

SEQUENCE LISTING

<110> UNIVERSITY OF ROCHESTER

<120> Hormone Response Element Binding
Transregulators

<130> 21108.0032P1

<150> 60/508,763

<151> 2003-10-03

<160> 84

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 6

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 1
agaaca 6

<210> 2

<211> 6

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 2
aggta 6

<210> 3

<211> 15

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<221> misc_feature

<222> 7,8,9

<223> n = g, a, c or t(u)

<400> 3
agaacanmt gttct 15

<210> 4

<211> 13

<212> DNA

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<221> misc_feature
<222> 7
<223> n = g, a, c, or t(u)

<400> 4
aggtaaaaaa tca 13

<210> 5
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 5
aggcatgac ct 12

<210> 6
<211> 13
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 6
ggtcacggtg gcc 13

<210> 7
<211> 13
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 7
ggtgacccttg acc 13

<210> 8
<211> 13
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 8
ggtcaaggcg atc 13

```
<210> 9
<211> 13
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<221> misc_feature
<222> 6,7,8
<223> n = g, a, c or t(u)

<400> 9
ggtcannntg acc 13

<210> 10
<211> 13
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 10
gggcattcggt acc 13

<210> 11
<211> 13
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 11
ggtcgccagg acc 13

<210> 12
<211> 13
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 12
ggtcaggctg gtc 13

<210> 13
<211> 13
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct
```

<400> 13
ggccgggctg acc 13

<210> 14
<211> 13
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 14
ggccgggctg acc 13

<210> 15
<211> 13
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 15
ggccacgatg aca 13

<210> 16
<211> 13
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 16
ggtggccctg acc 13

<210> 17
<211> 13
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 17
ggtcaaggtg acc 13

<210> 18
<211> 13
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 18
ggtcatggtg acc 13

<210> 19
<211> 13
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 19
gcaggagctg acc 13

<210> 20
<211> 13
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 20
ggtcagcgtg gcc 13

<210> 21
<211> 13
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 21
aatcagactg act 13

<210> 22
<211> 13
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 22
ggtcaggctg gtc 13

<210> 23
<211> 69
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 23
Thr Arg Tyr Cys Ala Val Cys Asn Asp Tyr Ala Ser Gly Tyr His Tyr
1 5 10 15
Gly Val Trp Ser Cys Glu Gly Cys Lys Ala Phe Phe Lys Arg Ser Ile
20 25 30
Gln Gly His Asn Asp Tyr Met Cys Pro Ala Thr Asn Gln Cys Thr Ile
35 40 45
Asp Lys Asn Arg Arg Lys Ser Cys Gln Ala Cys Arg Leu Arg Lys Cys
50 55 60
Tyr Glu Val Gly Met
65

<210> 24

<211> 51

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 24

Met Lys Gly Gly Ile Arg Lys Asp Arg Arg Gly Gly Arg Met Leu Lys
1 5 10 15
His Lys Arg Gln Arg Asp Asp Gly Glu Gly Arg Gly Glu Val Gly Ser
20 25 30
Ala Gly Asp Met Arg Ala Ala Asn Leu Trp Pro Ser Pro Leu Met Ile
35 40 45
Lys Arg Ser
50

<210> 25

<211> 70

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 25

Asp Ala His Phe Cys Ala Val Cys Ser Asp Tyr Ala Ser Gly Tyr His
1 5 10 15
Tyr Gly Val Trp Ser Cys Glu Gly Cys Lys Ala Phe Phe Lys Arg Ser
20 25 30
Ile Gln Gly His Asn Asp Tyr Ile Cys Pro Ala Thr Asn Gln Cys Thr
35 40 45
Ile Asp Lys Asn Arg Arg Lys Ser Cys Gln Ala Cys Arg Leu Arg Lys
50 55 60
Cys Tyr Glu Val Gly Met
65 70

<210> 26

<211> 29

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =

synthetic construct

<400> 26

Val Lys Cys Gly Ser Arg Arg Glu Arg Cys Gly Tyr Arg Leu Val Arg
1 5 10 15
Arg Gln Arg Ser Ala Asp Glu Gln Leu His Cys Ala Gly
20 25

<210> 27

<211> 74

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 27

Pro Pro Lys Leu Cys Leu Val Cys Ser Asp Glu Ala Ser Gly Cys His
1 5 10 15
Tyr Gly Val Leu Thr Cys Gly Ser Cys Lys Val Phe Phe Lys Arg Ala
20 25 30
Val Glu Gly Gln His Asn Tyr Leu Cys Ala Gly Arg Asn Asp Cys Ile
35 40 45
Ile Asp Lys Ile Arg Arg Lys Asn Cys Pro Ala Cys Arg Tyr Arg Lys
50 55 60
Cys Leu Gln Ala Gly Met Asn Leu Glu Ala
65 70

<210> 28

<211> 43

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 28

Arg Lys Thr Lys Lys Ile Lys Gly Ile Gln Gln Ala Thr Thr Gly
1 5 10 15
Val Ser Gln Glu Thr Ser Glu Asn Pro Gly Asn Lys Thr Ile Val Pro
20 25 30
Ala Thr Leu Pro Gln Leu Thr Pro Thr Gly Arg
35 40

<210> 29

<211> 72

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 29

Pro Gln Lys Thr Cys Leu Ile Cys Gly Asp Glu Ala Ser Gly Cys His
1 5 10 15
Tyr Gly Ala Leu Thr Cys Gly Ser Cys Lys Val Phe Phe Lys Arg Ala
20 25 30

Ala Glu Gly Lys Gln Lys Tyr Leu Cys Ala Ser Arg Asn Asp Cys Thr
35 40 45
Ile Asp Lys Phe Arg Arg Lys Asn Cys Pro Ser Cys Arg Leu Arg Lys
50 55 60
Cys Tyr Glu Ala Gly Met Thr Leu
65 70

<210> 30
<211> 56
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 30
Gly Ala Arg Lys Leu Lys Lys Leu Gly Asn Leu Lys Leu Gln Glu Glu
1 5 10 15
Gly Glu Ala Ser Ser Thr Thr Ser Pro Thr Glu Glu Thr Thr Gln Lys
20 25 30
Leu Thr Val Ser His Ile Glu Gly Tyr Glu Cys Gln Pro Ile Phe Leu
35 40 45
Asn Val Leu Glu Ala Ile Ala Arg
50 55

<210> 31
<211> 72
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 31
Pro Gln Lys Ile Cys Leu Ile Cys Gly Asp Glu Ala Ser Gly Cys His
1 5 10 15
Tyr Gly Val Leu Thr Cys Gly Ser Cys Lys Val Phe Phe Lys Arg Ala
20 25 30
Met Glu Gly Gln His Asn Tyr Leu Cys Ala Gly Arg Asn Asp Cys Ile
35 40 45
Val Asp Lys Ile Arg Arg Lys Asn Cys Pro Ala Cys Arg Leu Arg Lys
50 55 60
Cys Cys Gln Ala Gly Met Val Leu
65 70

<210> 32
<211> 53
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 32
Gly Gly Arg Lys Phe Lys Lys Phe Asn Lys Val Arg Val Val Arg Ala
1 5 10 15
Leu Asp Ala Val Ala Leu Pro Gln Pro Val Gly Val Pro Asn Glu Ser
20 25 30

Gln Ala Leu Ser Gln Arg Phe Thr Phe Ser Pro Gly Gln Asp Ile Gln
35 40 45

Leu Ile Pro Pro Leu
50

<210> 33
<211> 72
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 33
Lys Asp Glu Leu Cys Val Val Cys Gly Asp Lys Ala Thr Gly Tyr His
1 5 10 15
Tyr Arg Cys Ile Thr Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Thr
20 25 30
Ile Gln Lys Asn Leu His Pro Ser Tyr Ser Cys Lys Tyr Glu Gly Lys
35 40 45
Cys Val Ile Asp Lys Val Thr Arg Asn Gln Cys Gln Glu Cys Arg Phe
50 55 60
Lys Lys Cys Ile Tyr Val Gly Met
65 70

<210> 34
<211> 63
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 34
Ala Thr Asp Leu Val Leu Asp Asp Ser Lys Arg Leu Ala Lys Arg Lys
1 5 10 15
Leu Ile Glu Glu Asn Arg Glu Lys Arg Arg Arg Glu Glu Leu Gln Lys
20 25 30
Ser Ile Gly His Lys Pro Glu Pro Thr Asp Glu Glu Trp Glu Leu Ile
35 40 45
Lys Thr Val Thr Glu Ala His Val Ala Thr Asn Ala Gln Gly Ser
50 55 60

<210> 35
<211> 70
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 35
Thr Lys His Ile Cys Ala Ile Cys Gly Asp Arg Ser Ser Gly Lys His
1 5 10 15
Tyr Gly Val Tyr Ser Cys Glu Gly Cys Lys Gly Phe Phe Lys Arg Thr
20 25 30

Val Arg Lys Asp Leu Thr Tyr Thr Cys Arg Asp Asn Lys Asp Cys Leu
35 40 45
Ile Asp Lys Arg Gln Arg Asn Arg Cys Gln Tyr Cys Arg Tyr Gln Lys
50 55 60
Cys Leu Ala Met Gly Met
65 70

<210> 36

<211> 59

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 36

Lys Arg Glu Ala Val Gln Glu Glu Arg Gln Arg Gly Lys Asp Arg Asn
1 5 10 15
Glu Asn Glu Val Glu Ser Thr Ser Ser Ala Asn Glu Asp Met Pro Val
20 25 30
Glu Arg Ile Leu Glu Ala Glu Leu Ala Val Glu Pro Lys Thr Glu Thr
35 40 45
Tyr Val Glu Ala Asn Met Gly Leu Asn Pro Ser
50 55

<210> 37

<211> 72

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 37

Ile Tyr Lys Pro Cys Phe Val Cys Gln Asp Lys Ser Ser Gly Tyr His
1 5 10 15
Tyr Gly Val Ser Ala Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Ser
20 25 30
Ile Gln Lys Asn Met Val Tyr Thr Cys His Arg Asp Lys Asn Cys Ile
35 40 45
Ile Asn Lys Val Thr Arg Asn Arg Cys Gln Tyr Cys Arg Leu Gln Lys
50 55 60
Cys Phe Glu Val Gly Met Ser Lys
65 70

<210> 38

<211> 69

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 38

Glu Ser Val Arg Asn Asp Arg Asn Lys Lys Lys Lys Glu Val Pro Lys
1 5 10 15

Pro Glu Cys Ser Glu Ser Tyr Thr Leu Thr Pro Glu Val Gly Glu Leu
20 25 30
Ile Glu Lys Val Arg Lys Ala His Gln Glu Thr Phe Pro Ala Leu Cys
35 40 45
Gln Leu Gly Lys Tyr Thr Thr Asn Asn Ser Ser Glu Gln Arg Val Ser
50 55 60
Leu Asp Ile Asp Leu
65

<210> 39
<211> 70
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 39
Arg Ile Cys Gly Val Cys Gly Asp Arg Ala Thr Gly Phe His Phe Asn
1 5 10 15
Ala Met Thr Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Ser Met Lys
20 25 30
Arg Lys Ala Leu Phe Thr Cys Pro Phe Asn Gly Asp Cys Arg Ile Thr
35 40 45
Lys Asp Asn Arg Arg His Cys Gln Ala Cys Arg Leu Lys Arg Cys Val
50 55 60
Asp Ile Gly Met Met Lys
65 70

<210> 40
<211> 65
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 40
Glu Phe Ile Leu Thr Asp Glu Glu Val Gln Arg Lys Arg Glu Met Ile
1 5 10 15
Leu Lys Arg Lys Glu Glu Glu Ala Leu Lys Asp Ser Leu Arg Pro Lys
20 25 30
Leu Ser Glu Glu Gln Gln Arg Ile Ile Ala Ile Leu Leu Asp Ala His
35 40 45
His Lys Thr Tyr Asp Pro Thr Tyr Ser Asp Phe Cys Gln Phe Arg Pro
50 55 60

Pro
65

<210> 41
<211> 134
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 41

Pro Pro Gln Ala Val Ala Pro Pro Ala Pro Lys Pro Thr Gln Ala Gly
 1 5 10 15
 Glu Gly Thr Leu Ser Glu Ala Leu Leu Gln Leu Gln Phe Asp Asp Glu
 20 25 30
 Asp Leu Gly Ala Leu Leu Gly Asn Ser Thr Asp Pro Ala Val Phe Thr
 35 40 45
 Asp Leu Ala Ser Val Asp Asn Ser Glu Phe Gln Gln Leu Leu Asn Gln
 50 55 60
 Gly Ile Pro Val Ala Pro His Thr Thr Glu Pro Met Leu Met Glu Tyr
 65 70 75 80
 Pro Glu Ala Ile Thr Arg Leu Val Thr Gly Ala Gln Arg Pro Pro Asp
 85 90 95
 Pro Ala Pro Ala Pro Leu Gly Ala Pro Gly Leu Pro Asn Gly Leu Leu
 100 105 110
 Ser Gly Asp Glu Asp Phe Ser Ser Ile Ala Asp Met Asp Phe Ser Ala
 115 120 125
 Leu Leu Ser Gln Ile Ser
 130

<210> 42

<211> 87

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 42

Lys Val Ala Pro Pro Thr Asp Val Ser Leu Gly Asp Glu Leu His Leu
 1 5 10 15
 Asp Gly Glu Asp Val Ala Met Ala His Ala Asp Ala Leu Asp Asp Phe
 20 25 30
 Asp Leu Asp Met Leu Gly Asp Gly Asp Ser Pro Gly Pro Gly Phe Thr
 35 40 45
 Pro His Asp Ser Ala Pro Tyr Gly Ala Leu Asp Met Ala Asp Phe Glu
 50 55 60
 Phe Glu Gln Met Phe Thr Asp Ala Leu Gly Ile Asp Glu Tyr Gly Gly
 65 70 75 80
 Glu Phe Pro Gly Ile Arg Arg
 85

<210> 43

<211> 35

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 43

Met Ala Ala Ala Val Arg Met Asn Ile Gln Met Leu Leu Glu Ala Ala
 1 5 10 15
 Asp Tyr Leu Glu Arg Arg Glu Arg Glu Ala Glu His Gly Tyr Ala Ser
 20 25 30
 Met Leu Pro
 35

