Thermodynamics...

...or how to predict chemical reactions without doing experiments

- We want to answer these questions:
 - Will this reaction happen?
 - If so, how far can it proceed?
- We'll only review a small subset of thermodynamics...
 - Laws of Thermodynamics and how they apply to chemistry
 - Entropy, Enthalpy
 - Equilibrium
 - Using Gibbs free energy to determine if a reaction will proceed as written

Thermodynamics...

- 1. Conservation of energy total energy remains constant (but can be converted from one form to another)
- 2. Entropy (disorder) tends to increase
- 3. Entropy is constant when the temperature equals absolute zero

Thermodynamics...

 Changes in enthalpy and entropy allows prediction of the feasibility of reactions

Definitions:

- Enthalpy total energy of an element or compound
- Entropy degree of disorder
 - (highly structured = low entropy, randomized = high entropy)
- Gibbs free energy the part of the total energy available to perform "useful" work

Energy of a system cannot be created or destroyed

A change in energy Energy (U) is equal to the change in heat and work

$$dU = dq - dw$$

dU = change in internal energy of the system

dq = heat absorbed by the system

dw = work done by the system

Energy of a system cannot be created or destroyed

A change in energy Energy (U) is equal to the change in heat and work

$$dU = dq - dw$$

dU = change in internal energy of the system

dq = heat absorbed by the system

dw = work done by the system

- Internal energy of system is increased by gaining heat (q)
- Internal energy of system is decreased when work (w) is done by the system

■ Heat (q) is measured in terms of: $q = amt (m; mol) \times molar heat capacity (C; J K^{-1} mol^{-1}) \times \Delta temp. (\Delta T; K)$ $q = mC\Delta T$

q is the heat of reaction

 Molar heat capacity = Heat energy per mole required to raise temperature of 6.022x10²³ molecules 1°C

Work of expansion:

$$w = P \Delta V$$

- where P = pressure and ΔV is change in volume
- at constant volume $\Delta V = 0$, therefore w =0 (no work is done)

 If fully reversible, change in pressure and volume compensate, no work is done (reversible process)

Work of expansion:

$$w = P \Delta V$$

- where P = pressure and ΔV is change in volume
- at constant volume $\Delta V = 0$, therefore w =0 (no work is done)
- For a system at constant volume (all non-gas reactions are at constant volume)

$$P\Delta V = w = 0$$
, $\Delta U = q_v$ $q_{v=}$ heat at constant volume

■ For a system at constant pressure (all reactions open to atmosphere)

$$\Delta U = q_p - P \Delta V$$

$$\Delta U = q_p - P \Delta V$$

Using the Ideal gas law $P\Delta V = \Delta nRT$, (n = amount of substance), R is the gas constant = 8.314 Joules mol⁻¹ K⁻¹

therefore $\Delta U = q_p - \Delta nRT$

$$\Delta U = q_p - P \Delta V$$

Using the Ideal gas law $P\Delta V = \Delta nRT$, (n = amount of substance), R is the gas constant = 8.314 Joules mol⁻¹ K⁻¹

therefore $\Delta U = q_p - \Delta nRT$ rearranging:

 $q_p = \Delta U + \Delta nRT$; q_p is called the enthalpy (H)

For an infinitesimal change at constant pressure:

(U = Energy)

dH = dU + PdV

Heat of formation: ΔHf

• $\Delta H_f^{\circ}_{298}$: heat of formation of 1 mole of a compound from its elements at 298°K

- ΔH is neg = exothermic reaction
- ΔH is pos = endothermic reaction (seen from system perspective)
- ullet ΔH is proportional to amount of material

Ex:
$$H_{2(g)} + I/2O_{2(g)} --> H_2O_{(g)}$$

This reaction releases 241.8 kJ of heat, ∴ heat of formation is: -241.8 kJ

Heat of formation: ΔHf

ullet ΔH is equal in magnitude but opposite in sign for the reverse reaction, because it is a thermodynamic quantity

$$\Delta H_{\text{products}} = -\Delta H_{\text{reactants}}$$

ullet ΔH for reaction is same regardless of number of steps between reactants and products

$$\Delta H = \Delta U + \Delta nRT$$

■ Can use component reactions to calculate enthalpy change for unknown reaction

Enthalpy	
$\Delta H = -285.8 \text{ kJ mol}^{-1}$	(a)
$\Delta H = -393.3 \text{ kJ mol}^{-1}$	(b)
$\Delta H = -1559.8 \text{ kJ mol}^{-1}$	(c)
	$\Delta H = -285.8 \text{ kJ mol}^{-1}$ $\Delta H = -393.3 \text{ kJ mol}^{-1}$

can use above to calculate ΔH for ethane formation:

$$2C + 3 H_2 = C_2H_6$$

 Can use component reactions to calculate enthalpy change for unknown reaction

(a)

