Отчет о выполнении лабораторной работы Определение модуля кручения

Лепарский Роман 02.10.2020

1 Аннотация

В работе измеряется модуль кручения двумя различными способами:

- 1) Определением угла поворота в зависимости от приложенного момента сил.
- 2) Измерением периодов крутильных колебаний подвешенного маятника.

2 теоретические сведения

2.1 Статически метод

Рассмотрим кольцо радиуса r, толщины dr, и высоты dl. При закручивании верхнее сечение кольца поворачивается на угол $d\varphi$, а образующая наклоняется на угол α . При небольших углах α можно считать:

$$\alpha dl = r d\varphi \tag{1}$$

Касательное напряжение au связано с углом сдвига lpha линейной зависимостью:

$$\tau = G\alpha$$

Используя (1), получаем:

$$\tau = Gr \frac{d\varphi}{dl}$$

Эти касательные напряжения создают момент сил относительно оси цилиндра:

$$dM = 2\pi r dr \cdot \tau \cdot r$$

Суммарный момент сил, действующий на всем поперечном сечении стержня, находится интегрированием:

$$M = 2\pi G \frac{d\varphi}{dl} \int_{0}^{R} r^{3} dr = \pi G \frac{d\varphi}{dl} \frac{R^{4}}{2}.$$

Таким образом, для связи приложенного момента сил M и угла поворота φ , получаем:

$$M = \frac{\pi R^4 G}{2l} \varphi = f \varphi \tag{2}$$

Здесь введен модуль кручения f, связанный с модулем сдвига G:

$$f = \frac{\pi R^4 G}{2l} \tag{3}$$

Необходимо подчеркнуть, что зависимость (2) выполняется только при малых углах α

2.2 Динамический метод

Вращение стержня с закреплёнными на нем грузами вокруг вертикальной оси происходит под действием упругого момента, возникающего в проволоке. Это вращение описывается уравнением:

$$I\frac{d^2\varphi}{dt^2} = -M\tag{4}$$

Введем обозначение:

$$\omega^2 = \frac{f}{I}$$

При этом из (2) и (4) получим уравнение гармонических колебаний:

$$\frac{d^2\varphi}{dt^2} + \omega^2\varphi = 0$$

Период колебаний T равен

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{I}{f}}$$

3 Оборудование

3.1 Статический метод

- 1. Исследуемый стержень
- 2. Отсчетная труба со шкалой
- 3. Рулетка
- 4. Микрометр
- 5. Набор грузов

3.2 Динамический метод

- 1. Проволока из исследуемого материала
- 2. Грузы
- 3. Секундомер
- 4. Рулетка
- 5. Микрометр
- 6. линейка

4 Результаты измерений и обработка данных

4.1 Статический метод

Измерим расстояние от зекальца до шкалы: $L=134 {\rm cm},$ радиус стержня $R=10 {\rm mm}$ и диаметр шкива $d=98 {\rm mm}.$

Увеличивая нагрузку снимем зависимость $\varphi(M)$:

Зависимость отклонения луча от массы грузов

Х, мм	т, г
421	0
344	100
258	200
196	300
126	390
126	390
195	300
258	200
345	100
421	0

$$2\varphi = \frac{(X(0) - X)}{L} \Rightarrow \varphi = \frac{(X(0) - X)}{2L}$$
$$M = 2mgd$$

Зависимость $\varphi(M)$

φ	М, Н·м
0	0
0,029	0,192
0,061	0,384
0,084	0,576
0,110	0,749
0,110	0,749
0,084	0,576
0,061	0,384
0,028	0,192
0	0

Постороим график этой зависимости

По МНК получаем:

$$f_0 = 6.81 \text{HM}$$

$$\sigma^2 = \frac{1}{5} \sum_{i=1}^5 (f_0 - f_i)^2 = 0.0575 \text{Hm}^2$$

$$\Rightarrow f = 6.8 \pm 0.24 \text{Hm}$$

Зная значение f, посчитаем модуль сдвига G, пользуясь формулой (3) на странице (2)

$$G = \frac{f2l}{\pi R^4} = 0.58 \pm 0.02 \Gamma \Pi a$$

4.2 Динамический метод

Измерим диаметр проволоки $d_0=1.55$ мм, её длину L=1.34м и массу подвешиваемых грузов m=0.376кг. Снимем зависимость квадрата периода колебаний T от квадрата расстояния от проводоки до центра масс каждого груза l:

Зависимость $T^2(l^2)$

T^2 , c^2	l^2 , $10^{-3}m^2$
4,84	3,025
5,76	4,225
7,29	5,635
9,00	7,225
10,89	9,025

По данным значениям построим график:

По МНК найдем коэффициент наклона прямой:

$$k_0 = 1.55 \frac{c^2}{10^{-3} \text{M}^2}$$

$$\sigma^2 = \frac{1}{5} \sum_{i=1}^{5} (k_0 - k_i)^2 = 0.065 \text{Hm}^2$$

$$\Rightarrow k = 1.55 \pm 0.25 \text{Hm}$$

Из коэффициента k найдем модуль кручения f по формуле

$$f = \frac{8\pi^2 m}{k} = 19.67 \pm 3.18 \text{Hm}$$

Зная значение f, посчитаем модуль сдвига G, пользуясь формулой (3) на странице (2)

$$G = \frac{f2l}{\pi r^4} = 0.46 \pm 0.75 \Gamma \Pi a$$

5 Заключение

Получив значения модуля кручения и модуля сдвига двумя различными способами и посчитав погрешность, мы можем увидеть, что статический метод даёт более точный результат. Более точное значение достигается за счёт статичности установки.