1.033/1.57

Mechanics of Material Systems

(Mechanics and Durability of Solids I)

Franz-Josef Ulm

Lecture: MWF1 // Recitation: F3:00-4:30

Part II: Momentum Balance, Stresses and Stress States

3. Momentum Balance

Content 1.033/1.57

Part I. Deformation and Strain

- 1 Description of Finite Deformation
- 2 Infinitesimal Deformation

Part II. Momentum Balance and Stresses

- 3 Momentum Balance
- 4 Stress States / Failure Criterion

Part III. Elasticity and Elasticity Bounds

- 5 Thermoelasticity,
- 6 Variational Methods

Part IV. Plasticity and Yield Design

- 7 1D-Plasticity An Energy Approac
- 8 Plasticity Models
- 9 Limit Analysis and Yield Design

Body & Surface Forces

1.033/1.57 Mechanics of Material Systems

Hypothesis of local contact forces = Action-Reaction 'Law'

Iron Lemma: Stress vector T(n)

 \mathbf{e}_3

 $S_2 = n_2 dS$

dS

1.033/1.57 Mechanics of Material Systems

Cauchy Stresses σ_{ij} and Stress Vector T(n)

Exercise: Two-Layer Soil Substratum

1.033/1.57 Mechanics of Material Systems

Reduction Formulae

= Relation between local stress and section forces and moments

Momentum Balance and Symmetry of Stress Tensor

Training Set: Pressure Vessel Formula

Momentum Balance in Cylinder

Radial Direction:

$$\frac{\partial \sigma_{rr}(r)}{\partial r} + \frac{1}{r} [\sigma_{rr}(r) - \sigma_{\theta\theta}(r)] = 0$$

Vessel Formula by Reduction Elements

