

TERMONET: Modeling and Control of District Heating and Cooling Networks

Krzysztof Arendt, Konstantin Filonenko, Christian T. Veje Center for Energy Informatics University of Southern Denmark

Termonet Concept

- Buildings equipped with individual heat pumps
- Shared boreholes and horizontal piping
- Non-insulated pipes
- Both heating and cooling functions
- Possible utilization of industrial waste heat from, e.g. from data centers

Public and private partners:

Challenges

Sizing

- How to take into account future buildings?
- No suitable modeling tools on the market

Control

- Individual control is suboptimal
- Centralized control is difficult to implement
- For how many building it is economically viable to implement centralized control?

Approach

- Modelica
 - High order models for design and sizing
 - Medium/low order models for control optimization
- Model Predictive Control
 - Which formulation?
 - Which models?
 - Scalability?
 - Centralized or distributed MPC?

High Order District and Building Models

- R1C1 thermal network
- Detailed heating system: heat pump, immersion heater, storage tank, radiator, pumps

Low Order Building Model

- R1C1 thermal network
- Heat pump supplying heat to the building thermal mass
- Heat pump model based on COP table:

Borehole temperature

Medium Order District Model

Low order building + fluid connectors

Low Order District Model

- Low order building models
- No fluid components
- Borehole model based on R2C2:
 - 1st capacitor for fast dynamics
 - 2nd capacitor for slow dynamics

Suboptimal Individual Control (PID)

Medium order district model

Suboptimal Individual Control (PID)

Low order district model

Goal: Load Shifting

SDU SYDDANSK UNIVERSITET

- Not clear how to formulate the optimization problem
 - Single objective or multiple objectives?
 - Changing objectives or static?
 - Centralized MPC vs. distributed MPC

Centralized MPC Distributed MPC Predictive controller Building

Optimal Control: Cost Optimization

Collaboration

Private and public partners

Measurements and test sites

International projects

- Model predictive control with Modelica
- Modelica application examples

Future Work

- Termonet Modelica library
- Proof of concept: load shifting → COP maximization → more optimal operation
- Optimization scalability and robustness