Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Sztuczna Inteligencja w Automatyce

Projekt 1

Kacper Marchlewicz, Adam Wróblewski

Spis treści

1.	Zada	wie 1
		Symulacja obiektu
	1.2.	Linearyzacja modelu
	1.3.	Dyskretyzacja modeli
	1.4.	Konwencjonalny regulator DMC w wersji analitycznej
2.	Zada	anie $oldsymbol{2}$ 14
		Opracowanie modeli rozmytych Takagi-Sugeno
	2.2.	Implementacja rozmytego regulatora predykcyjnego
	2.3.	Nastrojony regulator DMC analityczny rozmyty
3.	Zada	anie 3
	3.1.	Regulator SL
	3.2.	Porównanie działania

1.1. Symulacja obiektu

Na podstawie podanych równań obiektu otrzymaliśmy nieliniowy model obiektu:

$$\frac{dh_1}{dt} = \frac{F1_{in}(t-\tau) + F_d - \alpha_1 \sqrt{h_1(t)}}{2C_1 h_1(t)}$$
(1.1)

$$\frac{dh_2}{dt} = \frac{\alpha_1 \sqrt{h_1(t)} - \alpha_2 \sqrt{h_2(t)}}{3C_2 h_2(t)^2}$$
 (1.2)

Gdzie:

 $F1_{in}$ - wielkość sterująca h_2 - wielkość regulowana

 $C_1 = 0.75.$

 $C_2 = 0.55.$

 $\alpha_1 = 20.$

 $\alpha_2 = 20.$

Punkt pracy:

 $F_1 = 52cm^3/s$ $F_D = 11cm^3/s$

 $\tau = 50s$

 $h_2 = 9,9225cm$

Symulację obiektu ciągłego przeprowadziliśmy wykorzystując funkcję ode23s. W punkcie pracy zmienna h2 stabilizuje się na wartości 9.9225, a h1 na 9.9218.

Rys. 1.1: Punkt pracy

Rys. 1.2: Przebieg zmiennej h2 dla skoków sterowania z punktu pracy

1. Zadanie 1 4

Rys. 1.3: Przebieg zmiennej h1 dla skoków sterowania z punktu pracy

Na podstawie przebiegów zmiennych h2 i h1 możemy stwierdzić że obiekt jest nieliniowy - obserwujemy że wyjście obiektu zmienia się nieproporcjonalnie do wejścia.

W pliku 'Zadanie1.m' znajduje się wywołanie odpowiednich funkcji w celu otrzymania powyższych przebiegów.

1. Zadanie 1 5

1.2. Linearyzacja modelu

Dokonaliśmy linearyzacji modelu wykorzystując rozwinięcie w szereg Taylora, otrzymaliśmy następujące równania:

$$h_1(t) = \frac{-\alpha_1 * \sqrt{h_{1plin}} + F_d + F_1}{2 * C_1 * h_{1plin}} + \frac{(\alpha_1 * \sqrt{h_{1plin}} - 2 * F_d - 2 * F_1}{4 * C_1 * h_{1plin}^2} * (h_1(t) - h_{1plin})$$

$$h_{2}(t) = \frac{\alpha_{1} * \sqrt{h_{1plin}} - \alpha_{2} * \sqrt{h_{2plin}}}{3*C_{2} * h_{2plin}^{2}} + \left(\frac{\alpha_{1}}{6*C_{2} * \sqrt{h_{1plin}} * h_{2plin}^{2}}\right) * (h(1) - h_{1plin}) + \left(\frac{-2*\alpha_{1} * \sqrt{h_{1plin}}}{3*C_{2} * h_{2plin}^{3}}\right) * (h_{2}(t) - h_{2plin});$$

Gdzie:

 h_{1plin} - punkt linearyzacji

 h_{2plin} - punkt linearyzacji

W celu porównania modeli linowych z nieliniowymi przeprowadziliśmy serię skoków wartości sterowania z punktu pracy:

Rys. 1.4: Skok sterowania z punktu pracy na 55

Rys. 1.5: Skok sterowania z punktu pracy na $60\,$

Rys. 1.6: Skok sterowania z punktu pracy na 68

Porównanie modelu nieliniowego ze zlinearyzowanym dla skoku ssterowania = 40 10 h1 h2 9 h1 zlin h2 zlin 8 6 5 4 3 0 200 600 800 400 1000

Rys. 1.7: Skok sterowania z punktu pracy na 40

Wraz ze zwiększaniem sterowania oddalamy się od punktu pracy (h
1 = 9,9925; h2 = 9,9911) dla którego obliczony został model zlinearyzowany, co obserwujemy jako sukcesywnie większe rozbieżności między modelem nieliniowym a zlinearyzowanym. Wraz z oddalaniem się od punktu linearyzacji (punktu pracy) tracimy dokładność modelu zlinearyzowanego.

