

Graf Matematika Diskrit

Pendahuluan

 Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut.

Gambar sebuah graf yang menyatakan peta jaringan jalan raya yang menghubungkan sejumlah kota di Provinsi Jawa Tengah.

Sejarah graf: Persoalan jembatan Königsberg (tahun 1736)

Gambar 2. Kiri: Masalah Jembatan Königsberg; Kanan: graf persoalan

• Graf yang merepresentasikan jembatan Königsberg:

Simpul (*vertex*) → menyatakan daratan

Sisi (*edge*) → menyatakan jembatan

Persoalan: Bisakah orang melalui setiap jembatan tepat sekali dan kembali lagi ke tempat semula?

Konigsberg Bridge Problem

Leonhard Euler 15 April 1707 – 18 September 1783

Definisi Graf

Graf G = (V, E), yang dalam hal ini:

```
V = \text{himpunan tidak-kosong dari simpul-simpul (} vertices)
= { v_1, v_2, ..., v_n }
```

E = himpunan sisi (edges) yang menghubungkan sepasang simpul= $\{e_1, e_2, ..., e_n\}$

Gambar 2. (a) graf sederhana, (b) graf ganda, dan (c) graf semu

Contoh 1. Pada Gambar 2, G_1 adalah graf dengan

$$V = \{ 1, 2, 3, 4 \}$$
 $E = \{ (1, 2), (1, 3), (2, 3), (2, 4), (3, 4) \}$

G_2 adalah graf dengan

$$V = \{ 1, 2, 3, 4 \}$$

 $E = \{ (1, 2), (2, 3), (1, 3), (1, 3), (2, 4), (3, 4), (3, 4) \}$
 $= \{ e_1, e_2, e_3, e_4, e_5, e_6, e_7 \}$

G_3 adalah graf dengan

$$V = \{ 1, 2, 3, 4 \}$$

 $E = \{ (1, 2), (2, 3), (1, 3), (1, 3), (2, 4), (3, 4), (3, 4), (3, 3) \}$
 $= \{ e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8 \}$

Gambar 2. (a) graf sederhana, (b) graf dan (c) graf semu ganda,

- Pada G_2 , sisi $e_3 = (1, 3)$ dan sisi $e_4 = (1, 3)$ dinamakan **sisiganda** (multiple edges atau paralel edges) karena kedua sisi ini menghubungi dua buah simpul yang sama, yaitu simpul 1 dan simpul 3.
- Pada G_3 , sisi $e_8 = (3, 3)$ dinamakan **gelang** atau **kalang** (loop) karena ia berawal dan berakhir pada simpul yang sama.

Jenis-jenis Graf

Berdasarkan ada tidaknya gelang atau sisi ganda pada suatu graf, maka graf digolongkan menjadi dua jenis:

1. Graf sederhana (simple graph).

Graf yang tidak mengandung gelang maupun sisi ganda dinamakan graf sederhana.

2. Graf tak-sederhana (unsimple-graph).

Graf yang mengandung sisi ganda atau gelang dinamakan graf tak-sederhana (unsimple graph).

Graf tak-sederhana dibedakan lagi menjadi:

1. Graf ganda (multi-graph) \rightarrow Graf mengandung sisi ganda

2. Graf semu (pseudo-graph) \rightarrow Graf mengandung sisi gelang

 $nonsimple\ graph$ with multiple edges

 $non simple\ graph$ with loops

Graf sederhana

Graf ganda

Graf semu

Berdasarkan orientasi arah pada sisi, graf dibedakan atas 2 jenis:

1. Graf tak-berarah (undirected graph)

Graf yang sisinya tidak mempunyai orientasi arah disebut graf tak-berarah.

2. **Graf berarah** (directed graph atau digraph)

Graf yang setiap sisinya diberikan orientasi arah disebut sebagai graf berarah.

G1 : graf tak-berarah; G2 : Graf berarah

Gambar (a) graf berarah, (b) graf-ganda berarah

Tabel 1 Jenis-jenis graf

Jenis	Sisi	Sisi ganda	Sisi gelang
		dibolehkan?	dibolehkan?
Graf sederhana	Tak-berarah	Tidak	Tidak
Graf ganda	Tak-berarah	Ya	Tidak
Graf semu	Tak-berarah	Tidak	Ya
Graf berarah	Berarah	Ya	Ya
Graf-ganda berarah	Berarah		Ya

Contoh Penerapan Graf

1. Rangkaian listrik.

2. Isomer senyawa kimia karbon

3. Jejaring makanan (Biologi)

4. Pengujian program

```
read(x);
while x <> 9999 do
begin
   if x < 0 then
       writeln('Masukan tidak boleh negatif')
   else
       x:=x+10;
   read(x);
  end;
writeln(x);</pre>
```



```
Keterangan: 1 : read(x) 5 : x := x + 10

2 : x <> 9999 6 : read(x)

3 : x < 0 7 : writeln(x)

4 : writeln('Masukan tidak boleh negatif');
```

5. Pemodelan Mesin Jaja (vending Machine)

Graf kelakuan mesin jaja: (misal mesin jaja yang menjual coklat 15 sen)

Keterangan:

a: 0 sen dimasukkan

b : 5 sen dimasukkan

c:10 sen dimasukkan

d:15 sen atau lebih

dimasukkan

Latihan

• Gambarkan graf yang menggambarkan sistem pertandingan sistem ½ kompetisi (round-robin tournaments) yang diikuti oleh 5 tim.

