东南大学电工电子实验中心 实验报告

课程名称: 数字与逻辑电路实验 A

第一次实验

头验名称: _	组合逻辑	甩路		
院 (系): _	自动化	_专	业:	自动化
姓 名: _	邹滨阳	学	号:	08022305
字 验 室: _		实验	组别:	
同组人员:_			:时间:	2023年11月2日
一 评定成绩:			教师:	

一、 实验目的

- 1、认识数字集成电路,能识别各种类型的数字器件和封装;
- 2、掌握小规模组合逻辑和逻辑函数的工程设计方法;
- 3、掌握常用中规模组合逻辑器件的功能和使用方法;
- 4、学习查找器件资料,通过器件手册了解器件;
- 5、了解实验箱的基本结构,掌握实验箱电源、逻辑开关和 LED 电平指示的用法;
- 6、学习基本的数字电路的故障检查和排除方法。

二、 实验原理 (预习报告内容)

- 1. 数值判别电路(只允许用与非门、非门设计电路)
 - a) 用与非门设计一个组合逻辑电路,接收 8421BCD 码 $B_3B_2B_1B_0$,当 $2 < B_3B_2B_1B_0$

<7 时输出 Y 为 1

根据要求列出真值表:

10.//10.71日八	HT 141			
В3	B2	B1	В0	Υ
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	无意义
1	1	1	1	无意义

卡诺图.

LUEI:			\sim		
B3B2\B1B0	00	01	11	10	
00	0	0	1	0	
01		1	0	1	
41	天意义	王意义	无意义	天意义	
10	0	0	无意义	无意义	

根据卡诺图得到表达式:

 $F = \overline{B_2}B_1B_0 + B_2\overline{B_1} + B_2\overline{B_0} = \overline{B_2}B_1B_0 + B_2(\overline{B_1} + \overline{B_0}) = \overline{B_2}B_1B_0 + B_2\overline{B_1B_0} = \overline{\overline{B_2}B_1B_0} = \overline{\overline{B_2}B_1B_0}$ 根据表达式画出逻辑原理图:

$$F = \overline{B_2}B_1B_0 + B_2\overline{B_0}^{**} + B_2\overline{B_1} = \overline{B_2}B_1B_0\overline{B_2}\overline{B_0}\overline{B_2}\overline{B_1}$$

$$= \overline{B_2}B_1B_0 + B_2(\overline{B_0} + \overline{B_1})$$

$$= \overline{B_2}B_1B_0 + B_2\overline{B_0}\overline{B_1}$$

$$= \overline{B_2}B_1B_0\overline{B_2}\overline{B_0}\overline{B_2}$$

$$= \overline{B_2}B_1B_0\overline{B_2}\overline{B_0}\overline{B_2}$$

$$= \overline{B_2}B_1B_0\overline{B_2}\overline{B_0}\overline{B_2}$$

$$= \overline{B_2}B_1B_0\overline{B_2}\overline{B_0}\overline{B_2}$$

$$= \overline{B_2}B_1B_0\overline{B_2}\overline{B_0}\overline{B_2}$$

预搭接硬件连接图(实物连线拍照):

b) 用与非门设计一个组合逻辑电路,接收 4 位 2 进制数 $B_3B_2B_1B_0$,当 $2 < B_3B_2B_1B_0$ < 7 时输出 Y 为 1

根据要求列出真值表:

B3	B2	B1	В0	Υ
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	1	0	1
0	1	1	1	0
1	1	1	1	0

卡诺图:

B3B2\B1B0	00	01	11	10	
00	0	0	1	0	
Q 1	40	1	0	1	
11	0	0	0	0	
10	0	0	0	0	

根据卡诺图得到表达式:

$$F=\overline{B_3} \ \overline{B_2} B_1 B_0 + \overline{B_3} B_2 \overline{B_0} + \overline{B_3} B_2 \overline{B_1} = \overline{\overline{B_3} \ \overline{B_2} B_1 B_0} \ \overline{\overline{B_3} B_2 \overline{B_0}} \ \overline{\overline{B_3} B_2 \overline{B_1}}$$

根据表达式画出逻辑原理图:

预搭接硬件连接图 (实物连线拍照):

2、用三种方案设计实现 3 位二进制原码转补码电路(3 位二进制数仅考虑 0 和负数, 且已省去符号位)

根据题意列出真值表

A2	A1	A0	S2	S1	S0
0	0	0	0	0	0
0	0	1	1	1	1
0	1	0	1	1	0
0	1	1	1	0	1
1	0	0	1	0	0

1	0	1	0	1	1
1	1	0	0	1	0
1	1	1	0	0	1

a) 全部用门电路实现

卡诺图:

S2

00	01	11	10
	1	(1)	1
1			
00	<u>p</u>	11	10
	1		1
	1		1)
00	01	11	10
	1	1	
	1	1	
	00	00 01 1 1	00 01 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

