The listing of claims presented below replaces all prior versions and listings of claims in the application.

IN THE CLAIMS

Claims 1-51 (cancel)

52. A biochip comprising (a) composition K wherein,

$$K = aA + bB + cC + dD + eE$$
 wherein

A is a monomer based on derivatives of acrylic and methacrylic acids;

B is a water soluble cross-linking agent;

C is a biological modified macromolecule bearing an unsaturated group;

D is a water soluble compound as a medium component for performing a copolymerization;

E is water, and

- **a, b, c, d, e** are percentages (X) of each ingredient in the composition wherein for solids X is $m/v \times 100\%$; and for liquids X is $v/v \times 100\%$ wherein the total content of monomer and cross-linking agent is in a range from 3 to 40% ($3 \le (a+b) \le 40\%$), and a monomer to cross-linking agent ratio being within a range of 97:3 to 60:40 and percentages of C, D, and E ingredients being within a range of $0.0001\% \le c \le 10\%$; $0\% \le d \le 90\%$; $5\% \le e \le 95\%$; and (b) an array formed on a substrate wherein the array is divided into cells and each cell may comprise an immobilized macromolecule.
 - 53. The biochip according to claim 52 wherein said cells form a regular one- or two-dimensional structure (phase).
 - 54. The biochip according to claim 54 wherein the composition K is applied to a substrate on the biochip by using an automatic device equipped with one or more micro dispensers.
 - 55. The biochip according to claim 54 wherein the micro dispensers are rod type.
 - 56. The biochip according to claim 54 wherein the micro dispensers are contactless micro dispensers of jet type.
 - 57. The biochip according to claim 54 wherein the micro dispensers form a regular structure.

- 58. The biochip according to claim 52 wherein one or more substrates including applied droplets of polymerization mixture, during polymerization, are placed into a sealed container under oxygen free inert atmosphere with a controlled humidity.
- 59. The biochip according to claim 52 wherein said container is filled with N₂, Ar, or CO₂ gas.
- 60. The biochip according to claim 59 wherein the gas is continuously or periodically added to the container.
- 61. The biochip according to claim 52 wherein monomer A is one or more of acrylamide, methacrylamide, N-[tris(hydroxymethyl)methyl]acrylamide, and 2-hydroxyethylmethacrylate.
- 62. The biochip according to claim 52 wherein monomers are used separately or as a mixture.
- 63. The biochip according to claim 52 wherein the cross-linking agent B is one of more N,N'-methylenbisacrylamide, N,N'-ethylenbismethacrylamide, N,N'-(1,2-dihydroxyethylene)bisacrylamide, and polyethylene glycol diacrylate.
- 64. The biochip according to claim 52 wherein the cross-linking agents are used separately or as a mixture.
- 65. The biochip according to claim 52 wherein the modified biological macromolecule C is of formula (I):

wherein

OLIGO represents an oligonucleotide;

 R^1 , R^2 , and R^3 are different and are selected from H, alkyl C_1 - C_6 , Ph, and PhCH₂-; Z is $(CH_2)_nCH(CH_2OH)CH_2OX$ where n is 1-6; or Z is $(CH_2)_r$ -OX where r is 2-6;

X is a phosphodiester group binding an unsaturated moiety to 5'- and/or 3'-end of the oligonucleotide;

R⁴ represents H, or (CH₂)_rOH where r is 2-6; and

Y is $(p-C_6H_4)_t$ where t is 0-2.

66. The biochip according to claim 52 wherein the modified biological macromolecule C is of formula (II):

wherein

DNA represents a DNA fragment,

X is H or H₂PO₃, and Z represents -CO-Y-CR¹=CR²R³

or

X is $-CO-Y-CR^1=CR^2R^3$, and Z is H or H_2PO_3 ;

 R^1 , R^2 , and R^3 are the same different and are selected from H, alkyl C_1 - C_6 , Ph, and PhCH₂-; and

Y represents $(p-C_6H_4)_t$ where t is 0-2.

