# STA 250/MTH 342 – Intro to Mathematical Statistics

Lecture 6

#### The sampling (or frequentist) view point

- ▶ Both Bayesians and frequentists agree on the need to build models for the distribution of the data given certain parameters— $f(x|\theta)$  or  $p(x|\theta)$ .
- ► Frequentists do not consider the parameter as a random quantity, but rather think of it as a *fixed unknown* quantity.
- ► From this perspective, the only random quantities are the data (or functions of data, i.e. statistics) *prior to the experiment*.
- ▶ Once the experiment is done and we have observed the data, then nothing is random.
- ► So we can no longer say things like "Given the data, the chance of ..."

#### Point estimation

- Let us come back to the point estimation problem—the "guessing" of the value of a parameter  $\theta$  based on observed data  $\mathbf{X} = (X_1, X_2, \dots, X_n)$ .
- Such guesses, which are *functions of the data*, are called *estimators* for the parameter. Common notations:  $\hat{\theta}(\mathbf{X})$ ,  $\delta(\mathbf{X})$ , etc. Estimators are essentially "rules" that map data to guesses.
- ▶ If the observed data is  $\mathbf{X} = \mathbf{x}$ , where  $\mathbf{x} = (x_1, x_2, \dots, x_n)$ , the realized value of an estimator  $\delta(\mathbf{X})$  is  $\delta(\mathbf{x})$ , which is called an *estimate*. Estimates are the actual guesses.
- ▶ What is a criterion for "good" estimators?
- A good estimator should be such that the estimate and the actual parameter  $\theta$  are "likely to be close".

### What does "likely to be close" mean?

#### 2. The sampling view:

- ► The parameter is a *fixed* unknown number. The only random quantities are the data.
- After data is observed, however, nothing is random. No matter what estimator  $\delta(\mathbf{X})$  we are considering, we cannot judge how close the parameter  $\theta$  is to a *single realization of* the estimate  $\delta(\mathbf{x})$  after  $\mathbf{X} = \mathbf{x}$  is observed.
- In this case, we want to choose an estimator  $\delta(\mathbf{X})$  that will "with high probability" take values close to the underlying fixed  $\theta$ .
- Such a probabilistic statement can only be made before the experiment, or under repeated experiment.

Note that this is a "before the experiment" view, in contrast to the "after the experiment" view taken by the Bayesian perspective.

#### What does "likely to be close" mean?

This depends on which view about inference you are taking ...

- 1. The Bayesian view:
  - **b** Both the parameter  $\theta$  and data **X** are random variables.
  - After we have observed the data  $\mathbf{X} = \mathbf{x}$ , only  $\theta$  is random, and its distribution is the posterior distribution  $\xi(\theta|\mathbf{x})$ .
  - In this case, we want to pick an estimate  $\delta(\mathbf{x})$  such that *a* posteriori the parameter  $\theta$ , which is random, will likely take values close to the estimate  $\delta(\mathbf{x})$ .

Note that here the parameter is random while the estimate  $\delta(\mathbf{x})$  is a fixed number given the observed data  $\mathbf{X} = \mathbf{x}$ .

#### The sampling distribution of an estimator

- Now we take the view of a *fixed* but *unknown* parameter  $\theta$ .
- ► The data  $\mathbf{X} = (X_1, X_2, ..., X_n)$  are jointly distributed random variables with a joint distribution  $f(\mathbf{x}|\theta)$ , presumably different for each  $\theta$ .
- Any estimator  $\delta(\mathbf{X})$  is also a random variable, and will have a distribution  $f_{\delta}(u|\theta)$  given  $\theta$ .
- ▶ This is called the *sampling distribution* of the estimator  $\delta(\mathbf{X})$ .

## Example: the political poll revisited

Let us consider a simple estimator,

$$\delta(X) = \frac{X}{n}.$$

With n = 100, its p.m.f is

$$P(\delta(X) = u | \theta) = {100 \choose 100u} \theta^{100u} (1 - \theta)^{100(1 - u)} \quad \text{for } u = .01, .02, ..., 1$$
  
= 0 otherwise.

### Probability mass function of the estimator $\delta(X) = X/n$





#### p.m.f of delta(X) given theta = 0.5



#### p.m.f of delta(X) given theta = 0.7



#### Example: measuring air pollutant

If *n* independent readings  $X_1, X_2, ..., X_n$  are taken from the distribution  $N(\theta, \tau^2)$  with known  $\tau$ , then what is the sampling distribution of the *sample mean estimator* (given  $\theta$ )?

$$\delta(\mathbf{X}) = \delta(X_1, X_2, \dots, X_n) = \bar{X} = \frac{\sum_{i=1}^n X_i}{n}.$$

Note that

$$E[\bar{X}|\theta] = \frac{\sum_{i=1}^{n} E(X_i|\theta)}{n} = \frac{n\theta}{n} = \theta$$

and

$$\operatorname{Var}(\bar{X}|\theta) = \operatorname{Var}\left(\frac{\sum_{i=1}^{n} X_i}{n} \middle| \theta\right) = \frac{\sum_{i=1}^{n} \operatorname{Var}(X_i|\theta)}{n^2} = \frac{n\tau^2}{n^2} = \frac{\tau^2}{n}.$$

Since the sum of independent normal random variables are still normal random variables, its sampling distribution is  $N(\theta, \tau^2/n)$ .

