

Departamento de Matemáticas, Facultad de Ciencias Universidad Autónoma de Madrid

Redes Neuronales: Aproximación de EDPs

Trabajo de fin de grado

Grado en Matemáticas

Autor: Luis Hebrero Garicano

Tutor: Julia Novo

Curso 2024-2025

Resumen

Las redes neuronales son un modelo matemático inspirado en el funcionamiento cerebral que, en esencia, se utiliza para encontrar funciones: funciones que clasifican datos, que predicen valores o incluso que anticipan la siguiente palabra en una frase. En este trabajo, se estudiará cómo se puede aplicar esta capacidad de aproximación de funciones para resolver ecuaciones en derivadas parciales. Exploraremos distintas estrategias para construir estas redes y analizaremos su aplicación en problemas concretos, centrándonos en las ventajas que aportan con respecto a los métodos numéricos tradicionales, así como en los casos en los que una aproximación mediante redes neuronales no resulta efectiva.

Abstract

Neural networks are a mathematical model inspired by the brain's functioning, primarily used to find functions: functions that classify data, predict values, or even anticipate the next word in a sentence. This work will explore how this function approximation capability can be applied to solve partial differential equations. We will investigate different strategies for constructing these networks and analyze their application to specific problems, focusing on the advantages they offer over traditional numerical methods, as well as the cases where a neural network-based approach proves ineffective.

Índice general

1	Intr	oducc	ión y preliminares	1
	1.1	Introd	lucción a las redes neuronales	1
		1.1.1	Comentarios sobre la función sigmoide	3
	1.2	Conce	ptos preliminares sobre las ecuaciones en derivadas parciales	5
	1.3	Métod	los numéricos tradicionales: el método de los elementos finitos	10
2	Apr	oxima	ción de EDPs mediante redes neuronales	15
	2.1	PINN	s: Physics-Informed Neural Networks	15
		2.1.1	Introducción	15
		2.1.2	Formulación de las PINNs	16
	2.2	El "D€	eep Ritz Method"	21
		2.2.1	El problema elíptico autoadjunto	21
		2.2.2	Formulación del método "Deep Ritz"	23
		2.2.3	El método "Deep Ritz" versión antigua	28
3	Res	ultado	\mathbf{s}	31
4	Par	tes eli	minadas - NO IMPRIMIR	33
	4.1	Espac	ios de funciones	33
	4.2	Introd	lucción a las ecuaciones en derivadas parciales	34
	4.3	Forma	ı fuerte y débil de una EDP	35

CAPÍTULO 1

Introducción y preliminares

Para poder entender las aproximaciones a las EDPs mediante redes neuronales, es necesario tener un conocimiento previo de las redes neuronales y de las ecuaciones en derivadas parciales. En este capítulo, se introducirán los conceptos básicos de ambos temas, así como las herramientas matemáticas necesarias para comprender el resto del trabajo.

1.1. Introducción a las redes neuronales

Una red neuronal, de forma abstracta, es simplemente una función que toma una entrada y produce una salida. Es decir, una red neuronal, es una función F que toma un vector de entrada x y produce un vector de salida y, siendo $F:\mathbb{R}^n\to\mathbb{R}^m$. La red neuronal se compone de una serie de capas, cada una de las cuales está formada por un conjunto de neuronas. Cada neurona de una capa recibe una serie de entradas, las procesa y produce una salida. La salida de cada neurona se calcula mediante una función de activación, que puede ser de distintos tipos, como la función sigmoide, la función tangente hiperbólica o la función ReLU. Para entender este concepto nos vamos a centrar en el caso concreto de la red neuronal de la Figura 1.1.

Como se ve en la Figura 1.1, la entrada en nuestra función está representada por los dos círculos de la izquierda, que representan los valores de entrada x_1 y x_2 , siendo así la entrada $x \in \mathbb{R}^2$. Estos valores se multiplican por unos pesos $(W^{[2]})$ y se suman a un sesgo b. La salida de esta neurona se calcula mediante una función de activación.

Figura 1.1: Esquema de una red neuronal con 4 capas.

Así, los valores que "llegan" a la segunda capa de nuestra red neuronal serán de la forma

$$\sigma(W^{[2]}x + b^{[2]}) \in \mathbb{R}^2,$$

Siendo $W^{[2]} \in \mathbb{R}^{2 \times 2}$ y el vector $b^{[2]} \in \mathbb{R}^2$. A partir de aquí, se repite el proceso para cada capa de la red neuronal, hasta llegar a la capa de salida, que nos dará el valor de salida de nuestra red neuronal. De forma visual, se pueden interpretar las flechas de la Figura 1.1 como los pesos por los que se va multiplicando.

En la tercera capa de la red neuronal, vemos que los valores que llegan de la capa 2, estos $\sigma(W^{[2]}x+b^{[2]})$, pertenecen a \mathbb{R}^2 . De este modo, como tenemos 3 neuronas en la tercera capa, para obtener un valor perteneciente a \mathbb{R}^3 , necesitamos una matriz $W^{[3]} \in \mathbb{R}^{3\times 2}$ y un vector $b^{[3]} \in \mathbb{R}^3$. Así, el valor de nuestra red neuronal en la tercera capa será

$$\sigma(W^{[3]}\sigma(W^{[2]}x + b^{[2]}) + b^{[3]}) \in \mathbb{R}^3.$$

Finalmente, la capa de salida recibirá de la tercera capa un vector perteneciente a \mathbb{R}^3 , por lo que necesitaremos una matriz $W^{[4]} \in \mathbb{R}^{3 \times 3}$ y un vector $b^{[4]} \in \mathbb{R}^3$. Así, el valor de salida de nuestra red neuronal, esa F de la que habíamos hablado al principio, será

(1.1)
$$F(x) = \sigma(W^{[4]}\sigma(W^{[3]}\sigma(W^{[2]}x + b^{[2]}) + b^{[3]}) + b^{[4]}) \in \mathbb{R}^3.$$

En general, una red neuronal se puede representar como una composición de funciones, donde cada función es una capa de la red neuronal.

Nuestra intención con este tipo de funciones es ir variando los valores de las matrices W, también conocidos como pesos, y los vectores b también conocidos como sesgos, para que la salida de nuestra red neuronal se acerque lo máximo posible a la salida deseada.

Para entender esto, vamos a utilizar la red neuronal de la Figura 1.1 para resolver un problema concreto muy sencillo de clasificación. Supongamos que tenemos una serie de puntos en el plano, de tres tipos distintos, como los de la Figura 1.2, y queremos clasificarlos en tres grupos, los puntos de tipo azul, rojo y amarillo.

De este modo, nuestra red neuronal recibirá como entrada un punto del plano, y nos dirá a qué categoría pertenece, devolviendo $(1,0,0)^T$ si es de la categoría azul, $(0,1,0)^T$ si es de la categoría roja y $(0,0,1)^T$ si es de la categoría amarilla.

Lo siguiente que queremos hacer será entrenar la red neuronal, es decir, ajustar los pesos y sesgos de la red neuronal para que la salida se acerque lo máximo posible a la salida deseada. Es decir, que cuando se introduzca un punto de un tipo concreto, la salida lo asigne a la categoría adecuada.

Designamos a y(x) como la salida deseada de nuestra red neuronal, y a F(x) como la salida real. Así, el error vendrá dado en función de los pesos y sesgos de la siguiente forma

$$\mathcal{L}(W^{[2]}, W^{[3]}, W^{[4]}, b^{[2]}, b^{[3]}, b^{[4]}) = \frac{1}{2} \sum_{x \in X} \|y(x) - F(x)\|^2,$$

Figura 1.2: Puntos en el plano que marcan las tres categorías

Figura 1.3: Puntos en el plano que marcan las tres categorías

donde X es el conjunto de puntos que tenemos para entrenar la red neuronal, en nuestro caso, serán 15. Esta función es conocida como función de coste.

Así, lo que queremos hacer es minimizar esta función, es decir, encontrar los pesos que minimicen la función \mathcal{L} . Para ello, se utilizan algoritmos de optimización, como el descenso del gradiente. Este proceso es conocido como el entrenamiento de la red neuronal. Si se logra con éxito, la red neuronal será capaz de clasificar correctamente los puntos en el plano. En este caso concreto, al entrenar la red neuronal, se obtiene la clasificación de la Figura 1.3, en la que simplemente hemos aplicado nuestra función para cada punto del plano y lo hemos sombreado de acuerdo a la clasificación que se le ha dado.

Más adelante entenderemos con más detalle como es este proceso de entrenamiento.

1.1.1. Comentarios sobre la función sigmoide

Como hemos visto con el ejemplo anterior, las redes neuronales se pueden utilizar para generar funciones. A su vez, estas funciones se utilizan para resolver problemas de forma aproximada. En el ejemplo de la Figura 1.3, la función red neuronal clasi-

fica cualquier parte del plano en una de las tres categorías sombreadas a partir del entrenamiento. Dicho entrenamiento fija los valores de los pesos y sesgos, y por tanto define la función red neuronal (en el ejemplo define la función (1.1)).

Como las redes neuronales se utilizan para aproximar problemas de tipos muy distintos, una de las características deseables es que sean capaces de aproximar el conjunto de funciones "mayor posible".

Para poder lograr este objetivo, se necesitan las funciones de activación. Como ejercicio, supongamos que en nuestra ecuación (1.1) en lugar de utilizar la función sigmoide, no utilizamos ninguna función de activación, es decir, que nuestra red neuronal es simplemente una composición de funciones lineales. En este caso, nuestra red tendría la siguiente forma

$$F(x) = W^{[4]}(W^{[3]}(W^{[2]}x + b^{[2]}) + b^{[3]}) + b^{[4]} \in \mathbb{R}^3.$$

Claramente, una función lineal definida de forma global puede estar muy lejos de aproximar bien funciones generales. De este modo, parece por tanto razonable utilizar funciones de activación no lineales. La función sigmoide es una de las más utilizadas, pero existen otras como la función tangente hiperbólica o la función ReLU. En este trabajo, nos centraremos en la función sigmoide, que se define como

$$\sigma(x) = \frac{1}{1 + e^{-x}}.$$

Esta función tiene la ventaja de que su derivada es fácil de calcular, y es precisamente esta derivada la que se utiliza en el algoritmo de entrenamiento de la red neuronal.

Un resultado relevante para justificar el uso de funciones de activación no lineales es el siguiente propuesto por Pinkus [9, Theorem 3.1]. Este resultado es para redes neuronales de una sola capa.

