CS3000: Algorithms & Data Drew van der Poel

Lecture 19

Bellman-Ford

June 14, 2021

Outline

Last class: Graphs: Dijkstra's + Heaps

Next class: Graphs: Minimum Spanning Tree

Why Care About Negative Edge Weights?

- Models various phenomena
 - Chemical reactions (can be exo- or endothermic)
 - Changes in level state (e.g. happiness)

• ...

Bellman-Ford

- Input: Directed, weighted graph $G = (V, E, \{w_e\})$, source node s
 - Possibly negative edge lengths $w_e \in \mathbb{R}$
 - No negative-length cycles!

- d[u] is the length of the shortest $s \sim u$ path
- p[u] is the final hop on shortest $s \sim u$ path

- Problems: counting students, stable matching, sorting, n-digit multiplication, array searching, selection, weighted interval scheduling, segmented least squares, knapsack, prefix-free encoding, graph exploration, bipartiteness, topological sorting, (strongly) connected components, shortest paths
- Alg. techniques: divide & conquer, dynamic programming, greedy, Dijkstra's

 Analysis: asymptotic analysis, recursion trees, Master Thm., Graph Terminology/representations

 Proof techniques: (strong) induction, contradiction, greedy stays ahead, exchange argument

Structure of Shortest Paths

• If $(u, v) \in E$, then $d(s, v) \le d(s, u) + w(u, v)$ for every node $s \in V$

• If $(u, v) \in E$, and d(s, v) = d(s, u) + w(u, v) then there is a shortest $s \sim v$ -path ending with (u, v)

• For every v, there exists an edge $(u, v) \in E$ such that d(s,v) = d(s,u) + w(u,v)

Ask the Audience

• Show that Dijkstra's Algorithm can fail in graphs with negative edge lengths (even without negative length cycles)

- Why won't the following work?
 - Take a graph $G = (V, E, \{w(e)\})$ with negative lengths
 - Add $|\min w(e)|$ to all lengths to make them non-negative
 - Run Dijkstra's on the new graph

Dynamic Programming

- **Subproblems:** Let OPT(v) be the length of the shortest path from s to v
- For every v, the shortest path makes some final hop (u,v) JUEINENS " last e dge"
- Case u: the final hop is (u,v)

Recurrence:

urrence:
$$OPT(v) = \min_{u \in INEvJ} \left(OPT(u) + w(u,v) \right)$$

$$OPT(s) = O$$

Bottom-Up Implementation?

V	S	b	С	d	е			
OPT(v)	0			7/	7			

Dynamic Programming Take II

• Subproblems: Let OPT(v, j) be the length of the shortest path from \underline{s} to \underline{v} with at most j hops $(0 \le j \le n-1)$

Recurrence

- Subproblems: OPT(v, j) is the length of the shortest $s \sim v$ path with at most *j* hops
- Case u: (u, v) is final edge on the shortest $s \sim v$ path with at most *j* hops min (OPT(V, 5-1),
- Recurrence:

$$OPT(V,j) = min (OPT(u,j-1) + w(u,u))$$

Recurrence

- Subproblems: OPT(v, j) is the length of the shortest $s \sim v$ path with at most j hops
- Case u: (u, v) is final edge on the shortest $s \sim v$ path with at most j hops

Recurrence:

$$\mathrm{OPT}(v,j) = \min\left\{\mathrm{OPT}(v,j-1), \min_{(u,v)\in E} \left\{\mathrm{OPT}(u,j-1) + w_{u,v}\right\}\right\}$$

$$OPT(\underline{s,0}) = 0$$

$$OPT(\underline{v,0}) = \infty \text{ for every } v \neq s$$

Finding the paths

- OPT(v, j) is the length of the shortest $s \sim v$ path with at most j hops
- P(v,j) is the last hop on some shortest $s \sim v$ path with at most j hops

Recurrence:

$$OPT(v, j) = \min \left\{ \underbrace{OPT(v, j - 1)}_{(u, v) \in E} \left\{ \underbrace{OPT(u, j - 1)}_{v, u, v} + w_{u, v} \right\} \right\}$$

