

SAGAR INSTITUTE OF SCIENCE & TECHNOLOGY(SISTec) DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

QUESTION BANK

BRANCH CSE SESSION

NAME OF THE FACULTY:

SUBJECT/CODE: BT-401/Engineering Mathematics-III

UNIT-1

Q No.				QUI	ESTIONS				Bloom's Taxono my Level
1.	Solve the reby the met				9 = 0 whic	ch lies be	etween	1 and 2	3(Apply)
	Using the G find f (9) in		ifference	e formula	and Lagi	ange's li	nterpol	ation formul	а
		<i>x</i> :	4	5	7	10	11	13	
2.		y = f (x)	48	100	294	900	1210	2028	3(Apply)
	Interpret th	e sale fo	or 1966 ı	using Nev				ion formula	
3.	Year	1931	1941	1951	196	1 19	971	1981	
O.	Sales	12	15	20	27	39)	52	3(Apply)
4.	Evaluate $\frac{\Delta}{1}$	sin(x+h	$1) + \frac{\Delta^2 si}{E sir}$	n(x+h) n(x+h)					3(Apply)
5.	Solve the recorrect to 4				= <i>x</i> by N	ewton Ra	aphson	method	3(Apply)
	Using Lagr		nethod	to find th	e value o	of x wh	en f (x) = 15 fro	om the 3(Apply)
6.		x	5	6	9	11			
		y = f(x)	12	13	14	16			
	Solve the c	ubio pol	vnomial	which tol	os tha fa	llowing	valuas:		2(Apply)
_	$\frac{1}{x}$		<u>ynomiai</u> 0	1	2	ilowing v	3		3(Apply)
7.	f(x)		1	2	1		10		
8.	Solve the o	ube roo	t of 2 ap	oproximat	ely by No	ewton Ra	aphson	method co	rrect 3(Apply)
Ο.	to five deci	mal Plac	ces.		-				

	The following in a certain			s obtained	by 100 stud	ents in Math	ematics	3(Apply)	
10.	Marks:	30-40	40-50	50-60	60-70	70-80			
	No. of candidates:	25	35	22	11	7			
	How many o	of students	got more t	han 55 mark	s?				
	(i) Evalu	ate Δ(e ^{ax}	logbx)					3(Apply)	
11.	(ii)Evalu	ate $\left(\frac{\Delta^2}{E}\right)^2 e^x$.	$\frac{Ee^{x}}{\Delta^2e^{x}}$						
	The pressur	re p of wir	d correspoi	nding to vel	ocity v is gi	ven by the f	ollowing	3(Apply)	
12.	data estimate p when v=1.5.								
12.	V	10	20	30	40				
	p	1.1	2.0	30	40				
	Find the cu	bic polyno	mial which t	akes the fol	lowing value	es:		3(Apply)	
13.	X	0		1		2	3	· · · · · · · ·	
	f(x)	1		2		1	10		
	Hence or of								
14.	Find the roo	ot of equa	t ion x log ₁₀ x	= 4.77239	3 by Newt	on Raphson	method	3(Apply)	
	correct to 6								
15.	Find the roo		quation xe ^x	= cosx by R	tegula falsi	Method corr	ect to 4	3(Apply)	

