Data Science Capstone Project

Real Estate.

```
In [1]: # Importing Libraries
  import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  %matplotlib inline
  import seaborn as sns
  import warnings
  warnings.filterwarnings('ignore')
```

Import data

```
train df=pd.read csv('train-RE.csv')
In [2]:
         test df=pd.read csv('test-RE.csv')
In [3]:
         train df.head()
In [4]:
Out[4]:
               UID BLOCKID SUMLEVEL COUNTYID STATEID
                                                                state state_ab
                                                                                     city
                                                                                              place
                                                                                                      type ... female
                                                                New
                                                 53
                                                                                Hamilton
         0 267822
                                    140
                                                          36
                        NaN
                                                                           NY
                                                                                           Hamilton
                                                                                                       City
                                                                York
                                                                                   South
         1 246444
                                    140
                                                          18 Indiana
                                                                                            Roseland
                        NaN
                                                141
                                                                                                       City ...
                                                                                    Bend
         2 245683
                        NaN
                                    140
                                                 63
                                                              Indiana
                                                                           IN
                                                                                 Danville
                                                                                            Danville
                                                                                                       City ...
                                                              Puerto
         3 279653
                        NaN
                                    140
                                                127
                                                                                 San Juan
                                                                                          Guaynabo Urban ...
                                                                Rico
                                                                                          Manhattan
                                                                           KS Manhattan
         4 247218
                        NaN
                                    140
                                                161
                                                          20 Kansas
                                                                                                       City ...
                                                                                                City
        5 rows × 80 columns
```

•	te	test_df.head()														
		UID	BLOCKID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place	type	•••				
	0	255504	NaN	140	163	26	Michigan	MI	Detroit	Dearborn Heights City	CDP					
	1	252676	NaN	140	1	23	Maine	ME	Auburn	Auburn City	City					
	2	276314	NaN	140	15	42	Pennsylvania	PA	Pine City	Millerton	Borough					
	248614	NaN	140	231	21	Kentucky	KY	Monticello	Monticello City	City						
	4	286865	NaN	140	355	48	Texas	TX	Corpus Christi	Edroy	Town					

```
In [6]: #checking shape of dataset
train_df.shape, test_df.shape
Out[6]: ((27321, 80), (11709, 80))
```

Figure out the primary key and look for the requirement of indexing

```
In [7]: #Checking duplicate records
        print('Duplicates in training dataset :')
        print(train df.duplicated().value counts(),'\n')
        print('Duplicates in testing dataset :')
        print(test df.duplicated().value counts(),'\n')
        Duplicates in training dataset :
        False 27161
        True
                  160
        dtype: int64
        Duplicates in testing dataset :
        False 11677
        True
        dtype: int64
In [8]: # Removing the duplicates from the dataset
        train df.drop duplicates(keep = 'first', inplace=True)
        test df.drop duplicates(keep = 'first', inplace=True)
 In [9]: # checking shape of dataset after removing duplicates
        train df.shape, test df.shape
        ((27161, 80), (11677, 80))
Out[9]:
In [10]: #Checking Unique value for primary key
        train df.nunique() == train df.shape[0]
                       True
        UID
Out[10]:
        BLOCKID
                      False
        SUMLEVEL
                     False
        COUNTYID
                     False
                      False
        STATEID
        pct own
                     False
        married
                     False
        married snp False
        separated
                     False
        divorced
                     False
        Length: 80, dtype: bool
In [11]: test_df.nunique() == test_df.shape[0]
        UID
                       True
Out[11]:
        BLOCKID
                      False
        SUMLEVEL
                      False
        COUNTYID
                      False
        STATEID
                      False
```

```
married_snp False
         separated False divorced False
         Length: 80, dtype: bool
In [12]: train_df.nunique()
        UID 27161
Out[12]: BLOCKID
                     0
         SUMLEVEL
                           1
         COUNTYID
                         296
         STATEID
                          52
        pct_own 22302
married 20282
married_snp 10350
        separated 6190 divorced 13688
         Length: 80, dtype: int64
```

pct_own False
married False

Since UID has all unique values and it matches the number of rows, UID can be used as the primary key in the data set

Gauge the fill rate of the variables and devise plans for missing value treatment. Please explain explicitly the reason for the treatment chosen for each variable.

```
In [13]: train_df.isnull().sum()
Out[13]: UID 0
BLOCKID 27161
        SUMLEVEL
COUNTYID
                         0
        pct_own 207 married 150
                      150
150
        married_snp
        marrieu_
separated
                        150
        Length: 80, dtype: int64
In [14]: | test_df.isnull().sum()
                     0
        UID
Out[14]: BLOCKID 11677
        SUMLEVEL
        COUNTYID
                         0
        STATEID
        pct_own
married
                        112
                        77
                         77
        married snp
        separated 77 divorced 77
        Length: 80, dtype: int64
In [15]: # Block ID column has all missing values, and SUMLEVEL and primary each have single valu
```

```
test df.drop(columns=['BLOCKID', 'SUMLEVEL', 'primary'], axis = 1, inplace=True)
         train df.shape, test df.shape
In [16]:
          ((27161, 77), (11677, 77))
Out[16]:
          train df['data type'] = 'Train'
In [17]:
          test df['data type'] = 'Test'
          #Combining datasets
In [18]:
          combined df = train df.append(test df, ignore index=True)
          combined df.head()
In [19]:
Out[19]:
               UID COUNTYID STATEID
                                        state state_ab
                                                           city
                                                                    place
                                                                           type zip_code area_code ... female
                                         New
         0 267822
                                   36
                                                  NY
                                                                                               315
                          53
                                                       Hamilton
                                                                  Hamilton
                                                                            City
                                                                                   13346
                                         York
                                                          South
          1 246444
                          141
                                   18 Indiana
                                                   IN
                                                                  Roseland
                                                                            City
                                                                                   46616
                                                                                               574 ...
                                                           Bend
         2 245683
                          63
                                   18 Indiana
                                                   IN
                                                        Danville
                                                                  Danville
                                                                                   46122
                                                                                               317 ...
                                                                            City
                                       Puerto
                                                   PR
         3 279653
                          127
                                   72
                                                                                     927
                                                                                               787 ...
                                                        San Juan
                                                                 Guaynabo
                                                                          Urban
                                         Rico
                                                                Manhattan
         4 247218
                                                                                               785 ...
                          161
                                   20
                                       Kansas
                                                  KS Manhattan
                                                                            City
                                                                                   66502
                                                                     City
         5 rows × 78 columns
In [20]:
          combined df.shape
          (38838, 78)
Out[20]:
          # checking percentage of missing values
In [21]:
          (combined df.isna().sum()/len(combined df))*100
                          0.000000
Out[21]:
         COUNTYID
                         0.000000
         STATEID
                          0.000000
         state
                          0.000000
         state ab
                          0.000000
                            . . .
         married
                         0.584479
         married snp
                          0.584479
                          0.584479
         separated
         divorced
                          0.584479
                          0.000000
         data type
         Length: 78, dtype: float64
In [22]:
         col check = combined df.isna().sum().to frame().reset index()
          col check
                          0
Out[22]:
                  index
          0
                    UID
                          0
              COUNTYID
```

2

STATEID

0

train_df.drop(columns=['BLOCKID', 'SUMLEVEL', 'primary'], axis = 1, inplace=True)

```
3
                   0
          state
 4
                   0
       state_ab
73
        married
                227
74 married_snp 227
75
      separated
                227
76
      divorced 227
77
                   0
      data_type
```

