THE DISTRIBUTION OF VECTOR-VALUED RADEMACHER SERIES

S.J. DILWORTH AND S.J. MONTGOMERY-SMITH

ABSTRACT. Let $X = \sum \varepsilon_n x_n$ be a Rademacher series with vector-valued coefficients. We obtain an approximate formula for the distribution of the random variable ||X|| in terms of its mean and a certain quantity derived from the K-functional of interpolation theory. Several applications of the formula are given.

1. Results

In [6] the second-named author calculated the distribution of a scalar Rademacher series $\sum \varepsilon_n a_n$. The principal result of the present paper extends the results of [6] to the case of a Rademacher series $\sum \varepsilon_n x_n$ with coefficients (x_n) belonging to an arbitrary Banach space E. Its proof relies on a deviation inequality for Rademacher series obtained by Talagrand [9]. A somewhat curious feature of the proof is that it appears to exploit in a non-trivial way (see Lemma 2) the platitude that every separable Banach space is isometric to a closed subspace of ℓ_{∞} . The principal result is applied to yield a precise form of the Kahane-Khintchine inequalities and to compute certain Orlicz norms for Rademacher series.

First we recall some notation and terminology from interpolation theory (see e.g. [1]). Let $(E_1, ||.||_1)$ and $(E_2, ||.||_2)$ be two Banach spaces which are continuously embedded into some larger topological vector space. For t > 0, the K-functional $K(x, t; E_1, E_2)$ is the norm on $E_1 + E_2$ defined by

$$K(x, t; E_1, E_2) = \inf\{||x_1||_1 + t||x_2||_2 : x = x_1 + x_2, x_i \in E_i\}.$$

For a sequence $(a_n) \in \ell_2$, we shall denote the K-functional $K((a_n), t; \ell_1, \ell_2)$ by $K_{1,2}((a_n), t)$ for short. For $1 \leq p < \infty$, a sequence (x_n) in a Banach space (E, ||.||) is said to be weakly- ℓ_p if the scalar sequence $(x^*(x_n))$ belongs to ℓ_p for every $x^* \in E^*$. The collection of all weakly- ℓ_p sequences is a Banach space, denoted $\ell_p^w(E)$, with the norm given by $\ell_p^w((x_n)) = \sup_{||x^*|| \leq 1} ||(x^*(x_n))||_p$ (where $||(a_n)||_p = (\sum |a_n|^p)^{1/p}$). If $(x_n) \in \ell_2^w(E)$, we make the following definition:

$$K_{1,2}^w((x_n),t) = \sup_{||x^*|| \le 1} K_{1,2}((x^*(x_n)),t).$$

Observe that $K_{1,2}^w((x_n),t)$ is a continuous increasing function of t. In fact, it is a Lipschitz function with Lipschitz constant at most $\ell_2^w((x_n))$.

 $^{1991\ \}textit{Mathematics Subject Classification}.\ \text{Primary 46B20; Secondary 60B11, 60G50}.$

 $Key\ words\ and\ phrases.$ Rademacher series, K-functional, Banach space.

The second author was supported in part by NSF DMS-9001796

Next we set up some function space notation. Let (Ω, Σ, P) be a probability space. A Rademacher (or Bernoulli) sequence (ε_n) is a sequence of independent identically distributed random variables such that $P(\varepsilon_n = 1) = P(\varepsilon_n = -1) = \frac{1}{2}$. For a random variable Y defined on Ω , its decreasing rearrangement, Y^* , is the function on [0,1] defined by $Y^*(t) = \inf\{s > 0 : P(|Y| > s) \le t\}$. For $0 , the weak-<math>L_p$ norm of Y, denoted $||Y||_{p,\infty}$, is given by $||Y||_{p,\infty} = \sup_{0 < t < 1} t^{\frac{1}{p}} Y^*(t)$. As usual, $||Y||_p$ denotes $(\mathbb{E}|Y|^p)^{1/p}$. Let Ψ be an Orlicz function on $[0,\infty)$. The Orlicz norm, $||Y||_{\Psi}$, is given by $||Y||_{\Psi} = \inf\{c > 0 : \mathbb{E}\Psi(|Y|/c) \le 1\}$. We shall be particularly interested in the Orlicz functions $\Psi_q(t) = e^{t^q} - 1$ for $2 < q < \infty$. The weak- ℓ_p norm of the scalar sequence (a_n) is defined by $||(a_n)||_{p,\infty} = \sup n^{\frac{1}{p}} a_n^*$, where (a_n^*) is the decreasing rearrangement of $(|a_n|)$.

