# Turing Machines

a fantastically simple of computation...with maximal power

# 1 An extremely simple model of computation

## *k*-tape Turing machines

## semi formal definition of Turing machines M

- finite control with finite set of states Z
- k tapes, infinite on both sides, divided into cells
- tape cells can hold symbols from a finite alphabet A which includes a blank symbol  $B \in A$ . Only finitely many cells have non blank symbols  $a \neq B$
- We index tapes by numbers  $i \in [1:k]$ . For each i there is a read/write head for tape i. Heads can read and print symbols from A and make head moves from  $\{L, N, R\}$  (left, neutral, right)



Figure 1: illustration of a 2 tape TM

# 1 An extremely simple model of computation

## *k*-tape Turing machines

# semi formal definition of Turing machines M

- finite control with finite set of states Z
- k tapes, infinite on both sides, divided into cells
- tape cells can hold symbols from a finite alphabet A which includes a blank symbol  $B \in A$ . Only finitely many cells have non blank symbols  $a \neq B$
- We index tapes by numbers  $i \in [1:k]$ . For each i there is a read/write head for tape i. Heads can read and print symbols from A and make head moves from  $\{L, N, R\}$  (left, neutral, right)



Figure 1: illustration of a 2 tape TM

transition function

$$\delta: Z \times A^k \to Z \times A^k \times \{L, N, R\}^k$$

where

$$\delta(z,a_1,\ldots,a_k)=(z',c_1,\ldots,c_k,m_1,\ldots,m_k)$$

means: if M reads in state z on each tape i symbol  $a_i$ , then it goes to state z'; moreover on each tape i it overwrites  $a_i$  with  $c_i$  and makes head movement  $m_i$ .

- initial state  $z_0 \in Z$
- set of end states  $E \subseteq Z$

# 1 An extremely simple model of computation

## *k*-tape Turing machines

## semi formal definition of Turing machines M

- finite control with finite set of states Z
- k tapes, infinite on both sides, divided into cells
- tape cells can hold symbols from a finite alphabet A which includes a blank symbol  $B \in A$ . Only finitely many cells have non blank symbols  $a \neq B$
- We index tapes by numbers  $i \in [1:k]$ . For each i there is a read/write head for tape i. Heads can read and print symbols from A and make head moves from  $\{L, N, R\}$  (left, neutral, right)



Figure 1: illustration of a 2 tape TM

transition function

$$\delta: Z \times A^k \to Z \times A^k \times \{L, N, R\}^k$$

where

$$\delta(z, a_1, \ldots, a_k) = (z', c_1, \ldots, c_k, m_1, \ldots, m_k)$$

means: if M reads in state z on each tape i symbol  $a_i$ , then it goes to state z'; moreover on each tape i it overwrites  $a_i$  with  $c_i$  and makes head movement  $m_i$ .

- initial state  $z_0 \in Z$
- set of end states  $E \subseteq Z$

$$M = (Z, A, \delta, z_0, E)$$

as above and

certain symbols are always available

$$\{0,1,B,\#\} \subseteq A$$

Symbol # will serve to separate strings in  $\mathbb{B}^*$ 

- in end states (alternative definitions)
  - 1. there is no next step

$$\delta: (Z \setminus E) \times A^K \to z \times A^k \times \{L, N, R\}^k$$

2. sometimes useful: looping in end state

$$\delta(z,a) = (z,a,N^k)$$
 for  $z \in E$ 

saves sometimes case split between lang and short computations

transition function

$$\delta: Z \times A^k \to Z \times A^k \times \{L, N, R\}^k$$

where

$$\delta(z,a_1,\ldots,a_k)=(z',c_1,\ldots,c_k,m_1,\ldots,m_k)$$

means: if M reads in state z on each tape i symbol  $a_i$ , then it goes to state z'; moreover on each tape i it overwrites  $a_i$  with  $c_i$  and makes head movement  $m_i$ .

- initial state  $z_0 \in Z$
- set of end states  $E \subseteq Z$

$$M = (Z, A, \delta, z_0, E)$$

as above and

certain symbols are always available

$$\{0,1,B,\#\}\subseteq A$$

Symbol # will serve to separate strings in  $\mathbb{B}^*$ 

- in end states (alternative definitions)
  - 1. there is no next step

$$\delta: (Z \setminus E) \times A^K \to z \times A^k \times \{L, N, R\}^k$$

2. sometimes useful: looping in end state

$$\delta(z,a) = (z,a,N^k)$$
 for  $z \in E$ 

saves sometimes case split between lang and short computations



Figure 1: illustration of a 2 tape TM

#### I/O convention

- input is non blank portion of tape 1, head 1 on first symbol of input
- all other tapes initially blank
- output is on non blank portion on tape 1, head 1 on first symbol of output

transition function

$$\delta: Z \times A^k \to Z \times A^k \times \{L, N, R\}^k$$

where

$$\delta(z,a_1,\ldots,a_k)=(z',c_1,\ldots,c_k,m_1,\ldots,m_k)$$

means: if M reads in state z on each tape i symbol  $a_i$ , then it goes to state z'; moreover on each tape i it overwrites  $a_i$  with  $c_i$  and makes head movement  $m_i$ .

- initial state  $z_0 \in Z$
- set of end states  $E \subseteq Z$



Figure 1: illustration of a 2 tape TM

#### I/O convention

- input is non blank portion of tape 1, head 1 on first symbol of input
- all other tapes initially blank
- output is on non blank portion on tape 1, head 1 on first symbol of output

## example: incrementing binary numbers

• input: binary number bin(n)

• output: bin(n+1)

machine 
$$M$$
:  $tape 1 = tape 1 + 1$  has 1 tape

go to right end, state  $q_i$  means carry = i

$$\delta(z_0, a) = (z_0, a, R) \quad a \in \mathbb{B}$$
  
 $\delta(z_0, B) = (q_0, B, L)$ 

transition function

$$\delta: Z \times A^k \to Z \times A^k \times \{L, N, R\}^k$$

where

$$\delta(z,a_1,\ldots,a_k)=(z',c_1,\ldots,c_k,m_1,\ldots,m_k)$$

means: if M reads in state z on each tape i symbol  $a_i$ , then it goes to state z'; moreover on each tape i it overwrites  $a_i$  with  $c_i$  and makes head movement  $m_i$ .

- initial state  $z_0 \in Z$
- set of end states  $E \subseteq Z$



Figure 1: illustration of a 2 tape TM

#### I/O convention

- input is non blank portion of tape 1, head 1 on first symbol of input
- all other tapes initially blank
- output is on non blank portion on tape 1, head 1 on first symbol of output

## example: incrementing binary numbers

• input: binary number bin(n)

• output: bin(n+1)

machine M: tape 1 = tape 1 + 1 has 1 tape

go to right end, state  $q_i$  means carry = i

$$\delta(z_0, a) = (z_0, a, R) \quad a \in \mathbb{B}$$
  
 $\delta(z_0, B) = (q_1, B, L)$ 

add for current position

$$\delta(q_0, a) = (q_0, a, L) \quad a \in \mathbb{B}$$
 $\delta(q_1, 0) = (q_0, 1, L)$ 
 $\delta(q_1, 1) = (q_1, 0, L)$ 

return to left end of output

$$\delta(q_0, B) = (z_e, B, R)$$
  
 $\delta(q_1; B) = (z_e, 1, R)$ 

end states  $E = \{z_e\}$ 

**example: decrementing binary numbers** machine M: tape 1 = tape 1 - 1: exercise

 $K = A^* \circ Z \circ A^*$ 

TM semantics for k = 1 tape

for  $k \ge 2$ : exercise

where

$$k = uzv$$

means:

- non blank part of tape is substring of uv
- head is on  $v_1$
- state is z
- start configuration if  $z = z_0$
- end configuration if  $z \in E$

# 2 TM semantics for k = 1 tape

for  $k \ge 2$ : exercise

where

$$k = uzv$$

 $K = A^* \circ Z \circ A^*$ 

means:

- non blank part of tape is substring of uv
- head is on  $v_1$
- state is z
- start configuration if  $z = z_0$
- end configuration if  $z \in E$

#### **def:** next state relation ⊢

 $\vdash \subset K \times K$  here a partial function

for

$$u, v \in A^+, a, b, c \in A, z, z' \in Z$$

define by case split (on empty tape around the head)

$$K = A^* \circ Z \circ A^*$$

where

$$k = uzv$$

means:

- non blank part of tape is substring of uv
- head is on  $v_1$
- state is z
- start configuration if  $z = z_0$
- end configuration if  $z \in E$

#### **def:** next state relation ⊢

 $\vdash \subset K \times K$  here a partial function

for

$$u, v \in A^+, a, b, c \in A, z, z' \in Z$$

define by case split (on empty tape around the head)

• non blank tape on both sides of head

$$ubzav \vdash \begin{cases} uz'bcv & \delta(z,a) = (z',c,L) \\ ubz'cv & \delta(z,a) = (z',c,N) \\ ubcz'v & \delta(z,a) = (z',c,R) \end{cases}$$

$$K = A^* \circ Z \circ A^*$$

where

$$k = uzv$$

means:

- non blank part of tape is substring of uv
- head is on  $v_1$
- state is z
- start configuration if  $z = z_0$
- end configuration if  $z \in E$

#### def: next state relation ⊢

 $\vdash \subset K \times K$  here a partial function

for

$$u, v \in A^+, a, b, c \in A, z, z' \in Z$$

define by case split (on empty tape around the head)

• non blank tape on both sides of head

$$ubzav \vdash \begin{cases} uz'bcv & \delta(z,a) = (z',c,L) \\ ubz'cv & \delta(z,a) = (z',c,N) \\ ubcz'v & \delta(z,a) = (z',c,R) \end{cases}$$

• blank tape left of head

$$zav \vdash \begin{cases} z'Bcv & \delta(z,a) = (z',c,L) \\ z'cv & \delta(z,a) = (z',c,N) \\ cz'v & \delta(z,a) = (z',c,R) \end{cases}$$

$$K = A^* \circ Z \circ A^*$$

where

$$k = uzv$$

means:

- non blank part of tape is substring of uv
- head is on  $v_1$
- state is z
- start configuration if  $z = z_0$
- end configuration if  $z \in E$

#### def: next state relation ⊢

 $\vdash \subset K \times K$  here a partial function

for

$$u, v \in A^+, a, b, c \in A, z, z' \in Z$$

define by case split (on empty tape around the head)

• non blank tape on both sides of head

$$ubzav \vdash \begin{cases} uz'bcv & \delta(z,a) = (z',c,L) \\ ubz'cv & \delta(z,a) = (z',c,N) \\ ubcz'v & \delta(z,a) = (z',c,R) \end{cases}$$

• blank tape left of head

$$zav \vdash \begin{cases} z'Bcv & \delta(z,a) = (z',c,L) \\ z'cv & \delta(z,a) = (z',c,N) \\ cz'v & \delta(z,a) = (z',c,R) \end{cases}$$

• blank tape right of head

$$ubz \vdash \begin{cases} uz'bc & \delta(z,B) = (z',c,L) \\ ubz'c & \delta(z,B) = (z',c,N) \\ ubcz' & \delta(z,B) = (z',c,R) \end{cases}$$

$$K = A^* \circ Z \circ A^*$$

where

$$k = uzv$$

means:

- non blank part of tape is substring of uv
- head is on  $v_1$
- state is z
- start configuration if  $z = z_0$
- end configuration if  $z \in E$

#### def: next state relation ⊢

 $\vdash \subset K \times K$  here a partial function

for

$$u, v \in A^+, a, b, c \in A, z, z' \in Z$$

define by case split (on empty tape around the head)

• non blank tape on both sides of head

$$ubzav \vdash \begin{cases} uz'bcv & \delta(z,a) = (z',c,L) \\ ubz'cv & \delta(z,a) = (z',c,N) \\ ubcz'v & \delta(z,a) = (z',c,R) \end{cases}$$

• blank tape left of head

$$zav \vdash \begin{cases} z'Bcv & \delta(z,a) = (z',c,L) \\ z'cv & \delta(z,a) = (z',c,N) \\ cz'v & \delta(z,a) = (z',c,R) \end{cases}$$

• blank tape right of head

$$ubz \vdash \begin{cases} uz'bc & \delta(z,B) = (z',c,L) \\ ubz'c & \delta(z,B) = (z',c,N) \\ ubcz' & \delta(z,B) = (z',c,R) \end{cases}$$

blank tape left and right of head

$$z \vdash \begin{cases} z'Bc & \delta(z,B) = (z',c,L) \\ z'c & \delta(z,B) = (z',c,N) \\ cz' & \delta(z,B) = (z',c,R) \end{cases}$$

$$K = A^* \circ Z \circ A^*$$

where

$$k = uzv$$

means:

- non blank part of tape is substring of uv
- head is on  $v_1$
- state is z
- start configuration if  $z = z_0$
- end configuration if  $z \in E$

#### def: next state relation ⊢

 $\vdash \subset K \times K$  here a partial function

for

$$u, v \in A^+, a, b, c \in A, z, z' \in Z$$

define by case split (on empty tape around the head)

• non blank tape on both sides of head

$$ubzav \vdash \begin{cases} uz'bcv & \delta(z,a) = (z',c,L) \\ ubz'cv & \delta(z,a) = (z',c,N) \\ ubcz'v & \delta(z,a) = (z',c,R) \end{cases}$$

• blank tape left of head

$$zav \vdash \begin{cases} z'Bcv & \delta(z,a) = (z',c,L) \\ z'cv & \delta(z,a) = (z',c,N) \\ cz'v & \delta(z,a) = (z',c,R) \end{cases}$$

• blank tape right of head

$$ubz \vdash \begin{cases} uz'bc & \delta(z,B) = (z',c,L) \\ ubz'c & \delta(z,B) = (z',c,N) \\ ubcz' & \delta(z,B) = (z',c,R) \end{cases}$$

blank tape left and right of head

$$z \vdash \begin{cases} z'Bc & \delta(z,B) = (z',c,L) \\ z'c & \delta(z,B) = (z',c,N) \\ cz' & \delta(z,B) = (z',c,R) \end{cases}$$

In later applications we can often

- surround input by enough blanks
- then we can ignore rules 2 to 4
- so we have a 3 line definition of steps

## def: computations of

$$M = (Z, A, \delta, z_0, E)$$
 with input  $w \in (A \setminus \{B\})^*$ 

- sequence  $(k_i)$  of configurations
- with start configuration

$$k_0 = B \dots B z_0 w B \dots B$$

computation steps

$$k_i \vdash k_{i+1}$$
 for all except the last i

• finite of lenght T if

$$k = (k_0, \ldots, k_T)$$

and  $k_T$  is end configuration. M started with w halts.

- infinite if no  $k_i$  is end configuration. M started with w does not halt.
- canonical computation if

$$k_0 = z_0 w$$

• tape used: |w| + number of tape cells visited outside of original input during the computation.

# def: computations of

$$M = (Z, A, \delta, z_0, E)$$
 with input  $w \in (A \setminus \{B\})^*$ 

- sequence  $(k_i)$  of configurations
- with start configuration

$$k_0 = B \dots B z_0 w B \dots B$$

computation steps

$$k_i \vdash k_{i+1}$$
 for all except the last i

• finite of lenght T if

$$k = (k_0, \ldots, k_T)$$

and  $k_T$  is end configuration. M started with w halts.

- infinite if no  $k_i$  is end configuration. M started with w does not halt.
- canonical computation if

$$k_0 = z_0 w$$

• tape used: |w| + number of tape cells visited outside of original input during the computation.

