

محوعدد البلكترونات المعمودة

أوالمكتسة أتنأد النفاعل الكسمار

Al _e.c

ـــالتكافؤ صفة مميزه لذرات العناصر.

- أي أن الذرة يكون لها تكافؤ خاص بها الجزئ ليس له تكافؤ (أي أن مجموع -

ِ شحناته یساوی صفر)

التكافؤ

Al Clz. Nacl

17 287

pp

" رموز العناصر و تكافؤات بعضها "

			No.			
	ı H	هیدروجین	u Na	صوديوم	He # #	حدید
	e He	هیلیوم	1249	ماغنيسيوم	Cu I II	نحاس
	31,	ليثيوم	13 Al	ألومينيوم	zn I	خارصین
	A Be	بريليوم	1451	سيليكون	Pb II IV	رصاص
	3B	بورون	15 P	فوسفور	Aq I II	فضة
	6C	کربون	165	کبریت	",	ذهب
	4 N	نِيتروجين	17C	کِلور	Au 1 III	
	80	أكسجين	ISAL	أرجون		
	91	فلور	19 V	بوتاسيوم		
	Ne .	نيون	Ca	كالسيوم		
1	10		20	-		

المجموعة الذرية

هی مجبوعة ذرات مغتلعة سرتبطت مع بعصما ولعما نسلك ، ملوك الذرة الواحدة أتناء التفاعل ولها تكافؤ خاصه سعا نيغرومن و١١٥

2023

★ مجموعات ذریة أحادیة التکافؤ:-

کلوریت **حال** CNO سیانات هیبو کلوریت ا ثيوسيانات 4 1 ھيدروكسيد H O أمونيوم نيترات 70% ألومنيات م نیتریت - ۵۵۷ بیرکلورات Cloz کلورات

HC03

بيكربونات أو كربونات هيدروجينية

H 504

بیکبریتات أو کبریتات هیدروجینیة

Brog

بيربرومات

Bro3

برومات

Broz

برومیت

Bro

هيبوبروميت

★ مجموعات ذرية ثنائية التكافؤ:-

<i>C</i> 03	کربونات	ثیوکبریتات 5 0 ح 5	
504	کبریتات	کرومات (۲۰۵۵)	
503	كبريتيت	ثاني کرومات (۲۲ ۲۵)	
		بيفوسىفات	
(HPOA)			

حرشيد. ح

★ مجموعات ذرية ثلاثية التكافؤ:-

(PO₄)

فوسفات

ملاحظة هامة

مجموعة ذرات مرتبطة لها شحنه → مجموعة ذرية . 🖊

مجموعة ذرات مرتبطه ليس لها شحنه ← مركب . ۖ

" كتابة الصيغة الكيميائية للمركبات غير العضوية "

پتكون أي مركب من شقين أحدهما موجب والآخر سالب.

1- يكتب الشق الموجب يساراً والسالب يميناً

2- تكتب التكافؤات بالتبادل

3- تختصر التكافؤات إن أمكن

1- أكسيد كالسيوم

NaoH

NaOH

5- ھيدروكسيد صوديوم

6- هيدروكسيد كالسيوم "ماء جير رائق (جير مطفأ) "

Ca (OH)

A | 2 (50₄) مبريتات ألومينيوم -7

M9 HCO3

8- بيكربونات ماغنسيوم

H9 (HCO3)

ملاحظة هامة

تنتهى الأحماض التي تحتوي على نسبة أعلى من ذرات الأكسجين بمقطع (يك)

، الأحماض التي تحتوي على نسبة أقل من ذرات الأكسجين تنتهي بمقطع (<mark>وِز)</mark>

أنواع المركبات الكيميائية :

HC water H+ ci

أولًا ؛ الأحماض ؛

- هي مواد عند تأينها في الماء تعطى أيونات الهيدروجين الموجبة (البروتون) .

- تحمر ورقة عباد الشمس .

- مواد ذات طعم لاذع 👉
- تتفاعل مع القلويات لتعطى أملاح .
- تتفاعل مع المعادن والفلزات النشطة التي تسبق الهيدروجين في متسلسلة

تتفاعل مع الأكاسيد القاعدية .

