

魏忠钰

Markov Decision Processes

Data Intelligence and Social Computing Lab (DISC)

November 9th, 2021

Outline

Sequential decision making problems

Grid World with Uncertainties

DISC

- The agent takes actions and results are uncertain
 - Actions: up, down, right, left
 - As planned: 80% to the intended direction.
 - Uncertain: 20% to the right angle of the intended direction.
 - Stay: the agent stays if it hits a wall
- The agent collects rewards
 - Rewards for each step, it can be two kinds
 - Immediate reward: each step (can be negative)
 - End game reward: come at the end (good or bad)
- Goal: maximize sum of rewards
- Solution: policy π , i.e., recommended action for each state.

Policy

Sequential Decision Making

- An agent makes a sequence of actions: $\{a_t\}$
- Observes a sequence of observations: $\{o_t\}$ i.e., $\{s_t\}$
- Receives a sequence of rewards: $\{r_t\}$
- Trajectory / episodes: s_1 , a_1 , r_1 , s_2 , a_2 , r_2 , s_3 , a_3 , r_3 ...

Outline

- Sequential decision making problems
- Markov decision processes

Markov Process

- S is a finite set of states $s \in S$
- P is dynamics / transitions model $p(s_{t+1} = s' | s_t = s)$
- Satisfies Markov Property

$$p(s_{t+1}|s_t) = p(s_{t+1}|s_t, ..., s_1)$$

Future is independent of past states given present state

$$P = \begin{pmatrix} P(s_1|s_1) & P(s_2|s_1) & \cdots & P(s_N|s_1) \\ P(s_1|s_2) & P(s_2|s_2) & \cdots & P(s_N|s_2) \\ \vdots & \vdots & \ddots & \vdots \\ P(s_1|s_N) & P(s_2|s_N) & \cdots & P(s_N|s_N) \end{pmatrix}$$

Suppose there are N states, P can be represented as a matrix of NxN

Example: Mars Rover Markov Model

- Mars Rover is moving in a horizontal space of 7 states.
 - \blacksquare { S_1 , S_2 , S_3 , S_4 , S_5 , S_6 , S_7 }
- Move one time step by another with a transition probability.
 - S_1 : 60% stay, 40% move to S_2
 - S_2 : 20% stay, 40% move to S_2 , 40% move to S_3
 -

Example: Mars Rover Markov Model

Sample episodes starting from S_4 :

- \blacksquare $S_4, S_5, S_6, S_7, S_7, S_7, \dots$
- \blacksquare $S_4, S_4, S_5, S_4, S_5, S_5, ...$
- \blacksquare $S_4, S_3, S_3, S_2, S_2, ...$
- \blacksquare $S_4, S_4, S_5, S_3, S_4, S_5, . \blacksquare$

$$P = \begin{pmatrix} 0.6 & 0.4 & 0 & 0 & 0 & 0 & 0 \\ 0.4 & 0.2 & 0.4 & 0 & 0 & 0 & 0 \\ 0 & 0.4 & 0.2 & 0.4 & 0 & 0 & 0 \\ 0 & 0 & 0.4 & 0.2 & 0.4 & 0 & 0 \\ 0 & 0 & 0 & 0.4 & 0.2 & 0.4 & 0 \\ 0 & 0 & 0 & 0 & 0.4 & 0.2 & 0.4 \\ 0 & 0 & 0 & 0 & 0 & 0.4 & 0.6 \end{pmatrix}$$

Markov Reward Process

Markov Process + Reward

- S is a finite set of states $s \in S$
- P is dynamics / transitions model $p(s_{t+1} = s' | s_t = s)$
- R is a reward function $R(s_t = s) = E[r_t | s_t = s]$
- γ is discount factor $\gamma \in [0,1]$

$$P = \begin{pmatrix} P(s_{1}|s_{1}) & P(s_{2}|s_{1}) & \cdots & P(s_{N}|s_{1}) \\ P(s_{1}|s_{2}) & P(s_{2}|s_{2}) & \cdots & P(s_{N}|s_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ P(s_{1}|s_{N}) & P(s_{2}|s_{N}) & \cdots & P(s_{N}|s_{N}) \end{pmatrix} \qquad R = \begin{cases} R(s_{1}) \\ R(s_{1}) \\ \vdots \\ R(s_{N}) \end{cases}$$

