LISTA02: Projektowanie układów drugiego rzędu

Przygotowanie:

- 1. Jakie własności ma równanie 2-ego rzędu $\ddot{x} + b\dot{x} + cx = u$ jeśli:
 - a) c > 0; b) c=0;
- c) c<0
- Określ położenie biegunów, stabilność, oscylacje

Zadania 1:

Wyznacz bieguny. Sprawdź poprawność wzorów. Określ położenie biegunów

- 1) równania oscylacyjnego $\ddot{x}(t) + 2\xi\omega_n \dot{x}(t) + \omega_n^2 x(t) = b_0 u(t)$, $\omega_n > 0$
- 2) równania komplementarnego do oscylacyjnego $\ddot{x}(t) + 2\xi\omega_n \dot{x}(t) \omega_n^2 \dot{x}(t) = b_0 u(t)$, $\omega_n > 0$
- 3) równania $\ddot{x}(t) + a\dot{x}(t)x(t) = b_0u(t)$

Zadania 2:

- a) Dobierz a tak aby w odpowiedzi układu nie pojawiały się oscylacje.
- **b)** Dobierz *a* tak aby układ był stabilny.
- c) Dobierz a tak aby układ dochodził do stanu równowagi bez przeregulowań
- d) Kiedy układ jest niestabilny i bez oscylacji

Przykłady:

- 1) $\ddot{x}(t) + 5 \dot{x}(t) + ax(t) = bu(t)$
- 11) $5\ddot{x}(t) + 5a\ \dot{x}(t) + ax(t) = bu(t)$
- 2) $a\ddot{x}(t) + 4\dot{x}(t) + 6x(t) = u(t)$
- 3) $\ddot{x}(t) + a \dot{x}(t) + 4x(t) = u(t)$
- 13) $\ddot{x}(t) + 4 \dot{x}(t) + ax(t) = u(t)$
- 4) $a\ddot{x}(t) + 2a \dot{x}(t) + 4x(t) = -2u(t)$
- 14) $a\ddot{x}(t) + 2a \dot{x}(t) 4x(t) = u(t)$
- 5) $a\ddot{x}(t) 2a \dot{x}(t) + 4x(t) = u(t)$
- 15)
- 6) $-\ddot{x}(t) 2a \dot{x}(t) + 4x(t) = u(t)$
- 16) $-\ddot{x}(t) + 2a\ \dot{x}(t) 2x(t) = u(t)$
- 7) $\ddot{x}(t) + 3a \dot{x}(t) + 9x(t) = u(t)$
- 17) $\ddot{x}(t) + 3 \dot{x}(t) + 9ax(t) = u(t)$
- 8) $a\ddot{x}(t) + 2a \dot{x}(t) + 9x(t) = u(t)$
- 18) $\ddot{x}(t) + 2a \dot{x}(t) + 9ax(t) = u(t)$
- 9) $a\ddot{x}(t) 3\dot{x}(t) + 9x(t) = u(t)$
- $10) \ddot{x}(t) 3a \ \dot{x}(t) + 9x(t) = u(t)$
- Zadania rozwiąż na dwa sposoby: a) licząc Δ i pierwiastki, b) wyznaczając ξ). Porównaj zgodność odpowiedzi otrzymanych dwoma sposobami.

Układy na granicy stabilności są uznawane jako układy niestabilne.

Równanie statyczne jest układem stabilnym.

Poprawne rozwiązanie to nie tylko zgodność odpowiedzi końcowej ale również poprawne wprowadzanie warunków (ograniczeń) w trakcie rozwiązania.

Zadania 3:

Dobierz wartości współczynników równań 2-ego rzędu (a, b, c i d) tak aby położenie biegunów było zgodne z rysunkiem.

LAB: Przedstaw położenie biegunów na wykresie. Wyznacz (symulacyjnie) i porównaj odpowiedzi skokowe i impulsowe tych układów.

Rozwiązanie zadanie 1

1)
$$\ddot{x}(t) + 2\xi\omega_n \ \dot{x}(t) + \omega_n^2 \ x(t) = b_0 u(t), \omega_n > 0$$

 $\lambda_{1,2} = -\xi\omega_n \pm \omega_n \sqrt{\xi^2 - 1} = \omega_n \left(-\xi \pm \sqrt{\xi^2 - 1} \right)$

Jeśli $\xi^2 \ge 1$, to pierwiastki są rzeczywiste: $\lambda_1 = \omega_n \left(-\xi + \sqrt{\xi^2 - 1} \right)$ i $\lambda_2 = \omega_n \left(-\xi - \sqrt{\xi^2 - 1} \right)$. Ponieważ $\omega_n > 0$, to znak pierwiastków zależy od wyrażeń: $-\xi + \sqrt{\xi^2 - 1}$ i $-\xi - \sqrt{\xi^2 - 1}$. **a)** Jeśli $\xi > 1$, to układ stabilny ponieważ:

$$-\xi + \sqrt{\xi^2 - 1} < 0 \qquad -\xi - \sqrt{\xi^2 - 1} < 0$$
sprawdzenie $\sqrt{\xi^2 - 1} < \xi$ |()²

$$\xi^2 - 1 < \xi^2$$

$$-1 < 0$$

b) $\xi \le -1$, to układ niestabilny ponieważ:

$$(-\xi) + \sqrt{\xi^2 - 1} > 0$$
 $(-\xi) - \sqrt{\xi^2 - 1} > 0$
>0 + >0 sprawdzenie $\sqrt{\xi^2 - 1} < (-\xi)$ $|()^2$
 $\xi^2 - 1 < \xi^2$
 $-1 < 0$

- c) Jeśli $\xi = 1$, to mamy pierwiastek podwójny $\lambda_{1,2} = -\xi \omega_n < 0$, układ stabilny.
- **d)** Jeśli $\xi = -1$, to mamy pierwiastek podwójny $\lambda_{1,2} = (-\xi)\omega_n > 0$, układ niestabilny.

