UNIVERSITY OF ENGINEERING & MANAGEMENT (UEM) KOLKATA

EAR: 2nd SEMESTER 4th

XPT. NO.	DATE	NAME OF THE EXPERIMENT	PAGE	REMARKS
1	2/2/23	Design Registor Circuit	1-6	Bright NV
2	12/2/23	Adder-Subtractor Composite Circuit	7-9	1
4	15/3/23	Design for a BCD adden	10-12	08 23/03/2 08 06/04/2
5	30/3/23	A) Design Composite	13-15	85 06/04/2:
		Logic Unit Using Multiplever		
		By Design Composite	16-20	
		Mithmetic Unit Using		
		multiplexer	, ,	
6	13/4/23	Memory Road/write	21-23	
		operation Using RAM IC		
		1		7
L			. 4	

Aim - Implementing SISO, SIPO and PIPO shift registers

Component Required - IC4013, connecting wire, bread board, trainer kit.

Therory:

Register - A register is a collection of flip flop. A flip flop is used to store single bit digital data for storing a large number of bits, the storage capacity is increased by grouping more than one flipflop. If we want to store an n-bit word we have to use an n-bit register containing n number of flipflops.

Types of Register -

SISO-Serial in serial out (SISO) shift register are kind of shift register where both data leading as well as data retrieval to 1 from shift register occurs in serial-mode.

SIPO - A serial in parallel out shift register is similar to the serial in a serial out shift register is that it shifts data into internal storage element and shifts data out at the serial out, data out, pin. It is different in that if makes all the internal stages available as output.

PIPO - The shift register which was parallel input and generates parallel output is known as the parallel input parallel output (PIPO) shift register. The shift register include three connections only the PI (parallel IIP), PO (parallel O/P) & the clock signal.

PIN DIAGRAM (D Flipflop)

Dual Dflipflop

Observation Table:

SISO:

Clock	Serial Data Input (D)	Serial Data Output (G)
0	. 0	0
1	1	0
2	0	0
3	0	0
4	. 0	1

SIPO:

Clock	Serial Data Input (D)	Parallel Data Output						
		QA	QB	Qe	Qp			
0	0	0	0	0	0			
1	1	1	0	0	0			
2	0	0	1	0	0			
3	0	0	0	1	0			
4	D	0	0	0	1			

PIPO:

Clock	Parallel D	Data Binp	wt (D)		Parallel Data Output (Q)				
	A	3	C	D	Qo	Q,	Q ₂	Q ₃	
0	0	0	0	0	0	0	0	0	
1	1	0	0	0	1	0	0	0	
2	1	1	0	0	1	2	0	0	
3	1	1	61	0	1	1	1	0	
4	1	1	1	1	1	1	1	1	

Conclusion: SISO, SIPO, PIPO shift registers were implemented and the truth table is verified.

Objective:

To design the adder-subtractor composite circuit.

Theory:

The 4-bit adder-subtractor composite circuit performs the operation of both addition and subtraction. It has two 4-bits inputs $A_3A_2A_1A_0$ and $B_3B_2B_1B_0$. The Mode Select line(M) is connected with the Cin of the least significant bit of the Full-adder, is used to perform the operation of addition and subtraction. The XOR gates are used as controlled inverter.

Adders are part of the arithmetic and logic unit (ALU).

Component Required:

SI No.	Item	Specification	Qty.
1	IC 4008	4-bit binary full adder	1
2	IC 4070	XOR Gate	1
3	Digital Trainer Kit	-	1
4	Breadboard	-	1
5	Wires	-	-

Pin Diagram:

<u>Pin Diagram of 4-bit Binary Full Adder</u> (IC4008)

Circuit Diagram:

Adder-subtractor composite circuit

Truth Table:

Mode		Input (A)				Input (B)				Output (S)			
Selection	A ₃	A ₂	A ₁	A ₀	B ₃	B ₂	B ₁	B ₀	Cout	S ₃	S ₂	S ₁	S ₀
0	0	0	1	0	0	0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	1	0	1	0	1	0	0
0	1	1	0	0	0	0	1	1	0	1	1	1	1
1	1	1	0	0	0	0	1	1	0	1	0	0	1
1	1	0	1	0	0	0	0	1	0	1	0	0	1
1	1	0	0	1	0	0	1	1	0	0	1	0	1

Conclusion:

4-bit adder and subtractor composite circuit was made and truth table was verified.

Experiment No - co - 04

OBJECTIVE: To design the circuit for a BCD adder

In Computing and electronic systems, binary-coded decimal (BCD) is a class of binary encodings of decimal numbers where each decimal digit is represented by a number of bits A BCD adder is acircuit that fixed number of bits A BCD adder is acircuit that adds two BCD digits in parallel and produces a sum digit which is also in BCD. This circuit includes correction ligic. Which is also in BCD. This circuit includes correction ligic. For sums > 9 the circuit need to add 2's compliment of the for sums > 9 the ancorrected result (Sy S3 S2 S1). Correction to 1010 (0110) to the ancorrected result (Sy S3 S2 S1). Correction is also needed when carry out (Couty) is generated (for

BCD was used in many early decimal computers.

MARAGE ME		
		OD
A4 1		
00 [2]	15	ВЧ .
B3 2	re 14 (cont
A3 3	4 0	
B2 4	12 3	
A2 5	11 5	.2
81 1	ial S	
41 17	15.1 Co	4
GND []		

Truth Table:

											-
Decimal	Cont	54	53	S	S,	Decimal	Cont	.Sy	S3	Sz	Si
0	0	0	0	0	0	10	1	0	0	0	0
4.		0	0	0	1	Ч	1	0	0	0	1
2		O	0	1	0	12	1	0	0	1	0
3		0	0	1	1	13	1	0	0	ı	1
4		O	1	0	0	14	1	0	t	0	0
5		0	1	0	1	15	1	O	ı	0	1
a		0	1	1	0	۱۵	1	0	1	1	0
7		O	1	1	1	17	1	U	1	1	<u>!</u>
8		1	0	0	0	18	1	T	0	0	0
9		1	0	0	1	19	1	1	0	0	1

Knop for BCD adder:

Sisa	500	_01	ч	LO
00	0	1	3	2
01	4	5	7	6
	[12	13	15	14)
10	8	2	11	10)

Cout = 5354 + 5452

INSTRUMENT & COMPONENT. REGUIRED:

Itzm	specification	aty.
1C 4071	OR Gate	1
10 4081	AND Croate	1
10 4008	4 bit binary full	2
Trainer kit	_	1
Brendboard	_	1
wires	-	tos neguier
	IC 4071 IC 4081 IC 4008 Trains kit Brendboard	1C 4071 OR Grate 1C 4081 AND Grate 1C 4008 4 bit binary fully Trainer kit Brendboard —

VERIFICATION TABLE:

Senial no		Input	(4)		Tr	put	(6)	output (s)				
	Ay	A3	A ₂	Aı	Вч	в ₃	B ₂	8,	sy	53	Sz	15,
1	0	0	0	0	1	0	0	1	i	0	0	1
2	0	1	1	1	0	1	0	0	0	0	0	1
3	0	0	0	1	0	0	0	0	0	0	0	1
4	0	0	0	1	0	0	0	1	0	0	1	0
2	. 0	t	0	1	0	0		1	(0	0	0
6	1	0	0	0	0	t	0	1	0	0	1	1

Gnelusion

By this experiment we are able to build the bod adder.

Experiment No - CO: -05(A)

TITLE: Design a composite logic Unit using Multiplenes.

OBJECTIVE: To design a composite logic Unit Using Multiplucer.

Individual bits or a portion of word stored in a rejister.

They can be used to change bit values, delite group of bits, or insert new bit values into a register. There microperations require different logic gates to be inserted for each bit or pair of bits in the register to perfrom the required or pair of bits in the register to perfrom the required operation. Although there are several logic microperations, operation. Although there are several logic microperations, check all others can be derived.

PIN DIAGRAM

	,									
	VDD	F _B	50	J ₃₆	I26	I.B	J.6	06		
			Ic	- 4539)					
	EA	51	13A	17A	JIA	Ira	0A	V13		
-		Dual	4 - inp	nt mu	ltiplexe	n				

CIRCUIT DIAGRAM!