78 rows × 2 columns

```
#columns with null values
In [23]:
         null col = col check[col check[0]>0]['index'].tolist()
         null col
         ['rent mean',
Out[23]:
          'rent median',
          'rent stdev',
          'rent sample weight',
          'rent samples',
          'rent gt 10',
          'rent gt 15',
          'rent gt 20',
          'rent_gt_25',
          'rent gt 30',
          'rent gt 35',
          'rent_gt_40',
          'rent_gt_50',
          'hi mean',
          'hi median',
          'hi stdev',
          'hi sample weight',
          'hi samples',
          'family mean',
          'family median',
          'family stdev',
          'family sample weight',
          'family samples',
          'hc mortgage mean',
          'hc mortgage median',
          'hc mortgage stdev',
          'hc mortgage sample weight',
          'hc mortgage samples',
          'hc mean',
          'hc median',
          'hc stdev',
          'hc samples',
          'hc sample weight',
          'home equity second mortgage',
          'second mortgage',
          'home equity',
          'debt',
          'second mortgage cdf',
          'home equity cdf',
          'debt cdf',
          'hs degree',
          'hs degree male',
          'hs degree female',
```

```
'male age mean',
          'male age median',
          'male age stdev',
          'male age sample weight',
          'male age samples',
          'female age mean',
          'female age median',
          'female age stdev',
          'female age sample weight',
          'female age samples',
          'pct own',
          'married',
          'married snp',
          'separated',
          'divorced']
In [24]:
         #Filling the missing value with Median value
         for i in null col:
             combined df[i].fillna(combined df[i].median(), inplace=True)
In [25]:
         combined df.isnull().sum().any()
         False
Out[25]:
In [26]:
         #In pop column, there are some records for which the value is 0 which need to be removed
         print('Number of observations with 0 Population = ', (combined df['pop'] == 0).sum())
         Number of observations with 0 Population = 216
In [27]:
         combined df = combined df.drop(combined df[combined df['pop']==0].index).reset index(dro
```

Explore the top 2,500 locations where the percentage of households with a second mortgage is the highest and percent ownership is above 10 percent. Visualize using geomap. You may keep the upper limit for the percent of households with a second mortgage to 50 percent

```
In [28]: | # Sorting the data in decending order for second mortgage
          top second mortgage = combined df.sort values(by=['second mortgage'],ascending=False)
          top second mortgage[(top second mortgage['second mortgage'] <= 0.5)</pre>
In [29]:
                                  & (top second mortgage['pct own'] > 0.1)][['state','city','place']].
Out[29]:
                         state
                                            city
                                                                place
           3258
                       Virginia
                                        Farmville
                                                             Farmville
          11860 Massachusetts
                                       Worcester
                                                         Worcester City
          28218
                     Oklahoma
                                        Edmond
                                                          Edmond City
          25737
                     New York
                                         Corona
                                                           Harbor Hills
           7754
                     Maryland
                                      Glen Burnie
                                                           Glen Burnie
           2060
                        Florida
                                          Tampa
                                                        Egypt Lake-leto
           1689
                        Illinois
                                                          Lincolnwood
                                        Chicago
```

Adelphi

31958

Maryland

Adelphi

11723	Illinois	Chicago	Chicago City
8781	Michigan	Lansing	Lansing City
6422	Wisconsin	Milwaukee	Milwaukee City
11544	California	Etiwanda	Rancho Cucamonga City
37971	Pennsylvania	Philadelphia	Millbourne
20978	California	South San Francisco	San Bruno City
29025	New York	Bronx	Mount Vernon City
8022	Ohio	Cincinnati	Cincinnati City
23527	Texas	Dallas	Dallas City
28469	Virginia	Annandale	Ravensworth
36471	California	Sacramento	Parkway
28765	Massachusetts	Dorchester	Milton
10822	Colorado	Colorado Springs	Colorado Springs City
10228	Colorado	Littleton	Louviers
9979	California	Napa	Napa City
38205	Colorado	Northglenn	Northglenn City
8362	Ohio	East Cleveland	East Cleveland City

Use the following bad debt equation: Bad Debt = P (Second Mortgage ∩ Home Equity Loan) Bad Debt = second_mortgage + home_equity - home_equity_second_mortgage

```
Out[30]: bad_debt

0 0.09408

1 0.04274

2 0.09512

3 0.01086

4 0.05426
```

Create pie charts to show overall debt and bad

```
In [31]: overall_debt = []
  debt = combined_df['debt'].sum()
  overall_debt.append(debt)
```

```
bad_debt = combined_df['bad_debt'].sum()
overall_debt.append(bad_debt)

In [32]: overall_debt

Out[32]: [24348.5801, 4068.6565]

In [33]: print("Pie chart for overall debt and bad debt : \n")
plt.pie(overall_debt, labels=['Debt', 'Bad_Debt'], autopct='%1.2f%%', radius=1.5)
plt.show()
```

Pie chart for overall debt and bad debt :

Create Box and whisker plot and analyze the distribution for 2nd mortgage, home equity, good debt, and bad debt for different cities

```
In [34]: # Selecting 15 unique cities out of total cities
    cities = combined_df['city'].unique()[0:15]

In [35]: df = combined_df.loc[combined_df['city'].isin(cities)]

In [36]: #Distribution for Second mortgage
    plt.figure(figsize = (30, 15))
    sns.boxplot(x = df['city'], y = df['second_mortgage'])
    plt.xticks(rotation = 90, fontsize = 20)
    plt.yticks(fontsize = 25)
    plt.xlabel('City', fontsize = 25)
    plt.ylabel('Second_Mortgage', fontsize = 25)
```

Out[36]: Text(0, 0.5, 'Second Mortgage')


```
In [37]: #Distribution for home equity
plt.figure(figsize = (30, 15))
sns.boxplot(x = df['city'], y = df['home_equity'])
plt.xticks(rotation = 90, fontsize = 20)
plt.yticks(fontsize = 25)
plt.xlabel('City', fontsize = 25)
plt.ylabel('Home Equity', fontsize = 25)
```

Out[37]: Text(0, 0.5, 'Home Equity')


```
In [38]: #Distribution for Good debt
plt.figure(figsize = (30, 15))
sns.boxplot(x = df['city'], y = df['debt'])
plt.xticks(rotation = 90, fontsize = 20)
plt.yticks(fontsize = 25)
plt.xlabel('City', fontsize = 25)
plt.ylabel('Good Debt', fontsize = 25)
```

Out[38]: Text(0, 0.5, 'Good Debt')


```
In [39]: #Distribution for bad debt
plt.figure(figsize = (30, 15))
sns.boxplot(x = df['city'], y = df['bad_debt'])
plt.xticks(rotation = 90, fontsize = 20)
plt.yticks(fontsize = 25)
plt.xlabel('City', fontsize = 25)
plt.ylabel('Bad_Debt', fontsize = 25)
```

Out[39]: Text(0, 0.5, 'Bad Debt')

Create a collated income distribution chart for family income, house hold income, and remaining income

Use pop and ALand variables to create a new field called

population density

Use male_age_median, female_age_median, male_pop, and female_pop to create a new field called median age

Visualize the findings using appropriate chart type

```
In [43]: plt.figure(figsize = (25, 10))
   plt.bar('state', 'median_age', data=combined_df)
   plt.xlabel('State', fontsize=20)
   plt.ylabel('Median Age', fontsize=20)
   plt.xticks(rotation=90, fontsize=15)
   plt.show()
```


