Exercícios de Álgebra Linear e Geometria Analítica

1 - Matrizes. Operações com matrizes.

- 1.1 Escreva as matrizes A e B do tipo 3 por 2 tais que $a_{ij} = i + j$, $b_{ij} = (-1)^{i+j}$ e calcule A + B, AB^T e B^TA . Conclua que o produto de matrizes não é comutativo.
- 1.2 Considere as seguintes matrizes:

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 1 & 3 \\ 0 & 1 & 0 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 2 \end{bmatrix} \qquad D = \begin{bmatrix} 1 \\ 4 \\ 7 \end{bmatrix} \qquad E = \begin{bmatrix} -8 \\ 3 \\ 1 \end{bmatrix}$$

Verifique quais das seguintes operações são possíveis de calcular e em caso afirmativo calcule-as: B+A, A+C, C^TB , AC, CA, 5A.4C, BC^T , $(AC)^2$, (AC)B, A(CB), BD, D^TD , DD^T , ED^T .

1.3 Sejam
$$A = \begin{bmatrix} 1 & -4 & 2 \\ -1 & 4 & -2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 3 & 2 \\ 5 & -2 & 0 \end{bmatrix}$ e $C = \begin{bmatrix} 2 & 2 \\ 1 & -1 \\ 1 & -3 \end{bmatrix}$.

Calcule as:

- (a) entradas $(AA^T)_{12}$, $(AC)_{21}$, B_{22}^2 e $(C^TC)_{11}$
- (b) matrizes $A^T + C$, $(A + C^T)^T$, $(ABC)^T$, $C^TB^TA^T$.

1.4 Sejam
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 e $B = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$. Prove que $AB \neq BA$.

Nota: Como já tinhamos observado, o produto de matrizes não é comutativo. Também não verifica a lei do anulamento do produto, como o comprova o exercício, uma vez que $A \neq 0$, $B \neq 0$ e AB = 0.

- 1.5 Sejam $A = \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix}$ e $B = \begin{bmatrix} 0 & a \\ 1 & b \end{bmatrix}$, $a, b \in \mathbb{R}$. Determine os parâmetros a e b de modo a que as matrizes A e B comutem.
- 1.6 Determine todas as matrizes B que comutam com $A = \begin{bmatrix} 1 & 3 \\ 1 & 1 \end{bmatrix}$.

1.7 Sejam
$$A = \begin{bmatrix} 0 & 3 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix}$ e $D = \begin{bmatrix} 2 & 5 \\ 3 & 4 \end{bmatrix}$.

(a) Prove que AB = 0.

Nota: Mais uma vez, tem-se AB = 0 e $A \neq 0$ e $B \neq 0$ (B não é, neste caso, quadrada).

(b) Prove que AC = AD.

Nota: Nesta alínea tem-se AC = AD e $C \neq D$.

1.8 Determine os valores reais de a e b de modo a que a matriz $A = \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix}$ verifique a equação:

$$A^2 + aA - bI_2 = O_2.$$

- 1.9 Sejam $A = \begin{bmatrix} 1 & 0 \\ -2 & 3 \\ 1 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 & -2 \\ -1 & 1 & 0 \end{bmatrix}$ e $C = \begin{bmatrix} 3 & 2 \\ 1 & -4 \end{bmatrix}$. Explicite e calcule a matriz X tal que:
 - (a) $(BA X^T)^T = C$

- (b) $CA^T + X^T + B = O_{2\times 3}$
- 1.10 Sejam $A=\begin{bmatrix}1&0&-1\\0&3&0\\-2&3&1\end{bmatrix}$, $B=\begin{bmatrix}1&0&3\\2&1&0\\1&0&2\end{bmatrix}$. Resolva as seguintes equações matriciais, calculando a
 - (a) 6A + 3X = -3B
- (b) BA X = AB
- (c) $A^2 + 2X = A^2B$
- 1.11 Sejam A, B e C matrizes quadradas de ordem n > 1. Diga se são verdadeiras ou falsas as proposições seguintes:
 - (a) A(B+C) = BA + CA
 - (b) $(A B)^2 = (B A)^2$
 - (c) AB + 2B = (A + 2)B
 - (d) $(AB)^2 = A^2B^2$
 - (e) $A^2 + AB = A(A + B)$
 - (f) $BA + B = B(A + I_n)$
- 1.12 Seja M uma matriz quadrada de ordem n. Diz-se que M é simétrica (resp.: anti-simétrica) se $M^T = M$ (resp.: $M^T = -M$). Dada uma matriz A, quadrada de ordem n, qualquer, prove que:
 - (a) $A + A^T$ é simétrica.