根据卡诺图得到表达式:

$$S_2 = A_2\overline{A_1}\,\overline{A_0} + \overline{A_2}A_1 + \overline{A_2}A_0 = \overline{A_2}\overline{A_1}\,\overline{A_0}\,\overline{\overline{A_2}A_1}\,\overline{\overline{A_2}A_1}\,\overline{\overline{A_2}A_1}$$
 $S_1 = \overline{A_1}A_0 + A_1\overline{A_0} = \overline{\overline{A_1}A_0}\,\overline{\overline{A_1}A_0}\,\overline{\overline{A_1}A_0}$ $S_0 = A_0$

根据表达式画出逻辑原理图:

预搭接硬件连接图 (实物连线拍照):

b) 用数据选择器 74151+门电路实现

结合 151 功能得到逻辑表达式:

$$S_2 = \overline{A2} \ \overline{A1} \ A0 + \overline{A2} \ A1 \ \overline{A0} + \overline{A2} \ A1 \ A0 + A2 \ \overline{A1} \ \overline{A0}$$

$$S_1 = \overline{A2} \ \overline{A1} \ A0 + \overline{A2} \ A1 \ \overline{A0} + A2 \ \overline{A1} \ A0 + A2 \ A1 \ \overline{A0} \ S_0 = \overline{A2} \ \overline{A1} \ A0 + \overline{A2} \ A1 \ A0 + A2 \ \overline{A1} \ A0 + A2 \ A1 \ A0$$

根据表达式画出逻辑原理图:

预搭接硬件连接图 (实物连线拍照):

c) 用三八译码器 74138+门电路实现

结合 138 功能得到逻辑表达式:

$$S_{1} = \overline{D_{1} \cdot D_{2} \cdot D_{3} \cdot D_{4}}$$

$$S_{1} = \overline{D_{1} \cdot D_{2} \cdot D_{5} \cdot D_{6}}$$

$$S_{2} = \overline{D_{1} \cdot D_{3} \cdot D_{5} \cdot D_{5}}$$

根据表达式画出逻辑原理图:

预搭接硬件连接图 (实物连线拍照):

3、 人类有四种血型: A、B、AB 和 O 型。输血时,输血者与受血者必须符合下图的规定,否则有生命危险, 利用数据选择器和最少数量的与非门,完成血型配对任务。

设 01 (或 10,00,目的最简) 代表 A 型血, 10 代表 B 型血, 00 代表 O 型血, 11 代表 AB 型血, A1B1 1 代表输血, A2B2 0 代表受血, Y 代表输出。列出真值表:

II WC ND	Limi, Nibi i	1 (-10-111) mr.)	ZDZ O TORX	ш,	C.III) CTI 0 / J CTI 2	一人人
A1	B1	输血	A2	B2	受血	Υ
0	0	1	0	0	0	1
		1	0	1	0	1
		1	1	0	0	1
		1	1	1	0	1
0	1	1	0	0	0	0
		1	0	1	0	1
		1	1	0	0	0
		1	1	1	0	1
1	0	1	0	0	0	0

		1	0	1	0	0
		1	1	0	0	1
		1	1	1	0	1
1	1	1	0	0	0	0
		1	0	1	0	0
		1	1	0	0	0
		1	1	1	0	1

得到卡诺图,并降维化简:

10211	TEL TITLE			
A1B1\A2B2	00	01	11	10
00 <	1	*		1
01		1	11	
11			1	
10			1	1
			9	

A1B1\A2	0	1
00	1	1
01	А	Α
11	0	Α
10	0	1

对应的 74151

A1	B1	A2	74151 输出
0	0	0	1
0	0	1	1
0	1	0	Α
0	1	1	Α
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	Α

4、选做实验

保险箱数字密码锁

设计一个保险箱的数字密码锁,该锁有规定的 4 位代码 A1, A2, A3, A4 的输入端和一个开箱钥匙孔信号 E 的输出端,锁的代码由实验者自编(例如 1011),当用钥匙开箱时(E=1),如果输入代码符合锁规定代码,保险箱被打开(Z1=1);如果不符,电路将发生报警信号(Z2=1)。要求使用最少数量的与非门实现电路,检测并记录实验结果

设置密码为 1011,根据要求列出真值表:

	1.0	10		_	74	70
A1	A2	A3	A4	E	Z1	Z2
无意义	无意义	无意义	无意义	0	0	0
0	0	0	0	1	0	1
				1	0	1
1	0	1	0	1	0	1
1	0	1	1	1	1	0
1	1	0	0	1	0	1
•••		•••	•••	1	0	1
1	1	1	1	1	0	1

卡诺图:

A1A2\A3A4	00	01	11	10
00				
01				
11				
10			1	

根据卡诺图得到表达式:

 $Z1 = EA1\overline{A2}A3A4$

 $Z2 = EA1\overline{A2}A3A4$

根据表达式画出原理图:

三、 实验仪器 (实验过程中用到的仪器设备型号,使用情况,使用软件)

实验仪器主要是数字逻辑实验箱,型号为 DL-2000,可以提供稳定的电源、逻辑开关和 LED 指示灯等;

实验所用的数字集成电路有与非门 7400 7420、数据选择器 74151、三八译码器 74138 等,型号和引脚图可参考[数据手册];

实验中没有使用软件,只用了简单的电路设计和连线工具。

四、实验记录

1、数值判别电路

a) 8421BCD 码

验证表格如下:

В3	B2	B2	B1	В0
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0

b) 4位2进制数 验证表格如下:

B3	B2	B2	B1	В0
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

2、二进制原码转补码电路

a) 全部用门电路实现

验证表格如下:

B2	B1	В0	S2	S1	S0
0	0	0	0	0	0
0	0	1	1	1	1
0	1	0	1	1	0
0	1	1	1	0	1
1	0	0	1	0	0
1	0	1	0	1	1
1	1	0	0	1	0
1	1	1	0	0	1

b) 用数据选择器 **74151**+门电路实现 验证表格如下:

	P41H 241 1 4				
B2	B1	В0	S2	S1	S0
0	0	0	0	0	0
0	0	1	1	1	1
0	1	0	1	1	0
0	1	1	1	0	1
1	0	0	1	0	0
1	0	1	0	1	1
1	1	0	0	1	0

1	1	1	0	0	1

c) 用三八译码器 74138+门电路实现

验证表格如下:

B2	B1	В0	S2	S1	S0
0	0	0	0	0	0
0	0	1	1	1	1
0	1	0	1	1	0
0	1	1	1	0	1
1	0	0	1	0	0
1	0	1	0	1	1
1	1	0	0	1	0
1	1	1	0	0	1

3、血型判别

验证表格如下:

A1	B1	A2	B2	Υ
0	0	0	0	1
		0	1	1
		1	0	1
		1	1	1
0	1	0	0	0
		0	1	1
		1	0	0
		1	1	1
1	0	0	0	0
		0	1	0
		1	0	1
		1	1	1
1	1	0	0	0
		0	1	0
		1	0	0
		1	1	1

4、选做实验密码锁

验证表格如下:

	•					
A1	A2	A3	A4	E	Z1	Z2
无意义	无意义	无意义	无意义	0	0	0
0	0	0	0	1	0	1
	•••	•••	•••	1	0	1
1	0	1	0	1	0	1
1	0	1	1	1	1	0
1	1	0	0	1	0	1

•••				1	0	1
1	1	1	1	1	0	1

五、实验分析 (根据实验记录分析描述各实验结果是否符合设计要求)

实验一中,数值判别电路的输出结果与预期一致,能够正确地判断输入的 8421BCD 码或 4 位 2 进制数是否在 2 到 7 之间;

实验二中,二进制原码转补码电路的输出结果与预期一致,能够正确地将 3 位二进制原码转换为补码,并且用了三种不同的方案实现了相同的功能;

实验三中,血型判别电路的输出结果与预期一致,能够正确地根据输血者和受血者的血型判断是否可以输血,并且用了数据选择器和与非门实现了最简化的电路;

实验四中,保险箱的输出结果与预期一致,能够正确地根据钥匙的存在与否和密码的正确与 否判断是否报警和是否开锁,并且用了与非门实现了最简化的电路;

六、 实验小结(总结实验完成情况,对设计方案和实验结果做必要的讨论,简述实验 收获和体会)

本次实验完成了四个不同的组合逻辑电路设计任务,分别是数值判别电路、二进制原码转补码电路、血型判别电路和密码锁电路;

设计方案时,我运用了真值表、卡诺图、逻辑表达式等方法,尽量使电路简化和优化, 并且考虑了不同的实现方案和器件选择:

实验过程中,我按照原理图进行了正确的连线,并且用逻辑开关和 LED 指示灯进行了验证和测试,确保输出结果符合设计要求;同时我学习了查找器件资料、使用数据手册、掌握实验箱操作等基本技能,也加深了对组合逻辑电路工程设计方法的理解和应用;

通过本次实验,我感受到了数字逻辑电路设计的乐趣和挑战,也提高了我的动手能力和创新能力。

七、 参考资料 (记录实验过程阅读的有关资料,包含资料名称、作者等)

《数字集成电路数据手册》,国防工业出版社

《数字逻辑与数字系统》,王银城等编著,清华大学出版社

《数字逻辑与数字系统设计》,陈宏等编著,高等教育出版社

(PS: 模板部分为蓝色字, 自己描述的部分用黑色字, 5 号字, 便于区别, 完成报告时此行

字删除)