 e라고 하면, 우변에서 얻는 1-bit information을 합하여 총 e+1 비트의 정보를 얻을 수 있다. 또한 유사하게 (n-1)-라운드 선형근사식에 마지막 라운드의 영향을 적용한 식을 얻어내고 같은 알고리즘을 적용할 수 있다.

다음은 Matsui et al.로부터 유도한 4-round 및 5-round DES를 공격하기 위한 선형근사식 L_4 와 L_5 이다. 아래의 bit location 및 선형 근사식을 사용하여 이후 풀이를 진행하고자 한다.

 $L_4: P_L[7, 18, 24, 29] \oplus P_H[15] \oplus C_L[15] \oplus C_H[7, 18, 24, 29] \oplus F_1(P_L, K_1)[15]$

 $=K_2[22] \oplus K_4[22]$

 $L_5: P_L[7, 18, 24, 29] \oplus P_H[15] \oplus C_L[7, 18, 24, 29, 27, 28, 30, 31] \oplus C_H[15] \oplus F_1(P_L, K_1)[15]$

 $=K_2[22] \oplus K_4[22] \oplus K_5[42] \oplus K_5[43] \oplus K_5[45] \oplus K_5[46]$

질문 3. 딥러닝을 활용하여 문제 (2)에서 기술한 선형근사식을 이용한 키 복구 공격 수행 알고리즘을 기술하시오.

답변 3.

답변 2의 알고리즘을 생각했을 때, 주어진 평문-암호문 쌍에 대해 올바른 K와 틀린 K를 구분할 수 있는 classification model을 학습하여 키 복구 공격을 수행할 수 있다. 구체적으로 선형근사식 L에서 좌변의 각 비트를 입력으로 하는 딥러닝 모델을 구성하면, xor 연산보다 더 나은 representation을 찾을 수 있으리라고 기대할 수 있다.

Hou et al. [2]은 확률이 p인 베르누이 분포와 확률이 0.5인 베르누이 분포를 구분하는 네트워크를 학습하는 방식으로 접근하였다. 그러나 실험 결과 선형근사식의 좌변을 입력으로 하고 우변을 라벨로하는 네트워크를 학습하는 것이 더 효과적임을 알 수 있었다.

다음은 Hou et al.의 학습 데이터 생성 방식을 정리한 것이다.

1. 선형근사식 L의 우변을 0으로 하는 K를 Uniform distribution으로 생성한다.

- 2. Uniform distribution으로 랜덤한 P를 생성하고 N-round DES를 적용하여 암호문 C를 생성한다.
- 3. Uniform distribution으로부터 0 또는 1인 라벨 Y를 생성한다.
- 4. Y 값에 따라서 입력 X를 생성한다.
 - Positive sample 생성 : Y가 1인 경우, 식 L의 좌변을 계산하되 xor을 적용하지 않고 각 비트를 한개의 원소로 하여 입력 벡터 X를 생성한다. 예를 들어, L_4 에서 X는 길이 11의 벡터

$$\{P_L[7], P_L[18], P_L[24], P_L[29], P_H[15], C_H[7], C_H[18], C_H[24], C_H[29], C_L[15], F_1(P_L, K_1)[15]\}$$

$$(4)$$

가 된다.

• Negative sample 생성 : Y가 0인 경우, 위와 유사하게 X를 생성하되 K에 영향을 받는 값에 대해서는 uniform distribution으로부터 랜덤한 값을 생성하여 채운다. 예를 들어, L_4 에서 X의 마지막 원소를 $F_1(P_L,K_1)[15]$ 대신 랜덤한 값으로 생성한다.

다음은 우리가 사용한 학습 데이터 생성 방식을 정리한 것이다.

- 1. Uniform distribution으로 랜덤한 P 및 K를 생성하고 N-round DES를 적용하여 암호문 C를 생성한다.
- 2. 4 L의 좌변을 계산하되 xor을 적용하지 않고 각 비트를 한개의 원소로 하여 입력 벡터 X를 생성한다.
- 3. 식 L의 우변을 계산하여 0 또는 1인 라벨 Y를 생성한다.

위 학습 데이터로 딥러닝 모델 M의 학습을 마쳤다고 가정하면 아래와 같이 키 복구 공격을 수행할 수 있다.

- 1. L의 좌변에 영향을 미치는 K의 bit location 집합 $mask_K$ 를 찾는다. 그리고 $K' = K < mask_K >$ 로 정의하자.
 - 예를 들어, L_4 의 좌변에서 K가 영향을 미치는 항은 $F_1(P_L, K_1)[15]$ 이다. DES의 알고리즘을 역으로 추적하면 좌변에 영향을 미치는 K의 bit location은 $mask_K = \{4, 13, 15, 30, 47, 54\}$ 임을 알 수 있다.
- 2. 가능한 K' 값의 후보집합 $K'_{cand} = \{i | 0 \le i < 2^{|mask_K|} \}$ 를 생성한다.
 - 예를 들어, L_4 에 대한 K'_{cand} 는 $\{000000_2, 000001_2, ..., 111111_2\}$ 이다.
- 3. 각 $K' \in K'_{cand}$ 에 대해 평문-암호문 쌍을 딥러닝 모델에 넣어 M(P,C,K')가 1로 분류되는 개수 T를 센다.
- 4. 각 K'의 rank는 T를 내림차순 한 것과 오름차순 한 것 중 작은 <math>rank를 취한다. 해당 랭크를 기준으로 리스트를 반환한다.