UNIT-II

Q No.				QUESTI	ONS				Bloom's Taxonomy Level
	Find $\frac{dy}{dx}$ and	$\frac{d^2y}{dx^2}$ at x=1	.1 from the	following	table				3(Apply)
	dx x	1.0	1.2	1.4	1.6		1.8	2.0	
1.	y	0	0.1280	.5440	1.296	50	2.4320	4.0	
	Find dy/dx at x								3(Apply)
2.	x	0.5	0.75	1		1.2		1.5	
	у	0.3521	0.3011	0.24	120	0.1	827	0.1295	
3.	Find dy/dx at x	0.1 1.10517	0.2	0	3 34986		0.4 1.49182		3(Apply)
4.	Find dy and	x 1	4, using 1 2 1 1	4 5	8 21		10 27		3(Apply)
5.	Evaluate \int_0^6	1 . 7		(i) Trape	zoidal	rule	(ii)Simps	on's 1/3 rule(iii)	3(Apply)
6.	Evaluate $\int_{0.5}^{0.7}$			ısing suita	ble forr	nula.			3(Apply)
7.		$\frac{1}{4x+5}dx by$	using Sim	pson's 1/				nge into 10 equal	3(Apply)
8.	-	• • • •			e. Hen	ce o	btain app	roximate value of	3(Apply)
9.	Find the val		dx by Sim r	son's 1/3	rule.				3(Apply)
10.	Solve the fo	ollowing ed	quations by	/ Gauss eli	minatio			16	3(Apply)
11.	Solve the fo	ollowing ed	+ z = 10, 3 quation by y + z = 12	Gauss Jo	rdon me	ethoc	t		3(Apply)
12.	Solve the f (i) 3x + 2y + (ii) 10x + y	following e + 7z = 4, 2:	quations b < + 3y + z =	oy Crout's 5,3x + 4	method y + z = 7	7	-	,	3(Apply)
13.		following e		(i) Gauss	-Jaco	bi m	ethod and	d (ii) Gauss Seidel	3(Apply)
14.	Solve the method	following		y (i) Gau	ss -Ja	cobi	method	and Gauss Seidel	3(Apply)
15.	Solve the fo	ollowing ed		Gauss Jor	dan me	thod			3(Apply)

UNIT-III

Q No.	QUESTIONS	Bloom's Taxonomy Level
1.	Using Taylor's series method to obtain approximate value of y at x = 0.2 for the Differential equation $\frac{dy}{dx} = 2y + 3e^x$, $y(0) = 0$.compute the numerical solution with the exact solution.	3(Apply)
2.	Using Taylor's series method to obtain approximate value of y at x = 0.1 and x=0.2 for the Differential equation $\frac{dy}{dx} = x^2y - 1, y(0) = 0$	3(Apply)
3.	Using Euler's method find an approximate value of y corresponding to x = 0.1, given that $\frac{dy}{dx} = \frac{y-x}{y+x}$ with y(0) = 1.	3(Apply)
4.	Using Euler's method, solve the differential equation in six steps $\frac{dy}{dx} = x + y$ with the initial conditions $y(0) = 0$, choosing $h = 0.2$	3(Apply)
5.	Solve by Euler's modified method $\frac{dy}{dx} = \log_e(x + y)$, $y(0) = 2$ at $x = 1.2$ and at $x = 1.4$ with $h = 0.2$.	3(Apply)
6.	If $\frac{dy}{dx} = x + y^2$ and $y = 1$ at $x = 0$. Find approximate value of y at $x = 0.2$ by Euler's modified method (taking h=0.1).	3(Apply)
7.	Solve the equation $5x\frac{dy}{dx} = 2-y^2$; $y(4) = 1$, for $y(4.1)$, (taking h=0.1) Using Euler's modified method.	3(Apply)
8.	Apply Runge-Kutta method to solve $10\frac{dy}{dx} = x^2 + y^2$; $y(0) = 1$, for $x = 0.1$	3(Apply)
9.	Apply Runge-Kutta method to obtain y when x = 1.1 given that y = 1.2 when x=1 and y satisfy the equation $\frac{dy}{dx} = 3x + y^2$.	3(Apply)
10.	Apply Runge-Kutta method to solve $\frac{dy}{dx} = xy;y(1) = 2$, for x = 1.2(taking h=0.1).	3(Apply)

