STEINERFOREST via Primal-Dual

Given: A graph G = (V, E) with edge costs $c: E \to \mathbb{N}$ and a

Given: A graph G = (V, E) with edge costs $c: E \to \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of k vertex pairs.

Given: A graph G = (V, E) with edge costs $c: E \to \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of k vertex pairs.

Given: A graph G = (V, E) with edge costs $c: E \to \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of k vertex pairs.

Task: Find an edge set $F \subseteq E$ of minimum total cost c(F)

Given: A graph G = (V, E) with edge costs $c: E \to \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of k vertex pairs.

Given: A graph G = (V, E) with edge costs $c: E \to \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of k vertex pairs.

Given: A graph G = (V, E) with edge costs $c: E \to \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of k vertex pairs.

Given: A graph G = (V, E) with edge costs $c: E \to \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of k vertex pairs.

Given: A graph G = (V, E) with edge costs $c: E \to \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of k vertex pairs.

Given: A graph G = (V, E) with edge costs $c: E \to \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of k vertex pairs.

Given: A graph G = (V, E) with edge costs $c: E \to \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of k vertex pairs.

• Merge k shortest $s_i - t_i$ paths

- Merge k shortest s_i - t_i paths
- STEINERTREE on the set of terminals

- Merge k shortest $s_i t_i$ paths
- STEINERTREE on the set of terminals

Above approaches perform poorly:-(

- Merge k shortest $s_i t_i$ paths
- STEINERTREE on the set of terminals

Above approaches perform poorly:-(

- Merge k shortest s_i - t_i paths
- STEINERTREE on the set of terminals

Above approaches perform poorly:-(

- Merge k shortest s_i - t_i paths
- STEINERTREE on the set of terminals

Above approaches perform poorly :-(

- Merge k shortest s_i - t_i paths
- STEINERTREE on the set of terminals

Above approaches perform poorly:-(

- Merge k shortest s_i - t_i paths
- STEINERTREE on the set of terminals

Above approaches perform poorly :-(

- Merge k shortest s_i - t_i paths
- STEINERTREE on the set of terminals

Above approaches perform poorly:-(

Difficulty:

Which terminals belong to the same tree of the forest?

Primal and Dual LP

minimize

minimize

$$x_e \in \{0, 1\}$$
 $e \in E$

minimize

$$\sum_{e \in F} c_e x_e$$

$$x_e \in \{0, 1\}$$
 $e \in E$

$$e \in E$$

minimize
$$\sum_{e \in E} c_e x_e$$
 subject to $x_e \in \{0,1\}$ $e \in E$

How to ensure connectedness of all pairs in *R*?

minimize
$$\sum_{e \in E} c_e x_e$$
 subject to $x_e \in \{0,1\}$ $e \in E$

How to ensure connectedness of all pairs in *R*?

Using cuts?

minimize $\sum_{e \in F} c_e x$

subject to

 $x_e \in \{0,1\}$

 $e \in E$

minimize $\sum_{e \in E} c_e x_e$ subject to

$$x_e \in \{0,1\}$$

$$e \in E$$

subject to

minimize $\sum_{e \in E} c_e x_e$

$$x_e \in \{0, 1\}$$

$$e \in E$$

minimize $\sum_{e \in E} c_e x_e$ subject to

$$x_e \in \{0, 1\}$$

$$e \in E$$

subject to

minimize $\sum_{e \in E} c_e x_e$

$$x_e \in \{0, 1\}$$

$$e \in E$$

$$\delta(S) := \{(u, v) \in E : u \in S \text{ and } v \notin S\}$$

minimize $\sum_{e \in E} c_e x_e$

$$x_e \in \{0, 1\}$$

$$e \in E$$

$$\delta(S) := \{(u, v) \in E : u \in S \text{ and } v \notin S\}$$

minimize
$$\sum_{e \in E} c_e x_e$$
 subject to
$$\sum_{e \in \delta(S)} x_e \ge 1$$

$$x_e \in \{0, 1\} \qquad e \in E$$

$$\delta(S) := \{(u, v) \in E : u \in S \text{ and } v \notin S\}$$

minimize
$$\sum_{e \in E} c_e x_e$$
 subject to $\sum_{e \in \mathcal{S}(S)} x_e \ge 1$ $S \in \mathcal{S}_i, i \in \{1, \dots, k\}$ $x_e \in \{0, 1\}$ $e \in E$

$$\delta(S) := \{(u, v) \in E : u \in S \text{ and } v \notin S\}$$


```
minimize \sum_{e \in E} c_e x_e subject to \sum_{e \in \delta(S)} x_e \ge 1 S \in S_i, i \in \{1, \dots, k\} x_e \in \{0, 1\} e \in E
```

```
where S_i := \{S \subseteq V : |S \cap \{s_i, t_i\}| = 1\}
cuts separating s_i and t_i
and \delta(S) := \{(u, v) \in E : u \in S \text{ and } v \notin S\}
cut edges
```


ILP for SteinerForest

minimize
$$\sum_{e \in E} c_e x_e$$
 subject to $\sum_{e \in \mathcal{S}(S)} x_e \ge 1$ $S \in \mathcal{S}_i, i \in \{1, \dots, k\}$ $x_e \in \{0, 1\}$ $e \in E$

Why does this enforce connectedness?

```
where S_i := \{S \subseteq V : |S \cap \{s_i, t_i\}| = 1\}
cuts separating s_i and t_i
and \delta(S) := \{(u, v) \in E : u \in S \text{ and } v \notin S\}
cut edges
```


ILP for SteinerForest

minimize
$$\sum_{e \in E} c_e x_e$$
 subject to
$$\sum_{e \in \mathcal{S}(S)} x_e \ge 1 \qquad S \in S_i, \ i \in \{1, \dots, k\}$$

$$x_e \in \{0, 1\} \qquad e \in E$$

Why does this enforce connectedness?

