# High-Probability Convergence for Composite and Distributed Stochastic Minimization and Variational Inequalities with Heavy-Tailed Noise

**Eduard Gorbunov** Abdurakhmon Sadiev Marina Danilova Samuel Horvath **MBZUAI KAUST** 

**MIPT** 

**MBZUAI** 

UdeM

Gauthier Gidel Pavel Dvurechensky Alexander Gasnikov Peter Richtarik **WIAS** 

**Innopolis University** 

**KAUST** 













## Typical Machine Learning Problem: Classification



$$\min_{x \in \mathbb{R}^d} \left\{ f(x) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(x) \right\}$$

- Dimension of the model: d
- Model parameters: x

$$\min_{\boldsymbol{x} \in \mathbb{R}^d} \left\{ f(\boldsymbol{x}) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(\boldsymbol{x}) \right\}$$

- Dimension of the model: d
- Model parameters: x
- Training data: n samples
- Loss on the *i*-th sample:  $f_i(x)$
- Training loss: f(x)



- Dimension of the model: d
- Model parameters: x
- Training data: n samples
- Loss on the *i*-th sample:  $f_i(x)$
- Training loss: f(x)





anc



are usually very large...

Computation of  $\nabla f(x)$  is very expensive  $\Longrightarrow$  stochastic methods are used

#### Gradient Descent vs Stochastic Gradient Descent

**Gradient Descent (GD)** 

$$x^{k+1} = x^k - \gamma \nabla f(x^k)$$



Convergence to the exact optimum asymptotically High computation cost of one iteration

Stochastic Gradient Descent (SGD)

$$x^{k+1} = x^k - \gamma \nabla f_{i_k}(x^k)$$

Random index from  $\{1, 2, ..., n\}$ 



Convergence to the neighborhood of the solution Cheap iterations

Faster convergence (for most of ML problems)

#### Gradient Descent vs Stochastic Gradient Descent

**Gradient Descent (GD)** 

$$x^{k+1} = x^k - \gamma \nabla f(x^k)$$

Stochastic Gradient Descent (SGD)

$$x^{k+1} = x^k - \gamma \nabla f_{i_k}(x^k)$$

Random index from  $\{1, 2, ..., n\}$ 



Convergence to the exact optimum asymptotically High computation cost of one iteration



Convergence to the neighborhood of the solution Cheap iterations

Faster convergence (for most of ML problems)

## Choice of the Method is Important



If the noise is heavy-tailed, SGD is not a good choice (not even guaranteed to converge)

LIMs and GANs Heavy-tailed noise in the stochastic gradients is typical for training LLMs and GANs

#### From Empirical Risk To Expected Risk Minimization

Empirical risk minimization (ERM): 
$$\min_{x \in \mathbb{R}^d} \left\{ f(x) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(x) \right\}$$

Risk minimization (RM): 
$$\min_{x \in \mathbb{R}^d} \left\{ f(x) \stackrel{\text{def}}{=} \mathbb{E}_{\xi \sim \mathcal{D}}[f_\xi(x)] \right\}$$

## From Empirical Risk To Expected Risk Minimization

Empirical risk minimization (ERM): 
$$\min_{x \in \mathbb{R}^d} \left\{ f(x) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(x) \right\}$$

Risk minimization (RM): 
$$\min_{x \in \mathbb{R}^d} \left\{ f(x) \stackrel{\text{def}}{=} \mathbb{E}_{\xi \sim \mathcal{D}}[f_\xi(x)] \right\}$$

- The first problem is a special case of the second one
- If n is large enough, then the minimizer of ERM is close to the minimizer of RM

Therefore, let us focus on RM from now on in this talk

$$\mathbb{E}\left[\left\|\nabla f_{\xi}(x) - \nabla f(x)\right\|^{\alpha}\right] \le \sigma^{\alpha}$$

$$1 < \alpha < 2$$

 $\bigcirc$  When  $\alpha < 2$  variance can be **unbounded** 

$$\mathbb{E}\left[\left\|\nabla f_{\xi}(x) - \nabla f(x)\right\|^{\alpha}\right] \leq \sigma^{\alpha}$$

$$1 < \alpha \le 2$$

- $\bigcirc$  When  $\alpha < 2$  variance can be **unbounded**
- SGD can diverge:

$$||x^{1} - x^{*}||^{2} = ||x^{0} - x^{*}||^{2} - ||2\gamma_{0}\langle x^{0} - x^{*}, \nabla f_{\xi^{0}}(x^{0})\rangle| + ||\nabla f_{\xi^{0}}(x^{0})||^{2}$$

$$\mathbb{E}\left[\left\|\nabla f_{\xi}(x) - \nabla f(x)\right\|^{\alpha}\right] \leq \sigma^{\alpha}$$

$$1 < \alpha \le 2$$

- $\bigcirc$  When  $\alpha < 2$  variance can be **unbounded**
- SGD can diverge:

$$\mathbb{E}\|x^1 - x^*\|^2 = \|x^0 - x^*\|^2 - \mathbb{E}[2\gamma_0\langle x^0 - x^*, \nabla f_{\xi^0}(x^0)\rangle] + \mathbb{E}\|\nabla f_{\xi^0}(x^0)\|^2$$

**Unbounded** 

Unbounded

$$\text{SGD: } x^{k+1} = x^k - \gamma_k \nabla f_{\xi^k}(x^k)$$

$$\mathbb{E}\left[\|\nabla f_{\xi}(x) - \nabla f(x)\|^{\alpha}\right] \leq \sigma^{\alpha}$$

$$1 < \alpha \le 2$$

- when  $\alpha$  Gradient clipping fixes SGD!
- SGD can diverge:

$$\boxed{\mathbb{E}\|x^1 - x^*\|^2} = \|x^0 - x^*\|^2 - \mathbb{E}[2\gamma_0\langle x^0 - x^*, \nabla f_{\xi^0}(x^0)\rangle] + \mathbb{E}\|\nabla f_{\xi^0}(x^0)\|^2}$$

**Unbounded** 

Unbounded

$$\operatorname{sgd}: x^{k+1} = x^k - \gamma_k \nabla f_{\xi^k}(x^k)$$

## SGD vs Clipped-SGD

$$x^{k+1} = x^k - \gamma_k \nabla f_{\xi^k}(x^k)$$

Clipped-SGD: 
$$x^{k+1} = x^k - \gamma_k \operatorname{clip}_{\lambda_k} \left( \nabla f_{\xi^k}(x^k) \right)$$

$$\operatorname{clip}_{\lambda}(x) = \min\left\{1, \frac{\lambda}{\|x\|}\right\} x$$



# High-Probability Convergence

## In-Expectation vs High-Probability Guarantees

In-expectation guarantees:  $\mathbb{E}[\|x - x^*\|^2] \le \varepsilon$ ,  $\mathbb{E}[f(x) - f(x^*)] \le \varepsilon$ ,  $\mathbb{E}[\|\nabla f(x)\|^2] \le \varepsilon$ 

Expirally, depend only on some moments of stochastic gradient, e.g., variance

## In-Expectation vs High-Probability Guarantees

In-expectation guarantees: 
$$\mathbb{E}[\|x - x^*\|^2] \le \varepsilon$$
,  $\mathbb{E}[f(x) - f(x^*)] \le \varepsilon$ ,  $\mathbb{E}[\|\nabla f(x)\|^2] \le \varepsilon$ 

Expirally, depend only on some moments of stochastic gradient, e.g., variance

High-probability guarantees: 
$$\mathbb{P}\{\|x - x^*\|^2 \le \varepsilon\} \ge 1 - \beta$$
,  $\mathbb{P}\{f(x) - f(x^*) \le \varepsilon\} \ge 1 - \beta$ ,  $\mathbb{P}\{\|\nabla f(x)\|^2 \le \varepsilon\} \ge 1 - \beta$ 

- Sensitive to the distribution of the stochastic gradient noise
- Harder to obtain with *logarithmic dependence* on  $1/\beta$

