Probabilités

Basé sur le cours de Guillaume Aubrin Notes prises par Hugo Salou

Table des matières

0	Échauffement : deux algorithmes probabilistes.	3
1	Événements, probabilités, variables aléatoires.	8
	1.1 Espaces de probabilités	. 8
	1.2 Indépendance	. 9
	1.3 Théorèmes d'existence	. 11

0 Échauffement : deux algorithmes probabilistes.

Exemple 0.1 (Vérifier la multiplication de matrices). Soient A, B, C trois matrices carrées à coefficients dans $\mathbb{F}_2 = \{0, 1\}$. On cherche à décider AB = C.

Idée 1. On calcule AB et on vérifie l'égalité à C. L'algorithme pour calculer AB avec $(AB)_{i,j} = \sum_{k=1}^{n} A_{i,k} B_{k,j}$ se fait avec une complexité en $O(n^3)$.

On peut améliorer la complexité en $O(n^{\alpha})$ avec $2 < \alpha < 3$ (actuellement, on peut le faire avec $\alpha \approx 2{,}37$) à l'aide de la méthode de Strassen.

Idée 2. On calcule ABx et Cx pour un vecteur $x \in \mathbb{F}_2^n$. On a des multiplications matrices \times vecteurs, en complexité en $O(n^2)$. Pour trouver un « bon » vecteur x, on le choisit au hasard.

Lemme 0.1. Si $D \in \mathcal{M}_n(\mathbb{F}_2)$ est non-nulle et $x \in \mathbb{F}_2^n$ est choisi uniformément au hasard, alors on a $P(Dx \neq 0) \geq \frac{1}{2}$.

Preuve. Au moins un coefficient de D est non-nul et, sans perte de généralité, on peut supposer que $D_{1,n} \neq 0$. Alors,

$$(Dx)_1 = \sum_{i=1}^n D_{1,i} x_i = \sum_{i=1}^{n-1} D_{1,i} x_i + x_1.$$

Quels que soient x_1, \ldots, x_{n-1} , il y a une probabilité de $\frac{1}{2}$ que

 $(Dx)_1 \neq 0$. On en conclut que

$$P(Dx \neq 0) \ge P((Dx)_1 \neq 0) = \frac{1}{2}.$$

Exemple 0.2 (suite de 0.1). Ainsi, si $AB \neq C$, on a donc

$$P(ABx \neq Cx) \ge \frac{1}{2}.$$

On choisit x_1, \ldots, x_{100} des vecteurs uniformément dans \mathbb{F}_2^n . Si on a $AB \neq C$, alors

$$P(\forall i \in [1, 100], ABx_i = Cx_i) \le \left(\frac{1}{2}\right)^{100}.$$

On a donc un algorithme ayant une complexité $O(n^2)$ pour détecter, avec grande probabilité, si AB = C.

Exemple 0.3 (Coupe minimale dans un graphe). On considère G un graphe non-orienté sans boucle (éventuellement avec des arêtes multiples). Une coupe du graphe est un sous-ensemble $C \subseteq E$ tel que $(V, E \setminus C)$ n'est pas connexe. On cherche une coupe de taille minimale :

$$mincut(G) = min\{|C| \mid C \text{ est une coupe}\}.$$

De manière équivalente, on cherche une partition $V = V_1 \sqcup V_2$ (avec $V_1, V_2 \neq \emptyset$) qui minimise le nombre d'arêtes reliant V_1 et V_2 .

Étant donné un graphe G=(V,E), et une arête $e=\{x,y\}\in E$, la contraction de G selon e, notée G/e, est le graphe où les sommets x et y sont fusionnés en un sommet xy, et les arêtes $\{x,z\}$ ou $\{y,z\}$ sont remplacées en $\{xy,z\}$ si $z\not\in\{x,y\}$.

Figure 1 | Contraction de l'arête {D, F}.

On a que $mincut(G/e) \ge mincut(G)$.

On utilise l'algorithme de Krager (1993). On contracte successivement selon des arêtes choisies uniformément au hasard, jusqu'à n'obtenir que 2 sommets, ce qui donne une coupe du graphe initial.

Lemme 0.2. La coupe C produite par l'algorithme de vérifie

$$P(|C| = \mathsf{mincut}(G)) \ge \frac{2}{n^2},$$

où
$$n = |V|$$
.

