Problems: Week 2

- ** 1. Prove by induction on $M \in \Lambda$ that $N \in \operatorname{sub}(M)$ implies $N \subseteq M$. Hint: $N \in S_1 \cup S_2 \cup S_2$ can be understood as a *disjunction* of three possibilities for sets that contain N.
- ** 2. Prove, by induction on $M \in \Lambda$, that if $x \neq y$ and $x \notin FV(Q)$ then:

$$M[P/x][Q/y] = M[Q/y][P[Q/y]/x]$$

Hint: in the variable case, there are three subcases to consider.

- * 3. Perform the following substitutions:
 - a) $(\lambda x.(\lambda y.xz)z)[(\lambda z.z)/z]$
 - b) $(\lambda x.yx)[yz/x]$
 - c) $(\lambda y.xy)[yx/x]$
- * 4. Perform one step of reduction for each of the following terms:
 - a) $(\lambda x y.x)(\lambda x.x)(\lambda z.z)$
 - b) $(\lambda x yz.xz(yz))(\lambda x y.x)$
 - c) $(\lambda x.xx)(\lambda x.xx)$
 - d) $(\lambda x y.x)((\lambda z.zz)(\lambda x.x))$
- * 5. Draw the reduction graph of the term $(\lambda x y, y y)((\lambda z, zz)(\lambda z, zz))(\lambda x, x)$.
- ** 6. Give an example of a *closed* term *M* for each of the following properties:
 - a) M is in β -normal form.
 - b) *M* has exactly one reduct.
 - c) *M* has 2 or more reducts.
 - d) *M* contains fewer redexes than one of its reducts.
 - e) A reduct of M contains a redex that did not occur anywhere in M.
- ** 7. a) State the induction principle associated with the inductively defined set \rightarrow_{β} , which is a set of pairs of λ -terms.
 - b) Prove, by induction on $M \rightarrow_{\beta} N$ that:

if
$$M \to_{\beta} N$$
 then $FV(N) \subseteq FV(M)$.

You may omit one of the cases (AppL) or (AppR) because it is similar to the other.

c) Give an example of a step $M \to_{\beta} N$ where $FV(M) \neq FV(N)$.