Finally, we shall write $A \approx B$ to mean that there is a constant C > 0 such that $\frac{1}{C}A \leq B \leq CA$. We shall try to indicate in each case whether the implied constant is absolute or whether it depends on some parameter, typically $p \in [1, \infty)$, entering into the expressions for A and B.

Now we can state the principal result of the paper.

MAIN THEOREM. Let $X = \sum \varepsilon_n x_n$ be an almost surely convergent Rademacher series in a Banach space E. Then, for t > 0, we have

(1)
$$P(||X|| > 2\mathbb{E}||X|| + 6K_{1,2}^w((x_n), t)) \le 4e^{-t^2/8},$$

and, for some absolute constant c, we have

(2)
$$P\left(||X|| > \frac{1}{2}\mathbb{E}||X|| + cK_{1,2}^w((x_n), t)\right) \ge ce^{-t^2/c}.$$

The proof of the Main Theorem will be deferred until the end of the paper in order to proceed at once with the applications.

Corollary 1. Let $X = \sum \varepsilon_n x_n$ be an almost surely convergent Rademacher series in a Banach space. Then, for $0 < t \le \frac{1}{10}$, we have

(3)
$$S^*(t) \approx \mathbb{E}||X|| + K_{1,2}^w((x_n), \sqrt{\log(1/t)}),$$

where S denotes the real random variable ||X||. The implied constant is absolute.

Proof. (1) and (2) give rise to the inequalities $S^*(4e^{-t^2/8}) \leq 2\mathbb{E}||X|| + 6K_{1,2}^w((x_n), t)$ and $S^*(ce^{-t^2/c}) \geq \frac{1}{2}\mathbb{E}||X|| + cK_{1,2}^w((x_n), t)$, respectively, whence (3) follows for all sufficiently small t by an appropriate change of variable. To see that the lower estimate implicit in (3) is valid in the whole range $0 < t < \frac{1}{10}$, we recall from [2] that $\mathbb{E}||X||^2 \leq 9\mathbb{E}^2||X||$. Hence, by the Paley-Zygmund inequality (see e.g. [4,p.8]), for $0 < \lambda < 1$, we have

$$P(||X|| > \lambda \mathbb{E}||X||) \ge (1 - \lambda)^2 \frac{\mathbb{E}^2 X}{\mathbb{E}X^2}$$
$$\ge \frac{1}{9} (1 - \lambda)^2,$$

whence $P(||X|| > (1 - \frac{3}{\sqrt{10}})\mathbb{E}||X||) \ge \frac{1}{10}$, which easily implies (3). \square

In [4] Kahane proved that if $P(||X|| > t) = \alpha$, where X is a Rademacher series in a Banach space, then $P(||X|| > 2t) \le 4\alpha^2$. By iteration this implies $P(||X|| > st) \le \frac{1}{4}(4\alpha)^s$ for $s = 2^n$. According to our next corollary the exponent s in the latter result may be improved to be a certain multiple of s^2 .

Corollary 2. Let $X = \sum \varepsilon_n x_n$ be an almost surely convergent Rademacher series in a Banach space. Then, for t > 0 and $s \ge 1$, we have

$$P(||X|| > st) \le \left(\frac{1}{c_1}P(||X|| > t)\right)^{c_1 s^2}$$

for some absolute constant c_1 .