Teorema 1.1 (Pinkus). Sea $\sigma \in C(\mathbb{R})$ y sea $\mathcal{M}(\sigma) = span\{\sigma(w \cdot x + b) : b \in \mathbb{R}, w \in \mathbb{R}^n\}$, se cumple que:

Para cualquier $f \in C(\mathbb{R}^n)$, cualquier conjunto compacto $K \in \mathbb{R}^n$ y cualquier $\epsilon > 0$, existe una función $g \in \mathcal{M}(\sigma)$ tal que $\max_{x \in K} |f(x) - g(x)| < \epsilon$ si y solo si σ no es una función polinómica.

De forma más intuitiva, cualquier función $f \in C(\mathbb{R}^n)$, se puede aproximar tan bien como se quiera con una red neuronal de una sola capa si y solo si la función de activación no es polinómica.

Este resultado nos aporta una intuición de por qué las funciones de activación no lineales son necesarias para aproximar funciones de forma general pues, de no ser funciones no lineales, habría muchas funciones que no podríamos aproximar.

1.2. Conceptos preliminares sobre las ecuaciones en derivadas parciales

En este trabajo nos vamos a centrar en las ecuaciones en derivadas parciales elípticas, definidas con la siguiente forma general.

Definición 1.2. Dado un conjunto Ω , acotado y abierto en \mathbb{R}^n , decimos que una ecuación en derivadas parciales es elíptica si es de la siguiente forma:

$$(1.2) \qquad -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{j}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) + \sum_{i=1}^{n} b_{i}(x) \frac{\partial u}{\partial x_{i}} + c(x)u = f(x), \qquad x \in \Omega.$$

Donde los coeficientes $a_{ij}(x)$, $b_i(x)$, c(x) y f son funciones que satisfacen las siguientes condiciones

(1.3)
$$a_{ij} \in C^1(\overline{\Omega}), \quad i, j = 1, \dots, n$$

$$(1.4) b_i, c \in C(\overline{\Omega}), i = 1, \dots, n$$

$$(1.5) c \in C(\overline{\Omega}),$$

$$(1.6) f \in C(\overline{\Omega})$$

y además cumple la condición de elipticidad uniforme, es decir

(1.7)
$$\sum_{i,j=1}^{n} a_{ij}(x)\xi_{i}\xi_{j} \geq \tilde{c}\sum_{i=1}^{n} \xi_{i}^{2}, \quad \forall \xi = (\xi_{1}, \dots, \xi_{n}) \in \mathbb{R}^{n}, \quad x \in \overline{\Omega},$$

donde \tilde{c} es una constante positiva independiente de x y ξ .

Concretamente, a lo largo del trabajo, nos centraremos en problemas de condición de frontera de Dirichlet, es decir, problemas en los que se cumple que

$$(1.8) u(x) = g(x), \forall x \in \partial \Omega.$$

En la formulación que hemos dado de las ecuaciones en derivadas parciales elípticas, nos estábamos refiriendo a su formulación en forma fuerte. No obstante, en muchos casos, no es posible encontrar una solución en forma fuerte, es decir, una función que cumpla la ecuación en todo el dominio y que además cumpla las condiciones de frontera. En estos casos, se recurre a la formulación débil de la ecuación, que permite encontrar una solución en un espacio de funciones más amplio. Para entender la formulación débil de una ecuación en derivadas parciales, es necesario introducir el concepto de derivada débil.

Definición 1.3. Supongamos que u es localmente integrable en Ω . Supongamos que también existe una función w_{α} , localmente integrable en Ω , tal que

$$\int_{\Omega} w_{\alpha}(x)v(x) dx = (-1)^{|\alpha|} \int_{\Omega} u(x)D^{\alpha}v(x) dx, \quad \forall v \in C_0^{\infty}(\Omega),$$

entonces decimos que w_{α} es la derivada débil de u de orden $|\alpha| = \alpha_1 + \cdots + \alpha_n$ y escribimos $w_{\alpha} = D^{\alpha}u$. Cuando existe la derivada débil es única. En lo sucesivo utilizaremos la misma notación para las derivadas débiles y fuertes.

También es necesario definir el espacio de Sobolev $H^1(\Omega)$.

Definición 1.4. Sea Ω un conjunto abierto de \mathbb{R}^n . Definimos el espacio de Sobolev $H^1(\Omega)$ como el conjunto de funciones en el siguiente conjunto

(1.9)
$$H^{1}(\Omega) = \{ u \in L^{2}(\Omega) : \frac{\partial u}{\partial x_{i}} \in L^{2}(\Omega), i = 1, \dots, n \}.$$

En este espacio, se define la siguiente norma

(1.10)
$$||u||_{H^1(\Omega)} = \left(||u||_{L^2(\Omega)}^2 + \sum_{i=1}^n \left\| \frac{\partial u}{\partial x_i} \right\|_{L^2(\Omega)}^2 \right)^{1/2}.$$

En ambas definiciones las derivadas parciales se entienden en sentido débil.

Definimos demás el espacio $H_0^1(\Omega)$. Este espacio es el cierre de las funciones de $C_0^{\infty}(\Omega)$ en la norma de $H^1(\Omega)$. Es decir, $H_0^1(\Omega)$ es el conjunto de funciones $u \in H^1(\Omega)$ que se obtienen como límite en $H^1(\Omega)$ de una serie de funciones $\{u_m\}_{m=1}^{\infty}$ todas ellas en $C_0^{\infty}(\Omega)$. Si $\partial\Omega$ es suficientemente regular, $H_0^1(\Omega)$ es el siguiente conjunto:

(1.11)
$$H_0^1(\Omega) = \{ u \in H^1(\Omega) : u = 0 \text{ en } \partial \Omega \}.$$

Con esto, podemos definir la solución débil de una ecuación en derivadas parciales elíptica de la siguiente forma.

Definición 1.5. Dadas las funciones $a_{ij} \in L^{\infty}(\Omega)$, i, j = 1, ..., n, $b_i \in L^{\infty}(\Omega)$, i = 1, ..., n, $c \in L^{\infty}(\Omega)$, y la función $f \in L^2(\Omega)$. Decimos que la función $u \in H_0^1(\Omega)$ es una solución débil de la ecuación (1.2) con condición de contorno Dirichlet homogénea, es decir, g(x) = 0 si se cumple que,

(1.12)
$$\sum_{i,j=1}^{n} \int_{\Omega} a_{ij}(x) \frac{\partial u}{\partial x_{i}} \frac{\partial \varphi}{\partial x_{j}} dx + \sum_{i=1}^{n} \int_{\Omega} b_{i}(x) \frac{\partial u}{\partial x_{i}} \varphi dx + \int_{\Omega} c(x) u \varphi dx = \int_{\Omega} f(x) \varphi(x) dx, \quad \forall \varphi \in H_{0}^{1}(\Omega),$$

donde todas las derivadas parciales en la ecuación (1.12) se entienden en sentido débil.

Si u es una solución clásica de (1.2), entonces también es una solución débil de (1.12). Sin embargo, lo contrario no es cierto: una solución débil puede no ser lo suficientemente regular para ser una solución clásica. En particular, se demostrará que la ecuación (1.2) tiene una solución débil única $u \in H_0^1(\Omega)$. Para simplificar la notación, se introduce la forma bilineal:

(1.13)
$$a(u,\varphi) = \sum_{i,j=1}^{n} \int_{\Omega} a_{ij}(x) \frac{\partial u}{\partial x_i} \frac{\partial \varphi}{\partial x_j} dx + \sum_{i=1}^{n} \int_{\Omega} b_i(x) \frac{\partial u}{\partial x_i} \varphi dx + \int_{\Omega} c(x) u \varphi dx,$$

y el funcional lineal,

(1.14)
$$l(\varphi) = \int_{\Omega} f(x)\varphi(x)dx.$$

De este modo, nuestro problema elíptico en forma débil se puede expresar de la siguiente manera: Encontrar $u \in H_0^1(\Omega)$ tal que

(1.15)
$$a(u,\varphi) = l(\varphi) \quad \forall \varphi \in H_0^1(\Omega).$$

Para demostrar la existencia y unicidad de solución débil, se aplica el teorema de Lax-Milgram.

Teorema 1.6 (Lax-Milgram). Sea V un espacio de Hilbert con una norma asociada $\|\cdot\|_V$, y sea $a: V \times V \to \mathbb{R}$ una forma bilineal $y \mid l: V \to \mathbb{R}$ un funcional lineal. Si se cumplen las siguientes condiciones

(a)
$$\exists c_0 > 0 \quad \forall v \in V \quad a(v, v) \ge c_0 ||v||^2$$
,

(b)
$$\exists c_1 > 0 \quad \forall v, w \in V \quad |a(w, v)| \le c_1 ||w|| ||v||,$$

y sea $l(\cdot)$ un funcional lineal en V tal que:

(c)
$$\exists c_2 > 0 \quad \forall v \in V \quad |l(v)| \le c_2 ||v||.$$

entonces, existe una única solución débil $u \in V$ tal que

$$a(u, v) = l(v) \quad \forall v \in V.$$

Con este teorema se puede demostrar que una ecuación elíptica con condiciones de contorno Dirichlet homogéneas tiene solución única en $H_0^1(\Omega)$. Para ello se puede aplicar el teorema de Lax-Milgram en el espacio $V = H_0^1(\Omega)$ con la norma $\|\cdot\|_{H^1(\Omega)}$ y las formas bilineal y lineal a y l definidas anteriormente. Para que se cumplan las

condiciones (a, b, c) del teorema, además de la condición de elipticidad uniforme es necesario requerir que

(1.16)
$$c(x) - \frac{1}{2} \sum_{i=1}^{n} \frac{\partial b_i}{\partial x_i} \ge 0, \quad x \in \overline{\Omega}.$$

De esta manera, se demuestran las condiciones (a), (b) y (c) del teorema de Lax-Milgram como sigue.

Demostración 1.7. Empezamos por la condición (c).

(c) La aplicación $v \mapsto l(v)$ es lineal: de hecho, para cualesquiera $\alpha, \beta \in \mathbb{R}$,

$$l(\alpha v_1 + \beta v_2) = \int_{\Omega} f(x)(\alpha v_1(x) + \beta v_2(x)) dx$$

= $\alpha \int_{\Omega} f(x)v_1(x) dx + \beta \int_{\Omega} f(x)v_2(x) dx$
= $\alpha l(v_1) + \beta l(v_2), \quad v_1, v_2 \in H_0^1(\Omega).$

Por lo tanto, $l(\cdot)$ es una funcional lineal en $H_0^1(\Omega)$. Además, por la desigualdad de Cauchy-Schwarz,

$$|l(v)| = \left| \int_{\Omega} f(x)v(x) \, dx \right| \le \left(\int_{\Omega} |f(x)|^2 \, dx \right)^{1/2} \left(\int_{\Omega} |v(x)|^2 \, dx \right)^{1/2}$$
$$= ||f||_{L^2(\Omega)} ||v||_{L^2(\Omega)} \le ||f||_{L^2(\Omega)} ||v||_{H^1(\Omega)},$$

para todo $v \in H_0^1(\Omega)$, donde hemos usado la desigualdad obvia $||v||_{L^2(\Omega)} \le ||v||_{H^1(\Omega)}$. Tomando $c_2 = ||f||_{L^2(\Omega)}$, obtenemos la cota requerida.

