Đề thi giữa kỳ học phần MAT1042

Câu 1. Cho hàm số $f(x,y) = (1+xy^2)^{\frac{1}{xy+x^2}}$

1.1. Tìm và vẽ đồ thị của tập xác định D(f).

1.2. Tính
$$\lim_{(x,y)\to(0,3)} f(x,y)$$
.

Câu 2. Cho hàm số $f(x,y,z) = \ln(1 + x^2 + y^2 + z^2)$. Tính $\frac{\partial f(x,y,z)}{\partial e}$ theo hướng của Gradf(x,y,z) tại điểm $M_o(\sqrt{2},\sqrt{2},\sqrt{2})$.

Câu 3. Chứng minh rằng, hàm số $u = f(x,y,z) = 1/\sqrt{x^2 + y^2 + z^2}$ là nghiệm của phương trình $\nabla u = 0$, trong đó $\nabla = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ là toán tử Laplace.

Câu 4. Xác định cực trị của hàm số $z = f(x, y) = x^4 + y^4 - 36xy$.

Câu 5. Cho D là hình viên phân $\begin{cases} x^2 + y^2 \le a^2 \\ x + y \ge a \end{cases}$ (a > 0). Xác định giá trị của a để $\iint_D (x + y) dx dy = \frac{1}{3}.$

Đáp án và thang điểm

Câu 1.

1.1. Hàm số $f(x,y) = (1+xy^2)^{\frac{1}{xy+x^2}}$ được xác định khi $xy + x^2 \neq 0 \Leftrightarrow x(x+y) \neq 0 \Leftrightarrow \begin{cases} x \neq 0 \\ x+y \neq 0 \end{cases}$ do đó tập

xác định của nó là $D(f) = \{(x,y) \in \mathbf{R}^2 | x \neq 0 \text{ và } x + y \neq 0\}$ hoặc nếu ký hiệu $D_0 = \{(x,y) \in \mathbf{R}^2 | x = 0\} \cup \{(x,y) \in \mathbf{R}^2 | x + y = 0\}$ thì $D(f) = \mathbf{R}^2 \setminus D_0$ là tập hợp các điểm trên mặt phẳng tọa độ Oxy không nằm trên trục tọa độ Oy và đường thẳng x + y = 0. (0,25d)

Đồ thị (*có thể vẽ hoặc mô tả*) của D(f): Là các điểm (x,y) trong mặt phẳng tọa độ Oxy không nằm trên trục tung Oy (x = 0) và đường thẳng y = -x.

1.2. Biến đổi
$$f(x,y) = (1 + xy^2)^{\frac{1}{xy + x^2}} = (1 + xy^2)^{\frac{1}{xy^2}}^{\frac{xy^2}{xy + x^2}} = \left[(1 + xy^2)^{\frac{1}{xy^2}} \right]^{\frac{xy^2}{x(x+y)}} = \left[(1 + xy^2)^{\frac{1}{xy^2}} \right]^{\frac{y^2}{x+y}} (0.5d)$$

$$\text{Dặt } t = xy^2 \Rightarrow t \rightarrow 0 \text{ khi } (x,y) \rightarrow (0,3) \\ \Rightarrow \lim_{(x,y)\rightarrow (0,3)} \left(1 + xy^2\right)^{\frac{1}{xy^2}} = \lim_{t\rightarrow 0} \left(1 + t\right)^{\frac{1}{t}} = e\left(\textbf{0,5d}\right)^{\frac{1}{t}}$$

Mặt khác
$$\lim_{(x,y)\to(0,3)} \frac{y^2}{x+y} = \frac{\lim_{y\to 3} y^2}{\lim_{y\to 3} x + \lim_{y\to 3} y} = \frac{3^2}{0+3} = 3.$$
 (0,25đ)

$$\Rightarrow \lim_{(x,y)\to(0,3)} f(x,y) = \lim_{(x,y)\to(0,3)} (1+xy^2)^{\frac{y}{x^2y+xy^2}} = \left[\lim_{(x,y)\to(0,3)} (1+xy^2)^{\frac{1}{xy^2}}\right]^{\frac{1}{(x,y)\to(0,3)} \frac{y^2}{x^2y+xy^2}} = e^3. (0,25d)$$

