

## Engenharia econômica

Vinicius Santos

Economia - ENG1 07067

10 de Julho de 2025

## Quantias únicas

Se uma taxa de juros nominal for informada e se o número de períodos de capitalização por ano e o número de anos forem conhecidos, qualquer problema que envolva valores equivalentes futuros, anuais ou presentes pode ser resolvido por meio da aplicação direta das Equações

$$F = P(F/P, i\%, n) \tag{1}$$

$$i = (1 + r/M)^M - 1$$
 (2)

respectivamente.

**Exemplo 1.** Valor Futuro Equivalente quando os Juros são Capitalizados Trimestralmente Suponha que um valor único de \$100 seja investido por 10 anos a uma taxa de juros nominal de 6% capitalizada trimestralmente. Qual será o valor acumulado ao final do décimo ano?

## Quantias únicas

Se uma taxa de juros nominal for informada e se o número de períodos de capitalização por ano e o número de anos forem conhecidos, qualquer problema que envolva valores equivalentes futuros, anuais ou presentes pode ser resolvido por meio da aplicação direta das Equações

$$F = P(F/P, i\%, n) \tag{1}$$

$$i = (1 + r/M)^M - 1$$
 (2)

respectivamente.

**Exemplo 1.** Valor Futuro Equivalente quando os Juros são Capitalizados Trimestralmente Suponha que um valor único de \$100 seja investido por 10 anos a uma taxa de juros nominal de 6% capitalizada trimestralmente. Qual será o valor acumulado ao final do décimo ano? Existem quatro períodos de capitalização por ano, ou um total de  $4\times10=40$  períodos de juros. A taxa de juros por período é 6%/4=1.5%./ Quando esses valores são utilizados na Equação 1, obtém-se que

$$F = P(F/P, 1.5\%, 40) = $100(1.015)^{40} = $100(1.814) = $181.40.$$

De forma alternativa, pela Equação 2, encontramos a taxa de juros efetiva igual a 6.14%. Assim,

$$F = P(F/P, 6.14\%, 10) = $100(1.0614)^{10} = $181.40.$$

Vinicius Santos Engenharia Econômica 10 de Julho de 2025 2/11

- Quando há mais de um período de capitalização de juros por ano, as fórmulas e tabelas para séries uniformes e séries com gradiente podem ser usadas.
- Isso é válido desde que haja um fluxo de caixa no final de cada período de juros.

**Exemplo 2.** Cálculo de um Pagamento Mensal de Financiamento de Automóvel Stan Moneymaker tem um empréstimo bancário de \$10000 para pagar seu novo caminhão. Esse empréstimo deve ser pago em parcelas mensais iguais no final de cada mês por cinco anos. A taxa de juros nominal é de 12% ao ano, capitalizada mensalmente. Qual é o valor de cada parcela?

- Quando há mais de um período de capitalização de juros por ano, as fórmulas e tabelas para séries uniformes e séries com gradiente podem ser usadas.
- Isso é válido desde que haja um fluxo de caixa no final de cada período de juros.

**Exemplo 2.** Cálculo de um Pagamento Mensal de Financiamento de Automóvel Stan Moneymaker tem um empréstimo bancário de \$10000 para pagar seu novo caminhão. Esse empréstimo deve ser pago em parcelas mensais iguais no final de cada mês por cinco anos. A taxa de juros nominal é de 12% ao ano, capitalizada mensalmente. Qual é o valor de cada parcela? O número de parcelas é  $5 \times 12 = 60$ . A taxa de juros por mês é 12% / 12 = 1%. Quando esses valores são utilizados na Equação A = P(A/P, i%, n), encontra-se

$$A = P(A/P, 1\%, 60) = $10000(0.0222) = $222.$$

Observe que há um fluxo de caixa ao final de cada mês (período de juros), incluindo o mês 60, neste exemplo.

Vinicius Santos Engenharia Econômica 10 de Julho de 2025 3 / 11

#### Exemplo 3. Série de Gradiente Uniforme e Capitalização Semestral

Certas economias operacionais esperadas são de \$0 ao final dos primeiros seis meses, de \$1.000 ao final do segundo semestre, e aumentam em \$1.000 ao final de cada período de seis meses subsequente, durante um total de quatro anos. Deseja-se encontrar o valor uniforme equivalente, A, ao final de cada um dos oito períodos semestrais, se a taxa de juros nominal for de 20% capitalizada semestralmente.

