Model Evaluation and Selection

Part 2

Classifier Decision Functions

Decision Functions (decision_function)

- Each classifier score value per test point indicates how confidently the classifier predicts the positive class (largemagnitude positive values) or the negative class (largemagnitude negative values).
- Choosing a fixed decision threshold gives a classification rule.
- By sweeping the decision threshold through the entire range of possible score values, we get a series of classification outcomes that form a curve.

Predicted Probability of Class Membership (predict_proba)

- Typical rule: choose most likely class
 - e.g class I if threshold > 0.50.
- Adjusting threshold affects predictions of classifier.
- · Higher threshold results in a more conservative classifier
 - e.g. only predict Class I if estimated probability of class I is above 70%
 - This increases precision. Doesn't predict class I as often, but when it does, it gets high proportion of class I instances correct.
- Not all models provide realistic probability estimates

Varying the Decision Threshold

True Label	Classifier score	
0	-27.6457	
0	-25.8486	
0	-25.1011	
0	-24.1511	
0	-23.1765	
0	-22.575	
0	-21.8271	
0	-21.7226	
0	-19.7361	
0	-19.5768	
0	-19.3071	
0	-18.9077	
0	-13.5411	
0	-12.8594	
1	-3.9128	
0	-1.9798	
1	1.824	
0	4.74931	
1	15.234624	
1	21.20597	

Precision	Recall
4/12=0.34	4/4=1.00
4/6=0.67	4/4=1.00
3/4=0.75	3/4=0.75
2/2=1.0	2/4=0.50
1/1=1.0	1/4 = 0.25
	4/12=0.34 4/6=0.67 3/4=0.75 2/2=1.0

Recall

Precision-recall and ROC curves

Precision-Recall Curves

X-axis: Precision

Y-axis: Recall

Top right corner:

- · The "ideal" point
- Precision = 1.0
- Recall = 1.0

"Steepness" of P-R curves is important:

- Maximize precision
- while maximizing recall

ROC Curves

X-axis: False Positive Rate

Y-axis: True Positive Rate

Top left corner:

- The "ideal" point
- False positive rate of zero
- True positive rate of one

"Steepness" of ROC curves is important:

- Maximize the true positive rate
- · while minimizing the false positive rate

ROC Curves

X-axis: False Positive Rate

Y-axis: True Positive Rate

Top left corner:

- The "ideal" point
- False positive rate of zero
- True positive rate of one

"Steepness" of ROC curves is important:

- Maximize the true positive rate
- while minimizing the false positive rate

Multi-Class Evaluation

Multi-Class Evaluation

- Multi-class evaluation is an extension of the binary case.
 - A collection of true vs predicted binary outcomes, one per class
 - Confusion matrices are especially useful
 - Classification report
- Overall evaluation metrics are averages across classes
 - But there are different ways to average multi-class results: we will cover these shortly.
 - The support (number of instances) for each class is important to consider,
 e.g. in case of imbalanced classes
- Multi-label classification: each instance can have multiple labels (not covered here)

Multi-Class Confusion Matrix

Predicted Digit

Out[21]: <matplotlib.text.Text at 0x119c6c780>

```
Out[21]: <matplotlib.text.Text at 0x119c6c780>
```

Multi-class classification report

```
In [22]: print(classification_report(y_test_mc, svm_predicted_mc))
```

	precision	recall	fl-score	support
0	1.00	0.65	0.79	37
1	1.00	0.23	0.38	43
2	1.00	0.39	0.56	44
3	1.00	0.93	0.97	45
4	0.14	1.00	0.25	38
5	1.00	0.33	0.50	48
6	1.00	0.54	0.70	52
7	1.00	0.35	0.52	48
8	1.00	0.02	0.04	48
9	1.00	0.55	0.71	47
avg / total	0.93	0.49	0.54	450

```
In [ ]: |
```


Micro vs Macro Average

Class	Predicted Class	Correct?
orange	lemon	0
orange	lemon	0
orange	apple	0
orange	orange	1
orange	apple	0
lemon	lemon	1
lemon	apple	0
apple	apple	1
apple	apple	1

Macro-average:

- Each <u>class</u> has equal weight.
- . Compute metric within each class
- 2. Average resulting metrics across classes

