Computer Vision

Lecture 12
Case Studies (Deep Convolutional Models)

Asim D. Bakhshi, PhD Military College of Signals

Object Classification

LeNet-5

LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324.

- No padding in 1998
- About 60k parameters
- Size shrinks; channels increase
- conv-pool-conv-pool-fc-fc trend
- Sigmoid/Tanh; no ReLU
- Tough paper to read

AlexNet

AlexNet

VGG-16

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).

VGG-16

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).

ResNet

He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

ResNet

He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

ResNet

He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

Object Detection

Localization and Detection

CLASSIFICATION

LOCALIZATION

DETECTION

Localization and Detection

Train the ConvNet

Localization and Detection (Sliding Windows)

Problem: Computational Cost

Localization and Detection (Convolutional)

Turning FC Layers into Convolutional Layers

Overfeat

Sermanet, Pierre, et al. "Overfeat: Integrated recognition, localization and detection using convolutional networks." arXiv preprint arXiv:1312.6229 (2013).

Overfeat

Sermanet, Pierre, et al. "Overfeat: Integrated recognition, localization and detection using convolutional networks." arXiv preprint arXiv:1312.6229 (2013).

Problem: Accuracy of Bounding Boxes

Improving Bounding Box Predictions - YOLO

Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

100 x 100

Labels for Training Set

- A total of 9 grids
- Training labels for each grid
- Elements in each label vector = 1 + 4 + no. of classes
- Objects assigned to single grid cell (centers)

Evaluating Object Localization - Intersection Over Union

Question: Is this a good or bad outcome?

Evaluating Object Localization - Intersection Over Union

(1,1)

Non-max Suppression

© 2020-2021 Asim D. Bakhshi

Non-max Suppression

Non-max Suppression

Non-max Algorithm

- Go to each detection box
- Look at the probabilities
- Discard thoses with Pc < threshold
- For remaining boxes:
 - Pick one with largest Pc
 - Output that as prediction
 - Discard remaining with higher loUs

Multiple Objects: Anchor Boxes

Multiple Objects: Anchor Boxes

Previously (3 x 3 x 8)

Each object in the training image is assigned to grid cell that contains that objects midpoint

With Two Anchor Boxes $(3 \times 3 \times 2 \times 8)$

Each object in the training image is assigned to grid cell that contains that objects midpoint and anchor box for the grid cell with higher IoU

Multiple Objects in a Grid: Anchor Boxes

YOLO Example

Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

YOLO Example

Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

Making predictions

- 1. Get predictions for each grid
- 2. Get rid of low Pc values
- 3. For each class, run non-max algo $\begin{bmatrix} p_c \end{bmatrix}$

Semantic Segmentation

General Problem

Input Image

Object Detection

Semantic Segmentation

U-Net - Original Motivation

Novikov, Alexey A., et al. "Fully convolutional architectures for multiclass segmentation in chest radiographs." *IEEE transactions on medical imaging* 37.8 (2018): 1865-1876.

Dong, Hao, et al. "Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks." *annual conference on medical image understanding and analysis*. Springer, Cham, 2017.

Chest X-Ray

Brain MRI

Per Pixel Class Labels

0. Not Car1. Car

Per Pixel Class Labels

- 1. Car
- 2. Building
- 3. Road

Segmentation Map

Transpose Convolution (Example)

Transpose Convolution (Example)

0	2	0	1
4	2	2	1

0	4	0	1
4	2	2	1

0	4	0	1
4	2	2	1

0	4	0	1
4	2	2	1
0	3		
6	3		

0	4	0	1
10	5	2	1
0	3		
6	3		

0	4	0	1
10	5	2	1
0	3		
6	3		

0	4	0	1
10	5	2	1
0	3	0	2
6	3	4	2

0	4	0	1
10	7	6	3
0	7	0	2
6	3	4	2

0	4	0	1
10	7	6	3
0	7	0	2
6	3	4	2

U-Net - Original Motivation

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." *International Conference on Medical image computing and computer-assisted intervention*. Springer, Cham, 2015.