incrementally grow a path from s_i to t_i

```
where S_i := \{S \subseteq V : |S \cap \{s_i, t_i\}| = 1\}

cuts separating s_i and t_i

and \delta(S) := \{(u, v) \in E : u \in S \text{ and } v \notin S\}

cut edges
```


ILP for SteinerForest

minimize
$$\sum_{e \in E} c_e x_e$$
 subject to
$$\sum_{e \in \delta(S)} x_e \ge 1 \qquad S \in S_i, \ i \in \{1, \dots, k\}$$

$$x_e \in \{0, 1\} \qquad e \in E$$

Why does this enforce connectedness?

incrementally grow a path from s_i to t_i

where
$$S_i := \{S \subseteq V : |S \cap \{s_i, t_i\}| = 1\}$$

cuts separating s_i and t_i
and $\delta(S) := \{(u, v) \in E : u \in S \text{ and } v \notin S\}$

→ exponentially many constraints!

cut edges

minimize
$$\sum_{e \in E} c_e x_e$$
 subject to
$$\sum_{e \in \mathcal{S}(S)} x_e \ge 1 \qquad S \in S_i, \ i \in \{1, \dots, k\}$$

$$x_e \ge 0 \qquad e \in E$$

minimize
$$\sum_{e \in E} c_e x_e$$
 subject to $\sum_{e \in \mathcal{S}(S)} x_e \ge 1$ $S \in \mathcal{S}_i, i \in \{1, \dots, k\}$ (y_S) $x_e \ge 0$ $e \in E$

minimize
$$\sum_{e \in E} c_e x_e$$
 subject to
$$\sum_{e \in \mathcal{S}(S)} x_e \ge 1 \qquad S \in S_i, \ i \in \{1, \dots, k\} \ (y_S)$$

$$x_e \ge 0 \qquad e \in E$$

maximize

subject to

$$y_S \geq 0$$

$$S \in S_i$$
, $i \in \{1, \ldots, k\}$

minimize
$$\sum_{e \in E} c_e x_e$$
 subject to
$$\sum_{e \in \mathcal{S}(S)} x_e \ge 1 \qquad S \in S_i, \ i \in \{1, \dots, k\} \ (y_S)$$

$$x_e \ge 0 \qquad e \in E$$

maximize
$$\sum_{\substack{S \in S_i \\ i \in \{1, \dots, k\}}} y_S$$
 subject to
$$y_S \geq 0 \qquad \qquad S \in S_i, \ i \in \{1, \dots, k\}$$

minimize
$$\sum_{e \in E} c_e x_e$$
 subject to
$$\sum_{e \in \delta(S)} x_e \ge 1 \qquad S \in S_i, \ i \in \{1, \dots, k\} \ (y_S)$$

$$x_e \ge 0 \qquad e \in E$$

maximize
$$\sum_{\substack{S \in S_i \\ i \in \{1, \dots, k\}}} y_S$$
 subject to
$$\sum_{S: e \in \delta(S)} y_S \le c_e \qquad e \in E$$

$$y_S \ge 0 \qquad \qquad S \in S_i, \ i \in \{1, \dots, k\}$$

minimize
$$\sum_{e \in E} c_e x_e$$
 covering LP subject to $\sum_{e \in \delta(S)} x_e \ge 1$ $S \in S_i, i \in \{1, \dots, k\}$ (y_S) $x_e \ge 0$ $e \in E$

```
maximize \sum_{\substack{S \in S_i \\ i \in \{1, \dots, k\}}} y_S subject to \sum_{S: e \in \delta(S)} y_S \le c_e \qquad e \in E y_S \ge 0 \qquad \qquad S \in S_i, \ i \in \{1, \dots, k\}
```

```
maximize \sum_{\substack{S \in \mathcal{S}_i \\ i \in \{1, \dots, k\}}} y_S subject to \sum_{S: \ e \in \mathcal{S}(S)} y_S \leq c_e \qquad e \in E y_S \geq 0 \qquad \qquad S \in \mathcal{S}_i, \ i \in \{1, \dots, k\}
```



```
maximize \sum_{\substack{S \in \mathcal{S}_i \\ i \in \{1, \dots, k\}}} y_S subject to \sum_{S: e \in \delta(S)} y_S \le c_e \qquad e \in E y_S \ge 0 \qquad \qquad S \in \mathcal{S}_i, \ i \in \{1, \dots, k\}
```



```
maximize \sum_{\substack{S \in \mathcal{S}_i \\ i \in \{1, \dots, k\}}} y_S subject to \sum_{S: e \in \delta(S)} y_S \le c_e \qquad e \in E y_S \ge 0 \qquad \qquad S \in \mathcal{S}_i, \ i \in \{1, \dots, k\}
```


maximize
$$\sum_{\substack{S \in \mathcal{S}_i \\ i \in \{1, \dots, k\}}} y_S$$
 subject to
$$\sum_{S: \ e \in \delta(S)} y_S \le c_e \qquad e \in E$$

$$y_S \ge 0 \qquad \qquad S \in \mathcal{S}_i, \ i \in \{1, \dots, k\}$$

The graph is a network of **bridges**, spanning the **moats**.

maximize
$$\sum_{\substack{S \in S_i \\ i \in \{1, \dots, k\}}} y_S$$
 subject to
$$\sum_{S: e \in \delta(S)} y_S \le c_e \qquad e \in E$$

$$y_S \ge 0 \qquad \qquad S \in S_i, \ i \in \{1, \dots, k\}$$

The graph is a network of bridges, spanning the moats.

 $\delta(S)$ = set of edges / bridges over the moat around S

 y_S = width of the **moat** around S

The graph is a network of bridges, spanning the moats.

