

Identification de paramètres et optimisation Cours de Master 2 STIM 2014-2015

Sébastien Adam

16 décembre 2015

- Présentation de l'enseign(ant)ement
- 2 Introduction
- Méthodes des moindres carrés
 - Ecriture matricielle
 - Moindres carrés récursifs
- Méthodes de descente locale
- 6 Réseaux de neurones
- 6 Méthodes itératives globales
- Optimisation multi-objectif

- Présentation de l'enseign(ant)ement
- 2 Introduction
- Méthodes des moindres carrés
 - Ecriture matricielle
 - Moindres carrés récursifs
- Méthodes de descente locale
- Séseaux de neurones
- Méthodes itératives globales
- Optimisation multi-objectif

- Présentation de l'enseign(ant)ement
- 2 Introduction
- Méthodes des moindres carrés
 - Ecriture matricielle
 - Moindres carrés récursifs
- 4 Méthodes de descente locale
- Séseaux de neurones
- Méthodes itératives globales
- Optimisation multi-objectif

Inversion

L'estimée θ_{MC} est donc la valeur de θ solution de l'équation :

$$X^T Y_S = X^T X \theta_{MC}$$

Deux cas de figure :

- X^TX est inversible. On a alors $\theta_{MC} = (X^TX)^{-1}X^TY_S$
- X^TX n'est pas inversible. θ_{MC} n'est pas unique.

Cas pratiques de non inversibilité :

- Moins d'observations N que de paramètres K : $rang(X^TX) \le N < K$ $(rang(AB) \le rang(A) \le min(dim(A)))$.
- Dépendance linéaire entre les colonnes de X : on ne peut pas résoudre le système

Dans le cas pondéré, on aura : $\theta_{MC} = (X^T W X)^{-1} X^T W Y_S$

Propriétés de l'estimateur

- Modèle : $Y_M = X\theta$
- Minimum du critère $J_{MC}(\theta)$ atteint pour $\theta_{MC} = (X^TX)^{-1}X^TY_S$
- On a alors $(Y_M)_{MC} = X(X^TX)^{-1}X^TY_S = QY_S$
- L'erreur d'estimation vaut : $Y_S Y_{MMC} = (1 Q)Y_S$
- Démontrons quelques propriétés de Q :
 - Q est symétrique
 - $Q^2 = Q$
 - $(Y_S QY_S)^T QY_S = 0 : Y_S (Y_M)_{MC}$ est orthogonal à $(Y_M)_{MC}$
- Retour sur l'interprétation géométrique

イロト (個) (意) (意) (意) (9)(で

Interprétation stochastique

- On suppose :
 - ▶ $Y_S = Y_M(\theta_S) + b = X\theta_S + b$ où θ_S représente la vraie valeur (inconnue) des paramètres du système.
 - ▶ b est un bruit blanc (Gaussien, de moyenne nulle et de variance σ^2) indépendant des x_i
- ullet On appelle erreur d'estimation le vecteur $e_{ heta}= heta_{MC}- heta_{S}$
- On a $e_{\theta} = (X^T X)^{-1} X^T (Y_S X \theta_S) = (X^T X)^{-1} X^T b$
- Donc : $E[e_{\theta}] = (X^T X)^{-1} X^T E[b] = 0$
- Et $\operatorname{var}(e_{\theta}) = E[e_{\theta}e_{\theta}^T] = (X^TX)^{-1}X^TE[bb^T]X(X^TX)^{-1} = \sigma^2(X^TX)^{-1}$

Bilan moindre carrés

- Modèle linéaire par rapport aux paramètres : $Y_M(\theta) = X\theta$
- Critère erreur quadratique : $J_{MC}(\theta) = \sum_{i=1}^{N} w_i (y_{S_i} y_{m_i})^2$
- Si X^TX est inversible : $\theta_{MC} = (X^TX)^{-1} X^T Y_S$
- Remarque : en pratique (X^TX) sera calculé par des méthodes QR
- Estimateur non biaisé le moins dispersé (Gauss-Markov) si la contrainte de linéarité est respectée.
- Modèle généralisable :
 - ▶ Si les θ apparaissent dans des expressions telles que $\cos(\theta_1)$, θ_1^2 ... : on change de paramètres.
 - Pour certains cas où Y_M n'est pas linéaire par rapport aux paramètres. Exemple : $Y_M = \theta_1^{\alpha_1} \theta_2^{\alpha_2} \rightarrow ln(Y_M) = \alpha_1 ln(\theta_1) + \alpha_2 ln(\theta_2)$: on change de paramètres et de critère.
- Comment mettre à jour une estimation?

