

“Flow in pipelines”

- 1) Crude oil at 20 °c flows in riveted steel pipe 1.00 m in diameter at a mean velocity of 2.0 m/s. What range of head loss is to be expected in 1 km of pipelines? For Crude oil at 20°c: $v = 8.391 \times 10^{-6} \text{ m}^2/\text{s}$

Data:

$$d = 1 \text{ m} \quad v = 8.391 \times 10^{-6} \text{ m}^2/\text{s} \\ V = 2 \text{ m/s}$$

What: range of head loss is to be expected in 1 km of pipe line?

Solution

$$Re = \frac{Vd}{\nu} = \frac{2 \times 1}{8.391 \times 10^{-6}} = 2.4 \times 10^5$$

From relative roughness chart at riveted steel pipe 1m diameter

$$\frac{e}{d} = 0.0009 \text{ to } 0.009$$

From Moody chart at $Re = 2.4 \times 10^5$ and

$$\frac{e}{d} = 0.0009 \longrightarrow f = 0.0205$$

$$\frac{e}{d} = 0.009 \longrightarrow f = 0.0365$$

$$h_L = f \frac{L}{d} \frac{V^2}{2g} = 0.0205 \times \frac{1000}{1} \times \frac{(2)^2}{2 \times 9.8} = 4.2 \text{ m}$$

$$h_L = f \frac{L}{d} \frac{V^2}{2g} = 0.0365 \times \frac{1000}{1} \times \frac{(2)^2}{2 \times 9.8} = 7.4 \text{ m}$$

The range of head loss is 4.2 m to 7.4 m per 1 km.

2) Calculate the loss of head and the pressure drop when air at an absolute pressure of 101.3 kPa and 15 °C ($\rho = 1.225 \text{ kg/m}^3$) flows through 600 m of 450 mm by 300 mm smooth rectangular duct with a mean velocity of 3 m/s.

For air at 15 °C: $v = 1.46 \times 10^{-5} \text{ m}^2/\text{s}$

Data: $P = 101.3 \text{ kPa}$, $T = 15 \text{ }^\circ\text{C}$ ($\rho_a = 1.225 \text{ kg/m}^3$)

$$L = 600 \text{ m}, a = 450 \text{ mm}, b = 300 \text{ mm}$$

$$V = 3 \text{ m/s. } U_a = 1.46 \times 10^{-5} \text{ m}^2/\text{s}$$

Calculate: h_L and ΔP

Solution

$$dh = \frac{4 \times \text{Area}}{\text{wetted Perimeter}} = \frac{4(0.45 \times 0.30)}{2(0.45 + 0.30)} = 0.36 \text{ m}$$

$$Re = \frac{V dh}{v} = \frac{3 \times 0.36}{1.46 \times 10^{-5}} = 73950$$

From Moody diagram at $Re = 73950$ and smooth Pipe line.

$$f = 0.019$$

$$h_L = f \frac{L}{dh} \frac{V^2}{2g} = 0.019 \times \frac{600}{0.36} \times \frac{(3)^2}{2 \times 9.8} = 14.5 \text{ m of air}$$

$$h_L = 14.5 \text{ m of air}$$

#

$$\Delta P = \rho g h_L = 1.225 \times 9.8 \times 14.5$$

$$\Delta P = 174 \text{ Pa.}$$

#

3) A clean cast iron pipeline 0.30 m in diameter and 300 m long connects two reservoirs having surface elevation 60 m and 75 m. calculate the flow rate through this line, assuming water at 10 °c and a square – edged entrance.

For water at 10°C: $v = 1.306 \times 10^{-6} \text{ m}^2/\text{s}$

Data: Pipe: clean cast iron $d = 0.30 \text{ m}$, $L = 300 \text{ m}$.

Fluid: Water at 10°C $v = 1.306 \times 10^{-6} \text{ m}^2/\text{s}$.

$Z_1 = 75 \text{ m}$, $Z_2 = 60 \text{ m}$, a square-edged entrance.

