Discussion #2

Diwanshu, Elena

June 17, 2020

Logistics

Due this Sunday (6/21):

Homework 2, Checkpoint 1

Project Groups set: Find here

Outline

- Functional Dependency
- Normalization
- Candidate and Super Keys
- Armstrong's Axioms
- Attribute Closure
- Normal Forms
- BCNF, 3NF
- Good Decomposition

Functional Dependency (FD)

- Constraint between two sets of attributes in a relation from a database.
- A → B: Attribute A functionally determines B.
- Eg. campus_id → name

Formal Definition:

• If two tuples agree on the attributes A1, A2, ..., An, then they must also agree on the attributes B1, B2,, Bm.

 $A1, A2, ..., An \rightarrow B1, B2, Bm$

Candidate Keys and Super Keys

- Set of attributes that functionally determines all attributes of R
- none of its subsets determines all attributes of R
- Super Key is the set that contains candidate keys (or simply, keys).

Q. If |.| denotes cardinality of the set, compare

|Super Keys| ? |Candidate Keys|

Candidate Keys and Super Keys

- Set of attributes that functionally determines all attributes of R
- none of its subsets determines all attributes of R
- Super Key is the set that contains candidate keys (or simply, keys).

Q. If |.| denotes cardinality of the set, compare

|Super Keys| >= |Candidate Keys|

A candidate key is a 'minimal' super key.

Inferring all FDs: Armstrong's axioms

S: a set of FDs

S+ = all FDs logically implied by S

Eg. R(A, B, C), S = $\{A \rightarrow C, C \rightarrow B\}$, then S+ = $\{A \rightarrow C, C \rightarrow B, A \rightarrow B, A \rightarrow AC, C \rightarrow BC, AC \rightarrow ABC,...\}$

Inferring all FDs: Armstrong's axioms

Eg. R(A, B, C), S = $\{A \rightarrow C, C \rightarrow B\}$, then S+ = $\{A \rightarrow C, C \rightarrow B, A \rightarrow B, A \rightarrow AC, C \rightarrow BC, AC \rightarrow A,...\}$

Reflexivity rule: $X \rightarrow a$ subset of X

Augmentation rule: $X \rightarrow Y$, then $XZ \rightarrow YZ$

Transitivity rule: $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$

Additional Rules: Can be derived from first 3 rules

Union rule

 $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$

(X, Y, Z are sets of attributes)

Proof:

Additional Rules: Can be derived from first 3 rules

Union rule

 $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$

(X, Y, Z are sets of attributes)

Proof:

- 1. Augmentation: $X \rightarrow XY$, $XY \rightarrow YZ$
- 2. Transitivity: $X \rightarrow YZ$

Additional Rules: Can be derived from first 3 rules

Decomposition rule

 $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$

Pseudo-transitivity rule

 $X \rightarrow Y$ and $YZ \rightarrow U$, then $XZ \rightarrow U$

Proof: Exercise.

Inferring S+ using Armstrong's Axioms

$$S = S +$$

- Loop
- For each F in S, apply reflexivity and augmentation rules (High level Idea: Break & Expand)
- add the new FDs to S +
- For each pair of FDs in S, apply the transitivity rule (High level Idea: New FDs)
- add the new FD to S +
- Until does not change any further

Attribute Closure

Given:

- A set of attributes {A1, A2, ..., An}
- A set of FDs S

Closure of {A1, A2, ..., An} under FDs S:

- A set of attributes {B1, B2, ..., Bm} such that {A1, A2, ..., An} → Bi for all i.
- Denoted by {A1, A2, ..., An}+

Q. Which attribute should {A1, A2, ... An}+ contain at a minimum?

Attribute Closure

Given:

- A set of attributes {A1, A2, ..., An}
- A set of FDs S

Closure of {A1, A2, ..., An} under FDs S:

- A set of attributes {B1, B2, ..., Bm} such that {A1, A2, ..., An} → Bi for all i.
- Denoted by {A1, A2, ..., An}+

Q. Which attribute should {A1, A2, ... An}+ contain at a minimum?

A. $\{A1, A2, ..., An\}$ as $\{A1, A2, ..., An\} \rightarrow Ai$ is trivial.

- To prove correctness of rules for manipulating FDs.
 - Transitive rule: A1, A2, ..., An → B1, B2, ..., Bm and B1, B2, ..., Bm → C1, C2, ..., Cp then A1, A2, ..., An → C1, C2, ..., Cp

Option 1.
$$\{A1, A2, ..., An\} \subseteq \{C1, C2, ..., Cp\}+$$

Option 2.
$$\{C1, C2, ..., Cp\} \subseteq \{A1, A2, ..., An\}+$$

Option 3.
$$\{C1, C2, ..., Cp\}+ \subseteq \{A1, A2, ..., An\}$$

Option 4.
$$\{A1, A2, ..., An\}+ \subseteq \{C1, C2, ..., Cp\}$$

- To prove correctness of rules for manipulating FDs.
 - Transitive rule: A1, A2, ..., An → B1, B2, ..., Bm and B1, B2, ..., Bm → C1, C2, ..., Cp
 then A1, A2, ..., An → C1, C2, ..., Cp

```
Option 1. \{A1, A2, ..., An\} \subseteq \{C1, C2, ..., Cp\}+
```

Option 2. $\{C1, C2, ..., Cp\} \subseteq \{A1, A2, ..., An\}+$

Option 3. $\{C1, C2, ..., Cp\}+ \subseteq \{A1, A2, ..., An\}$

Option 4. $\{A1, A2, ..., An\}+ \subseteq \{C1, C2, ..., Cp\}$

Checking $X \to Y$ holds: if Y is contained in X+, i.e. $Y \subseteq X+$

- To define Keys
 - In R(A1, A2, ..., An), what's the condition for {A1, A2} to be the candidate key?

Option 1.
$$\{A1, A2\} + = \{A1, A2, ..., An\}$$

Option 2.
$$\{A1\}$$
+ = $\{A1, A2, ..., An\}$

Option 3.
$$\{A2\}$$
+ = $\{A1, A2, ..., An\}$

Option 4. Both 2 and 3.

- To define Keys
 - In R(A1, A2, ..., An), what's the condition for {A1, A2} to be the candidate key?

```
Option 1. \{A1, A2\} + = \{A1, A2, ..., An\}
```

Option 2.
$$\{A1\}$$
+ = $\{A1, A2, ..., An\}$

Option 3.
$$\{A2\}$$
+ = $\{A1, A2, ..., An\}$

Option 4. Both 2 and 3.

- To compute closure F+ of FDs F. Eg. R(A,B,C). F = { A → B, B → C}.
- Great example in Slide Set 3: #55, #56 (Monday, June 15).
 - o Steps:
 - Construct an empty matrix, with all possible combinations of attributes in col and rows.
 - compute attribute closure for all attribute/ combination of attributes.
 - Fill the matrix. Find FDs.

		_						•						, - ,	,		
	A	В	C	AB	AC	BC	ABC]	Attribute closure		A	В	C	AB	AC	BC	ABC
A									A+=?	A	V	V	V	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark
В									B+=?	В		V	V			V	
C	,								C+=?	C			V				
AB									AB+=?	AB	V	V	V	$\sqrt{}$	V	V	V
AC									AC+=?	AC	V	V	V	V	$\sqrt{}$	V	V
BC									BC+=?	BC		V	V			V	
ABC									ABC+=?	ABC	V	V	V	\checkmark	V	$\sqrt{}$	V

More Question

• In R(A1, A2, ..., A6), functional dependency set F = $\{A_i \rightarrow A_{i+2}\}$ for all i = 1, ..., 4. What's the candidate key for R?

- Option 1. $\{A_1\}$
- **Option 2**. $\{A_1, A_2\}$
- **Option 3**. $\{A_1, A_2, A_3, A_4\}$
- **Option 4**. $\{A_1, A_2, ..., A_6\}$

More Question

• In R(A1, A2, ..., A6), functional dependency set F = $\{A_i \rightarrow A_{i+2}\}$ for all i = 1, ..., 4. What's the candidate key for R?

Option 1.
$$\{A_1\}$$

Option 2.
$$\{A_1, A_2\}$$

Option 3.
$$\{A_1, A_2, A_3, A_4\}$$

Option 4.
$$\{A_1, A_2, ..., A_6\}$$

- Can you find for general case? i.e. for $F = \{A_i \rightarrow A_{i+m}\}$ for all i = 1, ..., n-m.
 - Hint: Think about various permissible values of m.

