HW3

20989977 Zhang Mingtao 2023/11/10

0.

library (reticulate)

1.

```
#(1)
#1
# The cubic spline model for a set of data points (x1, y1), (x2, y2), ..., (xn, yn) and knots
\xi1, \xi2, ..., \xiK can be written
# as follows:
# For each interval [\xi i, \xi i+1], we fit a cubic polynomial of the form:
\# f i(x) = a i0 + a i1*x + a i2*x^2 + a i3*x^3
# We then apply the continuity and linearity constraints at each knot \xi i:
# Continuity Constraints:
# f i(\xi i) = f i+1(\xi i)
\# f_i'(\xi i) = f_i+1'(\xi i)
# f i''(\xii) = f i+1''(\xii)
# And also Linearity Constraints at endpoints (-\infty, \xi 1) and (\xi K, \infty).
# The objective function can be a least squares error.
# Now the problem becomes a linear regression problem with equality constraints.
# We can solve the coefficients a i, a il, a i2, a i3, subject to these equality constraints.
#2
# See in the picture 详见手写证明过程
#3
# See in the picture 详见手写证明过程
# Piecewise polynomial regression divides the data set into multiple segments,
# and uses a polynomial function to fit each segment. The fitting of each segment is performed
independently;
# Local polynomial regression is a non-parametric method that uses the neighbors near the point
# based on weights in the neighborhood, which is smoother but more complex.
# My understanding is: piecewise polynomial regression is suitable for situations
# where there are clear intervals between variables with different polynomial behavior;
# while local polynomial regression is more suitable for capturing smooth local changes in data
that are not clearly segmented.
#5
# a. Lack of Global Information: Since local reference method regression only focuses on local
data points,
# it usually cannot provide global information about the entire data set.
# b. Non-Parametric Nature: Local polynomial regression is a non-parametric regression method t
# does not rely on a specific functional form.
# Compared with traditional parametric models like linear regression, the parameters are less i
nterpretable.
# c. Bandwidth Selection: Bandwidth Selection further complicates interpretation.
# For a local demonstration regression model, assume that we use the least squares method for d
```

```
emonstration:
\# y_{hat}(x) = \sum (1^{n}) w_{i}(x)*y_{i}
\# Bias(x) = E[y hat(x)] - y
\# Variance(x) = E[(y_hat(x) - E[y_hat(x)])^2]
# When increasing the bandwidth h:
# Change in deviation:
# Increasing the bandwidth h makes the model smoother, it uses more neighbor data points to fi
# This means that the predicted value y hat(x) is more biased, reducing the model's ability to
capture local details.
# Change in variance:
# Increasing the bandwidth h reduces the model's sensitivity to neighbor data points, thus redu
cing the model's variance.
# When the bandwidth increases, the range of data points covered by the model's weight function
w i(x) increases,
# and the model is relatively insensitive to changes in neighbor data points.
# Conclusion: h↑, Bias↑, Var↓
#7
# I think Regression tree is most similar to option (b) Piecewise constant regression:
# Regression tree and piecewise constant regression both achieve modeling of nonlinear relation
ships
# by dividing the feature space into multiple regions and using different constant values for f
itting.
# differences:
# Piecewise constant regression is a simple regression method that divides the feature space in
# and fits a constant value in each segment. Its model is relatively simple, can only capture p
iecewise linear relationships,
# and cannot handle the complex structure of the feature space.
# Regression tree is a non-parametric supervised learning method that divides the feature space
# into a series of rectangular regions and fits a constant value in each region.
# Regression trees are more flexible and can capture nonlinear relationships and interactions
# by continuously dividing the feature space, so they perform well when dealing with nonlinear
data and complex relationships.
# And it can automatically determine the location of the division based on the distribution of
the data,
# while piecewise constant regression requires manually specifying the location of the divisio
n.
#8
# Increasing complexity reduces bias: the model is better able to capture approximate features
and relationships
# in the training data and can more accurately adapt to the complexity of the data, thus reduci
ng bias.
```

