深度學習應用 - 作業三

tags: ADL

系級:電機所碩一 姓名:楊冠彥 學號:R11921091

Q1: Model

a. Model (1%)

Describe the model architecture and how it works on text summarization.

根據助教作業說明,我使用Hugging Face的 google/mt5-small 模型,來做本次的Chinese News Summarization。mt5的模型涵蓋101種語言,且相似於T5。mt5的架構是一種標準的vanilla encoder-decoder transformer。

endoder會由無數相同的layer組成,每個layer會包括兩個sub-layer,一個用於multi-head self-attention機制,一個用於position-wise fully connected feed-forward 網路。另外,在每個sub-layer上都有殘差連接和layer normalization。

至於decoder的部分也由許多相同的layer組成。除了殘差連接和normalization這兩個sub-layer外,decoder層還插入了第三個sub-layer,這個sub-layer會對encoder的輸出執行multi-head attention。另外,在這個摘要產生title的任務中,一個簡單的linear layer被加到decoder的最上層,用來計算所有下一個可能token的logits。

config.json

```
2
      "_name_or_path": "google/mt5-small",
 3
      "architectures": [
        "MT5ForConditionalGeneration"
4
 5
      ],
      "d_ff": 1024,
 6
 7
      "d_kv": 64,
8
      "d_model": 512,
9
      "decoder_start_token_id": 0,
10
      "dense_act_fn": "gelu_new",
11
      "dropout_rate": 0.1,
12
      "eos_token_id": 1,
13
      "feed_forward_proj": "gated-gelu",
      "initializer_factor": 1.0,
14
15
      "is_encoder_decoder": true,
16
      "is_gated_act": true,
      "layer_norm_epsilon": 1e-06,
17
18
      "model_type": "mt5",
      "num_decoder_layers": 8,
19
20
      "num_heads": 6,
21
      "num_layers": 8,
      "pad_token_id": 0,
22
23
      "relative_attention_max_distance": 128,
24
      "relative_attention_num_buckets": 32,
25
      "tie_word_embeddings": false,
      "tokenizer_class": "T5Tokenizer",
26
```

```
"torch_dtype": "float32",
"transformers_version": "4.22.2",
"use_cache": true,
"vocab_size": 250100
]
```

b. Preprocessing (1%)

Describe your preprocessing (e.g. tokenization, data cleaning and etc.)

mt5的 tokenizer 是透過 SentencePiece 處理來源texts(maintexts) 和目標texts(titles) 的斷詞。那因為這邊我設定輸入文字最大長度為384.所以當輸入長度超過 384 時會將後面的文字截斷.若長度不足 384 則會補 上 token.而輸出最大長度我設定為 64.因此當輸出長度不足64時.就會補[PAD] token 補到64字。另外.在計算訓練損失時將忽略target sequence中的所有 [PAD].並且不使用額外的資料清理。

Q2: Training

a. Hyperparameter (1%)

Describe your hyperparameter you use and how you decide it.

我選擇以下最為參數,因為我的GPU為 RTX3060 Laptop 僅有6G獨顯,因此我使用了助教投影片提及的 adafactor做為optimization algorithm,相對於adam其減少了momentum的部分,因此記憶體使用較少,同樣由於GPU的限制,per_device_train_batch_size 最大只能設為2,learning rate一開始使用5e-5,但進步的非常慢,所以才更改為1e-4。

- Optimization algorithm: Adafactor
- Learning rate: 1e-4 = 0.0001
- Batch size: 2 (per_device_train_batch_size 2 * train_accumulation_steps 16)
- Num train epochs: 35
- max source length: 384
- max target length: 64
- learning rate scheduler type: linear
- warmup ratio: 0.1

b. Learning Curves (1%)

Plot the learning curves (ROUGE versus training steps)

Q3: Generation Strategies(6%)

a. Stratgies (2%)

Describe the detail of the following generation strategies: Greedy, Beam Search, Top-k Sampling, Top-p Sampling, Temperature

Greedy

這項策略每次選擇機率最大的token作為輸出句子。一旦產生 <END> ,這個過程就會停止。

Beam Search

這項策略每個時間點觀察最高分的k條路徑,即candidate,下一個時間點,從這個時間點的k條中找出機率最大的那條,期望透過這樣相對於greedy更多的局部最佳擴展,即更大的搜尋空間,來找到全域最佳。值得注意的是當beam size=1,即k=1時,將等同於 greedy 搜尋。

Top-k Sampling

這項策略是每個時間點先從字典中找出目前預測機率最高的k個token‧再將機率重新計算分布在這些token上‧這個機率分布可寫成 $P(x|x_1\dots x_{t-1})$.接著就是按機率取樣 x_t 。

Top-p Sampling

這項策略是每個時間點先從字典中找出目前機率總和至少為 p 且數量最少的 tokenset · 再將機率重新計算分布在這些 token 上 · 這個機率分布可寫成 $P(x|x_1\dots x_{t-1})$ · 接著就是按機率從機率最大的前幾名累加到 p 的 sample 中取樣 x_t 。

