Your Name: Solution

P1 (10 points) Assume binary search on a sorted array of length n has worst-case running time $C_1(\log_2(n))$ for constant C_1 , and merge sort has worst-case running time $C_2n\log(n)$.

We are given an unsorted array a of size n and asked to search for the element e in the array. We adopt the following algorithm:

- 1. Divide array a it into k equal parts of size $\frac{n}{k}$. Assume k divides n.
- 2. For each part from 0 to k-1,
 - (a) Sort using mergesort.
 - (b) Search for e using binary search.
 - (c) If e is found, return TRUE.
- 3. Since e is not found in any of the parts, return FALSE.

The Python code is shown below:

```
def search(array a, int k):
    n = length(a)
    p = n/k # Assume p is an integer
    for i in range(0,k):
        # PART i of array is from a[i * p : (i+1) * p]
        b = mergeSort(a[i* p : (i+1) * p])
        result = binarySearch(b , e)
        if (result == True)
            return True # found element e
end
    return False # did not find e
```

1 pt As a function of n, k, what is the total number of calls to the mergeSort?

Two solutions are possible: k OR if the student counts the number of recursive calls, then $k(2\frac{n}{k}-1)$

1 pts As a function of n, k, what is the size of the array for each call to the mergeSort function? $\frac{n}{k}$

1 pts As a function of n, k, what is the total number of calls to the binarySearch? $\lfloor k \rfloor$ 7 pts Write an expression for the total running time of the algorithm in terms of n, k.

$$k(C_2 \frac{n}{k} \log(\frac{n}{k}) + C_1 \log(\frac{n}{k})) = (C_2 n + C_1 k)(\log n - \log k)$$

Award generous partial credit depending on how close they are. No explanations are needed.

P2 (10 points) Consider the five functions below:

$$f_1:\log(n), \ f_2:n, \ f_3:n^{1.5}, \ f_4:n^2, \ f_5:2^n$$

For each of the functions g(n) below, select the tightest possible upper bound using one of the functions f_i above, such that $g(n) \in O(f_i)$.

If no such function exists, write NONE as your answer.

$$(A) g(n) = 2n^2 + 3.5n^{1.2} + \sqrt{n} + 100.$$

$$f_4$$

(B)
$$g(n) = 3^{\log_2(n)}$$
. Note $\log_2(3) \sim 1.585$.

$$f_4$$

(C)
$$g(n) = 2^{1.5n+10}$$
. Note $2^{1.5} \sim 2.828$ and $2^{10} = 1024$.

NONE (D)
$$g(n) = \log(n) + n^2 + 1.5 \times n^{10} + 3.5 \times 2^n$$
.

$$f_5$$

$$(E) g(n) = n^{0.1} \log(n).$$

$$f_2$$

$$f_2$$