Atiyah-Singer Index Theorem Seminar.

Spin groups II (Richard Hughes).

The Lie structure of Spin.

Let Cl(k) denote the Clifford algebra of Rh with the standard positive definite form. We recall:

Def: (i) Pin(k) is the multiplicative subgroup of C1(k) generated by the unit vectors v EIK.

(ii) Spin(k) = Pin(k) n Cl(k), where Cl(k)o is the even part of Cl(k), i.e.

C((k)=C((k), D((k)).

Example: $CU(1) = \mathbb{R}[x] / (x^2+1)\mathbb{R}[x] \cong \mathbb{C}$. $P_{in}(1) = \langle x | x^2 = 1 \rangle \cong \{\pm 1, \pm i\} \leqslant \mathbb{C}^{\times}$. $S_{pin}(1) = \{1, x^2\} \cong \{\pm 1\}$

 $\mathbb{R}^k \subseteq Cl(k)$, so we can look for actions of Cl(k) on itself which preserve \mathbb{R}^k .

Let $v \in \mathbb{R}^k$ with ||v|| = 1. Then $v' = -v \in C((k))$. For $x \in \mathbb{R}^k$, consider $-\sqrt{x}\sqrt{-1} = \sqrt{x}\sqrt{-1} = (-x\sqrt{-2}(x,y))\sqrt{-1} = x-2(x,y)\sqrt{-1}$ since by the defining relations of Cl(k) we can deduce the anticommutation relation VW+WV = -2(V, W) for V, W Elk. Geometrically, we have i.e., -vav-1=x-2(x,v)v is the reflection of x in the hyperplane perpendicular to v. Let E: C((k) -> C((k) be the goding autonorphism E(Ve+vo)=Ve-vo.

Then since reflections are elements of GLK(IR), and the unit-vectors in IR generate Pin(k), we can extend the above to a representation of Pin:

Prost:
'
Since Pin(k) is generated by all the unit vectors in R, we
Since Pin(k) is generated by all the unit vectors in R's we can reflect in every hyperplane in R's so p is surjective.
It can be show that ker(0) = 3 (Cl(W)). The
super-center of (1(k). By [Roc: Lemma 4.3] this is
It can be shown that $\ker(p) \subseteq \mathbb{Z}_s(Cl(k))$, the <u>super-center</u> of $Cl(k)$. By $[Roc; Lemma 4.3]$ this is just \mathbb{R}_s and a further computation yields that $\mathbb{R}^n \operatorname{Spin}(k) = \mathbb{E}^{+1}$.
Take home message: By the above, Spin(k) is a compact Lie group (it is a double cover of SO(k)).
2re grap (11 15 a comble cover of six),
Recall: Last time used a homotopy LES argument to prove that for k > 3, Spin(k) is the universal cover of SO(k).
Because of this, we can identify
$spin(k) \cong so(k) = \{A \in M_k(\mathbb{R}) \mid A^t = -A \}$
$spin(k) \cong so(k) = \{A \in M_k(R) \mid A^t = -A \}$ Lie(Spin(k)) $Lie(so(k))$
Dut since we also have that Spin(L) is a submanifold of
But since we also have that Spin(l) is a submanifold of- Cl(k), we should be able to identify spin(k) with a vector subspace of Cl(k).
Subspace of CICCI.

	Zenna:
	The Lie algebra spin(k) may be identified with the vector subspace of $CI(k)$ spanned by the products $e:e_j$, $i\neq j$. The map $so(k) \longrightarrow spin(k) \le O(k)$ is given by
	subspace of CI(k) spanned by the products ejei, i+i.
	The map so(k) -> spin (k) Sa(k) is given by
	· · · · · · · · · · · · · · · · · · ·
	$so(k) \longrightarrow Cl(k)$
	$(a_r) \longmapsto \frac{1}{2} \sum_{\alpha \in \alpha_r} a_{\alpha \alpha_r}$
	$(a_{ij}) \longmapsto \frac{1}{4} \sum_{i,j} a_{ij} e_{i} e_{j}.$
,	Proof:
	Proceeds by calculation, and comparing dimensions.

