BME205: algorithms and models

David L. Bernick, PhD

Motif finding

- Background
- Example: Clock genes- transcription factor binding sites
- Example: Photosynthesis- TFBs
- (*k*, *d*)-motifs
- Strategies
- Stochastic methods

10 random sequences

How to find them?

patterns can be found using frequentWords()

frequent words with 4 random mutations

(k,d)-motif: a k-mer that appears in each sequence with at most d mutations.
 AAAAAAAAGGGGGGG, generating 4 random mutations... (15,4)-motif

motif finding

frequentWords()?

Clock Gene

 Circadian gene expression, in numerous cells across multiple organs — synchronized by a circadian clock

cca1, lcy and toc1 manage expression of 1000's of genes in Plants

 Photosynthesis, flowering, frost resistance managed across boundaries of night and day

Night Blooming Cereus only blooms at night

Sunflower follows the sun

Transcription factors

- TF Transcription Factor DNA Binding proteins
- TFBS TF Binding sites on DNA
- CCA1, LCY, and TOC1 are Transcription Factors

CCA1 binds upstream of regulated genes

Finding TFBS

Motif AAAAAATCT binding site for CCA1

cagtATAAAGTCTactgatgcaacctgactcatgacgaggaa		
agtcgactgactt AACAAATCT cggatcgattcgtccgagga	Gene1	
cgtcagctctgtcgggatt gccdcgtattcAAAAAAGCTac	Gene2	
accgtctccACAAAACCTgctcgtgocactgatg@aacctga	Gene3	
	Gene4	

Finding (k,d) motifs

- *DNA* = { strings }
- k = motif length
- $d = \max \text{ number of mismatches}$

find all (k,d)-motifs in DNA

Strategies

- Pairwise comparison
- Enumeration of all possible motifs
- stochastic methods

Finding (k,d) motifs

- Pairwise comparison
- can have 2d mutations (4 in each), low similarity .. d measures mutations from a consensus

Motif Enumeration

motifEnumeration():
 DNAkmer = set(all kmers in DNA)
 for kmer in DNAkmer:
 for kmer' in mutantMaker(kmer, d):
 if kmer'(k,d) is in every string of DNA:
 print (kmer')

 For this to work, every string has to have a (k,d) variant of some other string in DNA

Profile from Motifs

```
G G G T T T T t
t G A C T T T a
G G A C T T T t
G G A C T T C
G G A C T T C
G G A C T T C
G G A C T T C
G G A C T T C
G G A T T C C
G G A T T C C
                                                                                                                   Motifs

      .2
      .2
      0
      0
      0
      .9
      .1
      .1
      .1
      .3

      .1
      .6
      0
      0
      0
      0
      .4
      .1
      .2
      .4

      0
      0
      1
      1
      .9
      .9
      .1
      0
      0
      0
      0

      .7
      .2
      0
      0
      .1
      .1
      0
      .5
      .8
      .7
      .3

Profile(Motifs)
                                                                                                                                                                         G
                                                                                                                                                                                                           G
consensus
```

profile columns provide Pr (symbol | motifs)

Randomized Searches

- Given set DNA, we can randomly select
 {k-mers} (one from each element of DNA), Motifs₀
- Given: *Motifs*₀, we can construct *Profile*₀ = *Profile*(*Motifs*₀)
- Given: Profile₀ and DNA, we can construct:
 Motifs₁ = Motifs (Profile₀, DNA),
 {k-mers} derived from our model: Profile₀ and data DNA
- using Motifs₁, we can produce: Profile₁
- and ...Motifs(Profile(Motifs(Profile(Motifs), DNA)), DNA)), DNA)...

RandomizedMotifSearch

```
RandomizedMotifSearch(Dna, k, t)

randomly select k-mers Motifs = (Motif_1, ..., Motif_t) in each string from DNA

bestMotifs \leftarrow Motifs

while forever

Profile \leftarrow Profile(Motifs)

Motifs \leftarrow Motifs(Profile, Dna)

if Score(Motifs) < Score(bestMotifs)

bestMotifs \leftarrow Motifs

else

return(bestMotifs)
```

How can this work?

