MAT 1741-Problèmes de pratique-Espace vectoriel

1. Sur l'ensemble \mathbb{R}^2 , on définit une addition \oplus et une multiplication par un scalaire non standards \odot de la façon suivante:

$$(x,y) \oplus (x',y') = (x+x'+9,y+y'-5)$$

 $a \odot (x,y) = (ax+9a-9,ay-5a+5), a \in \mathbb{R}$

Montrer que l'ensemble \mathbb{R}^2 muni de ces deux opérations est un espace vectoriel sur \mathbb{R} .

- 2. Dans chaque cas, déterminer si l'ensemble donné est un espace vectoriel sur $\mathbb R$ pour les opérations spécifiées.
 - (a) L'ensemble $U=\left\{(x,\,y)\in\mathbb{R}^2;\;x\geq0,\;y\geq0\right\}$ muni de l'addition et la multiplication par un scalaire standards de \mathbb{R}^2 .
 - (b) L'ensemble $U=\left\{(x,\,y)\in\mathbb{R}^2;\;x\geq y\right\}$ muni de l'addition et la multiplication par un scalaire standards de \mathbb{R}^2 .
 - (c) L'ensemble \mathbb{R}^2 muni de l'addition standard et la multiplication par un scalaire définie de la manière suivante:

$$a\left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} ax \\ y \end{array}\right]$$

(d) L'ensemble \mathbb{R}^2 muni de la multiplication par un scalaire standard et une addition définie de la manière suivante:

$$\left[\begin{array}{c} x \\ y \end{array}\right] + \left[\begin{array}{c} a \\ b \end{array}\right] = \left[\begin{array}{c} x+a+1 \\ y+b+1 \end{array}\right]$$

- 3. Montrer que dans un espace vectoriel V, le vecteur nul est unique.
- 4. Soit \mathbb{R}_+ l'ensemble de tous les nombres réels positifs. On définit dans \mathbb{R}_+ une addition \oplus et une multiplication par un scalair \odot de la façon suivante:

$$x \oplus y = xy$$
, $a \odot x = x^a$.

Montrer que $(\mathbb{R}_+, \oplus, \odot)$ est un espace vectoriel sr \mathbb{R} .

- 5. Soit V un espace vectoriel sur $\mathbb R$ dont le vecteur nul est noté par $\mathbf O$. Montrer que:
 - (1) $\forall a \in \mathbb{R}, a\mathbf{O} = \mathbf{O}$.
 - (2) $\forall a \in \mathbb{R}, \forall u \in V, \text{ si } au = \mathbf{O}, \text{ alors } a = 0 \text{ ou } u = \mathbf{O}$
 - (3) $\forall u \in V$, le vecteur opposé de u est unique (supposer que $v, v' \in V$ sont deux vecteurs opposés de u et montrer que v = v').
 - (4) $\forall u \in V, -1.u = -u$ (l'opposé de u).