Empirical Mode Decomposition To Find Instantaneous Frequency Project Report

Ayush Singhania (20171031)

Kunal Lahoti(2018122002)

<u>Aim of the Project:</u> To decompose a non-linear, non-stationery signal into component IMFs using Empirical Mode Decomposition to find the component Instantaneous Frequencies present in the signal.

Basic Algorithm For Finding IMFs(EMD):

- 1. Identify all the local extrema in the test data.
- 2. Connect all the local maxima by a cubic spline line as the upper envelope.
- 3. Repeat the procedure for the local minima to produce the lower envelope.
- 4. The upper and lower envelopes should cover all the data between them. Their mean is m_1 . The difference between the data and m_1 is the first component h_1 : $X(t) m_1 = h_1$.
- 5. Ideally, h₁ should satisfy the definition of an IMF, since the construction of h₁ described above should have made it symmetric and having all maxima positive and all minima negative. After the first round of sifting, a crest may become a local maximum. New extrema generated in this way actually reveal the proper modes lost in the initial examination. In the

- subsequent sifting process, h_1 can only be treated as a proto-IMF. In the next step, h_1 is treated as data: h_1 - m_{11} = h_{11} .
- 6. After repeated sifting up to k times, h1 becomes an IMF, that is $h_{1(k-1)}$ m_{1k} = h_{1k} .
- 7. Then, h_{1k} is designated as the first IMF component of the data: $C_1 = h_{1k}$.
- 8. The stoppage criterion determines the number of sifting steps to produce an IMF.
- 9. The stoppage criteria we chose is: Standard Deviation < 0.3.

Basic Algorithm for Finding Instantenous Frequncy from IMFs:

- 1. Find the IMF components which contain 99% of the signal power and compute Instantaneous Frequencies from them.
- 2. Compute analytical signal, $z(t) = s(t) + j*H[s(t)] = a(t)*e^{j*\phi(t)}$, where s(t) is the real signal (an IMF), H[*] is Hilbert transform, a(t) is the absolute value of z(t), and $\Phi(t)$ is the phase of z(t).
- 3. Instantaneous frequency, $f_i(t) = (1/(2*\pi))*(d\phi(t)/dt)$

<u>Input Signal</u>: We chose a standard ECG signal for testing our code. The ecg signal is plotted as:

Outputs:

1. Component IMFs:

2. Sum of IMFs:

3. Component Instanteneous Frequencies:

a. Frequency = 300 Hz.

b. Frequency = 160 Hz

c. Frequency = 100 Hz

d. Frequency = 80 Hz

e. Frequency = 20 Hz

f. Frequency = 5 Hz

<u>Observations:</u> The input ECG signal contains 300 Hz as the most dominant R-peak frequency as is expected in a normal ECG scan. The other frequencies correspond to the other peaks like Q,S,T etc.