UK Patent Application (19) GB (11) 2 376 236 (13) A

(43) Date of A Publication 11.12.2002

(21) Application No 0130946.7

(22) Date of Filing 24.12,2001

(30) Priority Data

(31) 2001174553

(32) 08.06.2001

(33) JP

(71) Applicant(s)

Hitachi Ltd (Incorporated in Japan) 6 Kanda Surugadai 4-chome, Chiyoda-ku, TOKYO, 101-/8010, Japan

Bio-oriented Technology Research Advancement Institution (Incorporated in Japan) 3-18-19 Toranomon, Minato-ku, TOKYO, 105-0001, Japan

Independent Administrative Institute (Incorporated in Japan) Japan International Research Center for Agricultural Sciences,, Tsukuba, IBARAKI, 305-8686, Japan

(71), (72) and (74) continued overleaf

(51) INT CL7

C12N 9/12 , A01H 5/00 , C12N 5/04 5/14 9/02 9/06 15/09 15/52 15/82 15/84

(52) UK CL (Edition T)

C3H HB7E HB7T HB7V H657 H712 H728

(56) Documents Cited

WO 1999/066785 A US 5639950 A

US 5344923 A

FEBS Letters, Vol. 461, 1999, T Nanjo et al, "Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana", 205-210

Plant Science, Vol. 139, 1998, B Zhu et al,

"Overexpression of a DELTA1-pyrroline-carboxylate

synthetase gene and ...", 41-48

Plant and Cell Physiology, Vol. 38, 1997, Y Yoshiba et al, "Regulation of levels of proline as an osmolyte in

plants under water stress.", 1095-1102 Molecular and General Genetics, Vol 253, 1996, Z Peng

et al, "Reciprocal regulation of delta1-pyrroline-5-carboxylate synthetase and proline

dehydrogenase genes ...", 334-341

(58) continued overleaf

(54) Abstract Title

Stress tolerant transgenic grass plants with altered proline biosynthesis

(57) Transgenic plants over expressing a Δ^1 -pyrroline-5-carboxylate synthetase (P5CS) gene from either rice (SEQ ID NO:1) or from Arabidopsis thaliana (SEQ ID NO:2) are claimed. Also claimed are transgenic plant expressing an antisense proline dehydrogenase (ProDH or PDH) gene from Arabidopsis thaliana. Plants containing both a sense P5CS gene and an antisense ProDH gene are claimed. All these plants have modified proline biosynthesis. These plants may be grass plants, more preferably crop plants such as cereal such as rice, corn, millet, barley, rye, turf millet or barn grass. Also claimed are vectors and methods of generating such transgenic plants. These plants have improved stress tolerance, especially for water or salt stress and low temperatures.

(71) cont

(Incorporated in Japan) 2-1 Hirosawa, Wako-shi, SAITAMA, 351-0198, Japan

(72) Inventor(s) Yoshu Yoshiba KAZUKO SHINOZAKI KAZUO SHINOZAKI

(74) Agent and/or Address for Service Mewburn Ellis York House, 23 Kingsway, LONDON, WC2B 6HP, United Kingdom

(58) Field of Search

Other: ONLINE: EPODOC, WPI, JAPIO, BIOSIS, MEDLINE, CAPLUS, DGENE

FIG. 1 A

FIG. 1 B

FIG. 1 C

FIG. 1D

FIG. 2

NaCl treatment time (h)

:control (vector)

:Transgenic

<u>Transgenic Rice Plant and its Family with Environmental Stress Resistant by Proline</u> Accumulation of High Level and its Production

The present invention relates to a rice plant (as defined below), particularly rice, having a high level of proline accumulating ability, and improved salinity-tolerance, drought-tolerance, and low temperature-tolerance, and its production method.

It is known that, for several plants including halophytes, when the plants are subjected to a high salinity stress or a drought stress, they accumulate proline, which is one of amino acids, in their cytoplasms. This is considered useful for regulating the osmotic pressure in the plant cytoplasm, or inhibiting the degradation of a functional protein due to the stress. The proline in a plant is synthesized from a glutamic acid by two enzymes of a Δ^1 -pyrroline-5-carboxylate (P5C) synthetase (P5CS) and a P5C reductase. On the other hand, proline is degraded into a glutamic acid by the two enzymes of a proline dehydrogenase (ProDH) and a P5C dehydrogenase.

When each of the aforesaid plants is subjected to a water stress (the state in which water is difficult to absorb) such as a high salinity stress or a drought stress, the expression level of the P5CS gene

is increased to activate the P5CS. However, the P5CR activity and the gene expression are constant at a low level. Further, the gene expression and the enzyme activity related to metabolism are also in the inhibited states. However, once the water stress has been removed, conversely, this time, the gene expression and enzyme activity related to biosynthesis are inhibited, so that the expression of the ProDH gene is rapidly induced, and the enzyme activity is also enhanced. As a result, the proline accumulated in the cytoplasm is rapidly metabolized to a glutamic acid.

5

10

15

From the foregoing description, it is considered that the P5CS becomes rate-limiting for proline synthesis under a water stress. Whereas, the ProDH becomes rate-limiting for proline metabolism after releasing the water stress (Yoshida et al., Plant Cell Physiol, 38: 1095 - 1102 (1997)).

It is predicted that food shortage due to an expansion of the saline soil area caused by drought and semi-drought with the deterioration of global environment, and population growth will become increasingly more serious in the future. Researches have been pursued in diversified fields respectively on the breeding of crop plants resistant to a high salinity stress, a drought stress, and a low temperature stress (the state in which water is

difficult to absorb) as those playing an important role in solving the world food problem, and the results are expected to be promising.

It is an object of the present invention to provide: a rice plant which has a high proline accumulating ability, and accordingly has improved salinity-tolerance, drought-tolerance, and low temperature-tolerance; and production methods for such a plant. This object has been addressed by focusing attention on the importances of a Δ^1 -pyrroline-5-carboxylate (P5C) synthetase (P5CS) and a proline dehydrogenase (ProDH) which are the rate-limiting enzymes related to synthesis and metabolism of proline in plants, and regulating the expression of genes for the enzymes with a gene recombination technology.

15

20

25

10

5

The P5CS gene related to proline synthesis is introduced to be overexpressed; the antisense (reverse DNA sequence-containing) gene of the ProDH gene related to the metabolism is introduced to inhibit the degradation of proline; or both the P5CS gene and the antisense gene of the ProDH gene are introduced to promote the proline synthesis while inhibiting the degradation of proline. As a result, proline is accumulated with a high concentration in the cells of rice and a rice plant.

In the present invention, by accumulation of proline at a high concentration, it becomes possible to perform molecular breeding of rice and a rice plant

having salinity-tolerance, drought-tolerance, or low temperature-tolerance.

5

10

15

20

25

Heretofore, there is known no report that an increase in concentration of proline as an osmoprotectant is allowed by synthesis promotion and degradation inhibition in rice and a rice plant. inventors of the present invention have focused attention on the importances of the P5CS gene and the ProDH gene. Then, in order to solve novel technical problems which have not been known in the prior art, they have conducted studies from various fields including the study on the selection of the rice variety into which the gene is easily introduced, the study for improving the callus formation rate, the study on the construction of a vector for introducing the gene for rice, and the like. In consequence, they have provided novel technical elucidation, resulting in the completion of the present invention and preferred embodiments.

In the present invention, there are provided a rice plant transformed by introducing therein the proline synthesis gene and the antisense gene of the proline metabolism gene derived from rice or Arabidopsis thaliana individually or in combination, and its production method.

In the rice plant of the present invention, either or both of the gene encoding the synthetase protein of proline which is one of amino acids and the antisense gene of the proline dehydrogenage have been

introduced. With this construction, it is possible to implement a rice plant having improved salinity—tolerance, drought—tolerance, and low temperature—tolerance. Further, the mature rice seeds gathered from the rice plant of the present invention, particularly the rice seeds are characterized by keeping a high proline accumulating ability over a plurality of generations.

5

10

15

20

25

Further, the present invention is targeted for rice and other plants. The targets have no particular restriction as long as they are the plants belonging to the rice plants. The term "rice plant" as used herein is intended to mean a grass (i.e. a gramineous plant), preferably a crop plant, more preferably a cereal. Examples of the plants belonging to the rice plants include rice, corn, wheat, barley, rye, turf, millet, and barn grass. In particular, the present invention can be more preferably applied to rice.

FIGS. 1A to 1D are diagrams respectively showing the vectors for rice in which proline synthesis-related enzyme P5CS genes and proline metabolism-related enzyme ProDH genes, and antisense genes thereof have been respectively incorporated;

FIG. 2 is a graph showing the amount of proline accumulated in rice lines under no stress in which the vectors shown in FIGS. 1A to 1D have been respectively introduced by genetic engineering; and

FIG. 3 is a graph showing the salinity-

tolerance of each of the transgenic rice lines in which the proline-related genes have been respectively incorporated shown in FIG. 2.

