习题课七解答

2019年11月23日

- [记号] 设 $A = (a_{ij})$ 是 n 阶方阵, $(n \ge 2)$, $C = (c_{ij})$, 其中 c_{ij} 为 a_{ij} 的代数余子式. 记 $A^* = C^T$, A^* 称为 A 的伴随矩阵.
- [事实] 代数学基本定理: 设 $f(t) = a_0 t^n + \cdots + a_n$ 是关于 t 的 n 次多项式,系数 a_i 为复数, $a_0 \neq 0$,则 f(t) 恰好有 n 个复数根(记重数)。

习题 1. 设

$$D = \begin{vmatrix} 1 & -1 & 1 & 2 \\ 2 & 1 & 0 & -1 \\ -2 & 2 & -2 & -3 \\ -1 & 2 & -2 & -3 \end{vmatrix}$$

不直接计算 C_{ij} , 求解以下各题:

(1)
$$-2C_{11} + 2C_{21} + 3C_{31} + 4C_{41}$$
;
(2) $C_{13} + C_{23} + C_{33} + C_{43}$.

- 解. (1) 将 D 的第一行换成 (-2,2,3,4) 再求行列式, 等于 0;
 - (2) 将 D 的第三行换成 (1,1,1,1) 再求行列式, 等于 5.

习题 2. 设

$$D = \begin{vmatrix} 1 & -1 & 1 & 2 \\ 3 & 6 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ -1 & 2 & -2 & -3 \end{vmatrix}$$

 $\cancel{x} S_1 = C_{12} + 2C_{22} \not = S_2 = C_{32} + C_{42}.$

解. 由展开定理可知: $D=3S_1+S_2$. 把 a_{21},a_{22} 变成 0,然后求相应的行列式即为 S_2 ,等于 -1. 求 D=5,故 $S_1=2$.

习题 3. 设 $A = (a_{ij})$ 是 n 阶可逆矩阵, $(n \ge 2)$, 求:

- $(1) (A^*)^{-1};$
- (2) $(A^{-1})^*$;
- (3) $(kA)^*$;
- $(4) (A^*)^*.$

解. 由 $AC^T = |A|I$ 可知, $A^* = |A|A^{-1}$

- (1) $(A^*)^{-1} = |A|^{-1}A;$
- (2) $(A^{-1})^* = |A^{-1}|(A^{-1})^{-1} = |A|^{-1}A;$
- (3) $(kA)^* = |kA|(kA)^{-1} = k^{n-1}|A|A^{-1} = k^{n-1}A^*;$
- (4) $(A^*)^* = |A^*|(A^*)^{-1} = |A|^{n-1}|A|^{-1}A = |A|^{n-2}A.$

习题 4. 设

$$D(x) = \begin{vmatrix} a_{11}(x) & a_{12}(x) & a_{13}(x) \\ a_{21}(x) & a_{22}(x) & a_{23}(x) \\ a_{31}(x) & a_{32}(x) & a_{33}(x) \end{vmatrix}.$$

求 D'(x).

解. 根据大公式

$$D'(x) = \begin{vmatrix} a'_{11}(x) & a'_{12}(x) & a'_{13}(x) \\ a_{21}(x) & a_{22}(x) & a_{23}(x) \\ a_{31}(x) & a_{32}(x) & a_{33}(x) \end{vmatrix} + \begin{vmatrix} a_{11}(x) & a_{12}(x) & a_{13}(x) \\ a'_{21}(x) & a'_{22}(x) & a'_{23}(x) \\ a_{31}(x) & a_{32}(x) & a_{33}(x) \end{vmatrix} + \begin{vmatrix} a_{11}(x) & a_{12}(x) & a_{13}(x) \\ a_{21}(x) & a_{22}(x) & a_{23}(x) \\ a'_{31}(x) & a'_{32}(x) & a'_{33}(x) \end{vmatrix}.$$

习题 5. 设 A 为可逆方阵, D 为方阵, 证明:

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |A||D - CA^{-1}B|.$$

证明. 第一步, 首先证明

$$\begin{vmatrix} A & B \\ 0 & D \end{vmatrix} = |A||D|.$$

再由分块矩阵的行初等变换可知

$$\begin{bmatrix} I & 0 \\ -CA^{-1} & D \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} A & B \\ 0 & D - CA^{-1}B \end{bmatrix}.$$

因此,

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |A||D - CA^{-1}B|.$$

习题 6. 求如下推广的 n 阶范德蒙行列式:

$$\begin{vmatrix} 1 & x_1 & \cdots & x_1^{n-2} & x_1^n \\ 1 & x_2 & \cdots & x_2^{n-2} & x_2^n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & \cdots & x_n^{n-2} & x_n^n \end{vmatrix}$$

解. 将其扩充成一个标准的范德蒙 n+1 阶行列式

$$\begin{vmatrix} 1 & x_1 & \cdots & x_1^{n-2} & x_1^{n-1} & x_1^n \\ 1 & x_2 & \cdots & x_2^{n-2} & x_2^{n-1} & x_2^n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & \cdots & x_n^{n-2} & x_n^{n-1} & x_n^n \\ 1 & y & \cdots & y^{n-2} & y^{n-1} & y^n \end{vmatrix} = D_{n+1} = \prod_{1 \le i \le n} (y - x_i) \prod_{1 \le j < k \le n} (x_k - x_j).$$

原来的行列式为新的矩阵关于 y^{n-1} 的代数余子式的相反数,因此等于 D_{n+1} 关于 y 的次幂的 展开式中 y^{n-1} 的系数的相反数,即为 $(\sum_{1\leq i\leq n}x_i)\prod_{1\leq j< k\leq n}(x_k-x_j)$.

习题 7. 设 $A \in n$ 阶实方阵,求证:存在充分小的 t > 0,使得 $A + tI_n$ 是可逆的。(粗略地说,给定任何一个方阵,总可以做一个微扰,得到可逆矩阵。)

证明. $A + tI_n$ 可逆当且仅当 $|A + tI_n| \neq 0$. 把 $f(t) = |A + tI_n|$ 看成是 t 的函数. 根据大公式, $f(t) = t^n + \cdots$ 为关于 t 的 n 次多项式, 且首项系数为 1.

由代数学基本定理, f(t) = 0 至多有 n 个实根。总可以取到充分小的 $t_0 > 0$, 使得 $f(t_0) \neq 0$, 因此 $A + t_0 I_n$ 可逆.

习题 8. 设 $A \in \mathbb{R}$ 阶实方阵, $x \to \mathbb{R}^n$ 中的列向量, $\lambda \in \mathbb{R}$ 。若方程 $Ax = \lambda x$ 有非零解,则称 $\lambda \to A$ 的特征值, $x \to A$ 为属于特征值 λ 的特征向量. 求证: $A \in A$ 至多有 $n \to A$ 个不同的特征值.

证明. 与上一题类似. λ 为 A 的特征值当且仅当 $A - \lambda I_n$ 不可逆, 当且仅当 $|A - \lambda I_n| = 0$. 而 多项式 $f(t) = |A - tI_n|$ 至多有 n 个实根.

习题 9. 设 $A, B \in n$ 阶方阵, $A^* \to A$ 的伴随矩阵. 求证: $(AB)^* = B^*A^*$.

证明. (1) 先证明 A, B 都是可逆矩阵的情形: 此时

$$(AB)^* = |AB|(AB)^{-1} = |B||A|B^{-1}A^{-1} = B^*A^*.$$

(2) 利用第七题的微扰法可以证明,存在一个开区间 $(0,\delta)$,使得任取 $t \in (0,\delta)$, $A+tI_n$, $B+tI_n$ 同时可逆. 因此 $((A+tI_n)(B+tI_n))^* = (B+tI_n)^*(A+tI_n)^*$. 注意到这个矩阵等式里的 n^2 项,其中每一项都是关于 t 的多项式函数. 特别地,每一项都是 t 的连续函数. 令 $t \to 0$,得 到 $(AB)^* = B^*A^*$.

习题 10. 设 $A=(a_{ij})$ 是一个主对角线占优的 n 阶实方阵, 即 $a_{ii}>\sum_{1\leq j\leq n, j\neq i}|a_{ij}|$, 对于所有的 $1\leq i\leq n$ 成立. 求证: |A|>0.

证明. 用反证法可知,Ax = 0 没有非零解,因此 A 可逆, $|A| \neq 0$. 考虑含参数 t 的矩阵 $A(t) = (a(t)_{ij})$,其中

$$a(t)_{ij} = \begin{cases} t \cdot a_{ij} & i \neq j \\ a_{ii} & i = j \end{cases}$$

当 $t \in [0,1]$ 时, A(t) 也是主对角线占优的矩阵. 因此 $|A(t)| \neq 0$, 对于所有的 $t \in [0,1]$.

