Seminár 2

Téma

Prístup k riešeniu matematických úloh, typy dôkazov

Ciele

Prediskutovať so študentmi rôzne prístupy k riešeniu neznámych problémov, zopakovať a/alebo zoznámiť s typmi dôkazov používaných v matematike.

Úlohy a riešenia

Úloha 2.1. [ZM 43] V tramtárii chcú zaviesť novú základnú peňažnú jednotku: toliar. V spojitosti s reformou sa vynorila otázka: aké majú mať hodnoty mince, ktoré pripraví mincovňa? Starí obyvatelia Tramtárie považovali 3 a 5 za šťastné čísla. Preto popredný historik navrhol, aby sa obmedzili na razenie troj- a päťtoliarových mincí. Svoj návrh zdôvodňoval takto: troj- a päťtoliarovými mincami možno vyplatiť hociktorú celočíselnú sumu a to skoro vždy presne, bez vrátenia. Ten, kto peniaze dostáva, musí niečo vrátiť iba vtedy, ak je vyplácaná suma 1, 2, 4 alebo 7 toliarov. Bola by to pravda?

Riešenie*. Úloha nie je ľahká: ak je tvrdenie pravdivé, tak naraz treba pre všetky celé čísla dokázať, že toľko toliarov možno vyplatiť troj- a päťtoliarovými mincami (v prípade 1, 2, 4 a 7 s vydaním, inak bez neho) – a ak to nie je pravda, tak o nejakom celom čísle treba dokázať, že toľko toliarov nemožno nijakým spôsobom vyplatiť (v prípade 1, 2, 4 a 7 ani s vydaním, inak bez vydania).

O to posledné sa márne pokúšame: naopak, ak vezmeme hocijaké celé číslo, po väčšom alebo menšom počte pokusov vždy nájdeme nejaký spôsob výplaty. To poukazuje na to, že tvrdenie je asi pravdivé.

Ale v tom prípade bude najúčelnejšie, ak celé čísla berieme radom a s každým jednotlivo sa o to pokúsime.

Napríklad 1 toliar možno vyplatiť tak, že z dvoch kusov trojtoliarnikových mincí vydáme päťtoliarnikovú. Stručne:

$$1 = 2 \cdot 3 - 5.$$

Podobne

$$2 = 5 - 3$$
.

3 toliare možno vyplatiť jednou mincou. 4 toliare môžeme vyplatiť tak, že "zdvojnásobíme" 2 toliare:

$$4 = 2 \cdot 5 - 2 \cdot 3.$$

5 toliarov možno vyplatiť jednou mincou, 6 toliarov dvoma trojtoliarnikovými mincami. 7 = 3 + 4, preto 7 toliarov vyplatíme ako 4 toliare, ale pridáme navyše jednu trojtoliarovú mincu, teda vydáme o 1 menej:

$$7 = 2 \cdot 5 - 3.$$

8 toliarov zase môžeme vyplatiť zdvojnásobením 4, čiže $8 = 4 \cdot 5 - 4 \cdot 3$, to sa ale neoplatí, lebo existuje aj jednoduchší spôsob bez vydania:

$$8 = 5 + 3$$
.

Tým sme sa dostali k najdôležitejšej hranici: podľa tvrdenia totiž, začínajúc od hodnoty 8, výplatu možno vyplatiť aj bez vydania.

Pretože aj tak nemôžeme do nekonečna pokračovať v pokusoch o spôsobe výplaty jednotlivých súm, začínajúc nejakým číslom musíme nájsť takú súvislosť (vzťah), ktorá zabezpečuje, že v postupnosti môžeme aj ďalej pokračovať. Čiže ak nejakú sumu toliarov môžeme vyplatiť, samozrejme bez vydania, tak môžeme vyplatiť aj sumu o 1 toliar väčšiu.

Predstavme si, že na stôl sme vyložili sumu n toliarov, ale sa ukáže, že nie toľko, ale n+1 toliarov máme vyplatiť. Ako vieme sumu zväčšiť o 1 toliar, keď nemáme jednotolirovú mincu?