(b) A continuación, verificamos (b). Para cualquier $w \in H^1_0(\Omega)$, la aplicación $v \mapsto a(v,w)$ es lineal. De manera similar, para cualquier $v \in H^1_0(\Omega)$, la aplicación $w \mapsto a(v,w)$ es lineal. Por lo tanto, $a(\cdot,\cdot)$ es una funcional bilineal en $H^1_0(\Omega) \times H^1_0(\Omega)$.

Aplicando la desigualdad de Cauchy-Schwarz, deducimos que

$$\begin{split} |a(w,v)| &\leq \sum_{i,j=1}^n \max_{x \in \overline{\Omega}} |a_{ij}(x)| \left| \int_{\Omega} \frac{\partial w}{\partial x_i} \frac{\partial v}{\partial x_j} dx \right| \\ &+ \sum_{i=1}^n \max_{x \in \overline{\Omega}} |b_i(x)| \left| \int_{\Omega} \frac{\partial w}{\partial x_i} v dx \right| \\ &+ \max_{x \in \overline{\Omega}} |c(x)| \left| \int_{\Omega} w(x) v(x) dx \right| \\ &\leq \hat{c} \left\{ \left(\sum_{i,j=1}^n \int_{\Omega} \left| \frac{\partial w}{\partial x_i} \right|^2 dx \right)^{1/2} \left(\int_{\Omega} \left| \frac{\partial v}{\partial x_j} \right|^2 dx \right)^{1/2} \\ &+ \sum_{i=1}^n \left(\int_{\Omega} \left| \frac{\partial w}{\partial x_i} \right|^2 dx \right)^{1/2} \left(\int_{\Omega} |v|^2 dx \right)^{1/2} \\ &+ \left(\int_{\Omega} |w|^2 dx \right)^{1/2} \left(\int_{\Omega} |v|^2 dx \right)^{1/2} \right\} \\ &\leq \hat{c} \left\{ \left(\int_{\Omega} |w|^2 dx \right)^{1/2} + \sum_{i=1}^n \left(\int_{\Omega} \left| \frac{\partial w}{\partial x_i} \right|^2 dx \right)^{1/2} \right\} \\ &\times \left\{ \left(\int_{\Omega} |v|^2 dx \right)^{1/2} + \sum_{j=1}^n \left(\int_{\Omega} \left| \frac{\partial w}{\partial x_j} \right|^2 dx \right)^{1/2} \right\}. \end{split}$$

donde

$$\hat{c} = \max \left\{ \max_{1 \le i, j \le n} \max_{x \in \overline{\Omega}} |a_{ij}(x)|, \max_{1 \le i \le n} \max_{x \in \overline{\Omega}} |b_{i}(x)|, \max_{x \in \overline{\Omega}} |c(x)| \right\}.$$

Si acotamos aún más el lado derecho de la última desigualdad, deducimos que

$$|a(w,v)| \le (n+1)\hat{c} \left\{ \left(\int_{\Omega} |w|^2 dx + \sum_{i=1}^n \int_{\Omega} \left| \frac{\partial w}{\partial x_i} \right|^2 dx \right)^{1/2} \times \left(\int_{\Omega} |v|^2 dx + \sum_{j=1}^n \int_{\Omega} \left| \frac{\partial v}{\partial x_j} \right|^2 dx \right)^{1/2} \right\},$$

por lo que, tomando $c_1=(n+1)\hat{c},$ obtenemos la desigualdad de (b).

(a) Por último, demostramos la condición (a). Aquí utilizaremos la condición extra requerida en (1.16) y la condición de elipticidad uniforme (1.7). Usando (1.7) y la desigualdad de Cauchy-Schwarz,

Me corrgeiste un - por un +, pero yo tengo - en las notas, ¿está bien así?

$$a(v,v) \ge \tilde{c}|v|_{H^{1}(\Omega)}^{2} - \left(\sum_{i=1}^{n} \|b_{i}\|_{L_{\infty}(\Omega)}^{2}\right)^{1/2} |v|_{H^{1}(\Omega)} \|v\|_{L_{2}(\Omega)} + \int_{\Omega} c(x)|v(x)|^{2} dx$$

$$\ge \frac{1}{2}\tilde{c}|v|_{H^{1}(\Omega)}^{2} + \int_{\Omega} \left(c(x) - \frac{2}{\tilde{c}}\sum_{i=1}^{n} \|b_{i}\|_{L_{\infty}(\Omega)}^{2}\right) |v(x)|^{2} dx.$$

Asumiendo que

$$c(x) - \frac{2}{\tilde{c}} \sum_{i=1}^{n} ||b_i||_{L_{\infty}(\Omega)}^2 \ge 0,$$

llegamos a la desigualdad

(1.17)
$$a(v,v) \ge \frac{1}{2}\tilde{c}\sum_{i=1}^{n} \int_{\Omega} \left| \frac{\partial v}{\partial x_{i}} \right|^{2} dx.$$

Mediante la desigualdad de Poincaré-Friedrichs, el lado derecho puede acotarse aún más para obtener

$$(1.18) a(v,v) \ge \frac{\tilde{c}}{c_{\star}} \int_{\Omega} |v|^2 dx.$$

Juntando (1.17) y (1.18), obtenemos

(1.19)
$$a(v,v) \ge c_0 \left(\int_{\Omega} |v|^2 dx + \sum_{i=1}^n \int_{\Omega} \left| \frac{\partial v}{\partial x_i} \right|^2 dx \right),$$

donde $c_0 = \tilde{c}/(1+c_{\star})$, y por queda demostrado (a).

Se comprueban así las condiciones (a), (b) y (c) del teorema de Lax-Milgram y concluimos que existe una única solución débil en $H_0^1(\Omega)$ para la ecuación (1.15).

1.3. Métodos numéricos tradicionales: el método de los elementos finitos

El método de los elementos finitos (FEM por su siglas en inglés) es una técnica numérica para resolver ecuaciones en derivadas parciales. Este método es ampliamente utilizado en ingeniería y ciencias aplicadas porque permite aproximar soluciones en dominios complejos.

Para un problema elíptico con condiciones de contorno Dirichlet homogéneas, se parte de la ecuación en su formulación débil. Como hemos visto en el apartado anterior, este problema se puede formular de forma simplificada como encontrar $u \in H^1_0(\Omega)$ tal que

$$a(u,\varphi) = l(\varphi) \quad \forall \varphi \in H_0^1(\Omega).$$

Figura 1.4: División de $\Omega = (0,1)$ en N elementos finitos

Figura 1.5: Polinomio ϕ_i

Por lo visto en la Sección 1.2, esta ecuación tiene solución única en $H_0^1(\Omega)$ si se cumple la condición (1.16). De este modo, para que la formulación del problema sea válida, asumiremos que se cumple esta condición.

Lo siguiente que se hace es dividir el dominio Ω en un conjunto de subdominios más pequeños, llamados elementos finitos. Por ejemplo, si estamos trabajando con un problema de una dimensión, con $\Omega=(0,1)$, dividimos $\overline{\Omega}=[0,1]$ en N subintervalos $[x_i,x_{i+1}],\ i=1,\ldots,N-1,$ con $x_i=ih$, obteniendo la división de la Figura 1.4.

A esta subdivision, se le asocia una base de polinomios a trozos. Reemplazando así el subespacio de funciones que habíamos llamado $H^1_0(\Omega)$ por un subespacio de dimensión finita V_h formado por polinomios a trozos de grado fijo. Siguiendo nuestro ejemplo de antes, la base de polinomios que vamos a utilizar será la de los polinomios como los vistos en la Figura 1.5, definidos de la siguiente forma.

$$\phi_i(x) = \begin{cases} \frac{x - x_{i-1}}{x_i - x_{i-1}}, & \text{si } x \in [x_{i-1}, x_i], \\ \frac{x_{i+1} - x}{x_{i+1} - x_i}, & \text{si } x \in [x_i, x_{i+1}], \\ 0, & \text{en otro caso.} \end{cases}$$

En este ejemplo, nuestro espacio de funciones será $V_h = \operatorname{span}\{\phi_1, \dots, \phi_{N-1}\}$, donde N es el número de elementos finitos en los que hemos dividido el dominio. Con esta definición es claro que todos los $\phi_i \in H^1_0(\Omega)$ pues son funciones derivable en sentido débil que valen 0 en la frontera de $\Omega = (0,1)$. De este modo, al buscar soluciones en este nuevo espacio de funciones, nuestra ecuación diferencial elíptica se convertiría en encontrar $u_h \in V_h$ tal que

$$a(u_h, v_h) = l(v_h) \quad \forall v_h \in V_h.$$

Nótese que las condiciones de contorno van implícitas en la definición de V_h pues todos los $\phi_i \in H^1_0(\Omega)$.

Con todo, de forma intuitiva, lo que se hace es que en vez de buscar una solución en un espacio de funciones de dimensión infinita, como es $H_0^1(\Omega)$, se busca una solución en un espacio de funciones de dimensión finita, como es V_h . Para poder hacer eso, que nos simplifica mucho el problema, lo que hemos hecho es que nuestro dominio, lo

hemos dividido en subdominios más pequeños a partir de los cuales hemos construido nuestro nuevo espacio de funciones.

Ahora, encontrar una solución se convierte en encontrar los coeficientes en la base de polinomios a trozos, es decir, los U_i en la siguiente ecuación

(1.20)
$$u_h = \sum_{i=1}^{N-1} U_i \phi_i.$$

Por tanto, resolver la ecuación diferencial se convierte en encontrar $U = (U_1, \dots, U_{N-1}) \in \mathbb{R}^{N-1}$ que cumplen:

(1.21)
$$\sum_{i=1}^{N-1} a(\phi_i, \phi_j) U_i = l(\phi_j) \quad \forall j = 1, \dots, N-1.$$

Esto se traduce en un sistema lineal de la forma AU = b, donde A es la matriz de rigidez (con entradas $A_{ij} = a(\phi_i, \phi_j)$), y b es el vector de términos fuente (con entradas $b_j = l(\phi_j)$). A este nuevo sistema lineal se le pueden aplicar métodos numéricos tradicionales para resolverlo, como la factorización LU, encontrando así los coeficientes U que nos dan u_h , la aproximación de u.

