```
import numpy as np
import pandas as pd
import datetime
from datetime import date
import datetime as dt
import matplotlib
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.graph_objects as go
from sklearn.preprocessing import StandardScaler, normalize
from sklearn import metrics
from sklearn.mixture import GaussianMixture
{\tt from \ mlxtend.frequent\_patterns \ import \ apriori}
from mlxtend.frequent_patterns import association_rules
import warnings
warnings.filterwarnings('ignore')
import scipy.cluster.hierarchy as shc
from sklearn.cluster import AgglomerativeClustering
data=pd.read_csv("/content/customer_data (1).csv")
data.head()
```

|   | ID   | Year_Birth | Education  | Marital_Status | Income  | Kidhome | Teenhome | Dt_Custom |
|---|------|------------|------------|----------------|---------|---------|----------|-----------|
| 0 | 5524 | 1957       | Graduation | Single         | 58138.0 | 0       | 0        | 04/09/    |
| 1 | 2174 | 1954       | Graduation | Single         | 46344.0 | 1       | 1        | 08/03/    |
| 2 | 4141 | 1965       | Graduation | Together       | 71613.0 | 0       | 0        | 21/08/    |
| 3 | 6182 | 1984       | Graduation | Together       | 26646.0 | 1       | 0        | 10/02/    |
| 4 | 5324 | 1981       | PhD        | Married        | 58293.0 | 1       | 0        | 19/01/    |

5 rows × 29 columns



data.describe()

|          | ID           | Year_Birth  | Income        | Kidhome     | Teenhome    | Recency     |
|----------|--------------|-------------|---------------|-------------|-------------|-------------|
| count    | 2240.000000  | 2240.000000 | 2216.000000   | 2240.000000 | 2240.000000 | 2240.000000 |
| mean     | 5592.159821  | 1968.805804 | 52247.251354  | 0.444196    | 0.506250    | 49.109375   |
| std      | 3246.662198  | 11.984069   | 25173.076661  | 0.538398    | 0.544538    | 28.962453   |
| min      | 0.000000     | 1893.000000 | 1730.000000   | 0.000000    | 0.000000    | 0.000000    |
| 25%      | 2828.250000  | 1959.000000 | 35303.000000  | 0.000000    | 0.000000    | 24.000000   |
| 50%      | 5458.500000  | 1970.000000 | 51381.500000  | 0.000000    | 0.000000    | 49.000000   |
| 75%      | 8427.750000  | 1977.000000 | 68522.000000  | 1.000000    | 1.000000    | 74.000000   |
| max      | 11191.000000 | 1996.000000 | 666666.000000 | 2.000000    | 2.000000    | 99.000000   |
| 8 rows × | 26 columns   |             |               |             |             |             |



**→** 

 $\#Now\ I$  will create some new features in the dataset to define the customer personalities as a part of data preparation:

## data.isnull().sum()

| ID             | 0  |
|----------------|----|
| Year_Birth     | 0  |
| Education      | 0  |
| Marital_Status | 0  |
| Income         | 24 |
| Kidhome        | 0  |
| Teenhome       | 0  |
| Dt_Customer    | 0  |
| Recency        | 0  |
| MntWines       | 0  |
| MntFruits      | 0  |

```
{\tt MntMeatProducts}
     {\tt MntFishProducts}
     MntSweetProducts
     {\tt MntGoldProds}
     NumDealsPurchases
     NumWebPurchases
                              0
     NumCatalogPurchases
                              a
     NumStorePurchases
                              0
     {\tt NumWebVisitsMonth}
                              0
     {\tt AcceptedCmp3}
                              0
     AcceptedCmp4
     AcceptedCmp5
     AcceptedCmp1
     AcceptedCmp2
     Complain
     Z CostContact
                              0
     Z Revenue
                              0
     Response
                              0
     dtype: int64
df=data.fillna(data["Income"].mean())
#drop un unusual columns
df=df.drop("Z_CostContact",axis=1)
df=df.drop("Z_Revenue",axis=1)
df["Marital_Status"].value_counts()
     Married
     Together
                 580
     Single
                 480
     Divorced
                 232
     Widow
                  77
     Alone
                    3
     Absurd
                    2
     Y0L0
     Name: Marital_Status, dtype: int64
df.Marital_Status.replace({"Alone":"Single","Widow":"Single","Absurd":"Single","YOLO":"Single","Divorced":"Single","Together":"Married"},
df["Marital_Status"].value_counts()
     Married
                1444
     Single
                 796
     Name: Marital_Status, dtype: int64
```

