Nanopore sequencing

- for dummies and smarties

Why / What / How

Why this talk?

- Biology is rapidly becoming an informatics problem
- In many ways, biotech of today is where the computer industry was in the 70s
- By reverse engineering the "programs" embedded in our DNA, we can improve our health
- Almost all of the software for the Oxford Nanopore (ONT) sequencers are open source

What will I talk about?

How to accurately digitize the information stored in and around our DNA

How will I proceed?

Walk-through of a low-cost approach to DNA sequencing using nanopore sequencing

Illumina NovaSeq X

Oxford Nanopore MinION

\$1,000

Illumina NovaSeq X

Oxford Nanopore MinION

\$1,000

Outline

- How the biology works
- How the nanopore hardware and wetware works
- How to do the data analysis
- Examples of applications and application areas
- How to get started yourself
- Wrap-up

How the biology works

DNA is the "source code" for us

DNA is our primary information carrier

We are but a shell for our genes

Identical DNA = identical twins

Source: New Scientist

DNA is split into chromosomes*

Split into 23 pairs of chromosomes*

- 22 autosome pairs
- 1 sex chromosome pair

Not unlike splitting your program into 23 x 2 binary files

Source: Khan Academy

Deoxyribo Nucleic Acid

Is found in the core (nucleus) of the cell

Is formed as a double helix

Is a long string of nucleotides

- Bases: A, C, T, G

Deoxyribo Nucleic Acid

Is extremely space-efficient

- ~4 gigabases in every cell
- White blood cell is 130 μm
- Sperm cell is 30 μm

Is being explored as a storage medium

Comes with its own configuration

Ping, Zhi & Ma, Dongzhao & Huang, Xiaoluo & Chen, Shihong & Liu, Longying & Guo, Fei & Zhu, Sha & Shen, Yue. (2019). *Carbon-based archiving: current progress and future prospects of DNA-based data storage*. GigaScience. 8. 10.1093/gigascience/giz075.

Epigenetics is the "config setting" for every cell

Q: All cells have the same DNA \rightarrow how can they be different then?

A: Per-cell configuration = epigenetics

Source: Wikipedia

How the nanopore hardware and wetware works

ONT MinION

Follows the inkjet business model

- Sequencer is cheap (\$1000)
- Consumable flow cells are expensive (\$90 \$900)

Can produce <= 50 Gb per flow-cell

Requires a PC to run

Source: Oxford Nanopore Technologies

The first DNA sequencer that works in the field

Used on all continents

Sequencing has become easy

(Sample preparation remains a hassle)

The basics of how a nanopore works

- 1 Two chambers, filled with fluid with ions, separated by a membrane with a tiny channel, the nanopore
- 2 Voltage difference between two chambers
- 3 Electrolytes moving through the pores \rightarrow base current I
- 5 Whenever a DNA molecule slips through a pore, it transiently blocks the pore
- 6 This leads to transient changes in I.
- → Just plug in a digital ammeter, a neural network, and we have a DNA sequencer!

Feng, Y., Zhang, Y., Ying, C., Wang, D., & Du, C. (2015). *Nanopore-based Fourth-generation DNA Sequencing Technology*. In Genomics, Proteomics & Bioinformatics (Vol. 13, Issue 1, pp. 4–16). Elsevier BV. https://doi.org/10.1016/j.gpb.2015.01.009

DNA moves through pore

Change in *I*

Oblique view of simplified nanopore structure.

A thin, pore-infused, membrane separates the *cis* and *trans* chambers biased with DC voltage V_{dc}.

As the DNA blocks the pore, we can read corresponding changes in I_{meas} .

Magierowski, S., Huang, Y., Wang, C., & Ghafar-Zadeh, E. (2016). *Nanopore-CMOS Interfaces for DNA Sequencing*. In Biosensors (Vol. 6, Issue 3, p. 42). MDPI AG. https://doi.org/10.3390/bios6030042

Pore proteins taken from various bacteria

Cross-section of (a) the α-HL nanopore infused in a lipid bilayer membrane support structure, (b) MspA nanopore, (c) CsgG nanopore and (d) solid-state nanopore.

