Homework 4

Problem 1. For an i.i.d. random sample $\{X_1, ..., X_n\}$, suppose that the CDF of X_i is $F_X(x) = \Pr(X_i \le x)$. Define the empirical CDF $\widehat{F}_X(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \le x)$. For any fixed $x \in \mathbb{R}$, show that $\widehat{F}_X(x)$ is a consistent and unbiased estimator of $F_X(x)$. Suppose n = 5, $X_1 = 1$, $X_2 = 2$, $X_3 = 3$, $X_4 = 4$ and $X_5 = 5$. Can you draw the graph of the function $\widehat{F}_X: \mathbb{R} \to [0,1]$?

Solution. Unbiasedness:

$$\mathbb{E}\left(\widehat{F}_{X}\left(x\right)\right) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}1\left(X_{i} \leq x\right) = \frac{1}{n} \sum_{i=1}^{n} \left(1 \cdot \Pr\left(X_{i} \leq x\right) + 0 \cdot \Pr\left(X_{i} > x\right)\right) = F_{X}\left(x\right).$$

Consistency: by WLLN,

$$\frac{1}{n} \sum_{i=1}^{n} 1 \left(X_i \le x \right) \to_p \mathbb{E}1 \left(X_i \le x \right) = F_X \left(x \right).$$

Problem 2. For an i.i.d. random sample $\{X_1,...,X_n\}$ with $X_i \sim N(\mu,1)$. We are interested in estimating μ . We know that $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \sim N\left(\mu,\frac{1}{n}\right)$. Suppose μ is realization of some random variable M distributed as $N\left(\alpha,\beta^2\right)$. α and β are fixed constants. $\overline{X}_n \sim N\left(\mu,\frac{1}{n}\right)$ should be interpreted as "the conditional distribution of \overline{X} given $M = \mu$ is $\overline{X}_n \sim N\left(\mu,\frac{1}{n}\right)$ ". Recall the Bayes theorem: for two random variables X,Y,

$$f_{X|Y}\left(x|y\right) = \frac{f_{Y|X}\left(y|x\right)f_{X}\left(x\right)}{\int f_{Y|X}\left(y|x\right)f_{X}\left(x\right)dx}.$$

Now you can apply Bayes theorem to derive the conditional density of M given \overline{X}_n .

(i) Show that the marginal distribution of \overline{X}_n is $N\left(\alpha, \frac{1}{n} + \beta^2\right)$. Hint: Show that

$$n\left(\overline{X}_n - \mu\right)^2 + \frac{(\mu - \alpha)^2}{\beta^2} - \frac{\left(\overline{X}_n - \alpha\right)^2}{\frac{1}{n} + \beta^2} = \frac{\left(n\beta^2 \left(\overline{X}_n - \mu\right) - (\mu - \alpha)\right)^2}{\left(n\beta^2 + 1\right)\beta^2}.$$

(ii) Define the Bayes estimator $\widehat{\mu}_{\alpha,\beta}$ (which is indeed of great importance in statistics) to be

$$\widehat{\mu}_{\alpha,\beta} = \int z f_{M|\overline{X}_n} \left(z | \overline{X}_n \right) dz,$$

the mean of the conditional distribution of M given \overline{X}_n . Show that

$$\widehat{\mu}_{\alpha,\beta} = \frac{\beta^2}{\beta^2 + \frac{1}{\pi}} \overline{X}_n + \frac{\frac{1}{n}}{\beta^2 + \frac{1}{\pi}} \alpha.$$

Hint: Use the Bayes theorem to show that the conditional distribution of M given \overline{X}_n is

$$N\left(\frac{\beta^2}{\beta^2+\frac{1}{n}}\overline{X}_n+\frac{\frac{1}{n}}{\beta^2+\frac{1}{n}}\alpha,\frac{\frac{1}{n}\beta^2}{\frac{1}{n}+\beta^2}\right).$$

- (iii) Is $\widehat{\mu}_{\alpha,\beta}$ unbiased?
- (iv) Is $\widehat{\mu}_{\alpha,\beta}$ consistent?