Jeśli ξ^2 <1, to pierwiastki są zespolone: Re(λ_1)=Re(λ_2)= $-\xi\omega_n$ i Im($\lambda_{1,2}$)= $\pm\omega_n\sqrt{\xi^2-1}$. Ponieważ ω_n >0, to znak części rzeczywistej (położenie pierwiastków) zależy od ξ :

- a) jeśli $0 < \xi < 1$, to $\text{Re}(\lambda_1) = \text{Re}(\lambda_2) = -\xi \omega_n < 0$, układ stabilny,
- b) jeśli $-1 < \xi < 0$, to $\text{Re}(\lambda_1) = \text{Re}(\lambda_2) = -\xi \omega_n > 0$, układ niestabilny,
- c) jeśli $\xi = 0$, to $\text{Re}(\lambda_1) = \text{Re}(\lambda_2) = -\xi \omega_n = 0$, układ na granicy stabilności.

2)
$$\ddot{x}(t) + 2\xi\omega_n \ \dot{x}(t) - \omega_n^2 \ x(t) = b_0 u(t), \ \omega_n > 0$$

$$\lambda_{1,2} = -\xi\omega_n \pm \omega_n \sqrt{\xi^2 + 1} = \omega_n \left(-\xi \pm \sqrt{\xi^2 + 1} \right)$$

Ponieważ $\omega_n > 0$, to znak pierwiastków zależy od wyrażeń: $-\xi + \sqrt{\xi^2 + 1}$ i $-\xi - \sqrt{\xi^2 + 1}$.

a) Jeśli $\xi \ge 0$, to:

$$-\xi + \sqrt{\xi^2 + 1} > 0$$

$$-\xi - \sqrt{\xi^2 + 1} < 0$$
sprawdzenie
$$\sqrt{\xi^2 + 1} > \xi \quad |()^2$$

$$\xi^2 + 1 > \xi^2$$

$$1 > 0$$

b) Jeśli ξ <0, to:

$$(-\xi) + \sqrt{\xi^2 + 1} > 0$$
 $(-\xi) - \sqrt{\xi^2 + 1} < 0$
>0 + >0 sprawdzenie $\sqrt{\xi^2 + 1} > (-\xi) | ()^2$
 $\xi^2 + 1 > \xi^2$
1>0

Zawsze $\lambda_1 = -\xi \omega_n + \omega_n \sqrt{\xi^2 + 1} > 0$ i $\lambda_2 = -\xi \omega_n - \omega_n \sqrt{\xi^2 + 1} < 0$

Rozwiązanie zadanie 2 – przykład 1: $\ddot{x}(t) + 5 \dot{x}(t) + ax(t) = bu(t)$

I. Rozwiązanie na podstawie wyznaczonych pierwiastków

$$\lambda^2 + 5\lambda + a = 0$$

$$\Delta = 25 - 4a$$
, $\lambda_{1,2} = \frac{-5 \pm \sqrt{25 - 4a}}{2}$

Zad.1a. (Odpowiedź bez oscylacji)

Układ musi spełniać warunek: $\Delta \ge 0$ \rightarrow $25-4a \ge 0$ \rightarrow $a \le 25/4$

Odpowiedź zad.1a: $a \le 25/4$

Zad.1b. (Układ stabilny)

Układ musi spełniać warunek: $Re(\lambda_{1,2}) < 0$

Rozważamy dwa przypadki: $1^{\circ} (\Delta < 0)$ lub $2^{\circ} (\Delta \ge 0)$

1° (a)
$$\begin{cases} \Delta < 0 \\ \text{Re}(\lambda_1) = \text{Re}(\lambda_2) = \frac{-5}{2} < 0 \end{cases} \rightarrow 25 - 4a < 0 \rightarrow a > 25/4$$

Odp.1° [a
$$\land$$
 b]: $a > 25/4$

2° (a)
$$\begin{cases} \Delta \ge 0 & \longrightarrow a \le 25/4 \\ \text{Re}(\lambda_1) = \frac{-5 + \sqrt{25 - 4a}}{2} < 0 & \longrightarrow (2^\circ \text{b}) \longrightarrow a > 0 \end{cases}$$
(c)
$$\text{Re}(\lambda_2) = \frac{-5 - \sqrt{25 - 4a}}{2} < 0 & \longrightarrow (2^\circ \text{c}) \longrightarrow \text{zawsze} \end{cases}$$

Odp.2° [a
$$\land$$
 b \land c]: $a \le 25/4 \land a > 0 \rightarrow 0 < a \le 25/4$

Alternatywny sposób rozwiązania 2°:

2° (a)
$$\begin{cases} \Delta \ge 0 & \to a \le 25/4 \\ \text{Re}(\lambda_1) = \frac{-5 + \sqrt{25 - 4a}}{2} < 0 \\ \text{Ce} & \text{Re}(\lambda_2) = \frac{-5 - \sqrt{25 - 4a}}{2} < 0 \end{cases}$$

$$(c) & \text{Re}(\lambda_2) = \frac{-5 - \sqrt{25 - 4a}}{2} < 0$$

Wzory Viete'a dla
$$a\lambda^2 + b\lambda + c = 0$$
: $\lambda_1 + \lambda_2 = -b/a$, $\lambda_1\lambda_2 = c/a$ $\lambda_1 < 0 \land \lambda_2 < 0 \rightarrow \lambda_1 + \lambda_2 < 0 \land \lambda_1\lambda_2 > 0$

(2°bc) Dla
$$\ddot{x}(t) + 5 \dot{x}(t) + ax(t) = bu(t)$$

$$\lambda_1 + \lambda_2 = -5/1 < 0 \quad \text{zawsze} \qquad \qquad \lambda_1 \lambda_2 = a/1 > 0 \quad \rightarrow a > 0$$
Odp.2° [a \land bc]: $a \le 25/4 \quad \land a > 0 \quad \rightarrow 0 < a \le 25/4$

Odpowiedź zad 1b [1°
$$\vee$$
 2°]: $a > 25/4 \quad \vee \quad 0 < a \le 25/4 \quad \rightarrow \quad a > 0$

Zad.1c. (Układ stabilny, bez oscylacji)

Układ musi spełniać warunek: $\Delta \ge 0$ i Re $(\lambda_{1,2}) < 0$

(a)
$$\begin{cases} \Delta \ge 0 & \longrightarrow a \le 25/4 \\ \text{Re}(\lambda_1) = \frac{-5 + \sqrt{25 - 4a}}{2} < 0 & \longrightarrow (1^\circ \text{b}) \longrightarrow a > 0 \end{cases}$$
(c)
$$\begin{cases} \text{Re}(\lambda_2) = \frac{-5 - \sqrt{25 - 4a}}{2} < 0 & \longrightarrow (1^\circ \text{c}) \longrightarrow \text{zawsze} \end{cases}$$