반환된 리스트에서 앞에 있을수록 키가 맞을 확률이 높으므로, 앞에 있는 키부터 $mask_K$ 가 아닌 나머지 비트에 대해 bruteforce 공격을 수행하면 된다. 반대로 올바른 키가 반환된 리스트에서 앞에 있을 수록 좋은 모델이라고 말할 수 있다.

질문 4. 키 복구 공격을 위해 딥러닝 모델의 하이퍼-파라미터와 모델 구조를 상세히 기술하시오.

답변 4.

모델은 ResNet [1]를 참고하여 구성하였다. ResNet과의 차이점은 입력이 spatial 데이터가 아니므로 Convolution 레이어 대신 Linear 레이어를 사용하였고, mini-batch의 크기에 민감한 BatchNorm 레이어 대신 LayerNorm 레이어를 사용하였다. 또한 레이어 수를 적절하게 축소하였다. 사용한 모델은 ResNet과 마찬가지로 basic block의 반복 구조로 이루어져있는데 각 basic block은 2개의 Linear 레이어, 2개의 LayerNorm 레이어, 1개의 ReLU, 그리고 residual connection으로 구성하였다. 모델 코드는 제출한 model.py에 있으며 표 2 및 표 3에 모델 구조를 정리하였다. 학습한 모델은 약 1.4MB이며 각각 model_hou_round_4.pt, model_ours_round_5.pt, model_ours_round_5.pt로 제출물에 포함되어있다.

Table 2: BasicBlock(C,K)의 구조. B는 mini-batch 크기이다.

Layer	Input size
Linear	[B, C]
LayerNorm	[B, K]
ReLU	[B, K]
Linear	[B, K]
LayerNorm	[B, K]
Addition	[B, K]
ReLU	[B, K]

학습에는 cross entropy loss를 사용하였으며 Adam optimizer와 mini-batch size 1k, learning rate 10^{-4} 를 사용하였다.

Table 3: 전체 모델의 구조. W는 입력의 길이이다. (4-round의 경우 11, 5-round의 경우 15)

Layer	Input size
BasicBlock(W, 64)	[B, W]
BasicBlock(64, 64)	[B, 64]
BasicBlock(64, 64)	[B, 64]
BasicBlock(64, 128)	[B, 64]
BasicBlock(128, 128)	[B, 128]
BasicBlock(128, 256)	[B, 128]
BasicBlock(256, 256)	[B, 256]
Linear	[B, 128]
-	[B, 2]

질문 5. 해당 알고리즘을 이용해 학습할 때 사용된 평문-암호문 쌍의 개수와 키 복구 정확도를 작성하시오.

답변 5.

학습에는 100k개의 평문-암호문 쌍을 사용하였으며, 과적합을 방지하기 위해 매 epoch마다 별도의 10k개 평문-암호문 쌍으로 이루어진 test 데이터셋으로 정확도를 측정하여 200 epoch 중 가장 좋은 모델을 저장하였다. 실험은 4-round, 5-round DES로 진행하였으며 딥러닝을 사용하지 않고 선형근사식의 좌변을 직접 연산한 Baseline, Hou et al.을 재현한 모델, 그리고 우리 모델을 비교하였다.

실험 결과는 풀이 최상단의 표 1와 같다. 키 순위는 공격을 10번 수행하여 평균을 측정하였다. 4-round DES 공격에서 더 작은 모델로 Hou et al.의 정확도(0.5677)과 유사한 0.5778의 정확도를 재현할 수 있었으며, 데이터셋 생성 방법을 새로 제안한 방법으로했을 시 더 높은 0.6617의 정확도를 달성할 수 있었다. 그러나 딥러닝을 사용하지 않은 선형근사식 기반 공격의 성능만큼은 달성할수 없었다. 마찬가지로 5-round DES에서 baseline은 공격 가능한 정도의 정확도를 보여주었으나 딥러닝 모델은 선형근사식이 성립할 확률이 0.5에 가까워져서 분포를 구분하는 능력을 학습하지 못하였다.

부록. 제출물에 대한 설명.

train.py는 PyTorch를 이용한 모델 학습 코드이며 모델 코드는 model.py에 있다. DES 및 핵심 연산은 C 모듈로 작성하였으며 helper.cpp, DES.h, DES.cpp 파일로 구성되어있다. 아래는 학습 커맨드 예제이다.

```
# Hou et al. style 4-round DES attack model train
python train.py --round 4 --model hou

# Our style 4-round DES attack model train
python train.py --round 4 --model ours

# Hou et al. style 5-round DES attack model train
python train.py --round 5 --model hou

# Our style 5-round DES attack model train
python train.py --round 5 --model ours
```

공격 실험 예시는 다음과 같다. 전체 실험 재현을 위해서는 exp.sh를 실행하면 된다.

```
# Compute average rank across 10 iteration with Baseline using 32 pairs

python attack.py --round 4 --model xor --npair 32 --niter 10

# Compute average rank across 10 iteration with Hou et al. style model using 64 pairs

python attack.py --round 4 --model hou --npair 64 --niter 10

# Compute average rank across 10 iteration with our model using 128 pairs

python attack.py --round 4 --model ours --npair 128 --niter 10
```

References

- [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings* of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
- [2] Botao Hou, Yongqiang Li, Haoyue Zhao, and Bin Wu. Linear attack on round-reduced des using deep learning. In Computer Security-ESORICS 2020: 25th European Symposium on Research in Computer Security, ESORICS 2020, Guildford, UK, September 14–18, 2020, Proceedings, Part II 25, pages 131–145. Springer, 2020.
- [3] Mitsuru Matsui. Linear cryptanalysis method for des cipher. In Workshop on the Theory and Application of Cryptographic Techniques, pages 386–397. Springer, 1993.