sns.countplot(x="Marital\_Status",data=df)



```
df["TotalChildren"]=df["Kidhome"]+df["Teenhome"]
df2=df.drop(columns=["Kidhome","Teenhome"])
df=df2
df haad()
```



df.head()

|   | ID   | Year_Birth | Education  | Marital_Status | Income  | Dt_Customer | Recency | MntWines | MntFruits | ${\tt MntMeatProducts}$ | ••• | NumStorePur |
|---|------|------------|------------|----------------|---------|-------------|---------|----------|-----------|-------------------------|-----|-------------|
| 0 | 5524 | 1957       | Graduation | 0              | 58138.0 | 04/09/12    | 58      | 635      | 88        | 546                     |     |             |
| 1 | 2174 | 1954       | Graduation | 0              | 46344.0 | 08/03/14    | 38      | 11       | 1         | 6                       |     |             |
| 2 | 4141 | 1965       | Graduation | 1              | 71613.0 | 21/08/13    | 26      | 426      | 49        | 127                     |     |             |
| 3 | 6182 | 1984       | Graduation | 1              | 26646.0 | 10/02/14    | 26      | 11       | 4         | 20                      |     |             |
| 4 | 5324 | 1981       | PhD        | 1              | 58293.0 | 19/01/14    | 94      | 173      | 43        | 118                     |     |             |
|   |      |            |            |                |         |             |         |          |           |                         |     |             |

5 rows × 26 columns



df['Age']=2023-df['Year\_Birth']

df2=df.drop(columns=["Year\_Birth"])

df2.Education.replace({'Basic':'Undergraduate','2n Cycle':'Undergraduate','Graduation':'Postgraduate','Master':'Postgraduate','PhD':'Postgraduate','PhD':'Postgraduate','Chastgraduate','PhD':'Postgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','Chastgraduate','

df2.Education.replace({"Undergraduate":0,"Postgraduate":1},inplace=True)

df2['Education'].value\_counts()

1 1983 257

Name: Education, dtype: int64

sns.boxplot(df2["Income"])

plt.show()

```
data=df2
data=data.dropna(subset=['Income'])
data=data[data['Income']<600000]
|
data.head()</pre>
```

|      | ID      | Education | Marital_Status | Income  | Dt_Customer | Recency | MntWines | MntFruits | MntMeatProducts | MntFishProducts | • • • | NumWet |
|------|---------|-----------|----------------|---------|-------------|---------|----------|-----------|-----------------|-----------------|-------|--------|
| 0    | 5524    | 1         | 0              | 58138.0 | 04/09/12    | 58      | 635      | 88        | 546             | 172             |       |        |
| 1    | 2174    | 1         | 0              | 46344.0 | 08/03/14    | 38      | 11       | 1         | 6               | 2               |       |        |
| 2    | 4141    | 1         | 1              | 71613.0 | 21/08/13    | 26      | 426      | 49        | 127             | 111             |       |        |
| 3    | 6182    | 1         | 1              | 26646.0 | 10/02/14    | 26      | 11       | 4         | 20              | 10              |       |        |
| 4    | 5324    | 1         | 1              | 58293.0 | 19/01/14    | 94      | 173      | 43        | 118             | 46              |       |        |
| 5 ro | ows × 2 | 6 columns |                |         |             |         |          |           |                 |                 |       |        |
|      |         |           |                |         |             |         |          |           |                 |                 |       |        |



data.isnull().sum()

Education Marital\_Status 0 Income Dt\_Customer 0 Recency MntWines 0 0 MntFruits 0  ${\tt MntMeatProducts}$  ${\tt MntFishProducts}$ 0  ${\tt MntSweetProducts}$  ${\tt MntGoldProds}$ NumDealsPurchases 0 NumWebPurchases 0 NumCatalogPurchases 0 NumStorePurchases NumWebVisitsMonth 0 0 0  ${\tt AcceptedCmp3}$ AcceptedCmp4 0 AcceptedCmp5 AcceptedCmp1 0 AcceptedCmp2 Complain Response TotalChildren 0 Age 0 dtype: int64

