Concentration in the Lanczos algorithm

Tyler Chen

May 18, 2021

Acknowledgements

Joint work with Tom Trogdon

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1762114. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.

Introduction

We often want to evaluate $\mathbf{v}^{\mathsf{T}} f(\mathbf{A}) \mathbf{v}$ where $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{T}}$ is a $n \times n$ symmetric matrix, \mathbf{v} is an arbitrary vector and f is a scalar function so that $f(\mathbf{A})$ is

$$f(\mathbf{A}) := \mathbf{U} f(\mathbf{\Lambda}) \mathbf{U}^{\mathsf{T}}.$$

For instance, such expressions might arise in randomized algorithms for spectral sums since whenever $\mathbb{E}[\mathbf{v}\mathbf{v}^T] = \mathbf{I}$ we have

$$\mathbb{E}[\mathbf{v}^{\mathsf{T}} f(\mathbf{A}) \mathbf{v}] = \operatorname{tr}(f(\mathbf{A})).$$

Approximation via Lanczos

A common approach to approximate $\mathbf{v}^T f(\mathbf{A}) \mathbf{v}$ when \mathbf{A} is symmetric is via the Lanczos algorithm. Lanczos outputs an orthonormal basis \mathbf{Q} for Krylov subspace and a tridiagonal matrix \mathbf{T} giving the polynomial recurrence needed to construct this basis.

The Lanczos approximation is then defined as

$$\mathbf{v}^{\top}\mathbf{Q}f(\mathbf{T})\mathbf{Q}^{\top}\mathbf{v} = \hat{\mathbf{e}}^{\top}f(\mathbf{T})\hat{\mathbf{e}}$$

where $\hat{\mathbf{e}} = [1, 0, \dots, 0]^{\mathsf{T}}$.

Empirical spectral measure/weighted empirical spectral measure

We say $\mu:\mathbb{R}\to[0,1]$ is a probability distribution function if μ is weakly increasing, right continuous, and $\lim_{x\to-\infty}\mu(x)=0$ and $\lim_{x\to\infty}\mu(x)=1$.

Empirical spectral measure/weighted empirical spectral measure

We say $\mu:\mathbb{R}\to[0,1]$ is a probability distribution function if μ is weakly increasing, right continuous, and $\lim_{x\to-\infty}\mu(x)=0$ and $\lim_{x\to\infty}\mu(x)=1$.

Empirical spectral measure (ESM):

$$\Phi[\mathbf{A}](x) = \sum_{i=1}^{n} \frac{1}{n} \mathbb{1}[\lambda_i \le x]$$

Empirical spectral measure/weighted empirical spectral measure

We say $\mu:\mathbb{R}\to[0,1]$ is a probability distribution function if μ is weakly increasing, right continuous, and $\lim_{x\to-\infty}\mu(x)=0$ and $\lim_{x\to\infty}\mu(x)=1$.

Empirical spectral measure (ESM):

$$\Phi[\mathbf{A}](x) = \sum_{i=1}^{n} \frac{1}{n} \mathbb{1}[\lambda_i \le x]$$

Weighted ESM:

$$\Psi[\mathbf{A}, \mathbf{v}](x) = \sum_{i=1}^{n} ([\mathbf{U}]_{:,i}^{\top} \mathbf{v})^{2} \mathbb{1}[\lambda_{i} \leq x] = \mathbf{v}^{\top} \mathbb{1}[\mathbf{A} \leq x] \mathbf{v}$$

Gaussian quadrature

Gaussian quadrature for μ defined as

$$[\mu]_k^{\mathrm{gq}}(x) = \sum_{i=1}^k \omega_i \mathbb{1}[\theta_i \le x]$$

where $\{\omega_i\}_{i=1}^k$ and $\{\theta_i\}_{i=1}^k$ are chosen so that μ and $[\mu]_k^{\rm gq}$ share moments through degree 2k-1.

Gaussian quadrature

Gaussian quadrature for μ defined as

$$[\mu]_k^{\mathrm{gq}}(x) = \sum_{i=1}^k \omega_i \mathbb{1}[\theta_i \le x]$$

where $\{\omega_i\}_{i=1}^k$ and $\{\theta_i\}_{i=1}^k$ are chosen so that μ and $[\mu]_k^{\rm gq}$ share moments through degree 2k-1.