Create bins for population into a new variable by selecting appropriate class interval so that the number of categories don't exceed 5 for the ease of analysis

```
#Creating bins for :
In [44]:
         # 0-5000 in class 1
         # 5000-10000 in class 2
         # 10000-15000 in class 3
         # 15000-25000 in class 4
         # 25000-55000 in class 5
         combined df['pop class'] = pd.cut(x = combined df['pop'],
                                            bins = [0,5000,10000,15000,25000,55000],
                                             labels = ['1', '2', '3', '4', '5'])
         combined df['pop class'].value counts()
In [45]:
              26173
Out[45]:
              11919
         3
                439
                 82
         Name: pop class, dtype: int64
```

Analyze the married, separated, and divorced population for these population brackets

```
Population Class: 1 | Mean:0.496 | Status: married Population Class: 1 | Mean:0.020 | Status: separated Population Class: 1 | Mean:0.104 | Status: divorced Population Class: 2 | Mean:0.531 | Status: married Population Class: 2 | Mean:0.017 | Status: separated Population Class: 2 | Mean:0.017 | Status: separated Population Class: 3 | Mean:0.092 | Status: divorced Population Class: 3 | Mean:0.575 | Status: married Population Class: 3 | Mean:0.016 | Status: separated Population Class: 3 | Mean:0.081 | Status: divorced Population Class: 4 | Mean:0.606 | Status: married Population Class: 4 | Mean:0.011 | Status: separated Population Class: 4 | Mean:0.064 | Status: divorced Population Class: 5 | Mean:0.588 | Status: married Population Class: 5 | Mean:0.013 | Status: separated Population Class: 5 | Mean:0.013 | Status: separated Population Class: 5 | Mean:0.060 | Status: divorced
```

Visualize using appropriate chart type

```
In [49]: plt.figure(figsize = (25, 10))
   plt.bar('pop_class', 'married', data=combined_df)
   plt.xlabel('Population class', fontsize=20)
   plt.ylabel('Married', fontsize=20)
   plt.xticks(fontsize=15)
   plt.show()
```



```
In [50]: plt.figure(figsize = (25, 10))
   plt.bar('pop_class', 'separated', data=combined_df)
   plt.xlabel('Population class', fontsize=20)
   plt.ylabel('Separated', fontsize=20)
   plt.xticks(fontsize=15)
   plt.show()
```



```
In [51]: plt.figure(figsize = (25, 10))
   plt.bar('pop_class', 'divorced', data=combined_df)
   plt.xlabel('Population class', fontsize=20)
   plt.ylabel('Divorced', fontsize=20)
   plt.xticks(fontsize=15)
   plt.show()
```


Please detail your observations for rent as a percentage of income at an overall level, and for different states

```
In [52]: combined_df['%_rent'] = (combined_df['rent_mean']/combined_df['hi_mean'])*100
    combined_df[['%_rent']].head()
```

Out[52]: %_rent 0 1.218824 1 1.919490 2 0.874441 3 1.648594 4 2.948295

```
In [53]: states = combined_df['state'].unique().tolist()
        states
         ['New York',
Out[53]:
         'Indiana',
         'Puerto Rico',
         'Kansas',
         'Alabama',
         'Texas',
         'South Carolina',
         'California',
         'Arkansas',
         'Maryland',
         'Illinois',
         'Iowa',
         'Tennessee',
         'Nevada',
         'Louisiana',
         'Colorado',
         'Rhode Island',
         'Mississippi',
         'New Jersey',
         'Oregon',
         'Arizona',
         'Florida',
         'Wisconsin',
         'Pennsylvania',
         'North Carolina',
         'Virginia',
         'Michigan',
         'Ohio',
         'Oklahoma',
         'Georgia',
         'Idaho',
         'South Dakota',
         'Minnesota',
         'Missouri',
         'Washington',
         'Wyoming',
         'Connecticut',
         'West Virginia',
         'Kentucky',
         'Massachusetts',
         'District of Columbia',
         'Hawaii',
         'Montana',
         'Alaska',
         'New Hampshire',
         'Utah',
         'Vermont',
         'Nebraska',
         'North Dakota',
         'New Mexico',
         'Maine',
         'Delaware']
In [54]: for i in states:
                    print(i,'=','%.3f'%combined_df[combined df['state']==i]['% rent'].mean(),'%'
                    print("----")
        New York = 1.705 %
        _____
        Indiana = 1.469 %
        Puerto Rico = 1.958 %
        _____
```

Kansas = 1.368 %	
Alabama = 1.468 %	
Texas = 1.526 %	
South Carolina = 1.532 %	
California = 1.897 %	
Arkansas = 1.384 %	
 Maryland = 1.599 %	
Illinois = 1.542 %	
Iowa = 1.209 %	
Tennessee = 1.489 %	
Nevada = 1.764 %	
Louisiana = 1.555 %	
Colorado = 1.591 %	
Rhode Island = 1.474 %	
Mississippi = 1.527 %	
New Jersey = 1.644 %	
Oregon = 1.594 %	
Arizona = 1.725 %	
Florida = 1.919 %	
Wisconsin = 1.415 %	
North Carolina = 1 481 %	
North Carolina = 1.481 %	
Virginia = 1.593 %	
Virginia = 1.593 % Michigan = 1.584 %	
Virginia = 1.593 % Michigan = 1.584 %	
Virginia = 1.593 % Michigan = 1.584 % Ohio = 1.451 %	
Virginia = 1.593 % Michigan = 1.584 % Ohio = 1.451 % Oklahoma = 1.421 %	
Virginia = 1.593 % Michigan = 1.584 % Ohio = 1.451 % Oklahoma = 1.421 % Georgia = 1.599 % Idaho = 1.388 %	
Virginia = 1.593 % Michigan = 1.584 % Ohio = 1.451 % Oklahoma = 1.421 % Georgia = 1.599 % Idaho = 1.388 % South Dakota = 1.112 %	
Virginia = 1.593 % Michigan = 1.584 % Ohio = 1.451 % Oklahoma = 1.421 % Georgia = 1.599 % Idaho = 1.388 % South Dakota = 1.112 % Minnesota = 1.323 %	
Virginia = 1.593 % Michigan = 1.584 % Ohio = 1.451 % Oklahoma = 1.421 % Georgia = 1.599 % Idaho = 1.388 % South Dakota = 1.112 % Minnesota = 1.323 % Missouri = 1.439 %	
Virginia = 1.593 % Michigan = 1.584 % Ohio = 1.451 % Oklahoma = 1.421 % Georgia = 1.599 % Idaho = 1.388 % South Dakota = 1.112 % Minnesota = 1.323 % Missouri = 1.439 % Washington = 1.553 %	
Virginia = 1.593 % Michigan = 1.584 % Ohio = 1.451 % Oklahoma = 1.421 % Georgia = 1.599 % Idaho = 1.388 % South Dakota = 1.112 % Minnesota = 1.323 % Missouri = 1.439 %	

```
Connecticut = 1.607 %
_____
West Virginia = 1.300 %
_____
Kentucky = 1.372 %
_____
Massachusetts = 1.495 %
_____
District of Columbia = 1.703 %
_____
Hawaii = 2.035 %
______
Montana = 1.280 %
Alaska = 1.450 %
New Hampshire = 1.397 %
_____
Utah = 1.480 \%
Vermont = 1.438 %
______
Nebraska = 1.293 %
_____
North Dakota = 1.105 %
_____
New Mexico = 1.497 %
_____
Maine = 1.390 %
Delaware = 1.562 %
_____
```

