EDA Processing

In [21]: import pandas as pd
import numpy as np
import seaborn as sns

In [22]: data = pd.read_csv(r'C:\Users\HOME\Desktop\DSA\Lab6\data_clean.csv')
#data.describe
data

Out[22]:

	Unnamed: 0	Ozone	Solar.R	Wind	Temp C	Month	Day	Year	Temp	Weather
0	1	41.0	190.0	7.4	67	5	1	2010	67	S
1	2	36.0	118.0	8.0	72	5	2	2010	72	С
2	3	12.0	149.0	12.6	74	5	3	2010	74	PS
3	4	18.0	313.0	11.5	62	5	4	2010	62	S
4	5	NaN	NaN	14.3	56	5	5	2010	56	S
153	154	41.0	190.0	7.4	67	5	1	2010	67	С
154	155	30.0	193.0	6.9	70	9	26	2010	70	PS
155	156	NaN	145.0	13.2	77	9	27	2010	77	S
156	157	14.0	191.0	14.3	75	9	28	2010	75	S
157	158	18.0	131.0	8.0	76	9	29	2010	76	С

158 rows × 10 columns

In [23]: data.tail(10)

Out[23]:

	Unnamed: 0	Ozone	Solar.R	Wind	Temp C	Month	Day	Year	Temp	Weather
148	149	30.0	193.0	6.9	70	9	26	2010	70	С
149	150	NaN	145.0	13.2	77	9	27	2010	77	PS
150	151	14.0	191.0	14.3	75	9	28	2010	75	S
151	152	18.0	131.0	8.0	76	9	29	2010	76	PS
152	153	20.0	223.0	11.5	68	9	30	2010	68	S
153	154	41.0	190.0	7.4	67	5	1	2010	67	С
154	155	30.0	193.0	6.9	70	9	26	2010	70	PS
155	156	NaN	145.0	13.2	77	9	27	2010	77	S
156	157	14.0	191.0	14.3	75	9	28	2010	75	S
157	158	18.0	131.0	8.0	76	9	29	2010	76	С

```
In [24]: type(data)
         data.shape
Out[24]: (158, 10)
In [25]: data.dtypes
Out[25]: Unnamed: 0
                         int64
         0zone
                       float64
         Solar.R
                       float64
         Wind
                       float64
         Temp C
                        object
                        object
         Month
                         int64
         Day
         Year
                         int64
         Temp
                         int64
         Weather
                        object
         dtype: object
```

Data Type Conversion

```
In [26]: data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 158 entries, 0 to 157
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	158 non-null	int64
1	Ozone	120 non-null	float64
2	Solar.R	151 non-null	float64
3	Wind	158 non-null	float64
4	Temp C	158 non-null	object
5	Month	158 non-null	object
6	Day	158 non-null	int64
7	Year	158 non-null	int64
8	Temp	158 non-null	int64
9	Weather	155 non-null	object
dtyp	es: float64(3), int64(4), ob	ject(3)

memory usage: 12.5+ KB

In [27]: #checking missing values data2 = data.iloc[:,1:] data2

Out[27]:

		Ozone	Solar.R	Wind	Temp C	Month	Day	Year	Temp	Weather
	0	41.0	190.0	7.4	67	5	1	2010	67	S
	1	36.0	118.0	8.0	72	5	2	2010	72	С
	2	12.0	149.0	12.6	74	5	3	2010	74	PS
	3	18.0	313.0	11.5	62	5	4	2010	62	S
	4	NaN	NaN	14.3	56	5	5	2010	56	S
1	53	41.0	190.0	7.4	67	5	1	2010	67	С
1	54	30.0	193.0	6.9	70	9	26	2010	70	PS
1	55	NaN	145.0	13.2	77	9	27	2010	77	S
1	56	14.0	191.0	14.3	75	9	28	2010	75	S
1	57	18.0	131.0	8.0	76	9	29	2010	76	С

158 rows × 9 columns

In [28]: # .copy is used so any changes made in this wont be reflected in original data

data = data2.copy()
data

Out[28]:

	Ozone	Solar.R	Wind	Temp C	Month	Day	Year	Temp	Weather
0	41.0	190.0	7.4	67	5	1	2010	67	S
1	36.0	118.0	8.0	72	5	2	2010	72	С
2	12.0	149.0	12.6	74	5	3	2010	74	PS
3	18.0	313.0	11.5	62	5	4	2010	62	S
4	NaN	NaN	14.3	56	5	5	2010	56	S
									•••
153	41.0	190.0	7.4	67	5	1	2010	67	С
154	30.0	193.0	6.9	70	9	26	2010	70	PS
155	NaN	145.0	13.2	77	9	27	2010	77	S
156	14.0	191.0	14.3	75	9	28	2010	75	S
157	18.0	131.0	8.0	76	9	29	2010	76	С

158 rows × 9 columns

