Lec 10

Review

Euclidean algorithm

Find the GCD of 286 and 503.

solve linear congruence $ax \equiv b \pmod{m}$ (gcd(a, m) = 1)

Euler's Theorem / Fermart's Little Theorem

$$X^{\phi(n)} \equiv 1 \ mod \ n \ if \ gcd(x,n) = 1 \ X^{p-1} \equiv 1 \ mod \ p \ if \ X \
ot \equiv mod \ p$$

RSA

$$p,q,n=pq$$
 $\phi(n)=(p-1)(q-1)$ $public\ key:(e,n)$ $primite\ key:d$ $gcd(e,\phi(n))=1$ $ed\equiv 1\ mod\ \phi(n)$

加、解密过程:

 $Encryption: M^e \ mod \ n = C$ $Decryption: C^d \ mod \ n = M$

Proof

Q: Consider the RSA system. Let (e, d) be a key pair for the RSA. Define

$$\lambda(n) = \operatorname{lcm}(p-1, q-1)$$

and compute $d' = e^{-1} \mod \lambda(n)$. Will decryption using d' instead of d still work? (prove $C^{d'} \mod n = M$)

Case I: gcd(M, n) = 1

$$C^{d'} \bmod n = M^{ed'} \bmod n = M^{k\lambda(n)+1} \bmod n$$

$$= (M^{k\lambda(n)} \bmod n)M \bmod n$$

$$= (M^{(p-1)(q-1)/\gcd(p-1,q-1)} \bmod n)^k M \bmod n$$

By Fermat's theorem, $M^{(p-1)(q-1)/\gcd(p-1,q-1)} \mod p = \left(M^{(q-1)/\gcd(p-1,q-1)}\right)^{p-1} \mod p = 1$ and $M^{(p-1)(q-1)/\gcd(p-1,q-1)} \mod q = 1$. Then by Chinese Remainder Theorem, we have $C^{d'} \mod n = M$.

Case II: gcd(M, n) = p

M=tp for some integer 0 < t < q. We have $\gcd(M,q)=1$ and $ed'=k\lambda(n)+1$ for some integer k. By Fermat's theorem, we have

$$(M^{k\lambda(n)}-1) \bmod q = (M^{k(p-1)(q-1)/\gcd(p-1,q-1)}-1) \bmod q = 0.$$

Then

$$(M^{ed'} - M) \bmod n = M(M^{ed'-1} - 1) \bmod n$$
$$= tp(M^{k\lambda(n)} - 1) \bmod pq$$
$$= 0$$

Case III: gcd(M, n) = q

Similar to Case II.

Case IV: gcd(M, n) = pq

Trivial.

Mathematical Induction

Proof by smallest counterexample

■ Use proof by smallest counterexample to show that, $\forall n \in N$,

(*)
$$0+1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

- ♦ Suppose that (*) is not always true
- \diamond Then there must be a smallest $n \in N$ s.t. (*) does not hold for n
- \diamond For any nonnegative integer i < n,

$$1+2+\cdots+i=\frac{i(i+1)}{2}$$

- \diamond Since $0 = 0 \cdot 1/2$, (*) holds for n = 0
- \diamond The smallest counterexample n is larger than 0

- We now have
 - (i) smallest counterexample n is greater than 0, and
 - (ii) (*) holds for n-1
 - \diamond Substituting n-1 for i gives $1+2+\cdots+n-1=rac{(n-1)n}{2}$
 - ♦ Adding *n* to both sides gives

$$(+1)$$
 $1+2+\cdots+n-1+n=\frac{(n-1)n}{2}+n=\frac{n(n+1)}{2}$

⋄ Thus, n is not a counterexample. Contradiction!

Steps:

Example 2

• Let $P(n) - 2^{n+1} \ge n^2 + 2$

We just showed that

- (a) P(0) is true
- (b) if n > 0, then $P(n-1) \rightarrow P(n)$
- \diamond Suppose there is some *n* for which P(n) is false (*)
- ♦ Let n be the smallest counterexample
- \diamond Then, from (a) n > 0, so P(n-1) is true
- \diamond Therefore, from (b), using direct inference, P(n) is true
- ♦ This contradicts (*).
- ♦ Thus, P(n) is true for all $n \in N$.

The week Principle of Mathematical Induction

验证开头正确性,之后假设n正确,去推导n+1的正确性,最后得出结论

Proof by Induction

 $\forall n \geq 2, 2^{n+1} \geq n^2 + 3$

Let
$$P(n) - 2^{n+1} \ge n^2 + 3$$

Base Step

- (i) Note that for n = 2, $2^{2+1} = 8 \ge 7 = 2^2 + 3 P(2)$
- (ii) Suppose that n > 2 and that $2^n \ge (n-1)^2 + 3$ (*) $2^{n+1} \ge 2(n-1)^2 + 6$ Inductive Hypothesis $= n^2 + 3 + n^2 4n + 4 + 1$ $= n^2 + 3 + (n-2)^2 + 1$ $> n^2 + 3$

Inductive Step

Hence, we've just prove that for n > 2, $P(n-1) \rightarrow P(n)$.

By mathematical induction, $\forall n > 2$, $2^{n+1} \ge n^2 + 3$.

The **Strong** Principle of Mathematical Induction

Example:

- Prove that every positive integer is a power of a prime or the product of powers of primes.
 - \diamond Base Step: 1 is a power of a prime number, $1 = 2^0$
 - ♦ Inductive Hypothesis: Suppose that every number less than *n* is a power of a prime or a product of powers of primes.
 - ♦ Then, if n is not a prime power, it is a product of two smaller numbers, each of which is, by the inductive hypothesis, a power of a prime or a product of powers of primes.
 - ♦ Thus, by the strong principle of mathematical induction, every positive integer is a power of a prime or a product of powers of primes.

Summary

- A typical proof by mathematical induction, showing that a statement P(n) is true for all integers n ≥ b consists of three steps:
 - 1. We show that P(b) is true. Base Step
 - 2. We then, $\forall n > b$, show either

(*)
$$P(n-1) \rightarrow P(n)$$
 or $P(b) \land P(b+1) \land \cdots \land P(n-1) \rightarrow P(n)$

We need to make the inductive hypothesis of either P(n-1) or $P(b) \wedge P(b+1) \wedge \cdots \wedge P(n-1)$. We then use (*) or (**) to derive P(n).

3. We conclude on the basis of the principle of mathematical induction that P(n) is true for all $n \ge b$.

27

Recursion