Berechenbarkeit

Vorlesung 6: Rekursive Funktionen I

22. Mai 2025

Termine — Modul Berechenbarkeit

ÜBUNGEN	Vorlesung
20.5.	22.5.
Übung 3	Rekursion I
A-Woche	(Übungsblatt 4)
27.5.	29.5.
Übung 4	
B-Woche	
3.6.	5.6.
Übung 4	Rekursion II
A-Woche	(Übungsblatt 5)
10.6.	12.6.
Übung 5	Entscheidbarkeit
B-Woche (Montag Feiertag)	
17.6.	19.6.
Übung 5	Unentscheidbarkeit
A-Woche	(Übungsblatt 6)
24.6.	26.6.
Übung 6	Spez. Probleme
B-Woche	
1.7.	3.7.
Übung 6	Klasse P
A-Woche	
8.7.	10.7.
Abschlussübung	NP-Vollständigkeit
beide Wochen	

Prüfung

Prüfung

- schriftliche Klausur, 60 min Bearbeitungszeit
- <u>erlaubte Hilfsmittel:</u> 1 DIN-A4-Blatt mit Notizen (beschrieben, bedruckt, etc.)

Mittwoch, 16. Juli 2025 von 13:30–14:30 Uhr in AudiMax & Hs. 9

Wiederholung — Berechenbarkeit

Definition (§4.8 Turing-Berechenbarkeit; Turing-computability)

Partielle Funktion $f: \mathbb{N}^k \dashrightarrow \mathbb{N}$ Turing-berechenbar falls deterministische TM M mit $bin(f) = \mathcal{T}(M)$ existiert

Definition (§4.15 & §5.18 Loop/While-Berechenbarkeit)

Partielle Funktion $f: \mathbb{N}^k \longrightarrow \mathbb{N}$ Loop/While-berechenbar falls Loop/While-Programm P mit $f = |P|_k$ existiert

Notizen

- Turing-Berechenbarkeit benötigt deterministische TM
- Determinismus nicht erhalten unter Vereinigung & Iteration
- Bedingte Iteration = Abbruch Iteration bei Vorliegen Eigenschaft (bedingter Schleifenabbruch)

Notizen

- Turing-Berechenbarkeit benötigt deterministische TM
- Determinismus nicht erhalten unter Vereinigung & Iteration
- Bedingte Iteration = Abbruch Iteration bei Vorliegen Eigenschaft (bedingter Schleifenabbruch)

§6.1 Definition (bedingte Iteration; conditional iteration)

Seien $f \colon \Gamma^* \dashrightarrow \Gamma^*$ und $\chi \colon \Gamma^* \dashrightarrow \{0,1\}$ partielle Funktionen. **Bedingte Iteration** $f_\chi \colon \Gamma^* \dashrightarrow \Gamma^*$ ist für alle $w \in \Gamma^*$

$$f_\chi^*(w) = egin{cases} f^t(w) & ext{falls } t \in \mathbb{N} ext{ existiert mit} \ \chiig(f^t(w)ig) = 1 ext{ und } \chiig(f^s(w)ig) = 0 ext{ für alle } s < t ext{ undef sonst} \end{cases}$$

§6.2 Theorem

Seien $f \colon \Gamma^* \dashrightarrow \Gamma^*$ und $\chi \colon \Gamma^* \dashrightarrow \{0,1\}$ Turing-berechenbar. Dann bedingte Iteration $f_\chi^* \colon \Gamma^* \dashrightarrow \Gamma^*$ Turing-berechenbar

§6.2 Theorem

```
Seien f: \Gamma^* \dashrightarrow \Gamma^* und \chi: \Gamma^* \dashrightarrow \{0,1\} Turing-berechenbar. Dann bedingte Iteration f_\chi^*: \Gamma^* \dashrightarrow \Gamma^* Turing-berechenbar
```

Beweisansatz

- Normierte det. TM M und M' für f und χ, wobei M' Band wiederherstellt und statt Ausgabe 1/0 in Zustand q'₊/q'₋ wechselt
- 2. Akzeptieren in q'_+ (ja-Zweig)

§6.2 Theorem

Seien $f: \Gamma^* \dashrightarrow \Gamma^*$ und $\chi: \Gamma^* \dashrightarrow \{0,1\}$ Turing-berechenbar. Dann bedingte Iteration $f_\chi^*: \Gamma^* \dashrightarrow \Gamma^*$ Turing-berechenbar

Beweisansatz

 Normierte det. TM M und M' für f und χ, wobei M' Band wiederherstellt und statt Ausgabe 1/0 in Zustand q'₊/q'₋ wechselt

- 2. Akzeptieren in q'_+ (ja-Zweig)
- 3. Starten M in q'_{-} (nein-Zweig)
- 4. Starten M' im akz. Zustand von M

§6.2 Theorem

Seien $f \colon \Gamma^* \dashrightarrow \Gamma^*$ und $\chi \colon \Gamma^* \dashrightarrow \{0,1\}$ Turing-berechenbar. Dann bedingte Iteration $f_\chi^* \colon \Gamma^* \dashrightarrow \Gamma^*$ Turing-berechenbar

§6.2 Theorem

Seien $f \colon \Gamma^* \dashrightarrow \Gamma^*$ und $\chi \colon \Gamma^* \dashrightarrow \{0,1\}$ Turing-berechenbar. Dann bedingte Iteration $f_\chi^* \colon \Gamma^* \dashrightarrow \Gamma^*$ Turing-berechenbar

