Advanced Cloud Computing Service Models and Challenges

Wei Wang CSE@HKUST Spring 2022

Outline

- Cloud deployment models
- Service models
- Issues of Cloud
- Challenges

Cloud deployment models

Public Cloud

- Providers let clients access the cloud via Internet
- Made available to the general public

Public Cloud

- Multi-tenant virtualization, global-scale infrastructure
- Functions and pricing vary

Private Cloud

- The cloud is used solely by an organization (e.g. HKUST, Facebook, HSBC)
- May reside in-house or off-premise

Private Cloud

- Secure, dedicated infrastructure with the benefits of on-demand provisioning
- Not burdened by network bandwidth and availability issues and security threats associated with public clouds.
- Greater control, security, and resilience.

Hybrid Cloud

- Composed of multiple clouds (private, public, etc.) that remain independent entities, but interoperate using standard or proprietary protocols
- Banks, hospitals, government

Hybrid Cloud

Allows applications and data to flow across clouds

Convriaht: iWeh

Cloud Service Models

Cloud computing stack

By Nick Barcet, "What is Ubuntu Cloud", Nov 2009

Cloud service models

- Infrastructure-as-a-Service (laaS)
- ▶ Platform-as-a-Service (PaaS)
- Software-as-a-Service (SaaS)
- Other X-as-a-Service
 - Function-as-a-Service (FaaS)
 - Machine-Learning-as-a-Service (MLaaS)

Infrastructure-as-a-Service

- Providers give you the computing infrastructure made available as a service. You get "bare-metal" machines.
- Providers manage a large pool of resources, and use virtualization to dynamically allocate
- Customers "rent" these physical resources to customize their own infrastructure
- ▶ Full control of OS, storage, applications, and some networking components (e.g., firewalls)

Infrastructure-as-a-Service

Computation

Storage

Network

laaS use case

- Netflix rents thousands of servers, terabytes of storage from Amazon Web Services (AWS)
- Develop and deploy specialized software for transcoding, storage, streaming, analytics, etc. on top of it
- ▶ Is able to support tens of millions of connected devices, used by 40+ million users from 40+ countries

Platform-as-a-Service (PaaS)

- Providers give you a software platform, or middleware, where applications run
- You develop and maintain and deploy your own software on top of the platform
- The hardware needed for running the software is automatically managed by the platform. You can't explicitly ask for resources.

PaaS

- You have automatic scalability, without having to respond to request load increase/decrease
- No control of OS, storage, or network, but can control the deployed applications and host environment

PaaS use case

- Best for web apps
- ▶ Language and API support: Python, Java, PHP, and Go

Software-as-a-Service (SaaS)

- Providers give you a piece of software/application. They take care of updating, and maintaining it.
- You simply use the software through the Internet.

SaaS use case

- ▶ HKUST uses Google Apps and Office 365 for student and staff email, calendar, etc.
- Don't know how much they charge HKUST though...

Separation of Responsibilities

A comparison

Flexibility/Customization

Convenience/Ease of management

Tradeoff between flexibility and "built-in" functionality

Other X-as-a-Service (XaaS)

Function-as-a-Service (FaaS)

- Users write applications in the form of "cloud functions"
- Users define the events that trigger the execution of those functions (e.g., HTTP requests, webhooks)
- Let the cloud platform to handle everything else, including resource provisioning, autoscaling, fault tolerance, etc.
- Users only pay for the CPU time used to run functions

Users manage no servers, hence termed "serverless computing"

Benefits of FaaS

- No server management
 - all handled by the cloud provider, not users
- Cost-effective
 - users only pay for the CPU time when functions are executed (no charge when code is not running)
- Flexible scaling
 - no need to set up autoscaling: it's cloud provider's problem
- Automated high availability and fault tolerance

laaS vs. FaaS

- Configure an instance
- Update OS
- Install App platform
- Build and deploy App
- Configure autoscaling/load balancing
- Continuously secure and monitor instances
- Monitor and maintain apps

- Configure an instance
- Update OS
- Install App platform
- Build and deploy App
- Configure autoscaling/load balancing
- Continuously secure and monitor instances
- Monitor and maintain apps

Popular FaaS Platforms

- Lets you run code without provisioning or managing servers
- Triggers on your behalf in response to events
- Scales automatically
- Provides built-in code monitoring and logging via WebUI or CLI

Example FaaS application

ML-as-a-Service

- An umbrella term for a set of cloud-based machine learning (ML) tools that cover most ML pipelines
 - e.g., data pre-processing, model training, model evaluation, and prediction serving
- Four key players in the MLaaS market
 - Amazon, Microsoft Azure, Google Cloud, IBM

