(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

- 1881 | 1881 | 1881 | 1881 | 1882 | 1883 | 1884 | 1885 | 1885 | 1885 | 1885 | 1885 | 1885 | 1885 | 1885 | 1885

(43) Internationales Veröffentlichungsdatum 22. November 2001 (22.11.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/88172 A1

(51) Internationale Patentklassifikation⁷: C12P 1/00, C25B 3/04, 9/00, C12M 1/00, C12P 7/22

(21) Internationales Aktenzeichen:

PCT/EP01/05601

(22) Internationales Anmeldedatum:

16. Mai 2001 (16.05.2001)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

100 24 314.2

17. Mai 2000 (17.05.2000) Di

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF AKTIENGESELLSCHAFT [DE/DE]; 67056 Ludwigshafen (DE).
- (71) Anmelder (nur für US): STECKHAN, Christine, Karla (Erbin des verstorbenen Erfinders) [DE/DE]; Jungholzweg 26, 53340 Meckenheim (DE). STECKHAN, Uwe (Erbe des verstorbenen Erfinders) [DE/DE]; Jungholzweg 26, 53340 Meckenheim (DE). STECKHAN, Antje (Erbin des verstorbenen Erfinders) [DE/DE]; Jungholzweg 26, 53340 Meckenheim (DE). STECKHAN, Heike (Erbin des verstorbenen Erfinders) [DE/DE]; Jungholzweg 26, 53340 Meckenheim (DE).
- (72) Erfinder: STECKHAN, Eberhard (verstorben).
- (72) Erfinder: und
- (75) Erfinder/Anmelder (nur für US): SCHMID, Andreas

[DE/CH]; Im oberen Boden 60, CH-8049 Zürich (CH). HOLLMANN, Frank [DE/CH]; Fronwaldstr. 94, CH-8046 Zürich (CH). HAUER, Bernhard [DE/DE]; Merowingerstr. 1, 67136 Fussgönheim (DE). ZELINSKI, Thomas [DE/DE]: Ziegeleistr. 81, 67122 Altrip (DE).

- (74) Anwälte: KINZEBACH, Werner usw.; Ludwigsplatz 4, 67059 Ludwigshafen (DE).
- (81) Bestimmungsstanten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM. DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Noies on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: METHOD COMPRISING THE INDIRECT ELECTROCHEMICAL REGENERATION OF NAD(P)H

(54) Bezeichnung: VERFAHREN, UMFASSEND DIE INDIREKTE ELEKTROCHEMISCHE REGENERATION VON NAD(P)H

(57) Abstract: The invention relates to a method comprising the indirect electrochemical regeneration of NAD(P)H in enzymatic substrate reactions, that are, for example, catalyzed by monooxygenases. The invention especially relates to a method for the electroenzymatic production of 2,3-dihydroxyphenyl derivatives that is catalyzed by the enzyme 2-hydroxybiphenyl-3-monooxygenase, while at the same time the NAD+ produced by reductive oxygen separation is electrochemically reduced.

(57) Zusammenfassung: Die vorliegende Erfindung betrifft Verfahren, umfassend die indirekte elektrochemische Regeneration von NAD(P)H bei enzymatischen Substratumsetzungen, welche beispielsweise durch Monooxygenasen katalysiert werden. Gegenstand ist insbesondere ein Verfahren zur elektroenzymatischen Herstellung von 2,3-Dihydroxyphenylderivaten, welches durch das Enzym 2-Hydroxybiphenyl-3-monooxygenase katalysiert wird, und wobei gleichzeitig das durch reduktive Sauerstoffspaltung gebildete NAD+ elektrochemisch reduziert wird.

-

Verfahren, umfassend die indirekte elektrochemische Regeneration von NAD(P)H

5 Beschreibung

Die vorliegende Erfindung betrifft Verfahren, umfassend die indirekte elektrochemische Regeneration von NAD(P)H aus NAD(P)+, welches beispielsweise bei der enzymkatalysierten reduktiven Sauer10 stoffspaltung anfällt. Das erfindungsgemäße elektrochemische Regenerationsverfahren ist insbesondere anwendbar im Rahmen elektroenzymatischer, NAD(P)H verbrauchender Umsetzungen, insbesondere oxidativer enzymatischer Umsetzungen von Substraten durch Monooxygenasen. Insbesondere ist Gegenstand der Erfindung ein elektroenzymatisches Verfahren zur Monooxygenase-katalysierten Herstellung von 2,3-Dihydroxy-Phenylderivaten.

Biokatalysierte Reaktionen gewinnen sowohl in der organischen 20 Laborsynthese als auch in zahlreichen industriellen Anwendungen immer mehr an Bedeutung. Insbesondere die gewöhnlich hohen Regiound Stereoselektivitäten enzymatischer Umsetzungen unter gleichzeitig milden Bedingungen und hohen Ausbeuten machen sie zu attraktiven Werkzeugen in der Syntheseplanung. Im Gegensatz zu 25 den hydrolytischen Enzymen, die bereits vielfältige Verwendung finden, ist der Einsatz von Redoxenzymen für enantioselektive Reduktionen und chemo-, regio- und enantioselektive Oxidationen trotz ihres großen synthetischen Potenzials noch nicht sehr weit verbreitet. Grund dafür ist vor allem das bisher nicht 30 zufriedenstellend gelöste Problem einer effektiven Cofaktorregeneration. Neben den etablierten Verfahren der enzymgekoppelten Cofaktorregenerierung [la,b,c,d] wurden inzwischen auch elektrochemische Methoden entwickelt und auf NAD(P)+- und NAD(P)H-abhängige Enzyme angewandt [2a,b,c]. Der 35 Vorteil der indirekten elektrochemischen Cofaktorregenerierung besteht darin, daß lediglich das Produktionsenzym benötigt wird und sich somit die häufig schwierige Optimierung eines Doppel-Enzym-Systems erübrigt. Darüber hinaus kann auf ein

40

Cosubstrat verzichtet werden.

Monooxygenasen besitzen eine hohe synthetische Bedeutung, da sie in der Lage sind, Sauerstofffunktionen regio- und stereoselektiv in ihre Substrate einzubauen. Dafür benötigen sie molekularen Sauerstoff, dessen O-O-Bindung reduktiv unter Bildung von Wasser gespalten wird [3a,b]. Die nativen Cofaktoren der Monooxygenasen NADH oder NADPH liefern dazu die notwendigen Reduktionsäquivalente. Die bisherigen in vitro-Verfahren mit

2

Monooxygenasen als Produktionsenzyme beruhen auf einer enzymgekoppelten Cofaktorregenerierung unter Verwendung der Formiat-Dehydrogenase [4a,b] (für NADH bzw. NADPH) sowie der Glucose-6-phosphat-Dehydrogenase [5] (für NADPH).

5

Reipa et al. beschreiben in [10] ein Verfahren zur elektrochemischen Regeneration von Putidaredoxin, dem natürlichen Redoxpartner der Cytochrom CYP 101-Monoxygenase (E.C.1.14.15.1). Hierzu wird die Verwendung einer speziellen Antimon-dotierten Zinnoxidelektrode vorgeschlagen, welche zur

10 Zinnoxidelektrode vorgeschlagen, welche zur Putidaredoxin-Reduktion geeignet ist.

Held et al. beschreiben in [8] die biokatalytische Produktion von 3-Phenylkatechol unter Verwendung ganzer Zellen von Escherichia
15 coli JM 101 (pHDT 461). Dieser rekombinante Mikroorganismus ist zur Produktion des Enzyms 2-Hydroxybiphenyl-3-monooxygenase ausgelegt. Eine elektrochemische Regeneration von verbrauchtem NADH in in diesem Zusammenhang nicht erforderlich, da der Cofaktor durch das enzymatische System der intakten E.
20 coli-Zellen wieder regeneriert wird.

Aufgabe der vorliegenden Erfindung war es, ein enzymfreies, selektives und effektives Verfahren zur indirekten elektrochemischen NAD(P)H-Regenerierung zu entwickeln, welches z.B. gekoppelt mit Monooxygenasen zur oxidativen Umsetzung von Substraten unter reduktiver Sauerstoffspaltung geeignet ist. Eine weitere Aufgabe bestand in der Bereitstellung eins Verfahrens, das die enzymatische, Monooxygenase-katalysierte Synthese von 2,3-Dihydroxyphenyl-Verbindungen, wie 2,3,-Dihydroxybiphenyl, unter indirekten elektrochemischen NAD(P)H-Regenerierung ermöglicht.

