

ECE/SIOC 228 Machine Learning for Physical Applications Lecture 13: Markov Decision Process II

Yuanyuan Shi

Assistant Professor, ECE

University of California, San Diego

Outline

UC San Diego

Markov Decision Process

• Value Iteration

• Policy Iteration

Markov Decision Process

- A Markov Decision Process in a tuple $< S, A, P, R, \gamma >$
 - S is a finite set of states
 - A is a finite set of actions
 - P is a state transition probability matrix, $P_{ss'}^a = P[S_{t+1} = s' | S_t = s, A_t = a]$
 - R is a reward function, $R_s^a = R(R_{t+1}|S_t = s, A_t = a)$
 - γ is a discount factor $\gamma \in [0, 1]$

Figure 3.1: The agent–environment interaction in a Markov decision process.

Markov Decision Process Example

UC San Diego

Dice Game Markov Chain

For each round r = 1,2,...

- You choose stay or quit
- If quit, you get \$10 and the game ends
- If stay, you get \$4 and then we roll a 6-sided dice
 - If the dice results in 1 or 2, game ends
 - Otherwise, game continues to the next round

Markov Decision Process Example

Policy

UC San Diego

• A policy π is a mapping from each state $s \in S$ to an action $a \in A$

$$\pi[a|s] = P[A_t = a|S_t = s]$$

- A policy full defines the behavior of an agent
- In MDP, policies only depend on the current state S_t , not the history
- Policy is stationary (time independent), $A_t \sim \pi(\cdot | S_t)$, $\forall t > 0$
- Policy can be both stochastic and deterministic

Example: policy "stay" // policy "quit" // policy "50% stay, 50% quit"

Episode

UC San Diego

An episode is a sequence of states, actions and rewards

$$S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1}, R_{t+2}, S_{t+2}, A_{t+2}, R_{t+3}, S_{t+4}, \dots$$

Sample **episodes** starting from $S_1 = In$

- [In (stay), End] \$4
- [In (stay), In (stay), In (stay), End] \$12
- [In (stay), In (stay), End] \$8
- [In (stay), In (stay), In (stay), End] \$16
-
- Episode with finite length (episodic) v.s. infinite length (continuing tasks)
- Episodes are independent from each other

Return

UC San Diego

• Each episode is associated with a return G_t , that is the total discounted reward from time step t

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- The discount $\gamma \in [0, 1]$ is the present value of future rewards
- The value of receiving reward R after k+1 time-steps is $\gamma^k R$
- This values immediate reward above delayed reward
 - γ close to 0 leads to "greedy" evaluation (only care about current step)
 - γ close to 1 leads to "far-sighted" evaluation

Return

UC San Diego

• The return G_t is the total discounted reward from time step t

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

For each round r = 1,2,...

- · You choose stay or quit
- If quit, you get \$10 and the game ends
- If stay, you get \$4 and then we roll a 6-sided dice
 - If the dice results in 1 or 2, game ends
 - Otherwise, game continues to the next round

```
Discount \gamma = 1: [In (stay), In (stay), In (stay), In (stay), End] 4 + 4 + 4 + 4 + 4 = $16
Discount \gamma = 0: [In (stay), In (stay), In (stay), In (stay), End] 4 + 0 \cdot 4 + 0 \cdot 4 + 0 \cdot 4 = $4
Discount \gamma = 1/2: [In (stay), In (stay), In (stay), In (stay), End] 4 + 0.5 \cdot 4 + 0.5^2 \cdot 4 + 0.5^3 \cdot 4 = $7.5
```

Why Discount?

UC San Diego

- Mathematically convenient to use discount rewards
- Animal/human behavior shows preference for immediate reward
- If the reward is financial, immediate rewards may earn more interest than delayed rewards
- Uncertainty about the future may not be fully represented
- Sometimes, it is possible to use undiscounted reward if all possible episodes are finite

•

UC San Diego

The state-value function $v_{\pi}(s)$ of a policy π in an MDP is the expected return starting from state s, and then following policy π

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s]$$

The state-action value function $q_{\pi}(s, a)$ of a policy π (sometimes also refer to as action value function) is the expected return starting from state s, taking action a, and then following policy π

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a]$$

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) q_{\pi}(s,a)$$

$$q_{\pi}(s, a) = \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}(s')$$

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}(s') \right)$$

Policy Evaluation

- Given a policy π , how can we evaluate it, i.e., compute $v_{\pi}(s)$ and $q_{\pi}(s,a)$?
- Solve a linear system

$$egin{aligned} oldsymbol{v_{\pi}(s)} &= \sum_{oldsymbol{a} \in \mathcal{A}} \pi(oldsymbol{a}|s) \left(\mathcal{R}_{oldsymbol{s}}^{oldsymbol{a}} + \gamma \sum_{oldsymbol{s}' \in \mathcal{S}} \mathcal{P}_{oldsymbol{s} oldsymbol{s}'}^{oldsymbol{a}} oldsymbol{v_{\pi}(s')}
ight) \end{aligned}$$

