PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-305485

(43) Date of publication of application: 05.11.1999

(51)Int.CI.

G03G 9/087 C08G 63/12

(21)Application number: 10-115498

(71)Applicant: TOYOBO CO LTD

(22)Date of filing:

24.04.1998

(72)Inventor: MAEDA SATOSHI

HOTTA YASUNARI

(54) POLYESTER RESIN FOR ELECTROSTATIC CHARGE IMAGE DEVELOPING TONER

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a binder resin for obtaining an electrostatic charge image developing toner having god fixability and particularly suitable for color image formation.

SOLUTION: The polyester resin for an electrostatic charge image developing toner consists of polycarboxylic acid components and polyol components and has $\geq 50^{\circ}$ C glass transition temp. and a number average mol.wt. of $\geq 5,000$. The polycarboxylic acid components are 20–80 mol.% cyclohexanedicarboxylic acid, 20–80 mol.% arom. dicarboxylic acid and ≤ 5 mol.% aliphatic polycarboxylic acid. The polyol components are 20–80 mol.% ethylene glycol, 20–80 mol.% cyclohexane dimethanol and ≤ 5 mol.% arom. diol.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-305485

(43)公開日 平成11年(1999)11月5日

(51) Int.Cl.⁶

識別記号

FΙ C 0 3 G 9/08

331

G 0 3 G 9/087

C 0 8 G 63/12

C 0 8 G 63/12

審査請求 未請求 請求項の数3 〇L (全 13 頁)

(21)出願番号

特願平10-115498

(71)出願人 000003160 ...

東洋紡績株式会社

(22) 出願日

平成10年(1998) 4月24日

大阪府大阪市北区堂島浜2丁目2番8号

(72)発明者 前田 郷司

滋賀県大津市堅出二丁目1番1号 東洋紡

植株式会社総合研究所内

(72)発明者 堀田 泰榮

滋賀県大津市堅田二丁目1番1号 東洋紡

績株式会社総合研究所内

(54) 【発明の名称】 静電荷像現像トナー用ポリエステル樹脂

(57)【要約】

【課題】良好な定着性を有し、特にカラー画像形成に適 した静電荷像現像用トナーを実現するためのバインダー 樹脂を提供する。

【解決手段】多価カルボン酸成分が、シクロヘキサンジ カルボン酸20~80mo1%、芳香族ジカルボン酸2 0~80mo1%、脂肪族多価カルボン酸5mo1%以 下、からなり、かつ多価アルコール成分が、エチレング リコール20~80mo1%、シクロヘキサンジメタノ ール20~80mo1%、芳香族ジオール5mo1%以 下、であり、かつ該ポリエステル樹脂のガラス転移温度 が50℃以上、数平均分子量が5000以上であること を特徴とする静電荷像現像トナー用ポリエステル樹脂。

【特許請求の範囲】

【請求項1】 多価カルボン酸成分が、シクロヘキサンジカルボン酸20~80mol%、芳香族ジカルボン酸20~80mol%、芳香族ジカルボン酸20~80mol%、脂肪族多価カルボン酸5mol%以下、からなり、かつ多価アルコール成分が、エチレングリコール20~80mol%、シクロヘキサンジメタノール20~80mol%、芳香族ジオール5mol%以下、であり、かつ該ポリエステル樹脂のガラス転移温度が50℃以上、数平均分子量が5000以上であることを特徴とする静電荷像現像トナー用ポリエステル樹脂。

【請求項2】 数平均分子量が1500~5000の範囲にある低分子量成分と、数平均分子量が5000~5000の範囲にある高分子量成分とからなる静電荷像現像トナー用ポリエステル樹脂の、高分子量成分として用いられるポリエステルにおいて、該高分子量ポリエステル樹脂の、多価カルボン酸成分が、シクロヘキサンジカルボン酸20~80mo1%、脂肪族多価カルボン酸5mo1%以下、かつ多価アルコール成分が、エチレングリコール20~80mo1%、シクロヘキサンジメタノール20~80mo1%、からなり、該高分子量ポリエステル樹脂のガラス転移温度が50℃以上、数平均分子量が500以上、固有粘度 nsp/cが0.3以上であることを特徴とする静電荷像現像トナー用ポリエステル樹脂。

【請求項3】 前記高分子量ポリエステル樹脂が、ポリエステル樹脂の溶融粘度が10000 [poise] となる温度をTa、ポリエステル樹脂の固有粘度を(カsp/c)としたとき、

〔式1〕

 $Ta \le 160 \times (\eta sp/c) + 75$

を満たすことを特徴とする請求項1の静電荷像現像トナー用ポリエステル樹脂。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、熱定着を伴う記録機器、主として複写機、レーザープリンタ、LEDプリンタ等の電子写真方式のプリンタ、印刷機器、あるいはイオンフロー、イオンインジェクション、放電記録等の静電記録方式を用いたプリンタ、強誘電体の自発分極により形成される静電潜像を用いるプリンタ、印刷機器類において、静電荷による潜像を現像するに用いられる静電荷像現像用トナーに関する。さらに詳しくは、カラー画像記録品位に優れ、かつ、近年のプリンタ小型化、低価格化、クイックスタート化、省電力化により要求が高まっている耐熱フィルムとサーマルヘッドを組み合わせた定着方式に好ましく用いる事ができる静電荷像現像用トナーに関する。

[0002]

【従来の技術】電子写真方式、静電記録方式等において

静電潜像を現像し、最終的に記録紙あるいはフィルム等 の基材に転写されて画像を形成する粉体をトナーと称す る。かかる静電荷像現像用トナーとしては、バインダー 樹脂に着色剤、電荷制御剤、等を加えて混練した後に粉 砕、さらに分級し、必要に応じて流動性改質剤等を外添 するする、いわゆる粉砕法によって作製される粒子が用 いられいる。バインダー樹脂としては、スチレン/アク リル共重合系樹脂が主として使用されてきたが、近年で は高速化、カラー化などに伴い低温定着性と画像表面光 沢に優れるポリエステル樹脂が用いられる傾向にある。 主に用いられているポリエステル樹脂は主として、フマ ル酸、マレイン酸などの脂肪族不飽和カルボン酸類とビ スフェノール構造を有するジオール類との縮重合により 得られる不飽和ポリエステル樹脂であった。かかる不飽 和ポリエステル樹脂を用いたトナーに関する提案は、例 えば特開昭47-12334等に見ることができる。最 近では、特開平4-12367、特開平5-16525 2等に例示されるように、テレフタル酸、イソフタル酸 等の芳香族多価カルボン酸とエチレングリコール等の脂 肪族ジオール、シクロヘキサンジメタノール等の脂環族 ジオール、前述のビスフェノール構造を有する芳香族ジ オール等からなる飽和ポリエステル樹脂に関する特許提 案も多数なされてきている。ポリエステル樹脂は定着後 の画像表面の光沢に優れるため、発色が良く、広い色再 現域を実現する。また特にオーバーヘッドプロジェクタ 等の透明フィルムに画像記録を行った場合には光線透過 率が高く投影画像の品位も高い。

【0003】一般に乾式電子写真方式、静電記録方式において記録紙の静電潜像を現像したトナーは加熱定着される。加熱の方法としてはヒートロールを用いることが一般的である。ヒートロールの材質としては離型性が高く、かつ、弾力性のあるシリコーンゴム、フッ素ゴム等が用いられている。しかしながら、かかるゴムロールは熱容量が大きいために、あらかじめ余熱が必要であり、機器の電源を入れてからしばらくの間は使用する事ができない。また、同じ理由で、ヒーターの保温のために常に電流を通じる必要があるため、省電力上問題が大きい。かかる問題に対処するために、一部の機種においては耐熱性のフィルム等を介してサーマルヘッド等にて加熱する方式が提案され、実用化されている。

【0004】加熱されることによりトナー粒子は溶融し、記録紙に定着されるが、溶融したトナー樹脂は記録紙のみならず熱源側にも一部付着し、熱源表面を汚染する。この現象はオフセット現象と称され、汚染された熱源にてさらに定着処理を継続すると汚染が後続の記録紙に転移し記録画像の品位が著しく低下する。かかるオフセット現象は、前述した耐熱フィルムとサーマルヘッドを組み合わせた定着方式では特に顕著である。かかるオフセット現象を防止するためにトナーのバインダー樹脂の改良がなされている。バインダー樹脂の分子量分布を

広げる事、一部架橋ないしゲル化させることにより、かかるオフセット現象が軽減される事が知られており、特許提案も多数なされている。しかしながらこれらの対策のみにてオフセット現象を完全に防止するには至っていない。