sns.boxplot(data["Income"])

```
data['Spending']=data['MntWines']+data['MntFruits']+data['MntMeatProducts']+data['MntFishProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntFishProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntFishProducts']+data['MntSweetProducts']+data['MntFishProducts']+data['MntSweetProducts']+data['MntFishProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProducts']+data['MntSweetProduc
```

|     | ID      | Education | Marital_Status | Income  | Dt_Customer | Recency | Wines | Fruits | Meat | Fish | ••• | AcceptedCmp3 | AcceptedCmp4 | Accept      |
|-----|---------|-----------|----------------|---------|-------------|---------|-------|--------|------|------|-----|--------------|--------------|-------------|
| 0   | 5524    | 1         | 0              | 58138.0 | 04/09/12    | 58      | 635   | 88     | 546  | 172  |     | 0            | 0            |             |
| 1   | 2174    | 1         | 0              | 46344.0 | 08/03/14    | 38      | 11    | 1      | 6    | 2    |     | 0            | 0            |             |
| 2   | 4141    | 1         | 1              | 71613.0 | 21/08/13    | 26      | 426   | 49     | 127  | 111  |     | 0            | 0            |             |
| 3   | 6182    | 1         | 1              | 26646.0 | 10/02/14    | 26      | 11    | 4      | 20   | 10   |     | 0            | 0            |             |
| 4   | 5324    | 1         | 1              | 58293.0 | 19/01/14    | 94      | 173   | 43     | 118  | 46   |     | 0            | 0            |             |
| 5 r | 0We x 2 | 7 columns |                |         |             |         |       |        |      |      |     |              |              |             |
| 4   |         |           |                |         |             |         |       |        |      |      |     |              |              | <b>&gt;</b> |

##Seniority variable creation
last\_date = date(2023,4,4)

data['Seniority']=pd.to\_datetime(data['Dt\_Customer'])

data['Seniority']=pd.to\_datetime(data['Seniority'], dayfirst=True,format = '%Y-%m-%d')

 $\label{lambda x: (last_date - x)).dt.days, downcast='integer')/30} data['Seniority'] = pd.to_numeric(data['Seniority'].dt.date.apply(lambda x: (last_date - x)).dt.days, downcast='integer')/30 | data['Seniority'] | data['Seniority'].dt.date.apply(lambda x: (last_date - x)).dt.days, downcast='integer')/30 | data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['Seniority'].dt.data['$ 

## data['Seniority']

```
133.733333
1
        105.533333
        117.100000
2
        103.533333
3
       112.066667
4
       119.400000
2235
       103.400000
2236
2237
       111.866667
2238
        111.900000
2239
        127.433333
Name: Seniority, Length: 2239, dtype: float64
```

data.head()

|     | ID       | Education | Marital_Status | Income  | Dt_Customer | Recency | Wines | Fruits | Meat | Fish | <br>AcceptedCmp4 | AcceptedCmp5 | Accept |
|-----|----------|-----------|----------------|---------|-------------|---------|-------|--------|------|------|------------------|--------------|--------|
| 0   | 5524     | 1         | 0              | 58138.0 | 04/09/12    | 58      | 635   | 88     | 546  | 172  | <br>0            | 0            |        |
| 1   | 2174     | 1         | 0              | 46344.0 | 08/03/14    | 38      | 11    | 1      | 6    | 2    | <br>0            | 0            |        |
| 2   | 4141     | 1         | 1              | 71613.0 | 21/08/13    | 26      | 426   | 49     | 127  | 111  | <br>0            | 0            |        |
| 3   | 6182     | 1         | 1              | 26646.0 | 10/02/14    | 26      | 11    | 4      | 20   | 10   | <br>0            | 0            |        |
| 4   | 5324     | 1         | 1              | 58293.0 | 19/01/14    | 94      | 173   | 43     | 118  | 46   | <br>0            | 0            |        |
| 5 m | nine x 2 | 8 columne |                |         |             |         |       |        |      |      |                  |              |        |
| 4   |          |           |                |         |             |         |       |        |      |      |                  |              | •      |

