moyennés

A. Godichon-Baggioni

Algorithmes de gradient stochastiques

Algorithme moyenné

•000000000

Algorithme de gradient stochastique moyenné

DÉFINITION

Algorithme movenné:

$$\overline{m}_n = \frac{1}{n+1} \sum_{k=0}^n m_k$$

où les m_k sont les estimateurs de gradient stochastique.

Ecriture récursive :

$$m_{n+1} = m_n - \gamma_{n+1} \nabla_h g\left(X_{n+1}, m_n\right)$$
$$\overline{m}_{n+1} = \overline{m}_n + \frac{1}{n+2} \left(m_{n+1} - \overline{m}_n\right).$$

avec
$$\gamma_n = c_{\gamma} n^{-\alpha}$$
 et $\alpha \in (1/2, 1)$.

LEMME DE TOEPLITZ

Lemme

Algorithme movenné

000000000

Soit (a_n) positive telle que $\sum_{n>0} a_n = +\infty$ et X_n une suite de variables aléatoires convergeant presque sûrement vers X. Alors

$$\frac{1}{\sum_{k=0}^{n} a_k} \sum_{k=0}^{n} a_k X_k \xrightarrow[n \to +\infty]{p.s} X.$$

Application:

$$m_n \xrightarrow[n \to +\infty]{p.s} m \implies \overline{m}_n \xrightarrow[n \to +\infty]{p.s} m$$

COMMENT ÇA MARCHE?

Algorithme moyenné

000000000

Algorithme moyenné

0000000000

Régression linéaire

COMMENT ÇA MARCHE?

Algorithme moyenné

0000000000

Algorithme moyenné

0000000000

Régression linéaire

COMMENT ÇA MARCHE?

Algorithme moyenné

0000000000

COMMENT ÇA MARCHE?

Algorithme moyenné

0000000000

Algorithme moyenné

000000000

Régression linéaire

Vitesse de convergence

Régression linéaire

CADRE (GRADIENT STOCHASTIQUE)

(PS1) Il existe $\eta > \frac{1}{n} - 1$ et $C_n \ge 0$ tels que

$$\mathbb{E}\left[\left\|\nabla_{h}g\left(X,h\right)\right\|^{2+2\eta}\right] \leq C_{\eta}\left(1+\left\|h-m\right\|^{2+2\eta}\right)$$

(PS2 *G* est deux fois continûment différentiable et

$$\lambda_{\min} := \lambda_{\min} \left(\nabla^2 G(m) \right) > 0.$$

(PS1) et **(PS2)**
$$\Longrightarrow$$
 $||m_n - m||^2 = O\left(\frac{\ln n}{n^{\alpha}}\right)$ p.s.

Algorithme movenné

(PS3) Il existe
$$\eta > 0$$
 et $C_{\eta} \ge 0$ t.q pour tout $h \in \mathcal{B}_{\eta} := \mathcal{B}(m, \eta)$,
$$\left\| \nabla G(h) - \nabla^2 G(m)(h - m) \right\| \le C_{\eta} \left\| h - m \right\|^2$$

Régression linéaire

L'hypothèse (**PS3**) est vérifiée si $\nabla^2 G(.)$ est Lipschitz sur \mathcal{B}_n .

VITESSE DE CONVERGENCE

Théorème

Algorithme movenné

On suppose que les hypothèses (PS1) à (PS3) sont vérifiées. Alors, pour tout $\delta > 0$,

$$\|\overline{m}_n - m\|^2 = o\left(\frac{(\ln n)^{1+\delta}}{n}\right)$$
 p.s.

PREUVE

La preuve repose sur le résultat suivant :

Théorème

Soit (ξ_k) une suite de différences de martingale telle que

$$\mathbb{E}\left[\left\|\xi_{k}\right\|^{2}\mathcal{F}_{k-1}\right]\leq C.$$
 Alors, pour tout $\delta>0$,

$$\left\|\sum_{k=1}^{n} \xi_{k}\right\|^{2} = o\left(n(\ln n)^{1+\delta}\right) \quad p.s.$$

EFFICACITÉ ASYMPTOTIQUE

(PS4) La fonction $\Sigma : \mathbb{R}^d \to \mathcal{M}_d(\mathbb{R})$ définie par

$$\Sigma(h) = \mathbb{E}\left[\nabla_h g(X, h) \nabla_h g(X, h)^T\right]$$

est continue en *m*.

