CS 2740 Knowledge representation Lecture 20

Bayesian belief networks: Inference

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

CS 2750 Machine Learning

Bayesian belief network.

- 1. Directed acyclic graph
 - **Nodes** = random variables
 - Links = missing links encode independences.

Bayesian belief network

2. Local conditional distributions

• relate variables and their parents

Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional distributions (obtained via the chain rule):

$$\mathbf{P}(X_{1}, X_{2}, ..., X_{n}) = \prod_{i=1,..n} \mathbf{P}(X_{i} \mid pa(X_{i}))$$

Example:

Assume the following assignment of values to random variables B=T, E=T, A=T, J=T, M=F

Then its probability is:

$$P(B=T,E=T,A=T,J=T,M=F) = P(B=T)P(E=T)P(A=T|B=T,E=T)P(J=T|A=T)P(M=F|A=T)$$

Parameter complexity problem

• In the BBN the **full joint distribution** is defined as:

$$\mathbf{P}(X_1, X_2, ..., X_n) = \prod_{i} \mathbf{P}(X_i \mid pa(X_i))$$

· What did we save?

Alarm example: 5 binary (True, False) variables

of parameters of the full joint:

$$2^5 = 32$$

One parameter is for free:

$$2^{5} - 1 = 31$$

of parameters of the BBN: ?

CS 2750 Machine Learning

Parameter complexity problem

• In the BBN the **full joint distribution** is defined as:

$$\mathbf{P}\left(X_{1},X_{2},..,X_{n}\right)=\prod\;\mathbf{P}\left(X_{i}\mid pa\left(X_{i}\right)\right)$$

• What did we save?

Alarm example: 5 binary (True, False) variables

of parameters of the full joint:

$$2^5 = 32$$

One parameter is for free:

$$2^{5} - 1 = 31$$

of parameters of the BBN:

$$2^3 + 2(2^2) + 2(2) = 20$$

One parameter in every conditional is for free:

9

Parameter complexity problem

• In the BBN the **full joint distribution** is defined as:

$$\mathbf{P}\left(X_{1},X_{2},..,X_{n}\right)=\prod_{i}\mathbf{P}\left(X_{i}\mid pa\left(X_{i}\right)\right)$$

What did we save?

Alarm example: 5 binary (True, False) variables

of parameters of the full joint:

$$2^5 = 32$$

One parameter is for free:

$$2^{5} - 1 = 31$$

of parameters of the BBN:

$$2^3 + 2(2^2) + 2(2) = 20$$

One parameter in every conditional is for free:

$$2^2 + 2(2) + 2(1) = 10$$

CS 2750 Machine Learning

Inference in Bayesian networks

- BBN models compactly the full joint distribution by taking advantage of existing independences between variables
 - Smaller number of parameters
- But we are interested in solving various **inference tasks**:
 - Diagnostic task. (from effect to cause)

$$\mathbf{P}(Burglary \mid JohnCalls = T)$$

- Prediction task. (from cause to effect)

$$\mathbf{P}(JohnCalls \mid Burglary = T)$$

Other probabilistic queries (queries on joint distributions).

• Question: Can we take advantage of independences to construct special algorithms and speedup the inference?

Inference in Bayesian network

- Bad news:
 - Exact inference problem in BBNs is NP-hard (Cooper)
 - Approximate inference is NP-hard (Dagum, Luby)
- But very often we can achieve significant improvements
- Assume our Alarm network

• Assume we want to compute: P(J = T)

CS 2750 Machine Learning

Inference in Bayesian networks

Computing: P(J = T)

Approach 1. Blind approach.

- Sum out all un-instantiated variables from the full joint,
- express the joint distribution as a product of conditionals

$$P(J=T)=$$

$$= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(B = b, E = e, A = a, J = T, M = m)$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{a \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

Computational cost:

Number of additions: ? Number of products: ?

Inference in Bayesian networks

Computing: P(J = T)

Approach 1. Blind approach.

- Sum out all un-instantiated variables from the full joint,
- express the joint distribution as a product of conditionals

$$P(J = T) =$$

$$= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(B = b, E = e, A = a, J = T, M = m)$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{a \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

Computational cost:

Number of additions: 15 Number of products: ?

CS 2750 Machine Learning

Inference in Bayesian networks

Computing: P(J = T)

Approach 1. Blind approach.

