Machine Learning Lecture Notes

Haoyu Zhen

May 6, 2022

Haoyu Zhen CONTENTS

${\bf Contents}$

1	Fou	ındations	4		
	1.1	Model evaluation:	4		
	1.2	Performance	4		
	1.3	Bias-Variance Decomposition	4		
2	Reg	gression	5		
	2.1	Linear Regression	5		
	2.2	Ridge Regression	5		
	2.3	Lasso Regression	6		
	2.4	Logistic Regression	6		
3	Ger	neralized Linear Models	7		
	3.1	The Exponential Family	7		
	3.2	Constructing GLMs	7		
4	Kernel Method				
	4.1	LMS with Features	8		
	4.2	Properties of Kernels	8		
5	Sup	oport Vector Machines	9		
	5.1	Hard-SVM	6		
		5.1.1 The Sample Complexity of Hard-SVM*	9		
	5.2	Soft-SVM and Norm Regularization	10		
	5.3	Duality	10		
	5.4	SMO	11		
	5.5	Implementing Soft-SVM Using SGD	11		
6	Din	nensionality Reduction	12		
	6.1	Principal Component Analysis	12		
	6.2	Implementation	13		

Haoyu Zhen CONTENTS

Preface

Acknowledgement

These Notes contain material developed and copyright by:

- CS229, Machine Learning, © 2020 Summer by Andrew Ng, Stanford. Course website:
- Understanding Machine Learning, © 2014 by Shai Shalev-Shwartz and Shai Ben-David.
- CS189, Introduction to Machine Learning, © 2021 by Marvin Zhang, UCB.
- The Elements of Statistical Learning, © 2017 by Trevor Hastie, Robert Tibshirani and Jerome Friedman.
- AI-2611, Machine Learning, © 2022 by Bingbing Ni, Shanghai Jiao Tong University.

Miscellaneous

Follow me or Contact me:

- Email: anye[underscore]zhen[at]sjtu[dot]edu[dot]cn.
- Github: anyeZHY.

Haoyu Zhen 1 FOUNDATIONS

1 Foundations

1.1 Model evaluation:

Hold-out, cross validation and bootstrap.

For cross validation, we often let the numbers of the folds be 10. And in bootstrap, the equation $\lim_{n\to\infty} (1-1/m)^m = 1/e$ is used to analyse the probability.

1.2 Performance

Definition 1.1 (Sensitivity and FPR). Now we consider that

	prediction+	prediction-
Actual	1	0
1	TP	FP
0	FN	TN

$$TPR = \frac{TP}{TP + FN}, FPR = \frac{FP}{TN + FP}.$$

Remark 1.1. ROC space and AUC is also useful to select models.

Definition 1.2 (Precision and recall).

$$precision = \frac{TP}{TP + FP}, \, recall = \frac{TP}{TP + FN}.$$

$$F_{\beta} = \frac{(1+\beta^2) \times P \times R}{\beta^2 \times P + R}.$$

 β depends on the preference of Precision and Recll.

1.3 Bias-Variance Decomposition

Theorem 1.1.

$$E(f; D) = bias^{2}(x) + var(x) + \varepsilon^{2}$$

= $(\bar{f}(x) - y)^{2} + \mathbb{E}_{D}[f(x; D) - \bar{f}(x)] + \mathbb{E}_{D}[(y_{D} - y)^{2}]$

Haoyu Zhen 2 REGRESSION

2 Regression

2.1 Linear Regression

The hypothesis class of linear regression predictors is simply the set of linear functions,

$$\mathcal{H}_{reg} = \{ \boldsymbol{x} \mapsto \langle \boldsymbol{w}, \boldsymbol{x} \rangle + b : \boldsymbol{w} \in \mathbb{R}^d, b \in \mathbb{R} \}.$$

Intuitively,

$$\mathcal{L}_{\mathcal{S}}(h) = \frac{1}{m} \sum_{i=1}^{m} (h(\boldsymbol{x}) - \boldsymbol{y})^2, \, \forall h \in \mathcal{H}_{reg}.$$

To minimize the loss function, we need to solve $A\mathbf{w} = \mathbf{b}$ where $A \stackrel{def}{=} \sum \mathbf{x}_i \mathbf{x}_i^T = XX^T$ and $\mathbf{b} \stackrel{def}{=} \sum y_i \mathbf{x}_i = X^T \mathbf{y}$. If A is invertible then the solution is $w = A^{-1}\mathbf{b}$.

Theorem 2.1.

$$\omega = (X^T X)^{-1} X^T \boldsymbol{y}.$$

If the training instances do not span the entire space of \mathbb{R}^d then A is not invertible.

Theorem 2.2. Using A's eigenvalue decomposition,we could write A as VD^+V^T where D is a diagnonal matrix and V is an orthonormal matrix. Define D^+ to be the diagonal matrix such that $D_{i,i}^+ = 0$ if $D_{i,i} = 0$ otherwise $D_{i,i}^+ = 1/D_{i,i}$. Then,

$$A\hat{w} = b$$

where $\hat{\boldsymbol{w}} = VD^+V^T\boldsymbol{b}$

Proof.

$$A\hat{\omega} = AA^+\boldsymbol{b} = VDV^TVD^+V^T\boldsymbol{b} = VDD^+V^T\boldsymbol{b} = \sum_{i:D_{i,i}\neq 0} \boldsymbol{v}_i\boldsymbol{v}_i^T\boldsymbol{b}.$$

That is, $A\hat{\omega}$ is the projection of b onto the span of those vectors v_i for which $D_{i,i} \neq 0$. Since the linear span of x_1, \dots, x_m is the same as the linear span of those v_i , and b is in the linear span of the x_i , we obtain that $A\hat{w} = b$, which concludes our argument.

Remark 2.1. Indeed we always use the Gradient Descent method to optimize the loss function.

Linear regression for polynomial regression tasks $\mathcal{H}_{poly}^n = \{x \mapsto p(x)\}$ where $\psi(x) = (1, x, x^2, \dots, x^n)$ and $p(\psi(x)) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$.

2.2 Ridge Regression

To ameliorate the effect of the invertible matrix, we could introduce the regularization.

Haoyu Zhen 2 REGRESSION

Definition 2.1 (Ridge Regularized Loss).

$$R(w) = \lambda ||w||^2.$$

Now the loss function reads:

$$\mathcal{L} = \mathcal{L}_{\mathcal{S}}(w) + R(w) = \frac{1}{m} \sum_{i=1}^{m} (h(\boldsymbol{x}) - \boldsymbol{y})^2 + \lambda \|w\|^2.$$

Hence, the solution to ridge regression becomes

$$\boldsymbol{w} = (2\lambda mI + A)^{-1}.$$

Theorem 2.3 (The stability of regularization). Let \mathcal{D} be a distribution over $\mathcal{X} \times [-1 \times 1]$, where $\mathcal{X} = \{ \boldsymbol{x} \in \mathbb{R}^d : \|\boldsymbol{x}\| \leq 1 \}$. Let $\mathcal{H} = \{ \boldsymbol{w} \in \mathbb{R}^d : \|\boldsymbol{w}\| \leq B \}$. For any $\varepsilon \in (0,1)$, let $m \geq 150B^2/\varepsilon^2$. Then applying the ridge regression algorithm with parameter $\lambda = \varepsilon/3B^2$ satisfies

$$\mathbb{E}_{S \sim \mathcal{D}^m}[L_D(A(S))] \le \min_{\boldsymbol{w} \in \mathcal{H}} L(D) + \varepsilon.$$

2.3 Lasso Regression

Definition 2.2 (Lasso Regularized Loss).

$$R(w) = \lambda ||w||_1^2.$$

Under some assumptions on the distribution and the regularization parameter λ , the LASSO will find sparse solutions

