Ex 1 Soit $F: \mathbb{Z} \times \mathbb{N}^* \to \mathbb{R}$ définie par $\forall (p,q) \in \mathbb{Z} \times \mathbb{N}^*, \ F(p,q) = \frac{p}{q}$

- a) Les couples (1,1) et (2,2) ont la même image F(1,1)=f(2,2)=1 donc F n'est pas injective. Le réel $\sqrt{2}$ n'admet aucun antécédent par F (sinon il existerait un couple $(p,q) \in \mathbb{Z} \times \mathbb{N}^* / \sqrt{2} = \frac{p}{a}$ et $\sqrt{2}$ serait rationnel). F n'est donc pas non plus surjective.
- b) Les antécédents de 0 par F sont les couples $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$ tels que $\frac{p}{q} = 0$. Autrement dit

$$\boxed{F^{-1}\left(\left\{0\right\}\right)=\left\{\left(0,q\right),\;q\in\mathbb{N}^{*}\right\}}$$

De même les antécédents de 1 par F sont les couples $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$ tels que $\frac{p}{q} = 1$. Autrement dit

$$F^{-1}(\{1\}) = \{(p,p), p \in \mathbb{N}^*\}$$

c) L'"image de F", soit $F(\mathbb{Z} \times \mathbb{N}^*)$, est l'ensemble des réels qui ont un antécédent par F, soit

$$\boxed{F\left(\mathbb{Z}\times\mathbb{N}^*\right) = \left\{\frac{p}{q},\; (p,q)\in\mathbb{Z}\times\mathbb{N}^*\right\} = \mathbb{Q}}$$

- **Ex 2** L'application $\exp : \mathbb{C} \to \mathbb{C}^*$ est surjective, car on sait que tout complexe $A \neq 0$ peut s'écrire $A = \exp(z)$, avec par exemple $z = |A| + i \operatorname{Arg}(A)$, mais elle **n'est pas injective** (car 0 et $2i\pi$ ont la même image : 1).
- $\begin{array}{cccc} \mathbf{Ex\ 3} \ \ \mathrm{Soit}\ \varphi: & \mathbb{R}^2 & \to & \mathbb{R} \\ & (x,y) & \mapsto & x^2-y^2 \\ & \mathrm{a)} \ \ \mathrm{Pour\ tout\ couple}\ (x,y) \in \mathbb{R}^2, \, \mathrm{on\ a} \end{array}$

$$\varphi(x,y) = 0 \iff (x-y)(x+y) = 0 \iff \begin{cases} x = y \text{ ou} \\ x = -y \end{cases}$$

 $\varphi^{-1}\left(\left\{0\right\}\right)=\left\{\left(x,y\right)\in\mathbb{R}^{2}\ /\ x^{2}-y^{2}=0\right\} \text{ est donc la réunion des deux droites }D_{1}:x=y \text{ et }D_{2}:x=-y.$

b) Pour tout couple $(x, y) \in \mathbb{R}^2$, on a

$$(x,y) \in \varphi^{-1} \langle \mathbb{R}_+ \rangle \iff (x-y)(x+y) \geqslant 0 \iff \begin{cases} y \leqslant x \text{ et } y \geqslant -x & \text{ou} \\ y \geqslant x \text{ et } y \leqslant -x \end{cases}$$

Cet ensemble s'interprète géométriquement comme la réunion de deux quarts de plans délimités par D_1 et D_2 .

Ex 4 On considère les applications f et g de \mathbb{N} dans \mathbb{N} définies par

$$\forall n \in \mathbb{N}, \ f(n) = 2n$$
 et
$$\begin{cases} g(n) = \frac{n}{2} \text{ si } n \text{ est pair} \\ g(n) = \frac{n-1}{2} \text{ si } n \text{ est impair} \end{cases}$$

- Injectivité de f: il est clair que si f(n) = f(m), alors 2n = 2m et n = m: f est **injective**.
- Injectivité de g: g(4) = 2 = g(5): g n'est pas injective.
- Surjectivité de f: les images d'entiers par f sont paires, donc 3 n'a pas d'antécédent par f, non surjective.
- Surjectivité de g: tout entier m peut s'écrire m = g(n), avec n = 2m, donc f est surjective.
- $\underline{\text{Calcul de }f\circ g}:\forall n\in\mathbb{N},\;f\circ g\left(n\right)=2\tfrac{n}{2}=n\;\text{si }n\;\text{est pair et }f\circ g\left(n\right)=2\tfrac{n-1}{2}=n-1\;\text{si }n\;\text{est impair}.$
- Calcul de $g \circ f : \forall n \in \mathbb{N}, \ g \circ f(n) = g(2n) = n, \quad i.e \quad \boxed{g \circ f = \mathrm{id}_{\mathbb{N}}}$

