UnSupervised Learning

Un-Supervised Machine Learning

 We put unlabeled data and let machine understand the characteristics and classify it

Clustering:

Used for exploratory data analysis to find hidden patterns or grouping in data

• E,g: K-means Algorithm

K-Means

Algorithm:

- Initialize k centroids.
- 2. Select at random K points, the centroids(not necessary from the dataset)
- 3. Assign each data to the nearest centroid, this step will create clusters.
- 4. Compute and place the new centroid of each cluster.
- 5. Reassign each data point to the new closest centroid. If any new reassignment, Repeat steps 4 otherwise go to Finish

Animated Implementation of the Algorithm - http://tech.nitoyon.com/en/blog/2013/11/07/k-means/

Random Initialization Trap

Random Initialization Trap

Random Initialization Trap

Solution -> K-Means++

• K-Means++ -> smarter initialization of centroids, rest is same

Choosing Right Number of Clusters

- WCSS: Within-Cluster Sum of Square
- Euclidean distance between a given point and centroid to which it is assigned.
- Iterate this process for all the points in the cluster
- Sum all the values and divide by no. of points

Choosing Right Number of Clusters

- Total WCSS decreases as no. of clusters increases
- Total WCSS is minimum when No. of clusters is equal to no. of data points

Elbow Method

• Elbow Method to find the optimal number of clusters