Normalization

 Process of organizing the attributes of the database to reduce or eliminate data redundancy (having the same data but at different places).

<u>Problems because of data redundancy</u>

- Increases the size of the database
 - Same data repeated at many places
- Inconsistency problems
 - o insert, delete and update operations.

Sales Staff Table

Employee_ID	SalesPerson	Office Loc.	Phone #	Customer 1	Customer 2	Customer 3
531	Alice	Madison	909-909-2323	American	Delta	United
540	Bob	LA	890-909-3498	Amazon	Microsoft	
558	Chad	Madison	909-909-2323	Ford		

Good/Bad table?

Sales Staff Table

Employee_ID	SalesPerson	Office Loc.	Phone #	Customer 1	Customer 2	Customer 3
531	Alice	Madison	909-909-2323	American	Delta	United
540	Bob	LA	890-909-3498	Amazon	Microsoft	
558	Chad	Madison	909-909-2323	Ford		

INSERT ANOMALY

- There are facts we cannot record until we know information for the entire row.
- Insert new sales office? Need to provide a primary key!

Sales Staff Table

Employee_ID	SalesPerson	Office Loc.	Phone #	Customer 1	Customer 2	Customer 3
531	Alice	Madison	909-909-2323	American	Delta	United
540	Bob	LA	890-909-3498	Amazon	Microsoft	
558	Chad	Madison	909-909-2323	Ford		

UPDATE ANOMALY

- Same info in several rows.
- Change office number? Need to update in multiple places!

Sales Staff Table

Employee_ID	SalesPerson	Office Loc.	Phone #	Customer 1	Customer 2	Customer 3
531	Alice	Madison	909-909-2323	American	Delta	United
540	Bob	LA	890-909-3498	Amazon	Microsoft	
558	Chad	Madison	909-909-2323	Ford		

DELETE ANOMALY

- Can lose important information
- o Bob retires? You lose info about LA's office!

Sales Staff Table

Employee_ID	SalesPerson	Office Loc.	Phone #	Customer 1	Customer 2	Customer 3
531	Alice	Madison	909-909-2323	American	Delta	United
540	Bob	LA	890-909-3498	Amazon	Microsoft	
558	Chad	Madison	909-909-2323	Ford		

• REDUNDANCY: FD Exist!

Office Loc → Phone #

Normal Forms

A **normal form** represents a "good" schema design.

- 1NF
 - Every field must contain atomic values (i.e no sets or lists). All relations are in 1NF
- 2NF
 - All the non-key attributes must depend upon the WHOLE of the candidate key
 - Any relation in 2NF is also in 1NF
- 3NF
- BCNF
- ...

Which one we chose?

- We chose the one that is more suitable on the design of our DB and the restrictions that we want to impose to our DB.

more restrictive

What makes a decomposition good? (1)

- minimize redundancy (the reason why we need the normal forms)
- avoid information loss (**lossless-join**): I can recover the original data from the decomposed data
- preserve the FDs (**dependency preserving**): no FD is lost
- ensure good query performance

What makes a decomposition good? (2)

Good Example

Person(SSN, name, age, canDrink)

FD:

- SSN → name, age
- age → canDrink

decomposes into:

- R1(SSN, name, age)
 - SSN → name, age
- **R2**(age, canDrink)
 - \circ age \rightarrow canDrink

Bad Example

R(A, B, C)

FD:

- $A \rightarrow B$
- B, $C \rightarrow A$

decomposes into:

- R1(A, B)○ A → B
- **R2**(A, C)
 - no FDs

The recovered table violates the FD: $B, C \rightarrow A$

Boyce - Codd Normal Form(BCNF)

A relation R is in BCNF if whenever $X \rightarrow A$ is a non-trivial FD, then X is a <u>superkey</u> in R

Trivial FDs:

- Not all FDs are informative:
 - \circ A \rightarrow A holds for any relation
 - \circ A, B, C \rightarrow C also holds for any relation
- A FD $X \rightarrow A$ is called **trivial** if the attribute A belongs in the attribute set X
 - a trivial FD always holds!

