

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «МИРЭА – Российский технологический университет»

РТУ МИРЭА

1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Институт информационных технологий	
Кафедра вычислительной техники	

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ №6

по дисциплине «Алгоритмические основы обработки данных»

Выполнил студент группы <u>ИВЬО-11-23</u> (учебная группа)		Туктаров Т.А.	
Принял старший преподаватель		Асадова Ю.С.	
Практическая работа выполнена	«29» сентября 2024г.	(подпись студента)	
«Зачтено»	«29» сентября 2024г.	(подпись руководителя)	

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

Институт информационных тех	
Кафедра вычислительной те	хники
Выполне	ено/Т.А. Туктаров/
Зачте	ено/Ю.С. Асадова

Задание на практическую работу №6

Дисциплина: «Алгоритмические основы обработки данных»

Студент Туктаров Тимур Азатович Шифр 23И0087 Группа ИВБО-11-23

- 1. Тема: «использование библиотечных функций для обработки текста».
- 2. Срок сдачи студентом законченной работы: 14.10.2024.
- 3. Исходные данные: целочисленный динамический массив.
- 4. Запание:

Разработать программу, выполняющую операции над целочисленным динамическим массивом из n элементов (n<=100):

- ввод массива;
- вывод массива на экран;
- Поиск номера последнего отрицательного элемента
- Удаление числа после последнего максимального числа

5. Содержание отчета:

- титульный лист;
- задание;
- оглавление;
- введение;
- основные разделы отчета;
- заключение;
- список использованных источников;

Руководитель работы	Ю.С. Асадова	подпись	«14» октября 2024г.
Задание принял к исполнению	Т.А Туктаров	полине	«14» октября 2024г.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
1 ОСНОВНОЙ РАЗДЕЛ	
2 БЛОК-СХЕМА АЛГОРИТМА	6
3 ИСХОДНЫЙ КОД	9
4 ПРИМЕР РАБОТЫ ПРОГРАММЫ	10
ЗАКЛЮЧЕНИЕ	12
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	13

ВВЕДЕНИЕ

В данной практической работе требуется применить циклы, работу с динамическим массивами, функциями и условными операторами.

Постановка задачи:

Разработать программу, выполняющую операции над целочисленным динамическим массивом из n элементов (n<=100):

- ввод массива;
- вывод массива на экран;
- поиск номера последнего отрицательного элемента
- удаление числа после последнего максимального числа

1 ОСНОВНОЙ РАЗДЕЛ

0, возвращает индекс этого элемента, иначе -1.

В начале программы запускаем бесконечный цикл. Внутри него выводим инструкцию для пользователя, затем считываем номер команды, которую хотим выполнить. В зависимости от выбранной команды, выполняем соответствующую функцию.

Функция enter – функция отвечающая за ввод данных. В ней мы вводим элементы вектора.

Функция print_arr — функция вывода значений вектора через пробел в консоль Функция find — функция поиска первого отрицательного элемента с конца.

Проходится циклом с конца до начала вектора, и при нахождении значения меньше

Функция delete_max — функция удаления элементов с максимальным значением из вектора. Сначала в цикле мы ищем максимум, затем во втором цикле удаляем элемент, если он был равен максимуму.

2 БЛОК-СХЕМА АЛГОРИТМА..

Представим описание алгоритма в графическом виде на рисунках 2.1-2.4

Рисунок 2.1 – Блок – схема алгоритма функции main()

Рисунок 2.2 – Блок-схема функции enter()

Рисунок 2.3 – Блок-схема функции print_arr()

Рисунок 2.4 – Блок-схема функции find()

Рисунок 2.5 – Блок-схема функции delete_max()

3 ИСХОДНЫЙ КОД

Программная реализация алгоритма для решения задачи представлена ниже.

