History

Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Yang Dong, Huo Junde	NDS 121, 1 (2014)	20-Jun-2014

 $Q(\beta^-)$ =-8244.55 9; S(n)=13378.5 16; S(p)=8853.8 5; $Q(\alpha)$ =-8417.1 8 2012Wa38 Additional information 1.

Multipole giant resonance, see (e,e') (2006Kh14).

⁵⁴Fe Levels

Cross Reference (XREF) Flags

	A B C D E F G H I J K L	54 Fe(e,e') 54 Fe(p,p') 52 Cr(3 He,r 54 Fe(n,n' γ 54 Fe(3 He,2 52 Cr(16 O,1 54 Fe(π , π ') 50 Cr(6 Li,d 54 Fe(p,p' γ 56 Fe(p,t) 54 Fe(α , α ') 54 Fe(n,n')) Ppny) ⁴ C)	N O P Q R S T U V W X Y	54 Fe(pol d,d' 52 Cr(α,2nγ) 58 Ni(d, 6 Li) 40 Ca(16 O,2pγ 45 Sc(12 C,2np 54 Co ε decay 50 Cr(6 Li,9nγ) 51 V(6 Li,3nγ) 58 Ni(3 He, 7 Be 28 Si(28 Si,2pγ 50 Cr(α,γ) 54 Fe(γ,γ') 54 Fe(α,α'γ)	y) y) E=40 MeV (1.48 min)),(⁷ Li,2npy) ,(⁷ Li,4ny)	Other AA AB AC AD AE AF AG AH AI AJ	rs: Coulomb excitation $^{54}\text{Fe}(^{6}\text{Li}, ^{6}\text{Li'}), (\text{pol }^{7}\text{Li}, ^{7}\text{Li'})$ $^{54}\text{Fe}(^{16}\text{O}, ^{16}\text{O'})$ $^{60}\text{Ni}(\text{p}, X\gamma)$ $^{60}\text{Ni}(\text{p}, X\gamma)$ $^{80}\text{Ni}(\pi^{+}, x\gamma), (\pi^{-}, X\gamma)$ $^{80}\text{Ni}(K^{-}, x \text{ ray})$ $^{54}\text{Co } \varepsilon \text{ decay } (193.28 \text{ ms})$ $^{28}\text{Si}(^{36}\text{Ar}, 2\alpha 2\text{p}\gamma)$ $^{54}\text{Mn } \beta^{-} \text{ decay}$ $^{9}\text{Be}(^{55}\text{Co}, X\gamma)$ $^{58}\text{Ni } \alpha \text{ decay}$
E(level) [†]	J^{π}	$T_{1/2}^{\bigcirc}$	Σ	KREF				Comments
0.0	0+	stable	ABCDEFGHIJK	LMNOF	PQRSTUVWXYZ		: AA, A	B, AC, AD, AE, AF, AG, AH, AI, AJ,
1408.19 <i>19</i>	2+	0.76 ps 2	ABCDEFGHIJK	LMNOF	PQRSTUVWXYZ	the half-tim XREF: Others μ =+2.40 49; G B(E2)↑=0.062 μ ,Q: Compiled J^{π} : from L=2 $T_{1/2}$: from Co +35-22 in μ : Weighted a B(E2)↑: Other (1981Le02) 54 Fe+ 18 O (54 Fe+ 13 C (1965 Si02). g: g=1.05 6 (1977 Fa07).	e>4.4× : AA, A, A, Q=-0.0 : 5 (200 d by 20	011StZZ.
2538.1 3	4+	4.0 ps 8	ABCDEFG I K	LMNOF	PQRSTUVWX Z	(2009Ea02) XREF: Others XREF: C(249) J^{π} : from L=4	: AA, A 0). in (e,e	B, AH, AJ, AK
2561.3 4	0^+	≥1.4 ps	B DEF HIJ	N F		XREF: Others	: AG	

E(level) [†]	J^{π} &	T _{1/2} @	XREF	Comments
2900 2949.2 <i>5</i>	2 ⁺ 6 ⁺	1.22 ns 2	A A DEF I OPQRSTU WX	XREF: H(2550)N(2566). $T_{1/2}$: From (p,p'γ). J^{π} : from L=0 in (⁶ Li,d), (p,t). J^{π} : from L=2 in (e,e'). XREF: Others: AB, AH, AK μ =8.22 18 (1989Ra17) XREF: AB(2950). J^{π} : from γ(θ), linear polarization and DCO triple angular correlation ratios in (α,2nγ) (1979St13). $T_{1/2}$: weighted average from 1.22 ns 2 (P,pγ),(1971He21), 1.19 ns 3 in ε decay (1.48 min) (1970Co32) and 1.24 ns 4 in ε decay (1.48 min) (1971Sa07); other:≥0.55 ps from DSAM
2959.0 5	2+	0.052 ps 7	ABCDE GHIJKLMN P V Z	(1972Mo21). XREF: Others: AA, AB, AC XREF: C(2940)H(2940)J(2950)K(2950)AB(2950). J^{π} : from L=2 in (6 Li,d), (p,t). $T_{1/2}$: weighted average of 0.052 ps 8 (p,p' γ) and 0.052 ps 7 (n,n' γ). Other: 1.6 ps +2 I -7, DSAM
3166.0 5	2+	0.15 ps +4-3	ABCDE GHIJKLMN P Y	in $(\alpha,\alpha'\gamma)$. XREF: Others: AA, AB XREF: C(3120)J(3150)AB(3160). $T_{1/2}$: weighted average of 0.16 ps +4-3 (p,p' γ) and 0.14 ps +4-3 (n,n' γ). J^{π} : from L=2 in (p,t), (α,α') .
3294.8 <i>4</i>	4+	≥2.1 ps	AB DE GHIJKL	XREF: Others: AH $T_{1/2}$: From $(p,p'\gamma)$. J^{π} : from L=4 in (p,t) , (α,α') .
3344.8 3	3+		AB DE I N Z	- · · · · · · · · · · · · · · · · · · ·
3437.4 <i>82</i> 3793.8 <i>12</i>	4 ⁺ to 6 ⁺		E E	J^{π} : From γ' s to 4^+ , 6^+ .
3833.2 4	4 ⁺	0.062 ps <i>12</i>	BCDEFGHIJKL P	XREF: C(3800)H(3820)J(3830)K(3810)L(3830). T _{1/2} : weighted average of 0.063 ps <i>14</i> from (p,p' γ) and 0.061 ps + <i>15</i> -11 from (n,n' γ). J $^{\pi}$: from L=4 in (p,t), (α , α').
3841.0 <i>11</i> 4030.9 <i>5</i>	5+	≥0.7 ps	E M B DE HIJ	XREF: Others: AH $J^{\pi}: \text{ from } L(^{6}\text{Li}, d) = (5,6), 736\gamma \text{ M1+E2 to } 4^{+}.$ The interpretable from (p. p/s)
4047.8 <i>4</i>	4+	0.30 ps +23-10	B DE G I KL	$T_{1/2}$: From $(p,p'\gamma)$. XREF: Others: AH
4071.6 8	3 ⁺	0.058 ps <i>17</i>	B D F I	J^{π} : from L=4 in (α, α') . XREF: F(4060).
4099.7 11	4+		A E	J^{π} : From $(p,p'\gamma)$, but L=(5) in (p,p') . J^{π} : from L=4 in (e,e') .
4103.4 <i>12</i> 4267.8 <i>4</i>	4+	0.082 ps +23-17	E B DEFGHIJKLM	XREF: F(4280)M(4279).
4290.8 7	0+	0.055 ps +17-14	BCD HI Y	J ^{π} : from L=4 in (α, α') , (p,t); but L(6 Li,d)=(4+0). XREF: C(4250)I(4286.4). J ^{π} : from L(3 He,n)=0 and strong pair-line spectrum
4578.5 9	2+	≤0.007 ps	ABCD FG I K M	with no corresponding γ in $(p,p'\gamma)$ (1980PaZM). XREF: F(4590)M(4553). J^{π} : from L=2 in (α,α') , (³ He,n).

