

=====

Sequence Listing could not be accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Keisha Douglas

Timestamp: [year=2008; month=10; day=22; hr=13; min=58; sec=59; ms=24;]

=====

Reviewer Comments:

<220>

<221> modified_base

<222> 4

<223> N = tetrafluoroindole

<400> 15

ctgntagcct ctggatttga

20

The above "N" response for sequence id# 15 is invalid. FYI, "N" can only represent a single nucleotide. Please correct the remaining sequences showing similar errors.

Application No: 10592919 Version No: 3.0

Input Set:

Output Set:

Started: 2008-09-22 14:39:31.674
Finished: 2008-09-22 14:39:32.993
Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 319 ms
Total Warnings: 47
Total Errors: 0
No. of SeqIDs Defined: 48
Actual SeqID Count: 48

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (1)
W 213	Artificial or Unknown found in <213> in SEQ ID (2)
W 213	Artificial or Unknown found in <213> in SEQ ID (3)
W 213	Artificial or Unknown found in <213> in SEQ ID (5)
W 213	Artificial or Unknown found in <213> in SEQ ID (6)
W 213	Artificial or Unknown found in <213> in SEQ ID (7)
W 213	Artificial or Unknown found in <213> in SEQ ID (8)
W 251	Found intentionally skipped sequence in SEQID (9)
W 213	Artificial or Unknown found in <213> in SEQ ID (10)
W 213	Artificial or Unknown found in <213> in SEQ ID (11)
W 213	Artificial or Unknown found in <213> in SEQ ID (12)
W 213	Artificial or Unknown found in <213> in SEQ ID (13)
W 213	Artificial or Unknown found in <213> in SEQ ID (14)
W 213	Artificial or Unknown found in <213> in SEQ ID (15)
W 213	Artificial or Unknown found in <213> in SEQ ID (16)
W 213	Artificial or Unknown found in <213> in SEQ ID (17)
W 213	Artificial or Unknown found in <213> in SEQ ID (18)
W 213	Artificial or Unknown found in <213> in SEQ ID (19)
W 213	Artificial or Unknown found in <213> in SEQ ID (20)
W 213	Artificial or Unknown found in <213> in SEQ ID (21)

Input Set:

Output Set:

Started: 2008-09-22 14:39:31.674
Finished: 2008-09-22 14:39:32.993
Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 319 ms
Total Warnings: 47
Total Errors: 0
No. of SeqIDs Defined: 48
Actual SeqID Count: 48

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (22) This error has occurred more than 20 times, will not be displayed

SEQUENCE LISTING

<110> Michael, T. Migawa
Walter F. Lima
Eric E. Swayze
Joshua Nichols
Hongjiang Wu
Thazha P. Prakash
Tadeusz Krzysztof Wyrzykiewicz
Balkrishen Bhat
Stanley T. Crooke

<120> COMPOSITIONS AND METHODS FOR OPTIMIZING
CLEAVAGE OF RNA BY RNASE H

<130> CORE0037USA

<140> 10592919
<141> 2008-09-22

<150> PCT/US2005/008428

<151> 2005-03-15

<150> 60/609,516
<151> 2004-09-13

<150> 60/567,016
<151> 2004-04-29

<150> 60/553,646
<151> 2004-03-15

<160> 48

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<400> 1
ctacgctttc cacgcacagt 20

<210> 2
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<400> 2
agtttaggtc tccgatcg 20

<210> 3
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<400> 3
ctgctagcct ctggatttga 20