Increasing complexity increases variance: Model complexity causes the model to be very sensit

in training data, and the difference in predictions on different training data sets increase

ive to small changes

s, thus increasing variance.

```
#9
# Linear regression:
# If the true relationship between the predictor and response variables is indeed linear,
# linear regression can accurately capture this relationship, with less bias, and provide a goo
d fit to the true relationship.
# Regression tree:
# Regression trees are more suitable for handling non-linear and piecewise relationships.
# If the true relationship is linear, the regression tree may have difficulty capturing it accu
# so the deviation can be large. In this case, the regression tree is often not as accurate as
linear regression.
# Even though regression trees can capture complex non-linear relationships, there can be high
bias since the
# decision boundaries created by a single tree structure may not exactly match the true underly
ing relationships.
# Natural splines:
# Natural splines is a form of nonlinear regression that captures nonlinear patterns in data.
# The deviation of natural splines depends on the complexity of the spline function and the num
ber of nodes used.
# When the number of nodes is limited or the complexity of the spline function is low, especial
ly when the true relationship
# is close to linear, natural splines may have higher deviation.
# To sum up, in general, regression tree has relatively the smallest bias if data nonlinear, or
linear regression is better.
#10
# The variable importance measurement mainly uses "average decrease in accuracy" and "average d
ecrease of Gini index".
# "The average reduction in accuracy" means that for each tree model: predict the cases outside
# obtain the accuracy; then randomly arrange the values of a certain variable on the cases outs
# and then bring them in the model to obtains the accuracy, and obtains the difference between
the two accuracy rates.
# Average the accuracy differences of all trees on this variable to get the "average decrease i
n accuracy".
# For each tree, IM Gini(Rm) = \sum k! = k' (p^mk*p^mk') = K \sum k = 1 (p^mk(1 ??? p^mk)) = 1 ??? K \sum k = 1 (p^
mk^2
# The average decrease in the Gini index refers to, for a tree, obtaining the decrease in the G
ini index
# caused by a certain variable acting as a splitting variable on each node;
# summing up the decreases in the Gini index of the variable in all trees and dividing Based on
the number of trees,
# then the "average reduction of Gini index" is obtained.
```

In the variable section/model selection part, we prefer variables with higher importance.

```
#(2)
#1

df1=read.csv("C://Users//张铭韬//Desktop//学业//港科大//MSDM5054机器学习//作业//hw3//trees.cs
v")

fit.1=lm(Volume ~ poly(Girth, 1, raw = TRUE), data = df1)
fit.2=lm(Volume ~ poly(Girth, 2, raw = TRUE), data = df1)
fit.3=lm(Volume ~ poly(Girth, 3, raw = TRUE), data = df1)
fit.4=lm(Volume ~ poly(Girth, 4, raw = TRUE), data = df1)

adj_rsq1=summary(fit.1)$adj.r.squared
adj_rsq2=summary(fit.2)$adj.r.squared
adj_rsq3=summary(fit.3)$adj.r.squared
adj_rsq4=summary(fit.4)$adj.r.squared
max(c(adj_rsq1, adj_rsq2, adj_rsq3, adj_rsq4))
```

[1] 0.9588428

```
which.max(c(adj_rsq1, adj_rsq2, adj_rsq3, adj_rsq4))
```

[1] 2

```
# deg = 2

## prediction on all range of age, and confidence bands
Girthlims=range(df1$Girth)
Girth.grid=seq(from=Girthlims[1], to=Girthlims[2])
preds=predict(fit.2,newdata=list(Girth=Girth.grid), se=TRUE)
se.bands=cbind(preds$fit+2*preds$se.fit,preds$fit-2*preds$se.fit)

par(mfrow=c(1,1))
plot(df1$Girth,df1$Volume,xlim=Girthlims,cex=1,col="black")
title("Degree -2 Polynomial ",outer=F)
lines(Girth.grid,preds$fit,lwd=2,col="blue")
matlines(Girth.grid,se.bands,lwd=1,col="blue",lty=3)
```

Degree -2 Polynomial


```
#### choosing the model using 5-CV error:
library(boot)

cv.error=rep(0,4)
for (i in 1:4) {
   set.seed(1)
   glm.fit=glm(Volume ~ poly(Girth,i, raw = TRUE),data=df1)
   cv.error[i]=cv.glm(df1,glm.fit,K=5)$delta[1]
}
cv.error
```

```
## [1] 19.76372 12.05697 14.21523 69.10362
```

```
plot(1:4, cv. error, type='b', xlab="Degree of Polynomial", ylab="CV Error", main="5-fold CV")
```

5-fold CV


```
\#We still choose the i=2 model.
#2
Girth=df1$Girth
Volume=dfl$Volume
fit=glm(I(Volume>30)~poly(Girth, 2), data=dfl, family=binomial)
preds=predict(fit, newdata=list(Girth=Girth.grid), se=T)
                                                                       ## predict on all the age v
alues
pfit=exp(preds$fit)/(1+exp(preds$fit))
se.bands.logit = cbind(preds$fit+2*preds$se.fit, preds$fit-2*preds$se.fit)
se. bands = exp(se. bands. logit)/(1+exp(se. bands. logit))
preds=predict(fit, newdata=list(Girth=Girth.grid), type="response", se=T)
##### plot the confidence bands
plot(Girth, I(Volume>30), xlim=Girthlims , type="n")
points(jitter(Girth), I(Volume>30), cex=.5, pch="|", col =" darkgrey ")
lines(Girth.grid, pfit, lwd=2, col="blue")
matlines (Girth. grid, se. bands, lwd=1, col="blue", lty=3)
```



```
#3
library(splines)
fit2=lm(Volume~bs(Girth, knots=c(10, 14, 18), df=2), data=df1)
pred2=predict(fit2, newdata=list(Girth=Girth. grid), se=T)
plot(Girth, Volume, col="gray", main="Regression Spline on Selected Knots (deg=2)")
lines(Girth. grid, pred2$fit, lwd=2, col="blue")
lines(Girth. grid, pred2$fit+2*pred2$se , lty="dashed", col="red")
lines(Girth. grid, pred2$fit-2*pred2$se , lty="dashed", col="red")
```

Regression Spline on Selected Knots (deg=2)


```
## 载入需要的程辑包: ggplot2

## 载入需要的程辑包: lattice

## 载入程辑包: 'lattice'

## The following object is masked from 'package:boot':
## melanoma
```

```
## [1] 65.07661 44.76987 42.22764 45.71116 56.28404 79.03316

## [7] 115.86790 163.77374 219.29211 283.91232 364.41421 471.42887

## [13] 618.49793 821.25485 1097.35025 1463.95697 1939.48570 2523.73131

## [19] 3195.24379
```

```
plot(1:19, CVErr, type='b', xlab="Degrees of Freedom", ylab="CV Error", main="10-fold CV of Smoothin g Spline")
```

10-fold CV of Smoothing Spline


```
plot(Girth, Volume, xlim=Girthlims, cex=.5, col="darkgrey", main=" Smoothing Spline ") fit=smooth.spline(Girth, Volume, df=16) fit2=smooth.spline(Girth, Volume, cv=TRUE)
```

Warning in smooth.spline(Girth, Volume, cv = TRUE): cross-validation with non-## unique 'x' values seems doubtful

fit2\$df # degree=3.87138

[1] 3.87138

lines(fit, col="red", lwd=2)
lines(fit2, col="blue", lwd=2)
legend("topright", legend=c("16 DF", "3.87 DF"), col=c("red", "blue"), lty=1, lwd=2, cex=.8)

Smoothing Spline

#5 library(gam)

载入需要的程辑包: foreach

Loaded gam 1.20.1

```
gam. m3=gam(Volume~s(Girth, 4)+s(Height, 5), data=df1)
par(mfrow=c(1, 2))
plot(gam. m3, se=TRUE, col="blue")
```


par(mfrow=c(1,1))

