l\(twice amended) A compound of the Formula I I 0 wherein R¹ is R³OC-, R³CO-, R³SO₂-, Ra R⁵NCHR⁶CO-, R^aO CHO each Ra is independently hydrogen, C1-C6 alkyl, or -(CH2)n aryl; R^2 is $-(CRR)_n$ -aryl, $-(CRR)_n$ -X-aryl,

$$-(CRR)_n$$
-(substituted-heteroaryl),

-
$$(CRR)_n$$
-X- $(substituted-aryl)$,

$$-(CRR)_n$$
-aryl- $(CH_2)_n$ -aryl,

$$-(CRR)_n$$
-CH(ary $1)_{2,}$

$$-(CRR)_{n}-CH$$

$$-(CH_{2})_{n}-aryl$$

$$-(CH_{2})_{n}-aryl$$

$$-(CRR)_{n}-CH$$

$$-(CH_{2})_{n}-aryl$$

$$-(CH_{2})_{n}-aryl$$

$$-(CRR)_{n}-CH$$

$$-(CRR)_{n}-CH$$

$$-(CRR)_{n}-N$$

$$-(CH_{2})_{n}-heteroaryl$$

$$-(CRR)_{n}-CH$$

$$(CH_{2})_{n}-aryl,$$

$$(CH_{2})_{n}-aryl,$$

 $CO(CH_2)_n$ —(aryl, or substituted aryl), ryl, -(CRR)_n $O(CH_2)_n$ aryl, ·(CRR)_n $-(CRR)_n \stackrel{\leftarrow}{CH}$ NH aryl , (CRR)_n -(CRR)_n $-C(CRR)_{n}$

CONTRO

each R is independently hydrogen, C1-C6 alkyl, halogen or hydroxy;

X is O or S;

 R^3 is C_1 - C_6 alkyl,

aryl,

heteroaryl,

-(CHR) $_n$ -aryl,

-(CHR)_n-heteroaryl

-(CHR)_n-substituted heteroaryl,

-(CHR)_n-substituted aryl,

C

-(CRR)_nCOR^a,

 $-(CRR)_nS(CH_2)_n$ -aryl,

cycloalkyl,

substituted cycloalkyl,

heterocycle,

substituted heterocycle,

0

 $-(CRR)_nCNR^aR^a$,

Porto

conto

```
each J is independently
           -CO_2R^{\dagger},
           -CONR Rb,
           -SO<sub>2</sub>NR Rb, or
           -SO<sub>2</sub>R<sup>b</sup>;
each R<sup>b</sup> is independently hydrogen, C<sub>1</sub>-C<sub>6</sub> alkyl, aryl, substituted aryl; arylalkyl,
           heteroarylalkyl, substituted arylalkyl, or substituted heteroarylalkyl;
R<sup>4</sup> is hydrogen,
           C<sub>1</sub>-C<sub>6</sub> alkyl,
           CH<sub>3</sub>OC-,
           -phenyl, or
          C_1-C_6 alkyl \overset{"}{C}-;
R^5 is C_1-C_6 alkyl-CO-
           -(CH_2)_n aryl,
           C<sub>1</sub>-C<sub>6</sub>-alkylOC-,
           C_1-C_6-alkyl-X-(CH_2)_nCO,
           C_1-C_6-alkyl-X-(CH_2)_nOC-
           -C(CRR)<sub>n</sub>aryl,
           -CNRaRa,
          \begin{array}{c} o \\ \parallel \\ -sc_1-c_6 \text{ alkyl,} \end{array}
```

Pont'd

0

Conto

O \parallel CO(CH₂)_naryl,
O \parallel C(CH₂)_n aryl, or
O O \parallel CCHNNCC₁-C₆ alkyl;
CH₂ heteroaryl