Proof. By choosing $c_1 < c$, where c is the constant which appears in (2), the result becomes trivial whenever $P(||X|| > t) \ge c$. Hence we may assume that P(||X|| > t) < c. Choose $\alpha > 0$ such that $P(||X|| > t) = ce^{-\alpha^2/c}$. Then (2) gives $t \ge \frac{1}{2}\mathbb{E}||X|| + cK_{12}^w((x_n), \alpha)$. Thus,

$$st \ge \frac{s}{2} \mathbb{E}||X|| + scK_{1,2}^w((x_n), \alpha)$$
$$\ge 2\mathbb{E}||X|| + K_{1,2}^w((x_n), cs\alpha)$$

provided $s \ge \max(4, 1/c)$. Now (1) gives

$$P(||X|| > st) \le 4e^{-(cs\alpha)^2/8}$$

$$= 4\left(\frac{1}{c}(ce^{-\alpha^2/c})\right)^{c^3s^2/8}$$

$$= 4\left(\frac{1}{c}(P(||X|| > t))\right)^{c^3s^2/8},$$

which gives the result. \square

Our next corollary, which is the vector-valued version of a recent result of Hitczenko [3], is a rather precise form of the Kahane-Khintchine inequalities.

Corollary 3. Let $X = \sum \varepsilon_n x_n$ be a Rademacher series in a Banach space. Then, for $1 \le p < \infty$, we have

$$(\mathbb{E}||X||^p)^{1/p} \approx \mathbb{E}||X|| + K_{1,2}^w((x_n), \sqrt{p}).$$

The implied constant is absolute.

Proof. We may assume that $p \geq 2$. It follows from a result of Borell [2] that $(\mathbb{E}||X||^{2p})^{1/2p} \leq \sqrt{3}(\mathbb{E}||X||^p)^{1/p}$. Since $\frac{1}{2}||Y||_p \leq ||Y||_{2p,\infty} \leq ||Y||_{2p}$ for every random variable Y (as is easily verified), it follows (letting S denote the random variable ||X||) that $\frac{1}{2}||S||_p \leq ||S||_{2p,\infty} \leq \sqrt{3}||S||_p$. So it suffices to prove that $||S||_{p,\infty} \approx \mathbb{E}S + K_{1,2}^w((x_n), \sqrt{p})$ to obtain the desired conclusion. By Corollary 1, we have

$$||S||_{p,\infty} \approx \mathbb{E}S + \sup_{0 < t < 1} t^{1/p} K_{1,2}^w((x_n), \sqrt{\log(1/t)})$$

$$= \mathbb{E}S + \sup_{0 < t < 1} \left\{ t^{1/p} \sup_{||x^*|| \le 1} K_{1,2}((x^*(x_n)), \sqrt{\log(1/t)}) \right\}$$

$$= \mathbb{E}S + \sup_{||x^*|| \le 1} \left\{ \sup_{0 < t < 1} t^{1/p} K_{1,2}((x^*(x_n)), \sqrt{\log(1/t)}) \right\}.$$

To evaluate the expression in brackets we shall make use once more (see Corollary 2) of the elementary inequality $K_{1,2}((a_n), s) \leq \max(1, s/t) K_{1,2}((a_n), t)$. Thus,

$$\sup_{0 < t \le e^{-p}} t^{1/p} K_{1,2}((x^*(x_n)), \sqrt{\log(1/t)}) \le \left(\sup_{0 < t \le e^{-p}} t^{1/p} \sqrt{\frac{\log(1/t)}{p}}\right) K_{1,2}((x^*(x_n)), \sqrt{p})$$

$$= e^{-1} K_{1,2}((x^*(x_n)), \sqrt{p}).$$

Moreover,

$$\sup_{e^{-p} < t < 1} t^{1/p} K_{1,2}((x^*(x_n)), \sqrt{\log(1/t)}) \le K_{1,2}((x^*(x_n)), \sqrt{p}).$$

Finally, we obtain

$$\frac{1}{e}K_{1,2}^w((x_n), \sqrt{p}) \le \sup_{||x^*|| \le 1} \left\{ \sup_{0 < t < 1} K_{1,2}((x^*(x_n)), \sqrt{\log(1/t)}) \right\} \le K_{1,2}^w((x_n), \sqrt{p}),$$

which gives the desired result. \square

Our final application is to the calculation of the Orlicz norms $||S||_{\psi_q}$ for $2 < q < \infty$. The proof will use the scalar version of the result, which was obtained by Rodin and Semyonov [8] (see also [7]). (Recall that by a result of Kwapien, [5], $||S||_{\psi_q} \approx \mathbb{E}||X||$ in the range $0 < q \le 2$.)

