Introduction to Malliavin Calculus

WANG SIBO

December 10, 2023

Contents

Contents		i
List of Symbols		ii
0	Preliminary	1
1	Basic	2
2	Derivative operator	3
3	Wiener chaos	7
4	Multiple integrals	9
Index		11
References		12

List of Symbols

- ${\mathcal S}$
- α angular acceleration 1
- δ Kronecker delta 1
- ζ Riemann zeta function 1
- χ chromatic number 1

Preliminary

Reference symbols: δ , χ , α , ζ .

Definition 0.1 (n-th Hermite polynomials). $\forall n \in \mathbb{N}$,

$$H_n(x) = \frac{(-1)^n}{n!} e^{\frac{x^2}{2}} \frac{d^n}{dx^n} e^{-\frac{x^2}{2}}$$

Property 0.2. $\forall n \in \mathbb{N}$, $(n+1)H_{n+1}(x) = xH_n(x) - H_{n-1}(x)$.

Theorem 0.3 (Doob-Dynkin Lemma).

Proof. See Proposition 3(Page 7) in (M. M. Rao, 2006)

Theorem 0.4. Given a countable orthogonal set S in a Hilbert space H. The only vector orthogonal to H is the zero vector if and only if S spans H.

Proof. See (Young, 1988).
$$\Box$$

Theorem 0.5. $C_0^{\infty}(\mathbb{R}^n, \mathbb{R})$ is dense in $L^2(\mathbb{R}^n, \mathbb{R})$.

Proof. See Lemma 3.1 (Page 222) in (Stein & Shakarchi, 2005). \Box

Basic

The following content can be found in (Nualart, 2006) and (David Nualart, 2018). For simplicity, we only consider 1-dimensional case.

Definition 1.1 (centered Gaussian family). Given a complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a subspace $W \subset L^2(\Omega, \mathcal{F}, \mathbb{P})$ is a centered Gaussian family, if it is closed, and all the elements of W are Gaussian random variables with zero mean.

Definition 1.2 (isonormal Gaussian process). A centered Gaussian family W on H is called isonormal Gaussian process, if H is a real and separable Hilbert space, and $W = \{W(h) : h \in H\}$, and $\mathbb{E}[W(f)W(g)] = \langle f, g \rangle_H$, $\forall f, g \in H$.

Example 1.3. Given a Brownian motion B_t with respect to $(\Omega, \mathcal{F}, \mathbb{P})$. $H = L^2([0,T], \mathcal{B}(0,T)), W: h \mapsto \int_0^T h(s)dB_s.$

Property 1.4. The map $h \mapsto W(h)$ is linear.

Proof. One can verify that $\forall f,g\in H,\, \forall a,b\in \mathbb{R}$, $\mathbb{E}[(W(af+bg)-aW(f)-bW(f))^2]=0$. \Box

Derivative operator

Notation 2.1. Define S

$$\mathcal{S} := \{ f(W(h_1), \dots, W(h_n)) : \forall n \in \mathbb{N}, f \in C^{\infty}_{pol}(\mathbb{R}^n, \mathbb{R}), h_1, \dots, h_n \in H \}$$

Example 2.2. $e^x \notin C^{\infty}_{pol}(\mathbb{R}, \mathbb{R})$ and $x^3 \in C^{\infty}_{pol}(\mathbb{R}, \mathbb{R})$.

Notation 2.3. Define S_0

$$S_0 := \{ f(W(h_1), \dots, W(h_n)) : \forall n \in \mathbb{N}, f \in C_0^{\infty}(\mathbb{R}^n, \mathbb{R}), h_1, \dots, h_n \in H \}$$

Example 2.4. $x^3 \notin C_0^{\infty}(\mathbb{R}, \mathbb{R})$ and $1 \notin C_0^{\infty}(\mathbb{R}, \mathbb{R})$.

Proposition 2.5. $C_0^{\infty}(\mathbb{R}^n, \mathbb{R}) \neq \emptyset$.