Perform correlation analysis for all the relevant variables by creating a heatmap. Describe your findings

```
In [55]: var = combined_df.iloc[:,12:77]
  var.head()
```

Out[55]:		ALand	AWater	pop	male_pop	female_pop	rent_mean	rent_median	rent_stdev	rent_sample_weight
	0	202183361.0	1699120	5230	2612	2618	769.38638	784.0	232.63967	272.34441
	1	1560828.0	100363	2633	1349	1284	804.87924	848.0	253.46747	312.58622
	2	69561595.0	284193	6881	3643	3238	742.77365	703.0	323.39011	291.85520
	3	1105793.0	0	2700	1141	1559	803.42018	782.0	297.39258	259.30316
	4	2554403.0	0	5637	2586	3051	938.56493	881.0	392.44096	1005.42886

5 rows × 65 columns

```
Out[56]: Var.corr()

Out[56]: ALand AWater pop male_pop female_pop rent_mean rent_median rent_stdev rent_sa
```

		711144	Pop	a_pop					
ALa	nd 1.000000	0.455449	-0.032923	-0.021729	-0.042678	-0.071482	-0.069624	-0.035939	
AWa	ter 0.455449	1.000000	-0.013074	-0.009509	-0.016076	-0.011709	-0.011278	0.001320	
р	ор -0.032923	-0.013074	1.000000	0.979398	0.979774	0.163460	0.157320	0.120056	
male_p	ор -0.021729	-0.009509	0.979398	1.000000	0.919180	0.159282	0.153800	0.110374	

female_pop	-0.042678	-0.016076	0.979774	0.919180	1.000000	0.160958	0.154415	0.124771	
•••									
pct_own	0.054511	0.010880	0.096191	0.095353	0.093112	0.135691	0.127671	0.048370	
married	0.032989	0.000963	0.174286	0.141549	0.199644	0.258671	0.246623	0.133570	
married_snp	0.009389	0.024880	-0.037980	-0.001637	-0.072450	-0.106860	-0.094693	-0.072198	
separated	-0.006100	0.005697	-0.083472	-0.075661	-0.087820	-0.191482	-0.177771	-0.138700	
divorced	0.024592	0.005445	-0.162148	-0.147472	-0.170101	-0.378392	-0.362280	-0.273227	

65 rows × 65 columns

```
In [57]: plt.figure(figsize = (100,50))
    sns.heatmap(var.corr(),annot=True)
```

Out[57]: <AxesSubplot:>

The economic multivariate data has a significant number of measured variables. The goal is to find where the measured variables depend on a number of smaller unobserved common factors or latent variables

```
In [58]: pip install factor_analyzer
```

Defaulting to user installation because normal site-packages is not writeable Requirement already satisfied: factor_analyzer in c:\users\amit singh\appdata\roaming\py thon\python39\site-packages (0.4.1)

Requirement already satisfied: scikit-learn in d:\users\amit singh\anaconda2\lib\site-pa ckages (from factor_analyzer) (1.0.2)

Requirement already satisfied: scipy in d:\users\amit singh\anaconda2\lib\site-packages (from factor analyzer) (1.9.1)

Requirement already satisfied: pandas in d:\users\amit singh\anaconda2\lib\site-packages (from factor analyzer) (1.4.4)

```
Requirement already satisfied: numpy in d:\users\amit singh\anaconda2\lib\site-packages
         (from factor analyzer) (1.21.5)
        Requirement already satisfied: pre-commit in c:\users\amit singh\appdata\roaming\python
        \python39\site-packages (from factor analyzer) (3.2.1)
        Requirement already satisfied: pytz>=2020.1 in d:\users\amit singh\anaconda2\lib\site-pa
        ckages (from pandas->factor analyzer) (2022.1)
        Requirement already satisfied: python-dateutil>=2.8.1 in d:\users\amit singh\anaconda2\1
        ib\site-packages (from pandas->factor analyzer) (2.8.2)
        Requirement already satisfied: virtualenv>=20.10.0 in c:\users\amit singh\appdata\roamin
        g\python\python39\site-packages (from pre-commit->factor analyzer) (20.21.0)
        Requirement already satisfied: pyyaml>=5.1 in d:\users\amit singh\anaconda2\lib\site-pac
        kages (from pre-commit->factor analyzer) (6.0)
        Requirement already satisfied: nodeenv>=0.11.1 in c:\users\amit singh\appdata\roaming\py
        thon\python39\site-packages (from pre-commit->factor analyzer) (1.7.0)
        Requirement already satisfied: identify>=1.0.0 in c:\users\amit singh\appdata\roaming\py
        thon\python39\site-packages (from pre-commit->factor analyzer) (2.5.22)
        Requirement already satisfied: cfgv>=2.0.0 in c:\users\amit singh\appdata\roaming\python
        \python39\site-packages (from pre-commit->factor analyzer) (3.3.1)
        Requirement already satisfied: joblib>=0.11 in d:\users\amit singh\anaconda2\lib\site-pa
        ckages (from scikit-learn->factor analyzer) (1.1.0)
        Requirement already satisfied: threadpoolctl>=2.0.0 in d:\users\amit singh\anaconda2\lib
        \site-packages (from scikit-learn->factor analyzer) (2.2.0)
        Requirement already satisfied: setuptools in d:\users\amit singh\anaconda2\lib\site-pack
        ages (from nodeenv>=0.11.1->pre-commit->factor analyzer) (63.4.1)
        Requirement already satisfied: six>=1.5 in d:\users\amit singh\anaconda2\lib\site-packag
        es (from python-dateutil>=2.8.1->pandas->factor analyzer) (1.16.0)
        Requirement already satisfied: platformdirs<4,>=2.4 in d:\users\amit singh\anaconda2\lib
        \site-packages (from virtualenv>=20.10.0->pre-commit->factor analyzer) (2.5.2)
        Requirement already satisfied: distlib<1,>=0.3.6 in c:\users\amit singh\appdata\roaming
        \python\python39\site-packages (from virtualenv>=20.10.0->pre-commit->factor analyzer)
        (0.3.6)
        Requirement already satisfied: filelock<4,>=3.4.1 in d:\users\amit singh\anaconda2\lib\s
        ite-packages (from virtualenv>=20.10.0->pre-commit->factor analyzer) (3.6.0)
        Note: you may need to restart the kernel to use updated packages.
        from factor analyzer.factor analyzer import FactorAnalyzer
In [59]:
        fa = FactorAnalyzer()
In [60]:
         fa.fit(var, 10)
        FactorAnalyzer(rotation kwargs={})
Out[60]:
        ev, v = fa.get eigenvalues()
In [61]:
In [62]: plt.figure(figsize = (10,5))
        plt.plot(range(1, var.shape[1]+1), ev)
        plt.xticks(np.arange(0, 70, step=5))
        plt.xlabel('Number of factor')
        plt.ylabel('Eigen value')
```

