Modelos jerárquicos Bayesianos

Modelos Bayesianos con aplicaciones ecológicas Dr. Cole Monnahan University of Concepción, Chile Enero, 2018

Recap

- Ayer practicamos los paso para construer un modelo Bayesiano
- Especifica las priors, estructura del modelo, y verosimilitud
- Ajusta el modelo a los datos para obtener la posterior
- Evalula el ajuste del modelo
- Usaron prior and posterior predictive distributions para chequear y DIC para seleccionar entre modelos

Un resume de modelos jerárquicos

- Un grupo de modelos con una estructura jerárquica
- Conocido por otros nombres:
 - Random effects (mixed effects) models
 - State-space models
 - Multi-level models
- Los jerárquicos ocurren en la naturaleza: individuos adentro sitios; subpoblaciones entre poblaciones, etc.
- Muchas maneras para interpretarlos, y puede ser difícil y aplastante

Que son modelos jerárquicos?

- Los con efectos aleatorios
- Y que son esos?
 - Una fuente de varianza latente (no observable)
 - Normalmente estructurado por tiempo, espacio, sitio, región, individuo, etc.
 - En general se usa la supsicion que tienen una distribución normal, con un medio y una varianza no conocidos
 - Son estimados, y llamados: (hyper)mean and (hyper)variance

Exchangeability (intercambiables)

- Especialmente importante in la literatura Bayesiana (Gelman et al. 2004)
- Exchangeability sugiere que:
 - Efectos aleatorios son de un proceso común.
 - IID variables son intercambiables
 - No hay una esperanza que las diferencias del proceso que genera los efectos
 - E.g. dos poblaciones salvajes y una domesticado no seria intercambiables
 - E.g., el medio de la densidad entre sitios

Vocabulary related to random effects

Term	Definition
Random effect	Coefficient that is "exchangeable" with one or more other coefficients
Hyperdistribution	Distribution for random effects
Exchangeable	No information is available to distinguish between residual variability in random effects
Fixed effect	Coefficient that is not exchangeable with others, and which hence is estimated without a hyperdistribution
Mixed-effect model	Model with both fixed and random effects

Motivating example

El promedio y varianza de la densidad entre sitios (hyperdistribution)

D= densidad (latente)

Dos
observaciones
de cada uno
sitio (datos
observados)

- Las densidades de los sitios son relacionadas
- No son observables (son latentes)

Razones para MJ

- Refleja los procesos naturales mejor
- Se puede aplicar la aleatoriedad a un sitio sin datos
- Comparta información. Los efectos no son estimados independiente sino que como un grupo asi que la información es comparticida
- Un meta-análisis de otros estudios
- Tener process error en el modelo

Construyendo del modelo

Paso 1: Likelihood de los datos C_1 , .. C_4

Paso 2: Función del promedio

Paso 3: Elege la hiperdistribucion:

 $C \sim Poisson(D)$ $\mu_i = D_i$ $D \sim N(\mu, \sigma^2)$

Ejercicio: Simulando datos jerárquicos

- Suponga que hay 15 IID sitios, de quien tiene un promedio que es log-normal, i.e., loglambda~N(mu,tau)=N(3,.5)
- Y hay un proceso de los datos que es Poissoin asi que y_i~Poisson(lambda_i) for each site.
- Simula tan datos con 12 replicados por cada sitio
- Hace un boxplot del los datos simulados

Ejercicio: Simulando datos jerárquicos

Verosimilitudes jerárquicas

- Introduce "latent" variables into the likelihood $L(\theta; \varepsilon, y) = Pr(y, \varepsilon | \theta) = Pr(y | \theta, \varepsilon) Pr(\varepsilon | \theta)$
 - y is data, where ε is a unobserved random variable
 - $Arr Pr(\varepsilon|\theta)$ is a "prior" or "hyper-distribution" for latent variables
- In our example:

$$Pr(y|\theta,\varepsilon) Pr(\varepsilon) = Pr(C|D) Pr(D|\mu,\sigma)$$

This does not change our core formula:

$$P(\theta|y) \propto Pr(y|\theta,\varepsilon) Pr(\varepsilon|\theta) P(\theta)$$

Comportamiento extraño de MJ

- Vamos a ignorar la verosimilitud y prior
- Que ocurre si los efectos aleatorios son del medio...
- Y la hipervarianza va a cero?

```
hyper <- function(lambda, mu, tau) {
  exp(sum(dnorm(lambda, mu, tau), log=TRUE))
}
> lambda <- rep(3,10)
> hyper(lambda, mu=3, tau=1)
[1] 146.8516
> hyper(lambda, mu=3, tau=.01)
[1] 4.928621e+173
> hyper(lambda, mu=3, tau=.0001)
[1] Inf
```

Comportamiento extraño de MJ

- La densidad de la hiperdistribucion es infinita!!!
- Podemos siempre encontrar una densidad mas alta como σ → 0 y ε → μ
- Significa que la verosimilitud en un MJ no tiene un moda validad
- Para máxima verosimilitud eso es un problema (no hay una máxima!!)
- Métodos frequentistas tienen que integrar los efectos aleatorios para obtener la verosimilitud marginal

Comportamiento extraño de MJ

- Por lo tanto la inferencia frecuentista es muy difícil con MJ
- (Hasta TMB; Kristensen et al. 2016)
- Cual es el efecto de la inferencia Bayesiana?
 - La densidad de la posterior es infinita pero el volumen es igual de pequeño
 - Entonces esta región de la posterior no es importante¹
 - MCMC nunca genera muestras allí porque la masa es muy baja
- No es una problema, y por eso lo métodos Bayesianos son tan común para MJ

Important concepts 1

- MJ require integración para hacer inferencia
- Es difícil con máximo verosimilitud
- Pero natural con métodos Bayesianos
- Porque MCMC ya está integrando!
- MJ son herramientas muy poderosa y eran difícil de ajustar...
- Hasta software como BUGS/JAGS que son flexibles para construir modelos arbitrarios

Ejercicio

- Vamos a ajustar los datos simulados
- Primero, crea una prior predictive distribution en R.
- *Antes* de ver los datos, pensamos que 250 animales sería extremo (un umbral)
- La forma de la prior tau~N(0, sigma)T(0,) es recomendada por varianzas.
- Simula datos de un sitio y los plotea (posterior predictive distribution of new site)

References

Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., & Bell, B. M. (2016). TMB: Automatic differentiation and Laplace approximation. *Journal of Statistical Software, 70(5), 21. doi:* 10.18637/jss.v070.i05