High-probability results give better understanding of methods behavior

## Convergence of SGD: Toy Example

Problem:

$$f(x) = \frac{1}{2} ||x||^2$$

$$f(x) = \frac{1}{2} \|x\|^2$$
 and  $f_{\xi}(x) = \frac{1}{2} \|x\|^2 + \langle \xi, x \rangle$ 

## Convergence of SGD: Toy Example

$$f(x) = \frac{1}{2} ||x||^2$$

$$f(x) = \frac{1}{2} \|x\|^2$$
 and  $f_{\xi}(x) = \frac{1}{2} \|x\|^2 + \langle \xi, x \rangle$ 

$$\mathbb{E}\left[f(x^k) - f(x^*)\right] \le (1 - \gamma)^k (f(x^0) - f(x^*)) + \frac{\gamma \sigma^2}{2}$$

## Convergence of SGD: Toy Example

Problem: 
$$f(x) = \frac{1}{2} \|x\|^2 \qquad \text{and} \qquad f_{\xi}(x) = \frac{1}{2} \|x\|^2 + \langle \xi, x \rangle$$

Convergence:  $\mathbb{E}\left[f(x^k) - f(x^*)\right] \leq (1-\gamma)^k (f(x^0) - f(x^*)) + \frac{\gamma\sigma^2}{2}$ 



SGD's behavior does depend on the distribution but it is not reflected by in-expectation guarantees!

## Convergence of SGD and Clipped-SGD: Toy Example

$$f(x) = \frac{1}{2} ||x||^2$$

and 
$$f_{\xi}(x) = \frac{1}{2} ||x||^2 + \langle \xi, x \rangle$$

Convergence:

$$\mathbb{E}\left[f(x^k) - f(x^*)\right] \le (1 - \gamma)^k (f(x^0) - f(x^*)) + \frac{\gamma \sigma^2}{2}$$



SGD's behavior does depend on the distribution but it is not reflected by in-expectation guarantees!

## Some Recent Advances on High-Probability Convergence

- Nazin et al. Algorithms of robust stochastic optimization based on mirror descent method. (Automation and Remote Control, 2019)
- Davis et al. From low probability to high confidence in stochastic convex optimization. (JMLR 2021)
- Gorbunov et al. Stochastic optimization with heavy-tailed noise via accelerated gradient clipping. (NeurIPS 2020)
- ☐ Cutkosky & Mehta. High-probability bounds for non-convex stochastic optimization with heavy tails.

  (NeurIPS 2021)
- Gorbunov et al. Clipped stochastic methods for variational inequalities with heavy-tailed noise. (NeurIPS 2022)
- ■Sadiev et al. High-probability bounds for stochastic optimization and variational inequalities: the case of unbounded variance. (ICML 2023)
- ■Nguyen et al. High probability convergence of Clipped-SGD under heavy-tailed noise. (arXiv:2302.05437)
- □ Liu et al. High probability convergence of stochastic gradient methods. (ICML 2023)
- ■Nguyen et al. Improved convergence in high probability of clipped gradient methods with heavy tails. (NeurIPS 2023)
- ■Liu & Zhou. Stochastic Nonsmooth convex optimization with heavy-tailed noises: high-probability bound, in-expectation rate and initial distance adaptation. (arXiv:2303.12277)
- ■Puchkin et al. Breaking the heavy-tailed noise barrier in stochastic optimization problems. (AISTATS 2024)

## Some Recent Advances on High-Probability Convergence

- Nazin et al. Algorithms of robust stochastic optimization based on mirror descent method. (Automation and Remote Control, 2019)
- ■Davis et al. From low probability to high confidence in stochastic convex optimization. (JMLR 2021)
- ☐Gorbunov et al. Stochastic optimization with heavy-tailed noise via accelerated gradient clipping. (NeurIPS 2020)
- ■Cutkosky & Mehta. High-probability bounds for non-convex stochastic optimization with heavy tails.
- Corb Analysis for composite and distributed (NeurIPS 2022)
- Sadiev et al. High-probability boper of emstigation it econal inequalities: the case of unbounded variance. (ICML 2021)
- ■Nguyen et al. High probability convergence of Clipped-SGD under heavy-tailed noise. (arXiv:2302.05437)
- ■Liu et al. High probability convergence of stochastic gradient methods. (ICML 2023)
- ■Nguyen et al. Improved convergence in high probability of clipped gradient methods with heavy tails.
  (NeurIPS 2023)
- □Liu & Zhou. Stochastic Nonsmooth convex optimization with heavy-tailed noises: high-probability bound, in-expectation rate and initial distance adaptation. (arXiv:2303.12277)
- ■Puchkin et al. Breaking the heavy-tailed noise barrier in stochastic optimization problems. (AISTATS 2024)

