MATH 307 Midterm Exam 1

October 13, 2021

 $\bullet\,$ No calculators, cell phones, laptops or notes

• Time allowed: 45 minutes				
• 35 total marks				
• Write your name and student number in the space below				
Name:				
Student Number:				

- 1. Short answer questions. Each part is independent of the others.
 - (a) (3 marks) The figures show different interpolating functions for the same dataset:

Determine which figure corresponds to polynomial interpolation and which corresponds to cubic spline interpolation. Justify your answer.

(b) (3 marks) **True** or **False**: If A is an invertible $n \times n$ matrix such that $||A\boldsymbol{x}|| \leq ||\boldsymbol{x}||$ for all $\boldsymbol{x} \in \mathbb{R}^n$, then $||A^{-1}|| \geq 1$. Justify your answer.

(c) (3 marks) Determine whether or not the set

$$U = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3 : abc = 0 \right\}$$

is a subspace of \mathbb{R}^3 . Justify your answer.

(d) (3 marks) Consider the boundary value problem

$$y'' = \cos(\pi t^2)$$
, $y(0) = 0$, $y(2) = 0$

If we know that $y(0.9) \approx 0.018$ and $y(1.1) \approx 0.023$, find an approximation of y(1).

2. Let p(t) be the natural cubic spline which interpolates the data

$$(0,1)$$
 , $(1,3)$, $(2,8)$, $(3,10)$, $(4,9)$, $(5,-1)$, $(6,-17)$

Suppose the coefficient matrix of p(t) is

$$\begin{bmatrix} 1 & -2 & 1 & a_4 & 1 & 1 \\ 0 & 3 & -3 & b_4 & -6 & -3 \\ 1 & 4 & 4 & c_4 & -5 & -14 \\ 1 & 3 & 8 & 10 & 9 & -1 \end{bmatrix}$$

- (a) (4 marks) Determine the coefficients a_4, b_4, c_4 .
- (b) (2 mark) Determine the value p''(2.5).

3. Consider the matrix

$$A = \begin{bmatrix} -3 & 1 & 2 & 0 \\ 3 & 1 & -2 & 1 \\ -6 & 2 & 5 & 1 \\ -9 & 3 & 4 & 2 \end{bmatrix}$$

- (a) (4 marks) Find the LU decomposition of A.
- (b) (2 mark) Compute $\det(A)$.

4. (6 marks) Determine whether span $\{u_1, u_2\} = \text{span}\{u_3, u_4\}$ where

$$\boldsymbol{u}_1 = \begin{bmatrix} 2 \\ -3 \\ 1 \\ -1 \end{bmatrix} \qquad \boldsymbol{u}_2 = \begin{bmatrix} -5 \\ 1 \\ 2 \\ -2 \end{bmatrix} \qquad \boldsymbol{u}_3 = \begin{bmatrix} -1 \\ -5 \\ 4 \\ -4 \end{bmatrix} \qquad \boldsymbol{u}_4 = \begin{bmatrix} 3 \\ -11 \\ 6 \\ -10 \end{bmatrix}$$

$$\boldsymbol{u}_2 = \begin{bmatrix} -5 \\ 1 \\ 2 \\ -2 \end{bmatrix}$$

$$\boldsymbol{u}_3 = \begin{bmatrix} -1 \\ -5 \\ 4 \\ -4 \end{bmatrix}$$

$$\boldsymbol{u}_4 = \begin{vmatrix} 3 \\ -11 \\ 6 \\ -10 \end{vmatrix}$$

5. (5 marks) Determine ||A|| for the matrix

$$A = \frac{1}{2} \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$$

Hint: counterclockwise rotation in \mathbb{R}^2 by angle θ corresponds to matrix multiplication by

$$\begin{bmatrix}
\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta
\end{bmatrix}$$

 ${\it Extra\ workspace.\ Do\ not\ write\ in\ the\ table\ below.}$

Q1	/12
Q2	/6
Q3	/6
Q4	/6
Q5	/5
Total	/35