 $\delta(S)$ = set of edges / bridges over the moat around S

 y_S = width of the **moat** around S

maximize
$$\sum_{\substack{S \in S_i \\ i \in \{1, \dots, k\}}} y_S$$
 subject to
$$\sum_{S: e \in \delta(S)} y_S \le c_e \qquad e \in E$$

$$y_S \ge 0 \qquad \qquad S \in S_i, \ i \in \{1, \dots, k\}$$

The graph is a network of **bridges**, spanning the **moats**.

The graph is a network of bridges, spanning the moats.

 $\delta(S)$ = set of edges / bridges over the moat around S

 y_S = width of the **moat** around S

The graph is a network of bridges, spanning the moats.

 $\delta(S)$ = set of edges / bridges over the moat around S

 y_S = width of the **moat** around S

The graph is a network of bridges, spanning the moats.

The graph is a network of bridges, spanning the moats.

 $\delta(S)$ = set of edges / bridges over the moat around S

 y_S = width of the **moat** around S

maximize
$$\sum_{\substack{S \in \mathcal{S}_i \\ i \in \{1, \dots, k\}}} y_S$$
 subject to
$$\sum_{S: e \in \delta(S)} y_S \leq c_e \qquad e \in E$$

$$y_S \geq 0 \qquad \qquad S \in \mathcal{S}_i, \ i \in \{1, \dots, k\}$$

The graph is a network of **bridges**, spanning the **moats**.

The graph is a network of bridges, spanning the moats.

maximize
$$\sum_{\substack{S \in \mathcal{S}_i \\ i \in \{1, \dots, k\}}} y_S$$
 subject to
$$\sum_{S: e \in \delta(S)} y_S \leq c_e \qquad e \in E$$

$$y_S \geq 0 \qquad \qquad S \in \mathcal{S}_i, \ i \in \{1, \dots, k\}$$

The graph is a network of bridges, spanning the moats.

maximize
$$\sum_{\substack{S \in \mathcal{S}_i \\ i \in \{1, \dots, k\}}} y_S$$
 subject to
$$\sum_{S: e \in \delta(S)} y_S \leq c_e \qquad e \in E$$

$$y_S \geq 0 \qquad \qquad S \in \mathcal{S}_i, \ i \in \{1, \dots, k\}$$

Reminder: Complementary Slackness

```
minimize c^{\intercal}x
subject to Ax \geq b
x \geq 0
```

```
\begin{array}{lll} \text{maximize} & b^\intercal y \\ \text{subject to} & A^\intercal y & \leq & c \\ & y & \geq & 0 \end{array}
```

Reminder: Complementary Slackness

minimize
$$c^{T}x$$

subject to $Ax \geq b$
 $x \geq 0$

$$\begin{array}{ll} \text{maximize} & b^\intercal y \\ \text{subject to} & A^\intercal y & \leq c \\ y & \geq 0 \end{array}$$

Theorem. Let $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_m)$ be valid solutions for the primal and dual program (resp.). Then x and y are optimal if and only if the following conditions are met:

Primal CS:

For each j = 1, ..., n: either $x_j = 0$ or $\sum_{i=1}^m a_{ij} y_i = c_j$

Dual CS:

For each i = 1, ..., m: either $y_i = 0$ or $\sum_{j=1}^n a_{ij}x_j = b_i$

Complementary slackness: $x_e > 0 \implies$

Complementary slackness: $x_e > 0 \implies \sum_{S: e \in \delta(S)} y_S = c_e$.

Complementary slackness: $x_e > 0 \implies \sum_{S: e \in \delta(S)} y_S = c_e$.

⇒ pick "critical" edges (and only those)

Complementary slackness: $x_e > 0 \implies \sum_{S: e \in \delta(S)} y_S = c_e$.

⇒ pick "critical" edges (and only those)

Idea: iteratively build a feasible integral primal solution.

Complementary slackness: $x_e > 0 \implies \sum_{S: e \in \delta(S)} y_S = c_e$.

⇒ pick "critical" edges (and only those)

Idea: iteratively build a feasible integral primal solution.

How to find a violated primal constraint? $(\sum_{e \in \delta(S)} x_e < 1)$

Complementary slackness: $x_e > 0 \implies \sum_{S: e \in \delta(S)} y_S = c_e$.

⇒ pick "critical" edges (and only those)

Idea: iteratively build a feasible integral primal solution.

How to find a violated primal constraint? $(\sum_{e \in \delta(S)} x_e < 1)$

 \sim Consider a corresponding connected component C!

Complementary slackness: $x_e > 0 \implies \sum_{S: e \in \delta(S)} y_S = c_e$.

⇒ pick "critical" edges (and only those)

Idea: iteratively build a feasible integral primal solution.

How to find a violated primal constraint? $(\sum_{e \in \delta(S)} x_e < 1)$

 \sim Consider a corresponding connected component C!

How do we iteratively improve the dual solution?

Complementary slackness: $x_e > 0 \implies \sum_{S: e \in \delta(S)} y_S = c_e$.

⇒ pick "critical" edges (and only those)

Idea: iteratively build a feasible integral primal solution.

How to find a violated primal constraint? $(\sum_{e \in \delta(S)} x_e < 1)$

 \sim Consider a corresponding connected component C!

How do we iteratively improve the dual solution?

 \sim Increase $y_{\mathcal{C}}$ (until some edge in $\delta(\mathcal{C})$ becomes critical)!

