The Evolution of the Welfare State

Diego Huerta

October 18, 2023

• Social benefits, share of GDP (e.g. unemployment, health, education).

• Social benefits, share of GDP (e.g. unemployment, health, education).

Source: OECD (2023).

• Social benefits, share of GDP (e.g. unemployment, health, education).

• Social benefits, share of GDP (e.g. unemployment, health, education).

• Social benefits, share of GDP (e.g. unemployment, health, education).

• Social benefits, share of GDP (e.g. unemployment, health, education).

• Social benefits, share of GDP (e.g. unemployment, health, education).

 Many possible factors country-specific shocks, government changes, demographics, convergence ...

 Many possible factors country-specific shocks, government changes, demographics, convergence ...

• This paper focus on single force: Wealth Distribution

• Many possible factors country-specific shocks, government changes, demographics, convergence ...

• This paper focus on single force: Wealth Distribution

Traditional view (De Tocqueville, 1835): wealth inequality \Rightarrow class conflict \Rightarrow need for large government

• Many possible factors country-specific shocks, government changes, demographics, convergence ...

• This paper focus on single force: Wealth Distribution

Traditional view (De Tocqueville, 1835):

Wealth Inequality ↔ Welfare State

• Many possible factors country-specific shocks, government changes, demographics, convergence ...

• This paper focus on single force: Wealth Distribution

Traditional view (De Tocqueville, 1835):

Wealth Inequality ↔ Welfare State

Single force PREDICTS trends of social benefits in 18 out 24 countries

1. Parsimonious model with dynamic Inequality-Policy link

1. Parsimonious model with dynamic Inequality-Policy link

1. Parsimonious model with dynamic Inequality-Policy link

1. Parsimonious model with dynamic Inequality-Policy link

- 1. Parsimonious model with dynamic Inequality-Policy link
 - Policy: transfers to workers or entrepreneurs

- 1. Parsimonious model with dynamic Inequality-Policy link
 - Policy: transfers to workers or entrepreneurs

► **KEY:** Occupational choice brings aspirational voting (middle-class)

- 1. Parsimonious model with dynamic Inequality-Policy link
 - Policy: transfers to workers or entrepreneurs

► **KEY:** Occupational choice brings aspirational voting (middle-class)

- 1. Parsimonious model with dynamic Inequality-Policy link
 - Policy: transfers to workers or entrepreneurs

- ► **KEY:** Occupational choice brings aspirational voting (middle-class)
- 2. Quantitative test for 24 countries from all continents (1995-2019)

• Evolution of Welfare State depends on "starting" wealth distribution (\approx Wealth & Inequality)

Evolution of Welfare State depends on "starting" wealth distribution
 (≈ Wealth & Inequality)

High wealth but unequal: social benefits increase over time (e.g. US).

Evolution of Welfare State depends on "starting" wealth distribution
 (≈ Wealth & Inequality)

High wealth but unequal: social benefits increase over time (e.g. US).

High wealth and equal: social benefits decrease over time (e.g. Sweden).

Evolution of Welfare State depends on "starting" wealth distribution
 (≈ Wealth & Inequality)

High wealth but unequal: social benefits increase over time (e.g. US).

High wealth and equal: social benefits decrease over time (e.g. Sweden).

Intuition? Evolution of aspirational voting

Quantitative Result

- Theory PREDICTS trends of social benefits in $\frac{3}{4}$ of the countries (18 out 24) (75% prediction rate)
 - 1. Calibration based on empirical wealth distribution in 1995
 - 2. Simulation of next 25 years given the 1995's distribution

Literature

Macro:

- Politics in the neoclassical growth model (numerical analysis).
 Krusell et al. (1996); Krusell and Rios-Rull (1996, 1999)
- Optimal policy intervention with heterogeneous agents.
 Nuño and Moll (2018); Itskhoki and Moll (2019); Acharya et al. (2020)

Political Economy:

Endogenous policy choice (Meltzer and Richard, 1981)
 Alesina and Rodrik (1994); Alesina and Angeletos (2005); Hassler et al. (2003)

Plan

Motivation

- 1. The Model
- 2. Political Process
- 3. Equilibrium Transition Dynamics
- 4. Quantitative Exercise

• Continuum of agents heterogeneous in wealth $a_t \sim \Gamma_t(a)$

$$\max_{\{c_t\}_{t=0}^{+\infty}} \left\{ \int_0^{\infty} e^{-\rho t} \log(c_t) dt \right\}$$

$$s.t. \qquad \dot{a}_t = (r - \tau_t) a_t - c_t + \begin{cases} w_t \ell + T_t & \text{if worker} \\ \Pi_t & \text{if entrepreneur} \end{cases}$$

$$a_t \ge \underline{a}$$

• Continuum of agents heterogeneous in wealth $a_t \sim \Gamma_t(a)$

$$\max_{\{c_t\}_{t=0}^{+\infty}} \left\{ \int_0^{\infty} e^{-\rho t} \log(c_t) dt \right\}$$

$$s.t. \qquad \dot{a}_t = (r - \tau_t) a_t - c_t + \begin{cases} w_t \ell + T_t & \text{if worker} \\ \Pi_t & \text{if entrepreneur} \end{cases}$$

$$a_t \ge \underline{a}$$

Government

- ► Transfers: $T_t = \mathbf{b_t} \cdot Y_t$
 - Policy instrument: $b_t \ge -\underline{b}$ (social benefits, % of GDP)