Classification of all & C irreps.
· · · · · · · · · · · · · · · · · · ·
For all, we can calculate explicitly that:
• Cl(0)≅R • Cl(1)≅C
•C(2)=H •C(3)=H⊕H
$\bullet \mathcal{C}\ell(4) \cong M_2(\mathbb{H}) \qquad \bullet \mathcal{C}\ell(5) \cong M_4(\mathbb{C})$ $\bullet \mathcal{C}\ell(6) \cong M_8(\mathbb{R}) \qquad \bullet \mathcal{C}\ell(7) \cong M_8(\mathbb{R}) \oplus M_8(\mathbb{R})$
$\bullet Cl(6) \cong M_8(\mathbb{R})$ $\bullet Cl(7) \cong M_8(\mathbb{R}) \oplus M_8(\mathbb{R})$
• Cl(8) = M, (R)
There is then a version of Bott periodicity that states
'
$Cl(n+8)\cong Cl(n)\otimes_{\mathbb{R}}Cl(8)\cong Cl(n)\otimes M_{lb}(\mathbb{R}),$
completely describing the Clifford algebras Cl(k).
Let $Cl_{L}(\mathbb{C}) := Cl(L) \otimes_{\mathbb{R}} \mathbb{C}$. Then we have (will
provide a référence later):
@ 21 (C) ~ D ⊗ C~ C
$\bullet \mathcal{C}l_{\bullet}(\mathbb{C}) \cong \mathbb{R} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C} \qquad \qquad$
or (c)=UBRU=UUU periodicity
Pl (D)~Pl (D) & Pl (D)~Pl (D) & M (D)
2 (1 × (C) = C (1 × (C) 0 C C (2 (C) = C (1 × (C) 2 C C)
Therefore, in general:
a reversor, as done or
$\mathcal{C}(C) \sim M_{z}^{+}(C)$ for n even,
$\mathcal{C}(n(\mathbb{C})) \cong \begin{cases} M_{2^{\frac{1}{2}n}}(\mathbb{C}) & \text{for n even,} \\ M_{2^{\frac{1}{2}n-1}}(\mathbb{C}) & \text{for n odd.} \end{cases}$
L 12 (=) 10. 10 00.00 8

Classification of finite dimensional Cl(k)-reps.
By semisimplicity of Mn (C) (notrix algebra), any finite dim complex (M)-rep must be a direct sum of copies of A.
We can write this as
W = \(\int \) Lauxilliany "coefficient" vector space
vedo space
We can recover V from W as
$\forall\cong (\triangle^*\otimes_{\mathcal{C}(\mathbb{L})\otimes\mathbb{C}})\otimes_{\mathbb{C}}\forall\cong\triangle^*\otimes_{\mathcal{C}(\mathbb{C})}(\triangle\otimes_{\mathbb{C}}\vee)=\exists_{\mathcal{O}_{\mathcal{C}}(\mathbb{C})}(\triangle_{\mathcal{O}}\vee).$
Moreover
$End_{\mathbb{C}}(W) = C((k) \otimes End_{\mathbb{C}}(V) = C((k) \otimes End_{\mathbb{C}}(W)).$ action on V
Def: Let $F \in End_{Cl_{K}(C)}(W)$ where W is a complex $Cl(h)$ -rep, $W = \triangle \otimes V$.
91 11. 1 1 - 1 W/A(E) - 11. 1
The relative trace of F , F is defined to be the trace of the element $F \in End_{\mathcal{C}}(V)$ corresponding to F via
$E_{nd_{CL(C)}}(W) \cong E_{nd_{CC}}(V)$
$F \longmapsto \widetilde{F}$.

Irreps of Spin(k). Since the elements of Pin(k) generate Cl(k), \(\D\) is also an irrep of Pin(k). Now, Spin (k) Pin(k) of Index 2, so either: Δ is an irrep of Spin(h); or, Δ spits as the direct sum of two inequivalent irreps of Spin(k). Proposition: A splits as a rep of Spin(k). Let $\omega = e_1 \cdots e_k \in Cl(k)$ be the volume element. This satisfies (for k=2m even), $\omega = (-1)^{M}$ and $\omega = \varepsilon(x)\omega$. we are considering k even, we spin(k), and since Suppose $\omega v = \lambda v$; then $\omega^2 v = (-1)^n v = \lambda^2 v$. So consider the grading operator $i^m \omega$. We have $(i^m\omega)_{V} - \lambda_{V} \Rightarrow (i^m\omega)^{v}_{V} - \lambda_{V} = v$, so $\lambda = \pm 1$.