W pliku 'Zadanie1.m' znajduje się wywołanie odpowiednich funkcji w celu otrzymania powyższych przebiegów.

1.3. Dyskretyzacja modeli

W celu implementacji regulatorów przekształciliśmy model ciągły na model dyskretny:

$$h_1(k) = \frac{F1_{in}(k-1-\tau) + F_d - \alpha_1\sqrt{h_1(k-1)}}{2C_1h_1(k-1)} * T + h_1(k-1)$$
(1.3)

$$h_2(k) = \frac{\alpha_1 \sqrt{h_1(k-1)} - \alpha_2 \sqrt{h_2(k-1)}}{3C_2 h_2(k-1)^2} * T + h_2(k-1)$$
(1.4)

Gdzie: T = 1 - krok symulacji

Model zlinearyzowany dyskretny:

$$h_1(k) = \frac{-\alpha_1 * \sqrt{h_{1plin}} + F_d + F_1}{2 * C_1 * h_{1plin}} + \frac{(\alpha_1 * \sqrt{h_{1plin}} - 2 * F_d - 2 * F_1}{4 * C_1 * h_{1plin}^2} * (h_1(k-1) - h_{1plin}) * T + h_1(k-1)$$

$$(1.5)$$

$$h_{2} = \frac{\alpha_{1} * \sqrt{h_{1plin}} - \alpha_{2} * \sqrt{h_{2plin}}}{3 * C_{2} * h_{2plin}^{2}} + \left(\frac{\alpha_{1}}{6 * C_{2} * \sqrt{h_{1plin}} * h_{2plin}^{2}}\right) * (h(1) - h_{1plin}) + \left(\frac{-2 * \alpha_{1} * \sqrt{h_{1plin}}}{3 * C_{2} * h_{2plin}^{3}} + \frac{\alpha_{2}}{2 * C_{2} * h_{2plin}^{(5/2)}}\right) * (h_{2}(k-1) - h_{2plin}) * T + h_{2}(k-1)$$

$$(1.6)$$

Porównanie modeli zdyskretyzowanych i ciągłych:

Rys. 1.8: Porównanie działania modelu nieliniowego ciągłego i dyskretnego.

Rys. 1.9: Porównanie działania modelu zlinearyzowanego ciągłego i dyskretnego.

Rys. 1.10: Porównanie działania modelu nieliniowego ciągłego i dyskretnego.

Rys. 1.11: Porównanie działania modelu zlinearyzowanego ciągłego i dyskretnego.

Jak możemy zauważyć modele dyskretne dobrze odwzorowują modele ciągłe - przebiegi są identyczne.

W pliku 'Zadanie1.m' znajduje się wywołanie odpowiednich funkcji w celu otrzymania powyższych przebiegów.

1.4. Konwencjonalny regulator DMC w wersji analitycznej

Do regulacji procesu wykorzystaliśmy zaimplementowany regulator DMC o parametrach: $N=300,\,Nu=2,\,D=500,\,\lambda=0.1.$

 $Implementacja znajduje się w pliku 'DMC_ana.m'. Pobiera on odpowiedzi skokowe za pomocą funkcji 'pobranie_modelu.m'$

Przebiegi sterowania i wyjścia dla kilku skoków wartości zadanej:

Rys. 1.12: Przebieg zmiennej wyjściowej h2 dla konwencjonalnego regulatora DMC.

Rys. 1.13: Przebieg zmiennej sterującej F1 dla konwencjonalnego regulatora DMC.

Regulator DMC w podstawowej wersji generalnie działa dobrze, jedynie w okolicy $y_{zad} = 4$, obserwujemy spore oscylacje wyjścia i sterowania. Błąd dla tego regulatora wynosi $1, 33 * 10^4$.

Wpływ zakłóceń na działanie regulatora DMC o parametrach: N = 300, Nu = 2, D = 500, λ = 0.1.

Rys. 1.14: Przebieg zmiennej wyjściowej h2 dla regulatora DMC przy skokowych zakłóceniach

Rys. 1.15: Przebieg zmiennej sterującej F1 dla regulatora DMC przy skokowych zakłóceniach.

Regulator DMC jest odporny na zmianę wartości zakłóceń, obserwujemy że wraca on do wartości zadanej w skończonym czasie.

 ${\bf W}$ pliku 'Zadanie 1.m' znajduje się wywołanie odpowiednich funkcji w celu otrzymania powyższych przebiegów.

