Esercizi di Elettrotecnica

Circuiti in corrente continua Parte 2

Circuiti con generatori dipendenti

$$R_1 = 4 \Omega$$

$$R_2 = 2 \Omega$$

$$E = 12 V$$

$$\mu = 5$$

Determinare la tensione V_2 .

Risultato

$$V_2 = 6 V$$

Esercizio n. 2

$$R_1 = 4 \Omega$$

$$R_2 = 2 \Omega$$

$$I_G = 5 A$$

$$\alpha = 2$$

Determinare la corrente I₁.

Risultato

$$I_1 = 1 A$$

Esercizio n. 3

$$R_1 = 4 \Omega$$

$$R_2 = 2 \Omega$$

$$V_G = 12 V$$

$$\alpha = 3$$

Determinare le correnti I_1 e I_2 .

Risultati

$$I_1 = 1A, I_2 = 4A$$

Esercizio n. 4

$$R_1 = 3 \Omega$$

$$R_2 = 3 \Omega$$

$$V_G = 15 V$$

$$\alpha = 3$$

Determinare le correnti I_1 e I_2 .

$$I_1 = 4\ A,\ I_2 = 1\ A$$

Determinare le correnti I₁ e I₂.

Risultati

$$I_1 = 2 A, I_2 = 3 A$$

Esercizio n. 6

Determinare la tensione V_3 e le potenze P_{G1} , P_{G2} erogate, rispettivamente, dal generatore indipendente e dal generatore dipendente.

Risultati

$$V_3 = 2V$$
, $P_{G1} = 40$ W, $P_{G2} = 48$ W

Esercizio n. 7

Determinare la corrente I e le potenze P_{G1} , P_{G2} erogate, rispettivamente, dal generatore indipendente e dal generatore dipendente.

$$I = 1 A, P_{G1} = 36 W, P_{G2} = 20 W$$

Determinare la corrente I e le potenze P_{G1} , P_{G2} erogate, rispettivamente, dal generatore indipendente e dal generatore dipendente.

Risultati

$$I = -3 A$$
, $P_{G1} = 30 W$, $P_{G2} = 144 W$

Esercizio n. 9

$$R_1 = 1 \ \Omega \\ R_2 = 3 \ \Omega \\ R_3 = 2 \ \Omega \\ I_G = 3 \ A \\ g = 0.5 \ S$$

Determinare la tensione V_2 e le potenze P_{G1} , P_{G2} erogate, rispettivamente, dal generatore indipendente e dal generatore dipendente

Risultati

$$V_2 = -6V$$
, $P_{G1} = 18$ W, $P_{G2} = 12$ W

Esercizio n. 10

$$R_1 = 4 \Omega R_2 = 1 \Omega R_3 = 2 \Omega E_1 = 30 V E_2 = 12 V \mu = 3$$

Determinare la tensione V_2 , le potenze P_{G1} , P_{G2} erogate dai generatori indipendenti e la potenza P_{G3} erogata dal generatore dipendente.

$$V_2 = 6V$$
, $P_{G1} = 180$ W, $P_{G2} = 72$ W, $P_{G3} = 216$ W

$$R_1 = 4 \Omega R_2 = 2 \Omega R_3 = 4 \Omega R_4 = 6 \Omega E_1 = 12 V E_2 = 12 V g = 0.5 S$$

Determinare le correnti dei resistori.

Risultati

$$I_1 = 1 A$$
, $I_2 = 4 A$, $I_3 = -1 A$, $I_4 = 2 A$

Esercizio n. 12

$$R_1 = 4 \Omega$$

$$R_2 = 10 \Omega$$

$$R_3 = 4 \Omega$$

$$E_1 = 8 V$$

$$E_2 = 8 V$$

$$\alpha = 3$$

Determinare le correnti dei resistori.

Risultati

$$I_1 = 1 A$$
, $I_2 = 2 A$, $I_3 = 4 A$

Esercizio n. 13

$$R_1 = 3 \Omega$$

$$R_2 = 3 \Omega$$

$$R_3 = 6 \Omega$$

$$R_3 = 6 \Omega$$

$$R_4 = 6 \Omega$$

$$V_G = 36 \text{ V}$$

$$\alpha = 1.5$$

Determinare la corrente I_2 e le potenze P_{G1} , P_{G2} erogate, rispettivamente, dal generatore indipendente e dal generatore dipendente.

$$I_2 = 4 \text{ A}, P_{G1} = 180 \text{ W}, P_{G2} = 36 \text{ W}$$

 $R_1 = 6 \Omega$ $R_2 = 2 \Omega$ $R_3 = 2 \Omega$ $R_4 = 6 \Omega$ $R_5 = 2 \Omega$ $V_G = 16 V$ $\alpha = 1/2$ $\beta = 1/3$

Determinare le correnti dei resistori.

