

Serial No.: 10/031,654

AMENDMENTS IN THE CLAIMS:

1. (Currently Amended) A reflective liquid crystal device comprising in sequence a linear polariser, a retarder arrangement comprising two retarders, and a reflector, characterized in that,

in at least one state of the device, a first of said retarders acts to rotate linearly polarised light of wavelength λ and a second of the retarders acts to convert linearly polarised light of wavelength $y\lambda$ (where $0.7 < y < 1.3$) to substantially circular polarised light, and

at least one of the said first and second retarders comprises a Bistable Twisted Nematic (BTN) liquid crystal,

wherein the BTN is switchable between a first state in which it substantially converts linearly polarised light to circularly polarised light and a second state in which it does not convert linearly polarised light to circularly polarised light.

2-4. (Canceled)

5. (Previously Presented) A device according to claim 1, wherein the retarder adjacent to the polariser is a fixed retarder with an optic axis at an angle θ_1 to either the transmission or absorption axis of the polariser, and the retarder adjacent to the reflector is a BTN which in the low twist state, ϕ , has the input director (LC director at cell surface adjacent to retarder) at an angle $\theta_2 = 2\theta_1 + \theta(\phi) + x$, wherein $x < 5^\circ$.

6. (Canceled)

7. (Previously Presented) A device according to claim 5, wherein θ_1 is substantially 15° and the low twist state is substantially $\phi = 0^\circ$.

8. (Previously Presented) A device according to claim 5, wherein $5^\circ < \theta_1 < 25^\circ$ and the low twist state is substantially $\phi = 63.6^\circ$.

Serial No.: 10/031,654

9. (Previously Presented) A device according to claim 5, wherein $\theta_1 = 15^\circ$ and the low twist state is substantially $\phi = 63.6^\circ$.

10. (Original) A device according to claim 8, wherein $\theta_1 = 6^\circ$ and the low twist state is substantially $\phi = 63.6^\circ$.

11. (Previously Presented) A device according to claim 5, wherein $5^\circ < 90^\circ - \theta_1 < 25^\circ$ and the low twist state is substantially $\phi = 63.6^\circ$.

12. (Original) A device according to claim 11, wherein $\theta_1 = 84^\circ$ and the low twist state is substantially $\phi = 63.6^\circ$.

13. (Original) A device according to claim 5, wherein θ_1 and θ_2 are both substantially 15° and the low twist state is substantially $\phi = 85^\circ$.

14. (Previously Presented) A device according to claim 1, wherein the retarder adjacent to the polariser is a BTN which in the low twist state has $\phi = 0^\circ$ and optic axis at an angle α to either the transmission or absorption axis of the polariser and the retarder adjacent the reflector is a fixed retarder with optic axis at an angle $2\alpha + 45^\circ + x$, wherein $x < 5^\circ$, preferably 0° .

15. (Canceled)

16. (Previously Presented) A reflective liquid crystal device comprising in sequence a linear polariser, a retarder arrangement comprising two retarders, and a reflector, characterized in that,

a first of said retarders provides a retardation of substantially $m\lambda/2$ and a second of the retarders provides a retardation of substantially $n\lambda/4$ where m is an integer and n is an odd integer,

Serial No.: 10/031,654

at least one of the said first and second retarders comprises a Bistable Twisted Nematic (BTN) liquid crystal, and

the at least one of the said first and second retarders is switchable between a first state in which the retarder provides a retardation of substantially $m\lambda/2$ or $n\lambda/4$ and a second state in which the retardation is substantially zero.

17. (Original) A device according to claim 16, wherein the wavelength λ is an operating wavelength of the reflective liquid crystal device and is in the range 400-700nm.

18. (Original) A device according to claim 17, wherein the wavelength λ is in the range 420-600nm.

19. (Original) A device according to claim 18, wherein the wavelength λ is in the range 440-550nm.

20. (Previously Presented) A device according to claim 16, wherein the retarder comprising a BTN liquid crystal provides a retardation of $n\lambda/4$.

21-31. (Canceled)

32. (Previously Presented) A device according to claim 1 in which the BTN switches between a state ϕ and ($\phi \pm 360^\circ$).

33. (Previously Presented) A device according to claim 1 in which the BTN switches between a state ϕ and ($\phi \pm 180^\circ$).

34. (Previously Presented) A device according to claim 16 in which the BTN switches between a state ϕ and ($\phi \pm 360^\circ$).

Serial No.: 10/031,654

35. (Previously Presented) A device according to claim 16 in which the BTN switches between a state ϕ and ($\phi \pm 180^\circ$).

36. (Previously Presented) A device according to claim 21 in which the BTN switches between a state ϕ and ($\phi \pm 360^\circ$).

37. (Previously Presented) A device according to claim 21 in which the BTN switches between a state ϕ and ($\phi \pm 180^\circ$).