Este proceso se puede generalizar a problemas en más dimensiones, donde se dividen los dominios en elementos finitos de mayor dimensión, y se construye una base de polinomios a trozos en cada uno de estos elementos. Por ejemplo, en dos dimensiones, un elemento finito sería un triángulo, y la base de polinomios a trozos sería una base de funciones que valen 0 en los bordes del triángulo y que son lineales en cada uno de los lados del triángulo.

Ejemplo 1.8. Veamos ahora un ejemplo concreto de la aplicación del FEM a través de la ecuación de Poisson en dos dimensiones. El objetivo es encontrar un campo escalar u sobre un dominio $\Omega \subset \mathbb{R}^n$ que satisfaga:

(1.22)
$$-\Delta u = f \quad \text{en } \Omega,$$
$$u = 0 \quad \text{en } \partial \Omega.$$

donde f es un término fuente y la condición de contorno es de Dirichlet homogénea. Para encontrar una solución, construimos la forma débil de la ecuación. Para ello, tomamos $v \in H^1_0(\Omega)$ y multiplicamos ambos lados por v e integramos sobre Ω .

$$-\int_{\Omega} (\Delta u) v \, dx = \int_{\Omega} f v \, dx.$$

Utilizando la identidad $div(v\nabla u) = (\nabla u)(\nabla v) + v\Delta u$ obtenemos:

$$\int_{\Omega} \nabla u \nabla v - \int_{\Omega} div(v \nabla u) = \int_{\Omega} fv$$

Por el teorema de Green, podemos escribir (si $\partial\Omega$ es suficientemente regular):

$$\int_{\Omega} \nabla u \nabla v - \int_{\partial \Omega} (v \nabla u) \cdot \mathbf{n} \, dS = \int_{\Omega} f v$$

Finalmente, dado que v = 0 en $\partial \Omega$, concluimos:

$$\int_{\Omega} \nabla u \nabla v = \int_{\Omega} f v$$

La forma fuerte del problema se convierte en:

$$(1.23) a(u,v) = l(v) \quad \forall \ v \in H_0^1(\Omega),$$

donde:

- $a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{d}x$
- $l(v) = \int_{\Omega} fv \, dx$

Para aplicar el FEM, nos interesa encontrar una solución aproximada en un espacio de funciones de dimensión finita. Para ello, dividimos el dominio Ω en un conjunto de elementos finitos y construimos una base de polinomios a trozos en cada uno de estos elementos.

Antes de seguir avanzando, para este ejemplo específico, tomaremos un dominio rectangular $\Omega = [0,2] \times [0,1]$ y $f(x,y) = 10 \cdot \exp\left(-\frac{(x-0,5)^2+(y-0,5)^2}{0,02}\right)$. Bajo estas condiciones sabemos que existe una solución única en $H_0^1(\Omega)$ para el problema (1.23).

A continuación, usamos el paquete de python FEniCS para resolver el problema. En el, lo único reseñable es que se define el dominio Ω y la malla de elementos finitos con el siguiente comando

y se especifica el tipo de polinomios a trozos que se van a utilizar para la base de funciones, en este caso polinomios de Lagrange de grado 1

```
V = FunctionSpace(msh, "Lagrange", 1)
```

Con esto, obtenemos el resultado que se puede ver en la Figura 1.6.

Figura 1.6: Solución de la ecuación de Poisson

En el que la malla de elementos finitos utilizada para la aproximación de la solución se puede apreciar en la Figura 1.7.

Figura 1.7: Malla de elementos finitos

CAPÍTULO 2

Aproximación de EDPs mediante redes neuronales

2.1. PINNs: Physics-Informed Neural Networks

2.1.1. Introducción

Las PINNs, o Physics-Informed Neural Networks, son una técnica que combina la resolución de ecuaciones en derivadas parciales con redes neuronales. La idea es que, en vez de resolver la ecuación diferencial directamente o con métodos numéricos tradicionales, se entrena una red neuronal para que aproxime la solución de la ecuación.

Como habíamos comentado en la Sección 1.1, las redes neuronales son capaces de aproximar cualquier función, por lo que, en teoría, pueden aproximar cualquier solución de una ecuación diferencial. De este modo, las PINNs van a aprovechar esto, definiendo la aproximación de nuestra solución u, como la salida de la función red neuronal $\hat{u}(x;\theta)$, donde θ hace referencia a los pesos y sesgos vistos en la Sección 1.1. Así, la función en la Figura 2.1 sería la aproximación de la solución de la ecuación diferencial.

Figura 2.1: Esquema de una PINN

2.1.2. Formulación de las PINNs

Consideramos una EDP de la forma vista en la Sección 1.2, es decir, una EDP elíptica sujeta a condiciones de contorno Dirichlet. De modo que la ecuación a resolver es la siguiente:

(2.1)
$$\begin{cases} -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{j}} \left(a_{ij}(\mathbf{x}) \frac{\partial u}{\partial x_{i}} \right) + \sum_{i=1}^{n} b_{i}(\mathbf{x}) \frac{\partial u}{\partial x_{i}} + c(\mathbf{x})u = f(\mathbf{x}), & \mathbf{x} \in \Omega, \\ u(\mathbf{x}) = g(\mathbf{x}), & \mathbf{x} \in \partial\Omega. \end{cases}$$

donde $\Omega \subset \mathbb{R}^n$ es un dominio y las funciones $a_{ij}(\mathbf{x}), b_i(\mathbf{x}), c(\mathbf{x}), f(\mathbf{x})$ y $g(\mathbf{x})$ son conocidas. La incógnita es la función $u:\Omega\to\mathbb{R}$ que satisface la ecuación diferencial y las condiciones de contorno. Para poder construir y ajustar los pesos de una red neuronal que aproxime u es esencial tener una función de coste, es decir, una función que nos indique la calidad de nuestra aproximación. En el caso de las PINNs, la función de coste se define como la suma ponderada de dos términos. El primero de ellos garantiza que la función aproximada por la red neuronal satisface la ecuación diferencial en todo el dominio. El segundo término asegura que la aproximación satisface las condiciones de contorno de Dirichlet

(2.2)
$$\mathcal{L}(\boldsymbol{\theta}; \mathcal{T}) = w_f \mathcal{L}_f(\boldsymbol{\theta}; \mathcal{T}_f) + w_b \mathcal{L}_b(\boldsymbol{\theta}; \mathcal{T}_b),$$

donde w_f y w_b son pesos que se ajustan para dar más importancia a un término u otro y

(2.3)
$$\mathcal{L}_{f}(\boldsymbol{\theta}; \mathcal{T}_{f}) = \frac{1}{|\mathcal{T}_{f}|} \sum_{\mathbf{x} \in \mathcal{T}_{f}} |-\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{j}} \left(a_{ij}(\mathbf{x}) \frac{\partial \hat{u}}{\partial x_{i}}\right) + \sum_{i=1}^{n} b_{i}(\mathbf{x}) \frac{\partial \hat{u}}{\partial x_{i}} + c(\mathbf{x}) \hat{u} - f(\mathbf{x})|^{2},$$

$$\mathcal{L}_{b}(\boldsymbol{\theta}; \mathcal{T}_{b}) = \frac{1}{|\mathcal{T}_{b}|} \sum_{\mathbf{x} \in \mathcal{T}_{b}} |\hat{u}(\mathbf{x}) - g(\mathbf{x})|^{2},$$

Estas funciones, \mathcal{L}_f y \mathcal{L}_b , representan la aproximación al residuo fuerte, y la condición de contorno, por una regla de cuadratura. Con las PINNs nosotros queremos encontrar una función \hat{u} que minimice el residuo en Ω y que cumpla las condiciones de contorno en $\partial\Omega$. Para ello, lo que queremos es la \hat{u} que haga que las siguientes expresiones sean mínimas:

$$\int_{\Omega} \left(-\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{j}} \left(a_{ij}(\mathbf{x}) \frac{\partial \hat{u}}{\partial x_{i}} \right) + \sum_{i=1}^{n} b_{i}(\mathbf{x}) \frac{\partial \hat{u}}{\partial x_{i}} + c(\mathbf{x}) \hat{u} - f(\mathbf{x}) \right)^{2},$$

$$\int_{\partial \Omega} \left(\hat{u}(\mathbf{x}) - g(\mathbf{x}) \right)^{2},$$

Para poder computar estas integrales, se utiliza una regla de cuadratura que las aproxime mediante sumas ponderadas de los valores de las funciones en un conjunto discreto

de puntos. En este contexto, los puntos de evaluación se denominan puntos de colocación o collocation points. Para la primera expresión, los puntos de colocación que se usarán los denominaremos \mathcal{T}_f , mientras que para la segunda los denominaremos \mathcal{T}_b .

Existe mucha literatura sobre como tomar los puntos de colocación pues, al igual que en FEM la malla impacta el resultado, en las PINNs, el conjunto \mathcal{T} determina como de bien nuestra red neuronal se ajusta a la solución [8][1][7][10][4].

Es importante destacar que con esta formulación, se impone que el residuo en forma fuerte de la ecuación diferencial sea cero en los puntos de colocación, lo cual, veremos más adelante que puede ser una fuente de errores.

Dada la función de coste y la distribución de los puntos de colocación, el siguiente paso es el entrenamiento. Esto se reduce a resolver un problema de optimización: encontrar los parámetros θ que minimizan la función de coste $\mathcal{L}(\theta; \mathcal{T})$. Para ello, es habitual emplear métodos de optimización basados en gradientes, como Adam o L-BFGS.

Una ventaja fundamental del uso de redes neuronales en este contexto es la diferenciación automática, una técnica numérica muy potente que facilita la obtención de las derivadas de \hat{u} con respecto a sus entradas de forma exacta y eficiente. A continuación, vamos a ver dos ejemplos para ver como se aplican las PINNs a problemas concretos.