Risultati

$$I_1 = -1 A$$
, $I_2 = -2 A$, $I_3 = 3 A$, $I_4 = 1 A$, $I_5 = 2 A$

Esercizio n. 15

$$R_{1} = 4 \Omega R_{2} = 4 \Omega R_{3} = 2 \Omega R_{4} = 2 \Omega V_{G} = 12 V g = 3 S$$

Determinare la tensione V_3 e le potenze P_{G1} , P_{G2} erogate, rispettivamente, dal generatore indipendente e dal generatore dipendente.

Risultati

$$V_3 = 2V$$
, $P_{G1} = 12W$, $P_{G2} = 60W$

Esercizio n. 16

$$R_2 = 4 \Omega$$
$$R_3 = 4 \Omega$$
$$R_4 = 8 \Omega$$

 $R_1=8\;\Omega$

$$I_G = 6 A$$

$$\mu = 6$$

Determinare la tensione V_4 e le potenze P_{G1} , P_{G2} erogate, rispettivamente, dal generatore indipendente e dal generatore dipendente.

$$V_4 = -8V$$
, $P_{G1} = 48W$, $P_{G2} = 240W$

Determinare la tensione V_3 e le potenze P_{G1} , P_{G2} erogate, rispettivamente, dal generatore indipendente e dal generatore dipendente.

Risultati

$$V_3 = 4V$$
, $P_{G1} = 120W$, $P_{G2} = 16W$

Esercizio n. 18

Determinare la corrente I_3 e le potenze P_{G1} , P_{G2} erogate, rispettivamente, dal generatore indipendente e dal generatore dipendente.

Risultati

$$I_3 = 1A$$
, $P_{G1} = 90W$, $P_{G2} = 24W$

Esercizio n. 19

Determinare la corrente I_4 e le potenze P_{G1} , P_{G2} erogate, rispettivamente, dal generatore indipendente e dal generatore dipendente.

$$I_4 = 1A$$
, $P_{G1} = 144W$, $P_{G2} = 36W$

Determinare la tensione V_1 e le potenze P_{G1} , P_{G2} erogate, rispettivamente, dal generatore indipendente e dal generatore dipendente.

Risultato

$$V_1 = 6V$$
, $P_{G1} = 96W$, $P_{G2} = 144W$

Esercizio n. 21

Determinare le correnti dei resistori, le potenze P_{G1} , P_{G2} erogate dai generatori indipendenti e la potenza P_{G3} erogata dal generatore dipendente.

Risultati

$$I_1 = 3A$$
, $I_2 = 1A$, $I_3 = 3A$, $I_4 = 1A$, $P_{G1} = 72W$, $P_{G2} = 24W$, $P_{G3} = 24W$

Esercizio n. 22

Determinare le correnti dei resistori, le potenze P_{G1} , P_{G2} erogate dai generatori indipendenti e la potenza P_{G3} erogata dal generatore dipendente.

$$I_1 = 4A$$
, $I_2 = -1A$, $I_3 = 3A$, $I_4 = 2A$, $P_{G1} = 18W$, $P_{G2} = 60W$, $P_{G3} = 12W$

Determinare le correnti dei resistori, le potenze P_{G1} , P_{G2} erogate dai generatori indipendenti e la potenza P_{G3} erogata dal generatore dipendente.

Risultati

$$I_1 = 1A$$
, $I_2 = 4A$, $I_3 = 3A$, $I_4 = 1A$, $I_5 = -2A$, $P_{G1} = -9W$, $P_{G2} = 108W$, $P_{G3} = -6W$

Esercizio n. 24

Determinare le correnti dei resistori, le potenze P_{G1} , P_{G2} erogate dai generatori dipendenti e la potenza P_{G3} erogata dal generatore indipendente.

Risultati

$$I_1 = 6A$$
, $I_2 = 2A$, $I_3 = 4A$, $I_4 = 2A$, $I_5 = 2A$, $P_{G1} = 192W$, $P_{G2} = -16W$, $P_{G3} = 48W$

Esercizio n. 25

Determinare le tensioni dei resistori e le potenze P_{GV} , P_{GI} e P_{GD} erogate, rispettivamente, dal generatore indipendente di tensione, dal generatore indipendente di corrente e dal generatore dipendente.

$$V_1 = 24V, V_2 = 6V, V_3 = -6V, V_4 = 12V, V_5 = 6V, P_{GV} = 48W, P_{GI} = 144W, P_{GD} = -18W$$