- Sum out all un-instantiated variables from the full joint,
- express the joint distribution as a product of conditionals

$$P(J=T)=$$

$$= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(B = b, E = e, A = a, J = T, M = m)$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{a \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

Computational cost:

Number of additions: 15

Number of products: 16*4=64

Inference in Bayesian networks

Approach 2. Interleave sums and products

 Combines sums and product in a smart way (multiplications by constants can be taken out of the sum)

$$P(J=T)=$$

$$= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(B = b) [\sum_{e \in T, F} P(A = a \mid B = b, E = e) P(E = e)]$$

$$= \sum_{a \in T, F} P(J = T \mid A = a) \left[\sum_{m \in T, F} P(M = m \mid A = a) \right] \left[\sum_{b \in T, F} P(B = b) \left[\sum_{e \in T, F} P(A = a \mid B = b, E = e) P(E = e) \right] \right]$$

Computational cost:

Number of additions: 1+2*[1+1+2*1]=? Number of products: 2*[2+2*(1+2*1)]=?

CS 2750 Machine Learning

Inference in Bayesian networks

Approach 2. Interleave sums and products

• Combines sums and product in a smart way (multiplications by constants can be taken out of the sum)

$$P(J=T)=$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(B = b) [\sum_{e \in T, F} P(A = a \mid B = b, E = e) P(E = e)]$$

$$= \sum_{a \in T, F} P(J = T \mid A = a) \left[\sum_{m \in T, F} P(M = m \mid A = a) \right] \left[\sum_{b \in T, F} P(B = b) \left[\sum_{e \in T, F} P(A = a \mid B = b, E = e) P(E = e) \right] \right]$$

Computational cost:

Number of additions: 1+2*[1+1+2*1]=9Number of products: 2*[2+2*(1+2*1)]=?

Inference in Bayesian networks

Approach 2. Interleave sums and products

 Combines sums and product in a smart way (multiplications by constants can be taken out of the sum)

$$P(J=T)=$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(B = b) [\sum_{e \in T, F} P(A = a \mid B = b, E = e) P(E = e)]$$

$$= \sum_{a \in T, F} P(J = T \mid A = a) [\sum_{m \in T, F} P(M = m \mid A = a)] [\sum_{b \in T, F} P(B = b) [\sum_{e \in T, F} P(A = a \mid B = b, E = e) P(E = e)]]$$

Computational cost:

Number of additions: 1+2*[1+1+2*1]=9Number of products: 2*[2+2*(1+2*1)]=16

CS 2750 Machine Learning

Inference in Bayesian networks

- The smart interleaving of sums and products can help us to speed up the computation of joint probability queries
- What if we want to compute: P(B = T, J = T)

$$P(B = T, J = T) = \sum_{a \in T, F} P(J = T | A = a) \left[\sum_{m \in T, F} P(M = m | A = a) \right] P(B = T) \left[\sum_{e \in T, F} P(A = a | B = T, E = e) P(E = e) \right]$$

$$P(J = T) =$$

$$= \sum_{a \in T, F} P(J = T | A = a) \left[\sum_{m \in T, F} P(M = m | A = a) \right] \sum_{b \in T, F} P(B = b) \left[\sum_{e \in T, F} P(A = a | B = b, E = e) P(E = e) \right]$$

- A lot of shared computation
 - Smart cashing of results can save the time for more queries

Inference in Bayesian network

- Exact inference algorithms:
 - Variable elimination
 - Recursive decomposition (Cooper, Darwiche)
 - Belief propagation algorithm (Pearl)
 - Arc reversal (Olmsted, Schachter)
- Approximate inference algorithms:
 - Monte Carlo methods:
 - Forward sampling, Likelihood sampling
 - Variational methods

CS 2750 Machine Learning

Variable elimination

- Variable elimination:
 - Interleave sum and products one variable at the time during the inference
 - Typically relies on a special structure (called joint tree) that groups together multiple variables
 - E.g. Query P(J=T) requires to eliminate A,B,E,M and this can be done in different order

$$P(J = T) = \sum_{b \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

Assume the elimination order: M, E, B,A to calculate P(J = T)

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

$$= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} P(J = T \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e) \left[\sum_{m \in T, F} P(M = m \mid A = a) \right]$$

$$= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} P(J = T \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e) \quad 1$$

$$= \sum_{x \in B} \sum_{x \in B} \sum_{x \in B} P(J = T \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

$$= \sum_{a \in T, F} \sum_{b \in T, F} P(J = T \mid A = a) P(B = b) \left[\sum_{e \in T, F} P(A = a \mid B = b, E = e) P(E = e) \right]$$

$$= \sum_{T} \sum_{i=1}^{n} P(J = T \mid A = a) P(B = b) \tau_1(A = a, B = b)$$

$$= \sum_{a \in T, F} \sum_{b \in T, F} P(J = T \mid A = a) P(B = b) \tau_1(A = a, B = b)$$

$$= \sum_{a \in T, F} P(J = T \mid A = a) \left[\sum_{e \in T, F} P(B = b) \tau_1(A = a, B = b) \right]$$

$$= \sum_{a \in T, F} P(J = T \mid A = a) \quad \tau_2(A = a)$$

Factors

- **Factor:** is a function that maps value assignments for a subset of random variables to \Re (reals)
- The scope of the factor:
 - a set of variables defining the factor
- Example:
 - Assume discrete random variables x (with values a1,a2, a3) and y (with values b1 and b2)
 - Factor:

$$\phi(x,y)$$

- Scope of the factor:

 $\{x, y\}$

al	b1	0.5
al	b2	0.2
a2	b1	0.1
a2	b2	0.3
a3	b1	0.2
a3	b2	0.4

Factor Product

$$\phi_1(x,y)\phi_2(y,z) = \tau(x,y,z)$$

al	bl	0.5
al	b2	0.2
a2	bl	0.1
a2	b2	0.3
a3	bl	0.2
a3	b2	0.4

b1	cl	0.1
bl	c2	0.6
b2	cl	0.3
b2	c2	0.4

al	bl	cl	0.5*0.1
al	bl	c2	0.5*0.6
al	b2	cl	0.2*0.3
al	b2	c2	0.2*0.4
a2	ы	cl	0.1*0.1
a2	bl	c2	0.1*0.6
a2	b2	cl	0.3*0.3
a2	b2	c2	0.3*0.4
a3	bl	cl	0.2*0.1
a3	ы	c2	0.2*0.6
a3	b2	cl	0.4*0.3
a3	b2	c2	0.4*0.4

CS 2750 Machine Learning

Factor Product

$$\phi_1(x, y)\phi_2(y, z) = \tau(x, y, z)$$

al	bl	0.5
al	b2	0.2
a2	bl	0.1
a2	b2	0.3
a3	bl	0.2
a3	b2	0.4

al	bl	cl	0.5*0.1
al	bl	c2	0.5*0.6
al	b2	cl	0.2*0.3
al	b2	c2	0.2*0.4
a2	ы	cl	0.1*0.1
a2	ы	c2	0.1*0.6
a2	b2	cl	0.3*0.3
a2	b2	c2	0.3*0.4
a3	bl	cl	0.2*0.1
a3	ы	c2	0.2*0.6
a3	b2	cl	0.4*0.3
a3	b2	c2	0.4*0.4

Factor Sum (marginalization)

a1 b1 c1 0.2 a1 b1 c2 0.35 a1 b2 c1 0.4 a1 b2 c2 0.15 a2 b1 c1 0.5 a2 b1 c2 0.1 a2 b2 c1 0.3 a2 b2 c2 0.2 a3 b1 c1 0.25 a3 b1 c2 0.45 a3 b2 c1 0.15 a3 b2 c2 0.25				
a1 b2 c1 0.4 a1 b2 c2 0.15 a2 b1 c1 0.5 a2 b1 c2 0.1 a2 b2 c1 0.3 a2 b2 c2 0.2 a3 b1 c1 0.25 a3 b1 c2 0.45 a3 b2 c1 0.15	al	bl	cl	0.2
a1 b2 c2 0.15 a2 b1 c1 0.5 a2 b1 c2 0.1 a2 b2 c1 0.3 a2 b2 c2 0.2 a3 b1 c1 0.25 a3 b1 c2 0.45 a3 b2 c1 0.15	al	bI	c2	0.35
a2 b1 c1 0.5 a2 b1 c2 0.1 a2 b2 c1 0.3 a2 b2 c2 0.2 a3 b1 c1 0.25 a3 b1 c2 0.45 a3 b2 c1 0.15	al	b2	cl	0.4
a2 b1 c2 0.1 a2 b2 c1 0.3 a2 b2 c2 0.2 a3 b1 c1 0.25 a3 b1 c2 0.45 a3 b2 c1 0.15	al	b2	c2	0.15
a2 b2 c1 0.3 a2 b2 c2 0.2 a3 b1 c1 0.25 a3 b1 c2 0.45 a3 b2 c1 0.15	a2	bl	cl	0.5
a2 b2 c2 0.2 a3 b1 c1 0.25 a3 b1 c2 0.45 a3 b2 c1 0.15	a2	bl	c2	0.1
a3 b1 c1 0.25 a3 b1 c2 0.45 a3 b2 c1 0.15	a2	b2	cl	0.3
a3 b1 c2 0.45 a3 b2 c1 0.15	a2	b2	c2	0.2
a3 b2 c1 0.15	a3	bl	cl	0.25
	a3	bl	c2	0.45
a3 b2 c2 0.25	a3	b2	cl	0.15
	a3	b2	c2	0.25

$$\sum_{y} \phi(x, y, z) = \tau(x, z)$$

CS 2750 Machine Learning

Factor Sum (marginalization)

al	bl	cl	0.2
al	bl	c2	0.35
al	b2	cl	0.4
al	b2	c2	0.15
a2	bl	cl	0.5
a2	bl	c2	0.1
a2	b2	cl	0.3
a2	b2	c2	0.2
a3	bl	cl	0.25
a3	bl	c2	0.45
a3	b2	cl	0.15
a3	b2	c2	0.25

$$\sum_{y} \phi(x, y, z) = \tau(x, z)$$

The order in which variables are eliminated may effect the efficiency of the variable elimination process

Assume the following BBN and calculation of P(Job):

CS 2750 Machine Learning

Variable elimination

Calculations performed in terms of factors:

Trace 1:

	Step	Var	Factors Used	New Factor	
-	1	С	$\phi_c(C), \phi_D(D,C)$	$\tau_1(D)$	
	2	D	$\phi_G(G,I,D), \tau_1(D)$	$ au_2(G,I)$	C
	3	I	$\phi_I(I), \phi_S(S, I), \tau_2(G, I)$	$ au_3(G,S)$	
	4	Н	$\phi_H(H,G,J)$	$ au_4(G,J)$	G
	5	G	$\tau_4(G,J), \tau_3(G,S), \phi_L(L,G)$	$ au_5(J,L,S)$	
	6	S	$ au_5(J,L,S), \phi_J(J,L,S)$	$ au_6(J,L)$	
	7	L	$ au_6(J,L)$	$ au_7(J)$	

CS 2750 Machine Learning

Variable elimination

Trace 1:

Step	Var	Factors Used	New Factor
1	С	$\phi_c(C), \phi_D(D,C)$	$\tau_1(D)$
2	D	$\phi_G(G,I,D), \tau_1(D)$	$ au_2(G,I)$
3	I	$\phi_I(I), \phi_S(S, I), \tau_2(G, I)$	$ au_3(G,S)$
4	Н	$\phi_H(H,G,J)$	$ au_4(G,J)$
5	G	$\tau_4(G,J), \tau_3(G,S), \phi_L(L,G)$	$ au_5(J,L,S)$
6	S	$\tau_5(J,L,S), \phi_J(J,L,S)$	$\tau_6(J,L)$
7	L	$ au_6(J,L)$	$ au_7(J)$

Complexity: 4 variables – 1 summed away

Trace 2:

Step	Var	Factors Used	New Factor	
1	G	$\phi_G(G, I, D), \phi_L(L, G)\phi_H(H, G, J)$	$\tau_1(I,D,L,J,H)$	
2	I	$\phi_I(I), \phi_S(S, I)\tau_1(I, D, L, J, H)$	$\tau_2(D,L,S,J,H)$	
3	S	$\phi_J(J,L,S), \tau_2(D,L,S,J,H)$	$ au_3(D,L,J,H)$	
4	L	$ au_3(D,L,J,H)$	$ au_4(D,J,H)$	G
5	Н	$ au_4(D,J,H)$	$ au_5(D,J)$	
6	С	$ au_5(D,J), \phi_D(D,C)$	$ au_6(D,J)$	H
7	D	$ au_6(D,J)$	$ au_7(J)$	

CS 2750 Machine Learning

Variable elimination

Trace 2:

Step	Var	Factors Used	New Factor	
1	G	$\phi_G(G, I, D), \phi_L(L, G)\phi_H(H, G, J)$	$\tau_1(I,D,L,J,H)$	
2	I	$\phi_I(I), \phi_S(S, I)\tau_1(I, D, L, J, H)$	$ au_2(D,L,S,J,H)$	
3	S	$\phi_J(J,L,S), \tau_2(D,L,S,J,H)$	$\tau_3(D,L,J,H)$	D
4	L	$ au_3(D,L,J,H)$	$\tau_4(D,J,H)$	G
5	Н	$ au_4(D,J,H)$	$ au_5(D,J)$	
6	С	$ au_5(D,J), \phi_D(D,C)$	$\tau_6(D,J)$	H
7	D	$ au_6(D,J)$	$ au_7(J)$	

Complexity: 6 variables used -1 summed out