#### Exemplo 3. Série de Gradiente Uniforme e Capitalização Semestral

Certas economias operacionais esperadas são de 0 ao final dos primeiros seis meses, de 1.000 ao final do segundo semestre, e aumentam em 1.000 ao final de cada período de seis meses subsequente, durante um total de quatro anos. Deseja-se encontrar o valor uniforme equivalente, A, ao final de cada um dos oito períodos semestrais, se a taxa de juros nominal for de 20% capitalizada semestralmente.



Vinicius Santos Engenharia Econômica 10 de Julho de 2025 4/11

#### **Exemplo 3.** Série de Gradiente Uniforme e Capitalização Semestral



No Exemplo, a taxa de juros por período de seis meses é de 10%, e os fluxos de caixa ocorrem a cada seis meses.

$$A = G(A/G, 10\%, 8) = $1000(3.0045) = $3004.50$$

Engenharia Econômica 10 de Julho de 2025 5/11

**Exemplo 2.** Encontrando a taxa de juros de um empréstimo Um empréstimo de \$15000 requer pagamentos mensais de \$477 durante um período de 36 meses. Esses pagamentos incluem tanto o principal quanto os juros.

- (a) Qual é a taxa de juros nominal (APR) para este empréstimo?
- (b) Qual é a taxa de juros efetiva ao ano?
- (c) Determine o valor do principal do empréstimo ainda não quitado após 20 meses.

**Exemplo 2.** Encontrando a taxa de juros de um empréstimo Um empréstimo de \$15000 requer pagamentos mensais de \$477 durante um período de 36 meses. Esses pagamentos incluem tanto o principal quanto os juros.

- (a) Qual é a taxa de juros nominal (APR) para este empréstimo?
- (b) Qual é a taxa de juros efetiva ao ano?
- (c) Determine o valor do principal do empréstimo ainda não quitado após 20 meses.
- (a) Podemos definir o relacionamento de equivalência para resolver para a taxa de juros desconhecida, sabendo que P = \$15000, A = \$477, e n = 36 meses.

$$477 = 15000(A/P, i_{mensal}, 60)$$
  
 $(A/P, i_{mensal}, 36) = 0.0318$ 

Podemos procurar nas tabelas de fatores equivalentes valores de i que possuam o fator (A/P,i,36) próximo de 0.0318, chegando em  $i_{mensal}=0.75\%$ . Outra alternativa seria chutar valores para i em  $i(1+i)^{36}/((1+i)^{36}-1)$  que se aproximassem de 0.0318. Com a taxa de juros mensal, podemos calcular a taxa de juros nominal, r:

 $r = 12 \times 0.75\% = 9\%$  ao ano, captalizado mensalmente.

6 / 11

**Exemplo 2.** Encontrando a taxa de juros de um empréstimo Um empréstimo de \$15000 requer pagamentos mensais de \$477 durante um período de 36 meses. Esses pagamentos incluem tanto o principal quanto os juros.

- (a) Qual é a taxa de juros nominal (APR) para este empréstimo?
- (b) Qual é a taxa de juros efetiva ao ano?
- (c) Determine o valor do principal do empréstimo ainda não quitado após 20 meses.

**Exemplo 2.** Encontrando a taxa de juros de um empréstimo Um empréstimo de \$15000 requer pagamentos mensais de \$477 durante um período de 36 meses. Esses pagamentos incluem tanto o principal quanto os juros.

- (a) Qual é a taxa de juros nominal (APR) para este empréstimo?
- (b) Qual é a taxa de juros efetiva ao ano?
- (c) Determine o valor do principal do empréstimo ainda não quitado após 20 meses.
- (b) Com a Equação 2, temos

$$i_{efetivo} = \left(1 + \frac{0.09}{12}\right)^{12} - 1 = 0.0938 = 9.38\% \ a.a.$$

(c) O saldo devedor pode ser encontrado determinando o valor equivalente dos 16 pagamentos mensais restantes no mês 20.

$$P_{20} = \$477(P/A, 0.75\%, 16) = \$477(15.0243) = \$7166.59$$

Após 20 pagamentos terem sido feitos, quase metade do valor principal original permanece. Observe que usamos a taxa de juros mensal de 0.75% em nosso cálculo, já que os fluxos de caixa ocorrem mensalmente.

