Tarea 2 de Computación Cuántica

Para ser entregada el 27 de marzo del 2015.

1. Mostrar que las matrices de 2×2

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad B = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$C = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad D = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

forman una base ortonormal en el espacio de Hilbert M^2 (el espacio de las matrices 2×2 sobre \mathbb{C}). Recuerda que el producto interno entre dos matrices M_1 y M_2 se define como $\langle M_1, M_2 \rangle = \operatorname{tr}(M_1^{\dagger} M_2)$.

- 2. Sea A un operador lineal que actúa sobre un espacio de Hilbert \mathscr{H} , $|\psi\rangle \in \mathscr{H}$ y $P(A) := \{\lambda \in \mathbb{C} \mid A|\psi\rangle = \lambda|\psi\rangle\}$ el espectro de A. Mostrar que
 - (a) si A es hermitiano (i.e. $A = A^{\dagger}$), entonces $P(A) \subset \mathbb{R}$.
 - (b) si A es unitario (i.e. $A^{\dagger} = A^{-1}$), entonces $P(A) \subset S^1$ (donde S^1 es el círculo unitario en \mathbb{C}).
- 3. Sea A un operador lineal que actúa sobre un espacio de Hilbert. Mostrar que si A es hermitiano, entonces los eigenvectores correspondientes a eigenvalores distintos son ortogonales.
- 4. Sea σ_x un operador lineal definido en la base computacional (i.e. $|0\rangle$ y $|1\rangle$) como

$$\sigma_x = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right).$$

Mostrar que en la base de Hadamard, i.e.

$$|+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}, \quad |-\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

el operador σ_x se representa como

$$\sigma_x = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right).$$

5. Sea A un operador lineal que cumple $A^2=\mathbbm{1}$ y $\theta\in\mathbb{R}.$ Mostrar que

$$e^{-i\theta A} = \cos(\theta \mathbb{1}) - i \sin(\theta A).$$