Ejemplo 2.1. Consideramos la ecuación elíptica unidimensional:

$$-u_{xx} = \pi^2 \sin(\pi x), \quad x \in [-1, 1],$$

con las condiciones de contorno de Dirichlet

$$u(-1) = 0, \quad u(1) = 0.$$

En esta ecuación la solución exacta es conocida $u(x) = \sin(\pi x)$. Para resolver este problema con una PINN, nos asistimos de la librería de python DeepXDE [5], la cual tiene implementada la funcionalidad necesaria para entrenar una red neuronal que aproxime EDPs. Así, comenzamos definiendo el intervalo en el que se encuentra el dominio y los puntos de colocación

```
definimos la EDP

def pde(x, y):
    dy_xx = dde.grad.hessian(y, x)
    return -dy_xx - np.pi ** 2 * tf.sin(np.pi * x)

indicamos las condiciones de contorno de Dirichlet
    bc = dde.icbc.DirichletBC(geom, func, boundary)

y, con todo, se define el problema de EDPs
```

```
data = dde.data.PDE(geom, pde, bc, 16, 2, solution=func,
num_test=100)
```

Gracias a la librería DeepXDE, podemos entrenar la red neuronal con el siguiente código

```
Losshistory, train_state = model.train(
    iterations=10000, callbacks=[checkpointer, movie]
    )
```

Por detrás, esta se encargará de definir la función de coste asociada, que en este caso será

$$\mathcal{L}(\boldsymbol{\theta}; \mathcal{T}) = w_f \mathcal{L}_f(\boldsymbol{\theta}; \mathcal{T}_f) + w_b \mathcal{L}_b(\boldsymbol{\theta}; \mathcal{T}_b),$$

donde

$$\mathcal{L}_f(\boldsymbol{\theta}; \mathcal{T}_f) = \frac{1}{|\mathcal{T}_f|} \sum_{\mathbf{x} \in \mathcal{T}_f} |\hat{u}_{xx} + \pi^2 \sin(\pi x)|^2,$$

$$\mathcal{L}_b(\boldsymbol{\theta}; \mathcal{T}_b) = \frac{1}{|\mathcal{T}_b|} \sum_{\mathbf{x} \in \mathcal{T}_b} |\hat{u}(\mathbf{x})|^2,$$

por los argumentos con los que se han inicializado las funciones, \mathcal{T}_f serán 16 puntos aleatorios en el intervalo [-1,1] y $\mathcal{T}_b = \{0,1\}$. Con todo, el resultado de ejecutar este código será el de la Figura 2.2.

Figura 2.2: Solución de la ecuación de Poisson

Aunque en este ejemplo sencillo las PINNs funcionan muy bien, estas pueden presentar errores elevados incluso en sistemas relativamente simples. A continuación, vemos uno de los ejemplos que presentan en Luo et al. en [6] en los que las PINNs fallan.

Ejemplo 2.2. La ecuación considerada es unidimensional y se expresa como

(2.4)
$$\begin{cases} Lu = -D_x(AD_x u) = f & \text{en } \Omega = (-1, 1), \\ u = 0 & \text{en } \partial\Omega = \{-1, 1\}, \end{cases}$$

donde la función coeficiente A y f son ambas funciones continuas a trozos y se expresan como

(2.5)
$$A(x) = \begin{cases} \frac{1}{2}, & x \in (-1,0), \\ 1, & x \in [0,1), \end{cases} \quad f(x) = \begin{cases} 0, & x \in (-1,0), \\ -2, & x \in [0,1). \end{cases}$$

Claramente, no existe una solución fuerte. Sin embargo la solución débil $u \in H^1(-1,1)$ para esta ecuación es

(2.6)
$$u(x) = \begin{cases} -\frac{2}{3}x - \frac{2}{3}, & x \in (-1,0), \\ x^2 - \frac{1}{3}x - \frac{2}{3}, & x \in [0,1). \end{cases}$$

En la serie de experimentos numéricos, utilizamos una red neuronal con la siguiente configuración 1-256-256-256-1. Así, la función de coste vendrá dada por la siguiente función.

$$\mathcal{L}(\boldsymbol{\theta}; \mathcal{T}) = w_f \mathcal{L}_f(\boldsymbol{\theta}; \mathcal{T}_f) + w_b \mathcal{L}_b(\boldsymbol{\theta}; \mathcal{T}_b),$$

donde

$$\mathcal{L}_f(\boldsymbol{\theta}; \mathcal{T}_f) = \frac{1}{|\mathcal{T}_f|} \sum_{\mathbf{x} \in \mathcal{T}_f} |D_x(A(x)D_x w(x)) + f(x)|^2,$$

$$\mathcal{L}_b(\boldsymbol{\theta}; \mathcal{T}_b) = \frac{1}{|\mathcal{T}_b|} \sum_{\mathbf{x} \in \mathcal{T}_f} |\hat{u}(\mathbf{x})|^2,$$

En este caso, $\mathcal{T}_b = \{-1, 1\}$ y \mathcal{T}_f es un conjunto de 1000 puntos muestreados uniformemente en el intervalo (-1, 1). Es decir, $|\mathcal{T}_f| = 1000$ y $|\mathcal{T}_b| = 2$.

Bajo esta configuración, obtenemos la función de red $\hat{u}(\mathbf{x};\theta)$ numéricamente a través del método PINN y la comparamos con la solución débil en la Figura 2.3.

Figura 2.3: Solución de la ecuación

Evidentemente, el método no logra obtener la solución exacta u. La diferencia entre u y $\hat{u}(\mathbf{x};\theta)$ es del mismo orden de magnitud que u en sí. En otras palabras, cuanto mayor es el valor absoluto de la solución, mayor es la desviación de la aproximación. Además, al analizar la evolución del error en las gráficas de entrenamiento y test, observamos que la diferencia entre la solución real y la aproximación, medida con la norma L_2 , no disminuye con el número de iteraciones (Error relativo L_2 en el gráfico).

Figura 2.4: Error de la red neuronal

En esta gráfica, las curvas *Error entrenamiento* y *Error test* representan el error de la aproximación en los puntos de entrenamiento y test, respectivamente. Los puntos de entrenamiento corresponden al conjunto de colocación utilizado para aproximar la integral, mientras que los puntos de test pertenecen a un subconjunto del dominio donde se evalúa la aproximación. Por otro lado, el error

relativo L_2 cuantifica la diferencia entre la solución aproximada por la red neuronal y la solución real, integrando dicha diferencia sobre el dominio (-1,1).

Como hemos visto, las PINNs presentan errores significativos en ciertos problemas, lo que puede atribuirse a diversos factores. Uno de los principales desafíos de las PINNs es la falta de garantía de unicidad en la solución. A diferencia de los métodos numéricos tradicionales, las PINNs resuelven problemas de optimización no convexos, los cuales, por naturaleza, no aseguran una solución única. Esto implica que la red neuronal no tiene garantía de converger a la solución correcta y, de hecho, en muchos casos no lo hace. Es más, al igual que ocurre con otros algoritmos de inteligencia artificial, la red puede converger con la misma certeza (o error) hacia una solución incorrecta que hacia la solución real.

Otro obstáculo importante es la ausencia de una justificación teórica que determine cuáles son los hiperparámetros óptimos. Este problema añade incertidumbre al proceso de ajuste de la red, lo que complica la obtención de resultados precisos. Finalmente, otro aspecto problemático de las PINNs es que aproximan el residuo de forma fuerte. Esto significa que, si no existe una solución en el sentido fuerte (como ocurre en el ejemplo mostrado), la red neuronal no puede aproximar de forma adecuada la solución débil.

De estos problemas, los dos primeros son característicos del uso de redes neuronales, mientras que el tercero es específico del método. Con esto en mente, exploraremos un enfoque alternativo que considere la forma débil en la composición del residuo, lo que podría permitir superar esta limitación.

2.2. El "Deep Ritz Method"

El método "Deep Ritz" es una técnica numérica basada en las redes neuronales, que busca encontrar una solución a una ecuación en derivadas parciales utilizando su forma débil. La formulación de este método es más parecida al método de elementos finitos. La principal diferencia con el método de elementos finitos es el espacio donde se busca el mínimo. Nos restringimos a problemas autoadjuntos en los que la forma débil es equivalente a minimizar un funcional.

2.2.1. El problema elíptico autoadjunto

El problema elíptico autoadjunto permite caracterizar las soluciones de las EDP elípticas como el mínimo de un funcional. Esto conecta de manera lógica con el enfoque de redes neuronales para aproximar soluciones, donde la función de coste de la red neuronal se puede definir como esta función. Al minimizarla, se obtiene una solución aproximada del problema original. No obstante, esto lo veremos más adelante en detalle. De momento, consideramos una EDP de la forma vista en la Sección 1.2,

es decir, una EDP elíptica sujeta a condiciones de contorno Dirichlet:

(2.7)
$$\begin{cases} -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{j}} \left(a_{ij}(\mathbf{x}) \frac{\partial u}{\partial x_{i}} \right) + \sum_{i=1}^{n} b_{i}(\mathbf{x}) \frac{\partial u}{\partial x_{i}} + c(\mathbf{x})u = f(\mathbf{x}), & \mathbf{x} \in \Omega, \\ u(\mathbf{x}) = g(\mathbf{x}), & \mathbf{x} \in \partial \Omega \end{cases}$$

Se define el problema elíptico autoadjunto de la siguiente forma.

Definición 2.3. Dado un conjunto Ω , acotado y abierto en \mathbb{R}^n , decimos que una ecuación en derivadas parciales elíptica es autoadjunta, si se cumplen las siguientes condiciones de simetría en los coeficientes.

(2.8)
$$a_{ij} = a_{ji}, i, j = 1, ..., n, b_i = 0, i = 1, ..., n,$$

Bajo estas condiciones, nuestro problema se puede formular de la siguiente forma.

(2.9)
$$\begin{cases} -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{j}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) + c(x)u = f(x), & x \in \Omega, \\ u(x) = 0, & x \in \partial \Omega. \end{cases}$$

Por lo visto en la Sección 1.2, el problema (2.9) se puede reescribir en forma débil de la siguiente forma: encontrar $u \in H_0^1(\Omega)$ tal que

$$(2.10) a(u,v) = l(v) \quad \forall v \in H_0^1(\Omega).$$

Donde, al ser un problema autoadjunto, el funcional $a(\cdot,\cdot)$ es simétrico

$$a(u, w) = a(w, u) \quad \forall u, w \in H_0^1(\Omega).$$

De ahora en adelante vamos a asumir que (2.9) cumple la condición de elipticidad uniforme y además se cumple que

$$c(x) - \frac{1}{2} \sum_{i=1}^{n} \frac{\partial b_i}{\partial x_i} \ge 0, \quad x \in \overline{\Omega},$$

por lo que, tal como se estableció en la Sección 1.2, el problema (2.9) admite una única solución débil. La solución débil de (2.10) no solo es única, sino que también puede caracterizarse como el mínimo de un funcional. Esto es así por el siguiente resultado.