df2=data.drop(columns=["ID","Dt\_Customer"])
data=df2
data.head()

```
Education Manital Status Income Perency Wines Equits Meat Eich Sugats Gold AccentedCmn4 AccentedCmn5 AccentedCm
```

```
1 /1613.0
                                                 26
                                                       426
                                                                49
                                                                     127
                                                                           111
                                                                                    21
                                                                                          42
scaler=StandardScaler()
dataset_temp=data[['Income','Seniority','Spending']]
X_std=scaler.fit_transform(dataset_temp)
X = normalize(X_std,norm='12')
    4
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
silhouette_score_lst=[]
for i in range(2,11):
 silhouette\_score\_lst.append(silhouette\_score(X,(KMeans(n\_clusters=i).fit\_predict(X))))
#elbow method
clustering_score=[]
for i in range(1,11):
 kmeans=KMeans(n_clusters=i,init='random',random_state=23)
 clustering_score.append(kmeans.inertia_)
plt.figure(figsize=(10,6))
plt.plot(range(1,11),clustering_score)
plt.xlabel('No of clusters')
plt.ylabel('clustering Score')
plt.title("Elbow method")
plt.show()
```



```
## set up a model
kmeans=KMeans(n_clusters=3,random_state=23)
#fit model
kmeans.fit(X)
#predict
pred=kmeans.predict(X)

len(pred)
```

```
data['cluster'] = pd.DataFrame(pred,columns = ['cluster'])
data.head(10)
```

|      | Education     | Marital_Status | Income  | Recency | Wines | Fruits | Meat | Fish | Sweets | Gold | <br>AcceptedCmp5 | AcceptedCmp1 | AcceptedCmp |
|------|---------------|----------------|---------|---------|-------|--------|------|------|--------|------|------------------|--------------|-------------|
| 0    | 1             | 0              | 58138.0 | 58      | 635   | 88     | 546  | 172  | 88     | 88   | <br>0            | 0            |             |
| 1    | 1             | 0              | 46344.0 | 38      | 11    | 1      | 6    | 2    | 1      | 6    | <br>0            | 0            |             |
| 2    | 1             | 1              | 71613.0 | 26      | 426   | 49     | 127  | 111  | 21     | 42   | <br>0            | 0            |             |
| 3    | 1             | 1              | 26646.0 | 26      | 11    | 4      | 20   | 10   | 3      | 5    | <br>0            | 0            |             |
| 4    | 1             | 1              | 58293.0 | 94      | 173   | 43     | 118  | 46   | 27     | 15   | <br>0            | 0            |             |
| 5    | 1             | 1              | 62513.0 | 16      | 520   | 42     | 98   | 0    | 42     | 14   | <br>0            | 0            |             |
| 6    | 1             | 0              | 55635.0 | 34      | 235   | 65     | 164  | 50   | 49     | 27   | <br>0            | 0            |             |
| 7    | 1             | 1              | 33454.0 | 32      | 76    | 10     | 56   | 3    | 1      | 23   | <br>0            | 0            |             |
| 8    | 1             | 1              | 30351.0 | 19      | 14    | 0      | 24   | 3    | 3      | 2    | <br>0            | 0            |             |
| 9    | 1             | 1              | 5648.0  | 68      | 28    | 0      | 6    | 1    | 1      | 13   | <br>0            | 0            |             |
| 10 7 | owe v 27 coli | imne           |         |         |       |        |      |      |        |      |                  |              | <b>•</b>    |

```
#Now let's plot this data to have a look at the clustering of customers:
plt.figure(figsize = (10,6))

plt.scatter(X[pred==0.0,0],X[pred==0.0,1],c = 'brown',label = 'cluster 0')
plt.scatter(X[pred==1.0,0],X[pred==1.0,1],c = 'green',label = 'cluster 1')
plt.scatter(X[pred==2.0,0],X[pred==2.0,1],c = 'blue',label = 'cluster 2')
plt.show()
```



#Now I will prepare the data for the Apriori algorithm. Here I will be defining three segments of the customers according to the age, inc

```
#Create Age segment
cut_labels_Age = ['Young', 'Adult', 'Mature', 'Senior']
cut_bins = [0, 30, 45, 65, 120]
data['Age_group'] = pd.cut(data['Age'], bins=cut_bins, labels=cut_labels_Age)
#Create Income segment
cut_labels_Income = ['Low income', 'Low to medium income', 'Medium to high income', 'High income']
data['Income_group'] = pd.qcut(data['Income'], q=4, labels=cut_labels_Income)
#Create Seniority segment
cut_labels_Seniority = ['New customers', 'Discovering customers', 'Experienced customers', 'Old customers']
data['Seniority_group'] = pd.qcut(data['Seniority'], q=4, labels=cut_labels_Seniority)
data=data.drop(columns=['Age','Income','Seniority'])
data.head()
```

