# Minería de Datos IIC2433

Validación de Clustering Vicente Domínguez

# ¿Qué veremos esta clase?

Como validar nuestros resultados obtenidos en el proceso de clustering

# Knowledge Discovery in Databases



# ¿Es necesario validar los clusters?

- Por lo menos en Clasificación, la validación es parte integral del proceso
- No así en Clustering...

<sup>\*</sup> Esta presentación está basada en slides del curso de Minería de Datos de la Profesora Bárbara Poblete

# ¿Cómo saber si nuestros clusters son buenos?

- No hay una respuesta absoluta
- Depende de la aplicación
- ¿Entonces, para qué evaluar?

## Evaluamos para:

- Evitar encontrar patrones en el ruido
- Para comparar algoritmos de clustering diferentes
- Para comparar conjuntos de clusters diferentes
- Para comprar dos clusters

# Clusters en datos aleatorios



# Aspectos de la validación

- Determinar la tendencia de agrupamiento (clustering tendency),
  i.e.: si existe una estructura no-aleatoria en los datos
- Encontrar el número correcto de clusters
- Evaluar qué tan bien los resultados se ajustan a los datos (sin consultar datos externos)
- Comparar resultados con resultados externos, i.e.: clases asignadas manualmente
- Comparar dos conjuntos de clusters para saber cuál es mejor

### Medidas de validez

- External Index (Supervisado)
- Internal Index (No-Supervisado)
- Relative Index (Relativo)

# Concepto: Matriz de similitud

|    | G1   | G2   | G3   | G4   |
|----|------|------|------|------|
| G1 | 1    | 0.83 | 0    | 0    |
| G2 | 0.83 | 1    | 0    | 0    |
| G3 | 0    | 0    | 1    | 0.32 |
| G4 | 0    | 0    | 0.32 | 1    |

# Enfoque visual

 Ordenar la matriz de similitud con respecto a etiquetas de clusters e inspeccionar visualmente

# Visualizando la matriz de similitud (clusters reales)





### Visualizando clusters sobre datos aleatorios





#### **DBSCAN**

#### Visualizando clusters sobre datos aleatorios





K-means



**DBSCAN** 

#### Medidas internas: SSE

- Clusters en figuras más complicadas no están bien separados
- Indice interno: SSE
- Permite comparar 2 clusters,
  o 2 soluciones de clustering
- Permite estimar el número de clusters



# Metodología: Ejemplo SSE

- Comparar SSE = 0.005 contra 3 clusters de datos aleatorios
- Histograma muestra distribución SSE para 500 sets de datos aleatorios (100 puntos), en el mismo rango





# Medidas internas: Cohesión y separación

- Cohesión de clusters: mide qué tan cercanos son los objetos en un cluster (ej: SSE)
- Separación de clusters: mide qué tan diferente o bien separado es un cluster de otros

# EJ. (SSE) Cohesión y Separación

 Cohesión se mide como within cluster sum of squares (WSS o SSE)

$$WSS = \sum_{i} \sum_{x \in C_i} (x - m_i)^2$$

Separación se mide como between cluster sum of squares (BSS)

$$BSS = \sum_{i} |C_{i}| (m - m_{i})^{2}$$



#### K=1 cluster:

$$WSS = (1-3)^2 + (2-3)^2 + (4-3)^2 + (5-3)^2 = 10$$
  
$$BSS = 4 \times (3-3)^2 = 0$$

# Total = 10 + 0 = 10

$$WSS = (1 - 1.5)^{2} + (2 - 1.5)^{2} + (4 - 4.5)^{2} + (5 - 4.5)^{2} = 1$$
  
$$BSS = 2 \times (3 - 1.5)^{2} + 2 \times (4.5 - 3)^{2} = 9$$

$$Total = 1 + 9 = 10$$

# Curva SSE para un dataset más complicado



# Medidas internas: Cohesión y separación

- Enfoque basado en grafos de proximidad
- Cohesión: suma de los pesos de todos los arcos en un cluster
- Separación: suma de los pesos entre nodos del cluster y de otros clusters



# Medidas Externas: Pureza y Entropía

- Pureza: Nivel en que un cluster contiene elementos de una sóla clase (se usa la clase predominante)
- Entropia: Cantidad de clases diferentes que contiene un cluster

# Medidas Externas: Pureza y Entropía

Table 1: Entropy and Purity in CLUTO

|                   | Entropy                                                                            | Purity                                         |  |
|-------------------|------------------------------------------------------------------------------------|------------------------------------------------|--|
| Single<br>Cluster | $E(S_r) = -\frac{1}{\log q} \sum_{i=1}^q \frac{n_r^i}{n_r} \log \frac{n_r^i}{n_r}$ | $P(S_r) = \frac{1}{n_r} \max_i(n_r^i)$         |  |
| Overall           | $Entropy = \sum_{r=1}^{k} \frac{n_r}{n} E(S_r)$                                    | $Purity = \sum_{r=1}^{k} \frac{n_r}{n} P(S_r)$ |  |

 $S_r$  is a cluster,  $n_r$  is the size of the cluster, q is the number of classes,  $n_r^i$  is the number of concepts from the *i*th class that were assigned to the *r*th cluster, and n is the number of concepts and k is the number of clusters.

# Validación con Expertos

 Se pueden evaluar los clusters para ver si producen el resultado esperado y comparar con otras soluciones

Se puede generar una clasificación de validación

#### Comentarios finales

- La etapa de validación es la parte más difícil y frustrante del análisis de clusters
- Sin embargo es necesario
- Idealmente se deben combinar medidas externas e internas