1. Big-O time complexity

Expression	Dominant terms	O()
$5 + 0.001n^3 + 0.025n$	$0.001n^3$	n^3
$500n + 100n^{1.5} + 50nlog(10)n$	$100n^{1.5}$	$n^{1.5}$
Type equation here.	$2.5n^{1.75}$	$n^{1.75}$
	$n^2 logn$	$n^2 logn$
	$3\log(8) n$	log(8) n
	$0.01n^2$	100n ²
	100n ²	
	$0.5n^{1.25}$	
	0.01 n log n	
	n^3	
	$0.003\log(4)n$	

$$(\log n)^2 < \log n$$
$$\log(\log n) < \log n$$

2.
$$Ta(n) = 5 * n * log(10) n$$

 $Tb(n) = 25 * n$

Assume that nlogn is the upper bound of n 25n = O(5nlogn)

3. Image

+ Cn2 closed 0(c,k,n) $n = k^m$ assume. km c.k. km + ckm+1 MM Km+1 reduces = 0 6m-1 back substitution = n.logn.c

1. Loop 1: logn Loop 2: logn Loop 3: n/2

Complexity: $n(logn)^2$