Study Guide 3.7-3.9

Michael Levet

Instructions: Complete the following problems. Justify all your answers in complete sentences, where appropriate.

1 Sections 3.7

Problem 1) Find $\frac{dy}{dx}$ for the following curves.

(a)
$$y^2 = x^3 + \cos(x^2y)$$

(b)
$$e^{2x} = \sin(x + 3y)$$

(c) $\exp(x^2y) = 2x + 2y$ (where $\exp(u)$ is the function mapping $u \mapsto e^u$)

(d)
$$x^3 = \frac{2x - y}{x + 3y}$$

Problem 2) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for the following curves. You should start by finding $\frac{dy}{dx}$ first.

- (a) $x^2 + y^2 = r^2$ (where r > 0 is some constant).
- (b) $2\sqrt{y} = x y$
- (c) $y^2 = e^{x^2} + 2x$

Problem 3) For each of the following, (i) verify that the point is on the curve; (ii) find the equation of the line tangent to the point on the curve; and (iii) find the line perpendicular to the tangent line at the point on the curve (we call this perpendicular line the **normal line**).

- (a) $f(x) = \sin(x)$ at $x = -\pi/3$ (find the corresponding y-value).
- (b) $x^2 + xy y^2 = 1$, at (2,3)
- (c) $2xy + \pi \sin(y) = 2\pi \text{ at } (1, \pi/2)$
- (d) $x^2 \cos(y) \sin(y) = 0$ at $(0, \pi)$

2 Sections 3.8 and 3.9

Problem 4) Suppose that f(x) has interval I as its domain, and that $f'(x) \neq 0$ on I. Suppose f(x) is one-to-one on I. Then f^{-1} is differentiable on every point in the range of f(x). Show that:

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}.$$

Problem 5) Evaluate $(f^{-1})'(a)$, for each of the following functions f(x) and points x = a.

- (a) f(x) = 2x + 3, with a = -1.
- (b) f(x) = x/5 + 7, with a = -1
- (c) $f(x) = 2x^2$, with a = 5.

Problem 6) Derive f'(x) for each of the following functions.

(a)
$$f(x) = \sin^{-1}(x)$$

(b)
$$f(x) = \cos^{-1}(x)$$

(c)
$$f(x) = \tan^{-1}(x)$$

Problem 7) Using logarithmic differentiation, determine the derivative for each of the following functions.

(a)
$$f(x) = \sqrt{x(x+1)}$$

(b)
$$f(x) = \sqrt{t/(t+1)}$$

(c)
$$f(\theta) = \tan(\theta)\sqrt{2\theta + 1}$$

(d)
$$f(x) = \sqrt{\frac{(x+1)^{10}}{(2x+1)^5}}$$

(e)
$$f(x) = x^x$$
.

Problem 8) Let $f(x) = \ln(x)$. Recall that f'(x) = 1/x and f'(1) = 1. Using these facts, show that:

$$\lim_{x \to 0} (1+x)^{1/x} = e.$$