《计算机组成原理》实验报告

年级、专业、班级	2022级计算机科学与技术03班/01班/06班	姓名	叶旭航,解吴雪,李佳玲			
实验题目	实验三简易单周期CPU实验					
实验时间	2024年4月16日	实验地点	DS1410			
			□验证性			
实验成绩	优秀/良好/中等	实验性质	☑设计性			
			□综合性			
教师评价:						
□算法/实验过程正确; □源程序/实验内容提交; □程序结构/实验步骤合理;						
□实验结果正确; □语法、语义正确; □报告规范;						
其他:						
			评价教师: 冯永			
实验目的						
(1)掌握不同类型指令在数据通路中的执行路径。						

(2)掌握Vivado仿真方式。

报告完成时间: 2024年 5月 18日

1 实验内容

阅读实验原理实现以下模块:

- (1) Datapath,其中主要包含alu(实验一已完成),PC(实验二已完成),adder、mux2、signext、sl2(其中adder、mux2数字逻辑课程已实现,signext、sl2参见实验原理),
- (2) Controller(实验二已完成),其中包含两部分,分别为main_decoder,alu_decoder。
- (3) 指令存储器inst_mem(Single Port Ram),数据存储器data_mem(Single Port Ram);使用Block Memory Generator IP构造指令,注意考虑PC地址位数统一。(参考实验二)
- (4) 参照实验原理,将上述模块依指令执行顺序连接。实验给出top文件,需兼容top文件端口设定。
- (5) 实验给出仿真程序,最终以仿真输出结果判断是否成功实现要求指令。

2 实验设计

这一节,主要描述各个模块的功能、接口、逻辑控制方法(状态机控制方法)等。(红字为内容说明,请删除)

2.1 数据通路

2.1.1 功能描述

简单描述实现的功能即可,一句话亦可(红字为内容说明,请删除)

2.1.2 接口定义

接口定义请使用表格,需要包括接口信号名、方向、宽度、含义(红字为内容说明,请删除)

表 1:接口定义模版

信号名	方向	位宽	功能描述
valid	Output	1-bit	If CPU stopped or any exception hap-
			pens, valid signal is set to 0.

3 实验过程记录

3.1 问题1:设计 Datapath 模块连接

问题描述:由给出的参考书得知 Datapath 模块的各个组成部分及其连接关系,因为 datapath 内的模块大多已给出或前述实验已完成,所以重点在需要详细分析各部分的功能和数据流向,确保模块之间的正确连接。

解决方案:

1. PC 模块连接:

- adderPC_inst 实例化了一个加法器模块,用于将当前 PC 地址加上一个偏移量,得到下一个 PC 地址。
- mux2 PC_select 实例化了一个多路选择器模块,根据 pcsrc 信号选择下一个 PC 地址。
- PCnext_inst 实例化了一个多路选择器模块,根据 jump 信号选择是否跳转到指定地址。
- PC inst 实例化了 PC 模块,用于存储并更新 PC 地址。

2. Branch 计算和存储:

- sign_extend_inst 实例化了一个符号扩展模块,将指令中的 16 位符号扩展成 32 位。
- adderBranch_inst 实例化了一个加法器模块,用于计算分支目标地址。

3. 寄存器文件和数据路径选择:

- regfile_inst 实例化了寄存器文件模块,用于读取和写入寄存器数据。
- mux2 select_dst 实例化了一个多路选择器模块,根据 regdst 信号选择写入的寄存器地址。

4. ALU 计算和数据选择:

- select_srcB 实例化了一个多路选择器模块,根据 alusrc 信号选择 ALU 的第二个操作数。
- ALU_inst 实例化了一个 ALU 模块,用于执行算术逻辑运算。
- mux2 select_res 实例化了一个多路选择器模块,根据 memtoreg 信号选择 ALU 的输出或数据存储器的读取数据作为最终结果。
- 5. 其他连接: 连接各个模块之间的数据和控制信号,确保正常的数据流和操作顺序。

3.2 问题2: 两个存储器实现

问题描述: 使用 Block Memory Generator IP 构造指令存储器。

解决方案:使用 IP 实例化数据存储器和指令存储器,配置不同的宽度和深度参数。指令存储器需要导入指定的 coe 文件以支持所需操作。

3.3 问题3: 端口适配

问题描述: 使其余模块端口适配顶层文件。

解决方案:由于 MIPS 软核顶层文件和设计顶层文件 top 均已给出,故修改了底层的各模块的输入输出端口,以适配顶层文件的调用需求。

3.4 问题4: 仿真调试

问题描述:调用 top 模块进行仿真。

解决方案: 根据已给出的仿真文件对实现的单周期 CPU 进行仿真,通过仿真图和控制台打印的输出判断仿真是否成功。

4 实验结果及分析

需要仿真图一张,控制台打印输出图一张,要求仿真图中包含pc、instr、rs、rt、rd、result信号,仿真图应在控制台打印输出Simulation succeeded时截图。控制台打印输出图为此时截图。

A Datapath代码

其他模块不需要填写(红字为内容说明,请删除)