Apport des approches phylogénétiques pour expliquer l'origine des génomes mosaïques, exemple chez le riz

Charles-Elie Rabier
Vincent Berry, Fabio Pardi et Céline Scornavacca

ISEM, Institut des Sciences de l'Evolution de Montpellier LIRMM, Laboratoire d'informatique, de Robotique et de Microélectronique Genome Harvest

Collaborations: Jean-Christophe Glaszmann (CIRAD), Joao Santos (CIRAD)

Quelques thèses sur la domestication

 Huang et al. (Nature, 2012): japonica domestiqué à partir d'un riz sauvage dans le sud de la Chine, puis croisé à un sauvage dans le sud est de l'Asie, générant indica

Quelques thèses sur la domestication

 Civan et al. (Nature Plants, 2015): indica, japonica et aus domestiqués séparément dans différentes parties d'Asie

Réseaux phylogénétiques

Les réseaux phylogénétiques sont des DAG qui vont nous permettre de détecter des :

- hybridations
- introgressions
- transferts horizontaux

Quelques points importants:

- Longueur d'une arête = temps d'évolution
- Dépendance entre noeuds (probabilités conditionnelles ?)
- On cherche à avoir une distribution de réseaux (incertitude sur des clades)
- Plus on collecte de données, plus on est en mesure d'inférer précisément le réseau

Un réseau Bayesien? Non, mais ...

- Noeud 4 : noeud de réticulation
- Noeud 1, 2 et 3 : feuilles du réseau
- Z_k: v.a. correspondant au noeud k
- Loi jointe :

$$\mathbb{P}(Z_1, Z_2, Z_3, Z_4, Z_5, Z_6, Z_7)
= \mathbb{P}(Z_2 \mid Z_4) \mathbb{P}(Z_1, Z_3, Z_4 \mid Z_5, Z_6)
\times \mathbb{P}(Z_5, Z_6 \mid Z_7) \mathbb{P}(Z_7)$$

- Z_1 , Z_2 , Z_3 ne sont pas de même nature que Z_4 , Z_5 , Z_6 , Z_7
- 2 types d'allèles (rouge/vert)
- N_k: v.a. pour le nombre de lignées au noeud k
- R_k: v.a. pour le nombre d'allèles rouge au noeud k
- \bullet $\forall k \in \{4, 5, 6, 7\}, Z_k = (N_k, R_k)$
- \bullet $\forall k \in \{1, 2, 3\}, Z_k = R_k$
- N_1 , N_2 et N_3 sont connus!!!
- Data= (Z_1, Z_2, Z_3)

Logiciel SNAPP pour l'inférence Bayésienne d'arbres (Bryant et al. 2012, MBE)

- Marqueurs bialléliques (SNPs) indépendants sachant l'arbre d'espèces
- Modélisation de l'arbre de locus (backward)
 - Processus de coalescence évoluant à l'intérieur d'un arbre d'espèces (MultiSpecies Coalescent)
 - Processus autorisant la discordance entre arbres de locus et arbres d'espèces (tri de lignées incomplet)

Les mutations interviennent au cours du temps

- Modélisation des données au SNP (forward)

 - u : taux de mutation rouge → vert
 - v : taux de mutation vert → rouge

- V.a.: rRoot, nRoot, rIntNode, nIntNode, rA, rB, rC
- pas d'aléa dans nA, nB, nC
- Data=(rA, rB, rC)
- Vraisemblance : ℙ(Data | S) avec S arbre d'espèce

Cadre d'un réseau phylogénétique

- Modélisation de l'arbre de locus (backward) :
 - multispecies coalescent
 - modèle de Nakhleh au niveau du noeud de réticulation
- Modélisation des données au SNP (forward)

- V.a.: rRoot, nRoot, rIntNode, nIntNode, rA, rB, rC
- pas d'aléa dans nA, nB, nC
- Data=(rA, rB, rC)
- Vraisemblance : P (Data | N) avec N réseau

Une méthode Bayésienne d'inférence de réseaux

- N : réseau phylogénétique (topologie, longueurs de branches, tailles de populations)
- X_i : données pour le SNP i
- G_i: arbre de locus pour le SNP i
- m SNPs

$$\mathbb{P}(N|X_1,\ldots,X_m) \propto \left(\prod_{i=1}^m \int_{\psi} \mathbb{P}(X_i|G_i)\mathbb{P}(G_i|S)dG_i\right)P(N)$$

$$\propto \mathbb{P}\left(\frac{Data}{N} \mid N\right)P(N)$$

SNAPPNet intègre sur tous les arbres de locus (extension de SNAPP, Bryant et al. MBE 2012), à l'aide d'un nouvel algorithme de parcours du réseau

Calcul de la *prior* P(N) par le processus de naissances hybridation

 \Rightarrow Markov Chain Monte Carlo (MCMC) afin d'estimer la distribution à posteriori de $\mathbb{P}(N|X_1,\ldots,X_m)$

Implémenté dans BEAST

Problème sous-jacent aux réseaux phylogénétiques

Dataz: proportion de rouge/vert dans les espèces sous la branche z
Datay: proportion de rouge/vert dans les espèces sous la branche y

 $Data_{z^T}$ et $Data_{y^T}$ ne sont pas indépendantes ... $Data_{z^T}$ et $Data_{y^T}$ comprennent les allèles rouges et verts de l'espèce hybride

