Copies
· Fruirient subspaces (AUA 8.4)
· Applications to dynamical systems (ALA 10.4)
· To boundaries 5. de as (AIA 10.4)
· Intomogeneous Systems (ALA 10.4) · Applications to spring, mass, damper systems (ALA 10.6).
o isportations to spring, mass, anopor systems often toods.

Invariant Subspaces (ALA 8.4)
Invariant subspaces of linear maps play or key role in dynamical systems, linear iterative systems (like Markov Chairs, which well see next lecture), and control systems. Perhaps not surprisingly, the theory of invariant subspaces is built on eigenvalues and eigenvectors.
We start by defining an invariant subspace with respect to a linear transformation Let L:V-DV be a linear transformation on a vector space V. A subspace WCV is said to be invariant if LCWDEW for any WEW.
Intuitively an mariant subspace WCV is like Vgas: what happens in W stays in W! Let's see some simple examples before developing a more general theory.
Example: First some not so interesting examples: The Will is the entire space, or Willing then it is invariant under any linear map L. For LIT the identity map, any subspace WCV is invariant. Both the learned and image of L are invariant subspaces: - if we kerk then L(w)= of exert - if we kerk then L(w)= mg L (by definition of ing L)
Example: Let $V=\mathbb{R}^2$, and $L(x,y)=[2x]$. What are the invariant subspaces of U under U ? Besides $W=V=\mathbb{R}^2$ and W^2 (0), the only other type of subspace in \mathbb{R}^2 is a line. If W is the line spanned by the vector $W=(\alpha,b) \pm Q$, then $L(w)=(2\alpha,3b) \in W$ if and only if there exists $C \in \mathbb{R}$ s.e. $(2\alpha,3b)=C(\alpha,b)$, which is only possible if either $\alpha \ge 0$ or $b \ge 0$. Thus the only minimal subspace of L are either the $X-\alpha xis$ or the y-axis.
Example: Let V=18° and L(x,y)= (x+37,y). Let's see what lines W, spanned by W= (0,b) x0, are murinit under L by solving for a ceils st. L(W)= [a+3b]: c[9]
which is only possible of 5=0, i.e. the x-axis is the only married Id

Example: Let V= Th², and LCxy): (Y,x), a counterclockwise rotation by 90°.

You shall be able to convince fourth geometrically that no 1d Subspine can be invariant under but a transformation.

Subspace.

Since we will focus on cases where V=TR" our linear transformations will be defined by matrices AciBin: L(x)=Ax. In this case, we can characterize 1-2 invariant subspaces very cleanly. Proposition: A Id subspace is invariant under L(5)= Ax if and only if W= span (1) where V is an eigenvector of A. Proof: Let W= span { V} for some V £0. Then AVEW if and only if AV=XV for some scalar 7. But this means that V is an eigenvector of A with eigenualie 7. This then tells us that if A has a linearly independent eigenvectors Us - s va, (arising from either distinct or repeated eigenvalues), then every one dimensional subspace of A is of the from Wij = Span & vis. For complete matrices A, we can use these I'd invariant subspaces to build all other K-dimensional invariant subspaces, but these may be complex! Theorem: If A e Pinn is a complete matrix, then every k-dimensional complex invariant subspace is spanned by k linearly independent eigenvectors A. We won't formally prove this result, but instead give a hint as to why it might be true. Suppose W= span {vi, ve, -vk}, for vi, -vk linearly independent eigenectors of A. Then dimb=k, and any well can be written as M=Clrit --- + CKpr for Compace City. Then: AW = A(C(VI + ···+CLULE) = C(AVI + ···+ CKAKUE = C(A,VI + ···+ CKAKUE & SPON (VI), VEB >W and hence Wis marriant under the map X -> At. The challenge is to show the other direction, that if W is invariant under A then W most be sparned by Is eigenreiting of A. We refer wherested randers to proof of Thin 8-30 in MA 8-4. Some final comments before we see an example: · 1) A is a complete real matrix with all real expanditions, then the above tells us all real mariort subspaces are spanned by eigenvectors of A. · If A is real and complete, and has compex conjugate eigenvectors TT = x + cx , then the real warrant substances are started by ble & Tt3 = x and In Ext 3= 7 using a similar argument as to the one we used to find real solutions to \(\frac{1}{2} = A\frac{1}{2} \) when A had complex conjugate expensatives. · A styrtly manified argument can be applied to incomplete matrices using Endon Blacks and generalized eigenectors: we want cover those incless, but if you've Curious, you can check out MA 8.6.

