APPLIED PROBABILISTIC MACHINE LEARNING

MARKOV MODELS

HUGUES RICHARD IVAN TUNOV POTSDAM.DF RICHARDH@RKI.DE IVAN.TUNOV@STUDENT.HPI.UNI-

MF1 - GENOME COMPETENCE CENTER DACS

ROBERT KOCH INSTITUTE (RKI)
HASSO PLATTNER INSTITUTE (HPI)

28 NOVEMBER 2024

LEARNING GOALS

- Understand what are Markov Models
 - ► Model parameters
 - ► Representations of Markov Models
- Be able to manipulate Markov Models
- Learn about Markov Models properties
- Study example application of Markov Models
- Extensions of Markov models

INTRODUCTION

EXTENDING THE I.I.D MODEL

- Let's consider sequential data over discrete values
 - first hypothesis is that observations are independent, identically distributed (i.i.d.)

$$x_1, x_2, ..., x_n, x_i \sim Categorical(K)$$

- $ightharpoonup x_i \perp \!\!\! \perp x_j$
- Not always the case, we expect a **dependency** for time series:
 - ► Hand drawing
 - People/image tracking
 - ► Texts, genomes

■ How to account for a local dependency?

THE MARKOVIAN HYPOTHESIS

■ We consider a time oriented process, using product rule the probability of a sequence is:

$$\begin{split} \mathbb{P}(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}) &= \mathbb{P}(\mathbf{x}_{n} \mid \mathbf{x}_{1}, \dots, \mathbf{x}_{n-1}) \cdot \mathbb{P}(\mathbf{x}_{1}, \dots, \mathbf{x}_{n-1}) \\ &= \mathbb{P}(\mathbf{x}_{n} \mid \mathbf{x}_{1}, \dots, \mathbf{x}_{n-1}) \cdot \mathbb{P}(\mathbf{x}_{n-1} \mid \mathbf{x}_{1}, \dots, \mathbf{x}_{n-2}) \\ & \dots \mathbb{P}(\mathbf{x}_{3} \mid \mathbf{x}_{1}, \mathbf{x}_{2}) \cdot \mathbb{P}(\mathbf{x}_{2} \mid \mathbf{x}_{1}) \mathbb{P}(\mathbf{x}_{1}) \end{split}$$

- We cannot estimate a conditional distribution from all previous observations
 - ▶ keep information about the current state (order 1):

$$\mathbb{P}(\mathbf{x}_n \mid \mathbf{x}_1, \dots, \mathbf{x}_{n-1}) = \mathbb{P}(\mathbf{x}_n \mid \mathbf{x}_{n-1})$$

Not much but still better than independence (order 0):

$$\mathbb{P}(\mathbf{x}_n \mid \mathbf{x}_1, \dots, \mathbf{x}_{n-1}) = \mathbb{P}(\mathbf{x}_n)$$

A SIMPLE EXAMPLE

Mouse in a maze:

- ► 3 × 3 rooms, we monitor the mouse location between each of her room change
- ► In each room, the mouse chooses one of the door randomly: $\mathbb{P}(x_{n+1} = 2 \mid x_n = 1) = \frac{1}{2}, \quad \mathbb{P}(x_{n+1} = 5 \mid x_n = 2) = \frac{1}{3}$

TRANSITION MATRICES

Probability of a path? Similar to an automaton

$$\mathbb{P}(X_{1:5} = (1, 2, 5, 8, 9)) = \mathbb{P}(X_1 = 1)\mathbb{P}(X_2 = 2 \mid X_1 = 1) \dots \mathbb{P}(X_5 = 9 \mid X_4 = 8)$$
$$= 1 \cdot 1/2 \cdot 1/3 \cdot 1/4 \cdot 1/3 = \frac{1}{72}$$

- The weighted graph and the transition matrix are equivalent.
- Parameters of a homogeneous Markov chain over Σ:
 - ► Starting distribution $\pi = \mathbb{P}(X_1)$
 - ► Transition matrix $A_{i,j} = \mathbb{P}(X_{t+1} = j \mid X_t = i)$ (**from** the rows **to** the columns)

PROPERTIES OF MARKOV CHAINS

- 1. Probability of a sequence
- 2. Probability of two non consecutive events
- 3. What is the long term behaviour?
- 4. How to estimate the parameters of a Markov Chain?