- (b) $A A^T$ é anti-simétrica.
- 1.13 Seja *A* uma matriz qualquer. Justifique que:
 - (a) AA^T e A^TA são matrizes quadradas.
- (b) AA^T e A^TA são matrizes simétricas.
- 1.14 Calcule A^2 , A^3 , A^4 e deduza a matriz A^n , $n \in \mathbb{N}$, com :
 - (a) $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

(b) $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

- (c) $A = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$ (d) $A = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$
- 1.15 Seja $D = \begin{bmatrix} a_1 & 0 & \cdots & 0 \\ 0 & d_2 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{bmatrix}$ uma matriz diagonal (de ordem n). Determine:

- (a) a potência de ordem k de D com $k \in \mathbb{N}$;
- (b) as condições para que *D* seja invertível e, nesse caso, determine a sua inversa.
- 1.16 Dê exemplos de matrizes quadradas *A* e *B* tais que:
 - (a) A e B são invertíveis e A + B não é invertível;
 - (b) A + B é invertível e nem A nem B são invertíveis.
- 1.17 Sejam A uma matriz invertível tal que $A^{-1} = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 3 \\ 4 & 2 & 1 \end{bmatrix}$. Prove que existe uma única matriz X tal que:
 - (a) $XA = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 4 & 1 \end{bmatrix}$ e calcule-a;

- (b) $AX A = 2I_3$ e calcule-a.
- 1.18 Considere as matrizes (de permutação) $P_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ e $P_2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$.
 - (a) Sejam $A = \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix}$ e $B = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$. Calcule os produtos P_1A , P_2A , BP_1 e BP_2 ;
 - (b) Sejam A uma matriz do tipo B uma matriz do tipo B uma matriz do tipo B por B uma matriz do tipo B uma matriz do tipo B por B uma matriz do tipo B uma matriz do tipo B uma matriz do tipo B por B uma matriz do tipo B uma matrix do tipo B una matrix do tipo B una matrix do tipo B uma matrix do tipo B una matrix
 - i. P_1A e P_2A em relação à matriz A;
- ii. BP_1 e BP_2 em relação à matriz B.

(c) Prove que:

i.
$$P_1^{-1} = P_1 e P_2^{-1} = P_2$$

- ii. P_1 e P_2 são ortogonais.
- 1.19 Suponha que A, B, C e D são matrizes quadradas invertíveis. Simplifique o mais possível:

(a)
$$(AB)^{-1}(AC^{-1})(D^{-1}C^{-1})^{-1}D^{-1}$$

(b)
$$(AC^{-1})^{-1}(AC^{-1})(AC^{-1})^{-1}AD^{-1}$$

- 1.20 Prove que se A e B são matrizes quadradas invertíveis e permutáveis então A^{-1} e B^{-1} são também permutáveis.
- 1.21 Mostre que se uma matriz quadrada de ordem n, A, satisfaz a equação $A^3 + 2A I_n = O_n$, então A tem inversa e $A^{-1} = A^2 + 2I_n$.
- 1.22 Sabendo que A e B são matrizes ortogonais de ordem n, mostre que $X=B-I_n$ é solução da equação matricial

3

$$A^T X^T B + A^{-1} B = A^T.$$

1.23 Para cada $k \in \mathbb{Z}$, seja $A_k = \begin{bmatrix} 1-k & -k \\ k & 1+k \end{bmatrix}$. Prove que:

(a)
$$\forall k, m \in \mathbb{Z}, A_k A_m = A_{k+m}$$

(b)
$$\forall k \in \mathbb{Z} \ A_k$$
 é invertível e $A_k^{-1} = A_{-k}$.