Estimating Floating Point Errors, The Automatic Differentiation Way

Garima Singh^{1&2}, <u>Baidyanath Kundu</u>^{1&2}, Harshitha Menon³, Alexander Penev ⁴, David J. Lange ¹, Vassil Vassilev^{1&2}

¹ Princeton Univ. (US), ²CERN, ³LLNL (US), ⁴Univ. of Plovdiv (Bulgaria)

Floating point errors

	Value	Error	
Input number:	0.3	-	
Representation in float:	0.30000001192092895508	1.19e-08	
Representation in double:	0.299999999999998890	1.11e-17	

Let's try a simple addition operation: 0.3 + 0.3

Operation output:	0.6	-
Representation in float:	0.60000002384185791016	2.38e-08
Representation in double:	0.59999999999997780	2.22e-17

<u>Link to code</u> for these numbers

Floating point errors

Input number:

Representation in float:

Representation in double:

Because floating point errors are additive, they can become significant in HPC or other large-scale applications!

Value

Let's try a simple addition operation: 0.3 + 0.3 ... billion times

Operation output:

3.00e+08

-

Representation in float:

8.39e+06

2.92e+08

Representation in double:

3.00e+08

5.65e+00

Link to code for these numbers

3

Floating Point (FP) Error Estimation Tools

Derivation of Error Estimation Formula

Let's assume an arbitrary function f(x), and the floating-point error in x to be h, the **Taylor series** expansion is:

 $f(x+h) = f(x) + \frac{h}{1!}f'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f'''(x) + \cdots$

Since h is a very small value when compared to x we can assume h^2 to be insignificant and safely **drop higher order** terms: $f(x+h) \approx f(x) + h \cdot f'(x)$

Therefore, the absolute floating-point error (Δf_x) in f due to x is:

$$\Delta f_{x} \approx |f(x+h) - f(x)| = |h \cdot f'(x)|$$

The maximum floating-point error (h_{max}) in x as allowed by IEEE is $|x| \cdot \varepsilon_M$, where ε_M is the machine epsilon. Thus, $\Delta f_x \approx |f'(x) \cdot |x| \cdot \varepsilon_M|$

Classical Formula for Error Estimation

The general representation of the error estimation formula is:

Automatic Differentiation (AD)

AD refers to a set of techniques that are used to calculate the exact derivatives of a given function by using the chain rule of differential calculus.

```
double sqr(double x) {
    return x * x;
}

double sqr_darg0(double x) {
    double _d_x = 1;
    return _d_x * x + x * _d_x;
}
```


CHEF-FP Usage

```
double func(double x, double y) {
    double z = x + y;
    return z;
}

#include "clad/Differentiator/Differentiator.h"

#include "../PrintModel/ErrorFunc.h"

// Call CHEF-FP on the function
auto df = clad::estimate_error(func);
```

Let's see how this works internally when you compile the code!

CHEF-FP architecture

CHEF-FP

CHEF-FP Error Model

Error Model

Error Storage data structure:

Name	Max	Total	Count
var0	2.94e-04	6.77e-01	100000
var1	1.16e-05	9.18e-01	100000

<u>Customizing the error model:</u>

The above code can be modified to carry out different types of analysis. Examples of such analyses will be shown later in the presentation.

CHEF-FP Usage

```
double func(double x, double y) {
  double z = x + y;
  return z;
#include "clad/Differentiator/Differentiator.h"
#include "../PrintModel/ErrorFunc.h"
// Call CHEF-FP on the function
auto df = clad::estimate_error(func);
double x = 1.95e-5, y = 1.37e-7;
double dx = 0, dy = 0;
double fp_error = 0;
df.execute(x,y, &dx, &dy, fp_error);
std::cout << "FP error in func: " << fp_error;</pre>
// FP error in func: 8.25584e-13
// Print mixed precision analysis results
clad::printErrorReport();
```

```
void func_grad(double x, double y,
     clad::array_ref<double> _d_x,
                                                     function generated by CHE
     clad::array_ref<double> _d_y,
     double &_final_error) {
  double _d_z = 0, _delta_z = 0, _EERepl_z0;
  double z = x + y;
  _{\rm EERepl\_z0} = z;
  double func_return = z;
  _{d_z} += 1;
  * _d_x += _d_z;
  * _d_y += _d_z;
  delta z +=
                                                      F-FP
      clad::getErrorVal(_d_z, _EERepl_z0, "z");
  double _{delta_x} = 0;
  delta x +=
      clad::getErrorVal(* _d_x, x, "x");
  double delta v = 0:
  _delta_y +=
      clad::getErrorVal(* _d_y, y, "y");
                                                      errors
  _final_error +=
      _delta_y + _delta_x + _delta_z;
```

Evaluation

How does CHEF-FP fare against the state of the art?

Experiments – Mixed Precision Analysis

Compared against:

ADAPT-FP

Mixed precision tuning tool based on operator-overloading AD

Evaluated on:

Systems used:

CHEF-FP vs ADAPT-FP

Performance Improvements vs ADAPT-FP

Benchmark	Time	Memory
Arc Length	1.61x	1.95x
Simpsons	2.17x	1.44x
k-Means	2.02x	4.44x
HPCCG	1.03x	1.02x
Blackscholes	1.76x	6.32x

Scan the QR code to access the GitHub repository for the benchmarks

Why is CHEF-FP more efficient?

