SUPPLEMENTARY INFORMATION

Top-down control of planktonic ciliates by microcrustacean predators is stronger in lakes than in the ocean

Xiaoteng Lu¹ & Thomas Weisse*

University of Innsbruck, Research Department for Limnology, Mondseestr. 9, A-5310 Mondsee, Austria

Supplementary Fig. S1. Linear regressions of log-transformed ingestion rates (logIR, in ng C ind⁻¹ d⁻¹) of the three predators (a–c) and all predators combined (d) vs ciliate size.

Dataset used for the meta-analysis. Summary of the existing literature reporting clearance and ingestion rates from different functional groups of microcrustacean predators on ciliates at 15 °C. Where necessary, rates were normalised to 15 °C assuming a Q_{10} value of 2.8 ^[1]. Ciliate size in (μ m); clearance rates (CL) in (mL individual⁻¹ d⁻¹) and ingestion rates (IR) in (μ gC individual⁻¹ d⁻¹).

Predator	Functional group	Ciliates	Ciliate size (µm)	CL	IR	Source
Bosmina longirostris	FW cladocerans	Tetrahymena pyriformis	46	18		[2]
Bosmina longirostris	FW cladocerans	Strobilidium gyrans	43	4		[2]
Bosmina longirostris	FW cladocerans	Colpidium striatum	81	5		[2]
Bosmina longirostris	FW cladocerans	Coleps octospinus	100	6		[2]
Bosmina longirostris	FW cladocerans	Paramecium tetraurelia	120	6		[2]
Bosmina longirostris	FW cladocerans	Euplotes eurystomus	155	1		[2]
Ceriodaphnia dubia	FW cladocerans	Mixed ciliates		62		[3]
Daphnia carinata	FW cladocerans	Mixed ciliates		122		[4]
Daphnia carinata	FW cladocerans	Mixed ciliates		22		[5]
Daphnia carinata	FW cladocerans	Oligotrichs (> 20µm)		20		[5]
Daphnia galeata	FW cladocerans	Askenasia sp.	38	14		[6]
Daphnia galeata	FW cladocerans	Halteria sp.	28	5		[6]
Daphnia galeata	FW cladocerans	Strombidium sp. 'small'	46	19		[6]
Daphnia galeata	FW cladocerans	Histiobalantium sp.	50	16		[6]
Daphnia galeata	FW cladocerans	Strombidium sp. 'large'	65	29		[6]
Daphnia galeata	FW cladocerans	Urotricha sp.	30	12		[6]
Daphnia magna	FW cladocerans	Cyclidium glaucoma	30	6		[7]
Daphnia magna	FW cladocerans	Paramecium caudatum	200	2		[7]
Daphnia magna	FW cladocerans	Tetrahymena pyriformis	46	4		[2,8]
Daphnia pulex	FW cladocerans	Coleps octospinus	100	5		[2]
Daphnia pulex	FW cladocerans	Coleps octospinus	100	4		[2]
Daphnia pulex	FW cladocerans	Colpidium striatum	81	11		[2]
Daphnia pulex	FW cladocerans	Colpidium striatum	81	7		[2]
Daphnia pulex	FW cladocerans	Euplotes eurystomus	155	3		[2]
Daphnia pulex	FW cladocerans	Euplotes eurystomus	155	1		[2]
Daphnia pulex	FW cladocerans	Paramecium tetraurelia	120	5.9		[2]
Daphnia pulex	FW cladocerans	Paramecium tetraurelia	120	5.7		[2]
Daphnia pulex	FW cladocerans	Strobitidium gyrans	43	13		[2]
Daphnia pulex	FW cladocerans	Strobitidium gyrans	43	9		[2]
Daphnia pulex	FW cladocerans	Tetrahymena pyriformis	46	14.1		[2]
Daphnia pulex	FW cladocerans	Tetrahymena pyriformis	46	13.6		[2]
Daphnia rosea	FW cladocerans	Mixed ciliates	70	7		[9]
Daphnia sp.	FW cladocerans	Histiobalantium bodamicum	53	17	0.05	[10]
Daphnia sp.	FW cladocerans	Rimostrombidium lacustris	73	23	0.03	[10]
Daphnia sp.	FW cladocerans	Strobilidium caudatum	59	17	0.42	[10]
Daphnia sp.	FW cladocerans	Urotricha sp.	18	33	0.03	[10]
Daphnia sp.	FW cladocerans	Vorticella natans	41	18	0	[10]
Daphnia spp.	FW cladocerans	Mixed ciliates	33	9		[11]
	FW cladocerans	Mixed ciliates Mixed ciliates	30	15		[9]
Holopedium gibberum	1 W Cladocerans	Mixed cinates	30	13		[>]
Acanthodiaptomus denticornis	FW calanoids	Loxodes sp.	228	12		[12]
Acanthodiaptomus denticornis	FW calanoids	Paramecium aurelia	114	64	2.26	[12]
Acanthodiaptomus denticornis	FW calanoids	Paramecium aurelia	114	19	4.59	[12]
Acanthodiaptomus denticornis	FW calanoids	Paramecium aurelia	114	79	3.82	[12]
Acanthodiaptomus denticornis	FW calanoids	Paramecium aurelia	114	39	11.97	[12]
Acanthodiaptomus denticornis	FW calanoids	Paramecium caudatum	124	65	11.77	[12]
Acanthodiaptomus denticornis	FW calanoids	Tetrahymena corlisii	32	31		[12]
Acanthodiaptomus denticornis	FW calanoids	Tetrahymena corlisii	32	34		[12]
Boeckella hamata	FW calanoids	Oligotrichs <20 µm	32	45		[5]

Boeckella hamata	FW calanoids	Oligotrichs >20 μm		68	1	[5]
Boeckella hamata	FW calanoids	Oligotrichs		342		[3]
Boeckella hamata	FW calanoids	Mixed ciliates		66		[5]
Boeckella hamata	FW calanoids	Mixed ciliates		101		[4]
Boeckella hamata	FW calanoids	Mixed ciliates		241		[3]
Boeckella hamata	FW calanoids	Mixed ciliates		177		[3]
Diaptomus minutus	FW calanoids	Halteria sp.	21	4	0.01	[13]
Diaptomus minutus	FW calanoids	Halteria sp.	21	5	0.01	[13]
Diaptomus minutus	FW calanoids	Strobilidium velox	61	14	0.08	[13,14]
Diaptomus minutus	FW calanoids	Strobilidium velox	61	36	0.09	[13]
Diaptomus minutus	FW calanoids	Strobilidium velox	61	15	0.18	[13]
Diaptomus minutus	FW calanoids	Strobilidium velox	61	7	0.06	[13]
Diaptomus minutus	FW calanoids	Strobilidium sp.	61	7	0.05	[13]
Diaptomus minutus	FW calanoids	Strobilidium sp.	50	28	0.01	[13]
Diaptomus minutus	FW calanoids	Strobilidium sp.	50	17	0.05	[13]
Diaptomus minutus	FW calanoids	Strobilidium sp.	50	30	0.11	[13]
Diaptomus minutus	FW calanoids	Strobilidium sp.	50	30	0.18	[13]
Diaptomus minutus	FW calanoids	Mixed ciliates (<10 μm)		19	0.10	[13]
Diaptomus minutus	FW calanoids	Mixed ciliates (<10 μm)		27		[13]
Diaptomus minutus	FW calanoids	Mixed ciliates (<10 μm)		17		[13]
Diaptomus minutus	FW calanoids	Mixed ciliates (>16 μm)		17		[13]
Diaptomus minutus	FW calanoids	Mixed ciliates (>16 μm) Mixed ciliates (>16 μm)		19		[13]
Diaptomus minutus	FW calanoids	Mixed ciliates (>16 μm) Mixed ciliates (>16 μm)		30		[13]
Diaptomus novamexicanus	FW calanoids	Mixed ciliates	30	12		[9]
Diaptomus pygmaeus	FW calanoids	Cyclidium sp.	17	2	0.43	[13]
Diaptomus pygmaeus	FW calanoids	Strobilidium velox	61	28	0.43	[13]
Diaptomus pygmaeus Diaptomus pygmaeus	FW calanoids	Strobilidium velox Strobilidium velox	61	24	0.34	[13]
, .	FW calanoids	Strobilidium velox	61	31	0.18	[13]
Diaptomus pygmaeus	FW calanoids	Strobilidium sp.	50	42	0.23	[13]
Diaptomus pygmaeus	FW calanoids	*	50	17	0.03	[13]
Diaptomus pygmaeus	FW calanoids	Strobilidium sp. Mixed ciliates (<10 μm)	30	13	0.02	[13]
Diaptomus pygmaeus Epischura lacustris	FW calanoids	Strobilidium acutum	50	267	1.52	[13]
Epischura lacustris	FW calanoids	Strobilidium acuium Strobilidium velox	61	255	1.32	[13]
1	FW calanoids	Strobilidium velox Strobilidium velox	61	102	0.60	[13]
Epischura lacustris Epischura lacustris	FW calanoids	Strobilidium velox Strobilidium velox	61	120	0.00	[13]
Epischura lacustris	FW calanoids	Strobilidium velox	61	311	1.06	[13]
Epischura lacustris	FW calanoids	Strobilidium veiox Strobilidium sp.	50	147	0.52	[13]
Eudiaptomus gracilis	FW calanoids	*	24	19	0.32	[54]
Eudiaptomus gracilis	FW calanoids	Askenasia sp. 2	45			[54]
Eudiaptomus gracilis	FW calanoids	Askenasia sp. 23	18	29		[54]
Eudiaptomus gracilis	FW calanoids	Small mixed ciliates				[54]
T 1	FW calanoids	Balanion planctonicum	20	12		[54]
Eudiaptomus gracilis		Codonella spp.	70	34		[54]
Eudiaptomus gracilis Eudiaptomus gracilis	FW calanoids	Coleps spp.	53	9		[54]
	FW calanoids	Cyclidium spp.	21	13		[54]
Eudiaptomus gracilis	FW calanoids	Didinium nasutum	55	3		[54]
Eudiaptomus gracilis	FW calanoids FW calanoids	Didinium sp. Halteria sp. 2 / Strobilidium	45	5		[54]
Eudiaptomus gracilis			26	22		[54]
Eudiaptomus gracilis	FW calanoids	Histiobalantium sp. 1	27	19		[54]
Eudiaptomus gracilis	FW calanoids	Histiobalantium sp. 2	45	21		[54]
Eudiaptomus gracilis	FW calanoids	Histiobalantium sp. 3	60	3		[54]
Eudiaptomus gracilis	FW calanoids	Lacrymaria spp.		7		[54]
Eudiaptomus gracilis	FW calanoids	Lagynophrya sp. 1	20	13		[54]
Eudiaptomus gracilis	FW calanoids	Lagynophrya sp. 2	90	5		[54]
Eudiaptomus gracilis	FW calanoids	Paradileptus spp.	135	18		[54]
Eudiaptomus gracilis	FW calanoids	Pelagohalteria viridis	23	1		
Eudiaptomus gracilis	FW calanoids	Pelagostrombidium sp.1	50	29		[54]
Eudiaptomus gracilis	FW calanoids	Pelagostrombidium mirabile	68	19		[54]
Eudiaptomus gracilis	FW calanoids	Rimostrombidium lacustris	73	15		[54]
Eudiaptomus gracilis	FW calanoids	Staurophyra spp.	40	14		[54]
Eudiaptomus gracilis	FW calanoids	Stichotricha spp.		8		[54]
Eudiaptomus gracilis	FW calanoids	Tintinnidium sp. 1	45	46		[54]
Eudiaptomus gracilis	FW calanoids	Tintinnidium sp. 2	70	44		[54]