Beweis

```
Seien \mathcal{M}=(\mathcal{Q},\Gamma',\Gamma,\Delta,\Box,q_0,q_+,q_-) und \mathcal{M}'=(\mathcal{Q}',\Gamma',\Gamma,\Delta',\Box,q_0',q_+',q_-') normierte det. TM mit \Gamma'=\Gamma_{\mathcal{M}}, \mathcal{T}(\mathcal{M})=f und \mathcal{T}(\mathcal{M}')=\chi.
```

§6.2 Theorem

Seien $f \colon \Gamma^* \dashrightarrow \Gamma^*$ und $\chi \colon \Gamma^* \dashrightarrow \{0,1\}$ Turing-berechenbar. Dann bedingte Iteration $f_\chi^* \colon \Gamma^* \dashrightarrow \Gamma^*$ Turing-berechenbar

Beweis

Seien
$$M = (Q, \Gamma', \Gamma, \Delta, \square, q_0, q_+, q_-)$$
 und $M' = (Q', \Gamma', \Gamma, \Delta', \square, q'_0, q'_+, q'_-)$ normierte det. TM mit $\Gamma' = \Gamma_M$, $T(M) = f$ und $T(M') = \chi$. Anpassung M' für Wiederherstellung Eingabe und Akzeptanz statt Ausgabe 1 und Ablehnung statt Ausgabe 0. O.B.d.A. sei $Q \cap Q' = \emptyset$. Wir konstruieren det. TM $N = (Q \cup Q', \Gamma', \Gamma, \Delta \cup \Delta' \cup R, \square, q'_0, q'_+, q_-)$
$$R = \left\{ (q'_-, \gamma) \to (q_0, \gamma, \diamond) \mid \gamma \in \Gamma \right\} \cup \left\{ (q_+, \gamma) \to (q'_0, \gamma, \diamond) \mid \gamma \in \Gamma \right\}$$
 Dann $T(N) = T(M)^*_{T(M')} = f_Y^*$

§6.2 Theorem

Seien $f \colon \Gamma^* \dashrightarrow \Gamma^*$ und $\chi \colon \Gamma^* \dashrightarrow \{0,1\}$ Turing-berechenbar. Dann bedingte Iteration $f_\chi^* \colon \Gamma^* \dashrightarrow \Gamma^*$ Turing-berechenbar

Beweis

Seien
$$\mathcal{M} = (Q, \Gamma', \Gamma, \Delta, \square, q_0, q_+, q_-)$$
 und $\mathcal{M}' = (Q', \Gamma', \Gamma, \Delta', \square, q'_0, q'_+, q'_-)$ normierte det. TM mit $\Gamma' = \Gamma_{\mathcal{M}}$, $\mathcal{T}(\mathcal{M}) = f$ und $\mathcal{T}(\mathcal{M}') = \chi$. Anpassung \mathcal{M}' für Wiederherstellung Eingabe und Akzeptanz statt Ausgabe 1 und Ablehnung statt Ausgabe 0. O.B.d.A. sei $Q \cap Q' = \emptyset$. Wir konstruieren det. TM $\mathcal{N} = (Q \cup Q', \Gamma', \Gamma, \Delta \cup \Delta' \cup R, \square, q'_0, q'_+, q_-)$
$$R = \left\{ (q'_-, \gamma) \to (q_0, \gamma, \diamond) \mid \gamma \in \Gamma \right\} \cup \left\{ (q_+, \gamma) \to (q'_0, \gamma, \diamond) \mid \gamma \in \Gamma \right\}$$
 Dann $\mathcal{T}(\mathcal{N}) = \mathcal{T}(\mathcal{M})^*_{\mathcal{T}(\mathcal{M}')} = f_\chi^*$

§6.3 Theorem

Jede While-berechenbare partielle Funktion ist Turing-berechenbar

§6.3 Theorem

Jede While-berechenbare partielle Funktion ist Turing-berechenbar

Beweisskizze (1/4)

Sei *P* While-Programm mit $\max \text{var}(P) = n$. Nutze 1 Band pro Variable und speichere x_i auf Band *i*. Wir konstruieren normierte det. TM

M_{start} kopiert Startwerte auf korrekte Bänder

§6.3 Theorem

Jede While-berechenbare partielle Funktion ist Turing-berechenbar

Beweisskizze (1/4)

- M_{start} kopiert Startwerte auf korrekte Bänder
- Induktiv per Definition While-Programm

§6.3 Theorem

Jede While-berechenbare partielle Funktion ist Turing-berechenbar

Beweisskizze (1/4)

- M_{start} kopiert Startwerte auf korrekte Bänder
- Induktiv per Definition While-Programm

§6.3 Theorem

Jede While-berechenbare partielle Funktion ist Turing-berechenbar

Beweisskizze (1/4)

- M_{start} kopiert Startwerte auf korrekte Bänder
- Induktiv per Definition While-Programm

§6.3 Theorem

Jede While-berechenbare partielle Funktion ist Turing-berechenbar

Beweisskizze (1/4)

- M_{start} kopiert Startwerte auf korrekte Bänder
- Induktiv per Definition While-Programm

§6.3 Theorem

Jede While-berechenbare partielle Funktion ist Turing-berechenbar

Beweisskizze (1/4)

- M_{start} kopiert Startwerte auf korrekte Bänder
- Induktiv per Definition While-Programm

§6.3 Theorem

Jede While-berechenbare partielle Funktion ist Turing-berechenbar

Beweisskizze (1/4)

- M_{start} kopiert Startwerte auf korrekte Bänder
- Induktiv per Definition While-Programm

§6.3 Theorem

Jede While-berechenbare partielle Funktion ist Turing-berechenbar

Beweisskizze (1/4)

- M_{start} kopiert Startwerte auf korrekte Bänder
- Induktiv per Definition While-Programm

