Präsenzaufgaben

Verständnisfragen

- 1. Erklären Sie, wann eine Abbildung zwischen zwei Gruppen ein Homomorphismus ist. Was muss zusätzlich gelten, damit sie ein Isomorphismus ist? Eine Abbildung $f:(G,\circ)\to (H,*)$ ist genau dann ein Homomorphismus, wenn für alle $a,b\in G$ gilt: $f(a\circ b)=f(a)*f(b)$. Wenn die Abbildung zusätzlich bijektiv ist, nennt man sie einen Isomorphismus.
- 2. Warum ist $\phi: \mathbb{Z}_6 \to \mathbb{Z}_3$, $\phi(n) = n \mod 3$ ein Homomorphismus? Ist ϕ auch ein Isomorphismus? Lösung: Seien $n, m \in \mathbb{Z}_6$, dann ist

$$\phi(n+m) = (n+m) \mod 3 = n \mod 3 + m \mod 3 = \phi(n) + \phi(m).$$

- 3. Für welche $n \in \mathbb{Z}$ ist \mathbb{Z}_n^* zyklisch? Lösung: Eine mögliche Antwort ist: Wenn es ein Element $a \in \mathbb{Z}_n^*$ gibt mit Ordnung ord(a) = ϕ (n). Die allgemeine Antwort lautet: genau dann, wenn n = 1, 2, 4 oder $n = p^k$ oder $n = 2p^k$, wenn p eine beliebige ungerade Primzahl ist k > 0. Die ersten zyklischen Gruppen sind also \mathbb{Z}_2^* , \mathbb{Z}_4^* , \mathbb{Z}_3^* , \mathbb{Z}_5^* , \mathbb{Z}_6^* . Ich habe hier allerdings nicht erwartet, dass Sie auf diese allgemeine Antwort kommen.
- 4. Sei $p \in \mathbb{P}$. Warum gilt in \mathbb{Z}_p (p-1)(p-1)=1? Wir rechnen $(p-1)(p-1)=p^2-2p+1$. Dies dürfen wir so ausrechnen, da \mathbb{Z}_p ein Körper ist. Dann wenden wir die Rechenregeln an:

$$(p-1)(p-1) \mod p = p^2 - 2p + 1 \mod p = p^2 \mod p - 2p \mod p + 1 \mod p = 1 \mod p.$$

- 5. Sei $p \in \mathbb{P}$. Berechnen Sie in \mathbb{Z}_p die Zahl p. Es ist $p \mod p = 0 \mod p$.
- 6. Finden Sie Beispiele für Elemente $a, b, c, a \neq 0$, so dass ab = ac und $b \neq c$ für
 - (a) \mathbb{Z}_8 : Wenn wir die Gleichung ab = ac umstellen, lautet sie a(b-c) = 0. Eine Lösung in \mathbb{Z}_8 ist z.B. a = 2 und b-c = 4, also b = 4, c = 0 oder b = 5, c = 1.
 - (b) $\mathbb{Z}_2 \times \mathbb{Z}_2$. Die Elemente in $\mathbb{Z}_2 \times \mathbb{Z}_2$ lauten (0,0), (0,1), (1,0), (1,1). Wir multiplizieren einfach elementweise: Dann ist beispielsweise $(0,1) \cdot (1,1) = (0,1) \cdot (0,1) = (0,1)$.
- 7. Bestimmen Sie alle Lösungen von $x^2 5x + 6 = 0$ in \mathbb{Z} und \mathbb{Z}_{12} . Warum gibt es in \mathbb{Z}_{12} mehr als zwei Lösungen? Lösunge: Die Lösungen von $x^2 5x + 6 = 0$ lauten in \mathbb{Z} (mit der abc-Formel oder durch scharfes Hinschauen): $x_1 = 2$ und $x_2 = 3$. Wir können die Gleichung umschreiben als $x^2 5x + 6 = (x 2)(x 3) = 0$. In \mathbb{Z}_{12} wollen wir also lösen