【0005】トナーの構成成分における改良に関しても 多数の提案がなされている。トナーはバインダー樹脂に 着色剤、電荷制御剤、場合によっては磁性粉等を混練分 散し、ジェットミル等により粉砕分級の後流動化剤等を 外添することにより製造されるが、かかる成分にさらに 特定のワックス類を配合する事によりオフセット現象を 低減させることが提案されている。例えば特開昭59-164560公報、特開昭59-228661公報には アミドワックス、ケトンワックス、特定のアルキルケテ ンダイマー等をオフセット防止剤として配合する事が提 案されている。しかしながら、かかる手法によってもオ フセット現象を完全に防止することはできず、カラー画 像品位が著しく低下、特にオーバーヘッドプロジェクタ 等においては暗く濁った色調の投影画像しか得る事がで きなくなる。特開昭63-121059には酸成分とし て、ダイマー酸をポリエステル樹脂の共重合成分として 導入する事により定着特性の改良が可能であるとの主旨 の提案がある。かかる手段により定着特性は幾分改良さ れるが、十分な効果を得る事ができる領域までダイマー 酸の共重合量を増すと樹脂のガラス転移温度が下がり、 トナーの保存安定性が低下する。

【0006】例えば、特開昭59-164560、同じく61-105562、59-29257、59-29258、59-198469、59-223456、60-4947、61-176948、61-240248、特開平3-155563、特開平3-122664等にはアルキルないしアルケニル置換コハク酸を同様にポリエステル樹脂の共重合成分に導入する事により定着特性の改良が可能であるとの主旨の提案がなされている。特に、特開平3-155563、特開平3-122664は、耐熱フィルムとサーマルヘッドを組み合わせた定着方法における定着特性の改良を主眼に提案されたものである。かかる手段により定着特性は幾分改良されるが、ダイマー酸共重合を行った場合と同様にガラス転移温度の低下が著しい。またトナー定着時に臭気が発生するといった問題が生じる。

【0007】特開昭56-1952、同じく特開昭58-17452には多価カルボン酸成分としてシクロへキセンジカルボン酸(シクロへキシレンジカルボン酸)の無水物ないしシクロへキサンジカルボン酸無水物と、ビスフェノール構造を有する多価アルコールから常圧重合法により得られるボリエステル樹脂を用いた電子写真用トナー組成物に関する提案がある。かかる提案は、トナー用ポリエステル樹脂として主として使用されている、フマル酸、マレイン酸などの脂肪族不飽和カルボン酸類

とビスフェノール構造を有するジオール類との縮重合により得られる不飽和ポリエステル樹脂のガラス転移温度を高め、トナーの保存安定性を改善することを主たる目的としていると考えられる。かかる脂環族多価カルボン酸を脂肪族系多価カルボン酸に加えることにより、ガラス転移温度を高めることは可能であるが、逆に脂環族多価カルボン酸を用いた場合には、特に常圧重合法においては、分子量を上げることが困難で、低分子量の樹脂しか得ることができず、かえって保存安定性を損なう場合がある。

[0008]

【発明が解決しようとする課題】以上、述べてきたよう に静電荷像現像用トナーを用い、熱定着を行う従来の画 像記録技術において、特に熱定着時の問題を完全に解決 したバインダー樹脂組成物は得られておらず、トナーの フォーミュレーション、ならびに定着機器側の様々な工 夫などの総合的なエンジニアリングにより問題を表面上 解決しているというのが実状である。まして、特に、機 器の小型化、クイックスタート化、省エネルギー化等の 目的で定着機器が限定(例えば耐熱性のフィルム等を介 してサーマルヘッド等にて加熱定着する方式)された場 合には満足な特性を有するトナー用バインダー樹脂は得 られていない。本発明者らは、かかる状況に鑑み、特に 良好なる定着特性および保存安定性を実現でき、またカ ラー画像の再現性にも優れた静電荷画像用トナーに好適 に使用出来るポリエステル樹脂について鋭意研究を重ね た結果、本発明に到達した。

[0009]

【課題を解決するための手段】すなわち本発明は、

(1)多価カルボン酸成分が、シクロヘキサンジカルボン酸20~80mo1%、芳香族ジカルボン酸20~80mo1%、脂肪族多価カルボン酸5mo1%以下、からなり、かつ多価アルコール成分が、エチレングリコール20~80mo1%、シクロヘキサンジメタノール20~80mo1%、芳香族ジオール5mo1%以下、であり、かつ該ポリエステル樹脂のガラス転移温度が50℃以上、数平均分子量が5000以上であることを特徴とする静電荷像現像トナー用ポリエステル樹脂。

(2)数平均分子量が1500~5000の範囲にある低分子量成分と、数平均分子量が5000~50000の範囲にある高分子量成分とからなる静電荷像現像トナー用ポリエステル樹脂の、高分子量成分として用いられるポリエステルにおいて、該高分子量ポリエステル樹脂の、多価カルボン酸成分が、シクロヘキサンジカルボン酸20~80mo1%、脂肪族多価カルボン酸5mo1%以下、かつ多価アルコール成分が、エチレングリコール20~80mo1%、シクロヘキサンジメタノール20~80mo1%、からなり、該高分子量ポリエステル樹脂のガラス転移温度が50℃以上、数平均分子量が5000以上、

固有粘度 nsp/cが O. 3以上であることを特徴とする静電荷像現像トナー用ポリエステル樹脂。

(3)前記高分子量ポリエステル樹脂が、ポリエステル樹脂の溶融粘度が10000 [poise] となる温度をTa、ポリエステル樹脂の固有粘度を(nsp/c)としたとき、

〔式1〕

 $Ta \le 160 \times (\eta sp/c) + 75$

を満たすことを特徴とする請求項1の静電荷像現像トナー用ポリエステル樹脂。

【0010】本発明におけるポリエステル樹脂とは、主 として多価カルボン酸類と多価アルコール類との縮重合 により得られるものである。ポリエステル樹脂に用いら れる多価カルボン酸類としては、例えば、テレフタル 酸、イソフタル酸、オルソフタル酸、1,5-ナフタル レンジカルボン酸、2,6-ナフタレンジカルボン酸、 ジフェン酸等の芳香族ジカルボン酸、pーオキシ安息香 酸p-(ヒドロキシエトキシ)安息香酸などの芳香族オ キシカルボン酸、コハク酸、アルキルコハク酸、アルケ ニルコハク酸、アジピン酸、アゼライン酸、セバシン 酸、ドデカンジカルボン酸等の飽和脂肪族ジカルボン 酸、フマル酸、マレイン酸、イタコン酸、メサコン酸、 シトラコン酸、ヘキサヒドロフタル酸、テトラヒドロフ タル酸、ダイマー酸、トリマー酸、水添ダイマー酸、シ クロヘキサンジカルボン酸、シクロヘキセンジカルボン 酸アルキル置換シクロヘキサンジカルボン酸、アルキル 置換シクロヘキセンジカルボン酸等の不飽和脂肪族、お よび、脂環族ジカルボン酸等を、また多価カルボン酸と しては他にトリメリット酸、トリメシン酸、ピロメリッ ト酸等の三価以上の多価カルボン酸等を用いる事ができ る。これらカルボン酸成分はエステル化合物を用いても 良い。

【0011】ポリエステル樹脂に用いられる多価アルコ ール類としては脂肪族多価アルコール類、脂環族多価ア ルコール類、芳香族多価アルコール類等を例示できる。 脂肪族多価アルコール類としては、エチレングリコー ル、プロピレングリコール、1,3ープロパンジオー ル、2、3ーブタンジオール、1、4ーブタンジオー ル、1,5-ペンタンジオール、1,6-ヘキサンジオ ール、ネオペンチルグリコール、ジエチレングリコー ル、ジプロピレングリコール、ジメチロールへプタン、 2, 2, 4-トリメチル-1, 3-ペンタンジオール、 ポリエチレングリコール、ポリプロピレングリコール、 ポリテトラメチレングリコール等の脂肪族ジオール類、 トリメチロールエタン、トリメチロールプロパン、グリ セリン、ペンタエルスリトール等のトリオールおよびテ トラオール類等を例示できる。脂環族多価アルコール類 としては1,4-シクロヘキサンジオール、1,4-シ クロヘキサンジメタノール、スピログリコール、水素化 ビスフェノールA、水素化ビスフェノールAのエチレン

オキサイド付加物およびプロピレンオキサイド付加物、トリシクロデカンジオール、トリシクロデカンジメタノール、ダイマージオール、水添ダイマージオール等を例示できる。芳香族多価アルコール類としてはパラキシレングリコール、メタキシレングリコール、オルトキシレングリコール、1,4ーフェニレングリコールのエチレンオキサイド付加物、ビスフェノールA、ビスフェノールAのエチレンオキサイド付加物およびプロピレンオキサイド付加物等を例示できる。