Calcul de la vraisemblance dans un réseau

$$\begin{split} &\mathbb{P}\left(\textit{Data}\right) \\ &= \sum_{i} \sum_{j} \mathbb{P}\left(\textit{Data} \mid \textit{n}_{root} = i, \textit{r}_{root} = j\right) \mathbb{P}\left(\textit{r}_{root} = j \mid \textit{n}_{root} = i\right) \\ &\mathbb{P}\left(\textit{n}_{root} = i\right) \\ &= \sum_{i} \sum_{j} \sum_{i'} \sum_{j'} \mathbb{P}\left(\textit{Data}_{z^{T}} \textit{Data}_{y^{T}} \mid \textit{n}_{y^{T}} = i', \textit{n}_{z^{T}} = i - i', \textit{r}_{y^{T}} = j', \\ &r_{z^{T}} = j - j'\right) \mathbb{P}\left(\textit{r}_{y^{T}} = j', \textit{r}_{z^{T}} = j - j' \mid \textit{n}_{y^{T}} = i', \textit{n}_{z^{T}} = i - i', \textit{r}_{root} = j\right) \\ &\mathbb{P}\left(\textit{n}_{y^{T}} = i', \textit{n}_{z^{T}} = i - i' \mid \textit{n}_{root} = i\right) \mathbb{P}\left(\textit{r}_{root} = j \mid \textit{n}_{root} = i\right) \mathbb{P}\left(\textit{n}_{root} = i\right) \\ \end{split}$$

- $\mathbb{P}(r_{root} = j \mid n_{root} = i)$ calculé par
 - la loi Binomiale : $\mathbb{P}(r_{root} = j \mid n_{root} = i) = C_i^j p^j (1 p)^{i-j}$
 - la loi $\beta(\theta, \theta)$ sur le paramètre p de la Binomiale : $\mathbb{P}(r_{root} = i \mid n_{root} = i) = C_i^j B(j + \theta, i j + \theta) / B(\theta, \theta)$
- $\mathbb{P}(Data \mid n_{root} = i, r_{root} = j) \mathbb{P}(n_{root} = i)$ calculé par un nouvel algorithme


```
(1) \mathbb{P} \left( \frac{Data_{u^T}}{n_{u^T}}, r_{u^T} \right)
```

(2)
$$\mathbb{P}\left(Data_{x^B}Data_{w^B} \mid n_{x^B}, r_{x^B}, n_{w^B}, r_{w^B}\right)$$

(3)
$$\mathbb{P}\left(Data_{x^T}Data_{w^B} \mid n_{x^T}, r_{x^T}, n_{w^B}, r_{w^B}\right)$$

(4)
$$\mathbb{P}\left(Data_{x^T}Data_{w^T} \mid n_{x^T}, r_{x^T}, n_{w^T}, r_{w^T}\right)$$

(5)
$$\mathbb{P}\left(\frac{Data_{v^T}}{n_{v^T}}, r_{v^T}\right)$$

(6)
$$\mathbb{P}\left(Data_{t^T} \mid n_{t^T}, r_{t^T}\right)$$

(7)
$$\mathbb{P}\left(\mathsf{Data}_{\mathsf{V}^B} \mathsf{Data}_{\mathsf{W}^T} \mid \mathsf{n}_{\mathsf{V}^B}, \mathsf{r}_{\mathsf{V}^B}, \mathsf{n}_{\mathsf{W}^T}, \mathsf{r}_{\mathsf{W}^T} \right)$$

(8)
$$\mathbb{P}\left(Data_{v^B}Data_{z^B} \mid n_{v^B}, r_{v^B}, n_{z^B}, r_{z^B}\right)$$

(9)
$$\mathbb{P}\left(\frac{\mathsf{Data}_{\mathsf{v}^\mathsf{T}}\mathsf{Data}_{\mathsf{z}^\mathsf{B}}\mid n_{\mathsf{v}^\mathsf{T}}, r_{\mathsf{v}^\mathsf{T}}, n_{\mathsf{z}^\mathsf{B}}, r_{\mathsf{z}^\mathsf{B}}\right)$$

(10)
$$\mathbb{P}\left(\frac{\mathsf{Data}_{\mathsf{v}^\mathsf{T}}}{\mathsf{Data}_{\mathsf{z}^\mathsf{T}}} \mid n_{\mathsf{v}^\mathsf{T}}, r_{\mathsf{v}^\mathsf{T}}, n_{\mathsf{z}^\mathsf{T}}, r_{\mathsf{z}^\mathsf{T}}\right)$$

