

Control method for a double input clutch transmission

Publication number: EP1122116

Publication date: 2001-08-08

Inventor: CAPPELMANN BERND (DE); FAEHLAND JOERG DIPL. ING (DE); DAMM ANSGAR DR (DE)

Applicant: VOLKSWAGEN AG (DE)

Classification:

- **International:** F16H3/00; F16H61/688; F16H3/00; F16H61/68; (IPC1-7); B60K41/22

- **European:** B60K41/22E; F16H3/00F

Application number: EP20010100195 20010118

Priority number(s): DE20001004530 20000202

Also published as:

EP1122116 (A3)

DE10004530 (A1)

Cited documents:

DE3812327

DE19859458

EP0367020

DE19631983

DE3513279

[more >>](#)

[Report a data error here](#)

Abstract of EP1122116

A release force (F) bears on the synchroniser sleeve (6a) which is in at least partial engagement with the first gear wheel pair (1). During the gear change from first gear to second gear the first friction clutch (K1) remains closed and the second friction clutch is closed by an actuator. The torque is transferred from the first drive train to the second drive train and with freedom of torque on the first drive train the first drive train is interrupted through the automatic disengagement of the synchroniser sleeve. The first and second friction clutches are controlled through the actuator. The synchroniser sleeves can be engaged by means of operating devices and the actuator and operating devices can be controlled by a control device.

FIG. I

Data supplied from the esp@cenet database - Worldwide

(19)

EP 1 122 116 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
08.08.2001 Patentblatt 2001/32

(51) Int Cl.7: B60K 41/22

(21) Anmeldenummer: 01100195.5

(22) Anmeldetag: 18.01.2001

(84) Benannte Vertragstaaten:
 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
 MC NL PT SE TR
 Benannte Erstreckungsstaaten:
 AL LT LV MK RO SI

(30) Priorität: 02.02.2000 DE 10004530

(71) Anmelder: Volkswagen Aktiengesellschaft
 38436 Wolfsburg (DE)

(72) Erfinder:
 • Cappelmann, Bernd
 38167 Wendenburg (DE)
 • Fähland, Jörg, Dipl.Ing.
 38524 Sassenburg (DE)
 • Damm, Ansger, Dr.
 38518 Gifhorn (DE)

(54) Verfahren zur Steuerung eines Doppelkupplungsgetriebes

(57) Die Erfindung betrifft ein Verfahren zur Steuerung eines Doppelkupplungsgetriebes (1) mit zwei Eingangswellen (E_1, E_2), wobei der erste Eingangswelle (E_1) eine erste Reibkupplung (K_1) und der zweiten Eingangswelle (E_2) eine zweite Reibkupplung (K_2) zugeordnet ist und mit Hilfe jeder Reibkupplung (K_1, K_2) ein erster und zweiter Antriebsstrang realisierbar ist, wobei von den Reibkupplungen (K_1, K_2) ein Motormoment von der jeweiligen Getriebeeingangswelle (E_1, E_2) über den jeweiligen Antriebsstrang auf die Getriebeausgangswelle übertragen wird, wobei das Getriebe mindestens zwei Gangstufen aufweist, die erste Gangstufe (1) zumindest durch ein erstes Zahnräderpaar (1) gebildet und im ersten Antriebsstrang vorgesehen ist und die zweite Gangstufe (II) zumindest durch ein zweites Zahnräderpaar (II) gebildet und im zweiten Antriebsstrang vorgesehen ist, wobei bei einem Gangstufenwechsel von der ersten zur zweiten Gangstufe ein Wechsel des Kraftflusses

vom ersten Antriebsstrang auf den zweiten Antriebsstrang erfolgt und wobei der Kraftfluß des ersten Antriebsstranges durch das Ausdrücken einer mit dem ersten Zahnräderpaar (I) zumindest teilweise in Eingriff stehenden Schiebermuffe (6a) zur Realisierung des Gangstufenwechsels unterbrochen wird.