$$(x-2)(x-3) \mod 12 = 0 \mod 12$$

Da 12 keine Primzahl ist (und deswegen \mathbb{Z}_{12} kein Körper), erhalten wir zusätzliche Lösungen, wenn die Faktoren (x-2) und (x-3) als Produkt 12 (bzw. ein Vielfaches von 12) ergeben. Wir haben also mehr als zwei Lösungen, denn der Satz vom Nullprodukt gilt nicht! Wenn x=6 ist, ist $(x-2)(x-3)=4\cdot 3=12$ und x=6 ist eine weitere Lösung, ebenso x=11, denn es ist $(x-2)(x-3)=9\cdot 8=72=0$ mod 12.

- 8. Wir bestimmen die Lösungen hier mit Hilfe des Chinesischen Restsatzes, um seine Anwendung noch einmal zu üben. Bei diesen Aufgaben kann man natürlich auch die richtigen Lösungen raten!
 - (a) Welche Zahlen $n \in \mathbb{Z}$ haben Rest 1 bei Division durch 2 und 3? Lösung: Wir müssen das Gleichungssystem lösen:

```
x \mod 2 = 1 \mod 2, x \mod 3 = 1 \mod 3.
```

Da 2, 3 teilerfremd sind, gilt mit dem Chinesischen Restsatz, dass es eine eindeutige Lösung in $\mathbb{Z}_{2\cdot 3}$ gibt. Es ist $1 = (-1)2 + 1 \cdot 3$. Also berechnet sich die Lösung als $x = (-1)2 \cdot 1 + 1 \cdot 3 \cdot 1 = 1 \mod 6$. Somit sind die gesuchten Zahlen alle von der Form 1 + 6k, $k \in \mathbb{Z}$.

(b) Welche Zahlen $n \in \mathbb{Z}$ haben Rest 1 bei Division durch 2,3 und 5? Lösung: Wie oben stellen wir das Gleichungssystem auf:

```
x \mod 2 = 1 \mod 2, x \mod 3 = 1 \mod 3, x \mod 5 = 1 \mod 5.
```

Die Zahlen 2, 3, 5 sind teilerfremd, hier ist n = 30.

Zu $n_1 = 2$: Wir haben $1 = 8 \cdot 2 + (-1) \cdot 15$, also $a_1 = -15$.

Zu $n_2 = 3$: Wir haben $1 = (-3) \cdot 3 + 1 \cdot 10$, also $a_2 = 10$.

Zu $n_3 = 5$: Wir haben $1 = (-1) \cdot 5 + 1 \cdot 6$, also $a_3 = 6$.

Die Lösung berechnet sich als

$$x = a_1x_1 + a_2x_2 + a_3x_3 = -15 \cdot 1 + 10 \cdot 1 + 6 \cdot 1 = 1.$$

Die gesuchten Zahlen sind also von der Form 1+30k, $k \in \mathbb{Z}$.

(c) Welche Zahlen $n \in \mathbb{Z}$ haben Rest 1 bei Division durch 2,3,5 und 7? Lösung: Wie oben stellen wir das Gleichungssystem auf:

```
x \mod 2 = 1 \mod 2, x \mod 3 = 1 \mod 3, x \mod 5 = 1 \mod 5, x \mod 7 = 1
```

Die Zahlen 2, 3, 5, 7 sind teilerfremd, hier ist n = 210.

Zu $n_1 = 2$: Wir haben $1 = 53 \cdot 2 + (-1) \cdot 105$, also $a_1 = -105$.

Zu $n_2 = 3$: Wir haben $1 = (-23) \cdot 3 + 1 \cdot 70$, also $a_2 = 70$.

Zu $n_3 = 5$: Wir haben $1 = 17 \cdot 5 + 2 \cdot 42$, also $a_3 = 84$.

