Simon King, FSU Jena Fakultät für Mathematik und Informatik Henicke, Kraume, Lafeld, Max, Rump

Lineare Algebra für *-Informatik FMI-MA0022

Wintersemester 2020/21

Übungsblatt 1

Liveaufgaben für 11.–12.11.2020

Präsenzaufgabe 1.1: Die Russel-Antinomie

Wir wollen zeigen: Wenn das Aussonderungsaxiom gilt, dann ist die Gesamtheit aller Mengen keine Menge. Wir nehmen dazu an, die Gesamtheit \mathcal{M} aller Mengen sei doch eine Menge.

Nach dem Aussonderungsaxiom ist auch $\mathcal{R} := \{x \in \mathcal{M} \mid x \notin x\}$ eine Menge. Gilt $\mathcal{R} \in \mathcal{R}$? Wie folgt ein Widerspruch zur Annahme?

Präsenzaufgabe 1.2: Modulo-Rechnung

Sei $d \in \mathbb{N}^*$. Für $a \in \mathbb{Z}$ bezeichnet $\operatorname{rem}(a,d) \in \{0,...,d-1\}$ den Rest von a bei Division durch d.

Man sagt "d teilt a" (Notation: $d \mid a$) gdw. rem(a, d) = 0.

Definition: $a, b \in \mathbb{Z}$ heißen **kongruent modulo** d (Notation: $a \equiv_d b$) gdw. rem(a, d) = rem(b, d).

- a) Zeigen Sie $\forall a, b \in \mathbb{Z}$: $a \equiv_d b \iff d \mid (b-a)$
- b) Seien $a, a', b, b' \in \mathbb{Z}$ so, dass $a \equiv_d a'$ und $b \equiv_d b'$. Zeigen Sie:

$$a + b \equiv_d a' + b'$$
 und $a \cdot b \equiv_d a' \cdot b'$

c) Berechnen Sie den Rest von $3^{(4^{(5^6)})}$ bei Division durch 7.

Einige Teilprobleme:

Was ist das kleinste $n \in \mathbb{N}^*$, für das $3^n \equiv_7 1$ gilt?

Wie kann man dies und die vorige Teilaufgabe für die Vereinfachung des Exponenten nutzen?

Hinweise/Anmerkungen: $\forall a, b, q, r \in \mathbb{N}: a^{q \cdot b + r} = a^r \cdot (a^b)^q$.

Bitte wenden

Präsenzaufgabe 1.3: Latürnich...

Diese Aufgabe ist dem Problem gewidmet, \mathbb{N} zu definieren, ohne Auslassungszeichen wie in $\mathbb{N} := \{0, 1, 2, 3, ...\}$ zu verwenden.

- a) Offenbar bedeuten die Auslassungszeichen, dass man hier stets von einer natürlichen Zahl zur nächstgrößeren Zahl gehen soll. Ist $n \in \mathbb{N}$, dann ist n+1 die nächstgrößere. Wir erhalten eine Abbildung von \mathbb{N} nach \mathbb{N} gegeben durch $\forall n \in \mathbb{N} \colon n \mapsto n+1$.
 - Ab jetzt tun wir so, als könnten wir nicht zählen. Sei M eine Menge und $\varphi \colon M \to M$ eine Abbildung. Welche Eigenschaften muss φ erfüllen, damit φ der "Zählabbildung" $n \mapsto n+1$ entspricht? **Hinweise:** Wie viele Vorgänger gibt es für eine natürliche Zahl? Wie kann man ausdrücken, dass jede natürliche Zahl von der Null aus durch Zählen erreichbar ist?
- b) Rechercheaufgabe: Lesen Sie den Wikipedia-Artikel zum Unendlichkeitsaxiom. Versuchen Sie zu verstehen, wie aus dem Axiom die Existenz von N folgt und was dies mit Ihren Überlegungen aus der vorigen Teilaufgabe zu tun hat.