E(level) [†]	J^{π} &	T _{1/2} @	XREF		Comments
4655.3 8			B DE I		XREF: Others: AH
4696? <i>3</i>			D I		J^{π} : J \leq 6, from γ 's to 4 ⁺ . J^{π} : J \leq 4, from γ to 2 ⁺ .
4700.1 9			D I BD I		$J: J \leq 4$, from γ to $Z:$
4781.9 6	3-	0.033 ps 11	AB D G IJKLMN P	V	XREF: K(4760).
		-			J^{π} : from L=3 in (α, α') , (e,e') .
4850	3-		A N		E(level): from (pol d,d') and (e,e'). We from $L = 2$ in (pol d,d') and (e,e')
4948.7 8	4(+)	0.029 ps 10	B D GHI K		J^{π} : from L=3 in (pol d,d') and (e,e'). XREF: H(4920).
1710.7 0	•	0.029 ps 10	D D GIT K		J^{π} : from L(⁶ Li,d)=4; but L is odd in (α,α') .
5044.8 9	$5^{-},6^{+}$		ВЕ		XREF: Others: AH
5080 4	$(1,2^+)$ 2^+		AB D F		J^{π} : from 3672 γ to 2 ⁺ , 5080 γ to 0 ⁺ .
5145 6	2.		B D GH		XREF: H(5120). J^{π} : from L(6 Li,d)=2.
5233 10	0^{+}		вс ј		XREF: J(5200).
					J^{π} : from L(³ He,n)=0.
5248 6			B D H		J^{π} : $J \le 4$, from γ to 2^+ .
5278.8 11			B DE		XREF: Others: AH J^{π} : J \leq 4, from γ to 2^{+} .
5313 10			В		3 . 3 <u>2 1, 110111</u> 7 to 2 .
5325 10	- 1		B F		
5392 6	2+		BCD G		XREF: C(5380). J^{π} : from L(³ He,n)=2.
5404 10			В		J^{**} : from $L({}^{*}He,n)=2$.
5431.1 <i>13</i>			E		
5453 7	$(1,2^+)$		B D		J^{π} : from γ to 0^+ .
5461.2 <i>11</i> 5482.0	3+,4+		E B D		XREF: Others: AH
0.102.10	<i>5</i> ,.				J^{π} : from 4074 γ to 2 ⁺ and 1435 γ to 4 ⁺ , so 2 ⁺ , 3 ⁺ , 3 ⁻ ,
	1.				and 4 ⁺ are likely, 2944 γ (M1+E2) to 4 ⁺ , J ^{π} =3 ⁺ , 4 ⁺ .
5506 <i>6</i> 5523 <i>10</i>	(2^{+})		B D H B		J^{π} : from L(⁶ Li,d)=(2).
5539 6	3-		B D F		J^{π} : $L(\alpha,\alpha')=3$.
5592 10			В		
5621 6	(3-)		B D G J		XREF: $J(5640)$. J^{π} : from $L(p,t)=(3)$.
5657 5	4+		В		J^{π} : from $L(p,t)=(3)$.
5666 10			В		
5703 5	4+		В	V	XREF: V(5720).
5787 10			В		J^{π} : from $L(p,p')=4$.
5809 <i>7</i>	2 ⁺ C		B D		
5828 7			B D		XREF: B(5837).
5875 10			В		J^{π} : $J \le 4$, from γ to 2^+ .
5907 <i>5</i>	3 ^{-c}		В		
5919.3 <i>12</i>	7+		B E		VDEE OIL AV
5927.4 5	7+		B F H		XREF: Others: AH XREF: B(5934)F(5940).
					J^{π} : From 1895 γ to 5 ⁺ , 2979 γ (M1+E2) to 6 ⁺ .
5955 8	2+		B D		J^{π} : from $L(p,p')=2$.
6023 <i>10</i> 6038 <i>8</i>	$(1,2^+)$		B B D		J^{π} : from γ to 0^+ .
6057 5	(1,2)		в н		XREF: H(6050).
					J^{π} : from $L(^{6}Li,d)=2$. $L(p,p')=5.6$.
6100 <i>10</i>			B F		

