- NLP Paper review -

Sequence to Sequence Learning with Neural Networks

인천대학교 컴퓨터공학부 강병하

논문소개

Ilya Sutskever Google

Oriol Vinyals Google

Quoc V. Le Google ilyasu@google.com vinyals@google.com qvl@google.com

- **Sequence to Sequence Learning with Neural Networks** (NIPS 2014)
- 구글팀에서 발표
- 19438회 인용 (2022/7/28 기준)
- RNN 기반(LSTM) Sequence to Sequence 아키텍처를 활용한 기계 번역 (영어→프랑스어)
- 『Attention is All you Need 』(NIPS 2017)이 발표되기 전까지 기계 번역 등의 시퀀스 문제를 해결한 주역

Sequence to Sequence Examples

1. Speech recognition(음성 인식)

Sequence to Sequence Examples

2. Question answering(질의 응답)

Q: 몸무게가 22t인 암컷 향고래가 500kg에 달하는 대왕 오징어를 먹고 6시간 뒤에 1.3t 알을 낳았다면 이 암컷 향고래의 몸무게는 얼마인가?

A: 고래는 알을 낳을 수 없다.

<질문>

<대답>

Sequence to Sequence Examples

3. Machine Translation(기계 번역)

"how are you?"

"Comment vas-tu?"

<영어>

<프랑스어>

Sequence to Sequence Problems

1. 입력 시퀀스와 출력 시퀀스의 길이가 제각각 → 1 대 1로 매핑되지 않음

- 2. 입력 시퀀스와 출력 시퀀스의 영역(domain)이 다름 -> 각 영역에 대한 표현 방법 학습 필요
 - 음성 → 텍스트
 - 질문 → 대답
 - 영어 → 프랑스어

RNN

시퀀스와 시퀀스를 매핑하는 데 RNN이 사용됨.

다대다 RNN(Many-to-many)

$$y_t = W^{\mathrm{yh}} h_t$$

$$h_t = \operatorname{sigm}\left(W^{\operatorname{hx}}x_t + W^{\operatorname{hh}}h_{t-1}\right)$$

RNN의 한계

However, it is not clear how to apply an RNN to problems whose input and the output sequences have different lengths with complicated and non-monotonic relationships.

Watch? (X) 'Top Gun' movie Yt h_{t-1} Xt 영화 '탑건' 봤어?

Did you watch the movie "Top Gun"? (O)

→ 기본 RNN 하나만으로 서로 다른 영역의 시퀀스를 매핑하기 어렵다. 영역마다 전혀 다른 표현 방식(순서)과 시퀀스 길이를 가지기 때문

Seq2Seq:모델

인코더 RNN과 디코더 RNN으로 구성

Seq2Seq:모델

LSTM(Long Short-Term Memory)

장기 의존성(long-term dependencies) 대안 RNN에 <u>긴 시간 동안의 정보</u>를 기억하는 Cell state 추가

<forget gate>
Cell State에서 어떤 정보를 버릴까?

<input gate>

새로운 정보 중 어떤 것을

Cell state에 저장할까?

- 업데이트 된 Ct출력
- Cell State의 어느 부분을 ht로 내보낼까?

LSTM in Seq2Seq

we used two different LSTMs: one for the input sequence and another for the output sequence.

• 서로 다른 파라미터를 가지는 LSTM이 인코더와 디코더에 사용됨

We used deep LSTMs with 4 layers,

• 4개의 은닉층을 가진 깊은 LSTM 사용

each additional layer reduced perplexity by nearly 10%,

• 추가된 각 은닉층마다 perplexity 10% 감소

헷갈리는 정도 (몇 개의 선택지를 가지고 고민하고 있는지)

Seq2Seq:모델

Background - 언어 모델(Language model)

단어 시퀀스에 확률을 할당하는 모델

- → 가장 자연스러운 단어 시퀀스를 찾는 것이 목적
- 통계를 이용한 방법 (SMT)
- 인공 신경망을 이용한 방법

p(나는 탑건을 재밌게 봤다) > p(나는 탑건을 재밌게 보였다)

확률을 어떻게 할당할까?

→ 이전 단어들이 주어졌을 때, 모델이 **다음 단어 예측** 하도록 함

Background - 언어 모델(Language model)

p(나는 탑건을 재밌게 봤다) = p(나는, 탑건을, 재밌게, 봤다)

• 나는 탑건을 재밌게 봤다

 $p(\text{봤다} \mid \text{나는, 탑건을, 재밌게}) \rightarrow \text{조건부 확률}$

p(나는 탑건을 재밌게 봤다)

$$P(W) = P(w_1, w_2, w_3, w_4, w_5, \dots w_n) = \prod_{i=1}^n P(w_i | w_1, \dots, w_{i-1})$$

Seq2Seq: 모델의 목표 공식(formulation)

Seq2Seq:모델의목표공식(formulation)

$$p(y_1, \dots, y_{T'} | x_1, \dots, x_T) = \prod_{t=1}^{T'} p(y_t | v, y_1, \dots, y_{t-1})$$

In this equation, each $p(y_t|v,y_1,\ldots,y_{t-1})$ distribution is represented with a softmax e

