General Solution to a Linear System Eigenvalues and Eigenvectors

 $\begin{array}{ll} \text{If } \boldsymbol{b} \in \mathcal{C}\left(\mathbf{A}\right) \! : & \boldsymbol{x}_g = \boldsymbol{x}_p + \boldsymbol{x}_n \text{ where} \\ \boldsymbol{x}_p \in \mathbb{R}^n \text{ and } \boldsymbol{x}_n \in \mathcal{N}\left(\mathbf{A}\right) \! . \end{array}$

Minimum Norm Solution

$$\boldsymbol{x}_r \in \mathcal{C}\left(\mathbf{A}^{\top}\right) \text{ where } \boldsymbol{x}_r = \operatorname{proj}_{\mathcal{C}\left(\mathbf{A}^{\top}\right)}\left(\boldsymbol{x}_q\right).$$

Least Squares (LS)

 $\text{If } \boldsymbol{b} \notin \mathcal{C}\left(\mathbf{A}\right)\!{:}\; \boldsymbol{x} = \arg\min_{\boldsymbol{x}^* \in \mathbb{R}^n} \lVert \boldsymbol{b} - \mathbf{A}\boldsymbol{x}^* \rVert.$ $oldsymbol{b} - \mathbf{A} oldsymbol{x} \in \mathcal{N} \left(\mathbf{A} \right) \implies \mathbf{A}^{\top} (oldsymbol{b} - \mathbf{A} oldsymbol{x}) = oldsymbol{0}.$ $\mathbf{A}^{\top} \mathbf{A} \mathbf{x} = \mathbf{A}^{\top} \mathbf{b}$ (Normal Equations)

Orthogonal Projection

$$\begin{aligned} \mathbf{P} &= \mathbf{A} \left(\mathbf{A}^{\top} \mathbf{A} \right)^{-1} \mathbf{A}^{\top} \\ \mathbf{P} &\boldsymbol{b} = \operatorname{proj}_{\mathcal{C}(\mathbf{A})} \left(\boldsymbol{b} \right) = \mathbf{A} \boldsymbol{x} \end{aligned}$$

 \mathbf{P} is idempotent $(\mathbf{P}^2 = \mathbf{P})$ and $\mathbf{P}^{\top} = \mathbf{P}$. Dependent Columns

If $\operatorname{nullity}(\mathbf{A}) > 0$, NE yields infinitely many solutions as $\mathcal{N}(\mathbf{A}) = \mathcal{N}(\mathbf{A}^{\top}\mathbf{A})$.

Orthogonal Complement Projections

Given
$$\mathbf{P} = \operatorname{proj}_{V}$$
: $\mathbf{Q} = \operatorname{proj}_{V^{\perp}} = \mathbf{I} - \mathbf{P}$
 $\boldsymbol{b} = \operatorname{proj}_{V}(\boldsymbol{b}) + \operatorname{proj}_{V^{\perp}}(\boldsymbol{b}) = \mathbf{P}\boldsymbol{b} + \mathbf{Q}\boldsymbol{b}$
 $(\mathbf{P}\boldsymbol{b})^{\top} \mathbf{Q}\boldsymbol{b} = 0$
 $\mathbf{P}\mathbf{Q} = \mathbf{0}$ (zero matrix)

Change of Basis

Given the basis $W = \{ \boldsymbol{w}_1, \dots, \boldsymbol{w}_n \}$

$$\mathbf{b} = c_1 \mathbf{w}_1 + \dots + c_n \mathbf{w}_n$$
$$\mathbf{b} = \mathbf{W} \mathbf{c} \iff (\mathbf{b})_W = \mathbf{c}.$$

Orthonormal Basis

Normalised and orthogonal basis vectors. For $Q = \{\boldsymbol{q}_1, \dots, \boldsymbol{q}_n\}, \, \boldsymbol{q}_i^{\top} \boldsymbol{q}_j = \delta_{ij}, \text{ where }$

$$\begin{split} \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases} \\ \mathbf{Q} \boldsymbol{c} = \boldsymbol{b} \iff \mathbf{Q}^{\top} \boldsymbol{b} = \boldsymbol{c} = (\boldsymbol{b})_{Q} \end{split}$$

Orthogonal Matrices

$$\mathbf{Q}^\top = \mathbf{Q}^{-1} \iff \mathbf{Q}^\top \mathbf{Q} = \mathbf{Q} \mathbf{Q}^\top = \mathbf{I}.$$

Projection onto a Vector

$$egin{aligned} \operatorname{proj}_{oldsymbol{a}}\left(oldsymbol{b}
ight) &= oldsymbol{a} \left(oldsymbol{a}^{ op}oldsymbol{a}
ight)^{-1}oldsymbol{a}^{ op}oldsymbol{b} \ &= rac{oldsymbol{a}}{\|oldsymbol{a}\|^2}oldsymbol{a}\cdotoldsymbol{b} \end{aligned}$$

Using a unit vector q

$$\operatorname{proj}_{\boldsymbol{q}}\left(\boldsymbol{b}\right) = \boldsymbol{q}\left(\boldsymbol{q}\cdot\boldsymbol{b}\right)$$

Gram-Schmidt Process

Converts the basis W that spans $\mathcal{C}(\mathbf{A})$ to an orthonormal basis Q.

$$oldsymbol{v}_i = oldsymbol{w}_i - \sum_{j=1}^{i-1} oldsymbol{q}_j ig\langle oldsymbol{q}_j, \; oldsymbol{w}_i ig
angle \quad oldsymbol{q}_i = oldsymbol{v}_i / \lVert oldsymbol{v}_i
Vert$$

V and Q span W, and V is orthogonal. **QR** Decomposition

A = QR

$$\mathbf{R} = \begin{bmatrix} \|\boldsymbol{v}_1\| & \langle \boldsymbol{q}_1, \, \boldsymbol{w}_2 \rangle & \cdots & \langle \boldsymbol{q}_1, \, \boldsymbol{w}_n \rangle \\ 0 & \|\boldsymbol{v}_2\| & \ddots & \vdots \\ \vdots & \ddots & \ddots & \langle \boldsymbol{q}_{n-1}, \, \boldsymbol{w}_n \rangle \\ 0 & \cdots & 0 & \|\boldsymbol{v}_n\| \end{bmatrix}$$

where \mathbf{Q} is found by applying the Gram-Schmidt process and \mathbf{R} is upper triangular. $\mathbf{R} \mathbf{x} = \mathbf{Q}^{\mathsf{T}} \mathbf{b}$ solves LS.

$$\mathbf{A}\boldsymbol{v} = \lambda\boldsymbol{v} \iff (\lambda\mathbf{I} - \mathbf{A})\,\boldsymbol{v} = \mathbf{0}: \boldsymbol{v} \neq \mathbf{0}$$

Characteristic Polynomial

$$P(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A}) = 0.$$

Eigen Decomposition

$$\mathbf{AV} = \mathbf{VD} \iff \mathbf{A} = \mathbf{VDV}^{-1}$$

$$\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{bmatrix}$$

$$\mathbf{D} = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$$

Algebraic Multiplicity $\mu(\lambda_i)$

Multiplicity of λ_i in $P(\lambda)$, for $d \leq n$ distinct eigenvalues,

$$\begin{split} P\left(\lambda\right) &= \left(\lambda - \lambda_1\right)^{\mu(\lambda_1)} \cdots \left(\lambda - \lambda_d\right)^{\mu(\lambda_d)} \\ \text{In general} \end{split}$$

$$1 \le \mu\left(\lambda_i\right) \le n$$

$$\sum_{i=1}^{d} \mu\left(\lambda_i\right) = n$$

If nullity $(\mathbf{A}) > 0$

$$\exists k: \lambda_k = 0: \mu\left(\lambda_k\right) = \text{nullity}\left(\mathbf{A}\right)$$
 Geometric Multiplicity $\gamma\left(\lambda_i\right)$

Dimension of the eigenspace associated with λ_i .

$$\begin{split} \gamma\left(\lambda_{i}\right) &= \text{nullity}\left(\lambda_{i}\mathbf{I} - \mathbf{A}\right). \\ \text{Given } d &\leq n \text{ distinct eigenvalues,} \\ 1 &\leq \gamma\left(\lambda_{i}\right) \leq \mu\left(\lambda_{i}\right) \leq n \end{split}$$

$$d \le \sum_{i=1}^{d} \gamma(\lambda_i) \le n.$$

Eigenvectors corresponding to distinct Truncated SVD eigenvalues are linearly dependent.

Defective Matrix

A lacks a complete eigenbasis:

$$\exists k : \gamma\left(\lambda_k\right) < \mu\left(\lambda_k\right)$$

Matrix Similarity

 ${f A}$ and ${f B}$ are similar if

$$\mathbf{B} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P}.$$

They share $P(\lambda)$, ranks, determinants, traces, and eigenvalues (also μ and γ).

Symmetric Matrices $\mathbf{S}^{\top} = \mathbf{S}$

found through QR: V = QR.

Skew-Symmetric Matrices $\mathbf{K}^{\top} = -\mathbf{K}$

Eigenvalues are always purely imaginary.

Positive-Definite Matrices

S is (symmetric) positive definite (SPD) if all its eigenvalues are positive, likewise

$$\boldsymbol{x}^{\top}\mathbf{S}\boldsymbol{x} > 0 : \forall \boldsymbol{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$$

Matrix Functions

Given a nondefective matrix:

$$\begin{split} f\left(\mathbf{A}\right) &= \mathbf{V} f\left(\mathbf{D}\right) \mathbf{V}^{-1} \\ &= \mathbf{V} \operatorname{diag}\left(f\left(\lambda_{1}\right), \, \ldots, \, f\left(\lambda_{n}\right)\right) \! \mathbf{V}^{-1}. \end{split}$$

for an analytic function f. Cayley-Hamilton Theorem

 $\forall \mathbf{A} : P(\mathbf{A}) = \mathbf{0}$ (zero matrix)

Singular Value Decomposition

$$\mathbf{A}\mathbf{V} = \mathbf{U}\mathbf{\Sigma} \iff \mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\top}$$

 $\mathbf{V}^{\top} = \mathbf{V}^{-1}, \quad \mathbf{U}^{\top} = \mathbf{U}^{-1}$

 $\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_r, 0, \ldots, 0).$ Left singular vectors \mathbf{u} : $\mathbf{U} \in \mathbb{R}^{m \times m}$

$$\mathcal{C}\left(\mathbf{A}\right)=\operatorname{span}\left(\left\{\boldsymbol{u}_{i\leq r}\right\}\right)$$

$$\mathcal{N}\left(\mathbf{A}^{\top}\right) = \mathrm{span}\left(\left\{ oldsymbol{u}_{r < i \leq m}
ight\}
ight)$$

$$\begin{split} \mathcal{N}\left(\mathbf{A}^{\top}\right) &= \operatorname{span}\left(\left\{\boldsymbol{u}_{r < i \leq m}\right\}\right) \\ \text{Right singular vectors } \boldsymbol{v} \colon \mathbf{V} \in \mathbb{R}^{n \times n} \end{split}$$

$$\mathcal{C}\left(\mathbf{A}^{ op}\right) = \mathrm{span}\left(\left\{ oldsymbol{v}_{i < r}
ight\}
ight)$$

$$\begin{split} \mathcal{N}\left(\mathbf{A}\right) &= \operatorname{span}\left(\left\{v_{r < i \leq n}\right\}\right) \\ \operatorname{Singular values} \ \sigma_i \colon \ \mathbf{\Sigma} \in \mathbb{R}^{m \times n} \end{split}$$

The eigenvalues of $\mathbf{A}^{\top}\mathbf{A}$ and $\mathbf{A}\mathbf{A}^{\top}$ are equal, $\mathbf{\Sigma}^{\top}\mathbf{\Sigma}$ and $\mathbf{\Sigma}\mathbf{\Sigma}^{\top}$ have the same diagonal entries, and when m = n, $\mathbf{\Sigma}^{\top}\mathbf{\Sigma} = \mathbf{\Sigma}\mathbf{\Sigma}^{\top} = \mathbf{\Sigma}^{2}$. To find σ_{i} compute:

$$\mathbf{A}^{ op}\mathbf{A} = \mathbf{V}\mathbf{\Sigma}^{ op}\mathbf{\Sigma}\mathbf{V}^{ op}$$

$$\mathbf{A}\mathbf{A}^{ op} = \mathbf{U}\mathbf{\Sigma}\mathbf{\Sigma}^{ op}\mathbf{U}^{ op}$$

so that $\sigma_i = \sqrt{\lambda_i}$ where $\sigma_1 \ge \cdots \ge \sigma_r > 0$.