E(level) [†]	J^{π}	$T_{1/2}^{@}$	XREF	Comments
6128.7 6	1		B D H	Υ Γ =0.027 eV 4; $\Gamma_{\gamma 0}$ =0.025 eV 4 (1976La02) J^{π} : from 6129 $\gamma(\theta)$ in (γ, γ') .
6156 10 6192 5 6212 10 6238 10 6259 5	2+		B B B B	J^{π} : from $L(p,p')=2$.
6296.8 16	7+		В	XREF: Others: AH XREF: B(6285). J^{π} : From γ to 6^{+} .
6341 5	3-		B G JK M	XREF: M(6355). J^{π} : from $L(\alpha, \alpha') = L(p, p') = 3$.
6380.9 11	8+	114 fs +28–21	E O QR TU	XREF: Others: AH J^{π} : 3432 γ with E2 to 6 ⁺ . 146 γ with E2 from 10 ⁺ . $T_{1/2}$: from DSAM in (6 Li,pn γ) (1979Gu07);<1.4 ns from RDM in (16 O,2p γ) (1978Da09).
6400 <i>10</i> 6401 <i>10</i>	0 ⁺ 3 ⁻		C G AB F J L N	J ^{π} : from L(³ He,n)=0. XREF: J(6410). J ^{π} : from L(e,e')=L(d,d')=3.
6429 <i>5</i> 6442 <i>10</i>	2 ⁺ <i>c</i>		B B	3 . Holli L(c,c) – L(d,d) – 3.
6484 5	4 ⁺ C		В	
6510 <i>15</i> 6527.1 <i>11</i>	10+	364 ns 7	B E O QR TU	XREF: Others: AH Q=+0.285 25; μ=+7.281 10 (1989Ra17) Q: From weighted average values from 1984Ha07 and 1983Ra03. J ^π : from 146γ (E2) to 8 ⁺ and 3577γ (E4) to 6 ⁺ . T _{1/2} : from ⁴⁰ Ca(¹⁶ O,2pγ). Other: 358 ns 31 from
6551.0 <i>11</i>	(1-)6			52 Cr(α ,2n γ). XREF: Others: AH
6563 <i>5</i> 6594 <i>10</i>	$(1^{-})^{c}$		B B	
6607 <i>5</i> 6648 <i>10</i> 6663 <i>10</i>	4+ <i>c</i>		B B B	
6670 <i>5</i> 6710 <i>10</i>	4 ⁺ <i>c</i> 3 ⁻		B B J	J^{π} : from L(p,t)=3.
6724.1 24	9+	≈41 ps	E O QR	XREF: Others: AH J^{π} : From M1(+E2) 197 γ to 10 ⁺ . $T_{1/2}$: from 40 Ca(16 O,2p γ).
6749 <i>5</i> 6774 <i>5</i>	3^{-c} 1^{-c}		B B	
6804 <i>10</i> 6821 <i>5</i>	5 ⁻ ,6 ⁺		B B	
6836 10			В	
6864.3 <i>6</i> 6881 <i>5</i>	8 ⁺ 4 ⁺		В	XREF: Others: AH J^{π} : From 3915 γ (E2) to 6 ⁺ .
6910 <i>20</i>	4		C	
6951 5	2-6		AB F J	XREF: $F(6990)J(6970)$. J^{π} : $L(p,p')=3$, $L(e,e')=2$.
7011 <i>10</i> 7040 [‡] <i>10</i>	3 ^{-c}		B F AB	XREF: F(6990). XREF: A(7030)B(7050). J^{π} : L(p,p')=5,6, L(e,e')=2.
				J. L(p,p)-J,0, L(c,c)-2.

E(level) [†]	J^{π} &		XR	EF	Comments
7074.8 17					XREF: Others: AH
7110 20	$(2^+,3^-)^{b}$	Α			
7128 10	6+	В	H		J^{π} : from L(⁶ Li,d)=6.
7155 10	,	В			
7180 10	$(1)^{b}$	A			
7200 [#] <i>30</i>	4 ⁺	A C	F		J^{π} : from L(e,e')=4.
7260 [#] 20	3-	AB	K		XREF: B(7270)K(7250).
	1.				J^{π} : from L(p,p')=3.
7310 20	$(2^+,3^-)^{b}$	A			VDEE O.I
7351.5 6	(9^+)				XREF: Others: AH J^{π} : From 971.6 γ to 8 ⁺ .
7377 10	2+ <i>c</i>	AB			XREF: A(7360).
7442 10	2	aB			XREF: a(7470).
7486 10	3 ^{-c}	аB			XREF: a(7470).
7505 <i>4</i>	10 ⁺			0	XREF: Others: AH
	. 1.				J^{π} : From 780 γ to 9 ⁺ .
7550 20	$(2^{+})^{b}$	Α			
7560 20	0_{+}	C			J^{π} : from $L(^{3}He,n)=0$.
7565.8 <i>18</i> 7580 <i>25</i>	2+		JK		XREF: Others: AH E(level): from (p,t).
7300 23	2		JK		J^{π} : from L=2 in (α, α') and (p,t) .
7603 10	3 ^{-c}	AB			
7644 10	3 ^{-c}	AB	F		
7674 10	+	AB			J^{π} : L(p,p')=4, L(e,e')=2.
7760 20	$(2^+)^{b}$	A			TT 1 / / 2 1 / / 2
7791 <i>10</i>		AB			J^{π} : L(p,p')=3, L(e,e')=2.
7859 [‡] <i>10</i>		AB			XREF: $A(7850)B(7868)$. J^{π} : $L(p,p')=3$, $L(e,e')=2$.
7905 10		В			J : L(p,p) = 3, L(e,e) = 2.
7938 10	+	AB			XREF: A(7930).
					J^{π} : L(p,p')=0, L(e,e')=2.
7940 20	3-	C			J^{π} : from $L(^3He,n)=3$.
8005 10	3-	AB	H K		XREF: H(7970).
8021 4	$(11)^{+}$		F	0	J^{π} : from $L(\alpha,\alpha')=L(p,p')=3$, but L=4, (3) in (⁶ Li,d). XREF: Others: AH
8021 4	(11)		r	U	XREF: F(8050).
					J^{π} : J=9 to 11 from γ with M1(+E2) to 10 ⁺ .
8114 [‡] <i>10</i>	1 ⁺ <i>a</i>	AB			XREF: A(8110)B(8117).
8179 10	1-	AB	F		J^{π} : L(e,e')=1.
8225 10	. 1.	AB			XREF: A(8210).
8298 10	$(2^+)^{b}$	AB			XREF: A(8270).
8318.8 <i>17</i>	8-	A			XREF: Others: AH
					XREF: A(7314). J^{π} : from fit of squared inelastic form factor for 8^{-} to experimental data.
					Purely transverse and most probably magnetic transition, T=1.
8334 10	1+ <i>a</i>	AB			XREF: B(8330).
8374.3 11	(10^+)				XREF: Others: AH
0.410 70					J^{π} : From 1994y to 8 ⁺ .
8410 <i>10</i>		A C			E(level): from (3 He,n). Probably a doublet. J^{π} : L(3 He,n)=0; excitation multipolarity E2 from (e,e').
8440 10		AB	Н		J^{n} : L(n He,n)=0; excitation multipolarity E2 from (e,e'). J^{n} : L(p,p')=3, L(e,e')=2.
8450 20	1+ <i>a</i>	В	••		· · =(P)P / · · · =(0,0 / · =.
8465 10	3-	AB			XREF: A(8480).

