

Digital Logic and System Design

6. Combinational Logic

COL215, I Semester 2024-2025

Venue: LHC 408

'E' Slot: Tue, Wed, Fri 10:00-11:00

Instructor: Preeti Ranjan Panda

panda@cse.iitd.ac.in

www.cse.iitd.ac.in/~panda/

Dept. of Computer Science & Engg., IIT Delhi

Combinational Logic

- Output is function only of present values of inputs
- ...as opposed to Sequential Logic
 - where output could depend on previous values
- What netlists are NOT combinational?

Example combinational circuit

Representing Combinational Logic

- Representing multiple outputs in Truth Table?
- K-Map representation?

Tasks with Combinational Logic Circuits

- Analyse the behaviour of a logic circuit
- Synthesise a circuit for a given behaviour
 - Manually
 - Specify using Hardware Description Language (HDL)
- Study standard combinational circuits
 - Arithmetic operations (addition, multiplication,...)

Analysing a Combinational Circuit (Netlist)

- What Boolean function does a gate netlist implement?
- Follow the netlist from inputs to output
 - identify Boolean functions at intermediate stages

Synthesising a Combinational Circuit

- Capturing informal specification in precise language
- Identify input and output variables
- Represent the logic
 - Truth tables
 - Boolean expressions
- Simplify Boolean expressions
- Implement gate netlist
- Verify: simulation

Example Design: Gray Code Converter

Specification:
 Given a 3-bit Binary
 Code, convert to
 Gray Code

Binary Code Gray Code 0: 3: 4: 5: 6:

Example: Inputs and Outputs, Representation

Example: Boolean Simplification

Inputs	Outputs
abc	хyz
000	000
001	001
010	011
011	010
100	110
101	111
110	101
111	100

Gate Implementation

Designing a 1-bit Adder

• **Specification**: single-bit binary addition

- Inputs: x, y
- Outputs: sum (s), carry (c)
- Truth Table
- Boolean simplification

ху	c s
00	00
0 1	0 1
10	0 1
1 1	10

Adder: Simplification and Implementation

- Boolean simplification
- Gate implementation

4-bit Adder

- Specification: 4-bit binary addition
- Inputs: X₃₋₀, Y₃₋₀
- Outputs: sum (s₃₋₀), carry (c)
- Truth Table?
- Composing larger designs out of smaller ones

Identify repeating pattern

At each bit position i:

Inputs: x_i, y_i, c_i

Outputs: S_i , C_{i+1}

x _i y _i c _i	C _{i+1} S _i
000	0 0
001	0 1
010	0 1
011	1 0
100	0 1
101	1 0
110	1 0
111	1 1

Boolean Function for Full Adder

At each bit position i:

Inputs: a, b, c

Outputs: co, s

abc	Co	S
000	0	0
001	0	1
010	0	1
011	1	0
100	0	1
101	1	0
110	1	0
111	1	1

Full Adder

Sum:

$$s = ab'c' + a'b'c + a'bc' + abc$$

$$= a (bc + b'c') + a'(b'c + bc')$$

$$= a \oplus b \oplus c$$

Half Adder vs. Full Adder

Half Adder

Full Adder

$$s_i = x_i \oplus y_i \oplus c_i$$

$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

Ripple Carry Adder (RCA)

At each bit position i:

Inputs: x_i, y_i, c_i

Outputs: S_i, C_{i+1}

x _i y _i c _i	$C_{i+1} S_{i}$
000	0 0
001	0 1
010	0 1
011	1 0
100	0 1
101	1 0
110	1 0
111	1 1

Full Adder

Chain of Full Adders

Adder delay analysis

- How many gate levels for final output?
- Delay for n-bit RCA?
- What if Full Adder Sum and Carry delays were different?
 - e.g., Sum: 8 ns and Carry: 5 ns
- Can we make it faster?
 - Use **faster gates** on Carry propagation path
 - Partial computation ahead of time: Carry Lookahead

Carry In and Out in Full Adder

- Carry Generation: When do we generate a carry out irrespective of input carry?
 - carry_out = 1 irrespective of carry_in values
- Carry Propagation: When do we propagate an input carry to the output irrespective of input values?
 - carry = carry_in irrespective of x, y values

x _i y _i c _i	c _{i+}	1 S _i
000	0	0
001	0	1
010	0	1
011	1	0
100	0	1
101	1	0
110	1	0
111	1	1