• Continuum of agents heterogeneous in wealth $a_t \sim \Gamma_t(a)$

$$\max_{\{c_t\}_{t=0}^{+\infty}} \left\{ \int_0^{\infty} e^{-\rho t} \log(c_t) dt \right\}$$

$$s.t. \qquad \dot{a}_t = (r - \tau_t) a_t - c_t + \begin{cases} w_t \ell + T_t & \text{if worker} \\ \Pi_t & \text{if entrepreneur} \end{cases}$$

$$a_t \ge \underline{a}$$

Government

- ► Transfers: $T_t = \mathbf{b_t} \cdot Y_t$
 - Policy instrument: $b_t \ge -\underline{b}$ (social benefits, % of GDP)
- ▶ Balanced budget: $\tau_t \cdot A_t = T_t \cdot (1 e_t)$ (e_t : % of entrepreneurs)

• Continuum of agents heterogeneous in wealth $a_t \sim \Gamma_t(a)$

$$\max_{\{c_t\}_{t=0}^{+\infty}} \left\{ \int_0^{\infty} e^{-\rho t} \log(c_t) dt \right\}$$

$$s.t. \qquad \dot{a}_t = (r - \tau_t) a_t - c_t + \begin{cases} w_t \ell + T_t & \text{if worker} \\ \Pi_t & \text{if entrepreneur} \end{cases}$$

$$a_t \ge \underline{a}$$

Government

- ► Transfers: $T_t = \mathbf{b_t} \cdot Y_t$
 - Policy instrument: $b_t \ge -\underline{b}$ (social benefits, % of GDP)
- ▶ Balanced budget: $\tau_t \cdot A_t = T_t \cdot (1 e_t)$ (e_t : % of entrepreneurs)

Gov. Trade-off: Evidence

Two Technologies

1. Entrepreneurs produce physical capital (K):

Two Technologies

1. Entrepreneurs produce physical capital (K):

Investment $(I > 0) + Labor (\ell) = R$ units of K

Two Technologies

1. Entrepreneurs produce physical capital (K):

Investment
$$(I > 0)$$
 + Labor (ℓ) = R units of K

2. Representative firm produces output-good (*Y*):

1. Entrepreneurs produce physical capital (K):

Investment
$$(I > 0)$$
 + Labor (ℓ) = R units of K

2. Representative firm produces output-good (*Y*):

$$Y_t = ZK_t^{\alpha}L_t^{1-\alpha}, K_t = R \cdot e_t \text{ and } L_t = \ell \cdot (1 - e_t)$$

8

1. Entrepreneurs produce physical capital (K):

Investment
$$(I > 0)$$
 + Labor (ℓ) = R units of K

2. Representative firm produces output-good (*Y*):

$$Y_t = ZK_t^{\alpha} L_t^{1-\alpha}, K_t = R \cdot e_t \text{ and } L_t = \ell \cdot (1 - e_t)$$

• Price of capital: $p_t = MPK_t$

8

1. Entrepreneurs produce physical capital (K):

Investment
$$(I > 0)$$
 + Labor (ℓ) = R units of K

2. Representative firm produces output-good (*Y*):

$$Y_t = ZK_t^{\alpha} L_t^{1-\alpha}, K_t = R \cdot e_t \text{ and } L_t = \ell \cdot (1 - e_t)$$

- Price of capital: $p_t = MPK_t$
- Wage rate: $w_t = MPL_t$

1. Entrepreneurs produce physical capital (K):

Investment
$$(I > 0) + Labor (\ell) = R$$
 units of K

2. Representative firm produces output-good (*Y*):

$$Y_t = ZK_t^{\alpha} L_t^{1-\alpha}, K_t = R \cdot e_t \text{ and } L_t = \ell \cdot (1 - e_t)$$

- Price of capital: $p_t = MPK_t$
- Wage rate: $w_t = MPL_t$
- ▶ Productivity: *Z*

1. Entrepreneurs produce physical capital (K):

Investment
$$(I > 0)$$
 + Labor (ℓ) = R units of K

2. Representative firm produces output-good (*Y*):

$$Y_t = ZK_t^{\alpha} L_t^{1-\alpha}, K_t = R \cdot e_t \text{ and } L_t = \ell \cdot (1 - e_t)$$

- Price of capital: $p_t = MPK_t$
- Wage rate: $w_t = MPL_t$
- Productivity: Z

Individual profits: $\Pi_t = p_t R - rI$

8

Voting Decisions

Voting Decisions

Maximize current income: anticipate occupational choice (KEY)

