

Química 2° Bach

Rodrigo Alcaraz de la Osa

La cinética química es la rama de la química física que se ocupa de comprender las velocidades de las reacciones químicas.

Teorias de las reacciones quimicas

Teoría de colisiones

La TEORÍA DE COLISIONES, propuesta por Lewis en 1918, explica una reacción desde el punto de vista dinámico. Nos dice que las reacciones se producen a partir de choques entre las moléculas de los reactivos. Para que estos choques sean EFICACES, las moléculas han de tener suficiente energía (ENERGÍA DE ACTIVACIÓN) y una orientación adecuada.

Adaptada de https://www.coursehero.com/sg/general-chemistry/collision-theory/

Teoría del estado de transición o del complejo activado

La TEORÍA DEL ESTADO DE TRANSICIÓN, propuesta por Henry Eyring en 1935, explica una reacción química desde el punto de vista energético. Cuando las moléculas de los reactivos chocan, dan lugar a un ESTADO DE TRANSICIÓN, muy inestable, donde se forma un COMPLEJO ACTIVADO, en el que unos enlaces se están formando y otros rompiendo.

Progreso de la reacción

Cuanto menor sea la energía de activación, más rápida será la reacción química. Adaptada de https://www.coursehero.com/sg/general-chemistry/collision-theory/

Mecanismos de reacción

El **mecanismo** de una **reacción** es el conjunto de procesos o reacciones elementales por los que se produce el cambio químico global.

Las especies que no aparecen en la reacción global se denominan intermedios de reacción, ya que se producen en un proceso elemental pero se consumen en otro.

La velocidad de una reacción viene determinada por la reacción elemental más lenta, llamada etapa limitante o controlante de la velocidad.

Velocidad de reacción

Es la velocidad a la que ocurre una reacción química. En una ecuación química general:

$$aA + bB \longrightarrow cC + dD$$
,

a, b, c y d representan los coeficientes estequiométricos mientras que A, B, C y D representan los símbolos químicos de los átomos o la fórmula molecular de los compuestos que reaccionan (lado izquierdo) y los que se producen (lado derecho).

Definimos la **velocidad de reacción**, v, como:

$$v = -\frac{1}{a}\frac{d[A]}{dt} = -\frac{1}{b}\frac{d[B]}{dt} = \frac{1}{c}\frac{d[C]}{dt} = \frac{1}{d}\frac{d[D]}{dt},$$

donde [] representa **concentración**, medida en mol L^{-1} . En general, la velocidad de una reacción se determina experimentalmente, midiendo la concentración a intervalos de tiempo conocidos. Notar que la velocidad referida a los reactivos presenta un signo menos, ya que la concentración de éstos disminuye con el tiempo y por tanto su variación es negativa.

Ecuaciones cinéticas

Relacionan la velocidad de reacción con la concentración de los reactivos:

$$v = k[A]^n[B]^m,$$

donde k es la constante de velocidad ($\uparrow k \to \uparrow v$); [A] y [B] las concentraciones (molares) de los reactivos; y n y m son los órdenes de reacción parciales (orden total = n + m). En el caso de reacciones elementales (una sola etapa), los órdenes parciales coinciden con los coeficientes estequiométricos, por lo que el orden total coincide con la molecularidad.

Orden	Reacción	Ecuación	Ejemplo		
Cero	$A \longrightarrow Productos$	$v = k[A]^0 = k$	Oxidación de metales Reacciones catalizadas por enzimas		
Uno	$A \longrightarrow Productos$	v = k[A]	$H_2O_2(1) \longrightarrow H_2O(1) + \frac{1}{2}O_2(g)$ $v = k[H_2O_2]$		
Dag	$A + B \longrightarrow Productos$	v = k[A][B]	$NO_3(g) + NO(g) \longrightarrow 2NO_2(g)$ $v = k[NO_3][NO]$		
Dos	$A \longrightarrow Productos$	$v = k[A]^2$	$HI(g) \longrightarrow \frac{1}{2} H_2(g) + \frac{1}{2} I_2(g)$ $v = k[HI]^2$		
	$A + B + C \longrightarrow Productos \ v = k[A][B][C]$				
Tres	$A + B \longrightarrow Productos$	$v = k[A]^2[B]$	$2 \operatorname{NO}(g) + \operatorname{Cl}_2(g) \longrightarrow 2 \operatorname{NOCl}(g)$ $v = k[\operatorname{NO}]^2[\operatorname{Cl}_2]$		
	$A \longrightarrow Productos$	$v = k[A]^3$			

Vida media o periodo de semireacción $t_{1/2}$

Definimos la VIDA MEDIA O PERIODO DE SEMIREACCIÓN, $t_{1/2}$, como el tiempo necesario para que la concentración de un determinado reactivo se reduzca a la mitad.

Orden	0	1	2	3
$t_{1/2}$	$\frac{\left[\mathrm{A}\right]_{0}}{2k}$	$\frac{\ln 2}{k}$	$\frac{1}{k[A]_0}$	$\frac{3}{2k[A]_0^2}$

Factores que influyen en la velocidad de reacción

Naturaleza de los reactivos

La naturaleza y la fuerza de los enlaces en las moléculas reactivas influyen en gran medida en la velocidad de su transformación en productos. Las sustancias iónicas suelen reaccionar más rápidamente que las convalentes a temperatura ambiente.

Estado de agregación y grado de división de los reactivos

Cuando los reactivos están en estados distintos, la reacción sólo puede ocurrir en su área de contacto. Esto significa que cuanto más finamente dividido esté un reactivo sólido o líquido, mayor será su área de superficie por unidad de volumen y mayor será el contacto con el otro reactivo, por lo que la reacción será más rápida.

$$v_{\rm gas} > v_{
m líquido} > v_{
m s\'olido}$$

Concentración de los reactivos

La velocidad de reacción depende de las concentraciones de los reactivos:

$$v = k[A]^n[B]^m,$$

Cuanto mayor sea la concentración, más moléculas habrá y más probable será que colisionen y reaccionen entre sí, dando lugar a un aumento de la velocidad de reacción.

Temperatura

A mayor temperatura, las moléculas tienen más energía térmica y son más susceptibles de chocar eficazmente, aumentando la velocidad de reacción. La ecuación de Arrhenius relaciona la constante de velocidad k con la temperatura T:

$$k = Ae^{-\frac{E_a}{RT}},$$

donde A es el factor de frecuencia, que refleja la frecuencia de las colisiones, E_a es la energía de activación y $R = 8.31 \,\mathrm{J} \,\mathrm{mol}^{-1} \,\mathrm{K}^{-1}$.

Catalizadores

Un catalizador es una sustancia que altera la velocidad de una reacción química sin participar directamente en ella. Distinguimos entre catalizadores:

Positivos Aumentan la velocidad de reacción disminuyendo la energía de activación. Negativos (inhibidores) **Disminuyen** la **velocidad** de reacción aumentando E_a .

Distinguimos también entre catálisis homogénea o heterogénea dependiendo de si la fase del catalizador es la misma o no que la de los reactivos.

Catálisis enzimática Las proteínas que actúan como catalizadores en las reacciones bioquímicas se llaman enzimas.

Adaptada de https://commons.wikimedia.org/wiki/File:Induced_fit_diagram_es.svg.