2.4 Logistic Regression

The hypothesis class is:

$$H_{sig} = \left\{ x \mapsto \text{sigmoid}(\boldsymbol{w}\boldsymbol{x}) : \boldsymbol{w} \in \mathbb{R}^d \right\}$$

where sigmoid(s) = $1/[1 + \exp(-s)]$. The loss function is

$$\mathcal{L} = \frac{1}{m} \sum_{i=1}^{m} \log \left[1 + \exp(-y_i \boldsymbol{w} \boldsymbol{x}_i) \right].$$

Remark 2.2. Optimization in logistic regression

- The advantage of the logistic loss function is that it is a convex function with respect to \boldsymbol{w} .
- No close form solution.
- Identical to the problem of finding a Maximum Likelihood Estimator.

3 Generalized Linear Models

3.1 The Exponential Family

Definition 3.1. We say that a class of distributions is in the exponential family if it can be written in the form

$$p(y; \eta) = b(y) \exp(\eta^T T(y) - a(\eta)).$$

Here, η is called the **natural parameter** (also called the canonical parameter) of the distribution; T(y) is the **sufficient statistic** (for the distributions we consider, it will often be the case that T(y) = y); and $a(\eta)$ is the log **partition function**. The quantity $e^{-a(\eta)}$ essentially plays the role of a normalization constant, that makes sure the distribution $p(y; \eta)$ sums/integrates over y to 1.

3.2 Constructing GLMs

- 1. $y \mid x; \theta \sim \text{ExponentialFamily}(\eta)$. I.e., given x and θ , the distribution of y follows some exponential family distribution, with parameter η .
- 2. Given x, our goal is to predict the expected value of T(y) given x. In most of our examples, we will have T(y) = y, so this means we would like the prediction h(x) output by our learned hypothesis h to satisfy $h(x) = \mathbb{E}[y|x]$. (Note that this assumption is satisfied in the choices for $h_{\theta}(x)$ for both logistic regression and linear regression. For instance, in logistic regression, we had $h_{\theta}(x) = p(y = 1|x;\theta) = 0 \cdot p(y = 0|x;\theta) + 1 \cdot p(y = 1|x;\theta) = E[y|x;\theta]$.)
- 3. he natural parameter η and the inputs x are related linearly: $\eta = \theta^T x$. (Or, if η is vector-valued, then $\eta_i = \theta_i^T x$.)

Example 3.1 (Logistic Rrgression). Note that: $y|x;\theta \sim \text{Bernoulli}(\phi)$. Then we have $\mathbb{E}[y|x;\theta] = \phi$. Thus

$$h_{\theta}(x) = \mathbb{E}[y|x;\theta] = \phi = \frac{1}{1 + e^{-\eta}} = \frac{1}{1 + e^{-\theta^T x}}.$$

If we have a training set of n examples $\{(x^i, y^i); i = 1, \dots, n\}$ and would like to learn the parameters θ_i of this model, we would begin by writing down the log-likelihood

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} \log p(y^{i}|x^{i};\theta) = \sum_{i=1}^{n} \log \left[\left(\frac{1}{1 + e^{-\theta^{T}x}} \right)^{1\{y^{i} = 1\}} \left(\frac{e^{-\theta^{T}x}}{1 + e^{-\theta^{T}x}} \right)^{1\{y^{i} = 0\}} \right].$$

4 Kernel Method

Now we will introduce a function $\phi(x): \mathbb{R}^d \to \mathbb{R}^p$ mapping the attributes to the features.

