

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12N 9/10, C12Q 1/68, A01K 67/027 // C12N 15/62	A1	(11) International Publication Number: WO 99/10482 (43) International Publication Date: 4 March 1999 (04.03.99)
(21) International Application Number: PCT/CA98/00803 (22) International Filing Date: 20 August 1998 (20.08.98) (30) Priority Data: 2,210,251 25 August 1997 (25.08.97) CA		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(71) Applicant (for all designated States except US): McGILL UNIVERSITY [CA/CA]; 845 Sherbrooke Street West, Montréal, Québec H3A 1B1 (CA). (72) Inventors; and (75) Inventors/Applicants (for US only): HEKIMI, Siegfried [CA/CA]; 4235 Powell Avenue, Montréal, Québec H4P 1E5 (CA). LAKOWSKI, Bernard [CA/DE]; Genzentrum, Ludwig-Maximilians Universitaet, Feodor-Lynen-Strasse 25, D-81377 Munich (DE). BARNES, Thomas [AU/US]; 22 Hanson Street #2, Boston, MA 02118 (US). LEMIEUX, Jason [CA/CA]; Apartment 2, 709 Markham Street, Toronto, Ontario M6G 2M2 (CA). (74) Agents: COTE, France et al.; Swabey Ogilvy Renault, Suite 1600, 1981 McGill College Avenue, Montréal, Québec H3A 2Y3 (CA).		Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.
(54) Title: THE C. ELEGANS GRO-1 GENE		
(57) Abstract <p>The invention relates to the identification of <i>gro-1</i> gene and to demonstrate that the <i>gro-1</i> gene is involved in the control of a central physiological clock. Also disclosed are four other genes located within the same operon as the <i>gro-1</i> gene.</p>		
<p>Diagram A: Genomic organization of the <i>C. elegans</i> <i>gro-1</i> gene cluster. The cluster contains five genes: <i>gop-1</i>, <i>gop-2</i>, <i>gop-3</i>, <i>hap-1</i>, and <i>gro-1</i>. Each gene has two promoters (SHP141/SHP142, SHP143/SHP144, SHP145/SHP146, SHP130/SHP131, SHP135/SHP136) and two poly-A signals (SL2). A scale bar indicates 2 kb.</p> <p>Diagram B: Gel electrophoresis analysis of the <i>gro-1</i> gene cluster. The lanes are labeled <i>gop-1</i>, <i>gop-2</i>, <i>gop-3</i>, <i>hap-1</i>, and <i>gro-1</i>. Bands are visible at 925 bp and 421 bp. A scale bar indicates 2 kb.</p>		

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	IH	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

THE C. ELEGANS GRO-1 GENE

BACKGROUND OF THE INVENTION(a) Field of the Invention

The invention relates to the identification of 5 *gro-1* gene and four other genes located within the same operon and to show that the *gro-1* gene is involved in the control of a central physiological clock.

(b) Description of Prior Art

The *gro-1* gene was originally defined by a 10 spontaneous mutation isolated from of a *Caenorhabditis elegans* strain that had recently been established from a wild isolate (J. Hodgkin and T. Doniach, *Genetics* 146: 149-164 (1997)). We have shown that the activity 15 of the *gro-1* gene controls how fast the worms live and how soon they die. The time taken to progress through embryonic and post-embryonic development, as well as the life span of *gro-1* mutants is increased (Lakowski and Hekimi, *Science* 272:1010-1013, (1996)). Furthermore, these defects are maternally rescuable: when 20 homozygous mutants (*gro-1/gro-1*) derive from a heterozygous mother (*gro-1/+*), these animals appear to be phenotypically wild-type. The defects are seen only when homozygous mutants derive from a homozygous mother (Lakowski and Hekimi, *Science* 272:1010-1013, (1996)). 25 In general, the properties of the *gro-1* gene are similar to those of three other genes, *clk-1*, *clk-2* and *clk-3* (Wong et al., *Genetics* 139: 1247-1259 (1995); Hekimi et al., *Genetics*, 141: 1351-1367 (1995); Lakowski and Hekimi, *Science* 272:1010-1013, (1996)), 30 and this combination of phenotypes has been called the Clk ("clock") phenotype. All four of these genes interact to determine developmental rate and longevity in the nematode. Detailed examination of the *clk-1* mutant phenotype has led to the suggestion that there 35 exists a central physiological clock which coordinates

all or many aspects of cellular physiology, from cell division and growth to aging. All four genes have a similar phenotype and thus appear to impinge on this physiological clock.

5 It would be highly desirable to be provided with the molecular identity of the *gro-1* gene.

SUMMARY OF THE INVENTION

10 One aim of the present invention is to provide the molecular identity of the *gro-1* gene and four other genes located within the same operon.

15 In accordance with the present invention there is provided a *gro-1* gene which has a function at the level of cellular physiology involved in developmental rate and longevity, wherein *gro-1* is located within an operon and *gro-1* mutants have a longer life and a altered cellular metabolism relative to the wild-type.

20 In accordance with a preferred embodiment, the *gro-1* gene of the present invention codes for a GRO-1 protein having the amino acid sequence set forth in Figs. 3A-3B (SEQ ID. NO:2).

25 The *gro-1* gene is located within an operon which has the nucleotide sequence set forth in SEQ ID NO:1 and which also codes for four other genes, referred as *gop-1*, *gop-2*, *gop-3* and *hap-1* genes.

In accordance with a preferred embodiment, the *gop-1* gene of the present invention codes for a GOP-1 protein having the amino acid sequence set forth in Figs. 13A-13C (SEQ ID. NO:4).

30 In accordance with a preferred embodiment, the *gop-2* gene of the present invention codes for a GOP-2 protein having the amino acid sequence set forth in Fig. 14 (SEQ ID. NO:5).

35 In accordance with a preferred embodiment, the *gop-3* gene of the present invention codes for a GOP-3

protein having the amino acid sequence set forth in Figs. 15A-15B (SEQ ID. NO:6).

In accordance with a preferred embodiment, the *hap-1* gene of the present invention codes for a HAP-1 protein having the amino acid sequence set forth in Fig. 16 (SEQ ID. NO:7).

In accordance with a preferred embodiment of the present invention, the *gro-1* gene is of human origin and has the nucleotide sequence set forth in Fig. 8 (SEQ ID. NO:3).

In accordance with a preferred embodiment of the present invention, there is provided a mutant GRO-1 protein which has the amino acid sequence set forth in Fig. 3C.

In accordance with the present invention there is also provided a GRO-1 protein which has a function at the level of cellular physiology involved in developmental rate and longevity, wherein said GRO-1 protein is encoded by the *gro-1* gene identified above.

In accordance with a preferred embodiment of the present invention, there is provided a GRO-1 protein which has the amino acid sequence set forth in Figs. 3A-3B (SEQ ID. NO:2).

In accordance with a preferred embodiment of the present invention, there is provided a GOP-1 protein which has the amino acid sequence set forth in Figs. 13A-13C (SEQ ID. NO:4).

In accordance with a preferred embodiment of the present invention, there is provided a GOP-2 protein which has the amino acid sequence set forth in Fig. 14 (SEQ ID. NO:5).

In accordance with a preferred embodiment of the present invention, there is provided a GOP-3 protein which has the amino acid sequence set forth in Figs. 15A-15B (SEQ ID. NO:6).

In accordance with a preferred embodiment of the present invention, there is provided a HAP-1 protein which has the amino acid sequence set forth in Fig. 16 (SEQ ID. NO:7).

5 In accordance with the present invention there is also provided a method for the diagnosis and/or prognosis of cancer in a patient, which comprises the steps of:

- a) obtaining a tissue sample from said patient;
- 10 b) analyzing DNA of the obtained tissue sample of step a) to determine if the human *gro-1* gene is altered, wherein alteration of the human *gro-1* gene is indicative of cancer.

15 In accordance with the present invention there is also provided a mouse model of aging and cancer, which comprises a gene knock-out of murine gene homologous to *gro-1*.

20 In accordance with the present invention there is provided the use of compounds interfering with enzymatic activity of GRO-1, GOP-1, GOP-2, GOP-3 or HAP-1 for enhancing longevity of a host.

25 In accordance with the present invention there is provided the use of compounds interfering with enzymatic activity of GRO-1, GOP-1, GOP-2, GOP-3 or HAP-1 for inhibiting tumorous growth.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1A illustrates the genetic mapping of *gro-1*;

30 Fig. 1B illustrates the physical map of the *gro-1* region;

Fig. 2A illustrates cosmid clones able to rescue the *gro-1* (*e2400*) mutant phenotype;

35 Fig. 2B illustrates the genes predicted by Genefinder, the relevant restriction sites and the fragments used to subclone the region;

Figs. 3A-3B illustrate the genomic sequence and translation of the *C. elegans* *gro-1* gene (SEQ. ID. NO:2);

5 Fig. 3C illustrates the predicted mutant protein;

Fig. 4A illustrates the five genes of the *gro-1* operon (SEQ. ID. NO:1);

Fig. 4B illustrates the translicing pattern of the five genes of the *gro-1* operon;

10 Fig. 5 illustrates the alignment of *gro-1* with the published sequences of the *E. coli* (P16384) and yeast (P07884) enzymes;

15 Fig. 6 illustrates the biosynthetic step catalyzed by DMAPP transferase (MiaAp in *E. coli*, Mod5p in *S. cerevisiae*, and GRO-1 in *C. elegans*);

Fig. 7 illustrates the alignment of the predicted HAP-1 amino acid sequence with homologues from other species;

20 Fig. 8 illustrates the full mRNA sequence of human homologue of *gro-1* referred to as hgro-1 (SEQ. ID. NO:3);

Fig. 9 illustrates a comparison of the conceptual amino acid sequences for GRO-1 and hgro-1p;

25 Fig. 10 illustrates a conceptual translation of a partial sequence of the *Drosophila* homologue of *gro-1* (AA816785);

Fig. 11 illustrates the structure of pMQ8;

Fig. 12 illustrates construction of pMQ18;

30 Figs. 13A-13C illustrate the genomic sequence and translation of the *gop-1* gene (SEQ. ID. NO:4);

Fig. 14 illustrates the genomic sequence and translation of the *gop-2* gene (SEQ. ID. NO:5);

Figs. 15A-15B illustrate the genomic sequence and translation of the *gop-3* gene (SEQ. ID. NO:6); and

Fig. 16 illustrates the genomic sequence and translation of the *hap-1* gene (SEQ. ID. NO:7).

DETAILED DESCRIPTION OF THE INVENTION

5

The *gro-1* phenotype

In addition to the previously documented phenotypes, we recently found that *gro-1* mutants were temperature-sensitive for fertility. At 25°C the progeny 10 of these mutants is reduced so much that a viable strain cannot be propagated. In contrast, *gro-1* strains can easily be propagated at 15 and 20°C.

We also discovered that the *gro-1(e2400)* mutation increases the incidence of spontaneous mutations. 15 As *gro-1(e2400)* was originally identified in a non-standard background (Hodgkin and Doniach, *Genetics* 146: 149-164 (1997)), we first backcrossed the mutations 8 times against N2, the standard wild type strain. We then undertook to examine the *gro-1* strain and N2 for 20 the occurrence of spontaneous mutants which could be identified visually. We focused on the two class of mutants which are detected the most easily by simple visual inspection, uncoordinated mutants (Unc) and dumpy mutants (Dpy). We examined 8200 wild type worms 25 and found no spontaneous visible mutant. By contrast, we found 6 spontaneous mutants among 12500 *gro-1* mutants examined. All mutants produced entirely mutant progeny indicating that they were homozygous.

Sequences of all primers used

Name	Orientation	Sequence (5'-3')	SEQ ID NO:
SHP91	forward	CGAACACTTATATTCTCG	SEQ. ID. NO:8
SHP92	reverse	GATAGTCCCTTCGTTGGG	SEQ. ID. NO:9
SHP93	forward	TTTCTGGATTTAACCTTC	SEQ. ID. NO:10
SHP94	forward	TTTCCGAGAAGTCACGTTGG	SEQ. ID. NO:11
SHP95	reverse	TACAGGAATTGGAACGGG	SEQ. ID. NO:12
SHP96	forward	CTTCAGATGACGTGGATTCC	SEQ. ID. NO:13
SHP97	forward	GGAATCCGAAAAAGTGAACT	SEQ. ID. NO:14
SHP98	forward	AAGAGATACTCAATGGGG	SEQ. ID. NO:15
SHP99	reverse	ATCGATACCACCGTCTCTGG	SEQ. ID. NO:16
SHP109	reverse	TTGAATCTACACTAAATCACC	SEQ. ID. NO:17
SHP100	reverse	CCAATTATCTTCCAGTCA	SEQ. ID. NO:18
SHP110	forward	ACATTATAAGTTACTGTCC	SEQ. ID. NO:19
SHP118	forward	TTTTAGTTAAAGCATTGACC	SEQ. ID. NO:20
SHP119	reverse	ACATCTTATCCATTCTCC	SEQ. ID. NO:21
SHP120	forward	TGCAAAGGCTCTGGAACCTCC	SEQ. ID. NO:22
SHP129	reverse	AAAAACCACTTGATATAAGG	SEQ. ID. NO:23
SHP130	reverse	CATCCAAAAGCAGTATCACC	SEQ. ID. NO:24
SHP134	forward	TTAATTGGATGCAAGCACCCC	SEQ. ID. NO:25
SHP135	reverse	ATTACTATACGAACATTCC	SEQ. ID. NO:26
SHP138	forward	TTGTAAAGGCAGTTAGTTGG	SEQ. ID. NO:27
SHP139	forward	CAGGAGTATGGTGATGCG	SEQ. ID. NO:28
SHP140	forward	CGACGGGAGAAGGTGACGG	SEQ. ID. NO:29
SHP141	reverse	AAAACCTCTACCAACAATGG	SEQ. ID. NO:30
SHP142	reverse	CGTAATCTCTCGATTAGC	SEQ. ID. NO:31
SHP143	reverse	CCGTGGGATGGCTACTTGCC	SEQ. ID. NO:32
SHP144	reverse	TGGATTGTGGCACGAGCGG	SEQ. ID. NO:33
SHP145	reverse	TTGATTGCCTCTCCTCGTCC	SEQ. ID. NO:34
SHP146	reverse	ATCAACATCTGATTGATTCC	SEQ. ID. NO:35
SHP151	forward	CAGCGAGCGCATGCAACTATATATTG AGCAGG	SEQ. ID. NO:36
SHP159	forward	AATAAATATTTAAATATTCA GATATACAG	SEQ. ID. NO:37
SHP160	reverse	AAACTGTAGAGTTCA GAGGTATATCTG AATTTAAATATTATTC	SEQ. ID. NO:38

SHP161	forward	GTACGTGGAGCTCTGCAACTATATATT GAGCAGG	SEQ. ID. NO:39
SHP162	reverse	ATGACACTGCAGGATAGTCCCTTCG TTCGGG	SEQ. ID. NO:40
SHP163	forward	GTGTTGCATCAGTTCATTC	SEQ. ID. NO:41
SHP164	forward	GCTGTGCTAGAAGTCAGAGG	SEQ. ID. NO:42
SHP165	reverse	GTTCTCCTTGGAAATTCATCC	SEQ. ID. NO:43
SHP170	reverse	AGTATATCTAGATGTGCCAGTCTCTG CCAATT	SEQ. ID. NO:44
SHP171	reverse	AGTAATTGTACATTAGTGG	SEQ. ID. NO:45
SHP172	forward	ATTAACCTTACTTACTTACC	SEQ. ID. NO:46
SHP173	forward	CTAAACTAAGTAATATAACC	SEQ. ID. NO:47
SHP174	reverse	GTTGATTCTTGAGGACTGG	SEQ. ID. NO:48
SHP175	forward	AATTGACCAATTACATTGG	SEQ. ID. NO:49
SHP176	reverse	AACATAGTTGTTGAGGAAGG	SEQ. ID. NO:50
SHP177	forward	AATTAATGGAGATTCTACGG	SEQ. ID. NO:51
SHP178	forward	TCAGCATCTAGAAATGCAGG	SEQ. ID. NO:52
SHP179	reverse	CGAATGTCAACATTCACTGG	SEQ. ID. NO:53
SHP180	forward	CTTAACCTGATGTGACTCG	SEQ. ID. NO:54
SHP181	forward	ATGAAGCTTAGAGGGATGCC	SEQ. ID. NO:55
SHP182	forward	CGACGAATTCTGGAGTCGG	SEQ. ID. NO:56
SHP183	reverse	ACTGCATTATCCATTAAATCC	SEQ. ID. NO:57
SHP184	reverse	CACCCAAATAACATCTATCC	SEQ. ID. NO:58
SHP185	forward	TTTAACCTCATCTTCGCTGG	SEQ. ID. NO:59
SHP190	forward	ATGTTCCGCAAGCTTGGTTC	SEQ. ID. NO:60
SL1	forward	TTTAATTACCCAGTTACTCAAG	SEQ. ID. NO:61
SL2	forward	TTTTAACCCAGTTACTCAAG	SEQ. ID. NO:62

Positional cloning of gro-1

gro-1 lies on linkage group III, very close to the gene clk-1. To genetically order gro-1 with respect to clk-1 on the genetic map, 54 recombinants in the dpy-17 to lon-1 interval were selected from among the self progeny of a strain which was unc-79(e1030) + + clk-1(e2519) lon-1(e678) +/- dpy-17(e164) gro-1(e2400) + sma-4(e729). Three of these showed neither the Gro-1 nor the Clk-1 phenotypes, but carried unc-79

and *sma-4*, indicating that these recombination events had occurred between *gro-1* and *clk-1*. From the disposition of the markers, this showed that the gene order was *dpy-17 gro-1 clk-1 lon-1*, and the frequency of 5 events indicated that the *gro-1* to *clk-1* distance was 0.03 map units. In this region of the genome, this corresponds to a physical map distance of ~20 kb.

Several cosmids containing wild-type DNA spanning this region of the genome were tested by microinjection into *gro-1* mutants for their ability to complement the *gro-1(e2400)* mutation (Fig. 1). *gro-1* was mapped between *dpy-17* and *lon-1* on the third chromosome, 0.03 m.u. to the left of *clk-1* (Fig. 1A).

Based on the above genetic mapping, *gro-1* was estimated to be approximately 20 kb to the left of *clk-1*. Eight cosmids (represented by medium bold lines) were selected as candidates for transformation rescue (Fig. 1B). Those which were capable of rescuing the *gro-1(e2400)* mutant phenotype are represented as heavy 20 bold lines (Fig. 1B).

Of these, only B0498, C34E10 and ZC395 were able to rescue the mutant phenotype. Transgenic animals were fully rescued for developmental speed. In addition, the transgenic DNA was able to recapitulate 25 the maternal rescue seen with the wild-type gene, that is, mutants not carrying the transgenic DNA but derived from transgenic mothers display a wild type phenotype. The 7 kb region common to the three rescuing cosmids had been completely sequenced, and this sequence was 30 publicly available.

We generated subclones of ZC395 and assayed them for rescue (Fig. 2). The common 6.5 kb region is blown up in part B. B0498 has not been sequenced and therefore its ends can not be positioned and are therefore 35 represented by arrows.

One subclone pMQ2, spanned 3.9 kb and was also able to completely rescue the growth rate defect and recapitulate the maternal effect. The sequences in pMQ2 potentially encodes two genes. However, a second 5 subclone, pMQ3, which contained only the first of the potential genes (named ZC395.7 in Fig. 2A), was unable to rescue.

Furthermore, frameshifts which would disrupt each of the two genes' coding sequences were constructed in pMQ2 and tested for rescue. Disruption of 10 the first gene (in pMQ4) did not eliminate rescuing ability, but disruption of the second gene (in pMQ5) did. This indicates that the *gro-1* rescuing activity is provided by the second predicted gene.

15 pMQ2 was generated by deleting a 29.9 kb *SpeI* fragment from ZC395, leaving the left-most 3.9 kb region containing the predicted genes ZC395.7 and ZC395.6 (Fig. 2B). pMQ3 was created in the same fashion, by deleting a 31.4 kb *NdeI* fragment from ZC395, 20 leaving only ZC395.7 intact. In pMQ4, a frameshift was induced in ZC395.7 by degrading the 4 bp overhang of the *ApaI* site. A frameshift was also induced in pMQ5 by filling in the 2 bp overhang of the *NdeI* site found 25 in the second exon of ZC395.6. These frameshifts presumably abolish any function of ZC395.7 and ZC395.6 respectively. The dotted lines represent the extent of frameshift that resulted from these alterations.

To establish the splicing pattern of this gene, 30 cDNAs encompassing the 5' and 3' halves of the gene were produced by reverse transcription-PCR and sequenced (Fig. 3).

