Number System; 수체계; 진법(進法)

python 진법 변환기

```
number=input("Your Number: ")
base=int(input("Your Base: "))

try:
    if base==16 or base==10 or base==8 or base==2:
        dap=int(number, base)
        print("To Dec: ",dap)
        print("To Hex: ",hex(dap))
        print("To Oct: ",oct(dap))
        print("To Bin: ",bin(dap))
    else:
        print("not supported")

except ValueError:
    print("value not supported")
```

```
결과

Your Number: 23
Your Base: 8
To Dec: 19
To Hex: 0x13
To Oct: 0o23
To Bin: 0b10011
```

어떻게 읽어야 할까요?

01 진법과 진법 변환

1 디지털 정보의 단위

- 1nibble = 4bit
- 1byte = 8bit
- 1byte = 1문자(character)
- 영어는 1byte로 1 문자 표현, 한글은 2byte가 필요
- 1워드 : 특정 CPU에서 취급하는 명령어나 데이터의 길이에 해당하는 비트 수
- 워드 길이는 8·16·32·64비트 등 8의 배수가 가능하다.

그림 2-1 비트, 니블, 바이트의 관계

MSBMost Significant Bit: 최상위 비트 LSBLeast Significant Bit: 최하위 비트

❖ SI 단위와 IEC 단위 비교

SI(10진수 단위)				IEC(2진수 단위)				
값	기호	이름	값	기호	이름	10진수 변환 크기		
$(10^3)^1 = 10^3$	k, K	kilo-	$(2^{10})^1 = 2^{10} \cong 10^{3.01}$	Ki	kibi-	1,024		
$(10^3)^2 = 10^6$	М	mega-	$(2^{10})^2 = 2^{20} \cong 10^{6.02}$	Mi	mebi-	1,048,576		
$(10^3)^3 = 10^9$	G	giga-	$(2^{10})^3 = 2^{30} \cong 10^{9.03}$	Gi	gibi-	1,073,741,824		
$(10^3)^4 = 10^{12}$	T	tera-	$(2^{10})^4 = 2^{40} \cong 10^{12.04}$	Ti	tebi-	1,099,511,627,776		
$(10^3)^5 = 10^{15}$	Р	peta-	$(2^{10})^5 = 2^{50} \cong 10^{15.05}$	Pi	pebi-	1,125,899,906,842,624		
$(10^3)^6 = 10^{18}$	Е	exa-	$(2^{10})^6 = 2^{60} \cong 10^{18.06}$	Ei	exbi-	1,152,921,504,606,846,976		
$(10^3)^7 = 10^{21}$	Z	zetta-	$(2^{10})^7 = 2^{70} \cong 10^{21.07}$	Zi	zebi-	1,180,591,620,717,411,303,424		
$(10^3)^8 = 10^{24}$	Y	yotta-	$(2^{10})^8 = 2^{80} \cong 10^{24.08}$	Yi	yobi-	1,208,925,819,614,629,174,706,176		

kibi-: kilobinary, mebi-: megabinary, gibi-: gigabinary, tebi-: terabinary, pebi-: petabinary, exbi-: exabinary,

zebi-: zettabinary, yobi-: yottabinary

01 진법과 진법 변환

2 진법

❖ 10진법

- 10진수: 기수가 10인 수
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9의 10개 수로 표현

$$9345.35 = 9 \times 1000 + 3 \times 100 + 4 \times 10 + 5 \times 1 + 3 \times 0.1 + 5 \times 0.01$$
$$= 9 \times 10^{3} + 3 \times 10^{2} + 4 \times 10^{1} + 5 \times 10^{0} + 3 \times 10^{-1} + 5 \times 10^{-2}$$

❖ 2진법

- 기수가 2인 수
- 0, 1 두 개의 수로 표현

$$\begin{split} 1010.1011_{(2)} = & 1 \times 1000_{(2)} + 0 \times 100_{(2)} + 1 \times 10_{(2)} + 0 \times 1_{(2)} \\ & + 1 \times 0.1_{(2)} + 0 \times 0.01_{(2)} + 1 \times 0.001_{(2)} + 1 \times 0.0001_{(2)} \\ & = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4} \\ & = 10.6875 \ (10진법) \end{split}$$

