

ECM253 – Linguagens Formais, Autômatos e Compiladores

Lista de Exercícios

Lógica de Predicados

Marco Furlan

9 de março de 2019

- 1. Provar se as fbfs a seguir são válidas ou inválidas.
 - (a) $(\exists x) A(x) \leftrightarrow \neg (\forall (x) \neg A(x))$
 - (b) $(\forall x)P(x) \lor (\exists x)Q(x) \rightarrow (\forall x)[P(x) \lor Q(x)]$
 - (c) $(\forall x) A(x) \leftrightarrow \neg ((\exists x) \neg A(x))$
 - (d) $(\forall x)[P(x) \lor Q(x)] \rightarrow (\forall x)P(x) \lor (\exists y)Q(y)$
- 2. Considere a fbf a seguir:

$$(\exists x) P(x) \wedge (\exists x) Q(x) \rightarrow (\exists x) [P(x) \wedge Q(x)]$$

- (a) Encontrar uma interpretação em que esta fbf não é válida.
- (b) Encontrar falha na seguinte "demonstração" desta fbf:

1. $(\exists x)P(x)$	(hipótese)
2. <i>P</i> (<i>a</i>)	1, ei
$3. (\exists x) Q(x)$	(hipótese)
4. <i>Q</i> (<i>a</i>)	3, ei
$5.P(a)\wedge Q(a)$	2,4, con
6. $(\exists x)[P(x) \land Q(x)]$	5, eg

- 3. Demonstrar que as fbfs a seguir são teoremas (válidas):
 - (a) $(\forall x)P(x) \rightarrow (\forall x)[P(x) \lor Q(x)]$
 - (b) $(\forall x)P(x) \land (\exists x)Q(x) \rightarrow (\exists x)[P(x) \land Q(x)]$
 - (c) $(\exists x)(\exists y)P(x,y) \rightarrow (\exists y)(\exists x)P(x,y)$
 - (d) $(\forall x)(\forall y)Q(x,y) \rightarrow (\forall y)(\forall x)Q(x,y)$
- 4. Para cada uma das fbfs a seguir, provar que é teorema ou apresentar uma interpretação para provar que não é válida:
 - (a) $(\forall x)P(x) \lor (\exists x)Q(x) \rightarrow (\forall x)[P(x) \lor Q(x)]$
 - (b) $(\forall x)[A(x) \rightarrow B(x)] \rightarrow [(\exists x)A(x) \rightarrow (\exists x)B(x)]$
 - (c) $(\forall y)[Q(x, y) \rightarrow P(x)] \rightarrow [(\exists y)Q(x, y) \rightarrow P(x)]$
 - (d) $[P(x) \rightarrow (\exists y)Q(x,y)] \rightarrow (\exists y)[P(x) \rightarrow Q(x,y)]$
- 5. Usando a lógica de predicados, provar que os argumentos a seguir são válidos. Utilizar os predicados apresentados.
 - (a) Há um astrônomo que não é míope. Qualquer um que usa óculos então é míope. Além disso, todos usam óculos ou usam lentes de contato. Portanto, algum astrônomo usa lentes de contato (A(x), M(x), O(x), L(x)).
 - (b) Todo membro do conselho vem da indústria ou do governo. Todos do governo que são advogados são a favor da moção. John não é da indústria, mas é advogado. Portanto, se John for um membro do conselho, ele será a favor da moção (M(x), I(x), G(x), A(x), F(x), j).
 - **Dica:** Para resolver problemas do tipo (lógica proposicional ou de predicados) como $A \land B \land C \rightarrow D \rightarrow E$, notar que a expressão pode ser reescrita como $\neg (A \land B \land C) \lor (\neg D \lor E)$ que, por sua vez, pode ser escrita como $(\neg A \lor \neg B \lor \neg C) \lor (\neg D \lor E)$ e também como $(\neg A \lor \neg B \lor \neg C \lor \neg D) \lor E$ e, finalmente, como $A \land B \land C \land D \rightarrow E$. Em outras palavras, nesse tipo de forma (somente nesse), a fbf D também pode ser admitida como uma hipótese.
 - (c) Há uma estrela de cinema que é mais rica que as outras. Todo mundo que é mais rico que os outros também paga mais impostos que os outros. Portanto, existe uma estrela de cinema que paga mais impostos que os outros (E(x), R(x, y), I(x, y)).
 - (d) Todo estudante da Ciência da Computação trabalha mais que alguém e todo mundo que trabalha mais que alguém também dorme menos que esta pessoa. Maria é uma estudante da Ciência da Computação. Portanto Maria dorme menos que outra pessoa (E(x), T(x, y), D(x, y), m).
 - (e) Todo embaixador fala apenas com diplomatas e algum embaixador fala com alguém, portanto existe um diplomata (E(x), F(x, y), D(x)).