# Composite Optimizaton

## **Stochastic Composite Optimization**

$$\min_{x \in \mathbb{R}^d} \left\{ \Phi(x) := f(x) + \Psi(x) \right\}$$

#### Stochastic Composite Optimization

$$\min_{x \in \mathbb{R}^d} \left\{ \Phi(x) := f(x) + \Psi(x) \right\}$$

Convex and smooth function Stochastic gradients  $\nabla f_{\xi}(x)$  are available

## Stochastic Composite Optimization

$$\min_{x \in \mathbb{R}^d} \left\{ \Phi(x) := f(x) + \Psi(x) \right\}$$

Convex and smooth function Stochastic gradients  $\nabla f_{\xi}(x)$  are available "Simple" function (proper, closed, and convex) Prox-operator (a.k.a. projection) is computable

$$\operatorname{prox}_{\Psi}(x) := \arg\min_{y \in \mathbb{R}^d} \left\{ \Psi(y) + \frac{1}{2} \|y - x\|^2 \right\}$$

Regularized risk minimization

$$\min_{x \in \mathbb{R}^d} \left\{ \Phi(x) := \underbrace{\mathbb{E}_{\xi \sim \mathcal{D}}[f_{\xi}(x)]}_{f(x)} + \underbrace{\lambda_1 ||x||_1 + \lambda_2 ||x||_2^2}_{\Psi(x)} \right\}$$

Regularized risk minimization

$$\min_{x \in \mathbb{R}^d} \left\{ \Phi(x) := \underbrace{\mathbb{E}_{\xi \sim \mathcal{D}}[f_{\xi}(x)]}_{f(x)} + \underbrace{\lambda_1 ||x||_1 + \lambda_2 ||x||_2^2}_{\Psi(x)} \right\}$$

Constrained risk minimization

, if 
$$x \in \mathcal{X}$$

closed convex set

$$\min_{x \in \mathbb{R}^d} \left\{ \Phi(x) := \underbrace{\mathbb{E}_{\xi \sim \mathcal{D}}[f_{\xi}(x)]}_{f(x)} + \Psi(x) \right\}, \quad \Psi(x) := \begin{cases} 0, & \text{if } x \in \mathcal{X} \\ +\infty, & \text{if } x \notin \mathcal{X} \end{cases}$$

$$\min_{x \in \mathbb{R}^d} \left\{ \Phi(x) := f(x) + \Psi(x) \right\}$$

Distributed optimization

$$\min_{\mathbf{X}=[x_1,\dots,x_n]\in\mathbb{R}^{d\times n}} \left\{ \Phi(\mathbf{X}) := \underbrace{\frac{1}{n} \sum_{i=1}^n f_i(x_i) + \Psi(\mathbf{X})}_{f(\mathbf{X})} \right\}$$

$$\Psi(\mathbf{X}) := \begin{cases} 0, & \text{if } x_1 = \dots = x_n \\ +\infty, & \text{otherwise} \end{cases}$$

- *n* workers/clients are connected with a parameter-server
- $f_i(x_i)$  loss on the data available on client i

Distributed optimization

$$\min_{\mathbf{X}=[x_1,\dots,x_n]\in\mathbb{R}^{d\times n}} \left\{ \Phi(\mathbf{X}) := \underbrace{\frac{1}{n} \sum_{i=1}^n f_i(x_i) + \Psi(\mathbf{X})}_{f(\mathbf{X})} \right\}$$

$$\Psi(\mathbf{X}) := \begin{cases} 0, & \text{if } x_1 = \dots = x_n \\ +\infty, & \text{otherwise} \end{cases}$$

