Lecture 9

Casey Gibson

October 2017

Smoothing (Agresti. 7.4)

- Kernel Smoothing
- Penalized likelihood
- GAMS

Bias-Variance trade-off

Fundamental question about choice of statistical models

- Parametric models:
 - Represent data 'parsimoniously' (with few parameters)
 - good for variability of estimates
 - Bad if model is wrong
 - 'bad for bias, good for variance'
- Less Parametric models (e.g. smoothers)
 - non-parametric
 - semi-parametric
- less likely to be biased b/c less structure
- more uncertainty/variability in estimates

Example 3.3.8

- \bullet Illustrates a situation where even when the model is wrong the MSE is lower for the parametric model than a non-parametric model
- Takeaway: a little miss-specification can be okay, but a lot is bad

Smoothing

- Why smooth?
 - Exploratory analysis
 - more concerned about bias than variance (large N)
 - simple way to 'gently' relax the assumptions of your model
- Main examples
 - Kernel Smoothing
 - Penalized likelihood
 - GAMS

Kernel Smoothing

- Contingency Table
 - Joint cell probabilities $\vec{\pi}$
 - sample probabilities \vec{p}
 - Suppose we are interested in $\tilde{\pi}$, smoothed estimates of $\vec{\pi}$
 - We can do this using a smoothing matrix K where $\tilde{\pi}=Kp$, square, non-negative elements, column totals sum to $1\to \sum_j \pi_j=1$

Specifically

$$\tilde{\pi}_i = (1 - \lambda)p_i + \lambda * [smoother_i]$$

where $smoother_i$ is defined by K.

For example, it could be average of near-by cells.

We can see that if $\lambda = 0$

$$\tilde{\pi_i} = p_i$$

or if $\lambda = .5$

$$\tilde{\pi_i} = p_i + \frac{smoother_i}{2}$$

- Regression context
 - Smoothing across an X

$$- \tilde{\pi(x)} = \frac{\sum_{i} y_{i} \phi(\frac{x - x_{i}}{\lambda})}{\sum_{i} \phi(\frac{x - x_{i}}{\lambda})}$$

 $-\phi$ is a symmetric kernel function

*
$$\int_{-\infty}^{\infty} K(u) du = 1$$

$$* K(-u) = K(u) \forall u$$

* Example: Gaussian kernel $K(u) = e^{\frac{1}{2\sigma^2}(u-\mu)^2}$

- $-\lambda > 0$ is smoothing parameter
- **Takewaway**: Take a weighted sum of all of my ys where the weight is proportional to the similarity of the test x to the xs in the data

Example 1

If $\phi(u) = 1ifu = 0,0otherwise$

$$\begin{cases} 1 & u = 0 \\ 0 & otherwise \end{cases}$$

then

 $\pi(x_k) = \text{sample proportion of successes when } X = X_k$

Example 2

$$\phi(i) = exp(\frac{-u^2}{2})$$

Equivalent to N(0,1)

$$\tilde{\pi(x)} = \sum_{i} y_{i} exp(-\frac{1}{2} \frac{(x - x_{i})^{2}}{\lambda})$$

As $\lambda \to 0$ we approach no smoothing which implies low bias $\pi(x)$. We only have a few data points being used to estimate in a neighborhood around x.

Penalized Likelihood (7.4.5)

Is a

- 'regularization' method
- 'smoothing' method 'penalization' method
- \bullet 'shrinkage' method

$$L^*(\beta) = L(\beta) - \lambda(\beta)$$

Where $\lambda(\beta) = p(\beta, \lambda)$

Very general and broad approach for giving sensible estimates for parameters/characteristics that are unstable.

Commonly used penalizations

$$L_2 - norm \ penalty : \lambda(\beta) = \lambda \sum_j \beta_j^2$$

$$L_1 - norm \ penalty : \lambda(\beta) = \lambda \sum_j |\beta_j|$$

Similar to maximizing likelihood subject to the constraint that

$$\sum_{j} |\beta_j| \le K$$

$$L_0 - norm \ penalty : \lambda(\beta) = K \sum_j \mathbf{1}(|\beta_j| > 0)$$

penalty proportional to how many are not 0.

AIC and BIC are special cases of this.

Difficult to optimize for large J.

How to choose λ ?

- K-fold cross validation
 - $\text{ fix } \lambda$
 - leave out $\frac{1}{kth}$ of dataset
 - Fit your model, predict for the left out data
 - repeat steps 1-2 until we have out of sample predictions for the whole dataset
 - Compute some error for λ
 - Repeat for new λs
 - Choose λ_i that minimizes error

Penalized likelihood \approx Bayes

If our prior for $\beta \propto e^{-\lambda(\beta)}$ then $posertior(\beta) \propto L^*(\beta)$ so posterior mode = mdoe of $L^*(\beta)$

Generalized Additive Models

$$g(\mu_i)$$

where g is a link and μ_i is a mean

$$g(\mu_i) = \sum_j s_j(x_{ij})$$

where s is a smooth function, i.e. a cubic spline

• GLMS are a special case when s_i are linear.

- Models are fit using a "back fitting algorithm"
- \bullet Similar to Newton-Raphson w/ local smoothing
- Penalized likelihood that penalizes "wiggliness" of function.
- Approximate d.f. for each
- $\bullet\,$ These models are more flexible than GLMs but are also much less interpret-able.
- $\bullet\,$ Note: In R the mgcv package is able to estimate GLMs