§6.3 Theorem

Jede While-berechenbare partielle Funktion ist Turing-berechenbar

Beweisskizze (1/4)

- M_{start} kopiert Startwerte auf korrekte Bänder
- Induktiv per Definition While-Programm

§6.3 Theorem

Jede While-berechenbare partielle Funktion ist Turing-berechenbar

Beweisskizze (1/4)

- M_{start} kopiert Startwerte auf korrekte Bänder
- Induktiv per Definition While-Programm

§6.3 Theorem

Jede While-berechenbare partielle Funktion ist Turing-berechenbar

Beweisskizze (1/4)

- M_{start} kopiert Startwerte auf korrekte Bänder
- Induktiv per Definition While-Programm

§6.3 Theorem

Jede While-berechenbare partielle Funktion ist Turing-berechenbar

Beweisskizze (1/4)

- M_{start} kopiert Startwerte auf korrekte Bänder
- Induktiv per Definition While-Programm

§6.3 Theorem

Jede While-berechenbare partielle Funktion ist Turing-berechenbar

Beweisskizze (1/4)

- M_{start} kopiert Startwerte auf korrekte Bänder
- Induktiv per Definition While-Programm

§6.3 Theorem

Jede While-berechenbare partielle Funktion ist Turing-berechenbar

Beweisskizze (1/4)

- M_{start} kopiert Startwerte auf korrekte Bänder
- Induktiv per Definition While-Programm

§6.3 Theorem

Jede While-berechenbare partielle Funktion ist Turing-berechenbar

Beweisskizze (1/4)

- M_{start} kopiert Startwerte auf korrekte Bänder
- Induktiv per Definition While-Programm

§6.3 Theorem

Jede While-berechenbare partielle Funktion ist Turing-berechenbar

Beweisskizze (1/4)

- M_{start} kopiert Startwerte auf korrekte Bänder
- Induktiv per Definition While-Programm

§6.3 Theorem

Jede While-berechenbare partielle Funktion ist Turing-berechenbar

Beweisskizze (1/4)

- M_{start} kopiert Startwerte auf korrekte Bänder
- Induktiv per Definition While-Programm

§6.3 Theorem

Jede While-berechenbare partielle Funktion ist Turing-berechenbar

Beweisskizze (1/4)

- M_{start} kopiert Startwerte auf korrekte Bänder
- Induktiv per Definition While-Programm

§6.3 Theorem

Jede While-berechenbare partielle Funktion ist Turing-berechenbar

Beweisskizze (1/4)

- M_{start} kopiert Startwerte auf korrekte Bänder
- Induktiv per Definition While-Programm

§6.3 Theorem

Jede While-berechenbare partielle Funktion ist Turing-berechenbar

Beweisskizze (1/4)

- M_{start} kopiert Startwerte auf korrekte Bänder
- Induktiv per Definition While-Programm

§6.3 Theorem

Jede While-berechenbare partielle Funktion ist Turing-berechenbar

Beweisskizze (1/4)

- M_{start} kopiert Startwerte auf korrekte Bänder
- Induktiv per Definition While-Programm

Beweisskizze (2/4)

- Sei *P* Zuweisung $x_i = x_\ell + z$
- Simuliert durch
 - 1. Kopier-TM $M_{\ell \to i}$ kopiert Band ℓ auf Band i
 - 2. z mal Inkrement- oder Dekrement-TM auf Band i

Beweisskizze (3/4)

- Sei $P = P_1$; P_2
- Simuliert durch Verkettung zugeh. det. TM M₁ und M₂

Beweisskizze (4/4)

- Sei $P = WHILE(x_i \neq 0) \{P'\}$
- Simuliert durch
 - 1. Sei M' det. TM für P'
 - 2. Sei $M_{=0}$ det. TM für Gleichheit mit 0
 - 3. Bedingte Iteration von M' mit Bedingung $M_{=0}(i)$

Ansatz

- Simulation det. TM $(Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ durch While-Programm
- Kodierung Zustand & Band benötigt
- Globalsituation $u \ q \ w$ in 3 Variablen: x_1 für w; x_2 für q; x_3 für u^R
- Nummerierung Zustände per Bijektion $h_Q \colon Q \to \{0, \dots, |Q|-1\}$ mit $h_Q(q_+) = 0$ und $h_Q(q_-) = 1$

Ansatz

- Simulation det. TM $(Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ durch While-Programm
- Kodierung Zustand & Band benötigt
- Globalsituation $u \ q \ w$ in 3 Variablen: x_1 für w; x_2 für q; x_3 für u^R
- Nummerierung Zustände per Bijektion $h_Q \colon Q \to \{0, \dots, |Q|-1\}$ mit $h_Q(q_+) = 0$ und $h_Q(q_-) = 1$

Beispiel

• $Q = \{q_0, q, q_+, q_-\}$ kodiert via

$$q_0 \mapsto 3$$
 $q \mapsto 2$ $q_+ \mapsto 0$ $q_- \mapsto 1$

Stellenwertsystem zur Basis $n = |\Gamma|$

- Nummerierung Symbole aus Γ per Bijektion $h_{\Gamma} \colon \Gamma \to \{0, \dots, n-1\}$ mit $h_{\Gamma}(\square) = 0$
- Kodiere Wort $w \in \Gamma^*$ im inversen Stellenwertsystem zur Basis n

$$\mathsf{code}_{h_{\Gamma}}(\gamma_1 \cdots \gamma_\ell) = \sum_{i=1}^{\ell} h_{\Gamma}(\gamma_i) \cdot n^{i-1}$$

