

Markov Decision Process (MDP)

Prof. Seungchul Lee Industrial AI Lab.

Source

- David Silver's Lecture (DeepMind)
 - UCL homepage for slides (http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html)
 - DeepMind for RL videos (https://www.youtube.com/watch?v=2pWv7GOvuf0)
 - An Introduction to Reinforcement Learning, Sutton and Barto pdf
- CMU by Zico Kolter
 - http://www.cs.cmu.edu/~zkolter/course/15-780-s14/lectures.html
 - https://www.youtube.com/watch?v=un-FhSC0HfY&hd=1
- Deep RL Bootcamp by Rocky Duan
 - https://sites.google.com/view/deep-rl-bootcamp/home
 - https://www.youtube.com/watch?v=qO-HUo0LsO4
- Stanford Univ. by Serena Yeung
 - https://www.youtube.com/watch?v=lvoHnicueoE&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv&index=15&t=1337s

Markov Decision Process

- So far, we analyzed the passive behavior of a Markov chain with rewards
- A Markov decision process (MDP) is a Markov reward process with decisions (or actions).
 - MDP = MRP + action

Definition: A Markov Decision Process is a tuple $\langle S, \pmb{A}, P, R, \gamma
angle$

- S is a finite set of states
- A is a finite set of actions
- ullet P is a state transition probability matrix

$$P_{ss'}^{\mathbf{a}} = P[S_{t+1} = s' \mid S_t = s, A_t = \mathbf{a}]$$

- R is a reward function, $R_s^{\mathbf{a}} = \mathbb{E}\left[R_{t+1} \mid S_t = s, A_t = \mathbf{a}\right] \quad (= \mathbb{E}\left[R_{t+1} \mid S_t = s\right], \text{ often assumed})$
- ullet γ is a discount factor, $\gamma \in [0,1]$
 - It is an environment in which all states are Markov

Markov Decision Process

Example: Mars Rover MDP

- Discount factor γ
- Two actions: Left and Right
- Reward: When the rover has an action, it achieves +1 in S_1 , +10 in S_5 , -1 in all others

Example: Mars Rover MDP

Deterministic state transition matrix

$$P(s' \mid s, L) = egin{bmatrix} 0 & 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \hspace{1cm} P(s' \mid s, R) = egin{bmatrix} 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$P(s'\mid s,R) = egin{bmatrix} 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Example: Grid World Actions

Deterministic grid world

Stochastic grid world

Example

- $P_a (= P^a)$: transition probability matrix for action a
- $R_a (= R^a)$: transition reward matrix for action a

$$\mathbf{P}_1 = \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix}; \mathbf{P}_2 = \begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{bmatrix};$$

$$\mathbf{R}_1 = \begin{bmatrix} 6 & -5 \\ 7 & 12 \end{bmatrix}; \mathbf{R}_2 = \begin{bmatrix} 10 & 17 \\ -14 & 13 \end{bmatrix}.$$

reward

Example

- You run a startup company.
 - In every state, you must choose between Saving money or Advertising

Policy

- A policy is a mapping from states to actions, $\pi: S \to A$
- Example: two policies

Policy Number 1:

STATE →	$STATE \to ACTION$		
PU	S		
PF	Α		
RU	S		
RF	Α		

r 2:	$STATE \to ACTION$		
nbe	PU	Α	
Policy Number 2:	PF	Α	
icy I	RU	Α	
Pol	RF	А	

Policy

- A policy is a mapping from states to actions, $\pi: S \to A$
- A policy fully defines the behavior of an agent
 - It can be deterministic or stochastic
- Given a state, it specifies a distribution over actions

$$\pi(a \mid s) = P(A_t = a \mid S_t = s)$$

- MDP policies depend on the current state (not the history)
- Policies are stationary (time-independent, but it turns out to be optimal)

Policy

- A policy is a mapping from states to actions, $\pi: S \to A$
- A policy fully defines the behavior of an agent
 - It can be deterministic or stochastic
- Let P^{π} be a matrix containing probabilities for each transition under policy π
- Given an MDP $\mathcal{M} = \langle S, A, P, R, \gamma \rangle$ and a policy π
 - The state sequence s_1, s_2, \cdots is a Markov process $\langle S, P^{\pi} \rangle$
 - The state and reward sequence is a Markov reward process $\langle S, P^{\pi}, R^{\pi}, \gamma \rangle$

Questions on MDP Policy

How many possible policies in our example?

Which of the above two policies is best?

How do you compute the optimal policy?

Examples: Mars Rover Polices

• How many possible policies in our example?

• Which of the above policies is best?

Example: Small Grid World

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

Example: Possible Policies

- How many possible policies are there in the grid world?
 - For every state, assume that the probabilities of actions are equal.

