Przetwarzanie i analiza danych w systemie SAS®

Kolokwium nr 2 - 26.01.2015

- Zapisać plik szablon.sas pod nazwą nazwisko.sas (gdzie nazwisko to nazwisko piszącego kolokwium). Na początku pliku należy wpisać w komentarzu własne imię i nazwisko.
- Rozwiązania zadań należy wpisywać do pliku nazwisko.sas. Plik należy we własnym interesie często zapisywać.
- Rozpakowane pliki z danymi wejściowym mają być umieszczone w bibliotece o nazwie KOLO.
- Wszelkie tworzone przez siebie zbiory sasowe należy umieszczać w bibliotece WORK.
- Tworzone programy powinny działać poprawnie bez żadnych zmian dla dowolnych zbiorów o takiej samej strukturze (tj. o takich samych zmiennych i ich atrybutach), jak wymienione w treści zadań. W szczególności, rozwiązania będą testowane na zbiorach różnych od podanych.
- Po zakończeniu pracy, należy wpisać do górnego paska Eksploratora Windows nazwę katalogu

\\secundus\upload\sas

a następnie skopiować i wkleić do tego katalogu stworzony przez siebie podczas rozwiązywania zadań plik nazwisko.sas (tylko ten plik, bez tworzonych zbiorów sasowych). We własnym interesie należy poczekać na ustne potwierdzenie odbioru pliku.

- Powodzenia!
- 1. (13 pkt.) Dla danego $n \in \mathbb{N}$ i danej biblioteki bib, niech zb_1, zb_2 oznaczają nazwy dowolnych zbiorów z bib liczących dokładnie n obserwacji, a zm_i niech oznacza dowolną zmienną numeryczną ze zbioru zb_i , i=1,2. Napisać dwuparametrowe makro %z1(bib,n), które dla wszystkich $(zb_1,zm_1) \neq (zb_2,zm_2)$ obliczy normę l_1 różnicy zmiennych zm_1-zm_2 traktowanej jako wektor z \mathbb{R}^n i zapisze ją do zmiennej o nazwie norma w zbiorze **WORK.normy**. Zbiór **WORK.normy** ma mieć pięć zmiennych o nazwach, kolejno: $zbior_1$, $zmienna_1$, $zbior_2$, $zmienna_2$, norma. W każdym wierszu zbioru **WORK.normy**, zmienne $zbior_i$ mają przyjmować wartości dane przez zb_i , a zmienne $zmienna_i$ wartości dane przez zm_i . Można zakładać, że w zbiorach z biblioteki bib nie ma brakujących danych.
- 2. (12 pkt.) Dane są zbiory o strukturze takiej jak **KOLO.b1**, **KOLO.b2** i **KOLO.grupy**. Powiemy, że id ze zbioru **KOLO.b1** lub **KOLO.b2** należy do grupy g (patrz zbiór **KOLO.grupy**), jeśli odległość euklidesowa wektora o współrzędnych równych kolejnym wartościom zmiennych z1-z20 odpowiadających danemu id, od wektora o współrzędnych równym kolejnym wartościom zmiennych sg1-sg20 odpowiadających danemu g, jest mniejsza niż analogiczna odległość przy jakiejkolwiek innej wartości g.
 - Używając języka 4GL znaleźć liczbę tych *id*, które występują zarówno w **KOLO.b1**, jak i w **KOLO.b2**, oraz w obydwu tych zbiorach należą do tej samej grupy. Można założyć, że każde z rozpatrywanych id należy do tylko jednej grupy. Można także założyć, że liczba grup jest znana.
- 3. (8 pkt) Dane są trzy zbiory sasowe o strukturze takiej jak **KOLO.klienci**, **KOLO.auta** i **KOLO.wy-pozyczenia** (patrz spakowany plik). W szczególności zakłada się, że zmienne o nazwach zaczynających się od *id* jednoznacznie identyfikują klientów, samochody i wypożyczenia.
 - Używając języka SQL znaleźć, o ile istnieją, marki tych samochodów, które były wypożyczane przez co najmniej połowę klientów wypożyczalni.
- 4. (7 pkt.) Załóżmy, że macierz $A \in \mathbb{R}^{4 \times 4}$ i wektor $b \in \mathbb{R}^4$ dane są w postaci zbiorów sasowych o strukturze takiej, jak **KOLO.macierz** i **KOLO.wektor** (patrz spakowany plik). Napisać program, który, w przypadku gdy A jest odwracalna, zapisze rozwiązanie równania Ax = b do zbioru sasowego. Jeśli A nie jest odwracalna, program ma znaleźć wartość własną A o największej co do modułu części rzeczywistej.