The k-point Gaussian quadrature rule $[\mu]_k^{\rm gq}$ for Ψ is obtained by constructing an interpolatory quadrature rule at the roots $\{\theta_i\}_{i=1}^k$ of the degree k orthogonal polynomial p_k of μ .

Gaussian quadrature via Lanczos

If $\mu = \Psi[\mathbf{A}, \mathbf{v}]$ then \mathbf{T} from Lanczos gives upper left $k \times k$ block of Jacobi matrix for orthogonal polynomials.¹ Thus,

- Nodes are eigenvalues of **T**
- Weights are squares of first components of eigenvectors of ${f T}$

Thus,

$$[\Psi[\mathbf{A}, \mathbf{v}]]_k^{\mathrm{gq}} = \Psi[\mathbf{T}, \hat{\mathbf{e}}]$$

The Lanczos approximation to the weighted CESM is itself a probability distribution function.

¹Golub and Meurant 2009.

Analysis of algorithms

Given a problem $\mathcal{P}: \mathbb{R}^N \to \mathbb{R}^M$ (e.g. solving a linear system) and an algorithm $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^M$ to compute a solution to the problem (e.g. Conjugate Gradient), how do we study the performance of the algorithm?

Analysis of algorithms

Given a problem $\mathcal{P}: \mathbb{R}^N \to \mathbb{R}^M$ (e.g. solving a linear system) and an algorithm $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^M$ to compute a solution to the problem (e.g. Conjugate Gradient), how do we study the performance of the algorithm?

- Worst case analysis
 - how bad can the algorithm be on the "hardest possible" input?
- Smoothed analysis
 - How "rare" are these hard inputs?
- Average case behavior
 - How does the algorithm behave on a "typical" problem?
- Numerical stability
 - How does our algorithm behave in finite precision arithmetic?

Average case behavior of the Lanczos method

We will run the Lanczos algorithm on $\mathbf{A}, \hat{\mathbf{e}}$ for k iterations to construct a Gaussian quadrature rule for $\Psi[\mathbf{A}, \hat{\mathbf{e}}]$ where $\mathbf{A} \sim \mathsf{GOE}(n)$ and $\hat{\mathbf{e}} = [1, 0, \dots, 0]^\mathsf{T}$.

To generate ${f A}$ can generate ${f X}$ with i.i.d. standard normal entries and then define

$$\mathbf{A} = \frac{\mathbf{X} + \mathbf{X}^{\top}}{2\sqrt{2n}}.$$

Equivalently, for $i \leq j$ entries of **A** are independent with distribution

$$2\sqrt{2n}[\mathbf{A}]_{i,i} \sim \mathcal{N}(0,2), \qquad \qquad 2\sqrt{2n}[\mathbf{A}]_{i,j} \sim \mathcal{N}(0,1)$$

Note that $\bf A$ is unitarily invariant and the eigenvalues eventually lie between [-1,1] with high probability.

Weighted empirical spectral measure

Gaussian quadrature node (Ritz values)

Gaussian quadrature rule

Remarks

As $n \to \infty$ we see "deterministic behavior"

- What is the limit?
- How fast does it converge?
- What do the fluctuations look like?

Remarks

As $n \to \infty$ we see "deterministic behavior"

- What is the limit?
- How fast does it converge?
- What do the fluctuations look like?

These examples were computed in finite precision arithmetic without reorthogonalization

- isn't the Lanczos algorithm unstable?

Example: instability of Lanczos method²

In finite precision arithmetic, the Lanczos algorithm might behave extremely differently than in exact arithmetic.

$$\mathbf{A} = \begin{bmatrix} 0 & & & & & \\ & 0.00025 & & & & \\ & & 0.0005 & & & \\ & & & & 0.00075 & & \\ & & & & & 10 \end{bmatrix}, \qquad \mathbf{v} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

²Parlet and Scott 1979.

Example: instability of Lanczos

Denote by \mathbf{T}, \mathbf{Q} the exact arithmetic output and $\tilde{\mathbf{T}}, \tilde{\mathbf{Q}}$ the finite precision output. How many digits of accuracy do we have for the following quantities:

$$ilde{\mathbf{Q}} - \mathbf{G}$$

$$ilde{\mathbf{T}} - \mathbf{T}$$

$$ilde{\mathbf{Q}}^{ op} ilde{\mathbf{Q}} - \mathbf{I}$$

Example: instability of Lanczos

Denote by T, Q the exact arithmetic output and \tilde{T} , \tilde{Q} the finite precision output. How many digits of accuracy do we have for the following quantities:

Example: instability of Lanczos

Even for a very small example without any super extreme numbers, the Lanczos algorithm is not at all forward stable.