plt.show()


```
In [63]:
        # Elbow bend can be observed at 8, thus taking n=8
        n = 8
        fa = FactorAnalyzer(n)
        fa.fit(var, 10)
        loads = fa.loadings
        print (loads)
        [[-3.33372954e-03 -1.49337266e-02 -4.35546140e-02 -4.18560809e-02]
          -1.53763218e-02 4.75300955e-03 1.36201429e-02 -1.82857127e-01]
         [-1.89265860e-03 \quad 1.66228269e-02 \quad -8.85199904e-03 \quad -1.25827565e-02
          -3.42481104e-02 9.46073958e-03 1.96987414e-02 -1.16703953e-01]
         -9.48633665e-02 -8.98557505e-02 6.54512025e-03 1.49651779e-02]
         [ 9.62452952e-01 1.31358319e-01 -1.51799154e-02 7.86534729e-02
          -1.30059159e-01 -1.03929597e-01
                                        9.93021665e-03 -1.63611983e-021
         -5.43058805e-02 -6.75111476e-02 3.02359252e-03 4.71512336e-02
         [ 6.50140660e-02 7.79322827e-01 1.08530610e-01 -1.09592889e-01
          -7.62487399e-02 -2.95044328e-02 -3.20944886e-02 1.48493373e-01]
         [ 6.59051212e-02 7.32441873e-01 9.77722106e-02 -1.25280537e-01
          -8.77109154e-02 -4.54522410e-02 -3.17312694e-02 1.53613113e-01
         [ 3.25993625e-02 7.23847931e-01 1.07796565e-01 8.00402647e-02
           6.30168054e-02 -3.41889947e-02 -4.29661820e-03
                                                       9.52691902e-031
         [ 1.69973894e-01 -2.15518906e-01 -9.69612853e-02 8.32090263e-01
           2.25846033e-03 4.32536770e-02 -1.61327225e-03 4.88318519e-02]
         [ 2.46403825e-01 1.38457908e-01 -8.20389470e-02 9.91947301e-01
          -5.54724953e-02 5.59213378e-02 -6.79734491e-03 9.88047655e-02
         [ 2.89526968e-02 -8.25910302e-02 3.58817990e-01 -1.22916636e-02
           3.34507683e-02 3.70945176e-02 -4.35565208e-02 3.42728330e-01
                                        5.74532396e-01 -7.98522753e-03
         [ 2.23449621e-02 -4.08117264e-02
           4.53183872e-02 1.04892316e-02 -4.73568050e-02 3.70474254e-01]
         [ 6.81227241e-03 -8.71351012e-03
                                        7.51907026e-01 -1.62214161e-02
           5.57509929e-02 -1.89272976e-02 -2.93069133e-02 2.68671571e-01]
         [ 6.42822629e-03 1.74513093e-02
                                        8.73942278e-01 -3.18217777e-02
           3.49021411e-02 -2.31075815e-02
                                        3.83679212e-03 1.23835447e-01]
         [ 1.82670491e-02 4.29902037e-02
                                        9.54674015e-01 -6.78472192e-02
          -9.36531770e-03 1.40636923e-03
                                        3.70295940e-02 -1.80639308e-02]
         [ 1.89293228e-02 6.65865253e-02
                                        9.78205995e-01 -8.34108999e-02
```

4.99871724e-02 -1.11144999e-01]

