On modified Patankar schemes and oscillations: towards new stability definitions

Davide Torlo¹ & Philipp Öffner² & Hendrik Ranocha³

12th July 2021

Icosahom 2020

¹INRIA Bordeaux - Sud Ouest, France

²Johannes Gutenberg-University Mainz, Germany

³Fachbereich Mathematik und Informatik der Universität Münster, Germany Render in Re

Outline

- Production—Destruction System
- (Modified) Patankar Methods
- Properties and Troubles
- 4 Oscillation Study
- 5 Inconsistency Study
- 6 Simulations
- Conclusion

Outline

- Production—Destruction System
- (2) (Modified) Patankar Methods
- 3 Properties and Troubles
- 4 Oscillation Study
- 5 Inconsistency Study
- 6 Simulations
- 7 Conclusion

Consider production-destruction systems (PDS)

$$\begin{cases}
d_t c_i = P_i(\mathbf{c}) - D_i(\mathbf{c}), & i = 1, \dots, I, \\
\mathbf{c}(t=0) = \mathbf{c}_0, & D_i(\mathbf{c}) = \sum_{j=1}^{I} p_{i,j}(\mathbf{c}), \\
D_i(\mathbf{c}) = \sum_{j=1}^{I} d_{i,j}(\mathbf{c}),
\end{cases} \tag{1}$$

where

$$p_{i,j}(\mathbf{c}), d_{i,j}(\mathbf{c}) \ge 0, \quad \forall i, j \in I, \quad \forall \mathbf{c} \in \mathbb{R}^{+,I}.$$

Applications: Chemical reactions, biological systems, population evolutions and PDEs. Simplest example: 2 x 2 linear system

$$\begin{cases} d_t u_1 = u_2 - u_1 \\ d_t u_2 = u_1 - u_2 \end{cases}$$

Consider production-destruction systems (PDS)

$$\begin{cases} d_t c_i = P_i(\mathbf{c}) - D_i(\mathbf{c}), & i = 1, \dots, I, \\ \mathbf{c}(t=0) = \mathbf{c}_0, & D_i(\mathbf{c}) = \sum_{j=1}^{I} p_{i,j}(\mathbf{c}), \\ D_i(\mathbf{c}) = \sum_{j=1}^{I} d_{i,j}(\mathbf{c}), \end{cases}$$
(1)

where

$$p_{i,j}(\mathbf{c}), d_{i,j}(\mathbf{c}) \ge 0, \quad \forall i, j \in I, \quad \forall \mathbf{c} \in \mathbb{R}^{+,I}.$$

Applications: Chemical reactions, biological systems, population evolutions and PDEs. Example: SIRD

$$\begin{cases} d_t S = -\beta \frac{SI}{N} \\ d_t I = \beta \frac{SI}{N} - \gamma I - \delta I \\ d_t R = \gamma I \\ d_t D = \delta I \end{cases}$$

Consider production-destruction systems (PDS)

$$\begin{cases}
d_t c_i = P_i(\mathbf{c}) - D_i(\mathbf{c}), & i = 1, \dots, I, \\
\mathbf{c}(t=0) = \mathbf{c}_0, & D_i(\mathbf{c}) = \sum_{j=1}^{I} p_{i,j}(\mathbf{c}), \\
D_i(\mathbf{c}) = \sum_{j=1}^{I} d_{i,j}(\mathbf{c}),
\end{cases} \tag{1}$$

where

$$p_{i,j}(\mathbf{c}), d_{i,j}(\mathbf{c}) \ge 0, \quad \forall i, j \in I, \quad \forall \mathbf{c} \in \mathbb{R}^{+,I}.$$

Property 1: Conservation

$$\sum_{i=1}^{I} c_i(0) = \sum_{i=1}^{I} c_i(t), \quad \forall t \ge 0$$

$$\iff p_{i,j}(\mathbf{c}) = d_{j,i}(\mathbf{c}), \quad \forall i, j \in I, \quad \forall \mathbf{c} \in \mathbb{R}^{+,I}.$$

