Rigor in Mathematics

James Guo

January 3rd, 2024

0.1. Example

Define a function $f:(0,1)\to\mathbb{R}$ as follows:

$$f(x) = \begin{cases} 0, & \text{if } x \text{ is irrational,} \\ \frac{1}{n}, & \text{if } x = \frac{m}{n}, \text{ where } m, n \in \mathbb{Z}^+ \text{ and } \gcd(m, n) = 1. \end{cases}$$

- (a) Determine if f is continuous at irrational points, and if f is continuous at rational points.
- (b) (If one has learned Calculus.) Determine if f is differentiable at irrational points.

0.2. Example

Note that *countable* is defined for a set when you can number each element in the set to a natural number (that is \mathbb{N}). Clearly, by this definition, we know that integers (that is \mathbb{Z}) are countable, since we can establish the following function $f: \mathbb{Z} \to \mathbb{N}$ so every number can be mapped:

$$f(x) = \begin{cases} 2x, & \text{if } x \ge 0, \\ -2x - 1, & \text{if } x < 0. \end{cases}$$

Therefore, a set could be countable even if it is infinite. Then consider the following two sets of infinite elements.

- (a) Determine if Q is countable.
- (b) Determine if \mathbb{R} is countable.

1.1. Problem:

Fix a > 1, and let x and y be real numbers, show that:

$$a^x \cdot a^y = a^{x+y}$$
.

1.1. Problem:

Fix a > 1, and let x and y be real numbers, show that:

$$a^x \cdot a^y = a^{x+y}$$
.

Natural Number (N) Case:

This "problem" is trivially correct for all x and y being natural numbers. You can easily found it holding by applying the definition of exponentials as *multiplying things together*, that is:

$$a^{x} \cdot a^{y} = \underbrace{a \cdot a \cdot \cdots \cdot a}_{x \text{ times}} \cdot \underbrace{a \cdot a \cdot \cdots \cdot a}_{y \text{ times}} = \underbrace{a \cdot a \cdot \cdots \cdot a}_{x+y \text{ times}} = a^{x+y}.$$

1.1. Problem:

Fix a > 1, and let x and y be real numbers, show that:

$$a^x \cdot a^y = a^{x+y}$$
.

Natural Number (\mathbb{N}) Case:

This "problem" is trivially correct for all x and y being natural numbers. You can easily found it holding by applying the definition of exponentials as *multiplying things together*, that is:

$$a^{x} \cdot a^{y} = \underbrace{a \cdot a \cdot \cdots \cdot a}_{x \text{ times}} \cdot \underbrace{a \cdot a \cdot \cdots \cdot a}_{y \text{ times}} = \underbrace{a \cdot a \cdot \cdots \cdot a}_{x+y \text{ times}} = a^{x+y}.$$

Integer (\mathbb{Z}) Case:

Diligent readers shall already realize how we can extend the proof for all integer, namely consider that a^{-x} being the *reciprocal* of the number and the proof shall get through.

1.2. Theorem:

For every real x > 0 and every integer n > 0, there exists a unique positive $y \in \mathbb{R}$ such that $y^n = x$.

1.2. Theorem:

For every real x > 0 and every integer n > 0, there exists a unique positive $y \in \mathbb{R}$ such that $y^n = x$.

Exercise to the Readers:

The proof of this theorem would requires proof for both *existence* and *uniqueness* of *y*. This proof is left as an exercise to capable readers (cf. Exercise 3).

The case for **Problem 1.1** holds for all x and y being rational numbers. That is:

Fix a > 1, and let x and y be rational numbers, show that:

$$a^x \cdot a^y = a^{x+y}$$
.

The case for **Problem 1.1** holds for all x and y being rational numbers. That is:

Fix a > 1, and let x and y be rational numbers, show that:

$$a^x \cdot a^y = a^{x+y}$$
.

proof:

To prove this lemma, we first want to establish that for all rational x, we can write $a^x = (a^p)^{1/q}$ where p and q are integers.

Therefore, we let r = m/n = p/q, so we have:

$$rnq = mq = np$$
.