Rozwiązanie takie jak Zad.1b/p.2°

Odpowiedź zad 1c: $0 < a \le 25/4$

II. Rozwiązanie na podstawie własności równania oscylacyjnego

$$\ddot{x}(t) + 5 \ \dot{x}(t) + ax(t) = bu(t)$$

$$1^{\circ} \text{ Jeśli } a > 0$$

$$\ddot{x}(t) + 2\xi\omega \ \dot{x}(t) + \omega^{2} \ x(t) = u(t), \ \omega > 0$$

$$\text{gdzie:} \qquad \qquad \omega = \sqrt{a} > 0 \ (\text{z def.})$$

$$2\xi\omega = 5$$

$$\begin{cases} \omega^{2} = a \\ 2\xi\omega = 5 \end{cases} \rightarrow \begin{cases} \omega = \sqrt{a} > 0 \ (\text{z def.}) \end{cases}$$

$$\begin{cases} -\omega^{2} = a \\ 2\xi\omega = 5 \end{cases} \rightarrow \begin{cases} \omega = \sqrt{-a} > 0 \ (\text{z def.}) \end{cases}$$

$$\begin{cases} -\omega^{2} = a \\ 2\xi\omega = 5 \end{cases} \rightarrow \begin{cases} \omega = \sqrt{-a} > 0 \ (\text{z def.}) \end{cases}$$

3° Jeśli a=0, to pierwiastki $\lambda_1=0$ i $\lambda_2=-5$ (człon inercyjno-całkujący) – układ na granicy stabilności

Zad.1a. (Odpowiedź bez oscylacji)

Układ musi spełniać warunek:

1°) równanie oscylacyjne i $|\xi| \ge 1$, lub 2°) równanie komplementarne do oscylacyjnego, lub 3°) a=0

1° (a)
$$\begin{cases} a > 0 \\ (b) \end{cases} \begin{cases} \xi \ge 1 \end{cases}$$
 (c) $\begin{cases} a > 0 \\ \xi \le -1 \end{cases}$ $\xi = 5/(2\sqrt{a}) \ge 1$ $\xi = 5/(2\sqrt{a}) \le -1$ $\xi = 5/(2\sqrt{a$

Odp.1° [$a \land (b \lor c)$]: $a > 0 \land 25/4 \ge a \rightarrow 0 < a \le 25/4$

2°
$$a < 0$$
 3° $a = 0$

 Odp.2°: $a < 0$
 Odp.3°: $a = 0$

Odpowiedź zad 1a [1° \vee 2° \vee 3°]: $0 < a \le 25/4 \vee a < 0 \vee a = 0 \rightarrow a \le 25/4$

Zad.1b. (Układ stabilny)

Układ musi spełniać warunek: równanie oscylacyjne i $\xi > 0$

1° (a)
$$\begin{cases} a > 0 \\ \xi > 0 \end{cases}$$
 $\Rightarrow \xi = 5/(2\sqrt{a}) > 0 \Rightarrow \text{zawsze bo } \omega = \sqrt{a} > 0$

Odpowiedź zad 1b: a > 0

Zad.1c. (Układ stabilny, bez oscylacji)

Układ musi spełniać warunek: równanie oscylacyjne i $\xi \ge 1$

1° (a)
$$\begin{cases} a > 0 \\ (b) \end{cases}$$
 $\begin{cases} \xi \ge 1 \end{cases}$ $\Rightarrow \xi = 5/(2\sqrt{a}) \ge 1$ $5/2 \ge \sqrt{a}$ $25/4 \ge a$

Odpowiedź zad 1c: $0 < a \le 25/4$

Rozwiązanie zadanie 2 – przykład 2: $a\ddot{x}(t) + 4\dot{x}(t) + 6x(t) = u(t)$

IA. Rozwiązanie na podstawie wyznaczonych pierwiastków

$$a\ddot{x}(t) + 4\dot{x}(t) + 6x(t) = u(t)$$

$$a\lambda^2 + 4\lambda + 6 = 0$$

$$\Delta = 16 - 24a = 4(4 - 6a), \qquad \lambda_{1,2} = \frac{-4 \pm 2\sqrt{4 - 6a}}{2a} = \frac{-2 \pm \sqrt{4 - 6a}}{a}, \ a \neq 0$$

Dla a=0 mamy równanie pierwszego rzędu: $4\dot{x}(t) + 6x(t) = u(t)$ z jednym biegunem $\lambda_1 = -6/4$.

Zad.1a. (Odpowiedź bez oscylacji)

1° Jeśli $a\neq 0$, to układ musi spełniać warunek: $a\neq 0$ i $\Delta \geq 0 \rightarrow 4(4-6a) \geq 0 \rightarrow a \leq 2/3$ 2° Dla *a*=0 układ również reaguje bez oscylacji

Odpowiedź zad.1a [1°
$$\vee$$
 2°]: $(a\neq 0 \land a \leq 2/3) \lor a=0 \rightarrow a \leq 2/3$

Zad.1b. (Układ stabilny)

Jeśli $a\neq 0$, to układ musi spełniać warunek: Re($\lambda_{1,2}$) < 0. Rozważamy dwa przypadki gdy $a\neq 0$: $1^{\circ} (\Delta < 0)$ lub $2^{\circ} (\Delta \ge 0)$.

W rozwiązaniu należy również uwzględnić przypadek 3° dla *a*=0.

1° (a)
$$\begin{cases} \Delta < 0, \ a \neq 0 \\ \text{Re}(\lambda_1) = \text{Re}(\lambda_2) = \frac{-2}{a} < 0 \end{cases} \longrightarrow 4(4-6a) < 0 \longrightarrow a > 2/3$$
$$\longrightarrow \text{zawsze (bo } a > 2/3)$$