This revealed that the gene is composed of 9 exons, spans ~2 kb, and produces an mRNA of 1.3 kb. To confirm that this is indeed the *gro-1* gene, genomic DNA 35 was amplified by PCR from a strain containing the *gro-*

1 (e2400) mutation and the amplified product was sequenced. A lesion was found in the 5th exon, where a 9 base-pair sequence has been replaced by a 2 base-pair insertion, leading to a frameshift (Fig. 3C). Fig. 3C illustrates those residues which differ from wild type are in bold.

The reading frame continues out-of-frame for another 33 residues before terminating.

Figs. 3A-B illustrate the coding sequence in capital letters, while the introns, and the untranslated and intergenic sequence are in lower case letters. The protein sequence is shown underneath the coding sequence. Position 1 of the nucleotide sequence is the first base after the SL2 trans-splice acceptor sequence. Position 1 of the protein sequence is the initiator methionine. All PCR primers used for genomic and cDNA amplification are represented by arrows. For primers extending downstream (arrows pointing right) the primer sequence corresponds exactly to the nucleotides over which the arrow extends. But for primers extending upstream (arrows pointing left) the primer sequence is actually the complement of the sequence under the arrow. In both cases the arrow head is at the 3' end of the primer. The sequence of the two primers which flank *gro-1* (SHP93 and SHP92) are not represented in this figure. Their sequences are: SHP93 TTTCTGGATTTAACCTTCC (SEQ. ID. NO:10) and SHP92 GATAGTTCCCTTCGTTGGG (SEQ. ID. NO:9). The wild type splicing pattern was determined by sequencing of the cDNA. Identification of the e2400 lesion was accomplished by sequencing the e2400 allele. The e2400 lesion consists of a 9 bp deletion and a 2 bp insertion at position 1196, resulting in a frameshift.

gro-1 is part of a complex operon (Figs. 3A-3B)

Amplification of the 5' end of *gro-1* from cDNA occurred only when the *trans-spliced* leader SL2 was used as the 5' primer, and not when SL1 was used. SL2 is used for *trans-splicing* to the downstream gene when two genes are organized into an operon (Spieth et al., *Cell* 73: 521-532 (1993); Zorio et al., *Nature* 372: 270-272 (1994)). This indicates that at least one gene upstream of *gro-1* is co-transcribed with *gro-1* from a common promoter. We found that sequences from the 5' end of the three next predicted genes upstream of *gro-1* (ZC395.7, C34E10.1, and C34E10.2) all could only be amplified with SL2. Sequences from the fourth predicted upstream gene (C34E10.3), however, could be amplified with neither spliced leader, suggesting that it is not *trans-spliced*. The distance between genes in operons appear to have an upper limit (Spieth et al., *Cell* 73: 521-532 (1993); Zorio et al., *Nature* 372: 270-272 (1994)), and no gene is predicted to be close enough upstream of C34E10.3 or downstream of *gro-1* to be co-transcribed with these genes. Our findings suggest therefore that *gro-1* is the last gene in an operon of five co-transcribed genes (Fig. 4).

Nested PCR was used to amplify the 5' end of each gene. SL1 or SL2 specific primers were used in conjunction with a pair of gene-specific primers. cDNA generated by RT-PCR using mixed stage N2 RNA was used as template in the nested PCR. Fig. 4A illustrates a schematic of the *gro-1* operon showing the coding sequences of each gene and the primers (represented by flags) used to establish the *trans-splicing* patterns.

Fig. 4B illustrates the products of the PCR with SL1 and SL2 specific primers for each of the five genes. The sequences of the primers used are as follows: SL1: TTTAATTACCCAAGTTGAG (SEQ. ID. NO:61), SL2:

TTTTAACCCAGTTACTCAAG (SEQ. ID. NO: 62), SHP141:
AAAACCTCTACCAACAATGG (SEQ. ID. NO: 30), SHP142:
CGTAATCTCTCTCGATTAGC (SEQ. ID. NO: 31), SHP143:
CCGTGGGATGGCTACTTGCC (SEQ. ID. NO: 32), SHP144:
5 TGGATTGTGGCACGAGCGG (SEQ. ID. NO: 33), SHP145:
TTGATTGCCTCTCCTCGTCC (SEQ. ID. NO: 34), SHP146:
ATCAACATCTGATTGATTCC (SEQ. ID. NO: 35), SHP130:
CATCCAAAAGCAGTATCACC (SEQ. ID. NO: 24), SHP119:
ACATCTTATCCATTCTCC (SEQ. ID. NO: 21), SHP95:
10 TACAGGAATTTTGAACGGG (SEQ. ID. NO: 12), SHP99:
ATCGATAACCACCGTCTCTGG (SEQ. ID. NO: 16).

The gene immediately upstream of *gro-1*, has homology to the yeast gene *HAM1*, and we have renamed the gene *hap-1*. We have established its splicing pattern by reverse transcription PCR and sequencing. This revealed that *hap-1* is composed of 5 exons and produces an mRNA of 0.9 kb. We also found that sequences which were predicted to belong to ZC395.7 (now *hap-1*) are in fact spliced to the exons of C34E10.1. This is consistent with our finding that *hap-1* is SL2 spliced as it puts the end of the C34E10.1 very close to the start of *hap-1* (Fig. 4).

The *gro-1* gene product

Conceptual translation of the *gro-1* transcript indicated that it encodes a protein of 430 amino acids highly similar to a strongly conserved cellular enzyme: dimethylallyldiphosphate:tRNA dimethylallyltransferase (DMAPP transferase). Fig. 5 shows an alignment of *gro-1* with the published sequences of the *E. coli* (P16384) and yeast (P07884) enzymes. Residues where the biochemical character of the amino acids is conserved are shown in bold. Identical amino acids are indicated further with a dot. The ATP/GTP binding site and the C2H2 zinc finger site are predicted and not experimental. The point at which the *gro-1*(e2400)

mutation alters the reading frame of the sequence is shown. The two alternative initiator methionines in the yeast sequence, and the putative corresponding methionines in the worm sequence, are underlined.

5 Database searches also identified a homologous human expressed sequence tag (Genbank ID: Z40724). The human clone has been used to derive a sequence tagged site (STS). This means that the genetic and physical position of the human *gro-1* homologue is known. It
10 maps to chromosome 1, 122.8 cR from the top of Chr 1 linkage group and between the markers D1S255 and D1S2861. This information was found in the UniGene database or the National Center for Biotechnology Information (NCBI). We have sequenced Z40724 by
15 classical methods but found that Z40724 is not a full length cDNA clone as it does not contain an initiator methionine nor the poly A tail. We used the sequence of Z40724 to identify further clones by database searches. We found one clone (Genbank ID: AA332152) which
20 extended the sequence 5' by 28 nucleotides, as well as one clone (Genbank ID: AA121465) which extended the sequence substantially in the 3' direction but didn't include the poly A tail. We then used AA121465 to identify an additional clone (AA847885) extending the
25 sequence to the poly A tail. Fig. 8 shows the full sequence with the putative initiator ATG shown in bold and the sequence of Z60724 is shown underlined. A comparison of the conceptual amino acid sequences for GRO-1 and hgro-1p is shown in Fig. 9. Amino acid
30 identities are indicated by a dot. Both sequences contain a region with a zinc finger motif which is shown underlined.

An additional metazoan homologue is represented by Drosophila EST: Genbank accession: AA816785. In *E. coli* and other bacteria, the gene encoding DMAPP trans-

ferase is called *miaA* (a.k.a *trpX*) and is called *mod5* in yeast. DMAPP transferase catalyzes the modification of adenosine 37 of tRNAs whose anticodon begins with U (Fig. 6).

5 In these organisms the enzyme has been shown to use dimethylallyldiphosphate as a donor to generate dimethylallyl-adenosine (*dma⁶A37*), one base 3' to the anticodon (for review and biochemical characterization of the bacterial enzyme see Persson et al., *Biochimie* 10 76: 1152-1160 (1994); Leung et al., *J Biol Chem* 272: 13073-13083 (1997); Moore and Poulter, *Biochemistry* 36:604-614 (1997)). In earlier literature this modification is often referred to as isopentenyl adenosine (*i⁶A37*).

15 The high degree of conservation of the protein sequence between GRO-1 and DMAPP in *S. cerevisiae* and *E. coli* suggest that GRO-1 possesses the same enzymatic activity as the previously characterized genes. The sequence contains a number of conserved structural 20 motifs (Fig. 5), including a region with an ATP/GTP binding motif which is generally referred to as the 'A' consensus sequence (Walker et al., *EMBO J* 1: 945-951 (1982)) or the 'P-loop' (Saraste et al., *Trends Biochem Sci* 15: 430-434 (1990)).

25 In addition, at the C-terminal end of the GRO-1 sequence, there is a C2H2 zinc finger motif as defined by the PROSITE database. This type of DNA-binding motif is believed to bind nucleic acids (Klug and Rhodes, *Trends Biochem Sci* 12: 464-469 (1987)). 30 Although there appears to be some conservation between the worm and yeast sequences in the C-terminus end of the protein (Fig. 5), including in the region encompassing the zinc finger in GRO-1, the zinc finger motif per se is not conserved in yeast but is present in 35 humans (Fig. 9).

In yeast DMAPP transferase is the product of the MOD5 gene, and exists in two forms: one form which is targeted principally to the mitochondria, and one form which is found in the cytoplasm and nucleus. These two forms differ only by a short N-terminal sequence whose presence or absence is determined by differential translation initiation at two "in frame" ATG codons. (Gillman et al., *Mol & Cell Biol* 11: 2382-90 (1991)). The *gro-1* open reading frame also contains two ATG codons at comparable positions, with the coding sequence between the two codons constituting a plausible mitochondrial sorting signal (Figs. 3 and 5). It is likely therefore that DMAPP transferase in worms also exists in two forms, mitochondrial and cytoplasmic.

It should be noted, however, that the sequence of *hgro-1* shows only one in-frame methionine before the conserved ATP/GTP binding site (Fig. 9). As we cannot be assured to have determined the sequence of the full length transcript, it is possible that further 5' sequence might reveal an additional methionine. Alternatively, in humans, the mechanism by which the enzyme is targeted to several compartments might not involve differential translation initiation. In this context, it should be noted that the sorting signals which can be predicted from the sequence of *hgro-1p* are predicted to be highly ambiguous by the prediction program PSORT II. Furthermore, a conceptual translation of the *Drosophila* sequence (AA816785) predicts only one initiator methionine before the ATP/GTP binding site as well as several in-frame stop codons upstream of this start (Fig. 10), suggesting that no additional upstream ATG could serve as translation initiation site. In the figure, stop codons are indicated by stop, methionines are indicated by **Met**, and the conserved ATP/GTP binding site is underlined.

Expression pattern of GRO-1

We have also constructed a reporter gene expressing a fusion protein containing the entire GRO-1 amino acid sequence fused at the C-terminal end to 5 green fluorescent protein (GFP). The promotor of the reporter gene is the sequence upstream of *gop-1* (Figs. 13A-13C), the first gene in the operon (see Fig. 4). The promotor sequence is 306 bp long starting 32 nucleotides upstream of the *gop-1* ATG. It is fused 10 at the exact level upstream of *gro-1* where trans-splicing to SL2 normally occurs.

The genes *gop-2* (Fig. 14) and *gop-3* (Figs. 15A-15B) are also located in the operon (see Fig. 4), the second and third genes in the operon.

15 We first construct the clone pMQ8 in which *gro-1* is directly under the promoter for the whole operon using the hybrid primers SHP160 (SEQ. ID. NO:38) and SHP159 (SEQ. ID. NO:37) and the flanking primers SHP161 (SEQ. ID. NO:39) and SHP162 (SEQ. ID. NO:40) in 20 sequential reactions each followed by purification of the products and finally cloning into pUC18 (Fig. 11).

Primers SHP151 (SEQ. ID. NO:36) and SHP170 (SEQ. ID. NO:44) were then used to amplify part of the insert in pMQ8 and clone in pPD95.77 (gift from Dr 25 Andrew Fire) which was designed to allow a protein of interest to be transcriptionally fused to Green Fluorescent Protein (GFP) (Fig. 12).

The reporter construct fully rescues the phenotype of a *gro-1(e2400)* mutant upon injection and 30 extrachromosomal array formation, indicating that the fusion to the GFP moiety does not significantly inhibit the function of GRO-1. Fluorescent microscopy indicated that *gro-1* is expressed in most or all somatic cells. Furthermore, the GRO-1::GFP fusion protein is localized

in the mitochondria, in the cytoplasm as well as in the nucleus.

The *hap-1* gene product (Fig. 16)

5 *hap-1* is homologous to the yeast gene *HAM1* as well as to sequences in many organisms including bacteria and mammals (Fig. 7).

10 The origin of the worm and yeast sequence is as described above and below. The human sequence was inferred from a cDNA sequence assembled from expressed sequence tags (ESTs); the accession numbers of the sequences used were: AA024489, AA024794, AA025334, AA026396, AA026452, AA026502, AA026503, AA026611, AA026723, AA035035, AA035523, AA047591, AA047599, AA056452, AA115232, AA115352, AA129022, AA129023, 15 AA159841, AA160353, AA204926, AA226949, AA227197 and D20115. The *E. coli* sequence is a predicted gene (accession 1723866).

20 Mutations in *HAM1* increase the sensitivity of yeast to the mutagenic compound 6-N-hydroxylaminopurine (HAP), but do not increase spontaneous mutation frequency (Nostov et al., Yeast 12:17-29 (1996)). HAP is an analog of adenine and *in vitro* experiments suggest that the mechanism of HAP mutagenesis is its conversion to a deoxynucleoside triphosphate which is incorporated 25 ambiguously for dATP and dGTP during DNA replication (Abdul-Masih and Bessman, J Biol Chem 261 (5): 2020-2026 (1986)). The role of the Ham1p gene product in increasing sensitivity to HAP remains unclear.

Explaining the pleiotropy of *miaA* and *gro-1*

30 Mutations in *miaA*, the bacterial homologue of *gro-1*, show multiple phenotypes and affect cellular growth in complex ways. For example, in *Salmonella typhimurium*, such mutations result in 1) a decreased efficacy of suppression by some suppressor tRNA, 2) a 35 slowing of ribosomal translation, 3) slow growth under

various nutritional conditions, 4) altered regulation of several amino acid biosynthetic operons, 5) sensitivity to chemical oxidants and 6) temperature sensitivity for aerobic growth (Ericson and Björk, *J. Bacteriol.* 166: 1013-1021 (1986); Blum, *J. Bacteriol.* 170: 5125-5133 (1988)). Thus, *MiaAp* appears to be important in the regulation of multiple parallel processes of cellular physiology. Although we have not yet explored the cellular physiology of *gro-1* mutants along the lines which have been pursued in bacteria, the apparently central role of *miaA* is consistent with our findings that *gro-1*, and the other genes with a Clk phenotype, regulate many disparate physiological and metabolic processes in *C. elegans* (Wong et al., *Genetics* 139: 1247-1259 (1995) ; Lakowski and Hekimi, *Science* 272: 1010-1013 (1996); Ewbank et al., *Science* 275: 980-983 (1997)).

In addition to the various phenotypes discussed above, *miaA* mutations increase the frequency of spontaneous mutations (Connolly and Winkler, *J. Bacteriol.* 173(5): 1711-21 (1991); Connolly and Winkler, *J. Bacteriol.* 171: 3233-46 (1989)). As described in the previous section we have preliminary evidence that *gro-1(e2400)* also increases the frequency of spontaneous mutations in worms.

How can the alteration in the function of MDAPP transferase result in so many distinct phenotypes? Bacterial geneticists working with *miaA* have generally suggested that this enzyme and the tRNA modification it catalyzes have a regulatory function which is mediated through attenuation (e.g. Ericson and Björk, *J. Bacteriol.* 166: 1013-1021 (1986)). Attenuation is a phenomenon by which the transcription of a gene is interrupted depending on the rate at which ribosomes can translate the nascent transcript. Ribosomal transla-

tion is slowed in *miaA* mutants, and thus, through an effect on attenuation, could affect the expression of many genes whose expression is regulated by attenuation.

5 *gro-1(e2400)* also produces pleiotropic effects and, in addition, displays a maternal-effect, suggesting that it is involved in a regulatory process (Wong et al., *Genetics* 139: 1247-1259 (1995)). However, attenuation involves the co-transcriptional translation
10 of nascent transcripts, which is not possible in eukaryotic cells were transcription and translation are spatially separated by the nuclear membrane. If the basis of the pleiotropy in *miaA* and *gro-1* is the same, then a mechanism distinct from attenuation has to be
15 involved. Below we argue that this mechanism could be the modification by DMAPP transferase of adenine residues in DNA in addition to modification of tRNAs.

A role for *gro-1* in DNA modification?

We observed that *gro-1* can be rescued by a
20 maternal effect, so that adult worms homozygous for the mutation, but issued from mother carrying one wild type copy of the gene display a wild type phenotype, in spite of the fact that such adults are up to 1000 fold larger than the egg produced by their mother. It is
25 unlikely that enough wild type product can be deposited by the mother in the egg to rescue a adult which is 1000 times larger. This observation suggests therefore that *gro-1* can induce an epigenetic state which is not altered by subsequent somatic growth. One of the best
30 documented epigenetic mechanisms is imprinting in mammals (Lalande, *Annu Rev Genet* 30: 173-196 (1996)) which is believed to rely on the differential methylation of genes (Laird and Jaenisch, *Annu Rev Genet* 30: 441-464; Klein and Costa, *Mutat Res* 386: 103-105 (1997)). Modification of bases in DNA have also been linked to regu-
35

lation of gene expression in the protozoan *Trypanosoma brucei*. The presence of beta-D-glucosyl-hydroxymethyluracil in the long telomeric repeats of *T. brucei* correlates with the repression of surface antigen gene 5 expression (Gommers-Ampt et al., *Cell* 75: 112-1136 (1993); van Leeuwen et al., *Nucleic Acids Res* 24: 2476-2482 (1996)).

gro-1 and miaA increase the rate of spontaneous mutations, which is generally suggestive of a role in 10 DNA metabolism, and can be related to the observation that methylation is linked to spontaneous mutagenesis, genome instability, and cancer (Jones and Gonzalgo, *Proc. Natl. Acad. Sci. USA*, 94: 2103-2105 (1997)).

Does gro-1 have access to DNA? Studies with 15 *mod5*, the yeast homologue of *gro-1*, have shown that there are two forms of Mod5p, one is localized to the nucleus as well as to the cytoplasm, and the other form is localized to the mitochondria as well as the cytoplasm (Boguta et al., *Mol. Cell. Biol.* 14: 2298-2306 (1994)). The nuclear localization is striking as isopentenylation of nuclear-encoded tRNA is believed to occur exclusively in the cytoplasm (reviewed in Boguta et al., *Mol. Cell. Biol.* 14: 2298-2306 (1994)). Furthermore, studies of a gene *maf1* have shown that 20 when *mod5* is mislocalized to the nucleus, the efficiency of certain suppressor tRNA is decreased, an effect known to be linked to the absence of the tRNA modification (Murawski et al., *Acta Biochim. Pol.* 41: 441-448 (1994)). Finally, as described in the previous 25 section, *gro-1* contains a zinc finger, a nuclei acid binding motif. The zinc finger could bind tRNAs, but as it is in the C-terminal domain of *gro-1* and human hgro-1 that has no equivalent in *miaA*, it is clearly not necessary for the basic enzymatic function. We 30 speculate that it might be necessary to increase the 35

specificity of DNA binding in the large metazoan genome. It should also be noticed that the second form of Mod5p which is localized to mitochondria also has the opportunity to bind and possibly modify DNA as it 5 has access to the mitochondrial genome. See the previous section entitled "A role for *gro-1* in a central mechanism of physiological coordination" for an alternative possibility as to the function of GRO-1 in the nucleus.

10 *miaA* and *gro-1* are found in complex operons

We have found that *gro-1* is part of a complex operon of five genes (Fig. 4). It is believed that genes are regulated coordinately by single promoters when they participate in a common function (Spieth et 15 al., *Cell* 73: 521-532 (1993)). In some cases, this is well documented. For example, the proteins LIN-15A and LIN-15B which are both required for vulva formation in *C. elegans*, are unrelated products from two genes transcribed in a common operon (Huang et al., *Mol Biol Cell* 20 5(4): 395-411 (1994)). One of the genes in the *gro-1* promoter is *hap-1*, whose yeast homologue has been shown to be involved in the control of mutagenesis (Nostov et al., *Yeast* 12: 17-29 (1996)). Under the hypothesis that *gro-1* modifies DNA, it suggest an involvement of 25 *hap-1* in this or similar processes. The presence in the same operon also suggest that all five genes might collaborate in a common function. The phenotype of *gro-1* suggests that this function is regulatory. In this context, it should be noted that *miaA* also is part 30 of a particularly complex operon (Tsui and Winkler, *Biochimie* 76: 1168-1177 (1994)), although, except for *miaA/gro-1*, there are no other homologous genes in the two operons.

