Exercice 1.

1. $-z^2 + 4z - 29 = 0$: $\Delta = 4^2 - 4 \times (-1) \times (-29) = -100 = (10i)^2$. $\Delta < 0$: l'équation a donc deux solutions complexes conjuguées : $z_1 = \frac{-4 - 10i}{-2} = 2 + 5i$ et

 $z_2 = \overline{z_1} = 2 - 5i \text{ donc } \mathscr{S}_{\mathbb{C}} = \{2 + 5i; 2 - 5i\}.$

- 2. $iz^2 = 4z \iff z(iz 4) = 0$. Or $z(iz - 4) \iff z = 0$ ou $z = \frac{4}{i} = -4i$ donc $\mathscr{S}_{\mathbb{C}} = \{0; -4i\}$
- 3. $z^2 (1+2i)z + i 1 = 0$: $\Delta = (1+2i)^2 4(i-1) = 0$ donc l'équation a une solution complexe double : $z_0 = \frac{1+2i}{2} = \frac{1}{2} + i$ donc $\mathscr{S}_{\mathbb{C}} = \left\{ \frac{1}{2} + i \right\}$

Exercice 2.

Soit $z \in \mathbb{C}$. On donne $P(z) = 2z^3 - iz^2 + 32z - 16i$.

- 1. Soit $z \in \mathbb{C}$. $(z^2 + 16)(2z i) = 2z^3 iz^2 + 32z 16i = P(z)$.
- 2. $P(z) = (z^2 + 16)(2z i)$ donc $P(z) = (z^2 (-16))(2z i)$ donc P(z) = (z 4i)(z + 4i)(2z i). $P(z) = 0 \iff z - 4i = 0$ ou z + 4i = 0 ou $2z - i = 0 \iff z = 4i$ ou z = -4i ou $z = \frac{1}{2}i$.

Exercice 3.

On considère le polynôme $P(z) = z^3 + (2 + i)z^2 + (10 + 2i)z + 10i$.

- 1. Facile : P(-i) = 0 donc -i est une racine de P.
- 2. On obtient aisément : $P(z) = (z + i)(z^2 + 2z + 10)$.
- 3. $\mathscr{S}_{\mathbb{C}} = \{-i; -1 3i; -1 + 3i\}.$

Exercice 4.

- 1. On développe et on obtient $z_1z_2 = x_1x_2 y_1y_2 + i(x_1y_2 + x_2y_1)$.
- 2. [(2a-b)-i(a+b)][-a-i(a+b)] est réel si et seulement si sa partie imaginaire est nulle. On utilise la première question.

Im $([(2a - b) - i(a + b)] [-a - i(a + b)]) = -(a + b)(2a - b) + a(a + b) = b^2 - a^2$. Donc pour que [(2a - b) - i(a + b)] [-a - i(a + b)] soit réel il faut et il suffit que $b^2 - a^2 = 0$ ou encore a = b ou a = -b.

23/11/2022 Lycée Ravel