Odp.1° [a \land b]: a > 2/3

(c)
$$\operatorname{Re}(\lambda_2) = \frac{-2 - \sqrt{4 - 6a}}{a} < 0 \qquad \rightarrow (2^{\circ}c) \rightarrow a > 0$$

$$\frac{(2^{\circ}b) \operatorname{Re}(\lambda_{1}) < 0}{\frac{-2 + \sqrt{4 - 6a}}{a}} < 0 \qquad \frac{-2 - \sqrt{4 - 6a}}{a} < 0$$

$$\frac{\operatorname{gdy} a > 0}{\sqrt{4 - 6a}} < 0 \qquad \operatorname{gdy} a > 0$$

$$\frac{-2 + \sqrt{4 - 6a} < 0}{\sqrt{4 - 6a}} < 0 \qquad -2 - \sqrt{4 - 6a} < 0$$

$$\frac{\sqrt{4 - 6a} < 2}{\sqrt{4 - 6a}} < \frac{1}{2} \qquad \sqrt{4 - 6a} > -2 \qquad \to \operatorname{zawsze}$$

$$\frac{4 - 6a < 4}{-6a < 0} \qquad \to a > 0 \ (\to \operatorname{zawsze})$$

$$\frac{\operatorname{gdy} a < 0}{\sqrt{4 - 6a}} < 0 \qquad \operatorname{gdy} a < 0$$

Odp.2° [a \land b \land c]: $(a \neq 0 \land a \leq 2/3) \land a > 0 \rightarrow 0 \leq a \leq 2/3$

Alternatywny sposób rozwiązania 2°:

2° (a)
$$\begin{cases} \Delta \ge 0, \ a \ne 0 & \to a \le 2/3, a \ne 0 \\ \text{Re}(\lambda_1) = \frac{-2 + \sqrt{4 - 6a}}{a} < 0 \\ \text{Ce} & \text{Re}(\lambda_2) = \frac{-2 - \sqrt{4 - 6a}}{a} < 0 \end{cases}$$

Wzory Viete'a dla $a\lambda^2+b\lambda+c=0$: $\lambda_1+\lambda_2=-b/a$, $\lambda_1\lambda_2=c/a$ $\lambda_1<0$ $\lambda_2<0$ $\rightarrow \lambda_1+\lambda_2<0$ \wedge $\lambda_1\lambda_2>0$ (2°bc) Dla $a\ddot{x}(t)+4$ $\dot{x}(t)+6x(t)=u(t)$

(2°bc) Dla $a\ddot{x}(t) + 4\dot{x}(t) + 6x(t) = u(t)$ $\lambda_1 + \lambda_2 = -4/a < 0 \rightarrow a > 0$ $\lambda_1 \lambda_2 = 6/a > 0 \rightarrow a > 0$ Odp.2° [a \lambdo bc]: $(a \neq 0 \land a \leq 2/3) \land a > 0 \rightarrow 0 < a \leq 2/3$

3° (a)
$$\begin{cases} a = 0 \\ \lambda_1 = -6/4 < 0 \end{cases} \rightarrow \text{zawsze}$$

Odp.3°: a = 0

Odpowiedź zad 1b [1° \vee 2° \vee 3°]: $a > 2/3 \vee 0 < a \le 2/3 \vee a = 0 \rightarrow a \ge 0$

Zad.1c. (Układ stabilny, bez oscylacji)

Jeśli $a\neq 0$, to układ musi spełniać warunek: $\Delta \geq 0$ i Re $(\lambda_{1,2}) < 0$ (Przypadek 1°). W rozwiązaniu należy również uwzględnić przypadek 2° dla a=0.

1° (a)
$$\begin{cases} \Delta \ge 0, \ a \ne 0 \\ \text{Re}(\lambda_1) = \frac{-2 + \sqrt{4 - 6a}}{a} < 0 \\ \text{Re}(\lambda_2) = \frac{-2 - \sqrt{4 - 6a}}{a} < 0 \end{cases} \xrightarrow{\qquad \qquad } a \le 2/3, a \ne 0$$

$$(c) \qquad \qquad \qquad \qquad \Rightarrow (2^\circ b) \rightarrow \text{zawsze}$$

$$\rightarrow (2^\circ b) \rightarrow \text{zawsze}$$

$$\rightarrow (2^\circ c) \rightarrow a > 0$$

Rozwiązanie takie jak Zad.1b/p.2°

2° (a)
$$\begin{cases} a = 0 \\ \lambda_1 = -6/4 < 0 \end{cases}$$
 $\rightarrow \text{zawsze}$

Odpowiedź zad 1c [1° \vee 2°]: $0 < a \le 2/3 \quad \vee \ a = 0 \quad \rightarrow \quad 0 \le a \le 2/3$

Odp.2°: a = 0

IB. Rozwiązanie na podstawie wyznaczonych pierwiastków

$$a\ddot{x}(t) + 4 \dot{x}(t) + 6x(t) = u(t) / a \neq 0$$

$$\ddot{x}(t) + \frac{4}{a}\dot{x}(t) + \frac{6}{a}x(t) = \frac{u(t)}{a}$$
$$\lambda^2 + \frac{4}{a}\lambda + \frac{6}{a} = 0$$

$$\Delta = \frac{16}{a^2} - \frac{24}{a} = 4\left(\frac{4}{a^2} - \frac{6}{a}\right), \qquad \lambda_{1,2} = \frac{-\frac{4}{a} \pm 2\sqrt{\frac{4}{a^2} - \frac{6}{a}}}{2} = -\frac{2}{a} \pm \sqrt{\frac{4}{a^2} - \frac{6}{a}}, \ a \neq 0$$

Dla a=0 mamy równanie pierwszego rzędu: $4 \dot{x}(t) + 6x(t) = u(t)$ z jednym biegunem $\lambda_1 = -6/4$.

Zad.1a. (Odpowiedź bez oscylacji)

1° Jeśli $a\neq 0$, to układ musi spełniać warunek: $a\neq 0$ i $\Delta \geq 0$

$$\Delta \ge 0 \rightarrow 4\left(\frac{4}{a^2} - \frac{6}{a}\right) \ge 0 \rightarrow \frac{4}{a^2}(4 - 6a) \ge 0 \rightarrow a \le 2/3$$

2° Dla *a*=0 układ również reaguje bez oscylacji

Odpowiedź zad.1a [1°
$$\vee$$
 2°]: $(a\neq 0 \land a \leq 2/3) \lor a=0 \rightarrow a \leq 2/3$

Zad.1b. (Układ stabilny)

Jeśli $a\neq 0$, to układ musi spełniać warunek: $\operatorname{Re}(\lambda_{1,2}) \leq 0$. Rozważamy dwa przypadki gdy $a\neq 0$: 1° ($\Delta < 0$) lub 2° ($\Delta \geq 0$).

W rozwiązaniu należy również uwzględnić przypadek 3° dla a=0.