Voting Decisions

Maximize current income: anticipate occupational choice (KEY)

• Economic Decisions (consumption-saving)

g

Voting Decisions

Maximize current income: anticipate occupational choice (KEY)

• Economic Decisions (consumption-saving)

Maximize discounted utility: do not predict $\{b_s, \Gamma_s\}_{s=t}^{+\infty}$

g

Voting Decisions

Maximize current income: anticipate occupational choice (KEY)

Economic Decisions (consumption-saving)

Maximize discounted utility: do not predict $\{b_s, \Gamma_s\}_{s=t}^{+\infty}$

Alternative: fully-rational equilibrium (numerical) Krusell and Rios-Rull (1996, 1999); Quadrini and Rios-Rull (2023)

g

• Occupational constraint: $\Pi_t \ge w_t \ell + T_t$

• Occupational threshold: $\tilde{a}(b_t, \Gamma_t)$

- Occupational threshold: $\tilde{a}(b_t, \Gamma_t)$
- Credit constraints à la Holmstrom and Tirole (1997):

$$\Pi_t + ra \ge (I - a) + w_t \ell + T_t$$

- Occupational threshold: $\tilde{a}(b_t, \Gamma_t)$
- Minimum collateral to get credit: $\hat{a}(b_t, \Gamma_t)$

- Occupational threshold: $\tilde{a}(b_t, \Gamma_t)$
- Minimum collateral to get credit: $\hat{a}(b_t, \Gamma_t)$
- Occupational choice: $a_t^o(b_t, \Gamma_t) = \max\{\hat{a}_t, \tilde{a}_t\}$ (OC)

- Occupational threshold: $\tilde{a}(b_t, \Gamma_t)$
- Minimum collateral to get credit: $\hat{a}(b_t, \Gamma_t)$
- Occupational choice: $a_t^o(b_t, \Gamma_t) = \max\{\hat{a}_t, \tilde{a}_t\}$ (*OC*)
- Result $a_t^o(b, \Gamma_t)$ increasing in b and $b \leq \overline{b}$

Crucial Trade-off: ↑ Social benefits ⇒↓ Entrepreneurs
Audretsch et al. (2022); Solomon et al. (2022, 2021); Henrekson (2005)

Plan

Motivation

- 1. The Model
- 2. Political Process
- 3. Equilibrium

 Transition Dynamics
- 4. Quantitative Exercise

Political Process: Roadmap

1. Individual Preferences

- 2. Probabilistic Voting (Persson and Tabellini, 2000)
- 3. Equilibrium Policy

Individual Preferences

Individual preferred policy: $b(a; \Gamma_t)$

• Agents observe a and Γ_t , and maximize disposable income at t:

$$b(a; \Gamma_t) = argmax_{b \in [\underline{b}, \overline{b}]} \ y_t(a, b; \Gamma_t) = \begin{cases} y_t^W & \text{if } a < a^o(b, \Gamma_t) \\ y_t^E & \text{if } a \ge a^o(b, \Gamma_t) \end{cases}$$

1

Individual preferred policy: $b(a; \Gamma_t)$

• Agents observe a and Γ_t , and maximize disposable income at t:

$$b(a; \Gamma_t) = argmax_{b \in [\underline{b}, \overline{b}]} \ y_t(a, b; \Gamma_t) = \begin{cases} y_t^W & \text{if } a < a^o(b, \Gamma_t) \\ y_t^E & \text{if } a \ge a^o(b, \Gamma_t) \end{cases}$$

Aspirational voting

11

Individual preferred policy: $b(a; \Gamma_t)$

• Agents observe a and Γ_t , and maximize disposable income at t:

$$b(a; \Gamma_t) = argmax_{b \in [\underline{b}, \overline{b}]} \ y_t(a, b; \Gamma_t) = \begin{cases} y_t^W & \text{if } a < a^o(b, \Gamma_t) \\ y_t^E & \text{if } a \ge a^o(b, \Gamma_t) \end{cases}$$

Aspirational voting

Middle-class may support pro-business policies

Probabilistic Voting

• Two parties choose b_t^1 and b_t^2 to maximize expected share of votes

- Two parties choose b_t^1 and b_t^2 to maximize expected share of votes
- Voters indexed by (a, p)

- Two parties choose b_t^1 and b_t^2 to maximize expected share of votes
- Voters indexed by (a, p)

p: idiosyncratic political preference (Uniform, (ϕ^W, ϕ^E))

- Two parties choose b_t^1 and b_t^2 to maximize expected share of votes
- Voters indexed by (a, p)
 - p: idiosyncratic political preference (Uniform, (ϕ^W, ϕ^E))
- Symmetric Nash equilibrium:

$$b_{t} = \operatorname{argmax}_{b} \left\{ \int_{a < a_{t}^{o}(b)} y(a,b) d\Gamma_{t}(a) + \underbrace{\frac{\phi^{E}}{\phi^{W}}}_{\equiv \phi} \int_{a \geq a_{t}^{o}(b)} y(a,b) d\Gamma_{t}(a) \right\}$$