4.1 LMS with Features

Suppose that $\theta = \sum_{i=1}^{n} \beta_i x^i$. By updating rules of gradient descent,

$$\theta := \theta + \alpha \sum_{i=1}^{n} \left[y^{i} - \theta^{T} \phi(x^{i}) \right] \phi(x^{i})$$
$$= \sum_{i=1}^{n} \underbrace{ \left\{ \beta_{i} + \alpha \left[y^{i} - \theta^{T} \phi(x^{i}) \right] \right\} }_{\text{new } \beta} \phi(x^{i})$$

Then $i \in \{1, \dots, n\}$:

$$\beta_i := \beta_i + \alpha \left[y^i - \sum_{j=1}^n \beta_j \phi(x^j)^T \phi(x^i) \right] = \beta_i + \alpha \left[y^i - \sum_{j=1}^n \beta_j K(\phi(x^j), \phi(x^i)) \right]$$

where

$$K(x,z) \triangleq \langle \phi(x), \phi(z) \rangle.$$

Remark 4.1. Kernel is a corresponding to the feature map ϕ as a function that maps $\mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$.

4.2 Properties of Kernels

Definition 4.1 (Gaussian kernel).

$$K(x,z) = \exp\left(-\frac{\|x-z\|^2}{2\sigma^2}\right).$$

The gaussian kernel is corresponding to an **infinite** dimensional feature mapping ϕ . Also, ϕ lives in Hilbert space.

Theorem 4.1. The corresponding kernel matrix $K \in \mathbb{R}^{n \times n}$ is symmetric positive semidefinite.

Theorem 4.2 (Mercer Theorem). Let $K: \mathbb{R}^d \times \mathbb{R}^d \mapsto \mathbb{R}$ be given. Then for K to be a valide Mercer Kernel, it is necessary and sufficient that for any $\{x^1, \dots, x^n\}, (n < \infty)$, the correspibonding kernel matrix is symmetric positive semidefinite. Nota Bene: the generalized form involve L^2 functions.

5 Support Vector Machines

SVMs are among the best (and many believe are indeed the best) off-the-shelf supervised learning algorithms. So, be **self-motivated** in this section.

5.1 Hard-SVM

Hard-SVM is the learning rule in which we return an ERM hyperplane that separates the training set with the largest possible margin. The Hard-SVM rule is

$$\underset{(w,b):||w||=1}{\arg\max} \min_{i \in [m]} |w^T x^i + b| \quad \text{s.t. } \forall i, y^i (w^T x^i + b) \ge 1.$$

Equivalently,

$$\underset{(w,b):\|w\|=1}{\arg\max} \min_{i \in [m]} y^{i} (w^{T} x^{i} + b)$$
(5.1)

Next, we give another equivalent formulation of the Hard-SVM rule as a quadratic optimization problem.¹

Input: $(x^{1}, 1), \dots, (x^{m}, y^{m})$

Solve

$$(w_0, b_0) = \underset{(w,b)}{\arg\min} \frac{1}{2} ||w||^2 \quad \text{s.t. } \forall i, y^i (w^T x^i + b) \ge 1.$$
 (5.2)

Output: $\hat{w} = w_0 / ||w_0||, \hat{b} = b_0 / ||w_0||$

Lemma 5.1. The output of Hard-SVM is a solution of Equation (5.1).

Proof. Let (w_1, b_1) be a solution of Equation (5.1) and $\gamma_1 = \min_{i \in [m]} y_i(w_1^T x^i + b_1)$. Then we have

$$y^i \left(\frac{w_1}{\gamma_1}^T x^i + \frac{b_1}{\gamma_1} \right) \ge 1.$$

Hence $||w_0|| \le ||w_1/\gamma_1|| = 1/\gamma^*$. It follows that for all i,

$$y^{i}(\hat{w}^{T}x^{i} + \hat{b}) \ge \frac{1}{\|w_{0}\|} \ge \gamma_{1}.$$

Since $\|\hat{w}\| = 1$ we obtain that (\hat{w}, \hat{b}) is an optimal solution of Equation (5.1).

5.1.1 The Sample Complexity of Hard-SVM*

Definition 5.1 (Separability). Let \mathcal{D} be a distribution over $\mathbb{R}^d \times \{\pm 1\}$. We say that \mathcal{D} is separable with a (γ, ρ) -margin if there exists (w^*, b^*) such that $\|w^*\| = 1$ and such that with probability 1 over the choice of $(x, y) \sim \mathcal{D}$ we have that $y(w^{*T}x + b^*) \geq \gamma$ and $\|x\| \leq \rho$.

