Software Requirements

Requirements engineering

- The process of establishing the services that the customer requires from a system and the constraints under which it operates and is developed.
- The requirements themselves are the descriptions of the system services and constraints that are generated during the requirements engineering process.

What is a requirement?

- It may range from a high-level abstract statement of a service or of a system constraint to a detailed mathematical functional specification.
- This is inevitable as requirements may serve a dual function
 - May be the basis for a bid for a contract therefore must be open to interpretation;
 - May be the basis for the contract itself therefore must be defined in detail;
 - Both these statements may be called requirements.

Types of requirement

User requirements

 Statements in natural language plus diagrams of the services the system provides and its operational constraints. Written for customers.

System requirements

 A structured document setting out detailed descriptions of the system's functions, services and operational constraints. Defines what should be implemented so may be part of a contract between client and contractor.

Definitions and specifications

User requirement definition

1. The software must provide a means of representing and accessing external files created by other tools.

System requirements specification

- 1.1 The user should be provided with facilities to define the type of external files.
- 1.2 Each external file type may have an associated tool which may be applied to the file.
- 1.3 Each external file type may be represented as a specific icon on the user's display.
- 1.4 Facilities should be provided for the icon representing an external file type to be defined by the user.
- 1.5 When a user selects an icon representing an external file, the effect of that selection is to apply the tool associated with the type of the external file to the file represented by the selected icon.

Requirements readers

Functional and non-functional requirements

Functional requirements

 Statements of services the system should provide, how the system should react to particular inputs and how the system should behave in particular situations.

Non-functional requirements

• constraints on the services or functions offered by the system such as timing constraints, constraints on the development process, standards, etc.

Domain requirements

 Requirements that come from the application domain of the system and that reflect characteristics of that domain.

Non-functional requirement types

Requirements completeness and consistency

- In principle, requirements should be both complete and consistent.
- Complete
 - They should include descriptions of all facilities required.
- Consistent
 - There should be no conflicts or contradictions in the descriptions of the system facilities.
- In practice, it is impossible to produce a complete and consistent requirements document.

Requirements measures

Property	Measure
Speed	Processed transactions/second User/Event response time Screen refresh time
Size	M Bytes Number of ROM chips
Ease of use	Training time Number of help frames
Reliability	Mean time to failure Probability of unavailability Rate of failure occurrence Availability
Robustness	Time to restart after failure Percentage of events causing failure Probability of data corruption on failure
Portability	Percentage of target dependent statements Number of target systems

Problems with natural language

- Lack of clarity
 - Precision is difficult without making the document difficult to read.
- Requirements confusion
 - Functional and non-functional requirements tend to be mixed-up.
- Requirements amalgamation
 - Several different requirements may be expressed together.

Guidelines for writing requirements

- Invent a standard format and use it for all requirements.
- Use language in a consistent way. Use shall for mandatory requirements, should for desirable requirements.
- Use text highlighting to identify key parts of the requirement.
- Avoid the use of computer jargon.

Requirements and design

- In principle, requirements should state what the system should do and the design should describe how it does this.
- In practice, requirements and design are inseparable
 - A system architecture may be designed to structure the requirements;
 - The system may inter-operate with other systems that generate design requirements;
 - The use of a specific design may be a domain requirement.

Alternatives to NL specification

Notation	Description	
Structured natural language	This approach depends on defining standard forms or templates to express the requirements specification.	
Design description languages	This approach uses a language like a programming language but with more abstract features to specify the requirements by defining an operational model of the system. This approach is not now widely used although it can be useful for interface specifications.	
Graphical notations	A graphical language, supplemented by text annotations is used to define the functional requirements for the system. An early example of such a graphical language was SADT. Now, use-case descriptions and sequence diagrams are commonly used.	
Mathematical specifications	These are notations based on mathematical concepts such as finite-state machines or sets. These unambiguous specifications reduce the arguments between customer and contractor about system functionality. However, most customers don't understand formal specifications and are reluctant to accept it as a system contract.	