5

10

15

20

In rice plants of examples of the present invention, either or both of the proline (osmoprotectant) synthesis gene and the antisense gene of the proline metabolism derived from rice or Arabidopsis thaliana gene have been introduced for transformation.

Examples of one type of gene to be introduced to the rice plants of the examples of the present invention include: (1) a P5CS (Δ^1 -pyrroline-5-carboxylate (P5C) synthetase) gene of rice containing the sequence (DNA sequence and amino acid sequence) according to SEQ ID No. 1; (2) a P5CS (Δ^1 -pyrroline-5-carboxylate (P5C) synthetase) gene of Arabidopsis thaliana containing the sequence (DNA sequence and amino acid sequence) according to SEQ ID N2; and (3) the antisense (reverse DNA sequence-containing) gene of the ProDH (proline dehydrogenase) gene of Arabidopsis thaliana containing the sequence (DNA sequence and amino acid sequence) according to Seq ID NO. 3.

25

Examples of the two types of genes to be introduced into the rice plants of the examples of the present invention include:

(1) Two genes of the P5CS (Δ^1 -pyrroline-5-carboxylate

(P5C) synthetase) of rice containing the sequence according to SEQ ID NO. 1 or the P5CS gene of Arabidopsis thaliana containing the sequence according to SEQ ID NO. 2, and the antisense (reverse DNA sequence-containing) gene of the ProDH (proline dehydrogenase) gene of Arabidopsis thaliana containing the sequence according to SEQ ID NO. 3; and (2) Tandemly connected two genes of the P5CS (Δ^{1} -pyrroline-5-carboxylate (P5C) synthetase) gene of rice containing the sequence according to SEQ ID NO. 1 or the P5CS gene of Arabidopsis thaliana containing the sequence according to SEQ ID NO. 2, and the antisense (reverse DNA sequence-containing) gene of the ProDH (proline dehydrogenase) gene of Arabidopsis thaliana containing the sequence according to SEQ ID NO. 3.

In each of the vectors to be used in the examples of the present invention, there is incorporated any one gene of the P5CS (Δ^1 -pyrroline-5-carboxylate (P5C) synthetase) gene of rice containing the sequence according to SEQ ID NO. 1, the P5CS gene of Arabidopsis thaliana containing the sequence according to SEQ ID NO. 2, and the antisense (reverse DNA sequence-containing) gene of the ProDH (proline dehydrogenase) gene of Arabidopsis thaliana containing the sequence according to SEQ ID NO. 3. Alternatively, there are incorporated two genes of the P5CS gene of rice or Arabidopsis thaliana, and the aforesaid antisense gene in tandemly connected relation to each

other.

protoplast; and

۴

10

25

The rice plants of the examples of the present invention can be obtained by, for example, any of the following methods.

- 5 (1) The aforesaid vector is introduced into the calli derived from a rice plant, and the calli are grown. Then, a plant body is regenerated from the calli;
 - (2) The aforesaid vector is introduced into the protoplast derived from a rice plant, and a plant body is regenerated from the colony obtained by growing the
 - (3) Crossing with the rice plants obtained by introducing the vector therein by genetic engineering is carried out.
- 15 Examples of the production method of the rice plants of the examples of the present invention include the following methods:
 - (1) The aforesaid vector is introduced into the calliderived from a rice plant by using Agrobacterium
- 20 tumefaciens, and the calli are grown. Then, a plant body is regenerated from the calli;
 - (2) The aforesaid vector is introduced into the protoplast derived from a rice plant by electroporation, and a plant body is regenerated from the colony obtained by growing the protoplast; and
 - (3) Crossing with the rice plants obtained by introducing the vector therein by genetic engineering is carried out.

These production methods may provide a rice plant having a high proline accumulating ability, and having improved salinity-tolerance, drought-tolerance, and/orlow temperature-tolerance levels.

Further, mature seeds gathered from the rice plants of the examples of the present invention, particularly the rice seeds will generally maintain their high proline accumulating abilities over a plurality of generations.

The rice plants of the examples of the present invention and its production method will be described in details by way of embodiments thereof by using rice as a typical example step by step below. It is needless to say that the steps described below are applicable to other rice plants than rice with or without changing the various conditions.

(Gene cloning)

5

10

15

20

25

First, a mRNA is extracted from a rice seedling. A cDNA is synthesized by using the mRNA. The cDNA is combined with a vector made of a plasmid or a phage, and introduced into E. coli to prepare a recombinant DNA. The resulting transformant in which the recombinant DNA has been introduced is subjected to screening by plaque hybridization using the P5CS gene from Arabidopsis thaliana as a probe. The sequences of the P5CS genes from rice and Arabidopsis thaliana have been already reported (Yoshiba et al., Plant J. (1995) 7:751-760, and Igarashi et al., Plant Mol. Biol. (1997)

33:857-865). Based on these reports, appropriate primers are designed, and subjected to screening by PCR to select a target transformant. A target plasmid is isolated from the transformant obtained. If required, it is cut with an appropriate restriction enzyme, and subjected to subcloning in a plasmid vector for cloning. It is also possible to subject the P5CS gene of Arabidopsis thaliana to cloning in the same manner as with rice. However, as a sample from which a mRNA is to be extracted, the one subjected to a high salinity stress (immersed in a 250 mM NaCl solution or the like) or the one subjected to a drought stress treatment is more preferable than the one bred under a normal environment. This is because the P5CS gene is induced in response to a water stress such as a high salinity stress or a drought stress (Yoshiba et al., Plant J. (1995) 7: 751-760, Igarashi et al., Plant Mol. Biol. (1997) 33: 857-865, and Yoshiba et al., Plant Cell Physiol. (1997) 38: 1095-1102).

5

10

15

20

25

On the other hand, it is also possible to subject the ProDH gene of Arabidopsis thaliana (its sequence has already been reported in Kiyosue et al., Plant Cell (1996) 8:1323-1335) to cloning in the foregoing manner. However, as the sample from which a mRNA is to be extracted, there may be used the one which has been subjected to a drought stress (about 10-hour treatment), then immersed in water again, and allowed to absorb water, the one which has been

immersed in a proline solution, and allowed to absorb proline, or the like. This is due to the following fact. Namely, the ProDH gene is inhibited from its expression under a water stress, and the gene expression is induced by a high concentration of proline (Kiyosue et al., Plant Cell (1996) 8: 1323-1335, and Yoshiba et al., Plant Cell Physiol. (1997) 38: 1095-1102).

5

10

15

20

25

If the samples as described above are used, it is possible to isolate the P5CS gene and the ProDH gene not only from rice or Arabidopsis thaliana but also from other rice plants.

(Construction of gene introduction vector) Respective P5CS genes and ProDH genes subjected to cloning are cut from plasmids with appropriate restriction enzymes, and, as shown in FIGS. 1A to 1D, each is combined behind the 35S promoter of a cauliflower mosaic virus of a vector for rice obtained by modifying a pBI vector. In FIGS. 1A to 1D, RB denotes the right border, 35SPro denotes the promoter of a cauliflower mosaic virus, P5CS denotes the proline synthesis-related enzyme gene of rice or Arabidopsis thaliana, ProDH denotes proline metabolism-related enzyme gene of Arabidopsis thaliana, Noster denotes the terminator of a nopaline synthetase gene, HTP denotes a hygromycine resistant gene, and LB denotes the left border. Whereas, each of the arrows indicates the orientation of the sense of each gene.

In FIGS. 1A to 1D, FIG. 1A is a diagram showing an example of the vector (construct) so constructed that the sequence in the order of RB-35SPro-P5CS-Noster-35SPro-HTP-Noster-LB has been achieved. FIG. 1B is a diagram showing an example in which, with respect to FIG. 1A, the same sequence in the order of RB-35SPro-P5CS-Noster-35SPro-HTP-Noster-LB as in the construct of FIG. 1A has been achieved, but the gene P5CS has been sequenced in antisense orientation. FIG. 1C is a diagram showing an example in which the gene ProDH has been sequenced in antisense orientation, and substituted for the gene P5CS of the construct of FIG. 1A, to construct a vector with a sequence in the order of RB-35SPro-ProDH (antisense)-Noster-35SPro-HTP-Noster-LB. FIG. 1D is a diagram showing an example in which, to the construct of FIG. 1A, the gene ProDH has

5

10

15

20

25

Noster-LB. FIG. 1D is a diagram showing an example in which, to the construct of FIG. 1A, the gene ProDH has been further sequenced in antisense orientation, and the construct shown in FIG. 1C has been further connected thereto in tandem, to construct a vector with a sequence in the order of RB-35SPro-P5CS-Noster-35SPro-ProDH (antisense)-Noster-35SPro-HTP-Noster-LB.

The 35S promoter is well known as a promoter which is strong and invariably induces the gene expression in any tissue. As for the orientation in which the gene is incorporated, the P5CS gene is connected in the sense orientation, and the ProDH gene in the antisense orientation.