<210> 44
<211> 90
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 44
Met Asp Ala Lys Ser Leu Thr Ala Trp Ser Arg Thr Leu Val Thr Phe
1 5 10 15
Lys Asp Val Phe Val Asp Phe Thr Arg Glu Glu Trp Lys Leu Leu Asp
20 25 30
Thr Ala Gln Gln Ile Val Tyr Arg Asn Val Met Leu Glu Asn Tyr Lys
35 40 45
Asn Leu Val Ser Leu Gly Tyr Gln Leu Thr Lys Pro Asp Val Ile Leu
50 55 60
Arg Leu Glu Lys Gly Glu Glu Pro Trp Leu Val Glu Arg Glu Ile His
65 70 75 80
Gln Glu Thr His Pro Asp Ser Glu Thr Ala
85 90

<210> 45
<211> 595
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 45
Met Thr Met Thr Leu His Thr Lys Ala Ser Gly Met Ala Leu Leu His
1 5 10 15
Gln Ile Gln Gly Asn Glu Leu Glu Pro Leu Asn Arg Pro Gln Leu Lys
20 25 30
Ile Pro Leu Glu Arg Pro Leu Gly Glu Val Tyr Leu Asp Ser Ser Lys
35 40 45
Pro Ala Val Tyr Asn Tyr Pro Glu Gly Ala Ala Tyr Glu Phe Asn Ala
50 55 60
Ala Ala Ala Asn Ala Gln Val Tyr Gly Gln Thr Gly Leu Pro Tyr
65 70 75 80
Gly Pro Gly Ser Glu Ala Ala Ala Phe Gly Ser Asn Gly Leu Gly Gly
85 90 95
Phe Pro Pro Leu Asn Ser Val Ser Pro Ser Pro Leu Met Leu Leu His
100 105 110
Pro Pro Pro Gln Leu Ser Pro Phe Leu Gln Pro His Gly Gln Gln Val
115 120 125
Pro Tyr Tyr Leu Glu Asn Glu Pro Ser Gly Tyr Thr Val Arg Glu Ala
130 135 140
Gly Pro Pro Ala Phe Tyr Arg Pro Asn Ser Asp Asn Arg Arg Gln Gly
145 150 155 160
Gly Arg Glu Arg Leu Ala Ser Thr Asn Asp Lys Gly Ser Met Ala Met
165 170 175
Glu Ser Ala Lys Glu Thr Arg Tyr Cys Ala Val Cys Asn Asp Tyr Ala
180 185 190
Ser Gly Tyr His Tyr Gly Val Trp Ser Cys Glu Gly Cys Lys Ala Phe
195 200 205
Phe Lys Arg Ser Ile Gln Gly His Asn Asp Tyr Met Cys Pro Ala Thr
210 215 220

Asn Gln Cys Thr Ile Asp Lys Asn Arg Arg Lys Ser Cys Gln Ala Cys
 225 230 235 240
 Arg Leu Arg Lys Cys Tyr Glu Val Gly Met Met Lys Gly Gly Ile Arg
 245 250 255
 Lys Asp Arg Arg Gly Gly Arg Met Leu Lys His Lys Arg Gln Arg Asp
 260 265 270
 Asp Gly Glu Gly Arg Gly Glu Val Gly Ser Ala Gly Asp Met Arg Ala
 275 280 285
 Ala Asn Leu Trp Pro Ser Pro Leu Met Ile Lys Arg Ser Lys Lys Asn
 290 295 300
 Ser Leu Ala Leu Ser Leu Thr Ala Asp Gln Met Val Ser Ala Leu Leu
 305 310 315 320
 Asp Ala Glu Pro Pro Ile Leu Tyr Ser Glu Tyr Asp Pro Thr Arg Pro
 325 330 335
 Phe Ser Glu Ala Ser Met Met Gly Leu Leu Thr Asn Leu Ala Asp Arg
 340 345 350
 Glu Leu Val His Met Ile Asn Trp Ala Lys Arg Val Pro Gly Phe Val
 355 360 365
 Asp Leu Thr Leu His Asp Gln Val His Leu Leu Glu Cys Ala Trp Leu
 370 375 380
 Glu Ile Leu Met Ile Gly Leu Val Trp Arg Ser Met Glu His Pro Val
 385 390 395 400
 Lys Leu Leu Phe Ala Pro Asn Leu Leu Leu Asp Arg Asn Gln Gly Lys
 405 410 415
 Cys Val Glu Gly Met Val Glu Ile Phe Asp Met Leu Leu Ala Thr Ser
 420 425 430
 Ser Arg Phe Arg Met Met Asn Leu Gln Gly Glu Phe Val Cys Leu
 435 440 445
 Lys Ser Ile Ile Leu Leu Asn Ser Gly Val Tyr Thr Phe Leu Ser Ser
 450 455 460
 Thr Leu Lys Ser Leu Glu Glu Lys Asp His Ile His Arg Val Leu Asp
 465 470 475 480
 Lys Ile Thr Asp Thr Leu Ile His Leu Met Ala Lys Ala Gly Leu Thr
 485 490 495
 Leu Gln Gln His Gln Arg Leu Ala Gln Leu Leu Leu Ile Leu Ser
 500 505 510
 His Ile Arg His Met Ser Asn Lys Gly Met Glu His Leu Tyr Ser Met
 515 520 525
 Lys Cys Lys Asn Val Val Pro Leu Tyr Asp Leu Leu Glu Met Leu
 530 535 540
 Asp Ala His Arg Leu His Ala Pro Thr Ser Arg Gly Gly Ala Ser Val
 545 550 555 560
 Glu Glu Thr Asp Gln Ser His Leu Ala Thr Ala Gly Ser Thr Ser Ser
 565 570 575
 His Ser Leu Gln Lys Tyr Tyr Ile Thr Gly Glu Ala Glu Gly Phe Pro
 580 585 590
 Ala Thr Val
 595

<210> 46
 <211> 2092
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence; note =
 synthetic construct

<400> 46
 gaattccaaa attgtgatgt ttcttgatt tttgatgaag gagaaatact gtaatgatca
 ctgtttacac tatgtacact tttaggcagc cctttttagc gttataaaaa ctgaaaagcac

60

120

accggaccccg	caggctcccgg	gggcaggggcc	ggggccagag	ctcgcgtgtc	ggcgggacat	180
gcgctgcgtc	gcctctaacc	tcgggtctgt	ctcttttcc	aggtgcccg	ccggtttctg	240
agcattctgc	cctgcggggaa	cacggctctgc	accctgcccg	cggccacgga	ccatgaccat	300
gaccctccac	accaaagcat	ctgggatggc	cctactgcat	cagatccaag	ggaacgagct	360
ggagccccctg	aaccgtccgc	agctcaagat	ccccctggag	cggcccccgg	gcgagggtgt	420
cctggacagc	agcaagcccc	ccgtgtacaa	ctaccccgag	ggcgcgcgcct	acgagttcaa	480
cgccgcggcc	gccgccaacg	cgcaggctca	cgttcagacc	ggccctccct	acggcccccgg	540
gtctgaggct	ggggcggtcg	gctccaacgg	cctggggggt	tccccccac	tcaacagcgt	600
gtctccgagc	ccgctgatgc	tactgcaccc	gccgcgcgag	ctgtcgccct	tcctgcagcc	660
ccacggccag	caggtgcacct	actacctgga	gaacgagccc	agcggctaca	cggtgccgca	720
ggccggcccg	ccggcattct	acagggccaaa	ttcagataat	cgacgcccagg	gtggcagaga	780
aagattggcc	agtaccaatg	acaaggaaag	tatggctatg	gaatctgcca	aggagactcg	840
ctactgtgca	gtgtcaatg	actatgcttc	aggctaccat	tatggagtct	ggtcctgtga	900
gggctgcaag	gccttcttca	agagaagtat	tcaaggacat	aacgactata	tgtgtccagc	960
caccaaccag	tgcaccattg	ataaaaaacag	gaggaagagc	tgccaggcct	gccggctccg	1020
caaatgtac	gaagtgggaa	tgatgaaagg	ttggatacga	aaagaccgaa	gaggagaggag	1080
aatgttggaa	cacaagcgcc	agagagatga	ttggggagggc	aggggtgaag	ttgggtctgc	1140
tggagacatg	agagctgcca	acctttggcc	aagcccgctc	atgatcaaac	gctctaagaa	1200
gaacagcctg	gccttgcctc	tgacggccga	ccagatggc	agtgccttgt	tggatgtga	1260
gccccccata	ctctattccg	agtatgatcc	taccagaccc	ttcagtgaag	tttcgatgtat	1320
gggcttactg	accaacctgg	cagacaggga	gctggttcac	atgatcaact	gggcgaagag	1380
gggtgccaggc	tttggatt	tgaccctcca	tgatcagggtc	cacccctctag	aatgtgcctg	1440
gctagagatc	ctgatgattg	gtctcgctg	gcgctccatg	gagcaccagg	tgaagctact	1500
gtttgctcct	aacttgctct	tggacaggaa	ccagggaaaa	tgttagagg	gcatggtgga	1560
gatttcgac	atgctgctgg	ctacatcata	tcgggtccgc	atgatgaatc	tgcaaggagaa	1620
ggagtttgg	tgcctcaaatt	ctattatTTT	gcttaattct	ggagtgtaca	catttctgtc	1680
cagcacccctg	aagtctctgg	aagagaagga	ccatatccac	cgagtcctgg	acaagatcac	1740
agacactttg	atccacctga	tggccaaaggc	aggcctgacc	ctgcagcagc	agcaccagcg	1800
gctggcccgag	ctccctcctca	tcctctccca	catcaggcac	atgagtaaca	aaggcatgg	1860
gcatctgtac	agcatgaagt	gcaagaacgt	ggtgcgcctc	tatgacctgc	tgctggagat	1920
gctggacgcc	caccgcctac	atgcgcctac	tagccgtgga	ggggcatccg	tggaggagac	1980
ggaccAAAGC	cacttggcca	ctgcgggctc	tacttcatcg	catttcttgc	aaaagtatta	2040
catcacqqqq	qaggcqaqaq	gtttccctgc	cacagtctga	gagctccctg	gc	2092

```
<210> 47
<211> 207
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

```

<400> 47
actcgctact gtgcagtgtg caatgactat gtttcaggct accattatgg agtctggtcc      60
tgtgagggct gcaaggcctt cttcaagaga agtattcaag gacataacga ctatatgtgt     120
ccagccacca accagtgcac cattgataaa aacaggagga agagctgccca ggcctgccgg     180
ctccgcaaat gctacgaagt gggaaatg                                         207

```

```
<210> 48
<211> 153
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 48 atgaaaagggtg ggatacgaaa agaccgaaga ggagggagaa tggtaaaaca caagcgccag 60
aqaqatqatq qggagggcag gggtaagtg gggctgtctg gagacatgag agctgccaac 120

ctttggccaa gcccgcctcat gatcaaacgc tct

153

<210> 49
<211> 530
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 49
Met Asp Ile Lys Asn Ser Pro Ser Ser Leu Asn Ser Pro Ser Ser Tyr
1 5 10 15
Asn Cys Ser Gln Ser Ile Leu Pro Leu Glu His Gly Ser Ile Tyr Ile
20 25 30
Pro Ser Ser Tyr Val Asp Ser His His Glu Tyr Pro Ala Met Thr Phe
35 40 45
Tyr Ser Pro Ala Val Met Asn Tyr Ser Ile Pro Ser Asn Val Thr Asn
50 55 60
Leu Glu Gly Gly Pro Gly Arg Gln Thr Thr Ser Pro Asn Val Leu Trp
65 70 75 80
Pro Thr Pro Gly His Leu Ser Pro Leu Val Val His Arg Gln Leu Ser
85 90 95
His Leu Tyr Ala Glu Pro Gln Lys Ser Pro Trp Cys Glu Ala Arg Ser
100 105 110
Leu Glu His Thr Leu Pro Val Asn Arg Glu Thr Leu Lys Arg Lys Val
115 120 125
Ser Gly Asn Arg Cys Ala Ser Pro Val Thr Gly Pro Gly Ser Lys Arg
130 135 140
Asp Ala His Phe Cys Ala Val Cys Ser Asp Tyr Ala Ser Gly Tyr His
145 150 155 160
Tyr Gly Val Trp Ser Cys Glu Gly Cys Lys Ala Phe Phe Lys Arg Ser
165 170 175
Ile Gln Gly His Asn Asp Tyr Ile Cys Pro Ala Thr Asn Gln Cys Thr
180 185 190
Ile Asp Lys Asn Arg Arg Lys Ser Cys Gln Ala Cys Arg Leu Arg Lys
195 200 205
Cys Tyr Glu Val Gly Met Val Lys Cys Gly Ser Arg Arg Glu Arg Cys
210 215 220
Gly Tyr Arg Leu Val Arg Arg Gln Arg Ser Ala Asp Glu Gln Leu His
225 230 235 240
Cys Ala Gly Lys Ala Lys Arg Ser Gly Gly His Ala Pro Arg Val Arg
245 250 255
Glu Leu Leu Leu Asp Ala Leu Ser Pro Glu Gln Leu Val Leu Thr Leu
260 265 270
Leu Glu Ala Glu Pro Pro His Val Leu Ile Ser Arg Pro Ser Ala Pro
275 280 285
Phe Thr Glu Ala Ser Met Met Met Ser Leu Thr Lys Leu Ala Asp Lys
290 295 300
Glu Leu Val His Met Ile Ser Trp Ala Lys Lys Ile Pro Gly Phe Val
305 310 315 320
Glu Leu Ser Leu Phe Asp Gln Val Arg Leu Leu Glu Ser Cys Trp Met
325 330 335
Glu Val Leu Met Met Gly Leu Met Trp Arg Ser Ile Asp His Pro Gly
340 345 350
Lys Leu Ile Phe Ala Pro Asp Leu Val Leu Asp Arg Asp Glu Gly Lys
355 360 365
Cys Val Glu Gly Ile Leu Glu Ile Phe Asp Met Leu Leu Ala Thr Thr
370 375 380