|   | Education | Marital_Status | Recency | Wines | Fruits | Meat | Fish | Sweets | Gold | NumDealsPurchases | • • • | AcceptedCmp1 | AcceptedCmp2 | ( |
|---|-----------|----------------|---------|-------|--------|------|------|--------|------|-------------------|-------|--------------|--------------|---|
| 0 | 1         | 0              | 58      | 635   | 88     | 546  | 172  | 88     | 88   | 3                 |       | 0            | 0            |   |
| 1 | 1         | 0              | 38      | 11    | 1      | 6    | 2    | 1      | 6    | 2                 |       | 0            | 0            |   |
| 2 | 1         | 1              | 26      | 426   | 49     | 127  | 111  | 21     | 42   | 1                 |       | 0            | 0            |   |
| 3 | 1         | 1              | 26      | 11    | 4      | 20   | 10   | 3      | 5    | 2                 |       | 0            | 0            |   |
| 4 | 1         | 1              | 94      | 173   | 43     | 118  | 46   | 27     | 15   | 5                 |       | 0            | 0            |   |

#Now I will define new segments according to the spending of customers on each product which will be based on:
cut\_labels = ['Low consumer', 'Frequent consumer', 'Biggest consumer']
data['Wines\_segment'] = pd.qcut(data['Wines'][data['Wines']>0],q=[0, .25, .75, 1], labels=cut\_labels).astype("object")
data['Fruits\_segment'] = pd.qcut(data['Fruits'][data['Fruits']>0],q=[0, .25, .75, 1], labels=cut\_labels).astype("object")
data['Meat\_segment'] = pd.qcut(data['Meat'][data['Meat']>0],q=[0, .25, .75, 1], labels=cut\_labels).astype("object")
data['Fish\_segment'] = pd.qcut(data['Fish'][data['Fish']>0],q=[0, .25, .75, 1], labels=cut\_labels).astype("object")
data['Sweets\_segment'] = pd.qcut(data['Sweets'][data['Sweets']>0],q=[0, .25, .75, 1], labels=cut\_labels).astype("object")
data['Gold\_segment'] = pd.qcut(data['Gold'][data['Gold']>0],q=[0, .25, .75, 1], labels=cut\_labels).astype("object")
data.replace(np.nan, "Non consumer",inplace=True)
data.drop(columns=['Spending','Wines','Fruits','Meat','Fish','Sweets','Gold'],inplace=True)
data.astype(object)

data.head()

| ases | NumCatalogPurchases | NumStorePurchases | NumWebVisitsMonth | AcceptedCmp3 | AcceptedCmp4 | <br>cluster | Age_group | Income_group          | S |
|------|---------------------|-------------------|-------------------|--------------|--------------|-------------|-----------|-----------------------|---|
| 8    | 10                  | 4                 | 7                 | 0            | 0            | <br>2.0     | Senior    | Medium to high income |   |
| 1    | 1                   | 2                 | 5                 | 0            | 0            | <br>1.0     | Senior    | Low to medium income  |   |
| 8    | 2                   | 10                | 4                 | 0            | 0            | <br>2.0     | Mature    | High income           |   |
| 2    | 0                   | 4                 | 6                 | 0            | 0            | <br>1.0     | Adult     | Low income            |   |
| 5    | 3                   | 6                 | 5                 | 0            | 0            | <br>1.0     | Adult     | Medium to high income |   |
|      |                     |                   |                   |              |              |             |           |                       |   |

| Seniority_group Income group | Discovering customers | Experienced customers | New customers | Old customers | 7 |
|------------------------------|-----------------------|-----------------------|---------------|---------------|---|
| High income                  | 138                   | 138                   | 154           | 130           |   |
| Low income                   | 131                   | 142                   | 140           | 147           |   |
| Low to medium income         | 146                   | 140                   | 140           | 134           |   |
| Medium to high income        | 150                   | 134                   | 126           | 149           |   |

pd.crosstab(data["Income\_group"],data["Wines\_segment"])

| Wines_segment         | Biggest consumer | Frequent consumer | Low consumer | Non consumer | 1 |
|-----------------------|------------------|-------------------|--------------|--------------|---|
| Income_group          |                  |                   |              |              |   |
| High income           | 337              | 218               | 5            | 0            |   |
| Low income            | 0                | 138               | 409          | 13           |   |
| Low to medium income  | 19               | 411               | 130          | 0            |   |
| Medium to high income | 200              | 345               | 14           | 0            |   |

pd.crosstab(data["Income\_group"],data["Fish\_segment"])