Magierowski, S., Huang, Y., Wang, C., & Ghafar-Zadeh, E. (2016). *Nanopore-CMOS Interfaces for DNA Sequencing*. In Biosensors (Vol. 6, Issue 3, p. 42). MDPI AG. https://doi.org/10.3390/bios6030042

Structural view of a nanopore

 α -Hemolysin (α -HL, also called α -toxin) is the first and most commonly used biological nanopore

α-HL is an exotoxin secreted by the bacterium *Staphylococcus aureus*

(S. aureus is one of the most important bacteria that cause disease in humans)

Feng, Y., Zhang, Y., Ying, C., Wang, D., & Du, C. (2015). *Nanopore-based Fourth-generation DNA Sequencing Technology*. In Genomics, Proteomics & Bioinformatics (Vol. 13, Issue 1, pp. 4–16). Elsevier BV. https://doi.org/10.1016/j.qpb.2015.01.009

As DNA slips through the pore, current changes

Example illustration of modulated current through a nanopore.

The modulation of the current curve corresponds to the DNA sequence of the ssDNA going through the pore

The relationship between DNA sequence and current levels is complex

Magierowski, S., Huang, Y., Wang, C., & Ghafar-Zadeh, E. (2016). *Nanopore-CMOS Interfaces for DNA Sequencing*. In Biosensors (Vol. 6, Issue 3, p. 42). MDPI AG. https://doi.org/10.3390/bios6030042

Nanopores on a chip

Cross-section of an example construct for connecting the nanopore sensor system to external system components.

The construction of sensing structures and electronic structures on separate silicon substrates offers substantial room for the optimization of each component.

Magierowski, S., Huang, Y., Wang, C., & Ghafar-Zadeh, E. (2016). *Nanopore-CMOS Interfaces for DNA Sequencing*. In Biosensors (Vol. 6, Issue 3, p. 42). MDPI AG. https://doi.org/10.3390/bios6030042

Specs for the ONT MinION nanopore

- 512 channels per flow cell
- 4 kHz sampling rate
- ~400 bps (bases per second)
- ~48 hours per flow-cell
- ~50 Gb per flow-cell

Source: Oxford Nanopore Technologies

DNA fragmentation

The DNA is fragmented in the process

Each fragment is read separately

Leads to a puzzle game at the other end

AGGAACTGCCGATCTTAATGGATGGCCGGAGG

True DNA sequence

Multiple copies of the DNA (each from its own cell)

Fragmented and sequenced together

One squiggle per fragment

How to do the data analysis

Practically all of the tooling for the ONT sequencers are open source.

The MinION raw data

Old format: FAST5 (pre 2022)

New format: POD5 (post 2022)

Formats are functionally equivalent

- Raw sensor signal
- Metadata
- DNA sequence itself (optional)

> python SquigglePlot.py -i ~/data/test.fast5

Source: SquiggleKit

Terminology

In biology/informatics/bioinformatics, everything tends to have at least two names

I will try to be consistent in this talk

Base calling – assigning nucleobases to electrical current changes resulting from nucleotides passing through a nanopore

Alignment – the process of comparing and detecting similarities between DNA sequences

Assembly – aligning and merging fragments from a longer DNA sequence in order to reconstruct the original sequence

Fragment - a piece of DNA ("substring")

Read - sequence of bases corresponding to a fragment

DNA sequencing at 20,000 ft

DNA molecule read using chemistry and electronics

↓ (base calling

File with nucleotide sequence (typically FASTQ files)

Laura Ciuffreda, Héctor Rodríguez-Pérez, Carlos Flores, *Nanopore sequencing and its application to the study of microbial communities*, Computational and Structural Biotechnology Journal, Volume 19, 2021, Pages 1497-1511.

2 @RobertEdgarPHD

Base calling

Convert the raw signal (current over time) to a sequence of nucleotides (ACGT)

Area of very active research

Neural networks work well for this

Effect: FAST5 file → FASTQ file

Source: Ivan Gesteira Costa, IZKF Research Group Bioinformatics

The <u>dorado basecaller</u> is the latest and greatest from ONT. Open-source, on GitHub.

Quality control

Q scores

 $Q = -10 \log_{10} P$

Q is the phred* quality score

P is probability

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%
60	1 in 1,000,000	99.9999%

Source: Wikipedia

^{*} Phred is a classical computer program for base calling

FASTQ files

Each "read" in a FASTQ file

- Takes up four lines
 - Label
 - Sequence
 - Separator (always +)
 - Base call quality scores

A FASTQ file may contain many reads

Label - A sequence identifier, no globally accepted standard for this

Sequence - [ACGT]+

Quality - runs from 0x21 (lowest quality; '!' in ASCII) to 0x7e (highest quality; '~' in ASCII).

