Hands-on session: Python Research Data Visualisation Workshop

Leighton Pritchard^{1,2,3}

¹Information and Computational Sciences,

²Centre for Human and Animal Pathogens in the Environment,

³Dundee Effector Consortium.

The James Hutton Institute, Invergowrie, Dundee, Scotland, DD2 5DA

Recording of this talk, taking photos, discussing the content using email, Twitter, blogs, etc. is permitted (and encouraged), providing distraction to others is minimised.

These slides will be made available at http://www.slideshare.net/leightonp

- 1 Introduction
 - Elementary perceptual tasks
- 2 Evidence-based representation
 - What representations work best?
 - To pie chart or not to pie chart?
 - Bars and lines
- 3 Acknowledgements

Elementary Perceptual Tasks ^a

^aCleveland & McGill (1984) J. Am. Stat. Ass.

The most basic visual tasks:

Implementations ^a

Position: common scale

- Scatterplot
- Bar Chart

Angle

- Pie Chart
- Do(ugh)nut Chart

Curvature

- Arc Diagram
- Chord Diagram

- 1 Introduction
 - Elementary perceptual tasks
- 2 Evidence-based representation
 - What representations work best?
 - To pie chart or not to pie chart?
 - Bars and lines
- 3 Acknowledgements

What works best? Experiment ^{a b}

Empirical measurements of interpretation

- Subjects shown graphs representing same data
- (log₂) Error in subjects' accuracy compared by graph type

Judgement types

- 1-3: Position on a common scale (bar chart, stacked bar chart)
- 4-5: Length encoding (stacked bar chart)
- 6: Angle (pie chart)
- 7-9: Area (bubble chart, aligned rectangles, treemap)

^aCleveland & McGill (1984) J. Am. Stat. Ass.

^bHeer & Bostock (2010) CHI 2010

What works best? Result ^{a b}

- ^aCleveland & McGill (1984) *J. Am. Stat. Ass.*
- ^bHeer & Bostock (2010) *CHI 2010*
- We have inherent biases that can distort information recovered
- Position > Angle \approx Length > Area
- Accuracy plateaus as charts increase in size
- Gridlines improve accuracy
- Aspect ratios affect area judgements (squares worst)

Figure 4: Proportional judgment results (Exp. 1A & B). Top: Cleveland & McGill's [7] lab study. Bottom: MTurk studies. Error bars indicate 95% confidence intervals.

- 1 Introduction
 - Elementary perceptual tasks
- 2 Evidence-based representation
 - What representations work best?
 - To pie chart or not to pie chart?
 - Bars and lines
- 3 Acknowledgements

People hate pie charts

http://www.storytellingwithdata.com/blog/2011/07/death-to-pie-charts

especially Edward Tufte

A table is nearly always better than a dumb pie chart; the only worse design than a pie chart is several of them[...] pie charts should never be used. - "The Visual Display of Quantitative Information"

"E pur si muove..." a b

For proportions of a whole:

- Pie charts read as accurately as bar charts
- As number of components in the chart increases, bars are less efficient than pie charts

^aEells (1926) J Am. Stat. Ass.

^bSimkin & Hastie (1987) J Am. Stat. Ass.

- 1 Introduction
 - Elementary perceptual tasks
- 2 Evidence-based representation
 - What representations work best?
 - To pie chart or not to pie chart?
 - Bars and lines
- 3 Acknowledgements

Bar charts are bad...mmmkay?

There is an ongoing backlash against bar charts (and I'm not picking on Nick, he just tweets a lot...)

But are they really that bad?

Interpretation of bars and lines ^a

^aZacks & Tversky (1999) Mem. Cognit.

People interpret bars and lines differently

Experiment 1: In absence of context (arbitrary X, Y)

■ bars: discrete comparison (24:0)

■ lines: trend assessment (0:35)

Figure 1: Examples of the bar and line graph stimuli used in Experiment 1.

Interpretation of bars and lines ^a

^aZacks & Tversky (1999) Mem. Cognit.

People interpret bars and lines differently

Experiment 2: With context (discrete or continuous data)

	Gender (discrete domain)		Age (continuous domain)	
	Bar graph	Line graph	Bar graph	Line graph
Discrete comparison	28	22	28	9
Trend assessment	0	3	2	14

Table 2: Frequency of data characterization responses as a function of graph type (bar graph or line graph) and conceptual domain (gender or age).

- People naturally interpret bar charts as categorical data
- People naturally interpret line graphs as trends
- Using bars for trend data or lines for categorical data can mislead the viewer

Bar charts can mislead ^a

^aWeissgerber et al. (2015) PLoS Biol. doi:10.1371/journal.pbio.1002128

- Do these bars differ in value?
- Bar charts represent data as a single point: lossy compression.
- Are variances of black/white datasets the same?
- Could different datasets give the same bar chart?

Bars are lossy compression ^a

^aWeissgerber et al. (2015) PLoS Biol. doi:10.1371/journal.pbio.1002128

Bars hide detail:

- Number of data points
- Variance of data points
- Distribution of data points (outliers, etc.)

Bars may mislead on statistics ^a

^aWeissgerber et al. (2015) PLoS Biol. doi:10.1371/journal.pbio.1002128

Bars may imply incorrect test statistics:

Overlaps, outliers, covariates, sample sizes masked

Test	p value				
T-test: Equal var.	0.035	0.050	0.026	0.063	
T-test: Unequal var.	0.035	0.050	0.026	0.035	
Wilcoxon	0.054	0.073	0.128	0.103	

Bars for paired data ^a

^aWeissgerber et al. (2015) PLoS Biol. doi:10.1371/journal.pbio.1002128

Bars imply independence of data:

Better than bar charts?

Bar chart with SE bars suggests group 2 is highest

Better than bar charts?

Bar chart with SD bars suggests there is overlap

Better than bar charts?

Scatterplot shows effect of small sample sizes, outliers, variance

By: Leighton Pritchard

This presentation is licensed under the Creative Commons Attribution ShareAlike license https://creativecommons.org/licenses/by-sa/4.0/