【0012】さらにポリエステルポリオールとして、 ϵ カプロラクトン等のラクトン類を開環重合して得られ る、ラクトン系ポリエステルポリオール類等を例示する ことができる。ポリエステル高分子末端の極性基を封鎖 し、トナー帯電特性の環境安定性を改善する目的におい て単官能単量体がポリエステルに導入される場合があ る。単官能単量体としては、安息香酸、クロロ安息香 酸、ブロモ安息香酸、パラヒドロキシ安息香酸、スルホ 安息香酸モノアンモニウム塩、スルホ安息香酸モノナト リウム塩、シクロヘキシルアミノカルボニル安息香酸、 nードデシルアミノカルボニル安息香酸、ターシャルブ チル安息香酸、ナフタレンカルボン酸、4-メチル安息 香酸、3メチル安息香酸、サリチル酸、チオサリチル 酸、フェニル酢酸、酢酸、プロピオン酸、酪酸、イソ酪 酸、オクタンカルボン酸、ラウリル酸、ステアリル酸、 およびこれらの低級アルキルエステル、等のモノカルボ ン酸類、あるいは脂肪族アルコール、芳香族アルコー ル、脂環族アルコール等のモノアルコールを用いること ができる。

【0013】本発明ではこれらのカルボン酸成分および アルコール成分の中から後述する必須成分を規定量、必 要に応じて他の成分も用い、共重合ポリエステル樹脂と することで、静電荷像現像トナー用ポリエステル樹脂と して最適な特性を得ることが出来る。

【0014】本発明では、多価カルボン酸として、シク ロヘキサンジカルボン酸を20~80mo1%含むこと が必須である。シクロヘキサンジカルボン酸としては 1,4-シクロヘキサンジカルボン酸、1,3-シクロ ヘキサンジカルボン酸、1、2-シクロヘキサンジカル ボン酸を用いることができる。またシクロヘキサン環の 水素の一部をアルキル基等に置換したものを組み合わせ ても良い。これらは単独または2種類以上を組み合わせ て用いることが出来る。シクロヘキサンジカルボン酸の 含有量は、20~70mo1%がより好ましく、20~ 50mo1%がさらに好ましい。シクロヘキサンジカル ボン酸の含有量がこの範囲に満たないと定着特性が発揮 されず、また多いと樹脂のガラス転移温度が下がり、ト ナー粉体の保存安定性が低下する。本願発明において定 着特性とは、定着後の表明平滑性と耐オフセット性の両 立を意味する。

【0015】本発明では上記シクロヘキサンジカルボン酸と組み合わせる多価カルボン酸類として芳香族多価カルボン酸が必須である。芳香族ジカルボン酸の含有量は20~80mo1%が必要である。さらに好ましくは30~80mo1%である。芳香族ジカルボン酸としてはテレフタル酸、イソフタル酸、オルソフタル酸、1,5

ーナフタレンジカルボン酸、2,6ーナフタレンジカルボン酸、ビフェニルジカルボン酸を好ましく用いることができる。これらは単独または2種類以上を組み合わせて用いることが出来る。本発明において好ましい組み合わせは、

(a)	シクロヘキサンジカルボン酸
	テレフタル酸
	イソフタル酸

20~80mol% 10~40mol% 10~50mol%

であり、さらに

(b) シクロヘキサンジカルボン酸 テレフタル酸 20~60mo1% 10~30mo1%

イソフタル酸

20~50mo1%

であり、なおさらに、

(c) シクロヘキサンジカルボン酸 テレフタル酸 20~40mo1% 20~40mo1%

イソフタル酸

30~50mo1%

である。さらに、これら以外の多価カルボン酸として、 脂肪族多価カルボン酸を併用することもできる。3価以 上の多価カルボン酸としてはトリメリット酸、オルソフ タル酸を好ましい物として用いることができる。

【0016】本発明における多価アルコール類は

20~80mo1% エチレングリコール シクロヘキサンジメタノール 20~80mo1% を含むことが必須である。シクロヘキサンジメタノール の含有量は20~70mo1%がさらに好ましく、20 ~60mo1%がなおさらに好ましく、30~60mo 1%がその上さらに好ましい。シクロヘキサンジメタノ ールの含有量がこれに満たない場合には樹脂のガラス転 移温度が下がり、トナー粉体の保存安定性が低下する。 シクロヘキサンジメタノール以外の多価アルコール成分 としては、エチレングリコールの使用が必須であり、そ の含有量は20~80mo1%である。さらに他の成分 としてはプロピレングリコール、トリシクロデカンジメ タノール好ましく用いることができる。エチレングリコ ールは樹脂の分子量を高めるために効果的な成分であ る。

【0017】本発明では、

0~10mo1% のダイマージオール

0~20mo1% のポリプロピレングリコール (プロピレングリコール残基数に換算して)

を含むことができる。ポリプロピレンはさらに好ましくは0~10mo1%含むことが出来る。かかる成分を含む場合には溶融時の樹脂の表面エネルギーがより下がり、定着特性がより好ましく改良される。ここに、ダイマージオールは一般にダイマー酸から誘導される。ダイマー酸とは、炭素数10~24、好ましくは18前後の不飽和脂肪酸を主成分とする二量体を総称するものであり若干のモノマー酸、トリマー酸を含むものである。工業的には、オレイン酸、エライジン酸、それらの混合物

であるトール油脂肪酸、リノール酸、等、乾性油、半乾 性油等から得られる精製植物性脂肪酸をモンモリロナイ ト系粘土等の触媒の存在化に熱重合して得られるものが 知られている。また不飽和二重結合を水添により飽和化 した水添ダイマー酸も知られている。ダイマージオール もダイマー酸と同様若干のモノマー、トリマーが含有さ れることがある。またシクロヘキセン環等の不飽和結合 が残存するものと水添により飽和化したものが知られて いる。本発明では不飽和、飽和、いずれを用いてもよい が、飽和化した水添ダイマージオールを用いる事が好ま しい。本発明では、他にビスフェノールAのエチレンオ キサイド付加物、ないしプロピレンオキサイド付加物を 含むことができる。かかる成分は樹脂に柔軟性を与える とともに溶融時の粘弾性特性を改善する。しかしなが ら、これら芳香族のジオール成分は多価アルコール成分 の5mo1%以下であることが好ましい。これらの多価 アルコール成分もそれぞれを2種類以上を組み合わせて 用いてもかまわない。

【0018】本発明に用いられるポリエステル樹脂のガラス転移点は50℃以上であることが必須であり、さらには52℃以上、またさらには55℃以上、なおさらには57℃以上、最も好ましくは60℃であることが好ましい。ガラス転移点がこれより低い場合には、取扱い中あるいは保存中に凝集する傾向がみられ、保存安定性に問題を生ずる場合がある。

【0019】本発明におけるポリエステルの数平均分子量は5000以上であることが必須であり、7000以上が好ましく、10000以上がより好ましく、15000以上がさらに好ましく、20000以上が最も好ましい。数平均分子量が5000未満であると、十分な定着特性が得られない場合がある。

【0020】また本発明に用いられる樹脂の軟化点は8 0~150℃の範囲であることが好ましい。樹脂の軟化 温度をこれより低く抑えたトナーにおいては、取扱い中あるいは保存中に凝集する傾向がみられ、特に長期間の保存において、流動性が大きく悪化する場合がある。軟化点がこれより高い場合には低温での定着特性に支障をきたす。また定着ロールを高温に加熱する必要が生じるために、定着ロールの材質、ならびに複写される基材の材質が制限される。

【0021】本発明においてはポリエステル樹脂が、ポリエステル樹脂の溶融粘度が10000 [poise] となる温度をTa、ポリエステル樹脂の固有粘度を(nsp/c)としたとき

〔式1〕

Ta≦160×(ηsp/c)+75 を満たすことが好ましい。さらに好ましくは 〔式2〕

Ta≦160×(ヵsp/c)+72 を満たすことが好ましい。なおさらに好ましくは 〔式3〕

 $Ta \leq 160 \times (\eta sp/c) + 70$

を満たすことが好ましい。上記式を満たさないと、本発明のポリエステル樹脂を用いたトナーの定着特性が劣ることがあり好ましくない

【0022】本発明のポリエステル樹脂が、酸性分として少なくとも所定量のシクロヘキサンジカルボン酸成分、所定量の芳香族ジカルボン酸性分、および所定量以下の脂肪族ジカルボン酸性分を含み、かつ所定量のエチレングリコール成分、所定量のシクロヘキサンジメタノール成分、および所定量以下の芳香族ジオールを含むこと等により上記式を満足させることが出来る。

【0023】またポリエステル樹脂の表面エネルギーは 45dyn/cm以下であることが好ましく、さらに4 2dyn/cm以下であることが好ましく、40dyn /cm以下であることがなお好ましく、30dyn/c m以下であることが最も好ましい。かかる表面エネルギ ーは、例えばポリエステル樹脂の側鎖に炭素数2以上、 好ましくは4以上、さらに好ましくは6以上のアルキル 基を導入することにより得ることができる。より具体的 にはアルキル置換コハク酸、ダイマー酸、トリマー酸、 テトラマー酸、ダイマージオール、ジメチロールヘプタ ン、ジメチロールオクタン、ジメチロールデカン、ジメ チロールドデカン等を酸性分またはグリコール成分中、 1~20mol%共重合することにより得ることができ る。かかる長鎖のアルキル基を有する成分は、多価カル ボン酸成分ではなく、多価アルコール成分に導入した方 がガラス転移温度の低下が比較的少なく好ましい結果を 得ることができる。