Proof.
$$\varphi(x) := e^{-\frac{1}{1-|x|^2}}$$
, if $|x| < 1$, and $= 0$, otherwise.

Lemma 2.6. S_0 is dense in S, with $L^2(G)$, where $G := \sigma(S)$.

Proof. Using the similar technique as Lemma 4.3.1 (p. 50) in (Øksendal, 2003).

Because H is a separable Hilbert space, $\exists \{h_n\}_{n\in\mathbb{N}}\in H$, such that $\{h_n\}_n$ is dense in H. Define $A_n:=\sigma(W(h_i):i\leq n)$, then $A_n\subset A_{n+1}\subset\mathcal{G}$ and $\lim_{n\to+\infty}A_n=\mathcal{G}$.

So $\forall F \in \mathcal{S}$ with $L^2(\mathcal{G})$, we have $\mathbb{E}[F|\mathcal{A}_n] \xrightarrow[n \to +\infty]{L^2} \mathbb{E}[F|\mathcal{G}] = F$, from Corollary C.9 (p. 325) in (Øksendal, 2003).

From Theorem 0.3, $\forall n \in \mathbb{N}, \exists F_n \in L^2(\mathbb{R}^n, \mathbb{R}), \text{ such that}$

$$\mathbb{E}[F|\mathcal{A}_n] = F_n(W(h_1), \dots, W(h_n))$$

In addition, we know that $\forall n \in \mathbb{N}, C_0^{\infty}(\mathbb{R}^n, \mathbb{R})$ is dense in $L^2(\mathbb{R}^n, \mathbb{R})$, from Theorem 0.5.

Finally, F can be approximated by some elements of S_0 in L^2 , by Minkowski's inequality.

Definition 2.7 (derivative). Derivative operator $D: \mathcal{S} \to L^2(\Omega, H, \mathbb{P}), DF = \sum_{i=1}^n \frac{\partial}{\partial x_i} f(W(h_1), \dots, W(h_n)) h_i$.

Lemma 2.8. $\forall F, G \in \mathcal{S}, \ D(FG) = F(DG) + G(DF).$

Proof. Multiplication of smooth functions is still a smooth function. Then using the definition. \Box

Proposition 2.9. $\forall F \in \mathcal{S}, \ \forall h \in H, \ \mathbb{E}[\langle DF, h \rangle_H] = \mathbb{E}[FW(h)].$

Proof. Without loss of generality, we only prove the case when

$$F = f(W(h), \dots, W(e_n))$$

and $||h||_H = 1$, where h, e_1, \ldots, e_n are orthogonal.

Thus,

$$\mathbb{E}[\langle DF, h \rangle_H]$$

$$= \mathbb{E}\left[\frac{\partial}{\partial x_1} f(W(h), \dots, W(e_n))\right]$$

$$= \int_{\mathbb{R}^n} \frac{\partial}{\partial x_1} f(x_1, \dots, x_n) \phi(x_1, \dots, x_n) dx_1 \dots dx_n$$

$$= \int_{\mathbb{R}^n} f(x_1, \dots, x_n) \phi(x_1, \dots, x_n) x_1 dx_1 \dots dx_n$$

$$= \mathbb{E}[f(W(h), \dots, W(e_n)) W(h)]$$

$$= \mathbb{E}[FW(h)]$$

where ϕ is the density of n variable standard normal distribution.

Proposition 2.10. $\forall F, G \in \mathcal{S}, \ \forall h \in H,$

$$\mathbb{E}[G\langle DF, h\rangle_H] + \mathbb{E}[F\langle DG, h\rangle_H] = \mathbb{E}[FGW(h)]$$

Proof. Define X := FG, then $X \in \mathcal{S}$. Using Lemma 2.8 and Proposition 2.9. \square

Notation 2.11. $\forall f \in \mathcal{S}, \|f\|_{1,2}^2 := \|f\|_{L^2(\Omega)}^2 + \|Df\|_{L^2(\Omega,H)}^2$

Proposition 2.12. $\|\cdot\|_{1,2}$ is a norm.