Equilibrium Policy

Equilibrium Social Benefits

• Maximize weighted income ($\phi \ge 1$ Political weight):

$$\max_{b} \left\{ w_t \ell \cdot (1 - e_t) + \phi \Pi_t \cdot e_t \right\}$$

Equilibrium Social Benefits

• Maximize weighted income ($\phi \ge 1$ Political weight):

$$\max_{b} \left\{ w_t \ell \cdot (1 - e_t) + \phi \Pi_t \cdot e_t \right\}$$

• Equilibrium policy b_t :

$$1 - \Gamma_t(a^o(b_t, \Gamma_t)) = e^* \quad (PE)$$

•
$$e^* = \Psi(Z, r, \alpha, R, I, \ell, \phi) \in (0, \alpha)$$

Forward looking gov. PE: 2-D diagram

The Inequality
$$\rightarrow$$
 Policy link: $1 - \Gamma_t(a^o(b_t, \Gamma_t)) = e^*$ (PE)

The Inequality
$$\rightarrow$$
 Policy link: $1 - \Gamma_t(a^o(b_t, \Gamma_t)) > e^*$ (PE)

• Suppose everyone gets wealthier (Γ_t shifts right)

The Inequality
$$\rightarrow$$
 Policy link: $1 - \Gamma_t(a^o(b_t, \Gamma_t)) > e^*$ (PE)

• Suppose everyone gets wealthier (Γ_t shifts right)

Government: $\uparrow b_t \Rightarrow \uparrow a_t^o \Rightarrow \downarrow e_t$

The Inequality
$$\rightarrow$$
 Policy link: $1 - \Gamma_t(a^o(b_t, \Gamma_t)) > e^*$ (PE)

• Suppose everyone gets wealthier (Γ_t shifts right)

Voters: $\downarrow \Pi_t \Rightarrow \downarrow Aspirational Voting \Rightarrow \uparrow b_t$

The Inequality
$$\rightarrow$$
 Policy link: $1 - \Gamma_t(a^o(b_t, \Gamma_t)) = e^*$ (PE)

• Suppose everyone gets wealthier (Γ_t shifts right)

Voters: $\downarrow \Pi_t \Rightarrow \downarrow Aspirational Voting \Rightarrow \uparrow b_t$

The Inequality
$$\rightarrow$$
 Policy link: $1 - \Gamma_t(a^o(b_t, \Gamma_t)) = e^*$ (PE)

• Suppose everyone gets wealthier (Γ_t shifts right)

Voters:
$$\downarrow \Pi_t \Rightarrow \downarrow Aspirational Voting \Rightarrow \uparrow b_t$$

• (PE) captures aspirational voting in a neat way

Plan

Motivation

- 1. The Mode
- 2. Political Process
- 3. Equilibrium Transition Dynamics
- 4. Quantitative Exercise

Equilibrium

Equilibrium

$$s_t(a) = \theta_t \cdot y_t(a) \tag{HJB}$$

$$d_t\Gamma_t(a) = H(\Gamma_t, s_t, a_t^o)$$
 (KFE)

Equilibrium

$$s_{t}(a) = \theta_{t} \cdot y_{t}(a)$$
 (HJB)
$$d_{t}\Gamma_{t}(a) = H(\Gamma_{t}, s_{t}, a_{t}^{o})$$
 (KFE)
$$a_{t}^{o} = \max\{\hat{a}_{t}, \tilde{a}_{t}\}$$
 (OC)
$$e^{*} = 1 - \Gamma_{t}(a_{t}^{o})$$
 (PE)
$$\tau_{t} \cdot A_{t} = T_{t} \cdot (1 - e^{*})$$
 (BB)

Stationary Equilibrium

Stationary Equilibrium

- 1. Unique stationary tax rate: $\tau^* = r \rho \ (\theta(\tau^*) = 0)$
- 2. Set of stationary distributions: **Γ***

SS details

Transition dynamics

Transition dynamics: Takeaways so far...

Main result

- 1. If $\tau(\Gamma_0) < r \rho \Rightarrow b$ increasing over time
- 2. If $\tau(\Gamma_0) > r \rho \Rightarrow b$ decreasing over time

Question Which properties of Γ_0 give rise to each case?

Question Which properties of Γ_0 imply that $\uparrow b$ or $\downarrow b$?

• Problem Characterizing distributions is analytically cumbersome

Question Which properties of Γ_0 imply that $\uparrow b$ or $\downarrow b$?

Problem Characterizing distributions is analytically cumbersome

• **Solution** Construct Γ_0 perturbing stationary distributions Γ^*

Question Which properties of Γ_0 imply that $\uparrow b$ or $\downarrow b$?