Then, each vector to which each of the genes

has been connected is introduced into Agrobacterium tumefaciens EHA 101 by electroporation. Agrobacterium tumefaciens in which each construct (FIGS 1A to 1D) has been introduced is cultured and grown in a YEP medium containing Bacto Pepton (10 g/l), Bacto 5 Yeast Extract (10 g/l), sodium chloride (5 g/l), 1Mmagnesium chloride (2 ml/l), and hygromycine B (50 mg/l) at 28 $^{\circ}$ C. Gene introduction is carried out by infecting the callus cell of rice with the 10 Agrobacterium tumefaciens into which each construct (FIGS. 1A - 1D) has been introduced. The construct D is so designed that the two genes (the P5CS gene and the ProDH gene) are connected to each other in tandem to be simultaneously introduced. However, even if the 15 constructs A and C are mixed for coinfection, it is also possible obtain the same effects as with the construct D.

Incidentally, a HPT (hygromycine resistant) gene is connected to each construct. This is for efficiently selecting the cell and plant body transformed for the basic research on analysis of the effects of the introduced genes. Therefore, the HPT gene is not required to be incorporated therein for actual cultivation on the salt damaged land or the dry land.

20

25

(Induction of rice calli for gene introduction)

Mature rice seeds are sterilized with 70 %

ethyl alcohol for 10 minutes, and with 3 % sodium

hypochlorite for 1 hour after stripping the hulls therefrom. After sterilization, the seeds are washed with sterilized water 3 times, and bedded on a pH 5.8 N6 medium (2N6 medium) containing 1 g/l casamino acid, 30 g/l sucrose, 2 mg/l 2,4-dichlorophenoxyacetic acid, and 2 g/l Gelrite, and cultured at 28 °C in the dark for 3 to 5 weeks.

(Gene introduction into rice calli)

5

10

15

20

25

Out of the rice calli induced in the foregoing manner, the ones with a size of 1 to 3 mm are bedded on the 2N6 medium again, and cultured at 28 °C in the dark for 3 to 4 days. As a result, it is possible to enhance the division activity of the callus cell. gene introduction is carried out by mixing the cultured calli and a solution of each construct-introduced Agrobacterium tumefaciens grown in the YEP medium (the solution diluted so that the concentration of the bacteria is 0.1 as determined at OD 660nm) for infection. Thereafter, the calli are cultured at 25 $^{\circ}$ C in the dark for 3 days. After cultivation, the calli are washed and sterilized several times by a cefotaxime aqueous solution with a concentration of 1 mg/4 ml to remove extra bacteria attached to the surfaces of the calli, and cleaned with a sterilized kim towel or the like. Subsequently, it is bedded on a 2N6 medium (secondary selection medium) containing 250 mg/l cefotaxime and 10 mg/l hygromycine B, and cultured at 28 $^{\circ}$ C in the dark for 1 week.

(Selection of transformed calli and regeneration of plant body)

5

10

15

20

25

The calli cultured in the medium containing cefotaxime is bedded on a medium (secondary selection medium) in which the content of hygromycine B has been increased to 30 mg/l, and cultured at 28 $^{\circ}$ C in the dark for 3 weeks. Thereafter, the calli are transferred to a pH 5.8 MS medium (regeneration induction medium) containing 30 g/l sucrose, 30 g/l sorbitol, 2 g/l casamino acid, 11 g/l MES buffer, 2 mg/l NAA, 1 mg/l kinetin, 250 mg/l cefotaxime, 30 mg/l hygromycine B, and 4 g/l Gelrite, and cultured in the bright place at 28 °C for 3 week. The gene-introduced calli form a green spot, from which shoots and roots are regenerated. The regenerated calli are further transferred to a pH 5.8 MS medium (plant body formation medium) containing 30 g/l sucrose, 250 mg/l cefotaxime, 30 mg/l hygromycine B, and 8 g/l agar, from which plant hormones have been removed, and cultured in the bright plant body is bred more largely.

(Breeding of transformed rice plant body and seed formation)

Upon having grown to a seedling height of about 4 to 5 cm in a petri dish, the regenerated rice is transferred to a planter in which the soil for raising seedling is placed. Then, it is bred in an artificial climate system with an illuminance of about 20,000 lx

under a temperature condition of 28 °C until the fourth leaf to the fifth leaf develop. Subsequently, the seedling is further transferred into a pot containing the soil into which a fertilizer has been appropriately added, and bred in a greenhouse until the seeds ripen. Assuming that the present generation of the plant body regenerated is of the TO generation, and that the seeds obtainable from this plant body is of the TI generation, the ones of the T2 to T3 generations are bred. When they are cultivated in an actual farm land, they may

5

10

15

20

25

be commercialized after carrying out the various safety evaluation tests over further generations, and confirming the safety.

(Extraction of proline from transformed rice and concentration measurement thereof)

Proline is extracted from the leaves of the seedling (whose forth leaf has developed) of the transformed rice of the T2 generation or the T3 generation. The leaves of the rice seedling bred in the artificial climate system are cut off in an amount of about 200 mg by scissors or the like. Then, in a mortar, liquid nitrogen is added thereto, and the leaves are ground into powder. The resulting sample in powder form is mixed with pure water, and further milled by means of a homogenizer or the like. The milled sample is heated at 97 °C for 6 minutes, and then ice cooled. The sample is then centrifuged at about 17,000 ×G for 10 minutes at 4 °C to separate the

supernatant. To the supernatant obtained, a trichloroacetic acid is added and mixed so that the final concentration is 5 %. The resulting mixture is then centrifuged at about 17,000 ×G for 10 minutes at 4 °C again to precipitate protein. Proline as an osmoprotectant is contained in the supernatant at this step, and the concentration thereof is determined by means of high performance liquid chromatography (HPLC). The qualitative determination of proline is carried out in the following manner. The solutions in which various amino acids have been dissolved to a given concentration are previously determined by HPLC. The amount of proline contained in the leaf of an actual transgenic rice is determined based on the retention times.

FIG. 2 shows the proline content of each of the transgenic rice lines under no stress into which various genes have been introduced. The hollow graphs in the leftmost column represent control samples into which proline-related genes have not been incorporated. Whereas, the solidly shaded graphs in the right-hand five columns denote respective transgenic rice lines into which proline-related genes have been incorporated. It is indicated that the proline content varies according to the type of the gene introduced.

There is observed almost no accumulation for each sample in which the P5CS gene (OsP5CS) of rice has been introduced in antisense orientation (FIG. 1B) in

the second column from left. For each sample in which the P5CS gene (AtP5CS) of Arabidopsis thaliana has been introduced in sense orientation (FIG. 1A) in the third column from left, there is observed an increase in amount of proline accumulated over the control samples. Similarly, for each sample in which the ProDH gene (AtProDH) of Arabidopsis thaliana has been introduced in antisense orientation (FIG. 1C) and each sample in which the P5CS gene (OsP5CS) of rice has been introduced in sense orientation (FIG. 1A) in the fourth and fifth columns from left, respectively, there are observed increases in amount of proline accumulated over the control sample. In contrast to these, for each sample in which the P5CS gene (OsP5CS) of rice has been introduced in sense orientation, and the ProDH gene (AtProDH) of Arabidopsis thaliana in antisense orientation in the rightmost column, there is observed a considerably larger amount of proline accumulated (100 times or more with respect to the control sample for the case where the amount of proline accumulated is larger) as compared with each of the aforesaid samples in which one type of gene has been introduced. Then, it is indicated that each sample of OsP5CS (in the fifth column from left) is slightly more effective for proline accumulation than each sample of AtP5CS (in the third column from left) among the samples in which genes have been introduced in sense orientation.

5

10

15

20

25

(Salinity tolerance test and improvement of

salinity tolerance of transgenic rice)

5

10

15

20

25

FIG. 3 shows the results of a salinity tolerance test performed at a 250 mM concentration (about half the salt concentration of sea water) by using several lines of the transgenic rice for which proline accumulation has been observed shown in the right hand four columns of FIG. 2. The hollow graphs denote the control samples in which proline related genes have not been incorporated. Whereas, the solidly shaded graphs denote the transgenic rice samples. salinity tolerance test was carried out in accordance with the testing method using known survival rates as indexes (Japanese Published Unexamined Patent Application No. Hei 09-266726, title of the invention: evaluation of salt resistance of plant). It has been shown that the control samples in which proline-related genes have not been introduced die 5 days after a salt treatment, while the transgenic rice samples which accumulate proline show high survival rates, i.e., 95 % for the third day, and 65 % even after the five-day treatment. This indicates that the salinity tolerance can be improved by transforming rice, and thereby enhancing the proline accumulating ability thereof.

Therefore, the gramineous crop produced according to the present invention may be subjected to breeding by further pursuing detailed analysis such as the safety evaluation thereon, and may be capable of being cultured in the salt accumulated soil or the

desertified soil. Therefore, food productivity can be expected to be improved. Further, it can be largely expected that the crop plant is also capable of coping with the population growth in developing countries.

