Базовые понятия

Фазовое пространство — совокупность всех начальных точек X или всех возможных состояний системы. Фазовая траектория — кривая в фазовом пространстве, составленная из точек, представляющих состояние динамической системы в последовательные моменты времени в течение всего времени эволюции.

Эволюция системы соответствует движению изображающей точки у фазовой плоскости вдоль траектории $\Gamma = \bigcup_t G^t X_0$. Для динамической системы с непрерывным временем траектории— непрерывные кривые для динамической системы с дискретным временем, траектория— дискретные, подмножество фазовой плоскости.

Динамическая система с непрерывным временем задается системой дифференциальных уравнений $\dot{x} = F(x)$. Она позволяет найти состояние в любой момент времени по начальному состоянию. Если правая часть явно от времени не зависит, то динамическая система - автономная, иначе - не автономная.

Динамическая система с дискретным временем: x(n+1) = F(x(n)).

1 Определение динамической системы

Рассмотрим систему, состояние которой определяется вектором $x(t) \in \mathbb{R}^n$. Предположим, что эволюция системы определяется одно-параметрическим семейством операторов G^t , $t \in \mathbb{R}$ или $t \in \mathbb{Z}$, таких, что состояние системы в момент t: $x(t, x_0 = G^t x_0)$ где x_0 – начальное состояние (начальная точка). Предположим также, что эволюционные операторы удовлетворяют двум следующим свойствам, отражающим детерминистический характер описываемых процессов.

Первое свойство: G^0 – тождественный оператор, т.е. $x(0,x_0) = x_0$, для любых x_0 . Это свойство означает, что состояние системы не может изменяться самопроизвольно.

Второе свойство эволюционных операторов имеет вид: $x(t_1 + t_2, x_0) = x(t_1, x(t_2, x_0)) = x(t_2, x(t_1, x_0))$ Согласно ему, система приходит в одно и то же финальное состояние независимо от того, достигается ли оно за один временной интервал $t_1 + t_2$, или за несколько последовательных интервалов t_1 и t_2 , суммарно равных $t_1 + t_2$.

Совокупность всех начальных точек или всех возможных состояний системы называется фазовым пространством, а пара (X, G^t) , где семейство эволюционных операторов удовлетворяют условиям выше – динамической системой (ΠC) .

Иначе говоря, динамическая система — объект или процесс, для которого однозначно определено понятие состояния, как совокупности некоторых величин в данный момент времени и задан закон эволюции начального состояния с течением времени. По этому закону можно прогнозировать будущее состояние динамической системы.

2 Условия грубости динамических систем на плоскости

Так как динамические системы изменяются вместе со входящими в них параметрами, но при малости изменений качественные черты поведения сохраняются, вводится свойства грубости. Грубость — устойчивость структуры разбиения фазовой плоскости динамических систем на траектории по отношению к малым изменениям динамической системы. Для плоскости: пусть есть система:

$$\begin{cases} \dot{x} = P(x,y) \\ \dot{y} = Q(x,y) \end{cases}$$
 где P и Q - гладкие функции, система диссипативна.

 $\dot{\text{С}}$ истема — грубая, если существует число $\delta>0$, что все динамические системы вида:

$$\begin{cases} \dot{x} = P(x, y) + p(x, y) \\ \dot{y} = Q(x, y) + q(x, y) \end{cases}$$

в которых аналитические функции удовлетворяют условию

$$|p(x,y)| + |q(x,y)| + \left|\frac{\partial p}{\partial x}\right| + \left|\frac{\partial q}{\partial x}\right| + \left|\frac{\partial p}{\partial y}\right| + \left|\frac{\partial q}{\partial y}\right| < \delta$$

имеют такую же структуру разбиения на положительные полутраектории, что и начальная система.

Переход от одной грубой ДС к другой происходит через негрубую ДС.

ДС на прямой грубая (структурно устойчива), если для всех состояний равновесия $\lambda_i(\mu) \neq 0$.

3 Бифуркация состояний равновесия динамических систем на прямой

Значение параметра, при котором ДС является негрубой, называется бифуркационным.

Пусть есть динамическая система на прямой общего вида $\dot{x} = F(x, \mu)$. F(x) - взаимооднозначная, обеспечивающая выполнение теорем существования и единственности решений. Тогда состояния равновесия будут определяться как $F(x, \mu) = 0$

* Двукратное равновесие: $\dot{x}=\mu\pm x^2$. При $\mu=0$ - двукратное состояние равновесия, которое при изменении параметра либо распадается на два, либо исчезает

* Транскритическая бифуркация: $\dot{x} = \mu x \pm x^2$. При изменении параметра наблюдается изменение устойчивости состояний равновесия

* Трехкратное равновесие: $\dot{x} = \mu x \pm x^3$. Состояния равновесия появляются и исчезают парами

4 Метод линеаризации определения устойчивости состояний равновесия

Рассматриваем систему n-ого порядка: $\dot{x} = F(x), x \in \mathbb{R}^n, F(x)$ - гладкая вектор-функция. Пусть система имеет состояние равновесия $x = x^*$

Введем малое возмущение $\xi(t)=x(t)-x^*$, тогда система примет вид $\dot{\xi}=F(x^*+\xi)$. Разложим правую часть в ряд Тейлора: $\dot{\xi}=A\xi+\dots$, где A - $n\times n$ - матрица Якоби с элементами $a_{ik}=\frac{\partial F_i}{\partial x_i}|_{x=x^*}$, и отбросим все нелинейные по ξ слагаемые. Этим мы линеаризовали систему.

Решения ищем в виде $\xi=Ce^{\lambda t},\,C$ - матрица-столбец. Подставив это решение в линеаризованное уравнение мы перейдем к системе линейных однородных уравнений, которая имеет нетривиальное решение, если $det(A-\lambda E)=0$. Это уравнение эквивалентно $a_0\lambda^n+a_1\lambda^{n-1}+\cdots+a_n=0$ - характеристическому уравнению. Его корни - характерестические показатели состояния равновесия $x=x^*$

- 1. Все корни имеют отрицательные вещественные части $(Re\lambda_i < 0)$ состояние равновесия системы асимптотически устойчиво
- **2.** Среди корней есть хотя бы один корень с Re>0 состояние равновесия неустойчиво по Ляпунову
- 3. Среди корней нет значений с Re>0, но есть корень с Re=0 состояние равновесия может быть как устойчивым, так и неустойчивым

5 Линейный осциллятор. Основные свойства

Осциллятор - простейшая динамическая система с двумерным фазовым портретом Уравнение ЛО: $\ddot{x} + 2\delta \dot{x} + \omega_0^2 x = 0$, $2\delta = \frac{R}{L}$, $\omega_0^2 = \frac{1}{LC}$

 δ - потери, ω_0 - частота собственных колебаний

1. Без потери энергии

$$\begin{cases} \dot{x} = y\\ \dot{y} = -\omega_0^2 x \end{cases} \qquad \lambda_{1,2} = \pm i\omega_0$$

Состояние равновесия в начале координат - центр

Свойства:

* Гармонические колебания происходят с частотой ω_0 , амплитудой $A=\sqrt{x_0^2+\frac{y_0^2}{\omega_0^2}}$ и фазой

 $tg\varphi = \frac{\omega_0 x_0}{\omega_0^2} \ (x_0$ и y_0 - значения в момент T)

* Колебания изохронны - не зависят от начальных условий

* Энергия системы сохраняется

2. С потерями энергии ($\delta \neq 0$)

$$\begin{cases} \dot{x}=y\\ \dot{y}=-2\delta y-\omega_0^2 x \end{cases} \qquad \lambda^2+2\delta\lambda+\omega_0^2=0 \text{ - характерестическое ур-е}$$

* Затухающий процесс $(\delta > 0, \delta^2 < \omega_0^2)$:

$$\omega = \sqrt{\omega_0^2 - \delta^2}, \quad \lambda_{1,2} = -\delta \pm i\omega_0$$

Состояние равновесия - устойчивый фокус, затухающие колебания с изоклиной - экспонентой

* Затухающий апериодический процесс $(\delta > 0, \delta^2 > \omega_0^2)$:

$$\lambda_{1,2} = -\delta \pm \sqrt{\delta^2 - \omega_0^2}$$
, состояние равновесия - устойчивый узел