Full Adder

$$G_i = x_i y_i$$

 $P_i = x_i \oplus y_i$

Using Propagate and Generate Values

- Sum and Carry_out can be derived from P_i and G_i values
- 1 logic level to generate P_i and G_i
 - treating AND and XOR as 1 gate level
- 1 logic level to generate Sum

$$s_{i} = x_{i} \oplus y_{i} \oplus c_{i}$$

$$c_{i+1} = x_{i}y_{i} + x_{i}c_{i} + y_{i}c_{i}$$

$$G_{i} = x_{i}y_{i}$$

$$P_{i} = x_{i} \oplus y_{i}$$

$$s_{i} = P_{i} \oplus c_{i}$$

$$c_{i+1} = G_{i} + P_{i}c_{i}$$
 (verify)

Carry Lookahead Logic

$$c_{i+1} = G_i + P_i c_i$$

$$\begin{aligned} &c_1 = G_0 + P_0 c_0 \\ &c_2 = G_1 + P_1 c_1 = G_1 + P_1 (G_0 + P_0 c_0) = G_1 + P_1 G_0 + P_1 P_0 c_0 \\ &c_3 = G_2 + P_2 c_2 = G_2 + P_2 (G_1 + P_1 G_0 + P_1 P_0 c_0) = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 c_0 \\ &c_4 = G_3 + P_3 c_3 = G_3 + P_3 (G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 c_0) \\ &= G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 c_0 \end{aligned}$$

- 2 logic levels to generate c₄ from c₀
- Approx: 5 i/p gate has same delay as 2 i/p gate

4-bit Carry Lookahead Adder (CLA)

$$G_i = x_i y_i$$
 $s_i = P_i \oplus c_i$
 $P_i = x_i \oplus y_i$ $c_{i+1} = G_i + P_i c_i$

$$c_{1} = G_{0} + P_{0} c_{0}$$

$$c_{2} = G_{1} + P_{1}G_{0} + P_{1}P_{0} c_{0}$$

$$c_{3} = G_{2} + P_{2}G_{1} + P_{2}P_{1}G_{0} + P_{2}P_{1}P_{0} c_{0}$$

$$c_{4} = G_{3} + P_{3}G_{2} + P_{3}P_{2}G_{1} + P_{3}P_{2}P_{1}G_{0} + P_{3}P_{2}P_{1}P_{0} c_{0}$$

- 1 logic level to generate all Pi and Gi
- 2 logic levels to generate c₄ from c₀
 - Approx: 5 i/p gate has same delay as 2 i/p gate
- 1 logic level to generate all sums s_i
- 4-bit Adder delay: 1+2+1 = 4 levels
 (C) P. R. Panda, IIT Delhi, 2024

4-bit CLA: Simplified Diagram

16-bit Adder from 4-bit CLA

How do we extend the structure?

CL block-level carry propagate/generate

$$g_{i} = x_{i} y_{i}$$

$$p_{i} = x_{i} \oplus y_{i}$$

$$s_{i} = p_{i} \oplus c_{i}$$

$$c_{i+1} = g_{i} + p_{i} c_{i}$$

16-bit Adder from 4-bit CLA

16-bit Adder from 4-bit CLA

16-bit Adder from 4-bit CLA: Delay Analysis

64-bit Adder from 16-bit CLAs

n-bit Subtraction

$$\cdot d = x - y$$

- $\bullet d = x + (-y)$
- -y: 2's complement of y
- -y: **y' + 1**
- y': inverter
- How do we add 1?

Programmable Adder/Subtractor

Adder

Subtractor

Very similar!

Can we combine into one structure?

Programmable Adder/Subtractor

M = 0: Add M = 1: Subtract

Programmable Adder/Subtractor

M = 0: Add M = 1: Subtract

$$M = 0$$
: $z = y$
 $M = 1$: $z = y'$
What function is $z (y, M)$?

у М	Z	
00	0	
0 1	1	$z = M \oplus y$
10	1	
11	0	

Binary Multiplier

1x1 Multiplier

Multiplication Algorithm

Multiplication Algorithm

Multiplier Logic

Multiplication Algorithm

Multiplier Logic

Multiplication Algorithm

4x3 Multiplier

Magnitude Comparator Logic

$$\mathbf{A} = \mathbf{A}_3 \mathbf{A}_2 \mathbf{A}_1 \mathbf{A}_0$$

$$B = B_3 B_2 B_1 B_0$$

$$x_i = A_i'B_i' + A_iB_i$$

$$A = B$$

$$x_3x_2x_1x_0$$

$$A_3B_3' + x_3A_2B_2' + x_3x_2A_1B_1' + x_3x_2x_1A_0B_0'$$

$$A_3'B_3 + x_3A_2'B_2 + x_3x_2A_1'B_1 + x_3x_2x_1A_0'B_0$$

Similarity in expressions for the 3 comparisons

Magnitude Comparator Implementation

Magnitude Comparator Implementation

Multiplexer: Implementing Conditionals

Selection Logic

MUX with wider data

Selection Logic

Function

How do we implement a 4-bit MUX?

