Title	Y ea r	Dataset	Methods/Algorithms	Classifier	Accur acy	Limitations
Overall and Feature Level Sentime nt Analysis of Amazon Product Reviews Using Machine Learning Techniq ues and Web-Based Chrome Plugin	20 22	products on Amazon , includin g 142.8 million reviews	These models comprise not only conventional algorithms such as Random Forest, Multinomial Naïve Bayes, Complement Naïve Bayes, Bernoulli Naïve Bayes, but also VADER Sentiment Analysis.	Random Forest Classifier with TF- IDF Vectorizer	NA	Difficulty in teaching computers to grasp sarcasm, potential improvements with BERT for higher accuracy
Research on Sentime nt Analysis and Personali zed Recomm endation Based on Agricult ural Product Reviews	20 23	Online reviews of Shenyou Songhua Egg from the shoppin g platform Jingdon g	BERT model for sentiment analysis, word frequency analysis, and word cloud drawing	BERT emotion model	Not specifi ed in the provid ed context	
A Scalable Approac h for Sentime nt Analysis of	20 16	6000 manuall y labeled Turkish tweets	Naive Bayes, Complementary Naive Bayes, Logistic Regression	Compleme ntary Naive Bayes	79.38	Lower accuracy in mapping tweets to news items (40.3%), challenges with Turkish language

Turkish Tweets and Linking Tweets to News						complexity, and potential overfitting with bigram and trigram models.
conferen ce paper,Ei ghth Internati onal Conferen ce on Social Network Analysis, Manage ment and Security (SNAM S)	20 22	IMDB dataset which consists of 50 thousan d movie reviews (25 thousan d positive reviews and 25 thousan d negative reviews)	Machine Learning Classifiers,Ensemble Method,Data Preprocessing Techniques,Vectoriza tion Technique	Logistic Regression (LR) Naïve Bayes (NB) XGBoost (XGB) Random Forest (RF) Multilayer Perceptron (MLP)	89.9%	demonstrating superior performance compared to individual classifiers and existing methods.
Sentime nt Analysis in Social Media and Its Applicati on	20 19	Twitter Data,ins tagram Data,Fa cebook Data,Re ddit Data	Lexicon-Based Methods,Machine Learning-Based Methods,Preprocessin g Methods,Ensemble Methods	Probabilisti c Models,Te xt Representa tion Techniques ,Ensemble Methods	85%	while accuracy provides a broad measure of effectiveness, it can be misleading in cases of class imbalance or when the dataset contains complex, informal language.
Sentime nt analysis using product review data	20 15	the dataset used in the study by Fang and Zhan consists	source machine learning soft- ware package in Python. The classification models selected for categorization are: Naïve Bayesian, Random	Support Vector Machine,,R andom Forest Classifier: Bayes' theorem, assuming	85%	Random Forest is the most effective classifier for sentiment polarity categorization, with future work needed to

		of over 5.1 million product reviews collecte d from Amazon .com. ,Over 5.1 million Amazon product reviews.	Forest, and Support Vector Machine	independen ce between features		address review-level classification challenges and implicit sentiment detection.
Social Media Sentime nt Analysis	20 21	Twitter Data,ins tagram Data,Fa cebook Data,Re ddit Data	NumPy,pandas,Matpl otlib,seaborn,NLTK	Logistic Regression, Bernoulli Naïve Bayes,Ran dom Forest Regression, ultinomial Naïve Bayes classifier	88.90 %	This can be used with a graphic interface to deliver the same results with
journal paper publishe d in the "Internat ional Journal of Research in Circuits,	20 24	Amazon Musical Instrum ents Reviews Dataset, which is availabl e on Kaggle. The dataset contains 10,262 rows and 9 columns	Convolutional Neural Network (CNN),Natural Language Processing (NLP) with SpaCy,Data Preprocessing,Data Visualization,Evaluati on Metrics	TextCatego rizer component from the SpaCy NLP libraryT his component is integrated with a Convolutio nal Neural Network (CNN), which classifies the review text into positive or	94%	Class Imbalance,Over fitting,Limited Dataset Size,Simple Binary Classification

				negative sentiment.		
Sentime ntal Analysis of Twitter Users from Turkish Content with Natural Languag e Processi ng	20 22	public dataset from Beyaz (2021), Custom Dataset (Sentim entSet): Researchers manuall y created this dataset by collectin g Turkish tweets	Natural Language Processing (NLP) techniques for sentiment analysis.	Zemberek and NLTK Snowball	87%	1.Turkish Language Nuances 2.Agglutinative Nature
A feature fusion and detection approach using deep learning for sentimen tal analysis and offensive text detection from codemix Malayala m language	20 24	dataset for three under- resource d Dravidia n languag es (Tamil, Kannad a, and Malayal am) generate d from social media commen ts The dataset contains more	1.ALBERT Tokenization 2.Feature Extraction 3.Feature Fusion 4.Sentimental Analysis and Offensive Text Identification:	To design an approach for sentiment analysis and offensive text detection from a codemix language using HAN.	accura cy attaine d by the propos ed model is 0.956	Offensive text detection include handling noisy data, language variations, and context ambiguity

		than 60,000				
Sentime ntal analysis of Facebook reviews: Does hospitalit y matter in senior living?	20 23	the official Facebook pages of 125 senior living communities in the U.S. These communities were not randomly selected; they represented leading companies in the U.S. senior living industry.	1. text mining and 2.sentiment analysis techniques to extract insights.	techniques, including: 1.Multivari ate Linear Regression 2.Random Forest 3.Support Vector Machine Regression	Operat e nearly 75% of profess ionally manag ed commu nities in the industr y (Argen tum, 2021).	Generalizability: The study's findings should not be generalized widely due to self-selection bias in Facebook reviews. Some individuals without internet access or awareness of Facebook reviews may be excluded Comparative Analysis
Journal of Informat ion Processi ng and Manage ment	20 23	IMDb Movie Reviews dataset	Long Short-Term Memory (LSTM) networks	LSTM- based	87%	Limited to English language reviews, does not perform well with short texts.