SPEZIFIKATION

Flexible ALU

Version	Bearbeiter	Neuerung
1.0		

Inhaltsverzeichnis

1	Dat	enblatt 2
	1.1	Funktionen
	1.2	Features
	1.3	Blockschaltbild
		1.3.1 Außen
		1.3.2 Innen
	1.4	Fachliche Beschreibung extern
2	Spe	zifikation
2	2.1	Komponenten
		2.1.1 Register
		2.1.2 Bidirektionale Register
		2.1.3 74_181
	2.2	PROM
		2.2.1 Ein-/Ausgänge
		2.2.2 Programmierung
	2.3	Gate-Count
	2.4	Timing-Diagramm

1. Datenblatt

1.1 Funktionen

CMD)	
2	1	0	Logisch/arithmetischer Ausdruck
0	0	0	AND
0	0	1	OR
0	1	0	NOT
0	1	1	ADD
1	0	0	SUB
1	0	1	MUL
1	1	0	MCo
1	1	1	MC1

Tabelle 1.1: Befehls-Codierung

1.2 Features

1.3 Blockschaltbild

1.3.1 Außen

Abbildung 1.1: Äußeres Blockschaltbild

1.3.2 Innen

Für das innere Schaltbild siehe Seite 3.

Abbildung 1.2: Inneres Blockschaltbild

1.4 Fachliche Beschreibung extern

Port	Тур	Funktion	
Cin	Input		
CMDo2	Bidirektional	Auswahl des Befehls. Codierung siehe S. 2	
	Bidirektional	IN: Operand 1 wird mit WriteRegA angelegt.	
Ao3		OUT: Ist Busy o, liegt hier das Ergebnis der Berechnung an.	
A03		Die Subtraktion liefert das 2er-Komplement.	
		Multiplikation liefert hier die LSBits des Ergebnisses.	
WriteRegA	Input	Wenn 1, wird Operand 1 in Register A geschrieben.	
		IN: Operand 2 wird mit WriteRegB angelegt.	
Bo3	Bidirektional	OUT: Wird Busy o, liegt hier o an,	
		die Multiplikation liefert hier die MSBits des Ergebnisses.	
WriteRegB	Input	Wenn 1, wird Operand 2 in Register B geschrieben.	
Reset	Input	Register werden zurückgesetzt.	
Start	Input	Die Operation wird mit den angelegten Operanden durchgeführt.	
CLK	Input	Takt.	
Rusy	Output	Ist 1, solange die ALU arbeitet.	
Busy		Wird Busy o, liegt das Ergebnis an Ao3 und Bo3 an.	
OF	Output	OF ist 1, wenn die letzten beiden Übertragsbits ungleich sind	
OF		und somit ein Overflow auftritt.	
Zero	Output	Zero ist 1, wenn alle Ergebnisbits o sind.	
Equal	Output	Equal ist 1, wenn die 4 Ergebnisbits von A und B bitweise gleich sind.	
Cout	Output	Tritt während der Berechnung ein Übertrag über die letzte Bitstelle auf,	
Cout		wird Cout 1 und kann weiter behandelt werden.	

Tabelle 1.2: Liste aller Ports

2. Spezifikation

2.1 Komponenten

2.1.1 Register

Ein-/Ausgänge

2.1.2 Bidirektionale Register

Ein-/Ausgänge

2.1.3 74_181

Ein-/Ausgänge

2.2 PROM

- 2.2.1 Ein-/Ausgänge
- 2.2.2 Programmierung

2.3 Gate-Count

Für eine detaillierte Angabe der Gatteräquivalente siehe S. 6.

2.4 Timing-Diagramm

Тур	Gatteräquivalente	Anzahl	Summe					
Gatter	Gatter							
AND2	1,5	65	97,5					
AND3	2	13	26					
AND4	2,5	12	30					
AND5	3	4	12					
Inv	0,5	11	5,5					
Mult2:1	3	28	84					
Mult4:1	7	0	0					
Mult8:1	16	9	144					
NAND2	1	6	6					
NAND3	1,5	0	0					
NAND4	2	0	0					
NAND6	4,5	0	0					
NAND8	5,5	0	0					
NOR2	1	0	0					
NOR3	1,5	0	0					
NOR4	2	0	0					
OR2	1,5	21	31,5					
OR3	2	4	8					
OR4	2,5	9	22,5					
OR5	3	4	12					
XNOR2	3	0	0					
XOR2	3	32	96					
Speicher (Angabe / bit)								
DFF	7	4	28					
DFF-R	8	0	0					
DFF-S	8	0	0					
DFF-SR	9	0	0					
DRAM	5	0	0					
DRAM (o. Anst.)	0,25	0	0					
SRAM	7,5	0	0					
SRAM (o. Anst.)	1	0	0					
Buffer4	4	19	76					
74_181	108,5	1	108,5					
Gesamtsumme:	787,5							

Tabelle 2.1: Gatteräquivalente