### Sampling distribution of $\delta(\mathbf{X})$ for n = 10, $\tau = 5$





#### p.d.f of delta(X) given theta = 102



#### p.d.f of delta(X) given theta = 105



### Sampling distribution of $\delta(\mathbf{X})$ for n = 10, $\tau = 5$





#### p.d.f of delta(X) given theta = 102



#### p.d.f of delta(X) given theta = 105



## Criteria for selecting "good" estimators

Two desirable properties of estimators under repeated experiments:

- "Overall accuracy":  $E(\delta(X)|\theta)$  is close to  $\theta$ .
- "Precision":  $Var(\delta(X)|\theta)$  is small.

#### Bias of an estimator (Textbook Section 8.7)

An estimator for  $\theta$  is said to be *unbiased* if its overall accurate for all possible values of  $\theta$ . That is

$$E(\delta(X)|\theta) = E_{\theta}(\delta(X)) = E_{\theta}(\delta) = \theta$$
 for all  $\theta$ .

The *bias* of  $\delta(X)$  given  $\theta$  is defined to be

$$B_{\delta}(\theta) = E_{\theta}(\delta) - \theta.$$

- ▶  $B_{\delta}(\theta) > 0$ :  $\delta(X)$  tends to overestimate  $\theta$ .
- ▶  $B_{\delta}(\theta) < 0$ :  $\delta(X)$  tends to underestimate  $\theta$ .

# Back to the political poll example

▶ The estimator  $\delta_1(X) = \frac{X}{n}$  is unbiased.

$$E_{\theta}(\delta_1) = \theta$$
 for all  $\theta$ .

► The estimator  $\delta_2(X) = \frac{X+12}{n+24}$  is not unbiased.

$$B_{\delta_2}(\theta) = E_{\theta}(\delta_2) - \theta = \frac{n\theta + 12}{n + 24} - \theta = \frac{12 - 24\theta}{n + 24}.$$

So for 
$$\theta > 1/2$$
,  $B_{\delta_2}(\theta) < 0$  and for  $\theta < 1/2$ ,  $B_{\delta_2}(\theta) > 0$ .

Question: Is  $\delta_1(X)$  always more desirable than  $\delta_2(X)$ ?

## Do we always want unbiased estimators?

- Unbiasedness is a nice property.
- ▶ But unbiased estimators are not necessarily "good" estimators. (Draw a figure.)
- ▶ We need some control over the *precision* of the estimator as well.
- ▶ So it is desirable to have estimators with small variance

$$ext{Var}\left( oldsymbol{\delta}(\mathbf{X}) | oldsymbol{ heta} 
ight)$$
 .

- Of course neither unbiasedness nor precision alone is enough. (Draw figure).
- ► More generally, the goal is to have estimators likely to take values close to the unknown *fixed* parameter.

### More general criteria for selecting "good" estimators

Recall from last time the goal of constructing an estimator  $\delta(\mathbf{X})$  so that  $\delta(\mathbf{X})$  will *likely to be close to*  $\theta$ .

- Again, we need a notion of distance between the estimate and the parameter.
- ► Can again use a loss function just like before such as
  - 1. The absolute error loss:  $L(\theta, a) = |\theta a|$ .
  - 2. The squared error loss:  $L(\theta, a) = (\theta a)^2$ .
  - 3. The step error loss:  $L(\theta, a) = \mathbf{1}(|\theta a| > \Delta)$ .

So we can again try to choose an estimator that minimizes the *expected loss*.

But now the expectation is taken over the distribution of the estimator given  $\theta$ :

$$\begin{split} E(L(\theta, \delta(\mathbf{X}))|\theta) &= E_{\theta}(L(\theta, \delta)) = \int_{-\infty}^{\infty} L(\theta, u) f_{\delta}(u|\theta) du \\ &= \int_{-\infty}^{\infty} L(\theta, \delta(x)) f(x|\theta) d\theta \end{split}$$

where  $f_{\delta}(u|\theta)$  denotes the p.d.f of the estimator  $\delta(\mathbf{X})$ .

This expectation is also called the (sampling) risk function of estimator  $\delta$ :

$$R_{\delta}(\theta) := E_{\theta}(L(\theta, \delta))$$