IN2120 Information Security

Lecture 01:

- Course info
- Basic concepts in information security

Audun Jøsang University of Oslo, Autumn 2019

Course information

- Course organization
- Prerequisites
- Syllabus and text book
- Lecture plan
- Home exam
- Assessment and exams
- Security education
- AFSecurity

Course organisation and learning

- Learning activities
 - Attend 2-hour lecture on Thursdays 14:15h 16:00h
 - Lecture notes available at least one day prior to lecture
 - Podcast available the day after the lecture
 - Attend 1-hour workshop on Tuesdays 12:15 13:00h
 - Study and answer workshop questions after each lecture
 - Will be discussed during the following week's workshop
 - Read sections from text book, corresponding to each lecture
 - Work on the home exam
 - Topic for the assignment can be freely chosen.
- Not just about facts, you also need to
 - understand concepts
 - apply those concepts
 - think about implications
 - understand limitations

Course Resources

- Learning material is available at:
 - http://www.uio.no/studier/emner/matnat/ifi/IN2120/h19/
 - lecture presentations, workshop questions, etc.
 - List of English security terms translated to Norwegian
- Suggested security topics for home exam on:
 - https://wiki.uio.no/mn/ifi/IN2120-2019
- Various online resources
 - E.g. NIST special computer security publications http://csrc.nist.gov/publications/PubsSPs.html
- Previous version of the course: INF3510 Information Security
 - https://www.uio.no/studier/emner/matnat/ifi/INF3510/
 - 3rd year Bachelor course, Spring semester
 - Same scope as IN2120

Lecturers

- Prof. Audun Jøsang,
 - Professor, UiO, 2008 →
 - Associate Professor, QUT, Australia, 2000-2007
 - Telecommunications engineer, Alcatel, Belgium 1988-1993
 - PhD Information Security, NTNU, 1997
 - MSc Information Security, Royal Holloway College, London, 1993
 - MSc Telecommunications, NTH 1987

Nils Gruschka

- Associate Professor, UiO, 2018 →
- Professor, Kiel Univ. of Applied Science, 2012-2017
- Senior Research, NEC Labs Europe, 2008-2011
- PhD, Network Sec., Chr-Albrechts University, Kiel, 2008
- System Design Engineer, T-Systems, 2000-2002
- MSc, Comp.Sc., Chr-Albrechts University, Kiel, 2000

Prerequisites

- Prerequisites
 - Basic computer and network technology
 - Basic (discrete) mathematics
- Theoretic focus on a basic level
 - Discrete mathematics, number theory, modular arithmetic
 - Information theory
 - Probability calculus
 - Computer and network architectures

Syllabus and text book

- The main learning material is presented during the lectures.
- In addition use the text book:

 CISSP All-in-One Exam Guide
 8th Edition, 2018

Authors: Shon Harris (⊕) and

Fernando Maymí

Shon Harris

Fernando Maymí

- The book covers the 8 CBK domains (Common Body of Knowledge) for the CISSP (Certified Information Systems Security Professional) exam.
- Sold by e.g. Akademika and Amazon

https://www.akademika.no/cissp-all-one-exam-guide-eighth-edition/harris-shon/maymi-fernando/9781260142655

- Reading sections in the text book
 - For each lecture a set of relevant pages in the text book is specified in the document "Detailed Reading" on the course web page.
 - The purpose is to give deeper understanding of topics from lectures

How to use Harris & Maymí's CISSP book

- 1000+ pages in total
 - But exclude
 - 50 pages of appendix, glossary and index
 - 300 pages of tips, Q&A
 - Parts of chapters
 - Around 700 pages of readable material
 - The book is very easy to read ☺
 - Sometimes long explanations and examples ☺
- Each chapter has Main Sections (big font) and Subsections (small font), but no numbering
 - The lack of numbering of subsections can be confusing

Preliminary Course Schedule

Week	Date	L#	Topic			
W34	22.08.2019	1	Course Information. Basic Concepts in IS			
W35	29.08.2019	2	Cryptography			
W36	05.09.2019	3	Key Management and PKI			
W37	12.09.2019	4	Network Security			
W38	18.09.2019	5	IS Management, and Human Factors for IS			
W39	26.09.2019	6	Incident Response and Digital Forensics			
W40	03.10.2019	7	Risk Management and Business Continuity Planning			
W41	10.10.2019	8	Computer Security			
W42	17.10.2019	9	User Authentication			
W43	24.10.2019	10	Identity and Access Management			
W44	31.10.2019	11	Ethical Hacking / Penetration Testing			
W45	07.11.2019	12	Secure System Development and Application Security			
W46	No lecture					
W47	21.11.2019		Review			
W48	No lecture					
W49	No lecture					
W50	11.12.2019 Digital exam, time: 09:00h - 13:00h (4 hours)					

Home Exam

- Write a report/essay on a security topic chosen by you
- Individual, or in group of 2 or 3 students
- Select topic and specify group on wiki https://wiki.uio.no/mn/ifi/IN2120-2019/
- Length: 5000 10000 words (approx. 10 15 pages)
- Due date: 03.11.2019
- Assessment criteria:
 - Structure and presentation: weight ¼
 - Scope and depth of content: weight ¼
 - Evidence of independent research and analysis: weight ¼
 - Proper use of references: weight ¼

Assessment and Grading

- Course weight: 10 study points
- Assessment items
 - Home exam: normally carries relative weight 0.4
 - Digital exam: normally carries relative weight 0.6
- Adjustments
 - Weight on home exam is reduced when digital-exam score < 50%
 - Weight on home exam is 0 when digital-exam score < 40%
- Required to get a pass score on both assessment items
 - At least 40% on home exam and 40% on written exam
 - Relatively easy to get a high score on home exam
 - Relatively difficult to get a high score on written exam
- Stay clear of dishonesty (including plagiarism and cheating)
 - See: https://www.uio.no/english/studies/admin/examinations/cheating/
 - Should be no problem ©

Exam Statistics IN2120 (2018 \rightarrow) and INF3510 (\rightarrow 2018)

Year	# studs	# A (%)	# B (%)	# C (%)	# D (%)	# E (%)	# F (%)			
2018	241	28 (12%)	92 (38%)	87 (36%)	6 (2%)	9 (4%)	19 (8%)			
2018	152	20 (13%)	50 (33%)	64 (42%)	10 (7%)	1 (1%)	7 (5%)			
2017	138	9 (6%)	47 (34%)	66 (49%)	4 (3%)	3 (2%)	9 (6%)			
2016	147	6 (4%)	39 (37%)	59 (40%)	9 (6%)	10 (7%)	24 (16%)			
2015	121	10 (9%)	30 (25%)	45 (37%)	9 (7%)	9 (7%)	18 (15%)			
2014	103	4 (4%)	8 (8%)	45 (44%)	14(13%)	9 (9%)	23 (22%)			
2013	0	INF3510 was cancelled in 2013 due to faculty politics.								
2012	34	2 (6%)	6 (18%)	14 (41%)	0 (0.0%)	6 (17.5%)	6 (17.5%)			

IN3210 Network Security

Other security courses at IFI

- Nils Gruschka (Autumn)
- IN5290: Ethical Hacking
 - Laszlo Erdödi (Autumn)
- IN5280: Security by Design
 - Lillian Røstad (Spring)
- IN5130 Unassailable IT-systems
 - Ketil Stølen (Autumn)
- TEK4500: Introduction to Cryptography
 - Leif Nilsen (Autumn)
- TEK5500: Security in Distributed Systems
 - Nils Nordbotten (Spring)
- TEK5510: Security in Operating Systems and Software
 - Trond-Arne Sørby (Autumn)
- TEK9550 Advanced Topics in Cryptology
 - Thomas Gregersen (Spring)
- ITLED4230 Ledelse av informasjonssikkerhet
 - Audun Jøsang (Autumn) (professional course, fee NOK 25K)

Why study information security?

- You can not be an IT expert without also knowing IT security
 - Analogy: Building architects must have knowledge about fire safety
- Developing IT systems without considering security will lead to vulnerable IT systems
- "Security by design" is a requirement in system design and is a prerequisite for privacy by design which is a legal requirement for processing personal data
- Information security is a political issue
 - The Government states the importance of producing of IT-security skills in higher education
 - Stortinget wants information security to be mandatory in IT education https://www.tekna.no/aktuelt/tekna-gjennomslag-om-ikt-sikkerhet-i-utdanningen/

Security Certifications for Professionals

- Many different types of certifications available
 - vendor neutral or vendor specific, profit or non-profit, e.g.
 - (ISC)² https://www.isc2.org/
 - ISACA https://www.isaca.org/
 - SANS https://www.sans.org/
 - CISCO https://www.cisco.com/c/en/us/trainingevents/training-certifications/overview.html
- Certification gives assurance of knowledge and skills,
 - needed in job functions
 - gives credibility for consultants, applying for jobs, for promotion
- Sometimes required
 - US Government IT Security jobs
- Certification types reflect current topics in IT Security
 - Generally kept up-to-date

CISSP Certification from (ISC)²: Certified Information System Security Professional

- Many different books to prepare for the CISSP exam
- e.g. text book used for IN2120 course

CISSP All-in-One Exam Guide 8th Edition, 2018 Author: Shon Harris and Fernando Maymí

- € 560 fee to sit CISSP exam
- You also need several years professional experience to be certified
- Exam through http://www.pearsonvue.com/isc2/
- Test Centre in Oslo: http://www.glasspaper.no/ Brynsveien 12, Bryn, Oslo
- Most of the of the material presented in the IN2120 course is taken from the syllabus of the CISSP CBK (Common Body of Knowledge).

CISSP CBK (Common Body of Knowledge) 8 domains

- Security and Risk
 Management (Security, Risk,
 Compliance, Law, Regulations,
 and Business Continuity)
- Asset Security (Protecting Security of Assets)
- Security Engineering
 (Engineering and Management of Security)
- 4. Communication and Network Security (Designing and Protecting Network Security)

- 5. Identity and Access Management (Controlling Access and Managing Identity)
- 6. Security Assessment and Testing (Designing, Performing, and Analyzing Security Testing)
- 7. Security Operations (Foundational Concepts, Investigations, Incident Management, and Disaster Recovery)
- 8. Software Development Security (Understanding, Applying, and Enforcing Software Security)

Information Security Surveys

- Mørketallsundersøkelsen:
 - http://www.nsr-org.no/moerketall/
 - New report in December every 2 years (latest report from 2018)
- Mnemonic Security Report:
 - https://www.mnemonic.no/security-report/
- PWC security survey:
 - http://www.pwc.com/gx/en/issues/cyber-security/information-security-survey.html
- UK Cyber Security Survey:
 - https://www.ipsos.com/ipsos-mori/en-uk/uk-cyber-security-survey-2019
- + many others

Useful for knowing the trend and current state of information security threats and attacks

Security Advisory Bodies

- NorCERT: For government sector: https://www.nsm.stat.no/norcert
- NorSIS: For citizens and small-business sector: https://www.norsis.no/
- Nordic Financial CERT: https://www.nfcert.org/
- KraftCERT: https://www.kraftcert.no/
- HelseCERT: https://www.nhn.no/helsecert/
- UNINETT-CERT: https://www.uninett.no/cert
- UiO-CERT: http://www.uio.no/english/services/it/security/cert/
- CISA US CERT: https://www.us-cert.gov/
- Australia AusCERT: https://www.auscert.org.au/
- + many others

They provide advice and assistance for managing threats and vulnerabilities

Academic Forum on Security

- Monthly seminar on information security
- https://wiki.uio.no/mn/ifi/AFSecurity/
- Guest expert speakers
- Next AFSecurity seminar:
 - Title: Privacy Threat of Keystroke Profiling on the Web
 - Speaker: Denis Migdal (ENSICAEN)
 - **Time:** 21 August 2019, 14:00h
 - Place: Kristen Nygaards sal, 5th floor, OJD
- All interested are welcome!
- Organised by the UiO SecurityLab

UiO: University of Oslo

Information Security Basic Concepts

Good and bad translation

English

Norwegian

- Security —
- Safety ———
- Certainty

- Sikkerhet
- Trygghet
- Visshet

- Security
- Safety
- Certainty

Wat is security?

Security is the protection of assets from harm property, infrastructure, stability, life, environment, information

- Physical security (prevent burglary and theft of property)
- Societal security (security of critical infrastructures)
- National security (political stability and national integrity)
- Safety (security of life and health)
- Environmental security (stop pollution and invasive species)
- Information security and data protection

What is *Information Security*

- Information Security is the protection of information assets from damage or harm
- What are the assets to be protected?
 - Example: data files, software, IT equipment and infrastructure
- Covers both intentional and accidental events
 - Threat agents can be humans or acts of nature
 - People can cause harm by accident or by intent
- Information Security defined:
 - The preservation of confidentiality, integrity and availability of information; in addition, other properties such as authenticity, accountability, non-repudiation and reliability can also be involved. (ISO27000 Information Security Management Systems - Overview and Vocabulary)

Information Security Management

- IS management consists of activities to control and reduce risk of damage to information assets
- IS management focuses on:
 - Evaluate threats, vulnerabilities and risks
 - Control security risks by reducing vulnerability to threats
 - Detection and response to attacks
 - Recovery from damage caused by attacks
 - Investigate and collect evidence about incidents (forensics)

Threat, Vulnerability, Risk and Control

Threat

- Threat Actor: An active entity which can execute a threat scenario.
- Threat Scenario: The set of steps executed in a (potential) cyber attack.
- When simply using the term "threat", it usually means a threat scenario.