Stellenwertsystem zur Basis $n = |\Gamma|$

- Nummerierung Symbole aus Γ per Bijektion $h_{\Gamma} \colon \Gamma \to \{0, \dots, n-1\}$ mit $h_{\Gamma}(\square) = 0$
- Kodiere Wort $w \in \Gamma^*$ im inversen Stellenwertsystem zur Basis n

$$\mathsf{code}_{h_{\Gamma}}(\gamma_{1}\cdots\gamma_{\ell}) = \sum_{i=1}^{\ell} h_{\Gamma}(\gamma_{i})\cdot n^{i-1}$$

Beispiel

- $\Gamma = \{\Box, a, b\}$ mit $h_{\Gamma}(\Box) = 0$, $h_{\Gamma}(a) = 1$ und $h_{\Gamma}(b) = 2$
- w = abab

$$code_{h_{\Gamma}}(w) = h_{\Gamma}(a) \cdot 3^{0} + h_{\Gamma}(b) \cdot 3^{1} + h_{\Gamma}(a) \cdot 3^{2} + h_{\Gamma}(b) \cdot 3^{3}$$
$$= 1 + 2 \cdot 3 + 1 \cdot 9 + 2 \cdot 27 = 1 + 6 + 9 + 54 = 70$$

Rechnen im Stellenwertsystem zur Basis n

• 1. Zeichen Kodierung k ist $h_{\Gamma}^{-1}(k \text{ MOD } n)$

$$h_{\Gamma}^{-1}(\mathsf{code}_{h_{\Gamma}}(\gamma w) \mathsf{MOD} n) = \gamma$$

Schreibweise: $\mathsf{TOP}(x_i) = x_i \mathsf{MOD} n$

Rechnen im Stellenwertsystem zur Basis n

• 1. Zeichen Kodierung k ist $h_{\Gamma}^{-1}(k \text{ MOD } n)$

$$h_{\Gamma}^{-1}(\mathsf{code}_{h_{\Gamma}}(\gamma w) \mathsf{MOD} n) = \gamma$$

Schreibweise: $\mathsf{TOP}(x_i) = x_i \mathsf{MOD} n$

• Entferne 1. Zeichen aus Kodierung k ist k DIV n

$$code_{h_{\Gamma}}(\gamma w)$$
 DIV $n = code_{h_{\Gamma}}(w)$
Schreibweise: **POP** $(x_i) = x_i$ **DIV** n

Rechnen im Stellenwertsystem zur Basis n

• 1. Zeichen Kodierung k ist $h_{\Gamma}^{-1}(k \text{ MOD } n)$

$$h_{\Gamma}^{-1}(\mathsf{code}_{h_{\Gamma}}(\gamma w) \mathsf{MOD} n) = \gamma$$

Schreibweise: $\mathsf{TOP}(x_i) = x_i \mathsf{MOD} n$

• Entferne 1. Zeichen aus Kodierung k ist k DIV n

$$code_{h_{\Gamma}}(\gamma w)$$
 DIV $n = code_{h_{\Gamma}}(w)$
Schreibweise: **POP** $(x_i) = x_i$ **DIV** n

• Einfügen γ als 1. Zeichen in Kodierung k ist $h_{\Gamma}(\gamma) + k \cdot n$

$$h_{\Gamma}(\gamma) + \operatorname{code}_{h_{\Gamma}}(w) \cdot n = \operatorname{code}_{h_{\Gamma}}(\gamma w)$$

Schreibweise: **PUSH** $(x_i, z) = z + x_i \cdot n$

Sei
$$\Gamma = \{\Box, a, b\}$$
 mit $h_{\Gamma}(\Box) = 0$, $h_{\Gamma}(a) = 1$ und $h_{\Gamma}(b) = 2$

Beispiel

- Sei $x_1 = 70$ (Kodierung von "abab")
- $TOP(x_1) = 70 \text{ MOD } 3 = 1$ (entspricht 'a')
- $POP(x_1) = 70 \text{ DIV } 3 = 23$ (entspricht "bab" $[2 + 1 \cdot 3 + 2 \cdot 3^2]$)
- PUSH($x_1, 2$) = $70 \cdot 3 + 2 = 212$ (entspricht "babab" [$2 + 1 \cdot 3 + 2 \cdot 3^2 + 1 \cdot 3^3 + 2 \cdot 3^4$])

Sei
$$\Gamma = \{\Box, a, b\}$$
 mit $h_{\Gamma}(\Box) = 0$, $h_{\Gamma}(a) = 1$ und $h_{\Gamma}(b) = 2$

Beispiel

- Sei $x_1 = 70$ (Kodierung von "abab")
- $TOP(x_1) = 70 \text{ MOD } 3 = 1$ (entspricht 'a')
- $POP(x_1) = 70 \text{ DIV } 3 = 23$ (entspricht "bab" $[2 + 1 \cdot 3 + 2 \cdot 3^2]$)
- PUSH $(x_1, 2) = 70 \cdot 3 + 2 = 212$ (entspricht "babab" $[2 + 1 \cdot 3 + 2 \cdot 3^2 + 1 \cdot 3^3 + 2 \cdot 3^4]$)

Notiz

• Kellerspeicher mit *n* Symbolen

Überblick

- Alle Komponenten beisammen
- Kodierung Zustand via h_Q (in x_2)
- Kodierung Band v links des Kopfes als Keller für v^R via h_Γ (in x_3)
- Kodierung sonstiges Band w als Keller via h_{Γ} (in x_1)

Hauptprogramm

```
... Kodierung Eingabe in x_1 ... x_2 = h_Q(q_0); x_3 = 0 (Startzustand & leeres Band) WHILE(x_2 > 1) { (kein Endzustand) CASE(x_2, TOP(x_1)) OF (Fallunterscheidung linke Seite Übergang) ... (q, \gamma): ... führe (q, \gamma)-Übergang aus ... ... ELSE \{x_2 = h_Q(q_-)\} } ... Dekodierung Band x_1 & Finalprüfung ...
```