Preuve. Soit $k = \mathsf{mincut}(G)$ et C une coupe de taille k. Montrons que $P(l'algorithme renvoie la coupe <math>C) \geq 2/n^2$. Notons A_i (pour $i \in [\![1,n-2]\!]$) l'événement « l'arête contractée à la i-ème étape est dans C », et B_i l'événement complémentaire. L'algorithme renvoie la coupe C si et seulement si tous les événements B_1,\ldots,B_{n-2} sont vérifiés. On a $P(A_1)=k/|E|\leq 2/n$. Or, tout sommet a un degré $\geq k$, et donc $|E|\geq nk/2$. Conditionnellement à B_{11} , le graphe obtenu après contraction de la première arête vérifie $\mathsf{mincut}(G/e)=k$ donc $P(A_2\mid B_1)\leq 2/(n-1)$. De même, $P(A_j\mid B_1\cap\cdots\cap B_{j-1})\leq 2/(n+1-j)$, pour tout $j\in [\![1,n-2]\!]$. On a donc $P(A_{n-2}\mid B_1\cap B_{n-2})\leq \frac{2}{3}$, et donc

$$P(B_1 \cap \dots \cap B_{n-2}) = P(B_1)P(B_2 \mid B_1) \dots P(B_{n-2} \mid B_1 \cap \dots \cap B_{n-1})$$

$$\geq \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \dots \left(1 - \frac{2}{3}\right)$$

$$\geq \frac{n-2}{n} \frac{n-3}{n-1} \times \dots \times \frac{2}{3}$$

$$\geq \frac{2}{n(n-1)} \geq \frac{2}{n^2}.$$

Exemple 0.4 (suite de 0.3). On répète $N = 50n^2$ fois cet algorithme (tous les choix étant indépendant). On note k_i la taille de la coupe obtenue à la i-ème itération, et alors

$$\mathrm{P}(k_i = \mathsf{mincut}(G)) \geq \frac{2}{n^2},$$

d'où $P(k_i \neq \mathsf{mincut}(G)) \leq 1 - \frac{2}{n^2}$.

On en conclut que

$$\begin{split} \mathrm{P}(\forall i, k_i \neq \mathsf{mincut}(G)) &\leq \left(1 - \frac{2}{n^2}\right)^{50n^2} \\ &\leq \exp\left(-\frac{2}{n^2}50n^2\right) \\ &\leq \exp(-100). \end{split}$$

Chaque itération prend un temps en $O(n^2)$, on obtient donc un algorithme en $O(n^4)$ qui calcule une coupe minimale avec très grande probabilité.

1 Événements, probabilités, variables aléatoires.

1.1 Espaces de probabilités.

Définition 1.1. Un espace de probabilité est la donnée de

- \triangleright un ensemble Ω ;
- \triangleright un ensemble $\mathscr{F}\subseteq\wp(\Omega)$ de parties de Ω , appelées événements;
- \triangleright une fonction $P: \mathcal{F} \to [0,1]$ qui associe à un événement sa probabilité;

qui vérifie les axiomes suivants

- 1. l'ensemble \mathcal{F} est une tribu (ou σ -algèbre) :
 - $\triangleright \Omega \in \mathcal{F}$;
 - \triangleright si $A \in \mathcal{F}$ alors $\Omega \setminus A \in \mathcal{F}$;
 - \triangleright si $(A_n)_{n\in\mathbb{N}}$ est dans \mathcal{F} alors $\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{F}$;
- 2. l'application P est une mesure de probabilité :
 - $\triangleright P(\Omega) = 1;$
 - $\triangleright P(\emptyset) = 0$;
 - $\triangleright [\sigma\text{-}additivit\'e]$ si $(A_n)_{n\in\mathbb{N}}$ sont des événements disjoints $(i.e.\ A_n\cap A_m=\emptyset \text{ si } n\neq m)$ alors

$$P\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n\in\mathbb{N}}P(A_n).$$

On supposera donné un espace de probabilité (Ω, \mathcal{F}, P) .

Exemple 1.1. Si Ω est un ensemble fini, on peut choisir $\mathcal{F} = \wp(\Omega)$ et $P(A) = |A| /|\Omega|$. On dit que P est la *probabilité uniforme* sur Ω .

Exemple 1.2. Si Ω est fini ou dénombrable et si $(p_{\omega})_{\omega \in \Omega}$ sont des réels positifs tels que $\sum_{\omega \in \Omega} p_{\omega} = 1$, on peut prendre $\mathcal{F} = \wp(\Omega)$ et poser $P(A) = \sum_{\omega \in A} p_{\omega}$. On a alors défini une probabilité à partir de $p_{\omega} = P(\{\omega\}) = p_{\omega}$.