11.	Using Milne's method to find a solution of the differential equation $\frac{dy}{dx} = x - y^2$ in	3(Apply)
	the range $0 \le x \le 1$, for the boundary condition $y = 0$ at $x = 0$	
12.	Using Milne's method to find a solution of the differential equation $\frac{dy}{dx} = x + y$ with	3(Apply)
	y(0) = 1 from $x = 0$ to $x = 0.4$	
13.	Using Milne's method to find a solution of the differential equation $\frac{dy}{dx} = x^2 + y^2$;	3(Apply)
	y(0) = 1. Find the initial values $y(-0.1)$, $y(0.1)$ and $y(0.2)$ From the Taylor's method	
14.	Given $\frac{dy}{dx} = x^2(1 + y)$ and $y(1) = 1,y(1.1) = 1.233,y(1.2) = 1.548,y(1.3) = 1.979$	3(Apply)
	Evaluate y(1.4) by Adam base forth method.	
15.	Given $\frac{dy}{dx} = x^2 - y$ and $y(0) = 1$ and the starting	3(Apply)
	y(0.1) = 0.90516, $y(0.2) = .82127$, $y(0.3) = .74918$ Evaluate $y(0.4)$ by Adam base forth method.	

UNIT-IV

Q No.	QUESTIONS	Bloom's Taxonomy Level
1.	Find the Laplace transform of the following function: (i) 4cos ² 2t (ii) e ^{3t} sin ² t	3(Apply)
2.	Find the Laplace transform of the following function (i) t²sinat (ii) (te⁻tsinat)	3(Apply)
3.	Find the Laplace transform of the following function (i) $\frac{1-\cos 2t}{t}$ (ii) $\{\int_0^t \frac{e^t \sin t}{t} dt\}$	3(Apply)
4.	Evaluate $\int_0^\infty t^3 e^{-3t}$ sintdt	3(Apply)
5.	Find inverse Laplace transform of the following function : (i) $L^{-1}\left\{\frac{5s-18}{9s^2+25}\right\}$ (ii) $L^{-1}\left\{\frac{3s+7}{s^2-2s-3}\right\}$	3(Apply)
6.	Find inverse Laplace transform of the following function : $ (ii) L^{-1} \left\{ \frac{2s+3}{(s-1)(s^2+2s+5)} \right\} $ $ (iii) L^{-1} \left\{ \frac{s^2+6}{(s^2+1)(s^2+4)} \right\} $ Evaluate $L^{-1} \left\{ log \left(\frac{s(s+1)}{(s^2+4)} \right) \right\} $	3(Apply)
7.	Evaluate $L^{-1}\left\{\log\left(\frac{s(s+1)}{(s^2+4)}\right)\right\}$	3(Apply)
8.	Using convolution theorem, evaluate :L ⁻¹ $\left\{ \left(\frac{s}{(s^2+a^2)^2} \right) \right\}$	3(Apply)
9.	Using convolution theorem, evaluate :L ⁻¹ $\left\{ \left(\frac{s}{(s^2+a^2)^2} \right) \right\}$ Using convolution theorem, evaluate $L^{-1}\left\{ \frac{s^2}{(s^2+a^2)(s^2+b^2)} \right\}$	3(Apply)
10.	Solve $(D^2+6D+9)y = \sin x$ given that $y = 1, y = 0$ when $x = 0$	3(Apply)
11.	Solve $(D^2+9)y = \cos 2t \text{ if } y(0) = 1, y(\frac{\pi}{2}) = -1$	3(Apply)
12.	Solve $y'' + 2y' + 5y = 3e^{-t}sint if y(0) = 0, y'(0) = 1$	3(Apply)
13.	Find L{F(t)}, if F(t) = $(t-1)^2$, $t > 1$ and 0, $0 < t < 1$	3(Apply)
14.	Find inverse Laplace transform of the following function : (ii) $L^{-1}\left\{\frac{2s+3}{(s-1)(s^2+2s+5)}\right\}$ (iii) $L^{-1}\left\{\frac{s^2+6}{(s^2+1)(s^2+4)}\right\}$	3(Apply)
15.	Define convolution of two functions f(t) and g(t). Apply convolution theorem to evaluate $L^{-1}\left\{\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right\}$	3(Apply)