	Amazon	Microsoft	Google	IBM		
Automated and semi-automated ML services						
	Amazon ML	Microsoft Azure ML Studio	Cloud AutoML	IBM Watson ML Model Builder		
Classification	✓	✓	✓	✓		
Regression	✓	✓	✓	✓		
Clustering	✓	✓				
Anomaly detection		✓				
Recommendation		✓	✓			
Ranking		✓				

Platforms for custom modeling

	Amazon SageMaker	Azure ML Services	Google ML Engine	IBM Watson ML Studio
Built-in algorithms	✓		✓	✓
Supported frameworks	TensorFlow, MXNet, Keras, Gluon. Pytorch, Caffe2, Chainer, Torch	TensorFlow, scikit- learn, Microsoft Cognitive Toolkit, Spark ML	TensorFlow, scikit-learn, XGBoost, Keras	TensorFlow, Spark MLlib, scikit-learn, XGBoost, PyTorch, IBM SPSS, PMML

FaaS & MLaaS are closer to PaaS than laaS

We mainly focus on laaS in this course, with some coverage of FaaS

- Availability
 - AWS outage in August 2013, about an hour, takes down Vine, Instagram, Flipboard, etc.
 - ▶ Loss of sales: \$1,100 USD per second
- Data loss
- Vendor lock-in
 - Apps built on a cloud may not be transferred to another

Security:

- Can an intruder/attacker get my data in the cloud?
- ▶ Twitter had a data breach due to an attack that exposed the usernames, email addresses, and encrypted passwords of 250,000 users in Feb. 2013.

Privacy:

- Will the provider look at my data in the cloud?
- Think about Google's targeted ads in your gmail
- Will the provider give my data to the government or other parties?
- Think about Mr. Snowden who fled and stayed at HK for a while

able 2. Top 10 obstacles to and opportunities for growth of cloud computing.

Obstacle	Opportunity
1 Availability/Business Continuity	Use Multiple Cloud Providers
2 Data Lock-In	Standardize APIs; Compatible SW to enable Surge or Hybird Cloud Computing
3 Data Confidentiality and Auditability	Deploy Encryption, VLANs, Firewalls
4 Data Transfer Bottlenecks	FedExing Disks; Higher BW Switches
5 Performance Unpredictability	Improved VM Support; Flash Memory; Gang Schedule VMs
6 Scalable Storage	Invent Scalable Store
7 Bugs in Large Distributed Systems	Invent Debugger that relies on Distributed VMs
8 Scaling Quickly	Invent Auto-Scaler that relies on ML; Snapshots for Conservation
9 Reputation Fate Sharing	Offer reputation-guarding services like those for email
10 Software Licensing	Pay-for-use licenses

Challenges facing cloud providers

Storage

- Large dataset cannot fit into a local storage
- Persistent storage must be distributed
 - ▶ GFS, BigTable, HDFS, Cassandra, S3, etc.
- Local storage goes volatile
 - Cache for data being served
 - local logging and async copy to persistent storage

Scale

- Large cluster: able to host petabytes of data
- Extremely large cluster: at Google, the storage system pages a user if there is only a few petabytes of spaces left available!
 - A 10k-node cluster is considered small- to mediumsized

Faults and failures

>1%	DRAM errors per year			
2-10%	Annual failure rate of disk drive			
2	# crashes per machine-year			
2-6	# OS upgrades per machine-year			
>1	Power utility events per year			

Failure is a norm, not an exception!

▶ "A 2000-node cluster will have >10 machines crashing per day"

Luiz Barroso

Networking

- How can a cloud provide fast connections for hundreds of millions of clients coming from the entire globe to access their services?
- Inside a cloud, with hundreds of thousands of tenants, their apps, and servers, how to make sure the network is fast and robust enough to move bits from anywhere to anywhere?
- What about fairness of the bandwidth resources?

Machine heterogeneity

 Machines span multiple generations representing different points in the configuration space

System	#CPUs	Mem (GiB)	#GPUs	GPU type	#Nodes
PAI 64 96 96	64	512	2	P100	798
	96	512	2	T4	497
	512	8	Misc.	280	
	96	384	8	$V100M32^{\dagger}$	135
96 96	512/384	8	$ m V100^{\dagger}$	104	
	96	512	0	N/A	83

Machine specs. of a GPU cluster in Alibaba Platform for Al (PAI)

Workload heterogeneity

Challenges due to heterogeneity

- Hard to provide predictable and consistent services
- Hard to monitor the system, identify the performance bottleneck, or reason about the stragglers
- Hard to achieve fair sharing among users

Nevertheless, we still want to achieve...

Objectives

- Able to run everything at scale
- Fault tolerance
- Predictable services
- High utilization
- Network with high bisection bandwidth

With the minimum human intervention!

Credit

▶ Some slides are adapted from Prof. Hong Xu's slides for CS 4296/5296 in CityU