SCC02713 - Introdução à Bioinformática ——

- O que é uma sequência?
 - Arranjo de duas ou mais coisas relacionadas em uma ordem sucessiva
 - Coisas relacionadas: DNA (ACGT), RNA (ACUG) e proteínas (aminoácidos)

- O que é alinhamento de sequências?
 - Maneira de arranjar as sequências de DNA, RNA ou proteínas de maneira a identificar regiões de similaridade e identidade, que podem ser consequência de relações estruturais, funcionais ou evolutivas

Objetivo: determinar a similaridade entre diferentes sequências

- Similaridade x Identidade
 - Para sequências de nucleotídeos (DNA ou RNA): têm o mesmo significado

Duas sequências de DNA podem ter um alto grau de similaridade (ou identidade) - mesmo significado

- Similaridade x Identidade
 - o Para sequências de proteínas: identidade e similaridade têm significados diferentes
 - o Identidade: % de correspondências exatas entre duas sequências alinhadas
 - Similaridade: % de resíduos alinhados que compartilham características semelhantes

Características similares? Small Tiny Pro Asn Ala Ser Negative Gly Cys Asp Val lle Thr Glu Aliphatic-Leu Lys Tyr Aromatic-Gln His Arg Phe Try Met -Positive Essential ' Hydrophobic **Polar**

- Se uma sequência A = B e B = C:
 - A é igual a C em termos de identidade?

- Identidade(A,B) = 100% (5 nucleotídeos idênticos / min(comprimento(A), comprimento(B)))
- Identidade(B,C) = 100%
- Identidade(A,C) = 85% (6 nucleotídeos idênticos / 7)
- Portanto, 100% de identidade não significa que as sequências são iguais

- Podemos alinhar duas ou mais sequências
 - Alinhamento em par e alinhamento múltiplo

Histone H1 (residues 120-180)

- Por que alinhar sequências?
 - Encontrar genes

Alinhamento dos ORFs

https://theg-cat.com/2018/03/21/fantastic-genes-and-where-to-find-them/https://www.genome.gov/genetics-glossary/Open-Reading-Frame

- Por que alinhar sequências?
 - Predição de funções
 - Proteínas de sequências similares podem ter funções similares

- Por que alinhar sequências?
 - Montagem de genomas
 - Um genoma é montado baseado no alinhamento entre fragmentos gerados por NGS

- Por que alinhar sequências?
 - Identificação de genes homólogos: que tem um ancestral evolutivo comum
 - Homologia: o estudo de similaridades entre organismos para determinar ancestrais comuns

PHYLOGENETIC TREE

- Por que alinhar sequências?
 - Gêmeos idênticos. Eles têm DNA idêntico? Pesquisem!

O conceito de homologia

Homólogos são duas ou mais sequências que descendem de uma sequência ANCESTRAL COMUM. Homólogos são resultados de evolução divergente.

- Sequências ortólogas
 - Sequências homólogas cujo último evento evolutivo foi uma especiação (geração de uma nova espécie)
 - Sequências semelhantes ou idênticas em espécies DIFERENTES

- Sequências parálogas
 - Sequências homólogas que divergiram dentro de uma espécie, ou seja, surgem durante o processo de duplicação genética.
 - Sequências semelhantes dentro das MESMAS espécies

- Sequências xenólogas
 - Sequências semelhantes entre organismos DISTANTEMENTE RELACIONADOS na história evolutiva
 - Transferência horizontal de genes

- Genes análogos
 - Genes que têm FUNÇÕES IDÊNTICAS ou SEMELHANTES, mas NÃO COMPARTILHAM UM ANCESTRAL COMUM
 - Os análogos têm atividade homóloga, mas origem heteróloga