7 / 11

# Fórmulas de Juros para Capitalização Contínua e Fluxos de Caixa Discretos

- Na maioria das transações comerciais e estudos econômicos, os juros são capitalizados ao final de períodos discretos e, como discutido anteriormente, assume-se que os fluxos de caixa ocorrem em quantias discretas ao final desses períodos.
- No entanto, é evidente que, na maioria das empresas, o fluxo de caixa ocorre de forma quase contínua.
- Como o dinheiro, sempre que disponível, pode geralmente ser utilizado de forma lucrativa, essa situação cria oportunidades para capitalizações de juros muito frequentes.
- Para que essa condição possa ser tratada (modelada) quando taxas de juros com capitalização contínua estão disponíveis, o conceito de capitalização contínua é, às vezes, utilizado em estudos econômicos.
- Na realidade, o efeito desse procedimento, em comparação com a capitalização discreta, é relativamente pequeno na maioria dos casos.
- A capitalização contínua assume que os fluxos de caixa ocorrem em intervalos discretos (por exemplo, uma vez ao ano), mas que a capitalização dos juros é contínua ao longo do intervalo.

## Fórmulas de Juros para Capitalização Contínua e Fluxos de Caixa Discretos

- Por exemplo, com uma taxa nominal de juros anual r, se os juros são capitalizados M vezes por ano, uma unidade de principal resultará em  $[1 + (r/M)]^M$  ao final de um ano.
- Fazendo M/r = p, encontramos que a expressão anterior se torna

$$\left[1 + \frac{1}{\rho}\right]^{r\rho} = \left[\left(1 + \frac{1}{\rho}\right)^{\rho}\right]^{r} \tag{3}$$

Como

$$\lim_{p \to \infty} \left( 1 + \frac{1}{p} \right)^p = e^1 = 2.71828...,$$

a Equação 3 pode ser escrita como  $e^r$ .

- Consequentemente, o fator de capitalização com capitalização contínua (para um fluxo de caixa único) a uma taxa de juros nominal de r% por n anos é e<sup>rn</sup>.
- Usando nossa notação funcional, expressamos isso como

$$(F/P,\underline{r}\%,n) = e^{rn} \tag{4}$$

9/11

• Note que o símbolo  $\underline{r}$  é diretamente comparável ao usado para capitalização discreta e fluxos de caixa discretos (i%), exceto que  $\underline{r}\%$  é utilizado para denotar a taxa nominal com capitalização contínua.

# Fórmulas de Juros para Capitalização Contínua e Fluxos de Caixa Discretos

- Como  $e^{rn}$  para capitalização contínua corresponde a  $(1+i)^n$  para capitalização discreta, então  $e^r$  é igual a (1+i).
- Assim, podemos concluir corretamente que

$$i = e^r - 1 \tag{5}$$

- Usando essa relação, os valores correspondentes de (P/F), (F/A) e (P/A) para capitalização contínua podem ser obtidos substituindo-se  $e^r 1$  por i nas respectivas equações.
- Assim, para capitalização contínua e fluxos de caixa discretos,

$$(P/F, \underline{r}\%, n) = \frac{1}{e^{rn}} = e^{-rn};$$
 (6)

$$(F/A,\underline{r}\%,n) = \frac{e^{rn}-1}{e^r-1}; \tag{7}$$

$$(P/A, \underline{r}\%, n) = \frac{1 - e^{-rn}}{e^r - 1} = \frac{e^{rn} - 1}{e^{rn}(e^r - 1)}.$$
 (8)

Os valores de (A/P, r/%, n) e (A/F, r/%, n) podem ser derivados por meio de suas relações inversas com (P/A, r/%, n) e (F/A, r/%, n), respectivamente.

## Fórmulas de Juros para Capitalização Contínua e Fluxos de Caixa Discretos - Exercícios

- Você tem \$10000 para investir por dois anos. Seu banco oferece 5% de juros, compostos continuamente, para fundos em uma conta do mercado monetário. Assumindo que não haja depósitos ou retiradas adicionais, quanto dinheiro haverá nessa conta ao final de dois anos?
- ② Suponha que alguém tenha um empréstimo atual de \$1000 e deseje determinar quais pagamentos uniformes equivalentes ao final de cada ano, A, poderiam ser obtidos a partir dele por 10 anos, se a taxa nominal de juros for 20% composta continuamente ( $M = \infty$ ).
- ① Um indivíduo precisa de \$12000 imediatamente como entrada para uma nova casa. Suponha que ele possa tomar esse dinheiro emprestado de sua companhia de seguros. Ele deve pagar o empréstimo em pagamentos iguais a cada seis meses durante os próximos oito anos. A taxa nominal de juros cobrada é 7% composta continuamente. Qual é o valor de cada pagamento?