Theorem: Arithmetic of Limits

Theorem: Arithmetic of Limits

If sequences (a_n) and (b_n) converge, then their sum, difference, product, and (under conditions) quotient also converge, with limits given by the corresponding arithmetic operations.

Statement

Let (a_n) and (b_n) be sequences of real numbers with s: - $\lim_{n\to\infty}a_n=A$ - $\lim_{n\to\infty}b_n=B$. Then:

- 1. Sum Rule: $\lim_{n\to\infty} (a_n + b_n) = A + B$
- 2. Difference Rule: $\lim_{n\to\infty}(a_n-b_n)=A-B$
- 3. Product Rule: $\lim_{n\to\infty} (a_n \cdot b_n) = A \cdot B$
- 4. Constant Multiple Rule: For any $c \in \mathbb{R}$, $\lim_{n \to \infty} (c \cdot a_n) = c \cdot A$
- 5. Quotient Rule: If $B \neq 0$ and $b_n \neq 0$ for all n, then:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{A}{B}$$

Proof Sketch (Sum Rule)

Given $\varepsilon > 0$: - Since $a_n \to A$, there exists N_1 such that $|a_n - A| < \varepsilon/2$ for all $n > N_1$ - Since $b_n \to B$, there exists N_2 such that $|b_n - B| < \varepsilon/2$ for all $n > N_2$ - Let $N = \max(N_1, N_2)$ For n > N:

$$|(a_n+b_n)-(A+B)|=|(a_n-A)+(b_n-B)|\leq |a_n-A|+|b_n-B|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$$

Applications

These rules allow us to: - Compute limits of polynomial sequences - Analyze rational sequences - Build complex limits from simpler ones

The theorem shows that the limit operation preserves algebraic structure.

Dependency Graph

Local dependency graph