Эквивалентнсть -(3)

• Будем вычислять $\delta_N(q,a)$ следующим образом:

Пусть S=CL(q). $\delta_N(q,a)$ еесть объединение $\delta_E(p,a)$ по всем p в S: $\delta_N(p,a)$ по всем p в S:

$$\delta_N(p,a) = \bigcup_{p \in S} \delta_E(p,a)$$

Эквивалентнсть -(4)

• Докказательство индукцией по |w| того, что

$$CL(\delta_N(q_0, w)) = \delta_E(q_0, w)$$

Идея доказательства: НКА на любом входе w переходит в тот же набор состояний, в который переходит эпсилон-НКА на том же входе, используя, где возможно, эпсилон-переходы...

Пример: от ε -НКА к НКА

	0	1	ε
Α	{E}	{B}	Ø
В	Ø	{ <i>C</i> }	$\{D\}$
D	Ø	Ø	Ø
Е	$\{F\}$	Ø	$\{B,C\}$
F	{D}	Ø	Ø

A	$\{E\}$	$\{B\}$
* B	Ø	$\{C\}$
C	Ø	$\{D\}$
* D	Ø	Ø
* E	$\{F\}$	$\{C,D\}$
F	$\{D\}$	Ø

Заключение

Теорема КДА, НКА и ε -НКА все принимают в точности одно и то же множестов языков: регулярные языки.

- По этой причине эти языки ещё называют автоматными
- Типы НКА проще строить и они могут иметь экспоненциально меньше состояний, чем ${\rm K} \Pi {\rm A}.$
- Но только КДА может быть реалиован!

Эквивалентнсть РВ и конечных автоматов

- **Теорема**. Регулярные выражения и каонечные автоматы представляют один и тот класс регулярных
- Нужно показать, что для каждого

От РВ к ε -НКА: Базис

Пример построения КА по РВ

- Регулярное выражение: (a+b)(c+d)
- 1) Автоматы для РВ a, b, c, d

- 2) Автомат для РВ a+b
- -3) Автомат для PB cd

Пример построения КА по РВ

- Регулярное выражение: (a+b)(c+d)
- 4) автомат для PB cd
- Регулярное выражение $(a+b)(c+d)^*$
- 5) Автомат для РВ (a + b)((cd) *

От-ДКА-к-РВ

- Необычный вид индукции.
- Пусть состояния КДА именуюся 1,2, ..., п
- Индукция проводится по k, максимальному числу состояний, по которым нам позволено проходиь вдоль пути.

k-пути

- K-путь это путь в графе КДА, который не проходит через состояния с номераи больше, чем k
- Выбор конечной вершины не ограничивается ей может быть любое состояние
- n-пути являются неограниченными (n число состояний автомата)
- РВ есть объединение РВ для n-путей от начального состояния к каждому конечному состоянию

....

Промежуточные итоги

• Каждый из рассмотренных трех типов автоматов (КДА, НКА, ε -НКА), а также регулярные выражения, определяют одно и то же множество языков: регулярные языки

$$PB \rightarrow$$

- Лемма: Если L=L(A) для некоторого конечного автомата A, то L=L(G) для некоторой праволинейной грамматики G.
- Док-во: Пусть $A=(Q,\Sigma,\delta,q_0,F)$ КДА. Определим грамматику $G=(Q,\Sigma,P,q_0)$, где P имеет вид:

Если $\delta(q,a)=r$, то P содержит правило $q\to ar$.

Если $p \in F$, то P содержит правило $p \to \varepsilon$.

Каждый шаг вывода в грамматике G имитирует такт работы автомата A.

Индукция по i — длине вывода.

Базис: $i=0.q\Rightarrow \varepsilon\Leftrightarrow (q,\varepsilon)$ как-то странный знак (q,ε) . IH: $s\stackrel{\imath}{\Rightarrow} x\Leftrightarrow (s,x)$ какой-то знак (r,ε) для некоторого $r\in F$.

Шаг индукции. Пусть w = ax, где |x| = i.

Тогда $q \stackrel{i+1}{\Rightarrow} w$ равносильно тому, что $q \Rightarrow as \stackrel{i}{\Rightarrow}$ а x для некоторого s.

Но $q \Rightarrow as$ равносильно $\delta(q, a) = s)$ или $qa \mid -1(s, \varepsilon)$.

Это означает, что $(q, ax) \mid -1 (s, x)$.

По индукции $s \stackrel{i}{\Rightarrow} x \Leftrightarrow (s, x)...$

Следовательно, $q \stackrel{i+1}{\Rightarrow}$ равносильно (q, a x) |-^1 (s, x) |-^(i - 1) (r, epsilon) или (q,w) | $-^i$ (r,ε) для некоторого $r \in F$

ч. т. д.

Лемма. Если L=L(G) для некоторой праволинейной грамматики G, то L=L(A) для некоторого конечношго автомата A.

Док-во. Пусть $G=(Q,\Sigma,P,S)$ — праволинейная грамматика. Построим атвомат $A=\big(N\cup\{q_f\},\Sigma,\delta,S,F\big)$, где δ определено как:

Если $A \to aB \in P$, то $\delta(A,a) = B$ для $A,B \in N$ и $a \in \Sigma$ Если $A \to a \in P$, то $\delta(A,a) = q_f$ для $A \in N$ и $\alpha \in \Sigma$

$$F = \left\{S, q_f\right\}$$

, если в P есть $S \to \varepsilon$ и $F = \left\{q_f\right\}$ — в противном слуае.

Очевидно, что что построенный автомат определяет тот же язык, что и исходная праволинейная грамматика

Теорема: Язык праволинейный ⇔ он автоматный

Доказательство следует из двух предыдущи лемм.

Заключение

Каждый из рассмотренных трёх типов автоматов (КДА, НКА, э-НКА), а также регулярные выраения, определяют одно и то же множество языков: регулярные языки.

- Теорема. Утверждения:
 - ightharpoonup L регулярный язык (регулярное множество),
 - ightharpoonup L

Свойства регулярный языков

- Класс языков это множество языков.
 - Пример: регулярные языки
- Классы языков имеют два вида важных свойств:
 - 1. Разрешимые Свойства
 - 2. Свойства замкнутости

Свойство замкнутости

- Свойство замкнутости класса языков говорит, что выпнение некоторой операции над языками в класс (например, объединение) дает в резульатте язык из того же класса
- Пример: регулярные языки, очевидно, замкнуты относительно
 - Использовать для доказательства предстваление регулярных языков регулярными выражениями.

Представление языков

• Представление может быть формальным и неформальным

Пример: (формальный): представление языка РВ или КДА, определяющим соотв. язык

Почему важны разрешимые свойства?

• Рассмотрим КДА, представляющий некоторый протокол.

Пример: "Завершется ли протокол?" = "Является ли язык конечным?"

Пример: "Может ли протокол быть неверным?" = "Является ли язык непустым?"

- Сделать финальным состоянием "состояние ошибки"
- Нам хотелось бы иметь "наименьшее" представление языка, т. е. КДА с минимальным числом состояний или самое короткое РВ.
- Можем ли мы определить, №Являются ли два языка одним и тем же?"
 - ▶ То есть, определяют ли два КДА один и тот же язык?

Проблема принадлежности строки языку

- Нашей первой разрешимой проблемой для регулярных языков будет ответ на вопрос: находится ли строка w в регулярном языке L?"
- Предположим, что L представлен КДА А.
- Смоделируем работу A на последовательных входных символах w.