3.

```
#(3)
#1
traindf=read.csv("C://Users//张铭韬//Desktop//学业//港科大//MSDM5054机器学习//作业//hw3//audit_train.csv")
testdf=read.csv("C://Users//张铭韬//Desktop//学业//港科大//MSDM5054机器学习//作业//hw3//audit_test.csv")
traindf=na.omit(traindf)
testdf=na.omit(testdf)

traindf$Risk = as.factor(traindf$Risk)
testdf$Risk = as.factor(testdf$Risk)

library(tree)
audittree=tree(Risk~.,traindf,control =tree.control(dim(traindf)[1],mindev=0.005,minsize=40))
summary(audittree)
```

```
plot(audittree)
text(audittree, pretty=0)
```



```
# Misclassification error rate: 0.06957 = 40 / 575
predp=predict(audittree, testdf)

pred=rep(0, dim(testdf)[1])
pred[predp[, 2]>0.5]=1

table(pred, testdf$Risk)
```

```
## pred 0 1
## 0 103 5
## 1 6 83

length(which(pred==testdf$Risk))/dim(testdf)[1] # accuracy = 0.9441624

## [1] 0.9441624
```

```
names(cv.audittree)

## [1] "size" "dev" "k" "method"
```

cv. audittree = cv. tree(audittree, FUN=prune.misclass)

cv.audittree

```
## $size
## [1] 14 5 2 1
##
## $dev
## [1] 41 41 103 223
##
## $k
## [1] -Inf 0 20 123
##
## $method
## [1] "misclass"
##
## attr(,"class")
## ## attr(,"class")
## [1] "prune" "tree.sequence"
```

```
plot(cv.audittree$size,cv.audittree$dev,type="b",xlab="Size",ylab="CV Error")
```



```
# size = 5
audittree_pruned=prune. tree(audittree, best=5)
summary(audittree_pruned)
```

```
##
## Classification tree:
## snip. tree(tree = audittree, nodes = c(24L, 2L, 7L))
## Variables actually used in tree construction:
## [1] "Score" "Money_Value" "TOTAL" "District_Loss"
## Number of terminal nodes: 5
## Residual mean deviance: 0.5013 = 285.8 / 570
## Misclassification error rate: 0.06957 = 40 / 575
```

```
plot(audittree_pruned)
text(audittree_pruned, pretty=0)
```


Type rfNews() to see new features/changes/bug fixes.

```
## 载入程辑包: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
       margin
set. seed(1)
rf.audit=randomForest(Risk~., data=traindf, mtry=13, ntree=25, importance=T, proximity=T, na.action=n
a.omit)
rf.audit
##
## Call:
## randomForest(formula = Risk ^{\sim} ., data = traindf, mtry = 13, ntree = 25, importance =
T, proximity = T, na.action = na.omit)
##
                  Type of random forest: classification
##
                        Number of trees: 25
## No. of variables tried at each split: 13
##
##
           00B estimate of error rate: 9.91%
## Confusion matrix:
##
      0
         1 class.error
## 0 326 26 0.07386364
## 1 31 192 0.13901345
# 00B estimate of error rate: 9.91%
  0
        1 class.error
# 0 326 26 0.07386364
# 1 31 192 0.13901345
#4
error = c()
mlist = c(8, 12, 14, 16, 18)
for (m in mlist) {
  rfmodel=randomForest(Risk~., data=traindf, mtry=m, ntree=25, importance=T, proximity=T, na.action=n
  error=c (error, rfmodel \ err. rate [25, 1])
}
```

