Reinforcement Learning Cheat Sheet

Notation

In general, random variables are upper case and the values of the random variable are lower case. Matrices are bold.

$_{\text{Symbol}}$	Meaning
t	a discrete time
S_t	state at time t
A_t	action at time t
R_t	reward at time t
${\mathcal S}$	set of all non-terminal states
$\mathcal A$	set of all actions
${\cal R}$	set of all rewards
≐	definition equal

Problem setup: Markov decision processes

Figure 1: Actor-critic relation

In a Markov decision process (MDP) shown in Figure 1, a game agent interacts with an environment to achieve a certain goal. The interaction happens at every discrete time t=1,2,3,.... The agent observes certain state of the environment $S_t \in \mathcal{S}$, selects some action $A_t \in \mathcal{A}$ and then receives certain reward $R_{t+1} \in \mathcal{R}$. In a finite MDP, $p(s',r|s,a) = Pr\{S_t = s', R_t = r|S_{t-1} = s, A_{t-1} = a\}$. The expected reward can be computed by $r(s,a) = \mathbb{E}[R_t|S_{t-1} = s, A_{t-1} = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s',r|s,a)$.

The goal of a game is typically to maximize the return. The discounted reward can be framed by:

$$G_t \doteq R_{t+1} + \gamma R_{t+1} + \dots + \gamma^2 R_{t+2} \doteq \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

 $\gamma \in [0,1]$ is the discount factor.

Actor-critic

Figure 2: Actor-critic relation

Actor-critic (AC) methods lay between value-based and policy gradient methods as shown in figure 2. They both estimate the policy and state-action functions, whereas value-based methods only estimate state-value functions and have an implicit ϵ -greedy policy, and policy gradient methods do not have value function and only estimates the policy.

Deep Q-learning (DQN)

DQN sits on the basis of many deep RL techniques. It tries to use a deep neural network to estimate the Q-value instead of using a linear method which has been proven to be more effective. The opitmal Q-value should tell us the max reward one can have by taking certain action: $Q^*(s,a) = \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a]$. The Bellman equation describes that $Q^*(s,a) = \mathbb{E}_{\pi}[R_t + \gamma \max_{a'} Q^*(s',a'|s,a)]$.

Given a neural network with parameter θ , and the target Q-value $R_t + \gamma \max_{a'} Q^*(s', a'|s, a)$ the update gradient on the loss function can be defined as:

$$\nabla_{\theta^{-}} L(\theta) = \mathbb{E}[(R_t + \gamma \max_{a'} Q(s', a'|\theta^{-}) - Q(s, a|\theta)) \nabla Q(s, a|\theta)]$$

where θ^- is the old network parameter used to estimate the target value. Furthuremore, DQN also incoprates two other techniques to improve the performance, namely experience replay and using a second network to generate the target Q value.

DQN

Experience replay is deployed to improve data efficiency such that each sample is being used more than one time and also to decouple the correlations between different updates. Using a different network to generate target value means that the target network's parameters are only synced with latested one every once in a while to avoid potentiall divergence of the policy and make training more stable.

ODEs	-
1st Order Linear	Use integrating factor,
	$I = e^{\int P(x)dx}$
Separable:	$\int P(y)dy/dx = \int Q(x)$
HomogEnEous:	$\frac{dy}{dx} = f(x,y) = f(xt,yt)$
3	sub $y = xV$ solve, then sub
	V = y/x
Exact:	If $M(x,y) + N(x,y)dy/dx =$
	0 and $M_y = N_x$ i.e.
	$\langle M, N \rangle = \nabla F$ then $\int_T M +$
	$\int_{y} N = F$
Order Reduction	Let $v = dy/dx$ then check
	other types
	If purely a function of y ,
	$\frac{dv}{dx} = v\frac{dv}{dy}$
Variation of Parameters:	When $y'' + a_1 y' + a_2 y = F(x)$
	F contains $\ln x$, $\sec x$, $\tan x$,
	÷
Bernoulli	$y' + P(x)y = Q(x)y^n$
	$\div y^n$
	$y^{-n}y' + P(x)y^{1-n} = Q(x)$
	$Let \ U(x) = y^{1-n}(x)$
	$\frac{dU}{dx} = (1 - n)y^{-n}\frac{dy}{dx}$ $\frac{1}{1 - n}\frac{du}{dx} + P(x)U(x) = Q(x)$
	$\frac{1}{1-n}\frac{du}{dx} + P(x)U(x) = Q(x)$
G 1 F 1	solve as a 1st order
$Cauchy ext{-}Euler$	$x^{n}y^{n} + a_{1}x^{n-1}y^{n-1} + \cdots + a_{n-2}$
	$a_{n-1}y^{n-2} + a_ny = 0$ guess $y = x^r$
3 Cases:	guess $y = x$
1) Distinct real roots	$y = ax^{r_1} + bx^{r_2}$
2) Repeated real roots	$y = Ax^r + bx$ $y = Ax^r + y_2$
~, 100pcarca 10ar 10003	$Guess \ y_2 = x^r u(x)$
	Solve for $u(x)$ and choose
	one $(A = 1, C = 0)$
3) Distinct complex roots	$y = B_1 x^a \cos(b \ln x) +$
,	$B_2 x^a \sin(b \ln x)$
	` '

