

Министерство образования и науки Российской Федерации РГУ нефти и газа (НИУ) имени И.М. Губкина

Кафедра Автоматизированных систем управления

Разработка распределённого приложения для анализа характеристик пород-коллекторов

Студент группы АС-21-05

Негробов В.А.

Научный руководитель:

Старший преподаватель

Тупысев А.М.

Цель и задачи

Целью работы является разработка распределённого приложения для автоматизации имидж-анализа с использованием искусственных нейронных сетей (ИНС) и методов цифровой обработки изображений. Для достижения поставленной цели были определены следующие задачи:

- 1. Провести анализ предметной области, исследовать процесс имидж-анализа панорам шлифов кернов
- 2. Изучить способы автоматизации различных этапов процесса имидж-анализа
- 3. Сформулировать функциональные и нефункциональные требования к создаваемому программному обеспечению
- 4. Реализовать алгоритмы и модели автоматизации этапов выделения пористости на изображениях панорам шлифов керна и подсчёта параметров пористости процесса имидж-анализа
- 5. Разработать приложение, основанное на архитектуре клиент-сервер, выполнить интеграцию вышеописанных моделей и алгоритмов в создаваемое приложение
- 6. Провести тестирование распределённого приложения на реальных данных для оценки его качества

Актуальность

- Снижение времени выполнения рутинных ручных операций
- Принятие верных экспертных решений
- Искусственные нейронные сети эффективный инструмент для задач компьютерного зрения
- Классические алгоритмы по-прежнему актуальны для ряда задач компьютерного зрения

Процесс имидж-анализа

- Имидж-анализ метод исследования, целью которого является оценка морфометрических параметров породы
- Процесс имидж-анализа состоит из 5 этапов
- Выделение типов пористости выполняется вручную в графических редакторах
- Существующие программные решения для подсчёта параметров пористости требуют постоянного совершенствования

Выделение типов пористости

- На данном этапе выполняется классификация и выделение пористости на изображении
- Выделение пор трудоёмкий процесс, занимающий время, а классификация является сложной задачей из-за разнообразия форм и свойств пористости

Подсчёт параметров пористости

На данном этапе выполняется подсчёт следующих параметров пористости:

- 1. Площадь
- 2. Периметр
- 3. Форм-фактор
- 4. Прочие параметры

Существующие решения

Коммерческие:

• КЕРН С7 для анализа пористости

Научные исследования:

- Выделение пустотного пространства с использованием цифровых алгоритмов компьютерного зрения и ИНС
- Подсчёт параметров пористости

Требования к приложению

Функциональные требования:

- 1. Вход в систему по логину
- 2. Разграничение прав пользователей
- 3. Загрузка, просмотр, удаление данных
- 4. Поиск и фильтрация изображений
- 5. Сегментация и расчёт пористости
- 6. Скачивание изображений и метаданных

Нефункциональные требования:

- 1. Время ответа до 3 сек / 30 сек
- 2. Стабильность работы при высокой нагрузке
- 3. Простой и понятный интерфейс
- 4. Устойчивость к сбоям и логирование
- 5. Обеспечение безопасности

Используемые данные

- Для обучения ИНС всего было использовано 95 изображений с разрешением 4164х3120 (75% – тренировочные, 25% – тестовые)
- В наборе данных представлено 6 литологический структур: порода и 5 типов пористости
- Использовалась оффлайн-аугментация для последующей идентификации классов литологических структур
- Формат изображений и масок: PNG

Критерии качества и функции потерь

• Коэффициент Жаккара (Intersection over Union, IoU)

$$IoU = \frac{I}{U} = \frac{A \cap B}{A \cup B}$$

• Верность (Accuracy)

$$accuracy = \frac{N_{true}}{N}$$

• Функция потерь Дайса (DiceLoss)

$$DiceLoss = \frac{2 * IoU}{1 + IoU}$$

• Фокальная функция потерь (FocalLoss)

$$FocalLoss = (1 - p_t)^{\gamma} \log(p_t)$$

Используемые архитектуры ИНС

Используемые архитектуры ИНС

SegFormer (MiT-B3 Encoder)

Используемые архитектуры ИНС

Конвейер обучения

01

Self-supervised learning (SSL)

Решение задачи раскраски изображения. Целью является обучение кодировщика для последующего его использования.

02

Сегментация на неполном наборе данных

Использование для обучения сегментации изображений, на каждом из которых содержится 5 классов и более.

03

Сегментация на полном наборе данных

Обучение на полном наборе данных. Вероятность использования изображения пропорциональна количеству содержащихся на нём классов.

Конвейер обучения

04

Оценка качества работы моделей

Для определения качества работы ИНС применялась валидация с аугментацией на лету: на каждом шаге использовались случайные фрагменты изображений из тестового набора данных.

05

Выбор лучшей модели

Для определения качества работы использовалось среднее значение коэффициента Жаккара по всем литологическим структурам.

• 06

Дообучение лучшей модели

Полное обучение модели с размороженными весами энкодера на датасете, расширенном за счёт дополнительной оффлайнаугментации.