PCSI 1 Thiers 2019/2020

Ex 5 Soit
$$f: \mathbb{N} \to \mathbb{Z}$$
 définie par $\forall n \in \mathbb{N} \ / \ \begin{cases} f(n) = \frac{n}{2} \text{ si } n \text{ est pair } \\ f(n) = -\frac{n+1}{2} \text{ sinon } \end{cases}$

f est injective : en effet, si m et n sont deux entiers naturels vérifiant f(m) = f(n), alors m et n ont même parité, car sinon leurs images par f seraient de signe opposé. Mais alors (suivant cette parité)

$$\frac{m}{2} = \frac{n}{2}$$
 ou $-\frac{m+1}{2} = -\frac{n+1}{2}$

Dans les deux cas m = n CQFD.

- f est surjective : en effet si $N \in \mathbb{Z}$:
 - * Si $N \geqslant 0$, $n = 2N \geqslant 0$ est un antécédent de N par f(f(2N) = N)
 - * Si N < 0, $n = -(2N + 1) \ge 0$ est un antécédent de N par f(f(-2N 1) = N)

Tout entier admet donc un antécédent par f dans \mathbb{N} , CQFD.

Ex 6 a) Soit
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
 $(x,y) \mapsto (x+y,x-y,2x+y)$

Montrons que f est injective : si (x, y) et (x', y') dans \mathbb{R}^2 vérifient f(x, y) = f(x', y'), alors

$$\begin{cases} x + y = x' + y' \\ x - y = x' - y' \\ 2x + y = 2x' + y' \end{cases}$$

En ajoutant puis en retranchant les deux premières égalités, on obtient directement $\begin{cases} x = x' \\ y = y' \end{cases}$ CQFD.

Calculons l'image $f\langle D\rangle$ de la droite D de \mathbb{R}^2 d'équation x+y=1 :

Paramétrons D: ses éléments sont les couples de la forme (t, 1-t), où t parcourt \mathbb{R} . Donc

$$\begin{array}{lcl} f\left< D \right> & = & \left\{ f\left({x,y} \right),\; \left({x,y} \right) \in D \right\} \\ & = & \left\{ f\left({t,1 - t} \right),\; t \in \mathbb{R} \right\} \\ & = & \left\{ \left({1, - 1 + 2t,1 + t} \right),\; t \in \mathbb{R} \right\} \end{array}$$

Ainsi

$$f\left\langle D\right\rangle \text{ est la droite de }\mathbb{R}^3 \text{ paramétée par } \left\{ \begin{array}{l} x=1\\y=-1+2t\\z=1+t \end{array} \right.,\ t\in\mathbb{R}$$
 On remarque qu'on peut la décrire avec les équations
$$\left\{ \begin{array}{l} x=1\\y=-2z=-3 \end{array} \right.$$

b) Soit
$$g: \mathbb{R}^3 \to \mathbb{R}^2$$

 $(x, y, z) \mapsto (2x + y - z, 3x + 2y + 5z)$

Montrons que g est surjective : si (a, b, c) est fixé dans \mathbb{R}^3 , cherchons $(x, y, t) \in \mathbb{R}^3$ tel que g(x, y, t) = (a, b). Cela revient à trouver une solution du système :

$$(S): \left\{ \begin{array}{l} 2x + y - z = a \\ 3x + 2y + 5z = b \end{array} \right.$$

En fixant z=0, le système résultant est

$$\left\{ \begin{array}{l} 2x+y=a \\ 3x+2y=b \end{array} \right. \iff \left\{ \begin{array}{l} x=2a-b \\ y=-3a+2b \end{array} \right. \text{ avec } \left\{ \begin{array}{l} L_1 \leftarrow 2L_1-L_2 \\ L_2 \leftarrow -3L_1+2L_2 \end{array} \right.$$

Le triplet (2a - b, -3a + 2b, 0) est donc bien solution de (S), d'où la surjectivité de

Calculons l'image $f\langle P\rangle$ du plan P d'équation x+y+6z=1 : soit $(a,b)\in f\langle P\rangle$: alors

$$\exists (x,y,z) \in P \ / \ \left\{ \begin{array}{l} 2x+y-z=a \\ 3x+2y+5z=b \end{array} \right.$$

Mais alors la différence de ces deux égalités donne

$$b-a = (3x + 2y + 5z) - (2x + y - z) = x + y + 6z = 1$$

On a donc b-a=1, et on en déduit que $f\langle P\rangle\subset\{(a,b)\in\mathbb{R}^2\mid b-a=1\}$.

