Advanced Counting Techniques

- 1) Find a recurrence relation for the number of bit strings of length *n* that contain a pair of consecutive 1s. What are the initial conditions?
- 2) Find a recurrence relation for the number of bit strings of length n that do not contain three consecutive 1s. What are the initial conditions?
- 3) Find a recurrence relation for the number of bit strings of length *n* that contain the string 10. What are the initial conditions?
- 4) Find a recurrence relation for the number of ternary strings of length *n* that do not contain two consecutive 1s. What are the initial conditions?
- 5) Find a recurrence relation for the number of ways to completely cover a $2 \times n$ checkerboard with 1×2 dominoes.
- 6) A vending machine dispensing books of stamps accepts only \$3 bills and \$5 bills. Find a recurrence relation for the number of ways to deposit n dollars in the vending machine, where the order in which the bills are deposited does not matter.
- 7) Solve these recurrence relations together with the initial conditions given.

a)
$$a_n = a_{n-1} + 12a_{n-2}$$
 for $n \ge 2$, and $a_0 = 5$, $a_1 = 7$

- b) $a_n = 4a_{n-2}$ for $n \ge 2$, and $a_0 = 1$, $a_1 = -1$
- 8) *Solve the recurrence relation $a_n = 8a_{n-1} 16a_{n-2}$ with the initial conditions $a_0 = 1$ and $a_1 = 3$.
- 9) *Solve the recurrence relation $a_n = 2a_{n-1} + a_{n-2} 2a_{n-3}$ with the initial conditions $a_0 = 1$, $a_1 = 2$ and $a_2 = 5$.
- 10) *Solve the recurrence relation $a_n = 2a_{n-1} + 3n$ with the initial condition $a_1 = 5$.
- 1) Find a recurrence relation for the number of bit strings of length n that contain a pair of consecutive 1s. What are the initial conditions?

if 0... also if 0... then $a_n = a_{n-1}$ because of L having options. 0... then nothing changes

Thus,
$$a_n = a_{n-x} + a_{n-2} + 2^{n-2} & a_0 = 0, a_x = 0$$
.

2) Find a recurrence relation for the number of bit strings of length *n* that do not contain three consecutive 1s. What are the initial conditions?

In =7
$$a_{n-x}$$
 string with no IIIs

 $a_n = a_{n-x} + a_{n-2} + a_{n-3}$

10... $\Rightarrow a_{n-2}$ string with no IIIs

 $a_n = a_{n-x} + a_{n-2} + a_{n-3}$

110... $\Rightarrow a_{n-3}$ string with no IIIs

 $a_n = a_{n-x} + a_{n-2} + a_{n-3}$

111...

3) Find a recurrence relation for the number of bit strings of length *n* that contain the string 10. What are the initial conditions?

4) Find a recurrence relation for the number of ternary strings of length *n* that do not contain two consecutive 1s. What are the initial conditions?

5) Find a recurrence relation for the number of ways to completely cover a $2 \times n$ checkerboard with 1×2 dominoes.

 $a_0(\$1)$, $a_1(\$2)$, $a_3(\$4)$, and bills b such that $3 \nmid b$ or $5 \nmid b$ couldn't be deposited, however they'll be 0, $a_0 = a_1 = a_3 = 0$. But $a_2 = 1$ and $a_4 = 1$. Therefore, $a_5 = 1$, $a_6 = 0$, $a_7 = 1$, and so on ...

- 7) Solve these recurrence relations together with the initial conditions given.
 - a) $a_n = a_{n-1} + 12a_{n-2}$ for $n \ge 2$, and $a_0 = 5$, $a_1 = 7$
 - b) $a_n = 4a_{n-2}$ for $n \ge 2$, and $a_0 = 1$, $a_1 = -1$

a)
$$r^{2}-r-12=(r-4)(r+3)=r_{2}=4kr_{2}=-3$$
 $a_{1}=5=\alpha_{1}+\alpha_{2}$
 $a_{2}=7=\alpha_{1}(4)+\alpha_{2}(-3)=7$
 $a_{2}=7=\alpha_{2}(4)+\alpha_{2}(-3)=7$
 $a_{3}=7=\alpha_{2}(4)+\alpha_{2}(-3)=7$
 $a_{4}=7=\alpha_{2}(4)+\alpha_{2}(-3)=7$
 $a_{5}=7=\alpha_{2}(4)+\alpha_{2}(-3)=7$
 $a_{5}=7=3$
 a_{5

$$\begin{cases} r^{2} - 4 = (r+2)(r-2) \Rightarrow r_{z} = -2kr_{2} = 2 \\ x_{z} = -2kr_{2} = 2kr_{2} = 2kr_{2}$$

8) *Solve the recurrence relation $a_n = 8a_{n-1} - 16a_{n-2}$ with the initial conditions $a_0 = 1$ and $a_1 = 3$.

9) *Solve the recurrence relation $a_n = 2a_{n-1} + a_{n-2} - 2a_{n-3}$ with the initial conditions $a_0 = 1$, $a_1 = 2$ and $a_2 = 5$.

As previously but r^3-2r^2-r+2 . By fundamental theorem of algebra, if the rests are in the form of $\frac{a}{2}$ then any divisor of $\frac{a}{2}$, where a=2 and b=2 (coef. of. r^3) is a candidate, ± 2 and ± 2 are the only ones. If r=2 then $\pm^3-2(\pm)^2-\pm+2=0$. Let's do long division: r^2-r-2 r^2-r^2-r+2 r^3-r^2

$$\frac{r^{2}-2r^{2}-r+2}{r^{3}-r^{2}}$$

$$\frac{r^{3}-r^{2}}{-r^{2}-r}$$

$$\frac{-r^{2}+r}{-2}+2$$

$$r^{3}-2x^{2}-r+2=(r-\pm)(r^{2}-r-2)=(r-\pm)(r-2)(r+2)\Rightarrow r_{2}=\pm r_{3}=2$$

$$R_{3}=4+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}$$

$$A_{2}=2+\alpha_{4}+2\alpha_{4}+(-\pm)\alpha_{3}\Rightarrow \begin{bmatrix} \pm 2 \pm 1 \\ x_{4} \end{bmatrix} \begin{bmatrix} x_{4} \\ x_{5} \end{bmatrix} = \begin{bmatrix} x_{2} \\ x_{5} \end{bmatrix} \Rightarrow Ax=B\Rightarrow A^{\frac{1}{2}}Az=A^{\frac{1}{2}}B$$

$$A_{2}=5=\alpha_{2}+4\alpha_{2}+\alpha_{3}$$

$$A_{2}=5=\alpha_{2}+4\alpha_{2}+\alpha_{3}$$

$$A_{3}=6+\alpha_{3}+\alpha_{4}+\alpha_{5}$$

$$A_{4}=6+\alpha_{5}+\alpha_{5$$