Weaknesses or opportunities allowing a threat scenario to be executed

Security Risk

 Likelihood (ease of executing a threat scenario), combined with the potential damage in case of an incident (successful attack)

Security Control

A method for removing vulnerabilities and reducing security risk

Internet Storm Survival Time Measure

The survival time is calculated as the average time between attacks against average target IP address. https://isc.sans.edu/survivaltime.html

The Need for Information Security

- Can we remove all vulnerabilities once and for all?
- No we can't! Reasons why that's impossible:
 - Rapid innovation and new technology creates new vulnerabilities
 - Information security is (still) often ignored when developing IT
 - New threats that exploit vulnerabilities are invented every day
 - More effective attack technique and tools are being developed
 - Increased value of online digital assets makes attacks more attractive
- Conclusion: Information security doesn't have a final goal, it's a continuing process

Security control categories

Physical controls

- Facility protection
- Security guards
- Locks
- Monitoring
- Environmental controls
- Intrusion detection

Technical controls

- Logical access control
- Cryptographic controls
- Security devices
- User authentication
- Intrusion detection
- Forensics

Administrative controls

- Policies & standards
- Procedures & practice
- Personnel screening
- Awareness training
- Secure System Dev.
- Incident Response

Security Controls by Functional Types

- Preventive controls:
 - prevent attempts to exploit vulnerabilities
 - Example: encryption of files
- Detective controls:
 - warn of attempts to exploit vulnerabilities
 - Example: Intrusion detection systems (IDS)
- Corrective controls:
 - correct errors or irregularities that have been detected.
 - Example: Restoring all applications from the last known good image to bring a corrupted system back online
- Use a combination of controls to help ensure that the organisational processes, people, and technology operate within prescribed bounds.

Controls by Information States

- Information security involves protecting information assets from harm or damage.
- Information is considered in one of three possible states:
 - During storage
 - Information storage containers
 - Electronic, physical, human

- During transmission
 - Physical or electronic

- During processing (use)
 - Physical or electronic

Security controls for all information states are needed

Security Services and Goals

- A security service supports a general security goal
- The traditional definition of information security is to ensure the three CIA security services/goals for data and systems:
 - Confidentiality:
 - Integrity
 - Availability:

- CIA are the three main security services and goals
- Data privacy is an additional goal which relies on CIA
 - Privacy:

Data Privacy

Security Services and Controls

- Security services (aka. security goals or properties) are
 - implementation independent
 - supported by specific controls
- Security controls (aka. mechanisms) are
 - Practical mechanisms, actions, tools or procedures that are used to provide security services

Security services:

e.g. Confidentiality - Integrity - Availability

Security controls:

e.g. Encryption – Firewalls – Awareness

Confidentiality (Security Service/Goal)

- The property that information is not made available or disclosed to unauthorized individuals, entities, or processes. (ISO 27000)
- Can be divided into:
 - Secrecy: Protecting business data
 - Privacy: Protecting personal data
 - Anonymity: Hide who is engaging in what actions
- Main threat: Information theft, unintentional disclosure
- Controls: Encryption, Access Control, Perimeter defence As general controls, also include:

Secure Systems Development, Incident Response

Integrity (Security Service/Goal)

 Data Integrity: The property that data has not been altered or destroyed in an unauthorized manner.

(X.800: Security Architecture for OSI)

• System Integrity: The property of accuracy and completeness (ISO 27000).

Can include the accountability of actions.

- Threats: Data and system corruption, loss of accountability
- Controls:
 - Hashing, cryptographic integrity check and encryption
 - Authentication, access control and logging
 - Software digital signing
 - Configuration management and change control (system integrity)

As general controls, also include:

Secure System Development, Incident Response

Availability (Security Service/Goal)

- The property of being accessible and usable upon demand by an authorized entity. (ISO 27000)
- Main threat: Denial of Service (DoS)
 - The prevention of authorized access to resources or the delaying of time critical operations
- Controls:
 - Redundancy of resources,
 - Load balancing,
 - Software and data backups

As general controls, also include:

Secure System Development and Incident Response

Data Privacy

To protect specific aspects of information that may be related to natural persons (personal information).