Example: Mars Rover Markov Reward Process

- Mars Rover is moving in a horizontal space of 7 states.
- Move one time step by another with a transition probability.
- Get a reward at each position
 - $R = \{+1, 0, 0, 0, 0, 0, +10\}$

- Sample episodes starting from S4:
 - \bullet $s_4, 0, s_5, 0, s_6, 0, s_7, +10, s_7, +10, s_7, +10, ...$
 - \bullet $s_4, 0, s_4, 0, s_5, 0, s_4, 0, s_5, 0, s_5, ...$

Return & Value Function for MRP

- Definition of return from time step t, G_t : also known as utility
 - Discounted sum of rewards from time step t to horizon
 - Horizon: number of time steps in the trajectory

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$$

- Definition of Value Function, V(s)
 - Expected return from starting in state s

$$V(s) = E[G_t | s_t = s] = E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots | s_t = s]$$

Example | : Mars Rover Markov Reward Process

- Reward: +1 in s_1 , +10 in s_7 , 0 in all other states
- Sample returns for 4-step episodes, $\gamma = 1/2$:

Sample returns for 4-step episodes,
$$\gamma = 1/2$$
:

• $s_4, 0, s_5, 0, s_6, 0, s_7, +10$

$$0 + \frac{1}{2} * 0 + \frac{1}{4} * 0 + \frac{1}{8} * 10 = 1.25$$

Value function: expected return from starting in state s

$$V(s) = E[G_t | s_t = s] = E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots | s_t = s]$$

V = [1.53, 0.37, 0.13, 0.22, 0.85, 3.59, 15.31]

Markov Decision Processes (MDPs)

- Markov Process + Reward + Action
- S is a (finite) set of Markov states $s \in S$
- A is a (finite) set of actions $a \in A$
- P is dynamics / transition-model for each action,

$$P(s_{t+1} = s' | s_t = s, a_t = a)$$

R is a reward function

$$R(s_t = s, a_t = a) = E[r_t | s_t = s, a_t = a]$$

- γ is discount factor $\gamma \in [0,1]$
- MDP is a tuple: (S, A, P, R, γ)

Example: Mars Rover Markov Decision Process

- Mars Rover is moving in a horizontal space of 7 states.
- Move one time step by another with a transition probability.
- Get a reward at each position
- Two actions: left or right
 - Without uncertainty

s_1	s_2	s_3	S_4	<i>s</i> ₅	s ₆	<i>S</i> ₇
			The			
			· coath			

- What is the transition model?
 - With N*N*A parameters

Sample episodes starting from S4:

$$P(s'|s,a_1) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} P(s'|s,a_2) = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

- \bullet $s_4, r, 0, s_5, r, 0, s_6, r, 0, s_7, r, +10, s_7, r, +10, s_7, r, +10$
- \bullet $s_4, l, 0, s_3, l, 0, s_2, l, 0$

MDP Policies

• For MDPs, the solution is called nolicy π that gives an action for

each	s_1	s_2	s_3	s_4	<i>S</i> ₅	s ₆	S ₇
■ Gi							
= π(The			
■ Pc				SEATH.			

■ In this course, we only consider deterministic policy, which is a mapping from (S -> A)
Two deterministic actions for each state.

How many policies do we have?

 \blacksquare Optimal policy π^* : A policy is one that maximizes expected return if followed

Outline

- Sequential decision making problems
- Markov decision processes
- MDP examples

Example: Racing

DISC

- A robot car wants to travel far, quickly
- Three **states**: Cool, Warm, Overheated
- Two actions: Slow, Fast

Exercise: Write down transition and reward model

A robot car wants to travel far, quickly

Three states: Cool, Warm, Overheated

Two actions: Slow, Fast

Grid World with Uncertainties

- States: $(1, 1) \rightarrow (4, 3)$
- Actions: Up, Down, Right, Left
- Transition Model (4 matrix of 12 X 12): 80%, 10%, 10%.
- Reward Model (vector of 12 X 4):
- Gamma: predefined

How reward affects?

