北京交通大学

2010-2011 学年第一学期研究生随机过程试题(A)

姓名:	学院:	任课教师:	
专业:	班级:	学号:	

(注:本试卷满分100分,共六道大题.请在答卷纸上写清楚姓名、学院、专业、班级、学号、题号.)

1. (15分) (Chapman-Kolmogorov (切普曼-柯尔莫哥洛夫)方程) 对任何整数 $m,n\geq 0$ 证明

$$p_{ij}^{(m+n)} = \sum_{k \in E} p_{ik}^{(m)} p_{kj}^{(n)}.$$

- **2. (15分)** 设在 [0,t] 内事件 A 已经发生 n 次, 求第 k(k < n) 次事件 A 发生的时间 S_k 的条件概率密度函数.
 - **3.** (15分) 设随机过程 $\{X_n\}$ 满足:
 - (1) $X_n = f(X_{n-1}, \xi_n) (n \ge 1)$, 其中 $f: E \times E \to E$, 且 ξ_n 取值在 E 上;
- (2) $\{\xi_n, n \geq 1\}$ 为独立同分布随机变量, 且 X_0 与 $\{\xi_n, n \geq 1\}$ 也相互独立.

证明 $\{X_n\}$ 是 Markov 链, 而且其一步转移概率为, 对于任意 $i, j \in E$,

$$p_{ij} = P(f(i, \xi_1) = j).$$

4. (20分) 证明在 $N_t = n$ 的条件下, n 个事件来到的时刻 S_1, \dots, S_n 的 联合密度与 n 个独立的 [0,t] 上均匀分布随机变量的顺序统计量的联合密度 相同. 即条件随机向量 $((S_1,\cdots,S_n|N_t=n))$ 具有联合密度

$$f(t_1, \dots, t_n) = \frac{n!}{t^n}, \quad 0 < t_1 < \dots < t_n < t.$$

5. (10分) 设马氏链 $\{X_n\}$ 的状态空间 $E = \{1, 2, 3, 4\}$, 转移矩阵为

$$P = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1/3 & 2/3 & 0 & 0 \\ 1/4 & 1/4 & 0 & 1/2 \end{array}\right),$$

- (1) 试分解此链, 画出状态转移图, 并指出其非常返集和基本常返闭集;
- (2) 说明常返闭集中的状态是否为正常返态, 并计算其周期.

6. (25分) 设
$$Y_t = \sum_{n=1}^{N_t} \xi_n$$
 是一个复合 Poisson 过程, $t \geq 0$. (1) 若 $\varphi_{\xi}(u) \triangleq Ee^{iu\xi}(其中 $i = \sqrt{-1}$) 是随机变量 ξ_n 的特征函数, 试求 Y_t 的$

- 特征函数 $\varphi_{Y_t}(u)$.
- (2) 若 $E(\xi^2) < \infty$, 试求 $E(Y_t)$, $Var(Y_t)$.

$$(\stackrel{.}{\cong}: \operatorname{Var}(Y_t) = E[\operatorname{Var}(Y_t|N_t)] + \operatorname{Var}[E(Y_t|N_t)].)$$