Eudiaptomus gracilis	FW calanoids	Tintinnidium sp. 3	86	1 7	I	[54]
Eudiaptomus gracilis	FW calanoids	Urotricha furcata	25	21		[54]
Eudiaptomus gracilis	FW calanoids	Urotricha sp. 2	35	49		[54]
Eudiaptomus gracilis	FW calanoids	Urotricha sp. 3	55	27		[54]
Eudiaptomus gracilis	FW calanoids	Urotricha sp. 4	65	22		[54]
Eudiaptomus gracilis	FW calanoids	Vorticella sp. 'free'	35	21		[54]
Eudiaptomus gracilis	FW calanoids	Vorticella sp. free 2	50	21		[54]
Eudiaptomus graciloides	FW calanoids	Mixed ciliates	33	37		[11]
Eudiaptomus copepodites	FW calanoids	Mixed ciliates	33	26		[11]
Eudiaptomus sp.	FW calanoids	Histiobalantium bodamicum	53	16	0.10	[10]
Eudiaptomus sp.	FW calanoids	Rimostrombidium lacustris	73	10	0.29	[10]
Eudiaptomus sp.	FW calanoids	Strobilidium caudatum	59	22	0.21	[10]
Eudiaptomus sp.	FW calanoids	Urotricha sp.	18	39	0.004	[10]
Eudiaptomus sp.	FW calanoids	Vorticella natans	41	24	0.07	[10]
Cyclops abyssorum	FW cyclopoids	Askenasia volvox	40	22	0.14	[15]
Cyclops abyssorum	FW cyclopoids	Askenasia sp.	38	14		[6]
Cyclops abyssorum	FW cyclopoids	Coleps hirtus	60	12	0.50	[15]
Cyclops abyssorum	FW cyclopoids	Halteria grandinella	22	4	0.02	[15]
Cyclops abyssorum	FW cyclopoids	Halteria sp.	28	20		[6]
Cyclops abyssorum	FW cyclopoids	Halteria sp.	28	5		[6]
Cyclops abyssorum	FW cyclopoids	Histiobalantium sp.	50	18		[6]
Cyclops abyssorum	FW cyclopoids	Strobilidium velox	50	33	4.03	[15]
Cyclops abyssorum	FW cyclopoids	Stokesia vernalis	120	14	0.22	[15]
Cyclops abyssorum	FW cyclopoids	Strombidium sp. 'small'	46	24	V	[6]
Cyclops abyssorum	FW cyclopoids	Strombidium sp. 'small'	46	11		[6]
Cyclops abyssorum	FW cyclopoids	Strombidium sp. 'large'	65	55		[6]
Cyclops abyssorum	FW cyclopoids	Urotricha sp.	30	4		[6]
Cyclops kolensis	FW cyclopoids	Askenasia volvox	40	54	0.46	[15]
Cyclops kolensis	FW cyclopoids	Coleps hirtus	60	10	0.41	[15]
Cyclops kolensis	FW cyclopoids	Halteria grandinella	22	7	0.08	[15]
Cyclops kolensis	FW cyclopoids	Strobilidium velox	50	159	19.75	[15]
Cyclops kolensis	FW cyclopoids	Stokesia vernalis	120	362	1.44	[15]
Cyclops sp.	FW cyclopoids	Histiobalantium bodamicum	53	21	0.06	[10]
Cyclops sp.	FW cyclopoids	Rimostrombidium lacustris	73	23	0.51	[10]
Cyclops sp.	FW cyclopoids	Strobilidium caudatum	59	22	0.16	[10]
Cyclops sp.	FW cyclopoids	Urotricha sp.	18	23	0.003	[10]
Cyclops sp.	FW cyclopoids	Vorticella natans	41	25	0.09	[10]
Diacyclops bicuspidatus thomasi	FW cyclopoids	Mixed ciliates	30	40		[9]
Mesocyclops thermocyclopoides	FW cyclopoids	Paramecium caudatum	176	81		[16]
Mesocyclops thermocyclopoides	FW cyclopoids	Pseudourostyla levis	214	5		[16]
Mesocyclops thermocyclopoides	FW cyclopoids	Stylonychia notophora	88	67		[16]
Mesocyclops thermocyclopoides	FW cyclopoids	Mixed ciliates	159	54		[16]
Various cyclopoids	FW cyclopoids	Mixed ciliates	33	17		[11]
Evadne spinifera	Marine cladocerans	Mixed ciliates		24	0.15	[17]
Evadne spinifera	Marine cladocerans	Mixed ciliates		4	0.01	[17]
Penilia avirostris	Marine cladocerans	Mixed ciliates		11	0.33	[17]
Penilia avirostris	Marine cladocerans	Mixed ciliates		8	0.01	[17]
Penilia avirostris	Marine cladocerans	Mixed ciliates		8	0.19	[17]
Penilia avirostris	Marine cladocerans	Mixed ciliates		3	0.02	[17]
Penilia avirostris	Marine cladocerans	Mixed ciliates		2		[18]
Penilia avirostris	Marine cladocerans	Mixed ciliates		5		[18]
Penilia avirostris	Marine cladocerans	Mixed ciliates		1		[18]
Podon sp.	Marine cladocerans	Mixed ciliates		30	0.11	[17]
						F10 103
Acartia clausi	Marine calanoids	Favella taraikaensis	210	47	0.40	[12,19]
Acartia clausi	Marine calanoids	Helicostomella fusiformis	110	17	0.30	[12,19]
Acartia clausi	Marine calanoids	Helicostomella fusiformis	110	7.4	1.30	[12,19]
Acartia clausi	Marine calanoids	Lohmanniella oviformis	18	197		[20]
Acartia clausi	Marine calanoids	Strombidium conicum	48	62		[20]
Acartia clausi	Marine calanoids	Strombidium sulcatum	30	283	400	[12,17]