- CHEF-FP inserts the error estimation code into the derivative, so it is calculated in the same step while ADAPT-FP calculates them in two different steps.
- CHEF-FP uses Clad, a source-code transformation AD tool, whereas ADAPT-FP uses CodiPack which is an operator overloading AD.
- ❖ The code produced by CHEF-FP is optimized by the compiler to gain much more performance.

Beyond FP Error Estimation

Demonstrating the *flexibility* of CHEF-FP through **custom error models**

Sensitivity Analysis

Representation of the original HPCCG code:

```
for (int k = 1; k <= 100; k++) {
   // HPCCG loop code using doubles
}</pre>
```

CHEF-FP provides customizable error models which can be modified to dump the sensitivities of all variables into their respective files.

Math equation to compute the sensitivity:

$$S_x = \left| \frac{\partial f}{\partial x} \cdot |x| \right|$$

Sensitivity Analysis


```
for (int k = 1; k <= 100; k++) {
   // HPCCG loop code using doubles
}</pre>
```

Loop perforationbased optimization


```
for (k = 1; k <= 50; k++) {
   // HPCCG loop code with all vars
   // in double
}
for (; k <= 100; k++) {
   // HPCCG loop code with r,p,x,Ap
   // in float and rest in doubles
}</pre>
```

Cost Analysis of Approximation

Goal:

Estimate the error introduced into Black-Scholes algorithm by replacing standard math functions with their respective approximate versions

Solution

This can be easily achieved by modifying the CHEF-FP's error model to compute the approximation error. Math equation to compute the approximation error:

$$\Delta f_{\rm mf} = \left| \frac{\partial f}{\partial \operatorname{mf}(x)} | \operatorname{mf}(x) - \operatorname{mf}_{approx}(x) | \right|$$

where mf is a simple math library function such as log, sqrt or exp and mf_{approx} is the approximate version of it.

Error Model Algorithm: Cost Analysis of Approximation

Algorithm for estimating approximation-based errors:

Require: input variable as x and its name as name, the partial derivative of x w.r.t. the function as dx, and a map of variables of interest as $S:name \rightarrow function\ name$

- 1: $\Delta \leftarrow 0$
- 2: **if** name is contained in S then
- 3: $fName \leftarrow S.GETVALUE(name)$
- 4: $\Delta \leftarrow \text{EVAL}(fName, x) \text{EVALAPPROX}(fName, x)$
- 5: $\Delta \leftarrow \Delta \div (\partial \text{EVAL}(fName, x)/\partial x)$
- 6: end if
- 7: $xApproxError \leftarrow |dx \times \Delta|$
- 8: REGISTERERROR(name, xApproxError)
- 9: **return** *xApproxError*

Math equation to compute the approximation error:

$$\Delta f_{\rm mf} = \left| \frac{\partial f}{\partial \operatorname{mf}(x)} \left| \operatorname{mf}(x) - \operatorname{mf}_{approx}(x) \right| \right|$$

where mf is a simple math library function such as log, sqrt or exp and mf_{approx} is the approximate version of it.

We used the approximate math functions in the FastApprox library for this analysis

Cost Analysis of Approximation

Analysis of errors due to approximation:

App Configuration	Estimated Error	Speedup	Actual Error
Using FastApprox log & pow	1.16e+01	1.14	1.16e+01
Using FastApprox log, pow & exp	1.18e+02	1.65	5.88e+01

Conclusion

- AD can be used to create an effective, scalable, and easy-to-use error estimation tool.
- Source transformation AD is an ideal candidate for such a tool because the error estimation code can be inlined into generated derivatives thus benefitting from compiler optimizations and reduced memory usage.

compiler-research.org

Scan the QR code to get started with CHEF-FP

Thank You

To appear in the proceedings of IPDPS'23

Title: Fast And Automatic Floating
Point Error Analysis With CHEF-FP

https://arxiv.org/abs/2304.06441

Benchmarks Repo

compiler-research.org

CHEF-FP Tutorial

Backup

Cost Analysis of Approximation: Error Model Code

```
double getErrorVal(double dx, double x, const char* cname) {
  char name[50];
  int i = 0;
  while (cname[i++] != '\0')
    name[i - 1] = cname[i - 1];
                                                         \Delta f_{\rm mf} = \left| \frac{\partial f}{\partial \operatorname{mf}(x)} \middle| \operatorname{mf}(x) - \operatorname{mf}_{approx}(x) \middle| \right|
  char *token = strtok(name, "_");
  if (strcmp(token, "clad"))
    return 0;
                                                    where mf is a simple math library function such as log,
  token = strtok(NULL, "_");
                                                   sqrt or exp and mf_{approx} is the approximate version of it.
  double error;
  if (!strcmp(token, "exp"))
    error = std::fabs(dx * (exp(x) - fastexp(x)) / exp(x));
  else if (!strcmp(token, "log"))
    error = std::fabs(dx * (log(x) - fastlog(x)) * exp(x));
  else if (!strcmp(token, "sqr"))
    error = std::fabs(dx * (sqrt(x) - fastpow(x, 0.5)) * 2 * sqrt(x));
  else return 0;
  ErrorStorage::getInstance().set_error(cname, error);
  return error;
```

Error Model Code: FP Error Analysis

The code:

```
double getErrorVal(double dx, double x, const char *name) {
   double e_M = std::numeric_limits<T>::epsilon();
   double error = std::abs(dx * std::abs(x) * e_M);
   return error;
}
```