Systematic Studies for the π^0 Calibration of the Crystal-Ball Detector

Martin Sobotzik

Johannes Gutenberg-Universität Mainz

29.05.2017

$$\gamma + p \to \pi^0 + p \to \gamma_1 \gamma_2 + p$$

$$m_{\pi^0} = \sqrt{2E_1 E_2 (1 - \cos(\alpha))}$$

$$\gamma + p \to \pi^0 + p \to \gamma_1 \gamma_2 + p$$
$$m_{\pi^0} = \sqrt{2E_1 E_2 (1 - \cos(\alpha))}$$

• Is there an energy dependency in the CB?

$$\gamma + p \to \pi^0 + p \to \gamma_1 \gamma_2 + p$$

$$m_{\pi^0} = \sqrt{2E_1 E_2 (1 - \cos(\alpha))}$$

- Is there an energy dependency in the CB?
- How can it be checked?

$$\gamma + p \to \pi^0 + p \to \gamma_1 \gamma_2 + p$$

$$m_{\pi^0} = \sqrt{2E_1 E_2 (1 - \cos(\alpha))}$$

- Is there an energy dependency in the CB?
- How can it be checked?

$$\rightarrow |E_1 - E_2| < 25 \, \text{MeV}$$

$$\gamma + p \to \pi^0 + p \to \gamma_1 \gamma_2 + p$$
$$m_{\pi^0} = \sqrt{2E_1 E_2 (1 - \cos(\alpha))}$$

- Is there an energy dependency in the CB?
- How can it be checked? $\rightarrow |E_1 E_2| < 25 \, \text{MeV}$
- What are the reasons for the dependency?

Crystal-Ball-Function / Reduction of the Underground

- Check if the registered particles are uncharged → Reduction of the underground
- Used signal line shape: Crystal-Ball Function

Martin Sobotzik

- $|E_1 E_2| < 25 \, \text{MeV}$ is a strong cut. One need really large MC statistics.
 - → There is no MC sample with enough events

Event-Generator

- $|E_1 E_2| < 25 \,\text{MeV}$ is a strong cut. One need really large MC statistics.
 - → There is no MC sample with enough events
- Creating a new sample with enough events with an already existing Event-Generator would take too much time (multiple days on blaster). Not Efficient!

Event-Generator

- $|E_1 E_2| < 25$ MeV is a strong cut. One need really large MC statistics.
 - \rightarrow There is no MC sample with enough events
- Creating a new sample with enough events with an already existing Event-Generator would take too much time (multiple days on blaster). Not Efficient!
- It is better to use the same generator in all studies
 - \rightarrow The generator should be able to simulate MAMI-Beam and isotropic boost

Event-Generator in ANT

New Event-Generator integrated in ANT

```
auto cmd Emin
                  = cmd.add<TCLAP::ValueArg<double>>
                                                          ("". "Emin".
                                                                               "Minimal incident energy [MeV]", false, 0.0, "double [MeV]"):
auto cmd Emax
                  = cmd.add<TCLAP::ValueArg<double>>
                                                         ("", "Emax",
                                                                               "Maximal incident energy [MeV]", false, 1.6*GeV, "double [MeV]");
auto cmd events = cmd.add<TCLAP::ValueArg<int>>
                                                                               "number of events", false, 10000, "n");
                  = cmd.add<TCLAP::SwitchArg>
                                                          ("", "sym",
                                                                               "Require symmetric photon energies");
auto cmd regsym
                                                          ("", "zboost",
                                                                               "Boost the Pions in z-Direction: True or False"):
auto cmd zboost = cmd.add<TCLAP::SwitchArg>
                                                          ("", "Prod",
auto cmd Prod
                  = cmd.add<TCLAP::SwitchArg>
                                                                               "Get the Product of the Pion: Change Beam Energy with E min and E max" ):
```

- Emin: Minimal energy of the beam/boost
- Emax: Maximal energy of the beam/boost
- Events: Number of events
- Sym: Require $|E_1 E_2| < 25 \,\text{MeV}$
- ZBoost: Boost the π^0 in z-Direction, if false than isotropic boost
- Prod: Also takes the proton into account

- Beamtime October 2014
- Well-calibrated

 \rightarrow There is a dependency

Detectors on the Edge

- Beamtime October 2014
- Neglect the detectors at the edge: They are difficult to calibrate because they have less neighbors

How does MC look like?

