IA Oscillating Systems

No. |

A system oscillates if x(t) = x(t+T) for some period T.

The frequency of osc. is defined as $v = \frac{1}{T}$ (5-1) The angular freq is $w = 2\pi I/T$ For an object to undergo simple harmonic motion (SHM):

- must be some inertia

- and a restoring force α (- displacement) f = -kx = ma for a spring \Rightarrow $\dot{x} = -\frac{k}{m}x$. If we sub sc = a cos wt we find w= 1 km The general equation for undamped SHM is $3i + w_0^2 x = 0$. Solved by: sc(t) = A cos(wot) + B sin(wot) } 2 unknowns $x(t) = a_0 \cos(\omega t + \phi)$ * SHM is unique among oscs because freq is independent to amplitude.

The velocity and acceleration can be found by differentiating: $\dot{z}(t) = -\omega_0 \alpha_0 \sin(\omega_0 t + \emptyset) \quad (\frac{1}{2} \text{ cycle ahead})$ $\dot{z}(t) = -\omega_0^2 \alpha_0 \cos(\omega_0 t + \emptyset) \quad (\frac{1}{2} \text{ cycle ahead}).$ we then see that Vmax = - Wo do and amax = - Wo ao · We can intead analyse systems in terms of energy. For a spring: KE= 1 mx2 PE= fok XdX = 1kx2 Etotal = $\frac{1}{2}$ k q_0^2 Thus the energy terms oscillate twice as fast (e.g. write $\sin^2\theta = \frac{1}{2}(1-\cos^2\theta)$) Because $(\sin^2\theta) = (\cos^2\theta) = \frac{1}{2}$, we know that $(KE) = (PE) = \frac{1}{4}kq_0^2$

We can instead derive SHM using the conservation of energy $\vec{E} = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2 \implies \vec{E} = m\dot{x}\dot{x}\dot{x} + kx\dot{x}\dot{x} \implies \ddot{x} + m\dot{x} = 0.$

A'ZONE

*	e g hydrometer equilibrium
	· Archimedes principle: buryancy force is
	equal to the weight of the diplaced fluid.
	· When displaced from eq., the submerged [m]
	volume changes by Ay (A= cross section area)
	$\therefore M\ddot{y} = -\rho g A y \Rightarrow \ddot{y} + \rho g A y = 0.$
	e-g pendulum
1	Resolving perp. to tension, we have m10 = -mgsino.
	· For small angular displacements:
4	sing = 0 => mlg = mg0
(1-1006)]	
	· Alternatively, we can argue by energy:
	PE=mgl(1-cos6) = 1mglo2 for cos0=1-202
	. Then we we the energy formula with $\alpha = ml^2$, $\beta = mgl$
	e.g waterin V-tube
1	7 7 - 2 - 14
	$PE = (pAy)gy = pAgy^2$ $KE = \frac{1}{2}pA(y^2)$
	a = pAl, B=2pAg => 002 = 29/1
	J. C.
	e-g torsional ascillator
	PE = 1702 - T is the torsional stiffness Nm rad"
	IVM rad"
	$KE = \frac{1}{2}I\dot{\theta}^2$ with $I = \frac{1}{2}mR^2 \Rightarrow KE = \frac{1}{4}mR^2\dot{\theta}^2$
	Then Was = =

Complex representation of SHM
i(a, t+d)
We can derive from the phasol diagram: = = 900 = Ae 1000
4) the real part of a undergoes (MM
La all of the according formulae follow
We can derive from the phasol diagram: $z = 9.0e^{i(\omega t + p)} = Ae^{i\omega t}$ 4) the real part of z undergoes SMM. 4) all of the previous formulae follow.
This expression satrifies $\frac{1}{2} + \omega^2 z = 0$
The total energy can be written as: $E = \frac{1}{2}k z ^2$
The 19 19 can be willion as: E = 3 N 181
D 1 11 . n1 1
Damped Harmonic Motion
·
Pamping is modeled as a resistive force proportional to relocity i.e mi = -k>1-bix for a spring.
i.e mi = -k>1-bix for a spring.
The general form of the damped harmonic motion eq is.
$(\dot{x} + 2\dot{x} + \omega_0^2 x = 0)$
For a spring, $S = \frac{b}{2m}$ and $\omega o^{2a} = \frac{k}{2m}$ as before. Both S and ω_o have dimensions $\frac{1}{time}$, but with diff interpretations $T = \frac{2\pi}{\omega_o}$ is the period $\omega_o = \frac{2\pi}{\omega_o}$ is a decay time
Both X and We have dimensions 1/ time but with diff interpretations
$= T = 2\pi/\omega$ is the period
- Machine T = = 10 is a decoustione
c 28 15 weeks mile
· Culditating x = Ae-Pt the mail ~eneral calching is
Substituting $x = Ae^{-pt}$, the most general solution is: $x = Ae^{(-8 - \sqrt{8^2 uo^2})t} + 8e^{(-8 + \sqrt{8^2 uo^2})t}$
x= Ae (-8 28 - 400) + Be (-8 + 28 - 400) +
when two constants fix the initial position and velocity.
Heavy damping 8>No
p is real (p= y ± / x2-cv2), so the solution is the sum of two exponentials.
the sum of two aponentials.