(11)
$$\mathbb{P}(Data \mid n_{root}, r_{root})$$

- (1) $\mathbb{P}\left(Data_{u^T} \mid n_{u^T}, r_{u^T}\right)$
- (2) $\mathbb{P}\left(Data_{x^B} Data_{w^B} \mid n_{x^B}, r_{x^B}, n_{w^B}, r_{w^B} \right)$
- (3) $\mathbb{P}\left(Data_{x^T}Data_{w^B} \mid n_{x^T}, r_{x^T}, n_{w^B}, r_{w^B}\right)$
- (4) $\mathbb{P}\left(Data_{x^T}Data_{w^T} \mid n_{x^T}, r_{x^T}, n_{w^T}, r_{w^T}\right)$
- (5) $\mathbb{P}\left(\frac{Data_{v^T}}{n_{v^T}}, r_{v^T}\right)$
- (6) $\mathbb{P}\left(\frac{Data_{t^T}}{n_{t^T}}, r_{t^T}\right)$
- (7) $\mathbb{P}\left(\mathsf{Data}_{\mathsf{V}^B} \mathsf{Data}_{\mathsf{W}^T} \mid \mathsf{n}_{\mathsf{V}^B}, \mathsf{r}_{\mathsf{V}^B}, \mathsf{n}_{\mathsf{W}^T}, \mathsf{r}_{\mathsf{W}^T} \right)$
- (8) $\mathbb{P}\left(\mathsf{Data}_{\mathsf{V}^B} \mathsf{Data}_{\mathsf{Z}^B} \mid n_{\mathsf{V}^B}, r_{\mathsf{V}^B}, n_{\mathsf{Z}^B}, r_{\mathsf{Z}^B} \right)$
- (9) $\mathbb{P}\left(\mathsf{Data}_{\mathsf{v}^\mathsf{T}} \mathsf{Data}_{\mathsf{z}^\mathsf{B}} \mid \mathsf{n}_{\mathsf{v}^\mathsf{T}}, \mathsf{r}_{\mathsf{v}^\mathsf{T}}, \mathsf{n}_{\mathsf{z}^\mathsf{B}}, \mathsf{r}_{\mathsf{z}^\mathsf{B}} \right)$
- (10) $\mathbb{P}\left(Data_{v^T}Data_{z^T} \mid n_{v^T}, r_{v^T}, n_{z^T}, r_{z^T}\right)$
- (11) $\mathbb{P}(Data \mid n_{root}, r_{root})$

(1)
$$\mathbb{P}\left(\frac{Data_{u^T} \mid n_{u^T}, r_{u^T}\right)$$

(2)
$$\mathbb{P}\left(Data_{x^B}Data_{w^B} \mid n_{x^B}, r_{x^B}, n_{w^B}, r_{w^B}\right)$$

(3)
$$\mathbb{P}\left(Data_{x^T}Data_{w^B} \mid n_{x^T}, r_{x^T}, n_{w^B}, r_{w^B}\right)$$

(4)
$$\mathbb{P}\left(Data_{x^T}Data_{w^T} \mid n_{x^T}, r_{x^T}, n_{w^T}, r_{w^T}\right)$$

(5)
$$\mathbb{P}\left(Data_{v^T} \mid n_{v^T}, r_{v^T}\right)$$

(6)
$$\mathbb{P}\left(Data_{t^T} \mid n_{t^T}, r_{t^T}\right)$$

(7)
$$\mathbb{P}\left(\mathsf{Data}_{\mathsf{V}^B} \mathsf{Data}_{\mathsf{W}^T} \mid \mathsf{n}_{\mathsf{V}^B}, \mathsf{r}_{\mathsf{V}^B}, \mathsf{n}_{\mathsf{W}^T}, \mathsf{r}_{\mathsf{W}^T} \right)$$

(8)
$$\mathbb{P}\left(Data_{v^B} Data_{z^B} \mid n_{v^B}, r_{v^B}, n_{z^B}, r_{z^B} \right)$$

(9)
$$\mathbb{P}\left(\frac{\mathsf{Data}_{\mathsf{v}^\mathsf{T}}\mathsf{Data}_{\mathsf{z}^\mathsf{B}}\mid n_{\mathsf{v}^\mathsf{T}}, r_{\mathsf{v}^\mathsf{T}}, n_{\mathsf{z}^\mathsf{B}}, r_{\mathsf{z}^\mathsf{B}}\right)$$

(10)
$$\mathbb{P}\left(\frac{Data_{y^T}Data_{z^T}}{n_{y^T}, r_{y^T}, n_{z^T}, r_{z^T}}\right)$$

(11)
$$\mathbb{P}\left(\frac{Data}{n_{root}}, \frac{r_{root}}{r_{root}}\right)$$

- $(1) \mathbb{P} \left(\frac{Data_{u^T}}{n_{u^T}}, r_{u^T} \right)$
- (2) $\mathbb{P}\left(Data_{x^B}Data_{w^B} \mid n_{x^B}, r_{x^B}, n_{w^B}, r_{w^B}\right)$
- (3) $\mathbb{P}\left(Data_{x^T}Data_{w^B} \mid n_{x^T}, r_{x^T}, n_{w^B}, r_{w^B}\right)$
- (4) $\mathbb{P}\left(Data_{x^T}Data_{w^T} \mid n_{x^T}, r_{x^T}, n_{w^T}, r_{w^T}\right)$
- (5) $\mathbb{P}\left(\frac{Data_{v^T}}{n_{v^T}}, r_{v^T}\right)$
- (6) $\mathbb{P}\left(Data_{t^T} \mid n_{t^T}, r_{t^T}\right)$
- (7) $\mathbb{P}\left(\mathsf{Data}_{\mathsf{V}^B} \mathsf{Data}_{\mathsf{W}^T} \mid \mathsf{n}_{\mathsf{V}^B}, \mathsf{r}_{\mathsf{V}^B}, \mathsf{n}_{\mathsf{W}^T}, \mathsf{r}_{\mathsf{W}^T} \right)$
- (8) $\mathbb{P}\left(Data_{v^B} Data_{z^B} \mid n_{v^B}, r_{v^B}, n_{z^B}, r_{z^B} \right)$
- (9) $\mathbb{P}\left(\mathsf{Data}_{\mathsf{v}^\mathsf{T}} \mathsf{Data}_{\mathsf{z}^\mathsf{B}} \mid \mathsf{n}_{\mathsf{v}^\mathsf{T}}, \mathsf{r}_{\mathsf{v}^\mathsf{T}}, \mathsf{n}_{\mathsf{z}^\mathsf{B}}, \mathsf{r}_{\mathsf{z}^\mathsf{B}} \right)$
- (10) $\mathbb{P}\left(\frac{\mathbf{Data}_{v^T}\mathbf{Data}_{z^T}}{\mathbf{n_{v^T}}, \mathbf{r_{v^T}}, \mathbf{r_{z^T}}, \mathbf{r_{z^T}}}\right)$
- (11) $\mathbb{P}(Data \mid n_{root}, r_{root})$