Ser Arg Phe Arg Glu Leu Lys Leu Gln His Lys Glu Tyr Leu Cys Val
 385 390 395 400
 Lys Ala Met Ile Leu Leu Asn Ser Ser Met Tyr Pro Leu Val Thr Ala
 405 410 415
 Thr Gln Asp Ala Asp Ser Ser Arg Lys Leu Ala His Leu Leu Asn Ala
 420 425 430
 Val Thr Asp Ala Leu Val Trp Val Ile Ala Lys Ser Gly Ile Ser Ser
 435 440 445
 Gln Gln Gln Ser Met Arg Leu Ala Asn Leu Leu Met Leu Leu Ser His
 450 455 460
 Val Arg His Ala Ser Asn Lys Gly Met Glu His Leu Leu Asn Met Lys
 465 470 475 480
 Cys Lys Asn Val Val Pro Val Tyr Asp Leu Leu Glu Met Leu Asn
 485 490 495
 Ala His Val Leu Arg Gly Cys Lys Ser Ser Ile Thr Gly Ser Glu Cys
 500 505 510
 Ser Pro Ala Glu Asp Ser Lys Ser Lys Glu Gly Ser Gln Asn Pro Gln
 515 520 525
 Ser Gln
 530

<210> 50
 <211> 2011
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence; note =
 synthetic construct

<400> 50
 tttcagtttc tccagctgct ggcttttgg acacccactc ccccgcagg aggcaagg 60
 aagcgcggag gctgcgagaa ataactgcct cttgaaaactt gcagggcgaa gagcaggcgg 120
 cgagcgctgg gccggggagg gaccacccga gctgcgacgg gctctgggc tgccggcg 180
 ggctggcgcc cggagcctga gctgcagggag gtgcgtcgc ttccctcaac aggtggcg 240
 ggggcgcgcg cggggagacc cccccataatg cggggaaaagc acgtgtccgc atttttagaga 300
 aggcaaggcc ggtgttta tctgcaagcc attatacttg cccacgaatc tttgagaaca 360
 ttataatgac ctttgtcct cttcttgc aa ggtgtttct cagctgttat ctcaagacat 420
 gatatataaa aactcaccat ctgccttaa ttctccctcc tcctacaact gcagtcaatc 480
 catcttaccc ctggagcacg gctccatata cataccttcc tcctatgttag acagccacca 540
 tgaatatcca gccatgacat tctatagccc tgctgtgatg aattacagca ttcccagcaa 600
 tgtcaacttac ttggaaagg 660
 ggcctggcg 660
 gcaagaccaca 660
 ttataatgac ctttgtcct cttcttgc aa ggtgtttct cagctgttat ctcaagacat 720
 gatatataaa aactcaccat ctgccttaa ttctccctcc tcctacaact gcagtcaatc 720
 acctcaaaag agtccctgg 780
 gtgaagcaag atcgctagaa cacaccttac ctgtaaacag 780
 agagacactg aaaagaagg ttagtggaa ccgttgcgc 840
 agccctgtta ctggtccagg 840
 ttcaaaagagg gatgctact tctgcgtgt ctgcagcgat tacgcacatc gatatacta 900
 tgtagtctgg 960
 tgctgtgaag gatgttgg 960
 ctttttaaa agaaggattt 960
 tgattatatt tgccagcta caaatcagtg tacaatcgat aaaaacccgc gcaagagctg 1020
 ccaggcctgc cgacttcgga agtggatcga agtggaaatg gtgaagtgtg gctcccg 1080
 agagagatgt gggtaccg 1140
 gcccggcaag gccaagagaa gtggcgcc 1200
 cggccctgagc cccgagcagc tagtgcac cctctgg 1260
 gatcagccgc cccagtcgc ctttacccga ggcctccatg atgatgtccc tgaccaagtt 1320
 gggccgacaag gagttgtac acatgatcag ctggccaa 1380
 gctcagccctg ttcgaccaag tgcggctt ggagagctgt 1440
 ggggctgtatg tggcgctcaa ttgaccaccc cggcaagctc 1500
 tctggacagg gatgaggg 1560
 gggcaactact tcaagtttc gagagttaa actccaacac 1620
 gggccatgatc ctgcctcaatt ccagatgt 1680
 cggcggccgg aagctggctc acttgcgtaa cggccgtgacc 1740
 tgccaaagagc ggcacatcctt cccagcagca atccatgcgc 1800

cctgtcccac gtcaggcatg cgagtaacaa gggcatggaa catctgctca acatgaagtg	1860
caaaaatgtg gtcccagtgt atgacctgt gctggagatg ctgaatgcc acgtgcttcg	1920
cgggtgcaag tcctccatca cggggtccga gtgcagcccg gcagaggaca gtaaaagcaa	1980
agagggctcc cagaaccac agtctcagtg a	2011
<210> 51	
<211> 210	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence; note =	
synthetic construct	
<400> 51	
gatgctcaact tctgcgctgt ctgcagcgat tacgcacatcg gatatcacta tggagtctgg	60
tctgtgtgaag gatgtaaaggc cttttttaaa agaagcattc aaggacataa tgatttatatt	120
tgtccagcta caaatcagtg tacaatcgat aaaaaccggc gcaagagctg ccaggcctgc	180
cgacttcggaa agtgttacga agtggaaatg	210
<210> 52	
<211> 87	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence; note =	
synthetic construct	
<400> 52	
gtgaagtgtg gctcccgag agagagatgt gggtaccgccc ttgtgcggag acagagaagt	60
gccgacgagc agctgcactg tgccggc	87
<210> 53	
<211> 777	
<212> PRT	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence; note =	
synthetic construct	
<400> 53	
Met Asp Ser Lys Glu Ser Leu Thr Pro Gly Arg Glu Glu Asn Pro Ser	
1 5 10 15	
Ser Val Leu Ala Gln Glu Arg Gly Asp Val Met Asp Phe Tyr Lys Thr	
20 25 30	
Leu Arg Gly Gly Ala Thr Val Lys Val Ser Ala Ser Ser Pro Ser Leu	
35 40 45	
Ala Val Ala Ser Gln Ser Asp Ser Lys Gln Arg Arg Leu Leu Val Asp	
50 55 60	
Phe Pro Lys Gly Ser Val Ser Asn Ala Gln Gln Pro Asp Leu Ser Lys	
65 70 75 80	
Ala Val Ser Leu Ser Met Gly Leu Tyr Met Gly Glu Thr Glu Thr Lys	
85 90 95	
Val Met Gly Asn Asp Leu Gly Phe Pro Gln Gln Gly Gln Ile Ser Leu	
100 105 110	
Ser Ser Gly Glu Thr Asp Leu Lys Leu Leu Glu Glu Ser Ile Ala Asn	
115 120 125	
Leu Asn Arg Ser Thr Ser Val Pro Glu Asn Pro Lys Ser Ser Ala Ser	
130 135 140	

Thr Ala Val Ser Ala Ala Pro Thr Glu Lys Glu Phe Pro Lys Thr His
 145 150 155 160
 Ser Asp Val Ser Ser Glu Gln Gln His Leu Lys Gly Gln Thr Gly Thr
 165 170 175
 Asn Gly Gly Asn Val Lys Leu Tyr Thr Thr Asp Gln Ser Thr Phe Asp
 180 185 190
 Ile Leu Gln Asp Leu Glu Phe Ser Ser Gly Ser Pro Gly Lys Glu Thr
 195 200 205
 Asn Glu Ser Pro Trp Arg Ser Asp Leu Leu Ile Asp Glu Asn Cys Leu
 210 215 220
 Leu Ser Pro Leu Ala Gly Glu Asp Asp Ser Phe Leu Leu Glu Gly Asn
 225 230 235 240
 Ser Asn Glu Asp Cys Lys Pro Leu Ile Leu Pro Asp Thr Lys Pro Lys
 245 250 255
 Ile Lys Asp Asn Gly Asp Leu Val Leu Ser Ser Pro Ser Asn Val Thr
 260 265 270
 Leu Pro Gln Val Lys Thr Glu Lys Glu Asp Phe Ile Glu Leu Cys Thr
 275 280 285
 Pro Gly Val Ile Lys Gln Glu Lys Leu Gly Thr Val Tyr Cys Gln Ala
 290 295 300
 Ser Phe Pro Gly Ala Asn Ile Ile Gly Asn Lys Met Ser Ala Ile Ser
 305 310 315 320
 Val His Gly Val Ser Thr Ser Gly Gly Gln Met Tyr His Tyr Asp Met
 325 330 335
 Asn Thr Ala Ser Leu Ser Gln Gln Asp Gln Lys Pro Ile Phe Asn
 340 345 350
 Val Ile Pro Pro Ile Pro Val Gly Ser Glu Asn Trp Asn Arg Cys Gln
 355 360 365
 Gly Ser Gly Asp Asp Asn Leu Thr Ser Leu Gly Thr Leu Asn Phe Pro
 370 375 380
 Gly Arg Thr Val Phe Ser Asn Gly Tyr Ser Ser Pro Ser Met Arg Pro
 385 390 395 400
 Asp Val Ser Ser Pro Pro Ser Ser Ser Thr Ala Thr Thr Gly Pro
 405 410 415
 Pro Pro Lys Leu Cys Leu Val Cys Ser Asp Glu Ala Ser Gly Cys His
 420 425 430
 Tyr Gly Val Leu Thr Cys Gly Ser Cys Lys Val Phe Phe Lys Arg Ala
 435 440 445
 Val Glu Gly Gln His Asn Tyr Leu Cys Ala Gly Arg Asn Asp Cys Ile
 450 455 460
 Ile Asp Lys Ile Arg Arg Lys Asn Cys Pro Ala Cys Arg Tyr Arg Lys
 465 470 475 480
 Cys Leu Gln Ala Gly Met Asn Leu Glu Ala Arg Lys Thr Lys Lys
 485 490 495
 Ile Lys Gly Ile Gln Gln Ala Thr Thr Gly Val Ser Gln Glu Thr Ser
 500 505 510
 Glu Asn Pro Gly Asn Lys Thr Ile Val Pro Ala Thr Leu Pro Gln Leu
 515 520 525
 Thr Pro Thr Leu Val Ser Leu Leu Glu Val Ile Glu Pro Glu Val Leu
 530 535 540
 Tyr Ala Gly Tyr Asp Ser Ser Val Pro Asp Ser Thr Trp Arg Ile Met
 545 550 555 560
 Thr Thr Leu Asn Met Leu Gly Gly Arg Gln Val Ile Ala Ala Val Lys
 565 570 575
 Trp Ala Lys Ala Ile Pro Gly Phe Arg Asn Leu His Leu Asp Asp Gln
 580 585 590
 Met Thr Leu Leu Gln Tyr Ser Trp Met Phe Leu Met Ala Phe Ala Leu
 595 600 605
 Gly Trp Arg Ser Tyr Arg Gln Ser Ser Ala Asn Leu Leu Cys Phe Ala
 610 615 620

