Simulation einer Multikapillarsäule Abschlussvortrag Diplomarbeit

Elisabeth Böhmer

Technische Universität Dortmund Fakultät für Informatik Lehrstuhl 11

1. Oktober 2015

Betreuer: Prof. Dr. Sven Rahmann Prof. Dr. Jörg Rahnenführer

Gliederung

- Grundlagen
- 2 2-Zustände Modell
- 3-Zustände Modell
- 4 Zusammenfassung und Ausblick

Allgemeines zur Chromatographie

• Multikapillarsäule: Trennsäule in der Gaschromatographie

Allgemeines zur Chromatographie

- Multikapillarsäule: Trennsäule in der Gaschromatographie
- Verfahren zur Auftrennung von Stoffgemischen

Allgemeines zur Chromatographie

- Multikapillarsäule: Trennsäule in der Gaschromatographie
- Verfahren zur Auftrennung von Stoffgemischen
- Verteilung der Analyten zwischen mobiler und stationärer Phase

Prinzip der Gaschromatographie

mobile Phase Analyt

stationäre Phase

O mobile Phase Analyt

stationäre Phase

00000

00000

○ mobile Phase ■ Analyt

stationäre Phase

Lösung

00000

mobile Phase Analyt

stationäre Phase

mobile Phase Analyt

stationäre Phase

○ mobile Phase ● Analyt

 \bigcirc

stationäre Phase

Adsorption

○ mobile Phase ● Analyt

stationäre Phase

Nach Durchlaufen der Säule

- Detektion der austretenden Substanzen
- Detektion der Menge, keine Unterscheidung der Substanzen

Nach Durchlaufen der Säule

- Detektion der austretenden Substanzen
- Detektion der Menge, keine Unterscheidung der Substanzen
- Chromatogramm aus mehreren Peaks

Nach Durchlaufen der Säule

- Detektion der austretenden Substanzen
- Detektion der Menge, keine Unterscheidung der Substanzen
- Chromatogramm aus mehreren Peaks

- Alternativ: Weitere Analyse durch zum Beispiel
 - Massenspektrometrie (MS)
 - ► Ionen-Mobilitäts-Spektrometrie (IMS)

Charakteristika der Peaks

Peak charakterisiert durch:

Lage des Maximums

Charakteristika der Peaks

Peak charakterisiert durch:

- Lage des Maximums
- Breite
 - Interquartilskoeffizient

$$IQR = Q_{75} - Q_{25}$$

Charakteristika der Peaks

Peak charakterisiert durch:

- Lage des Maximums
- Breite

Grundlagen

Interquartilskoeffizient

$$IQR = Q_{75} - Q_{25}$$

- Form
 - ► Idealfall: Gaußkurve
 - ► Abweichung: Fronting, Tailing
 - Quartilskoeffizient

$$\frac{(Q_{75} - Q_{50}) - (Q_{50} - Q_{25})}{Q_{75} - Q_{25}}$$

> 0 : rechtsschief < 0 : linksschief Grundlagen ○○○○● ○

	MCC	Simulation	
Länge der Säule	20 cm	1000 Raumschritte	
	1 Raumschritt $\equiv 0.2$ mm		
Durchlaufzeit Trägergas	0,1 s	$1000 \; Zeitschritte$ chritt $\equiv 0.1 \; ms$	
С 1 : !: 1 : Т :		,	
Geschwindigkeit Trägergas	2 m/s	1 Raumschritt / Zeitschritt	
Dauer des Experiments	240 s	2 400 000 Zeitschritte	

Ziel

Grundlagen

Gesucht:

 Entsprechung von Peakcharakteristika zu Simulationsparametern

Gesucht:

- Entsprechung von Peakcharakteristika zu Simulationsparametern
- Unbekannte Funktion $F:[0,1]^x \to \mathbb{R}^y$ mit y=3 und x je nach Modell

Modell für die Chromatographie

Prinzip:

Modell:

Modell für die Chromatographie

Prinzip:

• 2 Phasen: stationär und mobil

Modell:

• 2 Zustände: s und m

Modell für die Chromatographie

Prinzip:

- 2 Phasen: stationär und mobil
- Wechsel dazwischen, bzw. Verweilen in der Phase

Modell:

- 2 Zustände: s und m
- Wechselwahrscheinlichkeiten
 - ightharpoonup s ightharpoonup s: $p_{
 m s}$
 - ightharpoonup s ightharpoonup m: $1-p_s$
 - $ightharpoonup m: p_{\mathsf{m}}$
 - ightharpoonup m ightharpoonup s: $1-p_{\mathsf{m}}$

Graphische Darstellung des Modells

Graphische Darstellung des Modells

- Teilchensimulation:
 - Simuliere n Teilchen.
 - ▶ für Säule der Länge ℓ
 - für maximal t_{max} Schritte
 - verwalte Orte und Zustände der Teilchen

Graphische Darstellung des Modells

- Teilchensimulation:
 - ► Simuliere *n* Teilchen.
 - ▶ für Säule der Länge ℓ
 - ightharpoonup für maximal t_{max} Schritte
 - verwalte Orte und Zustände der Teilchen
- Simulationsarten:
 - Step-by-Step
 - ▶ By-Event

Probabilistischer Arithmetischer Automat

- Modell zur Beschreibung einer Folge zufälliger Operationen
 - Zustände und Übergänge
 - ► Emissionen
 - Werte

Probabilistischer Arithmetischer Automat

- Modell zur Beschreibung einer Folge zufälliger Operationen
 - Zustände und Übergänge
 - Emissionen
 - Werte
- Automat ist zu jedem Zeitpunkt mit bestimmter Wahrscheinlichkeit in jedem Zustand

Probabilistischer Arithmetischer Automat

- Modell zur Beschreibung einer Folge zufälliger Operationen
 - Zustände und Übergänge
 - Emissionen
 - Werte
- Automat ist zu jedem Zeitpunkt mit bestimmter Wahrscheinlichkeit in jedem Zustand
- Werte aus den Emissionen und einer Operation berechnet

PAA für das 2-Zustände Modell

Teilchensimulation vs. PAA

Einfluss der Parameter auf einen Einzelpeak

p_{m}	p_{s}	Lage	Breite	Schiefe
0,2	0,999	79,9	4,18	0,01

Einfluss der Parameter auf einen Einzelpeak

p_{m}	p_{s}	Lage	Breite	Schiefe
0,2	0,999	79,9	4,18	0,01
0,1	0,999	89,9	4,24	0,01
0,3	0,999	69,9	4,06	0,01

p_{m}	p_{s}	Lage	Breite	Schiefe
0,2	0,999	79,9	4,18	0,01
0,1	0,999	89,9	4,24	0,01
0,3	0,999	69,9	4,06	0,01
0,2	0,9985	53,3	2,78	0,01
0,2	0,9995	159,7	8,35	0,01

Schiefe

Erreichbare Peakbreiten

Grenzen des 2-Parameter Modells

• Zu späten Zeitpunkten wird Minimalbreite nicht unterschritten

Grenzen des 2-Parameter Modells

- Zu späten Zeitpunkten wird Minimalbreite nicht unterschritten
- Peaks nur als Gaußkurven, kein Tailing

Zustandekommen von Tailing

• Bisher keine Unterscheidung zwischen Adsorption und Lösung

Zustandekommen von Tailing

- Bisher keine Unterscheidung zwischen Adsorption und Lösung
- "2-Komponenten Modell":
 - 1 Symmetrischer Peak durch 2 Phasen, mobil und adsorbiert
 - 2 Tail durch selten erreichten, lange währenden Zustand

PAA für das 3-Zustände Modell

Simulationsarten

- Step-by-Step
 - ► Schneller im 2-Zustände Modell

Simulationsarten

- Step-by-Step
 - ► Schneller im 2-Zustände Modell
- By-Event
 - ► Schneller im 3-Zustände Modell

Simulationsarten

- Step-by-Step
 - ► Schneller im 2-Zustände Modell
- By-Event
 - Schneller im 3-Zustände Modell
- PAA
 - ▶ in beiden Modellen genauer

Tailing

p_{mm}	p_{ml}	p_{aa}	$p_{ }$	Lage	Breite	Schiefe
0,1	0,0005	0,9991	0,99999	100,22	8,1	0,23

