SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

ime prezime

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

NASLOV DIPLOMSKOG RADA

Mentor: Student: prof. dr. sc. ime prezime Moje ime i prezime

Izjava

Izjavljujem da sam ovaj rad radio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zagreb, srpanj 2024.

Moje ime i prezime

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

Središnje povjerenstvo za završne i diplomske ispite Povjerenstvo za diplomske ispite studija strojarstva za smjerove:

Proizvodno inženjerstvo, inženjerstvo materijala, industrijsko inženjerstvo i menadžment, mehatronika i robotika, autonomni sustavi i računalna inteligencija

Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje Datum Prilog Klasa: 602 - 04 / 24 - 06 / 1 Ur.broj: 15 - 24 -

DIPLOMSKI ZADATAK

Student:

Jurica Vučković

JMBAG: 0035219927

Naslov rada na hrvatskom jeziku:

Modelsko prediktivno upravljanje mobilnim robotom

Naslov rada na engleskom jeziku:

Model predictive control of a mobile robot

Opis zadatka:

U današnje doba sve je veća upotreba mobilnih robota. S jedne strane motivacija za ovo je njihova prikladnost za obavljanje zadataka u uvjetima koji su opasni za čovjeka, npr. u područjima s kontaminiranom atmosferom ili sa štetnim zračenjem. S druge strane, njihova primjena raste i u industrijskim postrojenjima i skladištima, gdje mogu efikasno zamijeniti neke ljudske djelatnosti, ali i u domaćinstvima, npr. autonomni usisivači prašine ili kosilice trave. Jedan od ključnih izazova kod primjene mobilnih robota je njihovo upravljanje, a razlozi za to su mnogobrojni, npr. nelinearna dinamika, kompleksnost okoline u kojoj se gibaju, proklizavanje kotača, šumovi u senzorima, niz fizikalnih i sigurnosnih ograničenja na gibanje.

U radu je potrebno ostvariti sljedeće:

- Napraviti matematički model diferencijalnog mobilnog robota koji je razvijen i napravljen u Regionalnom centru izvrsnosti za robotske tehnologije (CRTA) na FSB-u.
- Matematički formulirati problem modelskog prediktivnog upravljanja (engl. Model Predictive Control, MPC) mobilnog robota. Cilj željenog gibanja robota je:
 - a) iz početne pozicije i orijentacije robota doći do željene završne pozicije i orijentacije;

b) praćenje poznate referentne trajektorije.

Ograničenja u matematičkoj formulaciji moraju reflektirati fizikalna ograničenja robota.

- Implementirati MPC regulator u ROS okruženju te ga primijeniti u robotskom sustavu u CRTA-i.
- Testirati rad upravljačkog algoritma. Stvarne trajektorije gibanja robota snimiti pomoću OptiTrack sustava kamera. Po potrebi predložiti metode poboljšanja upravljanja, npr. poboljšanje estimacije stanja robota za potrebe upravljanja.
- Na nizu prikladno odabranih primjera ilustrirati rad razvijenog upravljačkog sustava.

U radu je potrebno navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan:

Datum predaje rada:

Predviđeni datumi obrane:

Predsjednik Povjerenstva:

9. svibnja 2024.

11. srpnja 2024.

15. - 19. srpnja 2024.

Zadatak zadao:

Prof. dr. sc. Ivica Garašić

Prof.dr.sc. Andrej Jokić

SADRŽAJ

	SADRŽAJ	V
	POPIS SLIKA	vi
	POPIS TABLICA	vii
	POPIS OZNAKA	viii
	SAŽETAK	ix
	SUMMARY	x
1.	Uvod 1.1. Primjer podpoglavlja	
2.	Teorija	3
	2.1. Opis modela	3
	2.2. Detalji modela	
	2.2.1. Razrada	4
3.	Rezultati	5
	3.1. Prikaz rezultata	5
4.	Zaključak	7
\mathbf{A}	. Prvi prilog	8
	A.1. Malo poglavlje malog dodatka	9
	A.1.1. i još manje podpoglavlje	9
	A.2. Primjer podpoglavlja	9
	A.2.1. Još jedan podnaslov	9
	LITERATURA	10

POPIS SLIKA

1.1	Primjer slike – logo FSB-a; kod slika primijenjeno je zaglavlje s uvlačenjem,	
	$vise\acute{c}e$ zaglavlje s paketom $hang caption$	1
1.2	Primjer slike – logo Sveučilišta u Zagrebu	1
2.1	Shema modela; izrađena primjenom $\mathrm{Ti}k\mathrm{Z}$ paketa	3
2.2	Primjer slike; UNIZG logo	3
3.1	Primjer prikaza rezultat: ako neka oznaka/krivulja/podatak sa slike nije opisan na samoj slici može ga se opisati u ovom zaglavlju; napomena: C_L	
	i C_m su bezdimenzionalne veličine	5
Δ 1	Primier slike u prilogu	O

POPIS TABLICA

1.1	Primjer tablice	2
A.1	Primjer tablice u prilogu	Ć

POPIS OZNAKA

A_k	koeficijenti Fourierovog reda
C_L	koeficijent uzgona uzgona letjelice
C_m	koeficijent momenta propinjanja
V_{∞}	brzina neporemećene struje, $[m/s]$
a	brzina zvuka, $[m/s]$
a_0	gradijent koeficijenta sile uzgona po napadnom kutu
b	raspon krila, $[m]$
c	duljina tetive krila, [m]
c_l	lokalni koeficijent uzgona, vidi jednadžbu (2.3)
α	napadni kut, [rad]
α_0	napadni kut nultog uzgona profila, [rad]
$\Delta \alpha$	geometrijski kut uvijanja krila na promatranom rasponu, [rad]
Γ	intenzitet cirkulacije, $[m^2/s]$
ϕ	potencijal brzine, $[m^2/s]$
θ	Glauertova varijabla za raspon, [rad]
$\operatorname{Ind}\epsilon$	eksi
∞	značajke neporemećene struje
j	j–ti presjek na rasponu krila
Krat	tice
FSB	Fakultet strojarstva i brodogradnje
UNIZ	G Sveučilište u Zagrebu

SAŽETAK

Kratki sažetak rada na hrvatskom jeziku: najviše jedna stranica, zapisan u jednom paragrafu . . . Tekst tekst tekst tekst tekst tekst.

Ključne riječi: popis ključnih riječi: maksimalno do deset ...

SUMMARY

Short summary of the thesis in one foreign language (english): up to one page in single paragraph ... Tekst tekst tekst tekst tekst.

 $\mathbf{Keywords:}\ \mathrm{list}\ \mathrm{of}\ \mathrm{the}\ \mathrm{keywords:}\ \mathrm{up}\ \mathrm{to}\ \mathrm{ten}\ \mathrm{words}$

1. UVOD

Ovo poglavlje poslužit će za uvod u problem koji se rješava u ovom radu, u slučaju doktorske disertacije ovdje se uobičajeno postavlja odgovarajuća hipoteza.

1.1. Primjer podpoglavlja

Korištena literatura se popisuje u popisu literature pod poglavljem "Literatura", a svaka od njih mora biti citirana bar jednom u tekstu, kao npr.[1]. Literatura mora biti popisana po redoslijedu pojavljivanja u tekstu za što se brine sami LATEX.

Tekst tekst tekst tekst tekst tekst primjer reference, i još jedan citat [2]. Tekst tekst tekst tekst tekst tekst tekst .

1.1.1. Primjer dubljeg strukturiranja teksta

Slijedi prvi primjer slike (pogl.sliku 1.1) Slijedi drugi mali primjer slike (pogledaj

Slika 1.1: Primjer slike – logo FSB-a; kod slika primijenjeno je zaglavlje s uvlačenjem, *viseće* zaglavlje s paketom *hangcaption*

sliku 1.2). U pravilu, na svaku se koja se pojavljuje treba pozvati u tekstu.

Slika 1.2: Primjer slike – logo Sveučilišta u Zagrebu.

Pored slike dan je i primjer tablice (1.1). Uobičajen je stil da se za tablice zaglavlje piše iznad same tablice (za razliku od slika).

Tablica 1.1: Primjer tablice

x	i
A	1
В	2
С	3
D	4

2. TEORIJA

U poglavlju nakon uvodnog uobičajeno se detaljnije opisuje metodologija koja će se primijeniti u rješavanju završnog zadatka/diplomskog rada, itd. Dakle navodi se opis primijenjenog modela, teorije, razrada konstrukcijskog zadatka i sl.

2.1. Opis modela

Slijedi opis modela, teoretskog, matematičkog, eksperimentalnog ili koji je već primijenjen u radu. Primjerice, model razmatran u radu prikazan je relacijom (2.1)

$$\sum_{k=1}^{m} \left(\sin n\theta_j + n \frac{c_j a_{0j}}{2} \frac{\sin n\theta_j}{\sin \theta_j} \right) \cdot A_k = \frac{c_j a_{0j}}{2} \left(\alpha + \Delta \alpha_j - \alpha_{0j} \right) , \quad j = 1, 2, \dots, m , \quad (2.1)$$

uz n=2k-1. Traženo rješenje za intenzitet cirkulacije Γ_j na promatranom rasponu j je

$$\frac{\Gamma_j}{2bV_\infty} = \sum_{k=1}^m A_k \sin n\theta_j , \quad n = 2k - 1 .$$
 (2.2)

2.2. Detalji modela

Poželjno je koristiti i slike, kada to može doprinijeti preglednosti i uvidu u model (kao npr. slika 2.1).

Slika 2.1: Shema modela; izrađena primjenom TikZ paketa

Poželjno je sve slike koje se nalaze u radu pozvati u tekstu (kao ovdje na sliku 2.2).

Slika 2.2: Primjer slike; UNIZG logo

2.2.1. Razrada

Detaljnija razrada modela, metodologije, konstrukcijskog zadatka, kao npr. modela (2.1) mogu se opisati kao u (2.3)

$$c_l(y) = \frac{2\Gamma(y)}{V_{\infty} c(y)}. \tag{2.3}$$

Pri tome treba imati mjeru i ne prenositi u tekstu nepotrebne izvode, ponavljanja iz udžbenika i sl.

3. REZULTATI

U jednom od poglavlja teksta, kako već ide konkretna struktura rada, nakon definiranja modela uobičajeno se navode rezultati. Bilo da se radi o numeričkim, eksperimentalnim rezultatima, rezultatima primjene neke analitičke metode ili rezultatima procesa konstruiranja i sl.

3.1. Prikaz rezultata

Slika 3.1: Primjer prikaza rezultat: ako neka oznaka/krivulja/podatak sa slike nije opisan na samoj slici može ga se opisati u ovom zaglavlju; napomena: C_L i C_m su bezdimenzionalne veličine

Pri prikazu rezultata (kao npr. na slici 3.1) nužno je obratiti pažnju na jednoznačno označavanje, kako veličina koje se prikazuju tako i njenih jedinica (koje bi trebale biti u skladu sa SI sustavom, u rijetkim slučajevima i po potrebi uz njih moguće je dodati i neke druge jedinice koje su uvriježene u praksi, kao npr. imperijalne jedinice u zrakoplovstvu). Isto tako, za slučaj prikaza rezultata više varijabli i/ili u više varijanti potrebno ih je sve

označiti na samoj slici ili u njenom zaglavlju.

4. ZAKLJUČAK

I na kraju u ovom poglavlju potrebno je istaknuti glavne rezultate rada i moguće smjernice za daljnji rad. Kod završnih i diplomskih radova korisno je u kratkim crtama ponoviti što je konkretno u radu napravljeno. Kod doktorske disertacije ovo poglavlje mora sadržavati i prikaz originalnog znanstvenog doprinosa pristupnika odgovarajućem znanstvenom području.

Tekst tekst tekst tekst tekst.

A. PRVI PRILOG

Ovdje dolazi prilog, odnosno dodatak tekstu (slike, tehnički crteži, podaci, kôd, detaljni opisi, tablice, . . .

A.1. Malo poglavlje malog dodatka

A.1.1. i još manje podpoglavlje

Ovo poglavlje poslužit će za dodatni opis koji nije nužan za sami tekst pa je stavljen kao prilog.

A.2. Primjer podpoglavlja

Tekst tekst tekst tekst tekst tekst primjer reference [3], i još jedan [2]. Tekst tekst tekst tekst tekst tekst tekst tekst .

I ovdje mogu ići jednadžbe i pozivi na njih ((A.1))

$$\beta^2 \frac{\partial^2 \hat{\phi}}{\partial x^2} + \frac{\partial^2 \hat{\phi}}{\partial z^2} = 0 , \qquad (A.1)$$

pri čemu je $\beta = \sqrt{1 - Ma^2}$ uz Machov broj $Ma = V_{\infty}/a$.

A.2.1. Još jedan podnaslov

Primjer slike u prilogu – logo FSB-a (A.1)

Slika A.1: Primjer slike u prilogu

Pored slike dan je i primjer tablice (A.1).

Tablica A.1: Primjer tablice u prilogu

A	1
В	2
С	3
D	4

LITERATURA

[1] Roland Siegwart and Illah Reza Nourbakhsh. *Introduction to Autonomous Mobile Robots*. The MIT Press, Cambridge, Massachusetts; London, England, 2004.

- [2] https://www.researchgate.net/figure/Train-Inspection-Monorail-TIM-in-the-Large-Hadfig1_366834059, Svibanj 2024.
- [3] F. Rubio, F. Valero, and C. Llopis-Albert. A review of mobile robots: Concepts, methods, theoretical framework, and applications. *International Journal of Advanced Robotic Systems*, 16(2), 2019.