$D_2 = 0$ son paralelos cuando $\mathbf{n}_1 = A_1\mathbf{i} + B_1\mathbf{j} + C_1\mathbf{k}$ y $\mathbf{n}_2 = A_2\mathbf{i} + B_2\mathbf{j} + C_2\mathbf{k}$ son paralelos; es decir, $\mathbf{n}_1 = \sigma\mathbf{n}_2$ para una constante σ . Por ejemplo, los planos

$$x - 2y + z = 0$$
 y $-2x + 4y - 2z = 10$

son paralelos, pero los planos

$$x - 2y + z = 0$$
 y $2x - 2y + z = 10$

no son paralelos.

Distancia de un punto a un plano

Ahora vamos a calcular la distancia de un punto $E = (x_1, y_1, z_1)$ al plano \mathcal{P} descrito por la ecuación $A(x - x_0) + B(y - y_0) + C(z - z_0) = Ax + By + Cz + D = 0$. Para ello, consideramos el vector normal unitario

$$\mathbf{n} = \frac{A\mathbf{i} + B\mathbf{j} + C\mathbf{k}}{\sqrt{A^2 + B^2 + C^2}},$$

que es un vector normal al plano. Trazamos una perpendicular desde E al plano y construimos el triángulo REQ mostrado en la Figura 1.3.7. La distancia $d = \|\overrightarrow{EQ}\|$ es la longitud de la proyección de $\mathbf{v} = \overrightarrow{RE}$ (el vector de R a E) sobre \mathbf{n} ; por tanto,

Distancia =
$$|\mathbf{v} \cdot \mathbf{n}| = |[(x_1 - x_0)\mathbf{i} + (y_1 - y_0)\mathbf{j} + (z_1 - z_0)\mathbf{k}] \cdot \mathbf{n}|$$

= $\frac{|A(x_1 - x_0) + B(y_1 - y_0) + C(z_1 - z_0)|}{\sqrt{A^2 + B^2 + C^2}}$.

Si el plano viene dado de la forma Ax + By + Cz + D = 0, entonces para cualquier punto (x_0, y_0, z_0) que esté en él, $D = -(Ax_0 + By_0 + Cz_0)$. Sustituyendo en la fórmula anterior se tiene lo siguiente:

Figura 1.3.7 Geometría para determinar la distancia desde el punto E al plano \mathcal{P} .