

- Integrais

1. Um objeto move-se ao longo de um eixo de coordenadas x. O seu movimento é descrito por uma função x = x(t) no intervalo de tempo [0,T]. Sabendo que a posição no instante inicial é x(0) = 0 e que a lei das velocidades deste movimento é descrita pelo seguinte gráfico:

determine:

- (a) os intervalos de tempo onde o objeto está respectivamente: parado, em movimento uniforme, em movimento acelerado e em movimento desacelerado;
- (b) os deslocamentos efetuados nestes intervalos de tempo;
- (c) as distâncias percorridas nos mesmos intervalos de tempo;
- (d) a posição no instante t = T e o deslocamento total;
- (e) a lei do movimento x(t). Esboce o seu gráfico.
- 2. Considere a sequência de pontos $\{x_0, x_1, x_2, \cdots, x_{n-1}, x_n\}$ no intervalo [a, b], onde $x_i = a + i(b-a)/n$ para cada $i = 1, 2, \dots, n$. As somas superior e inferior da função f(x) = x neste intervalo são:

$$S_n = \sum_{i=1}^n x_i \left(\frac{b-a}{n} \right) e s_n = \sum_{i=1}^n x_{i-1} \left(\frac{b-a}{n} \right).$$

Mostre que:

(a)
$$S_n = (b-a)\left(a + (b-a)\frac{n+1}{2n}\right);$$

(b)
$$s_n = (b-a)\left(a + (b-a)\frac{n-1}{2n}\right);$$

(c) ambas estas sucessões convergem para $(b^2 - a^2)/2$;

(d) conclua que
$$\int_{a}^{b} x \, dx = \frac{b^2 - a^2}{2}$$
.

3. Calcule os seguintes integrais:

$$(1) \quad \int_0^3 x^2 \, dx$$

(2)
$$\int_{2}^{3} (3x^2 - 4x + 2) \, dx$$

$$(3) \quad \int_0^1 e^{\pi x} \, dx$$

(4)
$$\int_0^2 |(x-1)(3x-2)| dx$$

$$(5) \quad \int_{-\pi/2}^{\pi/2} \sin x \, dx$$

(6)
$$\int_{-3}^{5} |x-1| \, dx$$

(7)
$$\int_{3/4}^{4/3} \frac{1}{x^2 \sqrt{x^2 + 1}} \, dx$$

(8)
$$\int_0^1 \log(x^2+1) dx$$

(9)
$$\int_0^3 \sqrt{9-x^2} \, dx$$

(10)
$$\int_{-5}^{0} 2x\sqrt{4-x} \, dx$$

(11)
$$\int_0^2 x^3 e^{x^2} dx$$

(12)
$$\int_0^{\pi/2} e^{\operatorname{sen} x} \operatorname{sen} x \cos x \, dx$$

(13)
$$\int_{-\pi/2}^{\pi/2} |\sin x| dx$$

$$(14) \quad \int_{-\pi}^{\pi} \cos^3 u \sin u \, du$$

$$(15) \quad \int_{-4}^{0} t \sqrt{1 + t^2} \, dt$$

$$(16) \quad \int_0^\pi x \sin x \, dx$$

(17)
$$\int_{0}^{\sqrt{2}/2} \arcsin x \, dx$$

$$(18) \quad \int_{-\pi}^{\pi} \operatorname{sen}(2x) \, \cos x \, dx$$

$$(19) \quad \int_{1}^{e^3} \log t \, dt$$

(20)
$$\int_0^{\pi/4} e^x \left(e^x + \frac{e^{-x}}{\cos^2 x} \right) dx$$

(21)
$$\int_0^{\frac{\pi}{2}} |\sin x - \cos x| dx$$

$$(22) \quad \int_{-3}^{2} \sqrt{|x|} \, dx$$

(23)
$$\int_0^2 f(x) dx \text{ com } f(x) = \begin{cases} x^2 & \text{se } 0 \le x \le 1\\ 2 - x & \text{se } 1 < x \le 2 \end{cases}$$

(24)
$$\int_0^1 g(x) dx \text{ com } g(x) = \begin{cases} x & \text{se } 0 \le x \le 1/2 \\ 1 - x & \text{se } 1/2 < x \le 1 \end{cases}$$

4. Seja $f:\mathbb{R}\longrightarrow\mathbb{R}$ uma função contínua tal que

$$\int_0^x f(t) \, dt = -\frac{1}{2} + x^2 + x \sin(2x) + \frac{\cos(2x)}{2}, \quad \forall x \in \mathbb{R}.$$

Calcule $f(\frac{\pi}{4})$ e $f'(\frac{\pi}{4})$.

5. Considere $F:[0,\sqrt{5}] \longrightarrow \mathbb{R}$ definida por $F(x) = \int_0^{x^2} f(t) dt$, onde a função $f:[0,5] \longrightarrow \mathbb{R}$ é dada pelo seguinte gráfico

Determine $F(\sqrt{3})$ e $F'(\sqrt{3})$.

6. Em cada uma das alíneas, calcule a função derivada de $\,F\,$, sendo $\,F\,$ definida por:

(a)
$$F(x) = \int_0^x (1+t^2)^{-3} dt$$
, $x \in \mathbb{R}$

(b)
$$F(x) = \int_0^{x^2} (1+t^2)^{-3} dt$$
, $x \in \mathbb{R}$

(c)
$$F(x) = \int_{x^3}^{x^2} \frac{t^6}{1+t^4} dt, \quad x \in \mathbb{R}$$

7. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ uma função derivável tal que f(0) = 2 e f'(x) > 4, para todo $x \neq 0$, e $g: \mathbb{R} \longrightarrow \mathbb{R}$ a função definida por

$$g(x) = \int_0^x f(t) dt - (2x + 2x^2).$$

3

- (a) Calcule g'(x) e g''(x), $x \in \mathbb{R}$.
- (b) Mostre que g(0) = g'(0) = 0 e que g''(x) > 0 para todo $x \neq 0$.
- (c) Estude a monotonia de g e conclua que $\int_0^x f(t) dt > 2x + 2x^2, \ \forall x \neq 0.$
- 8. Considere a função real de variável real definida por $F(x) = \int_1^{x^2} e^{t^2} dt$, $x \in \mathbb{R}$.
 - (a) Calcule os zeros de F.
 - (b) Estude a paridade da função F.
 - (c) Determine os intervalos de monotonia da função.
- 9. Dê exemplo de, ou mostre porque não existe:
 - (a) uma função $f:[0,1] \longrightarrow \mathbb{R}$ não integrável;
 - (b) uma função $f:[0,1] \longrightarrow \mathbb{R}\,$ derivável mas não integrável;
 - (c) uma função $f:[0,1]\longrightarrow \mathbb{R}$ derivável mas não primitivável;
 - (d) uma função $f:[0,1] \longrightarrow \mathbb{R}\,$ primitivável mas não derivável;
 - (e) uma função $f:[0,1] \longrightarrow \mathbb{R}\,$ integrável mas não primitivável;
 - (f) uma função $f:[0,1]\longrightarrow \mathbb{R}$ não integrável tal que |f| seja integrável.
- 10. Em cada alínea calcule a área da região limitada pelas curvas de equações:

(a)
$$x = 1$$
, $x = 4$, $y = \sqrt{x}$, $y = 0$

(b)
$$x = 0$$
, $x = 2$, $y = x$, $y = x^2$

(c)
$$x = 0$$
, $x = 1$, $y = 3x$, $y = -x^2 + 4$

(d)
$$x = 0$$
, $x = 2$, $x^2 + (y - 2)^2 = 4$, $x^2 + (y + 2)^2 = 4$

(e)
$$x = 0$$
, $x = \pi/2$, $y = \sin x$, $y = \cos x$

(f)
$$x^2 + y^2 = 1$$
, $x^2 + y^2 = 4$

(g)
$$x = 0$$
, $x = 1$, $y = \sqrt{x}$, $y = -x + 2$

(h)
$$x = -1$$
, $y = |x|$, $y = 2x$, $x = 1$

(i)
$$y = \log x$$
, $y = 0$, $x = e^2$

$$(\mathbf{j}) \quad x=0, \quad x=\pi, \quad y=2 \operatorname{sen} x, \quad y=-\operatorname{sen} x$$

(k)
$$y^2 = 2x - 2$$
, $y - x + 5 = 0$

(1)
$$y = -x^3$$
, $y = -(4x^2 - 4x)$

(m)
$$y = -x^2 + \frac{7}{2}$$
, $y = x^2 - 1$

(n)
$$y = 0$$
, $x = -\log 2$, $x = \log 2$, $y = \sinh x$

11. Estabeleça um integral (ou soma de integrais) que dê a área da região

(a)
$$D = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 2 \land -x \le y \le x^2 \}$$

(b)
$$D = \{(x, y) \in \mathbb{R}^2 : (x - 2)^2 + y^2 \le 4 \land 0 \le y \le x\}$$

(c)
$$D = \{(x, y) \in \mathbb{R}^2 : |x| + |y| \le 1\}$$

(d)
$$D = \{(x, y) \in \mathbb{R}^2 : x^2 - 1 \le y \le x + 1\}$$

(e)
$$D = \{(x, y) \in \mathbb{R}^2 : -1 \le x \le 2 \land 0 \le y \le e^x \land 0 \le y \le e^{-x} \}$$

(f)
$$D = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 2 \land 0 \le y \le x^2 \land 0 \le y \le 2 - x\}$$

(g)
$$D = \{(x, y) \in \mathbb{R}^2 : y \ge 0 \land y \ge x^2 - 2x \land y \le 4\}$$

(h)
$$D = \{(x,y) \in \mathbb{R}^2 : x \le 3 \land x^2 - 4x + 3 \le y \le -x^2 + 5x - 4\}$$

12. Na figura estão assinaladas três regiões limitadas entre o gráfico de uma função $f:[0,3] \to \mathbb{R}$, derivável, e o eixo das abcissas, que correspondem às abcissas dos intervalos [0,1], [1,2] e [2,3], respetivamente. A área de cada uma destas regiões vem inscrita no seu interior.

Nestas condições, considere a função $F: [-3,3] \longrightarrow \mathbb{R}$ definida por $F(x) = \int_1^{\frac{3+x}{2}} f(t) dt$.

5

(a) Preencha a tabela, determinando os correspondentes valores de F(x):

x	-3	-1	1	3
F(x)				

- (b) Determine expressões para F'(x) e F''(x).
- (c) Represente F graficamente.