E(level) [†]	J^{π} &		XREF	Comments
				J^{π} : L(p,p')=3.
8521 <i>10</i>	$5^{-},6^{+}$	В		M.A. /
8560 10	$(1,2^{-})^{b}$	Α		
8577.8 7	(10^{+})			XREF: Others: AH
				J^{π} : From 559 γ to 11 ⁺ , 1226 γ to 9 ⁺ .
8610 [#] <i>10</i>	$(2^{-})^{b}$	A F	•	
8633 10	1 ^{-c}	Bc		XREF: c(8640).
0.444.70				J from $L(p,p')=1$.
8666 10	h	ABc		XREF: A(8650)c(8640).
8680 10	$(2)^{b}$	A		
8740 <i>10</i> 8808.0 <i>6</i>	(11^+)	A		XREF: Others: AH
0000.0 0	(11)			J^{π} : From 2282 γ to 10 ⁺ .
8850 10	1+ <i>a</i>	ABC		XREF: C(8860).
8886 [‡] 10	3- <i>c</i>	AB		XREF: A(8900)B(8882).
8930 <i>10</i>	2^{-b}	A		MEI. 11(0700)B(0002).
8949 [‡] 10				17. f f f d : f
8949+ 10 8952 10	8 ⁻ 3 ⁻	A B		J^{π} : from fit of squared inelastic form factor for 8^- to experimental data. J^{π} : $L(p,p')=3$.
8932 10 8981 [‡] 10	1+ <i>a</i>			
9062 [‡] 10		AB		XREF: A(8980)B(8982).
9062* <i>10</i> 9110 <i>10</i>	1 ^{+a}	ABC AB		XREF: A(9060)B(9064)C(9640).
9110 10 9123.6 12		AD		XREF: Others: AH
9140 [#] 10	1+ <i>a</i>	AB		ARLI . Others. All
9140 10 9150 10	3- <i>c</i>	В		
9243 [‡] 10	3	AB		XREF: A(9240)B(9246).
9243 10		AD		J^{π} : L(p,p')=0, M2,E3 in (e,e').
9290 20	1 ⁺ a	В		υ . Ε(p,p) ο, 112,ΕΣ m (e,e).
9300 20		AB		XREF: B(9302).
9353 10	3- <i>c</i>	AB		
9402 10	3^{-c}	В		VD-T- 4 (0.400)
9410 20	$1^{+a}_{1^a}$	AB F		XREF: A(9400).
9450 <i>10</i>		A		VDEE 4 (0500) D (0510)
9506 [‡] <i>10</i>	3 ^{-c}	AB		XREF: A(9500)B(9513).
9530 [#] 10	1 ^{+a}	AB		
9568 [‡] <i>10</i>		AB		XREF: A(9570)B(9565).
9610 <i>30</i>		C		
9640 <i>10</i> 9671 [‡] <i>10</i>	2-0	A		VDEE. A (0000)D (0002)
9671* <i>10</i> 9716 <i>10</i>	3 ^{-c}	AB AB		XREF: A(9680)B(9662). XREF: A(9730).
9710 10 9747 10	3 ^{-c}	В		ARLI: $\Lambda(f/J0)$.
9789	3	В		
9810 <i>10</i>		A		
9845.3 7	(12^{+})			XREF: Others: AH
0060 10				J^{π} : From 3319 γ to 10 ⁺ , 1826 γ to 11 ⁺ .
9860 <i>10</i>		Α		WDEE 5(0000)
9910 [#] <i>10</i>	1+0	AB F		XREF: F(9920).
9940 <i>20</i> 9974 <i>10</i>	1 ⁺ <i>a</i> 8 ⁻	B F		XREF: F(9920). J^{π} : from fit of squared inelastic form factor for 8 ⁻ to experimental data.
7714 IU	O	A		Purely transverse and most probably magnetic transition, T=1.
9984 10		ABC		J^{π} : $L(^{3}He,n)=2$. $L(p,p')=3$.
9995.4? 11				XREF: Others: AH
10027‡ 10	(3 ⁻) ^c	AB		XREF: A(10020)B(10033).
	(-)			(· · · / (· · · · /

E(level) [†]	J^{π} &	XREF	Comments
10045		В	
10050 [#] <i>10</i>	1 ⁺ a	AB	XREF: B(10060).
10083 [‡] <i>10</i>	$(3^{-})^{c}$	AB	XREF: A(10090)B(11076).
10131.0 9	(12^{+})		XREF: Others: AH
10127 10	2+ c		J^{π} : From γ' s to 11 ⁺ .
10137 <i>10</i> 10180 [‡] <i>10</i>	_	AB	XREF: A(10130)B(10144).
	1 ^{+a}	AB	XREF: B(10160). J^{π} : from a very forward-peaked angular distribution characteristic of a ΔL =0 (1983Dj05).
10213 [‡] <i>10</i> 10250 <i>20</i>	0+	AB BC	XREF: A(10220)B(10205). XREF: B(10256).
			J^{π} : from L(³ He,n)=0.
10290 10		AB	E(level): isobaric analog of 1460 level of ⁵⁴ Mn. XREF: B(10300).
10342 10	4 ⁺ C	В	
10380 20		A	
10450 20		AB	XREF: B(10455).
10535 [‡] 10	1 ^{+a}	AB	XREF: A(10530)B(10541). J^{π} : transverse excitation into state of low multipolarity, T=2.
10542.0 7	(11)		XREF: Others: AH J^{π} : From γ' s to 10^+ , (10^+) , 11^+ .
10586 10		AB	XREF: A(10590).
10630 20	<i>L</i>	AB	XREF: B(10608).
10660 10	$(2^{-})^{b}$	A	
10677 <i>10</i>	8-	A	J^{π} : from fit of squared inelastic form factor for 8^- to experimental data. Purely transverse and most probably magnetic transition, T=1.
10700 <i>10</i>	0+	С	E(level): isobaric analog of 2110 level of 54 Mn. J^{π} : from L(3 He,n)=0.
10740 20		A	
10780 20		A	AND GARAGO
10820 [#] 10 10870 20		A C	XREF: C(10830).
10870 20 10910 [#] 20		A C	VDEE. C(10050)
10910 20 11010 [#] 10	1+ <i>a</i>	ABC	XREF: C(10950). XREF: B(11020)C(10950).
11010 10	1	A	AREF. B(11020)C(10930).
11093.4 7	(13^{+})	A	XREF: Others: AH XREF: A(11090).
			J^{π} : From 1248 γ to 12 ⁺ , 3074 γ to 11 ⁺ .
11113.6 8	(12)		XREF: Others: AH
			J^{π} : From 571.5 γ to (11), 2306 γ to 11 ⁺ .
11120 [#] <i>10</i> 11230 <i>10</i>	1 ^{+a}	ABC A	XREF: B(11110).
11280 10		AB	XREF: B(11262).
11320 [#] <i>20</i>	1+ <i>a</i>	AB	XREF: B(11310).
11360 10		A	
11440 [#] 20	2+	A C	XREF: $C(11460)$. J^{π} : from $L(^{3}He,n)=2$.
11447		В	
11520 [#] <i>10</i>	1 ⁺ <i>a</i>	AB	XREF: B(11540).
11620 30		BC	XREF: B(11604).
11710 <mark>#</mark> 20		A C	XREF: C(11740).
11750 [#] <i>10</i>	1 ⁺ <i>a</i>	AB	XREF: B(11760).