- $(1) \mathbb{P} \left(\frac{Data_{u^T}}{n_{u^T}}, r_{u^T} \right)$
- (2) $\mathbb{P}\left(Data_{x^B}Data_{w^B} \mid n_{x^B}, r_{x^B}, n_{w^B}, r_{w^B}\right)$
- (3) $\mathbb{P}\left(Data_{x^T}Data_{w^B} \mid n_{x^T}, r_{x^T}, n_{w^B}, r_{w^B}\right)$
- (4) $\mathbb{P}\left(Data_{x^T}Data_{w^T} \mid n_{x^T}, r_{x^T}, n_{w^T}, r_{w^T}\right)$
- (5) $\mathbb{P}\left(\frac{Data_{v^T}}{n_{v^T}}, r_{v^T}\right)$
- (6) $\mathbb{P}\left(\frac{Data_{t^T}}{n_{t^T}}, r_{t^T}\right)$
- (7) $\mathbb{P}\left(\mathsf{Data}_{\mathsf{V}^B} \mathsf{Data}_{\mathsf{W}^T} \mid \mathsf{n}_{\mathsf{V}^B}, \mathsf{r}_{\mathsf{V}^B}, \mathsf{n}_{\mathsf{W}^T}, \mathsf{r}_{\mathsf{W}^T} \right)$
- (8) $\mathbb{P}\left(Data_{v^B} Data_{z^B} \mid n_{v^B}, r_{v^B}, n_{z^B}, r_{z^B} \right)$
- (9) $\mathbb{P}\left(\mathsf{Data}_{\mathsf{v}^\mathsf{T}} \mathsf{Data}_{\mathsf{z}^\mathsf{B}} \mid \mathsf{n}_{\mathsf{v}^\mathsf{T}}, \mathsf{r}_{\mathsf{v}^\mathsf{T}}, \mathsf{n}_{\mathsf{z}^\mathsf{B}}, \mathsf{r}_{\mathsf{z}^\mathsf{B}} \right)$
- (10) $\mathbb{P}\left(Data_{v^T}Data_{z^T} \mid n_{v^T}, r_{v^T}, n_{z^T}, r_{z^T}\right)$
- (11) $\mathbb{P}(Data \mid n_{root}, r_{root})$


```
(1) \mathbb{P} \left( Data_{u^T} \mid n_{u^T}, r_{u^T} \right)
```

(2)
$$\mathbb{P}\left(Data_{x^B}Data_{w^B} \mid n_{x^B}, r_{x^B}, n_{w^B}, r_{w^B}\right)$$

(3)
$$\mathbb{P}\left(\frac{\mathsf{Data}_{\mathsf{x}^\mathsf{T}}}{\mathsf{Data}_{\mathsf{w}^\mathsf{B}}} \mid n_{\mathsf{x}^\mathsf{T}}, r_{\mathsf{x}^\mathsf{T}}, n_{\mathsf{w}^\mathsf{B}}, r_{\mathsf{w}^\mathsf{B}}\right)$$

$$(4) \mathbb{P} \left(\mathsf{Data}_{\mathsf{x}^\mathsf{T}} \mathsf{Data}_{\mathsf{w}^\mathsf{T}} \mid \mathsf{n}_{\mathsf{x}^\mathsf{T}}, \mathsf{r}_{\mathsf{x}^\mathsf{T}}, \mathsf{n}_{\mathsf{w}^\mathsf{T}}, \mathsf{r}_{\mathsf{w}^\mathsf{T}} \right)$$

(5)
$$\mathbb{P}\left(Data_{v^T} \mid n_{v^T}, r_{v^T}\right)$$

(6)
$$\mathbb{P}\left(Data_{t^T} \mid n_{t^T}, r_{t^T}\right)$$

(7)
$$\mathbb{P}\left(\mathsf{Data}_{\mathsf{V}^B} \mathsf{Data}_{\mathsf{W}^T} \mid \mathsf{n}_{\mathsf{V}^B}, \mathsf{r}_{\mathsf{V}^B}, \mathsf{n}_{\mathsf{W}^T}, \mathsf{r}_{\mathsf{W}^T} \right)$$

(8)
$$\mathbb{P}\left(Data_{v^B} Data_{z^B} \mid n_{v^B}, r_{v^B}, n_{z^B}, r_{z^B} \right)$$