 $\lambda_{1,2} = -\delta \pm \sqrt{\delta^2 - \omega_0^2},$ состояние равновесия - устойчивый узел * Отрицательное затухание ($\delta < 0$): энергия растет во времени, состояние равновесия - неустойчивый фокус при $\delta^2 < \omega_0^2$ или неустойчивый узел при $\delta^2 \geqslant \omega_0^2$

6 Резонанс в линейном осцилляторе

Резонанс — неограниченное возрастание амплитуды вынужденных колебаний, когда частота внешней силы близка к собственной частоте линейного осциллятора. Вынужденные колебания – это колебания, возникающие в результате действия на систему внешнего (силового) воздействия. Характерной особенностью вынужденных колебаний является то, что их свойства зависят не только от параметров системы, но и от параметров внешней силы.

$$\begin{cases} \dot{x}=y \\ \dot{y}=-2\delta y-\omega_0^2 x+F_0 cos(\omega t) \end{cases}$$
 - ЛО, на который действует гармоническая сила

1. Консервативный случай (без потери энергии)

W - не диссипирует. $a=\frac{F_0}{|\omega_0^2-\omega^2|}$ - амплитуда вынужденных колебаний переменной $\mathbf{x}(\mathbf{t})$.

При резонансе изменение переменных во времени - непереодическое: $x(t) = t \frac{F_0}{2\omega_0} sin(\omega_0 t)$

2. Диссипативный случай (с потерями энергии)

$$a_{max} \to \omega_{max} < \omega_0, \quad \omega_{max} = \sqrt{\omega_0^2 - 2\delta^2}, \quad a_{max} = \frac{F_0}{2\delta\sqrt{\omega_0^2 - 2\delta^2}}, \quad \delta \uparrow a_{max} \downarrow$$

Характеристики резонансных свойств

Добротность -
$$Q = \frac{\pi}{d} = \frac{\omega_0}{2\delta}$$

Логарифмический коэффициент затухания - $d = \delta T = \frac{2\pi\delta}{d}$

7 Определение предельного цикла. Характеристики

Предельный цикл — замкнутая изолированная фазовая траектория. Замкнутая фазовая траектория называется изолированный, если существует достаточно малая кольцеобразная окрестность этой траектории, внутри которой нет других замкнутых траекторий. Предельному циклу соответствует периодический процесс.

Предельные циклы: устойчивый (a); неустойчивый (δ).

Характеристики:

st Мультипликатор: S < 1 - ПЦ устойчивый, S > 1 - ПЦ неустойчивый. Всегда S > 0

* Характеристический показатель: $\lambda < 0$ - ПЦ устойчивый, $\lambda > 0$ - ПЦ неустойчивый. λ можем получить в уравнении при линеаризации системы

Связь характеристик: $\lambda = \frac{1}{T_0} ln(S)$

Качественный вид отображения Пуанкаре в окрестности устойчивого (а) и неустойчивого (б) предельных циклов:

8 Автоколебания и автоколебательная система. Мягкий и жесткий режимы возбуждения

Автоколебательная система — диссипативная система, совершающая незатухающие колебания при отсутствии колебательного воздействия извне. В этих системах возникает баланс между действиями диссипативных потерь и внутренних механизмов, компенсирующих потери. Автоколебания — незатухающие колебания в нелинейной диссипативной системе, форма и свойства которых в определенных пределах не зависят от начальных условий и определяется параметрами самой системы.

1. Мягкий режим

 $\gamma < 0$ - автоколебаний нет, $\gamma = 0$ - суперкритическая бифуркация Андронова-Хопфа ($\lambda_i < 0$), $\gamma > 0$ - неустойчивое состояние равновесия + появление одного устойчивого предельного цикла на фазовой плоскости. $\gamma \uparrow A \uparrow$

Состояние равновесия $\gamma = 0$ - безопасная граница устойчивости, то есть при ее нарушении система переходит в качественно новое состояние, но не покидает при $0 < \gamma \ll 1$ окрестности предыдущего состояния.