2.1. Opracowanie modeli rozmytych Takagi-Sugeno

Opracowaliśmy modele rozmyte dzieląc równomiernie przestrzeń zmiennej wyjściowej $h_2 \in <0;15>$ na kolejno 2,3,4,5 przedziałów. Linearyzacji modeli lokalnych dokonaliśmy w punkcie linearyzacji będącym w środku każdego z obszaru. Zmienna h_1 przyjmuje takie same wartości w punktach linearyzacji jak h_2 - uprzednio sprawdziliśmy eksperymentalnie czy osiągnięcie takich punktów przez model jest możliwe oraz czy zmienne h_1 i h_2 są sobie równe.

Rys. 2.1: Funkcje przynależności dla modelu o 2 obszarach.

Rys. 2.2: Porównanie przebiegu zmiennej wyjściowej dla modelu rozmytego o 2 obszarach.

Rys. 2.3: Funkcje przynależności dla modelu o 3 obszarach.

Rys. 2.4: Porównanie przebiegu zmiennej wyjściowej dla modelu rozmytego o 3 obszarach.

Rys. 2.5: Funkcje przynależności dla modelu o 4 obszarach.

Rys. 2.6: Porównanie przebiegu zmiennej wyjściowej dla modelu rozmytego o 4 obszarach.

2. Zadanie 2 18

Rys. 2.7: Funkcje przynależności dla modelu o 5 obszarach.

Rys. 2.8: Porównanie przebiegu zmiennej wyjściowej dla modelu rozmytego o 5 obszarach.

Nie możemy powiedzieć że modele rozmyte działają dobrze lub że działają źle - działają średnio. Obserwujemy pewien "uchyb" zależny od ilości użytych modeli lokalnych. Niestety nie jesteśmy zidentyfikować co jest przyczyną takiego działania - podejrzewamy błąd we wzorach którego nie znaleźliśmy.

Dalsze badanie modelowania rozmytego - zmiana funkcji przynależności w naszej ocenie mija się z celem, gdy obserwujemy problemy w działaniu modelu przy równomiernie rozłożonych funkcjach przynależności.

W pliku 'modele_rozmyte.m' znajduje się wywołanie odpowiednich funkcji w celu otrzymania powyższych przebiegów.

2.2. Implementacja rozmytego regulatora predykcyjnego

Zaimplementowaliśmy rozmyty regulator DMC zakładając początkowy kształt funkcji przynależności oparty na równomiernym podziale.

Przeprowadziliśmy analizę działania regulatora rozmytego dla kolejno 2, 3, 4, 5 obszarów. Dla 2 obszarów:

Rys. 2.9: Funkcje podziału dla DMC rozmytego o 2 obszarach.

Rys. 2.10: odpowiedzi skokowe DMC rozmytego o 2 obszarach.

Rys. 2.11: Przebieg zmiennej wyjściowej h2 DMC rozmytego o 2 obszarach.

Rys. 2.12: Przebieg sterowania dla DMC rozmytego o 2 obszarach.

Dla 3 obszarów:

Rys. 2.13: Funkcje podziału dla DMC rozmytego o 3 obszarach.

Rys. 2.14: odpowiedzi skokowe DMC rozmytego o 3 obszarach.

Rys. 2.15: Przebieg zmiennej wyjściowej h2 DMC rozmytego o 3 obszarach.

Rys. 2.16: Przebieg sterowania dla DMC rozmytego o 3 obszarach.

2. Zadanie 2 23

Dla 4 obszarów:

Rys. 2.17: Funkcje podziału dla DMC rozmytego o 4 obszarach.

Rys. 2.18: odpowiedzi skokowe DMC rozmytego o 4 obszarach.

Rys. 2.19: Przebieg zmiennej wyjściowej h2 DMC rozmytego o 4 obszarach.

Rys. 2.20: Przebieg sterowania dla DMC rozmytego o 4 obszarach.

2. Zadanie 2 25

Dla 5 obszarów:

Rys. 2.21: Funkcje podziału dla DMC rozmytego o 5 obszarach.

Rys. 2.22: odpowiedzi skokowe DMC rozmytego o 5 obszarach.

Rys. 2.23: Przebieg zmiennej wyjściowej h2 DMC rozmytego o 5 obszarach.

Rys. 2.24: Przebieg sterowania dla DMC rozmytego o 5 obszarach.

Najlepszą jakość regulacji otrzymujemy dla regulatora rozmytego DMC o 3 obszarach lokalnych. Ma on mniejszy błąd regulacji od tego z 2 i 4 obszarami rozmytymi, wynoszący 1.2622e+04, a także cechuje się najlepszą jakością regulacji.

