Table F-11. 5-year relative survival by age and race for endometrial cancer

Race and Age	Percent Surviving at End of Interval						
White							
Age	Number at Start of Followup	1 year	2 years	3 years	4 years	5 years	
0-44	1,271	97.60%	94.90%	93.80%	92.40%	91.70%	
45-45	3,571	96.40%	94.40%	92.50%	91.40%	90.10%	
55-64	5,719	96.10%	93.30%	91.00%	89.50%	89.10%	
65-74	4,007	94.00%	89.70%	87.20%	85.60%	83.90%	
75+	3,606	0.40%	0.60%	0.70%	0.70%	0.90%	
Black							
Age							
0-44	226	86.80%	80.70%	76.90%	74.70%	73.90%	
45-45	309	90.40%	84.30%	80.00%	76.20%	74.70%	
55-64	538	84.90%	76.50%	69.90%	67.30%	66.50%	
65-74	470	86.50%	75.70%	71.00%	64.70%	63.40%	
75+	269	70.50%	58.40%	49.80%	49.00%	46.40%	

Vascular events: Deep venous thrombosis, pulmonary embolus, stroke, myocardial infarction. As with cancer, age- and race-specific incidences for these states are adjusted for OC use status as described below. Other key assumptions:

- Women who experience one of these events while on OCs will not use OCs afterwards.
- For women under the age of 65, the best population-level data for estimating both incidence and mortality is hospital discharge data. This may underestimate incidence by missing cases that are diagnosed and managed completely as outpatients, and underestimate mortality by missing postdischarge deaths.

Allowed transitions: Condition-specific mortality, survivor, cancers, other acute complications

Estimates of admissions for women by age and race/ethnicity were generated using the Nationwide Inpatient Sample (NIS) dataset from 2000 to 2007, a publicly available survey of a mix of community hospital inpatient settings that surveys diagnoses, procedures, length of stay, and costs associated with approximately 20 percent of all U.S. inpatient discharges (http://www.hcup-us.ahrq.gov/nisoverview.jsp).

Discharges within the NIS data were used to estimate national numbers of admissions for the vascular events of interest, using ICD-9 diagnosis codes, specifically acute myocardial infarction (410.x), pulmonary embolus (415.1), stroke (430.x, 431.x, 432.x, 434.x) and DVT (453.x). Estimates were weighted using available survey weights and subset into mutually exclusive categories comprised of 5-year age groups (15–85+) and race/ethnicity categories (white, black, Hispanic, other).

Hospital admission probabilities were estimated by using the point estimate and standard errors to generate gamma distributions (bounded by 0 at the lower end) for the annual number of admissions. During the simulations, the probability was calculated by drawing a number from the gamma distribution, dividing this number by the total number of women in a given age and race/ethnicity stratum and converting the rate to a probability.

JA-0003263

We present only point estimates here—the standard errors used to generate the gamma distributions are available from the authors.

Table F-12. Annual admissions for deep venous thrombosis by age and race/ethnicity for U.S. females

A sta Craus	Race/Ethnicity			
Age Group	White	Black	Hispanic	Other
15-19	678	210	125	25
20-24	1320	577	253	70
25-29	1813	928	499	198
30-34	2359	1292	617	215
35-39	3159	1687	747	250
40-44	4914	2529	874	339
45-49	6373	2955	1086	486
50-54	7330	2794	1132	630
55-59	8443	3008	1280	704
60-64	10024	3167	1225	692
65-69	11163	3127	1350	817
70-74	13111	3560	1405	964
75-79	16762	3206	1603	937
80-85	18656	2918	1444	1106
85+	24442	3645	1658	1218

Table F-13. Annual admissions for pulmonary embolism by age and race/ethnicity for U.S. females

Ago Croup	Race/Ethnicity			
Age Group	White	Black	Hispanic	Other
15-19	448	127	56	35
20-24	1020	417	148	45
25-29	1315	622	226	86
30-34	1758	840	233	183
35-39	1957	1296	329	143
40-44	3014	1472	484	225
45-49	4150	1476	486	268
50-54	4804	1394	449	299
55-59	5688	1458	479	393
60-64	6406	1340	522	345
65-69	7582	1631	576	437
70-74	8532	1782	616	394
75-79	10044	1655	646	490
80-85	9954	1338	594	475
85+	10793	1368	624	349

Table F-14. Annual admissions for stroke by age and race/ethnicity for U.S. females

