1 Indice di avvolgmento

Fissato $a \in \mathbb{C}$, sappiamo che $\mathbb{C} \setminus \{a\}$ si ritrae per deformazione su un cerchio di raggio 1 e centro a, preso x_0 sul bordo del cerchio $(x_0 \in \partial B(a, 1))$, fissiamo un isomorfismo canonico

$$f: \pi_1(\mathbb{C} \setminus \{a\}, x_0) \to \mathbb{Z} \quad [\gamma] \to 1$$

dove γ è una parametrizzazione di $\partial B(a,1)$ che percorre la circonferenza in senso antiorario. Come già osservato esiste una bigezione naturale

$$\Omega(x_0, x_0) \to \Omega(S^1, x_0) \quad \gamma \to \hat{\gamma}$$

Questa bigezione induce un omomorfismo

$$\partial: \pi_1(\mathbb{C}\setminus\{a\}, x_0) \to [S^1, \mathbb{C}\setminus\{a\} \quad [\gamma] \to [\hat{\gamma}]$$

dove con $[S', \mathbb{C} \setminus \{a\}]$ intendiamo le classi di omotopie di mappe continue $S^1 \to \mathbb{C} \setminus \{a\}$ Tale mappa risulta suriettiva ed inoltre $\partial([\gamma]) = \partial([\gamma'])$ se e solo se $[\gamma]$ e $[\gamma']$ sono coniugati. Ora $\pi_1(\mathbb{C} \setminus \{a\}, x_0)$ è abeliano, dunque la mappa è iniettiva.

Definiamo per composizione la mappa

$$\psi: \partial^{-1} \circ f: [S^1, \mathbb{C} \setminus \{a\}] \to \mathbb{Z}$$

Definizione 1.1. Sia $\gamma: [0,1] \to \mathbb{C} \setminus \{a\}$ un cammino chiuso in x_0 . Denotiamo indice di γ rispetto ad a l'intero $\psi([\hat{\gamma}])$ e lo denotiamo con $I(\gamma, a)$

Teorema 1.1. Sia $\gamma: [0,1] \to \mathbb{C} \setminus \{a\}$ un cammino chiuso. Allora

$$I(\gamma, a) = \frac{1}{2\pi 1} \int_{\gamma} \frac{dz}{z - a}$$

Dimostrazione. Come sappiamo $\frac{1}{z-a}$ è olomorfa in $\mathbb{C}\setminus\{a\}$ dunque la forma $\omega=\frac{\mathrm{d}z}{z-a}$ è chiusa. Possiamo integrare ω lungo curve γ continue, e il valore dell'integrale non dipende dal rappresentante nella classe di omotopia, dunque è ben definita la funzione

$$\varphi: [S^1, \mathbb{C} \setminus \{a\}] \to \mathbb{C}$$

$$[\hat{\gamma}] \to \frac{1}{2\pi i} \int_{\gamma} \omega$$

Mostriamo che $\varphi = \psi$ il che conclude la dimostrazione. Notiamo che

 $[S^1, \mathbb{C} \setminus \{a\}] = \{ [\hat{\gamma_n}] : \gamma_n : [0, 1] \to \mathbb{C} \setminus \{a\} \text{ dove } t \to a + e^{2\pi i n t} \}$

dunque $\psi([\hat{\gamma}_n]) = n$ (avvolto n volte).

Ora abbiamo visto che

$$\int_{\gamma_n} \frac{\mathrm{d}z}{z - a} = 2\pi i n$$

da cui la tesi

Osservazione 1. Banalmente, 2 curve chiuse continue in $\mathbb{C} \setminus \{a\}$ liberamente omotope hanno lo stesso indice

Vediamo come varia l'indice al variare del punto a

Proposizione 1.2. Sia $\gamma:[0,1]\to\mathbb{C}$ una curva chiusa continua.

Allora la funzione

$$\mathbb{C} \setminus Im\gamma \to \mathbb{C} \quad a \to I(\gamma, a)$$

è localmente costante (costante su ogni componente connessa del dominio)

Dimostrazione. Fissato anel dominio. Mostriamo che $\forall h\in\mathbb{C}$ sufficientemente piccolo si ha $I(\gamma,a+h)=I(\gamma,a).$ Sia

$$0 < \gamma_0 < \min\{|\gamma(t) - a| : t \in [0, 1]\}$$

è ben posto in quanto $|\gamma(t) - a| \neq 0$ poichè $a \notin Imm\gamma$.

Per ogni $h \in \mathbb{C}$ con $|h| \leq \gamma_0$ abbiamo

$$I(\gamma, a+h) = \frac{1}{2\pi i} \int_{\gamma} \frac{\mathrm{d}z}{z - (a+h)} = \frac{1}{2\pi i} \int_{\gamma} \frac{\mathrm{d}z}{(z-h) - a}$$

Con il cambio di variabili z' = z - h otteniamo

$$I(\gamma, a + h) = \frac{1}{2\pi i} \int_{\gamma'} \frac{\mathrm{d}z'}{z' - a} \text{ dove } \gamma'(t) = \gamma(t) + h$$

Il che conclude la dimostrazione infatti

$$F(t,s) = \gamma(t) - sh$$

è un omotopia tra γ e γ'

Proposizione 1.3. Sia $a \in \mathbb{C}$ e sia γ una curva chiusa continua tale che $Im\gamma \subseteq D \subseteq \mathbb{C} \setminus \{a\}$ dove D aperto semplicemente connesso. Allora $I(\gamma, a) = 0$

