Tecnicatura Universitaria en Diseño Integral de Videojuegos

Planeamiento de Mecánicas y Dinámicas de Juego

Trabajo Práctico N°1: Funciones Grupo2000

Integrantes:

Mateo Nicolás Goitea

Johanna Milagro Chaves

Rafael Mateo Balcarce

Año: 2025

Punto 1: Si $(x) = x^2 + 1$, evaluar la función en f(2), f(-1), $f(\sqrt{3})$

$$(2) = 2^2 + 1$$
 $(-1) = (-1)^2 + 1$ $(\sqrt{3}) = (\sqrt{3})^2 + 1$ $= 3 + 1$ $= 5$ $= 2$

Punto 2: Si (*x*) = 2 – 3 x^2 , encuentre

- a) (x + h)
- b) (x + h) f(x)
- c) (x+h)-f(x)

$$(x + h) = 2 - 3.(x + h)^{2}$$

$$= 2 - 3.(x^{2} + 2xh + h^{2})$$

$$= 2 - 3x^{2} - 6xh - 3h^{2}$$

$$(x + h) - f(x) = 2 - 3x^2 - 6xh - 3h^2 - 2 - 3x^2$$

= -6x^2 - 6xh - 3h^2

$$(x+h) - f(x) = \underbrace{2 - 3x^2 - 6xh - 3h^2 - 2 - 3x^2}_h$$

$$(x+h) - f(x) = (2 - 3x^2 - 6xh - 3h^2 - 2 - 3x^2).(-h)$$

$$= 6x^2h + 6xh^2 + 3h^3$$

Punto 3: ¿Tiene solución (x) = \sqrt{x} en f(-4)? En caso de no serlo indique el dominio de la función para la cual si tendrá solución

No tiene solución. Su dominio es los números reales desde el 0 a +∞

Punto 4: ¿Tiene solución (x) = 1 en f(0)? En caso de no serlo indique el dominio de la función x para la cual si tendrá solución

No tiene solución. Su dominio es los números reales desde el 1 a +∞

Punto 5: Hallar el dominio y el rango de $(x) = \sqrt{9} - x^2$

Dominio: [-3;3] Rango: [0;3]

Punto 6: Completa la tabla dada a continuación, escribiendo la regla de dependencia en forma de expresión algebraica o con tus propias palabras según corresponda

a) Sumar 4 y luego dividir entre 2.	$f(x) = \frac{x+4}{2}$
b) Sumar 2 y a continuación extraer raíz cuadrada.	$(x) = \sqrt{x+2}$
Multiplicar por 2, sumar 1 y extraer raíz cúbica.	$f(x) = \sqrt[3]{2x+1}$
d) Elevar al cuadrado, restar de 9.	$(x)=9-x^2$
Multiplicar por 2, restar 1 y extraer raíz cuadrada.	$y = \sqrt{2x - 1}$
 f) Multiplicar por 2 y restar el cuadrado de la misma cantidad. 	$(x) = 2.x - x^2$
g) Elevar a la cuarta, restar de 1.	$g(x) = 1 - x^4$
h) Elevar al cuadrado, multiplicar por 2 y sumar 3.	$(x) = 2 \cdot x^2 + 3$
j) Dividir en 3 y restar 5	$h(x) = \frac{x}{3} - 5$
j) Multiplicar por 3, restar de 7 y sacar raíz cuarta.	$(x) = \sqrt[4]{7-3} x$

Punto 7: Encuentra una fórmula para la función propuesta y escribe su dominio

<i>a</i>)	Un rectángulo tiene un perímetro de 16 cm. Expresa su área $A(x)$ como función de su largo.	A(x)	Dominio
	ancho = y $A(x)$ $largo = x$	A(x)=x. y	[1; +∞)
b)	Expresa el área de un triángulo equi- látero como función de la longitud de uno de sus lados. Escribe su dominio.	A(x)	Dominio
	x	$A(x) = \frac{x. h}{2}$	[1; +∞)
c)	Expresa el área de un cubo como función de su volumen.	A(V)	Dominio
	x	$A(x) = x^3$	[1; +∞)

Punto 9: Determina si cada curva es la gráfica de una función de x. Escribe el dominio y el rango de cada curva. La escala de la cuadrícula es 1:1.

Punto 10: Observa la gráfica y la ecuación de cada una de las siguientes funciones y escribe en el recuadro en blanco su dominio. La escala de la cuadrícula es 1:1.

Punto 11: Encuentra una expresión algebraica para la función de la gráfica mostrada a continuación. Observa que la función está dividida en 3 secciones.

Punto 12: Dada la siguiente lista de funciones, clasifica cada una de ellas escribiendo en el espacio correspondiente si se trata de: un polinomio, una raíz, una racional, una trigonométrica, una exponencial o logarítmica.

Función	Tipo de función	Función	Tipo de función
$a) f(x) = \sqrt{1 - x^2}$	Irracional	$b) g(x) = x^{\frac{2}{3}}$	Exponencial
c) $h(x) = 2x^5 - x^3 - 2$	Polinomio	$d) r(x) = \log_{10} x$	Logarítmica
e) $s(x) = \frac{x+1}{x^2+2}$	Racional	$f(x) = \sqrt{1 - x^2}$	Irracional
g) u(x) = 2x	Trigonométrica	h) $y = 10^x$	Exponencial
$i) y = \operatorname{sen} x + \tan x$	Trigonométrica	$j) y = x + \frac{x^2}{x+1}$	Vocacional

Punto 13: Dada la gráfica y la ecuación de cada función, determina si son uno a uno.

Aplicación en Videojuegos

Punto 1: El siguiente gráfico representa la trayectoria del ROBOT LUX, en función del tiempo transcurrido

En base al gráfico, implementar y responder

- a) La posición inicial.
- b) Máxima altura alcanzada y el momento en el que se produce.
- c) Mínima altura alcanzada y el momento en el que se produce.
- d) Intervalos de tiempo donde la altura aumenta.
- e) Intervalos de tiempo donde la altura decrece.

- f) Momentos en donde la altura es 0.
- a- (0,20)

- b- Máxima altura es 28 en y, ocurre en los segundos 5 y 40. c- Mínima altura es -2 en y, ocurre en los segundos 22. d- Los intervalos donde aumenta son de 0 a 5 segundos y de 22 a 40 segundos.
 - e- Los intervalos donde decrece son de 6 a 21 segundos.
 - f- La altura es 0 en los segundos 20 y 25.