Pro	Asp	Leu	Ile	Ile	Asn	Glu	Gln	Arg	Met	Thr	Leu	Pro	Cys	Met	Tyr
625					630				635						640
Asp	Gln	Cys	Lys	His	Met	Leu	Tyr	Val	Ser	Ser	Glu	Leu	His	Arg	Leu
					645				650						655
Gln	Val	Ser	Tyr	Glu	Glu	Tyr	Leu	Cys	Met	Lys	Thr	Leu	Leu	Leu	
				660				665							670
Ser	Ser	Val	Pro	Lys	Asp	Gly	Leu	Lys	Ser	Gln	Glu	Leu	Phe	Asp	Glu
				675				680							685
Ile	Arg	Met	Thr	Tyr	Ile	Lys	Glu	Leu	Gly	Lys	Ala	Ile	Val	Lys	Arg
		690				695				700					
Glu	Gly	Asn	Ser	Ser	Gln	Asn	Trp	Gln	Arg	Phe	Tyr	Gln	Leu	Thr	Lys
705					710					715					720
Leu	Leu	Asp	Ser	Met	His	Glu	Val	Val	Glu	Asn	Leu	Leu	Asn	Tyr	Cys
					725				730						735
Phe	Gln	Thr	Phe	Leu	Asp	Lys	Thr	Met	Ser	Ile	Glu	Phe	Pro	Glu	Met
			740					745							750
Leu	Ala	Glu	Ile	Ile	Thr	Asn	Gln	Ile	Pro	Lys	Tyr	Ser	Asn	Gly	Asn
				755				760							765
Ile	Lys	Lys	Leu	Leu	Phe	His	Gln	Lys							
			770					775							

```
<210> 54
<211> 4788
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 54		60
tttttagaaa aaaaaaatat attccctcc tgctccttct gcgttcacaa gctaaggtgt		120
ttatctggc tcgcccggga actgcggacg gtggcgggca agcggctct ctgccagagt		180
tgatattcac ttagggactc caaagaatca ttaactccctg gttagagaaga aaaccccagc		240
agtgtgcttg ctcaggagag gggagatgtg atggacttct ataaaaccct aagaggagga		300
gctactgtga agtttctgc gtcttacccc tcaactggctg tcgcctctca atcagactcc		360
aagcagcgaa gacttttggg tgatttcca aaaggctca tagcaatgc gcagcagcca		420
gatctgtcca aagcagttc actctcaatg ggactgtata tggagagac agaaacaaaa		480
gtgatggaa atgacctggg attcccacag cagggccaaa tcagcccttc ctgggggaa		540
acagactta agcttttggg agaaagcatt gcaaaccctca ataggctcgac cagtgttcca		600
gagaaccca agagttcagc atccactgct gtgtctgctg cccccacaga gaaggagttt		660
ccaaaaactc actctgatgt atcttcagaa cagcaacatt tgaagggcca gactggcacc		720
aacggtgcc atgtgaaatt gtataccaca gaccaaagca ccttgacat ttgcaggat		780
ttggagttt ctctgggtc cccagtaaa gagacgaatg agactcctt gагатcага		840
ctgttgatag ataaaaactg tttgcttct cctctggcgg gagaagacga ttcatccctt		900
ttggaaggaa actcgaatga ggactgcaag cctctcattt tacccggacac taaacccaaa		960
attaaggata atggagatct ggtttgcata agccccagta atgtAACACT gccccaaagt		1020
aaaacagaaa aagaagattt catcgaactc tgcacccctg ggtaattaa gcaagagaaa		1080
ctgggcacag ttactgtca ggcaagctt cctggagcaa atataattgg taataaaatg		1140
tctgccattt ctgttcatgg tgtgagtacc tctggaggac agatgtacca ctatgacatg		1200
aatacagcat cccttctca acagcaggat cagaagccta ttttaatgt cattccacca		1260
attcccgtt gttccgaaaa ttggaatagg tgccaaggat ctggagatga caacttgact		1320
tctctggga ctctgaactt ccctggctca acagttttt ctaatggcta ttcaagcccc		1380
agcatgagac cagatgtaa ctctcctcca tccagctcct caacagcaac aacaggacca		1440
cctcccaaactctggt gtgcctgtat gaagcttca gatgtcatta tggagtctta		1500
acttgtggaa gctgtaaagt tttctcaaaa agagcagtgg aaggacagca caattaccta		1560
tgtgtggaa ggaatgattt catcatcgat aaaattcgaa gaaaaaaactg cccagcatgc		1620
cgctatcgaa aatgtctca ggctggaatg aacctggaa ctcgaaaaac aaagaaaaaa		1680
ataaaaaggaa tttagcaggc cactacagga gtctcacaag aaacctctga aaatcctgg		1740
aacaaacaa tagttctgc aacgttacca caactcaccc ctaccctggt gtcactgttg		1800
gagggttattt aacctgaagt gttatatgca ggtatgata gctctgttcc agactcaact		

tggaggatca	tgactacgct	caacatgtta	ggagggcggc	aagtgattgc	agcagtgaaa	1860
tggcaaagg	caataccagg	tttcaggaac	ttacacctgg	atgaccaaata	gaccctactg	1920
cagtactcct	ggatgttct	tatggcatt	gctctggggt	ggagatcata	tagacaatca	1980
atgcaaacc	tgctgttta	tgctcctgat	ctgattatta	atgacgagag	aatgactcta	2040
ccctgcatgt	acgaccaatg	taaacacatg	ctgtatgttt	cctctgagtt	acacaggcct	2100
caggtatctt	atgaagagta	tctctgtatg	aaaaccttac	tgcttcttc	ttcagttcct	2160
aaggacggtc	tgaagagcca	agagctattt	gatgaaatta	aatgaccta	catcaaagag	2220
ctagaaaag	ccattgtcaa	gagggaaagga	aactccagcc	agaactggca	gcggtttat	2280
caactgacaa	aactcttgg	ttctatgcat	gaagtgggtg	aaaatctcct	taactattgc	2340
ttccaaacat	ttttggataa	gaccatgagt	attgaattcc	ccgagatgtt	agctgaaatc	2400
atcacaatc	agataccaaa	atattcaaat	ggaatataca	aaaaacttct	gtttcatcaa	2460
aagtgactgc	cttaataaga	atggttgcct	taaagaaaat	cgaattaata	gcttttattg	2520
tataaactat	cagtttgtcc	tgttagaggtt	ttgtgttttt	atttttattt	gttttcatct	2580
gttgggggt	tttaaatacg	cactacatgt	ggtttataga	gggccaagac	ttggcaacag	2640
aagcagttga	gtcgtcatca	cttttcagtg	atggagagt	agatggtgaa	atttatttagt	2700
taatatatcc	cagaaattag	aaaccttaat	atgtggacgt	aatctccaca	gtcaaagaag	2760
gatggcacct	aaaccaccag	tgcccaaagt	ctgtgtgatg	aactttctct	tcataacttt	2820
tttcacagtt	ggctggatga	attttcttag	actttctgtt	gggttatccc	ccccctgtat	2880
agtaggata	gcattttga	tttatgcatg	gaaacctgaa	aaaaagttt	caagtgtata	2940
tcagaaaagg	gaagttgtgc	ctttatagc	tattactgtc	tggttttaac	aatttcctt	3000
atatttagt	aactacgctt	gctcattttt	tcttacataa	ttttttattt	aagtttattgt	3060
acagctgttt	aagatggca	gctagttcgt	agctttccca	aataaactct	aaacattaat	3120
caatcatctg	tgtaaaaatg	ggttggtgct	tctaacctga	tggcacttag	ctatcagaag	3180
accacaaaaa	ttgactcaaa	tctccagttat	tcttgc当地	aaaaaaaaaa	aaaaagctca	3240
tatTTTGTAT	atatctgctt	cagtggagaa	ttatataatgt	tgtcaaattt	aacagtccta	3300
actggatata	agcacatgt	ccagtgcact	gctgggtaaa	ctgtggatga	ttgttgcaaa	3360
agactaattt	aaaaaataac	taccaagagg	ccctgtctgt	acctaacgcc	ctatTTTGC	3420
aatggctata	tggcaagaaa	gctggtaaaac	tattttgttt	tcaggacctt	ttgaagtagt	3480
ttgtataact	tcttaaaatg	tgtgattcca	gataaccagg	tgtaaacacag	ctgagagact	3540
ttaatcaga	caaagtaatt	cctctcacta	aactttaccc	aaaaactaaa	tctctaataat	3600
ggcaaaaatg	gctagacacc	cattttcaca	ttcccatctg	tcaccaattt	gttaatctt	3660
cctgatggta	cagggaaatgt	cagctactga	ttttttgtat	tttagaactgt	atgtcagaca	3720
tccatgtttt	taaaactaca	catccctaaat	gtgtgccata	gagtttaaca	caagtccctgt	3780
gaatttcttc	actgtgaaa	attattttaa	acaaaataga	agctgttagt	gccctttctg	3840
tgtgcacctt	accaacttcc	tgtaaactca	aaacttaaca	tattttactaa	gccacaagaa	3900
atttgcattt	tattcaaggt	ggccaaattn	tttgc当地	agaaaactgt	aaatctaata	3960
ttaaaaaat	ggaacttcta	atatattttt	atatttagt	atagttttag	atataatata	4020
tattggattt	cactaatctg	ggaagggaaag	ggctactgca	gttttacatg	caatttattt	4080
aatatgattt	aaaatagctt	gtatagtgta	aaataagaat	gatttttaga	tgagatttt	4140
ttatcatgac	atgttatata	ttttttgtat	gggtcaaaga	aatgctgtat	gataacctat	4200
atgatttata	gtttgtacat	gcattcatac	aggcagcgt	ggtctcagaa	accaaacagt	4260
ttgctctagg	ggaagggaaag	gtggagact	ggtcctgtgt	gcagtgaagg	ttgctgaggc	4320
tctgacccag	tgagattaca	gagggaaatgt	tcctctgcct	cccattctga	ccaccccttct	4380
cattccaaaca	gtgagttctgt	cagcgcaggt	ttagttact	caatctcccc	ttgcactaaa	4440
gtatgtaaag	tatgtaaaca	ggagacagga	agggtgggtct	tacatccctt	aaggcaccat	4500
ctaatagcgg	gttactttca	catacagccc	tccccccagca	gttgaatgac	aacagaagct	4560
tcagaagttt	ggcaatagtt	tgcatacgagg	taccagcaat	atgtaaatag	tgcagaatct	4620
cataggttgc	caataataca	ctaatccctt	tctatcctac	aacaagagtt	tatttccaaa	4680
taaaatgagg	acatgtttt	gttttctttt	aatgtttttt	aatgttttatt	tggttattttc	4740
agatattttgg	agaaattattt	taataaaaaaa	acaatcattt	gttttttg		4788

<210> 55
<211> 222
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 55
 cctcccaaac tctgcctgggt gtgctctgat gaagcttcag gatgtcatta tggagtctta 60
 acttgtggaa gctgtaaagt tttcttcaaa agagcagtgg aaggacagca caattaccta 120
 tgtgctggaa ggaatgattg catcatcgat aaaattcgaa gaaaaaaactg cccagcatgc 180
 cgctatcgaa aatgtcttca ggctggaatg aacctggaag ct 222

<210> 56
<211> 123
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 56
cggaaaaacaa agaaaaaaat aaaaggaatt cagcaggcca ctacaggagt ctcacaagaa 60
acctctgaaa atcctggtaa caaaaacaata gttcctgcaa cgttaccaca actcaccct 120
acc 123

<210> 57
<211> 734
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 57
Met Gln Leu Leu Gln Gln Gln Gln Glu Ala Val Ser Glu Gly Ser
1 5 10 15
Ser Ser Gly Arg Ala Arg Glu Ala Ser Gly Ala Pro Thr Ser Ser Lys
20 25 30
Asp Asn Tyr Leu Gly Gly Thr Ser Thr Ile Ser Asp Asn Ala Lys Glu
35 40 45
Leu Cys Lys Ala Val Ser Val Ser Met Gly Leu Gly Val Glu Ala Leu
50 55 60
Glu His Leu Ser Pro Gly Glu Gln Leu Arg Gly Asp Cys Met Tyr Ala
65 70 75 80
Pro Leu Leu Gly Val Pro Pro Ala Val Arg Pro Thr Pro Cys Ala Pro
85 90 95
Leu Ala Glu Cys Lys Gly Ser Leu Leu Asp Asp Ser Ala Gly Lys Ser
100 105 110
Thr Glu Asp Thr Ala Glu Tyr Ser Pro Phe Lys Gly Gly Tyr Thr Lys
115 120 125
Gly Leu Glu Gly Glu Ser Leu Gly Cys Ser Gly Ser Ala Ala Ala Gly
130 135 140
Ser Ser Gly Thr Leu Glu Leu Pro Ser Thr Leu Ser Leu Tyr Lys Ser
145 150 155 160
Gly Ala Leu Asp Glu Ala Ala Ala Tyr Gln Ser Arg Asp Tyr Tyr Asn
165 170 175
Phe Pro Leu Ala Leu Ala Gly Pro Pro Pro Pro Pro Pro Pro His
180 185 190
Pro His Ala Arg Ile Lys Leu Glu Asn Pro Leu Asp Tyr Gly Ser Ala
195 200 205
Trp Ala Ala Ala Ala Ala Gln Cys Arg Tyr Gly Asp Leu Ala Ser Leu
210 215 220
His Gly Ala Gly Ala Ala Gly Pro Gly Ser Gly Ser Pro Ser Ala Ala
225 230 235 240

Ala Ser Ser Ser Trp His Thr Leu Phe Thr Ala Glu Glu Gly Gln Leu
 245 250 255
 Tyr Gly Pro Cys Gly
 260 265 270
 Gly Glu
 275 280 285
 Ala Glu Ala Val Ala Pro Tyr Gly Tyr Thr Arg Pro Pro Gln Gly Leu
 290 295 300
 Ala Gly Gln Glu Ser Asp Phe Thr Ala Pro Asp Val Trp Tyr Pro Gly
 305 310 315 320
 Gly Met Val Ser Arg Val Pro Tyr Pro Ser Pro Thr Cys Val Lys Ser
 325 330 335
 Glu Met Gly Pro Trp Met Asp Ser Tyr Ser Gly Pro Tyr Gly Asp Met
 340 345 350
 Arg Leu Glu Thr Ala Arg Asp His Val Leu Pro Ile Asp Tyr Tyr Phe
 355 360 365
 Pro Pro Gln Lys Thr Cys Leu Ile Cys Gly Asp Glu Ala Ser Gly Cys
 370 375 380
 His Tyr Gly Ala Leu Thr Cys Gly Ser Cys Lys Val Phe Phe Lys Arg
 385 390 395 400
 Ala Ala Glu Gly Lys Gln Lys Tyr Leu Cys Ala Ser Arg Asn Asp Cys
 405 410 415
 Thr Ile Asp Lys Phe Arg Arg Lys Asn Cys Pro Ser Cys Arg Leu Arg
 420 425 430
 Lys Cys Tyr Glu Ala Gly Met Thr Leu Gly Ala Arg Lys Leu Lys Lys
 435 440 445
 Leu Gly Asn Leu Lys Leu Gln Glu Glu Gly Glu Ala Ser Ser Thr Thr
 450 455 460
 Ser Pro Thr Glu Glu Thr Thr Gln Lys Leu Thr Val Ser His Ile Glu
 465 470 475 480
 Gly Tyr Glu Cys Gln Pro Ile Phe Leu Asn Val Leu Glu Ala Ile Glu
 485 490 495
 Pro Gly Val Val Cys Ala Gly His Asp Asn Asn Gln Pro Asp Ser Phe
 500 505 510
 Ala Ala Leu Leu Ser Ser Leu Asn Glu Leu Gly Glu Arg Gln Leu Val
 515 520 525
 His Val Val Lys Trp Ala Lys Ala Leu Pro Gly Phe Arg Asn Leu His
 530 535 540
 Val Asp Asp Gln Met Ala Val Ile Gln Tyr Ser Trp Met Gly Leu Met
 545 550 555 560
 Val Phe Ala Met Gly Trp Arg Ser Phe Thr Asn Val Asn Ser Arg Met
 565 570 575
 Leu Tyr Phe Ala Pro Asp Leu Val Phe Asn Glu Tyr Arg Met His Lys
 580 585 590
 Ser Arg Met Tyr Ser Gln Cys Val Arg Met Arg His Leu Ser Gln Glu
 595 600 605
 Phe Gly Trp Leu Gln Ile Thr Pro Gln Glu Phe Leu Cys Met Lys Ala
 610 615 620
 Leu Leu Leu Phe Ser Ile Ile Pro Val Asp Gly Leu Lys Asn Gln Lys
 625 630 635 640
 Phe Phe Asp Glu Leu Arg Met Asn Tyr Ile Lys Glu Leu Asp Arg Ile
 645 650 655
 Ile Ala Cys Lys Arg Lys Asn Pro Thr Ser Cys Ser Arg Arg Phe Tyr
 660 665 670
 Gln Leu Thr Lys Leu Leu Asp Ser Val Gln Pro Ile Ala Arg Glu Leu
 675 680 685
 His Gln Phe Thr Phe Asp Leu Leu Ile Lys Ser His Met Val Ser Val
 690 695 700
 Asp Phe Pro Glu Met Met Ala Glu Ile Ile Ser Val Gln Val Pro Lys
 705 710 715 720

Ile Leu Ser Gly Lys Val Lys Pro Ile Tyr Phe His Thr Gln
725 730

<210> 58
<211> 2205
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400>	58						
atgc	aactcc	ttagcaaca	gcagcaggaa	gcagtatccg	aaggcagcag	cagcgggaga	60
gcg	aggggagg	cctcgggggc	tcccacttcc	tccaaggaca	attacttagg	gggcacttcg	120
acc	atttctg	acaacgccaa	ggagttgtgt	aaggcagtgt	cggtgtccat	gggcctgggt	180
gtt	ggggcgt	tggagcatct	gagtccaggg	gaacagctc	gggggattg	catgtacgcc	240
cc	actttgg	gagttccacc	cgctgtgcgt	cccactcctt	gtgccccatt	ggccgaatgc	300
aa	agggttctc	tgctagacga	cagcgcaggc	aagagcactg	aagatactgc	tgagtattcc	360
cctt	caagg	gaggttacac	caaaggcta	gaaggcgaga	gcctaggctg	ctctggcagc	420
gct	gcagcag	ggagctccgg	gacacttcaa	ctgcccgtcta	ccctgtctct	ctacaagtcc	480
gg	gacttgg	acgaggcagc	tgcgtaccag	agtcgcact	actacaactt	tccactggct	540
ct	ggccggac	cggccccccc	tccgcccct	ccccatcccc	acgctcgcat	caagctggag	600
aa	accgcgtgg	actacggcag	cgcctggcg	gctgcccgg	cgcagtgcgg	ctatgggac	660
ct	ggcgagcc	tgcattggcgc	gggtgcagcg	ggacccgggt	ctgggtcacc	ctcagccgccc	720
gtt	tcctcat	cctggcacac	tcttcaca	gccgaagaag	gccagttgt	tggaccgtgt	780
gg	tggtgggtg	ggggtggtgg	tggcggcggc	ggcggcggcg	gcccggcgg	ccggcggcggc	840
gg	ccggcggcg	ggggcggcgg	cgaggcggaa	gctgtagccc	cctacggcta	cactcggccc	900
cct	caggggc	tggcgggcca	ggaaagcgc	tccaccgcac	ctgatgtgt	gtaccctggc	960
gg	catgggt	gcagagtgc	ctatcccagt	ccacttgc	tcaaaagcga	aatggggccc	1020
tgg	atggata	gtactccgg	accttacggg	gacatgcgtt	tggagactgc	cagggaccat	1080
gtt	ttggccca	ttgactatta	cttccaccc	cagaagac	gcctgatctg	tggagatgaa	1140
gtt	ctgggtgg	gtcactatgg	agcttcaca	tgtggaaagct	gcaaggctt	cttcaaaaaga	1200
ggc	gtcgtaag	ggaaacagaa	gtacctgtc	gccagcagaa	atgattgcac	tattgataaa	1260
ttcc	gaagga	aaaattgtcc	atcttgcgt	cttcggaaat	gttatgaagc	agggatgact	1320
ctgg	gagccc	ggaagctgaa	gaaacctgg	aatctgaaac	tacaggagga	aggagaggct	1380
tcc	agcacca	ccagccccac	tgaggagaca	acccagaagc	tgacagtgtc	acacattgaa	1440
gg	ctatgaaat	gtcagcccat	ctttctgaat	gtcttggaaag	ccattgagcc	aggtgtagt	1500
tgt	gtggac	acgacaacaa	ccagccgcac	tcctttgcag	ccttgccttc	tagcctcaat	1560
ga	actgggag	agagacagct	tgtacacgt	gtcaagtgg	ccaaaggcctt	gcctggcttc	1620
cg	caacttac	acgtggacga	ccagatggct	gtcattca	actctggat	ggggctcatg	1680
gt	gtttgcca	tggctggcg	atccttcacc	aatgtcaact	ccaggatgt	ctacttcgccc	1740
cct	gtatctgg	tttcaatga	gtaccgcac	cacaagtccc	ggatgtacag	ccagtgtgtc	1800
cg	aatgaggc	acctctctca	agagttgg	tggctccaaa	tcacccccc	ggaattcctg	1860
tg	catgaaag	cactgtact	ttcagcatt	attccagtg	atgggctgaa	aatcaaaaa	1920
tt	ctttgtat	aacttgcata	gaactacatc	aaggaactcg	atcgatcat	tgcatgaaa	1980
ag	aaaaaaatc	ccacatctg	ctcaagacgc	ttctaccagc	tcaccaagct	cctggactcc	2040
gt	gcagccta	ttgcgagaga	gctgcacatc	ttcacttttgc	acctgtctat	caagtccacac	2100
at	gggtgagcg	tggactttcc	ggaaatgtat	gcagagatca	tctctgtgc	agtgcaccaag	2160
at	ccttctg	ggaaagtcaa	gccccatctat	ttccacaccc	agtga		2205

