BUNDESREPUBLIK DEUTSCHLAND

9

Deutsche Kl.:

45 1, 9/02

2218 097 Offenlegungsschrift 1 P 22 18 097.8 Aktenzeichen: Anmeldetag: 2 14. April 1972 **43**) Offenlegungstag: 2. November 1972 Ausstellungspriorität: Unionspriorität 9. Dezember 1971 32 Datum: 16. April 1971 Land: V. St. v. Amerika (3) 208041 Aktenzeichen: 134868 64) Bezeichnung: Herbizides Mittel und seine Verwendung 6 Zusatz zu: **@** Ausscheidung aus: 1 Anmelder: Stauffer Chemical Co., New York, N.Y. (V. St. A.) Beil, W., Dipl.-Chem. Dr. jur.; Hoeppener, A.; Vertreter gem. § 16 PatG: Wolff, H. J., Dipl.-Chem. Dr. jur.; Beil, H. Chr., Dr. jur.; Rechtsanwälte, 6230 Frankfurt Pallos, Ferenc Marcus, Walnut Creek; Als Erfinder benannt: 7 Brokke, Mervin Edward, Moraga; Arnekley, Duane Randall, Sunnyvale; Calif. (V. St. A.)

RECHTSANWALTE
DR. JUR. DIPL-CHEM. WALTER BEIL
ALFRED HOEPPENER
DR. JUR. DIFL-CHEM. H.-J. WOLFF
DR. JUR. HAHS CHR. BEIL

13. April 1972

623 FRANKFURT AM MAIN-HOCHST ADELONSTRASSE 58

Unsere Nr. 17 782

Stauffer Chemical Company New York, N.Y., V.St.A.

Herbizides Mittel und seine Verwendung

Die Erfindung betrifft ein herbizides Mittel, bestehend aus einem herbiziden Wirkstoff und einem Gegenmittel, sowie ein Verfahren zur Verwendung dieses herbiziden Mittels. Das Gegenmittel entspricht der Formel

$$\begin{array}{c} 0 \\ \parallel \\ R-C-N \end{array} \begin{array}{c} R_1 \\ R_2 \end{array}$$

in der R einen Halogenalkyl-, Halogenalkenyl-, Alkyl-, Alkenyl-, Cycloalkyl- oder einen Cycloalkylalkylrest, ein Halogenatom oder ein Wasserstoffatom, einen Carboalkoxy-, N-Alkenylcarbamylalkyl-, N-Alkenylcarbamyl-, N-Alkyl-N-alkinylcarbamyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkenylcarbamyl-alkoxyalkyl-, N-Alkyl-N-alkinylcarbamylalkoxyalkyl-, Alkin-oxy-, Halogenalkoxy-, Thiocyanatoalkyl-, Alkenylaminoalkyl-, Alkylcarboalkyl-, Cyanoalkyl-, Cyanatoalkyl-, Alkenylaminosulfonoalkyl-, Alkylthioalkyl-, Halogenalkylcarbonyloxyalkyl-, Alkyoxycarboalkyl-, Halogenalkenylcarbonyloxyalkyl-, Hydroxy-halogenalkyloxyalkyl-, Hydroxyalkylcarboalkyoxyalkyl-, Hydroxyalkyl-, Thienyl-, Alkyl-dithiolenyl-, Thienalkyl- oder einen Phenylrest oder einen

209845/1180

geändert gemäß Eingabe eingegangen am 18.5.72 26, 6, 72

durch Halogenatome, Alkyl-, Halogenalkyl-, Alkoxy-, Carbamyloder Nitroreste, Carbonsäurereste und deren Salze oder Halogenalkylcarbamylreste substituierten Phenylrest, einen Phenylalkyl-, Phenylhalogenalkyl- oder einen Phenylalkenylrest oder einen durch Halogenatome, Alkyl- oder Alkoxyreste substituierten Phenylalkenylrest, einen Halogenphenoxy-, Phenylalkoxy-, Phenylalkylcarboxyalkyl-, Phenylcycloalkyl-, Halogenphenylalkenoxy-, Halogenthiophenylalkyl-, Halogenphenoxyalkyl-, Bicycloalkyl-, Alkenylcarbamylpyridinyl-, Alkinylcarbamylpyridinyl-, Dialkenylcarbamylbicycloalkenyl- oder einen Alkinylcarbamylbicycloalkenylrest bedeutet, R, und R, gleich oder verschieden sein und jeweils Alkenyl- oder Halogenalkenylreste, Wasserstoffatome, Alkyl-, Halogenalkyl-, Alkinyl-, Cyanoalkyl-, Hydroxyalkyl-, Hydroxyhalogenalkyl-, Halogenalkylcarboxyalkyl-, Alkylcarboxyalkyl-, Alkoxycarboxyalkyl-, Thioalkylcarboxyalkyl-, Alkoxycarboalkyl-, Alkylcarbamyloxyalkyl-, Amino-, Formyl-, Halogenalkyl-N-alkylamido-, Halogenalkylamido-, Halogenalkylamidoalkyl-, Halogenalkyl-N-alkylamidoalkyl-, Halogenalkylamidoalkenyl-, Alkylimino-, Cycloalkyl-, Alkylcycloalkyl-, Alkoxyalkyl-, Alkylsulfonyloxyalkyl-, Mercaptoalkyl-, Alkylaminoalkyl-, Alkyoxycarboalkenyl-, Halogenalkylcarbonyl-, Alkylcarbonyl-, Alkenylcarbamyloxyalkyl-, Cycloalkylcarbamyloxyalkyl-, Alkoxycarbonyl-, Halogenalkoxycarbonyl-, Halogenphenylcarbamyloxyalkyl-, Cycloalkenyl- oder Phenylreste oder durch Alkylreste, Halogenatome, Halogenalkyl-, Alkoxy-, Halogenalkylamido-, Phthalamido-, Hydroxy-, Alkylcarbamyloxy-, Alkenylcarbamyloxy-, Alkylamido-, Halogenalkylamido- oder Alkylcarboalkenylreste substituierte Phenylreste, Phenylsulfonyloder Phenylalkylreste oder durch Halogenatome, Alkyl-, Dioxyalkylen-,Halogenphenoxyalkylamidoalkylreste substituierte Phenylalkylreste, Alkylthiodiazolyl-, Piperidylalkyl-, Thiazolyl-, Alkylthiazolyl-, Benzothiazolyl-, Halogenbenzothiazolyl-, Furylalkyl-, Pyridyl-, Alkylpyridyl-, Alkyloxazolyl-, Tetrahydrofurylalkyl-, 3-Cyano-, 4,5-Polyalkylen-thienyl-, \(\alpha\)-Halogenalkylacetamidophenylalkyl-, a-Halogenalkylacetamidonitrophenylalkyl-, a-Halogenalkylacetamidohalogenphenylalkyl-,

oder Cyanoalkenylreste bedeuten können oder auch R_1 und R_2 zusammen mit dem Stickstoffatom einen Piperidinyl-, Alkylpiperidinyl-, Alkylpiperidinyl-, Alkylpiperidinyl-, Alkylpiperidinyl-, Azo-bicyclononyl-, Benzoalkylpyrrolidinyl-, Oxazolidyl-, Alkyloxazolidyl-, Perhydrochinolyl- oder Alkylaminoalkenylrest bilden können, wobei R_2 kein Wasserstoffatom oder Halogenphenylrest ist, wenn R_1 ein Wasserstoffatom darstellt.

Aus der Vielzahl der handelsüblichen Herbizide haben die Thiolcarbamate als solche oder im Gemisch mit anderen Herbiziden, wie den Triazinen, eine relativ hohe, industrielle Erfolgsquote erreicht. Bei unterschiedlicher Konzentration, die je nach der Resistenz der Unkrautarten schwankt, wirken diese Herbizide auf eine große Zahl derselben sofort toxisch. Einige Beispiele dieser Verbindungen werden in den USA-Patentschriften Nr. 2 913 327, 3 037 853, 3 175 897, 3 185 720, 3 198 786 und 3 582 314 beschrieben. Die Praxis erwies jedoch, daß die Verwendung dieser Thiolearbamate als Herbizide in Getreidefeldern (crops) bisweilen starke Schädigungen der Getreidepflanzen zur Folge hat. Erfolgt die Verwendung im Boden in den empfohlenen Mengen mit dem Ziel, eine Vielzahl von breitblättrigen Unkrautarten und Gräsern zu bekämpfen, so kommt es zu schweren Mißbildungen und Verkümmerungen der Getreidepflanzen. Dieses anomale Wachstum führt zu Ertragsschmälerungen. Bei früheren Versuchen, dieses Problem zu überwinden, wurde der Getreidesamen vor dem Pflanzen mit bestimmten Gegenmitteln behandelt; vgl. USA-Patentschrift 3 131 509 Diese Gegenmittel waren nicht besonders wirksam.

Es wurde nun gefunden, daß die Pflanzen dadurch vor Schädinungen durch die Thiolearbamate als solche oder im Gemisch mit anderen Verbindungen geschützt und/oder gegen die Wirkstoffe der vorstehend genannten Patentschriften erheblich widerstandsfähiger gemacht werden können, daß man dem Boden eine Verbindung der Formel

$$1 \leq \frac{1}{R_2}$$

in Ger R, R_1 und R_2 die vorstehend genannten Bedeutungen besitzen, zuführt.

Die Irfindungsgemäßen Verbindungen können durch Vermischen eines geeigneten Säurechlorids mit einem entsprechenden Amin synthetisiert werden. Gegebenenfalls kann ein Lösungsmittel wie Benzel eingesetzt werden. Die Reaktion wird vorzugsweise bei verminderten Temperaturen durchgeführt. Nach Abschluß der Reaktion wird das Endprodukt auf Raumtemperatur gebracht und kann leicht ebgetrennt werden.

Die nachstehenden Beispiele dienen der Erläuterung der Erfindung.

$$\begin{array}{c|c} & \text{CH}_2\text{-CH=CH}_2 \\ & \text{CHCl}_2\text{-C-N} \\ & \text{CH}_2\text{-CH=CH}_2 \end{array}$$

Es wurde eine Lösung aus 3,7 g (0,025 Mol) Dichloracetylchlorid und 100 ml Methylendichlorid hergestellt, die dann in einem Eisbad auf etwa 5 $^{\circ}$ C abgekühlt wurde. Dann wurden 4,9 g (0,05 Mol) Diallylamin tropfenweise zugesetzt, wobei die Temperatur auf unter etwa 10 $^{\circ}$ C gehalten wurde. Das Gemisch wurde dann etwa 4 Stunden lang bei Raumtemperatur gerührt, zweimal mit Wasser gewaschen, über Magnesiumsulfat getrocknet, filtriert und abgestreift. Die Ausbeute betrug 4,0 g; $n_{\rm D}^{30}$ = 1,4990.

Beispiel 2

$$CHC1_2 - C - N$$
 $C_3H_7 - n$
 $C_3H_7 - n$

Es wurde eine Lösung aus 3,7 g (0,025 Mol) Dichloracetyl-chlorid und 100 ml Methylendichlorid hergestellt, die dann in einem Eisbad auf etwa 10 $^{\circ}$ C abgekühlt wurde. Dann wurden 5,1 g (0,05 Mol) Di-n-propylamin tropfenweise zugesetzt, wobei die Temperatur auf unter etwa 10 $^{\circ}$ C gehalten wurde. Das Gemisch wurde dann über Nacht bei Raumtemperatur gerührt, zweimal mit Wasser gewaschen, über Magnesiumsulfat getrocknet, filtriert und abgestreift. Die Ausbeute betrug 3,6 g; $n_{\rm D}^{30}$ = 1,4778.

Beispiel 3

$$CHC1_2 - C - N$$

$$CH(CH_3) - C = CH$$

Es wurde eine Lösung aus 3,7 g (0,025 Mol) Dichloracetyl-

chlorid und 80 ml Methylendichlorid hergestellt, die dann in einem Eisbad auf etwa 10 °C abgekühlt wurde. Dann wurden 4,2 g (0,05 Mol) N-Methyl-N-1-methyl-3-propinylamin in 20 ml Methylendichlorid tropfenweise zugesetzt, wobei die Temperatur bei etwa 10 °C gehalten wurde. Das Gemisch wurde dann etwa 4 Stunden lang bei Raumtemperatur gerührt, zweimal mit Wasser gewaschen, über Magnesiumsulfat getrocknet, filtriert und abgestreift. Die Ausbeute betrug 2,9 g; $n_{\rm D}^{30}$ = 1,4980.

Beispiel 4

Es wurde eine Lösung aus 100 ml Aceton und 5,05 g (0,1 Mol) Furfurylamin hergestellt und dann unter Zusatz von 7 ml Triäthylamin bei 15 °C gerührt. Diese Lösung wurde dann mit 5,7 g Monochloracetylchlorid versetzt und weitere 15 Minuten gerührt, während 500 ml Wasser zugesetzt wurden. Die Reaktionsmasse wurde filtriert, mit verdünnter Salzsäure in zusätzlichem Wasser gewaschen und dann auf ein konstantes Gewicht getrocknet.

Beispiel 5

Es wurde eine Lösung aus 5,7 g (0,05 Mol) Aminomethylthiazol in 100 ml Benzol und 7 ml Triäthylamin hergestellt. Diese Lösung wurde bei 10 - 15 °C gerührt und dann mit 5,2 ml (0,05 Mol) Dichloracetylchlorid tropfenweise versetzt. Das Reaktionsgemisch wurde 10 Minuten lang bei Raumtemperatur gerührt. Dann wurden 100 ml Wasser zugesetzt, und die Lösung wurde anschließend mit Benzol gewaschen, über Magnesiumsulfat getrocknet und dann zur Entfernung des Lösungsmittels filtriert.

$$CHCl_{2}-C-N \stackrel{H}{\underset{N}{\longrightarrow}} S \stackrel{Br}{\underset{N}{\longrightarrow}}$$

Es wurde eine Lösung aus 200 ml Aceton, 17,5 g (0,05 Mol) 2-Amino-6-brombenzothiazol und 7 ml Triäthylamin hergestellt. Die Lösung wurde unter Kühlen bei 15 °C gerührt. Dann wurden langsam 5,2 ml (0,05 Mol) Dichloracetylchlorid zugesetzt. Diese Lösung wurde 10 Minuten lang bei Raumtemperatur gerührt. Der Feststoff wurde abfiltriert, mit Äther und dann mit kaltem Wasser gewaschen und anschließend nochmals filtriert und bei 40 - 50 °C getrocknet.

Beispiel 7

$$n-C_9H_{19}-C-N$$
 $C(CH_3)_2-C$
 $C(CH_3)_2$

c,4 g 3-Methyl-3-butinylamin wurden in 50 ml Methylenchlorid aclöst; diese Lösung wurde mit 4,5 g Triäthylamin und anschlißend unter Rühren und Kühlen in einem Wasserbad tropfenweise mit 7,6 g Decanoylchlorid versetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, getrocknet und das Lösungsmittel abgestreift, wobei 7,1 g des Produktes erhalten wurden.

Beispiel 8

$$\begin{array}{c|c}
CH_2 & O & CH_2-CH=CH_2 \\
CH_2 & CH-C-N & CH_2-CH=CH_2
\end{array}$$

Es wurde eine Lösung aus 5,9 g Diallylamin in 15 ml Methylenchlorid and 6,5 g Triäthylamin hergestellt. Dann wurden unter

Rühren und Kühlen in einem Wasserbad 6,3 g Cyclopropancarbonylchlorid tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, getrocknet und das Lösungsmittel abgestreift, wobei 8,2 g des Produktes erhalten wurden.

Beispiel 3

Es wurde eine Lösung aus 4,5 g Diallylamin in 15 ml Methylenchlorid und 5,0 g Triäthylamin hergestellt. Dann wurden 7,1 g o-Fluorbenzoylchlorid unter Rühren und Kühlen in einem Wasserbad tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, getrocknet und das Lösungsmittel abgestreift, wobei 8,5 g des Produktes erhalten wurden.

Beispiel 10

Zur Herstellung von N,N-Bis(2-hydroxyäthyl)-dichloracetamid wurden 26,3 g Diäthanolamin in Gegenwart von 25,5 g Triäthylamin in 100 ml Aceton mit 37 g Dichloracetylchlorid umgesetzt. Dann wurden 6,5 g N,N-Bis(2-hydroxyäthyl)-dichloracetamid in 50 ml Aceton gelöst und anschließend mit 4 g Methylisocyanat in Gegenwart von Dibutylzinndilaurat und Triäthylamin als Katalysatoren umgesetzt. Das Reaktionspredukt wurde unter Vakuum abgestreift, wobei 8,4 g des Produktes erhalten wurden.

7,8 g Diallylamin wurden in 50 ml Methylenchlorid gelöst, wobei 8,5 g Triäthylamin tropfenweise zugesetzt wurden. Dann wurden 5,6 g Malonylchlorid unter Kühlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 7,0 g des Produktes erhalten wurden.

Beispiel 12

$$CH_2 = CH - CH_2$$
 $N - C - CH_2 - C$

7,9 g Diallylamin wurden in 50 ml Methylenchlorid gelöst, wobei 8,5 g Triäthylamin tropfenweise zugesetzt wurden. Dann wurden 6,2 g Bernsteinsäurechlorid unter Kühlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 9,7 g des Produktes erhalten wurden.

Beispiel 13

6,7 g N-Mothyl-1-methyl-3-propinylamin wurden in 50 ml Methylenchlorid gelöst, wobei 8,5 g Triäthylamin tropfenweise zugesetzt wurden. Dann wurden 6,2 g Bernsteinsäurechlorid unter Kühlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 7,0 g des Produktes erhalten wurden.

Beispiel 14

7,9 g Diallylamin wurden in 50 ml Methylenchlorid gelöst, wobei 8,5 g Triäthylamin tropfenweise zugesetzt wurden. Dann wurden 8,1 g o-Phthaloylchlorid unter Kühlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 10,9 g des Produktes erhalten wurden.

Peispiel 15

3,3 g N-Methyl-1-methyl-3-propinylamin wurden in 50 ml Methylenchlorid gelöst, wobei 4,5 g Triäthylamin tropfenweise zugesetzt wurden. Dann wurden 9,2 g Diphenylacetylchlorid unter Kühlen und Rühren tropfenweise zugesetzt. Hach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 9,9 g des Produktes erhalten wurden.

1.3 g Diallylamin wurden in 50 ml Aceton gelöst, wobei 7,4 g Fithelsäureanhydrid portionsweise unter Rühren zugesetzt wurden. Das Lösungsmittel wurde unter Vakuum abgestreift, wobei 13,0 g des Produktes erhalten wurden.

Budepiel 17

3.2 g N(1,1-Dimethyl-3-propinyl)0-phthalamidsäure wurden in 50 ml Methanol gelöst und mit 9,6 g Natriummethylat in Form einer 25 %igen Lösung in Methanol unter Rühren und Kühlen portionsweise versetzt. Das Lösungsmittel wurde unter Vakuum absestraift oder entfernt, wobei 9,0 g des Produktes erhalter wurden. Das Zwischenprodukt N(1,1-Dimethyl-3-propinyl)0-phthalamat wurde aus 29,6 g Phthalsäureanhydrid und 16,6 g 3-Amino-3-methylbutin in 150 ml Aceton hergestellt. Das Zwischenprodukt wurde mit Petroläther in Form eines weißen Foststoffes ausgefällt und ohne weitere Reinigung verwandt.

Beispiel 18

Din 500 ccm-4-Halskolben wurde mit Rührer, Thermometer und Tropftrichter versehen. Dann wurden 7,7 g Diäthylamin (0,105

Mol), 4,0 g Natronlauge und 100 ml Methylenchlorid in den Kolben gefüllt und in einem Trockeneis-Aceton-Bad gekühlt. Dann wurden 14,7 g (0,10 Mol) Dichloracetylchlorid portions-weise zugesetzt. Das Gemisch wurde eine weitere Stunde gerührt und in ein Eisbad getaucht. Es wurde dann einer Phasentrennung unterworfen, und die untere organische Phase wurde mit zwei Portionen von 100 ml verdünnter Salzsäure und zwei Portionen von je 100 ml einer Natriumcarbonatlösung gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum konzentriert, wobei 16,8 g des Produktes erhalten wurden.

Beispiel 19

50 ml Methylendichlorid wurden mit 4,0 g (0,025 Mol) N,N-Diallylcarbamoylchlorid versetzt. Dann wurden 1,8 g (0,025 Mol) 2-Butin-1-ol zusammen mit 2,6 g Triäthylamin in 10 ml Methylenchlorid tropfenweise zugesetzt. Das Reaktionsprodukt wurde über Nacht bei Raumtemperatur gerührt, zweimal mit Wasser gewaschen und über Magnesiumsulfat getrocknet, wobei 4,0 g des Produktes erhalten wurden.

Beispiel 20

$$N = C-S-CH_2-C-N$$

$$CH_2-CH=CH_2$$

$$CH_2-CH=CH_2$$

9,7 g (0,1 Mol) Kaliumthiocyanat wurden in 100 ml Aceton gelöst. Dann wurden 8,7 g (0,05 Mol) N,N-Diallylchloracetamid. zusammen mit 10 ml Dimethylformamid bei Raumtemperatur zugesetzt. Das Reaktionsprodukt wurde über Nacht gerührt. Das Reaktionsprodukt wurde teilweise abgestreift. Dann wurde Was-

ser zusammen mit zwei Portionen von 100 ml Äther zugesetzt. Der Äther wurde abgetrennt, getrocknet und abgestreift, wobei 7,2 g des Produktes erhalten wurden.

Beispiel 21

Es wurde eine Lösung von 50 ml Benzol, die 7,4 g (0,05 Mol) Dichloracetylchlorid enthielt, hergestellt. Diese Lösung wurde bei einer Temperatur von 5 - 10 °C mit 3,0 g (0,05 Mol) Cyclopropylamin und 5,2 g Triäthylamin in 2ml Benzol versetzt. Es bildete sich ein Niederschlag, und das Gemisch wurde zwei Stunden bei Raumtemperatur und eine Stunde bei 50 - 55 °C gerührt. Das Produkt wurde wie in den vorstehenden Beispielen aufgearbeitet, wobei 5,7 g des Produktes erhalten wurden.

Beispiel 22

4,7 g (0,032 Mol) Piperonylamin und 1,2 g Natriumhydroxid in 30 ml Methylenchlorid und 12 ml Wasser wurden bei -5° bis 0°C mit 4,4 g (0,03 Mol) Dichloracetylchlorid in 15 ml Methylenchlorid versetzt. Man rührte das Gemisch weitere 10 Minuten bei etwa 0°C und ließ es sich dann unter Rühren auf Raumtemperatur erwärmen. Die Schichten wurden abgetrennt, und die organische Schicht wurde mit verdünnter Salzsäure, einer 10 %igen Natriumcarbonatlösung und mit Wasser gewaschen und getrocknet, wobei 5,9 g des Produktes erhalten wurden.

Eine Lösung von 75 ml Benzol, die 5,7 g m-Chlorcinnamylchlorid enthielt, wurde hergestellt. Diese Lösung wurde bei einer Temperatur von 5 - 10 °C mit 3,2 g Diallylamin und 3,3 g Triäthylamin in 2 ml Benzol versetzt. Es bildete sich ein Niederschlag, und das Gemisch wurde zwei Stunden bei Raumtemperatur und eine Stunde bei 55 °C gerührt. Das Produkt wurde gewaschen und aufgearbeitet, wobei 5,8 g des Produktes erhalten wurden.

