Dashboard
Assessments
Premium Bootcamps
Free Courses
Webinar & Events
Career Paths
Messages
Collapse

<u>Data Engineering Diploma Program</u>

SS
SanyaSyed
sanyashireen@gmail.com
Programs Settings
Sign Out
Notes
Mark as Complete

Data Engineering Diploma

Content developed by: WeCloudData Academy

1. Project and Skills

9/22/25, 10:24 AM WeCloudData

Firstly, since we have ingested data from RDS and S3 bucket to Snowflake RAW schema, so please go to Snowflake to explore the dataset, especially the fact tables. Please explore the dataset from the following aspects:

- The earliest and latest date of the sales and inventory (you need to join date_dim to see the exact date instead of date id)
 Row numbers of each table
 Row numbers of each table
 I have requestly it is ordered by customers and how frequently it is recorded in the inventory
 I how namy individual items
 I how many individual customers
 etc.

This dataset is from TPCDS, a famous dataset for database testing. The business background of the dataset is Retail Sales. The data contains the sales records from the website and Catalog. And also, the inventory level of each item in each warehouse. In addition to these, there are 15 dimensional tables that contain the information of customers, warehouse, items, etc. This entire dataset is not stored in one place; instead, the dataset was split into 2 parts:

- RDS: All the tables except for the inventory tables are stored in the Postgres DB in AWS RDS. The tables will be refreshed every day and updated with the newest data so for sales data, so in order to get the newest data, you need to run ETL processes every day
- \$3 Bucket: The single Inventory table is stored in an \$3 bucket, every day there will be a new file containing the newest data dump into the \$3\$ bucket. BUT, be aware that the inventory table usually only records the inventory data at the end of each week, so usually each week you can only see one entry for each item each warehouse (Please go to your RAW schema in Snowlake to explore the data). But you also need to ingest the inventory file from the \$3\$ bucket every day.

2. Tables in the Dataset

You can review the tables' schema from this link. Also, you can find the schema in the Snowflake tables.

In this sheet, you can see there are several tables correlated to the customer; these tables' schema is arranged horizontally. This means when you are doing ETL consider putting integrate all these tables into one customer dimension table

Dimention Tables											
Customer (c)					Customer_address (c	:a)				Customer_demographics (cd	
Column	Datatype	NULLs	Primary Key	Foreign Key	Column	Datatype	NULLs	Primary Key	Foreign Key	Column	Datatype
c_customer_sk	identifier	N	Y		ca_address_sk	identifier	N	Y		cd_demo_sk	identifier
c_customer_id (B)	char(16)	N			ca_address_id (B)	char(16)	N			cd_gender	char(1)
c_current_odemo_sk	identifier			od_demo_sk	ca_street_number	char(10)				cd_marital_status	char(1)
c_current_hdemo_sk	identifier			hd_demo_sk	ca_street_name	varchar(60)				ed_education_status	char(20)
e_current_addr_tk	identifier			ca_addres_sk	ea_street_type	char(15)				ed_purchase_estimate	integer
c_first_shipto_date_sk	identifier			d_date_sk	ea_mite_number	char(10)				cd_credit_rating	char(10)
c_first_sales_date_sk	identifier			d_date_sk	ca_city	varchar(60)				cd_dep_count	integer
c_salutation	char(10)				ca_county	varchar(30)				cd_dep_employed_co unt	integer
c_first_name	char(20)	*			ca_state	char(2)				cd_dep_college_coun t	integer
c_last_name	char(30)				ea_zip	char(10)					
c_preferred_cust_flag	char(1)				ea_country	varchar(20)				Date_dim (D)	
c buth day	integer				cs run office	decimal(5.2)		1			

3. Study of This Week

Business Requirements

You need to build a new fact table in your data model; in your fact table, these metrics are required:

- ** sum_qq_wk: the sum sales_quantity of this week

 **sum_ant_wk: the sum sales_quount of this week

 **sum_ant_wk: the sum sales_amount of this week

 **sum_profit_wk: the sum net_profit of this week

 **sum_profit_wk: the sum net_profit of this week

 **aw_qq__wk: the average daily sales_quantity of this week (= sum_qq__wk?)

 **iw_on_hand_qty_wk: the term's inventory on hand at the end of each week in all warehouses (=The inventory on hand of this weekend)

 wks_pty.Weeks of supply, an estimate metric to see how many weeks the inventory can supply the sales (inv_on_hand_qty_wk)um_qty_wk)

 **low_stock_fig_wk: Low stock weekty flag. During the week, if there is a single day, if [(avg_qqy_dy) = 0 && ((avg_qqy_dy)^2 (inventory_on_hand_qty_wk)), then this week, the flag is True

In addition to the fact table, you also need to integrate the customer dimension

- 1. Tuesday: We will review the data and business requirements together to see how we can build the data model.
- 2. Thursday: We will build ETL scripts to populate data from the RAW tables to the Data Model tables.
- 3. Saturday afternoon: You will put all these together to finish the data modeling and ETL scripts in your Snowflake for your project.

4. Advanced Study

Next week, we will study dbt, a tool to manage the ETL process. We have a Udemy course on pre-bootcamp. Please watch the course before we learn dbt. This is the link leading you to the pre-bootcamp page.