¹A quadratic optimization problem is an optimization problem in which the objective is a convex quadratic function and the constraints are linear inequalities.

Theorem 5.1. Let \mathcal{D} be a distribution over $\mathbb{R}^d \times \{\pm 1\}$ that satisfies the (γ, ρ) -separability with margin assumption using a homogenous halfspace. Then, with probability of at least $1 - \delta$ over the choice of a training set of size m, the 0-1 error of the output of Hard-SVM is at most

$$\sqrt{\frac{4(\rho)/\gamma^2}{m}} + \sqrt{\frac{2\log(2/\delta)}{m}}.$$

5.2 Soft-SVM and Norm Regularization

Input: $(x^{1}, 1), \dots, (x^{m}, y^{m})$

Parameter: $\lambda > 0$

Solve:

$$\min_{w,b,\xi} \left(\lambda \|w\|^2 + \frac{1}{m} \sum_{i=1}^m \xi_i \right)$$
s.t. $\forall i, \ y^i (w^T x^i + b) \ge 1 - \xi_i \text{ and } \xi_i \ge 0$

Output: w, b

Definition 5.2 (hinge loss).

$$l^{\text{hinge}}((w, b), (x, y)) = \max\{0, 1 - yw^T x + b\}.$$

Now we just need to optimize $\lambda ||w||^2 + \mathcal{L}^{\text{hinge}}(w, b)$.

5.3 Duality

The Lagrangian for EQ.5.2 is:

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{n} \alpha_i \Big[y^{(i)} \Big(w^T x^{(i)} + b \Big) - 1 \Big].$$

By the fact that $\nabla \mathcal{L} = 0$

$$w = \sum_{i=1}^{n} \alpha_i y^{(i)} x^{(i)}$$
 and $\sum_{i=1}^{n} \alpha_i y^{(i)} = 0$.

Plug them back we obtain

$$\max_{\alpha} \mathcal{L}(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y^{(i)} y^{(j)} \alpha_i \alpha_j \langle x^{(i)}, x^{(j)} \rangle$$
s.t. $\alpha_i \ge 0$

$$\sum_{i=1}^{n} \alpha_i y^{(i)} = 0$$

Note that

$$b = -\frac{\max_{y^{(i)} = -1} w^T x^{(i)} + \min_{y^{(i)} = 1} w^T x^{(i)}}{2}.$$

5.4 SMO

Consider the dual form of Soft-SVM

$$\max_{\alpha} \mathcal{L}(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y^{(i)} y^{(j)} \alpha_i \alpha_j \langle x^{(i)}, x^{(j)} \rangle$$
s.t. $0 \le \alpha_i \le C$

$$\sum_{i=1}^{n} \alpha_i y^{(i)} = 0$$

The dual-complementrity conditions are

$$\begin{cases} \alpha_i = 0 & \Longrightarrow y^{(i)}(w^T x^{(i)} + b) \ge 1 \\ \alpha_i = C & \Longrightarrow y^{(i)}(w^T x^{(i)} + b) \le 1 \\ 0 < \alpha_i < C & \Longrightarrow y^{(i)}(w^T x^{(i)} + b) = 1 \end{cases}$$

Now we introduce SMO (sequential minimal optimization). Repeat till convergence:

- 1. Select some pair α_i and α_j to update next (using a heuristic that tries to pick the two that will allow us to make the biggest progress towards the global maximum).
- 2. Reoptimize $W(\alpha)$ with respect to i and α_i , while holding all the other α_k 's $(k \neq i, j)$ fixed.

