Inventory Models for Special Cases: A & C Items and Challenges

Inventory Management by Segment

	A Items B Items		C Items
Type of records	Extensive, Transactional	Moderate	None – use a rule
Level of Management Reporting	Frequent (Monthly or more)	Infrequently - Aggregated	Only as Aggregate
Interaction w/ Demand	Direct Input High Data Integrity Manipulate (pricing etc.)	High Data Integrity (promotions etc.)	
Interaction w/ Supply	Actively Manage	Manage by Exception	None
Initial Deployment	Minimize exposure (high v)	Steady State	Steady State
Frequency of Policy Review	Very Frequent (monthly or more)	Moderate (Annually/Event Based)	Very Infrequent
Importance of Parameter Precision	Very High – accuracy worthwhile	Moderate – rounding & approximation is ok	Very Low
Shortage Strategy	Actively manage (confront)	Set service levels & manage by exception	Set & forget service levels
Demand Distribution	Consider alternatives to Normal as situation fits	Normal N/A	

Lesson: A&C Items and Challenges

ACTIVE

AUTOMATIC

PASSIVE

Inventory Policies By Segment

No hard and fast rules, but some rules of thumb

Lesson: A&C Items and Challenges

When & how to spend more time to manage A' inventory

Type of Item,	Continuous Review	Periodic Review	
A Items	(s, S)	(R, s, S)	
B Items	(s, Q)	(R, S)	
C Items		Manual ~ (R,S)	

When & how to spend less time to manage or reduce 'C' inventory

Agenda

- Class A Policies
 - Fast & Slow Moving Items

- Poisson Distributions
- Class C Policies
- Real-World Implications

Inventory Policies for A Items

Managing Class A Inventory

- When does it make sense to spend more time?
 - Tradeoff between complexity and 'other' costs
 - Is the savings worth the extra effort?
- Adding precision
 - Finding 'optimal' parameters
 - Using more complex policies

Dictates whether item is Class A or not
$$TC = cD + c_t \left(\frac{D}{Q}\right) + c_e \left(\frac{Q}{2} + k\sigma_{DL}\right) + B_1 \left(\frac{D}{Q}\right) P[SO]$$

$$TC = cD + c_t \left(\frac{D}{Q}\right) + c_e \left(\frac{Q}{2} + k\sigma_{DL}\right) + c_s \left(\frac{D}{Q}\right) \sigma_{DL} G(k)$$

Managing Class A Inventory

- Two Types of Class A items:
 - Fast moving but cheap (large D small c → Q>1)
 - Slow moving but expensive (large c small D \rightarrow Q=1)

- Impacts the probability distribution used
 - Fast Movers Normal or Lognormal Distribution
 - Good enough for B items
 - OK for A items if μ_{DI} or $\mu_{DI+R} \ge 10$
 - Slow Movers Poisson Distribution
 - More complicated to handle
 - Ok for A items if μ_{DL} or $\mu_{DL+R} < 10$

Order-Point, Order-Up-To-Level (s, S)

- Policy: Order (S-IP) if IP ≤ s
- Min-Max system
- Continuous Review

Note on Undershoots:

- Number of units of IP below reorder point, s, at time the order is placed, s-IP
- Only matters if demand is nonunit sized transactions
- If demand is always in units then
 (s, Q) = (s, S) where Q = S s

Notation

s = Reorder Point

S = Order-up-to Level

L = Replenishment Lead Time

Q = Order Quantity

R = Review Period

IOH= Inventory on Hand

IP = Inventory Position = (IOH) + (Inventory On Order) - (Backorders)

Suppose we have a Cost per Stock Out Event or B₁

$$TRC = c_{t} \left(\frac{D}{Q} \right) + c_{e} \left(\frac{Q}{2} + k\sigma_{DL} \right) + B_{1} \left(\frac{D}{Q} \right) P[x > k]$$

- How did we set (s, Q) policy for B items?
- Sequentially!
 - Set Q = EOQ
 - Found k that minimizes TRC

$$Q^* = \sqrt{\frac{2c_t D}{c_e}}$$

$$k^* = \sqrt{2 \ln \left(\frac{DB_1}{\sqrt{2\pi} Q c_e \sigma_{DL}} \right)}$$

Is it worth looking for better parameters?