Lema 2.4. Definitions el funcional cuadrático $J: H_0^1(\Omega) \to \mathbb{R}$ como

$$J(u) = \frac{1}{2}a(v,v) - l(v), \quad u \in H_0^1(\Omega),$$

de modo que las siguientes afirmaciones son equivalentes:

- 1. Encontrar el único $u \in H_0^1(\Omega)$ tal que a(u,v) = l(v) $\forall v \in H_0^1(\Omega)$
- 2. Encontrar el único $u \in H_0^1(\Omega)$ tal que $J(u) \leq J(v)$ $\forall v \in H_0^1(\Omega)$

Demostración 2.5. Sea u la única solución débil de (2.10) en $H_0^1(\Omega)$ y, para $v \in H_0^1(\Omega)$, consideremos J(v) - J(u):

$$J(v) - J(u) = \frac{1}{2}a(v,v) - l(v) - \frac{1}{2}a(u,u) + l(u)$$

$$= \frac{1}{2}a(v,v) - \frac{1}{2}a(u,u) - l(v-u)$$

$$= \frac{1}{2}a(v,v) - \frac{1}{2}a(u,u) - a(u,v-u)$$

$$= \frac{1}{2}[a(v,v) - 2a(u,v) + a(u,u)]$$

$$= \frac{1}{2}[a(v,v) - a(u,v) - a(v,u) + a(u,u)]$$

$$= \frac{1}{2}a(v-u,v-u).$$

Por lo tanto,

$$J(v) - J(u) = \frac{1}{2}a(v - u, v - u).$$

Debido a (1.19),

$$a(v-u, v-u) \ge c_0 ||v-u||_{H_0^1(\Omega)}^2,$$

donde c_0 es una constante positiva. Así,

(2.11)
$$J(v) - J(u) \ge \frac{c_0}{2} \|v - u\|_{H_0^1(\Omega)}^2 \quad \forall v \in H_0^1(\Omega)$$

y, en consecuencia,

$$(2.12) J(v) \ge J(u) \quad \forall v \in H_0^1(\Omega)$$

es decir, u minimiza $J(\cdot)$ sobre $H_0^1(\Omega)$. De hecho, \tilde{u} es el único minimizador de $J(\cdot)$ en $H_0^1(\Omega)$. En efecto, si \tilde{u} también minimiza $J(\cdot)$ en $H_0^1(\Omega)$, entonces

(2.13)
$$J(v) \ge J(\tilde{u}) \quad \forall v \in H_0^1(\Omega).$$

Tomando $v = \tilde{u}$ en (2.12) y v = u en (2.13), deducimos que

$$J(u) = J(\tilde{u});$$

pero entonces, en virtud de (2.11),

$$\|\tilde{u} - u\|_{H_0^1(\Omega)} = 0,$$

y, por lo tanto, $u = \tilde{u}$.

2.2.2. Formulación del método "Deep Ritz"

El método Deep Ritz, propuesto por E y Yu en [3], se basa en minimizar el funcional J(u) (definido en el Lema 2.4) representando la solución desconocida mediante una red neuronal $\hat{u}_{\theta} : \mathbb{R}^d \to \mathbb{R}$, en lugar de emplear funciones base del método de los

elementos finitos. Es decir, en lugar de aproximar la función $u \in H_0^1(\Omega)$ que minimiza J(u) dentro del espacio de elementos finitos V_h , se busca una aproximación en el espacio de funciones red neuronal. Aquí, $\theta \in \mathbb{R}^{\#\mathcal{N}}$ denota el conjunto de parámetros de la red, donde $\#\mathcal{N}$ es el número total de parámetros libres.

El marco teórico del método Deep Ritz requiere que la red neuronal sea diferenciable, es decir, que utilice funciones de activación diferenciables. En la Figura 2.5, se muestra la arquitectura de la red neuronal profunda utilizada por E y Yu.

Figura 2.5: La figura muestra una red con dos bloques y una capa lineal de salida. Cada bloque consiste en dos capas completamente conectadas y una conexión de salto.

Dada una arquitectura de red \mathcal{N} , el espacio de aproximación $V_{\mathcal{N}}$ utilizado en el método Deep Ritz se define como:

$$V_{\mathcal{N}} := \{ \hat{u}_{\theta} : \mathbb{R}^d \to \mathbb{R} \mid \theta \in \mathbb{R}^{\# \mathcal{N}} \}.$$

Mientras que $\#\mathcal{N}$ sea finito y las funciones de activación sean diferenciables, se cumple que $V_{\mathcal{N}} \subset H^1(\Omega)$. Sin embargo, en general, para $u_{\mathcal{N}} \in V_{\mathcal{N}}$ no se garantiza que $u_{\mathcal{N}} = 0$ en $\partial \Omega$, por lo que $V_{\mathcal{N}} \not\subset V = H^1_0(\Omega)$. Además, es importante notar que $V_{\mathcal{N}}$

no es un espacio vectorial, ya que para $v_1, v_2 \in V_N$ no necesariamente se cumple que $v_1 + v_2 \in V_N$.

Para abordar esta limitación, se introduce el funcional de energía penalizado:

$$J_{\lambda}(v) := J(v) + \frac{\lambda}{2} |v|_{\partial\Omega}^2,$$

donde $\lambda \in \mathbb{R}^+$ es un parámetro de penalización y $|\cdot|_{\partial\Omega}$ denota la norma L^2 en la frontera del dominio. El término de penalización adicional impone que v tienda a cero en $\partial\Omega$.

Esta formulación permite el uso de redes neuronales en la aproximación de ecuaciones diferenciales parciales sin necesidad de definir funciones de base explícitas, facilitando la resolución de problemas de altas dimensiones donde los métodos clásicos pueden volverse ineficientes. No obstante, igual que en el caso de las PINN el problema de la formulación residía en que se aproximaba el residuo de forma fuerte, en el método Deep Ritz, el problema radica en que se minimiza el funcional J_{λ} en lugar de J, es decir, se altera el problema para imponer las condiciones de contorno, variando así la solución. Para ver esto de forma más clara, vamos a aplicar el método Deep Ritz a la ecuación de Poisson en una dimensión.

Ejemplo 2.6. Consideremos la ecuación de Poisson en una dimensión, con f=1 y $\Omega=(0,1)$

$$(2.14) -u'' = 1, u(0) = u(1) = 0,$$

cuya solución exacta es

$$u(x) = -x^2/2 + x/2.$$

En forma débil, la ecuación (2.14) se puede escribir como: encontrar $u \in H^1(0,1)$ tal que:

$$\int_0^1 u'v' = \int_0^1 v \quad \forall v \in H^1(0,1).$$

en cuyo caso, la forma bilienal a y lienal l asociadas son:

$$a(u, v) = \int_0^1 u'v',$$

 $l(v) = \int_0^1 v.$

Por lo tanto, el funcional J(u) asociado a este problema es:

$$J(u) = \frac{1}{2} \int_0^1 (u')^2 - \int_0^1 u.$$

Con esta información podemos plantear el método de Ritz para este problema como encontrar $\hat{u}_{\theta} \in V_{\mathcal{N}}$ tal que:

$$\min_{\hat{u}_{\theta}} \left(\frac{1}{2} \int_{\Omega} \left((\hat{u}'_{\theta})^2 - \int_{\Omega} \hat{u}_{\theta} + \lambda (\hat{u}_{\theta}(0)^2 + \hat{u}_{\theta}(1)^2) \right) \right) = \\
\min_{\hat{u}_{\theta}} \left(\frac{1}{2} \int_{0}^{1} \left((\hat{u}'_{\theta})^2 - \int_{0}^{1} \hat{u}_{\theta} + \lambda (\hat{u}_{\theta}(0)^2 + \hat{u}_{\theta}(1)^2) \right) \right),$$

donde \hat{u}_{θ} es una función de una red neuronal. Así, el funcional que estamos minimizando, $J_{\lambda}: H^1(0,1) \to \mathbb{R}$ se define como:

$$J_{\lambda}(u) = \frac{1}{2} \int_{0}^{1} \left((u')^{2} - \int_{0}^{1} u + \lambda (u(0)^{2} + u(1)^{2}) \right).$$

Si buscamos el mínimo de J_{λ} , vamos a encontrar que u verifica la siguiente ecuación:

$$J_{\lambda}'(u)v := \lim_{\beta \to 0} \frac{J_{\lambda}(u+\beta v) - J_{\lambda}(u)}{\beta} = 0.$$

Es fácil ver que $u \in H^1(0,1)$, y

$$\int_0^1 u'v' - \int_0^1 v + 2\lambda u(0)v(0) + 2\lambda u(1)v(1) = 0, \quad \forall v \in H^1(0,1).$$

Consideramos ahora el siguiente problema: encontrar $u \in C^2(0,1)$ tal que

$$-u'' = f$$
, $u'(0) = 2\lambda u(0)$, $u'(1) = -2\lambda u(1)$,

que tiene como solución para f=1

$$u_{\lambda} = -x^2/2 + x/2 + 1/(4\lambda).$$

La solución débil de este problema es: encontrar $u \in H^1(0,1)$ tal que

$$\int_0^1 u'v' + 2\lambda u(1)v(1) + 2\lambda u(0)v(0) = \int_0^1 v, \quad \forall v \in H^1(0,1).$$

O lo que es lo mismo, encontrar $u \in H^1(0,1)$ tal que

$$\int_0^1 u'v' + 2\lambda v(1)u(1) + 2\lambda v(0)u(0) = \int_0^1 v, \quad \forall v \in H^1(0,1).$$

Con este ejemplo, nos damos cuenta de que el método Deep Ritz, en su formulación utilizada aquí, no aproxima exactamente el problema original, sino que en su lugar resuelve una ecuación con condiciones de frontera modificadas. Esto introduce un sesgo en la solución obtenida, lo que implica que el método no es exacto para el problema original de Poisson con condiciones de Dirichlet homogéneas. Siendo más específicos, el método Deep Ritz estaría aproximando la solución $u_{\lambda}(x) = -x^2/2 + x/2 + 1/(4\lambda)$

en lugar de la solución exacta $u(x) = -x^2/2 + x/2$, suponiendo un error de $O(1/\lambda)$ en la solución obtenida.

A continuación, vamos a plantear la ecuación de Poisson en un dominio cuadrado y en una L, para lo cual he tenido que programar el método Deep Ritz en Python usando PyTorch. El objetivo con este ejemplo es entender cómo se comporta el método Deep Ritz ante los distintos valores que puede tomar el parámetro de penalización λ .