## example of not halting

$$\delta(z_0, a) = (z_0, a, R)$$
 for all  $a \in A$ 

## def: computations of

$$M = (Z, A, \delta, z_0, E)$$
 with input  $w \in (A \setminus \{B\})^*$ 

- sequence  $(k_i)$  of configurations
- with start configuration

$$k_0 = B \dots B z_0 w B \dots B$$

computation steps

$$k_i \vdash k_{i+1}$$
 for all except the last i

• finite of lenght T if

$$k = (k_0, \ldots, k_T)$$

and  $k_T$  is end configuration. M started with w halts.

- infinite if no  $k_i$  is end configuration. M started with w does not halt.
- canonical computation if

$$k_0 = z_0 w$$

• tape used: |w| + number of tape cells visited outside of original input during the computation.

### example of not halting

$$\delta(z_0, a) = (z_0, a, R)$$
 for all  $a \in A$ 

## what can be computed by 1 tape TM's?

- Answer: everything that can be computed at all
- this is known as *Church's thesis*.
- We cannot prove it (based on what definition or axiom could we do that?)
- we can supply evidence, and we will do it. Of course here
- for instance that it's the same as the recursive functions

# def: regular TM's nice for composition of TMs

- at the end of computation head 1 is at start of the non blank portion of tape
- tape inscription of tape 1 is not interrupted by B's
- tapes i > 1 are blank

def: regular TM's nice for composition of TMs

- at the end of computation head 1 is at start of the non blank portion of tape
- tape inscription of tape 1 is not interrupted by B's
- tapes i > 1 are blank

**copying a tape inscription** machine M with name  $tape\ 2 = tape\ 1$ 

$$\delta(z_0, a, B) = (z_0, a, a, R, R) \quad a \in \mathbb{B}$$

$$\delta(z_0,B,B) = (z_1,B,B,L,L)$$

$$\delta(z_1, a, a) = (z_1, a, a, L, L) \quad a \in \mathbb{B}$$

$$\delta(z_1,B,B) = (z_e,B,B,R,R)$$

def: regular TM's nice for composition of TMs

- at the end of computation head 1 is at start of the non blank portion of tape
- tape inscription of tape 1 is not interrupted by B's
- tapes i > 1 are blank

**copying a tape inscription** machine M with name  $tape\ 2 = tape\ 1$ 

$$\delta(z_0, a, B) = (z_0, a, a, R, R) \quad a \in \mathbb{B}$$

$$\delta(z_0, B, B) = (z_1, B, B, L, L)$$

$$\delta(z_1, a, a) = (z_1, a, a, L, L) \quad a \in \mathbb{B}$$

$$\delta(z_1, B, B) = (z_e, B, B, R, R)$$

concatenate tape inscriptions: machines tape  $1 = tape \ 1 \# tape \ 2$  and  $tape \ 1 = tape \ 2 \# tape \ 1$  exercise

def: regular TM's nice for composition of TMs

- at the end of computation head 1 is at start of the non blank portion of tape
- tape inscription of tape 1 is not interrupted by B's
- tapes i > 1 are blank

copying a tape inscription machine M with name tape 2 = tape 1

$$\delta(z_0, a, B) = (z_0, a, a, R, R) \quad a \in \mathbb{B}$$

$$\delta(z_0, B, B) = (z_1, B, B, L, L)$$

$$\delta(z_1, a, a) = (z_1, a, a, L, L) \quad a \in \mathbb{B}$$

$$\delta(z_1, B, B) = (z_e, B, B, R, R)$$

concatenate tape inscriptions: machines tape  $1 = tape \ 1 \# tape \ 2$  and  $tape \ 1 = tape \ 2 \# tape \ 1$  exercise

erasing a tape machine erase tape 1

$$\delta(z_0, a) = (z_0, B, R) \quad a \neq B$$
  
 $\delta(z_0, B) = (z_e, B, N)$ 

def: regular TM's nice for composition of TMs

- at the end of computation head 1 is at start of the non blank portion of tape
- tape inscription of tape 1 is not interrupted by B's
- tapes i > 1 are blank

**copying a tape inscription** machine *M* with name  $tape\ 2 = tape\ 1$ 

$$\delta(z_0, a, B) = (z_0, a, a, R, R) \quad a \in \mathbb{B}$$

$$\delta(z_0, B, B) = (z_1, B, B, L, L)$$

$$\delta(z_1, a, a) = (z_1, a, a, L, L) \quad a \in \mathbb{B}$$

$$\delta(z_1, B, B) = (z_e, B, B, R, R)$$

**concatenate tape inscriptions:** machines  $tape\ 1 = tape\ 1\ \#tape\ 2$  and  $tape\ 1 = tape\ 2\#tape\ 1$  exercise

erasing a tape machine erase tape 1

$$\delta(z_0, a) = (z_0, B, R) \quad a \neq B$$
  
 $\delta(z_0, B) = (z_e, B, N)$ 

remembering (finite amouts of) information in the state Machine shiftr tape 1.

shifts inscription  $w \in \{0, 1, \#\}^*$  of tape one cell to the right

$$Z = \{z_0, z_e\} \cup \{z^a : a \in A\}$$

$$\delta(z_0, a) = (z^a, B, R) \quad a \in \{0, 1, \#\}$$

$$\delta(z^a, b) = (z^b, a, R) \in \{0, 1, \#\}$$

$$\delta(z^a, B) = (z_e, a, R) \quad a \in \{0, 1, \#\}$$

def: regular TM's nice for composition of TMs

- at the end of computation head 1 is at start of the non blank portion of tape
- tape inscription of tape 1 is not interrupted by B's
- tapes i > 1 are blank

copying a tape inscription machine M with name tape 2 = tape 1

$$\delta(z_0, a, B) = (z_0, a, a, R, R) \quad a \in \mathbb{B}$$

$$\delta(z_0, B, B) = (z_1, B, B, L, L)$$

$$\delta(z_1, a, a) = (z_1, a, a, L, L) \quad a \in \mathbb{B}$$

$$\delta(z_1, B, B) = (z_e, B, B, R, R)$$

**concatenate tape inscriptions:** machines  $tape\ 1 = tape\ 1\ \#tape\ 2$  and  $tape\ 1 = tape\ 2\#tape\ 1$  exercise

erasing a tape machine erase tape 1

$$\delta(z_0, a) = (z_0, B, R) \quad a \neq B$$
  
 $\delta(z_0, B) = (z_e, B, N)$ 

remembering (finite amouts of) information in the state Machine shiftr tape 1.

shifts inscription  $w \in \{0, 1, \#\}^*$  of tape one cell to the right

$$Z = \{z_0, z_e\} \cup \{z^a : a \in A\}$$
 $\delta(z_0, a) = (z^a, B, R) \quad a \in \{0, 1, \#\}$ 
 $\delta(z^a, b) = (z^b, a, R) \in \{0, 1, \#\}$ 
 $\delta(z^a, B) = (z_e, a, R) \quad a \in \{0, 1, \#\}$ 
not regular

def: regular TM's nice for composition of TMs

- at the end of computation head 1 is at start of the non blank portion of tape
- tape inscription of tape 1 is not interrupted by B's
- tapes i > 1 are blank

copying a tape inscription machine M with name tape 2 = tape 1

$$\delta(z_0, a, B) = (z_0, a, a, R, R) \quad a \in \mathbb{B}$$
 $\delta(z_0, B, B) = (z_1, B, B, L, L)$ 
 $\delta(z_1, a, a) = (z_1, a, a, L, L) \quad a \in \mathbb{B}$ 
 $\delta(z_1, B, B) = (z_e, B, B, R, R)$ 

concatenate tape inscriptions: machines  $tape\ 1 = tape\ 1\ \#tape\ 2$  and  $tape\ 1 = tape\ 2\#tape\ 1$  exercise

erasing a tape machine erase tape 1

$$\delta(z_0, a) = (z_0, B, R) \quad a \neq B$$
  
 $\delta(z_0, B) = (z_e, B, N)$ 

remembering (finite amouts of) information in the state Machine shiftr tape 1.