Листинг 3.1 – Исходный код программы

```
// PR 6.cpp : Этот файл содержит функцию "main". Здесь начинается и
заканчивается выполнение программы.
//
#include <iostream>
#include <vector>
using namespace std;
int find(vector<int>& v) {
    for (int i = v.size(); i >= 0; i--)
        if (i < 0) return i;
    }
    return -1;
void delete max(vector<int>& v) {
    int mx = v[0];
    for (auto a : v) {
        if (a > mx) mx = a;
    int i = 0;
    while (i < v.size()) {</pre>
        if (v[i] == mx \&\& i != v.size() - 1) {
            v.erase(v.begin() + i + 1, v.begin() + i + 2);
        }
        ++i;
    }
void enter(vector<int>& v) {
    while (1) {
        int a;
        cin >> a;
        v.push back(a);
        if (std::cin.peek() == '\n') {
            break;
        }
    }
}
```

```
void print_arr(vector<int>& v) {
    for (auto a : v)
       cout << a << " ";
    cout << "\n";
int main()
    setlocale(LC ALL, "RU");
   vector<int>vec;
    while (1) {
        cout << "Что вы хотите сделать?\n";
        cout << "1 - Ввести массив\n2 - найти последний отрицательный элемет\n";
        cout << "3 - удалить все элементы после каждого максимального числа\n4 -
вывести массив\n";
        cout << "0 - выход из программы\n";
        short c;
        cin >> c;
        switch (c)
        case 0:
           return 0;
           break;
        case 1:
            enter (vec);
            break;
        case 2:
           find(vec);
            break;
        case 3:
            delete max(vec);
            break;
        case 4:
            print_arr(vec);
            break;
        default:
            break;
       }
    }
```

4 ПРИМЕР РАБОТЫ ПРОГРАММЫ

Пример программы в которой выполняются все команды из условия.

```
Что вы хотите сделать?
1 - Ввести массив
2 - найти последний отрицательный элемет
3 - удалить все элементы после каждого максимального числа
4 - вывести массив
 - выход из программы
1 2 -1 9 5
Что вы хотите сделать?
1 - Ввести массив
2 - найти последний отрицательный элемет
3 - удалить все элементы после каждого максимального числа
4 - вывести массив
 - выход из программы
4
1 2 -1 9 5
Что вы хотите сделать?
1 - Ввести массив
2 - найти последний отрицательный элемет
3 - удалить все элементы после каждого максимального числа
4 - вывести массив
0 - выход из программы
Что вы хотите сделать?
1 - Ввести массив
2 - найти последний отрицательный элемет
3 - удалить все элементы после каждого максимального числа
4 - вывести массив
0 - выход из программы
4
1 2 -1 9
Что вы хотите сделать?
1 - Ввести массив
2 - найти последний отрицательный элемет
3 - удалить все элементы после каждого максимального числа
4 - вывести массив
0 - выход из программы
Что вы хотите сделать?
1 - Ввести массив
2 - найти последний отрицательный элемет
3 - удалить все элементы после каждого максимального числа
4 - вывести массив
 - выход из программы
0
D:\Files\Algo_dann_2_curs\Progs\PR_2\x64\Debug\PR_6.exe (процесс 332) завершил работу с кодом 0.
Нажмите любую клавишу, чтобы закрыть это окно:
```

Рисунок 4.1 – Пример работы программы – ввод всех команд

ЗАКЛЮЧЕНИЕ

В ходе выполнения данной практической работы была реализована программа для работы с массивами. Также были приобретены навыки работы со строчными данными на языке программирования С++.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Лозовский В.В. Алгоритмические основы обработки данных: учебное пособие / Лозовский В.В., Платонова О.В., Штрекер Е.Н. М.: МИРЭА Российский технологический университет, 2022. 337 с.
- 2. Платонова О.В. Алгоритмические основы обработки данных: методические указания / Платонова О.В., Асадова Ю.С., Расулов М.М. М.: МИРЭА Российский технологический университет, 2022. 73 с.
- 3. Белик А.Г. Алгоритмы и структуры данных: учебное пособие / А.Г. Белик, В.Н. Цыганенко. Омск: ОмГТУ, 2022. 104 с. ISBN 978-5-8149-3498-7. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/343688 (дата обращения: 23.09.2024)
- 4. Павлов Л.А. Структуры и алгоритмы обработки данных / Л.А. Павлов, Н.В. Первова. 2-е изд., стер. Санкт-Петербург: Лань, 2022. 256 с. ISBN 978-5-507-44105-1. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/207563 (дата обращения: 23.09.2024)
- 5. Пантелеев Е.Р. Алгоритмы и структуры данных: учебное пособие / Е.Р. Пантелеев, А.Л. Алыкова. Иваново: ИГЭУ, 2018. 142 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/154576 (дата обращения: 23.09.2024)