Die Kosten werden dadurch verringert, daß an der mit dem ersten Zahnräderpaar (I) zumindest teilweise in Eingriff stehenden Schiebermuffe (6a, 6b, 6c) eine Ausrückkraft (F) anliegt, daß während des Gangstufenwechsels von der ersten Gangstufe (1) zur zweiten Gangstufe (II) die erste Reibkupplung (K_1) geschlossen bleibt und die zweite Reibkupplung (K_2) mit Hilfe eines Aktuators geschlossen wird, daß das Drehmoment vom ersten Antriebsstrang auf den zweiten Antriebsstrang übertragen wird und daß bei Drehmomentenfreiheit des ersten Antriebsstranges der erste Antriebsstrang durch das selbsttätige Ausrücken der Schiebermuffe (6a) unterbrochen wird.

FIG. 1

Beschreibung

[0001] Die Erfindung betrifft ein Verfahren zur Steuerung eines Doppelkupplungsgetriebes mit zwei Eingangswellen, wobei der ersten Eingangswelle eine erste Reibkupplung und der zweiten Eingangswelle eine zweite Reibkupplung zugeordnet ist und mit Hilfe jeder Reibkupplung ein erster und zweiter Antriebsstrang realisierbar ist, wobei von den Reibkupplungen ein Motormoment von der jeweiligen Getriebeeingangswelle über den jeweiligen Antriebsstrang auf die Getriebeausgangswelle übertragen wird, wobei das Getriebe mindestens zwei Gangstufen aufweist, die erste Gangstufe zumindest durch ein erstes Zahnradpaar gebildet und im ersten Antriebsstrang vorgesehen ist und die zweite Gangstufe zumindest durch ein zweites Zahnradpaar gebildet und im zweiten Antriebsstrang vorgesehen ist, wobei bei einem Gangstufenumschwung von der ersten zur zweiten Gangstufe ein Wechsel des Kraftflusses vom ersten Antriebsstrang auf den zweiten Antriebsstrang erfolgt und wobei der Kraftfluß des ersten Antriebsstranges durch das Ausrücken einer mit dem ersten Zahnradpaar zumindest teilweise in Eingriff stehenden Schiebemuffe zur Realisierung des Gangstufenumschwungs unterbrochen wird.

[0002] Im Stand der Technik von dem die Erfindung ausgeht (DE-C-38 12 327), ist ein Verfahren zur Steuerung eines Doppelkupplungsgetriebes bekannt, bei dem die beiden Reibkupplungen über zwei Aktuatoren angesteuert, also geöffnet bzw. geschlossen werden. Das Doppelkupplungsgetriebe weist hier mehrere Gangstufen, nämlich insgesamt sechs einlegbare Gänge auf. Wenn bspw. vom ersten in den zweiten Gang hochgeschaltet werden soll, ist zunächst die zweite Reibkupplung geöffnet und die erste Reibkupplung geschlossen. Durch die zeitliche Überschneidung der Öffnung bzw. Schließung der beiden Reibkupplungen wird in diesem Fall eine Hochschaltung ohne Zugkraftunterbrechung bewirkt. Wird bspw. der Kraftfluß vom ersten Antriebsstrang bei geschlossener erster Reibkupplung auf den zweiten Antriebsstrang übertragen, so wird die erste Reibkupplung langsam geöffnet, während die zweite Reibkupplung langsam geschlossen wird. Zur Verminderung des Steueraufwandes ist der Kraftfluß des ersten Antriebsstranges unterbrechbar, indem eine mit dem ersten Zahnradpaar zumindest teilweise in Eingriff stehende Schiebemuffe ausgerückt wird. Hierbei sind die hier vorgesehene Schiebemuffen über Schaltgabeln betätigbar. Über ein vorgesehenes Steuergerät und über die jeweiligen Schaltgabeln wird dann die Schiebemuffe ausgerückt, wenn an der Reibkupplung des jeweils nächsten Ganges Drehzahlgleichheit eintritt. Aufgrund der Unterbrechung des Kraftflusses des ersten Antriebsstranges durch das Ausrücken der Schiebemuffe kann auf die Anordnung weiterer Steurelemente zur Steuerung eines ruckfreien Gangstufenumschwels hier verzichtet werden.

