Amendments to the claims:

This listing of the claims will replace all prior versions, and listings of claims in the application.

Atty Docket No.: LNK-014

Listing of Claims:

- 1. (Currently Amended) Process A process for the preparation of a statin, comprising the following steps:
 - a) Preparation of preparing a compound of the formula II

in which

S¹ denotes a hydrogen atom or a hydroxyl protective group,

 S^2 and S^3 , independently of one another, denote hydroxyl protective groups, and

R¹ represents a hydrogen atom or a carboxyl protective group,

by stereoselective hydrogenation of a compound of the formula III

to give a compound of the formula II-a

$$S^2$$
O
OH
O
OR¹ (II-a)

and optionally introduction of introducing a hydroxyl protective group; and

National Phase Entry For PCT/EP04/012659

b) lactonization of lactonizing the compound of the formula II to give a compound of the formula I-a

Atty Docket No.: LNK-014

- 2. <u>(Currently Amended) Process-The process</u> according to Claim 1, comprising the further step of
- c) <u>conversion of converting</u> the compound of the formula I-a

into a compound of the formula I

wherein the radical

S¹ is as defined in Claim 1,

R denotes $-CH_2R^2$, -CHO, $-CH=P(R^3)_3$, $-CH_2-P^+(R^3)_3M^-$,

Page 4 of 14

R² denotes a halogen atom, -C≡N, -CH₂NH₂, -SO₂-R⁶ or a leaving group,

R³, R⁴ and R⁵ complete a Wittig radical or a Horner-Wittig radical,

R⁶ denotes a hydrogen atom or a C₁₋₃-alkyl or a C₅₋₁₀-aryl radical, which are optionally substituted by one or more radicals which, independently of one another, are selected from halogen atoms, heterocycles which contain 0 to 10 carbon atoms and 1 to 10 heteroatoms selected from sulphur, nitrogen and oxygen atoms, and functional groups₂ and

M⁻ represents an opposite ion.

Atty Docket No.: LNK-014

3. (Currently Amended) Process-The process according to Claim 1-or 2, comprising the step of:

preparation of preparing a compound of the formula III

by chain extension of a compound of the formula IV

- 4. <u>(Currently Amended) Process-The process</u> according to <u>any of Claims 1 to 3</u>, <u>wherein</u> the compound of the formula I <u>being is</u> converted into the statin by one of the following process<u>es</u> steps and then optionally <u>by opening of opening</u> the lactone ring and optionally <u>by removal</u> of <u>removing the protective groups</u>:
- a) reaction of reacting a compound of the formula (I)

Atty Docket No.: LNK-014

in which the radical R represents a CHO group and the radical S^1 is as defined in Claim 1, with a compound of the formula

in which

 R^8 denotes -CH=P(R^3)₃, -CH₂-P⁺(R^3)₃M⁻,

$$--CH_{2}-P-(OR^{4})_{2}$$
 $--CH_{2}-P-(OR^{5})_{2}$ or

where R³, R⁴, R⁵ and M are as defined in Claim 1,

b) reaction of reacting a compound of the formula I

in which

the radical R denotes -CH= $P(R^3)_3$, -CH₂- $P^+(R^3)_3M^-$,

with a compound of the formula

$$\begin{array}{c|c} F & & & & & \\ \hline \\ \hline \\ \hline \\ \hline \\ Ph & & \\ \end{array}$$

$$\begin{array}{c|c}
F \\
O \\
O \\
N \\
N
\end{array}$$
or
$$\begin{array}{c|c}
F \\
O \\
N \\
O
\end{array}$$

in which

R⁸ denotes -CHO,

where R³, R⁴, R⁵ and M are as defined in Claim 1,

National Phase Entry For PCT/EP04/012659

c) reaction of reacting a compound of the formula I

Atty Docket No.: LNK-014

in which

the radical R is a group -CH₂-C \equiv N,

Hydrogenation hydrogenating the compound of the formula I in which the radical R is a group - CH_2 - $C\equiv N$, to give a compound of the formula I in which the radical R is a group - CH_2 -CH

d) hydrogenation of hydrogenating a compound of the formula I

Atty Docket No.: LNK-014

in which

the radical R is a group -CH₂-C \equiv N, to give a compound of the formula I in which the radical R is a group -CH₂-CH₂NH₂,

