Total No.	of Qu	estions: 5]	C	6	SEAT No.:	
P6987		ı	[5865] - 205) 5	[Total	No. of Pages :8
		First Year M.C.			nent Faculhy)	
		MT-21 : OPTIM	9		=	
			ttern) (Sem		•	
	ns to t	he condidates:			[]	Max. Marks : 50
		estions are compulsor statistical table and i		able	e calculator is allow	ed.
		es to the right indicate				
01) 444		9 NGG	(0.7. 1	1	9	[40]
-	-	he following MCQ	·			[10]
1)		inimization problen uging the sign of co			d into maximizati	on problem by
		Constraint	b		Objective Functi	on
		Both a and b	d		None of the Abo	
),),			*	S I was 1133	
ii)	The	order in which mac	hines are requ	iirê	for completing	job is called as
,	a)	Machine order	b	$\mathcal{V}_{\mathcal{N}}$	Job order	
	c)	Processing order	d)	Working order	
			11, 100			
iii)	Floa	ts for critical activit	ies will be alv	vay	S	(
	a)	one	b)	zero	
	c)	highest	6., d	()	same as duration	of the activity
		9	,			
iv)		olems based on the	phenomenon	of	decision making	under risk are
		rred to as O.	1	`	C 1 11	
	a)	Numerical problem		/	Complex proble	m')
	c)	Probabilistic probl	em d	.)	None of above	/
**)	The	and dia naint in a na	ver off matrix i	G 0	lyyaya tha	
v)	a)	saddle point in a palargest number in t		.S a.	iways the	•
	b)	smallest number in		nd	the smallest numb	per in its row
	c)	smallest number in		110	the salarest hame	CI III Its IOW
	d)	largest number in i		d th	e smallest numbe	er in its row
)	-67		2		
				NX.		
			\nearrow			<i>P.T.O.</i>

vi)		simulation is not an analytical n st be viewed as	nodel,	therefore the result of simulation
	a)	Unrealistic	b)	Exact
	c)	Approximation	d)	Simplified
vii)				n be made infinity large without
		lating the constraints, the solu		
	a)	Infeasible	b)	Unbounded
	c)	Alternative	d)	None of the above
viii)	In s	sequencing if smallest time for	a job	belongs to machine A then that
	job	has to placed towards	_ in th	le sequence.
	a)	right	b)	left
	c) _C	centre	d)	none of the Above
				,
ix)	×Bac	ckward Pass calculation are d	one to	o find occurance times
, ,		events.	,	<u> </u>
	a)	tentative	b	definite
	c)	latest	(d)	earliest
	,		0,	
x)	In t	he Hurwicz approach, coeffici	ent of	Pessimism is denoted by
	a)	α	b)	$1-\alpha$
	c)	$1/\alpha$	d)	α^2
		8.		
xi)	In a	n mixed strategy, each player sl	nould	optimize the
	a)	maximum payoffs	b)	lower value of the game
	c)	maximum	d)	expected gain
xii)	Αp	problem is classified as Markov	v chair	n provided
	a)	There are finite number of po	ossible	e states V
	b)	States are collectively exhaus	stive &	mutually exclusive
	c)	Long-run probabilities of bei over time	ng in a	a particular state will be constant
	d)	All of the Above	S	o°

X111)		-	twee	n a decision variable and a slack
	*	rplus) variable for entering,	1-)	should be selected.
		Slack variable	b)	Surplus variable
	c) I	Decision variable	d)	None of the above
xiv)		- (-		chine (Three machine) problem
	has to	be converted into ma	chin	e problem.
	a) 1		b)	2
	c) 1	n O'	d)	none of the above
		8		
xv)	CPM	stands for		
	a)	Control Path Method	b)	Critical Path Method
	c) (Control Path Management	d)	Critical Plan Management
	^	6.		
xvi)	Then	ninimin criterion is used when	1 con	sequences are given in the form
,	of			
1	xa) I	Probabilities	b)	Table
,	c) (Opportunity loss	d)_ '	Payoff
	,		3	<i>*</i>
xvii	Each	player should follow the sa	me s	trategy regardless of the other
,		r's strategy in which of the fo	9,	
	a) (Constant strategy	b)	Mixed strategy
	c) I	Pure strategy	d)	Dominance strategy \(\frac{1}{2}\)
				: 40
XVIII) In Ma	rkov analysis, state probabili	ties n	nust
		Sum to one	b)	Be less than one
	•	Be greater than one	d)	None of the above
	-) -	St. St. St. St.)	3
xix)		are the entities whose v	alues	s are to be determined from the
AIA)	soluti	on of the LPP.	aracı	s are to be determined from the
		Objective function	b)	Decision variables
		Constraints	d)	Opportunity costs
	•, •	C CIIC VI WILLYO	~ /<	Production Copies
xx)	The 1	ongest path in the network dia	oran	is called path
$\Lambda\Lambda j$		ongest path in the network dia	b)	worst
	,		,	
	c) s	sub-critical	u) 7	ocritical
			o.V	

[6]