7.42875994e-02 9.51213859e-01 -8.23869476e-02

-4.28066506e-02 2.72190604e-02

[1.29478517e-02

```
-6.37700793e-02 3.80554680e-02 5.60008445e-02 -1.56337222e-01]
[-4.69653276e-03 \quad 7.90229907e-02 \quad 8.44909387e-01 \quad -6.10193009e-02
-7.53893388e-02 3.45745063e-02 4.90455640e-02 -1.67061910e-01]
-3.83854927e-02 4.49712249e-02 -7.74374527e-03 7.55947281e-02]
-4.17311452e-02 5.01949179e-02 -5.31469527e-03 1.09962403e-01]
[ 9.08989255e-02 7.52970100e-01 -1.51909518e-01 -2.07767720e-01
 5.29263798e-03 1.08925439e-01 -3.01059742e-02 6.15723443e-02]
[1.03196925e-01 6.81570874e-01 -1.75305429e-01 -2.62480279e-01
 -2.94672100e-02 9.03748698e-02 -3.38633528e-02 1.00586114e-01]
[ 4.34357983e-02 8.29557189e-01 -4.88022991e-02 -1.84935280e-02
 1.06902313e-01 1.48397040e-01 -1.19900084e-02 -6.79681286e-02]
[ 7.20472345e-01 -2.72940749e-01 4.26149198e-02 5.47888696e-01
 1.91193191e-01 8.18846498e-02 1.88846149e-02 1.46354368e-03]
[ 8.55315502e-01 7.54155973e-02 -3.65767160e-02 4.03740638e-01
 1.45541119e-01 1.56810928e-01 1.39473978e-03 4.95844764e-02]
[ 3.42912204e-02 7.51782188e-01 -1.14583886e-01 -8.52648088e-02
 4.09833928e-02 2.42889816e-01 -3.51755167e-02 6.27584662e-03]
[ \ 3.77632038e-02 \ \ 7.23560642e-01 \ -1.23419211e-01 \ -1.17491840e-01 
 2.03684494e-02 2.17637156e-01 -4.32102325e-02 1.78267330e-02
[ 1.12297238e-02 7.46123178e-01 -2.41080785e-02 8.12046803e-02
 1.14097370e-01 2.32798090e-01 -3.28537261e-03 -7.17661869e-02]
[ 8.67473924e-01 -2.62022119e-01 2.03170820e-02 1.07682658e-01
 1.00918992e-01 -2.19749796e-01 2.42428427e-02 2.93711923e-02
[ 9.53714164e-01 8.29290937e-02 -4.25039062e-02 -2.45378671e-02
 8.19649041e-02 -5.82050607e-02 7.26176017e-03 7.64344065e-02]
[-1.78104418e-03 \quad 1.03117919e+00 \quad 3.05947709e-02 \quad 9.20027635e-02
 4.45481992e-02 -1.49450397e-01 3.74690658e-02 -4.67829420e-03]
[-4.71069357e-03 1.01309125e+00 3.00925980e-02 8.13508389e-02
 2.71069277e-02 -1.55731287e-01 2.64095693e-02 7.59804475e-03]
[ 2.96562466e-03 8.46412013e-01 2.83241265e-02 9.94409715e-02
 1.81990184e-01 -5.94459602e-02 7.26055379e-02 -9.47501338e-02]
[ 7.15540567e-01 -4.93021585e-01 -5.48260114e-02 -2.11669238e-01
 7.95595083e-02 2.22342508e-01 -6.40816872e-03 1.61543913e-01]
7.56475113e-01 2.10892752e-02 -3.68790769e-02 -2.42757815e-01
 3.42940301e-02 1.65614817e-01 1.75760114e-02 2.22721450e-01]
[-4.54968374e-02 9.13923126e-01 2.86104370e-02 1.28507643e-01
 5.79429753e-02 -2.19283206e-02 -4.83731384e-02 -3.72930998e-02]
[-4.45744997e-02 8.75026528e-01 2.76543065e-02 1.22288575e-01
 4.17683593e-02 -2.20653297e-02 -5.18133641e-02 -2.78488512e-02
[-2.68605148e-03 7.89509367e-01 3.94461091e-02 1.39723441e-01
 1.51882598e-01 -5.02844821e-02 -3.05715694e-02 -1.57641216e-01
[ 6.24749125e-01 -5.41260263e-02 1.04900805e-01 -1.47554375e-01
 3.63177040e-01 1.04372320e-01 -2.57187310e-02 -4.27054466e-01]
[ 5.79522477e-01 -2.70091062e-01 8.24147098e-02 -1.70332470e-01
 3.20491523e-01 7.11559320e-02 -1.69412549e-02 -4.09465215e-01
[-5.01109815e-04 -9.84423733e-02 4.13888058e-02 3.34087675e-02
-2.65307944e-02 -7.77049818e-02 1.01701878e+00 -1.65324340e-01]
[-3.77126746e-03 -6.41236128e-02 5.09502760e-02 3.24231528e-02
-2.21036982e-02 -9.68395652e-02 1.03478564e+00 -1.68933218e-01]
[-3.58702163e-02 2.25392554e-01 -6.81134632e-03 1.47797595e-02
 5.57081798e-02 1.01687618e-01 5.36048603e-01 1.99028148e-01]
[7.69828815e-02 \quad 6.24273474e-02 \quad -1.36810099e-01 \quad -3.59552484e-02]
-2.30345470e-01 7.90355672e-02 1.22646266e-01 6.87540463e-01]
[-7.66602488e-02 8.47146834e-02 -1.56825233e-02 8.33896343e-02
-6.19534713e-02 -1.42662837e-02 -7.86633232e-01 -6.36750120e-03]
[ 1.38178587e-02 -2.17422813e-01 1.05730127e-02 2.59782441e-03
-9.53633670e-02 -1.40132228e-01 -5.09807425e-01 -2.49520933e-01
[-8.12679917e-02 -8.03789733e-02  1.38997636e-01  5.23121181e-02
 2.73636163e-01 -5.07125709e-02 -1.09688633e-01 -6.97362262e-01
[-1.13328436e-01 2.60485816e-02 1.59554563e-02 1.69445558e-01
 -1.94632837e-03 1.05370870e+00 -1.78971337e-02 3.47759350e-02]
[-1.00862437e-01 \quad 6.78098897e-02 \quad 2.75240664e-03 \quad 1.71967500e-01
 2.60101013e-03 9.64691155e-01 -1.71902844e-02 4.79618306e-02
[-1.03059023e-01 1.64778049e-02 -4.18998925e-04 1.28494034e-01
```

```
1.57142109e-02 9.68656397e-01 -1.06778545e-02 2.56544834e-02]
         [-1.66208469e-01 1.76566478e-01 2.21231096e-02 4.99886730e-02
           8.66084716e-01 1.12584239e-01 -1.14979287e-03 -4.12525712e-02
         [-1.25268900e-01 1.92386783e-01 2.44252154e-03 -5.62045039e-02
           8.06729334e-01 9.81750741e-02 4.11710560e-03 -2.30827341e-02]
         [ 4.70577411e-02 -1.61716663e-02 -4.24735506e-02 -1.50149205e-01
           6.40229196e-01 -1.73895946e-01 1.61416389e-02 9.60333470e-02]
         [ 8.84002245e-01 1.00430027e-01 6.72245580e-02 8.05102580e-02
          -2.76389353e-01 7.65363657e-03 8.65016377e-04 -1.21021308e-01]
         -1.30703015e-01 -1.03176300e-01 9.78468650e-03 -1.66172065e-02]
         [-1.74526624e-01 1.35367538e-01 4.75740872e-02 9.70707703e-02
           9.15556077e-01 9.14707063e-02 7.36522252e-04 1.01722724e-02]
         [-1.29316668e-01 \quad 1.42556484e-01 \quad 3.57826889e-02 \quad -3.48899223e-02
           8.74235765e-01 7.61786696e-02 9.27318871e-03 1.50088803e-02]
         [ 2.80795536e-02 -4.68537128e-02 -6.28634326e-02 -6.62994838e-02
           5.93676375e-01 -2.03535944e-01 1.50405444e-02 1.02243164e-01]
         [ 9.01111609e-01 8.91652589e-02 9.51798651e-02 1.34517717e-01
          -2.19752826e-01 4.49426996e-02 -1.37227101e-03 -7.12061210e-02]
         [ 9.66661556e-01 1.16450297e-01 1.26986837e-02 1.26111512e-01
          -5.55094337e-02 -6.79387717e-02 2.76121598e-03 4.73375297e-02
         [ 1.97456246e-01 -2.09971297e-02 -1.50313152e-02 -6.78463453e-01
           3.07269203e-01 1.28219184e-01 -1.79222967e-03 7.22693274e-03]
         [ 2.27744573e-01 1.95229554e-01 -1.71908841e-01 -3.87087374e-01
           3.67671704e-01 -3.82979458e-02 -1.67569338e-02 1.08059534e-01
         [-2.16846309e-02 1.02122276e-01 -3.52740887e-02 1.21650717e-01
           4.33693863e-02 -5.73045810e-01 1.52619509e-02 4.68593321e-02]
         [-5.42146922e-02 -4.76303470e-02 -2.08657376e-02 1.13553903e-01
           1.01690250e-01 -4.09492812e-01 1.39511201e-02 7.30608649e-02]
         [-1.60595701e-01 -4.35350987e-01 -2.21293390e-02 2.13631202e-01
           2.75849370e-01 1.19023135e-01 3.71738414e-02 4.28412684e-02]]
        df = pd.DataFrame(loads)
In [64]:
        df.set index(var.columns, drop=True, inplace=True)
        for i in range(n):
            s = 'Factor' + str(i+1)
            df.rename(columns = {i : s}, inplace=True)
        df
Out[64]:
```

	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Factor 7	Factor 8
ALand	-0.003334	-0.014934	-0.043555	-0.041856	-0.015376	0.004753	0.013620	-0.182857
AWater	-0.001893	0.016623	-0.008852	-0.012583	-0.034248	0.009461	0.019699	-0.116704
рор	0.988776	0.127975	-0.001268	0.103771	-0.094863	-0.089856	0.006545	0.014965
male_pop	0.962453	0.131358	-0.015180	0.078653	-0.130059	-0.103930	0.009930	-0.016361
female_pop	0.966058	0.116802	0.012741	0.126719	-0.054306	-0.067511	0.003024	0.047151
•••								
pct_own	0.197456	-0.020997	-0.015031	-0.678463	0.307269	0.128219	-0.001792	0.007227
married	0.227745	0.195230	-0.171909	-0.387087	0.367672	-0.038298	-0.016757	0.108060
married_snp	-0.021685	0.102122	-0.035274	0.121651	0.043369	-0.573046	0.015262	0.046859
separated	-0.054215	-0.047630	-0.020866	0.113554	0.101690	-0.409493	0.013951	0.073061
divorced	-0.160596	-0.435351	-0.022129	0.213631	0.275849	0.119023	0.037174	0.042841

Use factor analysis to find latent variables in our dataset and gain insight into the linear relationships in the data

- Highschool graduation rates
- Median population age
- Second mortgage statistics
- Percent own
- Bad debt expense

In [65]: latent_variables = combined_df[['pct_own','median_age','second_mortgage','bad_debt','hs_
latent_variables.head()

Out[65]:		pct_own	median_age	second_mortgage	bad_debt	hs_degree
	0	0.79046	44.667430	0.02077	0.09408	0.89288
	1	0.52483	34.722748	0.02222	0.04274	0.90487
	2	0.85331	41.774472	0.00000	0.09512	0.94288
	3	0.65037	49.879012	0.01086	0.01086	0.91500
	4	0.13046	21.965629	0.05426	0.05426	1.00000

