Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ "МЭИ"

Институт информационных и вычислительных технологий

Кафедра математического и компьютерного моделирования

Отчёт по лабораторной работе №5 "Критериий хи-квадрат проверки гипотез"

> Студент: Симаков А.М. Преподаватель: Шевченко О.В.

Краткое описание критерия хи-квадрат

Простая гипотеза о вероятностях. Обозначим $A_1,...,A_m$ - m возможных исходов некоторого опыта.

 $p_1,...,p_m$ - вероятности соответствующих исходов, $\sum_{i=1}^m p_i = 1$.

 $u_1, ..., \nu_m$ - число появлений соответствующих исходов в n опытах, $\sum_{i=1}^m \nu_i = n$. $p_1^0, ..., p_m^0$ - гипотетические значения вероятностей, $p_i^0 > 0$, $\sum_{i=1}^m p_i^0 = 1$.

Требуется по наблюдениям $\nu_1, ..., \nu_m$ проверить гипотезу о том, что вероятности $p_1,...,p_m$ имеют значения $p_1^0,...,p_m^0$, т.е. $H:p_i=p_i^0$ $\forall i.$

Оценками для $p_1,...,p_m$ являются $\widehat{p_1}=\frac{\nu_1}{n},...,\widehat{p_m}=\frac{\nu_m}{n}$. Мерой расхождения между гипотетическими и эмпирическими вероятностями принимается величина

$$X^{2} = n \sum_{i=1}^{m} p_{i}^{0} \left(\frac{\widehat{p}_{i} - p_{i}^{0}}{p_{i}^{0}} \right)^{2},$$

которая с точностью до множителя n есть усредненное с весами p_i^0 значение квадрата относительного отклонения значений $\widehat{p_i}$ от p_i^0 .

Статистика X^2 называется статистикой **хи-квадрат** Пирсона. Для ее вычисления используются две формулы:

$$X^{2} = \sum_{i=1}^{m} \frac{(\nu_{i} - np_{i}^{0})^{2}}{np_{i}^{0}} = \sum_{i=1}^{m} \frac{\nu_{i}^{2}}{np_{i}^{0}} - n$$
 (1)

Поскольку по закону больших чисел $\widehat{p}_i \to p_i$ при $n \to \infty$, то

$$\sum_{i=1}^{m} p_i^0 \left(\frac{\widehat{p_i} - p_i^0}{p_i^0} \right)^2 \to \sum_{i=1}^{m} \frac{(p_i - p_i^0)^2}{p_i^0}$$

Последняя величина равна 0, если верна H. Если же H не верна, то $X^2 \to \infty$.

Процедура проверки гипотезы состоит в том, что если величина X^2 приняла "слишком большое"значение, т.е. если

$$X^2 \ge h, \qquad (2)$$

то гипотеза H отклоняется. Если это не так, будем говорить, что наблюдения не противоречат гипотезе. На вопрос, что означает "слишком большое" значение, отвечает

Теорема К. Пирсона.

Если гипотеза H верна и $p_i^0>0 \quad \forall i$ то при $n\to\infty$ распределение статистики X^2 асимптотически подчиняется распределению χ^2_{n-1} , т.е.

$$P\{X^2 < x|H\} \to F_{m-1}(x) \equiv P\{\chi_{m-1}^2 < x\}$$

Порог h выберем из следующего условия: вероятность ошибки первого рода должна быть малой - равной выбираемому значению α - уровню значимости:

$$P\left\{reject_H|H\right\} = P\left\{X^2 \ge h|H\right\} \cong P\left\{\chi_{m-1}^2 \ge h\right\} = \alpha,$$

откуда

$$h = Q(1 - \alpha, m - 1)$$

квантиль уровня $1-\alpha$ распределения χ^2_{m-1} .

Процедура (2)-(3) проверки H может быть записана иначе: гипотеза H от-клоняется, если

$$P\left\{\chi_{m-1}^2 \ge X^2\right\} \le \alpha \qquad (4)$$

т.е. если мала вероятность получения (при справедливости H) такого же расхождения, как в опыте (т.е. X^2), или ещё большего. Вероятность слева в (4) называется минимальным уровнем значимости (при любом значении α , большем $P\left\{\chi_{m-1}^2 \geq X^2\right\}$, гипотеза, очевидно, отклоняется).

Сложная гипотеза о вероятностях.

Обозначим $A_1, ..., A_m$ - m возможных исходов некоторого опыта. n - число независимых повторений опыта.

 $u_1,...,
u_m$ - число появлений соответствующих исходов в n опытах.

Проверяемая гипотеза H предполагает, что вероятности исходов $P(A_i)$ являются известными функциями $p_i(a)$ k-мерного параметра $a=(a_1,...,a_k)$, т.е. $H:P(A_i)=p_i(a)$ $\forall i$, но значение a неизвестно.

Для проверки гипотезы H определим статистику

$$\widehat{X}^{2} = \min_{a} \sum_{i=1}^{m} \frac{(\nu_{i} - np_{i}(a))^{2}}{np_{i}(a)}$$
 (5)

По теореме Фишера, если H верна, то при $n \to \infty$ распределение статистики X^2 асимптотически подчиняется распределению $\chi^2_f, \quad f=m-1-k,$ и потому отклоняем H, если

$$\widehat{X}^2 \ge h$$
 (6)

где $h=Q(1-\alpha,f)$ - квантиль уровня $1-\alpha$ распределения χ^2_f .

Такой порог обеспечивает выбранный уровень α вероятности Р(отклонить Н / Н) ошибки 1-го рода. Если (5) не выполняется, делаем вывод, что наблюдения не противоречат гипотезе. Распределению χ_f^2 асимптотически подчиняется также статистика

$$\tilde{X}^2 = \sum_{i=1}^m \frac{(\nu_i - np_i(\widehat{a}))^2}{np_i(\widehat{a})}, \qquad (7)$$

где \hat{a} - оценка правдоподобия для a, и потому в (6) может быть использована статистика (6) вместо (5). Процедура (6) может быть записана иначе: если

$$P\left\{\chi_f^2 \ge X^2\right\} \le \alpha,$$

то гипотеза H отклоняется.

2 Проверка гипотезы о типе распределения. Проверка нормальности

Проверим гипотезу о нормальном законе распределения размеров головок заклепок, сделанных на одном станке, по выборке объема n=200. Измерения приведены в таблице. Оценками для a (среднего) и s (стандартного отклонения) являются соответственно

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \qquad s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

Получаем таблицу частот

<u>C</u> ontinue	Chi-Square	: 13,58929,	df = 3, p	= ,003525	4 (df adjus	sted)			
Upper	observed	cumulatv	percent	cumul. %	expected	cumulatv	percent	cumul. %	observd-
Boundary	freq-cy	observed	observed	observed	freq-cy	expected	expected	expected	expected
<=13,000	0	0	0,00000	0,0000	,17182	,1718	,08591	,0859	-,17182
13,1000	0	0	0,00000	0,0000	1,50719	1,6790	,75360	,8395	-1,50719
13,2000	6	6	3,00000	3,0000	8,26680	9,9458	4,13340	4,9729	-2,26680
13,3000	22	28	11,00000	14,0000	26,66955	36,6154	13,33477	18,3077	-4,66955
13,4000	69	97	34,50000	48,5000	50,67929	87,2947	25,33965	43,6473	18,32071
13,5000	52	149	26,00000	74,5000	56,77443	144,0691	28,38721	72,0345	-4,77443
13,6000	41	190	20,50000	95,0000	37,50163	181,5707	18,75081	90,7854	3,49837
13,7000	9	199	4,50000	99,5000	14,59749	196,1682	7,29875	98,0841	-5,59749
13,8000	0	199	0,00000	99,5000	3,34436	199,5126	1,67218	99,7563	-3,34436
13,9000	0	199	0,00000	99,5000	,45021	199,9628	,22510	99,9814	-,45021
14,0000	0	199	0,00000	99,5000	,03554	199,9983	,01777	99,9992	-,03554
14,1000	0	199	0,00000	99,5000	,00164	200,0000	,00082	100,0000	-,00164
14,2000	0	199	0,00000	99,5000	,00004	200,0000	,00002	100,0000	-,00004
14,3000	0	199	0,00000	99,5000	,00000	200,0000	,00000	100,0000	-,00000
14,4000	0	199	0,00000	99,5000	,00000	200,0000	,00000	100,0000	-,00000
14,5000	0	199	0,00000	99,5000	0,00000	200,0000	0,00000	100,0000	0,00000
14,6000	1	200	,50000	100,0000	0,00000	200,0000	0,00000	100,0000	1,00000
14,7000	0	200	0,00000	100,0000	0,00000	200,0000	0,00000	100,0000	0,00000
Infinity	0	200	0,00000	100,0000	,00000	200,0000	,00000	100,0000	-,00000

Сравним графически ожидаемые и наблюдаемые частоты

Получаем следующие значения Chi-Square: 13.59. Количество степеней свободы d.f.=3, которое получилось при объединении интервалов для выполнения условий $np_i^0 \geq 4, \quad i \in \overline{[1,m]}, \quad f=6-1-2=3$. Приведено значение вероятности

$$P\left\{\chi_3^2 \ge 13.59\right\} = p = 0.004$$

Последнее означает, что если гипотеза верна, вероятность получить 14.00 или больше равна 0.004, что слишком мало, чтобы поверить в нормальность. Гипотезу о нормальности отклоняем.

Если посмотреть гистограмму наблюдений, видно, что в выборке имеется одно аномальное значение $14.56~(\mathbb{N}^{\circ}~80)$, которое могло появиться в результате какой-либо ошибки. Удалим его и снова проверим гипотезу. Удаление одного наблюдения, если оно типично, не может изменить характеристики совокупности из 200 элементов; если же изменение происходит, следовательно, это наблюдение типичным не является и должно быть удалено.

Получаем следующее

$$P\left\{\chi_{16}^2 \ge 10.74\right\} = p = 0.825,$$

что не противоречит гипотезе о нормальности.

Полученная таблица частот

₩ ¥ariable υ ;	distribution: N	ormal (2(witho	ut_anom).sta)						
Continue	Chi-Square	: 10,73747,	df = 16,	p = ,82536	D2 (df adju	ısted)			
Upper	observed	cumulatv	percent	cumul. %	expected	cumulatv	percent	cumul. %	observd-
Boundary	freq-cy	observed	observed	observed	freq-cy	expected	expected	expected	expected
<=13,081	0	0	0,00000	0,0000	,18380	,1838	,092364	,0924	-,18380
13,1012	0	0	0,00000	0,0000	,16170	,3455	,081257	,1736	-,16170
13,1218	0	0	0,00000	0,0000	,28231	,6278	,141863	,3155	-,28231
13,1424	2	2	1,00503	1,0050	,47522	1,1030	,238804	,5543	1,52478
13,1629	0	2	0,00000	1,0050	,77131	1,8743	,387592	,9419	-,77131
13,1835	1	3	,50251	1,5075	1,20705	3,0814	,606556	1,5484	-,20705
13,2041	3	6	1,50754	3,0151	1,82130	4,9027	,915226	2,4637	1,17870
13,2247	0	6	0,00000	3,0151	2,64973	7,5524	1,331521	3,7952	-2,64973
13,2453	5	11	2,51256	5,5276	3,71692	11,2693	1,867799	5,6630	1,28308
13,2659	5	16	2,51256	8,0402	5,02722	16,2966	2,526240	8,1892	-,02722
13,2865	6	22	3,01508	11,0553	6,55593	22,8525	3,294437	11,4837	-,55593
13,3071	8	30	4,02010	15,0754	8,24335	31,0958	4,142387	15,6260	-,24335
13,3276	12	42	6,03015	21,1055	9,99391	41,0897	5,022067	20,6481	2,00609
13,3482	13	55	6,53266	27,6382	11,68234	52,7721	5,870522	26,5186	1,31766
13,3688	7	62	3,51759	31,1558	13,16699	65,9391	6,616580	33,1352	-6,16699
13,3894	16	78	8,04020	39,1960	14,30889	80,2480	7,190399	40,3256	1,69111
13,4100	23	101	11,55779	50,7538	14,99298	95,2410	7,534162	47,8598	8,00702
13,4306	15	116	7,53769	58,2915	15,14721	110,3882	7,611662	55,4714	-,14721
13,4512	13	129	6,53266	64,8241	14,75502	125,1432	7,414582	62,8860	-1,75502
13,4718	10	139	5,02513	69,8492	13,85828	139,0015	6,963962	69,8500	-3,85828
13,4924	10	149	5,02513	74,8744	12,54994	151,5514	6,306505	76,1565	-2,54994
13,5129	12	161	6,03015	80,9045	10,95814	162,5096	5,506601	81,6631	1,04186
13,5335	9	170	4,52261	85,4271	9,22559	171,7351	4,635975	86,2991	-,22559
13,5541	7	177	3,51759	88,9447	7,48883	179,2240	3,763231	90,0623	-,48883
13,5747	6	183	3,01508	91,9598	5,86133	185,0853	2,945394	93,0077	,13867
13,5953	7	190	3,51759	95,4774	4,42325	189,5085	2,222738	95,2304	2,57675
13,6159	2	192	1,00503	96,4824	3,21846	192,7270	1,617318	96,8477	-1,21846
13,6365	4	196	2,01005	98,4925	2,25797	194,9850	1,134658	97,9824	1,74203
13,6571	1	197	,50251	98,9950	1,52739	196,5124	,767532	98,7499	-,52739
13,6776	1	198	,50251	99,4975	,99619	197,5086	,500600	99,2505	,00381
13,6982	1	199	,50251	100,0000	,62647	198,1350	,314809	99,5653	,37353
13,7188	0	199	0,00000	100,0000	,37986	198,5149	,190882	99,7562	-,37986
13,7394	0	199	0,00000	100,0000	,22207	198,7370	,111595	99,8678	-,22207
Infinity	0	199	0,00000	100,0000	,26304	199,0000	,132179	100,0000	-,26304

Графики

3 Проверка простой гипотезы о распределении. Генератор случайных чисел

Сгенерируем выборку объема n=130 с распределением $\mathcal{R}[0,10]$. По полученным результатам проверим гипотезу о согласии данных с этим распределением. Получим таблицу частот:

🔚 Variable D ;	distribution: R	ectangular (3.s	ta)						_ X
Continue	Chi-Square	: 40,58462,	df = 10,	p = ,00001	35				
Upper Boundary	observed freq-cy	cumulatv observed	percent observed	cumul. % observed	expected freq-cy	cumulatv expected	percent expected	cumul. % expected	observd- expected
<= 0	0	0	0,00000	0,0000	10,83333	10,8333	8,333333	8,3333	-10,8333
1,	15	15	11,53846	11,5385	10,83333	21,6667	8,333333	16,6667	4,1667
2,	7	22	5,38462	16,9231	10,83333	32,5000	8,333333	25,0000	-3,8333
3,	14	36	10,76923	27,6923	10,83333	43,3333	8,333333	33,3333	3,1667
4,	12	48	9,23077	36,9231	10,83333	54,1667	8,333333	41,6667	1,1667
5,	14	62	10,76923	47,6923	10,83333	65,0000	8,333333	50,0000	3,1667
6,	14	76	10,76923	58,4615	10,83333	75,8333	8,333333	58,3333	3,1667
7,	21	97	16,15385	74,6154	10,83333	86,6667	8,333333	66,6667	10,1667
8,	8	105	6,15385	80,7692	10,83333	97,5000	8,333333	75,0000	-2,8333
9,	9	114	6,92308	87,6923	10,83333	108,3333	8,333333	83,3333	-1,8333
10,	16	130	12,30769	100,0000	10,83333	119,1667	8,333333	91,6667	5,1667
Infinity	0	130	0,00000	100,0000	10,83333	130,0000	8,333333	100,0000	-10,8333

