PROYECTO INTERPOLACIÓN

Sergio Andrés Mejía Tovar Julian David Parada Galvis

Zonas críticas Puntos de atención

Aproximación inicial

Polinomio interpolador de Lagrange

Determinar conjunto de puntos

Spline Cúbico

Método de Interpolación

$$S(x) = \begin{cases} S_0(x) & x \in [t_0, t_1) \\ S_1(x) & x \in [t_1, t_2) \\ \vdots & \vdots \\ S_{n-1}(x) & x \in [t_{n-1}, t_n) \end{cases}$$

Splines iniciales – 2 Splines

Interpolacion del perrito con 28 puntos

Prueba con Lagrange Baricéntrico (1)

Splines iniciales – 12 Splines – Agregado de Puntos

Interpolación final – 10 splines – 28 puntos

Interpolación final – 10 splines – 28 puntos

Interpolacion del perrito con 28 puntos

Gráfica de errores

Comparación del error con la Distribución Normal Estándar

Índice de Jacard

Puntos totales	15
Aciertos	2
Fallos	13
Índice (Aciertos/Totales)	13.33%

Cálculo del Índice de Jaccard para los puntos dados originalmente.

Puntos totales	28
Aciertos	11
Fallos	18
Indice (Aciertos/Totales)	39.28%

Cálculo del Índice de Jaccard para los puntos de Illustrator.

Prueba con el método de Lagrange Baricentrico

Eficiencia del método

- Lagrange Baricentrico: 8n-2 operaciones.
- Spline Cubico: 26n-32 operaciones.

Escenario	Entrada (particiones)	Número de operaciones
Barylag arriba y abajo	2	236
Barylag particionado	10	284
Spline 1	1	722
Spline arriba y abajo	2	716
Spline particionado	10	688

Preguntas

- ¿El origen se puede modificar?
- Si se tiene nueva información, ¿cómo se puede implementar esa información en el algoritmo de interpolación?
- ¿Su método es robusto? En el sentido que: ¿Si se tienen más puntos la exactitud no disminuye?
- Suponga que se tienen más puntos con más cifras significativas. ¿Cómo se comporta su algoritmo? ¿La exactitud decae?