【0024】さらにかかる表面エネルギーはポリアルキレングリコール単位を導入することによっても実現することができる。ポリアルキレングリコールとしてはポリエチレングリコール、ポリプロピレングリコール、ポリ

ブチレングリコール、ポリエチレン/プロピレングリコール等を用いることができる。ポリアルキレングリコールの分子量は300~3000の物を用いることができ、アルキレングリコール単位に換算して3~1000程度の物を用いることができる。ポリエステル樹脂に対する共重合量はアルキレングリコール単位に換算して1~20mo1%程度が好ましい。

【0025】本発明におけるポリエステル樹脂の固有粘度は0.3以上が好ましく、0.35以上がより好ましく、0.45以上が最も好ましく、0.45以上が最も好ましい。

【0026】さらに本発明においては、前記ポリエステル樹脂が20~2000eq./トンのイオン性基を含有するものであることが好ましい。ポリエステル樹脂に含まれるイオン性基としては、カルボキシル基、スルホン酸基、硫酸基、リン酸基、もしくはそれらのアルカリ金属塩、アンモニウム塩、アルキルアンモニウム塩、アルカノールアンモニウム塩等のアニオン性基、または第1級ないし第3級アミン基等のカチオン性基であり、好ましくは、カルボキシル基、カルボン酸塩の基、スルホン酸基、スルホン酸アルカリ金属塩の基である。

【0027】スルホン酸基、スルホン酸アルカリ金属塩の基はポリエステル樹脂に共重合可能なスルホン酸基ないしスルホン酸金属塩の基を含有する化合物を用いて得る事ができる。具体的にはスルホテレフタル酸、5ースルホイソフタル酸、4ースルホフタル砂、5「4ースルホフェノキシ」イソフタル酸等のアルカリ金属塩をあげることができる。また特にイオン性基を分子末端に導入する場合にはスルホ安息香酸等を用いることができる。金属塩としてはLi、Na、K、Mg、Ca、Ba、Ni、Cu、Fe等の塩があげられ、特に好ましいものはNa塩である。これらのうち特に、5ーナトリウムスルホイソフタル酸、あるいはントリウムスルホ安息香酸を用いることが好ましい。

【0028】カルボキシル基はポリエステル末端に残存するカルボキシル基を用いる事ができる。さらに重合末期に無水トリメリット酸、無水フタル酸、等の酸無水物を導入し、末端にカルボキシル基を付加させることも可能である。このようにして得られたカルボキシル基をアルカリ金属の水酸化物、ないし炭酸塩、アンモニア、アルキルアミン類、アルカノールアミン類、環状アミン類等により中和してカルボン酸塩の基を得る事ができる。イオン性基の含有量は20~2000eq./トンがさらに好ましく、30~1000eq./トンがなおおもく、80~300eq./トンがなおさらに好ましい。イオン性基の含有量がこの範囲を下回るとトナーの帯電が不安定になり、また後述する水分散化を用いるトナー化手法が適用できなくなる。またイオン性基含有量がこの範囲

を越えると、トナーの吸湿率が上がり環境変化によりト ナーの帯電量が変動し画像形成に支障をきたす場合があ る。

【0029】以上が本発明の静電荷像現像用トナーを特 徴づけるバインダー樹脂としてのポリエステル樹脂であ る。本発明においては本ポリエステル樹脂をトナーのバ インダー樹脂として全量を用いることができるが、好ま しくは、他の樹脂と配合してバインダー樹脂とすること もできる。本発明においてはかかるポリエステル樹脂を 全バインダー樹脂の25重量%以上用いることが好まし く、33%以上用いることがさらに好ましく、40重量 %以上用いることがなおさらに好ましく、50重量%以 上用いることが最も好ましい。配合して用いる場合、組 み合わせる樹脂としては、ポリエステル樹脂が好まし く、さらには本発明の樹脂の2/3以下、好ましくは1 /2以下、さらに好ましくは1/3以下の数平均分子量 を有するポリエステル樹脂との組み合わせが好ましい。 配合して用いられる低分子量のポリエステル樹脂はガラ ス転移温度が50℃以上で多価カルボン酸類に50mo 1以上の芳香族多価カルボン酸を含有するポリエステル 樹脂が好ましい。

【0030】本発明の静電荷像現像剤に配合される着色 剤、電荷制御剤、流動性改質剤などは特に限定されず、 公知既存のものを必要に応じて用いる事ができる。着色 剤としては染料、顔料、あるいはカーボンブラック等を 用いればよい。これら染料、顔料、カーボンブラック等 は、単独で用いられてもよく、あるいは必要に応じて併 用されてもよい。特に分光透過特性の観点からは染料を 用いることが好ましい。

【0031】着色に顔料を用いる場合にはイエロー着色 にはベンジジン系、アゾ系、イソシンドリン系顔料が、 マゼンタ着色にはアゾレーキ系、ローダミンレーキ系、 キナクリドン系、ナフトール系、ジケトピロロピロール 系顔料が、シアン着色にはフタロシアニン系顔料、イン ダンスレン系顔料が好ましく用いられる。黒色のトナー を得る場合に、カーボンブラック等を使用することは差 し支えない。カーボンブラックとしては、サーマルブラ ック、アセチレンブラック、チャンネルブラック、ファ ーネスブラック、ランプブラック等を用いることができ る。着色に染料を用いる場合には、イエロー着色にはア ゾ系、ニトロ系、キノリン系、キノフタロン系、メチン 系染料が、マゼンタ着色にはアントラキノン系、アゾ 系、キサンテン系染料が、シアン着色にはアントラキノ ン系、フタロシアニン系、インドアニリン系染料が好ま しく用いられる。

【0032】本発明における静電荷像現像用トナーの製 法は特に限定されず、バインダー樹脂に着色剤、電荷制 御剤等を混合した後にジェットミル等にて粉砕し、流動 性改質剤等を外添するいわゆる粉砕法を用いる事ができ る。シクロヘキサンジカルボン酸含有量が比較的多い場 合には樹脂の粉砕性が低下するため、粉砕系内を冷却し て粉砕を行うことが好ましい場合がある。また他の手法 として溶剤とバインダー樹脂からなる溶液に着色剤、電 荷制御剤等を混合分散した後に溶液を水系に導入し懸濁 ないし粗乳化させ、分級乾燥させるようなウエットプロ セスによるトナー化手法を用いる事ができる。

【0033】本発明において特にポリエステル樹脂がイ オン性基を含有した場合においては、ポリエステル樹脂 が水分散性(自己乳化性)を発現する。この場合、ポリ エステル樹脂を水系に乳化分散し、得られた分散体に含 まれるポリエステル樹脂微粒子を緩凝集させることによ りトナーに適する大きさに合体成長させトナーを得る方 法を例示することができる。

【0034】シクロヘキサンジカルボン酸含有量が比較 的多い場合には樹脂の粉砕性が低下するため、例示した ような粉砕法以外の方法を用いる事が好ましい場合があ る。ポリエステル樹脂を、ケトン類。アルコール類、テ トラヒドロフラン、セロソルブ類、ジオキサン等の水溶 性溶剤に溶解し、次いで水を添加し、共沸により脱溶剤 することにより、ポリエステル樹脂の水分散体を得る事 ができる。緩凝集はかかる水分散体系内への適度な電解 質添加と温度操作などにより可能である。特にアミノア ルコール類とカルボン酸類からなるアミノ基含有エステ ルを添加し、昇温、pH操作等により系内にて該エステ ルを加水分解させ、カルボン酸のアミン塩を生成させる 方法が、緩凝集域に導く方法として好ましい。緩凝集域 において顔料、カーボンブラック等の水分散微粒子が共 存すれば顔料(カーボンブラック)を含む粒子生成が可 能である。また乳化時に染料を共存させる事により染料 にて着色されたトナー粒子を得る事も可能であり、また 無色で得られた粒子を高温分散染色法により後着色する ことも可能である。かかる方法により、平均粒子径Dが 2~10µmであり、球形度0.7以上の粒子が全体の 70%以上を占める実質球形の粒子からなる静電荷現像 用トナーを得ることができる。実質球形であるため非磁 性一成分現像法式に対する適性が高い。

【0035】また本発明のポリエステル樹脂を用いたト ナーは、直接的に接する定着部材の表面エネルギーが5 0dyn/cm以下であり、定着時の表面温度が60~ 200℃の範囲である定着装置により定着されることが 好ましい。ここに定着部材の材質は特に問われないが、 好ましくは主として耐熱フィルムとサーマルヘッドの組 み合わせによる定着方式に使用される部材であり、基材 としてはポリイミド、ポリアミド、ポリアミドイミド等 の耐熱性を有するフィルムにフッ素樹脂、シリコーン樹 脂等を表面処理して得られる耐熱フィルムである。また 同様に従来より広く用いられている弾性ロールを用いた 定着機器に用いられる部材にも適用することができる。 【0036】〔作用〕本発明はトナー用ポリエステル樹

