

Dynamic Resource Exchange with CoinOR-CBC in Cyclus, a Nuclear Fuel Cycle Simulator

Matthew Gidden

INFORMS Computing Society Biennial Meeting Richmond, VA, 10 January 2015

Overview

- What is a nuclear fuel cycle?
- How do we simulate it?
- What is a Dynamic Resource Exchange (DRE) and how does it work?
- How does the DRE perform in practice?

Fuel Cycle Simulator - Purpose

 Track mass flows and facility deployments during transition between alternative nuclear fuel cycles

Fuel Cycle Simulator - Purpose

 Track mass flows and facility deployments during transition between alternative nuclear fuel cycles

Difficulties

- Reactor performance (e. g., cycle length, safety margins) depend on fuel isotopics
- Commodities (i.e., elements, isotopes) are <u>fungible</u>
- Supply chain with recycling
- Reactors use fuel <u>assemblies</u>

Fig: Fission Cross Section [1]

Difficulties

- Reactor performance (e. g., cycle length, safety margins) depend on fuel isotopics
- Commodities (i.e., elements, isotopes) are <u>fungible</u>
- Supply chain with recycling
- Reactors use fuel assemblies

Fig: Used Fuel Assemblies [2]

Dynamic Analysis

- Properties
 - Number, type of reactors is function of time
 - Fuel inventories is a function of simulation history
 - "endless number" of possible fuel cycles
 - Regional/Institutional effects

- Cyclus Approach
 - Discrete time
 - Agent-based modeling (individual facilities)
 - Resources have a quality (isotopics)
 - Discrete resource flow
 - Resource flow determined dynamically
 - http://fuelcycle.org/

Dynamic Resource Exchange

- DRE: Core algorithm for fuel cycle simulation
- Recomputed at each time step
- Solves economic problem dynamically; no hard-coded supply-demand behavior
- Treats arbitrarily complicated fuel cycles

DRE Phases

Request for Bids

Queries each requesting Agent in the simulation that demands a resource

Response to **Request for Bids**

Queries each responding Agent in the simulation that *supplies* a resource

Preference Adjustment

Agent *reviews* all matches; opportunity for preference adjustment

Solution

Matches **selected** for satisfiable requests

Trade Execution

Material transaction takes place

Phase 1: Request for bids

Phase 3: Preference Adjustment

Market Resolution

DRE Phases

Request for Bids

Queries each requesting Agent in the simulation that demands a resource

Response to **Request for Bids**

Queries each responding Agent in the simulation that *supplies* a resource

Preference Adjustment

Agent *reviews* all matches; opportunity for preference adjustment

Solution

Matches **selected** for satisfiable requests

Trade Execution

Material transaction takes place

Phase 1: Request for bids

Phase 2: Response to request for bids

Phase 3: Preference Adjustment

DRE Framework

DRE Framework

DRE Bipartite Graph

DRE Constraints

- Agents define conversion functions for constraint coefficients
 - input: proposed resource quality
 - output: unit capacity coefficient
- Allows arbitrary physics/chemistry fidelity

$$\sum_{i\in J} f_{SWU}(\varepsilon_i) x_{i,j}^{EU} \leq s_{i,SWU}$$

$$\sum f_{NU}(\varepsilon_j) x_{i,j}^{EU} \leq s_{i,NU}$$

$$\sum_{j \in J} a_{i,j}^k x_{i,j} \le b_i^k$$

DRE Constraints

- Requests and bids can be mutually exclusive
- Given set of possible connections, only one allowed

$$\sum_{(i,j)\in M_s} y_{i,j} \le 1$$

$$\sum_{(i,j)\in M_r} y_{i,j} \le 1$$

DRE Solution

- Using Heuristics
 - Match arcs subject to supply constraints
 - Allows for exclusive trades
- Formulated as Multicommodity Transportation Problem (MTP) Variant
 - Use false arcs to guarantee feasible solution
 - Translate preferences to costs
 - LP or MILP
 - MILP allows for exclusive trades

Greedy Solver Algorithm


```
order request portfolios by average preference;
forall the request portfolios do
   order requests by average preference;
    matched \leftarrow 0:
   while matched < q_1 and \exists a request do
       get next request;
       order arcs by preference;
       while matched < q_1 and \exists an arc do
           get next arc;
            remaining \leftarrow q_J - matched;
            to_match \leftarrow min\{remaining, Capacity(arc)\};
            matched \leftarrow matched + to\_match;
        end
    end
end
```

DRE Framework

LP Formulation

Variable	Description	
S, s	Suppliers	
I, i	Bids	
R, r	Requesters	
J, j	Requests	
K, k	Capacities	
С	Cost of commodity	
Х	Decision variable	
а	Capacity coeff.	
b_s	Supply capacity	
b _r	Demand capacity	

