ECEN 758 Data Mining and Analysis Decision Tree Example: [ZM]Ch 19

Nick Duffield

Department of Electrical & Computer Engineering
Texas A&M Institute of Data Science

Q2. Given Table 19.3, construct a decision tree using a purity threshold of 100%. Use information gain as the split point evaluation measure. Next, classify the point (Age=27,Car=Vintage).

19.4 Exercises 497

Table 19.3. Data for Q2: Age is numeric and Car is categorical. Risk gives the class label for each point: high (H) or low (L)

Point	Age	Car	Risk	
\mathbf{x}_1	25	Sports	L	
\mathbf{x}_2	20	Vintage	H	
X 3	25	Sports	L	
\mathbf{x}_4	45	SUV	H	
x ₅	20	Sports	H	
\mathbf{x}_6	25	SUV	H	

Possible Split Points

Point	oint Age		Risk
\mathbf{x}_1	25	Sports	L
\mathbf{x}_2	20	Vintage	H
x ₃	25	Sports	L
X.4	45	SUV	H
X 5	20	Sports	H
x ₆	25	SUV	H

• Age:

numerical, use midpoints: 22.5, 35

- Car:
 - categorical, use {Sports}, {Vintage}, {SUV}.
 - Size 2 sets are complementary
 - Car in {Sports} ⇔ Car not in {SUV, Vintage}

Evaluate Info Gain

Point	Age	Car	Risk
x ₁	25	Sports	L
\mathbf{x}_2	20	Vintage	H
x ₃	25	Sports	L
\mathbf{x}_4	45	SUV	H
X 5	20	Sports	H
X 6	25	SUV	H

- Information gain for each split:
 - $H(D) H(D_Y, D_N) = H(D) (n_Y/n) H(D_Y) (n_N/n) H(D_N)$
- Computing H(D)
 - P(L) = 2/6 = 1/3
 - P(H) = 1 P(L) = 2/3,
 - $H(D) = -P(L) \log_2 P(L) P(H) \log_2 P(H)$ = $-(1/3) \log_2 (1/3) - (2/3) \log_2 (2/3)$ = 0.9183

Point	Age	Car	Risk
x ₁	25	Sports	L
\mathbf{x}_2	20	Vintage	H
X ₃	25	Sports	L
\mathbf{x}_4	45	SUV	H
X 5	20	Sports	H
x ₆	25	SUV	H

$$H(D_Y) = -P_Y(H) \log_2 P_Y(H) - P_Y(L) \log_2 P_Y(L)$$

$$H(D_N) = -P_N(H) \log_2 P_N(H) - P_N(L) \log_2 P_N(L)$$

Split	n _Y	P _Y (H)	P _Y (L)	n _N	P _N (H)	P _N (L)	Info Gain
Age <= 22.5							
Age <= 35							
Car = Sports							
Car = Vintage							
Car = SUV							

Age <= 22.5

YES

NO

Point	Age	Car	Risk
\mathbf{x}_1	25	Sports	L
\mathbf{x}_2	20	Vintage	H
x ₃	25	Sports	L
\mathbf{x}_4	45	SUV	H
x ₅	20	Sports	H
x ₆	25	SUV	H

$$H(D_Y) = - P_Y(H) \log_2 P_Y(H) - P_Y(L) \log_2 P_Y(L)$$

$$H(D_N) = -P_N(H) \log_2 P_N(H) - P_N(L) \log_2 P_N(L)$$

Split	n _Y	P _Y (H)	P _Y (L)	n _N	P _N (H)	P _N (L)	Info Gain
Age <= 22.5							
Age <= 35							
Car = Sports							
Car = Vintage							
Car = SUV							

Age <= 22.5

YES

NO

Point	Age	Car	Risk
\mathbf{x}_1	25	Sports	L
\mathbf{x}_2	20	Vintage	H
X 3	25	Sports	L
X 4	45	SUV	H
X 5	20	Sports	H
x ₆	25	SUV	H

$$H(D_Y) = - P_Y(H) \log_2 P_Y(H) - P_Y(L) \log_2 P_Y(L)$$

$$H(D_N) = -P_N(H) \log_2 P_N(H) - P_N(L) \log_2 P_N(L)$$

Split	n _Y	P _Y (H)	P _Y (L)	n _N	P _N (H)	P _N (L)	Info Gain
Age <= 22.5	2	1	0	4	1/2	1/2	0.2516
Age <= 35							
Car = Sports							
Car = Vintage							
Car = SUV							

Car = Sports

YES

NO

Point	Age	Car	Risk
\mathbf{x}_1	25	Sports	L
x ₂	20	Vintage	H
x ₃	25	Sports	L
X 4	45	SUV	H
x ₅	20	Sports	H
x ₆	25	SUV	H

$$H(D_Y) = - P_Y(H) \log_2 P_Y(H) - P_Y(L) \log_2 P_Y(L)$$

$$H(D_N) = -P_N(H) \log_2 P_N(H) - P_N(L) \log_2 P_N(L)$$

Split	n _Y	P _Y (H)	P _Y (L)	n _N	P _N (H)	P _N (L)	Info Gain
Age <= 22.5	2	1	0	4	1/2	1/2	0.2516
Age <= 35							
Car = Sports							
Car = Vintage							
Car = SUV							

