IF4058 Topik Khusus Informatika I (Topik: Metode Numerik)

Kuliah ke-1 (Pengantar Metode Numerik)

Oleh; Rinaldi Munir (IF-STEI ITB)

Apa itu Metode Numerik?

- Numerik: berhubungan dengan angka
- Metode: cara yang sistematis untuk menyelesaikan persoalan guna mencapai tujuan yang ditentukan
- Metode numerik: cara sistematis untuk menyelesaikan persoalan matematika dengan operasi angka (+, -, *, /)

Contoh beberapa persoalan matematika:

1. Tentukan akar-akar persamaan polinom

$$23.4x^7 - 1.25x^6 + 120x^4 + 15x^3 - 120x^2 - x + 100 = 0$$

2. Tentukan harga x yang memenuhi persamaan:

$$\sqrt{27.8e^{5x} - \frac{1}{x}} = \cos^{-1} \frac{(120x^2 + \sqrt{2x})}{17x - 65}$$

3. Hitung nilai integral-tentu berikut:

$$\int_{1.2}^{2.5} (\sqrt{(45.3e^{7x} + \frac{100}{x})^4 + \frac{4}{(x^2 + 1)}}) dx$$

 Diberikan persamaan differensial biasa (PDB) dengan sebuah nilai awal:

$$150y''+2y't = \frac{\sqrt{\ln(21t+40)y}}{t^2} + 120; y(0) = 1$$
Hitung nilai y pada $t = 1.8$.

5. Selesaikan sistem persamaaan lanjar (*linear*):

$$1.2a - 3b - 12c + 12d + 4.8e - 5.5f + 100g = 18$$

 $0.9a + 3b - c + 16d + 8e - 5f - 10g = 17$
 $4.6a + 3b - 6c - 2d + 4e + 6.5f - 13g = 19$
 $3.7a - 3b + 8c - 7d + 14e + 8.4f + 16g = 6$
 $2.2a + 3b + 17c + 6d + 12e - 7.5f + 18g = 9$
 $5.9a + 3b + 11c + 9d - 5e - 25f - 10g = 0$
 $1.6a + 3b + 1.8c + 12d - 7e + 2.5f + g = -5$

- Cara penyelesaian persoalan matematika ada dua:
 - 1. Secara analitik
 - 2. Secara numerik
- Secara analitik: menggunakan rumus dan teorema yang sudah baku di dalam matematika → metode analitik

Contoh 1: $x^2 - 6x + 8 = 0$ \rightarrow Carilah akar-akarnya!

Metode analitik: faktorkan menjadi (x-4)(x-2) = 0

$$x - 4 = 0 \rightarrow x_1 = 4$$

$$x - 2 = 0 \rightarrow x_2 = 2$$

- Secara numerik: menggunakan pendekatan aproksimasi untuk mencari solusi hanya dengan operasi aritmetika biasa → metode numerik.
- Contoh: carilah sebuah akar f(x) = x² − 6x + 8 = 0
 Metode numerik: diketahui sebuah akar terletak di dalam selang [3, 6] → mengapa???????

Pendekatan sederhana mencari akar adalah secara iteratif dengan **metode titik tengah** (*bisection*):

- bagi selang [a,b] menjadi dua dengan titik tengah
 c = (a + b) / 2
- 2. ada dua sub-selang: [a, c] dan [c, b]. Pilih selang iterasi yang baru dengan syarat nilai fungsi di ujung selang berbeda tanda.
- 3. ulangi langkah 1 dan 2 sampai ukuran selang $< \varepsilon$ (epsilon adalah nilai yang sangat kecil yang menyatakan toleransi kesalahan akar yang diinginkan, misalnya ε = 0.001, 000001, dsb

• Contoh mencari akar $f(x) = x^2 - 6x + 8 = 0$ di dalam selang [3, 6] dengan $\varepsilon = 0.0005$

