计算机网络组网技术

实验报告

班级序号: 180235

姓 名: **孔天欣**

提交日期: 2021-04-22

东北大学秦皇岛分校

【实验名称】 研究应用层和传输层协议

1

【实验内容】

从 PC 使用 URL 捕获 Web 请求运行模拟并捕获通信研究捕获的通信

【实验截图】

1. 拓扑图

2. 通信捕获

3. 第一个通信的 OSI Model

4. 第一个通信的 Outbound PDU Details

组网技术

实验报告

5. 成功访问网站

【实验结论】

本次实验使用了一台 PC 直接连接到 Web 服务器网络,并捕获使用 URL 的网页请求。 PDU 信息窗口按 OSI 模型组织, DNS 查询封装在第 4 层的 UDP 数据段中。单击 Outbound PDU Details 选项卡会看到 DNS 查询在 UDP 数据段中封装成的数据。

【实验名称】 检查路由

2

【实验内容】

使用 route 命令查看 PT-PC 路由表 使用命令提示符 telnet 连接到 Cisco 路由器 使用基本的 Cisco IOS 命令检查路由器的路由

【实验截图】

1. 拓扑图

2. 查看路由表

```
PC>netstat -r
Route Table
Interface List
                    ..... PT TCP Loopback interface
0x2 ...00 16 6f 0d 88 ec ..... PT Ethernet interface
Active Routes:
Network Destination
                          Netmask
                                                         Interface Metric
                                           Gateway
                          0.0.0.0
         0.0.0.0
                                    172.16.255.254
                                                        172.16.1.1
Default Gateway:
                     172.16.255.254
Persistent Routes:
 None
```

3. telnet 远程连接路由

```
PC>telnet 172.16.255.254
Trying 172.16.255.254 ...Open
User Access Verification
Password:
Password:
Router>
```

4. 启用特权模式

Router>enable Password: Router#

5. 查看路由器的路由表

```
Router#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is 168.1.1.1 to network 0.0.0.0

C 168.1.0.0/16 is directly connected, Serial0/0/0

C 172.16.0.0/16 is directly connected, FastEthernet0/0

S* 0.0.0.0/0 [1/0] via 168.1.1.1

Router#
```

【实验结论】

本次实验比较了在 PC 和路由器中分别是如何使用路由的。有些路由已根据网络接口的配置信息被自动添加到了路由表中。若网络配置了 IP 地址和网络掩码,设备会认为该网络已直接连接,网络路由也会被自动输入到路由表中。对于没有直接连接但配置了默认网关 IP 地址的网络,将发送通信到知道该网络的设备。netstat -r 可查看 PC 的路由表,show ip route 命令可以显示路由器的路由表。

【实验名称】 研究 ICMP 数据包

【实验内容】

了解 ICMP 数据包的格式 使用 Packet Tracer 捕获并研究 ICMP 报文

【实验截图】

1. 拓扑图

2. 捕获 ICMP 通信

```
Pinging 192.168.254.254 with 32 bytes of data:

Reply from 192.168.254.254: bytes=32 time=4ms TTL=127

Ping statistics for 192.168.254.254:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 4ms, Maximum = 4ms, Average = 4ms
```


3. 查看 ICMP 报文

Pinging 192.168.153.1 with 32 bytes of data:

4. 捕获到达 192.168.253.1 的 ICMP 回应报文

5. 捕获超过 TTL 值的 ICMP 回应报文

【实验结论】

本次实验使用 Packet Tracer 捕获和研究 ICMP 报文,首先捕获并评估了到达服务器的 ICMP 回应报文,接着捕获并评估到达 192.168.253.1 的 ICMP 回应报文,此外还捕获并评估 超过 TTL 值的 ICMP 回应报文,最后了解了 ICMP 数据包的格式。

【实验编号】

【实验名称】 子网和路由器配置

【实验内容】

根据要求划分子网的地址空间 分配适当的地址给接口并进行记录 配置并激活 Serial 和 FastEthernet 接口 测试和验证配置 思考网络实施并整理成文档

【实验截图】

1. 拓扑图

2. PCO 的配置信息

3. Router0 的配置信息

Serial0/0/0

4. Router1 的配置信息

4. PC1 的配置信息

【实验结论】

本次实验通过使用 Packet Tracer 为拓扑图中显示的拓扑设计并应用 IP 编址方案。通过分配一个地址块划分子网,为网络提供逻辑编址方案。然后就可以根据 IP 编址方案配置路由器接口地址。