Maximize
$$Z = -2x_1 - x_3$$

Subject to

$$x_1 + x_2 - x_3 \ge 5$$

$$x_1 - 2x_2 + 4x_3 \ge 8$$

$$x_1, x_2, x_3 \ge 0$$

Solve the game for the given pay-off matrix b)

-5	3		20
5	co.	4	6
-4	2	0	-5

Solve the following LPP a)

[6]

Maximize
$$Z = 3x_1 + 2x_1$$

Subject to constraints:

$$x_1 + x_2 \le 4$$

$$x_1 - x_2 \le 2$$

$$x_1, x_2 \ge 0$$

The following is the pay-off matrix of a game being played by A and B. b)

[4]

$$A_1$$

$$\begin{array}{c|cccc}
B_1 & B_2 \\
\hline
9 & -6 \\
-5 & 5
\end{array}$$

			Time in	days
Activity	Immediate	Most	Most	Most
	Predecessor	optimistic	likely	pessimistic
A		4	6	8
В	A	5	7	15
С	A	4	8	12
D	B	15	20	25
Е	B	10	18	26
F	9/8	8	9	16
G	E	4	8	£2
H	D,F	1	2	3
I	G,H	6	7	8

- Construct an arrow diagram for this problem.
- Determine the critical path and compute the expected completion time.
 - Determine the probability of completing the project in 55 days. iii)

Consider the following profit table along with given probabilities of each [6] b)

		7 0	
		States	
	N_1	N_2	N_3
]		
Strategies	0.3	0.6	0.1
S_1	20 🔯	18	-9
S_2	25	15	10
S_3	40	-10	12

Calculate

- **EMV** i)
- ii) **EVPI**
- iii) VPI

a) For the data given in the table below, draw the network, crash systematically the activities and determine the optimal project duration and cost. [6]

	Time(wee	ek)	Cost in Rs. (000)		
Activity	Normal	Crash		Crash	
1-2	2	1, 22	10	15	
1-3	8	5	15	21	
2-4	4	3	20	24	
3-4	NP S	1	7	7	
3-5	2 0	1	8	15	
4-6	50	3	10	16	
5-6	8	2	12	36	

- i) Draw the project network.
- ii) Determine the critical path & the normal duration and associated cost.
- iii) Crash the activities so that the project completion time reduces to 9 weeks, with minimum additional cost.
- b) A manufacturer of cycle has estimated the following distribution of demand for a particular type of bicycle [6]

Demand	0	1	2	3	54	5	6
Probability	0.14	0.27	0.27	048	0.09	0.04	0.01

Each cycle costs his Rs. 7,000 and he sells them Rs. 10,000 each. Any cycle that are left unsold at the end of the season must be disposed off for Rs. 6,000 each. How many cycles should be in the stock so as to maximize his expected profit?

Q4) a) A company has to process five items on three machines A, B and C. Processing times are given in the following table. [6]

Item	Ai	Bi	Ci
1	4	4	6
2	9	5	9
3	8	3	11
4	6	2	8
5	3	6	7

- i) Find the sequence that minimizes the total elapsed time.
- ii) Find the idle times for all the machines.

b) The number of units of an item that are withdrawn from the inventory on a day to day basis is a Markov chain process in which the requirements for tomorrow depend on today's requirements. A one-day transition matrix is given below. [4]

	То	morro	ow.
	5	10	12
5	0,6	0.4	0.0
Today 10	0.3	50.3	0.4
12	0.1	0.3	0.6

- i) Develop a two day transition matrix.
- ii) Comment how a two day transition matrix might be helpful to a manager who is responsible for the inventory management.

OR

a) Seven Jobs are to be processed through 2 machines A and B. Processing times (in hours) are given below: [6]

Jobs	1	2	a	40	5	6	7
Machine A:	10	9	7	13	18	20	14
Machine B:	12	8	7	12	10	6	13

Find the elapsed time and idle times for machnies A and B.

b) The present market shares of three brands of soft drinks are 60%, 30% and 10% respectively. The transition probability matrix is as follows:

$$\mathbf{P} = \begin{pmatrix} 0.7 & 0.2 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.1 & 0.1 & 0.8 \end{pmatrix}$$

- i) Find their expected market shares after two years.
- ii) Find their long-term market shares

Q5) a) Rainfall distribution in monsoon season as follows:

Rain in cm	0	1	2	3	4	5
Probability	0.50	0.25	0.15	\$0.05	0.03	0.02

Simulate the rainfall for 10 days using following random numbers 67, 63, 39, 55, 29, 78, 70, 6, 78, 76. Find the average rainfall.

b) Explain the following terms with example. [4]

[4]

- Degeneracy
- Multiple optimal solution in LPP ii)

A bakery keeps stock of a popular brand of cake. Previous experience a) shows the daily demand pattern for the item with associated probabilities, as given below: [4]

1	Daily demand (number)	0	10	20	30	40	50
\	Probability	0.01	0.20	0.15	0.50	0.12	0.02

Use the following sequence of random numbers to simulate the demand for next 10 days.

Random numbers: 25, 39, 65, 76, 12, 05, 73, 89, 19, 49

asis c

[4] Also estimate the daily average demand for the cakes on the basis of the simulated data.

b) Explain the following terms with examples:

- i) Dummy activity
- Optimistic time. ii)

