Classification using Sentence Embeddings Generated using Task Instructions

Nidhi Chowdhry

Notes from Instructor

- This is a template. You don't have to follow it exactly, but your presentation should cover what are mentioned in the template.
- Time: 5-6 minutes for each team
 - Followed by 1 minute break for Q&A and transition

Some tips:

- Please be considerate to your classmates. Most of them may have never seen the task you
 plan to work on, so please include the necessary background knowledge for them.
- Use figures and animations smartly! They will save you a lot of effort:)

Outline

- Introduction
- Approach
- Experiments
- Conclusion & Future Work

Introduction

Paper - One Embedder, Any Task: Instruction-Finetuned Text Embeddings Authors - Hongjin Su, Weijia Shi and others

- Sentence transformer
- Existing embeddings can have significantly degraded performance when applied to new tasks or domains
- Instructor Single multitask model that generates task and domain aware embeddings given a text input and its task instructions
- $E_I(I_x, x) = F(I_x \oplus x)$

Introduction

Now, give a clear description of your task: what exact problem are you solving or studying in this project? Sometimes it helps to give a real example from your dataset(s)

- Classification of datasets from 2 different domains using the same model
- Verify Instructor improves classification accuracy over base model.
- Verify if Instructor is robust to noise in data and can accept multi-lingual inputs.
- Instructor uses Logistic Regression for evaluation

Approach

- Update baseline code and create unit tests to evaluate the model
- Train model using different hyperparameters Seed/Learning Rate/Contrastive Loss temperature
- Evaluate Robustness capabilities -
 - Vocabulary/NER/Typos/Simple Negation using MFT/INV tests.
 - Create MFT templates using masks/Invariance tests by adding perturbations
- Evaluate Multi-linguality
 - GTR/Instructor is web-trained English only.
 - Train another sentence transformer use-cmlm-multilingual/distiluse-base-multilingual-cased-v2 Supports 102 languages
 - Translate training dataset from paper to 5 different languages
 - Translate evaluation datasets to 6 different languages 1 unknown
 - Verify accuracy on each language.

Experiments

Training Dataset – Use MEDI dataset (specifically created for Instructor).

• MEDI is diverse and combines multiple datasets and add instructions to it. Used combination of Symmetric and Asymmetric Wikipedia (WikiAnswers, WikiHow, simple_wiki) datasets - ~35000 instruction/input pairs

Evaluation Datasets –

- MTEB Classification Datasets
 - mteb/emotion Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise.
 - Mteb/mtop_domain Task-Oriented Semantic Parsing. messaging/calling/event/timer/weather/music/alarm/people/recipes/news
- Evaluation Metric:

Accuracy + F1 Score (dissimilar class distribution)

Results

Baseline Results:

Checkpoint 1 result (trained on GTR Base Average across 2 seeds and 2 LR)

Dataset	GTR- Base	GTR	INSTRU CTOR
emotion	42.2	45.5	53.2
mtopdo main	92.42	93.6	95.1

Dataset	LR 2e-4	LR 2e-5
Emotion (s=default)	46.82	49.92
Emotion (s=30)	47.00	49.92
Mtopdomain (s=default)	92.65	92.20
Mtopdomain (s=30)	90.30	92.20

Accuracy
base use-cmlm-multilingual vs
instructor trained use-cmlm-multilingual

Dataset	Base CMLM	LR 2e-4	LR 2e-5	
Emotion (s=30)	26.65	29.05	33.52	
Mtopdomain (s=30)	89.22	77.74	84.73	

Robustness Accuracies

Capabilities	Base Instructor	Trained Instructo r	Base CMLM	Trained CMLM	Base Instructo r	Trained Instructo r	Base CMLM	Trained CMLM
	Emotion Dataset			MTOPDomain Dataset				
Vocabulary	63.33				87.27			
Robustness (Typos)	13.33				5.45			
NER	20.00				100			
Negation	25.00				100			
Reverse Negation	50.00				100			

Future Work

- Complete all Robustness and Multi-linguality tests for final report.
- Error analysis for Robustness

Other areas to explore in future:

- Verify if Instructions improve accuracy for different task types –
 Clustering/retrieval etc. on various domains.
- Robustness/multilinguality/cross-linguality evaluation of task instructions

Thank you!