Taller de Caché

Organización del Computador 1

Primer Cuatrimestre 2019 - Turno Mañana

Ejercicio 1 - Seguimiento de Caché

NOTA: completar la tabla manualmente, sin utilizar el simulador. Una vez completa, verificar los resultados con el mismo.

Caché de correspondencia directa

Dirección	Tag	Linea (bits/decimal)	Indice	Direcciones de la línea	Hit/Miss
0×0009					
0x001D					
0x000A					
0×0101					
0×0113					
0×000A					
0×001E					
0×0102					
0×0114					

Caché completamente asociativa

Dirección	Tag	Indice	# Linea	Direcciones de la línea	Hit/Miss
0×0009					
0x001D					
0.0004					
0×000A					
0×0101					
0,0101					
0×0113					
0×000A					
0×001E					
0.0100					
0x0102					
0x0114					
0.0114					

a)	¿En qué casos	funciona	mejor	una	${\bf memoria}$	completament	e asociativa	frente	a	una	de
	correspondence	ia directa?	? Dé ur	ı eje	mplo.						

b)	¿Qué	pasa si s	sólo uso	caché para	los datos?	ίΥ	si sólo	la uso	para el	código?
----	------	-----------	----------	------------	------------	----	---------	--------	---------	---------

Ejercicio 2 - Políticas de desalojo

- a) Medir el $hit\ rate$ que se produce para ambos códigos, con las políticas FIFO, RANDOM y LRU.
 - Iguales:
 - FIFO:
 - RANDOM:
 - LRU:
 - Mix:
 - FIFO:
 - RANDOM:
 - LRU:

b) Explique la diferencia de performance de la cache encontrada entre ambos códigos, independientemente de la política utilizada.

c) Explique cuál es el beneficio que obtiene entre utilizar FIFO y LRU, tras analizar el hit rate en ambos casos.

Ejercicio 3 - Análisis de Caché

• A partir del resultado que se observa, ¿se puede decir que a mayor cantidad de lineas, mejor funcionamiento de la cache? ¿Para verificar su hipótesis, que pasa si tenemos más de líneas (nota: al menos debe quedar un bit para índice)? Explique qué sucede.

Ejercicio 4 - Seguimiento de código (opcional)

mov r0	1	0x0	0003	H	mov	r1	Н	ve	ctor	H
000 1	00	000	1	01	000	1	10	000	1	11
add		ຣເ	ıma		r1			[ຣາ	ıma]	
001 0	00	001	0	01	001	0	01	000	0	11
[r1]		ado	d r1		0x00	01		sul	o r0	
000 0	00	001	0	11	001	1	00	001	1	01
0x0001		jne	ciclo		ado	i		ຣາ	ıma	
001 1	10	001	1	11	001	0	00	001	0	01
r1		[ຣາ	ıma]		[r1]		ado	d r1	
001 0	10	000	0	11	000	0	01	001	0	11
0x0001		sul	r0		0x0	01		jne	ciclo	
OXOOOI		- Cu.						•		

Seguimiento

- 1. Se carga TAG 000 en línea 1
- 2. Se carga TAG en línea ...
- 3. Se carga TAG en línea ...
- 4. Se carga TAG en línea ...

- 5. Se carga TAG en línea ...
- 6. Se carga TAG en línea ...
- 7. Se carga TAG en línea ...

mov r0	1	0x0003	Н	mov r1	Н	vector	Н
0001	00	0001	01	0001	10	0001	11
add		suma		r1		[suma]	
0010	00	0010	01	0010	01	0000	11
[r1]		add r1		0x0001		sub r0	
0000	00	0010	11	0011	00	0011	01
0x0001		jne ciclo		add		suma	
0011	10	0011	11	0010	00	0010	01
r1		[suma]		[r1]		add r1	
0010	10	0000	11	0000	01	0010	11
0x0001		sub r0		0x001		jne ciclo	
0011	00	0011	01	0011	10	0011	11

Seguimiento

- 1. Se carga TAG 0001 en línea 0
- 2. Se carga TAG en línea ...
- 3. Se carga TAG en línea ...
- 4. Se carga TAG en línea ...
- 5. Se carga TAG en línea ...
- 6. Se carga TAG en línea ...
- 7. Se carga TAG en línea ...
 - a) Calcule el hit rate para cada memoria
 - b) Analice los comportamientos de ambos tipos de memorias para este programa. ¿Qué hubiera ocurrido con el hit rate entre ambas memorias si leyera un vector de más posiciones?
 - c) ¿Qué tiene de particular la remoción de las líneas en la caché asociativa? ¿Se te ocurre alguna manera simple de implementar (hardware) la política FIFO si y solo si no hubiera líneas inválidas?

Corrección

Para uso de los docentes

1	2	3