ONEL 434 Electronics II Dehne **८**-₹ yped compounts Dalanced Cooxid Ix hire - (m - $(= \Delta_3)$ (3)

TABLE 14-1 Transmission-Line (Circuit) Characteristics (Refer to Figure 14-2 for dimensions.)

	$Z_0(\Omega)$	L (H/m)	C (F/m)
Twin lead	$\frac{120}{\sqrt{\epsilon_r}} \ln 2s/d$	$\frac{\mu}{}$ ln 2s/d	πε
	$\sqrt{\epsilon_r}$	π	In 2 <i>s</i> / <i>d</i>
Coaxial	$\frac{60}{\sqrt{\epsilon_r}} \ln D/d$	$\frac{\mu}{2\pi}$ ln D/d	2πε
	$\sqrt{\epsilon_r}$	2π	ln D/d
Microstrip (after H. A. Wheeler)	$Z_0 = 377h/\{\sqrt{\epsilon_r}W[1 + 1.74(\epsilon_r)^{-0.07}(W/h)^{-0.836}]\}$		

The ϵ_r for typical materials used in transmission lines are (at 10 GHz): polystyrene 2.5, polyethylene 2.3, and Teflon 2.1.

EXAMPLE 14–1

A very low-loss coaxial transmission line has 30 pF/ft of distributed capacitance and 75 nH/ft of inductance. Determine the following:

- 1. The capacitance of a 3-ft length of this line used as an oscilloscope probe
- 2. Z_0
- 3. The velocity of propagation for a voltage and current transient (velocity relative to a TEM wave in free space)
- 4. The time required for an input transient to reach the oscilloscope (see part 1)
- 5. The ratio of shield diameter to center conductor diameter of the coax

Solution:

- 1. 30 pF/ft \times 3 ft = 90 pF. This can greatly decrease the high-frequency response of a circuit under test.
- 2. $Z_0 = \sqrt{L/C} = \sqrt{75 \times 10^{-9}/(30 \times 10^{-12})} = 50 \ \Omega$.
- 3. $v_p=1/\sqrt{LC}=1/\sqrt{75\times30\times10^{-21}}=$ 666.7 \times 10⁶ ft/s. $v_p=$ (666.7 \times 10⁶ ft/s) (1 mi/5280 ft) = 126,263 mi/s, so that $v_p/c=$ 126,263/186,000 = 0.679—a little more than two-thirds the speed of light.
- **4.** $d = v_p t$. t = 3 ft/(666.7 × 10⁶ ft/s) = **4.5** ns.
- 5. Table 14–1 gives $Z_0 = (60/\sqrt{\epsilon_r}) \ln D/d$. From Equation 14–2, $\sqrt{\epsilon_r} = c/v_p = 1/0.679$, and from part 2, $Z_0 = 50 \ \Omega$. Therefore, $50 \times 1.473/60 = 1.228 = \ln D/d$. By the definition of logarithms, $D/d = e^{1.228} = 3.41$.