



Mar 22, 2022

## Plant assemble - Plant de novo genome assembly, scaffolding and annotation for genomic studies

Scott Ferguson<sup>1</sup>, Ashley Jones<sup>1</sup>, Justin Borevitz<sup>1</sup>

<sup>1</sup>Australian National University



dx.doi.org/10.17504/protocols.io.81wgb6zk3lpk/v1



With the advancement of long-read sequencing technologies and associated bioinformatics tools, it has now become possible to de novo assemble complex plant genomes with unrivalled contiguity, completeness and correctness. As read lengths can surpass repeat lengths, the ability to assemble genomes de novo has dramatically improved, whereby complex plant genomes of widely variable sizes and repeat content have highly benefited. Despite these improvements, challenges remain in performing de novo assembly, namely in developing a reliable workflow and in tool choice. Here we present a protocol collection of bioinformatic workflows detailing plant genome assembly using Oxford Nanopore Technologies long-reads with a de novo assembler (Canu), syntenic or Hi-C scaffolding, and RNA and/or gene homology-based annotation. We have developed and tested these protocols on multiple plant genomes. Using these protocols with sufficient coverage of long-reads, a highly contiguous, complete, and correct plant genome can be assembled. These genomes can further genomic research into structural variation among groups, and SNP genotyping and association studies among populations.

DOI

dx.doi.org/10.17504/protocols.io.81wgb6zk3lpk/v1

Scott Ferguson, Ashley Jones, Justin Borevitz 2022. Plant assemble - Plant de novo genome assembly, scaffolding and annotation for genomic studies. **protocols.io** 

https://dx.doi.org/10.17504/protocols.io.81wgb6zk3lpk/v1

\_\_\_\_\_ collection ,

Mar 21, 2022

Mar 22, 2022

motocols.io

1

**Citation**: Scott Ferguson, Ashley Jones, Justin Borevitz Plant assemble - Plant de novo genome assembly, scaffolding and annotation for genomic studies <a href="https://dx.doi.org/10.17504/protocols.io.81wgb6zk3lpk/v1">https://dx.doi.org/10.17504/protocols.io.81wgb6zk3lpk/v1</a>

| Α                         | В       | С                                                         |
|---------------------------|---------|-----------------------------------------------------------|
| Tool                      | Version | What?                                                     |
| BEDTools                  | Latest  | Soft masking                                              |
| Bioawk                    | Latest  | Extract sequence names and lengths                        |
| BLAST                     | Latest  | Contamination filter                                      |
| Blobtools                 | 1.12.x  | Contamination filter                                      |
| BREAKER2                  | 2.1.5   | Gene annotation                                           |
| BUSCO                     | 5.x     | Genome assessment                                         |
| bwa mem                   | Latest  | Align short reads during polishing                        |
| EDTA                      | v1.9.6  | Predict transposon sequences                              |
| Flye                      | Latest  | Long read genome assembly, used for genome size estimate. |
| GenomeScope 2.0           | Latest  | K-mer based genome size and ploidy estimator.             |
| GenomeTools               | Latest  | Used by LAI                                               |
| Hapo-G                    | Latest  | Haplotype aware short read polisher                       |
| Jellyfish                 | Latest  | K-mer counting for k-mer based genome size estimate       |
| Juicer                    | 1.6     | Hi-C quality control and scaffolding.                     |
| LAI                       | Latest  | Genome assessment.                                        |
| LTR_FINDER_parallel       | Latest  | Used by LAI                                               |
| ltr_retriever             | Latest  | Used by LAI                                               |
| Miniasm                   | Latest  | Long read genome assembly, used for genome size estimate. |
| Minimap2                  | Latest  | Long read aligner.                                        |
| MUMmer                    | 4       | Sequence aligner and visualisation.                       |
| NanoPack                  | Latest  | Long read fastq assessment and quality control            |
| Next Polish               | Latest  | Short read polisher.                                      |
| hi_qc (Phase<br>Genomics) | Latest  | Hi-C quality assessment.                                  |
| purge haplotigs           | Latest  | Find and filter duplicate genomic regions in assembly.    |
| qualimap                  | 2       | Assess quality of alignment of validation reads.          |
| R                         | Latest  | Used by Genome Scope 2.0.                                 |
| Racon                     | Latest  | Long read polisher.                                       |
| RaGOO/RagTag              | Latest  | Syntenic scaffolder.                                      |
| RepeatMasker              | Latest  | Finds TEs and SSR regions in genomes and masks.           |
| Samtools                  | Latest  | Processing of sam/bam files.                              |
| Seqtk                     | Latest  | Sub-sample fasta/q files.                                 |
| Star                      | Latest  | RNA aligner for gene annotation.                          |



Tools/programs used by pipelines and versions that have worked for us. For citations see publication.

With the advancement of long-read sequencing technologies and associated bioinformatics tools, it has now become possible to de novo assemble complex plant genomes with unrivalled contiguity, completeness and correctness. As read lengths can surpass repeat lengths, the ability to assemble genomes de novo has dramatically improved, whereby complex plant genomes of widely variable sizes and repeat content have highly benefited. Despite these improvements, challenges remain in performing de novo assembly, namely in developing a reliable workflow and in tool choice. Here we present a protocol collection of bioinformatic workflows detailing plant genome assembly using Oxford Nanopore Technologies long-reads with a de novo assembler (Canu), syntenic or Hi-C scaffolding, and RNA and/or gene homology-based annotation. We have developed and tested these protocols on multiple plant genomes. Using these protocols with sufficient coverage of long-reads, a highly contiguous, complete, and correct plant genome can be assembled. These genomes can further genomic research into structural variation among groups, and SNP genotyping and association studies among populations.

## **FILES**