Zu $n_4 = 7$: Wir haben $1 = 13 \cdot 7 + (-3) \cdot 30$, also $a_4 = -90$. Die Lösung berechnet sich als

$$x = a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4 = -105 \cdot 1 + 70 \cdot 1 + 84 \cdot 1 - 90 \cdot 1 = -41 \mod 210 = 169 \mod 210$$

Die gesuchten Zahlen sind also von der Form $169 + k210, k \in \mathbb{Z}$.

Standardaufgaben

1. Bestimmen Sie die Ordnung der Untergruppe, die von dem jeweils angegebenen Element erzeugt wird:

(a) $(\mathbb{Z}_{25}, +)$, 15. Lösung: Wir berechnen die Ordnung von 15: Es ist

$$2 \cdot 15 \mod 25 = 5 \mod 25$$

$$3 \cdot 15 \mod 25 = 20 \mod 25$$

$$4 \cdot 15 \mod 25 = 10 \mod 25$$

$$5 \cdot 15 \mod 25 = 0 \mod 25$$

Damit ist ord(15) = 5 und das ist auch die Ordnung der Untergruppe $\{0, 5, 10, 15, 20\}$, die von 15 erzeugt wird.

(b) $(\mathbb{Z}_4 \times \mathbb{Z}_9, +), (2, 6)$. Lösung: Wir berechnen die Ordnung von (2, 6):

$$(2 \cdot 2 \mod 4, 2 \cdot 6 \mod 9) = (0 \mod 4, 3 \mod 9)$$

$$(3 \cdot 2 \mod 4, 3 \cdot 6 \mod 9) = (2 \mod 4, 0 \mod 9)$$

$$(4 \cdot 2 \mod 4, 4 \cdot 6 \mod 9) = (0 \mod 4, 6 \mod 9)$$

$$(5 \cdot 2 \mod 4, 5 \cdot 6 \mod 9) = (2 \mod 4, 3 \mod 9)$$

$$(6 \cdot 2 \mod 4, 6 \cdot 6 \mod 9) = (0 \mod 4, 0 \mod 9)$$

Also ist die Ordnung ord((2,6)) = 6.

- 2. Welche der folgenden Gruppen ist/ sind zyklisch?
 - $\mathbb{Q}(\mathbb{Q},+)$ ist nicht zyklisch. Man kann kein Element $\frac{n}{m} \in \mathbb{Q}$ finden, so dass jedes andere Element $\frac{p}{q} \in \mathbb{Q}$ als $k \cdot \frac{n}{m}$ für $k \in \mathbb{Z}$ dargestellt werden kann. Sobald die Nenner m und q teilerfremd sind, geht das nicht.
 - \square (6 \mathbb{Z} , +) ist zyklisch, denn 1 ist ein Erzeuger dieser Gruppe.
 - \square ($\mathbb{Z}_2 \times \mathbb{Z}_9 \times \mathbb{Z}_{25}$, +). Die Zahlen 2,9 und 25 sind teilerfremd. Somit ist diese Gruppe isomorph zu $\mathbb{Z}_{2\cdot 9\cdot 25} = \mathbb{Z}_{450}$. Diese Gruppe ist wie alle Gruppen (\mathbb{Z}_n , +) zyklisch mit dem Erzeuger 1, somit ist auch $\mathbb{Z}_2 \times \mathbb{Z}_9 \times \mathbb{Z}_{25}$ zyklisch mit dem Erzeuger (1, 1, 1).
- 3. Welche der folgenden Abbildungen sind Homomorphismen?
 - (a) $\phi : \mathbb{R} \setminus \{0\} \to \mathbb{R}^+$, $\phi(a) = |a|$. Lösung: Die Gruppenoperation ist hier jeweils die Multiplikation: $(\mathbb{R} \setminus \{0\}, \cdot)$ und (\mathbb{R}^+, \cdot) sind Gruppen. Seien $a, b \in \mathbb{R} \setminus \{0\}$ beliebig, dann ist (wegen der Rechenregel für den Betrag):

$$\phi(a \cdot b) = |a \cdot b| = |a| |b| = \phi(a) \cdot \phi(b).$$

Also ist ϕ ein Homomorphismus.