In [66]: latent_variables.corr()

Out[66]:

	pct_own	median_age	second_mortgage	bad_debt	hs_degree
pct_owi	1.000000	0.548747	-0.050761	0.133315	0.394067
median_ag	e 0.548747	1.000000	-0.116364	0.056075	0.334217
second_mortgag	e -0.050761	-0.116364	1.000000	0.559154	0.063609
bad_deb	t 0.133315	0.056075	0.559154	1.000000	0.350089
hs_degre	e 0.394067	0.334217	0.063609	0.350089	1.000000

Data Modeling

In [67]:	<pre>combined_df.head()</pre>												
Out[67]:		UID	COUNTYID	STATEID	state	state_ab	city	place	type	zip_code	area_code		marrie
	0	267822	53	36	New York	NY	Hamilton	Hamilton	City	13346	315		0.5785

0	267822	53	36	York	NY	Hamilton	Hamilton	City	13346	315	 0.5785
1	246444	141	18	Indiana	IN	South Bend	Roseland	City	46616	574	 0.3488
2	245683	63	18	Indiana	IN	Danville	Danville	City	46122	317	 0.6474
3	279653	127	72	Puerto Rico	PR	San Juan	Guaynabo	Urban	927	787	 0.4725
4	247218	161	20	Kansas	KS	Manhattan	Manhattan City	City	66502	785	 0.1235

```
In [68]: model1 = combined df.drop(columns=['UID', 'COUNTYID', 'STATEID', 'state ab', 'zip code', 'are
In [69]:
         # Since we have few features that are categorical, will convert them into integer using
         from sklearn.preprocessing import LabelEncoder
         le = LabelEncoder()
         model1['state']=le.fit transform(model1['state'])
         le1 = LabelEncoder()
         model1['city'] = le.fit transform(model1['city'])
         le2 = LabelEncoder()
         model1['place']=le2.fit transform(model1['place'])
         le3 = LabelEncoder()
         model1['data type']=le3.fit transform(model1['data type'])
In [70]: model1 train = model1[model1['data type']==1]
         model1 test = model1[model1['data type']==0]
In [71]: | model1_x_train = model1_train.drop(columns=['hc mortgage mean']).values
         model1 x train
         array([[3.20000000e+01, 2.95200000e+03, 4.32000000e+03, ...,
Out[71]:
                 4.46674298e+01, 2.00000000e+00, 1.21882442e+00],
                [1.40000000e+01, 6.79700000e+03, 9.07100000e+03, ...,
                 3.47227481e+01, 1.00000000e+00, 1.91949027e+00],
                [1.40000000e+01, 1.70800000e+03, 2.47000000e+03, ...,
                 4.17744723e+01, 2.00000000e+00, 8.74441002e-01],
                [5.00000000e+00, 7.74200000e+03, 9.17800000e+03, ...,
                 4.40893115e+01, 1.00000000e+00, 1.06319740e+00],
                [4.40000000e+01, 1.42500000e+03, 2.08800000e+03, ...,
                 4.50292805e+01, 3.00000000e+00, 1.19174324e+00],
                [2.80000000e+01, 3.87500000e+03, 8.00500000e+03, ...,
                 3.11323118e+01, 1.00000000e+00, 1.83906163e+00]])
In [72]: | model1 x test = model1 test.drop(columns=['hc mortgage mean']).values
         model1 x test
         array([[2.20000000e+01, 1.81600000e+03, 2.52000000e+03, ...,
Out[72]:
                 3.11890533e+01, 1.00000000e+00, 1.75578752e+00],
                [1.90000000e+01, 2.69000000e+02, 3.91000000e+02, ...,
                 4.63829910e+01, 1.00000000e+00, 1.15114733e+00],
                [3.80000000e+01, 5.67800000e+03, 6.72600000e+03, ...,
                 4.31474198e+01, 1.00000000e+00, 1.39485508e+00],
                [2.10000000e+01, 3.89700000e+03, 6.64000000e+03, ...,
                 3.93236302e+01, 2.00000000e+00, 1.19454582e+00],
                [1.50000000e+01, 1.05000000e+03, 1.57000000e+03, ...,
                 4.45285973e+01, 2.00000000e+00, 1.20415796e+00],
                [4.40000000e+01, 2.77000000e+02, 1.03090000e+04, ...,
                 3.52071711e+01, 1.00000000e+00, 1.63791229e+00]])
In [73]: model1 x train.shape, model1 x test.shape
         ((27019, 73), (11603, 73))
Out[73]:
In [74]: model1 y train = model1 train['hc mortgage mean'].values
```

```
model1 y train
        array([1414.80295, 864.4139, 1506.06758, ..., 1671.07908, 3074.83088,
Out[74]:
                1455.4234 1)
        model1 y test = model1 test['hc mortgage mean'].values
In [75]:
         model1_y_test
        array([1139.24548, 1533.25988, 1254.54462, ..., 1791.63902, 1182.30365,
Out[75]:
                1364.173791)
```

Linear Regression

```
from sklearn.linear model import LinearRegression
In [76]:
         from sklearn.metrics import mean squared error, r2 score
```

First model with all the features

```
model1 lr = LinearRegression()
In [77]:
         model1 lr.fit(model1 x train, model1 y train)
In [78]:
         LinearRegression()
Out[78]:
         model1 y pred = model1 lr.predict(model1 x test)
In [79]:
         r2 score (model1 y test, model1 y pred)
In [80]:
         0.9874477647134917
Out[80]:
```

R square score for model1 is 0.987 i.e very high but R square value increases with the increased number of features and thus we will reduce number of features for model2

```
import math
In [81]:
         RMSE =
                 math.sqrt(mean squared error(model1 y test, model1 y pred))
In [82]:
         RMSE
         70.59062563607944
Out[82]:
```

Root Mean Square Error for model1 is 70.59

population density

```
In [83]:
           combined df.corr()
Out[83]:
                                    UID COUNTYID
                                                      STATEID
                                                                zip_code
                                                                         area_code
                                                                                            lat
                                                                                                      Ing
                                                                                                              ALand
                                                                                                                       AWa
                         UID
                               1.000000
                                           0.262508
                                                      0.977250 -0.224913
                                                                            0.020760
                                                                                      0.177594
                                                                                                 0.289902
                                                                                                           -0.015847
                                                                                                                      -0.028
                  COUNTYID
                               0.262508
                                           1.000000
                                                      0.224545
                                                                0.034504
                                                                            0.064198 -0.150504
                                                                                                 0.071227
                                                                                                            0.011864
                                                                                                                      0.0124
                     STATEID
                               0.977250
                                           0.224545
                                                      1.000000 -0.263080
                                                                            0.041162
                                                                                      0.106460
                                                                                                 0.320501
                                                                                                           -0.015467
                                                                                                                      -0.026
                    zip_code -0.224913
                                           0.034504
                                                     -0.263080
                                                                1.000000
                                                                           -0.006866
                                                                                      -0.064274
                                                                                                -0.927673
                                                                                                            0.072676
                                                                                                                      0.031
                                                                            1.000000 -0.123012 -0.012082
                                                                                                                      0.0214
                   area_code 0.020760
                                           0.064198
                                                      0.041162 -0.006866
                                                                                                            0.015327
                    bad_debt -0.129954
                                           -0.125309 -0.150047 -0.061916
                                                                            0.001796
                                                                                      0.213900 -0.012860 -0.082722 -0.025
                              -0.014908
```