E(level) [†]	J^{π} &	XREF	Comments
11790 10		A	
11850 <i>30</i>	2+	С	J^{π} : from L(³ He,n)=2.
11920 20	1^{+a}	В	
11950 20	1 ^{+a}	В	
12040 20	0_{+}	C	J^{π} : from L(³ He,n)=0.
12043.0 9	(13)		XREF: Others: AH
			J^{π} : From 929 γ to (12).
12100 <i>50</i>	2+	С	J^{π} : from L(³ He,n)=2.
12314.1 8	(14^{+})		XREF: Others: AH
			J^{π} : From 1220.7 γ to 13 ⁺ , 2183 γ to (12).
12953.3 <i>12</i>	(14^{+})		XREF: Others: AH
12000 20	1+ <i>a</i>	_	J^{π} : From 1860 γ to 13 ⁺ .
13000 <i>20</i> 13263 <i>10</i>	8-	B A	IT. f f f
15205 10	0	А	J^{π} : from fit of squared inelastic form factor for 8 ⁻ to experimental data. Purely transverse and most probably magnetic transition, T=2.
13358.0 <i>14</i>			XREF: Others: AH
13520 20	0^{+}	С	J^{π} : from L(³ He,n)=0.
13730 30	4 ⁺	C	J^{π} : from L(³ He,n)=4.
13900 20	$\frac{1}{1}$	В	J . HOH L(11C,II)—4.
14050 50	1	C	
14388.3 <i>14</i>		•	XREF: Others: AH
14540 <i>30</i>		С	
14590 <i>30</i>		C	
14700 <i>30</i>		C	
14730 <i>30</i>		С	
14850 <i>30</i>	2+	С	J^{π} : from L(³ He,n)=2.
14870 20	0_{+}	C	J^{π} : from L(³ He,n)=0.
15062.0? 24			E(level): isobaric analog of 6150 level of ⁵⁴ Mn. XREF: Others: AH

[†] Energies for states connected by γ -rays from using least-squares fits, others from (p,p'), except as noted.

 $^{^{\}ddagger}$ From unweighted average values of (p,p') and (e,e').

[#] From (e,e').

[@] From DSAM $(p,p'\gamma)$, except as noted.

[&]amp; Mainly based on $p\gamma(\theta)$ and $\gamma\gamma(\theta)$ in $(p,p'\gamma)$ and measured L values.

^a ΔL=0 spin-flip transitions, characteristic very forward peaked angular distribution, DWIA, see (p,p') 1983Dj05.

^b Multipolarity of excitation from (e,e') (some L tentative), B(M1) and B(M2) from high resolution electron scattering (e,e'). See 1985So05.

^c From L(p,p').

γ (54Fe)

$E_i(level)$	J_i^π	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f J	f^{π}_{f} Mult.	δ^f	α^{g}	$I_{(\gamma+ce)}$	Comments
1408.19	2+	1408.1 2	100	0.0 0					B(E2)(W.u.)=11.1 3
2538.1	4 ⁺	1129.9 3	100	1408.19 2					B(E2)(W.u.)=6.3 13
2561.3	0^{+}	1153.1 <i>3</i>	100	1408.19 2					B(E2)(W.u.)<16
		2561.3		0.0				0.17 3	
									B(E0)(2561 γ):B(E2)(1153 γ)=0.49 8 in (p,p' γ). I(γ + ce): from electron-pair measurement (1972Wa28).
2949.2	6+	411.4 5	100	2538.1 4	+ E2 ^e		0.00263		$\alpha(K)$ =0.00233; $\alpha(L)$ =0.00023 B(E2)(W.u.)=3.24 6 Additional information 2.
2959.0	2+	1550.7 <i>5</i>	82 5	1408.19 2	2+ M1+E2 ^b	0.10 4			B(M1)(W.u.)=0.051 δ ; B(E2)(W.u.)=0.4 δ from (p,p' γ). Other: 0.10 2 (n,n' γ).
		2959.4 8	100 5	0.0)+ E2 b				B(E2)(W.u.)=2.2 <i>4</i> δ: -0.087 from 1970Kr02.
3166.0	2+	1757.6 5	23 4	1408.19 2	z+ M1+E2 ^b	0.63 +57-25			B(M1)(W.u.)=0.0036 +2 <i>I</i> -22; B(E2)(W.u.)=1.0 + <i>I</i> 3- <i>I</i> 0 δ : others: $\delta \ge 2.4$; or $\delta \le -10$ from (p,p' γ) also.
		3166.0 <i>10</i>	100 4	0.0 0)+ E2 b				B(E2)(W.u.)= $0.80 + 17 - 22$
3294.8	4+	756.6 3	100 4	2538.1 4		0.15 ^c 5			B(E2)(W.u.)=0.00 +17-22 B(M1)(W.u.)<0.020; B(E2)(W.u.)<2.7 δ : other: +7.1 (³ He,2pny).
		1887 ^d 1	19 5	1408.19 2	$(E2)^{d}$				B(E2)(W.u.)<0.15
3344.8	3+	806.5 3	75 5	2538.1 4		0.02 ^c 1			B(M1)(W.u.)<0.0086; B(E2)(W.u.)<0.022
		1936.5 4	100 5	1408.19 2		0.51 ^c 4			B(M1)(W.u.)<0.00068; B(E2)(W.u.)<0.11 δ: others: $+1.3 + 14 - \infty$ (³ He,2pnγ), $-0.7 + 2 - 23$ (p,p'γ).
3437.4	4+ to 6+	487.9 ^a	100 <mark>a</mark>		ó ⁺				V. V.
		899.5 ^a	20°a	2538.1 4					
3793.8		844.6 ^a	100 ^a	2949.2 6					
3833.2	4+	538.6 ^b	≤2.2		+				
		1294.9 <i>4</i>	10 3	2538.1 4					B(E2)(W.u.)=19 7
		2425.2 7	100 3	1408.19 2					B(E2)(W.u.)=8.1 17
3841.0		2432.7 ^a	100°	1408.19 2	_	1			
4030.9	5+	736.4 4	100 ^d 7	3294.8 4	+ (M1+E2) ^d	$+0.14^{d} + 10-7$			B(M1)(W.u.)<0.036; B(E2)(W.u.)<6.5 E_{γ} : from unweighted average of 736.0 4 (n,n' γ) and 736.8 4 (36 Ar,2 α 2p γ). Additional information 3.
		1494 ^d 1	20 ^d 4	2538.1 4	+ M1+E2	-1.2 +12-3	5		B(M1)(W.u.)<0.00078; B(E2)(W.u.)<0.89 Mult., δ : From (³ He,2pn γ).
4047.8	4+	703.0 3	100 ^a	3344.8 3	s+ M1(+E2)	0.23 9			B(M1)(W.u.)=(0.15 +5-12); B(E2)(W.u.)=(3.E+1 3) Mult.: from D+Q in (p,p' γ) and γ to 3 ⁺ .

