```
import time
                                      # To time processes
In [1]:
        import warnings
                                      # To suppress warnings
        import numpy as np
                                     # Data manipulation
        import pandas as pd
                                      # Dataframe manipulatio
        import matplotlib.pyplot as plt
                                                          # For graphics
        import seaborn as sns
        import plotly.graph objects as go
        from plotly.offline import download plotlyjs, init notebook mode, plot,
        init notebook mode(connected=True)
        from sklearn.preprocessing import StandardScaler # For scaling dataset
        from sklearn.cluster import KMeans, AgglomerativeClustering, AffinityPro
        from sklearn.mixture import GaussianMixture #For GMM clustering
        import os
                                      # For os related operations
        import sys
```

```
In [2]: # world happiness score: https://worldhappiness.report/ed/2019/
wh = pd.read_csv("2017.csv") #Read the dataset
#wh = wh.set_index('Country')
print('The shape of this dataset: ', wh.shape)
wh.head(5)
```

The shape of this dataset: (155, 10)

## Out[2]:

|   | Country     | Happiness.Rank | Happiness.Score | EconomyGDP.per.Capita. | Family   | HealthLife |
|---|-------------|----------------|-----------------|------------------------|----------|------------|
| 0 | Norway      | 1              | 7.537           | 1.616463               | 1.533524 |            |
| 1 | Denmark     | 2              | 7.522           | 1.482383               | 1.551122 |            |
| 2 | Iceland     | 3              | 7.504           | 1.480633               | 1.610574 |            |
| 3 | Switzerland | 4              | 7.494           | 1.564980               | 1.516912 |            |
| 4 | Finland     | 5              | 7.469           | 1.443572               | 1.540247 |            |

Out[3]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1a1b53c050>



Out[4]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1a1be18350>



Out[5]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1a1c034950>





```
In [ ]:
```

In [ ]: