

Molekulare Orbitale H₂⁺

Abbildung 3.8: Potentialkurven für das ${\rm H}_2^+$ -Molekülion. Der 1 s σ -Zustand ist bindend und das Minimum liegt bei einem Gleichgewichtsabstand $R_e=2,0\,a_0$. Bezogen auf den Limes entfernter Kerne $R\to\infty$ ist die Bindungsenergie $E_B=-2,79\,{\rm eV}$. (Die einfache LCAO-Rechnung ergibt $R_e=2,5\,a_0$ und $E_B=-1,76\,{\rm eV}$.)

[nach: Fano & Fano, Physics of Atoms and Molecules]

Molekulare Orbitale

Tabelle 2.1: Quantenzahlen und Termbezeichnung eines Elektrons im Molekül mit Bahndrehimpulsquantenzahl ℓ und Projektionsquantenzahl $\lambda = |m_{\ell}|$.

Quantenzahlen			Term-
n	Ł	λ	bezeichnung
1	0	0	1 so
2	0	0	2 so
2	1	0	2 po
2	1	1	$2 p\pi$
3	2	0	3 do
3	2	2	3 dδ

Abb. 2.12: Elektronische Wellenfunktionen für einige Zustände des H₂⁺ (dunkelgrau = positive, hellgrau = negative Werte). Oben: Blick senkrecht zur Molekülachse; unten: Blickrichtung in die Molekülachse. Wenn die Zeichenebene Knotenebene ist, wird das Vorzeichen oberhalb der Ebene angegeben [2.11].

Anschauliche Interpretation

Abbildung 3.4: Schnitt des Molekülorbitals Ψ_s entlang der z-Achse. Dieses Molekülorbital hat keine Knotenflächen, hat also die Quantenzahlen 1s σ . Durchgezogen die exakte Lösung, gestrichelt die LCAO-Näherung.

[nach: Fano & Fano, Physics of Atoms and Molecules]

Abbildung 3.5: Schnitt des Molekülorbitals Ψ_a entlang der z-Achse. Dieses Molekülorbital hat eine Knotenebene bei z=0, also eine hyperbolische Knotenfläche. Die Quantenzahlen sind $2\,\mathrm{p}\,\sigma$. Durchgezogen die exakte Lösung, gestrichelt die LCAO-Näherung.

[nach: Fano & Fano, Physics of Atoms and Molecules]

H₂-Molekül

Abb. 9.14. Potentialkurven E(R) des H_2 -Grundzustandes für die verschiedenen Näherungen

From Demtröder: Experimentalphysik 3