4/36

Consider production-destruction systems (PDS)

$$\begin{cases} d_t c_i = P_i(\mathbf{c}) - D_i(\mathbf{c}), & i = 1, \dots, I, \\ \mathbf{c}(t=0) = \mathbf{c}_0, & D_i(\mathbf{c}) = \sum_{j=1}^{I} p_{i,j}(\mathbf{c}), \\ D_i(\mathbf{c}) = \sum_{j=1}^{I} d_{i,j}(\mathbf{c}), \end{cases}$$
(1)

where

$$p_{i,j}(\mathbf{c}), d_{i,j}(\mathbf{c}) \ge 0, \quad \forall i, j \in I, \quad \forall \mathbf{c} \in \mathbb{R}^{+,I}.$$

Property 2: Positivity

If
$$P_i, D_i$$
 Lipschitz, and if when $c_i \to 0 \Rightarrow D_i(\mathbf{c}) \to 0 \Longrightarrow c_i(0) > 0 \,\forall i \in I \Longrightarrow c_i(t) > 0 \,\forall i \in I \,\forall t > 0$.

Davide Torlo M

Consider production-destruction systems (PDS)

$$\begin{cases}
d_t c_i = P_i(\mathbf{c}) - D_i(\mathbf{c}), & i = 1, \dots, I, \\
\mathbf{c}(t=0) = \mathbf{c}_0, & D_i(\mathbf{c}) = \sum_{j=1}^{I} p_{i,j}(\mathbf{c}), \\
D_i(\mathbf{c}) = \sum_{j=1}^{I} d_{i,j}(\mathbf{c}),
\end{cases} \tag{1}$$

where

$$p_{i,j}(\mathbf{c}), d_{i,j}(\mathbf{c}) \ge 0, \quad \forall i, j \in I, \quad \forall \mathbf{c} \in \mathbb{R}^{+,I}.$$

Goal of the method design:

- One step method
- Unconditionally positive (for any Δt)
- Unconditionally conservative
- (High order accurate)

Outline

- 1 Production–Destruction System
- (Modified) Patankar Methods
- Properties and Troubles
- 4 Oscillation Study
- 5 Inconsistency Study
- 6 Simulations
- 7 Conclusion

Davide Torlo

Patankar Method

Patankar trick

$$c_i^{n+1} = c_i^n + \Delta t \left(P_i(\mathbf{c}^n) - D_i(\mathbf{c}^n) \frac{c_i^{n+1}}{c_i^n} \right)$$
$$\left(1 + \Delta t \frac{D_i(\mathbf{c}^n)}{c_i^n} \right) c_i^{n+1} = c_i^n + \Delta t P_i(\mathbf{c}^n)$$

- Not conservative
- First order
- Positive
- Implicit, but easy

Patankar and Modified Patankar Methods

Modified Patankar (mP)

Burchard Delegraniider

Burchard, Deleersnijder & Meister, APNUM 47.1 (2003)

$$c_i^{n+1} = c_i^n + \Delta t \left(\sum_j p_{i,j}(\mathbf{c}^n) \frac{c_j^{n+1}}{c_j^n} - \sum_j d_{i,j}(\mathbf{c}^n) \frac{c_i^{n+1}}{c_i^n} \right)$$
(2)

 $\mathrm{M}(\mathbf{c}^n)\mathbf{c}^{n+1}=\mathbf{c}^n$ where M is

$$\begin{cases}
m_{i,i}(\mathbf{c}^n) = 1 + \Delta t \sum_{k=1}^{I} \frac{d_{i,k}(\mathbf{c}^n)}{c_i^n}, & i = 1, \dots, I, \\
m_{i,j}(\mathbf{c}^n) = -\Delta t \frac{p_{i,j}(\mathbf{c}^n)}{c_j^n}, & i, j = 1, \dots, I, i \neq j.
\end{cases}$$
(3)

- Conservative
- First order

Linear system at each timestep

Positive

Extensions of Modified Patankar Schemes

Similar ideas

- MPRK(2,2,α): Kopecz, Meister in APNUM 123 (2018)
- MPRK(4,3, α , β): Kopecz, Meister in BIT 58.3 (2018)
- MPRKSO(2,2, α , β): Huang, Shu in JSC 78.3 (2019)
- MPRKSO(4,3): Huang, Zhao, Shu in JSC 79.2 (2019)
- mPDeC: Öffner, Torlo in APNUM 153 (2020)
- SI-RK2, SI-RK3: Chertock, Cui, Kurganov, Wu in SIAM J. Numer. Anal. (2015). Patankar schemes, they are weighting only the destruction term \Longrightarrow not conservative

Properites:

- Unconditionally positive (for any Δt)
- Unconditionally conservative (except SI-RK)
- High order

Extensions of Modified Patankar Schemes: MPRK(3,2)

A novel second-order modified Patankar–Runge–Kutta with three stages based on SSPRK(3,3) is

$$\begin{split} y^1 &= u^n, \\ y^2_i &= u^n + \Delta t \sum_j \left(p_{ij} \big(y^1 \big) \frac{y_j^2}{y_j^1} - d_{ij} \big(y^1 \big) \frac{y_i^2}{y_i^1} \right), \\ y^3 &= u^n + \Delta t \sum_j \left(\frac{p_{ij} \big(y^1 \big) + p_{ij} \big(y^2 \big)}{4} \frac{y_j^3}{y_j^2} - \frac{d_{ij} \big(y^1 \big) + d_{ij} \big(y^2 \big)}{4} \frac{y_i^3}{y_i^2} \right), \\ u^{n+1} &= u^n + \Delta t \sum_j \left(\frac{p_{ij} \big(y^1 \big) + p_{ij} \big(y^2 \big) + 4 p_{ij} \big(y^3 \big)}{6} \frac{u_j^{n+1}}{y_j^2} \right. \\ &\qquad \qquad - \frac{d_{ij} \big(y^1 \big) + d_{ij} \big(y^2 \big) + 4 d_{ij} \big(y^3 \big)}{6} \frac{u_i^{n+1}}{y_i^2} \right). \end{split}$$

Outline

- Production—Destruction System
- (2) (Modified) Patankar Methods
- Properties and Troubles
- 4 Oscillation Study
- 5 Inconsistency Study
- 6 Simulations
- 7 Conclusion

10/36

Steady state and wrong steady state

Steady state preservation

All the Patankar schemes are steady state preserving.

A steady state is u^{∞} such that $\sum_{j} p_{ij}(u^{\infty}) - d_{ij}(u^{\infty}) = 0$ and $d_t u^{\infty} = 0$.

A scheme *preserves* the steady state if, given u^n steady state, then $u^{n+1} = u^n$.

Wrong steady states

Some Patankar schemes preserve also some states which are not analytically steady. This happen when the Lipschitz constant of the schemes tends to infinity, i.e., when some quantities $u_i \to 0$.

Steady state and wrong steady state

Example:

$$\begin{cases} d_t u_1 = u_2 - u_1 \\ d_t u_2 = u_1 - u_2 \end{cases}$$
$$u^0 = (1, 10^{-15})^T,$$
$$u^\infty = (0.5, 0.5)^T.$$

MPRK(2,2,1) catches the right behavior. MPRK(2,2,5) get stuck at the 0 state.

Oscillations

 Δt large \Longrightarrow oscillations In the previous example choosing $\Delta t=10$ we have that

- MPRK(2,2,1) oscillates around the steady state.
- MPRK(2,2,2) oscillates around the steady state.

Questions

- Unexpected from an unconditionally positive scheme
- Implicit Euler is provably not oscillating
- What is actually the problem?

Oscillations

 Δt large \Longrightarrow oscillations In the previous example choosing $\Delta t=10$ we have that

- MPRK(2,2,1) oscillates around the steady state.
- MPRK(2,2,2) oscillates around the steady state.

Questions

- Unexpected from an unconditionally positive scheme
- Implicit Euler is provably not oscillating
- What is actually the problem?

Outline

- Production—Destruction System
- (2) (Modified) Patankar Methods
- Properties and Troubles
- Oscillation Study
- 5 Inconsistency Study
- 6 Simulations
- 7 Conclusion

14/36

Oscillation definition and modus operandi

Oscillation

Analytically

$$|u_i(t) - u_i(0)| \le |u_i(0) - u_i^{\infty}|.$$
 (4)

A scheme **oscillates** when the previous inequality is not verified, i.e., $\exists t$:

$$|u_i(t) - u_i(0)| > |u_i(0) - u_i^{\infty}|.$$
 (5)

How to detect when a scheme shows oscillations?

The schemes depends on

- Problem (and its parameters)
- IC
- \bullet Δt
- Parameters (α, β)

Analytical study or numerical study?