1° (a)
$$\begin{cases} \Delta < 0, \ a \neq 0 \\ \text{Re}(\lambda_1) = \text{Re}(\lambda_2) = \frac{-2}{a} < 0 \end{cases} \rightarrow 4\left(\frac{4}{a^2} - \frac{6}{a}\right) = \frac{4}{a^2}(4 - 6a) < 0 \rightarrow a > 2/3$$

$$\rightarrow \text{zawsze (bo } a > 2/3)$$

Odp.1° [a \land b]: a > 2/3

2° (a)
$$\begin{cases} \Delta \ge 0, \ a \ne 0 & \xrightarrow{\qquad \qquad } a \le 2/3, \ a \ne 0 \\ \text{Re}(\lambda_1) = -\frac{2}{a} + \sqrt{\frac{4}{a^2} - \frac{6}{a}} < 0 & \xrightarrow{\qquad \qquad } (2^\circ \text{b}) \to a > 0 \end{cases}$$
(c)
$$\text{Re}(\lambda_2) = -\frac{2}{a} - \sqrt{\frac{4}{a^2} - \frac{6}{a}} < 0 & \xrightarrow{\qquad } (2^\circ \text{c}) \to \text{zawsze}$$

$$(2^{\circ}b) \operatorname{Re}(\lambda_{1}) < 0 \qquad (2^{\circ}c) \operatorname{Re}(\lambda_{2}) < 0$$

$$-\frac{2}{a} + \sqrt{\frac{4}{a^{2}} - \frac{6}{a}} < 0 \qquad -\frac{2}{a} - \sqrt{\frac{4}{a^{2}} - \frac{6}{a}} < 0$$

$$\sqrt{\frac{4}{a^{2}} - \frac{6}{a}} < \frac{2}{a} \qquad \sqrt{\frac{4}{a^{2}} - \frac{6}{a}} > -\frac{2}{a}$$

$$gdy \ a > 0 \qquad zawsze jeśli \ a > 0$$

$$\sqrt{\frac{4}{a^{2}} - \frac{6}{a}} < \frac{2}{a} \quad |()^{2} \qquad \sqrt{\frac{4}{a^{2}} - \frac{6}{a}} > -\frac{2}{a} \qquad \rightarrow zawsze$$

$$\frac{4}{a^{2}} - \frac{6}{a} < \frac{4}{a^{2}}$$

$$-\frac{6}{a} < 0 \qquad \rightarrow \qquad a > 0 \ (\rightarrow zawsze)$$

ListaZad02.doc

7

gdy a<0	gdy a<0
$\sqrt{\frac{4}{a^2} - \frac{6}{a}} < \frac{2}{a} \longrightarrow \text{nigdy}$	$\sqrt{\frac{4}{a^2} - \frac{6}{a}} > -\frac{2}{a} (\)^2$
	$\frac{4}{a^2} - \frac{6}{a} > \frac{4}{a^2} \qquad \rightarrow a < 0 \ (\rightarrow zawsze)$

Odp.2° [a
$$\wedge$$
 b \wedge c]: $(a \neq 0 \land a \leq 2/3) \land a > 0 \rightarrow 0 < a \leq 2/3$

Alternatywny sposób rozwiązania 2° z zastosowaniem wzorów Viete'a – analogicznie jak IA

3° (a)
$$\begin{cases} a = 0 \\ \lambda_1 = -6/4 < 0 \end{cases} \rightarrow \text{zawsze}$$

Odp.3°:
$$a = 0$$

Odpowiedź zad 1b [1°
$$\vee$$
 2° \vee 3°]: $a > 2/3 \vee 0 < a \le 2/3 \vee a = 0 \rightarrow a \ge 0$

Zad.1c. (Układ stabilny, bez oscylacji)

Jeśli $a\neq 0$, to układ musi spełniać warunek: $\Delta \geq 0$ i Re $(\lambda_{1,2}) < 0$ (Przypadek 1°). W rozwiązaniu należy również uwzględnić przypadek 2° dla a=0.

1° (a)
$$\begin{cases} \Delta \geq 0, \ a \neq 0 \\ \text{Re}(\lambda_1) = -\frac{2}{a} + \sqrt{\frac{4}{a^2} - \frac{6}{a}} < 0 \\ \text{Re}(\lambda_2) = -\frac{2}{a} - \sqrt{\frac{4}{a^2} - \frac{6}{a}} < 0 \end{cases}$$

$$\Rightarrow a \leq 2/3, a \neq 0$$

$$\Rightarrow (2^\circ b) \Rightarrow a > 0$$

$$\Rightarrow (2^\circ c) \Rightarrow a >$$

2° (a)
$$\begin{cases} a = 0 \\ \lambda_1 = -6/4 < 0 \end{cases} \rightarrow \text{zawsze}$$

Odp.2°:
$$a = 0$$

Odpowiedź zad 1c [1°
$$\vee$$
 2°]: $0 < a \le 2/3 \quad \vee \ a = 0 \quad \rightarrow \quad 0 \le a \le 2/3$

II. Rozwiązanie na podstawie własności równania oscylacyjnego

$$a\ddot{x}(t) + 4\dot{x}(t) + 6x(t) = u(t) / a \neq 0$$

 $\ddot{x}(t) + \frac{4}{a}\dot{x}(t) + \frac{6}{a}x(t) = \frac{u(t)}{a}$

1° Jeśli a > 0

2° Jeśli a < 0

 $\ddot{x}(t) + 2\xi\omega \dot{x}(t) + \omega^2 x(t) = u(t), \ \omega > 0$

 $\ddot{x}(t) + 2\xi\omega \dot{x}(t) - \omega^2 x(t) = u(t), \ \omega > 0$

$$\begin{cases} \omega^2 = \frac{6}{a} & \omega = \sqrt{6/a} > 0 \text{ (z def.)} \\ 2\xi\omega = \frac{4}{a} & \xi = \frac{4}{a} \frac{1}{2\sqrt{6/a}} = \frac{2}{\sqrt{6a}} \end{cases}$$

$$\begin{cases} \omega^{2} = \frac{6}{a} & \omega = \sqrt{6/a} > 0 \text{ (z def.)} \\ 2\xi\omega = \frac{4}{a} & \xi = \frac{4}{a} \frac{1}{2\sqrt{6/a}} = \frac{2}{\sqrt{6a}} \end{cases} \qquad \begin{cases} -\omega^{2} = \frac{6}{a} & \omega = \sqrt{-6/a} > 0 \text{ (z def.)} \\ 2\xi\omega = \frac{4}{a} & \xi = \frac{4}{a} \frac{1}{2\sqrt{-6/a}} = \frac{2}{\sqrt{-6a}} \end{cases}$$

3° Dla a=0 mamy równanie pierwszego rzędu: $4\dot{x}(t) + 6x(t) = u(t)$ z jednym biegunem $\lambda_1 = -6/4$, czyli układ stabilny, bez oscylacji.

