7.2 Trigonometric Integrals

Table 7.2 summarizes the methods used to integrate $\int \tan^m x \sec^n x \, dx$. Analogous techniques are used for $\int \cot^m x \csc^n x \, dx$.

Table 7.2

$\int \tan^m x \sec^n x \, dx$

n even

Split off $\sec^2 x$, rewrite the remaining even power of $\sec x$ in terms Strategy of $\tan x$, and use $u = \tan x$.

m odd

Split off sec $x \tan x$, rewrite the remaining even power of $\tan x$ in terms of sec x, and use $u = \sec x$.

m even and n odd

Rewrite the even power of $\tan x$ in terms of $\sec x$ to produce a polynomial in sec x; apply reduction formula 4 to each term.

SECTION 7.2 EXERCISES

- 1. State the half-angle identities used to integrate $\sin^2 x$ and $\cos^2 x$.
- 2. State the three Pythagorean identities.
- Describe the method used to integrate $\sin^3 x$.
- Describe the method used to integrate $\sin^m x \cos^n x$ for m even and n odd.
- What is a reduction formula?
- How would you evaluate $\int \cos^2 x \sin^3 x \, dx$?
- How would you evaluate $\int \tan^{10} x \sec^2 x \, dx$?
- 8. How would you evaluate $\int \sec^{12} x \tan x \, dx$?

- 9–12. Integrals of $\sin x$ or $\cos x$ Evaluate the following integrals.
- 9. $\int \sin^2 x \, dx$
- $10. \quad \int \cos^4 2x \, dx$
- 11. $\int \sin^5 x \, dx$
- $12. \quad \int \cos^3 20x \, dx$
- 13–18. Integrals of $\sin x$ and $\cos x$ Evaluate the following integrals.
- $13. \int \sin^2 x \cos^2 x \, dx$
- $14. \int \sin^3 x \cos^5 x \, dx$
- $15. \quad \int \sin^5 x \cos^{-2} x \, dx$
- 16. $\int \sin^{-3/2} x \cos^3 x \, dx$
- $17. \quad \int \sin^2 x \cos^4 x \, dx$
- 18. $\int \sin^3 x \cos^{3/2} x \, dx$
- 19–24. Integrals of $\tan x$ or $\cot x$ Evaluate the following integrals.
- $19. \int \tan^2 x \, dx$
- **20.** $\int 6 \sec^4 x \, dx$
- $21. \int \tan^3 4x \, dx$
- 22. $\int \sec^5 \theta \ d\theta$
- 23. $\int 20 \tan^6 x \, dx$
- 24. $\int \cot^5 3x \, dx$

- 25–32. Integrals of $\tan x$ and $\sec x$ Evaluate the following integrals.
- 25. $\int \sec^2 x \tan^{1/2} x \, dx$
- $26. \int \sec^{-2} x \tan^3 x \, dx$
- $27. \int \frac{\csc^4 x}{\cot^2 x} dx$
- $28. \quad \int \csc^{10} x \cot^3 x \, dx$
- $29. \int_{0}^{\pi/4} \sec^4\theta \, d\theta$
- $30. \int \tan^5 \theta \sec^4 \theta \ d\theta$
- 31. $\int_{-16}^{\pi/3} \cot^3\theta \, d\theta$
- $32. \int_0^{\pi/4} \tan^3 \theta \sec^2 \theta \ d\theta$

- 33. Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.
 - **a.** If m is a positive integer, then $\int_0^{\pi} \cos^{2m+1} x \, dx = 0$.
 - **b.** If m is a positive integer, then $\int_0^{\pi} \sin^m x \, dx = 0$.

34–37. Integrals of $\cot x$, $\sec x$, and $\csc x$

- 34. Use a change of variables to prove that $\int \cot x \, dx = \ln|\sin x| + C.$
- 35. Prove that $\int \sec x \, dx = \ln |\sec x + \tan x| + C$. (*Hint:* Multiply numerator and denominator of the integrand by $\sec x + \tan x$; then make a change of variables with $u = \sec x + \tan x$.)
- **36.** Prove that $\int \csc x \, dx = -\ln|\csc x + \cot x| + C$. (*Hint*: Use ³) method analogous to that used in Exercise 35.)
- 37. Use the results of Theorem 7.1 to find the indefinite integral of $\tan ax$ and $\sec ax$, where a is a nonzero real number.
- 38. Comparing areas The region R_1 is bounded by the graph of $y = \tan x$ and the x-axis on the interval $[0, \pi/3]$. The region β bounded by the graph of $y = \sec x$ and the x-axis on the intent $[0, \pi/6]$. Which region has the greater area?
- 39. Region between curves Find the area of the region bounded by the graphs of $y = \tan x$ and $y = \sec x$ on the interval $[0, \pi/4]$