<210> 4
<211> 2160
<212> DNA
<213> Mus musculus

<400> 4
ggcgccctgc tctccggcg gggcgccgga gggggcgccc tggccggcgc acggtgatgt 60
ggcgggactc tttgtgcact gcggcaggat acgcgttgg gcgtcgggac gggctgcgc 120
tcagctctct cctctcgaa gctgcagcca tcatggaaat ttgagatgt agccgctgtg 180
aggccaggcc cggcgccaggc gagggagatg agagacggcg gggccacgg cccagagccc 240
ctctcagcgc ctgtgagcag ccgcggggc agcgcctcg gggagccggc cggcgccgg 300
cggcggcagc ggcggcgcc ctcgcctct cgtcgctgt tctaaccggg cagcttctga 360
gcagcttcgg agagagacgg tggagaagc cgtggctcg agcgggagcc ggcgcaggct 420
cggcggctgc acctccccgt cctggagcgg gggggagaag cggcggcgcc ggccgcggct 480
ccggggaggc ggtcgagtc gcctgtcacc attgccaggc ctggaaacgc cggagatgt 540
ctctctcccc ttctcctgcc tccaacacgg cggcggcgcc ggcggcacgt ccagggaccc 600
ggccgggtgt taagcctccc gtccggcgcc gccgcacccc ccctggcccg ggctccggag 660
gcgcggcggag gaggcagccg ctgcgaggat tatccgtctt ctccccattc cgctgcctcg 720
gctgccaggc ctctggctgc tgaggagaag caggccagt ctctgcaacc atccagcagc 780
cgccgcagca gccattaccc ggctgcggc cagggccaag cggcagcaga gcgaggggca 840
tcagcgaccg ccaagtccag agccatttcc atcctgcaga agaagcctcg ccaccagcag 900
cttctgccat ctctctcctc cttttcttc agccacaggc tcccagacat gacagccatc 960
atcaaagaga tcgttagcag aaacaaaagg agatatacg agatggatt cgacttagac 1020
ttgacctata tttatccaaa tattattgt atgggatttc ctgcagaaag acttgaaggt 1080
gtatacagga acaatattga tcatgttagta aggttttgg attcaaagca taaaaaccat 1140
tacaagatatacaatctatg tgctgagaga cattatgaca ccgcatttatt taactgcaga 1200
gttgcacagt atcctttga agaccataac ccaccacagc tagaacttat caaacccttc 1260
tgtgaagatc ttgaccaatg gctaagtgaa gatgacaatc atgtgcagc aattcactgt 1320
aaagctggaa agggacggac tgggtgtatg atttgcatttatttgcata tcggggcaaa 1380
tttttaaagg cacaagaggc cctagatttt tatggggaaatg taaggaccag agacaaaaag 1440
ggagtcacaa ttcccagtca gaggcgctat gtatattatt atagctaccc gctaaaaaat 1500
cacctggatt acagacccgt ggcactgctg tttcacaaga tcatgtttga aactattcca 1560
atgttcagtg gcggaaacttg caatcctcag tttgtggctt gccagctaaa ggtgaagata 1620
tattcctcca attcaggacc cacgcggcg gaggacaagt tcatgtactt tgatccct 1680
cagccattgc ctgtgtgtgg tcatgtcaaa gtagatgttct tccacaaaca gaacaagatg 1740
ctcaaaaagg acaaaaatgtt tcactttgg gtaaatacgt tcttcataacc aggaccagag 1800
gaaacctcag aaaaatgtga aatgaaatgtt ctgtgtgtac agggaaatcga tagcattgc 1860
agtatagagc gtgcagataa tgacaaggag tatcttgcac tcaccctaacc aaaaaacgt 1920
cttgacaaag caaacaaaga caaggccaaac cgataacttct ctccaaattt taaggtgaaa 1980
ctataacttta caaaaacagt agaggagccaa tcaaataccag aggctagcag ttcaacttct 2040
gtgactccag atgttagtga caatgaaccc gatcattata gatattctga caccactgac 2100
tctgatccag agaatgaacc ttttgcgtt gatcagcatt cacaattac aaaaatgt 2160

<210> 5
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<400> 5
atgacaatca tggcagca attc 24

<210> 6
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<400> 6
cgatgcata aatatgcaca aatca 25

<210> 7
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<400> 7
ctgtaaagct ggaaaggac ggactgg 28

<210> 8
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<400> 8
ccttcctga aggttcc 20

<210> 9

<400> 9
000

<210> 10
<211> 12
<212> RNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<400> 10
cgcgaaauucg cg 12

<210> 11
<211> 12
<212> RNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<400> 11
gcgcuuuaagc gc 12

<210> 12
<211> 19
<212> RNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<400> 12
cgagaggcgg acgggaccg 19

<210> 13
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> misc_feature
<222> 1-19
<223> Bases at these positions are RNA

<400> 13
cgagaggcgg acgggaccgt t 21

<210> 14
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> misc_feature
<222> 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14,
16, 18, 19
<223> Bases at these positions are RNA

<400> 14

cggccccgtc cgcctctcg t

21

<210> 15

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide

<220>

<221> modified_base

<222> 4

<223> N = tetrafluoroindole

<400> 15

ctgntagcct ctggatttga

20

<210> 16

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide

<220>

<221> modified_base

<222> 5

<223> N = tetrafluoroindole

<400> 16

ctgcnagcct ctggatttga

20

<210> 17

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide

<220>

<221> modified_base

<222> 6

<223> N = tetrafluoroindole

<400> 17

ctgctngcct ctggatttga

20

<210> 18

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide

<220>
<221> modified_base
<222> 7
<223> N = tetrafluoroindole

<400> 18
ctgctancct ctggatttga 20

<210> 19
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> modified_base
<222> 8
<223> N = tetrafluoroindole

<400> 19
ctgctagnct ctggatttga 20

<210> 20
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> modified_base
<222> 10
<223> N = tetrafluoroindole

<400> 20
ctgctagccn ctggatttga 20

<210> 21
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> modified_base
<222> 5
<223> N = N-3-methyl-2'MOE-thymidine

<400> 21
ctgcnagcct ctggatttga 20

<210> 22
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> modified_base
<222> 17
<223> N = tetrafluoroindole

<400> 22
ctgctagcct ctggatntga 20

<210> 23
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> modified_base
<222> 16
<223> N = tetrafluoroindole