- يمكن تصنيف الأحماض تبعاً لقوتها (درجة تأينها في الماء) إلى :

" الأحمـاض "

قوية تامة التأين في الماء

HCI HBY HÎ

H 2 20

ال المركبريات HCla

ضعيفة 🥕

ضعيفة التأين في الماء

الاحمام العمولة

H200, H, PO4, Hf

تصنف أيضاً الأحماض إلى

أحماض هالوجينية

HF'
HCI
HBY

أحماض أكسجينية . (۱۹۵) ح ۲۰۵<mark>۸</mark> د ۲۰۵<mark>۸</mark>

POP3

MOn (OH) Mon (OH) Mondaile

HBro3

Bro, (OH)

الأحماض الأكسجينية :

وتعتمد " قوة الأحماض الأكسجينية " على:-

" عدد ذرات الأكسجين غير المرتبطة بالهيدروجين في جزئ الحمض"

⇒ تمثل الأحماض الأكسجينية بالصيغة الهيدروكسيلية mOn (OH) الأحماض الأكسجينية بالصيغة

الأحماض الهالوجينية :

POP3

ثانياً: القلويات :

OH

- •هى مواد عند تأينها في الماء تعطى أيون الهيدروكسيد السالب
 - تزرق ورقة عباد الشمس
 - •ذات طعم قابض
 - تتفاعل مع الأحماض لتعطى أملاح
 - تتفاعل مع الأكاسيد الحامضية
- أمثلة : هيدروكسيد الصوديوم NaOH , هيدروكسيد الكالسيوم ِ Ca(OH) ₂

- تصنف القلويات حسب قوتها (درجة تأينها في الماء) إلى :

" القلويات "

ضعيفة ضعيفة التأين في الماء

> NH₄ oH Fe (OH)₂

قوية تامة التأين في الماء

Mao H Mo H Ca(OH)₂ Ba(OH)₂

- - أمثلة : كلوريد الصوديوم NaNO ، نترات الصوديوم NaNO

رابعاً : الأكاسيد :

(ناتج إتحاد العناصر مع الأكسجين)

-تنقسم الأكاسيد إلى : ٢- أكاسيد حامضية :

- أكاسيد لافلزات

نالك اكيرالكربت 303

- تذوب في الماء مكونه احماض ملكونه احماض مكونه احماض مكونه احماض مكونه احماض مكونه احماض المراح 4 50 م

- تتفاعل مع القلويات مكونه ملح وماء

2 MaoH + 503 - No 504 + H2(

2- أكاسيد قاعدية ؛

M90, Na20

- أكاسيد فلزات :

- منها ما يذوب في الماء مكونه قلويات HOOH - 2 MOOH - 0 عام

ومنها لایذوب فی الماء تعرف بالقواعد می الماء تعرف بالقواعد عدوب فی الماء تعرف بالقواعد می الماء تعرف بالقواعد

- تتفاعل مع الأحماض مكونه ملح وماء
$$10_2$$
 10_2 10_2 10_3 10_4 10_5

3- أكاسيد مترددة: زكاسدنتفاعل ارة كاكبير فامد والرة افي كاكبرام

5b203

Al₂O₃

- أمثلة :

ر4- أكاسيد متعادلة ؛

0) ارا اکسیریوس

zno

Sno

- أمثلة :

المعادلة الكيميائية

هي مجموعة من الرموز والصيغ توضح كل من المواد الداخلة في التفاعل والناتجة عنه.

مواد متفاعلة _____ مواد ناتجة

" <u>خطوات كتابة المعادلة</u> "

1- تكتب المتفاعلات يساراً والنواتج يميناً.

2- تكتب الحالة الفيزيائية للمتفاعلات والنواتج.

3- وزن المعادلة

4-كتابة شروط التفاعل من ضغط P أو حرارة ∆ أو عامل حفاز Catalyst

1- ماغنسيوم + غاز الأكسجين ← أكسيد ماغنسيوم

يفضل عدم وجود كسر في المعادلة لذا نضرب المعادلة × 2 لتصبح

2-ألومينيوم + غاز الأكسجين ← أكسيد ألومينيوم

التفاعل الكيميائي

- → انواع التفاعلات الكيميائية :
 - 1- تفاعلات الإتحاد المباشر
 - 2- تفاعلات الإحلال
- 3- تفاعلات الأكسدة والإختزال .
 - 4- تفاعلات الإنحلال الحراري

1- تفاعلات الإتحاد المباشر :

- عنصر + عنصر

- مرکب + مرکب

- مرکب +عنصر

امثله

2- تفاعلات الإحلال :

تنقسم تفاعلات الإحلال إلى : 1- تفاعلات الإحلال البسيط

2- تفاعلات الإحلال المزدوج

1- تفاعلات الإحلال البسيط:)

وتتم عملية الإحلال تبعاً لموقع العنصر فى متسلسلة النشاط الكيميائى .