PrimalDualSteinerForestNaive(G, c, R)

PrimalDualSteinerForestNaive(G, c, R)

$$y \leftarrow 0, F \leftarrow \emptyset$$

return F

```
PrimalDualSteinerForestNaive(G, c, R)
  y \leftarrow 0, F \leftarrow \emptyset
  while some (s_i, t_i) \in R not connected in (V, F) do
   return F
```

```
PrimalDualSteinerForestNaive(G, c, R)
   y \leftarrow 0, F \leftarrow \emptyset
   while some (s_i, t_i) \in R not connected in (V, F) do
        C \leftarrow \text{component in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i
   return F
```

```
PrimalDualSteinerForestNaive(G, c, R)
   \mathbf{y} \leftarrow 0, F \leftarrow \emptyset
   while some (s_i, t_i) \in R not connected in (V, F) do
        C \leftarrow \text{component in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i
        Increase y<sub>C</sub>
   return F
```

```
PrimalDualSteinerForestNaive(G, c, R)
   \mathbf{y} \leftarrow 0, F \leftarrow \emptyset
   while some (s_i, t_i) \in R not connected in (V, F) do
        C \leftarrow \text{component in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i
        Increase y<sub>C</sub>
              until \sum_{S} y_{S} = c_{e'} for some e' \in \delta(C).
                      S: e' \in \delta(S)
   return F
```

```
PrimalDualSteinerForestNaive(G, c, R)
   \mathbf{y} \leftarrow 0, F \leftarrow \emptyset
   while some (s_i, t_i) \in R not connected in (V, F) do
        C \leftarrow \text{component in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i
        Increase y<sub>C</sub>
               until \sum_{i=1}^{n} y_{i} = c_{e'} for some e' \in \delta(C).
                       S: e' \in \delta(S)
      F \leftarrow F \cup \{e'\}
    return F
```

```
PrimalDualSteinerForestNaive(G, c, R)
   \mathbf{y} \leftarrow 0, F \leftarrow \emptyset
   while some (s_i, t_i) \in R not connected in (V, F) do
        C \leftarrow \text{component in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i
        Increase y<sub>C</sub>
               until \sum_{i=1}^{n} y_{i} = c_{e'} for some e' \in \delta(C).
                       S: e' \in \delta(S)
      F \leftarrow F \cup \{e'\}
    return F
```

Exponential Running Time?

```
PrimalDualSteinerForestNaive(G, c, R)
   y \leftarrow 0, F \leftarrow \emptyset
   while some (s_i, t_i) \in R not connected in (V, F) do
        C \leftarrow \text{component in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i
        Increase y<sub>C</sub>
              until \sum_{s} y_s = c_{e'} for some e' \in \delta(C).
                      S: e' \in \delta(S)
      F \leftarrow F \cup \{e'\}
   return F
```

Exponential Running Time?

Trick: Handle all y_s with $y_s = 0$ implicitly

$$\sum_{e \in F} c_e =$$

$$\sum_{e \in F} c_e \stackrel{\mathsf{CS}}{=} \sum_{e \in F}$$

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S =$$

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

The cost of the solution *F* can be written as

$$\sum_{e \in F} c_e \stackrel{\mathsf{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$

The cost of the solution *F* can be written as

$$\sum_{e \in F} c_e \stackrel{\mathsf{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$

The cost of the solution *F* can be written as

$$\sum_{e \in F} c_e \stackrel{\mathsf{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$

The cost of the solution *F* can be written as

$$\sum_{e \in F} c_e \stackrel{\mathsf{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$

The cost of the solution *F* can be written as

$$\sum_{e \in F} c_e \stackrel{\mathsf{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$

The cost of the solution F can be written as

$$\sum_{e \in F} c_e \stackrel{\mathsf{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$

The cost of the solution F can be written as

$$\sum_{e \in F} c_e \stackrel{\mathsf{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$

There are examples with $|\delta(S) \cap F| = k$ for each $y_S > 0$:

distribution of cost over more cuts?

Initially 1 component per terminal

The cost of the solution *F* can be written as

$$\sum_{e \in F} c_e \stackrel{\mathsf{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$

There are examples with $|\delta(S) \cap F| = k$ for each $y_S > 0$:

distribution of cost over more cuts? t_2 Initially 1 component per terminal \Rightarrow Increase y_C for all components C simultaneously! $c \equiv 1$ $c \equiv 1$ $y_{\{s_i\}} = 1$

The cost of the solution F can be written as

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$

There are examples with $|\delta(S) \cap F| = k$ for each $y_S > 0$:

distribution of cost over more cuts?

Initially 1 component per terminal

 \Rightarrow Increase y_C for all components C simultaneously!

How to choose c_e in example to get large approximation factor?

The cost of the solution F can be written as

$$\sum_{e \in F} c_e \stackrel{\mathsf{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$

There are examples with $|\delta(S) \cap F| = k$ for each $y_S > 0$:

distribution of cost over more cuts?

Initially 1 component per terminal

 \Rightarrow Increase y_C for all components C simultaneously!

How to choose c_e in example to get large approximation factor?

The cost of the solution *F* can be written as

$$\sum_{e \in F} c_e \stackrel{\mathsf{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$

There are examples with $|\delta(S) \cap F| = k$ for each $y_S > 0$:

distribution of cost over more cuts?

Initially 1 component per terminal

 \Rightarrow Increase y_C for all components C simultaneously!

How to choose c_e in example to get large approximation factor?