Value Function: State-Value Function

• The state-value function $v_{\pi}(s)$ of an MDP is the expected return starting from state s, and then following policy π

$$egin{aligned} v_{\pi}(s) &= \mathbb{E}_{\pi} \left[G_t \mid S_t = s
ight] \ &= \mathbb{E}_{\pi} [R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s] \end{aligned}$$

Example

$$v(\text{Start}) = \frac{100 - 10 + 30}{3} = +40$$

$$v_{\pi}({
m Start}) = rac{100 + 20}{2} = +60$$

Value Function: Action-Value Function

• The action-value function $q_{\pi}(s,a)$ of an MDP is the expected return starting from state s, taking action a, and then following policy π

$$egin{aligned} q_{\pi}(s,a) &= \mathbb{E}_{\pi}\left[G_{t} \mid S_{t} = s, A_{t} = a
ight] \ &= \mathbb{E}_{\pi}\left[R_{t+1} + \gamma q_{\pi}\left(S_{t+1}, A_{t+1}
ight) \mid S_{t} = s, A_{t} = a
ight] \end{aligned}$$

$$q_{\pi}(\mathrm{Start}, \mathrm{Right}) = +180$$

$$q_{\pi}(\text{Start}, \text{Left}) = +20$$

Bellman Expectation Equation

Richard Ernest Bellman

Value Functions for policy π

- Given the policy π , the value function can again be decomposed into immediate reward plus discounted value of successor state (recursively)
- The state-value function $v_{\pi}(s)$ for policy π
 - Expected return from staring in state under policy π

$$v_{\pi}(s) = \mathbb{E}\left[R_{t+1} + \gamma v_{\pi}\left(S_{t+1}
ight) \mid S_{t} = s
ight]$$

- The action-value function $q_{\pi}(s,a)$ for policy π
 - Expected return from starting in state s, taking action a under policy π

$$q_{\pi}(s,a) = \mathbb{E}\left[R_{t+1} + \gamma q_{\pi}\left(S_{t+1},A_{t+1}
ight) \mid S_t = s, A_t = a
ight]$$

Relationship between $v_{\pi}(s)$ and $q_{\pi}(s,a)$

• State-value function using policy π

$$v_\pi(s) = \sum_{a \in A} \pi(a \mid s) q_\pi(s,a)$$

• $v_{\pi}(s) = 0.2 \times 10 + 0.3 \times 5 + 0.5 \times 8 = 7.5$

Relationship between $v_{\pi}(s)$ and $q_{\pi}(s,a)$

• Action-value function using policy π

$$q_\pi(s,a) = R(s) + \gamma \sum_{s' \in S} P(s' \mid s,a) v_\pi(s')$$

• $q_{\pi}(s, a) = 5 + \gamma \times (0.6 \times 2 + 0.3 \times 5 + 0.1 \times 10)$

Bellman Expectation Equation for $v_\pi(s)$

$$egin{aligned} v_{\pi}(s) &= \sum_{a \in A} \pi(a \mid s) \underline{q_{\pi}(s, a)} \ &= \sum_{a \in A} \pi(a \mid s) \left(R(s) + \gamma \sum_{s' \in S} P\left(s' \mid s, a\right) v_{\pi}\left(s'
ight)
ight) \end{aligned}$$

$$q_\pi(s,a) = R(s) + \gamma \sum_{s' \in S} P(s' \mid s,a) v_\pi(s')$$

Bellman Expectation Equation for $q_{\pi}(s, a)$

$$q_{\pi}(s,a) = R(s) + \gamma \sum_{s' \in S} P\left(s' \mid s,a
ight) \underline{v_{\pi}\left(s'
ight)}$$

$$v_\pi(s) = \sum_{a \in A} \pi(a \mid s) q_\pi(s,a)$$

Solving the Bellman Expectation Equation

• The Bellman expectation equation can be expressed concisely in a matrix form

$$v_\pi = R + \gamma P^\pi v_\pi \quad \Longrightarrow \quad v_\pi = (I - \gamma P^\pi)^{-1} R$$

Iterative

$$v_{\pi}(s) \;\leftarrow\; R(s) + \gamma \sum_{s' \in S} P\left(s' \mid s, a
ight) \; v_{\pi}\left(s'
ight)$$

Bellman Optimality Equation

Richard Ernest Bellman

Bellman Optimality Equation for $v_{\pi}(s)$

• The optimal state-value function $v_*(s)$ is the maximum value function over all polices

$$egin{aligned} v_*(s) &= \max_{\pi} v_\pi(s) \ &= \max_{a} q_\pi(s,a) \ &= \max_{a} \left(R(s) + \gamma \sum_{s' \in S} P(s' \mid s,a) v_\pi(s')
ight) \ &= R(s) + \gamma \max_{a} \sum_{s' \in S} P(s' \mid s,a) v_\pi(s') \end{aligned}$$

