Idea

The Idea behind the ADT of a Stack is to provide a collection of data with two primary operations:

- push: Push a new item on top of the stack.
- pop: Take the item on top of the stack off.

Definition

We define the ADT as the following 5-Tuple:

$$\mathcal{D} = (N, P, Fs, Ts, Ax),$$

where the components are defined as follows:

- 1. N := Stack
- 2. $P := \{Element\}$
- 3. $Fs := \{ \text{stack, push, pop, top, isEmpty} \}$
- 4. Ts is the set containing the following type specifications:
 - (a) stack: Stack
 - (b) push : Stack \times Element \rightarrow Stack
 - (c) pop : Stack \rightarrow Stack $\cup \{\Omega\}$
 - (d) top : Stack \rightarrow Stack $\cup \{\Omega\}$
 - (e) is Empty: Stack $\rightarrow \mathbb{B}$
- 5. Ax is the set containing the following axioms:
 - (a) $\operatorname{stack}().\operatorname{top}() = \Omega$
 - (b) $\operatorname{stack}().\operatorname{pop}() = \Omega$
 - (c) S.push(x).top() = x
 - (d) S.push(x).pop() = S
 - (e) $S.top() = \Omega \iff S.isEmpty = true$

Implementation

TBD