• Problem Characterizing distributions is analytically cumbersome

• **Solution** Construct Γ_0 perturbing stationary distributions Γ^*

Apply an MPS on Γ^* to obtain Γ_0 (MIT shock) MPS around the mean (Rothschild and Stiglitz, 1971)

High inequality: USA (1970-2019)

Low inequality: Sweden (1995-2019)

Increasing social benefits(➤ Aspirational voting)

Decreasing social benefits (A Aspirational voting)

High inequality: USA (1970-2019)

Low inequality: Sweden (1995-2019)

Increasing social benefits (

Aspirational voting)

• t = 0 Small Incumbent Class (high Π)

High inequality: USA (1970-2019)

Low inequality: Sweden (1995-2019)

Increasing social benefits
(\sqrt{ Aspirational voting)}

• t = 0 Small Incumbent Class (high Π)

• t = 1 Large Ambitious Emerging Class: Low b

High inequality: USA (1970-2019)

Low inequality: Sweden (1995-2019)

Increasing social benefits
(\sqrt{ Aspirational voting)}

• t = 0 Small Incumbent Class (high Π)

• t = 1 Large Ambitious Emerging Class: Low b

• t = 2 Conformist Emerging Class

+

High b

Working Class

MPS graph

The Evolution of the Welfare State: Takeaways

Developed countries

- Initially unequal \Rightarrow b increasing
- Initially equal $\Rightarrow b$ decreasing

The Evolution of the Welfare State: Takeaways

Developed countries

- Initially unequal ⇒ b increasing
- Initially equal $\Rightarrow b$ decreasing

Developing countries

Effects reversed

The Evolution of the Welfare State: Takeaways

Developed countries

- Initially unequal \Rightarrow b increasing
- Initially equal $\Rightarrow b$ decreasing

Developing countries

Effects reversed

Question Can the model predict the evolution of the Welfare State?

Quantitative Exercise

Inputs

1. Starting wealth distribution: Γ_{1995} World Inequality Database (WID)

Inputs

1. Starting wealth distribution: Γ_{1995} World Inequality Database (WID)

2. Production function and productivity: α , $\{Z_t\}_{t=1995}^{2019}$

Inputs

1. Starting wealth distribution: Γ_{1995} World Inequality Database (WID)

- 2. Production function and productivity: α , $\{Z_t\}_{t=1995}^{2019}$
 - 2.1 Solow Residual (24 countries)
 Penn World Table

Inputs

1. Starting wealth distribution: Γ_{1995} World Inequality Database (WID)

- 2. Production function and productivity: α , $\{Z_t\}_{t=1995}^{2019}$
 - 2.1 Solow Residual (24 countries)
 Penn World Table
 - 2.2 Olley and Pakes (1996): control for selection/simultaneity (17 countries) COMPUSTAT North America and COMPUSTAT Global

Calibration method

Result: the model predicts the trend of 18 out of 24 countries

Data versus Model

Data versus Model

Data versus Model

The American Experience

United States: Social benefits and Productivity

1. Direct effect (1st round)

1. Direct effect (1st round)

- 1. Direct effect (1st round)
 - ▶ $\uparrow Z \Rightarrow \uparrow e^* \Rightarrow e_t < e^* \Rightarrow \downarrow b$ (Aspirational voting strengthens)

- 1. Direct effect (1st round)
 - ▶ $\uparrow Z \Rightarrow \uparrow e^* \Rightarrow e_t < e^* \Rightarrow \downarrow b$ (Aspirational voting strengthens)
- 2. Distributional effect (2nd round)

- 1. Direct effect (1st round)
 - ▶ ↑ $Z \Rightarrow \uparrow e^* \Rightarrow e_t < e^* \Rightarrow \downarrow b$ (Aspirational voting strengthens)
- 2. Distributional effect (2nd round)
 - ▶ Γ shifts right $\Rightarrow e_{t+\Delta} > e^* \Rightarrow \uparrow b$

- 1. Direct effect (1st round)
 - ▶ ↑ $Z \Rightarrow \uparrow e^* \Rightarrow e_t < e^* \Rightarrow \downarrow b$ (Aspirational voting strengthens)
- 2. Distributional effect (2nd round)
 - ▶ Γ shifts right $\Rightarrow e_{t+\Delta} > e^* \Rightarrow \uparrow b$ (Aspirational voting weakens)

USA: distributional effect of $\nearrow Z$ dominates

Quantitative Exercise: Takeaways

Main result

 The model predicts the trend of social benefits in 18 out of 24 countries (75% prediction rate)

Main message

• The Wealth Distribution ⇒ Evolution of the Welfare State

1. Labor and capital tax √

- 1. Labor and capital tax √
- 2. Transfers to entrepreneurs and workers $\sqrt{}$

- 1. Labor and capital tax √
- 2. Transfers to entrepreneurs and workers $\sqrt{}$
- 3. Alternative IC constraints √

- 1. Labor and capital tax √
- 2. Transfers to entrepreneurs and workers $\sqrt{}$
- 3. Alternative IC constraints √
- 4. Counterfactual Analysis (Canada, USA, Sweden) $\sqrt{}$

- 1. Labor and capital tax √
- 2. Transfers to entrepreneurs and workers $\sqrt{}$
- 3. Alternative IC constraints √
- 4. Counterfactual Analysis (Canada, USA, Sweden) √
 - Limited role of government changes in the trend of the Welfare State

Future Work

1. Role of inequality-policy link for growth

2. How do governments choose policies? Politics versus Economics

Thanks!!!

