Probabilistic models for ecological networks

Sophie Donnet, Pierre Barbillon & Avner Bar-Hen

14/06/17

Introduction, why probabilistic models for networks ?

Stochastic Block Model for classical networks Latent Block Model for bipartite networks Some possible extensions

Outline

- 1 Introduction, why probabilistic models for networks?
- 2 Stochastic Block Model for classical networks
- 3 Latent Block Model for bipartite networks
- 4 Some possible extensions

Stochastic Block Model for classical networks Latent Block Model for bipartite networks Some possible extensions

Network data

Networks can account for

- Food web.
- Co-existence networks,
- Host-parasite interactions,
- Plant-pollinator interactions,
- ...

Networks may be or not bipartite: Interactions between nodes belonging to the same or to different functional group(s).

Terminology

A network consists in:

- nodes/vertices which reprensent individuals / species which may interact or not,
- links/edges/connections which stand for an interaction between a pair of nodes / dyad.

A network may be

- directed / oriented (e.g. food web...),
- symmetric / undirected (e.g. coexistence network),
- with or without loops.

This distinction only makes sense for simple networks (not bipartite).

Available data and goal

Available data:

- the network provided as:
 - an adjacency matrix (for simple network) or an incidence matrix (for bipartite network),
 - a list of pair of nodes / dyads which are linked.
- some additional covariates on nodes, dyads which can account for sampling effort.

Goal:

- Unraveling / describing / modeling the network topology.
- Discovering particular structure of interaction between some subsets of nodes.
- Understanding network heterogeneity.
- Not inferring the network!

Network representation and adjacency matrix

$$X = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{array}\right)$$

- n rows and n columns,
- symmetric or not.

Bipartite network and incidence matrix

- n rows and m columns, rectangular matrix.
- corresponding adjacency matrix $(n+m) \times (n+m)$:

$$\left(\begin{array}{cc} 0 & X \\ X^T & 0 \end{array}\right)$$

Some common traits studied on networks

- Degree distribution, can be viewed as a measure of heterogeneity,
- Nestedness: a network is said to be nested when its nodes that have the smallest degree, are connected to nodes with the highest degree, Rodríguez-Gironés & Santamaria (2006)
- Betweenness centrality: for a node, numbers of shortest paths between any pair of nodes passing through this node. Freeman (1979)
- Modularity: is a measure for a given partition of its tendency of favoring intra-connection over inter-connection. ⇒ Finding the best partition with respect to modularity criterion. Clauset, Newman & Moore (2004)

All this criterion shall be adapted to:

- directed network,
- bipartite network.

R packages: igraph, sna, vegan.

ochastic Block Model for classical networks Latent Block Model for bipartite networks Some possible extensions

Example Chilean food web

- \blacksquare n = 106 species / nodes,
- density of edges: 12.1%.

Kéfi, Miele, Wieters, Navarrete & Berlow (2016)

Degree distribution

chastic Block Model for classical networks
Latent Block Model for bipartite networks
Some possible extensions

Nestedness

- more generally used on incidence matrices,
- significance of the nestedness index computed by random permutations of the matrix,
- this food web is found to be nested.

Stochastic Block Model for classical networks Latent Block Model for bipartite networks

Betweenness

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.000 0.000 0.000 6.604 6.929 59.570

Introduction, why probabilistic models for networks ?

Stochastic Block Model for classical networks Latent Block Model for bipartite networks Some possible extensions

Modularity

	1	2	3	4
	69	17	7	13

very low modularity.

A first random graph model for network: Null model

Erdős-Rényi (1959) Model for n nodes

$$\forall 1 \leq i, j \leq n, \quad X_{ij} \stackrel{i.i.d.}{\sim} b(p),$$

where b is the Bernoulli distribution and $p \in [0, 1]$ a probability for a link to exist.

Limitations of an ER graph to describe real networks

- Degree distribution too concentrated, no high degree nodes,
- all nodes are equivalent (no nestedness...),
- no modularity.

Outline

- 1 Introduction, why probabilistic models for networks ?
- 2 Stochastic Block Model for classical networks
- 3 Latent Block Model for bipartite networks
- 4 Some possible extensions

Stochastic Block Model

Stochastic Block Model

Let n nodes divided into

$$\mathbb{Q} = \{ \bullet, \bullet, \bullet \}$$
 classes

$$\bullet \alpha_{\bullet} = \mathbb{P}(i \in \bullet), \bullet \in \mathcal{Q}, i = 1, \ldots, n$$

$$\blacksquare \ \pi_{\bullet \bullet} = \mathbb{P}(i \leftrightarrow j | i \in \bullet, j \in \bullet)$$

$$Z_i = \mathbf{1}_{\{i \in ullet\}} \sim^{\operatorname{iid}} \mathcal{M}(1, lpha), \quad orall ullet \in \mathcal{Q},$$
 $X_{ij} \mid \{i \in ullet, j \in ullet\} \sim^{\operatorname{ind}} \mathcal{B}(\pi_{ullet})$

Some remarkable structure generated with SBM: networks with hubs

Some remarkable structure generated with SBM : community network

Some remarkable structure generated with SBM : nestedness

Statistical inference

Stochastic Block Model

Let n nodes divided into

- $\mathbb{Q} = \{ \bullet, \bullet, \bullet \}, \operatorname{card}(\mathcal{Q}) \operatorname{known}$
- $\alpha_{\bullet} = ?$
- \blacksquare $\pi_{\bullet \bullet} = ?$

Nowicki, Snijders, JASA, 2001

Estimation and prediction for stochastic blockstructures.

Daudin, Picard, Robin, Statistics and Computing, 2008

A mixture model for random graphs.

Statistical inference

From....

Statistical inference

... to

Statistician job

- Find the clusters
- Find the number of clusters
- Theoretical and practical constraints

Application to the Chilean food web

■ 7 groups/blocks/clusters found,

	1	2	3	4	5	6	7
	28	15	12	19	12	14	6

Application to the Chilean food web

Outline

- 1 Introduction, why probabilistic models for networks ?
- 2 Stochastic Block Model for classical networks
- 3 Latent Block Model for bipartite networks
- 4 Some possible extensions

Latent Block Model

Latent Block Model

- \blacksquare *n* row nodes $Q_1 = \{\bullet, \bullet, \bullet\}$ classes
- m column nodes $Q_2 = \{ \bullet, \bullet \}$ classes

$$\blacksquare \pi_{\bullet \bullet} = \mathbb{P}(i \leftrightarrow j | i \in \bullet, j \in \bullet)$$

$$Z_i = \mathbf{1}_{\{i \in \bullet\}} \sim^{\text{iid}} \mathcal{M}(1, \alpha), \quad \forall \bullet \in \mathcal{Q}_1,$$

$$W_j = \mathbf{1}_{\{j \in \bullet\}} \sim^{\mathsf{iid}} \mathcal{M}(1,\beta), \quad \forall \bullet \in \mathcal{Q}_2,$$

$$X_{ij} \mid \{i \in \bullet, j \in \bullet\} \sim^{\mathsf{ind}} \mathcal{B}(\pi_{\bullet \bullet})$$

Govaert & Nadif (2008)

LBM for ant-plant data

- 2 blocks found over the 41 ant species,
- 3 blocks found over the 51 plant species.

Blüthgen, Stork & Fiedler (2004)

Outline

- 1 Introduction, why probabilistic models for networks ?
- 2 Stochastic Block Model for classical networks
- 3 Latent Block Model for bipartite networks
- 4 Some possible extensions

- Valued edges: abundance count, weighted interactions...
- multiple interactions between nodes,
- multipartite networks: plants, pollinator, seed dispersers, ants...
- Taking into account sampling conditions (through covarites...).