[T i	ime: 3 Hours] [Total Marks: 100]				
	Please check whether you have got the right question paper.				
N. .					
	2. Figures to the right indicate full marks.				
	3. The use of log-table/non-programmable calculator is allowed.				
	4. Answers for the same question as far as possible should be written				
	together.				
Q.1	Answer any four of the following:				
A	Explain the following with suitable examples: 5				
	1. Neighbouring Group Participation				
	2. Electrocyclic reaction				
	3. Electrophile				
В	Distinguish between				
	i) Nucleophilicity and Basicity 3				
	ii) Reaction Intermediates and Transition state 2				
\mathbf{C}	What are pericyclic reactions? Explain pyrolytic elimination of Xanthate esters and 5				
	Acetates with suitable examples.				
D	Write a reaction for the esterification of acetic acid and explain its mechanism. 5				
E	Distinguish between Singlet and Triplet States. What are forbidden transitions? 5				
F	Write reactions to explain Norrish Type I cleavage of acetone at room temperature. 5				
Q.2	Answer ANY FOUR of the following:				
A	Write a note on the following-				
	a) Alternating axis of symmetry 3				
Oxy	b) Centre of symmetry 2				
В	a) Identify optically active and optically inactive molecules among the following, 3				
	justify your answers-				
	(i) (ii)				
OF.	$COOH$ CH_3				
	HOOC ,,				
	C=C=C				
	O_2N				
	NO ₂ H COOH				
	b) Write the structure of meso-tartaric acid and identify the element of symmetry				
	present in it.				

27060 Page **1** of **4**

Write a note on biopesticides.

Give synthesis of Endosulfan

a)

3

2

D	a)	Give advantages and disadvantages of Agrochemicals.	3
	b)	Discuss the action of mixture of fuming HNO ₃ and concentrated H ₂ SO ₄ on	2
		isoquinoline at 0°C.	
E		Write Bischler- Napieralski synthesis for 1-methyl isoquinoline.	5
F	a)	Explain: Pyridine-N-oxide gives electrophilic substitutions and nucleophilic	3
_	••)	substitutions at the same positions.	
	b)	Write the reaction of following reagents with quinoline.	2
		(i) alkaline KMnO ₄ , (ii) peracetic acid	
0.0			
Q.3	. `	Answer any four of the following:	- A
A	a)	Explain Linear synthesis with a suitable example. State any four principles of Green chemistry.	02
В	b) a)	Give any two examples of a Chemoselective reaction.	3
Ь	b)	Give any one use of dimethyl carbonate as a methylating agent in green chemistry.	2
C	~)	Define E-factor? Calculate the percentage atom economy of the following reaction.	5
C		Aqueous	3
		S CH ₃ -CH ₂ Br + KOH $\xrightarrow{Aqueous}$ CH ₃ -CH ₂ OH + KBr $<$	
			/
		Atomic Weight: $C = 12$, $H = 1$, $O = 16$, $Br = 80$, $K = 39$	
D		Give the synthesis of the following compounds:	5
.09		1) p-bromobenzoic acid from p-aminobenzoic acid	J
		2) 3-methyl-1-butanol using a suitable Grignard reagent	
E		Write the structural formula for each of the following compounds:	5
	7	1. 3-Iodo spiro [4.5] decane	
		2. Bicyclo [3.3.0] octane	
		3. Bicyclo [2.2.1] heptan-2-one	
		4. 2-Ethoxy quinoline	
)'_		5. Penta-2,3-diene-1-oic acid	_
F		Give IUPAC names for each of the following compounds:	5
		CH_3 CI	
OF		$H_3C - W \longrightarrow CH_3$ $C = C = C$	
		Cl C_2H_5	
	Z.	$4)$ HOOC \leftarrow COOH	
		5)	
		B. O. D. C.	
0.4		Answer any four of the following:	
Q.4 A	a)	Define the following terms used in UV-Visible spectroscopy	3
	200	i) Chromophore	
		ii) Auxochrome	

,

2

iii) Red shift Explain the effect of solvent on λ_{max} with a suitable example.