plot(mlist, error, type="b", xlab="m", ylab="Train Error")


```
## 00B 00B 00B 00B 00B
## 0.08869565 0.09565217 0.09217391 0.10104530 0.10086957
```

```
set. seed (1) \\ rfmodel2 = randomForest (Risk^{\sim}., data=traindf, mtry=8, ntree=25, importance=T, proximity=T, na. action=na. omit) \\ yhat. rf = predict (rfmodel2, newdata=testdf, type="class") \\ table (yhat. rf, testdf$Risk)
```

```
## ## yhat.rf 0 1
## 0 106 3
## 1 3 85
```

```
length(which(yhat.rf==testdf$Risk))/dim(testdf)[1] # accuracy = 0.9695431
```

```
## [1] 0.9695431
```

```
rfmodel2$importance # Score, Risk_D, TOTAL, Money_Value
```

```
##
                               0
                                             1 MeanDecreaseAccuracy
## Sector score
                  -0.0081305665 -0.0004347395
                                                       -0.0052540876
## LOCATION ID
                  -0.0023425774 -0.0053865255
                                                       -0.0038657037
## PARA A
                   0.0910842104 0.0427982612
                                                        0.0733307664
## Score A
                   0.0020888573 - 0.0001472557
                                                        0.0011496118
## Risk A
                   0.0904383377
                                  0.0273629273
                                                        0.0653068315
## PARA B
                   0.0534399308 \quad 0.0052693335
                                                        0.0345709968
## Score B
                                                        0.0032661212
                   0.0025934066
                                  0.0039339501
## Risk B
                   0.0370048783 0.0334081231
                                                        0.0355870428
## TOTAL
                   0.1081393987
                                 0.0354221044
                                                        0.0801110173
## numbers
                   0.0012307692 - 0.0010536263
                                                        0.0003756044
                   0.00000000000 - 0.0009090909
## Score B.1
                                                       -0.0003669725
## Risk C
                   0.0000000000 0.0000000000
                                                        0.0000000000
## Money_Value
                   0.0375234096
                                 0.0030790955
                                                        0.0239149941
## Score MV
                   0.0361666840
                                  0.0050456933
                                                        0.0237879280
## Risk D
                   0.0575986924
                                  0.0507693238
                                                        0.0543476774
## District_Loss
                                  0.0088654011
                   0.0090290982
                                                        0.0090042431
## PROB
                                  0.0000000000
                                                        0.0000000000
                   0.0000000000
## RiSk E
                   0.0222600922 0.0194261222
                                                        0.0211090303
## History
                   0.00000000000 - 0.0019883992
                                                       -0.0007634787
## Prob
                  -0.0003149606 -0.0009038662
                                                       -0.0005563926
                   0.00000000000 - 0.0009697326
## Risk F
                                                       -0.0003703704
## Score
                   0.0726820708 0.1318342378
                                                        0.0959364838
## CONTROL RISK
                   0.0440693149 0.0337509536
                                                        0.0403278143
                   0.000000000 0.000000000
                                                        0.0000000000
## Detection Risk
##
                  MeanDecreaseGini
## Sector_score
                          5.2855731
## LOCATION ID
                          9.8626726
## PARA A
                         17.3416683
## Score A
                          0.9589384
## Risk A
                         14.3612160
## PARA B
                          9.9255645
## Score B
                          0.6798054
## Risk B
                          7.6124064
## TOTAL
                         32. 1905116
## numbers
                          1.2937736
## Score B.1
                          0.2736190
## Risk C
                          0.0400000
## Money_Value
                         20.1516109
## Score_MV
                         17.4396505
## Risk D
                         45.8337950
## District Loss
                          3.4036572
## PROB
                          0.0800000
## RiSk_E
                         10.4137235
## History
                          0.4920710
## Prob
                          0.3291569
## Risk F
                          0.5592363
## Score
                         53.1050277
## CONTROL RISK
                         19.5085789
## Detection Risk
                          0.0000000
```

```
#5
# single tree: accuracy = 0.9441624
# random forest: accuracy = 0.9695431 , which is better than a single tree. The model built on
decision trees is less likely
# to overfit after selecting appropriate parameters, which can reduce errors and deviations, an
d improve accuracy.
# Due to the combination of multiple decision trees, diversity is effectively considered, and t
he combined result is
# better than the result of a single tree.

# summary(audittree_pruned): "Score" "Money_Value" "TOTAL" "District_Loss"
# rfmodel2$importance: Score, Money_Value , TOTAL , Risk_D
# 3 of them are the same.
```