- *n* workers/clients are connected with a parameter-server
- $f_i(x_i)$  loss on the data available on client i
- In our work, we consider an explicit form of the distributed problem

#### Standard Method: Prox-SGD

$$x^{k+1} = x^k - \gamma_k \nabla f_{\xi^k}(x^k)$$

#### Standard Method: Prox-SGD

$$x^{k+1} = \operatorname{prox}_{\gamma_k \Psi} \left( x^k - \gamma_k \nabla f_{\xi^k}(x^k) \right)$$

### Standard Method: Prox-SGD

$$x^{k+1} = \operatorname{prox}_{\gamma_k \Psi} \left( x^k - \gamma_k \nabla f_{\xi^k}(x^k) \right)$$

$$\operatorname{prox}_{\Psi}(x) := \arg\min_{y \in \mathbb{R}^d} \left\{ \Psi(y) + \frac{1}{2} \|y - x\|^2 \right\}$$

### Standard Method: Prox-SGD

$$x^{k+1} = \boxed{\operatorname{prox}_{\gamma_k \Psi} \left( x^k - \gamma_k \nabla f_{\xi^k}(x^k) \right)}$$

Just clip stochastic gradient?

$$\operatorname{prox}_{\Psi}(x) := \arg\min_{y \in \mathbb{R}^d} \left\{ \Psi(y) + \frac{1}{2} ||y - x||^2 \right\}$$

# Failure of the Naïve Approach

### Proximal Clipped-SGD

$$x^{k+1} = \operatorname{prox}_{\gamma_k \Psi} \left( x^k - \gamma_k \operatorname{clip}_{\lambda_k} (\nabla f_{\xi^k}(x^k)) \right)$$

$$\operatorname{clip}_{\lambda}(x) = \min\left\{1, \frac{\lambda}{\|x\|}\right\} x$$

There is an issue with this method related to the choice of  $\lambda_k$ 

Prox-GD

Prox-clipped-GD

$$x^{k+1} = \operatorname{prox}_{\gamma_k \Psi} \left( x^k - \gamma_k \nabla f(x^k) \right)$$

$$x^{k+1} = \operatorname{prox}_{\gamma_k \Psi} \left( x^k - \gamma_k \nabla f(x^k) \right) \qquad x^{k+1} = \operatorname{prox}_{\gamma_k \Psi} \left( x^k - \gamma_k \operatorname{clip}_{\lambda_k} (\nabla f(x^k)) \right)$$

Prox-GD

Prox-clipped-GD

$$x^{k+1} = \operatorname{prox}_{\gamma_k \Psi} \left( x^k - \gamma_k \nabla f(x^k) \right)$$

$$x^{k+1} = \operatorname{prox}_{\gamma_k \Psi} \left( x^k - \gamma_k \nabla f(x^k) \right) \qquad x^{k+1} = \operatorname{prox}_{\gamma_k \Psi} \left( x^k - \gamma_k \operatorname{clip}_{\lambda_k} (\nabla f(x^k)) \right)$$

Solution is a fixed-point:

$$x^* = \operatorname{prox}_{\gamma_k \Psi} (x^* - \gamma_k \nabla f(x^*))$$

No need to decrease stepsizes

Prox-GD

Prox-clipped-GD

$$x^{k+1} = \operatorname{prox}_{\gamma_k \Psi} \left( x^k - \gamma_k \nabla f(x^k) \right)$$

$$x^{k+1} = \operatorname{prox}_{\gamma_k \Psi} \left( x^k - \gamma_k \operatorname{clip}_{\lambda_k} (\nabla f(x^k)) \right)$$

Solution is a fixed-point:

Solution is not necessarily a fixed point :

$$x^* = \operatorname{prox}_{\gamma_k \Psi} \left( x^* - \gamma_k \nabla f(x^*) \right)$$

$$x^* \neq \operatorname{prox}_{\gamma_k \Psi} (x^* - \gamma_k \operatorname{clip}_{\lambda_k} (\nabla f(x^*)))$$