$$v_{\pi} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} v_{\pi}$$

where
$$R^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) R_s^a$$
, $\mathcal{P}^{\pi}(s'|s) = \sum_{a \in \mathcal{A}} \pi(a|s) P(s'|s,a)$

$$\begin{bmatrix} v_{\pi}(1) \\ v_{\pi}(2) \\ \vdots \\ v_{\pi}(n) \end{bmatrix} = \begin{bmatrix} R^{\pi}(1) \\ R^{\pi}(2) \\ \vdots \\ R^{\pi}(n) \end{bmatrix} + \gamma \begin{bmatrix} \mathcal{P}_{11}^{\pi} & \mathcal{P}_{12}^{\pi} & \cdots & \mathcal{P}_{1n}^{\pi} \\ \mathcal{P}_{21}^{\pi} & \mathcal{P}_{22}^{\pi} & \cdots & \mathcal{P}_{2n}^{\pi} \\ \vdots & \vdots & \ddots & \vdots \\ \mathcal{P}_{n1}^{\pi} & \mathcal{P}_{n2}^{\pi} & \cdots & \mathcal{P}_{nn}^{\pi} \end{bmatrix} \begin{bmatrix} v_{\pi}(1) \\ v_{\pi}(2) \\ \vdots \\ v_{\pi}(n) \end{bmatrix}$$

Policy Evaluation

UC San Diego

• The Bellman Equation is a linear equation:

$$v_{\pi} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} v_{\pi}$$

We can solve it directly by,

$$(I - \gamma \mathcal{P}^{\pi})v = \mathcal{R}^{\pi}$$
$$v = (I - \gamma \mathcal{P}^{\pi})^{-1}\mathcal{R}^{\pi}$$

- Direct solution only possible for small MDPs
- Method 2: Iterative methods for large MDPs,

$$v_{\pi}^{(k+1)}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in S} P_{ss'}^{a} v_{\pi}^{(k)}(s') \right)$$

$$v_{\pi}^{(k+1)} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} v_{\pi}^{(k)}, \quad v_{\pi}^{(1)} \to v_{\pi}^{(2)} \to \cdots \to v_{\pi} \text{ (contraction mapping } \to \text{ convergence)}$$

Summary

- Markov Decision Process $< S, A, P, R, \gamma >$
 - State
 - Action
 - Transition Probability
 - Reward (and discount factor)
- Policy
- Return
- Value function: state value function $v_{\pi}(s)$, action value function $q_{\pi}(s,a)$

Outline

UC San Diego

• Markov Decision Process

• Value Iteration

• Policy Iteration

Optimal Value Function

UC San Diego

• The optimal state-value function $v_*(s)$ is the maximum value function over all policies

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

• The optimal state-action value function $q_*(s,a)$ is the maximum state-action value function over all policies

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

- An MDP is "solved" when we know the optimal value function
- Notice if we have $q_*(s,a)$, we can obtain the optimal policy $\pi_*:\pi_*(s)=\arg\max_{a\in\mathcal{A}}q_*(s,a)$, $\forall s\in S$
- Value iteration and policy iteration are two ways to "solve" the MDP, a.k.a. find the optimal policy (or equivalently, find the optimal value function)

Bellman Optimality Equations

UC San Diego

• The optimal value functions are recursively related by the Bellman optimality equations:

$$v_*(s) = \max_a q_*(s,a)$$

Bellman Optimality Equations

UC San Diego

The optimal value functions are recursively related by the Bellman optimality equations:

$$q_*(s,a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s')$$

Bellman Optimality Equations

UC San Diego

• The optimal value functions are recursively related by the Bellman optimality equations:

Value Iteration

- Goal: find the optimal value function
- Solution: iterative application of the Bellman optimality equation
- $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_*$

$$v_{k+1}(s) = \max_{a \in \mathcal{A}} \left(R_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right)$$

Convergence of Value Iteration

UC San Diego

Theorem. Value iteration converges to v_* . At convergence,

$$\forall s \in S, v_*(s) = \max_{a \in \mathcal{A}} (R_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s'))$$

- Proof is left as Homework (HW2 Q3)
- By first showing the Bellman optimality operator $Bell(v) = \max_{a \in \mathcal{A}} (R_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v(s'))$ is a contraction mapping.
- Show the fixed point is unique.
- We can also derive the optimal policy from the optimal value function v_{st}

Illustration of Value Iteration: Deterministic Environment

- Simple grid world with a "goal state" with reward 10 and a "bad state" with reward -10. Move 1 step incurs reward -1.
- Both the "goal state" and "bad state" are terminal state, value of terminal state equal to 0 (future expected return equal to 0).
- Actions at each state: *up, down, left, right*. Taking an action that would bump into a wall leaves agent where it is.
- Discount factor $\gamma = 0.9$