- Series Solution

$$y'' + p(x)y' + q(x)y = 0$$
Useful when $p(x), q(x)$ not constant
Guess $y = \sum_{n=0}^{\infty} a_n (x - x_0)^n$

$$\frac{e^x \sum_{n=0}^{\infty} x^n / n!}{\sin x \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}}$$

$$\cos x \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

Systems

Bystems	
$\vec{x}' = A\vec{x}$	
$A\ is\ diagonalizable$	$\vec{x}(t) = a_1 e^{\lambda_1 t} \vec{v_1} + \cdots +$
	$a_n e^{\lambda_n t} \vec{v_n}$
A is not diagonalizable	$\vec{x}(t) = a_1 e^{\lambda_1 t} \vec{v_1} + a_2 e^{\lambda t} (\vec{w} + \vec{v_1})$
	$t ec{v})$
	where $(A - \lambda I)\vec{w} = \vec{v}$
	\vec{v} is an Eigenvector w/ value
	λ
	i.e. \vec{w} is a generalized Eigen-
	i.e. w is a generalized Eigen
	vector
$\vec{x}' = A\vec{x} + \vec{B}$	0 0
$\vec{x}' = A\vec{x} + \vec{B}$	vector
$\vec{x}' = A\vec{x} + \vec{B}$	vector Solve y_h
$\vec{x}' = A\vec{x} + \vec{B}$	vector Solve y_h $\vec{x_1} = e^{\lambda_1 t} \vec{v_1}, \vec{x_2} = e^{\lambda_2 t} \vec{v_2}$
$\vec{x}' = A\vec{x} + \vec{B}$	vector Solve y_h $\vec{x_1} = e^{\lambda_1 t} \vec{v_1}, \vec{x_2} = e^{\lambda_2 t} \vec{v_2}$ $\vec{X} = [\vec{x_1}, \vec{x_2}]$
$\vec{x}' = A\vec{x} + \vec{B}$	vector Solve y_h $\vec{x_1} = e^{\lambda_1 t} \vec{v_1}, \vec{x_2} = e^{\lambda_2 t} \vec{v_2}$ $\vec{X} = [\vec{x_1}, \vec{x_2}]$ $\vec{X} \vec{u}' = \vec{B}$

Matrix Exponentiation

$$A^n = SD^nS^{-1}$$

D is the diagonalization of A

Laplace Transforms

Laplace Transforms
$$L[f](s) = \int_0^\infty e^{-sx} f(x) dx$$

$$f(t) = t^n, n \ge 0 \qquad F(s) = \frac{n!}{s^n+1}, s > 0$$

$$f(t) = e^{at}, a \ constant \qquad F(s) = \frac{1}{s-a}, s > a$$

$$f(t) = \sin bt, b \ constant \qquad F(s) = \frac{s}{s^2+b^2}, s > 0$$

$$f(t) = \cos bt, b \ constant \qquad F(s) = \frac{s}{s^2+b^2}, s > 0$$

$$f(t) = t^{-1/2} \qquad F(s) = \frac{\pi}{s^{1/2}}, s > 0$$

$$f(t) = \delta(t-a) \qquad F(s) = e^{-as}$$

$$f' \qquad L[f'] = sL[f] - f(0)$$

$$f'' \qquad L[f''] = s^2L[f] - sf(0) - f'(0)$$

$$L[e^{at}f(t)] \qquad L[f](s-a)$$

$$L[f](s-a) \qquad L[f]e^{-as}$$

Gaussian Integral

$$\int_{-\infty}^{+\infty} e^{-1/2(\vec{x}^T A \vec{x})} = \frac{\sqrt{2\pi}^n}{\sqrt{\det A}}$$

Complex Numbers

Systems of equations If
$$\vec{w_1} = \vec{u(t)} + i\vec{v(t)}$$
 is a solution, $\vec{x_1} = \vec{u(t)}, \vec{x_2} = \vec{v(t)}$ are solutions i.e. $\vec{x_h} = c_1\vec{x_1} + c_2\vec{x_2}$

Euler's Identity $e^{ix} = \cos x + i \sin x$