Mining Graph Data

COURSE INTRODUCTION

Teacher: Le Ngoc Thanh

Email: Inthanh@fit.hcmus.edu.vn

Contents

- Introduction of subjects and topics
- Rule
- Networks and graphs
- Graph mining
- Maths and applications

About the subject

- Subject name : Mining Graph Data
- Theory/Practice: 45/30.
- Rate of listening to lectures and self-studying: 40/60.
- References:
 - Lecture slides
 - Aggarwal, Charu C., and Haixun Wang, eds. Managing and mining graph data. Vol. 40. New York: Springer, 2010.
 - Easley, David, and Jon Kleinberg. "Networks, crowds, and markets:
 Reasoning about a highly connected world." Significance 9 (2012): 43-44.
 - Ketmaneechairat, Hathairat. "Graph Mining Laws, Tools and Case Studies."
 Journal of Digital Information Management 12, no. 6 (2014): 446
 - ...

Subjects

Week	Subject
1	Introduction to Graph Data Mining, Algorithms and
	Applications
2	Review the knowledge related to graphs and data
	mining
3	Patterns in static and dynamic graphs; generate
	graph.
4	Indexing Graph and Ranking
5	Mining Graph Pattern
6	Graph Classification

Subjects

Week	Subject
7	Clustering and community detection
8	Link prediction
9	Embedding graphs
10-15	Seminar topics includes: deep learning for graphs, graph summarization, recommendation systems, anomaly detection, large size graphs.

Contents

- Introduction of subjects and topics
- Rule
- Networks and graphs
- Graph mining
- Maths and applications

Regulations and academic assessment

• Theory: 40%

Final Exam: 40%

• Lab: 30%

Seminar Project: 30%

- Regulations:
 - Copy, cheats → not be allowed to take the final exam
 - Actions that disrupt the classroom → not be allowed to take the final exam.

Contents

- Introduction of subjects and topics
- Rule
- Networks and graphs
- Graph mining
- Maths and applications

Networks and graphs

- Network often used to represent the natural relationship of objects in the real world.
- Meanwhile, graphs show the relationship generated through the automatic process.

Social Network

- Vertices: People
- Edges: Friendships

Communication network

- Vertices: People
- Edges: email exchange

Business network

- Vertices: Companies
- Edges: relationships (financial, collaboration)

Biological network

Vetices: Proteins

Edges: interactions

Vertices: metabolites, enzymes

Edges: chemical reactions

Information network (WWW)

- Vertices: Web Pages
- Edges: Links

Social network

- Vertices: Twitter users
- Edges: Follows/conversations

Contents

- Introduction of subjects and topics
- Rule
- Networks and graphs
- Graph mining
- Maths and applications

Why is network analysis important?

- The system is connected by many components, if we only focus on understanding a single individual, we cannot grasp the whole system.
- There are 2 big questions :
 - What are the structural properties of the network?
 - What interactive process is happening in the network?

Research in the net

- In the field of network analysis, people focus on studying network behaviors such as human-to-human behavior in social networks.
 - Predict behavior based on its measurable properties.

Modeling network with graphs

 Networks are not separate from graphs, they can be re-modeled as graphs and take advantage of its theoretical foundations.

Mining Network's Challenges

- Normal graph:
 - Large size, very very large size (massive)
 - Too sparsity/ too density
 - small diameter
 - dynamic
- Requires efficient algorithms for storage and computation.

Contents

- Introduction of subjects and topics
- Rule
- Networks and graphs
- Graph mining
- Maths and applications

Graph matching

Graph matching

different species based on their interaction networks

Graph matching

Using graphs in a network to identify hidden identities in a social network

Semantic class

Graph clustering

Graph clustering

Grouping to reduce graph complexity

Graph clustering

28.

Graph classification

- Labeling the top
- Labeling the link
- Labeling the graph/subgraph

Graph classification

Frequent pattern mining in graph)

Frequent pattern mining in graph

Common chemical bond string pattern

Frequent pattern mining in graph

Withdrawal and deposit form

privacy-preserving in graph

- It may not be enough to remove the identifying information, since the information can be interpolated from known vertices.
- How to mask identifier information without breaking the overall structure of the graph?

34.

Link prediction

Link prediction

Graph analysis task	Application	Field	
	Data storage	Database systems	
	Data compression		
Graph clustering	Popularity prediction	Social network analysis	
Graph clastering	Tag recommendation		
	Substructure indentification	Computer networks	
	Network usage optimization		
	2D,3D Image analysis		
	Face recognition	Computer vision	
	Face verification		
Graph matching	Object registration/retrieval		
	Document analysis	Language engineering	
	Molecular structure study	Computational chemistry	
	Enumeration	Multiple	
Random walks	Volume computation	Computational geometry	
Random warks	Mobile agent modelling	Distributed systems	
	Web crawling	Internet computing	
	System intrusion detection	Computer security	
Anomaly detection	Network attack detection		
Anomaly detection	Financial fraud detection	Law enforcement	
	Influential individual detection	Social network analysis	

References

Aggarwal, Charu C., and Haixun Wang, eds.
 Managing and mining graph data