脂が、ポリエステル樹脂の溶融粘度が10000[po

ise]となる温度をTa、ポリエステル樹脂の固有粘度を(nsp/c)としたとき [式1]

 $Ta \le 160 \times (\eta sp/c) + 75$

を満たした場合に良好なる定着特性を実現できることを 見いだした結果なされたものである。

【0037】現実の機器においては一般に定着温度を上 げていくと、ある温度からトナーの紙への定着が開始さ れ、さらに温度を上げるとオフセット現象が発生し出 す。この、紙には定着しかつオフセット現象の現れない 温度範囲、すなわち定着温度が広いことが要求される。 定着特性を議論する場合、定着部材の表面エネルギーと トナー樹脂の表面エネルギーとの関係が重要であろうこ とは容易に類推される。しかしながら、表面エネルギー にて解釈できる範囲は静的な現象に限られ、実際には動 的な現象である定着行程を表面エネルギーのみで解釈す ることも規定することもできない。定着動作は、おおむ ね次のプロセスであると解釈できる。すなわち、1.静 電気的に記録紙上に付着したトナー粒子に加熱された定 着部材が接触し、熱伝導によりトナー粒子が加熱され る。2. 溶融状態に達したトナー樹脂層に同時に圧力が 加わりトナー層が記録紙に定着される3. 定着部材がト ナー層から離れる。本発明者らは、まず記録紙に通常の 圧力にてトナー樹脂が定着されるには溶融粘度がおおむ ね10000ポイズ程度にまで低下することが必要であ ることを見いだした。かかる溶融粘度に達する温度がT aと定義される。溶融粘度は一般に樹脂の分子量と正の 相関がある。一方、定着動作においてはトナー樹脂層か ら定着部材が離れる際にオフセット現象が発生しないこ とが重要である。かかるオフセット現象は、先に述べた ようにトナー樹脂層の表面エネルギーと定着部材の表面 エネルギーとの関係はもちろん規定されるべきである が、同時に溶融したトナー樹脂層の粘弾性特性も同時に 規定されるべきものである。ここに粘弾性特性とは定性 的には溶融した樹脂の有する凝集力とも理解されるもの である。樹脂の粘弾性特性は樹脂の共重合組成、分子 量、分岐の有無におおむね依存することが知られている が、本発明者らはその代表値として樹脂の固有粘度を用 いることが好ましく、固有粘度から導かれる〔式1〕の 右辺がTa以上となる場合に良好なる耐オフセット性が 発現されることを見いだした。言い換えれば、記録紙に 定着されるに充分なレベルの低い粘度を所定値以上の分 子量で実現した場合にのみ、広い温度範囲、すなわち低 い定着下限温度と高いオフセット発生温度との間で、表 面平滑性と耐オフセット性を両立する良好なる定着性と 耐オフセット性が両立されると考えられる。特に、この 樹脂を低分子量のポリエステル樹脂と高分子量のポリエ ステル樹脂から成る静電荷像現像トナー用ポリエステル 樹脂の高分子量のポリエステル樹脂として用いることに より、この定着性と耐オフセット性の両立を効果的に達 成することが出来る。

【0038】シクロヘキサンジカルボン酸と、芳香族ジ カルボン酸を含む多価カルボン酸類と脂肪族ジオール、 シクロヘキサンジメタノールを主成分とする多価アルコ ール類から得られるポリエステル樹脂は、上記定着に関 する特性を実現するとともに、トナーに要求されるその 他の広範なる特性を満足するものである。本発明におい て特に重要な点は、多価カルボン酸類と多価アルコール 類との両方に脂環族骨格の成分を有する点である。ま た、イオン性基はウエットプロセスにおいてほぼ球形の トナーを作製する場合に必要となるものである。球形ト ナーは近年の非磁性一成分現像方式等に適性が高いと云 われており、小型カラー機に対応することを主たる目的 とする本発明においては、小型カラー機において有力な 現像機構である非磁性一成分現像に適したトナー組成と することが特に発明の価値を高める上で重要であると考 えられる。

[0039]

【実施例】以下ポリエステル樹脂の製造例、実施例を示し、本発明をさらに詳細に説明するが、本発明はこれらになんら限定される物ではない。

1) 重量平均分子量および数平均分子量

ゲルパーミエーションクロマトグラフィー(島津製作所製)を用い、カラムは昭和電工製 Shodex KF 800P、KF80M、KF802、KF801を用い、溶媒にはTHFを用い、サンプル濃度0.02g/10m1、ディテクターには島津RID6Aを用い、フローレート1.0m1/分、35m3、インジェクション容積0.5 μ 1の条件にて測定した。

【0040】2)ガラス転移点温度

示差走査型熱量計(島津製作所製)により、窒素雰囲気下、昇温速度10℃/分にて測定する。測定試料10mgをアルミパンにいれ、蓋を押さえて密封し、液体窒素を用いて-50℃まで冷却、次いで150℃まで10℃/分にて昇温させる。その過程にて得られる吸熱曲線(横軸に温度、縦軸に単位時間当たりの熱量をプロット)において、吸熱ピークが出る前のベースラインと、吸熱ピークに向かう接線との交点の温度をもって、本発明のガラス転移温度Tgとした。

【0041】3) 溶融粘度が10000poiseになる温度(Ta)

島津製作所製フローテスターCFT-500Cを用いて、5℃刻みでポリエステル樹脂の溶融粘度を測定し、 縦軸に溶融粘度の対数、横軸に温度を取ったプロットより求めた。

【0042】4)固有粘度カsp/c

溶媒にフェノール/1, 1, 2, 2, -テトラクロロエタンの60/40重量比混液を用い、溶液の粘度をn、準溶媒の粘度をn0、両者の比n/n0=nrをsp相対粘度、nr-1=nspを比粘度とする時、l0g

(nsp)を縦軸に、溶液濃度cを横軸にプロットするとほぼ直線関係が得られ、かかる直線がc=0であるときの粘度をnsp/c固有粘度とした。

【0043】5) COOH基当量

樹脂1.0gをクロロホルム30mlに溶解し、指示薬 にフェノールフタレインを用い、0.1NのKOH溶液 にて滴定した。

【0044】6) SO₃ Na基当量

溶融させた樹脂を鋳型に流し込み、厚さ3mm直径30mmの円盤状に成形したものを試料に用い、島津製作所製蛍光X線分析装置にてイオウ元素の含有量を定量し、SO3Na基当量に換算した。

テレフタル酸

イソフタル酸

1,4-シクロヘキサンジカルボン酸

エチレングリコール

1,4シクロヘキサンジメタノール

三酸化アンチモン

を仕込み170~220℃で180分間加熱してエステル交換反応を行った。次いで反応系の温度を245℃まで昇温し、系の圧力1~10mmHgとして180分間反応を続けた結果、共重合ポリエステル樹脂(A1)を得た。共重合ポリエステル樹脂(A1)のNMR分析による共重合組成比、数平均分子量、重量平均分子量、ガラス転移温度、固有粘度、COOH基当量、SO3 Na基当量、比重、溶融粘度が10000ポイズになる温度Taを表1.に示す。ここに数平均分子量、重量平均分子量はGPC分析、酸価は滴定法、SO3 Na基当量は蛍光X線分析によりもとめたS(硫黄)元素含有量からの換算、溶融粘度が10000ポイズになる温度Taは

テレフタル酸

イソフタル酸

1,4-シクロヘキサンジカルボン酸

エチレングリコール

1,4シクロヘキサンジメタノール

三酸化アンチモン

を仕込み170~230℃で180分間加熱してエステル交換反応を行った。さらに240℃において系の圧力1~10mmHgとして60分間反応を続けた。その

無水トリメリット酸

を加え、30分間反応を続けた結果、共重合ポリエステル樹脂(A4)を得た。詳細を表1. に示す。以下同様にして末端にカルボキシル基を付加した共重合ポリエステル樹脂(A5)、(A6)、(A8)、(A9)、

(A11)、(A12)を得た。なお表1.中、

TPA テレフタル酸

IPA イソフタル酸

NDC ナフタレンジカルボン酸

14CHDA 1'4-シクロヘキサンジカルボン酸

12CHDA 1'2ーシクロヘキサンジカルボン酸

【0045】7)比重

1 Lメスシリンダーにイオン交換水O.3 Lを入れ、この中に樹脂約O.5 gの小片を入れた。これに塩化カルシウムの飽和水溶液を少量づつ加えては撹拌し、しばらく放置した。樹脂の小片が水溶液中で浮上も沈降もせず止まった時、この水溶液の比重をフロート型比重計で測定し、この値を樹脂の比重とした。