Form-based node specification

Insulin Pump/Control Software/SRS/3.3.2

Function Compute insulin dose: Safe sugar level

Description Computes the dose of insulin to be delivered when the current measured sugar level is in the safe zone between 3 and 7 units.

Inputs Current sugar reading (r2), the previous two readings (r0 and r1)

Source Current sugar reading from sensor. Other readings from memory.

Outputs CompDose Š the dose in insulin to be delivered

Destination Main control loop

Action: CompDose is zero if the sugar level is stable or falling or if the level is increasing but the rate of increase is decreasing. If the level is increasing and the rate of increase is increasing, then CompDose is computed by dividing the difference between the current sugar level and the previous level by 4 and rounding the result. If the result, is rounded to zero then CompDose is set to the minimum dose that can be delivered.

Requires Two previous readings so that the rate of change of sugar level can be computed.

Pre-condition The insulin reservoir contains at least the maximum allowed single dose of insulin..

Post-condition r0 is replaced by r1 then r1 is replaced by r2

Side-effects None

Tabular specification

- Used to supplement natural language.
- Particularly useful when you have to define a number of possible alternative courses of action.

Tabular specification

Condition	Action
Sugar level falling (r2 < r1)	CompDose = 0
Sugar level stable $(r2 = r1)$	CompDose = 0
Sugar level increasing and rate of increase decreasing ((r2-r1)<(r1-r0))	CompDose = 0
Sugar level increasing and rate of increase stable or increasing. ((r2-r1) [(r1-r0))	CompDose = round ((r2-r1)/4) If rounded result = 0 then CompDose = MinimumDose

Graphical models

- Graphical models are most useful when you need to show how state changes or where you need to describe a sequence of actions.
- Different graphical models are explained in Chapter 8.

Sequence diagrams

- These show the sequence of events that take place during some user interaction with a system.
- You read them from top to bottom to see the order of the actions that take place.
- Cash withdrawal from an ATM
 - Validate card;
 - Handle request;
 - Complete transaction.

Sequence diagram of ATM withdrawal

Interface specification

- Most systems must operate with other systems and the operating interfaces must be specified as part of the requirements.
- Three types of interface may have to be defined
 - Procedural interfaces;
 - Data structures that are exchanged;
 - Data representations.
- Formal notations are an effective technique for interface specification.

PDL interface description

```
interface PrintServer {

// defines an abstract printer server
// requires: interface Printer, interface PrintDoc
// provides: initialize, print, displayPrintQueue, cancelPrintJob, switchPrinter

void initialize ( Printer p );
void print ( Printer p, PrintDoc d );
void displayPrintQueue ( Printer p );
void cancelPrintJob (Printer p, PrintDoc d);
void switchPrinter (Printer p1, Printer p2, PrintDoc d);
} // PrintServer
```

The requirements document

- The requirements document is the official statement of what is required of the system developers.
- Should include both a definition of user requirements and a specification of the system requirements.
- It is NOT a design document. As far as possible, it should set of WHAT the system should do rather than HOW it should do it

Users of a requirements document

IEEE requirements standard

- Defines a generic structure for a requirements document that must be instantiated for each specific system.
 - Introduction.
 - General description.
 - Specific requirements.
 - Appendices.
 - Index.

Requirements document structure

- Preface
- Introduction
- Glossary
- User requirements definition
- System architecture
- System requirements specification
- System models
- System evolution
- Appendices
- Index

Key points

- Requirements set out what the system should do and define constraints on its operation and implementation.
- Functional requirements set out services the system should provide.
- Non-functional requirements constrain the system being developed or the development process.
- User requirements are high-level statements of what the system should do. User requirements should be written using natural language, tables and diagrams.

Key points

- System requirements are intended to communicate the functions that the system should provide.
- A software requirements document is an agreed statement of the system requirements.
- The IEEE standard is a useful starting point for defining more detailed specific requirements standards.