ख
3
<u>-</u> 5.
لنشا
4
A.
<u>ئ</u> ى

K	البوتاسيوم				
Na	الصوديوم				
Ва	الباريوم				
Ca	الكالسيوم				
Mg	الماغنسيوم				
Al	الألومنيوم				
Zn	الخارصين				
Fe	الحديد				
Sn	القصدير				
Pb	الرصاص				
H ₂	الهيدروجين				
Cu	النحاس				
Hg	الزئبق				
Ag	الفضة				
Pt	البلاتين				
Au	الذهب				

- * أنواع تفاعلات الإحلال البسيط :
- 1- إحلال فلز محل هيدروجين الماء :

2- إحلال فلز محل هيدروجين الحمض :

3-إحلال فلز محل فلز أخر في محلول أحد أملاحه :

2-الإحلال المزدوج :

◄ أنواع تفاعلات الإحلال المزدوج :

1-تفاعل حمض مع قلوى يعرف بإسم تفاعل التعادل :

2-تفاعل حمض مع ملح ويتوقف الناتج على نوع كل من الملح والحمض :

3-تفاعل محلول ملح مع محلول ملح أخر :

3- تفاعلات الأكسدة والإختزال :

√ الأكسدة:-

-المادة التي تحدث لها أكسدة تكون عامل مختزل

√ الإختزال : -

-المادة التي تحدث لها إختزال تكون عامل مؤكسد

≺ ملاحظات على أعداد التأكسد :

1- عدد تأكسد عناصر 1A , 2A في مركباتها

3+	2+	1+		
Al	Be	Li		
Ga	Mg	Na		
In	Са	K		

- 2- عدد تأكسد الأكسجين في معظم حالاته 2- عدا حالتي:
 - فوق الأكسيد1- مثل
 - سوبر الأكسيد $\frac{1}{2}$ مثل

ولا يعطى الأكسجين عدد تأكسد 2+ إلا عند اتحاده مع الفلور حيث أن الفلور أعلى سالبية من الأكسجين.

3- عدد تأكسد الهيدروجين في مركباته 1+ . عدا حالة " هيدريد الفلز " يكون 1-.

مثل : 1- هيدريد الصوديوم. ⁻Na+H

2- ھيدريد كالسيوم. **CaH₂**

4- عدد تأكسد الكلور 1- إلا إذا إتحد مع الأكسجين يكون عدد تأكسده موجباً

(+7, +5, +3, +1)

5- عدد تأكسد الفلور دائماً -1 لأنه أعلى العناصر سالبية.

6- عدد تأكسد أي مجموعة ذرية = شحنة المجموعة.

7- عدد تأكسد ذره أي عنصر في حالته الذرية = صفر.

8- مجموع شحنات أي مركب يساوى صفر

≥ احسب عدد تأكسد كل من:-

KCIO₄

أ- الكلور

K₂Cr₂O₇

ب- الكروم

FeCl₃

جـ- الحديد

MnO₄ -2

د- المنجنيز

(PO₄) -3

هـ- الفوسفور

🗵 وضح الأكسدة والاختزال في التفاعل الاتي: -

$$\Rightarrow$$
 Fe₂O₃ + 3CO \rightarrow 2Fe + 3CO₂

 \Rightarrow K₂Cr₂O₇ + 6FeCl₂ + 14HCl \rightarrow 2KCl + 2CrCl₃ + 6FeCl₃ + 7H₂O

$$\Rightarrow$$
 5KNO₂ + 2KMnO₄ + 3H₂SO₄ \rightarrow 5KNO₃ + K₂SO₄ + 2MnSO₄ + 3H₂O

⇒ ملاحظات هامه:

- الأكسدة والاختزال عمليتان متلازمتان متعاكستان متكاملتان.
- تفاعلات الإحلال المزدوج لا يحدث بها أكسدة أو اختزال لعدم حدوث انتقال
 للإلكترونات.

$$\overrightarrow{AB} + \overrightarrow{CD} \rightarrow \overrightarrow{AD} + \overrightarrow{CB}$$

" تبادل الأيونات "

4- تفاعلات الإنحلال الحراري :

🗕 انواع تفاعلات الإنحلال الحراري :

1-إنحلال بعض أكاسيد الفلزات إلى الفلز ويتصاعد غاز الأكسجين :

2-إنحلال بعض هيدروكسيدات الفلزات إلى أكسيد الفلز وبخار الماء :

3-إنحلال معظم كربونات الفلزات إلى أكسيد الفلز ويتصاعد غاز ثاني أكسيد الكربون :

4-إنحلال معظم كبريتات الفلزات إلى أكسيد الفلز ويتصاعد غاز ثالث أكسيد الكبريت :

5-إنحلال بعض نترات الفلزات إلى نيتريت الفلز ويتصاعد غاز الأكسجين :

يلزم لتحديد طاقة الإلكترون في الذرة معرفة أعداد الكم الأربعة : مستويات رئيسية

- 1. عدد الكم الرئيسي (n)
 - 2. عدد الكم الثانوي (۱)
- 3. عدد الكم المغناطيسي (m_l)
 - 4. عدد الكم المغزلي (m_s)

مستويات فرعية

أوربيتالات

إلكترونات

عدد الكم الرئيسي (n)