A role for *gro-1* in a central mechanism of physiological coordination

We have speculated that the genes with a Clk phenotype might participate in a central mechanism of physiological coordination, probably including the regulation of energy metabolism. *clk-1* encodes a mitochondrial protein (unpublished observations), and its homologue in yeast has also been shown to be mitochondrial (Jonassen, T (1998) *Journal of Biological Chemistry* 273:3351-3357). The yeast *clk-1* homologue is involved in the regulation of the biosynthesis of ubiquinone (Marbois, B.N. and Clarke, C.F. (1996) *Journal of Biological Chemistry* 271:2995-3004). Ubiquinone, also called coenzyme Q, is central to the production of ATP in mitochondria. In worms, however, we have found that *clk-1* is not strictly required for respiration. How might *gro-1* fit into this picture?

One link is that dimethylallyldiphosphate is known to be the precursor of the lipid side-chain of ubiquinone. In bacteria, ubiquinone is the major lipid made from DMAPP. In eukaryotes cholesterol and its derivatives are also made from DMAPP. Interestingly, *C. elegans* requires cholesterol in the growth medium for optimal growth. This link, however, remains tenuous, in particular in the absence of an understanding of the biochemical function of CLK-1.

In several bacteria, the adenosine modification carried out by DMAPP transferase is only the first step in a series of further modification of this base (Persson et al., *Biochimie* 76: 1152-1160 (1994)). These additional modifications have been proposed to play the role of a sensor for the metabolic state of the cell (Buck and Ames, *Cell* 36: 523-531 (1984); Persson and Björk, *J. Bacteriol.* 175: 7776-7785 (1993)). For example, one of the subsequent steps, the synthesis of 2-methylthio-cis-ribozeatin is carried

out by a hydroxylase encoded by the gene *miaE*. When the cells lack *miaE* they become incapable of using intermediates of the citric acid cycle such as fumarate and malate as the sole carbon source.

5 Another link to energy metabolism springs from the recent biochemical observations of Winkler and co-workers using purified DMAPP transferase (*E. coli* *MiaAp*) (Leung et al., *J Biol Chem* 272: 13073-13083 (1997)). These investigators observed that the enzyme
10 in competitively inhibited by phosphate nucleotides such as ATP or GTP. Furthermore, using their estimation of K_m of the enzyme and its concentration in the cell, they calculate that the level of inhibition of the enzyme *in vivo*, would exactly allow the enzyme to modify all tRNAs but any further inhibition would leave unmodified tRNAs. This suggests that the exact level
15 of modification of tRNA (or of DNA) could be exquisitely sensitive to the level of phosphate nucleotides. Superficially, this is consistent with the phenotypic
20 observations. The state of mutant cells which lack DMAPP transferase entirely would be equivalent of cells where very high levels of ATP would completely inhibit the enzyme. Such cells might therefore turn down the ATP generating processes in response to the signal provided by undermodified tRNAs (or DNA).
25

More generally, GRO-1 could act in the crosstalk between nuclear and mitochondrial genomes. The nuclear and mitochondrial genomes both contribute gene products to the mitochondrion energy-producing machinery and
30 these physically separate genomes must therefore exchange information somehow to coordinate their contributions (reviewed in Poyton, R.O. and McEwen J.E. (1996) *Annu. Rev. Biochem.* 65:563-607). Furthermore, the energy producing activity of the mitochondria is
35 essential to the rest of the cell, and the needs of a

particular cell at a particular time must be somehow convey to the organelle to regulate its activity. GRO-1 could participate in this coordination in the following manner. GRO-1 is found in three compartments, the 5 nucleus, the cytoplasm and the mitochondria (see above), and thus has the opportunity to regulate gene expression in more than one way. How could its action coordinate gene expression between compartment? GRO-1 could partition between the mitochondria and the 10 nucleus and its relative distribution could be determined by the amount of RNA (or mtDNA) in the mitochondria (Parikh, V.S. et al. (1987) *Science* 235:576-580). For example, if the cell is rich in 15 mitochondria, much GRO-1 will be bound there which could result in a relative depletion of activity in the cytoplasm with regulatory consequences on the translation machinery. Binding of GRO-1 in the nucleus could have similar consequences and provide information about nuclear gene expression to the translation 20 machinery.

While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications and this application is intended to cover any variations, uses, or adaptations of the invention following, 25 in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains and as may be 30 applied to the essential features hereinbefore set forth, and as follows in the scope of the appended claims.

WHAT IS CLAIMED IS:

1. A *gro-1* gene which has a function at the level of cellular physiology involved in developmental rate and longevity, wherein *gro-1* is located within an operon and *gro-1* mutants have a longer life and a altered cellular metabolism relative to the wild-type.
2. The *gro-1* gene of claim 1, wherein said operon has the nucleotide sequence set forth in SEQ ID. NO:1.
3. The *gro-1* gene of claim 1, which codes for a GRO-1 protein having the amino acid sequence set forth in Figs. 3A-3B (SEQ ID. NO:2).
4. A *gop-1* gene which codes for a GOP-1 protein having the amino acid sequence set forth in Figs. 13A-13C (SEQ ID. NO:4).
5. A *gop-2* gene which codes for a GOP-2 protein having the amino acid sequence set forth in Fig. 14 (SEQ ID. NO:5).
6. A *gop-3* gene which codes for a GOP-3 protein having the amino acid sequence set forth in Figs. 15A-15B (SEQ ID. NO:6).
7. A *hap-1* gene which codes for a HAP-1 protein having the amino acid sequence set forth in Fig. 16 (SEQ ID. NO:7).
8. The *gro-1* gene of claim 1, wherein said gene is of human origin and which has the nucleotide sequence set forth in Fig. 8 (SEQ ID. NO:3).

9. A GRO-1 protein which has a function at the level of cellular physiology involved in developmental rate and longevity, wherein said GRO-1 protein is encoded by the gene of claim 1 or 2.

10. A mutant GRO-1 protein which has the amino acid sequence set forth in Fig. 3C.

11. A GRO-1 protein which has the amino acid sequence set forth in Figs. 3A-3B (SEQ ID. NO:2).

12. A GOP-1 protein which has the amino acid sequence set forth in Figs. 13A-13C (SEQ ID. NO:4).

13. A GOP-2 protein which has the amino acid sequence set forth in Fig. 14 (SEQ ID. NO:5).

14. A GOP-3 protein which has the amino acid sequence set forth in Figs. 15A-15B (SEQ ID. NO:6).

15. A HAP-1 protein which has the amino acid sequence set forth in Fig. 16 (SEQ ID. NO:7).

16. A method for the diagnosis and/or prognosis of cancer in a patient, which comprises the steps of:

- a) obtaining a tissue sample from said patient;
- b) analyzing DNA of the obtained tissue sample of step a) to determine if the human *gro-1* gene is altered, wherein alteration of the human *gro-1* gene is indicative of cancer.

17. A mouse model of aging and cancer, which comprises a gene knock-out of murine gene homologous to *gro-1* gene of claims 1 to 3.

18. The use of compounds interfering with enzymatic activity of GRO-1 of claim 9, 10 or 11 for enhancing longevity of a host.

19. The use of compounds interfering with enzymatic activity of GOP-1 of claim 12 for enhancing longevity of a host.

20. The use of compounds interfering with enzymatic activity of GOP-2 of claim 13 for enhancing longevity of a host.

21. The use of compounds interfering with enzymatic activity of GOP-3 of claim 14 for enhancing longevity of a host.

22. The use of compounds interfering with enzymatic activity of HAP-1 of claim 15 for enhancing longevity of a host.

23. The use of compounds interfering with enzymatic activity of GRO-1 of claim 9, 10 or 11 for inhibiting tumorous growth.

24. The use of compounds interfering with enzymatic activity of GOP-1 of claim 12 for inhibiting tumorous growth.

25. The use of compounds interfering with enzymatic activity of GOP-2 of claim 13 for inhibiting tumorous growth.

26. The use of compounds interfering with enzymatic activity of GOP-3 of claim 14 for inhibiting tumorous

growth.

27. The use of compounds interfering with enzymatic activity of HAP-1 of claim 15 for inhibiting tumorous growth.

1132

2/32

3132

*gro-1*SL2

M I F R K F L N F L K P Y K M R 16

aaaatatcgtcaggaataataacattcagatataccctgaactctacagtttATGATATTCAAGAAATTCTGAATTCTGAAACCTTACAATG 1394

T D P I I F V I G C T G T G K S D L G V A I A K K Y G G E V I S V 49

GAACGGATCCGATTATTCGTGATTGGGTGACTGGAACCGGAAAAGTCATCTGGACTGCCATTGCAAAGAAATGGAGGAGAGGTGATTAGTG 1494

▼ SHP109

D S M Q F Y K G

L D I A T N K I T 66

ACATTCAATGCAATTATAAAGgtacatgggtttgttcaatttaattaattttcggtttcagGACTTGACATTGCCACGAATAAGATAAC 1594

E E E S E G I Q H H M M S F L N P S E S S S Y N V H S F R E V T L 99

GGAAGAAGAATCTGAAGGGATTCAACATCATATGATGTCATTTCATCTGAATCATTCTATAATGTCATAGTTCCGAGAAGTCACGTTG 1694

▼ SHP94

D L I K

K I R A R S K I P V I V G 116

GATCTTATTAAAgtgtttaattcgccactttgaacttgatcctaatttcataatttcagAAATCCCGCCCGTTCAAAATCCTGTAATTGTCG 1794

▼ SHP95

G T T Y Y A E S V L Y E N N L I E T N T S D D V D S K S R T S S E 149

GAGGAACCACTTATTGCTGAAAGTGTCTTATGAGAATAATCTGATTGAAACCAACACTTCAGATGACGTGATTCCAATCGAGAACATCATCAGA 1894

▼ SHP96

S S S E D T E E G I S N Q E L W D E L K K I D E K S A L L H P N 182

ATCGTCATCTGAAGACACTGAAGAAGAATTAGTAATCAAGAATTATGGGTGAATTGAAAAAAATGACGAAAAATCAGCACTTCTACATCCAAT 1994

~~FEE~~-3A

gro-1 continued...

4 / 32

N R Y R V Q R A L Q I F R E T G 198
AATCGTTATCGAGTACAGAGAGCATTGCAAATTTCAAGAGAACTGgtattgtcaatttcagattaaaaacaatcaagtaagttttgca 2094

I R K S E L V E K Q K S D E T V D L G G R L R F D N S L V I F M D 231
gGAATCCGAAAAAGTGAACCTGGTGGAAAACAGAAATCAGATGAAACTGTTGATTGGTGGACGACTACGATTGATAATTCTTTAGTTATTTATGG 2194
SHP97 ▼

A T P E V L E E R L D G R V D K M I K L G L K N E L I E F Y N E 263
ATGCAACACCTGAAGTTAGAAGAAAAGACTTGATGGAAGACTTGTATAATTGGTTGAAGAATGAATTGATCGAGTTTATAACGAGgt 2294

aaatatttqaattttccagaaaaaaaaaaaqaaaatttttattatttgtttttttcatcttactatttccaaaaagttaaactttgaaaac 2394

H A E Y 267

I N H S K Y G V M Q C I G L K E F V P W L N L D P S E R D T L N G 300
 CATAAAATCACAGCAAATATGGTGTCATGCAATGTATTGGCTTAAAGAATTGTTCCATGGCTCAATTGGACCCATCAGAAAAGAGATACACTCAATGGG 2594
 CG e2400 lesion SHP98

D K L F K Q G C D D V K L H T R Q Y 318
GATAAAATTGTCAAGCAAGGqtaatttaaatttatTTcaattttataaaattccaaqctatTTcaqATGGATGATGTGAAGCTTCACACTCGACAAT 2694

TENNYSON

gro-1 continued...

5 / 32

A R R O R R W Y R S R L L K R S D G D R

33

ATGCACGGGCCAGAGACGGTGGTATCGATCGAGACTTTAAAACGGTCGGATGGTATCGGtgtatgttaaaaaaaaattgaattttaaagaact 279

SHP99

ttttactaaattaacaaqttattggctaaaaatggctqaaaattataqtaaaactaatcaaaaaattgaaatttgaattaaagtcataaagtgcg 289

K M A S T K M L D 34

accagaaaaattaaaaaaaaacattttctattttaattcactctacttcactttaaaaataatttcaqAAAATGGCAAGTACAAAAATGCTGGAT 299

T S P K Y R I I S P G M D I V D Q W M N G I D L F E D 37

ACATCTGACAAGTACCGAATAATTAGTGATGGAATGGACATTGTGATCAATGGATGAAATGGAATCGATCTATTGAAAGATgtaaaatttcacaaattct 309

I S T D T N P I L K G S D A N I L L N C E I 39

aaaattccqaatcacaattaaaattctacagATCTCCACAGACACCAATTCTAAAGGGTCCGATGCAAATATTCTGCTGAATTGTGAAATC 319

C N I S M T G K D N W

Q K E I D G K K 41

TGTAATATTCAATGACTGAAAAAGATAATTGtttgttcaatacatattataattcgaatgaattttcagGCAGAACATATCGATGGGAAAAA 329

SHP110 SHP100

H K H H A K O K K L A E T R T .

43

GCAACAGCATCTGCTAACGAAAGAAATTGGCAGAGACTCGCACATAAGACGCTATTTTGTAACTTAATTATTTTGTGATTGTT 339

SHP92

卷之三

6/32

tgattttactatactctataaactaaatttcagCACGCCGAGTACATAAATCACAGCAAATATGGTGTACG 1197
H A E Y I N H S K Y G V T 276

TTGGTCTAAAGAATTGTTCCATGGCTCAATTGGACCCATCAGAAAGAGATACTCAATGGGATAATTGT 1272
L V L K N S F H G S I W T H Q K W I H S M G I N C 301

TCAAGCAAGGtaatttaaatttattttcaattttataaattccaagctatttcagATGCCATGATGtgaagttc 1350
S S K D A M M . 308

-----31

*8/32*FIGURE - 4B

9/32

Sequence of GRO-1 and homologues

<i>C.elegans</i>	1	MIFRKFLNFLPKPYKMRDPIIFVIGCTGTGKSDLGVIALAKKYGGEVISVDSMQFYKGLDIATNKITEEESEGIQ
<i>S.cerevisiae</i>	1	MLKGPLKGCLNMSKKVIVIAGTTGVGKSQLSIQLAQKFNGEVINSDSMQVYKDIPITNKHPLQEREGIP
<i>E.coli</i>	1	MSDISKASLPKAIFLMGPTASGKTALAIERKILPVELISVDSLALIYKGMDIGTAKPNAEELLAAP

ATP/GTP
 binding site

<i>C.elegans</i>	16	HMMSFLNPSESSSYNVHSFREVTLDELIKIRARSKIPVIVGGTTYYAESVLYENNLIETNTSDDVDSKSRTSSE
<i>S.cerevisiae</i>	72	HVMNHVDWSE--EYYSHRFETECMNAIEDIHRRGKIPIVVGTHYLYQTLFNKRVDKSSERKLTRKQLDILES
<i>E.coli</i>	68	RLLDIRDPSQ--AYSAADFRRDALAEMADITAAGRIPLLVGGTMLYFKALLEGLSPLPSADPEVRARIEQQAAE

<i>C.elegans</i>	151	SSEDTEEGISNQELWDELKKIDEKSALLKPNNRVQRALQIFRETGIRKSELVEKQSDETVDLGGRLRFDN
<i>S.cerevisiae</i>	147	DPDV-----IYNTLVKCDPDIATKYHNDYRRVQRMLEIYYKTGKKPSETFNEQK-----ITLKFD-
<i>E.coli</i>	143	GWES-----LHRQLQEVDPVAAARIHPNDPQRRLSRALEVFFFISGKTLTELTQTSG-----DALPYQV

F - 5A

10132

e2400

C.elegans 226 LVIFMDATPEVLEERLDGRVDKM~~I~~KLGLKNELIEFYNEHAEYINH~~S~~KGVMQCIGLKEFVPWLNLDPSERDTLN
S.cerevisiae 205 LFLWLYSKPEPLFQRLLDRVDDMLERGALQEIKQLYEYYSQNKFPEQOCENGWQVIGFKEFLPWLTGKTDDNT
E.coli 202 QFAIAAPASRELLHQRIEQRFHQMLASGF~~E~~AVRALFARGDLHTDLP~~S~~IRC~~V~~GYRQMWSYLEGEISYDEM~~V~~RGV

C.elegans 301 DKLFKQGCDDVKLHTRQYARRQRRWYRSRLLKRS~~D~~GDRKMASTKMLDTSDKYRIISDGMDIVDQWMNGIDL~~F~~
S.cerevisiae 280 KLED~~C~~IERMKT--RTRQYAKRQVKWIKKMLIPDIKG~~D~~ILLDAT~~L~~SQWDTNASQRAIAISNDFISNRPIKQERA
E.coli 277 -----ATRQLAKRQITWLRC~~G~~EVH~~W~~LDSEKPEQARDEVILQVVGAIA~~G~~

C2H2 zinc finger

C.elegans 316 STDTNPILKGS~~D~~ANILLNCEICNISMTGKDNWQKHIDGKKHHAKQQKLATRT
S.cerevisiae 353 KALEELLSKGETTMKKLDDWTHYTRNVCRNA~~D~~GKNVAIGEKYW~~K~~HLSRR~~H~~KS~~N~~LKRNTRQADFEKWKINKK

7-5B

11/32

12/32

Sequence of HAP-1 and its homologues

<i>H. sapiens</i>	MAASLVGKKIVFVTGNNAKKLEEVVQILCDKFP-----CTLVAQKIDLPEYXG-EPDEISIQKCQE
<i>C. elegans</i>	MLYILWKLNYLQKKMSLRKINFVTGNVKKLEEVKAILKNFE-----VSNVDVLDEFQG-EPEFIAERKCRE
<i>S. cerevisiae</i>	MSNNEIVFVTGNANKLKEVQSILTQEVDNNNKTIHLINAEALDLEELQDTDLNAIALAKGKQ
<i>E. coli</i>	MQKVVLATGNVGKVRELASLLSDFGLD-----IVAQTDLGVDSAETGLTFIENAILKA

<i>H. sapiens</i>	AVRQV-QG-PVLVEDTCLCPFNALGXLFPGYIKWFL--EKLKPEGLHQLLAGFED-----KSAYALCTFALSTGDP
<i>C. elegans</i>	AVEAV-KG-PVLVEDTSLCFNAMGGLPGYIKWFL--KNLKPEGLHNMLAGFSD-----KTAYAQCIFAYTEG-L
<i>S. cerevisiae</i>	AVAALGKGKPVFVEDTALRFDEPNGLPGAYIKWFL--KSMGLEKIVKMLEPFEN-----KNAEAVTTICFADSRG
<i>E. coli</i>	RHAAKVTALPAIADDSGLAVDVLGGAPGIYSARYSGEDATDQKNLQKLETMKDVPDDQRQARFHCVLVYLRAE

<i>H. sapiens</i>	SQPVRFLFRGRRTSGRIV-APRGCCQDFGWDPCFQP-DGYEQTYAEMPRAEKNAVSHRRALLELQEYFGSLAA
<i>C. elegans</i>	GKPIHVAGKCPGQTV-APRGDTAFCGWDPCFQP-DGFKETFGEMDKDVNEISHRAKALELLKEYFQNN
<i>S. cerevisiae</i>	E--YHFFQGITRGKIV-PSRGPTTFGWDLSIFEPPFDHSGLTYAEMSKDAKNALSERGKAFAQFKEYLYQNDF
<i>E. coli</i>	DPTPLVCHGSWPGVITREPAGTGGFGYDPIFFV-PSEGKTAELTREEXSAISERGQALKLLDALRNG

