The Mandelbrot Set

Sean Kinnally, Mark Lavrentyev December 2, 2021

Complex Dynamics

Definition (Complex Dynamics)

The study of how the iterates of a holomorphic function behave. For a function f, we denote $f \circ \ldots \circ f$ (k times) as f^k .

Example:
$$f(z) = z^2 + 2$$

•
$$f(0) = 2$$

•
$$f^2(0) = 6$$

•
$$f^3(0) = 38$$

•
$$f^4(0) = 1446$$

•
$$f^5(0) = 2090918$$

Example: $f(z) = z^2 - \frac{1}{2}$

•
$$f(0) = -1/2$$

•
$$f^2(0) = -1/4$$

•
$$f^3(0) = -7/16 \approx -1/2$$

•
$$f^4(0) = -79/256 \approx -1/4$$

•
$$f^5(0) = 26527/65536 \approx -1/2$$

Mandelbrot set definition

Definition (Mandelbrot set)

For $P_c(z) = z^2 + c$, the Mandelbrot set \mathcal{M} is the set of values $c \in \mathbb{C}$ such that $P_c^k(0)$ is bounded for all k.

Mandelbrot set definition

Demo

Properties of \mathcal{M}

Theorem (boundedness)

 $\forall c \in \mathcal{M}, |c| \leq 2 \text{ i.e. } \mathcal{M} \text{ is contained in a disk of radius 2}$ around the origin.

Theorem (closedness)

The Mandelbrot set is closed.

Observe that while some properties of the Mandelbrot set are visually obvious, proving them is non-trivial, given the fractal nature of it.

Boundedness Proof

- Suppose |c| > 2, if |z| = |c|, then $|z^2 + c| \ge |c|^2 |c| = (|c| 1)|z|$
- By the maximum principle, applied to $z/(z^2+c)$ on the exterior of the circle, this estimate $|P_c(z)| = |z^2+c| \ge (|c|-1)|z|$ persists for all z satisfying |z| > |c|
- By iterating, starting with $P_c(0) = c$, we obtain successively $|P_c^2(0)| = (|c|-1)|c|, |P_c^3(0)| \ge (|c|-1)^2|c|,$ and eventually $|P_c^k(0)| \ge (|c|-1)^{k-1}|c|$
- Thus $|P_c^k(0)| \to \infty$, so $c \notin \mathcal{M}$. It follows that the \mathcal{M} is a subset of the closed disk $\{|c| \leq 2\}$

Julia sets

Julia sets

Definition (Filled-in Julia set)

For a polynomial q, the filled-in Julia set \mathcal{K}_q is the set of $z \in C$ such that iterating q is bounded.

Definition (Julia set)

The Julia set is the boundary of the filled-in Julia set i.e. $\mathcal{J}_a = \partial \mathcal{K}_a$.

Remark

We can extend the definition of Julia sets to all rational functions in the same way.

7

Example: $f(z) = z^2 + (-0.973 - 0.177i)$

Unpredictable behavior

$$\mathcal{K}_c$$
 for $c = -0.1 + 0.64i, -0.1 + 0.65i, \text{ and } -0.1 + 0.66i.$

Connection to Mandelbrot set

Theorem

The Julia set for P_c , written \mathcal{J}_c is connected iff $c \in \mathcal{M}$. If $c \notin \mathcal{M}$, then \mathcal{J}_c is totally disconnected.

Totally disconnected: definition

Definition (totally disconnected)

A set $X\subset\mathbb{C}$ is totally disconnected if there are no connected components consisting of more than just one point.

Example: the Cantor set C is totally disconnected. We construct this by starting with [0,1] and iteratively removing the middle third of every component.

Totally disconnected Julia sets

 \mathcal{K}_c for c = -0.77 + 0.18i, 0.23 - 0.55i, and 0.31 - 0.01i.

Open questions

- Is \mathcal{M} locally connected? i.e. for every $z \in \mathcal{M}$, is there some small connected neighborhood around z?
- Does the boundary $\partial \mathcal{M}$ have non-zero Lebesgue measure ("area")?

Questions?

References

- [1] M. Frame, B. Mandelbrot, and N. Neger. *Fractal Geometry*. URL: https://users.math.yale.edu/public_html/People/frame/Fractals/.
- [2] T. Gamelin. "Complex Analysis". In: Undergraduate Texts in Mathematics. Springer New York, 2003. Chap. 12. ISBN: 9780387950693.
- [3] C. McMullen. "Complex Dynamics and Renormalization".In: Princeton University Press, 1994. Chap. 4. ISBN: 9780691029825.