Санкт-Петербургский Политехнический Университет Петра Великого

Институт прикладной математики и механики

Высшая школа прикладной математики и вычислительной физики

ОТЧЁТ По большой лабораторной работе По дисциплине "Обработка и интерпритация сигналов"

Выполнил студент: Салихов С.Р.

группа: 3630102/70401

Санкт-Петервург 2021 г.

Содержание

			Стр.
1.	Пос	тановка задачи	3
	1.1.	Требования к изображениям	3
2.	Pea.	лизация	3
3.	Иллюстрация работы		3
	3.1.	Исходные данные	3
	3.2.	Обнаружение меток	4
	3.3.	Обнаружение стола	5
	3.4.	Обнаружение стула	6
	3.5.	Определяем пролезет ли стул под стол	7
	3.6.	На какой угол нужно повернуть стул, чтобы он пролез	7
4.	Резу	ультаты на всем множестве данных	7

1 Постановка задачи

На изображении представлены стул и стол. Есть изображения содержащие стул в положении, когда он пролезает под стол и нет. На изображении есть метки, которые позволяют определить расстояния между столом и стулом.

Задача: Определить, пролезет ли стул под стол.

Дополнительная задача: На сколько градусов необходимо наклонить стул для того, чтобы он пролез под стол(предполагается, что стул перед этим будет передвинут в правый край стола)?

1.1 Требования к изображениям

- 1)Стол приставлен к стене максимально близко.
- 2) На стене и стуле есть метки синего цвета (Необходимо для определения того, насколько близко расположен стул от стены. Метки одного размера (длина 7см, ширина 4см), кроме них на изображении нет объектов синего цвета).
- 3) Изображение должно быть в анфас и содержать на себе стол и стул(повернут спинкой к объективу).
- 4)Объекты на изображении должны быть хорошо освещены (Метки должны четко видны на изображении, цвет стола и стула должны быть различимы (при плохом освещении они будут почти одинакового цвета)).

2 Реализация

Реализация было произведена средствани Python 3.8.5. Используются библиотеки matplotlib - для отображения получаемых результатов, cv2, scipy, skimage - для обработки изображений, math, numpy - для работы со значениями.

3 Иллюстрация работы

3.1 Исходные данные

Для иллюстрации результатов выбрано изображение 1.jpg.

Рис. 1: Исходное изображение

3.2 Обнаружение меток

Метки находятся на изображении при помощи фильтра по цвету.

Рис. 2: Результат фильтрации по цвету

После обнаружения меток, находится контур, в котором они лежат, после чего находится площади объекта лежащего в краях контура(т.к. метка - прямоугольник).

После этого находим отношение площадей меток, причем эмпирически установлено, что: когда стул находится вплотную к столу отношение площадей меток =3.5, и берем от него корень (т.к. пропорции увеличивают и ширину и длину метки).

3.3 Обнаружение стола

Для обнаружение стола используется грубый фильтр по цвету, с помощь которого находится высота стола, и фильтры canny и sobel для нахождения графиц объектов, после чего находится ширина объекта.

Рис. 3: Слева - изображение маски с границей(синий цвет), внутри которой ищется ширина. Посередине - результат работы алгоритма поиска границ. Справа - резльтат работы фильтра по цвету.

В данном примере найденная ширина стола = 1280 px, а высота 482px, а истинные размеры: ширина = 1280, высота = 469px.

Таким образом, найденные габариты близки истинным.

3.4 Обнаружение стула

Для обнаружение стула воспользуемся фильтром по цвету и локальным методом mean. После чего воспользуемся аналогом оператора &.

Рис. 4: Слева - результат работы фильтра по цвету. Посередине - результат работы локального метода. Справа - ипользование оператора &

Далее находим высоту и ширину стула. Стул находим при использовании того, что на нем находится метка. Т.к. стул сложной формы, находим не истинную, а приблизительную высоту стула используя утверждение о том, что высота спинки в 1.8 раза меньше высоты всего стула.

В данном примере найденная ширина стола = 434 рх, а высота 977.4 рх, а истинные размеры: ширина = 481, высота = 923 рх(умножаем истинную высоту спинки на 1.8).

Таким образом видно, что размеры стула близки истинным.

3.5 Определяем пролезет ли стул под стол

Используя отношения меток находим истинные размеры стула.

Стул пролезает под стол в том случае, если и его высота и его ширина меньше, чем соответственно ширина и высота стола.

В данном примере стул под стол не пролезает.

3.6 На какой угол нужно повернуть стул, чтобы он пролез

Для нахождения угла используется следующая формула(выведенная из соображения о том, что стул перед этим ставится у правого края стола):

$$\alpha = 2 * atan((c_w + \sqrt{c_h^2 + c_w^2 - t_h^2})/(c_h + t_h))$$

 c_h, c_w, t_h - высота стула, ширина стула, высота стола соответственно. Понимаем, что угол больше 0 и меньше 90 градусов. Используется предположение о том, что высота стула больше, чем у стола, а ширина соответственно меньше.

В данном примере стул нужно повернуть на уго 87 градусов влево.

4 Результаты на всем множестве данных

Алгоритм был протестирован на всем множестве данных и были получены следующие результаты: обнаружение меток происходило верно в 60% случаев, обнаружение стола происходило верно в 70% случаев, а обнаружение стула происходило верно в 94% случаев, а общая верятность успешного выполнения программы составляет 45%.