Terminologi Graf

1. Ketetanggaan (Adjacent)

Dua buah simpul dikatakan *bertetangga* bila keduanya terhubung langsung. Tinjau graf *G*₁ : simpul 1 bertetangga dengan simpul 2 dan 3, simpul 1 tidak bertetangga dengan simpul 4.

2. Bersisian (*Incidency*)

Untuk sembarang sisi $e = (v_i, v_k)$ dikatakan

- e bersisian dengan simpul v_i , atau
- e bersisian dengan simpul v_k

Tinjau graf *G*₁: sisi (2, 3) bersisian dengan simpul 2 dan simpul 3, tetapi sisi (1,2) tidak bersisian dengan simpul 4 sisi (2, 4) bersisian dengan simpul 2 dan simpul 4, tetapi sisi (1,3) tidak bersisian dengan simpul 4

3. Simpul Terpencil (*Isolated Vertex*)

Simpul terpencil ialah simpul yang tidak mempunyai sisi yang bersisian dengannya.

Tinjau graf G_3 : simpul 5 adalah simpul terpencil.

4. Graf Kosong (null graph atau empty graph)

Graf yang himpunan sisinya merupakan himpunan kosong (N_n). Graf N_5 :

5. Derajat (Degree)

Derajat suatu simpul adalah jumlah sisi yang bersisian dengan simpul tersebut. Notasi: d(v)

Tinjau graf
$$G_1$$
: $d(1) = d(4) = 2$
 $d(2) = d(3) = 3$

Tinjau graf
$$G_3$$
: $d(5) = 0 \rightarrow \text{simpul terpencil}$
 $d(4) = 1 \rightarrow \text{simpul anting-anting } (pendant vertex)$

Tinjau graf
$$G_2$$
: $d(1) = 3 o bersisian dengan sisi ganda $d(3) = 4 o bersisian dengan sisi gelang (loop)$$

Pada graf di atas, derajat setiap simpul ditunjukkan pada masing-masing simpul

Pada graf beraarah, derajat simpul dibedakan lagi menjadi derajat masuk (in-degree) dan derajat keluar (out-degree)

Tinjau graf G_4 :

$$d_{in}(1) = 2$$
; $d_{out}(1) = 1$
 $d_{in}(2) = 2$; $d_{out}(2) = 3$
 $d_{in}(3) = 2$; $d_{out}(3) = 1$
 $d_{in}(4) = 1$; $d_{out}(3) = 2$

Lemma Jabat Tangan. Jumlah derajat semua simpul pada suatu graf adalah genap, yaitu dua kali jumlah sisi pada graf tersebut.

Dengan kata lain, jika
$$G = (V, E)$$
, maka $\sum_{v \in V} d(v) = 2 |E|$

Tinjau graf
$$G_1$$
: $d(1) + d(2) + d(3) + d(4) = 2 + 3 + 3 + 2 = 10$
= $2 \times \text{jumlah sisi} = 2 \times 5$

Tinjau graf
$$G_2$$
: $d(1) + d(2) + d(3) = 3 + 3 + 4 = 10$
= $2 \times \text{jumlah sisi} = 2 \times 5$

Tinjau graf
$$G_3$$
: $d(1) + d(2) + d(3) + d(4) + d(5)$
= $2 + 2 + 3 + 1 + 0 = 8$
= $2 \times \text{jumlah sisi} = 2 \times 4$

• Akibat dari *lemma* (corollary):

Teorema: Untuk sembarang graf G, banyaknya simpul berderajat ganjil selalu genap.

 Jadi, menurut teorema ini, tidak mungkin sebuah graf memiliki simpul berderajat ganjil sejumlah ganjil **Contoh 2**. Diketahui graf dengan lima buah simpul. Dapatkah kita menggambar graf tersebut jika derajat masing-masing simpul adalah:

- (a) 2, 3, 1, 1, 2
- (b) 2, 3, 3, 4, 4

Penyelesaian:

- (a)tidak dapat, karena jumlah derajat semua simpulnya ganjil (2+3+1+1+2=9).
- (b) dapat, karena jumlah derajat semua simpulnya genap (2+3+3+4+4=16).