Acartia clausi	Marine calanoids	Strombidium sulcatum	30	183	123	[12,17]
Acartia clausi	Marine calanoids	Strombidium vestitum	23	58	123	[20]
Acartia clausi	Marine calanoids	Strombidium sp.	40	261		[20]
Acartia clausi	Marine calanoids	Choreotrichs (< 20 µm)	10	49	0.7	[21]
Acartia clausi	Marine calanoids	Choreotrichs (< 20 µm)	+	88	0.7	[21]
Acartia clausi	Marine calanoids	Choreotrichs (< 20 µm)		89	0.4	[21]
Acartia clausi	Marine calanoids	Choreotrichs (< 20 µm)	+	29	0.1	[21]
Acartia clausi	Marine calanoids	Choreotrichs (< 20 µm)	1	29	0.1	[21]
Acartia clausi	Marine calanoids	Choreotrichs (< 20 µm)	+	53	0.1	[21]
Acartia clausi	Marine calanoids	Choreotrichs (< 20 µm)	1	35	0.1	[21]
Acartia clausi	Marine calanoids	Choreotrichs (< 20 µm)	+	20	0.1	[21]
Acartia clausi	Marine calanoids	Choreotrichs (< 20 µm)	1	100	0.04	[21]
Acartia clausi	Marine calanoids	Choreotrichs (< 20 µm)	1	48	0.04	[21]
Acartia clausi	Marine calanoids	Choreotrichs (< 20 µm)		15	0.03	[21]
Acartia clausi	Marine calanoids	Mixed ciliates	11	28	0.03	[22]
Acartia clausi	Marine calanoids	Mixed ciliates	15	32		[22]
Acartia clausi	Marine calanoids	Mixed ciliates	19	34		[22]
Acartia clausi	Marine calanoids	Mixed ciliates	26	49		[22]
Acartia clausi	Marine calanoids	Mixed ciliates	31	53		[22]
Acartia clausi	Marine calanoids	Mixed ciliates	36	47		[22]
Acartia clausi	Marine calanoids	Mixed ciliates	47	50		[22]
Acartia clausi	Marine calanoids	Mixed ciliates	7/	21		[22]
Acartia hudsonica	Marine calanoids	Eutintinnus pectinis	150	3		[23]
Acartia hudsonica	Marine calanoids	Eutintinnus pectinis	150	3		[23]
Acartia hudsonica	Marine calanoids	Eutintinnus pectinis	150	3		[23]
Acartia hudsonica	Marine calanoids	Eutintinnus pectinis	150	5		[23]
Acartia tonsa	Marine calanoids	Balanion sp.	34	60	0.54	[24]
Acartia tonsa	Marine calanoids	Balanion sp.	34	63	0.51	[24]
Acartia tonsa Acartia tonsa	Marine calanoids	Favella panamensis	265	31	1.37	[25]
Acartia tonsa Acartia tonsa	Marine calanoids	Favella sp.	150	32	1.76	[24]
	Marine calanoids	Favella sp.	150	4	0.19	[24]
Acartia tonsa	Marine calanoids	*	150	119	1.09	[24]
Acartia tonsa	Marine calanoids	Favella sp. Favella sp.	150	149	0.68	[24]
Acartia tonsa	Marine calanoids	*	150	115	0.08	[26]
Acartia tonsa Acartia tonsa	Marine calanoids Marine calanoids	Favella sp. Favella sp.	150	214	0.19	[26]
Acartia tonsa	Marine calanoids	Mesodinium rubrum	43	15		[27]
Acartia tonsa Acartia tonsa	Marine calanoids	Strobilidium spiralis	65	90		[27]
Acartia tonsa	Marine calanoids	Strombidium reticulatum	43	34		[27]
Acartia tonsa Acartia tonsa	Marine calanoids	Strobilidium sp.	52	44	0.51	[24]
Acartia tonsa Acartia tonsa	Marine calanoids	Strobilidium sp.	52	27	0.31	[24]
Acartia tonsa Acartia tonsa	Marine calanoids	Strobilidium sp.	52	36	0.41	[24]
	Marine calanoids		148	56	0.46	[25]
Acartia tonsa	Marine calanoids	Tintinnopsis tubulosa	65	17	0.27	[24]
Acartia tonsa Acartia tonsa	Marine calanoids	Tintinnopsis sp. Tintinnopsis sp.	65	40		[24]
Acartia tonsa Acartia tonsa	Marine calanoids	Urotricha sp.	12	39	0.004	[24]
	Marine calanoids	Mixed ciliates	12		2.55	[28]
Acartia (Acanthacartia) tonsa Acartia (Acanthacartia) tonsa	Marine calanoids	Mixed ciliates Mixed ciliates	1	135	9.69	[28]
Acartia (Acanthacartia) tonsa Acartia tonsa	Marine calanoids	Mixed ciliates	62	12	0.06	[29]
	Marine calanoids	Mixed ciliates Mixed ciliates	62		0.06	[29]
Acartia tonsa	Marine calanoids			188	.	[29]
Acartia tonsa	Marine calanoids	Mixed ciliates	62	211	0.38	[30]
Acartia spp.	Marine calanoids	Aloricate ciliates Aloricate ciliates	+	22	0.04	[30]
Acartia spp. Acartia spp.	Marine calanoids Marine calanoids	Aloricate ciliates Aloricate ciliates	+	3	0.05	[30]
**	Marine calanoids	Aloricate ciliates Aloricate ciliates	1	19	0.04	[30]
Acartia spp. Acartia spp.	Marine calanoids	Aloricate ciliates Aloricate ciliates	+	29	0.12	[30]
**	Marine calanoids			15	0.01	[30]
Acartia spp.	Marine calanoids Marine calanoids	Aloricate ciliates		17	0.01	[30]
Acartia spp.	Marine calanoids	Loricate ciliates		33	0.03	[30]
Acartia spp.	Marine calanoids Marine calanoids	Loricate ciliates Loricate ciliates	1	6	0.00	[30]
Acartia spp.			+	39	0.09	[30]
Acartia spp.	Marine calanoids	Loricate ciliates	1	44	0.10	[30]
Acartia spp.	Marine calanoids	Loricate ciliates	1	18	0.02	
Acartia spp.	Marine calanoids	Loricate ciliates		40	0.48	[30]

Acartia spp.	Marine calanoids	Loricate ciliates	I	10	0.08	[30]
Acartia spp.	Marine calanoids	Mixed ciliates		97	0.00	[31]
Acartia spp.	Marine calanoids	Mixed ciliates (16-20 µm)		42		[32]
Acartia spp.	Marine calanoids	Mixed ciliates (21-30 μm)		66		[32]
Acartia spp.	Marine calanoids	Mixed ciliates (31-45 μm)		119		[32]
Aetideus divergens	Marine calanoids	Mixed ciliates		394		[28]
Calanoides acutus	Marine calanoids	Mixed ciliates		190		[33]
Calanus finmarchicus	Marine calanoids	Myrionecta rubra		1904		[34]
Calanus finmarchicus	Marine calanoids	Mixed ciliates	30	20	2.94	[35]
Calanus finmarchicus	Marine calanoids	Mixed ciliates Mixed ciliates	30	15	3.04	[35]
Calanus finmarchicus	Marine calanoids	Mixed ciliates	30	25	2.98	[35]
Calanus finmarchicus	Marine calanoids	Mixed ciliates Mixed ciliates	30	44	5.43	[35]
Calanus finmarchicus	Marine calanoids	Mixed ciliates Mixed ciliates	30	56	10.71	[35]
Calanus finmarchicus	Marine calanoids	Mixed ciliates (>30 μm)	30	469	0.17	[36]
, , , , , , , , , , , , , , , , , , ,		Mixed ciliates (>30 µm)				[36]
Calanus finmarchicus	Marine calanoids	Mixed ciliates (>30 µm)		837	2.68	[36]
Calanus finmarchicus	Marine calanoids	· ' '		328	9.04	[36]
Calanus finmarchicus	Marine calanoids	Mixed ciliates (>30 μm)		321	3.85	[36]
Calanus finmarchicus	Marine calanoids	Mixed ciliates (<30 μm)		301	6.53	[36]
Calanus finmarchicus	Marine calanoids	Mixed ciliates (<30 μm)		241	7.20	
Calanus finmarchicus	Marine calanoids	Mixed ciliates (<30 μm)	-	59	2.01	[36]
Calanus finmarchicus	Marine calanoids	Mixed ciliates (<30 μm)	-	60	1.00	[36]
Calanus finmarchicus	Marine calanoids	Mixed ciliates		20	0.25	
Calanus finmarchicus	Marine calanoids	Mixed ciliates		217	3.54	[36]
Calanus finmarchicus	Marine calanoids	Mixed ciliates		129	0.51	[36]
Calanus finmarchicus	Marine calanoids	Mixed ciliates		200	2.27	[36]
Calanus finmarchicus	Marine calanoids	Mixed ciliates		154	0.51	[36]
Calanus finmarchicus	Marine calanoids	Mixed ciliates		642	0.76	[36]
Calanus finmarchicus	Marine calanoids	Mixed ciliates		619	1.73	[36]
Calanus finmarchicus	Marine calanoids	Mixed ciliates		1078	16.67	[36]
Calanus finmarchicus	Marine calanoids	Oligotrich ciliates (< 20µm)		698		[34]
Calanus finmarchicus	Marine calanoids	Oligotrich ciliates (< 20µm)		952		[34]
Calanus finmarchicus	Marine calanoids	Oligotrichous ciliates (>		1689		[34]
Calanus glacialis	Marine calanoids	Oligotrichous ciliates (<		1828		[34]
Calanus helgolandicus	Marine calanoids	Myrionecta rubra	40	783	0.30	[21]
Calanus helgolandicus	Marine calanoids	Myrionecta rubra	40	653	0.30	[21]
Calanus helgolandicus	Marine calanoids	Myrionecta rubra	40	626	0.30	[21]
Calanus helgolandicus	Marine calanoids	Myrionecta rubra	40	1164	0.30	[21]
Calanus helgolandicus	Marine calanoids	Myrionecta rubra	40	1347	0.30	[21]
Calanus helgolandicus	Marine calanoids	Myrionecta rubra	40	1099	0.30	[21]
Calanus helgolandicus	Marine calanoids	Myrionecta rubra	40	1347	0.30	[21]
Calanus helgolandicus	Marine calanoids	Myrionecta rubra	40	799	0.30	[21]
Calanus helgolandicus	Marine calanoids	Aloricate choreotrichs		177	0.40	[21]
Calanus helgolandicus	Marine calanoids	Aloricate choreotrichs		330	0.40	[21]
Calanus helgolandicus	Marine calanoids	Aloricate choreotrichs		229	0.40	[21]
Calanus helgolandicus	Marine calanoids	Aloricate choreotrichs		188	0.40	[21]
Calanus helgolandicus	Marine calanoids	Aloricate choreotrichs		295	0.40	[21]
Calanus helgolandicus	Marine calanoids	Aloricate choreotrichs		416	0.40	[21]
Calanus helgolandicus	Marine calanoids	Aloricate choreotrichs		263	0.40	[21]
Calanus helgolandicus	Marine calanoids	Aloricate choreotrichs		273	0.40	[21]
Calanus helgolandicus	Marine calanoids	Choreotrichs (< 20 µm)		2353	0.20	[21]
Calanus helgolandicus	Marine calanoids	Choreotrichs (< 20 µm)		269	0.60	[21]
Calanus helgolandicus	Marine calanoids	Choreotrichs (< 20 µm)		217	0.10	[21]
Calanus helgolandicus	Marine calanoids	Choreotrichs (< 20 µm)		354	4.80	[21]
Calanus helgolandicus	Marine calanoids	Choreotrichs (< 20 μm)		278	2.60	[21]
Calanus helgolandicus	Marine calanoids	Choreotrichs (< 20 µm)		347	0.20	[21]
Calanus helgolandicus	Marine calanoids	Choreotrichs (< 20 µm)		19	0.02	[21]
Calanus helgolandicus	Marine calanoids	Choreotrichs (< 20 µm)		104	0.10	[21]
Calanus helgolandicus	Marine calanoids	Choreotrichs (> 20 µm)		25	0.02	[21]
Calanus helgolandicus	Marine calanoids	Choreotrichs (> 20 μm)	1	151	0.40	[21]
Calanus helgolandicus	Marine calanoids	Choreotrichs (> 20 μm)	1	269	1.20	[21]
Calanus helgolandicus	Marine calanoids	Choreotrichs (> 20 μm)	+	427	1.70	[21]
Calanus helgolandicus	Marine calanoids	Choreotrichs (> 20 μm)	+	328	0.50	[21]
Caranus neigotanateus	iviainie calanolus	Shoreoutens (* 20 μm)	1	520	0.50	[]

