Computer-Assisted Musical Instrument Tutoring with Targeted Exercises

Graham Keith Percival

- Why CAMIT?
- Objective analysis of audio
- Creating exercises
- Putting it all together: Musician Evaluation and AWdition for Strings (MEAWS)

Do we need CAMIT?

- "What's wrong with human music teachers?"
 - When one is available, nothing!
 - However, they are not always available.
- Accurate self-verification is hard, especially for beginners.
 - Ear training takes years.
 - (audio example) is this good, bad, or ugly?
 - "it was bad": now how do you fix it? Which note(s) were bad, and in what way?
- CAMIT: provides objective feedback.

Not only intonation

- Verification is still a problem for fixed-pitch instruments like pianos.
- Consider the rhythm in this music fragment:

(clap example) Was that correct?

Not only intonation

- Verification is still a problem for fixed-pitch instruments like pianos.
- Consider the rhythm in this music fragment:

(clap example) Was that correct?

I actually clapped this:

Analyzing Rhythms

Begin with a recording of claps and calculate RMS (Root-Mean-Squared) amplitude:

Analyzing Rhythms (cont)

Pick any peaks which are larger than a threshold value:

Red bars indicate detected claps; the dotted blue horizontal line indicates the threshold value.

Grading Rhythms

Compare the detected claps with the expected claps:

Analyzing Intonation

Begin with a recording of a violin and perform pitch detection using a modified YIN algorithm:

Analyzing Intonation (cont)

Group these pitches into notes:

Grading Intonation

Compare the pitches inside detected notes with the expected pitches for those notes:

Grading Intonation (cont)

Display the results in a simpler format:

Center line is perfect intonation. Purple box above indicates too high; blue box below indicates too low; green box above and below indicates both.

Creating Exercises: general

- We need to create exercises to match our analysis:
 - Intonation exercises cannot repeat pitches in adjacent notes (no "twinkle, twinkle, little star...").
 - Existing music does not always satisfy this constraint.
- Generate exercises with a computer by representing exercises as a Constraint Satisfaction Problem.
- Requires a mathematical representation of our intuitive sense of musical difficulty.

Creating Exercises: rhythms

- Computer generates 1 bar; we repeat this to form 2-bar exercises.
- Music representation: two lists, with N variables in each list. N depends on the tatum ("temporal atom").
 - Events: can be 0 (no change), 1 (new note), or 2 (new rest).
 - Durations: any non-negative integer.

Creating Exercises: rhythm levels

	-				
	Level	Durs.	Tatum	Events constraints	Example
_	1	$\frac{1}{4}\frac{1}{8}$	2	Must have an event on every beat, and no rests.	4 1 1
	2	$\frac{1}{4}\frac{1}{8}\frac{1}{16}$	4	Must have an event on every beat, no rests, and each beat is divided into equal durations.	4
	3	$\frac{1}{4} \frac{1}{8} \frac{1}{16}$	4	Must have an event on every beat, no rests, and $\frac{1}{16}$ must occur in pairs replacing an $\frac{1}{8}$.	4
	4	$\frac{1}{4}\frac{1}{8}$	2	Must have an event on every beat, and rests can only occur on beats.	4 7 7
	5	$\frac{1}{2} \frac{3}{8} \frac{1}{4} \frac{1}{8}$	2	Must have an event on every second beat, and rests can only occur on beats.	4 4 7
	6	$\frac{1}{4} \frac{1}{8} \frac{1}{12}$	6	Must have an event on every beat, no rests, and each beat is divided into equal durations.	4 - 3 - 3

Creating Exercises: intonation

- Computer generates 4 quarter notes; we repeat this to form 2-bar exercises.
- Music representation: four lists, with 4 variables (one for each quarter note) in each list.
 - Pitch: any integer from 55 to 127 (MIDI pitch values for violin).
 - String: four possible values, 1 (the E string) to 4 (the G string).
 - Hand position: any integer above 0, although the practical limit is less than 10.
 - Finger. any integer from 0 to 4 (inclusive).

Creating Exercises: intonation levels

Level	Variable domains ^a	Other constraints	Example
1	S: 1 2, H: 1, F: 0 1 2, K: A+	Cannot change strings to a fingered note.	
2	S: 1 2, H: 1, F: 0 1 2 3 4, K: A+	Cannot change strings to a fingered note.	
3	S: 1 2, H: 1, F: 0 1 2 3 4, K: A+	No fingered fifths ^b .	
4	S: 1 2, H: 1, F: 0 1 2 3 4, K: A-	No fingered fifths.	
5	S: 1 2, H: 1, F: 0 1 2 3 4, K: A+	Ø	
6	S: 3 4, H: 1, F: 0 1 2 3 4, K: G+	Ø	

^a'S' for string, 'H' for hand positions, 'F' for fingers, and 'K' for the key (+ major or - minor).

^b"Fingered fifths" is a violin term for playing adjacent notes on adjacent strings with the same finger.

MEAWS

- Musician Evaluation and AWdition for Strings: provides objective feedback for music students.
- Students are presented with an easy exercise (level 0). As they pass exercises, they advance to higher levels.
- MEAWS is published under the GPLv3, and can be easily downloaded and run on MacOS X and Linux machines.

Conclusion

- Focus on targeted exercises, not "teacher replacement".
- Computer-generated exercises for specific ability levels.
- MEAWS: implements the audio analysis in an easy-to-use program for music students.