- [17] ARTHUR WITULSKI and ROBERT ERICKSON, "Extension of State-Space Averaging to Resonant Switches—and Beyond," *IEEE Transactions on Power Electronics*, Vol. 5, No. 1, pp. 98-109, January 1990.
- [18] D. MAKSIMOVIĆ and S. ĆUK, "A Unified Analysis of PWM Converters in Discontinuous Modes," IEEE Transactions on Power Electronics, Vol. 6, No. 3, pp. 476-490, July 1991.
- [19] D. J. SHORTT and F. C. LEE, "Extensions of the Discrete-Average Models for Converter Power Stages," IEEE Power Electronics Specialists Conference, 1983 Record, pp. 23-37, June 1983.
- [20] O. AL-NASEEM and R.W. ERICKSON, "Prediction of Switching Loss Variations by Averaged Switch Modeling," IEEE Applied Power Electronics Conference, 2000 Record, pp. 242-248, February 2000.

PROBLEMS

- 7.1 An ideal boost converter operates in the continuous conduction mode.
 - (a) Determine the nonlinear averaged equations of this converter.
 - (b) Now construct a small-signal ac model. Let

$$\begin{split} \left\langle v_g(t) \right\rangle_{T_s} &= V_g + \hat{v}_g(t) \\ d(t) &= D + \hat{d}(t) \\ \left\langle i(t) \right\rangle_{T_s} &= I + \hat{i}(t) \\ \left\langle v(t) \right\rangle_{T_s} &= V + \hat{v}(t) \end{split}$$

where V_g , D, I, and V are steady-state dc values; $\hat{v}_g(t)$ and $\hat{d}(t)$ are small ac variations in the power and control inputs; and $\hat{i}(t)$ and $\hat{v}(t)$ are the resulting small ac variations in the inductor current and output voltage, respectively. Show that the following model results:

Large-signal dc components

$$0 = -D'V + V_g$$
$$0 = D'I - \frac{V}{R}$$

Small-signal ac components

$$L\frac{d\hat{i}(t)}{dt} = -D'\hat{v}(t) + V\hat{d}(t) + \hat{v}_g(t)$$
$$C\frac{d\hat{v}(t)}{dt} = D'\hat{i}(t) - I\hat{d}(t) - \frac{\hat{v}(t)}{R}$$

- 7.2 Construct an equivalent circuit that corresponds to the boost converter small-signal ac equations derived in Problem 7.1(b).
- 7.3 Manipulate your boost converter equivalent circuit of Problem 7.2 into canonical form. Explain each step in your derivation. Verify that the elements in your canonical model agree with Table 7.1.
- 7.4 The ideal current-fed bridge converter of Fig. 2.31 operates in the continuous conduction mode.
 - (a) Determine the nonlinear averaged equations of this converter.
 - (b) Perturb and linearize these equations, to determine the small-signal ac equations of the converter.