1. Производная сложной функции и производная обратной функции.

Предложение 1 (Производная сложной функции). Пусть f дифференцируема в точке $g(a),\ a\ g\ \partial u\phi\phi$ еренцируема в точке $a.\ T$ огда функция $f\circ g\ \partial u\phi\phi$ еренцируема в точке a $\begin{array}{l} u \ d(f \circ g)\big|_{x=a} = df\big|_{y=g(a)} \circ dg\big|_{x=a}, \ m.e. \ d(f \circ g)\big|_{x=a}(h) = df\big|_{y=g(a)} \left(dg\big|_{x=a}(h)\right). \ B \ частности, \\ m.к. \ df(q)\big|_{y=g(a)} = \ f'(g(a))q \ u \ dg\big|_{x=a}(h) = \ g'(a)(h), \ mo \ (f \circ g)'(a)h = \ d(f \circ g)\big|_{x=a}(h) = \\ \end{array}$ f'(g(a))g'(a)h для каждого h u $(f \circ g)'(a) = f'(g(a))g'(a)$.

 \mathcal{Q} оказательство. Из определения дифференцируемости имеем f(g(a)+q)=f(g(a))+ $f'(g(a))q + \alpha(q)q$, причем $\lim_{q \to 0} \alpha(q) = 0$. Будем счиатать, что $\alpha(0) := 0$ (т.е. доопределим функцию α своим пределом до непрерывной в нуле функции). Подставим в равенство выше $q = g(a+h) - g(a) = g'(a)h + \beta(h)h$, где $\lim_{h\to 0} \beta(h) = 0$. Т.е.

$$f(g(a)+q)=f(g(a))+f'(g(a))g'(a)h+\left(f'(g(a))\beta(h)+\alpha(g(a+h)-g(a))(g'(a)+\beta(h))\right)h.$$
 Заметим, что $\lim_{h\to 0} \left(f'(g(a))\beta(h)+\alpha(g(a+h)-g(a))(g'(a)+\beta(h))\right)=0$, т.к. $g(a+h)-g(a)\to 0$ при $h\to 0$ в силу непрерывности дифференцируемой функции.

Пример 2.
$$(a^x)' = (e^{x \ln a})' = (e^y)' \Big|_{y=x \ln a} (x \ln a)' = e^{x \ln a} \ln a = (\ln a) a^x$$
.

Предложение 3. Заметим, что предыдущее утверждение можно переписать в таком виде: d(f(g))(h) = df(dg(h)) = f'(g)dg(h), т.е. df(g) = f'(g)dg и в этом равенстве неважно, считаем мы д независимой переменной или функцией от другой независимой переменной. Это свойство называют инвариантностью первого дифференциала.

Предложение 4 (Производная обратной функции). Пусть f — непрерывная u строго монотонная функция, отображающая интервал I на интервал J. Предположим, что f дифференцируема в точке $a\in I$ и $f'(a) \neq 0$. Тогда обратная функция $f^{-1}\colon J o I$ дифференцируема в точке f(a) и $df^{-1}|_{y=f(a)} = (df|_{x=a})^{-1}$, т.е. $(f^{-1})'(b) = \frac{1}{f'(f^{-1}(b))}$, b = f(a).

Доказательство.

$$\lim_{q \to 0} \frac{f^{-1}(f(a) + q) - f^{-1}(f(a))}{q} = \lim_{h \to 0} \frac{f^{-1}(f(a+h)) - f^{-1}(f(a))}{f(a+h) - f(a)} = \lim_{h \to 0} \frac{h}{f(a+h) - f(a)} = \frac{1}{f'(a)}.$$

Пример 5. Имеет место равенство $(arctg x)' = \frac{1}{1+x^2}$. Действительно

$$(\operatorname{arctg} x)' = \frac{1}{\operatorname{tg}'(y)|_{y=\operatorname{arctg} x}} = \frac{1}{1+\operatorname{tg}^2(\operatorname{arctg} x)} = \frac{1}{1+x^2}.$$

Используя доказанные свойства и определение обосновывается следующая таблица производных:

- 1) (const)' = 0, 2) $(x^{\alpha})' = \alpha x^{\alpha 1}$, 3) $(a^{x})' = a^{x} \ln a$, 4) $(\log_{a} x)' = \frac{1}{x \ln a}$, 5) $(\sin x)' = \cos x$, 6) $(\cos x)' = -\sin x$, 7) $(\operatorname{tg} x)' = 1 + \operatorname{tg}^{2} x = \frac{1}{\cos^{2} x}$, 8) $(\operatorname{ctg} x)' = -1 \operatorname{ctg}^{2} x = -\frac{1}{\sin^{2} x}$, 9) $(\arcsin x)' = -(\arccos x)' = \frac{1}{\sqrt{1 x^{2}}}$, 10) $(\operatorname{arctg} x)' = -(\operatorname{arcctg} x)' = \frac{1}{1 + x^{2}}$.
- - 2. Основные теоремы дифференциального исчисления.

Определение 6. Пусть $f: D \to \mathbb{R}$. Точка $c \in D$ назывется точкой локального максимума (минимума), если существует такое $\delta > 0$, что для каждой точки $x \in D \cap B_{\delta}(c)$ выполнено f(x) < f(c) (f(x) > f(c) соответственно). Значение f(c) назывется **локальным** максимумом (минимумом) функции f.