Calculate: Q (flow rate)

Solution

Apply Bernoulli equation between ① and ②

$$\frac{P_1}{\rho g} + \frac{V_1^2}{2g} + Z_1 = \frac{P_2}{\rho g} + \frac{V_2^2}{2g} + Z_2 + h_L_{1-2}$$

$$Z_1 - Z_2 = H = h_L_{1-2} = h_L^e + h_f + h_x$$

From tables

$$K_e = 0.5$$

$$K_f = 1$$

$$15 = \left(0.5 + F \frac{L}{d} + 1 \right) \frac{V^2}{2g}$$

$$15 = \left(1.5 + F * \frac{300}{0.3} \right) \frac{V^2}{2 * 9.8}$$

5)

assume $V = 2 \text{ m/s}$ ($2-4 \text{ m/s}$) velocity range

$$Re = \frac{Vd}{\nu} = \frac{2 * 0.3}{1.306 * 10^{-6}} = 458000$$

From relative roughness chart at $d = 300 \text{ mm}$ and Cast iron pipe

$$\frac{\epsilon}{d} = 0.00085$$

$$\frac{\epsilon}{d} = 0.00085$$

From Moody chart at $Re = 4.58 * 10^5$ and $\frac{\epsilon}{d} = 0.00085$

$$f = 0.02$$

$$15 = \left(1.5 + 0.02 * \frac{300}{0.3} \right) \frac{V^2}{2 * g * 8}$$

$$V = 3.7 \text{ m/s}$$

assume $V = 3.7 \text{ m/s}$

$$Re = \frac{Vd}{\nu} = \frac{3.7 * 0.3}{1.306 * 10^{-6}} = 847250$$

From Moody chart at $Re = 8.47 * 10^5$ and $\frac{\epsilon}{d} = 0.00085$

$$f = 0.0193$$

$$15 = \left(1.5 + 0.0193 * \frac{300}{0.3} \right) \frac{V^2}{2 * g * 8}$$

$$V = 3.67 \text{ m/s.}$$

accepted,

$$Q = A \cdot V = \frac{\pi}{4} (0.3)^2 * 3.67$$

$$Q = 0.266 \text{ m}^3/\text{s} \quad \#$$

- 4) A smooth PVC pipeline 200 m long is to carry a flow rate $0.05 \text{ m}^3/\text{s}$ between two tanks whose difference in surface elevation is 8 m. If a square-edged entrance and water at 10°C are assumed, what diameter of pipe is required? For water at 10°C : $v = 1.306 * 10^{-6} \text{ m}^2/\text{s}$

Data:

A smooth PVC Pipeline.

$$L = 200 \text{ m}$$

$$Q = 0.05 \text{ m}^3/\text{s}$$

$$H = 8 \text{ m}$$

$$\nu = 1.306 * 10^{-6} \text{ m}^2/\text{s}$$

Determine: Pipe diameter (d)

Solution

Apply Bernoulli eqn between ① and ②

From tables

$$K_e = 0.5$$

$$K_x = 1$$

$$H = (0.5 + \frac{fL}{d} + 1) \frac{V^2}{2g}$$

$$8 = \left(1.5 + \frac{f * 200}{d} \right) \frac{V^2}{2 * 9.8}$$

$$Re = \frac{Vd}{\nu} = \left(\frac{Q}{A} \right) \frac{d}{\nu} = \frac{Qd}{\frac{\pi}{4} d^2 \cdot \nu} = \frac{4Q}{\pi d \nu} = \frac{4 * 0.05}{\pi * d * 1.306 * 10^{-6}}$$

$$Re = \frac{48745.8}{d}$$

$$Re = \frac{Vd}{\nu} \rightarrow V = \frac{Re \cdot \nu}{d} = \frac{48745.8 * 1.306 * 10^{-6}}{d^2}$$

assume $d = 0.25 \text{ m}$

$$\therefore Re = \frac{48745.8}{0.25} = 194983.2$$

From Moody chart at $Re = 194983.2$ and smooth pipe.

$$f = 0.01550$$

$$V = \frac{48745.8 \times 1.306 \times 10^6}{(0.25)^2} = 1.019 \text{ m/s}$$

$$R.H.S = \left(1.5 + \frac{0.01550 \times 200}{0.25} \right) \frac{(0.0529)^2}{2 \times 9.8} = 0.735$$