$$x_0 = sa_0 + s'b_0$$

 $x_1 = sa_1 + s'b_1$
 $x_2 = sa_2 + s'b_2$
 $x_3 = sa_3 + s'b_3$

MUX with wider data

How do we implement a 4-bit MUX?

$$x_0 = sa_0 + s'b_0$$

 $x_1 = sa_1 + s'b_1$
 $x_2 = sa_2 + s'b_2$
 $x_3 = sa_3 + s'b_3$

MUX with multiple data (wider select)

How do we implement a **4-to-1 MUX**?

case 2: x = c; **break**;

default: x = d; break;

Function (C++)

case 0: x = a; break;

case 1: x = b; **break**;

switch (s) {

Select a, b, c, or d depending on value of s

 $x = s_1's_0'a + s_1s_0'b + s_1's_0c + s_1s_0d$

Implement ANY function with MUX

$$x = s_1's_0'a + s_1s_0'b + s_1's_0c + s_1s_0d$$

Can we implement ANY function of 2 variables with this structure?

Implement ANY function with MUX

Can we implement x = a' using MUX?

Implement with MUX:

$$x = ab' + a'b$$

= $a(b') + a'(b)$ Any $f(a,b,c,...)$ can be written as:
 $ag(b,c,...) + a'h(b,c,...)$

Implement ANY function with MUX

Implement with 4-to-1 MUX

```
x = ab' + bc + a'bc'
= a(b'+bc) + a'(bc+bc')
```


$$x = a(b'+bc) + a'(bc+bc')$$

= $a'b'0 + a'b(c+c') + ab'(1) + abc$

Equivalently, from Truth Table

What function is x of c for each ab value?

Tristate Buffer and High-Impedance

- High-impedance state
 - similar to open circuit
- Multiple outputs can be shorted if:
 - one is driving 0 or 1
 - others in high-impedance

Tristate Buffer

if
$$c = 1$$
, $x = a$
if $c = 0$, $x = high-impedance$

Implementing MUX with Tristate Buffers

- Complementary control inputs (c and c') to tristate buffers
- Safe to short outputs
- How do we implement tristate buffer?
- MUX implementation more efficient than NAND-NAND
- HDLs allow high-impedance state
 - VHDL: a <= '0', a <= 'Z', etc.

Tristate Buffers Useful in Communication

- Multiple Masters connecting to the same BUS
 - to connect to Slave (e.g., memory)
- One master is granted the bus for communication
 - arbitration logic enables only one out of c₀, c₁, c₂ at any time
 - others are disabled

Decoders

- n-bit number can encode 2ⁿ elements
- Decoder decodes a binary number
 - n-bit input
 - Upto 2ⁿ -bit output
 - Some encodings may be unused
- Each input combination asserts a unique output

Decoder Implementation

Each output is a **minterm**

Truth Table?

abc	$D_0D_1D_2D_3D_4D_5D_6D_7$	
000	10000000	
001	0100000	
010	00100000	
011	00010000	
100	00001000	
101	00000100	
110	0000010	
111	0000001	

Implement ANY function with Decoder

Encoders

- 2ⁿ input bits
- n output bits
- Encodes input bits into binary number
- Inverse of Decoder

Encoders

Truth Table

$D_0D_1D_2D_3D_4D_5D_6D_7$	хуг
1000000	000
0100000	001
00100000	010
00010000	011
00001000	100
00000100	101
0000010	110
0000001	111

$$x = ?$$

 $y = ?$
 $z = ?$
 $x = D_4 + D_5 + D_6 + D_7$
 $y = D_2 + D_3 + D_6 + D_7$
 $z = D_1 + D_3 + D_5 + D_7$

Limitations

Exactly 1 input active at a time More not OK, Less not OK

Priority Encoder

- Priority specified upon contention
- E.g., higher numbered input wins
- Valid bit (v): at least one input is 1

$$\mathbf{v} = D_0 + D_1 + D_2 + D_3$$

 $\mathbf{x} = D_2 + D_3$
 $\mathbf{y} = D_3 + D_1 D_2'$

Inferring Combinational Logic from Language Specification

Conditions for combinational logic