(b)

Reaction Enthalpy $H_2 + 0.5 O_2 = H_2O$ $\Delta H = -285.8 \text{ kJ mol}^{-1}$ $C + O_2 = CO_2$ $\Delta H = -393.3 \text{ kJ mol}^{-1}$

$$C_2H_6 + 3.5 O_2 = 2 CO_2 + 3H_2O$$
 $\Delta H = -1559.8 \text{ kJ mol}^{-1}$ (c)

can use above to calculate ΔH for ethane formation

$$2C + 3 H_2 = C_2H_6 : 2*b + 3*a - c$$

 Can use component reactions to calculate enthalpy change for unknown reaction

Reaction Enthalpy $H_2 + 0.5 O_2 = H_2O \qquad \Delta H = -285.8 \text{ kJ mol}^{-1} \qquad (a)$ $C + O_2 = CO_2 \qquad \Delta H = -393.3 \text{ kJ mol}^{-1} \qquad (b)$ $C_2H_6 + 3.5 O_2 = 2 CO_2 + 3H_2O \qquad \Delta H = -1559.8 \text{ kJ mol}^{-1} \qquad (c)$ can use above to calculate ΔH for ethane formation $2C + 3 H_2 = C_2H_6 \qquad 2*b + 3*a - c$ $2C + 2O_2 + 3H_2 + 1.5 O_2 - C_2H_6 - 3.5 O_2 = 2CO_2 + 3H_2O - 2 CO_2 - 3H_2O$ canceling yields $2C + 3 H_2 = C_2H_6 \qquad \Delta H = 2* -393.3 + 3* -285.8 - (-1559.8)$ $= -84.2 \text{ kJ mol}^{-1}$

Enthalpy change alone is not enough

Entropy change (dS) is also needed (2nd law of thermodynamics)

$$dS = \frac{dq_{rev}}{T}$$

 Change in entropy = amount of reversible heat absorbed by system divided by temperature

Enthalpy change alone is not enough

Entropy change (dS) is also needed (2nd law of thermodynamics)

$$dS = \frac{dq_{rev}}{T}$$

- Change in entropy = amount of reversible heat absorbed by system divided by temperature
- Together, when we consider both enthalpy (H) and entropy (S) we get the Gibbs free energy (G):

$$G = H - TS$$

Free Energy – I

 A criterion for equilibrium is that the total free energy (Gibbs free energy, G_r) of the reaction is at a minimum:

Fig. 3-2. Variation of Gibbs free energy for the chemical reaction $aA + bB \rightleftharpoons cC + dD$. Only reactants are present at the far left side of the diagram and only products at the far right side.

- If we add more reactant or more product, the reaction will proceed spontaneously (without external help) as long as the value for G_r decreases.
- Thus, a reaction in the direction of decreasing G_r is spontaneous. A reaction in the direction of increasing G_r is not spontaneous, and will not occur in a closed system.

Free Energy - 2

As any reaction proceeds an incremental amount, the change in G_r can be calculated as:

$$\Delta G_r = \left(\sum_{i} v_i G_{fi}\right)_{products} - \left(\sum_{i} v_i G_{fi}\right)_{reactants}$$

where v_i is the stoichiometric coefficient (a,b,c,d) and G_{fi} is the free energy of formation per mole.

- 1. If $\Delta G < 0$, (*i.e.*, ΔG is negative and thus G_r decreases as the reaction proceeds), then the reaction proceeds spontaneously as written.
- 2. If $\Delta G > 0$, (*i.e.*, ΔG is positive and thus G_r increases as the reaction proceeds), then the reaction proceeds spontaneously in the opposite direction as written.
- 3. If $\Delta G = 0$, (i.e., ΔG is at a minimum), then the reaction is at equilibrium and will not proceeds spontaneously in either direction.

Free Energy - 3

Values for ΔG for a reaction give us a powerful tool to predict if a reaction is possible. We calculate in-situ ΔG_r using this equation:

$$\Delta G_{r} = \Delta G_{r}^{\circ} + RT \ln \frac{\{C\}^{c} \{D\}^{d}}{\{A\}^{a} \{B\}^{b}}$$
In-situ Std. state

where

$$\Delta G_r^{\circ} = \left(\sum_{i} v_i G_{fi}^{\circ}\right)_{products} - \left(\sum_{i} v_i G_{fi}^{\circ}\right)_{reactants}$$

(The the superscript zero (°) indicates standard state: 25°C (298°K),1 atm pressure, and activity = 1.)

G_{fi}° is the standard-state free energy of formation per mole of species i.