2. Zadanie 2 27

2.3. Nastrojony regulator DMC analityczny rozmyty

Do regulacji procesu wykorzystaliśmy zaimplementowany regulator DMC analityczny rozmyty o parametrach:

 $N_1 = 300, Nu_1 = 1, \lambda_1 = 0.1,$

 $N_2 = 300, Nu_2 = 1, \lambda_2 = 1,$

 $N_3 = 500, Nu_3 = 1, \lambda_3 = 0.5,$

 $\mathcal{D}=600,\,3$ obszary przynależności, funkcje Gaussowskie.

Implementacja znajduje się w pliku 'DMC_ana_rozmyty.m'. Pobiera on funkcje przynależności za pomocą funkcji 'funkcje_podziału.m' i odpowiedzi skokowe za pomocą 'pobranie_modelu_rozmyte' Odpowiedzi skokowe i funkcje przynależności:

Rys. 2.25: Lokalne odpowiedzi skokowe dla regulatora DMC analitycznego rozmytego.

2. Zadanie 2 28

Rys. 2.26: Funkcje przynależności dla regulatora DMC analitycznego rozmytego.

Przebiegi sterowania i wyjścia dla kilku skoków wartości zadanej:

Rys. 2.27: Przebieg zmiennej wyjściowej h2 dla regulatora DMC analitycznego rozmytego.

Rys. 2.28: Przebieg zmiennej sterującej F1 dla regulatora DMC analitycznego rozmytego.

DMC rozmyty ma lepsze przebiegi od zwykłej wersji analitycznej
(rys.2.7). Udało się pozbyc oscylacji w okolicy $y_{zad}=4$ i uchybu w okolicy $y_{zad}=8$. Dokładniej
sze strojenie obszarów powinno zaskutkować lepszymi przebiegami.

Wpływ zakłóceń na działanie regulatora DMC analitycznego rozmytego:

Rys. 2.29: Przebieg zmiennej wyjściowej h2 dla regulatora DMC analitycznego rozmytego przy skokowych zakłóceniach.

Rys. 2.30: Przebieg zmiennej sterującej F1 dla regulatora DMC analitycznego rozmytego przy skokowych zakłóceniach.

W pliku 'Zadanie2.m' znajduje się wywołanie odpowiednich funkcji w celu otrzymania powyższych przebiegów.

3.1. Regulator SL

Do regulacji procesu wykorzystaliśmy zaimplementowany regulator SL o parametrach: N = 500, Nu = 1, λ = 0.1, D = 600, 3 obszary przynależności.

Implementacja znajduje się w pliku 'SL.m'. Pobiera on funkcje przynależności za pomocą funkcji 'funkcje_podziału.m' i odpowiedzi skokowe za pomocą 'pobranie_modelu_rozmyte' Odpowiedzi skokowe i funkcje przynależności:

Rys. 3.1: Lokalne odpowiedzi skokowe dla regulatora SL.

Rys. 3.2: Funkcje przynależności dla regulatora SL.

Przebiegi sterowania i wyjścia dla kilku skoków wartości zadanej:

Rys. 3.3: Przebieg zmiennej wyjściowej h2 dla regulatora SL.

Rys. 3.4: Przebieg zmiennej sterującej F1 dla regulatora SL.

Regulator SL generalnie działa dobrze, w okolicy $y_{zad}=4$ brak oscylacji, ale dokładniejszy dobór funkcji przynależności mógłby poprawić szybkość dojścia do wartości zadanej. Wpływ zakłóceń na działanie regulatora SL:

Rys. 3.5: Przebieg zmiennej wyjściowej h2 dla regulatora SL przy skokowych zakłóceniach.

Rys. 3.6: Przebieg zmiennej sterującej F1 dla regulatora SL przy skokowych zakłóceniach.

 ${\bf W}$ pliku 'Zadanie
3.m' znajduje się wywołanie odpowiednich funkcji w celu otrzymania powyższych przebiegów.

3.2. Porównanie działania

Przebiegi sterowania i wyjścia dla kilku skoków wartości zadanej:

Rys. 3.7: Przebieg zmiennej wyjściowej h2 dla regulatorów.

Rys. 3.8: Przebieg zmiennej sterującej F1 dla regulatorów.

Można zauważyć, że algorytmy rozmyte radzą sobie lepiej. Przebiegi wyjścia są łagodniejsze, nie mają oscylacji jak w klasycznej wersji dmc. Na przebiegach zmian wejścia pod wpływem zakłóceń również widać takie efekty. Wpływ zakłóceń na działanie regulatorów:

Rys. 3.9: Przebieg zmiennej wyjściowej h2 dla regulatorów przy skokowych zakłóceniach.

Rys. 3.10: Przebieg zmiennej sterującej F1 dla regulatorów przy skokowych zakłóceniach.

 ${\bf W}$ pliku 'Zadanie
3.m' znajduje się wywołanie odpowiednich funkcji w celu otrzymania powyższych przebiegów.