

PERT: Learning Saliency Maps to Explain Deep Time Series Classifiers

Prathyush Parvatharaju, Ramesh Doddaiah, Tom Hartvigsen, Elke Rundensteiner

Worcester Polytechnic Institute

Deep Networks are powerful but complex

CNN detects arrhythmia^[1]

Healthcare - Slow adoption of deep learning models

Mistakes can have catastrophic effects

Hard to trust deep learning model predictions

FDA mandates doctor verification

[1] Rajpurkar, Pranav et al. "Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks." ArXiv abs/1707.01836 (2017): n. pag.

Deep Time Series Classifiers are not Explainable

Making Deep Time Series Classifiers Explainable

Perturbation produces state-of-the-art explanations

Approach: Perturb regions^[1] of time series and observe effects on classifier's predictions

Problem Definition: Perturbation learning for time series models

Given:

- A univariate time series
- Deep pre-trained classifier
- Training dataset

Goal: Assign one value $\theta_t \in [-1, 1]$ per timestep indicating evidence **for** & **against** the classifier's prediction (saliency map)

1. Generating Realistic Perturbations

- 2. Heterogenous series
- 3. Perturbing long time series

Deletion

Zero Replacement

- 1. Generating Realistic Perturbations
- 2. Heterogenous series
- 3. Perturbing long time series

- 1. Generating Realistic Perturbations
- 2. Heterogenous series
- 3. Perturbing long time series

- 1. Generating Realistic Perturbations
- 2. Heterogenous series

3. Perturbing long time series

Proposed Method: PERT*

Main idea: Learn classifier's sensitivity to change in input time series

Approach: Use of gradient descent to generate guided perturbations

Key Innovations:

- 1. Prioritized-Time step specific replacement strategy
- 2. Guided Perturbation Function
- **3.** Simple meaningful local explanation

*PErturbation by Prioritized ReplacemenT

11

PERT: A High-level View

Prioritized Replacement Selector

Guided Perturbation Function

Learning Simple and Meaningful Local Explanations

$$L(P(\hat{X}); \theta) = (L_{\text{preservation}} + L_{\text{budget}} + L_{\text{TV}})$$

Preserve the classifier's confidence

Learning Simple and Meaningful Local Explanations

$$L(P(\hat{X}); \theta) = (L_{\text{preservation}} + L_{\text{budget}} + L_{\text{TV}})$$

Minimize the sum of Saliency Map (θ)

Retain only most-relevant timesteps

Learning Simple and Meaningful Local Explanations

$$L(P(\hat{X}); \theta) = (L_{\text{preservation}} + L_{\text{budget}} + L_{\text{TV}})$$

Find discriminative subsequences

Experiments

3 Metrics

18

- 9 Real World Datasets
- 2 Black Box Models (FCN and RNN)
- 1 Baseline, 5 SOTA Explainers

Dataset	WAFER	GunPoint	Computers	Earthquakes	FordA	FordB	CRICKETX	PTB	ECG
Num. Train Instances	1000	50	250	322	3601	3636	390	1456	100
Num. Test Instances	6164	150	250	139	1320	810	390	1456	100
Num. Timesteps	152	150	720	512	500	500	300	187	96
FCN Accuracy (%)	99	99	80	75	96	92	81	98	98
RNN Accuracy (%)	99	99	79	75	96	92	80	98	98

Table 1: Summary statistics for the real-world datasets and the Accuracy of our corresponding FCN and RNN models.

Saliency maps evaluated by "inserting" or "deleting" timesteps from time-series

19

Saliency maps evaluated by "inserting" or "deleting" timesteps from time-series

Saliency maps evaluated by "inserting" or "deleting" timesteps from time-series

21

Saliency maps evaluated by "inserting" or "deleting" timesteps from time-series

Perturbations

AUC-Difference Results - RNN

Methods	Datasets									
	WAFER	GunPoint	Computers	Earthquakes	FordA	FordB	СпіскетХ	PTB	ECG	
Random	0.01 (.01)	0.03 (.01)	0.01 (.01)	0.04 (.01)	0.01 (.01)	0.01(.01)	-0.01 (.01)	0.07 (.04)	0.01 (.06)	
RISE	0.13 (.01)	0.10 (.01)	-0.01 (.02)	0.23 (.05)	0.15 (.01)	0.11 (.02)	0.42 (.01)	0.10 (.05)	0.19 (.07)	
LEFTIST	0.16 (.01)	0.15 (.03)	-0.16 (.01)	0.53 (.03)	0.15 (.02)	0.15 (.01)	-0.10 (.01)	0.42 (.01)	0.51 (.01)	
LIME	0.07 (.01)	0.02 (.01)	0.05 (.03)	-0.02 (.01)	0.01 (.01)	0.01 (.01)	0.03 (.01)	0.12 (.07)	0.09 (.06)	
SHAP	-0.15 (.01)	-0.01 (.01)	0.10 (.01)	0.80 (.03)	0.23 (.01)	-0.17 (.01)	0.30 (.01)	-0.14 (.01)	0.08 (.09)	
MP	0.55 (.01)	0.02 (.01)	0.16 (.01)	0.30 (.01)	0.47 (.01)	0.39 (.01)	0.23 (.01)	0.30 (.01)	-0.15 (.01)	
PERT	0.78 (.01)	0.48 (.01)	0.92 (.01)	0.82 (.01)	0.70 (.01)	0.70 (.01)	0.68 (.01)	0.52 (.01)	0.57 (.01)	

Table 3: Average performance of the AUC-difference metric with the RNN black-box model.

PERT outperforms state-of-the-art methods by an average of **26%**

Conclusion

- Identify the need for <u>attribution-based</u> explanations for deep time series classifiers
- We formalize <u>Perturbation Learning</u> for time series classifiers
- Propose PERT, a novel perturbation method specific to time series
- Demonstrate PERT achieves state-of-the-art performance on 9
 datasets and 3 metrics
- Our code is publicly-available at https://github.com/kingspp/timeseries-explain

Thank You

DAISY Group at WPI

Academic Research Computing at WPI

(CA W911NF-16-2-0008, W911NF20-2-0232)

(P200A180088)

(NSF 1910880, CSSI: FAIN: 2103832)