Iterasi	а	С	b	f(a)	f(c)	f(b)	Selang baru	Lebar	
1	3	4.5	6	-1	1.25	8	[a,c]	1.5	
2	3	3.75	4.5	-1	-0.4375	1.25	[c,b]	0.75	
3	3.75	4.125	4.5	-0.4375	0.265625	1.25	[a,c]	0.375	
4	3.75	3.9375	4.125	-0.4375	-0.12109	0.265625	[c, b]	0.1875	
5	3.9375	4.03125	4.125	-0.12109	0.063477	0.265625	[a,c]	0.09375	
6	3.9375	3.984375	4.03125	-0.12109	-0.03101	0.063477	[c, b]	0.046875	
7	3.984375	4.007813	4.03125	-0.03101	0.015686	0.063477	[a, c]	0.023438	
8	3.984375	3.996094	4.007813	-0.03101	-0.0078	0.015686	[c, b]	0.011719	
9	3.996094	4.001953	4.007813	-0.0078	0.00391	0.015686	[a, c]	0.005859	
10	3.996094	3.999023	4.001953	-0.0078	-0.00195	0.00391	[c, b]	0.00293	
11	3.999023	4.000488	4.001953	-0.00195	0.000977	0.00391	[a,c]	0.001465	
12	3.999023	3.999756	4.000488	-0.00195	-0.00049	0.000977	[c, b]	0.000732	
13	3.999756	4.000122	4.000488	-0.00049	0.000244	0.000977	[a, c]	0.000366	S

• Aproksimasi akar = 4.000122

• Contoh 2: hitung integral $\int_{-1}^{1} (4-x^2) dx$

Metode analitik:

Rumus:
$$\int ax^n dx = \frac{1}{n+1} ax^{n+1} + C$$

$$\int_{-1}^{1} (4 - x^{2}) dx = \left[4x - \frac{1}{3}x^{3}\right]_{x=-1}^{x=1}$$

$$= \left[4(1) - \frac{1}{3}(1)\right] - \left[4(-1) - \frac{1}{3}(-1)\right] = 22/3 = 7.33$$

Metode numerik

Nilai integral = luas daerah di bawah kurva

$$\int_{-1}^{1} (4-x^2) dx \approx p + q + r + s \approx \{ [f(-1) + f(-1/2)] \times 0.5/2 \} + \{ [f(-1/2) + f(0)] \times 0.5/2 \} + \{ [f(0) + f(1/2)] \times 0.5/2 \} + \{ [f(1/2) + f(1)] \times 0.5/2 \}$$

$$\approx 0.5/2 \{ f(-1) + 2f(-1/2) + 2f(0) + 2f(1/2) + f(1) \}$$

$$\approx 0.5/2 \{ 3 + 7.5 + 8 + 7.5 + 3 \}$$

$$\approx 7.25$$

- Perbedaan solusi antara metode analitik dengan metode numerik:
 - → solusi dengan metode analitik: eksak (tepat tanpa ada kesalahan)
 - → solusi dengan metode numerik: hampiran atau aproksimasi (tidak tepat sama dengan solusi eksak, selalu ada kesalahan
- Kesalahan dalam solusi numerik disebut galat (error)
- Galat dapat diperkecil dengan mengubah parameter di dalam metode numerik (misalnya ε, lebar trapesium, dsb)

 Kelebihan metode numerik: dapat menyelesaikan persoalan matematika yang tidak dapat diselesaikan dengan metode analitik.

Contoh: metode analitik apakah yang mampu mencari akar persamaan di bawah ini:

$$\sqrt{27.8e^{5x} - \frac{1}{x}} = \cos^{-1} \frac{(120x^2 + \sqrt{2x})}{17x - 65}$$

atau mencari nilai integral berikut ini:

$$\int_{1.2}^{2.5} (\sqrt{(45.3e^{7x} + \frac{100}{x})^4 + \frac{4}{(x^2 + 1)}}) dx$$

Metode numerik mampu menyelesaikan persoalan di atas!

- Metode numerik membutuhkan banyak operasi aritmetika yang berulang
- Oleh karena itu, komputer berguna untuk membantu perhitungan. Komputer menjadi kebutuhan yang penting dalam metode numerik.
- Metode numerik pada dasarnya adalah suatu algoritma sehingga dapat diprogram.
- Peranan orang Informatika adalah pada fase pemrograman numerik.