```
In [30]:
          data['Month'] = pd.to_numeric(data['Month'],errors='coerce')
          data['Temp C'] = pd.to numeric(data['Temp C'],errors='coerce')
          data['Weather'] = data['Weather'].astype('category')
In [40]:
          #dropping temp column
          data = data.drop('Temp',axis=1,inplace=True)
          data
Out[40]:
               Ozone Solar.R Wind Temp C Month Day Year Weather
             0
                 41.0
                        190.0
                               7.4
                                      67.0
                                              5.0
                                                    1
                                                       2010
                                                                  S
             1
                 36.0
                               8.0
                                      72.0
                                                    2 2010
                                                                  С
                        118.0
                                              5.0
             2
                 12.0
                        149.0
                              12.6
                                      74.0
                                              5.0
                                                    3 2010
                                                                 PS
             3
                 18.0
                       313.0
                              11.5
                                      62.0
                                              5.0
                                                      2010
                                                                  S
             4
                        NaN
                              14.3
                                      56.0
                                              5.0
                                                    5 2010
                                                                  S
                 NaN
                                               ...
           153
                 41.0
                        190.0
                               7.4
                                      67.0
                                              5.0
                                                       2010
                                                                  С
                                                    1
                 30.0
                                                                 PS
           154
                        193.0
                               6.9
                                      70.0
                                              9.0
                                                   26 2010
                                      77.0
                                                                  S
           155
                 NaN
                        145.0
                              13.2
                                              9.0
                                                   27 2010
           156
                                                                  S
                 14.0
                        191.0
                              14.3
                                      75.0
                                              9.0
                                                   28 2010
           157
                 18.0
                        131.0
                               8.0
                                      76.0
                                              9.0
                                                   29 2010
                                                                  С
          158 rows × 8 columns
In [47]: data.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 158 entries, 0 to 157
          Data columns (total 8 columns):
                         Non-Null Count Dtype
           #
               Column
               -----
                         -----
          - - -
                                          ----
```

```
0
    Ozone
              120 non-null
                              float64
    Solar.R 151 non-null
                              float64
1
 2
              158 non-null
                              float64
    Wind
 3
    Temp C
              157 non-null
                              float64
4
    Month
              157 non-null
                              float64
 5
    Day
              158 non-null
                              int64
6
    Year
              158 non-null
                              int64
    Weather
              155 non-null
                              category
dtypes: category(1), float64(5), int64(2)
memory usage: 9.1 KB
```

EDA Processing Starts

Finding Duplicates

 Out[50]:
 Ozone
 Solar.R
 Wind
 Temp C
 Month
 Day
 Year
 Weather

 156
 14.0
 191.0
 14.3
 75.0
 9.0
 28
 2010
 S

In [55]: #dropping duplicated rows

data_cleaned1 = data.drop_duplicates()
data_cleaned1.shape

Out[55]: (157, 8)

Drop columns

In [57]: # dropping duplicated temp column no need to do since already done hence copyi
#data_cleaned2 = data_cleaned1.drop('Temp C',axis = 1)
 data_cleaned2 = data_cleaned1.copy()
 data_cleaned2

Out[57]: Ozone Solar.R Wind Temp C Month Day Year Weather 0 41.0 190.0 67.0 2010 S 7.4 5.0 1 1 36.0 118.0 8.0 72.0 5.0 2 2010

С 2 12.0 149.0 12.6 74.0 5.0 3 2010 PS 3 18.0 313.0 11.5 62.0 5.0 2010 S 56.0 5.0 5 2010 S 4 NaN NaN 14.3 ••• 20.0 223.0 152 11.5 68.0 9.0 30 2010 S 153 41.0 190.0 7.4 67.0 5.0 2010 С 1 154 30.0 193.0 6.9 70.0 9.0 26 2010 PS 155 145.0 77.0 27 2010 S NaN 13.2 9.0 18.0 131.0 8.0 76.0 9.0 29 2010 С 157

157 rows × 8 columns

Rename column

In [70]: data_cleaned3 = data_cleaned2.rename({'Solar.R':'Solar'},axis=1)
 data_cleaned3

Out[70]:

	Ozone	Solar	Wind	Temp C	Month	Day	Year	Weather
0	41.0	190.0	7.4	67.0	5.0	1	2010	S
1	36.0	118.0	8.0	72.0	5.0	2	2010	С
2	12.0	149.0	12.6	74.0	5.0	3	2010	PS
3	18.0	313.0	11.5	62.0	5.0	4	2010	s
4	NaN	NaN	14.3	56.0	5.0	5	2010	s
152	20.0	223.0	11.5	68.0	9.0	30	2010	s
153	41.0	190.0	7.4	67.0	5.0	1	2010	С
154	30.0	193.0	6.9	70.0	9.0	26	2010	PS
155	NaN	145.0	13.2	77.0	9.0	27	2010	S
157	18.0	131.0	8.0	76.0	9.0	29	2010	С

157 rows × 8 columns

Outlier Detection