Inversement, si $(a, b) \in \mathbb{R}^2$ vérifie b - a = 1, alors cherchons un antécédent de (a, b) par g dans P:

Le triplet (2a-b, -3a+2b, 0) trouvé plus haut, qui a pour image (a, b) par g, est par chance un élément de P(puisque $(2a - b) + (-3a + 2b) + 6 \times 0 = b - a = 1$). On conclut

$$f \langle P \rangle = \{(a, b) \in \mathbb{R}^2 / b - a = 1\}$$

autrement dit

$$\boxed{f\left\langle P\right
angle ext{ est la droite de }\mathbb{R}^2 ext{ d'équation }y-x=1}$$

autrement dit $\boxed{f \left\langle P \right\rangle \text{ est la droite de } \mathbb{R}^2 \text{ d'équation } y-x=1}$ c) Montrer que $h: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ est bijective et déterminer h^{-1} .

Fixons $(a, b) \in \mathbb{R}^2$, et résolvons l'équation (S) : h(x, y) = (a, b) d'inconnue $(x, y) \in \mathbb{R}^2$:

$$(S) \Longleftrightarrow \left\{ \begin{array}{l} x + 2y = a \\ 2x + 3y = b \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{l} x = -3a + 2b \\ y = 2a - b \end{array} \right. \text{ avec } \left\{ \begin{array}{l} L_1 \leftarrow -3L_1 + 2L_2 \\ L_2 \leftarrow 2L_1 - L_2 \end{array} \right.$$

Ainsi h est bijective et

$$\begin{array}{cccc}
h^{-1}: & \mathbb{R}^2 & \to & \mathbb{R}^2 \\
& (x,y) & \mapsto & (-3x+2y,2x-y)
\end{array}$$

 $h^{-1}: \mathbb{R}^2 \to \mathbb{R}^2 \\ (x,y) \mapsto (-3x+2y,2x-y)$ **Ex 7** On note $U=]0,+\infty[^2$, et $f: U \to U \\ (x,y) \mapsto (xy,\frac{y}{x})$

Fixons $(u, v) \in U$, et résolvons l'équation (S) : f(x, y) = (u, v) d'inconnue $(x, y) \in U$:

$$(S) \Longleftrightarrow \left\{ \begin{array}{l} xy = u \\ x/y = v \end{array} \right.$$

En effectuant successivement le produit et le quotient des deux équations :

$$(S) \Longleftrightarrow \left\{ \begin{array}{l} x^2 = uv & u, v, x, y > 0 \\ y^2 = u/v & \end{array} \right. \left\{ \begin{array}{l} x = \sqrt{uv} \\ y = \sqrt{u/v} \end{array} \right.$$

Ainsi f est bijective et

$$\begin{bmatrix} f^{-1}: & U & \to & U \\ & (x,y) & \mapsto & \left(\sqrt{xy}, \sqrt{\frac{y}{x}}\right) \end{bmatrix}$$

Ex 8 Soit $f: \mathbb{R} \to \mathbb{C}$ définie par $\forall x \in \mathbb{R}, \ f(x) = \frac{1+ix}{1-ix}$.

a) i. Injectivité de f: soient x et x' dans $\mathbb R$ vérifiant f(x)=f(x'): alors

$$\frac{1+ix}{1-ix} = \frac{1+ix'}{1-ix'} \iff (1+ix)(1-ix') = (1+ix')(1-ix)$$

$$\iff i(x-x') = i(x'-x)$$

$$\iff x' = x$$

Il s'ensuit que f est injective

ii. Surjectivité de f: il est clair que f n'est jamais nulle, donc 0 n'admet pas d'antécédent par f dans \mathbb{C} . f n'est pas surjective

b) i. Calcul de $f^{-1}(\mathbb{R})$: soit $x \in \mathbb{R}$. On a, sachant que $f(x) = \frac{(1+ix)^2}{1+x^2}$,

$$x \in f^{-1}(\mathbb{R}) \iff f(x) \in \mathbb{R} \iff \frac{1 - x^2 + 2ix}{1 + x^2} \in \mathbb{R} \iff x = 0$$

Ainsi

$$f^{-1}\left(\mathbb{R}\right) = \left\{0\right\}$$

ii. Calcul de $f\left(\mathbb{R}\right)$: si $x\in\mathbb{R}$ alors $|f\left(x\right)|=\frac{|1+ix|}{|1-ix|}=1.$ Donc $\underline{f\left(\mathbb{R}\right)\subset\mathbb{U}}.$

Inversement, si $z \in \mathbb{U}$, posons $z = e^{i\theta}$ avec $\theta \in \mathbb{R}$, et résolvons f(x) = z:

$$\frac{1+ix}{1-ix} = z \Longleftrightarrow i(z+1)x = z-1$$

- · Si z=-1, alors z n'a aucun antécédent par f dans $\mathbb R$
- · Sinon, $f\left(x\right)=z$ admet l'unique solution $x=\dfrac{z-1}{i\left(z+1\right)}$. Reste à voir qu'elle est réelle :

$$x = \frac{e^{i\theta} - 1}{i(e^{i\theta} + 1)} = \frac{2i\sin\frac{\theta}{2}e^{i\theta/2}}{2i\cos\frac{\theta}{2}e^{i\theta/2}} = \tan\frac{\theta}{2} \in \mathbb{R}$$

Ainsi $z \in f(\mathbb{R})$, et on peut conclure

$$f=\mathbb{U}\backslash\left\{ -1\right\}$$

Ex 9 Soit $f: \mathbb{C}^* \to \mathbb{C}$ l'application définie par $\forall z \in \mathbb{C}^*, \ f(z) = z + \frac{1}{z}$

a) Il est clair que f n'est pas injective puisque f(i) = f(-i) = 0. Montrons qu'elle est surjective :

Soit $a\in\mathbb{C}$. Montrons qu''il existe $z\in\mathbb{C}^*$ tel que f(z)=a : on a

$$f(z) = a \Longleftrightarrow z^2 - az + 1 = 0$$

On sait que cette équation du second degré complexe admet toujours au moins une solution dans \mathbb{C}^* (le produit de ses deux racines vaut 1), ce qui établit la surjectivité de f.

- b) Soit \mathbb{U} l'ensemble des nombres complexes de module 1. Calculons $f(\mathbb{U})$.
 - * Soit $z \in \mathbb{U}$. On peut écrire $z = e^{i\theta}$, avec $\theta \in \mathbb{R}$. Mais alors $f(z) = e^{i\theta} + e^{-i\theta} = 2\cos\theta \in [-2,2]$ Donc $f(\mathbb{U}) \subset [-2,2]$.
 - * Inversement si $x \in [-2,2]$, alors il existe $\theta \in \mathbb{R}$ tel que $x=2\cos\theta$ (il suffit de prendre $\theta=\arccos\frac{x}{2}$). Donc $x=e^{i^{\theta}}+e^{-i\theta}$. En posant $z=e^{i\theta}\in\mathbb{U}$, il vient $x=f(z)\in f(\mathbb{U})$. Donc $[-2,2]\subset f(\mathbb{U})$.
 - * Par double inclusion, on a ainsi $[-2,2] = f(\mathbb{U})$
- c) Soit $\mathbb{J}=i\mathbb{R}$ l'ensemble des imaginaires purs. Déterminons la préimage de \mathbb{J} par f:
 - * Soit $z \in f^{-1}(\mathbb{J})$: alors $f(z) \in \mathbb{J}$, donc il existe un réel x tel que

$$f(z) = ix \Longleftrightarrow z^2 - ixz + 1 = 0$$

Le discriminant de cette équation vaut $\Delta=-x^2-4<0,$ d'où

$$z = \frac{1}{2} \left(ix + i\sqrt{x^2 + 4} \right) = \frac{i}{2} \left(x + \sqrt{x^2 + 4} \right) \in \mathbb{J} \quad \text{ou} \quad z = \frac{i}{2} \left(x - \sqrt{x^2 + 4} \right) \in \mathbb{J}$$

Dans les deux cas $z \in \mathbb{J} \setminus \{0\}$. On en déduit $f^{-1}(\mathbb{J}) \subset \mathbb{J} \setminus \{0\}$.

* Inversement, si $z \in \mathbb{J} \setminus \{0\}$, alors $\exists x \in \mathbb{R}^* / z = ix$. Alors

$$f(z) = ix + \frac{1}{ix} = ix - \frac{i}{x} = i\left(x - \frac{1}{x}\right) \in \mathbb{J}$$

II s'ensuit : $\mathbb{J}\setminus\{0\}\subset f^{-1}\langle\mathbb{J}\rangle$.

* Par double inclusion, on peut conclure $\mathbb{J}\setminus\{0\}=f^{-1}\left(\mathbb{J}\right)$

Remarque: autre méthode (directe): si $z \neq 0$:

$$z \in f^{-1}(\mathbb{J}) \iff f(z) \in \mathbb{J} \iff \overline{\left(z + \frac{1}{z}\right)} = -\left(z + \frac{1}{z}\right) \iff \overline{z} + \frac{1}{\overline{z}} = -z - \frac{1}{z}$$

Donc

$$z \in f^{-1}\left(\mathbb{J}\right) \Longleftrightarrow z + \bar{z} = -\left(\frac{1}{z} + \frac{1}{\bar{z}}\right) \Longleftrightarrow z + \bar{z} = -\frac{z + \bar{z}}{\left|z\right|^2} \Longleftrightarrow (z + \bar{z})\left(1 + \frac{1}{\left|z\right|^2}\right) = 0$$

et finalement

$$z \in f^{-1}(\mathbb{J}) \iff \bar{z} = -z \iff z \in \mathbb{J} \setminus \{0\}$$

Ex 10 Soit f l'application définie sur $\mathcal{D} = \mathbb{C} \setminus \{2i\}$ par $f(z) = \frac{z^2}{z - 2i}$.