After base calling, we have a large collection of DNA fragments that we have to order in some way

AGGAACTGCCGATCTTAATGGATGGCCGGAGG

True DNA sequence

Multiple copies of the DNA (each from its own cell)

Fragmented and sequenced together

GAT AACTGCC CTGCC AGG TCTT GATC TTAATG AGGAA CTTAATG AACTG AGG AGG GATGG GATG CCGA GCCGG TGGC AATGGA CGGAGG CCGGAGG

genome

If we know the species we're sequencing for, we can use a *reference*

AGGAACTGCCGATCTTAATGGATGGCCGGAGG

AGGAACT**C**CCGATCTTA**T**TGGATG**T**CCGGAGG

Reference DNA sequence

True DNA

sequence

GAT AACTGCC CTGCC AGG TCTT GATC
TTAATG AGGAA CTTAATG AACTG AGG
AGG GATGG GATG CCGA GCCGG TGGC
AATGGA CGGAGG CCGGAGG

If we know the species we're sequencing for, we can use a *reference genome*

Match each fragments to the most similar part of the reference

AGGAACTGCCGATCTTAATGGATGGCCGGAGG

AGGAACT**C**CCGATCTTA**T**TGGATG**T**CCGGAGG

Reference DNA sequence

True DNA

sequence

GAT AACTGCC CTGCC AGG TCTT GATC
TTAATG AGGAA CTTAATG AACTG AGG
AGG GATGG GATG CCGA GCCGG TGGC
AATGGA CGGAGG CCGGAGG

AGGAACTGCCGATCTTAATGGATGGCCGGAGG

True DNA sequence

AGGAACTCCCGATCTTATTGGATGTCCGGAGG

Reference DNA sequence

If we know the species we're sequencing for, we can use a *reference genome*

Match each read to the most similar part of the reference

GAT AACTGCC CTGCC AGG TCTT GATC
TTAATG AGGAA CTTAATG AACTG AGG
AGG GATG CCGA GCCGG TGGC
AATGGA CGGAGG CCGGAGG

Assembly

De novo assembly — when the DNA is entirely unknown

Two algorithmic approaches

- Greedy: local optimum
- Graph-based: global optimum

Source: Ontario Institute of Cancer Research

Examples of applications and application areas

DNA sequencing – in space!

Problem: ... in space!

Kate brought DNA from

- A mouse
- The E.coli bacteria
- The lambda phage virus

Next mission: sequence true aliens?

Fig. 1 Astronaut Kate Rubins on the ISS

Source: NASA

DNA sequencing – in the field

Problem: Which species live in this area?

"The remarkable accuracy and low computational demand of [our] pipeline, together with the inexpensive equipment and simple protocols, make the proposed workflow particularly suitable for tracking species under field conditions."

Sequence all the poop!

Source: Ph. Francesco Ciccotti / Getty Images

Maestri, Cosentino, Paterno, Freitag, Garces, Marcolungo, Alfano, Njunjić, Schilthuizen, Slik, Menegon, Rossato, & Delledonne. (2019). *A Rapid and Accurate MinION-Based Workflow for Tracking Species Biodiversity in the Field.* In Genes (Vol. 10, Issue 6, p. 468). MDPI AG. https://doi.org/10.3390/genes10060468

Going beyond DNA sequencing

More poop sequencing!

Problem: How old was the mouse when it took laid down this particular crap?

(Yes, scientists actually get paid to answers these important questions!

Eveliina Hanski: A non-invasive, MinION-based method for determining the epigenetic age of mice

Genomic meat sourcing

Problem: Where did this beef really come from?

Source: Eurofins Food & Feed Testing Germany

How to get started yourself

Things to do if you're curious

Without buying a sequencer

- Look at the **EPI2ME Labs Tutorials**
- Download the **EPI2ME Labs**
- Download the <u>CliveOME</u> from S3

Buying a sequencer

- Complete a (wet) lab course
- Get a MinION
- Sequence the lambda phage

Wrap-up

Conclusion

- The democratizing* craze has reached DNA sequencing
- You can buy a brand new DNA sequencer for \$1000
- You can do DNA sequencing in the field
- All software necessary to interpret the raw output from the sequencer is open source

Source: National Human Genome Research Institute

^{*} Democratization of technology refers to the process by which access to technology rapidly continues to become more accessible to more people.

Conclusion

- The democratizing* craze has reached DNA sequencing
- You can buy a brand new DNA sequencer for \$1000
- You can do DNA sequencing in the field
- All software necessary to interpret the raw output from the sequencer is open source
- From a piece of poop, you can determine someone's age, gender and eye color

Source: National Human Genome Research Institute

^{*} Democratization of technology refers to the process by which access to technology rapidly continues to become more accessible to more people.