4

❖ 8진법

• 0~7까지 8개의 수로 표현

$$607.36_{(8)} = 6 \times 100_{(8)} + 0 \times 10_{(8)} + 7 \times 1_{(8)} + 3 \times 0.1_{(8)} + 6 \times 0.01_{(8)}$$
$$= 6 \times 8^{2} + 0 \times 8^{1} + 7 \times 8^{0} + 3 \times 8^{-1} + 6 \times 8^{-2}$$

❖ 16진법

• 0~9, A~F까지 16개의 기호로 표현

16진법: 한자리 숫자로 더 많은 경우를 표현할 수 있음

$$6C7.3A_{(16)} = 6 \times 100_{(16)} + C \times 10_{(16)} + 7 \times 1_{(16)} + 3 \times 0.1_{(16)} + A \times 0.01_{(16)}$$
$$= 6 \times 16^{2} + C \times 16^{1} + 7 \times 16^{0} + 3 \times 16^{-1} + A \times 16^{-2}$$

• 8진수보다는 16진수를 사용하는 경우가 더 많은데 실제로 컴퓨터 구조나 어셈블리어에서는 16진수를 많이 쓴다. <mark>자릿수를 더 짧게 표현할 수 있기 때문이다</mark>.

16진수; Hex Code; 영화 '마션'

b

표 2-2 2진수에 해당하는 8진수, 16진수, 10진수 표현

2진수	8진수	10진수	2	진수	16	진수	10	진수	2	진수	16	진수	10	진수
000	0	0	0	000	(0		0	10	000		8		8
001	1	1	0	001		1		1	10	001		9		9
010	2	2	0	010		2		2	10	010		A	1	10
011	3	3	0	011		3		3	1()11		В		11
100	4	4	0	100		4		4	1	100		С		12
101	5	5	0	101		5		5	1-	101		D		13
110	6	6	0	110	(6		6	1-	110		E	100	14
111	7	7	0	111	-	7		7	111	111		F		15

ASCII Code(Hex)

VSCII	CODE	TABLE
HOOLI	CODE	IADLL

10	HEX	문자	10	HEX	문자	10	HEX	문자	10	HEX	문자	10	HEX	문자	10	HEX	문자
0	0x00	NULL	22	0x16	STN	44	0x2C	,	66	0x42	В	88	0x58	X	110	0x6E	n
1	0x01	SOH	23	0x17	ETB	45	0x2D	7—	67	0x43	С	89	0x59	Υ	111	0x6F	0
2	0x02	STX	24	0x18	CAN	46	0x2E		68	0x44	D	90	0x5A	Z	112	0x70	p
3	0x03	ETX	25	0x19	EM	47	0x2F	/	69	0x45	Е	91	0x5B	[113	0x71	q
4	0x04	EOT	26	0x1A	SUB	48	0x30	0	70	0x46	F	92	0x5C	₩	114	0x72	r
5	0x05	ENQ	27	0x1B	ESC	49	0x31	1	71	0x47	G	93	0x5D]	115	0x73	S
6	0x06	ACK	28	0x1C	FS	50	0x32	2	72	0x48	Н	94	0x5E	٨	116	0x74	t
7	0x07	BEL	29	0x1D	GS	51	0x33	3	73	0x49	11	95	0x5F	_	117	0x75	u
8	0x08	BS	30	0x1E	RS	52	0x34	4	74	0x4A	J	96	0x60		118	0x76	٧
9	0x09	HT	31	0x1F	US	53	0x35	5	75	0x4B	K	97	0x61	а	119	0x77	W
10	0x0A	LF	32	0x20	SP	54	0x36	6	76	0x4C	L	98	0x62	b	120	0x78	X
11	0x0B	VT	33	0x21	!	55	0x37	7	77	0x4D	М	99	0x63	С	121	0x79	У
12	0x0C	FF	34	0x22	"	56	0x38	8	78	0x4E	N	100	0x64	d	1222	0x7A	Z
13	0x0D	CR	35	0x23	#	57	0x39	9	79	0x4F	0	101	0x65	е	123	0x7B	{
14	0x0E	SO	36	0x24	\$	58	0x3A	:	80	0x50	Р	102	0x66	f	124	0x7C	
15	0x0F	SI	37	0x25	%	59	0x3B	;	81	0x51	Q	103	0x67	g	125	0x7D	}
16	0x10	DEL	38	0x26	&	60	0x3C	<	82	0x52	R	104	0x68	h	126	0x7E	~
17	0x11	DC1	39	0x27	1	61	0x3D	=	83	0x53	S	105	0x69	j	127	0x7F	DEL
18	0x12	DC2	40	0x28	(62	0x3E	>	84	0x54	Т	106	0x6A	j			
19	0x13	DC3	41	0x29)	63	0x3F	?	85	0x55	U	107	0x6B	k			
20	0x14	DC4	42	0x2A	*	64	0x40	@	86	0x56	V	108	0x6C	1			
21	0x15	NAK	43	0x2B	+	65	0x41	Α	87	0x57	W	109	0x6D	m			

