Modeling Neuronal Bursting and

Stable Low Frequency Firing

Annika Sahota Zachary McNulty Adeeb Mohammed

AD Kuffler

Overview

- 1. Hodgkin-Huxley Model
- 2. Modeling Ion Currents
 a. Calcium-gated K⁺ Channels & Bursting Activity
- 3. Works Cited

The Hodgkin-Huxley Model

- Based on observed data
- Used voltage-clamp to measure voltage sensitivity and kinetics of activation and inactivation of voltage-gated Na⁺ channels
- Generated a series of differential equations that describe the generation of an action potential
- Only had access to a mechanical calculator

$$I = C_m rac{\mathrm{d}V_m}{\mathrm{d}t} + ar{g}_\mathrm{K} n^4 (V_m - V_K) + ar{g}_\mathrm{Na} m^3 h (V_m - V_{Na}) + ar{g}_l (V_m - V_l),$$

$$rac{dn}{dt} = lpha_n(V_m)(1-n) - eta_n(V_m)n$$

$$rac{dm}{dt} = lpha_m(V_m)(1-m) - eta_m(V_m)m$$

$$rac{dh}{dt} = lpha_h(V_m)(1-h) - eta_h(V_m)h$$

$$egin{aligned} lpha_p(V_m) &= p_\infty(V_m)/ au_p \ eta_p(V_m) &= (1-p_\infty(V_m))/ au_p. \end{aligned}$$

Comments

- Stimulating current of 10nA applied at 25ms and removed at 75ms
- 4 action potentials generated
- Gating activity plotted below

Ca²⁺ Gated K⁺ Channels and Bursting Activity

Mechanism:

- Action potentials reach pre-synaptic terminal
- V-Ca²⁺ channels open, calcium flows into cell, eventually accumulates
- High Ca²⁺ activates calmodulin, subsequently stimulates K⁺ channel
- K⁺ current hyperpolarizes cell and prevents membrane potential from reaching threshold

Modeling Ca²⁺ Gated K⁺ Channels

Assumptions

- V-gated Ca²⁺ channels behave similarly to V-gated K⁺; slow inactivation
- Ca²⁺ entry proportional to Ca²⁺ current
- Ca²⁺ removal follows exponential decay

Comments

Works Cited

- Amberg, Gregory C., et al. "A-Type Potassium Currents in Smooth Muscle." *American Journal of Physiology-Cell Physiology*, vol. 284, no. 3, 1 Mar. 2003, doi:10.1152/ajpcell.00301.2002.
- McCormick, David A. "Hodgkin-Huxley Model." *Hodgkin-Huxley Model an Overview | ScienceDirect Topics*, 2014, www.sciencedirect.com/topics/neuroscience/hodgkin-huxley-model.
- Miller, Paul. An Introductory Course in Computational Neuroscience. The MIT Press, 2018.
- Xia, X.-M., et al. "Mechanism of Calcium Gating in Small-Conductance Calcium-Activated Potassium Channels." *Nature News*, Nature Publishing Group, 1 Oct. 1998, www.nature.com/articles/26758.