IN THE CLAIMS

Please amend the claims as follows.

1	1. (Currently Amended) An apparatus comprising:
2	at least one processor;
3	a memory coupled to the at least one processor;
4	a network interface that couples the apparatus to a network that is coupled to [at
5	least one] a plurality of other computer [system] systems; and
6	a cluster communication mechanism residing in the memory and executed by the
7	at least one processor, the cluster communication mechanism including a sliding send
8	window that communicates at least one ordered message to [at least one] a plurality of the
9	other computer [system] systems without waiting for an acknowledge message from [the
0	at least one] any of the plurality of other computer [system] systems before sending out
1	the next ordered message.
1	2. (Original) The apparatus of claim 1 wherein each ordered message includes a header
2	with information that indicates whether an acknowledge message for the ordered
3	messages may be delayed and grouped with at least one subsequent acknowledge
4	message.
1	3. (Original) The apparatus of claim 2 wherein the acknowledge message acknowledges
2	from one to a plurality of ordered messages.

1	4. (Currently Amended) A networked computer system comprising:
2	a cluster of computer systems that each includes:
3	a network interface that couples each computer system via a network to
4	other computer systems in the cluster;
5	a memory; and
6	a cluster communication mechanism residing in the memory, the cluster
7	communication mechanism enforcing execution of a plurality of received
8	messages in the order the plurality of received messages were received, the cluster
9	communication mechanism including a sliding send window that communicates at
10	least one ordered message to [at least one] a plurality of other computer [system]
11	systems without waiting for an acknowledgment from [the at least one] any of the
12	plurality of other computer [system] systems before sending out the next ordered
13	message.

- 1 5. (Original) The networked computer system of claim 4 wherein each ordered message
- 2 includes a header with information that indicates whether an acknowledge message for
- 3 the ordered messages may be delayed and grouped with at least one subsequent
- 4 acknowledge message.

1 6. (Currently Amended) A computer-implemented method for processing a task in a 2 clustered computing environment, the method comprising the steps of: 3 providing a cluster communication mechanism executing on a first computer system in a cluster that includes a sliding send window that communicates at least one 4 ordered message to [at least one] a plurality of other computer [system] systems in the 5 cluster without waiting for an acknowledgment from each computer system in the cluster 6 7 that received an ordered message before sending out the next ordered message: 8 the cluster communication mechanism sending a first ordered message to [at least one] a first plurality of other computer [system] systems in the cluster; and 9 the cluster communication mechanism sending a second ordered message to a 10 11 second plurality of other computer systems in the cluster without waiting for a response to the first ordered message from [the at least one] each of the first plurality of other 12 13 computer [system] systems in the cluster. 1 7. (Currently Amended) The method of claim 6 further comprising the step of [the] at least one of the first plurality of other computer [system] systems in the cluster

- 2
- responding to the first and second ordered messages by sending a single acknowledge 3
- message to the cluster communication mechanism that acknowledges both the first and 4
- 5 second ordered messages.
- 1 8. (Original) The method of claim 6 wherein the first and second ordered messages each
- 2 include a header with information that indicates whether an acknowledge message for the
- 3 first and second ordered messages may be delayed and grouped with at least one
- 4 subsequent acknowledge message.

1	9. (Currently Amended) A program product comprising:
2	(A) a computer program comprising:
3	(A1) a cluster communication mechanism that includes a sliding send
4	window that communicates at least one ordered message to [at least one] a
5	plurality of other computer [system] systems in a cluster without waiting for an
6	acknowledgment from [the at least one] any of the plurality of other computer
7	[system] systems before sending out the next ordered message; and
8	(B) computer-readable signal bearing media bearing the computer program.
1	10. (Original) The program product of claim 9 wherein the signal bearing media
2	comprises recordable media.
1	11. (Original) The program product of claim 9 wherein the signal bearing media
2	comprises transmission media.
_	
1	12. (Original) The program product of claim 9 wherein each ordered message includes a
2	header with information that indicates whether an acknowledge message for the ordered
3	messages may be delayed and grouped with at least one subsequent acknowledge
4	message.
	Please add the following new claims.
1	13. (New) The apparatus of claim 1 wherein the cluster communication mechanism

- 2 communicates the at least one ordered message to the plurality of other computer systems
- 3 via IP multicast.
- 1 14. (New) The apparatus of claim 1 wherein the cluster communication mechanism
- 2 enforces execution of a plurality of received messages in the order the plurality of
- 3 received messages were received.

- 1 15. (New) The method of claim 6 wherein first plurality of computer systems includes all
- 2 computer systems in the second plurality of computer systems.
- 1 16. (New) The method of claim 6 wherein the first plurality of computer system
- 2 comprises the second plurality of computer systems.
- 1 17. (New) The method of claim 6 wherein the cluster communication mechanism
- 2 communicates the at least one ordered message to the plurality of other computer systems
- 3 via IP multicast.
- 1 18. (New) The method of claim 6 wherein the cluster communication mechanism
- 2 enforces execution of a plurality of received messages in the order the plurality of
- 3 received messages were received.
- 1 19. (New) The program product of claim 9 wherein the cluster communication
- 2 mechanism communicates the at least one ordered message to the plurality of other
- 3 computer systems via IP multicast.
- 1 20. (New) The program product of claim 9 wherein the cluster communication
- 2 mechanism enforces execution of a plurality of received messages in the order the
- 3 plurality of received messages were received.

STATUS OF THE CLAIMS

Claims 1-12 were originally filed in this patent application. In the pending office action, claims 1 and 6 were objected to for informalities. Claims 1-12 were rejected under 35 U.S.C. §102(b) as being anticipated by U.S. Patent No. 5,528,605 to Ywoskus. No claim was allowed. In this amendment, claims 1, 4, 6, 7, and 9 have been amended, and new claims 13-20 have been added. Claims 1-20 are currently pending.