Demystify Communication Behavior in Training Deep Learning Recommendation Models

Ching-Hsiang Chu

Research Scientist

Meta

chchu@fb.com

Agenda

- Introduction
- Demystify Communication Behavior in Training DLRM
 - With a real-world example
- Communication Reproduction
- Summary

Deep learning recommendation models (DLRMs)

- DLRMs are used extensively in many companies for building recommendation systems
- MLPerf training and inference benchmarks (https://mlcommons.org/en/)

https://ai.facebook.com/blog/dlrm-an-advanced-open-source-deep-learning-recommendation-model/

M. Naumov, J. Kim, D. Mudigere, et al. Deep Learning Training in Facebook Data Centers: Design of Scale-up and Scale-out Systems, ArXiv, 2020

Recommendation models are different!

Lower compute intensity

Larger sizes

Parallelism - all (possible) ways

Flexible 4D Model parallelism for embedding tables

- Sharding across tables, rows, columns and data
- · Hierarchical sharding combining multiple strategies

Agenda

- Introduction
- Demystify Communication Behavior in Training DLRM
 - With a real-world workload
- Reproduction of Communication
 - Collect Communication trace
 - Replay communication trace
- Summary

Communication in DLRM-2020 workloads

- Testbed*
 - 128 Nvidia V100 GPUs, 8 GPUs per node
 - 8 *200G RDMA NICs per node
- SW stack
 - DLRM (https://github.com/facebookresearch/dlrm)
 - PyTorch (https://pytorch.org/)
 - NCCL (https://github.com/NVIDIA/nccl)

Model	model-A
Num parameters	793B
MFLOPS per sample	638
Num of emb tables	≈ 1000s
Embedding table dims (range [min, max], avg)	[4, 384] avg: 93
Avg pooling size	15
Num MLP layers	20
Avg MLP size	3375
Target local batch size	512
Achieved QPS	1.2M

Distributed Training of DLRMs

Communication patterns depend on parallelism strategy

Data-parallel training - Modules are replicated on each rank

Communication in DLRM-2020 workloads

- Key communication patterns
 - Allreduce operations during backward phase → data parallelism
 - Alltoallv operations → model parallelism & table distribution
- Message sizes and patterns are varied for different parallelisms
 - Column-wise as an example

Allreduce Communication in DLRM-2020

Variations*

- Batch size
- Model parallelism
 - Column-wise
- PyTorch parallelism
 - DDP
 - Bucket size
 - FSDP

Allreduce Count and Percentage in 128-GPU DLRM training

11

Alltoally Communication in DLRM-2020

^{*}These sizes are captured from rank-0, it is varied across ranks

Variations

- Model Parallelisms
- Comms Quantization*

Alltoally Communication in DLRM-2020 (cont.)

Imbalanced communication

FWD Alltoally-1

Emb-Dist Alltoally-2

Agenda

- Introduction
- Demystify Communication Behavior in Training DLRM
- Communication Reproduction
 - Collect Communication trace
 - Replay communication trace
- Summary

Reproduction of Communication Behavior

- Why?
 - No need to run entire training workloads
 - Focus on understanding and optimizing communication patterns
 - No interference from computation
 - Cross-platform competitively analysis
 - E.g., Explore new SW/HW at scale for existing models

How to Replay Communication Trace

- Collecting communication traces
 - Captured from real-world production workloads
- Replaying communication traces using <u>PARAM benchmark</u>
 - <u>https://github.com/facebookresearch/param</u>
 - PyTorch-based communication benchmark suite
 - Multi-backend support
 - NCCL, UCC, MPI, Gloo
 - Multi-device support
 - CPU, GPU (Nvidia & AMD), TPU

Summary

- Communication patterns in training DLRMs are complex, but predictable in general
 - Various parallelism methods, typically ~40% time spent on communication
 - Large-sized Allreduce operations overlapped with compute kernels
 - Imbalanced Alltoally operations are common
- Communication reproduction is important for SW/HW optimization
 - Open-source trace-replay benchmark (https://github.com/facebookresearch/param)
 - Need more communication traces of real-world workloads
- Ongoing work
 - Collecting, analyzing and sharing more communication traces of real-world
 DLRM workloads, e.g., various scales, various parallelism