67. The biochip according to claim 52 wherein the modified biological macromolecule C is of formula (III);

wherein:

DNA represents a DNA fragment;

 $R^1,\,R^2,\,R^3$ are the same different and are selected from H, alkyl $C_1\text{-}C_6,\,Ph,$ and $PhCH_2-$; and

Y is $(p-C_6H_4)_t$ where t is 0-2.

68. The biochip according to claim 52 wherein the modified biological macromolecule C is of formula (IV):

$$R^1$$
 R^3
 N
 N
 N
 R^4
 N
 N
 N

wherein:

DNA represents a DNA fragment;

 $R^1,\ R^2,\ and\ R^3$ are the same different and are selected from H , alkyl $C_1\text{-}C_6,\ Ph,\ and\ PhCH_2-$; and

Y is $(p-C_6H_4)_t$ where t is 0-2;

R⁴ represents H, (CH₂)_rOH where r is 2-6; and

Z is (CH₂)_nCH(CH₂OH)CH₂OX where n is 1-6; or -(CH₂)_r-OX where r is 2-6; and

X is a phosphodiester group binding an unsaturated moiety to 5'- and/or 3'-end of the DNA fragment.

69. The biochip according to claim 52 wherein the modified biological macromolecule C is a protein of formula (V):

wherein

 R^1 , R^2 , and R^3 are the same different and are selected from H, alkyl C_1 - C_6 , Ph, and PhCH₂-.

X is NH, O, CH₂, or S;

Y is $(p-C_6H_4)_t$ where t is 0-2; and

R is $(CH_2)_s$, or $(CH_2CH_2O)_s$, where s is 1-20.

70. The biochip according to claim 52 wherein the modified biological macromolecule C is a protein of formula (VI):

wherein

 R^1 , R^2 , and R^3 are the same different and are selected from H, alkyl C_1 - C_6 , Ph, and PhCH₂-;

X is NH, O, S, or CH₂;

Y is $(p-C_6H_4)_t$, where t is 0-2;

R is $(CH_2)_s$, or $(CH_2CH_2O)_s$, where s is 1-20;

W is NH, O, or CH₂;

F is $(CH_2)_x$, where x is 1 or 2; and

Z is NH or S.

71. The biochip according to claim 52 wherein the modified biological macromolecule C is a protein of formula (VII):

wherein R represents (CH₂)_s, or (CH₂CH₂O)_s, where s is 1–20.

- 72. The biochip according to claim 52 wherein D is a water soluble high-boiling organic compound.
- 73. The biochip according to claim 72 where the water soluble high-boiling organic compound is N,N-dimethylformamide, dimethylsulfoxide or both.
- 74. The biochip according to claim 52 wherein use is made of a water soluble polyhydric compound as a component of the medium for performing the photo initiated polymerization.
- 75. The biochip according to claim 74 wherein the one or more water soluble polyhydric compound is selected from glycerol, sucrose and polyvinyl alcohol.
- 76. A method for performing PCR over the biochip according to claim 52 comprising the steps of:
 - a) adding amplification solution, forward (F) and reverse (R) primers of samples of nucleic acids under investigation; and
 - b) incubating the biochip under conditions of a thermocycling treatment providing a realization of PCR-amplification.
- 77. A method for performing the PCR over the biochip according to claim 52 comprising the steps of:
 - a) incubating isothermally the biochip with hybridization solution comprising the samples of nucleic acids under investigation to perform their hybridization with primers immobilized (synthetic oligonucleotides);

- b) incubating isothermally the biochip, comprising the nucleic acids being hybridized with primers immobilized, in the amplification solution containing forward (F) and reverse (R) primers;
- c) replacing the amplification solution out of biochip gel elements with hydrophobic liquid (mineral oil) which completely isolates biochip cells with each other, and
- d) incubating the biochip under conditions of a thermocycling treatment providing a realization of PCR-amplification.