Let Δ_+ and Δ be the ± 1 eigenspaces of $i^m \omega$ acting on Δ , and consider the action of
$\mathcal{O}(h) \otimes \mathbb{C} \ Q \ \triangle = A_{+} \oplus A_{-}$
Let x∈Cl(k), v=v++v- € △+0 △ Then
$i^{n}\omega(\propto v_{\pm}) = \mathcal{E}(\propto)(i^{n}\omega v_{\pm}) = \pm \mathcal{E}(\sim)v_{\pm}$
So if ∞ is even, $\infty_{\pm} \in \Delta_{\pm}$ (preserves decomp.), and if ∞ is odd, $\infty_{\pm} \in \Delta_{\pm}$ (reverses decomp.).
Thus, $Spin(k)$ preserves Δ_+ and Δ , so
Δ, ξ Δ_ are Spin(k)-reps
and since $\Delta = \Delta_{+} \oplus \Delta_{-}$ we have that Δ_{+} are irreps of $Spin(k)$ and $dim(\Delta_{+}) = dim(\Delta_{-}) = \frac{1}{2}dim(\Delta) = 2^{m-1}$.
Det: • Δ + is the positive half-spin representation of Spin (2m). • Δ - is the negative half-spin representation of Spin (2m).
Remarki Can also say that the super vector space $\Delta = \Delta_+ \oplus \Delta$ becomes a graded representation of $Cl(2m)$.

Spin structures on manifolds.
Initial dota:
Let (M, g) be an oriented Riemannian manifold of dimension n=2m (even), and let E be the principal SO(n)-bundle of oriented orthonormal frames for the tangent bundle TM:
of dimension n=2m (even), and let E be the
principal SO(n)-bundle of oriented orthonormal
trames for the tangent bundle 11%.
$SO(n)$ $\sim F$
local (on UCM) = choice of positively section of E oriented orthonormal basis for TeM at
basis for TpM at each pt pell,
Varuina Smoothlu
Varying smoothly with P.
\mathcal{D} h. h. \mathcal{M}
Def: A spin structure on 17 is a principal Spin(n)-bundle
E over MI which is a double covering of E such
Def: A spin structure on M is a principal Spin(n)-bundle E over M which is a double covering of E such that the restriction to each fibre of the double covering E > E is the double covering p: Spin(n) > San
c is the dual a covering proprinting
If Madmits a spin-structure, it is called a
If Madmits a spin-structure, it is called a <u>spin manifold</u> .

- Def: The spin connection on the principal Spin(n)-bundle

 E over a spin munifold M is defined to be the lifting

 to E of the principal SO(n) connection on E

 induced by the Lovi-Civita connection on TM.
 - The spin connection on \triangle is the connection on \triangle associated (via the spin representation) to the spin connection on \cong .
- Proposition: The spin burdle Δ can be equipped with a natural hermitian metric and compatible spin connection, making $\Delta \rightarrow M$ a Clifford bundle.

Recall: «For a Clifford bundle S, the Riemann endomorphism REST (End(S)) is

The curvature 2-form K of a Clifford burdle S can always be written as

$$K=\mathbb{R}^{5}+F^{5}(E\mathcal{R}^{2}(E\mathcal{R}(S)))$$

where the twisting curvature F's commutes with the action of the Clifford algebra.

Proposition: The twisting curvature of the spin bundle associated to a spin structure is 300. Let ¿ens be a local ON frame for TM, and recall that the connection & curvature forms for TM home their values in the Lie algebra so(n). In particular KESZ (SO(n))=T(T*M@T*M@SO(n)), has Matrix entries are (R(·,·)eu,ei). By our identification of spin(n) as a subspace of Cl(n), the corresponding spin(n)-valued 2-form (which gives the curvature of the correction) is 12 (R(:,)ek, Ce)eker, which acts on the spin rep. by 1 = R (R(·,·)e,e,) c(e) = R (·,·). So $K=R^2=R^3+F^3$ i.e. $F^3=0$.