7

*13/32***mRNA sequence of human homologue of *gro-1*: hgro-1**

CTGCCATAAG **ATGGCGTCCG** TGGCGGCTGC **ACGAGCAGTT** CCTGTGGGCA
 GTGGGCTCAG GGGCCTGCAA CGGACCCCTAC **CTCTTGTAGT** GATTCTCGGG
 GCCACGGGCA CGGGCAAATC CACGCTGGCG TTGCAGCTAG **GCCAGCGGCT**
 CGGCGGTGAG ATCGTCAGCG CTGACTCCAT GCAGGTCTAT **GAAGGCCTAG**
 ACATCATCAC CAACAAGGTT TCTGCCAAG AGCAGAGAAAT **CTGCCGGCAC**
 CACATGATCA GCTTGTGGA TCCTCTTGTG ACCAATTACA **CAGTGGTGGA**
 CTTCAGAAAT AGAGCAACTG CTCTGATTGA AGATATATTT **GCCCCGAGACA**
 AAATTCTAT TGTGTGGGA GGAACCAATT ATTACATTGA **ATCTCTGCTC**
 TGGAAAGTTC TTGTCAATAC CAAGCCCCAG GAGATGGGCA **CTGAGAAAGT**
 GATTGACCGA AAAGTGGAGC TTGAAAAGGA GGATGGTCTT **GTACTTCACA**
 AACGCCTAAG CCAGGTGGAC CCAGAAATGG CTGCCAAGCT **GCATCCACAT**
 GACAAACGCA AAGTGGCCAG GAGCTTGAA **GTGAGAAAGT** AAACAGGAAT
 CTCTCATAGT GAATTCTCCTC ATCGTCAACA TACGGAAGAA **GGTGGTGGTC**
 CCCTTGGAGG TCCTCTGAAG TTCTCTAACCC **CTTGATCCTT** TTGGCTTCAT
 GCTGACCAGG CAGTTCTAGA TGAGCGCTTG GATAAGAGGG **TGGATGACAT**
 GCTTGTGCT GGGCTCTTGG AGGAACTAAG AGATTTCAC **AGACGCTATA**
 ATCAGAAGAA TGTTCGGAA AATAGCCAGG ACTATCAACA **TGGTATCTTC**
 CAATCAATTG GCTTCAAGGA ATTTCACGAG TACCTGATCA **CTGAGGGAAA**
 ATGCACACTG GAGACTAGTA ACCAGCTTCT AAAGAAAGGA **CCTGGTCCCA**
 TTGTCCCCC TGTCTATGGC TTAGAGGTAT CTGATGTCTC **GAAGTGGGAG**
 GAGTCTGTTT TCAGGAACTGC TCTTGAACATC **GTGCAAAGTT** TCATCCAGGG
 CCACAAGCCT ACAGCCACTC CAATAAAGAT **GCCATACAAT** GAAGCTGAGA
 ACAAGAGAAG TTATCACCTG TGTGACCTCT **GTGATCGAAT** CATCATTGGG
 GATCGCGAAT GGGCAGCGCA CATAAAATCC AAATCCCCT **TGAACCAACT**
 GAAGAAAAGA AGAAGATTGG ACTCAGATGC **TGTCAACACC** ATAGAAAGTC
 AGAGTGTTC CCCAGACTAT AACAAAGAAC **CTAAAGGGAA** GGGATCCCCA
 GGGCAGAATG ATCAAGAGCT GAAATGCAGC **GTGATGTCTC** GAAGTGGGAG
 GGCCTTGGG AAGGTGGTGG GGATCCAGTT **CAGGAGGGAG** GGGTATGTTT
 GTCTCCCAGT CTGGGCAAAG GAGTGCTATG CGGAATTCTC **TGCATAGCAG**
 AAAAGCTCCC ACCATTTCT TTTGATGTGG TTTTAAAGTC **TCACGTTCTC**
 TATAATAGAA ACAGCAGGTC TTGTCAGCTC CTTGTGTGGC **TGATGTGTCT**
 GGAAATGATG TAGTTCAGGA AAGCATTTT TTTTCTTGT **AACCTAAAG**
 GTTCTATTAT TAAAAGCAGC ACAGATTCCA CATTCTTATA **CATGAGGATC**
 TTCTTGTGG TGAATACCAAG GATTGACTGC ATCCCTTAA **AAGAAGTTT**
 ATGTCCCTGA CTCTGGCTAA AATTATCTAA TTTCCAGATG **CTTTGTAGA**
 TGACTGAAGT ATTTGTGAGC CACATATTGG GAGTTCTAGA **TTTGAGTGA**
 TGGCAGGAAA GGGCCATCTC CATTGAGATG ATTAAGTGAA **CCAAACTAGT**
 TCTCGGAATT CTACAGAGAA GGAGGGAAATC AGACTGAGGA **AGCTGTGACA**
 TAGGACTTGA AGACCAAAGA CTTGAAATT TGCGAGCTGC **TCATGTGTGA**
 GTTATTATCA CTGCTGTCTT TCTATTGAGT TACAAATCTA **TATTTTATT**
 GAAGTTAAA TAAAGAAAAA ATTACAAAGA **AAAAAA** A

FILED - 8

14/32

GRO-1 and its human homologue hgro-1p

hgro-1p	MASVAAARAVPGSGLRGLQRTLPLVILGATGTGKSTLALQLGQRLGGEIVSADSMQVYEGLDIITN
GRO-1	MIFRKFLNFLKPYK <u>MRTDPIIFVIGCTGTGKSDLGVALAKKYGGEVISVDSM</u> QFYKGLDIATN

hgro-1p	KVSAQEQRICRHIMISFVDPL-VTNYTVDFRNATALIEDIFARDKIPIVVGGTNYYIESLLWKVLVN
GRO-1	KITEEESEGIQHMMMSFLNPSESSSYNVHSREVTLDLIKKIRARS KIPIVVGGTTYYAESVLYENNLI

hgro-1p	TKPQEMGTEKVIDRKVELEKEDGLV-----LHKRLSQVDPEMAAKLHPHDKRKVARSLOQFETGISH
GRO-1	ETNTSDDVDSKSRTSSESSSEDTEEGISNQELWDELKKIDEKSALLHPNNRYRVQRALQIFRETGIRK

7-1-9A

15/32

hgro-1p SEFLHRQHTEGGGPLCGPLKFSNPCILWLHADQAVLDERLDKRVDDMLAAGLLEELRDFHRRYNQKW
 GRO-1 SELVEKQKSDETVD-LGGLRFDNSLVIFMDATPEVLEERLDGRVDKMIKLGLKNELIEF---YNEHAE

hgro-1p SENSQDYQNGIFQSIGFKEFHEYLITEGKCTLETSNQLKKGPGBTIVPPVYGLE-----
 GRO-1 YINHSKY--GVMQCIGLKEFVPWLNLDPSERDTINGDKLFQGCDDVKLHTQYARRQRWYRSRLK

hgro-1p VSDVSKWEESVLEPALEVQSFIQGHKPTATPIKMPYNEAENKRSYHL-----
 GRO-1 RSDGDRKMASTKMLDTSKYRIISDGMDIVDQWMNGIDLFDISTDTNPILKGSANILLN

hgro-1p CDLCDRIIIGDREWAHHIKSKSHLNOLKKRRRLSDAVNTIESQSVSPDYNKEPKKGSPCQNDQELKCSV
 GRO-1 CEICNISMIGKDWNOKHIDGKKHHAKOKKLAETRT

C2H2 zinc finger

 - 9B

16/32

Conceptual translation of a partial sequence of the Drosophila homologue of *gro-1*

P I T C K H K K Q L T A T S G S V P I G I H V L K T C G F Y L P Stop L T Stop I H S Q Stop V E
Met I R K V P L I V V L G S T G T K L S L Q L A E R F G G E I I S A D S M e t Q V Y T H L
D I A T A K A T K E E Q S R A R H H L L D V A T P A E P F T V T H F R N A A L P I V E R L L
A K D T S P I V V G G T N Y Y I E S L L W D I L V D S D V K P D E G K H S G E H L K D A E L
N A L S T L E L H Q H L A K I D A G S A N R I H P N N R R K I I R A I E V Y Q S T G Q T

~~FIGURE - 10~~

17/32

Structure of pMQ8

ttcggagcatcgttgagaagtaaaactttttcgcgcaccctgtgcgcgttttatcttcgttttaatttaatttcaagctaaatcttcttt

T D P I I F V I G C T G T G K S D L G V A I A K K Y G G E V I S V
GAACGGATCCATTATTCGTGATTGGTGCACTGGAACCGGGAAAGTGTCTGGACTGCCATTGCAAAGAAAATGGAGGAGAGGTGATTAGTGT

TEST - 11A

18/32

D S M Q F Y K G

L D I A T N . . .

AGATTCAATGCAATTATATAAAAGgtacatgggtttttcaatttaaaattaatttcggttttcagGACTTGACATTGCCACGAAT.....

• • • H A K O K K L A E T R T •

.....CATGCTAAGAAAATTGGCAGAGACTGCACATAAGACGCTATTTTGTAACTTAATTATTTGTGTGATTGTT

SHP170

- [tctaga] tataact

XbaI

ctctaaataaaaaacagctcagagagaaggattaggcgctcgccacatctccgacgatagtcaacccgaacgaaggaaactatcttaattgtcagtga

SHP162

- [ctgcag]tgtcat

PstI

TEST - 11B

19/32

Construction of pMQ18

FIGURE - 12

20/32

gop-1

atcggttcagggtcaactataattggcaggaggcagtttgttcatgcttaaaaaataaaatggaaaattgagtcaaaaagttagat	-9557
aaaaacaaattaaaacaatttctgaaaaataaacaactgaaatttgaaagtaataaacaacacgcgaaaacgttattcggagcatcggttggagaagtaaa	-9457
acttttttcggcgcacccttgcgcagtttatctcttttaatttcaagctaaatcttcttttaacttgaataaatatttaat	-9357
M F R K L G S S G S L W K P K N P H S L E	
attcagaatgcaccaataaacctggaacaaaatcgata <u>ATGTTCCGCAAGCTGGTCTCTGGGTCACTATGGAAGCCGAAAATCCGCATTCTTGGA</u>	-9257
SHP190	
Y L K Y L Q G V L T K N E K V T E N N K K I L V E A L R A I A E I	
ATACCTCAAATTTACAAGGAGTGCTCACAAAAATGAGAAAGTTACGGAAAACAATAAGAAAATTAGTAGAAGCATTACGAGCTATCGCAGAAATT	-9157
L I W G D Q N D A S V F D F F L E R	
CTCATTTGGGCGATCAGAATGATGCTTCGGTTTGAGtgagtttttccaatgttttttcaatctgatgttgaaatttcagTTCTTCCTTGAGC	-9057
Q M L L Y F L K I M E Q G N T P L N V Q L L Q T L N I L F E N I R	
GGCAAATGCTCTTATTCTTGAAAATTATGGAACAAGGAAACACACCAACTAAATGTCACAAATTACTGCAGACTTGAACATTTCATTGAAATATTGCG	-8957
SHP171	
H E T S L Y F L L S N N H V N S I I	
ACATGAAACTCCTTgtaaagttttatatggatttcgctaaaattgccaqtttcagATTTCCTCTAACATGTAACAACTCGATTATT	-8857
S H K F D L Q N D E I M A Y Y I S F L K T L S F K L N P A T I H F F	
TCCCCACAATTGATTACAAAATGAGATCATGGCTTACTACATTAGTTCTGAAAACCTTTCAATTAAACTGAACTCCAGCTACAATTCACTTCT	-8757

THURS. 13 A

gop-1 continued...

21/32

F N E T T E E F P L L V E V L K L Y N W N E S M V R I A V R N I L 190
FCTTCATGCAACCCACTCAACAAATTCCATCTCTCTACAACTTTCAACCTTATATTCGAATCTGAATTCGTTGCAATGCTGTTAGAAATATTCT -8657

SHP141

SHP172

L N I V R V Q D D S M I I F A I K H T K 210
TTTAATTTCTGAGACTTCAGATGATTCAATGATTTCGGCTATCAAGCATAAAAAdtttagttagaaattatttgtaaaagqtgtatthaqcaa -8557

E Y L S E L I D S L V G L S L E M D T F V R S A E N V L A N 240
taataattatccaaGAAATATCTATCGGAGTTAATAGATTCTAGTGGTCTCTCACTTGAAATGGACACATTGTACGATCTGCTGAGAATGTGTTAGCTA -8457

R E R L R G K V D D L I D L I H Y I G E L L D V E A V A E S L S I 273
ATGCCAGCAGCTTACGCCAAGCTCCATCATTTATTCATCTATTATTTCCCTCAACTATTCGATGTGCGAGCTGTGCGCCGAAGTTTATCAAT -8357

SHP142

SHP173

L V T T R Y L S P L L S S I S P R 291
TTTAGgtcqagtttactgctggaaaatcaagtttaatgttaaatttcgTAACAAACACGATACTTAAGCCCTCTATTACTTCAAGTATATCACCAA -8257

R D N H S L L T P I S A L F F F S E F L L 313
GAAGAGATAATCATTCACTTCACTCACTCCGATTCTGCCTTATTTTTCTCTGAATTTTATTGatqagttaacatttaaaattacattttct -8157

I V R H H E T I Y T F L S S F L F D T Q N T L T T H W I 341
aattttattttttttcgAGATGTTCTGCACCATGAAACAATATACTACATTTCATCTTCTCTATTTGACACTCAGAATACTTGTGACGCCATTGGG -8057

R H N E K Y C L E P I T L S S P T G E Y V N E D H 366
TACGTCTATAATGAGAAAATTGGCTTAGAACCGATTACATTATCATTCAACCCGAGAATATGTGAATGAAAGCCAAGtaagagctgaaattttaaaattt -7957

V F F D F L L E A F D S S Q A D D S K A F Y G L M 391
ttgttttgaataatatagtattttcagCGTATTTTCGATTCTACTGGAAGCATTGATCCAGTCAGCAGACGATTGAAAGCATTCTATGGATTAATG -7857

卷之三 - 13 B

22/32

gop-1 continued...

L I Y S M F Q N N A 401
CTGATTATCAATGTTTCAGATAATGtgtqattttaaaaattgttattttaaaattccattccaataactccttcagacagtaagttt -7757

tcaatgttgtaaaggttcctgtcatctgtgatcgttctcattttttagtttgcatgaacagttcaaatttttgatatcatacagtaaatat -7657

cgtcatccagataatttctatttaaaaaaaatgaataaaaagagggcgcgcagaattgccqaagtatgtaaattaaagggacacatgcgttagctt -7557

ttgtgtgggtctcgccgcgttgttgattatcttgtttctgctaaagagctgttttatggcgttaatgttttaccgttctcatcgcc -7457

tttttaataggaatataaaaaaaaggttataataatcttcgttttacaaatccatctaagattgcatttgtaagctcaacaagtaaagtta -7357

agtaacattgtttttaaaaaacaattgaaccaaattgcgaaacattaataacatgacgatactctataaaaattcctttcaaaataaatttt -7257

D V G E L L S A A N F P V L K E S T T T S L A Q Q N 427
caaaaaaaaaatccattttcagCCGATGTTGGAGAACTTCTATCTGCTGCCAACTTCCAGTGTCAAAGAATCAACGACAACTTCATTAGCTAACAGAA -7157

SHP174

L A R L R I A S T S S I S K R T R A I T E I G V E A T E E D E I F 480
T C T T G C T C G T C C G A A T A G C A T C A G C T T C C A T A T C A A G C G A A C G A G G C T A T C A T G A A A T T G G A G T A G A A G C G A C C G A G G A A G T G A G A T T T T T -7057

SHP185

H D V P E E Q T L 469

CATGATGTTCTGAAGAACAAACGTTGtaagtaaataatcaacattgattttacacaacttaatattttaatttggaaaatttcttcaaagtq -6957

E D L V O D D V L V D T E N S A I S D P E 489
ctaaaaatcctgtcgaaaattacagGAAGATCTGGTGGATGATGTATTGGTTGATACTGAAAATTCAACCAATAAGTGATCCAGAAGtgagttagaaaacg -6857

P K N V E S E S R 498
tgtatgttataattataaaaaaaaaatatagtttccccagtttccttgacctaaaactcagcaatttcagCCTAAAAACGTGGAGTCAGAAATCTCGT -6757

Page - 13 C

*gop-1 continued...**23/32*

S R F Q S A V D E L P P P S T S G C D G R L F D A L S S I I K A V G 532
 TCTCGATTCAATCTGCTGTTGATGAGCTCCACCTCCGTGACTCTGGATGTGATGGTCGACTTTGATGACTTCAATCAAAGCAGTTG -6657

T D D N R I R P I T L E L A C L V I R Q I L M T V D D E K 561
 GAACAGATGACAATCGAATTGACCAATTACATTGGAACCTGCATGCTTGTAATTGCGAAATTAAATGACTGTCGATGATAAGtaagattaca -6557
 SHP175

V H T S L T K L C F E V R L K L L S 579
 aattcaaaattgagcaaaatcagaatctaaatttcataaatttgttcagGTACATACCAGTTAACGAAATTATGCTCGAAGTTCGCTAAAACCTTTAT -6457

S I G Q Y V N G E N L F L E W F E D E Y A E F E 603
 CATCAATTGGACAATATGTTAATGGAGAGAATCTGTTTGAGTGGTTGAGGATGAATATGAGAATTGAAgtaaagccaagggtccgaaaataatt -6357

V N H V N F D I I G H E M L L P P A A T P L S N L L L 630
 taatttcatttttatttcagGTGAATCACGTGAATTGATATAATCGGTACGAAATGCTCTCCAGCTGCAACTCCTTCGAATCTGCTAC -6257

H K R L P S G F E E R I R T Q I V 647
 TTCATAAGCCATTGCCAGTGGATTGAGAACGAAATAGAACTgttagaaacttttaatttggaaaattaattatataattttcagCAAMTCGTA -6157

F Y L H I R K L E R D L T G E G D T E L P V R V L N S D Q E P V A I 681
 TTCTACCTACATATTGAAAATTGGAACGAGATTGACCGTGAGGAGACACAGAATTACCTGTGAGACTGTTGAATTCTGATCAGGAACCAGTTGCCA -6057

G D C I N L H N S D L L S C T 696
 TCGGTGATTGATTAATTACgtgaqtcatctgcataaaaaacccatatttctactcaaattaacaatttcagATAATTGGATCTCTATCCCTGCA -5957

V V P Q Q L C S L G K P G D R L A R F L V T D R L Q L I L V E P D 729
 CTGTGGTTCTCAACAACATGTTCTTGAAAACCTGGTATCGTCTGCTGATTCCTTGACTGATAGACTCAATTAAATTCTGTCGAACCGGA -5857
 SHP176

S R K A G W A I V R F V G L L Q D T T I N G D S T D S K V L H V V 762
 TTCTCGAAAAGCCGATGGCAATTGTCGATTGAGACTCTCAAGATAACAACAAATTAGGAGATTCTACGGATTGAAAGTTGATGTTG -5757
 SHP177

V E G Q P S R I K K R H P V L T A 779
 GTGGAAGGGCAACCTCGAGAATTAGtaagaatactaacggaaaaaaaaatcaaaaaattctgtttcagAAAAGACATCCGGTTAACTGCA -5657

~~130~~

24/32

gop-1 continued...

A F I F D D H I R C M A A K Q R L T K 798
AAGTTCATATTGATGATCACATTGGTGTATGCCAGCAAAGCAACGGCTACCCAAGtaacqaaaaataaccaaaaagacgaaaagtattgtaaat -5557

ggacgaaatcgccaaatttaattgaaaacgttgaattgcgcctaaaacccaaacgaaaacccaaacgaaagcgtaaatttaactatcccttcaggtagaat -5457

G R Q T A R G L K L Q A I C S A L G V P R I D P A T 824
atacattttttctctttatagGGTCGCCAACACGACGTGGTCTGAAACTCAGGCATATCTCAGCTCTGGAGTTCACGTATCGATCCACCGAC -5357

M T S S P R M N P F R I V K G C A P G S V R K T V S T S S S S S Q 857
AATGACCGTCATCACCACGAATGAATCATTCAAGAATTGTCAAAGGATGGCGACCCGGAAAGTGTACGAAAAACTGTTCCACATCATCATGTCAGGCCAA -5257

G R P G H Y S A N L R S A S R N A G M I P D D P T Q P S S S S E R R 891
GGACGTCCCGACATTATCTGCAAATCTTAGTCAGCATCTAGAAATCCAGGAATGATACCAACTCAACCGAGTAGTTCTTCCGAAAGAA -5157

S • 892
GATCCTtaggtcaaatatctcttcagtttcatcatttatctgtaaatttatcttaagtattcctattcttttagtactgtattcacatcgcttag -5057

ttaaaaatcacaatctccggaaaaacaaaccagtgaacatgtatattctcttccccataattctctttttttttaaaacaaaaacaattactttat -4957

polyA

agattgtatatttttcaaaatggttcaaatgccqaatctatctactt -4807

— 13 E

gop-2

25/32

SL2

M A E K A E N L P S S S A E A S E 1

ttaatcattattcaaacagaaaaaccgattatttattcagattctcaaaATGGCTAAAAAGCTGAAAATCTTCATCTTCTCGGCCGAAGCTTCAG -470

E P S P Q T G P N V N Q K P S I L V L G M A G S G K T T F V Q 4

AAGAGCCATCACCTCAAACGGACCAATGTGAATCAAAACCATCGATTGGITCTTGGAAATGGCTGGITCTGAAAAACGACATTGTTCAAGgtaac -460

R L T A F L H A R K T P P Y V I N L D P 6

tttcattcaattttagagagtttcaaacattactatttcagCGTCTCACAGCATTCTACATGCTCGTAAACACCTCCATATGTGATTAATCTGGATC -450

A V S K V P Y P V N V D I R D T V K Y K E V M K E F G M G P N G A 10

CGGCAGTTAGCAAAGTACCTTATCCAGTGAATGTTGACATTGAGATACTGTCAAATACAAGGAAGTTATGAAAGAATTGGAAATGGACCAATGGAGC -440

SHP179

I M T C L N L M C T R F D K V I E L I N K R S S D F S V C L L D T 13

AATTATGACATGCTTAACCTGATGTTGACTCGTTTGATAAAAGTAATTGAGTTGATTAATAAGAGATCTTCTGATTTCAGTTGTCTCTGATCT -430

SHP180

P G Q I E A F T W S A S G S I I T D S L A S S H P T 16

CTGGACAAATTGAAGCATTCACTGGAGTGCTAGTGATCTATTACTGATTGGCAAGTAGCCATCCACGgtaaaggatttgatttatgaa -420

SHP143

atctgcttggaaatgaaaaagattctaataaattttgactttaaacattttacagtatattgtctatttctatcataaaagcaaaatgaaa -410

V V M Y I V D S A R A T N P T T F M S N 18

agtcgattctactccatatttataattcgactttcagGTGGTAATGTACATTGTGGATTCCGCTCGTGCACAAATCCAATCACATTGATGICCAAT -400

SHP144

~~F~~~~I~~~~S~~~~E~~~~-~~14A

gop-2 continued...