Kurze Beschreibung der Erfindung

35 Diese Aufgaben wurden gelöst durch Bereitstellung eines elektroenzymatischen Verfahrens zur Herstellung von 2,3-Dihydroxyphenylderivaten der allgemeinen Formel I

40

45

. .

3

worin R für gegebenenfalls ein- oder mehrfach substituiertes Phenyl, $C_1-C_6-Alkyl$, Halogen oder CN steht; und R' für H oder OH steht; wobei man bei diesem Verfahren

5

a) eine Monohydroxyphenyl-Verbindung der allgemeinen Formel II

worin R und R' die oben angegebenen Bedeutungen besitzen, mit 15 2-Hydroxybiphenyl-3-monooxygenase (HbpA) (E.C. 1.14.13.44) in Gegenwart von NADH und Sauerstoff umsetzt; und

- b) das gebildete NAD+ elektrochemisch zu NADH reduziert.
- 20 Die Aufgaben werden außerdem gelöst durch Bereitstellung eines Verfahrens zur NAD(P)H-Regeneration bei einer NAD(P)H-verbrauchenden oxidativen enzymatischen Umsetzung eines Substrates, bei dem man eine NAD(P)H-verbrauchende oxidative enzymatischen Umsetzung eines oxidierbaren Substrates in
- 25 Gegenwart von NAD(P)H und vorzugsweise unter Sauerstoffverbrauch durchführt, und das bei der Oxidation des Substrats gebildete NAD(P)+ elektrochemisch zu NAD(P)H reduziert. Beispielsweise kann man eine NAD(P)H-abhängige Monooxygenase (aus der Klasse E.C. 1.14.-.-) mit dem oxidierbaren Substrat in Gegenwart von NAD(P)H
- 30 und in Anwesenheit von Sauerstoff inkubieren und das bei reduktiver Sauerstoffspaltung und Oxidation des Substrats gebildete NAD(P)+ elektrochemisch zu NAD(P)H reduziert.

Die vorliegende Erfindung erlaubt erstmalig die enzymungebundene, 35 indirekte elektrochemische Regeneration von NADH bzw. NADFH im Rahmen von Sauerstoff verbrauchenden, z.B. Monooxygenase-katalysierter Reaktionen. Aufgrund der indirekten elektrochemischen Cofaktorregeneration ist eine kontinuierliche Substratumsetzung möglich.

40

Eine "indirekte" elektrochemische Regeneration von NAD(P)H im Sinne der vorliegenden Erfindung ist gegeben, wenn der Cofaktor über einen geeigneten Redoxkatalysator regeneriert wird, welcher die zur Reduktion erforderlichen Elektronen von der Kathode auf 45 den oxidierten Cofaktor überträgt.

**

Detaillierte Beschreibung der Erfindung

Ein erster Gegenstand der Erfindung betrifft ein elektroenzymatisches Verfahren zur Herstellung von 5 2,3-Dihydroxyphenylderivaten der allgemeinen Formel I

worin R für gegebenenfalls ein oder mehrfach, z.B. durch Halogen, wie z.B. F, Cl, Br oder J, CN oder OH, insbesondere OH, substituiertes Phenyl; für C1-C6-Alkyl, wie z.B. Methyl, Ethyl, noder i- Propyl, n-, i- oder t-Butyl, sowie n-Pentyl oder n-Hexyl und jeweils die verzweigten Analoga davon; für Halogen, wie z.B. F, Cl, Br oder J; oder für CN steht; und R' für H oder OH steht, wobei R' in m- oder p-Position, vorzugsweise p-Position zur 2-Hydroxygruppe des Phenylrings steht, und wobei man

25

a) eine Monohydroxyphenyl-Verbindung der allgemeinen Formel II

worin R und R' die oben angegebenen Bedeutungen besitzen, 35 mit 2-Hydroxybiphenyl-3-monooxygenase (HbpA) (E.C. 1.14.13.44) in Gegenwart von NADH und Sauerstoff umsetzt; und

- b) das gebildete NAD+ elektrochemisch zu NADH reduziert.
- 40 Bevorzugt führt man die elektrochemische NAD+-Reduktion in Gegenwart eines Hydridorhodium-Redoxkatalysators durch, der kathodisch herstellbar und regenerierbar ist. Der Redoxkatalysator ist dabei ein vorzugsweise löslicher Rhodiumkomplex, der bei einem Kathodenpotenzial im Bereich von 45 -650 bis -800 mV, gemessen gegen Ag/AgCl(gesättigt) (pH=6-9; T=20-60°C, insbesondere etwa 20 bis 35°C, wie z.B. etwa 30°C) elektrochemisch in den Hydridorhodium-Komplex überführbar ist.

Besonders bevorzugt verwendet man zur Durchführung der HbpA-katalysierten Reaktion einen Rhodium-Komplex der allgemeinen Formel III

5 [Cp Rh (III)(bpy)Cl]Cl (III)

worin

- Cp für Cyclopentadienyl oder Pentamethylcyclopentadienyl steht und
- 10 bpy für 2,2'-Bipyridyl steht, wobei jeder der Pyridylringe gegebenenfalls ein- oder mehrfach, insbesondere einfach, durch eine Donorgruppe substituiert ist, wobei die Donorgruppe ausgewählt ist unter Methyl, Methoxy und Acetamido. Bevorzugt kann jeder Pyridylring einen dieser Substituenten in 4- oder 5-Position tragen. Insbesondere sind die Pyridylringe mit gleichen Donorgruppen substituiert.

Im Rahmen des erfindungsgemäßen Verfahrens unter Beteiligung der HbpA-Katalyse wird der Rhodium-Komplex der Formel III kathodisch zu einem Hydridorhodium-Komplex der Formel IIIa

[Cp Rh (I)(bpy)H]Cl
mit H als Proton
oder (IIIa)

25 [Cp Rh (III)(bpy)H]Cl
 mit H als Hydridion

worin Cp und bpy die oben für Formel III angegebenen Bedeutungen besitzen,

30 reduziert, welcher dann zur NAD+-Reduktion befähigt ist.

Die erfindungsgemäße Herstellung der Dihydroxyverbindungen der allgemeinen Formel I wird bevorzugt unter folgenden Bedingungen durchgeführt:

- 35 a) Substratkonzentration (Verbindung der Formel II): 0,01 bis 50 mM, insbesondere 0,1 bis 4 mM;
 - b) NAD+ Konzentration: 0,01 bis 5 mM, insbesondere 0,01 bis 0,5 mM;
- c) Rhodium-Komplex-Konzentration: 1 μM bis 5 mM, insbesondere 40 5 μM bis 0,5 mM;
 - d) HbpA-Konzentration: 1 bis 5000 U/l, insbesondere 10 bis 1000 U/l;
 - e) FAD-Konzentration: 0 bis 200 μ M, insbesondere 0 bis 20 oder 1 bis 20 μ M;
- 45 f) Catalase-Konzentration: 0 bis 1 x 107 U/1;
 - g) pH: 4 bis 9, insbesondere 6 bis 7,5

6

- h) Temperatur:10 bis 40°C, insbesondere 20 bis 35°C oder etwa 30°C
- i) Kathodenpotenzial: -600 bis -900mV, insbesondere -650 bis -800 mV
- 5 j) Sauerstoffeintrag: 20 bis 120 cm³/(min·l), durch Einblasen oder insbesondere blasenfrei über Sauerstoff-permeable Membranen oder Schläuche, wie z.B. beschrieben in [11].

Erfindungsgemäß brauchbare Elektrodensysteme sind z.B.

- 10 beschrieben in [12] und [13]. Repräsentative, nichtlimitierende Beispiele für geeignete Kathoden-/Anodenpaare sind:
 Kohlekathode/Platinanode, wie insbesondere zylinderförmige Kohlekathode (Kohlefilz, Sigraflex®)/Platindrahtanode.
- 15 Die erfindungsgemäß umgesetzten Substrate der Formel II sind allgemein zugängliche Verbindungen und entweder käuflich erhältlich oder mit üblichen Methoden der organischen Chemie herstellbar. Als nicht limitierende Beispiele können genannt werden:

20

- 2-Hydroxy-C₁-C₆-alkylbenzole, 2-Hydroxy-halogenbenzole, 2-Hydroxybenzonitril, und die 2,5-Dihydroxyanaloga dieser Benzolderivate; 2-Hydroxybiphenyl und mehrfach hydroxylierte Biphenyle, wie z.B. 2,4-, 2,5- oder 2,6-Dihydroxybiphenyl;
- 25 2,n'-Dihydroxybiphenyle (mit n' = 2, 3 oder 4); oder 2,n',m'-Trihydroxybiphenyle (wobei n' und m' voneinander verschieden sind und jeweils für 2, 3 oder 4 stehen).