Reduced SVD

Ignores m-n "0" rows in Σ so that $\overset{\circ}{\mathbf{U}} \in \mathbb{R}^{m \times n}, \; \mathbf{\Sigma} \in \mathbb{R}^{n \times n}, \; \text{and} \; \mathbf{V} \in \mathbb{R}^{n \times n}.$

Pseudoinverse

Consider the inverse mapping $oldsymbol{u}_i \mapsto rac{1}{\sigma_i} oldsymbol{v}_i$

$$\mathbf{A}^{\dagger} \boldsymbol{u}_i = \frac{1}{\sigma_i} \boldsymbol{v}_i \iff \mathbf{A}^{\dagger} \boldsymbol{u}_i = \frac{1}{\sigma_i} \boldsymbol{v}_i \boldsymbol{u}_i^{\top} \boldsymbol{u}_i$$

$$\mathbf{A}^\dagger = \sum_{i=1}^r \frac{1}{\sigma_i} \boldsymbol{v}_i \boldsymbol{u}_i^\top \iff \mathbf{A}^\dagger = \mathbf{V} \mathbf{\Sigma}^\dagger \mathbf{U}^\top$$

where $\Sigma^{\dagger} = \operatorname{diag}\left(\frac{1}{\sigma_1}, \ldots, \frac{1}{\sigma_n}, 0, \ldots, 0\right)$. $x = \mathbf{A}^{\dagger} \mathbf{b}$ solves LS.

Express **A** as the sum of rank-1 matrices:

$$\mathbf{A} = \sum_{i=1}^n \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^\top \approx \tilde{\mathbf{A}} = \sum_{i=1}^\nu \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^\top.$$

for the rank- ν approximation of **A**. Using the SVD:

$$ilde{\mathbf{A}} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{ op}$$

 $\mathbf{U} \in \mathbb{R}^{m \times \nu}$, $\mathbf{\Sigma} \in \mathbb{R}^{\nu \times \nu}$, and $\mathbf{V} \in \mathbb{R}^{n \times \nu}$. When $\nu \geq r$, $\mathbf{A} = \mathbf{A}$ as $\sigma_{i>r} = 0$.

General Vector Spaces

V is a vector space with vectors $\mathbf{v} \in V$ ${f S}$ is always diagonalisable and has if the following 10 axioms are satisfied real eigenvalues with real orthogonal for $\forall \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in V$ and $\forall k, m \in \mathbb{F}$, given eigenvectors: $\mathbf{S} = \mathbf{Q}\mathbf{D}\mathbf{Q}^{\mathsf{T}}$, where \mathbf{Q} is an addition and scalar multiplication operation.

For the addition operation:

- Closure: $u + v \in V$
- Commutativity: $\boldsymbol{u} + \boldsymbol{v} = \boldsymbol{v} + \boldsymbol{u} \in V$
- Associativity:

$$u + (v + w) = (u + v) + w$$

- Identity: $\exists \mathbf{0} \in V : \mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$
- Inverse: $\exists (-u) \in V : u + (-u) = 0$

For the scalar multiplication operation:

- Closure: $k\mathbf{u} \in V$
- Distributivity: $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$
- Distributivity: $(k+m) \mathbf{u} = k\mathbf{u} + m\mathbf{u}$
- Associativity: $k(m\mathbf{u}) = (km)\mathbf{u}$
- Identity: $\exists 1 \in \mathbb{F} : 1\mathbf{u} = \mathbf{u}$

Examples of Vector Spaces

multiplication.

The set of all functions $\mathcal{F}(\Omega): \Omega \to \mathbb{R}$ with addition and scalar multiplication defined pointwise.

Subspaces

The subset $W \subset V$ is itself a vector space if it is closed under addition and scalar Isomorphism (\cong) multiplication.

Examples of Subspaces

Subspaces of \mathbb{R}^n :

• Lines, planes and higher-dimensional analogues in \mathbb{R}^n passing through the origin.

Subspaces of \mathcal{M}_{nn} :

- The set of all symmetric $n \times n$. matrices, denoted $\mathcal{S}_n \subset \mathcal{M}_{nn}$.
- The set of all skew symmetric $n \times n$ matrices, denoted $\mathcal{K}_n \subset \mathcal{M}_{nn}$.

