6.8-Dichloro-4-epoxyethyl-2,3-trimethylenequinoline (7).— A soln of 1 g (0.026 mole) of NaBH4 in 10 ml of H2O and 7 ml of 2 N NaOH, was added dropwise over 10 min to a stirred suspension of 4.65 g (0.013 mole) of nearly pure 6 (above) in 50 ml of MeOH. Stirring for an addl 1.5 hr, cooling for 15 min, filtering, and washing with MeOH gave 3.42 g (94.5%) of 7 (mp 134-139°); recrystd from Et₂O-hexane, mp 144-145°; ir (cm⁻¹) 2960, 2980, 3100, none for C=O; nmr (CDCl₃), 8.02 (1 H, d), 7.71 (1 H, d), 4.26 (1 H, m), 3.10 (5 H, m), 2.17 (2 H, quintuplet). Anal. (C14H11Cl2NO) C, H, N.

5.7-Dichloro-2.3-dihydro-1H-cyclopenta [b] quinoline-9-(α -din-butylaminomethyl)methanol·HCl (1).—A suspension of 3.6 g of 7 in 12 ml of Bu₂NH was stirred for 4.5 hr at 105-110°, monitoring disappearance of 7 (4 hr) by tlc (silica gel G, 1:1 Et₂Ohexane). After evapn in vacuo of Bu2NH (60°) the oil (5.1 g), dissolved in 150 ml of Et₂O, was treated with increments of Et₂O·HCl, each sufficient to give 0.2-0.4 g of 1 (each fraction being washed with Et₂O). Fractions 1-4 contd decreasing amts of Bu₂NH·HCl; and 5-8 were largely 1 (2.65 g). Repeated recrystn from EtOH-Et₂O gave 0.5 g, light tan, mp 160-162° dec; ir (cm⁻¹) 3440, 3220 (OH), 2960, 2940, 2880 (CH), 2670, 2620, 2530 (NH). Anal. (C₂₂H₃₀Cl₂N₂O·HCl) C, H, N, Cl.

Incidental and Preliminary Experiments. Attempts to add 2-PyLi and MeLi to the 2,3-trimethylenecinchoninic acids were unsuccessful, presumably because of steric interference of the 3-CH₂ group and/or the activity of the 2-CH₂ hydrogens (cf.

2,3-Trimethylenecinchoninic acid HCl (11), pptd from Et₂O, mp 252-255° dec, was treated with PCl₅ (steam bath for 30 min, addn of C₆H₆, and reflux for 2 hr), giving a ppt presumed to be the acid chloride · HCl (12) (sublimed, 8%, mp 245° dec).

2,3-Trimethylenecinchoninamide (13) was prepd from 12 by treatment with H₂O-NH₃; crystd from EtOH, mp 276-277°; ir (cm^{-1}) 3330 (s), 3140 (s) (NH_2) , 1688 (C=O). Anal. $(C_{13}$ -H₁₄N₂O) C, H.

4-Bromoacetyl-2,3-trimethylenequinoline · HBr (14).—CH₂N₂- Et_2O with 3 g of 12 (overnight) gave orange cubes of diazo ketone. Treatment with 10 ml of 48% HBr-H₂O gave 14; crystd from EtOH; 2.1 g (70%); mp 208° dec; ir (cm⁻¹) 1730 (C=O), 2500 (NH). Anal. (C14H13Br2NO) N.

Derivatives of 2,3-trimethylene-4-quinolones were made by the action of the appropriate aniline on ethyl cyclopentanone-2carboxylate, cyclizing at 250°, and crystn from EtOH: 3b,13 15, (a) 6,8-Cl₂, 26%, mp 305–307° (b) cyclization by refluxing Ph₂O, 6,8-Ol₂, 26%, flip 303-307 (b) cyclization by renaming Fig. 7, recrystd, mp 314-315° (lit. 3h 313°) [Anal. ($C_{12}H_9Cl_2NO$) C, H, N]; 16, 6,8-Me₂, 60%, mp 326-327° [Anal. ($C_{14}H_{15}NO$) N]; 17, 6-Me, 39%, mp 319-322° [Anal. ($C_{13}H_{13}NO$) C, H]; 18, 8-OMe, 26%, mp 212-213° [Anal. ($C_{13}H_{13}NO$) C, H, N]; 19, C_{13}^{2} (C_{13}^{2} (C_{14}^{2} (C_{13}^{2} (C_{14}^{2} (C_{14}^{2} (C_{15}^{2} ($C_{15}^$ 8-Cl, 21%, mp 269-270° [Anal. (C₁₂H₁₀ClNO) C, H, N]; 20, 8-F, 15%, mp 292-293° [Anal. (C₁₂H₁₀FNO) C, H, N].

4-Bromo-2,3-trimethylenequinolines were prepd by treating the quinolone¹³ with POBr₃ at 120°; crystd from EtOH: **21** (parent compd), 50%, mp 72-73° [Anal. (C₁₂H₁₀BrN), C, H, N]; **22**, 6,8-Me₂, from **16**, 69%, mp 124-125° [Anal. ($\dot{C}_{14}H_{14}BrN$) C, H].