 $c \equiv 1$ but again, simultaneous increase helps

```
PrimalDualSteinerForest(G, C, R)
y \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0
while some (s_j, t_j) \in R not connected in (V, F) do
      \ell \leftarrow \ell + 1
   F \leftarrow F \cup \{e_{\ell}\}
```

```
PrimalDualSteinerForest(G, C, R)
y \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0
while some (s_i, t_i) \in R not connected in (V, F) do
      \ell \leftarrow \ell + 1
      \mathcal{A} \leftarrow \{\text{comp. } C \text{ in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i\}
    F \leftarrow F \cup \{e_{\ell}\}
```

```
PrimalDualSteinerForest(G, C, R)
y \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0
while some (s_i, t_i) \in R not connected in (V, F) do
      \ell \leftarrow \ell + 1
      \mathcal{A} \leftarrow \{\text{comp. } C \text{ in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i\}
      Increase y_C for all C \in \mathcal{A} simultaneously
    F \leftarrow F \cup \{e_{\ell}\}
```

```
PrimalDualSteinerForest(G, c, R)
y \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0
while some (s_i, t_i) \in R not connected in (V, F) do
      \ell \leftarrow \ell + 1
      \mathcal{A} \leftarrow \{\text{comp. } C \text{ in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i\}
      Increase y_C for all C \in \mathcal{A} simultaneously
         until y_S = c_{e_\ell} for some e_\ell \in \mathcal{S}(C), C \in \mathcal{A}.
                  S: e_{\ell} \in \mathcal{S}(S)
     F \leftarrow F \cup \{e_{\ell}\}
```

```
PrimalDualSteinerForest(G, c, R)
y \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0
while some (s_i, t_i) \in R not connected in (V, F) do
      \ell \leftarrow \ell + 1
      \mathcal{A} \leftarrow \{\text{comp. } C \text{ in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i\}
      Increase y_C for all C \in \mathcal{A} simultaneously
         until \sum_{l} y_{l} = c_{e_{\ell}} for some e_{\ell} \in \delta(C), C \in \mathcal{A}.
                  S: e_{\ell} \in \mathcal{S}(S)
    F \leftarrow F \cup \{e_{\ell}\}
F' \leftarrow F
return F'
```

```
PrimalDualSteinerForest(G, c, R)
y \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0
while some (s_i, t_i) \in R not connected in (V, F) do
      \ell \leftarrow \ell + 1
      \mathcal{A} \leftarrow \{\text{comp. } C \text{ in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i\}
      Increase y_C for all C \in \mathcal{A} simultaneously
         until y_S = c_{e_\ell} for some e_\ell \in \mathcal{S}(C), C \in \mathcal{A}.
                 S: e_{\ell} \in \mathcal{S}(S)
     F \leftarrow F \cup \{e_{\ell}\}
F' \leftarrow F
// Pruning
return F'
```

```
PrimalDualSteinerForest(G, c, R)
y \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0
while some (s_i, t_i) \in R not connected in (V, F) do
      \ell \leftarrow \ell + 1
      \mathcal{A} \leftarrow \{\text{comp. } C \text{ in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i\}
     Increase y_C for all C \in \mathcal{A} simultaneously
         until y_S = c_{e_\ell} for some e_\ell \in \mathcal{S}(C), C \in \mathcal{A}.
                 S: e_{\ell} \in \mathcal{S}(S)
    F \leftarrow F \cup \{e_{\ell}\}
F' \leftarrow F
// Pruning
for j \leftarrow \ell down to 1 do
return F'
```

```
PrimalDualSteinerForest(G, c, R)
y \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0
while some (s_i, t_i) \in R not connected in (V, F) do
      \ell \leftarrow \ell + 1
      \mathcal{A} \leftarrow \{\text{comp. } C \text{ in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i\}
      Increase y_C for all C \in \mathcal{A} simultaneously
         until \sum_{l} y_{s} = c_{e_{\ell}} for some e_{\ell} \in \delta(C), C \in \mathcal{A}.
                 S: e_{\ell} \in \mathcal{S}(S)
    F \leftarrow F \cup \{e_{\ell}\}
F' \leftarrow F
// Pruning
for j \leftarrow \ell down to 1 do
     if F' \setminus \{e_i\} is feasible solution then
return F'
```

Primal-Dual with Synchronized Increases

```
PrimalDualSteinerForest(G, c, R)
y \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0
while some (s_i, t_i) \in R not connected in (V, F) do
      \ell \leftarrow \ell + 1
      \mathcal{A} \leftarrow \{\text{comp. } C \text{ in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i\}
     Increase y_C for all C \in \mathcal{A} simultaneously
         until \sum y_S = c_{e_\ell} for some e_\ell \in \delta(C), C \in \mathcal{A}.
                 S: e_{\ell} \in \mathcal{S}(S)
    F \leftarrow F \cup \{e_{\ell}\}
F' \leftarrow F
// Pruning
for j \leftarrow \ell down to 1 do
    if F' \setminus \{e_i\} is feasible solution then
      F' \leftarrow F' \setminus \{e_j\}
return F'
```


Lemma. For the set \mathcal{A} in any iteration of the algorithm:

Lemma. For the set \mathcal{A} in any iteration of the algorithm:

$$\sum_{C\in\mathcal{A}}|\delta(C)\cap F'|\leq .$$

Lemma. For the set \mathcal{A} in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\delta(C) \cap F'| \leq 2|\mathcal{A}|.$$

Lemma. For the set $\mathcal A$ in any iteration of the algorithm: $\sum |\delta(\mathcal C) \cap F'| \le 2|\mathcal A|.$

 $C \in \mathcal{A}$

Lemma. For the set $\mathcal A$ in any iteration of the algorithm: $\sum_{C\in\mathcal A} |\mathcal S(C)\cap F'| \le 2|\mathcal A|\,.$

Lemma. For the set $\mathcal A$ in any iteration of the algorithm: $\sum_{\mathcal C\in\mathcal A} |\mathcal S(\mathcal C)\cap F'| \leq 2|\mathcal A|\,.$

Lemma. For the set $\mathcal A$ in any iteration of the algorithm: $\sum_{C\in\mathcal A} |\mathcal S(C)\cap F'| \le 2|\mathcal A|\,.$

Lemma. For the set \mathcal{A} in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\mathcal{S}(C) \cap F'| \leq 2|\mathcal{A}|.$$