Car = Sports

YES

NO

Point	Age	Car	Risk
\mathbf{x}_1	25	Sports	L
x ₂	20	Vintage	H
x ₃	25	Sports	L
X 4	45	SUV	H
X 5	20	Sports	H
x ₆	25	SUV	H

$$H(D_Y) = - P_Y(H) \log_2 P_Y(H) - P_Y(L) \log_2 P_Y(L)$$

$$H(D_N) = -P_N(H) \log_2 P_N(H) - P_N(L) \log_2 P_N(L)$$

Split	n _Y	P _Y (H)	P _Y (L)	n _N	P _N (H)	P _N (L)	Info Gain
Age <= 22.5	2	1	0	4	1/2	1/2	0.2516
Age <= 35							
Car = Sports	3	1/3	2/3	3	1	0	0.4592
Car = Vintage							
Car = SUV							

Point	Age	Car	Risk
x ₁	25	Sports	L
\mathbf{x}_2	20	Vintage	H
X ₃	25	Sports	L
\mathbf{x}_4	45	SUV	H
X 5	20	Sports	H
x ₆	25	SUV	H

$$H(D_Y) = -P_Y(H) \log_2 P_Y(H) - P_Y(L) \log_2 P_Y(L)$$

$$H(D_N) = -P_N(H) \log_2 P_N(H) - P_N(L) \log_2 P_N(L)$$

Split	n _Y	P _Y (H)	P _Y (L)	n _N	P _N (H)	P _N (L)	Info Gain
Age <= 22.5	2	1	0	4	1/2	1/2	0.2516
Age <= 35	5	3/5	2/5	1	1	0	0.1092
Car = Sports	3	1/3	2/3	3	1	0	0.4592
Car = Vintage	1	1	0	5	3/5	2/5	0.1092
Car = SUV	2	1	0	4	1/2	1/2	0.2516

Point	Age	Car	Risk
x ₁	25	Sports	L
\mathbf{x}_2	20	Vintage	H
X ₃	25	Sports	L
\mathbf{x}_4	45	SUV	H
X 5	20	Sports	H
x ₆	25	SUV	H

Info gain:
$$H(D) - (n_Y/n) H(D_Y) - (n_N/n) H(D_N)$$

$$H(D_Y) = - P_Y(H) log_2 P_Y(H) - P_Y(L) log_2 P_Y(L)$$

$$H(D_N) = -P_N(H) \log_2 P_N(H) - P_N(L) \log_2 P_N(L)$$

Split	n _Y	P _Y (H)	P _Y (L)	n _N	P _N (H)	P _N (L)	Info Gain
Age <= 22.5	2	1	0	4	1/2	1/2	0.2516
Age <= 35	5	3/5	2/5	1	1	0	0.1092
Car = Sports	3	1/3	2/3	3	1	0	0.4592
Car = Vintage	1	1	0	5	3/5	2/5	0.1092
Car = SUV	2	1	0	4	1/2	1/2	0.2516

First Split: Car = Sports

Frist Split: Car = Sports

YES

NO

Point	Age	Car	Risk
\mathbf{x}_1	25	Sports	L
x ₂	20	Vintage	H
X ₃	25	Sports	L
X 4	45	SUV	H
X 5	20	Sports	H
x ₆	25	SUV	H

Purity = 2/3 < 1 SPLIT AGAIN

Purity = 1 LEAF NODE

Only Possible Split: Age <= 22/5

Point	Age	Car	Risk
\mathbf{x}_1	25	Sports	L
\mathbf{x}_2	20	Vintage	H
\mathbf{x}_3	25	Sports	L
\mathbf{x}_4	45	SUV	H
X 5	20	Sports	H
x ₆	25	SUV	H

				Spo	rts	3?				
			Y				1	J		
	X ₁	L	25	L		X	2	2	0	Н
	X	3	25	L		X	4	4.	5	Н
	X	5	20	Н		x	6	2.	5	Н
	A	ge	<= 2	2.5			Р	ur	ity	y = 1
,	Y /			\ \ \	J					
20	0	Н		X	1	25	L			
•	•		_	X	3	25	L			

First Split: Car = Sports

Purity = 1

Point	Age	Car	Risk
\mathbf{x}_1	25	Sports	L
\mathbf{x}_2	20	Vintage	H
\mathbf{x}_3	25	Sports	L
\mathbf{x}_4	45	SUV	H
X 5	20	Sports	H
\mathbf{x}_6	25	SUV	H

							L			X 6	
				Car	=	Spo	rts	;?			
			Y				1	J			
		X ₁	25	L		X	2	2	0	Н	
		X ₃	25	L		X	4	4	5	Н	
		X ₅	20	Н		X	6	2	5	Н	
		Age	e <= 2	2.5			P	ur	ity	/ = 1	
	×	Υ /		N	1						
ί ₅	20	0 H		X_1		25	L				
			_	Xa		25					

Purity = 1

First Split: Car = Sports

Point	Age	Car	Risk
\mathbf{x}_1	25	Sports	L
\mathbf{x}_2	20	Vintage	H
\mathbf{x}_3	25	Sports	L
\mathbf{x}_4	45	SUV	H
X 5	20	Sports	H
\mathbf{x}_6	25	SUV	H

First Split:	Car = Sports
--------------	--------------

Final Classifier

Classify: (Age = 27, Car = Vintage)

→ H: Since Car not = Sports