Calanus helgolandicus	Marine calanoids	Choreotrichs (> 20 μm)	I	140	0.10	[21]
Calanus helgolandicus	Marine calanoids	Mixed ciliates		95	7.6	[37]
Calanus helgolandicus	Marine calanoids	Mixed ciliates		75	54.3	[28]
Calanus helgolandicus	Marine calanoids	Mixed ciliates			54.6	[28]
Calanus helgolandicus	Marine calanoids	Mixed ciliates			65.1	[28]
Calanus helgolandicus	Marine calanoids	Mixed ciliates		12	0.2	[36]
Calanus helgolandicus	Marine calanoids	Mixed ciliates		205	4.1	[36]
Calanus helgolandicus	Marine calanoids	Mixed ciliates		234	2.0	[36]
Calanus helgolandicus	Marine calanoids	Mixed ciliates		242	3.2	[36]
Calanus helgolandicus	Marine calanoids	Mixed ciliates		122	0.8	[36]
Calanus helgolandicus	Marine calanoids	Mixed ciliates		596	20.4	[36]
Calanus helgolandicus	Marine calanoids	Mixed ciliates		189	0.3	[36]
Calanus helgolandicus	Marine calanoids	Mixed ciliates		506	7.4	[36]
Calanus hyperboreus	Marine calanoids	Oligotrichous ciliates (<		2245		[34]
Calanus hyperboreus	Marine calanoids	Oligotrichous ciliates (<		2150		[34]
Calanus hyperboreus	Marine calanoids	Oligotrichous ciliates (>		8634		[34]
Calanus hyperboreus	Marine calanoids	Oligotrichous ciliates (>		1290		[34]
Calanus pacificus	Marine calanoids	Mixed ciliates		283	38.2	[28]
Calanus pacificus	Marine calanoids	Mixed ciliates		409	31.7	[28]
Calanus pacificus	Marine calanoids	Mixed ciliates		540	36.0	[28]
Calanus pacificus	Marine calanoids	Mixed ciliates		1301	10.9	[38]
Calanus pacificus	Marine calanoids	Mixed ciliates		1233	10.9	[38]
Calanus pacificus	Marine calanoids	Mixed ciliates		928	10.9	[38]
Calanus pacificus	Marine calanoids	Mixed ciliates		506	10.9	[38]
Calanus similllimus	Marine calanoids	Mixed ciliates		154		[33]
Calanus spp.	Marine calanoids	Mixed ciliates (16-20 μm)		218		[32]
Calanus spp.	Marine calanoids	Mixed ciliates (21-30 μm)		360		[32]
Calanus spp.	Marine calanoids	Mixed ciliates (31-45 μm)		497		[32]
Centropages abdominalis	Marine calanoids	Mixed ciliates		285	0.8	[38]
Centropages abdominalis	Marine calanoids	Mixed ciliates		277	0.8	[38]
Centropages abdominalis	Marine calanoids	Mixed ciliates		277	0.8	[38]
Centropages abdominalis	Marine calanoids	Mixed ciliates		137	0.3	[38]
Centropages abdominalis	Marine calanoids	Mixed ciliates		92	0.3	[38]
Centropages abdominalis	Marine calanoids	Mixed ciliates		48	0.3	[38]
Centropages abdominalis	Marine calanoids	Mixed ciliates		253	1.5	[38]
Centropages abdominalis	Marine calanoids	Mixed ciliates		261	1.5	[38]
Centropages brachiatus	Marine calanoids	Mixed ciliates	62	186	0.45	[29]
Centropages brachiatus	Marine calanoids	Mixed ciliates	62	241	0.07	[29]
Centropages chierchiae	Marine calanoids	Mixed ciliates		149	11.3	[37]
Centropages chierchiae	Marine calanoids	Mixed ciliates (16-20 μm)		76		[32]
Centropages chierchiae	Marine calanoids	Mixed ciliates (21-30 μm)		107		[32]
Centropages chierchiae	Marine calanoids	Mixed ciliates (31-45 μm)		236		[32]
Centropages hamatus	Marine calanoids	Mixed ciliates	11	31		[22]
Centropages hamatus	Marine calanoids	Mixed ciliates	15	41		[22]
Centropages hamatus	Marine calanoids	Mixed ciliates	19	57		[22]
Centropages hamatus	Marine calanoids	Mixed ciliates	26	73		[22]
Centropages hamatus	Marine calanoids	Mixed ciliates	31	92		[22]
Centropages hamatus	Marine calanoids	Mixed ciliates	36	102		[22]
Centropages hamatus	Marine calanoids	Mixed ciliates	47	124		[22]
Centropages hamatus	Marine calanoids	Mixed ciliates	0.0	28	0.51	[12,40]
Centropages typicus	Marine calanoids	Strombidium sulcatum Strombidium sulcatum	30	520	831	[12,40]
Clause and annual livid un	Marine calanoids	Mixed ciliates	30	337	137	[28]
Clausocalanus lividus	Marine calanoids	Mixed ciliates Mixed ciliates		121	15.9	[28]
Clausocalanus lividus	Marine calanoids	Mixed ciliates Mixed ciliates		210	15.4	[32]
Clausocalanus spp.	Marine calanoids Marine calanoids	Mixed ciliates Mixed ciliates		55	0.03	[32]
Clausocalanus spp.		Mixed ciliates (16-20 µm)		16	0.08	[32]
Clausocalanus spp.	Marine calanoids Marine calanoids	Mixed ciliates (21-30 μm)		50		[32]
Clausocalanus spp.	Marine calanoids Marine calanoids	Mixed ciliates (21-30 μm) Mixed ciliates (31-45 μm)		38		[32]
Clausocalanus spp. Eucalanus pileatus	Marine calanoids Marine calanoids	Mixed ciliates (51-45 µm)		36 72	1.01	[41]
Eucalanus pileatus	Marine calanoids Marine calanoids	Mixed ciliates Mixed ciliates		54	0.76	[41]
Eucalanus pileatus	Marine calanoids	Mixed ciliates Mixed ciliates		67		[41]
	iviaille caianoids	MIACO CHICAGO	l	07	0.87	['*]