Proof. To prove sub-additivity, we will apply Minkowski's inequality. \Box

Notation 2.13. Let $(\mathbb{D}^{1,2}, \|\cdot\|_{1,2})$ be the closure of $(\mathcal{S}, \|\cdot\|_{1,2})$.

Lemma 2.14. Given $\{X_n\}_n \in \mathcal{S}$, if $X_n \xrightarrow{L^2(\Omega)} 0$, and $DX_n \xrightarrow{L^2(\Omega,H)} U$, then U = 0 almost surely.

Proof. We know that

$$\lim_{n \to +\infty} \mathbb{E}[X_n^2] = 0$$

and

$$\lim_{n \to +\infty} \mathbb{E}[\langle DX_n - U, DX_n - U \rangle_H] = 0$$

 $\forall h \in H \text{ and } \forall F \in \mathcal{S}_0,$

$$\begin{split} &\mathbb{E}[F\langle U,h\rangle_H] \\ &= \lim_{n \to +\infty} \mathbb{E}[F\langle DX_n,h\rangle_H] \\ &= \lim_{n \to +\infty} \mathbb{E}[-X_n\langle DF,h\rangle_H + X_nFW(h)] \\ &= 0 \end{split} \qquad \qquad \text{(Cauchy-Schwarz inequality)}$$

Because $F \in \mathcal{S}_0$, we know $\langle U, h \rangle_H = 0$, from Theorem 0.4. Also, because $h \in H$, U = 0 almost surely.

Theorem 2.15. Derivative operator $D: \mathbb{D}^{1,2} \to L^2(\Omega, H, \mathbb{P})$ is well defined.

Proof. From Lemma 2.14, we know that $\forall X \in \mathbb{D}^{1,2}$, $\exists \{X_n\} \in \mathcal{S}$, such that $X_n \xrightarrow{L^2(\Omega)} X$, $DX_n \xrightarrow{L^2(\Omega,H)} U$ and $U \in L^2(\Omega,H)$, then $DX \coloneqq \lim_{n \to +\infty} DX_n$.

Theorem 2.16 (Chain rule). Given $g \in C^1(\mathbb{R}^d, \mathbb{R})$ with bounded partial derivatives and $F_i \in \mathbb{D}^{1,2}$, $i \in \{1, \ldots, d\}$. Then $g(F_1, \ldots, F_d) \in \mathbb{D}^{1,2}$ and

$$D(g(F_1, \dots, F_d)) = \sum_{i=1}^d \frac{\partial}{\partial x_i} g(F_1, \dots, F_d) DF_i$$

Proof. For simplicity, we only prove the case when d = 1.

step 1: When $F \in \mathcal{S}$.

Because the composition of differentiable function and smooth function is still a smooth function, we have $g(F) \in \mathcal{S} \subset \mathbb{D}^{1,2}$ and the chain rule can be obtained easily.

step 2: When $F \notin S$.

 $\exists \{F_k\}_{k\in\mathbb{N}} \in \mathcal{S}$, such that $F_k \xrightarrow{L^2(\Omega)} F$ and $DF_k \xrightarrow{L^2(\Omega,H)} DF$.

In addition, $\forall \varepsilon > 0$, define $\varphi_{\varepsilon} := \frac{1}{\varepsilon} \varphi(\frac{x}{\varepsilon})$, where $\varphi(x)$ is the same as Proposition 2.5. Meanwhile define $g_{\varepsilon} := g * \varphi_{\varepsilon}$, where * is the convolution operator. Clearly, $g_{\varepsilon} \in C_0^{\infty}(\mathbb{R}, \mathbb{R})$, and $g_{\varepsilon} \xrightarrow[\varepsilon \to 0]{pointwise} g$.

So by definition, we have $D(g_{\varepsilon}(F_k)) = \frac{d}{dx}g_{\varepsilon}(F_k)DF_k$.

 $\forall \varepsilon > 0$ and $\forall k \in \mathbb{N}$, by Minkowski's inequality we have $\|g_{\varepsilon}(F_k) - g(F)\|_{L^2(\Omega)} \le \|g_{\varepsilon}(F_k) - g(F_k)\|_{L^2(\Omega)} + \|g(F_k) - g(F)\|_{L^2(\Omega)}$.

In addition,

$$\begin{split} & \| \frac{d}{dx} g(F)DF - \frac{d}{dx} g_{\varepsilon}(F_k)DF_k \|_{L^2(\Omega,H)} \\ \leq & \| \frac{d}{dx} g(F)DF - \frac{d}{dx} g(F_k)DF \|_{L^2(\Omega,H)} \\ & + \| \frac{d}{dx} g(F_k)DF - \frac{d}{dx} g_{\varepsilon}(F_k)DF \|_{L^2(\Omega,H)} \\ & + \| \frac{d}{dx} g_{\varepsilon}(F_k)DF - \frac{d}{dx} g_{\varepsilon}(F_k)DF_k \|_{L^2(\Omega,H)} \end{split}$$

Because D is well defined, we have $g(F) \in \mathbb{D}^{1,2}$ and the chain rule.

Wiener chaos

Definition 3.1 (sigma algebra generated by a set of random variable). $\mathcal{G} = \sigma(\{\sigma(w) : w \in W\})$, where W is a centered Gaussian family.

Lemma 3.2. The linear span of $\{e^w : w \in W\}$ is a dense in $L^2(\Omega, \mathcal{G}, P)$.

Proof. Using the similar technique as Lemma 4.3.2 (p. 50) in (Øksendal, 2003).

Due to Theorem 0.4, it suffices to prove that $\forall X \in L^2(\Omega, \mathcal{G}, P)$, if X is orthogonal to $\{e^w : w \in W\}$, then $X \equiv 0$ almost surely.

Select $X \in L^2(\Omega, \mathcal{G}, P)$, such that $\mathbb{E}[Xe^{W(h)}] = 0, \forall h \in H$. X is well defined, because X = 0 meets the requirement.

So $\forall n \in \mathbb{N}$, $G_n(\lambda_1, \dots, \lambda_n) := \mathbb{E}[Xe^{\sum_{i=1}^n \lambda_i W(h_i)}] = 0$, $\forall \lambda_1, \dots, \lambda_n \in \mathbb{R}$ and $\forall h_1, \dots, h_n \in H$.

Then we can extend G_n to a larger domain, $G_n : \mathbb{C}^n \to \mathbb{C}$. Because G_n is analytic function on \mathbb{R}^n , we know that $G \equiv 0$ on \mathbb{C}^n .

Meanwhile, $\forall \varphi \in C_0^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$,

$$\mathbb{E}[X\varphi(W(h_i),\dots,W(h_n))]$$

$$=(2\pi)^{-\frac{n}{2}}\int_{\mathbb{R}^n}\hat{\varphi}(y_1,\dots,y_n)G_n(iy_1,\dots,iy_n)dy_1\dots dy_n=0$$

where (φ) is Fourier transform of φ .

Because of the above lemma, we know that X = 0 only.

Definition 3.3 (n-th Wiener chaos). Given $L^2(\Omega, \mathcal{G}, P)$, its closed linear subspace \mathcal{H}_n is called n-th Wiener chaos if it is the linear span of $\{H_n(w): w(h) \in W, \|h\|_H = 1\}$.

Lemma 3.4. The space \mathcal{H}_n and \mathcal{H}_m are orthogonal, if $n \neq m$.

Proof. $\forall X \in \mathcal{H}_n, \forall Y \in \mathcal{H}_m$, such that

$$X = H_n(W(h_1))$$
 and $Y = H_m(W(h_2))$

where $||h_1||_H = 1$ and $||h_2||_H = 1$.

