If you cannot open my notebook in github, please, try it here

https://nbviewer.jupyter.org/github/anasonrisa/couursera_capstone_final_exam/blob/main/Atte_mpt%20final%203%20-%20restaurant%20in%20NY.ipynb

Finding the best place in New York, Manhattan to open an Italian restaurant

Coursera capstone project

Introduction

Hello,

And thanks for reading this report.

I am Anna and I decided to look into the business question of opening the restaurant in New York. New York is the most populous city in the United States, with many various generations and nations living in, and thus is a great opportunity for a restaurant opening. As a restaurant opening is quite a wide area, I decided to limit it by:

- Limiting it by focusing on Italian restaurants only (it is as well a personal touch as I am a fun of Italian cuisine). Italian population is around 2,5 mln., so quite a big chunk of total population.
- Limiting the area I would explore Manhattan, which is a densely populated borough that's among the world's major commercial, financial and cultural centers. So, this is a sign we have a population with a good salaries, in particular, which is good for a restaurant opening.

Who can be interested in this analysis?

- Entrepreneurs searching for an opportunity in NY
- Government officials of NY city trying to understand the potential of their city better
- Data scientist exploring the ways to analyze the data

Data

I used various data in this analysis.

- First of all, I leveraged the data of the boroughs and neighborhoods of New York city that was shared in one of the labs of this course
- I converted addresses into their equivalent latitude and longitude values

Map of Manhattan

Methodology

- First of all, I used the conversion of addresses into their equivalent latitude and longitude values.
- I used the Foursquare API to explore neighborhoods in NY city
- I used the explore function to get the most common venue categories in each neighborhood, and then used this feature to group the neighborhoods into clusters

• <u>Top-line venue analysis</u>

Out[29]:

	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
Neighborhood						
Battery Park City	78	78	78	78	78	78
Carnegie Hill	96	96	96	96	96	96
Central Harlem	47	47	47	47	47	47
Chelsea	100	100	100	100	100	100
Chinatown	100	100	100	100	100	100
Civic Center	100	100	100	100	100	100
Clinton	100	100	100	100	100	100
East Harlem	38	38	38	38	38	38
East Village	100	100	100	100	100	100
Financial District	100	100	100	100	100	100
Flatiron	100	100	100	100	100	100
Gramercy	99	99	99	99	99	99
Greenwich Village	100	100	100	100	100	100
Hamilton Heights	60	60	60	60	60	60
Hudson Yards	73	73	73	73	73	73
Inwood	54	54	54	54	54	54
Lenox Hill	100	100	100	100	100	100
Lincoln Square	99	99	99	99	99	99
Little Italy	100	100	100	100	100	100
Lower East Side	47	47	47	47	47	47

Detailed venue analysis

Out[33]:

	Neighborhood	Accessories Store	Adult Boutique	African Restaurant	American Restaurant	Antique Shop	Argentinian Restaurant	Art Gallery	Art Museum	Arts & Crafts Store	Asian Restaurant	Athletics & Sports	Auditorium
0	Battery Park City	0.000000	0.000000	0.00000	0.012821	0.00	0.000000	0.000000	0.000000	0.000000	0.000000	0.012821	0.012821
1	Carnegie Hill	0.000000	0.000000	0.00000	0.010417	0.00	0.010417	0.000000	0.020833	0.000000	0.000000	0.000000	0.000000
2	Central Harlem	0.000000	0.000000	0.06383	0.042553	0.00	0.000000	0.042553	0.000000	0.000000	0.000000	0.000000	0.000000
3	Chelsea	0.000000	0.000000	0.00000	0.040000	0.00	0.000000	0.050000	0.000000	0.000000	0.010000	0.000000	0.000000
4	Chinatown	0.000000	0.000000	0.00000	0.040000	0.00	0.000000	0.000000	0.000000	0.000000	0.020000	0.000000	0.000000
5	Civic Center	0.000000	0.000000	0.00000	0.030000	0.01	0.000000	0.010000	0.000000	0.000000	0.010000	0.000000	0.000000
6	Clinton	0.000000	0.000000	0.00000	0.050000	0.00	0.000000	0.010000	0.000000	0.000000	0.000000	0.000000	0.000000
7	East Harlem	0.000000	0.000000	0.00000	0.000000	0.00	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
8	East Village	0.000000	0.000000	0.00000	0.010000	0.00	0.010000	0.010000	0.000000	0.010000	0.000000	0.000000	0.000000
9	Financial District	0.010000	0.000000	0.00000	0.040000	0.00	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
10	Flatiron	0.000000	0.000000	0.00000	0.040000	0.00	0.000000	0.010000	0.000000	0.010000	0.000000	0.000000	0.000000
11	Gramercy	0.000000	0.000000	0.00000	0.030303	0.00	0.000000	0.010101	0.000000	0.000000	0.000000	0.000000	0.000000
12	Greenwich Village	0.010000	0.000000	0.00000	0.020000	0.00	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
13	Hamilton Heights	0.000000	0.016667	0.00000	0.000000	0.00	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
14	Hudson Yards	0.000000	0.000000	0.00000	0.068493	0.00	0.000000	0.013699	0.000000	0.000000	0.000000	0.000000	0.000000

```
----Battery Park City----
           venue freq
            Park 0.10
0
1
     Coffee Shop 0.06
2
           Hotel 0.06
3 Clothing Store 0.05
4
   Memorial Site 0.04
----Carnegie Hill----
        venue freq
  Coffee Shop 0.07
0
1
         Café 0.06
    Wine Shop 0.04
2
3
  Yoga Studio 0.03
4
    Bookstore 0.03
----Central Harlem----
                 venue freq
0
    African Restaurant 0.06
1
    Seafood Restaurant 0.06
2
    Chinese Restaurant 0.04
3 Gym / Fitness Center 0.04
4
            Public Art 0.04
```

- I used the k-means clustering algorithm to complete this task
- Finally, I used the Folium library to visualize the clusters and to make a choice of the best one to open an Italian restaurant.

- I defined number of clusters in k-means clustering as 5.
- Out of 5 clusters:
 - o 3 are quite dense, include many boroughs
 - o one has just one
 - o and another one is a middle size.

Discussion

Let us explore the clusters a bit.

- Clusters 1 and 2 has many restaurants inside and moreover quite a lot of Italian restaurants. As we are opening a restaurant with a new brand, I believe it will be a bit risky to enter already a crowded-restaurants area to open a new one. So I do not see them as a great opportunity to start our business.
- Cluster 3 is too small to consider to get a good revenue.
- While clusters 4 and 5 seem to be the most promising as for me:
 - Cluster 4 does not have many restaurants / café in as for now so we can be a "new category opener" and give people there an opportunity to try the Italian cuisine.

• Cluster 5 is already developed as a restaurant / café center, and does not have many Italian restaurants , which gives us a great opportunity to take this place.

Obseravtions

I chosen to have 5 clusters in this exercise. The result was good enough to make a statement, but I believe it might be good to try to create less (3-4) or more (7-8) clusters to see how it can help resolve the problem.

Conclusion

This reports gave an overview of the project of finding the best place to open an Italian restaurant in New York, Manhattan. We looked at the data used, analysis types, as well as the results and observations.