(b) $\phi: \mathbb{Z}_5 \to \mathbb{Z}_2$, $\phi(n) = \begin{cases} 0, n \text{ gerade} \\ 1, n \text{ ungerade} \end{cases}$. Lösung: Die Abbildung lässt sich auch schreiben als $\phi(n \mod 5) = n \mod 2$. Seien $n, m \in \mathbb{Z}_5$ beliebig, dann gilt (wegen der Rechenregeln der Modulorechnung):

$$\phi(n+m) = (n+m) \mod 2 = n \mod 2 + m \mod 2 = \phi(n) + \phi(m).$$

Also ist ϕ ein Homomorphismus.

(c) $\phi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $\phi(x, y) = x + y$ Seien $(x_1, y_1), (x_2, y_2 \in \mathbb{R} \times \mathbb{R})$ beliebig, dann ist (wegen des Kommutativgesetzes der Addition in \mathbb{R}):

$$\phi(x_1 + x_2, y_1 + y_2) = x_1 + x_2 + y_1 + y_2 = \phi(x_1, y_1) + \phi(x_2, y_2).$$

Also ist ϕ ein Homomorphismus.

4. Konstruieren Sie einen Körper mit genau 4 Elementen. Lösung: Ein Körper enthält immer 0 und 1. Die verbleibenden Elemente nennen wir a und b und stellen die Additions- und Multiplikationstafel auf. 0 ist das neutrale Element der Addition, 1 das neutrale Element der Multiplikation.

+	0	1	a	b
0	0	1	a	b
1	1	0	b	a
a	a	b	0	1
b	b	a	1	0

In jeder Zeile muss die 1 genau einmal auftauchen. Es kann entweder $a \cdot a = 1$ oder $a \cdot b = 1$ sein. Es müssen aber auch die Distributivgesetze gelten, also: $a \cdot a = a \cdot (b+1) = a \cdot b + a$. Ist $a \cdot b = 1$, dann ist also $a \cdot a = b$. Es muss auch gelten $a \cdot b = a \cdot (a+1) = a \cdot a + a$. Ist $a \cdot b = 1$, folgt daraus $1 = a \cdot a + a = a + a = 1$. Das stimmt also.

Würden wir $a \cdot a = 1$ wählen, hätten wir $a \cdot b = a \cdot (a+1) = a \cdot a + a = 1 + a = b$, somit wäre a auch neutrales Element von b und $b^2 = 0$, somit hätte b kein inverses Element. Die einzige Möglichkeit, die Multiplikationstafel aufzustellen, ist also die folgende:

•	1	a	b	
1	1	a	b	
a	a	b	1	
b	b	1	a	

5. (a) Bestimmen Sie alle $n \in \mathbb{Z}$, die bei Division durch 2 oder 5 Rest 1 besitzen, aber durch 3 teilbar sind. Lösung: Wir stellen das folgende Gleichungssystem auf:

$$x \mod 2 = 1 \mod 2$$
, $x \mod 3 = 0 \mod 3$, $x \mod 5 = 1 \mod 5$.

Die Zahl muss ungerade und durch 3 teilbar sein, also 3, 9, 15, etc. Gleichzeitig muss sie = 1 mod 5 sein, also 11,21,31 etc. Die kleinste Zahl ist also 21, die dies erfüllt. Alle weiteren Zahlen sind vom Typ 21 + k30 mit $k \in \mathbb{Z}$. Sie können die Aufgabe natürlich auch mit dem Chinesischen Restsatz lösen.

(b) Bestimmen Sie alle $n \in \mathbb{Z}$, die bei Division durch 3 oder 7 Rest 2 besitzen, aber durch 8 teilbar sind. Lösung: Wir stellen das folgende Gleichungssystem auf:

$$x \mod 2 = 2 \mod 3$$
, $x \mod 7 = 2 \mod 7$, $x \mod 8 = 01 \mod 8$.