- a) Soit $h \in \mathbb{C}$. L'équation f(z) = h (d'inconnue $z \in \mathcal{D}$) s'écrit $z^2 hz + 2ih = 0$.
- b) Le discriminant de cette équation est $\Delta = h^2 8ih = h(h 8i)$
 - * Si $h \in \{0,8i\}$, alors f(z) = h admet la racine (double) $\frac{h}{2} \neq 2i$: h admet un unique antécédent.par f dans \mathcal{D} .
 - * Si $h \notin \{0, 8i\}$, Δ admet deux racines carrées complexes et f(z) = h admet deux solutions distinctes. De plus 2i n'est pas solution (car $(2i)^2 2ih + 2ih = -4 \neq 0$). h admet deux antécédents par f dans \mathcal{D} .
- c) Tout élément de \mathbb{C} admet donc au moins un antécédent par f dans \mathcal{D} . \underline{f} est surjective. Mais un complexe autre que 0 ou 8i admet deux antécédents par f dans \mathcal{D} . f n'est pas injective.

Ex 11 Soient $f: E \to F$ et $g: F \to G$ deux applications.

a) On suppose que $g \circ f$ est injective et f surjective. Montrons que g est injective : Soit $(y, y') \in F^2$ vérifiant g(y) = g(y'). Par surjectivité de f:

$$\exists x \in E / y = f(x)$$
 et $\exists x' \in E / y' = f(x')$

Si x et x' sont de tels éléments, on peut alors écrire

$$g(f(x)) = g(f(x'))$$
 soit $(g \circ f)(x) = (g \circ f)(x')$

L'injectivité de $g \circ f$ entraine alors l'égalité x = x', qui donne f(x) = f(x'), soit y = y', CQFD.

b) On suppose que $g \circ f$ est surjective et g injective. Montrons que f est surjective.

Soit $y \in F$. On cherche $x \in E$ vérifiant f(x) = y.

Par surjectivité de $g \circ f$, l'élément $g(y) \in G$ admet un antécédent par $g \circ f$:

$$\exists x \in E \ / \ g\left(y\right) = \left(g \circ f\right)\left(x\right) \quad \text{soit} \quad g\left(y\right) = g\left(f\left(x\right)\right)$$

Si $x \in E$ est un tel élément, on a alors par injectivité de g:

$$y = f(x)$$
 CQFD.

Ex 12 Soit $f: E \to E$ vérifiant $f \circ f \circ f = f$. Montrer que f injective $\Leftrightarrow f$ surjective.

 \Rightarrow Supposons f injective, et montrons qu'elle est surjective :

$$\underline{\mathrm{Soit}\,y\in E}.\ \mathrm{Alors}\,f\left(y\right)\overset{(*)}{=}f\left(f\left(f\left(y\right)\right)\right).\ \mathrm{Par}\ \mathrm{injectivit\'e}\ \mathrm{de}\ f,\ \mathrm{on}\ \mathrm{a}\ \mathrm{donc}\ y=f\left(f\left(y\right)\right).$$

En posant x = f(y), on a bien y = f(x). y admet donc l'antécédent x, ce qui assure la surjectivité de f.

 \leftarrow Supposons f surjective, et montrons qu'elle est injective :

Soient x et x' deux éléments de E ayant la même image par f: la surjectivité de celle-ci nous permet d'envisager t et t' des antécédents de x et x' par f, soit

$$\exists (t, t') \in E^2 / f(t) = x \text{ et } f(t') = x'$$

On a donc

$$\underline{f\left(x\right)=f\left(x'\right)}\Rightarrow f\left(f\left(t\right)\right)=f\left(f\left(\left(t'\right)\right)\right)\Rightarrow f\left(f\left(f\left(t\right)\right)\right)=f\left(f\left(f\left(t'\right)\right)\right)\overset{(*)}{\Rightarrow}f\left(t\right)=f\left(t'\right)\Rightarrow \underline{x=x'}$$
 f est donc injective.

Par double implication, l'équivalence annoncée est donc établie.

