Matrizes

Fernando Jorge
Escola Estadual Professor Lima Castro

2 de maio de 2023

Sumário

1. Introdução

Definição

O que é uma Matriz?

	(1) Norte	(2) Nordeste	(3) Sudeste	(4) Sul	(5) Centro-Oeste
(1) Homens	69,1	66,5	70,4	71,6	70,6
(2) Mulheres	74,9	73,8	78,5	78,5	77,5

Disponível em: http://www.ibge.gov.br>. Acesso em: 9 nov. 2009.

Matriz é toda tabela de números dispostos por linhas e colunas. Sabendo disso, qual a expectativa de vida de uma mulher residente na região Sul do país?

Definição

Veja a tabela do slide anterior disposta como uma Matriz.

$$\begin{pmatrix}
69.1 & 66.5 & 70.4 & 71.6 & 70.6 \\
74.9 & 73.8 & 78.5 & 78.5 & 77.5
\end{pmatrix}_{2 \times 5}$$
Número de Colunas (n)

Número de Linhas (m)

Toda Matriz é representada por parênteses () ou colchetes []. A Matriz acima é do tipo 2×5 , pois tem 2 linhas e 5 colunas.

Representação Genérica

Indicamos por a_{ij} o elemento posicionado na linha i e na coluna j de uma matriz A. Na matriz:

$$A_{3\times 2} = \begin{bmatrix} 6 & 7 \\ -4 & 0 \\ 2 & -1 \end{bmatrix}$$

- o elemento 6 está na linha 1 e na coluna 1; por isso, ele é indicado por a_{11} , ou seja, $a_{11} = 6$;
- o elemento 7 está na linha 1 e na coluna 2; por isso, ele é indicado por a_{12} , ou seja, $a_{12} = 7$;
- analogamente, temos $a_{21} = -4$, $a_{22} = 0$, $a_{31} = 2$, $a_{32} = -1$.

Representação Genérica

Representamos genericamente uma matriz A do tipo $m \times n$ da seguinte maneira:

$$A_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}$$

Forma abreviada: $A = (a_{ij})_{m \times n}$

Representação Genérica

Examples

Representar explicitamente a matriz $A = (a_{ij})_{2\times 4}$ tal que $a_{ij} = 2i + j$.

Matriz Quadrada

$$\left(\begin{array}{cccc}
4 & 9 & 0 \\
-6 & 2 & 4 \\
3 & 5 & -2
\end{array}\right)$$

Ordem da Matriz: 3

Obs: Apenas matrizes quadradas possuem diagonal principal e secundária.

Diag. Princ: i = j

Diag. Secun: i + j = n + 1

Matriz Identidade (I_n)

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Matriz Nula

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Transposta de uma Matriz – Troca-se linhas por colunas M^t

a) A transposta de
$$A_{3\times 2} = \begin{bmatrix} 5 & -4 \\ 6 & 2 \\ 0 & 7 \end{bmatrix}$$
 é a matriz $A_{2\times 3}^t = \begin{bmatrix} 5 & 6 & 0 \\ -4 & 2 & 7 \end{bmatrix}$

b) A transposta de
$$B_{1\times4}=\begin{bmatrix}2&0&-5&8\end{bmatrix}$$
 é a matriz $B_{4\times1}^t=\begin{bmatrix}2\\0\\-5\\8\end{bmatrix}$

Igualdade de Matrizes

Duas Matrizes do mesmo tipo são iguais quando todos os elementos correspondentes são iguais.

Examples

Determinar o número real
$$x$$
 tal que:
$$\begin{bmatrix} 6 & x^2 - 5 \\ 0 & x \end{bmatrix} = \begin{bmatrix} 6 & 11 \\ 0 & 4 \end{bmatrix}$$

Exercícios Propostos

Resolver os exercícios do pdf de Matrizes: pg 4.

Fim