University of Strathclyde, Department of Mathematics and Statistics

MM102 Applications of Calculus Exercises for Week 4

1. Determine the equations for the tangent and the normal to the graph of the function

$$f(x) = \sin x$$

at the point $x = \frac{\pi}{4}$.

- 2. Find $\frac{dy}{dx}$ as a function of x and y given that
 - (a) $x^3 + y^3 = 1$
 - (b) $2x^3 \sin y + y^2 xy^3 = 1$
 - (c) $\sqrt{xy} + \sin x + \cos y = 0$
 - (d) $\sin(xy) = \cos x \cdot \cos y$
 - (e) $\sin(x+y^2) = y$
 - (f) $\sin x + \cos y = 1$
 - (g) $e^y xy^2 = 3$
- 3. Show that the given point lies on the curve. Moreover, find the tangent to the curve at that point.
 - (a) $y^2 = 2x^3$, (2, -4)
 - (b) $(x+y)^3 = 2x + y + 3,$ (3,-1)
 - (c) $xy^3 x^3y = 30$, (2,3)
 - (d) $x = y \cos y, \qquad (\frac{\pi}{2}, \frac{\pi}{2})$
- 4. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ as functions of x and y given that
 - (a) $xy^2 + y = 1$
 - (b) $y^4 + y = x^3$

- 5. Find $\frac{dy}{dx}$ as a function of the parameter t when x and y are given by
 - (a) $x = 4t^2 1$, y = 2t + 1
 - (b) $x = 2 \sec t$, $y = \tan t$
 - (c) $x = \frac{1-t^2}{1+t^2}$, $y = \frac{2t}{1+t^2}$
 - (d) $x = t + \frac{1}{t}$, $y = t \frac{1}{t}$
- 6. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ as functions of the parameter t when x and y are given by
 - (a) $x = \ln t + 2$, $y = t^3 + 2t$
 - (b) $x = \cos t + t$, $y = \sin t + t^2$
 - (c) $x = t^2$, $y = t^3$
 - (d) $x = t^2 + t$, $y = 2t^3 + t^2 + 1$
- 7. Find the equations for the tangent and the normal to the curve given parametrically by

$$x = t^2 + \frac{1}{t}$$
, $y = t^2 - t + 1$

- at the point where t = 1.
- 8. Find the length of the given curve:

(a)
$$x = t - \frac{t^2}{2}$$
, $y = \frac{4}{3}t^{3/2}$, $t \in [0, 1]$

(b)
$$x = \ln t$$
, $y = \frac{1}{2} \left(t + \frac{1}{t} \right)$, $t \in [1, 2]$

(c)
$$x = 3t^2$$
, $y = 3t^3 - t$, $t \in [0, 1]$

(d)
$$x = 2t^{3/2} + 1$$
, $y = 4t - 2$, $t \in [0, 1]$

9. Find the surface area when the following parametric curve is rotated about the x-axis by 360° :

$$x = t - \frac{t^2}{2}$$

$$t \in [0, 1]$$

$$y = \frac{4}{3}t^{3/2}$$