【0046】以下ポリエステル樹脂の製造例、実施例を示し、本発明をさらに詳細に説明するが、本発明はこれらになんら限定される物ではない。

(ポリエステル樹脂の重合例1)温度計、撹拌機を備え たオートクレーブ中に、

50重量部、

50重量部、

68重量部、

70重量部、

156重量部、

0.09重量部

島津製作所製フローテスターCFT-500Cを用いて5℃刻みで樹脂の溶融粘度を測定し、縦軸に溶融粘度の対数、横軸に温度を取ったプロットより求めた値、固有粘度(nsp/c)は溶媒にフェノール/1,1,2,2,一テトラクロロエタンの60/40重量比混液を用いて求めた値、比重は浮沈法により求めた値である。以下同様に重合を行い表1.に示す共重合ポリエステル(A2)~(A3)、

(A7)、(A10)、(A13)~(A16)を得た。

【0047】 (ポリエステル樹脂の重合例2、カルボキシル基末端付加) 温度計、撹拌機を備えたオートクレーブ中に、

50重量部、

4 2 重量部、

68重量部、

70重量部、

/ 〇里里即、

156重量部、 0.09重量部

後、オートクレーブ中を窒素ガスで置換し、大気圧と し、温度を190℃に保ち、

10重量部、

D-SA ドデセニルコハク酸

TMA トリメリット酸

SIP 5ーナトリウムスルホイソフタル酸

PG プロピレングリコール

EG エチレングリコール

NPG ネオペンチルグリコール

CHDM シクロヘキサンジメタノール

BPA-PO ビスフェノールAのプロピレンオキサイド付加物 (平均分子量400)である。

[0048]

【表1】

	レ組成		(A1)	(A2)	(A3)	(A4)	(A5)	(A6)	(A7)	(AB)
	TPA		30	30	30	30	30	30	15	30
	IPA	1	30	30	30	25	30	30	15	25
カルボン酸	NDC						5	5		
成分	1.4-CHDA	[mof%]	20	40	40	40	30	30	67	40
	1,2 CHDA	1	20							
	D-SA	1								
	SIP ·	1						•	3	
	TMA	[5	5	5	_	5
	PG		30				 -	 		
アルコール		[mol%]	30	60	60	60	55	55	30	30
成分	N:'G	,		<u></u>	- 50				- 00	
	CHDM		40	40	40	40	40	40	70	70
	DADO		<u>~~</u>				5			
\	PPG							5		
	B:'A-PO			_						_
数平均分子			13000	14000	22000	10500	11.000	15000	1 5000	15000
重量平均分							15000 32000			
ガラス転移		്രി					_			
<u>カラスキック</u> Ta *1)	正[5	[°C]	55	54	56	54	61	60	57	55
			146	148	145	138	150	135	143	150
固有粘度 COOH基型	#	L (1000)	0.52	0.47	0.51	0.41	0.5	0.42	0.45	0.54
		[eq/1000kg]	7	8	5	245	230	225	15	240
SO3Na基準 比喻	13	[eq/1000kg]	0	0	0	0	0	0	128	0
	rh 100 . 30		1.24	1.25	1.23	1.22	1.24	1.24	1.24	1.22
	も度す/フート		158	150	157	141	155	142	147	181
160×固有										
			(AD)	(A10)	(011)	(412)	hikeku	(414)	(445)	(A16)
ポリエステノ	レ組成						(A13)			
	レ組成 TPA		45	(A10) 50	50	25	(A13) 50	50	25	(A16) 100
ポリエステノ	L組成 TPA IPA		45 45				(A13)	50 20		
ポリエステ <i>)</i> カルボン 酸	L組成 TPA IPA NDC	[IV]	45	50	50	25 30	(A13) 50	50	25 25	
ポリエステノ	IPA IPA NDC 1.4-CHDA	[mol]\$]	45 45		50	25	(A13) 50	50 20	25	
ポリエステ <i>)</i> カルボン 酸	IPA IPA NDC 1.4-CHDA 1.2-CHDA	[mol%]	45 45	50	50	25 30	(A13) 50	50 20 20	25 25	
ポリエステ <i>)</i> カルボン 酸	I/組成 IPA IPA NDC 1.4-CHDA 1.2-Ci IDA D-SA	[mol%]	45 45	50	50	25 30	(A13) 50	50 20	25 25	
ポリエステ <i>)</i> カルボン 酸	L組成 TPA IPA NDC 1.4-CHDA 1.2-CI IDA D-SA SIP	[mol%]	45 45 5	50	50 45	25 30 40	(A13) 50	50 20 20	25 25	
ポリエステ <i>)</i> カルボン 酸	I HAR IPA IPA NDC 1.4-CHDA 1.2-CI IDA D-SA SIP TMA	[mol%]	45 45	50	50	25 30	(A13) 50	50 20 20	25 25 50	
ポリエスティ カルボン酸 成分	L組成 TPA IPA NDC 1.4-CHDA 1.2-CHDA D-SA SIP TMA PG		45 45 5	50	50 45	25 30 40	(A13) 50 50	50 20 20 10	25 25	
ポリエステルカルボン酸成分	L組成 TPA IPA IPA I.2-CHDA I.2-CHDA D-SA SIP TMA FG EG	[mol%]	45 45 5 5	50	50 45	25 30 40	(A13) 50	50 20 20	25 25 50	
ポリエスティ カルボン酸 成分	V相成 TPA IPA NDC 1.4-CHDA 1.2-Ci IDA D-SA SIP TMA PG NPG		45 45 5	50	50 45 5	25 30 40 5	(A13) 50 50 50	50 20 20 10	25 25 50	100
ポリエステルカルボン酸成分	レ相成 TPA IPA NDC 1,4-CHDA 1,2-Ci IDA D-SA SIP TMA PG EG NPG CHDM		45 45 5 5	50	50 45	25 30 40	(A13) 50 50	50 20 20 10	25 25 50	
ポリエステルカルボン酸成分	レ組成 TPA IPA NDC 1.4-CHDA 1.2-CHDA D-SA SIP TMA PG EG NPG CHDM DADO		45 45 5 5	50	50 45 5	25 30 40 5	(A13) 50 50 50	50 20 20 10	25 25 50	100
ポリエステルカルボン酸成分	レ組成 TPA NDC 1.4-CHDA 1.2-Ci IDA D-SA SIP TMA PG EG NPG CHDM DADO PPG		45 45 5 5	50	50 45 5 5	25 30 40 5	(A13) 50 50 50	50 20 20 10 70	25 25 50	50
ボリエステルカルボン酸成分アルコール成分	は日成 TPA IPA NDC 1.4-CHDA 1.2-CHDA D-SA SIP TMA FG EG NPG CHDM DADO PAPG BPA PO		45 45 5 5 50 50	50	50 45 5 5 50	25 30 40 5 50	(A13) 50 50 50 50 50	50 20 20 10 70	25 25 50 100	50
ポリエステルカルボン酸成分アルコール成分	レ相成 IPA IPA NDC 1.4-CHDA 1.2-CHDA D-SA SIP TMA PG EG NPG CHDM DADO PPG BPA-PO		45 45 5 5 50 50	50	50 45 50 50 50 3000	25 30 40 5 50 50	(A13) 50 50 50 50 50	50 20 20 10 70 30 3000	25 25 50 100	50 50
ポリエステルカルボン酸成分アルコール 数平均分分	レ組成 IPA NDC 1.4-CHDA 1.2-CHDA 1.2-CHDA D-SA SIP TMA PG EG NPG CHDM DADO PPG BPA - PO BPA - PO BPA - PO	[mol%]	45 45 5 5 50 50 50 3500 8000	50 50 100 2500 6000	50 45 50 50 3000 6500	25 30 40 5 50 50 2800 6000	(A13) 50 50 50 50 50 50 50	50 20 20 10 70 30 3000 6800	25 25 50 100 8500 19000	50 50 15000 3300
ボリエステンカルボン酸 成分 アルコール 数重量平均分子 がラブデを表する。	レ組成 IPA IPA IPA NDC 1.4-CHDA 1.2-CHDA D-SA SIP TMA PG EG NPG CHDM DADO PPG BPA PO 第7章	[mol%]	45 45 5 5 50 50 3500 8000 58	50 50 100 2500 6000 63	50 45 50 50 3000 6500 72	25 30 40 5 50 50 2800 6000 61	(A13) 50 50 50 50 50 50 50 61	50 20 20 10 70 30 3000 6800 56	25 25 50 100 8500 19000 62	50 50 15000 3300 64
ポリエステノ カルボン酸 成分 アルコール 成分 整重子均分子 プラス転移: Ta +1)	レ組成 IPA IPA IPA NDC 1.4-CHDA 1.2-CHDA D-SA SIP TMA PG EG NPG CHDM DADO PPG BPA PO 第7章	[mol%]	45 45 5 5 50 50 3500 8000 58	50 50 100 2500 600 63 95	50 45 50 50 50 3000 6500 72 105	25 30 40 5 50 50 2800 6000 61 105	(A13) 50 50 50 50 50 50 50 61 19000 40000 61 157	50 20 20 10 70 30 300 6800 58 120	25 25 50 100 8500 19000 62 136	50 50 15000 3300 64 145
ポリエステル カルボン酸 アルカ ウリール シング アルカ ウチャート カラス・キント エーカ アルカ アルカ アルカ アルカ アルカ アルカ アルカ アルカ アルカ アル	レ組成 IPA IPA NDC 1.4-CHDA 1.2-CHDA 1.2-CHDA D-SA SIP TMA PG EG NPG CHDM DADO PPG BPA - PO ラフィー ラフィ ラフィー	[ma]%]	45 45 5 5 50 50 3500 8000 8000 58 110 0.23	50 50 100 2500 6000 63 95 0.19	50 45 50 50 3000 6500 702 105 0.22	25 30 40 5 50 50 50 600 61 105 0.21	(A13) 50 50 50 50 50 50 50 19000 40000 61 157 0.5	50 20 20 10 70 30 300 6800 56 120 0.23	25 25 50 100 8500 1900 62 136 0.37	50 50 15000 3304 145 0.41
ボリエステンカルボン酸 が成分 アルコール 数重ガラス・転分 フェッカウン・ファッカー ファー ファー ファー ファー ファー ファー ファー ファー ファー ファ	・相成 TPA IPA IPA NDC 1.4-CHDA 1.2-CHDA D-SA SIP TMA PG EG NPG CHDM DADO PPG BPA-PO 量子記 まます。	[mo !%] ිපට (පට (පට)	45 45 5 5 50 50 50 8000 58 110 0.23 5	50 50 100 2500 6000 63 95 0.19 5	50 45 50 50 3000 6500 72 105 0.72 225	25 30 40 5 50 50 6000 61 105 0.21 220	(A13) 50 50 50 50 50 50 61 19000 40000 61 157 0.5	50 20 20 10 70 30 3000 6800 58 120 0.23 8	25 25 50 100 100 8500 19000 62 136 0.37 12	50 50 15000 3300 64 145 0.41
ボリエステル カルボン酸 分 アルコール 数 <u>電子がある</u> ブラス計) 直回(COOH 基基) SO3NNa基と	・相成 TPA IPA IPA NDC 1.4-CHDA 1.2-CHDA D-SA SIP TMA PG EG NPG CHDM DADO PPG BPA-PO 量子記 まます。	[ma]%]	45 45 5 5 50 50 50 8000 8000 58 110 0.23 125	2500 6000 63 95 0.19 5	50 45 50 50 3000 6500 72 105 0.225 0	25 30 40 5 50 50 6000 61 105 0.210 0	(A13) 50 50 50 50 50 50 50 19000 40000 61 157 0.51	50 20 20 10 70 30 3000 6800 58 120 0.23 0.83	25 25 50 100 8500 19000 62 136 0.37 0	50 50 15000 3300 64 145 0.41 9
ボリエステンカルボン酸 が成分 アルコール 数重ガラス・転分 フェッカウン・ファッカー ファー ファー ファー ファー ファー ファー ファー ファー ファー ファ	レ相成 TPA IPA NDC 1.4-CHDA 1.2-CHDA D-SA SIP TMA PG EG NPG CHDM DADO PPG BPA PO 量 子足 建 222 342 342 342 343 344 344 344	[mo !%] ිපට (පට (පට)	45 45 5 5 50 50 50 8000 58 110 0.23 5	50 50 100 2500 6000 63 95 0.19 5	50 45 50 50 3000 6500 72 105 0.72 225	25 30 40 5 50 50 6000 61 105 0.21 220	(A13) 50 50 50 50 50 50 61 19000 40000 61 157 0.5	50 20 20 10 70 30 3000 6800 58 120 0.23 8	25 25 50 100 100 8500 19000 62 136 0.37 12	50 50 15000 3300 64 145 0.41