shifts inscription  $w \in \{0, 1, \#\}^*$  of tape one cell to the right

$$Z = \{z_0, z_e\} \cup \{z^a : a \in A\}$$
 $\delta(z_0, a) = (z^a, B, R) \quad a \in \{0, 1, \#\}$ 
 $\delta(z^a, b) = (z^b, a, R) \in \{0, 1, \#\}$ 
 $\delta(z^a, B) = (z_e, a, R) \quad a \in \{0, 1, \#\}$ 
not regular

shifting left: with shiftl tape 1 exercise

def: regular TM's nice for composition of TMs

- at the end of computation head 1 is at start of the non blank portion of tape
- tape inscription of tape 1 is not interrupted by B's
- tapes i > 1 are blank

copying a tape inscription machine M with name  $tape\ 2 = tape\ 1$ 

$$\delta(z_0, a, B) = (z_0, a, a, R, R) \quad a \in \mathbb{B}$$

$$\delta(z_0, B, B) = (z_1, B, B, L, L)$$

$$\delta(z_1, a, a) = (z_1, a, a, L, L) \quad a \in \mathbb{B}$$

$$\delta(z_1, B, B) = (z_e, B, B, R, R)$$

concatenate tape inscriptions: machines  $tape\ 1 = tape\ 1 \# tape\ 2$  and  $tape\ 1 = tape\ 2\# tape\ 1$  exercise

erasing a tape machine erase tape 1

$$\delta(z_0, a) = (z_0, B, R) \quad a \neq B$$
  
 $\delta(z_0, B) = (z_e, B, N)$ 

remembering (finite amouts of) information in the state Machine shiftr tape 1.

shifts inscription  $w \in \{0, 1, \#\}^*$  of tape one cell to the right

$$Z = \{z_0, z_e\} \cup \{z^a : a \in A\}$$
 $\delta(z_0, a) = (z^a, B, R) \quad a \in \{0, 1, \#\}$ 
 $\delta(z^a, b) = (z^b, a, R) \in \{0, 1, \#\}$ 
 $\delta(z^a, B) = (z_e, a, R) \quad a \in \{0, 1, \#\}$ 
not regular

shifting left: with shiftl tape 1 exercise

storing a word w in finite control Let  $w = w[n-1:0] \in \mathbb{B}^+$ 

machine tape 1 = w writes w on empty tape.

$$Z = \{z_0, \dots z_n\}$$

$$z_e = z_n$$

$$\delta(z_i, B) = \begin{cases} (z_{i+1}, w_i, L) & i < n-1 \\ (z_n, w_{n-1}, N) & i = n-1 \end{cases}$$

copying a tape inscription machine M with name  $tape\ 2 = tape\ 1$ 

$$\delta(z_0, a, B) = (z_0, a, a, R, R) \quad a \in \mathbb{B}$$

$$\delta(z_0, B, B) = (z_1, B, B, L, L)$$

$$\delta(z_1, a, a) = (z_1, a, a, L, L) \quad a \in \mathbb{B}$$

$$\delta(z_1, B, B) = (z_e, B, B, R, R)$$

concatenate tape inscriptions: machines tape  $1 = tape \ 1 \# tape \ 2$  and  $tape \ 1 = tape \ 2 \# tape \ 1$  exercise

erasing a tape machine erase tape 1

$$\delta(z_0, a) = (z_0, B, R) \quad a \neq B$$
  
 $\delta(z_0, B) = (z_e, B, N)$ 

remembering (finite amouts of) information in the state Machine shiftr tape 1. shifts inscription  $w \in \{0, 1, \#\}^*$  of tape one cell to the right

$$Z = \{z_0, z_e\} \cup \{z^a : a \in A\}$$
 $\delta(z_0, a) = (z^a, B, R) \quad a \in \{0, 1, \#\}$ 
 $\delta(z^a, b) = (z^b, a, R) \in \{0, 1, \#\}$ 
 $\delta(z^a, B) = (z_e, a, R) \quad z \in Z \setminus \{z_e\}$ 
not regular

shifting left: with shiftl tape 1 exercise

storing a word w in finite control Let  $w = w[n-1:0] \in \mathbb{B}^+$ 

machine  $tape \ 1 = w$  writes w on empty tape.

$$Z = \{z_0, \dots z_n\}$$

$$z_e = z_n$$

$$\delta(z_i, B) = \begin{cases} (z_{i+1}, w_i, L) & i < n-1 \\ (z_n, w_{n-1}, N) & i = n-1 \end{cases}$$

**head and tail of tapes** For

$$x = x_1 \# \dots \# x_r \quad x_i \in \mathbb{B}^*$$

we define

$$hd(x) = x_1$$

$$tail(x) = x_2 \# \dots \# x_r$$

machines  $tape\ 2 = hd(tape\ 1)$  and  $tape\ 2 = tail(tape\ 1)$  exercise

$$\{i_1,\ldots,i_s\}\subset\{1,\ldots,k\}$$

machine  $M = P(i_1, \dots i_s)$ : if

$$a \in A^k$$
,  $a' = (a_{i_1}, \dots, a_{i_s})$ ,  $\delta_P(z, a') = (z', b', r'_1, \dots, r'_s)$ 

then

$$\delta_M(z,a) = (z',b,r)$$

where tape  $i_j$  of M behaves like tape j of P

$$b_{i_j} = b'_j , r_{i_j} = r'_j$$

and on other tapes  $y \notin \{i_1, \ldots, i_s\}$  nothing happens

$$b_j = a_j, r_j = N$$

$$\{i_1,\ldots,i_s\}\subset\{1,\ldots,k\}$$

machine  $M = P(i_1, \dots i_s)$ : if

$$a \in A^k$$
,  $a' = (a_{i_1}, \dots, a_{i_s})$ ,  $\delta_P(z, a') = (z', b', r'_1, \dots, r'_s)$ 

then

$$\delta_M(z,a) = (z',b,r)$$

where tape  $i_j$  of M behaves like tape j of P

$$b_{i_j} = b'_j , r_{i_j} = r'_j$$

and on other tapes  $y \notin \{i_1, \ldots, i_s\}$  nothing happens

$$b_j = a_j, r_j = N$$

example | to

$$tape 1 = tape 2$$

realize as

*tape* 
$$2 = tape 1(2,1)$$

$$\{i_1,\ldots,i_s\}\subset\{1,\ldots,k\}$$

machine  $M = P(i_1, \dots i_s)$ : if

$$a \in A^k$$
,  $a' = (a_{i_1}, \dots, a_{i_s})$ ,  $\delta_P(z, a') = (z', b', r'_1, \dots, r'_s)$ 

then

$$\delta_M(z,a) = (z',b,r)$$

where tape  $i_j$  of M behaves like tape j of P

$$b_{i_j} = b'_j , r_{i_j} = r'_j$$

and on other tapes  $y \notin \{i_1, \ldots, i_s\}$  nothing happens

$$b_j = a_j, r_j = N$$

**example** tape 1 = tape 2 realize as

*tape* 
$$2 = tape 1(2,1)$$

**concatenating machines** machine Q = M; P: w.l.o.g  $Z \cap Z' = \emptyset$  and  $z_{0,P} \notin Z_{E,P}$ 

$$Z_{Q} = Z_{M} \cup Z_{P}$$

$$z_{0,Q} = z_{0,M}$$

$$Z_{E,Q} = Z_{E,P}$$

$$\delta_{Q}(z,a) = \begin{cases} \delta_{M}(z,a) & z \in Z_{M} \setminus Z_{E,M} \\ \delta_{P}(z_{0,P},a) & z \in Z_{E,M} \\ \delta_{P}(z,a) & z \in Z_{P} \end{cases}$$

$$\{i_1,\ldots,i_s\}\subset\{1,\ldots,k\}$$

machine  $M = P(i_1, \dots i_s)$ : if

$$a \in A^k$$
,  $a' = (a_{i_1}, \dots, a_{i_s})$ ,  $\delta_P(z, a') = (z', b', r'_1, \dots, r'_s)$ 

then

$$\delta_M(z,a) = (z',b,r)$$

where tape  $i_j$  of M behaves like tape j of P

$$b_{i_j} = b'_j , r_{i_j} = r'_j$$

and on other tapes  $y \notin \{i_1, \ldots, i_s\}$  nothing happens

$$b_j = a_j , r_j = N$$

**example** tape realize as

$$tape 1 = tape 2$$

$$tape \ 2 = tape \ 1(2,1)$$

**concatenating machines** machine Q = M; P: w.l.o.g  $Z \cap Z' = \emptyset$  and  $z_{0,P} \notin Z_{E,P}$ 

$$Z_{Q} = Z_{M} \cup Z_{P}$$

$$z_{0,Q} = z_{0,M}$$

$$Z_{E,Q} = Z_{E,P}$$

$$\delta_{Q}(z,a) = \begin{cases} \delta_{M}(z,a) & z \in Z_{M} \setminus Z_{E,M} \\ \delta_{P}(z_{0,P},a) & z \in Z_{E,M} \\ \delta_{P}(z,a) & z \in Z_{P} \end{cases}$$

**unrolling a finite loop** for Machines  $M_i$  we abbreviate

$$M_1;\ldots;M_k$$

as

for i = 1 to k do  $M_i$ 

testing tape 1 for all zeros: regular machine tape 1 = 0?

$$Z = \{z_0, z_1, yes', no', yes, no\}$$
  
 $\delta(z_0, a) = (no', a, L) \quad a \neq 0$   
 $\delta(z_0; 0) = (z_0, 0, R)$   
 $\delta(z_0, B) = (yes'; B, L)$   
 $\delta(q, a) = (q, a, L) \quad q \in \{yes', no'\}, a \neq B$   
 $\delta(yes', B) = (yes, B, R)$   
 $\delta(no', B) = (no, B, R)$ 

testing tape 1 for all zeros: regular machine tape 1 = 0?

$$Z = \{z_0, z_1, yes', no', yes, no\}$$

$$\delta(z_0, a) = (no', a, L) \quad a \neq 0$$

$$\delta(z_0; 0) = (z_0, 0, R)$$

$$\delta(z_0, B) = (yes'; B, L)$$

$$\delta(q, a) = (q, a, L) \quad q \in \{yes', no'\}, a \neq B$$

$$\delta(yes', B) = (yes, B, R)$$

$$\delta(no', B) = (no, B, R)$$

while loop machine Q: while tape  $i \neq 0$  do M regular machine M changes tape i. States differ from states of last machine.

$$Q: tape \ 1 = 0?; M; S$$

for all  $z \in Z_{E,M}$  and  $a \in A$ 

$$\delta_S(z,a) = \delta_{tape\ 1=0?}(z_0,a)$$

testing tape 1 for all zeros: regular machine tape 1 = 0?

$$Z = \{z_0, z_1, yes', no', yes, no\}$$

$$\delta(z_0, a) = (no', a, L) \quad a \neq 0$$

$$\delta(z_0; 0) = (z_0, 0, R)$$

$$\delta(z_0, B) = (yes'; B, L)$$

$$\delta(q, a) = (q, a, L) \quad q \in \{yes', no'\}, a \neq B$$

$$\delta(yes', B) = (yes, B, R)$$

$$\delta(no', B) = (no, B, R)$$

while loop machine Q: while tape  $i \neq 0$  do M regular machine M changes tape i. States differ from states of last machine.

$$Q: tape \ 1 = 0?; M; S$$

for all  $z \in Z_{E,M}$  and  $a \in A$ 

$$\delta_S(z,a) = \delta_{tape\ 1=0?}(z_0,a)$$

# 4 functions computed by Turing machines

here: bin(y) without leading zeros

def: function  $f_M$  computed by TM M Let

$$f: \mathbb{N}_0^r \to \mathbb{N}_0$$

we say that TM M computes f resp.  $f = f_M$  is the function computed by M if for all

$$x = (x_1, \ldots, x_r) \in \mathbb{N}_0^r$$

machine M started with

$$bin(x_1)#...#bin(x_r)$$

outputs

$$bin(f(x_1,\ldots,x_r))$$

f is TM-computable if  $f = f_M$  for some TM M

# 5 $\mu$ -recursive functions are TM-computable

**Lemma 1.** All constant functions  $c_s^r$  are computed by regular TM's.

Proof.

erase tape 1; tape 
$$1 = bin(s)$$

П

# 5 $\mu$ -recursive functions are TM-computable

**Lemma 1.** All constant functions  $c_s^r$  are computed by regular TM's.

Proof.

erase tape 1; tape 
$$1 = bin(s)$$

**Lemma 2.** The successor function is TM-computable by a regular TM:

Proof.

$$tape 1 = tape 1 + 1$$

# 5 $\mu$ -recursive functions are TM-computable

**Lemma 1.** All constant functions  $c_s^r$  are computed by regular TM's.

Proof.

erase tape 1; tape 
$$1 = bin(s)$$

**Lemma 2.** The successor function is TM-computable by a regular TM:

Proof.

$$tape 1 = tape 1 + 1$$

**Lemma 3.** all projections  $p_i^r$  are computed by regular TM's

Proof.

tape 
$$1 = tail(tape\ 1); \ldots; tape\ 1 = tail(tape\ 1); \quad (i-1\ times);$$
  
tape  $1 = hd(tape\ 1)$ 

\_

**Lemma 4.** If the following functions are all computable by regular TM's

$$f: \mathbb{N}_0^r \to \mathbb{N} \text{ and } g_1, \dots, g_r: \mathbb{N}_0^m \to \mathbb{N}_0$$

then also h is computable by a regular TM, where

$$h: \mathbb{N}_0^m \to \mathbb{N}_0$$

$$h(x) = f(g_1(x), \dots, g_r(x))$$

**Lemma 4.** If the following functions are all computable by regular TM's

$$f: \mathbb{N}_0^r \to \mathbb{N} \text{ and } g_1, \dots, g_r: \mathbb{N}_0^m \to \mathbb{N}_0$$

then also h is computable by a regular TM, where

$$h: \mathbb{N}_0^m \to \mathbb{N}_0$$

$$h(x) = f(g_1(x), \dots, g_r(x))$$

• For all i let  $g_i$  be computed by  $k_i$ -tape machine  $G_i$  and f by k'-tape machine F. We compute h by k-tape TM M with

$$k = \max\{k_1, \dots k_r, k'\} + r$$

**Lemma 4.** If the following functions are all computable by regular TM's

$$f: \mathbb{N}_0^r \to \mathbb{N} \text{ and } g_1, \dots, g_r: \mathbb{N}_0^m \to \mathbb{N}_0$$

then also h is computable by a regular TM, where

$$h: \mathbb{N}_0^m \to \mathbb{N}_0$$

$$h(x) = f(g_1(x), \dots, g_r(x))$$

• For all i let  $g_i$  be computed by  $k_i$ -tape machine  $G_i$  and f by k'-tape machine F. We compute h by k-tape TM M with

$$k = \max\{k_1, \dots k_r, k'\} + r$$

• Let the input of tape 1 be

$$bin(x_1)#...#bin(x_r)$$

and

$$x = (x_1, \dots, x_r) \in \mathbb{N}_0^r$$

**Lemma 4.** If the following functions are all computable by regular TM's

$$f: \mathbb{N}_0^r \to \mathbb{N} \text{ and } g_1, \dots, g_r: \mathbb{N}_0^m \to \mathbb{N}_0$$

then also h is computable by a regular TM, where

$$h: \mathbb{N}_0^m \to \mathbb{N}_0$$

$$h(x) = f(g_1(x), \dots, g_r(x))$$

• For all i let  $g_i$  be computed by  $k_i$ -tape machine  $G_i$  and f by k'-tape machine F. We compute h by k-tape TM M with

$$k = \max\{k_1, \dots k_r, k'\} + r$$

• Let the input of tape 1 be

$$bin(x_1)#...#bin(x_r)$$

and

$$x = (x_1, \dots, x_r) \in \mathbb{N}_0^r$$

• copy tape 1 to tapes  $2, \ldots, r+1$ ; then erase tape 1

for 
$$i = 1$$
 to  $r$  {tape  $i + 1 = tape 1$ }; erase tape 1

We get the situation from table 1.

| tape | content              |
|------|----------------------|
| 1    | D D                  |
| 1    | $B \dots B$          |
| 2    | $bin(x_1)##bin(x_r)$ |
|      | • • •                |
| r+1  | $bin(x_1)##bin(x_r)$ |
| r+2  | $B \dots B$          |
|      | • • •                |

Table 1: after copying input to tapes  $2, \ldots, r+1$ .

**Lemma 4.** If the following functions are all computable by regular TM's

$$f: \mathbb{N}_0^r \to \mathbb{N} \text{ and } g_1, \dots, g_r: \mathbb{N}_0^m \to \mathbb{N}_0$$

then also h is computable by a regular TM, where

$$h: \mathbb{N}_0^m \to \mathbb{N}_0$$

$$h(x) = f(g_1(x), \dots, g_r(x))$$

• For all i let  $g_i$  be computed by  $k_i$ -tape machine  $G_i$  and f by k'-tape machine F. We compute h by k-tape TM M with

$$k = \max\{k_1, \dots k_r, k'\} + r$$

• Let the input of tape 1 be

$$bin(x_1)#...#bin(x_r)$$

and

$$x = (x_1, \dots, x_r) \in \mathbb{N}_0^r$$

• copy tape 1 to tapes  $2, \ldots, r+1$ ; then erase tape 1

for 
$$i = 1$$
 to  $r$  {tape  $i + 1 = tape 1$ }; erase tape 1

We get the situation from table 1.

| tape | content              |
|------|----------------------|
| 1    | $B \dots B$          |
| 2    | $bin(x_1)##bin(x_r)$ |
|      | • • •                |
| r+1  | $bin(x_1)##bin(x_r)$ |
| r+2  | $B \dots B$          |
|      | • • •                |

Table 1: after copying input to tapes  $2, \ldots, r+1$ .

• for all i = 1 to r compute  $tape i + 1 = bin(g_i(x))$  on tapes  $i + 1, r + 2, \dots, r + 1 + k_i$ :

for 
$$i = 1$$
 to  $k$  do  $\{G_i(i+1, r+2, ..., r+1+k_i)\}$ 

**Lemma 4.** If the following functions are all computable by regular TM's

$$f: \mathbb{N}_0^r \to \mathbb{N} \text{ and } g_1, \dots, g_r: \mathbb{N}_0^m \to \mathbb{N}_0$$

then also h is computable by a regular TM, where

$$h: \mathbb{N}_0^m \to \mathbb{N}_0$$

$$h(x) = f(g_1(x), \dots, g_r(x))$$

• For all i let  $g_i$  be computed by  $k_i$ -tape machine  $G_i$  and f by k'-tape machine F. We compute h by k-tape TM M with

$$k = \max\{k_1, \dots k_r, k'\} + r$$

• Let the input of tape 1 be

$$bin(x_1)#...#bin(x_r)$$

and

$$x = (x_1, \dots, x_r) \in \mathbb{N}_0^r$$

• copy tape 1 to tapes  $2, \ldots, r+1$ ; then erase tape 1

for 
$$i = 1$$
 to  $r$  {tape  $i + 1 = tape 1$ }; erase tape 1

We get the situation from table 1.

| tape | content              |
|------|----------------------|
| 1    | $B \dots B$          |
| 2    | $bin(x_1)##bin(x_r)$ |
|      | • • •                |
| r+1  | $bin(x_1)##bin(x_r)$ |
| r+2  | $B \dots B$          |
|      | • • •                |

Table 1: after copying input to tapes  $2, \ldots, r+1$ .

• for all i = 1 to r compute  $tape i + 1 = bin(g_i(x))$  on tapes  $i + 1, r + 2, \dots, r + 1 + k_i$ :

for 
$$i = 1$$
 to  $k$  do  $\{G_i(i+1, r+2, ..., r+1+k_i)\}$ 

We get the situation from table 2.

| tape | content       |
|------|---------------|
| 1    | $B \dots B$   |
| 2    | $bin(g_1(x))$ |
|      | • • •         |
| r+1  | $bin(g_r(x))$ |
| r+2  | $B \dots B$   |
|      | •••           |

Table 2: after copying input to tapes  $2, \ldots, r+1$ .

**Lemma 4.** If the following functions are all computable by regular TM's

$$f: \mathbb{N}_0^r \to \mathbb{N} \text{ and } g_1, \dots, g_r: \mathbb{N}_0^m \to \mathbb{N}_0$$

then also h is computable by a regular TM, where

$$h: \mathbb{N}_0^m \to \mathbb{N}_0$$

$$h(x) = f(g_1(x), \dots, g_r(x))$$

• For all i let  $g_i$  be computed by  $k_i$ -tape machine  $G_i$  and f by k'-tape machine F. We compute h by k-tape TM M with

$$k = \max\{k_1, \dots k_r, k'\} + r$$

• Let the input of tape 1 be

$$bin(x_1)#...#bin(x_r)$$

and

$$x = (x_1, \dots, x_r) \in \mathbb{N}_0^r$$

We get the situation from table 2.

| tape | content       |  |
|------|---------------|--|
| 1    | $B \dots B$   |  |
| 2    | $bin(g_1(x))$ |  |
|      | •             |  |
| r+1  | $bin(g_r(x))$ |  |
| r+2  | $B \dots B$   |  |
|      | • • •         |  |

Table 2: after copying input to tapes  $2, \ldots, r+1$ .

**Lemma 4.** If the following functions are all computable by regular TM's

$$f: \mathbb{N}_0^r \to \mathbb{N} \text{ and } g_1, \dots, g_r: \mathbb{N}_0^m \to \mathbb{N}_0$$

then also h is computable by a regular TM, where

$$h: \mathbb{N}_0^m \to \mathbb{N}_0$$

$$h(x) = f(g_1(x), \dots, g_r(x))$$

• For all i let  $g_i$  be computed by  $k_i$ -tape machine  $G_i$  and f by k'-tape machine F. We compute h by k-tape TM M with

$$k = \max\{k_1, \dots k_r, k'\} + r$$

• Let the input of tape 1 be

$$bin(x_1)#...#bin(x_r)$$

and

$$x = (x_1, \dots, x_r) \in \mathbb{N}_0^r$$

We get the situation from table 2.

| tape | content       |  |
|------|---------------|--|
| 1    | $B \dots B$   |  |
| 2    | $bin(g_1(x))$ |  |
|      | • • •         |  |
| r+1  | $bin(g_r(x))$ |  |
| r+2  | $B \dots B$   |  |
|      | • • •         |  |

Table 2: after copying input to tapes  $2, \ldots, r+1$ .

• compute tape  $1 = bin(g_1(x)) # \dots #bin(g_r(x))$ 

tape 
$$1 = tape 2$$
; erase tape 2; for  $i = 2$  to  $k$  do  $\{tape 1 = tape 1 \# tape 1 + i; erase tape 1 + i\}$ 

We get the situation from table 3.

| tape | content                    |
|------|----------------------------|
| 1    | $bin(g_1(x))##bin(g_r(x))$ |
| 2    | $B \dots B$                |
|      |                            |

Table 3: after copying sequence of  $bin(g_i(x))$  on tape 1.

**Lemma 4.** If the following functions are all computable by regular TM's

$$f: \mathbb{N}_0^r \to \mathbb{N} \text{ and } g_1, \dots, g_r: \mathbb{N}_0^m \to \mathbb{N}_0$$

then also h is computable by a regular TM, where

$$h: \mathbb{N}_0^m \to \mathbb{N}_0$$

$$h(x) = f(g_1(x), \dots, g_r(x))$$

• For all i let  $g_i$  be computed by  $k_i$ -tape machine  $G_i$  and f by k'-tape machine F. We compute h by k-tape TM M with

$$k = \max\{k_1, \dots k_r, k'\} + r$$

• Let the input of tape 1 be

$$bin(x_1)#...#bin(x_r)$$

and

$$x = (x_1, \dots, x_r) \in \mathbb{N}_0^r$$

We get the situation from table 2.

| tape | content       |  |
|------|---------------|--|
| 1    | $B \dots B$   |  |
| 2    | $bin(g_1(x))$ |  |
|      | • • •         |  |
| r+1  | $bin(g_r(x))$ |  |
| r+2  | $B \dots B$   |  |
|      | •••           |  |

Table 2: after copying input to tapes  $2, \ldots, r+1$ .

• compute tape  $1 = bin(g_1(x)) # \dots #bin(g_r(x))$ 

tape 
$$1 = tape 2$$
; erase tape 2; for  $i = 2$  to  $k$  do  $\{tape 1 = tape 1 \# tape 1 + i; erase tape 1 + i\}$ 

We get the situation from table 3.

| tape | content                    |
|------|----------------------------|
| 1    | $bin(g_1(x))##bin(g_r(x))$ |
| 2    | $B \dots B$                |
|      | • • •                      |

Table 3: after copying sequence of  $bin(g_i(x))$  on tape 1.

• compute result by: F

### Lemma 5.

If the following functions are computable by regular TM's

$$g: \mathbb{N}_0^r \to \mathbb{N}_0$$
,  $h: \mathbb{N}_0^{r+2} \to \mathbb{N}_0$ 

then also f is computable by a regular TM, where

$$f: \mathbb{N}_0^{r+1} \to \mathbb{N}_0$$

$$f(0,x) = g(x)$$
  
$$f(n+1,x) = h(n, f(n,x),x)$$

#### Lemma 5.

If the following functions are computable by regular TM's

$$g: \mathbb{N}_0^r \to \mathbb{N}_0$$
,  $h: \mathbb{N}_0^{r+2} \to \mathbb{N}_0$ 

then also f is computable by a regular TM, where

$$f: \mathbb{N}_0^{r+1} \to \mathbb{N}_0$$

$$f(0,x) = g(x)$$
  
$$f(n+1,x) = h(n, f(n,x),x)$$

• Let g be computed by regular k-tape machine G, and let h be computed by regular k'-tape machine H. Compute f by the following s- tape machine with

$$s = \max\{k, k'\} + 3$$

• Let the input of tape 1 be

$$bin(n)#bin(x_1)#...#bin(x_r)$$

and

$$n \in \mathbb{N}_0$$
,  $x = (x_1, \dots, x_r) \in \mathbb{N}_0^r$ 

#### Lemma 5.

If the following functions are computable by regular TM's

$$g: \mathbb{N}_0^r \to \mathbb{N}_0, \ h: \mathbb{N}_0^{r+2} \to \mathbb{N}_0$$

then also f is computable by a regular TM, where

$$f: \mathbb{N}_0^{r+1} \to \mathbb{N}_0$$

$$f(0,x) = g(x)$$
  
$$f(n+1,x) = h(n, f(n,x), x)$$

• Let g be computed by regular k-tape machine G, and let h be computed by regular k'-tape machine H. Compute f by the following s- tape machine with

$$s = \max\{k, k'\} + 3$$

• Let the input of tape 1 be

$$bin(n)#bin(x_1)#...#bin(x_r)$$

and

$$n \in \mathbb{N}_0$$
,  $x = (x_1, \dots, x_r) \in \mathbb{N}_0^r$ 

with

tape 
$$2 = hd(tape\ 1)$$
; tape  $3 = tail(tape(1))$ ; tape  $1 = 0$ ; tape  $4 = tape\ 3$ ;  $G(4, ..., k+3)$ 

we get for the situation of table 4 for i=4

| tape | content                   |
|------|---------------------------|
| 1    | 0                         |
| 2    | bin(n)                    |
| 3    | $bin(x_1)$ )## $bin(x_r)$ |
| 4    | bin(g(x))                 |
| 5    | $B \dots B$               |
|      | • • •                     |

Table 4: after copying sequence of  $bin(g_i(x))$  on tape 1.

#### Lemma 5.

If the following functions are computable by regular TM's

$$g: \mathbb{N}_0^r \to \mathbb{N}_0$$
,  $h: \mathbb{N}_0^{r+2} \to \mathbb{N}_0$ 

then also f is computable by a regular TM, where

$$f: \mathbb{N}_0^{r+1} \to \mathbb{N}_0$$

$$f(0,x) = g(x)$$
  
$$f(n+1,x) = h(n, f(n,x), x)$$

• Let g be computed by regular k-tape machine G, and let h be computed by regular k'-tape machine H. Compute f by the following s- tape machine with

$$s = \max\{k, k'\} + 3$$

• Let the input of tape 1 be

$$bin(n)#bin(x_1)#...#bin(x_r)$$

and

$$n \in \mathbb{N}_0$$
,  $x = (x_1, \dots, x_r) \in \mathbb{N}_0^r$ 

• with  $tape \ 2 = hd(tape \ 1); \ tape \ 3 = tail(tape(1));$  erase tape 1; tape 1 = 0;  $tape \ 4 = tape \ 3; \ G(4, ...k + 3)$ 

we get for the situation of table 4 for i=4

| tape | content                  |
|------|--------------------------|
| 1    | 0                        |
| 2    | bin(n)                   |
| 3    | $bin(x_1)$ ## $bin(x_r)$ |
| 4    | bin(g(x))                |
| 5    | $B \dots B$              |
|      | • • •                    |

Table 4: after copying sequence of  $bin(g_i(x))$  on tape 1.

• in the following while loop we maintain for i = 0, ..., n, that after i passses through the loop we have the situation of table 5. For i = 0 this is the case.

| tape | content                  |
|------|--------------------------|
| 1    | bin(i)                   |
| 2    | bin(n-i)                 |
| 3    | $bin(x_1)$ ## $bin(x_r)$ |
| 4    | bin(f(i,x))              |
| 5    | $B \dots B$              |
|      |                          |

Table 5: after executing the loop *i* times

#### Lemma 5.

If the following functions are computable by regular TM's

$$g: \mathbb{N}_0^r \to \mathbb{N}_0$$
,  $h: \mathbb{N}_0^{r+2} \to \mathbb{N}_0$ 

then also f is computable by a regular TM, where

$$f: \mathbb{N}_0^{r+1} \to \mathbb{N}_0$$

$$f(0,x) = g(x)$$
  
$$f(n+1,x) = h(n, f(n,x), x)$$

• Let g be computed by regular k-tape machine G, and let h be computed by regular k'-tape machine H. Compute f by the following s- tape machine with

$$s = \max\{k, k'\} + 3$$

• Let the input of tape 1 be

$$bin(n)#bin(x_1)#...#bin(x_r)$$

and

$$n \in \mathbb{N}_0$$
,  $x = (x_1, \dots, x_r) \in \mathbb{N}_0^r$ 

• in the following while loop we maintain for i = 0; ..., n, that after i passses through the loop we have the situation of table 5. For i = 0 this is the case.

| tape | content                  |
|------|--------------------------|
| 1    | bin(i)                   |
| 2    | bin(n-i)                 |
| 3    | $bin(x_1)$ ## $bin(x_r)$ |
| 4    | bin(f(i,x))              |
| 5    | $B \dots B$              |
|      | • • •                    |

Table 5: after executing the loop *i* times

This is achieved by

```
while tape 2 \neq 0 do \{tape \ 1 = tape \ 1 + 1; tape \ 2 = tape \ 2 - 1; tape \ 4 = tape \ 1 \# tape \ 4; tape \ 4 = tape \ 4 \# tape \ 3; \ H(4,...,k'+3)\}
```

#### Lemma 5.

If the following functions are computable by regular TM's

$$g: \mathbb{N}_0^r \to \mathbb{N}_0, \ h: \mathbb{N}_0^{r+2} \to \mathbb{N}_0$$

then also f is computable by a regular TM, where

$$f: \mathbb{N}_0^{r+1} \to \mathbb{N}_0$$

$$f(0,x) = g(x)$$
  
$$f(n+1,x) = h(n, f(n,x), x)$$

• Let g be computed by regular k-tape machine G, and let h be computed by regular k'-tape machine H. Compute f by the following s- tape machine with

$$s = \max\{k, k'\} + 3$$

• Let the input of tape 1 be

$$bin(n)#bin(x_1)#...#bin(x_r)$$

and

$$n \in \mathbb{N}_0$$
,  $x = (x_1, \dots, x_r) \in \mathbb{N}_0^r$ 

• in the following while loop we maintain for i = 0; ..., n, that after i passses through the loop we have the situation of table 5. For i = 0 this is the case.

| tape | content                  |
|------|--------------------------|
| 1    | bin(i)                   |
| 2    | bin(n-i)                 |
| 3    | $bin(x_1)$ ## $bin(x_r)$ |
| 4    | bin(f(i,x))              |
| 5    | $B \dots B$              |
|      | • • •                    |

Table 5: after executing the loop *i* times

This is achieved by

```
while tape 2 \neq 0 do \{tape \ 1 = tape \ 1 + 1; tape \ 2 = tape \ 2 - 1; tape \ 4 = tape \ 1 \# tape \ 4; tape \ 4 = tape \ 4 \# tape \ 3; H(4,...,k'+3)\}
```

• When the loop exits with  $tape \ 2 = 0$  we have  $tape \ 1 = bin(n)$  and the result is on tape 4. We copy the result on tape 1 and clean up tapes 2,3 and 4 in order to get a regular machine

```
tape\ 1 = tape\ 4; erase tape 2; erase tape 3; erase tape4
```

**Lemma 6.** if  $f: \mathbb{N}_0^{r+1} \to \mathbb{N}_0$  is computable by a regular Turing machine, then also

$$\mu f: \mathbb{N}_0^{r+1} \to \mathbb{N}_0$$

is computable by a regular Turing machine, where

$$\mu f(n,x) = \begin{cases} \min\{m : f(m,x) = 0\} & \text{if it exists} \\ \Omega & \text{(undefined) otherwise} \end{cases}$$

**Lemma 6.** if  $f: \mathbb{N}_0^{r+1} \to \mathbb{N}_0$  is computable by a regular Turing machine, then also

$$\mu f: \mathbb{N}_0^{r+1} \to \mathbb{N}_0$$

is computable by a regular Turing machine, where

$$\mu f(n,x) = \begin{cases} \min\{m : f(m,x) = 0\} & \text{if it exists} \\ \Omega & \text{(undefined) otherwise} \end{cases}$$

- Let F be computed by regular k-tape machine F. Compute  $\mu f$  by the (k+2-tape machine described below.
- With

$$x = (x_1, \dots, x_r) \in \mathbb{N}_0^r$$

the computation starts with

$$bin(x_1)#...#bin(x_r)$$

on tape 1

**Lemma 6.** if  $f: \mathbb{N}_0^{r+1} \to \mathbb{N}_0$  is computable by a regular Turing machine, then also

$$\mu f: \mathbb{N}_0^{r+1} \to \mathbb{N}_0$$

is computable by a regular Turing machine, where

$$\mu f(n,x) = \begin{cases} \min\{m : f(m,x) = 0\} & \text{if it exists} \\ \Omega & \text{(undefined) otherwise} \end{cases}$$

- Let F be computed by regular k-tape machine F. Compute  $\mu f$  by the (k+2-tape machine described below.
- With

$$x = (x_1, \dots, x_r) \in \mathbb{N}_0^r$$

the computation starts with

$$bin(x_1)#...#bin(x_r)$$

on tape 1

• set tape 2 = 0; set tape 3 to 0, then append the input; evaluate f(0,x) on tape 3

tape 
$$2 = 0$$
; tape  $3 = tape 2$ ; tape  $3 = tape 3 \# tape 1$ ;  $F(3, ..., k+2)$ 

For m = 0 we get the situation of table 6

| tape | content                   |
|------|---------------------------|
| 1    | $bin(x_1)$ )## $bin(x_r)$ |
| 2    | bin(m)                    |
| 3    | bin(f(m,x))               |
| 4    | $B \dots B$               |
|      |                           |

Table 6: after executing the loop *m* times

**Lemma 6.** if  $f: \mathbb{N}_0^{r+1} \to \mathbb{N}_0$  is computable by a regular Turing machine, then also

$$\mu f: \mathbb{N}_0^{r+1} \to \mathbb{N}_0$$

is computable by a regular Turing machine, where

$$\mu f(n,x) = \begin{cases} \min\{m : f(m,x) = 0\} & \text{if it exists} \\ \Omega & \text{(undefined) otherwise} \end{cases}$$

- Let F be computed by regular k-tape machine F. Compute  $\mu f$  by the (k+2-tape machine described below.
- With

$$x = (x_1, \dots, x_r) \in \mathbb{N}_0^r$$

the computation starts with

$$bin(x_1)#...#bin(x_r)$$

on tape 1

• set tape 2 = 0; set tape 3 to 0, then append the input; evaluate f(0,x) on tape 3

tape 
$$2 = 0$$
; tape  $3 = tape \ 2$ ; tape  $3 = tape \ 3 \# tape \ 1$ ;  $F(3, ..., k+2)$ 

For m = 0 we get the situation of table 6

| tape | content                   |
|------|---------------------------|
| 1    | $bin(x_1)$ )## $bin(x_r)$ |
| 2    | bin(m)                    |
| 3    | bin(f(m,x))               |
| 4    | $B \dots B$               |
|      |                           |

Table 6: after executing the loop *m* times

• maintaining the situation of table 6 we compute in the following loop successively f(m,x) for m=1,2,... until we find a solution of the equation f(m,x)=0. If no solution exists, this loop will not terminate.

```
while tape 3 \neq 0

{tape 2 = tape \ 2 + 1; erase tape 3

tape 3 = tape \ 2; tape 3 = tape \ 3#tape 1;

F(3,...,k+2)}
```

**Lemma 6.** if  $f: \mathbb{N}_0^{r+1} \to \mathbb{N}_0$  is computable by a regular Turing machine, then also

$$\mu f: \mathbb{N}_0^{r+1} \to \mathbb{N}_0$$

is computable by a regular Turing machine, where

$$\mu f(n,x) = \begin{cases} \min\{m : f(m,x) = 0\} & \text{if it exists} \\ \Omega & \text{(undefined) otherwise} \end{cases}$$

- Let F be computed by regular k-tape machine F. Compute  $\mu f$  by the (k+2-tape machine described below.
- With

$$x = (x_1, \dots, x_r) \in \mathbb{N}_0^r$$

the computation starts with

$$bin(x_1)#...#bin(x_r)$$

on tape 1

• set tape 2 = 0; set tape 3 to 0, then append the input; evaluate f(0,x) on tape 3

tape 
$$2 = 0$$
; tape  $3 = tape \ 2$ ; tape  $3 = tape \ 3 \# tape \ 1$ ;  $F(3, ..., k+2)$ 

For m = 0 we get the situation of table 6

| tape | content                   |
|------|---------------------------|
| 1    | $bin(x_1)$ )## $bin(x_r)$ |
| 2    | bin(m)                    |
| 3    | bin(f(m,x))               |
| 4    | $B \dots B$               |
|      | • • •                     |

Table 6: after executing the loop *m* times

• maintaining the situation of table 6 we compute in the following loop successively f(m,x) for m=1,2,... until we find a solution of the equation f(m,x)=0. If no solution exists, this loop will not terminate.

```
while tape 3 \neq 0

{tape 2 = tape \ 2 + 1; erase tape 3

tape 3 = tape \ 2; tape 3 = tape \ 3#tape 1;

F(3,...,k+2)}
```

• if a solution m is found the loop terminates with bin(m) on tape 2. In order to make the machine regular we copy it on tape 1 and clean up tapes 2 and 3

tape 
$$1 = tape 2$$
; erase tape  $2$ ; erase tape  $3$