Приводимый результат для уровня значимости p не соответствует рассматриваемому случаю, так как число степеней свободы df должно быть равным m-1=11. Истинная вероятность p=0.9999, наблюдения не противоречат гипотезе о равномерности.

4 Проверка опытов Менделя

В опытах по генетике Мендель наблюдал частоты появления различных видов семян, получаемых при скрещивании гороха с круглыми желтыми и с морщинистыми зелеными семенами [2]. Частоты приведены в таблице вместе с теоретическими вероятностями.

Семена	Наблюдаемая частота, $ u_i$	Теоретическая вероятность, p_i
Круглые и желтые	315	9/16
Морщинистые и желтые	101	3/16
Круглые и зеленые	108	3/16
Морщинистые и зеленые	32	1/16
Сумма	n = 556	

Формула (1) дает $X^2=0.47$. При числе степеней свободы m-1=3 $P\left\{\chi_3^2\geq 0.47\right\}=0.92$.

Получаем следующее

🔚 Obser	rved v	s. Expected Fre	equencies (4.st	a)		×
<u>C</u> ontin	ие	Chi-Square	= ,5103070	0 df = 3 p	< ,916620	•
		observed	expected		(O-E) **2	
Case		СЗ	C4	0 - E	/E	
C:	1	315,0000	313,0000	2,00000	,012780	
C:	2	101,0000	104,0000	-3,00000	,086538	
C:	3	108,0000	104,0000	4,00000	,153846	
C:	4	32,0000	35,0000	-3,00000	,257143	
	Sum	556,0000	556,0000	0,00000	,510307	-
4					þ.	Г

То есть $X^2=0.51$. При числе степеней свободы m-1=3 $P\left\{\chi_3^2\geq 0.51\right\}=0.92$, так что между наблюдениями и теорией имеется очень хорошее согласие: критерий с любым уровнем значимости $\alpha\leq 0.92$ не отвергал бы эту гипотезу.

5 Проверка гипотезы о независимости признаков

Данные, собранные по ряду школ, относительно физических недостатков школьников $(P_1, P_2, P_3$ - признак A) и дефектов речи $(S_1, S_2, S_3$ - признак B) приведены в таблице. Во второй таблице даны частоты комбинаций P_iS_j ; i, j = 1, 2, 3.

Таблица частот комбинаций признаков

🔚 Summary F	requency Table	e (5.sta)		_ O ×
BASIC	Marked cel	ls have cou	unts > 10	
STATS	(Marginal	summaries a	are not mar	ked)
	S	ន	ន	Row
P	S1	S 3	S2	Totals
P1	45	12	26	83
P2	32	21	50	103
P3	4	17	10	31
All Grps	81	50	86	217

Таблица ожидаемых частот

Значение p мало, поэтому гипотеза о независимости признаков отклоняется.

6 Проверка гипотезы об однородности выборок

Имеются данные о наличии примесей серы в углеродистой стали, выплавляемой двумя заводами. Проверим гипотезу о том, что распределения содержания серы (нежелательный фактор) одинаковы на этих заводах.

Формируем таблицу 2×4 . И находим значения *Chi-Square*, количество степеней свободы и уровень значимости:

Results of F	itting all K-Facl	tor Interaction	s (6.sta)		X			
	These are simultaneous tests that all K-Factor Interactions are simultaneously Zero.							
K-Factor	Degrs.of Freedom	Max.Lik. Chi-squ.	Probab. p	Pearson Chi-squ	Probab. p			
1	4	3763,055	0,000000	3214,252	0,000000			
2	3	3,591	,309106	3,593	,308884			
Tests of Ma	arginal and Parl	tial Association	(6.sta)		_			
<u>C</u> ontinue	Degrs.of Freedom	Prt.Ass. Chi-sqr.	Prt.Ass. p	Mrg.Ass. Chi-sqr.	Mrg.Ass.			
1	3	3682,895	0,000000	3682,895	0,000000			
2	1	80,161	,000000	80,161	,000000			

В таблице Results of Fitting all K-Factor Interactions в последней строке столбца Person Chi-Squ. получаем $X^2 = 3.59$, число степеней свободы Degrs of Freedom f = 3, и уровень значимости Probab p = 0.31. Поскольку эта вероятность не мала (не является значимой), гипотезу об одинаковом распределении содержания серы в металле на двух заводах можно принять (вернее, наблюдения этому не противоречат).

7 Проверка трех гипотез о типе распределения

Проверить гипотезу о типе распределения на основе сгенерированной по заданному закону $\mathcal{N}(15,4)$ выборке объема n=80. Проверить три гипотезы: о нормальности, о равномерности и о показательности.

Проверка равномерности

 $p=0 \implies$ гипотеза о равномерности отклоняется. Проверка показательности

 $p=0 \Longrightarrow$ гипотеза о показательности отклоняется. Проверка нормальности

 $p = 0.572 \implies$ наблюдения не противоречат гипотезе о нормальности.

8 Проверка гипотезы об однородности трех выборок

Сгенерировать три выборки объемами $n_1 = 180, n_2 = 100, n_3 = 120$ для заданного распределения $\mathcal{E}(a)$. Провести их группирование на 8-10 интервалах. Сделать все для 2-х вариантов:

- а) параметры одинаковы
- б) параметры различны

a)
$$a_1 = a_2 = a_3 = 10$$

Сгруппированная таблица

1 CASE1	2 CASE2	3 CASE3	4 CASE4	5 CASE5	6 CASE6	7 CASE7	8 CASE8	9 CASE9	10 CASE10
84,000	41,000	25,000	11,000	7,000	4,000	4,000	2,000	1,000	1,000
49,000	20,000	10,000	13,000	3,000	4,000	0,000	1,000	0,000	0,000
50,000	33,000	19,000	7,000	5,000	4,000	1,000	1,000	0,000	0,000

Таблицы

 $X^2 = 7.04$, число степеней свободы $Degrs\ of\ Freedom\ f = 9$, и уровень значимости $Probab\ p = 0.614 \implies$ наблюдения не противоречат гипотезе об одинаковом распределении.

$$6) \ a_1 = 8, \quad a_2 = 10, \quad a_3 = 12$$

Полученные таблицы

LOG-LIN. ANALYSIS		These are simultaneous tests that all K-Factor Interactions are simultaneously Zero.						
K-Factor	Degrs.of Freedom	Max.Lik. Chi-squ.	Probab.	Pearson Chi-squ	Probab. p			
1	11	440,9125	0,000000	630,1105	0,000000			
2	18	26,0189	,099418	24,9235	,127134			
	10	20,0103	,055410	27,5233	,12/134			
	arginal and Par	,	,	24,9233	,127134			
		,	,	Mrg.Ass. Chi-sqr.				
Tests of Ma	arginal and Par	tial Association Prt.Ass.	(26).sta) Prt.Ass.	Mrg.Ass.	_ 🗆 🗙			

 $X^2=24.92$, число степеней свободы $Degrs\ of\ Freedom\ f=18$, и уровень значимости $Probab\ p=0.1$, эта вероятность не является слишком маленькой \Longrightarrow наблюдения не противоречат гипотезе об одинаковом распределении.