$$R(s,a) = -0.01$$

R(s,a) = -0.4

$$R(s,a) = -0.03$$

$$R(s,a) = -2.0$$

Outline

- Sequential decision making problems
- Markov decision processes
- MDP examples

Value Iteration for MDPs

MDP Search Trees

Each MDP state projects an expectimax-like search tree

A transition of MDP consists of (s, a, r, s')

Optimal Quantities

- The value of a state s:
 - $V^*(s)$ = expected return starting in s and acting optimally
- The value of a q-state (s,a):
 - $Q^*(s,a)$ = expected return starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:
 - $\pi^*(s)$ = optimal action from state s

Bellman equations for solving MDPs

Bellman equation:

$$V^{*}(s) = \max_{a \in A(s)} Q^{*}(s, a)$$

$$Q^{*}(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s, a)V^{*}(s')$$

$$V^{*}(s) = \max_{a \in A(s)} \{R(s, a) + \gamma \sum_{s'} P(s'|s, a)V^{*}(s')\}$$
s, a

- Fundamental operation: compute the value of a state
 - Expected return under optimal action
 - Average sum of (discounted) rewards

Value Iteration (Bellman Update Equation)

- Start with $V_0(s) = 0$
- Given vector of $V_k(s)$ values:

$$V_{k+1}(s) \leftarrow \max_{a \in A(s)} \{R(s, a) + \gamma \sum_{s'} P(s'|s, a) V_k(s')\}$$

Repeat until convergence

收 斂

Complexity of each iteration: O(S²A)

Value Iteration Algorithm


```
function VALUE-ITERATION(mdp, \epsilon) returns a utility function
   inputs: mdp, an MDP with states S, actions A(s), transition model P(s' \mid s, a),
                rewards R(s), discount \gamma
            \epsilon, the maximum error allowed in the utility of any state
   local variables: U, U', vectors of utilities for states in S, initially zero
                       \delta, the maximum change in the utility of any state in an iteration
   repeat
       U \leftarrow U' : \delta \leftarrow 0
       for each state s in S do
            U'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s' \mid s, a) U[s']
           if |U'[s] - U[s]| > \delta then \delta \leftarrow |U'[s] - U[s]|
   until \delta < \epsilon(1-\gamma)/\gamma
   return U
```

Figure 17.4 The value iteration algorithm for calculating utilities of states. The termination condition is from Equation (17.8).

Outline

- Sequential decision making problems
- Markov decision processes
- MDP examples

- Value Iteration for MDPs
- Value Iteration on expected-max tree

Example: Racing

DISC

- A robot car wants to travel far, quickly
- Three **states**: Cool, Warm, Overheated
- Two actions: Slow, Fast

Racing MDP Search Tree

Time-Limited Values

- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s

Computing Time-Limited Values

Equals to: $V_{k+1}(s) \leftarrow \max_{a \in A(s)} \{R(s,a) + \gamma \sum_{s'} P(s'|s,a) V_k(s')\}$

Convergence*

DISC

- How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual un-truncated values
- Case 2: If the discount is less than 1
 - For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros $V_k(s)$
 - That last layer is at best all R_{MAX} and at worst R_{MIN}
 - But everything is discounted by γ^k
 - So V_k and V_{k+1} are at most γ^k max |R| different
 - So as k increases, the values converge

Example: Value Iteration

Transitions (s, a, s')	Transition Probability	reward
(cool, slow, cool)	1	1
(warm, slow, cool)	0.5	1
(warm, slow, warm)	0.5	1
(cool, fast, cool)	0.5	2
(cool, fast, warm)	0.5	2
(warm, fast, overheated)	1	-10

 V_2

$$V_1$$
 V_0 O O

$$V_{k+1}(s) \leftarrow \max_{a \in A(s)} \{R(s,a) + \gamma \sum_{s'} P(s'|s,a) V_k(s')\}$$

Noise = 0.2 Discount = 0.9

- 80% of the time, each action achieves the intended direction.
- 20% of the time, each action moves the agent at right angles to the intended direction.
- move north, 80% go to north, 10% to the west, 10% to the east
- Reward for (4,4) is 1, (3,4) is -1; 0 for others

- Write-down the transition model, reward model
- Compute values for all states in 10 steps.

