Yue (Olivia) Meng

550 Stadium Mall Drive

meng188@purdue.edu

West Lafayette, IN 47907

(609) 255-6542

EDUCATION

2022 Massachusetts Institute of Technology, Boston, Massachusetts

Ph.D. Civil and Environmental Engineering

Advisor: Ruben Juanes

Thesis: Photoporomechanics: A New Technique to Explore Grain-scale Mechanisms for Fluid-driven Fractures in Granular Media

2020 Massachusetts Institute of Technology, Boston, Massachusetts

Master of Science in Civil and Environmental Engineering

Advisor: Ruben Juanes

Thesis: Jamming Transition and Emergence of Fracturing in Wet Granular Media

2018 The University of Hong Kong, Hong Kong

Bachelor of Engineering, Civil and Environmental Engineering

Minor in Engineering in Computer Science

Advisor: Fiona Kwok

Thesis: Discrete Element Modeling of the Formation of Arch Network in Granular Media

During Shearing Process

PROFESSIONAL EXPERIENCE

2025 – present Assistant Professor, Department of Civil Engineering, Purdue University

2023 – 2024 Stanford Icy Physics Group, Department of Geophysics, Stanford University

Postdoctoral Scholar, Advisor: Dr. Ching-Yao Lai

- Coupling remote sensing with physics-based models to quantify the ice mélange buttressing against calving
- Combining discrete element model with graph neural network to simulate complex physics in ice mélange

2022 – 2023 The Lai Research Group, Department of Geosciences, Princeton University Postdoctoral Research Associate, Advisor: Dr. Ching-Yao Lai

• Poromechanical modeling on the vulnerability of firn to hydrofracture in Greenland

2018 – 2022 Subsurface Energy and Mechanics Lab, Massachusetts Institute of Technology PhD Student, Advisor: Dr. Ruben Juanes

- Experimental study on fracturing in wet granular media using photoporomechanics
- Discrete element modeling on multi-phase flow and granular mechanics: wettability control on hydraulic fracturing patterns

2015 – 2018 **Department of Civil and Environmental Engineering, The University of Hong Kong** Undergraduate Research Assistant, Advisor: Dr. Fiona Kwok

- Experimental investigations on mechanical properties of sand-rubber mixture
- Discrete element modeling of the formation of arch network in granular media during shearing process

AWARDS

- 2018 Hui Ying Hin Fellowship, University of Hong Kong
- 2018 Wing Lung Bank Ltd. Prize in Civil Engineering in Hong Kong
- 2018 Centenary Scholarships for Civil Engineering Students, University of Hong Kong
- 2017 Gammon Construction Limited Prize in Civil Engineering
- 2016 Chan Hon Chuen Scholarship, University of Hong Kong

JOURNAL PUBLICATIONS

Peer Reviewed Articles

Nissanka, K., Vora N., Harper J. M., Burton J. C., Amundson J. M., Robel A. A., **Meng, Y.**, & Lai, C. Y. (accepted). Laboratory experiments reveal transient fluctuations in ice mélange velocity and stress during periods of quasistatic flow. *Journal of Geophysical Research - Earth Surface*.

Meng, Y., Lai, C. Y., Culberg, R., Shahin, M., Stearns, L., Burton, J., & Nissanka K. (2025). Seasonal Changes of Mélange Thickness Coincide with Greenland Calving Dynamics. *Nature Communications*, *16*, 573. 10.1038/s41467-024-55241-7

Meng, Y., Culberg, R., & Lai, C. Y. (2024). Vulnerability of Firn to Hydrofracture: Poromechanics Modeling. *Journal of Glaciology*, 1-14. 10.1017/jog.2024.47

Meng, Y., Li, W., & Juanes, R. (2023). Crossover from Viscous Fingering to Fracturing in Cohesive Wet Granular Media: A Photoporomechanics Study. *Soft Matter, 19*(37), 7136. <u>10.1039/D3SM00897E</u>

