HIP 8

The figure here shows a 1.0-cm-diameter loop with R = 0.50 Ω inside a 2.0-cm-diameter solenoid. The solenoid is 8.0 cm long, has 130 turns, and carries the current shown in the graph. A positive current is cw when seen from the left.

What is the current in the loop at t = 0.010 seconds?

An induced current is experienced by a loop of conducting material when it acquires an induced emf. An emf is induced around a closed loop if the magnetic flux through the loop changes. In our scenario we find that the change of magnetic flux is due to a change in the magnetic field which is in turn caused by the change of current over time. We can find the induced current in the ring by first finding the function I(t) and use this in our function for the Magnetic field of a solenoid, B(t). From this we would get a function for the magnetic flux, $\Phi_{mag}(t)$, through the ring. We will then take the derivative, $d\Phi_{mag}/dt$, this is our induced emf, or voltage. From this point we can find the induced current by using Ohm's Law, dividing our voltage by the resistance of the ring.

First find I(t):

$$I(t) = (1/.02)t \rightarrow I(t)=50*t$$

Substitute I(t) for I in the equation for the magnetic field in a solenoid:

$$B_{\text{solenoid}} = \mu_o^* n^* I \rightarrow B_{\text{solenoid}} = \mu_o^* n^* 50^* t$$

Substitute B(t) for our equation for the magnetic flux through the conductive ring:

 Φ_{mag} = \oint **B•dA** \rightarrow since d**A** and **B** are parallel the equation can be rewritten \rightarrow

 $\Phi_{mag}=\oint B^*dA \rightarrow Since this is a closed integral of the area of the circle it can be rewritten as <math>\rightarrow \Phi_{mag}=\pi^*r^{2*} \mu_0^*n^*50^*t$

Find voltage by taking the derivative of the magnetic flux over time:

$$V = d\Phi_{mag}/dt = \pi^* r^{2*} \mu_o^* n^* 50$$

Use Ohm's law to find the induced current in the ring at time t= 0.01 s:

$$I = V/R \rightarrow I = (\pi^* r^{2*} \mu_0^* n^* 50)/R$$

The induced current in the ring at t=.01s is 1.6 x 10⁻⁵ C/S.

Doing a unit check we find that the units are C/S, which is what we expect. The current is a fraction of a microampere which is within a range we would expect for the scale of the loops and the current passing through the solenoid.

GORY	PLARY (1.5)	MPLISHED (1)	LOPING (0.5)	GENT (0)
Statement and tion	sarning tool for our class is written	ofem is clearly presented for reader in n words.	plem is directly copied or is hard	p into some calculation
	atch could be dropped into a novel as it stands.	a clear sketch, larger than a credit the problem set up with important and data noted	some sketch of the problem	etch?
Tools	late physics tools are correlated rercise in textbook quality and	ate physics tools are correlated to the . Appropriate tools include: pictures, poservational laws utilized, etc	hysics tools are correlated to the .	e a few equations written.
n Solution tation	is very clearly presented with g asides or annotations	is complete and clearly presented no significant intuitive demands on the	olution I have to read between	es version of solution with only nts present
	ution can serve as solution	is larger than a credit card, tion is fluid, notation used is clear.	gure the path of your solution with	read it.
		correctly given	ions & quantities are presented s	nits at the results
1			close	pt reasonable
ant Figures		Sig Figs	ffort to use correct significant	he number from the calculator
ableness	more than one type of sbleness check.	ne clear rationale for appropriateness of tion in the setting	that the answer is reasonable but sn't given any evidence	ession
Graded			e	ut your self-assessment is from mine by at least two steps.