3

Classification of Elements and Periodicity in Properties

Trends at a Glance

Fig.: The periodic trends of elements in the periodic table

Periodic Variation in Ionisation Energy

For representative (s- and p- block) elements-Trend across a period:

General trend-the \mathbf{Z}_{eff} increases in a period, hence IE increases.

Table: Trend in ionisation energy across periods

Period No.	Trend in ionisation energy	Comments
2	Expected: Li < Be < B < C < N < O < F < Ne Actual: Li < B < Be < C < O < N < F < Ne	
3		Irregular Trend
4	Expected: K < Ca < Ga < Ge < As < Se < Br < Kr Actual: K < Ga < Ca < Ge < Se < As < Br < Kr	
5	Rb < Sr < ln < Sb < Te < l < Xe	Dagular Trand
6	$C_S < Ba < Tl < Pb < Bi < Po < At < Rn$	Regular Trend

^{*} For representative (s-and p-block) elements-Trend across a period:

Table: Exceptions in the trend of variation of ionisation energy across periods

Exceptions to the trend across periods				
Expected	Actual	Explanation		
Be < B Mg < Al Ca < Ga	Be > B $Mg > Al$ $Ca > Ga$	Be, Mg and Ca have fully-filled ns ² orbitals		
N < O P < S As < Se	N > O P > S As > Se	N, P and As have half-filled electronic configuration		

* For representative (s-and p-block) elements - Trend down the group: General trend-the size increases down a group, hence IE decreases.

Table: Exceptions in the trend of variation of ionisation energy down the group

Exceptions to the trend across groups						
Group No.	Expected	Actual	Explanatin	Overall order in group		
13	Al > Ga	Al ≈ Ga	Poor shielding of d-electrons in Ga	B > Tl > Ga ≥ Al > ln		
	ln > Tl	ln < Tl	Lanthanoid contraction in Tl			
14	Sn > Pb	Sn < Pb	Lanthanoid contraction in Pb	C > Si > Ge > Pb > Sn		

Factors Affecting Electronegativity

 $\textbf{Table:} \ Effect \ of \ Atomic \ radius, \ Z_{\text{eff}}, \ oxidation \ state \ and \ Hybridisation \ on \ Electro \ negativity$

Factor	Effect on EN			
Atomic Radius	Atomic radius ↑, EN↓			
	Li (r = 133 pm, EN = 1.0) Na (r = 155 pm, EN = 0.9)			
$Z_{ m eff}$	$Z_{\rm eff}$ \uparrow , EN \uparrow			
	$O(Z_{eff} = 4.55, EN = 3.5$ $F(Z_{eff} = 5.20, EN = 4.0)$			
Oxidation State	For the atoms of same element in different compunds, as ON↑, EN↑			
EN of $Fe^{3+} > Fe^{2+}$, EN of $O^{2-} < O^{-}$				
Hybridisation	Greater the %s chracter, greater is the attraction on the electrons, greater is the EN.			
$sp > sp^2 > sp^3$				