Ejemplo 2.7. Consideramos el siguiente problema de Poisson en un cuadrado unitario $\Omega = (0,1)^2$ con condiciones de contorno de Dirichlet homogéneas:

(2.15)
$$\begin{cases} -\Delta u = 1, & \text{en } \Omega, \\ u = 0, & \text{en } \partial \Omega. \end{cases}$$

Para aplicar el método, lo primero que necesitamos es definir el funcional $J_{\lambda}(u)$ asociado a este problema. En este caso, $a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v \, y \, l(v) = \int_{\Omega} v$. Así, el funcional $J_{\lambda}(u)$ se define como:

$$J_{\lambda}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \int_{\Omega} u + \lambda \int_{\partial \Omega} u^2.$$

Para resolver este problema, he implementado el método Deep Ritz en Python usando PyTorch. La red neuronal utilizada tiene la siguiente configuración: 2-8-8-1. En la Figura 2.6 se muestra la solución obtenida con $\lambda=500$. No obstante, siguiendo la intuición que desarrollado en el ejemplo en una dimensión, si usamos $\lambda=10^-5$, el resultado es el que encontramos en la Figura 2.7, en la que se ve que claramente no se logra aproximar la solución.

Figura 2.6: Solución de la ecuación de Poisson en un cuadrado unitario con $\lambda = 500$.

Figura 2.7: Solución de la ecuación de Poisson en un cuadrado unitario con $\lambda = 10^{-5}$.

2.2.3. El método "Deep Ritz" versión antigua

El método Deep Ritz, propuesto por E y Yu en [3], se basa en la formulación débil de problemas elípticos autoadjuntos, donde la solución se obtiene como el mínimo del funcional J(u) descrito en el Lema 2.4. En esencia, este enfoque comparte similitudes con el método de los elementos finitos, pero en lugar de utilizar funciones de base predefinidas, el espacio de funciones en el que se busca la solución será el espacio de funciones redes neuronal.

$$\min_{u \in H} I(u)$$

donde

(2.17)
$$I(u) = \int_{\Omega} \left(\frac{1}{2} |\nabla u(x)|^2 - f(x)u(x)\right) dx$$

y H es el conjunto de funciones admisibles (también llamado función de prueba, representada aquí por u), f es una función dada, que representa la fuerza externa aplicada al sistema en consideración. Problemas de este tipo son bastante comunes en las ciencias físicas. El método Deep Ritz se basa en el siguiente conjunto de ideas:

- 1. Aproximación basada en redes neuronales profundas para la función de prueba.
- 2. Una regla de cuadratura numérica para el funcional.
- 3. Un algoritmo para resolver el problema de optimización final.

El componente básico del método Deep Ritz es una transformación no lineal $x \to z_{\theta}(x) \in \mathbb{R}^m$ definida por una red neuronal profunda. Aquí θ denota los parámetros, típicamente los pesos de la red neuronal, que ayudan a definir esta transformación. En la arquitectura que utilizamos, cada capa de la red se construye apilando

varios bloques, cada bloque consiste en dos transformaciones lineales, dos funciones de activación y una conexión residual. Tanto la entrada s como la salida t del bloque son vectores en \mathbb{R}^m . El i-ésimo bloque puede expresarse como:

(2.18)
$$t = f_i(s) = \phi(W_{i,2} \cdot \phi(W_{i,1}s + b_{i,1}) + b_{i,2}) + s$$

donde $W_{i,1}, W_{i,2} \in \mathbb{R}^{m \times m}$, $b_{i,1}, b_{i,2} \in \mathbb{R}^m$ las correspondientes matrices de pesos y sesgos asociadas al bloque i. ϕ es la función de activación (escalar)

Tal y como se precisa en [3] la función de activación ϕ juega un papel clave en la precisión del algoritmo. Para equilibrar simplicidad y precisión, hemos decidido utilizar

(2.19)
$$\phi(x) = \max\{x^3, 0\}$$

El último término en (2.18), la conexión residual, facilita mucho el entrenamiento de la red ya que ayuda a evitar el problema del gradiente que desaparece. La estructura de los dos bloques, incluyendo dos conexiones residuales, se muestra en la Figura 2.5.

La red completa de n capas puede expresarse ahora como:

$$(2.20) z_{\theta}(x) = f_n \circ \dots \circ f_1(x)$$

 θ denota el conjunto de todos los parámetros en toda la red. Nota que la entrada x para el primer bloque está en \mathbb{R}^d , no en \mathbb{R}^m . Para manejar esta discrepancia podemos ya sea completar x con un vector de ceros cuando d < m, o aplicar una transformación lineal a x cuando d > m. Teniendo z_{θ} , obtenemos u mediante

$$(2.21) u(x;\theta) = a \cdot z_{\theta}(x) + b$$

Aquí en el lado izquierdo y en lo que sigue, usaremos θ para denotar el conjunto completo de parámetros $\{\theta, a, b\}$. Sustituyendo esto en la forma de I, obtenemos una función de θ , que debemos minimizar.

Para el funcional que aparece en (2.17), denotamos:

(2.22)
$$g(x;\theta) = \frac{1}{2} |\nabla_x u(x;\theta)|^2 - f(x)u(x;\theta)$$

entonces nos queda el problema de optimización:

(2.23)
$$\min_{\theta} L(\theta), \quad L(\theta) = \int_{\Omega} g(x; \theta) dx$$

El cual, de nuevo se resuelve mediante algoritmos de optimización basados en gradientes.

Al igual que hicimos en la Sección 2.1, vamos a ver dos ejemplos de la aplicación de las PINNs a problemas concretos.

CAPÍTULO 3 Resultados

CAPÍTULO 4

Partes eliminadas - NO IMPRIMIR

4.1. Espacios de funciones

Para poder entender y formular de forma matemática el problema de aproximación de EDPs mediante redes neuronales, es necesario tener un conocimiento previo de los espacios de funciones en los que trabajamos. Como veremos más adelante al estudiar los problemas de frontera para EDPs elípticas, es importante tener una caracterización del espacio H_1^0 . Para entenderlo, empezaremos por los espacios de Hilbert Soobolev.

Definición 4.1. Seam Ω un conjunto abierto de \mathbb{R}^n . Definimos el espacio de Sobolev $H^1(\Omega)$ como el conjunto de funciones en el siguiente conjunto

(4.1)
$$H^{1}(\Omega) = \{ u \in L^{2}(\Omega) : \frac{\partial u}{\partial x_{i}} \in L^{2}(\Omega), i = 1, \dots, n \}.$$

En este espacio, se define la norma de funciones de con la siguiente ecuación

(4.2)
$$||u||_{H^{1}(\Omega)} = \left(||u||_{L^{2}(\Omega)}^{2} + \sum_{i=1}^{n} \left| \left| \frac{\partial u}{\partial x_{i}} \right| \right|_{L^{2}(\Omega)}^{2} \right)^{1/2}.$$

Dada esta definición, se define el espacio $H_0^1(\Omega)$ como el cierre de las funciones de $C_0^{\infty}(\Omega)$ en la norma de $H^1(\Omega)$. Es decir, $H_0^1(\Omega)$ es el conjunto de funciones $u \in H^1(\Omega)$ que se obtienen como límite en $H^1(\Omega)$ de una serie de funciones $\{u_m\}_{m=1}^{\infty}$ todas ellas en $C_0^{\infty}(\Omega)$. Así, de forma más simple, se puede demostrar que $H_0^1(\Omega)$ se trata del siguiente conjunto.

(4.3)
$$H_0^1(\Omega) = \{ u \in H^1(\Omega) : u = 0 \text{ en } \partial \Omega \}.$$

Nótese que $H_0^1(\Omega)$ es un espacio de Hilbert con la misma norma y producto interno que $H^1(\Omega)$.

Ejemplo 4.2. Es fácil ver por ejemplo que la función $u = x^2 + y^2 - 4$ pertenece a $H_0^1(C)$, siendo $C = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 4\}$ el círculo abierto de radio 2 centrada en el origen. Esto se debe a que $u \in L^2(C)$ y además:

$$\frac{\partial u}{\partial x} = 2x \in L^2(C), \quad \frac{\partial u}{\partial y} = 2y \in L^2(C), \quad u = 0 \text{ en } \partial C.$$

Por tanto, $u \in H_0^1(C)$.

4.2. Introducción a las ecuaciones en derivadas parciales

Las ecuaciones en derivadas parciales (EDPs) son ecuaciones que relacionan una función desconocida con sus derivadas parciales. Son fundamentales en la física y en la ingeniería, ya que permiten modelar fenómenos físicos y predecir su evolución en el tiempo.

Existen varios tipos de EDPs, no obstante, nosotros nos centraremos en los problemas de frontera para ecuaciones en derivadas parciales elípticas. Estas se utilizan para resolver problemas de equilibrio, que implican encontrar la solución de una ecuación diferencial en un dominio acotado con condiciones de frontera específicas. Estos problemas incluyen la distribución estacionaria de temperatura, el flujo de fluidos incompresibles no viscosos, la distribución de tensiones en sólidos en equilibrio, y el cálculo de campos eléctricos en regiones con densidad de carga. En general, se aplican cuando se busca determinar un potencial en situaciones estacionarias.

Lo he sacado de: este enlace, este tipo de cosas se citan?

Uno de los primero ejemplos de este tipo de ecuaciones es la ecuación de Poisson,

$$-\Delta u = f$$

donde Δ es el operador laplaciano, que se define como la suma de las segundas derivadas parciales de la función u:

$$\Delta u = \sum_{i=1}^{n} \frac{\partial^2 u}{\partial x_i^2}$$

Esta ecuación es una EDP elíptica pues cumple la siguiente definición general.

Definición 4.3. Dado un conjunto Ω , acotado y abierto en \mathbb{R}^n , decimos que una ecuación en derivadas parciales es elíptica si:

$$(4.4) \qquad -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{j}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) + \sum_{i=1}^{n} b_{i}(x) \frac{\partial u}{\partial x_{i}} + c(x)u = f(x), \qquad x \in \Omega.$$

Donde los coeficientes $a_{ij}(x)$, $b_i(x)$, c(x) y f son funciones que satisfacen las siguientes condiciones

$$(4.5) a_{ij} \in C^1(\overline{\Omega}), i, j = 1, \dots, n$$

$$(4.6) b_i, c \in C(\overline{\Omega}), i = 1, \dots, n$$

$$(4.7) c \in C(\overline{\Omega}),$$

$$(4.8) f \in C(\overline{\Omega})$$

De entre los problemas elípticos definidos en 1.2, como comentábamos, nos interesan las ecuaciones en derivadas parciales elípticas con condiciones de frontera, en concreto, las condiciones de frontera de Dirichlet.

