

Բաևալիևեր

Խաղում կան նաև m **երկկողմանի** միացումներ՝ համարակալված 0-ից մինչև m-1 թվերով։ j-րդ միացումը ($0 \le j \le m-1$) միացնում է u[j] և v[j] տարբեր սենյակների զույգը։ Մեկ սենյակների զույգը կարող է միացված լինել մի քանի միացումներով։

Խաղացողը մի հոգի է, նա հավաքում է բանալիները և շարժվում է սենյակներով` շրջանցելով միացումները։ Կասենք, որ խաղացողը **շրջանցում է** j միացումը, երբ այդ միացումը օգտագործվում է u[j] սենյակից v[j] սենյակ տեղափոխվելու համար կամ հակառակ ուղղությամբ։ Խաղացողը կարող է շրջանցել j միացումը միայն այն ժամանակ, երբ նա արդեն հավաքել է c[j] տիպի բանալի։

Խաղի ընթացքում ամեն պահի խաղացողը մի որև x սենյակում է և կարող է կատարել երկու տիպի գործողություն.

- վերցնել x սենյակում գտնվող բանալին, որի տիպը r[x] է (եթե ավելի շուտ արդեն չի վերցրել),
- շրջանցել j միացումը, որտեղ u[j]=x կամ v[j]=x, եթե խաղացողը արդեն վերցրել է c[j] տիպի բանալի։ Ուշադրություն դարձրեք, որ խաղացողը **երբեք** չի հրաժարվում բանալուց, որն արդեն վերցրել է։

Խաղացողը **սկսում է** խաղը մի որևէ s սենյակում չունենալով որևէ բանալի։ t-րդ սենյակը **հասանելի է** s սենյակից, եթե խաղացողը, ով սկսում է խաղը s սենյակից, կարող է իրականացնել վերը նշված գործողությունների որևէ հաջորդականություն և հասնել t սենյակին։

Յուրաքանչյուր i սենյակի համար ($0 \le i \le n-1$), p[i]-ով նշանակենք i սենյակից հասանելի սենյակների քանակը։ Թիմըթին ուզում է գտնել այն i ինդեքսների բազմությունը, որոնց դեպքում p[i] արժեքը նվազագույնն է, $0 \le i \le n-1$ ։

Իրականացման մանրամասներ

Դուք պետք է իրականացնեք հետևյալ պրոցեդուրան`

```
int[] find_reachable(int[] r, int[] u, int[] v, int[] c)
```

- r։ n երկարության զանգված։ Յուրաքանչյուր i-ի համար ($0 \le i \le n-1$), i սենյակի բանալին r[i] տիպի է։
- u,v։ m երկարության երկու զանգվածներ։ Յուրաքանչյուր j-ի համար ($0\leq j\leq m-1$), j միացումը միացնում է u[j] և v[j] սենյակները։
- c: m երկարության զանգված։ Յուրաքանչյուր j-ի համար ($0 \leq j \leq m-1$), այն բանալու տիպը, որն անհրաժեշտ է j միացումը շրջանցելու համար, c[j] է։
- Այս պրոցեդուրան պետք է վերադարձնի n երկարության a զանգված։ Յուրաքանչյուր i-ի համար ($0 \le i \le n-1$), a[i]-ի արժեքը պետք է լինի 1 եթե բոլոր j-երի համար ($0 \le j \le n-1$), $p[i] \le p[j]$: <ակառակ դեպքում, a[i]-ի արժեքը պետք է լինի 0:

Օրինակներ

Օրինակ 1

Դիտարկենք պրոցեդուրայի կանչը հետևյալ արժեքներով՝

```
find_reachable([0, 1, 1, 2],
       [0, 0, 1, 1, 3], [1, 2, 2, 3, 1], [0, 0, 1, 0, 2])
```

Եթե խաղացողը խաղն սկսի 0 սենյակից, նա կարող $\mathbf t$ կատարել գործողությունների հետևյալ հաջորդականությունը`

Ընթացիկ սենյակ	Գործողություն
0	Վերցնել 0 տիպի բանալին
0	Շրջանցել 0 միացումը և գնալ 1 սենյակ
1	Վերցնել 1 տիպի բանալին
1	Շրջանցել 2 միացումը և գնալ 2 սենյակ
2	Շրջանցել 2 միացումը և գնալ 1 սենյակ
1	Շրջանցել 3 միացումը և գնալ 3 սենյակ