-0.080217 -0.011986 -0.118788

-0.028577

0.052490

0.066848

-0.047295

median_age	-0.018141	-0.060917	-0.014016	-0.130128	-0.013401	0.013277	0.109913	0.046250	0.005
pop_class	-0.016743	0.003548	-0.022874	0.062080	0.030310	-0.074146	-0.070071	-0.020830	-0.007
%_rent	-0.144161	-0.015744	-0.129989	0.043692	0.018369	-0.179452	-0.077973	-0.062773	-0.013

77 rows × 77 columns

Out[85]:

Second Model with fewer features (Removing features which were insignificant based on correlation values)

Out[84]:		state	city	place	ALand	pop	rent_mean	rent_stdev	hi_mean	hi_sample_weight	hc_stdev	secor
	0	32	2952	4320	202183361.0	5230	769.38638	232.63967	63125.28406	1290.96240	270.11299	
	1	14	6797	9071	1560828.0	2633	804.87924	253.46747	41931.92593	838.74664	125.40457	
	2	14	1708	2470	69561595.0	6881	742.77365	323.39011	84942.68317	1155.20980	184.42175	
	3	39	6402	4251	1105793.0	2700	803.42018	297.39258	48733.67116	928.32193	185.55887	
	4	16	4255	6274	2554403.0	5637	938 56493	392.44096	31834.15466	1548.67477	76.12674	

In [85]: model2.corr()

	state	city	place	ALand	рор	rent_mean	rent_stdev	hi_mean	hi_sar
state	1.000000	-0.028575	-0.000981	-0.012449	-0.024165	-0.186634	-0.141012	-0.050857	
city	-0.028575	1.000000	0.524523	0.000731	0.014808	0.023054	0.023935	0.017941	
place	-0.000981	0.524523	1.000000	-0.001237	0.010081	0.027506	0.027797	0.014207	
ALand	-0.012449	0.000731	-0.001237	1.000000	-0.032923	-0.071482	-0.035939	-0.030496	
рор	-0.024165	0.014808	0.010081	-0.032923	1.000000	0.163460	0.120056	0.173600	
rent_mean	-0.186634	0.023054	0.027506	-0.071482	0.163460	1.000000	0.662229	0.755061	
rent_stdev	-0.141012	0.023935	0.027797	-0.035939	0.120056	0.662229	1.000000	0.552092	
hi_mean	-0.050857	0.017941	0.014207	-0.030496	0.173600	0.755061	0.552092	1.000000	
hi_sample_weight	0.028375	0.005275	0.007095	-0.025387	0.710603	-0.277523	-0.163111	-0.348184	
hc_stdev	-0.035079	-0.003947	0.020390	-0.007894	0.059366	0.444302	0.439052	0.519272	
second_mortgage	-0.105186	0.009321	0.004195	-0.044954	0.082808	0.150986	0.083304	0.098118	
debt	-0.131503	0.010578	0.016683	-0.122598	0.241463	0.436349	0.276172	0.419093	
debt_cdf	0.136978	-0.009674	-0.016895	0.111788	-0.249127	-0.458502	-0.286795	-0.425671	
hs_degree	0.039840	0.018611	-0.004280	-0.002124	0.051071	0.362281	0.269386	0.582384	
median_age	-0.018062	0.028612	0.003759	0.046250	-0.160976	0.070182	0.112328	0.262784	
pct_own	0.066441	0.037039	-0.016203	0.054511	0.096191	0.135691	0.048370	0.481934	
median_age	-0.018062	0.028612	0.003759	0.046250	-0.160976	0.070182	0.112328	0.262784	

```
home_equity -0.123769
                data_type -0.004220 -0.000051 -0.008253
                                                   0.008880
                                                           -0.011458
                                                                      0.001726
                                                                               -0.000182
                                                                                        0.004762
         hc_mortgage_mean -0.138523  0.001830  0.030580 -0.059813  0.113466
                                                                      0.751835
                                                                               0.638806
                                                                                        0.767424
         model2 train = model2[model2['data type']==1]
In [86]:
         model2 test = model2[model2['data type']==0]
In [87]:
         model2 x train = model2 train.drop(columns=['hc mortgage mean']).values
         model2 x train
         array([[3.20000000e+01, 2.95200000e+03, 4.32000000e+03, ...,
Out[87]:
                 4.46674298e+01, 8.91900000e-02, 1.00000000e+00],
                [1.40000000e+01, 6.79700000e+03, 9.07100000e+03, ...,
                 3.47227481e+01, 4.27400000e-02, 1.00000000e+00],
                [1.40000000e+01, 1.70800000e+03, 2.47000000e+03, ...,
                 4.17744723e+01, 9.51200000e-02, 1.00000000e+00],
                [5.00000000e+00, 7.74200000e+03, 9.17800000e+03, ...,
                 4.40893115e+01, 7.85700000e-02, 1.00000000e+00],
                [4.40000000e+01, 1.42500000e+03, 2.08800000e+03, ...,
                 4.50292805e+01, 1.25560000e-01, 1.00000000e+00],
                [2.80000000e+01, 3.87500000e+03, 8.00500000e+03, ...,
                 3.11323118e+01, 1.83620000e-01, 1.00000000e+00]])
In [88]: model2 x test = model2 test.drop(columns=['hc mortgage mean']).values
         model2 x test
         array([[2.20000000e+01, 1.81600000e+03, 2.52000000e+03, ...,
Out[88]:
                 3.11890533e+01, 7.65100000e-02, 0.0000000e+00],
                [1.90000000e+01, 2.69000000e+02, 3.91000000e+02, ...,
                 4.63829910e+01, 1.43750000e-01, 0.00000000e+00],
                [3.80000000e+01, 5.67800000e+03, 6.72600000e+03, ...,
                 4.31474198e+01, 6.49700000e-02, 0.00000000e+00],
                [2.10000000e+01, 3.89700000e+03, 6.64000000e+03, ...,
                 3.93236302e+01, 1.35450000e-01, 0.00000000e+00],
                [1.50000000e+01, 1.05000000e+03, 1.57000000e+03, ...,
                 4.45285973e+01, 7.96700000e-02, 0.00000000e+00],
                [4.40000000e+01, 2.77000000e+02, 1.03090000e+04, ...,
                 3.52071711e+01, 5.04200000e-02, 0.00000000e+00]])
         model2 y train = model2 train['hc mortgage mean'].values
In [89]:
         model2 y train
         array([1414.80295, 864.4139, 1506.06758, ..., 1671.07908, 3074.83088,
Out[89]:
                1455.4234 ])
         model2 y test = model2 test['hc mortgage mean'].values
In [90]:
         model2 y test
         array([1139.24548, 1533.25988, 1254.54462, ..., 1791.63902, 1182.30365,
Out[90]:
                1364.17379])
In [91]: model2 lr = LinearRegression()
         model2 lr.fit(model2 x train, model2 y train)
In [92]:
         LinearRegression()
Out[92]:
In [93]: model2_y_pred = model2_lr.predict(model2 x test)
In [94]: r2 score(model2 y test, model2 y pred)
```

0.104680

0.411801

0.308239

0.473898

Out[94]: 0.7887420001171161

R square value of model2 is 0.79

Since R Square value for both the models (i.e model1 = 98% & model2 = 79%) is high, the model is satisfactory at Nation level.

In []: