A new class of liquid crystal compounds is based on tolane and bis-tolane structures:

$$R_{n}$$
 Z_{1}
 Y_{1}
 X_{2}
 Y_{2}

(Structure IV)

$$R_m$$
 T_2
 T_1
 T_2
 T_1
 T_2
 T_2
 T_2
 T_2
 T_2
 T_3

(Structure V)

in which X is a polar group such as F (fluoro), CN (cyano), OCF₃ (trifluoromethoxy), or NCS (isothiocyanate) at least one of the pairs of sites Y_1 and Y_2 , Z_1 and Z_2 , and for the bis-tolane derivatives, A_1 and A_2 are fluoro groups.

T₁ for the tolane derivatives is always a triple bond. For the bis-tolane derivatives, T₁ and T₂ are either both triple bonds or one of the two groups is a double bond with and the other remains a triple bond.

 R_n or R_m may be an alkyl group having the general formula C_nH_{2n+1} , an alkenyl group having the general formula C_nH_{2n-1} , an alkoxy group having the general formula

OC_n H_{2n+1} , or an alkenoxy group having the general formula $-OC_nH_{2n-1}$. Additionally, for the tolane compounds, R_n may be a cyclohexyl substituent:

Page 36
Polar Tolane Liquid Crystals
Wu, Dalton, and Chai

5

10

(Structure VI)

or a dioxane substituent:

5 (Structure VII)

These compounds exhibit useful nematic ranges and melting points. Also disclosed are eutectic mixtures including these compounds.