【实验名称】 研究第2层帧头

【实验内容】

研究网络 运行模拟

【实验截图】

1. 拓扑图

2. ping 192.168.5.2

```
Pinging 192.168.5.2 with 32 bytes of data:

Reply from 192.168.5.2: bytes=32 time=34ms TTL=124
Reply from 192.168.5.2: bytes=32 time=36ms TTL=124
Reply from 192.168.5.2: bytes=32 time=36ms TTL=124
Reply from 192.168.5.2: bytes=32 time=37ms TTL=124

Ping statistics for 192.168.5.2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 34ms, Maximum = 37ms, Average = 35ms

PC>
```

3. ICMP 报文入站 PDU 详细数据

4. ICMP 报文出站 PDU 详细数据

【实验结论】

本次实验通过研究第二层帧头,可知当 IP 数据包通过网间时,可封装在许多不同的第 2 层帧中,同时,当数据包在路由器之间传送时,第 2 层帧将会解封,而数据包将封装在出站接口的第 2 层帧中。

安验报告

【实验编号】 6

【实验名称】 地址解析协议(ARP)

【实验内容】

使用 Packet Tracer 的 arp 命令 使用 Packet Tracer 检查 ARP 交换

【实验截图】

1. 拓扑图

2. ping 255.255.255.255

3. 检查 ARP 交换

【实验结论】

本次实验通过研究 ARP 协议报文,可知 TCP/IP 使用 ARP 将第 3 层 IP 地址映射到第 2 层 MAC 地址。当帧进入网络时,必定有目的 MAC 地址。为了动态发现目的设备的 MAC 地址,系统将在 LAN 上广播 ARP 请求。拥有该目的 IP 地址的设备将会发出响应,而对应的 MAC 地址将记录到 ARP 缓存中。

【实验编号】

【实验名称】 中间设备用作终端设备

【实验内容】

捕获 Telnet 会话的建立过程 研究 PC 上 Telnet 数据包的交换

【实验截图】

1. 拓扑图

2. ping 172.16.254.1

```
PC>ping 172.16.254.1
Pinging 172.16.254.1 with 32 bytes of data:
Reply from 172.16.254.1: bytes=32 time=23ms TTL=255
Reply from 172.16.254.1: bytes=32 time=34ms TTL=255
Reply from 172.16.254.1: bytes=32 time=47ms TTL=255
Reply from 172.16.254.1: bytes=32 time=16ms TTL=255
Ping statistics for 172.16.254.1:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:
    Minimum = 16ms, Maximum = 47ms, Average = 30ms
```

3. 捕获 Telnet 会话的建立过程

4. 入站 PDU 详细数据

5. 出站 PDU 详细数据

【实验结论】

本次实验通过捕获 Telnet 会话的建立过程和研究 PC 上 Telnet 封装的数据包的交换,可知 Telnet 的报文格式以及传送方法,以及口令的传送在实验中为一个一个字符的传递现象,最后对 Telnet 的运行本质有了更加深入的理解。

8

【实验名称】 管理设备配置

【实验内容】

执行基本的路由器配置 备份路由器配置文件 从 TFTP 服务器将备份配置文件重新加载到路由器的 RAM 中 保存新的运行配置到 NVRAM

【实验截图】

1. 拓扑图

2. ROUTER1 配置


```
ROUTER1#show running-config
Building configuration...
                                             line con 0
Current configuration : 517 bytes
                                             line vty 0 4
                                              password cisco
version 12.3
                                              login
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
hostname ROUTER1
                                             end
enable password class
                                             ROUTER1#
```

3. 验证连通性


```
ROUTER1#
ROUTER1#ping 192.168.1.2

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.1.2, timeout is 2 seconds:
.!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 8/10/12 ms

ROUTER1#

Copy Paste
```

4. 复制配置

```
ROUTER1#copy startup-config tftp
Address or name of remote host []? 192.168.1.2
Destination filename [ROUTER1-confg]?

Writing startup-config...!!
[OK - 517 bytes]

517 bytes copied in 0.022 secs (23000 bytes/sec)
ROUTER1#
```

5. 验证 TFTP 传输

【实验结论】

本次实验通过在路由器上配置常用设置,将配置保存到 TFTP 服务器,然后从 TFTP 服务器恢复配置,进一步深入理解了 TFTP 对于路由器而言可以保存初始化配置,并且可以实现快速简便的传输,使得整体性能更好、更轻量。