Ago Croup	Race/Ethnicity			
Age Group	White	Black	Hispanic	Other
15-19	158	104	76	37
20-24	211	112	121	71
25-29	302	180	126	53
30-34	555	312	209	144
35-39	831	446	279	180
40-44	1906	765	389	301
45-49	3348	1398	643	358
50-54	5930	2035	909	555
55-59	8452	1878	1054	790
60-64	13234	1986	1402	910
65-69	17362	2699	1419	1199
70-74	21758	2468	1903	1542
75-79	27856	2821	1796	1708
80-85	29142	2384	1423	1572
85+	31688	2416	1247	1725

Table F-15. Annual admissions for acute myocardial infarction by age and race/ethnicity for U.S. females

A O		e/Ethnicity		
Age Group	White	Black	Hispanic	Other
15-19	37	5	3	0
20-24	120	64	42	10
25-29	259	204	57	15
30-34	606	446	132	58
35-39	1472	567	194	134
40-44	3297	1169	524	389
45-49	6388	2155	872	617
50-54	9631	3034	1280	912
55-59	13318	3374	1774	1243
60-64	18156	3552	1979	1329
65-69	20389	3720	2310	1985
70-74	24600	4162	2365	1973
75-79	31846	4013	2733	2298
80-85	37194	3768	2392	2480
85+	58620	4883	2690	3046

Mortality for each event was estimated using the number of patients in a given age/race stratum in the NIS with each diagnosis who had a discharge status of "death," together with the total number of admissions within a given diagnosis/age/race stratum, to generate beta distributions for the conditional probability of death given the occurrence of the event. We assumed all deaths occurred during the same cycle as the event.

Table F-16. Annual deaths during hospitalization for deep venous thrombosis by age and race/ethnicity for U.S. females

Ago Croup	Race/Ethnicity			
Age Group	White	Black	Hispanic	Other
15-19	8	3	0	0
20-24	10	5	9	5
25-29	21	11	10	0
30-34	47	9	19	10
35-39	54	44	47	10
40-44	92	45	18	10
45-49	140	120	42	20
50-54	296	111	50	48
55-59	405	139	72	36
60-64	444	194	79	55
65-69	629	156	54	63
70-74	816	212	64	76
75-79	1136	186	145	57
80-85	1081	194	96	117
85+	1686	297	139	77

Table F-17. Annual deaths during hospitalization for pulmonary embolism by age and race/ethnicity for U.S. females

Ana Craun	Race/Ethnicity			
Age Group	White	Black	Hispanic	Other
15-19	5	0	0	5
20-24	20	14	9	0
25-29	15	16	10	5
30-34	26	10	14	10
35-39	30	61	21	5
40-44	87	69	44	5
45-49	145	119	30	10
50-54	354	106	13	37
55-59	347	115	45	26
60-64	521	170	89	43
65-69	618	114	33	55
70-74	723	158	50	30
75-79	811	140	88	56
80-85	907	105	42	50
85+	1225	176	85	59

Table F-18. Annual deaths during hospitalization for stroke by age and race/ethnicity for U.S. females

A C	Race/Ethnicity			
Age Group	White	Black	Hispanic	Other
15-19	39	15	0	0
20-24	14	10	14	15
25-29	38	25	5	8
30-34	34	55	24	0
35-39	154	77	37	9
40-44	216	137	47	42
45-49	285	177	81	48
50-54	474	250	133	66
55-59	539	203	123	96
60-64	683	172	110	131
65-69	793	274	99	87
70-74	1148	177	171	160
75-79	1491	292	165	201
80-85	2096	232	143	185
85+	2992	329	175	221

Table F-19. Annual deaths during hospitalization for myocardial infarction by age and race/ethnicity for U.S. females

A see Crosses	Race/Ethnicity			
Age Group	White	Black	Hispanic	Other
15-19	13	0	0	0
20-24	10	5	0	4
25-29	15	10	9	0
30-34	31	24	19	0
35-39	69	57	5	10
40-44	132	76	32	6
45-49	244	155	51	36
50-54	519	166	60	44
55-59	834	232	169	71
60-64	1235	334	164	84
65-69	1574	378	179	167
70-74	2359	410	203	246
75-79	3595	447	337	289
80-85	4892	504	391	328
85+	9507	803	502	463

Surgical removal of pelvic organs—hysterectomy and/or oophorectomy. Removal of the organ at risk eliminates the probability of developing cancer in that organ, and there is some evidence that removal of the uterus reduces ovarian cancer risk even if the ovaries are preserved. Because hysterectomy is performed for a variety of indications, often with removal of the ovaries, and is quite common in the U.S. (with up to 30% of women undergoing hysterectomy by age 65), we incorporated age- and race-specific hysterectomy and oophorectomy rates for

conditions other than cancers of the pelvic organs into the model, and adjusted probabilities for cancer development accordingly. We assumed the following:

- The probability of hysterectomy and/or oophorectomy is independent of OC use. Because OCs may reduce the risk of some conditions such as endometriosis which are common indications for hysterectomy, this may not be the case.
- These procedures are increasing being done on an outpatient basis; relying on discharge data may underestimate the rates.

