

BUNDESREPUBLIK DEUTSCHLAND

PATENT- UND **MARKENAMT**

® Offenlegungsschrift _® DE 199 05 071 A 1

(5) Int. CI.⁷: G 01 D 5/16 G 08 C 19/02

(1) Aktenzeichen:

199 05 071.6

② Anmeldetag:

8. 2.1999

(3) Offenlegungstag:

10. 8. 2000

(71) Anmelder:

Siemens AG, 80333 München, DE

② Erfinder:

Pramanik, Robin, Dipl.-Ing., 76135 Karlsruhe, DE

56) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

JP Patent Abstracts of Japan: 07198413 A;

10030939 A;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- Meßumformer sowie Verfahren zur Diagnose der Versorgung eines Meßumformers
- **(57)** Die Erfindung betrifft einen Meßumformer sowie ein Verfahren zur Diagnose der Versorgung eines Meßumformers, der zur Versorgung mit der zum Betrieb erforderlichen Energie und zur Übertragung eines eine Meßgröße darstellenden Stromsignals an zumindest eine Zweidrahtleitung (2) anschließbar ist. Im Meßumformer wird die elektrische Spannung an den Anschlußklemmen (6, 7), die für die Zweidrahtleitung zur Versorgung des Meßumformers vorgesehen sind, erfaßt und in Abhängigkeit des Spannungswerts oder in Abhängigkeit einer Widerstandszunahme ein Signal zur Anzeige der Versorgungsqualität erzeugt.

Beschreibung

Die Erfindung betrifft einen Meßumformer nach dem Oberbegriff des Anspruchs 1 sowie ein Verfahren zur Diagnose der Versorgung eines Meßumformers nach dem Oberbegriff des Anspruchs 6.

Aus der EP 0 244 808 A1 ist bereits ein Meßumformer bekannt, der durch eine Zweidrahtleitung mit einem Auswertegerät verbunden ist. Über die Zweidrahtleitung wird einerseits die für den Betrieb des Meßumformers erforderli- 10 che Gleichstromenergie vom Auswertegerät zum Meßumformer und andererseits das die Meßgröße darstellende Meßwertsignal vom Meßumformer zum Auswertegerät übertragen. Der Meßumformer ist mit der Zweidrahtleitung über eine Meßumformerschnittstelle verbunden, welche die 15 vom Meßumformer benötigte Gleichstromenergie aus der Zweidrahtleitung entnimmt und ein die Meßgröße darstellendes Stromsignal in der Zweidrahtleitung einstellt. Das Auswertegerät ist mit der Zweidrahtleitung über eine Auswerteschnittstelle verbunden, die zum Anlegen der Versor- 20 gungsgleichspannung an die Zweidrahtleitung und zum Empfang des über die Zweidrahtleitung übertragenen Meßwertsignals ausgebildet ist. Das Auswertegerät hat somit auch die Funktion eines Speisegeräts. Zusätzlich ist in Auswertegerät und Meßumformer jeweils eine Kommunikati- 25 onsschnittstelle vorgesehen, die eine bidirektionale digitale Datenübertragung über die Zweidrahtleitung ermöglicht.

Die Spannung, die an den Anschlußklemmen des Meßumformers zur Verfügung steht, ist gegenüber der Ausgangsspannung des Speisegeräts um den Spannungsabfall 30 der Zuleitungen reduziert. Bei einem Einsatz in explosionsgefährdeten Bereichen mit der Schutzart "Eigensicherheit" ist zudem ein Strombegrenzungswiderstand im Speisegerät vorgesehen, um den Kurzschlußstrom zu begrenzen. Befindet sich die Anordnung in rauher Umgebung, beispielsweise 35 in der Nähe eines chemischen Prozesses mit aggressiven Stoffen, so führt insbesondere Korrosion an den Anschlußklemmen des Meßumformers zu einer schleichenden Zunahme des Kontaktwiderstandes. Aufgrund dieser Widerstandserhöhung kann die Versorgungsspannung am Meß- 40 umformer unter einen zulässigen Minimalwert sinken, unter welchem der Meßumformer nicht mehr korrekt arbeitet oder sogar völlig ausfällt. Zur Vermeidung einer derartigen Störung ist es in prozeßtechnischen Anlagen erforderlich, in festgelegten Wartungszyklen die Anschlußklemmen zu prüfen und zu untersuchen, ob sich der Widerstand an den Klemmen in einer kritischen Weise verändert hat. Diese Überprüfung kann nur bei abgeschalteter Anlage erfolgen und ist mit großem Aufwand verbunden. Eine weitere Ursache für Probleme kann eine gestörte Spannungsversorgung 50 sein, so daß bereits auf der Zweidrahtleitung keine ausreichende Versorgungsspannung zur Verfügung gestellt wird.