Als Redoxkatalysatoren werden erfindungsgemäß bevorzugt

30 [CpRh(bpy)Cl]Cl-Komplexe verwendet. Die Herstellung dieser
Komplexe ist allgemein bekannt und erfolgt wie beschrieben in
[14] oder [15]. Die nach elektrochemischer Reduktion bei -700 mV
(vs. Ag/AgCl_{ges.}) oder aber auch chemisch mit Formiat daraus
gebildeten Hydridorhodiumkomplexe überführen NAD(P)+ schnell und
35 quantitativ in die enzymaktive 1,4-NAD(P)H-Form.[2,6]

Als repräsentatives Beispiel für brauchbare Enzyme kann, stellvertretend für die Klasse flavinabhängiger Monooxygenasen, die 2-Hydroxybiphenyl-3-monooxygenase (HbpA, E.C. 1.14.13.44) aus

40 P. azelaica, die NADH als Cofaktor benötigt, genannt werden [7]. Das Enzym liegt als Homotetramer mit einer Gesamtmasse von 256 kDa vor und katalysiert entsprechend Schema 1 die selektive ortho-Hydroxylierung einer Reihe α-substituierter Phenolderivate. Auf chemischem Weg ist diese Reaktion mit vergleichbarer
45 Selektivität nicht durchführbar.

Schema 1: Prinzip der HbpA Reaktion

5 OH O2
$$H_2O$$
 OH OH R R

- 10 Die HbpA-katalysierte Reaktion erfolgt vorzugsweise in einem wässrigen Reaktionsmedium, dessen pH-Wert mit üblichen, die Umsetzung und den elektrochemischen Prozess nicht negativ beeinflussenden Puffersubstanzen, wie z.B. HEPES, PIPES und insbesondere Kaliumphosphat-Puffer und Tris/HCl-Puffer, auf einen 15 geeigneten Wert eingestellt wurde. Die Pufferkonzentration liegt dabei im Bereich von etwa 20 mM bis 0,2 M, insbesondere etwa 20 bis 50 mM. Der pH-Wert wurde bevorzugt auf etwa 6 bis 8, insbesondere etwa 7,5 eingestellt.
- 20 Das Reaktionsmedium kann weitere übliche Zusätze, wie z.B. Lösungsvermittler für das Substrat, Cofaktoren, wie z.B. FAD oder FMN, für das eingesetzte Enzym, und dergleichen enthalten.

Bei oxidationsempfindlichen Enzymsystemen ist gegebenenfalls die 25 Verwendung von Antioxidantien sinnvoll. Kommt es z.B. verfahrensbedingt zur Bildung von Wasserstoffperoxid, welches die Enzymaktivität negativ beeinträchtigen kann, so kann man die Reaktion in Gegenwart von Catalase, z.B. zugesetzt in einer Konzentration von 1·10⁵ U/l, durchführen.

Ein weiterer Gegenstand der Erfindung betrifft ein Verfahren zur elektrochemischen NAD(P)H-Regeneration, anwendbar bei einer NAD(P)H-verbrauchenden oxidativen enzymatischen Umsetzung eines Substrates, wobei man eine NAD(P)H-verbrauchende oxidative

- 35 enzymatischen Umsetzung eines oxidierbaren Substrates in Gegenwart von NAD(P)H und vorzugsweise unter Sauerstoff-Verbrauch durchführt, und das bei der Oxidation des Substrats gebildete NAD(P)+ elektrochemisch zu NAD(P)H reduziert. Dieses Verfahren eignet sich bevorzugt zur Durchführung im Rahmen
- 40 Monooxygenase-katalysierter Reaktionen. Eine NAD(P)H-abhängige Monooxygenase (aus der Klasse E.C. 1.14.-.-) wird dabei mit dem oxidierbaren Substrat in Gegenwart von NAD(P)H und in Anwesenheit von Sauerstoff inkubiert und das bei reduktiver Sauerstoffspaltung und Oxidation des Substrats gebildete NAD(P)+
- 45 elektrochemisch zu NAD(P)H reduziert.

8

Gemäß einer bevorzugten Verfahrensvariante führt man die elektrochemische NAD(P)+-Reduktion in Gegenwart eines vorzugsweise löslichen Hydridorhodium-Redoxkatalysators durch, der kathodisch herstellbar und regenerierbar ist.

5

15

Das erfindungsgemäße Verfahren zur NAD(P)H-Regeneration verwendet als Redoxkatalysator vorzugsweise einen Rhodiumkatalysator, der bei einem Kathodenpotenzial im Bereich von -650 bis -800 mV, gemessen gegen Ag/AgCl(gesättigt) (pH=6-9; T=20-60°C, insbesondere 10 etwa 20 bis 35°C, wie z.B. etwa 30°C) elektrochemisch in den Hydridorhodium-Komplex überführbar ist.

Bevorzugt sind beim erfindungsgemäßen Verfahren zur NAD(P)H-Regeneration Rhodium-Komplexe der allgemeinen Formel III'

[Cp Rh (III)(bpy)Cl]Cl (III')

einsetzbar, worin

Cp für Cyclopentadienyl oder Pentamethylcyclopentadienyl steht
und

bpy für 2,2'-Bipyridyl steht, wobei jeder der Pyridylringe gegebenenfalls ein- oder mehrfach, insbesondere einfach, durch eine Donorgruppe substituiert ist, wobei die Donorgruppe ausgewählt ist unter Methyl, Methoxy und Acetamido. Weiterhin kann als Donorgruppe ein von Polyethylenglycol, wie z.B. von PEG 2000 bis 20000, abgeleiteter Rest enthalten sein. Bevorzugt kann jeder Pyridylring einen dieser Substituenten in 4-oder 5-Position tragen. Insbesondere sind die Pyridylringe mit gleichen Donorgruppen substituiert.

30

25

Der Rhodium-Komplex der Formel III' wird kathodisch zu einem Hydridorhodium-Komplex der Formel IIIa'

[Cp Rh (I)(bpy)H]Cl

mit H als Proton

oder (IIIa')

[Cp Rh (III)(bpy)H]Cl

mit H als Hydridion

40 worin Cp und bpy die für Formel III' angegebenen Bedeutungen besitzen, reduziert, welcher zur NAD+-Reduktion befähigt ist.

Das erfindungsgemäße Verfahren zur NAD(P)H-Regeneration wird bevorzugt unter folgenden Verfahrensbedingungen durchgeführt: 5 a) NAD(P)+ Konzentration: 0,01 bis 5 mM, insbesondere 0,01 bis 0,5 mM; [11].

- b) Rhodium-Komplex-Konzentration: 1 μM bis 5 mM, insbesondere 5 mM bis 0,5 mM;
- c) Monooxygenase-Konzentration: 1 bis 5000 U/l, insbesondere 10 bis 1000 U/l;
- 5 d) Cofaktor-Konzentration (wie z.B. FAD): 0 bis 200 μ M; , insbesondere 0 bis 20 oder 1 bis 20 μ M;
 - e) Catalase-Konzentration: 0 bis 1·107 U/1;
 - f) pH: 4 bis 9, insbesondere 6 bis 7,5
- g) Temperatur: 10 bis 40°C, insbesondere 20 bis 35°C oder etwa
 10 30°C;
 - h) Kathodenpotenzial: -600 bis -900mV, insbesondere -650 bis -800 mV
- i) Sauerstoffeintrag: Sauerstoffeintrag: 20 bis 120 cm³/(min·1) durch Einblasen oder insbesondere blasenfrei über Sauerstoff permeable Membranen oder Schläuche, wie z.B. beschrieben in

Die erfindungsgemäß umgesetzten Substrate sind allgemein

zugängliche Verbindungen und entweder käuflich erhältlich oder 20 mit üblichen Methoden der organischen Chemie herstellbar.

Als Redoxkatalysatoren werden erfindungsgemäß bevorzugt
[CpRh(bpy)Cl]Cl-Komplexe verwendet. Die Herstellung dieser
Komplexe ist allgemein bekannt und erfolgt wie beschrieben in
25 [14] oder [15]. Die nach elektrochemischer Reduktion bei -700 mV
(vs. Ag/AgCl_{ges.}) oder aber auch chemisch mit Formiat daraus
gebildeten Hydridorhodiumkomplexe überführen NAD(P)+ schnell und

30 Die Reaktion erfolgt vorzugsweise in einem wässrigen Reaktionsmedium, dessen pH-Wert mit üblichen, die Umsetzung und den elektrochemischen Prozess nicht negativ beeinflussenden Puffersubstanzen, wie z.B. HEPES, PIPES und insbesondere Kaliumphosphat-Puffer und Tris/HCl-Puffer, auf einen geeigneten

quantitativ in die enzymaktive 1,4-NAD(P)H-Form [2,6].

- 35 Wert eingestellt wurde. Die Pufferkonzentration liegt dabei im Bereich von etwa 20 mM bis 0,2 M, insbesondere etwa 20 bis 50 mM. Der pH-Wert wurde bevorzugt auf etwa 6 bis 8, insbesondere etwa 7,5 eingestellt.
- 40 Das Reaktionsmedium kann weitere übliche Zusätze, wie z.B. Lösungsvermittler für das Substrat, Cofaktoren, wie z.B. FAD oder FMN, für das eingsetzte Enzym, und dergleichen enthalten.
- Bei oxidationsempfindlichen Enzymsystemen ist die Verwendung von 45 Antioxidantien sinnvoll. Kommt es z.B. verfahrensbedingt zur Bildung von Wasserstoffperoxid, welches die Enzymaktivität negativ beeinträchtigen kann, so kann man die Reaktion in

Gegenwart von Catalase, z.B. zugesetzt in einer Konzentration von 1.105 U/l, durchführen.

Das erfindungsgemäße Verfahren zur NAD(P)H-Regeneration ist 5 bevorzugt einsetzbar für die folgenden, eine oxidative enzymatische Umsetzung umfassenden Reaktionstypen:

- Oxidation an gesättigten oder ungesättigten, aliphatischen oder aromatischen Kohlenstoffatomen, insbesondere durch Hydroxylierung, Epoxidierung und Baeyer-Villinger-Oxidation;
- 10 b) Schwefel- oder Selen-Oxidation;
 - Stickstoff- oder Phosphor-Oxidation; c)
 - Oxidation von Halogeniden. d)

Nichtlimitierende Beispiele für Reaktionstyp a):

15

(1) Hydroxylierung am aliphatischen Kohlenstoff:

20 HO. Rhizopus arrhizus Progesteron 25 11 - α - Hydroxyprogesteron

- z.B. beschrieben in JP 75/54957 (Takeda)
- 30 (2) ω -Hydroxylierung langkettiger Fettsäuren, katalysiert durch Cytochrom P450-Monooxygenase; z.B. beschrieben in der DE-A-199 35 115.5 (BASF AG)
- (3) Hydroxylierung allylischer oder benzylischer Kohlenstoffatome 35

OH

40

H. Fretz, W. D. Woggon, R. Voges Hel. Chim. Acta, 1989., 72, 391-400

H. L. Holland, T. S. Manoharan, F. Schweizer Tetrahedron: Asymmetry, 1991, 2, 335-338

(4) Epoxidierung:

Pseudomonas oleovorans

S. W. May, B. J. Abbot *J. Biol. Chem*, 1973, 248, 1725-1730

15 (5) Baeyer-Villinger-Oxidation:

Roberts et al. J. Mol. Cat. B Enzymatic, 1998, 4, 111 ff

(5) Heteroaromatenoxidation:

45

PCT/EP01/115601 12

12

12

13

14

1988, 100, 242; und Roberts, 1988, 1 jeweils katalysiert durch Cyclohexanon, Monooxygenase; und Roberts, und Roberts, al Angew. 1998, 4, 111. S Gegenstand der Rrfindung obiger Definition zur kontinuierlich Gegenstand der Erfindung obiger perinition Regenerierung von elektrochemischen Regenerierung von elektrochemischen Regenerierung von die Verwendung eines von zur kontinuierlichen obiger perinition zur kontinuierung von Regenerierung von Regenerie Redoxkatalysators genan obiger perinition zur kontinuierlicher insbesonde elektrochemischen Regenerierung von elektrochemischen Regenerierung von elektrochemischen Regenerierung von Redoxkatalysators genan elektrochemischen verbrauchenden, insbesonde oder diskontinuierlichen sauerstoff verbrauchenden, oder diskontinuierlichen sauerstoff verbrauchenden, nab diskontinuierlicher oder diekontinuierlichen sauerstoff Oxidationsreaktionen,

NAD(P)H
hei Monooxygenase-katalysierten bei Monooxygenase-katalysierten Oxidations bezeichneten Typs.

bei Monooxygenase-katalysierten oxidationen des oben bezeichneten Typs. MO 01/88/173 Schließlich betrifft die vorliegende Bioreaktoren zur Sauerstoff

Schließlich betrifft diskontinuierlichen burchführung

Schließlich betrifft diskontinuierlichen burchführung

Wonooxygenase-katalysierter

Wonooxygenase-katalysierter

Wonooxygenase-katalysierter

Wonooxygenase-katalysierter

Wonooxygenase-katalysierter Schließlich betrifft die vorliegende Bioreaktoren zur die vorliegende Bioreaktoren zur die vorliegende Bioreaktoren Durchführung schließlichen oder diskontinuierlichen betrifft die vorliegende Bioreaktoren zur die vorliegen zur die vorliegen zur die vorliegen zur Verbrauchender, insbesondere Monooxygenase-katalysterter instaum insbesondere Monooxygenase-katalysterter Reaktionsraum unfassend in einem Reaktionen unfassend in oder zweiphasiges

Verbrauchender, insbesondere Ein flüssiges, ein oder zweiphasiges

Verbrauchender, sowie ein flüssiges, ein f elektroenzymatischer Reaktiones Enzym, insbesondere Monooxygenase, ein Elektroenzymatisches Enzym, insbesondere Reaktiones Enzym, inspesondere Reaktiones E ein Elektrodenpaar sowie ein flüssiges ein noder zweiphasig insbesondere Monooxygenase!

ein Elektrodenpaar welches Enzym! eine Redoxkatalysator jeweil

Reaktionsmedium!

Reaktionsmedium! Reaktionsmedium, welches Enzym, inspesondere Monooxygenase, inspesondere Monooxygenase Substrat, NAD(P)R-KOfaktor und eine Redoxkatalysator jeweil
wobei an der Kathode von
enthält, welches zur übertragung von
gemäß obiger perinition enthält, welches zur
Elektrodenpotenzial Elektrodenpotenzial anliegt welches zur übertragung von geeignet auf den Redoxketalysator geeignet
Redoxegnivalenten (Elektronen) auf den Redoxketalysator geeignet gemäß obiger perinition enthält wobei an der kathode von der tregung von enthält welches zur übertregung von auf den Redoxkatalyeator on auf den Redoxkatalyeator on Elektrodenpotenzial (Elektronen) auf den Redoxkatalyeator on enthält (Elektronen) auf den Redoxkatalyeator on enthälter (Elektronen) auf den Redo Rioreaktoren geeigneten Typs sind z.B. heschrieben in [16] und 5 (17), worauf hiermit Bezug genommen Der Betrieb des Reaktors und die Verfahrensführung können vom Bioreaktoren geeigneten Typs sind z.B. best hiermit Bezug genommen wird. Der Retrieb des Reaktors und die Verfahrensführung könne
ner Retrieb des Reaktors Erfordernissen der gewünschten
werden.
Ein oder zweiphasiae
werden.
Redowreaktion angepaßt werden. Fachmann den jeweiligen Erfordernissen der gewinschter wie eine Rechmann den jeweiligen werden. Ein oder wie eine Redoxreaktionsmedien sind ebenfalls anwendbar wie eine Redoxreaktionsmedien Redoxreaktion angepant werden. Ein oder aweiphasice

Redoxreaktionsmedien sind des Reaktionsraums. Zweiphaside

Redoxreaktionsmedien sind des Reaktionsraums. Zweiphaside Reaktionsmedium nicht oder nur schlecht löslich sind nicht oder nur schlecht licht nicht oder nur schlecht licht nicht oder nur schlecht licht nicht Kompartimentierung des Reaktionsraums. Weiphasige

Kompartimentierung des Reaktionsraums. Welche im Wass

Kompartimentierung sind 2.B. Vorteilhaft welche im Wass

Reaktionssysteme Bildung von Produkten.