BCNF Example 1

SSN	name	age	phoneNumber
934729837	Paris	24	608-374-8422
934729837	Paris	24	603-534-8399
123123645	John	30	608-321-1163
384475687	Arun	20	206-473-8221

Given that:

- key = {SSN, phoneNumber}
- **FD**: SSN → name, age

Due to the given FD the above relation is **not** in BCNF! The left part of the FD is not a superkey!

BCNF Example 2

SSN	name	age	
934729837	Paris	24	
123123645	John	30	
384475687	Arun	20	

Given that:

- key = {SSN}
- **FD**: SSN → name, age

Given the key and the FD, the above relation is in BCNF!

How do we know if a relation is in BCNF?

Given a relation R and a set of functional dependency S

- 1. Determine a set of candidate keys → Using attribute closure approach
- 2. Check every FD in S to see if the left hand side is a superkey

Example 1:

Books(author, gender, booktitle, genre, price)

FDs:

- author → gender
- booktitle → genre, price

No BCNF, because the left side of both (no trivial) FDs is not a superkey.

```
author+ = {author, gender}
```

```
gender+ = {gender}
```

... (all one attributes)

```
(author, gender)+ = {author, gender}
```

... (all two attr combinations)

```
(author, booktitle)+ = {author, gender, booktitle, genre,price}
```

... (all three,... combinations)

Q: What to do when a relation is NOT BCNF?

A: BCNF Decomposition

1. Find a FD that violates the BCNF condition

- 2. Decompose R to R1 and R2: (see figure)
- 3. Continue until no BCNF violations are left (* any 2 attribute relation is in BCNF)

Back in our no BCNF example...

Books (author, gender, booktitle, genre, price)

FDs:

- author → gender
- booktitle → genre, price

Splitting **Books** using FD *author* → *gender*

- Author(author, gender) with
 FD: author → gender in BCNF
- Books2(author, booktitle, genre, price) with booktitle → genre, price not in BCNF → we need to continue

FD:

Back again...

Books(author, gender, booktitle, genre, price)

FDs:

- author → gender
- booktitle → genre, price

Splitting **Books** using FD *author* → *gender*

Author(author, gender) with
 FD: author → gender in BCNF

Splitting **Books2**(author, booktitle, genre, price):

- BooksInfo(booktitle, genre, price) with
 FD: booktitle → genre, price in BCNF
- BookAuthor(author, booktitle) in BCNF

Example: Is it a good decomposition?

$$R(A, B, C)$$

 $S = \{A \rightarrow B, B \rightarrow C\}$
 R_1 (A,B) and R_2 (A,C) (not using decomposition heuristic)
— Lossless-join decomposition:
 $R1 \cap R2 = \{A\}$ and $A^+=\{A,B\}$, therefore $A \rightarrow AB$
— Dependency preserving
 $A \rightarrow B$ is enforced in R_1
but $B \rightarrow C$ is NOT enforced in R_2

Therefore, this decomposition is loss-less join but not dependency preserving

BCNF Decomposition Properties

- removes certain types of redundancy
- is lossless-join
- is **not** always dependency preserving (+ we need to JOIN to find all FDs)

Solution: define a weaker normal form: **3NF**

- allows some redundancy (that's why is called weaker) BUT
- FDs can be checked on individual relations without computing JOIN
 - JOIN is the one of the most expensive computations in a DB
- There is always a lossless-join, dependency-preserving decomposition into 3NF.

Third Normal Form (3NF)

A relation **R** is in **3NF** if whenever $X \rightarrow A$, one of the following is true:

- $A \subseteq X$ (trivial FD)
- X is a superkey
- A is part of some key of R (prime attribute)

- Informally: everything depends on the key or is in the key
- There is always a lossless-join, dependency-preserving decomposition into 3NF.

3NF vs BCNF

R is in BCNF if whenever $X \rightarrow A$ holds, then X is a superkey.

Slightly stronger than 3NF.

Example:

Given R(A,B,C), a set of FDs

$$S = \{AB \rightarrow C, C \rightarrow A\}$$

3NF but not BCNF

Why? $(keys = \{AB, BC\})$

Conclusions

- 3NF is enough, should always aim for this
- BCNF is the most restricted Normal Form
- normalization is not always the solution, we might end up with not a very efficient decomposition that leads to performance loss
 - remember: our goal is good query performance
- current data warehouses argue against normalization
 - joins are expensive or impractical

Q&A

Thanks!