Es ist
$$n = 3 \cdot 7 \cdot 8 = 168$$
:

Zu 3:
$$1 = 19 \cdot 3 + (-1) \cdot 56$$
. Also $a_1 = -56$.

Zu 7:
$$1 = 7 \cdot 7 + (-2) \cdot 24$$
. Also $a_2 = -48$.

Zu 8:
$$1 = 8 \cdot 8 + (-3) \cdot 21$$
. Also $a_3 = -63$.

Damit ist $x = -56 \cdot 2 + (-48) \cdot 2 + (-63) \cdot 0 = -208 \mod 168 = 128 \mod 168$. Wir prüfen nach 128:3 = 42R2, 128:7 = 18R2 und 128:8 = 16R0.

Übungsaufgaben: Abgabe

1. Bestimmen Sie alle Erzeuger der Gruppe \mathbb{Z}_{11}^* .

Lösung: Es ist $\mathbb{Z}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Wir bestimmen die Ordnung aller Elemente in \mathbb{Z}_{11}^* . Jedes Element der Ordnung $10 = |\mathbb{Z}_{11}^*|$ ist ein Erzeuger der Gruppe. Die Elemente können nur Ordnung 1, 2, 5, 10 besitzen (Teiler von 10). Deswegen genügt es, sich für ein Element a die Potenzen a^2 , a^5 und a^{10} anzuschauen:

$$2^{2} = 4, 2^{5} = 10, 2^{10} = 1$$
 $3^{2} = 9, 3^{5} = 1$
 $4^{2} = 5, 4^{5} = 1$
 $5^{2} = 3, 5^{5} = 1$
 $6^{2} = 3, 6^{5} = 10, 6^{10} = 1$
 $7^{2} = 5, 7^{5} = 10, 7^{10} = 1$
 $8^{2} = 9, 8^{5} = 10, 8^{10} = 1$
 $9^{2} = 4, 9^{5} = 1$
 $10^{2} = 1$

Also hat die Gruppe die Erzeuger 2, 6, 7, 8. (5 Punkte: 2 Punkte Ansatz, 2 Punkte Rechnungen, 1 Punkt Ergebnis)

2. Es ist die folgende Relation auf $\mathbb{Z} \times \mathbb{Z} \setminus \{0\}$ definiert:

$$(a,b) \sim (c,d) :\Leftrightarrow ad = bc.$$

(a) Zeigen Sie, dass es sich um eine Äquivalenzrelation handelt. *Lösung:* Reflexiv: Sei $(a,b) \in \mathbb{Z} \times \mathbb{Z} \setminus \{0\}$, dann ist

$$(a,b) \sim (a,b)$$
, denn $ab = ab$.

Symmetrisch: Seien $(a, b), (c, d) \in \mathbb{Z} \times \mathbb{Z} \setminus \{0\}$, so dass $(a, b) \sim (c, d)$, dann gilt:

$$(a,b) \sim (c,d) \Leftrightarrow ad = bc \Leftrightarrow bc = ab \Rightarrow (c,d) \sim (a,b).$$

Transitiv: Seien $(a,b),(c,d),(e,f) \in \mathbb{Z} \times \mathbb{Z} \setminus \{0\}$, so dass $(a,b) \sim (c,d)$ und $(c,d) \sim (e,f)$, dann gilt

$$(a,b) \sim (c,d)$$
 und $(c,d) \sim (e,f) \Leftrightarrow ad = bc$ und $cf = de \mid \cdot f, \ b,d,f \neq 0$
 $\Rightarrow adf = bcf$ und $cf = de \mid 2$. Gleichung in erste einsetzer
 $\Rightarrow adf = bde \mid \text{teilen durch } d, \text{ denn } d \neq 0$
 $\Rightarrow af = be \Leftrightarrow (a,b) \sim (e,f).$

(b) Bestimmen Sie die Äquivalenzklassen [(n,1)] für $n \in \mathbb{Z}$, [(3,2)] sowie [-21,15]. Lösung:

Zu (n, 1): wir suchen alle $(a, b) \sim (n, 1)$, d.h. alle (a, b), so dass a = bn ist. Das sind gerade alle Pärchen, bei denen a das n-fache von b ist:

$$[(n,1)] = \{(bn,b) \mid b \in \mathbb{Z} \setminus \{0\}\} = \{\dots, (n,1), (2n,2), (3n,3), \dots\}.$$

Zu (3,2): wir suchen alle $(a,b) \sim (3,2)$, d.h. alle (a,b), so dass 2a = 3b ist:

$$[(3,2)] = \{(3b,2b) \mid b \in \mathbb{Z} \setminus \{0\}\} = \{\dots, (3,2), (6,4), (9,6), \dots\}.$$

Zu (-21, 15): wir suchen alle $(a, b) \sim (-21, 15)$, d.h. alle (a, b), so dass 15a = -21b ist. Wir können diese Gleichung zu 5a = -7b vereinfachen und erhalten:

$$[(-21, 15)] = \{(-7b, 5b) \mid b \in \mathbb{Z} \setminus \{0\}\} = \{\dots, (-7, 5), (-14, 10), (-21, 15), \dots\}.$$

(c) Sei

$$A = \{ [(a,b)] \mid (a,b) \in \mathbb{Z} \times \mathbb{Z} \setminus \{0\} \}$$

die Menge der Äquivalenzklassen. Zeigen Sie, dass A mit der Multiplikation aus \mathbb{Z} eine Gruppe bildet, d.h. wir definieren

$$[(a,b)] \cdot [(c,d)] = [(a \cdot c), (b \cdot d)].$$

Lösung:

Assoziativ:

$$[(a,b)] \cdot ([(c,d)] \cdot [(e,f)]) = [(a,b)] \cdot [(ce,df)] = [(ace,bdf)] = [(ac,bd)] \cdot [(e,f)] = ([(a,b)] \cdot [(e,f)]) = ([(a,b)] \cdot [(e,f)]$$

Neutrales Element: [(1,1)] ist ein neutrales Element, denn $[(1,1)] \cdot [(a,b)] = [(a,b)]$ für alle $(a,b) \in \mathbb{Z} \times \mathbb{Z} \setminus \{0\}$.

Inverse Elemente: Sei $[(a,b)] \in A$ beliebig, dann ist $[(b,a)] \in A$ das inverse Element, denn $[(a,b)] \cdot [(b,a)] = [(ab,ab)] = [(1,1)]$.

(d) Zeigen Sie, dass (\mathbb{Q},\cdot) isomorph zu (A,\cdot) ist. Geben Sie dafür eine Abbildung $f:\mathbb{Q}\to A$ an und zeigen Sie, dass diese Abbildung ein Isomorphismus ist. Lösung: Wir bilden $f:\frac{n}{m}\to[(n,m)]$ ab. Wir zeigen zunächst, dass diese Abbildung ein Homomorphismus ist: Seien $n,n',m,m'\in\mathbb{Z},\,m,m'\neq 0$ beliebig:

$$f\left(\frac{n}{m} \cdot \frac{n'}{m'}\right) = f\left(\frac{nn'}{mm'}\right) = [(nn', mm')] = [(n, m)] \cdot [(n', m')].$$

Jetzt zeigen wir, dass es sich um einen Isomorphismus handelt:

Injektiv: Seien $n, n', m, m' \in \mathbb{Z}$, $m, m' \neq 0$ beliebig, so dass $f(\frac{n}{m}) = f(\frac{n'}{m'})$ gilt:

$$\Leftrightarrow [(n,m)] = [(n',m')] \Leftrightarrow (n,m) \sim (n',m') \Leftrightarrow nm' = mn'.$$

Wenn aber nm' = mn' gilt, dann ist $\frac{n}{m} = \frac{n'}{m'}$. Also ist der Homomorphismus injektiv.

Surjektiv: Sei $[(n,m)] \in A$. Dann gibt es natürlich $\frac{n}{m} \in \mathbb{Q}$, so dass $f(\frac{n}{m}) = [(n,m)]$.

Also ist f ein Isomorphismus.

(20 Punkte: je Teilaufgabe 5 Punkte, anteilige Punkte für Ansatz)

3. Es sind $1234 \in \mathbb{Z}_{2000}$ und $567 \in \mathbb{Z}_{2000}$. Addieren Sie die beiden Zahlen 1234 und 567 in \mathbb{Z}_{2000} bzw. in $\mathbb{Z}_{2^4} \times \mathbb{Z}_{5^3}$. Verwenden Sie dafür den erweiterten euklidischen Algorithmus.

Lösung: Wir verwenden den Isomorphismus $f: \mathbb{Z}_{2000} \to \mathbb{Z}_{2^4} \times \mathbb{Z}_{5^3}$, $f(a) = (a \mod 2^4, a \mod 5^3)$. Damit ist f(1234) = (2, 109) und f(567) = (7, 67). Also ist

(2, 109) + (7, 67) = (9, 176). Wir suchen nun $x \in \mathbb{Z}_{2000}$, so dass $x \mod 2^4 = 9$ und $x \mod 5^3 = 51$. Wir lösen entsprechend den erweiterten euklidischen Algorithmus mit a = 51, b = 9:

a	b	r	s	k
125	16	1	0	_
16	13	0	1	7
13	3	1	-7	1
3	1	-1	8	4
1	0	5	-39	3

Also ist $1 = 5 \cdot 125 + (-39) \cdot 16$. Damit ist für $x = 9 \cdot 5 \cdot 125 + 51 \cdot (-39) \cdot 16 = -26199$ mod 2000, also $x = 1801 \mod 2000$. Wie wir nachrechnen können, ist dies das richtige Ergebnis, denn es ist 1234 + 567 = 1801

(15 Punkte: 5 Punkte Addition in Produktgruppe, 5 Punkte euklid. Algorithmus, 5 Punkte Berechnung von x)

4. Es ist das folgende System an Kongruenzgleichungen gegeben:

$$x \equiv 4 \mod 11, \ x \equiv 3 \mod 17, \ x \equiv 6 \mod 18.$$

- (a) Erklären Sie, warum eine Lösung x für dieses Gleichungssystem existiert. Lösung: Die Zahlen 11,17 und 18 sind teilerfremd, deswegen existiert nach dem Chinesischen Restsatz eine Lösung.
- (b) Wir nennen $n_1=11,\ n_2=17$ und $n_3=18,$ es ist $n=11\cdot 17\cdot 18=3366.$ Zu $n_1=11:$ Gesucht sind $r_1,s_1,$ so dass $1=r_1\cdot 11+s_1\cdot \frac{3366}{11}.$ Aus dem euklidischen Algorithmus erhalten wir $r_1=-139$ und $s_1=-5.$ Damit ist $a_1=5\cdot 306=1530.$ Zu $n_2=17:$ Gesucht sind $r_2,s_2,$ so dass $1=r_2\cdot 17+s_2\cdot \frac{3366}{17}.$ Aus dem euklidischen Algorithmus erhalten wir $r_2=35$ und $s_2=-3.$ Damit ist $a_2=-3\cdot 198=-594.$ Zu $n_3=18:$ Gesucht sind $r_3,s_3,$ so dass $1=r_3\cdot 18+s_3\cdot \frac{3366}{18}.$ Aus dem euklidischen Algorithmus erhalten wir $r_2=52$ und $s_2=-5.$ Damit ist $a_3=-5\cdot 187=-935.$ Die Lösung lautet also

$$x = a_1x_1 + a_2x_2 + a_3x_3 \mod 3366 = -1272 \mod 3366 = 2094.$$

(10 Punkte: a) 2 Punkte, b) 8 Punkte: jeweils für Ansatz und richtige Koeffizienten)

Abgabe möglich bis zu Beginn der Vorlesung am **18.05.2020** bis zu Beginn der Vorlesung 8:00.