Regelanwendung

 $x_1 = \text{PUSH}(x_1, h_{\Gamma}(\gamma'))$

```
Für jeden Übergang (q, \gamma) \rightarrow (q', \gamma', d) \in \Delta
x_2 = h_Q(q') \qquad \qquad \text{(Zustandswechsel)}
x_1 = \mathbf{POP}(x_1) \qquad \qquad \text{(Entferne Zeichen unter Kopf)}
```

(Füge neues Zeichen ein)

Regelanwendung

Für jeden Übergang $(q,\gamma) o (q',\gamma',d) \in \Delta$

Regelanwendung

Für jeden Übergang $(q,\gamma) o (q',\gamma',d) \in \Delta$

Regelanwendung

Für jeden Übergang $(q,\gamma) o (q',\gamma',d) \in \Delta$

Regelanwendung

Falls $d = \triangleleft dann zusätzlich$

$$x_1 = PUSH(x_1, TOP(x_3))$$

$$x_3 = POP(x_3)$$

Regelanwendung

Falls $d = \triangleleft dann zusätzlich$

$$x_1 = PUSH(x_1, TOP(x_3))$$

$$x_3 = POP(x_3)$$

Regelanwendung

Falls $d = \triangleleft dann zusätzlich$

$$x_1 = PUSH(x_1, TOP(x_3))$$

$$x_3 = POP(x_3)$$

Regelanwendung

Falls $d = \triangleleft dann zusätzlich$

$$x_1 = PUSH(x_1, TOP(x_3))$$

$$x_3 = POP(x_3)$$

Regelanwendung

Falls $d = \triangleright$ dann zusätzlich

$$x_3 = PUSH(x_3, TOP(x_1))$$

$$x_1 = POP(x_1)$$

Regelanwendung

Falls $d = \triangleright$ dann zusätzlich

$$x_3 = PUSH(x_3, TOP(x_1))$$

 $x_1 = POP(x_1)$

Regelanwendung

Falls $d = \triangleright$ dann zusätzlich

$$x_3 = PUSH(x_3, TOP(x_1))$$

 $x_1 = POP(x_1)$

Regelanwendung

Falls $d = \triangleright$ dann zusätzlich

$$x_3 = PUSH(x_3, TOP(x_1))$$

 $x_1 = POP(x_1)$

Banddekodierung für Binärzahl & Finalprüfung

```
IF(x_3 = 0 \text{ und } x_2 = 0) {
                                   (teste linken Bandinhalt & Finalzustand)
  x_4 = 0; x_5 = 0
                               (Initialisierung Ausgabewert & Stellenwert)
  WHILE(x_1 \neq 0) {
     IF(1 \le TOP(x_1) \le 2) {
                                                         (qültiqes Bit [0 = \Box])
        x_4 = x_4 + (TOP(x_1) - 1) \cdot 2^{x_5}
                                                (dekodiere Binärdarstellung)
        x_5 = x_5 + 1
                                                               (nächste Stelle)
        x_1 = POP(x_1)
                                                          (entferne erstes Bit)
     } ELSE ... Endlosschleife ...
                                                      (kopiere Ausgabewert)
  x_1 = x_4
} ELSE ... Endlosschleife ...
```

§6.4 Theorem

§6.4 Theorem

§6.4 Theorem

§6.4 Theorem

Ackermann-Funktion

Definition (§5.1 Ackermann-Funktion; engl. Ackermann function)

Für alle $x, y \in \mathbb{N}$ sei

$$a(x,y) = \begin{cases} y+1 & \text{falls } x = 0 \\ a(x-1,1) & \text{falls } x \neq 0 \text{ und } y = 0 \\ a(x-1,a(x,y-1)) & \text{sonst} \end{cases}$$

Ackermann-Funktion

Definition (§5.1 Ackermann-Funktion; engl. Ackermann function)

Für alle $x, y \in \mathbb{N}$ sei

$$a(x,y) = egin{cases} y+1 & ext{falls } x=0 \ a(x-1,1) & ext{falls } x
eq 0 ext{ und } y=0 \ a(x-1,a(x,y-1)) & ext{sonst} \end{cases}$$

Ackermann-Funktion While-berechenbar?

Kellerspeicher

- Implementiert für *n* Kellersymbole
- Speicherung Elemente von $\mathbb N$ per Binärkodierung über $\{0,1,\#\}$

Kellerspeicher

- Implementiert für *n* Kellersymbole
- Speicherung Elemente von № per Binärkodierung über {0,1,#}
- Kellerende markiert durch 4. Symbol

Einfügen natürliche Zahl

```
\begin{aligned} & \mathsf{PUSH}(x_i, 2) \\ & x_\ell = x_k \\ & \mathsf{WHILE}(x_\ell \neq 0) \left\{ \\ & \mathsf{PUSH}(x_i, x_\ell \, \mathsf{MOD} \, 2) \\ & x_\ell = x_\ell \, \mathsf{DIV} \, 2 \\ & \right\} \end{aligned}
```

```
(Trennsymbol einfügen)

(kopiere x_k)

(letztes Bit speichern)

Schreibweise: x_i = \text{PUSH}_{\mathbb{N}}(x_i, x_k)

(i \neq k; x_\ell unbenutzt)
```

Einfügen natürliche Zahl

```
PUSH(x_i, 2)(Trennsymbol einfügen)x_\ell = x_k(kopiere x_k)WHILE(x_\ell \neq 0) {(letztes Bit speichern)x_\ell = x_\ell DIV 2(schreibweise: x_i = PUSH_{\mathbb{N}}(x_i, x_k))}(i \neq k; x_\ell \text{ unbenutzt})
```

