◇ 下推自动机

下推自劲机

- ◇下推自动机的基本概念
- ◇下推自动机的语言:两种定义
- ◇两种定义的等价性

◆ 下推自动机 (pushdown automaton) 是带有一个堆栈的有限状态自动机。

圖消華大学

◆形式定义一个下推自动机 PDA 是一个七元组

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F).$$

- ◆有限状态集
- ◆ 有限輸入符号集
- ◆有限堆栈符号集
- ♦转移函数
- ◇ 一个开始状态
- ◆ 一个开始堆栈符号
- ♦ 终态集合

$$\delta: \mathbf{Q} \times (\Sigma \cup \{\mathcal{E}\}) \times \Gamma \rightarrow \mathbf{2}^{\mathbf{Q} \times \Gamma^*}$$

 $Z_0 \in \Gamma$

 $F \subset Q$

FL&A

下推自动机的基本概念

其中, 转移函数定义如下

 $\delta(\mathbf{q}_0, 0, \mathbf{Z}_0) = \{(\mathbf{q}_0, \mathbf{X}\mathbf{Z}_0)\}, \ \delta(\mathbf{q}_0, 0, \mathbf{X}) = \{(\mathbf{q}_0, \mathbf{X}\mathbf{X})\}, \ \delta(\mathbf{q}_0, 1, \mathbf{X}) = \{(\mathbf{q}_1, \varepsilon)\}, \ \delta(\mathbf{q}_1, 1, \mathbf{X}) = \{(\mathbf{q}_1, \varepsilon)\}, \ \delta(\mathbf{q}_1, \varepsilon, \mathbf{Z}_0) = \{(\mathbf{q}_2, \mathbf{Z}_0)\}$

对其余的参数值, $\delta(q, a, Y) = \Phi$

FL&A

◆ 举例 上述 PDA 如何接受输入字符串?例如,00001111.

当前状态: q₀ q₀ q₀ q₀ q₀

stack

$$0, Z_0/XZ_0 \\ 0, X/XX$$

$$1, X/\varepsilon$$
Start
$$q_0$$

$$1, X/\varepsilon$$

$$\varepsilon, Z_0/Z_0$$

FL&A

FL&A

FL&A

FL&A

FL&A

下推自动机的语言:两种定义 FL&

- ◆ 用ID (instantaneous descriptions) 表达当前格局 PDA 的当前格局用三元组 (q, w, γ) 表示,称为ID,其中 Q为当前状态, W为剩余的输入串, γ为当前栈中的内容.
- ♦ 设 PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$,定义 ID 推导关 系 - (在不至于混淆时用 - 表示) 为 $(q,aw,X\beta) \vdash (p,w,\alpha\beta) \text{ iff } (p,\alpha) \in \delta(q,a,X),$ 其中 $p,q \in Q$, $a \in \Sigma \cup \{\varepsilon\}$, $w \in \Sigma^*$, $X \in \Gamma$, $\alpha,\beta \in \Gamma^*$.
- ◆ 上述 ID 推导关系的自反传递闭包 |-*p (或 |-*) 定义为 基础 对任意 ID I, I -* I. 归纳 对任意 ID I,J,K,如果 I-K,K-*J,则 I-*J.

下推自动机的语言: 两种定义

FL&A

@ 清華大学

今 结论 设 PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, 如果 $(q, x, \alpha) \mid ^* (p, y, \beta)$,则对任何 $w \in \Sigma^*$ 和 $\gamma \in \Gamma^*$, $(q, xw, \alpha\gamma) \mid ^* (p, yw, \beta\gamma)$.

证明思路:归纳于 (q, x, α) +* (p, y, β) 的步数.

◆ 举例 下图 PDA 接受输入串 000111 的 ID 推导过程.

 $(q_0,000111,Z_0) \mid * (q_0,111,XXXZ_0) \mid * (q_1, \varepsilon, Z_0) \mid * (q_2, \varepsilon, Z_0)$

下推自动机的语言:两种定义 FL

FLQA

- ◆ 终态接受的定义方法 设 PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, 定义 $L(P) = \{w \mid (q_0, w, Z_0) \mid * (q, \varepsilon, \alpha) \}$, 其中 $q \in F$, $\alpha \in \Gamma^*$.
- ◆ 空栈接受的定义方法 设 PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$, 定义 $N(P) = \{w \mid (q_0, w, Z_0) \mid * (q, \varepsilon, \varepsilon) \}$, 其中 $q \in Q$.
- ◆ 举例 所接受语言为 $N(P) = \{ O^n 1^n \mid n \ge 1 \}$ 的一个 PDA $P = (\{q_0, q_1\}, \{0, 1\}, \{X, Z_0\}, \delta, q_0, Z_0)$

其中, 转移函数定义如下

 $\delta(q_0, 0, Z_0) = \{(q_0, XZ_0)\}, \delta(q_0, 0, X) = \{(q_0, XX)\}, \delta(q_0, 1, X) = \{(q_1, \varepsilon)\}, \delta(q_1, 1, X) = \{(q_1, \varepsilon)\}, \delta(q_1, \varepsilon, Z_0) = \{(q_1, \varepsilon)\}, 对其余的参数值, \delta(q, a, Y) = \Phi$

两种定义的等价性

◇从空栈接受到终态接受

设 PDA $P_N = (Q, \Sigma, \Gamma, \delta_N, q_o, Z_o), L=L(P_N),$ 则存在 PDA P_F , 满足 $L=L(P_F)$.

证明思路:

 $P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_P, p_0, X_0, \{p_f\})$

两种定义的等价性

♦ 从终态接受到空栈接受

设 PDA $P_F=(Q, \Sigma, \Gamma, \delta_P, q_0, Z_0, F)$, $L=L(P_F)$, 则存在PDA P_N , 满足 $L=N(P_N)$.

证明思路:

 $P_{N} = (Q \cup \{p_{0}, p\}, \Sigma, \Gamma \cup \{X_{0}\}, \delta_{N}, p_{0}, X_{0})$

课后练习

◇ 必做题:

- Ex.6.2.1 (b), (c)
- Ex.6.2.6

◆ 思考题:

• !Ex.6.2.2(b)

课后练习

◆ 自测题:

- 试构造接受下列语言的一个 PDA (空栈接受或终态接受均可):
 - 1) $L = \{ w \mid w \in \{a, b\}^*, 且 w 的任何前缀中 a 的 数目至少 2 倍于 b 的数目 \}$
 - 2) $L = \{ w \mid w \in \{a, b\}^*, 且 w 中 a 的数目不等于 b 的数目 \}$
 - 3) $L = \{ w \mid w \in \{a, b, c\}^*, w + a + a + b + b + b + b + c \}$ 同且不含连续的 $c \}$
 - 4) $L = \{ a^n b^m c^k \mid n \ge 0, m \ge 0, k \ge 0, 以及 n + 2m = k \}$

That's all for today.

Thank You