- Prevent unauthorized collection and storage of personal information
- Prevent unauthorized use of collected personal information
- Make sure your personal information is correct
- Ensure transparency and access for data subjects
- Adequate information security (CIA) of personal information
- Define clear responsibilities around personal information
- GDPR (General Data Protection Regulation) became EU law on 25 May 2018, its Norwegian translation became the new "Personopplysningsloven" on 20 July 2018.

Authenticity (Security Service/Goal)

The CIA services/goals are quite general.

Other security services are often mentioned.

Authentication is very important, with various types:

User authentication:

 The process of verifying a claimed identity of a (legal) user when accessing a system or an application.

Organisation authentication:

The process of verifying a claimed identity of a (legal) organisation in an online interaction/session

System authentication (peer entity authentication):

 The corroboration (verification) that a peer entity (system) in an association (connection, session) is the one claimed (X.800).

Data origin authentication (message authentication):

 The corroboration (verification) that the source of data received is as claimed (X.800).

Taxonomy of Authentication

User Identification and Authentication

- Identification
 - Who you claim to be
 - Method: (user)name, biometrics
- User authentication
 - Prove that you are the one you claim to be
- Main threat: Spoofed identity and false login
- Controls:
 - Passwords,
 - Personal cryptographic tokens,
 - OTP generators, etc.
 - Biometrics
 - Id cards
 - Cryptographic security/authentication protocols

Authentication token

System/Company Authentication

- Goal
 - Establish the correct identity of organisations/remote hosts
- Main threat:
 - Network intrusion
 - Masquerading attacks,
 - Replay attacks
 - (D)DOS attacks
- Controls:
 - Cryptographic authentication protocols based on hashing and encryption algorithms
 - Examples: TLS, VPN, IPSEC

Data Origin Authentication (Message authentication)

- Goal: Recipient of a message (i.e. data) can verify the correctness of claimed sender identity
 - But 3rd party may not be able to verify it
- Main threats:
 - False transactions
 - False messages and data
- Controls:
 - Encryption with shared secret key
 - MAC (Message Authentication Code)
 - Security protocols
 - Digital signature with private key
 - Electronic signature,
 - · i.e. any digital evidence

Non-Repudiation

(Strong form of Data Authentication)

- Goal: Making sending and receiving messages undeniable through unforgible evidence.
 - Non-repudiation of origin: proof that data was sent.
 - Non-repudiation of delivery: proof that data was received.
 - NB: imprecise interpretation: Has a message been received and read just because it has been delivered to your mailbox?
- Main threats:
 - Sender falsely denying having sent message
 - Recipient falsely denying having received message
- Control: digital signature
 - Cryptographic evidence that can be confirmed by a third party
- Data origin authentication and non-repudiation are similar
 - Data origin authentication only provides proof to recipient party
 - Non-repudiation also provides proof to third parties

Accountability

(Can be considered as a part of System integrity)

- Goal: Trace action to a specific user and hold them responsible
 - Audit information must be selectively kept and protected so that actions affecting security can be traced to the responsible party (TCSEC/Orange Book)
- Main threats:
 - Inability to identify source of incident
 - Inability to make attacker responsible
- · Controls:
 - Identify and authenticate users
 - Log all system events (audit)
 - Electronic signature
 - Non-repudiation based on digital signature
 - Forensics

Access Authorization

- Access Authorization is to specify access and usage permissions for entities, roles or processes
 - Authorization policy is normally defined by humans
 - Issued by an authority within the domain/organisation
- Authorities authorize, systems don't
- Authority can be delegated
 - Management → Sys.Admin
 - Implemented in IT systems as configuration/policy

Identity and Access Management (IAM) Phases

Confusion about Authorization

- The term "authorization" is often wrongly used in the sense of "access control"
 - e.g. misleading figure in Ch.5 IAM on p.733 in Harris 8th ed.
 - Common error in text books and specifications (RFC 2196 ...)
 - E.g. Cisco AAA (Authentication, Authorization and Accounting)
- Wrong use of "authorization" gives meaningless security:
 - 1. You steal somebody's password, and uses it to access account.
 - 2. Login screen gives warning: "Only authorized users may access this system".
 - 3. You get caught and taken to the police
 - 4. You argue: "This text book on information security states that a system authorizes the user when typing the right password, hence I was authorized because I typed the right password".
 - 5. Case dismissed, you go free.

Identity and Access Management Scenario

