National University of Computer and Emerging Sciences Karachi Campus

	Karachi Camp	ous				
Discret	e Structures (CS1005)	Sessional-I	Sessional-I Exam			
Date: Se	ptember 23 rd 2024					
Course II	nstructors:	Total Time (Hrs)				
Mr. Shoa	nib Raza, Mr. Fahad Hussain,	Total Marks:	24			
	ntawar Abbasi, Mr. Muhammad	Total Questions:	2			
	d Dr. Muhammad Nouman Durrani					
,						
Roll No	 Section	 Student Signature				
Do not write	below this line					
CLO # 2: C	Attempt all the questions in the construct formal logic proofs and/or inform	-	asonina to real			
problems, s	such as predicting the behavior of software o	or solving problems such as p	uzzles.			
Proposition	nal Logic, Predicate Logic and Rules of Infere	nce. [6 x 2 = 12 Marks]	Time: 30 Minute			
p: Ti r: "1 t: "1	o and q be the propositions: ne event is scheduled to start on time. The project is completed." The project is approved." Tess the following statement using logical connect	q: There is a delay in the eve s: "The report is submitted." ives (including negation):	nt's start.			
i)	The event is not scheduled to start on time a or there is no delay in the event's start. Solution: ¬p ∧ (p ∨ ¬q)		d to start on time			
ii)		nd only if there is no delay in the event's start.				
iii)						
iv)	Submitting the report is sufficient for the proj S →r	ect to be completed.				
b. Show	that \neg [(p \Rightarrow q) \land (\neg q \lor r)] \equiv p \land (\neg q \lor \neg r) usi	ng laws of logical equivalence a	nd justify steps.			
¬[(-	¬p∨q) ∧ (¬q∨r)]					
Appl	y De Morgan's Law to the negation of the co	njunction:				
¬[(-	¬pVq) ^ (¬qVr)] => ¬(¬pVq) V ¬(¬qVr)					
(p ∧	¬q) ∨ (q∧¬r)					
Appl	y Distribute law and simplify, now distribute	the terms:				

p∧(¬q ∨ ¬r)

National University of Computer and Emerging Sciences Karachi Campus

- c. Determine the truth value of each of the following statements, where is the universe of discourse is Z.
 - i) $\exists x \forall y (x^2 < y + 1)$

False: x = 0, we can always find a y that makes the inequality false, such as $y=x^2-1$. Thus, no such x exists.

ii) $\forall x \exists y (x^2 + y^2 < 12)$

False, because for $|x| \ge 4$, no such y exists.

- **d.** Consider the following statement: "There is a tourist who has taken a flight on every airline in the world."
 - i) Express the above statement mathematically using the appropriate universal and existential quantifiers along with the appropriate propositional functions.
 - Let P(t,f) be "t has taken f" and Q(f,a) be "f is a flight on a."
 - \circ The domain of t is all Tourist, the domain of f is all flights, and the domain of a is all airlines.
 - Then the statement can be expressed as: $\exists t \exists f \ \forall a \ (P(t,f) \land Q(f,a))$
 - iii) Negate the resultant nested quantifiers using De Morgan's Laws.

 $\exists t \ \forall a \ \exists f \ (P(t,f) \land Q(f,a))$

Part 1: Use quantifiers to express the statement that "There does not exist a Tourist who has taken a flight on every airline in the world."

Solution: $\neg \exists t \ \forall a \ \exists f \ (P(t,f) \land Q(f,a))$

Part 2: Now use De Morgan's Laws to move the negation as far inwards as possible.

Solution:

- 1. $\neg \exists t \ \forall a \ \exists f \ (P(t,f) \land Q(f,a))$
- 2. $\forall t \neg \forall a \exists f \ (P(t,f) \land Q(f,a))$ by De Morgan's for \exists
- 3. \forall t $\exists a \neg \exists f (P(t,f) \land Q(f,a))$ by De Morgan's for \forall
- 4. $\forall t \exists a \forall f \neg (P(t,f) \land Q(f,a))$ by De Morgan's for \exists
- 5. \forall t \exists $a \forall$ f (¬P(t,f) \lor ¬Q(f,a)) by De Morgan's for \land .
- **e.** Write each of the following arguments in symbolic form. Then establish the validity of the argument or give a counter example to show that it is invalid.

"If Dr. Sana gets the supervisor's position (p) and works hard (q), then she'll get a raise (r)." "She gets the raise only if she'll buy a new car (s)." "She has not purchased a new car."

Steps (3), (4) and Modus Tollens

Therefore, "either Dr. Sana did not get the supervisor's position or she did not work hard."

$$(((p \land q) \rightarrow r) \land (r \rightarrow s) \land \neg s) \rightarrow (\neg p \lor \neg q)$$

(1)
$$\neg s$$
 Premise
(2) $r \rightarrow s$ Premise
(3) $\neg r$ Steps (1), (2) and Modus Tollens
(4) $(p \land q) \rightarrow r$ Premise

(6)
$$\neg p \lor \neg q$$
 Step (5) and $\neg (p \land q) \iff \neg p \lor \neg q$.