Original reward function

Illustration of Value Iteration

UC San Diego

0	0	0
0	0	0
0	0	0

-1	9	0
-1	-1	0
-1	-1	-1

Initialize value function: $v_0(s)$

Value function after 1 iteration: $v_1(s)$

$$v_{k+1}(s) = \max_{a \in \mathcal{A}} \left(R_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right)$$

Illustration of Value Iteration

7.1	9	0
-1.9	7.1	0
-1.9	-1.9	-1.9

7.1	9	0
5.39	7.1	0
-2.71	5.39	-2.71

7.1	9	0
5.39	7.1	0
3.85	5.39	3.85

$$v_2(s)$$

$$v_3(s)$$

$$v_4(s)$$

$$v_5(s)$$

$$v_{k+1}(s) = \max_{a \in \mathcal{A}} \left(R_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right)$$

Illustration of Value Iteration

UC San Diego

7.1	9	0
5.39	7.1	0
3.85	5.39	3.85
$v_5(s)$		

Best policy based on $v_5(s)$

An optimal policy can be found by maximizing over $q_*(s,a) = \mathcal{R}_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_*(s')$

$$\pi_*(a|s) = \begin{cases} 1 & \text{if } a = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \, q_*(s,a) \\ 0 & \text{otherwise} \end{cases}$$

Outline

UC San Diego

• Markov Decision Process

• Value Iteration

Policy Iteration

Policy Iteration

UC San Diego

- Given a policy π
 - Evaluate the policy $\pi \rightarrow v_{\pi}(s)$
 - Improve the policy by acting greedily with respect to v_{π} :

$$\pi'(s) \leftarrow \underset{a \in \mathcal{A}}{\operatorname{argmax}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in S} P(s'|s, a) v_{\pi}(s') \right) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} q_{\pi}(s, a)$$

Policy Iteration Algorithm:

- 1. Initialize policy π (e.g., randomly)
- 2. Perform policy evaluation
- 3. Perform policy improvement , obtain policy π'
- 4. If policy changed in last iteration, return to Step 2

Policy Iteration

UC San Diego

Policy evaluation Estimate v_{π} Iterative policy evaluation

Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

- Convergence property of policy iteration: $\pi \to \pi^*$
- Proof involves showing that each policy evaluation is a contraction and policy must improve each step, or be optimal policy (policy improvement theorem)

Policy Improvement Theorem

UC San Diego

- Consider a deterministic policy, $a = \pi(s)$
- We can improve the policy by acting greedily

$$\pi'(s) = \operatorname*{argmax}_{a \in \mathcal{A}} q_{\pi}(s, a)$$

This improves the value from any state s over one step,

$$q_{\pi}(s, \pi'(s)) = \max_{a \in \mathcal{A}} q_{\pi}(s, a) \ge q_{\pi}(s, \pi(s)) = v_{\pi}(s)$$

• It therefore improves the value function,

Policy Improvement Theorem

UC San Diego

If improvements stop,

$$q_{\pi}(s, \pi'(s)) = \max_{a \in \mathcal{A}} q_{\pi}(s, a) = q_{\pi}(s, \pi(s)) = v_{\pi}(s)$$

• The Bellman optimality equation has been satisfied,

$$v_{\pi}(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} q_{\pi}(s, a)$$

- Therefore, $v_{\pi}(s) = v_{*}(s)$ for all $s \in S$
- So π is am optimal policy

Illustration of Policy Iteration

UC San Diego

• Initialize with a policy $\pi(s) = [U, D, L, R]$ with prob 0.25

0	0	10
0	0	-10
0	0	0

Original reward function

Illustration of Policy Iteration

UC San Diego

-5.78	-1.97	0
-7.7	-7.69	0
-8.62	-8.93	-10.02

 v_{π} of the initial random policy

- Initialize with a policy $\pi(s) = [U, D, L, R]$ with prob 0.25
- Perform policy evaluation of policy π
- Perform policy improvement

$$\pi'(s) \leftarrow \underset{a \in \mathcal{A}}{\operatorname{argmax}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in S} P(s'|s, a) v_{\pi}(s') \right)$$

- Find the optimal policy in 1 iteration!
- Can also compute optimal value function by running policy evaluation of π_*

7.1	9	0
5.39	7.1	0
3.85	5.39	3.85

Policy Iteration or Value Iteration?

UC San Diego

- Policy iteration requires fewer iterations that value iteration, but each iteration requires solving
 a linear system instead of just applying Bellman operator
- For small MDPs, policy iteration is often faster

• For MDPs with large state spaces, solving for v_{π} explicitly would involve solving a large system of linear equations, and could be difficult. In these problems, value iteration may be preferred.

What is next?

UC San Diego

Planning in Markov Decision Process (offline)

Today's lecture

• Find the optimal policy via value iteration and policy iteration

Reinforcement Learning in Markov Decision Process (online)

Have the environment model (reward, transition)

Next lectures

- Don't know how the environment works
- Find the optimal policy by interacting with the environment (taking actions and collect reward)