Reaktionssysteme Bildung von Produkten. Substraten und/oder Bildung nur schlecht löslich sind. Dieses wird substraten und/oder organischen phase vorlegen.

Reaktionsmedium nicht der organischen genater genater in der organischen genater g Reaktionsmedien sind ebenfalls anwendbax wie eine tomeetzung des Reaktionstaums. Dei umsetzung des Reaktionstaums. Dei umsetzung des Reaktionstaums. Dei umsetzung des Reaktionstaums. Reaktionsmedium nicht oder organischen phase abgegeben:

Reaktionsmedium in der wassrige phase abgegeben:

Reaktionsmedium hie wassrige phase abgegeben:

Reaktionsmedium hie wassrige phase abgegeben: man z.B. substrat in die wassrige phase abgegebenenfalls wieder an die organischen z.B. substrat in die wassrige gegebenenfalls wieder an kontinuierlich in der produkt gegebenenfalls wieder an kontinuierlich in die wassrige phase wieder an die organischen z.B. substrat in die wassrige phase abgegebenenfalls wieder an die organischen z.B. substrat in die wassrige phase abgegebenenfalls wieder an die organischen z.B. substrat in die wassrige phase abgegebenenfalls wieder an die organischen z.B. substrat in die wassrige phase abgegebenenfalls wieder an die organischen z.B. substrat in die wassrige phase abgegebenenfalls wieder an die organischen z.B. substrat in die wassrige phase abgegebenenfalls wieder an die organischen z.B. substrat in die wassrige phase abgegebenenfalls wieder an die organischen z.B. substrat in die wassrige phase z.B. substrat in die wassrige produkt gegebenenfalls wieder an die wassrige z.B. substrat in die wassrige phase z.B. substrat in die wassrige z.B. substrat z.B kontinuierlich in die wassrige phase abgegeben, an die organische produkt gegebenentalls wieder beispielsweise word das gebildete Eine Kompartimentierung erlaubt beispielsweise word das abgegeben. und das gebildete Rine Kompartimentung von Enzymreaktion und Phase abgegeben. und zeitliche Trennung von Enzymreaktion eine räumliche Elektrodenreaktion, Revorzugt ist außerdem ein sauerstoffein, wie z.B.

Elektrodenreaktion, Revorzugt hiasenfreie Regasung, Bezug genomm, worauf hiermit Bezug genomm, worauf genomm, worauf hiermit Bezug genomm, worauf genomm, worauf genomm, worauf genomm, worauf genomm, worauf durch Regasung, inspesondere plasenfreie Regasung, wie z.B. durch Regasung, Rissom in [4b], worauf hiermit Rezug genommen in beschrieben von Rissom in [4b], worauf hiermit Rezug genommen in [4b], worauf genommen in [4b], wor 45 Die Erfindung wird nun unter Bezugnahme auf die beiliegenden Dabei zeigt: Dle krijuren näher erläutert. Dabei zeigt:

-2

- Figur 1 eine schematische Darstellung des erfindungsgemäßen elektroenzymatischen Prozesses der Bildung von 2,3-Dihydroxybiphenyl unter gleichzeitiger elektrochemischer NADH-Regeneration; dabei wird kathodisch der Hydridorhodium(III)-Redoxkatalysator gebildet und regeneriert. Nach Übertragung des Hydridions auf NAD+ und Bildung von NADH reduziert dieses die Monooxygenase, wie z.B. die prosthetische FAD-Gruppe der 2-Hydroxybiphenyl-3-monooxygenase, zur aktiven FADH2-Funktion. Diese reduzierte Form des Enzyms katalysiert dann in Gegenwart von Sauerstoff die Oxygenierung des Substrates, wie z.B. von 2-Hydroxybiphenyl zu 2,3-Dihydroxybiphenyl.
- Figur 2 den Einfluß von O₂ auf die NADH-Bildung unter indirekt elektrochemischer Regeneration (■ ohne Drucklufteintrag; ○ mit Drucklufteintrag von 10 cm³/min)
 - Figur 3 den postulierten Mechanismus der Hydridoxidation
- Figur 4 den Einfluß des Sauerstoffgehaltes auf die Bildung von 2,3-Dihydroxybiphenyl unter indirekter elektrochemischer Cofaktorregenerierung (O: kein Sauerstoffeintrag in die Lösung; : nach 1h einsetzender Sauerstoffeintrag)
- Figur 5 einen Vergleich der Umsatzgeschwindigkeit unter

 chemischer und indirekt-elektrochemischer

 Hydridorhodiumbildung (O: redoxkatalytische, chemische

 Regeneration mit Formiat als Reduktionsmittel; : indirekte
 elektrochemische Regeneration)
- 30 Figur 6 in schematischer Darstellung einen geeigneten
 Batchraktor, umfassend ein Reaktionsgefäß mit Rührer,
 Ringkathode, mittig angeordneter Anode, Referenzelektrode,
 Druckluftzufuhr in das Reaktionsmedium.
- 35 Beispiel 1: Elektroenzymatische Oxidation von 2-Hydroxybiphenyl zu 2,3-Dihydroxybiphenyl
- Entsprechend Figur 1 wird die elektroenzymatischen Umsetzung in einer Batch-Elektrolysezelle, schematisch dargestellt in Figur 6, 40 durchgeführt. Als Kathode dient hierbei eine zylindrische Kohlefilzelektrode (Volumen ca. 27 cm³). Durch Ummantelung der Platin-Gegenelektrode mit einem Dialyseschlauch (Ausschlußgewicht 10 kDa) werden die Bedingungen einer geteilten Zelle erreicht.
- 45 Das Kathodenpotenzial von -750 mV wird gegen eine $Ag/AgCl_{ges.}$ -Schlauchelektrode eingestellt. In 100 ml KP_i -Puffer (50 mM, pH 7.5) sind der oxidierte Cofaktor NAD+ (0.2 mM),

[Cp*Rh(bpy)Cl]²⁺ (0.1 mM), FAD (20 µM), Catalase (250000 U), HbpA (19 U) sowie das Substrat (2 mM) gelöst. Die Umsetzung erfolgt bei T=30°C und über einen Zeitraum von 5 Stunden.

5 Der Reaktionsfortschritt wird mittels HPLC-Chromatographie an einer RP-18-Säule mit Methanol/Wasser (0.1% H₃PO₄) 60:40 als Eluens verfolgt.

Beispiel 2: Einfluß von gelöstem Sauerstoff auf die 10 NADH-Regeneration

Da Sauerstoff ein Bestandteil der Reaktionssequenz ist, muß der Einfluß des gelösten Sauerstoffs auf die Komponenten des Systems untersucht werden. Dabei zeigt sich, daß Sauerstoff die

- 15 NADH-Erzeugung sowohl durch den chemisch mit Formiat als auch durch den erfindungsgemäß auf elektrochemischem Weg gebildeten Hydridorhodiumkomplex inhibiert (Figur 2). Wie aus Figur 2 deutlich wird, geht bei einem Sauerstoffeintrag von beispielsweise 10 cm³/min die NADH-Bildungsgeschwindigkeit von
- 20 1.1 mmol/_{l.h} auf 0.27 mmol/_{l.h} zurück. Bei einem Eintrag von 15 cm³/min ist keine NADH-Bildung mehr nachweisbar. Die Inhibierung ist jedoch reversibel, da nach Unterbrechung des Sauerstoffstromes die NADH-Bildungsgeschwindigkeit fast wieder ihren optimalen Wert erreicht. Ebenso erreicht die
- 25 NADH-Konzentration ihren Maximalwert. Als Produkt der Reaktion des Hydridorhodiumkomplexes mit molekularem Sauerstoff konnte Wasserstoffperoxid nachgeweisen werden, dessen Bildung wie in Figur 3 angegeben denkbar ist. Darüber hinaus wird Wasserstoffperoxid bei dem anliegenden Potential auch durch
- 30 direkte Reduktion des Sauerstoffs an der Kathode gebildet. Daher ist es zweckmäßig Catalase zuzusetzen, da diese während der enzymatischen Umsetzung Wasserstoffperoxid zerstört.