Der Erfindung liegt die Aufgabe zugrunde, einen Meßumformer zu schaffen sowie ein Verfahren zur Diagnose der Versorgung eines Meßumformers zu finden, durch welche 55 der Wartungsaufwand in einer prozeßtechnischen Anlage vermindert wird.

Zur Lösung dieser Aufgabe weist der neue Meßumformer der eingangs genannten Art die im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmale auf. Zur Durchführung des neuen Verfahrens zur Diagnose der Versorgung eines Meßumformers werden die im kennzeichnenden Teil des Anspruchs 6 genannten Verfahrensschritte ausgeführt. In den Unteransprüchen sind vorteilhafte Weiterbildungen der Erfindung beschrieben.

Die Erfindung hat den Vorteil, daß eine unzuverlässige Spannungsversorgung, verursacht beispielsweise durch Defekte im Speisegerät oder durch Korrosion der Anschlußklemmen, erkannt wird und zur Diagnose- und Wartungsanforderung angezeigt werden kann. Der Betreiber der Anlage kann so Informationen über die Qualität der Versorgung der Meßumformer sammeln, da die gemessene Spannung die Versorgung direkt am Meßumformer überwacht. Eine Verningerung der Versorgungsspannung kann so bereits festgestellt werden, bevor sich ein kritischer Zustand einstellt.

Die Mittel, welche zur Erfassung der elektrischen Spannung an den Klemmen des Meßumformers und zur Erzeugung eines Signals zur Anzeige der Versorgungsqualität in Abhängigkeit des Spannungswerts vorgesehen sind, können derart ausgebildet werden, daß zu einem ersten Zeitpunkt ein erster vorbestimmter Wert des Stromsignals eingestellt, ein zugehöriger Wert der elektrischen Spannung an den Anschlußklemmen der Zweidrahtleitung erfaßt und abgespeichert wird, daß zu einem zweiten, von dem ersten abweichenden Zeitpunkt der erste vorbestimmte Wert des Stromsignals eingestellt und ein zugehöriger Wert der elektrischen Spannung erfaßt wird und daß durch Vergleich der zum ersten und zum zweiten Zeitpunkt erfaßten Werte der elektrischen Spannung ein Signal zur Anzeige eines Erwartungswerts erzeugt wird, wann die Versorgungsqualität eine Schwelle unterschreiten wird. Anhand des Erwartungswerts ist insbesondere bei zyklischen Wartungsarbeiten eine bedarssgerechte Wartung möglich. Fällt das erwartete Unterschreiten der Schwelle nicht in den auf den jeweiligen Wartungszyklus folgenden Betriebszeitraum, kann mit der Wartung des Meßumformers bis zum nächsten Wartungszyklus gewartet werden. Zudem wird eine Trendaussage erhalten. anhand welcher die Geschwindigkeit der Qualitätsminderung beurteilt werden kann.

