Assignment1

CS20Btech11035 -NYALAPOGULA MANASWINI

Download python code from

https://github.com/N-Manaswini23/assignment1/blob/main/assignment1%20(2).py

QUESTION 3.3:

Suppose X has a binomial distribution . Show that X=3 is the most likely outcome.(Hint: P(X=3) is the maximum among all $P(x_i)$, $(x_i=0,1,2,3,4,5,6)$. Assume $p=\frac{1}{2}$

SOLUTION

:

Let X be a binomial random variable which has probability $p = \frac{1}{2}$

$$p(X) = \frac{1}{2} \tag{0.0.1}$$

Given number of times event(X) is performed(n) = 6

$$n(x) = 6 (0.0.2)$$

Given probability of event(p) = $\frac{1}{2}$ Probability that event(X) does not occur is $(1 - p) = 1 - \frac{1}{2} = \frac{1}{2}$

$$1 - p(x) = \frac{1}{2} \tag{0.0.3}$$

We know that binomial probability

$$\Pr(X = k) = {}^{n}C_{k}p^{k}(1-p)^{n-k}$$
 (0.0.4)

For Pr(X = k) to be most likely outcome(highest probability), Pr(X = k) should be maximum ,where $k = \{0, 1, 2, 3, 4, 5, 6\}$

To find maximum of Pr(X = k), let us apply logarithm on both sides for equation (0.0.4) and then differentiate it with respect to p.

$$\log \Pr(X = k) = \log^{n} C_{k} \times p^{k} \times (1 - p)^{n - k} \quad (0.0.5)$$

$$= \log^{n} C_{k} + k \times \log p$$

$$+ (n - k) \times \log(1 - p) \quad (0.0.6)$$

Differentaiate eq (0.0.6) with respect to p

$$\frac{\mathrm{d}\log\Pr\left(X=k\right)}{\mathrm{d}p} = \frac{\mathrm{d}\log^{n}C_{k}}{\mathrm{d}p} + k \times \frac{\mathrm{d}\log p}{\mathrm{d}p} \quad (0.0.7)$$

$$+ (n-k) \times \frac{\mathrm{d}\log(1-p)}{\mathrm{d}p}$$

$$= 0 + \frac{k}{p} - \frac{n-k}{1-p} \quad (0.0.8)$$

To find maximum ,substitute $\frac{d \log Pr(X=k)}{dp} = 0$ in (0.0.8)

$$\frac{\mathbf{k}}{\mathbf{p}} = \frac{\mathbf{n} - k}{1 - p} \tag{0.0.9}$$

$$\frac{n-k}{k} = \frac{1-p}{p}$$
 (0.0.10)

$$\frac{n}{k} - 1 = \frac{1}{p} - 1 \tag{0.0.11}$$

$$\frac{n}{k} = \frac{1}{p} \tag{0.0.12}$$

$$k = n \times p \tag{0.0.13}$$

substituting n = 6, $p = 1 - p = \frac{1}{2}$ in (0.0.13) We get $k = 6 \times \frac{1}{2} = 3$ Pr (X = 3) is maximum, \therefore Pr (X = 3) is most likely outcome.

Hence proved.

P.T.O

