Exercice 11 Chiffrement RSA

Alice publie sa clé publique n = 187 et e = 7.

- (a) Encoder le message m=15 avec la clé publique d' Alice.
 - Formule du Chiffrement: $C \equiv m^e \pmod{n}$
 - \blacksquare Message en clair: m=15
 - \blacksquare Message Chiffré: C = ? (à déterminer)
 - $\blacksquare e = 7$
 - Application numérique: $C \equiv 15^7 \pmod{187} \rightarrow \mathbf{C} = 93$
- (b) En utilisant le fait que $\varphi(n) = 160$, retrouver la factorisation de n, puis la clé privée d'Alice.
 - On utilise le Théorème de Bezout:

Théorème 1. Deux entiers relatifs a et b sont premiers entre eux (si et) seulement s'il existe deux entiers relatifs x et y tels que $a \times x + b \times y = 1$

- On transpose dans notre problème: $e \times u + \varphi(n) \times v = 1 \rightarrow 7 \times u + 160 \times v = 1$
- Méthode de Résolution : Division Euclidienne !
 - $\blacksquare 160 = 7 \times 22 + 6$
 - $\blacksquare 7 = 6 \times 1 + 1 \rightarrow (1 = ax + by) \rightarrow 1 = 7 (6 \times 1)$
 - * On isole le 1 et on retrouve l'equation : $\mathbf{1} = 7 \times u + 160 \times v$ (Bezout)
- Il suffit de reprendre notre division à partir de $1 = 7 (6 \times 1)$:
- $1 = 7 (6 \times 1)$
 - sachant que $6 = [160 (7 \times 22)]$
- $1 = 7 [160 (7 \times 22)] \rightarrow 1 = (7 \times 23) (160 \times 1)$
- $(7 \times 23) (160 \times 1) \rightarrow$ equation du théorème de Bezout retrouvée
 - Si u = d alors $d.e \equiv 1 \mod \varphi(n)$ $\rightarrow d \times 7 = 1 + k \times 160$ (k entier)
 - u respecte cette condition donc d=23
- Verification: en utilisant la formule du Déchiffrement: $m \equiv C^d \pmod{n}$
 - \blacksquare Message en clair: m = ? (à déterminer)
 - \blacksquare Message Chiffré: C=93
 - d = 23
 - \blacksquare n = 187
- Application numérique: $C \equiv 93^{23} \pmod{187} \rightarrow m = 15$
- \bullet On retrouve bien la valeur de m donnée dans la question a)

Exercice 12 Chiffrement/Attaques RSA

- (a) Le pirate peut-il pirater la clé d'Alice
 - Oui, il suffit de chercher les nombres premiers entre 2 et $\sqrt{1073}$
 - \blacksquare Message en clair: m=15
 - \blacksquare Message Chiffré: C = ? (à déterminer)
 - Réponse: p = 37 et q = 29
 - $e.d \equiv 1 \pmod{1008}$
 - $\blacksquare e = 73$
 - $\varphi(n) = 1008$
 - On a : $73 \times d \equiv 1 \pmod{1008}$
 - $\blacksquare d = ?$ (à déterminer)
 - On utilise le Théorème de Bezout:
 - On obtient: $73 \times u + 1008 \times v = 1$
 - Méthode de Résolution: Division Euclidienne!
 - $\blacksquare 1008 = 73 \times 13 + 59$
 - \blacksquare 73 = 59 × 1 + 14
 - $\blacksquare 59 = 14 \times 4 + 3$
 - $\blacksquare 14 = 3 \times 4 + 2$
 - $\blacksquare 3 = 2 \times 1 + 1 \rightarrow (1 = a \times x + b \times y) \rightarrow 1 = 3 (2 \times 1)$
 - * On isole le 1 et on retrouve $1 = 73 \times u + 1008 \times v$ (Bezout)
 - Il suffit de reprendre notre division à partir de $1 = 3 (2 \times 1)$:
 - $1 = 3 (2 \times 1)$
 - sachant que $14 = 3 \times 4 + 2 \rightarrow 2 = [14 3 \times 4]$
 - $1 = 3 1 \times [14 (3 \times 4)] \rightarrow 1 = (3 \times 5) 14$
 - $1 = (3 \times 5) 14$
 - sachant que $59 = 14 \times 4 + 3 \rightarrow 3 = [59 (14 \times 4)]$
 - $1 = [59 14 \times 4)] \times 5 14 \rightarrow 1 = (5 \times 59) (14 \times 21)$
 - $1 = (5 \times 59) (14 \times 21)$
 - \blacksquare sachant que $73 = 59 \times 1 + 14 \rightarrow 14 = [73 59]$
 - $1 = (5 \times 59) ([73 59] \times 21) \rightarrow 1 = (26 \times 59) (21 \times 73)$
 - $1 = (26 \times 59) (21 \times 73)$
 - sachant que $1008 = 73 \times 13 + 59 \rightarrow 59 = [1008 (73 \times 13)]$
 - $1 = (26.[1008 (73 \times 13)]) (21 \times 73) \rightarrow 1 = (26 \times 1008) (73 \times 359)$
 - $1 = (26.1008) (73 \times 359) \rightarrow u = (-359)etv = (26)$
 - Si u = d alors $d \times e \equiv 1 \mod \varphi(n)$ $\rightarrow d \times e = 1 + k \times 1008$ (k entier)
 - De plus, il faut $0 < d \leqslant \varphi(n) 1$
 - L'astuce consiste à résoudre $d \equiv u \mod \varphi(n) \rightarrow d = -359 + k.1008$
 - Avec k=1, nous avons **d=649** tout en respectant $d.e \equiv 1 \mod \varphi(n)$)
- (b) Le pirate a sniffé le réseau et a trouvé le texte chiffré: 423 (Hex). Quel est le message échangéé entre Alice et Bob?
 - Conversion de $C = (423)_{HEX}$ en base 10 (décimale) : $C = (1059)_{DEC}$
 - ullet Verification en utilisant la formule du Déchiffrement: $m \equiv C^d \pmod n$
 - \blacksquare Message en clair: m = ? (à déterminer)
 - \blacksquare Message Chiffré: C=1059
 - \blacksquare Message Chiffré: d=649
 - \blacksquare Message Chiffré: n = 1073
 - ullet Application numérique: $m \equiv 1059^{649} (\mod 1073)
 ightarrow m = 97$
 - 97 en ASCII correspond à la lettre \boldsymbol{a} .