(9)
$$\mathbb{P}\left(\frac{\mathsf{Data}_{\mathsf{v}^\mathsf{T}}\mathsf{Data}_{\mathsf{z}^\mathsf{B}}\mid n_{\mathsf{v}^\mathsf{T}}, r_{\mathsf{v}^\mathsf{T}}, n_{\mathsf{z}^\mathsf{B}}, r_{\mathsf{z}^\mathsf{B}}\right)$$

(10)
$$\mathbb{P}\left(\frac{\mathsf{Data}_{\mathsf{y}^\mathsf{T}}\mathsf{Data}_{\mathsf{z}^\mathsf{T}}}{\mathsf{Data}_{\mathsf{z}^\mathsf{T}}} \mid n_{\mathsf{y}^\mathsf{T}}, r_{\mathsf{y}^\mathsf{T}}, n_{\mathsf{z}^\mathsf{T}}, r_{\mathsf{z}^\mathsf{T}}\right)$$

(11)
$$\mathbb{P}(Data \mid n_{root}, r_{root})$$

(1)
$$\mathbb{P}\left(\frac{Data_{u^T} \mid n_{u^T}, r_{u^T}\right)$$

$$(2) \mathbb{P} \left(\mathsf{Data}_{\mathsf{x}^{\mathsf{B}}} \mathsf{Data}_{\mathsf{w}^{\mathsf{B}}} \mid \mathsf{n}_{\mathsf{x}^{\mathsf{B}}}, \mathsf{r}_{\mathsf{x}^{\mathsf{B}}}, \mathsf{n}_{\mathsf{w}^{\mathsf{B}}}, \mathsf{r}_{\mathsf{w}^{\mathsf{B}}} \right)$$

(3)
$$\mathbb{P}\left(Data_{x^T}Data_{w^B} \mid n_{x^T}, r_{x^T}, n_{w^B}, r_{w^B}\right)$$

(4)
$$\mathbb{P}\left(Data_{x^T}Data_{w^T} \mid n_{x^T}, r_{x^T}, n_{w^T}, r_{w^T}\right)$$

(5)
$$\mathbb{P}\left(\frac{Data_{v^T}}{n_{v^T}}, r_{v^T}\right)$$

(6)
$$\mathbb{P}\left(Data_{t^T} \mid n_{t^T}, r_{t^T}\right)$$

(7)
$$\mathbb{P}\left(\mathsf{Data}_{\mathsf{V}^B} \mathsf{Data}_{\mathsf{W}^T} \mid \mathsf{n}_{\mathsf{V}^B}, \mathsf{r}_{\mathsf{V}^B}, \mathsf{n}_{\mathsf{W}^T}, \mathsf{r}_{\mathsf{W}^T} \right)$$

(8)
$$\mathbb{P}\left(Data_{v^B} Data_{z^B} \mid n_{v^B}, r_{v^B}, n_{z^B}, r_{z^B} \right)$$

(9)
$$\mathbb{P}\left(\frac{\mathsf{Data}_{\mathsf{v}^\mathsf{T}}\mathsf{Data}_{\mathsf{z}^\mathsf{B}}\mid n_{\mathsf{v}^\mathsf{T}}, r_{\mathsf{v}^\mathsf{T}}, n_{\mathsf{z}^\mathsf{B}}, r_{\mathsf{z}^\mathsf{B}}\right)$$

(10)
$$\mathbb{P}\left(\frac{Data_{y^T}Data_{z^T}}{n_{y^T}, r_{y^T}, n_{z^T}, r_{z^T}}\right)$$

(11)
$$\mathbb{P}(Data \mid n_{root}, r_{root})$$

- (1) $\mathbb{P}\left(\frac{Data_{u^T} \mid n_{u^T}, r_{u^T}\right)$
- (2) $\mathbb{P}\left(Data_{x^B} Data_{w^B} \mid n_{x^B}, r_{x^B}, n_{w^B}, r_{w^B} \right)$
- (3) $\mathbb{P}\left(Data_{x^T}Data_{w^B} \mid n_{x^T}, r_{x^T}, n_{w^B}, r_{w^B}\right)$
- $(4) \mathbb{P} \left(\mathsf{Data}_{\mathsf{x}^\mathsf{T}} \mathsf{Data}_{\mathsf{w}^\mathsf{T}} \mid \mathsf{n}_{\mathsf{x}^\mathsf{T}}, \mathsf{r}_{\mathsf{x}^\mathsf{T}}, \mathsf{n}_{\mathsf{w}^\mathsf{T}}, \mathsf{r}_{\mathsf{w}^\mathsf{T}} \right)$
- (5) $\mathbb{P}\left(Data_{v^T} \mid n_{v^T}, r_{v^T}\right)$
- (6) $\mathbb{P}\left(Data_{t^T} \mid n_{t^T}, r_{t^T} \right)$
- (7) $\mathbb{P}\left(\mathsf{Data}_{\mathsf{v}^{\mathsf{B}}} \mathsf{Data}_{\mathsf{w}^{\mathsf{T}}} \mid \mathsf{n}_{\mathsf{v}^{\mathsf{B}}}, \mathsf{r}_{\mathsf{v}^{\mathsf{B}}}, \mathsf{n}_{\mathsf{w}^{\mathsf{T}}}, \mathsf{r}_{\mathsf{w}^{\mathsf{T}}} \right)$
- (8) $\mathbb{P}\left(\mathsf{Data}_{\mathsf{V}^B} \mathsf{Data}_{\mathsf{Z}^B} \mid n_{\mathsf{V}^B}, r_{\mathsf{V}^B}, n_{\mathsf{Z}^B}, r_{\mathsf{Z}^B} \right)$
- (9) $\mathbb{P}\left(\mathsf{Data}_{\mathsf{v}^\mathsf{T}} \mathsf{Data}_{\mathsf{z}^\mathsf{B}} \mid \mathsf{n}_{\mathsf{v}^\mathsf{T}}, \mathsf{r}_{\mathsf{v}^\mathsf{T}}, \mathsf{n}_{\mathsf{z}^\mathsf{B}}, \mathsf{r}_{\mathsf{z}^\mathsf{B}} \right)$
- (10) $\mathbb{P}\left(\frac{Data_{v^T}Data_{z^T}}{n_{v^T}, r_{v^T}, n_{z^T}, r_{z^T}}\right)$
- (11) $\mathbb{P}(Data \mid n_{root}, r_{root})$

