

Theory of Computing

Assoc. Prof. Osama fathy

Turing Machines and Computability

Overview

- Turing Machines
- Converting FA to TM
- Building Turing Machines
- Representing natural numbers
- Functions of one variable
- Tuples
- Functions of several variables
- Church's Thesis

TM Components

- A Tape and Tape Head
- An Input Alphabet (Σ)
- A Tape Alphabet (Γ)
- A finite set of states
 - Each state is numbered by an integer ≥ 1 .
 - Start State (only one)
 - Halt State (one or more)
- A finite set of rules (letter, letter, direction) between states (it may be called program).

Turing Machine

Finite String (input)

All Blanks

Tape Head can:

- Move left and right.
- Read letters from the tape.
- Write letters onto the tape.

Definitions

For a Turing Machine T

- Accept(T)
 - The set of strings leading to a HALT state.
 - Called the language accepted by T.
- Reject(T)
 - The set of strings that crash during execution.
- Loop(T)
 - The set of strings that loop forever.

Example

- Accept(T) = strings with a double aa
- Reject(T) = strings without a double aa that end in a
- Loop(T) = L or strings without a double aa that end in b

Regular Languages

Every Regular Language can be accepted by a Turing Machine.

Convert FA to TM

- Change the to START 1.
- Label all other states with a integer ≥ 3 .
- Change the edge labels.
 - a to (a, a, R)
 - -b to (b, b, R)
- Delete the + from all the Final states, and add an edge from each Final state to HALT 2, labeled with (Δ, Δ, R) .

Problem: Convert the shown FA, that accepts the language **EVEN-EVEN** into the equivalent Turing Machine

Problem: Build a Turing Machine that accepts the language $\{a^nb^n: n \ge 0\}$.

Problem: Build a Turing Machine that accepts the language $\{a^nb^na^n: n \geq 0\}$.

Representing natural numbers

Unary Code

0	Δ	Δ
1	a	a
2	aa	a ²
3	aaa	a^3
4	aaaa	a ⁴
5	aaaaa	a ⁵
6	aaaaaa	a^6
7	aaaaaaa	a ⁷
:	:	:

Binary Code

0	a
1	b
2	ba
3	bb
4	baa
5	bab
6	bba
7	bbb
:	:

Representing functions of one variable by using TM

Successor

Using the unary code for natural numbers build a Turing Machine that represents the function f(n) = n + 1.

Successor

Unary Code for Tuples of Integers

- Tuples of natural numbers
- Example: 1, 0, 2, 3
- Encoding:
 - Each integer is coded using the unary code as a string of a's
 - Integers are separated by a b.
- Example: abbaabaaa

Addition

Using the unary code of natural numbers build a Turing Machine that represents the function

$$f(n, m) = n+m$$
.

Addition

Definition

A computable function can be represented as:

- A Turing Machine
- Input
 - sequences of natural numbers
- Output
 - one natural number

Church's Thesis

Any function which can defined by an algorithm is a computable function.

Church's Thesis

Any function which can defined by an algorithm is a computable function.