Proposition 22.4. Given any two Euclidean spaces E and F, where E has dimension n and F has dimension m, for any linear map $f: E \to F$, we have

$$\operatorname{Ker} f = \operatorname{Ker} (f^* \circ f),$$

$$\operatorname{Ker} f^* = \operatorname{Ker} (f \circ f^*),$$

$$\operatorname{Ker} f = (\operatorname{Im} f^*)^{\perp},$$

$$\operatorname{Ker} f^* = (\operatorname{Im} f)^{\perp},$$

$$\dim(\operatorname{Im} f) = \dim(\operatorname{Im} f^*),$$

and f, f^* , $f^* \circ f$, and $f \circ f^*$ have the same rank.

Proof. To simplify the notation, we will denote the inner products on E and F by the same symbol $\langle -, - \rangle$ (to avoid subscripts). If f(u) = 0, then $(f^* \circ f)(u) = f^*(f(u)) = f^*(0) = 0$, and so $\operatorname{Ker} f \subseteq \operatorname{Ker} (f^* \circ f)$. By definition of f^* , we have

$$\langle f(u), f(u) \rangle = \langle (f^* \circ f)(u), u \rangle$$

for all $u \in E$. If $(f^* \circ f)(u) = 0$, since $\langle -, - \rangle$ is positive definite, we must have f(u) = 0, and so $\operatorname{Ker}(f^* \circ f) \subseteq \operatorname{Ker} f$. Therefore,

$$\operatorname{Ker} f = \operatorname{Ker} (f^* \circ f).$$

The proof that $\operatorname{Ker} f^* = \operatorname{Ker} (f \circ f^*)$ is similar.

By definition of f^* , we have

$$\langle f(u), v \rangle = \langle u, f^*(v) \rangle$$
 for all $u \in E$ and all $v \in F$. (*)

This immediately implies that

$$\operatorname{Ker} f = (\operatorname{Im} f^*)^{\perp} \quad \text{and} \quad \operatorname{Ker} f^* = (\operatorname{Im} f)^{\perp}.$$

Let us explain why Ker $f = (\operatorname{Im} f^*)^{\perp}$, the proof of the other equation being similar.

Because the inner product is positive definite, for every $u \in E$, we have

- $u \in \operatorname{Ker} f$
- iff f(u) = 0
- iff $\langle f(u), v \rangle = 0$ for all v,
- by (*) iff $\langle u, f^*(v) \rangle = 0$ for all v,
- iff $u \in (\operatorname{Im} f^*)^{\perp}$.