$\min_{x} z = \sum_{i \in I} \sum_{j \in J} c_{i,j} x_{i,j}$	
$\text{s.t. } \sum_{i \in I_s} \sum_{j \in J} a_{i,j}^k x_{i,j} \le b_s^k$	$\forall k \in K_s, \forall s \in S$
$\sum_{j \in J_r} \sum_{i \in I} a_{i,j}^k x_{i,j} \ge b_r^k$	$\forall k \in K_r, \forall r \in R$
$x_{i,j} \in [0, \tilde{x_j}]$	$\foralli\in I,\forallj\in J$

MILP vs. LP

Strict subsets of suppliers and consumers:

- 1. those that require *exclusive* orders
- 2. those that allow *partial* orders

$$A = \bigcup_{r \in R} A_{p_r} \cup A_{e_r}$$

Introduce a **binary variable**, $y_{i,j}$:

• 1 if resource is sent by supplier *i* to consumer *j*

MILP Formulation

Variable	Description
A_{ρ}	Partial-order arcs
A_{e}	Exclusive-order arcs
М	Mutually-exclusive arcs
~ X	Exclusive-arc quantity
х, у	Decision variable

$\min_{x,y} z = \sum_{(i,j)\in A_p} c_{i,j} x_{i,j} + \sum_{(i,j)\in A_e} c_{i,j} \tilde{x_j} y_{i,j}$	
s.t. $\sum_{(i,j)\in A_{p_s}} a_{i,j}^k x_{i,j} + \sum_{(i,j)\in A_{e_s}} a_{i,j}^k \tilde{x_j} y_{i,j} \le b_s^k$	$\forall k \in K_s, \forall s \in S$
$\sum_{(i,j)\in M_s} y_{i,j} \le 1$	$\foralls\in S$
$\sum_{(i,j)\in A_{p_r}} a_{i,j}^k x_{i,j} + \sum_{(i,j)\in A_{e_r}} a_{i,j}^k \tilde{x_j} y_{i,j} \ge b_r^k$	$\forall k \in K_r, \forall r \in R$
$\sum_{(i,j)\in M_r} y_{i,j} \le 1$	$\forallr\in R$
$x_{i,j} \in [0, \tilde{x_j}]$	$\forall \ (i,j) \in A_p$
$y_{i,j} \in \{0,1\}$	$\forall (i,j) \in A_e$

Experimental Framework

- Two exchange types: Front-End, Back-End
- Three fuel cycles (f_{fc}: 0, 1, 2)
 - Once through
 - MOX recycle with thermal and fast reactors
 - MOX/THOX recycle with thermal and fast reactors
- Reactors modeled using assemblies or batches $(f_{rx}: 0, 1)$
- Commodity and location-based (f_{loc}: 0, 1, 2)
- Solve with Greedy Heuristic, Clp, Cbc

Experimental Framework

- Stochasticity
 - Location assignment
 - Reactor fuel enrichment
- Constraint coefficients function of commodity and enrichment
- Objective coefficients function of commodity and location

$$p(i,j) = p_c(i,j) + r_{l,c}p_l(i,j)$$

$$p_l(i, j) = \delta_{\text{reg}} \frac{\exp(-|\text{reg}_i - \text{reg}_j|) + \delta_{\text{loc}} \exp(-|\text{loc}_i - \text{loc}_j|)}{1 + \delta_{\text{loc}}}$$

Scoping Study, $f_{rxtr} = 0$

Scoping Study, $f_{rxtr} = 0$

Scoping Study, $f_{rxtr} = 1$

Scoping Study, f_{rxtr} = 1

Convergence Study, $f_{rxtr} = 0$

Convergence Study, f_{rxtr} = 1

Stochastic Study, Front-End

- ~17,500 variables
- ~100 constraints

Stochastic Study, Front-End

Conclusions

- Dynamic, physics-informed supply and demand framework designed and implemented
- Large-scale, high-throughput experimental apparatus designed and implemented
- Characteristics of solutions can vary greatly based on fuel cycle, reactor fidelity, and how preferences are modeled
- Time for some simulation!

Acknowledgements

I would like to thank all the current and former members of the CNERG-FC group, my advisor, Paul Wilson, and

U.S. Department of Energy

Citations

[1] Korea Atomic Energy Institute Table of Nuclides, http://atom.kaeri.re.kr/, accessed 29-10-2014

[2] http://www.energy-net.org/

[3] Essential Physics for Fuel Cycle Modeling & Analysis. Scopatz, A. Dissertation. Dec., 2011.