3-Zustände Modell

0000000

Einfluss der Parameter auf einen Einzelpeak

p_{mm}	$p_{m }$	p_{aa}	$p_{ }$	Lage	Breite	Schiefe
0,1	0,0005	0,9991	0,99999	100,22	8,1	0,23
0,05	0,0005	0,9991	0,99999	105,76	8,11	0,229
0,2	0,0005	0,9991	0,99999	89,1	8,05	0,235

3-Zustände Modell

0000000

p_{mm}	$p_{m }$	p_{aa}	$p_{ }$	Lage	Breite	Schiefe
0,1	0,0005	0,9991	0,99999	100,22	8,1	0,23
0,05	0,0005	0,9991	0,99999	105,76	8,11	0,229
0,2	0,0005	0,9991	0,99999	89,1	8,05	0,235
0,1	0,0003	0,9991	0,99999	100,04	6,22	0,12
0,1	0,0007	0,9991	0,99999	100,4	10,89	0,34

p_{mm}	p_{ml}	p_{aa}	$p_{ }$	Lage	Breite	Schiefe
0,1	0,0005	0,9991	0,99999	100,22	8,1	0,23
0,05	0,0005	0,9991	0,99999	105,76	8,11	0,229
0,2	0,0005	0,9991	0,99999	89,1	8,05	0,235
0,1	0,0003	0,9991	0,99999	100,04	6,22	0,12
0,1	0,0007	0,9991	0,99999	100,4	10,89	0,34
0,1	0,0005	0,999	0,99999	90,17	7,68	0,26
0,1	0,0005	0,9992	0,99999	112,77	8,64	0,2

p_{mm}	$p_{m }$	p_{aa}	$p_{ }$	Lage	Breite	Schiefe
0,1	0,0005	0,9991	0,99999	100,22	8,1	0,23
0,05	0,0005	0,9991	0,99999	105,76	8,11	0,229
0,2	0,0005	0,9991	0,99999	89,1	8,05	0,235
0,1	0,0003	0,9991	0,99999	100,04	6,22	0,12
0,1	0,0007	0,9991	0,99999	100,4	10,89	0,34
0,1	0,0005	0,999	0,99999	90,17	7,68	0,26
0,1	0,0005	0,9992	0,99999	112,77	8,64	0,2
0,1	0,0005	0 9991	0,999975	100,41	5,91	0,08
0,1	0,0005	0 9991	0,999993	100,12	9,93	0,34

Erreichbare Breiten und Schiefen für Zeitpunkt 100

Mehrere Parameterkombinationen für einen Peak [1]

Mehrere Parameterkombinationen für einen Peak [2]

Modelle mit 2 oder 3 Zuständen

- Modelle mit 2 oder 3 Zuständen
- Modellierung als PAA

Zusammenfassung

- Modelle mit 2 oder 3 Zuständen
- Modellierung als PAA
- Simulationsarten

Zusammenfassung

- Modelle mit 2 oder 3 Zuständen
- Modellierung als PAA
- Simulationsarten
- Funktion $F:[0,1]^x \to \mathbb{R}^y$ für y=3 und x=4 im 3-Zustände Modell

- Modelle mit 2 oder 3 Zuständen
- Modellierung als PAA
- Simulationsarten
- Funktion $F:[0,1]^x \to \mathbb{R}^y$ für y=3 und x=4 im 3-Zustände Modell
- Parametereinflüsse

3-Zustände Modell

Formel für Entsprechung

- Formel für Entsprechung
- Andere Maße, insbesondere für Schiefe und Breite

3-Zustände Modell

- Formel für Entsprechung
- Andere Maße, insbesondere für Schiefe und Breite
- Peaks als Funktionen

- Formel für Entsprechung
- Andere Maße, insbesondere für Schiefe und Breite
- Peaks als Funktionen
- Verifikation des Modells in größerem Rahmen

- Formel für Entsprechung
- Andere Maße, insbesondere für Schiefe und Breite
- Peaks als Funktionen
- Verifikation des Modells in größerem Rahmen
- Weitere Modelle falls erforderlich