Leçon 1: introduction

Pourquoi des modèles de séquence?

x: "Harry Potter and Hermione Granger invented a new spell."

y: [1, 1, 0, 1, 1, 0, 0, 0, 0]

$$y^{<1>}$$
 $y^{<2>}$ $y^{<3>}$... $y^{}$... $y^{<9>}$

 $X^{(i) < t>}$ observation de la séquence t du $i^{\grave{\mathrm{e}}me}$ exemple.

 $y^{(i) < t>}$ target de la séquence t du i^{eme} exemple.

 $T_x^{(i)}$ est la longueur de la séquence d'observations.

 $T_y^{(i)}$ est la longueur de la séquence des valeurs cibles.

Pourquoi pas un réseau dense?

Problèmes:

- Les entrées et les sorties peuvent être de longueurs différentes dans différents exemples.
- Ne partage pas les caractéristiques apprises entre les différentes positions de la séquence.

Leçon 2 : Le recurrent Neural Network (RNN)

Recurrent Neural Networks

 $lci T_x = T_y$

Leçon 2 : Le recurrent Neural Network (RNN)

Forward propagation

Here $T_x = T_y$

$$a^{< t>} = g(W_{aa}a^{< t-1>} + W_{ax}x^{< t>} + b_a)$$

 W_a =[W_{aa} , W_{ax}]

$$a^{} = g(W_a[a^{}, x^{}] + b_a)$$

$$\hat{y}^{< t>} = g(W_{ya}a^{< t>} + b_y)$$

$$\hat{y}^{< t>} = g(W_y a^{< t>} + b_y)$$

$$[W_{aa}, W_{ax}]$$
 $\begin{bmatrix} a^{< t-1>} \\ x^{< t>} \end{bmatrix} = W_{aa} a^{< t-1>} + W_{ax} x^{< t>}$

Fonction de coût

$$\mathcal{L}^{<1>} \quad \mathcal{L}^{<2>} \quad \mathcal{L}^{<3>} \qquad \qquad \mathcal{L}^{} \qquad \qquad \mathcal{L}^{}} \qquad \longrightarrow \qquad \mathcal{L}(\hat{Y}, Y)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \qquad$$

$$\mathcal{L}^{< t>}(\hat{y}^{< t>}, y^{< t>}) = -y^{< t>}\log(\hat{y}^{< t>}) - (1-y^{< t>})\log((1-\hat{y}^{< t>})$$

$$\mathcal{L}(\hat{y}, y) = \sum_{t=1}^{T_y} \mathcal{L}^{}(\hat{y}^{}, y^{})$$

Backpropagation

Leçon 3 : Les différentes architectures

Many to many

Many to many

Encodeur

One to many

One to many

Leçon 4: Bidirectional RNN (BRNN)

De l'information manquantes

He said, "Teddy Roosevelt was a great President."

He said, "Teddy bears are on sale!"

Bidirectional RNN (BRNN)

$$\hat{y}^{< t>} = g(w_y[a_1^{< t>}, a_2^{< t>}] + b_y)$$

Leçon 4: Deep RNN

Deep RNN

couche

Leçon 5 : Problème de mémoire

Le problème du RN classique

L'influence des premiers termes

I like to study machine learning

Leçon 7: Le Gate Recurrent Unit (GRU)

Recurrent Neural Network

Gate Recurrent Unit (GRU) (simplified)

Gate Recurrent Unit (GRU)

c = unité de mémoire

$$c^{< t>} = a^{< t>}$$

$$\tilde{c}^{< t>} = \tanh(w_c[\Gamma_r * c^{< t-1>}, X^{< t>}] + b_c$$

$$\Gamma_u = \sigma(w_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(w_r[c^{< t-1>}, x^{< t>}] + b_r)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$$

Leçon 7: Le Gate Recurrent Unit (GRU)

Recurrent Neural Network

Gate Recurrent Unit and Long Short Term Memory

GRU

$$\tilde{c}^{} = \tanh(w_c[\Gamma_r * c^{}, X^{}] + b_c$$

$$\tilde{c}^{} = \tanh(w_c[a^{}, X^{}] + b_c$$

$$\Gamma_u = \sigma(w_u[c^{}, x^{}] + b_u)$$

$$\Gamma_r = \sigma(w_r[c^{}, x^{}] + b_r)$$

$$\Gamma_f = \sigma(w_f[c^{}, x^{}] + b_f)$$

$$\Gamma_c^{} = \Gamma_u * \tilde{c}^{} + (1 - \Gamma_u) * c^{}$$

$$\Gamma_c^{} = \Gamma_u * \tilde{c}^{} + \Gamma_f * c^{}$$

$$\sigma^{} = \Gamma_u * \tilde{c}^{} + \Gamma_f * c^{}$$

$$\sigma^{} = \Gamma_u * \tilde{c}^{} + \Gamma_f * c^{}$$

$$\sigma^{} = \Gamma_u * \tilde{c}^{} + \Gamma_f * c^{}$$

Long Short Term Memory (LSTM)