Subspaces of \mathcal{F} :

- The set of all polynomials of degree nor less, denoted $\mathscr{P}_{n}(\Omega) \subset \mathscr{F}(\Omega)$.
- The set of all $\mathit{continuous}\ \mathit{functions},\ \dim\left(\ker\left(T\right)\right)=\mathrm{nullity}\left(T\right).$ denoted $C(\Omega) \subset \mathcal{F}(\Omega)$.
- The set of all continuous functions Inner Product Spaces with continuous nth derivatives, denoted $C^{n}(\Omega) \subset C(\Omega)$.
- The set of all functions f defined on For $u, v, w \in V$ and $k \in \mathbb{R}$: [0,1] satisfying f(0) = f(1).

General Vector Space Terminology

Let $S = \{ \boldsymbol{v}_1, \ldots, \boldsymbol{v}_k \}$ and $c_1, \ldots, c_k \in \mathbb{F}$:

- The linear combination of S is a vector of the form $\mathbf{v} = c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k$.
- S is linearly independent iff $c_1 v_1 + \cdots +$ $c_k \mathbf{v}_k = \mathbf{0}$ has the trivial solution.
- $\operatorname{span}(S)$ is the set of all linear combinations of S.

S is a basis for a vector space V if

- S is linearly independent.
- $\operatorname{span}(S) = V.$

The number of basis vectors denotes the $\underline{\text{For }f,\;g\in C}\left(\left[a,b\right]\right)$: dimension of V.

C is infinite dimensional.

Examples of Standard Bases

$$\begin{array}{l} \bullet \quad \mathcal{M}_{22} \colon \\ \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \\ \bullet \quad \mathcal{S}_{22} \colon \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \\ \bullet \quad \mathcal{K}_{22} \colon \left\{ \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\} \\ \bullet \quad \mathcal{R}_{3} \colon \left\{ 1, \, x, \, x^{2}, \, x^{3} \right\} \end{array}$$

Linear Transformations

$$T: V \to W$$
 satisfying
$$T(k\mathbf{u}) = kT(\mathbf{u})$$

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$

Constructing $\mathbf{A} = (T)_{B' \cup B}$:

The set of all $m \times n$ matrices \mathcal{M}_{mn} Consider the map of $(\mathbf{v})_B = \mathbf{x}$ of $\mathbf{v} \in V$ Given $\mathbf{P}_{\mathcal{S}_n} = \operatorname{proj}_{\mathcal{S}_n}$ and $\mathbf{P}_{\mathcal{R}_n} = \operatorname{proj}_{\mathcal{R}_n}$ with matrix addition and scalar matrix to $(\mathbf{w})_{B'} = \mathbf{b}$ of $\mathbf{w} \in W$, where $B = \mathbf{P}_{\mathcal{S}} = \mathbf{I} - \mathbf{P}_{\mathcal{K}}$ $\{oldsymbol{v}_1,\,\ldots,\,oldsymbol{v}_n\} ext{ and } B' = \{oldsymbol{w}_1,\,\ldots,\,oldsymbol{w}_m\}.$ $T\left(oldsymbol{v}\right) = oldsymbol{w}$

$$\begin{aligned} \left[T\left(\boldsymbol{v}_{1}\right) & \cdots & T\left(\boldsymbol{v}_{n}\right)\right]\boldsymbol{x} = \mathbf{W}\boldsymbol{b} \\ \left[\left(T\left(\boldsymbol{v}_{1}\right)\right)_{B'} & \cdots & \left(T\left(\boldsymbol{v}_{n}\right)\right)_{B'}\right]\boldsymbol{x} = \boldsymbol{b} \\ \mathbf{A}\boldsymbol{x} = \boldsymbol{b} \end{aligned}$$

 $T:V\to W$ is an isomorphism between Vand W if there exists a bijection between the two vector spaces.

 $\forall V : \dim(V) = n : V \cong \mathbb{R}^n, \, \mathcal{M}_{mn} \cong$ \mathbb{R}^{mn} and $\mathscr{P}_n \cong \mathbb{R}^{n+1}$.

Fundamental Subspaces of T

- The set of all vectors in V that map to W is the **image** of T, denoted im (T).
- The set of all vectors in W that is mapped to by a vector in V is the ullet If $\operatorname{nullity}(\mathbf{A}) = 0$, $\mathbf{P} = \mathbf{Q}\mathbf{Q}^{\top}$ using range of T, denoted range (T).
- The set of all vectors in V that T maps to $\mathbf{0}_W$ is the **kernel** of T, denoted $\ker(T)$.

