

 $fines\ comerciales.$

Topología I Examen VI

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2023-2024

Asignatura Topología I.

Curso Académico 2023-24.

Grado en Matemáticas.

Grupo A.

Profesor Leonor Ferrer Martínez.

Descripción Segundo Parcial.

Fecha 5 de diciembre de 2023.

Ejercicio 1 (4 puntos). Consideramos en \mathbb{R} la topología del punto incluido para el $0, \mathcal{T}_0 = \{U \subseteq \mathbb{R} \mid 0 \in U\} \cup \{\emptyset\} \text{ y } \mathcal{T}_S \text{ la topología de Sorgenfrey.}$

1. Estudia en qué puntos es continua la aplicación $f:(\mathbb{R},\mathcal{T}_0)\to(\mathbb{R},\mathcal{T}_S)$ definida por $f(x)=x^2$.

Dado $x \in \mathbb{R}$, una base de entornos de x en \mathcal{T}_S es:

$$\beta_x^S = \{ [x, x + \varepsilon [| \varepsilon > 0] \}$$

Por otro lado, una base de entornos de x en \mathcal{T}_0 es:

$$\beta_x^0 = \{\{x, 0\}\}\$$

Por tanto, f es continua en x si y solo si para todo $V \in \beta_{f(x)}^S$ existe un $U \in \beta_x^0$ tal que $f(U) \subseteq V$. Como la única posibilidad es que $U = \{x, 0\}$, tenemos que f es continua en x si y solo si para cualquier $V \in \beta_{f(x)}^S$ se tiene que $f(x), f(0) \in V$.

- Veamos que es continua en x = 0: Sea $V \in \beta_{f(0)}^S$, entonces $V = [0, \varepsilon[$ para algún $\varepsilon > 0$. Como f(0) = f(x) = 0, tenemos que $f(x), f(0) \in V$ y por tanto f es continua en x = 0.
- Veamos que no es continua en $x \neq 0$: Sea $V \in \beta_{f(x)}^S$, entonces $V = [x^2, x^2 + \varepsilon[$ para algún $\varepsilon > 0$. Como $x \neq 0$, entonces $f(x) = x^2 > 0$. Por tanto, $f(0) = 0 \notin V$ y por tanto f no es continua en $x \neq 0$.
- 2. Calcula la clausura de $A = [0,1] \times [0,1]$ y el interior del conjunto dado por $B = \{(x,y) \in \mathbb{R}^2 \mid x+y \geqslant 0\}$ en el espacio topológico $(\mathbb{R}^2, \mathcal{T}_0 \times \mathcal{T}_S)$.

Sabemos que $\overline{A} = \overline{[0,1]} \times \overline{[0,1]}$. En $(\mathbb{R}, \mathcal{T}_0)$, tenemos que $C_{\mathcal{T}_0} = \{C \subseteq \mathbb{R} \mid 0 \notin C\} \cup \{\mathbb{R}\}$. Por tanto, como $\overline{[0,1]} \in C_{\mathcal{T}_0}$, tenemos que:

$$0 \in [0,1] \subset \overline{[0,1]} \in C_{T_0} \Longrightarrow \overline{[0,1]} = \mathbb{R}$$

Calculamos ahora $\overline{[0,1]}$ en $(\mathbb{R}, \mathcal{T}_S)$. Como $C_{\mathcal{T}_u} \subset C_{\mathcal{T}_S}$ y $[0,1] \in C_{\mathcal{T}_u}$, tenemos que $[0,1] \in C_{\mathcal{T}_S}$, por lo que $\overline{[0,1]} = [0,1]$. Por tanto,

$$\overline{A} = \overline{[0,1]} \times \overline{[0,1]} = \mathbb{R} \times [0,1]$$

Calculamos ahora el interior de B. Veamos la forma de B:

Figura 1: Conjunto $B = \{(x, y) \in \mathbb{R}^2 \mid x + y \ge 0\}.$

Los abiertos básicos de \mathcal{T}_S son de la forma [a, b[, con a < b, y los abiertos básicos de \mathcal{T}_0 son de la forma $\{x, 0\}$, con $x \in \mathbb{R}$. Por tanto, una base de $\mathcal{T}_0 \times \mathcal{T}_S$ es:

$$\mathcal{B} = \{ \{x, 0\} \times [a, b[\mid a < b, \ x \in \mathbb{R} \} =$$

$$= \{ \{(0, y), (x, y)\} \mid x \in \mathbb{R}, \ y \in [a, b[\}$$

Intuitivamente, vemos que si $y \leq 0$, entonces el punto (0,y) no está en B, y por tanto no puede estar en su interior. Por tanto, demostremos que $B^{\circ} = \widetilde{B}$, con:

$$\widetilde{B} = \{(x, y) \in B \mid y \geqslant 0\}$$

⊃) Sea $(x,y) \in \widetilde{B} \subset B$, y buscamos ver que $(x,y) \in B^{\circ}$. Veamos que $\exists U \in \mathcal{B}$ tal que $(x,y) \in U \subset B$.

Tenemos que $\{x,0\} \times [y,y+1] \in \mathcal{B}$, y veamos que $(x,y) \in \{x,0\} \times [y,y+1] \subset B$. Es evidente que $(x,y) \in \{x,0\} \times [y,y+1]$. Veamos que $\{x,0\} \times [y,y+1] \subset B$.

C) Tenemos que $\{x,0\} \times [y,y+1[= \{x\} \times [y,y+1[\cup \{0\} \times [y,y+1[$. Tenemos en cuenta que $0+y'\geqslant 0$ para cualquier $y'\in [y,y+1[$, por lo que $\{0\} \times [y,y+1[\subset B.$ Por otro lado, $x+y'\geqslant x+y\geqslant 0$ para cualquier $y'\in [y,y+1[$, por lo que $\{x\} \times [y,y+1[\subset B.$

Por tanto, $\{x, 0\} \times [y, y + 1] = \{x\} \times [y, y + 1] \cup \{0\} \times [y, y + 1] \subset B$.

Por tanto, tenemos que $(x, y) \in B^{\circ}$.

C) En este caso, no probaremos directamente la inclusión. Como $B^{\circ}, \widetilde{B} \subset B$, probaremos que dado $(x,y) \in B$, si $(x,y) \notin \widetilde{B}$, entonces $(x,y) \notin B^{\circ}$. Es decir, probamos el recíproco.

Sea $(x,y) \in B \setminus \widetilde{B}$, por lo que $(x,y) \in B$ e y < 0. Veamos que $(x,y) \notin B^{\circ}$. Para ver esto, por reducción al absurdo supongamos que $\exists U \in \mathcal{B}$ tal que $(x,y) \in U \subset B$. Entonces, $U = \{x,0\} \times [a,b[$, para algún $a < b, y \in [a,b[$. Por tanto, $\{0\} \times [a,b[\subset U \subset B, \text{ con } y \in [a,b[$. Por tanto, $\{0,y\} \in B$, por lo que $0 + y = y \geqslant 0$, lo cual es una contradicción, ya que y < 0.

Por tanto, $(x, y) \notin B^{\circ}$.

Ejercicio 2 (3 puntos). En $X = [-2, 2] \times \{-1, 0, 1\} \subset \mathbb{R}^2$ se considera la relación de equivalencia

$$(t,s)\mathcal{R}(t',s') \iff \begin{cases} (t,s) = (t',s') \\ \lor \\ t,t' \leqslant -1 \\ \lor \\ t,t' \geqslant 1 \end{cases}$$

1. Prueba que $(X/\mathcal{R}, \mathcal{T}_{u|X}/\mathcal{R})$ es homeomorfo a $(\mathbb{S}^1 \cup ([-1,1] \times \{0\}), \mathcal{T}_{u|\mathbb{S}^1 \cup ([-1,1] \times \{0\})})$. Veamos qué puntos identifica la relación de equivalencia:

Nos definimos entonces la siguiente aplicación:

$$f: \quad X \longrightarrow \mathbb{S}^1 \cup ([-1,1] \times \{0\})$$

$$(t,s) \longmapsto \begin{cases} (-1,0) & \text{si } t \leqslant -1 \\ (t,s\sqrt{1-t^2}) & \text{si } t \in [-1,1] \\ (1,0) & \text{si } t \geqslant 1 \end{cases}$$