$$(1) \mathbb{P} \left(Data_{u^T} \mid n_{u^T}, r_{u^T} \right)$$

$$(2) \mathbb{P} \left(\mathsf{Data}_{\mathsf{x}^{\mathsf{B}}} \mathsf{Data}_{\mathsf{w}^{\mathsf{B}}} \mid \mathsf{n}_{\mathsf{x}^{\mathsf{B}}}, \mathsf{r}_{\mathsf{x}^{\mathsf{B}}}, \mathsf{n}_{\mathsf{w}^{\mathsf{B}}}, \mathsf{r}_{\mathsf{w}^{\mathsf{B}}} \right)$$

(3)
$$\mathbb{P}\left(Data_{x^T}Data_{w^B} \mid n_{x^T}, r_{x^T}, n_{w^B}, r_{w^B}\right)$$

$$(4) \mathbb{P} \left(\mathsf{Data}_{\mathsf{x}^\mathsf{T}} \mathsf{Data}_{\mathsf{w}^\mathsf{T}} \mid \mathsf{n}_{\mathsf{x}^\mathsf{T}}, \mathsf{r}_{\mathsf{x}^\mathsf{T}}, \mathsf{n}_{\mathsf{w}^\mathsf{T}}, \mathsf{r}_{\mathsf{w}^\mathsf{T}} \right)$$

(5)
$$\mathbb{P}\left(Data_{v^T} \mid n_{v^T}, r_{v^T}\right)$$

(6)
$$\mathbb{P}\left(Data_{t^T} \mid n_{t^T}, r_{t^T} \right)$$

(7)
$$\mathbb{P}\left(\mathsf{Data}_{\mathsf{V}^B} \mathsf{Data}_{\mathsf{W}^T} \mid \mathsf{n}_{\mathsf{V}^B}, \mathsf{r}_{\mathsf{V}^B}, \mathsf{n}_{\mathsf{W}^T}, \mathsf{r}_{\mathsf{W}^T} \right)$$

(8)
$$\mathbb{P}\left(\mathsf{Data}_{\mathsf{V}^{\mathsf{B}}} \mathsf{Data}_{\mathsf{z}^{\mathsf{B}}} \mid \mathsf{n}_{\mathsf{V}^{\mathsf{B}}}, \mathsf{r}_{\mathsf{V}^{\mathsf{B}}}, \mathsf{n}_{\mathsf{z}^{\mathsf{B}}}, \mathsf{r}_{\mathsf{z}^{\mathsf{B}}} \right)$$

(9)
$$\mathbb{P}\left(\frac{\mathsf{Data}_{\mathsf{v}^\mathsf{T}}\mathsf{Data}_{\mathsf{z}^\mathsf{B}}\mid n_{\mathsf{v}^\mathsf{T}}, r_{\mathsf{v}^\mathsf{T}}, n_{\mathsf{z}^\mathsf{B}}, r_{\mathsf{z}^\mathsf{B}}\right)$$

(10)
$$\mathbb{P}\left(\frac{\mathsf{Data}_{\mathsf{y}^\mathsf{T}}}{\mathsf{Data}_{\mathsf{z}^\mathsf{T}}} \mid n_{\mathsf{y}^\mathsf{T}}, r_{\mathsf{y}^\mathsf{T}}, n_{\mathsf{z}^\mathsf{T}}, r_{\mathsf{z}^\mathsf{T}}\right)$$