National University of Computer and Emerging Sciences

Karachi Campus

f. Using truth tables, prove that the following statement is a tautology, contingency or Contradiction.

$$(((\neg s \rightarrow \neg h) \land (s \rightarrow w) \land (\neg w \land s)) \rightarrow \neg h)$$

$$\begin{array}{ll} (\underline{(h \to s)} \land (s \to w) \land (\neg w \land s)) & \text{Contrapositive} \\ (\underline{(h \to s)} \land (s \to w) \land (\neg w \land s)) & \text{Hypothetical Syllogism} \\ (\underline{(h \to w)} \land (\neg w \land s)) & \text{Simplification} \\ (\underline{(h \to w)} \land (\neg w)) & \text{Modus Tollen} \\ \neg h & \end{array}$$

CLO # 1: Explain the key concepts of Discrete Structures such as Mathematical Logic, Sets, Permutations, Relations, Graphs and Trees etc.

Sets Theory and Functions:

[6 x 2 = 12 Marks] Time: 30 Minutes

Q2: a. i) Sets are stored in an unordered fashion in memory. Why we impose (any) fixed ordering on elements of U in the bit-vector representation? Also, find the characteristic bit-vector of the set A = {DS, DM}, if U= {DM, Cal, DS, Bio, Phy, Pro} (in order)?

Solution: A fixed ordering ensures that each element of U always maps to the same bit position in the bit vector, allowing for a standardized and consistent representation of sets. It also enable efficient set operations, and maintain compactness in memory.

DM	Cal	DS	Bio	Phy	Pro
1	0	1	0	0	0

ii) Formally define the multiset difference. Also, find the multiset difference A — B, if A= {(Ayesha, 5), (Khan, 2), (Ali, 1), (Imadad, 1)}, and B= {Ayesha, 3), (Khan, 3), (Imdad, 1)}.

The difference of a multiset B from a multiset A is a multiset C such that $\forall x \in U, \ m_C(x) = \max(m_A(x) - m_B(x), 0)$

denoted as
$$C = A \setminus B$$

 $\{(Ayesha, 2), (Ali, 1)\}$ by definition For Khan: max ((3-2), 0) = max(-1,0) = 0 is not considered For Imdad: max ((1-1), 0) = max(0,0) = 0 is not considered

b. Prove using logical equivalences and set builder notation that $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$. Provide a step-by-step proof to demonstrate that the left-hand side of the expression is a subset of the right-hand side. Use logical equivalences and set builder notation in your explanation.

The below solution is for that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. Use it for \subseteq

$$x \in A \cap (B \cup C)$$
 \triangleright LHS
$$\equiv x \in A \wedge x \in (B \cup C)$$
 \triangleright Intersection
$$\equiv x \in A \wedge (x \in B \vee x \in C)$$
 \triangleright Union
$$\equiv (x \in A \wedge x \in B) \vee (x \in A \wedge x \in C)$$
 \triangleright Distributive Law
$$\equiv x \in (A \cap B) \vee x \in (A \cap C)$$
 \triangleright Intersection
$$\equiv x \in (A \cap B) \cup (A \cap C)$$
 \triangleright Union

National University of Computer and Emerging Sciences Karachi Campus

c. Provide the name of the set definition for each of the following.

- i) $\forall x (x \in A \rightarrow x \in B) \land \exists x (x \in B \land x \notin A) A \subset B$ or $A \subseteq B$
- ii) $\forall x (x \in A \rightarrow x \in B) \quad A \subseteq B$
- iii) $\forall x (x \in A \leftrightarrow x \in B)$ **A = B**
- iv) $\{x \mid x \in A \land x \notin B\}$ A B
- **d.** Consider the following two situations:
 - i) Mark is buying his favorite comic books for \$2 each. He starts with \$187 in his account. Write a function that represents the amount of money Mark has left in his account after buying x comic books. Label the variables.

$$f(x) = 187 - 2 x$$

ii) Annie is helping her mom collect canned goods. Her mom already has 91 cans, and Annie is collecting 10 cans each week. Write a function that represents the total number of cans collected after y weeks. Label the variables.

$$f(x) = 91 + 10 x$$

e. i) \forall y \in Y \exists x \in X f (x) = y is the definition of the surjective(onto) function. Determine whether the function f(x)=x³ from R \rightarrow R is surjective?

The function $f(x)=x^3$ is **surjective**, because for every $y\in\mathbb{R}$, there exists an $x\in\mathbb{R}$ (specifically $x=\sqrt[3]{y}$) such that f(x)=y.

ii) Formally define an injective function. Prove whether the function f(x) = 2x + 3 from $R \rightarrow R$ is injective.

A function
$$f: X \mapsto Y$$
 is **one-to-one** (or **injective**) iff
$$\forall x_1, x_2 \in X \quad (f(x_1) = f(x_2) \to x_1 = x_2)$$

$$f(x1) = f(x2) \rightarrow 2(x1) + 3 = 2(x2) + 3 \rightarrow x1 = x2$$
 Hence, f is one-to-one

- **f.** For the following functions, determine whether the function f is Injective (one-to-one), Surjective(onto), both injective and surjective or neither injective nor surjective. Provide a justification for your answer.
 - i) f: $\{1,2,3\} \rightarrow \{a, b\}$ be defined by f(1)=a, f(2)=a, f(3)=b.

Since every element in the codomain $\{a,b\}$ has a pre-image in the domain $\{1,2,3\}$, the function is surjective. The function $f:\{1,2,3\} \to \{a,b\}$ is **not injective** but **surjective**.

ii) f: N \rightarrow N be defined by f(x)= x^2 .

Since, every element in N is not the square of some natural number, so the function is not surjective. The function $f: \mathbb{N} \to \mathbb{N}$, defined by $f(x) = x^2$, is injective but not surjective.