Entfernen oberste natürliche Zahl

```
WHILE(\mathsf{TOP}(x_i) < 2) \{x_i = \mathsf{POP}(x_i)\} (entferne 0/1-Bits) 
IF(\mathsf{TOP}(x_i) = 2) \{x_i = \mathsf{POP}(x_i)\} (teste auf & entferne Trennsymbol) 
ELSE ... Endlosschleife ...
```

Schreibweise: $x_i = POP_{\mathbb{N}}(x_i)$

Auslesen oberste natürliche Zahl

```
x_{\ell}=0
                                                                            (initialisiere x_{\ell})
WHILE(TOP(x_i) < 2) {
                                                       (bis Trenn- oder Endesymbol)
   x_{\ell} = x_{\ell} \cdot 2 + \mathsf{TOP}(x_i)
                                                                   (dekodiere Binärzahl)
   x_i = POP(x_i)
                                                                    (erstes Bit entfernen)
IF(TOP(x_i) = 2) \{x_i = POP(x_i)\}
                                                 (teste auf & entferne Trennsymbol)
ELSE ... Endlosschleife ...
x_i = \mathsf{PUSH}_{\mathbb{N}}(x_i, x_{\ell})
                                                                 (Wert zurückschreiben)
                                                        Schreibweise: x_{\ell} = \mathsf{TOP}_{\mathbb{N}}(x_i)
                                                                                       (i \neq \ell)
```

Test Leerheit

 $TOP(x_i) - 2$

- Liefert 1 falls leer
- Liefert () sonst

Schreibweise: EMPTY (x_i)

Test Leerheit

 $TOP(x_i) - 2$

- Liefert 1 falls leer
- Liefert () sonst

Schreibweise: EMPTY (x_i)

Kellerspeicher für natürliche Zahlen

- Speicherung beliebiger natürliche Zahlen
- Unterstützung Standardoperationen (Test Leerheit, Einfügen, Entfernen, Auslesen)

Definition (§5.1 Ackermann-Funktion; engl. Ackermann function)

Für alle $x, y \in \mathbb{N}$ sei

$$a(x,y) = \begin{cases} y+1 & \text{falls } x = 0 \\ a(x-1,1) & \text{falls } x \neq 0 \text{ und } y = 0 \\ a(x-1,a(x,y-1)) & \text{sonst} \end{cases}$$

Implementation

```
(leerer Keller)
x_3 = 3
PUSH_{\mathbb{N}}(x_3, x_1); PUSH_{\mathbb{N}}(x_3, x_2)
                                                                               (füge x_1 & x_2 ein)
WHILE(SIZE<sub>N</sub>(x_3) > 1) {
                                                              (mind. 2 Elemente im Keller)
   x_2 = \mathsf{TOP}_{\mathbb{N}}(x_3) \; ; \; x_3 = \mathsf{POP}_{\mathbb{N}}(x_3)
                                                                  (2. Parameter vom Keller)
   x_1 = \mathsf{TOP}_{\mathbb{N}}(x_3) \; ; \; x_3 = \mathsf{POP}_{\mathbb{N}}(x_3)
                                                                   (1. Parameter vom Keller)
   IF(x_1 = 0) \{x_3 = PUSH_{\mathbb{N}}(x_3, x_2 + 1)\}
                                                                    (liefere 2. Parameter + 1)
   ELSE {
                                                                                  (2. oder 3. Fall)
       x_3 = PUSH_{\mathbb{N}}(x_3, x_1 - 1)
                                                       (Rekursion über 1. Parameter + 1)
       IF(x_2 = 0) \{x_3 = PUSH_{\mathbb{N}}(x_3, 1)\}
                                                         (2. Fall mit Konstante 1)
       ELSE \{x_3 = PUSH_{\mathbb{N}}(x_3, x_1) : x_3 = PUSH_{\mathbb{N}}(x_3, x_2 - 1)\}
x_1 = \mathsf{TOP}_{\mathbb{N}}(x_3)
                                                                           (Ergebnis im Keller)
```

§6.5 Theorem

Ackermann-Funktion ist While-berechenbar

§6.5 Theorem

Ackermann-Funktion ist While-berechenbar

Konventionen

- Partielle Funktionen des Typs $f: \mathbb{N}^k \longrightarrow \mathbb{N}$
- Addition (und Subtraktion) weiterhin auf № begrenzt

Definition (§4.13 Projektion; projection)

Für $n \in \mathbb{N}$ und $1 \le i \le n$ ist $\pi_i^{(n)} \colon \mathbb{N}^n \to \mathbb{N}$ *n*-stellige Projektion auf *i*-te Stelle

$$\pi_i^{(n)}(a_1,\ldots,a_n)=a_i$$
 $a_1,\ldots,a_n\in\mathbb{N}$

§6.6 Definition (rekursive Basisfunktionen; recursive primitives)

Folgende Funktionen sind rekursive Basisfunktionen

• *n*-stellige *a*-konstante Funktion $a^{(n)}: \mathbb{N}^n \to \mathbb{N}$ mit $a^{(n)}(a_1, \dots, a_n) = a$ für alle $n, a, a_1, \dots, a_n \in \mathbb{N}$ (Konstanten)

§6.6 Definition (rekursive Basisfunktionen; recursive primitives)

