LÓGICA

Cód:30829840

Turma: SI

Prof. Dr. João Paulo I. F. Ribas

Regras de Inferência (Implicações)

Regras de Inferência (Implicações)				
AD	$p \Rightarrow p \vee q$	$p \Rightarrow q v p$		
SIMP	$p \wedge q \Rightarrow p$	$p \land q \Rightarrow q$		
CONJ	$p,q \Rightarrow p \wedge q$	$p , q \; \Rightarrow \; q \wedge p$		
ABS	$p \rightarrow q \Rightarrow p \rightarrow (p \land q)$			
MP	$p o q$, $p \Rightarrow q$			
MT	$p o q$, ~q \Rightarrow ~p			
SD	$p \ v \ q$, $\sim p \Rightarrow q$	$p \ v \ q \ , \sim q \ \Rightarrow \ p$		
SH	$p \rightarrow q$, $q \rightarrow r \Rightarrow p \rightarrow r$			
DC	$p \rightarrow q$, $r \rightarrow s$, $p \ v \ r \ \Rightarrow \ q \ v \ s$			
DD	$p \rightarrow q$, $r \rightarrow s$, $\sim q$ $v \sim s \Rightarrow \sim p$ $v \sim r$			

Equivalências Notáveis

Equivalências			
IDEM	p ⇔ p ^ p		
COM	p ^ q ⇔ q ^ p		
ASSOC	$p \land (q \land r) \Leftrightarrow (p \land q) \land r$		
ID	$p \wedge t \Leftrightarrow p$ $p \wedge c \Leftrightarrow c$		
וט	onde $t = V$ (verdadeiro) e $c = F$ (falso)		
DIST	$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$		
ABS	$p \land (p \lor q) \Leftrightarrow p$		
DN	p ⇔ ~~p		
DM	~(p ^ q) \ \ ~p v ~q		
COND	$p \rightarrow q \Leftrightarrow \sim p \vee q$		
BICOND	$p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$		
СР	$p \rightarrow q \Leftrightarrow \sim q \rightarrow \sim p$		
El	$p \land q \rightarrow r \Leftrightarrow p \rightarrow (q \rightarrow r)$		

Inferências x Equivalências

	Inferências		Equivalências
•	Só podem ser aplicadas da	•	Podem ser aplicadas de ambos os
	esquerda para a direita;		lados;
•	São aplicadas sobre uma, duas	•	São aplicadas sobre uma única
	ou até três premissas;		premissa;
•	Exigem serem aplicadas sobre	•	Podem ser aplicadas em partes de
	a(s) premissa(s) como um todo;		uma premissa (termo);
•	Obtêm resultados de deduções aplicadas sobre as premissas envolvidas;	•	São apenas substituições da premissa envolvida por outra equivalente;
•	Utilizam as equivalências como	•	Geralmente são utilizadas à adequar
	suporte para adequar as		as premissas para posteriores
	premissas;		aplicações das regras de inferência;

Validade de Argumentos Mediante Regras de Inferência e Equivalências

Seja P1, P2, P3, ... Pn ⊢ Q um argumento qualquer, cuja validade deve ser verificada, ele deve ser apresentado seguindo a notação:

As Premissas Intermediárias são resultados das aplicações das Regras de Inferência e Equivalências sobre as outras premissas, incluindo as intermediárias também

Ao se obter a conclusão, demonstra-se que o argumento é válido

a)
$$p \rightarrow \sim q$$
, $q \vdash \sim p$

a)
$$p \rightarrow \sim q$$
, $q \vdash \sim p$

```
1) p \to \sim q
2) q
3) \sim \sim q \to \sim p
1- CP
4) q \to \sim p
3 - DN
5) \sim p
2,4 - MP
```

b)
$$p \rightarrow q$$
, $r \rightarrow \sim q \vdash p \rightarrow \sim r$

b)
$$p \rightarrow q$$
, $r \rightarrow \sim q \vdash p \rightarrow \sim r$

```
1) p \rightarrow q

2) r \rightarrow \sim q

3) \sim \sim q \rightarrow \sim r

4) q \rightarrow \sim r

5) p \rightarrow \sim r

1 - CP

3 - DN

1,4 - SH
```

c) p v (q
$$\land$$
 r), p v q \rightarrow s \vdash p v s

c) p v (q
$$\land$$
 r), p v q \rightarrow s \vdash p v s

```
1) p v (q ^ r)
2) p v q → s

3) (p v q) ^ (p v r)
1 - Dist
4) p v q
3 - Simp
5) s
2,4 - MP
6) p v s
5 - AD
```

d) p v q
$$\rightarrow$$
 r \land s, \sim s $\vdash \sim$ q

d) p v q
$$\rightarrow$$
 r \land s, \sim s $\vdash \sim$ q

- 1) $p v q \rightarrow r \wedge s$
- 2) ~s

3) ~r v ~s	2- AC
------------	-------

4)
$$\sim$$
(r \wedge s) 3 – DM

5)
$$\sim$$
(p v q) 1,4 - MT

e)
$$\sim p \rightarrow \sim q$$
, q, s v $\sim p \vdash \sim (\sim p \lor \sim s)$