1

1

| Fish_segment                                                      | Biggest consumer | Frequent consumer | Low consumer | Non consumer | 1 |  |
|-------------------------------------------------------------------|------------------|-------------------|--------------|--------------|---|--|
| Income_group                                                      |                  |                   |              |              |   |  |
| High income                                                       | 310              | 213               | 9            | 28           |   |  |
| Low income                                                        | 7                | 216               | 228          | 109          |   |  |
| Low to medium income                                              | 29               | 192               | 188          | 151          |   |  |
| Madium to high income                                             | 116              | 285               | 62           | 96           |   |  |
| <pre>pd.crosstab(data["Income_group"],data["Meat_segment"])</pre> |                  |                   |              |              |   |  |

| Meat_segm           | ent Biggest consumer | Frequent consumer | Low consumer | Non consumer |
|---------------------|----------------------|-------------------|--------------|--------------|
| Income_gr           | oup                  |                   |              |              |
| High income         | 425                  | 130               | 5            | 0            |
| Low income          | 2                    | 191               | 366          | 1            |
| Low to medium inco  | ome 7                | 372               | 181          | 0            |
| Medium to high inco | ome 124              | 396               | 39           | 0            |

pd.crosstab(data["Income\_group"],data["Fruits\_segment"])

| Fruits_segment        | Biggest consumer | Frequent consumer | Low consumer | Non consumer |  |
|-----------------------|------------------|-------------------|--------------|--------------|--|
| Income_group          |                  |                   |              |              |  |
| High income           | 290              | 235               | 8            | 27           |  |
| Low income            | 7                | 180               | 258          | 115          |  |
| Low to medium income  | 21               | 208               | 180          | 151          |  |
| Medium to high income | 135              | 261               | 56           | 107          |  |

pd.crosstab(data["Income\_group"],data["Sweets\_segment"])

| Sweets_segment       | Biggest<br>consumer | Frequent<br>consumer | Low<br>consumer | Non<br>consumer |
|----------------------|---------------------|----------------------|-----------------|-----------------|
| Income_group         |                     |                      |                 |                 |
| High income          | 290                 | 227                  | 7               | 36              |
| Low income           | 5                   | 202                  | 240             | 113             |
| Low to medium income | 23                  | 204                  | 175             | 158             |

pd.crosstab(data["Income\_group"],data["Gold\_segment"])

| Gold_segment         | Biggest<br>consumer | Frequent<br>consumer | Low<br>consumer | Non<br>consumer |
|----------------------|---------------------|----------------------|-----------------|-----------------|
| Income_group         |                     |                      |                 |                 |
| High income          | 247                 | 277                  | 21              | 15              |
| Low income           | 18                  | 243                  | 285             | 14              |
| Low to medium income | 75                  | 267                  | 201             | 17              |

```
\mbox{\tt\#will} use this algorithm to identify the biggest customer of wines
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', 999)
pd.options.display.float_format = "\{:.3f\}".format
association=data.copy()
df = pd.get_dummies(association)
min\_support = 0.08
max len = 10
frequent\_items = apriori(df, use\_colnames=True, min\_support=min\_support, max\_len=max\_len + 1)
rules = association_rules(frequent_items, metric='lift', min_threshold=1)
product='Wines'
segment='Biggest consumer'
target = '{\'%s_segment_%s\'}' %(product, segment)
results\_personnal\_care = rules[rules['consequents'].astype(str).str.contains(target, na=False)].sort\_values(by='confidence', ascending=False)].sort\_values(by='confidence', ascending=False)].sort\_values(by='confi
results_personnal_care.head()
```

#So according to the output and overall analysis conducted on this data science project on customer personality analysis with Python, we

Colab paid products - Cancel contracts here

✓ 0s completed at 21:45

Could not connect to the reCAPTCHA service. Please check your internet connection and reload to get a reCAPTCHA challenge.