9

γ (54Fe) (continued)

4047.8 $\frac{4^{+}}{1089.2^{d}}$ $\frac{4^{d}}{1099.4}$ $\frac{2959.0}{1169.4}$ $\frac{2^{+}}{1509.4}$ $\frac{4^{d}}{108.19}$ $\frac{2959.0}{2538.1}$ $\frac{2^{+}}{4^{+}}$ $\frac{4^{+}}{1168.19}$ $\frac{2^{+}}{2539.4}$ $\frac{4^{+}}{408.19}$ $\frac{2538.1}{2^{+}}$ $\frac{4^{+}}{408.19}$ $\frac{4^{+}}{252}$ $\frac{8(E2)(W.u.)=0.20+7-16}{8(E2)(W.u.)=0.20+7-16}$ $\frac{4071.6}{2099.7}$ $\frac{4^{+}}{4^{+}}$ $\frac{804.9^{d}}{100^{d}}$ $\frac{3294.8}{2949.2}$ $\frac{4^{+}}{4103.4}$ $\frac{804.9^{d}}{1154.2^{d}}$ $\frac{100^{d}}{100^{d}}$ $\frac{3294.8}{2949.2}$ $\frac{4^{+}}{4^{+}}$ $\frac{1729.6}{4^{+}}$ $\frac{100^{h}}{100^{h}}$ $\frac{18}{2538.1}$ $\frac{4^{+}}{4^{+}}$ $\frac{1181.8^{h}}{100^{h}}$ $\frac{1188+50-44}{299.8}$ $\frac{1188+50-44}{4908.7}$ $\frac{1188+50-44}{4908.7}$ $\frac{1188+50-44}{4908.7}$ $\frac{1188+50-44}{4908.7}$ $\frac{1188+50-44}{4908.19}$ 11	E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	δ^f	Comments
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4047.8	4+	1089.2 <mark>a</mark>		2959.0 2+			
4071.6 3^{+} 1534^{b} 9 3 2538.1 4^{+} $E2$ $B(E2)(W.u.)=8$ 4 Mult: from mult.=Q in $(p,p'\gamma)$ and RUL, mult=M2 is ruled out. 2662.7 5 100 3 1408.19 2^{+} 4099.7 4^{+} 804.9^{a} 100^{a} 3294.8 4^{+} 4103.4 1154.2^{a} 100^{a} 22949.2 6^{+} 4267.8 4^{+} 1729.6 4 100^{b} 18 2538.1 4^{+} 181.8 1			1509.4 8	11 <mark>a</mark>	2538.1 4+	M1,E2		Mult.: from recommended upper limits for γ -ray strengths, γ to 4^+ .
				23 ^a	1408.19 2 ⁺	[E2]		B(E2)(W.u.)=0.20 +7-16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4071.6	3+	1534 <mark>b</mark>	9 3	2538.1 4+	E2		B(E2)(W.u.)=84
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								Mult.: from mult.=Q in $(p,p'\gamma)$ and RUL, mult=M2 is ruled out.
4103.4 4103.4 4154.2 ^d 100 ^d 2949.2 6 ⁺ 4267.8 4 ⁺ 1729.6 4 100 ^b 18 2538.1 4 ⁺ M1+E2 ^b -0.53 24 B(M1)(W.u.)=0.032 +12-14; B(E2)(W.u.)=6 5 B(E2)(W.u.)=6.6 3 +25-28 Mult.: from mult.=Q in (p,p' γ) and RUL, mult=M2 is ruled out. 4290.8 0 ⁺ 2881.9 10 100 1408.19 2 ⁺ E2 ^d B(E2)(W.u.)=4.3 +11-14 Mult.: from mult.=Q and RUL, mult=M2 is ruled out. 4578.5 2 ⁺ 3170 ^b 100 14 1408.19 2 ⁺ M1+E2 ^b -0.10 9 B(M1)(W.u.)>0.067 B(E2)(W.u.)>0.067 B(E2)(W.u.)>0.067 B(E2)(W.u.)>0.099 B(M1)(W.u.)>0.099 B(M2)(W.u.)>0.099 B(M3)(W.u.)>0.099 B(M3)(W.u.)>0.099 B(M4)(W.u.)>0.099 B(M5)(W.u.)>0.099 B(M5)(W.u.)>0.099 B(M5)(W.u.)>0.099 B(M6)(W.u.)>0.099 B(M6)(W.u.)>0.099 B(E2)(W.u.)>0.099 B(E2)(W.u.)>0.099 B(E3)(W.u.)>0.099 B(E3)						M1+E2 	1.88 +50-44	B(M1)(W.u.)=0.0041 21; B(E2)(W.u.)=4.3 14
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4+						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1154.2 ^a					
Mult.: from mult.=Q in $(p,p'\gamma)$ and RUL, mult=M2 is ruled out. 4290.8 0+ 2881.9 10 100 1408.19 2+ E2 ^d B(E2)(W.u.)=4.3 +11-14 Mult.: from mult.=Q and RUL, mult=M2 is ruled out. 4578.5 2+ 3170 ^b 100 14 1408.19 2+ M1+E2 ^b -0.10 9 B(M1)(W.u.)>0.067 4579 2 43 14 0.0 0+ E2 ^b B(E2)(W.u.)>0.99 4655.3 608 ^d 1 12 ^d 4 4047.8 4+ 1361 ^d 1 100 ^d 20 3294.8 4+ 1361 ^d 1 100 ^c 1408.19 2+ 4700.1 1355 1 100 ^c 3344.8 3+ 2162 2 88 ^c 2538.1 4+ 3294 3 33 ^c 1408.19 2+ 4781.9 3- 1436 ^b 21 6 3344.8 3+ E1 ^b B(E1)(W.u.)=0.00055 25 1487.2 9 33 8 3294.8 4+ E1 ^b B(E1)(W.u.)=0.0008 4 2244.1 7 32 8 2538.1 4+ E1 ^b B(E1)(W.u.)=0.00022 10	4267.8	4+	1729.6 <i>4</i>		2538.1 4+	M1+E2 ^b	-0.53 24	B(M1)(W.u.)=0.032 +12-14; B(E2)(W.u.)=6 5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2859.6 <i>6</i>	27 <mark>b</mark> 8	1408.19 2+	E2		B(E2)(W.u.)=0.63 +25-28
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								Mult.: from mult.=Q in $(p,p'\gamma)$ and RUL, mult=M2 is ruled out.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4290.8	0_{+}	2881.9 <i>10</i>	100	1408.19 2+	E2 d		B(E2)(W.u.)=4.3 +11-14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								Mult.: from mult.=Q and RUL, mult=M2 is ruled out.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4578.5	2+	3170 ^b	100 14			-0.10 9	B(M1)(W.u.)>0.067
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						E2 ^b		B(E2)(W.u.)>0.99
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4655.3				4047.8 4+			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1361 <mark>d</mark> 1		3294.8 4+			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4696?							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4700.1							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
1487.2 9 33 8 3294.8 4 ⁺ E1 ^b B(E1)(W.u.)=0.0008 4 2244.1 7 32 8 2538.1 4 ⁺ E1 ^b B(E1)(W.u.)=0.00022 10		_				b		
2244.1 7 32 8 2538.1 4^+ $E1^b$ B(E1)(W.u.)=0.00022 10	4781.9	3-						
3373.9 12 100 13 1408.19 2+ $E1(+M2)^{b}$ -0.018 26 $B(E1)(W.u.)=(0.00020 8); B(M2)(W.u.)=(0.03 +8-3)$						_		
				100 13		$E1(+M2)^{b}$	-0.018 26	B(E1)(W.u.)= $(0.00020 8)$; B(M2)(W.u.)= $(0.03 +8-3)$
$4948.7 4^{(+)} 2001^{b} 18.6 2949.2 6^{+}$	4948.7	4(+)	2001 ^b	18 6	2949.2 6+			
2409 100 9 2538.1 4 ⁺ M1+E2 ^b $-0.36 + 20 - 30$ B(M1)(W.u.)=0.026 11; B(E2)(W.u.)=1.3 +14-13				100 9		M1+E2 ^b	-0.36 + 20 - 30	B(M1)(W.u.)=0.026 11; B(E2)(W.u.)=1.3 +14-13
3537 5 64 <i>15</i> 1408.19 2 ⁺								
5044.8 5 ⁻ ,6 ⁺ 1015.0 ^d 5 20 ^d 5 4030.9 5 ⁺ (M1+E2) ^d +2.7 ^d α (K)=0.00017	5044.8	$5^{-},6^{+}$			4030.9 5 ⁺	$(M1+E2)^{d}$	$+2.7^{d}$	$\alpha(K)=0.00017$
2097^{d} 1 100^{d} 14 2949.2 6 ⁺ $(D+Q)^{d}$ $\approx -1.0^{d}$						$(D+Q)^{d}$	$\approx -1.0^{d}$	
$5080 (1,2^+) 3672 5 100^c 1408.19 2^+$	5080	$(1,2^+)$						
$5080\ 7 \qquad 43^{\circ} \qquad 0.0\ 0^{+}$		- 1						
5145 2^{+} 3737.6 100° $1408.19.2^{+}$		2+						
5248 3840 6 100° 1408.19 2^{+}				100°				
5278.8 1248.0 ^a 4030.9 5 ⁺ 3867 6 ^c 1408.19 2 ⁺	52/8.8			c				
$5392 2^{+} 3984 6 100^{c} 1408.19 2^{+}$	5392	2+						
3372 2 370T 0 100 1T00.17 2	3394	2	370 1 0	100	1700.19 2			