Example: Consider the rotation (permutation) matrix:
$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$
It has one real eigenvalue, 7,=1, and two complex conjugate eigenvalues, 7,=1,+13 c and 7,=1,- Tei. The corresponding eigenvectors are
$\frac{V_{1}=1}{1} \qquad \frac{V_{2}=-\frac{1}{2}}{1} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{$
The complex invarient subspaces are spanned by 0, 1,2, or 3 of 1,542 1/3. There is a single I de real invariant subspace spanned by 1/2 (1,1,1), and a single I'd real mariant subspace spanned by Re(1/2)= (-1/2,-1/2,1) and Im(1/2)= (1/3/2,-1/2,0); which is the orthogonal complement to 1/1. We can interpret vi as the axis of rotation, and A acts as a 9d rutation on its orthogonal complement.
Online notes: would be great to have a matphotis widget illustrating this.
Invariant Subspaces and Linear Dynamical Systems (ALA 10:4)
Here we give a very brief preview of the ide of invariant subspaces in dynamical systems you will see this in much more detail in FSF 2000.
We call a subject SCB invariant for x=Ax if, whenever x (c)=bes then the solution x(t) & for all (>0. It turns out, invariant subspaces of A precisely characterize these subjects:
Proposition: If SCB" is an invariant subspace of A, then it is invariant under X=A>.
The proof Jollows from our solution x(+)= etx(0) = etb. Using (MPS), we
Nave \$(4) = e^{AE} b = \frac{2}{k} \cdot \frac{k}{k} \frac{k}{b} \cdot (*)
But if $b \in S$, then $Ab \in S$, $A^2b \in S$, and in general $A^bb \in S$ for any $k \ge 0$. Since overy term in (*) belongs to S , then so does their (infinite) sun ¹ , hence $\times (1) \in S$.

I this is because a subspace is a closed set, and so we are allowed to take in funte sume.

We will focus on the case of complete matrices A with real eigenvalues and offencetors: extensions to the general case are similar, and rely on using Jurdon Blacks and taking Real/Imaginary parts of Complex agencetors. Suppose AETR's is complete with real eyenvalues/eigenvectors (7, vi), ..., (2, vn). Let's split the eigenvectors according to whether 2; 20, 7; 20, 7; 20, and define the following Musimut Subspaces: · The stable subspace SCIR sparned by V: such that 7:20 . The center subspace CCIB sparned by vi such that 7: 20 . The unstable subspace UCIR sparmed by it such that 7:>0 These subspaces are important, as they describe the larg from behavior of solutions with initial conditions within them. Before alucidating this observation, we make the following Comments: . If there are no eigenvalues of the specified type, we set the corresponding subspace to EUZ. SNC=SNU=CM=101, i.e., their pairwise intersections are trivial · St CtN = 1B', 20., any vector yells can be uniquely written as a Sum V= 2+5+4 with 2005, EEC, yell. homemberry that to each eigenvalue/vector pair (7; vi) we can associate an eigensolution $X_{\tilde{c}}(t) = e^{2it}v_{\tilde{c}}$, we can characterize the Jollany lay term behavior of Solutions to f=Az. Theorem: Let ACIRMO be a complete matrix with real eigendues/eigenvectus. Let Q \$ b \in TR, and \(\frac{1}{2} \) be a solution to \(\frac{1}{2} = A\frac{1}{2} \), \(\frac{1}{2} \). Then 5, and hence X(+) are in: (i) The stable subspace S of and only if 1x(+) =0 as (-) as (-) The center subspace C of and only if x(+) = b for all EEIB (25) The unshall subspace U if and only if 112 (+311-30 as E-30) This theorem tells us what subjets of TB' from which we should pick initial conditions = (0)= by we want our solutions to decay to zero (Stasle) not move (center), or blow up to infinity (unstable). This was very important

applications in analyzing the behavior of dynamical systems, which we'll explore

in the case study online.

