Modelo de Equilíbrio Geral

Consumidor

$$\max_{c,l} = C^{eta} l^{1-eta}$$

s. a.
$$C = wN^s$$

Contudo, $N^s + l = h$, logo podemos reformular a restrição orçamentária para:

$$C = w(h - l)$$

Produtor

$$\max_{w} \pi = AK^{\alpha}N^{1-\alpha} - wN$$

Parametros:

 $eta\equiv$ Elasticidade da Utilidade em relação a renda $A\equiv$ Produtividade Total dos Fatores de Produção $K\equiv$ Estoque de Capital Físico $\alpha\equiv$ Elasticidade da Produção em Relação ao Capital $h\equiv$ Total de horas disponíveis

Lagrangeano

$$L(C,l,\lambda) = \beta \ln C + (1-\beta) \ln l - \lambda (C-w(h-l))$$

Derivando chegamos a seguites expressões:

$$\frac{\delta L}{\delta C} = C = \frac{\beta}{\lambda}$$

$$rac{\delta L}{\delta l}=l=rac{1-eta}{w\lambda}$$

$$rac{\delta L}{\delta \lambda} = C = w(h-l)$$

Substituindo os valores de l e C na última equação podemos encontrar que $\lambda=\frac{1}{wh}$ Logo, podemos achar os valores ótimos de C e l .

$$C^*=\beta wh$$

$$l^* = (1 - \beta)h$$

Como sabemos que $N^s=h-l^*$, então achamos que $N^s=h\beta$ Todavia, ainda nos falta determinar o valor de w^* que é endogeno.

Produto Marginal do Trabalho

Maximizando o lucro em relação ao trabalho, achamos:

$$\frac{\delta\pi}{\delta N} = (1-\alpha)A(\frac{K}{N})^{\alpha} = w^*$$

Como $N^s=N$, então substituindo o valor encontrado nesta equação achamos que:

$$w^*=rac{(1-lpha)AK^lpha}{(heta)^lpha}$$

Por conseguinte, conseguimos achar, finalmente as expressões ótimas para:

$$C^* = A(1-lpha)(eta h)^{1-lpha} K^lpha$$

$$l^* = (1 - \beta)h$$

$$N^*=eta h$$

$$\lambda = rac{eta^lpha}{(1-lpha)AK^lpha h^{1-lpha}}$$