and reaction of reacting the compound of the formula I in which the radical R is a group -CH₂-CH₂NH₂ with a compound of the formula V

e) reaction of reacting a compound of the formula (I)

in which

the radical R is a group -CH₂-CH₂NH₂, with a compound of the formula V

Atty Docket No.: LNK-014

5. (Currently Amended) Process The process according any of Claims 1-to 4, characterized in that a compound of the formula

in which S¹ is as defined in Claim 1 and St represents the radical of the statin, is converted into a compound of the formula

by catalytic hydrogenation, and optionally the protective group S^1 is removed and optionally the lactone ring is opened.

6. (Currently Amended) Process The process according to any of Claims 1-to 5, wherein the hydroxyl protective group S¹ being is selected from a trimethylsilyl, triisopropylsilyl, trimethylsilylethyl, tert-butyldimethylsilyl, tert-butylmethylsilyl, di-tert-butylmethylsilyl, tert-butyldiphenylsilyl, triphenylsilyl, diphenylmethylsilyl, tris(trimethylsilyl) and para-tosyl protective group.

Atty Docket No.: LNK-014

- 7. (Currently Amended) Process The process according to any of Claims 1-to-6, wherein the protective groups S² and S³ being are bridged.
- 8. (Currently Amended) Process The process according to Claim 7, wherein the protective groups S² and S³ together representing an isopropylidene protective group.
- 9. (Currently Amended) Process The process according to any of Claims 2 to 7, wherein the radical R representing represents a radical CH₂R² and R² representing represents a leaving group, the leaving group being selected from a halogen atom, and a radical -OSO₂-C₁-C₆-alkyl, or and -OSO₂-C₅-C₁₀-aryl.
- 10. (Currently Amended) Process The process according to any of Claims 1-to 9, wherein the radical R¹ denoting denotes a hydrogen atom, or a C₁₋₃-alkyl, or a C₄₋₁₀-aryl radical, each of which are may be optionally substituted by one or more radicals, which, independently of one another, are selected from halogen atoms, heterocycles which have 0 to 10 carbon atoms and 1 to 10 heteroatoms selected from sulphur, nitrogen and oxygen atoms, and functional groups.
- 11. (Currently Amended) Process The process according to any of Claims 1 to 10, wherein
- R^3 denoting denotes a C_5 to C_{10} -aryl radical which is optionally substituted by one or two C_1 - C_4 -alkyl radicals and/or halogen atoms, a C_1 - C_4 -alkyl radical or a C_5 - C_{10} -cycloalkyl radical,
- R⁴ denoting denotes a C₁-C₄-alkyl radical, and

denoting denotes a C₁-C₆-alkyl or C₅-C₁₀-aryl radical. R^5

- (Currently Amended) Process The process according to any of Claims 1 to 11, wherein the statin being is fluvastatin, rosuvastatin, cerivastatin, glenvastatin or atorvastatin.
- (Currently Amended) Compound A compound of the formula I 13.

in which

S¹ and R are as defined in Claim 2, with the proviso that the radical S¹ does not represent a tertbutyldimethylsilyl group if the radical R represents a CHO, -CH₂-OTos, -CH₂Cl or -CH₂I group.

(Currently Amended) Compound A compound according to Claim 13, in which the radical S¹ represents a tert-butyldimethylsilyl group and the radical R represents a -CH₂R², $CH=P(R^3)_3$, $-CH_2-P^+(R^3)_3M^-$,

$$-CH_{2}-P-(OR^{4})_{2}$$
or
$$OR^{5})_{2}$$
group, where in \mathbb{R}^{2} represents a bromine

atom, a -C≡N, a -CH₂NH₂ group or a radical -SO₂-R⁶, and R³, R⁴, R⁵, R⁶ and M are as defined in Claim 2.

(Currently Amended) Process The process for the preparation of a compound of a 15. formula (I-a)

in which the radical S^1 is as defined in Claim 1, characterized in that a compound of the formula II

in which

S¹, S², S³ and R¹ are as defined in Claim 1, is converted into the compound of the formula I-a by lactonization.