EVOLUÇÃO CONVERGENTE

Olho da lula

Olho humano

Homólogos x análogos

- Homólogas
 - O Duas ou mais seguências que descendem de uma seguência ancestral comum
- Ortólogas
 - Sequências que são resultados do processo de especiação
- Parálogas
 - Sequências que são resultados do processo de duplicação de genes
- Xenólogas
 - Sequências semelhantes entre organismos distantemente relacionados na história evolutiva
- Análogas
 - Sequências que apresentam estrutura ou função semelhante, mas não compartilham nenhuma sequência ancestral comum

- Por que alinhar sequências?
 - Maneira eficiente e simples de determinar os relacionamentos
 - Funcionais
 - Estruturais
 - Evolutivos

- Componentes de um alinhamento
 - Matches
 - Mismatches
 - Gaps

String1: WEAREHUMANS

String2: WEARENOTHUMANZ

Como identificar qual alinhamento é melhor?

Deve haver uma pontuação para matches

Deve haver uma penalização para mismatches

Deve haver uma penalização para gaps

A1: A—TGAG

Query: ATGGCG

A2: ATG—AG

A pontuação total é a soma de todas pontuações e penalizações

A pontuação total reflete a qualidade do alinhamento

- Dado o esquema de pontuação:
 - +1 para todo match
 - -1 para mismatches
 - 0 para gaps

A1: A—TGAG
Query: ATGGCG
A2: ATG—AG

A1: A—TGAG
Query: ATGGCG
ATG—AG

A2: ATG—AG

A1: A—TGAG
ATG—AG

ATG—AG

A1: A—TGAG
ATG—AG

ATG—AG

+1+0-1+1-1+1=1

Alinhamento Global

- Tenta alinhar uma sequência inteira
- Alinha todas as letras da query e do target
- Melhor para sequências relacionadas
- Algoritmo comum: Needleman-Wunsch

Alinhamento Local

- Alinha regiões de alta similaridade
- Alinha substrings da query com substrings do target
- Melhor para sequências mais divergentes
- Algoritmo comum: Smith-Waterman

- O início (1 com 1)
 - Na década de 1970 os cientistas não estavam preocupados em ter que alinhar muitas sequências. Eles queriam encontrar o melhor alinhamento entre duas sequências

O algoritmo Needleman-Wunsch é o primeiro algoritmo para encontrar o alinhamento entre

duas sequências e pontuar suas similaridades

n	natch =	1	mismatch = -1			gap = -1		
		G	С	A	Т	G	С	U
	0	-1	-2	-3	-4	-5	-6	-7
G	-1	4	- 0	1 -	2	-3	-4	5
A	-2	0	0	1	0	← -1 ·	2	3
т	-3	-1	-1	O	2	1	- 0	1
т	-4	-2	-2	-1		1	0	1
Α	-5	-3	-3	-1	0	0	0	1
С	-6	-4	-2	-2	-1	-1	4	0
Α	-7	-5	-3	-1 -	2	-2	0	0

- O algoritmo Needleman-Wunsch
 - Inicialize uma matriz N x M
 - Preencha a matriz do canto superior esquerdo até o canto inferior direito de maneira recursiva, usando um esquema de pontuação
 - Faça um traceback

A general method applicable to the search for similarities in the amino acid sequence of two proteins \(\precedut{\scale} \)

- O algoritmo Needleman-Wunsch
 - Seq1: TGGTG
 - Seq2: ATCGT
 - Seq1 = m
 - Seq2 = n

Passo 1: Inicializar a matriz T

- +1 para todo match
- -1 para mismatches
- -2 para gaps

- O algoritmo Needleman-Wunsch
 - Passo 1: Inicializar a matriz T

		i=0	i=1	i=2	i=3	i=4	i=5
		m	Т	G	G	т	G
J=0	n	0					
J=1	Α						
J=2	Т						
J=3	С						
J=4	G						
J=5	т						

$$\begin{aligned} \mathbf{T}_{(\mathbf{l},\mathbf{j})} &= \mathsf{max} \begin{cases} \mathbf{T}_{(\mathbf{i-1},\,\mathbf{j-1})} + \sigma \; (\mathbf{S1}_{(\mathbf{i})},\,\mathbf{S2}_{(\mathbf{j})}) \\ \\ \mathbf{T}_{(\mathbf{i-1},\mathbf{j})} + \mathsf{gap} \; \mathsf{penalty} \\ \\ \mathbf{T}_{(\mathbf{l},\mathbf{j-1})} + \mathsf{gap} \; \mathsf{penalty} \end{cases} \end{aligned}$$