{ } = activity (active concentration)

R = the ideal gas constant = 1.987 cal $^{\circ}$ K⁻¹ mol⁻¹ = 8.31 J $^{\circ}$ K⁻¹ mol⁻¹

T = °K

Free Energy - 4

Standard free energy of formation (ΔG°_{fi}):

- G°_{fi} = 0 at standard state for all pure elements (solid reference).
- G°_{fi} = 0 for H⁺ at a concentration of 1 mole/liter at standard state (solution reference).
- Allows the measure of the energy change involved in forming compounds at standard state from their component elements at standard state.
- Measured values are listed in tables. Units are:
 - kJ/mol (SI units)
 - kcal/mol

TABLE 3-1 Thermodynamic Constants for Species of Importance in Water Chemistry.^a

Species	$\Delta \overline{H},^{\circ}$ kcal/mole	$\Delta \overline{G}_{i}^{\circ}$ kcol/mole			
$C\alpha^{2+}_{(aq)}$ $C\alpha CO_{3(s)}$, calcite $C\alpha O_{(s)}$	-129.77 -288.45 -151.9	-132.18 -269.78 -144.4			
$C_{(s)}$, graphite $CO_{2(g)}$ $CO_{2(aq)}$ $CH_{4(g)}$ $H_2CO_{3(aq)}^2$ $HCO_{3(aq)}$ $CO_{3(aq)}^2$ $CO_{3(aq)}^2$ CH_3COO^- , α cetate	0 -94.05 -98.69 -17.889 -167.0 -165.18 -161.63 -116.84	0 -94.26 -92.31 -12.140 -149.00 -140.31 -126.22 -89.0			
$H^{+}_{(aq)}$ $H_{2(g)}$	0 0	0 0			
$\begin{array}{l} Fe^{2+}_{(aq)} \\ Fe^{3+}_{(aq)} \\ Fe(OH)_{3(s)} \end{array}$	-21.0 -11.4 -197.0	-20.30 -2.52 -166.0			
$\mathrm{Mn}^{2+}_{(aq)}$ $\mathrm{MnO}_{2(s)}$	-53.3 -124.2	-5 4.4 -111.1			
$\begin{array}{l} Mg^{2+}_{(aq)} \\ Mg(OH)_{2(s)} \end{array}$	-110.41 -221.00	-108.99 -199.27			
$NO_{3(aq)}^{-}$ $NH_{3(q)}$ $NH_{3(aq)}$ $NH_{4(aq)}^{+}$ $HNO_{3(aq)}$	-49.372 -11.04 -19.32 -31.74 -49.372	-26.43 -3.976 -6.37 -19.00 -26.41			
$O_{2(aq)}$ $O_{2(g)}$ $OH_{(aq)}$ $H_2O_{(g)}$ $H_2O_{(\ell)}$	-3.9 0 -54.957 -57.7979 -68.3174	3.93 0 -37.595 -54.6357 -56.690			
$SO_{4(aq)}^{2-}$ $HS_{(aq)}^{-}$ $H_2S_{(g)}$ $H_2S_{(aq)}$	-216.90 -4.22 -4.815 -9.4	-177.34 3.01 -7.892 -6.54			

Be careful of units!

