FMI, Info, 2018/2019, Anul I, ID Logică matematică și computațională

Partea 1 Exerciții

(S1.1) Fie T o mulţime şi $A, B, X \subseteq T$ cu $A \cap B = \emptyset$ şi $A \cup (B \setminus X) = B \cup X$. Să se arate că X = A.

(S1.2) Fie $A = \{a, b, c, d\}$ şi $R = \{(a, b), (a, c), (c, d), (a, a), (b, a)\}$ o relație binară pe A. Care este compunerea $R \circ R$? Care este inversa R^{-1} a lui R? Care dintre relațiile $R, R^{-1}, R \circ R$ poate fi relația subiacentă unei funcții de la A la A?

(S1.3) Fie X o mulţime. Să se arate că nu există o funcţie surjectivă cu domeniul X şi codomeniul $\mathcal{P}(X)$.

(S1.4) Dați exemplu de familie de submulțimi ale lui \mathbb{R} , indexată, pe rând, după:

- (i) \mathbb{N}^* ;
- (ii) \mathbb{Z} ;
- (iii) $\{2, 3, 4\}$.

Determinați reuniunea și intersecția fiecărei familii date ca exemplu.

(S1.5) Dacă $(A_i)_{i\in I}$ este o familie de submulțimi ale unei mulțimi X, arătați următoarele (legile lui De Morgan):

- (i) $C_X \bigcup_{i \in I} A_i = \bigcap_{i \in I} C_X A_i$;
- (ii) $C_X \bigcap_{i \in I} A_i = \bigcup_{i \in I} C_X A_i$.

- (S1.6) Dați exemple, pe rând, de relații care:
 - (i) sunt reflexive şi tranzitive, dar nu sunt simetrice;
 - (ii) sunt reflexive și simetrice, dar nu sunt tranzitive;
- (iii) sunt simetrice și tranzitive, dar nu sunt reflexive.
- (S1.7) Fie $R \subseteq A \times A$ o relație descrisă în fiecare situație de mai jos. Verificați, pe rând, dacă R este relație de ordine parțială, strictă sau totală sau relație de echivalență.
 - (i) $A = \mathbb{N}$ și $(a, b) \in R$ dacă și numai dacă $a \mid b$.
 - (ii) $A = \mathbb{N} \times \mathbb{N}$ și (a,b)R(c,d) dacă și numai dacă $a \leq b$ sau $b \leq d$.
- (iii) $A = \mathbb{N}$ și $(a, b) \in R$ dacă și numai dacă b = a sau b = a + 1.
- (iv) A este mulțimea tuturor cuvintelor în limba engleză și $(a,b) \in R$ dacă și numai dacă a nu este mai lung ca b.
- (S1.8) Fie (A, \leq) o mulţime parţial ordonată şi $\emptyset \neq S \subseteq A$. Atunci:
 - (i) Dacă minimul lui S există, atunci acesta este unic.
 - (ii) Orice minim (maxim) al lui S este element minimal (maximal).
- (S1.9) Fie $D(n) = \{d \in \mathbb{N} | d|n\}$ şi $P(n) = \{d \in \mathbb{N} | d|n, d \neq 1, d \neq n\}$. Demonstraţi că (P(n), |) şi (D(n), |) sunt mulţimi parţial ordonate. Enumeraţi elementele minimale, elementele maximale, minimul şi maximul (dacă există) pentru următoarele mulţimi: P(12), P(32), P(72), D(72).