Contents

0.1	Linear Separator	1
0.2	Perceptron Algorithm	1
0.3	Geometric Margin	2
0.4	Support Vector Machine	2
0.5	Optimal Linear Separator	2
0.6	Classification Margin	2
0.7	Maximizing the Margin	2
0.8	Linear SVM	3
0.9	Lagrangian Duality	3

0.1 Linear Separator

Assuming that red and blue datasets represents points X_1 and X_2 , then the two sets X_1 and X_2 are linearly separable if there exists (n+1) real numbers w_1, w_2, \ldots, w_n, k

- such that every point in X_1 satisfies $\sum_{i=1}^n w_i x_i < k$
- such that every point in X_2 satisfies $\sum_{i=1}^n w_i x_i > k$

Binary classification $y_i \in \{-1, 1\}$ can be viewed as the task of separating classes in feature space.

- Hypothesis class of linear decision surfaces is $f(x_i) = \operatorname{sign}(\mathbf{w}^T \mathbf{x_i} + b)$.
- Without loss of generality, we assume that b = 0. Thus, we get the simplified $f(x_i) = \operatorname{sign}(\mathbf{w}^T \mathbf{x_i})$.
- $(y_i)(\mathbf{w}^T\mathbf{x}_i) > 0 \Leftrightarrow \text{data point } x_i \text{ is correctly classified.}$
 - Remember, y_i is counting as 1 or -1.

0.2 Perceptron Algorithm

- Set time t = 1, start with vector $\mathbf{w}_1 = \vec{0}$.
- Given example x, predict positive iff (if and only if) $w_1 \cdot x \geq 0$.

- On a mistake, update as follows:
 - Mistake on positive, then update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \mathbf{x}$.
 - Mistake on negative, then update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t \mathbf{x}$.

0.3 Geometric Margin

The margin of example ...

The margin γ of a set of examples S w.r.t (with respect to) a linear separator \mathbf{w} is the largest margin over points $\mathbf{x} \in S$. Theorem: If the data has a margin γ and all points lie inside a ball of radius R, then the Perceptron algorithm makes $\leq \frac{R}{\gamma^2}$ mistakes.

0.4 Support Vector Machine

Support vector machines (SVMs) are supervised max-margin models with associated learning algorithms.

- Good generalization in theory.
- Good generalization in practice.
- Work well with few training instances.
- Find globally best model.
- Efficient algorithms.
- Amenable to the kernel trick.

0.5 Optimal Linear Separator

Which of the linear separators is optimal?

0.6 Classification Margin

Examples closest to the hyperplane are support vectors. Margin ρ of the separator is the distance between support vectors.

0.7 Maximizing the Margin

• Better Generalization – A larger margin allows the SVM to better generalize to new, unseen data, leading to higher predictive accuracy.

- Improved Robustness A larger margin can lead to improved robustness against noise and outliers in the training data, as it allows for greater tolerance of misclassified examples.
- Reducing Overfitting A larger...

0.8 Linear SVM

Let training set $\{(\mathbf{x}_i, y_i)_{i=1...n}, \mathbf{x}_i \in \mathbb{R}^d, y_i \in \{-1, 1\}\}$ be separated by a hyperplane with margin ρ . Then for each training example (\mathbf{x}_i, y_i)

$$\mathbf{w}^T \mathbf{x}_i + b \ge 1$$
 if $y_i = 1$
$$\Leftrightarrow y_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) \ge 1$$

$$\mathbf{w}^T \mathbf{x}_i + b \le -1$$
 if $y_i = -1$

Geometrically, the distance between the 2 hyperplanes can be expressed as:

$$\rho = \frac{2}{||w||}\tag{1}$$

Then we can formulate the quadratic optimization problem:

Find \mathbf{w} and \mathbf{b} such that

$$\rho = \frac{2}{||\mathbf{w}||}$$

is maximized and for all (\mathbf{x}_i, y_i) , $i = 1 \dots n : y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1$

Which can be reformulated as:

 \mathbf{x}_i, y_i , find \mathbf{w} and \mathbf{b} such that

Minimize
$$Q(w) = \frac{1}{2}||\mathbf{w}||^2 = \frac{1}{2}\mathbf{w}^T\mathbf{w}$$

subject to ...

0.9 Lagrangian Duality

- Need to optimize a quadratic function subject to linear constraints.
- Quadratic optimization problems are a well-known class of mathematical programming problems for which several (non-trivial) algorithms exist.
- Solution involves constructing dual problem where Lagrange multipliers a_i is associated with all inequality constraint in primal (original) problem:

$$\forall i, \text{ find } a_1, \dots, a_n \text{ such that } \dots \text{ subject to } a_i \geq 0$$