Zudem können die Mittel vorteilhaft derart ausgebildet werden, daß im wesentlichen zu einem ersten Zeitpunkt nacheinander ein erster Wert und ein zweiter, vom ersten abweichender Wert des Stromsignals eingestellt, zugehörige Werte der elektrischen Spannung erfaßt und abgespeichert werden, daß ein erster Wert des ohmschen Widerstands in den Versorgungsleitungen anhand des Verhältnisses von den Differenzen der Spannungswerte zu den Differenzen der Stromwerte, die zum ersten Zeitpunkt abgespeichert wurden, ermittelt wird, daß zu einem zweiten, vom ersten abweichenden Zeitpunkt ein dritter Wert des Stromsignals eingestellt und der zugehörige Wert der elektrischen Spannung erfaßt wird, daß anhand der zum ersten und zum zweiten Zeitpunkt erfaßten Werte ein zweiter Wert des ohmschen Widerstands ermittelt wird und daß in Abhängigkeit der Differenz der beiden Werte des ohmschen Widerstands ein Signal zur Anzeige der Versorgungsqualität erzeugt wird. In vorteilhafter Weise wird dabei direkt die Widerstandserhöhung in den Versorgungsleitungen, die insbesondere durch Korrosion der Anschlußklemmen verursacht wird, erfaßt. Eine Wartung kann beispielsweise angefordert werden, wenn der Klemmenwiderstand einen vorbestimmten Wert übersteigt oder wenn durch eine Trendaussage, die anhand der Geschwindigkeit der Widerstandszunahme getroffen werden kann, eine Störung im nächsten Betriebszeitraum zwischen zwei Wartungszyklen nicht mehr ausgeschlossen werden kann.

Die erstmaligen Spannungsmessungen während der Inbetriebnahme des Meßumformers vorzunehmen, hat den Vorteil, daß Änderungen ermittelt werden können, die sich während des Betriebs gegenüber dem Anfangszustand des Meßumformers ergeben haben.

Der Meßumformer ist in vorteilhafter Weise ohne Anpassungsprobleme einsetzbar, wenn eine weitverbreitete, standardisierte 4- bis 20-mA-Schnittstelle zum Anschluß an die Zweidrahtleitung vorgesehen ist.

Anhand der Zeichnung, in der ein Ausführungsbeispiel

der Erfindung dargestellt ist, werden im folgenden die Erfindung sowie Ausgestaltungen und Vorteile näher erläutert.