*I) To:溶成粘度が10000ポイスになる温度 *2)COOH基当量 17.85eq/1000kgが1.0KOHmg/gに相当する

【0049】(実施例1~8)

(比較例1~4) ポリエステル樹脂の重合例にて得られ た共重合ポリエステル樹脂(A1)95重量部をチョッ パーミルにて粗粉砕し、銅フタロシアニン系シアン色顔 料ヘリオゲンブルーS7084 [BASF社] 5重量部 とボールミルにて予備混合した後、熱ロールミルにて混 練し冷却後、再び粗粉砕し、次いでジェットミルにて微 粉砕の後分級し、さらにヘンシェルミキサーにて疎水性 シリカ微粉末アエロジルによる表面処理を行い、平均粒 子径8.5µmのシアン色トナー(T1)を得た。得ら れたトナー5重量部を、フェライト系キャリアF-10 0[パウダーテック社製]95重量部とをボールミルに 仕込、約15分間撹拌し現像剤とした。得られた現像剤 を市販の乾式電子写真方式の複写機の定着器を取り外し た試験機に仕込み、PPC用紙に静電像を形成し現像し た。得られた未定着の画像を図1. に示す試作定着装置 にて定着した。なお図1. に示す試作定着装置におい

て、

1:サーマルヘッド

2:耐熱フィルム

3:駆動ロール

4:記録紙

5:加圧ロール

である。サーマルヘッドの表面温度は80℃~300℃の間にて可変とした。耐熱フィルムにはトナーとの接触面に導電性フィラーを分散させた低抵抗のPTFEコーティングを行った25μm厚のポリイミドフィルムを用いた。フィルムの表面エネルギは43dyn/cmであった。サーマルヘッドの温度を80℃から5℃づつ上げて画像定着を行い、定着状態およびオフセット発生状態を観察した。定着性はトナー厚みが5μm程度以上となっている画像部分にセロハンテープを一定圧力にて張り付け、一定速度にて引き剥してセロハンテープにトナーが付着しているか否かにて評価した。記録紙の送り速度はA4

縦方向毎分10枚程度とした。定着開始温度+10℃の温度にヒートロール温度を設定し透明ポリエステルフィルム状に画像出しおよび定着を行い、オーバーヘッドプロジェクタにて投影観察した。結果を表2.に示す。さらに、得られたトナーを50m1のガラス容器に入れ、50℃の環境下に96時間放置した後のトナーのブロッキング性を評価した。結果を同様に表2.に示す。○はブロッキング無くトナーとして良好な粉体特性を維持している物。×はブロッキングを生じ、粉体が軽く融着しな状となってしまた物を示す。 以下同様に共重合ポリエステル樹脂(A2)~(A8)から実施例トナー(T2)~(T8)を、共重合ポリエステル樹脂(A13)~(A16)から比較例トナー(T9)~(T12)を作製し、同様に評価した。結果を表2.に示す。

【0050】(実施例9~16)低分子量の共重合ポリエステル樹脂として(A9)45重量部、本発明の高分子量共重合ポリエステル樹脂として(A1)50重量部を溶融混合し、冷却後チョッパーミルにて粗粉砕し、銅フタロシアニン系シアン色顔料へリオゲンブルーS7084[BASF社]5重量部とボールミルにて予備混合した後、熱ロールミルにて混練し冷却後、再び粗粉砕し、次いでジェットミルにて微粉砕した、さらに実施例1と同様に操作し実施例トナー(T13)を得た。以下同様に評価した。結果を表2.に示す。以下、低分子量共重合ポリエステル樹脂を(A9)に固定し、高分子量共重合ポリエステル樹脂を(A9)に固定し、高分子量共重合ポリエステル樹脂を(A9)に固定し、高分子量大工、同様に操作し、実施例トナー(T14)~(T20)を得た。評価結果を表2.に示す。

【0051】(実施例17~24)低分子量の共重合ポリエステル樹脂として(A10)を用い、高分子量の共重合ポリエステル樹脂として(A1)~(A8)を用い、以下同様に操作して実施例トナー(T21)~(T28)を得た。評価結果を表2. に示す。

【0052】(実施例25~32)低分子量の共重合ポリエステル樹脂として(A11)を用い、高分子量の共重合ポリエステル樹脂として(A1)~(A8)を用い、以下同様に操作して実施例トナー(T29)~(T36)を得た。評価結果を表2.に示す。

【0053】(実施例 $33\sim40$) 低分子量の共重合ポリエステル樹脂として(A12)を用い、高分子量の共重合ポリエステル樹脂として(A1) \sim (A8)を用い、以下同様に操作して実施例トナー(T37) \sim (T44)を得た。評価結果を表2.に示す。

【0054】(比較例5)ポリエステル樹脂の重合例にて得られた共重合ポリエステル樹脂(A16)95重量部をチョッパーミルにて粗粉砕し、銅フタロシアニン系シアン色顔料へリオゲンブルーS7084 [BASF社]5重量部、軟化点110℃のエチレン/プロピレン共重合ワックス2重量部、ステアリルケテンダイマー3重量部とをボールミルにて予備混合した後、熱ロールミルに

て混練し冷却後、再び粗粉砕し、次いでジェットミルにて微粉砕の後分級し平均粒子径8.3 μmのシアン色トナー (T45)を得た。以下実施例と同様に評価した。オフセット発生温度は上昇し、ある程度平滑な表面を有する画像を得ることができるようになったが、投影画像は不鮮明なものであった。

