

Design Conclusion	
Cleat Angle	Pass
Cleat Angle	
Connection Properties	
Connection	
Connection Title	Double Angle Web Cleat
Connection Type	Shear Connection
Connection Category	<u> </u>
Connectivity	Beam-Beam
Beam Connection	Bolted
Column Connection	Bolted
Loading (Factored Load)	•
Shear Force (kN)	100.0
Components	<u> </u>
Column Section	ISMB 450
Material	Fe 410
Beam Section	ISMB 300
Material	Fe 410
Hole	STD
Cleat Section	ISA 90X90X8
Thickness (mm)	8
Cleat Leg Size B (mm)	90
Cleat Leg Size A (mm)	90
Hole	STD
Bolts on Beam	<u> </u>
Туре	Black Bolt
Grade	4.8
Diameter (mm)	16
Bolt Numbers	5
Columns (Vertical Lines)	1
Bolts Per Column	5
Gauge (mm)	0
Pitch (mm)	40
End Distance (mm)	30
Edge Distance (mm)	30
Bolts on Column	
Туре	Black Bolt
Grade	4.8
Diameter (mm)	16
Bolt Numbers	8

Columns (Vertical Lines)	1
Bolts Per Column	4
Gauge (mm)	0
Pitch (mm)	40
End Distance (mm)	50
Edge Distance (mm)	30
Assembly	
Column-Beam Clearance (mm)	20

			Created with OSdag
Company Name	mukund	Project Title	Connection
Group/Team Name	shiyekar	Subtitle	Cleat Angle
Designer	Mukund	Job Number	003
Date	05 /06 /2016	Method	Limit State Design (No Earthquake Load)

Design Check: Secon	idary Beam Connectivity		
Check	Required	Provided	Remark
Bolt shear capacity (kN)		V_{dsb} = ((2*400*0.6126*16*16)/($\sqrt{3}$ *1.25*1000) = 58.012 [cl. 10.3.3]	
Bolt bearing capacity (kN)		V_{dpb} = (2.5*0.491*16*7.7*400)/(1.25*1000) = 48.393 [cl. 10.3.4]	
Bearing capacity of beam web (kN)		V_{dpb} = (2.5*0.491*16*7.7*410)/(1.25*1000) = 49.603 [cl. 10.3.4]	
Bearing capacity of cleat (kN)		V_{dpb} = (2.5*0.491*16*8*410)/(1.25*1000) = 51.535 [cl. 10.3.4]	
Bearing capacity (kN)		Min (48.393, 49.603, 51.535) = 48.393	
Bolt capacity (kN)		Min (58.012, 48.393) = 48.393	
Critical bolt shear (kN)	≤ 48.393	18.028	Pass
No. of bolts		5	
No.of column(s)	≤ 2	1	
No. of bolts per column		5	
Bolt pitch (mm)	\geq 2.5* 16 = 40, \leq Min(32*7.7, 300) = 247 [cl. 10.2.2]	40	Pass
Bolt gauge (mm)	\geq ;2.5*16 = 40, \leq Min(32*7.7, 300) = 247 [cl. 10.2.2]	0	
End distance (mm)	$\geq 1.7*18.0 = 30.6, \leq 12*7.7 = 92.4$ [cl. 10.2.4]	30	Pass
Edge distance (mm)	≥ 1.7*18.0 = 30.6, ≤ 12*7.7 = 92.4 [cl. 10.2.4]	30	Pass
Block shear capacity (kN)	≥ 100.0	$V_{\rm db}$ = 203.164 [cl. 6.4.1]	Pass
Cleat height (mm)	≥ 0.6*300.0=180.0, ≤ 300.0-13.1- 14.0-17.4-15.0- 5=235.5 [cl. 10.2.4, Insdag Detailing Manual, 2002]	220	Pass
Cleat moment capacity (kNm)	(2*58.012*40 ²)/(40*1000) = 3.0	$M_{\rm d}$ = (1.2*250* Z)/(1000*1.1) = 116.16 [cl. 8.2.1.2]	Pass

			Created with OSdag
Company Name	mukund	Project Title	Connection
Group/Team Name	shiyekar	Subtitle	Cleat Angle
Designer	Mukund	Job Number	003
Date	05 /06 /2016	Method	Limit State Design (No Earthquake Load)

Design Check: Primar	<u> </u>		1_
Check	Required	Provided	Remark
Bolt shear capacity (kN)		V_{dsb} = ((400*0.6126*16*16)/($\sqrt{3}$ *1.25*1000) = 29.006 [cl. 10.3.3]	
Bolt bearing capacity (kN)		V_{dpb} = (2.5*0.491*16*8.0*400)/(1.25*1000) = 50.278 [cl. 10.3.4]	
Bearing capacity of beam web (kN)		V_{dpb} = (2.5*0.491*16*9.4*410)/(1.25*1000) = 60.554 [cl. 10.3.4]	
Bearing capacity of cleat (kN)		V_{dpb} = (2.5*0.491*16*8*410)/(1.25*1000) = 51.535 [cl. 10.3.4]	
Bearing capacity (kN)		Min (50.278, 60.554, 51.535) = 51.535	
Bolt capacity (kN)		Min (29.006, 51.535) = 29.006	
Critical bolt shear (kN)	≤ 29.006	27.01	Pass
No. of bolts		8	
No.of column(s) per angle	≤ 2	1	
No. of bolts per column per angle		4	
Bolt pitch (mm)	$\geq 2.5^*$ 16 = 40, \leq Min(32*8.0, 300) = 256 [cl. 10.2.2]	40	Pass
Bolt gauge (mm)	≥ 2.5*16 = 40, ≤ Min(32*8.0, 300) = 256 [cl. 10.2.2]	0	
End distance (mm)	\geq 1.7*18.0 = 30.6, \leq 12*8.0 = 96.0 [cl. 10.2.4]	50	Pass
Edge distance (mm)	≥1.7*18.0 = 30.6, ≤12*8.0 = 96.0 [cl. 10.2.4]	30	Pass
Block shear capacity (kN)	≥100.0	$V_{db} = 200.437$ [cl. 6.4.1]	Pass
Cleat height (mm)	≥ 0.6*300.0=180.0, ≤ 300.0-13.1- 14.0-17.4-15.0- 5=235.5 [cl. 10.2.4, Insdag Detailing Manual, 2002]	220	Pass

Cleat moment capacity (kNm)	$(2*29.006*40^2)/(40*1000) = 3.192$	$M_{\rm d}$ = (1.2*250* Z)/(1000*1.1) = 116.16	Pass
		[cl. 8.2.1.2]	

			Created with OSdag
Company Name	mukund	Project Title	Connection
Group/Team Name	shiyekar	Subtitle	Cleat Angle
Designer	Mukund	Job Number	003
Date	05 /06 /2016	Method	Limit State Design (No Earthquake Load)

dditional Comments
