Финансовая математика ПМ-1701

Преподаватель:

ЧЕРНОВ АЛЕКСЕЙ ВИКТОРОВИЧ alex_tche@mail.ru

Санкт-Петербург 2020 г., 6 семестр

Список литературы

- [1] Sulsky D., Chen Z., Schreyer H. L. A particle method for history-dependent materials // Computer Methods in Applied Mechanics and Engineering. 1994, V. 118. P. 179–196.
- [2] Liu G. R., Liu M. B. Smoothed particle hydrodynamics: a meshfree particle method. — Singapore: World Scientific Publishing. — 2003. — 449 p.

Содержание

1	Конспекты лекций			
	1.1	Прос	тая и сложная процентная ставка 05.02.2020	
		1.1.1	Срок удвоения вклада:	
		1.1.2	Задача о.в Манхэттен:	
		1.1.3	Смешанная ставка:	
	1.2	09.02.	2020	

1 Конспекты лекций

1.1 Простая и сложная процентная ставка 05.02.2020

Для иллюстрации понимания работы сложного и простого процента введем следующие обозначения:

- *i* процентная ставка (по умолчанию годовая)
- \bullet t срок вклада
- $S_0 = P$ начальный вклад
- \bullet S конечный вклад

Def 1: *Простыми процентами* называются такие процентные ставки, которые применяются к одной и той же первоначальной сумме на протяжении всей финансовой операции

Def 2: *Сложеными процентами* называются ставки, применяемые после каждого интервала начисления к сумме первоначального долга и начисленных за предыдущие интервалы процентов.

t (год)	Простой процент (%)	Сложный процент (%)
0	100	100
1	110	110
2	120	121

Таблица 1: Пример использования сложных и простых процентов

Для простых процентов получаем следующие формулы:

- Формула для S_{n+1} : $S_{n+1} = S_n + S_0 \cdot i$
- Формула для конечного вклада: $S = P + P \cdot i \cdot n = P \cdot (1 + i \cdot n)$
- Формула для начального вклада: $P = \frac{S}{1+i \cdot n}$
- ullet Формула для процентной ставки: $i=rac{\frac{S}{P}-1}{t}=rac{S-P}{t\cdot P}$
- \bullet Формула для продолжительности вклада: $t=\frac{\frac{S}{P}-1}{i}=\frac{S-P}{i\cdot P}$

Для сложных процентов получаем следующие формулы:

- Формула для S_{n+1} : $S_{n+1} = S_n \cdot (1+i) = S_n + S_n \cdot i$
- Формула для конечного вклада: $S = P \cdot (1+i)^n$
- Формула для начального вклада: $P = \frac{S}{(1+i)^n}$
- Формула для процентной ставки: $i = \sqrt[t]{\frac{S}{P}} 1$
- Формула для продолжительности вклада: $t = log_{(1+i)} rac{S}{P}$

1.1.1 Срок удвоения вклада:

Для простого процента:

$$2P = P \cdot (1 + i \cdot t_{new})$$

$$t_{new} = \frac{1}{i}$$

Для простого процента:

$$2P = P \cdot (1+i)^{t_{new}}$$

$$2 = (1+i)^{t_{new}}$$

$$t_{new} = log_{(1+i)}2$$

1.1.2 Задача о.в Манхэттен:

Таблица 2: Данные о Манхэттене

$$t (год)$$
 Деньги (\$)
 t_1 - 1626 год $P-24$
 t_2 - 2019 год $S-49\cdot 10^9$

Вопрос: Какова процентная ставка при простом и сложном проценте?

Решение:

Простой процент:

$$i = \frac{\frac{S}{P} - 1}{t} = \frac{S - P}{(t_2 - t_1) \cdot P} = \frac{49 \cdot 10^9 - 24}{24 * (2019 - 1626)} = 5.19 \cdot 10^6$$

Сложный процент:

$$i = \sqrt[(t_2 - t_1)]{\frac{S}{P}} - 1 = \sqrt[2019 - 1626]{\frac{49 \cdot 10^9}{24}} - 1 = 0.056 = 5.6\%$$

Срок удвоения оклада:

$$t_{new} = log_{(1+i)} 2 = log_{(1+0.056)} 2 = 12.7 \approx 13$$
 лет

1.1.3 Смешанная ставка:

Def 3: Смешанная процентная ставка - ставка, которая осуществляется по следующему правилу - в пределах года используется простая ставка, а остальные - по сложной

Формула для смешанной процентной ставки:

$$S = P \cdot (1 + i_c)^{[t]} + P \cdot (1 + i_c)^{[t]} \cdot \{t\} \cdot i_p = P(1 + i_c)^{[t]} \cdot (1 + \{t\} \cdot i_p)$$

где [t] - целая часть числа, а $\{t\}$ - дробная.

$1.2\quad 09.02.2020$