- +1 para todo match
- -1 para mismatches
- -2 para gaps

- O algoritmo Needleman-Wunsch
 - Passo 1: Inicializar a matriz T

- +1 para todo match
- -1 para mismatches
- -2 para gaps

- O algoritmo Needleman-Wunsch
 - Passo 1: Inicializar a matriz T

- +1 para todo match
- -1 para mismatches
- -2 para gaps

- O algoritmo Needleman-Wunsch
 - Passo 1: Inicializar a matriz T

- +1 para todo match
- -1 para mismatches
- -2 para gaps

- O algoritmo Needleman-Wunsch
 - Passo 1: Inicializar a matriz T

$$T_{(i,j)} = \max \left\{ \begin{array}{l} T_{(i-1,j-1)} + \sigma\left(S1_{(i)},S2_{(j)}\right) \rightarrow \\ T_{(i,j)} + \text{gap penalty} & \longrightarrow \\ T_{(i,j-1)} + \text{gap penalty} & \longrightarrow \\ \end{array} \right. + \left(-2\right) = -2$$

- +1 para todo match
- -1 para mismatches
- -2 para gaps

- O algoritmo Needleman-Wunsch
 - Passo 1: Inicializar a matriz T

$$T_{(i,j)} = \max \begin{cases} T_{(i-1,j-1)} + \sigma(S1_{(i)}, S2_{(j)}) \Rightarrow O + (-1) = -1 \\ T_{(i-1,j)} + \text{gap penalty} \implies -2 + (-2) = -1 \\ T_{(i,j-1)} + \text{gap penalty} \implies -2 + (-2) = -1 \end{cases}$$

- Esquema de pontuação:
- +1 para todo match
- -1 para mismatches
 - -2 para gaps

- O algoritmo Needleman-Wunsch
 - Passo 1: Inicializar a matriz T

$$T_{(i,j)} = \max \begin{cases} T_{(i-1,j-1)} + \sigma(S1_{(i)}, S2_{(j)}) & -2 + (-1) + -3 \\ T_{(i-1,j)} + \text{gap penalty} & -1 + (-2) + -3 \\ T_{(i,j-1)} + \text{gap penalty} & -4 + (-2) = -6 \end{cases}$$

- O algoritmo Needleman-Wunsch
 - Passo 2: Traceback

Esquema de pontuação:

- +1 para todo match
- -1 para mismatches
 - -2 para gaps

Volte seguindo as setas

Esquema de pontuação:

- +1 para todo match
- -1 para mismatches
 - -2 para gaps

- O algoritmo Needleman-Wunsch
 - Passo 2: Traceback
 - O caminho através da matriz T é o traceback (em rosa aqui)
 - Para encontrar o melhor alinhamento, siga o traceback do canto superior esquerdo até o canto inferior direito e observe as letras alinhadas em cada célula

- O algoritmo Needleman-Wunsch
 - Passo 2: Traceback
 - Célula 1: não corresponde a nenhuma letra
 - Célula 2: 'A' na sequência S₂ e nada na sequência S₁
 - Célula 3: 'T' na sequência S₂ e 'T' na sequência S₁
 - Célula 4: 'C' na sequência S₂ e 'G' na sequência S₁
 - Célula 5: 'G' na sequência S₂ e 'G' na sequência S₁
 - Célula 6: 'T' na sequência S₂ e 'T' na sequência S₁
 - Célula 7: nada na sequência S₂ e 'G' na sequência S₁