Value Iteration Property on Grid World

Figure 17.5 (a) Graph showing the evolution of the utilities of selected states using value iteration. (b) The number of value iterations k required to guarantee an error of at most $\epsilon = c \cdot R_{\text{max}}$, for different values of c, as a function of the discount factor γ .

Outline

- Sequential decision making problems
- Markov decision processes
- MDP examples

- Value Iteration for MDPs
- Value Iteration on expected-max tree

Policy Evaluation of MDPs

Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- How should we act?

We need to do an expectimax (one step)

$$\pi^*(s) = \underset{a \in A(s)}{\operatorname{argmax}} \{ R(s, a) + \sum_{s'} P(s'|s, a) V^*(s') \}$$

This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

Suppose we have the optimal q-values:

How should we act?

$$\pi^*(s) = \operatorname*{argmax} Q^*(s, a)$$
$$a \in A(s)$$

Fixed Policies

Do the optimal action (expectimax tree)

Do what π says to do (fixed policy tree)

- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler only one action per state
 - And the tree's value would depend on which policy we fixed

Policy Evaluation

 Compute the value of a state s under a fixed (generally nonoptimal) policy

- Define the utility of a state s, under a fixed policy π :
 - $V^{\pi}(s)$ = expected total discounted rewards starting in s and following π

Policy Evaluation via Bellman equation:

$$V^{\pi}(s) \leftarrow R(s,a) + \gamma \qquad \sum_{s'} P(s'|s,a) V^{\pi}(s')$$

Solving the Bellman Equation (policy)

 Iteration: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) \leftarrow 0$$

$$V^{\pi}(s) \leftarrow R(s, a) + \gamma \qquad \sum_{s'} P(s'|s, a) V^{\pi}(s')$$
Policy Iteration

■ Efficiency: O(S²) per iteration

Is the value optimal?

Example: Policy Evaluation

Policy: Always Go Right

Policy: Always Go Forward

Outline

- Sequential decision making problems
- Markov decision processes
- MDP examples

- Value Iteration for MDPs
- Value Iteration on expected-max tree

- Policy Evaluation of MDPs
- Policy Iteration for MDPs

Policy Iteration

Step 1: Policy evaluation: calculate utilities for some fixed policy until convergence.

$$V^{\pi}(s) \leftarrow R(s, a) + \gamma \qquad \sum_{s'} P(s'|s, a) V^{\pi}(s')$$

Step 2: Policy improvement (policy extraction): update policy using one-step look-ahead with current value

$$\pi^*(s) = \underset{a \in A(s)}{\operatorname{argmax}} \{ R(s, a) + \sum_{s'} P(s'|s, a) V^*(s') \}$$

- Repeat steps until policy converges
- It's still optimal. Can converge (much) faster under some conditions

Policy Iteration


```
function POLICY-ITERATION(mdp) returns a policy
   inputs: mdp, an MDP with states S, actions A(s), transition model P(s' | s, a)
   local variables: U, a vector of utilities for states in S, initially zero
                       \pi, a policy vector indexed by state, initially random
  repeat
       U \leftarrow \text{POLICY-EVALUATION}(\pi, U, mdp)
       unchanged? \leftarrow true
       for each state s in S do
           if \max_{a \in A(s)} \sum_{s'} P(s' | s, a) \ U[s'] > \sum_{s'} P(s' | s, \pi[s]) \ U[s'] then do
                \pi[s] \leftarrow \underset{a \in A(s)}{\operatorname{argmax}} \sum_{s'} P(s' \mid s, a) \ U[s']
                unchanged? \leftarrow false
  until unchanged?
  return \pi
```

Figure 17.7 The policy iteration algorithm for calculating an optimal policy.