Théorème

On suppose que les hypothèses (PS1) à (PS4) sont vérifiées. Alors

$$\sqrt{n}\left(\overline{m}_{n}-m\right)\xrightarrow[n\to+\infty]{\mathcal{L}}\mathcal{N}\left(0,H^{-1}\Sigma H^{-1}\right)$$

avec
$$H = \nabla^2 G(m)$$
 et $\Sigma = \Sigma(m)$.

Algorithme moyenné

Régression linéaire

Régression linéaire

•0000000

L'ALGORITHME

Algorithme moyenné:

$$\theta_{n+1} = \theta_n + \gamma_{n+1} \left(Y_{n+1} - X_{n+1}^T \theta_n \right) X_{n+1}$$
$$\overline{\theta}_{n+1} = \overline{\theta}_n + \frac{1}{n+2} \left(\theta_{n+1} - \overline{\theta}_n \right)$$

Régression linéaire

0.000000

avec
$$\overline{\theta}_0 = \theta_0$$
.

VITESSE DE CONVERGENCE

Théorème

Algorithme moyenné

On suppose qu'il existe $\eta > \frac{1}{\alpha} - 1$ tel que X et ϵ admettent des moments d'ordre $4 + 4\eta$ et $2 + 2\eta$. Alors pour tout $\delta > 0$,

$$\|\overline{\theta}_n - \theta\|^2 = o\left(\frac{(\ln n)^{1+\delta}}{n}\right) p.s. \quad et \quad \sqrt{n}\left(\overline{\theta}_n - \theta\right) \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}\left(0, \sigma^2 H^{-1}\right)$$

SIMULATIONS

Algorithme movenné

FIGURE - Evolution de l'erreur quadratique moyenne de l'estimateur de gradient θ_n (SGD) et de sa version moyennée $\overline{\theta}_n$ (ASGD) en fonction de la taille d'échantillon *n* dans le cadre de la régression linéaire.

Tester H0 : $\theta = \theta_0$ "en ligne"

Réécriture du TLC : Sous H0,

Algorithme moyenné

$$\sqrt{n} \frac{\left(\overline{\theta}_n - \theta_0\right)^T H\left(\overline{\theta}_n - \theta_0\right)}{\sigma^2} \xrightarrow[n \to +\infty]{\mathcal{L}} \chi_d^2$$

Application: Soit \overline{H}_n et $\hat{\sigma}_n^2$ des estimateurs consistants. Alors

$$C_n := \sqrt{n} \frac{\left(\overline{\theta}_n - \theta_0\right)^T \overline{H}_n \left(\overline{\theta}_n - \theta_0\right)}{\widehat{\sigma}_n^2} \xrightarrow[n \to +\infty]{\mathcal{L}} \chi_d^2$$

Régression linéaire

00000000

EXERCICE

- 1. Proposer un estimateur récursif de *H*.
- 2. Montrer sa consistance.
- 3. Proposer un estimateur récursif de σ^2 .
- 4. Montrer sa consistance et donner sa vitesse de convergence.
- 5. Donner sa normalité asymptotique.

Construction de \overline{H}_n et σ_n^2

Ecriture directe:

Algorithme movenné

$$\overline{H}_{n} = \frac{1}{n+1} \left(H_{0} + \sum_{k=1}^{n} X_{k} X_{k}^{T} \right)$$

$$\hat{\sigma}_{n}^{2} = \frac{1}{n+1} \sum_{k=1}^{n} \left(Y_{k} - X_{k}^{T} \overline{\theta}_{k-1} \right)^{2}$$

Ecriture récursive :

$$\overline{H}_{n+1} = \overline{H}_n + \frac{1}{n+2} \left(X_{n+1} X_{n+1}^T - \overline{H}_n \right)
\hat{\sigma}_{n+1}^2 = \hat{\sigma}_n^2 + \frac{1}{n+2} \left(\left(Y_{n+1} - X_{n+1}^T \overline{\theta}_n \right)^2 - \hat{\sigma}_n^2 \right)$$

SIMULATIONS

Algorithme movenné

FIGURE – Comparaison de la fonction de répartition de C_n , pour n = 1000 (à gauche) et n = 5000 (à droite), et de la fonction de répartition d'une Chi 2 à 10 degrés de liberté dans le cadre du modèle linéaire.