- Présentation de l'enseign(ant)ement
- 2 Introduction
- Méthodes des moindres carrés
 - Ecriture matricielle
 - Moindres carrés récursifs
- Méthodes de descente locale
- Séseaux de neurones
- Méthodes itératives globales
- Optimisation multi-objectif

Principes

- Objectif : calculer l'estimée $\theta_{MC,n}$ obtenue avec n observations à partir $\theta_{MC,n-1}$ obtenue avec n-1 observations
- On connait $\theta_{MC,n-1}$, x_n et y_{s_n} . Que vaut $\theta_{MC,n}$?

Méthodologie

- On a par définition $\theta_{MC,n} = (X_n^T X_n)^{-1} X_n^T Y_{Sn}$
- On pose :
 - $P_n = (X_n^T X_n)^{-1}$
 - $Q_n = X_n^T Y_{S_n}$
 - ▶ D'où $\theta_{MC,n} = P_n Q_n$
- Objectif pour mettre à jour une estimation : exprimer P_n et Q_n en fonction de P_{n-1} , Q_{n-1} , x_n et y_{s_n}

Vision par bloc des matrices

$$X_{n} = \begin{pmatrix} \vdots \\ X_{n-1} \\ \vdots \\ X_{n}^{T} \end{pmatrix} \qquad X_{n}^{T} = (\dots X_{n-1} \dots, x_{n}) \qquad Y_{S_{n}} = \begin{pmatrix} \vdots \\ Y_{n-1} \\ \vdots \\ Y_{S_{n}} \end{pmatrix}$$

Conséquences

•
$$Q_n = X_n^T Y_{Sn} =$$

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Vision par bloc des matrices

$$X_{n} = \begin{pmatrix} \vdots \\ X_{n-1} \\ \vdots \\ x_{n}^{T} \end{pmatrix} \qquad X_{n}^{T} = (\dots X_{n-1} \dots, x_{n}) \qquad Y_{S_{n}} = \begin{pmatrix} \vdots \\ Y_{n-1} \\ \vdots \\ y_{S_{n}} \end{pmatrix}$$

Conséquences

•
$$Q_n = X_n^T Y_{Sn} = X_{n-1}^T Y_{Sn-1} + x_n y_{Sn} = Q_{n-1} + x_n y_{Sn}$$

4□ > 4□ > 4 = > 4 = > □
9

Vision par bloc des matrices

$$X_{n} = \begin{pmatrix} \vdots \\ X_{n-1} \\ \vdots \\ X_{n}^{T} \end{pmatrix} \qquad X_{n}^{T} = (\dots X_{n-1} \dots, x_{n}) \qquad Y_{S_{n}} = \begin{pmatrix} \vdots \\ Y_{n-1} \\ \vdots \\ y_{S_{n}} \end{pmatrix}$$

Conséquences

•
$$Q_n = X_n^T Y_{Sn} = X_{n-1}^T Y_{Sn-1} + x_n y_{Sn} = Q_{n-1} + x_n y_{Sn}$$

•
$$P_n^{-1} =$$

Vision par bloc des matrices

$$X_{n} = \begin{pmatrix} \vdots \\ X_{n-1} \\ \vdots \\ X_{n}^{T} \end{pmatrix} \qquad X_{n}^{T} = (\dots X_{n-1} \dots, x_{n}) \qquad Y_{S_{n}} = \begin{pmatrix} \vdots \\ Y_{n-1} \\ \vdots \\ Y_{S_{n}} \end{pmatrix}$$

Conséquences

- $Q_n = X_n^T Y_{Sn} = X_{n-1}^T Y_{Sn-1} + x_n y_{Sn} = Q_{n-1} + x_n y_{Sn}$
- $P_n^{-1} = X_n^T X_n = X_{n-1}^T X_{n-1} + x_n x_n^T = P_{n-1}^{-1} + x_n x_n^T \to P_n$?