Beispiel 24

Ein 500 ccm-4-Halskolben wurde mit Rührer, Thermometer und Tropftrichter versehen. Dann wurden 11,9 g 2,4-Dimethylpiperidin, 4,0 g Natronlauge und 100 ml Methylenchlorii in den Kolben gefüllt, und das Gemisch wurde in einem Trockeneis-Aceton-Bad gekühlt. Dann wurden 14,7 g (0,10 Mol) Dichloracetylchlorid portionsweise zugesetzt. Das Gemisch wurde eine Stunde lang gerührt und in das Eisbad getaucht. Dann wurde es einer Phasentrennung unterworfen, wobei die untere organische Phase mit zwei Portionen von 100 ml verdünnter Salzsäure und zwei Portionen von je 100 ml einer 5 %igen Natriumcarbonatlösung gewaschen, über Magnesiumsulfat getrocknet und in einem Retationsverdampfer unter einem mit einer Wasserstrahlpumpe erzeugten Vakuum konzentriert wurde. Dabei wurden 10,3 g des Produktes erhalten.

209845/1180

AAA 28 (10) (10) (10)

Brispich 25

Tropftrichter versehen. Dann wurden 14,6 g (0,105 NoT)

ciz-trans-Decahydrochinolin und 4,0 g Natronlauge zusammen

mit 160 ml Methylenchlorid zugesetzt. Dann wurden 14,7 g

Dichloracetylchlorid portionsweise zugesetzt. Das Reaktions
cumisch wurde aufgearbeitet, wobei es etwa eine Stunde lang

gerührt, in ein Eisbad getaucht und dann einer Phasentrennung

untervorfen wurde; dann wurde die untere organische Phase

mit zwei Fortionen von 100 ml verdünnter Salzsäure und zwei

Fortionen von je 100 ml 5 %igem Natriumcarbonat geweschen,

lier Magnesiumsulfat getrocknet und konzentriert, wobei 22,3 g

des Produktes erhalten wurden.

avicpic1 25

Tin 500 ml-4-Halskolben wurde mit Rührer, Thermometer und 'Iropftrichter versehen. Dann wurden 13,6 g (0,104 Mol) 3,3'-Iminobis-propylamin zusammen mit 12,0 g Natronlauge und 150 ml Methylenchlorid zugesetzt. Anschließend wurde das Gemisch in einem Trockeneis-Aceton-Bad gekühlt, und 44,4 g (0,300 Mol) Dichloracetylchlorid wurden portions-weise zugesetzt. Dabei bildete sich ein öliges Produkt, das in Methylenchlorid nicht löslich war; dieses Produkt zurde abgetrennt, mit zwei Portionen von 100 ml verdünnter Salzsäure gewaschen und über Nacht stehen gelassen. Am nächsten Morgen wurde das Produkt mit zwei Portionen von jo 100 11 5 bigem Natriumcarbonat gewaschen, und das Produkt wurde

in 100 ml Äthanel aufgenommen, über Magnesiumsulfat getrocknet und konzentriert, wobei 21,0 g des Produktes erhalten wurden.

Boispiel 27

Ein 500 mi-4-Halskolben wurde mit Rührer, Thermometer und Tropftrichter versehen. Dann wurden 7,5 g (0,0525 Mol) Tetrahydrofurfuryl-n-propylamin, 2,0 g Natronlauge und 100 ml Mathylenchlorid zugesetzt. Anschließend wurden 7,4 g (0,05 Mol) Dichloracetylchlorid portionsweise zugesetzt. Das Gemisch wurde eine weitere Stunde in einem Eisbad gerührt und dann einer Fnasentrennung unterworfen; danach wurde die untere organische Phase mit zwei Portionen von 100 ml versühnter Salzsäure und zwei Fortionen von 100 ml einer 5 %igen Harriumearbonatlösung gewaschen, über Magnesiumsulfat getricknet und konzentriert, wobei 12,7 g des Produktes erhalten wurden.

Beispiel 28

Das Beispiel 27 werde vollständig wiederholt, mit der Augnahme, daß 8,9 g Piperidin als Amin verwandt wurden.

beispiel 29

Das Beispiel 28 wurde im w sentlichen vollständig wiederhilt; mit der Ausnahm, daß 9,1 / Morpholin als Amin verwand) word den.

209845/1180

BAD ORIGINAL

3,2 g Benzaldehyd und 7,7 g Dichloracetamid wurden mit 100 ml Benzol und etwa 0,05 g Paratoluolsulfonsäure vereint. Das Gemisch wurde solange unter Rückfluß erhitzt, bis kein Wasser mehr überging. Beim Abkühlen kristallisierte das Produkt aus Benzol, wobei 7,0 g des Produktes erhalten wurden.

Beispiel 31

2,5 3-Amino-3-methylbutin wurden in 50 ml Aceton gelöst, und dann wurden 3,5 g Triäthylamin zugesetzt. Anschließend wurden 6,0 g Adamantan-1-carbonylchlorid unter Rühren und Kühlen tropfenweise zugesetzt. Das Gemisch wurde in Wasser gegossen, und der feste Stoff wurde durch Filtrieren aufgefangen und unter Vakuum getrocknet, wobei 6,5 g des Produktes erhalten wurden.

Beispiel 32

$$N = C - C - NH - C$$

$$CH_3 \qquad 0$$

$$CH_3 \qquad 0$$

$$CH_3 \qquad 0$$

$$CH_3 \qquad CH_3$$

$$CH_3 \qquad CH_3$$

$$CH_3 \qquad CH_3$$

$$CH_3 \qquad CH_3$$

5,1 g 2-Cyanoisopropylamin wurden in 50 ml Aceton gelöst,

und dann wurden 6,5 g Triäthylamin zugesetzt. Anschließend wurden 5,3 g Benzol-1,3,5-tricarbonsäurechlorid unter Rühren und Kühlen tropfenweise zugesetzt. Das Gemisch wurde in Wasser gegossen, und das feste Produkt wurde durch Filtrieren aufgefangen und unter Vakuum getrocknet, wobei 7,6 g des Produktes erhalten wurden.

Beispiel 33

6,0 g Diallylamin wurden in 50 ml Methylenchlorid gelöst, und dann wurden 6,5 g Triäthylamin zugesetzt. Anschließend wurden 6,6 g 3,6-Endomethylen-1,2,3,6-tetrahydrophthaloylchlorid unter Rühren und Kühlen tropfenweise zugesetzt.

Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 9,3 g des Produktes erhalten wurden.

und dann wurden 4,5 g Triäthylamin zugesetzt. Anschließend wurden 7,2 g trans-2-Phenylcyclopropanearbonylchlorid unter Künlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 9,2 g des Froduktes erhalten wurden.

Es wurde eine Lösung aus 4,0 g (0,03 Mol) 2-Methylindolin, 7,0 ml Triäthylamin und 100 ml Methylenchlorid hergestellt. Dann wurden 2,9 ml Dichloracetylchlorid im Verlauf von et einer Minute zugesetzt, wobei die Temperatur durch Kühlung mit Trockeneis unter 0 °C gehalten wurde. Nachdem sich die Lösung auf Raumtemperatur erwärmt hatte, wurde sie eine Stunde lang stehen gelassen; anschließend wurde sie mit Wasser und dann mit verdünnter Salzsäure gewaschen, über Magnesiumsulfat getrocknet und eingedampft, wobei ein Feststoff erhalten wurde, der mit n-Pentan gewaschen wurde. Dabei wurden 5,0 g des Produktes erhalten.

Ein 500 ccm-4-Halskolben wurde mit Rührer, Thermometer und Tropftrichter versehen. Dann wurden 8,9 g Cyclooctyl-n-propylamin, 2,0 g Natronlauge und 100 ml Methylenchlorid in den Kolben gefüllt, und das Gemisch wurde in einem Trockeneis-Aceton-Bad gekühlt. Dann wurden 5,6 g Chloracetylchlorid portionsweise zugesetzt. Das Gemisch wurde etwa eine weitere Stunde gerührt, in das Eisbad getaucht und dann einer Phasentrennung unterworfen. Die untere organische Phase wurde mit zwei Portionen von 100 ml verdünnter Salzsäure und zwei Portionen von 100 ml einer 5 tigen Natriumcarbonatlösung gewaschen, über Magnesiumsulfat getrocknet und konzentriert, wobei 9,5 g des Produktes erhalten wurden.

$$\mathsf{CH}_{2}\mathsf{C1-C-N} \underbrace{\mathsf{C}_{2}\mathsf{H}_{5}}_{\mathsf{CH}_{2}} \mathsf{-CH}_{3}$$

Ein 500 ccm-4-Halskolben wurde mit Rührer, Thermometer und Tropftrichter versehen. Dann wurden 7,8 g (0,0525 Mol) p-Methylbenzyläthylamin, 2,0 g Natronlauge und 100 ml Methylenchlorid in den Kolben gefüllt. Das Gemisch wurde in einem Trockeneis-Aceton-Bad gekühlt. Dann wurden 5,6 g (0,05 Mol) Chloracetylchlorid portionsweise zugesetzt. Das Gemisch wurde etwa eine weitere Stunde gerührt, in das Eisbad getaucht und dann einer Phasentrennung unterworfen, wobei die untere organische Phase mit zwei Portionen von 100 ml verdünnter Salzsäure und anschließend mit zwei Portionen von 100 ml einer 5 %igen Natriumcarbonatlösung gewaschen, über Magnesiumsulfat getrocknet und konzentriert wurde. Dabei wurden 9,5 g des Produktes erhalten.

4,7 g Aminopyridin wurden zusammen mit 100 ml Aceton in ein Reaktionsgefäß gefüllt und bei 10 - 15 °C gerührt.

Dann wurden 7,0 ml Triäthylamin tropfenweise zugesetzt.

Danach wurde das Reaktionsgemisch im Verlauf von fünf
Aceton
Minuten mit 5,25 ml Dichloracetylchlorid in 10 ml/versetzt und bei Raumtemperatur gerührt. Die Feststoffe wurden abfiltriert und mit Aceton gewaschen, wobei 10,0 g des Produktes erhalten wurden.

Beispiel 39

Eine Lösung von 8,1 g (0,05 Mol) 4-Aminophthalimid in 100 ml Dimethylfuran wurde im Verlauf von 5 Minuten bei 0 - 10 °C unter Rühren mit 5,0 g Dichloracetylchlorid versetzt. Dann wurden 7,0 ml Triäthylamin zugesetzt. Die Reaktionsmasse wurde eine halbe Stunde lang bei Raumtemperatur gerührt, und dann wurde ein Liter Wasser zugesetzt. Anschließend wurde sie mit Wasser filtriert und getrocknet, wobei 12,0 g des Produktes erhalten wurden.

$$\begin{array}{c} \text{CHC1}_2\text{-C-N} & \overset{\text{O}}{\underset{\text{CH}_2\text{-CH}_2\text{-O-C-NH-C}_3\text{H}_7\text{-i}}{\text{CH}_2\text{-CH}_2\text{-O-C-NH-C}_3\text{H}_7\text{-i}}} \\ \text{CH}_2\text{-CH}_2\text{-O-C-NH-C}_3\text{H}_7\text{-i} \\ & \overset{\text{O}}{\underset{\text{C}}{\text{H}_2\text{-C}}} \end{array}$$

Zur Herstellung der Verbindung dieses Beispiels wurden 5,4 g N,N-Bis(2-hydroxyäthyl)-dichloracetamid mit 4,3 g Isopropylisocyanat in 50 ml Aceton in Gegenwart von Dibutylzinndilaurat und Triäthylendiamin als Katalysatoren umgesetzt. Dabei wurden 8,2 g des Produktes erhalten.

Beispiel 41

Zur Herstellung der Verbindung dieses Beispiels wurden 3,6 g N,N-Bis(2-hydroxyäthyl)-chloracetamid in Gegenwart von 50 ml Aceton und Dibutylzinndilaurat und Triäthylendiamin als Katalysatoren mit 5,0 g Cyclohexylisocyanat umgesetzt. Die Reaktionsmasse wurde auf Rückflußtemperatur erhitzt und unter Vakuum abgestreift. Dabei wurden 6,9 g des Produktes erhalten.

15 g Aceton und 12,2 g Äthanolamin wurden in 150 ml Benzol vereint und solange unter Rückfluß erhitzt, bis kein weiteres Wasser mehr überging. Bei der Untersuchung der so entstandenen Lösung ergab sich, daß sie 2,2-Dimethyl-1,3-oxazolidin enthielt. Ein Viertel der Benzollösung (0,05 Mol) wurde mit 7,4 g Dichloracetylchlorid und 5,5 g Triäthylamin umgesetzt, mit Wasser gewaschen, getrocknet und unter Vakuum abgestreift, wobei ein leicht dunkelgelber Feststoff erhalten wurde. Ein Teil dieses Feststoffes wurde aus Äther umkristallisiert, wobei ein weißes Produkt erhalten wurde.

Analog hierzu wurden weitere Verbindungen unter Verwendung der entsprechenden Ausgangsmaterialien wie vorstehend aufgeführt hergestellt. In nachstehender Tabelle werden Beispiele erfindungsgemäßer Verbindungen zusammengestellt. Die den Verbindungen zugeordneten Nummern werden im folgenden beibehalten.

:^{\$} :

	R.	-ch2-ch-ch2	-CH ₂ -CH=CH ₂	-CH2-CH=CH2	-CH2-CH=CH2	-CH2-CH=CH2	-CH2-CH=CH2	-сн ₂ -сн=сн ₂	-CH2-C=N	Ħ	-C3H7	#	ш	н
Tabelle I: O R-C-N R2	R ₁	-CH2-CH=CH2	-CH2-CH=CH2	-CH ₂ -CH ₂	-CH2-CH=CH2	-cH2-CH-CH2	-CH2-CH=CH2	-GH2-CH=CH2	-CH ₂ -C= N	-CH2-CH2	-c ₂ H ₇	$-c(cH_3)_2-c-c$	$-c(cH_3)_2-c$: c	-OH2-CH=CH2
	뼈	-CH(CH ₃)Br	-c(cH ₃) ₂ Br	-cc12-cH3	-ccl=ccl ₂	-CF2-C2F5	-CHC12	-cH2c1	-CHC1 ₂	-cec1 ₂	-cHC12	-cec12	-ch2cl	-cc1 ₃
	Verbindung Nr.	τ.	N	24	4	ī.	9	7	σο	6	01	11	12	13

	R2	-сн(сн ₃)-с≡сн	-CH ₂ -CH ₂ -	$-c(cH_3)_2-c=cH$	-CH2-CH-CH2	-CH(CH ₃)-C=CH	$-c(cH_5)_2-c=N$	-CH2-CH=CH2	-он(сн ³)-с - сн	$-c(cH_3)_2-c=cH$	-CH(CH,)C-:: CH
Tabelle I (Fortsetzung:	R.	-¢H2-	-C_H2-GH=CH2	Щ	-CH ₂ -CH=CH ₂	-CH ₃ .	ш.	-CH2-CH=CH2	-CH ₃	щ	-CH,
Tabelle I	(pet	さ こ こ ら し で で で と に で と に り こ り こ り り り り り り り り り り り り り り り	-d-G-C ₂ H ₅	$-cH_2-cH(cH_3)-cH_2-t-c_4H_9$	$-\alpha(cH_3)_2$ $+\sigma_3H_7$	-cH2-t-C4H9	-0H2-t-C4H9	-сн(сн ₃)-с ₃ н ₇	~сн(сн ₃)-с ₃ н ₇	-сн(сн ₃)-с ₃ н ₇	1-02用,
	Verbindung Nr.	.	. 30	51	52	33.	.34	35	36	37	8

	Tabelle I	Tabelle I (Fortsetzung:	
Verbindung Nr.	æ	R	R.2
. 39	-6 ₁₃ H27	CH2-CH=CH2	-CH2CH=CH2
40	-c ₁₁ H ₂₃	CH2-CH=CH2	-сн ₂ сн=сн ₂
41 .	-c ₁₁ H ₂₃	щ	$-c(cH_3)_2-c = cH$
42	-c ₉ H ₁₉	-cH2-CH-CH2	-ch-ch-ch-
43	-c ₉ H ₁₉	щ	$-c(cH_3)_2-c = cH$
44	-c6H13	-ch2-ch*ch2	-ch2-ch=ch3
45	-ceH13	-0H ₃	-ch(ch ₃)-c == ch
46	-c6H13	щ	$-c(cH_3)_2-c = cH$
47	-c4H9	ш	$-c(cH_3)_2-c = cH$
48	-C ₂ H ₇	-CH2-CH=CH2	-ch2-ch=ch2
49	-C2H7	-cH ₃	-CH(CH2)-C = CH
50.	-c ₂ H ₇	ш	$-c(cH_3)_2$ c $\equiv CH$
51	-сн ₃	-CH ₂ -CH=CH ₂	-ch-ch-ch2

(Fortsetzung:
Н
의
밁
뎱

Verbindung Nr.	A	R ₁	R2
. 52	-CH ₃	", ¤	$-c(cH_3)_2-c \equiv cH$
53	-c(cH ₃)-cH ₂	ш	$-c(cH_3)_2-c \equiv cH$
54	-CB-CB-CH ₃	-ch-ch-ch2	-CH2-CH=CH2
55	-сн-сн ₅	#	$-c(c_{R_3})_2-c=c_{R}$
. 26	-CH-C(CH ₃) ₂	- CH ₃	-CH(CH ₃)-C == CH
57	-CB-C(CB ₃) ₂	¤	-c(cH ₃) ₂ -c = CH
58	-CH-CH-CH-CH-CH3	CHD=CHD-CHO-	-ch2-ch-ch2
	-CH-CH-CH-CH-CH ₂	щ	$c(cH_3)_2^c\equiv cH$
09	сн ₂ сн ₂ .	-CH2-CH=CH2	-CH ₂ -CH=CH ₂
\$	OH ₂	H	H5 11 0*("H5) H5"

MANUFACT COM

Tabelle I (Fortsetzung:	Ing Nr. R	-CH2-CH=CH2 -CH2-CH2F	-сн -сн -сн -сн -сн -сн -сн -сн (сн (сн -сн (сн (сн -сн (сн -сн (сн (сн (сн (сн (сн (сн (сн (сн (сн (н -c(cн ₃) ₂ -с сн	-CH2-CH=CH2 -CH2-CH=CH2	-сн=сн ₂ -сн(сн ₃)-с -сн	-CH=CH ₂	-CH ₂ -CH ₂ -CH=CH ₂ -CH=CH ₂
	Verbindung Nr.	89	69	70	[ัญ	ĸ.	5

	R ₂	$-cH(cH_2)-c \equiv cH$	$-c(cH_3)_2-c = cH$	-сн ₂ -сн=сн ₂	-сн(сн ₃)-с = сн	-сн(сн ³)-с = св	-C(CH ₃) ₂ -C == CH
Tabelle I (Fortsetzung):	R	c _{HO} -	æ	-ch2-ch=ch2	-cH ₃	- CH ₂	123
Tabelle I	#	-0H2-	-0H2-(S)	CF ₃	CF3	(→ H	F H
	Verbindung Nr.	75	76.	77	78	79	8

	Tabelle I	Tabelle I (Fortsetzung:	
Verbindung Nr.	æ	E.	2 H
E.	-cbr ₃	-CH2-CH=CH2	-CH2-CH-CH2
	-CBr ₃	-CH ₂	-сн(сн ₃)-с — св
83	-cBr ₃	Ħ	-c(dH ₃) ₂ -c CH
84	-OBr ₃	щ	-c(ch ₃) ₂ -c - N
85	-cbr ₃	缸	-CH2-CH=CH2
98	-001=CEC1	-CH ₃	ECH(CH ₃)C = CH
87	$-(\mathrm{CH}_2)_4$ - CH_2 -Br	-CH2CH=CH2	-CH2CH-CH2
88	-(CH ₂) ₄ -CH ₂ -Br	-CH ₃	-CE(CH ₃)-C == CH
89	្តាន	-ch ₂ -ch=ch ₂	-CH ₂ -CH=CH ₂
06		-0H ₃	-сн(сн ₃)-с ··· сн

	R2	-сн(сн ²)-с - сн	-сн ₂ сн=сн ₂	-сн(сн ²)-с - св	-c(cH ₂) ₂ -c cH	-CH2-CH=CH2	-c(cH ₃) ₂ -c CH	-сн (св ³)-с === сн
Tabelle I (Fortsetzung:	H H	-CH3	-ch2cH=cH2	-CH ₃	щ	-CH2-CH=CH2	·Ħ	-св ₃
Tabelle I	æ			10 - 10 m	19 × ×	√ \.o-cH ₃	O-O-CH ₂	0 O
	Verbindung Nr.	91	. 26	. 93	94	95	. 96	

209845/1180

JAMONES N.S.

BAD ORIGINAL

				• ,		•
	^ж 2	$-c(\sigma H_{\frac{3}{2}})_2-c=\sigma H$	-сн(сн ₃)-с сн	-с(сн ₃) ₂ -с сн	-сн(сн ₃)-с- сн	-с(сн ₃) ₂ -с сн
Tabelle I (Fortsetzung):	R ₁	ш	-cH ₃	ш	-он3	Ħ
Tabell	H	,	OCH ₂ -/ OCH ₂ OCH ₂	осн ₃	CH ₂	CH ₃
	Verbindung Nr.	98	66	100	101	102

	2 2	-с(сн ₃) ₂ -с сн	-сн(сн ₃)-с · сн	-CH ₂ -CH=CH ₂	-сн(сн ²)-с - сн	-CH ₂ -CH=CH ₂	-c(cH ₃) ₂ -c CH	-ch2-ch=ch2
Tabelle I (Fortsetzung):	H.	¤	-CH ₃	-сн ₂ -сн=сн ₂	- CH ₂	-CH2-CH=CH2	н	-CH2-CH=CH2
Таре	æ	010	010			=		, s
	Verbindung Nr.	109	110	111	112	113	114	315

	R2	-с(сн ₃) ₂ -с 🚎 он	-с ₂ н ₄ он о	-CH2-CH2-O-C-CHCl2	-CH2-CH+0-SO2-CH3	-сн(сн ²)-с = сн	-сн(сн₂)-с = сн	$-ce(ce_3)-c \equiv ce$	-c(ch ₃) ₂ -c== ch
Tabelle I (Fortsetzung):	R_{1}	Ħ	-с ₂ н ₄ он о	-CH2-CH2-0-C-CHC12	$-c_{\rm H_2}-c_{\rm H_2}-0-s_{\rm O_2}-c_{\rm H_3}$	-cH ₃	CH ₃	-CH ₃	н
Tabel	et	S	-CHC12	-CHC1 ₂	-CEC1 ₂		[¯°α	-CHBr-CH ₃	-CHBr-CH ₃
	Verbindung Nr.	116	711	118	119	120	121	122	123

Fortsetzung):	
Tabelle I	

R2	-сн ₂ -сн=сн ₂	$-ce(ce_3)-c=ce$	$-c(cH_3)_2-c \equiv cH$	$-c(cH_3)_2-c=cH$	-CH2-CH=CH2	-CH(CH ₂)-C -::CH	$c(cH_3)_2-c\equiv cH$	-cH2-CH2CI	о -сн ₂ -сн ₂ -о-с-мн-сн ₃	п св ₂ -сн-о-с-о-сн ₃
R ₁	-GH2-GH=CH2	-CB3	##	121 -	-CH2-CH=CH2	+CH ₃	pat .	-сн ⁵ -сн ² сл	0 " -CH ₂ -CH ₂ -0-C-NH-CH ₃	EB-0-0-0-ZED-ZED-
re l	-CH2-CH2C1	-CH2-CH2C1	-CH2-CH2C1	-CBr(CH ₃) ₂	-cH ₂ I	-CH2I	-CH2I	-chc12	-GEC1 ₂	-chcl ₂
Verbindung Nr.	124	125	126	121	128	129	130	131	132	133

· · · · · · · · · · · · · · · · · · ·	. В.	0 -c-c ₂ H ₅ -cH ₂ -cH ₂ -0-c-c ₂ H ₅	-CH2-CH2-O-	-CH2-CH=CH2	но: o-(² но)-	-с(сн ₃) ₂ -с ≡он	-CH2-CH=CH2	-сн(сн ³)-с == сн
Tabelle I (Fortsetzung):	F.	-CH ₂ -CH ₂ -O-C-C ₂ H ₅	"-сн ₂ -сн ₂ -о-с-s-с ₂ н ₅	-CH2-CH=CH2	-CH ₃	, m	-ch2-ch=cH2	-CH ₂
Tabel	æ	-CHC1 ₂	-CHC1 ₂	-0H2	-0H2	-0H2	-CH2-CH2	-CH2-CH2
	erbindung Nr.	134	135	136	137	158	159	140

	R2	-CH2-CH=CH2	но = о-([€] но)но-	-сн2-сн=сн2	но ≡≡ о-(€но)но-	-c(ch ₅) ₂ -c : - ch	-CH ₂ -CH=CH ₂	-сн(сн ₃)-с — св
Tabelle I (Fortsetzung):	r r	-ch2-ch=ch2	-cH ₃	-CH2-CH=CH2	- CH ₂	щ	-CH2-CH=CH2	ж. Эн. —сн ₃
Tabelle	EM .			-CH ₂ -C-N(CH ₂ -CH=CH ₂) ₂	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	о -сн ₂ -с-ин-с(сн ₃) ₂ с сн о	-c-N(CH ₂ -CH=CH ₂) ₂	$-c-N(cH_3)-cH(cH_3)-c = CH$
	Verbindung Nr.	141	142	143	144	145	146	147

后下,一个人的各种数据。

Tabelle I (Fortsetzung):

R ₂	C(CH ₃) ₂ -C··· CH	-ch-ch-ch2	-сн(сн ²)-с сн	-ch ₂ -ce=ch ₂	-сн(сн3)-с ≡ сн	-CH2-CH=CH2
R1	Ħ	-cH ₂ -cH=cH ₂	сн3	-CH ₂ -CH=CH ₂	-CH3	-CH2-CH=CH2
H O	$-c-nH-c(cH_3)_2-c = cH$	CH2-CH2-C-W(CH2-CH-CH2)2	" -сн ₂ -с- _N (сн ₃)-сн(сн ₃)-с . сн о	"-(cH ₂) ₃ -c-N(cH ₂ -CH=CH ₂) ₂	$-(cH_2)_3-c-N(cH_3)-cH(cH_3)-c \equiv cH$	$-(cH_2)_4-c-N(cH_2-cH=cH_2)_2$
Verbindung Nr.	148	149	150	151	152	153

	Tabelle I (Fortsetzung):	
Verbindung Nr.	H. L.	22 22
154	$-(cH_2)_4-c-N(cH_3)-cH(cH_3)-c=cH$	-сн(сн ³)-с == св
155	$-c(cH_2)_2-c-N(cH_3)-cH(cH_3)-c=cH$	$-cH(cH_3)-c = cH$
156	$-(cH_2-c(cH_3)_2-cH_2-c-NH-c(cH_3)_3-c-=cH$	-с(сн ₃) ₂ -с сн
157	O-CH2-0-CH2-C-CH=CH2)2 -CH2-CH+CH2	-сн2-сн=сн2
158	$-cH_2-c-cH_2-c-N(cH_3)-cH(cH_3)-c \Longrightarrow cH$	-сн(сн₂)-с≔ св

	R ₂	но о-(^є но)но-	-с(сн ₃) ₂ -с — сн	-сн(сн ₃)-с == сн	-0H ₂ CH=CH ₂
Tabelle I (Fortsetzung):	H.	-cH ₃	; ; ;	-0H ₃	-CH2CH=CH2
Tabelle	pg	$c \longrightarrow c \longrightarrow$	0=c	\	$N(CH_{\frac{1}{2}})-CH(CH_{\frac{1}{2}})-C = CH$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ $0=C$ $\dot{N}(CH_{\frac{1}{2}}CH-CH_{\frac{1}{2}})_{\frac{1}{2}}$
	Verbindung Nr.	. 091	161	162	163

209845/1130

: "	^K 2	-ch2-ch=ch2	-c(cH ₃) ₂ -c=cH	-CH ₂ -CH=CH ₂	-c(сн ₃) ₂ -с. сн	-CH ₂ -CH=CH ₂	$-cH(cH_{\frac{1}{2}})-c \Rightarrow cH$
Tabelle I (Fortsetzung):	K.	-сн ₂ -сн=сн ₂	щ	-CH2-CH=CH2	Ħ	-0H2-CH=CH2	c _H o-
Tabelle I (F	0	$-c(cH_5)_2-c-N(cH_2-cH=cH_2)_2$	"-с(сн ₃) ₂ -с-NH-с(сн ₃) ₂ -с — сн	OM COM	NO	Y NO2	-()- NO ₂
	Verbindung Nr.	164	165	166	167	168	169

209845/11gn

$\ddot{\sim}$
Fortsetzung)
$\dot{}$
н
o)
Tabell

Verbindung Nr.	æ	R	#2
181	-CHCL2	-c ₃ H ₇	-CH2-CH=CH2
182	-chc1 ₂	n-c4H9	-cH ₂ -cH=CH ₂
183	-chc1 ₂	-ch2-ch=ch2	$-cH_2-ccl=cH_2$
184	-CHC12	-c ₃ H ₇	-cH ₂ -ccl=cH ₂
185	-cHC12	i-c4H9	-CH2-CH=CH2
786	-cec12	-cH2-c(cH3)-CH2	-CH2-CH-CH2
187	-chc1 ₂	n-c4H9	sec-C4H9
188	-cHCl ₂	n-c4H9	1-C4H9
189	-cuc1 ₂	n-C4H9	$i-c_3H_7$
190	-cHC1 ₂	1-C4H9	$i-c_3H_7$
191	-chcl ₂	i-c4H9	n-C ₃ H ₇
192	-cuc12	88c-C4H9	n-c ₃ H ₇

	Tabel	Tabelle I (Fortsetzung):	
Terbindung Nr.	i#	ж	R2
193	-сисл ₂	n-C ₄ H ₉	n-C ₂ H ₇
194	-chc1 ₂	-c ₂ H ₅	i-C4H9
÷.			o '
195	-сно12	н	
196	-CEC1 ₂	€ no-	-NH ₂
197	Ć1	-CH ₂ -CH=CH ₂	-CH2-CH=CH2
198	-снс1 ₂)) <u>M</u> 70=	$=c\sqrt{n}(cH_3)_2-7_2$
199	-cH ₂ c1	=C\n/N(C	$=c\sqrt{N}(cH_3)_2\sqrt{2}$
200	$-0-cH_2-c = c-cH_3$	-CH ₂ -CH=CH ₂	-CH2-CHECH2

(Fortsetzung:)
된
) ⊟
ລຸ
듸
6
امّ
Tabel1

R2	-CH ₂ -CH=CH ₂ -CH ₂ -CH=CH ₂	-CH ₂ -CH=CH ₂	-CH ₂ -CH=CH ₂	-CH ₂ -CH=CH ₂	0 -N(CH ₃)-C-CHCl ₂	" -N(c-CEC1 ₂) ₂	-CH2CH=CH2
r _H	-ch ₂ -ch=ch ₂ -ch ₂ -ch=ch ₂	-ch2-ch=ch2	-CH ₂ -CH=CH ₂	-ch ₂ -ch=ch ₂	##	-сн ₃	-CH2-CH=CH2
x	-0-c ₂ H ₄ cl	-0-	-CH2-S-C == N	-CH ₂ -N(CH ₂ -CH=CH ₂) ₂	-CHC1 ₂	-cec ₁₂	-CH ₂ -C-CH ₃
Verbindung Nr.	201	203	204	205	206	207	208

	R2	-ch ₂ ch=ch ₂ -ch ₂ ch=ch ₂	"-CH ₂ -CH ₂ -O-C-CHCl ₂	$-cH_2-cH-c = N$	\bigcirc	() He's	
Tabelle I (Fortsetzung):	H.	-CH ₂ -CH=CH ₂ -CH ₂ -CH=CH ₂	-02H5	$-cH_2-cH_2-c = N$	щ	Ħ	m
	м	-ch ₂ -c = n -ch ₂ -0-c = n	-0HC1 ₂	-CHC1 ₂	-снс12	-cHc1 ₂	-chc1 ₂
	Verbindung Nr.	209 210	211	212	213	214	215

	R2 1-C ₂ H ₇	1-C ₂ H ₇	-CH2-CH(CH3)2	CH ₂ -CH CH ₂	i-C4 ^H 9	t-c4H9	t-C4H9	-сн(сн ₃)-сн ₂ -сн(сн ₃)-сн ₃
Tabelle I (Fortsetzung:)	r H	Ħ	m	#	,	Ħ	ш.	#
	æ	-cHC1 ₂	-cH2c1	-CHC1 ₂	-cHC1 ₂	-ch ₂ cl	-cHCl ₂	-cH2c1
	Verbindung Nr.	216	217	218	219	220	221	222

· ·		Tabelle I (Fortsetzung:)	
Verbindung Nr.	æ	R	22 24
223	-0HC1 ₂	щ	(s)
224	-chc1 ₂	щ	-CH ₂
225	-снс1 ₂	ш.	-0H2/,C1
226	-chc1 ₂	Ħ	-CH ₂ -/ ' - C1
227	-04012	Ħ	-CH2(
228	-CH CH	-ch ₂ -ch=ch ₂	-CH2-CH=CH2

BAD ORIGINAL

	. H2	-CH2-CH≈CH2	-ch2-ch=ch2	-CH2-CH=CH2	-CH2-CH=CH2	-сн=сн-сн ₂ -сн ₃	-CH=CH=CH2-CH3	c CH2-CH3	-CH=CH-CH2-CH3
Tabelle I (Fortsetzung):	E .	-сн ₂ -сн=сн ₂	-CH2-CH=CH2	-CH2-CH=CH2	\$\bigsilon\$	-t-C4H9	-c(cH ₃) ₂ -c -cH	-c ₂ H ₅	n-c ₄ H ₉
C	æ	-CH=CH-CH-CH	-CH-CH-/-	-CH=CH -	-CHC1 ₂	-chc1 ₂	-chc1 ₂	-cHC1 ₂	-CHC1 ₂
	Verbindung Nr.	229	230	231	232	233	234	235	236

209845/1180

Fortsetzung):	. ,
Tabelle I	

R2	г-0 ₅ н ₇	n-C ₃ H ₇	-CH2-CH=CH2	-CH ₂ -CH=CH ₂	-N=C(CH ₃) ₂	-CH2-CH*CH2	-CH2-CH=CH2	-c ₂ H ₅
$\frac{R_1}{I}$	\Diamond	-c(cH ₃)=cH-CH ₂ -CH ₃	-ch2-ch=ch2	-CH2-CH=CH2	-0H ₃	-CH ₂ -CH=CH ₂	-ch ₂ -ch=ch ₂	sec-C ₄ H ₉
e:	-chcl ₂	-cHC1 ₂	-ch ₂ -so ₂ -n(ch ₂ -ch=ch ₂)	-CH(S-C ₂ H ₅) ₂	-CEC1 ₂	" -GH2-0-C-CHC1 ₂	-CH(0-(-)- C1)2	-CHC1 ₂
Verbindung Nr.	237	238	239	240	241	242	243	244

	R ₂	-c ₂ H ₅	-c ^{2H} 5	-c ₂ H ₅	s s	(8)	-CH2-(7)	Sec-C ₅ H ₁₁	880-C ₄ H ₁₁
Tabelle I (Fortsetzung):	R	t-C4H9	sec-C ₅ H ₁₁	$i-c_5H_7$	-CH ₃	-c ₂ H ₅	п-С ₃ н ₇	ch ₃	n-C ₃ H ₇
·	ਖ਼	-chc1 ₂	-chc1 ₂	-0HC1 ₂	-cec1 ₂	-cec1 ₂	-chc1 ₂	-cecl ₂	-cuc1 ₂
	Verbindung Nr.	245	246	247	248	249	250	251	252

. (हा	R2	n-C ₅ H ₁₁	sec-C ₄ H ₉	1-C ₂ H ₇	$-cH(cH_3)-cH(cH_3)-cH_3$	CH ₂	S CH ₂	S CH ³	sec-C4H9
Tabelle 1 (Forts.tzung):	R	-n-C ₂ H ₇	i-C4H9	-c _H 3	-сн ₃	-C2H2	-C2H2	-C ₂ H ₅	-cn ₅
	ч	-CHC1 ₂	-chc1 ₂	_cHCl2	-cacı ₂	-chc1 ₂	-CHC1 ₂	-CHC1 ₂	-chc1 ₂
·	Verbindung Nr.	253	254	255	256	257	258	259	560

209845/1180

	. R2	$^{\mathrm{n-c}}6^{\mathrm{H}_{13}}$	t-C4H9	-сн(сн ₃)-сн(сн ₃)-сн ₃	Ÿ	-CH2 - CH3	-CH ₂ (Th) CH ₃	-CH ₂	CH ₃
Tabelle I (Fortsetzung):	B ₁	-c ² H ²	n-C ₃ H ₇	n-C ₂ H ₇	n-C ₃ H ₇	$n-c_3H_7$	n-C ₂ H ₇	п-С ₃ н ₇	-c ₂ H ₅
	es .	-chc1 ₂	-chc1 ₂	-cHC1 ₂	-CHC1 ₂	-cBC1 ₂	-cuc1 ₂	-chc1 ₂	-cHC1 ₂
· ·	Verbindung Nr.	261	262	263	264	265	266	267	. 568

Verbindung Nr. R

Verbindung Nr. R

$$R_1$$
 $CH01_2$
 CH_3
 CH_3

	R ₂	. ·				
Tabelle I (Fortsetzung):	T a	C ₃ H ₇	CH ₃	C B	CH ₃	O H CO
	œ	-chc1 ₂	-CHC12 .	-cHC1 ₂	-CEC1 ₂	-cec12
	Verbindung Nr.	274	275	276	277.	278 .

209845/1180

Verbindung Nr. R. R. R. R.
$$\frac{R_1}{284}$$
 $\frac{R_2}{-CHO1_2}$ $\frac{R_2}{-C_2H_5}$ $\frac{R_2}{-CH_2}$ $\frac{CH_2}{-CH_2}$ $\frac{CH_2}{-CH_2$

	R ₂	-сн ₂ -сн ₂ -м(с ₂ н ₅)-с-снс1 ₂	-с ₃ н6-ин-с-сыс1 _{2.}	-сн ₂ -с-о-с ₂ н ₅	S	(m)	61	⊢
Tabelle I (Fortsetzung):		-c ₂ H ₅ -c _H 2-ci	" -с ₃ н ₆ -ин-с-сис1 ₂ -с ₃ н ₆₋₁	-CH2-0	-сн2-сн-сн2	-c ₂ H ₅	л-С ₃ Н ₅ -СН ₂ (-0H2-(0 n-03E
<u>ral</u>	R	-CHC1 ₂ -C ₂	-CHC1 ₂ -C ₂ H ₆ -N	-cHC12	-CHC12 -CH2-	-CEC12	-cHC12	-CHC12
	Verbindung Nr.	289	290	291	292	293	294	295

tzung):	R2	n-6 ₃ H ₇		$^{n-C}6^{\mathrm{H}_{13}}$	-c ₂ H ₄ -0-CH ₃	-c2H4-0-C2H5	-0H2-	-0H2-	-CH2
Tabelle I (Fortsetzung):	R	-CH ₂ —	n-C ₃ H ₇	$n-c_3H_7$	-c2H4-0-CH3	-c2H4-0-c2H5	-C ₂ H ₅	n-C ₂ H ₇	i-c ₃ H ₇
	æ	-chc1 ₂	-CHC1 ₂	-chc1 ₂	-CHC12	-снс ₁₂	-chc1 ₂	-CHC1 ₂	-chc1 ₂
	Verbindung Nr.	296	297	298	299	300	301	302	303

BAD ORIGINAL

••	. R2						-ch2-ch20H	-CH2-CH2-C = N	
Tabelle I (Fortsetzung):	R	-c ₂ H ₅	n-c ₂ H ₇	i-C ₂ H ₇	n-C ₄ H ₉	sec-C4H9	t-c4H9	-c _H ₃	
	. #	-CHC1 ₂	-снс12	-CHC1 ₂	-cHC1 ₂	-CHC1 ₂	-cec1 ₂	-chc1 ₂	-chc1 ₂
	Verbindung Nr.	310	311	. 312	513	514	315	516	317

н 2	n-C ₆ H ₁₃	-сн2-сн2он		-0H2	-c(c ₂ H ₅) ₂ -c=N	$-c(c_2H_5)_2-c=N$	61	
R ₁	n-c6H13	-ch3 ch3	E. B.	-сн ₂ -сн ₂ -sя	Ħ	III	Ħ	
et l	-chc1 ₂	-chcl ₂	-chc1 ₂	-chc1 ₂	-chcl2	-cH ₂ c1	-cHC1 ₂	•
Verbindung Nr.	318	319	320	321	322	323	324	-

$$CH_{3}$$

$$CH_{4}$$

$$CH_{3}$$

$$CH_{4}$$

$$C$$

ı					
E.	щ	¤	щ	Ħ	щ

Tabelle I (Fortsetzung:)

p#	-CHC1 ₂	-cH2c1	-cHC12	-cec1 ₂	-chc1 ₂
rbindung Nr.	326	327	328	329	330

		Tabelle I (Fortsetzung):	
Verbindung Nr.	· ૠ	H.	H ₂
331	-снс12	Ħ	CH ₂
. 332	-CHC1 ₂	щ	-CH ₂ -C(CH ₃)=CH ₂
333	-сн2с1	ш	-CH2-C(CH3)
334	-снс1 ₂	Ħ	-CH ₂ -CH ₂ -0-CH ₃
335	-снс1 ₂		-CH2-CH2-
336.	-CH ₂ Cl	-cH ₂	но : 0-7но-
337	-cHC1 ₂	-c _H ₂	-сн2-с сн

	 R2	$\langle s \rangle_{2} \langle s \rangle$	-CH2-CH2-N(C2H5)2	-cH2-CH(OCH3)2	o -ch ₂ -ch ₂ -nhc-chcl ₂	-CH2-CH=CH2	о -сн(ин-с-снс1 ₂) -сн(ин-с-снс1 ₂)	-CH(NH-C-CHC1 ₂)
Tabelle I (Fortsetzung:)	R	Ħ	щ	Ħ	œ	-CH ₂ -CH=CH ₂	щ	щ
	ж	-cHC1 ₂	-сист	-chc1 ₂	-CHC12	-CH=CH	-CHC1 ₂	-cH01 ₂
	Verbindung Nr.	338	339	340	341	342	543	344

Tabelle I (Fortsetzung):

Tabelle I (Fortsetzung): -CH2-CH-CH2 Verbindung Nr. 350

-CH2-CH-CH2 $-cH_2-cH=cH_2$ $-\mathrm{CH}_2-\mathrm{CH}=\mathrm{CH}_2$ -CH2-CH-CH2 -CH2-CH-CH2 Tabelle I (Fortsetzung): -CH2-CH=CH2 -CH2-CH=CH2 -CH2-CH=CH2 - C-N(CH2-CH=CH2)2 여 Verbindung Nr. 357 359 360 361

; (Su	H 2	-0 (сн ₃) ₂ -с== сн	-с(сн ₃) ₂ -с — сн	-c(cH ₃)=cH-c== N	-сн ₂ -сн=сн ₂	NH-C-CHC1 ₂	
Tabelle I (Fortsetzung)	R.	ш	щ	ш	-ch2-ch=ch2	μİ	
	Nr. R	S	-CH2-CH2-C-CH3	-CHC1 ₂	S GH 2	-CHC1 ₂	-cHC1 ₂
	Verbindung Nr.	362	363	364	365		367

	R2	-CH2-CH(CH3)2	-сн ₂ -сн(сн ₃) _{.2}	-c(cH ₃) ₃	-c(cH ₃) ₃	$-c(cH^2)^2-c == cH$	-сн(сн ₃)-с = сн	$-c(cH_3)_2-c = N$
Tabelle I (Fortsetzung):	R ₁	-c-cH ₂	- СНО	щ	ш	ш	СНЭ	щ
	m	CHC12	CEC1 ₂	₹ 5°	-CH=CH			
	Verbindung Nr.	368	369	370	371	372	373	374

	Tabelle I	I (Fortsetzung):	
Verbindung Nr.	*	H ₁	B B
375	-CH ₂	ш	-0(CH ²) ² -0 N
. 926	-сн ₂ -с(сн ₃) ₃	Ħ	$-c(c_{\rm H_3})_2 - c = N$
377	-cH(C2H5)	Ħ.	$-c(cH_3)_2-c=cH$
378	-0H=CH-(-)-0H3	н	-c(cH ₃) ₂ -c = CH
579	-CH=CH () OCH 2	н	-c(ch ₃) ₂ -c ≡ch
380	-CH=CH	щ	$-c(cH_3)_2-c=N$

	R2	-сн(сн ₃)-с <u>—</u> сн	$-c(c_{\mathrm{H}_3})_2-c=c_{\mathrm{H}}$	$-c(cH_3)_2-c = N$ c_2H_5		-CH ₂ -C H= CH ₂	
Tabelle I (Fortsetzung):	R ₁	-cH ₂	155	ш	Est	-0H2-CH=CH2	- ₀ /
Tabe		-CH=CH	-CH=CH-O-() C1	-c(cH ₂)-cH	¤	0 " . -CH ₂ -0-c-CCl=CCl-CCl=CCl ₂	-cuc1 ₂
	Verbindung Nr.	381	382	383	384	- 385	386

2 ^H	$c_{\text{L}_2-\text{NH-C}}^{0}$ c_{L_2} c_{L_2} c_{L_2} c_{L_2}	-CH ₂ -NE-C-CH ₂ Cl	0 = 0 · · · · · · · · · · · · · · · · ·	0-0-NH-U2H5	O-C-NH-CH2-CH=CH	-c-o-c ₂ H ₅
æ T	щ	ш	ш	Ħ	Ħ	Ħ
H H	-cH2cl	-0013	-0H01 ₂	-снс12	-cHC1 ₂	-chc1 ₂
Verbindung Nr.	387	388	389	390	591	392

Tabelle I (Fortsetzung):

.: -
Portsetzung
(Fo
Tabelle I

	R ₂	-c-o-c ₂ H ₄ c1	-c(cF ₃) ₂ -oh o	NH-C-CHC12 O " NH C C HC12	4m=0=02m5	-CH2-CH=CH2	-CH ₂ -CH=CH ₂
Tabelle I (Fortsetzung):	R	pa	щ	щ.	н	сн ₂ -сн=сн ₂	-CH2-CH=CH2
Tabelle	eg	-снс1 ₂	сн ₃	-CHC1 ₂	-CHC1 ₂	-CH2-0-C(CHC12)2-OH	-сн ₂ -о-с(снс1 ₂)(сс1 ₃)-он
	Verbindung Nr.	393	394	395	962	792	598