Результаты обучения

		loU							
	Accuracy	Ср. знач.	Порода	Внеформенная пористость	Внутриформенная пористость	Микропористость	Трещины	Каверны	
U-Net scSE (ResNet-34 encoder)	0.963	0.350	0.970	0.467	0.163	0.102	0.206	0.191	
U-Net scSE (MiT-B3 encoder)	0.977	0.357	0.987	0.544	0.099	0.102	0.167	0.243	
SegFormer (MiT-B3 encoder)	0.977	0.353	0.987	0.508	0.085	0.030	0.219	0.289	

loU	0-0.2	0.20-0.40	0.40-0.60	0.60-1
Оценка	Плохо	Удовлетворительно	Хорошо	Отлично

Дообучение модели U-Net

		IoU						
	accuracy	Ср. знач.	Порода	Внеформенная пористость	Внутриформенная пористость	Микропористость	Трещины	Каверны
Тренировочный набор данных	0.985	0.497	0.988	0.600	0.533	0.088	0.356	0.415
Тестовый набор данных	0.977	0.377	0.987	0.527	0.170	0.124	0.193	0.259

loU	0-0.2	0.20-0.40	0.40-0.60	0.60-1
Оценка	Плохо	Удовлетворительно	Хорошо	Отлично

Визуализация результатов

Подсчёт параметров пористости

- Реализован с использованием библиотеки Emgu
- Параметры пористости рассчитываются для каждого типа (класса) пористости на изображении

Распределённое приложение

- Серверное приложение реализовано с использованием ASP.NET (C#)
- Реляционная БД MSSQL для хранения изображений и информации о них
- Взаимодействие с БД с использованием Entity Framework
- Использование ONNX для работы с нейронной сетью
- Алгоритм скользящего окна для обработки изображений произвольного размера
- Клиентское веб-приложение написано на TypeScript с использованием React

Графический редактор

Внесение корректировок в карты сегментации, полученные с использованием ИНС, повышает точность подсчёта параметров пористости. Поэтому для корректировки карт сегментации был разработан минималистичный графический редактор.

Подсчёт параметров пористости

- Параметры пористости после подсчёта записываются в базу данных, что обеспечивает быстрый повторный доступ
- Параметры пористости записываются в «.xlsx» таблицу, которая предоставляется пользователю

Выполнение ресурсоёмких функций

Функция	Среднее время выполнения, сек		
Загрузка изображения размером 4164х3120 пикселей	0.5		
Выгрузка изображения размером 4164х3120 пикселей	0.2		
Выгрузка карты сегментации размером 4164х3120 пикселей	0.5		
Выгрузка изображения размером 4164х3120 пикселей, совмещённого с картой сегментации	1.3		
Генерация карты сегментации изображения размером 4164x3120 пикселей (зона перекрытия равна 128 пикселям)	24.2		
Подсчёт параметров пористости изображения	3.3		
Считывание параметров пористости изображения из базы данных	0.4		

Тестирование приложения

- 1. Авторизация с использованием логина и пароля
- 2. Создание объектов «месторождение», загрузка изображений шлифов керна
- 3. Просмотр объектов с отображением в виде таблицы и карточек объектов
- 4. Использование фильтрации для поиска интересующих изображений
- 5. Изучение раздела метаданных изображений, изменение метаданных изображений
- 6. Генерация карт сегментации изображений, визуальная оценка полученных результатов
- 7. Редактирование полученной маски пористости с использованием встроенного графического редактора
- 8. Расчёт параметров пористости изображения. Изучение данных, представленных в табличном виде
- 9. Удаление изображений

Заключение

- 1. Проведён анализ предметной области, показана эффективность применения алгоритмов компьютерного зрения в автоматизации
- 2. Изучены способы автоматизации различных этапов процесса имидж-анализа как с использованием ИНС, так и классических алгоритмов компьютерного зрения
- 3. Сформулированы функциональные и нефункциональные требования к программному обеспечению
- 4. Реализованы алгоритмы и модели автоматизации этапов выделения пористости на изображениях панорам шлифов керна и подсчёта параметров пористости. Для решения задачи многоклассовой сегментации использована модель U-Net с scSE-блоками и MiT-B3-энкодером, достигнуто среднее значение IoU = 0.377. Для расчёта морфометрических параметров применён алгоритм, использующий классические методы компьютерного зрения
- 5. Создано распределённое программное обеспечение, включающее серверную часть (обработка изображений, работа с базой данных) и веб-интерфейс, с внедрёнными алгоритмами автоматизации
- 6. Проведено тестирование распределённого приложения на реальных данных

Материалы исследования опубликованы в статье:

Тупысев А. М., Негробов В. А., Алетдинова А. А. Применение нейронных сетей в задаче семантической сегментации пустотного пространства на изображениях шлифов горных пород // Автоматизация и информатизация ТЭК. — 2025. — № 3(620). — С. 10–16.

Также результаты исследования были представлены на Международном форуме «Нефть и Газ»

Ссылка на репозиторий проекта