R⁶ is hydrogen,

 C_1 - C_6 alkyl, - $(CH_2)_n$ aryl, - $(CH_2)_n$ CO₂R^a, hydroxyl substituted C_1 - C_6 alkyl, or imidazole substituted C_1 - C_6 alkyl;

each n is independently 0 to 3, and the pharmaceutically acceptable, salts, esters, amides, and prodrugs thereof;

provided that a compound of formula (I) is not:

or])
and further provided that:

(a) when R² is aryl, substituted aryl, cycloalkyl, phenyl-phenyl-CH₂-, piperidino, heteroaryl or substituted heteroaryl; and R¹ is (R⁵R^a)N-CH(R⁶)-CO-, then R^a is not hydrogen when

COQH

R⁶ is a side chain of an amino acid;

 R^{s} is aryl-C(O)-, aryl-(CH₂)-O-C(O)-NH-CH(R)-C-(O)-;

where R is $H \setminus \text{or } (C_1-C_6)$ alkyl or R^{5a} -NH-CH(R^6)-C(O)-;

where \mathbb{R}^6 is a side chain of an amino acid and \mathbb{R}^{5a} is an amino acid protecting group;

(b) when R^1 is R^3 -O-C(O)- where R^3 is CH_2 =CH-CH₂-, then R^2 is not Ph(CH₂)₂-, PhO(CH₂)₂-, trans-PhCH=CH or cyclohexyl(CH₂)₂;

(c) when R^1 is $(R^5R^a)N-CH(R^6)-CO_7$;

where R⁶ is H, (C₁-C₆)alkyl, benzyl or hydroxyalkyl;

Ra is H, (C₁-C₆)alkyl, phenyl on benzyl; and

 R^5 is $-C(O)-O-(C_1-C_6)$ alkyl, $-C(O)-N(R^aR^a)$, $-C(O)-(C^1-C^6)$ alkyl, -phenyl- $O-(C_1-C_6)$ alkyl or -phenyl- $(CH_2)_{1-4}$ - $N(R^aR^a)$;

then R² is not a phenyl or naphthyl group optionally substituted with one or more substituents selected from the group consisting of halogen, hydroxy, CF₃, NO₂,

 (C_1-C_6) alkoxy, $-CO-(C_1-C_6)$ alkyl, $-NR^{\frac{1}{2}}C(O)-(C_1-C_6)$ alkyl, $-CON(R^aR^a)$, $-CON(R^aR^a)$

 $SO_2N(R^aR^a)$, $-SO_2$ - $(C_1$ - $C_6)$ alkyl, -COO- $(C_1$ - $C_6)$ alkyl, $(C_1$ - $C_6)$ alkyl, cycloalkyl and -O- $(CH_3)_{1.6}$ -phenyl-O- $(C_1$ - $C_6)$ alkyl; and

(d) when R¹ is R⁵-NH-CH(R⁶)-C(O)-, where R⁵ is R^{5a}-NH-CH(R⁶)-C(O)- and R^{5a} is - C(O)-(C₁-C₆)alkyl or -C(O)-aryl, then R² is not mono-, di-, tri-, tetra- or pentasubstituted phenyl or mono-, di-, tri-substituted phenyl, 1-naphthyl, 9-anthracyl or 2-, 3- or 4-pyridyl.

J. 3/

(amended) A compound in accordance with Claim 1 wherein each R^a is hydrogen; $[R^2] \underline{R^1}$ is benzyloxycarbonyl, In order to save space, Applicants have omitted structural formulas here because the sole amendment to claim 20 is to replace " R^2 " with $-R^1$ --.

51. (new) The compounds:

3-Benzenesulfonylamino-5-(naphthalene-1-yl-acetoxy)-4-oxo-pentanoic acid;

- 5-(Naphthalene-1-yl-acetoxy)-4-oxo-3-(3-phenyl-propionylamino)-pentanoic acid;
 - 3-Methoxycarbonylamino-4-oxo-5-phenoxyacetoxy-pentanoic acid; and
- 3-(2-Methanesulfonyl-1-methyl-ethylsulfonylamino)-5-(naphthalene-1-yl-acetoxy)-4-oxo-pentanoic acid.

P3 concld