Ein Meßumformer 1 ist über eine Zweidrahtleitung 2 mit einem Speisegerät 3 verhunden. Das elektrische Verhalten des Speisegeräts 3 kann durch eine Serienschaltung einer Gleichspannungsquelle mit der Gleichspannung U0 und eines Innenwiderstands Rv nachgebildet werden. Weitere Schaltungsteile, die zur Kommunikation oder für eine Weiterverarbeitung der Meßumformersignale im Speisegerät 3 angeordnet sind, wurden der Übersichtlichkeit wegen nicht 10 dargestellt. Die Zweidrahtleitung 2 ist mit Klemmen 4 und 5 an das Speisegerät 3, mit Klemmen 6 und 7 an den Meßumformer 1 angeschlossen. Ein Widerstand Rk bildet den ohmschen Widerstand der Zweidrahtleitung 2 und ein Widerstand Rx den ohmschen Widerstand an den Klemmen 4... 7 nach. Im Meßumformer 1 wird ein Strom I auf der Zweidrahtleitung 2 im wesentlichen über einen Transistor T, eine Schaltung 8 zur Generierung der Versorgungsspannung des Meßumformers 1 und einen Meßwiderstand Rs geführt. Durch Abgriff einer Spannung Ui am Meßwiderstand Rs 20 wird der Strom I in der Zweidrahtleitung 2 erfaßt und als Istwert an eine Schaltung 9 zur Stromregelung gegeben. Die Schaltung 9 dient zur Einstellung des Stroms I auf einen Sollwert Is, der von einem Mikroprozessor 10 vorgegeben wird. Ein Ausgangssignal 11 der Schaltung 9 ist zur Stromeinstellung auf den Basisanschluß des Tranistors T geführt. Durch den Transistor T wird der Strom I somit auf einen Wert eingestellt, der von dem Mikroprozessor 10 festgesetzt wird. Über einen Spannungsteiler, der aus Widerständen Ra und Rb besteht, wird eine elektrische Spannung U ermittelt, die bei Vernachlässigung des geringen Spannungsabfalls am Meßwiderstand Rs der Spannung zwischen den Anschlußklemmen 6 und 7 des Meßumformers 1 entspricht. Zur Messung der Spannung U wird die am Widerstand Rb abfallende Spannung über einen Multiplexer 12 auf einen Analogein- 35 gang eines A/D-Wandlers 13 gelegt, dessen digitaler Ausgabewert durch den Mikroprozessor 10 ausgelesen werden kann. Zusätzlich zu dem bei Mikroprozessoren üblicherweise vorhandenen Programm- und Datenspeicher ist für den Mikroprozessor 10 ein nichtflüchtiger Speicher 14 vor- 40 gesehen, in welchen Betriebsparameter eingeschrieben werden können. Der Speicher 14 kann beispielsweise durch ein EEPROM realisiert werden. Ein Sensor 15 dient zur Wandlung der durch den Meßumformer zu erfassenden physikalischen Größe in ein elektrisches Spannungssignal, das eben- 45 Gleichung bestimmt werden zu: falls über den Multiplexer 12, gesteuert durch den Mikroprozessor 10, auf den A/D-Wandler 13 zur Digitalisierung des Meßwerts geleitet werden kann. Der Mikroprozessor 10 stellt mit einem Analogausgang den Sollwert Is für die Schaltung 9 derart ein, daß der Strom I in der Zweidrahtlei- 50 tung 2 der mit dem Sensor 15 erfaßten Meßgröße entspricht. Zur Darstellung der Meßgröße wird der 4- bis 20-mA-Standard verwendet. Die Schaltung 9 zur Stromregelung ist weiterhin mit einer Kommunikationseinrichtung 16 verbunden. Die Kommunikationseinrichtung 16 dient zum Senden und 55 Empfangen eines frequenzmodulierten Signals über die Zweidrahtleitung 2 und ermöglicht so eine bidirektionale digitale Übertragung von Daten zwischen Speisegerät 3 und Meßumformer 1. Die digitale Datenübertragung genügt der HART®-Spezifikation. Es können beispielsweise Diagnose- 60 daten, Betriebsparameter und Meßergebnisse digital zwischen Meßumformer 1 und Speisegerät 3 ausgetauscht werden. Weiterhin ist der Meßumformer mit einem Tastenfeld 17 und einem Display 18 zur manuellen Bedienung vor Ort versehen, die durch den Mikroprozessor 10 angesteuert wer- 65

Aus diesem Ersatzschaltbild ergibt sich für die Spannung U die folgende Gleichung:

$$U = U0 - (Rv + Rk + Rx + Rs) \cdot I.$$

Die tatsächlich an den Klemmen 6 und 7 des Meßumformers 1 eingespeiste Spannung Um kann daraus in einfacher Weise durch Addition des Produkts Rs · I gewonnen wer-

Zur Vereinfachung der Schreibweise wird im folgenden eine Hilfsgröße R eingeführt mit

$$R = Rv + Rk + Rx$$
.

Bei Inbetriebnahme des Meßumformers 1 wird zunächst ein erster Wert I1, vorzugsweise 4 mA, und danach ein zweiter Wert I2, vorzugsweise 20 mA, durch den Mikroprozessor 10 eingestellt. Die zugehörigen Werte Um1 bzw. Um2 der Spannung zwischen den Anschlußklemmen 6 und 7 werden erfaßt und im nichtflüchtigen Speicher 14 abgespeichert. Für die Werte Um1 und Um2 der Spannung gilt:

$$Um1 = U0 - R \cdot I1$$
 und $Um2 = U0 - R \cdot I2$.