2. Жесткий режим

 $\lambda < 0$ - состояние равновесия локально устойчиво, $\lambda = 0$ - состояние равновесия теряет устойчивость \to автоколебания возникают скачком (жестко), $\lambda \uparrow A \uparrow$, затем квазистатически $\lambda \downarrow A \uparrow$ при $\lambda>0$, а потом совсем исчезают скачком. Рождение и исчезновение АК происходит при разных λ - наблюдается гестерезис. $\lambda=0$ - опасная граница устойчивости состояния равновесия, так как поведение системы менятеся резко

Свойства автоколебательных систем

- * Источник энергии для компенсации диссипации постоянен и находится внутри самой системы
- * Система содержит колебательную подсистему и активный нелинейный элемент
- * В изолированной колебательной системе происходят затухающие колебательные процессы, а активный элемент может усиливать колебания и их нелинейно ограничивать
- * Между колебательной подсистемой и активным элементом существует обратная связь, регулирующая поступление энергии от источника
- * Автоколебания в определенных пределах не зависят от начальных условиях и определяются параметрами системы
- * Математическим образом периодических автоколебаний является предельной цикл

9 Бифуркационные сценарии рождения периодических движений динамических систем на плоскости

Значение параметра		μ < 0	$\mu = 0$	$\mu > 0$
Бифуркация		Фазовые портреты		
I	Андронова-Хопфа	(a)		
	Двукратный предельный цикл (седло-узловая циклов)	O		
II	Петля сепаратрис седла (седловая гомоклиническая бифуркация)	X)		
	Петля сепаратрис седло-узла (седло-узловая гомоклиническая бифуркация)			

10 Дисперсия, ее физическая природа и проявления

Дисперсия — зависимость фазовой скорости волны от ее частоты. Связь между частотой и волновым числом гармонической волны определяется пространственными и временными масштабами среды и называется дисперсионным соотношением.

$$\omega^2 = \omega_0^2 + \frac{4\gamma}{m} \sin^2(\frac{ka}{2})$$

a - расстояние между маятниками γ - жесткость пружины

k - действительное волновое число

У каждой компоненты волнового пакета (суперпозиции двух и большего числа волн с различными частотами) будет своя V_{Φ} , возникает его деформация. Наличием собственных масштабов объясняется эффект частичного непропускания волны

Область прозрачности: $k \in Re$ - распространение без искажения гармонической волны Область непрозрачности: $k \in Im$ - нераспространение.

11 Простые волны. Основные свойства и условия существования

 $U_t + C(U)U_x = 0$ — нелинейное уравнение простой волны. C(U)— дифференцируемая функция (скорость от состояния среды). Характеристики — линии, вдоль которых переменная U(x,t) будет оставаться постоянной и равной по значению для каждого соответствующего значения x.

Градиентная катастрофа наблюдается в нелинейных средах. При наличии в среде дисперсии и диссипации градиентная катастрофа наблюдаться не будет.

На переднем фронте если $\frac{dC}{dU} > 0$ (холмик справа), и на заднем, если $\frac{dC}{dU} < 0$

12 Параметрические системы. Основные свойства

Параметрические системы — системы, где внешнее воздействие находится внутри системы и может изменять ее параметры.

Резонансные. Период изменения параметров находится в целочисленном соотношении с периодом собственных колебаний. В такт с изменением энергии, соответствующей собственным колебаниям, вносится энергия, вызванная работой внешнего воздействия. При определенных условиях может привести к эффекту раскачки колебаний за счет накапливающейся в системе энергии. Пример - маятник с переменной длиной нити

Нерезонансные. Параметры изменяются очень быстро или очень медленно в сравнении с характерными временными масштабами изменения переменных системы.

Свойства.

- 1. Параметрическая система, находящаяся в начальный момент в состоянии равновесия, останется в этом состоянии при t>0 (дергая за нитку, маятник нельзя раскачать)
- 2. Состояния равновесия параметрической системы могут быть как устойчивы, так и неустойчивы
- 3. Если параметры системы таковы, что она неустойчива и система выведена из состояния равновесия, то в ней возникают колебания, амплитуда которых ↑ *exp*. Процесс возрастания размаха в колебаний при периодическом нарастании колебаний параметрический резонанс.

