B.E. Mechanical Engineering Third Year 2nd Semester Examination – 2018 Subject: Mechanical Measurement and Instrumentation

Time: Three hours

Full Marks: 100

Different parts of the same question should be answered together.

Use of Gaussian Error Function Tables permitted.

	Use of Gaussian Error Function Tables permitted.
CO1	[1] Give a schematic of a spring-loaded pressure gauge and explain its function. Also draw a block diagram to
[10]	indicate the different functional elements of the system. [10]
CO2	[2] Differentiate between active-passive transducers, analog-digital modes, null-deflection methods of
[20]	measurement. With a neat sketch explain the working principle of an active transducer. [12+8]
CO3	Answer any two(2) from (a), (b) and (c) in this block: [10+10]
[20]	[3] (a) The discharge coefficient C_q of an orifice can be found by collecting the water that flows through during
100	a time interval when it is under a constant head h as per the relation $C_q = W/\{t\rho A\sqrt{2gh}\}$. Find C_q and its possible
	uncertainty if: $W=390\pm0.25$ kg; $A=\pi d^2/4$; $d=12\pm0.03$ mm; $t=600\pm2$ s; $g=9.81\pm0.00981$ m/s ² ; $\rho=1050\pm1.05$ kg/m ³ ; $h=3.6\pm0.03$ m.
	(b) With a block diagram, explain the generalized input-output configuration of a measurement system. Give an example to illustrate the different inputs.
	(c) Explain with examples two different methods for correction for interfering and modifying inputs.
CO4	Answer any one(1) from (a) and (b) in this block:
[10]	[4] (a)Describe with a sketch and explain operation of the <i>unbonded metal wire gauge</i> . What is meant by gage factor of a strain gauge? [6+4]
	(b) Describe the principle of operation of an LVDT. [10]
CO5	Answer any two(2) from (a), (b) and (c) from this block:
	(ii) Name the different types of biases possible in a measurement system. (iii) The thickness of a set of gaskets varies due to random manufacturing disturbances, but thickness values measured belong to a Gaussian distribution. If the mean thickness is 3mm and standard deviation is 0.25, calculate the percentage of gaskets that have a thickness greater than 2.5 mm.
	(b)(i) The following average velocity (V)-hydraulic gradient (i) data of a Reynolds apparatus are expected to follow a linear relation of the form $V = mi + b$. Obtain the best linear relation in accordance with a least-square analysis. Calculate the standard deviations of slope and intercept from the predicted straight line relation.
	V(m/s) Increasing Decreasing
	0.015 0.0011 0.0012
	0.030 0.0026 0.0028
	0.047 0.0043 0.0046
	0.069 0.007 0.0072
	0.095 0.011 0.013
23	0.118 0.013 5:45
	0.191 0.018 0.020
İ	(ii) A measuring instrument with a time constant of 0.4 s and a static sensitivity of 0.01mV/°C is used to
	measure the temperature of a medium, which changes from 15°C to 80°C. Taking the output as zero at 15°C,
	find the time taken for the output to reach 70% of the steady state value, if the temperature change occurs suddenly. [12+8]
	(c) (i)The thickness of a set of gaskets varies due to random manufacturing disturbances, but thickness values
N 00	measured belong to a Gaussian distribution. If the mean thickness is 3mm and standard deviation is 0.25,
	calculate the percentage of gaskets that have a thickness greater than 2.5 mm.
*	(ii) For an underdamped second order system explain with a sketch the meaning of the terms – rise time, peak
21 To 250 27 Section 1	time, 2% settling time, maximum percentage overshoot. [10+10]