電子工程系專題研究報告

--自動結帳櫃檯

0612020 吳峻陞 0612128 林俊德

Content

- A \ Concept of Project
- B \ Saliency Salient Object Detection
- C \ Defects of the Algorithm
- D \ Improvements

Concept of Project

Self Checkout Machine nowadays
Still need to handcrafted operations

How to make it do the checkout all by itself?

By the Camera!

Combine the 360-degree photos, we can instantly know what customers buy.

Then, how can we implement the idea?

Salient Object Detection

Saliency — Salient Object Detection

Four Ways of Image Detection

Image Recognition

Object Detection

Semantic Segmantation

Instance Segmantation

FCN (Fully Connected Convolutional Neural Network)

Deconvolution

Output

HED (Holistically Nested Edge Detection)

HED (Holistically Nested Edge Detection)

Random training size [256, 512]

ConvNet Configuration					
A	A-LRN	В	С	D	E
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	1ayers	layers	layers	1ayers
input (224 × 224 RGB image)					
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
maxpool					
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
maxpool					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
FC-4096					
FC-4096					
FC-1000					
soft-max					

Transfer Learning

more complicated structure will take the trained data to be the initial

Defects of The Algorithm

Target focused, surroundings blurred

Target focused, surroundings focused

Target blurred, surroundings blurred

Target focused, surroundings blurred

Target focused, surroundings focused

Target focused, surroundings blurred

Target focused, surroundings focused

Implementation (Separation test)

Causes of Impacts

- A \ Depth of Field
- B \ Reflective of Light
- C \ Separation Distance between two objects
- D \ Object's color constract
- E > Difference between object and surroundings
- F \ Size difference between Input graph and trainning data

Improvements

- A Backgrounding
- B \ Line Up in Parallel
- C \ Light Location to Avoid Reflective of Light
- D \ Object Classification
- E \ Movable Camera to Get different perspective

Thanks For Listening