Definición 4.4. El problema de condición de frontera de Dirichlet es concretamente el que tenemos una EDP elíptica como la definida en 1.2, tal que, nuestra solución u, además de cumplir las ecuación (1.2), cumple la siguiente condición de frontera

$$(4.9) u(x) = g(x), \forall x \in \partial \Omega.$$

Asimismo, el problema homogéneo de Dirichlet es aquel en el que g = 0. A lo largo del trabajo nos centraremos principalmente en es te tipo de EDPs.

Con todo, el tipo de ecuaciones elípticas en el que nos vamos a centrar (entendiendo que se cumplen las condiciones de (1.3) - (1.6)) serán de la siguiente forma.

$$(4.10) \begin{cases} -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{j}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) + \sum_{i=1}^{n} b_{i}(x) \frac{\partial u}{\partial x_{i}} + c(x)u = f(x), & x \in \Omega \\ u(x) = 0, & x \in \partial\Omega. \end{cases}$$

4.3. Forma fuerte y débil de una EDP

En la formulación que hemos dado de las ecuaciones en derivadas parciales elípticas, nos estábamos refiriendo a su formulación en forma fuerte. De forma intuitiva, esta es la que se obtiene directamente de la definición de la ecuación, y es la que relaciona la función desconocida con sus derivadas parciales. La solución de estas ecuaciones en forma fuerte es la que se conoce como solución clásica. De esto surge la siguiente definición.

Definición 4.5. Una función $u \in C^2(\Omega)$ que cumples las condiciones de frontera de Dirichlet y satisface la ecuación (1.2) en Ω se dice que es una solución clásica o fuerte de la ecuación (1.2).

No obstante, en muchos casos, no es posible encontrar una solución en forma fuerte, es decir, una función que cumpla la ecuación en todo el dominio y que además cumpla las condiciones de frontera. En estos casos, se recurre a métodos alternativos, como

la formulación débil de la ecuación, que permite encontrar una solución en un espacio de funciones más amplio. A continuación, vemos un ejemplo que motiva la necesidad de recurrir a la formulación débil de una ecuación.

Ejemplo 4.6. Supongamos que tenemos la siguiente ecuación de Poisson con una condición de frontera de Dirichlet homogénea,

$$\begin{cases} -\Delta u = f, & \text{en } \Omega, \\ u = 0, & \text{en } \partial \Omega. \end{cases}$$

Donde Ω es un conjunto acotado y abierto en \mathbb{R}^n . En este caso, no siempre es posible encontrar una solución en forma fuerte, es decir, una función u que cumpla la ecuación en todo el dominio Ω y que además cumpla la condición de frontera. Por ejemplo, si f no es una función suave, no se puede garantizar la existencia de una solución en forma fuerte pues estaríamos rompiendo la condición de (1.6). En estos casos, se recurre a métodos alternativos, como la formulación débil de la ecuación, que permite encontrar una solución en un espacio de funciones más amplio.

Para pasar de forma fuerte a débil, lo que hacemos es seguir el siguiente proceso

1. Multiplicamos a ambos lados de la igualdad por una función $\varphi \in C_0^{\infty}(\Omega)$ e integramos.

$$\int_{\Omega} \left(-\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{j}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) + \sum_{i=1}^{n} b_{i}(x) \frac{\partial u}{\partial x_{i}} + c(x)u \right) \varphi \, dx$$
$$= \int_{\Omega} f(x) \varphi \, dx$$

2. Expandimos la multiplicación e integramos por partes en la primera integral, llegando a

$$\sum_{i,j=1}^{n} \int_{\Omega} a_{ij}(x) \frac{\partial \varphi}{\partial x_{j}} \frac{\partial u}{\partial x_{i}} + \sum_{i=1}^{n} \int_{\Omega} b_{i}(x) \frac{\partial u}{\partial x_{i}} \varphi + \int_{\Omega} c(x) \varphi u \, dx$$
$$= \int_{\Omega} f(x) \varphi \, dx$$

Con esta manipulación hemos conseguido una cosa muy interesante: ya no tenemos segundas derivadas de u, es decir, ya no necesitamos que $u \in C^2$. Para que esta igualdad tenga sentido, solo hace falta que $u \in L^2(\Omega)$ y que $\partial y/\partial x_i \in L^2(\Omega)$, $i=1,\ldots,n$. Nótese además que, para que se cumpla la condición de frontera de Dirichlet, $u=0\in\partial\Omega$. Todo esto se traduce a que $u\in H^1_0(\Omega)$ Esto simplifica las condiciones del problema pues el espacio de funciones en el que puede estar u, ahora es mucho más amplio.

3. Para simplificar aun más el problema, nótese que a_{ij} ya no aparecen tras derivadas de ningún tipo, luego no es necesario asumir que $a_{ij} \in C^1(\overline{\Omega})$, basta con que $a_{ij} \in L^{\infty}(\Omega)$. Por lo mismo, b_i , $c \in L^{\infty}(\Omega)$, $i = 1, \ldots, n$ es suficiente.

4. Por último, nótese que $C_0^{\infty}(\Omega) \subset H_0^1(\Omega)$, luego se puede ver que teniendo $u, v \in H_0^1(\Omega)$, nuestra ecuación sigue teniendo sentido. Con todo esto, surge la siguiente definición de forma débil.

Ejemplo 4.7. Resolveremos una ecuación de calor:

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}, \quad x \in [0, 1], \quad t \in [0, 1]$$

donde $\alpha = 0.4$ es la constante de difusividad térmica. Con condiciones de frontera de Dirichlet:

$$u(0,t) = u(1,t) = 0,$$

y condición inicial periódica (sinusoidal):

$$u(x,0) = \sin\left(\frac{n\pi x}{L}\right), \quad 0 < x < L, \quad n = 1, 2, \dots$$

donde L=1 es la longitud de la barra y n=1 es la frecuencia de la condición inicial sinusoidal. Para este problema, sabemos que la solución exacta es:

$$u(x,t) = e^{-\frac{n^2\pi^2\alpha t}{L^2}}\sin\left(\frac{n\pi x}{L}\right).$$

Que si la vemos de forma gráfica, obtenemos la Figura 4.1.

Figura 4.1: Solución de la ecuación de calor

Si nos ayudamos de la librería DeepXDE, podemos programar la red neuronal y entrenarla para que aproxime la solución de la ecuación de calor. El resultado obtenido es el obtenido en la Figura 4.2.

Figura 4.2: Aproximación de la solución de la ecuación de calor

Ejemplo 4.8. Consideramos un problema de convección unidimensional, una EDP hiperbólica:

$$\frac{\partial u}{\partial t} + \beta \frac{\partial u}{\partial x} = 0, \quad x \in \Omega, \ t \in [0, T],$$
$$u(x, 0) = h(x), \quad x \in \Omega.$$

Aquí, β es el coeficiente de convección y h(x) es la condición inicial. Para un β constante y condiciones de contorno periódicas, este problema tiene una solución analítica simple:

$$u_{\text{analytical}}(x,t) = \mathcal{F}^{-1}(\mathcal{F}(h(x))e^{-ik\beta t}),$$

donde \mathcal{F} es la transformada de Fourier, $i = \sqrt{-1}$ y k denota la frecuencia en el dominio de Fourier. La función de pérdida general para este problema (correspondiente a la Ecuación (2.2)) es

$$\mathcal{L}(\theta) = \frac{1}{N_u} \sum_{i=1}^{N_u} (\hat{u} - u_i^0)^2 + \frac{1}{N_f} \sum_{i=1}^{N_f} \lambda_i \left(\frac{\partial \hat{u}}{\partial t} + \beta \frac{\partial \hat{u}}{\partial x} \right)^2 + \mathcal{L}_B,$$

donde \hat{u} es la salida de la red neuronal, y \mathcal{L}_B es la pérdida de contorno. Para condiciones de contorno periódicas con $\Omega = [0, 2\pi]$, esta pérdida es:

$$\mathcal{L}_{B} = \frac{1}{N_{B}} \sum_{i=1}^{N_{B}} (\hat{u}(\theta, 0, t) - \hat{u}(\theta, 2\pi, t))^{2}.$$

Usamos las siguientes condiciones iniciales y de contorno periódico simples:

$$u(x,0) = \sin(x),$$

$$u(0,t) = u(2\pi,t).$$

Si usamos la librería propuesta por Xu et al. en el Repositorio [2] para resolver este problema, obtenemos la aproximación se puede ver en la Figura 4.3. En esta,

se puede observar que la aproximación y la solución exacta no coinciden y además, el error es muy elevado para $\beta>1.$

Figura 4.3: Solución de la ecuación de convección

Bibliografía

- [1] Yuri Aikawa, Naonori Ueda y Toshiyuki Tanaka. "Improving the efficiency of training physics-informed neural networks using active learning". En: New Generation Computing (2024), págs. 1-22.
- [2] C. Possible Failure Modes in Physics-Informed Neural Networks. https://github.com/alk12/characterizing-pinns-failure-modes. 2021.
- [3] Weinan E y Bing Yu. The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems. 2017. arXiv: 1710.00211 [cs.LG]. URL: https://arxiv.org/abs/1710.00211.
- [4] Jie Hou, Ying Li y Shihui Ying. "Enhancing PINNs for solving PDEs via adaptive collocation point movement and adaptive loss weighting". En: *Nonlinear Dynamics* 111.16 (2023), págs. 15233-15261.
- [5] Lu Lu et al. "DeepXDE: A deep learning library for solving differential equations". En: SIAM Review 63.1 (2021), págs. 208-228. DOI: 10.1137/19M1274067.
- [6] Tao Luo y Qixuan Zhou. On Residual Minimization for PDEs: Failure of PINN, Modified Equation, and Implicit Bias. 2023. arXiv: 2310.18201 [math.AP]. URL: https://arxiv.org/abs/2310.18201.
- [7] Takashi Matsubara y Takaharu Yaguchi. Good Lattice Training: Physics-Informed Neural Networks Accelerated by Number Theory. 2023. arXiv: 2307.13869 [cs.LG]. URL: https://arxiv.org/abs/2307.13869.
- [8] Marcus Münzer y Chris Bard. A Curriculum-Training-Based Strategy for Distributing Collocation Points during Physics-Informed Neural Network Training. 2022. arXiv: 2211.11396 [cs.LG]. URL: https://arxiv.org/abs/2211.11396.
- [9] Allan Pinkus. "Approximation theory of the MLP model in neural networks". En: Acta numerica 8 (1999), págs. 143-195.
- [10] Shashank Subramanian et al. Adaptive Self-supervision Algorithms for Physics-informed Neural Networks. 2022. arXiv: 2207.04084 [cs.LG]. URL: https://arxiv.org/abs/2207.04084.