No need to decrease stepsizes

This can happen if  $\|\nabla f(x^*)\| > \lambda_k$  for all  $k \ge k_0$  since

$$-\mathrm{clip}_{\lambda_k}(\nabla f(x^*)) \not\in \partial \Psi(x^*)$$

Prox-GD

Prox-clipped-GD

$$x^{k+1} = \operatorname{prox}_{\gamma_k \Psi} \left( x^k - \gamma_k \nabla f(x^k) \right)$$

$$x^{k+1} = \operatorname{prox}_{\gamma_k \Psi} \left( x^k - \gamma_k \operatorname{clip}_{\lambda_k} (\nabla f(x^k)) \right)$$

Solution is a fixed-point:

Solution is not necessarily a fixed point :

$$x^* = \operatorname{prox}_{\gamma_k \Psi} (x^* - \gamma_k \nabla f(x^*))$$

$$x^* \neq \operatorname{prox}_{\gamma_k \Psi} \left( x^* - \gamma_k \operatorname{clip}_{\lambda_k} (\nabla f(x^*)) \right)$$

No need to decrease stepsizes

This can happen if  $\|\nabla f(x^*)\| > \lambda_k$  for all  $k \ge k_0$  since

$$-\mathrm{clip}_{\lambda_k}(\nabla f(x^*)) \not\in \partial \Psi(x^*)$$

In the stochastic case, known results for unconstrained problems require decreasing  $\lambda_k$  for tight convergence in the strongly convex case and acceleration!

# Non-Implementable Fix

# New Method: Proximal Clipped-SGD-star

$$x^{k+1} = \operatorname{prox}_{\gamma_k \Psi} \left( x^k - \gamma_k (\nabla f(x^*) + \operatorname{clip}_{\lambda_k} (\Delta_k) \right)$$

# New Method: Proximal Clipped-SGD-star

$$x^{k+1} = \operatorname{prox}_{\gamma_k \Psi} \left( x^k - \gamma_k (\nabla f(x^*) + \operatorname{clip}_{\lambda_k} (\Delta_k) \right)$$

$$\Delta_k = \nabla f_{\xi^k}(x^k) - \nabla f(x^*)$$

Solution is a fixed-point for any choice of  $\lambda_k$  (in the special case of deterministic gradients)

Provable convergence (we have proofs)

# New Method: Proximal Clipped-SGD-star

$$x^{k+1} = \operatorname{prox}_{\gamma_k \Psi} \left( x^k - \gamma_k (\nabla f(x^*) + \operatorname{clip}_{\lambda_k} (\Delta_k) \right)$$

$$\Delta_k = \nabla f_{\xi^k}(x^k) - \nabla f(x^*)$$

Solution is a fixed-point for any choice of  $\lambda_k$ 

Provable convergence (we have proofs)

The method cannot be used:  $\nabla f(x^*)$  is unknown in general

# **Learnable Shifts**

# New Method: Proximal Clipped-SGD with Shift

$$x^{k+1} = \operatorname{prox}_{\gamma_k \Psi} \left( x^k - \gamma_k \left( h^k \right) + \operatorname{clip}_{\lambda_k} (\Delta_k) \right)$$

learnable shift

$$\Delta_k = \nabla f_{\xi^k}(x^k) - h^k$$

# New Method: Proximal Clipped-SGD with Shift

$$x^{k+1} = \operatorname{prox}_{\gamma_k \Psi} \left( x^k - \gamma_k \left( h^k \right) + \operatorname{clip}_{\lambda_k} (\Delta_k) \right)$$

learnable shift

$$\Delta_k = \nabla f_{\xi^k}(x^k) - h^k$$

$$h^{k+1} = h^k + \nu \cdot \operatorname{clip}_{\lambda_k}(\Delta_k)$$

# New Method: Proximal Clipped-SGD with Shift

$$x^{k+1} = \operatorname{prox}_{\gamma_k \Psi} \left( x^k - \gamma_k (h^k) + \operatorname{clip}_{\lambda_k} (\Delta_k) \right)$$

learnable shift

$$\Delta_k = \nabla f_{\xi^k}(x^k) - h^k$$

$$h^{k+1} = h^k + \nu \cdot \operatorname{clip}_{\lambda_k}(\Delta_k)$$

 $h^k$  approximates  $\nabla f(x^*)$ 

Provable convergence (we have proofs)

