学 号	评定成绩(分)	
学生姓名	担任教师_线性代数课程组	
(下述一 ~ 四题全作	100 分,两小时完卷)	
试	题 全 文	
1. 填空题 (将正确答案填在题中持	舌号内。每小题 2 分,共 10 分)	
1. 已知 4 阶行列式 D 的第三行元	素分别为-1,0,2,4; 第四行元素对应的余子式	
1. D) H 1 D 1 1 7 7 7 7 1 7 1 7 1 7 7	1,0,2,1,70 H 1170 A 777 A 777	
依次是5,10,a,4.则a=().	
2. 设方程 $f(x) = \begin{vmatrix} 1 & x & x^2 & \cdots \\ 1 & a_1 & a_1^2 & \cdots \\ \cdots & \cdots & \cdots & \cdots \\ 1 & a_{n-1} & a_{n-1}^2 & \cdots \end{vmatrix}$	$ \begin{array}{c} \cdot x^{n-1} \\ \cdot a_1^{n-1} \\ \cdot \dots \end{array} = 0 $	
$ 1 a_{n-1} a_{n-1}^2 \cdots$	a_{n-1}^n	
其中 $a_i(i=1,2,\cdots,n-1)$ 为互不相等的	实常数,则方程的全部解是().	
3. 设四阶矩阵 $A = [\alpha, \gamma_2, \gamma_3, \gamma_3]$	$[\gamma_4]B = [\beta, \gamma_2, \gamma_3, \gamma_4] $ 其中	
$\alpha, \beta, \gamma_2, \gamma_3, \gamma_4$ 均为 4×1 列矩阵, 且已 i	已知行列式 $ A =4$, $ B =1$,则行列式 $ A+B =($)
, , , , , , , , , , , , , , , , , , , ,		
$4.$ 若向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 的秩为 r ,	则 $r()$ s .	
\mathbf{H} 有所重组 $\mathbf{u}_1,\mathbf{u}_2,\cdots,\mathbf{u}_s$ 时次为 \mathbf{f}_s	Kg / () 3.	
5. 已知 n 阶矩阵滿足关系式 A^2+2	AA-3I=0,	
二. 单项选择题 (每小题仅有一个 每小题 2 分, 共 20 分)	`正确答案, 将正确答案的番号填入下表内.	

二. 单项选择题	(每小题仅	【有一个	正确答	案,将	正确答	案的番号	号填入下	表内.
每小题 2 分, 共 20	0分)							

题号	1	2	3	4	5	6	7	8	9	10
答案										
番										
号										

1.设A为方阵,则A=0的必要条件是() 该资源由考僧独家整理发布,微信关注考僧,更多惊喜

- 両行(列)元素对应成比例; (A)任一列为其它列的线性组合; (*B*) (C) 必有一列为其它列的线性组合; (D) A中至少有一列元素全为零. 2. 设A为m阶方阵, B为n阶方阵, $C = \begin{bmatrix} O & A \\ B & O \end{bmatrix}$, 则|C| = ($(A) \quad |A||B|;$ $(C) \quad (-1)^{m+n} |A| |B|;$ 103 100 204 行列式 199 200 395 = (301 300 600 -10000;(*A*) 1000; (*B*) (*C*) 2000; -2000.(D)4. 设A,B为n阶方阵,则下列结论成立的是($AB \neq 0 \Leftrightarrow A \neq 0 \perp B \neq 0$; (B) $|A| = 0 \Leftrightarrow A = 0$; (A) $|AB| = 0 \Leftrightarrow |A| = 0 \Rightarrow |B| = 0;$ (D) $A = I \Leftrightarrow |A| = 1.$ 5. 设A为n阶可逆矩阵,则((A) A 总可以只经过初等行变换变为 I; (B) 对分块矩阵 $(A \ I)$ 施行若干次初等变换, 当子块变为I时, 相应地 I 变为 A⁻¹; (C) 由 AX = BA. 得 X = A; (D) 以上三个结论都不正确. 设 $A \in m \times n$ 矩阵,其秩为r, $C \in n$ 阶可逆阵,且AC = B的秩为r₁,则()
 - 6. 设A是 $m \times n$ 矩阵,具族为r,C是n阶可逆阵,且AC = B的秩为r,则() 该资源由考僧独家整理发布,微信关注考僧,更多惊喜