Corollary 4. Let $X = \sum \varepsilon_n x_n$ be an almost surely convergent Rademacher series in a Banach space. Then, for $2 < q < \infty$, we have

$$||S||_{\psi_q} \approx \mathbb{E}||X|| + \sup_{||x^*|| \le 1} ||(x^*(x_n))||_{p,\infty},$$

where $\frac{1}{p} + \frac{1}{q} = 1$ and S denotes ||X||. The implied constant depends only on q.

Proof. It is easily verified that $||f||_{\psi_q} \approx \sup_{0 < t < 1} (\log(1/t))^{-1/q} f^*(t)$. Hence, by Corollary 1, we have

$$||S||_{\psi_{q}} \approx \mathbb{E}||X|| + \sup_{0 < t < 1} (\log(1/t))^{-1/q} K_{1,2}^{w}((x_{n}), t)$$

$$\approx \mathbb{E}||X|| + \sup_{0 < t < 1} \left\{ (\log(1/t))^{-1/q} \sup_{||x^{*}|| \le 1} K_{1,2}((x^{*}(x_{n})), t) \right\}$$

$$\approx \mathbb{E}||X|| + \sup_{||x^{*}|| \le 1} \left\{ \sup_{0 < t < 1} (\log(1/t))^{-1/q} K_{1,2}((x^{*}(x_{n})), t) \right\}$$

$$\approx \mathbb{E}||X|| + \sup_{||x^{*}|| \le 1} ||\sum_{x \in \mathbb{E}} \varepsilon_{n} x^{*}(x_{n})||_{\psi_{q}}$$

$$\approx \mathbb{E}||X|| + \sup_{||x^{*}|| \le 1} ||(x^{*}(x_{n}))||_{p,\infty},$$

where the last line follows from the result of Rodin and Semyonov. \Box

2. Proof of Main Result

The principal ingredient in the proof of the Main Theorem is the following deviation inequality of Talagrand [9].

Theorem A. Let $X = \sum_{n=1}^{N} \varepsilon_n x_n$ be a finite Rademacher series in a Banach space and let M be a median of ||X||. Then, for t > 0, we have

$$P\left(\left|\left|\sum_{n=1}^{N} \varepsilon_n x_n\right|\right| - M\right| > t\right) \le 4e^{-t^2/8\sigma^2},$$

where $\sigma = \ell_2^w((x_n)_{n=1}^N)$.

Lemma 1. Let $X = \sum_{n=1}^{N} \varepsilon_n x_n$ be a finite Rademacher series in a Banach space E. Then, for t > 0, we have

$$P(||X|| > 2\mathbb{E}||X|| + 3K((x_n)_{n=1}^N, t; \ell_1^w(E), \ell_2^w(E))) \le 4e^{-t^2/8}.$$

Proof. It follows from Theorem A that for all y_1, \ldots, y_N in E, we have

(4)
$$P(||\sum \varepsilon_n y_n|| > 2\mathbb{E}||\sum \varepsilon_n y_n|| + t\ell_2^w((y_n))) \le 4e^{-t^2/8}.$$

On the other hand, since $\max ||\sum \varepsilon_n y_n|| = \ell_1^w((y_n))$, we have the trivial estimate

(5)
$$P(||\sum \varepsilon_n y_n|| > \ell_1^w((y_n))) = 0.$$

Let $x_n = x_n^{(1)} + x_n^{(2)}$ for $1 \le n \le N$, let $X^{(1)} = \sum \varepsilon_n x_n^{(1)}$, and let $X^{(2)} = \sum \varepsilon_n x_n^{(2)}$.