$$TRC = c_{t} \left(\frac{D}{Q}\right) + c_{e} \left(\frac{Q}{2} + k\sigma_{DL}\right) + B_{1} \left(\frac{D}{Q}\right) P\left[x > k\right]$$

- Finding Better Parameters
 - Solve for k* and Q* simultaneously
 - Take partial differentials wrt Q and k
 - End up with two equations
 - How do we solve it?
 - Iteratively solve the two equations
 - Stop when Q* and k* converge within acceptable range

$$Q^* = EOQ\sqrt{1 + \frac{B_1 P[x > k]}{c_t}}$$

$$k^* = \sqrt{2 \ln \left(\frac{DB_1}{\sqrt{2\pi} Q c_e \sigma_{DL}} \right)}$$

Slow Moving A Items

Slow Moving A Items

- Normal distribution may not make sense why?
- Poisson distribution
 - Probability of x events occurring w/in a time period

Example

Problem:

Suppose that you want to set up a (s, Q) policy for an A item. Demand over lead time is Poisson distributed with a mean of 2.6 and you have already determined $Q^*=6$ units. What reorder point would you use if you wanted to achieve a CSL of 95%?

Solution

Solution
We want to find:
$$F[x_0] = \sum_{x=0}^{x_0} \frac{e^{-\lambda} \lambda^x}{x!} \ge 0.95$$

- Simply build a table with pdf and cdf
- Select s where F[x]≥CSL

Demand	p[x]	F[x]	
0	7%	7%	
1	19%	27%	
2	25%	52%	
3	22%	74%	
4	14%	88%	
5	7%	95%	
6	3%	98%	
7	1%	99%	
8	8 0% 1009		

- But what is the expected IFR?
 - IFR = 1 E[US]/Q

Order 6 units when IP<5

Loss Function for Discrete Function

 For any discrete function we can find the loss function, L[X_i], for each value of X given the cumulative probability F[X_i].

Loss Function for $\sim P(\lambda=2.6)$

Start with first value

$$L[X_1] = mean - X_1$$

•
$$L[X_2] = L[X_1] - (X_2 - X_1)(1-F[X_1])$$

•
$$L[X_3] = L[X_2] - (X_3 - X_2)(1-F[X_2])$$

.

•
$$L[X_i] = L[X_{i-1}] - (X_i - X_{i-1})(1-F[X_{i-1}])$$

For our problem:

•
$$L[X_1] = L[0] = 2.60 - 0 = 2.60$$

•
$$L[X_2] = L[1] = 2.60 - (1 - 0)(1 - .074) = 1.67$$

•
$$L[X_3] = L[2] = 1.67 - (2 - 1)(1 - .267) = .94$$

etc.

			=	-
	Demand			
i	(Xi)	p[x]	F[x]	L[x]
1	0	7.4%	7.4%	2.60
2	1	19.3%	26.7%	1.67
3	2	25.1%	51.8%	0.94
4	3	21.8%	73.6%	0.46
5	4	14.1%	87.7%	0.20
6	5	7.4%	95.1%	0.07
7	6	3.2%	98.3%	0.02
8	7	1.2%	99.5%	0.01
9	8	0.4%	99.9%	0.00

At
$$s=5$$
, $E[US] = 0.07$
 $IFR=1-(0.07/6) = 98.8\%$

Method adapted from Cachon & Terwiesch (2005), Matching Supply & Demand

Managing Class C Inventories

Managing Class C Inventories

- What are C items?
 - Typically low cD values
 - Large number, low total value items
 - Need to consider implicit & explicit costs

- Objective: minimize management attention
 - Regardless of policy, savings not significant
 - Design simple rules to follow
 - Explore opportunities for disposing of inventory