RandomizedMotifSearch

Dna with implanted (4,1)-motif ACGT

ttACCTtaac
gATGTctgtc
ccgGCGTtag
cactaACGAg
cgtcagAGGT

Randomly select *Motifs* (in **bold**)

ttACCTtaac
gATGTctgtc
ccgGCGTtag
cactaACGAg
cgtcagAGGT

Motifs

Profile(Motifs)

taac GTct ccgG acta AGGT

A: 2/5 1/5 1/5 1/5 C: 1/5 2/5 1/5 1/5 G: 1/5 1/5 2/5 1/5 T: 1/5 1/5 1/5 2/5

```
.0016/ttAC .0016/tACC .0128/ACCT .0064/CCTt .0016/Ctta .0016/Ttaa .0016/taac .0016/gATG .0128/ATGT .0016/TGTc .0032/GTct .0032/Tctg .0032/ctgt .0016/tgtc .0064/ccgG .0036/cgGC .0016/gGCG .0128/GCGT .0032/CGTt .0016/Gtta .0016/Ttag .0032/cact .0064/acta .0016/ctaA .0016/taAC .0032/aACG .0128/ACGA .0016/CGAg .0016/cgtc .0016/gtca .0016/tcag .0032/cagA .0032/agAG .0032/gAGG .0128/AGGT
```

ttACCTtaac
gATGTctgtc
ccgGCGTtag
cactaACGAg
cgtcagAGGT

Motifs (Profile (Motifs), Dna)

RandomizedMotifSearch

- With randomly selected k-mers, we expect an uninformative profile, with uniform(ish) probabilities at each position.
- A bias exists in {DNA} due to the common motif.
 s.t. Pr(motif | profile) increases and expected value: E (profile | data, k) increases
- We selectively maximize: E (profile | data, k) as we move, then derive profile(motifs(profile, DNA)) etc.

Profile scoring

- hamming distance to consensus
- Shannon's entropy, relative entropy, encoding cost

Hamming distance d()

- d(profile, N=10) = 30
- minimum d(profile, N=10) = 0
- maximum d(profile N=10) = 7 * 12 columns = 84

Entropy

```
A: .2 .2 0 0 0 0 .9 .1 .1 .1 .3 0 C: .1 .6 0 0 0 0 0 .4 .1 .2 .4 .6 Profile(Motifs) G: 0 0 1 1 .9 .9 .1 0 0 0 0 0 0 T: .7 .2 0 0 .1 .1 0 .5 .8 .7 .3 .4
consensus
                                         -0.46 | -0.46 | 0.00 | 0.00 | 0.00 | 0.00 | -0.14 | -0.33 | -0.33
                                                                                                    -0.33 -0.52
                                                                                                                   0.00
                                          -0.33 -0.44 0.00 0.00 0.00
                                                                          0.00
                                                                                0.00 -0.53 -0.33 -0.46 -0.53
                                                                                                                  -0.44
                                                 0.00 | 0.00 | 0.00 | -0.14 | -0.14
                                                                                -0.33
                                                                                        0.00
                                                                                              0.00
                                                                                                     0.00
                                          0.00
                                                                                                            0.00
                                                                                                                   0.00
                                          -0.36 | -0.46 | 0.00 | 0.00 | -0.33 | -0.33 | 0.00 | -0.50 | -0.26 | -0.36 | -0.52
                                                                                                                  -0.53
                             H(X) 1.16 1.37 0.00 0.00 0.47 0.47 0.47 1.36 0.92 1.16 1.57 0.97
                                                                                                                         9.92
```

$$H(x) = -\sum_{i=1}^{n} P(x_i)log_2(P(x_i))$$

Entropy examples

$$H(x) = -\sum_{i=1}^{n} P(x_i)log_2(P(x_i))$$

define: $0 \log_2(0) = 0$

A	0	0.25
С	1	0.25
G	0	0.25
Т	0	0.25
Н	0	2

a column with constant data has no information
 a column with 4 characters of equal frequency has 2 "bits" of information

Which better reflects the information in our columns?

pseudo counts

- N=10, with 10 pseudocounts
- "softer" distribution has the same consensus

Motif finding

- Relative Entropy
- Gibbs Sampling

Entropy and Relative Entropy

$$H(x) = -\sum_{i \in [A,C,G,T]} P(x_i) \log_2 P(x_i)$$

- Entropy encoding cost
- Relative Entropy a distance

$$D_{KL}(P||Q) = \sum_{i \in [A,C,G,T]} P(x_i) \log_2 \frac{P(x_i)}{Q(x_i)}$$

 If we want distance between our profile and its base composition, Q is a distribution over our sequences

