

Sequence Models

Machine Learning: Jordan Boyd-Graber University of Maryland

Slides adapted from Christopher Olah

The Model of Laughter and Forgetting

- RNN is great: can remember anything
- RNN stinks: remembers everything
- Sometimes important to forget: LSTM

RNN transforms Input into Hidden

(Can be other nonlinearities)

LSTM has more complicated innards

LSTM has more complicated innards

Built on gates!

Gates

- Multiply vector dimension by value in [0, 1]
- Zero means: forget everything
- One means: carry through unchanged
- LSTM has three different gates

Cell State

Can pass through (memory)

Deciding When to Forget

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

Based on previous hidden state h_{t-1} , can decide to forget past cell state

Updating representation

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Compute new contribution to cell state based on hidden state h_{t-1} and input \boldsymbol{x}_t

Updating representation

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Compute new contribution to cell state based on hidden state h_{t-1} and input x_t . Strength of contribution is i_t

Updating representation

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Interpolate new cell value

Output hidden

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Hidden layer is function of cell C_t , not h_{t-1}