26/32

M L Y A C S I L Y R T K L P F I V V F N K A D I V K P T F A L K W M 21
 ATGCTCTACGCATGTTCCATTCTACCGTACCAAACCTCCATTCACTGTGTTCAACAAAGCTGATATTGTCACAAACCATTTGCACTCAAATGGA -390

Q D F E R F D E A L E D A R S S Y M N D L S R S L S L V L D E F Y 24
TGCAAGATTCCAAAGATTGATGAAGCTTAGAGGATGCCAGAAGCAGTTATGAAATGATTGAGTCATTGAGTCTCGTTCTTGATGAATTCTA -380

SHP181

C G L K T V C V S S A T G E G F E D V 26
TTGGGGACTGAAAACAGgttttattcgaataaaacccaaaaataataaaattcagTTTGCCTCAGTCTGCAACTGGAGAAGGATTCGAAGATGT -370

M T A I D E S V E A Y K K E Y V P M Y E K V L A E K K L L D E E E 29
 AATGACAGCAATCGATGAAGTGTGAAGCATACAAAAAGAATATGTTCAATGTATGAAAAGCTGTGCTGAGAAAAACTATTGGATGAGGAGGAG -360

R K K R D E E T L K G K A V H D L N K V 31
 ACAAAAGAAAAGCATGAAGAGGtaatttagtaatattaaattctgattatcttcaaattttcagACTCTGAAAGGAAAAGCTGTTCACGACCTGAACAAAG -350

A N P D E F L E S E L N S K I D R I H L G G V D E E N E E D A E L 35
TCGCCAATCCCGACGAATTCTGGACTCGGAGTTGAATTCAAAATCGATAGAATTCAATTGGGCGGACTCGATGAAGAGAATGAGGAGGATGCTGAAC -340

SHP182

B R S • 35
 CGAAAGATCCTgatttcttttgtttgaattttattctatttgatccctgtttacttcttattgttctcatttgtgcgttgtttacattta -330

polyA
 ctcattttgataaaacttgtcaaaaatcaataatatttgatctggaaatggtttaaccttacatataataatatttttcaaaa -320

aaacgttctaaaaagggttcctcattttcaatataggaatttgaaga -315

FIS - 14B

27/32

gop-3

SL2

M S E K T F H K 8

tctttccaaaaatgagggttctcgctgaaaagccaacatttaaaaccttttttccagaaacctagtggtaATGTCGAAAAGACGTTCCACAAG -3057

A Q T I R A K A S G V P S I V E A V Q F H G V R I T K N D A L V K E 42

GCACAGACCATCCGTCAAAGGCATCCGGACTGCCCTCATCGTCGAAGCTGTACAGTTCATGGAGTCCATCACAAAAACGATGCTTGTTAAGG -2957

V S E L Y R 48

AGgtactacccaaatttcaaaatgttgacaaattcaattgaaaatataaattgtgaattaaattcaacttacatgtttttcaqGTTCCGAATTATAACA -285

S K N L D E L V H N S H L A A R H L Q E V G L M D N A V A L I D T 81

GAAGTAAAATCTAGATGAACTGTTCATACTCTCATCGCCGCTCGTCATCTCAAGAAGTTGATAATGCGATGCTCTAATTGATAC -275

SHP183

S P S S N E G Y V V N F L V R E P K S F T A G V K A G V S T N G D 114

ATCTCCAAGCTCAAATGAAGGATATGTTGTCATTCTCTAGTTGAGAACCAAAATCATTCACTGCTGGAGTCAAAGCAGGAGTTCAACGAATGGAGAT -26

A D V S L N A G K Q S V G G R G E A I N T Q Y T Y T V K 14

GCGGATGTCAGTTAAATGCCGGAAAACAAAGTGTGGAGGACGGAGAGGCAATCAACAGTATACTATACTGTAAAGgtaaaggacyagagttg -255

SHP145

gcactgccagttggcatgttctccaaattttttaattataaaaatttggagaagtataaaaaatgtttgcttcataaaaaatgcctttcacatga -245

aaaaaatgaaaaaaaaagtgtcaaaaattcagaaattccaatttccaacaatttggagaactttcaaaaatttccaactgaaattaaagctata -235

~~F~~~~E~~~~L~~ 15A

*gop-3 continued...**28/32*

G D H C F 147

ttctatactaaatttataacaagtcttaagagaaaatgtagaagtggctcatttgtagaattctaaaaataatcttcagGGCGATCACTGCTT -225

N I S A I K P F L G W Q K Y S N V S A T L Y R S L A H M P W N Q S 180

CACACATTCCGCAATCAAACCATTCCCTGGATGGCAAAATATTGAATGTATCAGCGACTCTATACCGTTACTTGCACATATGCCATGGAATCAATCA -215

SHP138 SHP146

D V D E N A A V L A Y N G Q L W N Q K L L H Q V K L N A 208

GATGTTGATGAGAATGCAGCTGTTCTTCATATAATGGACAATATGGAATCAAAGCTTTGCATCAAGTCAAATTGAATGCGtaaaagtattataagt -205

I W R T L R A T R D A A F S V R E Q A G H T L 23

gttttgtccaaactatgatacagttcttcgATATGGAGAACACTTCGTGCCACTCGAGATGCCGATTTCAAGTCGTGAACAAGCCGGACACACTTG -195

K F S L E N A V A V D T R D R P I L A S R G I L A 25

AAATTCTCGTTGGAGAATGCTGTAGCTGTTGATAAGAGATAGACCTATTCTGCAAGTCGTGGAATTCTTGtaaqagtaacaacgactatTTtaaa -185

aaatatcttttcgaaaaattacgaaacgaaaaaaaaactgtattatgtacccaaacgcgaaattttcgatcttcgcgcgtttgtataaaaaat -175

R F A Q 26

gtaaaaattggaaaaactacgaaaaactcgataaaaattccgtaccaaccggaaaatgtttcattaattctcttccttttcagCTCGTTTGCTCAA -165

E Y A G V F G D A S F V K N T L D L Q 279

GAGTACGCCAGGAGTATTGGTGTGCGTCATTGTGAAGAACATTAGATTACAGgtacaaccttattcaacaattattcaaatttctattaaaa -155

SHP139

A A A P L P L G F I L A A S F Q A K H L K G L G D R E V H I L 31
taattccagGCAGCTGCCCTCTTCACTCGGTTCATCTTGCCTCATTCAGCAAGCAGAAATTGAAAGGACTCGGAGATCGAGAAGTCATATT -145

SHP140

~~F~~~~E~~~~M~~ 15B

29/32

gop-3 continued...

D R C Y L G G Q Q D V R G F G L N T I G 330

TGGATAGATGTATTGGTGGACAACAGGATGTTGAGGATTGGCTGAATACTATTGGAgtgagtttaacgaaattctcttggaaagtcaaataatc -1357
SHP184

V K A D N S C L G G G A S L A G V V H L Y R P L I P P N M L F 361
attttcagGTTAAAGCAGATAACAGTGTCTGGAGGGGTGCTTCAGTGCTGGTGTCTTCATTGATCGGCCATTGATTCCACCAAATATGCTATT -1257

A H A F L A S G S V A S V H S K N L V Q Q L Q D T Q R V S A G E G 394
TGCACACGGCATCCTTGATCTGGAAGTGTGCATCAGTTCAAAATTGGTGAACAATTACAGGATACTCAACGGACTATCAGCCGGATTGgt -1157

SHP163

gagtttcaaatttaaaaaacatttggatqaaatgtatTTTaaaatagaatcagctttatTTTaaaaaacgcattaaatcaatgtatagt -1057

tccattctgagttcttccttcgtccatcgaaatacatttgcactttgcacatcttgcattttgcaccaatctcatcaactaaatct -957

cgaaactaaaaatttcaaaattttccaaaaatattgtatgcagactacccctttatggctctggatcgttctaqcgtcgaatggattggctct -857

— 155 —

三-15L

30/32

gop-3 continued...

gacgtcttcttatattccaagaactctgcagaaaatccgtgtccgccttgtgtttcttagtggcgctggaggattcacgggtccaagacgaatgga -657

tgtctaaaaatgttatattttgcataaagaaaacaccataccttaccacttttagttgtggcgctgtaatggaaattgatcgattattattgtc -557

ctttcttgatttgcattcatcagctgcgtaatgaggtgtctaaagatcagcttaattcattggacaagtgcctctaataaacttaccctgtactc -457

attttgaacgatttacgatgataagattgaaagtggaaattttttcaagttaaatcttcataaaatcttcataaaataaaatttaaatgaa -357

L A F V F K S 401

agattaaataaattaacgttacgttagttaaaaaataatttaaatttcaataaaaaatctcaattttccagGACTCGCATTGTGTTCAAAA -257

I F R L E L N Y T Y P L K Y V L G D S L L G G F H I G A G V N F L 434

GTATTTCCGGCTGGAACCTCAACTACACGTATCCATTGAAATATGTGCTCCGCATTCAATTGCTCGTGGATTCCATATTGGAGCTGGTGTCAACTCTT -157

Gtagagattaattggatgcaaggcacccctcaaaaagattttttgaaaaacgataaattcacaaggatttcagtttttctccccctttattgttatt -57

SHP134

ttcatcgtaatgtgtgttagaagtcaagtaaatatgagttttttgtttcttagaatttcattttcaggaagcaatttaataaaaattatcgaa 44

SHP164

polyA

tttcttgctctaaagatgttgatattttatggaaatgtcgatagtaa 94

SHP135

~~F~~~~E~~~~M~~ 150

hap-1

31/32

SL2

ttcgaacactttatatttcgtttaaaactgtcggtttatagtaactatcttcagaaaaaa	ATGAGCCTACGAAAAATCAATTCTGTAACTCGGA	11
SHP91	SHP118	194

N V K K L E E V K A I L K N F E 27
 AACGTGAAGAAGCTGAAGAACTCAAGGCTATTTGAAGAATTCCAGtaaaatatatttgcgaaatttgcgcggaaagtacga 294

tgcctggctcaacacgacaatatttgttaatacaaacaatgtgcgcctcaaaaaatgtttcaatcttcgttgccgtggagatatttttagagt 394

V S N V D V D L D E F 38

tttttgttaattatatttgtcgatcgaaaccgggtaccgtaatcaatcaattaaatatttcag	GTTTCAAACGTGGATGTCGATTGGATGAATT	494
SHP165		

Q G E P E F I A E R K C R E A V E A V K G P V L 62
 CCAAGGAGAACCCAAATTATTGCCAAAGAAAGTGCCTGAGGCTGTTGAACCTGAAAAGGGCCCGTTTGgtatggaaaattgtatttgtctaaaa 594

V E D T S L C F N A M G G L P G P Y I K W F L K N L K P E 91
 attgtcaaatttcagGTCGAAGACACAAGTTATGCTCAACGCAATGGCGGTCTCCTGGACCTTATATCAAGTGGTTTGAGAATTGAAACAG 694

SHP129

~~16A~~

hap-1 continued...

32/32

G I H N M L A	G F S D K T A Y A Q C I F	111
AAGGACTACATAATATGCTAGttaatatttaattttgaaaaacttatttcagCCGGATTTCTGACAAAACCGCCTATGCTCAATGCATCTT	794	

A Y T E G L G K P I H V F A G	126
GCGTACACTGAAGGACTCGGAAACCTATTATGTATTGCTGgtatgatatttgaatttaattcttaatttatgttaatttagttttcatc	894

K C P G Q I V A P R G D T A F G W D P	145
ctcaatttatgagagattttttcaattttctatttcagGAAAATGTCCTGGTCAAATTGTTGCTCACGTGGTGATACTGCTTTGGATGGATCC	994

▼ SHP130 ▼

C F Q P D G F K E T F G E M D K D V K N E I S H R A K A L L E L L K	178
ATGCTTCCAGCCAGATGTTAAAGAACATTCCGAGAAATGGATAAAGATGAAAAATGAAATTCTCATCGTCAAAGGCTCTGGAACTCCTCAAG	1094

▼ SHP119 ▼ SHP120 ▼

E Y F Q N N •	184
GAATATTTCAAGATAATTaaatttattttctcatctatgcatttctgaaaattgttaagttccgttgtatgcatttgctttatttaaaaaaa	1194

polyA

/

aaaagaattttacattaatattagatatgagaaaagagaatttctgatttaaccttccataaaaagaatatttatattttgtatgtttta	1294
--	------

▼ SHP93 ▼

~~F~~~~i~~~~m~~ 168

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: MCGILL UNIVERSITY

(ii) TITLE OF INVENTION: THE C. ELEGANS gro-1 GENE

(iii) NUMBER OF SEQUENCES: 62

(iv) CORRESPONDENCE ADDRESS:

- (A) ADDRESSEE: SWABEY OGILVY RENAULT
- (B) STREET: 1981 McGill College Avenue - Suite 1600
- (C) CITY: Montréal
- (D) STATE: QC
- (E) COUNTRY: Canada
- (F) ZIP: H3A 2Y3

(v) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Diskette
- (B) COMPUTER: IBM Compatible
- (C) OPERATING SYSTEM: Windows
- (D) SOFTWARE: FastSEQ for Windows Version 2.0b

(vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER:
- (B) FILING DATE:
- (C) CLASSIFICATION:

(vii) PRIOR APPLICATION DATA:

- (A) APPLICATION NUMBER: CA 2,210,251
- (B) FILING DATE: 25-AUG-1997

(viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Côté, France
- (B) REGISTRATION NUMBER: 4166
- (C) REFERENCE/DOCKET NUMBER: 1770-179PCT FC/ld

(ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: 514 845-7126
- (B) TELEFAX: 514 288-8389
- (C) TELEX:

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 14458 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GCAAAATTTG CTAAGATGAA GCGCCGGCTT GTTACATTGC TTTTCAGAGT CGATTGGTTC AAAATTGTCA ATTTTATCCA AAATAGAGTG CATTGTGTGT ACAATAACTA AAGAATCATC CATATCTGGT CCAACACAAC ATTGATGGAA TACTGGATCA ATTGTCTAAA AAAATATCAA	60
	120
	180

TAGAATAATG	AAACATTTTC	AGAATTCAATT	ACCGTCAATG	TCAGATAGTC	ATTCCCTTGAG	240
TATTTTGTGG	ATGCTTTGAA	AATTCTTCGC	TGGGCCATAT	CTGTTGGATA	ATCTGAAAAAA	300
CGCAATAAAAT	TTCATCGAAA	ATGCCTTATT	AATTGAATT	CCTTCTTCTT	CATCATTTCC	360
TAACAATTCA	TGCTCTTTT	GTGCTTGACT	TGTGACCAAT	TCTTTAAATT	CAATTAATC	420
GTCAATATCC	TTTTGTACTA	AATCCATCTT	GATATTCAAT	ATATCTTGT	CAGTATAGTA	480
TTCAGCGTAT	CTGAAATTTC	GAATTATT	TTCTAATTCC	CAAGAAAAAT	AATTATAAG	540
AATACCTTAA	CGAATTATT	TCCAATATAT	CATCATTG	CACATCTGGA	AGACGCTGAG	600
GAACGTGTTG	AGCAGCTTGG	AGGTAGTCGT	CATCGTCTCT	GGAAATTGTT	ATTTCAATT	660
TCAAAAAAAA	AACTTTACTT	ACGAATATA	CTCATTGAT	GCAATCCACG	GATCAAACG	720
ACGTCTTGC	ATCTTGTGAAT	CATTTCGC	ATGGCACCGC	ATCACTTCTT	TCTTATGATT	780
ATTTCTAAC	GTTTTGTAAA	ATTCGACGTG	CTCTTCAACAA	CGGCCGCAT	GTTTCGCAAG	840
TTCTTCTTTT	GATCGTATCT	AAAATTAA	ATTGAAAAAA	AAGCTTACTA	TCAAATTTC	900
GTATTTTTTC	TCACCTGCTT	ACACCGAAC	AGCGTCGAT	ACGAAGCATA	ATTACATTGT	960
CCATACTTAT	TTTTGTGCTA	TTCATGGCA	ACAAGACGGA	ATCGTGTCC	AGGTGCAACT	1020
ATATATTGAG	CAGGAGGAGC	AGTTGTTGT	TTCATGCTG	TTAAAAAAAT	AAATGGAAAAA	1080
TTGAGTCAAA	AAAGTGTGAG	AAAACAATT	AAAACAATT	TCTGAAAAT	AAACAACTGA	1140
AATTGAAAGT	ATAAAACAAAC	ACCGAAC	GTATTTCGG	AGCATCGTT	GAGAAGTAAA	1200
ACTTTTTTTC	GGCGCACCC	TGTGCGCACT	TTTATCTTC	TCTTTAATT	TAATTTC	1260
GCTAAATCTT	TCTTTTAA	CTTGAAATAA	ATATTTAAAT	ATTCAAGATG	CACCAATAAA	1320
CCTGGAACAA	AATCGATAAT	GTTCGCCAAG	CTTGGTTCTT	CTGGGTCACT	ATGGAAGCCG	1380
AAAAATCCGC	ATTCTTGTGA	ATACCTCAA	TATTACAAAG	GAGTGTCA	AAAAAATGAG	1440
AAAGTTACGG	AAAACAATT	GTAAATT	GTAGAACAT	TACGAGCTAT	CGCAGAAATT	1500
CTCATTTGGG	GGCATCAGAA	TGATGTTCG	GTTCGGACT	GAGTTTTT	CCAATGTTT	1560
TTTTCAATC	TGATGTTGAA	TTTCAGTTTC	TTCTTGTG	GGCAAATGCT	TCTTTATTT	1620
TTGAAAATT	TGGAACAAGG	AAACACACCA	CTAAATGTAC	AATTACTGCA	GACTTTGAAC	1680
ATTTTATTTCG	AAAATTATT	ACATGAAAT	TCACTTGTG	AGTTTTTAT	ATGGATTTTC	1740
GCTTAAATT	GCCAGTTTC	AGATTCTT	CTAAGTAACA	ATCATGTA	CTCGATTATT	1800
TCCCACAAAT	TCGATTTACA	AAATGATGAG	ATCATGGCTT	ACTACATTA	TTTTCTGAAA	1860
ACTCTTTCAT	TTAAACTGAA	TCCAGCTACA	ATCCACTTCT	TCTTCATG	AACGACTGAA	1920
GAATTTCCAT	TGTTGGTAGA	AGTTTGAAAG	CTTATAATT	GGAATGAATC	AATGGTTCGA	1980
ATTGCTGTTA	AAAATATTCT	TTTAAATATT	GTGAGAGTT	AAGATGATT	AATGATTATT	2040
TTCGCTATCA	AGCATACAA	AGTTAGTAGA	AAATTATT	GAAAAGGTG	ATTTAACCAA	2100
TAATATTAC	AGGAATATCT	ATCGGAGTTA	ATAGATTCTC	TAGTTGGTCT	CTCACTTGAA	2160
ATGGACACAT	TTGTACGATC	TGCTGAGAAT	GTGTTAGCTA	ATCGAGAGAG	ATTACGAGGA	2220
AAAGTGGATG	ATTTAATTGA	TTTGATTCTAT	TATATTGGTG	AACTATTGGA	TGTGGAAGCT	2280
GTCGCCGAAA	GTTTATCAAT	TTTAGGTCA	TTTACTGCT	GGAAATCAA	GTTTTTAATG	2340
TTAAATTTC	AGTAACAACA	CGATACTTAA	GCCCTCTATT	ACTTTCAAGT	ATATCACCAA	2400
GAAGAGATAA	TCATTCACTT	CTACTCCTC	CGATTTCTG	GTTATTCTT	TTCTCTGAAT	2460
TTTATTGTT	GAGTTTAAAC	ATTTAAATT	ACATTCTTCT	AATTATTAT	TTTTTCAGAT	2520
AGTTCGTCAC	CATGAAACAA	TATATACATT	TTTATCATCT	TTCTTATTG	ACACTCAGAA	2580
TACTTTGACG	ACCCATTGGA	TACGTCA	TGAGAAATAT	TGCTTAGAAC	CGATTACATT	2640
ATCATCACCA	ACCGGAGAA	ATGTGAATG	AGACCAGTAA	GAGCTGAAAT	TTTAAATT	2700
TTGCTTTGAA	TATAGTATT	TCAGCGTATT	TTTCGATT	CTACTGGAAG	CATTTGATT	2760
CAGTCAGAG	GAGCATTGGA	AGGCATTCTA	TGTTAAATG	CTGATT	CAATGTTCA	2820
GAATAATTGGT	GAGTTTAA	AAATTGATT	GTAAATTAA	AATTTCATT	TCCAATAACT	2880
CCTCTTCAGA	CAGTAAGTT	TCATGTTGT	AAAGTTCTG	TTCATCTGT	ATCGTTTCT	2940
TCATTTTTT	AGTTTGCA	GAACAGTTT	CAAATT	TGATATCATA	CAGTAAATAT	3000
CGTCATCCAG	ATAATTTCT	ATTTAA	AATGAATAA	AAGAGGGCGC	GCAGAAATTG	3060
CCGAAGTAAT	GTAAATTAA	AGGGACACAT	GGCTAGCTG	TTGTGTTGGGT	CTGCCGC	3120
TTTGTGTTGAT	TTATCTTGT	TTCTGCTCA	AGAGCTGTTT	TTATTTAGC	GTTGAATGCT	3180
TTTTTACCGT	TCTCATCGGC	TTTTAATAG	GAATTTAA	AAAAAAAGGT	TTAATAATC	3240
TTCTTCTTAA	CAAATCCAT	CTAAGATTG	CATTG	GCTCAACAAG	TAAAGTTT	3300
AGTAACATTG	TTTTTAA	AAACATTGAA	CCAAATT	CCGAAACATT	AAATAACATG	3360
CGATACTCTA	AAAATATT	CTCTTCTAA	ATAAATT	AAAAAAAT	CCATT	3420
GCCGATGTTG	GAGAACTCT	ATCTGCTGCC	AACTTCCAG	TGCTCAAAGA	ATCAACGACA	3480
ACTTCATTAG	CTCAACAGAA	TCTTGCTCGT	CTCCGAATAG	CATCTACGTC	TTCCATATCA	3540
AAGCGAACGA	GAGCTATCAC	TGAAATTGGA	GTAGAAGCGA	CCGAGGAAGA	TGAGATT	3600
CATGATGTT	CTGAAGAACAA	AACGGTGT	AGTAAAT	TCAACATTG	TTGTTACACA	3660
AACTTAATA	TTTTAAATT	TGAAATT	CTTCAAAGTG	CTCAAAATC	CTGCGAAA	3720