Durch Subtraktion der beiden Gleichungen und Auflösen 25 nach der Hilfsgröße R erhält man daraus:

$$R = (Um1 - Um2)/(I2 - I1).$$

Nach Einsetzen in die Bestimmungsgleichung für den 30 Wert Um1 kann U0 berechnet werden zu:

$$U0 = Um1 + (Um1 - Um2)/(I1 - I2) \cdot I1.$$

Während des späteren Betriebs des Meßumformers 1 können bei beliebigen Werten I3 des Stromsignals weitere Messungen des Werts Um3 der Spannung zwischen den Anschlußklemmen 6 und 7 vorgenommen werden. Ändert sich der ohmsche Widerstand in der Versorgungszuführung beispielsweise durch Korrosion um den Wert ΔR , so gilt für den Wert Um3 der Spannung:

$$Um3 = U0 - (R + \Delta R) \cdot I3.$$

Die Widerstandsänderung ΔR kann durch Umstellen der

$$\Delta R = ((U(0 - Um3)/I3) - R.$$

Wenn der Wert ΔR der Widerstandsänderung eine vorgegebene Schwelle, beispielsweise 300 Ω, überschreitet, erzeugt der Meßumformer 1 ein Signal zur Anzeige der Versorgungsqualität dergestalt, daß eine korrekte Funktion des Meßumformers 1 wegen unzureichender Spannungsversorgung nicht mehr gewährleistet ist. Das Signal kann beispielsweise durch Einstellen eines Fehlerstroms, der außerhalb des 4- bis 20-mA-Bereichs liegt, durch Anzeige auf dem Display 18 oder durch eine digitale Kommunikation mit dem Speisegerät 3 gegeben werden. Bei zusätzlicher Auswertung des Zeitraums zwischen den Messungen kann aus den Meßergebnissen auch eine Trendaussage abgeleitet werden, welche die zeitliche Änderung der Versorgungsqualität widerspiegelt.

Anstelle des Werts AR der Widerstandsänderung kann alternativ unmittelbar in Abhängigkeit des ermittelten Werts Um3 der Spannung zwischen den Anschlußklemmen 6 und 7 des Meßumformers 1 ein Signal zur Anzeige der Versorgungsqualität erzeugt werden.

Die Meßergebnisse können im Meßumformer 1 oder bei

6

einer Kommunikation über die Zweidrahtleitung 2 in einer übergeordneten Steuereinheit, deren Bestandteil das Speisegerät 3 ist, protokolliert und ausgewertet werden. Damit hat der Anwender die Möglichkeit, in einer prozeßtechnischen Anlage eine Fehlerdiagnose durchzuführen und Fehlerquellen genauer zu lokalisieren.

Wesentlich dabei ist, daß die elektrische Spannung, die an der Elektronik des Meßumformers ankommt, direkt oder indirekt zur Erzeugung eines Signals zur Anzeige der Versorgungsqualität herangezogen wird. Diese Spannung kann direkt an den Anschlußklemmen, die für die Zweidrahtleitung zur Versorgung des Meßumformers vorgesehen sind, erfaßt werden. Auch eine indirekte Messung der Versorgungsspannung, bei welcher über eine intern gemessene Größe auf die Versorgungsspannung geschlossen wird, wie es im Ausführungsbeispiel beschrieben ist, kann durchgeführt werden.

Das Ausführungsbeispiel zeigt einen Meßumformer 1, bei welchem Meßwerte und Betriebsenergie über dieselbe Zweidrahtleitung übertragen werden. Abweichend davon kann in anderen Ausführungsformen jeweils eine Zwei- 20 drahtleitung zur Übertragung der Meßwerte und eine Zweidrahtleitung zur Übertragung der zum Betrieb erforderlichen Energie vorgesehen werden. In diesem Fall wird zur Erzeugung eines Signals zur Anzeige der Versorgungsqualität die elektrische Spannung an den Anschlußklemmen er- 25 faßt, die für die Zweidrahtleitung zur Versorgung des Meßumformers mit Betriebsenergie vorgesehen sind. In den Schaltungsteilen, die zur Meßwertübertragung vorhanden sind, fehlt dann die Schaltung 8 zur Versorgungsgenerierung, und die Betriebsenergie wird über zwei gesonderte 30 Klemmen in den Meßumformer eingespeist. In diesem Fall kann zusätzlich die Spannung auf der Zweidrahtleitung, die zur Übertragung der Meßwerte vorgesehen ist, als Versorgungsspannung der 4- bis 20-mA-Schnittstelle überwacht werden.