Lemma. For the set \mathcal{A} in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\mathcal{S}(C) \cap F'| \leq 2|\mathcal{A}|.$$

$$\frac{-F' \cap C}{F - F'}$$

Lemma. For the set \mathcal{A} in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\delta(C) \cap F'| \le 2|\mathcal{A}|.$$

$$\frac{-F' \cap C}{F - F'}$$

Lemma. For the set \mathcal{A} in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\mathcal{S}(C) \cap F'| \leq 2|\mathcal{A}|.$$

$$\frac{\mathcal{S}(C) \cap F'}{F' \cap C}$$

$$\cdots F - F'$$

Lemma. For the set \mathcal{A} in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\delta(C) \cap F'| \le 2|\mathcal{A}|.$$

Lemma. For the set \mathcal{A} in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\delta(C) \cap F'| \leq 2|\mathcal{A}|.$$

Proof. First the intuition...

Every connected component C of F is a forest in F'.

 \rightarrow average degree \leq

Lemma. For the set \mathcal{A} in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\delta(C) \cap F'| \leq 2|\mathcal{A}|.$$

Proof. First the intuition...

Every connected component C of F is a forest in F'.

 \rightarrow average degree ≤ 2

Lemma. For the set \mathcal{A} in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\mathcal{S}(C) \cap F'| \leq 2|\mathcal{A}|.$$

Proof. First the intuition...

Every connected component C of F is a forest in F'.

 \rightarrow average degree ≤ 2

Lemma. For the set C in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\delta(C) \cap F'| \leq 2|\mathcal{A}|.$$

Proof.

Lemma. For the set *C* in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\delta(C) \cap F'| \leq 2|\mathcal{A}|.$$

Proof.

Lemma. For the set *C* in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\delta(C) \cap F'| \leq 2|\mathcal{A}|.$$

Proof.

Let
$$F_i = \{e_1, \ldots, e_i\}$$

Lemma. For the set *C* in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\delta(C) \cap F'| \leq 2|\mathcal{A}|.$$

Proof.

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$

Lemma. For the set *C* in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\delta(C) \cap F'| \leq 2|\mathcal{A}|.$$

Proof.

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$

Lemma. For the set *C* in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\mathcal{S}(C) \cap F'| \leq 2|\mathcal{A}|.$$

Proof.

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Lemma. For the set *C* in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\delta(C) \cap F'| \le 2|\mathcal{A}|.$$

Proof.

For $i = 1, ..., \ell$, consider i-th iteration (when e_i was added to F).

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\sim G_i'$.

Lemma. For the set *C* in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\mathcal{S}(C) \cap F'| \leq 2|\mathcal{A}|.$$

Proof.

For $i = 1, ..., \ell$, consider i-th iteration (when e_i was added to F).

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\sim G_i'$.

Lemma. For the set *C* in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\mathcal{S}(C) \cap F'| \leq 2|\mathcal{A}|.$$

Proof.

For $i = 1, ..., \ell$, consider i-th iteration (when e_i was added to F).

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\sim G_i'$.

(Ignore components C with $\delta(C) \cap F' = \emptyset$.)

Lemma. For the set *C* in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\delta(C) \cap F'| \le 2|\mathcal{A}|.$$

Proof.

For $i = 1, ..., \ell$, consider i-th iteration (when e_i was added to F).

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\sim G_i'$.

Lemma. For the set *C* in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\mathcal{S}(C) \cap F'| \leq 2|\mathcal{A}|.$$

Proof.

For $i = 1, ..., \ell$, consider i-th iteration (when e_i was added to F).

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\sim G_i'$.

Claim. G'_i is a forest.

Lemma. For the set *C* in any iteration of the algorithm:

$$\sum_{C\in\mathcal{A}} |\mathcal{S}(C)\cap F'| \leq 2|\mathcal{A}|.$$

Proof.

For $i = 1, ..., \ell$, consider i-th iteration (when e_i was added to F).

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\sim G_i'$.

Claim. G'_i is a forest.

Note:
$$\sum_{\mathcal{C} \text{ comp.}} |\delta(\mathcal{C}) \cap F'| = \sum_{v \in V(G'_i)} \deg_{G'_i}(v)$$

Lemma. For the set *C* in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\mathcal{S}(C) \cap F'| \leq 2|\mathcal{A}|.$$

Proof.

For $i = 1, ..., \ell$, consider i-th iteration (when e_i was added to F).

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\sim G_i'$.

Claim. G'_i is a forest.

Note:
$$\sum_{C \text{ comp.}} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} \deg_{G'_i}(v)$$

= $2|E(G'_i)|$

Lemma. For the set *C* in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\delta(C) \cap F'| \le 2|\mathcal{A}|.$$

Proof.

For $i = 1, ..., \ell$, consider i-th iteration (when e_i was added to F).

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\sim G_i'$.

Claim. G'_i is a forest.

Lemma. For the set *C* in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\delta(C) \cap F'| \le 2|\mathcal{A}|.$$

Proof.

For $i = 1, ..., \ell$, consider i-th iteration (when e_i was added to F).

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\sim G_i'$.

Claim. G'_i is a forest.

Note:
$$\sum_{C \text{ comp.}} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} \deg_{G'_i}(v)$$

$$= 2|E(G'_i)| \leq 2|V(G'_i)|$$

$$G'_i \circ G'_i \circ G'_i$$

Lemma. For the set *C* in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\delta(C) \cap F'| \le 2|\mathcal{A}|.$$

Proof.

For $i = 1, ..., \ell$, consider i-th iteration (when e_i was added to F).

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\sim G_i'$.

Claim. G'_i is a forest.