	R2	n-c6H ₁₃	<u></u>	-CH2	-CH2	-0H ₂ -//	-CH ₂ - C1	-0H ₂ -//-
Tabelle I (Fortsetzung):	H.	n-c ₆ H ₁₃	-C2H5	n-0 ₃ H ₇	1-6 ₂ H ₇	-ch ₃	-0H ₂	-c ^H 5
	¤	-CH ₂ C1	-сн ₂ с1	-сн2с1	-cH ₂ C1	-cH ₂ Cl	-cH ₂ cl	-0H2C1
	Verbindung Nr.	405	406	407	408	409	410	411

		·		:			3)-cH ₃
	R2	∇				1-03H7	-сн(сн ₃)-сн(сн ₃)-сн ₃
etzung):			Q.	C2H5	C B E		
Tabelle I (Fortsetzung)	R	n-C ₃ H ₇	·			-он ₃	€ED-
Ē	œ	-он ₂ сл	-cH ₂ c1	-cH2cl	-сн ₂ сл	-сн2сл	-ch2c1
	Verbindung Fr.	412	413	414	415	416	417

ह) :	. H2	CH2 CH2	1-C4H9	sec-c _{5H11}	t-C4H9	sec-C ₄ H ₉	sec-C ₄ H ₉	i-C3H7	i-c ₃ H ₇	i-c4H9	-cH ₂ -cH ₂ -0-cH ₃
Tabelle I (Fortsetzung):	. H	-c ₂ H ₅	n-c ₂ H ₇	n-c ₂ H ₇	n-63H7	i-C4H9	c ₂ H ₅	i-C4H9	n-C4H9	n-C4H9	-CH ₂ -CH ₂ -0-CH ₃
	4	-cH2cl	-cH ₂ C1	-cH ₂ Cl	-cH2cl	-cH2cl	-oH2cl	-сн2с1	-cH ₂ cl	-cH ₂ Cl	-cH ₂ cl
	Verbindung Nr.	418	419	420	421	422	423	424	425	426	427

$$\frac{R_{1}}{R_{1}} = \frac{R_{2}}{(RO ^{2} RB ^{2} Cung)!}$$

$$-cH_{2} - cH_{2} - 0 - c_{2}H_{5}$$

$$-cH_{2} - cH_{2} - 0 - c_{2}H_{5}$$

$$-cH_{2} - cH_{2}$$

$$-cH_{2} - c_{3}H_{7}$$

$$-cH_{2} - c_{4}$$

$$-c_{5}H_{7}$$

$$-cH_{2} - c_{1}$$

$$-cH_{2} - c_{1}$$

$$-cH_{2} - c_{2}$$

$$-cH_{2} - c_{1}$$

$$-cH_{2} - c_{2}$$

$$-cH_{2} - c_{1}$$

	R2	-сн ₂	-CH2 CH3	-CH ₂ -(CH ₃	-CH2-()-CH3	-CH ₂
Tabelle I (Fortsetzung):	R	-C2H5	-02 ^H 5	n-C ₃ H ₇	-C2H5	-cH ₂
	æ ·	CH ₂ C1	сн ₂ с1	сн ₂ с1	сн ₂ сл	cH ₂ c1
	Verbindung Nr.	434	435 ·	436	437	438

	R ₂	-cH2	-CH2-// CH3	-cH ₂ (CH ₃	-CH2 (-) CH3	-CH ₂	n-C4H9
Tabelle I (Fortsetzung):	R	€нэ-	-c ₂ H ₅	n-C ₂ H ₇	-c ₂ H ₅	-C ₂ H ₅	-сн ₃
	Н	-cec1 ₂	-cHC12	-снс12	-CHC1 ₂	-cHC12	-снсі2
·	Verbindung Nr.	439	. 440	441	. 442	443	444

	R.2	n-C4H9	sec-C4 ^H 9	sec-C4H9	$^{\mathrm{n-c_{5}H_{7}}}$	$^{\mathrm{LC}_{2}\mathrm{H}^{2}}$	t-C4H9	sec-C4H9	sec-C4H9	n-C5H11	n-C ₅ H ₁₁	sec-C ₅ H ₁₁
Tabelle I (Fortsetzung):	R	-cH ₂	-cH ₃	-cH ₃	-cH ₃	-cH ₂	-n-C4H9	1-0 ₂ H7	i-c ₃ H ₇	1-C3H7	1-6247	1-C3H7
	e	-CH2C1	-cEC1 ₂	ch ₂ c1	-chc1 ₂	-CH2C1.	-chc1 ₂	-cHC1 ₂	-сн ₂ с1	-chc1 ₂	-cH ₂ Cl	-chcl ₂
	Verbindung Nr.	445	446	447	448	449	450	451	452	. ₂ . 453	454	455

<u></u>
tzung
Fortse
⊣
Tabelle

· · · · · · · · · · · · · · · · · · ·	R ₂	C2H5	0 " . -c(cH ₃)=cH-c-o-c ₂ H ₅ o	"-NH-C-CHCl ₂	61	-C-CHC1 ₂	$-(cH_2)_{5}-0-cH(cH_3)_{2}$
Tabelle I (Fortsetzung):	R ₁	-сн ₂ -о-сн ₃	#	Ed	ОНО-	-ch2-ch(ch3)2	щ
	æ	-CHC1 ₂	-cHC1 ₂	-CHC1 ₂	-chc1 ₂	-chc1 ₂	-chc1 ₂
	Verbindung Nr.		462	463	464	. 465	466

	R ₂ 61	-0H2	-c(c ₂ H ₅)(cH ₃) ₂	-OH(CH ₃)	-c(c ₂ H ₅)(cH ₃) ₂	-c ₂ H ₄ -0-CH ₃	-cH2-CH(OCH3)2	$-c(cH_3)_2-c = N$
Tabelle I (Fortsetzung):	R.	ш	¤	Ħ	щ	Ħ	щ	"
	æ	-cec1 ₂	-CHC1 ₂	-CHC1 ₂	-cH2cl	-cH ₂ c1	-ch2cl	HO-HO-
	Verbindung Nr.	467	468	469	470	471	472	473

	.R2	$-cH_2-cH_2-0-c-NH - \left< s \right>$	$-cH_2-cH_2-0-c-NH \longrightarrow \begin{pmatrix} c_1 \\ c_1 \end{pmatrix}$	-сн ₂ -сн ₂ -он	-сн ₂ -сн ₂ -он	-сн ₂ -сн(он)(сн ₃)	-(сн ₂) ₃ -он	-сн ₂ -сн(он)(сн ₃)	H,
Tabelle I (Fortsetzung:)	R	CH2-CH-0-C-NH S	-CH ₂ -CH ₂ -O-C-NH/ G1	Ħ	-сн ₂ -сн ₂ -он	щ	ш	-сн ₂ -сн(он)(сн ₃)	
	æ	-CH2C1	-CH ₂ C1	-CHC1 ₂	-cH2cl	-CHC12	-CEC12	-снс12	-CHC12 .
	erbindung Nr.	482	483	484	485	486	487	. 488	489

·	R2	-c ₂ H ₅	-so ₂ — (1.1.)	$-ch_2-ch(ch_3)_2$	-c ₂ H ₅	-so ₂ c1		-03H7	
Tabelle I (Fortsetzung):	H. H.	-c ₂ H ₅		t et	-02 ^H 5	H CH ₃	CH ₃	-03H7	, i
테	H.	-ch ₂ oh	-cH ₂	-cH ₂ -s -c1	-сн ₂ -so ₂ -о-сн ₃	-c ₃ H ₆ Br	-CHC1 ₂	-cc13	-cc1 ₃
	Verbindung Nr.	490	491	492	493	494	495	496	497

	R ₂			-qb3 -c,B,Br	-C2H4Br	-c2H4Br	-1-C ₂ H ₇	-
Tabelle I (Fortsetzung):	R ₁ CH ₂	CH ₃	OH	-0H ₂	ш ш	Щ	-C2 ^H 5	-1-03 ^H 7
	æ	-0013	-CH2C1	-6613	-0H2C1	-661 ₅ -CEC1 ₂	-cHC12	-CHC1,2
	Verbindung Nr.	498	499	200	501	502 503	504	505

	R2	-n-c ₄ H9	-1-6 ₅ H7	-1-64 ^H 9 G2 ^H 5	C ₂ H ₅	$-c(cH_3)(c_2H_5)-c = N$	-c(cn3)(c2n5)-c=n	22.7.25.7.5
Tabelle I (Fortsetzung):	L _H	-n-c ₄ H ₉ -c ₂ H ₅	-1-C ₂ H ₇	1-C4H9	ш	ш	н	#
	æ	-CHC1 ₂	-cc1 ₃ -	-6613-	-chc1 ₂	-6613	-cH2C1	-chc12
	Verbindung Nr.	506	508	509	. 510	511	512	513

Die erfindungsgemäßen Mittel wurden wie folgt getestet.

Versuch 1: Verwendung im Boden

Kleine Kästen wurden mit lehmigem Felton-Sandboden gefüllt. Herbizid und Herbizid-Gegenmittel wurden getrennt oder zusammen in den Boden eingearbeitet, während dieser in einem 19-Liter-Zementmischer gemischt wurde. Für die getrennte Verwendung von Herbizid und Gegenmittel wurden von jeder Verbindung folgende Vorratslösungen hergestellt: Vorratslösungen des Herbizids wurden durch Verdünnen von etwa 1g eines Wirkstoffkonzentrats mit 100 ml Wasser erhalten. Für das Gegenmittel wurden 700 mg technisches Material mit 100 ml Aceton verdünnt. 1 ml dieser Vorratslösungen entsprach 7 mg Wirkstoff oder 0,112 g/m², wenn der damit behandelte Boden in die 20,32 x 30,48 x 7,62 cm großen Kästen gefüllt wurde. Nach Behandlung des Bodens mit dem Herbizid und dem Gegenmittel in dem gewünschten Verhältnis wurde die Erde von Zementmischer in die 20,32 x 30,48 x 7.62 cm großen Kästen gebracht, um die Einsaat durchzuführen. Zuvor wurde von jedem Kasten etwa ein halber Liter Boden (1 Pinte) zum späteren Abdecken der Samenkörner weggenommen. Die Erde in den Kästen wurde eingeebnet, und es wurden in jedem Kasten 12,7 mm tiefe Rillen angelegt. Die Samenkörner wurden jeweils in ausreichender Menge für guten Stand ausgesät. Anschließend bedeckte man die Samenkörner mit dem etwa halben Liter Boden, der kurz vor dem Einsäen entnommen wurde.

Die Kästen wurden dann auf Bänke bei 21 - 32°C ins Gewächshaus gestellt. Bis zur Auswertung wurden sie so besprengt, daß gutes Pflanzenwachstum sichergestellt war. Die Ertragstoleranz wurde nach 3 bis 6 Wochen ermittelt. Die Ergebnisse sind in der Tabelle II zusammengestellt.

		Gegenmittel	ttel		Schädigun	Schädigung der Pflanzen	lanzen	
rbizid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Anwendungs- verhältnis g/m ²	Getreide- art	3 Wochen	4 Wochen	6 Wochen	
EPTC	0,672	72	0,007	Mais	0	0	. •	
EPTC	0,672	9	0,014	Mais	0		·o	
EPTC	0,672	9	0,056	Mais	0	0	0	
PPTC .	0,672	9	0,112	Mais	o	0	0	
SPTC	0,672	9	0,224	Mais	0	0	0	
SPTC	0,672	9	0,560	Mais		0	0	
	ı	9	0,560	Mais	0	0	0	
PTC	0,672	9 .	0,014	Mais	20 M	·:		
PTC	0,672	11	0,014	Mais	0			
PIC	0,672	12	0,014	Mais	₩ 0T	<u>.</u> • .	٠	
PTC	0,672	13	0,014	Mais	M 09	· ·		
PEC	0,672	15	0,014	Mais	0			
PTC	0,672	91	0,014.	Mais	10 M			
PTC	0,672	1.8	0,014	Mais	0			
PTC	0,672	©	0,056	Mais		20 对		
PTC	0,672	.80	0,224	Meis		0		
PTC.	0,672	7	0,224	Mais		45 延		

Tabelle II (Fortsetzung):

	i	Gegenmittel	ttel		Schädi	Schädigung der Pflanzen in % nach	flanzen
Herbizid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Anwendungs- verbältnis g/m ²	Getreide- art	3 Wochen	4 Wochen	6 Wochen
EPTC	955.0	2	0,448	Mais	0	•	
EPTC	0,672	1	ı	Mais	94 M	м 16	₩ 96
S-Äthyldiiso- butyl-thio- carbamat		7	0,224	Mais	15 M		
S-Athyldiiso- butyl-thio- carbamat	968.0	7	. 0,448	Mais	•		
S-Athyldiiso- butyl-thio- carbamat	-08. -0,896	1	ı	Mais	75 M		
S-2,3,3-Tri- chlorallyl- disopropyl- thiologrba- mat	i- -1- 0,112	9	. 0,448	Weisen	20 V		
S-2,3,3-Tri- chlorallyl- difsopropyl- thiolograpa- mat	4			Weizen	a 06	·	

		Gegenmittel	ttel		Schädigung in % i	gung der F in % nach	der Pflanzen nach
Herbizid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Anwendungs- verhältnis g/m ²	Getreide- art	3 wochen	4 Wochen	6 Wochen
DPTC +	0,672 +						
2-Chlor-4-ëthyl- amino-6-isopropyl- amino-s-triazin	0,112	9	0,014	Mats		0	
EPTC +	0,672 +			٠		•	•
2-Chlor-4-ë thyl- amino-6-isopro- pylamino-s-tria- zin	0,112	9	0,224	Mais			
EPTC	0,672 +				٠		
2-Chlor-4-äthyl- amino-6-isopro- pyl-amino-s-tri- azin	0,112	•	1	Mais		M 56	
EPTC +	0,672 +						
2-Chlor-4,6-bis- (äthylamino)-s- triazin	0,112	9	0,014	Mais		. 0	··•
EPTC +	0,672 4	• .					
2-Chlor-4,6-bis- (äthylamino)-s- triazin	0,112	9	0,224	Mais		0	·
-			•).	

Mais

0,014

9

0,112

propylamino-6-iso-

propylamino-s-

triazin

2-Chlor-4-cyclo-

104

6 Wochen Schädigung der Pflanzen 4 Wochen in % nach 90 M :≅ 80 0 3 Tochen Tabelle II (Fortsetzung): Getreide-Mais Mais Mais Anwendungsverhältnis 0,014 g/m² Gegenmittel Verbin-Nr. dung 9 Anwendungsverhältnis 0,672 + 0,672 + 0,672 + 0,672 0,112 0,112 0,112 8/m² 2-y1-amino)-2-methyl-2-yl-amino)-2-methyl-2(4-Chlor-6-äthyl-2(4-Chlor-6-äthyl-2-Chlor-4,6-bisamino-s-triazinamino-s-triazin-(äthylamino)-spropionitril propionitril Herbizid triazin EPTC + EPTC + BPTC + EPTC

105
304

	පී	Gegenmittel			Schädigung in %	rung der Pflanzen in % nach	lanzen	
Herbizid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Anwendungs- verhältnis g/m^2	Getreide- art	3 Wochen	4 Wochen	6 Wochen	
記PTC +	0,672 +	,						
2-Chlor-4-cyclo- propylamino-6-								·. ·
tsopropyramino-s- triazin	0,112	f.	i	Mais		06 м, Ф		-
EPTC + 2,4-D	0,672 + 0,112	9	0,014	Mais		0		104
EPTC + 2,4-D	9,672 0,112	9	0,224	Mais		10 V		-
EPTC + 2,4-D	0,672 + 0,112	•	1	Mais		50 M		
S-Propyldipropyl- thioloarbamat + 2-Chlor-4-#thyl-	0,672 +			:	•			
amino-6-isopropyl- amino-8-triazin	0,112	9	0,014	Mais		3 M		•
S-Propyldipropyl- thiologrammat +	0,672 +	. : '		· :			· ·.	
amino-6-isopropyl- amino-s-triazin	0,112	9	0,224	Mais		0		

Tabelle II (Fortsetzung): Gegenmittel in % nach	dungs- Verbin- Anwendungs- Getreide- 3 Wochen 4 Wochen 6 Wochen 1 Linis art 3 Wochen 4 Wochen 6 Wochen 2 Nr. g/π^2	672 + 224 6 0,014 Mais 0	+	.536 +	٥,
Gegenmittel	Verbin- dung Nr.	n 4	+	+	572
	Anwendungs- Verbizid verhältnis g/m ²	S-Propyldipropyl- thiologrbamat + 0,672 2-Chlor-4-Ethyl- amino-6-isopropyl- emino-s-triazin 0,224	S-Propyldipropyl- thiologrbamat + 0,336 2-Chlor-4-äthyl- amino-6-1sopropyl- amino-s-triazin 0,112	S-Propyldipropyl- thiologrhamst + 0,536 2-Chlor-4-sthyl- amino-6-isopropyl- sminc-s-triszin 0,112	S-Propyldipropyl- thiologrammat + 0,672 2-Ghlor-4-äthyl- amino-6-isopropyl- amino-s-triazin 0,112

Herbizid v S_Fropyldipropyl- thislorarbamat + 2-Chilor-4,6-bis- triazin S-Propyldipropyl- thiologrbamat + 2-Chipr-4,6-bis- triazin S-Propyldipropyl- triazin S-Propyldipropyl- triazin S-Propyldipropyl- triazin S-Propyldipropyl- triazin S-Propyldipropyl- triazin S-Propyldipropyl- triazin- S-Propyldipropyl- thiologrbamat + 2(4-Chior-6-Ethyl- amino-s-triazin- S-yl-amino)-2- methylpropionitril	nwendungs- erhältnis g/m ² 0,072 + 0,112 0,112	Gegenmittel Verbin- dung Nr. 6	Anwendungs-verbiltnis g/m ² g/m ² 0,224	Getreide- art Mais Wais	Schädi 3 Wochen	Schädigung der Pin % nach ochen 4 Wochen 70 M	Pflanzen 6 wochen
The only the open of the open		· · · · · · · · · · · · · · · · · · ·			·:	.	

_	107	_
---	-----	---

٠			Tabelle II (Fortsetzung:	ortsetzung:		
		Gegenmittel	tel		Schädigung der Pflanzen in % nach	
An Herbizid ve	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Anwendungs- verhältnis 8/m ²	Getreide- art	3 Wochen 4 Wochen 6 Wochen	
S-Propyldipropyl- thiolcarbamat + 2-chlor-4-cyclo-	0,672 +					
propylamino-6-iso- propylamino-s- triazin	0,112	9	0,014	Mais		
S-Propyldipropyl- thiolcarbamat +	0,672					-
<pre>/-chior-4-cyclo- propylamino-6-iso- propylamino-s- triazin</pre>	0,112			Mais	M 26	
S-Propyldipropyl- thiolcarbamat + 2,4-D	0,672 + 0,112	9	0,014	Mais		
S-Propyldipropyl- thiolearbamat + 2,4-D	.0,672 +	9	0,224	Mais	0	
S-Propyldipropyl- thiolcarbamat + 2,4-D	0,672 + 0,112	ı	ı	Meis	м , м	

.00 -

						٠			•		
	der Pflanzen % nach	6 Wochen	٠.	•					٠.		•
		4 Wochen	0	0	₩ 06		, o		0	. •	o .
ng) :	Schädigung in	3 Wochen	•		, gan					·* .:	
(Fortsetzung)	=	Getreide- art	Mais	Mais	Mais	· ·	Mais		Mais	· .	Meis
Tabelle II	,e1	Anwendungs- verhältnis 8/m ²	0,014	0,224			0,014		0,224		1
	Gegenmittel	Verbin- dung Nr.	.0	9			v		9 %		· · · · · · · · · · · · · · · · · · ·
	-	Anwendungs- verbältnis g/m ²	0,672	0,672	0,672	+ 968*0	0,112	+ 963.0	0,112	+ 968.0	0,112
			S-Propyldipropyl- thiolcarbamat	S-Propyldipropyl- thiolcarbamat	S-Propyldipropyl- thiologrhamst	S-Athyldiisobutyl- thiolcarbamat + 2-Chlor-4-ëthyi-	amino-6-isopropy.l-amino-s-triazin	S-Athyldiisobutyl- thiolcarbamet + 2-Chlor-4-sthyl-	amino-6-isopropyl- amino-s-triazin	S-Athyldiisobutyl- thiolcarbamat + (2-Chlor-4-8thyl-	amino-6-isopropyl- amino-8-triazin
		Herbizid	S-Propyldipro thiologrhamst	S-Propyl thiologr	S-Propyl thiologr	S-Xthyld thiology 2-Chlor-	amino-6-	S-Athyldiisobu thiolcarbamet 2-Chlor-4-Ethy	amino-6-	S-Athylc thiolcar	amino-6-

	•	•	•
_	109		_

	Schädigung der Pflanzen in % nach	3 Wochen 4 Wochen 6 Wochen		0		0		0		. ;
	Schädi									
tsetzung):		Getreide- art		Mais		Mais		Mais		Mais
Tabelle II (Fortsetzung):	Gegenmittel	Anwendungs- verhältnis g/m		0,014	·	0,224		ı		0,014
	negen	Verbin- dung Nr.		9		9		ı		9
		Anwendungs- verhältnis g/m ²	+ 968.0	0,112	. + 968.0	0,112	+ 968 0	0,112	+ 968.0	yl- 0,112
		Herbizid	S-Athyldiisobutyl- thiolcarbamat + 2-Chlor-4,6-bis- (äthylamino)-s-	triazin ·	S-Athyldisobutyl- thiologrammat + 2-Chlor-4,6-bis-	(atnylamino)-e- triazin	S-Athyldilsobutyl- thiolcarbamat + 2-Chlor-4,6-bis- (athylamino).s-	triazin	S-Athyldilsobutyl- thiologrhamst + 2(4-chlor-6-äthyl-	amino-s-triazin- 2-yl-amino)-2-methyl- propionitril

				-	. 110 -	•			•
·.	anzen	6 Wochen			M1 .				·
	ng der Pflanzen % nach	4 Wochen		20 M		0		M 01.	0
	Schädigung in %	3 Wochen					• • • • • • • • • • • • • • • • • • •		
(Fortsetzung):	•	Getreide- art		Mais		Mais	•	Mais	Mais
Tabelle II (Fo	ttel	Anwendungs- verhältnis g/m^2		•		0,014		•	0,014
티	Gegenmittel	Verbin- dung Nr.	·			· •		· · · · · · · · · · · · · · · · · · ·	9
		Anwendungs- verhältnis g/m	+ 96840	0,112	+ 968.0	0,112	+ 968.0	0,112	0,896 + 0,112
		1	S-Athyldilsobutyl- thioloarbanat + 2(4-Chlor-6-äthyl-	amino-s-triazin- 2-yl-amino)-2- methylpropionitril	S-Athyldilsobutyl- thiologrbamet + 2-Chlor-4-cyclo-	lamino-6-1so- lamino-s- in	S-Athyldiisobutyl- thiologrammat + 2-Chlor-4-cyclo-	propylamino-s-rso- triazin	thiolographmet + 2,4-D
		Herbizid	S-Ath thiol 2(4-C)	amino 2-yl- methy	S-Ath thiol 2-Chl	propyla propyla triazin	S-Ath thiol 2-chl	propylar propylar friazin	2,4-D