Finding
$$P(v,j)$$
: If $OPT(v,j) == OPT(v,j-1)$

$$\rightarrow P(v,j) == P(v,j-1)$$

$$\rightarrow P(v,j) == OPT(u,j-1) + w(u,v)$$

$$\rightarrow P(v,j) == W$$

- Problems: counting students, stable matching, sorting, n-digit multiplication, array searching, selection, weighted interval scheduling, segmented least squares, knapsack, prefix-free encoding, graph exploration, bipartiteness, topological sorting, (strongly) connected components, shortest paths
- Alg. techniques: divide & conquer, dynamic programming, greedy, Dijkstra's, Bellman-Ford

 Analysis: asymptotic analysis, recursion trees, Master Thm., Graph Terminology/representations

 Proof techniques: (strong) induction, contradiction, greedy stays ahead, exchange argument

Example

 $OPT(v,j) = \min \left\{ \underbrace{OPT(v,j-1), \min_{(u,v) \in E} \left\{ OPT(u,j-1) + \underbrace{w_{u,v}} \right\} \right\}$

OPT (C, 1)	
= min (0 pr (c, 0),	\overline{v}
min (0p7(50)+w(5,c),	
= min (05, min (4, 00, 00)) = 4	

	0	1	2	3	4
S	0	0			
b	∞				
C	∞	4			
d	∞ 2	P			
е	∞	\otimes			

OPT(v,j)Example = $\min \left\{ \text{OPT}(v, j - 1), \min_{(u,v) \in E} \left\{ \text{OPT}(u, j - 1) + w_{u,v} \right\} \right\}$ b 0 d 0 4 0 b -1 ∞ v ∞ C d ∞ ∞

 ∞

e

OPT(v,j)Example = $\min \left\{ \text{OPT}(v, j - 1), \min_{(u,v) \in E} \left\{ \text{OPT}(u, j - 1) + w_{u,v} \right\} \right\}$ b 0 nuthing Chars ez d 0 2 3 4 0 0 0 S b -1 -1 -1 ∞ v ∞ C -2 d ∞ ∞

1

1

 ∞

e

OPT(v,j)Example = $\min \left\{ \text{OPT}(v, j - 1), \min_{(u,v) \in E} \left\{ \text{OPT}(u, j - 1) + w_{u,v} \right\} \right\}$ b 0 d 0 0 0 0 b -1 -1 ∞ v2 ∞ C d -2 -2 ∞ ∞

1

1

 ∞

e

Implementation (Bottom Up)

```
Shortest-Path (G, s)
    foreach, node v \in V
D[v,0] \leftarrow \infty
                               O(h)
       P[v,0] \leftarrow \bot
                        E une column of a time
    D[s,0] \leftarrow 0
\rightarrow for j = 1 to n-1
        P[v,j] \leftarrow P[v,j-1] 
          foreach edge u \in IN[v]
              if (D[u,j-1] + w_{uv} < D[v,j])
D[v,j] \leftarrow D[u,j-1] + w_{uv}
P[v,j] \leftarrow u
P[v,j] \leftarrow u
```

Time: $O(n^{1} + nm)$ Space: $O(n^{1}) \leftarrow n \times (n-1)$

Optimizations

- One array d[v] containing shortest path found so far
 - Once you have OPT(v, j), don't care about OPT(v, j-1)
- No need to check edge (u, v) unless d[u] has changed
- Stop if no d[v] has changed for a full pass through V

Negative Cycle Detection

Algorithm:

- Pick a node $s \in V$
- Run Bellman-Ford for n iterations
- Check if OPT(v, n) < OPT(v, n 1) for some $v \in V$
 - If no, then there are no negative cycles
 - If yes, the shortest s-v path contains a negative cycle

Optimized Implementation w/ Negative Cycle Detection

```
Efficient-Shortest-Path(G, s)
    foreach node v \in V
       D[v] \leftarrow \infty
      P[v] \leftarrow \bot
   D[s] \leftarrow 0
    for j = 1 to n
       foreach node v \in V
             foreach u \in IN[v] where D[u] changed
                 during last iteration
              if (D[u] + W_{uv} < D[v])
                  D[v] \leftarrow D[u] + W_{,,,,}
                  P[v] \leftarrow u
       if (no D[u] changed): return (D,P)
```


Shortest Paths Summary

- Input: Directed, weighted graph $G = (V, E, \{w_e\})$, source node s
- Output: Two arrays d, p
 - d[u] is the length of the shortest $s \sim u$ path
 - p[u] is the final hop on shortest $s \sim u$ path
- Non-negative lengths: Dijkstra's Algorithm solves in $O(m \log n)$ time
- Negative lengths: Bellman-Ford solves in O(nm) time, or finds a negative cycle

