VERSUCH NUMMER

TITEL

TU Dortmund – Fakultät Physik

Maximilian Sackel
Maximilian.sackel@gmx.de

Philip Schäfers phil.schaefers@gmail.com

Abgabe: DATUM

Durchführung: DATUM

Inhaltsverzeichnis

1	The	Theoretische Grundlage		
	1.1	Fehlerrechnung	3	
		1.1.1 Mittelwert	3	
		1.1.2 Gauß'sche Fehlerfortpflanzung	3	
		1.1.3 Lineare Regression	3	
2	Dur	Durchführung und Aufbau		
3	Aus	Auswertung		
	3.1 Zeitabhänigkeit der Amplitude und Dämpfungswiederstand einer Ge-			
		dämpften Schwingung	4	
	3.2	Dämpfungswiederstand des Aperiodischen Grenzfalls	5	
	3.3	Frequenzabhängigkeit der Kondensatorspannung eines Serienresonanzkreis	5	
4	Disk	kussion	5	

1 Theoretische Grundlage

1.1 Fehlerrechnung

Sämtliche Fehlerrechnungen werden mit Hilfe von Python 3.4.3 durchgeführt.

1.1.1 Mittelwert

Der Mittelwert einer Messreihe $x_1,...,x_{\rm n}$ lässt sich durch die Formel

$$\overline{x} = \frac{1}{N} \sum_{k=1}^{N} x_k \tag{1}$$

berechnen. Die Standardabweichung des Mittelwertes beträgt

$$\Delta \overline{x} = \sqrt{\frac{1}{N(N-1)} \sum_{k=1}^{N} (x_k - \overline{x})^2}$$
 (2)

1.1.2 Gauß'sche Fehlerfortpflanzung

Wenn $x_1,...,x_n$ fehlerbehaftete Messgrößen im weiteren Verlauf benutzt werden, wird der neue Fehler Δf mit Hilfe der Gaußschen Fehlerfortpflanzung angegeben.

$$\Delta f = \sqrt{\sum_{k=1}^{N} \left(\frac{\partial f}{\partial x_k}\right)^2 \cdot (\Delta x_k)^2}$$
 (3)

1.1.3 Lineare Regression

Die Steigung und y-Achsenabschnitt einer Ausgleichsgeraden werden gegebenfalls mittels Linearen Regression berechnet.

$$y = m \cdot x + b \tag{4}$$

$$m = \frac{\overline{xy} - \overline{xy}}{\overline{x^2} - \overline{x}^2} \tag{5}$$

$$b = \frac{\overline{x^2}\overline{y} - \overline{x}\,\overline{xy}}{\overline{x^2} - \overline{x}^2} \tag{6}$$

2 Durchführung und Aufbau

3 Auswertung

Die für den Versuch relevanten Bauteile haben die Werte

$$L = (16.78 \pm 0.09)mH \tag{7}$$

$$C = (2.066 \pm 0.006)nF \tag{8}$$

$$R_1 = (67.2 \pm 0.2)\Omega \tag{9}$$

$$R_2 = (682 \pm 1)\Omega \tag{10}$$

3.1 Zeitabhänigkeit der Amplitude und Dämpfungswiederstand einer Gedämpften Schwingung

Die durch das Oszilliskop gemessene Spannungspeaks werden mittels einer CWD-Funktion ermittelt und mit deren dazugehörige Zeit in Tabelle 1 aufgetragen. Anhand der Daten

$U_{ m C}$ / V	$t / 10^{-3}$
52	0.18
48.8	0.54
45.6	0.93
41.6	1.30
38.4	1.69
36.6	2.09
34.2	2.46
33.3	2.82
32	3.20
31.4	3.59
29.6	3.96
28.8	4.32

Tabelle 1: Spannung am Kondensator zur Bestimmung des Abklingverhalten und Dämpfungswiederstand.

lässt sich durch eine Fit-Funktion die Koeffizienten der Einhüllenden berechnen, welche in Gleichung ?? beschrieben sind.

$$A_0 = (30.6 \pm 0.9) V \tag{11}$$

$$f = (680 \pm 60) \text{Hz} \tag{12}$$

Die Einhüllende und die Messdaten sind in Abbildung 1 dargestellt. Nach Formel ?? lässt

Abbildung 1: Messdaten mit Einhüllender

sich der effektive Dämpfungswiederstand sowie die Abklingdauer berechnen.

$$R_{\rm eff} = (143.38 \pm 12.70) \, \varOmega \tag{13}$$

$$T_{\rm ex} = (230 \pm 10) \cdot 10^{-6} \,\mathrm{s}$$
 (14)

Der Erwatungswert wiegt vom Errechneten wert um 75 Ω ab. Dies lässt sich einerseits dadurch erklären, dass der Innenwiederstand von 50 Ω nicht berücksichtigt wurde. Andererseits kann es bei der gewählten Frequenz zu Impedanzen der verschiedenen Bauteile gekommen sein. Für die weiteren Aufgaben wird der Widerstand des Generators berücksichtigt.

3.2 Dämpfungswiederstand des Aperiodischen Grenzfalls

Der im Experiment bestimmte Widerstand, bei dem der Aperiodische Grenzfall eintritt, beträgt

$$R_{\text{Praxis}} = 1.25 \,\Omega \,. \tag{15}$$

Der Theoretische Widerstand wird mittels Formel?? ausgerechnet und beträgt

$$T_{\text{Theorie}} = ??? \Omega$$
 . (16)

Zwischen dem theoretischen und praktisch ermittelten ist eine Differenz von ??? Ω . Mögliche Ursachen für den Fehler sind, die vernachlässigte Impedanz des Aufbaus, als auch die Schwierigkeit den Punkt des Aperiodischen Grenzfalls zu treffen, da keine wesentliche Änderung erkennen zu sind.

3.3 Frequenzabhängigkeit der Kondensatorspannung eines Serienresonanzkreis

4 Diskussion