4.

```
#(4)
# see the python code since I'm not able to define a class in R but I can do that in python.
#(4)
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
train = pd.read csv("C://Users//张铭韬//Desktop//学业//港科大//MSDM5054机器学习//作业//hw3//Hit
ters train.csv")
test = pd.read csv("C://Users//张铭韬//Desktop//学业//港科大//MSDM5054机器学习//作业//hw3//Hitt
ers test.csv")
train = train[["Years", "Hits", "RBI", "Walks", "PutOuts", "Runs", "Salary"]]
test = test[["Years", "Hits", "RBI", "Walks", "PutOuts", "Runs", "Salary"]]
train.dropna(inplace=True)
test.dropna(inplace=True)
import random
import collections
from sklearn.preprocessing import PolynomialFeatures
from sklearn.model selection import train test split
from collections import deque
class TreeNode:
    def init (self, labels idx=None, left=None, right=None, split idx=None, is discrete=None, spli
t value=None, father=None) -> None:
       self.labels idx = labels idx
                                      # 训练集的label对应的下标
       self.left = left
                                       # 左子树
                                      # 右子树
       self.right = right
                                  # 划分特征对应的下标
       self.split_idx = split_idx
       self.is discrete = is discrete # 是否离散
       self.split value = split value # 划分点
       self.father = father
                                       # 父节点
class RegressionTree:
    def __init__(self, data, labels, is_discrete, validate_ratio=0.1):
       self.data = np.array(data)
       self.labels=np.array(labels)
       self.feature num = self.data.shape[1]
       self.is_discrete = is_discrete
       self.validate_ratio = validate_ratio
       self.leaves = []
       if validate ratio>0:
           all index = range(data.shape[0])
           self.train_idx, self.test_idx = train_test_split(all_index, test_size=validate_ratio)
           self.validate data = self.data[self.test idx,:]
           self.validate label = self.labels[self.test idx]
           self.train data = self.data[self.train idx,:]
           self.train_label = self.labels[self.train_idx]
```

```
def sum_std(self, x):
        return np. sum (np. abs (x-np. mean(x)))/1en(x)
    def choose feature (self, x, left labels):
        std list = []
        split_value_list = []
        for i in range(x.shape[1]):
            final split value, final sum std=self.calc std(x[:,i], self.is discrete[i], left label
_{\rm S})
            std list.append(final sum std)
            split value list.append(final split value)
        idx = np. argmin(std list)
        return idx, split value list[idx]
    def calc_std(self, feature, is_discrete, labels):
        final sum std = float("inf")
        final_split_value = 0
        idx = range(len(feature))
        feature with idx = np.c [idx, feature]
        labels = np.array(labels)
        if is_discrete:
            values = list(set(feature))
            idx_dict = {v:[] for v in values}
            for i, fea in feature_with_idx:
                idx_dict[fea].append(i)
            for v in values:
                anti_idx = [i for i in idx if i not in idx_dict[v]]
                left = labels[idx_dict[v]]
                right = labels[anti idx]
                if left. shape[0] == 0 or right. shape[0] == 0:
                    continue
                sum_std = self.sum_std(left)+self.sum_std(right)
                if sum std<final sum std:
                    final sum std = sum std
                    final_split_value = v
        else:
            feature with idx = feature with idx[feature with idx[:,1].argsort()]
            feature = feature with idx[:,1]
            idx = feature_with_idx[:,0]
            for i in range(len(feature)-1):
                if feature[i] == feature[i+1]:
                    continue
                split_value = (feature[i]+feature[i+1])/2
                idx left = idx[:i+1]
                idx right = idx[i+1:]
                sum_std = self.sum_std(labels[idx_left.astype('int64')])+self.sum_std(labels[id
x right.astype('int64')])
                if sum std<final sum std:
                    final_sum_std = sum_std
                    final_split_value = split_value
        return final_split_value, final_sum_std
```

```
def generate_tree(self, idxs, min_ratio):
   root = TreeNode(labels idx=idxs)
    if len(idxs)/self.data.shape[0] <= min_ratio:
        return root
    idx, split_value = self.choose_feature(self.data[idxs,:], self.labels[idxs])
    root.split_value = split_value
    root.split idx = idx
    left idxs = []
   right_idxs = []
    if self.is discrete[idx]:
        for i in idxs:
            if self.data[i,idx] != split_value:
                right_idxs.append(i)
            else:
                left_idxs.append(i)
    else:
        for i in idxs:
            if self.data[i,idx] <= split_value:</pre>
                right_idxs.append(i)
            else:
                left_idxs.append(i)
   left_idxs = np. array(left_idxs)
   right_idxs = np.array(right_idxs)
   root.left = self.generate_tree(left_idxs, min_ratio)
    if root.left:
        root.left.father = root
   root.right = self.generate_tree(right_idxs, min_ratio)
    if root.right:
        root.right.father = root
    return root
def train(self, max_depth = 0, min_ratio=0.05):
    if self.validate_ratio>0:
        idx = self.train_idx
   else:
        idx = range(len(self.labels))
    self.tree = self.generate_tree(idx,min_ratio)
    # 后剪枝
    if self.validate_ratio>0:
        self.find_leaves(self.tree)
        nodes = deque(self.leaves)
        while len(nodes)>0:
            n=len(nodes)
```

```
for _ in range(n):
                node = nodes.popleft()
                if not node.father:
                    nodes = []
                    break
                valid pred = self.predict(self.validate data)
                mse_before = self.get_mse(valid_pred, self.validate_label)
                backup left = node.father.left
                backup right= node.father.right
                node.father.left = None
                node.father.right = None
                valid pred = self.predict(self.validate data)
                mse_after = self.get_mse(valid_pred, self.validate_label)
                if mse after>mse before:
                    node.father.left = node.father.left
                    node.father.right = node.father.right
                else:
                    nodes. append (node. father)
   # 树深
    if max_depth>0:
        nodes = deque([self.tree])
        while len(nodes)>0 and d dmax_depth:
            n = 1en(nodes)
            for _{-} in range(n):
                node = nodes.popleft()
                if node.left:
                    nodes. append (node. left)
                if node.right:
                    nodes. append (node. right)
            d += 1
        if len(nodes)>0:
            for node in nodes:
                node.left=None
                node.right=None
def find leaves (self, node):
    if not node.left and not node.right:
        self. leaves. append (node)
        return None
   else:
        if node.left:
            self.find leaves(node.left)
        if node.right:
            self.find_leaves(node.right)
def predict_one(self, x, node=None):
    if node == None:
        node = self.tree
   while node.left and node.right:
        idx = node.split_idx
        if self.is discrete[idx]:
            if x[idx] == node. split_value:
                node = node.left
```

```
else:
                    node = node.right
            else:
                if x[idx]>node.split_value:
                    node = node.right
                else:
                    node = node.left
        res_idx = node.labels_idx
        return np.mean(self.labels[res idx])
    def predict(self, x, node=None):
        x = np. array(x)
        predicts = []
        for i in range(x. shape[0]):
            res = self.predict_one(x[i,:], node)
            predicts.append(res)
        return predicts
    def get_mse(self, y_pred, y_true):
        y_pred = np.array(y_pred)
        y_true = np. array(y_true)
        return np. mean(np. square(y_pred-y_true))
x_{train} = train.iloc[:, 0:6].values
x_{test} = test.iloc[:, 0:6].values
y_train = train.iloc[:,6].values
y_test = test.iloc[:,6].values
rt = RegressionTree(x_train, y_train, is_discrete=[False, False, False, False, False, False, False], valid
ate_ratio=0.1)
rt. train(max depth=15, min ratio=0.05) # 限制深度和最小v gain (实际函数已经进行剪枝)
res = rt. predict(x test)
rt.get_mse(res,y_test)
# ######### 对比库 ###########
# from sklearn.tree import DecisionTreeRegressor
# tes = DecisionTreeRegressor()
# tes. fit(x_train, y_train)
# res2 = tes.predict(x_test)
# rt.get_mse(res2, y_test)
```