<400> 23
ctgctagcct ctgganttga 20

<210> 24
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> modified_base
<222> 15
<223> N = tetrafluoroindole

<400> 24
ctgctagcct ctggntttga 20

<210> 25
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>

<221> modified_base
<222> 14
<223> N = tetrafluoroindole

<400> 25
ctgctagcct ctgnatttga 20

<210> 26
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> modified_base
<222> 13
<223> N = tetrafluoroindole

<400> 26
ctgctagcct ctngatttga 20

<210> 27
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> modified_base
<222> 5, 15
<223> N = tetrafluoroindole

<400> 27
ctgcnagcct ctggntttga 20

<210> 28
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> modified_base
<222> 16
<223> N = N-3-methyl-2'MOE-thymidine

<400> 28
ctgctagcct ctgganttga 20

<210> 29
<211> 20

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> modified_base
<222> 7
<223> N = 2'-ara-fluorothymidine or pseudouridine or
2'-fluorothymidine or 2-thiouridine or
2'-S-methylthymidine or 4'-methylthymidine or
3'-methylthymidine

<400> 29
ctacgcnttc cacgcacagt 20

<210> 30
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> modified_base
<222> 8
<223> 2'-ara-fluorothymidine or pseudouridine or
2'-fluorothymidine or 2-thiouridine or
2'-S-methylthymidine or 4'-methylthymidine or
3'-methylthymidine

<400> 30
ctacgctntc cacgcacagt 20

<210> 31
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> modified_base
<222> 9
<223> 2'-ara-fluorothymidine or pseudouridine or
2'-fluorothymidine or 2-thiouridine or
2'-S-methylthymidine or 4'-methylthymidine or
3'-methylthymidine or abasic nucleotide or 2,4-F-tolyl

<400> 31
ctacgcttnc cacgcacagt 20

<210> 32
<211> 20

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> modified_base
<222> 10
<223> 2'-ara-fluorocytidine or abasic nucleotide or
2,4-F-tolyl

<400> 32
ctacgctttn cacgcacagt 20

<210> 33
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> modified_base
<222> 11
<223> abasic nucleotide or 2,4-F-tolyl

<400> 33
ctacgctttc nacgcacagt 20

<210> 34
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> modified_base
<222> 12
<223> adenine with propyl linker or adenine with butyl
linker or adenine with pentyl linker or
tetrahydrofuran or 4-Me-ben

<400> 34
ctacgctttc cnccgcacagt 20

<210> 35
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> modified_base
<222> 13
<223> 2'-ara-fluorocytidine

<400> 35
ctacgctttc cangcacagt 20

<210> 36
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> modified_base
<222> 14
<223> guanine with propyl linker or tetrahydrofuran or
gancyclovir

<400> 36
ctacgctttc cacncacagt 20

<210> 37
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> modified_base
<222> 15
<223> 2'-ara-fluorocytidine or cytidine with propyl
linker or cytidine with butyl linker or cytidine
with pentyl linker

<400> 37
ctacgctttc cacgnacagt 20

<210> 38
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> modified_base
<222> 4
<223> N= Tetraflouroindole

<400> 38

agtnttaggtc tccgatcg_c 20

<210> 39

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide

<220>

<221> modified_base

<222> 5

<223> N= Tetraflouroindole or N=
2,3,4,5-tetraflourophenyl

<400> 39

agttnagg_tc tccgatcg_c 20

<210> 40

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide

<220>

<221> modified_base

<222> 6

<223> N= Tetraflouroindole or N=
2,3,4,5-tetraflourophenyl

<400> 40

agtttnggtc tccgatcg_c 20

<210> 41

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide

<220>

<221> modified_base

<222> 7

<223> N= Tetraflouroindole

<400> 41

agtttangtc tccgatcg_c 20

<210> 42

<211> 20

<212> DNA

<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> modified_base
<222> 8
<223> N= Tetraflouroindole

<400> 42
agttagntc tccgatcg 20
tc

<210> 43
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> modified_base
<222> 13
<223> N= Tetraflouroindole

<400> 43
agttaggtc tcngatcg 20
tc

<210> 44
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> modified_base
<222> 14
<223> N= Tetraflouroindole

<400> 44
agttaggtc tccnatcg 20
tc

<210> 45
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> modified_base
<222> 15
<223> N= Tetraflouroindole

<400> 45

agtttaggtc tccgntcgtc 20

<210> 46
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> modified_base
<222> 16
<223> N= Tetraflouroindole

<400> 46
agtttaggtc tccgancgtc 20

<210> 47
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> modified_base
<222> 17
<223> N= Tetraflouroindole

<400> 47
agtttaggtc tccgatngtc 20

<210> 48
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide

<220>
<221> modified_base
<222> 6, 16
<223> N= Tetraflouroindole

<400> 48
agttnnggtc tccgancgtc 20