Example: Policy Iteration

Transitions (s, a, s')	Transition Probability	reward
(cool, slow, cool)	1	1
(warm, slow, cool)	0.5	1
(warm, slow, warm)	0.5	1
(cool, fast, cool)	0.5	2
(cool, fast, warm)	0.5	2
(warm, fast, overheated)	1	-10

$$V_2^{\pi}$$
 (s)

$$V_1^{\pi}$$
 (s)

$$V_0^{\pi}$$
 (s) $\left(\begin{array}{ccc} \mathbf{0} & \mathbf{0} & \mathbf{0} \end{array}\right)$

$$\pi = \{slow, slow\}$$

$$V^{\pi}(s) \leftarrow R(s,a) + \gamma \qquad \sum_{s'} P(s'|s,a) V^{\pi}(s')$$

Policy Iteration

Policy evaluation Estimate v_{π} Iterative policy evaluation

Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

Modified Policy Iteration

- Does policy evaluation need to converge to V^{π} ?
 - Or should we introduce a stopping condition
 - E.g. epsilon-convergence of value function
 - Or simply stop after k iterations of iterative policy evaluation?

- Why not update policy every iteration? i.e. stop after k = 1
 - This is equivalent to value iteration.

Comparison

- Both value iteration and policy iteration compute optimal values
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but use greedy action for value updating.
- In policy iteration:
 - We do several passes that update utilities with fixed policy (only one action at each pass)
 - After the policy evaluation, a new policy is chosen (a value iteration pass)
 - The new policy will be better
- Both are dynamic programing-based approaches

Outline

- Sequential decision making problems
- Markov decision processes
- MDP examples
- Value Iteration for MDPs
- Value Iteration on expected-max tree
- Policy Evaluation of MDPs
- Policy Iteration for MDPs
- More about DP based solutions

Bellman Equation (policy) in Matrix Form

 The Bellman equation can be expressed concisely using matrices

$$v = R + \gamma P v$$

Where v is a column vector with one entry per state

$$\begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix} = \begin{bmatrix} \mathcal{R}_1 \\ \vdots \\ \mathcal{R}_n \end{bmatrix} + \gamma \begin{bmatrix} \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \\ \vdots & & \\ \mathcal{P}_{11} & \dots & \mathcal{P}_{nn} \end{bmatrix} \begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix}$$

Solving the Bellman Equation (policy)

- The Bellman equation (policy) is a linear equation
- It can be solved directly

$$v = \mathcal{R} + \gamma \mathcal{P} v$$
$$(I - \gamma \mathcal{P}) v = \mathcal{R}$$
$$v = (I - \gamma \mathcal{P})^{-1} \mathcal{R}$$

- Computational complexity is O(n³) for n states
- Direct solution only possible for small MDPs

Synchronous Dynamic Programming Algorithms

- Both value iteration and policy iteration used synchronous backups
 - i.e. all states are backup up in parallel

$$V_{new}(s) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} V_{old}(s') \right)$$
 $V_{old} \leftarrow V_{new}$

- Asynchronous DP backs up states individually, in any order
 - For each selected state, apply the appropriate backup
 - Can significantly reduce computation
 - Guaranteed to converge if all states continue to be selected

Synchronous Dynamic Programming Algorithms

- Three simple ideas for asynchronous dynamic programming:
 - In-place dynamic programming
 - Prioritized sweeping
 - Real-Time Dynamic Programming

In-place Dynamic Programming

- Synchronous value iteration stores two copies of value function
 - For all s in S

$$V_{new}(s) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{old}(s') \right)$$
$$V_{old} \leftarrow V_{new}$$

- In-place value iteration only stores one copy of value function
 - For all s in S

$$v(s) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v(s') \right)$$

Prioritised Sweeping

Use magnitude of Bellman error to guide state selection, e.g.

$$\left| \max_{\mathbf{a} \in \mathcal{A}} \left(\mathcal{R}_{s}^{\mathbf{a}} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{\mathbf{a}} v(s') \right) - v(s) \right|$$

- Backup the state with the largest remaining Bellman error
- Update Bellman error of affected states after each backup
- Can be implemented efficiently by maintaining a priority queue

Real-Time Dynamic Programming

- Idea: only states that are relevant to agent
- Use agent's experience to guide the selection of states
- After each time-step
- Backup the state S_t

$$v(S_t) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_{S_t}^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{S_t s'}^a v(s') \right)$$

Focus the DP's backups onto parts of states that are most relevant to the agents

魏忠钰

Markov Decision Processes

Data Intelligence and Social Computing Lab (DISC)

November 9th, 2021

