

Vehicle Intersection Control

MCMASTER UNIVERSITY

Development Process and Implementation SE 4G06

GROUP 6

Alex Jackson
Jean Lucas Ferreira
Justin Kapinski
Matthew Hobers
Radhika Sharma
Zachary Bazen

Contents

1	Revi	sions	3
2		rall Process Workflow	4
	2.1	Project Steps and Order	4
	2.2	Step Inputs and Outputs	4
	2.3		4
3	Step		4
	3.1	Tools and Versions	4
	3.2	m 1 0 1 177	4
	3.3	Standards	4
	3.4	Work Assignments	5
4	Vers	ion Control Information	5
5	Proje	ect Evolution	5
	5.1	Bug and Change Tracking	5
	5.2	Project Change Documentation	5
	5.3	Project Change Classification	5
	5.4	Making Project Change Decisions?	5
List	t of T	ables	
1	_	Table of Revisions	7

1 Revisions

Date	Revision Number	Authors	Comments
October 22, 2016	Revision 0	Alex Jackson Jean Lucas Ferreira Justin Kapinski Matthew Hobers Radhika Sharma Zachary Bazen	-

Table 1: Table of Revisions

2 Overall Process Workflow

2.1 Project Steps and Order

Very highlevel (Jean) (note: sd = soft deadline)

- 1. Acquire 1 (or 2) 1/10th car models (sd: mid November)
- 2. Acquire hardware (rasberry Pi, camera(s), sensors) for each car to allow automation (sd: end of November)
- 3. Integrate car models with hardware (sd: early december)
- 4. Look for open-source algorithms for lane-following and apply to cars (mid december)
- 5. Cars can follow lanes independently (sd: end of december)
- 6. Algorithm considerations and design planning
- 7. Test algorithms virtually (via simulations) (sd: end january)
- 8. Implement algorithm to the car software
- 9. test test (end of february)
- 10. freak out
- 11. ???
- 12. graduate :D

2.2 Step Inputs and Outputs

Insert Text Here.

2.3 Step Output Acceptance Criterion

Insert Text Here.

3 Step Completion Information

3.1 Tools and Versions

Insert Text Here.

3.2 Tool Setting and Use

Insert Text Here.

3.3 Standards

Insert Text Here.

3.4 Work Assignments

Ideally we should create two subgroups (HW and SW), but we would still discuss both aspects as a whole group. When it comes to implementation subgroups might be more efficient.

4 Version Control Information

GitHub Ideally **two** repos:

- documentation and miscellaneous stuff
- source code, libraries, and dependencies.

5 Project Evolution

5.1 Bug and Change Tracking

Any issues with the project (ie: bugs) will be posted on github via the Issues panel. When a issue is posted, someone may take responsibility to fixing the bug. Once fixed, the issue will be closed.

5.2 Project Change Documentation

Github <3

5.3 Project Change Classification

Github does it for us??

5.4 Making Project Change Decisions?

Insert Text Here.