PROBABILITY OF A SEQUENCE

 Because of Markov property, the likelihood is a product over the consecutive observations

$$\mathbb{P}(x_1, \dots, x_n) = \pi_{x_1} \prod_{i=2}^n A[x_{i-1}, x_i]$$

■ This conditional independence can be summarised with a graph and the probability of a sequence is like a walk on an automaton

PROBABILITY OF NON CONSECUTIVE EVENTS

$$\begin{split} \mathbb{P}(X_3 = 5 \mid X_1 = 1) &= a_{1,2} \cdot a_{2,5} + a_{1,4} \cdot a_{4,5} \\ \mathbb{P}(X_3 = j \mid X_1 = i) &= \sum_{\ell \in \Sigma} \mathbb{P}(X_2 = j, X_1 = \ell \mid X_0 = i) \\ &= \sum_{\ell \in \Sigma} a_{i,\ell} \cdot a_{\ell,j} \\ &= A^2(i,j) \end{split}$$

- This generalizes to the k-step process (exercise)
 - ► It is a Markov chain
 - ► it transition Matrix is A^k : $\mathbb{P}(X_{n+k} = j \mid X_n = i) = A^k(i,j)$
 - Easy to compute the state of the system after t steps: $\mathbb{P}(X_n = i) = (\pi \cdot A^n)[i]$ (note that $\pi \cdot A^n$ is a vector of size $|\Sigma|$.)

CAT OR CHEESE?

- We can use the powers of the transition matrix to look at the long term behavior
 - What is the probability that the mouse will end first in the cat room? In the cheese room?
 - We can compute powers of A, using the starting distribution $\pi = (1, 0, 0, 0, 0, 0, 0, 0, 0)$

$$\pi \cdot A^n = A^n[1,:]$$

	1	2	3	4	5	6	cat	8	cheese
π*A^2	0.33	0	0.16	0	0.34	0	0.17	0	0
π*A^3	0	0.33	0	0.25	0	0.17	0.17	0.08	0
π*A^4	0.19	0	0.16	0	0.28	0	0.28	0	0.08
π*A^10	0.08	0	0.08	0	0.12	0	0.46	0	0.26
π*A^20	0.02	0	0.02	0	0.03	0	0.57	0	0.37
π*A^100	0	0	0	0	0	0	0.6	0	0.4

LONG TERM BEHAVIOR

STRUCTURAL PROPERTIES OF A MARKOV CHAIN

- tl;dr: A well behaved Markov chain will converge to a **unique** stationary distribution
- Now, what are the component of a badly behaved Markov chain?
 - ► Absorbing states: dead ends in the chain (think of cat and cheese in the maze → 2 stationnary distributions)
 - ▶ if $\forall i,j \in \Sigma$, $\exists k \mid A^k(i,j) > 0$ then there are no absorbing states and the chain is **irreducible**
 - Periodic states: closed loops in the chain A state is periodic if we can get back to it only at a given multiple of k
 - ▶ a chain with no periodic states is called **aperiodic**.

All states have period 3

the chain is aperiodic

LONG TERM BEHAVIOR

- If the chain is irreducible and aperiodic (well behaved)
- the stationary distribution μ is **unique** and $\mu \cdot A = \mu$
 - \blacktriangleright μ can be obtained by solving μ · A = μ ⇔ μ(A − I) = 0
 - ightharpoonup μ is the eigenvector of A associated with the eigenvalue $λ_1 = 1$ (1 is also the largest eigenvalue)
 - **Each** row of A^k converges towards μ
 - In other words Markov chains have **short term memory** $\rightarrow X_t$ does not influence $X_{t,b}$ when $k \nearrow$
 - Convergence is **exponentially fast**

$$\max_{i} \sum_{j \in \Sigma} |A^{k}[i,j] - \mu[j]| \le C \cdot |\Sigma|^{r_2 - 1} \cdot |\lambda_2|^{k}$$

 r_2 : multiplicity of λ_2

Advantage: Easy to approximate after spectral analysis Drawback: cannot model long range effects

Note: If the first state in the sequence is not specified, we usually set $\pi = \mu$.

That way the chain already starts with the stationary distribution.

