Math 240A: Real Analysis, Fall 2019

Homework Assignment 7

Due Friday, November 22, 2019

Unless otherwise stated, we assume that (X, \mathcal{M}) is a measurable space.

- 1. Prove the following:
 - (1) If ν is a signed measure on (X, \mathcal{M}) and $E \in \mathcal{M}$, then E is ν -null if and only if $|\nu|(E) = 0$.
 - (2) If μ and ν be two signed measures on (X, \mathcal{M}) , then $\nu \perp \mu$ if and only if $\nu^+ \perp \mu$ and $\nu^- \perp \mu$.
- 2. Let μ be a signed measure on (X, \mathcal{M}) and $E \in \mathcal{M}$. Prove the following:
 - (1) $\nu^+(E) = \sup\{\nu(F) : F \in \mathcal{M} \text{ and } F \subseteq E\} \text{ and } \nu^-(E) = -\inf\{\nu(F) : F \in \mathcal{M} \text{ and } F \subseteq E\}$
 - (2) $|\nu|(E) = \sup \left\{ \sum_{j=1}^{n} |\nu(E_j)| : n \in \mathbb{N}, E_1, \dots, E_n \in \mathcal{M} \text{ are disjoint, and } \bigcup_{j=1}^{n} E_j = E \right\}.$
- 3. Let ν be a signed measure on (X, \mathcal{M}) . Prove the following:
 - (1) $L^1(\nu) = L^1(|\nu|);$

 - (2) If $f \in L^1(\nu)$ then $\left| \int_X f \, d\nu \right| \le \int_X |f| \, d|\nu|$; (3) If $E \in \mathcal{M}$ then $|\nu|(E) = \sup \left\{ \left| \int_E f \, d\nu \right| : |f| \le 1 \right\}$.
- 4. Let μ be a positive measure on (X, \mathcal{M}) and $f \in L^1(\mu)$ a real-valued function on X. Define $\nu(E) = \int_E f \, d\mu$ for each $E \in \mathcal{M}$.
 - (1) Prove that ν is a signed measure on (X, \mathcal{M}) .
 - (2) Describe the Hahn decomposition of ν and the positive, negative, and the total variation of ν in terms of μ and f.
- 5. Let μ be a positive measure and ν a signed measure on (X, \mathcal{M}) . Prove that the following are equivalent: (1) $\nu \ll \mu$; (2) $|\nu| \ll \mu$; (3) $\nu^+ \ll \mu$ and $\nu^- \ll \mu$.
- 6. Let (X, \mathcal{M}, μ) be a measure space and $f_n \to f$ in $L^1(\mu)$. Prove that $\{f_n\}_{n=1}^{\infty}$ is uniformly integrable.
- 7. Let X = [0,1], $\mathcal{M} = \mathcal{B}_{[0,1]}$, m = Lebesgue measure, and $\mu = \text{counting measure}$. Prove the following:
 - (1) $m \ll \mu$ but $dm \neq f d\mu$ for any $f \in L^1(\mu)$;
 - (2) μ has no Lebesgue decomposition with respect to m.
- 8. Let μ and ν be two σ -finite measures on (X, \mathcal{M}) with $\nu \ll \mu$. Let $\lambda = \mu + \nu$. Assume that $f = d\nu/d\lambda$. Prove that $0 \le f < 1$ μ -a.e. and $d\nu/d\mu = f/(1-f)$.
- 9. Let (X, \mathcal{M}, μ) be a finite measure space, \mathcal{N} a sub- σ -algebra of \mathcal{M} , and $\nu = \mu|_{\mathcal{N}}$. Let $f \in L^1(\mu)$. Prove that there exists $g \in L^1(\nu)$ such that $\int_E f d\mu = \int_E g d\nu$ for all $E \in \mathcal{N}$. If h is another such function, then $g = h \nu$ -a.e.
- 10. Let ν be a complex measure on (X, \mathcal{M}) such that $\nu(X) = |\nu|(X)$. Prove that $\nu = |\nu|$.