Ex 13 Soit E un ensemble, et $f: E \to E$ une application vérifiant $f \circ f = f$ (*)

a) On suppose f injective: alors pour tout $x \in E$, on a f(f(x)) = f(x), ce qui par injectivité de f donne

$$f\left(x\right) =x$$

Ainsi $f = id_E$.

b) On suppose p surjective : alors $\forall x \in E, \exists t \in E / f(t) = x$. En composant par f, il vient

$$f(f(t)) = f(x)$$
 soit (*) $f(t) = f(x)$ i.e. $x = f(x)$

Ainsi $f = id_E$.

c) Si $f: E \to E$ vérifie (*), alors $\forall x \in f(E)$ il existe par définition un élément $t \in E$ tel que f(t) = x. Comme précédemment

$$f(x) = f(f(t)) \stackrel{(*)}{=} f(t) = x$$

Inversement, si $\forall x \in f(E)$, f(x) = x, alors pour tout $t \in E$, $f(t) \in f(E)$ donc

$$f\left(f\left(t\right)\right) = f\left(t\right)$$

On en déduit $f \circ f = f$. Finalement

$$f$$
 vérifie (*) si, et seulement si $\forall x \in f \langle E \rangle$, $f(x) = x$

Ex 14 Soit $f: E \to F$ une application.

- a) Soit $A \subset E$.
 - i. On a $A \subset f^{-1}\left(f\left(A\right)\right)$ (un dessin patatoïdal permet de s'en rendre compte) En effet, si $x \in A$, alors par définition $f\left(x\right) \in f\left(A\right)$, ce qui toujours par définition s'écrit $x \in f^{-1}\left\langle f\left\langle A\right\rangle \right\rangle$.
 - ii. On suppose de plus f injective. Montrons alors l'égalité $A=f^{-1}$ $\langle f \langle A \rangle \rangle$.

Si
$$x \in f^{-1}\left(f\left(A\right)\right)$$
, alors $f\left(x\right) \in f\left\langle A\right\rangle$, ce qui signifie : $\exists a \in A \ / \ f\left(x\right) = f\left(a\right)$.

L'injectivité de f assure alors $x = a \in A$, d'où $f^{-1}(f(A)) \subset A$.

Par double inclusion, on a l'égalité ensembliste souhaitée.

b) Inversement, supposons : $\forall A \in \mathcal{P}\left(E\right), \ A = f^{-1}\left(f\left(A\right)\right),$ et montrons que f est injective.

Soient x et x' dans E tels que f(x) = f(x'). On a donc

$$f({x}) = f({x'}) = {f(x)}$$

On en déduit

$$f^{-1}\left(f\left(\left\{x\right\}\right)\right) = f^{-1}\left\langle f\left(\left\{x'\right\}\right)\right\rangle$$

et par hypothèse (en substituant $\{x\}$ puis $\{x'\}$ à A) :

$$\{x\} = \{x'\}$$

Cela prouve que x = x', d'où l'injectivité de f.

- c) Soit $B \subset F$.
 - i. On a $f\left(f^{-1}\left(B\right)\right)\subset B$ (là encore, illustrer pour s'en persuader).

En effet, si $y \in f(f^{-1}(B))$, alors par définition $\exists x \in f^{-1}(B) / y = f(x)$.

Mais par définition aussi, $\exists x \in f^{-1}(B) \iff f(x) \in B$, ce qui signifie que $y \in B$ CQFD.

ii. On suppose de plus f surjective. Montrons alors l'égalité $f(f^{-1}(B)) = B$.

Si $y \in B$, alors par surjectivité de f, $\exists x \in E / y = f(x)$.

Mais alors $f(x) = y \in B$, d'où $x \in f^{-1}(B)$, et donc $y = f(x) \in f(f^{-1}(B))$ CQFD.

d) Inversement, supposons: $\forall B \in \mathcal{P}(F)$, $B = f(f^{-1}(B))$, et montrons que f est surjective.

On a de manière générale

$$f^{-1}(F) = \{x \in E \mid f(x) \in F\} = E$$

On en déduit

$$f(f^{-1}(F)) = f\langle E \rangle$$

Et par hypothèse (avec B = F):

$$F = f(E)$$

ce qui caractérise la surjectivité de f, CQFD.

Remarque: on peut aussi raisonner à partir d'un élément y de F et appliquer l'hypothèse au singleton $\{y\}$ de manière analogue à la question b):

$$f(f^{-1}(\{y\})) = \{y\}$$

qui assure que y est atteint par au moins un élément de E (si $f^{-1}\langle\{y\}\rangle$ était vide, on aurait $\{y\}=f(\varnothing)=\varnothing$)

- e) Si $B \subset F$, montrons que $f\left(f^{-1}\left(B\right)\right) = B \cap f\left(E\right)$:
 - i. Si $y \in f\left(f^{-1}\left(B\right)\right)$, alors $y \in B$ (vu au c)) et $y \in f\left(f^{-1}\left(B\right)\right) \subset f\left\langle E\right\rangle$, d'où $f\left(f^{-1}\left(B\right)\right) = B \cap f\left(E\right)$.
 - ii. Inversement, si $y \in B \cap f(E)$, alors $\exists x \in E / f(x) = y$. Mais alors $f(x) \in B$, d'où $x \in f^{-1}(B)$, et ainsi $y = f(x) \in f(f^{-1}(B))$.
 - iii. On a alors

$$\begin{bmatrix} \forall B \in \mathcal{P}\left(F\right), \ B = f\left(f^{-1}\left(B\right)\right) \end{bmatrix} \iff \begin{bmatrix} \forall B \in \mathcal{P}\left(F\right), \ B = B \cap f\left(E\right) \end{bmatrix} \\ \iff f\left(E\right) = F \quad \text{(prendre } B = F\text{)} \\ \iff f \text{ est surjective} \end{bmatrix}$$

ce qui redémontre le résultat précédent (c) et d)).