FAMOUS STATIONARY DISTRIBUTIONS

GOOGLE PAGERANK SCORE

- How to decide the most relevant answers from a web search?
 - First web browsers (altavista...): number of pages linking to it (can easily be tricked with false websites)

- Consider a random (mouse) websurfer
 - Click all outgoing links on a page equally likely
 - → Markov chain over webpages!
 - Which page would the surfer land more often?
 - → This is the stationary distribution!
 - In practice, two cases can affect irreducibility and aperiodicity
 - dead-ends: pages with no outgoing links
 - disconnected components in the network
 - add a random page reset (Google used p = 0.15)

2 | 1

PAGERANK EXAMPLE ([HASTIE ET AL., 2009]-14.10)

■ Let's consider an internet with 5 pages

$$T \approx \begin{pmatrix} 0.04 & 0.46 & 0.46 & 0.04 \\ 0.04 & 0.04 & 0.88 & 0.04 \\ 0.04 & 0.04 & 0.04 & 0.88 \\ 0.04 & 0.04 & 0.88 & 0.04 \end{pmatrix} \Rightarrow \text{PageRank } \mu^T = \begin{pmatrix} 0.0375 \\ 0.0534 \\ 0.4711 \\ 0.4379 \end{pmatrix}$$

13 | 19

PAGERANK EXAMPLE

Figure 17.6 (a) Web graph of 500 sites rooted at www.harvard.edu. (b) Corresponding page rank vector. Figure generated by pagerankDemoPmtk, Based on code by Cleve Moler (Moler 2004).

[Murphy, 2022]

SIMPLE EXAMPLE: TENNIS MATCH

- Consider a Tennis match where player A has a probability p to win a point on his/her serve
 - All scores configurations can be enumerated: state space Σ.
 - ► The sequence of scores is a Markov chain.

(source: wolfram.com)

SIMPLE EXAMPLE: MONOPOLY PROJECT

- State space: All squares on the board (almost)
- Transition Probabilities of move are parameterised by 2-dice throws

(see project n. 3)

PARAMETERS ESTIMATION

■ The log-likelihood of a sequence $x_1, ... x_n$ writes:

$$\log \ell(x_{1:n},\theta) = \log \mathbb{P}(x_1) + \sum_{i=2}^n \log A_{\theta}[x_{i-1},x_i]$$

lacktriangle if we count the number of co-occurence of pairs of states $n_{a,b}$

$$n_{a,b} = \sum_{i=2}^{n} \mathbb{I}_{\{x_{i-1} = a, x_i = b\}}$$

then

$$\log \ell(x_{1:n}, \theta) = \log \mathbb{P}(x_1) + \sum_{a \in \Sigma} \sum_{b \in \Sigma} n_{a,b} \log A_{\theta}[a, b]$$

 Maximum likelihood estimators are like the ones for Multinoulli (neglecting sequence start)

$$\hat{A}_{ML}[a,b] = \frac{n_{a,b}}{n_{a,\bullet}}$$

EXTENSIONS OF MARKOV MODELS

Order k Markov model increase the dependency:

$$\mathbb{P}(\mathbf{x}_{n} \mid \mathbf{x}_{1}, \dots, \mathbf{x}_{n-1}) = \mathbb{P}(\mathbf{x}_{n} \mid \mathbf{x}_{n-1}, \mathbf{x}_{n-2}, \mathbf{x}_{n-k})$$

- But the number of parameters increases exponentially!
- ightharpoonup Order *n* Markov chains on Σ , can be viewed as order 1 Markov chains on Σ^k
 - **Example** $\Sigma = \{a, b\}$ and a Markov chain of order 2 with transitions $\alpha_{ii,k} = \mathbb{P}(\mathbf{x}_n = k \mid x_{n-1} = j, x_{n-2} = i)$
 - we can write the transition matrix A on Σ^2 :

$$A = \left(\begin{array}{cccc} \alpha_{aa,a} & \alpha_{aa,b} & 0 & 0 \\ 0 & 0 & \alpha_{ab,a} & \alpha_{ab,b} \\ \alpha_{ba,a} & \alpha_{ba,b} & 0 & 0 \\ 0 & 0 & \alpha_{bb,a} & \alpha_{bb,b} \end{array} \right)$$

- More parsimonious models were proposed:
 - Variable order Markov chains.

LEARNING GOALS

- Understand what are Markov Models
 - Models for sequential data with short range dependency
 - Fully parametrised with a transition Matrix + Init proba.
- Be able to manipulate Markov Models and models properties
 - Probability distributions can be computed with Linear algebra operations
 - Markov chains have short memory
- Study example application of Markov Models
 - ► Google PageRank
- Extensions of Markov models
 - Parameters of higher order Markov chains increase exponentially
- Application: sample complex probability distributions using the convergence to the stationary distribution.

REFERENCES I

MURPHY, K. P. (2022).

PROBABILISTIC MACHINE LEARNING: AN INTRODUCTION.
MIT Press.