Der stromstellende Transistor T und die Schaltung 8 zur Versorgungsgenerierung bilden die wesentlichen Teile des sogenannten Loop-Interface. In anderen Ausführungsformen kann eine Schaltung 8 auch parallel zum stromstellenden Glied angeordnet werden.

Eine eventuell gewünschte Potentialtrennung kann beispielsweise zwischen Mikroprozessor 10 und A/D-Wandler 13 eingefügt werden. Vorteilhaft bei dem gezeigten Ausführungsbeispiel ist die Verwendung nur eines A/D-Wandlers 13 sowohl für das Spannungssignal U als auch für das analoge Signal des Sensors 15. Wenn für das Spannungssignal U ein gesonderter A/D-Wandler, beispielsweise nach dem Prinzip einer Spannungs-Frequenz-Wandlung, ergänzt werden soll, kann zwischen diesem und dem Mikroprozessor ebenfalls eine Potentialtrennung eingefügt werden.

Patentansprüche

1. Meßumformer, der zur Versorgung mit der zum Betrieb erforderlichen Energie und zur Übertragung eines 55 eine Meßgröße darstellenden Stromsignals an zumindest eine Zweidrahtleitung (2) anschließbar ist, dadurch gekennzeichnet, daß Mittel (Ra, Rb, T, Rs, 8 ... 14, 16) vorhanden sind, um die elektrische Spannung an den Anschlußklemmen (6, 7), die für die Zweidrahtleitung (2) zur Versorgung des Meßumformers vorgesehen sind, zu erfassen und um in Abhängigkeit des Spannungswerts ein Signal zur Anzeige der Versorgungsqualität zu erzeugen.

2. Mcßumformer nach Anspruch 1, dadurch gekenn-65 zeichnet, daß die Mittel (Ra, Rb, T, Rs, 8 . . . 14, 16) derart ausgebildet sind, daß zu einem ersten Zeitpunkt ein erster vorbestimmter Wert des Stromsignals einge-

stellt, ein zugehöriger Wert der elektrischen Spannung an den Anschlußklemmen (6, 7) der Zweidrahtleitung (2) erfaßt und abgespeichert wird, daß zu einem zweiten, von dem ersten abweichenden Zeitpunkt der erste vorbestimmte Wert des Stromsignals eingestellt und ein zugehöriger Wert der elektrischen Spannung an den Anschlußklemmen (6, 7) der Zweidrahtleitung (2) erfaßt wird und daß durch Vergleich der zum ersten und zum zweiten Zeitpunkt erfaßten Werte der elektrischen Spannung ein Signal zur Anzeige eines Erwartungswerts erzeugt wird, wann die Versorgungsqualität eine Schwelle unterschreiten wird.

3. Meßumformer nach Anspruch 1, dadurch gekennzeichnet,

daß die Mittel (Ra, Rb, T, Rs, 8 . . . 14, 16) derart ausgebildet sind, daß im wesentlichen zu einem ersten Zeitpunkt nacheinander ein erster Wert (I1) und ein zweiter, vom ersten Wert abweichender Wert (I2) des Stromsignals (I) eingestellt, zugehörige Werte (Um1, Um2) der elektrischen Spannung erfaßt und abgespeichert werden,

daß ein erster Wert (R) des ohmschen Widerstands in der Versorgungszuführung anhand des Verhältnisses von den Differenzen der Spannungswerte zu den Differenzen der Stromwerte, die zum ersten Zeitpunkt abgespeichert wurden, ermittelt wird,

daß zu einem zweiten, vom ersten Zeitpunkt abweichenden Zeitpunkt ein dritter Wert (I3) des Stromsignals (I) eingestellt und der zugehörige Wert (Um3) der elektrischen Spannung erfaßt wird,

daß die Änderung (ΔR) des ohmschen Widerstands in der Versorgungszuführung ermittelt wird und

daß in Abhängigkeit der Änderung (ΔR) des ohmschen Widerstands ein Signal zur Anzeige der Versorgungsqualität erzeugt wird.