Solution. The joint density of (\overline{X}_n, M) is

$$f_{\overline{X}_n,M}\left(x,\mu\right) = \frac{1}{\sqrt{2\pi\frac{1}{n}}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\frac{1}{\sqrt{n}}}\right)^2\right) \frac{1}{\sqrt{2\pi\beta^2}} \exp\left(-\frac{1}{2}\left(\frac{\mu-\alpha}{\beta}\right)^2\right).$$

The marginal density of \overline{X}_n is

$$\begin{split} \int f_{\overline{X}_{n},M}\left(x,\mu\right) \mathrm{d}\mu &= \int \frac{1}{\sqrt{2\pi \frac{1}{n}}} \exp\left(-\frac{1}{2} \left(\frac{x-\mu}{\frac{1}{\sqrt{n}}}\right)^{2}\right) \frac{1}{\sqrt{2\pi\beta^{2}}} \exp\left(-\frac{1}{2} \left(\frac{\mu-\alpha}{\beta}\right)^{2}\right) \mathrm{d}\mu \\ &= \exp\left(-\frac{1}{2} \frac{(x-\alpha)^{2}}{\frac{1}{n}+\beta^{2}}\right) \frac{1}{\sqrt{2\pi \frac{1}{n}}} \frac{1}{\sqrt{2\pi\beta^{2}}} \int \exp\left(-\frac{1}{2} \left(\frac{x-\mu}{\frac{1}{\sqrt{n}}}\right)^{2} - \frac{1}{2} \left(\frac{\mu-\alpha}{\beta}\right)^{2} + \frac{1}{2} \frac{(x-\alpha)^{2}}{\frac{1}{n}+\beta^{2}}\right) \mathrm{d}\mu \\ &= \exp\left(-\frac{1}{2} \frac{(x-\alpha)^{2}}{\frac{1}{n}+\beta^{2}}\right) \frac{1}{\sqrt{2\pi \frac{1}{n}}} \frac{1}{\sqrt{2\pi\beta^{2}}} \int \exp\left(-\frac{1}{2} \frac{(n\beta^{2} (x-\mu)-(\mu-\alpha))^{2}}{(n\beta^{2}+1)\beta^{2}}\right) \mathrm{d}\mu \\ &= \exp\left(-\frac{1}{2} \frac{(x-\alpha)^{2}}{\frac{1}{n}+\beta^{2}}\right) \frac{\sqrt{2\pi \cdot \frac{\beta^{2}}{n\beta^{2}+1}}}{\sqrt{2\pi \frac{1}{n}} \sqrt{2\pi\beta^{2}}} \frac{1}{\sqrt{2\pi \cdot \frac{\beta^{2}}{n\beta^{2}+1}}} \int \exp\left(-\frac{1}{2} \frac{\left(\mu-\frac{\alpha+\beta^{2}nx}{n\beta^{2}+1}\right)^{2}}{\frac{\beta^{2}}{n\beta^{2}+1}}\right) \mathrm{d}\mu \\ &= \frac{1}{\sqrt{2\pi \frac{n\beta^{2}+1}{n}}} \exp\left(-\frac{1}{2} \frac{(x-\alpha)^{2}}{\frac{1}{n}+\beta^{2}}\right). \end{split}$$

The conditional density of M given \overline{X}_n :

$$f_{M|\overline{X}_n}\left(\mu|x\right) = \frac{f_{\overline{X}_n,M}\left(x,\mu\right)}{f_{\overline{X}_n}\left(x\right)} = \frac{\frac{1}{\sqrt{2\pi\frac{1}{n}}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\frac{1}{\sqrt{n}}}\right)^2\right) \frac{1}{\sqrt{2\pi\beta^2}} \exp\left(-\frac{1}{2}\left(\frac{\mu-\alpha}{\beta}\right)^2\right)}{\frac{1}{\sqrt{2\pi\frac{n\beta^2+1}{n}}} \exp\left(-\frac{1}{2}\frac{\left(x-\alpha\right)^2}{\frac{1}{n}+\beta^2}\right)}$$

$$= \frac{\sqrt{2\pi \frac{n\beta^2+1}{n}}}{\sqrt{2\pi \frac{1}{n}}\sqrt{2\pi\beta^2}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\frac{1}{\sqrt{n}}}\right)^2 - \frac{1}{2}\left(\frac{\mu-\alpha}{\beta}\right)^2 + \frac{1}{2}\frac{(x-\alpha)^2}{\frac{1}{n}+\beta^2}\right)$$

$$= \frac{1}{\sqrt{2\pi \cdot \frac{\beta^2}{n\beta^2+1}}} \exp\left(-\frac{1}{2}\frac{\left(\mu - \frac{\alpha+\beta^2nx}{n\beta^2+1}\right)^2}{\frac{\beta^2}{n\beta^2+1}}\right).$$