Esquema de pontuação:

- +1 para todo match
- -1 para mismatches
- -2 para gaps

APORAÉ SUA VITA

Alinhe essas duas sequências usando o algoritmo Needleman-Wunsch

	Α	Т	G	С	Т
Α					
G					
С					
Т					

Sequences

Alinhe essas duas sequências usando o algoritmo Needleman-Wunsch

Resposta:

		Α	Т	G	С	T
	0	-2	-4	-6	-8	-10
Α	-2	1	-1	-3	-5	-7
G	-4	-1	0	0	-2	-4
С	-6	-3	-2	-1	1	-1
Т	-8	-5	-2	-3	-1	2

Pratique com outras sequências

Seq
$$1 = AATCG$$

Seq $2 = AACG$

- O algoritmo Smith-Waterman
 - Alinhamento entre partes de duas sequências
 - Ex: duas proteínas podem compartilhar um trecho de alta similaridade, mas ser muito diferentes fora desse região
 - Um alinhamento global dessas duas sequências teria:
 - Muitos matches na região de alta similaridade de seguência
 - Muitos mismatches e gaps (inserções/deleções) fora da região de similaridade
 - Nesse caso, faz mais sentido encontrar o melhor alinhamento local

Volume 147, Issue 1, 25 March 1981, Pages 195-197

Letter to the editor

Identification of common molecular subsequences

T.F. Smith, M.S. Waterman

Show more V

https://doi.org/10.1016/0022-2836(81)90087-5 >

Get rights and content >

- O algoritmo Smith-Waterman
 - Veja por exemplo esse alinhamento global entre sequências de humano e Drosophila
 - Espécies distantes
 - Muitas regiões de alinhamento ruim, muitos gaps
 - Poucas regiões de alta similaridade
 - Mais sentido: alinhamento local

- O algoritmo Smith-Waterman
 - Alinhamento local apresenta melhor resultado
 - Há regiões bem conservadas entre as sequências
 - Quais partes das sequências foram usadas no alinhamento local?

- O algoritmo Smith-Waterman
 - Encontra o melhor (maior pontuação) alinhamento local entre duas sequências
 - Melhor alinhamento local: melhor alinhamento entre todas as possíveis subsequências (partes) das sequências S1 e S2
 - Considere a tabela *T*, a coluna 0 e linha 0 são preenchidas com 0
 - O restante da tabela usa a mesma regra de preenchimento do alinhamento global:

$$T(i, j) = \max \begin{bmatrix} T(i-1, j-1) + \sigma(S_1(i), S_2(j)) \\ T(i-1, j) + \text{gap penalty} \\ T(i, j-1) + \text{gap penalty} \\ 0 &\longleftarrow \text{(unlike N-W)} \end{bmatrix}$$

 Diferença: O rastreamento começa na célula com maior pontuação na matriz T e vai para cima/esquerda enquanto a pontuação ainda é positiva

Esquema de pontuação:

- +2 para todo match
- -1 para mismatches
- -2 para gaps

- O algoritmo Smith-Waterman
 - Ex: encontrar o melhor alinhamento local entre as sequências "ACCTAAGG" e "GGCTCAATCA"

		G	G	С	T	С	Α	Α	T	c	Α
	0	0	0	0	0	0	0	0	0	0	0
Α	0										
С	0										
С	0										
T	0										
Α	0										
Α	0										
G	0										
G	0										

Esquema de pontuação:

- +2 para todo match
- -1 para mismatches
 - -2 para gaps

- O algoritmo Smith-Waterman
 - Ex: encontrar o melhor alinhamento local entre as sequências "ACCTAAGG" e "GGCTCAATCA"

$$T(i,j) = \max \begin{cases} T(i-1,j-1) + \sigma(S_1(i), S_2(j)) = \mathbf{0} - \mathbf{1} = -\mathbf{1} \\ T(i-1,j) + \text{gap penalty} = \mathbf{0} - \mathbf{2} = -\mathbf{2} \\ T(i,j-1) + \text{gap penalty} = \mathbf{0} - \mathbf{2} = -\mathbf{2} \\ \mathbf{0} \end{cases}$$

Depois calculados T(2,1) Assim por diante...