```
In [67]: #histogram of ozone
data_cleaned3['Ozone'].hist()
```

Out[67]: <Axes: >


```
In [65]: #boxplot
data_cleaned3.boxplot(column=['Ozone'])
```

Out[65]: <Axes: >


```
Out[71]: count
                   119.000000
         mean
                    41.815126
          std
                    32.659249
         min
                     1.000000
          25%
                    18.000000
          50%
                    31.000000
         75%
                    62.000000
                   168.000000
         max
```

Name: Ozone, dtype: float64

In [72]: data_cleaned3

Out-	「フつヿ	١.
out	/	١.

	Ozone	Solar	Wind	Temp C	Month	Day	Year	Weather
0	41.0	190.0	7.4	67.0	5.0	1	2010	S
1	36.0	118.0	8.0	72.0	5.0	2	2010	С
2	12.0	149.0	12.6	74.0	5.0	3	2010	PS
3	18.0	313.0	11.5	62.0	5.0	4	2010	S
4	NaN	NaN	14.3	56.0	5.0	5	2010	S
152	20.0	223.0	11.5	68.0	9.0	30	2010	S
153	41.0	190.0	7.4	67.0	5.0	1	2010	С
154	30.0	193.0	6.9	70.0	9.0	26	2010	PS
155	NaN	145.0	13.2	77.0	9.0	27	2010	S
157	18.0	131.0	8.0	76.0	9.0	29	2010	С

157 rows × 8 columns

```
In [73]: #bar plot
data['Weather'].value_counts().plot.bar()
```

Out[73]: <Axes: xlabel='Weather'>

Missing Values and Imputation

```
In [82]: import seaborn as sns

cols = data_cleaned3.columns
    colours = ['#000099', '#ffff00']
    sns.heatmap(data_cleaned3[cols].isnull(), cmap=sns.color_palette(colours))
```

Out[82]: <Axes: >

In [83]: data_cleaned3[data_cleaned3.isnull().any(axis=1)].head()

Out[83]:

	Ozone	Solar	Wind	Temp C	Month	Day	Year	Weather
4	NaN	NaN	14.3	56.0	5.0	5	2010	S
5	28.0	NaN	14.9	66.0	5.0	6	2010	С
9	NaN	194.0	8.6	69.0	5.0	10	2010	S
10	7.0	NaN	6.9	NaN	5.0	11	2010	С
23	32.0	92.0	12.0	61.0	NaN	24	2010	С