Bellman Optimality Equation for $q_{\pi}(s, a)$

• The optimal action-value function $q_*(s,a)$ is the maximum action-value function over all policies.

$$egin{aligned} q_*(s,a) &= \max_{\pi} q_\pi(s,a) \ &= \max_{\pi} \left(R(s) + \gamma \sum_{s' \in S} P(s' \mid s,a) v_\pi(s')
ight) \ &= R(s) + \gamma \sum_{s' \in S} P(s' \mid s,a) \max_{\pi} v_\pi(s') \end{aligned}$$

Optimal Policy

• The optimal policy is the policy that achieves the highest value for every state

$$\pi_*(s) = rg \max_{\pi} v_{\pi}(s)$$

and its optimal value function is written $v_*(s)$

• An optimal action for each state can be found by maximizing over $q_*(s,a)$

$$\pi_*(a \mid s) = egin{cases} 1 & ext{if } a = rg \max_{a \in A} \, q_*(s, a) \ 0 & ext{otherwise} \end{cases}$$

- There is always a deterministic optimal policy for any MDP
- If we know $q_*(s, a)$, we can have the optimal policy

The Principle of Optimality

Shortest path

$$egin{aligned} v_*(s) &= \max_a \left(R(s) + \gamma \sum_{s' \in S} P(s' \mid s, a) v_\pi(s')
ight) \ &= R(s) + \gamma \max_a \sum_{s' \in S} P(s' \mid s, a) v_\pi(s') \end{aligned}$$

Summary: Expectation vs. Optimality

Solving the Bellman Optimality Equation

Optimal Policy and Optimal Value Function (1/2)

The optimal policy is the policy that achieves the highest value for every state

$$\pi_*(s) = rg \max_{\pi} v_{\pi}(s)$$

and its optimal value function is written $v_*(s)$

We can directly define the optimal value function using Bellman optimality equation

$$v_*(s) = R(s) + \gamma \max_a \sum_{s' \in S} P(s' \mid s, a) \ v_*\left(s'
ight)$$

and optimal policy is simply the action that attains this max

$$\pi_*(s) = rg \max_a \sum_{s' \in S} P(s' \mid s, a) \, v_*(s')$$

Optimal Policy and Optimal Value Function (2/2)

• We can directly define the optimal value function using Bellman optimality equation

$$v_*(s) = R(s) + \gamma \max_a \sum_{s' \in S} P(s' \mid s, a) \ v_*\left(s'
ight)$$

and optimal policy is simply the action that attains this max

$$\pi_*(s) = rg \max_a \sum_{s' \in S} P(s' \mid s, a) \, v_*(s')$$

$$q_\pi(s,a) = R(s) + \gamma \sum_{s' \in S} P(s' \mid s,a) v_\pi(s')$$

$$\pi_*(a \mid s) = egin{cases} 1 & ext{if } a = rg \max_{a \in A} q_*(s, a) \ 0 & ext{otherwise} \end{cases}$$

Value Iteration

• Algorithm

1. Initialize an estimate for the value function arbitrarily (or zeros)

$$v(s) \leftarrow 0 \quad \forall s \in S$$

2. Repeat, update

$$v(s) \; \leftarrow \; R(s) + \gamma \max_{a} \sum_{s' \in S} P(s' \mid s, a) \; v\left(s'
ight), \quad orall s \in S$$

Policy Iteration

- Given a policy π , then evaluate the policy π
- Improve the policy by acting greedily with respect to v_{π}

- 1. initialize policy $\hat{\pi}$ (e.g., randomly)
- 2. Compute a value function of policy, v_{π} (e.g., via solving linear system or Bellman expectation equation iteratively)
- 3. Update π to be *greedy* policy with respect to v_π

$$\pi(s) \leftarrow rg \max_{a} \sum_{s' \in S} P\left(s' \mid s, a\right) v_{\pi}\left(s'
ight)$$

4. If policy π changed in last iteration, return to step 2

Example

Define MDP as a two-level dictionary

P is a two-level dictionary where the first key is the state and the second key is the action.

- State indices [0, 1, 2, 3] correspond to [PU, PF, RU, RF]
- Action indices [0, 1] correspond to [Saving momey, Advertising]

P[state][action] is a list of tuples (probability, nextstate).

For example,

- the transition information for s = 0, a = 0 is $P[\emptyset][\emptyset] = [(1, \emptyset)]$
- the transition information for s = 3, a = 0 is P[3][0] = [(0.5, 2), (0.5, 3)]

Example: Gridworld Domain

- Simple grid world with a goal state with reward and a "bad state" with reward -100
- Actions move in the desired direction with probably 0.8, in one of the perpendicular directions with 0.1
- Taking an action that would bump into a wall leaves agent where it is

0	0	0	1
0		0	-100
0	0	0	0