Then, let $y_1 = (a^m)^{1/n}$ and $y_2 = (a^p)^{1/q}$, we have:

$$y_1^{rnq} = y_1^n p = ((a^m)^{1/n})^{np} = a^{mp},$$

 $y_2^{rnq} = y_2^m q = ((a^p)^{1/q})^{mq} = a^{mp}.$

proof (CONT.):

Therefore, by knowing that $y_1^{rnq} = a^{mp} = y_2^{rnq}$, and based on **Theorem 1.2**, we know that:

$$y_1 = y_2 \Longrightarrow (a^m)^{1/n} = (a^p)^{1/q}.$$

Therefore, we know that for all rational x, we can write $a^x = (a^p)^{1/q}$ where p and q are integers.

Then, let $x=\frac{\alpha}{\beta}$ and $y=\frac{\gamma}{\delta}$, where $\alpha,\gamma\in\mathbb{Z}$ and $\beta,\delta\in\mathbb{Z}^+$. There, we can rewrite the expression as:

$$a^{x+y} = a^{\frac{\alpha}{\beta} + \frac{\gamma}{\delta}} = a^{\frac{\alpha\delta + \beta\gamma}{\beta\delta}} = (a^{\alpha\delta + \beta\gamma})^{1/(\beta\delta)}.$$

By definition of exponents, we have:

$$a^{x+y} = (a^{\alpha\delta}a^{\beta\gamma})^{1/(\beta\delta)}.$$

proof (CONT.):

Here, we want to break $a^{\alpha\delta}a^{\beta\gamma}$ apart, so we want to show that for $a,b\in\mathbb{R}^+$ and $n\in\mathbb{Z}^+$ that $(ab)^{1/n}=a^{1/n}b^{1/n}$. Here, we notice that:

$$(a^{1/n}b^{1/n})^n = a^{n/n}b^{n/n} = ab,$$

then, by **Theorem 1.2** again, there exists a single positive $(a^{1/n}b^{1/n})^{n/n} = a^{1/n}b^{1/n}$ equivalent to $(ab)^{1/n}$.

Therefore, we continue with the lemma (with $\mathbf{a}^{\alpha\delta}, \mathbf{a}^{\beta\gamma} \in \mathbb{R}^+$ and $\beta\delta \in \mathbb{Z}^+$) that:

$$a^{r+s} = (a^{\alpha\delta}b^{\beta\gamma})^{1/(\beta\delta)} = a^{(\alpha\delta)/(\beta\delta)}a^{(\beta\gamma)/(\beta\delta)} = a^{\alpha/\beta}a^{\gamma/\delta} = a^x \cdot a^y,$$

as desired. Hence, we have completed the proof for **Lemma 1.3**, which extends the validity to all rational numbers.

Thus, the case for **Problem 1.1** holds for all x and y being rational numbers. That is:

Fix a > 1, and let x and y be rational numbers, we have:

$$a^x \cdot a^y = a^{x+y}$$
.

Exercise to the Readers:

Given the time constraints, the rest of the proof to **Problem 1.1** are left to the readers (cf. Exercise 5).

. 0.00

- If you have not done so, complete Example 0.1 and Example 0.2.
- ② Let S be an ordered set. Suppose that $E \subseteq S$ and E is bounded above. Also suppose that there exists an $\alpha \in S$ such that:
 - ullet α is an upper bound for E, and
 - If $\gamma < \alpha$, then γ is not an upper bound for E.

Here, α is the **supremum** of E, written as $\alpha := \sup E$. Given this definition, let $E := \{-\frac{1}{a} \mid n \in \mathbb{Z}^+\} \subsetneq \mathbb{R}$, find $\sup E$.

- 3 Prove **Theorem 1.2** using the definition of *supremum*. Note that you need to consider both *existence* and *uniqueness*.
- There always exists some rational numbers between any two irrationals, to show this, follow the below instructions.
 - (a) Show that if $x, y \in \mathbb{R}$ and x > 0, then there exists an $n \in \mathbb{Z}^+$ such that nx > y. This is known as the Archimedean property.
 - (b) If $x, y \in \mathbb{R}$ and x < y, then there is a $p \in \mathbb{Q}$ such that x .
- **5** Prove **Problem 1.1** for all $x, y \in \mathbb{R}$.

Hint: You might want to establish $a^x = \sup A(x)$ where A(x) is the set of all numbers a^t such that $t \le x$. Then, you want to show that $a^x a^y \le a^{x+y}$ and $a^x a^y \ge a^{x+y}$ to verify that $a^x a^y = a^{x+y}$.