```
<210> 59
<211> 216
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 59
ccccagaaga cctgcctgat ctgtggagat gaagttctg ggtgtcacta tggagctctc 60
acatgtggaa gctcaaggt cttttcaaa agagccgctg aaggaaaca gaagtacctg 120
tgcgccagca gaaatgattt cactatttata aaattccgaa ggaaaaattt tccatcttgt 180
cgcttcggaa aatgttatga agcagggatg actctg 216

<210> 60
<211> 162
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 60
ggagcccgga agctgaagaa acttggtaat ctgaaaactac aggaggaagg agaggcttcc 60
agcaccacca gcccactga ggagacaacc cagaagctga cagtgtcaca cattgaaggc 120
tatgaatgtc agcccatctt tctgaatgtc ctgaaagcca tt 162

<210> 61
<211> 933
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 61
Met Thr Glu Leu Lys Ala Lys Gly Pro Arg Ala Pro His Val Ala Gly
1 5 10 15
Gly Pro Pro Ser Pro Glu Val Gly Ser Pro Leu Leu Cys Arg Pro Ala
20 25 30
Ala Gly Pro Phe Pro Gly Ser Gln Thr Ser Asp Thr Leu Pro Glu Val
35 40 45
Ser Ala Ile Pro Ile Ser Leu Asp Gly Leu Leu Phe Pro Arg Pro Cys
50 55 60
Gln Gly Gln Asp Pro Ser Asp Glu Lys Thr Gln Asp Gln Gln Ser Leu
65 70 75 80
Ser Asp Val Glu Gly Ala Tyr Ser Arg Ala Glu Ala Thr Arg Gly Ala
85 90 95
Gly Gly Ser Ser Ser Pro Pro Glu Lys Asp Ser Gly Leu Leu Asp
100 105 110
Ser Val Leu Asp Thr Leu Leu Ala Pro Ser Gly Pro Gly Gln Ser Gln
115 120 125
Pro Ser Pro Pro Ala Cys Glu Val Thr Ser Ser Trp Cys Leu Phe Gly
130 135 140
Pro Glu Leu Pro Glu Asp Pro Pro Ala Ala Pro Ala Thr Gln Arg Val
145 150 155 160
Leu Ser Pro Leu Met Ser Arg Ser Gly Cys Lys Val Gly Asp Ser Ser
165 170 175
Gly Thr Ala Ala Ala His Lys Val Leu Pro Arg Gly Leu Ser Pro Ala
180 185 190
Arg Gln Leu Leu Leu Pro Ala Ser Glu Ser Pro His Trp Ser Gly Ala
195 200 205
Pro Val Lys Pro Ser Pro Gln Ala Ala Ala Val Glu Val Glu Glu Glu
210 215 220
Asp Gly Ser Glu Ser Glu Ser Ala Gly Pro Leu Leu Lys Gly Lys
225 230 235 240

Pro Arg Ala Leu Gly Gly Ala Ala Ala Gly Gly Gly Ala Ala Ala Val
 245 250 255
 Pro Pro Gly Ala Ala Ala Gly Gly Val Ala Leu Val Pro Lys Glu Asp
 260 265 270
 Ser Arg Phe Ser Ala Pro Arg Val Ala Leu Val Glu Gln Asp Ala Pro
 275 280 285
 Met Ala Pro Gly Arg Ser Pro Leu Ala Thr Thr Val Met Asp Phe Ile
 290 295 300
 His Val Pro Ile Leu Pro Leu Asn His Ala Leu Leu Ala Ala Arg Thr
 305 310 315 320
 Arg Gln Leu Leu Glu Asp Glu Ser Tyr Asp Gly Gly Ala Gly Ala Ala
 325 330 335
 Ser Ala Phe Ala Pro Pro Arg Ser Ser Pro Cys Ala Ser Ser Thr Pro
 340 345 350
 Val Ala Val Gly Asp Phe Pro Asp Cys Ala Tyr Pro Pro Asp Ala Glu
 355 360 365
 Pro Lys Asp Asp Ala Tyr Pro Leu Tyr Ser Asp Phe Gln Pro Pro Ala
 370 375 380
 Leu Lys Ile Lys Glu Glu Glu Glu Gly Ala Glu Ala Ser Ala Arg Ser
 385 390 395 400
 Pro Arg Ser Tyr Leu Val Ala Gly Ala Asn Pro Ala Ala Phe Pro Asp
 405 410 415
 Phe Pro Leu Gly Pro Pro Pro Leu Pro Pro Arg Ala Thr Pro Ser
 420 425 430
 Arg Pro Gly Glu Ala Ala Val Thr Ala Ala Pro Ala Ser Ala Ser Val
 435 440 445
 Ser Ser Ala Ser Ser Ser Gly Ser Thr Leu Glu Cys Ile Leu Tyr Lys
 450 455 460
 Ala Glu Gly Ala Pro Pro Gln Gln Gly Pro Phe Ala Pro Pro Pro Cys
 465 470 475 480
 Lys Ala Pro Gly Ala Ser Gly Cys Leu Leu Pro Arg Asp Gly Leu Pro
 485 490 495
 Ser Thr Ser Ala Ser Ala Ala Ala Gly Ala Ala Pro Ala Leu Tyr
 500 505 510
 Pro Ala Leu Gly Leu Asn Gly Leu Pro Gln Leu Gly Tyr Gln Ala Ala
 515 520 525
 Val Leu Lys Glu Gly Leu Pro Gln Val Tyr Pro Pro Tyr Leu Asn Tyr
 530 535 540
 Leu Arg Pro Asp Ser Glu Ala Ser Gln Ser Pro Gln Tyr Ser Phe Glu
 545 550 555 560
 Ser Leu Pro Gln Lys Ile Cys Leu Ile Cys Gly Asp Glu Ala Ser Gly
 565 570 575
 Cys His Tyr Gly Val Leu Thr Cys Gly Ser Cys Lys Val Phe Phe Lys
 580 585 590
 Arg Ala Met Glu Gly Gln His Asn Tyr Leu Cys Ala Gly Arg Asn Asp
 595 600 605
 Cys Ile Val Asp Lys Ile Arg Arg Lys Asn Cys Pro Ala Cys Arg Leu
 610 615 620
 Arg Lys Cys Cys Gln Ala Gly Met Val Leu Gly Gly Arg Lys Phe Lys
 625 630 635 640
 Lys Phe Asn Lys Val Arg Val Val Arg Ala Leu Asp Ala Val Ala Leu
 645 650 655
 Pro Gln Pro Val Gly Val Pro Asn Glu Ser Gln Ala Leu Ser Gln Arg
 660 665 670
 Phe Thr Phe Ser Pro Gly Gln Asp Ile Gln Leu Ile Pro Pro Leu Ile
 675 680 685
 Asn Leu Leu Met Ser Ile Glu Pro Asp Val Ile Tyr Ala Gly His Asp
 690 695 700
 Asn Thr Lys Pro Asp Thr Ser Ser Ser Leu Leu Thr Ser Leu Asn Gln
 705 710 715 720

Leu Gly Glu Arg Gln Leu Leu Ser Val Val Lys Trp Ser Lys Ser Leu
 725 730 735
 Pro Gly Phe Arg Asn Leu His Ile Asp Asp Gln Ile Thr Leu Ile Gln
 740 745 750
 Tyr Ser Trp Met Ser Leu Met Val Phe Gly Leu Gly Trp Arg Ser Tyr
 755 760 765
 Lys His Val Ser Gly Gln Met Leu Tyr Phe Ala Pro Asp Leu Ile Leu
 770 775 780
 Asn Glu Gln Arg Met Lys Glu Ser Ser Phe Tyr Ser Leu Cys Leu Thr
 785 790 795 800
 Met Trp Gln Ile Pro Gln Glu Phe Val Lys Leu Gln Val Ser Gln Glu
 805 810 815
 Glu Phe Leu Cys Met Lys Val Leu Leu Leu Asn Thr Ile Pro Leu
 820 825 830
 Glu Gly Leu Arg Ser Gln Thr Gln Phe Glu Glu Met Arg Ser Ser Tyr
 835 840 845
 Ile Arg Glu Leu Ile Lys Ala Ile Gly Leu Arg Gln Lys Gly Val Val
 850 855 860
 Ser Ser Ser Gln Arg Phe Tyr Gln Leu Thr Lys Leu Leu Asp Asn Leu
 865 870 875 880
 His Asp Leu Val Lys Gln Leu His Leu Tyr Cys Leu Asn Thr Phe Ile
 885 890 895
 Gln Ser Arg Ala Leu Ser Val Glu Phe Pro Glu Met Met Ser Glu Val
 900 905 910
 Ile Ala Ala Gln Leu Pro Lys Ile Leu Ala Gly Met Val Lys Pro Leu
 915 920 925
 Leu Phe His Lys Lys
 930

<210> 62
 <211> 3014
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence; note =
 synthetic construct