TTACAGGAAG	ATCTGGTGGG	TGATGTATTG	GTTGATACTG	AAAATTCA	G	AATAAGTGAT	3780
CCAGAAGTGA	GTAGAAAACG	TGCATGTATT	AATTATTAAA	AAAAAAATAT	AGTTTTCCC	C	3840
AGTTTCCTT	GACCTAAAAC	TCAGCAATT	CAGCCTAAA	ACGTGGAGTC	AGAATCTCGT	3900	
TCTCGATTTC	AATCTGCTGT	TGATGAGCTT	CCACCTCCGT	CGACTTCTGG	ATGTGATGGT	3960	
CGACTTTTG	ATGCACTTTC	ATCGATATTAC	AAAGCAGTTG	GAACAGATGA	CAATCGAATT	4020	
CGACCAATT	CATTGGAAC	TGCATGTCTT	GTAAATTCGGC	AAATTAA	GACTGTTGAT	4080	
GATGAAAAAG	TAAGATTACA	AATTCAAAT	TGAGCAAAAT	CAGAAC	ATTTCATAAA	4140	
TTGTTCAAGGT	ACATACCAGT	TTAACGAAAT	TATGCTTCGA	AGTTCGTCTA	AAAC	TTTTT	4200
CATCAATTGG	ACAATATGTT	AATGGAGAGA	ATCTGTTTT	GGAGTGGTT	GAGGATGAAT	4260	
ATGCAGAATT	TGAAGTAGC	CAAGAGGTCC	GAAAATTA	TAATT	CATCC	TTTTTATTCA	4320
GGTGAATTAC	GTGAATTTCG	ATATAATCGG	TCACGAAATG	CTTCTTC	CAGCTGCAAC	4380	
TCCCTTTTCG	AATCTGCTAC	TTTCATAAGCG	ATTGCCAGT	GGATT	TGAAG	AACGAATAAG	4440
AACTGTAGGA	AACTTTTAA	ATTGAAAAT	TAATTATATA	TATATTGCA	GCAAATCGTA	4500	
TTCTACCTAC	ATATTGAAA	ATTGGAACGA	GATTGACCG	GTGAGGAGA	CACAGAATT	4560	
CCTGTGAGAG	TGTTGAATTC	TGATCAGGAA	CCAGTGGCCA	TCGGT	GATTG	TATTAATT	4620
CGTGAAGTCA	TCTGCATAGA	AAACACCAT	TTCTACTCA	AATTAA	ACAAAT	TTTCAGATAA	4680
TTCGGATCTT	CTATCCTGCA	CTGTGGTCC	TCAACAACTA	TGTTCTCTG	GAAAAC	CTGG	4740
TGATCGTCTT	GCTCGATTCC	TTGTCACTGA	TAGACTTCAA	TTAATTCTTG	TCGAAC	CGGA	4800
TTCTCGAAA	GCCGGATGGG	CAATTGTTG	ATTCGTAGGA	CTTCTTC	AAAG	ATACAA	4860
TAATGGAGAT	TCTACGGATT	CGAAAGTTT	GCATGTTGTG	GTGGAAGGG	AACCT	CGAG	4920
AATTAAGGTA	AGAATACTAA	CGGGAAAAAA	AAATCAAAA	ATTACTTCTG	TTTCAGA	AAAA	4980
GACATCCGGT	TTTAAC	TCGATGATCA	CATTGGTGT	ATGGCAG	CAA	5040	
AGCAACGGCT	CAACCAAGGTA	ACGGAAAAAA	TAACCAAAA	GACGGAAAGT	TATTG	TAAT	5100
GGACGAAATC	GGCGAAATTA	ATTGAAAACG	TTGAAATTG	CCGCTAAAC	CAAACG	AAAA	5160
CCAAACGAAA	GCGAAATT	ACTATCCCT	CAGGTAGAAT	ATACATT	TTT	CTCTTTA	5220
TAGGGTCGCC	AAACAGCACC	TGGTCTGAA	CTTCAGGCGA	TATGTT	TCAG	TCTGGAGTT	5280
CCACGTATCG	ATCCAGCGAC	AATGACGTCA	TCACCA	TGAATT	CCATT	CAGAATTG	5340
AAAGGATGCG	CACCGGGAA	TGTACGAAA	ACTGTTCCA	CATCAT	CAT	GTCAAG	5400
GGACGTCCCG	GACATTATTC	TGCAAATCTT	AGATCAGCAT	CTAGAA	ATG	AGGAATGATA	5460
CCAGATGATC	CAACTCAACC	GAGTAGTTCT	TCGGAAAGAA	GATCCT	AGGG	ATCAATATCT	5520
CTTCAGTTTC	ATCATTTTAT	GCTGTAATT	GTATT	TTAAGT	ATT	TTTGTAGTAC	5580
TGTATTTACA	CATCGTCTAG	TTAAATCAC	AAATCTCGA	AAAAACAAAC	CAGT	GAACAT	5640
GTGATATTTC	TCTTGCCCCAT	AGTTCTCTT	TTTTTTGAA	ACAAAAACAA	TTAC	TTTTT	5700
GCTCACCTAT	TCGAGCCATA	TTTTTTTCCC	AATTACCGGT	TGTTT	TATTT	TTT	5760
TTTTTTCTGT	AAATCTACTT	TATTTTAA	ACTGCATTG	AGATTG	GTGTA	TATTTTTTCA	5820
AAATGGTTCA	AATGCCGAAT	CTATCTACTT	TTTAATCATT	ATTCAAA	ACAG	AAAAACCGAT	5880
TATTTTATTCA	GAFFCTCAA	AATGGCTGAA	AAAGCTGAA	ATCTTCCATC	TTCTC	GGGCC	5940
GAAGCITTCAG	AAGAGCCATC	ACCTCAA	GGACCAAATG	TGAAT	CAAA	ACCATCGATT	6000
TTGGTTCTTG	GAATGGCTGG	TTCTGGAAA	ACGACATTG	TTCAGG	TAC	TTTCATT	6060
TTTGAGAGT	TTTCAACAT	TACTATTTC	AGCGTCTC	ACCATT	CCT	GCTCGTA	6120
AAACACCTCC	ATATGTGATT	AATCTGGATC	CGGCAGTTAG	CAAAGTAC	TAT	CCAGTGA	6180
ATGTTGACAT	TCGAGATACT	GTGAAATACA	AGGAAGTTAT	GAAGAATT	TC	GAATGGGAC	6240
CAAATGGAGC	AATTATGACA	TGTCCTAAC	TGATGTGTA	TCGTTT	TGAT	AAAGTAATTG	6300
AGTTGATTAA	TAAGAGATCT	TCTGATTCT	CAGTTG	TCT	TCTG	GATACT	6360
TTGAAGCATT	CACTTGGAGT	GCTAGTGGAT	CTATT	TATC	TGATT	CATTG	6420
ATCCCCACGGT	AAGGGATT	TGAAATTGAA	ATCTGCTG	AATG	AAAA	GATTCTAATA	6480
AATT	TTTAAACAT	TTTTTACAGT	TATATTG	TTG	CTATT	TTCTA	6540
CAAATGAAA	AGTCGATTCT	ACTCCATATT	TATTA	TTT	TTT	TCATTAAAAG	6600
ACATTGTGGA	TTCCGCTCGT	GCCACAAATC	CAACT	ATT	TTT	CGTGTCAAT	6660
CATGTTCCAT	TCTCTACCGT	ACCAAATTC	CATT	CTT	TTT	CGTTCAAC	6720
TTGTCAAACC	AACATTGCA	CTCAAA	TGAA	CGAAG	ATT	CGAAGAGT	6780
TAGAGGATGC	CAGAAGCAGT	TATATGAA	TTTGAGTC	TTCATT	GAGT	CTCGTTCTTG	6840
ATGAATTCTA	TTGCGGACTG	AAAACAGGTT	TTTATTG	GAGT	TTT	GTGTAATGT	6900
TAAATTCAG	TTTGCCTCAG	TTCTGCAACT	GGAGAAGGAT	TCGAAG	ATTG	ACAGCA	6960
ATCGATGAAA	GTGTTGAAGC	ATACAAAAAA	GAATATGTT	CAATG	TATG	AAAAGTGTG	7020
GCTGAGAAAA	AACTATTGGA	TGAGGAGGAG	AGAAAGAAAA	GAGATG	AAAGA	GGTAATTG	7080
GTAATTAAAT	TCTGATTATC	TTCAAA	TTT	CAGACT	CTGA	TGTCACGAC	7140
CTGAACAAAG	TCGCCAATCC	CGACCAATT	CTGGAGTC	ACTT	GAATT	CGAT	7200
AGAATTCA	TGGCGGGAGT	CGATGAAGAG	AATGAGGAGG	ATGCT	GAAC	TCC	7260

TGATTTCTT	TTTGTTTTG	AATTTTATT	CTATTTGAT	CCCTGTTAC	TTCTTATTGT	7320
TCTCATTGG	TTGCGTTGTT	TTACATTTA	CTCATTTTG	CATAAACTTG	TTGCAAAAT	7380
CAATATAATT	TTTGATCTGG	AAATGGTTT	AAACCTTAAC	CTTCATATA	TTAATAATT	7440
TTTTTCAAA	AAACGTTCTA	AAAAGGTTCC	TCATTTTTC	AATATAGGAA	ATTTTGAAGA	7500
TCTTTCAA	AAATGAGGTT	CTTCGTTGA	AAAGCCAACA	TTTAAAACCT	TTTTTTTCC	7560
AGAACCTAG	TGGTTAATGT	CTGAAAAGAC	GTCCACAAAG	GCACAGACCA	TCCGTGAAA	7620
GGCATCCGGA	GTGCCCTCAA	TCGTCGAAGC	TGTACAGTTT	CATGGAGTC	GCATCACAAA	7680
AAACGATGCT	TTGGTTAAGG	AGGTACTACC	CAAATTCAA	AATGTTGCAC	AATTCAATTG	7740
AAAATATAAA	TTGTGAATT	AATTCAACTT	ACATGTTTTT	TCAGGTTTCC	GAATTATACA	7800
GAAGTAAAAA	TCTAGATGAA	CTTGTCTCAT	ACTCTCATCT	GGCGGCTCGT	CATCTTCAG	7860
AAGTTGGATT	AATGGATAAT	GCAGTGGCTC	TAATTGATAC	ATCTCCAAGC	TCAAATGAAG	7920
GATATGTTGT	CAATTTCTTA	GTTCGAGAAC	CAAATTCATT	CACTGCTGGA	GTCAAAGCAG	7980
GAGTTCAAC	GAATGGAGAT	CGGGATGTCA	GTTTAAATGC	CGGAAACAA	AGTGGTGGAG	8040
GACGAGGAGA	GGCAATCAAT	ACACAGTATA	CATAACTGT	AAAGGTAGG	ACGAGAGTTG	8100
GCACGCCAG	TTTGGCATGT	TCTCCCAATA	TTTTTTAATT	ATAAAATTG	GAAGTATAAA	8160
AAAATGTTG	CTTCATCTAA	AAATAGCCTT	TTTCACATGA	AAAAAATGAA	AAAAAAGTGC	8220
TCAAAATTTC	CAAGAATTTC	CAATTTCAA	ACAATTTGG	AGAACTTCA	AAAATTTTC	8280
CAACTGAAT	TAAGCTATA	TTCTATCACT	AAATTTATA	CAAGTCTAA	GAGAAAATGA	8340
TGAAGTGGCT	CATTTTGTAG	AATTTCCTAA	AAAATAATAT	CTTCAGGGCG	ATCACTGCTT	8400
CAACATTTCC	GCAATCAAAC	CATTCTGGG	ATGGCAAAA	TATTCGAATG	TATCAGCGAC	8460
TCTATACCGT	TCACTTGAC	ATATGCCATG	GAATCAATCA	GATGTTGATG	AGAATGCAGC	8520
TGTTCTTGC	TATAATGGAC	AACTATGGAA	TCAAAGCCTT	TTGCATCAAG	TCAAATTGAA	8580
TGCGGTAAG	TATTATAAGT	GTTTTGTCCA	AACTATGATA	CAGTTCTCA	GATAIGGAGA	8640
ACACTTCGTG	CCACTCGAGA	TGCCGCATT	TCAGTTCGTG	ACAAGCCGG	ACACACTTTG	8700
AAATTCTCGT	TGGAGAATGC	TGTAGCTGTT	GATACAAGAG	ATAGACCTAT	TCTTGCAAGT	8760
CGTGAATTG	TTGGTAAGAG	TAACAAACGAC	TATTTTTAAA	AAATATCTT	TCGAAAAAAA	8820
TTACGAAACGA	AAAAAAACTG	TATTATGTAC	CCAAACGCGA	AATTTTGAG	TTCTGCGCG	8880
TTCTTGTG	AAAAAAATAT	GTAAAAAAATT	GGAAAAAACTA	CGAAAAGTCG	ATAAAATTC	8940
CGTACCAACC	GGAAAATGTT	TCATTAATT	CTCTTCCTT	TTTCAGCTCG	TTTGCTCAA	9000
GAGTACGCAG	GAGTATTG	TGATGCGTCA	TTTGTGAAGA	ATACATTAGA	TTTACAGGTA	9060
ACAACCTTAT	TTCAACAAATT	ATTTCAAAATT	CTATTAAAAA	TAATTCCAGG	CAGCTGCC	9120
TCTCCACTC	GGTTTCACTC	TTGCCGCCTC	ATTCGAACGC	AAACATTGAA	AAGGACTC	9180
AGATCGAGAA	GTTCATATT	TGGATAGATG	TTATTTGGGT	GGACAAACAGG	ATGTTGAGG	9240
ATTTGGCTTG	AATACTATG	GAGTGAAGTT	TAACGAAATT	CTCTTGAAAG	TCAAATAATC	9300
ATTTTCAGGT	TAAAGCAGAT	AACAGTTGTC	TTGGAGGAGG	TGCTTCAC	GCTGGTGTG	9360
TTCATTTGTA	TCGGCCATG	ATTCCACCAA	ATATGCTATT	TGCACACGCA	TTCCCTTG	9420
CTGGAAGTGT	TGCATCAGT	CATTCCAAA	ATTGGTGCA	ACAATTACAG	GATACTCAAC	9480
GAGTATCAGC	CGGATTG	GAGTTGAAA	TTAGGAAAC	ATTTGGATGAA	AATGTATTT	9540
TTAAAGATAG	ATCAGCTT	TTTATTGAA	AAAAAACGCT	CATTAATCAA	TAGTGATAGT	9600
TCCATTCTGA	GTTTCTCTT	CTTCTCGCG	GAATACAATT	TTTGACTTGT	TCGCATC	9660
CTTGTGTACT	TTGTACCAA	TCTTCATC	AACTAAATCT	CGAAACTGAA	AAAATTC	9720
AATTATTC	AAAAATATG	ATGCAGACTA	CCCTTTTGAT	GGCTTCTGGT	ACGTTTCTAG	9780
CGTGAATGG	ATTGGCTCT	CCAATTAATT	AAAGTCTGTT	CGGTAGTTA	GCCAGACGGA	9840
CGGTGTGCTT	CAACATT	CTAATTAATC	TATTCAATT	CAAGTCAC	ACTCTCTC	9900
GACGTCTTCT	TCTATATTC	AAAGACTCTG	CAGAAAATCC	GTGTCCGCT	TGTGTGTT	9960
TAGTTGGCGT	CGGAGGATTC	ACGGGTC	AAAGCAATGGA	TGTCTAAAAA	ATGTTATATT	10020
TTTGCATAAA	GAAAACACCA	TACCTTCACC	ACTTTTGAG	TTGTGGCGT	TCTGAATGGA	10080
ATTGATCGAT	TATTATTGCT	CTTCTCTGAT	TTGCTTCTAT	CAGCTGCGTA	ATGAGGTGTT	10140
CTAAAGATCA	GCTTTAATC	ATTTGGACAA	GTGCTCCCT	AATAAAACCTA	CCCTGTACTC	10200
ATTTTGAAA	CGATTTACG	TGATAAGATT	GAAAGTGGAA	GTTAAATT	GTCTTCAA	10260
GTTGAAATAA	ATCTTCATA	AATAAATAAA	TTTAAATGAA	AGATTAATAA	AAITTAACGTT	10320
CACGTAGTTA	AAAAAAATAAT	TTAAATCTTA	ACTTCTAATA	AAAAATCTCA	ATTTTCCAGG	10380
ACTCGCATT	GTGTTCAAAA	GTATTTCCG	GCTGGAAC	AACTACACGT	ATCCATTGAA	10440
ATATGTGCTC	GGCGATTCT	TGCTCGGTG	ATTCCATATT	GGAGCTG	TCAACTTCTT	10500
GTAGAGATTA	ATTGGATGCA	AGCACCCCTC	AAAAAGATT	TTTGAAAAAA	CGATAAAATTC	10560
ACAGAAATTTC	AGTTCTT	CTCCCCCTT	TATTGTTATT	TTCATCGTA	TGCTGTGCTA	10620
GAAGTCAGAG	TAATATGAG	TTTTTTG	TTCTAGGAAT	TCCATT	CAGGAAGCAA	10680
ATTTAATAAA	AATTATCGAA	TTTCTGCTC	AAAGATGTT	GTACATT	TGAAATGTT	10740
CGTATAGTAA	TCGAAACACT	TTATATTCT	CGTTTAAA	CTGTCGGTGT	TTTATAGTAA	10800