Problème

• Comment calculer P_n avec : $P_n^{-1} = P_{n-1}^{-1} + x_n x_n^T$

S. Adam (Master STIM) Optimisation 16 décembre 2015

11 / 27

Problème : inversion difficile

•
$$P_n = (P_n^{-1})^{-1}$$
 avec : $P_n^{-1} = P_{n-1}^{-1} + x_n x_n^T$

Problème: inversion difficile

•
$$P_n = (P_n^{-1})^{-1}$$
 avec : $P_n^{-1} = P_{n-1}^{-1} + x_n x_n^T$

Solution: Lemme de Sherman-Morrison-Woodburg

$$(A + BCD)^{-1} = A^{-1} - A^{-1}B \left[C^{-1} + DA^{-1}B\right]^{-1}DA^{-1}$$

Conséquences du lemme

$$P_n = P_{n-1} - k_n * x_n^T P_{n-1}$$

Avec
 $k_n = P_{n-1} x_n (1 + x_n^T P_{n-1} x_n)^{-1}$

Conséquences du lemme (2)

- On a obtenu :
 - $P_n = P_{n-1} k_n * x_n^T P_{n-1}$
 - $k_n = P_{n-1}x_n (1 + x_n^T P_{n-1}x_n)^{-1} (**)$
 - $Q_n = Q_{n-1} + x_n y_{S_n}$
- On cherche $\theta_n = P_n Q_n$ $\theta_n = P_{n-1} Q_n - k_n * x_n^T P_{n-1} Q_n$
- Après quelques simplifications : on obtient :

$$\theta_n = \theta_{n-1} + k_n (y_{S_n} - x_n^T \theta_{n-1})$$

◄□▶
◄□▶
◄□▶
◄□▶
◄□▶
₹
₹
₽
♥
Q
♥

Bilan: 3 équations

$$\theta_{n} = \theta_{n-1} + k_{n} (Y_{S_{n}} - x_{n}^{T} \theta_{n-1})$$

$$k_{n} = P_{n-1} x_{n} \left(1 + x_{n}^{T} P_{n-1} x_{n} \right)^{-1}$$

$$P_{n} = P_{n-1} - k_{n} * x_{n}^{T} P_{n-1}$$

Remarques

• L'estimée θ_n est une correction de θ_{n-1} de k_n fois la différence entre l'observation Y_{S_n} et la prédiction Y_{M_n} faite avec θ_{n-1} .

Ordre des calculs

S. Adam (Master STIM)

Illustration sur l'exemple d'approximation polynomiale

• On suppose l'arrivée d'un nouveau point et on met à jour l'estimation faite précédemment (code polyrec.m)

16 décembre 2015

Illustration sur l'exemple d'approximation polynomiale

• On suppose l'arrivée d'un nouveau point et on met à jour l'estimation faite précédemment (code polyrec.m)

S. Adam (Master STIM)

Initialisation

- Dans les formules, on suppose que $P_n = (X_n^T X_n)^{-1}$ existe
- Cela implique N ≥ K : on doit attendre k observations et vérifier inversibilité de P_k

Solution approchée

- On pose $P_0 = \alpha I$ et $\theta_0 = 0$, avec α grand (ex. 10^6)
- Or : $P_1^{-1} = P_0^{-1} + x_1 x_1^T$ $\rightarrow P_1$ inversible car $X^T X + \alpha I$ est toujours inversible
- $P_2^{-1} = P_1^{-1} + x_2 x_2^T = P_0^{-1} + x_1 x_1^T + x_2 x_2^T$
- . . .
- $P_n^{-1} = P_0^{-1} + \sum_{i=1}^n x_i x_i^T = P_0^{-1} + X^T X$

Illustration sur l'exemple d'approximation polynomiale

- On pose $P_0 = \alpha I$ et $\theta_0 = 0$
- On simule l'arrivée de chaque nouveau point
- Démo (code polyrec2.m)

Résultat final

Cas des paramètres lentement variables

 Contexte : les paramètres du modèle évoluent (lentement) dans le temps

Cas des paramètres lentement variables

- Contexte : les paramètres du modèle évoluent (lentement) dans le temps
- Première option : intégration d'un facteur d'oubli dans le critère : $J_{MC}(\theta) = \sum_{i=0}^{N-1} \gamma^i \left(y_{S_{N-i}} y_{m_{N-i}}\right)^2 \quad \text{avec} \quad \gamma < 1$
- Conséquence : les formules de récurrences sont modifiées

