wKinematic

January 22, 2019

```
In [55]: exec(open('./initNotebook.py').read())
```

1 Load Data

```
In [5]: kinD6D8 = read_csv('../../FESR/configurations/2019/wKinematicD6D8/fits.csv')
    kinAlD6D8 = read_csv('../../FESR/configurations/2019/wKinematicAlphaD6D8/fits.csv')
```

1.1 Plots with free Alpha

```
In [6]: fig, (axes) = plt.subplots(1, 2, figsize=(21, 7))
    fig.suptitle(r'Fit of $\omega_\tau$ with free $\alpha_s, D6$ and $D8$ using FOPT.')
    plt.xticks(list(sminMap.values()), fontsize=22)
    addAx(axes, 0, ['alpha'], kinAlD6D8, ylabel=r'$\alpha_s(m_\tau)$')
    addAx(axes, 1, ['c6', 'c8'], kinAlD6D8, ylabel='$D6, D8$')

fig.savefig('./plots/wKinematicAlpha.png', dpi=300)
    plt.show()
```

Fit of ω_{τ} with free $\alpha_s, D6$ and D8 using FOPT.

In the plots we can see the result of fitting $\alpha_s(m_\tau)$, c_6 and c_8 using ω_τ in FOPT for 3- to 23 s_0 -moments (the lowest s_0 moment is given by $s_{min}=1.5 GeV^2$). The best value (with a $\chi^2/dof=1.12$) yields $\alpha_s(m_\tau)=0.3231(32)$ with $c_0=-0.30(11)$ and $c_0=0.00(18)$ for $s_{min}=1.925$ (10 s_0s -moments). α_s varies wave-like for inreasing s_0 -moments within error ranges and converges around $\alpha_s\approx0.325$. With an increasing number of s_0s -moments the error decrease,

but χ^2/dof increases. The error of α_s is smallest for the biggest s_0s -moment number and would decrease for more s_0s -moments. For c_6 and c_8 we see an inverted wave-like behavior, meaning that their values first increases, then slightly decrease until they converge for a value around $c_6 \approx -0.4$ and $c_8 = -0.3$. This inverted behavior shows that if we increase the α_s contribution to our integral-moment the other contributions, c_6 and c_8 , have to decrease. The values of c_6 and c_8 vary also within error ranges, which "vanish" for heigher s_0s -moment numbers. We also plotted the χ^2/dof function as gray line in the background of the plots. Their values can be read off the right y-axis. One notices three plateaus: The first one for 3-6 s_0s -moments with a $\chi^2/dof \approx 0$ the second one for 7-10 s_0s -moments with a good $\chi^2/dof \approx 1.3$ and another for $11-23s_0s$ -moments with a to big value of $\chi^2/dof > 2$, which tells us that 7-10 is a good choice for the number of fitted moments. Due to the previous discussion we see that the fit results are solid, with an $\alpha_s(m_\tau) = 0.3231(32)$. Problematic are the heigher values for α_s for lower s_{min} or more s_0s moments. The values of α_s are 2% heigher in the 2nd χ^2 plateau.

1.1.1 Correlation of c_6 and c_8

We test the correlation of α_s with c_8 and c_6 with c_8 with the help of *Pearsons r*. The former yields a value of $r_{\alpha_s,c_6} = -0.99$, which suggest a strongly antiproportional behavior, whereas the latter $r_{c_6,c_8} \approx 1$ advocates perfect proportionality. The pearson squares explain the inverted wave-like behavior we have seen before.

1.1.2 Test for OPE series convergence

```
In [56]: testOPESeriesForConvergence(kinAlD6D8)
```

```
Out [56]: smin15
                       True
          smin1525
                       True
          smin155
                       True
          smin1575
                       True
          smin16
                       True
                       True
          smin1625
          smin165
                       True
          smin1675
                       True
          smin17
                       True
          smin175
                       True
          smin18
                       True
          smin185
                       True
          smin19
                       True
          smin195
                       True
          smin20
                       True
```

```
smin21 True
smin22 True
smin23 True
smin24 True
smin26 True
smin28 True
dtype: bool
```

1.2 Plots with fixed Alpha

In the above plot we investigated the behavior of c_6 and c_8 for a fixed $\alpha_s = 0.3179$. The best $\chi^2/dof = 1.33$ values for $c_6 = -0.15(53)$ and $c_8 = 0.22(11)$ can be found for $10s_0s$ moments for $s_{min} = 1.925 GeV^2$. The fit including a free α_s shows very similar behavior to this fit, except the c_6 and c_8 series behavior has been inverted. They decrease, increase and converges to values $c_6 \approx -0.34$ and $c_8 \approx -0.21$. The values of the two OPE coefficients are smaller than the ones from the fit with free α_s , which can be explained due to the lower value for $\alpha_s = 0.3179$ (before we had $\alpha_s \approx -0.3179$) (before we had $\alpha_s \approx -0.3179$).

0.33) compensating the bigger values of c_8 and c_6 . One still sees the strong correlation between the two coefficients and also notes that they are getting closer to each other with increasing s_0s -moment number.

In [76]: testOPESeriesForConvergence(kinD6D8)

Out[76]:	smin15	True
	smin1525	True
	smin155	True
	smin1575	True
	smin16	True
	smin1625	True
	smin165	True
	smin1675	True
	smin17	True
	smin175	True
	smin18	True
	smin185	True
	smin19	True
	smin195	True
	smin20	True
	smin21	True
	smin22	True
	smin23	True
	smin24	True
	smin26	True
	smin28	True
	<pre>dtype: bool</pre>	

OPE series converges for fits with fixed α_s .

2 Conclusion

The fits show no sign of inconsitency and have a good χ^2/dof . Furthermore the variation of α_s for different moments setups is small, which let us raise the question of why additional frameworks than the OPE are needed to measure the strong coupling in τ -fits. Using ω_{τ} is probably the best weight of measuring α_s . Other weights like the cubic or (worse) the quartic weight generate problems within my fitting routines for heigher numbers of s_0s -moments.