In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
from IPython import get_ipython
import warnings
warnings.filterwarnings("ignore")
```

In [2]:

```
data = pd.read_csv('Fertile_Man_2020.csv')
```

In [3]:

data.head()

Out[3]:

	PI	Semen Volume (ml)	Sperm Concentration (106/ml)	Total Number (106)	Total Motility (%)	Progressive Motility (%)	Non- progressive Motility (%)	Immot Spermatoz ('
0	Aboutorabi	3.2	27.0	86.4	35	20	15	
1	Aboutorabi	8.0	136.0	108.8	47	35	12	
2	Aboutorabi	2.0	71.0	142.0	49	42	7	
3	Aboutorabi	1.0	35.0	35.0	50	28	22	
4	Aboutorabi	2.0	46.0	92.0	51	28	33	
4								>

In [4]:

```
data.tail()
```

Out[4]:

	PI	Semen Volume (ml)	Sperm Concentration (106/ml)	Total Number (106)	Total Motility (%)	Progressive Motility (%)	Non- progressive Motility (%)	Immotile Spermatozoa (%)
3584	Tang	1.7	23.0	39.1	53	52	1	NO RESULT
3585	Tang	2.5	110.0	275.0	66	66	0	NO RESULT
3586	Tang	2.0	109.0	218.0	64	44	20	36
3587	Tang	6.2	96.0	595.2	39	29	10	61
3588	Tang	3.0	36.0	108.0	54	38	16	46
4								>

In [5]:

data.shape

Out[5]:

(3589, 10)

In [6]:

data.columns

Out[6]:

In [7]:

```
data.duplicated().sum()
```

Out[7]:

220

In [8]:

```
data = data.drop_duplicates()
```

In [9]:

```
data.isnull().sum()
```

Out[9]:

PΙ 0 Semen Volume (ml) 0 Sperm Concentration (106/ml) 0 Total Number (106) 0 Total Motility (%) 0 Progressive Motility (%) 0 Non-progressive Motility (%) 0 Immotile Spermatozoa (%) 0 Vitality (%) 0 Normal Forms (%) 0 dtype: int64

In [10]:

```
data.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 3369 entries, 0 to 3588
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	PI	3369 non-null	object
1	Semen Volume (ml)	3369 non-null	object
2	Sperm Concentration (106/ml)	3369 non-null	object
3	Total Number (106)	3369 non-null	object
4	Total Motility (%)	3369 non-null	object
5	Progressive Motility (%)	3369 non-null	object
6	Non-progressive Motility (%)	3369 non-null	object
7	Immotile Spermatozoa (%)	3369 non-null	object
8	Vitality (%)	3369 non-null	object
9	Normal Forms (%)	3369 non-null	object

dtypes: object(10)
memory usage: 289.5+ KB

In [11]:

data.nunique()

Out[11]:

PΙ 10 Semen Volume (ml) 97 Sperm Concentration (106/ml) 644 Total Number (106) 1652 Total Motility (%) 88 Progressive Motility (%) 91 Non-progressive Motility (%) 52 Immotile Spermatozoa (%) 85 Vitality (%) 66 Normal Forms (%) 67 dtype: int64

In [12]:

```
data['PI'].unique()
```

Out[12]:

In [13]:

```
data['PI'].value_counts()
```

Out[13]:

Tang 1050 826 Auger 487 Swan Baker 206 199 Jensen Zedan 170 Aboutorabi 168 Lotti 105 Haugen 82 Evgeni 76 Name: PI, dtype: int64

In [14]:

```
plt.figure(figsize=(15,6))
sns.countplot('PI', data = data, palette = 'hls')
plt.xticks(rotation = 90)
plt.show()
```


In [15]:

ΡI

In [16]:

In [17]:

```
data_new = data_new.replace({'Semen Volume (ml)': {'NO RESULT': 0}})
data_new = data_new.replace({'Sperm Concentration (106/ml)': {'NO RESULT': 0}})
data_new = data_new.replace({'Total Number (106)': {'NO RESULT': 0}})
data_new = data_new.replace({'Total Motility (%)': {'NO RESULT': 0}})
data_new = data_new.replace({'Progressive Motility (%)': {'NO RESULT': 0}})
data_new = data_new.replace({'Non-progressive Motility (%)': {'NO RESULT': 0}})
data_new = data_new.replace({'Immotile Spermatozoa (%)': {'NO RESULT': 0}})
data_new = data_new.replace({'Normal Forms (%)': {'NO RESULT': 0}})
data_new = data_new.replace({'Vitality (%)': {'NO RESULT': 0}})
```

In [18]:

data_new

Out[18]:

	Semen Volume (ml)	Sperm Concentration (106/ml)	Total Number (106)	Total Motility (%)	Progressive Motility (%)	Non- progressive Motility (%)	Immotile Spermatozoa (%)	Vital (
0	3.2	27.0	86.4	35	20	15	65	
1	0.8	136.0	108.8	47	35	12	53	
2	2.0	71.0	142.0	49	42	7	51	
3	1.0	35.0	35.0	50	28	22	50	
4	2.0	46.0	92.0	51	28	33	49	
		•••						
3579	2.0	115.0	230.0	79	77	2	0	
3581	4.0	22.0	88.0	35	32	3	0	
3586	2.0	109.0	218.0	64	44	20	36	
3587	6.2	96.0	595.2	39	29	10	61	
3588	3.0	36.0	108.0	54	38	16	46	

3369 rows × 9 columns

→

In [19]:

```
for i in data_new.columns:
   data_new[i] = data_new[i].astype(float)
```

In [20]:

```
data_new.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 3369 entries, 0 to 3588
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Semen Volume (ml)	3369 non-null	float64
1	Sperm Concentration (106/ml)	3369 non-null	float64
2	Total Number (106)	3369 non-null	float64
3	Total Motility (%)	3369 non-null	float64
4	Progressive Motility (%)	3369 non-null	float64
5	Non-progressive Motility (%)	3369 non-null	float64
6	Immotile Spermatozoa (%)	3369 non-null	float64
7	Vitality (%)	3369 non-null	float64
8	Normal Forms (%)	3369 non-null	float64

dtypes: float64(9)
memory usage: 263.2 KB

In [21]:

data_new.describe()

Out[21]:

	Semen Volume (ml)	Sperm Concentration (106/ml)	Total Number (106)	Total Motility (%)	Progressive Motility (%)	Non- progressive Motility (%)	Spe
count	3369.000000	3369.000000	3369.000000	3369.000000	3369.000000	3369.000000	33€
mean	3.431849	83.989849	274.623390	62.426239	50.285841	10.602553	3
std	1.555602	65.363518	235.739172	17.721234	18.633336	9.861524	1
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	2.300000	37.000000	111.300000	55.000000	43.000000	3.000000	2
50%	3.100000	68.000000	214.000000	64.000000	53.000000	8.000000	3
75%	4.200000	112.000000	370.000000	73.000000	62.000000	15.000000	4
max	12.500000	532.000000	3115.200000	100.000000	94.000000	56.000000	10
4							•

In [22]:

```
for i in data_new.columns:
    plt.figure(figsize=(15,6))
    sns.histplot(data_new[i], bins = 20, kde = True, palette = 'hls')
    plt.xticks(rotation = 90)
    plt.show()
```


In [23]:

```
for i in data_new.columns:
    plt.figure(figsize=(15,6))
    sns.distplot(data_new[i], bins = 20, kde = True)
    plt.xticks(rotation = 90)
    plt.show()
```


In [24]:

```
for i in data_new.columns:
    plt.figure(figsize=(15,6))
    sns.boxplot(data_new[i])
    plt.xticks(rotation = 90)
    plt.show()
```


In [25]:

```
for i in data_new.columns:
   plt.figure(figsize=(15,6))
   sns.violinplot(data_new[i])
   plt.xticks(rotation = 90)
   plt.show()
```


In [26]:

```
for i in data_new.columns:
    plt.figure(figsize=(15,6))
    sns.boxenplot(data_new[i])
    plt.xticks(rotation = 90)
    plt.show()
```


In [27]:

```
for i in data_new.columns:
    plt.figure(figsize=(15,6))
    sns.barplot(x = data['PI'], y = data_new[i], ci = None, palette = 'hls')
    plt.show()
```


In [28]:

```
for j in data_new.columns:
     for i in data_new.columns:
          plt.figure(figsize=(15,6))
          sns.lineplot(x = data_new[j], y = data_new[i], ci = None, palette = 'hls')
          plt.show()
  175
Sperm Concentration (106/ml)
  150
  125
  100
  75
   50
   25
  1750
  1500
  1250
btal Number (106)
  1000
   750
   500
In [29]:
for j in data_new.columns:
     for i in data_new.columns:
          plt.figure(figsize=(15,6))
          sns.scatterplot(x = data_new[j], y = data_new[i], ci = None, palette = 'hls')
          plt.show()
                                                                           10
                                                                                        12
                                             Semen Volume (ml)
  500
  400
Sperm Concentration (106/ml)
  300
  200
  100
                                             Semen Volume (ml)
```

In [30]:

corrmat = data_new.corr()
corrmat

Out[30]:

	Semen Volume (ml)	Sperm Concentration (106/ml)	Total Number (106)	Total Motility (%)	Progressive Motility (%)	Non- progressive Motility (%)	Sper
Semen Volume (ml)	1.000000	-0.132747	0.394834	0.003056	0.093729	-0.163921	
Sperm Concentration (106/ml)	-0.132747	1.000000	0.762657	0.070431	0.082049	-0.016940	
Total Number (106)	0.394834	0.762657	1.000000	0.056822	0.127535	-0.116299	
Total Motility (%)	0.003056	0.070431	0.056822	1.000000	0.772534	0.377100	-
Progressive Motility (%)	0.093729	0.082049	0.127535	0.772534	1.000000	-0.077893	-
Non- progressive Motility (%)	-0.163921	-0.016940	-0.116299	0.377100	-0.077893	1.000000	-
Immotile Spermatozoa (%)	0.095168	0.034547	0.070889	-0.400565	-0.388460	-0.089031	
Vitality (%)	-0.156211	-0.170896	-0.210887	0.364078	0.324613	0.148656	-
Normal Forms (%)	0.002695	0.109208	0.117101	-0.226283	-0.237217	-0.290616	-
4							•

In [31]:

In [32]:

```
Q1 = data_new.quantile(0.25)
Q3 = data_new.quantile(0.75)
IQR = Q3 - Q1
print(IQR)
```

Semen Volume (ml)	1.9
Sperm Concentration (106/ml)	75.0
Total Number (106)	258.7
Total Motility (%)	18.0
Progressive Motility (%)	19.0
Non-progressive Motility (%)	12.0
Immotile Spermatozoa (%)	22.0
Vitality (%)	69.0
Normal Forms (%)	14.0
d+ £1 + C 4	

dtype: float64

In [33]:

```
X = data_new.drop('Total Motility (%)', axis=1)
y = data_new['Total Motility (%)']
```

In [34]:

```
from sklearn.ensemble import ExtraTreesRegressor
model = ExtraTreesRegressor()
model.fit(X,y)
print(model.feature_importances_)
```

[0.00205569 0.00254137 0.0024164 0.44256015 0.09026303 0.40957871 0.04526748 0.00531717]

In [35]:

```
feat_importances = pd.Series(model.feature_importances_, index=X.columns)
feat_importances.nlargest(8).plot(kind='barh')
plt.show()
```


In [36]:

X.columns

Out[36]:

In [37]:

```
top_8 = pd.DataFrame({'Feature Importance': feat_importances.nlargest(8)})
```

In [38]:

```
top_8
```

Out[38]:

Feature Importance

Progressive Motility (%)	0.442560
Immotile Spermatozoa (%)	0.409579
Non-progressive Motility (%)	0.090263
Vitality (%)	0.045267
Normal Forms (%)	0.005317
Sperm Concentration (106/ml)	0.002541
Total Number (106)	0.002416
Semen Volume (ml)	0.002056

In [39]:

In [40]:

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
```

In [41]:

```
X = scaler.fit_transform(X)
```

In [42]:

```
from sklearn.model_selection import train_test_split
```

In [43]:

In [44]:

```
from sklearn.metrics import mean_squared_error, r2_score
```

```
In [45]:
```

```
from sklearn.linear_model import LinearRegression
```

```
In [46]:
```

```
reg = LinearRegression()
reg.fit(X_train, y_train)
```

Out[46]:

```
LinearRegression
LinearRegression()
```

In [47]:

```
y_pred = reg.predict(X_test)
```

In [48]:

```
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print(f"Mean Squared Error: {mse}")
print(f"R-squared score: {r2}")
```

Mean Squared Error: 72.60078169753363 R-squared score: 0.7618978062608279

In [49]:

```
from sklearn.tree import DecisionTreeRegressor
```

In [50]:

```
tree_reg = DecisionTreeRegressor()
```

In [51]:

```
tree_reg.fit(X_train, y_train)
```

Out[51]:

```
v DecisionTreeRegressor
DecisionTreeRegressor()
```

In [52]:

```
y_pred = tree_reg.predict(X_test)
```

```
In [53]:
```

```
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f"Mean Squared Error: {mse}")
print(f"R-squared score: {r2}")
```

Mean Squared Error: 10.876631079478054 R-squared score: 0.9643289003236261

In [54]:

from sklearn.ensemble import RandomForestRegressor

In [55]:

```
rf_reg = RandomForestRegressor()
```

In [56]:

```
rf_reg.fit(X_train, y_train)
```

Out[56]:

```
RandomForestRegressor
RandomForestRegressor()
```

In [57]:

```
y_pred = rf_reg.predict(X_test)
```

In [58]:

```
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print(f"Mean Squared Error: {mse}")
print(f"R-squared score: {r2}")
```

Mean Squared Error: 8.656957324684004 R-squared score: 0.971608562856787