Processamento Digital de Sinais

Prof. Carlos Speranza

Lista de exercícios 1C – Sinais e sistemas digitais (DTFT)

- P3.3 Determine analytically the DTFT of each of the following sequences. Plot the magnitude and angle of $X(e^{j\omega})$ over $0 \le \omega \le \pi$.
 - 1. $x(n) = 2(0.5)^n u(n+2)$.
 - 2. $x(n) = (0.6)^{|n|} [u(n+10) u(n-11)].$
 - 3. $x(n) = n(0.9)^n u(n+3)$.
 - 4. $x(n) = (n+3)(0.8)^{n-1}u(n-2)$.
 - 5. $x(n) = 4(-0.7)^n \cos(0.25\pi n)u(n)$.
- P3.11 For each of the linear, shift-invariant systems described by the impulse response, determine the frequency response function $H(e^{j\omega})$. Plot the magnitude response $|H(e^{j\omega})|$ and the phase response $\angle H(e^{j\omega})$ over the interval $[-\pi,\pi]$.
 - 1. $h(n) = (0.9)^{|n|}$
 - 2. $h(n) = \operatorname{sinc}(0.2n)[u(n+20) u(n-20)]$, where sinc 0 = 1.
 - 3. $h(n) = \operatorname{sinc}(0.2n)[u(n) u(n-40)]$
 - 4. $h(n) = [(0.5)^n + (0.4)^n]u(n)$
 - 5. $h(n) = (0.5)^{|n|} \cos(0.1\pi n)$
- P3.13 Let $x(n) = 3\cos(0.5\pi n + 60^{\circ}) + 2\sin(0.3\pi n)$ be the input to each of the systems described in Problem P3.11. In each case, determine the output sequence y(n).
- P3.18 A linear, shift-invariant system is described by the difference equation

$$y(n) = \sum_{m=0}^{3} x (n - 2m) - \sum_{\ell=1}^{3} (0.81)^{\ell} y (n - 2\ell)$$

Determine the steady-state response of the system to the following inputs:

- 1. $x(n) = 5 + 10(-1)^n$
- 2. $x(n) = 1 + \cos(0.5\pi n + \pi/2)$
- 3. $x(n) = 2\sin(\pi n/4) + 3\cos(3\pi n/4)$
- 4. $x(n) = \sum_{k=0}^{5} (k+1) \cos(\pi kn/4)$
- 5. $x(n) = \cos(\pi n)$

In each case, generate x(n), $0 \le n \le 200$, and process it through the filter function to obtain y(n). Compare your y(n) with the steady-state responses in each case.

Fonte: Ingle/Proakis, Digital Signal Processing Using Matlab - 3ª Edição.