In accordance with the present invention, it has become possible to produce a transgenic rice plant having an enhancedproline accumulating ability.

Further, for the rice plant produced by the method of the present invention, the amount of proline

accumulated therein has been increased, so that it has become possible to improve the salinity tolerance level thereof.

[Sequence Listing]

<110> Hitachi, LTD.

RIKEN

Japan International Research Center for Agricaltural Science

Bio-oriented Technology Research

Advancement Institute (BRAIN)
<120> Transgenic rice plant and its family with
environmental stress resistant by proline
accumulation of high level and its production.

<130> NT01P0353

<160> 3

<210> 1

<211> 2549

<212> DNA

<213> Oryza sativa L.

<220>

<221> CDS

<222> 99..2249

<300>

<301> Yumiko Igarashi, Yoshu Yoshiba, Yukika Sanada, Kazuko Yamaguchi-Shinozaki, Keishiro Wada, Kazuo Shinozaki

 $\langle 302 \rangle$ Characterization of the gene for Δ $^1-$ pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in <code>Oryza sativa</code> L.

<303> Plant Molecular biology

<304> 33 <306> 857-865 <307> 1996-12-03 <308> D49714 <309> 1995-03-16 <400> 1 gcggctgcgg cggcaaggcg gcgagacgtg ggagagggat ttacaggtag agggagaggg 60 tggaggagga gaggctgagg ctaggaagcg gtttcgcc atg gcg agc gtc gac ccg 116 Met Ala Ser Val Asp Pro 1 5 164 tcc cgg agc ttc gtg agg gac gtg aag cgc gtc atc atc aag gtg ggc Ser Arg Ser Phe Val Arg Asp Val Lys Arg Val Ile Ile Lys Val Gly 10 20 15 act gca gtt gtc tcc aga caa gat gga aga ttg gct ttg ggc agg gtt 212 Thr Ala Val Val Ser Arg Gln Asp Gly Arg Leu Ala Leu Gly Arg Val 30 35 25 gga gct ctg tgc gag cag gtt aag gaa ctg aac tct tta gga tac gaa 260 Gly Ala Leu Cys Glu Gln Val Lys Glu Leu Asn Ser Leu Gly Tyr Glu 40 45 50 gtg att ttg gtc acc tca ggt gct gtt gga gtg ggg cga cag cga ctt 308 Val Ile Leu Val Thr Ser Gly Ala Val Gly Val Gly Arg Gln Arg Leu 55 60 65 70

3

agg	tac	cgg	aag	ctt	gto	aat	agc	ago	ttt	gct	gat	ctg	caa	aag	cca	356
Arg	Tyr	Arg	Lys	Leu	Val	Asn	Ser	Ser	Phe	Ala	Asp	Leu	Gln	Lys	Pro	
				75					80	1				85		
cag	atg	gag	tta	gat	gga	aag	gct	tgt	gcc	gct	gtt	ggt	cag	agt	gga	404
Gln	Met	Glu	Leu	Asp	Gly	Lys	Ala	Cys	Ala	Ala	Val	Gly	Gln	Ser	Gly	
			90					95					100			
ctg	atg	gct	ctt	tac	gat	atg	ttg	ttt	aac	caa	ctg	gat	gtc	tcg	tca	452
Leu	Met	Ala	Leu	Tyr	Asp	Met	Leu	Phe	Asn	Gln	Leu	Ásp	Val	Ser	Ser	
		105					110					115				
tct	caa	ctt	ctt	gtc	acc	gac	agt	gat	ttt	gag	aac	cca	aag	ttc	cgg	500
Ser	Gln	Leu	Leu	Val	Thr	Asp	Ser	Asp	Phe	Glu	Asn	Pro	Lys	Phe	Arg	
	120					125					130					
gag	caa	ctc	act	gaa	act	gtt	gag	tca	tta	tta	gat	ctt	aaa	gtt	ata	548
Glu	Gln	Leu	Thr	Glu	Thr	Val	Glu	Ser	Leu	Leu	Asp	Leu	Lys	Val	Ile	
135					140					145					150	
cca	ata	ttt	aat	gaa	aat	gat	gcc	atc	agc	act	aga	aag	gct	cca	tat	596
Pro	Ile	Phe	Asn	Glu	Asn	Asp	Ala	Ile	Ser	Thr	Arg	Lys	Ala	Pro	Tyr	
				155					160					165		
gag	gat	tca	tct	ggt	ata	ttc	tgg	gat	aat	gac	agt	tta	gca	gga	ctg	644
Glu	Asp	Ser	Ser	Gly	Ile	Phe	Trp	Asp	Asn	Asp	Ser	Leu	Ala	Gly	Leu	
			170					175					180			

ttg	gca	ctg	gaa	ctg	aaa	gct	gat	ctc	ctt	att	ctg	ctc	agt	gat	gtg	692
Leu	Ala	Leu	Glu	Leu	Lys	Ala	Asp	Leu	Leu	Ile	Leu	Leu	Ser	Asp	Val	
		185					190					195				
gat	ggg	ttg	tat	agt	ggt	cca	cca	agt	gaa	cca	tca	tca	aaa	atc	ata	740
Asp	Gly	Leu	Tyr	Ser	Gly	Pro	Pro	Ser	Glu	Pro	Ser	Ser	Lys	Ile	Ile	
	200					205					210					
cac	act	tat	att	aaa	gaa	aag	cat	cag	caa	gaa	atc	act	ttt	gga	gac	788
His	Thr	Tyr	Ile	Lys	Glu	Lys	His	Gln	Gln	Glu	Ile	Thr	Phe	Gly	Asp	
215					220					225					230	
aaa	tct	cgt	gta	ggt	aga	gga	ggc	atg	aca	gca	aaa	gtg	aag	gct	gct	836
Lys	Ser	Arg	Val	Gly	Arg	Gly	Gly	Met	Thr	Ala	Lys	Val	Lys	Ala	Ala	
				235					240					245		
gtc	ttg	gct	tca	aat	agc	ggc	aca	cct	gtg	gtt	att	aca	agt	ggg	ttt	884
Val	Leu	Ala	Ser	Asn	Ser	Gly	Thr	Pro	Val	Val	Ile	Thr	Ser	Gly	Phe	
			250					255					260			
gaa	aat	cgg	agc	att	ctt	aaa	gtt	ctt	cat	ggg	gaa	aaa	att	ggt	act	932
Glu	Asn	Arg	Ser	Ile	Leu	Lys	Val	Leu	His	Gly	Glu	Lys	Ile	Gly	Thr	
		265					270					275				
ctc	ttt	cac	aag	aat	gcg	aat	ttg	tgg	gaa	tca	tct	aag	gat	gtt	agt	980
Leu	Phe	His	Lys	Asn	Ala	Asn	Leu	Trp	Glu	Ser	Ser	Lys	Asp	Val	Ser	
	280					285			•		290					

act	cgt	gag	atg	gct	gtt	gcc	gca	aga	gat	tgt	tca	agg	cat	cta	a cag	1028
Thr	Arg	Glu	Met	Ala	Val	Ala	Ala	Arg	Asp	Cys	Ser	Arg	His	Lei	Gln	
295					300	•				305	;				310	
aat	ttg	tca	tca	gag	gaa	cga	aaa	aag	ata	ttg	cta	gat	gtt	gca	gat	1076
Asn	Leu	Ser	Ser	Glu	Glu	Arg	Lys	Lys	Ile	Leu	Leu	Asp	Val	Ala	Asp	
				315					320					325	i	
gct	ttg	gag	gca	aat	gag	gat	tta	ata	agg	tct	gag	aat	gaa	gct	gat	1124
Ala	Leu	Glu	Ala	Asn	Glu	Asp	Leu	Ile	Arg	Ser	Glu	Asn	Glu	Ala	Asp	
			330					335					340			
gta	gct	gcg	gcc	caa	gtt	gct	gga	tat	gag	aag	cct	ttg	gtt	gct	aga	1172
Val	Ala	Ala	Ala	Gln	Val	Ala	Gly	Tyr	Glu	Lys	Pro	Leu	Val	Ala	Arg	
		345					350					355				
ttg	act	ata	aaa	cca	gga	aag	ata	gca	agc	ctt	gca	aaa	tct	att	cgt	1220
Leu	Thr	Ile	Lys	Pro	Gly	Lys	Ile	Ala	Ser	Leu	Ala	Lys	Ser	Ile	Arg	
	360					365					370					
					gaa											1268
	Leu	Ala	Asn	Met	Glu	Asp	Pro	Ile	Asn	Gln	Ile	Leu	Lys	Lys	Thr	
375					380					385					390	
					tta											1316
Glu	Val	Ala	Asp	Asp	Leu	Val	Leu	Glu	Lys	Thr	Ser	Cys	Pro	Leu	Gly	
				395					400					405		

