Asynchronous Advantage Actor-Critic (A3C)

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver, Koray Kavukcuoglu, "Asynchronous Methods for Deep Reinforcement Learning", ICML, 2016

Actor is a Neural network

 Input of neural network: the observation of machine represented as a vector or a matrix

 Output neural network : each action corresponds to a neuron in output layer

Actor can also have continuous action.

Actor – Goodness of an Actor

- Given an actor $\pi(s)$ with network parameter θ^{π}
- Use the actor $\pi(s)$ to play the video game
 - Start with observation s_1
 - Machine decides to take a_1
 - Machine obtains reward r_1
 - Machine sees observation s₂
 - Machine decides to take a_2
 - Machine obtains reward r_2
 - Machine sees observation s₃
 - •
 - Machine decides to take a_T
 - Machine obtains reward r_T

Total reward: $R = \sum_{t=1}^{T} r_t$

Even with the same actor, *R* is different each time

Randomness in the actor and the game

We define $\overline{R}_{\theta^{\pi}}$ as the expected total reward

 $\bar{R}_{\theta^{\pi}}$ evaluates the goodness of an actor $\pi(s)$

Actor – Policy Gradient

$$\theta^{\pi'} \leftarrow \theta^{\pi} + \eta \nabla \bar{R}_{\theta^{\pi}}$$
 Using θ^{π} to obtain $\{\tau^1, \tau^2, \cdots, \tau^N\}$

$$\nabla \bar{R}_{\theta^{\pi}} \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^n) \nabla log P(\tau^n | \theta^{\pi}) = \frac{1}{N} \sum_{n=1}^{N} R(\tau^n) \sum_{t=1}^{T_n} \nabla log p(a_t^n | s_t^n, \theta^{\pi})$$

$$= \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla log p(a_t^n | s_t^n, \theta^{\pi})$$
 What if we replace $R(\tau^n)$ with r_t^n

If in τ^n machine takes a_t^n when seeing s_t^n

$$R(\tau^n)$$
 is positive

 $R(\tau^n)$ is positive Tuning θ to increase $p(a_t^n|s_t^n)$ $R(\tau^n)$ is negative Tuning θ to decrease $p(a_t^n|s_t^n)$

It is very important to consider the cumulative reward $R(\tau^n)$ of the whole trajectory τ^n instead of immediate reward r_t^n

Critic

- A critic does not determine the action.
- Given an actor π , it evaluates the how good the actor is
- State value function $V^{\pi}(s)$
 - When using actor π , the *cumulated* reward expects to be obtained after seeing observation (state) s

Critic

V以前的阿光(大馬步飛) = bad

V變強的阿光(大馬步飛) = good

How to estimate $V^{\pi}(s)$

- Monte-Carlo based approach
 - The critic watches π playing the game

After seeing s_a ,

Until the end of the episode, the cumulated reward is G_a

After seeing s_b ,

Until the end of the episode, the cumulated reward is G_h

$$S_b \longrightarrow V^{\pi} \longrightarrow V^{\pi}(s_b) \longrightarrow G_b$$

How to estimate $V^{\pi}(s)$

Temporal-difference approach

Some applications have very long episodes, so that delaying all learning until an episode's end is too slow.

MC v.s. TD

MC v.s. TD

[Sutton, v2, Example 6.4]

The critic has the following 8 episodes

•
$$s_a, r = 0, s_b, r = 0$$
, END

•
$$s_h, r = 1$$
, END

•
$$s_h, r = 1$$
, END

•
$$s_b, r = 1$$
, END

•
$$s_h, r = 1$$
, END

•
$$s_h, r = 1$$
, END

•
$$s_b, r = 1$$
, END

•
$$s_b, r = 0$$
, END

$$V^{\pi}(s_b) = 3/4$$

$$V^{\pi}(s_a) = ? 0? 3/4?$$

Monte-Carlo:
$$V^{\pi}(s_a) = 0$$

Temporal-difference:

$$V^{\pi}(s_a) + r = V^{\pi}(s_b)$$

3/4 0 3/4

(The actions are ignored here.)

Actor-Critic

Advantage Actor-Critic

 π interacts with the environment

$$\theta^{\pi'} \leftarrow \theta^{\pi} + \eta \nabla \bar{R}_{\theta^{\pi}}$$

 $\pi = \pi'$

TD or MC

 $\nabla \bar{R}_{\theta^{\pi}} = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla logp(a_t^n | s_t^n, \theta^{\pi})$ Evaluated by critic

Update actor from $\pi \to \pi'$ based on $V^{\pi}(s)$

Learning $V^{\pi}(s)$

Advantage Function: $r_t^n - (V^{\pi}(s_t^n) - V^{\pi}(s_{t+1}^n))$

Baseline is added

The reward r_t^n we truly obtain when taking action a_t^n

Expected reward r_t^n we obtain if we use actor π

Positive advantage function

Increasing the prob. of action a_t^n

Negative advantage function

decreasing the prob. of action a_t^n

Advantage Actor-Critic

Tips

• The parameters of actor $\pi(s)$ and critic $V^{\pi}(s)$

- Use output entropy as regularization for $\pi(s)$
 - Larger entropy is preferred → exploration

Asynchronous

Source of image:

https://medium.com/emergentfuture/simple-reinforcement-learning-withtensorflow-part-8-asynchronous-actor-criticagents-a3c-c88f72a5e9f2#.68x6na7o9

 $\Delta\theta$

Worker 1

Environment 1

 $\Delta \theta$

1. Copy global parameters

2. Sampling some data

3. Compute gradients

4. Update global models