Si A et B sont deux événements avec $A \subseteq B$ alors $P(A) \le P(B)$. En effet, il suffit d'écrire $P(B) = P(A) + P(B \setminus A)$.

Lemme 1.1 (Borne de l'union). Si $(A_n)_{n\in I}$ est une famille finie ou dénombrable d'événements, alors

$$P\Big(\bigcup_{n\in I} A_n\Big) \le \sum_{n\in I} P(A_n).$$

Preuve. On pose $B_n = A_n \setminus (\bigcup_{k < n} A_k)$. Les (B_n) sont disjoints, et $\bigcup_{n \in I} A_n = \bigcup_{n \in I} B_n$. On a donc

$$P\left(\bigcup_{n\in I} A_n\right) = P\left(\bigcup_{n\in I} B_n\right) = \sum_{n\in I} P(B_n) \le \sum_{n\in I} P(A_n).$$

Une question naturelle est : pour quoi ne pas prendre toujours $\mathcal{F}=\wp(\Omega)\,?$

- ▷ Il y a des cas où on ne peut pas, pour des raisons liées à l'infini (en particulier dans le cas non dénombrable).
- ▶ Même dans le cas discret, on a parfois intérêt à considérer plusieurs tribus.

1.2 Indépendance.

Définition 1.2. Deux événements A et B sont indépendants, noté $A \perp \!\!\! \perp B$, si $P(A \cap B) = P(A) \times P(B)$.

Définition 1.3. Si P(B) > 0, la probabilité de A selon B est la probabilité $P(A \mid B) = P(A \cap B)/P(B)$. On a donc $A \perp \!\!\! \perp B \iff P(A \mid B) = P(A)$.

Lemme 1.2. Si (A_n) est une partition fini ou dénombrable de Ω en événements et B un événement,

$$P(B) = \sum_{n} P(B \cap A_n) = \sum_{n} P(B \mid A_n) \cdot P(A_n).$$

Définition 1.4. Si (A_i) est une famille finie ou infinie d'événements, on dit qu'ils sont indépendants si, pour tout $J \subseteq I$ nonvide,

$$P\Big(\bigcap_{i\in J}A_i\Big)=\prod_{i\in J}P(A_i).$$

Exemple 1.3. On a que (A, B, C) sont indépendants si et seulement si les quatre conditions sont vérifiées :

- $\triangleright P(A \cap B \cap C) = P(A) \cdot P(B) \cdot P(C);$
- $\triangleright P(A \cap B) = P(A) \cdot P(B);$
- $\triangleright P(A \cap C) = P(A) \cdot P(C);$
- $\triangleright P(B \cap C) = P(B) \cdot P(C).$

Remarque 1.1. On a l'implication « (A_n) indépendant » \implies « (A_n) deux-à-deux indépendant » mais la réciproque est **fausse**.

1.3 Théorèmes d'existence.

Le théorème suivant justifie l'existence des suites finies ou dénombrables de « bits aléatoires indépendants ».

- **Théorème 1.1** (Existence de *bits* aléatoires). 1. Pour tout entier $n \in \mathbb{N}$, il existe un espace de probabilité $(\Omega_n, \mathcal{F}_n, P_n)$ qui contient n événements indépendants de probabilité $\frac{1}{2}$.
 - 2. Il existe un espace de probabilité (Ω, \mathcal{F}, P) qui contient une suite dénombrable d'événements de probabilité $\frac{1}{2}$.

Preuve. 1. On pose $\Omega_n = \{0,1\}^n$, $\mathcal{F}_n = \wp(\Omega_n)$, et P_n la probabilité uniforme. Si on pose

$$A_k = \{ \omega = (\omega_1, \dots, \omega_n) \in \{0, 1\}^n \mid \omega_k = 1 \},$$

alors

$$P(A_k) = \frac{|A_k|}{|\Omega_n|} = \frac{2^{n-1}}{2^n} = \frac{1}{2}.$$

Si $J \subseteq \{1, ..., n\}$, en notant p = |J|, alors

$$P\left(\bigcap_{j\in J} A_j\right) = \frac{\left|\bigcap_{j\in J} A_j\right|}{\left|\Omega_n\right|} = \frac{2^{n-p}}{2^n} = \frac{1}{2^p} = \prod_{j\in J} P(A_j).$$

On a donc indépendance de $(A_k)_{1 \le k \le n}$.

2. On l'admet (> existence de la mesure de Lebesgue).