									. 6						
Formula	Form	Mol. wt.	$\Delta_f H^\circ$ kJ m	$\Delta_f G^\circ$	S° J mol	C _p −1 K −1	V° cm³ mol-1	Formula	Form	Mol. wt.	Δ _f H° kIm	$\Delta_f G^\circ$	S° Imol	C _p ° 1 K ⁻¹ 186.02	cm ³ m
		g mol ⁻¹	KJIII	01	Jinoi			CaSO ₄ · 2H ₂ O	gypsum	172.1724	-2022.63	-1797.28	194.1	186.02	
								Ca ₃ (PO ₄) ₂	β , whitlock ite	310.1828	-4120.8	-3884.7	236.0	227.82	
Aluminum								$Ca_3(PO_4)_2$	α	310.1828	-4109.9	-3875.5	240.91	231.58	
		26.9815	0	0	28.33	24.35		CaCO ₃	calcite	100.0894	-1206.92	-1128.79	92.9	81.88	36.9
Al	S		-531.	-485.	-321.7	_	-45.3	CaCO ₃	aragonite	100.0894	-1207.13	-1127.75	88.7	81.25	34.1
Al ³⁺	aq	26.9815			-321.7	_	10.0	CaSiO ₃	wollastonite	116.1642	-1634.94	-1549.66	81.92	85.27	39.
Al(OH) ²⁺	aq		-767.0	-693.7		_		CaSiO ₃	pseudowollastonite	116.1642	-1628.4	-1544.7	87.36	86.48	
Al(OH);	aq		-1010.7	-901.4				CaAl ₂ SiO ₆	Ca-Al pyroxene	218.1254	-3298.2	-3122.0	141.4	165.7	
$Al(OH)^{\circ}_{3}(aq)$	aq .		-1250.4	-1100.7	-	_		CaAl ₂ Si ₂ O ₈	anorthite	278.2102	-4227.9	-4002.3	199.28	211.42	100
Al(OH)	aq	95.0111	-1490.0	-1307.0	102.9	-	45.60	CaTiO ₃	perovskite	135.9782	-1660.6	-1575.2	93.64	97.65	
Al ₂ O ₃	α, corundum	101.9612	-1675.7	-1582.3	50.92	79.04	25.575	CaTiSiO ₅	sphene	196.0630	-2603.3	-2461.8	129.20	138.95	
Al ₂ O ₃ · H ₂ O	boehmite	119.9766	-1980.7	-1831.7	96.86	131.25	39.07	CaMg(CO ₃) ₂	dolomite	184.4108	-2326.3	-2163.4	155.18	157.53	64.3
		119.9766	-1998.91	-1841.78	70.67	106.19	35.52	CaMgSi ₂ O ₆	diopside	216.5604		-3032.0	142.93	166.52	66.0
Al ₂ O ₃ · H ₂ O	diaspore	156.0074	-1996.91	-2310.21	136.90	183.47	63.912	Calvigo12O6	ulopside	210.3004	3200.2	-3032.0	142.53	100.32	00.0
$Al_2O_3 \cdot 3H_2O$	gibbsite		-2576.5	-2310.21	-	-		Carbon	I						
$Al_2O_3 \cdot 3H_2O$	bayerite	156.0074		_	- <u>T</u>	_		Car DOII	1.						
Al(OH)3	amorphous	78.0037	-1276.			122.72	51.53	•		12 0112	10		F 740	0.537	
Al ₂ SiO ₅	andalusite	162.0460	-2590.27	-2442.66	93.22			C C	graphite	12.0112		0	5.740	8.527	5.2
Al ₂ SiO ₅	kyanite	162.0460	-2594.29	-2443.88	83.81	121.71	44.09		diamond	12.0112	1.895	2.900	2.377	6.113	3.4
Al ₂ SiO ₅	sillimanite	162.0460	-2587.76	-2440.99	96.11	124.52	49.90	CO ₃ ² -	aq	60.0094	-677.149	-527.81	-56.9	-	-6
Al ₂ Si ₂ O ₇ · 2H ₂ O	kaolinite	258.1616	-4119.6	-3799.7	205.0	246.14	99.52	HCO ₃	aq	61.0174	-691.99	-586.77	91.2		24
Al ₂ Si ₂ O ₇ · 2H ₂ O	halloysite	258.1616	-4101.2	-3780.5	203.3	246.27	99.30	CO	g	28.0106	-110.525	-137.168	197.674	29.142	2446
Al ₂ Si ₂ O ₇ · 2H ₂ O	dickite	258.1616	-4118.3	-3795.9	197.1	239.49	99.30	CO ₂	g	44.0100	-393.509	-394.359	213.74	37.11	2446
	mullite	426.0532	-6816.2	-6432.7	255.	326.10		CO ₂	aq	44.0100	-413.80	-385.98	117.6	- 1	32
Al ₆ Si ₂ O ₁₃		360.3158	-5642.04	-5268.14	239.41	294.34	126.6	H ₂ CO ₃	aq	62.0254	-679.339	-623.109	283.65	-	
$Al_2Si_4O_{10}(OH)_2$	pyrophyllite	300.3130	3042.01	DECOME				CH ₄	g	16.0432	-74.81	-50.72	186.264	35.309	2446
								C ₂ H ₆	g	30.0704	-84.68	-32.82	229.60	52.63	2446
Barium								CN	g	26.0179	437.6	407.5	202.6	29.16	f.
					62.8	28.07	1	CN-	aq	26.0179	150.6	172.4	94.1	_	
Ва	S	137.3400		0		28.07	-12.9	HCN	g	27.0259	135.1	124.7	201.78	35.86	
Ba ²⁺	aq .	137.3400	-537.64	-560.77	9.6		-12.5	HCN	aq	27.0259	107.1	119.7	124.7	-	
BaO	S	153.3394	-553.5	-525.1	70.42	47.78									
BaO ₂	s	169.3388	-634.3			66.9		Chlorine							
BaF ₂	s	175.3368	-1207.1	-1156.8	96.36	71.21									
BaS	s	169.4040	-460.	-456.	78.2	49.37		Cl ₂	g	70.9060	0	0	233.066	33.907	2446
BaSO ₄	barite	233.4016	-1473.2	-1362.2	132.2	101.75	52.10	Cl-	aq	35.4530	-167.159	-131.228	56.5	-136.4	17
BaCO ₃	witherite	197.3494	-1216.3	-1137.6	112.1	85.35	45.81	HCl	aq	36.4610	-167.159	-131.228	56.5	-136.4	17
	s	213.4242		-1540.21	109.6	90.00		HCl	g	36.4610	-92.307	-95.299	186.908	29.12	2446
BaSiO ₃	,													- 1	
Calcium	1							Copper							
	1							Cu		62 5400	10	0	22.15	24.425	ë
Ca	s	40.0800	0	0	41.42	25.31		Cu	s	63.5400			33.15	24.435	l
Ca ²⁺	aq	40.0800	-542.83	-553.58	-53.1	_	-18.4	Cu+	aq	63.5400	71.67	49.98	40.6		
CaO	s	56.0794	-635.09	-604.03	39.75	42.80		Cu ²⁺	aq	63.5400	64.77	65.49	-99.6		
	portlandite	74.0948	-986.09	-898.49	83.39	87.49		CuO	tenorite	79.5394	-157.3	-129.7	42.63	42.30	
Ca(OH) ₂		78.0768	-1219.6	-1167.3	68.87	• 67.03	24.542	Cu ₂ O	cuprite	143.0794	-168.6	-146.0	93.14	63.64	ĺ
CaF ₂	fluorite		-482.4	-477.4	56.5	47.40		CuS	covellite	96.6040	-53.1	-53.6	66.5	47.82	l
CaS	S	72.1440	E SELECTION IN SEC.	-1321.79	106.7	99.66	45.94	Cu ₂ S	chalcocite	159.1440	-79.5	-86.2	120.9	76.32	é
CaSO ₄	anhydrite	136.1416	-1434.11	-1321./9	100.7	33.00	10.01								