Ex 15 Soit $f: E \to F$ une application. Montrons que

$$\left[\forall\left(A,A'\right)\in\mathcal{P}\left(E\right)^{2},f\left(A\cap A'\right)=f\left(A\right)\cap f\left(A'\right)\right]\Longleftrightarrow\left[f\text{ est injective}\right]$$

 \implies On suppose f injective. On sait que $f \langle A \cap A' \rangle \subset f \langle A \rangle \cap f \langle A' \rangle$. Montrons l'inclusion inverse : Soit $y \in f(A) \cap f(A')$: alors

$$\left\{ \begin{array}{l} y \in f\left(A\right) \Rightarrow \exists x \in A \: / \: y = f\left(x\right) \\ y \in f\left(A'\right) \Rightarrow \exists x' \in A \: / \: y = f\left(x'\right) \end{array} \right.$$

Mais alors f(x) = f(x'), et par injectivité de f: x = x'.

On en déduit qu $x \in A \cap A'$, et donc que $y \in f(A \cap A')$, CQFD.

 \sqsubseteq On suppose que $\forall (A, A') \in \mathcal{P}(E)^2$, $f(A \cap A') = f(A) \cap f(A')$. Montrons que f est injective. Si x et x' dans E vérifient f(x) = f(x'), appliquons l'hypothèse à $A = \{x\}$ et $A' = \{x'\}$:

$$f(\{x\} \cap \{x'\}) = f(\{x\}) \cap f(\{x'\})$$

Or

$$f\left(\left\{x\right\}\right)=f\left(\left\{x'\right\}\right)=\left\{y\right\}\quad\text{donc}\quad f\left(\left\{x\right\}\right)\cap f\left(\left\{x'\right\}\right)=\left\{y\right\}$$

Ainsi

$$f\langle \{x\} \cap \{x'\} \rangle = \{y\}$$

Cela n'est possible que si $\{x\} \cap \{x'\} \neq \emptyset$, puisqu'il est assez évident que $f(\emptyset) = \emptyset$.

Mais $\{x\} \cap \{x'\} \neq \emptyset$ entraine automatiquement que x = x', d'où l'injectivité de f.

Par double implication, notre équivalence est établie.

Ex 16 Soit E un ensemble et A un sous ensemble de E.

On considère les applications f et g de $\mathcal{P}(E)$ dans lui-même définies par :

- a) Montrons que f injective \iff f surjective \iff A = E.
 - * Si A = E, alors $\forall X \in \mathcal{P}(E)$, $f(X) = X \cap E = X$, i.e. $f = \mathrm{id}_{\mathcal{P}(E)}$, qui est injective et surjective.
 - * Si f est injective, alors comme $f(E) = E \cap A$ et $f(A) = A \cap A = A$, on a f(E) = f(A) d'où E = A
 - * Si f est surjective, alors E admet un antécédent par f, i.e. $\exists X \in \mathcal{P}(E) \ / \ X \cap A = E$ Mais alors $E = X \cap A \subset A$. Comme évidemment on a aussi $A \subset E$, il vient E = A.

Finalement les deux équivalences sont établies.

- b) Montrons que g injective \iff g surjective \iff $A = \emptyset$.
 - * Si $A = \emptyset$, alors $\forall X \in \mathcal{P}(E)$, $g(X) = X \cup \emptyset = X$, i.e. $g = \mathrm{id}_{\mathcal{P}(E)}$, qui est injective et surjective.
 - * Si g est injective, alors comme $g\left(\varnothing\right)=A$ et $g\left(A\right)=A\cup A=A$, on a $g\left(\varnothing\right)=g\left(A\right)$ d'où $A=\varnothing$
 - * Si g est surjective, alors \varnothing admet un antécédent par g, i.e. $\exists X \in \mathcal{P}\left(E\right) \ / \ X \cup A = \varnothing$. Mais alors $A \subset X \cup A = \varnothing$. Comme évidemment on a aussi $\varnothing \subset A$, il vient $A = \varnothing$.

Finalement les deux équivalences sont établies.