 $\widehat{\mu}_{\alpha,\beta}$ is not unbiased:

$$\mathbb{E}\widehat{\mu}_{\alpha,\beta} = \frac{\beta^2}{\beta^2 + \frac{1}{n}}\mu + \frac{\frac{1}{n}}{\beta^2 + \frac{1}{n}}\alpha \neq \mu.$$

 $\widehat{\mu}_{\alpha,\beta}$ is consistent: by WLLN and continuous mapping theorem

$$\widehat{\mu}_{\alpha,\beta} = \frac{\beta^2}{\beta^2 + \frac{1}{n}} \overline{X}_n + \frac{\frac{1}{n}}{\beta^2 + \frac{1}{n}} \alpha \to_p \frac{\beta^2}{\beta^2 + 0} \mu + \frac{0}{\beta^2 + 0} \alpha = \mu.$$

Problem 3. Consider the following two regression models.

Model 1: $Y_i = \mathbf{X}_i' \gamma_1 + e_i$ if $i = 1, ..., n_1$, and $Y_i = \mathbf{X}_i' \gamma_2 + u_i$ if $i = n_1 + 1, ..., n$, where \mathbf{X}_i is the k-vector of regressors, γ_1 and γ_2 are the unknown k-vectors of parameters. This means we split the sample into two and run two regressions.

Model 2: $Y_i = \mathbf{X}_i' \boldsymbol{\gamma}_1 + (d_i \mathbf{X}_i)' \boldsymbol{\delta} + v_i, i = 1, \dots, n$, where $\boldsymbol{\gamma}_1$ and $\boldsymbol{\delta}$ are the unknown k-vectors of parameters, and d_i is the dummy variable:

$$d_i = \begin{cases} 0 & \text{for } i = 1, \dots n_1, \\ 1 & \text{for } i = n_1 + 1, \dots, n. \end{cases}$$

Show that the two regression models give the same fitted values and residuals by following the steps below.

- (a) Show that Models 1 and 2 can be written as $Y = X_1\beta_1 + e$ and $Y = X_2\beta_2 + v$ respectively for some $n \times 2k$ matrices X_1 and X_2 , and 2k-vectors β_1 and β_2 (describe the matrix X and the vector β in each model).
- (b) Show that $X_2 = X_1 A$ (find A).
- (c) Show that A is invertible.
- (d) Show that the two regression models give the same fitted values and residuals.

Solution. Let

$$oldsymbol{W} = \left[egin{array}{c} oldsymbol{X}_1' \ oldsymbol{X}_2' \ dots \ oldsymbol{X}_{n_1}' \end{array}
ight]$$

be a $n_1 \times k$ matrix and let

$$oldsymbol{Z} = \left[egin{array}{c} oldsymbol{X}_{n_1+1}' \ oldsymbol{X}_{n_1+2} \ dots \ oldsymbol{X}_n' \end{array}
ight]$$

be a $(n-n_1) \times k$ matrix. Define the $n \times 2k$ matrix $\boldsymbol{X}_1 = \begin{bmatrix} \boldsymbol{W} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{Z} \end{bmatrix}$ and let $\boldsymbol{\beta}_1 = \begin{bmatrix} \boldsymbol{\gamma}_1 \\ \boldsymbol{\gamma}_2 \end{bmatrix}$ be a $2k \times 1$ vector. Finally, define the $n \times 2k$ matrix $\boldsymbol{X}_2 = \begin{bmatrix} \boldsymbol{W} & \boldsymbol{0} \\ \boldsymbol{Z} & \boldsymbol{Z} \end{bmatrix}$ and let $\boldsymbol{\beta}_2 = \begin{bmatrix} \boldsymbol{\gamma}_1 \\ \boldsymbol{\delta} \end{bmatrix}$ be a $2k \times 1$ vector of parameters. a)