Zad.1a. (Odpowiedź bez oscylacji)

Układ musi spełniać warunek:

1°) równanie oscylacyjne i $|\xi| \ge 1$, lub 2°) równanie komplementarne do oscylacyjnego, lub 3°) a=0

1° (a)
$$\int a > 0$$

1° (a)
$$[a > 0]$$

(b)
$$\{\xi \geq 1\}$$

(c)
$$\xi \leq -1$$

$$\xi = 2/\sqrt{6a} \ge 1$$

$$2 \ge \sqrt{6a}$$

$$2/3 \ge a$$

$$\xi = 2/\sqrt{6a} \le -1 \quad \to \text{ nigdy}$$
bo $\omega = \sqrt{6/a} > 0$

Odp.1° [a \land (b \lor c)]: 0 < $a \le 2/3$

3°
$$a = 0$$

Odp.2°:
$$a < 0$$

Odp.3°:
$$a = 0$$

Odpowiedź zad 1a: $[1^{\circ} \lor 2^{\circ} \lor 3^{\circ}] \ 0 < a \le 2/3 \lor a < 0 \lor a = 0 \longrightarrow a \le 2/3$

Zad.1b. (Układ stabilny)

Układ musi spełniać warunek: równanie oscylacyjne i $\xi > 0$, lub 3°) a=0

1° (a)
$$[a > 0]$$

(b)
$$\xi > 0$$

$$\rightarrow \xi = 2/\sqrt{6a} > 0 \rightarrow \text{zawsze bo } \omega = \sqrt{6/a} > 0$$

Odpowie<u>dź zad 1b:</u> $a \ge 0$

Zad.1c. (Układ stabilny, bez oscylacji)

Układ musi spełniać warunek: równanie oscylacyjne i $\xi \ge 1$ lub 3°) a=0

1° (a)
$$\int a > 0$$

(b)
$$\xi \ge 1$$

$$\rightarrow \xi = 2/\sqrt{6a} \ge 1$$

$$2 \ge \sqrt{6a}$$
$$2/3 \ge a$$

Odpowiedź zad 1c: $0 \le a \le 2/3$ Sprawdzenie (część odpowiedzi):

Przykład	Zad.1a	Zad.1b	Zad.1c	Zad.1d
1	$a \le 25/4$	a > 0	$0 < a \le 25/4$	
2	$a \le 2/3$	$a \ge 0$	$0 \le a \le 2/3$	a < 0
3	$a \le -4 \lor a \ge 4$	a > 0	$a \ge 4$	$a \leq -4$
4	$a \le 0 \lor a \ge 4$	$a \ge 0$	$a \ge 4$ i $a=0$	a < 0
5	$a \le 0 \lor a \ge 4$	a = 0	a = 0	$a < 0 \lor a \ge 4$
6	zawsze	nigdy	nigdy	zawsze
7	$a \le -2 \lor a \ge 2$	<i>a</i> > 0	$a \ge 2$	$a \leq -2$
8	$a \le 0 \lor a \ge 9$	$a \ge 0$	$a \ge 9 \text{ i } a = 0$	
9	$a \le 1/4$	nigdy	nigdy	
10	zawsze	nigdy	nigdy	

Uwagi i podpowiedzi

1) Rozwiązywanie nierówności z pierwiastkiem:

- wyznacz dziedzinę
- wykonaj przekształcenia, tak by po jednej stronie został tylko pierwiastek
- o ile jest to konieczne (poprawne) podnieś obustronnie do kwadratu pamiętaj, że:

 - (1) gdy obie strony są dodatnie, znak nierówności jest zachowany,
 (2) gdy obie strony są ujemne, znak nierówności zmienia się,
 (3) gdy jedna strona dodatnia a druga ujemna, to nierówność będzie albo zawsze prawdziwa, albo zawsze fałszywa (więc nie ma potrzeby podnosić do kwadratu),
 - ⁽⁴⁾ rozważamy tylko dodatnią wartość pierwiastka, np. tylko $\sqrt{16} = 4$ (w zadaniach 2 wartości $\sqrt{16} = 4 \lor \sqrt{16} = -4$ pojawia się jako dwa pierwiastki wielomianu 2. stopnia $\pm \sqrt{16}$)