References I

- Acharya, Sushant, Edouard Challe, and Keshav Dogra, "Optimal Monetary Policy according to HANK," 2020.
- Alesina, Alberto and Dani Rodrik, "Distributive Politics and Economic Growth," The Quarterly Journal of Economics, 1994, 109 (2), 465–490.
- __ and George-Marios Angeletos, "Fairness and Redistribution," American Economic Review, 2005, 95 (4), 960–980.
- Audretsch, David B, Maksim Belitski, Farzana Chowdhury, and Sameeksha Desai, "Necessity or Opportunity? Government Size, Tax Policy, Corruption, and Implications for Entrepreneurship," *Small Business Economics*, 2022, *58* (4), 2025–2042.
- Hassler, John, José V Rodríguez Mora, Kjetil Storesletten, and Fabrizio Zilibotti, "The Survival of the Welfare State," *American Economic Review*, 2003, *93* (1), 87–112.
- **Henrekson, Magnus**, "Entrepreneurship: a weak link in the welfare state?," *Industrial and Corporate change*, 2005, *14* (3), 437–467.
- Holmstrom, Bengt and Jean Tirole, "Financial Intermediation, Loanable Funds, and the Real Sector," *The Quarterly Journal of Economics*, 1997, 112 (3), 663–691.
- Itskhoki, Oleg and Benjamin Moll, "Optimal Development Policies with Financial Frictions," *Econometrica*, 2019, 87 (1), 139–173.
- Krusell, Per and Jose-Victor Rios-Rull, "Vested Interests in a Positive Theory of Stagnation and Growth," The Review of Economic Studies, 1996, 63 (2), 301–329.
- __ and ___, "On the Size of US Government: Political Economy in the Neoclassical Growth Model," *American Economic Review*, 1999, *89* (5), 1156–1181.

References II

- ____, Vincenzo Quadrini, and Jose-Victor Rios-Rull, "Are Consumption Taxes Really Better than Income Taxes?," Journal of Monetary Economics, 1996, 37 (3), 475–503.
- Meltzer, Allan H and Scott F Richard, "A Rational Theory of the Size of Government," *Journal of Political Economy*, 1981, 89 (5), 914–927.
- Nuño, Galo and Benjamin Moll, "Social Optima in Economies with Heterogeneous Agents," Review of Economic Dynamics, 2018, 28, 150–180.
- Olley, G. Steven and Ariel Pakes, "The Dynamics of Productivity in the Telecommunications Equipment Industry," *Econometrica*, 1996, *64* (6), 1263–1297.
- Persson, Torsten and Guido Tabellini, Political Economics: Explaining Economic Policy, The MIT Press, 2000.
- Quadrini, Vincenzo and JV Rios-Rull, "International Tax Competition with Rising Intangible Capital and Financial Globalization," Technical Report, mimeo 2023.
- Rothschild, Michael and Joseph E Stiglitz, "Increasing Risk II: Its Economic Consequences," *Journal of Economic Theory*, 1971, 3 (1), 66–84.
- Solomon, Shelby J, Joshua S Bendickson, Matt R Marvel, William C McDowell, and Raj Mahto, "Agency Theory and Entrepreneurship: A Cross-Country Analysis," *Journal of Business Research*, 2021, 122, 466–476.
- Solomon, Shelby, Joshua S Bendickson, Eric W Liguori, and Matthew R Marvel, "The Effects of Social Spending on Entrepreneurship in Developed Nations," *Small Business Economics*, 2022, pp. 1–13.

Supplementary Material

The Evolution of Net Social Benefits

Main

Social Benefits versus Business Policies

Forward-looking government

The government solves:

$$max_b\{\int v_t(a,b)d\Gamma_t(a)\}$$

• The PE condition is:

$$\int_{a < a^{\circ}(b, \Gamma_{t})} \frac{(d_{b}w_{t}\ell + d_{b}T_{t})}{y_{t}(a)} d\Gamma_{t}(a) + \int_{a \geq a^{\circ}(b, \Gamma_{t})} \frac{d_{b}p_{t}}{y_{t}(a)} d\Gamma_{t}(a) = d_{b}\tau_{t} \int \frac{a}{y(a)} d\Gamma_{t}(a) + e^{\rho t} \left(\int_{t}^{+\infty} d_{b}\tau_{s} \frac{1}{r - \tau_{s}} e^{-\rho s} ds \right) + \frac{1}{\rho} d\Gamma_{t}(a) + \frac{1}{\rho$$