Temperature

softmax是一種均勻化或集中化機率分佈的方法。應該根據我們是想要更集中於特定字詞,還是更多樣化的輸出來設置參數,tempetature愈高,機率分佈就會愈平緩,也就是會更加多樣化;temperature愈小,機率分佈就會愈集中,也就是愈偏向特定幾個token。機率公式如下:

$$P(x) = rac{e^{s_w/ au}}{\sum_{w' \in V} e^{s_w'/ au}}$$

 $\tau: temperature$

b. Hyperparameters (4%)

Try at least 2 settings of each strategies and compare the result. What is your final generation strategy? (you can combine any of them)

以下表格統一四捨五入到小數點後第五位,詳細可見繳交檔案中的statistic資料夾

Greedy vs Sampling

rouge	Greedy	do_sample
rouge-1_f	0.253	0.21077
rouge-1_p	0.28322	0.2221
rouge-1_r	0.24148	0.21126
rouge-2_f	0.0941	0.06945
rouge-2_p	0.1033	0.07216
rouge-2_r	0.09148	0.07095
rouge-l_f	0.22685	0.18643
rouge-l_p	0.25411	0.19673
rouge-l_r	0.21657 0.18682	

Beam Search

rouge	num_beams=1 (Greedy)	num_beams=5	num_beams=6	num_beams=7	num_beam=8
rouge-1_f	0.253	0.26715	0.26781	0.26765	0.26713
rouge-1_p	0.28322	0.28798	0.28779	0.2873	0.28612
rouge-1_r	0.24148	0.2631	0.26408	0.26406	0.264
rouge-2_f	0.0941	0.1064	0.10729	0.1072	0.10713
rouge-2_p	0.1033	0.11353	0.11438	0.11428	0.11398
rouge-2_r	0.09148	0.1061	0.10693	0.10681	0.10691
rouge-l_f	0.22685	0.2379	0.23876	0.23839	0.23799
rouge-l_p	0.25411	0.25668	0.25684	0.25623	0.25522
rouge-l_r	0.21657	0.23427	0.23539	0.2351	0.23514

Top-k Sampling

rouge	k=30	k=60
rouge-1_f	0.21404	0.20434
rouge-1_p	0.22844	0.21607
rouge-1_r	0.21281	0.2039
rouge-2_f	0.0697	0.06492
rouge-2_p	0.07329	0.06785
rouge-2_r	0.07064	0.06581
rouge-l_f	0.18813	0.181
rouge-l_p	0.20113	0.19145
rouge-l_r	0.18706	0.18069

Top-p Sampling

rouge	p=0.5	p=1.0
rouge-1_f	0.24564	0.21077
rouge-1_p	0.26915	0.2221
rouge-1_r	0.2381	0.21126
rouge-2_f	0.08883	0.06945
rouge-2_p	0.09551	0.07216
rouge-2_r	0.08797	0.07095
rouge-l_f	0.2179	0.18643
rouge-l_p	0.23902	0.19673
rouge-l_r	0.21117	0.18682

Temparature (Sampling) + Beam Search(num_beams=6)

rouge	temparature=0.5	temperature=1.0	
rouge-1_f	0.24279	0.26471	
rouge-1_p	0.28267	0.28548	
rouge-1_r	0.23003	0.26036	
rouge-2_f	0.09211	0.10393	
rouge-2_p	0.1061	0.11106	
rouge-2_r	0.0887	0.10335	
rouge-l_f	0.21879	0.23586	
rouge-l_p	0.25534	0.25459	
rouge-l_r	0.20665	0.23207	

Final Generation Strategy

最後我使用 beam search(num_beams=6) 的策略。

Bonus: Applied RL on Summarization (2%)

a. Algorithm (1%)

Describe your RL algorithms, reward function, and hyperparameters.

我使用梯度策略去達到增強式學習,reward function則為rouge-I/0.22,hyperparameters則如下:

- Optimization algorithm: Adafactor
- Learning rate: 1e-3 = 0.001
- Batch size: 32 (per_device_train_batch_size 1 * train_accumulation_steps 32)
- Num train epochs: 3
- max source length: 384
- max target length: 64
- learning rate scheduler type: linear
- weight decay: 0.01

b. Compare to Supervised Learning (1%)

Observe the loss, ROUGE score and output texts, what differences can you find?

RL 的訓練目標與監督學習略有不同。最初的 finetuning 方法是在訓練資料中 fitting 每個 token 的產生。而 RL 方法是 fitting 產生句子的 rouge score 。下面的實驗結果是在 beam size = 6 的情況下測試的。 rouge 的分數則為 f1 score 。

Learning type	loss	rogue-1_f1	rouge-2_f1	rouge-l_f1
Supervised Learning	4.46413	0.22523	0.086	0.20565
Reinforcement Learning	3.11241	0.24031	0.09315	0.21669

在實驗中·RL 算法獲得了更顯著的rouge 分數的表現·在我觀察RL的輸出和finetuning後·也發現RL的輸出標題比另一個更符合人類的習慣。

Reference

- LeeMeng 進擊的 BERT: NLP 界的巨人之力與遷移學習
- <u>Transformer github</u>
- <u>Hugging Face</u>
- Revisiting Pre-Trained Models for {C}hinese Natural Language Processing
- multilingual-t5 Github