		,	•	•
_	1	3	1	_

				-	111	~ - .				
	lanzen	6 Wochen								
	Schädigung der Pflanzen in % nach	4 Wochen	0	0	0	0	20 V	10 V	30 V	70
	Schädig	3 Wochen								
tsetzung):		Getreide- art	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Weizen
Tabelle II (Fortsetzung):	tel	Anwendungs- verhältnis g/m ²	0,224	1	0,014	0,224	ı	0,014		0,560
띠	Gegenmittel	Verbin- dung Nr.	φ	t	9	9	ŧ	9	ı	9
	·	Anwendungs- verhältnis g/m ²	0,896 + 0,112	0,896 + 0,112	968*0	968.0	968.0	968*0	968*0	. 0,536
		Herbizid	S-Äthyldiisobutyl- thiolcarbamat + 2,4-D	S-Athyldiisobutyl- thiolcarbamat + 2,4-D	S-Athyldiisobutyl- thiolcarbamat	S-Athyldiisobutyl- thiolcarbamat	S-Äthyldiisobutyl- thiolcarbamat	S-2,3,3-Trichlor-allyl-diisopropyl-thiolcarbamat	S-2, 3, 3-Trichlor- allyl-diisopropyl- thiolcarbamat	S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat

•				•	. — 				
	lanzen	6 Тосћев	•		•				
	Schädigung der Pflanzen in % nach	4 Wochen	95	Ç	S	50	70	· · o	. 50
	Schädig	3 Wochen		(of	D T	•			
(Fortsetzung):		Getreide- art	Teizen	Mobrephirse Songhim wildere	Mohrenhirse	Wohrenhirse	Mohrenhirse	Reis	Reis
Tabelle II (Fo	tel	Anwendungs- verhältnis g/m	1	0,560		0,560	ı	o,560 B	
Ta	Gegenmittel	Verbin- dung Nr.	ı	. 0		9	1	9	
		Anwendungs- verhältnis g/m ²	0,336	922,0	0,336	92260	0,336	0,336	955.0
		Herbizid	S-2,3,3-Trichlor-allyl-difsopropyl-thiolcarbamat	S-2,3,3-Trichlor- allyl-diisopropyl- thiolearbamat	S-2,3,3-Trichlor-allyl-diisopropyl-thiolcarbamat	2-Chlor-2',6'-di- äthyl-N-(methoxy- methyl)-acetanilid	2-Chlor-2',6'-di- äthyl-N-(methoxy- methyl)-acetanilid	S-Athylhexahydro- 1H-azepin-l-carbo- thioat	S-Athylhexahydro- 1H-azepin-1-carbo- thioat

			Tabelle II (F	(Fortsetzung):		•	
•		Gegenmittel	tel	Schäd	Schädigung der Pflanzen in % nach	lanzen	
Herbizid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Anwendungs- verhältnis g/m ²	Getreide- art 3 Woche	3 Wochen 4 Wochen	6 Wochen	
2-Chlor-W-iso- propylacetanilid	0,336	9	0,560	Weizen	20		
2-Chlor-N-iso- propylacetanilid	. 922.0		1	Weizen	40		
N,N-Dially1-2- chloracetamid	0,448	9	0,560	Mohrenhirse	20		
N,N-Diallyl-2- ohloracetamid	0,448	t	ı	Mohrenhirse	70		-
S-4-chlorbenzyl- diäthylthiol- carbamat	0,672	ı	i	Reis	20		
S-4-chlorbenzyl- diäthylthiol- carbamat	0,672	9	0,560	Reis	30		•
S-4-chlorbenzyl- diäthylthiol- carbanat	1,344		1	Reis	96	٠	

	_

٠	•	F1	Tabelle II (Fortsetzung)	rtsetzung):				
		Gegenmittel	te]		Schädi	Schädigung der Pflanzen in % nach	flanzen	
Herbizid	Anwendungs- verhältnis 8/m ²	Verbin- dung Nr.	Anwendungs- verhältnis g/m ²	Getreide- art	3 Wochen	4 Wochen 6 Wochen	6 Wochen	
S-4-Chlorbenzyl- diäthylthiol- carbamat	1,344	.	0,560	Reis		30		
S-4-Chlorbenzyl- diäthylthiol- carbamat	1,344		ı	Mais		. 04		
S-4-Chlorbenzyl- diäthylthiol- carbamat	1,344	9	095,00	Meis	•			- 11
S-Athylcyclohexyl- äthylthiocarbamat	0,672	9	0,011	Mais		,		!
S-Äthyloyclohexyl- äthylthiocarbamat	0,672	ı	•	We1s		80 M		
•								

EPTC = S-Athyl-N,N-dipropylthiocarbamat

- Verkümmerung ; = MiBbildung; 2,4-Dichlorphenoxyessigsäure.

116

Versuch 2: Behandlung des Getreidesaatguts

Kleine Kästen wurden mit lehmigem Felton-Sandboden gefüllt. Zu diesem Zeitpunkt wurde das Herbizid in den Boden eingebracht. Die Erde eines jeden Kastens wurde in einen 19-Liter-Zementmischer gefüllt und darin gemischt, während das Herbizid in Form einer Vorratslösung, die durch Verdünnen von etwa 1 g eines Wirkstoffkonzentrats mit 100 ml Wasser hergestellt worden war, eingearbeitet wurde. Dabei wurde jeweils 1 ml Vorratslösung in einer Vollpipette pro gewünschte 0,112 g Herbizid pro m² in die Erde eingebracht. 1 ml Vorratslösung enthielt 7 mg Herbizid, was bei der Anwendung auf den Boden in den 20,32 x 30,48 x 7,62 cm großen Kästen 0,112 g/m² entsprach. Nach Einarbeitung des Herbizids wurde der Boden in die Kästen zurückgebracht.

Kästen mit durch das Herbizid vorbehandelter Erde und mit unbehandelter Erde standen nun bereit für die Einsaat. Zuvor wurde jedem Kasten etwa ein halber Liter Boden nacht nacht et nommen und zur späteren Verwendung zum Abdecken der Samenkörner neben den Kasten gelegt. Dann ebnete man die Erde ein und legte 12,7 mm tiefe Rillen an. Abwechselnd wurden die Rillen mit behandeltem und mit unbehandeltem Getreidesaatgut eingesät. Bei jedem Versuch wurden 6 oder mehr Samenkörner in jede Reihe gelegt. Im Kasten betrug der Reihenabstand etwa 3,8 cm. Zur Behandlung des Saatguts mit dem Gegenmittel bzw. Saatschutzmittel füllte man 50 mg dafür vorgesehenen Verbindung und 10 g Saat in einen geeigneten Behälter und schüttelte, bis die Körner gleichmäßig damit bedeckt waren. Die Verbindungen (Saatschutz-

mittel) zur Saatgutbehandlung wurden als flüssige Aufschlämmungen und als Pulver- oder Staubgut aufgebracht. Manchmal wurde Aceton verwandt, um pulverisierte oder feste Verbindungen zu lösen, so daß sie wirksamer auf das Saatmaterial aufgebracht werden konnten.

Nach der Einsaat wurden die Kästen mit der kurz zuvor entnommenen und auf die Seite gelegten Erde bedeckt. Sie wurden auf Bänke ins Gewächshaus bei 21 - 32°C gestellt und so besprengt, wie es gutes Pflanzenwachstum erforderte. Die prozentualen Auswertungen der Schädigung erfolgten zwei bis vier Wochen nach den Behandlungen.

Bei jedem Versuch wurde einmal das Herbizid allein, einmal das Herbizid in Verbindung mit dem Saatschutzmittel und schließlich das Saatschutzmittel allein angewandt, um die Phytotoxizität feststellen zu können. Die Ergebnisse dieser Versuche sind in Tabelle III zusammengestellt.

•	ŀ
⊢	IJ
-	ı
۳	ı
æ	J
_	ı
_	ı
Ø	۱
Ω,	ł
α	1
ᆮ	1

	Unbehandeltes Saatgut in der benachbarten Reibe		en 4 Wochen	4	4	4	4	4 Wochen	4 Wochen	4	4 Wochen							
		_	-	_		-		o			30 M	S	10 M	5 K	15 M	50 M	5 4	₽ G
in %	Ltes Saat-	1 4 Wochen	60 V, M	40 V, M	W , ₩	70 V, M	30 V, M	0	30 V	0								
Schädigung in %	Behandeltes gut	2 Wochen	20 H	10 V	0	10 V	0	0			10 V	10 V	10 4	100 K	100 K	10 V	100 K	10 V
Sc.	Getrei- deart		Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais
tel	Behand- lungsver- hältnis % Gew./Gew.		0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,05	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Gegenmittel	Verbin- dung Nr.		н	7	8	4	5	9	2	60	6	9	11	12	13	14	15	16
1	Anwendungs- verhältnis 8/m ²		0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672
	Herbizid		EPTC	EPTC	EPTC	EPTC .	EPTC	EPTC	EPTC	EPTC	EPTC	RPTC	EPTC	EPTC	EPTC	EPTC	EPTC	BPTC

Tabelle III (Fortsetzung):

		Gegenmitte]	tel	021	Schädigung in %	g.in %			ı
Herbi- zid	Anwendungs- verhältnis	Ver- bindung Nr.	Behand- lungsver- hältnis	Getrei-	Behandeltes gut	ideltes Saat- gut	Unbehandeltes in der benach Reihe	ohandeltes Saatgut der benachbarten he	ا دبا
	1 /0	-	% Сеж./Сеж.	7 7000	2 Wochen	4 nochen	2 Wochen	4 Wochen	
EPTC	0,672	17	0,5	Wais	20 V	• .	35 M		
BPTC	0,672	. 81	0,5	Mais	0		5 4	٠	
EPTC	0,672	19	5.0	Mais	0		50 M		
EPTC	0,672	20	0,5	Mais	10 V	10 V	30 站	65 M	•
EPTC	0,672	21	0,5	Mais	0		NO M	55 M	
BPTC	0,672	22	0,5	Mais	. M 09.	70 M	85 M	₩ 08	
EPTC	0,672	23	0,5	Mais	20 M	40 M	85 M	80 M	
EPTC .	0,672	24	0,5	Mais	10 4	10 V	75 M	. 80 M	
EPTO	0,672	. 52	0,5	Mais		30 M	# 09	м 09	
EPTC	0,672	. 26	. 5,0	Mais		NO M	83 M	80 M	
EPTC	0,672	. 72	0,5	Mais	70 K		ж 09	·	
EPTC	0,672	28	0,5	Mais	30 V, 1		75 м		
EPTC	0,672	59	5 0	Mais	№ 09		70 M		٠.
EPTC	0,672	30	0,5	Mais	¥ 09	• .	70 M		
BPTC	0,672	31	0,5	Mais	70 14		 ₩ 06		
BPTC	0,672	32	0,5	Mais	₩ 09		75 M		

Tabelle III (Fortsetzung):

		Gegenmittel	tel		Schädigu	Schädigung in %		
Herbi-	Anwendungs- verhältnis	Ver- bindung Nr.	Behand- lungsver- hältnis	Getrei-	Behandeltes gut	leltes Saat-	Unbehande in der be Reihe	Unbehandeltes Saatgut in der benachbarten Reihe
	11/0		% Gew./Gew.	7 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	2 Wochen	4 Wochen	2 Wochen	4 Wochen
	0,672	33	0,5	Mais	50 V, M		75 M	
	0,672	34	0,5	Meis	M 09		聚 08	
EPTC	0,672	35	0,5	Mais	50 M		75 M.	
	0,672	36	0,5	Mais	м 09		85 M	
	0,672	37	0,5	Mais	40 V, M		85 M	
	0,672	38	0,5	Mals	¥ 09		80 M	
	0,672	39	0,5	Mais	м 09		70 M	
	0,672	40	0,5	Mais	50 M		¥ 08	
	0,672	41	0,5	Mais	10 V.M	50 H	75 M	65 M
	0,672	42	0,5	Mais	м 09		₩ 08 ·	
	0,672	43	0,5	Mais	Me V OI	50 №	85 M	80 M
	0,672	44	0,5	Mais	40 M		70 M	
	0,672	45	6,0	Kais	₩ 09		85 M	
	0,672	46	540	Mais	40 V.M		85 M	
	0,672	47	0,5	Mais	M 09		80 M	
	0,672	48	0,5	Meis	M, V O∂		₩ 08	

Tabelle III (Fortsetzung:

	-	Gegenmittel	el		Schädigung in %	in %		
Herbî- zid	Anwendungs- verhältnis	Σ , Δ	Behand- lungsver-	Getrei-	Behandeltes gut	Saat-	Unbehandeltes gut in der ber ten Reihe	mandeltes Sast- in der benachbar- Reihe
	g/m ²	IN F.	% Gew./Gew.	deart	2 Wochen	4 Wochen	2 Wochen	4 Wochen
EPTC	0,672	49	0,5	Mais	M 09		70 M	
EPTC	0,672	20	0,5	Mais	M 09		₩ 06	
EPTC	0,672	. 51	5,0	Mais	M 09		M 07	
BPTC	0,672	25	0,5	Mais	M. V 09		80 M	
EPTC	0,672	23	0,5	Mais	50 M		对 0.2	·.
EPTC	0,672	54	0,5	Mais	№ 09	٠	70 M	٠
EPT0	0,672	55	0,5	Mais	M 09		80 M	
EPTC	0,672	26	0,5	Mais	頭 09		80 M.	-
EPTC	0,672	57	0,5	Mais	₩ 09		₩ 59	
BPTC	0,672	58	0,5	Mais	50 座		75 M	
EPTC	0,672	59	0,5	Mais	м• л 09	•	₩ 08	
EPTC	0,672	09	0,5	Mais	м с о о о о о м	•	75 M	
EPTC	0,672	61	0,5	Mais	₩ 09		85 M	
EPTC	0,672	62	0,5	Mais	40 V,M	M 09	80 M	™ 07
EPTC	0,672	63	0,5	Mais	項 A 0€	FI 09	70 E	70 平
epuc	0,672	64	0,5	Mais	M ₀ V 0€	50 M	65 M	70 M

-

Unbehandeltes Sast-4 Wochen gut in der benach-80 M 80 M 50 K barten Reibe 2 Wochen 75 ™ 70 K 80 13 65 M 50 14 80 K 80 ¥ 80 M 80 M 80 Behandeltes Sast-4 Wochen 50 V,M 20日 50 kg 최 20 30 30 S 点 60 Schädigung in 2 Wochen 40 V M M. V 09 40 V,M 20 V,M 40 V.M 50 V, M 50 V,M M. V 09 ₩ 09 ₹ 09 ¤ 09 京 90 ₩ 09 10 V 30 V ≅ 09 Getreideart Mais Ma.18 Mais Mais Mais Mais Meis Mais Behandlungs-% Gew./Gew. verhältnis 200 0,5 0,5 0,5 0,5 0,5 0,5 2,0 0,5 0,5 0,5 Gegenmittel Anwendungs- Verbindung Nr. verhältnis 8/m² 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-EPTC BPTC EPTC **EPTC** EPIC EPTC EPIC BPTC EPTC BPTC EPTC EPTC BPTC EPTC EPTC BPTC EPTC EPTC Zi,d

Tabelle III (Fortsetzung):

							_		•		•					•		
	ndeltes Saat- der benach- Reihe	4 Woohen	25 M	20 k	45 M					₩ 08			75 M		·. ·			
	Unbehandeltes gut in der be: barten Reihe	2 Wochen	20 M	15 M	35 M	75 M	75 M	70 M	80 M	80 M	M 08	80 M	75 M	M 08	₩ 06	80 M	75 區	
ng in %	tes Sast.	4 Wochen	20 S	10 Φ	10 V	•				30 V M	٠.		20 V	· · · · · · · · · · · · · · · · · · ·		·.		
Schädigung in %	Behandel tes gut	2 Wochen	20 V	10 4	30 V	50 V.M	30 V,M	50 V,M	M 09	20 V,M	40 V,M	50 V,M	Δ 09	30 V,M	100 K	30 № ш	™, v o≲	
•	Getrei- deart		Mais	Mais	Mats	Mais	Mais	Mais	Mais	Meds	Mais	Male	Mais	Mais	Mais	Mais	Mais	
Ţ.	Behandlungs- verhältnis % Gew./Gew.		5,0	0,5	0,5	0,5	0,5	0,5	5.0	0,5	0,5	0,5	0,5	0,5	0,5	0.5	0,5	•
Gegenmittel	Verbin- dung Nr.		63	84	85	96	87	88	. 68	8	16	95	93	46	95	96	76	
.	Anwendungs- verbältnis g/m		0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	
	Herbi- zia		EPTC	BPTC	EPTC	田戸中の	BPTC	BPTC	EPTC	BPTC	田戸河口	BPTC	BPTC	BPTO	EPTC	EPTC	EPTC	

- 103 -

Unbehandeltes Saatgut in der benach-4 Wochen 80 M 80 M 80 ⊠ 80 M barten Reihe 2 Wochen 80 ₩ 85 M 85 85 80 8 65 85 80 85 9 Behandeltes Saat-4 Wochen Schädigung in % 30 V,M 20 V,M 50 R 30 M 2 Wochen gut M, V 09 40 V,M 50 V,M 40 V,M 60 V,K 40 V,M 40 V,M 50 V,M M, V 0€ 30 V,M 30 V,M 50 K 30 V 64 Getreideart Mais Behandlungs-% Сем./Сем. verhältnis Gegenmittel Verbindung 100 102 103 104 105 106 107 108 109 110 111 112 114 Anwendungsverhältnis 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-EPTC EPTC EPTC EPTC EPTC EPTC BPTC EPTC EPTC EPTC EPTC EPTC EPTC EPTC EPTC EPTG zid

Substitution			C	• ••						
0,672 115 0,5 Mais 40 V,M 90 M 0,672 116 0,5 Mais 40 V,M 70 M 90 M 0,672 116 0,5 Mais 30 V,M 70 M 90 M 0,672 118 0,5 Mais 20 V,M 70 M 70 M 0,672 119 0,5 Mais 30 V,M 70 M 70 M 0,672 120 0,5 Mais 40 V,M 75 M 75 M 0,672 121 0,5 Mais 20 V,M 75 M 75 M 0,672 122 0,5 Mais 40 V,M 75 M 75 M 0,672 124 0,5 Mais 40 V,M 75 M 75 M 0,672 125 0,5 Mais 40 V,M 75 M 90 M 0,672 126 0,5 Mais 40 V,M 80 M 90 M 0,672 127 0,5 Mais 60 M 90 M	erbi-	Anwendungs- verbältnis g/m ²	Verbin- dung	Behandlungs- verhältnis % Gew./Gew.	Getrei deart	S A	nadigu bandel gut	ng in % tes Saat-	1 4	1 2
0,672 115 0,5 Mais 40 V,M 90 M 0,672 116 0,5 Mais 30 V 75 M 80 0,672 117 0,5 Mais 20 V,M 70 M 80 0,672 118 0,5 Mais 30 V,M 70 M 70 M 0,672 120 0,5 Mais 30 V,M 75 M 75 M 0,672 121 0,5 Mais 40 V,M 75 M 75 M 0,672 122 0,5 Mais 20 V,M 75 M 20 0,672 122 0,5 Mais 20 V,M 75 M 20 0,672 124 0,5 Mais 40 V,M 75 M 80 M 0,672 126 0,5 Mais 40 V,M 80 M 80 M 0,672 126 0,5 Mais 60 M 80 M 80 M 0,672 127 0,5 Mais 50 M 50 M 50 M						2	ochen	1 1		4 Wochen
0,672 116 0,5 Mais 30 V 30 V 75 M 80 O 0,672 117 0,5 Mais 20 V,M 70 M 0,672 118 0,5 Mais 30 V,M 70 M 0,672 120 0,5 Mais 30 V,M 75 M 0,672 121 0,5 Mais 20 V,M 75 M 0,672 122 0,5 Mais 20 V,M 75 M 0,672 122 0,5 Mais 20 V,M 75 M 0,672 123 0,5 Mais 30 V,M 75 M 0,672 124 0,5 Mais 40 V,M 80 M 0,672 125 0,5 Mais 60 M 0,672 126 0,5 Mais 60 M 0,672 127 0,5 Mais 50 M 0,672 128 0,5 Mais 50 M 0,672 129 0,5 M	PIC	0,672	115	0,5	Mais	40 V	F.		M 06	
0,672 117 0,5 Mais 20 V,M 70 M 0,672 118 0,5 Mais 30 V,M 70 M 0,672 120 0,5 Mais 30 V,M 75 M 0,672 121 0,5 Mais 40 V,M 75 M 0,672 122 0,5 Mais 20 V,M 75 M 0,672 122 0,5 Mais 20 V,M 75 M 0,672 123 0,5 Mais 30 V,M 75 M 0,672 124 0,5 Mais 40 V,M 75 M 0,672 125 0,5 Mais 40 V,M 75 M 0,672 125 0,5 Mais 40 V,M 80 M 0,672 126 0,5 Mais 60 M 80 M 0,672 126 0,5 Mais 50 M 80 M 0,672 127 0,5 Mais 50 M 80 M 0,672 128 0,5	PIC	0,672	911	ر. د.	Mais	30 V		30 V		₩ 90
0,672 118 0,5 Mais 30 V,M 70 M 0,672 120 0,5 Mais 30 V,M 75 M 0,672 121 0,5 Mais 20 V,M 75 M 0,672 121 0,5 Mais 20 V,M 75 M 0,672 122 0,5 Mais 20 V 35 M 0,672 124 0,5 Mais 30 V,M 75 M 0,672 124 0,5 Mais 40 V,M 75 M 0,672 125 0,5 Mais 40 V,M 75 M 0,672 126 0,5 Mais 40 V,M 80 M 0,672 126 0,5 Mais 60 M 80 M 0,672 126 0,5 Mais 60 M 80 M 0,672 128 0,5 Mais 50 M 80 M 0,672 128 0,5 Mais 50 M 50 M 0,672 128 0,5 Mais 50 M 50 M	DH4	0,672	117	o 10	Mais		সূ	· .		
0,672 119 0,5 Mais 30 V,M 70 M 0,672 120 0,5 Mais 40 V,M 75 M 0,672 121 0,5 Mais 20 V,M 75 M 0,672 122 0,5 Mais 20 V 20 V 75 M 0,672 124 0,5 Mais 30 V,M 75 M 0,672 125 0,5 Mais 40 V,M 75 M 0,672 126 0,5 Mais 40 V,M 80 M 0,672 126 0,5 Mais 60 M 80 M 0,672 127 0,5 Mais 50 M 80 M 0,672 128 0,5 Mais 50 M 80 M 0,672 128 0,5 Mais 50 M 55 M	PIIC	0,672	118	0,5	Mais	30 A	M.			
0,672 120 0,5 Mais 30 V,M 75 M 0,672 121 0,5 Mais 40 V,M 75 M 0,672 122 0,5 Mais 20 V 20 V 10 M 20 0,672 124 0,5 Mais 30 V,M 75 M 20 75 M 20	PIIC	0,672	119	0,5	Mais	30 V	×		70 M	
0,672 121 0,5 Mais 40 V,M 75 M 0,672 122 0,5 Mais 20 V 20 V 10 M 20 0,672 123 0,5 Mais 30 V,M 75 M 20 0,672 124 0,5 Mais 40 V,M 80 M 0,672 125 0,5 Mais 40 V,M 80 M 0,672 126 0,5 Mais 60 M 80 M 0,672 127 0,5 Mais 50 M 80 M 0,672 128 0,5 Mais 50 M 55 M 0,672 129 0,5 Mais 50 W 50 M 50 M	PTC	0,672	120	0,5	Mais	30 V	M.		75 居	
0,672 122 0,5 Mais 20 V,M 35 M 0,672 123 0,5 Mais 20 V 20 V 10 M 20 0,672 124 0,5 Mais 30 V,M 75 M 0,672 125 0,5 Mais 40 V,M 80 M 0,672 126 0,5 Mais 60 M 0,672 127 0,5 Mais 50 M 0,672 128 0,5 Mais 50 M 0,672 128 0,5 Mais 50 M 0,672 129 0,5 Mais 50 W,B 50 W 0,672 129 0,5 Mais 50 W,B 50 W,B 50 W	PTC	0,672	121	0,5	Mais		M	•	75 M	
0,672 123 0,5 Mais 20 V 20 V 10 M 20 V 0,672 124 0,5 Mais 30 V,M 75 M 75 M 75 M 75 M 80 M 80,672 126 0,5 Mais 40 V,M 80 M 80 M 80,672 127 0,5 Mais 60 M 80 M 80,672 128 0,5 Mais 50 M 55 M 80,672 129 0,5 Mais 50 W,B 50 W,B 50 W 55 M 80,672 129 0,5 Mais 50 W,B 50	PIC	0,672	122	5.0	Mais		Ħ.		•	:
0,672 124 0,5 Mais 30 V,M 75 M 0,672 125 0,5 Mais 40 V,M 80 M 0,672 126 0,5 Mais 60 M 0,672 127 0,5 Mais 50 M 0,672 128 0,5 Mais 50 M 0,672 129 0,5 Mais 50 W,B 50 V,B 50 M 0,672 129 0,5 Mais 50 W,B 50 W,B 50 W	PTC	0,672	123	0,5	Mais	20 ▼		20 Т	10 M	
0,672 125 0,5 Mais 40 V,M 80 M 0,672 126 0,5 Mais 40 V,M 80 M 0,672 127 0,5 Mais 60 M 0,672 128 0,5 Mais 50 M 0,672 129 0,5 Mais 50 V,B 50 V,B 50 M 60	PIC	0,672	124	0,5	Mais	30 V	耳	• .		
0,672 126 0,5 Mais 40 V,M 80 M 0,672 127 0,5 Mais 60 M 0,672 128 0,5 Mais 50 M 0,672 129 0,5 Mais 50 V,B 50 V,B 50 M 60	PIC	0,672	125	0,5	Mais	40 V	¥			
0,672 127 0,5 Meis 60 M 80 M 0,672 128 0,5 Meis 50 M 55 M 0,672 129 0,5 Meis 30 V,B 50 V,B 50 M 60	970	0,672	126	5.0	Mais	40 V	Ħ.	· :	80 M	
0,672 128 0,5 Mais 50 M 55 M 60 0,672 129 0,5 Mais 50 V,B 50 W 60	PTC	0,672	127	5,0	Mais					
0,672 129 0,5 Mais 30 V,B 30 V,B 50 M 60	PTC	0,672	128	0,5	Mais	50 · ₩	· .			•
	ore:	0,672	129	5.0	Meis			E, V 0i		

