

ЭТИКЕТКА

 $\frac{\text{УП3.487.312 ЭТ}}{\text{Микросхема интегральная 564 ТЛ1В}}$ Функциональное назначение – 4 триггера Шмитта с входной логикой «2И – НЕ»

Климатическое исполнение УХЛ Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Вход	8	Вход
2	Вход	9	Вход
3	Выход	10	Выход
4	Выход	11	Выход
5	Вход	12	Вход
6	Вход	13	Вход
7	Общий	14	Питание, U _{и.п.}

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C) Таблица 1

н	Буквенное	Норма		
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более	
1	2	3	4	
$1.$ Выходное напряжение высокого уровня, B, при: $U_{CC}=5,0$ B, $U_I=0$ B $U_{CC}=10,0$ B, $U_I=0$ B $U_{CC}=15,0$ B, $U_I=0$ B	U _{ОН}	4,95 9,95 14,95	1 1	
2. Выходное напряжение низкого уровня, B, при: $U_{CC}=5,0~B,~U_I=5,0~B\\ U_{CC}=10,0~B,~U_I=10,0~B\\ U_{CC}=15,0~B,~U_I=15,0~B$	$U_{ m OL}$	- - -	0,05 0,05 0,05	
3. Минимальное выходное напряжение высокого уровня, B, при: $U_{CC}=5,0$ B, $U_I=2,2$ B $U_{CC}=10,0$ B, $U_I=4,6$ B $U_{CC}=15,0$ B, $U_I=6,8$ B	U _{OH min}	4,2 9,0 13,5	- - -	
4. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC}=5,0$ B, $U_I=2,8$ B $U_{CC}=10,0$ B, $U_I=5,2$ B $U_{CC}=15,0$ B, $U_I=7,4$ B	U _{OL max}	- - -	0,8 1,0 1,5	
5 . Выходной ток высокого уровня, мА, при: $U_{CC}=5,0$ B, $U_{O}=4,6$ B $U_{CC}=5,0$ B, $U_{O}=2,5$ B $U_{CC}=10,0$ B, $U_{O}=9,5$ B $U_{CC}=15,0$ B, $U_{O}=13,5$ B	I_{OH}	/-0,51/ /-1,6/ /-1,3/ /-3,4/	- - -	

Продолжение таблицы 1				
1	2	3	4	
6. Выходной ток низкого уровня, мА, при: $U_{CC} = 5.0$ В, $U_0 = 0.4$ В $U_{CC} = 10.0$ В, $U_0 = 0.5$ В $U_{CC} = 15.0$ В, $U_0 = 1.5$ В	I_{OL}	0,51 1,3 3,4	-	
7. Входной ток высокого уровня, мкА, при: $U_{CC} = 15,0$ В	I_{IH}	-	0,1	
8. Входной ток низкого уровня, мкА, при: $U_{CC} = 15,0 \; B$	I _{IL}	-	/-0,1/	
9. Ток потребления, мкА, при: $U_{CC} = 5,0 \text{ B}$ $U_{CC} = 10,0 \text{ B}$ $U_{CC} = 15,0 \text{ B}$	I_{CC}	- - -	1,0 2,0 4,0	
10. Время задержки распространения сигнала при включении (выключении), нC, при: $U_{CC}=5,0~B,~C_L=50~\pi\Phi,~R_L=200~\kappa O M \\ U_{CC}=10,0~B,~C_L=50~\pi\Phi,~R_L=200~\kappa O M$	t _{PHL} (t _{PLH})	-	600 300	

1.	2	Содержание	драгоценных	металлов	В	1000	шт.	мик	pocx	ем:

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

2.1 Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11\,0398-2000\,$ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65\,^{\circ}$ С не менее $100000\,$ ч., а в облегченных режимах, которые приводят в ТУ при $U_{CC}=5B\pm10\%$ - не менее $120000\,$ ч.

 Γ амма – процентный ресурс ($T_{p\gamma}$) микросхем устанавливают в ТУ при γ = 95% и приводят в разделе "Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (Т $_{\text{см}}$) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.

3 ГАРАНТИИ ПРЕДПРИЯТИЯ – ИЗГОТОВИТЕЛЯ

 $3.1 \ \underline{\Gamma}$ арантии предприятия — изготовителя — по ОСТ В $11 \ 0398 - 2000$:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ТЛ1В соответствуют техническим условиям бК0.347.064 ТУ31 и признаны годными для эксплуатации.

Приняты по	(извещение, акт и др.)	OT _	(дата)	_
Место для шт	гампа ОТК			Место для штампа ВП
Место для шт	гампа « Перепроверка і	произв	едена	»
Приняты по	(извещение, акт и др.)	OT _	(дата)	_
Место для шт	гампа ОТК			Место для штампа ВП

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.