

WYPEŁNIA ZDAJĄCY Miejsce na naklejkę. Sprawdź, czy kod na naklejce to E-100. Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

Egzamin maturalny

Formuła 2015

INFORMATYKA Poziom rozszerzony Część I WYPEŁNIA ZDAJĄCY WYBRANE: (system operacyjny) (program użytkowy) (środowisko programistyczne)

DATA: 22 maja 2024 r.

GODZINA ROZPOCZĘCIA: 9:00

CZAS TRWANIA: 60 minut

LICZBA PUNKTÓW DO UZYSKANIA: 15

Przed rozpoczęciem pracy z arkuszem egzaminacyjnym

- 1. Sprawdź, czy nauczyciel przekazał Ci **właściwy arkusz egzaminacyjny**, tj. arkusz we **właściwej formule**, z **właściwego przedmiotu** na **właściwym poziomie**.
- 2. Jeżeli przekazano Ci **niewłaściwy** arkusz natychmiast zgłoś to nauczycielowi. Nie rozrywaj banderol.
- 3. Jeżeli przekazano Ci **właściwy** arkusz rozerwij banderole po otrzymaniu takiego polecenia od nauczyciela. Zapoznaj się z instrukcją na stronie 2.

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 11 stron (zadania 1–3). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Na pierwszej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 3. Wpisz zadeklarowane (wybrane) przez Ciebie na egzamin: system operacyjny, program użytkowy oraz środowisko programistyczne.
- 4. Odpowiedzi i rozwiązania zapisz w miejscu na to przeznaczonym przy każdym zadaniu.
- 5. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.
- 9. Możesz korzystać z kalkulatora prostego.

Zadania egzaminacyjne są wydrukowane na następnych stronach.

Zadanie 1. Największe czynniki pierwsze

Każdą liczbę całkowitą większą niż 1 możemy przedstawić w postaci iloczynu czynników pierwszych (dla liczby pierwszej jedynym czynnikiem pierwszym będzie ona sama). Na przykład liczbę 120 możemy przedstawić w postaci iloczynu: $2 \cdot 2 \cdot 2 \cdot 3 \cdot 5$. Największym czynnikiem pierwszym liczby 120 jest 5.

Zadanie 1.1. (0-2)

Uzupełnij poniższą tabelę – dla każdej z podanych liczb zapisz jej rozkład na czynniki pierwsze oraz podaj największy czynnik pierwszy:

liczba n	rozkład liczby n na czynniki pierwsze	największy czynnik
120	$2\cdot 2\cdot 2\cdot 3\cdot 5$	5
14	2 · 7	7
32		
99		
252		

Zadanie 1.2. (0-4)

W wybranej przez siebie notacji (w postaci pseudokodu, listy kroków lub w wybranym języku programowania) napisz funkcję *Największy_Czynnik(n)*, która dla liczby całkowitej *n* wyznaczy największy czynnik w rozkładzie liczby *n* > 1 na czynniki pierwsze.

Uwaga: Twój algorytm może używać wyłącznie zmiennych przechowujących liczby całkowite oraz może operować wyłącznie na liczbach całkowitych. W zapisie możesz wykorzystać tylko operacje arytmetyczne (dodawanie, odejmowanie, mnożenie, dzielenie, dzielenie całkowite, reszta z dzielenia), porównywanie liczb, instrukcje sterujące, przypisania do zmiennych lub samodzielnie napisane funkcje, wykorzystujące wyżej wymienione operacje. Zabronione jest używanie funkcji wbudowanych oraz operatorów innych niż wymienione, dostępnych w językach programowania.

Specyfikacja:

Dane:

n – liczba całkowita większa niż 1

Wynik:

d – największy czynnik w rozkładzie liczby n na czynniki pierwsze

Miejsce na zapis algorytmu

	Nr zadania	1.1.	1.2.
Wypełnia	Maks. liczba pkt	2	4
egzaminator	Uzyskana liczba pkt		

Zadanie 2. Funkcja

Przenalizuj poniższą funkcję fun(a, b), której argumentami są dwie liczby całkowite a i b, $b \ge 2$.

Zadanie 2.1. (0-3)

Podaj wynik działania funkcji fun(a, 2) dla podanych w tabeli wartości a:

а	wynik fun(a, 2)
0	FAŁSZ
1	
7	
16	
-4	

Miejsce na obliczenia

Zadanie 2.2. (0-2)

Uzupełnij tabelę. Zapisz ile razy zostanie wykonane wywołanie fun(a, b + 1) po wywołaniu fun(a, 2) dla a = 17 i dla a = 77. Nie liczymy wywołania fun(a, 2).