<400> 62
 ctgaccagcg ccgcctccccc cggccccca cccaggaggt ggagatccct cccgtccagc 60
 cacattcaac acccactttc tcctccctct gcccstatat tcccgaaacc ccctccctcct 120
 tccctttcc ctcctccctg gagacggggg aggagaaaaag gggagtccag tcgtcatgac 180
 ttagctgaag gcaaagggtc cccgggctcc ccacgtggcg ggccggccgc cctcccccg 240
 ggtcgatcc ccactgctgt gtcgcccagc cgcaaggccg ttcccgggga gccagacacctc 300
 ggacacctt cctgaagttt cggccatacc tatccctcg gacgggtcac tttccctcg 360
 gccctgccag ggacaggacc cctccgacga aaagacgcag gaccagcagt cgctgtcgga 420
 cttggagggc gcatattcca gagctgaagc tacaagggggt gctggaggca gcagttctag 480
 tccccccagaa aaggacagcg gactgctgga cagtgcttgc gacactctgt tggccccc 540
 agtccccggg cagagccaaac ccagccctcc cgcctgcgag gtcaccagct cttgggtgcct 600
 gtttggccccc gaactccccg aagatccacc ggctgccccc gccaccacgc gggtgttgc 660
 cccgctcatg agccgtccg ggtcaaggt tggagacacgc tccggacgg cagctgcccc 720
 taaaagtgtcg cccccggggcc tgcaccacgc ccggcagctg ctgctcccg cctctgagag 780
 ccctcaactgg tccggggccc cagtgaagcc gtctccgcgag gccgctgcgg tggagggttga 840
 ggaggaggat ggctctgagt ccgaggagtc tgccgggtccg cttctgaagg gcaaaccctcg 900
 ggctctgggt ggccggccgg ctggaggagg agccggggct gtcccgccgg gggccggcagc 960
 aggaggcgtc gcccgggtcc ccaaggaaga ttcccgcttc tcagcgcaca gggtcgccc 1020
 ggtggagcag gacgcggcga tggccggccg gcgctcccg ctggccacca cgggtatgg 1080
 ttcatccac gtgcctatcc tgcctctcaa tcacgccta ttggcagccc gcaactcgca 1140
 gctgctggaa gacgaaagtt acgacggccg ggccggggct gccagcgcct ttgccccgccc 1200
 gccggagttca ccctgtgcct cgtccacccc ggtcgctgta ggcgacttcc cggactgcgc 1260
 gtacccgccc gacgcgcgagc ccaaggacga cgcgtaccct ctctatacgq acttccagcc 1320

gccccgtctta	aagataaaagg	aggaggagga	aggcgccggag	gcctccgcgc	gctcccccgcg	1380
ttectacctt	gtggccgggt	ccaaccggc	agccctcccg	gattcccg	tggggccacc	1440
gcccccgctg	ccggccgcag	cgaccggatc	cagaccgggg	gaagggcg	tgacggccgc	1500
acccggccagt	gcctcagtct	cgtctcggtc	ctcctcgggg	tcgaccctgg	agtgcattct	1560
gtacaaagcg	gagggcgccg	cgccccagca	gggcccgttc	gcccgcgc	cctgcaaggc	1620
gccccggcg	agcggctgc	tgcctcccg	ggacggccgt	ccctccacct	ccgcctctgc	1680
cgccgcgc	ggggcgcccc	ccgcgtctta	ccctgcactc	ggcctaacs	ggctcccgca	1740
gctcggtac	caggcgcccc	tgcctaagg	gggcgtccg	caggcttacc	cgccctatct	1800
caactacctg	aggccggatt	cagaagccag	ccagagccca	caatacagct	tcgagtcatt	1860
acctcagaag	atttgtttaa	tctgtgggga	tgaagcatca	ggctgtcatt	atggtgtcct	1920
tacctgtgg	agctgttaagg	tcttctttaa	gagggcaatg	gaagggcagc	acaactactt	1980
atgtgttga	agaaaatgtact	gcatgttga	taaaatccgc	agaaaaaaact	gcccagcatg	2040
tcgccttaga	aagtgtgtc	aggctggcat	ggtccttgg	ggtcggaaaat	ttaaaaagtt	2100
caataaagtc	agagttgtga	gagcacttgg	tgctgttgc	ctcccacagc	cagtggcg	2160
tccaaatgaa	agccaaagccc	taagccagag	attcaacttt	tcaccaggc	aagacataca	2220
gtttagtcca	ccactgtatca	acctgttaat	gagcattgaa	ccagatgtga	tctatgcagg	2280
acatgacaac	acaaaacctg	acacctccag	ttctttgtc	acaagtctta	atcaactagg	2340
cgagagccaa	cttctttcag	tagtcaagt	gtctaaatca	ttgccagg	tgcgaaactt	2400
acatattgtat	gaccagataa	ctctcattca	gtattcttgg	atgagcttaa	ttgtgtttgg	2460
tcttaggatgg	agatcctaca	aacacgtcag	ttggcagatg	ctgtatttg	cacctgatct	2520
aataactaaat	gaacagcgga	tgaaaagatc	atcattctat	tcattatgcc	ttaccatgtg	2580
gcagatccca	caggagttt	tcaagctca	agtagccaa	gaagagttcc	tctgtatgaa	2640
agtattgtta	cttcttaata	caattccctt	ggaagggcta	cgaagtcaaa	cccagttga	2700
ggagatgagg	tcaagctaca	ttagagagct	catcaaggca	attggttga	ggcaaaaagg	2760
agttgtgtcg	agctcacagc	gtttcttatca	acttacaaaa	cttcttgata	acttgcattga	2820
tcttgtcaaa	caacttcattc	tgtactgtt	gaatacattt	atccagttcc	gggcactgag	2880
tgttgaattt	ccagaaatga	tgtctgaagt	tattgtctgca	caattacca	agatattggc	2940
agggtatgg	aaaccccttc	tcttcataa	aaagtgaatg	tcatctttt	cttttaaaga	3000
attaaatttt	qtgg					3014

```
<210> 63
<211> 216
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

```

<400> 63
cctcagaaga tttgtttaat ctgtggggat gaagcatcag gctgtcatta tggtgtccctt      60
acctgtggga gctgttaaggc cttctttaag agggcaatgg aagggcagca caactactta      120
tgtgtggaa gaaatgactg catcggtataaaatccgca gaaaaaaactg cccagcatgt      180
cccccttagaa aqtgctgtca ggctggcatg gtcctt                                216

```

```
<210> 64
<211> 160
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 64 ggaggtcgaa aattnaaaaa gttcaataaaa gtcagagttg tgagagcact ggatgctgtt 60
gctctccac agccagtggg cgttccaaat gaaagccaag ccctaagcca gagattcact 120
ttttcaccaq qtcaaqacat acagttgatt ccaccactga 160

<210> 65
<211> 455

<212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence; note =
 synthetic construct

<400> 65
 Met Thr Glu Asn Gly Leu Thr Ala Trp Asp Lys Pro Lys His Cys Pro
 1 5 10 15
 Asp Arg Glu His Asp Trp Lys Leu Val Gly Met Ser Glu Ala Cys Leu
 20 25 30
 His Arg Lys Ser His Ser Glu Arg Arg Ser Thr Leu Lys Asn Glu Gln
 35 40 45
 Ser Ser Pro His Leu Ile Gln Thr Thr Trp Thr Ser Ser Ile Phe His
 50 55 60
 Leu Asp His Asp Asp Val Asn Asp Gln Ser Val Ser Ser Ala Gln Thr
 65 70 75 80
 Phe Gln Thr Glu Glu Lys Lys Cys Lys Gly Tyr Ile Pro Ser Tyr Leu
 85 90 95
 Asp Lys Asp Glu Leu Cys Val Val Cys Gly Asp Lys Ala Thr Gly Tyr
 100 105 110
 His Tyr Arg Cys Ile Thr Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg
 115 120 125
 Thr Ile Gln Lys Asn Leu His Pro Ser Tyr Ser Cys Lys Tyr Glu Gly
 130 135 140
 Lys Cys Val Ile Asp Lys Val Thr Arg Asn Gln Cys Gln Glu Cys Arg
 145 150 155 160
 Phe Lys Lys Cys Ile Tyr Val Gly Met Ala Thr Asp Leu Val Leu Asp
 165 170 175
 Asp Ser Lys Arg Leu Ala Lys Arg Lys Leu Ile Glu Glu Asn Arg Glu
 180 185 190
 Lys Arg Arg Arg Glu Glu Leu Gln Lys Ser Ile Gly His Lys Pro Glu
 195 200 205
 Pro Thr Asp Glu Glu Trp Glu Leu Ile Lys Thr Val Thr Glu Ala His
 210 215 220
 Val Ala Thr Asn Ala Gln Gly Ser His Trp Lys Gln Lys Pro Lys Phe
 225 230 235 240
 Leu Pro Glu Asp Ile Gly Gln Ala Pro Ile Val Asn Ala Pro Glu Gly
 245 250 255
 Gly Lys Val Asp Leu Glu Ala Phe Ser His Phe Thr Lys Ile Ile Thr
 260 265 270
 Pro Ala Ile Thr Arg Val Val Asp Phe Ala Lys Lys Leu Pro Met Phe
 275 280 285
 Cys Glu Leu Pro Cys Glu Asp Gln Ile Ile Leu Leu Lys Gly Cys Cys
 290 295 300
 Met Glu Ile Met Ser Leu Arg Ala Ala Val Arg Tyr Asp Pro Glu Ser
 305 310 315 320
 Glu Thr Leu Thr Leu Asn Gly Glu Met Ala Val Ile Arg Gly Gln Leu
 325 330 335
 Lys Asn Gly Gly Leu Gly Val Val Ser Asp Ala Ile Phe Asp Leu Gly
 340 345 350
 Met Ser Leu Ser Ser Phe Asn Leu Asp Asp Thr Glu Val Ala Leu Leu
 355 360 365
 Gln Ala Val Leu Leu Met Ser Ser Asp Arg Pro Gly Leu Ala Cys Val
 370 375 380
 Glu Arg Ile Glu Lys Tyr Gln Asp Ser Phe Leu Leu Ala Phe Glu His
 385 390 395 400
 Tyr Ile Asn Tyr Arg Lys His His Val Thr His Phe Trp Pro Lys Leu
 405 410 415

Leu Met Lys Val Thr Asp Leu Arg Met Ile Gly Ala Cys His Ala Ser
 420 425 430
 Arg Phe Leu His Met Lys Val Glu Cys Pro Thr Glu Leu Leu Pro Pro
 435 440 445
 Leu Phe Glu Val Phe Glu Asp
 450 455

<210> 66
<211> 1698
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 66
cggcggggat caactttgca tgaataatgt gagtgcgctt ggaaaagaga cctcctgctc 60
cgcgggctcg gggcaagagc ccgcaggcta ccttccccgg gcagggggcgc tcaacccaaac 120
cggctccagg gcactgttaa tttggctaga ggaccgcgcg gaggcagcgg gatctgcgat 180
ttccttctgg ttggctgtcc tgcgtgggtg ccaagttcca cacatgattt aatgaataag 240
aaggagatgt cagtaaaaaa agggatccag aatgattact aacctataac ccccaacagt 300
atgacagaaa atggcattac agcttggac aaaccgaagc actgtccaga ccgagaacac 360
gactggaaagc tagtaggaat gtctgaagcc tgcctacata ggaagagcca ttcagagagg 420
cgcagcacgt tgaaaaatga acagtcgtcg ccacatctca tccagaccac ttggactagc 480
tcaaataattcc atctggacca tcatgtatgt aacgaccaga gtgtctcaag tgcccagacc 540
ttccaaacgg aggagaagaa atgtaaaggg tacatccccca gttacttaga caaggacgag 600
ctctgtgtag tgggtgtga caaagccacc gggtatcact accgctgtat cacgtgtgaa 660
ggctgcaagg gtttcttttag aagaaccatt cagaaaaatc tccatccatc ctattcctgt 720
aaatatgaag gaaaatgtgt catagacaaa gtcacgcgaa atcagtgcga ggaatgtcgc 780
ttaagaaat gcatctatgt tggcatggca acagatttg tgctggatga cagcaagagg 840
ctggccaaga ggaagctgat agaggagaac cgggagaaaa gacggcggga agagctgcag 900
aagtccatcg ggcacaagcc agagccaca gacgaggaat gggagctcat caaaactgtc 960
accgaagccc atgtggcgac caacgccccaa ggcagccact ggaagcaaaa accgaaattt 1020
ctgccagaag acattggaca agcacaata gtcaatgccc cagaagggtgg aaaggttgac 1080
tttggagcc tcagccattt tacaaaaatc atcacaccag caattaccag agtgggtggat 1140
tttgcAAAA agttgcctat gtttgtgag ctggcatgt aagaccagat catcctcctc 1200
aaaggctgct gcatggagat catgtccctt cgcgctgctg tgctgtatga cccggaaagt 1260
gagactttaa ctttgaatgg gaaaatggca gtgatacggg gccagctgaa aatgggggt 1320
cttgggtgg tgcagacgc catcttgcac ctggcatgt ctctgtcttc ttcaacctg 1380
gatgacactg aagtggccct ctttcaggcc gtcctgctga tgcgttccaga tcgccccggg 1440
cttgcctgtg ttgagagaat agaaaagtagc caagatagtt tcctgctggc cttgaacac 1500
tatatcaatt accgaaaaca ccacgtgaca cactttggc caaaactcct gatgaagggtg 1560
acagatctgc ggatgatagg agcctgcccat gccagccgt tcctgcacat gaaggtggaa 1620
tgccccacag aactcctccc cccttggtc ctggaaagtgt tcgaggatta gactgactgg 1680
attccttcctt ataattcc 1698

<210> 67
<211> 216
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 67
aaggacgagc tctgtgttagt gtgtgggtgac aaagccaccg ggtatcacta ccgctgtatc 60
acgtgtgaag gctgcaaggg tttcttttaga agaaccattc agaaaaatct ccatccatcc 120
tattcctgtta aatatgaagg aaaatgtgtc atagacaaag tcacgcgaaa tcagtgcac 180
gaatgtcgct ttaagaaatg catctatgtt ggcattt 216

```

<210> 68
<211> 189
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 68
gcaacagatt tggtgctgga tgacagcaag aggctggcca agaggaagct gatagaggag 60
aaccgggaga aaagaacggcg ggaagagctg cagaagtcca tcgggcacaa gccagagccc 120
acagacgagg aatgggagct catcaaact gtcaccgaag cccatgtggc gaccaacgcc 180
caaggcagc 189

<210> 69
<211> 462
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 69
Met Asp Thr Lys His Phe Leu Pro Leu Asp Phe Ser Thr Gln Val Asn
 1           5          10          15
Ser Ser Leu Thr Ser Pro Thr Gly Arg Gly Ser Met Ala Ala Pro Ser
 20          25          30
Leu His Pro Ser Leu Gly Pro Gly Ile Gly Ser Pro Gly Gln Leu His
 35          40          45
Ser Pro Ile Ser Thr Leu Ser Ser Pro Ile Asn Gly Met Gly Pro Pro
 50          55          60
Phe Ser Val Ile Ser Ser Pro Met Gly Pro His Ser Met Ser Val Pro
 65          70          75          80
Thr Thr Pro Thr Leu Gly Phe Ser Thr Gly Ser Pro Gln Leu Ser Ser
 85          90          95
Pro Met Asn Pro Val Ser Ser Glu Asp Ile Lys Pro Pro Leu Gly
 100         105         110
Leu Asn Gly Val Leu Lys Val Pro Ala His Pro Ser Gly Asn Met Ala
 115         120         125
Ser Phe Thr Lys His Ile Cys Ala Ile Cys Gly Asp Arg Ser Ser Gly
 130         135         140
Lys His Tyr Gly Val Tyr Ser Cys Glu Gly Cys Lys Gly Phe Phe Lys
 145         150         155         160
Arg Thr Val Arg Lys Asp Leu Thr Tyr Thr Cys Arg Asp Asn Lys Asp
 165         170         175
Cys Leu Ile Asp Lys Arg Gln Arg Asn Arg Cys Gln Tyr Cys Arg Tyr
 180         185         190
Gln Lys Cys Leu Ala Met Gly Met Lys Arg Glu Ala Val Gln Glu Glu
 195         200         205
Arg Gln Arg Gly Lys Asp Arg Asn Glu Asn Glu Val Glu Ser Thr Ser
 210         215         220
Ser Ala Asn Glu Asp Met Pro Val Glu Arg Ile Leu Glu Ala Glu Leu
 225         230         235         240
Ala Val Glu Pro Lys Thr Glu Thr Tyr Val Glu Ala Asn Met Gly Leu
 245         250         255
Asn Pro Ser Ser Pro Asn Asp Pro Val Thr Asn Ile Cys Gln Ala Ala
 260         265         270