Became 8 LWO, $p = T \pm i\sqrt{\omega_0^2 - r^2} = 8 \pm i\omega d$ $2 = Ae^{-\delta t} = i\sqrt{\omega_0^2 - r^2} = 8 \pm i\omega d$ with $A = a_0 e^{i\phi}$ The frequency of the escillations does not change even though amplitude diminishes. Critical damping $Y = \omega_0$ Pifferent solution in this case: $sc = Ae^{-\delta t} + Bt = rt$ Fastest decaying system: no asc, and minimal friction. Comparing oscillators The logarithmic decrement measures how much the amplitude of a lightly damped oscillator ourops per cycle anti-e-xten an -e-xten Alternatively, the Quality factor Q of an oscillator is the number of radians of osc for energy to fall by a factor of	. ,	
with $A = a_0 e^{i\beta}$ with $A = a_0 e^{i\beta}$ is $X(t) = Pe(z) = a_0 e^{-3t} \cos(\omega x) + \beta$ The frequency of the escillations does not change even though amplitude diminishes. Critical damping $X = \omega_0$ Different solution in this case: $x = A e^{-3t} + \beta t e^{-3t}$ Fastast decaying system: no asc, and minimal friction. Comparing oscillators The logarithmic decrement measures how much the amplitude of a lightly damped oscillator drops per cycle $\alpha_{n+1} = e^{-3t}$ $\alpha_n = e^{-3t}$ $\alpha_n = e^{-3t}$ $\alpha_n = e^{-3t}$ $\alpha_n = e^{-3t}$ Alternatively, the Quality factor Q of an oscillator is the number of radians of osc for energy to fall by a factor of		Light damping & LWO
with $A = a_0 e^{i\beta}$ with $A = a_0 e^{i\beta}$ in the frequency of the escillations does not change even though amplitude diminishes. Critical damping $S = \omega_0$ Pifferent solution in this case: $sc = Ae^{-St} + Bt = -Yt$ Fastast decaying system: no asc, and minimal friction. Comparing oscillators The logarithmic decrement measures how much the amplitude of a lightly damped oscillator drops per cycle and e^{-Yt} an e^{-Yt} e^{-Yt} e^{-Yt} e^{-Yt} Alternatively, the Quality factor Q of an oscillator is the number of radians of osc for energy to fall by a factor of		Paris X/// a= X tiliza
with $A = a_0 e^{i\beta}$ $\therefore x(t) = Pe(z) = a_0 e^{-\partial t} \cos(\omega x t + \beta)$ The frequency of the escillations does not change even though amplitude diminishes. Critical damping $Y = \omega_0$ Pifferent solution in this case: $x = A - x t + \beta t = x t + \beta t =$		
The frequency of the escillations does not change even though amplitude diminishes. Critical damping $Y = \omega_c$ Pifferent solution in this case: $sc = Ae^{-yt} + Bt = ^{-yt}$ Fastest decaying system: no asc, and minimal friction. Comparing oscillators The logarithmic decrement measures how much the amplitude of a lightly damped oscillator drops per cycle $a_{nt1} = e^{-yt}$ an e^{-yt} e^{-yt} e^{-yt} e^{-yt} Alternatively, the Quality factor Q of an oscillator is the number of radians of osc for energy to fall by a factor of		E = Ae-8t e idwoz-82 t
The frequency of the escillations does not change even though amplitude diminishes. Critical damping $Y = \omega_s$ Pifferent solution in this case: $sc = As^{-Xt} + Bt = ^{-Yt}$ Fastest decaying system: no asc, and minimal friction. Comparing oscillators The logarithmic decrement measures how much the amplitude of a lightly damped oscillator drops per cycle and $e^{-Xt_{nr}}$ $e^{-Xt_{nr}}$ $e^{-Xt_{nr}}$ $e^{-Xt_{nr}}$ $e^{-Xt_{nr}}$ $e^{-Xt_{nr}}$ $e^{-Xt_{nr}}$ Alternatively, the Quality factor Q of an oscillator is the number of radians of osc for energy to fall by a factor of		with A = aoeig
Critical damping $Y = \omega_s$ Pifferent solution in this case: $sc = Ae^{-yt} + Bt e^{-yt}$ Fastest decaying system: no asc, and minimal friction. Comparing oscillators The logarithmic decrement measures how much the amplitude of a lightly damped oscillator drops per cycle and e^{-yt} an e^{-yt} e^{-yt} e^{-yt} Alternatively, the Quality factor Q of an oscillator is the number of radians of osc for energy to fall by a factor of		
Pifferent solution in this case: sc=Ae-8t + Bt e-8t Pastest decaying system: no asc, and minimal friction. Comparing oscillators The logarithmic decrement measures how much the amplitude of a lightly damped oscillator drops per cycle and = e-8ten 200 The logarithmic decrement measures how much the amplitude of a lightly damped oscillator drops per cycle and = e-8ten The logarithmic decrement measures how much the amplitude of a lightly damped oscillator drops per cycle and = e-8ten The logarithmic decrement measures how much the amplitude of a lightly damped oscillator drops per cycle and - e-8ten The logarithmic decrement measures how much the amplitude of a lightly damped oscillator drops per cycle and - e-8ten The logarithmic decrement measures how much the amplitude of e-8ten The logarithmic decrement measures how much the amplitude of a lightly damped oscillator drops per cycle and - e-8ten The logarithmic decrement measures how much the amplitude of a lightly damped oscillator drops per cycle and - e-8ten The logarithmic decrement measures how much the amplitude of a lightly damped oscillator drops per cycle and - e-8ten The logarithmic decrement measures how much the amplitude of a lightly damped oscillator drops per cycle and - e-8ten The logarithmic decrement measures how much the amplitude of a lightly damped oscillator drops per cycle and - e-8ten The logarithmic decrement measures how much the amplitude of a lightly damped oscillator drops per cycle and - e-8ten The logarithmic decrement measures how much the amplitude of a lightly damped oscillator drops per cycle and - e-8ten The logarithmic decrement measures how much the amplitude of a lightly damped oscillator drops per cycle and - e-8ten The logarithmic decrement measures how much the amplitude of a lightly damped oscillator drops per cycle and - e-8ten The logarithmic decrement measures how much the amplitude of a lightly damped oscillator drops per cycle and - e-8ten The logarithmic decrement measures how m		The frequency of the oscillations does not change even though amplitude diminishes.
Pifferent solution in this case: $sc = Ae^{-8t} + Bt e^{-7t}$ Pastest decaying system: no asc, and minimal friction. Comparing oscillators The logarithmic decrement measures how much the amplitude of a lightly damped oscillator drops per cycle and = e^{-8tn} = e^{-8tn} The a good oscillator has small solution. Alternatively, the Quality factor Q of an oscillator is the number of radians of osc for energy to fall by a factor of		Critical damping 8 = Wo
Comparing oscillators The logarith mic decrement measures how much the amplitude of a lightly damped oscillator drops per cycle and = e-xtn => 2000 La good oscillator has small so. Alternatively, the Quality factor Q of an oscillator is the number of radians of osc for energy to fall by a factor of		Different solution in this case: sc=Ae-8t + Bt e- rt
The logarithmic decrement measures how much the amplitude of a lightly damped oscillator drops per cycle and = e-xtn = e an = e-xtn => = 200 y and La a good oscillator has small so. Alternatively, the Quality factor Q of an oscillator is the number of radians of osc for energy to fall by a factor of		Fastest decaying system: no asc, and minimal friction.
=> 200 = 200		Comparing oscillators
=> 200 = 200		. The logarithmic decrement measures how much the
=> 200 = 200 a good oscillator has small s. Alternatively, the Quality factor Q of an oscillator is the number of radians of osc for energy to fall by a factor of		amplitude of a lightly damped oscillator drops per cycle
=> 200 = 200 and . Let a good oscillator has small so. Alternatively, the Quality factor Q of an oscillator is the number of radians of osc for energy to fall by a factor of		anti-e-8thri
Alternatively, the Quality factor Q of an oscillator is the number of radians of osc for energy to fall by a factor of		an e-8th - e
· Alternatively, the Quality factor Q of an oscillator is the number of radians of osc for energy to fall by a factor of		=> /= 200
· Alternatively, the Quality factor Q of an oscillator is the number of radians of osc for energy to fall by a factor of		and.
number of radians of osc for energy to fall by a factor of		Alternatively H. O. Alila C. L. O. C
now ver or rangems of one for energy to rain by a facion of		aumhor of codions of ass for angul to full to a little
$Q = \frac{200}{28}$ and $= \frac{200}{40}$ for good escallators, so $\Delta \approx \frac{77}{6}$		$Q = \frac{\omega_0}{28} \text{and } = \omega_0 \text{for good oscillators, so } \Delta \approx \frac{\pi}{Q}$