Latihan

 Mungkinkah dibuat graf-sederhana 5 simpul dengan derajat masing-masing simpul adalah:

- (a) 5, 2, 3, 2, 4
- (b) 4, 4, 3, 2, 3
- (c) 3, 3, 2, 3, 2
- (d) 4, 4, 1, 3, 2

Jika mungkin, berikan satu contohnya, jika tidak mungkin, berikan alasan singkat.

Jawaban:

- (a) 5, 2, 3, 2, 4: Tidak mungkin, karena ada simpul berderajat 5
- (b) 4, 4, 3, 2, 3: Mungkin [contoh banyak]
- (c) 3, 3, 2, 3, 2: Tidak mungkin, karena jumlah simpul berderajat ganjil ada 3 buah (alasan lain, karena jumlah derajat ganjil)
- (d) 4, 4, 1, 3, 2: Tidak mungkin, karena simpul-1 dan simpul-2 harus bertetangga dengan simpul sisanya, berarti simpul-3 minimal berderajat 2 (kontradiksi dengan simpul-3 berderajat 1)

6. Lintasan (Path)

Lintasan yang panjangnya n dari simpul awal v_0 ke simpul tujuan v_n di dalam graf G ialah barisan berselang-seling simpul-simpul dan sisi-sisi yang berbentuk v_0 , e_1 , v_1 , e_2 , v_2 ,..., v_{n-1} , e_n , v_n sedemikian sehingga $e_1 = (v_0, v_1)$, $e_2 = (v_1, v_2)$, ..., $e_n = (v_{n-1}, v_n)$ adalah sisi-sisi dari graf G.

Tinjau graf G_1 : lintasan 1, 2, 4, 3 adalah lintasan dengan barisan sisi (1,2), (2,4), (4,3).

Panjang lintasan adalah jumlah sisi dalam lintasan tersebut. Lintasan 1, 2, 4, 3 pada G_1 memiliki panjang 3.

36

7. Siklus (Cycle) atau Sirkuit (Circuit)

Lintasan yang berawal dan berakhir pada simpul yang sama disebut sirkuit atau siklus.

Tinjau graf G_1 : 1, 2, 3, 1 adalah sebuah sirkuit.

Panjang sirkuit adalah jumlah sisi dalam sirkuit tersebut. Sirkuit 1, 2, 3, 1 pada G_1 memiliki panjang 3.

8. Kerterhubungan (Connected)

Dua buah simpul v_1 dan simpul v_2 disebut **terhubung** jika terdapat lintasan dari v_1 ke v_2 .

G disebut **graf terhubung** (connected graph) jika untuk setiap pasang simpul v_i dan v_j dalam himpunan V terdapat lintasan dari v_i ke v_j .

Jika tidak, maka G disebut graf tak-terhubung (disconnected graph).

Contoh graf terhubung:

Contoh graf tak-terhubung:

Graf tak-terhubung

Graf tak-terhubung

- Graf berarah G dikatakan terhubung jika graf tidak berarahnya terhubung (graf tidak berarah dari G diperoleh dengan menghilangkan arahnya).
- Dua simpul, u dan v, pada graf berarah G disebut terhubung kuat (strongly connected) jika terdapat lintasan berarah dari u ke v dan juga lintasan berarah dari v ke u.
- Jika u dan v tidak terhubung kuat tetapi terhubung pada graf tidak berarahnya, maka u dan v dikatakan terhubung lemah (weakly coonected).

• Simpul 1 dan 4 terhubung kuat, karena ada lintasan dari 1 ke 4 dan lintasan dari 4 ke 1:

Lintasan dari 1 ke 4: 1, 2, 3, 4

Lintasan dari 4 ke 1: 4, 5, 1

• Graf berarah G disebut **graf terhubung kuat** (*strongly connected graph*) apabila untuk setiap pasang simpul sembarang u dan v di G, terhubung kuat. Kalau tidak, G disebut **graf terhubung lemah**.

Graf berarah terhubung lemah

Graf berarah terhubung kuat

Graf berarah terhubung kuat: selalu ada lintasan dari sepasang simpul manapun.
Periksa!

8. Upagraf (Subgraph) dan Komplemen Upagraf

Misalkan G = (V, E) adalah sebuah graf. $G_1 = (V_1, E_1)$ adalah **upagraf** (subgraph) dari jika $V_1 \subseteq G$

 $V \operatorname{dan} E_1 \subseteq E$.

Komplemen dari upagraf G_1 terhadap graf G adalah $G_2 = (V_2, E_2)$ sedemikian sehingga $E_2 = E$ - graf E_1 dan V_2 adalah himpunan simpul yang anggota-anggota E_2 bersisian dengannya.