gtt	ctc	tta	att	gtt	ttt	gag	tcc	cga	cct	gat	gcc	ttg	gtt	cag	att	1364
Val	Leu	Leu	Ile	Val	Phe	Glu	Ser	Arg	Pro	Asp	Ala	Leu	Val	Gln	Ile	
			410					415					420			
gca	tct	ttg	gca	att	cga	agt	ggt	aat	ggt	ctt	ctc	cta	aaa	ggt	gga	1412
Ala	Ser	Leu	Ala	Ile	Arg	Ser	Gly	Asn	Gly	Leu	Leu	Leu	Lys	Gly	Gly	
		425					430					435				
aaa	gaa	gct	atc	aga	tca	aac	acg	ata	ttg	cat	aag	gtt	ata	act	gat	1460
Lys	Glu	Ala	Ile	Arg	Ser	Asn	Thr	Ile	Leu	His	Lys	Val	Ile	Thr	Asp	
	440					445					4 50					
gct	att	cct	cgt	aat	gtt	ggt	gaa	aaa	ctt	att	ggc	ctt	gtt	aca	act	1508
Ala	Ile	Pro	Arg	Asn	Val	Gly	Glu	Lys	Leu	Ile	Gly	Leu	Val	Thr	Thr	
455					460					465					470	
aga	gat	gag	atc	gca	gat	ttg	cta	aag	ctt	gat	gat	gtc	att	gat	ctt	1556
Arg	Asp	Glu	Ile	Ala	Asp	Leu	Leu	Lys	Leu	Asp	Asp	Val	Ile	Asp	Leu	
				475					480					485		
gtc	act	cca	aga	gga	agt	aat	aag	ctt	gtc	tct	caa	atc	aag	gcg	tca	1604
Val	Thr	Pro	Arg	Gly	Ser	Asn	Lys	Leu	Val	Ser	Gln	Ile	Lys	Ala	Ser	
			490					495					500			
act	aag	att	cct	gtt	ctt	ggg	cat	gct	gat	ggt	ata	tgc	cac	gta	tat	1652
Thr	Lys	Ile	Pro	Val	Leu	Gly	His	Ala	Asp	Gly	Ile	Cys	His	Val	Tyr	
		505					510					515				

at	t ga	c aa	a tc	a gc	t ga	c ata	g ga	t atg	g gca	a aaa	a ct	t at	t gt	a at	g gat	1700
															t Asp	
	520					525					530				-	
gca	aaa	ac	t ga	t tac	cca	a gca	gco	tgc	aat	gca	at	g gag	g ac	c tt	a cta	1748
															u Leu	
535					540					545					550	
gtt	cat	aag	g gat	ctt	atg	aag	agt	cca	ggc	ctt	gac	gac	ata	a tta	a gta	1796
															ı Val	
				555					560					565		
gca	cta	aaa	aca	gaa	gga	gtt	aat	att	tat	ggt	gga	cct	att	gce	cac	1844
															His	
			570					575					580			
aaa	gct	ctg	gga	ttt	cca	aaa	gct	gtt	tca	ttt	cat	cat	gag	tat	agt	1892
								Val								
		585					590					595		•		
tct	atg	gcc	tgc	act	gtt	gag	ttt	gtt	gat	gat	gtt	caa	tca	gca	att	1940
								Val								
	600					605					610					
gac	cat	att	cat	cgt	tat	gga a	agt	gct	cat :	aca	gat	tgt	atc	gtc	act	1988
								Ala								-000
615					620					625	•	•			630	

aca gat gat aag gta gca gag act ttt cta cgc aga gtt gat agt gct Thr Asp Asp Lys Val Ala Glu Thr Phe Leu Arg Arg Val Asp Ser Ala gct gta ttt cat aat gca agt acg aga ttc tct gat ggg gct cgt ttt Ala Val Phe His Asn Ala Ser Thr Arg Phe Ser Asp Gly Ala Arg Phe gga ttg ggt gct gag gtt ggc ata agc aca ggg cgt atc cat gcc cgt Gly Leu Gly Ala Glu Val Gly Ile Ser Thr Gly Arg Ile His Ala Arg gga cca gtg ggt gtt gaa ggt ctc tta act aca cga tgg atc ttg cga Gly Pro Val Gly Val Glu Gly Leu Leu Thr Thr Arg Trp Ile Leu Arg gga cgt ggg caa gtg gtg aat ggt gac aag gat gtc gtg tac acc cat Gly Arg Gly Gln Val Val Asn Gly Asp Lys Asp Val Val Tyr Thr His aag agt ctt cct ttg caa tgaggtcaaa tgctcctttt agcctgttca Lys Ser Leu Pro Leu Gln ggagtaggtg aatateettt taagaatgga ttgactaett tattttgtea tettgtacaa 2336 gcatcttatt gcggcattcc gatggattat tgattttggg ggttcccact ttcaaatgtg 2396

ja - Š

acaccaaaaa taaattcatc agttctgaga gcaagatttt ggaggttcag cttctccatg 2456

taataagtaa attcagttct gagaacttgt gtaccaacgc gctatgttgc ttgtaatgag 2516

cgatactaac atctgtgatt gcacatatac taa

2549

<210> 2

<211> 2571

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> 107...2260

<301> Yoshu Yoshiba, Tomohiro Kiyasue, Takeshi Katagiri, Hiroko

Ueda, Tsuyoshi Mizoguchi, Kazuko Yamaguchi-Shinozaki, Keishiro

Wada, Yoshinori Harada, Kazuo Shinozaki

 $\langle 302 \rangle$ Correlation between the induction of a gene for Δ^{1} -

pyrroline-5-carboxylate synthetase and the accumulation of proline in *Arabidopsis thaliana* under osmotic stress.

<303> The Plant Journal

<304> 7

<305> 5

<306> 751-760

<307> 1995-01-20

<308> D32138

<309> 1994-07-12

<400> 2

ctgatattta ttttcttacc ttaaatacga cggtgcttca ctgagtccga ctcagttaac 60

tc	gttc	ctct	ctc	tgtg	tgt ;	ggtt	ttgg	ta ga	acga	cgacı	g ac	gata		gag Glu		115
													1			
cta	a gat	cgt	tca	a cgt	t gct	t tti	gco	c aga	gad	gto	aaa	cgt	ato	c gto	gtt	163
															l Val	
	5					10					15					
aag	gtt	ggg	aca	gca	gtt	gtt	act	gga	aaa	ggt	gga	aga	ttg	gct	ctt	211
	Val															
20					25					30					35	
aat	cat	++2	<i>a</i> .a.	~~~	.+~	44										
	cgt															259
Oly	Arg	Leu	Gly	40	Leu	Cys	GIU	Gin		Ala	Glu	Leu	Asn		Asp	
				40					45					50		
gga	ttt	gag	gtg	ata	ttg	gtg	tca	tct	ggt	gcg	gtt	ggt	ctt	ggc	agg	307
	Phe															
			55					60				·	6 5	•	Ū	
	agg															355
GIn	Arg		Arg	Tyr	Arg	Gln	Leu	Val	Asn	Ser	Ser	Phe	Ala	Asp	Leu	
		70					75					80				
cag	aag	cct	cag	act	gaa	ctt	gat.	ggg	aao	øct	tøt	act	aa+	a++	aac	402
	Lys															403
	85	-				90	 p	,	~, 3	* 3 T CI	95 95	1110	QT À	101	grà	
						-					30					

caa	agc	agt	ctt	atg	gct	tac	tat	gag	act	atg	ttt	gac	cag	ctt	gat	451
Gln	Ser	Ser	Leu	Met	Ala	Tyr	Tyr	Glu	Thr	Met	Phe	Asp	Gln	Leu	Asp	
100					105					110					115	
gtg	acg	gca	gct	caa	ctt	ctg	gtg	aat	gac	agt	agt	ttt	aga	gac	aag	499
Val	Thr	Ala	Ala	Gln	Leu	Leu	Val	Asn	Asp	Ser	Ser	Phe	Arg	Asp	Lys	
				120					125					130		
gat	ttc	agg	aag	caa	ctt	aat	gaa	act	gtc	aag	tct	atg	ctt	gat	ttg	547
Asp	Phe	Arg	Lys	Gln	Leu	Asn	Glu	Thr	Val	Lys	Ser	Met	Leu	Asp	Leu	
			135					140					145			
agg	gtt	att	cca	att	ttc	aat	gag	aat	gat	gct	att	agc	acc	cga	aga	595
Arg	Val	Ile	Pro	Ile	Phe	Asn	Glu	Asn	Asp	Ala	Ile	Ser	Thr	Arg	Arg	
		150					155					160				
gcc	cca	tat	cag	gat	tct	tct	ggt	att	ttc	tgg	gat	aac	gat	agc	tta	643
Ala	Pro	Tyr	Gln	Asp	Ser	Ser	Gly	Ile	Phe	Trp	Asp	Asn	Asp	Ser	Leu	
	165					170					175					
gct	gct	cta	ctg	gcg	ttg	gaa	ctg	aaa	gct	gat	ctt	ctg	att	ctt	ctg	691
Ala	Ala	Leu	Leu	Ala	Leu	Glu	Leu	Lys	Ala	Asp	Leu	Leu	Ile	Leu	Leu	
180					185					190					195	
agc	gat	gtt	gaa	ggt	ctt	tac	aca	ggc	cct	cca	agt	gat	cct	aac	tca	739
Ser	Asp	Val	Glu	Gly	Leu	Tyr	Thr	Gly	Pro	Pro	Ser	Asp	Pro	Asn	Ser	
				200					205					210		