Ուստի, 3 համարի սենյակը հասանելի է 0 համարի սենյակից։ Նմանապես, մենք կարող ենք կառուցել հաջորդականություններ, որոնք ցույց կտան, որ բոլոր սենյակները հասանելի են 0 համարի սենյակից, հետևաբար p[0]=4։ Ստորև նշված աղյուսակը ցույց է տալիս բոլոր սկզբնական սենյակների համար նրանցից հասանելի սենյակների բազմությունը՝

i սկզբնական սենյակ	Հասանելի սենյակներ	p[i]
0	[0,1,2,3]	4
1	[1,2]	2
2	[1,2]	2
3	[1, 2, 3]	3

p[i]-երի նվազագույն արժեքը 2 է, իսկ այդ արժեքը ստացվում է i=1 և i=2 դեպքերում։ Ուրեմն, այս պրոցեդուրան պետք է վերադարձնի [0,1,1,0]։

Օրինակ 2

Հետևյալ աղյուսակը ցույց է տալիս հասանելի սենյակները՝

i սկզբնական սենյակ	Հասանելի սենյակներ	p[i]
0	[0, 1, 2, 3, 4, 5, 6]	7
1	[1,2]	2
2	[1,2]	2
3	[3,4,5,6]	4
4	[4, 6]	2
5	[3,4,5,6]	4
6	[4, 6]	2

p[i]-երի նվազագույն արժեքը $\,2\,$ է, իսկ այդ արժեքը ստացվում է, երբ $\,i\in\{1,2,4,6\}$ ։ Ուրեմն, այս պրոցեդուրան պետք է վերադարձնի $\,[0,1,1,0,1,0,1]$ ։

Օրինակ 3

```
find_reachable([0, 0, 0], [0], [1], [0])
```

Հետևյալ աղյուսակը ցույց է տալիս հասանելի սենյակները`

i սկզբնական սենյակ	Հասանելի սենյակներ	p[i]
0	[0,1]	2
1	[0,1]	2
2	[2]	1

p[i]-երի նվազագույն արժեքը 1 է, իսկ այդ արժեքը ստացվում է, երբ i=2։ <ետևաբար, այս պրոցեդուրան պետք է վերադարձնի [0,0,1]։

Սահմանափակումներ

- $2 \le n \le 300000$
- $1 \le m \le 300\,000$
- ullet $0 \leq r[i] \leq n-1$ յուրաքանչյուր $0 \leq i \leq n-1$ -ի դեպքում
- ullet $0 \leq u[j], v[j] \leq n-1$ և u[j]
 eq v[j] յուրաքանչյուր $0 \leq j \leq m-1$ -ի դեպքում
- ullet $0 \leq c[j] \leq n-1$ յուրաքանչյուր $0 \leq j \leq m-1$ -ի դեպքում

ենթախնդիրներ

- 1. (9 միավոր) $\,c[j]=0$ բոլոր $\,0\leq j\leq m-1$ -ի համար, և $\,n,m\leq 200\,$
- 2. (11 միավոր) $n, m \leq 200$
- 3. (17 միավոր) $n, m \leq 2000$
- 4. (30 միավոր) $c[j] \leq 29$ (յուրաքանչյուր $0 \leq j \leq m-1$ -ի համար) և $r[i] \leq 29$ (յուրաքանչյուր $0 \leq i \leq n-1$ -ի համար)
- 5. (33 միավոր) Հավելյալ սահմանափակումներ չկան։

Գրեյդերի նմուշ

Գրեյդերը կարդում է մուտքային տվյալները հետևյալ ձևաչափով`

- 1-ին տող։ *n m*
- 2-ph unn: r[0] r[1] ... r[n-1]
- ullet 3+j տողեր ($0\leq j\leq m-1$): u[j] v[j] c[j]

Գրեյդերը տպում է find reachable-ի վերադարձրած արժեքը հետևյալ ձևաչափով՝

• 1-ին տող։ a[0] a[1] \dots a[n-1]