REVIEW for MIDTERM EXAM

Chapters

- Introduction (001Introduction.pdf)
- Ch. 1. Introduction: Representative Problems (01StableMatching.pdf)
 - 01DemoGaleShapley.pdf
- Ch. 2. Algorithm Analysis (O2AlgorithmAnalysis.pdf)
- Ch. 3. Algorithm Analysis (O3Graphs.pdf)
 - 03demo-dag.pdf
- Ch. 4. Greedy Algorithms (O4greedy.pdf, O4mst.pdf, O4huffman.pdf)
 - 04demo-dijkstra.pdf
 - 04demo-mst
- Ch. 5. Divide and Conquer (O5divide -and-conquer.pdf, O5multiply.pdf)
 - 05demo-merge.pdf
 - O5demo-merge-invert.pdf

Introduction (001Introduction.pdf)

- Algorithms: What, Why, How?
- Algorithm Etymology
- Proof of Correctness

Ch. 1. Introduction: Representative Problems (01StableMatching.pdf) (01DemoGaleShapley.pdf)

- 1.1. Stable Matching
 - Stable matching / Stable marriage problem
 - Perfect matching
 - Unstable pair
 - Gale-Shapley Algorithm
 - □ Proof of correctness: Termination
 - □ Proof of correctness: Perfection
 - □ Proof of correctness: Stability
 - □ Efficient Implementation
 - □ Understanding the Solution
 - □ Valid Partner
 - ☐ Man Optimality
 - ☐ Women Pessimality

Ch. 1. Introduction: Representative Problems (01StableMatching.pdf) (01DemoGaleShapley.pdf)

- 1.2. Five Representative Problems
 - Interval scheduling
 - Weighted interval scheduling
 - Bipartite matching
 - Independent set
 - Competitive facility location

Ch. 2. Algorithm Analysis (02AlgorithmAnalysis.pdf)

- 2.1. Computational Tractability
 - Motivation
 - Brute-force
 - Why complexity matters?
 - Worst-case analysis
 - Polynomial running time
- □ 2.2. Asymptotic Order of Growth
 - Formalization
 - □ Upper bound (Big Oh) (O)
 - \square Lower bound (Big Omega) (Ω)
 - □ Tight bound (Big Theta) (Θ)
 - □ Properties
 - Asymptotic Bounds for Some Common Functions
- □ 2.4. Survey of Common Running Times
 - Linear time: O(n) Linearithmic time: O(n log n)
 - Quadratic time: O(n²) Cubic time: O(n³)
 - Polynomial time: O(nk) Exponential time O(rn)

Ch. 3. Algorithm Analysis (03Graphs.pdf) (03demo-dag.pdf)

- 3.1. Basic Definitions and Applications
 - Undirected graphs
 - Graph Representation: Adjacency Matrix
 - Graph Representation: Adjacency List
 - Paths and Connectivity
 - Cycles
 - Trees
 - Rooted Trees
 - Phylogeny Trees
- 3.2. Graph Traversal
 - Connectivity
 - Breadth First Search
 - □ Algorithm
 - □ Analysis
 - Depth First Search
 - Connected Component

Ch. 3. Algorithm Analysis (03Graphs.pdf) (03demo-dag.pdf)

- 3.4. Testing Bipartiteness
 - Bipartite Graphs
 - Testing Bipartiteness
 - □ An Obstruction to Bipartiteness: Odd-length cycle
 - Bipartite Graphs
- 3.5. Connectivity in Directed Graphs
 - Directed Graphs
 - Graph Search
 - Strong Connectivity
 - □ Mutually reachable
 - □ Algorithm (G and Grev)
- 3.6. Directed Acyclic Graphs and Topological Ordering
 - Directed Acyclic Graphs
 - Topological order
 - Precedence Constraints
 - Algorithm & Running Time

(04greedy.pdf)

- 4.1. Interval Scheduling / Interval Partitioning
 - Interval Scheduling: Greedy Algorithms
 - □ Earliest start time
 - □ Shortest interval
 - □ Fewest conflicts
 - □ Earliest finish time
 - □ Analysis
 - Interval Partitioning
 - □ Lower Bound on Optimal Solution
 - □ Greedy Algorithm
 - ☐ Greedy Analysis

(04greedy.pdf)

- 4.2. Scheduling to Minimize Lateness
 - Minimizing lateness problem
 - Minimizing Lateness: Greedy Algorithms
 - □ Shortest processing time first
 - □ Smallest slack
 - □ Earliest deadline first
 - □ Minimizing Lateness:
 - ☐ Greedy Algorithm
 - □No Idle Time
 - □ Inversions
 - ☐ Analysis of Greedy Algorithm

(04greedy.pdf)

- 4.3. Optimal Caching
 - Optimal Offline Caching
 - □ Caching
 - □ Cash hit
 - □ Cash miss
 - □ Farthest-In-Future
 - Reduced Eviction Schedules
 - Multiple Optimal Schedules
 - Farthest-In-Future: Analysis

Ch.4. Greedy Algorithms (04greedy.pdf) (04demo-dijkstra.pdf)

- 4.4. Shortest Paths in a Graph
 - Shortest Path Problem
 - Dijkstra's Algorithm
 - □ Proof of Correctness
 - □ Complexity Analysis

(04mst.pdf) (04demo-mst)

- 4.5. Minimum Spanning Tree
 - Greedy Algorithms
 - □ Prim's algorithm
 - □ Implementation
 - □ Proof of Correctness
 - □ Kruskal's algorithm
 - □ Implementation
 - □ Proof of Correctness
 - □ Reverse-Delete algorithm
 - Cycles and Cuts
 - Cycle-Cut Intersection
 - Cut property
 - Cycle property
 - Prim's Algorithm: Proof of Correctness

(04mst.pdf, 04huffman.pdf)

4.7. Clustering

- Clustering of Maximum Spacing
- Greedy Clustering Algorithm
 - □ Single-link k-clustering algorithm.
 - □ Analysis

4.8. Huffman Codes

- Data Compression
- Prefix Codes
- Optimal Prefix Codes
 - □ Average bits per letter (ABPL)
- Representing Prefix Codes using Binary Trees
 - □ Full Tree
- Huffman Encoding
 - Algorithm & Efficient implementation
 - ☐ Huffman Code Construction

Ch.5. Divide and Conquer

(05divide-and-conquer.pdf)

(05demo-merge.pdf, 05demo-merge-invert.pdf)

- 5.1. Mergesort
 - A Useful Recurrence Relation
 - Proof by Recursion Tree
 - Proof by Induction
- 5.3 Counting Inversions
 - Counting Inversions: Divide-and-Conquer
 - □ Implementation
- 5.4 Closest Pair of Points
 - 1D version: Divide and Conquer
 - 2D version: Divide and Conquer
 - □ Algorithm
 - □ Analysis

Ch.5. Divide and Conquer

(05multiply.pdf)

- 5.5. Integer Multiplication
 - Integer addition
 - Integer multipliction
 - Divide-and-Conquer Multiplication
 - □ Recursion Tree
 - Karatsuba Multiplication
 - □ Recursion Tree
 - Matrix Multiplication
 - □ Fast Matrix Multiplication: Warmup
 - □ Divide-and-Conquer
 - □ Fast Matrix Multiplication: Strassen
 - □ Key Idea