

# Inteligencia Artificial

Juan Pablo Restrepo Uribe

Ing. Biomedico - MSc. Automatización y Control Industrial

jprestrepo@correo.iue.edu.co

Institución Universitaria de Envigado



### **KNN**

También conocido como k vecinos más cercanos es un clasificador de aprendizaje supervisado no paramétrico, que utiliza la proximidad para hacer clasificaciones o predicciones sobre la agrupación de un punto de datos individual.









## KNN VS Voto de mayoría

- El KNN asigna una etiqueta de clase sobre la base de un voto mayoritario (frecuencia alrededor de un punto de datos determinado)
- Esto técnicamente se considera "voto por mayoría
- La distinción entre estas terminologías es que "voto mayoritario" técnicamente requiere una mayoría superior al 50 %, lo que funciona principalmente cuando solo hay dos categorías. Cuando tiene varias clases no necesita necesariamente el 50 % de los votos para llegar a una conclusión sobre una clase.





## **KNN Regresión**

Los problemas de regresión usan un concepto similar al de los problemas de clasificación, pero en este caso, se toma el promedio de los k vecinos más cercanos para hacer una predicción sobre una clasificación.





## Métricas de distancia

El objetivo del algoritmo del vecino más cercano es identificar los vecinos más cercanos de un punto de consulta dado





## Distancia euclidiana (p=2)

Esta es la medida de distancia más utilizada y está limitada a vectores de valor real. Mide una línea recta entre el punto de consulta y el otro punto que se mide.



$$d(x,y) = \sqrt{\sum_{i=1}^n (y_i - x_i)^2}$$



## Distancia Manhattan (p=1)

Mide el valor absoluto entre dos puntos. También se conoce como distancia de taxi o distancia de cuadra de la ciudad, ya que comúnmente se visualiza con una cuadrícula, que ilustra cómo se puede navegar de una dirección a otra a través de las calles de la ciudad.





$$d(x,y) = \left(\sum_{i=1}^{m} \left| x_i - y_i \right| \right)$$



$$\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|\right)^{1/p}$$

# **Distancia Minkowski**

Esta medida de distancia es la forma generalizada de las métricas de distancia Euclidiana y Manhattan. El parámetro, p, en la fórmula a continuación, permite la creación de otras métricas de distancia. La distancia euclidiana se representa mediante esta fórmula cuando p es igual a dos, y la distancia de Manhattan se denota con p igual a uno.





## Distancia de hamming

Esta técnica se usa típicamente con vectores booleanos o de cadena, identificando los puntos donde los vectores no coinciden. Como resultado, también se la conoce como la métrica de superposición. Esto se puede representar con la siguiente fórmula:

#### 3 Dimensiones



Hamming Distance = 
$$D_H = \left(\sum_{i=1}^k |x_i - y_i|\right)$$
  
 $x=y$   $D=0$   
 $x \neq y$   $D \neq 1$ 



## Definiendo k

- El valor k en el algoritmo k-NN define cuántos vecinos se verificarán para determinar la clasificación de un punto de consulta específico. Por ejemplo, si k=1, la instancia se asignará a la misma clase que su vecino más cercano.
- Los valores más bajos de k pueden tener una varianza alta, pero un sesgo bajo, y los valores más grandes de k pueden generar un sesgo alto y una varianza más baja.
- En general, se recomienda tener un número impar para k para evitar empates en la clasificación, y las tácticas de validación cruzada pueden ayudarlo a elegir la k óptima para su conjunto de datos.



## Aplicaciones de k-NN en machine learning

- Preprocesamiento de datos: Los conjuntos de datos suelen tener valores faltantes, pero el algoritmo KNN puede estimar esos valores en un proceso conocido como imputación de datos faltantes.
- Motores de recomendación : utilizando datos de flujo de clics de sitios web, el algoritmo KNN se ha utilizado para proporcionar recomendaciones automáticas a los usuarios sobre contenido adicional.
- Finanzas: Se ha KNN en datos crediticios para ayudar a los bancos a evaluar el riesgo de un préstamo para una organización o individuo. Se utiliza para determinar la solvencia crediticia de un solicitante de préstamo.
- Cuidado de la salud: KNN se ha aplicado dentro de la industria de la salud, haciendo predicciones sobre el riesgo de ataques cardíacos y cáncer de próstata.
- Reconocimiento de patrones: KNN también ha ayudado a identificar patrones, como en texto y clasificación de dígitos



## Referencias interesantes

- https://pages.stat.wisc.edu/~sraschka/teaching/stat479-fs2018/
- https://apps.dtic.mil/sti/pdfs/ADA800276.pdf
- https://isl.stanford.edu/~cover/papers/transIT/0021cove.pdf
- https://iopscience.iop.org/article/10.1088/1742-6596/1025/1/012114/pdf
- https://www.ijera.com/papers/Vol3\_issue5/DI35605610.pdf
- https://developer.ibm.com/tutorials/learn-classification-algorithms-usingpython-and-scikit-learn/



# Variante del algoritmo básico (Vecinos más cercanos con distancia ponderada)

Se puede ponderar la contribución de cada vecino de acuerdo con la distancia entre él y el ejemplar a ser clasificado, dando mayor peso a los vecinos más cercanos. Por ejemplo, podemos ponderar el voto de cada vecino de acuerdo con el cuadrado inverso de sus distancias

$$\hat{f}\left(x_q
ight) \leftarrow rg \max_{v \in V} \sum_{i=1}^k w_i [v = f(x_i)]$$



## Búsqueda exhaustiva (GridSearchCV)

Búsqueda exhaustiva sobre valores de parámetros específicos para un estimador.





## Selección de características (Métodos de Filtro)





# Selección de características (Métodos de envoltura)





## Selección de características (SelectKBest)

Seleccione características de acuerdo con las k puntuaciones más altas.

All Features

Feature Selection

Final Features