В	a)	Explain the mass spectral fragmentation pattern of 2- Methyl but-2-ene.	3
	b)	Give the basic principle of mass spectroscopy.	2
\mathbf{C}	a)	Give the synthesis of adrenaline from catechol.	3
	b)	Define hormones. Give any two functions of adrenaline.	2
D	a)	What are terpenoids? Give analytical evidence to prove that Citral is an unsaturated terpenoid.	3
	b)	Give analytical evidence to prove that Nicotine has a pyridine ring with a side chain containing >N-CH ₃ group.	2
${f E}$	a)	Give the synthesis of citral from 6- methyl hept-5-en-2-one.	3
	b)	State and explain Special isoprene rule as applied to Citral.	2
\mathbf{F}	a)	Give the reaction for Hofmann exhaustive methylation and degradation of :	3
	b)	What are the harmful effects of nicotine?	2
Q5	A	Fill in the blanks with the most correct given alternative. Rewrite the	5
	9	completed statements. (Any five)	
	a)	To show the movement of a pair of electrons is used.	
5	P/0	The term is associated with NGP?	
	b)		
	c)	(saponification; pericyclic reaction; anchimeric assistance; cycloaddtion) The products of Cope elimination are alkene and	
	d)		
	8		
N. O.		The above reaction is reaction.	
		(Diel's Alder; Saponification; Claisen; Chugaev)	
	e)	Group transfer reactions are most closely related to reactions.	
	1	(Electrocyclic; Cheletropic; Cycloaddition; Sigmatropic)	
	f)	The wavelength of phosphorescence is than fluorescence and has energy.	
0		(longer, more; longer, lesser; shorter, more; shorter, lesser)	
	g)	$Di-\pi$ -methane reaction is an example of photochemical	
		(reduction; rearrangement; isomerization; elimination)	
	h)	In photosensitization the energy of the excited state Donor molecule should be the excited state of Acceptor molecule.	
		(more than; less than; approximately equal to; identical to)	
	В	State whether following are True or False- (ANY FIVE)	5
	a)	Always an optically active compound must contain at least one chiral carbon atom.	
	b)	In an allene compound, the central carbon atom is sp hybridized.	
T.	c)	Indole-3-acetic acid is a plant hormone from auxin class.	

27060 Page **3** of **4**

- **d)** Fungicides are the chemicals that destroy, prevent or inhibit the growth of weeds.
- e) Oxidation of pyridine using peracid gives pyridine-N-oxide.
- **f**) Electrophilic substitution reactions on quinoline take place preferably at positions 5 and 8.
- g) Isoquinoline is also known as 1-azanaphthalene.

C Fill in the blanks (Any five)

- a) In the nomenclature of spirans, the ----- ring is not given the preference.
- **b)** To name the fused and bridged ring systems the numbering starts from the ------ carbon atom.
- c) Quinolines belongs to the class of condensed ----- compounds.
- d) ----- is the term used when the reactions are carried out by using Ultra sound.
- e) Benadryl is prepared by ----- synthesis.
- **f**) Alkyl lithium reacts with alkyl halides to form higher -----.
- g) The concept of atom economy was developed by -----.
- h) ----- is an example of a green solvent used in industry for recycling of waste.

Q 5 D Match the following columns (Attempt any five)

١,

a	Adrenaline	1	Odd mass number
b	Lemon grass oil	2	Quinoline alkaloid
C	Amino acid derivative	3	Epinephrine
o d	Quinine	4	Citral
e	Odd number of nitrogen atom	5	Thyroid hormones
f	n to π^*	6	Tobacco leaves
g	Nicotine	7 _	>C=O group
	99 (B) (A)	8	Phenanthrene alkaloid
