

DLI Accelerated Data Science Teaching Kit

Lecture 14.5 - Overfitting and Cross Validation

The Accelerated Data Science Teaching Kit is licensed by NVIDIA, Georgia Institute of Technology, and Prairie View A&M University under the Creative Commons Attribution-NonCommercial 4.0 International License.

An ideal model should correctly estimate:

- known or seen data examples' labels
- o unknown or unseen data examples' labels

Song name	Artist	Length		Like?
Some nights	Fun	4:23		• •
Skyfall	Adele	4:00	•••	0 0
Comf. numb	Pink FI.	6:13		0 0
We are young	Fun	3:50		0 0
•••				
Chopin's 5th	Chopin	5:32		??

Training a classifier = building the "model"

Q: How do you learn appropriate values for parameters a, b, c, ...?

(Analogy: how do you know your map is a "good" map?)

•
$$y_i = f_{(a,b,c,...)}(x_i), i = 1, ..., n$$

- Low/no error on training data ("seen" or "known")
- $y = f_{(a,b,c,...)}(x)$, for any new x
 - Low/no error on test data ("unseen" or "unknown")

Screenshot from Apple Maps

It is very easy to achieve perfect classification on training/seen/known data. Why?

Over fitting

• If your model works really well for training data, but poorly for test data, your model is "over fitting".

How to avoid over fitting?

One run of 5-fold cross validation

You should do a few runs and compute the average (e.g., error rates if that's your evaluation metrics)

Cross-Validation in plain english? (n.d.). Retrieved December 04, 2017, from http://stats.stackexchange.com/questions/1826/cross-validation-in-plain-english

Cross Validation

- 1. Divide your data into n parts
- 2. Hold 1 part as "test set" or "hold out set"
- 3. Train classifier on remaining n-1 parts "training set"
- 4. Compute test error on test set
- 5. Do the above steps n times, once for each n-th part
- 6. Compute the average test error over all n folds (i.e., cross-validation test error)

Cross-Validation Variations

K-fold cross-validation

- Test sets of size (n / K)
- K = 10 is most common (i.e., 10-fold CV)

Leave-one-out cross-validation (LOO-CV)

test sets of size 1

DLI Accelerated Data Science Teaching Kit

Thank You