Tabelle III (Fortsetzung):

		Gegenmittel	tel		Schädigung in %	in %		
Herbi- zid	Anwendungs-verhältnis g/m^2	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut	Saat-	Unbehandelte gut in der b barten Reihe	Unbehandeltes Saat- gut in der benach- barten Reihe
					2 Wochen	4 Wochen	2 Wochen	4 Wochen
EPIC	0,672	130	0,5	Kais	30 V	30. V	40 M	7 09
EPTC	0,672	151	0,5	Mais	10 4	. 0		
EPTC	0,672	132	0,5	Mais	0	0		
BPTC	0,672	133	0,5	Mais	40 ж			
EPTC	0,672	134	0,5	Mais	30 V,™		70 M	
EPTC	0,672	135	0,5	Mais	40 V.M		70 M	
BPTC	0,672	136	0,5	Mais	M. V 0€		80 M	
EPTC	0,672	157	0,5	Mais	M. V O.€		85 M	
EPTC	0,672	138	5.0	Mais	M. V 05	-	75 ×	
EPTC	0,672	139	O	Mais			M 08	
SPEC	0,672	140	0,5	Mais		٠	7. E	
DPTG	0,672	141	0,5	Keis	20 V.M	30 V,M	M 08	80
EPTC	0,672	142	0,5	Mais	20 V,M	20 21	75 M	70 M
EPTC	0,672	143	0,5	Mais	10 V,M	50 M	82. 运	80 M
EPTC	0,672	144	0,5	Mais	₩ . V OS		85 点	
BPTC	0,672	145	. 5.0	Mais	20 V,M		₩ 90	
EPTC	0,672	146	6,0	Mais	20 V,M	20 V,M	65 M	70 M

Unbehandeltes Saat-4 Wochen gut in der benach-80 ¥ barten Reibe 2 Wochen Behandeltes Saat-4 Wochen Sobëdigung in 2 Wochen 40 V,M M, V 0€ 30 V,M M, V 09 50 V k 50 V.M 20 **₹** 20 .V M 50 V. 20 V,1 30 V, 10 V 宮 09 40 K 以 20 ¤ 09 ဂ္က Getreideart Mais Mais Maie Mete Maie Mais Maie Mais Behandlungs-% Gew./Gew. verhäl tnis 0,0 0,0 ດ້ 0,5 Gegenmittel Verbindung N. 149 163 151 191 162 Anwendungs-verhältnis g/m² 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-zid EPTC EPTC EPTC EPIC EPTC EPTC BPTC EPTC EPTO **BPTC** EPTC EPTC BPTC BPTC BPTC **EPTC** EPTC

Tabelle III (Fortsetzung):

Gegenmittel	tel	i	Schädig	Schädigung in %		
Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut	ltes Saat- t	Unbehandeltes Saatgut in de nachbarten Re	iltes n der be- n Reihe
			2 Wochen	4 Wochen	2 Wochen	4 Wochen
164	0,5	Mais	м 09		70 M	
165	0,5	Mais	M 09		75 M	
99 L	0,5	Mais	40 V,M	M 09	75 M	M 09
167	0,5	Mais	50 V,M		75 M	
168	0,5	Mais	M. V 09		80 M	
169	0,5	Mais	30 V	30 V	80 M	80 M
170	0,5	Mais	Me V 0€		80 M	
171	0,5	Mais	м 09		75 M	
172	0,5	Mais	40 M		並 5 2	
173	0,5	Mais	30 V,M	50 M	₩ 08	80 M
174	0,5	Mais	м' А 09		M 08	
175	0,5	Mais	30 V,M		85 M	
176	0,5	Mais	40 V,M		85 M	
£77	0,5	Mais	30 V,M		85 M	
178	0,5	Mais	50 V,M		80 M	

Tabelle III (Fortsetzung):

Gegenmittel Schädigung Anwendungs Verhin Rehendlungs Behandeltes	ttel	handlings	Schä	Schä	dig del	Schädigung in % ehandeltes Sagt-	Unbehandel tes	1tes Saat-
dung Nr.	in- benandlungs- verbältnis % Gew./Gew.	nanalungs- rbëltnis Gew./Gew.	Getreide- art	_	gut	- 4		
					2 Wochen	4 Wochen	2 Wochen	4 Wochen
0,672 179 0,5 Mais	0,5		Meis			0		* 5 M
0,672 180 0,5 Mais	0,5		Mais		0	0	0	0
0,672 181 0,5 Mais	0,5		Mais		0		0	
0,672 182 0,5 Mais	. 0,5	5	Mais		0	0	0	0
0,672 183 0,5 Mais	0,5	ار	Mais		0	0	0	0
0,672 184 0,5 Mais	0,5	ئر	Mais		0	· 0	5 M	15 班
0,672 1.85 0,5 Mais	5,0	•	Mais			0	3 M	30 M
0,672 186 0,5 Mais	0,5	-	Mais		0	0	o	O :
,672 187 0,5 Mais	0,5		Mais		0	0	5 E	45 M
0,672 188 0,5 Mais	0,5	2	Mais		0	0	13 M	45 M
0,672 189 0,5 Mais	0,5		Mais				₩	35 区
0,672 190 0,5 Mais	0,5		Mais	•	0	0	.0	15 ₩
0,672 191 0,5 Mais	0,5	٠.	Mais			ō	3 M	50 M
0,672 192 0,5 Mais	6,0		Mais		0	0	5 M	40 译
0,672 193 0,5 Mais	0,5	7	Mais		0	0	10 M	35 班
0,672 194 0,5 Mais	0,5		Mais			0	0	25 M

		Gegenmittel	tel		Schäd	Schädigung in %		
Herbi-	Anwendungs- verhältnis	Verbin- dung Nr.	Behandlungs verhältnis % Gew./Gew.	Getrei-	Behande]	Behandeltes Saat- gut	Saat- Unbehandeltes gut in der be barten Reihe	Unbehandeltes Saat- gut in der benach- barten Reihe
	1/0			1000	2 Wochen	n 4 Wochen	2 Wochen	4 Wochen
EPIC	0,672	195	0,5	Mais	M. V O€		55 M	
BPTC	0,672	196	0,5	Mais	100 K		55 M	
EPTC	0,672	197	0,5	Meis	M 09		75 M	
EPTC	0,672	198	0,5	Mais	30 V,M	30 居	75 M	¥ 08 .
EPTC	0,672	199	0,5	Mais	50 V,M		₩ 08	
EPTC	0,672	200	0,5	Mais	₩ 09	•	108	
BPTC	0,672	201	0,5	Mais	40 V,M		88 M	-
EPTC	0,672	202	0,5	Mais	50 E		M 09	
BPTO	0,672	203	6,0	Mais	50 M		€5 · M	
EPTO	0,672	204	0,5	Mais	20 V	10 V	55 M	50 萬
EPTC	0,672	205	0,5	Mede	30 V.E		65 ™	
EPTC	0,672	506	0,5	Mais	20 V,™	20 V,M	40 M	55 M
EPTC	0,672	207	0,5	Mais	100 K		55 M	
EPTC	0,672	208	0,5	Mais	M. V 09		70 M	
EPTC	0,672	209	0.5	Mais	c	c	¥0 %	¥ 08

- 130 -

	- -	Gegenmittel			Sobëdigung in %	% ui K			1
Anwendu: verhält:	adungs- Bltnis 2	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandel tes gut	tes Sest	Unbehandeltes gut in der be barten Reibe	ideltes Sast- der benach- Reibe	4.
a/29					2 Woohen	4 Woohen	2 Woohen	4 Wochen	1
0	0,672	210	0,5	Mais	o	ν οι .	, ro	35 M	
Ô	0,672	211	0,5	Mais	0	o	25 M	50 M	
0	0,672	212	0,5	Mais	•	10 V	18 M	50 M	
Ó	0,672	213	0,5	Mais	50. V	30 V	70 M	70 M	
ó	0,672	214	0,5	Mais	0,	10 V	50 ×	65 ™	
Ó	0,672	215	0,5	Mais	10 V	0	85 M	70 M	
Ó	672	216	0,5	Mais	10 V	M, V OI	95 M	M 06	
Ö	0,672	217	0,5	Mais	100 K	100 K	30 M	45 M	· :
o	0,672	218	0,5	Mais	10. V	10 V	20 M	15 K	:
O	0,672	219	0,5	Mals	100 K		45 M	. · :	
O	0,672	220	0,5	Meis	0	10 V	0	0	
Õ	0,672	221	0,5	Mais	0	10 V	15 M	35 M	
Ó	0,672	222	0,5	Mais	100 K	• //:		· ·	, .
ō	0,672	223	5,0	Mais	10 Δ	20 Φ	™ 07	70 M	· .
ဝ	0,672	224	0,5	Mais	50 ₹	30 V	45 M	80 ™	٠.
o	0,672	225	0,5	Mais	30 V	30 V	70 M	₩ 08	
	٠.	-	. •		•				

171 -

Behandeltes Saat- Unbehandeltes Saatgut in der benach-2 Wochen 4 Wochen 80 **⋈** Ħ 55 M 45 班 barten Reihe ၀ ၀ 88 M 70 M 30 M 2 Wochen 4 Wochen 10 V Schädigung in 10 V 20 ₹ 10 12 0 gut 40 V,M 40 V,M 40 V,M 40 V,M 30 V,M 30 V,™ 20 ₹ 20 V 10 V 0 Getreideart Mais Behandlungs-% Gew./Gew. verhäl tnis 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 Gegenmittel Anwendungs- Verbindung 229 230 231 233 234 235 236 238 237 240 Nr. verbältnis 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-EPTC EPTC EPTC EPTC EPTC EPTC EPTC zid EPTC EPTC BPTC EPTC EPIC EPTC EPTC EPTC

209845/1180

tzung):	
(Fortse	
e III	
Tabel1	

		Gegenmittel	tel	ì	Schädigung in %	g in %	-		•
Herbi-	Anwendungs- verhältnis.	Verbin- dung	Behandlungs- verhältnis % Gew./Gew	Getrei-	Behandeltes gut	es Saat-	Unbehandeltes gut in der be) barten Reihe	ideltes Saat- der benach- Reihe	•
zid	g/m_				2 Wochen	4 Wochen	2 Wochen	4 Wochen	
EPTC	0,672	242	0,5	Mais	30 V M		50 M		
EPTC	0,672	243	0,5	Mais	N. V OL	30 M	75 M	70 M	
EPTC	0,672	244	0,5	Mais	0		20 M		•
EPTC	0,672	245	0,5	Mais	10 V		. M 82		٠
EPTC	0,672	246	0,5	Mais	0		Э. Ж.	•	
EPTC	0,672	247	0,5	Mais	. Δ ΟΙ		2 M		
EPTC	0,672	248	5.0	Mais	20 V	÷	70 元		
EPTC	0,672	249	0,5	Mais	10 V		70 M		
EPTC	0,672	250	0,5	Mais	0		м 59		
EPTC	0,672	251	0,5	Mais	Ο,		. M 02	•	
DETC	0,672	252	5,0	Mais			15 M		
EPTC	0,672	253	0,5	Mais	0		M 99		
EPTC	0,672	254	0,5	Mais	5 M	··· ·	50 M		
EPTC	0,672	255	0,5	Mais	0		5 国		
EPTC	0,672	256	0,5	Mais	0		15 M		
EPTC	0,672	257	0.5	Mais	0		70 M	· .	
EPTC	0,672	258	O.5	Mais	: a	. •	10 M	•	•
					-	•		•	. '

- 133 -

Unbehandeltes Saat-4 Wochen gut in der benachbarten Reihe 2 Wochen 15 站 35 K 40 ₩ 45 M 15 12 区 2 20 12 45 k 5 ¥ Schädigung in Behandeltes Saat-2 Wochen 4 Wochen gut 10 0 0 Getreide-Meis Mais Verbin- Behandlungs-% сем./сем. verhältnis 0,0 0,5 0,0 0,0 0,5 0,5 0,5 0,5 0,5 Gegenmittel dung 260 261 262 263 264 265 266 268 269 270 272 267 Anwendungs-verhältnis 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-EPTC EPTC EPTC BPTC EPTC EPTC EPTC **国PTC** 国PTC **国PTC** EPTC BUTC EPTC EPTC EPTC EPTC zid

Tabelle III (Fortsetzung):

-		Gegenmittel	ttel		Schädigung in %	
Herbi-	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut 2 Woohen 4 Wochen	Unbehandeltes Saatgut in der benachbarten Reihe 2 Woohen 4 Wochen
EPTC	0,672	275	0,5	Mais		40 M
EPTC	0,672	276	0,5	Mais		40 班
DPTG	0,672	277	0,5	Mais	10 Т	35 M
EPTC	0,672	278	0,5	Mais	0	40 M
EPTC	0,672	279	0,5	Mais	0	33 M
EPIC	0,672	280	5,0	Mais	0	50 K
EPIC	0,672	281	0,5	Mais	0	м 59
EPTC	0,672	282	0,5	Mais	10 B	38 M
EPTC	0,672	283	0,5	Mais	0	M 08
EPTC	0,672	284	0,5	Meis		35 M
EPTC	0,672	285	0,5	Mais	0	15 M
BPTC	0,672	. 982	0,5	Mais	10 V	70 M
EPTC	0,672	287	0,5	Mais	10 Φ	75 M
EPTC	0,672	288	6,0	Mais	10 Φ	35 選
EPTC	0,672	289	0,5	Mais	0	35 M
EPTC	0,672	290	0,5	Mais	0	50 M
EPTC	0,672	291	0,5	Mais	0	50 M

Tabelle III (Fortsetzung);

		Gegenmittel	ttel		Schädigung in %	R
Herbi-	Anwendungs- verhältnis «/m	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut	Unbehandeltes Saatgut in der be- nachbarten Reihe
	- /0				2 Wochen 4 Wochen	1
EPTC	0,672	292	0,5	Mais	0	30 M
EPTC	0,672	293	0,5	Mais	0	55 M
EPTC	0,672	294	0,5	Mais	0	₩ 09
EPTC	0,672	295	0,5	Mais	0	25 M
EPTC	0,672	296	0,5	Mais	0	15 並
EPTC	0,672	297	0,5	Mais	0	10 M
EPTC	0,672	298	0,5	Mais	0	5 M
EPTC	0,672	299	0,5	Mais	0	20 M
EPTC	0,672	300	0,5	Mais	0	0
EPTC	0,672	301	0,5	Mais	0	23 M
EPTC	0,672	302	0,5	Mais		25 M
EPTC	0,672	303	6,0	Mais	0	15 M
EPTC	0,672	304	0,5	Mais	0	40 M
EPTC	0,672	305	6,0	Mais	0	35 M
EPTC	0,672	306	0,5	Mais	0	15 M
EPTC	0,672	307	0,5	Mais		15 M

Tabelle III (Fortsetzung):

-		Gegenmittel	te]		Schädigung in %	R
Herbi- zid	Anwendungs- verhältnis ø/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut	Unbehandeltes Saatgut in der benachbarten Reihe
	=/0				2 Wochen 4 Wochen	2 Wochen 4 Wochen
EPTC .	0,672	308	. 5.0	Mais	٥	м 6
BPTC	0,672	309	0,5	Mais	0	25 M
EPTC	0,672	310	0,5	Mais	0	45 M
EPTC	0,672	1116	0,5	Mais	0	30 M
EPTC	0,672	312	0,5	Mais		70 M
EPTC	0,672	313	0,5	Mais	0	₩ 5 9
EPTC	0,672	314	0,5	Vais	У № 4 О €	. ₩ 09
EPTC .	0,672	315	0,5	Mais	50 M	N OL
EPTC	0,672	316	0,5	Mais	0	
EPTC	0,672	317	.0.5	Vais	0	ж о2
RPTC	0,672	318	0,5	Mais	30 V,M	ж 09
EPTC	0,672	319	0,5	Mais	30 V 9M	м 09
EPTC	0,672	320	0,5	Mais	0	0
EPTC .	0,672	321	0,5	Mais	0	. 65 м
EPTC	0,672	322	0,5	Mais	10 V	10 M
EPTC	0,672	323	0,5	Mais	10 V	40 M

Tabelle III (Fortsetzung):

		Gegenmittel	tel	•	Schädigung in %	
Herbi- zid	Anwendungs-verhältnis	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Sast- gut	Unbehandeltes Saatgut in der benachbarten Reihe
	11/20				2 Wochen 4 Wochen	2 Wochen 4 Wochen
SPTC	0,672	324	0,5	Mais	ж 09	75 M
EPTC	0,672	325	0,5	Mais	₩ 09	. M 08
DLAG	0,672	326	0,5	Mais	20 V	70 M
EPTC	0,672	327	0,5	Mais	30 V, M	75 M
EPTC	0,672	328	0,5	Mais	м. т оэ	75 M
EPTC	0,672	329	0,5	Mais	0	M 09
EPTC	0,672	330	0,5	Meis	ж, т о€	65 M
EPTC	0,672	331	0,5	Mais	TO A	70 M
EPTC	0,672	332	0,5	Mais	0	7 × 5
EPTC	0,672	333	0,5	Mais	0	15 M
EPTC	0,672	334	0,5	Mais	0	23 M
EPTC	0,672	335	0,5	Mais	20 V,B	35 M
EPTC	0,672	336	0,5	Mais	95 V	30 M
EPTC	0,672	337	0,5	Keis	0	
EPTC	0,672	338	. 5.0	Mais	0	M 09
EPTC	0,672	339	0,5	Mais	30 M	75 M

Tabelle III (Fortsetzung):

7500x88

		Gegenmittel	tel		Schädigung in %	
Anv Herbivel	Anwendungs- oiverbältnis , 2	Verbin- dung Nr.	Behandlungs- verbältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut	Unbehandeltes Sastgut in der be- nachbarten Reihe
۱ ۳	n/5				2 Wochen 4 Wooben	2 Woohen 4 Woohen
0	,672	340	£,0	Kais		. 25 M
0	,672	341	0,5	Mais	0	30 M
0	,672	342	0,5	Mais	₩ 09	M 08
0	,672	343	0,5	Mais	0	45 M
0	,672	344	0,5	Mais	10 V	15 M
0	,672	345	0,5	Mais	0	75 M
0	,672	346	0,5	Mais	10 V	65 M
0	,672	347	0,5	Mais	50 V,₩	80 M
O	,672	348	0,5	Mais	0	65 M
	,672	349	0,5	Mais	м• л 09	75 M
	. 672	350	0,5	Mais	₩ 09	80 M
U	,672	351	0,5	Mais	м. т 09	75 M
U	,672	352	0,5	Mais	M, V 09	₩ 08
٥	,672	. 353	0,5	Mais	М. № 09	75 M
	,672	354	0,5	Mais	50 V,M	80 M
Ŭ	0,672	355	0,5	Mais	π , ∇ 09	м 02
			•			

Tabelle III (Fortsetzung):

	Unbehandeltes Saatgut in der be- nachbarten Reihe 2 Wochen 4 Wochen	70 M			. W 52	70 M		-	80 M	55 M	M 59	£ 59					
Schädigung in %	Behandeltes Saat- gut 2 Wochen 4 Wochen	Λ,Β	M	>	м. у	м. м.	м. v	A	М, V	· h•	м, т					N 07 E	7 50 M
သို့	Beh 2 W	50		30	28	5		30		10	50 1	0	0	0	0	70 1	40 7
ı	Getrei- deart	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais
tel	Behandlungs- verhältnis % Gew./Gew.	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Gegenmittel	Verbin- dung Nr.	356	357	358.	359	360	361	362	363	364 ··	365	366	267	368	369	370	371
	Anwendungs- verhältnis g/m	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672
	Herbi- zid	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	DLAG	EFTC	EPTC	EPTC	EPTC	dPTC	БРТС

A	Ħ	A
"	7	"