4,6,8-Trichloro-2,3-trimethylenequinoline (23) was prepd by refluxing POCl₃ on 15, crystd from EtOH, 80%, mp 160-162°. Anal. (C₁₂H₈Cl₃N) C, H, N

Attempted preparation of 4-lithio-2,3-trimethylenequinolines from 21 and 22 by BuLi and addns to 2-pyridaldehyde were unsuccessful, presumably because of the activities of the 2-CH₂

$N,N^1-\alpha,\omega$ -Alkylenebis(nitroacetamides)

P. M. CARABATEAS

Sterling-Winthrop Research Institute, Rensselaer, New York 12144

Received April 24, 1971

Some bis(nitroacetamides) with the general structure 1 were required for screening as antispermatogenic agents. The amides were readily prepared by heating the appropriate amine with the desired nitro ester without solvent and recrystallizing the resulting solid from a suitable solvent.

The compds prepared are listed in Table I. While TARE I

I ABLE I						
			\mathbf{R}		\mathbf{R}	
	O NGGONH (OH) NHGOGNO					
	$O_2NCCONH(CH_2)_nNHCOCNO_2$					
			Ŕ		R	
				1		
	R	n	Yield, %	Mp, °C	Rxt solv	Formula ^a
1	H	6	34.1	143-144	$\mathrm{CH_3CN}$	$C_{10}H_{18}N_4O_6$
2	H	8	50.3	147-148	95% EtOH	$C_{12}H_{22}N_4O_6$
3	$\mathrm{CH_3}$	2	12.8	183-185	$\mathrm{CH_3CN}$	$C_{10}H_{18}N_4O_6$
4	$\mathrm{CH_3}$	3	21.7	105 - 108	$C_6H_6-n-C_6H_{14}$	$C_{11}H_{20}N_4O_6$
5	CH_3	4	14.7	207 - 208	$\mathrm{CH_3CN}$	$C_{12}H_{22}N_4O_6$
6	CH_3	6	30.6	168-170	$\mathrm{CH_3CN}$	$C_{14}H_{26}N_4O_6$
7	$\mathrm{CH_3}$	8	23.0	138 - 141	$\mathrm{CH_3CN}$	${ m C_{16}H_{30}N_4O_6}$
^a All compds were anal. for C, H, N.						

no antispermatogenic activity was found in this series anthelmintic activity was discovered. For example, 1 (R = H; n = 6) when administered orally to Swiss mice naturally infected with Aspicularis tetraptera (pinworm) cleared 100% of the mice (5/5 per dose level) at 100 mg/kg per day for 4 days and 1 (R = H; n=8) cleared 100% of the mice (5/5 per dose level) at 200 mg/kg per day for 4 days; also, 1 (R = CH_3 ; n =8) cleared 80% of the mice (4/5 per dose level) infected with the tapeworm Hymenolepis nana at 400 mg/kg per day for 4 days.

Experimental Section¹

 N,N^1 -Hexamethylenebis(nitroacetamide).—Ethyl tate (11.2 g, 0.0855 mole) was added to hexamethylenediamine (9.94 g, 0.855 mole). The mixt became hot and liquefied, after which a white solid pptd. The mixt was heated for 3 hr on a steam bath. It slowly turned to a thick orange liquid. The mixt was acidified with alcoholic HCl and poured into H₂O. The white solid was collected and recrystd from MeCN, mp 147-148° dec.

The other compds were prepd similarly except that in the case of the compds with no free H α to NO₂, 1 equiv of diamine was treated with 2 equiv of nitro ester and the alcoholic HCl treatment was unnecessary.

(1) Melting points were measured in open capillary tubes in a bath and are corrected.

Tricyclic Heterocycles Derived From 4-Oxo-4,5,6,7-tetrahydrothianaphthenes¹

WILLIAM A. REMERS,* GABRIEL J. GIBS, JOHN F. POLETTO, AND MARTIN J. WEISS

Process and Preparations Research Section, Lederle Laboratories Division, American Cyanamid Company, Pearl River, New York 10965

Received April 5, 1971

Recently we described the synthesis of a variety of tricyclic heterocycles from 4-oxo-4,5,6,7-tetrahydroin-

⁽¹²⁾ P. G. Campbell and P. C. Teague, J. Amer. Chem. Soc., 76, 1371 (1954).

⁽¹³⁾ D. K. Blount, W. H. Perkin, Jr., and S. G. P. Plant, J. Chem. Soc., 1975 (1929).

^{*} To whom inquiries should be addressed at the Department of Medicinal Chemistry and Pharmacognosy, Purdue University, Lafayette, Ind. 47907.

⁽¹⁾ Presented in part before the Medicinal Chemistry Division at the 161st National Meeting of the American Chemical Society, Los Angeles, Calif., March 1971, MEDI-23,