Algorithme moyenné

Régression linéaire

L'ALGORITHME

Algorithme movenné:

$$\theta_{n+1} = \theta_n + \gamma_{n+1} \left(Y_{n+1} - \pi \left(X_{n+1}^T \theta_n \right) \right) X_{n+1}$$

$$\overline{\theta}_{n+1} = \overline{\theta}_n + \frac{1}{n+2} \left(\theta_{n+1} - \overline{\theta}_n \right)$$

$$\text{avec } \overline{\theta}_0 = \theta_0 \text{ et } \pi(x) = \frac{e^x}{1 + e^x}.$$

Régression linéaire

VITESSE DE CONVERGENCE

Théorème

On suppose que X admet un moment d'ordre 4. Alors pour tout $\delta > 0$,

$$\|\overline{\theta}_n - \theta\|^2 = o\left(\frac{(\ln n)^{1+\delta}}{n}\right) p.s. \quad et \quad \sqrt{n}\left(\overline{\theta}_n - \theta\right) \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}\left(0, H^{-1}\right)$$

SIMULATIONS

Algorithme movenné

FIGURE - Evolution de l'erreur quadratique moyenne de l'estimateur de gradient θ_n (SGD) et de sa version moyennée $\overline{\theta}_n$ (ASGD) en fonction de la taille d'échantillon n dans le cadre de la régression logistique.

Tester H0 : $\theta = \theta_0$ "en ligne"

Réécriture du TLC : Sous H0.

$$\sqrt{n} \left(\overline{\theta}_n - \theta_0 \right)^T H \left(\overline{\theta}_n - \theta_0 \right) \xrightarrow[n \to +\infty]{\mathcal{L}} \chi_d^2$$

Application: Soit \overline{H}_n un estimateur consistant de H. Alors

$$C_n := \sqrt{n} \left(\overline{\theta}_n - \theta_0 \right)^T \overline{H}_n \left(\overline{\theta}_n - \theta_0 \right) \xrightarrow[n \to +\infty]{\mathcal{L}} \chi_d^2$$

Régression linéaire

Algorithme moyenné

- 1. Proposer un estimateur récursif de *H*.
- 2. Donner sa vitesse de convergence.

CONSTRUCTION DE H_n

Rappel:

$$\nabla^{2}G(\theta) = \mathbb{E}\left[\pi\left(X^{T}\theta\right)\left(1 - \pi\left(X^{T}\theta\right)\right)XX^{T}\right].$$

Ecriture directe:

$$\overline{H}_n = \frac{1}{n+1} \left(H_0 + \sum_{k=1}^n \pi \left(X_k^T \overline{\theta}_{k-1} \right) \left(1 - \pi \left(X_k^T \overline{\theta}_{k-1} \right) \right) X_k X_k^T \right)$$

Ecriture récursive :

$$\overline{H}_{n+1} = \overline{H}_n + \frac{1}{n+2} \left(\pi \left(X_{n+1}^T \overline{\theta}_n \right) \left(1 - \pi \left(X_{n+1}^T \overline{\theta}_n \right) \right) X_{n+1} X_{n+1}^T - \overline{H}_n \right)$$

SIMULATIONS

Algorithme movenné

FIGURE – Comparaison de la fonction de répartition de C_n , pour n = 1000 (à gauche) et n = 20000 (à droite), et de la fonction de répartition d'une Chi 2 à 10 degrés de liberté dans le cadre de la régression logistique.

EXERCICE

- ► Sur un même graphique, tracer l'évolution de l'erreur quadratique moyenne de l'algorithme de gradient et de sa version moyennée (pour cela, on pourra générer 50 échantillons).
- ► Faire un tableau pour comparer les erreurs quadratiques movennes pour $c_{\gamma} = 10^{-2}, 0.1, 1, 5, 100$ et $\alpha = 0.5, 0.66, 0.75, 1.$
- ► Faire de même pour la régression logistique avec $\theta = (-2, -1, 0, 1, 2)$ et $X \sim U[0, 1]$.
- ► Revenir à l'exemple de la régression linéaire mais en prenant $X \sim \mathcal{N}(0, D)$ avec $D = \text{diag}(10^{-2}, 10^{-1}, 1, 10, 10^2)$. Regarder les évolutions des erreurs quadratiques moyennes pour les estimateurs de gradient stochastique et leurs versions moyennées.