Dimostrazione. La forma $\omega=\frac{\mathrm{d}z}{z-a}$ è chiusa in un semplicemente connesso, dunque esatta da cui

 $I(\gamma, a) = \int_{\gamma} \omega = 0$

Proposizione 1.4. Sia γ una curva chiusa continua e sia $a \in \mathbb{C} \setminus Imm\gamma$. $I(\gamma, a) = 0$ per ogni a in una componente connessa illimitata di $\mathbb{C} \setminus Imm\gamma$

Esempio 1.5. $Sia \ \gamma: t \rightarrow Re^{it} \ con \ R > 0 \ allora$

- |z| < R allora $I(\gamma, z) = 1$
- |z| > R allora $I(\gamma, z) = 0$

Proposizione 1.6. Sia

$$f: \{z \in \mathbb{C} \mid |z| \le R\} \to \mathbb{C}$$

una mappa continua e sia $\gamma(t) = f(Re^{2\pi it})$ per $t \in [0,1]$. Se $a \notin Imm\gamma$ e $I(\gamma,a) \neq 0$ allora esiste z con |z| < R tale che f(z) = a

Dimostrazione. Assumiamo, per assurdo $f(z) \neq a$ per ogni |z| < R, dunque di conseguenza $f(z) \neq a$ per ogni $|\leq|R$ (abbiamo supposto $a \notin Imm\gamma$). Definiamo

$$F(t,s) = f(tRe^{2\pi i}) \quad \forall t, s \in [0,1]$$

F è un omotopia tra γ e il cammino costante f(0) dunque γ è omotop ad un cammino costante da cui

$$\int_{\gamma} \frac{\mathrm{d}z}{z - a} = 0$$

contro l'ipotesi $I(\gamma, a) \neq 0$

Definizione 1.2. Siano γ_1, γ_2 due curve continue, allora

$$\gamma_1 \gamma_2 : t \to \gamma_1(t) \gamma_2(t)$$

 $\gamma_1 + \gamma_2 : t \to \gamma_1(t) + \gamma_2(t)$

Teorema 1.7. Siano γ_1, γ_2 due curve continue chiuse con $0 \notin Imm\gamma_1, \gamma_2$ allora

$$I(\gamma_1 \gamma_2, 0) = I(\gamma_1, 0) + I(\gamma_2, 0)$$

Dimostrazione. La forma $\omega = \frac{dz}{z}$ ammette una primitiva locale, sia

$$f_i: [0,1] \to \mathbb{C} \quad e^{f_i(t)} = \gamma_i(t)$$

allora

$$\gamma_1 \gamma_2(t) = e^{f_1(t)} e^{f_2(t)} = e^{f_1(t) + f_2(t)}$$

dunque $f=f_1+f_2$ è una primitiva di ω lungo $\gamma_1\gamma_2$ da cui

$$I(\gamma_1 \gamma_2, 0) = \frac{f_1(1) + f_2(1) - f_1(0) - f_2(0)}{2\pi i} = I(\gamma_1, 0) + I(\gamma_2, 0)$$

Teorema 1.8. Siano γ, γ_1 curve chiuse continue tali che $0 \notin Imm\gamma_1, \gamma$.

Assumiamo che $0 \le |\gamma_1(t)| \le |\gamma|(t)$ per ogni $t \in [0,1]$. Allora

$$I(\gamma_1 + \gamma, 0) = I(\gamma, 0)$$

Dimostrazione.

$$\gamma(t) + \gamma_1(t) = \gamma(t) \left(1 + \frac{\gamma_1(t)}{\gamma(t)} \right) = \gamma(t)\beta(t)$$

dunque

$$I(\gamma_1 + \gamma, 0) = I(\gamma\beta, 0) = I(\gamma, 0) + I(\beta, 0)$$

Mostriamo che $I(\beta,0)=0$ infatti $Imm\beta\subseteq D(1,1)$ dunque $Im\beta$ contenuto in un aperto semplicemente connesso . \Box

Teorema 1.9 (Formula integrale di Cauchy).

Sia $D \subseteq \mathbb{C}$ un aperto con $a \in D$ sia

$$\gamma: [0,1] \to D \setminus \{a\}$$

un cammino chiuso omotopicamente banale in D e tale che a $\notin Imm\gamma$.

 $Sia\ f: D \to \mathbb{C}\ olomorfa\ allora$

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z-a} \, \mathrm{d}z = I(\gamma, a) f(a)$$

Dimostrazione. Per ogni $z \in D$ definisco la funzione

$$g(z) = \begin{cases} \frac{f(z) - f(a)}{z - a} & \text{se } z \neq a \\ f(a) & \text{se } z = a \end{cases}$$

essendo f olomorfa, g è continua in a ed è olomorfa in $D \setminus r$ con r la retta orizzontale che passa per a.

Per un teorema visto g(z) dz è chiusa in D.

Visto che γ è omotopicamente banale in D e g(z) dz è chiusa si ha

$$0 = \int_{\gamma} g(z) dz = \int_{\gamma} \frac{f(z) - f(a)}{z - a} dz = \int_{\gamma} \frac{f(z)}{z - a} dz - f(a) \int_{\gamma} \frac{1}{z - a} dz$$

dividendo per $2\pi i$ si ha la tesi