			_	_
	N I	17	_	
	N			٠.
•				v

				UNII-					Bloom's
Q No.			Ql	JESTION	S				Taxonomy
						•			Level
1	Find the value of	of K for the	density fun	ction :f(x	$(x) = \begin{cases} Kx^2 \end{cases}$	² 0≤ x≤3	^{3,} and	compute	3(Apply)
1.	P(1≤x≤2).				W	otnerwi	se.		
	, ,								3(Apply)
	If $f(x) = \frac{C}{1+x^2}$, -c	$\infty < x < \infty$, 1	then find c	and show	w that its	correspo	onding		o(Apply)
2.	distribution fun	ction is							
۷.	 - / \ 1, -1	1							
	$F(x) = \frac{1}{\pi} tan^{-1}x +$	$\overline{2}$.							
	2 A fraguancy		io dofinad l	by f (y) =	$\int x^3$	³, 0≤x<1	Drove th	ot f(v) is s	3(Apply)
3.	3 A frequency				1 7	³, 1≤ x≤2	Prove in	at I(x) is a	
	p.d.f. Also find	mean and t	he standar	d deviation	on.				
	For the distribu	tive functio	n dF = y ₀ e ⁻¹	^x dx, -∞	≤ X ≤ ∞ .	Prove th	at		3(Apply)
4.	$y_0 = \frac{1}{2}$, mean = 0								
		η, Ο.Β. – γ	<i>z</i> , varianoc	2 – 2 und	i iiicaii a	icviation c	about		
	mean is 1.								
5.	Find the mean,	variance an	ıd standard	deviatio	n of Bind	omial dist	ribution.		3(Apply)
	A set of 8 bia				mes and	the free	quencies	of heads	
6.	obtained are gi		ollowing ta		3	1	5	6	
0.	No of heads(x		I .	2		4			3(Apply)
	Frequencies(f	<u> </u>	6 to this data	24	63	64	50	36	
7.	Out of 800 fam				many wo	ould you e	expect to	have (i) 3	2(Apply)
	boys (ii) 5 girls	(iii) either 2	2 or 3 boys						3(Apply)
8.	If 10% of the both	•	•					probability	3(Apply)
9.	Find the mean,								3(Apply)
	Fit a Poisson's							ries.	3(Apply)
10.	r	0	1		2	3	riicqueii	4	
	f	122	60		15	2		1	
	Assuming that	the diame	ters of 10	00 brass	nluge 1	taken cor	nsecutive	elv from a	3(Apply)
11.	machine from							•	O(Apply)
	0.0020cm. Hov	v many of th	ne plugs are	e likely to	be rejec	cted.			
			ndividual su	ıffers a b	oad reac	tion from	a certaiı	n injection	3(Apply)
	If the probabili	tv tnat an in							
12.	If the probabili is 0.001, deterr	nine the pro	•						
12.	is 0.001, deterr (i) exactly 3	nine the pro (ii) mo	bability that ore than 2 in			none	(iv)	more than	
12. 13.	is 0.001, deterr	nine the pro (ii) mo	ore than 2 in	ndividual	s (iii)	none	. , ,	more than	3(Apply)
	is 0.001, deterr (i) exactly 3 one individuals Define Normal	nine the pro (ii) mo	ore than 2 in	ndividual properties	s (iii)	none nal curve.			, , , , ,
	is 0.001, deterr (i) exactly 3 one individuals Define Normal	nine the pro (ii) mo distribution iation from	ore than 2 in	ndividual properties	s (iii)	none nal curve.			3(Apply)
13.	is 0.001, deterr (i) exactly 3 one individuals Define Normal	nine the pro (ii) mo distribution iation from	ore than 2 in	ndividual properties	s (iii)	none nal curve.			, , , ,

to be normally	ean x = 12 hours, sta y distributed, what pe nan 15 hours (ii) less	ercentage of batt	tery cells are ex	pected to have	