ĐÁP ÁN ĐỀ THI CUỐI KỲ

MÔN HỌC: TÍN HIỆU VÀ HỆ THỐNG (ELT2035)

Thời gian làm bài: 90 phút.

<u>Phần 1 (Trắc nghiệm)</u>: Với các câu hỏi trong phần này, sinh viên chỉ cần viết chữ cái tương ứng với câu trả lời (A/B/C/D) mà không cần giải thích gì thêm.

Câu 1. Cho các hệ thống tuyến tính bất biến biểu diễn bằng đáp ứng xung như sau, hệ thống nào là ổn định?

A.
$$h(t) = \sin(3\pi t)u(t)$$

B.
$$h(n) = \cos(\pi n/3)[u(n+5)-u(n-5)]$$

C.
$$h(n) = u(-n)$$

D.
$$h(t) = (e^{2t} - e^{-2t})u(t)$$

Trả lời: Câu B (do h(n) phải dài hữu hạn hoặc là chuỗi hội tụ) 1đ

Câu 2. Tín hiệu $x(t) = \cos(3\pi t + \pi/4) + 2\sin(\pi t/2) + 1$ có thể viết dưới dạng:

A.
$$x(t) = \frac{1}{2}e^{j\pi/4}e^{3j\pi t} + \frac{1}{2}e^{-j\pi/4}e^{-3j\pi t} + e^{j\pi/2} - e^{-j\pi/2} + e^{0}$$

B.
$$x(t) = \frac{1}{2}e^{j\pi/4}e^{3j\pi t} - \frac{1}{2}e^{-j\pi/4}e^{-3j\pi t} + e^{j\pi\pi/2} + e^{-j\pi\pi/2} + e^{0}$$

C.
$$x(t) = \frac{1}{2}e^{j\pi/4}e^{3j\pi t} - \frac{1}{2}e^{-j\pi/4}e^{-3j\pi t} + \frac{1}{i}e^{j\pi\pi/2} + \frac{1}{i}e^{-j\pi\pi/2} + e^{0}$$

D.
$$x(t) = \frac{1}{2}e^{j\pi/4}e^{3j\pi t} + \frac{1}{2}e^{-j\pi/4}e^{-3j\pi t} + \frac{1}{i}e^{j\pi\pi/2} - \frac{1}{i}e^{-j\pi\pi/2} + e^{0}$$

Trả lời: Câu D (khai triển Euler) 1đ

Câu 3. Cho hệ thống tuyến tính bất biến mô tả bằng phương trình sai phân 4y(n)+y(n-2)=x(n-1), câu nào sau đây đúng?

- A. Hệ thống là ổn định nếu nó nhân quả
- B. Hệ thống là ổn định nếu nó phản nhân quả.
- C. Hệ thống là ổn định nếu nó phi nhân quả.
- D. Hệ thống không ổn định.

Trả lời: Câu D (Tính biến đổi Z, xác định điểm cực (+/- 2j), nằm ngoài đường tròn đơn vị, nên hệ thống không ổn định)

Câu 4. Tín hiệu rời rạc x(n) có biến đổi Fourier $X(\Omega) = \frac{4e^{i\Omega} - 5}{2e^{j2\Omega} - 5e^{j\Omega} + 2}$. Dạng của tín hiệu x(n) là?

A.
$$2^{-n}u(n) + 2^{n}u(n)$$

B.
$$-2^{-n}u(-n-1)-2^{n}u(-n-1)$$

C.
$$2^{-n}u(n)-2^{n}u(-n-1)$$

D.
$$-2^{-n}u(-n-1)+2^{n}u(n)$$

Trả lời: C (để có bđổi Fourier thì x(n) phải là tín hiệu năng lượng (dài hữu hạn hoặc là chuỗi hội tụ) nên đáp án phải là chuỗi hội tụ ->C) 1đ

<u>Phần 2 (Tự luận)</u>: Với các câu hỏi trong phần này, sinh viên cần đưa ra các tính toán/giải thích chi tiết dẫn đến câu trả lời. Mỗi ý 1đ.

Câu 5. Cho hệ thống tuyến tính bất biến nhân quả mô tả bằng phương trình sai phân:

$$2y(n) + 3y(n-1) + y(n-2) = 2x(n-1)$$

- a) Xác định đáp ứng xung của hệ thống.
- b) Xác định đáp ứng của hệ thống với tín hiệu vào là xung đơn vị x(n) = u(n).

Trả lời:

a/ Tính biến đổi Z: $H(z) = \frac{2z^{-1}}{2+3z^{-1}+z^{-2}}$ (0.5đ) và tính biến đổi Z ngược để suy ra h(n) = 2. (1/2)^n u(n) -2.(-1)^n u(n) (do h(n) nhân quả) **0.5đ** b/ Tính $Y(z) = H(z)X(z) = \frac{2z^{-1}}{2+3z^{-1}+z^{-2}}\frac{1}{1-z^{-1}}$ (0.5đ) và tính biến đổi Z ngược để suy ra y(n) (y(n) cũng là tín hiệu nhân quả, do hệ thống nhân quả, tín hiệu vào nhân quả ...) **0.5đ**

Câu 6. Cho hệ thống nhân quả T biểu diễn bằng sơ đồ khối như sau:

Trong đó, S là hệ thống tuyến tính bất biến liên tục biểu diễn bằng phương trình vi phân $y(t) - \frac{dy(t)}{dt} = x(t) + \frac{dx(t)}{dt}$ và K là hằng số.

- a) Xác định điều kiện với K để hệ thống T là ổn định.
- b) Xác định đáp ứng tần số và đáp ứng pha của hệ thống T với K=2.
- c) Xác định tín hiệu ra y(t) của hệ thống T khi K=2 và tín hiệu vào $x(t) = \cos(3\pi t + \pi/4) + 2\sin(\pi t/2) + 1$.
- d) Sử dụng công thức Parseval, xác định công suất của tín hiệu ra y(t) thu được trong mục c).

Trả lời:

a. Sử dụng biến đổi Laplace:

S:
$$H(s) = (1+s)/(1-s)$$

H total =
$$H(s)/(1+k.H(s)) = (1+s)/(1+k+s(k-1))$$

Điểm cực:
$$s = (1+k)/(1-k)$$
 0.5đ

Điều kiện ổn định: hệ thống tuyến tính bất biến nhân quả ổn định khi tất cả các điểm cực nằm phía bên trái trục tung, hay s<0 suy ra k>1 hoặc k<-1. **0.5** đ

b. thay $k=2 \Rightarrow H(s) = (s+1)/(s+3)$

H(omega) = H(s)|s = (j.omega) = >

$$H(\omega) = \frac{j\omega + 1}{j\omega + 3} \quad (0.5\text{d})$$

tách phần thực phần ảo của $H(\omega) = \frac{\omega^2 + 3}{\omega^2 + 9} + 2j\frac{\omega}{\omega^2 + 9}$

suy ra đáp ứng biên độ và pha. (0.5đ)

 c. Sử dụng khai triển Euler có trong câu 2, phần 1,cho tín hiệu vào có dạng sin. (1đ)

$$y(t) = \frac{1}{2}e^{j\pi/4}e^{3j\pi t}H(3\pi) + \frac{1}{2}e^{-j\pi/4}e^{-3j\pi t}H(-3\pi) + \frac{1}{j}e^{j\pi t/2}H(\pi/2) - \frac{1}{j}e^{-j\pi/2}H(\pi/2) + e^{0}H(0)$$

d. Theo công thức Parseval, công suất của y(t) sẽ bằng tổng bình phương các hệ số khai triển chuỗi Fourier của y(t): (1đ)

$$P = (\frac{1}{2}e^{j\pi/4}H(3\pi))^2 + (\frac{1}{2}e^{-j\pi/4}H(-3\pi))^2 + (\frac{1}{j}H(\pi/2)) - (\frac{1}{j}H(\pi/2))^2 + (H(0))^2$$

**** Hết ****