МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н. Э. БАУМАНА

Факультет информатики и систем управления Кафедра теоретической информатики и компьютерных технологий

Лабораторная работа №4 по курсу «Моделирование»

«Построение разрезов поверхностей»

Выполнил: студент ИУ9-111 Выборнов А. И.

Руководитель: Домрачева А. Б.

1. Постановка задачи

Одной из базовых задач анализа триангуляционных поверхностей является построение разрезов— вертикальных (профилей) и горизонтальных (изолиний).

Изолиниями уровня h называют геометрическое место точек на поверхности, имеющих высоту h и имеющих в любой своей окрестности другие точки с меньшей высотой: $I_h = \{(x,y)|z(x,y) = h, \forall \epsilon > 0 \colon \exists (x',y') \colon |(x',y'),(x,y)| < \epsilon, z(x',y') < h\}.$

Изоконтурами между уровнями h_1 и h_2 называют замыкание геометрического места точек на поверхности, имеющих высоту $h \in [h_1, h_2)$, т.е. множество точек $I_h = \overline{\{(x,y)|h_1 <= z(x,y) < h_2\}}$.

В задаче построения изоконтуров требуется построить множество непересекающихся регионов, каждый из которых представляет область, высоты точек внутри которой лежат в определенном диапазоне. Обычно задаётся система диапазонов с помощью начального значения самого первого диапазона, конечного значения последнего диапазона и шага построения диапазонов.

По трёхмерной модели поверхности нужно построить множество изоконтуров, лежащих в диапазоне $[h_1,h_2)$ с шагом Δh .

2. Теоретическая часть

2.1. Построение изолиний

Для построения изолиний высотой h используется следующий алгоритм:

- 1. Помечаем каждый треугольник триангуляции, по которому проходят изолинии (т.е. выполняется условие $min(z_1, z_2, z_3) < h << max(z_1, z_2, z_3)$, где z_i высоты трех его вершин), флагом $C_i := 1$, а все остальные треугольники $C_i := 0$. Если обнаружен хотя бы один треугольник, у которого хотя бы одно ребро лежит в плоскости изолинии, то h уменьшается на некоторое малое Δh и алгоритм повторяется заново.
- 2. Для каждого треугольника с $C_i=1$ выполняем отслеживание очередной изолинии в обе стороны от данного треугольника, пока один конец не выйдет на другой или на границу триангуляции. Каждый пройденный при отслеживании треугольник помечается $C_i:=0$. Конец алгоритма.

Трудоемкость такого алгоритма, очевидно, является линейной относительно размера триангуляции.

2.2. Построение изоконтуров

Для построения множества изоконтуров, лежащих в диапазоне $[h_1,h_M)$ с шагом Δh используется следующий алгоритм:

- 1. Пусть заданы уровни $h_1, ..., h_M$, Обнуляем множества ломаных, входящих в изоконтуры: $C_i = \emptyset, i = \overline{0, M}$.
- 2. Для каждого уровня h_i строим изолинии. Каждую замкнутую изолинию добавляем во множество C_i .
- 3. Определяем все кусочки границы триангуляции между точками выхода изолиний на границу. Формируем граф, в котором в качестве узлов выступают точки выхода на границу, а в качестве рёбер —кусочки границы между этими точками и рассчитанные изолинии. Каждая изолиния должна войти в граф дважды в виде одинаковых ориентированных рёбер, но направленных в разные стороны. Для рёбер —кусочков границы устанавливаем такую ориентацию, чтобы внутренности триангуляции находились справа по ходу движения. В результате в каждом узле графа должны сходиться четыре ребра.
- 4. По полученному графу строим контуры. Начинаем движение с любой вершины графа и двигаемся вперед в соответствии с ориентацией рёбер до тех пор, пока не вернемся в начальную вершину. Повторный проход по одному и тому же ребру запрещен, для чего делаются специальные пометки на рёбрах. При попадании в узел графа из граничной цепочки далее надо двигаться по ребру, соответствующему изолинии, иначе по граничному ребру. Обратим внимание, что каждая изолиния войдет в два контура, соответствующих разным диапазонам высот.
- 5. Для каждого полученного на предыдущем шаге контура определяем, какому диапазону высот он соответствует. Для этого нужно взять и проверить любое ребро триангуляции, входящее в составе граничной цепочки, использованной в каждом контуре. На основании этого помещаем цепочку в соответствующее множество C_i . Конец алгоритма.

Трудоемкость данного алгоритма линейно зависит от размера триангуляции и количества изолиний.

3. Реализация

В рамках лабораторной работы была написана программа на языке python,

4. Тестирование

один результат и визуализация всех этапов. Результаты при разных параметрах для разных моделей

5. Выводы