10

γ (54Fe) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ^f	α^{g}	Comments
5431.1		386.3 ^a	100 <mark>a</mark>		5-,6+				
5453	$(1,2^+)$	5453 7	100 ^c		0+				
5461.2		2166.4 ^a	100 ^a		4+				
5482.0	3+,4+	1435 ^d 1	$12\frac{d}{4}$		4+	1	1		
		2944 ^d 1	100 ^d 15	2538.1		$(M1+E2)^{d}$	≈ -0.3 ^d		Additional information 4.
	(= 1)	4074 ^h 5	100°	1408.19					Additional information 5.
5506 5539	(2^+) 3 ⁻	4098 <i>6</i> 4131 <i>6</i>	100 ^c 100	1408.19 1408.19					
5621	(3 ⁻)	4213 6	100° 100° 100° 100° 100° 100° 100° 100°	1408.19					
5809	2+	4401 7	100 c	1408.19					
5828		4420 7	100 ^c	1408.19	2+				
5919.3		2970 ^a	100 ^a	2949.2	6+				
5927.4	7+	881.9 ^d 3	$20^{d} \ 3$		5-,6+	$M1(+E2)^{d}$	$+0.07^{d} +11-8$		Additional information 6.
		1895 ^d 1	4.5 ^d 20	4030.9	5+				
		2979 ^d 1	100 <mark>d</mark> 9		6+	M1+E2 ^d	$\approx -1.0^{\mathbf{d}}$		Additional information 7.
5955	2+	5955 8	100°		0+				
6038	$(1,2^+)$	6038 8	100°		0_{+}				
6128.7	1	1837.4 <mark>#</mark>	2.7# 5		0+	[D]			
		2961.8 [#]	2.7 <mark>#</mark> 4		2+	[D]			
		4720.7 <mark>#</mark>	2.5# 7	1408.19		[D]			
		6129.0 [#]	100 [#] 1		0_{+}	[D]			
6296.8	7+	3348^{d} 2	100 ^d		6+				Additional information 8.
6380.9	8+	3432.0 ^{&} 18	100		6+	E2 e			B(E2)(W.u.)=0.86 +16-22
6527.1	10+	146.2 [@] 2	100.0 [@] 3	6380.9	8+	E2 ^e		0.1173	$\alpha(K)$ =0.1032; $\alpha(L)$ =0.01063 B(E2)(W.u.)=1.69 4
		3577.6 [@]	2.0 [@] 2	2949.2	6+	E4			B(E4)(W.u.)=0.79 8
									Mult.: from 40 Ca(16 O,2p γ), based on a pulsed-beam search revealed a weak 10^+ to 6^+ E4 cross-over transition, see 1978NoZY.
6551.0		1069 ^d 1	40 ^d 20	5482.0	3+,4+				
		3602 ^d 2	100 <mark>d</mark> 40		6 ⁺				
6724.1	9+	197 <mark>d</mark> 2	100 <mark>d</mark>		10 ⁺	$M1(+E2)^{d}$	-0.07^{d} 6		$B(M1)(W.u.)\approx(0.070); B(E2)(W.u.)\approx(19)$
6864.3	8+	936.9 ^d 5	100 <mark>d</mark> 11		7+	$M1(+E2)^{d}$	-0.09^{d} 12		Additional information 9.
	-	1819 ^d 1	22^{d} 6		5 ⁻ ,6 ⁺	ζ ==/	-		
		3915^{d} 2	83 ^d 8		6 ⁺	(E2) ^d			Additional information 10.
7074.8		778 <mark>d</mark> 1	$44^{\frac{d}{2}}$ 22		7 ⁺	()			
, 0 / 1.0		1148 ^{dh} 1	33^{d} 11		7+				