There is a lot of theory about Lanczos in finite precision (although no real forward analysis)³

³ Paige 1971; Paige 1976; Paige 1980; Grcar 1981; Simon 1982; Greenbaum 1989; Meurant 2006.

Lanczos in the large n limit

Returning to exact arithmetic, let's consider applying Lanczos to \mathbf{A}, \mathbf{v} where $\mathbf{A} \sim \mathsf{GOE}(n)$. Since \mathbf{A} is unitarily invariant, this is equivalent to considering $\mathbf{A}, \hat{\mathbf{e}}$.

Lanczos in the large n limit

Returning to exact arithmetic, let's consider applying Lanczos to \mathbf{A} , \mathbf{v} where $\mathbf{A} \sim \mathsf{GOE}(n)$. Since \mathbf{A} is unitarily invariant, this is equivalent to considering \mathbf{A} , $\hat{\mathbf{e}}$.

The Lanczos algorithm is also unitarily invariant so it will produce the same tridiagonal matrix if we apply it to $\mathbf{V}^{\mathsf{T}}\mathbf{A}\mathbf{V}, \mathbf{V}^{\mathsf{T}}\hat{\mathbf{e}}$ for any unitary matrix \mathbf{V} . Moreover, the columns of the basis \mathbf{Q} for Krylov subsubspace are just transformed by \mathbf{V} .

Lanczos in the large n limit

Returning to exact arithmetic, let's consider applying Lanczos to \mathbf{A} , \mathbf{v} where $\mathbf{A} \sim \mathsf{GOE}(n)$. Since \mathbf{A} is unitarily invariant, this is equivalent to considering \mathbf{A} , $\hat{\mathbf{e}}$.

The Lanczos algorithm is also unitarily invariant so it will produce the same tridiagonal matrix if we apply it to $\mathbf{V}^{\mathsf{T}}\mathbf{A}\mathbf{V}, \mathbf{V}^{\mathsf{T}}\hat{\mathbf{e}}$ for any unitary matrix \mathbf{V} . Moreover, the columns of the basis \mathbf{Q} for Krylov subsubspace are just transformed by \mathbf{V} .

If we can find such a transform \mathbf{V} so that $\mathbf{V}^T \mathbf{A} \mathbf{V}$ is tridiagonal and $\mathbf{V}^T \hat{\mathbf{e}} = \hat{\mathbf{e}}$ then we know exactly how Lanczos will behave on $\mathbf{A}, \hat{\mathbf{e}}$ because Lanczos on a tridiagonal matrix with starting vector $\hat{\mathbf{e}}$ produces back the same tridiagonal matrix.

Tridiagonalization of GOE

It is well known⁴ that GOE can be tridiagonalized:

The transform does not change the first entry of a vector so Lanczos on $\mathbf{A}, \hat{\mathbf{e}}$ will produce this tridiagonal matrix (in distribution).

⁴Trotter 1984: Dumitriu and Edelman 2002.

Tridiagonalization of GOE

Let's look at the top-left $k \times k$ block as $n \to \infty$.

We know as $n \to \infty$, $(\chi_d - \mu_d)/\sigma_d \stackrel{\text{d}}{\to} \mathcal{N}(0,1)$ where $\mu_d \approx \sqrt{n-1} + O(n^{-1/2})$ and $\sigma_d^2 = d - \mu_d^2 \approx (n-1)/(2n) + O(n^{-1})$.

Tridiagonalization of GOE

Let's look at the top-left $k \times k$ block as $n \to \infty$.