Para demostrar su continuidad, buscamos aplicar el lema de pegado. Tenemos que X se puede expresar como la unión de los siguientes conjuntos:

$$X_1 = \{(t, s) \in X \mid t \leqslant -1\}$$

$$X_2 = \{(t, s) \in X \mid t \in [-1, 1]\}$$

$$X_3 = \{(t, s) \in X \mid t \geqslant 1\}$$

Tenemos que $X = X_1 \cup X_2 \cup X_3$. Además, $X_i \in C_{\mathcal{T}_u}$, ya que X_i es la imagen inversa mediante la proyección en la primera coordenada (continua) de un cerrado de \mathbb{R} . Además, podemos escribir f como:

$$f(t,s) = \begin{cases} f_1(t,s) & \text{si } (t,s) \in X_1 \\ f_2(t,s) & \text{si } (t,s) \in X_2 \\ f_3(t,s) & \text{si } (t,s) \in X_3 \end{cases}$$

donde $f_1(t,s) = (-1,0)$, $f_2(t,s) = (t,s\sqrt{1-t^2})$ y $f_3(t,s) = (1,0)$. Tenemos que f_1, f_3 son claramente continuas por ser constantes. Además, f_2 es continua, ya que ambas componentes lo son. La segunda componente es continua por ser producto de funciones continuas. La raíz es continua por ser composición de una polinómica que toma valores en [0,1] y la función raíz que es continua.

Veamos ahora $f_1 = f_2$ en $X_1 \cap X_2$. Tenemos que $f_1(-1, s) = (-1, 0)$ y $f_2(-1, s) = (-1, -\sqrt{1-1}) = (-1, 0)$. Además, veamos que $f_2 = f_3$ en $X_2 \cap X_3$. Tenemos que $f_2(1, s) = (1, s\sqrt{1-1}) = (1, 0)$ y $f_3(1, s) = (1, 0)$.

Por tanto, por el lema de pegado, f es continua. Veamos ahora que f es sobreyectiva. Sea $(t,s) \in \mathbb{S}^1 \cup ([-1,1] \times \{0\})$.

- Si $(t,s) \in \mathbb{S}^1$, con s > 0, entonces $f(t,1) = (t,\sqrt{1-t^2}) = (t,s)$, donde he empleado que $t^2 + s^2 = 1$.
- Si $(t,s) \in \mathbb{S}^1$, con s < 0, entonces $f(t,-1) = (t,-\sqrt{1-t^2}) = (t,s)$, donde he empleado que $t^2 + s^2 = 1$, por lo que $s = -\sqrt{1-t^2}$.
- Si $(t,s) \in [-1,1] \times \{0\}$, entonces f(t,0) = (t,0) = (t,s).

Por tanto, f es sobreyectiva. Veamos ahora que f es cerrada. Como claramente $[-2,2] \in C_{\mathcal{T}_u}$ y $\{-1,0,1\}$ es la unión de tres cerrados de \mathcal{T}_u , tenemos que X es producto de dos cerrados, por lo que es cerrado en la topología producto \mathbb{R}^3 . Además, claramente X es acotado, ya que $X \subset B(0,15)$ (por ejemplo). Por tanto, como $X \subset \mathbb{R}^3$ es cerrado y acotado, entonces f es cerrada.

Como f es continua, sobreyectiva y cerrada, entonces f es una identificación. Veamos que $\mathcal{R} = \mathcal{R}_f$. Sea $(t, s), (t', s') \in X$. Entonces,

$$(t,s)\mathcal{R}(t',s') \iff f(t,s) = f(t',s')$$

- \implies) Supongamos que $(t,s)\mathcal{R}(t',s')$.
 - Si (t,s)=(t',s'), entonces f(t,s)=f(t',s') por ser f una aplicación.
 - Si $t, t' \leq -1$, entonces f(t, s) = f(t', s') = (-1, 0).
 - Si $t, t' \ge 1$, entonces f(t, s) = f(t', s') = (1, 0).
- \iff Supongamos que f(t,s) = f(t',s').
 - Supongamos $t \le -1$. Entonces f(t,s) = (-1,0) = f(t',s'), y por tanto $t' \le -1$. Por tanto, $(t,s)\mathcal{R}(t',s')$.
 - Supongamos $t \ge 1$. Entonces f(t,s) = (1,0) = f(t',s'), y por tanto $t' \ge 1$. Por tanto, $(t,s)\mathcal{R}(t',s')$.
 - Supongamos $t \in]-1,1[$. Como $(t, s\sqrt{1-t^2}) = (t', s'\sqrt{1-t'^2})$, tenemos de forma directa que t = t', y por tanto $s\sqrt{1-t^2} = s'\sqrt{1-t^2}$, y como $t \neq -1,1$, entonces s = s'. Por tanto, (t,s) = (t',s'), por lo que $(t,s)\mathcal{R}(t',s')$.