Guével, A., **Meng, Y.**, Peco, C., Juanes, R., & Dolbow, J. E. (2023). A Darcy-Cahn-Hilliard Model of Multiphase Fluid-driven Fracture. *Journal of the Mechanics and Physics of Solids*, *181*, 105427. 10.1016/j.jmps.2023.105427

Meng, Y., Li, W., & Juanes, R. (2022). Fracturing in Wet Granular Media Illuminated by Photoporomechanics. *Physical Review Applied*, 18(6),064081. * *Editor's Suggestion*. 10.1103/PhysRevApplied.18.064081

Li, W., Meng, Y., Primkulov, B. K., & Juanes, R. (2021). Photoporomechanics: An Experimental Method to Visualize the Effective Stress Field in Fluid-filled Granular Media. *Physical Review Applied*, *16*(2), 024043. 10.1103/PhysRevApplied.16.024043

Meng, Y., Primkulov, B. K., Yang, Z., Kwok, C. Y., & Juanes, R. (2020). Jamming Transition and Emergence of Fracturing in Wet Granular Media. *Physical Review Research*, 2(2), 022012. 10.1103/PhysRevResearch.2.022012

Juanes, R., Meng, Y., & Primkulov, B. K. (2020). Multiphase Flow and Granular Mechanics. *Physical Review Fluids*, 5(11), 110516. 10.1103/PhysRevFluids.5.110516

Meng, Y., Zhu, H., Kwok, C. Y., Kuo, M., Jing, L., & Huang, X. (2018). Effect of Coefficient of Friction on Arch Network in Shearing Process under Low Confinement. *Powder technology*, *335*, 1-10. 10.1016/j.powtec.2018.05.002

INVITED TALKS

2025 Mar 31 "Bridging pore and grain-scale physics to the changing cryosphere", Midwest Glaciology Meeting, University of Wisconsin, Madison, 2025.

2025 Mar 3	"Bridging pore and grain-scale physics to the changing cryosphere", Serve as a panelist at a special session "From the grain up: characterization and modeling of particulate materials", Geotechnical Frontiers, 2025.
2025 Jan 24	"Bridging pore and grain-scale physics to the changing cryosphere", Department of Earth and Environmental Science Seminar, University of Pennsylvania.
2024 Dec 11	"Seasonal Changes of Mélange Thickness Coincide with Greenland Calving Dynamics", AGU Fall Meeting, 2024.
2024 Dec 10	"3D Discrete Element Model and Continuum Theory for Granular Flow of Ice Mélange", AGU Fall Meeting, 2024.
2024 May 16	"Seasonal Changes of Mélange Thickness Coincide with Greenland Calving Dynamics", Mathematics On Ice Forum.
2024 Apr 11	"Bridging pore and grain-scale physics to the changing cryosphere", Department of Earth, Atmospheric & Planetary Sciences Colloquium, MIT.
2024 Mar 19	"Soft earth geophysics for energy and climate: from grain to landscape scales", Department of Civil Engineering Colloquium, Purdue University.
2024 Mar 11	"Soft earth geophysics for energy and climate: from grain to landscape scales", Department of Civil and Environmental Engineering Colloquium, Carnegie Mellon University.
2024 Feb 29	"Bridging pore and grain-scale physics to the changing cryosphere", Department of Geophysics, Stanford University.
2024 Feb 13	"Soft earth geophysics for energy and climate: from grain to landscape scales", Department of Earth, Environmental and Planetary Sciences Colloquium, Rice University.
2024 Feb 8	"Bridging pore and grain-scale physics to the changing cryosphere", Department of Earth, Environmental, and Planetary Sciences Colloquium, Washington University in St. Louis.
2023 May 5	"Photoporomechanics: A new technique to explore grain-scale mechanisms for fluid-driven fractures in granular media", American Rock Mechanics Association Future Leader Webinar Series.
2023 Apr 27	"Photoporomechanics: A new technique to explore grain-scale mechanisms for fluid-driven fractures in granular media", Department of Civil Engineering, McMaster University, Canada.
2022 Apr 15	"Fracturing in wet granular media illuminated by photoporomechanics", Solid Earth Brown Bag, Department of Geosciences, Princeton University.
2021 Jun 2	"Jamming transition and emergence of fracturing in wet granular media", Earth Resources Laboratory Annual Founding Members Meeting, Massachusetts Institute of Technology.
2019 May 22	"DEM modeling of coupled multiphase flow and granular mechanics: Wettability control on fracture patterns", Earth Resources Laboratory Annual Founding Members Meeting, Massachusetts Institute of Technology.