يمكن حساب عدد الإلكترونات التى تتشبع بها المستويات الرئيسية الأربعة الأولى من العلاقة 2n²

عدد الكم الثانوي (۱)

عدد الكم المغناطيسي (m_l)

المستوى الفرعي	S	р	d	f
عدد الأوربيتالات	1	3	5	7
السعة الإلكترونية	2	6	10	14

عدد الكم المغزلى (m_s)

" <u>قواعد توزيع الإلكترونات</u> "

1- مبدأ البناء التصاعدي

2- قاعدة هوند

أولًا: مبدأ البناء التصاعدي:-

1s/2s, 2p/3s, 3p/4s, 3d, 4p/5s, 4d, 5p/6s, 4f, 5d, 6p/7s, 5f, 6d, 7p

یتشبع بـ	أوربيتال واحد	αi	S	المستوى الفرعي
يتشبع بـ	3 أوربيتالات	αi	р	المستوى الفرعي
يتشبع بـــ	5 أوربيتالات	αi	d	المستوى الفرعي
يتشبع بـــــــــــــــــــــــــــــــــــ	7 أوربيتالات	αi	f	المستوى الفرعي

أمثلة

<u>أكتب التوزيع الإلكتروني لكل من :-</u>

 $_{7}N$

₁₂Mg

₁₇CI

₂₆Fe

₂₀Ca⁺²

°E-

ملاحظة هامة

عند توزيع العناصر إذا انتهى توزيع العنصر بالمستوى الفرعي d وكان المستوى d يحتوي على 4 أو 9 إلكترونات يتم سحب الإلكترون من المستوى الفرعي s ويوضع في d حتى يصبح ممتلئ أو نصف ممتلئ وهما حالتي استقرار".

₂₄Cr :

₂₉Cu :

علل لما يأتي

يشذ التوزيع الإلكتروني لكل من : الكروم ₂₄Cr والنحاس

🌢 " عند توزيع الإلكترونات في المستويين السادس والسابع فإنه يتم وضع

إلكترونين في المستوى s ثم إلكترون في d ثم يتتابع ملء المستوى الفرعي g "

التوزيع لأقرب غاز خامل:-

يوزع العنصر لأقرب غاز خامل يسبقه حيث يمثل كل غاز نهاية مستوى رئيسي

کریبتون هیلیوم

زينون نيون

رادون أرجون

ِ مثـلة

<u>أكتب التوزيع الإلكتروني لكل من :-</u>

₁₃**A**I

₂₀Ca

₂₈Ni

53

87Fr

₅₄Xe

ثانياً: قاعدة هوند:-

 $_{8}$ O: $1s^{2}$ / $2s^{2}$, $2p^{4}$

 $_{27}$ Co : $_{18}$ Ar / $4s^2$, $3d^7$

 $_{30}$ Zn : $_{18}$ Ar / $4s^2$, $3d^{10}$

علل لما يأتي

تشغل الإلكترونات في الأوربيتالات فرادي أولًا

PERIODIC TABLE CHART

Ne 20,1797

Ar 39.948

Kr 83.798

B 10.81 Boron

In

12.011

Si

14.007

P 30.973761998

15,999

S 32.06

Se 78.971

Br 79,904

Ra

89

103

Actinide

Series

الجدول الدورى :

◙ الأساس العلمي الذي بني عليه الجدول الدوري :

1-ترتيب العناصر تصاعدياً حسب الزيادة في العدد الذري .

بحيث يزيد كل عنصر عن الذي يسبقه بمقدار بروتون

2-طريقة ملء المستويات الفرعية بالإلكترونات (مبدأ البناء التصاعدي)

فئات الجدول الدورى :

يتكون الجدول الدورى من 4 فئات :

1- عناصر الفئة s:

2 -عناصر الفئة p :

3- عناصر الفئة b:

4-عناصر الفئة f:

يتكون الجدول الدوري من 7 دورات أفقية ، 18 عمود رأسي

يحدد موقع العنصر في الجدول الدوري عن طريق :-

p وقم الدوره → رقم المستوى الرئيسى الموجود بجانب المستوى s أو p

﴿ رقم المجموعة ← بجمع الإلكترونات الموجوده فى غلاف التكافؤ p و p متبوعاً بحرف A إذا كان من العناصر الممثله عدا الصفرية .

أما إذا كان من العناصر الإنتقالية الرئيسية بجمع إلكترونات d و b متبوعاً بحرف B عدا مجموعتي B , 2B والمجموعة الثامنه .

أمثلة :

- حدد رقم الدورة ورقم المجموعة للعناصر التالية :

₂₀Ca -1

₁₁Na -2

₁₃AI -3

₂₁Sc -5

₄₂Mo -6