(11)
$$\mathbb{P}(Data \mid n_{root}, r_{root})$$

- (1) $\mathbb{P}\left(\frac{Data_{u^T} \mid n_{u^T}, r_{u^T}\right)$
- $(2) \mathbb{P} \left(\mathsf{Data}_{\mathsf{x}^{\mathsf{B}}} \mathsf{Data}_{\mathsf{w}^{\mathsf{B}}} \mid \mathsf{n}_{\mathsf{x}^{\mathsf{B}}}, \mathsf{r}_{\mathsf{x}^{\mathsf{B}}}, \mathsf{n}_{\mathsf{w}^{\mathsf{B}}}, \mathsf{r}_{\mathsf{w}^{\mathsf{B}}} \right)$
- (3) $\mathbb{P}\left(Data_{x^T}Data_{w^B} \mid n_{x^T}, r_{x^T}, n_{w^B}, r_{w^B}\right)$
- (4) $\mathbb{P}\left(Data_{x^T}Data_{w^T} \mid n_{x^T}, r_{x^T}, n_{w^T}, r_{w^T}\right)$
- (5) $\mathbb{P}\left(Data_{v^T} \mid n_{v^T}, r_{v^T}\right)$
- (6) $\mathbb{P}\left(Data_{t^T} \mid n_{t^T}, r_{t^T}\right)$
- (7) $\mathbb{P}\left(\mathsf{Data}_{\mathsf{V}^B} \mathsf{Data}_{\mathsf{W}^T} \mid \mathsf{n}_{\mathsf{V}^B}, \mathsf{r}_{\mathsf{V}^B}, \mathsf{n}_{\mathsf{W}^T}, \mathsf{r}_{\mathsf{W}^T} \right)$
- (8) $\mathbb{P}\left(Data_{v^B} Data_{z^B} \mid n_{v^B}, r_{v^B}, n_{z^B}, r_{z^B} \right)$
- (9) $\mathbb{P}\left(Data_{v^T}Data_{z^B} \mid n_{v^T}, r_{v^T}, n_{z^B}, r_{z^B}\right)$
- (10) $\mathbb{P}\left(\frac{Data_{v^T}Data_{z^T}}{Data_{z^T}} \mid n_{v^T}, r_{v^T}, n_{z^T}, r_{z^T}\right)$
- (11) $\mathbb{P}(Data \mid n_{root}, r_{root})$


```
(1) \mathbb{P}\left(\frac{Data_{u^T} \mid n_{u^T}, r_{u^T}\right)
```

(2)
$$\mathbb{P}\left(Data_{x^B}Data_{w^B} \mid n_{x^B}, r_{x^B}, n_{w^B}, r_{w^B}\right)$$

(3)
$$\mathbb{P}\left(\mathsf{Data}_{\mathsf{x}^\mathsf{T}} \mathsf{Data}_{\mathsf{w}^\mathsf{B}} \mid \mathsf{n}_{\mathsf{x}^\mathsf{T}}, \mathsf{r}_{\mathsf{x}^\mathsf{T}}, \mathsf{n}_{\mathsf{w}^\mathsf{B}}, \mathsf{r}_{\mathsf{w}^\mathsf{B}} \right)$$

(4)
$$\mathbb{P}\left(Data_{x^T}Data_{w^T} \mid n_{x^T}, r_{x^T}, n_{w^T}, r_{w^T}\right)$$

(5)
$$\mathbb{P}\left(Data_{v^T} \mid n_{v^T}, r_{v^T}\right)$$

(6)
$$\mathbb{P}\left(Data_{t^T} \mid n_{t^T}, r_{t^T} \right)$$

(7)
$$\mathbb{P}\left(\mathsf{Data}_{\mathsf{V}^B} \mathsf{Data}_{\mathsf{W}^T} \mid \mathsf{n}_{\mathsf{V}^B}, \mathsf{r}_{\mathsf{V}^B}, \mathsf{n}_{\mathsf{W}^T}, \mathsf{r}_{\mathsf{W}^T} \right)$$

(8)
$$\mathbb{P}\left(Data_{v^B} Data_{z^B} \mid n_{v^B}, r_{v^B}, n_{z^B}, r_{z^B} \right)$$

(9)
$$\mathbb{P}\left(\frac{\mathsf{Data}_{\mathsf{v}^\mathsf{T}}\mathsf{Data}_{\mathsf{z}^\mathsf{B}}\mid n_{\mathsf{v}^\mathsf{T}}, r_{\mathsf{v}^\mathsf{T}}, n_{\mathsf{z}^\mathsf{B}}, r_{\mathsf{z}^\mathsf{B}}\right)$$

(10)
$$\mathbb{P}\left(\frac{\mathbf{Data}_{\mathbf{v}^T}\mathbf{Data}_{\mathbf{z}^T}}{\mathbf{n}_{\mathbf{v}^T}}, r_{\mathbf{v}^T}, r_{\mathbf{v}^T}, r_{\mathbf{z}^T}, r_{\mathbf{z}^T}\right)$$

(11)
$$\mathbb{P}(Data | n_{root}, r_{root})$$

Nous cherchons à minimiser le nombre d'arêtes à considérer simultanément dans nos calculs de probabilités

Un parcours intéressant

Un parcours à éviter

Un exemple de réseau étudié par simulation

- Longueurs de branches en nombre de mutations par site
- nA=2, nB=2, nC=2
- 1 000 sites ou 10 000 sites
- Tailles de population θ égales à 0.005 ou 0.05
- T : temps de coalescence entre 2 lignées (en mutations par site)
 - si $\theta = 0.005$, alors $\mathbb{E}(T) = 0.005/2 = 0.0025$
 - si $\theta = 0.05$, alors $\mathbb{E}(T) = 0.005/2 = 0.025$

Réseaux échantillonnés par MCMC

• 1 000 sites, $\theta = 0.005$

- 10 000 sites, $\theta = 0.005$
- 1 000 sites, $\theta = 0.05$
- 10 000 sites, $\theta = 0.05$

Conclusion

- L'inférence de réseau est un sujet compétitif: Tanja Stadler (ETH Zurich), Luay Nakhleh (Rice University, USA). Notre approche devrait être plus performante sur des réseaux aux nombreuses hybridations
- Jusqu'alors travail sur le riz → autre plante d'intérêt? Genome Harvest : Banane, Citrus, Caféier, Riz, Tomate, Canne à sucre ...
- SNAPP disponible sur http://snapp.otago.ac.nz
- Nous testons SNAPPNet sur données simulées et réelles ...