Câu 2. Tập xác định của hàm số $f(x,y,z) = \ln(1 + x^2 + y^2 + z^2)$ là $D(f) = \mathbb{R}^3 \cdot (0,25\mathbb{d})$

$$+ \text{Tính Gradf } (\sqrt{2}, \sqrt{2}, \sqrt{2}) : \text{ Chúng ta có} \begin{cases} \frac{\partial f(x, y, z)}{\partial x} = \frac{2x}{1 + x^2 + y^2 + z^2} \\ \frac{\partial f(x, y, z)}{\partial y} = \frac{2y}{1 + x^2 + y^2 + z^2} (\textbf{0,5d}) \\ \frac{\partial f(x, y, z)}{\partial z} = \frac{2z}{1 + x^2 + y^2 + z^2} \end{cases}$$

$$\Rightarrow \operatorname{Gradf}(x,y,z) = \frac{\partial f(x,y,z)}{\partial x} \stackrel{\rightarrow}{i} + \frac{\partial f(x,y,z)}{\partial y} \stackrel{\rightarrow}{j} + \frac{\partial f(x,y,z)}{\partial z} \stackrel{\rightarrow}{k} = \frac{2x}{1+x^2+y^2+z^2} \stackrel{\rightarrow}{i} + \frac{2y}{1+x^2+y^2+z^2} \stackrel{\rightarrow}{j} + \frac{2z}{1+x^2+y^2+z^2} \stackrel{\rightarrow}{k} (0,25d)$$

$$\Rightarrow \operatorname{Gradf}(\sqrt{2},\sqrt{2},\sqrt{2}) = \operatorname{Gradf}(x,y,z) \Big|_{(x,y,z)=(\sqrt{2},\sqrt{2},\sqrt{2})} = \left(\frac{2x}{1+x^2+y^2+z^2} \stackrel{\rightarrow}{i} + \frac{2y}{1+x^2+y^2+z^2} \stackrel{\rightarrow}{j} + \frac{2z}{1+x^2+y^2+z^2} \stackrel{\rightarrow}{k} \right) \Big|_{(x,y,z)=(\sqrt{2},\sqrt{2},\sqrt{2})} = \frac{2\sqrt{2}}{7} \stackrel{\rightarrow}{i} + \frac{2\sqrt{2}}{7} \stackrel{\rightarrow}{j} + \frac{2\sqrt{2}}{7} \stackrel{\rightarrow}{k} . (0,25d)$$

$$+ \operatorname{T'}(nh) \stackrel{\partial f(\sqrt{2},\sqrt{2},\sqrt{2})}{\stackrel{\rightarrow}{\partial a}}, \stackrel{\rightarrow}{e} \text{ là v\'ec to d\'on vị của } \operatorname{Gradf}(\sqrt{2},\sqrt{2},\sqrt{2})$$

Chúng ta có
$$\vec{e} = \frac{\text{gradf}(\sqrt{2}, \sqrt{2}, \sqrt{2})}{\left|\text{gradf}(\sqrt{2}, \sqrt{2}, \sqrt{2})\right|} = \frac{\frac{2\sqrt{2}}{7}\vec{i} + \frac{2\sqrt{2}}{7}\vec{j} + \frac{2\sqrt{2}}{7}\vec{k}}{\sqrt{\left(\frac{2\sqrt{2}}{7}\right)^2 + \left(\frac{2\sqrt{2}}{7}\right)^2 + \left(\frac{2\sqrt{2}}{7}\right)^2 + \left(\frac{2\sqrt{2}}{7}\right)^2}} = \frac{\sqrt{3}}{3}\vec{i} + \frac{\sqrt{3}}{3}\vec{j} + \frac{\sqrt{3}}{3}\vec{k}$$

$$\equiv (\cos\alpha) \stackrel{\rightarrow}{i} + (\cos\beta) \stackrel{\rightarrow}{j} + (\cos\gamma) \stackrel{\rightarrow}{k}$$

