Countable Sets

A function from set A to B is 1-1 if it never maps two elements of A to the same element of B. It is *onto* if for every $b \in B$ there is an $a \in A$ such that f(a) = b.

A set A is *countable* if it is finite or if there is a 1-1 and onto function $f:A\to\mathbb{N}$

Note: If B is countable, and there is a 1-1 and onto $g:A\to B$, then A is countable (why?)

Examples of Countable Sets

- Even numbers: define $f(m) = \frac{m}{2}$.
 - 1-1: Suppose m, m' are even numbers, say m = 2n and m' = 2n' where $m, m' \in \mathbb{N}$. If $m \neq m'$ then clearly $n \neq n'$ so $f(m) \neq f(m')$.
 - Onto: For any $n \in \mathbb{N}$, 2n is even and f(2n) = n
- $\{0,1\}^*$ define $f:\{0,1\}^* \to \mathbb{N}$ by f(w)=n where $n \in \mathbb{N}$ has binary representation 1w. This is a bijection since every natural number has a unique binary representation (why do we use 1w instead of w?)

Subsets of N are Countable

By definition, if A is finite then A is countable. Also:

Theorem If $A \subseteq \mathbb{N}$ is infinite, then A is countable.

Proof Consider the sequence a_0, a_1, a_2, \ldots where a_0 is the smallest member of A and a_{i+1} is the smallest member of $A - \{a_0, a_2, \ldots, a_i\}$ (why does it exist?). Then $\{a_0, a_2, \ldots\} = A$ (why?). Define $f: A \to \mathbb{N}$ by $f(a_i) = i$. This is a bijection from A to \mathbb{N} (why?)

Strings over a Finite Alphabet are Countable

$$\Sigma = \{a_0, a_1, \dots, a_k\}$$

First we will represent strings over Σ as strings over $\{0,1\}$. For $a \in \Sigma$, define $\iota(a)$ to be the binary representation of the index of a – e.g., if $a=a_3$, then $\iota(a)=11$.

Define $\overline{0} = 00$ and $\overline{1} = 01$. Then we can represent $u \in \Sigma^*$ as follows:

If $u=u_1u_2\ldots u_m$, then the representation of u is $\overline{\iota(u_1)}11\overline{\iota(u_2)}11\ldots 11\overline{\iota(u_m)}$

So every string over Σ^* can be mapped to a natural number (put 1 in front of representation over $\{0,1\}^*$.

So strings over Σ^* correspond in a 1-1 and onto way to a subset of \mathbb{N} – so they are countable

Example: Say $\Sigma^* = \{a_0, a_1, a_2\}$ and $u = a_1 a_1 a_2$. Then the string over $\{0, 1\}^*$ corresponding to u is 011101110100 and the natural number corresponding to u is 6004

Paradoxes

- The Paradox of the Liar: "This sentence is not true."
- The Barber's Paradox: The barber cuts the hair of everyone in the town who doesn't cut his or her own hair.

Cantor's Theorem

- The proof is an example of a diagonalization argument.
- Let S be a countably infinite set, say $S = \{x_1, x_2, \dots\}$. $\mathcal{P}(S)$ is the set of all subsets of S. This set is infinite but not countably infinite, i.e., it is *uncountably infinite*.
- Proof: Suppose to the contrary that $\mathcal{P}(S)$ is countable. Let f be a 1-1 and onto function from N to $\mathcal{P}(S)$. Define the set $T = \{x_i \mid x_i \notin f(i)\}$.
- Since T is in $\mathcal{P}(S)$ there must be some j such that f(j) = T.
- Is x_j in T?
- Neither Yes nor No. Hence our assumption, that $\mathcal{P}(S)$ was countable is wrong.

Application to TMs

- Theorem: There are languages which are not Turing recognizable.
- Say $\Sigma = \{0, 1\}$. The set of all possible languages over Σ is just $\mathcal{P}(\{0, 1\}^*)$. By Cantor's Theorem, this set is uncountably infinite.
- The set of TM's is countable because a TM can be described by a finite string over a finite alphabet
- Since each Turing machine accepts one language, there are only countably infinite Turing recognizable languages.
- Hence, since there are an uncountable number of languages, there are languages which are not recognized by any TM.
- Can we show an *explicit* language which is not Turing recognizable? We will start by showing a language that is not decidable.

The Acceptance Problem is Undecidable

Theorem: $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a } TM \text{ and } M \text{ accepts } w \}$ is undecidable.

Proof: Assume it's decidable and show a contradiction. Let H be a TM which decides A_{TM} , i.e., H is halting, and H accepts input $\langle M, w \rangle$ iff M accepts w

We construct a new TM D which uses H as a subroutine. D takes as input any TM description $\langle M \rangle$ and simulates H on $\langle M, \langle M \rangle \rangle$. When H halts, D enters the opposite final state. So

- ullet D accepts $\langle M \rangle$ if M rejects $\langle M \rangle$
- D rejects $\langle M \rangle$ if M accepts $\langle M \rangle$

Now, what happens when D is given $\langle D \rangle$ as input? D accepts $\langle D \rangle$ iff D rejects $\langle D \rangle$!

This is a contradiction. Therefore D and H can't exist.

Can view as a diagonalization argument in a table.

A_{TM} is Turing Recognizable

Recall that we are assuming a standard way of encoding the pair $\langle M, w \rangle$ as a string

Given this input, we want to <u>simulate</u> the computation of M. Use a 4-tape TM, which we call U.

- Tape 1 stores the string encoding $\langle M, w \rangle$, (the input to U)
- Tape 2 stores the simulated tape of *M*.
- Tape 3 stores the state of *M*
- Tape 4 is scratch.

Steps of the Simulation

- Examine the code to make sure it's for a legitimate TM. If not, halt without accepting.
- ullet Initialize the second tape by putting w on it
- Place the start state 1 on tape 3. Move the head of the second tape to the leftmost simulated cell.
- To simulate a move:
 - Based on the state on tape 3, and symbol scanned on tape 2, search through the description of M on tape 1 until we find the appropriate transition.
 - Update the contents of tape 2, and the state on tape 3, based on this transition
- ullet If M has no transition that matches the symbol being read, U halts.
- ullet If M enters an accepting state, U accepts.

A Turing Unrecognizable Language

A language is *co-Turing recognizable* if its complement is Turing recognizable.

Theorem If a language L is Turing-recognizable and co-Turing recognizable, then it is decidable.

Proof Suppose M_1 recognizes L and M_2 recognizes $\Sigma - L$. Define M as follows: on input x, run M_1 and M_2 on x, in parallel. Exactly one will accept x (why?). If M_1 accepts, then M accepts, if M_2 accepts, then M rejects. So M decides L.

Corollary The complement of A_{TM} is not Turing recognizable.

Decidable Languages and their Complements

From the preceding slides, we see that there are languages which are Turing-recognizable, but whose complements are not Turing recognizable. What about decidable languages?

Theorem: If a language L is decidable, so is its complement.

Proof: Let M be the halting TM which accepts L.

- Change accepting states to nonaccepting states.
- Make a new accepting state and add a transition to it from every (old) nonaccepting state labeled with every tape symbol such that there was no transition out of that state with that label (in the old machine).
- Make old nonaccepting states ordinary.
- Make new accepting state transition back to itself on every symbol.