# Open Source Software Support A Network Tour of Data Science

Matthaios Olma Pavlos Nikolopoulos Stefanos Skalistis



# Adopting Open Source Software (OSS)

#### Open source software:

- Code is fully available

Usage based on some license - Project lifespan is varying



"wowarmorytools"





"Blipstick"





"James"

Should we adopt OSS?

Will it be supported in the future?



## Predict OSS project survivability

#### **Desirable Goal:**

Predict if project will be still active in the future





## Survival prediction is challenging

#### Success factors:

- human dynamics
- project popularity
- usefulness

#### Diverse data:

- Variety of projects
- Variety of dev. Techniques
  - Agile/Waterfall



# There is no common activity pattern



#### Our Process

Acquire OSS project data and generate dataset



Explore data structure



Label data



Create a NN predictor

**(Pfl** 









3126 projects
Each project is a timeseries of:

- commits
- issues
- comments
- forks
- branches



100 projects/ call



#### Dataset generation

1. Eliminate duplicate projects

2. Create monthly aggregates



- 3. Make all projects start from time 0
  - Start time is the time of the first event
- 4. Suppress projects with duration < T = 24 months
  - We are interested in project's activity after time T

# Data Exploration and Visualization Finally taken into consideration: 834 projects



no common activity pattern

## Choosing the prediction period



After 24 months the # events converges



# Data Labeling

- 2 classes: {Active, Inactive}
- Differentiation metric: Average rate of events (after 24 months)
- Threshold set to 6 events/year
  - meaningful threshold in terms of software usage
  - data is separated in this way





## Data Labeling

- 2 classes: {Active, Inactive}
- Differentiation metric: Average rate of events (after 24 months)
- Threshold set to 6 events/year
  - meaningful threshold in terms of software usage
  - data is separated in this way



900

800

700



### Creating Train and Test sets



- Training set:
  - metadata from the first 12 months of each project
  - 774 projects randomly chosen at batches of 50
- Test set: 50 projects



### 1-layer vs 2-layer NN

#### Simple softmax classifier

y = softmax(xW+b)

- Normal initialization (std=0.1)
- No regularization
- Training accuracy: 76%
- Test accuracy: 80%

#### 2-layer NN

 $y = softmax(ReLU(xW_1+b_1)W_2+b_2)$ 

- 100 neurons
- Xavier initialization
- ReLU activation
- L2 regularization
- Training accuracy: 92%
- Test accuracy: 84%



#### Conclusions

- It is possible to predict a project's activity with high accuracy
  - 12 months of metadata are sufficient

- Marginal improvement by 2-layer NN over simple linear classifier
  - Labeling based on a linear separation of data
  - Training data and label are based on #events



## Additional no1





### Additional no2