Oscillation definition and modus operandi

Problem: general 2×2 linear system

$$\begin{pmatrix} u_1' \\ u_2' \end{pmatrix} = \begin{pmatrix} -\theta & (1-\theta) \\ \theta & -(1-\theta) \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}, \quad \textbf{(6)}$$

$$\begin{pmatrix} u_1^0 \\ u_2^0 \end{pmatrix} = \begin{pmatrix} 1 - \varepsilon \\ \varepsilon \end{pmatrix}, \tag{7}$$

with $0 < \theta, \varepsilon < 1$.

Other values obtainable rescaling time and variables.

Analytical study

- Doable for few methods
- Fix the problem ($\theta = 0.5$)

Numerical study

- Discretize $\theta \in [0,1]$
- Discretize $\varepsilon \in [0, 0.5]$ (symmetry)
- Discretize $\Delta t \in [2^{-5}, 2^5]$
- Discretize schemes parameters (if any)
- Check only first timestep

MPRK(2,2,1)=MPDeC2

Theorem (Time restriction for MPRK(2,2,1) for 2×2 linear systems)

Consider the system (6) with the initial conditions (7). The MPRK(2,2,1) is not oscillating if the timestep restriction $\Delta t \le 2$ holds, for any IC $0 < \varepsilon < 1$ and any system $0 \le \theta \le 1$.

Sketch of the proof.

- $\theta = 0$ and $\theta = 1$ are trivial, because positive preserving and conservative.
- $\varepsilon = \theta$ trivial, IC are steady state.
- We check for $u_1^1=$ ratio of polynomials 1st degree in Δt and θ and 2nd degree in $\varepsilon.$
- Mathematica ... Stability (no oscillations) if $\Delta t \leq z$, where z is the only positive zero of the polynomial $p_{\varepsilon,\theta}(x)$

$$p_{\varepsilon,\theta}(x) = x^3 - x^2 - 2\left(\frac{\varepsilon}{\theta} + \frac{1-\varepsilon}{1-\theta}\right)x - 2\frac{\varepsilon(1-\varepsilon)}{\theta(1-\theta)}.$$

MPRK(2,2,1)=MPDeC2

Theorem (Time restriction for MPRK(2,2,1) for 2×2 linear systems)

Consider the system (6) with the initial conditions (7). The MPRK(2,2,1) is not oscillating if the timestep restriction $\Delta t \leq 2$ holds, for any IC $0 < \varepsilon < 1$ and any system $0 \leq \theta \leq 1$.

Sketch of the proof.

ľ

$$p_{\varepsilon,\theta}(x) = x^3 - x^2 - 2\left(\frac{\varepsilon}{\theta} + \frac{1-\varepsilon}{1-\theta}\right)x - 2\frac{\varepsilon(1-\varepsilon)}{\theta(1-\theta)}.$$

- Algebraic estimations on the zeros $y \le w \le z$ using $\varepsilon, \theta \in (0,1)$
- ywz positive, yz + wz + yw negative, $y \le w < 0 < z$
- $w + y < -\frac{2}{z}$, $0 = z + y + w 1 < z \frac{2}{z} 1$, $0 < z^2 z 2$, $\Longrightarrow z > 2$.
- $\Delta t \leq 2 \Longrightarrow$ No oscillations.

Other schemes analytically

- MPRK(3,2) too many stages \Longrightarrow Polynomial of degree 6 in $\Delta t, \theta, \varepsilon$.
- MPRK(2,2, α) too many parameters.
- MPDeC3 on too many stages.
- MPRK(4,3, α , β), MPRKSO(2,2, α , β), MPRKSO(4,3) too many stages and parameters.

If too many parameters \Longrightarrow we can remove parameters from the problem (later). **Numerical study!**

Numerical study

- Discretize $\theta \in [0,1]$
- Discretize $\varepsilon \in [0, 0.5]$ (symmetry)
- Discretize $\Delta t \in [2^{-5}, 2^5]$
- Discretize schemes parameters (if any)
- Check only first timestep

Goal: find the largest Δt such that the scheme is stable

Figure: Δt restriction for MPRK(2,2, α)

Numerical study

- Discretize $\theta \in [0,1]$
- Discretize $\varepsilon \in [0, 0.5]$ (symmetry)
- Discretize $\Delta t \in [2^{-5}, 2^5]$
- Discretize schemes parameters (if any)
- Check only first timestep

Goal: find the largest Δt such that the scheme is stable

Figure: Δt restriction for MPRK(4,3, α , β)