Определение 7. Если в определении выше для каждой точки $x \in D \cap B'_{\delta}(c)$ выполнено f(x) < f(c) (f(x) > f(c) соответстенно), то c называют точкой строгого локального максимума (минимума) функции f.

Определение 8. Точки локального максимума и минимума называют точками локального экстремума, а значения в них локальными экстремумами функции.

Теорема 9 (Ферма). Пусть $f:(a,b) \to \mathbb{R}$ и $c \in (a,b)$ — точка локального экстремума. Если f дифференцируема в точке c, то f'(c) = 0.

Доказательство. Пусть c — точка локального максимума. Тогда найдется окрестность $(c-\delta,c+\delta)\subset (a,b)$, для которой выражение $\frac{f(x)-f(c)}{x-c}$ неотрицательно при $x\in (c-\delta,c)$ и неположительно при $x\in (c,c+\delta)$. Тогда, с одной стороны, выбирая последовательность $x_n=c-\frac{1}{n}$, получаем, что $f'(c)\geq 0$, а сдругой стороны, рассмотрев последовательность $y_n=c+\frac{1}{n}$, получаем, что $f'(c)\leq 0$. Таким образом, f'(c)=0.

Теорема 10 (Ролль). Пусть f непрерывна на [a,b] и дифференцируема в каждой точке интервала (a,b). Если f(a)=f(b), то найдется точка $c\in (a,b)$, для которой f'(c)=0.

Доказательство. В силу непрерывности функции f на отрезке [a,b], на нем существуют точки m и M (глобального) минимума и максимума соответственно $(f(m) \le f(x) \le f(M)$ для каждой точки $x \in [a,b]$). Если $m,M \in \{a,b\}$, то f — постоянная функция. Если $m \in (a,b)$ ($M \in (a,b)$), то по теорема Ферма f'(m) = 0 (f'(M) = 0 соответственно).

Теорема 11 (Лагранж). Пусть f непрерывна на [a,b] и дифференцируема в каждой точке интервала (a,b). Тогда найдется такая точка $c \in (a,b)$, что выполнено соотношение f(b) - f(a) = f'(c)(b-a).

Доказательство. Достаточно применить теорему Ролля к функции

$$g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Следствие 12. Пусть f дифференцируема в каждой точке интервала (a,b). Тогда f не убывает (не возрастает) на (a,b) тогда и только тогда, когда $f'(x) \ge 0$ ($f'(x) \le 0$ соответственно) для каждой точки $x \in (a,b)$. Кроме того, если f'(x) > 0 (f'(x) < 0), то f строго возрастает (соответственно, убывает) на (a,b).

Доказательство. Если f не убывает (не возрастает), то $\frac{f(x)-f(y)}{x-y}$ неотрицательно (неположительно) для произвольных $x,y\in(a,b)$. Отсюда следует, что и $f'(x)\geq 0$ ($f'(x)\leq 0$ соответстенно), как предел разностных отношений выше.

В другую сторону, при x>y, по теореме Лагранжа $f(x)-f(y)=f'(\xi)(x-y)$ для некоторой точки $\xi\in (y,x)$, откуда следует утверждение.

Следствие 13. Если f дифференцируема в каждой точке интервала (a,b) и f'(x) = 0 в каждой точке $x \in (a,b)$, то f — постоянная на (a,b) функция.

Теорема 14 (Коши). Пусть f и g непрерывны на [a,b] и дифференцируемы в каждой точке интервала (a,b). Тогда найдется такая точка $c \in (a,b)$, что выполнено соотношение (f(b)-f(a))g'(c)=f'(c)(g(b)-g(a)).

Доказательство. Применяем теорему Ролля к функции

$$\Phi(x) := (f(b) - f(a))g(x) - f(x)(g(b) - g(a)).$$

Теорема 15 (праило Лопиталя). Пусть f и g дифференцируемы на интервале (a,b) и $g'(x) \neq 0$ в каждой точке $x \in (a,b)$. Предположим, что $\lim_{x \to b-0} f(x) = \lim_{x \to b-0} g(x) = 0$ и существует предел $\lim_{x \to b-0} \frac{f'(x)}{g'(x)} = A$. Тогда существует предел $\lim_{x \to b-0} \frac{f(x)}{g(x)} = A$.

Теорема 16 (праило Лопиталя). Пусть f и g дифференцируемы на интервале (a,b) и $g'(x) \neq 0$ в каждой точке $x \in (a,b)$. Предположим, что $\lim_{x \to b-0} g(x) = \infty$ и существует npeдел $\lim_{x \to b-0} \frac{f'(x)}{g'(x)} = A$. Тогда существует npeдел $\lim_{x \to b-0} \frac{f(x)}{g(x)} = A$.

Пример 17. 1)
$$\lim_{x \to +\infty} \frac{x^n}{e^x} = \lim_{x \to +\infty} \frac{nx^{n-1}}{e^x} = \dots = \lim_{x \to +\infty} \frac{n!}{e^x} = 0.$$
2) $\lim_{x \to +\infty} \frac{\ln x}{x^n} = \lim_{x \to +\infty} \frac{x^{-1}}{nx^{n-1}} = 0.$

2)
$$\lim_{x \to +\infty} \frac{\ln x}{x^n} = \lim_{x \to +\infty} \frac{x^{-1}}{nx^{n-1}} = 0.$$