- wyznacz odpowiedź uwzgledniajac dziedzine funkcji

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- w yznacz oupowicuz uwzgiędnia	jąc dziedzinę rameji	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\sqrt{x^2 - 25} < 5 - x$	$\sqrt{x-2} + x > 4$	$\sqrt{x+2} > \sqrt{2x-8}$
$x^{2} \ge 25$ $x^{2} \ge 25$ $x \le -5 \lor x \ge 5$ $-5 \lor 0 \lor 5$ $x \ge 2$ $x \ge -2 \land x \ge 4$ $x \ge 6$ $x \ge$	Dziedzina:	Dziedzina:	Dziedzina:
$x \ge 25 x \le -5 \lor x \ge 5 -5 0 5 $ $x \ge 4 - x $ $x \ge 2 - x \le 4 - x $ $x \ge 4 - x \le 4 $ $x \ge 4 - x \le 4 - x \le 4 $ $x \ge 2 - x \le 6 $ $x \ge 2 - x \le 4 - x $ $x \ge 4 - x \le 4 - x \le 4 $ $x \ge 4 - x \le 4 - x \le 4 $ $x \ge 4 - x \le 4 - x \le 4 $ $x \ge 4 - x \le 4 - x \le 4 $ $x \ge 2 - x \le 4 - x \le 4 $ $x \ge 4 - x \le 4 - x \le 4 $ $x \ge 4 - x \le 4 - x \le 4 $ $x \ge 2 - x \le 4 - x \le 4 $ $x \ge 2 - x \le 4 - x \le 4 $ $x \ge 2 - x \le 4 - x \le 4 $ $x \ge 2 - x \le 4 - x \le 4 $ $x \ge 2 - x \le 4 - x \le 4 $ $x \ge 2 - x \le 4 - x \le 4 $ $x \ge 2 - x \le 4 - x \le 4 $ $x \ge 2 - x \le 4 - x \le 4 $ $x \ge 2 - x \le 4 - x \le 4 $ $x \ge 2 - x \le 4 - x \le 4 $ $x \ge 2 - x \le 4 - x \le 4 $ $x \ge 2 - x \le 4 - x \le 4 $ $x \ge 2 - x \le 4 - x \le 4 $ $x \ge 2 - x \le 4 - x \le 4 $ $x \ge 2 - x \le 4 - x \le 4 $ $x \ge 2 - x \le 4 = x \le 4 $ $x \ge 2 - x \ge 4 = x \le 4 $ $x \ge 2 - x \ge 4 = x \le 4 $ $x \ge 2 - x \ge 4 = x \ge$	$x^2 - 25 \ge 0$	$x-2 \ge 0$	$x + 2 \ge 0 \land 2x - 8 > 0$
a)Jeśli $5-x \ge 0$, czyli $x \le 5$, to: $\sqrt{x^2-25} < 5-x $ $x^2-25 < (5-x)^2 $ $x^2-25 < 25-10x+x^2$ $10x < 50$ $x < 5$ Odp. a): $x < 5 \land x \le 5$ $x < 5$ W dziedzinie jest tylko $x \le -5$ b)Jeśli $5-x < 0$, czyli $x > 5$, to: $\sqrt{x^2-25} < 5-x $ $x < 5$ W dziedzinie jest tylko $x \le -5$ b)Jeśli $5-x < 0$, czyli $x > 5$, to: $\sqrt{x^2-25} < 5-x $ (dodatnie) < (ujemne) Odp.b) nigdy Odp. całkowita (a \lor b): Odp. całkowita (a \lor b): Odp. całkowita: Odp. całkowita (a \lor b): Odp. całkowita:	$x^2 \ge 25$	` <i>x</i> ≥ 2	$x \ge -2 \land x \ge 4$
a)Jeśli $5-x \ge 0$, czyli $x \le 5$, to: $ \sqrt{x^2-25} < 5-x $ $ x^2-25 < (5-x)^2 $ $ x^2-25 < 25-10x+x^2 $ $ 10x < 50 $ $ x < 5 $ Odp. a): $x < 5 \land x \le 5$ $ x < 5$ b)Jeśli $5-x < 0$, czyli $x > 5$, to: $ \sqrt{x^2-25} < 5-x $ $ x = 2 > (1.4) $ $ x = 2 > (4-x)^2 $ $ x = 2 > (4-x)^2 $ $ x = 2 > 16-8x+x^2 $ $ x = 2 > 9x+18 < 0 $ $ 3 < x < 6 $ Odp. a): $(3 < x < 6) \land x \le 4$ $ 3 < x \le 4 \text{ (w dziedzinie)} $ W dziedzinie jest tylko $x \le -5$ b)Jeśli $5-x < 0$, czyli $x > 5$, to: $ \sqrt{x^2-25} < 5-x $ $ (3.4) $ (dodatnie) < (ujemne) Odp.b) nigdy Odp. całkowita (a \lor b): Odp. całkowita (a \lor b): Odp. całkowita:	$x \le -5 \lor x \ge 5$		$x \ge 4$
a)Jeśli $5-x \ge 0$, czyli $x \le 5$, to: $\sqrt{x^2-25} < 5-x$ $x^2-25 < (5-x)^2$ $x^2-25 < 25-10x+x^2$ $10x < 50$ $x < 5$ Odp. a): $x < 5 \land x \le 5$ $x < 5$ W dziedzinie jest tylko $x \le -5$ b)Jeśli $5-x < 0$, czyli $x > 5$, to: $\sqrt{x^2-25} < 5-x$ $x < 5$ Udodatnie) < (ujemne) Odp.b) nigdy $(3,4)$ Odp. całkowita (a \lor b): $(3,4)$ $($	-5 0 5	0 2	-2 0 4
a)Jeśli $5-x \ge 0$, czyli $x \le 5$, to: $ \sqrt{x^2 - 25} \underbrace{(5-x)}_{x^2 - 25 < (5-x)^2} (1,4) \\ x^2 - 25 < 25 - 10x + x^2 \\ 10x < 50 \\ x < 5 $ Odp. a): $x < 5 \land x \le 5$ W dziedzinie jest tylko $x \le -5$ b)Jeśli $5-x < 0$, czyli $x \le 5$, to: $ \sqrt{x-2} \underbrace{(4-x)^2}_{x-2} (1,4) \\ x-2 > 16 - 8x + x^2 \\ x^2 - 9x + 18 < 0 \\ 3 < x < 6 $ Odp. a): $(3 < x < 6) \land x \le 4$ $3 < x \le 4 \text{ (w dziedzinie)}$ b)Jeśli $5-x < 0$, czyli $x > 5$, to: $ \sqrt{x^2 - 25} \underbrace{(5-x)}_{(3,4)} (3,4) \\ (dodatnie) < (ujemne)$ Odp. b) nigdy Odp. całkowita (a \lor b): Odp. całkowita (a \lor b): Odp. całkowita:		$\sqrt{x-2} > 4-x$	x+2>2x-8
$ \sqrt{x^2 - 25} < \sqrt{5 - x} $ $ x^2 - 25 < (5 - x)^2 $ $ x^2 - 25 < 25 - 10x + x^2 $ $ 10x < 50 $ $ x < 5 $ $ Odp. a): x < 5 $			x < 10