```

Asp Lys Gln Leu Phe Thr Leu Val Glu Trp Ala Lys Arg Ile Pro His
 275 280 285
 Phe Ser Glu Leu Pro Leu Asp Asp Gln Val Ile Leu Leu Arg Ala Gly
 290 295 300
 Trp Asn Glu Leu Leu Ile Ala Ser Phe Ser His Arg Ser Ile Ala Val
 305 310 315 320
 Lys Asp Gly Ile Leu Leu Ala Thr Gly Leu His Val His Arg Asn Ser
 325 330 335
 Ala His Ser Ala Gly Val Gly Ala Ile Phe Asp Arg Val Leu Thr Glu
 340 345 350
 Leu Val Ser Lys Met Arg Asp Met Gln Met Asp Lys Thr Glu Leu Gly
 355 360 365
 Cys Leu Arg Ala Ile Val Leu Phe Asn Pro Asp Ser Lys Gly Leu Ser
 370 375 380
 Asn Pro Ala Glu Val Glu Ala Leu Arg Glu Lys Val Tyr Ala Ser Leu
 385 390 395 400
 Glu Ala Tyr Cys Lys His Lys Tyr Pro Glu Gln Pro Gly Arg Phe Ala
 405 410 415
 Lys Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys
 420 425 430
 Leu Glu His Leu Phe Phe Lys Leu Ile Gly Asp Thr Pro Ile Asp
 435 440 445
 Thr Phe Leu Met Glu Met Leu Glu Ala Pro His Gln Met Thr
 450 455 460

<210> 70
 <211> 5449
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence; note =
 synthetic construct

<400> 70
 ggcgggggg cggccgcgcc cgccgccccgc tgcctgcgcc gccggccggg catgagtttag 60
 tcgcagacat ggacacaaaa catttcctgc cgctcgattt ctccacccag gtgaactcct 120
 ccctcacctc cccgacgggg cgaggctcca tggctgcccc ctcgctgcac ccgtccctgg 180
 ggcctggcat cggctccccg ggacagctgc attctccat cagcacccctg agctccccca 240
 tcaacggcat gggccggcct ttctcggtca tcagctcccc catggggcccc cactccatgt 300
 cggtgcccac cacacccacc ctgggcttca gcactggcag ccccccagctc agctcaccta 360
 tgaaccctcgat cagcagcgc gaggacatca agccccccct gggcctcaat ggcgtccctca 420
 aggtccccgc ccacccctca gaaaacatgg cttccttcac caagcacatc tgcccatct 480
 gccccggaccg ctccctcaggc aagcactatg gagtgtacag ctgcgagggg tgcaaggggct 540
 tcttcaagcg gacgggtgcgc aaggacctga cctacacctg cccgcacaac aaggactgcc 600
 tgattgacaa gcccgcggg aaccgggtgcc agtactgccg ctaccagaag tgcctggcca 660
 tgggcattgaa gcccggaaagcc gtgcaggagg agcggcagcg tggcaaggac cggAACGAGA 720
 atgaggtggaa gtcgaccgc agcgccaaacg aggacatgc ggtggagagg atccctggagg 780
 ctgagctggc cgtggagccc aagaccgaga cctacgtgg aacggactgccc 840
 ccagctgcgc gaacgaccct gtcaccaaca tttgccaagc agccgacaaa cagctttca 900
 ccctgggtggaa gtggggccaag cggatcccac acttctcaga gctccctcg gacgaccagg 960
 tcatacctget gccccggcaggc tggaatgagc tgctcatcgc ctcccttcaccgcgtccca 1020
 tgcggcgtgaa ggacggggatc ctccctggcca cccggctgca cgtccacccgg aacagcgccc 1080
 acagcgcagg ggtggggcgc atcttgcaca ggggtctgac ggagcttgc tccaagatgc 1140
 gggacatgca gatggacaag acggagctgg gctgcctgca cgccatcgcc ctcttttaacc 1200
 ctgactccaa ggggctctcg aacccggccg aggtggaggc gctgaggagg aaggctatg 1260
 cgtcccttggaa ggcctactgc aagcacaagt acccagagca gccggaaagg ttgcctaagc 1320
 tcttgcctcg cctggccggct ctgcgcgtccaa tcgggctcaa atgcctggaa catctttct 1380
 tcttcaaget catcggggac acacccattg acaccccttatg tattggagatg ctggaggcgc 1440
 cgccaccaat gacttaggccc tcctttgtgc ccacccgttc tgccaccct 1500

gcctggacgc	cagctgttct	tctcagcctg	agccccgttcc	ctggcccttct	ctgcctggcc	1560
tgtttggact	ttggggcaca	gcctgtca	gctctgccta	agagatgtgt	tgtcacccctc	1620
cttatttctg	ttactacttg	tctgtggccc	agggcagtgg	cttccctgag	gcagcagcct	1680
tcgtggcaag	aactagcgtg	agcccagcca	ggcgcctccc	caccgggctc	tcaggacacc	1740
ctgccacacc	ccacggggct	tggcgacta	cagggtcttc	gggccccagc	cctggagctg	1800
caggagttgg	gaacggggct	tttgc	tttgc	tttgc	tttca	1860
tcctgtgtgg	ccctcctgtc	tggagtgaca	tcttc	tctga	tgg	1920
ccagccgtg	acagttccc	ccta	atcagg	aggggacagc	ttggggcgca	1980
tcatca	aa	agac	ctc	ag	caag	2040
gcctgtgt	ct	gag	tt	gggg	caag	2100
gcctcgagc	caat	gaga	at	gat	ca	2160
gctgcagggg	cgg	gtact	ccccc	tttct	ca	2220
actcccact	cccc	gttca	cc	ctc	ca	2280
ttgc	tcg	gggtggg	gg	tttct	cc	2340
gcagggtggg	gcat	cacc	ct	act	cc	2400
cagccatctg	tgagg	cccc	ggggat	gggg	tttcc	2460
agagggggca	gg	ggc	tttgc	gggg	gggg	2520
cagatgtcc	gg	ggc	tttgc	gggg	gggg	2580
ttctctctgg	ct	cc	tttgc	gggg	gggg	2640
gcgc	cc	ct	gggg	gggg	gggg	2700
acggacagcg	tt	tt	cc	tttgc	gggg	2760
tgaagggtggg	gt	gggg	gggg	gggg	gggg	2820
tc	cc	cc	gggg	gggg	gggg	2880
gcctcttt	ca	ct	gggg	gggg	gggg	2940
gtcccgtg	cc	cc	gg	gggg	gggg	3000
tac	cc	cc	gg	gggg	gggg	3060
cttctccata	gt	ttt	cc	gggg	gggg	3120
ta	cc	cc	gggg	gggg	gggg	3180
ta	cc	cc	gggg	gggg	gggg	3240
cc	cc	cc	gggg	gggg	gggg	3300
cc	cc	cc	gggg	gggg	gggg	3360
cc	cc	cc	gggg	gggg	gggg	3420
cc	cc	cc	gggg	gggg	gggg	3480
cc	cc	cc	gggg	gggg	gggg	3540
cc	cc	cc	gggg	gggg	gggg	3600
cc	cc	cc	gggg	gggg	gggg	3660
cc	cc	cc	gggg	gggg	gggg	3720
cc	cc	cc	gggg	gggg	gggg	3780
cc	cc	cc	gggg	gggg	gggg	3840
cc	cc	cc	gggg	gggg	gggg	3900
cc	cc	cc	gggg	gggg	gggg	3960
cc	cc	cc	gggg	gggg	gggg	4020
cc	cc	cc	gggg	gggg	gggg	4080
cc	cc	cc	gggg	gggg	gggg	4140
cc	cc	cc	gggg	gggg	gggg	4200
cc	cc	cc	gggg	gggg	gggg	4260
cc	cc	cc	gggg	gggg	gggg	4320
cc	cc	cc	gggg	gggg	gggg	4380
cc	cc	cc	gggg	gggg	gggg	4440
cc	cc	cc	gggg	gggg	gggg	4500
cc	cc	cc	gggg	gggg	gggg	4560
cc	cc	cc	gggg	gggg	gggg	4620
cc	cc	cc	gggg	gggg	gggg	4680
cc	cc	cc	gggg	gggg	gggg	4740
cc	cc	cc	gggg	gggg	gggg	4800
cc	cc	cc	gggg	gggg	gggg	4860
cc	cc	cc	gggg	gggg	gggg	4920
cc	cc	cc	gggg	gggg	gggg	4980
cc	cc	cc	gggg	gggg	gggg	5040
cc	cc	cc	gggg	gggg	gggg	5100
cc	cc	cc	gggg	gggg	gggg	5160

gggcctgagg cttcaaggg ttttctccc ttccgatcaa ttttaaagc cttgctctgt	5220
tgtgtcctgt tgccggctct ggccttcctg tgactgactg tgaagtggct tctccgtacg	5280
attgtctctg aaacatcggt gcctcaggtg ccagggttt atggacagta gcattagaat	5340
tgtggaaaag gaacacgcaa agggagaagt gtgagaggag aaacaaaata tgagcggtta	5400
aaatacatcg ccattcagtt cgtaaaaaaaaaaaaaaa	5449

<210> 71
<211> 210
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 71	
accaagcaca tctgcgccat ctgcggggac cgctcctcag gcaaggacta tggagtgtac	60
agctgcagg ggtcaaggg cttcttcaag cggacgggtgc gcaaggacct gacctacacc	120
tgccgcgaca acaaggactg cctgattgac aagcggcagc ggaaccggtg ccagtactgc	180
cgctaccaga agtgctggc catgggcatg	210

<210> 72
<211> 177
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 72	
aagcggaaag ccgtgcagga ggagcggcag cgtggcaagg accggaacga gaatgaggtg	60
gagtcgacca gcagcgc当地 cgaggacatg ccgtggaga ggatcctgga ggctgagctg	120
cccgtagc ccaagaccga gacctacgtg gaggcaaaca tggggctgaa cccccacc	177

<210> 73
<211> 462
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 73	
Met Ala Ser Asn Ser Ser Ser Cys Pro Thr Pro Gly Gly Gly His Leu	
1 5 10 15	
Asn Gly Tyr Pro Val Pro Pro Tyr Ala Phe Phe Phe Pro Pro Met Leu	
20 25 30	
Gly Gly Leu Ser Pro Pro Gly Ala Leu Thr Thr Leu Gln His Gln Leu	
35 40 45	
Pro Val Ser Gly Tyr Ser Thr Pro Ser Pro Ala Thr Ile Glu Thr Gln	
50 55 60	
Ser Ser Ser Ser Glu Glu Ile Val Pro Ser Pro Pro Ser Pro Pro Pro	
65 70 75 80	
Leu Pro Arg Ile Tyr Lys Pro Cys Phe Val Cys Gln Asp Lys Ser Ser	
85 90 95	
Gly Tyr His Tyr Gly Val Ser Ala Cys Glu Gly Cys Lys Gly Phe Phe	
100 105 110	

Arg Arg Ser Ile Gln Lys Asn Met Val Tyr Thr Cys His Arg Asp Lys
 115 120 125
 Asn Cys Ile Ile Asn Lys Val Thr Arg Asn Arg Cys Gln Tyr Cys Arg
 130 135 140
 Leu Gln Lys Cys Phe Glu Val Gly Met Ser Lys Glu Ser Val Arg Asn
 145 150 155 160
 Asp Arg Asn Lys Lys Lys Glu Val Pro Lys Pro Glu Cys Ser Glu
 165 170 175
 Ser Tyr Thr Leu Thr Pro Glu Val Gly Glu Leu Ile Glu Lys Val Arg
 180 185 190
 Lys Ala His Gln Glu Thr Phe Pro Ala Leu Cys Gln Leu Gly Lys Tyr
 195 200 205
 Thr Thr Asn Asn Ser Ser Glu Gln Arg Val Ser Leu Asp Ile Asp Leu
 210 215 220
 Trp Asp Lys Phe Ser Glu Leu Ser Thr Lys Cys Ile Ile Lys Thr Val
 225 230 235 240
 Glu Phe Ala Lys Gln Leu Pro Gly Phe Thr Thr Leu Thr Ile Ala Asp
 245 250 255
 Gln Ile Thr Leu Leu Lys Ala Ala Cys Leu Asp Ile Leu Ile Leu Arg
 260 265 270
 Ile Cys Thr Arg Tyr Thr Pro Glu Gln Asp Thr Met Thr Phe Ser Asp
 275 280 285
 Gly Leu Thr Leu Asn Arg Thr Gln Met His Asn Ala Gly Phe Gly Pro
 290 295 300
 Leu Thr Asp Leu Val Phe Ala Phe Ala Asn Gln Leu Leu Pro Leu Glu
 305 310 315 320
 Met Asp Asp Ala Glu Thr Gly Leu Leu Ser Ala Ile Cys Leu Ile Cys
 325 330 335
 Gly Asp Arg Gln Asp Leu Glu Gln Pro Asp Arg Val Asp Met Leu Gln
 340 345 350
 Glu Pro Leu Leu Glu Ala Leu Lys Val Tyr Val Arg Lys Arg Arg Pro
 355 360 365
 Ser Arg Pro His Met Phe Pro Lys Met Leu Met Lys Ile Thr Asp Leu
 370 375 380
 Arg Ser Ile Ser Ala Lys Gly Ala Glu Arg Val Ile Thr Leu Lys Met
 385 390 395 400
 Glu Ile Pro Gly Ser Met Pro Pro Leu Ile Gln Glu Met Leu Glu Asn
 405 410 415
 Ser Glu Gly Leu Asp Thr Leu Ser Gly Gln Pro Gly Gly Gly Arg
 420 425 430
 Asp Gly Gly Leu Ala Pro Pro Gly Ser Cys Ser Pro Ser Leu
 435 440 445
 Ser Pro Ser Ser Asn Arg Ser Ser Pro Ala Thr His Ser Pro
 450 455 460

<210> 74
 <211> 2907
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence; note =
 synthetic construct