v2025

See complete table in handout.

Consider the dissolution of CaCO₃ (calcite) in aqueous solution:

$$CaCO_3 \rightarrow Ca^{2+} + CO_3^{2-}$$

Does the reaction proceed spontaneously as written?

Calculate the free energy of reaction at standard state (products and reactants at activity = 1, P = 1 atm, T = 25°C):

$$\Delta G^{\circ}_{r} = \left(\sum_{i} v_{i} G^{\circ}_{fi}\right)_{products} - \left(\sum_{i} v_{i} G^{\circ}_{fi}\right)_{reactants}$$

Consider the dissolution of CaCO₃ (calcite) in aqueous solution:

$$CaCO_3 \rightarrow Ca^{2+} + CO_3^{2-}$$

Does the reaction proceed spontaneously as written?

Calculate the free energy of reaction at standard state (products and reactants at activity = 1, P = 1 atm, T = 25°C):

$$\Delta G^{\circ}_{r} = \left(\sum_{i} v_{i} G^{\circ}_{fi}\right)_{products} - \left(\sum_{i} v_{i} G^{\circ}_{fi}\right)_{reactants}$$

TABLE 3-1 Thermodynamic Constants for Species of Importance in Water Chemistry.^a

Species	$\Delta \overline{H}_{t}^{\circ}$ kcal/mole	$\Delta \overline{G}_i^{\circ}$ kcol/mole
Cα ²⁺	-129.77	-132.18
CaCO _{3(s)} , calcite	-288.45	-269.78
CαO _(s)	-151.9	-144.4
HCO _{3(aq)}	-165.18	-140.31
CO _{3(ag)}	-161.63	-126.22
CH₃COO ⁻ , acetate	-116.84	-89.0

Consider the dissolution of CaCO₃ (calcite) in aqueous solution:

$$CaCO_3 \rightarrow Ca^{2+} + CO_3^{2-}$$

Does the reaction proceed spontaneously as written?

Calculate the free energy of reaction at standard state (products and reactants at activity = 1, P = 1 atm, T = 25°C):

$$\Delta G^{\circ}_{r} = \left(\sum_{i} v_{i} G^{\circ}_{fi}\right)_{products} - \left(\sum_{i} v_{i} G^{\circ}_{fi}\right)_{reactants}$$

$$\Delta G_r^\circ = (1(-132.18) + 1(-126.22) - (1(-269.78)) \text{ kcal/mol}$$

$$= (-258.4 + 269.78) \text{ kcal/mol}$$

$$= +11.38 \text{ kcal/mol}$$

Therefore, <u>at standard state</u>, the reaction spontaneously proceeds in the opposite direction to what is written.