$$\begin{split} \ell_1^w((x_n^{(1)})) + t\ell_2^w((x_n^{(2)})) + 2\mathbb{E}||X^{(2)}|| &\leq \ell_1^w((x_n^{(1)})) + t\ell_2^w((x_n^{(2)})) + 2\mathbb{E}||X^{(1)}|| + 2\mathbb{E}||X|| \\ &\leq 3\ell_1^w((x_n^{(1)})) + t\ell_2^w((x_n^{(2)})) + 2\mathbb{E}||X|| \\ &\leq 2\mathbb{E}||X|| + 3(\ell_1^w((x_n^{(1)})) + t\ell_2^w((x_n^{(2)}))). \end{split}$$

Let Q denote $2\mathbb{E}||X|| + 3(\ell_1^w((x_n^{(1)})) + t\ell_2^w((x_n^{(2)})))$. Then, by (4) and (5) and by the above inequality, we have

$$\begin{split} P(||X|| > Q) &\leq P(||X^{(1)}|| + ||X^{(2)}|| > \ell_1^w((x_n^{(1)})) + t\ell_2^w((x_n^{(2)})) + 2\mathbb{E}||X^{(2)}||) \\ &\leq P(||X^{(1)}|| > \ell_1^w((x_n^{(1)}))) + P(||X^{(2)}|| > 2\mathbb{E}||X^{(2)}|| + t\ell_2^w((x_n^{(2)}))) \\ &< 0 + 4e^{-t^2/8} \end{split}$$

The desired conclusion now follows from the definition of the K-functional. \Box

Lemma 2. Let x_1, \ldots, x_N be elements of the Banach space ℓ_{∞} . Then

$$K((x_n)_{n=1}^N, t; \ell_1^w(\ell_\infty), \ell_2^w(\ell_\infty)) \le 2K_{1,2}^w((x_n)_{n=1}^N, t).$$

Proof. For $1 \le n \le N$, let $x_n = (x_{n,j})_{j=1}^{\infty} \in \ell_{\infty}$. A simple convexity argument gives

$$||(x_n)||_{\ell_p^w(\ell_\infty)} = \sup_{1 \le j \le \infty} \left(\sum_{n=1}^N |x_{n,j}|^p \right)^{(1/p)}.$$

It follows that the mapping ϕ which associates an element $(y_n)_{n=1}^{\infty} \in \ell_p^w(\ell_{\infty})$ with the element in $\ell_{\infty}(\ell_p)$ whose jth coordinate equals $(y_{n,j})_{n=1}^{\infty}$ is an isometry. Hence $K((x_n),t;\ell_1^w,\ell_2^w) = K(\phi((x_n)),t;\ell_{\infty}(\ell_1),\ell_{\infty}(\ell_2))$. Let $(y_n)_{n=1}^{\infty} \in \ell_{\infty}(\ell_2)$ and let $\varepsilon > 0$. For each n there exists a splitting $y_n = z_n^{(1)} + z_n^{(2)}$ such that

$$||(z_{n,j}^{(1)})_{j=1}^{\infty}||_1 + t||(z_{n,j}^{(2)})_{j=1}^{\infty}||_2 \le K_{1,2}((y_{n,j})_{j=1}^{\infty}, t) + \varepsilon.$$

It follows that

$$\begin{aligned} ||(z_{n}^{(1)})||_{\ell_{\infty}(\ell_{1})} + t||(z_{n}^{(2)})||_{\ell_{\infty}(\ell_{2})} &= \sup_{1 \leq n < \infty} ||(z_{n,j}^{(1)})_{j=1}^{\infty}||_{1} + t \sup_{1 \leq n < \infty} ||(z_{n,j}^{(2)})_{j=1}^{\infty}||_{2} \\ &\leq 2 \sup_{1 \leq n < \infty} K_{1,2}((y_{n,j})_{j=1}^{\infty}, t) + 2\varepsilon \\ &\leq 2K_{1,2}^{w}((y_{n}), t) + 2\varepsilon. \end{aligned}$$

Since ε is arbitrary, the result now follows from the definition of the K-functional. \square