Demonstrar a validade dos seguintes argumentos utilizando a regras de inferência e equivalências:

e)
$$\sim p \rightarrow \sim q$$
, q, s v $\sim p \vdash \sim (\sim p \lor \sim s)$

```
1) \sim p \rightarrow \sim q
```

2) q

3) $s v \sim p$

4) ~~p	 1,2- MT
5) p	4 - DN
6) s	3,5 - SD
7) p ^ s	5,6 - Con
8) \sim (\sim p v \sim s)	7- DM

f)
$$(p \lor \sim q) \lor r$$
, $\sim p \lor (q \land \sim p) \vdash q \rightarrow r$

f)
$$(p \lor \sim q) \lor r$$
, $\sim p \lor (q \land \sim p) \vdash q \rightarrow r$

```
1) (p \ v \ \sim q) \ v \ r
```

```
3) (\sim p \vee q) \wedge (\sim p \vee \sim p) 2- Dist
4) (\sim p \vee q) \wedge \sim p 3 - ID
5) \sim p 4 - Simp
6) p \vee (\sim q \vee r) 1 - Assoc
7) \sim q \vee r 5,6 - SD
8) q \rightarrow r 7 - Cond
```

g)
$$p \rightarrow \sim q, r \rightarrow q, r \vdash \sim p$$

Demonstrar a validade dos seguintes argumentos utilizando a regras de inferência e equivalências:

g)
$$p \rightarrow \sim q, r \rightarrow q, r \vdash \sim p$$

1)
$$p \rightarrow \sim q$$

2)
$$r \rightarrow q$$

3) r

4)	~q	\rightarrow	~r	
----	----	---------------	----	--

5) $p \rightarrow \sim r$

6) \sim r \rightarrow \sim p

7) $r \rightarrow \sim p$

8) ~p

$$3,7 - MP$$

h)
$$p \rightarrow q$$
, $q \leftrightarrow s$, $t \lor (r \land \sim s) \vdash p \rightarrow t$

Demonstrar a validade dos seguintes argumentos utilizando a regras de inferência e equivalências:

1) $p \rightarrow q$

h)
$$p \rightarrow q$$
, $q \leftrightarrow s$, $t \lor (r \land \sim s) \vdash p \rightarrow t$

```
2) q \leftrightarrow s
3) t v (r \wedge \sim s)
4) (q \rightarrow s) \land (s \rightarrow q)
                                     2 – Bicond
                                     4 - Simp
5) q \rightarrow s
6) p \rightarrow s
                                     1.5 - SH
7) (t \vee r) \wedge (t \vee \sim s)
                                     3 – Dist
8) t v ~s
                                     7 - Simp
9) ~s v t
                                     8 – Com
                                     9 - Cond
10) s \rightarrow t
11) p \rightarrow t
                                     6,10 - SH
```

i)
$$p \rightarrow \sim q$$
, $\sim r \rightarrow p$, $q \vdash \sim s \lor r$

Demonstrar a validade dos seguintes argumentos utilizando a regras de inferência e equivalências:

i)
$$p \rightarrow \sim q$$
, $\sim r \rightarrow p$, $q \vdash \sim s \lor r$

1)
$$p \rightarrow \sim q$$

2)
$$\sim r \rightarrow p$$

3) q

4)	~~q
----	-----

5) ~p

6) ~~r

7) r

8) ~s v r

3- DN

1,4 - MT

1,5 - MT

6 - DN

7 - AD

j) p v (q
$$\land$$
 r), p \rightarrow s, s \rightarrow r \vdash r

Demonstrar a validade dos seguintes argumentos utilizando a regras de inferência e equivalências:

j) p v (q
$$\land$$
 r), p \rightarrow s, s \rightarrow r \vdash r

```
1) p v (q \wedge r)
```

2) $p \rightarrow s$

3) $s \rightarrow r$

13) r

3/ 3 → 1	
4) (p v q) ^ (p v r)	1 – Dist
5) $p \rightarrow r$	2,3 - SH
6) p v r	4 – Simp
7) r v p	6 – Com
8) ~~r v p	7 – DN
9) $\sim r \rightarrow p$	8 - Cond
10) $\sim r \rightarrow r$	5,9 - SH
11) ~~r v r	10 - Cond
12) r v r	11 – DN

12 – ID

k)
$$p \land q \rightarrow \sim r$$
, $r \lor (s \land t)$, $p \leftrightarrow q \vdash p \rightarrow s$

Demonstrar a validade dos seguintes argumentos utilizando a regras de inferência e equivalências:

k)
$$p \land q \rightarrow \sim r$$
, $r \lor (s \land t)$, $p \leftrightarrow q \vdash p \rightarrow s$

```
1) p \land q \rightarrow \sim r
```