Estimates were again derived from the NIS, excluding women with a diagnosis of any cancer of the cervix (180.x), uterus (182.x), or ovary (183.x). ICD-9 procedural codes were used to identify hysterectomy alone (68.4x, 68.5x, 68.9x), and with either bilateral (65.5x, 65.6x) or unilateral (65.3x, 65.4x) oophorectomy. Unilateral and bilateral oophorectomy without hysterectomy were also included. As with vascular event hospitalizations, we used point estimates and standard errors to generate gamma distributions, which in turn provided the numerator for estimating age- and race/ethnicity-specific probabilities.

Table F-20. Annual hospitalizations for hysterectomy alone by age and race/ethnicity for U.S. females

A C	Race/Ethnicity			
Age Group	White	Black	Hispanic	Other
15-19	25	6	24	0
20-24	714	108	122	49
25-29	4002	634	482	146
30-34	8491	1902	1702	621
35-39	15776	4940	3920	1177
40-44	20735	7021	5494	2251
45-49	15636	4261	3401	1645
50-54	6093	970	1074	514
55-59	3002	198	534	205
60-64	2718	149	367	217
65-69	2545	108	413	198
70-74	2056	104	239	185
75-79	1753	52	152	85
80-85	864	11	64	40
85+	206	37	4	4

Table F-21. Annual hospitalizations for hysterectomy with unilateral oophorectomy by age and race/ethnicity for U.S. females

A C		Ra	ce/Ethnicity	
Age Group	White	Black	Hispanic	Other
15-19	5	0	6	0
20-24	149	10	5	11
25-29	743	86	68	44
30-34	1786	373	245	90
35-39	3235	951	704	250
40-44	4616	1448	956	353
45-49	3749	1137	760	460
50-54	1332	308	200	126
55-59	489	84	76	59
60-64	391	25	56	22
65-69	286	15	38	48
70-74	285	10	18	9
75-79	112	11	38	11
80-85	108	0	9	8
85+	30	0	5	0

Table F-22. Annual hospitalizations for hysterectomy with bilateral oophorectomy by age and race/ethnicity for U.S. females

A sup Crosses	Race/Ethnicity			
Age Group	White	Black	Hispanic	Other
15-19	23	0	5	0
20-24	271	24	16	9
25-29	1735	175	121	98
30-34	4125	494	316	190
35-39	7284	1208	813	465
40-44	15616	2885	2084	1200
45-49	24673	5260	3907	2450
50-54	17672	3307	2420	1760
55-59	8733	1052	1089	739
60-64	5847	723	705	413
65-69	4438	402	519	344
70-74	2644	244	317	238
75-79	1859	142	196	180
80-85	993	63	49	46
85+	507	52	43	14

Table F-23. Annual hospitalizations for unilateral oophorectomy alone by age and race/ethnicity for U.S. females

A C	Race/Ethnicity			
Age Group	White	Black	Hispanic	Other
15-19	5463	1904	1950	687
20-24	10375	3427	3351	1243
25-29	17637	5439	4719	2273
30-34	25214	7276	6309	3143
35-39	32831	9368	6856	3604
40-44	34752	9753	6658	4054
45-49	25178	6270	4215	2605
50-54	12685	2130	1465	1070
55-59	8212	1123	788	456
60-64	6798	879	659	293
65-69	6914	638	618	384
70-74	7135	593	470	341
75-79	6949	560	382	288
80-85	5161	291	235	150
85+	3865	193	155	118

Table F-24. Annual hospitalizations for bilateral oophorectomy alone by age and race/ethnicity for U.S. females

Age Group	Race/Ethnicity			
	White	Black	Hispanic	Other
15-19	149	34	49	24
20-24	859	140	151	71
25-29	3819	645	483	204
30-34	9314	2026	1179	536
35-39	17836	4083	2461	1165
40-44	31852	7904	4411	2315
45-49	43168	9786	5895	4124
50-54	33232	5858	3512	2399
55-59	21266	2267	1717	1327
60-64	17005	1460	1258	819
65-69	15796	1270	1117	711
70-74	13198	672	808	639
75-79	10171	463	548	465
80-85	5990	286	283	194
85+	3048	104	126	163

