Abstract:

In this updated project, the Cifar100 dataset, which consists of one hundred categories, about five hundred images per category for the training set, was classified with a convolutional neural network. With data augmentation, the test accuracy increased from 0.43 to 0.59. Transfer Learning was also implemented, which resulted in astonishing high test accuracies. In the following report, the final model's architecture and other models that have been trained are presented.

Model's Architecture:

After once again, testing several models, each with different numbers of convolutional layers and different numbers of convolutional filters and parameters, the final model's architecture consists of six convolutional layers, each followed by a max-pooling layer, five dropout layers, and two dense layers followed by an output layer.

Model: "sequential_8"

Layer (type)	Output Shape	Param #
conv2d_48 (Conv2D)	(None, 32, 32, 256)	7168
batch_normalization_	64 (Bat (None, 32, 32, 256) chNormalization)	1024
conv2d_49 (Conv2D)	(None, 32, 32, 256)	590080
batch_normalization_	65 (Bat (None, 32, 32, 256) chNormalization)	1024
max_pooling2d_24 (N	MaxPoolin (None, 16, 16, 256) g2D)	0
dropout_40 (Dropout	(None, 16, 16, 256)	0
conv2d_50 (Conv2D)	(None, 16, 16, 256)	590080
batch_normalization_	66 (Bat (None, 16, 16, 256) chNormalization)	1024
conv2d_51 (Conv2D)	(None, 16, 16, 256)	590080
batch_normalization_	67 (Bat (None, 16, 16, 256) chNormalization)	1024
max_pooling2d_25 (N	MaxPoolin (None, 8, 8, 256) g2D)	0
dropout_41 (Dropout	(None, 8, 8, 256)	0
conv2d_52 (Conv2D)	(None, 8, 8, 512)	1180160
batch_normalization_	68 (Bat (None, 8, 8, 512) chNormalization)	2048
conv2d_53 (Conv2D)	(None, 8, 8, 512)	2359808
batch_normalization_	69 (Bat (None, 8, 8, 512) chNormalization)	2048

max_pooling2d_26 (MaxPoolin g2		0
dropout_42 (Dropout)	(None, 4, 4, 512)	0
flatten_8 (Flatten)	(None, 8192)	0
dense_24 (Dense) (No	one, 1024)	8389632
dropout_43 (Dropout)	(None, 1024)	0
batch_normalization_70 (Bat chNormal		4096
dense_25 (Dense) (No	one, 1024)	1049600
batch_normalization_71 (Bat (None, 1024) chNormalization)		
dropout_44 (Dropout)	(None, 1024)	0
dense_26 (Dense) (No	one, 100)	102500

Total params: 14,875,492 Trainable params: 14,867,300 Non-trainable params: 8,192

Figure 1 The Initial Model's Architecture

The trend of changes in train and validation loss and accuracy in the range of 80 epochs is as follows.

Figure 2 Training and Validation Accuracy of Final Model

Figure 3 Training and Validation Loss of Final Model

And finally, with the use of data augmentation, the accuracy of the trained model on the test set was 59 percent.

Figure 4 Accuracy of Final Model on Test Set

Transfer Learning:

In this version of the project, two pre-trained networks were used to improve the test accuracy. ResNet50 and EfficientNetB0 were imported from keras.applications.

ResNet50:

The architecture of the network used is as follows:

Model: "sequential"

```
Layer (type)

Output Shape

Param #

up_sampling2d (UpSampling2D (None, 224, 224, 3) 0

resnet50 (Functional) (None, None, None, 2048) 23587712

global_average_pooling2d (G (None, 2048) 0
```

lobalAveragePooling2D)				
dense (Dense)	(None, 512)	1049088		
batch_normalization	(BatchN (None, 512) ormalization)	2048		
dropout (Dropout)	(None, 512)	0		
dense_1 (Dense)	(None, 100)	51300		
Total params: 24,690,148 Trainable params: 1,154,532 Non-trainable params: 23,535,616				

1 a la a 1 7 -- a -- a -- D a a 1 - a -- O D \

This model was trained for only 20 epochs due to the high number of parameters and, as a result, high training time. The trend of changes in train and validation loss and accuracy can be seen in the diagrams below.

And the test accuracy of this model is 67 percent, which can be improved if the number of epochs increases. However, because of the high number of parameters, we should be mindful of the risk of overfitting the model.

Figure 5 Test Accuracy on ResNet50

EfficeintNetB0:

The other pre-trained model used is EfficientNetB0, and the architecture is as follows.

Model: "sequential 2"

Layer (type)	Output Shape	Param #		
up_sampling2d_2 (UpSa	ampling (None, 224, 224, 3) 2D)	0		
efficientnetb0 (Function	(None, None, None, 1280)	4049571		
global_average_poolin (Glob	ng2d_2 (None, 1280) palAveragePooling2D)	0		
dense_4 (Dense)	(None, 512)	655872		
<pre>batch_normalization_2</pre>	(Batc (None, 512) hNormalization)	2048		
dropout_2 (Dropout)	(None, 512)	0		
dense_5 (Dense)	(None, 100)	51300		
Total params: 4,758,791 Trainable params: 750,212 Non-trainable params: 4,008,579				

This model was also only trained on 20 epochs. The trend of changes in train and validation loss and accuracy can be seen in the diagrams below.

The test accuracy of this model is 68 percent, which can be improved again if trained for longer.

Figure 6 Test Accuracy on EfficientNetB0