Visualizing the linear Kalman filter

■ Linear Kalman-filter equations naturally form a recursion:

- "Simple" to implement on a digital computer
- However, note that our cell models are nonlinear. so we cannot apply (linear) Kalman filter to them directly

Setting up a demonstration (1)

■ To demonstrate the KF steps, we'll develop and use a crude cell model

$$z_{k+1} = 1 \cdot z_k - \frac{1}{3600 \cdot Q} i_k$$

 $volt_k = 3.5 + 0.7 \times z_k - R_0 i_k$

- Notice that we have:
 - Linearized the OCV relationship
 - □ Omitted diffusion voltages
 - □ Omitted hysteresis voltages

Dr. Gregory L. Plett University of Colorado Colorado Sp

Setting up a demonstration (2)

- Model still isn't linear because of "3.5" in output equation

■ Debias measurement via
$$y_k = \text{volt}_k - 3.5$$
 and use
$$z_{k+1} = 1 \cdot z_k - \frac{1}{3600 \cdot Q} i_k$$

$$y_k = 0.7 \times z_k - R_0 i_k$$

- Define state $x_k \equiv z_k$ and input $u_k \equiv i_k$
- For the sake of example, we will use Q = 10000/3600 and $R_0 = 0.01$
- \blacksquare Yields state-space description with A=1, $B = -1 \times 10^{-4}$, C = 0.7, and D = -0.01
- We also model $\Sigma_{\widetilde{w}} = 10^{-5}$, and $\Sigma_{\widetilde{v}} = 0.1$
- \blacksquare We assume no initial uncertainty so $\hat{x}_0^+=0.5$ and $\Sigma_{\tilde{x}.0}^+=0$

Iteration 1

■ We look at the first iteration of the linear KF, assuming $i_0 = 1$, $i_1 = 0.5$ and $v_1 = 3.85$

• Output: $\hat{z} = 0.4999 \pm 3\sqrt{9.9995 \times 10^{-6}} = 0.4999 \pm 0.0094866$

Dr. Gregory L. Plett University of Colorado Colorado Spring

Battery State-of-Charge (SOC) Estimation | Coming to understand the linear Kalman filter

4 of 8

3.3.1: Visualizing the Kalman filter with a linearized cell model

Iteration 2

■ For the second iteration of the linear KF, let $i_1 = 0.5$, $i_2 = 0.25$, and $v_2 = 3.84$

■ Output: $\hat{z} = 0.4998 \pm 3\sqrt{1.99976 \times 10^{-5}} = 0.4998 \pm 0.013416$

Dr. Gregory L. Plett | University of Colorado Colorado Springs

Battery State-of-Charge (SOC) Estimation | Coming to understand the linear Kalman filter

5 of 8

3.3.1: Visualizing the Kalman filter with a linearized cell model

Covariance

■ Note that covariance (uncertainty) converges over time

- Covariance increases during propagation, is then reduced by each measurement
- \blacksquare Covariance still oscillates in steady state between $\Sigma_{\tilde{x},ss}^-$ and $\Sigma_{\tilde{x},ss}^+$
- Estimation error bounds are $\pm 3\sqrt{\Sigma_{\tilde{x},k}^+}$ for 99⁺ % assurance of estimate's accuracy

Results

- The plots below show a sample of the Kalman filter operating
- We'll soon look at how to write code to evaluate this example

- Note that Kalman filter does not perform especially well since $\Sigma_{\tilde{v}}$ is quite large
- However, these are best-possible results, since KF is the optimum MMSE estimator

Dr. Gregory L. Plett | University of Colorado Colorado Springs

Battery State-of-Charge (SOC) Estimation | Coming to understand the linear Kalman filter

Summary

- KF implements an MSEE-optimal state estimator for linear systems if assumptions regarding system noises are met
- KF equations naturally form a recursive algorithm for estimating the state
- While the KF works only for linear systems, we can linearize system dynamics for an approximate result (will learn better ways later)
- Example with a simplified battery model demonstrates the kinds of results you can expect from a KF
 - □ The KF will provide a state estimate...
 - □ And uncertainty bounds (error bounds) on that estimate
- We will find this very helpful for SOC estimation

Dr. Gregory L. Plett University of Colorado Colorado Springs

Battery State-of-Charge (SOC) Estimation | Coming to understand the linear Kalman filter