Beispiel 3: Einfluß von Sauerstoffzufuhr auf den Umsatz

- Die Ergebnisse in Figur 4 zeigen, daß der Umsatz bei Reaktionen ohne externe Sauerstoffzuführung nach kurzer Zeit bei ca. 20% stagniert (offene Kreise bzw. gefüllte Quadrate bis ca. 1h). Mit nach 1h einsetzender Sauerstoffzufuhr (8 cm³/min) steigt die
- 40 Umsatzgeschwindigkeit und damit die Produktbildung bis zu einem Wert von 1.1 mmol/_{l.h} (202 mg/_{l.h}) an. Die vom Mediator erbrachten Wechselzahlen liegen hierbei bei 11 h-1. Ähnliche Werte werden erreicht, wenn der Hydridorhodiumkomplex chemisch mit Natriumformiat erzeugt wird. In Figur 5 sind die
- 45 Umsatzgeschwindigkeiten für die indirekte elektrochemische Cofaktorregenerierung unter den genannten Bedingungen, jedoch unter einem ständigen Sauerstoffeintrag von 10 cm³/min und für den

durch Formiat (c(NaHCO₂) = 160 mM; ansonsten gleiche Bedingungen)
getriebenen redoxkatalytischen Prozess dargestellt. Die
Produktivität liegt bei ca. 50% des bereits optimierten
fermentativen bzw. des in vitro-Verfahrens unter enzymgekoppelter
5 NADH-Regeneration (390 mg/_{1.h}) [8].

Die Reaktionsgeschwindigkeit ist nicht durch die Bildung des Hydridorhodiumkomplexes an der Kathode limitiert, sondern durch die kompetitive Hemmung des Redoxkatalysators durch die 10 Konkurrenzreaktion mit molekularem Sauerstoff (Figur 4).

In dem erfindungsgemäßen kontinuierlichen elektroenzymatischen Verfahren sollte sich der negative Einfluß des gelösten Sauerstoffs auf die indirekt elektrochemische NADH-Regeneration 15 leicht durch eine Kompartimentierung des Gesamtsystems in einzelne Module ausschalten lassen. Durch die räumlich und zeitlich auf den elektrochemischen Schritt folgende Zudosierung des für die Enzymreaktion unabdingbaren Sauerstoffs wird dessen inhibitorischer Effekt auf die NADH-Regenerierung minimiert.

Die Langzeitstabilität der durchgeführten Batchelektrolysen kann durch Verringerung der denaturierenden Wirkung der nicht-blasenfreien Begasung verbessert werden. An der Phasengrenze flüssig/gasförmig treten nämlich starke Scherkräfte 25 auf, die mittelfristig zur Enzymdenaturierung führen. In Vergleichsexperimenten konnte gezeigt werden, daß HbpA bei Thermostatisierung bei 30°C und Rühren (u = 250 min-1) auch nach 12 h noch mehr als 85% ihrer Initialaktivität besitzt. Mit einsetzender Druckluftzufuhr nimmt diese in Abhängigkeit von der 2ufuhrgeschwindigkeit um bis zu 70% innerhalb einer Stunde ab. Durch Verwendung eines Enzym-Membran-Reaktors [9] können das Produktionsenzym vor dem negativen Einfluß des heterogenen

erreicht werden. Insbesondere durch Anwendung einer zweiphasigen 35 Reaktionsführung und der resultierenden in situ Zudosierung des Substrates und Extraktion des Catecholproduktes sollte ein effektiver kontinuierlicher Prozeß verwirklichbar sein.

Sauerstoffeintrages geschützt und folglich hohe Prozeßlaufzeiten

Erfindungsgemäß konnte erstmalig eine durch eine flavinabhängige 40 Monooxygenase katalysierte Umsetzung unter indirekt elektrochemischer NADH-Regeneration erfolgreich durchführen.

Die vorliegende Erfindung schafft die Grundlage für die Einbindung von Monooxygenasen in organische Synthesen sowohl im 45 Labormaßstab, als auch in der industriellen Anwendung. Diese Klasse oxidierender Enzyme ist synthetisch hoch interessant, da sie beispielsweise Hydroxyfunktionen in aromatische Systeme und auch in nicht aktivierte reine Kohlenwasserstoffe einführen können. Sie können außerdem Sauerstoff auf Heteroatome oder auf Doppelbindungen unter Bildung von Epoxiden übertragen. Zusätzlich katalysieren sie Baeyer-Villiger-Oxidationen. In allen Fällen 5 sind enantiomerenreine Produkte zugänglich.

Das zugrundeliegende elektrochemische
NAD(P)H-Regenerationskonzept stellt eine effektive und einfach
anwendbare Alternative zu den bisherigen in vivo-Verfahren bzw.

10 solchen Verfahren, die sich eines enzymatischen
Regenerationsystems bedienen, dar. Die allgemeine Anwendbarkeit,
auch unter den Umsatzbedingungen sauerstoffabhängiger
Monooxygenasen, konnte belegt werden.

15

20

25

30

35

40

. .

Literaturverzeichnis

- [1] a) Hummel, W., et al., Eur. J. Biochem. 1989, 184, 1-13; b)
 5 Shaked, Z., et al., J. Am. Chem. Soc. 1980, 102, 7104-7108;
 c) Abril, O., et al., Bioorg. Chem. 1989, 17, 41-52; d) Seelbach, K., et al., Tetrahedron Lett. 1996, 37, 1377-1380
- [2] a) Hilt, G., et al., Liebigs Ann./Recueil 1997, 2289-2296; b)
 Westerhausen, D., et al., Angew. Chem. 1992, 104, 1496-1498;
 Angew. Chem. Int. Ed. Engl. 1992, 31, 1529 1531 c) Ruppert,
 R., et al Tetrahedron Lett. 1987, 52(28), 6583-6586
- [3] a) Walsh, C.T. Acc. Chem. Res. 1980, 13, 148-155; b) Walsh,
 C.T. et al., Angew. Chem. 1988, 100, 342-352; Angew. Chem.
 Int. Ed. Engl. 1988
- [4] a) Hummel, W., et al.; Appl. Microbiol Biotechnol. 1986, 25, 175-185; b) Rissom, R., et al., Tetrahedron Asymmetry 1997, 15(8), 2523-2526
 - [5] Wong, C.-H., et al., J. Am. Chem. Soc. 1981, 103, 4890-4899
- [6] a) Steckhan, E., et al., Organometallics, 1991, 10,
 1568-1577; b) Ruppert, R., et al., J. Chem. Soc., Chem. Commun., 1988, 1150-1151
 - [7] Suske, W. A., et al., J. Biol. Chem., 1997, 272 (39), 24257-242565
- 30

- [8] Held, M., et al., Biotechnol. Bioeng., 1999, 62 (6), 641-648
- [9] Wandrey, C., Chem. Ing. Tech. 1976, 48, 537
- 35 [10] Reipa, V., et al., Proc.Natl. Acad. Sci. USA, 1997, 94, 13554-13558
 - [11] Schneider et al., Enzyme Microbiol. Technol., 1995, 17, 839
- 40 [12] Sawyer, D.T., Electrochemistry for Chemists, 2. Aufl, Wiley-Interscience; New York
 - [13] Kissinger, P. T., Laboratory Techniques in Electroanalytical Chemistry, Marcel Dekker, Inc.; New York/ Basel
 - [14] Kölle, U., et al., Angew. Chem. 1987, 99, 572

[15]Kölle, U., et al., Chem.Ber. 1989, 122, 1869
[16]Kragl, U., et al., Chem. Ing. Tech., 1992, 499
5 [17]Brielbeck, B., et al., Biocatalysis, 1994, 10, 49

Patentansprüche

5 1. Elektroenzymatisches Verfahren zur Herstellung von 2,3-Dihydroxyphenylderivaten der allgemeinen Formel I

worin

20

25

30

35

R für gegebenenfalls ein- oder mehrfach substituiertes Phenyl, $C_1-C_6-Alkyl$, Halogen oder CN steht; und

R' für H oder OH steht;

dadurch gekennzeichnet, dass man

a) eine Monohydroxyphenyl-Verbindung der allgemeinen Formel

worin R und R' die oben angegebenen Bedeutungen besitzt, mit 2-Hydroxybiphenyl-3-monooxygenase (HbpA) (E.C.1.14.13.44) in Gegenwart von NADH und Sauerstoff umsetzt; und

- b) das gebildete NAD+ elektrochemisch zu NADH reduziert.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man die elektrochemische NAD+-Reduktion in Gegenwart eines Hydridorhodium-Redoxkatalysators durchführt, der kathodisch herstellbar und regenerierbar ist.
- 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass man als Redoxkatalysator einen Rhodiumkomplex verwendet, der bei einem Kathodenpotenzial im Bereich von -650 bis -800 mV, ge-

messen gegen Ag/AgCl(gesättigt) (pH=6-9; T=20-30°C) elektrochemisch in den Hydridorhodium-Komplex überführbar ist.