Repeat the problem at $d = 0.2, 0.15, 0.151 \text{ m}$

Assume d	Re	f	V	R.H.S
0.25	194983.2	0.01550	1.019	0.735
0.2	243729	0.01480	1.592	2.106
0.15	324972	0.01400	2.829	8.227
0.151	322819.9	0.01408	2.792	8.005

$$\therefore d = 0.151 \text{ m}$$

∴ Pipe diameter (d) = 151 mm #

$$\therefore Re = \frac{48745.8}{0.25} = 194983.2$$

From Moody chart at $Re = 194983.2$ and smooth pipe,

$$f = 0.01550$$

$$V = \frac{48745.8 \times 1.306 \times 10^6}{(0.25)^2} = 1.019 \text{ m/s}$$

$$R.H.S = \left(1.5 + \frac{0.01550 \times 200}{0.25} \right) \frac{(0.0529)^2}{2 \times 9.8} = 0.735$$

Repeat the problem at $d = 0.2, 0.15, 0.151 \text{ m}$

Assume d	Re	f	V	R.H.S
0.25	194983.2	0.01550	1.019	0.735
0.2	243729	0.01480	1.592	2.106
0.15	324972	0.01400	2.829	8.227
0.151	322819.9	0.01408	2.792	8.005

$$\therefore d = 0.151 \text{ m}$$

∴ Pipe diameter (d) = 151 mm #

assume $d = 0.25 \text{ m}$

$$\therefore Re = \frac{48745.8}{0.25} = 194983.2$$

From Moody chart at $Re = 194983.2$ and smooth pipe.

$$F = 0.01550$$

$$V = \frac{48745.8 \times 1.306 \times 10^6}{(0.25)^2} = 1.019 \text{ m/s}$$

$$R.H.S = \left(1.5 + \frac{0.01550 \times 200}{0.25} \right) \frac{(0.0529)^2}{2 \times 9.8} = 0.735$$

Repeat the problem at $d = 0.2, 0.15, 0.151 \text{ m}$

Assume d	Re	F	V	R.H.S
0.25	194983.2	0.01550	1.019	0.735
0.2	243729	0.01480	1.592	2.106
0.15	324972	0.01400	2.829	8.227
0.151	322819.9	0.01408	2.792	8.005

$$\therefore d = 0.151 \text{ m}$$

∴ Pipe diameter (d) = 151 mm #

- 5) A clean cast iron pipeline 0.26 m in diameter and 200 m long connects two reservoirs having surface elevation 60 m and 160 m. if given: $e/d=0.001$, $v_w=1.3 \times 10^{-6} \text{ m}^2/\text{s}$, $Re>2 \times 10^6$, moody diagram, $K_L=0.5$ for a square edge entrance, $K_L=1$ for exit into reservoir,
- Calculate the flow rate through this pipeline.
 - Check the flow type in the above pipeline.

Data:

clean Cast iron.

$$d = 0.26 \text{ m}$$

$$L = 200 \text{ m}$$

$$Z_1 = 160 \text{ m}, Z_2 = 60 \text{ m}$$

$$\frac{e}{d} = 0.001$$

$$v_w = 1.3 \times 10^{-6} \text{ m}^2/\text{s}$$

$$Re > 2 \times 10^6, K_{Le} = 0.5, K_{Lx} = 1$$

Calculate: Q check: the flow type

Solution

From Moody chart at $\frac{e}{d} = 0.001$ and $Re > 2 \times 10^6$

$$f = 0.0196 = \text{const.}$$

$$H = h_{Le} + h_{Lf} + h_{Lx}$$

$$100 = \left(0.5 + 0.0196 \times \frac{200}{0.26} + 1 \right) \frac{V^2}{2 \times 9.81}$$

$$V = 10.879 \text{ m/s.}$$

$$Q = V \cdot A = 10.879 \times \frac{\pi}{4} (0.26)^2 = 0.5776 \text{ m}^3/\text{s}$$

$$Re = \frac{Vd}{\nu} = \frac{10.879 \times 0.26}{1.3 \times 10^{-6}} = 2175800$$

$$Q = 0.5776 \text{ m}^3/\text{s} \quad \#$$

$Re > 2 \times 10^6 \rightarrow \boxed{\text{the flow is rough.}} \quad \#$