Reproductive States

Menopause. We used published data to generate conditional probabilities of natural menopause by age.³ Although the paper by Gold et al. found some differences in menopause probabilities by race and ethnicity, hazard ratios included 1, and we elected to model only age-specific probabilities. We assumed that women undergoing bilateral oophorectomy with or without hysterectomy, as well as women receiving definitive treatment for gynecologic cancers, were menopausal. We did not adjust menopausal probabilities in women who had undergone hysterectomy with ovarian preservation. We assumed that no woman underwent nonsurgical menopause prior to age 41, and all women had undergone menopause by age 55.

Table F-25. Conditional probability of natural menopause by age

Age	Conditional Probability
15-40	0.00%
41	1.02%
42	1.03%
43	1.04%
44	1.05%
45	2.15%
46	4.49%
47	4.71%
48	11.84%
49	11.76%
50	23.64%
51	37.50%
52	60.00%
53	66.67%
54	100.00%

Allowed transitions: Other cause mortality, cancers, acute complications

Probability of contraceptive use. Estimates of contraception use were generated using the National Survey of Family Growth (NSFG) 2002 and 2006 to 2010 data sets. The NSFG is a survey conducted by the Centers for Disease control that gathers information on family life, marriage and divorce, pregnancy, infertility, use of contraception, and men's and women's health (http://www.cdc.gov/nchs/nsfg.htm), and supplemented with the literature as needed.

Estimates of national female contraception prevalence rates and accompanying standard deviations were generated using the NSFG dataset. All estimates were subset by age, race, and prior pregnancy/birth status distribution and were weighted to generate national-level estimates. Survey data was limited to women aged 15 to 44 and excluded women pregnant at the time of the survey. All other women were included. Total survey weights reflected 59 million women aged 15 to 44. Subset analysis was performed by creating several mutually exclusive categories. Age was analyzed by categorizing patients into 5-year age groups (6 groups total); race/ethnicity as white, black, Hispanic, or other; and prior birth and pregnancy status as never pregnant, pregnant with no live births, one live birth, two live births, or more than two live births. For each of these groups, estimates were for the following contraception categories:

- 1. Female sterilization
- 2. Male sterilization
- 3. OCs
- 4. Other hormonal methods (Norplant or Implanon implant, Lunelle (injectable), Depo-Provera (injectable), contraceptive patch, contraceptive ring, morning-after pill)
- 5. IUD
- 6. Barrier methods (diaphragm with or without jelly or cream, male condom, foam, Today sponge, suppository or insert, jelly or cream without diaphragm)
- 7. Periodic abstinence (NFP, cervical mucus test or temperature rhythm, calendar rhythm)
- 8. No method (withdrawal, other method, other nonuser—had intercourse in the 3 months prior to interview)
- 9. Not sexually active (other nonuser—never had intercourse since first period, other nonuser—has had intercourse but not in the 3 months prior to interview)
- 10. Other not at risk (pregnant; seeking pregnancy; postpartum; sterile-nonsurgical, female; sterile-nonsurgical, male; sterile-surgical, female noncontraceptive; sterile-surgical, male noncontraceptive; sterile-unknown reasons, male)

For the purposes of this analysis, we categorized contraceptive methods as oral contraceptives, female sterilization, and all others (including nonuse).

Age at first use of OCs. We used age-specific prevalences from the NSFG to generate conditional probabilities of use by age and race/ethnicity.

Table F-26. Conditional probability of oral contraceptive use by age and race/ethnicity

Age Group	Race/Ethnicity			
	White	Black	Hispanic	Other
10-14	11.45%	21.82%	5.62%	5.62%
15-19	24.03%	14.37%	12.98%	29.06%
20-24	50.29%	29.86%	46.91%	28.05%
25-29	37.40%	32.34%	22.38%	34.04%
30-34	22.63%	5.58%	22.98%	21.31%
35-39	4.88%	12.80%	14.75%	37.19%
40	0	0	0	0

Duration of use. We found only one study which provided data to generate distributions for duration of use, ⁴ which reported a mean of 54.8 months with a standard deviation of 41 months. We used these to generate a gamma distribution, with a range of 1-308 months, 10th percentile of 13 months, 50th percentile of 45 months, and 90th percentile of 110 months.