0,5 Mais 30 V 40 V,M 80 M 80 M 0,5 Mais 60 M 0,5 Mais 60 W 0,5 Mais 50 V,M 0,5 Mais 50 W 0,5 Mais 80 M 0,5 Mais 50 W 90 W 80 M 0,5 Mais 70 W 80 M 0,5 Mais 50 V,M 90 W 80 M 0,5 Mais 50 V,M 80 M 0,5 Mais 60 M	Anwendungs- verhältnis g/m	Behandlungs- Verhältnis Getrei- % Gew./Gew. deart Z Wochen 4 Wochen 2 Woohen 4 Wo
Mais 50 V,W, 75_M Mais 60 M 85 M Mais 50 V,B 30 M 80 M Mais 50 W 70 M 80 M Mais 50 W 40 W 80 M 80 M Mais 50 W 40 M 85 M 80 Mais 50 W 40 M 85 M 80 Mais 50 W 10 V 70 M 80 Mais 60 M 30 M 75 M Mais 10 V 30 M 75 M Mais 60 M 80 M	372	№ 40 № 40 №
5 Mais 60 M 85 M 5 Wais 50 V,B 50 M 80 M 5 Wais 50 M 70 M 5 Wais 80 M 70 M 5 Wais 50 M 90 M 80 5 Wais 50 W 40 M 85 M 80 5 Wais 50 W 40 M 85 M 80 5 Wais 50 W 90 M 80 5 Wais 50 W 70 M 80 5 Wais 50 W 70 M 80 5 Wais 10 V 70 M 80 M 5 Wais 10 V 70 M 80 M 5 Wais 60 M </td <td>373</td> <th>5 Mais 50 V.M.</th>	373	5 Mais 50 V.M.
5 Mais 50 M 90 M 80 5 Mais 40 V,M 70 M 5 Mais 40 V,M 70 M 5 Mais 50 M 80 M 5 Mais 10 V 20 M 80 M 5 Mais 50 W 40 M 85 M 80 5 Mais 50 W 40 M 80 M 80 5 Mais 50 W 10 V 70 M 80 5 Mais 20 V 10 V 70 M 80 5 Mais 60 M 70 M 80 M	374	5 Mais 50 V, M,
5 Meals 50 M 90 M 5 Meals 40 V,M 70 M 5 Meals 50 M 80 M 80 M 5 Meals 50 M 40 M 85 M 80 5 Meals 50 M 40 M 80 M 80 5 Meals 50 W 10 V 70 M 80 5 Meals 60 M 30 M 80 M 5 Meals 10 V 70 M 80 5 Meals 60 M 30 M 75 M 5 Meals 60 M 30 M 80 M	375	5 Mais 50 V, M, B 5 Mais 60 M
5 Wais 40 V,M 70 M 5 Wais 50 M 85 M 5 Wais 10 V 20 M 80 M 5 Wais 50 W 40 M 85 M 80 5 Wais 50 W 40 M 80 M 80 5 Wais 50 V,B 30 V 90 M 80 5 Wais 20 V 10 V 70 M 80 5 Wais 10 V 70 M 80 5 Wais 10 V 75 M 5 Wais 60 M 30 M 80 M 5 Wais 60 M 30 M 80 M	,916	5 Mais 50 V,M, B 5 Wais 60 M 5 Mais 50 V,B 30 M 9
5 Mais 80 M 85 M 5 Mais 50 M 85 M 80 5 Mais 70 V 40 M 85 M 80 5 Mais 50 W 70 M 80 80 5 Mais 50 V,B 70 W 80 5 Mais 60 M 70 M 80 5 Mais 10 V 70 M 80 5 Mais 10 V 70 M 80 5 Mais 10 V 70 M 80 M	377	5 Mais 50 V,M, 5 Mais 60 M 8 5 Mais 50 V,B 30 M 9 5 Mais 50 M
5 Mais 50 M 20 M 85 M 80 5 Mais 30 V 40 M 85 M 80 5 Mais 50 M 80 M 80 5 Mais 50 V,B 30 V 90 M 80 5 Mais 20 V 10 V 70 M 80 5 Mais 10 V 70 M 80 5 Mais 10 V 75 M 5 Mais 60 M 80 M	378	5 Mais 50 V, M, 5 Mais 60 M 8 5 Mais 50 V, B 30 M 9 5 Wais 50 M 7
5 Mais 10 V 20 M 90 M 80 5 Mais 50 W 40 M 85 M 80 5 Mais 50 W 90 M 80 5 Mais 20 V 10 V 70 M 80 5 Mais 60 M 30 M 85 M 5 Mais 10 V 75 M 5 Mais 60 M 80 M	379	5 Wais 50 V,W, 5 Wais 60 W 65 Wais 50 V,B 30 W 9 65 Wais 50 W 7 7 7
5 Mais 50 M 40 M 85 M 80 5 Mais 50 V,B 50 V 90 M 80 5 Mais 20 V 10 V 70 M 80 5 Mais 60 M 85 M 5 Mais 10 V 30 M 75 M 5 Mais 60 M 80 M	380	5 Mais 50 V,M, 5 Mais 60 M 8 5 Mais 50 V,B 30 M 9 5 Wais 40 V,M 7 5 Wais 80 M 8
5 Mais 50 M 80 M 80 M 50 V,B 30 V 90 M 80 5 Mais 20 V 10 V 70 M 80 5 Mais 60 M 85 M 85 M 55 Mais 60 M 80 M 80 M	381	5 Wais 50 V, W, 5 Wais 60 M 5 Wais 50 V, B 30 M 9 5 Wais 40 V, M 7 7 Wais 80 M 5 Wais 10 V 20 M 9
5 Mais 50 V,B 50 V 90 M 80 5 Mais 60 M 85 M 5 Mais 10 V 30 M 75 M 5 Mais 60 M 80 M	382	5 Wais 50 V,W, 5 Wais 60 M 65 Wais 50 V,B 30 M 9 7 7 Wais 40 V,M 7 7 Wais 50 M 9 7 Wais 50 M 9 8 Wais 30 V 40 M 8
5 Mais 20 V 10 V 70 M 80 5 Mais 60 M 85 M 5 Mais 10 V 30 M 75 M 5 Wais 60 M 80 M	383	5 Wais 50 V, W, 5 Wais 60 M 5 Wais 50 V, B 30 M 9 5 Wais 40 V, M 7 7 Wais 80 M 5 Wais 50 W 20 M 9 5 Wais 50 W 8
5 Mais 60 M 85 5 Mais 10 V 30 M 75 5 Mais 60 M 80	384	5 Wais 50 V, W, 5 Wais 60 M 5 Wais 50 V, B 30 M 9 5 Wais 40 V, M 7 5 Wais 50 W 5 Wais 50 W 6 Wais 50 W 7 7 Wais 50 W 8
5 Mais 10 V 30 M 75 5 Mais 60 M 80	385	Mais 50 V, M, 5 Wais 60 M 8 5 Wais 50 V, B 30 M 9 5 Wais 50 W 7 5 Wais 80 M 7 5 Wais 50 W 9 5 Wais 50 V 40 M 8 5 Wais 50 V 10 V 7 5 Wais 20 V 10 V 7
08 M 90	386	Mais 50 V, M, Mais 60 M 8 Mais 50 V, B 30 M 9 Mais 50 W, M 7 9 Mais 40 V, M 7 9 Mais 50 W 40 M 8 Mais 50 W, M 9 9 Mais 50 W, B 20 W 9 Mais 50 W, B 30 V 9 Mais 20 V, B 30 V 7 Mais 60 M 60 M 8
	387	5 Wais 50 V, W, 5 Wais 60 M 65 Wais 50 V, B 30 M 9 7 Wais 40 V, M 7 Wais 50 W 65 Wais 50 W 65 Wais 50 W 65 Wais 50 V, B 30 V 7 65 Wais 60 M 65 Wais 10 V 30 W

- 141 -

142

		Gegenmittel	tel		Schädigung in %	ng in %	
Herbi-	Anwendungs- verhältnis g/m^2	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut Wochen 4	tes Saat-	Unbehandeltes Saat- gut in der benach- barten Reihe
EPTC	0,672	388	0,5	Mais	100 K		55 M
EPTC	0,672	389	0,5	Mais	10 V	0	
EPTC	0,672	390	0,5	Mais	15 V,M		M 08
EPTC	0,672	391	0,5	Mais	10 Φ	0	₩ .08
RPTC	0,672	392	0,5	Mais	м• л 09		75 M
EPTC	0,672	393	0,5	Mais	м 09		80 M
EPTC	0,672	394	0,5	Mais	M. V O∂		ж 08
EPTC	0,672	395	0,5	Mais	10 V	10 M	65 M
EPTC	0,672	396	0,5	Mais	10 V	0	75 M
EPTC	0,672	762	0,5	Mais	10 4	20 M	W 09
EPTC	0,672	398	0,5	Mais	M 09		M 08
EPTC	0,672	399	0,5	Mais	₩ 09		80 M
EPTC	0,672	400	0,5	Mais	¥ 09		75. M
EPIC	0,672	401	0,5	Mais	M 09		. M. 08
EPTC	0,672	402	0,5	Mais	40 V,M		75 м
EPTC	0,672	403	0,5	Mais	M. V 09		₩ 08

		Gegenmittel	e]		Schädigung in %	in %	-
Herbi- zid		Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut	s Saat-	Unbehandeltes Saatgut in der be- nachbarten Reihe
	ı	-			2 Wochen 4	Wochen	2 Wochen 4 Wochen
EPTC	0,672	404	0,5	Mais	M 07.		₩ 08
EPTC	0,672	405	0,5	Mais	70 M		₩ 08
EPTC	0,672	406	0,5	Mais	™ 07		₩ 08
EPTC	0,672	407	0,5	Mais	70 №		80 M
EPTC	0,672	408	0,5	Mais	M, 02		80 M
EPTC	0,672	409	0,5	Mais	70 M		₩ 08
EPTC	0,672	410	0,5	Mais	70 M	:.	₩ 08
EPTC	0,672	411	0,5	Mais	M 09		80 減
EPTC	0,672	412	0,5	Mais	70 M		₩ 08
BPTC	0,672	413	0,5	Mais	70 M	· .	80. M
EPTC	0,672	414	0,5	Mais	70 M	•	80 M
EPTC	0,672	415	α,5	Mais	. м о2		80 M
EPTC	0,672	416	0,5	Mais	70 M	. W	₩ 08
EPTC	0,672	417	0,5	Mais	M 09		80 班
EPTC	0,672	418	0,5	Mais	70 M		80 M
EPIC	0,672	419	0,5	Mais	70 м		20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EPTC	0,672	420	0,5	Mais	₩ о2		80 M

- 143-

144

		Gegenmittel	ittel	ı	Schädigung in %	B	
Herbi- zid	Anwendungs- verhältnis	Verbin- dung v	- Bebandlungs. verbältnis % Gew./Gew.	1 '	Behandeltes Sa. gut	Saat-	Unbehandeltes Saat- gut in der benach- barten Reibe
	11/8 11/8	١		deart	2 Wochen 4 Wo	Wochen	2 Wochen 4 Wochen
EPTC	0,672	421	5,0	Mais	70 M		. M 08
EPTC	0,672	422	0,5	Mais	Yo M		80 M
EPTC	0,672	423	. 5.0	Mais	70 M		80 M
EPTC	0,672	424	0,5	Mais	70 M		. М 08
EPTC	0,672	425	0,5	Mais	₩ о.		₩ 08
EPTC	0,672	426	0,5	Mais	M, V 09		75 M
EPTC	0,672	427	0,5	Mais	70 M		75 M
BPTC	0,672	428	0,5	Mais	70 M		75 M
EPTC	0,672	429	0,5	Mais	M, V OY		80 M
EPTC	0,672	430	0,5	Mais	70 V,M		75 M
EPTC	0,672	431	0,5	Mais	70 V,M	٠	80 M
EPTC	0,672	432	0,5	Mais	70 V,M		80 M
EPTC	0,672	433	6,0	Mais	70 M		80 M
EPTC	0,672	434	0,5	Mais	N. V OY		80 M
EPTC	0,672	435	0,5	Mais	70 M		.75 M
EPTC	0,672	436	0,5	Mais	М. Ф ОЭ		75. M

Rabelle III (Fortsetzung):

in- Behandlungs- Beha	네 형 ;
dung verhältnis Getrei- Nr. % Gew./Gew. deart	gut 2 Wochen
437 0,5 Mais	M. V O∂
438 0,5 Mais	M' A OL
439 0,5 Mais	20 V
440 0,5 Mais	TO A
441 0,5 Mais	30 V
442 0,5 Mais	10 V
445 0,5 Mais	10 V
444 0,5 Wais	TO A
445 0,5 Mais	₩ oŁ
446 0,5 Mais	20 V
447 0,5 Mais	м 09
448 0,5 Mais	M. V O€
449 0,5 Mais	70 M
450 0,5 Mais	
451 0,5 Mais	

- 149 -

146

	G	Gegenmittel	tel		Schädigung in %	
Herbi- zid	Anwendungs- verhältnis		Verbin- Behandlungs- dung verhältnis Nr. % Gew./Gew.	Getrei. deart	Behandeltes Saat- gut	Unbehandeltes Saat- gut in der benach- barten Reihe
	6/m				2 Wochen 4 Wochen	2 Wochen 4 Wochen
EPTC	0,672	452	0,5	Mais	и, ч оγ	80 M
EPTC	0,672	453	0,5	Mais	20 V	至 09
BPTC	0,672	454	0,5	Mais	70 M	75 M
BPTC	0,672	455	0,5	Mais	20 V	65 M
EPTC	.0,672	456	0,5	Mais	м, и оэ	75 M
EPTC	0,672	457	0,5	Mais	м, Ф О С	80 M
EPTC	0,672	458	. 0,5	Mais	№ 4 05	70 M
EPTC	0,672	459	0,5	Mais	40 V,M	80 M
EPTC	0,672	460	0,5	Mais	м. и 09	80 M
EPTC	0,672	461	0,5	Mais	10 V	80 M
EPTC	0,672	462	0,5	Mais	M, V Oξ	75 M
EPTC	0,672	463	0,5	Mais	70 M	м ов
EPTC	0,672	464	0,5	Mais	70 M	80 M
EPTC	0,672	465	0,5	Mais	№ 1 05	ж ов
EPTC	0,673	466	0.5	Mais	20 V.M	70 M

147

	Unbehandeltes Saat- gut in der benach- barten Reihe 2 Wochen 4 Wochen							·				•	•		٠		
-	Unbehandeltes gut in der be barten Reihe 2 Wochen 4 Wo	75 M	₩ 08	. M 08	75 M	M 59	25 M	80 ¥	80 M	70 M	75 M	M 08.	₩ 08	80 M	80 M	₩ 08	80 M
Schädigung in %	Behandeltes Saat- gut 2 Wochen 4 Wochen	0	м•л 09	10 V	W 09	50 V,M	20 V,M	70 M	70 M	20 V,M	10 V.	30 V M	20 V,M	M. V. O9	70 V,M	70 M	м. т
	Getrei- deart	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais.	Mais	Mais	Mais	Mais
;e]	Behandlungs- verhältnis % Gew./Gew.	0,5	0,5	0,5	0,5	0,5	5.0	0,5	· 0 • 5	0,5	0,5	0,5	0,5	5.0	0,5	5.0	0,5
Gegenmittel	Verbin- dung Nr.	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482
. ,	Anwendungs-verhältnis g/m ²	0,672	0,672	0,672	0,672			0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672
-	Herbi- zíd	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	BPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC

- 547 -148

Unbehandeltes Saatgut in der benachbarten Reihe 2 Wochen 4 Wochen 70 区 75 M 70 M 85 ₩ ¥ 86 80 V,M 55 M 80 8 75 🗷 80 M 40 M 95 译 98 № 25 M 2 Behandeltes Saat-2 Wochen 4 Wochen 50 V.M 50 V,™ N, V €7 M. V 09 Schädigung in 30 V 0 gut 40 V,™ 30 V,M M, V O7 50 V, M 30 V, ii 四 09 70 M 10 V 10 V 10 V 10 V 202 20 20 Getreideart Mais Verbin- Behandlungs-% сеж./сеж. verhältnis 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 Gegenmittel dung 483 484 485 486 488 489 490 493 487 491 492 494 495 496 497 Anwendungsverhältnis 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-EPTC EPTC zid EPTC

руу - 821 -

Unbehandeltes Saatbarten Reihe 2 Wochen 4 Wochen gut in der benach-型 20 20 图 09 40 日 2 M 86 78 M 50 強 55 M ₩ 8*L* 89. M 30 M 58 **™** 5 国 Behandeltes Saat-2 Wochen 4 Wochen 100 K 100 K 100 K 100 K 100 K Schädigung in 20 V 20 V 30 **∀** gut 40 V.M 100 K 100 K 100 K 100 K 100 K ₩ 90 10 V 10 4 10 V . 20 . % 9 Getreideart Mais Verbin- Behandlungs-% Сем./Сем. verhältnis 0,5 0,5 0 ئر 0,5 0,5 0,5 Gegenmittel dung 508 500 505 506 509 510 499 507 502 503 504 507 511 Anwendungsverhältnis 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herb1-EPTC EPIC EPTC BPTC EPTC
					_	.,				
	ndeltes t in der be- rten Reihe	en 4 Wochen					•	. 0		
		2 Woch						0		
gung in %	altes Saat-	an 4 Wochen						٥		, ,
Schädi		2 Woche	№ 06	5 4	20 V	№		0		0
	Getrei- deart		Mais	Weizen	Weizen	Weizen		Wais		Mais
tel	Behandlungs- verhältnis % Gew./Gew.			0,25	0,5	ı		1,0		0,01
Gegenmit	Verbin- dung Nr.		ì	9	9			. 9		9
	Anwendungs- rerhältnis	#/9	0,672	0,112	0,112	0,112	0,672 +	0,112	0,672 +	0,112
	Herbizid		EPTC	S-2,3,3-Trichlor- allyl-diisopropyl- thiolearbamat	S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat	S-2,3,3-Trichlor- allyl-diisopropyl- thioloarbamat	EPTC +	2-Chlor-4-äthyl- amino-6-isopropyl- amino-s-triazin	EPTC +	2-Chlor-4-äthyl- amino-6-isopropyl- amino-s-triazin
	Gegenmittel Schädigung in %	Anwendungs- Verbin- Behandlungs- Behandeltes Saat- Unbehandeltes verhältnis Getrei- gut Saatgut in der gart nachbarten Reik	Anwendungs- Verbin- Behandlungs- Behandeltes Saat- Unbehandeltes verhältnis dung verhältnis Getrei- gut Saatgut in der gat gat- Nr. % Gew./Gew. deart 2 Wochen 4 Wochen Woch	Anwendungs- Verbin- Behandlungs- Schädigung in % Anwendungs- Verbin- Behandlungs- Behandeltes Saat- Unbehandeltes yerhältnis dung verhältnis Getrei- gut Saatgut in der Bakm²/Gew./Gew./Gew. deart g/m² Nr. % Gew./Gew. 2 Wochen 4 Wochen	Anwendungs- Verbin- Behandlungs- Behandeltes Saat- Unbehandeltes satverhältnis dung verhältnis dung verhältnis deart g/m² Nr. % Gew./Gew. deart go M O,672 Mais 90 M Trichlor- isopropyl- o,112 6 0,25 Weizen 5 W	Anwendungs- Verbin- Behandlungs- g/m² O,672 O,112 O,112 O,112 Anwendungs- Behandlungs- Getrei- Gung Verbin- Behandlungs- Getrei- Gung Verbin- Behandlungs- Getrei- Gung Verbin- Behandlungs- Getrei- Gung Anochen 4 Wochen 2 Wochen 4 Woch Anochen 5 V Weizen 5 V Weizen 20 V	Anwendungs-gegenmittel Schädigung in % Schädigung in % Anwendungs-g/m² Verbin-genallungs-getrei-gen verbältnis dung verbältnis dung verbältnis dung verbältnis dert Setrei-gut in der gut nachbarten Reib nachb	Anwendungs- werhältnis g/m² Verbin- dung werhältnis g/m² Behandlungs- g/m² Schädigung in % Behandeltes gut Behandeltes gut Saatgut in der Saatgut in der gut 0,672 - - - Weizen 90 M Ameinen deart 2 Wochen 4 Wochen 2 Wochen 4 Wo	Anwendungs- dung dung dung dung dung dung dung dung	Anwendungs- g/m² Verbin- dung dung werhältnis g/m² Behandlungs- werhältnis deart- dung Schädigung in % Behandeltes Saat- gut gut gut gut gut nachbarten Reib 2 Wochen 4 Wochen 2 Wochen 4 Woch 3 Weizen 0,672 - - - - - - Weizen 5 W -

Tabelle III (Fortsetzung):

		Gegenmittel	te]		Schädigung in %	B		ļ
Herbizid	Anwendungs- verbältnis	Verbin- dung	Behandlungs- verhältnis	Getrei-	Behandeltes Sagut	Saat-	Unbehandeltes Saatgut in de nachbarten Re	der be- Reibe
	g/m ²	Nr.	% Gew./Gew.	deart	2 wochen 4 Woo	Wochen		Wochen
EPTC +	0,672 +					٠ .		-
2-Chlor-4,6-bis			•					
triazin	0,112	'9	1,0	Mais	0			
EPTC +	0,672 +	•				•		
2-Chlor-4,6-bis äthylamino)-s- triazin	0,112	9	0,01	Mals	0			· .
EPTC +	0,672 +						•	
2(4-Chlor-6- äthylamino-s- triazin-2-yl-								
<pre>' amino)-2-methyl- propionitril</pre>	0,112	9	1,0	Mais	0			
EPTC +	0,672 +		-					
2(4-chlor-6- äthylamino-s- triazin-2-yl-	• 1 • 1 •	· · · .	4. E	,				
amino)-2-methyl- propionitril	0,112	. 9	0,01	Mais	0	·		

Tabelle III (Fortsetzung):

	-	Gegenmittel	tel		Schädigung in %		
Herbizid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut	- Unbehandeltes Saat gut in der benach- barten Reihe	tes Saat- benach- he
EPTC +	0,672 +				2 Wochen 4 Wochen	2 Wochen	4 Wochen
2-Chlor-4-cyclo- propylamino-6-iso- propylamino-s- triazin	- 0,112	۰.	1,0	Mais			C
EPTC +	0,672 +		•)	o
2-Chlor-4-cyclo- propylamino-6-iso- propylamino-s-			·				
triazin	0,112	9	0,01	Mais	0		
EPTC + 2,4-D	0,672 + 0,112	9	1,0	Mais		C	c
EPTC + 2,4-D	0,672 + 0,112	9	0,01	Mais)	
S-Propyldipro- pylthiol-carbamat + 0,672 2-Chlor-4-äthyl-	+ 0,9672 +		,				
amtmo-o-isopropy amino-s-triazin	0,112	9	1,0	Mais	0	C	c
S-Propyldipropyl- thiolcarbamat	0,672	t		Mais	м)	

Tabelle III (Fortsetzung)

				- I	7 - 1	53			• •	
•	Unbehandeltes Saatgut in der benachbarten Reihe	Woohen 4 Woohen	:	0	.:	0		o .		0
	Unbek Saate enaok	2 WC	•	0		0	:	o.	• .	
rung in %	Saat.	n 4 Wochen		0		0	.•	0		0
Schädigung	Behandel tes gut	2 Wochen		ò		0		0		0
	Getrei- deart			Mais		Mais		Mais		Mais
H	Behandlungs verbältnis % Gew./Gew.			0,01		1,0		0,01		1,0
Gegenmittel	Verbin- dung Nr.			•		9		, 		. 49
ĕl	Anwendungs- verhältnis g/m ²		0,672 +	0,112	0,672 +	0,112	0,672	0,112	0,672 +	1y1- 0,112
	Herbizid An ve		S-Propyldipropyl- thiologrammat + 2-Chlor-4-äthyl-	amino-6-isopropyl- amino-s-triazin	S-Propyldipropyl- thiologrhamat + 2-chlor-4,6-bis	(atny ramino)-s- triazin	S-Propyldipropyl- thiolcarbamat + 2-Chlor-4,6-bis	(äthylamino)-s- triazin	S-Propyldipropyl- thiologrbamat + 2(4-Chlor-6-äthyl-	amino-s- vitazin- 2-yl-amino)-2-methyl- propionitril O
							•			