TABLE 3-1 Thermodynamic Constants for Species of Importance in Water Chemistry.^a

Species	$\Delta \overline{H}_{i}^{\circ}$ kcal/mole	$\Delta \overline{G}_f^{\circ}$ kcol/mole
Cα _(aq)	-129.77	-132.18
CaCO _{3(s)} , calcite	-288.45	-269.78
CaO _(s)	-151.9	-144.4
C _(s) , graphite	0	0
$CO_{2(g)}$	-94.05	-94.26
$CO_{2(aq)}$	-98.69	-92.31
CH _{4(g)}	-17.889	-12.140
H ₂ CO _{3(aq)}	-167.0	-149.00
HCO _{3(aq)}	-165.18	-140.31
CO _{3(aq)}	-161.63	-126.22
CH₃COO ⁻ , acetate	-116.84	-89.0
$H_{(aq)}^+$	0	0
$H_{2(g)}$	0	0
$Fe_{(aq)}^{2+}$	-21.0	-20.30
$Fe_{(aq)}^{3+}$	-11.4	-2.52
$Fe(OH)_{3(s)}$	-197.0	-166.0
$Mn_{(aq)}^{2+}$	-53.3	-54.4
$MnO_{2(s)}$	-124.2	-111.1
$Mg^{2+}_{(aq)}$	-110.41	-108.99
$Mg(OH)_{2(s)}$	-221.00	-199.27
$NO_{3(aq)}^-$	-49.372	-26.43
$NH_{3(g)}$	-11.04	-3.976
$NH_{3(aq)}$	-19.32	-6.37
$NH_{4(aq)}^+$	-31.74	-19.00
$HNO_{3(aq)}$	-49.372	-26.41
O _{2(aq)}	-3.9	3.93
$O_{2(g)}$	0	0
$OH_{(aq)}^-$	-54.957	-37.595
$H_2O_{(g)}$	-57.7979	-54.6357
H ₂ O _(ℓ)	-68.3174	-56.690
$SO_{4(aq)}^{2-}$	-216.90	-177.34
$HS_{(aq)}^-$	-4.22	3.01
$H_2S_{(g)}$	-4.815	-7.892
$H_2S_{(aq)}$	-9.4	-6.54

Equilibrium at In-Situ Conditions - I

We have already seem that:

$$\Delta G = \Delta G^{\circ} + RT \ln \frac{\{C\}^{c} \{D\}^{d}}{\{A\}^{a} \{B\}^{b}}$$
In-situ Std. state

We can define a *reaction quotient*, **Q**, using in-situ conditions:

$$Q = \frac{\{C\}^c \{D\}^d}{\{A\}^a \{B\}^b}$$

Equilibrium at In-Situ Conditions - I

We have already seem that:

$$\Delta G = \Delta G^{\circ} + RT \ln \frac{\{C\}^{c} \{D\}^{d}}{\{A\}^{a} \{B\}^{b}}$$
In-situ Std. state

We can define a *reaction quotient*, **Q**, using in-situ conditions:

$$Q = \frac{\{C\}^c \{D\}^d}{\{A\}^a \{B\}^b}$$

Thus: $\Delta G = \Delta G^{\circ} + RT \ln Q$

In the case of equilibrium, Q = K and $\Delta G = 0$:

Thus:
$$0 = \Delta G^{\circ} + RT \ln K$$

 $\Delta G^{\circ} = -RT \ln K$

Equilibrium at In-Situ Conditions - I

We have already seem that:

$$\Delta G = \Delta G^{\circ} + RT \ln \frac{\{C\}^{c} \{D\}^{d}}{\{A\}^{a} \{B\}^{b}}$$
In-situ Std. state

We can define a *reaction quotient*, **Q**, using in-situ conditions:

$$Q = \frac{\{C\}^{c} \{D\}^{d}}{\{A\}^{a} \{B\}^{b}}$$

Thus:

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

In the case of equilibrium, Q = K and $\Delta G = 0$:

Thus:
$$0 = \Delta G^{\circ} + RT \ln K$$

 $\Delta G^{\circ} = -RT \ln K$

Substituting (for the general case): $\Delta G = -RT \ln K + RT \ln Q = RT \ln Q/K$

Equilibrium at In-Situ Conditions - 2

$\Delta G = RT \ln Q/K$

This allows us to develop a set of criteria to determine in which direction a reaction will proceed under *non-standard* conditions. This is because Q/K will determine the *sign* of Δ G:

- 1. If Q/K < 1, then Δ G is negative, and the reaction is spontaneous as written.
- 2. If Q/K = 1, then ΔG = 0 and the system is at equilibrium.
- 3. If Q/K > 1, then Δ G is positive, and the reaction is spontaneous in the opposite direction as written.