Age-specific probability of tubal ligation. We used published estimates of the number of procedures by age and race/ethnicity, along with the total number of women in each stratum, to generate beta distributions for the probability of tubal ligation.

Table F-27. Conditional probability of oral contraceptive use by age and race/ethnicity

Age Group	Race/Ethnicity			
	White	Black	Hispanic	Other
15-19	0	0	3083	3591
20-24	74769	40201	29260	22458
25-29	670855	155335	125356	66347
30-34	408671	223174	346754	102707
35-39	401060	114853	139134	655
40-44	486188	255996	273579	87172

Model Predictions Compared With SEER Estimates

Table F-28 compares mean predicted lifetime cancer incidence and mortality from age 10 to 100 for a 60,000-iteration simulation of our "base-case" model, where the effects of OC use on age- and race-specific incidence are modeled based on "ever/never" status and population-level estimates of patterns of OC use, and cancer-specific mortality is modeled as age- and race-specific post-diagnosis survival, to estimates for lifetime incidence and mortality from age 10 through 100 derived from the SEER DevCan Program (http://surveillance.cancer.gov/devcan/). DevCan models overall incidence using the same SEER datasets used for the model, but mortality estimates are independently derived based on death certificate data reported to the National Center for Health Statistics.

Table F-28. Model	predictions com	pared with SEER	estimates
-------------------	-----------------	-----------------	-----------

	Lifetime Incidence		Lifetime Mortality	
Cancer Type	SEER DevCan	Model	SEER DevCan (Death Certificate)	Model (Incidence-based)
Ovarian cancer	1.37%	1.40%	1.98%	0.78%
Breast cancer	12.51%	11.0%	2.8%	0.98%
Cervical cancer	0.69%	0.63%	0.24%	0.01%
Colorectal cancer	4.83%	4.7%	1.98%	1.57%
Endometrial cancer	2.67%	2.1%	0.55%	0.41%

Lifetime incidence estimates—which in both our model and DevCan are based on the same age- and race-specific incidences and competing risks—are quite similar, providing some validation of the estimates of relative risk conditional on OC use used in the model and our underlying structural assumptions. The model-derived mortality estimates, which are independent of OC use and are based on age- and race-specific (black/white only) conditional survivals, are consistently lower than the DevCan estimates, which are derived from death certificate data. This is consistent with other "incidence-based mortality" models, where overall mortality estimates are derived from specific survival functions based on patient or tumor characteristics. 5,6 There are multiple possible explanations for this, including (1) the effect of competing risks for other cause mortality within the model after diagnosis, (2) age/period/cohort effects in the death certificate data that are not reflected in the model estimates, (3) the fact that SEER incidence and survival data represent a sample of the population, while the mortality data are derived from the entire population, and (4) inadequate modeling of mortality more than 5 years after survival (particularly for breast cancer). Since the potential underestimation of mortality affects both potential harms of OC use (breast and cervical cancer) and benefits (ovarian, endometrial, colorectal), the net effect on the overall balance of mortality harm and benefit is unclear—but is clearly worthy of further exploration.

References Cited in Appendix F

- Havrilesky LJ, Sanders GD, Kulasingam S, et al. Reducing ovarian cancer mortality through screening: Is it possible, and can we afford it? Gynecol Oncol. 2008;111(2):179-87. PMID: 18722004.
- 2. Havrilesky LJ, Sanders GD, Kulasingam S, et al. Development of an ovarian cancer screening decision model that incorporates disease heterogeneity: Implications for potential mortality reduction. Cancer. 2011;117(3):545-53. PMID: 21254049.
- 3. Gold EB, Bromberger J, Crawford S, et al. Factors associated with age at natural menopause in a multiethnic sample of midlife women. Am J Epidemiol. 2001;153(9):865-74. PMID: 11323317.
- Chasan-Taber L, Willett WC, Manson JE, et al. Prospective study of oral contraceptives and hypertension among women in the United States. Circulation. 1996;94(3):483-9. PMID: 8759093
- Menashe I, Anderson WF, Jatoi I, et al. Underlying causes of the black-white racial disparity in breast cancer mortality: a population-based analysis. J Natl Cancer Inst. 2009;101(14):993-1000. PMID: 19584327.
- Chu KC, Miller BA, Feuer EJ, et al. A method for partitioning cancer mortality trends by factors associated with diagnosis: an application to female breast cancer. J Clin Epidemiol. 1994;47(12):1451-61. PMID: 7730854.

Exhibit 163 JA-0003274