Lecture 8

- Recursive Function
 - > A function that calls itself
 - The ability to invoke itself enables a recursive function to be repeated with different parameter values

- Recursion can be an alternative solution to iteration
- In many instances, the use of recursion enables a very natural, simple solution to a problem that otherwise would be very difficult to solve

Recursion is an important and powerful tool in problem solving and programming

- Problems that lend themselves to a recursive solution have the following characteristics:
 - One or more simple cases of the problem have a straightforward solution
 - > The other cases can be redefined in terms of problems that are closer to the simple case
 - ➤ By applying this redefinition process every time the recursive function is called, eventually the problem is reduced entirely to simple cases, which are relatively easy to solve

General form of a recursive algorithm

```
if this is a simple case
solve it
else
redefine the problem using recursion
```

- A problem of size n can be split into
 - > a sub-problem of size 1
 - □ Can be solved easily
 - \triangleright a sub-problem of size n-1
 - □ Can be split further into
 - ✓ a sub-problem of size 1
 - » Can be solved easily
 - ✓ a sub-problem of size n-2
 - » Can be split further into ...
- At the end, we solve easily n problem of size 1

- Example: Multiply 6 by 3, assuming we know how do add and we know that x * 1 = x
 - > Split the problem:
 - 1. Multiply 6 by 2
 - 2. Add 6 to the result
 - > Split 1 further:
 - 1. Multiply 6 by 2
 - 1. Multiply 6 by 1
 - 2. Add 6 to the result of problem 1.1
 - 2. Add 6 to the result

Implementation

```
int multiply (int m, int n)
   int ans;
   if (n == 1)
        ans = m:
   else
        ans = m + multiply (m, n - 1);
   return (ans);
```

- To solve a problem recursively
 - First, trust the function to solve a simpler version of the problem
 - Then, build the solution to the whole problem on the result from the simpler version

Tracing a Recursive Function

- Hand tracing an algorithm's execution provides valuable insight into how that algorithm works
- To understand recursion and debug a function

- Many mathematical functions are defined recursively
 - Example: Factorial of n (n!) is
 - **□**0! = 1
 - $\square n! = n \times (n-1)!$, for n > 0

■ Factorial - implementation is straightforward

```
int factorial (int n)
{
   int ans;

if (n == 0)
   ans = 1;
   else
   ans = n * factorial (n - 1);

   return (ans);
}
```

- The Fibonacci numbers
 - > Sequence of numbers that have many uses
- The Fibonacci sequence is
 - >0, 1, 1, 2, 3, 5, 8, ...
 - > The sequence is produced as follows
 - \Box Fibonacci₀ = 0
 - □Fibonacci₁ = 1
 - \square Fibonacci_{n=1} = Fibonacci_{n=1} + Fibonacci_{n=2}, for n > 1

■ Fibonacci - implementation is straightforward

```
int fibonacci (int n)
{
   int ans;

if (n == 0 || n == 1)
    ans = n;
   else
    ans = fibonacci (n - 1) + fibonacci (n - 2);

   return (ans);
}
```

- Recursion is also useful for processing varying-length lists
 - >Strings
 - >Linked-lists
 - >Etc.

Another Example

- Example: Function to count the number of times a particular character ch appears in a string str
 - > Split the problem:
 - 1. Check the rest of the string
 - 2. Update the counter if the first character is x
 - > Split 1 further:
 - 1. Check the rest of the string
 - 1. Check the rest of the string
 - 2. Update the counter if the second character is x
 - 2. Update the counter if the first character is x

Another Example

Implementation

```
int
count (char ch, char *str)
   if (*str == '\0')
        return 0:
   if (ch == *str)
        return (1 + count (ch, str + 1));
   else
        return (count (ch, str + 1));
```