Seq2Seq: Training objective

다켓 문장(올바른 번역)
$$1/|\mathcal{S}| \sum_{\substack{(T,S) \in \mathcal{S} \\ \hat{\mathcal{E}}}} \log p(T|S)$$

- 소스 문장에 대한 타겟 문장의 로그 확률을 최대화하는 것이 목표
- 평균적으로 높은 성능을 위해 훈련 세트로 로그 확률의 총합을 나눔(확률의 평균)

$$\hat{T} = \arg\max_{T} p(T|S)$$

We search for the most likely translation using a simple left-to-right beam search decoder

Background - Greedy Search

각 타임스텝마다 가장 가능성(확률)이 높은 단어를 선택

• Did you watch the

0.48 movie0.12 happy0.26 soccer0.05 run0.45 sport

확률 분포 상에서 상위 2등은 제외

→ 확률이 근소한 차이라면 2등이 올바른 예측일 경우도 고려해야 한다.

Background - Beam Search

각 타임스텝마다 확률이 높은 k개를 골라 누적확률이 높은 시퀀스를 선택

- k^2 의 자식 노드 중 누적확률 순으로 k개 선택
- 뽑힌 k개의 각 노드에서 다시 k개의 자식 노드 선택
- <EOS>를 만난 빔이 k개가 될 때까지 반복
- k개의 후보 중 가장 누적 확률이 높은 빔을 최종 선택

Dataset

WMT'14 English to French dataset

- 2백만 문장(3억 4천 8백만개의 프랑스 단어, 3억 4백만개의 영어 단어로 구성)
- 고정된 크기의 어휘 사전 사용
 - 소스 어휘사전 가장 자주 등장한 160,000 단어
 - 타겟 어휘사전 가장 자주 등장한 80,000 단어
- 어휘 사전에 없는 단어는 "UNK" 토큰으로 교체

소스 문장 순서 뒤집기(Reversing the Source Sentences)

문장의 순서를 거꾸로 입력했을 때 더 좋은 성능

perplexity dropped from 5.8 to 4.7
BLEU scores increased from 25.9 to 30.6.

IstM

Solution Series Series

→ 많은 short term dependencies를 도입

Teacher-Force Training

한 번 예측을 잘못하면 전체 시퀀스의 예측이 엉망이 될 가능성 (조건부 확률이므로)

→ 강제로 정답(실제 목표 출력, Ground Truth)을 입력

학습 초기에는 모델 성능이 낮기 때문에 잘못된 예측값으로 은닉 상태가 업데이트 됨

→ Teacher-Force을 사용하면 **학습 속도 빨라짐**

기계 번역 성능 평가

BLUE score 비교

Method	test BLEU score (ntst14)
Bahdanau et al. [2]	28.45
Baseline System [29]	33.30
Single forward LSTM, beam size 12	26.17
Single reversed LSTM, beam size 12	30.59
Ensemble of 5 reversed LSTMs, beam size 1	33.00
Ensemble of 2 reversed LSTMs, beam size 12	33.27
Ensemble of 5 reversed LSTMs, beam size 2	34.50
Ensemble of 5 reversed LSTMs, beam size 12	34.81

- Forward LSTM < Reversed LSTM
- Single LSTM < Ensemble LSTM
- Beam size 2 < Beam size 12

비용측면에서는 Ensemble of 5 reversed LSTMs, beam size 2 이

Single reversed LSTM, beam size 12 보다 저렴

기계 번역 성능 평가

다른 방법들과 BLUE score 비교

Method	test BLEU score (ntst14)
Baseline System [29]	33.30
Cho et al. [5]	34.54
State of the art [9]	37.0
Rescoring the baseline 1000-best with a single forward LSTM	35.61
Rescoring the baseline 1000-best with a single reversed LSTM	35.85
Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs	36.5
Oracle Rescoring of the Baseline 1000-best lists	~45

Table 2: Methods that use neural networks together with an SMT system on the WMT'14 English to French test set (ntst14).

→ 제약(제한된 크기의 어휘사전)에도 불구하고 SOTA에 근접한 BLUE score 기록

모델 분석 – 문장 순서, 수동태-능동태 민감도

2-dimensional PCA projection → 학습된 표현(고정된 크기의 벡터) 시각화

문장 순서의 변화 = 의미의 변화 → 민감하게 반응 수동 <-> 능동의 변화 = 표현 형태의 변화 → 둔감하게 반응

모델 분석 – 긴 문장에 대한 성능

단어 개수에 따른 BLUE score 변화

- → 35개의 단어 밑으로는 번역 성능이 감소하지 않음
- → RNN 기반 LSTM이 비교적 긴 문장을 처리할 수 있음을 보임

결론

- 비교적 간단한(제한된 어휘사전) LSTM 기반 기계 번역이 기존 SMT(통계적 기계 번역)을 능가할 수 있음을 보임
 - → 실제로 기계 번역을 급속도로 발전시키는 데 기여(Transformer(2017) 전까지 SOTA)
- RNN 구조에서 입력의 시퀀스의 순서를 바꾸는 것이 성능을 향상 시킬 수 있음을 발견
- LSTM이 장기 의존성에 강하다는 것을 보임
- 기계 번역 뿐만 아니라 다양한 분야의 시퀀스 투 시퀀스 문제 해결에 적용
 - 음성인식
 - 챗봇
 - 내용 요약