Numerical study

- Discretize $\theta \in [0,1]$
- Discretize $\varepsilon \in [0, 0.5]$ (symmetry)
- Discretize $\Delta t \in [2^{-5}, 2^5]$
- Discretize schemes parameters (if any)
- Check only first timestep

Goal: find the largest Δt such that the scheme is stable

Figure: Δt restriction for MPRKSO(2,2, α , β)

19/36

Numerical study

- Discretize $\theta \in [0,1]$
- Discretize $\varepsilon \in [0, 0.5]$ (symmetry)
- Discretize $\Delta t \in [2^{-5}, 2^5]$
- Discretize schemes parameters (if any)
- Check only first timestep

Goal: find the largest Δt such that the scheme is stable

Method	Δt bound
MPRKSO(4,3)	1.31
SI-RK2	1.41
SI-RK3	1.27
MPRK(3,2)	16.56

Numerical study

- Discretize $\theta \in [0,1]$
- Discretize $\varepsilon \in [0, 0.5]$ (symmetry)
- Discretize $\Delta t \in [2^{-5}, 2^5]$
- Discretize schemes parameters (if any)
- Check only first timestep

Goal: find the largest Δt such that the scheme is stable

Equispaced points

Order	Δt bound
2	2.0
2 3 4	1.19
	1.11
5	1.07
6	1.04
6 7 8	1.04
8	1.37
9	6.96
10	1.0
11	16.0
12	1.0
13	40.79
14	1.07
15	27.85
16	1.80

Gauss-Lobatto points

Gauss-Loballo poirits	
Order	Δt bound
2	2.0
3	1.19
2 3 4 5	1.07
	1.04
6	1.0
7	1.0
7 8 9	1.0
9	1.0
10	1.0
11	1.0
12	1.0
13	1.0
14	1.0
15	1.0
16	1.0

Figure: Δt bound for mPDeC with equispaced and Gauss–Lobatto points.

Outline

- 1 Production–Destruction System
- (2) (Modified) Patankar Methods
- Properties and Troubles
- 4 Oscillation Study
- Inconsistency Study
- 6 Simulations
- 7 Conclusion

20/36

Problem: general 2×2 linear system

$$\begin{pmatrix} u_1' \\ u_2' \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}. \tag{8}$$

$$\begin{pmatrix} u_1^0 \\ u_2^0 \end{pmatrix} = \begin{pmatrix} 1 - \varepsilon \\ \varepsilon \end{pmatrix}, \tag{9}$$

with $0 < \theta, \varepsilon < 1$.

Other values obtainable rescaling time and variables.

When $u_2=\varepsilon\approx 0$ some schemes do not move from this wrong steady state. Analytically, we observe that

$$\lim_{\varepsilon \to 0} \lim_{\Delta t \to 0} u_2^1 \neq \lim_{\Delta t \to 0} \lim_{\varepsilon \to 0} u_2^1. \tag{10}$$

When $\lim_{\varepsilon\to 0} u_2^1 = \mathcal{O}(\Delta t)$ we are inconsistent with the problem.

We fix the system at $\theta=0.5$ as we observe no differences with other values in this study.

$\mathsf{MPRK}(2,2,lpha)$

$$\lim_{\varepsilon \to 0} u_2^1(\varepsilon) = \begin{cases}
0 & \alpha > 1 \\
(1 - \varepsilon) \frac{2\Delta t + 3\Delta t^2}{2 + 5\Delta t + 4\Delta t^2} & \alpha = 1 \\
(1 - \varepsilon) \frac{2\Delta t + (4\alpha - 1)\Delta t^2}{2 + (2 + 4\alpha)\Delta t + (4\alpha - 1)\Delta t^2} & \alpha < 1
\end{cases} \tag{11}$$

MPRK(2,2,a-1) order 2

$$\lim_{\varepsilon \to 0} \lim_{\Delta t \to 0} u_1^1 - u_1(\Delta t) = \left(\frac{2}{3} - \frac{4\varepsilon}{3} + \mathcal{O}(\varepsilon^3)\right) \Delta t^3 + \mathcal{O}(\Delta t^4)$$

$$\lim_{\Delta t \to 0} \lim_{\varepsilon \to 0} u_1^1 - u_1(\Delta t) = \left(\frac{\Delta t^3}{6} + \mathcal{O}(\Delta t^4)\right) + \left(\frac{\Delta t^2}{2} - \frac{11\Delta t^3}{6} + \mathcal{O}(\Delta t^4)\right) \varepsilon +$$

$$\left(-\frac{\Delta t}{2} + \frac{\Delta t^2}{4} + \frac{3\Delta t^3}{4} + \mathcal{O}(\Delta t^4)\right) \varepsilon^2 + \mathcal{O}(\varepsilon^3).$$