Ex 17 Soit f une application de \mathbb{N} dans \mathbb{N} .

a) On suppose que f est injective et que $\forall n \in \mathbb{N}, \ f(n) \leqslant n \ (\heartsuit)$ Montrons que $f = \mathrm{id}_{\mathbb{N}},$ c'est-à-dire : $\forall n \in \mathbb{N}, \ f(n) = n : H(n)$.

On raisonne par récurrence forte :

- * $H\left(0\right)$ est vraie car $f\left(0\right)\in\mathbb{N}$ et $f\left(0\right)\overset{\left(\heartsuit\right)}{\leqslant}0$, donc $f\left(0\right)=0$
- * Soit $n \in \mathbb{N}^*$. On suppose que $\forall k \in \llbracket 0, n-1 \rrbracket$, f(k)=k. Montrons que f(n)=n. On a d'après $(\heartsuit): f(n) \leqslant n$. Par l'absurde, si f(n) < n. Notons $k=f(n) \in \llbracket 0, n-1 \rrbracket$. Alors f(n)=k=f(k) d'après H(k). Par injectivité de f, on a donc k=n contradiction. Ainsi f(n)=n
- * Le principe de récurrence forte assure que $\forall n \in \mathbb{N}, \ f(n) = n \text{ CQFD}.$
- b) On suppose que f est surjective et que $\forall n \in \mathbb{N}, \ f(n) \geqslant n \ (\clubsuit)$ Montrons que $f = \mathrm{id}_{\mathbb{N}}, \ \mathrm{c'est-\`a-dire} : \forall n \in \mathbb{N}, \ f(n) = n : K(n)$.

On raisonne de même par récurrence forte :

- * K(0) est vraie car 0 admet un antécédent $k \in \mathbb{N}$ par f vérifiant $0 = f(k) \stackrel{(\clubsuit)}{\geqslant} k$. On en déduit k = 0, et par suite f(0) = 0.
- * Soit $n \in \mathbb{N}^*$. On suppose que $\forall k \in [[0, n-1]]$, f(k) = k. Montrons que f(n) = n. Par surjectivité de f, n admet un antécédent $k \in \mathbb{N}$ par f. Supposons par l'absurde que $k \neq n$.
 - · Si k < n, alors f(k) = k par hypothèse de récurrence, contradiction
 - · Si k > n, alors $n = f(k) \geqslant k$ contradiction.

Dans tous les cas il y a contradiction, d'où k = n, c'est-à-dire f(n) = n.

* Le principe de récurrence forte assure que $\forall n \in \mathbb{N}, \ f(n) = n \ \text{CQFD}.$

Ex 18 Soit f une application de F dans G.

a) Soit E un ensemble.

Montrons que f injective si et seulement si $\forall (g,h) \in (F^E)^2$, $f \circ g = f \circ h \Rightarrow g = h$.

 \implies On suppose que f est injective. Montrons que $\forall (g,h) \in (F^E)^2$, $f \circ g = f \circ h \Rightarrow g = h$. Soient donc g et h de E dans F vérifiant $f \circ g = f \circ h$: alors pour tout $x \in E$,

$$f(g(x)) = f(h(x))$$

Par injectivité de f, il vient g(x) = h(x), ce qui établit g = h.

On considère les applications g constante égale à y, et h constante égale à y': alors on a bien $\forall x \in E$,

$$f \circ g(x) = f(y) = f(y') = f \circ h(x)$$

Par hypothèse g = h, ce qui signifie y = y', d'où l'injectivité de f.

Par double implication, l'équivalence est établie.

b) Soit ${\cal H}$ un ensemble contenant au moins deux points.

Montrons que f surjective si et seulement si $\forall (g,h) \in (H^G)^2$, $g \circ f = h \circ f \Rightarrow g = h$.

- \Rightarrow On suppose que f est surjective. Montrons que $\forall (g,h) \in \left(G^H\right)^2, \ g \circ f = h \circ f \Rightarrow g = h.$ Soient donc g et h des applications de G dans H vérifiant $g \circ f = h \circ f$ et montrons que g = h: Soit g dans g, il faut voir que g(g) = h(g): par surjectivité de g, on a un g et g tel que g et g. Or pour tout g et g on a g et g or part surjectivité de g on a un g et g et g et g or pour tout g et g or part surjectivité de g on a un g et g et

Il faut construire deux applications g et h de G dans H qui amènent à une contradiction :

On se donne z et z' éléments distincts de H (existent par hypothèse), et on pose :

$$\left\{ \begin{array}{l} g\left(y\right)=z\\ h\left(y\right)=z'\\ g\left(t\right)=h\left(t\right) \text{ pour toute autre valeur } t\in G \text{ autre que } y \end{array} \right.$$

Alors pour tout $x \in E$, g(f(x)) = h(f(x)) puisque f(x) ne vaut jamais y.

Par hypothèse, on a donc g = h, ce qui est contradictoire.

Par double implication, l'équivalence est établie.