Intuition: one step of clipped-SGD applied to

$$\min_{h \in \mathbb{R}^d} \frac{1}{2} ||h - \nabla f_{\xi^k}(x^k)||^2$$

where  $\nabla f_{\xi^k}(x^k)$  can be seen as a noisy estimate of  $\nabla f(x^*)$ 

# Convergence Results: Convex Case

#### **Assumptions**

$$\|\nabla f(x) - \nabla f(y)\| < I \|x - y$$

Smoothness

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$$

 $f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle$ 

#### **Convergence rate**

There exists a choice of stepsizes  $\gamma$  and  $\nu$  and clipping level  $\lambda$  such that with probability at least  $1-\beta$ 

$$\Phi(\overline{x}^K) - \Phi(x^*) = \mathcal{O}\left(\max\left\{\frac{LR^2A}{K}, \frac{R\zeta_*A}{K}, \frac{\sigma RA^{\frac{\alpha-1}{\alpha}}}{K^{\frac{\alpha-1}{\alpha}}}\right\}\right)$$

### Convergence Results: Convex Case

#### **Assumptions**

Convexity

$$f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle$$

Smoothness

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$$

#### **Convergence rate**

There exists a choice of stepsizes  $\gamma$  and  $\nu$  and clipping level  $\lambda$  such that with probability at least  $1-\beta$ 

$$\Phi(\overline{x}^K) - \Phi(x^*) = \mathcal{O}\left(\max\left\{\frac{LR^2A}{K}, \frac{R\zeta_*A}{K}, \frac{\sigma RA^{\frac{\alpha-1}{\alpha}}}{K^{\frac{\alpha-1}{\alpha}}}\right\}\right)$$

R – an upper bound on  $\|x^0 - x^*\|$ ,  $\zeta_* = \|\nabla f(x^*)\|$ ,  $A = \log \frac{4K}{\beta}$ 

Logarithmic dependence on eta

The rate matches the one for clipped-SGD in the unconstrained case

# Convergence Results: Strongly Convex Case

#### **Assumptions**

• Strong convexity  $f(x) \geq f(y) + \langle \nabla f(y), x-y \rangle + \frac{\mu}{2} \|x-y\|^2$  • Smoothness  $\|\nabla f(x) - \nabla f(y)\| \leq L \|x-y\|$ 

#### **Convergence rate**

There exists a choice of stepsizes  $\gamma$  and  $\nu$  and clipping level  $\lambda_k$  such that with probability at least  $1-\beta$ 

$$||x^K - x^*||^2 = \mathcal{O}\left(\max\left\{R^2 \exp\left(-\frac{\mu K}{LA}\right), R^2 \exp\left(-\frac{\mu RK}{\zeta_* A}\right), \frac{\sigma^2 A^{\frac{2(\alpha - 1)}{\alpha}} B}{K^{\frac{2(\alpha - 1)}{\alpha}}}\right\}\right)$$

R – an upper bound on  $\|x^0 - x^*\|$ ,  $\zeta_* = \|\nabla f(x^*)\|$ ,  $A = \log \frac{K}{\beta}$ , B – another logarithmic factor Logarithmic dependence on  $\beta$  The rate matches the one for clipped-SGD in the unconstrained case

### **Extensions and Generalizations**

#### In the paper, we also have

- Accelerated rates
- $\bigcirc$  Linear speed up for distributed composite problems (even for  $\alpha < 2$ )

$$\mathbb{E}\left[\|\nabla f_{\xi}(x) - \nabla f(x)\|^{\alpha}\right] \leq \sigma^{\alpha}$$

- The Generalization to the variational inequalities
- Detailed proofs (with novel Lyapunov function for accelerated method)

# Conclusion

### Conclusion

#### Main takeaway:

clip gradient differences for better high-probability convergence for composite and distributed problems

Come to our poster for more details: Today, 11:30 am (Hall C 4-9 #1014)

Paper:



#### My website:

(I am on the job market for an Assistant Professor position!)