If finite, $\dim (\operatorname{range}(T)) = \operatorname{rank}(T)$ and

 $\operatorname{rank}(T) + \operatorname{nullity}(T) = \dim(V).$

$$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}.$$

- Symmetry: $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \langle \boldsymbol{v}, \boldsymbol{u} \rangle$
- Linearity:

$$\langle oldsymbol{u} + oldsymbol{v}, \ oldsymbol{w}
angle = \langle oldsymbol{u}, \ oldsymbol{w}
angle + \langle oldsymbol{v}, \ oldsymbol{w}
angle$$

- Linearity: $\langle k\boldsymbol{u}, \, \boldsymbol{v} \rangle = k \langle \boldsymbol{u}, \, \boldsymbol{v} \rangle$
- Positive semi-definitiveness:

$$\langle \boldsymbol{u}, \, \boldsymbol{u} \rangle \geq 0, \, \langle \boldsymbol{u}, \, \boldsymbol{u} \rangle = 0 \iff \boldsymbol{u} = \boldsymbol{0}$$

For $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n$:

- $oldsymbol{a} \langle oldsymbol{u}, \, oldsymbol{v}
 angle = oldsymbol{u} \cdot oldsymbol{v} = oldsymbol{u}^ op oldsymbol{v}.$
- $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \boldsymbol{u}^{\top} \mathbf{A} \boldsymbol{v}$ where **A** is SPD.

For $\mathbf{A}, \mathbf{B} \in \mathcal{M}_{mn}$:

• $\langle \mathbf{A}, \mathbf{B} \rangle = \operatorname{Tr}(\mathbf{A}^{\top}\mathbf{B}).$

- $\langle f, g \rangle = \int_a^b f(x) g(x) dx$.
- $\langle f, g \rangle = \int_a^b f(x) g(x) w(x) dx$.

where $w(x) > 0 : \forall x \in [a, b]$.

Norms

- $\|\boldsymbol{v}\| = \sqrt{\langle \boldsymbol{v}, \, \boldsymbol{v} \rangle}.$
- $\|v\| \ge 0$, and $\|v\| = 0 \iff v = 0$.
- $||kv|| = |k|||v|| : \forall k \in \mathbb{R}.$
- $\|u + v\| \le \|u\| + \|v\|$.

Examples:

- $\forall \mathbf{A} \in \mathcal{M}_{mn} : \|\mathbf{A}\| = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^2}$
- $\forall f \in C([a,b]) : ||f|| = \sqrt{\int_a^b f(x)^2 dx}.$

Orthogonality

$$\langle \boldsymbol{v}, \, \boldsymbol{v} \rangle = 0.$$

Orthogonal Complements of \mathcal{M}_n

Given
$$\mathbf{P}_{\mathcal{S}_n} = \operatorname{proj}_{\mathcal{S}_n}$$
 and $\mathbf{P}_{\mathcal{H}_n} = \operatorname{proj}_{\mathcal{H}_n}$

$$\mathbf{P}_{\mathcal{S}_n} = \mathbf{I} - \mathbf{P}_{\mathcal{H}_n}$$

$$\mathbf{S} = \mathbf{P}_{\mathcal{S}_n} \mathbf{M} = \mathrm{proj}_{\mathbf{P}_{\mathcal{S}_n}} \left(\mathbf{M} \right) = \frac{\mathbf{M} + \mathbf{M}^\top}{2}$$

$$\begin{split} \mathbf{K} &= \mathbf{P}_{\mathcal{K}_n} \mathbf{M} = \mathrm{proj}_{\mathbf{P}_{\mathcal{K}_n}} (\mathbf{M}) = \frac{\mathbf{M} - \mathbf{M}^\top}{2} \\ \mathbf{S} &\in \mathcal{S}_n, \, \mathbf{K} \in \mathcal{K}_n, \, \mathrm{and} \, \mathbf{S} + \mathbf{K} = \mathbf{M} \in \mathcal{M}_n. \end{split}$$

Theorems

- $\mathbf{A}^{\top}\mathbf{A}$ is always positive semi-definite, and $\mathcal{N}(\mathbf{A}^{\top}\mathbf{A}) = \mathcal{N}(\mathbf{A})$ so that $\operatorname{rank}(\mathbf{A}^{\top}\mathbf{A}) = \operatorname{rank}(\mathbf{A}).$ $\mathbf{A}^{\top}\mathbf{A}$ is positive definite and $\mathbf{A}^{\top}\mathbf{A}$ is invertible when nullity $(\mathbf{A}) = 0$.
- When **A** is square and invertible, $(\mathbf{A}^{\top}\mathbf{A})^{-1} = \mathbf{A}^{-1}\mathbf{A}^{-\top} \text{ and } \mathbf{P} = \mathbf{I}.$ $\mathbf{P}^2 = \mathbf{P} \wedge \mathbf{P}^{\top} = \mathbf{P} \iff \mathbf{P} = \operatorname{proj}_{\mathcal{C}(\mathbf{P})}.$
- $\mathbf{P}v = \mathbf{P}^2 \mathbf{v} \iff \lambda \mathbf{v} = \lambda^2 \mathbf{v} \text{ implies}$ $\lambda = 0, 1.$
- $\mathbf{A}^{\top}\mathbf{A}$ and $\mathbf{A}\mathbf{A}^{\top}$ share eigenvalues, $\mathbf{A}^{\mathsf{T}} \mathbf{A} \boldsymbol{v} = \lambda \boldsymbol{v}$

$$(\mathbf{A}\mathbf{A}^{\top})(\mathbf{A}\boldsymbol{v}) = \lambda(\mathbf{A}\boldsymbol{v}).$$

 $\mathbf{A}\mathbf{v} = \mathbf{0} \implies \lambda = 0$, else $\mathbf{w} = \mathbf{A}\mathbf{v}$ is an eigenvector of $\mathbf{A}\mathbf{A}^{\top}$.

• For symmetric $\mathbf{S} \in \mathbb{R}^{n \times n}$:

$$\mathbf{S} = \sum_{i=1}^n \lambda_i \boldsymbol{q}_i \boldsymbol{q}_i^\top = \sum_{i=1}^n \lambda_i \operatorname{proj}_{\boldsymbol{q}_i}$$

• For $\boldsymbol{w} = \mathbf{W} \in \mathbb{R}^{n \times 1}$:

$$\mathbf{W} = [\hat{w}] [\|w\|] [1]$$
 $\mathbf{W}^{\dagger} = \frac{\hat{w}^{\top}}{\|w\|}$

Identities

- $(\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top}$.
- $(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$ if \mathbf{A} , \mathbf{B} invertible.
- $(\mathbf{A}^{\top})^{-1} = (\mathbf{A}^{-1})^{\top}$ if **A** invertible:

$$\mathbf{A}^{ op} \left(\mathbf{A}^{-1}
ight)^{ op} = \left(\mathbf{A}^{-1} \mathbf{A}
ight)^{ op} = \mathbf{I}$$

$$\left(\mathbf{A}^{-1}\right)^{\top}\mathbf{A}^{\top} = \left(\mathbf{A}\mathbf{A}^{-1}\right)^{\top} = \mathbf{I}$$

• $\langle \mathbf{A} \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{A}^{\top} \mathbf{y} \rangle$:

$$\left(\mathbf{A}\boldsymbol{x}\right)^{\top}\boldsymbol{y} = \boldsymbol{x}^{\top}\left(\mathbf{A}^{\top}\boldsymbol{y}\right)$$

- If **A** is triangular, det (**A**) = $\prod_{i=1}^{n} a_{ii}$.
- For $\mathbf{A} \in \mathbb{R}^{n \times n}$:

$$\operatorname{Tr}\left(\mathbf{A}\right) = \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \lambda_{i}$$

$$\det\left(\mathbf{A}\right) = \prod_{i=1}^{n} \lambda_{i}$$

$$\det (\mathbf{A}^{\top} \mathbf{A}) = \det (\mathbf{A})^2 = \prod_{i=1}^n \sigma_i^2$$

• For $\mathbf{A} \in \mathbb{R}^{m \times n}$:

$$\begin{aligned} \operatorname{Tr}\left(\mathbf{A}^{\top}\mathbf{A}\right) &= \sum_{j=1}^{m} \sum_{i=1}^{n} a_{ij}^{2} \\ &= \sum_{i=1}^{n} \sigma_{i}^{2} \\ \det\left(\mathbf{A}^{\top}\mathbf{A}\right) &= \prod_{i=1}^{n} \sigma_{i}^{2} \end{aligned}$$