Sign and signed rank test STAT 401 - Statistical Methods for Research Workers

Jarad Niemi

Iowa State University

7 September 2013

Rusty leaves data

	year1	year2	diff	>0
1	38	32	6	1
2	10	16	-6	0
3	84	57	27	1
4	36	28	8	1
5	50	55	-5	0
6	35	12	23	1
7	73	61	12	1
8	48	29	19	1

Rusty leaves data

	year1	year2	diff	>0
1	38	32	6	1
2	10	16	-6	0
3	84	57	27	1
4	36	28	8	1
5	50	55	-5	0
6	35	12	23	1
7	73	61	12	1
8	48	29	19	1

If the null hypothesis is true, then the final column should have 50/50 change of being 0 or 1.

Rusty leaves data

	year1	year2	diff	>0
1	38	32	6	1
2	10	16	-6	0
3	84	57	27	1
4	36	28	8	1
5	50	55	-5	0
6	35	12	23	1
7	73	61	12	1
8	48	29	19	1

If the null hypothesis is true, then the final column should have 50/50 change of being 0 or 1. In this example, we have 6 ones out of 8.

The sign test calculates the probability of observing this many ones (or more extreme) if the null hypothesis is true.

The sign test calculates the probability of observing this many ones (or more extreme) if the null hypothesis is true. For our one-sided hypothesis, that is the probability of observing 6, 7, or 8 ones.

The sign test calculates the probability of observing this many ones (or more extreme) if the null hypothesis is true. For our one-sided hypothesis, that is the probability of observing 6, 7, or 8 ones. This is

$$\binom{8}{6}0.5^8 + \binom{8}{7}0.5^8 + \binom{8}{8}0.5^8 = 0.14$$

The sign test calculates the probability of observing this many ones (or more extreme) if the null hypothesis is true. For our one-sided hypothesis, that is the probability of observing 6, 7, or 8 ones. This is

$$\binom{8}{6}0.5^8 + \binom{8}{7}0.5^8 + \binom{8}{8}0.5^8 = 0.14$$

Although conceptually simple, this test is not very powerful and therefore is used rarely.

Also known as the Wilcoxon signed rank test:

• Compute the difference in each pair.

- Compute the difference in each pair.
- Drop zeros from the list.

- Compute the difference in each pair.
- Drop zeros from the list.
- Order the absolute differences from smallest to largest and assign them their ranks.

- Compute the difference in each pair.
- Drop zeros from the list.
- Order the absolute differences from smallest to largest and assign them their ranks.
- Calculate *S*: the sum of the ranks from the pairs for which the difference is positive.

- Compute the difference in each pair.
- Drop zeros from the list.
- Order the absolute differences from smallest to largest and assign them their ranks.
- Calculate *S*: the sum of the ranks from the pairs for which the difference is positive.
- Calculate E[S] = n(n+1)/4 where n is the number of pairs.

- Compute the difference in each pair.
- Drop zeros from the list.
- Order the absolute differences from smallest to largest and assign them their ranks.
- Calculate S: the sum of the ranks from the pairs for which the difference is positive.
- Calculate E[S] = n(n+1)/4 where n is the number of pairs.
- Calculate $SD[S] = [n(n+1)(2n+1)/24]^{1/2}$.

- Compute the difference in each pair.
- Drop zeros from the list.
- Order the absolute differences from smallest to largest and assign them their ranks.
- Calculate S: the sum of the ranks from the pairs for which the difference is positive.
- Calculate E[S] = n(n+1)/4 where n is the number of pairs.
- Calculate $SD[S] = [n(n+1)(2n+1)/24]^{1/2}$.
- Calculate (S + c E[S])/SD[S] where c is the appropriate continuity correction.

- Compute the difference in each pair.
- Drop zeros from the list.
- Order the absolute differences from smallest to largest and assign them their ranks.
- Calculate S: the sum of the ranks from the pairs for which the difference is positive.
- Calculate E[S] = n(n+1)/4 where n is the number of pairs.
- Calculate $SD[S] = [n(n+1)(2n+1)/24]^{1/2}$.
- Calculate (S + c E[S])/SD[S] where c is the appropriate continuity correction.
- Calculate the pvalue from a standard normal table.

	year1	year2	diff	>0	absdiff	rank
5	50	55	-5	0	5	1
1	38	32	6	1	6	2.5
2	10	16	-6	0	6	2.5
4	36	28	8	1	8	4
7	73	61	12	1	12	5
8	48	29	19	1	19	6
6	35	12	23	1	23	7
3	84	57	27	1	27	8

	year1	year2	diff	>0	absdiff	rank
5	50	55	-5	0	5	1
1	38	32	6	1	6	2.5
2	10	16	-6	0	6	2.5
4	36	28	8	1	8	4
7	73	61	12	1	12	5
8	48	29	19	1	19	6
6	35	12	23	1	23	7
3	84	57	27	1	27	8

• *S* = 32.5

	year1	year2	diff	>0	absdiff	rank
5	50	55	-5	0	5	1
1	38	32	6	1	6	2.5
2	10	16	-6	0	6	2.5
4	36	28	8	1	8	4
7	73	61	12	1	12	5
8	48	29	19	1	19	6
6	35	12	23	1	23	7
3	84	57	27	1	27	8

- *S* = 32.5
- E[S] = 18

	year1	year2	diff	>0	absdiff	rank
5	50	55	-5	0	5	1
1	38	32	6	1	6	2.5
2	10	16	-6	0	6	2.5
4	36	28	8	1	8	4
7	73	61	12	1	12	5
8	48	29	19	1	19	6
6	35	12	23	1	23	7
3	84	57	27	1	27	8

- *S* = 32.5
- E[S] = 18
- SD[S] = 7.14

	year1	year2	diff	>0	absdiff	rank
5	50	55	-5	0	5	1
1	38	32	6	1	6	2.5
2	10	16	-6	0	6	2.5
4	36	28	8	1	8	4
7	73	61	12	1	12	5
8	48	29	19	1	19	6
6	35	12	23	1	23	7
3	84	57	27	1	27	8

- *S* = 32.5
- E[S] = 18
- SD[S] = 7.14
- Z = 1.96 (with continuity correction of -0.5)

	year1	year2	diff	>0	absdiff	rank
5	50	55	-5	0	5	1
1	38	32	6	1	6	2.5
2	10	16	-6	0	6	2.5
4	36	28	8	1	8	4
7	73	61	12	1	12	5
8	48	29	19	1	19	6
6	35	12	23	1	23	7
3	84	57	27	1	27	8

- *S* = 32.5
- E[S] = 18
- SD[S] = 7.14
- Z = 1.96 (with continuity correction of -0.5)
- p = 0.02

SAS code for paired nonparametric test

```
DATA leaves;
  INPUT tree year1 year2;
  diff = year1-year2;
  DATALINES;
1 38 32
2 10 16
3 84 57
4 36 28
5 50 55
6 35 12
7 73 61
8 48 29
PROC UNIVARIATE DATA=leaves;
    VAR diff;
    RUN;
```

SAS code for paired nonparametric tests

Location

The UNIVARIATE Procedure Variable: diff

Moments

8	Sum Weights	8
10.5	Sum Observations	84
12.2007026	Variance	148.857143
-0.1321468	Kurtosis	-1.2476273
1924	Corrected SS	1042
116.197167	Std Error Mean	4.31359976
	10.5 12.2007026 -0.1321468 1924	10.5 Sum Observations 12.2007026 Variance -0.1321468 Kurtosis 1924 Corrected SS

Basic Statistical Measures

Variability

Mean	10.50000	Std Deviation	12.20070
Median	10.00000	Variance	148.85714
Mode		Range	33.00000
		Interquartile Range	20.50000

Tests for Location: Mu0=0

Test	-Sta	atistic-	p Value		
Student's t	t i	2.434162	Pr > t	0.0451	
Sign	M	2	Pr >= M	0.2891	
Signed Rank	S	14.5	Pr >= S	0.0469	

Conclusion

Removal of red cedar trees within 100 yards is associated with a significant reduction in rusty apple leaves (Wilcoxon signed rank test, p=0.023).