Applying moment generating function on (X,Y), $\forall s,t \in \mathbb{R}$, we have

$$\mathbb{E}[e^{sX-\frac{s^2}{2}}e^{tY-\frac{t^2}{2}}] = e^{st}\mathbb{E}[XY]$$

Applying $\frac{\partial^{m+n}}{\partial s^n \partial t^m}$ on both side at s=0, t=0, we can prove the result.

Theorem 3.5. Given a Hilbert space $L^2(\Omega, \mathcal{F}, P)$, $L^2(\Omega, \mathcal{F}, P) = \bigoplus_{n=0}^{\infty} \mathcal{H}_n$.

Proof. Select $X \in L^2(\Omega, \mathcal{F}, P)$, such that $\forall n \in \mathbb{N}, \forall Y \in \mathcal{H}_n, \mathbb{E}[XY] = 0$. X is well defined, because X = 0 meets the requirements. It suffices to prove that X = 0 only.

It is known that any polynomial can be treated as a finite linear combination of Hermite polynomial, and Taylor expansion of e^x . So $\mathbb{E}[Xe^{tW(h)}] = 0, \forall t \in \mathbb{R}$ and $\|h\|_H = 1$.

Therefore, from Lemma 3.2, X = 0 only.

Multiple integrals

Definition 4.1 (elementary functions over T^n).
Notation 4.2. Let \mathcal{E}_n denote the set of all elementary functions over T^n .
Definition 4.3 (symmetric elementary functions).
Definition 4.4 (integral of elementary functions).
Proposition 4.5. If $f \in \mathcal{E}_n$, then $I_n(f) = I_n(\tilde{f})$.
Proof.
Proposition 4.6. If $f \in \mathcal{E}_n$ and $g \in \mathcal{E}_m$, then $\mathbb{E}[I_n(f)I_m(g)] = \langle \tilde{f}, \tilde{g} \rangle_{L^2}$, when $m = n$, and $g \in \mathcal{E}_m$ and $g $
Proof.
Theorem 4.7. \mathcal{E}_n is dense in $L^2(T^n)$.
Proof.
Proposition 4.8. Given $f \in L^2(T^n)$ and $\{f_k\}_k \in \mathcal{E}_n$, such that $f_k \xrightarrow{L^2(T^n)} f$. Then $\{I_n(f_k)\}_k$ is a Cauchy sequence in $L^2(\Omega)$.
Proof.
Definition 4.9 (n-th multiple integrals).
Remark 4.10. Because of Proposition 4.8 definition is well defined.
Theorem 4.11. If $f \in L^2(T^n)$ and $g \in L^2(T^m)$, then $\mathbb{E}[I_n(f)I_m(g)] = \langle \tilde{f}, \tilde{g} \rangle_{L^2}$, when $m = n$, and $= 0$ otherwise.
Definition 4.12 (iterated Ito integral). Ito _n (f)
Theorem 4.13. $I_n(f) = Ito_n(f)$.

	10
Proof.	
Theorem 4.14. Hermite polynomial.	
Proof.	
Theorem 4.15. Surjective	
Proof.	
Theorem 4.16. decomposition.	
Proof.	

Index

centered Gaussian family, 2

isonormal Gaussian process, 2

References

- David Nualart, E. N. (2018). *Introduction to malliavin calculus*. Cambridge University Press. (Cit. on p. 2).
- M. M. Rao, R. J. S. (2006). *Probability theory with applications*. Springer. (Cit. on p. 1).
- Nualart, D. (2006). The malliavin calculus and related topics. Springer. (Cit. on p. 2).
- Øksendal, B. (2003). Stochastic differential equations. Springer. (Cit. on pp. 3, 7).
- Stein, E. M., & Shakarchi, R. (2005). Real analysis: Measure theory, integration, and hilbert spaces. Princeton University Press. (Cit. on p. 1).
- Young, N. (1988). An introduction to hilbert space. Cambridge University Press. (Cit. on p. 1).