Project Development Phase Model Performance Test

Date	10 November 2022	
Team ID	PNT2022TMID13259	
Project Name	Web Phishing Detection	
Maximum Marks	10 Marks	

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Metrics	Regression Model: MAE – 16.6%, MSE -33.2, RMSE – 57.6%, R2 score – 66.4%	mae = metrics.mean_absolute_error(y_test, ypred) mse = metrics.mean_squared_error(y_test, ypred) rmse = np.sort(mse) # or mse**(0.5) r2 = metrics.r2_score(y_test_ypred) print(mae_mse_mse_res_r) 0.1664405246697407087 0.33288104929895973 0.5769584467697476 0.6648228065322114
2.	Tune the Model	Hyperparameter Tuning – 95% Validation Method – KFOLD & Cross Validation Method	action and cross validation model from scipy.stati import utilization from scipy.stati import utilization from scipy.stati import utilization from scipy.station import important import

Metrics:

```
mae = metrics.mean_absolute_error(y_test, ypred)
mse = metrics.mean_squared_error(y_test, ypred)
rmse = np.sqrt(mse) # or mse**(0.5)
r2 = metrics.r2_score(y_test,ypred)
print(mae,mse,rmse,r2)
```

0.16644052464947987 0.33288104929895973 0.5769584467697476 0.6648228065232114

Tune the model:

```
#KFOLD and Cross Validation Model
from scipy.stats import wilcoxon
from sklearn.datasets import load_iris
from sklearn.ensemble import GradientBoostingClassifier
from xgboost import XGBClassifier
from sklearn.model_selection import cross_val_score, KFold
# Load the dataset
X = load_iris().data
y = load_iris().target
# Prepare models and select your CV method
model1 = GradientBoostingClassifier(n estimators=100)
model2 = XGBClassifier(n_estimators=100)
kf = KFold(n_splits=20, random_state=None)
# Extract results for each model on the same folds
results_model1 = cross_val_score(model1, X, y, cv=kf)
results_model2 = cross_val_score(model2, X, y, cv=kf)
stat, p = wilcoxon(results_model1, results_model2, zero_method='zsplit');
stat
```

95.0