Simple Reorder Rules

- Set Common Reorder Quantities
 - Assume common c_t and h values
 - Find D_ic_i values for ordering frequencies
 - Example:
 - Select between monthly, quarterly, semi-annual, or annual so that $w_1=1$, $w_2=3$, $w_3=6$, $w_4=12$

$$c_{t}D_{i}/Q_{i1} + (c_{i}hQ_{i1})/2 = c_{t}D_{i}/Q_{i2} + (c_{i}hQ_{i2})/2$$

$$12c_{t}D_{i}/D_{i}w_{1} + c_{i}hD_{i}w_{1}/24 = 12c_{t}D_{i}/D_{i}w_{2} + c_{i}hD_{i}w_{2}/24$$

$$(c_{i}hD_{i}/24)(w_{1}-w_{2}) = (12c_{t})(1/w_{2}-1/w_{1})$$

$$D_{i}c_{i} = [(24)(12c_{t})/(h(w_{1}-w_{2}))] (1/w_{2}-1/w_{1})$$

$$D_{i}c_{i} = 288c_{t}/(hw_{1}w_{2})$$

Rule if $D_i c_i \ge 96(c_t/h)$ then order Monthly

Else: if $D_i c_i \ge 16(c_t/h)$ then order Quarterly

Else: if $D_i c_i \ge 4(c_t/h)$ then order Semi-Annually

Else: Order Annually

Disposing of Excess Inventory

- Why does excess inventory occur?
 - SKU portfolios tend to grow
 - Poor forecasts Shorter lifecycles
- Which items to dispose?
 - Look at DOS (days of supply) for each item = IOH/D
 - Consider getting rid of items that have DOS > x years
- What actions to take?
 - Convert to other uses
 - Ship to more desired location
 - Mark down price
 - Auction

Real-World Challenges

Sadly the world is not so simple

- Reality is often ugly!
 - Models are not used exactly as in textbooks
 - Data is not always available or correct
 - Technology matters
 - Business processes matter even more
- Inventory policies try to answer three questions:

- How often should I check my inventory?
- How do I know if I should order more?
- How much to order?
- All inventory models use two key numbers
 - Inventory Position
 - Order Point

Inventory Position – how much do I have?

Data Collection?

- Number of item-location combinations (10³ locations)(10⁴-5 SKUs) ≈ 10⁸!
- Database processing power
 - @ $\sim 10^3$ transactions/second > **24 hrs**
- Business process cycles
 - hourly / 3-4x daily / daily / weekly

Inventory Position (IP)

Inventory On Hand (IOH)

When is an item "On-Order"?

- Order has been generated by the system?
- Order has been transmitted to the supplier?
- Order has been accepted by the supplier?
- Order has been shipped by the supplier?

Inventory On Order (IOO)

Backorders & Commitments

- Wrong/missing product codes
- "Fat Finger" data entry

Data Integrity?

- Scanner/reader problems
- Shrinkage & Returns

What is the lead time?

Orders have expected arrival dates, but

- Is it updated? By whom?
- How about partial orders?
- How about multiple vendors?

Challenges?

- Cancellation policy?
- "Phantom Orders"?
- Ordering grace periods

Order Point – when should I place an order?

Other Challenges

- Inventory decisions @ item-location level
 - Local "Optimal" ≠ System Optimal
 - Are items really independent?

Technology

- Homegrown (Legacy) vs. ERP vs Niche systems
- Parameter configuration & installation (Daunting!)
- Integration with forecasting systems (data level)
- Implicit assumptions and parameter updates

Demand Forecasting

- Assumed stationary demand
- Recalculate parameters on a regular basis (s[t], S[t], Q[t])
- Need to deal with SKU life-cycle

Key Points from Lesson

25

Key Points from Lesson

- Manage Inventory by Segment
 - Class A items → Active
 - Class B items → Automatic
 - Class C (and lower) items → Passive

- Real-World Challenges
 - Data availability and integrity
 - Technology capabilities and limitations
 - Avoid relying on "magic tools" that no one understands

Lesson: A&C Items and Challenges

Be cognizant of business process and rules

CTL.SC1x -Supply Chain & Logistics Fundamentals

Questions, Comments, Suggestions? Use the Discussion!