aag	ttg	atc	cac	act	ttt	gtt	aaa	gaa	aaa	cat	caa	gat	gag	att	aca	787
Lys	Leu	Ile	His	Thr	Phe	Val	Lys	Glu	Lys	His	Gln	Asp	Glu	Ile	Thr	
			215					220					225			
ttc	ggc	gac	aaa	tca	aga	tta	ggg	aga	ggg	ggt	atg	act	gca	aaa	gtc	835
Phe	Gly	Asp	Lys	Ser	Arg	Leu	Gly	Arg	Gly	Gly	Met	Thr	Ala	Lys	Val	
		230					235					240				
aaa	gct	gca	gtc	aat	gca	gct	tat	gct	ggg	att	cct	gtc	atc	ata	acc	883
Lys	Ala	Ala	Val	Asn	Ala	Ala	Tyr	Ala	Gly	Ile	Pro	Val	Ile	Ile	Thr	
	245					250					255					
agt	ggg	tat	tca	gct	gag	aac	ata	gat	aaa	gtc	ctc	aga	gga	cta	cgt	931
Ser	Gly	Tyr	Ser	Ala	Glu	Asn	Ile	Asp	Lys	Val	Leu	Arg	Gly	Leu	Arg	
260					265					270					275	
gtt	gga	acc	ttg	ttt	cat	caa	gat	gct	cgt	tta	tgg	gct	ccg	atc	aca	979
Val	Gly	Thr	Leu	Phe	His	Gln	Asp	Ala	Arg	Leu	Trp	Ala	Pro	Ile	Thr	
				280					285					290		
gat	tct	aat	gct	cgt	gac	atg	gca	gtt	gct	gcg	agg	gaa	agt	tcc	aga	1027
Asp	Ser	Asn	Ala	Arg	Asp	Met	Ala	Val	Ala	Ala	Arg	Glu	Ser	Ser	Arg	
			295					300					305			
aag	ctt	cag	gcc	tta	tct	tcg	gaa	gac	agg	aaa	aaa	att	ctg	ctt	gat	1075
Lys	Leu	Gln	Ala	Leu	Ser	Ser	Glu	Asp	Arg	Lys	Lys	Ile	Leu	Leu	Asp	
		310					315					320				

at.	t gc	ga.	t gc	c ct	t gaa	a gca	aa	t gt1	act	t aca	a ato	aaa	gc	t gag	g aat	1123
Πŧ	e Ala	a Ası	o Ala	a Lei	ı Glı	ı Ala	a Asi	ı Val	. Thi	Thi	: Ile	. Lys	Ala	a Glı	ı Asn	
	325	5				330)				335	;				
					•											
gag	tta	gat	gta	gct	tct	gca	caa	gag	gct	ggg	ttg	gaa	gag	g tca	atg	1171
Glu	Leu	Asp	Va]	Ala	Ser	·Ala	Glm	Glu	Ala	Gly	Leu	Glu	Glı	ı Ser	Met	
340					345					350					355	
gtg	gct	cgc	tta	gtt	atg	aca	cct	gga	aag	atc	tcg	agc	ctt	gca	gct	1219
															Ala	
				360					365					370		
tca	gtt	cgt	aag	cta	gct	gat	atg	gaa	gat	cca	atc	ggc	cgt	gtt	tta	1267
Ser	Val	Arg	Lys	Leu	Ala	Asp	Met	Glu	Asp	Pro	Ile	Gly	Arg	Val	Leu	
			375					380					385			
														٠		
aag	aaa	aca	gag	gtg	gca	gat	ggt	ctt	gtc	tta	gag	aag	acc	tca	tca	1315
Lys	Lys	Thr	Glu	Val	Ala	Asp	Gly	Leu	Val	Leu	Glu	Lys	Thr	Ser	Ser	
		390					395					400				
cca	tta	ggc	gta	ctt	ctg	att	gtt	ttt	gaa	tcc	cga	cct	gat	gca	ctt	1363
Pro	Leu	Gly	Val	Leu	Leu	Ile	Val	Phe	Glu	Ser	Arg	Pro	Asp	Ala	Leu	
	405					410					415					
gta	cag	ata	gct	tca	ctt	gcc	atc	cgt	agt	gga	aat	ggt	ctt	ctg	ctg	1411
											Asn					
420					425					430					435	

aag	ggt	gga	aag	gag	gcc	cgg	cga	tca	aat	gct	atc	tta	cac	aag	gtg	1459
Lys	Gly	Gly	Lys	Glu	Ala	Arg	Arg	Ser	Asn	Ala	Ile	Leu	His	Lys	Val	
				440					445					450		
atc	act	gat	gca	att	cca	gag	act	gtt	ggg	ggt	aaa	ctc	att	gga	ctt	1507
Ile	Thr	Asp	Ala	Ile	Pro	Glu	Thr	Val	Gly	Gly	Lys	Leu	Ile	Gly	Leu	
			455					460					465			
gtg	act	tca	aga	gaa	gag	att	cct	gat	ttg	ctt	aag	ctt	gat	gac	gtt	1555
Val	Thr	Ser	Arg	Glu	Glu	Ile	Pro	Asp	Leu	Leu	Lys	Leu	Asp	Asp	Val	
		470					475					480				
atc	gat	ctt	gtg	atc	cca	aga	gga	agc	aac	aag	ctt	gtt	act	cag	ata	1603
Ile	Asp	Leu	Val	Ile	Pro	Arg	Gly	Ser	Asn	Lys	Leu	Val	Thr	Gln	Ile	
	485					490					495					
aaa	aat	act	aca	aaa	atc	cct	gtg	cta	ggt	cat	gct	gat	gga	atc	tgt	1651
Lys	Asn	Thr	Thr	Lys	Ile	Pro	Val	Leu	Gly	His	Ala	Asp	Gly	Ile	Cys	
500					505					510					515	
cat	gta	tat	gtc	gac	aag	gct	tgt	gat	acg	gat	atg	gca	aag	cgc	ata	1699
His	Val	Tyr	Val	Asp	Lys	Ala	Cys	Asp	Thr	Asp	Met	Ala	Lys	Arg	Ile	
				520					525					530		
gtt	tct	gat	gca	aag	ttg	gac	tat	cca	gca	gcc	tgt	aat	gcg	atg	gaa	1747
Val	Ser	Asp	Ala	Lys	Leu	Asp	Tyr	Pro	Ala	Ala	Cys	Asn	Ala	Met	Glu	
			535					540					545			

acc	ctt	ctt	gtg	cat	aag	gat	cta	gag	cag	aat	gct	gtg	ctt	aat	gag	1795
Thr	Leu	Leu	Val	His	Lys	Asp	Leu	Glu	Gln	Asn	Ala	Val	Leu	Asn	Glu	
		550					555					560				
ctt	att	ttt	gct	ctg	cag	agc	aat	gga	gtc	act	ttg	tat	ggt	gga	cca	1843
Leu	Ile	Phe	Ala	Leu	Gln	Ser	Asn	Gly	Val	Thr	Leu	Tyr	Gly	Gly	Pro	
	565					570					575					
agg	gca	agt	aag	ata	ctg	aac	ata	cca	gaa	gca	cgg	· tca	ttc	aac	cat	1891
Arg	Ala	Ser	Lys	Ile	Leu	Asn	Ile	Pro	Glu	Ala	Arg	Ser	Phe	Asn	His	
580					585					590					595	
														•		
gag	tac	tgt	gcc	aag	gct	tgc	act	gtt	gaa	gtt	gta	gaa	gac	gtt	tat	1939
Glu	Tyr	Cys	Ala	Lys	Ala	Cys	Thr	Val	Glu	Val	Val	Glu	Asp	Val	Tyr	
				600					605					610		
ggt	gct	ata	gat	cac	att	cac	cga	cat	ggg	agt	gca	cac	aca	gac	tgc	1987
Gly	Ala	Ile	Asp	His	Ile	His	Arg	His	Gly	Ser	Ala	His	Thr	Asp	Cys	
			615					620					625			
att	gtg	aca	gag	gat	cac	gaa	gtt	gca	gag	cta	ttc	ctt	cgc	caa	gtg	2035
Ile	Val	Thr	Glu	Asp	His	Glu	Val	Ala	Glu	Leu	Phe	Leu	Arg	Gln	Val	
		630					635					640				
gat	agc	gct	gct	gtg	ttc	cac	aac	gcc	agc	aca	aga	ttc	tca	gat	ggt	2083
Asp	Ser	Ala	Ala	Val	Phe	His	Asn	Ala	Ser	Thr	Arg	Phe	Ser	Asp	Gly	
	645					650					655					