а	Liczba wywołań <i>fun</i> (<i>a</i> , <i>b</i> + 1)
2	0
35	3
17	
77	

Miejsce na obliczenia

	Nr zadania	2.1.	2.2.
Wypełnia	Maks. liczba pkt	3	2
egzaminator	Uzyskana liczba pkt		

Zadanie 3. Test

Oceń prawdziwość podanych zdań. Zaznacz \mathbf{P} , jeśli zdanie jest prawdziwe, albo \mathbf{F} – jeśli jest fałszywe.

W każdym zadaniu punkt uzyskasz tylko za komplet poprawnych odpowiedzi.

Informacja do zadań 3.1. i 3.2.

W bazie danych są tabele: Autorzy i Utwory, które zawierają następujące dane:

Autorzy			
id_autora	autor		
3	Piotr Piotrowski		
4	Paweł Makrowski		
5	Marta Piwar		
6	Pamela Sikor		
7	Izydor Mikuła		
8	Paweł Piotrowski		

Utwory			
id_utworu	tytul	rok_wydania	id_autora
3	Płoną góry, płoną lasy	1993	3
2	Łąki kwieciste	1990	4
6	Malinowe ustecka	2001	5
8	Leszcze	2010	5
5	Lasy deszczowe	2001	6
7	Czerwone korale	2008	6
1	W malinowym chruśniaku	1983	7
4	Halny	1993	8

Zadanie 3.1. (0-1)

Wynikiem zapytania (gdzie znak % oznacza ciąg dowolnych znaków)

SELECT autor FROM Autorzy WHERE autor LIKE "P%r";

Jest:

1.	Piotr Piotrowski, Paweł Makrowski, Pamela Sikor	Р	F
2.	Marta Piwar	Р	F
3.	Pamela Sikor	Р	F
4.	pusty wynik	Р	F

Zadanie 3.2. (0-1)

W wyniku wykonania zapytania na tabelach Autorzy i Utwory otrzymano zestawienie:

Izydor Mikuła	1
Marta Piwar	2
Pamela Sikor	2
Paweł Makrowski	1
Paweł Piotrowski	1
Piotr Piotrowski	1

Które z zapytań wygeneruje taką odpowiedź?

	SELECT SUM(Autorzy.autor), rok_wydania		
1.	FROM Autorzy INNER JOIN Utwory	Р	_
'-	ON Autorzy.id_autora = Utwory.id_autora	F	•
	GROUP BY Autorzy.id_autora;		
	SELECT COUNT(Autorzy.autor), Utwory.rok_wydania		
2.	FROM Autorzy INNER JOIN Utwory	Р	_
۷.	ON Autorzy.id_autora = Utwory.id_autora	Г	•
	GROUP BY rok_wydania;		
	SELECT Autorzy.autor, COUNT(*)		
3.	FROM Autorzy INNER JOIN Utwory	Р	_
3.	ON Autorzy.id_autora = Utwory.id_autora		F
	GROUP BY Autorzy.autor;		
	SELECT Autorzy.autor, COUNT(Utwory.id_autora)		
4.	FROM Autorzy INNER JOIN Utwory	Р	_
4 .	ON Autorzy.id_autora = Utwory.id_autora		•
	GROUP BY Autorzy.id_autora;		

Zadanie 3.3. (0-1)

Różnica 100100111₂ - 1111100₂ jest równa:

1.	10101011 ₂	Р	F
2.	2538	Р	F
3.	AB ₁₆	Р	F
4.	23234	Р	F

	Nr zadania	3.1.	3.2.	3.3.
Wypełnia	Maks. liczba pkt	1	1	1
egzaminator	Uzyskana liczba pkt			

Zadanie 3.4. (0-1)

Suma 100100111₂ + 1111100₂ jest równa:

1.	110100010 ₂	Р	F
2.	645 ₈	Р	F
3.	1A3 ₁₆	Р	F
4.	122034	Р	F

	Nr zadania	3.4.
Wypełnia	Maks. liczba pkt	1
egzaminator	Uzyskana liczba pkt	

BRUDNOPIS (nie podlega ocenie)

INFORMATYKA Poziom rozszerzony

Formula 2015

INFORMATYKA Poziom rozszerzony

Formula 2015

INFORMATYKA Poziom rozszerzony

Formula 2015