(a) Graf G_1

- (b) Sebuah upagraf
- (c) komplemen dari upagraf (b)

Komponen graf (connected component) adalah jumlah

upagraf terhubung dalam graf G.

Graf G di bawah ini mempunyai 4 buah komponen.

maksimum

Pada graf berarah, komponen terhubung kuat (strongly component) adalah jumlah maksimum upagraf yang terhubung kuat.

Graf di bawah ini mempunyai 2 buah komponen terhubung kuat:

9. Upagraf Merentang (Spanning Subgraph)

(a) graf G,

Upagraf $G_1 = (V_1, E_1)$ dari G = (V, E) dikatakan **upagraf rentang** jika $V_1 = V$ (yaitu G_1 mengandung semua simpul dari G).

(b) upagraf merentang dari *G*, (c) bukan upagraf merentang dari *G* Rinaldi Munir/IF2120 Matematika Diskrit

10. Cut-Set

Cut-set dari graf terhubung G adalah himpunan sisi yang bila dibuang dari G menyebabkan G tidak terhubung. Jadi, cut-set selalu menghasilkan dua buah komponen.

Pada graf di bawah, $\{(1,2), (1,5), (3,5), (3,4)\}$ adalah *cut-set*. Terdapat banyak *cut-set* pada sebuah graf terhubung.

Himpunan {(1,2), (2,5)} juga adalah *cut-set*, {(1,3), (1,5), (1,2)} adalah *cut-set*, {(2,6)} juga *cut-set*,

tetapi {(1,2), (2,5), (4,5)} bukan *cut-set* sebab himpunan bagiannya, {(1,2), (2,5)} adalah *cut-set*.

11. Graf Berbobot (Weighted Graph)

Graf berbobot adalah graf yang setiap sisinya diberi sebuah harga (bobot).

Beberapa Graf Khusus

a. Graf Lengkap (Complete Graph)

Graf lengkap ialah graf sederhana yang setiap simpulnya mempunyai sisi ke semua simpul lainnya. Graf lengkap dengan n buah simpul dilambangkan dengan K_n . Jumlah sisi pada graf lengkap yang terdiri dari n buah simpul adalah n(n-1)/2.

Jumlah sisi di dalam graf lengkap

b. Graf Lingkaran

Graf lingkaran adalah graf sederhana yang setiap simpulnya berderajat dua. Graf lingkaran dengan n simpul dilambangkan dengan C_n .

c. Graf Teratur (Regular Graphs)

Graf yang setiap simpulnya mempunyai derajat yang sama disebut **graf teratur**. Apabila derajat setiap simpul adalah r, maka graf tersebut disebut sebagai graf teratur derajat r. Jumlah sisi pada graf teratur adalah nr/2.

Contoh-fontoh graf teratur lainnya:

Latihan

• Berapa jumlah maksimum dan jumlah minimum simpul pada graf sederhana yang mempunyai 16 buah sisi dan tiap simpul berderajat sama dan tiap simpul berderajat ≥ 4 ?

Jawaban: Tiap simpul berderajat sama -> graf teratur.

- Jumlah sisi pada graf teratur berderajat r adalah e = nr/2. Jadi, n = 2e/r = (2)(16)/r = 32/r.
- Untuk r = 4, jumlah simpul yang dapat dibuat adalah maksimum, yaitu n = 32/4 = 8.
- Untuk r yang lain (r > 4 dan r merupakan pembagi bilangan bulat dari 32):

 $r = 8 \rightarrow n = 32/8 = 4 \rightarrow tidak mungkin membuat graf sederhana.$

 $r = 16 \rightarrow n = 32/16 = 2 \rightarrow tidak mungkin membuat graf sederhana.$

• Jadi, jumlah simpul yang dapat dibuat adalah 8 buah (maksimum dan minimum).

d. Graf Bipartite (Bipartite Graph)

Graf G yang himpunan simpulnya dapat dipisah menjadi dua himpunan bagian V_1 dan V_2 , sedemikian sehingga setiap sisi pada G menghubungkan sebuah simpul di V_1 ke sebuah simpul di V_2 disebut **graf bipartit** dan dinyatakan sebagai $G(V_1, V_2)$.

• Graf G di bawah ini adalah graf bipartit, karena simpul-simpunya dapat dibagi menjadi $V_1 = \{a, b, d\}$ dan $V_2 = \{c, e, f, g\}$

Contoh graf bipartit lainnya:

 $V_1 = \{H1, H2, H3\} \text{ dan } V_2 = \{W, G, E\}$

 V_1 = {simpul di tengah} dan V_2 = {simpul2 lainnya}

Apakah ini graf bipartit?

 $V_1 = \{1, 4, 6, 7\} \text{ dan } V_2 = \{2, 3, 5, 8\}$