[0003] Weiterhin ist im Stand der Technik ein Verfahren zur Steuerung eines Doppelkupplungsgetriebes bekannt (DE-C-196 31 983), wobei hier zur Steuerung des Gangstufenumschwels innerhalb des Doppelkupplungsgetriebes die andere, d.h. die freie Getriebeeingangswelle auf eine synchrone Drehzahl gebracht wird, um so das Einlegen des geplanten Ganges zu ermöglichen. Um einen Zustand zu verhindern, in dem beide Reibkupplungen im Haftreibungsbereich liegen und so eine Blockierung des Getriebes die Folge wäre, ist hier vorgesehen, die Drehzahl zumindest einer Reibkupplung auf einen Wert in der Nähe der Synchrondrehzahl im Gleitreibungsbereich zu regeln, bis das zu übertragende Moment stetig von einer Reibkupplung auf die andere Reibkupplung "umgelagert" worden ist. Zur Realisierung dieses Verfahrens und zur Steuerung des Doppelkupplungsgetriebes sind mehrere Steurelemente erforderlich.

[0004] Das Verfahren zur Steuerung des im Stand der Technik bekannten Doppelkupplungsgetriebes, von dem die Erfindung ausgeht (DE-C-38 12 327) ist noch nicht optimal ausgebildet. Der Steuerungsaufwand zur Realisierung dieses Verfahrens ist sehr hoch. Einerseits sind zunächst zwei Aktuatoren vorgesehen, nämlich für jede Reibkupplung des Doppelkupplungsgetriebes jeweils der Aktuator. Diese Aktuatoren müssen nun so angesteuert werden, daß die erste Reibkupplung geschlossen wird, während die zweite Reibkupplung geöffnet wird, um hier die entsprechende "Überschaltung" der Reibkupplungen zu gewährleisten. Weiterhin sind die Betätigungs vorrichtungen, bspw. die Betätigungs vorrichtung zur Betätigung der Schaltgabeln, die die Schiebemuffen ansteuern pneumatisch, oder Druckmittel beratigend steuerbar. Die Einleitung bzw. Druckbeanspruchung mit Hilfe des Drucköles in die entsprechenden Kanäle ist hier sehr aufwendig. Im Ergebnis ist das bekannte Verfahren zur Steuerung des Doppelkupplungsgetriebes sehr kostenintensiv, da entsprechende Steurelemente sowie komplizierte Steuerprogramme notwendig sind, um eine entsprechende Steuerung dieses Doppelkupplungsgetriebes zu realisieren.

[0005] Der Erfindung liegt daher die Aufgabe zugrunde, das eingangs genannte Verfahren zur Steuerung eines Doppelkupplungsgetriebes derart auszustalten und weiterzubilden, daß die Kosten verringert sind.

[0006] Die zuvor aufgezeigte Aufgabe ist nun dadurch gelöst, daß an der mit dem ersten Zahnradpaar zumindest teilweise in Eingriff stehenden Schiebemuffe eine Ausrückkraft anliegt, daß während des Gangstufenumschwels von der ersten Gangstufe zur zweiten Gangstufe die erste Reibkupplung geschlossen bleibt und die zweite Reibkupplung mit Hilfe eines Aktuators geschlossen wird, daß das Drehmoment vom ersten Antriebsstrang auf den zweiten Antriebsstrang übertragen wird und daß bei Drehmomentfreiheit des ersten Antriebsstranges der erste Antriebsstrang durch das selbsttätige Ausrücken der Schiebemuffe unterbrochen wird. Gemäß dem erfundungsgemäßen Verfahren ist zunächst nur noch ein Aktuator notwendig, um die beiden Reibkupplungen zu steuern, da nämlich zur Realisierung des Gangstufenumschwels auch nur eine Reibkupplung zunächst geschlossen wird, während die bereits geschlossene Reib-

kupplung auch geschlossen bleibt. Wenn das Drehmoment vom ersten Antriebsstrang auf den zweiten Antriebsstrang übertragen wird und Drehmomentenfreiheit des ersten Antriebsstranges vorliegt, rückt die entsprechende Schiebermuffe zur Unterbrechung des Kraftflusses des ersten Antriebsstranges selbsttätig aus. Hierdurch bedingt kann die erste Reibkupplung immer noch geschlossen bleiben, während die zweite Reibkupplung durch den Aktuator geschlossen werden ist, ohne daß es zu einer Blockierung innerhalb des Getriebes kommt. Folglich kann, nachdem die 5 ursprünglich offene zweite Reibkupplung mit dem Aktuator geschlossen worden ist mit dem gleichen Aktuator dann auch die erste Reibkupplung die noch geschlossen ist, dann geöffnet werden. Durch die Realisierung des erfindungsgemäßen Verfahrens, insbesondere durch das selbsttätige Ausrücken der Schiebermuffe zur Unterbrechung des Kraftflusses, ist die Steuerung eines Doppelkupplungsgetriebes, nämlich der beiden Reibkupplungen mit nur einem Aktuator möglich, wobei auch der Steuerungsaufwand für die Schiebermuffe - was im folgenden noch deutlich werden wird - verringert ist.

10 Dadurch sind wesentliche Kostenersparnisse gewährleistet, da die Reibkupplungen eben nicht mehr gleichzeitig und voneinander unabhängig geregelt bzw. angesteuert werden müssen. Der gesamte Schaltablauf zur Steuerung der Reibkupplungen wird vereinfacht, wobei die Gefahr des Verklebens des Getriebes während eines Gangstufenwechsels, also während einer Schaltung aufgrund eines bspw. nicht einwandfrei arbeitenden Kupplungsaktuators ebenfalls vermindert ist.

15 [0007] Es gibt nun eine Vielzahl von Möglichkeiten das erfindungsgemäße Verfahren zur Steuerung eines Doppelkupplungsgetriebes in vorteilhafter Weise auszustalten und weiterzubilden. Hierzu darf zunächst auf die dem Patentanspruch 1 nachgeordneten Patentansprüche verwiesen werden. Im Einzelnen soll nun ein bevorzugtes Ausführungsbeispiel des erfindungsgemäßen Verfahrens anhand einer Zeichnung und der nachfolgenden dazugehörigen Beschreibung näher erläutert werden. In der Zeichnung zeigt

Fig. 1 ein Doppelkupplungsgetriebe in einer stark vereinfachten schematischen Darstellung von oben zur Erläuterung des erfindungsgemäßen Verfahrens.

20 25 [0008] Die Fig. 1 soll das erfindungsgemäß Verfahren näher verdeutlichen. Fig. 1 zeigt ein hier schematisch dargestelltes Doppelkupplungsgetriebe 1 mit zwei Eingangswellen, nämlich einer ersten Eingangswelle E_1 und einer zweiten Eingangswelle E_2 . Der ersten Eingangswelle E_1 ist eine erste Reibkupplung K_1 zugeordnet, wobei der zweiten Eingangswelle E_2 eine zweite Reibkupplung K_2 zugeordnet ist. Das hier dargestellte Doppelkupplungsgetriebe 1 wird durch eine Brennkraftmaschine angetrieben, deren Kurbelwelle 2 hier schematisch dargestellt ist. Die beiden Reibkupplungen K_1 und K_2 weisen einen gemeinsamen äußeren Kupplungskorb 3 auf und sind konzentrisch nebeneinander angeordnet. Über die hier vorgesehene Reibplatte 4 bzw. 5 ist die erste Eingangswelle E_1 bzw. die zweite Eingangswelle E_2 mit dem Kupplungskorb 3 bzw. der Kurbelwelle 2 zur Übertragung eines entsprechenden Drehmoments verbindbar. Die Eingangswelle E_1 ist hier als Hohlwelle ausgebildet und umgibt die Eingangswelle E_2 .

30 [0009] Das hier dargestellte Doppelkupplungsgetriebe 1 weist insgesamt sechs Gangstufen, also sechs Gänge auf. Jede Gangstufe ist durch ein Zahnradpaar gebildet. Hierbei stehen die Zahnradaufnahmen I bis VI für die einzelnen entsprechenden Gänge. Die Antriebsräder der Gangstufe V und II sind mit der jeweiligen Eingangswelle fest verbunden, während die Antriebsräder der Gänge I, III, IV und VI als nadelgelagerte Losräder ausgeführt sind, die über Schiebermuffen 6a und 6b betätigt werden können.

35 [0010] Die Getriebeabtriebswelle A trägt insgesamt sechs Abtriebsräder, wobei die Abtriebsräder der Gänge V und II als Losräder ausgeführt sind und über eine Schiebermuffe 6b geschaltet werden können. Die Abtriebsräder der Gänge I, III, IV und VI sind fest mit der Getriebeabtriebswelle A verbunden. Im ersten Gang (Gangstufe I) läuft der Kraftfluß über die geschlossene erste Kupplung K_1 , die Eingangswelle E_1 , die Schiebermuffe 6a, das Antriebsrad des ersten Ganges auf das Abtriebsrad des ersten Ganges und auf die Getriebeabtriebswelle A.

40 [0011] Bei eingerückter Reibkupplung K_1 und entsprechend nach rechts verschobener Schiebermuffe 6a ist der dritte Gang III geschaltet, bei eingerückter Reibkupplung K_1 und der Schiebermuffe 6b in der linken Stellung ist der fünfte Gang V geschaltet.

[0012] Analog sind bei eingerückter Reibkupplung K_2 , jedoch geöffneter Kupplung K_1 , die Gänge II, IV und VI schaltbar je nach Stellung der Schiebermuffen 6b und 6c.

50 [0013] Für die Schaltungen bei dem hier dargestellten Doppelkupplungsgetriebe 1, war es bisher im Stand der Technik üblich, daß zur Realisierung bei einem Gangstufenwechsel eine der Reibkupplungen K_1 bzw. K_2 in Haftreibung und die andere in Gleitreibung ist oder daß beide Reibkupplungen K_1 bzw. K_2 in Gleitreibung sind. Bspw. wurde für die sich in Haftreibung befindende und die Motoreistung übertragende jeweilige Reibkupplung eines kleinen Ganges eine Schlupfregelung vorgenommen werden. Hierfür wird die Kupplungsanpressung und/oder der Kupplungsweg so weit reduziert, daß die Reibkupplung mit ganz geringem Schlupf rutscht. Der Schlupf wurde dann durch Regelrunktionen (Solldreihzahlvorgabe) aufrechterhalten, wobei das Steuergerät zuvor aus der Tatsache, daß die Motordrehzahl im Schlupfbetrieb höher ist, als die Getriebeeingangsgegenzahl, den Schlupf ziehen konnte, daß sich der Motor im Zugbetrieb befindet. Die Reibkupplung des großen Ganges wurde dann rampenförmig (zunächst ungeregelt) geschlossen. Der große Gang übernahm dabei immer mehr Motormoment. Durch den Schlupfregler öffnete dabei die Kupplung des

- kleinen Gangs in gleichen Maße. Wenn der große Gang das volle Motormoment erreicht hätte, war die Kupplung des kleinen Gangs vollständig geöffnet, so daß der kleine Gang ohne Momentenreaktion, d.h. ohne Komforteinbußen, aus dem Triebstrang herausgenommen werden konnte. Allerdings müßte nun das Drehzahlniveau des Motors auf das Niveau des großen Gangs gesenkt werden, damit die jeweils andere Reibkupplung in Haftriebung übergehen könnte.
- Um Momentensprünge zu vermeiden, mußte ein entsprechender Drehzahlverlauf gewählt werden, wie dies aus dem Stand der Technik bekannt ist.
- [0014] Erfindungsgemäß wird der bisher im Stand der Technik bekannte und soeben beschriebene Steuerungsaufwand nun dadurch vermindert, daß an der mit dem ersten Zahnradpaar I bis VI zumindest teilweise in Eingriff stehenden Schlebemuffe 6a, 6b oder 6c eine Ausrückkraft F anliegt, daß während des Gangstufenwechsels von der ersten Gangstufe zur zweiten Gangstufe, bspw. von der Gangstufe I zur Gangstufe II, die erste Reibkupplung K₁ geschlossen bleibt und die zweite Reibkupplung K₂ mit Hilfe eines Aktuators geschlossen wird, daß das Drehmoment vom ersten Antriebsstrang auf den zweiten Antriebsstrang übertragen wird und daß bei Drehmomententfernung des ersten Antriebsstranges der Antriebsstrang durch die selbsttätige Ausrückkerne der Schlebemuffe 6a, 6b oder 6c unterbrochen wird vzw. liegt die Ausrückkraft F hier permanent an. Das erfindungsgemäße Verfahren hat den Vorteil, daß nunmehr nur noch ein Aktuator zur Steuerung beider Reibkupplungen K₁ und K₂ notwendig ist und die Steuerung dieser Reibkupplungen K₁ und K₂ wesentlich vereinfacht ist, wodurch das gesamte Verfahren sehr kostengünstig realisiert werden kann und die eingangs beschriebenen Nachteile vermieden sind.
- [0015] Das erfindungsgemäße Verfahren soll nun beispielhaft für den Gangstufenwechsel vom ersten zum zweiten Gang, also von der Gangstufe I zur Gangstufe II näher erläutert werden. Es darf an dieser Stelle angemerkt werden, daß unter dem Begriff erste bzw. zweite Gangstufe nicht speziell die erste Gangstufe I bzw. die zweite Gangstufe II also der erste Gang I bzw. der Gang II gemeint ist, sondern daß hier der Gangstufenwechsel zwischen zwei verschiedenen der sechs insgesamt vorhandenen Gänge gemeint ist, also der Gangstufenwechsel von einer ersten zu einer zweiten Gangstufe hier grundsätzlich zwischen der Gangstufenwechsel also den vorhandenen Gangstufen I bis VI erfolgen kann.
- [0016] Mit einem Aktuator ist nun die erste und die zweite Reibkupplung K₁ und K₂ ansteuerbar. An den Schlebemuffen 6a bis 6c wird die anliegende Ausrückkraft F als Vorspannkraft über ein mechanisches Feder-System realisiert. Hierbei können die Schlebemuffen 6a bis 6c in die jeweiligen Losräder der Zahnradpaarungen I bis VI einrücken. Vorzugsweise sind hier die Verzahnungen der Schlebemuffen 6a bis 6c und der Losräder so ausgelegt, daß ein Hinterschnitt gebildet ist, d.h. daß also ein Ausrücken der Schlebemuffen 6a bis 6c vermieden ist, wenn die Ausrückkraft F anliegt und ein Drehmoment von der Schlebemuffen/Losradpaarung übertragen wird. Anders ausgedrückt, bei anliegender Ausrückkraft F können die entsprechenden Schlebemuffen 6a bis 6c nur dann ausrücken, wenn eben die entsprechende Schlebemuffe-Losradpaarung drehmomentfrei ist.
- [0017] Mit Hilfe der ersten Reibkupplung K₁ ist nun der erste, der dritte und der fünfte Gang I, III und V des Doppelkupplungsgetriebes 1 eingelegbar, wobei mit Hilfe der zweiten Reibkupplung K₂ der zweite, der vierte und der sechste Gang II, IV und VI eingelegbar sind. Zum Einlegen bzw. Herausnehmen der Gänge I bis VI sind hier die drei Schlebemuffen 6a, 6b und 6c vorgesehen, wobei auf die Schlebemuffe 6a bis 6c eine Ausrückkraft F zur Realisierung des selbsttätigen Ausrückens bei einem Gangstufenwechsel aufgebracht wird. Sämtliche Bewegungen, insbesondere das Einrücken der Schlebemuffen 6a bis 6c und das Schließen bzw. Öffnen der Reibkupplungen K₁ und K₂ werden mit Hilfe eines nicht dargestellten Steuergerätes sowie des erwähnten Aktuators bzw. entsprechende Steuerelemente gesteuert. Beispieldhaft soll nun ein Gangstufenwechsel vom ersten Gang I zum zweiten Gang II beschrieben werden:
- [0018] Bei eingelegtem ersten Gang I, d.h. für diesen Fall ist hier dann der erste Gang, d.h. die erste Gangstufe I eingelegt, ist der erste Antriebsstrang gebildet aus der Kurbelwelle 2, dem Kupplungskorb 3, der ersten Reibkupplung K₁, der ersten Eingangswelle E₁, wobei das Drehmoment der Eingangswelle E₁ über das Zahnradpaar der ersten Gangstufe I, bei eingelegter Schlebemuffe 6a in der linken Stellung auf die Getriebeausgangswelle A übertragen wird. An der Schlebemuffe 6a liegt permanent eine Ausrückkraft F an, die die Schlebemuffe 6a aus der linken Position in die rechte Position bewegen will. Dies wird aber durch die zwischen der Schlebemuffe 6a und dem Losrad ausgebildeten Hinterschnitt solange vermieden wie auch hier ein Drehmoment bei dieser Schlebemuffen/Losradpaarung anliegt.
- [0019] Soll nun der zweite Gang II, also die zweite Gangstufe II des Getriebes 1 eingelegt werden, so wird die Schlebemuffe 6b durch die entsprechende Betätigungsrichtung nach rechts bewegt, so daß diese mit dem Losrad des Zahnradpaars der zweiten Gangstufe II in Eingriff steht. Hierdurch wird dann über die Ausgangswelle A auch die Eingangswelle E₂ entsprechend angetrieben, wobei die Reibkupplung K₂ in diesem Augenblick noch geöffnet ist. Die Reibkupplung K₂ wird nun aber mit Hilfe des Aktuators geschlossen, wobei die Reibkupplung K₂ nach wie vor geschlossen bleibt. Dies hat zur Folge, daß die Reibkupplung K₂ innerhalb des Kupplungskorbes 3 rutscht, aber langsam das Drehmoment übernimmt, d.h. da die Kraftfluß von der Eingangswelle E₁ auf die Eingangswelle E₂ übertragen wird. In diesem dynamischen Prozeß wird dann die Reibkupplung K₂ das Drehmoment der Kurbelwelle 2 vollständig übernehmen und in diesem Augenblick wird die Eingangswelle E₂ drehmomentfrei, so daß nunmehr die Schlebemuffe 6a selbsttätig ausgerückt, nämlich unter Anliegen der Ausrückkraft F und der Kraftfluß des ersten Antriebsstranges

