NORMA BRASILEÑA

ABNT NBR 15601

Primera edición 30.11.2007

Válida a partir de 01.12.2007

Televisión digital terrestre — Sistema de transmisión ISDB-Tb

Leer: páginas 1 a la 12; 21 a la 26 página 43 (localización de segmentos) página 44 (intervalo de guarda) páginas 51 a 54

Palabras clave: Televisión digital terrestre. Transmisión. Modulación. Codificación de canal. OFDM.

ICS 33.160.01

ISBN 978-85-07-00886-6

ABNT NBR 15601:2007

© ABNT 2007

Todos los derechos reservados. A menos que se especifique de otro modo, ninguna parte de esta publicación puede ser reproducida o utilizada por cualquier medio, electrónico o mecánico, incluyendo fotocopia y microfilm, sin permiso por escrito de la ABNT.

ABNT Av.Treze de Maio, 13 - 28° andar 20031-901 - Rio de Janeiro - RJ Tel.: + 55 21 3974-2300 Fax: + 55 21 2220-1762 abnt@abnt.org.br www.abnt.org.br

Impresso en Brasil

Página

Índice

Prefac	io	V
I	Alcance	1
2	Referencias normativas	1
3	Términos y definiciones	1
1	Abreviaturas	
•	Descripción del sistema	
5.1	Visión general	
5.2	Transmisión jerárquica	
5.3	Recepción parcial	5
5.4	Modos	5
3	Esquema de codificación de canal	6
3.1	Parámetros principales	
5.2	Configuración básica de la codificación de canal	
6.3	Remultiplexación de TS	
5.3.1	Configuración del cuadro multiplex	
5.3.2	Modelo de receptor para referencia de cuadro multiplex	
3.4	Codificación externa (outer code)	
3.5	División del TS en capa jerárquica	
6.6	Dispersión de energía	
3.7	Ajuste de atraso	
8.6	Byte interleaving	
5.9	Codificación interna (inner code)	
5.10	Modulación de la portadora	
5.10.1 5.10.2	Configuración de la modulación de la portadora	
5.10.2 5.10.3	Ajuste de atraso	.21
5.10.3 5.10.4	Normalización del nivel de modulación	
5.10.4 6.10.5	Configuración del segmento de datos	
5. 10.5 5.11	Combinación de capas jerárquicas	
5.12	Time interleaving e frequency interleaving	
5.12.1	Time interleaving	
	Entrelazamiento en frecuencia	
5.13	Estructura de cuadro	
5.13.1		
	Configuración del segmento OFDM para modulación diferencial	
	Configuración del segmento OFDM para modulación síncrona	
5.14	Señal piloto	
5.14.1	Piloto disperso (SP - scattered pilot)	
6.14.2	Piloto continuo (CP)	.42
5.14.3	TMCC	
	Canal auxiliar (AC)	
3.15	Configuración del espectro de transmisión	
3.15.1		
	Formato de la señal de RF	
3.15.3	Inserción de intervalo de guarda	
3.16	Señal TMCC – Esquema de codificación y sistema de transmisión	
5.16.1	Visión general	.45
	Atribución de los bits de la portadora TMCC	
	Informes para demodulación diferencial	.45

ABNT NBR 15601:2007

6.16.5	Identificación del tipo de segmento	46
	Información de la señal TMCC	
7	Requisitos de utilización de frecuencia	51
7.1	Ancho de banda de frecuencia	51
7.2	Estabilidad de frecuencia y desvío de frecuencia de transmisión admisible	51
7.3	Off-set de frecuencia de las portadoras OFDM	52
7.4	Frecuencia de muestreo de IFFT y desvío admisible	54
7.5	Máscara del espectro de transmisión	54
7.5.1	Característica de la máscara del espectro de transmisión	54
7.5.2	Criterios para aplicación de las máscaras	55
7.6	Intensidad de la emisión espuria admisible	56
Bibliog	grafíagrafía	57

Prefacio

La Associação Brasileira de Normas Técnicas (ABNT) es el Fórum Nacional de Normalización. Las Normas Brasileñas, cuyo contenido es responsabilidad de los Comités Brasileños (ABNT/CB), de los Organismos de Normalización Sectorial (ABNT/ONS) y de las Comisiones de Estudios Especiales (ABNT/CEE), son elaboradas por Comisiones de Estudio (CE), formadas por representantes de sus sectores implicados de los que forman parte: productores, consumidores y neutrales (universidades, laboratorios y otros).

Los Documentos Técnicos ABNT se elaboran de acuerdo con las reglas de Directivas ABNT, Parte 2.

La Associação Brasileira de Normas Técnicas (ABNT) llama la atención sobre la posibilidad de que algunos de los elementos de este documento pueden ser objeto de derechos de patente. La ABNT no debe ser considerada responsable por la identificación de cualesquiera derechos de patente.

La ABNT NBR 15601 ha sido elaborada por la Comisión de Estudio Especial de Televisión Digital (ABNT/CEE-00:001.85). El Proyecto circuló en Consulta Nacional según Edicto nº 07, de 29.06.2007 a 28.08.2007, con el número de Proyecto 00:001.85-001.

En caso que surja cualquier duda con relación a la interpretación de la versión en español siempre deben prevalecer las prescripciones de la versión en portugués

Esta Norma está basada en los trabajos del Fórum del Sistema Brasileiro de Televisão Digital Terrestre, según establece el Decreto Presidencial nº 5.820, de 29.06.2006.

Esta versión en español es equivalente a la versión corregida de la ABNT NBR 15601:2007, de 07.04.2008.

NORMA BRASILEÑA ABNT NBR 15601:2007

Televisión digital terrestre — Sistema de transmisión

1 Alcance

Esta Norma especifica el sistema de transmisión del sistema brasileño de televisión digital terrestre (SBTVD), comprendiendo el sistema de codificación de canal y modulación, y describiendo el procesamiento de señal en el modulador y los procesos de demodulación en la recepción.

2 Referencias normativas

Los documentos indicados a continuación son indispensables para la aplicación de este documento. Para las referencias fechadas, se aplican solamente las ediciones citadas. Para las referencias sin fecha, se aplican las ediciones más recientes del documento citado (incluyendo enmiendas).

ARIB STD-B31:2005, Transmission system for digital terrestrial television broadcasting

ITU Recommendation BT.1 306:2006, Error correction, data framing, modulation and emission methods for digital terrestrial television broadcasting

3 Términos y definiciones

Para los efectos de este documento, se aplican los siguientes términos y definiciones.

3.1

dominio de espurios

gama de frecuencias además de las emisiones fuera de la banda, en la cual las señales espurias generalmente predominan

3.2

dominio fuera de la banda

gama de frecuencias inmediatamente fuera de la banda necesaria, excluyendo el dominio de espurios, en el cual las emisiones fuera de la banda generalmente predominan

NOTA En el caso de la radiodifusión terrestre digital, el dominio de las emisiones fuera de la banda está entre ± 15 MHz del centro de la banda necesaria (el límite de frecuencia entre la región fuera de la banda y la región de espurios está incluido en el dominio de los espurios).

3.3

emisión espuria

emisión en una frecuencia o gama de frecuencias inmediatamente fuera de la banda necesaria para la transmisión de la señal y cuyo nivel puede ser reducido sin afectar la transformación a ser transmitida

NOTA Las emisiones espurias incluyen emisiones harmónicas, emisiones parásitas, productos de intermodulación y productos de conversión de frecuencia, pero excluyen las emisiones fuera de la banda.

3.4

emisión fuera de la banda

emisión en una frecuencia o gama de frecuencias inmediatamente fuera de la banda necesaria, que es resultante del proceso de modulación de la señal, excluyendo las emisiones espurias

35

información adicional

información que no forma parte del contenido de la radiodifusión y que es transmitida usando parte de la portadora de control de información

3 6

información de capa jerárquica

información de los parámetros de codificación para cada capa en la transmisión jerárquica

3.7

información de control

información que no pertenece al flujo de transporte MPEG y que ayuda al receptor en la operación de demodulación y decodificación

3.8

ancho de banda de la frecuencia del canal

ancho de banda de frecuencia de 6 MHz

3.9

modo

identificación del modo de transmisión basado en la separación de las frecuencias de las portadoras OFDM

3.10

número del segmento

número usado para identificar los 13 segmentos y sus correspondientes datos de segmento

3.11

profundidad del código

número de elementos de atraso del código convolucional más uno

3.12

cuadro multiplex

cuadro con la finalidad de procesamiento de señal usada para remultiplexar MPEG-2 TS para crear un único TS

NOTA El cuadro multiplex es idéntico a un cuadro OFDM en términos de duración.

3.13

cuadro OFDM

cuadro de transmisión consistiendo en 204 símbolos OFDM

3.14

receptor full-seg

dispositivo capaz de decodificar informaciones de audio, vídeo, datos etc., contenidas en la capa del *transport* stream de 13 segmentos destinada al servicio fijo (indoor) y móvil

NOTA La clasificación *full-seg* se aplica a los convertidores digitales, también conocidos como *settop box*, y a los receptores de 13 segmentos integrados con pantalla de exhibición, pero no exclusivos a éstos. Este tipo de receptor es capaz de recibir y decodificar señales de televisión digital terrestre de alta definición y, a criterio del fabricante, también recibir y decodificar informaciones transportadas en la capa "A" del *transport stream*, aplicada para los servicios dirigidos a los receptores portátiles, definidos como *one-seg*.

3.15

receptor modelo

receptor virtual usado para arreglo de la transmisión TSP en el cuadro multiplex

3.16

receptor one-seg

dispositivo que decodifica exclusivamente informaciones de audio, video, datos etc., contenidas en la capa "A" asignada en el segmento central de los 13 segmentos

NOTA La clasificación *one-seg* se destina a los receptores del tipo portátil, también conocidos como "handheld", especialmente recomendados para pantallas de exhibición de dimensiones reducidas, normalmente hasta 7 pulgadas. Entre los productos clasificados como *one-seg* se encuentran los receptores integrados con teléfono celular, PDA, *dongle* y televisores portátiles, que se alimentan por medio de una batería interna y, por lo tanto, no requieren una fuente externa de energía, así como aquellos destinados a automóviles. Este tipo de receptor es capaz de recibir y decodificar sólo señales de televisión digital terrestre transportadas en la capa "A" del *transport stream* y, como consecuencia de ello, únicamente señales de perfil básico, destinadas a los dispositivos portátiles de recepción.

3.17

recepción parcial

recepción de solamente un segmento OFDM localizado en el centro del grupo de segmentos

3.18

segmento de datos

grupo de datos que corresponde a la portadora efectiva

NOTA El segmento de datos es un bloque elemental para codificación de canal.

3.19

segmento OFDM

banda base, 1/14 de ancho de canal de televisión, para transmisión de señal, generado agregando portadoras de señal de control a la portadora de datos o señal procesada para formar un cuadro

3.20

símbolo de portadora

símbolo para portadora OFDM

3.21

símbolo OFDM

símbolo de transmisión para una señal OFDM

3.22

transmisión jerárquica

transmisión simultánea de múltiples segmentos OFDM que son codificados diferentemente

3.23

TSP de transmisión

paquete de 204 bytes formado agregando 16 bytes de paridad a los 188 bytes del MPEG TSP

4 Abreviaturas

Para los efectos de este documento, se aplican las siguientes abreviaturas.

AC Auxiliary Channel

BPSK Binary Phase Shift Keying

C/N Carrier to Noise Ratio

CP Continual Pilot

DBPSK Differential Binary Phase Shift Keying

DQPSK Differential Quadrature Phase Shift Keying

FFT Fast Fourier Transformer

IFFT Inverse Fast Fourier Transform
MPEG Moving Picture Experts Group

OCT Octal Notation

OFDM Orthogonal Frequency Division Multiplexing

PRBS Pseudo Random Binary Sequence

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keying

RF Radio Frequency
RS Reed Solomon

SFN Single Frequency Network

SP Scattered Pilot

TMCC Transmission and Multiplexing Configuration Control

TS Transport Stream

TSP Transport Stream Packet

5 Descripción del sistema

5.1 Visión general

En la transmisión, una o más entradas conteniendo haz de datos TS, definidas en el sistema MPEG-2, se deben remultiplexar obligatoriamente para crear un único TS. Ese TS debe obligatoriamente ser sometido a la etapa de codificación de canal múltiple, de acuerdo con la intención de servicio y debe, obligatoriamente, ser entonces enviado como una señal OFDM común (ver Figura 1).

Figura 1 — Visión general del sistema de transmisión

La transmisión digital terrestre debe utilizar obligatoriamente el *time interleaving* para proveer una codificación con la menor tasa de errores para recepción móvil, en las cuales son inevitables las variaciones de intensidad de campo. El espectro de la radiodifusión de televisión digital debe obligatoriamente consistir en 13 bloques OFDM sucesivos, con cada segmento ocupando 1/14 del ancho de canal de televisión.

<u>Un segmento OFDM debe obligatoriamente tener una configuración que permita la conexión de múltiples segmentos para abastecer un ancho de transmisión que atienda a la necesidad del medio.</u>

5.2 Transmisión jerárquica

La codificación de canal debe obligatoriamente ser realizada en unidades de segmento OFDM. Un único canal de televisión debe obligatoriamente ser usado simultáneamente para servicio de recepción fija, recepción móvil y recepción portátil (transmisión jerárquica).

Cada capa jerárquica debe obligatoriamente consistir en uno o más segmentos OFDM. Parámetros como esquema de modulación de portadoras OFDM, tasa de *inner code* y de *time interleaving* pueden ser especificados para cada capa jerárquica. Pueden ser definidas hasta tres capas jerárquicas, siendo que un segmento puede ser usado para recepción parcial, siendo también considerada una capa jerárquica (ver Figura 2).

El número de segmentos y el conjunto de parámetros de codificación de cada capa jerárquica pueden ser configurados por el radiodifusor. La señal TMCC debe obligatoriamente contener las informaciones de control e informaciones necesarias para auxiliar al receptor en la identificación de los modos de operación.

Figura 2 — Diagrama en bloques del sistema de transmisión

5.3 Recepción parcial

El segmento central del espectro, que consiste en 13 segmentos, puede ser sometido al proceso de entrelazamiento de frecuencia sin la participación de las demás porciones del espectro de radiodifusión. Ese tipo de configuración permite la creación de un servicio portátil (*one-seg*), que consiste en una de las capas del servicio de televisión.

5.4 Modos

Para permitir la operación de acuerdo con la distancia entre las estaciones de una SFN y garantizar la recepción adecuada ante las variaciones del canal como consecuencia del efecto *Doppler* de la señal de recepción móvil, debe obligatoriamente ser posible seleccionar entre tres opciones de separación de portadoras OFDM ofrecidas por el sistema brasileño. Ésas tres opciones de separación se deben identificar obligatoriamente como modos del sistema.

<u>En el caso de Brasi</u>l, la separación de <u>frecuencia</u> debe obligatoriamente ser de aproximadamente <u>4 kHz, 2 kHz</u> <u>ó 1 kHz, respectivamente para los modos 1, 2 y 3</u>. El <u>número de portadoras varía dependiendo del modo</u>, pero la <u>tasa útil</u> de cada modo debe obligatoriamente ser exactamente <u>la misma en todos los modos</u>.

6 Esquema de codificación de canal

6.1 Parámetros principales

Todas las especificaciones técnicas referentes a la codificación de canal deben obligatoriamente estar de acuerdo con la ARIB STD-B31:2005, sección 3, con la ITU Recommendation BT.1306, Anexo 1.c, y también con la Tabla 1.

Tabla 1 — Parámetros del sistema de transmisión

	Parámetros	Valores
1	Número de segmentos	13
2	Ancho del segmento	6.000/14 = 428,57 kHz
		5,575 MHz 1 (modo 1)
3	Banda UHF	5,573 MHz 2 (modo 2)
		5,572 MHz 3 (modo 3)
		1 405 (modo 1)
4	Número de portadoras	2.809 (modo 2)
		5.617 (modo 3)
5	Método de modulación	DQPSK, QPSK, 16-QAM, 64-QAM
6	Duración de los símbolos activos	252 μs (modo 1) 504 μs (modo 2) 1.008 μs (modo 3)
7	Separación de portadoras	Bws/108 = 3,968 kHz (modo 1) Bws/216 = 1,984 kHz (modo 2) Bws/432 = 0,992 kHz (modo 3)
8	Duración del intervalo de guarda	1/4, 1/8, 1/16, 1/32 de la duración del símbolo activo 63; 31,5; 15,75; 7,875 µs (modo 1) 126; 63; 31,5; 15,75 µs (modo 2) 252; 126; 63; 31,5 µs (modo 3)
9	Duración total de los símbolos	315; 283,5; 267,75; 259,875 µs (modo 1) 628; 565; 533,5; 51 7,75 µs (modo 2) 1 260; 1 134; 1 071; 1 039,5 µs (modo 3)
10	Duración del cuadro de transmisión	204 símbolos OFDM
11	Codificación de canal	Código convolucional, tasa = 1/2 con 64 estados Punzado para las tasas 2/3, 3/4, 5/6, 7/8
12	Entrelazamiento interno	Entrelazamiento intra e inter-segmentos (entrelazamiento en frecuencia) Entrelazamiento convolucional con profundidad de <i>interleaving</i> 0; 380; 760; 1.520 símbolos (modo 1) 0; 190; 380; 760 símbolos (modo 2), 0; 95; 190; 380 símbolos (modo 3)

Los datos transmitidos deben obligatoriamente consistir en un grupo TS, que incluye múltiples TSP definidos en el sistema MPEG-2.

Los segmentos de datos se deben someter obligatoriamente a la codificación de canal requerida. Posteriormente, señales piloto se deben agregar obligatoriamente al segmento de datos en la sección de cuadro OFDM para formar un segmento OFDM (con ancho de 6/14 MHz).

Todos los 13 segmentos OFDM deben obligatoriamente ser convertidos colectivamente en señales de transmisión OFDM por la IFFT.

El esquema de codificación de canal debe obligatoriamente permitir la transmisión jerárquica en la cual múltiples capas jerárquicas, con diferentes parámetros de transmisión, pueden ser transmitidas simultáneamente (ver Figura 3).

Figura 3 — Ejemplo de transmisión jerárquica y recepción parcial

Cada capa jerárquica debe obligatoriamente consistir en uno o más segmentos OFDM. Parámetros como esquema de modulación de la portadora, tasa del *inner code* y longitud del *time interleaving* pueden ser especificados para cada capa jerárquica. Hasta tres capas jerárquicas pueden ser transmitidas en un canal de 6 MHz.

Los parámetros del segmento OFDM deben obligatoriamente estar de acuerdo con la Tabla 2 y los parámetros de la señal de transmisión deben obligatoriamente estar de acuerdo con la Tabla 3.

La tasa de datos por segmento debe obligatoriamente estar de acuerdo con la Tabla 4 y la tasa de datos para todos los 13 segmentos debe obligatoriamente estar de acuerdo con la Tabla 5.

Tabla 2 — Parámetros del segmento OFDM

Modo		Мо	do 1	Мо	do 2	Мо	do 3
Ancho de la	banda			3000/7 = 4	428,57 kHz		
Separación entre frecuencias portadoras		250/63 kHz		125/6	3 kHz	125/126 kHz	
	Total	108	108	216	216	432	432
	Datos	96	96	192	192	384	384
	SP ^a	9	0	18	0	36	0
Número de portadoras	CP ^a	0	1	0	1	0	1
position	TMCC b	1	5	2	10	4	20
	AC1 ^c	2	2	4	4	8	8
	AC2 ^c	0	4	0	9	0	19
Esquema de modulación de las portadoras		QPSK 16QAM 64QAM	DQPSK	QPSK 16QAM 64QAM	DQPSK	QPSK 16QAM 64QAM	DQPSK
Símbolos por cua	adro	204					
Tamaño del símb	olo efectivo	252 µs		504 µs		100	8 µs
		63 μs (1/4),		126 µs (1/4),		252 μ	s (1/4),
Intervalo de ç	guarda	31,5 µs (1/8),		63 µs (1/8),		126 µs (1/8),	
`		15,75 µs (1/16),		31,5 µs (1/16),		63 μs (1/16),	
		64,26 n	ns (1/4),	128,52 ms (1/4),		257,04 ms (1/4),	
Longitud del cu	uadro	57,834 ו	ms (1/8),	115,668	ms (1/8),	231,336	ms (1/8),
		54,621 n	ns (1/16),	109,242 ms (1/16),		218,484 ms (1/16),	
Frecuencia de muest	treo de la IFFT			512/63 = 8	,12698 MHz		
Entrelazamiento int	terno		Código co	nvolucional	(1/2, 2/3, 3/4	4, 5/6, 7/8)	
Codificador exter	no	RS (204,188)					

^a SP y CP son usados por el receptor para fines de sincronización y demodulación.

b MCC es información de control.

AC se usa para transmitir información adicional. AC1 está disponible en igual número en todos los segmentos, mientras que AC2 está disponible solamente en segmento de modulación diferencial.

Tabla 3 — Parámetros de la señal de transmisión

Modo		Modo 1	Modo 2	Modo 3		
Número de segmento	os OFDM Ns		13			
Ancho de ba	nda	3000/7 kHz x Ns + 250/63 kHz	3000/7 kHz x Ns + 125/63 kHz	3000/7 kHz x Ns + 125/126 kHz		
			= 5,573MHz	= 5,572 MHz		
Número de segm modulación dife			Nd			
Número de segm modulación sír			$n_s (n_s + n_d = N_s)$			
Separación entre fr portadora		250/63 = 3,968 kHz	125/63 = 1,984 kHz	125/126 = 0,992 kHz		
	Total	108 x N _s + 1 = 1 405	216 x N _s + 1 = 2 809	432 x N _s + 1 = 5 617		
	Datos	96 x N _s = 1 248	192 x N _s = 2 496	384 x N _s = 4 992		
Número de	SP	9 x n _s	18 x n _s	36 x n _s		
portadoras	CP a	n _d + 1	n _d + 1	n _d + 1		
	TMCC	n _s + 5 x n _d	2 x n _s + 10 x n _d	4 x n _s + 20 x n _d		
	AC1	2 x N _s = 26	4 x N _s = 52	4 x N _s = 104		
	AC2	4 x n _d	9 x n _d	19 x n _d		
Esquema de modula portadora		QPSK, 16QAM, 64QAM, DQPSK				
Símbolos por o		204				
Tamaño del símbo	lo efectivo	252 µs	504 µs	1008 µs		
		63 µs (1/4),	126 µs (1/4),	252 µs (1/4),		
Intervalo de gu	uarda	31,5 µs (1/8),	63 µs (1/8),	126 µs (1/8),		
		15,75 µs (1/16),	31,5 µs (1/16),	63 µs (1/16),		
		7,875 µs (1/32)	15,75 µs (1/32)	31,5 µs (1/32)		
		64,26 ms (1/4),	128,52 ms (1/4),	257,04 ms (1/4),		
Longitud del c	uadro	57,834 ms (1/8),	115,668 ms (1/8),	231,336 ms (1/8),		
		54,621 ms (1/16),	109,242 ms (1/16),	218,484 ms (1/16),		
		53,0145 ms (1/32)	106,029 ms (1/32)	212,058 ms (1/32)		
Inner cod	е	C	Código convolucional (1/2, 2/3, 3/4 5/6, 7/8)			
Outer cod	le	RS (204,188)				

Tabla 4 — Tasa de datos de un único segmento

Modulación de	Código Número de TSP		Tasa de datos ^a kbps			
la portadora	convolucional	transmitidos por cuadro	Intervalo de guarda 1/4	Intervalo de guarda 1/8	Intervalo de guarda 1/16	Intervalo de guarda 1/32
	1/2	12/24/48	280,85	312,06	330,42	340,43
DQPSK	2/3	16/32/64	374,47	416,08	440,56	453,91
	3/4	18/36/72	421,28	468,09	495,63	510,65
QPSK	5/6	20/40/80	468,09	520,10	550,70	567,39
	7/8	21/42/84	491,50	546,11	578,23	595,76
	1/2	24/48/96	561,71	624,13	660,84	680,87
	2/3	32/64/128	748,95	832,17	881,12	907,82
16QAM	3/4	36/72/144	842,57	936,19	991,26	1021,30
	5/6	40/80/160	936,19	1 040,21	1 101,40	1 134,78
	7/8	42/84/1 68	983,00	1 092,22	1 156,47	1 191,52
	1/2	36/72/144	842,57	936,19	991,26	1 021,30
	2/3	48/96/192	1 123,43	1 248,26	1 321,68	1 361,74
64QAM	3/4	54/108/216	1 263,86	1 404,29	1 486,90	1 531,95
	5/6	60/120/240	1 404,29	1 560,32	1 652,11	1 702,17
	7/8	63/126/252	1 474,50	1 638,34	1 734,71	1 787,28

^a Esa tasa de datos representa la tasa de datos (bits) por segmento para parámetros de transmisión: tasa de datos (bits) = TSP transmitidos x 188 (bytes/TSP) x 8 (bits/byte) x 1/longitud del cuadro.

Tabla 5 — Tasa total de datos para 13 segmentos

Modulación de	Código	Número de TSP			e datos pps	
la portadora	convolucional	transmitidos (Modos 1/ 2/ 3)	Intervalo de guarda 1/4	Intervalo de guarda 1/8	Intervalo de guarda 1/16	Intervalo de guarda 1/32
DODOK	1/2	156/312/624	3,651	4,056	4,295	4,425
DQPSK	2/3	208/416/832	4,868	5,409	5,727	5,900
	3/4	234/468/936	5,476	6,085	6,443	6,638
QPSK	5/6	260/520/1040	6,085	6,761	7,159	7,376
	7/8	273/546/1092	6,389	7,099	7,517	7,744
	1/2	312/624/1248	7,302	8,113	8,590	8,851
	2/3	416/832/1664	9,736	10,818	11,454	11,801
16QAM	3/4	468/936/1872	10,953	12,170	12,886	13,276
	5/6	520/1040/2080	12,170	13,522	14,318	14,752
	7/8	546/1092/2184	12,779	14,198	15,034	15,489
	1/2	468/936/1872	10,953	12,170	12,886	13,276
64QAM	2/3	624/1248/2496	14,604	16,227	17,181	17,702
	3/4	702/1404/2808	16,430	18,255	19,329	19,915
	5/6	780/1560/3120	18,255	20,284	21,477	22,128
	7/8	819/1638/3276	19,168	21,298	22,551	23,234

NOTA En esta tabla, los mismos parámetros se especifican para todos los 13 segmentos. La tasa total de datos durante la transmisión jerárquica varia dependiendo de los parámetros de configuración jerárquica. El volumen transmitido por los 13 segmentos es igual a la suma de todos los volúmenes de datos transmitidos por esos segmentos, que puede ser determinado de acuerdo con la Tabla 4.

6.2 Configuración básica de la codificación de canal

La Figura 4 muestra, de manera simplificada, la estructura del sistema de transmisión del sistema de televisión digital terrestre brasileño.

Figura 4 — Diagrama en bloques de la codificación de canal

Las múltiples salidas de TS del multiplexador MPEG deben obligatoriamente alimentar el remultiplexador de haz de transporte de modo que el TSP sea adecuadamente arreglado para el procesamiento de la señal *one data segment*.

En la remultiplexación, primeramente cada TS debe obligatoriamente ser convertido en señal en ráfaga de 188 bytes por medio de un *clock* con tasa cuatro veces mayor que el *clock* de muestreo IFFT. Se debe, entonces, obligatoriamente, aplicar el código RS para que el TS resultante sea convertido en TS común.

Cuando la transmisión jerárquica es configurada, el TS debe obligatoriamente ser dividido en múltiples capas jerárquicas de acuerdo con la información de capa jerárquica. Esas capas deben obligatoriamente entonces ser sometidas a un máximo de tres bloques paralelos de procesador.

En el procesador paralelo, se deben ejecutar obligatoriamente los procesamientos de datos digitales, incluyendo el codificador corrector de errores (*interleaving*) y la modulación de portadoras. La diferencia de atraso en el tiempo generado en el entrelazamiento de byte y en el proceso de bit *interleaving* entre las capas jerárquicas debe obligatoriamente ser corregida antes del ajuste de sincronismo. La corrección de error, la longitud del entrelazamiento y el esquema de modulación de portadora deben obligatoriamente ser especificados independientemente para cada capa jerárquica.

Después del procesamiento paralelo, las capas jerárquicas deben obligatoriamente ser combinadas y a continuación deben obligatoriamente ser ejecutados los entrelazamientos en el tiempo y en frecuencia, para asegurar la efectiva mejora de la corrección de error contra la variación de intensidad de campo, así como contra la interferencia de multipercurso en la recepción móvil.

El convolutional interleaving debe obligatoriamente ser usado como esquema de entrelazamiento temporal para reducir los atrasos de tiempo tanto de la transmisión como de la recepción y minimizar el tamaño de la memoria del receptor. Para el entrelazamiento en frecuencia, el intersegmento y el intrasegmento deben ser obligatoriamente empleados para asegurar la apropiada estructura del segmento y el correcto interleaving.

Para asegurar que el receptor configure correctamente la demodulación y la decodificación en la transmisión jerárquica, en la cual se usan múltiples conjuntos de parámetros de transmisión, una señal TMCC debe obligatoriamente ser transmitida usando una portadora específica.

La señal TMCC debe obligatoriamente formar el cuadro OFDM junto con la señal de programa y señal piloto de sincronización para la finalidad de reproducción. Una vez completada la formación del cuadro, todas las señales se deben convertir obligatoriamente en señal de transmisión OFDM por el proceso IFFT.

6.3 Remultiplexación de TS

6.3.1 Configuración del cuadro multiplex

Una remultiplexación del TS debe obligatoriamente ser formada por cuadros múltiples como unidades elementales, cada cual consistiendo en un número n de paquetes TSP.

El número de TSP usados para diferentes modos de transmisión y diferentes razones de intervalo de guarda debe obligatoriamente estar de acuerdo con la Tabla 6.

© ABNT 2007 - Todos los derechos reservados

	Número de TSP transmitidos dentro de un cuadro multiplex					
Modo	Tasa del intervalo de guarda	Tasa del intervalo de guarda	Tasa del intervalo de guarda	Tasa del intervalo de guarda		
	1/4	1/8	1/16	1/32		
Modo 1	1 280	1 152	1 088	1 056		
Modo 2	2 560	2 304	2 176	2 112		
Modo 3	5 120	4 608	4 352	4 224		

Tabla 6 — Configuración de la multiplexación del frame

Cada TSP comprendiendo un cuadro debe obligatoriamente tener una longitud de 204 bytes, consistiendo en 188 bytes de datos de programa y 16 bytes de datos nulos. Ese TSP es conocido como "TSP de transmisión".

La longitud del cuadro debe obligatoriamente coincidir con el cuadro OFDM, cuando la tasa de *clock* del TSP de transmisión enviada es aumentada en cuatro veces la tasa de *clock* del muestreo de IFFT.

Cada TSP de transmisión dentro de un cuadro de múltiples debe obligatoriamente ser transmitido por la capa jerárquica X de una señal OFDM (ver Figura 5). El arreglo del TSP de transmisión, dentro del cuadro multiplex, debe obligatoriamente ser determinado antes de asegurarse que es idéntico al del TS que va a ser reproducido por el receptor (ver Figura 6).

Figura 5 — Ejemplo de un TS remultiplexado (modo 1, intervalo de guarda 1/8)

Figura 6 — Modelo de receptor para referencia de cuadro multiplex

Generalmente no es posible concluir la consistencia entre el TSP de entrada del remultiplexador y una única TS de salida del mismo, pues el número de paquetes de haz de transporte que puede ser transpuesto por unidad de tiempo varía sustancialmente, dependiendo de los parámetros especificados para cada capa jerárquica. Sin embargo, la adición de un número apropiado de paquetes nulos permite el interfaceado entre el transmisor y el receptor durante la transmisión del haz de transporte en una consistente tasa de *clock*, independientemente de cuáles parámetros de transmisión se especifican.

Debido a que la longitud del cuadro multiplex es la misma de la longitud del cuadro OFDM, el receptor puede reproducir la sincronización del *transport stream* con base en la sincronización del cuadro OFDM, asegurando así el desempeño mejorado de sincronización.

La correlación entre el arreglo del TSP dentro de un cuadro multiplex con división del TS en múltiples capas jerárquicas y combinación de esas capas debe obligatoriamente permitir, en el lado del receptor, seleccionar el mismo TS como uno de los transmitidos, entre múltiples señales de diferentes capas, y reproducir ese TS.

El receptor modelo debe definir obligatoriamente el arreglo de los TSP. Los receptores pueden reproducir el TS sin cualquier información de la posición del TSP, si opera del mismo modo que el receptor modelo definido en esta Norma.

6.3.2 Modelo de receptor para referencia de cuadro multiplex

6.3.2.1 Organización del cuadro multiplex

Los TSP se deben organizar obligatoriamente en un cuadro multiplex, con la configuración de TS reproducida por el modelo de receptor (ver Figura 6). En este caso, se debe usar obligatoriamente un *clock* de muestreo para FFT.

6.3.2.2 Señal de entrada para divisor jerárquico

Para completar el procesamiento de la demodulación de la portadora y del *interleaving*, las señales de entrada para el divisor jerárquico se deben organizar obligatoriamente en el orden ascendente del número del segmento y también en orden ascendente de la frecuencia de la portadora del símbolo de la información, dentro del segmento obtenido por la exclusión de la portadora del control de símbolo (ver Figura 7).

NOTA En este ejemplo se adoptaron dos capas jerárquicas disponibles (una capa modulada en DQPSK 1/2 con 5 segmentos y otra capa modulada en 64QAM, 7/8 con 8 segmentos) y un intervalo de guarda de 1/8 en el modo 1.

Figura 7 — Ejemplo de organización del tiempo para la señal de entrada para la capa jerárquica

ABNT NBR 15601:2007

Durante el período de un símbolo OFDM, deben obligatoriamente insertarse en la capa jerárquica A bloques de datos de 480 (96 x 5) portadoras seguidos por los datos de entrada de 768 (96 x 8) portadoras para la capa jerárquica B y una señal nula que ocupa 1 056 portadoras.

La señal nula debe corresponder obligatoriamente a la suma del muestreo (equivalente a la señal piloto insertada por la sección de cuadro OFDM), del muestreo FFT (muestreo en exceso de la banda de señal) y del muestreo de intervalo de guarda. La operación se debe repetir obligatoriamente tantas veces cuantos son los 204 símbolos para la duración del cuadro OFDM.

Los atrasos se deben ajustar obligatoriamente de forma que los períodos de tiempo requeridos para la demodulación diferencial o demodulación síncrona sean los mismos.

6.3.2.3 Operación del receptor modelo de divisor jerárquico Viterbi

La señal, dividida en múltiples capas jerárquicas, debe ser sometida obligatoriamente al punzonado antes de su almacenamiento en el *buffer* jerárquico. En ese caso, se debe asumir obligatoriamente que el tiempo de atraso de procesamiento es el mismo para todas las capas y que no existe tiempo de atraso para el receptor modelo.

El número de bits Bx_k que se insertan y almacenan en el *buffer* jerárquico, hasta la entrada del knésimo dato en la capa jerárquica X en un único cuadro multiplex, puede ser determinado por la siguiente ecuación:

$$Bx_k = 2 \times ([k \times S_x \times R_x] - [(k-1) \times S_x \times R_x])$$

donde

Bxk es el número de bits;

- [] Indica que todos los dígitos a la derecha del punto decimal se deben desechar obligatoriamente;
- K es la posición del dato en el segmento;
- S_x es uno de los valores dados en la Tabla 7, dependiendo del esquema de modulación seleccionado para la capa jerárquica X;
- R_{x} es la tasa de codificación del código convolucional en la capa jerárquica X.

Tabla 7 — Valores de Sx

Esquema de modulación	Sx
Mapeo QPSK	2
16QAM	4
64QAM	6

La llave S_1 se debe conmutar obligatoriamente para otro *buffer* jerárquico cuando el tamaño de datos de un paquete TS (408 bytes) se inserta en el *buffer* jerárquico. Este dato se debe transferir obligatoriamente al *buffer* TS disponible en la sección de reproducción. En este caso se debe asumir obligatoriamente que la transferencia de datos es instantánea.

NOTA La codificación convolucional de un paquete TS común (204 bytes) de datos produce 408 bytes, cuando la tasa de codificación del código-madre del código convolucional es 1/2.

La sección de reproducción TS debe obligatoriamente verificar el *buffer* TS en cada período de TS (408 bytes). Si existen más datos que el tamaño de un paquete TS, esa sección debe obligatoriamente conmutar S_2 a la posición del *buffer* TS y leer uno de los paquetes de datos TS. Cuando no existan datos en el *buffer* TS, la sección de reproducción debe obligatoriamente conmutar S_2 a la posición de TSP nulo y transmitir el paquete nulo.

La llave S_3 se debe usar obligatoriamente para conmutar alternativamente entre las dos secciones de reproducción TS para insertar una señal de salida del combinador jerárquico. En el modo 1 la conmutación se debe ejecutar obligatoriamente al comienzo de un cuadro OFDM. La llave S_4 se debe usar obligatoriamente para conmutar entre las salidas de señales de la sección de reproducción TS. Esa llave se debe conmutar obligatoriamente para la misma posición de S_3 en tres períodos de paquetes TS (408 x 3 *clocks*), acompañando la conmutación de S_3 , es decir, en el comienzo de un cuadro OFDM. En los modos 2 3, la conmutación de S_3 y S_4 se debe ejecutar obligatoriamente a 1/2 intervalo del cuadro OFDM (102 intervalos del símbolo OFDM) y 1/4 intervalo del cuadro OFDM (51 intervalos de símbolos OFDM), respectivamente.

6.4 Codificación externa (outer code)

Un código RS abreviado (204,188) se debe aplicar obligatoriamente en cada TSP como un código externo. La codificación RS abreviada (204,188) se debe generar obligatoriamente agregando 51 byte 00HEX en el comienzo de la entrada de los datos del código RS (255,239), y entonces esos 51 bytes se deben remover obligatoriamente.

El elemento del GF (2^8) (Galois Field) se debe usar obligatoriamente como elemento de la codificación RS. El siguiente polinomio primitivo p(x) se debe usar obligatoriamente para definir GF(2^8):

$$p(x) = x_8 + x_4 + x_3 + x_2 + 1$$

El siguiente polinomio g (x) se debe usar obligatoriamente para generar el código RS abreviado (204,188): $g(x) = (x - \lambda_0)(x - \lambda_1)(x - \lambda_2)$ ---- $(x - \lambda_0)$

siendo que $\lambda = 02$ HEX.

El código RS abreviado (204, 188) puede corregir hasta 8 bytes aleatorios erróneos entre 204 bytes.

La Figura 8 muestra el formato de datos MPEG-2 TSP y el TSP protegido por codificación RS. El paquete de 204 bytes protegido con el código corrector de error también es denominado transmisión TPS.

b) TSP protegido contra errores por el código RS (transmisión TSP)

Figura 8 — MPEG-2 TSP y transmisión TSP

6.5 División del TS en capa jerárquica

El divisor jerárquico debe obligatoriamente dividir el TS remultiplexado en porciones (transmisión TSP, cada cual con 204 bytes de largo, conteniendo todos los bytes, desde el byte próximo al de sincronización TS hasta el byte de sincronización siguiente) y asociar cada parte a la capa jerárquica específica. Al mismo tiempo, el divisor debe remover obligatoriamente los paquetes nulos.

La capa jerárquica a que pertenece la transmisión TSP debe ser especificada obligatoriamente por la información de la capa jerárquica basada en la organización. El número máximo de capas jerárquicas debe ser obligatoriamente tres. La sincronización del cuadro OFDM debe desplazar obligatoriamente en un byte el comienzo de los bytes de información (ver Figura 9).

Figura 9 — Ejemplo de división del TS en dos capas jerárquicas

6.6 Dispersión de energía

La dispersión de energía se debe realizar obligatoriamente para cada capa jerárquica generada por un PRBS de acuerdo con el esquema presentado en la Figura 10.

Figura 10 — Generación del polinomio PRBS y circuito

Todas las señales que no son de sincronismo de byte en cada transmisión TSP en las diferentes capas jerárquicas deben ser obligatoriamente *Exclusive OR*, usando PRBS en la base de bit a bit.

El valor inicial del PRBS debe obligatoriamente ser 10010101000000 (organizado en orden ascendente de bits, de izquierda a derecha) y este valor debe obligatoriamente ser inicializado a cada cuadro OFDM. En este instante, el comienzo de un cuadro OFDM debe ser obligatoriamente el MSB (most significant bit) del byte próximo al byte de sincronización de los TSP de transmisión. El registrador de desplazamiento debe obligatoriamente, también, ejecutar el desplazamiento del byte de sincronización. La siguiente ecuación define la función generadora del PRBS:

$$G(x) = X^{15} + X^{14} + 1$$

6.7 Ajuste de atraso

El ajuste de atraso, asociado al *byte interleaving* con el objeto de proveer el tiempo de atraso idéntico para transmisión y recepción en todas las capas jerárquicas, debe ser obligatoriamente realizado por el lado de la transmisión. Se debe adoptar obligatoriamente un valor de ajuste apropiado para cada capa jerárquica entre aquellos mostrados en la Tabla 8 (equivalente al número de transmisión TSP), tal que todos los atrasos, incluyendo el de transmisión y de recepción causados por el *byte interleaving* (11 transmisiones TSP), tengan la duración de un cuadro.

Tabla 8 — Ajuste del valor de atraso requerido como resultado del entrelazamiento de byte

Modulación	código	Valor de ajuste de	l atraso (número de t	ransmisión de TS
de portadora	convolucional	Modo 1	Modo 2	Modo 3
	1/2	12 x N-11	24 x N-11	48 x N-11
	2/3	16 x N-11	32 x N-11	64 x N-11
DQPSK QPSK	3/4	18 x N-11	36 x N-11	72 x N-11
QI OIL	5/6	20 x N-11	40 x N-11	80 x N-11
	7/8	21 x N-11	42 x N-11	84 x N-11
	1/2	24 x N-11	48 x N-11	96 x N-11
	2/3	32 x N-11	64 x N-11	128 x N-11
16QAM	3/4	36 x N-11	72 x N-11	144 x N-11
	5/6	40 x N-11	80 x N-11	160 x N-11
	7/8	42 x N-11	84 x N-11	168 x N-11
	1/2	36 x N-11	72 x N-11	144 x N-11
	2/3	48 x N-11	96 x N-11	192 x N-11
64QAM	3/4	54 x N-11	108 x N-11	216 x N-11
	5/6	60 x N-11	120 x N-11	240 x N-11
	7/8	63 x N-11	126 x N-11	252 x N-11

N representa el número de segmentos usados por la capa jerárquica.

Con la transmisión jerárquica, se pueden especificar diferentes conjuntos de parámetros de transmisión (número de segmentos, tasa de codificación interna, esquema de modulación) para diferentes capas jerárquicas. En este caso, sin embargo, la tasa de bit de transmisión para una capa puede diferir de otra capa, resultando en diferentes capacidades de transmisión, calculadas como el período de tiempo, desde la codificación del *inner code* del lado de la transmisión hasta la decodificación en el lado de la recepción.

El montante de atraso de transmisión TSP (11 paquetes) causado por el *byte interleaving* para una capa, puede diferir de otra capa, cuando se convierte en tiempo de atraso. Para compensar esta relativa diferencia en tiempo de atraso entre las capas jerárquicas, se debe realizar obligatoriamente un ajuste para cada capa, antes del *byte interleaving*, de acuerdo con la tasa de bit de transmisión.

19

6.8 Byte interleaving

La transmisión TSP con 204 bytes, que es protegida por medio de la codificación RS y por la dispersión de energía, sufre el *byte interleaving* por la codificación convolucional. El *interleaving* debe ser obligatoriamente de 12 bytes. Sin embargo, el byte siguiente al byte de sincronización debe obligatoriamente pasar por un camino de referencia que no cause atraso (ver Figura 11).

Figura 11 — Circuito de byte interleaving

En el circuito de *interleaving*, el camino 0 no debe tener atraso. El tamaño de la memoria para el camino 1 debe ser obligatoriamente de 17 bytes, para el camino 2 debe ser obligatoriamente de 2 x 17 = 34 bytes, y así sucesivamente. Las entradas y las salidas deben ser obligatoriamente conmutadas para diferentes caminos a cada byte de manera secuencial y cíclica, en el orden ascendente en número de camino (camino 0 > camino 1 > camino 2 > ... camino 11 > camino 0 > camino 1 > camino 2 ...).

6.9 Codificación interna (inner code)

El código interno debe ser obligatoriamente un código convolucional con punzonado (descarte de bit seleccionado, según un criterio definido), con el código-madre de profundidad k de 7 y tasa de codificación de 1/2. El código polinomial generador (código-madre) debe ser G1 = 171_{OCT} y G2 = 133_{OCT} (ver Figura 12).

Figura 12 — Circuito de codificación del código convolucional con profundidad k de 7 y tasa de codificación de $\frac{1}{2}$

La tasa de codificación seleccionable del código interno es la secuencia de la señal de transmisión punzado en el tiempo y debe obligatoriamente estar de acuerdo con la Tabla 9. El punzonado se debe establecer obligatoriamente de forma que el estándar mostrado en la Tabla 9 sea iniciado por el cuadro de sincronización, para asegurar la confiabilidad del receptor en compensar la sincronización entre los modos punzados.

Tasa de codificación	Curva de punzonado	Secuencia de transmisión de la señal
1/2	X: 1 Y: 1	X1, Y1
2/3	X: 1 0 Y: 1 1	X1, Y1, Y2
3/4	X: 1 0 1 Y: 1 1 0 0	X1, Y1, Y2, X3
5/6	X: 1 0 1 0 1 Y: 1 1 0 1 0	X1, Y1, Y2, X3, Y4, X5
7/8	X: 1000101 Y: 1111010 01 1	X1, Y1, Y2, Y3, Y4, X5, Y6, X7

Tabla 9 — Tasa del código interno y secuencia de la señal de transmisión

6.10 Modulación de la portadora

6.10.1 Configuración de la modulación de la portadora

En el proceso de modulación de la portadora la señal de entrada debe ser obligatoriamente entrelazada bit por bit y mapeada por medio del esquema especificado para cada capa jerárquica (ver Figura 13).

Figura 13 — Configuración de la modulación de la portadora

6.10.2 Ajuste de atraso

Los atrasos de transmisión y recepción deben ser obligatoriamente equivalentes a 120 símbolos de portadoras y son el resultado del *bit interleaving* del modulador de las operadoras. El tiempo de atraso varía dependiendo del esquema de modulación de la portadora, es decir, dependiendo del número de bits comprendido en el símbolo de la portadora.

La diferencia en el tiempo de atraso se debe corregir obligatoriamente en el lado de la entrada del *bit interleaving* a través de la adición de un valor de ajuste de atraso de acuerdo con la Tabla 10, tal que el atraso total de transmisión y recepción sea igual a 2 símbolos OFDM.

Tabla 10 — Ajuste del valor de atraso requerido como	
resultado del bit interleaving	

Modulación de	Valor del ajuste de atraso (número de bits) ^a			
portadora	Modo 1 Modo 2		Modo 3	
DQPSK/QPSK	384 x N-240	768 x N-240	1 536 x N-240	
16QAM	768 x N-480	1 536 x N-480	3 072 x N-480	
64QAM	1 152 x N-720	2 304 x N-720	4 608 x N-720	
^a N representa el número de segmentos usados por la capa jerárquica.				

6.10.3 Bit interleaving y mapping

6.10.3.1 DQPSK

La señal de entrada debe ser obligatoriamente 2 bits por símbolo y mapeada en DQPSK con desplazamiento en $\pi/4$ para salida de datos multibit, para ejes I y Q. Después de la conversión serie-paralelo, los 120 bits de atraso se deben insertar obligatoriamente en la entrada del calculador de fase para *bit interleaving* (ver Figuras 14 y 15). El cálculo de fase se debe realizar obligatoriamente de acuerdo con la Tabla 11.

NOTA $(I_j \ y \ Q_j) \ y \ (I_{j-1} \ y \ Q_{j-1})$ representan los símbolos de salida y el símbolo OFDM inmediatamente precedente al símbolo de salida, respectivamente.

Figura 14 — Diagrama de sistema del modulador DQPSK $\pi/4$ shift

Figura 15 — Constelación DQPSK - Desplazamiento π/4

Tahla	11	Cálcul	ada f	260
iauia		Calcui	o ae i	454

Entrada b0' b1'	Salida θj
0 0	π/4
0 1	- π/4
1 0	3 π/4
1 1	-3 π/4

6.10.3.2 Mapeo QPSK

La señal de entrada debe ser obligatoriamente 2 bits por símbolo y la salida mapeada de datos QPSK debe ser obligatoriamente multibit, en los ejes I y Q. Para realizar el mapeo, los 120 elementos de atraso se deben insertar obligatoriamente en la entrada del *mapper* para el entrelazamiento de *bit* (ver Figuras 16 y 17).

Figura 16 — Diagrama del sistema de modulación QPSK

Figura 17 — Constelación QPSK

6.10.3.3 16QAM

La señal de entrada debe ser representada obligatoriamente por 4 bits por símbolo y la salida mapeada de datos debe ser obligatoriamente multibit en los ejes I y Q. Para realizar el mapeo, los elementos de atraso se deben insertar obligatoriamente en la entrada b1 y b3 para bit interleaving (ver Figuras 18 y 19).

Figura 18 — Diagrama del sistema de modulación 16QAM

Q (nivel correspondiente a b1, b3)

Figura 19 — Constelación 16QAM

6.10.3.4 64QAM

La señal de entrada debe ser obligatoriamente de 6 bits por símbolo y la salida mapeada de datos debe ser obligatoriamente multibit, en los ejes I y Q. Para realizar el mapeo, los elementos de atraso se deben insertar obligatoriamente en la entrada b1 y b5 para entrelazamiento de bit (ver Figuras 20 y 21).

Figura 20 — Diagrama del sistema de modulación 64QAM

Figura 21 — Constelación 64QAM

6.10.4 Normalización del nivel de modulación

Cuando se asignan puntos en la constelación, como mostrado en las Figuras 15, 17, 19 y 21, expresa como Z = (I + jQ), el nivel de la señal de transmisión debe ser obligatoriamente normalizado, multiplicando cada uno de esos puntos por el correspondiente factor de normalización mostrado en la Tabla 12. Como resultado, la potencia media del símbolo OFDM se torna igual a 1, independientemente del esquema de modulación usado.

Esquema de modulación de la portadora	Factor de normalización
DQPSK desplazado π/4	Z/√ 2
QPSK	Z/√ 2
16QAM	Z/√ 10
64QAM	Z/√ 42

Tabla 12 — Normalización del nivel de modulación

6.10.5 Configuración del segmento de datos

El segmento de datos debe ser obligatoriamente equivalente a *data part* de un segmento OFDM mostrado en 6.13. El segmento de datos debe obligatoriamente consistir en 96, 192 y 384 símbolos de portadoras en los modos 1, 2 y 3, respectivamente (ver Figura 22).

NOTA S_{i,j,k} representa el *k*ésimo segmento del símbolo de la portadora, siendo "i" la dirección de la portadora en el segmento OFDM y "j" la dirección del símbolo en el segmento OFDM.

Figura 22 — Configuración del segmento de datos

6.11 Combinación de capas jerárquicas

Señales de diferentes capas jerárquicas, sometidas a la codificación de canal, y modulación de portadoras por parámetros específicos deben ser obligatoriamente combinadas e insertadas en el segmento de datos y sometidas a la conversión de velocidad (ver Figura 23).

NOTA n_c es 96, 192 y 384 en los modos 1, 2 y 3, respectivamente. Ns corresponde a los bloques de las capas jerárquicas con los segmentos y $N_{S1} + N_{S2} + N_{S3} = 13$.

Figura 23 — Configuración del combinador de capas

6.12 Time interleaving e frequency interleaving

6.12.1 Time interleaving

Una vez que las diferentes capas jerárquicas se combinan, deben ser obligatoriamente entrelazadas en el tiempo en unidades de símbolos de modulación (para cada uno de los ejes I y Q) (ver Figuras 24 y 25).

Figura 24 — Configuración de la sección de entrelazamiento en tiempo

NOTA N_0 es 96, 192 y 384 en los modos 1, 2 3, respectivamente y m_1 = (i x 5) modo 96. "I" es el parámetro relativo a la longitud de *interleaving* especificado para cada capa jerárquica.

Figura 25 — Configuración de la sección de time interleaving intra data

La longitud del *time interleaving* se debe especificar obligatoriamente como "1" para cada capa jerárquica, independientemente de otras capas. Las diferencias de atrasos en el tiempo se deben corregir obligatoriamente del lado de la transmisión, usando el número del símbolo o atraso apropiado para cada capa de acuerdo con la Tabla 13, de modo que el número total de atraso de transmisión y recepción sea un múltiplo del número de cuadros. El ajuste de atraso se debe realizar obligatoriamente en la señal antes del *time interleaving*.

	Modo 1	Modo 1 Modo 2			2		Modo 3	
Longitud (I)	Número de símbolos de ajuste del atraso	Número de cuadros atrasados en la transmisión y recepción	Longitud (I)		Número de cuadros atrasados en la transmisión y recepción	Longitud (I)	Número de símbolos de ajuste del atraso	Número de cuadros atrasados en la transmisión y recepción
0	0	0	0	0	0	0	0	0
4	28	2	2	14	1	1	109	1
8	56	4	4	28	2	2	14	1
16	112	8	8	56	4	4	28	2

El ajuste de atraso se debe realizar obligatoriamente antes del time interleaving.

El time interleaving tiene el objeto de aumentar la robustez contra el desvanecimiento (fading) a través de aleatorización de símbolo de datos después de la modulación. La especificación de la longitud de entrelazamiento para cada capa jerárquica debe permitir obligatoriamente la especificación de la longitud de interleaving excelente, para cada capa, cuando el tipo de recepción difiere en las diversas capas (ver Figura 26).

NOTA El uso del código convolucional, como método de *time interleaving*, busca reducir los atrasos de transmisión y recepción y reducir la cantidad de memoria necesaria en el receptor.

Figura 26 — Arreglo de las portadoras siguiendo el entrelazamiento temporal (modo 1, I = 8)

6.12.2 Entrelazamiento en frecuencia

6.12.2.1 Tipos de entrelazamiento en frecuencia

Durante la división del segmento, los números 0 a 12 del segmento de datos (*data segment*) deben ser obligatoriamente designados en forma secuencial para la parte de la recepción parcial, modulación diferencial (segmentos para los cuales el DQPSK se especifica para modulación de portadoras) y modulación coherente (segmento para el cual los QPSK, 16QAM y 64QAM se especifican para modulación de portadoras) (ver Figura 27).

Figura 27 — Configuración de la sección de entrelazamiento en frecuencia

En lo que se refiere a la relación entre configuración jerárquica y los segmentos de datos (*data segments*) de un mismo nivel jerárquico, las capas jerárquicas obligatoriamente deben ser sucesivamente organizadas y nombradas capas A, B y C en forma secuencial, en orden ascendente del número de segmentos de datos (es decir, del segmento de número menor para el segmento de número mayor).

El entrelazamiento entre segmentos se debe realizar obligatoriamente en dos o más segmentos cuando pertenecen al mismo tipo de porción modulada, aunque pertenezcan a diferentes niveles jerárquicos.

El entrelazamiento entre segmentos no se debe realizar en la porción de recepción parcial, por considerar que se usa solamente en el receptor designado para recibir este segmento.

Debido a que la modulación diferencial y modulación síncrona difieren en términos de estructura de cuadro, como mostrado en 6.13, el entrelazamiento entre segmentos debe ser formateado obligatoriamente en cada grupo.

En el *inter segment interleaving* realizado a lo largo de la capa limítrofe, se debe maximizar obligatoriamente el efecto de *frequency interleaving*.

6.12.2.2 Entrelazamiento entre segmentos

Entrelazamiento entre segmentos se debe realizar obligatoriamente en cada modulación diferencial (DQPSK) y modulación síncrona (QPSK, 16QAM, 64QAM), como muestra la Figura 28.

Arreglo de símbolos antes del interleaving

Arreglo de símbolos después del interleaving

(a) Entrelazamiento entre segmentos - Modo 1

Arreglo de símbolos antes del interleaving

Arreglo de símbolos después del interleaving

(b) Entrelazamiento entre segmentos – Modo 2

Arreglo de símbolos antes del interleaving

Arreglo de símbolos después del interleaving

(c) Entrelazamiento entre segmentos - Modo 3

NOTA $S_{i,j,k}$, y n representan símbolos de portadoras en las configuraciones de segmento de datos (*data segment*) y el número de segmentos designados en las modulaciones diferencial y síncrona, respectivamente.

Figura 28 — Entrelazamiento entre segmentos

6.12.2.3 Entrelazamiento dentro del segmento

El entrelazamiento dentro del segmento se debe realizar obligatoriamente en dos etapas: rotación de portadoras por número de segmentos seguido de aleatorización de las portadoras.

En la rotación de las portadoras, los cambios de las portadoras se deben realizar obligatoriamente como mostrado en la Figura 29.

a) Rotación de portadora en el modo 1

b) Rotación de portadora en el modo 2

c) Rotación de portadora en el modo 3

NOTA El símbolo S'i,j,k representa el símbolo de la portadora de kesimo segmento, siguiendo el inter segment interleaving.

Figura 29 — Rotación de la portadora

Las portadoras aleatorizadas en los modos 1, 2 y 3 deben obligatoriamente estar de acuerdo con las Tablas 14, 15 y 16, que muestran cuáles portadoras son atribuidas, como resultado de la *randomizing* de las portadoras, para organización de los datos sobre portadoras que sufrieron rotación, en orden ascendente del número de las portadoras.

Tabla 14 — Randomizing de las portadoras intra segment en el modo 1

Antes	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Después	80	93	63	92	94	55	17	81	6	51	9	85	89	65	52	15	73	66	46	71	12	70	18	13
Antes	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
Después	95	34	1	38	78	59	91	64	0	28	11	4	45	35	16	7	48	22	23	77	56	19	8	36
Antes	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Después	39	61	21	3	26	69	67	20	74	86	72	25	31	5	49	42	54	87	43	60	29	2	76	84
Antes	74	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
Después	83	40	14	79	27	57	44	37	30	68	47	88	75	41	90	10	33	32	62	50	58	82	53	24

Tabla 15 — Randomizing de las portadoras intra segment en el modo 2

									•		•				•									
Antes	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Después	98	35	67	116	135	17	5	93	73	168	54	143	43	74	165	48	37	69	154	150	107	76	176	79
		1			1					1	1					1	1	1				1	1	
Antes	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
Después	175	36	28	78	47	128	94	163	184	72	142	2	86	14	130	151	114	68	46	183	122	112	180	42
Antes	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Después	105	97	33	134	177	84	170	45	187	38	167	10	189	51	117	156	161	25	89	125	139	24	19	57
Antes	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
Después	71	39	77	191	88	85	0	162	181	113	140	61	75	82	101	174	118	20	136	3	121	190	120	92
Antes	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119
Después	160	52	153	127	65	60	133	147	131	87	22	58	100	111	141	83	49	132	12	155	146	102	164	66
Antes	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
Después	1	62	178	15	182	96	80	119	23	6	166	56	99	123	138	137	21	145	185	18	70	129	95	90
		Т		T	Т	1	T	T	T	Т	Т					Т	Т	Т	T			Т	Т	T
Antes	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167
Después	149	109	124	50	11	152	4	31	172	40	13	32	55	159	41	8	7	144	16	26	173	81	44	103
				T			T	T	T										T					T
Antes	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
Después	64	9	30	157	126	179	148	63	188	171	106	104	158	115	34	186	29	108	53	91	169	110	27	59

Tabla 16 — Randomizing de las portadoras intra segment en el modo 3

Antes	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Después	62	13	371	11	285	336	365	220	226	92	56	46	120	175	298	352	172	235	53	164	368	187	125	82
																	1							
Antes	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
Después	5	45	173	258	135	182	141	273	126	264	286	88	233	61	249	367	310	179	155	57	123	208	14	227
																		',	',					
Antes	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Después	100	311	205	79	184	185	328	77	115	277	112	20	199	178	143	152	215	204	139	234	358	192	309	183
Antes	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
Después	81	129	256	314	101	43	261	324	142	157	90	214	102	29	303	363	361	31	22	52	305	301	293	177
Antes	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119
Después	116	296	85	196	191	114	58	198	16	167	145	119	245	113	295	193	232	17	108	283	246	64	237	189
					r				I	ı	r				r	r								1
Antes	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
Después	128	373	302	320	239	335	356	39	347	351	73	158	276	243	99	38	287	3	330	153	315	117	289	213
									ı	ı														ı
Antes	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167
Después	210	149	383	337	339	151	241	321	217	30	334	161	322	49	176	359	12	346	60	28	229	265	288	225
									ı	ı														
Antes	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
Después	382	59	181	170	319	341	86	251	133	344	361	109	44	369	268	257	323	55	317	381	121	360	260	275
										1														
Antes	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215
Después	190	19	63	18	248	9	240	211	150	230	332	231	71	255	350	355	83	87	154	218	138	269	348	130
Antes	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
Después	160	278	377	216	236	308	223	254	25	98	300	201	137	219	36	325	124	66	353	169	21	35	107	50
																					I		I	
Antes	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263
Después	106	333	326	262	252	271	263	372	136	0	366	206	159	122	188	6	284	96	26	200	197	186	345	340
Antes	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287
Después	349	103	84	228	212	2	67	318	1	74	342	166	194	33	68	267	111	118	140	195	105	202	291	259
A - 4	000	000	200	004	000	000	004	205	000	007	000	200	200	204	200	200	204	205	200	207	200	200	040	044
Antes	288	289	290	291	292	293	294	295	296	297	298	299	300	301	302	303	304	305	306	307	308	309	310	311
Después	23	171	65	281	24	165	8	94	222	331	34	238	364	376	266	89	80	253	163	280	247	4	362	379
Antes	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329	330	331	332	333	334	335
Después	290	279	54	78	180	72	316	282	131	207	343	370	306	221	132	7	148	299	168	224	48	47	357	313
			I						1	1	I				I	I	I			1		1	1	
Antes	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359
Después					1	110	374	69	146	37	375	354	174	41	32	304	307	312	15	272	134	242	203	209
1	75	104	70	147	40	110	314																	1
	75	104	70	147	40	110	374														1	1	1	
Antes	75 360	361	362	363	364	365	366	367	368	369		371	372	373	374	375	376	377				381	382	383

La rotación y *randomizing* de las portadoras deben obligatoriamente eliminar la periodicidad en el arreglo de las portadoras. Esas operaciones deben obligatoriamente prevenir los errores en ráfagas de una portadora específica de segmento, que puede ocurrir si el período del arreglo de las portadoras coincide con el desvanecimiento *(fading)* selectivo después del entrelazamiento entre segmentos (ver Figuras 30 y 31).

Figura 30 — Ejemplo de arreglo de las portadoras antes y después del randomizing de las portadoras

Figura 31 — Ejemplo de arreglo de las portadoras después del entrelazamiento en tiempo y de la randomizing de las portadoras

6.13 Estructura de cuadro

6.13.1 Condiciones para configuración de los segmentos OFDM

Todos los procesamientos de los segmentos de datos (*data segments*) requeridos para codificación de canal deben obligatoriamente estar completos cuando las etapas especificadas en 6.12 se ejecutan. El cuadro OFDM debe ser obligatoriamente concluido a través de la adición de varias señales piloto al segmento de datos (*data segment*).

6.13.2 Configuración del segmento OFDM para modulación diferencial

La configuración del segmento OFDM para modulación diferencial (DQPSK) debe estar obligatoriamente de acuerdo con la Figura 32.

NOTA S_{i,i} representa el símbolo de la portadora dentro del segmento de datos (data segment), después del interleaving.

Figura 32 — Configuración del segmento OFDM para modulación diferencial

El CP, el TMCC y el AC deben ser obligatoriamente, respectivamente, los pilotos continuos, la señal para información de control de transporte y la señal de extensión para información adicional de transporte.

En el modo 1, deben estar disponibles obligatoriamente las portadoras de números 0 a 107, mientras que en los modos 2 y 3 se deben atribuir obligatoriamente a las portadoras, números 0 a 215 y 0 a 431, respectivamente.

La organización de varias señales de control (representado por el número de las portadoras), que se agregan por la sección de estructura de cuadro OFDM, en cada modo, debe obligatoriamente estar de acuerdo con las Tablas 17, 18 y 19.

Tabla 17 — Arreglo de las portadoras CP, TMCC y AC en el modo 1 y modulación diferencial

Número del segmento ^a	11	9	7	5	3	1	0	2	4	6	8	10	12
СР	0	0	0	0	0	0	0	0	0	0	0	0	0
AC1_1	10	53	61	11	20	74	35	76	4	40	8	7	98
AC1_2	28	83	100	101	40	100	79	97	89	89	64	89	101
AC2_1	3	3	29	28	23	30	3	5	13	72	36	25	10
AC2_2	45	15	41	45	63	81	72	18	93	95	48	30	30
AC2_3	59	40	84	81	85	92	85	57	98	100	52	42	55
AC2_4	77	58	93	91	105	103	89	92	102	105	74	104	81
TMCC1	13	25	4	36	10	7	49	31	16	5	78	34	23
TMCC2	50	63	7	48	28	25	61	39	30	10	82	48	37
ТМСС3	70	73	17	55	44	47	96	47	37	21	85	54	51
TMCC4	83	80	51	59	47	60	99	65	74	44	98	70	68
TMCC5	87	93	71	86	54	87	104	72	83	61	102	101	105
Los números de segmento son orga	nizado	s en o	orden a	scende	nte de	frecuen	cia a lo	largo	del eje	de frec	uencia	(ver 6.	15).

Tabla 18 — Arreglo de las portadoras CP, AC y TMCC en el modo 2 y modulación diferencial

Número del segmento	11	9	7	5	3	1	0	2	4	6	8	10	12
СР	0	0	0	0	0	0	0	0	0	0	0	0	0
AC1_1	10	61	20	35	4	8	98	53	11	74	76	40	7
AC1_2	28	100	40	79	89	64	101	83	101	100	97	89	89
AC1_3	161	119	182	184	148	115	118	169	128	143	112	116	206
AC1_4	191	209	208	205	197	197	136	208	148	187	197	172	209
AC2_1	3	29	23	3	13	36	10	3	28	30	5	72	25
AC2_2	45	41	63	72	93	48	30	15	45	81	18	95	30
AC2_3	59	84	85	85	98	52	55	40	81	92	57	100	42
AC2_4	77	93	105	89	102	74	81	58	91	103	92	105	104
AC2_5	108	108	108	108	108	108	108	108	108	108	108	108	108
AC2_6	111	136	138	113	180	133	111	137	131	111	121	144	118
AC2_7	123	153	189	126	203	138	153	149	171	180	201	156	138
AC2_8	148	189	200	165	208	150	167	192	193	193	206	160	163
AC2_9	166	199	211	200	213	212	185	201	213	197	210	182	189
TMCC1	13	4	10	49	16	78	23	25	36	7	31	5	34
TMCC2	50	7	28	61	30	82	37	63	48	25	39	10	48
TMCC3	70	17	44	96	37	85	51	73	55	47	47	21	54
TMCC4	83	51	47	99	74	98	68	80	59	60	65	44	70
TMCC5	87	71	54	104	83	102	105	93	86	87	72	61	101
TMCC6	133	144	115	139	113	142	121	112	118	157	124	186	131
TMCC7	171	156	133	147	118	156	158	115	136	169	138	190	145
TMCC8	181	163	155	155	129	162	178	125	152	204	145	193	159
TMCC9	188	167	168	173	152	178	191	159	155	207	182	206	176
TMCC10	201	194	195	180	169	209	195	179	162	212	191	210	213

Tabla 19 — Arreglo de las portadoras CP, AC y TMCC en el modo 3 y modulación diferencial

										T _			
Número del segmento	11	9	7	5	3	1	0	2	4	6	8	10	12
СР	0	0	0	0	0	0	0	0	0	0	0	0	0
AC1_1	10	20	4	98	11	76	7	61	35	8	53	74	40
AC1_2	28	40	89	101	101	97	89	100	79	64	83	100	89
AC1_3	161	182	148	118	128	112	206	119	184	115	169	143	116
AC1_4	191	208	197	136	148	197	209	209	205	197	208	187	172
AC1_5	277	251	224	269	290	256	226	236	220	314	227	292	223
AC1_6	316	295	280	299	316	305	244	256	305	317	317	313	305
AC1_7	335	400	331	385	359	332	377	398	364	334	344	328	422
AC1_8	425	421	413	424	403	388	407	424	413	352	364	413	425
AC2_1	3	23	13	10	28	5	25	29	3	36	3	30	72
AC2_2	45	63	93	30	45	18	30	41	72	48	15	81	95
AC2_3	59	85	98	55	81	57	42	84	85	52	40	92	100
AC2_4	77	105	102	81	91	92	104	93	89	74	58	103	105
AC2_5	108	108	108	108	108	108	108	108	108	108	108	108	108
AC2_6	111	138	180	111	131	121	118	136	113	133	137	111	144
AC2_7	123	189	203	153	171	201	138	153	126	138	149	180	156
AC2_8	148	200	208	167	193	206	163	189	165	150	192	193	160
AC2_9	166	211	213	185	213	210	189	199	200	212	201	197	182
AC2_10	216	216	216	216	216	216	216	216	216	216	216	216	216
AC2_11	245	219	252	219	246	288	219	239	229	226	244	221	241
AC2_12	257	288	264	231	297	311	261	279	309	246	261	234	246
AC2_13	300	301	268	256	308	316	275	301	314	271	297	273	258
AC2_14	309	305	290	274	319	321	293	321	318	297	307	308	320
AC2_1 5	324	324	324	324	324	324	324	324	324	324	324	324	324
AC2_16	352	329	349	353	327	360	327	354	396	327	347	337	334
AC2_17	369	342	354	365	396	372	339	405	419	369	387	417	354
AC2_18	405	381	366	408	409	376	364	416	424	383	409	422	379
AC2_19	415	416	428	417	413	398	382	427	429	401	429	426	405
TMCC1	13	10	16	23	36	31	34	4	49	78	25	7	5
TMCC2	50	28	30	37	48	39	48	7	61	82	63	25	10
TMCC3	70	44	37	51	55	47	54	17	96	85	73	47	21
TMCC4	83	47	74	68	59	65	70	51	99	98	80	60	44
TMCC5	87	54	83	105	86	72	101	71	104	102	93	87	61
TMCC6	133	115	113	121	118	124	131	144	139	142	112	157	186
TMCC7	171	133	118	158	136	138	145	156	147	156	115	169	190
TMCC8	181	155	129	178	152	145	159	163	155	162	125	204	193
TMCC9	188	168	152	191	155	182	176	167	173	178	159	207	206
TMCC10	201	195	169	195	162	191	213	194	180	209	179	212	210
TMCC11	220	265	294	241	223	221	229	226	232	239	252	247	250
TMCC12	223	277	298	279	241	226	266	244	246	253	264	255	264
TMCC13	233	312	301	289	263	237	286	260	253	267	271	263	270
TMCC14	267	315	314	296	276	260	299	263	290	284	275	281	286
TMCC15	287	320	318	309	303	277	303	270	299	321	302	288	317
TMCC16	360	355	358	328	373	402	349	331	329	337	334	340	347
TMCC17	372	363	372	331	385	406	387	349	334	374	352	354	361
TMCC18	379	371	378	341	420	409	397	371	345	394	368	361	375
TMCC19	383	389	394	375	423	422	404	384	368	407	371	398	392
TMCC20	410	396	425	395	428	426	417	411	385	411	378		429
		1											

El CP de la modulación del segmento diferencial debe servir obligatoriamente como SP de modulación síncrona de segmento, cuando el segmento de la modulación diferencial, en la frecuencia más baja, es adyacente a uno de los segmentos de modulación síncrona. El CP debe ser obligatoriamente entonces insertado en ese final de baja frecuencia. El receptor, de manera síncrona, debe detectar obligatoriamente ese CP como el SP final de alta frecuencia, del segmento de modulación síncrona.

El TMCC y portadoras AC (AC1 y AC2) se deben arreglar obligatoriamente en forma aleatoria con relación a la frecuencia, con el objeto de reducir la degradación causada por la caída periódica en las características del canal bajo ambiente de multipercurso. Las portadoras AC sirven no solamente como señal de piloto AC, sino también como portadoras para información adicional en el control de la transmisión.

Las portadoras AC1 para segmento de modulación diferencial deben ser obligatoriamente arregladas en la misma posición, que las del segmento de modulación síncrona.

6.13.3 Configuración del segmento OFDM para modulación síncrona

El SP se debe insertar obligatoriamente una vez cada 12 portadoras, en la dirección de las portadoras, y una vez cada 4 símbolos, en la dirección de los símbolos (ver Figura 33). El arreglo de las portadoras AC y TMCC debe obligatoriamente estar de acuerdo con las Tablas 20, 21 y 22.

El arreglo de las portadoras AC1 debe ser obligatoriamente el mismo para la modulación síncrona y para modulación diferencial. Las portadoras AC2 deben estar obligatoriamente disponibles solamente en la modulación diferencial, ya que la modulación síncrona no tiene ninguna portadora AC2.

Las portadoras TMCC y AC (AC1) se deben arreglar obligatoriamente en forma aleatoria, relativas a la dirección de la frecuencia, con el objeto de reducir el impacto de atenuaciones de canal causadas por multipercurso. Las portadoras AC1 para el segmento de la modulación diferencial se deben arreglar obligatoriamente en la misma posición de los segmentos de la modulación síncrona.

NOTA Sij representa el símbolo de la portadora dentro del segmento de datos, siguiendo el entrelazamiento (interleaving).

Figura 33 — Configuración del segmento OFDM para modulación síncrona (QPSK, 16QAM, 64QAM) en el modo 1

Tabla 20 — Arreglo de las portadoras AC y TMCC en el modo 1 y modulación síncrona

Número del segmento	11	9	7	5	3	1	0	2	4	6	8	10	12
AC1_1	10	53	61	11	20	74	35	76	4	40	8	7	98
AC1_2	28	83	100	101	40	100	79	97	89	89	64	89	101
TMCC 1	70	25	17	86	44	47	49	31	83	61	85	101	23

Tabla 21 — Arreglo de las portadoras AC y TMCC en el modo 2 y modulación síncrona

Número del segmento	11	9	7	5	3	1	0	2	4	6	8	10	12
AC_1	10	61	20	35	4	8	98	53	11	74	76	40	7
AC_2	28	100	40	79	89	64	101	83	101	100	97	89	89
AC_3	161	119	182	184	148	115	118	169	128	143	112	116	206
AC_4	191	209	208	205	197	197	136	208	148	187	197	172	209
TMCC 1	70	17	44	49	83	85	23	25	86	47	31	61	101
TMCC 2	133	194	155	139	169	209	178	125	152	157	191	193	131

Tabla 22 — Arreglo de las portadoras AC y TMCC en el modo 3 y modulación síncrona

Número del segmento	11	9	7	5	3	1	0	2	4	6	8	10	12
AC1_1	10	20	4	98	11	76	7	61	35	8	53	74	40
AC1_2	28	40	89	101	101	97	89	100	79	64	83	100	89
AC1_3	161	182	148	118	128	112	206	119	184	115	169	143	116
AC1_4	191	208	197	136	148	197	209	209	205	197	208	187	172
AC1_5	277	251	224	269	290	256	226	236	220	314	227	292	223
AC1_6	316	2295	280	299	316	305	244	256	305	317	317	313	305
AC1_7	335	400	331	385	359	332	377	398	364	334	344	328	422
AC1_8	425	421	413	424	403	388	407	424	413	352	364	413	425
TMCC 1	70	44	83	23	86	31	101	17	49	85	25	47	61
TMCC 2	133	155	169	178	152	191	131	194	139	209	125	157	193
TMCC 3	233	265	301	241	263	277	286	260	299	239	302	247	317
TMCC 4	410	355	425	341	373	409	349	371	385	394	368	407	347

6.14 Señal piloto

6.14.1 Piloto disperso (SP - scattered pilot)

La señal piloto disperso debe ser obligatoriamente una señal BPSK que se correlaciona a la secuencia del bit de salida Wi del circuito de generación de PRBS (ver Figura 34). La siguiente ecuación muestra el polinomio generador del PRBS:

$$G(x)=X^{11}+X^9+1$$

NOTA La letra i de Wi corresponde al número i de la portadora del segmento OFDM.

00001011000

10100100111

01110001001

Figura 34 — Circuito de generación de PRBS

El valor inicial del circuito de generación del PRBS se debe definir obligatoriamente para cada segmento.

Los valores iniciales deben obligatoriamente estar de acuerdo con la Tabla 23, mientras que la correspondencia entre Wi y la señal de modulación debe obligatoriamente estar de acuerdo con la Tabla 24.

Número del segmento	Valor inicial en el modo 1	Valor inicial en el modo 2	Valor inicial en el modo 3
11	1111111111	1111111111	11111111111
9	11011001111	01101011110	11011100101
7	01101011110	11011100101	10010100000
5	01000101110	11001000010	01110001001
3	11011100101	10010100000	00100011001
1	00101111010	00001011000	11100110110
0	11001000010	01110001001	00100001011
2	00010000100	00000100100	11100111101
4	10010100000	00100011001	01101010011
6	11110110000	01100111001	10111010010
	1		

Tabla 23 — Valor inicial del circuito de generación de PRBS

NOTA Los valores están organizados en orden ascendente de bits de izquierda a derecha. Cada valor inicial coincide con el valor obtenido, fijando todos los bits para un valor inicial de 1 s, generando continuamente todas las portadoras en toda la banda, empezando con la portadora más a la izquierda (portadora 0 del segmento 11) y terminando con la portadora más a la derecha.

11100110110

00101010001

00100001011

01100010010

11110100101

00010011100

8

10

12

Tabla 24 — Wi y señal de modulación

Valor Wi	Amplitud de la señal modulada (I, Q)
1	(- 4/3, 0)
0	(+ 4/3, 0)

6.14.2 Piloto continuo (CP)

El piloto continuo (CP) debe ser obligatoriamente una señal BPSK modulada de acuerdo con la posición de la portadora (número de la portadora dentro del segmento), dentro de la cual se inserta, y también de acuerdo con el valor de Wi. La correspondencia entre Wi y la señal modulante debe ser obligatoriamente la misma mostrada en la Tabla 24. El ángulo de fase del CP con relación a la posición de la portadora debe ser obligatoriamente constante, en todo símbolo.

6.14.3 TMCC

La señal de control TMCC debe ser obligatoriamente transmitido por medio de la señal DBPSK modulada de acuerdo con 6.15. La referencia para la modulación diferencial B_0 debe ser obligatoriamente estipulada por el Wi mostrado en 6.14.1. Después de la codificación diferencial, la señal TMCC modulada debe asumir obligatoriamente el punto de la señal (+ 4/3, 0) y (- 4/3, 0) para la información 0 y 1, respectivamente.

La información B'₀ para B'₂₀₃ disponible siguiendo la codificación diferencial debe ser obligatoriamente estipulada con relación a la información B₀ para B₂₀₃ antes de la codificación diferencial, como sigue:

B'₀ = Wi (referencial para modulación diferencial);

 $B_k' = B_{k-1} \oplus B_k$; k = 1,203, \oplus representa EXCLUSIVE OR

6.14.4 Canal auxiliar (AC)

El AC debe ser obligatoriamente un canal designado para transportar información adicional para control de la señal de transmisión. La información adicional AC debe ser obligatoriamente transmitida por la modulación de la portadora-piloto en DBPSK (del tipo análogo a CP). La referencia para modulación diferencial debe ser obligatoriamente provista por el primer símbolo del cuadro y asume la señal que corresponde al valor de Wi estipulado en 6.14.1.

La señal de modulación AC debe asumir obligatoriamente la señal (+ 4/3, 0) y (- 4/3, 0) respectivamente para la información 0 y 1, disponible en la codificación diferencial. Si no existe información adicional, la información 1 se debe insertar obligatoriamente como bit de relleno.

Dos canales deben estar disponibles obligatoriamente como canales AC: AC1 debe ser obligatoriamente el canal en el cual se utiliza la misma posición de la portadora para todos los segmentos, indiferentemente del esquema de modulación usado, y el canal AC2 debe ser empleado obligatoriamente sólo en el segmento con modulación diferencial.

Para asegurar la diversidad de aplicaciones del AC, sólo se debe usar obligatoriamente un esquema de modulación que es el DBPSK.

La capacidad de transmisión para todos los canales de televisión varía dependiendo de la configuración de los segmentos (ver Tabla 25).

Tabla 25 — Ejemplos de capacidad de transmisión para portadora AC (modo 1, intervalo de guarda 1/8)

	Segmento de sínci		Segmento de mod	dulación diferencial
	1	13	1	13
AC1	7,0 kbps	91,5 kbps	7,0 kbps	91,3 kbps
AC2	-	-	14,0 kbps	182,5 kbps

6.15 Configuración del espectro de transmisión

6.15.1 Localización de los segmentos dentro del espectro de 6 MHz

El arreglo del segmento OFDM debe estar obligatoriamente de acuerdo con la Figura 35. El segmento número 0 se debe posicionar obligatoriamente en el centro de la banda y los segmentos sucesivos colocados alternativamente arriba y abajo de este segmento.

Segmento nº 11 porción de modulación coherente Segmento nº 9 porción de modulación coherente Segmento nº 5 Segmento nº 5 Segmento nº 5 Segmento nº 6 Segmento nº 7 Segmento nº 7 Segmento nº 7 Segmento nº 7 Segmento nº 6 modulación de modulación de modulación diferencial Segmento nº 1	Segmento nº0 porción de recepción parcial Segmento nº 2 porción de modulación diferencial	Segmento nº 4 porción de modulación diferencial Segmento nº 6	Segmento nº 8	Segmento nº 10 porción de modulación coherente Segmento nº 12 porción de modulación	coherente
---	---	---	---------------	---	-----------

→Frecuencia

NOTA "Porción de recepción parcial", "Porción de modulación diferencial" y "Porción de modulación síncrona" son ejemplos de uso de los segmentos.

Figura 35 — Numeración de los segmentos OFDM en el espectro de transmisión y ejemplo de uso

Para transmisión jerárquica, el segmento de modulación diferencial se debe atribuir obligatoriamente en forma alternativa arriba y abajo del segmento nº 0, en el orden ascendente del número de segmento, con segmento de modulación síncrona atribuido en forma alternativa arriba y abajo del segmento de modulación diferencial. Para la transmisión jerárquica, la posición del segmento atribuido para recepción parcial debe ser obligatoriamente siempre nº 0.

Para hacer la transmisión del espectro total, un piloto continuo, con su fase estipulada por el Wi se debe proveer obligatoriamente del lado derecho al final de la banda. La señal de modulación usada para la portadora del extremo derecha debe estar de acuerdo obligatoriamente con la Tabla 26.

Tabla 26 — Señal de modulación para portadora continua

Modo	Amplitud de la señal de modulación (I, Q)
Modo 1	(- 4/3, 0)
Modo 2	(+ 4/3, 0)
Modo 3	(+ 4/3, 0)

La portadora continua en el lado de la frecuencia superior de la banda de televisión es una portadora-piloto requerida para demodulación cuando el segmento adyacente debe ser obligatoriamente de modulación síncrona. Esa portadora debe obligatoriamente estar siempre presente en el sistema brasileño.

El segmento de recepción parcial debe ser obligatoriamente siempre atribuido al segmento de n^{o} 0, con el objeto de asegurar fácil sintonía por el receptor.

6.15.2 Formato de la señal de RF

El formato de señal en la banda de RF debe ser obligatoriamente estipulado por las siguientes ecuaciones:

$$s(t) = \text{Re}\left\{e^{j2\pi f_{c}t} \sum_{n=0}^{\infty} \sum_{k=0}^{k-1} c(n,k) \psi(n,k,t)\right\}$$

$$\psi(n,k,t) = \begin{cases} e^{j2\pi \frac{k-kc}{Tu}(t-Tg-nTs)} & nT_s \le t < (n+1)T_s \\ 0 & t < nT_s, \quad (n+1)T_s \le t \end{cases}$$

donde

k es el número de la portadora que es sucesivo para toda la banda, con el número 0 atribuido a la portadora 0 del segmento 11;

- n es el número del símbolo;
- K representa las portadoras totales (modo 1: 1 405, modo 2: 2 809, modo 3: 5 617);
- Ts es el tiempo de duración del símbolo OFDM;
- T_g es el tiempo de duración del intervalo de guarda;
- T_u es el tiempo de duración de la parte útil del símbolo;
- fc es el centro de la frecuencia de la señal de RF;
- K_c es el número de la portadora que corresponde al centro de la frecuencia de RF (modo 1: 702, modo 2: 1 404, modo 3: 2 808);
- c(n,k) es el vector complejo de la señal punto correspondiente al símbolo número n y portadora número k;
- s(t) es la señal de RF.

La frecuencia central para radiodifusión terrestre digital debe ser obligatoriamente estipulada por la frecuencia de RF correspondiente a K_{\circ}

6.15.3 Inserción de intervalo de guarda

En la parte final de la salida de datos del IFFT, para una duración específica, se debe agregar obligatoriamente un intervalo de guarda, sin ninguna modificación, en el comienzo del símbolo efectivo (ver Figura 36).

Figura 36 — Inserción de intervalo de guarda

6.16 Señal TMCC - Esquema de codificación y sistema de transmisión

6.16.1 Visión general

La señal TMCC se debe usar obligatoriamente para transportar la información de cómo el receptor debe obligatoriamente configurar la demodulación, así como la información sobre la configuración jerárquica y parámetros de transmisión del segmento OFDM. La señal TMCC debe ser transmitida obligatoriamente por medio de la portadora TMCC (ver 6.14).

6.16.2 Atribución de los bits de la portadora TMCC

La atribución de bits de la portadora 204 TMCC para B₀ a B₂₀₃ debe estar de acuerdo obligatoriamente con la Tabla 27.

В₀	Referencia para demodulación diferencial	
B ₁ - B ₁₆	Señal de sincronización (W0 – 0011010111101110, W1 = 1100101000010001)	
B ₁₇ - B ₁₉	Identificación del tipo de segmento (diferencial: 111; síncrono: 000)	
B ₂₀ - B ₁₂₁	Información de la TMCC (102 bits)	
B ₁₂₂ - B ₂₀₃	Bit de paridad	

Tabla 27 — Atribución de bits

6.16.3 Informes para demodulación diferencial

Las referencias de amplitud y fase para demodulación diferencial deben ser dadas obligatoriamente por Wi (ver Tabla 23).

6.16.4 Señal de sincronización

La señal de sincronización debe obligatoriamente consistir en palabras de 16 bits y asumir una entre dos formas:

- con W0 = 0011010111101110;
- con W1 =1100101000010001, obtenido invirtiendo cada bit del W0.

Una de las W0 y W1 debe ser obligatoriamente transmitida en forma alternativa a cada cuadro (ver Tabla 28).

Número de los cuadros ^a	Señal de sincronización
1	0011010111101110
2	1100101000010001
3	0011010111101110
4	1100101000010001
•	

Tabla 28 — Ejemplo de transmisión de señal de sincronización

La señal de sincronización se debe designar obligatoriamente para establecer la sincronización entre la transmisión y recepción de una señal de TMCC y el cuadro OFDM. Para evitar el falso bloqueo de sincronización, causado por el perfil de casamiento de bit de información TMCC de la señal de sincronización, la polaridad de la señal de sincronización debe ser obligatoriamente invertida a cada cuadro.

NOTA Es posible prever el falso bloqueo de sincronización por medio de la inversión de polaridad de la señal de sincronización, pues la información TMCC, de por sí, no es invertida a cada cuadro.

6.16.5 Identificación del tipo de segmento

La señal B₁₇, B₁₈, B₁₉ se debe usar obligatoriamente para determinar si un segmento tiene modulación diferencial o síncrona. Se deben atribuir obligatoriamente a esa señal palabras de tres bits "111" para modulación diferencial y "000" para modulación síncrona, respectivamente.

El número de la portadora TMCC varía dependiendo del formato del segmento. Debe obligatoriamente existir solamente una portadora TMCC, si la recepción parcial pertenece a una de las modulaciones síncronas. En ese caso, para asegurar una decodificación confiable, tres bits se deben atribuir obligatoriamente para la señal de identificación, de modo que la distancia código a código se torne máxima cuando se alteran esos bits.

6.16.6 Información de la señal TMCC

6.16.6.1 Función del TMCC

La información TMCC debe auxiliar al receptor en la demodulación y decodificación de varias informaciones, incluyendo el sistema de identificación, el indicador de conmutación de los parámetros de transmisión, el *flag* iniciar la alarma de emergencia de radiodifusión, la información actual y la próxima información.

La información actual debe representar obligatoriamente la configuración jerárquica actual y parámetros de transmisión, mientras que la próxima información debe incluir obligatoriamente los parámetros de transmisión posteriores a la conmutación.

Antes de la cuenta atrás para la conmutación (ver 6.16.6.3), la próxima información se puede especificar o alterar en el tiempo deseado. Sin embargo, ese cambio no se puede realizar durante la cuenta atrás.

Las informaciones de bits atribuidas y parámetros de transmisión incluidos en la próxima información deben estar obligatoriamente de acuerdo con las Tablas 29 y 30.

NOTA De los 102 bits de la información TMCC, 90 bits fueron definidos hasta hoy. Los 12 bits restantes se reservan para futuras expansiones. Para la operación, todos esos bits se rellenan con 1 s.

Tabla 29 — Información TMCC

Atribución De bit		Descripción	
B20 - B21	Identificación de sistema		Ver Tabla 31
B22 – B25	lı	ndicador de los parámetros de conmutación de transmisión	Ver Tabla 32
B ₂₆	Aı	rranque del flag para alarma de emergencia de radiodifusión	Ver Tabla 33
B ₂₇		Flag de recepción parcial	Ver Tabla 34
B ₂₈ – B ₄₀	Información	Información de los parámetros de transmisión para capa jerárquica A	
B ₄₁ – B ₅₃	Actual	Información de los parámetros de transmisión para capa jerárquica B	Ver Tabla 30
B ₅₄ – B ₆₆		Información de los parámetros de transmisión para capa jerárquica C	
B ₆₇		Flag de recepción parcial	Ver Tabla 34
B ₆₈ – B ₈₀	Próxima	Información de los parámetros de transmisión para capa jerárquica A	
B ₈₁ – B ₉₃	información	Información de los parámetros de transmisión para capa jerárquica B	Ver Tabla 30
B ₉₄ – B ₁₀₆		Información de los parámetros de transmisión para capa jerárquica C	
B ₁₀₇ – B ₁₀₉	Corrección del valor de desvío de fase para segmento de transmisión conectado		1 para todos los bits
B ₁₁₀ – B ₁₂₁	Reservado 1 para todos los bits		

Tabla 30 — Contenidos de información de los parámetros de transmisión

Descripción	Número de bits	Observaciones
Esquema de modulación de portadora	3	Ver Tabla 35
Tasa del codificador convolucional	3	Ver Tabla 36
Longitud del <i>interleaving</i>	3	Ver Tabla 37
Número de segmentos	4	Ver Tabla 38

6.16.6.2 Sistema de identificación

Dos bits se deben atribuir obligatoriamente para proveer la señal con la finalidad de identificación. En el caso del sistema brasileño, los bits de identificación deben ser obligatoriamente "00"; los demás valores se reservan (ver Tabla 31).

Tabla 31 — Sistema de identificación

B ₂₀ - B ₂₁	Propósito
00	Sistema de televisión digital terrestre basado en esta especificación
01, 10, 11	Reservado

6.16.6.3 Indicador de conmutación de parámetros de transmisión

La conmutación entre los conjuntos de parámetros de transmisión, el contenido de los indicadores de conmutación y parámetros de transmisión se deben contar obligatoriamente en forma regresiva, con el objeto de informar al receptor el indicador de conmutación de los parámetros de transmisión y permitir el ajuste adecuado.

Esos bits indicadores se ajustan normalmente en "1111". Sin embargo, cuando es necesario conmutar parámetros, la cuenta atrás debe obligatoriamente comenzar en 15 cuadros antes de conmutar, disminuyendo así el contenido de esos bits en 1 a cada cuadro. Cuando el contenido llegue a "0000", debe obligatoriamente volver a "1111".

La conmutación se debe configurar obligatoriamente a través de la sincronización con el próximo cuadro, que da la salida "0000". Es decir, un nuevo conjunto de parámetros de transmisión se aplica, empezando con el cuadro cuyo contenido de bits se debe ajustar obligatoriamente de nuevo en "1111". El significado de cada conteo del indicador de conmutación de los parámetros de transmisión se da en la Tabla 32.

Tabla 32 — Indicador de conmutación de los parámetros de transmisión

B ₂₂ - B ₂₅	Significado
1111	Valor normal
1110	15 cuadros antes de la conmutación
1101	14 cuadros antes de la conmutación
1100	13 cuadros antes de la conmutación
0010	3 cuadros antes de la conmutación
0001	2 cuadros antes de la conmutación
0000	1 cuadro antes de la conmutación

Cuando se conmuta cualquiera de los parámetros de transmisión, se debe enviar obligatoriamente el *flag* contenido en la actual información y en la próxima información (ver Tabla 29) (*flag* de recepción parcial, esquema de modulación de la portadora, tasa de codificación convolucional, longitud del *interleaving* y el número de segmentos). El contenido del indicador de 4 bits de conmutación de los parámetros de transmisión (ver Tabla 32) empieza la cuenta atrás.

NOTA. Cuando se conmuta solamente el *flag* de partida para alarma de emergencia de radiodifusión, el contenido del indicador de conmutación de parámetros de transmisión no realiza la cuenta regresiva.

6.16.6.4 Flag para alarma de emergencia de radiodifusión

El contenido del start flag debe ser obligatoriamente 1 cuando el receptor está en startup y 0 cuando el receptor no está controlado (ver Tabla 33).

Tabla 33 — Start flag para alarma de emergencia de la radiodifusión

B ₂₆ Significado	
0	Startup no controlada
1	Control de startup disponible

6.16.6.5 Flag de recepción parcial

El contenido del *flag* de recepción parcial debe ser obligatoriamente 1 cuando el segmento en el centro de la banda de transmisión se usa para recepción parcial y 0 cuando el segmento en el centro de la banda de transmisión no se usa para recepción parcial (ver Tabla 34).

Cuando el segmento de número 0 se usa para recepción parcial, la capa jerárquica A (ver Tabla 29) debe ser obligatoriamente atribuida para ese segmento. El contenido de ese *flag* debe ser obligatoriamente 1, si no existe la próxima información.

Tabla 34 — Flag de recepción parcial

B ₂₇ /B ₆₇	Significado
0	Sin recepción parcial
1	Recepción parcial disponible

6.16.6.6 Esquema de modulación de portadora

El significado de los bits del esquema de modulación de la portadora debe estar de acuerdo obligatoriamente con la Tabla 35. El contenido de esos bits debe ser obligatoriamente 111 para una capa jerárquica no usada o cuando no existe la próxima información.

Tabla 35 — Esquema de modulación de portadora

B ₂₈ - B ₃₀ /B ₄₁ - B ₄₃ /B ₅₄ - B ₅₆ B ₆₈ - B ₇₀ /B ₈₁ - B ₈₃ /B ₉₄ - B ₉₆	Significado
000	DQPSK
001	QPSK
010	16QAM
011	64QAM
100 – 110	Reservado
111	Capa jerárquica no usada

Con una señal TMCC, el significado de todos los conjuntos de contenido de bit debe ser obligatoriamente el mismo para todas las capas jerárquicas. Cuando las señales de dos capas jerárquicas, o menos, se transmiten, el contenido de esos bits para capa jerárquica ausente debe ser obligatoriamente 111. El contenido de esos bits debe ser obligatoriamente 111 si no existe próxima información, así como cuando termina la transmisión.

6.16.6.7 Tasa de codificación convolucional

El significado del contenido de bits de la tasa de codificación convolucional debe estar de acuerdo obligatoriamente con la Tabla 36. El contenido de esos bits debe ser obligatoriamente 111 para una capa jerárquica no usada, o cuando no existe próxima información.

Tabla 36 — Tasa de la codificación convolucional

$B_{31} - B_{33}/B_{44} - B_{46}/B_{57} - B_{59}$ $B_{71} - B_{73}/B_{84} - B_{86}/B_{97} - B_{99}$	Significado
000	1/2
001	2/3
010	3/4
011	5/6
100	7/8
101 – 110	Reservado
111	Capa jerárquica no usada

6.16.6.8 Longitud de time interleaving

El significado de los bits que indican la longitud del entrelazamiento temporal debe estar de acuerdo obligatoriamente con la Tabla 37. Esa información representa la longitud I del *time interleaving* de la Tabla 13. El contenido de esos bits debe ser obligatoriamente 111 para una capa no utilizada o cuando no existe próxima información.

Tabla 37 — Longitud del interleaving

B ₃₄ - B ₃₆ /B ₄₇ - B ₄₉ /B ₆₀ - B ₆₂ B ₇₄ - B ₇₆ /B ₈₇ - B ₈₉ /B ₁₀₀ - B ₁₀₂	Significado (valor 1)
000	0 (modo 1), 0 (modo 2), 0 (modo 3)
001	4 (modo 1), 2 (modo 2), 1 (modo 3)
010	8 (modo 1), 4 (modo 2), 2 (modo 3)
011	16 (modo 1), 8 (modo 2), 4 (modo 3)
100 – 110	Reservado
111	Capa jerárquica no usada

6.16.6.9 Número de segmentos

El significado del contenido de los bits del segmento debe estar de acuerdo obligatoriamente con la Tabla 38. El contenido de esos bits debe ser obligatoriamente 1111 para capa jerárquica no usada, o cuando no existe la próxima información.

Tabla 38 — Número de segmentos

<u> </u>		
B ₃₇ - B ₄₀ /B ₅₀ - B ₅₃ /B ₆₃ - B ₆₆ B ₇₇ - B ₈₀ /B ₉₀ - B ₉₃ /B ₁₀₃ - B ₁₀₆	Significado	
0000	Reservado	
0001	1 segmento	
0010	2 segmentos	
0011	3 segmentos	
0100	4 segmentos	
0101	5 segmentos	
0110	6 segmentos	
0111	7 segmentos	
1000	8 segmentos	
1001	9 segmentos	
1010	10 segmentos	
1011	11 segmentos	
1100	12 segmentos	
1101	13 segmentos	
1110	Reservado	
1111	Capa jerárquica no usada	

6.16.6.10 Esquema de codificación de canal

Los códigos B₂₀ hasta B₁₂₁ de la información TMCC son códigos de corrección de errores por medio de código abreviado (184, 102) del código diferencia cíclica (273, 191). La siguiente ecuación muestra la generación del polinomio del código (273, 191):

$$q(x) = x^{82} + x^{77} + x^{76} + x^{71} + x^{67} + x^{66} + x^{56} + x^{52} + x^{48} + x^{40} + x^{36} + x^{34} + x^{24} + x^{22} + x^{18} + x^{10} + x^{4} + 1$$

Una vez que la información TMCC se usa para especificar los parámetros de transmisión y control de la operación del receptor, se debe transmitir obligatoriamente con la confiabilidad más alta que la señal de programa. Adicionalmente existen dificultades implícitas al tener en el receptor el mismo circuito decodificador de código concatenado para la información TMCC y para la señal de programa. Sin embargo, teniendo en cuenta el hecho de que el uso del código de bloque es ventajoso, debido al tiempo de procesamiento más corto, el código abreviado (188, 102) del código diferencial cíclico (273, 191) se debe usar obligatoriamente como código corrector de error de la información TMCC.

Las mismas señales TMCC se deben transmitir obligatoriamente por medio de múltiples portadoras. Por lo tanto, es posible que C/N sea requerido por la simple adición de esas señales, asegurando así una mejora en el desempeño de recepción. Esas técnicas de correctores de error y el proceso de adición permiten recibir señales TMCC con un valor de C/N más bajo que la señal de programa.

Excluyendo la señal de sincronización y la identificación del tipo de segmento del grupo de bits chequeado para errores, todos los contenidos de bits de la portadora TMCC deben ser obligatoriamente los mismos, lo que permite determinar el contenido de cada bit, incluyendo el bit de paridad, determinando el contenido de la mayoría de las portadoras.

6.16.6.11 Esquema de modulación

La portadora TMCC debe ser obligatoriamente modulada en DBPSK (ver 6.14.3).

7 Requisitos de utilización de frecuencia

7.1 Ancho de banda de frecuencia

Para la radiodifusión de televisión digital terrestre, se debe usar obligatoriamente el ancho de banda de frecuencia de 5,7 MHz. La frecuencia nominal de la portadora debe ser obligatoriamente la frecuencia central del ancho de banda.

El ancho de banda de frecuencia debe ser obligatoriamente de 5,7 MHz cuando el ancho de banda de la portadora OFDM es 5,572 MHz, con 4 kHz de separación entre las frecuencias portadoras en el modo 1. Esa ancho de banda se debe aplicar obligatoriamente independientemente del modo elegido, y se adopta para asegurar que el ancho de banda de 5,610 MHz tenga algún margen para determinar que cada portadora del límite inferior y límite superior de la banda de 5,572 MHz incluya el 99 % de energía.

La frecuencia central debe ser obligatoriamente la frecuencia de la portadora localizada en el centro de la banda de la señal OFDM, considerando un número impar de portadoras OFDM.

7.2 Estabilidad de frecuencia y desvío de frecuencia de transmisión admisible

La estabilidad de frecuencia de las portadoras, cuando la temperatura varíe entre + 10 °C y + 50 °C y la tensión de alimentación varíe entre ± 15 % de la tensión nominal, debe ser obligatoriamente mejor que ± 1 Hz.

El desvío de frecuencia de las portadoras debe ser obligatoriamente menor que ± 1 Hz.

51

7.3 Off-set de frecuencia de las portadoras OFDM

La frecuencia de la señal de transmisión terrestre debe ser obligatoriamente desplazada positivamente de 1/7 MHz (142,857 kHz) con relación a la frecuencia central del canal usada en el actual plan de canalización (ver Figura 37).

Figura 37 — Ejemplo del arreglo de portadoras de la señal OFDM para la señal de televisión digital terrestre

Las emisiones terrestres deben obligatoriamente obedecer a las Tablas 39 y 40 de asignación de frecuencias terrestres.

Canal	Frecuencia inicial del canal MHz	Frecuencia final del canal MHz	Frecuencia de la portadora Central de la señal MHz
07	174	180	177+ 1/7
08	180	186	183 + 1/7
09	186	192	189 + 1/7
10	192	198	195 + 1/7
11	198	204	201 + 1/7
12	204	210	207 + 1/7
13	210	216	213 + 1/7

Tabla 39 — Canales de VHF alto

Tabla 40 — Canales de UHF

Canal	Frecuencia inicial MHz	Frecuencia final MHz	Frecuencia central de la portadora central de la señal
			MHz
14	470	476	473 + 1/7
15	476	482	479 + 1/7
16	482	488	485 + 1/7
17	488	494	491 + 1/7
18	494	500	497 + 1/7
19	500	506	503 + 1/7
20	506	512	509 + 1/7
21	512	518	515 + 1/7
22	518	524	521 + 1/7
23	524	530	527 + 1/7
24	530	536	533 + 1/7
25	536	542	539 + 1/7
26	542	548	545 + 1/7
27	548	554	551 + 1/7
28	554	560	557 + 1/7
29	560	566	563 + 1/7
30	566	572 570	569 + 1/7
31	572	578	575 + 1/7
32	578	584	581 + 1/7
33	584	590	587 + 1/7
34	590	596	593 + 1/7
35	596	602	599 + 1/7
36	602	608	605 + 1/7
37	No se usa para televisión	No se usa para televisión	No se usa para televisión
38	614	620	617 + 1/7
39	620	626	623 + 1/7
40	626	632	629 + 1/7
41	632	638	635 + 1/7
42	638	644	641 + 1/7
43	644	650	647 + 1/7
44	650	656	653 + 1/7
45	656	662	659 + 1/7
46	662	668	665 + 1/7
47	668	674	671 + 1/7
48	674	680	677 + 1/7
49	680	686	683 + 1/7
50	686	692	689 + 1/7
51	692	698	695 + 1/7
52	698	704	701 + 1/7
53	704	710	707 + 1/7
54 55	710	716	713 + 1/7
55 56	716	722	719 + 1/7
56 57	722	728	725 + 1/7
57	728	734	731 + 1/7
<u>58</u> 59	734 740	740 746	737 + 1/7
			743 + 1/7
60	746	752 750	749 + 1/7
61	752 759	758 764	755 + 1/7 761 + 1/7
62	758	764 770	761 + 1/7
63	764	770	767 + 1/7
64	770	776	773 + 1/7
65	776	782	779 + 1/7
66	782	788	785 + 1/7
67	788	794	791 + 1/7
68	794	800	797 + 1/7
69	800	806	803 + 1/7

7.4 Frecuencia de muestreo de IFFT y desvío admisible

La frecuencia de muestreo de la IFFT para uso en la modulación OFDM para radiodifusión debe ser obligatoriamente de:

Fs = 512/63 MHz = 8 126 984 Hz

El desvío admisible es ± 0,3 Hz/MHz. El desvío de frecuencia de la portadora (causado por el error de frecuencia de muestreo de la IFFT), a cada fin del ancho de banda, debe ser 1 Hz o menos.

Una frecuencia de muestreo de IFFT de 512/63 MHz, una de frecuencia nominal teórica, se puede usar si se respeta el desvío de frecuencia admisible.

7.5 Máscara del espectro de transmisión

7.5.1 Característica de la máscara del espectro de transmisión

El nivel del espectro, fuera de la banda, asignado para la transmisión de la señal de televisión, se debe reducir obligatoriamente, aplicándose un filtro adecuado. La Figura 38 y la Tabla 41 indican las atenuaciones mínimas de las emisiones fuera de la banda con relación a la potencia media del transmisor, especificadas en función del alejamiento con relación a la portadora central de la señal digital, para las máscaras no crítica, subcrítica y crítica.

Figura 38 — Máscara del espectro de transmisión para radiodifusión de televisión digital terrestre

Tabla 41 — Especificación de las máscaras del espectro de transmisión

Separación o alejamiento con relación a la portadora	Atenuación mínima con relación a la potencia media, medida en la frecuencia de la portadora central					
central de la señal digital MHz	Máscara no crítica dB	Máscara subcrítica dB	Máscara crítica dB			
- 15	83,0	90,0	97,0			
- 9	83,0	90,0	97,0			
- 4,5	53,0	60,0	67,0			
- 3,15	36,0	43,0	50,0			
- 3,00	27,0	34,0	34,0			
- 2,86	20,0	20,0	20,0			
- 2,79	0,0	0,0	0,0			
2,79	0,0	0,0	0,0			
2,86	20,0	20,0	20,0			
3,00	27,0	34,0	34,0			
3,15	36,0	43,0	50,0			
4,5	53,0	60,0	67,0			
9	83,0	90,0	97,0			
15	83,0	90,0	97,0			

Los valores de la Tabla 41 se deben medir obligatoriamente con la configuración en el analizador de espectro indicada en la Tabla 42.

Tabla 42 — Configuraciones del espectro para medida de la máscara

Frecuencia central	span	RBW	VBW	Modo de detección
Frecuencia central de la portadora modulada	20 MHz	10 kHz	300 Hz o menos	Detección de pico positivo

El punto de corte debe ser obligatoriamente medido usando un analizador de espectro ajustado para frecuencia de *spam* de 20 MHz o menos y una resolución de ancho de banda (RBW) de 10 kHz. Se debe usar obligatoriamente un ancho de banda de vídeo (VBW) de 300 Hz o menos.

7.5.2 Criterios para aplicación de las máscaras

La aplicación de las máscaras debe obligatoriamente tener en cuenta las clases y subclases de las estaciones.

Las estaciones digitales se clasifican en clase especial, clase A, clase B y clase C. La Tabla 43 indica los valores máximos de potencia ERP para cada clase de estación, tomándose como altura de referencia 150 m sobre el nivel medio del terreno.

55

Tabla 43 — Potencia máxima de cada clase

Clases	Máxima potencia ERP (Hsnmt = 150) kW				
	Banda VHF alta UHF				
Especial	16	80			
Α	1,6	8			
В	0,16	0,8			
С	0,016	0,08			

Cada clase está dividida en subclases y la diferencia de potencia entre las diversas subclases es de 1 dB.

Dos canales se deben considerar obligatoriamente adyacentes si, y solamente si, la diferencia entre las frecuencias centrales de los canales involucrados es de 6 MHz.

Los criterios para empleo de las máscaras no crítica, subcrítica y crítica están especificados en la Tabla 44.

Tabla 44 — Criterios para aplicación de las máscaras crítica, subcrítica y no crítica

Clase de estación digital	A, B y C			Especial			
Distancia con relación a la estación de canal adyacente instalada en la misma localidad	< 400 m		> 400 m		de canal adyacente	adyacente adya	de canal adyacente
Tipo de modulación del canal adyacente previsto o instalado en la misma localidad	Analógica	Digital	Analógica	Digital	instalado en la misma	en la en la en misma misma mis	instalado en la misma localidad
Pdigital < Padyacente + 3 dB	Crítica	Subcrítica	Crítica		No crítica	Crí	tica
P _{digital} > P _{adyacente} + 3 dB		Crítica					
Pdigital = Potencia ERP de la estación dig Padyacente = Potencia ERP de la estación		yacente					

Intensidad de la emisión espuria admisible

La potencia espuria admisible debe obligatoriamente estar de acuerdo con la Tabla 45.

Tabla 45 — Potencia de emisión espuria admisible

Separación con relación a la portadora central de la señal digital	Atenuación mínima con relación a la potencia media medida en la frecuencia de la portadora central	
> 15 MHz;	60 dB para P > 25 W, limitada a 1 mW en VHF y 20 mW en UHF	
< - 15 MHz;	Para P ≤ 25 W, limitada a 25 μW en VHF y UHF	

Bibliografía

- [1] Resolución 407, de 10 de junio de 2005, de la Agencia Nacional de Telecomunicaciones, Plan Básico de Distribución de Canales Digitales
- [2] ABNT NBR 15602:2007, Televisão digital terrestre Codificação de vídeo, áudio e multiplexação
- [3] ISO/IEC 13818-1:2007, Information technology Generic coding of moving pictures and associated audio information: Systems
- [4] ARIB STD-B1 0:2003, Service information for digital broadcasting system
- [5] JEITA Handbook, 2005, Methods of Measurement for Digital Terrestrial Broadcasting Transmission Networks