【0055】(実施例41~44)共重合ポリエステル 樹脂 (A7) 70重量部、同じく (A11) 30重量部、 メチルエチルケトン80重量部、テトラヒドロフラン4 ①重量部、紫外線吸収剤シーソーブ706[シプロ化成 社製]3重量部、マゼンタ染料C. I. ディスパースレ ッド60コンクケーキ[三井東圧化学社製]5重量部、 トリエタノールアミン1重量部をセパラブルフラスコに 仕込み、約80℃にて溶解した。次いで温度を70℃に 下げ、68℃の水250部を添加し、転相自己乳化法に て粒子径約0.1µmの共重合ポリエステル樹脂の水分 散体を得た。さらに得られた水系ミクロ分散体を蒸留用 フラスコに入れ、留分温度が103℃に達するまで蒸留 し、冷却後に水を加え固形分濃度を25%とした。温度 計、コンデンサー、撹拌羽根を備えた四つ口の1リット ルセパラブルフラスコに、得られた共重合ポリエステル 水系分散体400重量部を仕込み、70℃に加熱した。 次いで、ジメチルアミノエチルメタクリレート15.8 重量部を溶解した水100重量部を入れ、8時間撹拌を 続けた。その結果、共重合ポリエステル水系分散体に存 在したサブミクロンオーダーの粒子径の共重合体は合体 粒子成長し、平均粒径6.5μm、直径をDとした場合 に0.5D~2Dの範囲の粒径を有する粒子の占有率9 5 wt%、平均球形度0.98、球形度0.7以上の粒子 占有率97%のほぼ球形のポリエステル樹脂粒子を得 た。得られたポリエステル樹脂粒子を吸引漏斗を用いて 脱水洗浄し、流動乾燥機にて乾燥させ、マゼンタトナー (T46)を得た。

【0056】ここに平均粒子径、粒子径分布はコールターカウンタ法、球形度は粒子のSEM写真のイメージアナライザV10[東洋紡績株式会社製]による画像処理(計測粒子数500個以上)により求めた。以下同様に染料をネオペン・イエロー075[BASF社製]5重量部に換えイエロートナー(T47)を得た。同様に染料をネオペン・シアンFF4238[BASF]社製8重量部に換え、シアントナー(T48)を得た。さらに、染料をオイルブラック860[オリエント化学社製]10重量部およびT-77[保土ヶ谷化学社製]5重量部に換え、以下同様に操作してブラックトナー(T49)を得た。以下同様に評価した。結果を表2.に示す。

【0057】(カラー画像形成試験)カラー印刷用に、色分解され175線にて網点変換されたYMCK4色のポジ画像(風景写真)を原稿とし、前記4色のトナーを用い、前述の試験機により、定着温度を4色の定着開始温度の平均値とオフセット発生温度の平均値の中間値に

設定し、まずイエロー画像出しを行い、得られた画像上にマゼンタ画像、次いでシアン、ブラックの順に色重ねを行いフルカラー画像を形成した。得られた画像は多少の位置ズレは生じたが鮮明な色彩を示し、色の異なるトナーが重なり合った部分においてもオフセットを生じる事無く良好な定着性を示し、また2次色の発色も好まし

いものであった。同様に透明フィルム上にフルカラー画像を形成しオーバー・ヘッド・プロジェクタにて観察したが鮮明な投影画像を得る事ができた。

【0058】 【表2】

	実施の	11	実施	例2	奥施	933	実施	914	実施	715	爽施	996	実施	9 17	突絕	(18
h+-No.	(T1)		(T2)		(T3)		(74)		(T5)		(Tē)		Ê		(TB)	
高分子量ポリエステル 低分子量ポリエステル	(A1)		(A2)		(A3)		(A4) —		(A5) —		(AB) 		(A7) —		(AB)	
定着開始温度[℃]		40		140		140		135		145		130		140		145
オフセット発生温度し℃	1	55		155		155		150		160		145		155		160
設影画像	6 ¥ 99	-	鲜明		鮮明		鮮明		鮮明		鮮明		鲜明		鮮明	
オプロッキング性	0		0		0		0		Ծ−		0		Ü		0	

	比較例1	比较例2	比較例3	比較例4	比较好5
ht-No.	(T9)	(T10)	(T11)	(T12)	(T45)
	(A13)	(A14)	(A15)	(A 16)	(A16)
定着開始溫度(°C)	155	120	135	145	
オフセット発生温度して	150	120	140	145	165
投影画像	不鮮明	不鲜明	不鮮明	不鲜明	不鲜明
計プロッキング性	0	0	0	0	0
	157	120	136	145	

	157	120	130	143				
	交施例9	突絡例10	支热例11	支施例12	支连例13	支施例14	突施例15	実施例16
h-t-No.	(T13)		(T15)	(T18)	(T17)	(118)	(T19)	(T20)
高分子量ポリエステル	(A1)	(A2)	(A3)	(A4)	(A5)	(AB)		(8A)
低分子量ポリエステル	(A9)	(BA)	(A9)	(A9)	(A9)	(A9)	(A9)	(A9)
定着開始温度[*C]	120	120	120	115	125	110	120	125
オフセット発生温度(で	140	140	140	135	145			
投影画像	鲜明 ,	針明	149	鲜明	鮮明	鮮明	鮮明	鮮明
耐プロッキング性	ő"	O .	0	0	0	0	0	O

	実施例1	實施例18	曳拖例19	实施例20	実施例21	美路例22	実施例23	安庭例2
++-No.		(T22)			(T25)	(T26)	(T27)	(T28)
辛分子並ポリエステル		(A2)	(A3)	(A4)	(A5)	(AB)	(A7)	(AB)
低分子コポリエステル		(A10)	(A10)	(A10)	(A10)	(A10)	(A10)	(A10)
定務開始温度[℃]	105	105	105	100	110	95	105	
オフセット発生温度[℃	125	125	125	120	130	115		
投影画像	鲜明	11 59	鮮明	鮮明	鮮明	鲜明	鲜明	鮮明
ガブロッキング性	O	Ö	0	O	0	0	0	0

	実施例25	突连例26	実施例2	支施例28			実施例3	英語例32
	(T29)	(T30)	(T31)	(T32)	(T33)	(T34)	(T35)	(T36)
富分子量ポリエステル		(A2)	(EA)	(A4)	(A5)	(A6)	(A7)	(AB)
低分子量・ドリエステル			(A11)	(A11)	(A11)	(A11)	(A11)	(A11)
定着開始溫度[℃]	115	115	115	110	120			
オフセット発生温度(で	135	135	135	130				
投影呵像	鮮明	對明	野明	鮮明	鮮明	鮮明	解明	鮮明
計プロッキング性	Ö	0		0	0	0	0	0

	実施例33	実施例34	実施例35	支施例36	実施例37	曳路例34	夹施例39	支氟例40
FT-No.		(T38)		(T40)		(T42)	(T43)	(T44)
本分子量ポリエステル	(A1)	(A2)	(A3)	(A4)	(A5)	(A8)		(A8)
低分子量ポリエステル			(A12)	(A12)	(A12)	(A12)	(A12)	(A12)
定新開始溫度[*C]	115	115	115	110	120	108	115	120
オフセット発生温度[で	135	135	135	130	140			140
放影画像	鲜明	11199	解明	鮮明	鮮明	群明	鮮明	料明
耐ブロッキング性	O	0	0	0	0	0	O	0

	実施例41	実施例43	支格例43	実施例44
FT-No.	(T46)	(T47)	(T48)	(T49)
高分子量ポリてステル	(A7) ·	(A7)	(A7)	(A7)
低分子量ポリエステル	(A11)	(A11)	(A11)	(A11)
定着開始溫度[で]	115	115	115	115
オフセット発生温点して	135	135	135	135
投影画像	鲜明	斜明	鮮明	鮮明
耐ブロッキング性	0	0	0	0

[0059]

【発明の効果】以上述べてきたように、本発明による静電荷像現像用トナーおよびそれを用いた画像形成方法によれば、省電力、クイックスタートが可能な耐熱フィルムとサーマルへッドを組み合わせた定着機器において、定着下限温度とオフセット発生温度との間隔が広く、良好なる定着特性を示す。比較して比較例に示した静電荷像現像用トナーにおいては両者の間隔が狭く、現実の機器において定着温度の制御が困難であり良好なる定着画像を得ることができないことが示された。またトナーに離型剤等を添加する必要が無く樹脂層の透明性に優れ、

定着画像の表面平滑性にも優れるためカラー画像の再現性に優れるものである。

【図面の簡単な説明】

【図1】 本発明の実施例および比較例で得られたトナーの画像定着試験で用いた装置の概略図である。

【符号の説明】

1:サーマルヘッド

2:耐熱フィルム

3:駆動ロール

4:記録紙

5:加圧ロール

【図1】