EP 1 122 116 A2

unterbrochen wird, während der Kraftfluß nunmehr über den zweiten Antriebsstrang, nämlich über die Kurbelwelle 2 den Kupplungskorb 3, die zweite Reibkupplung K₂, die zweite Eingangswelle E₂ und über die zweite Gangstufe II auf die Getriebeausgangswelle A übertragen wird.

- [0020] Durch das erfundungsgemäße Verfahren, nämlich durch die Steuerung des Ausrückens der entsprechenden Schlebemuffe zur Unterbrechung des Kraftflusses der jeweiligen Antriebsstränge, die auch bei den einem Gangstufenwechsels zwischen den übrigen Gängen, bspw. zwischen II und III, zwischen III und IV, zwischen IV und V und schließlich zwischen V und VI (und auch umgekehrt) erfolgen kann, ist der Steuerungsaufwand für das hier dargestellte Doppelkupplungsgetriebe 1 wesentlich verringert. Da nur noch mit einem Aktuator beide Reibkupplungen K₁ und K₂ angesteuert werden können und die Steuerung der Reibkupplungen K₁ und K₂ hier nicht mehr aufeinander aufwendig abgestimmt werden müssen. Im Ergebnis ist das erfundungsgemäß Verfahren kein großer Aufwand, so daß die damit verbundenen Kosten gering sind.

BEZUGSZEICHENLISTE

15 [0021]

- 1 Doppelkupplungsgetriebe
2 Kurbelwelle
3 Kupplungskorb
20 4 Reibplatte
5 Reibplatte
6a Schlebemuffe
6b Schlebemuffe
6c Schlebemuffe
25 E₁ erste Eingangswelle
E₂ zweite Eingangswelle
K₁ erste Reibkupplung
K₂ zweite Reibkupplung
30 I, II, III, IV, V, VI Gänge bzw. Gangstufen bzw. Zahnradpaare
A Getriebeabtriebswelle
F Ausrückkraft

35

Patentansprüche

- 40 1. Verfahren zur Steuerung eines Doppelkupplungsgetriebes (1) mit zwei Eingangswellen (E₁, E₂), wobei der ersten Eingangswelle (E₁) eine erste Reibkupplung (K₁) und der zweiten Eingangswelle (E₂) eine zweite Reibkupplung (K₂) zugeordnet ist und mit Hilfe jeder Reibkupplung (K₁, K₂) ein erster und zweiter Antriebsstrang realisierbar ist, wobei von den Reibkupplungen (K₁, K₂) ein Motormoment von der jeweiligen Eingangswelle (E₁, E₂) über den jeweiligen Antriebsstrang auf die Getriebeausgangswelle übertragen wird, wobei das Getriebe mindestens zwei Gangstufen aufweist, die erste Gangstufe (I) zummindest durch ein erstes Zahnradpaar (I) gebildet und im ersten Antriebsstrang vorgesehen ist und die zweite Gangstufe (II) zummindest durch ein zweites Zahnradpaar (II) gebildet und im zweiten Antriebsstrang vorgesehen ist, wobei bei einem Gangstufenwechsel von der ersten zur zweiten Gangstufe ein Wechsel des Kraftflusses vom ersten Antriebsstrang auf den zweiten Antriebsstrang erfolgt und wobei der Kraftfluß des ersten Antriebsstranges durch das Ausrücken einer mit dem ersten Zahnradpaar (I) zummindest teilweise in Eingriff stehenden Schlebemuffe (6a) zur Realisierung des Gangstufenwechsels unterbrochen wird, dadurch gekennzeichnet, daß an der mit dem ersten Zahnradpaar (I) zummindest teilweise in Eingriff stehenden Schlebemuffe (6a) eine Ausrückkraft (F) anlegt, daß während des Gangstufenwechsels von der ersten Gangstufe (I) zur zweiten Gangstufe (II) die erste Reibkupplung (K₁) geschlossen bleibt und die zweite Reibkupplung (K₂) mit Hilfe eines Aktuators geschlossen wird, daß das Drehmoment vom ersten Antriebsstrang auf den zweiten Antriebsstrang übertragen wird und daß bei Drehmomentfreiheit des ersten Antriebsstranges der erste Antriebsstrang durch das selbsttätige Ausrücken der Schlebemuffe (6a) unterbrochen wird.
- 55 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß mit dem Aktuator die erste und die zweite Reibkupplung (K₁, K₂) gesteuert wird.

EP 1 122 116 A2

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die an der Schiebermuffe (6a,6b,6c) anliegende Ausrückkraft (F) als Vorspannkraft über ein mechanisches Feder-System realisiert wird.
- 5 4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß mit Hilfe der ersten Reibkupplung (K₁) der erste, der dritte und der fünfte Gang (I,III,V) des Getriebes einlegbar sind.
- 10 5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß mit Hilfe der zweiten Reibkupplung (K₂) der zweite, der vierte und der sechste Gang (II,IV,VI) des Getriebes einlegbar sind.
- 15 6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß zum Einlegen bzw. Herausnehmen der Gänge (I,II,III,IV,V,VI) drei Schiebermuffen (6a,6b,6c) vorgesehen sind und auf die Schiebermuffen (6a, 6b,6c) eine Ausrückkraft (F) zur Realisierung des selbsttätigen Ausrückens bei einem Gangstufenwechsel aufgebracht wird.
- 20 7. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß mit Hilfe des Aktuators nach dem Schließen der einen Reibkupplung (K₁ bzw. K₂) die jeweils andere, noch geschlossene Reibkupplung (K₂ bzw. K₁) geöffnet wird.
8. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Schiebermuffen (6a,6b, 6c) mit Hilfe von Betätigungsvorrichtungen eingerückt werden.
- 25 9. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Aktuator und die Betätigungsvorrichtungen mit Hilfe eines Steuergerätes gesteuert werden.

25

30

35

40

45

50

55

FIG. 1