Společná část: 19 - PSI

Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny a jejich odhady. Sdružené charakteristiky náhodného vektoru. Korelace a nezávislost náhodných veličin. Metoda maximální věrohodnosti. Základní principy statistického testování hypotéz. Markovské řetězce, klasifikace stavů.

Základní pojmy pravděpodobnosti

1.1 Laplaceova (klasická) pravděpodobnost

- Náhodný pokus má $n \in \mathbb{N}$ různých, vzájemně se vylučujících výsledků, které jsou stejně možné.
- Elementární jevy = výsledky nahodného pokusu
- Množina všech elementárňich je
vu: Ω
- Jev je podmnožina všech elementárních jevů $(A\subseteq\Omega)$
- \bullet Pravděpodobnost jevu A:

$$P(A) = \frac{|A|}{|\Omega|}$$

• **Jevové pole**: všechny jevy pozorovatelné v náhodném pokusu, zde $\exp\Omega$ (=množina všech podmnožin množiny Ω)

1.2 Kolmogorovova pravděpododobnost

- Elementárních jevů (=prvků množiny Ω) může být nekonečně mnoho, nemusí být stejně pravděpodobné
- **Jevy** jsou podmnožiny množiny Ω , ale ne nutně všechny. Tvoří podmnožinu $\mathcal{A} \subseteq exp\Omega$, která splňuje podmínky σ -algebry (viz. 1.3).
- **Pravděpodobnost** není určena strukturou jevů jako u Laplaceova modelu, je to funkce $P: \mathcal{A} \to \langle 0, 1 \rangle$, splňující podmínky:

(P1)
$$P(1) = 1$$
,

$$(P2)P\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n\in\mathbb{N}}P(A_n)$$
, pokud jsou množiny (=jevy) $A_n, n\in\mathbb{N}$, po dvou neslučitelné

• Pravděpodobnostní prostor je trojice (Ω, \mathcal{A}, P) , kde Ω je neprázdná množina, \mathcal{A} je σ -algebra podmnožin množiny Ω a P je pravděpodobnost.

1.3 σ-algebra

 σ -algebra je teoretický koncept výběru jistých podmnožin dané množiny, který splňuje pevně definované podmínky. Koncept σ -algebry umožňuje například zavést míru, čehož se dále využívá zejména v matematické analýze k budování pojmu integrál a právě v teorii pravděpodobnosti [wikipedia]. Systém podmnožin \mathcal{A} nějáké množiny Ω musí splňovat podmínky:

- 1. $\emptyset \in \mathcal{A}$
- 2. $A \in \mathcal{A} \Rightarrow \bar{\mathcal{A}} \in \mathcal{A}$ (uzavřenost vůči doplňku)

3.
$$(\forall n\in\mathbb{N}:A_n\in\mathcal{A})\Rightarrow\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{A})$$
 (uzavřenost vůči sjednocení)

Nejmenší σ -algebra podmnožin \mathbb{R} , která obsahuje všechny intervaly, se nazývá **Borelova** σ -algebra. Obsahuje všechny intervaly otevřené, uzavřené i polouzavřené, i jejich spočetná sjednocení, a některé další množiny, ale je menší než exp \mathbb{R} . Její prvky nazýváme borelovské množiny.

2 Náhodná veličina a náhodný vektor

2.1 Náhodná veličina

Je na pravděpodobnostním prostoru (Ω, \mathcal{A}, P) měřitelná funkce $X : \Omega \to \mathbb{R}$ (přiřazuje každému jevu jevového pole reálné číslo [wikipedia]).

Náhodné veličiny lze rozdělit na nespojité (diskrétní) a spojité. Diskrétní veličiny mohou nabývat pouze spočetného počtu hodnot (konečného i nekonečného), zatímco spojité veličiny nabývají hodnoty z nějakého intervalu (konečného nebo nekonečného) [wikipedia].

Příklad: Havárii auta označíme cenou škody. Nebo strany hrací kostky označíme čísly 1 až 6.

Pro každý interval I platí

$$X^{-1}(I) = \{ \omega \in \Omega \mid X(\omega) \in I \} \in \mathcal{A}$$

Je popsána **pravděpodobnostní funkcí**:

$$P_X(I) = P[X \in I] = P(\{\omega \in \Omega \mid X(\omega) \in I\})$$

Místo pravděpodobnostní funkce, můžeme použít úspornější **Distribuční funkci** (F_X) , která se omezuje na intervaly tvaru $I = (-\infty, t), t \in \mathbb{R}$

$$P[X \in (-\infty, t)] = P[X \le t] = P_X((-\infty, t)) = F_X(t)$$

Různými kombinacemi distribuční funkce $(F_X : \mathbb{R} \to \langle 0, 1 \rangle)$ můžeme plně nahradit pravděpodobnostní funkci. Vlastnosti distribuční funkce:

- neklesající
- zprava spojitá
- $\lim_{t \to -\infty} F_x(t) = 0$, $\lim_{t \to \infty} F_x(t) = 1$

2.2 Náhodný vektor (n-rozměrná náhodná veličina)

Je na pravděpodobnostním prostoru (Ω, \mathcal{A}, P) měřitelná funkce $\mathbf{X} : \Omega \to \mathbb{R}^n$. Používáme ho v případech, kdy je k popisu výsledku náhodného pokusu nutné použít více čísel [wikipedia].

Pro každý n-rozměrný interval I platí

$$\boldsymbol{X}^{-1}(I) = \{ \omega \in \Omega \mid \boldsymbol{X}(\omega) \in I \} \in \mathcal{A}$$

Lze psát

$$X(\omega) = (X_1(\omega), \dots, X_n(\omega)),$$

kde zobrazení $X_k:\Omega\to\mathbb{R}, k=1,\ldots,n$ jsou náhodné veličiny.

Náhodný vektor lze považovat za vektor náhodných veličin $X = (X_1, \dots, X_n)$.

Je popsán **pravděpodobnostmi**:

$$P_{\mathbf{X}}(I_1 \times \ldots \times I_n) = P[X_1 \in I_1, \ldots, X_n \in I_n] = P(\{\omega \in \Omega \mid X_1(\omega) \in I_1, \ldots, X_n(\omega) \in I_n\}),$$

kde I_1, \ldots, I_n jsou intervaly v \mathbb{R} . Z toho výplývá pravděpodobnost pro libovolnou borelovskou množinu I v \mathbb{R}^n $P_{\mathbf{X}}(I) = P[\mathbf{X} \in I] = P(\{\omega \in \Omega \mid \mathbf{X}(\omega) \in I\})$

Opět můžeme použít úspornější distribuční funkci (F_X)

$$P[X_1 \in (-\infty, t_1), \dots, X_n \in (-\infty, t_n)] = P[X_1 \le t_1, \dots, X_n \le t_n] = P_{\mathbf{X}}((-\infty, t_1) \times \dots \times (-\infty, t_n)) = F_{\mathbf{X}}(t_1, \dots, t_n)$$

Vlastnosti distribuční funkce:

- neklesající (ve všech proměnných)
- zprava spojitá (ve všech proměnných)
- $\lim_{t_1 \to \infty, \dots, t_n \to \infty} F_{\mathbf{X}}(t_1, \dots, t_n) = 1$
- $\lim_{t_1 \to -\infty, \dots, t_n \to -\infty} F_{\mathbf{X}}(t_1, \dots, t_n) = 0$

2.3 Obecné náhodné veličiny

Náhodné veličiny nemusí být reprezentovány pouze reálným čísly, ale třeba i čísly komplexními. V některých případech se používájí i jiné něž numerické hodnoty, například "rub", "líc", "kámen", "papír" atp.