Явления.

- 1. Параметрический резонанс
- 2. Параметрические колебания ограниченные колебания (периодические или квазипереодические)
- 3. Граница между параметрическим резонансом и параметрическими колебаниями неустойчива Траектории системы порождают порождают точечное линейное отображение через период (с помощью функции Флоке)

13 Релаксационные колебания

Имеем систему:

$$\begin{cases} \dot{x} = P(x, y) \\ \mu \dot{y} = Q(x, y) \end{cases} \quad 0 < \mu \ll 1$$

От расположения параметра μ в системе уравнений (либо около x, либо около y) зависит направление прямых на фазовом портрете. Если параметр расположен около x – прямые горизонтальные, если около y – вертикальные.

СМД:
$$\begin{cases} \mu \dot{x} = P(x, y) \\ 0 = Q(x, y) \end{cases}$$

- 1. Первое уравнение остается неизменным
- 2. Кладём параметр $\mu=0$ получаем 2-е уравнение. Затем, решая уравнение, находим точки пересечения с осью, после берём производную от полученного выше выражения, кладём её равной 0 и находим состояния равновесия.

СБД:
$$\begin{cases} \frac{\partial x}{\partial t} = P(x,y) \\ \frac{\partial y}{\partial t} = \frac{1}{\mu} Q(x,y) \end{cases} \Rightarrow \frac{\partial x}{\partial y} \mu \frac{P(x,y)}{Q(x,y)} \Rightarrow x = const \Rightarrow \begin{cases} x = x_0 \\ \dot{y} = \frac{1}{\mu} Q(x_0,y) \end{cases}$$

- 1. Делим уравнение с параметром на сам параметр получаем 1-е уравнение
- 2. Делим одно уравнение исходной системы на второе и выявляем, что в данном случае является константой (например $x = x_0 = const$) получаем 2-е уравнение.

В ходе решения задачи мы переходим от двумерной системы к двум одномерным системам, что намного упрощает анализ исходной системы

14 Локальные бифуркации состояний равновесия трехмерных систем

1. $\lambda_{1,2,3} - \text{Re}, \ \lambda_1 = 0, \ \lambda_{2,3} < 0$

- $\mu < 0, \ O_1$ устойчивый узел, O_2 седло
- $\mu=0,~O$ седло-узел с устойчивой узловой и неустойчивой седло-узловой областями

 $\mu < 0, \ O_1$ - седло, O_2 - неустойчивый узел

$$\mu = 0, \ O$$
 - седло-узел

3. $\lambda_{1,2,3} - \text{Re}, \ \lambda_1 = 0, \ \lambda_2 > 0, \ \lambda_3 < 0$

 $\mu < 0, \ O_{1,2}$ - седла

$$\mu = 0, O - ?$$

- 4. $\lambda_1 = 0$, $\lambda_{2,3} = \alpha(\mu) \pm i\beta(\mu)$
 - (a) $\alpha(\mu) < 0$

 $\mu < 0, O_1$ - устойчивый фокус, O_2 - седло-фокус

 $\mu = 0, ???$

При $\mu>0$ - точка исчезает

 $\mu < 0, O_1$ - седло-фокус, O_2 - не устойчивый фокус

 $\mu = 0, ???$

 $\mu > 0$

5. Суперкритическая бифуркация Андронова Хопфа

 $L(\mu) < 0$ -первая Ляпуновская величина отрицательна

 $\mu < 0$, O - устойчивый фокус

 $\mu>0,\quad L^S$ - устойчивый предельный цикл

При $\mu=0$ - сложный фокус

6. Субкритическая бифуркация Андронова Хопфа

 $L(\mu)>0$ - первая Ляпуновская величина положительна

При $\mu=0$ - сложный седлофокус

15 Локальные бифуркации периодических движений трехмерных систем

1. Седло-узловая бифуркация предельных циклов

В бифуркации образуется двукратный предельный цикл с мультипликаторам $S_x=1$ - негрубый цикл, который либо распадается на 2 грубых, либо исчезает

 $\mu = 0$

3. Бифуркация рождения инвариантного тора

 $\mu < 0$

2. Бифуркация удвоения периода предельных циклов