Eucalanus pileatus	Marine calanoids	Mixed ciliates		75	1.32	[41]
Eucalanus pileatus	Marine calanoids	Mixed ciliates		55	1.06	[41]
Eurytemora affinis	Marine calanoids	Uronema sp.	17	3	3.55	[12,42]
Metridia lucens	Marine calanoids	Mixed ciliates		78		[33]
M. lucens/C lausocalanus	Marine calanoids	Mixed ciliates		318		[33]
Neocalanus cristatus	Marine calanoids	Mesodinium spp		2167		[43]
Neocalanus cristatus	Marine calanoids	Ciliates (<20 µm)		848		[43]
Neocalanus cristatus	Marine calanoids	Ciliates (>20 µm)		1697		[43]
Neocalanus cristatus	Marine calanoids	Mixed ciliates		1183	5.42	[43]
Neocalanus plumchrus	Marine calanoids	Mixed ciliates		655	51.12	[44,45]
Neocalanus tonsus	Marine calanoids	Mixed ciliates		105		[46]
Neocalanus tonsus	Marine calanoids	Mixed ciliates		105		[46]
Neocalanus tonsus	Marine calanoids	Mixed ciliates		264		[33]
Neocalanus spp.	Marine calanoids	Ciliates (< 20 µm)		816		[47]
Neocalanus spp.	Marine calanoids	Ciliates (20-30 µm)		1668		[47]
Neocalanus spp.	Marine calanoids	Ciliates (> 30 µm)		1587		[47]
Neocalanus spp.	Marine calanoids	Ciliates (< 20 µm)		404		[47]
Neocalanus spp.	Marine calanoids	Ciliates (20-30 µm)		1222		[47]
Neocalanus spp.	Marine calanoids	Ciliates (> 30 µm)		776		[47]
Neocalanus spp.	Marine calanoids	Ciliates (< 20 µm)		525		[47]
Neocalanus spp.	Marine calanoids	Ciliates (20-30 µm)		721		[47]
Neocalanus spp.	Marine calanoids	Ciliates (> 30 µm)		1111		[47]
Neocalanus spp.	Marine calanoids	Ciliates (< 20 µm)		130		[47]
Neocalanus spp.	Marine calanoids	Ciliates (20-30 µm)		547		[47]
Neocalanus spp.	Marine calanoids	Ciliates (30-40 µm)		644		[47]
Neocalanus spp.	Marine calanoids	Ciliates (40-50 µm)		529		[47]
Neocalanus spp.	Marine calanoids	Ciliates (> 50 µm)		612		[47]
Neocalanus spp.	Marine calanoids	Ciliates (< 20 µm)		94		[47]
Neocalanus spp.	Marine calanoids	Ciliates (20-30 µm)		476		[47]
Neocalanus spp.	Marine calanoids	Ciliates (> 30 µm)		87		[47]
Neocalanus spp.	Marine calanoids	Ciliates (< 20 µm)		261		[47]
Neocalanus spp.	Marine calanoids	Ciliates (20-30 µm)		282		[47]
Neocalanus spp.	Marine calanoids	Ciliates (30-40 µm)		281		[47]
Neocalanus spp.	Marine calanoids	Ciliates (> 50 µm)		591		[47]
Neocalanus spp.	Marine calanoids	Ciliates (< 20 µm)		134		[47]
Neocalanus spp.	Marine calanoids	Ciliates (20-30 µm)		191		[47]
Neocalanus spp.	Marine calanoids	Ciliates (30-40 µm)		366		[47]
Neocalanus spp.	Marine calanoids	Ciliates (40-50 µm)		428		[47]
Neocalanus spp.	Marine calanoids	Ciliates (> 50 µm)		311		[47]
Paracartia grani	Marine calanoids	Mixed ciliates		311	7.89	[28]
· · · · · · · · · · · · · · · · · · ·	Marine calanoids	Mixed ciliates		235	0.09	[29]
Paracalanus parvus	Marine calanoids	Mixed ciliates Mixed ciliates		106	0.09	[29]
Paracalanus parvus				186		[17]
Paracalanus parvus Paracalanus parvus	Marine calanoids Marine calanoids	Mixed ciliates Mixed ciliates		54	0.28	[17]
Paracalanus parvus	Marine calanoids	Mixed ciliates Mixed ciliates		32	0.03	[17]
Paracalanus parvus	Marine calanoids	Mixed ciliates Mixed ciliates		11	0.33	[17]
1	Marine calanoids Marine calanoids		10	11	0.21	[48]
Paracalanus sp.		Ciliates (15-20µm)	18	14	0.02	[48]
Paracalanus sp.	Marine calanoids	Ciliates (15-20µm) Ciliates (20-40µm)	18	15	0.02	[48]
Paracalanus sp.	Marine calanoids Marine calanoids	Ciliates (20-40µm) Ciliates (>40µm)	30	11	0.01	[48]
Paracalanus sp.		+ ' '	50	22	0.09	[48]
Paracalanus sp.	Marine calanoids	Ciliates (15-20µm)	18	8	0.01	[21]
Para-pseudocalanus spp.	Marine calanoids	Myrionecta rubra Myrionecta rubra	40	173	0.03	[21]
Para-pseudocalanus spp.	Marine calanoids	<u> </u>	40	101	0.03	[21]
Para-pseudocalanus spp.	Marine calanoids	Myrionecta rubra	40	82	0.03	[21]
Para-pseudocalanus spp.	Marine calanoids	Myrionecta rubra	40	8	0.03	
Para-pseudocalanus spp.	Marine calanoids	Myrionecta rubra	40	89	0.03	[21]
Para-pseudocalanus spp.	Marine calanoids	Myrionecta rubra	40	105	0.03	[21]
Para-pseudocalanus spp.	Marine calanoids	Myrionecta rubra	40	90	0.03	[21]
Para-pseudocalanus spp.	Marine calanoids	Myrionecta rubra	40	50	0.03	[21]
Hanna manada and mining	Marine calanoids	Aloricate choreotrichs		90	0.04	[21]
Para-pseudocalanus spp.		44 1 1 1 1 1 1 1	1	4.0.1	0.0.	[21]
Para-pseudocalanus spp. Para-pseudocalanus spp. Para-pseudocalanus spp.	Marine calanoids Marine calanoids	Aloricate choreotrichs Aloricate choreotrichs		101 46	0.04 0.04	[21] [21]

Para psaudocalanus spp	Marine calanoids	Aloricate choreotrichs	I	6	0.04	[21]
Para-pseudocalanus spp. Para-pseudocalanus spp.	Marine calanoids	Aloricate choreotrichs		45	0.04	[21]
Para-pseudocalanus spp. Para-pseudocalanus spp.	Marine calanoids	Aloricate choreotrichs		23	0.04	[21]
Para-pseudocalanus spp. Para-pseudocalanus spp.	Marine calanoids	Aloricate choreotrichs		10	0.04	[21]
Para-pseudocalanus spp. Para-pseudocalanus spp.	Marine calanoids	Aloricate choreotrichs		31	0.04	[21]
Para-pseudocalanus spp. Para-pseudocalanus spp.	Marine calanoids	Mixed ciliates (16-20 µm)		61	0.04	[32]
Para-pseudocalanus spp.	Marine calanoids	Mixed ciliates (21-30 µm)		90		[32]
Para-pseudocalanus spp.	Marine calanoids	Mixed ciliates (31-45 µm)		98		[32]
Pseudocalanus sp.	Marine calanoids	Lohmanniella oviformis	18	425		[20]
Pseudocalanus sp.	Marine calanoids	Strombidium conicum	48	210		[20]
Pseudocalanus sp.	Marine calanoids	Strombidium sp.	40	402		[20]
Pseudocalanus sp.	Marine calanoids	Mixed ciliates	40	193	7.7	[38]
Pseudocalanus sp.	Marine calanoids	Mixed ciliates Mixed ciliates		189	7.7	[38]
Pseudocalanus sp.	Marine calanoids	Mixed ciliates		297	7.7	[38]
Pseudocalanus sp.	Marine calanoids	Mixed ciliates		289	7.7	[38]
Temora longicornis	Marine calanoids	Strombidium elegans	30	33	7.7	[49]
Temora longicornis	Marine calanoids	Strombidium sulcatum	30	92		[49]
Temora longicornis	Marine calanoids	Mixed ciliates	50	110	8.6	[37]
Temora stylifera	Marine calanoids	Mixed ciliates		51	0.03	[17]
Temora stylifera	Marine calanoids	Mixed ciliates		10	0.06	[17]
Tortanus sp.	Marine calanoids	Mixed ciliates Mixed ciliates		84	1.84	[28]
Tortanus sp.	Marine calanoids	Mixed ciliates		44	1.39	[28]
Torunus sp.	Warme caranoles	i mines emass			1.57	
Oithona davisae	Marine cyclopoids	Strombidium sulcatum	29	10	0.07	[50]
Oithona davisae	Marine cyclopoids	Mixed ciliates	2)	3	0.12	[28]
Oithona davisae	Marine cyclopoids	Mixed ciliates		5	0.14	[28]
Oithona davisae	Marine cyclopoids	Mixed ciliates		1	0.06	[28]
Oithona nana	Marine cyclopoids	Mixed ciliates		17	0.16	[28]
Oithona nana	Marine cyclopoids	Mixed ciliates		15	0.05	[28]
Oithona nana	Marine cyclopoids	Mixed ciliates		9	0.05	[51]
Oithona nana	Marine cyclopoids	Mixed ciliates		16		[51]
Oithona nana	Marine cyclopoids	Mixed ciliates		8		[51]
Oithona nana	Marine cyclopoids	Mixed ciliates		2		[51]
Oithona nana	Marine cyclopoids	Mixed ciliates		1		[51]
Oithona nana	Marine cyclopoids	Mixed ciliates		2		[51]
Oithona similis	Marine cyclopoids	Myrionecta spp. <30 μm		3	0.002	[18]
Oithona similis	Marine cyclopoids	Myrionecta spp. <30 μm		14	0.001	[18]
Oithona similis	Marine cyclopoids	Myrionecta spp. <30 μm		26	0.01	[18]
Oithona similis	Marine cyclopoids	Myrionecta spp. <30 μm		4	0.0005	[18]
Oithona similis	Marine cyclopoids	Myrionecta spp. <30 μm		24	0.005	[18]
Oithona similis	Marine cyclopoids	<i>Myrionecta</i> spp. >30 μm		12	0.02	[18]
Oithona similis	Marine cyclopoids	Myrionecta spp. >30 μm		27	0.07	[18]
Oithona similis	Marine cyclopoids	Myrionecta spp. >30 μm		21	0.02	[18]
Oithona similis	Marine cyclopoids	Myrionecta spp. >30 μm		19	0.02	[18]
Oithona similis	Marine cyclopoids	Strombidium spp. (<20 µm)		13	0.01	[18]
Oithona similis	Marine cyclopoids	Strombidium spp. (<20 µm)		2	0.002	[18]
Oithona similis	Marine cyclopoids	Strombidium spp. (<20 µm)		11	0.002	[18]
Oithona similis	Marine cyclopoids	Strombidium spp. (<20 µm)		17	0.003	[18]
Oithona similis	Marine cyclopoids	Strombidium spp. (<20 µm)		13	0.01	[18]
Oithona similis	Marine cyclopoids	Strombidium spp. (<20 µm)		15	0.01	[18]
Oithona similis	Marine cyclopoids	Strombidium spp. (<20 µm)		9	0.005	[18]
Oithona similis	Marine cyclopoids	Strombidium spp. (<20 µm)		4	0.001	[18]
Oithona similis	Marine cyclopoids	Strombidium spp. (<20 µm)		4	0.0007	[18]
Oithona similis	Marine cyclopoids	Strombidium spp. (<20 µm)		9	0.001	[18]
Oithona similis	Marine cyclopoids	Strombidium spp. (<20 µm)		6	0.0007	[18]
Oithona similis	Marine cyclopoids	Strombidium spp. (<20 µm)		4	0.0005	[18]
Oithona similis	Marine cyclopoids	Strombidium spp. (<20 µm)		14	0.001	[18]
Oithona similis	Marine cyclopoids	Strombidium spp. (20-30 µm)		3	0.011	[18]
Oithona similis	Marine cyclopoids	Strombidium spp. (20-30 µm)		14	0.049	[18]
Oithona similis	Marine cyclopoids	Strombidium spp. (20-30 µm)		5	0.014	[18]
Oithona similis	Marine cyclopoids	Strombidium spp. (20-30 µm)		13	0.053	[18]
Oithona similis	Marine cyclopoids	Strombidium spp. (20-30 µm)		14	0.038	[18]
· · · · · · · · · · · · · · · · · · ·						

Oithona similis	Marine cyclopoids	Strombidium spp. (20-30 µm)		22	0.057	[18]
Oithona similis	Marine cyclopoids	Strombidium spp. (20-30 µm)		12	0.044	[18]
Oithona similis	Marine cyclopoids	Strombidium spp. (20-30 µm)		13	0.022	[18]
Oithona similis	Marine cyclopoids	Strombidium spp. (20-30 µm)		35	0.022	[18]
Oithona similis	Marine cyclopoids	Strombidium spp. (20-30 µm)		6	0.028	[18]
Oithona similis	Marine cyclopoids	Strombidium spp. (20-30 µm)				[18]
Oithona similis	Marine cyclopoids	Strombidium spp. (20-30 µm)		16	0.019	[18]
	* *	Strombidium spp. (20-30 µm)		9	0.015	[18]
Oithona similis Oithona similis	Marine cyclopoids	Strombidium spp. (20-30 µm)		10	0.002	[18]
	Marine cyclopoids	11 \ , ,		3	0.011	[18]
Oithona similis	Marine cyclopoids	Strombidium spp. (>30 µm)		21		[52]
Oithona similis	Marine cyclopoids	Mixed ciliates (>20 μm)		4	0.03	
Oithona similis	Marine cyclopoids	Mixed ciliates (>20 μm)		5	0.05	[52]
Oithona similis	Marine cyclopoids	Mixed ciliates		3	0.053	[18]
Oithona similis	Marine cyclopoids	Mixed ciliates		16	0.129	[18]
Oithona similis	Marine cyclopoids	Mixed ciliates		9	0.078	[18]
Oithona similis	Marine cyclopoids	Mixed ciliates		12	0.066	[18]
Oithona similis	Marine cyclopoids	Mixed ciliates		8	0.062	[18]
Oithona similis	Marine cyclopoids	Mixed ciliates		15	0.091	[18]
Oithona similis	Marine cyclopoids	Mixed ciliates		4	0.026	[18]
Oithona similis	Marine cyclopoids	Mixed ciliates		8	0.008	[18]
Oithona similis	Marine cyclopoids	Mixed ciliates		19	0.035	[18]
Oithona similis	Marine cyclopoids	Mixed ciliates		5	0.009	[18]
Oithona similis	Marine cyclopoids	Mixed ciliates		6	0.012	[18]
Oithona similis	Marine cyclopoids	Mixed ciliates		7	0.018	[18]
Oithona similis	Marine cyclopoids	Mixed ciliates		0	0	[18]
Oithona similis	Marine cyclopoids	Mixed ciliates		2	0.001	[18]
Oithona similis	Marine cyclopoids	Mixed ciliates		24	0.017	[18]
Oithona similis	Marine cyclopoids	Mixed ciliates		3	0.002	[18]
Oithona similis	Marine cyclopoids	Mixed ciliates		19	0.009	[18]
Oithona similis	Marine cyclopoids	Mixed ciliates		2	0.001	[18]
Oithona similis	Marine cyclopoids	Mixed ciliates		6	0.003	[18]
Oithona similis	Marine cyclopoids	Mixed ciliates		4	0.25	[18]
Oithona similis	Marine cyclopoids	Mixed ciliates		4	0.3	[18]
Oithona similis	Marine cyclopoids	Mixed ciliates		121	0.11	[18]
Oithona similis	Marine cyclopoids	Mixed ciliates		75	0.03	[18]
Oithona similis	Marine cyclopoids	Mixed ciliates		4	0.03	[18]
Oithona spp	Marine cyclopoids	Mixed ciliates		5	0.05	[18]
Oithona spp	Marine cyclopoids	Mixed ciliates		7	0.03	[18]
Oithona spp	Marine cyclopoids	Mixed ciliates		19	0.12	[18]
Oithona spp	Marine cyclopoids	Mixed ciliates		12	0.12	[18]
Oithona spp	* *	Mixed ciliates		7	0.01	[18]
	Marine cyclopoids		150		0.04	[53]
Oithona spp.	Marine cyclopoids Marine cyclopoids	Aloricate ciliates Aloricate ciliates	150	354		[53]
Oithona spp.	Marine cyclopoids	Aloricate ciliates Aloricate ciliates	150	37		[53]
Oithona spp.		Aloricate ciliates Aloricate ciliates	150	156		[53]
Oithona spp.	Marine cyclopoids		150	33		[53]
Oithona spp.	Marine cyclopoids	Aloricate ciliates	150	144		
Oithona spp.	Marine cyclopoids	Tintinnids	225	239		[53]
Oithona spp.	Marine cyclopoids	Tintinnids	225	4		[53]
Oithona spp.	Marine cyclopoids	Tintinnids	225	91		[53]
Oithona spp.	Marine cyclopoids	Tintinnids	225	73	<u> </u>	[53]

Data sources

1 Hansen, P. J., Bjørnsen, P. K. & Hansen, B. W. Zooplankton grazing and growth: Scaling within the 2-2,000-μm body size range. *Limnol. Oceanogr.* **42**, 687-704, doi:10.4319/lo.1997.42.4.0687 (1997).

- Jack, J. D. & Gilbert, J. J. Susceptibilities of different-sized ciliates to direct suppression by small and large cladocerans. *Freshwater Biol.* 29, 19-29 (1993).
- Burns, C. W. & Schallenberg, M. Impacts of nutrients and zooplankton on the microbial food web of an ultra-oligotrophic lake. *J. Plankton Res.* **20**, 1501-1525, doi:https://doi.org/10.1093/plankt/20.8.1501 (1998).
- Burns, C. W. & Schallenberg, M. Calanoid copepods versus cladocerans: Consumer effects on protozoa in lakes of different trophic status. *Limnol. Oceanogr.* **46**, 1558-1565, doi:https://doi.org/10.4319/lo.2001.46.6.1558 (2001).
- Burns, C. W. & Schallenberg, M. Relative impacts of copepods, cladocerans and nutrients on the microbial food web of a mesotrophic lake. *J. Plankton Res.* **18**, 683-714, doi:https://doi.org/10.1093/plankt/18.5.683 (1996).
- Wickham, S. A. The direct and indirect impact of *Daphnia* and cyclops on a freshwater microbial food web. *J. Plankton Res.* **20**, 739-755 (1998).
- Porter, K. G., Pace, M. L. & Battey, F. J. Ciliate protozoans as links in freshwater planktonic food chains. *Nature* **277**, 563-565 (1979).
- 8 McMahon, J. & Rigler, F. Feeding rate of *Daphnia magna* straus in different foods labeled with radioactive phosphorus. *Limnol. Oceanogr.* **10**, 105-113 (1965).
- 9 Wiackowski, K., Brett, M. T. & Goldman, C. R. Differential effects of zooplankton species on ciliate community structure. *Limnol. Oceanogr.* **39**, 486-492 (1994).
- Lu, X. & Weisse, T. Top-down control of planktonic ciliates by microcrustacean predators is stronger in lakes than in the ocean. *Scientific Reports* (this study) (2022).
- Adrian, R. & Schneider-Olt, B. Top-down effects of crustacean zooplankton on pelagic microorganisms in a mesotrophic lake. *J. Plankton Res.* **21**, 2175-2190, doi:https://doi.org/10.1093/plankt/21.11.2175 (1999).
- Hartmann, H. J., Taleb, H., Aleya, L. & Lair, N. Predation on ciliates by the suspension-feeding calanoid copepod *Acanthodiaptomus denticornis*. *Can. J. Fish. Aquat. Sci.* **50**, 1382-1393 (1993).
- Burns, C. W. & Gilbert, J. J. Predation on ciliates by freshwater calanoid copepods: rates of predation and relative vulnerabilities of prey. *Freshwater Biol.* **30**, 377-393, doi:https://doi.org/10.1111/j.1365-2427.1993.tb00822.x (1993).
- Jack, J. D. & Gilbert, J. J. Effects of metazoan predators on ciliates in freshwater plankton communities. *J. Euk. Microbiol.* **44**, 194-199 (1997).
- Wickham, S. A. *Cyclops* predation on ciliates: species-specific differences and functional responses. *J. Plankton Res.* **17**, 1633-1646 (1995).