Ion behavior in seawater does not equal concentration

- Seawater is a complex solvent
- lons interact differently than we might assume from simple, single ion pairs

Ex. Consider the dissolution of NaCl in water:

$$NaCl_{(s)} \rightarrow Na^+_{(aq)} + Cl^-_{(aq)}$$

If the reaction goes to completion, get I mole Na⁺ and I mole Cl⁻ (i.e., 2 moles of ions total)

Expect freezing point depression of -3.72°C, but in fact get -3.01°C

- NaCl is acting as though there were less than 2 moles of ions
- Thus, solution is non-ideal

Activity

lonic interactions cause non-ideality

■ As ionic strength increases, interactions and non- ideality increase

To understand these effects, we need to know the <u>effective</u> concentration of ions $\equiv ACTIVITY$

Activity of an ion *i* is defined: $a_i \equiv \{i\} \equiv \gamma_i [i]$

$$a_i = \gamma_i[\quad]_i$$

where: $\gamma_i \equiv activity coefficient$ for the ion "i" (dimensionless)

[i] \equiv ion concentration (measured, mol kg⁻¹)

 $\{i\}$ = ion activity, to be used instead of concentration

Note that dimension conventions can differ between texts/subfields

In dilute aqueous solutions:

- lons behave independently of one another
- $\gamma = 1$
- Activity = measured molality

As concentrations of ions in solution increase:

- Electrostatic and covalent interactions increase between ions
- Activities of ions decrease from measured (analytical) concentrations

As Ionic strength (I) increases, activity decreases

- $I = \frac{1}{2} \sum m_i z_i^2$ (the sum of total charge from ions squared times the concentration of each ion)
- A I.0 M solution of NaCl has an I of I.0M
- A I M solution of MgCl₂ has an I of 3.0 M
- Ionic strength of SW is approx. 0.7

Approximations of activity coeff.

Debye-Huckel equation

log $\gamma_i = -A z_i^2 VI$ A = a constant for the ion i $z_i = i$ on charge I = s olution ionic strength

Note:

Ionic strength of SW is ~0.7! (i.e. way off the top of scale shown here)

Fig. 3-4. Activity coefficients of aqueous ions based on the extended DeBye-Hückel equation (Eq. 3-35) and the Güntelberg approximation (Eq. 3-36).

Activity in SW

- Different than solutions of individual salts
 - lons from different salts can form pairs, such that the "true" activity (a_i) is even lower than that calculated from lab studies of electrical activity

$$a_i = \left(\% \frac{free_i}{100}\right) \times \gamma_i \times [\quad]_i = \gamma_{iT}[\quad]_i$$

Activities – How to Calculate

- 1. For ions and molecules in solution, $\{i\}$ is related to the molar concentration, [i], by $\{i\} = \gamma_i[i]$ where $\gamma_i =$ activity coefficient. As the solution becomes dilute (most cases of interest to us), γ_i approaches 1 and $\{i\}$ approaches [i].
- 2. For the solvent in a solution, $\{i\} = \gamma_i X_i$ where X_i is the mole fraction. As the solution becomes more dilute, γ_i approaches 1. The activity generally is assumed to be 1 for the dilute solutions of concern to us. Activity of water = 1
- 3. For pure solids or liquids in equilibrium with a solution, $\{i\} = 1$.
- 4. For gases in equilibrium with a solution, $\{i\} = \gamma_i P_i$ where P_i is the partial pressure of the gas in atmospheres. As the total pressure decreases, γ_i approaches 1. When reactions take place at atmospheric pressure, the activity of a gas can be approximated closely by its partial pressure.
- 5. For mixtures of liquids, $\{i\} = X_i$, where X_i is the mole fraction.

Again consider the dissolution of CaCO₃ (calcite):

$$CaCO_3 \rightarrow Ca^{2+} + CO_3^{2-}$$

In the surface ocean, does the reaction proceed spontaneously as written?

Use $\Delta G^{\circ} = -RT \ln K$

From Sample Calculation #1, we know: $\Delta G^{\circ} = +11.38$ kcal/mole

Again consider the dissolution of CaCO₃ (calcite):

$$CaCO_3 \rightarrow Ca^{2+} + CO_3^{2-}$$

In the surface ocean, does the reaction proceed spontaneously as written?

Use
$$\Delta G^{\circ} = -RT \ln K$$

From Sample Calculation #1, we know: $\Delta G^{\circ} = +11.38$ kcal/mole

Thus:
$$11.38 \frac{kcal}{mol} = -\left(1.987 \frac{cal}{°K \ mol}\right) \left(\frac{1 \ kcal}{1000 \ cal}\right) (298°K) \ln(k)$$

(all units cancel out)

In K = -19.22

$$K = 4.5 \times 10^{-9}$$
 ("equilibrium constant")

Sample Calculation #2 (cont.)