Observation The evolution of b depends on the the density function

Main

$$1 - \Gamma_t(a^o(b_t, \Gamma_t)) = e^*$$

$$a_t^o = \Gamma_t^{-1}(1 - e^*)$$

$$a_t^o = \Gamma_t^{-1} (1 - e^*)$$

$$a_t^o = \Gamma_t^{-1} (1 - e^*)$$

$$a_t^o = \Gamma_t^{-1} (1 - e^*)$$

$$a_t^o = \Gamma_t^{-1} (1 - e^*)$$

$$a_t^o = \Gamma_t^{-1} (1 - e^*)$$

$$a_t^o = \Gamma_t^{-1} (1 - e^*)$$

$$a_t^o = \Gamma_t^{-1} (1 - e^*)$$

Main

Stationary Equilibrium

Steady-state: $d_t \Gamma_t(a) = 0$

$$\tilde{H}(\Gamma^*, s = \theta^* \cdot y) = 0$$

$$\Rightarrow \theta^* = 0$$

$$\Rightarrow \boxed{\tau^* = r - \rho}$$
(HJB) + (KFE)

• Result There is a unique stationary tax-rate: τ^*

Stationary Equilibrium

Steady-state distribution (Γ^*)

$$r - \rho = \frac{b^* \Gamma^*(\hat{a}^*) \cdot y(\Gamma^*)}{A^*}$$
 (BB)

$$a^o * = \tilde{\psi}(\Gamma^*) \tag{OC}$$

$$b^* = \tilde{\phi}(\Gamma^*) \tag{PE}$$

- **Result** Γ^* is non-unique: there is a set (A^*, Γ^*) that solves the system.
 - Similar result in the neoclassical model + politics.
 Krusell and Rios-Rull (1996, 1999)

Main

•
$$\tau_0 < \tau^* = r - \rho$$

• $\theta_0 > 0 \Rightarrow$ agents save

•
$$\tau_0 < \tau^* = r - \rho$$

• $\theta_0 > 0 \Rightarrow \Gamma_{\Lambda} \text{ FOSD } \Gamma_0 \text{ (Γ shifts right)}$

1. More entrepreneurs: $1 - \Gamma_{\Delta}(a^{o}(b_0, \Gamma_0)) > e^*$

- 1. More entrepreneurs: $1 \Gamma_{\Delta}(a^{o}(b_0, \Gamma_0)) > e^*$
- 2. More competition $(\downarrow \Pi)$: $a^{o}(b_{0}, \Gamma_{\Delta}) > a^{o}(b_{0}, \Gamma_{0})$

- 1. More entrepreneurs: $1 \Gamma_{\Delta}(a^{o}(b_{0}, \Gamma_{\Delta})) > e^{*}$ (net effect)
- 2. More competition $(\downarrow \Pi)$: $a^{\circ}(b_0, \Gamma_{\Delta}) > a^{\circ}(b_0, \Gamma_0)$

- Too many entrepreneurs: $1 \Gamma_{\Delta}(a^{o}(b_{0}, \Gamma_{\Delta})) > e^{*}$
 - Government: increases b to raise $a^o \Rightarrow b_{\Delta} > b_0$

- b_t keeps increasing as long as $\theta_t > 0$
 - When $\theta_t = 0 \Rightarrow b_t = b^*$ Main

• Capital unconstrained country $(A^* > \hat{a}^*)$

• γ_0 more unequal than γ^* (double-crossing)

• More unequal \Rightarrow Less entrepreneurs: $1 - \Gamma_0(\hat{a}^*) < 1 - \Gamma^*(\hat{a}^*)$

• Net effect: $1 - \Gamma_0(\hat{a}_0) < 1 - \Gamma^*(\hat{a}^*) \Rightarrow b_0 < b^* \Rightarrow \tau_0 < r - \rho$

• $\tau_0 < r - \rho \Rightarrow b$ increasing over time

• Set of parameters Ψ = $(r, \phi, I, R, \ell, \rho, \omega)_{1 \times 7}$

- Set of parameters $\Psi = (r, \phi, I, R, \ell, \rho, \omega)_{1 \times 7}$
 - ω : "government responsiveness" to ΔZ

- Set of parameters $\Psi = (r, \phi, I, R, \ell, \rho, \omega)_{1\times 7}$
 - ω : "government responsiveness" to ΔZ
- Set of moments:

$$m(\Psi|\Gamma_0) = \begin{bmatrix} b_0 - P(\Gamma_0, \Psi) \\ K_0/L_0 - K/L(\Gamma_0, \Psi) \\ I_0/Y_0 - Inv(\Gamma_0, \Psi) \\ Giniy_0 - Giniy(\Gamma_0, \Psi) \\ b_0 - P(\Gamma_\Delta, \Psi) \\ \mathbb{E}[a|\Gamma_0] - \mathbb{E}[a|\Gamma_\Delta] \\ Var[a|\Gamma_0] - Var[a|\Gamma_\Delta] \\ Gini[a|\Gamma_0] - Gini[a|\Gamma_\Delta] \end{bmatrix}_{8\times 1}$$