- Kumar, R. Effects of *Mesocyclops thermocyclopoides* (Copepoda: Cyclopoida)
 predation on the population growth patterns of different prey species. *J. Freshw. Ecol.* 18, 383-393, doi:10.1080/02705060.2003.9663974 (2003).
- Broglio, E., Saiz, E., Calbet, A., Trepat, I. & Alcaraz, M. Trophic impact and prey selection by crustacean zooplankton on the microbial communities of an oligotrophic coastal area (NW Mediterranean Sea). *Aquat. Mic. Ecol.* **35**, 65-78 (2004).
- Castellani, C., Irigoien, X., Harris, R. P. & Lampitt, R. S. Feeding and egg production of *Oithona similis* in the North Atlantic. *Mar. Ecol. Prog. Ser.* **288**, 173-182 (2005).
- 19 Ayukai, T. Predation by *Acartia clausi* (Copepoda: Calanoida) on two species of tintinnids. *Mar. Microb. Food Webs* **2**, 45-52 (1987).
- Gismervik, I. Top-down impact by copepods on ciliate numbers and persistence depends on copepod and ciliate species composition *J. Plankton Res.* **28**, 499-507 (2006).
- Fileman, E., Petropavlovsky, A. & Harris, R. Grazing by the copepods *Calanus helgolandicus* and *Acartia claus*i on the protozooplankton community at station L4 in the Western English Channel. *J. Plankton Res.* **32**, 709-724, doi:https://doi.org/10.1093/plankt/fbp142 (2010).
- Tiselius, P. Contribution of aloricate ciliates to the diet of *Acartia clausi* and *Centropages hamatus* in coastal waters. *Mar. Ecol. Prog. Ser.* **56**, 49-56 (1989).
- Turner, J. T. & Anderson, D. M. Zooplankton grazing during dinoflagellate blooms in a Cape Cod embayment, with observations of oredation upon tintinnids by copepods. *Mar. Ecol.* **4**, 359-374 (1983).
- 24 Stoecker, D. K. & Egloff, D. A. Predation by *Acartia tonsa* Dana on planktonic ciliates and rotifers. *J. Exp. Mar. Biol. Ecol.* **110**, 53-68 (1987).
- 25 Robertson, J. R. Predation by estuarine zooplankton on tintinnid ciliates. *Estuar. Coast. Shelf Sci.* **16**, 27-36 (1983).
- 26 Stoecker, D. K. & Sanders, N. K. Differential grazing by *Acartia tonsa* on a dinoflagellate and a tintinnid. *J. Plankton Res.* 7, 85-100 (1985).
- Jonsson, P. R. & Tiselius, P. Feeding behaviour, prey detection and capture efficiency of the copepod *Acartia tonsa* feeding on planktonic ciliates. *Mar. Ecol. Prog. Ser.* **60**, 35-44 (1990).
- Brun, P. G., Payne, M. R. & Kiørboe, T. A trait database for marine copepods. *Earth System Science Data* **9**, 99-113, doi:https://doi.org/10.5194/essd-9-99-2017 (2017).

- Vargas, C. A. & González, H. E. Plankton community structure and carbon cycling in a coastal upwelling system. I. Bacteria, microprotozoans and phytoplankton in the diet of copepods and appendicularians. *Aquat. Mic. Ecol.* 34, 151-164 (2004).
- Bollens, G. C. R. & Penry, D. L. Feeding dynamics of *Acartia* spp. copepods in a large, temperate estuary (San Francisco Bay, CA). *Mar. Ecol. Prog. Ser.* **257**, 139-158, doi:https://doi.org/10.3354/meps257139 (2003).
- Lonsdale, D. J. *et al.* Food web interactions in the plankton of Long Island bays, with preliminary observations on brown tide effects. *Mar. Ecol. Prog. Ser.* **134**, 247-263, doi:https://doi.org/10.3354/meps134247 (1996).
- Batten, S. D., Fileman, E. S. & Halvorsen, E. The contribution of microzooplankton to the diet of mesozooplankton in an upwelling filament off the north west coast of Spain. *Progr. Oceanogr.* **51**, 385-398 (2001).
- Atkinson, A. Subantarctic copepods in an oceanic, low chlorophyll environment: ciliate predation, food selectivity and impact on prey populations. *Mar. Ecol. Prog. Ser.* **130**, 85-96 (1996).
- Levinsen, H., Turner, J. T., Nielsen, T. G. & Hansen, B. W. On the trophic coupling between protists and copepods in arctic marine ecosystems. *Mar. Ecol. Prog. Ser.* **204**, 65-77, doi:https://doi.org/10.3354/meps204065 (2000).
- Ohman, M. D. & Runge, J. A. Sustained fecundity when phytoplankton resources are in short supply: omnivory by *Calanus finmarchicus* in the Gulf of St. Lawrence. *Limnol. Oceanogr.* **39**, 21-36, doi:https://doi.org/10.4319/lo.1994.39.1.0021 (1994).
- Nejstgaard, J. C., Gismervik, I. & Solberg, P. T. Feeding and reproduction by *Calanus finmarchicus*, and microzooplankton grazing during mesocosm blooms of diatoms and the coccolithophore *Emiliania huxleyi*. *Mar. Ecol. Prog. Ser.* **147**, 197-217, doi:https://doi.org/10.3354/meps147197 (1997).
- Vincent, D. & Hartmann, H. J. Contribution of ciliated microprotozoans and dinoflagellates to the diet of three copepod species in the Bay of Biscay.
 Hydrobiologia 443, 193-204, doi:https://doi.org/10.1023/A:1017502813154 (2001).
- Fessenden, L. & Cowles, T. J. Copepod predation on phagotrophic ciliates in Oregon coastal waters. *M Mar. Ecol. Prog. Ser.* **107**, 103-103 (1994).
- Turner, J. T. & Granéli, E. Zooplankton feeding ecology: grazing during enclosure studies of phytoplankton blooms from the west coast of Sweden. *J. Exp. Mar. Biol. Ecol.* **157**, 19-31, doi:https://doi.org/10.1016/0022-0981(92)90071-H (1992).

- Wiadnyana, N. N. & Rassoulzadegan, F. Selective feeding of *Acartia clausi* and *Centropages typicus* on microzooplankton. *Mar. Ecol. Prog. Ser.* **53**, 37-45 (1989).
- Verity, P. & Paffenhofer, G.-A. On assessment of prey ingestion by copepods. *J. Plankton Res.* **18**, 1767-1779, doi: https://doi.org/10.1093/plankt/18.10.1767 (1996).
- 42 Berk, S., Brownlee, D., Heinle, D., Kling, H. & Colwell, R. Ciliates as a food source for marine planktonic copepods. *Microb. Ecol.* **4**, 27-40 (1977).
- Liu, H., Dagg, M. J. & Strom, S. Grazing by the calanoid copepod *Neocalanus cristatus* on the microbial food web in the coastal Gulf of Alaska. *J. Plankton Res.* **27**, 647-662, doi:https://doi.org/10.1093/plankt/fbi039 (2005).
- 44 Gifford, D. J. & Dagg, M. J. The microzooplankton-mesozooplankton link: consumption of planktonic protozoa by the calanoid copepods *Acartia tonsa* Dana and *Neocalanus plumchrus* Murukawa. *Mar. Microb. Food Webs* **5**, 161-177 (1991).
- Pérez, M., Dolan, J. & Fukai, E. Planktonic oligotrich ciliates in the NW
 Mediterranean: growth rates and consumption by copepods. *Mar. Ecol. Prog. Ser.* 155, 89-101 (1997).
- Zeldis, J., James, M. R., Grieve, J. & Richards, L. Omnivory by copepods in the New Zealand Subtropical Frontal Zone. *J. Plankton Res.* **24**, 9-23, doi:https://doi.org/10.1093/plankt/24.1.9 (2002).
- Dagg, M., Strom, S. & Liu, H. High feeding rates on large particles by *Neocalanus flemingeri* and *N. plumchrus*, and consequences for phytoplankton community structure in the subarctic Pacific Ocean. *Deep Sea Res. Part I Oceanogr. Res. Pap.* **56**, 716-726, doi:https://doi.org/10.1016/j.dsr.2008.12.012 (2009).
- Suzuki, K., Nakamura, Y. & Hiromi, J. Feeding by the small calanoid copepod *Paracalanus* sp. on heterotrophic dinoflagellates and ciliates. *Aquat. Microb. Ecol.* **17**, 99-103 (1999).
- 49 Hansen, B., Christiansen, S. & Pedersen, G. Plankton dynamics in the marginal ice zone of the central Barents Sea during spring: carbon flow and structure of the grazer food chain. *Polar Biol.* 16, 115-128, doi:https://doi.org/10.1007/BF02390432 (1996).
- Saiz, E., Griffell, K., Calbet, A. & Isari, S. Feeding rates and prey: predator size ratios of the nauplii and adult females of the marine cyclopoid copepod O*ithona davisae*. *Limnol. Oceanogr.* **59**, 2077-2088, doi: https://doi.org/10.4319/lo.2014.59.6.2077 (2014).