- Tahapan penyelesaian persoalan secara numerik:
 - 1. Pemodelan
 - 2. Penyederhanaan model
 - 3. Formulasi numerik
 - menentukan metode nuemrik yang dipakai
 - membuat algoritma penyelesaian
 - 4. Pemrograman
 - coding
 - 5. Pengujian
 - tes dengan data uji
 - 6. Evaluasi
 - menganalisis hasil numerik
- Tahap 1 dan 2 adalah pekerjaan ahli yang sesuai dengan bidangnya;
 Tahap 3 dan 4 adalah tugas informatikawan;
 - Tahap 5 dan 6 melibatkan informatikawan dan ahli yang sesuai dengan bidangnya

 Contoh 4: Sebuah bola logam dipanaskan sampai pada suhu 100°C. Kemudian, pada saat t = 0, bola itu dimasukkan ke dalam air yang bersuhu 30°C. Setelah 3 menit, suhu bola berkurang menjadi 70°C. Tentukan suhu bola setelah 22.78 menit menit. Diketahui tetapan pendinginan bola logam itu adalah 0.1865.

Pemodelan oleh ahli fisika: Dengan menggunakan hukum pendinginan Newton, laju pendinginan bola setiap detiknya adalah

$$dT/dt = -k(T-30); T(0)=100$$

Ditanya: T(22.78) = ?

Formulasi numerik: menggunakan metode Runge-Kutta 9salah satu metode numerik untuk penyelesaian PDB)

Apa yang Dipelajari di dalam Metode Numerik

1. Solusi persamaan nirlanjar

Temukan x sehingga f(x) = 0

2. Solusi sistem persamaan lanjar

Selesaikan sistem persamaan lanjar seperti

$$a_{11}X_1 + a_{12}X_2 = c_1$$

$$a_{21}X_1 + a_{22}X_2 = c_2$$

untuk harga-harga x_1 dan x_2 .

3. Interpolasi polinom

Diberikan titik-titik (x_0, y_0) , (x_1, y_1) , ..., (x_n, y_n) . Tentukan polinom $p_n(x)$ yang melalui semua titik tersebut

4. Turunan numerik

Misalkan diberikan titik (x_i, y_i) dan titik (x_{i+1}, y_{i+1}) . Tentukan $f'(x_i)$.

5. Integrasi numerik

Hitung integral
$$I = \int_{a}^{b} f(x)dx$$

6. Solusi persamaan diferensial biasa dengan nilai awal

Diberikan dy/dx = f(x,y) dan nilai awal $y_0 = y(x_0)$ Tentukan nilai $y(x_t)$ untuk $x_t \in R$

Tujuan Kuliah IF4058

1. Mempelajari berbagai metode penyelesaian persoalan matematika secara numerik.

2. Mengimplementasikan metode numerik ke dalam program komputer untuk persoalan di bidang sains dan rekayasa

Prasyarat Kuliah

- 1. Kalukulus I dan II
- 2. Algoritma dan Pemrograma / Strukyur Data

Penilaian Kuliah

- 1. Kehadiran
- 2. UTS (closed book)
- 3. UAS (open book)
- 4. PR
- 5. Tugas pemrograman (menggunakan Bahasa C#, Bahasa FORTRAN, dan Matlab)
- 6. Makalah perorangan

Buku Teks

- 1. Rinaldi Munir, Diktat Kuliah Metode Numerik untuk Teknik Informatika Edisi Kedua (Revisi), Depratemen Teknik Informatika ITB, 2002
- 2. Curtis F. Gerald dan Pattrick O. Wheatley, *Applied Numerical Analysis,* 5rd Edition, Addison-Wesley Publishing Company, 1994.
- 3. Steven C. Chapra dan Raymond P. Canale, *Numerical Methods for Engineers with Personal Computer Applications*, MacGraw-Hill Book Company, 1991

Buku 1, 2, dan 3 di atas sebaiknya dimiliki.

Buku tambahan:

- 1. John. H. Mathews, *Numerical Methods for Mathematics, Science and Engineering*, 2nd Edition, Prentice-Hall International, 1993
- 2. Shoichiro Nakamura, *Applied Numericak Methods in C*, Prentice-Hall Int. Series, 1993
- 3. Samuel D Conte dan Carl De Boor, *Elementary Numerical Analysis, An Algorithmic Approach, 3rd Edition*, MacGraw-Hills, Inc, 1992.