5.5 Implementing Soft-SVM Using SGD

Algorithm 1 SGD for Solving Soft-SVM

```
\begin{array}{l} \boldsymbol{\theta} = \mathbf{0} \\ \mathbf{for} \ t = 1, \cdots, T \ \mathbf{do} \\ w^{(t)} = 1/\lambda t \times \boldsymbol{\theta} \\ \mathbf{Choose} \ i \ \mathbf{uniformly} \ \mathbf{at} \ \mathbf{random} \ \mathbf{for} \ [m] \\ \mathbf{if} \ y_i w^T x^i < 1 \ \mathbf{then} \\ \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + y^i x^i \\ \mathbf{end} \ \mathbf{if} \\ \mathbf{end} \ \mathbf{for} \\ \mathbf{return} \ \sum_{t=1}^T w^{(t)} / T \end{array}
```

6 Dimensionality Reduction

Dimensionality reduction is the process of taking data in a high dimensional space and mapping it into a new space whose dimensionality is much smaller.

6.1Principal Component Analysis

In PCA, we have a compressing matrix $W \in \mathbb{R}^{n,d}$ and a recovering matrix $U \in \mathbb{R}^{d,n}$. For given data x_1, x_2, \cdots, x_m , we aim at solving the problem:

$$\underset{W,U}{\arg\min} \sum_{i=1}^{n} \|x_i - UWx_i\|^2$$
(6.1)

Lemma 6.1. Let (U, W) be a solution of Equation 6.1. Then $U^TU = I$ and $W = U^T$. (The columns of U are orthonormal.)

Proof. Let $R = \{UWx : x \in \mathbb{R}^d\}$ which is an n dimensional linear subspace of \mathbb{R}^d . Let $\in \mathbb{R}^{n,d}$ be a matrix satisfies the range of V is R and $V^TV = I$. Then $||x - Vy||^2 = ||x||^2 + ||y||^2 - 2y^TV^Tx$. Minimizing this w.r.t. y gives that $y = V^Tx$.

By the fact that

$$||x - UU^Tx||^2 = ||x||^2 - \text{trace}(U^Txx^TU).$$

We could rewrite Equation 6.1 as follows:

$$\underset{U \in \mathbb{R}^{d,n}: U^T U = I}{\operatorname{arg \, max}} \operatorname{trace} \left[U^T \left(\sum_{i=1}^m x_i x_i^T \right) U \right].$$

Theorem 6.1. Let x_1, \dots, x_m be arbitrary vectors in \mathbb{R}^d , let $A = \sum_{i=1}^m x_i x_i^T$, and let u_1, \dots, u_n be n eigenvectors of the matrix A corresponding to the largest n eigenvalues of A. Then, the solution to the PCA optimization problem given in Equation 6.1 is to set U to be the matrix whose columns are u_1, \dots, u_n and to set $W = U^T$.

Proof. Let VDV^T be the spectral decomposition of A (suppose that $D_{1,1} \geq \cdots \geq D_{d,d}$) and let

$$\operatorname{trace} \left(U^T A U \right) = \operatorname{trace} \left(B^T D B \right) = \sum_{j=1}^d D_{j,j} \sum_{i=1}^n B_{j,i}^2 \leq \max_{\boldsymbol{\beta} \in [0,1]^d: \|\boldsymbol{\beta}\| \leq n} \sum_{j=1}^d D_{j,j} \beta_j = \sum_{j=1}^n D_{j,j}.$$
 Nota Bene: $B^T B = I$ which entails $\sum_{j=1}^d \sum_{i=1}^n B_{j,i}^2 = n.$

6.2 Implementation

Algorithm 2 PCA algorithm

```
Input: A matrix of m examples X \in R^{m,d} and number of components n.

1: if m > d then

2: A = X^T X

3: Let u_1, \dots, u_n be the eigenvetors of A with largest eigenvalues

4: else

5: B = XX^T

6: Let v_1, \dots, v_n be the eigenvetors of B with largest eigenvalues

7: \forall i, u_i = X^T v_i / ||X^T v_i||

8: end if

9: return u_1, \dots, u_n
```

The algorithm use a more efficient method when d > m. The complexity is $\mathcal{O}(m^2d)$ under this case.