Esquema de pontuação:

- +2 para todo match
- -1 para mismatches
- -2 para gaps

O algoritmo Smith-Waterman

 Preenchemos toda a matriz T, sempre guardando a célula anterior (se existir) usada para calcular o valor de cada célula T(i,j):

- Não há valores negativos
- Começamos o traceback do maior valor
- Percorre enquanto a pontuação é positiva

		G	G	С	т	С	Α	Α	т	С	Α
	0	0	0	0	0	0	0	0	0	0	0
Α	0	0	0	0	0	0	2	2	0	0	2
С	0	0	0	2	0	2	0	1	1	2	0
С	0	0	0	2	1	2	1	0	0	3	1
Т	0	0	0	0	4	2	1	0	2	1	2
Α	0	0	0	0	2	3	4	3*	1	1	3
Α	0	0	0	0	0	4	5	6	4 <	2	3
G	0	2	2	0	0	0	3	4	5	3	\$1
G	0	2	4 *	2	0	0	1	2	3	4	2

Esquema de pontuação:

- +2 para todo match
- -1 para mismatches
 - -2 para gaps

O algoritmo Smith-Waterman

- Preenchemos toda a matriz T, sempre guardando a célula anterior (se existir) usada para calcular o valor de cada célula T(i,j):
- Não há valores negativos
- Começamos o traceback do maior valor
- Percorre enquanto a pontuação é positiva

Esquema de pontuação:

- +2 para todo match
- -1 para mismatches
- -2 para gaps

O algoritmo Smith-Waterman

• Você encontra o melhor alinhamento a partir do traceback, assim como Needleman-Wunsch

		G	G	С	Т	С	Α	Α	T	С	Α
	0	0	0	0	0	0	0	0	0	0	0
Α	0	0	0	0	0	0	2	2	0	0	2
С	0	0	0	2	0	2	0	1	1	2	0
С	0	0	0	2	1	2	1	0	0	3	1
Т	0	0	0	0	4	2	1	0	2	1	2
Α	0	0	0	0	2	3	4	3	1	1	3
Α	0	0	0	0	0	1	5	6	4	2	3
G	0	2	2	0	0	0	3	4	5	3	1
G	0	2	4	2	0	0	1	2	3	4	2

- Esquema de pontuação:
- +2 para todo match
- -1 para mismatches
 - -2 para gaps

- O algoritmo Smith-Waterman
 - o Importante: podemos ter múltiplos alinhamentos locais

Strat from Highest Value

> An arrow for a base

43210

&

210

Proceed towards Zeros

Multiple local alignments possible

AGORAÉ SUAVIFA

Encontre o melhor alinhamento local entre as sequências "AGCT" e "ATGCT", com pontuações +1 (match), -1 (mismatch) e -2 (gap)

	Α	Т	G	С	T		
						Seq :	1 /
Α		2				Seq 2	L
G				4			
С							
Т		to the		-	PKIN		

Encontre o melhor alinhamento local entre as sequências "AGCT" e "ATGCT", com pontuações +1 (match), -1 (mismatch) e -2 (gap)

		Α	Т	G	С	Т
	0	0	0	0	0	0
Α	0	1	0,	0	0	0
G	0	0	0	1	0	0
С	0	0	0	0	2	0
Т	0	0	0	0	0	3

Encontre o melhor alinhamento local entre as sequências "TCAGTTGCC" e "AGGTTG", com pontuações +1 (match), -2 (mismatch) e -2 (gap)

Encontre o melhor alinhamento local entre as sequências "TCAGTTGCC" e "AGGTTG", com pontuações +1 (match), -2 (mismatch) e -2 (gap)

É isso aí!