Do đó, các cosin chỉ phương của véc tơ đơn vị $\stackrel{\rightarrow}{e}$ là $\cos\alpha = \cos\beta = \cos\gamma = \sqrt{3}/3$ (0,5đ)

$$\Rightarrow \frac{\partial f(\sqrt{2}, \sqrt{2}, \sqrt{2})}{\partial \vec{e}} = Gradf(\sqrt{2}, \sqrt{2}, \sqrt{2}) \cdot \vec{e} =$$

$$\left(\frac{2\sqrt{2}}{7} \vec{i} + \frac{2\sqrt{2}}{7} \vec{j} + \frac{2\sqrt{2}}{7} \vec{k}\right) \cdot \left[(\cos\alpha) \vec{i} + (\cos\beta) \vec{j} + (\cos\gamma) \vec{k}\right] =$$

$$\frac{2\sqrt{2}}{7} \frac{\sqrt{3}}{3} + \frac{2\sqrt{2}}{7} \frac{\sqrt{3}}{3} + \frac{2\sqrt{2}}{7} \frac{\sqrt{3}}{3} = \frac{2\sqrt{6}}{7} \cdot (0,25\text{d})$$

Câu 3. Tập xác định của hàm số $D(f) = \mathbb{R}^3 \setminus \{(0,0,0)\} (0,25\mathbb{d})$

$$\begin{aligned} \mathbf{u} &= \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \frac{1}{\sqrt{\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2}} = (\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2)^{\frac{1}{2}} (\mathbf{0}, \mathbf{25d}) \\ \Rightarrow \frac{\partial \mathbf{u}}{\partial \mathbf{x}} &= \frac{\partial}{\partial \mathbf{x}} \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \frac{\partial}{\partial \mathbf{x}} \left[(\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2)^{\frac{1}{2}} \right] = -\frac{1}{2} \cdot 2\mathbf{x} (\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2)^{\frac{3}{2}} = -\mathbf{x} (\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2)^{\frac{3}{2}} \\ \Rightarrow \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} &= \frac{\partial}{\partial \mathbf{x}} \left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \right) = \frac{\partial}{\partial \mathbf{x}} \left[-\mathbf{x} (\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2)^{\frac{3}{2}} \right] = -(\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2)^{\frac{3}{2}} - \mathbf{x} \left(-\frac{3}{2} \right) \cdot 2\mathbf{x} (\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2)^{\frac{5}{2}} = \\ (2\mathbf{x}^2 - \mathbf{y}^2 - \mathbf{z}^2)(\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2)^{\frac{5}{2}} (\mathbf{0}, \mathbf{5d}) \\ \mathbf{T} \mathbf{u} \mathbf{o} \mathbf{g} \mathbf{t} \mathbf{u} &= \left(-\mathbf{x}^2 + 2\mathbf{y}^2 - \mathbf{z}^2)(\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2)^{\frac{5}{2}} \\ \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} &= (-\mathbf{x}^2 + 2\mathbf{y}^2 - \mathbf{z}^2)(\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2)^{\frac{5}{2}} \\ \frac{\partial^2 \mathbf{u}}{\partial \mathbf{z}^2} &= (-\mathbf{x}^2 - \mathbf{y}^2 + 2\mathbf{z}^2)(\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2)^{\frac{5}{2}} \\ \Rightarrow \nabla \mathbf{u} &= \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{z}^2} = (2\mathbf{x}^2 - \mathbf{y}^2 - \mathbf{z}^2)(\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2)^{\frac{5}{2}} + (-\mathbf{x}^2 + 2\mathbf{y}^2 - \mathbf{z}^2)(\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2)^{\frac{5}{2}} \\ + (-\mathbf{x}^2 - \mathbf{y}^2 + 2\mathbf{z}^2)(\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2)^{\frac{5}{2}} &= 0. \\ \mathbf{0}, \mathbf{5} \mathbf{d} \mathbf{0} \end{aligned}$$

Câu 4.

- Tập xác định của hàm số $f(x,y) = x^4 + y^4 36xy$ là $D(f) = \mathbf{R}^2.(\mathbf{0,25d})$
- Chúng ta có $\begin{cases} f_x^{'}(x,y) = 4x^3 36y \\ f_y^{'}(x,y) = 4y^3 36x \end{cases}$ nên điểm dừng (nếu có) là nghiệm của hệ phương trình

$$\begin{cases} f_{x}'(x,y) = 0 \\ f_{y}'(x,y) = 0 \end{cases} \Leftrightarrow \begin{cases} 4x^{3} - 36y = 0 \\ 4y^{3} - 36x = 0 \end{cases} \Leftrightarrow \begin{cases} x^{3} - 9y = 0 \\ y^{3} - 9x = 0 \end{cases} . (0,25d)$$

Hệ phương trình $\begin{cases} x^3 - 9y = 0 \\ y^3 - 9x = 0 \end{cases}$ có 3 nghiệm $(x_1, y_1) = (-3, -3), (x_2, y_2) = (0, 0), (x_3, y_3) = (3, 3)$ tương

ứng với 3 điểm dừng là $M_1(-3,-3)$, $M_2(0,0)$, $M_3(3,3)$. Cả 3 điểm dừng này đều thuộc tập xác định $D(f).({\color{red}0,250})$

- Chúng ta có
$$\begin{cases} f_{x^2}^{"}(x,y) = 12x^2 \equiv A(x,y) \\ f_{xy}^{"}(x,y) = -36 \equiv B(x,y) & \textbf{(0,25d)} \end{cases}$$

$$f_{y^2}^{"}(x,y) = 12y^2 \equiv C(x,y)$$

$$\Rightarrow \Delta(x,y) = B^2(x,y) - A(x,y)C(x,y) = (-36)^2 - 12x^212y^2 = 1296 - 144x^2y^2. \textbf{(0,25d)}$$

- Xét tại mỗi điểm dừng
 - + Tại điểm dùng $M_1(-3,-3)$:

$$\begin{cases} \Delta(-3,-3) = (1296 - 144x^2y^2) \Big|_{(x,y)=(-3,-3)} = 1296 - 144.(-3)^2.(-3)^2 = -10368 \\ A(-3,-3) = 12x^2 \Big|_{(x,y)=(-3,-3)} = 12.(-3)^2 = 108 \\ f(-3,-3) = (x^4 + y^4 - 36xy) \Big|_{(x,y)=(-3,-3)} = (-3)^4 + (-3)^4 - 36.(-3).(-3) = -162 \end{cases}$$

- + Tại điểm dừng $M_2(0,0)$: $\Delta(0,0) = (1296 144x^2y^2)\Big|_{(x,y)=(0,0)} = 1296 144.0^2.0^2 = 1296$
- + Tại điểm dừng $M_3(3,3)$:

$$\begin{cases} \Delta(3,3) = (1296 - 144x^2y^2)\Big|_{(x,y)=(3,3)} = 1296 - 144.3^2.3^2 = -10368 \\ A(3,3) = 12x^2\Big|_{(x,y)=(3,3)} = 12.3^2 = 108 \\ f(3,3) = (x^4 + y^4 - 36xy)\Big|_{(x,y)=(3,3)} = 3^4 + 3^4 - 36.3.3 = -162 \end{cases}$$

TT	Điểm dừng	Δ	A	Kết luận	Điểm
1	$M_1(-3,-3)$	-10368 < 0	108 > 0	Hàm số $f(x,y)$ có cực tiểu địa phương tại điểm này và $f_{ct} = f(-3,-3) = -162$.	0,25đ
2	$M_2(0,0)$	1269 > 0		Hàm số f(x,y) không có cực trị tại điểm này.	0,25đ
3	$M_3(3,3)$	-10368 < 0	108 > 0	Hàm số $f(x,y)$ có cực tiểu địa phương tại điểm này và $f_{ct} = f(3,3) = -162$.	0,25đ

Cách khác. Từ việc xác định D(f) đến việc tính được A(x,y), B(x,y) và C(x,y) thực hiện hoàn toàn tương tự như trên. Sau đó, thực hiện tiếp.

Dạng toàn phương
$$d^2f(x,y) = f_{x^2}^{"}(x,y)dx^2 + 2f_{xy}^{"}(x,y)dxdy + f_{y^2}^{"}(x,y)dy^2$$

= $A(x,y)dx^2 + 2B(x,y)dxdy + C(x,y)dy^2 = 12x^2dx^2 + 2.(-36)dxdy + 12y^2dy^2.$ (0,25đ)

 $+ \text{ Tại điểm dừng } M_1(-3,-3): \text{Dạng toàn phương } d^2f(-3,-3) = 108 dx^2 + 2.(-36) dx dy + 108 dy^2 \text{ có ma} \\ \text{trận tương ứng là } \begin{pmatrix} 108 & -36 \\ -36 & 108 \end{pmatrix}. \text{ Ma trận này có hai định thức con chính } A_1 = \det(108) = \left\|108\right\| = 108 > 0 \,,$

 $A_2 = \det\begin{pmatrix} 108 & -36 \\ -36 & 108 \end{pmatrix} = \begin{vmatrix} 108 & -36 \\ -36 & 108 \end{vmatrix} = 10368 > 0 \text{, do dó dạng toàn phương d}^2 f(-3,-3) xác định dương nên}$ hàm số $f(x,y) = x^4 + y^4 - 36xy$ đạt cực tiểu địa phương tại điểm này và có giá trị cực tiểu địa phương là $f_{ct} = f(-3,-3) = -162. \textcolor{red}{(0,25\text{d})}$

 $+ \text{ Tại điểm dừng } M_1(0,0): \text{Dạng toàn phương } d^2f(0,0) = 0.\text{dx}^2 + 2.(-36)\text{dxdy} + 0.\text{dy}^2\text{ có ma trận tương ứng là } \begin{pmatrix} 0 & -36 \\ -36 & 0 \end{pmatrix}. \text{ Ma trận này có hai định thức con chính } A_1 = \det(0) = \|0\| = 0 \,, \\ A_2 = \det\begin{pmatrix} 0 & -36 \\ -36 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -36 \\ -36 & 0 \end{pmatrix} = -296 < 0 \,, \text{ do đó dạng toàn phương } d^2f(0,0) \text{ không xác định dấu nên hàm số } f(x,y) = x^4 + y^4 - 36xy \text{ không có cực trị địa phương tại điểm này.}} (0,25\mathbf{d})$

 $+ \text{Tại điểm dừng } M_3(3,3): \text{Dạng toàn phương } d^2f(3,3) = 108 dx^2 + 2.(-36) dx dy + 108 dy^2 \text{ có ma trận tương ứng là } \begin{pmatrix} 108 & -36 \\ -36 & 108 \end{pmatrix}. \text{ Ma trận này có hai định thức con chính } A_1 = \det(108) = \left\|108\right\| = 108 > 0, \\ A_2 = \det\begin{pmatrix} 108 & -36 \\ -36 & 108 \end{pmatrix} = \left\|108 & -36 \\ -36 & 108 \right\| = 10368 > 0, \text{ do đó dạng toàn phương } d^2f(3,3) \text{ xác định dương nên hàm số } f(x,y) = x^4 + y^4 - 36xy đạt cực tiểu địa phương tại điểm này và có giá trị cực tiểu địa phương là <math display="block">f_{ct} = f(3,3) = -162.(\textbf{0,25d})$

Câu 5.

Giao điểm của đường tròn $x^2 + y^2 = a^2$ và đường thẳng x + y = a (a > 0) là nghiệm của hệ phương trình $\begin{cases} x^2 + y^2 = a^2 \\ x + y = a \end{cases} \Rightarrow \begin{cases} (a,0) \\ (0,a) \end{cases}$

Đồ thị của hình viên phân D trong trong hệ tọa độ Descarter Oxy là

Chiếu miền D lên trục Ox, chúng ta được $D = \begin{cases} 0 \le x \le a \\ a - x \le y \le \sqrt{a^2 - x^2} \end{cases}$ (0,25đ)

Tính $\iint_{D} (x+y)dxdy$:

$$\begin{split} I &= \iint\limits_{D} (x+y) dx dy = \int\limits_{0}^{a} dx \int\limits_{a-x}^{\sqrt{a^2-x^2}} (x+y) dy = \int\limits_{0}^{a} \left(xy + \frac{y^2}{2} \right) \bigg|_{a-x}^{\sqrt{a^2-x^2}} dx = \int\limits_{0}^{a} x \sqrt{a^2 - x^2} dx = \\ &- \frac{1}{2} \int\limits_{0}^{a} (a^2 - x^2)^{\frac{1}{2}} d(a^2 - x^2) = -\frac{1}{2} \cdot \frac{1}{\frac{1}{2} + 1} \left(a^2 - x^2 \right)^{\frac{1}{2} + 1} \bigg|_{0}^{a} = -\frac{1}{3} \left(a^2 - x^2 \right)^{\frac{3}{2}} \bigg|_{0}^{a} = \frac{a^3}{3} (\textbf{1,0d}) \end{split}$$

Tìm a từ đẳng thức $\iint\limits_{D} (x+y) dx dy = \frac{1}{3} \Leftrightarrow \frac{a^{3}}{3} = \frac{1}{3} \Leftrightarrow a^{3} = 1 \Leftrightarrow a = 1. (0,25\text{d})$

Cách khác. Có thể tính tích phân I sau khi đổi tọa độ Descarter sang tọa độ cực $\begin{cases} x = r\cos\phi \\ y = r\sin\phi \end{cases}$

Khi đó, định thức Jacobi
$$J = det \begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \phi} \end{pmatrix} = det \begin{pmatrix} cos\phi & -rsin\phi \\ sin\phi & rcos\phi \end{pmatrix} = r \Rightarrow |J| = r \quad và ảnh của miền D là$$

$$\text{mi\`en } D' = \left\{ (r, \phi) \in R^2 \middle| \frac{a}{\cos \phi + \sin \phi} \le r \le a, 0 \le \phi \le \pi/2 \right\}.$$

Miền D' được xác định như sau: Đồ thị của miền D' trong hệ tọa độ cực (r,ϕ) chính là đồ thị của miền D trong hệ tọa độ Descarter Oxy (điểm gốc của hai hệ tọa độ này trùng nhau). Từ đồ thị của miền D' dễ $(x - r\cos\phi)$

dàng suy ra
$$0 \le \phi \le \pi/2$$
. Còn đối với tọa độ r, thay
$$\begin{cases} x = r \cos \phi \\ y = r \sin \phi \end{cases}$$
 vào
$$\begin{cases} x^2 + y^2 \le a^2 \\ x + y \ge a \end{cases}$$
 thì được

 $\frac{a}{\cos\varphi + \sin\varphi} \le r \le a.$

$$\Rightarrow I = \iint\limits_{D} (x+y) dx dy = \iint\limits_{D'} (r \cos \phi + r \sin \phi) \left| J \right| dr d\phi = \int\limits_{0}^{\pi/2} d\phi \int\limits_{\frac{a}{\cos \phi + \sin \phi}}^{a} (r \cos \phi + r \sin \phi) r dr =$$

$$\frac{a^{3}}{3} \int_{0}^{\pi/2} \left[\cos \varphi + \sin \varphi - \frac{1}{(\cos \varphi + \sin \varphi)^{2}} \right] d\varphi = \frac{a^{3}}{3} (\sin \varphi - \cos \varphi) \Big|_{0}^{\pi/2} - \frac{a^{3}}{3} K = \frac{2a^{3}}{3} - \frac{a^{3}}{3} K$$

$$v\acute{\sigma}i \ K = \int\limits_{0}^{\pi/2} \frac{d\phi}{\left(cos\phi + sin\phi\right)^{2}} = \int\limits_{0}^{\pi/2} \frac{d\phi}{cos^{2}\phi + 2cos\phi sin\phi + sin^{2}\phi} = \int\limits_{0}^{\pi/2} \frac{d\phi}{1 + sin2\phi}$$

$$\text{ D} \check{a} t t = tan \phi \text{ khi d} \acute{o} \begin{cases} \phi = 0 & \rightarrow \quad t = 0 \\ \phi = \pi/2 & \rightarrow \quad t = \infty \end{cases} \text{ và } \begin{cases} d \phi = \frac{dt}{t^2 + 1} \\ \frac{1}{1 + \sin 2\phi} = \frac{t^2 + 1}{(t + 1)^2} \end{cases}$$

$$\Rightarrow K = \int_{0}^{\infty} \frac{t^{2} + 1}{(t+1)^{2}} \cdot \frac{dt}{t^{2} + 1} = \int_{0}^{\infty} \frac{dt}{(t+1)^{2}} = \int_{0}^{\infty} \frac{d(t+1)}{(t+1)^{2}} = -\frac{1}{t+1} \Big|_{0}^{\infty} = \lim_{t \to \infty} \frac{-1}{t+1} - \frac{-1}{0+1} = -0 + 1 = 1$$

Thay K vào biểu thức của I chúng ta được $I = \frac{2a^3}{3} - \frac{a^3}{3} K = \frac{2a^3}{3} - \frac{a^3}{3} .1 = \frac{a^3}{3}$.

Nhận xét. Đối với bài toán này, tính $\iint_D (x+y) dxdy$ trong hệ tọa độ Descarter đơn giản hơn tính trong hệ tọa độ cực.