- 40-45. Additional integrals Evaluate the following integrals.
- **40.** $\int_{0}^{\sqrt{\pi/2}} x \sin^{3}(x^{2}) dx$ **41.** $\int \frac{\sec^{4}(\ln \theta)}{\theta} d\theta$
- 42. $\int_{-\pi/3}^{\pi/2} \frac{dy}{\sin y}$ 43. $\int_{-\pi/3}^{\pi/3} \sqrt{\sec^2 \theta 1} \, d\theta$
- 44. $\int_{0}^{\pi/4} \tan^3 x \sec^2 x \, dx$ 45. $\int_{0}^{\pi} (1 \cos 2x)^{3/2} \, dx$
- 46-49. Square roots Evaluate the following integrals.
- 46. $\int_{-\pi/4}^{\pi/4} \sqrt{1 + \cos 4x} \, dx$ 47. $\int_{0}^{\pi/2} \sqrt{1 \cos 2x} \, dx$
- 48. $\int_{0}^{\pi/8} \sqrt{1-\cos 8x} \, dx$ 49. $\int_{0}^{\pi/4} (1+\cos 4x)^{3/2} \, dx$
- 50. Sine football Find the volume of the solid generated when the region bounded by the graph of $y = \sin x$ and the x-axis on the interval $[0, \pi]$ is revolved about the x-axis.
- 51. Arc length Find the length of the curve $y = \ln(\cos x)$ for $0 \le x \le \pi/4$.
- 52. A sine reduction formula Use integration by parts to obtain the following reduction formula for positive integers *n*:

$$\int \sin^n x \, dx = -\sin^{n-1} x \cos x + (n-1) \int \sin^{n-2} x \cos^2 x \, dx.$$

Then use an identity to obtain the reduction formula

$$\int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx.$$

Use this reduction formula to evaluate $\int \sin^6 x \, dx$.

53. A tangent reduction formula Prove that for positive integers

$$\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx.$$

Use the formula to evaluate $\int_0^{\pi/4} \tan^3 x \, dx$.

54. A secant reduction formula Prove that for positive integers

$$\int \sec^n x \, dx = \frac{\sec^{n-2} x \tan x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx.$$

(*Hint*: Integrate by parts with $u = \sec^{n-2} x$ and $dv = \sec^2 x dx$.)

55-59. Integrals of the form $\int \sin mx \cos nx \, dx$ Use the following three identities to evaluate the given integrals.

$$\sin mx \sin nx = \frac{1}{2} \left[\cos \left((m-n)x \right) - \cos \left((m+n)x \right) \right]$$

$$\sin mx \cos nx = \frac{1}{2} \left[\sin \left((m-n)x \right) + \sin \left((m+n)x \right) \right]$$

$$\cos mx \cos nx = \frac{1}{2} [\cos ((m-n)x) + \cos ((m+n)x)]$$

- 55. $\int \sin 3x \cos 7x \, dx$
- **56.** $\int \sin 5x \sin 7x \, dx$
- 57. $\int \sin 3x \sin 2x \, dx$
- 58. $\int \cos x \cos 2x \, dx$
- 59. Prove the following orthogonality relations (which are used to generate Fourier series). Assume m and n are integers with
 - $\mathbf{a.} \quad \int_{0}^{\pi} \sin mx \sin nx \, dx = 0$
 - **b.** $\int_{0}^{\pi} \cos mx \cos nx \, dx = 0$
 - $\mathbf{c.} \quad \int_{-\infty}^{\infty} \sin mx \cos nx \, dx = 0$
- 60. Mercator map projection The Mercator map projection was proposed by the Flemish geographer Gerardus Mercator (1512-1594). The stretching of the Mercator map as a function of the latitude θ is given by the function

$$G(\theta) = \int_0^\theta \sec x \, dx.$$

Graph G for $0 \le \theta < \pi/2$. (See the Guided Projects for a derivation of this integral.)

Additional Exercises

- 61. Exploring powers of sine and cosine
 - **a.** Graph the functions $f_1(x) = \sin^2 x$ and $f_2(x) = \sin^2 2x$ on the interval $[0, \pi]$. Find the area under these curves
 - **b.** Graph a few more of the functions $f_n(x) = \sin^2 nx$ on the interval $[0, \pi]$, where *n* is a positive integer. Find the area under these curves on $[0, \pi]$. Comment on your
 - c. Prove that $\int_0^{\pi} \sin^2(nx) dx$ has the same value for all positive
 - d. Does the conclusion of part (c) hold if sine is replaced by
 - e. Repeat parts (a), (b), and (c) with $\sin^2 x$ replaced by $\sin^4 x$. Comment on your observations.
 - **f.** Challenge problem: Show that for m = 1, 2, 3, ...,

$$\int_0^{\pi} \sin^{2m} x \, dx = \int_0^{\pi} \cos^{2m} x \, dx = \pi \cdot \frac{1 \cdot 3 \cdot 5 \cdots (2m-1)}{2 \cdot 4 \cdot 6 \cdots 2m}.$$

QUICK CHECK ANSWERS

1. $\frac{1}{3}\cos^3 x - \cos x + C$ 2. Write $\int \sin^3 x \cos^3 x \, dx =$ $\int \sin^2 x \cos^3 x \sin x \, dx = \int (1 - \cos^2 x) \cos^3 x \sin x \, dx.$ Then, use the substitution $u = \cos x$. Or, begin by writing $\int \sin^3 x \cos^3 x \, dx = \int \sin^3 x \cos^2 x \cos x \, dx. \blacktriangleleft$