ACTATCTTCA GAAAAAAATG AGCCTACGAA AAATCAATT CGTAACTGGA AACGTGAAGA 10860
 AGCTTGAAGA AGTCAAGGCT ATTTTGAAGA ATTCGAGGT AAAATATATT TGATATTATT 10920
 CGAACGCGAA ATTTTGCGCC AAAAGTACGA TGCCCTGGTCT CAACACGACA ATATTTGTT 10980
 AAATACAAAC GAATGTGCGC CTTCAAAGAA AGATTCAT 11040
 TTTTAGAGT TTTTGTAA ATTATATT TGTCGTATCG AAACCGGGTA CCGTAATCAA 11100
 TCAATTAAAT ATTTTCAGGT TTCAAACGTG GATGTCGATT TGGATGAATT CCAAGGAGAA 11160
 CCCGAATTAA TTGCCGAAAG AAAGTGCCTG GAGGCTGTTG AAGCTGAAA AGGGCCCGTT 11220
 TTGGTATGGA AAATTGTATT TGTTCTAAAA ATTGTCAAAT TTCAGGTGCA AGACACAAGT 11280
 TTATGCTTCA ACGCAATGGG CGGTCTTCCCT GGACCTTATA TCAAGTGTT TTTGAAGAAT 11340
 TTGAAACCAG AAGGACTAA TAATATGCTA GTTAAATATT TTAATTTTT GAAAAAAACTT 11400
 ATGTTTCAGC CGGATTTCT GACAAAACCG CCTATGCTCA ATGCATCTT GCGTACACTG 11460
 AAGGACTCGG AAAACCTATT CATGTATTG CTGGTATGAT TTTTGAAATT TAATTCTTA 11520
 ATTTTATATG TAAATTAGT TGTTCATTC CTCATTAT GAGAGATT TTTTCAATT 11580
 TTTCTATTTC AGGAAAATGT CCTGGTCAA TTGTTGCTCC ACGTGGTGT ACTGCTTTG 11640
 GATGGGATCC ATGCTTCCAG CCAGATGGT TTAAAGAAAC ATTCGGGAA ATGGATAAAG 11700
 ATGAAAAAA TGAAATTCT CATCGTGCAG AGGCTCTGGA ACTCCTCAAG GAATATTTC 11760
 AGATAATTAA ATTATTTT TCTCATCTAT GCAATTCTT GAAAATTGTA TAAGTTCCG 11820
 TTGTTATGCA TTGCTTTA TTAAAAAAA AAAGAATATT TTTACATTAA TATTAGATAT 11880
 GAGAAAAGAG TAATTCTGG ATTTAACCT TCCTACAAA GAATATTAT ATTTTTGTA 11940
 TGATTTTTA AAAATATCGT CAGGAAATAA TAACATTCA GATACCTACCT GAACCTACA 12000
 GTTATGATA TTCAGGAAAT TTCTGAAATT TCTGAAACCT TACAAAATGC GAACGGATCC 12060
 GATATTTC GTGATTTGGT GCACGGAAC CGGGAAAAGT GATCTGGAG TGGCAATTGC 12120
 AAAGAAATAT GGAGGAGAG TGATTAGTGT AGATTCAATG CAATTATATA AAGGTACATG 12180
 GGTTTGTGTT CAATTAAATAA TTAATTAAATT TTGTTTTTC AGGACTTGAC ATTGCCACGA 12240
 ATAAGATAAC GGAAGAAGAA TCTGAAGGGA TTCAACATCA TATGATGTCA TTTTGAATC 12300
 CACTCTGAATC ATCATCTTAT AATGTACATA GTTCCGAGA AGTCACGTT GATCTTATTA 12360
 AAGTCTTAA TTCGCCACTT TTGACTTG ATCTAATTTC TCATAATTTC CAGAAAATCC 12420
 GCGCCCGTTC AAAATTCTCT GTAAATTGTC GAGGAAACCAC TTATTATGCT GAAAGTGTCC 12480
 TTTATGAGAA TAATCTGATT GAAACCAACA CTTCAGATGA CGTGGATTCC AAATCGAGAA 12540
 CATCATCAGA ATCGTCATCT GAAGACACTG AAGAAGGAAT TAGTAATCAA GAATTATGGG 12600
 ATGAATTGAA AAAATCGAC GAAAATCGA CACTTCTTCT ACATCCAAT AATCGTTATC 12660
 GAGTACAGAG AGCATTGCAA ATTTTCAAGAG AAACCTGGTAA TTGATTGCA AATTCCAGA 12720
 TTAAAAACAA ATCAAGTAA GTTTTGTGCA GGAATCCGAA AAAGTGAAT TGTGAAAAAA 12780
 CAGAAATCAG ATGAAACTGT TGATTGGGT GGACGACTAC GATTGATAA TTCTTGTGTT 12840
 ATTTTTATGG ATGCAACACC TGAAGTTTA GAAGAAAGAC TTGATGAAAG AGTTGATAAA 12900
 ATGATTAAAT TGGTTGAA GAATGAATTG ATCGAGTTT ATAACGAGGT AAATATTGAA 12960
 ATTTTCCAG AAAAAAAAG AAAATTTTT ATTATTTGT TTTTTTCA TTCTTACTA 13020
 TTTTCCAAA AAGTTTAAAC TTTGAAAC TGTTCAGAAA ATGTCGTGT ATTTATTTA 13080
 GCTTACTGAG GCATTATTTC ATGTTGATT TTACTATAC CTATAACTA AATTTCAGC 13140
 ACGCCGAGTA CATAAACATC AGCAAAATATG GTGTCATGCA ATGTTGGGT CTTAAAAGAAT 13200
 TCGTTCATG GCTCAATTG GACCCATCG AAAGAGATAC ACTCAATGG GATAATTGT 13260
 TCAAGCAAGG GTAATTAAAT TTGTTTCA ATTTTATAA ATTCCAAGCT ATTTTCAGAT 13320
 GCGATGATGT GAAGCTTCAC ACTCGACAAT ATGCACGGCG CCAGAGACGG TGGTATCGAT 13380
 CGAGACTTTT AAAACGGTCG GATGGTGATC GGGTATGTTG ATTTAAAGAATT AATTGAATT 13440
 TTAAAAGAATCT TTTTACTAA ATTAACAAAG TTATGGCTG AAAATGGCT AAAATTATAG 13500
 TAAAACATAAT CAAAAAAAT GAAATTGAA ATTAAAGTCA TAAAGTGACG ACCAGAAAAT 13560
 TAAAAAAAT CATTTCCTA TTTAATTAA TTCACTCTAC TTCACTTAA AAATAATTTC 13620
 CAGAAAATGG CAAGTACAA AATGCTGGAT ACATCTGACA AGTACCGAAT ATTAGTGAT 13680
 GGAATGGACA TTGTTGATCA ATGGATGAAT GGAAATCGATC TATTGAGA TGAAAATTT 13740
 CACAAATTCT AAAATTCCG AATCACAAAT TAAAATTCT ACAGATCTCC ACAGACACCA 13800
 ATCCAATTCT AAAAGGGTCC GATGCAATAA TTCTGCTGA TTGTAATTC TGTAATATT 13860
 CAATGACTGG AAAAGATAAT TGGTTGTTT CAATACATAT TATAATTGCA AAATGAATT 13920
 TTTCAGGCAG AAACATATCG ATGGAAAAAA GCACAAGCAT CATGCTAAGC AAAAGAAATT 13980
 GGCAGAGACT CGCACATAAG ACGCTATATT TATTTTTGT TAACTTAAT TATTTTTGTT 14040
 GTTGATTGTT CTCTAAATAA AAAAACAGCT CAGAGAGAAG ATTAGGCGCT CGTCCACATC 14100
 TCCGACGATA GTCAACCCGA ACGAAGGAA CTATCTTAA TTGTCAGTGA TGACGTCATG 14160
 TCGTCAAGAA CTCGTCTAG CTGTGAGAAT TGAACCATTA TAGATTGGA CATTAGTTA 14220
 GTTATATCC AGTACACTAA ATGGTACATG ATAGACAGT TACATTACAGA GATTATAGA 14280
 TTGTCAGT GACTAGTTAC CGGAAGAGGA GAGGAGAACCA TGTGGCGATG TCTTTGGAT 14340

CGATATTATT CCGTCTGAAA ATTGTTCACT AGGGGGACTG CCGATTACCA CTTCACATGA 14400
CGGAACATGT TAGTTAAAT ATTGGCTTT ATACACATT TCAAAATAGC ACCTGTAT 14458

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 430 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Ile Phe Arg Lys Phe Leu Asn Phe Leu Lys Pro Tyr Lys Met Arg
1 5 10 15
Thr Asp Pro Ile Ile Phe Val Ile Gly Cys Thr Gly Thr Gly Lys Ser
20 25 30
Asp Leu Gly Val Ala Ile Ala Lys Lys Tyr Gly Gly Glu Val Ile Ser
35 40 45
Val Asp Ser Met Gln Phe Tyr Lys Gly Leu Asp Ile Ala Thr Asn Lys
50 55 60
Ile Thr Glu Glu Glu Ser Glu Gly Ile Gln His His Met Met Ser Phe
65 70 75 80
Leu Asn Pro Ser Glu Ser Ser Tyr Asn Val His Ser Phe Arg Glu
85 90 95
Val Thr Leu Asp Leu Ile Lys Lys Ile Arg Ala Arg Ser Lys Ile Pro
100 105 110
Val Ile Val Gly Gly Thr Thr Tyr Tyr Ala Glu Ser Val Leu Tyr Glu
115 120 125
Asn Asn Leu Ile Glu Thr Asn Thr Ser Asp Asp Val Asp Ser Lys Ser
130 135 140
Arg Thr Ser Ser Glu Ser Ser Glu Asp Thr Glu Glu Gly Ile Ser
145 150 155 160
Asn Gln Glu Leu Trp Asp Glu Leu Lys Lys Ile Asp Glu Lys Ser Ala
165 170 175
Leu Leu Leu His Pro Asn Asn Arg Tyr Arg Val Gln Arg Ala Leu Gln
180 185 190
Ile Phe Arg Glu Thr Gly Ile Arg Lys Ser Glu Leu Val Glu Lys Gln
195 200 205
Lys Ser Asp Glu Thr Val Asp Leu Gly Gly Arg Leu Arg Phe Asp Asn
210 215 220
Ser Leu Val Ile Phe Met Asp Ala Thr Pro Glu Val Leu Glu Glu Arg
225 230 235 240
Leu Asp Gly Arg Val Asp Lys Met Ile Lys Leu Gly Leu Lys Asn Glu
245 250 255
Leu Ile Glu Phe Tyr Asn Glu His Ala Glu Tyr Ile Asn His Ser Lys
260 265 270
Tyr Gly Val Met Gln Cys Ile Gly Leu Lys Glu Phe Val Pro Trp Leu
275 280 285
Asn Leu Asp Pro Ser Glu Arg Asp Thr Leu Asn Gly Asp Lys Leu Phe
290 295 300
Lys Gln Gly Cys Asp Asp Val Lys Leu His Thr Arg Gln Tyr Ala Arg
305 310 315 320
Arg Gln Arg Arg Trp Tyr Arg Ser Arg Leu Leu Lys Arg Ser Asp Gly
325 330 335

Asp Arg Lys Met Ala Ser Thr Lys Met Leu Asp Thr Ser Asp Lys Tyr
 340 345 350
 Arg Ile Ile Ser Asp Gly Met Asp Ile Val Asp Gln Trp Met Asn Gly
 355 360 365
 Ile Asp Leu Phe Glu Asp Ile Ser Thr Asp Thr Asn Pro Ile Leu Lys
 370 375 380
 Gly Ser Asp Ala Asn Ile Leu Leu Asn Cys Glu Ile Cys Asn Ile Ser
 385 390 395 400
 Met Thr Gly Lys Asp Asn Trp Gln Lys His Ile Asp Gly Lys Lys His
 405 410 415
 Lys His His Ala Lys Gln Lys Lys Leu Ala Glu Thr Arg Thr
 420 425 430

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2041 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CTGCCATAAG	ATGGCGTCCG	TGGCGGCTGC	ACGAGCAGTT	CCTGTGGGCA	GTGGGCTCAG	60
GGGCCTGCAA	CGGACCTAC	CTCTTGAGT	GATTCTCGGG	GCCACGGGCA	CCGGCAAATC	120
CACGCTGGCG	TTGCAGCTAG	GCCAGCGGCT	CGGGCGTGAG	ATCGTCAGCG	CTGACTCCAT	180
GCAGGTCTAT	GAAGGCTTAG	ACATCATCAC	CAACAAGGTT	TCTGCCAACG	AGCAGAGAAAT	240
CTGCCGGCAC	CACATGATCA	GCTTTGTGGA	TCCTCTTGTG	ACCAATTACA	CAGTGGTGGA	300
CTTCAGAAAT	AGAGCAACTG	CTCTGATTGA	AGATATATT	GCCCCGAGACA	AAATTCCTAT	360
TGTTGTGGGA	GGAAACCAATT	ATTACATTGA	ATCTCTGCTC	TGGAAAGTTC	TTGTCAATAC	420
CAAGCCCCAG	GAGATGGGCA	CTGAGAAAAGT	GATTGACCGA	AAAGTGGAGC	TTGAAAAGGA	480
GGATGGTCTT	GTACTTCACA	AAACGCTTAAG	CCAGGTGGAC	CCAGAAATGG	CTGCCAAGCT	540
GCATCCACAT	GACAAACGCA	AACTGGCCAG	GAGCTTGCAA	GTTTTGAAAG	AAACAGGAAT	600
CTCTCATAGT	GAATTCTCCT	ATCGTCAACA	TACGGAAGAA	GGTGGTGGTC	CCCTTGGAGG	660
TCCCTCTGAAG	TTCTCTAAC	CTTGCATCCT	TTGGCTTCAT	GCTGACCCAGG	CAGTTCTAGA	720
TGAGCGCTTG	GATAAGAGGG	TGGATGACAT	GCTTGTCTG	GGGCTCTGG	AGGAACAAAG	780
AGATTTTCAC	AGACGCTATA	ATCAGAAGAA	TGTTTCGGA	AATAGCCAGG	ACTATCAACA	840
TGGTATCTTC	CAATCAATTG	GCTTCAGGAA	ATTTCACGAG	TACCTGATCA	CTGAGGGAAA	900
ATGCACACTG	GAGACTAGTA	ACCAGCTCT	AAAGAAAGGA	CCTGGTCCC	TTGTCCCCCCC	960
TGTCTATGGC	TTAGAGGTAT	CTGATGTCTC	GAAGTGGGAG	GAGTGTGTT	TTGAACCTGC	1020
TCTTGAATC	GTGCAAAGTT	TCATCCAGGG	CCACAAGCCT	ACAGCCACTC	CAATAAAGAT	1080
GCCATACAAT	GAAGCTGAGA	ACAAGAGAAAG	TTATCACCTG	TGTGACCTCT	GTGATCGAAT	1140
CATCATTGGG	GATCGCGAAT	GGGCAGCGCA	CATAAAATCC	AAATCCACT	TGAACCAACT	1200
GAAGAAAAGA	AGAAGATTGG	ACTCAGATGC	TGTCAACACC	ATAGAAAAGTC	AGAGTGTTC	1260
CCCAAGACTAT	AAACAAAGAAC	CTAAAGGGAA	GGGATCCCCA	GGGCAGAAATG	ATCAAGAGCT	1320
GAAATGCAGC	GTTTAAGAGA	CATGTCCAGT	GGCCTTTGGA	AAGGTGGTGG	GGATCCAGTT	1380
CAGGAGGGAG	GGGTATGTTT	GTCTCCCACT	CTGGGCAAAG	GAGTGCTATG	CGGAATTCTC	1440
TGCATAGCAG	AAAAGCTCCC	ACCATTTCT	TTTGATGTGG	TTTAAAGTC	TCACGTTCTC	1500
TATAATAGAA	ACAGCAGGTC	TTGTCAGCTC	CTTGTGTGGC	TGATGTGTC	GGAAATGATG	1560
TAGTTCAAGGA	AAGCATTTC	TTTTCTTTG	AACCTTAAAG	GTTCTATTAT	AAAAAGCAGC	1620
ACAGATTCCA	CATTTTATA	CATGAGGATC	TTCTTTGTGG	TGAATACCAG	GATTGACTGC	1680
ATCCCCTTAA	AAGAAGTTT	ATGTCCTG	CTCTGGCTAA	AATTATCTAA	TTTCCAGATG	1740
CTTTTGTAGA	TGACTGAAGT	ATTTGTGAGC	CACATATTGG	GAGTTCTAGA	TTTGAGTGAA	1800
TGGCAGGAAA	GGGCCATCTC	CATTGAGATG	ATTAAGTGAA	CCAAACTAGT	TCTCGGAATT	1860
CTACAGAGAA	GGAGGGAAATC	AGACTGAGGA	AGCTGTGACA	TAGGACTTGA	AGACCAAAGA	1920
CTTTGAAATT	TGCGAGCTG	TCATGTGTGA	GTTATTATCA	CTGCTGTCTT	TCTATTGAGT	1980

TACAAATCTA TATTTTATT GAAGTTAAA TAAAGAAAAA ATTTACAAGA AAAAAAAA 2040
A 2041

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 892 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Phe Arg Lys Leu Gly Ser Ser Gly Ser Leu Trp Lys Pro Lys Asn
1 5 10 15
Pro His Ser Leu Glu Tyr Leu Lys Tyr Leu Gln Gly Val Leu Thr Lys
20 25 30
Asn Glu Lys Val Thr Glu Asn Asn Lys Lys Ile Leu Val Glu Ala Leu
35 40 45
Arg Ala Ile Ala Glu Ile Leu Ile Trp Gly Asp Gln Asn Asp Ala Ser
50 55 60
Val Phe Asp Phe Phe Leu Glu Arg Gln Met Leu Leu Tyr Phe Leu Lys
65 70 75 80
Ile Met Glu Gln Gly Asn Thr Pro Leu Asn Val Gln Leu Leu Gln Thr
85 90 95
Leu Asn Ile Leu Phe Glu Asn Ile Arg His Glu Thr Ser Leu Tyr Phe
100 105 110
Leu Leu Ser Asn Asn His Val Asn Ser Ile Ile Ser His Lys Phe Asp
115 120 125
Leu Gln Asn Asp Glu Ile Met Ala Tyr Tyr Ile Ser Phe Leu Lys Thr
130 135 140
Leu Ser Phe Lys Leu Asn Pro Ala Thr Ile His Phe Phe Asn Glu
145 150 155 160
Thr Thr Glu Glu Pro Leu Leu Val Glu Val Leu Lys Leu Tyr Asn
165 170 175
Trp Asn Glu Ser Met Val Arg Ile Ala Val Arg Asn Ile Leu Leu Asn
180 185 190
Ile Val Arg Val Gln Asp Asp Ser Met Ile Ile Phe Ala Ile Lys His
195 200 205
Thr Lys Glu Tyr Leu Ser Glu Leu Ile Asp Ser Leu Val Gly Leu Ser
210 215 220
Leu Glu Met Asp Thr Phe Val Arg Ser Ala Glu Asn Val Leu Ala Asn
225 230 235 240
Arg Glu Arg Leu Arg Gly Lys Val Asp Asp Leu Ile Asp Leu Ile His
245 250 255
Tyr Ile Gly Glu Leu Leu Asp Val Glu Ala Val Ala Glu Ser Leu Ser
260 265 270
Ile Leu Val Thr Thr Arg Tyr Leu Ser Pro Leu Leu Leu Ser Ser Ile
275 280 285
Ser Pro Arg Arg Asp Asn His Ser Leu Leu Leu Thr Pro Ile Ser Ala
290 295 300
Leu Phe Phe Phe Ser Glu Phe Leu Leu Ile Val Arg His His Glu Thr
305 310 315 320
Ile Tyr Thr Phe Leu Ser Ser Phe Leu Phe Asp Thr Gln Asn Thr Leu
325 330 335