	(A)	$r > r_1;$	(B)	$r < r_1$;
	(<i>C</i>)	$r=r_1$;	(D)	r 与 r_1 的关系依 C 而定.
7.	设 A	I,B 为同阶可逆方阵,则()成立	
	(A)	AB = BA;		
	(B)	存在可逆阵 P , 使 $P^{-1}AP = B$;		
	(C)	存在可逆阵 C , 使 $C^TAC = B$;		
	(D)	存在可逆阵 P,Q ,使 $PAQ = B$.		5
8.	设 <i>A</i> ,	B 为 n 阶非零矩阵, 且 $AB = O$,	则 A 和	印B的秩().
	(A)	必有一个等于零; (B) 都	小于 n;
	(C)	一个小于 n ,一个等于 n ; (D) 都	7等于 n.
9.	如果	向量 eta 可由向量组 $lpha_1,lpha_2,\cdots,lpha_s$	。线性	表出,则().
	(A)	存在一组数 k_1,k_2,\cdots,k_s ,使等	式β=	$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s$ 成立;
	(B)	存在一组不全为零的 k_1,k_2,\cdots	\cdot, k_s ,信	史等式 $\beta = k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_s \alpha_s$ 成
<u>ì</u> ;				
	(<i>C</i>)	存在一组全为零的 k_1, k_2, \cdots, k_n	t _s ,使等	学式 $\beta = k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_s \alpha_s$ 成立;
•	(D)	对 β 的线性表达式唯一.		
10.	设	$lpha_{\scriptscriptstyle 1},lpha_{\scriptscriptstyle 2},\cdots,lpha_{\scriptscriptstyle s}$ 和 $eta_{\scriptscriptstyle 1},eta_{\scriptscriptstyle 2},\cdots,eta_{\scriptscriptstyle t}$ 为两	万个 n	维向量组,
且秩	(α_1,α_2)	$(\alpha_s, \dots, \alpha_s)$ =秩 $(\beta_1, \beta_2, \dots, \beta_t) = r$,则().
	(A)	两向量组等价,也即可相互线	注性表 定	示;
	(<i>B</i>)	秩 $(\alpha_1,\alpha_2,\cdots,\alpha_s,\beta_1,\beta_2,\cdots,\beta_t)$)=r;	
	(<i>C</i>)	当 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 被向量组 β_1, β_2	B_2, \cdots, μ	3,线性表示时,两向量组等价;

该资源由考僧独家整理发布, 微信关注考僧, 更多惊喜

(D) 当s = t时,两向量组等价.

3、**计算题** (每小题 9 分, 共 54 分)

1. 计算下列行列式:

$$\begin{vmatrix} 0 & 0 & \cdots & 0 & 1 & 0 \\ 0 & 0 & \cdots & 2 & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 1997 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 & 1998 \end{vmatrix}$$

$$D_n = \begin{vmatrix} \alpha + \beta & \alpha & 0 & \cdots & 0 & 0 \\ \beta & \alpha + \beta & \alpha & \cdots & 0 & 0 \\ 0 & \beta & \alpha + \beta & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \alpha + \beta & \alpha \\ 0 & 0 & 0 & \cdots & \beta & \alpha + \beta \end{vmatrix}$$

3. 设矩阵
$$A = \begin{bmatrix} k & 1 & 1 & 1 \\ 1 & k & 1 & 1 \\ 1 & 1 & k & 1 \\ 1 & 1 & 1 & k \end{bmatrix}$$
, 且 $R(A) = 3$, 则 k 为什么?

$$\alpha_{1} = \begin{bmatrix} 1 \\ 3 \\ 2 \\ 0 \end{bmatrix}, \alpha_{2} = \begin{bmatrix} 7 \\ 0 \\ 14 \\ 3 \end{bmatrix}, \alpha_{3} = \begin{bmatrix} 2 \\ -1 \\ 0 \\ 1 \end{bmatrix}, \alpha_{4} = \begin{bmatrix} 5 \\ 1 \\ 6 \\ 2 \end{bmatrix}, \alpha_{5} = \begin{bmatrix} 2 \\ -1 \\ 4 \\ 1 \end{bmatrix}$$

- (1) 求向量组的秩;
- (2) 求此向量组的一个极大线性无关组,并把其余向量分别用该极大线性无关组表示.

5. 已知矩阵
$$A = PQ$$
, 其中 $P = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $Q = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, 求矩阵 A, A^2, A^{100} .

6. 设矩阵
$$A$$
 的伴随矩阵 $A^* = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & -3 & 0 & 8 \end{bmatrix}$, 且 $ABA^{-1} = BA^{-1} + 3I$, 其中 I 为 4

阶单位矩阵, 求矩阵 B.

四、证明题 (每小题8分, 共16分)

1. 设 $A, B \in n$ 阶正交矩阵, $\mathbb{E}|A||B| = -1$, 证明 |A + B| = 0.

2. 设A为n阶非奇异矩阵, α 为n元列, b为常数, 记分块矩阵

$$P = \begin{bmatrix} I & O \\ -\alpha^T A^* & |A| \end{bmatrix}, Q = \begin{bmatrix} A & \alpha \\ \alpha^T & b \end{bmatrix},$$

- (1) 计算并化简 PQ;
- (2) 证明:矩阵Q可逆的充分必要条件是 $\alpha^T A^{-1} \alpha \neq b$.

