Proyecto

Samuel Moreno Vahos, Juan Nicolás Sepúlveda

29 de noviembre de 2023

1. Explicación del código:

1.1. Inputs

%% Input

```
L = input("\nLongitud de la superficie de difusión: ");
t_max = input("\nTiempo total de la simulación: ");
n_x = input("\nNúmero de nodos en el espacio: ");
n_t = input("\nNúmero de nodos en el tiempo: ");
alpha = input("\nConstante del material: ");
T_1j = input("\nTemperatura del contorno: ");
T_i1 = input("\nTemperatura inicial: ");

d_x = L/(n_x - 1); % Se calcula delta de x
d_t = t_max/(n_t - 1); % Se calcula delta de t
```

Figura 1: Código para recoger inputs

1.2. Estado estable

Se halló la matriz del sistema de forma analítica y se define según sus coeficientes. También se crea el vector para el lado derecho de la igualdad y se hallan las temperaturas según este sistema.

%% Estado estable

```
fprintf("\n\n######## Estado estable #######\n\n");
% Coeficientes para la matriz B
a = -(2 + d_x^2*alpha^2);
% Se crea la matriz B de la forma:
% a 1
        0
           0
% 1
        1
           0
    а
              0
% 0
    1
        а
           1
% 0 0 1
          a 1
% 0 0 0
          2 a
B_1 = [zeros(1, n_x - 1); eye(n_x - 2, n_x - 1)];
B 2 = a*eye(n x - 1);
B_3 = [zeros(n_x - 1, 1) eye(n_x - 1, n_x - 2)];
B = B_1 + B_2 + B_3;
B(n_x - 1, n_x - 2) = 2;
% Se crea el vector b de la forma:
% -T_{(1,j)}
%
     0
%
     0
     0
%
     0
sol_B = zeros(n_x - 1, 1);
sol B(1) = -T 1j;
% Se halla la solución para graficar
T B = resolver(B, sol B, "escalado");
T_B = [T_1j; T_B];
disp(T_B');
figure(2)
p = plot(0:d_x:L, T_B);
p.Color = "#4DBEEE";
p.LineWidth = 2;
```

Figura 2: Código para calcular el vector solución del estado estable

1.3. Estado transitorio

Se halló la matriz del sistema de forma analítica y se define según sus coeficientes. Primero se crea el vector solución para el tiempo inicial.

%% Estado transitorio

```
fprintf("\n\n######## Estado transitorio ########\n\n");
% Coeficientes para la matriz A y el vector b
a = dt;
b = -(2*d t + d x^2*d t*alpha^2 + d x^2);
c = d t;
d = -d x^2;
% Se crea la matriz A de la forma:
% b c 0 0 0
% a b c 0 0
% 0 a b c 0
% 0 0 a b c
% 0 0 0 a+c b
A_1 = [zeros(1, n_x - 1); a*eye(n_x - 2, n_x - 1)];
A 2 = b*eye(n x - 1);
A_3 = [zeros(n_x - 1, 1) c*eye(n_x - 1, n_x - 2)];
A = A 1 + A 2 + A 3;
A(n_x - 1, n_x - 2) = A(n_x - 1, n_x - 2) + c;
% Se crea la solución inicial (t = 0) para graficar
temp = T_i1*ones(n_x - 1, 1); % Temperatura inicial
T A = [T 1j; temp]; % Temperatura de contorno
fprintf("t = 0.00:\n");
disp(T A');
figure(1)
p = plot(0:d_x:L, T_A);
p.LineWidth = 2;
hold on
```

Luego se factoriza la matriz para reutilizarla en las siguientes iteraciones. De nuevo, se creó el vector para el lado derecho de la igualdad y se hallan las temperaturas en cada nodo de tiempo. Estas se usan para redefinir el vector b.

```
[L_A, U_A] = factor_LU(A); % Se factoriza la matriz A
% Se crea el vector b de la forma:
% d*T_{(2,j-1)} - a*T_{(1,j)}
        d*T_{(3,j-1)}
%
        d*T_{(4,j-1)}
%
        d*T_{(5,j-1)}
        d*T (6,j-1)
%
sol_A = d*T_i1*ones(n_x - 1, 1);
sol A(1) = sol A(1) - a*T 1j;
for i = 2:n_t
    % Se halla la nueva solución
    temp = solve_LU(L_A, U_A, sol_A);
    T_A = [T_1j; temp];
    fprintf("\nt = %.2f:\n", d_t*(i - 1));
    disp(T_A');
    p = plot(0:d_x:L, T_A);
    p.LineWidth = 2;
    % Se actualiza el vector b para usar en la siguiente iteración
    sol A = d*T A;
    sol_A(1) = sol_A(1) - a*T_1j;
end
hold off
```

Figura 3: Código para calcular los vectores solución para el estado transitorio

2. Valores ingresados:

Los valores que se ingresaron para probar el código fueron:

- Longitud de la superficie de difusión: 1 metro
- Tiempo total de la simulación: 2 segundos
- Número de nodos en el espacio: 11 nodos
- Número de nodos en el tiempo: 9 nodos
- Constante del material: 0.2
- Temperatura del contorno: 70°C
- Temperatura del ambiente o inicial: 20°C

```
>> proyecto
Longitud de la superficie de difusión:
1
Tiempo total de la simulación:
2
Número de nodos en el espacio:
11
Número de nodos en el tiempo:
9
Constante del material:
0.2
Temperatura del contorno:
70
Temperatura inicial:
```

Figura 4: Valores ingresados

3. Resultados y gráficas obtenidas

3.1. Resultados para el estado estable

Vector Solución:

```
70.0000 69.7377 69.5032 69.2966 69.1177 68.9664 68.8427 68.7466 68.6779 68.6367 68.6230
```

Figura 5: Estado estable (resultados)

Gráfica:

Figura 6: Estado estable (gráfica)

3.2. Resultados para el estado transitorio

Vectores Solución:

t = 0.00: 70 20) 20	20 20	20 20	0 20	20 20	20				
t = 0.25: 70.0000	61.2336	54.1410	48.4357	43.8872	40.3117	37.5649	35.5357	34.1421	33.3278	33.0600
t = 0.50: 70.0000	66.6357	63.1636	59.7939	56.6742	53.9067	51.5616	49.6871	48.3173	47.4782	47.1915
t = 0.75: 70.0000	68.1735	66.3013	64.4422	62.6600	61.0175	59.5731	58.3793	57.4815	56.9184	56.7222
t = 1.00: 70.0000	68.9233	67.8311	66.7523	65.7183	64.7616	63.9148	63.2096	62.6750	62.3374	62.2190
t = 1.25: 70.0000	69.3203	68.6410	67.9780	67.3480	66.7688	66.2584	65.8343	65.5133	65.3106	65.2395
t = 1.50: 70.0000	69.5338	69.0768	68.6377	68.2260	67.8514	67.5241	67.2540	67.0507	66.9228	66.8781
t = 1.75: 70.0000	69.6491	69.3121	68.9939	68.7000	68.4361	68.2079	68.0213	67.8818	67.7945	67.7641
t = 2.00:	69.7114	69.4392	69.1863	68 9561	68 7519	68.5774	68.4359	68.3309	68.2656	68.2430

Figura 7: Estado transitorio (resultados)

Gráfica:

Figura 8: Estado transitorio (gráfica)