

Interaction of waves with cold surges [practical session]

Donaldi Permana

Indonesia Agency for Meteorology Climatology and Geophysics (BMKG)

WavyTropics

November 20-24, 2023 BMKG Jakarta & online

Code:

https://github.com/donaldisp/wavytropics

Dataset:

https://link.bmkg.go.id/vy4c8

BMKG

Outline

- Cold Surge Life Cycle
- Cold Surge Definition
- Obtaining CS and CENS indices
- Interaction CS and MJO
 - Calculating Days with CS
 - Calculating days with MJO
 - Calculating days with CS + MJO
 - Investigating their impact to rainfall anomaly

Cold Surge Life Cycle

https://resources.eumetrain.org/satmanu/CM4SH/InNCS/index.htm

Cold surges Definition

FIG. 1. Topography map (m) for Southeast Asia. The cold surge indices are defined in the two rectangular boxes: northerly or northeasterly wind speed in domain D1 (5°–10°N, 107°–115°E) and MSLP in domain D2 (18°–22°N, 105°–122°E).

TABLE 1. Summary of cold surge indices based on the area-average 850-hPa winds and maximum MSLP over the domain indicated. Here u and v are zonal and meridional winds, respectively, \overline{V} denotes long-term average, and σ_V the standard deviation of the meridional wind speed V.

Variable	Criteria		Lat	Lon
850 hPa wind averaged	Calm to easterly wind	$u \le 0 \mathrm{ms}^{-1}$	5°-10°N	107°-115°E
over domain D1	Northerly wind	$v < 0 \mathrm{ms}^{-1}$		
	Normalized wind speed at least 0.75 standard deviations above long-term mean	$\frac{V - \overline{V}}{\sigma_V} \ge 0.75$		
Max MSLP in domain D2	MSLP at least 1020 hPa	$MSLP \ge 1020 hPa$	18°-22°N	105°-122°E
A single event includes a minimal	mum duration of 2 days with a maximum a	allowable gap of 2 days betw	veen cold surge day	VS.

Lim et al (2017)

Cold surges monitoring

https://web.meteo.bmkg.go.id//media/data/bmkg/mfy/sur_idx.png

Cold surges interaction with MJO

Let's try on Jupyter-notebook!!

Code:

https://github.com/donaldisp/wavytropics

Dataset:

https://link.bmkg.go.id/vy4c8

Thanks for your attention

Questions ??

Contact me : donaldi.permana@bmkg.go.id

- Lead of Working Package 1, WCSSP SEA-Indonesia
- Member of the WGNE MJO Task Force
- Member of Asian-Australian Monsoon WG
- Member of EC-PHORS