Let E be a vector space over \mathbb{C} .

Definition 0.1 (Hermitian) A map $A \in \text{End E}$ is Hermitian iff A^* , *i.e.*

$$\langle Ax, y \rangle = \langle x, Ay \rangle$$

Theorem 0.2 (finite spectral theorem) Suppose $E \cong \mathbb{C}^n$ is hermitian. Then

- E has eigenvectors that are an orthonormal basis of E.
- All eigenvalues of E are real.

Proof. By the fundamental theorem of algebra, the characterestic polynomial

$$|A - xI|$$

has a root. Hence A has an eigenvalue-eigenvector pair λ , e. Hence

$$\lambda \langle e, e \rangle = \langle e, Ae \rangle = \langle Ae, e \rangle = \overline{\lambda} \langle e, e \rangle$$

thus $\lambda = \overline{\lambda}$. Ergo, $\lambda \in \mathbb{R}$.

Now consider $A|e^{\perp}$. Suppose $\langle x,e\rangle=0$. Then

$$0 = \lambda \langle x, e \rangle = \langle x, Ae \rangle = \langle Ax, e \rangle$$

Hence $A|e^{\perp} \in End(e^{\perp})$. Induction on dimension proves the theorem.

1

Let • denote pointwise multiplication.

Corollary 0.3 (diagonalization) If $A \in End E$, then

$$A = P^{-1}DP$$

 $||A|| = ||P^{-1}|| ||D|| ||P|| = ||D||$

where P is orthogonal and $D = v \bullet _$ for some real $v \in P(E)$.

Lemma 0.4 (hermitian extension) Suppose E is a subspace of E' with $A \in End E$ is hermitian. There is some hermitian $A' \in End E'$ such that A'|E = A and ||A'|| = ||A||.

Proof. Let $\{e_i\}$ be an orthonormal basis of E. Suppose span $e_j=\mathsf{E}^\perp.$ Then set

$$A'e_i := Ae_i$$
 $A'e_i := ||A|||e_i$

Definition 0.5 (standard part of operator)

$$\operatorname{st}: \operatorname{End} \mathsf{E} \to \mathsf{E}$$

 $(\operatorname{st} \mathsf{T})(\mathsf{x}) := \operatorname{st}(\mathsf{T}(*\mathsf{x}))$

Theorem o.6 (infinite spectral theorem) If $A \in \text{End } E$, then

$$(E, A) \cong (\tilde{E}, \nu \bullet _)$$

with

$$||A|| = ||v \bullet _||$$

where $v \in \tilde{E}$ and \bullet is pointwise multiplication.

Proof. Consider the nonstandard enlargement of functional analysis. Consider the hyperfinite-dimensional subspace F such that

$$\underset{^*\mathbb{C}}{\text{span}}\, {}^{\sigma}E\subseteq F\subseteq {}^*E$$

By hermitian extension, there is some $B\in End\ F$ such $B|^{\sigma}E={}^*A|^{\sigma}E$. By diagonalization, there is some unitary $P:F\stackrel{\sim}{\longrightarrow} \tilde{F}$ and real $\nu\in \tilde{F}$ such that

$$B = P^{-1}(\nu \bullet _)P \tag{1}$$

By construction, $B({}^{\sigma}E) \subseteq {}^{\sigma}E$. Permuting rows of the matrices $v \bullet _$ and P if necessary, assume (without loss of generality) that $P({}^{\sigma}E) \subseteq {}^{\sigma}E$.

Then

$$(st P)^{-1} = st(P^{-1})$$

similarly,

$$(st(v \bullet _))(x) = st(v \bullet ^*x) = st v \bullet x = (st v \bullet _)x$$

By construction, st B = A, hence eq. (1) becomes

$$A = st(P)^{-1}(stv \bullet)st(P)$$

consequently

$$\operatorname{st} P : (E, A) \xrightarrow{\sim} \left((\operatorname{st} P)(E), \operatorname{st} \nu \bullet_{-} \right)$$