Expanding polynomials with additive structure

Sanjana Das, Cosmin Pohoata, and Adam Sheffer

Background

Expanding polynomials

A polynomial $f \in \mathbb{R}[x, y]$ is **expanding** if for any sets $A, B \subseteq \mathbb{R}$ of similar size, the set

$$f(A, B) = \{ f(a, b) \mid a \in A, b \in B \}$$

is much larger — i.e., if |A| = |B| = n, then $|f(A, B)| = \omega(n)$.

- ► For example, f(x,y) = x + y is not expanding if we take $A = B = \{1, 2, ..., n\}$, then |f(A, B)| = 2n 1.
- ► Similarly, f(x,y) = (x+1)y is not expanding we can take $A = \{2^1 1, 2^2 1, \dots, 2^n 1\}$ and $B = \{2^1, 2^2, \dots, 2^n\}$.
- ► It turns out that all polynomials which don't look like these are expanding! Elekes—Ronyai [1] showed that all polynomials are expanding except those of the forms

$$f(x,y) = g(x) + h(y) \text{ or } f(x,y) = g(x)h(y).$$

For example, $f(x, y) = x^2 + xy$ is expanding.

Once we know which polynomials are expanding, we can try to prove *quantitative* bounds on expansion.

- ► Raz–Sharir–Solymosi [2] proved that if f isn't of one of these special forms, then $|f(A,B)| \gtrsim |A|^{2/3} |B|^{2/3}$.
- Solymosi–Zahl [3] improved this to $|f(A, B)| \gtrsim |A|^{3/4} |B|^{3/4}$.

Distinct distances between two lines

Expanding polynomials have a wide variety of applications. For example: Given two lines ℓ_1 and ℓ_2 , if we place a set of n points \mathcal{P}_1 on ℓ_1 and \mathcal{P}_2 on ℓ_2 , what's the minimum possible number of distinct distances between \mathcal{P}_1 and \mathcal{P}_2 ?

▶ If the lines are parallel or orthogonal, there are constructions with roughly n distances. Otherwise, the best construction we know has roughly $n^2/\sqrt{\log n}$ distances.

▶ If we call the lines y = 0 and x = sy, this problem is about the expansion of $f(x, y) = (x - sy)^2 + y^2$.

► The best lower bound we know is $n^{3/2}$; this comes from the Solymosi–Zahl expanding polynomials bound.

Our work

Question: If we know A and B have additive structure, can we prove better expansion bounds?

► We think of *A* as additively structured if its *sumset*

$$A + A = \{a_1 + a_2 \mid a_1, a_2 \in A\}$$

is small. For example, an arithmetic progression (which is very structured) has the smallest possible sumset, while a set of arbitrary numbers (which is very unstructured) has the largest possible sumset.

- ▶ So we want to prove better lower bounds on |f(A, B)| when A + A and B + B are small.
- ▶ We do this for polynomials of the form f(x,y) = g(x + p(y)) + h(y). (This includes polynomials f(x,y) = g(x) + h(y), which are not expanding in general.)

Theorem (Das-Pohoata-Sheffer 2025+)

Let f be a polynomial of the form f(x,y) = g(x + p(y)) + h(y) where $\deg g, \deg h \ge 2$, and let A and B be sets of similar size such that A + A and B + B are reasonably small. Then

$$|f(A,B)| \gtrsim \frac{|A|^{256/121-o(1)}|B|^{74/121-o(1)}}{|A+A|^{108/121}|B+B|^{24/121}}.$$

For example, when |A| = |B|, $|A + A| \approx |A|$, and $|B + B| \approx |B|$, this gives

$$|f(A,B)| \gtrsim |A|^{18/11-o(1)}$$
.

Some applications

Distinct distances between two lines

In the above theorem, we can replace A + A with

$$A - A = \{a_1 - a_2 \mid a_1, a_2 \in A\}.$$

Geometrically, |A - A| is twice the number of distinct distances between points in \mathcal{P}_1 , and likewise for |B - B| and \mathcal{P}_2 .

So our bound, applied to

$$f(x,y)=(x-sy)^2+y^2,$$

says that if there's few distances between points on the *same* line, then there must be lots of distances between points on *different* lines.