We replace our initial suess with X(t) = et V(t) where V(t) is a vector
We replace our initial guess with \$(+) = et v(+) where V(+) is a vector unlied function to be determined by compute the derentive x as:
$\dot{x} = \frac{d}{dt} \left(e^{At} v \right) = \frac{d}{dt} \left(e^{At} v \right) v + e^{At} dv = Ae^{At} v + e^{At} \dot{v} = Ax + e^{At} \dot{v}$
At at
from which we conclude that V=e +. We can integrate both sites to
for which we conclude that $V = e^{-At} f$. We can integrate both sides to obtain, via the Fundamental Theorem of Calculus, that!
VA)= V(b) + JE=Arf(c)dz, where V(w)=e=bAx(b)
This is the last piece we needed to write the forest solution to the intimegeness patial whe problem.
the intercers intil who wild who
Theorem: The solution to the mitial value problem
======================================
Example Online rotes please transcribe Example 10.36, but repaire a with X for retation, and compute eft via diagonalization. Make sure to highlight £(1)=[0]
X for relation, and compute effection diagonalization. Make sure to
hamant P(1)=10)
Let J
Application to Mechanical Systems (ALA (U.6)
I also so a la constanti de la
We'll start with the simplest possible mechanical system: a single mass corrected
to a fixed support by a spring. Assuming no external force, Mountain's law of
Force = Mass x Acceleration results in the Johnny homogeneous second order
scalar equation:
mp+kp=0 (SM), $m>0$ mass
120 Spring Constant
where p(+) eTB is the mass' position over time, p its velocity, and p its accoleration
Our first order of business is to correct (SM) to a first order System. To do so, we define the vector XEBP as
10 do so, we define the vector X C/K ors
X = \(\sigma \)
X=TP), i.e., we stock position and velocity.
LF 7
The w- (0) - TO 1) TO 1) TO 1) V 1
Then $x = \begin{bmatrix} p \\ -kp \end{bmatrix} = \begin{bmatrix} p \\ -k \end{bmatrix} = \begin{bmatrix} -k \\ -k \end{bmatrix} = \begin{bmatrix} -k \\ -k \end{bmatrix}$
The Time of the of
Thus, the solutions to (SM) can be obtained by (colory at the first component
INJS, THE SOUTHING TO COITS CON DE OBJENEUR BY LOOKING OF THE RIPS & CONDINENT
of $X(t) = (p(t), p(t))$.

The matrix A has imaginary eigenvalues $\Lambda_f = \pm i \int_{\mathbb{R}} \mathbb{R}$ (what physical intuition might have suggested this?), with corresponding eigenvectors V+ = 1) + 0 0 1 Therefore, Solutions are weighted suns of $x_{\pm}(t) = e^{i\sqrt{\frac{1}{2}}} \pm i \left[0\right] = \left(\cos\left(\sqrt{\frac{1}{2}}\right) + i \sin\left(\frac{1}{2}\right)\right) \left(\left(\sqrt{\frac{1}{2}}\right)\right)$ = [cos(Jkt)] + i [sin(Jkt)], = [cos(Jkt)] + i [cos(Jkt)], but, recolling me want real solutions, we write the general solution as X(+) = 9 Re {x+(+)} + 6 Im {x+(+)} = C, [ces(JEE)] + C2 [sin(JEE)] = [cos(J=+) sin(J=+) [Ci] = [cos(J=+) sin(J=+) [p60] [-sin(J=+) cos(J=+)][c2] [-sin(J=+) cos(J=+)][p60] where $x(c) = [c_1] = [p(c)]$. Thus we see that a single mass connected to a fixed support by a spring oscillates with frequency JE in the assence of external forces like friction or damping. Note, we could also have compted x(+) = eff xcos by directly computing the matrix exponential from the power series definition CMPS), Next, we madify our problem to make it as bit more realistic to add friction, which is proportional to p. Newton's law then becomes: MP+ Pp+kp=O. Definy x = (Pip) as before, our first order reformulation becomes: $\times = \left| \begin{array}{c} 1 \\ -1 \\ \end{array} \right| \left| \begin{array}{c} p \\ p \end{array} \right| = A \times .$

eigenvalues of A are the solutions to the Characteristic equation: m72+P7+12=0. (4) there are three possible cases: Overdamped: If B>25mk then the equation (&) has two regative real roots 7+=- B+ JB2-4mk) and this the solution is given by a linear combination of two decaying exponentials x (+)= q e V+ + C2 e V-, for Ut the corresponding real eigenvectors of the Such a system has so much friction that it no larger oscillates! Underdamped: If OC PC 25mk, then (+) has two complex-conjugate roots: 7=-B+iV4nk-p°=:-M±cv. With a little bit of effort we can compute the matrix exponential here as eft = ent Tosyt sinver --sinvt cosyts so that $\pm (t)^2 \in \mathbb{Z}$ [cas $vt = sinvt | \int p(o) |$]. In contrast to the overdamped $\left[-sinvt = casrt | \int p(o) |$] Setting we see here that oscillations continue at fixed frequency $V = (\frac{k}{m} - \frac{\hbar^2}{4m^2})$ while the entire trajectory also dearys exponentially at role M= 10. Thus for small friction, we eventually stop moving but continue to oscillate as we go to the origin. Critically damped the borderine case occurs when $P = P_{k} = 2\sqrt{mk}$, in which case our matrix A has one eigenable $\lambda = -B$, and is similar to the Jordan black Jy = 1-Man 1