ttc cg	a ttt	gga	ctt	ggt	gca	gag	gtg	ggg	gta	agc	acg	ggc	agg	atc	2131
Phe Ar	g Phe	Gly	Leu	Gly	Ala	Glu	Val	Gly	Val	Ser	Thr	Gly	Arg	Ile	
660				665					670					675	
cat gc	t cgt	ggt	cca	gtc	ggg	gtc	gaa	gga	tta	ctt	aca	acg	aga	tgg	2179
His Al	a Arg	Gly	Pro	Val	Gly	Val	Glu	Gly	Leu	Leu	Thr	Thr	Arg	Trp	
			680					685					690		
ata at	g aga	gga	aaa	gga	caa	gtt	gtc	gac	gga	gac	aat	gga	att	gtt	2227
Ile Me															
		695					700					705			
tac ac	c cat	cag	gac	att	ccc	atc	caa	gct	taa	acaa	gac	ttcc	gagt:	gt	2277
Tyr Th															
- ,	710					715									
gtgttt	atat	attt	oott:	oa o	actt	gagg:	a ga	gaca	caga	gga	ggat	ggg	cttt	tttgtt	2337
gratic	gugu	4000	5500	Б Ш Б		P~89	4 64	Баоа	ougu	550	6640	000			
tcctct	otac	ttam	tact	ra t	atcc	tatr	a tt	atta	ttat	tac	tact	act	tatt	attgaa	2397
teetet	.c.gc	llag	iaci	ca i	acco	tatt	a cc	2002	ttat	tac	Cact	400	0000	a v v 8 a a	
4		-+-+	~~+ <i>~</i>	~+ +	++ ~~	+++0	~ ~~	++20	antt	ac 2	0022	222	taaq	atrrar	2457
acccto	gctt	aigi	agig	gıı	liga	lila	8 88	llag	gall	gua	CCaa	aaa	raas	attoat	2101
					.				+	++0	a++a	ant	tata	+++++	2517
tttaco	actt	agto	ttgc	tc a	taag	tacg	a tg	aaga	acat	ııa	aila	gul	LULC	ııcııg	2011
											4 4				2571
tcatte	gtaag	ctac	ctac	ac a	tttc	tgat	c tt	tatc	aaga	tac	tact	act	tttc		2571

<210> 3

<211> 1833

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> 113...1612

<301> Tomohiro Kiyasue, Yoshu Yoshiba, Kazuko Yamaguchi-Shinozaki, Kazuo Shinozaki <302>Title: A nuclear gene encoding mitochondrial prolne dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis.

<303> The Plant Cell

<304> 8

<306> 1323-1335

<307> 1996-05-27

<308> D83025

<309> 1995-12-25

<400> 3

agcgtttaga aaaaaacagc gataaaaccg aaacatcaag caaacaaaaa aaaaagagaa 60

gagaaattat ttttttttgt tttcgttttc aaaaacaaaa tctttgaatt tt atg gca 118
Met Ala

1

acc cgt ctt ctc cga aca aac ttt atc cgg cga tct tac cgt tta ccc 166
Thr Arg Leu Leu Arg Thr Asn Phe Ile Arg Arg Ser Tyr Arg Leu Pro

5 10 15

gct	ttt	agc	ccg	gtg	ggt	cct	ccc	acc	gtg	act	gct	tcc	acc	gcc	gtc	214
Ala	Phe	Ser	Pro	Val	Gly	Pro	Pro	Thr	Val	Thr	Ala	Ser	Thr	Ala	Val	
	20					25					30					
gtc	ccg	gag	att	ctc	tcc	ttt	gga	caa	caa	gca	ccg	gaa	cca	cct	ctt	262
Val	Pro	Glu	Ile	Leu	Ser	Phe	Gly	Gln	Gln	Ala	Pro	Glu	Pro	Pro	Leu	
35					40					45					50	
cac	cac	cca	aaa	ссс	acc	gag	caa	tct	cac	gat	ggt	ctc	gat	ctc	tcc	310
His	His	Pro	Lys	Pro	Thr	Glu	Gln	Ser	His	Asp	Gly	Leu	Asp	Leu	Ser	
				55					60					65		
gat	caa	gcc	cgt	ctt	ttc	tcc	tct	atc	cca	acc	tct	gat	ctc	ctc	cgt	358
Asp	Gln	Ala	Arg	Leu	Phe	Ser	Ser	Ile	Pro	Thr	Ser	Asp	Leu	Leu	Arg	
			70					75					80			
tcc	acc	gcc	gtg	ttg	cat	gcg	gcg	gcg	ata	ggt	cct	atg	gtc	gac	cta	406
			Val													
001		85		200			90			,		95	,			
		00					50					50				
		.		_4-		+ - +		a++	o+~	700	ant.	t 0.0	at a	200	ogt	454
			gtc													704
Gly		Trp	Val	Met	Ser		Lys	Leu	Met	Asp		Ser	vai	inr	Arg	
	100					105					110					
ggc	atg	gtt	tta	ggg	ctt	gtg	aaa	agt	acg	ttt	tat	gac	cat	ttt	tgc	502
Gly	Met	Val	Leu	Gly	Leu	Val	Lys	Ser	Thr	Phe	Tyr	Asp	His	Phe	Cys	

118	5				12	0				12	25				130)
gco	gg Gl	t ga y Gl	a ga u As	t gc p Al 13	a As	c gc p Al	a gc a Al	c gc a Al	t ga; a Gli 14(ı Ar	c gt g Va	g ag l Ar	a ag g Se	c gt r Va 14	t tat l Tyr	550
gaa Glu	gct	t ac	t gg r Gly 150	/ Let	t aaa 1 Lys	a ggg	g at	g cti t Lei 155	ı Val	ta Ty	t ggo	c gte	c ga l Gli 160	u His	c gcc s Ala	598
			Val					Asn					Ιlε	t cga		646
Ile														gtg Val		694
														gtg Val		742
gat (Asp I	ctg Leu	ctg Leu	cgg Arg	tgg Trp 215	gaa Glu	tac Tyr	aaa Lys	Ser	ccg Pro 220	aac Asn	ttc Phe	aaa Lys	ctc Leu	tca Ser 225	tgg Trp	790

115

aag ctc aaa tcg ttt ccg gtt ttc tcc gaa tcg agt cct ctc tac cac

Lys Leu Lys Ser Phe Pro Val Phe Ser Glu Ser Ser Pro Leu Tyr His

838

230 235 240

aca	aac	tca	gaa	ccg	gaa	ccg	tta	acc	gcg	gaa	gaa	gaa	agg	gag	ctc	886
Thr	Asn	Ser	Glu	Pro	Glu	Pro	Leu	Thr	Ala	Glu	Glu	Glu	Arg	Glu	Leu	
		245					250					255				
											•					
gaa	gca	gct	cat	gga	agg	att	caa	gaa	atc	tgt	agg	aaa	tgc	caa	gag	934
Glu	Ala	Ala	His	Gly	Arg	Ile	Gln	Glu	Ile	Cys	Arg	Lys	Cys	Gln	Glu	
	260					265					270					
tcc	aat	gta	cca	ttg	ttg	att	gat	gcg	gaa	gac	aca	atc	ctc	caa	ССС	982
Ser	Asn	Val	Pro	Leu	Leu	Ile	Asp	Ala	Glu	Asp	Thr	Ile	Leu	Gln	Pro	
275					280					285					290	
gcg	atc	gat	tac	atg	gct	tat	tca	tcg	gcg	atc	atg	ttc	aat	gct	gac	1030
Ala	Ile	Asp	Tyr	Met	Ala	Tyr	Ser	Ser	Ala	Ile	Met	Phe	Asn	Ala	Asp	
				295					300					305		
										•						
aaa	gac	cga	cca	atc	gtt	tac	aac	acg	att	cag	gcg	tac	ttg	aga	gac	1078
Lys	Asp	Arg	Pro	Ile	Val	Tyr	Asn	Thr	Ile	Gln	Ala	Tyr	Leu	Arg	Asp	
			310					315					320			
gcc	ggt	gag	aga	ctg	cat	ttg	gca	gta	caa	aat	gct	gag	aaa	gag	aat	1126
Ala	Gly	Glu	Arg	Leu	His	Leu	Ala	Val	Gln	Asn	Ala	Glu	Lys	Glu	Asn	
		325					330					335				
gtt	cct	atg	ggg	ttc	aag	ttg	gtg	aga	ggg	gct	tac	atg	tct	agc	gaa	1174
Val	Pro	Met	Gly	Phe	Lys	Leu	Val	Arg	Gly	Ala	Tyr	Met	Ser	Ser	Glu	