Corollary

Suppose ℓ_1 and ℓ_2 are not parallel, and $\mathcal{P}_1 \subseteq \ell_1$ and $\mathcal{P}_2 \subseteq \ell_2$ are sets of n points such that the numbers of distinct distances within \mathcal{P}_1 and within \mathcal{P}_2 are at most m. Then

$$\#(ext{distances between } \mathcal{P}_1 ext{ and } \mathcal{P}_2) \gtrsim rac{n^{30/11-o(1)}}{m^{12/11}}.$$

This bound is an improvement on $n^{3/2}$ when $n \le m \le n^{9/8-o(1)}$. (It also applies when the lines are orthogonal.)

Sum-product-type bounds

The **sum-product phenomenon** is that a set A can't be both additively and multiplicatively structured: A + A and $A \cdot A$ can't both be small.

► Erdős and Szemerédi showed that we always have

$$\max\{|A+A|,|A\cdot A|\} \gtrsim |A|^{1+c}$$

for some absolute constant c > 0, and conjectured that

$$\max\{|A+A|,|A\cdot A|\}\gtrsim |A|^{2-o(1)}$$
.

► The current best bound shows that we can take c slightly greater than 1/3.

This holds more generally — for any convex function g, the sets A and g(A) can't both be very additively structured. (The sum-product problem corresponds to $g(x) = -\log x$.)

The best bound, due to Stevens and Warren [4], was $m_{\text{av}}(1/4) + \sigma(4) + \sigma(4) + \sigma(4) > 1/4^{1/38} - o(1)$

$$\mathsf{max}\{|A+A|\,,|g(A)+g(A)|\}\gtrsim |A|^{49/38-o(1)}\,.$$

▶ We get a slight improvement when g is a polynomial, by taking f(x,y) = g(x) + g(y) and A = B in our theorem.

Corollary

For any polynomial g with $\deg g \geq 2$,

$$\max\{|A+A|\,,|g(A)+g(A)|\}\gtrsim |A|^{30/23-o(1)}\,.$$

(We have $49/38 \approx 1.289$ and $30/23 \approx 1.304$.)

Proof ideas

Previous work on expanding polynomials

► Raz, Sharir, and Solymosi [2] looked at the **energy**

$$\#\{(a_1,b_1,a_2,b_2)\mid f(a_1,b_1)=f(a_2,b_2)\}.$$

If f(A, B) is small, then this energy is large; so it's enough to prove an *upper* bound on the energy.

They turned this into an **incidence geometry** problem by using (a_1, a_2) to define a point, and (b_1, b_2) to define a curve.

Then the energy is the number of incidences between these points and curves (point-curve pairs where the point lies on the curve); tools from incidence geometry provide an upper bound on this number.

- Solymosi and Zahl [3] improved this with **proximity**: they only considered 4-tuples with a_1 close to a_2 and b_1 to b_2 .
- This shrinks the number of points and curves, so it shrinks the upper bound. It also shrinks the lower bound, but by less this is because among solutions to $f(a_1, b_1) = f(a_2, b_2)$, the two proximity conditions are very well-correlated.

Incorporating additive structure

► Each $a \in A$ can be written as $\alpha - a'$ with $\alpha \in A + A$ and $a' \in A$ in at least |A| ways. So if the energy is large and A + A is small, there are lots of solutions to

$$f(\alpha_1 - a_1', b_1) = f(\alpha_2 - a_2', b_2).$$

- We also upper-bound the number of solutions using tools from incidence geometry, using (α_1, α_2) to define a point and (a'_1, a'_2, b_1, b_2) to define a curve.
- ▶ We incorporate proximity by restricting to 6-tuples where α_1 is close to α_2 , a'_1 to a'_2 , and b_1 to b_2 .

Acknowledgements

This project was done at the NYC Discrete Math REU, with funding from the NSF and Jane Street.

References

[1] György Elekes and Lajos Rónyai.

A combinatorial problem on polynomials and rational functions. Journal of Combinatorial Theory, Series A, 89:1–20, 2000.

American Journal of Mathematics, 138(4):1029-1065, 2016.

[2] Orit E. Raz, Micha Sharir, and József Solymosi.
Polynomials vanishing on grids: the Elekes–Rónyai problem revisited.

[3] Jozsef Solymosi and Joshua Zahl.

Improved Elekes–Szabó type estimates using proximity. *Journal of Combinatorial Theory, Series A*, 201(105813), 2024.

[4] Sophie Stevens and Audie Warren.

On sum sets and convex functions.

The Electronic Journal of Combinatorics, 29, 2022.