Using the above definitions, it is easy to verify that Model 1 can be written as $\boldsymbol{Y} = \boldsymbol{X}_1 \boldsymbol{\beta}_1 + \boldsymbol{e}$ and Model 2 can be written as $\boldsymbol{Y} = \boldsymbol{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{v}$, where \boldsymbol{Y} is a $n \times 1$ vector of observations and \boldsymbol{e} and \boldsymbol{v} are $n \times 1$ vectors of errors. b) What we need to find is a $2k \times 2k$ matrix \boldsymbol{A} such that $\boldsymbol{X}_2 = \boldsymbol{X}_1 \boldsymbol{A}$. Let $\boldsymbol{A} = \begin{bmatrix} \boldsymbol{A}_1 & \boldsymbol{A}_2 \\ \boldsymbol{A}_3 & \boldsymbol{A}_4 \end{bmatrix}$ where \boldsymbol{A}_i is a $k \times k$ matrix. Then, $\boldsymbol{X}_2 = \boldsymbol{X}_1 \boldsymbol{A}$ implies that $\boldsymbol{W} \boldsymbol{A}_1 = \boldsymbol{W}$; $\boldsymbol{W} \boldsymbol{A}_2 = \boldsymbol{0}$; $\boldsymbol{Z} \boldsymbol{A}_3 = \boldsymbol{Z}$ and $\boldsymbol{Z} \boldsymbol{A}_4 = \boldsymbol{Z}$. Hence, $\boldsymbol{A}_1 = \boldsymbol{A}_3 = \boldsymbol{A}_4 = \boldsymbol{I}_k$ and $\boldsymbol{A}_2 = \boldsymbol{0}$, so that the matrix \boldsymbol{A} becomes $\begin{bmatrix} \boldsymbol{I}_k & \boldsymbol{0} \\ \boldsymbol{I}_k & \boldsymbol{I}_k \end{bmatrix}$. c) It is not difficult to see that \boldsymbol{A} is indeed invertible. In fact, $\boldsymbol{A} \boldsymbol{A}^{-1} = \boldsymbol{I}_{2k}$ gives us $\boldsymbol{A}^{-1} = \begin{bmatrix} \boldsymbol{I}_k & \boldsymbol{0} \\ -\boldsymbol{I}_k & \boldsymbol{I}_k \end{bmatrix}$. d) The simplest way to show that both fitted values and residuals are the same is to show that the projection matrices for Model 1 and Model 2 are the same. Let \boldsymbol{P}_1 be the projection matrix for Model 1 and \boldsymbol{P}_2 the one for Model 2. Then,

$$\begin{split} \boldsymbol{P}_2 &= \boldsymbol{X}_2 (\boldsymbol{X}_2' \boldsymbol{X}_2)^{-1} \boldsymbol{X}_2' \\ &= (\boldsymbol{X}_1 \boldsymbol{A}) [(\boldsymbol{X}_1 \boldsymbol{A})' (\boldsymbol{X}_1 \boldsymbol{A})]^{-1} (\boldsymbol{X}_1 \boldsymbol{A})' \\ &= (\boldsymbol{X}_1 \boldsymbol{A}) [\boldsymbol{A}' \boldsymbol{X}_1' \boldsymbol{X}_1 \boldsymbol{A}]^{-1} \boldsymbol{A}' \boldsymbol{X}_1' \\ &= \boldsymbol{X}_1 \boldsymbol{A} \boldsymbol{A}^{-1} (\boldsymbol{X}_1' \boldsymbol{X}_1)^{-1} (\boldsymbol{A}')^{-1} \boldsymbol{A}' \boldsymbol{X}_1' \\ &= \boldsymbol{X}_1 (\boldsymbol{X}_1' \boldsymbol{X}_1)^{-1} \boldsymbol{X}_1' \\ &= \boldsymbol{P}_1. \end{split}$$