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass man5 einen Rhodium-Komplex der allgemeinen Formel III

[Cp Rh (III)(bpy)Cl]Cl

(III)

einsetzt, worin

10

- Cp für Cyclopentadienyl oder Pentamethylcyclopentadienyl steht und
- bpy für 2,2'-Bipyridyl steht, wobei jeder der Pyridylringe gegebenenfalls ein- oder mehrfach durch eine Donorgruppe substituiert ist.
- Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der Rhodium-Komplex der Formel III kathodisch zu einem Hydridorhodium-Komplex der Formel IIIa

[Cp Rh (I)(bpy)H]Cl

(IIIa)

reduziert wird, welcher zur NAD+-Reduktion befähigt ist.

25

- 6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es unter folgenden Verfahrensbedingungen durchgeführt wird:
- 30 a) Substratkonzentration: 0,1 bis 4 mM;
 - b) NAD+ Konzentration: 0,01 bis 0,5 mM;
 - c) Rhodium-Komplex-Konzentration: 5 µM bis 0,5 mM;
 - d) HbpA-Konzentration: 10 bis 1000 U/1;
 - e) FAD-Konzentration: 0 bis 200 μM;
- f) Catalase-Konzentration: 0 bis 1.107 U/1;
 - g) pH: 6 bis 7,5
 - h) Temperatur: 20 bis 30°C
 - i) Kathodenpotenzial: -650 bis -800 mV
 - j) Sauerstoffeintrag: 20 bis 120 cm³/(min·1)

40

7. Verfahren zur elektrochemischen NAD(P)H-Regeneration aus enzymatisch gebildetem NAD(P) $^+$

dadurch gekennzeichnet, dass man

eine NAD(P)H-verbrauchende oxidative enzymatische Umsetzung eines oxidierbaren Substrates in Gegenwart von NAD(P)H durchführt, und das bei der Oxidation des Substrats gebildete NAD(P)+ elektrochemisch zu NAD(P)H reduziert.

5

- 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass man eine NAD(P)H-abhängige Monooxygenase (aus der Klasse E.C. 1.14.-.-) mit dem oxidierbaren Substrat in Gegenwart von NAD(P)H und in Anwesenheit von Sauerstoff inkubiert und das bei reduktiver Sauerstoffspaltung und Oxidation des Substrats gebildete NAD(P)+ elektrochemisch zu NAD(P)H reduziert.
- Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass man die elektrochemische NAD(P)+-Reduktion in Gegenwart eines Hydridorhodium-Redoxkatalysators durchführt, der kathodisch herstellbar und regenerierbar ist.
- 10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass man als Redoxkatalysator einen Rhodiumkatalysator verwendet, der bei einem Kathodenpotenzial im Bereich von -650 bis -800 mV, gemessen gegen Ag/AgCl(gesättigt) (pH = 6-9; T = 20-35°C) elektrochemisch in den Hydridorhodium-Komplex überführbar ist.
- 25 11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass man einen Rhodium-Komplex der allgemeinen Formel III

[Cp Rh (III)(bpy)Cl]Cl (III)

30 einsetzt, worin

- Cp für Cyclopentadienyl oder Pentamethylcyclopentadienyl steht und
- bpy für 2,2'-Bipyridyl steht, wobei jeder der Pyridylringe gegebenenfalls ein- oder mehrfach durch eine Donorgruppe substituiert ist.
- 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass der Rhodium-Komplex der Formel III kathodisch zu einem Hydridor-hodium-Komplex der Formel IIIa

[Cp Rh (I)(bpy)H]Cl (IIIa)

45 reduziert wird, welcher zur NAD+-Reduktion befähigt ist.

- 13. Verfahren nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, dass es unter folgenden Verfahrensbedingungen durchgeführt wird:
- 5 a) NAD(P)+ Konzentration: 10 μ M bis 0,5 mM;
 - b) Rhodium-Komplex-Konzentration: 5 mM bis 0,5 mM;
 - c) Monooxygenase-Konzentration: 10 bis 1000 U/1;
 - d) FAD-Konzentration: 0 bis 200 μM;
 - e) Catalase-Konzentration: 0 bis 1.107 U/1;
- 10 f) pH: 5 bis 9
 - g) Temperatur: 20 bis 35°C
 - h) Kathodenpotenzial: -650 bis -800 mV
 - i) Sauerstoffeintrag: Sauerstoffeintrag: 20 bis 120 cm³/min·l
- 15 14. Verfahren nach einem der Ansprüche 7 bis 13, dadurch gekennzeichnet, dass die oxidative enzymatische Umsetzung einen der folgenden Reaktionstypen umfasst:
- a) Oxidation an gesättigten oder ungesättigten aliphatischen
 20 oder aromatischen Kohlenstoffatomen, insbesondere durch
 Hydroxylierung, Epoxidierung und Baeyer-Villinger-Oxidation;
 - b) Schwefel- oder Selen-Oxidation;
 - c) Stickstoff- oder Phosphor-Oxidation;
- 25 d) Oxidation von Halogeniden.
 - 15. Verwendung eines Redoxkatalysators gemäß der Definition in einem der Ansprüche 9 bis 12 zur kontinuierlichen oder diskontinuierlichen elektrochemischen Regenerierung von NAD(P)H bei Monooxygenase-katalysierten Oxidationsreaktionen.
 - 16. Verwendung nach Anspruch 15, wobei die Oxidationsreaktion ausgewählt ist unter:
- a) Oxidation an gesättigten oder ungesättigten aliphatischen oder aromatischen Kohlenstoffatomen, insbesondere durch Hydroxylierung, Epoxidierung und Baeyer-Villinger-Oxidation;
 - b) Schwefel- oder Selen-Oxidation;
- 40 c) Stickstoff- oder Phosphor-Oxidation;
 - d) Oxidation von Halogeniden.
- 17. Bioreaktor, zur kontinuierlichen oder diskontinuierlichen Durchführung Monoxygenase-katalysierter elektroenzymatischer Reaktionen, umfassend in einem Reaktionsraum ein Elektrodenpaar sowie ein flüssiges Reaktionsmedium, welches Monoxyge-

nase, Substrat, NAD(P)H-Kofaktor und eine Redoxkatalysator

gemäß der Definition in einem der Ansprüche 2 bis 5 enthält, wobei an der Kathode ein Elektrodenpotential anliegt, welches zur Übertragung von Redoxäguivalenten (Elektronen) auf den Redoxkatalysator geeignet ist.

18. Bioreaktor nach Anspruch 17, dadurch gekennzeichnet, dass das flüssige Reaktionsmedium ein- oder zweiphasig ist.

FIG. 1

FIG. 3

IG. 5

6/6

FIG. 6

INTERNATIONAL SEARCH REPORT

Intern: Application No PCT/EP 01/05601

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12P1/00 C25B3/04 C25B9/00 C12M1/00 C12P7/22 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12P C25B C12M Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ, BIOSIS, CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. DATABASE CHEMABS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, X 1 - 18OHIO, US; HOLLMANN, FRANK ET AL: "The first synthetic application of a monooxygenase employing indirect electrochemical NADH regeneration" retrieved from STN Database accession no. 134:262715 XP002175630 abstract & ANGEW. CHEM., INT. ED. (2001), 40(1), 169-171 , -/--Χ Further documents are listed in the continuation of box C. Patent family members are listed in annex. ° Special categories of cited documents: *T* later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the invention "E" earlier document but published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another 'Y' document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docu-'O' document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed in the art. *8* document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 06/09/2001 23 August 2001 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Douschan, K Fax: (+31-70) 340-3016

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Intern Application No PCT/EP 01/05601