$\mathsf{MPRK}(2,2,lpha)$

$$\lim_{\varepsilon \to 0} u_2^1(\varepsilon) = \begin{cases}
0 & \alpha > 1 \\
(1 - \varepsilon) \frac{2\Delta t + 3\Delta t^2}{2 + 5\Delta t + 4\Delta t^2} & \alpha = 1 \\
(1 - \varepsilon) \frac{2\Delta t + (4\alpha - 1)\Delta t^2}{2 + (2 + 4\alpha)\Delta t + (4\alpha - 1)\Delta t^2} & \alpha < 1
\end{cases} \tag{11}$$

MPRK(2,2,a = 0.5) order 1

$$\lim_{\varepsilon \to 0} \lim_{\Delta t \to 0} u_1^1 - u_1(\Delta t) = \left(-\frac{1}{4\varepsilon} + \frac{5}{12} - \frac{5\varepsilon}{12} + \frac{\varepsilon^2}{4} + \mathcal{O}(\varepsilon^3) \right) \Delta t^3 + \mathcal{O}(\Delta t^4)$$

$$\lim_{\Delta t \to 0} \lim_{\varepsilon \to 0} u_1^1 - u_1(\Delta t) = \left(-\frac{\Delta t^2}{2} + \frac{11\Delta t^3}{12} + \mathcal{O}(\Delta t^4) \right) + \left(\Delta t + \frac{\Delta t^2}{2} - \frac{19\Delta t^3}{6} + \mathcal{O}(\Delta t^4) \right) \varepsilon + \left(-2 - 4\Delta t + 4\Delta t^2 + \frac{13\Delta t^3}{4} + \mathcal{O}(\Delta t^4) \right) \varepsilon^2 + \mathcal{O}(\varepsilon^3).$$

$\mathsf{MPRK}(2,2,lpha)$

$$\lim_{\varepsilon \to 0} u_2^1(\varepsilon) = \begin{cases} 0 & \alpha > 1\\ (1 - \varepsilon) \frac{2\Delta t + 3\Delta t^2}{2 + 5\Delta t + 4\Delta t^2} & \alpha = 1\\ (1 - \varepsilon) \frac{2\Delta t + (4\alpha - 1)\Delta t^2}{2 + (2 + 4\alpha)\Delta t + (4\alpha - 1)\Delta t^2} & \alpha < 1 \end{cases}$$
(11)

MPRK(2,2, n = 2) order 0

$$\lim_{\varepsilon \to 0} \lim_{\Delta t \to 0} u_1^1 - u_1(\Delta t) = \left(\frac{1}{2\varepsilon} + \frac{7}{6} - \frac{7\varepsilon}{6} + \frac{\varepsilon^2}{4} + \mathcal{O}(\varepsilon^3)\right) \Delta t^3 + \mathcal{O}(\Delta t^4)$$

$$\lim_{\Delta t \to 0} \lim_{\varepsilon \to 0} u_1^1 - u_1(\Delta t) = \left(\Delta t - \Delta t^2 + \frac{2\Delta t^3}{3} + \mathcal{O}(\Delta t^4)\right) + \mathcal{O}(\varepsilon) + \mathcal{O}(\Delta t).$$

Wrong steady state: inconsistency and order reduction

MPDeC3 order 1

$$\lim_{\varepsilon \to 0} \lim_{\Delta t \to 0} u_1^1 - u_1(\Delta t) = \left(-\frac{1}{864\varepsilon^2} - \frac{5}{72\varepsilon} + \frac{1789}{864} - \frac{1697\varepsilon}{432} + \frac{7\varepsilon^2}{96} + \mathcal{O}(\varepsilon^3) \right) \Delta t^4 + \mathcal{O}(\Delta t^5)$$

$$\lim_{\Delta t \to 0} \lim_{\varepsilon \to 0} u_1^1 - u_1(\Delta t) = \left(-\frac{2\Delta t^2}{3} + \mathcal{O}(\Delta t^3) \right) + \left(224\Delta t + \mathcal{O}(\Delta t^2) \right) \varepsilon - 74880\varepsilon^2 + \mathcal{O}(\Delta t^3).$$

