- 教材讨论
 - TJ第8章

问题1:编码

- 同样是"编码→信道→解码",你认为这两周讨论的问题 有哪些区别?
- 你能结合这两个公式解释编码、查错、解码的具体步骤吗?
 - Gx=y
 - Hy=0

问题2: 奇偶校验

• 上周我们提到过简单的奇偶校验码(m+1),现在你对它有什么新的认识?你能用这周所学内容来解释它吗?

$$H = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$X = (x_1, x_2, x_3, x_4, x_5, x_6)^{\mathsf{T}}$$

$$U = Hx = \begin{pmatrix} x_2 + x_3 + x_4 \\ x_1 + x_2 + x_5 \\ x_1 + x_3 + x_6 \end{pmatrix}$$

$$U = Hx = \begin{pmatrix} x_1 + x_2 + x_3 + x_4 \\ x_1 + x_2 + x_5 \\ x_1 + x_3 + x_6 \end{pmatrix}$$

$$U = Hx = \begin{pmatrix} x_1 + x_2 + x_3 + x_4 \\ x_1 + x_2 + x_5 \\ x_1 + x_3 + x_6 \end{pmatrix}$$

Theorem 8.7 Let $H \in \mathbb{M}_{m \times n}(\mathbb{Z}_2)$ be a canonical parity-check matrix. Then Null(H) consists of all $\mathbf{x} \in \mathbb{Z}_2^n$ whose first n-m bits are arbitrary but whose last m bits are determined by $H\mathbf{x} = \mathbf{0}$. Each of the last m bits serves as an even parity check bit for some of the first n-m bits. Hence, H gives rise to an (n, n-m)-block code.

问题2: 奇偶校验(续)

• 现在,你学习Hamming code是不是更容易了?

The following general algorithm generates a single-error correcting (SEC) code for any number of bits.

- 1. Number the bits starting from 1: bit 1, 2, 3, 4, 5, etc.
- 2. Write the bit numbers in binary: 1, 10, 11, 100, 101, etc.
- 3. All bit positions that are powers of two (have only one 1 bit in the binary form of their position) are parity bits: 1, 2, 4, 8, etc. (1, 10, 100, 1000)
- 4. All other bit positions, with two or more 1 bits in the binary form of their position, are data bits.
- 5. Each data bit is included in a unique set of 2 or more parity bits, as determined by the binary form of its bit position.

Bit positi	ion	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
Encoded data	bits	р1	p2	d1	p4	d2	d3	d4	р8	d5	d6	d7	d8	d 9	d10	d11	p16	d12	d13	d14	d15	
	р1	X		X		X		X		X		X		X		X		X		X		
Parity	р2		X	X			X	X			X	X			X	X			X	X		
bit	р4				X	X	X	X					X	X	X	X					X	
coverage	р8								X	X	X	X	X	X	X	X						
	р16																Х	Х	X	Х	Х	

- Hamming code怎么编码?怎么解码?怎么查错?怎么纠错?
- 同样是奇偶校验码,m+1和Hamming code各有什么优缺点?

问题2: 奇偶校验(续)

• 如果我们用Hamming code将4位数据编码为7位,你能根据 G和H在编码、查错、解码中的用法,直接写出Hamming code对应的G和H吗?

Bit posit	1	2	3	4	5	6	7	
Encoded data bits			p2	d1	p4	d2	d3	d4
	р1	Х		X		X		Х
Parity	р2		X	X			Х	Х
bit	р4				X	X	Х	Х

 $\mathbf{x} = (d1, d2, d3, d4)^{T}$ $\mathbf{y} = (p1, p2, d1, p4, d2, d3, d4)^{T}$

	1	1	0	1
	1	0	1	1
	1	0	0	0
G	0	1	1	1
	0	1	0	0
	0	0	1	0
	0	0	0	1

• 你的结果和教材中的形式相符吗?如果不,你能解释吗?

$$H = (A \mid I_m)$$

$$G = \left(\frac{I_{n-m}}{A}\right)$$

问题3: linear code

• 实际上我们只是要找一种奇偶校验码,为什么要刻意选择 linear code,它的特殊性质能给我们带来什么好处?

问题3: linear code (续)

A code is a *linear code* if it is determined by the null space of some matrix $H \in \mathbb{M}_{m \times n}(\mathbb{Z}_2)$.

- 你觉得"linear"在这里是什么意思?
 - codeword的linear combination仍是codeword
 - 即:所有codeword构成了一个linear subspace
- linear subspace和null space of matrix之间是什么关系?
 - 每个linear subspace都可以表示为某个矩阵的null space
- 现在你感觉到linear code的第一个好处了吗?
 - 查错很方便: Hy=0

问题3: linear code (续)

• "linear"这个性质,在这个定理证明的哪一步中被用上了? 你能解释每一步推导的理由吗?

Theorem 8.5 Let d_{\min} be the minimum distance for a group code C. Then d_{\min} is the minimum of all the nonzero weights of the nonzero codewords in C. That is,

$$d_{\min} = \min\{w(\mathbf{x}) : \mathbf{x} \neq \mathbf{0}\}.$$

Proof. Observe that

$$\begin{aligned} d_{\min} &= \min \{ d(\mathbf{x}, \mathbf{y}) : \mathbf{x} \neq \mathbf{y} \} \\ &= \min \{ d(\mathbf{x}, \mathbf{y}) : \mathbf{x} + \mathbf{y} \neq \mathbf{0} \} \\ &= \min \{ w(\mathbf{x} + \mathbf{y}) : \mathbf{x} + \mathbf{y} \neq \mathbf{0} \} \\ &= \min \{ w(\mathbf{z}) : \mathbf{z} \neq \mathbf{0} \}. \end{aligned}$$

你感受到这个定理的重大意义了吗?
 这就是linear code的第二个好处!

问题4: 查错和纠错

- 从查错和纠错的角度
 - d_{min}=1意味着什么?
 - d_{min}=2呢?
 - d_{min}=3呢?
- 如果要求能查出所有n位错误,d_{min}=?
- 如果要求能纠正所有n位错误,d_{min}=?
- 在纠错时, 你其实做了一个什么假设?
 - We will assume that transmission errors are rare, and, that when they do occur, they occur independently in each bit; that is, if p is the probability of an error in one bit and q is the probability of an error in a different bit, then the probability of errors occurring in both of these bits at the same time is pq. We will also assume that a received n-tuple is decoded into a codeword that is closest to it; that is, we assume that the receiver uses maximum-likelihood decoding.

问题4: 查错和纠错(续)

H要满足什么条件才能实现d_{min}=2? 为什么?
 d_{min}=3呢?

$$\begin{aligned} d_{\min} &= \min\{d(\mathbf{x}, \mathbf{y}) : \mathbf{x} \neq \mathbf{y}\} \\ &= \min\{d(\mathbf{x}, \mathbf{y}) : \mathbf{x} + \mathbf{y} \neq \mathbf{0}\} \\ &= \min\{w(\mathbf{x} + \mathbf{y}) : \mathbf{x} + \mathbf{y} \neq \mathbf{0}\} \\ &= \min\{w(\mathbf{z}) : \mathbf{z} \neq \mathbf{0}\}. \end{aligned}$$

Theorem 8.12 Let H be an $m \times n$ binary matrix. Then the null space of H is a single error-detecting code if and only if no column of H consists entirely of zeros. $He_i \neq 0$

Theorem 8.13 Let H be a binary matrix. The null space of H is a single error-correcting code if and only if H does not contain any zero columns and no two columns of H are identical.

$$0 = H(\mathbf{e}_i + \mathbf{e}_j) = H\mathbf{e}_i + H\mathbf{e}_j$$

问题4: 查错和纠错(续)

Theorem 8.13 Let H be a binary matrix. The null space of H is a single error-correcting code if and only if H does not contain any zero columns and no two columns of H are identical.

- 因此,在满足这个条件的前提下,H=(A|Im)最多有几列?
- 我们为什么希望列越多越好?
- 这个方法的最大编码率是多少? (2^m-(1+m))/(2^m-1)
- Hamming code的最大编码率又是多少?

Bit positi	ion	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
Encoded data	bits	p 1	p2	d1	p4	d2	d3	d4	р8	d5	d6	d7	d8	d 9	d10	d11	p16	d12	d13	d14	d15	
	р1	X		Х		X		Х		Х		Х		Х		X		Х		Х		
Parity	р2		Х	Х			Х	Х			Х	Х			Х	Х			Х	Х		
bit	р4				Х	Х	Х	Х					Х	X	Х	Х					Х	
coverage	р8								Х	Х	Х	Х	Х	X	Х	Х						
	p16																Х	Х	Х	Х	Х	

$$\begin{array}{ll} \textbf{Block} & 2^r-1 \text{ where } r \geq 2 \\ \textbf{length} & \\ \textbf{Message} & 2^r-r-1 \\ \textbf{length} & \\ \textbf{Rate} & 1-r/(2^r-1) \end{array}$$

• 你能找到编码率比Hamming code更高的方法吗?

问题4: 查错和纠错(续)

• 如果Hy≠0,我们怎么纠错,或者说,哪一位错了? 为什么?

Theorem 8.15 Let $H \in \mathbb{M}_{m \times n}(\mathbb{Z}_2)$ and suppose that the linear code corresponding to H is single error-correcting. Let \mathbf{r} be a received n-tuple that was transmitted with at most one error. If the syndrome of \mathbf{r} is $\mathbf{0}$, then no error has occurred; otherwise, if the syndrome of \mathbf{r} is equal to some column of H, say the ith column, then the error has occurred in the ith bit.

$$H\mathbf{x} = H(\mathbf{c} + \mathbf{e}) = H\mathbf{c} + H\mathbf{e} = \mathbf{0} + H\mathbf{e} = H\mathbf{e}.$$

• 我们今天讨论了这么多, "群"去哪儿了?