INSTRUMENT & COMPONENT REQUIRED:

SI no.	11		the charter.
21 1.0.	Item	Specification	sty
1	1504 21	OR Gode	433 - L 23-
2	16 4081	AND Gate	
3	10 4069	NOT vate	Logicalitati
٩.	10 7486	xor Gate	1
5	IC 4539	Dulat multiplexer	1
6	trainer kit	-	1
٦,	Breadboard		1
8	Wires	-	as required

VERIFICATION TABLE;

Select		Inpu	+	output .	operation	
SI	So	A	В	(F:)		
0	0		1	0	NOT	
	A CONTRACTOR	0	0	0		
0	1	0	1 =	1	OR	
	. 15	1	0	- 1		
	1. h	~ . li	ال ا	1	217.00	
ha 🙀		0	0	6		
1	0	0	1	0	AND	
The state of		1.	Ō	0		
7 14 . 14	7" - " " " " " " " " " " " " " " " " " "	41	1.	1		
	YF + STAT	.0	0	0	Lavier	
	1	0	7-1-1		XOR	
	200	I	0	the rive	dien	
-	2012	ı	1	0		

CONCLUSION:

By this experiment we are now able to build logic unit using multiplexer.

Experiment NO - CO-05(B)

TITLE: Design a Composite Arithmetic Unit Using multiplexer.

OBJECTIVE: To design a composite arithmetic Brit Using multiplumer.

THEORY:

The Arithmetic Unit (AU) also called the Arithmetics

Logic Unit (ALU), is a part of the Central processing Unit

(CPU). It is often referred to as the Engine of the CPU

because it allows the Computer to perform mathematical

Calculation such as addition, subtraction etc. The AU ...

comprised of many interconnected elements that are designed

to perfrom specific lask, the basic component of an AU is

the parallel adder. By Controlling the data inputs to the

odder. It is possible to obtain different types of arithmetic

Operations.

function Table:

functi	ion Sel	cetion	ouput of	output (F)	Function Name			
ci	* S.	Cin	. MUX (Y)		3			
0	0	0	_B	F=A+B	Add B to A			
0	0	1	В	F=AtB+1.	Add B to Aplus 1			
0	1	0	В'	F=A+B'	to A			
O,	-1,1	1 .	ß'	F=A+B'+1	Add 2's compliment of B to A			
1	0 -	O	0	F=A	Trunsfer A			
1	0	1	0	F=A+1	Increment A			
ľ	1	0	21 114	F= A-1	"Decrement A			
1	1	,	Au 1's	F = A	Transfer A			

PIN DIAGLRAM:

NSTRUMENT & COMPONENT REBUIRED:

	1tem	Specification	sty
	OR Grate	10 4071	4
-	AND Grate	1 0 40 81	4
	NOT Grate.	IC 4069	8
	tor Grate	10 7486	4
	Dubl-46it mux	104539	4
		16.4008	1
	Trainer Kit	-	1
3	Breadboard		As per require
_	wires		

VERIFICATION TABLE:

Experiment NO - CO - 06

TITLE! Memory Read/Write operation Using RAMIC

To memory Read/write operation Using . RAM IC

Pleory: Random Access Mimory (RAM) is a volatile chip remory in which both read and write operation can be erformed. Any random numery location can be accessed for nformation transfer to or from the memory. His also called head-Write Mimory (RWM). The [C 7489 is arranged as. 6 words of 4 bit each (16 mu). It is a 64 bit memory.

PIN DINGERAM

Function Table to RAM:10 7489:

· In	puts	operations	state of output			
CE'	R/W'	to and it seems	And I have not a			
L	ed alloway	Write	Complements of			
<u>L</u>	elas A Lije	Read	Complement: 07 Selected word			
Н	H V	Inhibi	Under termined			
H	· U#	1 High	High			

VE

INSTRUMENT & COMPONENT - RESUIRED:

SLNO	Hem		Specification	9-ty:
1			IC 7489	1
2 . Tr	rainer ki	H	-	1
3 Bre	odboard			
4 L	lires		_	As required

-RIFICATION TABLE:

-/P	Me	Da	Data to be Stored (W)				00	output (R)					
¿É'	A3	AZ	A,	Ao	Du	03	D ₂	D,	W/R	93'	0,	0;	00
0	0	0	O	1	0	0	1	0	6	-	-	-	F
	0	0	0	1	-	-	-	-	1	1	4	0	
0	0	0	1	0	0	0	1	t	0	-	<u>-</u>	_	
0	0	0	ı	0	-	_		_	1	1	-	0	0
	0	Φ	.1	0	0	l	0	t	0	-			
0	-	1	1	0	_	-	-	_	1	1	0	(0
0	0	-		0	1	0	0	l	0	-		4	_
0	1	1	0		_	_	-	_	1	0	t	1	0
0	1	1	0	0				58 S					

By the experiment we understand how the computer onclusion; RAM store the data in address and perfrom the read/ write operation.

