Tutorial 12: Probability and Statistics (MAL403/IC105)

Indian Institute of Technology Bhilai

- 1. Let X_1, X_2, \ldots, X_n be a random sample from a Pareto population with density $f_X(x) = \frac{\beta \alpha^{\beta}}{x^{\beta+1}}, x > \alpha, \alpha > 0, \beta > 2$. Find method of moment estimator of α and β .
- 2. Let X_1, X_2, \ldots, X_n be a random sample from a $U(-\theta, \theta)$ population. Find the MME of θ .
- 3. Let X_1, X_2, \ldots, X_n be a random sample from an $Exp(\mu, \sigma)$ population. Find the method of moment estimators (MMEs) of μ and σ .
- 4. Let X_1, X_2, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$.
 - (a) Find MLE of μ when σ is known.
 - (b) Find MLE of μ when σ is known with $\mu \geq \mu_0$.
 - (c) Find MLE of μ when σ is known with $\mu \leq \mu_0$.
 - (d) Find MLE of μ when σ is known with $a \leq \mu \leq b$.
- 5. Let X_1, X_2, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$. Find MLE of σ^2 when μ is known.
- 6. Let X_1, X_2, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$. Find MLE and MME of μ and σ^2
- 7. Let $X_1, X_2, ..., X_n$ be a random sample from Bin(m, p) population with m known, 0 . Find the MLE of <math>p(1-p).
- 8. Let X_1, X_2, \ldots, X_n be a random sample from a population with following uniform distributions (a) $U(0,\theta)$ (b) $U(0,2\theta)$ (c) $U(\theta-1,\theta+1)$ (d) $U(\theta,\theta+1)$. Find the MLE of θ for each case.
- 9. Let $X_1, X_2, ..., X_n$ be a random sample from a uniform $U(-\theta, 2\theta)$ population. Find an unbiased estimator of θ .
- 10. Let $X_1, X_2, ..., X_n$ be a random sample from a normal $N(\mu, \sigma^2)$ population. Find an unbiased estimator of $\frac{\mu}{\sigma}$ and $\mu + b\sigma$, where b is a real constant.
- 11. Find a 90% confidence interval for the mean of a normal distribution with $\sigma = 3$, given the sample (3.3, -0.3, -0.6, -0.9). What would be the confidence interval if σ were unknown?
- 12. In pouring glass for use in automobile windshields uniformity of thickness is desirable to prevent distortion. If a random sample of 100 wind shields yields a sample standard deviation of 0.01 inch, construct a 95% confidence interval on the standard deviation in thickness.
- 13. Independent random samples of sizes 36 and 49 are taken from two normal populations have sample mean 5 and 3.5 respectively. The population standard deviations are 1.2 and 1.8 respectively. Based on these samples find a 90% confidence interval for the difference in the means of two populations.