γ (54Fe) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}^{ \ddagger}$	E_f	\mathbf{J}_f^{π}	Mult.	δ^f	Comments
7074.8		4126 ^d 3	100 ^d 22	2949.2	6+			
7351.5	(9^+)	487.2 ^d 2	100 ^d 12	6864.3	8+	$M1(+E2)^{d}$	-0.01^{d} 7	Additional information 11.
		971.6 <mark>d</mark> 6	24 ^d 7	6380.9	8+			
		1423.8 ^d 6	67 ^d 10	5927.4	7+	$(E2)^{d}$		Additional information 12.
7505	10+	780.0^{d} 2	$100^{d} 6$	6724.1	9+	$M1(+E2)^{d}$	$+0.06^{d}$ 6	
		978 ^d 1	15^{d} 2	6527.1	10+			
7565.8		4617 ^d 3	100 ^d	2949.2	6+			
8021	$(11)^{+}$	1492.4 ^d 4	100 ^d	6527.1	10+	$M1(+E2)^{d}$	$-0.02^{d} + 14 - 12$	Additional information 13.
8318.8	8-	753 ^d 1	100^{d} 40	7565.8				
		1769 ^{dh} 2	40^{d} 20	6551.0				
		$2022\frac{d}{1}$ 1	40^{d} 20	6296.8	7+	1		
8374.3	(10^{+})	1994 d 1	100^{d}	6380.9	8+	(E2) ^d		Additional information 14.
8577.8	(10^{+})	559 ^d 1	19^{d}_{1} 5	8021	$(11)^{+}$			
		1226.2^{d} 5	100^{d} 14	7351.5	(9 ⁺)			Additional information 15.
8808.0	(11^{+})	788.8 ^d 6	8.6 ^d 14	8021	$(11)^{+}$		4	
		1304.5 ^d 4	100^{d} 13	7505	10 ⁺	$M1(+E2)^{d}$	$+0.03^{d} +11-7$	Additional information 16.
		2282^{d} 2	$71^{\frac{d}{14}}$	6527.1	10+			
9123.6	(4.5.4.)	1772^{d} 1	100d $23d 3$	7351.5	(9 ⁺)			
9845.3	(12^+)	1037.2^{d} 4	$\frac{23^d}{100^d} \frac{3}{6}$	8808.0	(11 ⁺)	2514		Additional information 17.
		1826.4^{d} 7 2342^{d} 2	$2.2^{\frac{d}{6}}$	8021	(11) ⁺	$M1^d$		Additional information 18.
		$\frac{2342^d}{3319^d}$ 2	$56\frac{d}{6}$	7505	10 ⁺ 10 ⁺			
9995.4?		$2492\frac{dh}{2}$	$100^{d} 33$	6527.1 7505	10 ⁺			
9995.4?		3270^{dh} 3	$100^{d} 33$	6724.1	9 ⁺			
10131.0	(12^{+})	1323^{d} 1	100^{-33} 100^{d} 14	8808.0	(11^+)			
10131.0	(12)	2112^{d} 1	$45^{\frac{d}{9}}$	8021	$(11)^{+}$			
10542.0	(11)	1734 ^d 1	67 ^d 17	8808.0	(11) (11^+)			
103 12.0	(11)	1964 ^d 1	25^{d} 8	8577.8	(10^+)			
		2523^{d} 2	33^{d} 8	8021	$(10)^{+}$			
		3037^{d} 2	33^{d} 8	7505	10+			
		$4016^{\frac{d}{l}}$ 1	$100^{\frac{d}{17}}$	6527.1	10 ⁺			
11093.4	(13^+)	1248.1 ^d 3	$100^{d} 3$	9845.3	(12^{+})	$M1^d$		Additional information 19.
	` /	3074 ^d 2	8.8 ^d 9	8021	$(11)^{+}$			
11113.6	(12)	571.5 ^d 4	100 ^d 7	10542.0	(11)	$D+Q^{d}$		
		1118 ^{dh} 1	11 ^d 4	9995.4?		-		

12

γ (54Fe) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.	Comments
11113.6	(12)	2306 ^d 2	54 ^d 11	8808.0 (11+)	$\overline{\mathrm{D}^{\boldsymbol{d}}}$	Additional information 20.
		3095 ^d 3	32 ^d 7	$8021 (11)^+$		
12043.0	(13)	929.4 <mark>d</mark> 4	100 ^d	11113.6 (12)	D+Q ^d	
12314.1	(14^{+})	1220.7 ^d 4	100 ^d 8	11093.4 (13 ⁺)	$M1^{d}$	Additional information 21.
		2183 ^{dh} 2	2^{d} 1	10131.0 (12 ⁺)		
12953.3	(14^{+})	1860 ^d 1	100 ^d	11093.4 (13 ⁺)	D+Q ^d	
13358.0		1315 ^d 1	100 ^d	12043.0 (13)		
14388.3		1435 d 1	8 <mark>d</mark> 4	12953.3 (14+)		
		2074 ^d 2	100 <mark>d</mark> 20	12314.1 (14+)		
15062.0?		1704 ^{dh} 2	100 ^d	13358.0		

[†] From $(n,n'\gamma)$, except as noted.

[‡] Photon branching ratio, from $(p,p'\gamma)$, except as noted.

[#] From (γ, γ') .

[®] From (¹⁶O,2pγ).

[&]amp; From $(\alpha, 2n\gamma)$.

^a From (3 He, 2 pn γ).

^b From $(p,p'\gamma)$.

^c From $(n,n'\gamma)$.

^d From (36 Ar,2 α 2p γ).

^e From γ -ray linear polarization and angular correlations. in $(\alpha, 2n\gamma)$.

^f Based on $p\gamma(\theta)$ and $\gamma\gamma(\theta)$ in $(p,p'\gamma)$, except as noted.

g Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^h Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

