

Módulo 2

Tecnologías aplicadas II. Introducción a la Imagen Digital. Adquisición y Procesos de Visión por Computador

Presentación

Máster oficial en Humanidades y Patrimonio Digitales
Curso 2022-2023

Formación de la Imagen

Elementos Implicados

Luz

Espectro Electomagnético

source: UAB course 102784: Visió per computador, Felipe Lumbreras.

Imágenes en otros rangos

Elementos Implicados

http://szeliski.org/Book

Superfície reflectante

Elementos Implicados

font:
http://szeliski.org/Book
L

Captura de la Imágen

Simple model: pinhole camera, central projection.

Optics

Camera objective

Assemble of lenses forming the image on the camera sensor

Lens simplified schema

source: UAB course 102784: Visió per computador, Felipe Lumbreras.

Sensor

- The sensor convert radiant energy into an electrical signal.
- Light is "formed" by photons. The sensor "counts" photons.

source: UAB course 102784: Visió per computador, Felipe Lumbreras.

Image formation: pixels

The sensor transforms light photons into pixel data. In each pixel we have the count of photons "perceived" in the sensor.

157	153	174	168	150	152	129	151	172	161	156	156
156	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	n	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
206	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	256	211
183	202	237	145	0	0	12	108	200	138	243	236
196	206	123	207	177	121	123	200	175	13	96	218

On the left we have a tiny image of Lincoln; at center, the pixels labeled with numbers from 0-255, representing their brightness; and at right, these numbers by themselves.

Adquisición del Color

Color

Bayer pattern (1 único sensor)

- El sistema más utilizado
- No tenemos R,G,B en ningún pixel.
 Se necesita interpolar (demosaicing)

3 sensores independientes

 Prismas y filtros dividen el haz de luz en 3 componentes que iluminan 3 sensores monocromáticos.

Pixeles apilados

 La luz dependiendo de su energía (color) llega a diferentes profundidades.

Resolución

Resolución - Espectral

MULTISPECTRAL IMAGING

N separated bands

HYPERSPECTRAL IMAGING

ENABLES SPECTRAL ANALYSIS

- Segmentation
- Spectral unmixing
- Evolution of spectra in time

Que parte (%) del espectro somos capaces de percibir?

Resolución - Espacial

High Spatial Resolution

Medium Spatial Resolution

Low Spatial Resolution

Distancia cubierta / Píxeles Asociados

Resolución - Radiométrica

1 bit: 0 - 1

2 bits: 0 - 3

4 bits: 0 - 15

Original

Resolución - Temporal

Numero de Imágenes / Segundo (frames per second)

Procesamiento de Imágenes

- Embellecer / Corregir
- Restaurar
- Reconstruir elementos "invisibles" para el ojo.

After Histogram Equalization

CVC G

Ecualización

Rango cromático muy acotado (poca variabilidad de colores)

Photoshop / GIMP

Rango más amplio, detalles "invisibles"

Frequencia absoluta

Rango cromático muy acotado (poca variabilidad de colores)

Rango más amplio, detalles "invisibles"

Frequencia absoluta

Rango cromático muy acotado (poca variabilidad de colores)

Rango más amplio, detalles "invisibles"

Centre de Visió per Computador

- Mejoras en la lectura de documentos (OCR)
- Eliminar Ruido
- Ahorro de Impresión
- Detección de elementos

Binary image, T=155

Binarización

Objetivo: Eliminar todo excepto el texto (negro más puro)

CVC B

Binarización

Negro (letras)

CVC B

1 (o 255)

CVC B

Original {0, 1, ... 255}

Valores < 50 {Verdadero, Falso}

Binarizado {1, 255}

Filtros

Filtros - Convolución

Filtros - Convolución

Filtros - Convolución

Filtros - Procesado

Filtros – Procesado (Contornos)

X – Direction Kernel			
-1	0	1	
-2	0	2	
-1	0	1	

dX o dY?

Certire de Visió per Computador

Filtros – Procesado (Contornos)

 X - Direction Kernel

 -1
 0
 1

 -2
 0
 2

 -1
 0
 1

Filtros – Procesado (Contornos)

Filtros – Procesado (Difuminado)

1	2	1
2	4	2
1	2	1

Filtros - Detección

Filtros - Correlación

Filtros - Morfologia

Dilate

Dilation: $x = (x_1, x_2)$ such that if we center B on them, then the so translated B intersects X.

Dilation with other structuring elements

Dilation with other structuring elements

Erode

Erosion : $x = (x_1, x_2)$ such that if we center B on them, then the so translated B is contained in X.

Erosion with other structuring elements

Erosion with other structuring elements

Did not belong to X

Certire de Visió per Computador

Filtros – Caso de uso

CVC G

Filtros – Caso de uso

Detección de escenas

Proceso de la Imagen – Miscelania

Asociación de puntos equivalentes --> Reconstrcción de escenas (estructura a partir del movimiento / structure from motion)

Catálogo De Imágenes

Catálogo De Imágenes - Indexación

Base de Datos

- Título, autor, editorial....

Los elementos "query" están estructurados y definidos como objetos acotados.

Cada elemento se "indexa" en un número finito de "query"s satisfechas.

Catálogo De Imágenes - Indexación

Catálogo basado en CV / ML / DL

Los elementos responden a un vector de características (p.ej. Descriptores)

Cualquier elemento indexado responde a la vecindad respecto la "query".

Catálogo De Imágenes

Los elementos a indexar pueden venir catalogados segun categorización, detección (elementos que aparecen) o segmentación.

Catálogo De Imágenes

Según el descriptor de los elementos a indexar, una misma col·lección puede presentar distintas distribuciones.

Esto implica que segun el descriptor podremos estar buscando objectos, palabras, texturas...

La idea de vecindad estará correlacionada con el descriptor.

Clasificación / Clustering

Las herramientas de caracterización nos permiten crear espacios "query-ables" donde la vecindad serà proporcional a la semàntica que nuestro descriptor pretenda capturar.

Implicaciones

 Retrieval: Dado un documento nuevo, que documentos catalogados son relevantes respecto a éste.

Clustering: En el própio catálogo, que grupos existen (comunidades)

Visualización / dominios.

Implicaciones

 Retrieval: Dado un documento nuevo, que documentos catalogados son relevantes respecto a éste.

Implicaciones

· Clustering: En el própio catálogo, que grupos existen (comunidades)

Conclusiones / Ideas Clave

- El procesado de imagenes tiene dos usos clave:
 - El embellecimiento/restauración de la propia fotografia
 - La detección y caracterización de los elementos de la imagen
- En el hecho de caracterizar los elementos detectados, permitimos establecer mecanismos de retorno de información.
- Podemos pensar en estos mecanismos como busqueda sobre datos no estructurados.