Folgende Funktionen sind rekursive Basisfunktionen

- *n*-stellige *a*-konstante Funktion $a^{(n)} : \mathbb{N}^n \to \mathbb{N}$ mit $a^{(n)}(a_1, \ldots, a_n) = a$ für alle $n, a, a_1, \ldots, a_n \in \mathbb{N}$ (Konstanten)
- Projektion $\pi_i^{(n)} \colon \mathbb{N}^n \to \mathbb{N}$ für alle $n \in \mathbb{N}$ und $1 \le i \le n$ (Projektionen)

§6.6 Definition (rekursive Basisfunktionen; recursive primitives)

Folgende Funktionen sind rekursive Basisfunktionen

- *n*-stellige *a*-konstante Funktion $a^{(n)}: \mathbb{N}^n \to \mathbb{N}$ mit $a^{(n)}(a_1, \dots, a_n) = a$ für alle $n, a, a_1, \dots, a_n \in \mathbb{N}$ (Konstanten)
- Projektion $\pi_i^{(n)} \colon \mathbb{N}^n \to \mathbb{N}$ für alle $n \in \mathbb{N}$ und $1 \le i \le n$ (Projektionen)
- Inkrementfunktion $nf: \mathbb{N} \to \mathbb{N}$ mit nf(a) = a + 1 für alle $a \in \mathbb{N}$ (Nachfolgerfunktion)

§6.6 Definition (rekursive Basisfunktionen; recursive primitives)

Folgende Funktionen sind rekursive Basisfunktionen

- *n*-stellige *a*-konstante Funktion $a^{(n)}: \mathbb{N}^n \to \mathbb{N}$ mit $a^{(n)}(a_1, \dots, a_n) = a$ für alle $n, a, a_1, \dots, a_n \in \mathbb{N}$ (Konstanten)
- Projektion $\pi_i^{(n)} \colon \mathbb{N}^n \to \mathbb{N}$ für alle $n \in \mathbb{N}$ und $1 \le i \le n$ (Projektionen)
- Inkrementfunktion $nf: \mathbb{N} \to \mathbb{N}$ mit nf(a) = a + 1 für alle $a \in \mathbb{N}$ (Nachfolgerfunktion)

Keine weiteren rekursiven Basisfunktionen

§6.6 Definition (rekursive Basisfunktionen; recursive primitives)

Folgende Funktionen sind rekursive Basisfunktionen

- *n*-stellige *a*-konstante Funktion $a^{(n)}: \mathbb{N}^n \to \mathbb{N}$ mit $a^{(n)}(a_1, \dots, a_n) = a$ für alle $n, a, a_1, \dots, a_n \in \mathbb{N}$ (Konstanten)
- Projektion $\pi_i^{(n)} \colon \mathbb{N}^n \to \mathbb{N}$ für alle $n \in \mathbb{N}$ und $1 \le i \le n$ (Projektionen)
- Inkrementfunktion $nf: \mathbb{N} \to \mathbb{N}$ mit nf(a) = a + 1 für alle $a \in \mathbb{N}$

(Nachfolgerfunktion)

Keine weiteren rekursiven Basisfunktionen

Notizen

Nutzung mathematischen Syntax & Funktionssemantik

§6.6 Definition (rekursive Basisfunktionen; recursive primitives)

Folgende Funktionen sind rekursive Basisfunktionen

- *n*-stellige *a*-konstante Funktion $a^{(n)}: \mathbb{N}^n \to \mathbb{N}$ mit $a^{(n)}(a_1, \dots, a_n) = a$ für alle $n, a, a_1, \dots, a_n \in \mathbb{N}$ (Konstanten)
- Projektion $\pi_i^{(n)} \colon \mathbb{N}^n \to \mathbb{N}$ für alle $n \in \mathbb{N}$ und $1 \le i \le n$ (Projektionen)
- Inkrementfunktion $nf: \mathbb{N} \to \mathbb{N}$ mit nf(a) = a + 1 für alle $a \in \mathbb{N}$

(Nachfolgerfunktion)

Keine weiteren rekursiven Basisfunktionen

Notizen

- Nutzung mathematischen Syntax & Funktionssemantik
- Basisfunktionen total

(Vereinfachungen folgen)

§6.7 Definition (primitiv rek. Fkt. [1/2]; primitive rec. function)

Genau folgende partielle Funktionen sind primitiv rekursiv

Jede rekursive Basisfunktion

§6.7 Definition (primitiv rek. Fkt. [1/2]; primitive rec. function)

Genau folgende partielle Funktionen sind primitiv rekursiv

- Jede rekursive Basisfunktion
- Für alle $m, n \in \mathbb{N}$ und primitiv rekursiven partiellen Funktionen $f: \mathbb{N}^m \dashrightarrow \mathbb{N}$ und $g_1, \dots, g_m: \mathbb{N}^n \dashrightarrow \mathbb{N}$ ist Komposition $f\langle g_1, \dots, g_m \rangle : \mathbb{N}^n \dashrightarrow \mathbb{N}$ mit

$$f\langle g_1,\ldots,g_m\rangle(a_1,\ldots,a_n)=f\big(g_1(a_1,\ldots,a_n),\ldots,g_m(a_1,\ldots,a_n)\big)$$

für alle $a_1, \ldots, a_n \in \mathbb{N}$ primitiv rekursiv (Komposition)

§6.7 Definition (primitiv rek. Fkt. [2/2]; primitive rec. function)