Note:
$$\sum_{C \text{ comp.}} |\mathcal{S}(C) \cap F'| = \sum_{v \in V(G'_i)} \deg_{G'_i}(v)$$

$$= 2|E(G'_i)| \leq 2|V(G'_i)|$$

$$G_i^*$$

Lemma. For the set *C* in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\delta(C) \cap F'| \le 2|\mathcal{A}|.$$

Proof.

For $i = 1, ..., \ell$, consider i-th iteration (when e_i was added to F).

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\sim G_i'$.

Claim. G'_i is a forest.

Note:
$$\sum_{c \text{ comp.}} |\mathcal{S}(c) \cap F'| = \sum_{v \in V(G'_i)} \deg_{G'_i}(v)$$

$$= 2|E(G'_i)| \leq 2|V(G'_i)|$$

$$G'_i \circ G'_i \circ G$$

Lemma. For the set *C* in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\delta(C) \cap F'| \le 2|\mathcal{A}|.$$

Proof.

For $i = 1, ..., \ell$, consider i-th iteration (when e_i was added to F).

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\sim G_i'$.

Claim. G'_i is a forest.

Note:
$$\sum_{c \text{ comp.}} |\mathcal{S}(c) \cap F'| = \sum_{v \in V(G'_i)} \deg_{G'_i}(v)$$

$$= 2|E(G'_i)| \leq 2|V(G'_i)|$$
inactive of active of active

Lemma. For the set *C* in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\delta(C) \cap F'| \le 2|\mathcal{A}|.$$

Proof.

For $i = 1, ..., \ell$, consider i-th iteration (when e_i was added to F).

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\sim G_i'$.

Claim. G'_i is a forest.

(Ignore components C with $\delta(C) \cap F' = \emptyset$.)

Note:
$$\sum_{C \text{ comp.}} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} \deg_{G'_i}(v)$$

= $2|E(G'_i)| \leq 2|V(G'_i)|$

Claim. Inactive vertices have degree ≥ 2 .

inactive o

active

Lemma. For the set *C* in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\delta(C) \cap F'| \le 2|\mathcal{A}|.$$

Proof.

For $i = 1, ..., \ell$, consider i-th iteration (when e_i was added to F).

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\sim G_i'$.

Claim. G'_i is a forest.

(Ignore components C with $\delta(C) \cap F' = \emptyset$.)

Note:
$$\sum_{C \text{ comp.}} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} \deg_{G'_i}(v)$$

= $2|E(G'_i)| \leq 2|V(G'_i)|$

Claim. Inactive vertices have degree ≥ 2 .

$$\Rightarrow \sum_{v \text{ active}} \deg_{G'}(v) \leq$$

Lemma. For the set *C* in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\mathcal{S}(C) \cap F'| \leq 2|\mathcal{A}|.$$

Proof.

For $i = 1, ..., \ell$, consider i-th iteration (when e_i was added to F).

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\sim G_i'$.

Claim. G'_i is a forest.

(Ignore components C with $\delta(C) \cap F' = \emptyset$.)

Note:
$$\sum_{C \text{ comp.}} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} \deg_{G'_i}(v)$$

= $2|E(G'_i)| \leq 2|V(G'_i)|$

Claim. Inactive vertices have degree ≥ 2 .

$$\Rightarrow \sum_{v \text{ active}} \deg_{G'}(v) \le 2 \cdot |V(G')| - 2 \cdot \#(\text{inactive}) =$$

Lemma. For the set *C* in any iteration of the algorithm:

$$\sum_{C \in \mathcal{A}} |\mathcal{S}(C) \cap F'| \leq 2|\mathcal{A}|.$$

Proof.

For $i = 1, ..., \ell$, consider i-th iteration (when e_i was added to F).

Let
$$F_i = \{e_1, \dots, e_i\}$$
, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\sim G_i'$.

Claim. G'_i is a forest.

(Ignore components C with $\delta(C) \cap F' = \emptyset$.)

Note:
$$\sum_{C \text{ comp.}} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} \deg_{G'_i}(v)$$

= $2|E(G'_i)| \leq 2|V(G'_i)|$ inactive $G'_i \cap G'_i \cap G'$

Claim. Inactive vertices have degree ≥ 2 .

$$\Rightarrow \sum_{\substack{v \text{ active}}} \deg_{G'}(v) \le \\ 2 \cdot |V(G')| - 2 \cdot \#(\text{inactive}) = 2|\mathcal{A}|.$$

active

Theorem. The Primal–Dual algorithm with synchronized increases gives a 2-approximation for STEINERFOREST.

Proof.

Theorem.

The Primal–Dual algorithm with synchronized increases gives a 2-approximation for STEINERFOREST.

Proof.

As mentioned before,

$$\sum_{e \in F'} c_e \stackrel{\mathsf{CS}}{=} \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F'| \cdot y_S.$$

Theorem.

The Primal–Dual algorithm with synchronized increases gives a 2-approximation for STEINERFOREST.

Proof.

As mentioned before,

$$\sum_{e \in F'} c_e \stackrel{\mathsf{CS}}{=} \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F'| \cdot y_S.$$

We prove by induction over the number of iterations of the algorithm that

Theorem.

The Primal–Dual algorithm with synchronized increases gives a 2-approximation for STEINERFOREST.

Proof.

As mentioned before,

$$\sum_{e \in F'} c_e \stackrel{\mathsf{CS}}{=} \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F'| \cdot y_S.$$

We prove by induction over the number of iterations of the algorithm that

$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le$$

Theorem.

The Primal–Dual algorithm with synchronized increases gives a 2-approximation for STEINERFOREST.

Proof.

As mentioned before,

$$\sum_{e \in F'} c_e \stackrel{\text{CS}}{=} \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F'| \cdot y_S.$$

We prove by induction over the number of iterations of the algorithm that

$$\sum_{S} |\mathcal{S}(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \tag{*}$$

Theorem.