	<u></u>	LC1/EL 01/02001
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X,P	US 6 126 795 A (THE USA AS REPRESENTED BY THE SECRETARY OF COMMERCE) 3 October 2000 (2000-10-03) column 1 -column 2; claims 1-39	1-18
X	EP 0 099 517 A (BASF AG) 1 February 1984 (1984-02-01) the whole document	1-18
X,	EP 0 096 288 A (BASF AG) 21 December 1983 (1983-12-21) the whole document	1-18
X	EP 0 747 984 A (BAYER CORP.) 11 December 1996 (1996-12-11) page 2 -page 3; claims 1-10	1-18
X	REIPA V. ET AL.: "A direct electrode-driven P450 cycle for biocatalysts" PROC. NATL. ACAD. SCI. USA, vol. 94, 1997, pages 13554-13558, XP001019007 cited in the application the whole document	1-18
X	HELD M. ET AL.: "An Integrated Process for the Production of Toxic Catechols from Toxic Phenols Based on a Designer Biocatalyst" BIOTECH. BIOENG., vol. 62, no. 6, 1999, pages 641-648, XP001019008 cited in the application	1-18
	the whole document 	
-		
	· · · · · · · · · · · · · · · · · · ·	

INTERNATIONAL SEARCH REPORT

.......mation on patent family members

Intern Application No
PCT/EP 01/05601

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
US 6126795	Α	03-10-2000	NONE		
EP 0099517	A	01-02-1984	DE AT CA DE DK FI JP JP JP	3226888 A 23879 T 1202923 A 3367935 D 327183 A,B, 832592 A,B, 1908924 C 6038751 B 59059192 A 4464235 A	19-01-1984 15-12-1986 08-04-1986 15-01-1987 18-01-1984 18-01-1984 24-02-1995 25-05-1994 04-04-1984 07-08-1984
EP 0096288	Α	21 - 12-1983	DE DE US	3221339 A 3360607 D 4526661 A	08-12-1983 26-09-1985 02-07-1985
EP 0747984	Α	11-12-1996	US AU AU CA JP	5520786 A 692387 B 5475096 A 2177753 A 8334490 A	28-05-1996 04-06-1998 19-12-1996 07-12-1996 17-12-1996

INTERNATIONALER RECHERCHENBERICHT

Interna s Aktenzeichen

PCT/EP 01/05601 A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C12P1/00 C25B3/04 C25B9/00 C12M1/00 C12P7/22 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 C12P C25B C12M Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, sowelt diese unter die recherchierten Gebiete tallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal, WPI Data, PAJ, BIOSIS, CHEM ABS Data

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Tolle	Betr. Anspruch Nr.
Х	DATABASE CHEMABS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US;	1-18
	HOLLMANN, FRANK ET AL: "The first synthetic application of a monooxygenase employing indirect electrochemical NADH regeneration" retrieved from STN Database accession no. 134:262715 XP002175630 Zusammenfassung & ANGEW. CHEM., INT. ED. (2001), 40(1),	
	169-171 , -/	
		· ·

Weitere Veröttentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Siehe Anhang Patentfamilie
ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Aussteltung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist	 *T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erlindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist *X' Veröffentlichung von besonderer Bedeutung; die beenspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden *Y' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröftentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist *8' Veröffentlichung, die Mitglied derselben Patentfamilie ist
Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
23. August 2001	06/09/2001
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Bevollmächtigter Bediensteter Douschan, K

Formblatt PCT/ISA/210 (Biatt 2) (Juli 1992)

INTERNATIONALER RECHERCHENBERICHT

Interna s Aktenzeichen
PCT/EP 01/05601

Kalegorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.	
		Sen. Primpi dell (4).	
X,P	US 6 126 795 A (THE USA AS REPRESENTED BY THE SECRETARY OF COMMERCE) 3. Oktober 2000 (2000-10-03) Spalte 1 -Spalte 2; Ansprüche 1-39	1-18	
Κ	EP 0 099 517 A (BASF AG) 1. Februar 1984 (1984-02-01) das ganze Dokument	1-18	
	EP 0 096 288 A (BASF AG) 21. Dezember 1983 (1983-12-21) das ganze Dokument	1-18	
	EP 0 747 984 A (BAYER CORP.) 11. Dezember 1996 (1996-12-11) Seite 2 -Seite 3; Ansprüche 1-10	1-18	
	REIPA V. ET AL.: "A direct electrode-driven P450 cycle for biocatalysts" PROC. NATL. ACAD. SCI. USA, Bd. 94, 1997, Seiten 13554-13558, XP001019007 in der Anmeldung erwähnt das ganze Dokument	1-18	
	UCID M CT AL . NA Tata anatad Danasa	į.	
	HELD M. ET AL.: "An Integrated Process for the Production of Toxic Catechols from Toxic Phenols Based on a Designer Biocatalyst" BIOTECH. BIOENG., Bd. 62, Nr. 6, 1999, Seiten 641-648, XP001019008 in der Anmeldung erwähnt	1-18	
	for the Production of Toxic Catechols from Toxic Phenols Based on a Designer Biocatalyst" BIOTECH. BIOENG., Bd. 62, Nr. 6, 1999, Seiten 641-648, XP001019008	1-18	
	for the Production of Toxic Catechols from Toxic Phenols Based on a Designer Biocatalyst" BIOTECH. BIOENG., Bd. 62, Nr. 6, 1999, Seiten 641-648, XP001019008 in der Anmeldung erwähnt	1-18	
	for the Production of Toxic Catechols from Toxic Phenols Based on a Designer Biocatalyst" BIOTECH. BIOENG., Bd. 62, Nr. 6, 1999, Seiten 641-648, XP001019008 in der Anmeldung erwähnt	1-18	
	for the Production of Toxic Catechols from Toxic Phenols Based on a Designer Biocatalyst" BIOTECH. BIOENG., Bd. 62, Nr. 6, 1999, Seiten 641-648, XP001019008 in der Anmeldung erwähnt	1-18	
	for the Production of Toxic Catechols from Toxic Phenols Based on a Designer Biocatalyst" BIOTECH. BIOENG., Bd. 62, Nr. 6, 1999, Seiten 641-648, XP001019008 in der Anmeldung erwähnt das ganze Dokument	1-18	
	for the Production of Toxic Catechols from Toxic Phenols Based on a Designer Biocatalyst" BIOTECH. BIOENG., Bd. 62, Nr. 6, 1999, Seiten 641-648, XP001019008 in der Anmeldung erwähnt das ganze Dokument	1-18	
	for the Production of Toxic Catechols from Toxic Phenols Based on a Designer Biocatalyst" BIOTECH. BIOENG., Bd. 62, Nr. 6, 1999, Seiten 641-648, XP001019008 in der Anmeldung erwähnt das ganze Dokument	1-18	
	for the Production of Toxic Catechols from Toxic Phenols Based on a Designer Biocatalyst" BIOTECH. BIOENG., Bd. 62, Nr. 6, 1999, Seiten 641-648, XP001019008 in der Anmeldung erwähnt das ganze Dokument	1-18	
	for the Production of Toxic Catechols from Toxic Phenols Based on a Designer Biocatalyst" BIOTECH. BIOENG., Bd. 62, Nr. 6, 1999, Seiten 641-648, XP001019008 in der Anmeldung erwähnt das ganze Dokument	1-18	
	for the Production of Toxic Catechols from Toxic Phenols Based on a Designer Biocatalyst" BIOTECH. BIOENG., Bd. 62, Nr. 6, 1999, Seiten 641-648, XP001019008 in der Anmeldung erwähnt das ganze Dokument	1-18	
	for the Production of Toxic Catechols from Toxic Phenols Based on a Designer Biocatalyst" BIOTECH. BIOENG., Bd. 62, Nr. 6, 1999, Seiten 641-648, XP001019008 in der Anmeldung erwähnt das ganze Dokument	1-18	
	for the Production of Toxic Catechols from Toxic Phenols Based on a Designer Biocatalyst" BIOTECH. BIOENG., Bd. 62, Nr. 6, 1999, Seiten 641-648, XP001019008 in der Anmeldung erwähnt das ganze Dokument	1-18	

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, we zur seiben Patentfamilie gehören

Internal : Aktenzeichen
PCT/EY 01/05601

Im Recherchenbericht angeführtes Patentdokument US 6126795 A		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung	
		A 03-10-2000		KEINE	<u> </u>
EP C	0099517	A	01-02-1984	DE 3226888 A AT 23879 T CA 1202923 A DE 3367935 D DK 327183 A,B FI 832592 A,B JP 1908924 C JP 6038751 B JP 59059192 A US 4464235 A	
EP C	0096288	Α	21-12-1983	DE 3221339 A DE 3360607 D US 4526661 A	08-12-1983 26-09-1985 02-07-1985
EP C	0747984	Â	11-12-1996	US 5520786 A AU 692387 B AU 5475096 A CA 2177753 A JP 8334490 A	28-05-1996 04-06-1998 19-12-1996 07-12-1996 17-12-1996