Thr Thr His Trp Ile Arg His Asn Glu Lys Tyr Cys Leu Glu Pro Ile
340 345 350
Thr Leu Ser Ser Pro Thr Gly Glu Tyr Val Asn Glu Asp His Val Phe
355 360 365
Phe Asp Phe Leu Leu Glu Ala Phe Asp Ser Ser Gln Ala Asp Asp Ser
370 375 380
Lys Ala Phe Tyr Gly Leu Met Leu Ile Tyr Ser Met Phe Gln Asn Asn
385 390 395 400
Ala Asp Val Gly Glu Leu Leu Ser Ala Ala Asn Phe Pro Val Leu Lys
405 410 415
Glu Ser Thr Thr Ser Leu Ala Gln Gln Asn Leu Ala Arg Leu Arg
420 425 430
Ile Ala Ser Thr Ser Ser Ile Ser Lys Arg Thr Arg Ala Ile Thr Glu
435 440 445
Ile Gly Val Glu Ala Thr Glu Glu Asp Glu Ile Phe His Asp Val Pro
450 455 460
Glu Glu Gln Thr Leu Glu Asp Leu Val Asp Asp Val Leu Val Asp Thr
465 470 475 480
Glu Asn Ser Ala Ile Ser Asp Pro Glu Pro Lys Asn Val Glu Ser Glu
485 490 495
Ser Arg Ser Arg Phe Gln Ser Ala Val Asp Glu Leu Pro Pro Pro Ser
500 505 510
Thr Ser Gly Cys Asp Gly Arg Leu Phe Asp Ala Leu Ser Ser Ile Ile
515 520 525
Lys Ala Val Gly Thr Asp Asp Asn Arg Ile Arg Pro Ile Thr Leu Glu
530 535 540
Leu Ala Cys Leu Val Ile Arg Gln Ile Leu Met Thr Val Asp Asp Glu
545 550 555 560
Lys Val His Thr Ser Leu Thr Lys Leu Cys Phe Glu Val Arg Leu Lys
565 570 575
Leu Leu Ser Ser Ile Gly Gln Tyr Val Asn Gly Glu Asn Leu Phe Leu
580 585 590
Glu Trp Phe Glu Asp Glu Tyr Ala Glu Phe Glu Val Asn His Val Asn
595 600 605
Phe Asp Ile Ile Gly His Glu Met Leu Leu Pro Pro Ala Ala Thr Pro
610 615 620
Leu Ser Asn Leu Leu His Lys Arg Leu Pro Ser Gly Phe Glu Glu
625 630 635 640
Arg Ile Arg Thr Gln Ile Val Phe Tyr Leu His Ile Arg Lys Leu Glu
645 650 655
Arg Asp Leu Thr Gly Glu Gly Asp Thr Glu Leu Pro Val Arg Val Leu
660 665 670
Asn Ser Asp Gln Glu Pro Val Ala Ile Gly Asp Cys Ile Asn Leu His
675 680 685
Asn Ser Asp Leu Leu Ser Cys Thr Val Val Pro Gln Gln Leu Cys Ser
690 695 700
Leu Gly Lys Pro Gly Asp Arg Leu Ala Arg Phe Leu Val Thr Asp Arg
705 710 715 720
Leu Gln Leu Ile Leu Val Glu Pro Asp Ser Arg Lys Ala Gly Trp Ala
725 730 735
Ile Val Arg Phe Val Gly Leu Leu Gln Asp Thr Thr Ile Asn Gly Asp
740 745 750
Ser Thr Asp Ser Lys Val Leu His Val Val Val Glu Gly Gln Pro Ser
755 760 765
Arg Ile Lys Lys Arg His Pro Val Leu Thr Ala Lys Phe Ile Phe Asp
770 775 780
Asp His Ile Arg Cys Met Ala Ala Lys Gln Arg Leu Thr Lys Gly Arg
785 790 795 800

Gln Thr Ala Arg Gly Leu Lys Leu Gln Ala Ile Cys Ser Ala Leu Gly
 805 810 815
 Val Pro Arg Ile Asp Pro Ala Thr Met Thr Ser Ser Pro Arg Met Asn
 820 825 830
 Pro Phe Arg Ile Val Lys Gly Cys Ala Pro Gly Ser Val Arg Lys Thr
 835 840 845
 Val Ser Thr Ser Ser Ser Gln Gly Arg Pro Gly His Tyr Ser
 850 855 860
 Ala Asn Leu Arg Ser Ala Ser Arg Asn Ala Gly Met Ile Pro Asp Asp
 865 870 875 880
 Pro Thr Gln Pro Ser Ser Ser Glu Arg Arg Ser
 885 890

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 355 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Met Ala Glu Lys Ala Glu Asn Leu Pro Ser Ser Ala Glu Ala Ser
 1 5 10 15
 Glu Glu Pro Ser Pro Gln Thr Gly Pro Asn Val Asn Gln Lys Pro Ser
 20 25 30
 Ile Leu Val Leu Gly Met Ala Gly Ser Gly Lys Thr Thr Phe Val Gln
 35 40 45
 Arg Leu Thr Ala Phe Leu His Ala Arg Lys Thr Pro Pro Tyr Val Ile
 50 55 60
 Asn Leu Asp Pro Ala Val Ser Lys Val Pro Tyr Pro Val Asn Val Asp
 65 70 75 80
 Ile Arg Asp Thr Val Lys Tyr Lys Glu Val Met Lys Glu Phe Gly Met
 85 90 95
 Gly Pro Asn Gly Ala Ile Met Thr Cys Leu Asn Leu Met Cys Thr Arg
 100 105 110
 Phe Asp Lys Val Ile Glu Leu Ile Asn Lys Arg Ser Ser Asp Phe Ser
 115 120 125
 Val Cys Leu Leu Asp Thr Pro Gly Gln Ile Glu Ala Phe Thr Trp Ser
 130 135 140
 Ala Ser Gly Ser Ile Ile Thr Asp Ser Leu Ala Ser Ser His Pro Thr
 145 150 155 160
 Val Val Met Tyr Ile Val Asp Ser Ala Arg Ala Thr Asn Pro Thr Thr
 165 170 175
 Phe Met Ser Asn Met Leu Tyr Ala Cys Ser Ile Leu Tyr Arg Thr Lys
 180 185 190
 Leu Pro Phe Ile Val Val Phe Asn Lys Ala Asp Ile Val Lys Pro Thr
 195 200 205
 Phe Ala Leu Lys Trp Met Gln Asp Phe Glu Arg Phe Asp Glu Ala Leu
 210 215 220
 Glu Asp Ala Arg Ser Ser Tyr Met Asn Asp Leu Ser Arg Ser Leu Ser
 225 230 235 240
 Leu Val Leu Asp Glu Phe Tyr Cys Gly Leu Lys Thr Val Cys Val Ser
 245 250 255

Ser Ala Thr Gly Glu Gly Phe Glu Asp Val Met Thr Ala Ile Asp Glu
 260 265 270
 Ser Val Glu Ala Tyr Lys Lys Glu Tyr Val Pro Met Tyr Glu Lys Val
 275 280 285
 Leu Ala Glu Lys Lys Leu Leu Asp Glu Glu Arg Lys Lys Arg Asp
 290 295 300
 Glu Glu Thr Leu Lys Gly Lys Ala Val His Asp Leu Asn Lys Val Ala
 305 310 315 320
 Asn Pro Asp Glu Phe Leu Glu Ser Glu Leu Asn Ser Lys Ile Asp Arg
 325 330 335
 Ile His Leu Gly Gly Val Asp Glu Glu Asn Glu Glu Asp Ala Glu Leu
 340 345 350
 Glu Arg Ser
 355

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 434 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Ser Glu Lys Thr Phe His Lys Ala Gln Thr Ile Arg Ala Lys Ala
 1 5 10 15
 Ser Gly Val Pro Ser Ile Val Glu Ala Val Gln Phe His Gly Val Arg
 20 25 30
 Ile Thr Lys Asn Asp Ala Leu Val Lys Glu Val Ser Glu Leu Tyr Arg
 35 40 45
 Ser Lys Asn Leu Asp Glu Leu Val His Asn Ser His Leu Ala Ala Arg
 50 55 60
 His Leu Gln Glu Val Gly Leu Met Asp Asn Ala Val Ala Leu Ile Asp
 65 70 75 80
 Thr Ser Pro Ser Ser Asn Glu Gly Tyr Val Val Asn Phe Leu Val Arg
 85 90 95
 Glu Pro Lys Ser Phe Thr Ala Gly Val Lys Ala Gly Val Ser Thr Asn
 100 105 110
 Gly Asp Ala Asp Val Ser Leu Asn Ala Gly Lys Gln Ser Val Gly Gly
 115 120 125
 Arg Gly Glu Ala Ile Asn Thr Gln Tyr Thr Tyr Val Lys Gly Asp
 130 135 140
 His Cys Phe Asn Ile Ser Ala Ile Lys Pro Phe Leu Gly Trp Gln Lys
 145 150 155 160
 Tyr Ser Asn Val Ser Ala Thr Leu Tyr Arg Ser Leu Ala His Met Pro
 165 170 175
 Trp Asn Gln Ser Asp Val Asp Glu Asn Ala Ala Val Leu Ala Tyr Asn
 180 185 190
 Gly Gln Leu Trp Asn Gln Lys Leu Leu His Gln Val Lys Leu Asn Ala
 195 200 205
 Ile Trp Arg Thr Leu Arg Ala Thr Arg Asp Ala Ala Phe Ser Val Arg
 210 215 220
 Glu Gln Ala Gly His Thr Leu Lys Phe Ser Leu Glu Asn Ala Val Ala
 225 230 235 240

Val Asp Thr Arg Asp Arg Pro Ile Leu Ala Ser Arg Gly Ile Leu Ala
 245 250 255
 Arg Phe Ala Gln Glu Tyr Ala Gly Val Phe Gly Asp Ala Ser Phe Val
 260 265 270
 Lys Asn Thr Leu Asp Leu Gln Ala Ala Ala Pro Leu Pro Leu Gly Phe
 275 280 285
 Ile Leu Ala Ala Ser Phe Gln Ala Lys His Leu Lys Gly Leu Gly Asp
 290 295 300
 Arg Glu Val His Ile Leu Asp Arg Cys Tyr Leu Gly Gly Gln Gln Asp
 305 310 315 320
 Val Arg Gly Phe Gly Leu Asn Thr Ile Gly Val Lys Ala Asp Asn Ser
 325 330 335
 Cys Leu Gly Gly Ala Ser Leu Ala Gly Val Val His Leu Tyr Arg
 340 345 350
 Pro Leu Ile Pro Pro Asn Met Leu Phe Ala His Ala Phe Leu Ala Ser
 355 360 365
 Gly Ser Val Ala Ser Val His Ser Lys Asn Leu Val Gln Gln Leu Gln
 370 375 380
 Asp Thr Gln Arg Val Ser Ala Gly Phe Gly Leu Ala Phe Val Phe Lys
 385 390 395 400
 Ser Ile Phe Arg Leu Glu Leu Asn Tyr Thr Tyr Pro Leu Lys Tyr Val
 405 410 415
 Leu Gly Asp Ser Leu Leu Gly Gly Phe His Ile Gly Ala Gly Val Asn
 420 425 430
 Phe Leu

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 198 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Met Leu Tyr Ile Leu Trp Lys Leu Asn Tyr Leu Gln Lys Lys Met Ser
 1 5 10 15
 Leu Arg Lys Ile Asn Phe Val Thr Gly Asn Val Lys Lys Leu Glu Glu
 20 25 30
 Val Lys Ala Ile Leu Lys Asn Phe Glu Val Ser Asn Val Asp Val Asp
 35 40 45
 Leu Asp Glu Phe Gln Gly Glu Pro Glu Phe Ile Ala Glu Arg Lys Cys
 50 55 60
 Arg Glu Ala Val Glu Ala Val Lys Gly Pro Val Leu Val Glu Asp Thr
 65 70 75 80
 Ser Leu Cys Phe Asn Ala Met Gly Gly Leu Pro Gly Pro Tyr Ile Lys
 85 90 95
 Trp Phe Leu Lys Asn Leu Lys Pro Glu Gly Leu His Asn Met Leu Ala
 100 105 110
 Gly Phe Ser Asp Lys Thr Ala Tyr Ala Gln Cys Ile Phe Ala Tyr Thr
 115 120 125
 Glu Gly Leu Gly Lys Pro Ile His Val Phe Ala Gly Lys Cys Pro Gly
 130 135 140
 Gln Ile Val Ala Pro Arg Gly Asp Thr Ala Phe Gly Trp Asp Pro Cys
 145 150 155 160

Phe Gln Pro Asp Gly Phe Lys Glu Thr Phe Gly Glu Met Asp Lys Asp
165 170 175
Val Lys Asn Glu Ile Ser His Arg Ala Lys Ala Leu Glu Leu Leu Lys
180 185 190
Glu Tyr Phe Gln Asn Asn
195

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

CGAACACTTT ATATTTCTCG

20

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

GATAGTTCCC TTCGTTCGGG

20

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

TTTCTGGATT TTAACCTTCC

20

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:
TTTCCGAGAA GTCACGTTGG

20

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
TACAGGAATT TTTGAACGGG

20

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:
CTTCAGATGA CGTGGATTCC

20

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:
GGAATCCGAA AAAGTGAACT

20

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:
AAGAGATACA CTCAATGGGG

20

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

ATCGATACCA CCGTCTCTGG

20

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

TTGAATCTAC ACTAACACC

20

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

CCAATTATCT TTTCCAGTCA

20

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

ACATTATAAA GTTACTGTCC

20

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

TTTTAGTTAA AGCATTGACC

20

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

ACATCTTTAT CCATTTCTCC

20

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

TGCAAAGGCT CTGGAACTCC

20

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

AAAAACCCT TGATATAAGG

20

(2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

CATCCAAAAG CAGTATCACCC

20

(2) INFORMATION FOR SEQ ID NO:25:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

TTAATTGGAT GCAAGCACCC C

21

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

ATTACTATAAC GAACATTTCC

20

(2) INFORMATION FOR SEQ ID NO:27:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

TTGTAAAGGC GTTAGTTGG

20

(2) INFORMATION FOR SEQ ID NO:28:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

CAGGAGTATT TGGTGATGCG

20

(2) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

CGACGGGGAG AAGGTGACGG

20

(2) INFORMATION FOR SEQ ID NO:30:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

AAAACTTCTA CCAACAATGG

20

(2) INFORMATION FOR SEQ ID NO:31:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

CGTAATCTCT CTCGATTAGC

20

(2) INFORMATION FOR SEQ ID NO:32:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

CCGTGGGATG GCTACTTGCC

20

(2) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

TGGATTGTG GCACGAGCGG

20

(2) INFORMATION FOR SEQ ID NO:34:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

TTGATTGCCT CTCCTCGTCC

20

(2) INFORMATION FOR SEQ ID NO:35:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

ATCAACATCT GATTGATTCC

20

(2) INFORMATION FOR SEQ ID NO:36:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 32 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

CAGCGAGCGC ATGCAACTAT ATATTGAGCA GG

32

(2) INFORMATION FOR SEQ ID NO:37:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 41 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

AATAAAATATT TAAATATTCA GATATACCTT GAACTCTACA G

41

(2) INFORMATION FOR SEQ ID NO:38:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 45 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

AAACTGTAGA GTTCAGGGTA TATCTGAATA TTTAAATATT TATTC

45

(2) INFORMATION FOR SEQ ID NO:39:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 34 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

GTACGTGGAG CTCTGCAACT ATATATTGAG CAGG

34

(2) INFORMATION FOR SEQ ID NO:40:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 32 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

ATGACACTGC AGGATAGTTC CCTTCGTTCG GG

32

(2) INFORMATION FOR SEQ ID NO:41:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

GTGTTGCATC AGTTCATTCC

20

(2) INFORMATION FOR SEQ ID NO:42:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

GCTGTGCTAG AAGTCAGAGG

20

(2) INFORMATION FOR SEQ ID NO:43:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

GTTCTCCTTG GAATTCATCC

20

(2) INFORMATION FOR SEQ ID NO:44:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 32 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

AGTATATCTA GATGTGCGAG TCTCTGCCAA TT

32

(2) INFORMATION FOR SEQ ID NO:45:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

AGTAATTGTA CATTAGTGG

20

(2) INFORMATION FOR SEQ ID NO:46:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

ATTAACCTTA CTTACTTACC

20

(2) INFORMATION FOR SEQ ID NO:47:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

CTAAACTAAG TAATATAACC

20

(2) INFORMATION FOR SEQ ID NO:48:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

GTTGATTCTT TGAGCACTGG

20

(2) INFORMATION FOR SEQ ID NO:49:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

AATTCGACCA ATTACATTGG

20

(2) INFORMATION FOR SEQ ID NO:50:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

AACATAGTTG TTGAGGAAGG

20

(2) INFORMATION FOR SEQ ID NO:51:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

AATTAATGGA GATTCTACGG

20

(2) INFORMATION FOR SEQ ID NO:52:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

TCAGCATCTA GAAATGCAGG

20

(2) INFORMATION FOR SEQ ID NO:53:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

CGAATGTCAA CATTCACTGG

20

(2) INFORMATION FOR SEQ ID NO:54:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

CTTAACCTGA TGTGTACTCG

20

(2) INFORMATION FOR SEQ ID NO:55:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

ATGAAGCTTT AGAGGGATGCC

20

(2) INFORMATION FOR SEQ ID NO:56:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

CGACGAATTT CTGGAGTCGG

20

(2) INFORMATION FOR SEQ ID NO:57:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

ACTGCATTAT CCATTAATCC

20

(2) INFORMATION FOR SEQ ID NO:58:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

CACCCAAATA ACATCTATCC

20

(2) INFORMATION FOR SEQ ID NO:59:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

TTAACCTCA TCTTCGCTGG

20

(2) INFORMATION FOR SEQ ID NO:60:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:

ATGTTCCGCA AGCTTGGTTC

20

(2) INFORMATION FOR SEQ ID NO:61:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

TTTAATTACC CAAGTTTGAG

20

(2) INFORMATION FOR SEQ ID NO:62:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

TTTTAACCCA GTTACTCAAG

20

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/CA 98/00803

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 6 C12N9/10 C12Q1/68 A01K67/027 //C12N15/62

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 6 C12N C12Q A01K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>WILSON R ET AL: "2.2 MB OF CONTIGUOUS NUCLEOTIDE SEQUENCE FROM CHROMOSOME III OF C ELEGANS" <i>NATURE</i>, vol. 368, no. 6466, 3 March 1994, pages 32-38, XP002029739 see the whole document -& DATABASE EMBL - CEZC395 Entry CEZC395, Acc.No. U13642, 30 November 1994</p> <p>WILSON, R. ET EL.: "Caenorhabditis elegans cosmid ZC395" XP002089006 see the whole document -& DATABASE EMBL - EMINV Entry CEC34E10, Acc.No. U10402, 30 June 1994</p> <p>WILSON, R. ET EL.: "Caenorhabditis elegans cosmid C34E10"</p>	1-7, 9, 11-15
Y	<p>-/-</p>	8

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
---	--

11 January 1999

22/01/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Smalt, R

INTERNATIONAL SEARCH REPORT

International Application No	
PCT/CA 98/00803	

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	XP002089545 see the whole document --- ADAMS M D ET AL: "INITIAL ASSESSMENT OF HUMAN GENE DIVERSITY AND EXPRESSION PATTERNS BASED UPON 83 MILLION NUCLEOTIDES OF cDNA SEQUENCE" NATURE, vol. 377, 28 September 1995, pages 3-17, XP002042918 see the whole document -& DATABASE EMBL - EMEST14 Entry HSZZ37212, Acc.No. AA332152, 18 April 1997 ADAMS, M.D. ET AL.: "EST36068 Embryo, 8 week I Homo sapiens cDNA 5' end similar to tRNA isopentenyltransferase." XP002089546 see the whole document -& DATABASE EMBL - EMEST14 Entry HSZZ61218, Acc.No. AA356092, 18 April 1997 ADAMS, M.D. ET AL.: "EST64588 Jurkat T-cells VI Homo sapiens cDNA 5' end similar to tRNA isopentenyltransferase." XP002089547 see the whole document --- 	8
A	LAKOWSKI, B. ET AL.: "Determination of life-span in <i>Caenorhabditis elegans</i> by four clock genes." SCIENCE, vol. 272, 17 May 1996, pages 1010-3, XP002089004 cited in the application see the whole document --- 	
A	EWBANK, J.J. ET AL.: "Structural and functional conservation of the <i>Caenorhabditis elegans</i> timing gene clk-1." SCIENCE, vol. 275, 14 February 1997, pages 980-3, XP002089005 cited in the application see the whole document --- 	
A	SPIETH, J. ET AL.: "Operon in <i>C. elegans</i> : polycistronic mRNA precursors are processed by trans-splicing of SL2 to downstream coding regions." CELL, vol. 73, 1993, pages 521-32, XP002089544 cited in the application see the whole document --- 	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/CA 98/ 00803

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
SEE FURTHER INFORMATION SHEET PCT/ISA/210
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking(Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Although claims 18-27 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

The claims 18-27, referring to compounds interfering with the enzymatic activity of the claimed proteins, could not be searched completely due to the lack of support of these compounds in the application.