This is a Very Important Title!

Person McSomething (Dated: November 4, 2021)

This abstract is abstract.

If you want to learn more about using LATEX, you should check UiO's official tutorials: https://www.mn.uio.no/ifi/tjenester/it/hjelp/latex/

If you are familiar with LATEX and you want to learn more about the REVTeX4-1 document class, check: http://www.physics.csbsju.edu/370/papers/Journal_Style_Manuals/auguide4-1.pdf

III. METODE

IV. RESULTATER

V. DISKUSJON

VI. CONKLUSJON

ACKNOWLEDGMENTS

I would like thank myself for writing this beautiful document.

I. INTRODUKSON

II. TEORI

Vi starter med et 2×2 gitter og skal regne dette analytisk slik at vi kan gjøre en sammenlikning med vårt numeriske resultat. Vi ser at hver kombinasjon av ett spinn opp vil være en rotert versjon av de andre kombinasjonene av ett spinn opp. Den samme rotasjonsegenskapen ser vi med tre spinn opp, siden det også bare er ett spinn ned. Med to spinn opp derimot, ser vi at vi får flere kombinasjoner. Vi har igjen fire roterte versjoner hvor spinn opp-partiklene er ved siden av hverandre, men også to hvor de er diagonale til hverandre. For å finne energien vil vi trenge

$$E(s) = -J \sum_{\langle kl \rangle}^{N} s_k \cdot s_l$$

Hvor < kl > betyr at vi går over alle partiklene uten å telle interaksjonen mellom partiklene to ganger. s_l og s_k vil også være nabopartikler i gitteret. Vi vil i alle forsøkene, også utenfor 2×2 eksempelet anta periodiske grensebetingelser. Det vil si at vi antar at i hver ende vil nabopartiklen være den motsatte enden. Man kan tenke seg at i én dimensjon så vil partiklene være i en sirkel hvor endene møtes.

Vi skal også regne det magnetiske feltet gitt ved

$$M(\mathbf{s}) = \sum_{i} s_i$$

REFERENCES

- Reference 1
- Reference 2

Appendix A: Name of appendix

This will be the body of the appendix.

Appendix B: This is another appendix

Tada.

Note that this document is written in the two-column format. If you want to display a large equation, a large figure, or whatever, in one-column format, you can do this like so:

This text and this equation are both in one-column format. [?]

$$\frac{-\hbar^2}{2m}\nabla^2\Psi + V\Psi = i\hbar\frac{\partial}{\partial t}\Psi \tag{B1}$$

Note that the equation numbering (this: B1) follows the appendix as this text is technically inside Appendix B. If you want a detailed listing of (almost) every available math command, check: https://en.wikibooks.org/wiki/LaTeX/Mathematics.

And now we're back to two-column format. It's really easy to switch between the two. It's recommended to keep the two-column format, because it is easier to read, it's not very cluttered, etc. Pro Tip: You should also get used to working with REVTeX because it is really helpful in FYS2150.

One last thing, this is a code listing:

This will be displayed with a cool programming font!

You can add extra arguments using optional parameters:

This will be displayed with a cool programming font!

You can also list code from a file using lstinputlisting. If you're interested, check https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings.

This is a basic table:

Table I. This is a nice table

Hey	Hey	Hey	
Hello	Hello	Hello	
Bye	Bye	Bye	

You can a detailed description of tables here: https://en.wikibooks.org/wiki/LaTeX/Tables.

I'm not going to delve into Tikz in any level detail, but here's a quick picture:

Figure 1. This is great caption

If you want to know more, check: https://en.wikibooks.org/wiki/LaTeX/PGF/TikZ.