MPRK(3,2) order 2

$$\lim_{\varepsilon \to 0} \lim_{\Delta t \to 0} u_1^{n=1} - u_1(\Delta t) = \left(2 - 4\varepsilon + \mathcal{O}(\varepsilon^3)\right) \Delta t^3 + \mathcal{O}(\Delta t^4)$$

$$\lim_{\Delta t \to 0} \lim_{\varepsilon \to 0} u_1^{n=1} - u_1(\Delta t) = \left(\frac{4\Delta t^3}{3} + \mathcal{O}(\Delta t^4)\right) + \left(\frac{2\Delta t^2}{3} - \frac{71\Delta t^3}{12} + \mathcal{O}(\Delta t^4)\right)\varepsilon +$$

$$\left(-\frac{2\Delta t}{3} + \frac{35\Delta t^2}{24} + \frac{139\Delta t^3}{144} + \mathcal{O}(\Delta t^4)\right)\varepsilon^2 + \mathcal{O}(\varepsilon^3).$$

Wrong steady state: numerical study

Instability Numerically

- $\varepsilon = 10^{-300}$
- $\theta = 0.5$
- $\Delta t = 1$
- The exact solution $u_2(t=1) \approx 0.43$
- If $u_2^1 \gg 0$ consistent, else inconsistent.

Inconsistency and oscillations: MPRK(2,2, α)

Figure: Δt restriction (left) vs inconsistency (right) for MPRK(2,2, α)

Inconsistency and oscillations: MPRK(4,3, α , β)

Figure: Δt restriction (left) vs inconsistency (right) for MPRK(4,3, α , β)

26/36

Inconsistency and oscillations: MPRKSO(2,2, α , β)

Figure: Δt restriction (left) vs inconsistency (right) for MPRK(4,3, α , β)

Davide Torlo Modified Patankar and oscillations

Inconsistency and oscillations: other methods

Scheme	Δt bound	Consistent
MPRKSO(4,3)	1.31	Yes
MPRK(3,2)	16.5	Yes
SI-RK2	1.41	Yes
SI-RK3	1.27	Yes

	Equispaced points		
2-8,10 consistent			
Order	Δt bound		
2	2.0		
3	1.19		
4	1.11		
5	1.07		
6	1.04		
7	1.04		
8	1.37		
10	1.0		

	I alaasa madasa	
Gauss-Lobatto points		
All consistent		
Order	Δt bound	
2	2.0	
3	1.19	
4	1.07	
5	1.04	
6	1.0	
7	1.0	
8	1.0	
9	1.0	
10	1.0	
11	1.0	
12	1.0	
13	1.0	
14	1.0	
15	1.0	
4.0	1.0	

Outline

- Production—Destruction System
- (2) (Modified) Patankar Methods
- Properties and Troubles
- 4 Oscillation Study
- 5 Inconsistency Study
- 6 Simulations
- 7 Conclusion

29/36

Davide Torlo Modified Patankar and oscillations

Robertson Problem

$$\begin{cases} c'_1(t) &= 10^4 c_2(t) c_3(t) - 0.04 c_1(t) \\ c'_2(t) &= 0.04 c_1(t) - 10^4 c_2(t) c_3(t) - 3 \cdot 10^7 c_2(t)^2 \\ c'_3(t) &= 3 \cdot 10^7 c_2(t)^2 \end{cases}$$

$$\begin{aligned} \mathbf{c}^0 &= (1, 10^{-180}, 10^{-180}) \\ t &\in [10^{-6}, 10^{10}]. \text{ The PDS for (30) reads} \end{aligned}$$

$$\begin{cases} p_{1,2}(\mathbf{c}) = d_{2,1}(\mathbf{c}) = 10^4 c_2(t) c_3(t), \\ p_{2,1}(\mathbf{c}) = d_{1,2}(\mathbf{c}) = 0.04 c_1(t), \\ p_{3,2}(\mathbf{c}) = d_{2,3}(\mathbf{c}) = 3 \cdot 10^7 c_2(t) \end{cases}$$

Figure: Robertson Problem

We use exponential timesteps to better catch the behaviour of the solution

$$\Delta t^n = 2 \cdot \Delta t^{n-1}.$$

Robertson Problem

Test with N=20 timesteps

MPRK(3,2) high Δt bound, consistent, MPRK(2,2,1) $\Delta t = 2$ bound, consistent,

MPRK(2,2,5) $\Delta t \approx 10$ bound, inconsistent, MPRK(2,2,0.7) $\Delta t = 1$ bound, consistent.

