Factoriser les expressions suivantes à l'aide d'une identité remarquable :

- a. $x^2 + 4x + 4$
- b. $x^2 6x + 9$
- c. $9x^2 + 12x + 4$
- d. $25x^2 9$
- e. $x^2 14x + 49$

Factoriser les expressions suivantes à l'aide d'une identité remarquable :

- a. $(2x+1)^2 (1-x)^2$
- b. $25 (x+1)^2$
- c. $4x^2 + 4 + 8x$

Calculer à la main $10001^2 - 9999^2$.

108

Factoriser les expressions suivantes :

- a. $4(2x-1)^2 2(2x-1)(x+3)$
- b. $(2a-1)^2-9$
- c. $4(x-2)^2 25$

109

Factoriser les expressions suivantes :

- a. $2x^2 + 3x$
- b. $x^2 4x$
- c. $x^3 + 8x$
- d. $4x^2 5x$
- e. xy 6x

110

Factoriser les expressions suivantes :

- a. 2x(1-x) + 3x
- b. xy + xz
- c. (x+1)(x+2) + 5(x+2)
- d. $(2x+1)^2 (2x+1)(4x-3)$
- e. $(x+1)^2 + x + 1$

III

Factoriser pour a, b et c:

- a. ab + bc
- b. $a^2b + ac$
- c. $abc + ab^2$

Soit f la fonction carré et ${\mathscr P}$ la parabole qui la représente :

- 1. On calcule $2,4^2=5,76$. Traduire ce résultat sous la forme :
 - **a.** f(...) = ...
- **b.** $M(\ldots;\ldots) \in \mathscr{P}$
- 2. Compléter le tableau :

$x^2 = y$	f() =	$M(\ldots;\ldots)\in\mathscr{P}$
	f(-1,2) = 1,44	
		$M(0,8;\ldots) \in \mathscr{P}$
$(2\pi)^2$		

Résoudre les équations suivantes :

1. $x^2 = 25$

3. $x^2 = 0$

2. $x^2 = 5$

4. $x^2 = -3$

114

Résoudre les équations suivantes :

- 1. $4x^2 5 = 0$ 2. $2x^2 + 3 = 1$
- 3. $\frac{4}{5}x^2 = 5$

Comparer sans aucun calcul et en justifiant à l'aide des propriétés de la fonction carré :

- a. $2,356^2$ et $2,5^2$
- b. $(-1,6)^2$ et $1,57^2$
- c. $(-1,08)^2$ et $(-1,2)^2$
- d. $(-2,56)^2$ et $0,8^2$

116

Donner un encadrement de x^2 sachant que :

- a. $-3, 5 \le x \le -1$
- b. $0, 5 \le x \le 2, 5$
- c. $x \in]-2;1]$
- d. $x \in]-2;4]$

117

À l'aide de la parabole d'équation $y=x^2$, trouver l'ensemble des valeurs de x telles que :

1. $x^2 \ge 4$

3. $x^2 < 2$

2. $x^2 > 4$

4. $x^2 \ge -5$

118

Même consigne que précédemment :

1.
$$x^2 \ge 3$$

3.
$$x^2 < 100$$

2.
$$x^2 \le 5$$

4.
$$x^2 > 100$$

1119

Résoudre les équations suivantes :

1.
$$(x-1)^2 = 4$$

2.
$$(3x+4)^2=9$$

3.
$$(x+1)^2 = 3$$

4.
$$(-5x+1)^2=6$$

Calculer:

1.
$$(\sqrt{5})^2$$

3.
$$(2\sqrt{3})^2$$

2.
$$-\left(\sqrt{\frac{3}{4}}\right)^2$$

4.
$$(3\sqrt{2})^{\frac{1}{2}}$$

Calculer $\sqrt{a+b}$ et $\sqrt{a} + \sqrt{b}$ pour :

1.
$$a = 1$$
 et $b = 3$

2.
$$a = 4$$
 et $b = 3$

122

Écrire sous la forme $a\sqrt{b}$ où a et b sont des entiers naturels :

1. $\sqrt{18}$

4. $\sqrt{54}$

- **2.** $\sqrt{200}$
- 3. $\sqrt{125}$

5. $\sqrt{24}$

123

Effectuer les opérations suivantes :

1.
$$2\sqrt{2} - 5\sqrt{2} + 4\sqrt{2}$$

2.
$$-\sqrt{5} + 2\sqrt{5} + 4\sqrt{5}$$

124

- 1. Transformer $\sqrt{8}$, $\sqrt{18}$, $\sqrt{12}$ et $\sqrt{75}$.
- **2.** Écrire sous la forme $a\sqrt{b}$ avec a et b entiers :

a.
$$3\sqrt{2} - 4\sqrt{8} + 2\sqrt{18}$$

b.
$$\sqrt{12} + 3\sqrt{3} - \sqrt{75}$$

125

Écrire sous la forme $a\sqrt{b}$ avec a et b entiers :

1.
$$\sqrt{27} - 2\sqrt{3} + \sqrt{48}$$

2.
$$4\sqrt{32} - 3\sqrt{8} + \sqrt{18}$$

126

Soit trois points A, B et C vérifiant AB = $2\sqrt{45}$, BC = $2\sqrt{27}$ et AC = $\sqrt{48}$.

Démontrer que ces trois points sont alignés.

127

Soit trois points A, B et C vérifiant AB = $\sqrt{5} - \sqrt{3}$, AC = $\sqrt{5} + \sqrt{3}$ et BC = 4.

Le triangle ABC est-il rectangle?

128

Comparer, sans calcul, à l'aide de la fonction racine carrée :

1.
$$\sqrt{2,5}$$
 et $\sqrt{1,8}$

2.
$$\sqrt{3,08}$$
 et $\sqrt{\pi}$

129

Écrire l'ensemble des solutions des inéquations :

- 1. $\sqrt{x} < 2$
- **2.** $\sqrt{x} 5 \le 0$
- 3. $3-\sqrt{5}<5$
- **4.** $3 2\sqrt{x} \ge 0$

130

Écrire sous la forme $a\sqrt{b}$ où a est un réel positif puis ranger dans l'ordre croissant les nombres suivants :

1. $\sqrt{2}\sqrt{5}$

3. $2\sqrt{3}$

2. $\frac{20}{\sqrt{5}}$

4. $\sqrt{\frac{225}{3}}$

131

Dans chacun des cas, donner le meilleur encadrement possible de \sqrt{x} en justifiant :

- **1.** $0 \le x \le 4$.
- **2.** $0,25 \leqslant x \leqslant 6,25$.
- 3. $\frac{1}{100} \leqslant x \leqslant 1$.