Supponiamo che questo sia il grafo contenente un ciclo

Con x_i indichiamo il nodo che si raggiunge dopo i iterazioni.

Indichiamo il primo nodo del ciclo (il nodo 169) come x_{μ}

Indichiamo con λ la lunghezza del ciclo (in questo caso $\lambda = 7$)

Secondo l'algoritmo di Floyd i due nodi si incontrano dopo kiterazioni, quindi $x_k = x_{2k}\,$

Sappiamo anche che essendoci un ciclo di dimensione λ la seguente equazione vale sempre $x_{i+j\lambda}=x_i$ per tutti gli $i>=\mu$

Quindi abbiamo che

$$k = \mu + y + m * \lambda \tag{1}$$

$$2k = \mu + y + n * \lambda \tag{2}$$

Dove con y indichiamo la distanza tra il nodo x_k e x_μ Quindi sottraendo l'equazione 1 alla 2 otteniamo

$$k = (n - m) * \lambda \tag{3}$$

Quindi possiamo dire che λ divide kPer la proprieta' $x_{i+j\lambda}=x_i$ abbiamo che

$$x_{\mu} = x_{\mu + (n-m)*\lambda} \tag{4}$$

e quindi

$$x_{\mu} = x_{\mu+k} \tag{5}$$

Quindi avanzando di μ passi dal nodo k arriviamo proprio al nodo x_{μ} . Siccome abbiamo detto che x_{μ} e' il primo nodo del ciclo allora ci basta avanzare passo a passo contemporaneamente sia dal primo nodo del grafo e sia dal nodo k e quando si incontreranno avremo trovato il nodo x_{μ}