Задача А. Кузнечик

 Имя входного файла:
 grig.in

 Имя выходного файла:
 grig.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

У одного из преподавателей параллели С в комнате живёт кузнечик, который очень любит прыгать по клетчатой одномерной доске. Длина доски — N клеток. К его сожалению он умеет прыгать только на $1, 2, \ldots, k$ клеток вперёд.

Однажды преподавателям стало интересно, сколькими способами кузнечик может допрыгать из первой клетки до последней. Помогите им ответить на этот вопрос.

Формат входного файла

В первой и единственной строке входного файла записано два целых числа — N И k (1 < N < 30, 1 < k < 10).

Формат выходного файла

Выведите одно число — количество способов, которыми кузнечик может допрыгать из первой клетки до последней.

Пример

grig.in	grig.out
8 2	21

Задача В. Мутанты-2

 Имя входного файла:
 mutants2.in

 Имя выходного файла:
 mutants2.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

Как вы помните, во Внесезонном Биологическом Колледже разводят милых разноцветных зверюшек. Но вдруг одна из зверюшек нашла выход из Колледжа и сбежала. По воле судьбы она попала в удивительный город Мутантославль. Вы не поверите, город разбит на улицы, на пересечении улиц находятся перекрестки.

Удивителен же Мутантославль тем, что ходить можно с перекрестка на перекресток только на восток или на юг, а также на каждом перекрестке берут штрафы. Наш мутант нашел карту города, она представляет собой клетчатый прямоугольник N на M, в котором на пересечении i-ой строки и j-ого столбца указан размер штрафа при попадании на этот перекресток.

Зверюшка находится на северо-западном углу города. Помогите ей дойти до юго-восточного угла Мутантославля, заплатив минимально возможный штраф.

Формат входного файла

В первой строке входного файла находятся два натуральных числа N и M (1 $\leq N, M \leq$ 1000).

В последующих N строках содержатся по M чисел — карта города Мутантославль.

Формат выходного файла

В первой строчке выведите одно целое число — минимальный размер штрафа, который прийдется заплатить мутантику.

Во второй строчке выведите количество перекрестков на пути.

В следующих строчках выведите координаты перекрестков, через которые зверюшка пройдет. Гарантируется, что штраф не превысит 10^9 .

Пример

${\tt mutants2.in}$	mutants2.out	
3 4	35	
5 9 4 3	6	
3 1 6 9	1 1	
8 6 8 12	2 1	
	2 2	
	3 2	
	3 3	
	3 4	

Задача С. Ход конём

 Имя входного файла:
 knight.in

 Имя выходного файла:
 knight.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

Дана прямоугольная доска $N \times M$ (N строк и M столбцов). В левом верхнем углу находится шахматный конь, которого необходимо переместить в правый нижний угол доски.

При этом конь может ходить следующим образом:

Необходимо определить, сколько существует различных маршрутов, ведущих из левого верхнего в правый нижний угол.

Формат входного файла

В первой строке входного файла находятся два натуральных числа N и M $(1 \le N, M \le 50).$

Формат выходного файла

В выходной файл выведите единственное число $\,-\,$ количество способов добраться конём до правого нижнего угла доски.

Пример

knight.in	knight.out
3 2	1
31 34	293930

Задача D. Ход конём - 2

 Имя входного файла:
 knight2.in

 Имя выходного файла:
 knight2.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

Дана прямоугольная доска $N \times M$ (N строк и M столбцов). В левом верхнем углу находится шахматный конь, которого необходимо переместить в правый нижний угол доски.

При этом конь может ходить следующим образом:

Необходимо определить, сколько существует различных маршрутов, ведущих из левого верхнего в правый нижний угол.

Формат входного файла

В первой строке входного файла находятся два натуральных числа N и M $(1 \le N, M \le 50).$

Формат выходного файла

В выходной файл выведите единственное число — количество способов добраться конём до правого нижнего угла доски.

Пример

knight2.in	knight2.out
4 4	2
15 14	7884330

Задача Е. Три единицы подряд

 Имя входного файла:
 ones.in

 Имя выходного файла:
 ones.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

По данному числу N определите количество последовательностей из нулей и единиц длины N, в которых никакие три единицы не стоят рядом.

Формат входного файла

Во входном файле написано натуральное число N, не превосходящее 35.

Формат выходного файла

Выведите количество искомых последовательностей. Гарантируется, что ответ не превосходит $2^{31}-1$.