We know as $n\to\infty$, $(\chi_d-\mu_d)/\sigma_d\overset{\mathrm{d}}{\to}\mathcal{N}(0,1)$ where $\mu_d\approx\sqrt{n-1}+O(n^{-1/2})$ and $\sigma_d^2=d-\mu_d^2\approx(n-1)/(2n)+O(n^{-1})$. Therefore,

$$\lim_{n \to \infty} \frac{1}{2\sqrt{2n}} \begin{bmatrix} G_2 & \chi_{n-1} & & & & \\ \chi_{n-1} & G_2 & \chi_{n-2} & & & \\ & \chi_{n-2} & \ddots & \ddots & \\ & & \ddots & \ddots & \chi_{n-k} \\ & & & \chi_{n-k} & G_2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 & 1 & & & \\ 1 & 0 & 1 & & \\ & 1 & \ddots & \ddots & \\ & & \ddots & \ddots & 1 \\ & & & 1 & 0 \end{bmatrix}$$

Perturbation analysis

We can then analyze $\hat{\mathbf{e}}^T f(\mathbf{T})\hat{\mathbf{e}}$ using that

$$\hat{\mathbf{e}}^T f(\mathbf{T})\hat{\mathbf{e}} = \int f(x) d\Psi[\mathbf{T}, \hat{\mathbf{e}}](x).$$

To do this we do a perturbation analysis for this integral based on perturbations of tridiagonal matrices.

Forward stability of Lanczos on GOE (very brief overview)

Notation:

- $\mathbf{T}_k, \mathbf{Q}_k$ output of finite precision Lanczos
- $\overline{\mathbf{T}}_k$ limiting tridiagonal matrix
- $\mathbf{K}_k = [p_0(\mathbf{A})\mathbf{v}, \dots, p_{k-1}(\mathbf{A})\mathbf{v}]$ (these are polynomials of \mathbf{T}_k)
- $\mathbf{E}_k = \mathbf{Q}_k \mathbf{K}_k$ (can write in terms of associated polynomials of \mathbf{T}_k)

Summary

- For fixed k, the tridiagonal matrix output by the Lanczos algorithm run on a GOE matrix of size n concentrates rapidly as $n \to \infty$, and we can study the "average case" behavior of Lanczos as well as the fluctuations of Lanczos about this average case.
 - For any matrix and any ball of nonzero radius centered at this matrix, there is a non-zero probability of sampling a GOE matrix from within that ball
- We observe that Lanczos is (whp) forward stable for sufficiently large matrices⁵
 - We think we can prove this rigorously (probably need $\epsilon = O(1/n)$)
 - This would give (maybe first true) forward analysis result on Lanczos

⁵testing very big dense matrices is prohibitively expensive so we haven't done super big tests yet

Final remark

Quote from Edelman and Rao⁶:

It is a mistake to link psychologically a random matrix with the intuitive notion of a 'typical' matrix or the vague concept of 'any old matrix'.

References

- Dumitriu, Ioana and Alan Edelman (2002). "Matrix models for beta ensembles". In: *Journal of Mathematical Physics* 43.11, pp. 5830–5847.
- Edelman, Alan and N Raj Rao (2005). "Random matrix theory". In: Acta numerica 14, pp. 233-297.
- Golub, Gene H and Gérard Meurant (2009). Matrices, moments and quadrature with applications. Vol. 30. Princeton University Press.
- Grcar, Joeseph Frank (1981). "Analyses of the Lanczos Algorithm and of the Approximation Problem in Richardson's Method". PhD thesis. University of Illinois at Urbana-Champaign.
- Greenbaum, Anne (1989). "Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences". In: Linear Algebra and its Applications 113, pp. 7–63.
- Meurant, Gérard (Jan. 2006). The Lanczos and Conjugate Gradient Algorithms. Society for Industrial and Applied Mathematics.
- Paige, Christopher Conway (1971). "The computation of eigenvalues and eigenvectors of very large sparse matrices.". PhD thesis. University of London.
- (Dec. 1976). "Error Analysis of the Lanczos Algorithm for Tridiagonalizing a Symmetric Matrix". In: IMA Journal of Applied Mathematics 18.3, pp. 341–349.
- (1980). "Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem". In: Linear Algebra and its Applications 34, pp. 235–258.
- Parlet, Beresford Neill and David St. Clair Scott (Jan. 1979). "The Lanczos algorithm with selective orthogonalization". In: *Mathematics of Computation* 33.145, pp. 217–238.
- Simon, Horst D (1982). The Lanczos Algorithm for Solving Symmetric Linear Systems. Tech. rep. CALIFORNIA UNIV BERKELEY CENTER FOR PURE and APPLIED MATHEMATICS.
- Trotter, Hale F (Oct. 1984). "Eigenvalue distributions of large Hermitian matrices; Wigner's semi-circle law and a theorem of Kac, Murdock, and Szegö". In: Advances in Mathematics 54.1, pp. 67–82.