Generative and Multi-phase Learning for Computer Systems Optimization

Yi Ding Nikita Mishra Henry Hoffmann

Department of Computer Science, University of Chicago

Introduction

Optimizing modern computer systems requires tradeoff:

- Deliver reliable performance
- Minimize energy consumption

Resource management via system configuration:

- Resources have complex, non-linear effects on performance and energy
- Resource interactions create local optimal

How to find the optimal system configuration?

Left: A contour plot of performance rate for streamcluster benchmark at different configurations. Right: Example of a configuration space.

Machine Learning to the Rescue

Machine learning replaces heuristics, but:

- Scarce data: expensive collection, limited range behavior \rightarrow **Generative model**
- Asymmetric benefits: only configurations on optimal frontier useful \rightarrow Multi-phase sampling

Problem Formulation

Motivational Example: SRAD on ARM big.LITTLE system

High prediction accuracy \neq good system results

Recommender Systems \rightarrow Learning by Examples

Generating Data for Accuracy

Goal: different enough but still realistic to be plausible How:

- Random number generator ← different but not plausible
- Gaussian Mixture Model (GMM) ← plausible but not different

Generating Data with a GMM

Multi-phase Sampling

Input: Known and unknown applications, sampling budget N. while True do

Phase-1:

(1) Sample half of the budget N/2 configurations. (2) Run learner to get an initial estimation. (3) Rank configurations by estimated energy efficiency $\left[= \frac{\text{estimated performance}}{\text{estimated power}} \right]$.

Phase-2:

(1) Sample the N/2 most energy efficient configs. (2) Run learner again to obtain the final estimation.

Output: Estimation of performance and power.

Experimental Setup

	Mobile	Server
System	Ubuntu 14.04	Linux 3.2.0 system
Architecture	ARM big.LITTLE	Intel Xeon E5-2690
# Applications	21	22
# Configurations	128	1024

Learning Models	Category	Frameworks	Meanings
MCGD	MC	Vanilla	Basic learners
MCMF	MC	GM	Generative model
Nuclear	MC		
WNNM	MC	MP	Multi-phase sampling
НВМ	Bayesian	MP-GM	Combine GM and MP

Improve Prediction Accuracy w/ GM

Improve Energy Savings w/ MP

Conclusion

- Generative model improves prediction accuracy.
- Multi-phase method improves energy by biasing the learner to the configurations that are likely to be most energy efficient.
- Improving accuracy does not necessarily improve energy consumption.
- We advocate to de-emphasize accuracy but incorporate system structure into the learners.