Пример

ones.in	ones.out
4	13

Задача F. Калькулятор

 Имя входного файла:
 calcul.in

 Имя выходного файла:
 calcul.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

Имеется калькулятор, который выполняет следующие операции:

- Умножить число X на 2.
- Умножить число X на 3.
- Прибавить к числу X единицу.

Определите, какое наименьшее количество операций требуется, чтобы получить из числа 1 число N.

Формат входного файла

Во входном файле написано натуральное число N, не превосходящее 10^6 .

Формат выходного файла

В первой строке выходного файла выведите минимальное количество операций. Во второй строке выведите числа, последовательно получающиеся при выполнении операций. Первое из них должно быть равно 1, а последнее N.

Пример

calcul.in	calcul.out
1	0
	1
5	3
	1 2 4 5
962340	17
	1 3 9 27 54 55 165 495
	1485 4455 8910 17820
	17821 53463 160389
	160390 481170 962340

Задача G. Наибольшая возрастающая подпоследовательность

 Имя входного файла:
 sequence.in

 Имя выходного файла:
 sequence.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

Дана последовательность, требуется найти длину её наибольшей возрастающей подпоследовательности.

Формат входного файла

В первой строке входных данных задано число N — длина последовательности (1 $\leq N \leq 1000$). Во второй строке задается сама последовательность (разделитель — пробел). Элементы последовательности — целые числа, не превосходящие 10000 по модулю.

Формат выходного файла

Требуется вывести длину наибольшей возрастающей подпоследовательности.

Пример

Ī	sequence.in	sequence.out
	6	3
	3 29 5 5 28 6	

Задача Н. Большой, белый, прямоугольный

 Имя входного файла:
 bwhite.in

 Имя выходного файла:
 bwhite.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

В прямоугольной белой таблице клетки раскрашены в белый и черный цвета. Найти в ней прямоугольную область белого цвета, состоящую из наибольшего количества ячеек.

Формат входного файла

Во входном файле записана сначала высота N, а затем ширина M таблицы $(1 \le N \le 250, 1 \le M \le 250)$, а затем записано N строк по M чисел в каждой строке, где 0 означает, что соответствующая клетка таблицы выкрашена в белый цвет, а 1 — что в черный.

Формат выходного файла

В выходной файл вывести одно число — количество клеток, содержащихся в наибольшем по площади белом прямоугольнике.

Пример

bwhite.in	bwhite.out
5 6	9
1 0 0 0 1 0	
0 0 0 0 1 0	
0 0 1 0 0 0	
0 0 0 0 0 0	
0 0 1 0 0 0	

Задача І. Наибольшая общая подпоследовательность

 Имя входного файла:
 lcs.in

 Имя выходного файла:
 lcs.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

Даны две последовательности. Найдите длину их наибольшей общей подпоследовательности (подпоследовательность — это то, что можно получить из данной последовательности вычеркиванием некоторых элементов).

Формат входного файла

В первой строке входного файла записано число N — длина первой последовательности (1 $\leq N \leq$ 1000).

Во второй строке записаны члены первой последовательности (через пробел) — целые числе, не превосходящие $10\,000$ по модулю.

В третьей строке записано число M — длина второй последовательности (1 $\leq M \leq$ 1000).

В четвертой строке записаны члены второй последовательности (через пробел) — целые числа, не превосходящие $10\,000$ по модулю.

Формат выходного файла

В выходной файл требуется вывести единственное целое число: длину наибольшей общей подпоследовательности, или число 0, если такой не существует.

Пример

lcs.in	lcs.out
3	2
1 2 3	
4	
2 1 3 5	

Учебно-тренировочные сборы к РОИ, группа С Санкт-Петербург, Аничков дворец, 18 марта 2014 года

Задача Ј. Рюкзак

 Имя входного файла:
 knapsack.in

 Имя выходного файла:
 knapsack.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

Найдите максимальный вес золота, который можно унести в рюкзаке вместительностью S, если есть N золотых слитков с заданными весами.

Формат входного файла

В первой строке входного файла запианы два числа — S и N (1 $\leq S \leq$ 10 000, 1 $\leq N \leq$ 300). Далее следует N неотрицательных целых чисел, не превосходящих 100 000 — веса слитков.

Формат выходного файла

Выведите искомый максимальный вес.

Пример

knapsack.in	knapsack.out
10 3	9
5 7 4	