Class	Precision
orange	1/5 = 0.20
lemon	1/2 = 0.50
apple	2/2 = 1.00

Macro-average precision:

$$(0.20 + 0.50 + 1.00) / 3 = 0.57$$

Micro vs Macro Average

Class	Predicted Class	Correct?
orange	lemon	0
orange	lemon	0
orange	apple	0
orange	orange	1
orange	apple	0
lemon	lemon	1
lemon	apple	0
apple	apple	1
apple	apple	1

Micro-average:

- Each <u>instance</u> has equal weight.
- Largest classes have most influence
- 1. Aggregrate outcomes across all classes
- 2. Compute metric with aggregate outcomes

Micro-average precision:

$$4/9 = 0.44$$

Macro-Average vs Micro-Average

- If the classes have about the same number of instances, macroand micro-average will be about the same.
- If some classes are much larger (more instances) than others, and you want to:
 - Weight your metric toward the largest ones, use micro-averaging.
 - Weight your metric toward the smallest ones, use macro-averaging.
- If the micro-average is much lower than the macro-average then examine the larger classes for poor metric performance.
- If the macro-average is much lower than the micro-average then examine the smaller classes for poor metric performance.

Regression Evaluation

Regression Metrics

Typically r2_score is enough

- Reminder: computes how well future instances will be predicted
- Best possible score is 1.0
- Constant prediction score is 0.0

Alternative metrics include:

- mean_absolute_error (absolute difference of target & predicted values)
- mean_squared_error (squared difference of target & predicted values)
- median_absolute_error (robust to outliers)

Dummy Regressors

As in classification, comparison to a 'dummy' prediction model that uses a fixed rule can be useful. For this, scikit.learn provides <u>dummy</u> regressors.

Dummy Regressors

As in classification, comparison to a 'dummy' prediction model that uses a fixed rule can be useful.

For this, scikit.learn provides <u>dummy</u>

regressors

Linear model, coefficients: [-698.80206267]
Mean squared error (dummy): 4965.13
Mean squared error (linear model): 4646.74
r2_score (dummy): -0.00
r2_score (linear model): 0.06

Linear model, coefficients: [-698.80206267]

Mean squared error (dummy): 4965.13

Mean squared error (linear model): 4646.74

r2_score (dummy): -0.00

r2_score (linear model): 0.06

O

Dummy Regressors

The DummyRegressor class implements four simple baseline rules for regression, using the strategy parameter:

- mean predicts the mean of the training target values.
- median predicts the median of the training target values.
- quantile predicts a user-provided quantile of the training target values (e.g. value at the 75th percentile)
- constant predicts a custom constant value provided by the user.

Optimizing Classifiers for Different Metrics

Model Selection Using Evaluation Metrics

Train/test on same data

- Single metric.
- Typically overfits and likely won't generalize well to new data.
- But can serve as a sanity check: low accuracy on the training set may indicate an implementation problem.

Single train/test split

- Single metric.
- Speed and simplicity.
- Lack of variance information

K-fold cross-validation

- K train-test splits.
- Average metric over all splits.
- Can be combined with parameter grid search: GridSearchCV (def. cv = 3)

Example: Optimizing a Classifier Using Different Evaluation Metrics

Training, Validation, and Test Framework for Model Selection and Evaluation

- Using only cross-validation or a test set to do model selection may lead to more subtle overfitting / optimistic generalization estimates
- Instead, use three data splits:
 - I. Training set (model building)
 - 2. Validation set (model selection)
 - 3. Test set (final evaluation)
- In practice:
 - Create an initial training/test split
 - Do cross-validation on the training data for model/parameter selection
 - Save the held-out test set for final model evaluation

Concluding Notes

- Accuracy is often not the right evaluation metric for many realworld machine learning tasks
 - False positives and false negatives may need to be treated very differently
 - Make sure you understand the needs of your application and choose an evaluation metric that matches your application, user, or business goals.
- Examples of additional evaluation methods include:
 - Learning curve: How much does accuracy (or other metric) change as a function of the amount of training data?
 - Sensitivity analysis: How much does accuracy (or other metric) change as a function of key learning parameter values?