Por tanto, f induce un homeomorfismo entre $(X/\mathcal{R}, \mathcal{T}_{u|X}/\mathcal{R})$ y el conjunto $(\mathbb{S}^1 \cup ([-1,1] \times \{0\}), \mathcal{T}_{u|\mathbb{S}^1 \cup ([-1,1] \times \{0\})})$.

2. Prueba que la proyección $p:(X,\mathcal{T}_{u|X})\to (X/\mathcal{R},\mathcal{T}_{u|X}/\mathcal{R})$ es cerrada. Para ello, dado $C\in C_{\mathcal{T}|X}$, tenemos que ver que $p(C)\in C_{\mathcal{T}|X}$. Para ello, habrá que ver que $p^{-1}(p(C))\in C_{\mathcal{T}|X}$. a) Si $(C \cap X_1) \cup (C \cap X_3) = \emptyset$, entonces

$$p-1(p(C)) = C$$

b) Si $(C \cap X_1) \neq \emptyset$, $(C \cap X_3) = \emptyset$, entonces

$$p-1(p(C)) = p^{-1}((-1,0) \cup C) = X_1 \cup C$$

c) Si $(C \cap X_1) = \emptyset$, $(C \cap X_3) \neq \emptyset$, entonces

$$p-1(p(C)) = p^{-1}((1,0) \cup C) = X_3 \cup C$$

d) Si $(C \cap X_1) \neq \emptyset$, $(C \cap X_3) \neq \emptyset$, entonces

$$p-1(p(C)) = p^{-1}((1,0) \cup (-1,0) \cup C) = X_1 \cup X_3 \cup C$$

En cualquier caso, $p^{-1}(p(C)) \in C_{\mathcal{T}_{|X}}$ por ser unión finita de cerrados de $\mathcal{T}_{|X}$, por lo que p es cerrada.

Ejercicio 3 (3 puntos). Sean (X, \mathcal{T}) , (Y_1, \mathcal{T}_1) , (Y_2, \mathcal{T}_2) espacios topológicos y las aplicaciones continuas $f_i:(X,\mathcal{T})\to (Y_i,\mathcal{T}_i)$ para i=1,2. Se dice que la familia $\mathcal{F}=\{f_1,f_2\}$ separa puntos de cerrados si para cada punto $x\in X$ y cada C cerrado de \mathcal{T} tal que $x\notin C$, existe un $i\in\{1,2\}$ tal que $f_i(x)\notin f_i(C)$. Consideremos la aplicación $f:(X,\mathcal{T})\to (Y_1\times Y_2,\mathcal{T}_1\times \mathcal{T}_2)$ definida por $f(x)=(f_1(x),f_2(x))$. Prueba que:

1. Si \mathcal{F} separa puntos de cerrados, entonces $f:(X,\mathcal{T})\to \big(f(X),(\mathcal{T}_1\times\mathcal{T}_2)_{f(X)}\big)$ es abierta.

Sea $U \in \mathcal{T}$. Tenemos que ver que $f(U) = f_1(U) \times f_2(U) \in (\mathcal{T}_1 \times \mathcal{T}_2)_{f(X)}$.

2. Si \mathcal{F} separa puntos de cerrados y (X, \mathcal{T}) es T1, entonces la aplicación dada por $f: (X, \mathcal{T}) \to (Y_1 \times Y_2, \mathcal{T}_1 \times \mathcal{T}_2)$ es un embebimiento.

Como cada una de sus componentes (f_1, f_2) son continuas, entonces sabemos que f es continua. Veamos que f es inyectiva. Sean $x, x' \in X$, con $x \neq x'$. Entonces, $x \notin \{x'\}$, y como (X, \mathcal{T}) es T1, entonces $\{x'\}$ es cerrado. Por tanto, como \mathcal{F} separa puntos de cerrados, existe un $i \in \{1, 2\}$ tal que $f_i(x) \notin f_i(\{x'\})$, y por tanto $f_i(x) \neq f_i(x')$. Por tanto, $f(x) \neq f(x')$, y por tanto es inyectiva.

Además, por el apartado anterior, f es abierta, por lo que f es un homeomorfismo sobre su imagen, es decir, f es un embebimiento.