MENTORING EXPERIENCE

2024 - 2025	Lexi Arlen (PhD in Dr. Earle Wilson Group, Stanford University)
Fall 2024	Qing Xia (Research assistant in Dr. Ching-Yao Lai Group, Stanford University)
Summer 2024	Jello Zhou (Undergraduate Student in Dr. Ching-Yao Lai Group, Stanford University)
Fall 2023	Judy Liu (Undergraduate Student in Dr. Ching-Yao Lai Group, Stanford University)
Spring 2023	Hugh Shields (Undergraduate Student in Dr. Ching-Yao Lai Group, Princeton University)
2022 - 2023	David Dai & Feihu Ke (PhD Students in Dr. Fiona Kwok Group, University of Hong Kong)

PROFESSIONAL ACTIVITIES

2018 - present Member, American Physical Society

2018 – present Member, American Geophysical Union

Reviewer: International Journal for Numerical and Analytical Methods in Geomechanics, SPE Journal,

CONFERENCE PARTICIPATIONS

- **Meng, Y.**, Lai, C. Y., Culberg, R., Shahin, M., Stearns, L., Burton, J., & Nissanka K, Bridging Pore and Grain-Scale Physics to the Changing Cryosphere, 18th U.S. National Congress on Computational Mechanics, 2025.
- **Meng, Y.**, Lai, C. Y., Culberg, R., Shahin, M., Stearns, L., Burton, J., & Nissanka K, Seasonal Changes of Mélange Thickness Coincide with Greenland Calving Dynamics, *AGU Fall Meeting*, 2024.
- Burton, J., Nissanka K., Amundson, J., Robel, A., **Meng, Y.**, & Lai, C. Y., Experimental Investigations of Ice Mélange and the Flow of Floating Granular Materials, *APS DFD Meeting*, 2024.
- **Meng, Y.**, Culberg, R., Shahin, M., Stearns, L., Burton, J., Nissanka K, & Lai, C. Y., 3D Discrete Element Model and Continuum Theory for Granular Flow of Ice Mélange, *APS DFD Meeting*, 2024.
- Meng, Y., Culberg, R., Shahin, M., Stearns, L., Burton, J., Nissanka K, & Lai, C. Y., 3D Discrete Element Model and Continuum Theory for Quasi-static Granular Flow of Ice Mélange, *California Geophysical Fluid Dynamics Meeting (CalGFD)*, 2024.
- Meng, Y., Culberg, R., Shahin, M., Stearns, L., Burton, J., Nissanka K, & Lai, C. Y., 3D Discrete Element Model and Continuum Theory for Quasi-static Granular Flow of Ice Mélange, *Gordon Research Conference: Granular Matter*, 2024.
- Alessio, B., **Meng, Y.**, Lai, C. Y., Granular Rheological Inversion from Physics-Informed Neural Networks, *Gordon Research Conference: Granular Matter*, 2024.
- Meng, Y., Culberg, R., Shahin, M., Stearns, L., Burton, J., Nissanka K, & Lai, C. Y., 3D Discrete Element Model and Continuum Theory for Quasi-static Granular Flow of Ice Mélange, *APS March Meeting*, 2024.
- Meng, Y., Lai, C. Y., Culberg, R., Shahin, M., Stearns, L., Burton, J., & Nissanka K, Thickness of Proglacial Mélange Impacts Calving Dynamics of Greenland Glaciers, *AGU Fall Meeting*, 2023.
- Nissanka, K., Burton, J. C., Amundson, J. M., Robel, A., Lai, C. Y., & **Meng, Y.**, Experimental-informed Ice Mélange Rheology and Buttressing During Quasistatic Flow, *AGU Fall Meeting*, 2023.
- **Meng, Y.**, Culberg, R., Shahin, M., Stearns, L., Burton, J., Nissanka K, & Lai, C. Y., Thickness of Proglacial Mélange Impacts Calving Dynamics of Greenland Glaciers, *APS DFD Meeting*, 2023.
- **Meng, Y.**, Culberg, R., & Lai, C. Y., Vulnerability of Firn to Hydrofracture, Part I: Poromechanical Modeling, *EGU General Assembly*, 2023.
- Culberg, R., Meng, Y., & Lai, C. Y., Vulnerability of Firn to Hydrofracture, Part II: Greenland's Ice Slab Regions, *EGU General Assembly*, 2023.
- **Meng, Y.**, Culberg, R., & Lai, C. Y., Vulnerability of Firn to Hydrofracture, Part I: Poromechanical Modeling, *Future of Greenland Ice Sheet Science Workshop*, 2023.
- Culberg, R., Meng, Y., & Lai, C. Y., Vulnerability of Firn to Hydrofracture, Part II: Greenland's Ice Slab