그림 2.2 ASCII 코드표

외우는법:

0x31: 1 ~ 0x39: 9 0x41: A ~ 0x5A: Z 0x61: a ~ 0x7A: z

디지털 포렌식 한 예

В

3 진법 변환

□ 2진수, 8진수, 16진수를 10진수로 변환

● 2진수를 10진수로 변환한 예

$$101101.101_{(2)} = 1 \times 2^{5} + 0 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$

$$= 32 + 0 + 8 + 4 + 0 + 1 + 0.5 + 0 + 0.125$$

$$= 45.625_{(10)}$$

② 8진수를 10진수로 변환한 예

$$364.35_{(8)} = 3 \times 8^{2} + 6 \times 8^{1} + 4 \times 8^{0} + 3 \times 8^{-1} + 5 \times 8^{-2}$$

$$= 3 \times 64 + 6 \times 8 + 4 \times 1 + 3 \times 0.125 + 5 \times 0.015625$$

$$= 192 + 48 + 4 + 0.375 + 0.078125$$

$$= 244.453125_{(10)}$$

3 16진수를 10진수로 변환한 예

$$A3.D2_{(16)} = 10 \times 16^{1} + 3 \times 16^{0} + 13 \times 16^{-1} + 2 \times 16^{-2}$$

$$= 10 \times 16 + 3 \times 1 + 13 \times 0.0625 + 2 \times 0.00390625$$

$$= 160 + 3 + 0.8125 + 0.0078125$$

$$= 163.8203125_{(10)}$$

01 진법과 진법 변환

□ 10진수 -> 2진수 변환

- 정수부분과 소수부분으로 나누어 변환
- 정수부분은 2로 나누고, 소수부분은 2를 곱한다.
- 10진수 75.6875를 2진수로 변환한 예

$$75.6875_{(10)} = 1001011.1011_{(2)}$$

10

□ 10진수 -> 8진수 변환

- 10진수 75.6875를 8진수로 변환
- 정수부분은 8로 나누고, 소수부분은 8을 곱한다.

 $75.6875_{(10)} = 113.54_{(8)}$

12

01 진법과 진법 변환

□ 10진수 -> 16진수 변환

- 10진수 75.6875를 16진수로 변환
- 정수부분은 16으로 나누고, 소수부분은 16을 곱한다.

 $75.6875_{(10)} = 4B.B_{(16)}$

□ 2진수 - 8진수 - 10진수 - 16진수 상호 변환

그림 2-2 2	진수, 8진수,	10진수,	16진수	상호	변환 7	배념도
----------	----------	-------	------	----	------	-----

10진수	2진수	8진수	16진수
0	0000	00	0
1	0001	01	1
2	0010	02	2
3	0011	03	3
4	0100	04	4
5	0101	05	5
6	0110	06	6
7	0111	07	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

14

01 진법과 진법 변환

• 10진수를 8진수, 16진수로 변환한 예

$$75.6875 = 1001011.1011_{(2)}$$
 $75.6875 = 1001011.1011_{(2)}$ $= 0100 \ 1011.1011$ $= 0100 \ 1011.1011$ $= 0100 \ 1011.1011$ $= 0100 \ 1011.1011$

$$75.6875 = 1001011.1011_{(2)}$$

$$= 0100 \ 1011.1011_{(2)}$$

$$= 4 \quad B. \quad B_{(16)}$$

• 8진수와 16진수를 2진수로 변환한 예

$$3 6 7. 7 5_{(8)}$$
= 011 110 111. 111 101₍₂₎

$$3 6 7. 7 5_{(8)}$$
 $9 A 3. 5 0 F 3_{(16)}$
= 011 110 111. 111 101₍₂₎ = 1001 1010 0011. 0101 0000 1111 0011₍₂₎