Genau folgende partielle Funktionen sind primitiv rekursiv

• Für alle $n \in \mathbb{N}$ und primitiv rekursiven partiellen Funktionen $f: \mathbb{N}^n \dashrightarrow \mathbb{N}$ und $g: \mathbb{N}^{n+2} \dashrightarrow \mathbb{N}$ ist durch **Schema primitive Rekursion** definierte partielle Funktion $\operatorname{pr}[f, g]: \mathbb{N}^{n+1} \dashrightarrow \mathbb{N}$

$$pr[f, g](0, a_1, ..., a_n) = f(a_1, ..., a_n)$$

$$pr[f, g](a + 1, a_1, ..., a_n) = g(pr[f, g](a, a_1, ..., a_n), a, a_1, ..., a_n)$$

für alle $a, a_1, \ldots, a_n \in \mathbb{N}$ (primitive Rekursion)

Keine weitere primitiv rekursiven partiellen Funktionen

n-stelliges Inkrement Komponente i

$$\mathsf{nf}_i^{(n)} = \mathsf{nf}\langle \pi_i^{(n)} \rangle$$

$$\operatorname{nf}_{i}^{(n)}(a_{1},\ldots,a_{n})=\operatorname{nf}\left(\pi_{i}^{(n)}(a_{1},\ldots,a_{n})\right)=\operatorname{nf}(a_{i})=a_{i}+1$$

$$\mathsf{nf}_i^{(n)} = \mathsf{nf}\langle \pi_i^{(n)} \rangle$$

$$\operatorname{nf}_{i}^{(n)}(a_{1},\ldots,a_{n})=\operatorname{nf}\left(\pi_{i}^{(n)}(a_{1},\ldots,a_{n})\right)=\operatorname{nf}(a_{i})=a_{i}+1$$

Addition

$$add = \mathbf{pr}[\pi_1^{(1)}, nf_1^{(3)}]$$

$$add(0, b) = \pi_1^{(1)}(b) = b$$

 $add(a+1, b) = nf_1^{(3)}(add(a, b), a, b) = add(a, b) + 1$

n-stelliges Inkrement Komponente i

$$\mathsf{nf}_i^{(n)} = \mathsf{nf}\langle \pi_i^{(n)} \rangle$$

$$\operatorname{nf}_{i}^{(n)}(a_{1},\ldots,a_{n})=\operatorname{nf}(\pi_{i}^{(n)}(a_{1},\ldots,a_{n}))=\operatorname{nf}(a_{i})=a_{i}+1$$

Addition

$$\mathsf{add} = \mathbf{pr}[\pi_1^{(1)}, \mathsf{nf}_1^{(3)}]$$

$$add(0, b) = \pi_1^{(1)}(b) = b$$

 $add(a+1, b) = nf_1^{(3)}(add(a, b), a, b) = add(a, b) + 1$

Multiplikation

$$\mathsf{mult} = \mathbf{pr}\big[0^{(1)}, \mathsf{add}\langle \pi_1^{(3)}, \pi_3^{(3)}\rangle\big]$$

$$\begin{aligned} \operatorname{mult}(0,b) &= 0^{(1)}(b) = 0 \\ \operatorname{mult}(a+1,b) &= \operatorname{add}\left(\pi_1^{(3)}(\operatorname{mult}(a,b),a,b),\pi_3^{(3)}(\operatorname{mult}(a,b),a,b)\right) \\ &= \operatorname{add}(\operatorname{mult}(a,b),b) = \operatorname{mult}(a,b) + b \end{aligned}$$

Vereinfachungen

- Direkte Verwendung Projektion (ohne explizite Angabe)
- Freie Verwendung Parameter

Vereinfachungen

- Direkte Verwendung Projektion (ohne explizite Angabe)
- Freie Verwendung Parameter
- Verwendung Makros & übliche Schreibweisen (für bereits als primitiv rekursiv bekannte Funktionen)
- Schreibweise "+1" statt nf

Addition

we sentliche Rekursion
$$(a + 1) + b = (a + b) + 1$$

$$add(0, b) = b$$
$$add(a + 1, b) = add(a, b) + 1$$

Addition

we sentliche Rekursion
$$(a + 1) + b = (a + b) + 1$$

$$add(0,b) = b$$
$$add(a+1,b) = add(a,b) + 1$$

Multiplikation

we sentliche Rekursion
$$(a+1) \cdot b = (a \cdot b) + b$$

$$mult(0, b) = 0$$

 $mult(a + 1, b) = mult(a, b) + b$

Vorgänger

$$vg = pr[0^{(0)}, \pi_2^{(2)}]$$

$$vg(0) = 0$$
$$vg(a+1) = a$$

Vorgänger

$$vg = pr[0^{(0)}, \pi_2^{(2)}]$$

$$vg(0) = 0$$

$$vg(a+1) = a$$

Subtraktion

$$\mathsf{sub}' = \mathbf{pr}\big[\pi_1^{(1)}, \mathsf{vg}\langle \pi_1^{(3)}\rangle\big]$$

wesentliche Rekursion
$$a - (b + 1) = (a - b) - 1$$

$$sub'(0, a) = a$$

 $sub'(b+1, a) = vg(sub'(b, a))$

$$sub(a, b) = sub'(b, a)$$

$$\mathsf{sub} = \mathsf{sub}' \langle \pi_2^{(2)}, \pi_1^{(2)} \rangle$$

Notizen

- Primitiv rekursive Funktionen total
- Beschränkte Rekursion über 1 Argument
- Ähnlichkeit zu Loop-Programmen

Notizen

- Primitiv rekursive Funktionen total
- Beschränkte Rekursion über 1 Argument
- Ähnlichkeit zu Loop-Programmen

primitiv rekursiv

Notizen

- Primitiv rekursive Funktionen total
- Beschränkte Rekursion über 1 Argument
- Ähnlichkeit zu Loop-Programmen

Zusammenfassung

- While-berechenbar = Turing-berechenbar
- Ackermann-Funktion While-berechenbar
- Primitiv rekursive Funktionen

Vierte Übungsserie bereits im Moodle