

Auxiliary Sections > Integral Transforms > Tables of Laplace Transforms > Laplace Transforms: Expressions with Bessel and Modified Bessel Functions

Laplace Transforms: Expressions with Bessel and Modified Bessel Functions

No	Original function, $f(x)$	Laplace transform , $\widetilde{f}(p) = \int_0^\infty e^{-px} f(x) dx$
1	$J_0(ax)$	$\frac{1}{\sqrt{p^2 + a^2}}$
2	$J_{\nu}(ax), \qquad \nu > -1$	$\frac{a^{\nu}}{\sqrt{p^2 + a^2} \left(p + \sqrt{p^2 + a^2}\right)^{\nu}}$
3	$x^n J_n(ax), \qquad n=1, 2, \ldots$	$1 \cdot 3 \cdot 5 \dots (2n-1)a^n (p^2 + a^2)^{-n-1/2}$
4	$x^{\nu}J_{\nu}(ax), \qquad \nu > -\frac{1}{2}$	$2^{\nu} \pi^{-1/2} \Gamma\left(\nu + \frac{1}{2}\right) a^{\nu} \left(p^2 + a^2\right)^{-\nu - 1/2}$
5	$x^{\nu+1}J_{\nu}(ax), \qquad \nu > -1$	$2^{\nu+1}\pi^{-1/2}\Gamma(\nu+\frac{3}{2})a^{\nu}p(p^2+a^2)^{-\nu-3/2}$
6	$J_0(2\sqrt{ax})$	$\frac{1}{p}e^{-a/p}$
7	$\sqrt{x}J_1(2\sqrt{ax})$	$\frac{\sqrt{a}}{p^2}e^{-a/p}$
8	$x^{\nu/2}J_{\nu}(2\sqrt{ax}), \qquad \nu > -1$	$a^{\nu/2}p^{-\nu-1}e^{-a/p}$
9	$J_0(a\sqrt{x^2+bx})$	$\frac{1}{\sqrt{p^2 + a^2}} \exp(bp - b\sqrt{p^2 + a^2})$
10	$I_0(ax)$	$\frac{1}{\sqrt{p^2 - a^2}}$
11	$I_{\nu}(ax), \qquad \nu > -1$	$\frac{a^{\nu}}{\sqrt{p^2 - a^2} \left(p + \sqrt{p^2 - a^2}\right)^{\nu}}$
12	$x^{\nu}I_{\nu}(ax), \qquad \nu > -\frac{1}{2}$	$2^{\nu} \pi^{-1/2} \Gamma\left(\nu + \frac{1}{2}\right) a^{\nu} \left(p^2 - a^2\right)^{-\nu - 1/2}$
13	$x^{\nu+1}I_{\nu}(ax), \qquad \nu > -1$	$2^{\nu+1}\pi^{-1/2}\Gamma(\nu+\frac{3}{2})a^{\nu}p(p^2-a^2)^{-\nu-3/2}$
14	$I_0(2\sqrt{ax})$	$\frac{1}{p}e^{a/p}$
15	$\frac{1}{\sqrt{x}}I_1(2\sqrt{ax})$	$\frac{1}{\sqrt{a}} \left(e^{a/p} - 1 \right)$
16	$x^{\nu/2}I_{\nu}(2\sqrt{ax}), \qquad \nu > -1$	$a^{\nu/2}p^{-\nu-1}e^{a/p}$

No	Original function, $f(x)$	Laplace transform , $\widetilde{f}(p) = \int_0^\infty e^{-px} f(x) dx$
17	$Y_0(ax)$	$-\frac{2}{\pi} \frac{\operatorname{arcsinh}(p/a)}{\sqrt{p^2 + a^2}}$
18	$K_0(ax)$	$\frac{\ln\left(p + \sqrt{p^2 - a^2}\right) - \ln a}{\sqrt{p^2 - a^2}}$

Notation: $J_{\nu}(z)$ is the Bessel function of the first kind, $Y_{\nu}(z)$ is the Bessel function of the second kind, $I_{\nu}(z)$ is the modified Bessel function of the first kind, $K_{\nu}(z)$ is the modified Bessel function of the second kind.

References

Bateman, H. and Erdélyi, A., *Tables of Integral Transforms. Vols. 1 and 2*, McGraw-Hill Book Co., New York, 1954.

Doetsch, G., *Einführung in Theorie und Anwendung der Laplace-Transformation*, Birkhäuser Verlag, Basel–Stuttgart, 1958.

Ditkin, V. A. and Prudnikov, A. P., *Integral Transforms and Operational Calculus*, Pergamon Press, New York, 1965.

Polyanin, A. D. and Manzhirov, A. V., *Handbook of Integral Equations*, CRC Press, Boca Raton, 1998.

Laplace Transforms: Expressions with Bessel and Modified Bessel Functions

Copyright © 2005 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/auxiliary/inttrans/laplace8.pdf