SPECYFIKACJA IMPLEMENTACYJNA "WireWorld" DLA JĘZYKA PROGRAMOWANIA JAVA

SPIS TREŚCI SPIS TREŚCI

Spis treści

1	Diagram klas		
	1.1	Opis diagramu	3
2	Opi	${f s} \ {f metod/pakiet\acuteow}$	4
	2.1	Klasa Main	4
	2.2	$Metoda\ go()\ \dots$	5
	2.3	Metoda processOfLife	5
	2.4	Metoda newLife	5
	2.5	Metoda saveFile	6
	2.6	Metoda readFile	6
	2.7	Pakiet	7
3	Met	todyka "WireWorld"	8
	3.1	Zasady	8
	3.2	Metoda sąsiedztw	8
4	Opi	s GUI	9
5	Tes	towanie 1	١0
	5.1	Użyte narzędzia	10
		5.1.1 AssertJ	10
		5.1.2 Maven	10

1 Diagram klas

Rysunek 1: Diagram klas

1.1 Opis diagramu

Poniżej jest przedstawiony opis diagramu:

Main jest główną klasę. Klasa Main wiąże między sobą wszystkie poszczególne klasy w programie "WireWorld".

Metoda void go() zawiera cały interfejs graficzny oraz zarządzanie kliknięciem myszki i przesunięciem suwaka i odpowiada za Start, Stop, NewGame. Metoda void go() odpowiada za prędkość przesunięcia komórek.

W klasie ReadFile mamy lnr - LineNumberReader, który wczytuje poszczególne wartości z pliku .txt.

W klasie Canvas mamy metodę public void paint(Graphics g), za pomocą której robimy graficzny interfejs dla pola i komórek.

2 Opis metod/pakietów

Cały program został napisane w jednej klasie Main.java, bo na czas dzisiejszy innego rozwiązania problemu nie znaleźliśmy.

Kod programy jest napisany za pomocą dwóch tablic dwuwymiarowych i zmiennej typu boolean dla uruchomienia (Play) lub dla zatrzymania (Stop):

- int[][] lifeGeneration,
- int[][] nextGeneration,
- volatile boolean PlayGeneration.

2.1 Klasa Main

Klasa Main zawiera w sobie klasy i następujące pola stałe:

- final int POINT_RADIUS odpowiada za punkt radiusa,
- final int LIFE_SIZE odpowiada za lewy rozmiar punktu,
- final int FIELD_SIZE odpowiada za rozmiar okienka,
- final int BTN_PANEL odpowiada za rozmiar paneli przycisków,
- final int MOUSE_BUTTON_LEFT odpowiada za lewy przycisk,
- final int MOUSE_BUTTON_RIGHT odpowiada za prawy przycisk,
- int Speed odpowiada za suwak prędkości, wartość maksymalnej prędkości.

2.2 Metoda go()

Metoda void go() zawiera w sobie GUI i kod działania programu, które napisane poprzez bibliotekę **Swing**, jest stworzony JFrame WireWorld z odpowiednimi rozmiarami i wyglądem. Tak samo stworzony JButton Play dla uruchomienia działania programu.

Za pomocą canvasPanel.addMouseListener wyznaczamy naciski na myszkę, to znaczy, uzupełniamy wartościami:

- MOUSE_BUTTON_LEFT,
- MOUSE_BUTTON_RIGHT.

W tej metodzie wyznaczamy suwak prędkości zależne od położenia wciśniętej myszki, za pomocą public void stateChanged(ChangeEvent e).

2.3 Metoda processOfLife

Metoda void processOfLife() liczy sąsiedztwa metodą Moore'a za pomocą dwóch dwuwymiarowych tablic. Tablica lifeGeneration odpowiada za stan teraźniejszy pozycji punktu, a tablica nextGeneration odpowiada za następującą generację punktów.

2.4 Metoda newLife

Metoda void newLife() oczyszcza całe plansze od wszystkich punktów i robi newGame.

2.5 Metoda saveFile

Metoda void saveFile() zapisuję wszystkie wygenerowane punkty do pliku w postaci:

```
Field: 18, 20;
ElectronTail: 19, 20;
Field: 20, 20;
ElectronHead: 21, 19;
Field: 21, 20;
```

Gdzie Field to koordynata punktu, ElectronTail to ogon elektronu, ElectronHead to głowa elektronu. Z kolej wynika, że pole Field zawiera w sobie Diodę.

2.6 Metoda readFile

Metoda void readFile() czyta punktu z pliku w postaci:

```
Field: 18, 20;
ElectronTail: 19, 20;
Field: 20, 20;
ElectronHead: 21, 19;
Field: 21, 20;
```

Gdzie Field to koordynata punktu, ElectronTail to ogon elektronu, ElectronHead to głowa elektronu. Z kolej wynika, że pole Field zawiera w sobie Diodę.

2.7 Pakiet

Cały program "WireWorld" jest napisany w package gra, bo zdecydowaliśmy, że w ten sposób będzie łatwej.

3 Metodyka "WireWorld"

3.1 Zasady

Program "WireWorld" wykorzystuje zestaw zasad:

- Komórka pozostaje Pusta, jeśli była Pusta,
- Komórka staje się Ogonem elektronu, jeśli była Głową elektronu,
- Komórka staje się Przewodnikiem, jeśli była Ogonem elektronu
- Komórka staje się Głową elektronu tylko wtedy, gdy dokładnie 1 lub 2 sąsiadujące komórki są Głowami Elektronu,
- Komórka staje się Przewodnikiem w każdym innym wypadku.

3.2 Metoda sąsiedztw

Program napisany za pomocą metody sąsiedztw Moore'a. W sąsiedztwie Moore'a mamy 8 przylegających komórek (znajdujących się: na południu, na południowym-zachodzie, na zachodzie, na północnym-zachodzie, na północnym-wschodzie, na wschodzie i na południowym-wschodzie).

4 Opis GUI

Jest trochę opisany w metodzie **void go()**, ale tutaj bardziej szczegółowo:

- JFrame tworzy okienko o rozmiarze 500x570,
- JFrame.EXIT_ON_CLOSE odpowiada za wyłączenia programu przy nacisknięciu na czerwony suwak krzyż,
- Canvas tworzy panel do wykorzystywanie i wciśnięcia myszką, żeby pojawiały się diodę, punktu,
- JSlider tworzy liniowe regulatory (suwaki), które dają możliwość wyboru konkretnej wartości prędkości z zakresu od 1 do 700,
- JButton Step pokazuję generacje krok po kroku,
- JButton Play symuluje generacje z prędkością 350,
- JButton Stop zatrzyma działania kolejnych generacji,
- JButton NewGame wyczyszcza całe pole i zaczyna program od nowa,
- JButton Save zapisuje generacje do pliku z rozszerzeniem .txt,
- JButton Upload otworzy plik .txt z odpowiednimi generacjami.

5 Testowanie

5.1 Użyte narzędzia

5.1.1 AssertJ

Testy jednostkowe będą robione z wykorzystaniem biblioteki **AssertJ**, która pozwala na nagrywanie zatwierdzenia w Java-testów.

5.1.2 Maven

Maven — narzędzie automatyzujące budowę oprogramowania na platformę Java. Plik określający sposób budowy aplikacji nosi nazwę POM-u (ang. Project Object Model). W naszym programie będziemy wykorzystywać Mavena aby zapewnić przenośność kodu na poziomie deweloperskim. Poprzez użycie Mavena powstanie plik wynikowy z rozszerzeniem . jar.