ESC201T : Introduction to Electronics

HW9: Solution

B. Mazhari Dept. of EE, IIT Kanpur

Q.1 Determine the drain current and drain-source voltage for the two circuits shown below.

Assume that
$$KP_N=100\mu A/V^2$$
; $V_{THN}=1V$; $\lambda_n=0V^{-1}$

Assuming saturation mode:

ids(vgs) := kpn ×
$$\frac{W}{L}$$
 × $\frac{(vgs - vthn)^2}{2}$
ids(vgs) = 1 × 10⁻⁵ ■

$$vds := vdd - ids(vgs) \times RD$$

$$vds = 2.8$$
 $vdsat = 0.2$

So assumption is correct

Assuming saturation mode:

ids(vgs) := kpn ×
$$\frac{W}{L}$$
 × $\frac{(vgs - vthn)^2}{2}$

$$ids(vgs) = 5.29 \times 10^{-4}$$
 $vds = -49.6$

So Transistor is in Linear mode

$$ids := kpn \times \frac{W}{L} \times (vgs - vthn) \times (vdd - ids \times RD)$$

$$ids = 3.23 \times 10^{-5}$$
 vds := vdd - ids × RD = 0.07

Q.2 Analyze the circuit shown below to determine the voltage gain of the amplifier. Determine the gain if the capacitor C_S is removed from the circuit. Assume the same

MOS parameters as in Q.1

dc or Bias point or Quiescent point

(Units are Ampere and Volt)

Assuming saturation mode

$$ids(vgs) := kpn \times \frac{W}{L} \times \frac{(vgs - vthn)^2}{2} \qquad vgs := Vbias - ids \times RD \qquad \text{We will get 2 values}$$

$$ids1 = 7.464 \times 10^{-5} \text{ } \qquad vgs1 := vthn + \sqrt{\frac{2 \times ids1}{kpn \times \frac{W}{L}}} \qquad vgs1 = 1.546 \text{ } \qquad \text{Not possible since VBias} = 1.2$$

$$ids2 = 5.359 \times 10^{-6} \text{ } \qquad vgs2 := vthn + \sqrt{\frac{2 \times ids2}{kpn \times \frac{W}{L}}} \qquad vgs2 = 1.146 \text{ } \qquad \text{This is fine} \qquad V_{DSAT} = 0.146 \text{V}$$

$$vdd - ids2 \times RD = 1.692 \text{ } \qquad \text{So Tr. Is in SAT}$$

Bias point:

$$vgs2 = 1.146$$
 $ids2 = 5.359 \times 10^{-6}$

$$vdd - ids2 \times RD = 1.692$$

$$g_m = \sqrt{2I_{DS} \times KP_N \times \frac{W}{L}} = 7.3 \times 10^{-5} \Omega^{-1}$$

ac or small signal analysis

Capacitors acts as short resulting in the following equivalent circuit

$$V_{s} = \frac{g_{m} V_{gs}}{\frac{1}{2}}$$

$$V_{out}$$

$$A_{V} = -g_{m} \times R_{D} || R_{L} = -36$$

Removing the capacitor Cs does not alter the bias point and thus gm also remains same. The ac equivalent circuit now becomes

Q.3 Determine the output of the ideal opamp circuits shown below

$$v_o = -\{\frac{10K}{1K} \times 10mV + \frac{10K}{2K} \times 1mV \sin(\omega t)\}\$$
$$= -\{0.1 + 5 \times 10^{-3} \sin(\omega t)\}\$$

$$v_+ = v_- = 1V$$

$$\frac{1 - v_O}{1K} = 1mA \qquad v_O = 0V$$

Q.4 Design an opamp circuit that would generate the following output voltage where Vs1, Vs2, Vs3 and Vs4 are input voltages $V_O = 2v_{s1} + 4v_{s2} - 8v_{s3} - 10v_{s4}$

$$v_{o} = -\left(\frac{R_{f}}{R_{3}}\right)v_{s3} - -\left(\frac{R_{f}}{R_{4}}\right)v_{s4} + \left(1 + \frac{R_{f}}{R_{3}\|R_{4}}\right) \times \frac{R_{P}}{R_{1}}v_{s1} + \left(1 + \frac{R_{f}}{R_{3}\|R_{4}}\right) \times \frac{R_{P}}{R_{2}}v_{s2}$$

Choose: $R_f = 10K$ $\Rightarrow R_3 = 1.25K$ $\Rightarrow R_4 = 1K$

$$\Rightarrow \frac{R_P}{R_1} = 0.105 \qquad \Rightarrow \frac{R_P}{R_2} = 0.211 \qquad \Rightarrow \frac{R_1}{R_2} = 2$$

Choose: $R_2 = 1K$ $\Rightarrow R_1 = 2K$ $\Rightarrow R_P = 0.211K$ $\Rightarrow R_5 = 0.308K$

Q.5 Design an opamp circuit that can produce $V_O = K \times V_{IN}^2$ where Vin is the input voltage.

Q.6 Sketch the output voltage of the circuit shown below for $V_{in}=1V~Sin(2\pi ft);~f=1KHz$ and supply voltages of $\pm 5V$

comparator

$$V_{O1} = +5V \text{ if } v_{in} > 0$$

= -5V \text{ if } v_{in} < 0

Q.7 Determine the output for the ideal opamp circuits shown below. For the circuit on the right assume that diodes have cut-in voltage of 0.7V. Analyze the circuit for Vs = 1V and Vs = -1V. For the transistor assume a current gain of 100. What is the usefulness of each of the circuits?

$$v_o = V_Z (1 + \frac{R_2}{R_1})$$

The circuit produces a constant output voltage Vo even though supply voltage may vary and thus acts like a voltage regulator.

The circuit acts like a rectifier