Proof of Main Theorem. First we prove (1) for a finite Rademacher series $\sum_{n=1}^{N} \varepsilon_n x_n$. Since every separable Banach space embeds isometrically into ℓ_{∞} , we may assume that E is a closed subspace of ℓ_{∞} . Recall that $K_{1,2}^w((x_n),t)$ was defined as $\sup_{||x^*|| \leq 1} K_{1,2}((x^*(x_n)),t)$. By the Hahn-Banach Theorem, the supremum is the same whether it is taken over elements of E^* or over elements of ℓ_{∞}^* . Hence (1) follows by combining Lemmas 1 and 2. The result for an infinite series follows from the result for $\sum_{n=1}^{N} \varepsilon_n x_n$ by taking the limit as $N \to \infty$. To prove (2), we use the result from [6] that there exists an absolute constant d such that $P(\sum \varepsilon_n a_n > dK_{1,2}((a_n),t)) \geq de^{-t^2/d}$ for every sequence $(a_n) \in \ell_2$. Hence

$$P\left(||\sum \varepsilon_{n}x_{n}|| > \frac{d}{2}K_{1,2}^{w}((x_{n}),t)\right) \ge \inf_{||x^{*}|| \le 1}P(||\sum \varepsilon_{n}x_{n}|| > dK_{1,2}((x^{*}(x_{n})),t))$$

$$\ge \inf_{||x^{*}|| \le 1}P(\sum \varepsilon_{n}x^{*}(x_{n}) > dK_{1,2}((x^{*}(x_{n})),t))$$

$$\ge de^{-t^{2}/d}.$$

The Paley-Zygmund inequality now gives

$$P\left(||X|| > \frac{1}{2}\mathbb{E}||X|| + \frac{d}{6}K_{1,2}^{w}((x_n), t)\right)$$

$$\geq \min\left(P\left(||X|| > \frac{3}{4}\mathbb{E}||X||\right), P\left(||X|| > \frac{d}{2}K_{1,2}^{w}((x_n), t)\right)\right)$$

$$\geq \min\left(\frac{1}{144}, de^{-t^2/d}\right). \quad \Box$$

References

- 1. J. Bergh and J. Löfstrom, *Interpolation Spaces. An Introduction*, Grundlehren der mathematischen Wissenschaften, Vol. 223, Springer-Verlag, Berlin- Heidelberg-New York, 1976.
- 2. C. Borell, On the integrability of Banach valued Walsh polynomials, Séminaire de Probabilités XIII Lecture Notes in Mathematics, Vol. 721, Springer-Verlag, Berlin-Heidelberg- New York, 1979, pp. 1–3.
- 3. P. Hitczenko, Domination inequality for martingale transforms of a Rademacher sequence, preprint (1992).
- 4. J.P. Kahane, Some Random Series of Functions, Cambridge Studies in Advanced Mathematics Vol. 5, Cambridge University Press, Cambridge, 1985.
- 5. S. Kwapień, A theorem on the Rademacher series with vector valued coefficients, Probability in Banach spaces, Oberwolfach 1975, Lecture Notes in Mathematics, Vol. 526, Springer-Verlag, Berlin-Heidelberg-New York, 1976, pp. 157–158.
- 6. S.J. Montgomery-Smith, *The distribution of Rademacher sums*, Proc. Amer. Math. Soc. **109** (1990), 517–522.
- 7. G. Pisier, De nouvelles caractérisations des ensembles de Sidon, Mathematical Analysis and Applications, Adv. Math. Supp. Stud. **7B** (1981), 686–725.
- 8. V.A. Rodin and E.M. Semyonov, *Rademacher series in symmetric spaces*, Analyse Math. 1 (1975), 207–222.
- 9. M. Talagrand, An isoperimetric theorem on the cube and the Khintchine-Kahane inequalities, Proc. Amer. Math. Soc. **104** (1988), 905–909.

Department of Mathematics, University of South Carolina, Columbia, South Carolina $29208, \ U.S.A.$

Department of Mathematics, University of Missouri, Columbia, Missouri 65211, U.S.A.