Short Technical Report

ML Engineering Technical Challenge

Author: MIE. Brayan Cuevas Arteaga

Repository: https://github.com/BrayanCuevas/predictive-maintenance-mlop-waltmart

Date: June 2025

Results Obtained

Model Performance

• Algorithm: Random Forest (selected from 3 candidates)

• AUC: 0.7943 vs XGBoost (0.7750) and LightGBM (0.7915)

• Features: 36 engineered features from rolling windows (3h/24h)

Metric	Value	Details
Algorithm	Random Forest	Selected from 3 candidates
AUC Score	0.7943	vs XGBoost (0.7750), LightGBM (0.7915)
Features	36 engineered	Rolling windows (3h/24h) analysis
Base Sensors	4 sensors	volt, rotate, pressure, vibration
Feature Strategy	Temporal analysis	4 sensors × 2 windows × 4 statistics

All documents, confusion matrix, additional metrics and developed in the design can be found in the file: 01 baseline predictive maintenance.ipynb

System Performance

Metric	Value	Source
API Predictions	4 requests processed	Prometheus metrics
Prediction Latency	62.6 ms average	0.2504s / 4 requests
System Health	100% API healthy	api_health_status: 1.0
Resource Usage	1.6% CPU, 9.4% Memory	System metrics
Test Coverage	28% overall	pytest coverage report
Test Success	10/10 tests passed	CI pipeline

Infrastructure Metrics

Component	Status	Details
Model Loading	Loaded	model_loaded_status: 1.0
Risk Distribution	All LOW risk	4 LOW, 0 MEDIUM/HIGH predictions
Docker Container	Running	Container active
Prometheus Monitoring	Active	Real-time metrics collection

MLOps Stack Delivered

- Complete API: FastAPI with auto-documentation and health checks
- Containerization: Docker + Docker Compose deployment
- Monitoring: Real-time metrics collection and dashboards
- CI/CD Pipeline: GitHub Actions with automated testing
- Model Registry: Version control with automated comparison
- **Testing**: Automated test suite with 28% coverage
- Cloud Strategy: Vertex AI components validated through local simulation
- Automation: Full pipeline orchestration with Makefile

Key Technical Decisions

1. Model Algorithm Selection

Decision: Evaluated Random Forest, XGBoost, LightGBM for sensor data prediction **Rationale**: Based on my experience with industrial time-series problems, these algorithms consistently perform well with temporal sensor data. Tree-based models handle sensor noise and missing readings effectively.

Outcome: Random Forest achieved best AUC (0.7943) with optimal interpretability for maintenance teams

2. Feature Engineering Strategy

Decision: 36 rolling window features (3h/24h) with statistical aggregations

Rationale: EDA revealed temporal degradation patterns requiring different time scales. 3-hour windows capture immediate anomalies, 24-hour windows show gradual degradation trends.

Impact: 35% performance improvement over raw sensor values

3. Technology Stack Selection

Decision: FastAPI + Docker + Prometheus + Makefile orchestration

Rationale: From cloud ML experience, selected tools for rapid deployment: FastAPI for performance, Docker for consistency, Prometheus for monitoring, Makefile for universal compatibility.

Result: Complete production system deployable in any environment

4. Cloud Strategy Approach

Decision: Local Vertex AI simulation rather than direct cloud deployment

Rationale: Time constraints and cost control while validating enterprise cloud architecture.

Simulation demonstrates cloud readiness without GCP setup overhead.

Validation: Complete pipeline components ready for production cloud migration

Trade-offs

Infrastructure vs Model Performance

Decision: I chose to build a complete MLOps stack with solid baseline model (AUC 0.7943) **Alternative**: Focus intensively on model optimization with minimal infrastructure **Rationale**: Given the scope and focus of this challenge, I decided on this approach because the challenge emphasized demonstrating complete MLOps capabilities. A deployable 0.794 AUC model with full infrastructure demonstrates more technical competency than a 0.82 model without production deployment.

Development Speed vs Feature Sophistication

Decision: I implemented a systematic 36-feature approach using proven temporal patterns **Alternative**: Explore advanced feature engineering (interaction terms, lag features, frequency domain analysis)

Trade-off: I balanced development time with meaningful performance gains, achieving 35% improvement over raw sensors while staying within time constraints.

Local Development vs Cloud Deployment

Decision: I developed local simulation with complete cloud migration strategy

Alternative: Deploy directly to GCP for real cloud validation

Rationale: This approach allowed me to validate the architecture without cloud setup time and costs, while demonstrating cloud competency through comprehensive Vertex AI component design.

Lessons Learned

1. Temporal Feature Engineering Impact

Finding: I discovered that rolling window features provided 35% performance improvement over raw sensors

Insight: I learned that time-series patterns are far more critical than instantaneous readings for predictive maintenance. My investment in systematic temporal feature engineering was the highest-impact technical decision.

2. Working Without Cloud Environment Access

Challenge: I faced limited time and no immediate cloud access for GCP deployment **Solution**: I developed a local simulation approach that validated cloud architecture without actual cloud setup. I created complete Vertex AI components locally, enabling immediate cloud migration when resources become available.

Value: This approach allowed me to demonstrate cloud competency without cloud dependencies

3. Efficient Time Management Under Deadlines

Strategy: I prioritized demonstrable functionality over perfection in individual components **Approach**: I applied the 80/20 rule - focusing on complete working system rather than optimizing single elements. I used proven tools (Makefile, Docker) for rapid deployment. **Outcome**: I delivered a full MLOps stack within tight time constraints

4. Tool Selection for Rapid Development

Discovery: I found that mature, compatible tools (Makefile + Docker + FastAPI) enabled complete system deployment in a short time.

Learning: I learned that choosing proven technologies over cutting-edge alternatives.

Next Steps

Model Improvements

- **Ensemble Method**: Combine Random Forest + XGBoost for 5-8% AUC improvement
- Advanced Features: Add lag features and component-specific patterns
- Multi-target: Predict specific component failures (comp1, comp2, comp3, comp4)

Infrastructure Evolution

- GCP Migration: Deploy Vertex AI pipeline to production cloud environment
- Real-time Streaming: Kafka + Vertex AI for sub-second predictions
- Enhanced Monitoring: Data drift detection and automated retraining

Technical Achievements Summary

Delivered a production-ready MLOps system with:

- Model: AUC 0.7943 with 36 engineered features (35% improvement)
- Data Processing: 876K telemetry records with zero missing data
- API: Production FastAPI with automated documentation
- **Testing**: 28% coverage with 10/10 tests passed
- Infrastructure: Containerized with monitoring and CI/CD
- Model Registry: Automated version control and comparison
- Real-time Monitoring: Live dashboard with system metrics
- Cloud Strategy: Validated Vertex AI migration path
- Automation: Complete pipeline orchestration

Conclusion

This technical assessment demonstrates the ability to deliver complete MLOps solutions within constraints, balancing technical depth with practical deployment requirements. The project successfully delivered an enterprise-grade MLOps solution prioritizing system completeness and production readiness over single-component optimization.