

Atividade: Progressões

Habilidades

EM13MAT508 Identificar e associar progressões geométricas (PG) a funções exponenciais de domínios discretos, para análise de propriedades, dedução de algumas fórmulas e resolução de problemas.

Para o professor

Objetivos específicos

OE1 Identificar progressões geométricas de razão positiva definidas recursivamente como funções exponenciais de domínio discreto (natural);

Observações e recomendações

■ A ideia é apresentar PGs definidas recursivamente, incluindo as que têm primeiro termo ou razão negativos. O estudante deve identificar as que têm primeiro termo e razão positivos com o crescimento/decaimento exponenciais.

Atividade

Sequências de números reais são usualmente denotadas por $[a_1,a_2,a_3,a_4,...]$ e cada elemento é chamado de termo e está identificado de acordo com a sua posição na sequência. Por exemplo, o símbolo a_{37} representa o trigésimo sétimo número real na sequência considerada.

- a) Em cada item a seguir determine quais são os números que compõem a sequência:
 - i) O primeiro termo é 10 e cada termo é igual ao anterior multiplicado por 3;
 - ii) $a_1=5$ e cada termo é 100% maior que o anterior;
 - iii) $a_1=4,\,a_2=-a_1,\,a_3=-a_2,\ldots$, $a_{n+1}=-a_n$ para todo n natural;
 - iv) $a_5=-100$ e $a_{n+1}=rac{a_n}{2}$ para todo n natural;
 - v) $a_1=4,\,a_3=36$ e cada termo é igual ao anterior multiplicado por um valor constante;
 - $\mbox{vi)} \ \ a_1 = 8 \ \mbox{e} \ \frac{a_{n+1}}{a_n} = 0, 4 \ \mbox{para todo} \ n \ \mbox{natural};$
 - vii) $a_2 = 1000$ e cada termo é 20% menor que o anterior;
 - viii) $a_1 = 1$ e $a_{n+1} = -3a_n$ para todo n naturtal;
 - ix) $a_1 = \sqrt{7}$ e $a_{n+1} = a_n$ para todo n natural.
- b) Que características têm em comum todas as sequências do item anterior?
- c) Quais delas apresentam crescimento ou decaimento exponencial? O que as diferencia das outras?

Realização:

ONT OLIMPÍADA BRASILEIRA
DE MATEMÁTICA DAS ESCOLAS PÚBLICAS

Patrocínio:

Solução:

- a) i) (10, 30, 90, 270, 810...)
 - ii) (5, 10, 20, 40, 80, ...)
 - iii) (4, -4, 4, -4, 4, ...)
 - iv) (-100; -50; -25; -12, 5; ...)
 - v) (4, 12, 36, 108, 324, ...)
 - $\forall i) \ (8; 3, 2; 1, 28; 0, 512; \ldots)$
 - vii) (1000; 800; 640; 512; 409, 6; ...)
 - viii) (1, -3, 9, -27, 81, ...)
 - ix) $(\sqrt{7}, \sqrt{7}, \sqrt{7}, \sqrt{7}, ...)$
- b) Os termos, a partir do segundo, podem ser obtidos multiplicando-se um fator constante pelo termo anterior.
- c) Crescimento (1), (2), (5). Decaimento (6) e (7). Todas têm primeiro termo positivo e fator de multiplicação positivo e diferente de 1.

OLIMPÍADA BRASILEIRA

O J DE MATEMÁTICA

DAS ESCOLAS PÚBLICAS

Patrocínio: