

Total

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Estudios Superiores Aragón Plan de Estudios

72.0

Ingeniería en Computación **Ecuaciones Diferenciales** Clave Semestre Créditos Área 9.0 Matemáticas 3 Modalidad Curso Tipo Teórico Carácter Obligatorio Horas Semana Semestre Teóricas **Teóricas** 4.5 72.0 **Prácticas Prácticas** 0.0 0.0

Seriación indicativa	
Asignatura antecedente	Cálculo Vectorial
Asignatura subsecuente	Probabilidad y Estadística

Total

4.5

Objetivo general: Analizar los elementos básicos de las ecuaciones diferenciales y emplearlos en la resolución de problemas físicos y geométricos.

Índice temático					
No.	Tema		Horas Semestre		
			Prácticas		
1	CONCEPTOS Y APLICACIONES DE LAS ECUACIONES DIFERENCIALES DE PRIMER ORDEN	9.0	0.0		
2	ECUACIONES DIFERENCIALES LINEALES	18.0	0.0		
3	SISTEMAS DE ECUACIONES LINEALES	9.0	0.0		
4	TRANSFORMADA DE LAPLACE	18.0	0.0		
5	SERIES DE FOURIER	18.0	0.0		
	Total	72.0	0.0		
	Suma total de horas 72.0		2.0		

Contenido Temático

1. CONCEPTOS Y APLICACIONES DE LAS ECUACIONES DIFERENCIALES DE PRIMER ORDEN

Objetivo: Comprender el concepto de ecuación diferencial, clasificar las ecuaciones diferenciales y resolver ecuaciones diferenciales de primer orden.

- 1.1 Concepto de ecuación diferencial.
- 1.2 Campo de direcciones.
- 1.3 Aplicaciones.
- 1.3.1 Ecuaciones de 1er orden.
- 1.3.2 Cuerpos que caen con resistencia del aire.
- 1.3.3 Movimiento sobre trayectorias curvas.
- 1.3.4 Movimiento lineal con masa variable.
- 1.3.4 Lev de Newton del enfriamiento.
- 1.3.5 Problema de mezclas.
- 1.3.6 Crecimiento poblacional.

2. ECUACIONES DIFERENCIALES LINEALES

Objetivo: Comprender cada uno de los métodos de solución para ecuaciones diferenciales lineales de orden superior.

- 2.1 Fundamentos de la teoría de ecuaciones de segundo orden.
- 2.2 Ecuaciones lineales homogéneas con coeficientes constantes.
- 2.3 Soluciones complejas.
- 2.4 Coeficientes indeterminados.
- 2.5 Variación de parámetros.
- 2.6 Aplicaciones.
- 2.6.1 Vibraciones libres, forzadas y circuitos eléctricos.
- 2.7 Solución de ecuaciones con coeficientes variables, método de series de potencias y soluciones cerca de puntos singulares.

3. SISTEMAS DE ECUACIONES LINEALES

Objetivo: Comprender los métodos de solución de los sistemas de ecuaciones lineales.

- 3.1 Algunos ejemplos, vibraciones con 2 grados de libertad, vectores y matrices.
- 3.2 Teoría de sistemas de ecuaciones lineales.
- 3.3 Sistemas homogéneos y no homogéneos con coeficientes constantes. Solución por métodos matriciales.

4. TRANSFORMADA DE LAPLACE

Objetivo: Comprender el concepto de transformada de Laplace y aplicarlo a la resolución de ecuaciones diferenciales lineales y de sistemas de ecuaciones lineales.

- 4.1 Definición de la transformada de Laplace.
- 4.1.1 La transformada de Laplace como un operador lineal.
- 4.1.2 Teorema de traslación en el dominio de S.
- 4.1.3 Transformada de la derivada de orden n de una función.
- 4.1.4 Transformada de la integral de una función.
- 4.1.5 Transformada de una función periódica.
- 4.2 Definición de la transformada inversa de Laplace.
- 4.2.1 Linealidad de la transformada inversa de Laplace.
- 4.2.2 Teorema de traslación en el dominio de t.
- 4.2.3 Definición de convolución para obtener algunas transformadas inversas de Laplace.
- 4.3 Aplicaciones de la transformada de Laplace a la resolución de ecuaciones y sistemas de ecuaciones diferenciales lineales.

5. SERIES DE FOURIER

Objetivo: Comprender el concepto de transformada de Fourier, así como su aplicación en la solución de las ecuaciones diferenciales.

- 5.1 Funciones periódicas, pares e impares. Funciones seccionadas.
- 5.2 Producto interno y conjuntos ortogonales.
- 5.3 Serie coseno, serie seno y series de Fourier.
- 5.4 Desarrollo en intervalos arbitrarios.
- 5.5 Ecuación de calor, de onda y de Laplace.
- 5.6 Transformada de Fourier. Introducción.

Estrategias didácticas		Evaluación del aprendizaje		Recursos	
Exposición	(X)	Exámenes parciales	(X)	Aula interactiva	()
Trabajo en equipo	(X)	Examen final	(X)	Computadora	(X)
Lecturas	(X)	Trabajos y tareas	(X)	Plataforma tecnológica	(X)
Trabajo de investigación	(X)	Presentación de tema	()	Proyector o Pantalla LCD	(X)
Prácticas (taller o laboratorio)	()	Participación en clase	(X)	Internet	(X)
Prácticas de campo	()	Asistencia	()		
Aprendizaje por proyectos	()	Rúbricas	()		
Aprendizaje basado en problemas	()	Portafolios	()		
Casos de enseñanza	()	Listas de cotejo	()		
Otras (especificar)		Otras (especificar)		Otros (especificar)	

Perfil profesiográfico		
Título o grado	 Poseer un título a nivel licenciatura en Ingeniería, Matemáticas, Física o carreras cuyo perfil sea afín al área de Matemáticas. 	
Experiencia docente	 Poseer conocimientos y experiencia profesional relacionados con los contenidos de la asignación a impartir. 	
	Tener la vocación para la docencia y una actitud permanentemente educativa a fin de formar íntegramente al alumno:	
	 Para aplicar recursos didácticos. Para motivar al alumno. Para evaluar el aprendizaje del alumno, con equidad y objetividad. 	
Otra característica	 Poseer conocimientos y experiencia pedagógica referentes al proceso de enseñanza- aprendizaje. 	
	 Tener disposición para su formación y actualización, tanto en los conocimientos de su área profesional, como en las pedagógicas. 	
	• Identificarse con los objetivos educativos de la institución y hacerlos propios.	
	Tener disposición para ejercer su función docente con ética profesional:	
	 Para observar una conducta ejemplar fuera y dentro del aula. 	
	 Para asistir con puntualidad y constancia a sus cursos. 	
	 Para cumplir con los programas vigentes de sus asignaturas. 	

Bibliografía básica	Temas para los que se recomienda		
Barrelli, R. y Coleman, C. (2002).			
Ecuaciones diferenciales.	1,2,3,4 y 5		
México: AlfaOmega.			
Boyce, W. (2010).			
Ecuaciones diferenciales.	1,2,3 y 4		
México: Limusa Wiley.			
Constando, C. (2010).			
Solution techniques for elementary partial differential	1,2,3,4 y 5		
equations.	1,2,3,4 y 3		
USA: CRC Press Taylor Francis.			
Debnath, L. (2013).			
Nonlinear partial differential equations.	1,2,3,4 y 5		
USA: Birlchauser.			
Doshi, J. B. (2010).			
Differential equations for scientists and enginners.	1,2,3,4 y 5		
US: Alpha Science International Ltd.			
Edwards, H. (2009).			
Ecuaciones diferenciales y problemas con valores en la	1,2,3,4 y 5		
frontera.			
México: Pearson.			
Erwin, K. (2013).			
Matemáticas avanzadas para ingeniería I y II.	1,2,3,4 y 5		
México: Limusa Wiley.			
James, G. (2002).			
Matemáticas avanzadas para ingeniería.	2,3 y 4		
México: Pearson Education.			
Taylor, M. (2010).	4004 5		
Partial differential equations.	1,2,3,4 y 5		
USA: Springer.			
Zill, D. (2006).	422.4		
Ecuaciones diferenciales con aplicaciones de modelado.	1,2,3 y 4		
México: Thompson.			

Bibliografía complementaria	Temas para los que se recomienda
Dauben, J. y Scriba, C. J. (2002).	
Writing the History of Mathematics: Its Historical	1,2,3,4 y 5
Development.	1,2,3,4 y 3
Germany: Birkhäuser.	
Emmer, M. (2012).	
Imagine Math. Between Culture and Mathematics.	1,2,3,4 y 5
Italia: Springer.	
Gindikin, S. (2007).	
Tales of Mathematicians and Physicists.	1,2,3,4 y 5
New York: Springer.	

