Examenul național de bacalaureat 2021 Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Testul 4

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

	`	
1.	$2 \cdot 8,5 + 10,5 : 3,5 = 17 + 105 : 35 =$	2p
	=17+3=20	3 p
2.	$f(2) = -2 \Rightarrow -6 + a + 1 = -2$	3 p
	a=3	2 p
3.	$10^{6-2x} = 10^4 \Leftrightarrow 6-2x = 4$	3 p
	x=1	2p
4.	Mulțimea $M = \{10, 20, 30, 40, 50, 60, 70, 80, 90\}$ are 9 elemente, deci sunt 9 cazuri posibile	2p
	Numerele $n \in M$ pentru care numărul $\sqrt{10n}$ este rațional sunt 10, 40 și 90, deci sunt 3 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{3}{9} = \frac{1}{3}$	1p
5.	$m_{OA} = -2$, $m_{AB} = \frac{a-2}{4}$	2p
	$m_{OA} \cdot m_{AB} = -1 \Leftrightarrow -2 \cdot \frac{a-2}{4} = -1$, de unde obținem $a = 4$	3p
6.	$\frac{AB}{\sin C} = \frac{BC}{\sin A} \Leftrightarrow \frac{12}{\frac{1}{2}} = \frac{8}{\sin A}$	3p
	$\sin A = \frac{8 \cdot \frac{1}{2}}{12} = \frac{1}{3}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det B = \begin{vmatrix} 1 & 6 \\ 1 & 2 \end{vmatrix} = 1 \cdot 2 - 1 \cdot 6 =$	3p
	=2-6=-4	2p
b)	$A \cdot A = \begin{pmatrix} 16 & 15 \\ 0 & 1 \end{pmatrix}, \ B \cdot B = \begin{pmatrix} 7 & 18 \\ 3 & 10 \end{pmatrix}, \ A \cdot A - B \cdot B = \begin{pmatrix} 9 & -3 \\ -3 & -9 \end{pmatrix} =$	3 p
	$=-3\begin{pmatrix} -3 & 1\\ 1 & 3 \end{pmatrix} = -3(A+B)$, deci $a = -3$	2 p
c)	$C(x) = \begin{pmatrix} -4x + 2 & -5x + 12 \\ 2 & x + 4 \end{pmatrix} \Rightarrow \det(C(x)) = -4x^2 - 4x - 16, \text{ pentru orice număr real } x$	2 p
	$\det(C(x)) = -(2x+1)^2 - 15 < 0$, deci $\det(C(x)) \neq 0$ adică matricea $C(x)$ este inversabilă pentru orice număr real x	3 p

2.a)	$2*\frac{1}{2} = (2\cdot 2 - 1)(2\cdot \frac{1}{2} - 1) + \frac{1}{2} =$	3p
	$=0+\frac{1}{2}=\frac{1}{2}$	2p
b)	$(4x)*\frac{1}{4} = \frac{2-8x}{2}$, pentru orice număr real x	3 p
	$\frac{2-8x}{2} = 25$, de unde obținem $x = -6$	2p
c)	$x*\frac{1}{2}=\frac{1}{2}, \frac{1}{2}*y=\frac{1}{2}$, pentru orice numere reale x și y	2p
	$\left(1 * \frac{1}{2}\right) * \frac{1}{3} * \frac{1}{4} * \frac{1}{5} = \frac{1}{2} * \left(\frac{1}{3} * \frac{1}{4} * \frac{1}{5}\right) = \frac{1}{2}$	3p

SUBIECTUL al III-lea

(30 de puncte)

	DECTOE at III-ka (50 tie punc		
1.a)	$f'(x) = 1 + \frac{-4}{(x+3)^2} =$	3 p	
	$= \frac{(x+3)^2 - 4}{(x+3)^2} = \frac{(x+1)(x+5)}{(x+3)^2}, \ x \in (-3, +\infty)$	2 p	
b)	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(1 + \frac{4}{x(x+3)} \right) = 1$	2 p	
	$\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} \frac{4}{x+3} = 0, \text{ deci dreapta de ecuație } y = x \text{ este asimptotă oblică la graficul funcției } f$	3 p	
c)	$f'(x) = 0 \Leftrightarrow x = -1$ și $f'(x) \le 0$, pentru orice $x \in (-3, -1] \Rightarrow f$ este descrescătoare pe $(-3, -1]$, $f'(x) \ge 0$ pentru orice $x \in [-1, +\infty) \Rightarrow f$ este crescătoare pe $x \in [-1, +\infty)$	3 p	
	$f(x) \ge f(-1) \Leftrightarrow f(x) \ge 1$, pentru orice $x \in (-3, +\infty)$ și, cum $x^2 \ge 0$, obținem $x^2 + f(x) \ge 1$, pentru orice $x \in (-3, +\infty)$	2p	
2.a)	$\int_{1}^{5} \frac{(2x-1)(x+1)}{x+1} dx = \int_{1}^{5} (2x-1) dx = \left(x^{2} - x\right) \Big _{1}^{5} =$	3p	
b)	$ = 20 - 0 = 20 $ $ \int_{1}^{2} \frac{2x^{2} + x - 1}{x^{2}} dx = \int_{1}^{2} \left(2 + \frac{1}{x} - \frac{1}{x^{2}}\right) dx = \left(2x + \ln x + \frac{1}{x}\right) \Big _{1}^{2} = $	2p 3p	
	$=\frac{3}{2}+\ln 2$	2p	
c)	$\left \int_{a}^{2} f'(x) \sqrt{f(x)} dx = \frac{2f(x) \sqrt{f(x)}}{3} \right _{a}^{2} = 18 - \frac{2f(a) \sqrt{f(a)}}{3}$	3р	
	$f(a) = 0$ și, cum a este număr real cu $a \in \left[\frac{1}{2}, 2\right)$, obținem $a = \frac{1}{2}$	2p	