4 □ > 4 ₱ > 4 ₱ > 4 ₱ > 9 Q (~

Cas des paramètres lentement variables

- Contexte : les paramètres du modèle évoluent (lentement) dans le temps
- Première option : intégration d'un facteur d'oubli dans le critère : $J_{MC}(\theta) = \sum_{i=0}^{N-1} \gamma^i \left(y_{S_{N-i}} y_{m_{N-i}}\right)^2 \quad \text{avec} \quad \gamma < 1$
- Conséquence : les formules de récurrences sont modifiées

$$\theta_{n} = \theta_{n-1} + k_{n} (Y_{Sn} - x_{n}^{T} \theta_{n-1})$$

$$k_{n} = P_{n-1} x_{n} \left(\gamma + x_{n}^{T} P_{n-1} x_{n} \right)^{-1}$$

$$P_{n} = (P_{n-1} - k_{n} * x_{n}^{T} P_{n-1}) / \gamma$$

• Démo sur l'exemple de l'approximation polynomiale

4 □ Þ 4 ∰ Þ 4 Ē Þ 4 Ē Þ 4 Ē Þ 9) ((

Cas des paramètres lentement variables

• Seconde option : moindres carrés à horizon fini

$$J_{MC}(\theta) = \sum_{i=0}^{L} (y_{SN-i} - y_{mN-i})^2$$

On en déduit

$$P_n^{-1} = P_{n-1}^{-1} + x_n x_n^T - x_{n-L-1} x_{n-L-1}^T$$

$$Q_n = Q_{n-1} + x_n Y_{Sn} - x_{n-L-1} Y_{Sn-L-1}$$

• Le lemme d'inversion matricielle ne s'applique plus

Cas des paramètres lentement variables

- Troisième option : supprimer l'influence d'une mesure
- Pour supprimer l'influence de (x_k, Y_{Sk}) , on sait faire :

$$P_n^{-1} = P_{n-1}^{-1} - x_k x_k^T$$
$$Q_n = Q_{n-1} - x_k Y_{S_k}$$

• On a alors:

$$\theta_{n} = \theta_{n-1} + k_{n} (Y_{Sk} - x_{k}^{T} \theta_{n-1})$$

$$k_{n} = P_{n-1} x_{k} \left(-1 + x_{k}^{T} P_{n-1} x_{k} \right)^{-1}$$

$$P_{n} = P_{n-1} - k_{n} * x_{k}^{T} P_{n-1}$$

• On peut donc appliquer les MCR normaux, puis supprimer la mesure la plus ancienne.

Illustration sur l'exemple d'approximation polynomiale

• On suppose supprimer l'influence du premier point et on met à jour l'estimation faite précédemment

S. Adam (Master STIM) Optimisation 16 décembre 2015 22 / 27

S. Adam (Master STIM) Optimisation

23 / 27

- Présentation de l'enseign(ant)ement
- 2 Introduction
- Méthodes des moindres carrés
 - Ecriture matricielle
 - Moindres carrés récursifs
- Méthodes de descente locale
- Réseaux de neurones
- Méthodes itératives globales
- Optimisation multi-objectif

- Présentation de l'enseign(ant)ement
- 2 Introduction
- Méthodes des moindres carrés
 - Ecriture matricielle
 - Moindres carrés récursifs
- Méthodes de descente locale
- 6 Réseaux de neurones
- Méthodes itératives globales
- Optimisation multi-objectif

- Présentation de l'enseign(ant)ement
- 2 Introduction
- Méthodes des moindres carrés
 - Ecriture matricielle
 - Moindres carrés récursifs
- Méthodes de descente locale
- 6 Réseaux de neurones
- 6 Méthodes itératives globales
- Optimisation multi-objectif

- Présentation de l'enseign(ant)ement
- 2 Introduction
- Méthodes des moindres carrés
 - Ecriture matricielle
 - Moindres carrés récursifs
- Méthodes de descente locale
- Séseaux de neurones
- Méthodes itératives globales
- Optimisation multi-objectif