Gibbs Sampling

RandomizedMotifSearch may replace all *k*-mers in a single iteration and thus may potentially discard a nearly correct motif.

```
ttaccttaac
gatatctgtc gatatctgtc
acggcgttcg → acggcgttcg
ccctaaagag
cqtcagaggt cgtcagaggt
```

RandomizedMotifSearch (may change all *k*-mers in 1 iteration)

Gibbs sampling replaces a single *k*-mer at each iteration and thus moves with more caution in the space of all motifs.

```
ttaccttaac
gatatctgtc gatatctgtc
acggcgttcg → acggcgttcg
ccctaaagag
cqtcagaggt cqtcagaggt
```

GibbsSampler (changes a single *k*-mer in 1 iteration)

Gibbs Sampling

```
Randomly select
                         Randomly remove
                                                                        Motifs matrix
    Motifs (in bold)
                         a k-mer in Motifs
                                                                                        C
                                                                                 a
    ttACCTtaac
                           ttACCTtaac
                                                                                        t
    qATGTctqtc
                           gATGTctgtc
    ccqGCGTtag
                                                                                 t
                                                                                        a
    cactaACGAg
                           cactaACGAq
                                                                     A
                                                                           G
                                                                                 G
                                                                                        T
    cgtcagAGGT
                           cgtcagAGGT
                Choose a new starting
                                                 Count matrix
                position in the deleted
                                                                                          0
                      sequence.
                                                                                          2
             Weighted Random selection
             based on k-mer probabilities
                                                                      2/4
                                                                                  1/4
                                                                                        1/4
                                                                            1/4
                                                                      0
                                                                            1/4
                                                                                  1/4
                                                                                        1/4
                                                 Profile matrix
                                                                      1/4
                                                                                  1/4
                                                                 G:
                                                                            1/4
                                                                                         0
                                                                      1/4
                                                                            1/4
                                                                 T:
                                                                                  1/4
                                                                                         2/4
Calculate the probabilities of all k-
   mers in the deleted string
          ccgGCGTtag
```

0 (ccgG) 0 (cgGC) 0 (gGCG) 1/128 (GCGT) 0 (CGTt) 0 (GTta) 0 (Ttag)

Gibbs Sampler

- 1. Randomly choose one of selected k-mers (the RemovedSequence) and remove it from *Motifs*.
- 2. Create *Profile* from the remaining *k*-mers in *Motifs*.
- 3. For each k-mer in RemovedSequence, calculate Pr(k-mer/Profile) resulting in n-k+1 probabilities: $p_1, p_2, ..., p_{n-k+1}$.
- 4. Roll a die (with n-k+1 sides) where probability of ending up at side i is proportional to p_i .
- 5. Choose a new starting position based on rolling the die. Add the k-mer starting at this position in RemovedSequence to Motifs.
- 6. Repeat steps 2-6.

Notice that the Gibbs step(4) can move "backwards"

Gibbs Sampling with Pseudocounts

```
Randomly select
                         Randomly remove
                                                                        Motifs matrix
    Motifs (in bold)
                         a k-mer in Motifs
                                                                      G
                                                                                     t
    ttACCTtaac
    qATGTctqtc
                          qATGTctqtc
    ccqGCGTtaq
                          ccqGCGTtaq
    cactaACGAq
                          cactaACGAq
    cqtcaqAGGT
                          cqtcaqAGGT
                                                                      2+1 0+1 0+1 1+1
                Choose a new starting
                                                                      0+1 2+1 1+1 0+1
                                                                      2+1 1+1 2+1 0+1
                position in the deleted
                                                 Count matrix
                                                                      0+1 1+1 1+1 3+1
                      sequence.
             Weighted Random selection
             based on k-mer probabilities
                                                                      3/8 1/8 1/8 2/8
                                                                      1/8 3/8 2/8 1/8
                                                Profile matrix
                                                                      3/8 2/8 3/8 1/8
                                                                      1/8 2/8 2/8 4/8
Calculate the probabilities of all k-
   mers in the deleted string
        ttACCTtaac
2/4096 (ttAC) 2/4096 (tACC) 72/4096 (ACCT) 24/4096 (CCTt) 8/4096 (CTta) 4/4096 (Ttaa) 1/4096 (taac)
```