4. Meßumformer nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, daß der erste Zeitpunkt während der Inbetriebnahme ist.

5. Meßumformer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine 4- bis 20-mA-Schnittstelle zum Anschluß an die Zweidrahtleitung (2) vorgesehen ist.

6. Verfahren zur Diagnose der Versorgung eines Meßumformers, der zur Versorgung mit der zum Betrieb erforderlichen Energie und zur Übertragung eines eine Meßgröße darstellenden Stromsignals (I) an zumindest eine Zweidrahtleitung (2) angeschlossen ist, dadurch gekennzeichnet,

daß die elektrische Spannung an den Anschlußklemmen (6, 7), die für die Zweidrahtleitung (2) zur Versorgung des Meßumformers vorgesehen sind, erfaßt wird und

daß in Abhängigkeit des Spannungswerts ein Signal zur Anzeige der Versorgungsqualität erzeugt wird.

7. Verfahren nach Anspruch 6, dadurch gekennzeichnet,

daß zu einem ersten Zeitpunkt ein erster vorbestimmter Wert des Stromsignals eingestellt, ein zugehöriger Wert der elektrischen Spannung an den Anschlußklemmen (6, 7) der Zweidrahtleitung (2) erfaßt und abgespeichert wird,

daß zu einem zweiten, von dem ersten abweichenden Zeitpunkt der erste vorbestimmte Wert des Stromsignals eingestellt und ein zugehöriger Wert der elektrischen Spannung an den Anschlußklemmen (6, 7) der Zweidrahtleitung (2) erfaßt wird und

daß durch Vergleich der zum ersten und zum zweiten Zeitpunkt erfaßten Werte der elektrischen Spannung

BNSDOCID: <DE_____19905071A1_I_>

ein Signal zur Anzeige eines Erwartungswerts erzeugt wird, wann die Versorgungsqualität eine Schwelle unterschreiten wird.

8. Verfahren nach Anspruch 6, dadurch gekennzeichnet.

daß im wesentlichen zu einem ersten Zeitpunkt nacheinander ein erster Wert (I1) und ein zweiter, vom ersten Wert abweichender Wert (I2) des Stromsignals (I) eingestellt, zugehörige Werte (Um1, Um2) der elektrischen Spannung erfaßt und abgespeichert werden, daß ein erster Wert (R) des ohmschen Widerstands in der Versorgungszuführung anhand des Verhältnisses von den Differenzen der Spannungswerte zu den Differenzen der Stromwerte, die zum ersten Zeitpunkt abgespeichert wurden, ermittelt wird,

daß zu einem zweiten, vom ersten Zeitpunkt abweichenden Zeitpunkt ein dritter Wert (I3) des Stromsignals (I) eingestellt und der zugehörige Wert (Um3) der elektrischen Spannung erfaßt wird,

daß die Änderung (ΔR) des ohmschen Widerstands in 20 der Versorgungszuführung ermittelt wird und daß in Abhängigkeit der Änderung (ΔR) des ohmschen Widerstands ein Signal zur Anzeige der Versorgungsqualität erzeugt wird.

9. Versahren nach Anspruch 7 oder 8, dadurch gekenn- 25 zeichnet, daß der erste Zeitpunkt während der Inbetriebnahme ist.

10. Verfahren nach einem der Ansprüche 6 bis 9. dadurch gekennzeichnet, daß eine 4- bis 20-mA-Schnittstelle zum Anschluß an die Zweidrahlleitung vorgesehen ist.

Hierzu 1 Seite(n) Zeichnungen

35

40

45

50

55

60

65

BNSDOCID: <DE_____19905071A1_I_>

Nummer: Int. Cl.⁷: Offenlegungstag: DE 199 05 071 A1, G 01 D 5/16 10. August 2000