- Atienza, D., Saiz, E. & Calbet, A. Feeding ecology of the marine cladoceran *Penilia* avirostris: natural diet, prey selectivity and daily ration. *Mar. Ecol. Prog. Ser.* 315, 211-220 (2006).
- Nakamura, Y. & Turner, J. T. Predation and respiration by the small cyclopoid copepod *Oithona similis*: How important is feeding on ciliates and heterotrophic flagellates? *J. Plankton Res.* **19**, 1275-1288, doi:https://doi.org/10.1093/plankt/19.9.1275 (1997).
- Lonsdale, D. J., Caron, D. A., Dennett, M. R. & Schaffner, R. Predation by *Oithona* spp. on protozooplankton in the Ross Sea, Antarctica. *Deep Sea Research Part II:*Topical Studies in Oceanography 47, 3273-3283, doi:https://doi.org/10.1016/S0967-0645(00)00068-0 (2000).
- Kunzmann, A. J., Ehret, H., Yohannes, E., Straile, D. & Rothhaupt, K.-O. Calanoid copepod grazing affects plankton size structure and composition in a deep, large lake. *J. Plankton Res.* **41**, 955-966, doi: https://doi.org/10.1093/plankt/fbz067 (2019).

Supplementary Table S1. Linear model results for log₁₀—transformed ingestion rates (all data without outliers, n=72) and clearance rates of the three microcrustacean predators (all data without outliers, n=72). Significant effects in bold face.

		Ingestion rates					
Predator	R ²	p-value (Ciliates)	p-value (Predator)				
Daphnia	0.893	<0.001	-				
Eudiaptomus	0.767	<0.001	-				
Cyclops	0.950	<0.001	-				
All predators	0.870	<0.001	0.150				
Clearance rates							
Predator	R ²	p-value (Ciliates)	p-value (Predator)				
Daphnia	0.276	0.150	-				
Eudiaptomus	0.267	0.101	-				
Cyclops	0.073	0.826	-				
All predators	0.269	0.020	0.490				

Supplementary Table S2. Model fits of power curves $(y = ax^b)$, exponential curves $(y = ae^{bx})$ and ordinary least-squares regressions (y = kx + c) for log₁₀-transformed ingestion and clearance rates rates of the three microcrustacean predators in relation to log-ciliate size. Significant parameter estimates (\pm standard error, SE) are in bold face; adj. $R^2 =$ adjusted R^2 .

Predator	Model	AIC	R ²	residual	æ	q	k	၁	p (a)	(p)	p (k)	p (c)
Ingestion rates												
	Power curve	21.8	0.832	0.372	0.126 ± 0.068	4.750 ± 0.912			80.0	< 0.001		
Daphnia	Exponential curve	8.61	0.849	0.353	0.009 ± 0.009	2.991 ± 0.589			0:30	< 0.001		
	Linear regression	27.2	1110	0.428			2.919 \pm 0.379	-3.183 \pm 0.626			< 0.001	< 0.001
	Power curve	29.6	0.750	0.371	0.329 \pm 0.091	3.252 ± 0.485			0.01	< 0.001		
Eudiaptomus	Exponential curve	30.7	0.750	0.378	0.059 ± 0.032	2.018 \pm 0.306			80.0	< 0.001		
	Linear regression	28.9	0.765	0.366			2.970 \pm 0.317	-3.130 \pm 0.526			< 0.001	< 0.001
	Power curve	18.3	0.852	0.318	0.274 \pm 0.071	3.652 ± 0.462			< 0.001	< 0.001		
Cyclops	Exponential curve	20.5	0.838	0.334	0.040 ± 0.020	2.267 ± 0.289			0.061	< 0.001		
	Linear regression	14.1	92876	0.292			3.380 \pm 0.272	-3.764 \pm 0.441			< 0.001	< 0.001
	Power curve	62.2	962.0	0.362	0.273 ± 0.049	3.562 ± 0.316			< 0.001	< 0.001		
All predators	Exponential curve	64.4	0.790	0.367	0.040 ± 0.014	2.225 ± 0.193			> 0.05	< 0.001		
	Linear regression	61.6	0.798	0.360			3.074 ± 0.185	-3.327 ± 0.305			< 0.001	< 0.001
Clearance rates												
Daphnia	Power curve	14.9	0.148	0.294	1.691 \pm 0.237	-0.600 \pm 0.296			< 0.001	0.05		
	Exponential curve	15.1	0.140	0.296	2.376 \pm 0.754	-0-384			< 0.01	0.06		
	Linear regression	15.3	0.090	0.297			-0.483 ± 0.263	2.062 \pm 0.432			0.08	< 0.001
Eudiaptomus	Power curve	29.1	0.252	0.368	2.050 \pm 0.332	-1.118 ± 0.348			< 0.001	< 0.001		
	Exponential curve	29.1	0.254	0.367	4.036 \pm 1.483	-0.744 \pm 0.232			0.011	< 0.01		
	Linear regression	29.0	0.257	0.367			-0.969 ± 0.317	2.797 \pm 0.527			< 0.01	< 0.001
Cyclops	Power curve	-6.45	0.019	0.190	1.407 \pm 0.135	-0.130 ± 0.199			< 0.001	0.520		
	Exponential curve	-6.45	0.019	0.190	1.524 \pm 0.324	-0.087 ± 0.132			< 0.001	0.516		
	Linear regression	-6.46	0.019	0.190			-0.116 ± 0.177	1.511 \pm 0.287			0.520	< 0.001
All predators	Power curve	40.0	0.146	0.304	1.716 ± 0.142	-0.650 \pm 0.175			< 0.001	< 0.001		
	Exponential curve	40.1	0.145	0.304	2.529 \pm 0.471	-0.429 \pm 0.116			< 0.001	< 0.001		
	Linear regression	40.2	0.142	0.305			-0.556 \pm 0.157	2.170 \pm 0.257			< 0.001	< 0.001

Supplementary Table S3. Linear model results for log_{10} —transformed clearance rates and ingestion rates of the six functional groups. Significant effects in bold face.

Clearance ra	ites				
Functional group	p-value				
FW cladocerans	<0.001				
FW calanoids	<0.001				
FW cyclopoids	0.78				
Marine cladocerans	<0.001				
Marine calanoids	<0.001				
Marine cyclopoids	<0.001				
All functional groups	<0.001				
Habitat	<0.001				
Ingestion rates					
Functional group	p-value				
FW cladocerans	0.39				
FW calanoids	0.001				
FW cyclopoids	0.26				
Marine cladocerans	0.41				
Marine calanoids	<0.001				
Marine cyclopoids	<0.001				
All functional group	<0.001				
Habitat	0.54				

Supplementary Table S4. Pairwise comparison (Tukey test) of ingestion and clearance rates of the six functional groups of predators. Significant differences in bold face.

Ingestion r	ates				
	FW cladocerans	FW cyclopoids	Marine calanoids	Marine cladocerans	Marine cyclopoids
FW calanoids	0.954	0.869	0.004	0.961	<0.0001
FW cladocerans		0.716	0.250	0.999	0.910
FW cyclopoids			0.868	0.666	<0.0001
Marine calanoids				0.108	<0.0001
Marine cladocerans					0.592
Clearance	rates				
FW calanoids	<0.01	0.999	<0.0001	0.023	<0.001
FW cladocerans		0.140	<0.0001	0.894	0.999
FW cyclopoids			<0.0001	0.082	0.082
Marine calanoids				<0.0001	<0.0001
Marine cladocerans					0.826

log10-transformed clearance rates of the six functional groups of microcrustacean predators in relation to log10-transformed ciliate size. Significant Supplementary Table S5. Model fits of power curves $(y = ax^b)$, exponential curves $(y = ae^{bx})$ and least-squares linear regressions (y = kx + c) for parameters (± standard error, SE) are in bold face; dna denotes that no model fit was possible.

Functional	Model	AIC	R ²	residual	В	q	k	3	p (a)	(q) d	p (k)	p (c)
dno ig	Power curve	103.0		300	dna	dna						
FW	Exponential curve	103.0			dna	dna						
	Linear regression	14.2	0.457	0.278			-0.975 ± 0.188	2.669 \pm 0.340			< 0.001	< 0.001
	Power curve	88.8	650.0	0.452	0.984 ± 0.167	0.582 ± 0.306			< 0.001	90.0		
FW calanoids	Exponential curve	6.68	0.049	0.454	0.782 ± 0.244	0.314 ± 0.179			< 0.01	80.0		
	Linear regression	5.68	550.0	0.453			0.541 ± 0.410	0.468 ± 0.240			90.0	0.19
	Power curve	38.4	0.146	0.431	0.882 \pm 0.195	$ 0.785 \pm 0.377 $			< 0.001	< 0.05		
FW cyclopoids	Exponential curve	39.0	0.123	0.436	0.662 \pm 0.250	0.410 \pm 0.210			< 0.05	90.0		
	Linear regression	38.6	0.143	0.432			0.632 ± 0.298	0.261 ± 0.518			<0.05	0.62
	Power curve	180.2			dna	dna						
All FW predators	Exponential curve	180.2			dna	dna						
•	Linear regression	180.2			dna	dna						
	Power curve	136.7			dna	dna						
Marine calanoids	Exponential curve	136.0			dna	dna						
	Linear regression	135.8			dna	dna						
	Power curve	26.4			dna	dna						
Marine cyclopoids	Exponential curve	26.6			dna	dna						
•	Linear regression	26.4			dna	dna						
	Power curve	155.4			dna	dna						
All marine predators	Exponential curve	155.1			dna	dna						
(Linear regression	155.1			dna	dna						