Telesto Wavelength Calibration

Brooke Krajancich 12/04/2018

Procedure

- Obtain apodizations with and without Thorlabs FTLH1300 long pass filters in the reference arm path (transmission = T)
- Repeat for Thorlabs FTLH1350 filter
- Then, derive double transmission by:

$$T = \sqrt{\frac{I_f}{I_i}}$$

- Compare to transmission curve data (excel spreadsheet) provided on product specification webpage
- Optimise transformation (dilation and translation) of lambda values to make derived transmission best fit with specification

Apodization - 1300nm

Experimentally derived transmission vs. Thorlabs filter specification – 1300nm

Optimally transforming experimental T to match Thorlabs

- Transform according to:
 c.l(a(λ+b))
- Vary a, b and c to minimize sum of the absolute value of the residuals
- Optimum given to 2d.p. for a and c and 1d.p. for b
- $\lambda_{min} \approx 0.98 \times (1200.56 \times 31.1) = 1207.0 \text{ nm}$
- $\lambda_{max} \approx 0.98 \times (1367.75 \times 31.1) = 1370.9 \text{ nm}$

Original

Looking more closely – a surprisingly good correspondence!

Apodization – 1350nm

Experimentally derived transmission vs. Thorlabs filter specification – 1350nm

Optimally transforming experimental T to match Thorlabs

- Transform according to: $\mathbf{c.l}(\mathbf{a}(\lambda+\mathbf{b}))$
- Vary a, b and c to minimize sum of the absolute value of the residuals
- Optimum given to 2d.p. for a and c and 1d.p. for b
- $\lambda_{min} \approx 0.98 \times (1200.56 \times 34.5) = 1210.4 \text{ nm}$
- $\lambda_{max} \approx 0.98 \times (1367.75 \times 34.5) = 1374.2 \text{ nm}$

Looking more closely – a surprisingly good correspondence!

1300 vs 1350 filters

Given by: $\mathbf{a} = 0.98$ $\mathbf{b} = 31.1$ $\mathbf{c} = 0.98$ $\mathbf{b}_{av} = 32.8$ Given by: $\mathbf{a} = 0.98$ $\mathbf{b} = 34.5$ $\mathbf{c} = 0.98$

Then:

•
$$\lambda_{min} \approx 0.98 \times (1200.56 \times 32.8) = 1208.69 \text{ nm}$$

•
$$\lambda_{max} \approx 0.98 \times (1367.75 \times 32.8) = 1372.5 \text{ nm}$$

Giving:

$$\lambda_{min}$$
: 1200.56 \rightarrow 1208.69 nm ($\Delta = 8.13$)

$$\lambda_{max}$$
: 1367.75 \rightarrow 1372.54 nm $(\Delta = 4.79)$