The Primal–Dual algorithm with synchronized increases gives a 2-approximation for STEINERFOREST.

Proof.

As mentioned before,

$$\sum_{e \in F'} c_e \stackrel{\text{CS}}{=} \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F'| \cdot y_S.$$

We prove by induction over the number of iterations of the algorithm that

$$\sum_{S} |\mathcal{S}(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \tag{*}$$

From that, the claim of the theorem follows.

Proof.
$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \tag{*}$$

Theorem. The Primal–Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.

Proof.
$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \tag{*}$$

Base case trivial since we start with $y_s = 0$ for every s.

Theorem. The Primal–Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.

Proof.
$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \tag{*}$$

Base case trivial since we start with $y_s = 0$ for every s.

Assume that (*) holds at the start of the current iteration.

Theorem. The Primal–Dual algorithm with synchronized increases gives a 2-approximation for STEINERFOREST.

Proof.
$$\sum_{S} |\mathcal{S}(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \tag{*}$$

Base case trivial since we start with $y_s = 0$ for every s.

Assume that (*) holds at the start of the current iteration.

In the current iteration, we increase $y_{\mathcal{C}}$ for every $\mathcal{C} \in \mathcal{A}$ by the same amount, say $\varepsilon \geq 0$.

Theorem. The Primal–Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.

Proof.
$$\sum_{S} |\mathcal{S}(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \tag{*}$$

Base case trivial since we start with $y_s = 0$ for every s.

Assume that (*) holds at the start of the current iteration.

In the current iteration, we increase y_C for every $C \in \mathcal{A}$ by the same amount, say $\varepsilon \geq 0$.

This increases the left side of (*) by

Theorem. The Primal–Dual algorithm with synchronized increases gives a 2-approximation for STEINERFOREST.

Proof.
$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \tag{*}$$

Base case trivial since we start with $y_s = 0$ for every s.

Assume that (*) holds at the start of the current iteration.

In the current iteration, we increase y_C for every $C \in \mathcal{A}$ by the same amount, say $\varepsilon \geq 0$.

This increases the left side of (*) by $\varepsilon \cdot \sum_{C \in \mathcal{A}} |\delta(C) \cap F'|$

Theorem. The Primal–Dual algorithm with synchronized increases gives a 2-approximation for STEINERFOREST.

Proof.
$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \tag{*}$$

Base case trivial since we start with $y_s = 0$ for every s.

Assume that (*) holds at the start of the current iteration.

In the current iteration, we increase y_C for every $C \in \mathcal{A}$ by the same amount, say $\varepsilon \geq 0$.

This increases the left side of (*) by $\ \varepsilon \cdot \sum_{C \in \mathcal{A}} |\delta(C) \cap F'|$ and the right side by

Theorem. The Primal–Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.

Proof.
$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \tag{*}$$

Base case trivial since we start with $y_s = 0$ for every s.

Assume that (*) holds at the start of the current iteration.

In the current iteration, we increase y_C for every $C \in \mathcal{A}$ by the same amount, say $\varepsilon \geq 0$.

This increases the left side of (*) by $\varepsilon \cdot \sum_{C \in \mathcal{A}} |\delta(C) \cap F'|$ and the right side by $\varepsilon \cdot 2|\mathcal{A}|$.

Theorem. The Primal–Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.

Proof.
$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \tag{*}$$

Base case trivial since we start with $y_s = 0$ for every s.

Assume that (*) holds at the start of the current iteration.

In the current iteration, we increase $y_{\mathcal{C}}$ for every $\mathcal{C} \in \mathcal{A}$ by the same amount, say $\varepsilon \geq 0$.

This increases the left side of (*) by $\varepsilon \cdot \sum_{C \in \mathcal{A}} |\delta(C) \cap F'|$ and the right side by $\varepsilon \cdot 2|\mathcal{A}|$.

Structure lemma ⇒

Theorem. The Primal–Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.

Proof.
$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \tag{*}$$

Base case trivial since we start with $y_s = 0$ for every s.

Assume that (*) holds at the start of the current iteration.

In the current iteration, we increase y_C for every $C \in \mathcal{A}$ by the same amount, say $\varepsilon \geq 0$.

This increases the left side of (*) by $\varepsilon \cdot \sum_{C \in \mathcal{A}} |\delta(C) \cap F'|$ and the right side by $\varepsilon \cdot 2|\mathcal{A}|$.

Structure lemma \Rightarrow (*) also holds after the current iteration.

Theorem. The Primal–Dual algorithm with synchronized increases

gives a 2-approximation for STEINERFOREST.

Theorem.

The Primal–Dual algorithm with synchronized increases gives a 2-approximation for STEINERFOREST.

Is our analysis tight?

Theorem. The P

The Primal–Dual algorithm with synchronized increases gives a 2-approximation for STEINERFOREST.

Is our analysis tight?

$$t_2 = s_1$$

$$t_1 = s_n$$

$$t_n = s_{n-1}$$

$$t_3 = s_2$$

•

Theorem. The Primal–Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.

Is our analysis tight? $t_2 = s_1$ $t_3 = s_2$

Theorem. The Primal–Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.

Can we do better?

Theorem. The Primal–Dual algorithm with synchronized increases gives a 2-approximation for STEINERFOREST.

Can we do better?

No better approximation factor is known. :-(

Theorem. The Primal–Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.

Can we do better?

No better approximation factor is known. :-(The integrality gap is 2 - 1/n.

Theorem. The Primal–Dual algorithm with synchronized increases gives a 2-approximation for SteinerForest.

Can we do better?

No better approximation factor is known. :-(The integrality gap is 2 - 1/n.

SteinerForest (as SteinerTree) cannot be approximated within factor $\frac{96}{95} \approx 1.0105$ (unless P = NP). [Chlebík, Chlebíková '08]