Forced Oscillations

 $x + 28x + \omega_0^2x = f_{coswt}$. For low-freq responce, we can ignore velocity and acc

 $x = \frac{f}{ab^2} \cos \omega t$

. For high freq response, we can ignore velocity and displacement

b oc = fcosut

· At resonance, x + worse = 0

b x = fsin(wot)

More generally: 2 + 2 > 2 + Wo2 = feint

Solved by $z = Ae^{i\omega t}$ with $A = \frac{f}{\omega n^2 - \omega^2 + 7; \gamma \omega} = a_0 e^{i\phi}$

do and & can be found using the standard methods.

Power and resonance

 $Pav = (Fv) = (6x^2) = \frac{1}{2} \frac{6}{((wo^2 - w^2)/\omega)^2 + 47^2}$

From this we can derive the wiath at half power Sw.

Who = 78+82 => Sw=28

In terms of the quality factor:

Sw _ _ _ i-e high quality oscillators have a

wo _ _ _ very narrow resonance peake.

Electrical Oscillations
<u> </u>
Cansider a showed and in a significant the
· Current starts to flow, reducing q and thu 3-
· Current starts to flow, reducing q and thus 31 _1 reducing the voltage alrep over both circuit dements 9
· Thus I is negative, so comment decreases but is
still positive, so IT and the cap discharges faster.
- When q=0, the cap begins to charge negatively, causing the current to decrease.
the current to decrease.
Thus, the system oscillates.
Rudial Care (1)
By kirchhoff's Voltage law: -LI- =0
$\Rightarrow \dot{q} + \dot{L}\dot{c} \dot{q} = c$
ie sHM with wo = /Lc.
1) cap provides 'restoring force'
4) in ductor provides inertia
Alternatively, via consenegy.
E = 2c 92 + 2 L 9 => SHM
RLC circuits
17 resistor acts as a damper because it obscipates energy
A resistor acts as a damper because it dissipates energy $E = \frac{1}{2}q\dot{q} + Lq\ddot{q} = -\dot{q}^2R \Rightarrow (\ddot{q} + L\dot{q} + L\dot{q} = 0)$
. This gives different solutions depending on the damping regime

as before. For light damping:

9=90e-Bt costadt+\$, with Q= 15 E

Alternating current

· An AC power source produces voltage V= Vocosat

. The rms voltage is given by Vrms = /(V2)

Resistor:

- I(+) = Vo cos wt P=IV = Vo cos wt

Capacitor

- Q=CV = CVocosat => I(+)= a(Vocos(at+1/2)

- current oscillates & cycle ahead of voltage
- P=VI = - { wcvo2sin(2wt)

Inductor => I(+) = Vo cos(w+-17/2)

- I makes when sign of voltage changes, i'e & cycle behind V.

- P = \frac{1}{2} \frac{\varphi_0^2}{Lw} \sin(2wt).

· We can treat osc convent/voltage/charge as the real points of complex quantities: V=Voeint, I=Ioeint with VoiTo complex

· We define impedance as the complex generalisation of resistance:

Z = vo and arg(Z) = - p.

· Resistor: Z = V = Voeiwt = R.

- Z is real because V and I in phase.

· Capacitor: $Z = \frac{V}{I} = \frac{Voeint}{i\omega (Voeint)} = \frac{1}{i\omega (Voeint)}$

· Inductor: $Z=\frac{V}{I}=\frac{V_0e^{i\omega t}}{-iV_0e^{i\omega t}}=\frac{E_{i\omega L}}{E_{i\omega L}}$

(Kirchhoff's laws apply to AC circuits with complex numbers