No additional cut Red: Black: Neglect the detectors on the edge

MC also shows this raise

 \rightarrow it can be used for further studies

Isotropic Boost

- \bullet π^0 decay in the origin of the target
- π^0 are boosted with an energy of $1420\,\mathrm{MeV}$ to $1580\,\mathrm{MeV}$ isotropically
 - \rightarrow all detector elements are hit roughly equally

ightarrow Raise is not caused by specific detector elements

Dimension of the Target

z-Vertex Dependency

- Neglect the detectors on the edge
- Divide the target in sections of 1 cm

Figure: Simulation: Deviations for different z-Vertices

Angle between Generated and Reconstructed Candidates

- Simulation
- The angle between generated and reconstructed candidate is calculated

 \rightarrow Angular resolution $\sim 1^{\circ}\, {\rm to}\, 2^{\circ}$

Difference between Generated and Reconstructed Opening Angle

- Simulation
- $\Delta \alpha = \alpha_{rec} \alpha_{gen}$

Figure: Simulation: $\Delta\alpha$ for different photon energies. Left $125\,\text{MeV}$ to $150\,\text{MeV}$. Right from $425\,\text{MeV}$ to $450\,\text{MeV}$

$\Delta \alpha$ for Different z-Vertices

- Simulation
- $\Delta \alpha$ for different z-Vertices

Figure: Simulation: $\Delta \alpha$ for different photon energies. Decay at different z-Vertices (Beginning, Center and End)

Hot Crystals

- Beamtime October 2014
- Photon energy between 0 MeV and 100 MeV

Figure: Beamtime: Marked are Hot and known Dead Crystals

Table: Beamtime: Element No. and No. in figure

Number in the figures 1 2 3 4 5

Element Number 549 565 597 677 265

Hot Crystals and Clustersize > 3

- Beamtime October 2014
- Photon energy between 0 MeV and 100 MeV
- Clustersize > 3

Figure: Beamtime: Marked are Dead and Hot Crystals. The Clustersize must be bigger than 3 4 D > 4 B > 4 B > 4 B > B

Hot Crystals for Higher Energies

- Beamtime October 2014
- ullet Photon energy between $300\,\mathrm{MeV}$ and $400\,\mathrm{MeV}$

Figure: Beamtime: Marked are Dead and Hot Crystals for high energies

Dead Crystals

- Beamtime October 2014
- Photon energy between 300 MeV and 400 MeV

Figure: Beamtime: Marked are probably Dead Crystals

Table: Beamtime: No. of events for the Dead Crystals and their neighbors

No. in Fig.	Element Number	No. of Hits
6	678	48
	677	0
	676	11808
7	17	21
	16	3311
	18	7175
	19	3439
8	125	513
	122	6613
	128	5307
	126	4103
9	89	2500
	88	8591
	90	7975
	91	4652

Martin Sobotzik

ϕ -Distribution in the CB

- Beamtime October 2014
- ullet Photon energy between $200\,\mathrm{MeV}$ and $225\,\mathrm{MeV}$

Figure: Beamtime: Distribution in the CB

nclusion

- There is a energy dependency in the detector
- The reconstructed opening angle is too big for high energies
 - \rightarrow wrong reconstruction of the photon impact position is probably the reason for the dependency (Clustering Algorithm)
- The hardware of some PIDs has to be checked (too few or to many events)
- There is a strange ϕ -distribution in the detector
 - \rightarrow reason for this has also to be determined

Appendix

Figure: Simulation:Left: Reconstructed energy and true opening angle. Right: True energy and reconstructed opening angle