$x^{2} - 25 < (5 - x)^{2} \qquad (1,4)$ $x^{2} - 25 < 25 - 10x + x^{2}$ $10x < 50$ $x < 5$ $Odp. a): x < 5 \land x \le 5$ $x < 5$ $0dp. a): 5 - x < 0, czyli x > 5, to:$ $\sqrt{x^{2} - 25} < 5 - x$ $(1,4)$ $x - 2 > (4 - x)^{2} \qquad (1,4)$ $x - 2 > 16 - 8x + x^{2}$ $x^{2} - 9x + 18 < 0$ $3 < x < 6$ $Odp. a) (3 < x < 6) \land x \le 4$ $3 < x \le 4 \text{ (w dziedzinie)}$ $3 < x \le 4 \text{ (w dziedzinie)}$ $\sqrt{x - 2} < 4 - x $ $\sqrt{x - 2} $	a) Jeśli $5 - x \ge 0$, czyli $x \le 5$, to:		
$x^2 - 25 < (5 - x)^2$ $x^2 - 25 < 25 - 10x + x^2$ $10x < 50$ $x < 5$ $0dp. a): x < 5 \land x \le 5$ $x < 5$ $0dp. a): x < 5 \land x \le 5$ $x < 5$ $x < 6$ $0dp. a) (3 < x < 6) \land x \le 4$ $3 < x \le 4 \text{ (w dziedzinie)}$ $0dp. b) \text{ Jeśli } 5 - x < 0, \text{ czyli } x > 5, \text{ to:}$ $\sqrt{x^2 - 25} < 5 - x$ $(dodatnie) < (ujemne)$ $0dp. b) \text{ nigdy}$ $0dp. \text{ całkowita (a \lor b):}$ $0dp. \text{ całkowita:}$	$\sqrt{x^2-25}$ $\sqrt{5-x}$	$\sqrt{x-2} > 4-x$	
$10x < 50$ $x < 5$ $Odp. a): x < 5 \land x \le 5$ $X < 6$ $X < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < $	$x^2 - 25 < (5 - x)^2 \tag{1,4}$	$x - 2 > (4 - x)^2 \tag{1,4}$	
$x < 5$ Odp. a): $x < 5 \land x \le 5$ $x < 5$ W dziedzinie jest tylko $x \le -5$ $b) \text{Jeśli } 5 - x < 0 \text{, czyli } x > 5 \text{, to:}$ $\sqrt{x^2 - 25} < 5 - x$ $(dodatnie) < (ujemne)$ Odp. b) nigdy $(3 < x < 6) \land x \le 4$ $3 < x \le 4 \text{ (w dziedzinie)}$ $\sqrt{x - 2} < 4 - x$ $\sqrt{(3,4)}$ $(dodatnie) > (ujemne)$ Odp. b) zawsze $(3,4)$ Odp. całkowita (a \lor b): $(3,4)$ $(dodatnie) > (ujemne)$ Odp. b) zawsze $(3,4)$ Odp. całkowita (a \lor b): $(3,4)$ $(4,4)$	$x^2 - 25 < 25 - 10x + x^2$	$x - 2 > 16 - 8x + x^2$	
Odp. a): $x < 5$ $\wedge x \le 5$ Odp.a) $(3 < x < 6) \wedge x \le 4$ $3 < x \le 4$ (w dziedzinie) W dziedzinie jest tylko $x \le -5$ b)Jeśli $5 - x < 0$, czyli $x > 5$, to: $ \sqrt{x^2 - 25} < 5 - x $ (dodatnie) $<$ (ujemne) Odp.b) nigdy Odp. całkowita (a \vee b): Odp. całkowita (a \vee b): Odp. całkowita (a \vee b): Odp. całkowita:	10x < 50	$x^2 - 9x + 18 < 0$	
$x < 5$ W dziedzinie jest tylko $x \le -5$ b)Jeśli $5 - x < 0$, czyli $x > 5$, to: $\sqrt{x^2 - 25} < 5 - x$ $(dodatnie) < (ujemne)$ Odp. b) nigdy Odp. całkowita (a \lor b): $(3 < x \le 4 \text{ (w dziedzinie)}$ $\sqrt{x = 2} < 4 - x < 0$, czyli $x > 4$, to: $\sqrt{x - 2} < 4 - x$ $(3,4)$ $(dodatnie) > (ujemne)$ Odp. b) zawsze Odp. całkowita (a \lor b): Odp. całkowita:	<i>x</i> < 5	3 < <i>x</i> < 6	
W dziedzinie jest tylko $x \le -5$ b)Jeśli $5-x < 0$, czyli $x > 5$, to: $ \sqrt{x^2 - 25} < 5-x $ (dodatnie) < (ujemne) Odp.b) nigdy Odp. całkowita (a \vee b): (w dziedzinie) $ \sqrt{x} = 4 \text{ (w dziedzinie)} $ ($x \le 4 \text{ (w dziedzinie)}$ ($x \ge 4 (w dziedzi$	Odp. a): $x < 5 \land x \le 5$	Odp.a) $(3 < x < 6) \land x \le 4$	
b)Jeśli $5-x < 0$, czyli $x > 5$, to: Jeśli $4-x < 0$, czyli $x > 4$, to: $\sqrt{x^2 - 25} < \sqrt{5-x} $ (3,4) $ (\text{dodatnie}) < (\text{ujemne}) $ (dodatnie) > (ujemne) $ (\text{Odp.b) nigdy} $ Odp. całkowita (a \vee b): Odp. całkowita:	<i>x</i> < 5	$3 < x \le 4$ (w dziedzinie)	
$\sqrt{x^2 - 25} < \sqrt{5 - x} $ $(dodatnie) < (ujemne)$ $Odp.b) nigdy$ $Odp. całkowita (a \vee b): $	W dziedzinie jest tylko $x \le -5$		
(dodatnie) < (ujemne)(dodatnie) > (ujemne)Odp.b) nigdyOdp.b) zawszeOdp. całkowita (a ∨ b):Odp. całkowita (a ∨ b):Odp.całkowita:	b) Jeśli $5-x < 0$, czyli $x > 5$, to:	Jeśli $4-x \le 0$, czyli $x > 4$, to:	
Odp.b) nigdyOdp.b) zawszeOdp. całkowita (a ∨ b):Odp. całkowita (a ∨ b):Odp.całkowita:	$\sqrt{x^2 - 25} < 5 - x $ (3,4)	$\sqrt{x-2} \sqrt{4-x} \tag{3,4}$	
Odp.b) nigdyOdp.b) zawszeOdp. całkowita (a ∨ b):Odp. całkowita (a ∨ b):Odp.całkowita:	(dodatnie) < (ujemne)	(dodatnie) > (ujemne)	
		Odp.b) zawsze	
$x \le -5 \qquad \qquad 3 < x \le 4 \forall x > 4 \rightarrow x > 3 \qquad \qquad 4 \le x < 10$	Odp. całkowita (a ∨ b):	Odp. całkowita (a ∨ b):	Odp.całkowita:
	$x \le -5$	$3 < x \le 4 \forall x > 4 \rightarrow x > 3$	$4 \le x < 10$