Robertson Problem

Test with N=20 timesteps

MPRK(4,3,10,0.5) high Δt bound, inconsistent, MPRK(4,3,0.9,0.6) $\Delta t \approx 1$ bound, consistent,

MPRKSO(2,2,0.001,10.) $\Delta t \approx 20$ bound, inconsistent, MPRKSO(2,2,0.25,2.) $\Delta t \approx 1$ bound, consistent.

Robertson Problem: MPDeC

Equispaced Order 2,5,10 $\Delta t \approx 1$, cons Order 11 $\Delta t \approx 16$, inco

Gauss-Lobatto Order 2,5,10,11 $\Delta t \approx 1$, cons

Outline

- Production—Destruction System
- (2) (Modified) Patankar Methods
- Properties and Troubles
- 4 Oscillation Study
- 5 Inconsistency Study
- 6 Simulations
- 7 Conclusion

Davide Torlo Modified Patankar and oscillations 34/36

Conclusion

Summary:

- (Modified) Patankar Schemes are unconditionally positive preserving
- Not unconditionally stable ⇒ oscillations
- Stability with some Δt bounds
- Inconsistency (order reduction and unphysical solution)
- No free meal: High Δt bounds, inconsistent.
- Best methods: low order, more stages.

Outlook:

- Find bound also in the nonlinear case
- More applied cases, same constraints?

Thank you!

Extensions of Modified Patankar Schemes MPRK(2,2, α)

The MPRK(2,2, α) of Kopecz and Meister (2018)

$$y^{1} = u^{n},$$

$$y^{2}_{i} = u^{n}_{i} + \alpha \Delta t \sum_{j} \left(p_{ij}(y^{1}) - d_{ij}(y^{1}) \right),$$

$$u^{n+1}_{i} = u^{n}_{i} + \Delta t \sum_{j} \left(\left(\frac{2\alpha - 1}{2\alpha} p_{ij}(y^{1}) + \frac{1}{2\alpha} p_{ij}(y^{2}) \right) - \left(\frac{2\alpha - 1}{2\alpha} d_{ij}(y^{1}) + \frac{1}{2\alpha} d_{ij}(y^{2}) \right) \right)$$

)

 $(MPRK(2,2,\alpha))$

36/36

$$\alpha \in [1/2, \infty).$$

For $\alpha=1$ based on Heun's method, i.e., SSPRK(2,2), already in Burchard, Deleersnijder, Meister (2003).

Extensions of Modified Patankar Schemes MPRK(2,2, α)

The MPRK(2,2, α) of Kopecz and Meister (2018)

$$y^{1} = u^{n},$$

$$y^{2}_{i} = u^{n}_{i} + \alpha \Delta t \sum_{j} \left(p_{ij}(y^{1}) \frac{y_{j}^{2}}{y_{j}^{1}} - d_{ij}(y^{1}) \frac{y_{i}^{2}}{y_{i}^{1}} \right),$$

$$u^{n+1}_{i} = u^{n}_{i} + \Delta t \sum_{j} \left(\left(\frac{2\alpha - 1}{2\alpha} p_{ij}(y^{1}) + \frac{1}{2\alpha} p_{ij}(y^{2}) \right) \frac{u^{n+1}_{j}}{(y^{2}_{j})^{1/\alpha} (y^{1}_{j})^{1-1/\alpha}} - \left(\frac{2\alpha - 1}{2\alpha} d_{ij}(y^{1}) + \frac{1}{2\alpha} d_{ij}(y^{2}) \right) \frac{u^{n+1}_{i}}{(y^{2}_{j})^{1/\alpha} (y^{1})^{1-1/\alpha}} \right),$$

 $\alpha \in [1/2,\infty)$. For $\alpha=1$ based on Heun's method, i.e., SSPRK(2,2), already in Burchard, Deleersnijder, Meister (2003).

 $(MPRK(2,2,\alpha))$