340 345 350

cg	t ag	c tt	g gc	g ga	t to	c ct	g gg	t tg	c aa	g tc	g cc	a gto	c ca	.c ga	ic ac	a 1222
															p Th	
35					36					36					370	
																o .
at	t ca	g ga	t ac	t ca	c tc	t tgt	t ta	c aai	t gan	t tgi	t ats	aca	ı tt	c ct	g atį	g 1270
															u Mei	
				37			.•		380				2 11.	38		
			-	•	-			•	000	•		•		20	ย	
gag	aaa	a gca	ı tca	a aad	c ggt	tct	ggt	ttc	ggt	gto	gtt	ctc	gra	ac	a cat	: 1318
															r His	
			390		•		,	395		, 01	···	Deu	400		1112	1
								000					400	,		
aac	gct	gat	tce	999	a ga	ctt	aca	tea	200		~~~				ggg	1000
		405		01)	, n 6	Deu	410		HI B	Lys	AIS		Asp	Leu	Gly	
		100					410					415				
atc	σat	222	626	22.0	~~~		_4_									
															atg	1414
116		Lys	GIN	Asn	Gly	Lys	He	Glu	Phe	Ala	Gln	Leu	Tyr	Gly	Met	
	420					425					430					
tca	gat	gca	ttg	tcc	ttc	ggg	tta	aag	aga	gca	ggg	ttc	aat	gtt	agc	1462
	Asp	Ala	Leu	Ser	Phe	Gly	Leu	Lys	Arg	Ala	Gly	Phe	Asn	Val	Ser	
435					440					445					450	
aag	tac	atg	ccg	ttt	gga	ССС	gtc	gca	acc	gct	ata	ccg	tat	ctt	ctc	1510
						Pro										

455 460 465

1558 cga cgc gct tat gag aac cgg gga atg atg gcc acc gga gct cat gac Arg Arg Ala Tyr Glu Asn Arg Gly Met Met Ala Thr Gly Ala His Asp 480 470 475 1606 cgt caa ctc atg agg atg gaa ctt aag agg aga tta atc gcc ggg att Arg Gln Leu Met Arg Met Glu Leu Lys Arg Arg Leu Ile Ala Gly Ile 485 490 495 1659 gcg taaagagaga gtatggagcc attaaatgaa attgggaaat gtagatgaat Ala aaatttette tatgtagttt aagaaattga aaacaaaaaa ttataatata agaaatggag 1719 taggtaagaa catttcctgt ggctaaatat ttttcatgag ggactatgtt tttactatca 1779 1833 atatatcatt cacaaatgta tattcacctt atcaataaaa atgctttta cttt

What is claimed is:

- 1. A grass plant in which a P5CS (Δ^1 -pyrroline-5-carboxylate (P5C) synthetase) gene of rice containing the sequence according to SEQ ID NO. 1 has been introduced.
- 2. A grass plant in which a P5CS (Δ^1 -pyrroline-5-carboxylate (P5C) synthetase) gene of Arabidopsis thanliana containing the sequence according to SEQ ID NO. 2 has been introduced.
- 3. A grass plant in which the antisense (reverse DNA sequence-containing) gene of a ProDH (Proline dehydrogenase) gene of Arabidopsis thanliana containing the sequence according to SEQ ID NO. 3 has been introduced.
- 4. A grass plant in which a P5CS gene of rice containing the sequence according to SEQ ID NO. 1, or a P5CS gene of Arabidopsis thanliana containing the sequence according to SEQ ID NO. 2, and the antisense gene of a ProDH gene of Arabidopsis thanliana containing the sequence according to SEQ ID NO. 3 have been introduced.
- 5. A grass plant in which a P5CS gene of rice containing the sequence according to SEQ ID NO. 1, or a P5CS gene of Arabidopsis thanliana containing the sequence according to SEQ ID NO. 2, and the antisense gene of a ProDH gene of Arabidopsis thanliana containing the sequence according to SEQ ID NO. 3 have been introduced in tandemly connected relation to each

other.

- 6. A vector in which any of a P5CS gene of rice containing the sequence according to SEQ ID NO. 1, a P5CS gene of Arabidopsis thanliana containing the sequence according to SEQ ID NO. 2, and the antisense gene of a ProDH gene of Arabidopsis thanliana containing the sequence according to SEQ ID NO. 3 has been introduced, or said P5CS gene of rice or Arabidopsis thanliana and said antisense gene of said ProDH gene of Arabidopsis thanliana have been introduced in tandemly connected relation to each other.
- 7. A grass plant obtained by introducing said vector according to claim 6 into calli derived from a grass plant to grow said calli, and then regenerating a plant body from said calli.
- 8. A grass plant obtained by introducing said vector according to claim 6 into a protoplast derived from a grass plant, growing said protoplast to obtain a colony, and then regenerating a plant body from said colony.
- 9. A grass plant obtained by crossing with a grass plant obtained by introducing said vector according to claim 6 therein by genetic engineering, wherein said vector according to claim 6 has been introduced.
- 10. A grass plant according to any one of claims 1 to 5 and 7 to 9, which is a crop plant.
- 11. A grass plant according to any one of claims 1 to 5 and 7 to 10, which is a cereal.
- 12. A grass plant according to any one of claims 1 to 5 and 7 to 11, which is rice, corn, wheat, barley, rye, turf, millet or barn grass.

- 13. The grass plant according to any one of claims 1 to 5 and 7 to 12 is rice.
- 14. A seed collected from a plant according to any one of claims 1 to 5 and 7 to 13.
- 15. A seed of the grass plant according to any of claims 1 to 5 and 7 to 12, wherein said plant is rice, said seed having been collected from said rice.
- 16. A production method of a grass plant, comprising: introducing said vector according to claim 6 into calli derived from a grass plant by using Agrobacterium tumefaciens to grow said calli; and then regenerating a plant body from said calli.
- 17. A production method of a grass plant, comprising: introducing said vector according to claim 6 into a protoplast derived from a grass plant by electroporation, and growing said protoplast to obtain a colony, and regenerating a plant body from said colony.
- 18. A production method of a grass plant, comprising: crossing with a grass plant obtained by introducing said vector according to claim 6 by genetic engineering, and introducing said vector according to claim 6 therein.

Application No:

GB 0130946.7

Claims searched: 1-18

Examiner:
Date of search:

Dr Patrick Purcell 26 July 2002

Patents Act 1977
Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:

UK Cl (Ed.T):

Int Cl (Ed.7):

Other: ONLINE: EPODOC, WPI, JAPIO, BIOSIS, MEDLINE, CAPLUS, DGENE

Documents considered to be relevant:

Category	Identity of document	nt and relevant passage	Relevant
Х, Ү	WO 99/66785 A1	(CORNELL RESEARCH FOUNDATION, INC.) see whole document, esp page 4, lines 13-29, page 5, line 5-page 6, line 2, page 7, lines 31-33	X: 1, 2, 10-15 Y: 4-9, 16- 18
X, Y	US 5639950	(VERMA ET AL) see whole document, esp. column 1, line 55-column 2, line 12, column 2, lines 19-24, column 6, line 9-column 8, line 54	X: 1, 2, 10-15 Y: 4-9, 16- 18
Х, Ү	US 5344923	(VERMA ET AL) see whole document, esp. column 2, lines 7-13, column 5, lines 18-58	X: 1, 2, 10-15 Y: 4-9, 16- 18
X, Y	proline degradation	461, 1999, T Nanjo et al, "Antisense suppression of improves tolerance to freezing and salinity in a", 205-210, esp Results & Discussion	X: 3, 10- 15 Y: 4-9, 16- 18
X, Y	Plant Science, Vol. pyrroline-5-carboxyl 3.6	139, 1998, B Zhu et al, "Overexpression of a Δ^{1} -ate synthetase gene and", 41-48, esp. sections 3.5 &	X: 1, 2, 10- 15 Y: 4-9, 16- 18
х	Plant and Cell Physic levels of proline as a	ology, Vol. 38, 1997, Y Yoshiba et al, "Regulation of n osmolyte in plants under water stress.", 1095-1102	

X	Document indicating lack of novelty or inventive step
Y	Document indicating lack of inventive step if combined
l	with one or more other documents of same category.

A Document indicating technological background and/or state of the art.
P Document published on or after the declared priority date but before the filing date of this invention.

[&]amp; Member of the same patent family

E Patent document published on or after, but with priority date earlier than, the filing date of this application.

Application No: Claims searched:

GB 0130946.7

ed: 1-18

Examiner:

Dr Patrick Purcell

Date of search: 26 July 2002

Category	Identity of document and relevant passage	Relevant to claims
Y	Molecular and General Genetics, Vol 253, 1996, Z Peng et al, "Reciprocal regulation of Δ^{t} -pyrroline-5-carboxylate synthetase and proline dehydrogenase genes", 334-341, esp 338-339 "The relationship between" and "Discussion"	4-9, 16-18

Member of the same patent family

Patent document published on or after, but with priority date earlier than, the filing date of this application.

X Document indicating lack of novelty or inventive step
 Y Document indicating lack of inventive step if combined
 P with one or more other documents of same category.

A Document indicating technological background and/or state of the art.
P Document published on or after the declared priority date but before the filing date of this invention.