Link to Mathematica .nb file

Definitions

The proof is mostly in http://mathworld.wolfram.com/Circle-CircleIntersection.html

We take $R_1 = 1$ and d = b. The sine of the angle λ is therefore just $\frac{x}{R_1} = x = \frac{1 - r^2 + b^2}{2b}$, so

$$\lambda = ArcSin \left[\frac{1 - r^2 + b^2}{2b} \right]$$

The sine of the angle $-\phi$ is then $\frac{b-x}{r} = -\frac{1-r^2-b^2}{2br}$, so

$$\phi = \operatorname{ArcSin}\left[\frac{1-r^2-b^2}{2br}\right].$$