Autre représentation

Au final, en (11), on a calculé :

$$\mathbb{P}(Z_{1}, Z_{2}, Z_{3} \mid Z_{7})
= \sum_{Z_{5}} \sum_{Z_{6}} \sum_{Z_{4}} \mathbb{P}(Z_{2} \mid Z_{4}) \mathbb{P}(Z_{1}, Z_{3}, Z_{4} \mid Z_{5}, Z_{6})
\times \mathbb{P}(Z_{5}, Z_{6} \mid Z_{7})$$

Chromosome Painting

Zhang et al. (MBE, 2017): Equipe de Tanja Stadler (ETH Zurich)

Statistique Bayésienne dans le cadre d'un réseau

- N : réseau phylogénétique
- X_i: données pour le SNP i
- G_i : arbre de locus pour le SNP i
- m SNPs

$$\mathbb{P}(N,G_1,\ldots,G_m|X_1,\ldots,X_m) \propto \left(\prod_{i=1}^m \mathbb{P}(X_i|G_i)\mathbb{P}(G_i|N)\right)\mathbb{P}(N)$$

Calcul de l'a priori P(N) par un processus de naissance/hybridation

 \Rightarrow Markov Chain Monte Carlo afin d'estimer la distribution à posteriori de $\mathbb{P}(N,G_1,\ldots,G_m|X_1,\ldots,X_m)$.

Echantillonnage de réseaux et d'arbres de locus \rightarrow chromosome painting

Chromosome 6 (données J. Santos, J-C. Glaszmann)

Conservation de 1550 SNPs (un SNP tous les 500)

Chromosome 10 (données J. Santos, J-C. Glaszmann)

Conservation de 1089 SNPs (un SNP tous les 500)

JDD2 (1er SNP= 50ème SNP du chromosome 10)

La statistique Bayésienne dans SNAPP

- S : arbre d'espèces (topologie, longueurs de branches, tailles de populations)
- X_i: alignements pour le locus i
- G_i : arbre de locus pour le locus i
- m loci

$$\mathbb{P}(S|X_1,\ldots,X_m) \propto \left(\prod_{i=1}^m \int_{\psi} \mathbb{P}(X_i|G_i)\mathbb{P}(G_i|S)dG_i\right)P(S)$$

$$\propto \mathbb{P}\left(\underset{\longrightarrow}{Data} \mid S\right)P(S)$$

SNAPP intègre sur tous les arbres de locus

Calcul de la prior P(S) par le processus de naissances

 \Rightarrow Markov Chain Monte Carlo (MCMC) afin d'estimer la distribution à posteriori de $\mathbb{P}(S|X_1,\ldots,X_m)$

Implémenté dans BEAST

Simulateur basé sur un réseau (Genome Harvest)

SNAPPSimNet construit sur la base du simulateur SNAPPSim de Bryant et al. (2012)

 Génération d'arbres de locus évoluant à l'intérieur d'un réseau selon un processus de coalescence

Snapp est fortement attiré par un scénario sous-jacent au réseau

Calcul de vraisemblance dans un arbre (1)

$$\mathbb{P}(Data)$$

$$= \sum_{i} \sum_{j} \mathbb{P}(Data \mid Count, n_{root} = i, r_{root} = j) \mathbb{P}(n_{root} = i, r_{root} = j \mid Count)$$

$$= \sum_{i} \sum_{j} \mathbb{P}(Data \mid Count, n_{root} = i, r_{root} = j) \mathbb{P}(r_{root} = j \mid n_{root} = i)$$

$$\times \mathbb{P}(n_{root} = i \mid Count)$$

Calcul de vraisemblance dans un arbre (2)

• $\mathbb{P}(n_{root} = i \mid Count)$ calculé récursivement en remontant dans le temps (postorder)

Tavaré (Theor Pop Biol, 1984), Watterson (Theor Pop Biol, 1984), Takahata and Nei (Genetics, 1985) ...

 P (Data | Count, n_{root} = i, r_{root} = j) calculé récursivement en remontant dans le temps (postorder)

Slatkin (Genetics, 1996) vs. Griffiths and Tavaré (Springer, 1997)

- $\mathbb{P}(r_{root} = j \mid n_{root} = i)$ calculé par
 - la loi Binomiale : $\mathbb{P}(r_{root} = j \mid n_{root} = i) = C_i^j p^j (1 p)^{i-j}$
 - la loi $\beta(\theta, \theta)$ sur le paramètre p de la Binomiale : $\mathbb{P}(r_{root} = j \mid n_{root} = i) = C_i^j B(j + \theta, i j + \theta) / B(\theta, \theta)$
- Astuces afin de raccourcir les calculs : Vraisemblances partielles...

Notre approche méthodologique

On s'intéresse à un modèle qui, outre le tri de lignées, considère explicitement les mutations et hybridation. Modélisation Bayésienne plus fine.

Nos pistes:

 Inférence d'arbres d'espèces + arbres résumés en réseaux phylogénétiques

SNAPP (Bryant et al. 2012, MBE) + SplitsTree

Inférence directe de réseaux

Extension de SNAPP aux réseaux

Quelques thèses sur la domestication

 Choi et al. (MBE, 2017) soutiennent aussi un seul évènement de domestication (japonica). Introgression par hybridation de japonica et proto-indica et proto-aus, générant indica et aus