Videli sme, že

$$1 = 2 \cdot 3 - 5.$$

Ak teda zo sumy na stole vezmeme jednu päťtoliarnikovú mincu a nahradíme ju dvoma trojtoliarnikovými, dosiahli sme svoj cieľ.

No dobre, ale čo urobíme v prípade, keď v tej hromade mincí, ktorou sme pôvodne chceli vyplatiť n toliarov, nie je päťtoliarniková (napr. pre n=9 sme na stôl vyložili 3 trojtoliarnikové mince, alebo pre n=18 je tam 6 torjtoliarnikových).

Úloha 2.2. [ZM 44] K návrhu z predchádzajúcej úlohy došiel upravujúci návrh. Istý občan píše: Uznávam síce, že troj- a päťtoliarovými mincami možno opísaným spôsobom naozaj zaplatiť každú sumu, ale sú to primalé hodnoty. Navrhujem, aby sa razili radšej päť- a osemtoliarové mince. Je zrejmé – zdôvodňoval ďalej –, že berúc do úvahy aj výdavok z peňazí, všetko, čo možno vyplatiť 3 a 5 toliarmi, možno vyplatiť aj 5 a 8 toliarmi. Tiež je zrejmé, že od istého čísla – vlastne v prípade väčších súm toliarov – ani tu netreba vrátiť mince. Je to skutočne také zrejmé?

Úloha 2.3. [ZM 45] Diskusia, o ktorej sme v predchádzajúcich dvoch úlohách referovali, pokračovala aj ďalej. Boli aj takí, ktorí 5 a 8 toliarové mince považovali za primalé hodnoty a navrhovali väčšie. Návrhy na dve hodnoty toliarov boli napokon tieto:

- a) 8 a 13,
- b) 21 a 34,
- c) 144 a 233.

Autori všetkých troch návrhov tvrdili, že týmito dvojicami hodnôt možno vyplatiť hocikoľko (celočíselných) súm toliarov a keď vyplácaná suma je dosť veľká, tak netreba ani vrátiť peniaze. Tvrdenie ktorého z týchto autorov je správne a ktorého nie?

Úloha 2.4. [ZM 46] Tri návrhy, ktoré sme uviedli v predchádzajúcej úlohe, neboli náhodné. Starí obyvatelia uctievali nielen čísla 3 a 5, ale aj všetky čísla Fibonacciho postupnosti. Pravdepodobne dospeli až k variáciám týchto čísel, lebo boli aj také návrhy, aby hodnoty dvoch mincí boli

- a) 2 a 8,
- b) 3 a 21,
- c) 21 a 144 toliarov.

Ktorý z týchto troch návrhov je vhodný na zaplatenie hocijakej (celočíselnej) sumy toliarov, dokonca tak, aby sa pri dostatočne veľkej sume nemuselo nič vrátiť?

Úloha 2.5. [ZM 47] Diskusia o peňažnej reforme v Tramtárii nadobúdala čoraz väčšie rozmery. Mnohí jej účastníci tvrdili, že návrhy z úlohy 45 sa ukazujú byť správne, lebo rešpektujú aj poradie magických čísel, zatiaľ čo v úlohe 46 sú neúspešné, pretože toto pradie nerešpektovali. Ako skutočná bomba preto zapôsobil návrh, aby sa vydali mince v hodnote 4 a 11 toliarov. Ani jedna hodnota sa nenachádza medzi "magickými" číslami! Napriek tomu autor tvrdil, že aj tieto hodnoty spĺňajú potrebné dve požiadavky: možno nimi vyplatiť hocijaké celočíselné množstvo toliarov a keď je táto suma dostatočne veľká, tak netreba ani niť vrátiť. Mal pravdu?

Úloha 2.6. [ZM 48] Veľká diskusia však odrazu skončila (práve vtedy, keď bola najživšia), pretože Národná banka Tramtárie na veľké prekvapenie oznámila, že zavedie dve platidlá: tri a päťtoliarové mince. Koľkorakými spôsobom možno nimi vyplatiť 49 toliarov bez vrátenia peňazí?

Komentár. V prípade, že študentov úloha zaujala, je možné ich odkázať na publikáciu (ZM), ktorá obsahuje ďalšie zovšeobecnenie riešených úloh. (DOPLNIŤ.)