Surface seawater: $\{CaCO_3\} \equiv 1$ $[Ca^{2+}] = 0.01 \text{ mol/L}; \quad \gamma_T = 0.23; \quad \{Ca^{2+}\} = 0.0023 \text{ mol/L}$ $[CO_3^{2-}] = 23 \text{ mmol/L}; \quad \gamma_T = 0.029; \quad \{CO_3^{2-}\} = 6.7 \times 10^{-6} \text{ mol/L}$

$$Q = \frac{\{Ca^{2+}\}\{CO_3^{2-}\}}{\{CaCO_3\}} = \frac{(2.3x10^{-3})\times(6.7x10^{-6})}{1} = 1.53x10^{-8}$$
$$\frac{Q}{K} = \frac{1.53x10^{-8}}{4.5x10^{-9}} = 3.4$$

Sample Calculation #2 (cont.)

Surface seawater:

$${CaCO_3} \equiv 1$$

$$[Ca^{2+}] = 0.01 \text{ mol/L}; \quad \gamma_T = 0.23; \quad \{Ca^{2+}\} = 0.0023 \text{ mol/L}$$

$$[CO_3^{2-}] = 23 \text{ mmol/L}; \quad \gamma_T = 0.029; \quad \{CO_3^{2-}\} = 6.7 \text{ x } 10^{-6} \text{ mol/L}$$

$$Q = \frac{\{Ca^{2+}\}\{CO_3^{2-}\}}{\{CaCO_3\}} = \frac{(2.3x10^{-3})\times(6.7x10^{-6})}{1} = 1.53x10^{-8}$$

$$\frac{Q}{K} = \frac{1.53 \times 10^{-8}}{4.5 \times 10^{-9}} = 3.4$$

Therefore:

- The reaction goes in the opposite direction as written (Q/K > 1)
- CaCO₃ precipitates in the surface ocean
- Surface seawater is supersaturated with respect to calcite

Note: No information is given on the *kinetics* of the reaction!

Temperature and Pressure Effects - I

The amount of heat that is released or taken up by a reaction is called the *enthalpy change* (ΔH°).

Similarly to ΔG° , we can calculate ΔH° using tabulated data:

$$\Delta H_r^{\circ} = \left(\sum_{i} v_i H_{fi}^{\circ}\right)_{products} - \left(\sum_{i} v_i H_{fi}^{\circ}\right)_{reactants}$$

where v_i is the stoichiometric coefficient (a,b,c,d), and H°_{fi} is the enthalpy of formation of species *i* (kcal/mol or kJ/mol) at standard state.

The van't Hoff equation gives the temperature dependence of K:

$$\left(\frac{\partial \ln K}{\partial T}\right)_P = \frac{\Delta H_r^{\circ}}{RT^2}$$

For a small change in T, ΔH° does not change much, so we can integrate directly:

$$\ln\left(\frac{K_{T^*}}{K_{298}}\right) = \frac{\Delta H_r^{\circ}}{R} \left(\frac{1}{298} - \frac{1}{T^*}\right)$$

where T* is the temperature of interest.

Temperature and Pressure Effects - 2

The *change in the partial molar volume* ($\triangle V^{\circ}$) during a reaction at standard state is also calculated using tabulated data:

$$\Delta V_r^{\circ} = \left(\sum_{i} v_i V_{fi}^{\circ}\right)_{products} - \left(\sum_{i} v_i V_{fi}^{\circ}\right)_{reactants}$$

where v_i is the stoichiometric coefficient (a,b,c,d), and V_{fi}° is the partial molar volume of formation of species i (cm³/mol) at standard state.

The pressure dependence of K is also known:

$$\left(\frac{\partial \ln K}{\partial P}\right)_T = \frac{\Delta V_r^{\circ}}{RT}$$

Again integrating directly:

$$\ln\left(\frac{K_{P^*}}{K_{1\text{atm}}}\right) = \frac{\Delta V_r^{\circ}}{RT} \left(P^* - 1\text{atm}\right)$$

where P* is the pressure of interest (in atm).

- For exothermic reactions InK increases as I/T increases, (T decreases), favouring product formation
- For endothermic reactions InK increases as I/T decreases (T increases) favouring product formation

v2025

Equilibrium vs. kinetics

- Equilibrium calculations give the energy available from a reaction & the direction it will proceed
 - Usually simpler & require less info than those for kinetics
- Often a good approximation for many systems
- In some cases, equilibrium calculations can predict kinetic rate constants
- HOWEVER, most natural water reactions are not at equilibrium and knowledge of kinetics is often required
 - States of dynamic equilibrium, reaction rates, are topics outside of the scope of this course