<400> 74
 gccatctggg cccaggcccc atgccccgag gaggggtggt ctgaagccca ccagagcccc 60
 ctgcggagact gtctgcctcc ttctgactg tggccgcttg gcatggccag caacagcagc 120
 tcctggccga cacctggggg cgggcacctc aatgggtacc cggtgcctcc ctacgccttc 180
 ttcttccccc ctatgctggg tggactctcc ccggcaggcg ctctgaccac tctccagcac 240
 cagttcccaag ttagtgttata tagcacacca tccccagcca ccattgagac ccagagcagc 300
 agttctgaag agatagtgcc cagccctcccc ctctaccccg catctacaag 360

ccttgctttg tctgtcagga caagtcctca ggctaccact atggggtcag cgccctgttag	420
ggctgcaagg gcttcttcg ccgcagcatc cagaagaaca tggtgtacac gtgtcaccgg	480
gacaagaact gcatcatcaa caaggtgacc cggAACGCT gccagtactg ccgactgca	540
aagtgcTTTg aagtggcat gtccaaggag tctgtgagaa acgaccgaaa caagaagaag	600
aaggaggtgc ccaagcccga gtgctctgag agtacacgc tgacGCCGA ggtggggag	660
ctcattgaga aggtgcgaa agcgcaccag gaaaccttc ctgcctctg ccagctggc	720
aaatacacta cgaacaacag ctcagaacaa cgtgtctc tggacattga cctctggac	780
aagttcagtg aactctccac caagtgcac attaagactg tggagTCGC caagcagctg	840
cccggttca ccacccctcac catGCCGAC cagatcaccc tcctcaaggc tgccTgcctg	900
gacatcctga tcctgcggat ctgcacgcgg tacacGCCG agcaggacac catgaccttc	960
tcggacgggc tgaccctgaa cggaccagg atgcacaacg ctggcttcgg cccccctcacc	1020
gacctggct ttgcctcgc caaccagctg ctgcccctgg agatggatga tgcggagacg	1080
gggctgctca ggcacatctg cctcatctgc ggagaccgccc aggacctgga gcagccggac	1140
cgggtggaca tgctgcagga gccgctgtg gaggccta aggtctacgt gccgaagcgg	1200
aggcccagcc gccccacat ttcccccaag atgctaattga agattactga cctgcgaagc	1260
atcagcgcca agggggctga ggggtgatc acgctgaaga tggagatccc gggctccatg	1320
ccgcctctca tccagggaaat gttggagaac tcagagggcc tggacactct gagcggacag	1380
ccgggggggtg gggggcggga cgggggtggc ctggcccccc cgccaggcag ctgtagcccc	1440
agcctcagcc ccagctccaa cagaaggcgc cggccaccc actcccgtg accgcccacg	1500
ccacatggac acagccctcg ccctccggcc cggctttct ctgccttct accgaccatg	1560
tgaccccgca ccagccctgc ccccacctgc cctccggc agtactggg accttccctg	1620
ggggacgggg agggaggagg cagcactcc ttggacagag gcctggcccc tcagtggact	1680
gcctgctccc acagcctggg ctgacgtcag agggcgaggc caggaactga gtgaggcccc	1740
tggctctggg tctcaggatg ggtcctgggg gcctcgtgtt catcaagaca cccctctgcc	1800
cagctcacca catttcatc accagcaaa gccaggactt ggctccccca tcctcagaac	1860
tcacaagcca ttgctccca gctggggaa ctcaacctcc cccctgcctc gttgggtgac	1920
agaggggggtg ggacaggggc ggggggttcc ccctgtacat accctgcctt accaacccca	1980
ggtattaatt ctcgtctgtt ttgttttat ttaattttt ttgtttgtat ttttttaata	2040
agaattttca ttttaagcac atttatactg aagaatttg tgctgtgtat tggggggagc	2100
tggatccaga gctggagggg gtgggtccgg gggaggagg ggtcgaaag gggccccac	2160
tctctttca tgcctctgtg ccccccagtt ctccctctca gcctttccct ctcagtttt	2220
ctctttaaaaa ctgtgaagta ctaactttcc aaggcctgcc tteccctccc tcccactgga	2280
gaagccgcca gccccttct ccctctgcct gaccactggg tgtggacggt gtggggcagc	2340
cctgaaagga caggtcctg gcctggcac ttgcctgcac ccaccatgag gcatggagca	2400
gggcagagca agggccccgg gacagagtt tcccagaccc ggctcctcg cagagctgcc	2460
tcccgtcagg gcccacatca tctaggctcc ccagccccca ctgtgaaggg gctggccagg	2520
ggcccggagct gcccacaccc cgggcctcag ccaccagcac ccccataggg cccccagaca	2580
ccacacacat ggcgtgcgc acacacacaa acacacacac actggacagt agatggccg	2640
acacacacat ggcccgagtt ctcatttc cctggctgc ccccccaccc caacctgtcc	2700
caccccccgtg cccctctctt accccgcaagg acgggctac aggggggtct cccctcaccc	2760
ctgcacccccc agctggggga gctggctctg ccccgacctc cttcaccagg gttggggcc	2820
ccttccccctg gagcccggtgg gtgcacctgt tactgttggg ctttccactg agatctactg	2880
gataaagaat aaaggcttat ttattct	2907

<210> 75

<211> 216

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 75

atctacaagc cttgtttgt ctgtcaggac aagtctcag gctaccacta tggggtcagc	60
gcctgtgagg gctgcaaggg cttcttcgc cgcagcatcc agaagaacat ggtgtacacg	120
ctgtcaccggg acaagaactg catcatcaac aaggtgaccc ggaaccgctg ccagtactgc	180
cgactgcaga agtgcattga agtgggcattg tccaaag	216

<210> 76

<211> 207

<212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence; note =
 synthetic construct

<400> 76
 gagtctgtga gaaacgaccg aaacaagaag aagaaggagg tgcccaagcc cgagtgcctc 60
 gagagctaca cgctgacgcc ggaggtgggg gagctcattg agaaggtgcg ccaaagcgcac 120
 cagggaaacct tccctgcccct ctgccagctg ggcaaataca ctacgaacaa cagctcagaa 180

 caacgtgtct ctctggacat tgacctc 207

<210> 77
 <211> 427
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence; note =
 synthetic construct

<400> 77
 Met Glu Ala Met Ala Ala Ser Thr Ser Leu Pro Asp Pro Gly Asp Phe
 1 5 15
 Asp Arg Asn Val Pro Arg Ile Cys Gly Val Cys Gly Asp Arg Ala Thr
 20 25 30
 Gly Phe His Phe Asn Ala Met Thr Cys Glu Gly Cys Lys Gly Phe Phe
 35 40 45
 Arg Arg Ser Met Lys Arg Lys Ala Leu Phe Thr Cys Pro Phe Asn Gly
 50 55 60
 Asp Cys Arg Ile Thr Lys Asp Asn Arg Arg His Cys Gln Ala Cys Arg
 65 70 80
 Leu Lys Arg Cys Val Asp Ile Gly Met Met Lys Glu Phe Ile Leu Thr
 85 90 95
 Asp Glu Glu Val Gln Arg Lys Arg Glu Met Ile Leu Lys Arg Lys Glu
 100 105 110
 Glu Glu Ala Leu Lys Asp Ser Leu Arg Pro Lys Leu Ser Glu Glu Gln
 115 120 125
 Gln Arg Ile Ile Ala Ile Leu Leu Asp Ala His His Lys Thr Tyr Asp
 130 135 140
 Pro Thr Tyr Ser Asp Phe Cys Gln Phe Arg Pro Pro Val Arg Val Asn
 145 150 160
 Asp Gly Gly Ser His Pro Ser Arg Pro Asn Ser Arg His Thr Pro
 165 170 175
 Ser Phe Ser Gly Asp Ser Ser Ser Cys Ser Asp His Cys Ile Thr
 180 185 190
 Ser Ser Asp Met Met Asp Ser Ser Phe Ser Asn Leu Asp Leu Ser
 195 200 205
 Glu Glu Asp Ser Asp Asp Pro Ser Val Thr Leu Glu Leu Ser Gln Leu
 210 215 220
 Ser Met Leu Pro His Leu Ala Asp Leu Val Ser Tyr Ser Ile Gln Lys
 225 230 240
 Val Ile Gly Phe Ala Lys Met Ile Pro Gly Phe Arg Asp Leu Thr Ser
 245 250 255
 Glu Asp Gln Ile Val Leu Leu Lys Ser Ser Ala Ile Glu Val Ile Met
 260 265 270
 Leu Arg Ser Asn Glu Ser Phe Thr Met Asp Asp Met Ser Trp Thr Cys
 275 280 285

Gly Asn Gln Asp Tyr Lys Tyr Arg Val Ser Asp Val Thr Lys Ala Gly
 290 295 300
 His Ser Leu Glu Leu Ile Glu Pro Leu Ile Lys Phe Gln Val Gly Leu
 305 310 315 320
 Lys Lys Leu Asn Leu His Glu Glu His Val Leu Leu Met Ala Ile
 325 330 335
 Cys Ile Val Ser Pro Asp Arg Pro Gly Val Gln Asp Ala Ala Leu Ile
 340 345 350
 Glu Ala Ile Gln Asp Arg Leu Ser Asn Thr Leu Gln Thr Tyr Ile Arg
 355 360 365
 Cys Arg His Pro Pro Pro Gly Ser His Leu Leu Tyr Ala Lys Met Ile
 370 375 380
 Gln Lys Leu Ala Asp Leu Arg Ser Leu Asn Glu Glu His Ser Lys Gln
 385 390 395 400
 Tyr Arg Cys Leu Ser Phe Gln Pro Glu Cys Ser Met Lys Leu Thr Pro
 405 410 415
 Leu Val Leu Glu Val Phe Gly Asn Glu Ile Ser
 420 425

<210> 78

<211> 1284

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 78

atggaggccaa	tggcgcccaag	cacttccctg	cctgaccctg	gagactttga	ccggAACgtg	60
ccccggatct	gtggggtgtg	tggagaccga	gcacactggct	ttcacttcaa	tgctatgacc	120
tgtgaaggct	gcaaaggctt	cttcaggcga	agcatgaagc	ggaaggcact	attcacctgc	180
cccttcaacg	gggactgccc	catcacaag	gacaaccgac	gccactgcca	ggcctgcccgg	240
ctcaaacgct	gtgtggacat	cggcatgatg	aaggagttca	ttctgacaga	tgaggaagtg	300
cagaggaagc	gggagatgat	cctgaagcgg	aaggaggagg	aggccttcaa	ggacagtctg	360
cggcccaagc	tgtctgagga	gcagcagcgc	atcattgcca	tactgctgga	cggccaccat	420
aagacctacg	accccaccta	ctccgacttc	tgccagttcc	ggcctccagt	tcgtgtgaat	480
gatggtggag	ggagccatcc	ttccagccc	aactccagac	acactcccag	tttctctggg	540
gactcctcct	cctcctgctc	agatcactgt	atcacctctt	cagacatgat	ggactcggtcc	600
agtttctcca	atctggatct	gagtgaagaa	gattcagatg	accctctgt	gacccttagag	660
ctgtcccaagc	tctccatgct	gccccacctg	gctgacctgg	tcaatttacag	catccaaaag	720
gtcattggct	ttgctaagat	gataccagga	ttcagagacc	tcacctctga	ggaccagatc	780
gtactgctga	agtcaagtgc	cattgaggc	atcatgttgc	gctccaatga	gtccttcacc	840
atggacgaca	tgtcctggac	ctgtggcaac	caagactaca	agtaccgcgt	cagtgacgtg	900
acccaaagccg	gacacagcct	ggagctgatt	gagccccctca	tcaatttcca	ggtgggactg	960
aagaagctga	acttgcata	ggaggagcat	gtcctgctca	tggccatctg	catcgcttcc	1020
ccagatcgta	ctggggtgca	ggacgcccgc	ctgattgagg	ccatccagga	ccgcctgtcc	1080
aacacactgc	agacgtacat	ccgctgccgc	cacccgcccc	cgggcagcca	cctgctctat	1140
gccaagatga	tccagaagct	agccgacctg	cgccgctca	atgaggagca	ctccaagcag	1200
taccgctgcc	tctccttcca	gcctgagtg	gc agcatgaagc	taacgcccct	tgtgctcgaa	1260
gtgtttggca	atgagatctc	ctgta				1284

<210> 79

<211> 210

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

```

<400> 79
cgatctgtg gggtgtgtgg agaccgagcc actggcttc acttcaatgc tatgacctgt      60
gaaggctgca aaggcttctt caggcgaagc atgaagcgg aaggcactatt cacctgcccc      120
ttcaacgggg actgccgcat caccaaggac aaccgacgccc actgcccaggc ctgcccggctc      180
aacgcgtgtg tggacatcg catgatgaag                                210

<210> 80
<211> 195
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 80
gagttcattc tgacagatga ggaagtgcag aggaagcggg agatgatcct gaagcggaaag      60
gaggaggagg ccttgaagga cagtctgcgg cccaagctgt ctgaggagca gcagcgcatac      120
attgccatac tgctggacgc ccaccataag acctacgacc ccacctaactc cgacttctgc      180
cagttccggc ctcca                                195

<210> 81
<211> 51
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 81
Met Lys Gly Gly Val Arg Lys Asp Arg Arg Gly Gly Arg Met Leu Lys
 1           5           10          15
His Lys Arg Gln Arg Asp Asp Gly Glu Gly Arg Gly Glu Val Gly Ser
 20          25          30
Ala Gly Asp Met Arg Ala Ala Asn Leu Trp Pro Ser Pro Leu Met Ile
 35          40          45
Lys Arg Ser
 50

<210> 82
<211> 47
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 82
Met Ala Arg Arg Pro Arg His Ser Ile Tyr Ser Ser Asp Glu Asp Asp
 1           5           10          15
Glu Asp Phe Glu Met Cys Asp His Asp Tyr Asp Gly Leu Leu Pro Lys
 20          25          30
Ser Gly Lys Arg His Leu Gly Lys Thr Arg Trp Thr Arg Glu Glu
 35          40          45

<210> 83
<211> 71
<212> DNA
<213> Artificial Sequence

```

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 83
ctctggatcc ggtggaggtg gttctggagg aggtggttcc ggaggtggag gaaaggagac 60
gcgttacgct g 71

<210> 84
<211> 24
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 84
Leu Trp Ile Arg Trp Arg Trp Phe Trp Arg Arg Trp Phe Arg Arg Trp
1 5 10 15
Arg Lys Gly Asp Ala Leu Thr Leu
20