```
In [84]: data_cleaned3.isnull().sum()
Out[84]: Ozone
                      38
          Solar
                       7
          Wind
                       0
          Temp C
                       1
          Month
                       1
          Day
          Year
                       0
          Weather
                        3
          dtype: int64
In [85]: #Mean Imputation
          mean = data_cleaned3['Ozone'].mean()
          mean
Out[85]: 41.81512605042017
          data_cleaned3['Ozone'] = data_cleaned3['Ozone'].fillna(mean)
In [87]:
          data_cleaned3
Out[87]:
                  Ozone Solar Wind Temp C Month Day Year Weather
             0 41.000000 190.0
                                 7.4
                                        67.0
                                                         2010
                                                                     S
                                                5.0
                                                       1
                                                                     С
             1 36.000000
                          118.0
                                 8.0
                                                       2 2010
                                        72.0
                                                5.0
                                                       3 2010
             2 12.000000
                         149.0
                                                                    PS
                                 12.6
                                        74.0
                                                5.0
               18.000000
                                 11.5
                                                                     S
                         313.0
                                        62.0
                                                5.0
                                                       4 2010
               41.815126
                          NaN
                                 14.3
                                        56.0
                                                5.0
                                                       5 2010
                                                                     S
                                         ...
                                                 ...
                                                                     ...
           152 20.000000
                         223.0
                                                         2010
                                                                     S
                                 11.5
                                        68.0
                                                9.0
                                                      30
           153 41.000000 190.0
                                 7.4
                                        67.0
                                                       1 2010
                                                                     С
                                                5.0
           154 30.000000 193.0
                                 6.9
                                        70.0
                                                9.0
                                                      26 2010
                                                                    PS
           155 41.815126 145.0
                                 13.2
                                        77.0
                                                9.0
                                                      27 2010
                                                                     S
           157 18.000000 131.0
                                 8.0
                                        76.0
                                                9.0
                                                      29 2010
                                                                     С
          157 rows × 8 columns
In [88]: |#Mean Imputation of solar
          mean = data cleaned3['Solar'].mean()
          data_cleaned3['Solar'] = data_cleaned3['Solar'].fillna(mean)
          mean
```

Out[88]: 185.3666666666667

```
In [90]: #Mean Imputation of Month
         mean = data_cleaned3['Month'].mean()
         data_cleaned3['Month'] = data_cleaned3['Month'].fillna(mean)
Out[90]: 7.032051282051282
In [92]: #Mean Imputation of Temp C
         mean = data_cleaned3['Temp C'].mean()
         data_cleaned3['Temp C'] = data_cleaned3['Temp C'].fillna(mean)
         mean
Out[92]: 77.76923076923077
In [94]: # Imputation of Weather
         obj_columns = data_cleaned3[['Weather']]
         obj_columns.isnull().sum()
Out[94]: Weather
         dtype: int64
In [95]:
        obj_columns
Out[95]:
              Weather
            0
                    S
            1
                    С
            2
                   PS
            3
                    S
            4
                    S
          152
                    S
                   С
          153
                   PS
          154
                    S
          155
          157
                    С
         157 rows × 1 columns
In [96]:
         #missing value imputation for categorical value
         obj columns = obj columns.fillna(obj columns.mode().iloc[0])
```

```
In [97]: obj_columns.mode()
 Out[97]:
             Weather
                  S
 In [99]: obj_columns.isnull().sum()
 Out[99]: Weather
          dtype: int64
In [102]: data_cleaned3.shape
Out[102]: (157, 8)
In [103]: obj_columns.shape
Out[103]: (157, 1)
In [105]: #join data set with imputed value
          data_cleaned4 = pd.concat([data_cleaned3,obj_columns],axis=1)
In [108]: data_cleaned4
Out[108]:
```

	Ozone	Solar	Wind	Temp C	Month	Day	Year	Weather	Weather
0	41.000000	190.000000	7.4	67.0	5.0	1	2010	S	S
1	36.000000	118.000000	8.0	72.0	5.0	2	2010	С	С
2	12.000000	149.000000	12.6	74.0	5.0	3	2010	PS	PS
3	18.000000	313.000000	11.5	62.0	5.0	4	2010	S	S
4	41.815126	185.366667	14.3	56.0	5.0	5	2010	S	S
152	20.000000	223.000000	11.5	68.0	9.0	30	2010	S	S
153	41.000000	190.000000	7.4	67.0	5.0	1	2010	С	С
154	30.000000	193.000000	6.9	70.0	9.0	26	2010	PS	PS
155	41.815126	145.000000	13.2	77.0	9.0	27	2010	S	S
157	18.000000	131.000000	8.0	76.0	9.0	29	2010	С	С

157 rows × 9 columns

Scatter Plot and correlation analysis

```
In [109]: sns.pairplot(data_cleaned3)
```

c:\Users\HOME\anaconda3\Lib\site-packages\seaborn\axisgrid.py:123: UserWarnin
g: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

Out[109]: <seaborn.axisgrid.PairGrid at 0x22c87856d90>