- Set of parameters $\Psi = (r, \phi, I, R, \ell, \rho, \omega)_{1\times 7}$
 - ω : "government responsiveness" to ΔZ
- Set of moments:

$$m(\Psi|\Gamma_0) = \begin{bmatrix} b_0 - P(\Gamma_0, \Psi) \\ K_0/L_0 - K/L(\Gamma_0, \Psi) \\ I_0/Y_0 - Inv(\Gamma_0, \Psi) \\ Giniy_0 - Giniy(\Gamma_0, \Psi) \\ b_0 - P(\Gamma_\Delta, \Psi) \\ \mathbb{E}[a|\Gamma_0] - \mathbb{E}[a|\Gamma_\Delta] \\ Var[a|\Gamma_0] - Var[a|\Gamma_\Delta] \\ Gini[a|\Gamma_0] - Gini[a|\Gamma_\Delta] \end{bmatrix}_{8\times 1}$$

• Solve: $\hat{\Psi} = argmin_{\Psi} \{ m(\Psi|\Gamma_0)' \ W \ m(\Psi|\Gamma_0) \}$

A permanent increase of productivity (MIT shock)

• At t = 0: $\uparrow Z \Rightarrow \uparrow e^* \Rightarrow 1 - G_0(\hat{a}(b^*)) < e^* \Rightarrow \downarrow b$

A permanent increase of productivity (MIT shock)

- At $t = \Delta$: **G** shifts right $\Rightarrow \uparrow b$
 - ▶ $1 G_{\Delta}(\hat{a}(b_0)) > e^*$

A permanent increase of productivity (MIT shock) Case 1

A permanent increase of productivity (MIT shock) Case 2

The "Oscillatory" Behavior of au

• Example: Suppose that $\uparrow b_t$ and $\uparrow A_t$. Recall:

$$\tau_t = \frac{b_t}{A_t} \cdot (1 - e^*) \cdot y(e = e^*)$$

The "Oscillatory" Behavior of au

• Example: Suppose that $\uparrow b_t$ and $\uparrow A_t$. Recall:

$$\tau_t = \frac{b_t}{A_t} \cdot (1 - e^*) \cdot y(e = e^*)$$

Two cases:

$$\tau_t = \frac{b_t}{A_t} \cdot (1 - e^*) \cdot y(e = e^*)$$

- Two cases:
 - 1. $\uparrow \tau_t$ if $\Delta b_t > \Delta A_t$

$$\tau_t = \frac{b_t}{A_t} \cdot (1 - e^*) \cdot y(e = e^*)$$

- Two cases:
 - 1. $\uparrow \tau_t$ if $\Delta b_t > \Delta A_t$
 - 2. $\downarrow \tau_t$ if $\Delta b_t < \Delta A_t$

$$\tau_t = \frac{b_t}{A_t} \cdot (1 - e^*) \cdot y(e = e^*)$$

- Two cases:
 - 1. $\uparrow \tau_t$ if $\Delta b_t > \Delta A_t$
 - 2. $\downarrow \tau_t$ if $\Delta b_t < \Delta A_t$
 - ▶ τ may oscillate over time \Rightarrow b may hit the PC before $\tau_t \rightarrow \tau^*$

$$\tau_t = \frac{b_t}{A_t} \cdot (1 - e^*) \cdot y(e = e^*)$$

- Two cases:
 - 1. $\uparrow \tau_t$ if $\Delta b_t > \Delta A_t$
 - 2. $\downarrow \tau_t$ if $\Delta b_t < \Delta A_t$
 - τ may oscillate over time \Rightarrow b may hit the PC before $\tau_t \rightarrow \tau^*$
- The dynamics of *b* can still be characterized!

Counterfactual Analysis

Question Role of Politics in the Evolution of the Welfare State?

Counterfactual Analysis for the US

- 1. Find the sequence of Political Weights $\{\phi_t\}_{1970}^{2019}$ that matches $\{b_t\}_{1970}^{2019}$
- 2. Simulate the model for "extreme" alternative paths around $\{\phi_t\}_{1970}^{2019}$
- 3. Question Does the trend of social benefits change?

• 1970-1990: Pro-business trend ($\uparrow \phi$)

• 1990-2000: Pro-worker trend ($\downarrow \phi$)

• 2000-present: moderate Pro-business trend ($\nearrow \phi$)

• Republicans: largest increases of ϕ

• **Democrats:** largest decreases of ϕ

 \bullet Behavior of ϕ consistent with partisan political perspectives

1. Pro-worker scenario (Low ϕ): $\phi_t \times \text{largest } \% \text{ drop}$

- 1. Pro-worker scenario (Low ϕ): $\phi_t \times$ largest % drop
- 2. Pro-business scenario (High ϕ): $\phi_t \times$ largest % increase

- 1. Pro-worker scenario (Low ϕ): $\phi_t \times$ largest % drop
- 2. Pro-business scenario (High ϕ): $\phi_t \times$ largest % increase

Main

- Trend of b would have remained positive since 1990
- Main message: Limited role of politics in the evolution of the welfare state