设 f(t) = |A(t)|,则 f(t) 是 t 的多项式函数,因此是连续函数.我们有 $f(t) \neq 0$,对于所有的 $t \in [0,1]$.而且, $f(0) = |A(0)| = \prod_{1 \leq i \leq n} a_{ii} > 0$.最后用反证法,假设 f(1) = |A(1)| = |A| < 0,由连续函数介值定理,一定存在 $t_0 \in (0,1)$,使得 $f(t_0) = 0$,矛盾。

习题 11. 设 $Q \in n$ 阶正交矩阵, 即 $Q^TQ = QQ^T = I_n$.

- (1) 若 |Q| < 0, 求证: $|Q + I_n| = 0$, 因此存在非零向量 $v \in \mathbb{R}^n$, 使得 Qv = -v.
- (2) 若 |Q| > 0, 试分析 $|Q I_n| = 0$ 何时成立.

证明. (1) 考虑 $f(t) = |Q + tI_n|$, 其为关于 t 的 n 次多项式,且首项系数为 1. 因为

$$f(0) < 0$$
, $\lim_{t \to +\infty} f(t) = +\infty$,

由连续函数介值定理,一定存在 $\lambda > 0$,使得 $f(\lambda) = |Q + \lambda I_n| = 0$,即 $Q + \lambda I_n$ 不满秩. 因此存在 非零向量 $\mathbf{v} \in \mathbb{R}^n$,使得 $Q\mathbf{v} = -\lambda \mathbf{v}$. 因为 Q 是正交矩阵,考虑 $(Q\mathbf{v})^T(Q\mathbf{v}) = \mathbf{v}^T Q^T Q\mathbf{v} = \mathbf{v}^T \mathbf{v}$. 另一方面 $(Q\mathbf{v})^T(Q\mathbf{v}) = \lambda^2 \mathbf{v}^T \mathbf{v}$. 因此 $\lambda^2 = 1, \lambda = 1$.

(2) 当 n 为奇数时, $|Q - I_n| = 0$ 总成立. 特别地, 当 n = 2 时,

$$Q = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix},$$

 $\theta \neq 2k\pi$ 时, $|Q - I_2| \neq 0$ 。

习题 12. 设 A 是一个 $m \times n$ 阶矩阵. 取 A 的任意 k 行和任意 k 列构成一个 k 阶方阵, 它的行列式称为 A 的一个 k 阶子式. 定义

$$r_{\text{det}}(A) = \max\{k \mid A \text{ 有一个非零的 } k \text{ 阶子式}\}.$$

求证: $r_{\text{det}}(A) = r(A)$.

证明. 设 r=r(A). 矩阵 A 的列向量组有 r 列是线性无关的,取出对应的 r 列,构成一个子矩阵 B,且 r(B)=r(A)=r.对于矩阵 B,它的行向量组有 r 行是线性无关的,取出对应的 r 行,构成一个 r 阶方阵 C,且 r(C)=r(B)=r.因此 C 是满秩的,所以 $|C|\neq 0$,也就是 A 有一个 r 阶子式不为零.因此 r 因此 r

设 $r_{\text{det}}(A) = k$, 即 A 存在一个非零的 k 阶子式, 它对应的 k 阶方阵满秩. 由 A 的这 k 列构成的向量组一定线性无关, 因此 $r = r(A) \ge k$.

另证 (大概思路): 直接证 $r_{\rm det}(A)$ 在初等变换下不变,然后在相抵标准型上与 r(A) 一样.

习题 13. 设 $A \in n$ 阶方阵, 根据 r(A) 的取值, 试分析 $r(A^*)$.

解. 分三种情况:

- (1) r(A) = n: 此时 A 可逆, $A^* = |A|A^{-1}$ 也可逆, 因此 $r(A^*) = n$.
- (2) r(A) < n-1: 由上一题知, A 的所有 n-1 阶子式全为零, 因此 $A^* = 0, r(A^*) = 0$.
- (3) r(A) = n 1: 由上一题知,A 有一个 n 1 阶子式不为零,因此 A 有一个代数余子式不为零, $A^* \neq 0, r(A^*) > 0$. 另一方面, $AA^* = |A|I_n = 0$,由此推出 $r(A^*) \leq 1$. 因此 $r(A^*) = 1$.