Aim: Data Visualization III

Download the Iris flower dataset or any other dataset into a DataFrame. (e.g., https://archive.ics.uci.edu/ml/datasets/Iris (https://archive.ics.uci.edu/ml/datasets/Iris)). Scan the dataset and give the inference as:

- 1. List down the features and their types (e.g., numeric, nominal) available in the dataset.
- 2. Create a histogram for each feature in the dataset to illustrate the feature distributions.
- 3. Create a boxplot for each feature in the dataset.
- 4. Compare distributions and identify outliers.

Code:

```
In [15]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [16]: df1 = sns.load_dataset('iris')
```

In [17]: df1

Out[17]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
		•••			
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

```
In [18]: df1.dtypes
Out[18]: sepal_length
                          float64
         sepal width
                          float64
         petal_length
                          float64
         petal_width
                          float64
                           object
         species
         dtype: object
In [19]: df1.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 150 entries, 0 to 149
         Data columns (total 5 columns):
               Column
                             Non-Null Count
                                              Dtype
                                              ----
               sepal_length 150 non-null
           0
                                              float64
          1
               sepal_width
                             150 non-null
                                              float64
           2
               petal_length 150 non-null
                                              float64
           3
               petal_width
                             150 non-null
                                              float64
          4
               species
                             150 non-null
                                              object
         dtypes: float64(4), object(1)
         memory usage: 6.0+ KB
In [20]: df1.describe()
Out[20]:
                senal length, senal width, netal length, netal width
```

	sepai_length	sepai_width	petai_length	petai_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333
std	0.828066	0.435866	1.765298	0.762238
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

```
In [21]: df1.shape
```

Out[21]: (150, 5)

In [22]: df1.head()

Out[22]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

In [23]: df1.tail()

Out[23]:

	sepal_length	sepal_width	petal_length	petal_width	species
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

```
In [25]: df1.drop('species', axis=1).hist(figsize=(10, 8), bins=20, edgecolor='black')
    plt.suptitle('Histograms for all features')
    plt.show()
```

Histograms for all features


```
In [28]: plt.figure(figsize=(12, 8))

for i, feature in enumerate(df1.drop('species', axis=1).columns):
    plt.subplot(2, 2, i + 1)
    sns.boxplot(x='species', y=feature, data=df1)
    plt.title(f'Box Plot of {feature}')

plt.tight_layout()
plt.show()
```



```
In [30]: sns.pairplot(df1, hue='species', palette='Set2')
   plt.suptitle('Pairwise Feature Comparisons', fontsize=16)
   plt.show()
```



```
In [32]: from scipy.stats import zscore

z_scores = pd.DataFrame(zscore(df1.drop('species', axis=1)), columns=df1.drop(
    outliers = (z_scores.abs() > 3).sum()
    print("\nOutliers (Z-scores > 3 or < -3):")
    print(outliers)</pre>
```

```
Outliers (Z-scores > 3 or < -3):
sepal_length 0
sepal_width 1
petal_length 0
petal_width 0
dtype: int64
```

Name: Mohan Kadamabnde

Roll No.: 13212 (TECO-b1)