2)
$$rv(s \wedge t)$$

3)
$$p \leftrightarrow q$$

12) $p \rightarrow s$

, I I	
4) $(p \rightarrow q) \land (q \rightarrow p)$	3 – Bicond
5) $p \rightarrow q$	4 – Simp
6) $p \rightarrow (p \land q)$	5 – ABS
7) p → ~r	1,6 - SH
8) $(r v s) \wedge (r v t)$	2 – Dist
9) r v s	8 – Simp
10) ~~r v s	9 – DN
11) $\sim r \rightarrow s$	10 - Con

7,11 - SH

I)
$$p \rightarrow q$$
, $r \rightarrow s$, $q \vee s \rightarrow \sim t$, $t \vdash \sim p \land \sim r$

I)
$$p \rightarrow q$$
, $r \rightarrow s$, $q \vee s \rightarrow \sim t$, $t \vdash \sim p \land \sim r$

- 1) $p \rightarrow q$
- 2) $r \rightarrow s$
- 3) q v s \rightarrow ~t
- 4) t

5) ~~t	4- DN
C) (a a)	эг .

- 6) \sim (q v s) 3,5 MT
- 7) ~q ^ ~s 6 DM
- 8) ~q 7 Simp 9) ~s 7 - Simp
- 10) ~p 1,8 MT
- 11) ~r 2,9 MT 12) ~p ^ ~r 10,11 - Conj

m)
$$p \rightarrow q$$
, $q \rightarrow (p \rightarrow (r \lor s))$, $r \leftrightarrow s$, $\sim (r \land s) \vdash \sim p$

m)
$$p \rightarrow q$$
, $q \rightarrow (p \rightarrow (r \lor s))$, $r \leftrightarrow s$, $\sim (r \land s) \vdash \sim p$

```
1) p \rightarrow q
```

2)
$$q \rightarrow (p \rightarrow (r \lor s))$$

3)
$$r \leftrightarrow s$$

4)
$$\sim$$
(r \wedge s)

5)
$$(r \land s) \lor (\sim r \land \sim s)$$
 3- Bicond
6) $\sim r \land \sim s$ 4,5 - SD
7) $\sim (r \lor s)$ 6 - DM
8) $p \to (p \to (r \lor s))$ 1,2 - SH
9) $(p \land p) \to (r \lor s))$ 8 - El
10) $p \to (r \lor s)$ 9 - ID
11) $\sim p$ 7,10 - MT

n)
$$\sim$$
p v q \rightarrow r, r v s \rightarrow \sim t, t \vdash \sim q

n)
$$\sim$$
p v q \rightarrow r, r v s \rightarrow \sim t, t \vdash \sim q

- 1) $\sim p \vee q \rightarrow r$
- 2) $r v s \rightarrow \sim t$
- 3) t

4)	~~t	3- [10

5)
$$\sim$$
(r v s) 2,4 - MT

0)
$$1) x=y \rightarrow x \ge y$$

$$2) y=0 \leftrightarrow x \ge y$$

$$3) x=0 \ v \ z=1 \rightarrow y=0$$

$$4) (x=y \rightarrow y=0) \rightarrow x=0$$

$$\therefore \sim (x < y \land x=1)$$

Demonstrar a validade dos seguintes argumentos utilizando a regras de inferência e equivalências:

13 - DM

1) $x=y \rightarrow x \ge y$ 0) 2) $y=0 \leftrightarrow x \ge y$ 3) $x=0 \ v \ z=1 \rightarrow y=0$ 4) $(x=y \to y=0) \to x=0$ 5) $(y=0 \rightarrow x \ge y) \land (x \ge y \rightarrow y=0)$ 2 - Bicond 5 – Simp 6) $x \ge y \rightarrow y = 0$ 7) $x=y \rightarrow y=0$ 1,6 - SH 8) x = 04.7 - MP9) $x=0 \ v \ z=1$ 8 – AD 10) y=03.9 - MP5 – Simp 11) $y=0 \rightarrow x \ge y$ 12) x≥y 10,11 - MP12 - AD 13) $x \ge y \lor x \ne 1$

14) $\sim (x < y \land x = 1)$

p)
$$p \rightarrow q$$
, $q \rightarrow r$, $r \rightarrow p$, $p \rightarrow \sim r \vdash \sim p \land \sim r$

p) p
$$\rightarrow$$
 q, q \rightarrow r, r \rightarrow p, p \rightarrow ~r \vdash ~p \land ~r

1) p \rightarrow q
2) q \rightarrow r
3) r \rightarrow p
4) p \rightarrow ~r

5) p \rightarrow r
6) (p \rightarrow r) \land (r \rightarrow p)
7) p \leftrightarrow s
6 - Bicond
8) (p \land r) v (\sim p \land ~r)
7 - Bicond
9) \sim p v \sim r
4 - Cond
10) \sim (p \land r)
11) \sim p \land ~r
8,10 - SD