- Regions, Future of Greenland Ice Sheet Science Workshop, 2023.
- Dai, Q., **Meng, Y.**, Duan, K., & Kwok C. Y., Development of Multiphase Flow Simulation Method in DEM Under a Fixed-Grain Condition, *ARMA US Rock Mechanics/Geomechanics Symposium*, 2023.
- **Meng, Y.**, Li, W., & Juanes, R., Photo-poroelastic Imaging of Fracturing in Wet Granular Media, *AGU Fall Meeting*, 2021.
- Li, W., **Meng, Y.**, Primkulov, B. K., & Juanes, R., Photo-poromechanics: Visualizing the Evolving Effective Stress in Fluid-filled Granular Media, *AGU Fall Meeting*, 2021.
- **Meng, Y.**, Li, W., Primkulov, B. K., & Juanes, R., A Fixed-Stress Split for the Simulation of Coupled Pore-Scale Flow and Grain Mechanics, *AGU Fall Meeting*, 2020.
- **Meng, Y.**, Primkulov, B. K., Yang, Z., Kwok, C. Y., & Juanes, R., DEM Modeling of Coupled Multiphase Flow and Granular Mechanics: Wettability Control on Fracture Patterns, *Engineering Mechanics Institute Conference*, 2019.
- **Meng, Y.**, Primkulov, B. K., Yang, Z., Kwok, C. Y., & Juanes, R., DEM Modeling of Coupled Multiphase Flow and Granular Mechanics: Wettability Control on Fracture Patterns, *AGU Fall Meeting*, 2019.
- **Meng, Y.**, Primkulov, B. K., Yang, Z., Kwok, C. Y., & Juanes, R., DEM Modeling of Coupled Multiphase Flow and Granular Mechanics: Wettability Control on Fracture Patterns, *APS DFD Meeting*, 2019.
- Meng, Y., Primkulov, B. K., Yang, Z., Kwok, C. Y., & Juanes, R., DEM Modeling of Coupled Multiphase Flow and Granular Mechanics: Wettability Control on Fracture Patterns, *Transport in Disordered Environments Seminars*, Princeton Center for Theoretical Science, 2019.
- **Meng, Y.**, Primkulov, B. K., Yang, Z., Kwok, C. Y., & Juanes, R., DEM Modeling of Coupled Multiphase Flow and Granular Mechanics: Wettability Control on Fracture Patterns, *AGU Fall Meeting*, 2018.