Tabelle III (Fortsetzung):

				- 15	-			
	Unbehandeltes Saatgut in der be- nachbarten Reihe 2 Wochen 4 Wochen	·			0			0
Schädigung in %	Behandeltes Saat- Unbehandeltes Saatgut in de nachbarten Re Wochen 4 Wochen 2 Wochen 4 Wo		0		0		0	0
<u> </u>	Getrei- deart		Mais		Mais		Mais	Mais
	Behandlungs- verhältnis % Gew./Gew.		0,01		1,0		0,01	1,0
Gegenmittel	Verbin- dung Nr.		9		9		9	9
9	Anwendungs- verhältnis g/m ²	0,672 +	21160	0,672 +	0,112	0,672 +	0,112	0,672 + 0,112
	A Herbizid v	S-Propyldipropyl- thiolcarbamat + 2(4-Chlor-6-Äthyl- amino-s-triazin- 2-yl-amino)-2- methylpropioni-	1770	S-Propyldipropyl- thiolcarbamat + 2-Chlor-4-cyclo- propylamino-6-	isopropylamino- s-triazin	S-Propyldipropyl- thiolcarbamat + 2-Chlor-4-cyclo- propylamino-6-iso-	propylamino-s- triazin	S-Propyldipropyl- thiolcarbamat + 2,4-D

Tabelle III (Fortsetzung):

				155				
	Unbehandeltes Saatgut in der be- nachbarten Meihe 2 Nochen 4 Nochen		0			0		
Schädigung in %	leltes Saat-		.· · o	0		0		0
Schädig	Behandeltes gut	0	· o	0	•	. 0	•	0
	Getrei- deart	Mais	Mais	Mais	·	Mais		Mais
e1	- Behandlungs- verhältnis % Gew./Gew.	0,01	1,0	0,01		1,0		0,01
Gegenmittel	Verbin- dung Mr.	9	. 9	. •	·	9		. 0
9	Anwendungs- verhältnis g/m^2	0,672 + 0,112	0,672	0,672	+ 968.0	0,112	+ 968+0	0,112
	Herbizid A	S-Propyldipro- pylthiol- carbamat + 2,4 D	S-Propyldipro- pylthiol- carbamat +	S-Propyldipro- pylthiol- carbamat	S-Athyldiiso- butylthiol- carbamat + 2-Chlor-4-	athylamino-6- isopropylamino- s-triazin	S-Athyldiiso- butylthiol- carbamat + 2-Chlor-4-	äthylamino-6- isopropylamino- s-triazin

abelle III (Fortsetzung):

				- 255 - 15(•				
	Unbehandeltes Saatgut in der be- nachbarten Reihe		0				0		
	Unbeh Saatg nachb		0	٠			0		
Schädigung in %	Behandeltes Saat- gut	4	0		0	:	0	. 1	0
Schädi	Behandel gut		0		0		0		0
	Getrei- deart		Mais	÷	Mais	:	Mais		Mais
e1	Behandlungs- verhältnis % Gew./Gew.		1,0		0,01		1,0		0,01
Gegenmittel	Verbin- dung Nr.		9		9	•	o		9
<u>왕</u>	Anwendungs- verhältnis g/m ²	+ 96860	0,112	+ 968*0	0,112	+ 968*0	1 0,112	0;896+ y1- o-	0,112
•	Anw Herbizid ver	iiisobu- .+ 4,6-bis ino)-s-	triazin	liisobutyl-rbamat + -4,6-bis	triazin	S-Äthyldiisobutyl- thiolcarbamat + (2(4-Chlor-6-äthyl- amino-s-triazin- 2-yl-amino)-2-	me day - propionitri 0,112	S-Äthyldiisobutyl- thiolcarbamat + 0 2(4-Chlor-6-äthyl- amino-s-triazin-2-yl- amino)-2-methyl-pro-	pionitril

Tabelle III (Fortsetzung):

	3	Gegenmittel		ŭ	Schädigung in	n %		
Herbizid	Anwendungs- verhältnis g/m	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut	s Sast-	Unbehandeltes Saatgut in de benachbarten Reihe	ltes n der ten
S-Xthyldiisobutyl-					2 Wochen	4 Wochen	2 Wochen	4 Wochen
thiologrammat + 2-Chlor-4-cyclo-	+ 968'0					·		
propylamino-6-180- propylamino-s-tri-	ן ן פרר פרר		<i>-</i>	· 0	c		c	c
azin		o) •	2 7 0	o	·	•	Þ
S-Athylalisobutyl- thiol-carbamat + 2-Chlor-4-cyclo*	+ 968.0							· .
propylamino-6-iso-					•	•		
triazin	0,112	9	0,01	Mais	· .	· o		
S-Athyldiisobutyl- thiolcarbamat + 2,4-D	- 0,896 + 0,112	9	1,0	Mais	0	O	; .o	0
S-Athyldiisobutyl- thiolcarbamat + 2,4-D	- 0,896 + 0,112	. 9	0,01	Mais		0	· · · · · · · · · · · · · · · · · · ·	
S-Athyldiisobutyl- thiolcarbamat	968.0	'0 .	1,0	Mais	. 0	0	0	. 0
-								

Tabelle III (Fortsetzung):

	ণা	Gegenmittel	1		Schädigung in %	in %		
Herbizid	Anwendungs- Verbinverhältnis dung g/m^2 Nr.	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut	Saat-	Unbehandeltes Saatgut in der benachbarten	deltes in der arten
S-Äthyldiiso-					2 Wochen 4 Wochen	Wochen	Reihe 2 Woche	Reihe 2 Wochen 4 Wochen
butylthiol- carbamat	æ	9	0,01	Mais	0	0	c	c
S-2,3,3-Tri- chlorallyl-di-						٠.))
isopropyl-thiol-carbamat	ω	9	1,0	Mais	0	0	.0	. 0
S-2,3,3-Trichlor- allyldiisopropyl-	ι: 1 -							
thiolcarbamat	ω.	9	10,0	Mais	0	0	0	0
S-Athyldiiso- butylthiol -								
carbamat	ω	1	ı	Mais	20 M			
S-2,3,5-Trichlor- ally1-diisopro- pyl-thiolcarbamat	r at 8	ı	1	Mais	30 V			
EPIC = S-Athyl-	S-Athyl-N,N-dij	propylthi	.N.N-dipropylthiocarbamat;					

Werkümmerung;
Misbildung;
Keimhemmung;
Blattverbrennung (leaf burn).

豆豆豆

Die erfindungsgemäß eingesetzten Gegenmittel können in jeder geeigneten Form angewandt werden. So können sie beispielsweise zu emulgierbaren Flüssigkeiten, emulgierbaren Konzentraten, zu einer Flüssigkeit, zu einem benetzbaren Pulver, zu Staubmitteln, zu einem Granulat oder zu einer anderen zweckmäßigen Form verarbeitet werden. Vorzugsweise die Gegenmittel den Thiolcarbamaten beigemischt und vor oder nach dem Einsäen der Saat in den Boden eingearbeitet. Doch kann natürlich auch zuerst das Thiolcarbamat-Herbizid und danach das Gegenmittel in den Boden eingearbeitet werden. Des weiteren kann das Saatgut mit dem Gegenmittel behandelt und im Boden eingesät werden, der entweder bereits mit Herbizid versehen oder nicht damit behandelt wurde und anschließend einer Herbizid-Behandlung unterzogen wird. Durch die Art und Weise, wie das Gegenmittel zugesetzt wird, wird die herbizide Wirksamkeit der Carbamat-Verbindungen nicht beeinträchtigt.

Die Menge des Gegenmittels kann zwischen etwa 0,0001 und etwa 30 Geg-Teilen Gew.-Teil Thiolcarbamat-Herbizid schwanken, wird jedoch gewöhnlich exakt danach ermittelt, welches Verhältnis sich im Hinblick auf die wirksamste Quantität als wirtschaftlich erweist.

In den Ansprüchen der vorliegenden Anmeldung soll der Ausdruck "wirksame herbizide Verbindung" die wirksamen Thiol-carbamate als solche oder die Thiolcarbamate umfassen, die mit anderen wirksamen Verbindungen, wie z.B. den s-Triazinen und der 2,4-Dichlorphenoxyessigsäure oder den wirksamen Acetaniliden und dergl. vermischt sind. Außerdem ist die wirksame herbizide Verbindung von der als Gegenmittel eingesetzten Verbindung verschieden.

Die Klassen der vorliegend beschriebenen und erläuterten herbiziden Mittel sind als wirksame, solche Wirkung aufweisende Herbizide charakterisiert. Der Grad dieser herbiziden Wirkung ist bei den spezifischen Verbindungen und Kombinationen spezifischer Verbindungen innerhalb der Klassen unterschiedlich. Der Wirkungsgrad ist auch bei den einzelnen Pflanzensorten, für die eine spezifische herbizide Verbindung oder Kombination verwandt werden kann, bis zu einem gewissen Grade unterschiedlich. Eine spezifische herbizide Verbindung oder Kombination zur Bekämpfung unerwünschter Pflanzensorten läßt sich also leicht auswählen. Erfindungsgemäß läßt sich die Schädigung einer gewünschten Nutzpflanze (crop species) in Gegenwart einer spezifischen herbiziden Verbindung oder Kombination verhindern. Durch die spezifischen, in den Beispielen verwandten Nutzpflanzen sollen die Nutzpflanzen, die mit diesem Verfahren geschützt werden können, nicht beschränkt werden.

Die im erfindungsgemäßen Verfahren verwädten herbiziden Verbindungen sind wirksame Herbizide allgemeiner Art. D.h. die Mittel dieser Klasse weisen gegenüber einem großen Bereich von Phanzensorten eine herbizide Wirksamkeit auf, ohne daß ein Unterschied zwischen erwünschten oder unerwünschten Pflanzensorten gemacht wird. Zur Bekämpfung des Pflanzenwuchses wird eine herbizid wirksame Menge der hier beschriebenen herbiziden Verbindungen auf die Fläche oder dort, wo eine Bekämpfung von Pflanzen erwünscht ist, aufgebracht.

Unter "Herbizid" versteht man vorliegend eine Verbindung,

mit der Pflanzenwachstum bekämpft oder modifiziert wird. Zu solchen Formen der Bekämpfung oder Modifizierung gehören alle Abweichungen von der natürlichen Entwicklung, z.B. Vernichtung, Entwicklungsverzögerung, Entblätterung, Austrocknung, Regulierung, Verkümmerung, Bestockung (tillering), Stimulierung, Zwergwuchs und dergl. Unter "Pflanzen" versteht man keimende Samen, auflaufende Sämlinge und vorhandenen Pflanzenwuchs einschließlich der Wurzeln und der über dem Boden befindlichen Teile.

Die in den Tabellen genannten Herbizide wurden in solchen Mengen verwandt, mit denen der unerwünschte Pflanzen-wuchs wirksam bekämpft wird. Die Mengen liegen innerhalb des vom Hersteller empfohlenen Bereichs. Die Unkrautbekämpfung ist aus diesem Grunde innerhalb der gewünschten Menge in jedem Fall kommerziell annehmbar.

In der vorstehenden Beschreibung der als Gegenmittel eingesetzten Verbindungen gilt folgendes für die verschiedenen Substituentengruppen: Zu den Alkylresten gehören, falls nichts anderes vorgesehen ist, alle gerad- oder verzweigtkettigen Reste mit 1 bis 20 Kohlenstoffatomen, zu den Alkenylresten, falls nichts anderes vorgesehen ist, alle gerad- oder verzweigtkettigen, mindestens eine olefinische Doppelbindung aufweisenden Reste mit 2 bis 20, vorzugsweise 2 bis 12, Kohlenstoffatomen, und zu den Alkinylresten, falls nichts anderes vorgesehen ist, alle gerad- oder verzweigtkettigen, mindestens eine acetylenische Dreifachbindung aufweisenden Reste mit 2 bis 20, vorzugsweise 2 bis 12 Kohlenstoffatomen.

NS

Patentansprüche:

1. Herbizides Mittel, gekennzeichnet durch einen Gehalt an einem herbiziden Wirkstoff und einem Gegenmittel der Formel

in der R einen Halogenalkyl-, Halogenalkenyl-, Alkyl-, Alkenyl-, Cycloalkyl- oder einen Cycloalkylalkylrest, ein Halogenatom oder ein Wasserstoffatom, einen Carboalkoxy-, N-Alkenylcarbamylalkyl-, N-Alkenylcarbamyl-, N-Alkyl-Nalkinylcarbamyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkenylcarbamylalkoxyalkyl-, N-Alkyl-N-alkinylcarbamylalkoxyalkyl-, Alkinoxy-, Halogenalkoxy-, Thiocyanatoalkyl-, Alkenylaminoalkyl-, Alkylcarboalkyl-, Cyanoalkyl-, Cyanatoalkyl-, Alkenylaminosulfonoalkyl-, Alkylthioalkyl-, Halogenalkylcarbonyloxyalkyl-, Alkoxycarboalkyl-, Halogenalkenylcarbonyloxyalkyl-, Hydroxyhalogenalkyloxyalkyl-, Hydroxyalkylcarboalkoxyalkyl-, Hydroxyalkyl-, Alkoxysulfonoalkyl-, Furyl-, Thienyl-, Alkyldithiolenyl-, Thienalkyl- oder einen Phenylrest oder einen durch Halogenatome, Alkyl-, Halogenalkyl-, Alkoxy-, Carbamyl- oder Nitroreste, Carbonsäurereste und deren Salze oder Halogenalkylcarbamylreste substituierten Phenylrest, einen Phenylalkyl-, Phenylhalogenalkyl- oder einen Phenylalkenylrest oder einen durch Halogenatome, Alkyl- oder Alkoxyreste substituierten Phenylalkenylrest, einen Halogenphenoxy-, Phenylalkoxy-, Phenylalkylcarboxyalkyl-, Phenylcycloalkyl-, Halogenphenylalkenoxy-, Halogenthiophenylalkyl-, Halogenphenoxyalkyl-,

> geändert gemäß Eingabe eingegangen am 18.5.70 16,70 209845/1180

Bicycloalkyl-, Alkenylcarbamylpyridinyl-, Alkinylcarbamylpyridinyl-, Dialkenylcarbamylbicycloalkenyl- oder einen Alkinylcarbamylbicycloalkenylrest bedeutet, R, und R, gleich oder verschieden sein und jeweils Alkenyl- oder Halogenalkenylreste, Wasserstoffatome, Alkyl-, Halogenalkyl-, Alkinyl-, Cyanoalkyl-, Hydroxyalkyl-, Hydroxyhalogenalkyl-, Halogenalkylcarboxyalkyl-, Alkylcarboxyalkyl-, Alkoxycarboxyalkyl-, Thioalkylcarboxyalkyl-, Alkoxycarboalkyl-, Alkylcarbamyloxyalkyl-, Amino-, Formyl-, Halogenalkyl-N-alkylamido-, Halogenalkylamido-, Halogenalkylamidoalkyl-, Halogenalkyl-N-alkylamidoalkyl-, Halogenalkylamidoalkenyl-, Alkylimino-, Cycloalkyl-, Alkylcycloalkyl-, Alkoxyalkyl-, Alkylsulfonyloxyalkyl-, Mercaptealkyl-, Alkylaminoalkyl-, Alkoxycarboalkenyl-, Halogenalkylcarbonyl-, Alkylcarbonyl-, Alkenylcarbamyloxyalkyl-, Cycloalkylcarbamyloxyalkyl-, Alkoxycarbonyl-, Halogenalkoxycarbonyl-, Halogenphenylcarbamyloxyalkyl-, Cycloalkenyl- oder Phenylreste oder durch Alkylreste, Halogenatome, Halogenalkyl-, Alkoxy-, Halogenalkylamido-, Phthalamido-, Hydroxy-, Alkylcarbamyloxy-, Alkenylcarbamyloxy-, Alkylamido-, Halogenalkylamido- oder Alkylcarboalkenylreste substituierte Phenylreste, Phenylsulfonyloder Phenylalkylreste oder durch Halogenatome, Alkyl-, Dioxyalkylen- oder Halogenphenoxyalkylamidoalkylreste substituierte Phenylalkylreste, Alkylthiodiazolyl-. Piperidylalkyl-, Thiazolyl-, Alkylthiazolyl-, Benzothiazolyl-, Halogenbenzothiazolyl-, Alkylthiazolyl-, Benzothiasolyl-, Halogenbensethiasolyl-, Furylalkyl-, Pyridyl-, Alkylpyridyl-, Alkyloxazolyl-, Tetrahydrofurylalkyl-, 3-Cyano-4,5-polyalkylen-thienyl-, a-Halogenalkylacetamidophenylalkyl-, a-Halogenalkylacetamidonitrophenylalkyl-, α-Halogenalkylacetamidohalogenphenylalkyl-, oder Cyano-

alkenylreste bedeuten können oder auch R_1 und R_2 zusammen mit dem Stickstoffatom einen Piperidinyl-, Alkylpiperidinyl-, Alkyltetrahydropyridyl-, Morpholyl-, Alkylmorpholyl-, Azobicyclononyl-, Benzoalkylpyrrolidinyl-, Oxazolidyl-, Alkyloxazolidyl-, Perhydrochinolyl- oder Alkylaminoalkenylrest bilden können, wobei R_2 kein Wasserstoffatom oder Halogenphenylrest ist, wenn R_1 ein Wasserstoffatom darstellt.

- 2. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R ein Wasserstoffatom, ein Halogenatom, einen Alkyl-, Halogenalkyl-, Cycloalkyl-, Cycloalkylalkyl-, Alkenyl-, Halogenalkenyl-, Halogenalkoxy-, Alkinoxy-, Hydroxyalkyl-, Alkylthioalkyl- oder einen Hydroxyhalogenalkoxyalkylrest bedeutet und R₁ und R₂ gleich oder verschieden sein und jeweils Wasserstoffatome, Alkyl-, Halogenalkyl-, Alkenyl-, Halogenalkenyl-, Alkinyl-, Hydroxy-alkyl-, Hydroxyhalogenalkyl-, Cycloalkyl-, Alkylcycloalkyl-, Alkoxyalkyl- oder Cycloalkenylreste bedeuten können, wobei R₂ kein Wasserstoffatom ist, wenn R₁ ein Wasserstoffatom darstellt.
- 3. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R einen Halogenalkylrest bedeutet und R₁ und R₂ zusammen mit dem Stickstoffatom einen Piperidinyl-, Alkylpiperidinyl-, Alkyltetrahydropyridyl-, Morpholyl-, Alkylmorpholyl-, Azabicyclononyl-, Benzoalkylpyrrolidinyl-, Oxazolidyl-, Alkyloxazolidyl-, Perhydrochinolyl oder einen Alkylaminoalkenylrest bilden können.

- 4. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R einen Phenylrest oder einen durch Halogenatome, Alkyl-, Halogenalkyl-, Alkoxy- oder Nitroreste, Carbonsäuren und deren Salze oder Carbamyl- oder Halogenalkyl-carbamylreste substituierten Phenylrest, einen Phenylalkenylrest oder einen durch Halogenalkyl- oder einen Phenylalkenylrest oder einen durch Halogenatome, Alkyl- oder Alkoxyreste substituierten Phenylalkenylrest, einen Halogenphenoxy-, Phenylalkoxy-, Phenylalkylcarboxyalkyl-, Phenylcycloalkyl-, Halogenphenylalkenoxy-, Halogenthiophenylalkyl- oder einen Halogenphenoxyalkylrest bedeutet und R₁ und R₂ gleich oder verschieden sein und jeweils Wasserstoffatome, Alkyl-, Alkenyl- oder Alkinylreste bedeuten können, wobei R₂ kein Wasserstoffatom ist, wenn R₁ ein Wasserstoffatom darstellt.
- 5. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R einen N-Alkenylcarbamylalkyl-, N-Alkenylcarbamyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkyl-N-alkinylcarbamylalkoxyalkyl-, N-Alkyl-N-alkinylcarbamylalkoxyalkyl-, Dialkenylcarbamylbicycloalkenyl- oder einen Alkinylcarbamylbicycloalkenylrest bedeutet und R₁ und R₂ gleich oder verschieden sein und jeweils Wasserstoffatome, Alkyl-, Alkenyl- oder Alkinylreste bedeuten können, wobei R₂ kein Wasserstoffatom ist, wenn R₁ ein Wasserstoffatom darstellt.
- 6. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R einen Halogenalkylrest oder ein Wasserstoffatom bedeutet und R₁ und R₂ gleich oder verschieden sein und jeweils

Alkyl- oder Alkenylreste, Wasserstoffatome, Alkoxyalkyloder Phenylreste oder durch Alkylreste, Halogenatome,
Halogenalkyl-, Alkoxy-, Halogenalkylamido-, Pthalamido-,
Hydroxy-, Alkylcarbamyloxy-, Alkenylcarbamyloxy-, Alkylamido-, Halogenalkylamido oder Alkylcarboalkenylreste
substituierte Phenylreste, Phenylalkamylreste oder durch
Halogenatome, Alkyl-, Dioxyalkylen- oder Halogenphenoxyalkylamidoalkylreste substituierte Phenylalkylreste bedeuten können, wobei R₂ kein Wasserstoffatom ist, wenn
R₁ ein Wasserstoffatom darstellt.

- 7. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R einen Halogenalkyl-, Alkyl-, Cyanoalkyl-, Thiocyanatoalkyl-, Cyanatoalkyl-, Cycloalkyl-, Bicycloalkyl-, Halogenphenyl-, Phenylalkenyl- oder einen Halogenphenyl-alkenylrest bedeutet und R₁ und R₂ gleich oder verschieden sein und jeweils Cyanoalkylreste, Wasserstoffatome, Alkenyl- oder Alkylreste bedeuten können, wobei R₂ kein Wasserstoffatom ist, wenn R₁ ein Wasserstoffatom darstellt.
- 8. Herbizides Mittel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß es als herbiziden Wirkstoff S-Äthyl-N,N-dipropylthiolcarbamat, S-Äthyldiisobutylthiol-carbamat, S-Propyldipropylthiolcarbamat, S-Z,3,3-Trichlor-allyl-diisopropylthiolcarbamat, S-Äthylcyclohexyläthylthio-carbamat, 2-Chlor-2',6'-diäthyl-N-(methoxymethyl)-acet-anilid, S-Äthylhexahydro-1H-azepin-1-carbothioat, 2-Chlor-N-isopropylacetanilid, N,N-Diallyl-2-chloracetamid, S-4-Chlorbenzyldiäthylthiolcarbamat, 2-Chlor-4-äthylamino-6-isopropylamino-s-triazin, 2-Chlor-4,6-bis-(äthylamino)-s-triazin, 2(4-Chlor-6-äthylamino-s-triazin-2-yl-amino)-2-methylpropionitril, 2-Chlor-4-cyclopropylamino-6-isopropyl-

amino-s-triazin, 2,4-Dichlorphenoxyessigsäure oder deren Gemische enthält.

- 9. Herbizides Mittel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Gegenmittel in einer Menge im Bereich von etwa 0,0001 bis etwa 30 Gew.-Teile pro Gew.-Teil des herbiziden Wirkstoffs vorliegt.
- 10. Verfahren zur Bekämpfung von Unkrautarten, dadurch gekennzeichnet, daß man dem Boden, in dem sich die Unkrautarten befinden, eine herbizid wirksame Menge des herbiziden Mittels nach einem der Ansprüche 1 bis 9 zusetzt.

Fir: Stauffer Chemical Company New York, N.Y., V.St.A.

(Dr.H.J.Wolff)
Rechtsanwalt

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
П отнер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.