```
In [111]: # Select only numeric columns
    numeric_data = data_cleaned3.select_dtypes(include=np.number)

#compute correlation matrix
    correlation_matrix = numeric_data.corr()

#print correlation matrix
    correlation_matrix
```

Out[111]:

	Ozone	Solar	Wind	Temp C	Month	Day	Year
Ozone	1.000000	0.304559	-0.520004	0.603660	0.132809	-0.021916	NaN
Solar	0.304559	1.000000	-0.055874	0.260810	-0.090564	-0.151007	NaN
Wind	-0.520004	-0.055874	1.000000	-0.443676	-0.166029	0.029900	NaN
Temp C	0.603660	0.260810	-0.443676	1.000000	0.390957	-0.124262	NaN
Month	0.132809	-0.090564	-0.166029	0.390957	1.000000	0.049924	NaN
Day	-0.021916	-0.151007	0.029900	-0.124262	0.049924	1.000000	NaN
Year	NaN	NaN	NaN	NaN	NaN	NaN	NaN

Transformations

Dummy Variable

Out[115]:

	Ozone	Solar.R	Wind	Temp C	Month	Day	Year	Weather_C	Weather_PS	Weather_S
0	41.0	190.0	7.4	67.0	5.0	1	2010	False	False	True
1	36.0	118.0	8.0	72.0	5.0	2	2010	True	False	False
2	12.0	149.0	12.6	74.0	5.0	3	2010	False	True	False
3	18.0	313.0	11.5	62.0	5.0	4	2010	False	False	True
4	NaN	NaN	14.3	56.0	5.0	5	2010	False	False	True
153	41.0	190.0	7.4	67.0	5.0	1	2010	True	False	False
154	30.0	193.0	6.9	70.0	9.0	26	2010	False	True	False
155	NaN	145.0	13.2	77.0	9.0	27	2010	False	False	True
156	14.0	191.0	14.3	75.0	9.0	28	2010	False	False	True
157	18.0	131.0	8.0	76.0	9.0	29	2010	True	False	False

158 rows × 10 columns

```
In [116]: data_cleaned4 = data_cleaned4.dropna()
```

Normalization of data

```
In [117]: from numpy import set printoptions
          from sklearn.preprocessing import MinMaxScaler
In [118]: data_cleaned4.values
Out[118]: array([[41.0, 190.0, 7.4, ..., False, False, True],
                 [36.0, 118.0, 8.0, ..., True, False, False],
                 [12.0, 149.0, 12.6, ..., False, True, False],
                 [30.0, 193.0, 6.9, ..., False, True, False],
                 [14.0, 191.0, 14.3, ..., False, False, True],
                 [18.0, 131.0, 8.0, ..., True, False, False]], dtype=object)
In [120]: | array = data cleaned3.values
          scaler = MinMaxScaler(feature range=(0,1))
          rescaledX = scaler.fit_transform(array[:,0:5])
          #transformed data
          set_printoptions(precision=2)
          print(rescaledX[0:5,:])
          [[0.24 0.56 0.3 0.27 0.
           [0.21 0.34 0.33 0.39 0.
           [0.07 0.43 0.57 0.44 0.
                                    ]
           [0.1 0.94 0.52 0.15 0.
                                   ]
           [0.24 0.55 0.66 0. 0.
                                   ]]
In [121]: #standardize data (Omean, 1sd)
          from sklearn.preprocessing import StandardScaler
In [122]: | array = data cleaned4.values
          scaler = StandardScaler().fit(array)
          rescaledX = scaler.transform(array)
          #summarize
          set_printoptions(precision = 2)
          print(rescaledX[0:5,:])
          [[-0.02 0.05 -0.71 -1.15 -1.53 -1.7 0. -0.64 -0.68 1.28]
           [-0.17 -0.75 -0.54 -0.62 -1.53 -1.59 0.
                                                     1.57 -0.68 -0.78]
           [-0.9 -0.41 0.77 -0.4 -1.53 -1.48 0. -0.64 1.47 -0.78]
           [-0.72 1.43 0.45 -1.69 -1.53 -1.36 0. -0.64 -0.68 1.28]
           [-0.57 1.27 -0.37 -1.37 -1.53 -1.02 0.
                                                     -0.64 1.47 -0.78]]
```

Speed up the EDA process

```
In [123]: #install dtale
import dtale
dtale.show(data)
```

Out[123]: