北京邮电大学 2015-2016 学年第 | 学期

《通信原理》期中考试试题 A 卷答案

一. 选择填空(每题1分, 共有52空, 得分限幅于50分)

在候选答案出选出最佳的一个答案写在下面的答题表中,写在别处不得分

空格号	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
答案	C	A	В	D	В	D	В	D	A	D	A	C	D
空格号	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)
答案	A	В	В	В	A	В	D	A	D	A	D	В	D
空格号	(27)	(28)	(29)	(30)	(31)	(32)	(33)	(34)	(35)	(36)	(37)	(38)	(39)
答案	В	D	D	A	D	В	A	D	В	В	A	C	A
空格号	(40)	(41)	(42)	(43)	(44)	(45)	(46)	(47)	(48)	(49)	(50)	(51)	(52)
答案	С	C	D	В	A	С	В	A	В	D	С	A	В

1. SSB 信号表达式为 $s(t) = m(t)\cos(2\pi f_c t) - \hat{m}(t)\sin(2\pi f_c t)$,其中m(t)是基带调制信号, $\hat{m}(t)$ 是m(t)的(1)变换。 $\hat{m}(t)$ 与m(t)(2)。s(t)的复包络是 $s_L(t)$ =(3)。 $s_L(t)$ 是(4)信号,其频谱只有(5)分量。

(1)	(A) 傅里叶	(B) 拉普拉斯	(C) 希尔伯特	(D) 希特勒	
(2)	(A) 正交	(B) 相等	(C) 反相	(D) 同相	
(2)	(A) $\hat{m}(t) + j \cdot m(t)$		(B) $m(t) + j \cdot \hat{m}(t)$		
(3)	(C) $m(t) - j \cdot \hat{m}(t)$		(D) $\hat{m}(t) - \mathbf{j} \cdot m(t)$		
(4)	(A) 因果	(B) 实	(C) 正弦	(D) 解析	
(5)	(A) 负频率	(B) 正频率	(C) 直流	(D) 线谱	

2. 若 16 进制 PAM 信号的符号速率是 100Baud,则比特速率是(6)bit/s,比特间隔是(7)ms,符号间隔是(8)ms。

(6)	(A) 100	(B) 200	(C) 300	(D) 400
(7) (8)	(A) 1	(B) 2.5	(C) 5	(D) 10

3. 若基带调制信号m(t)相同,已调信号s(t)的功率相同,信道高斯白噪声的功率谱密度相同,则下列调制方式中,已调信号带宽最大的是(9),最小的是(10)。解调输出信噪比最大的是(11),最小的是(12)。解调输入信噪比最大的是(13),最小的是(14)。

(9) (10) (11) (12)	(A) 调制指数为 5 的 FM	(B) DSB-SC
(13) (14)	(C) 调制指数为 0.5 的 AM	(D) SSB

4.设 M 进制数字通信系统的比特错误率为 P_b 。每个符号携带 $\log_2 M$ 个比特,其中任何一个出错

则符号错。记符号错误率为 P_s ,则 P_s 与 P_b 的一般关系是(15)。

(15) (A) $P_{\rm s} = P_{\rm b}$	(B) $P_{\rm s} \ge P_{\rm b}$	(C) $P_{s} \leq P_{b}$	(D) $P_{\rm s} \neq P_{\rm b}$
, ,			, ,

5. 已知 PAM 信号 $s(t) = \sum_{n=-\infty}^{\infty} a_n g(t-T_s)$ 的幅度序列 $\{a_n\}$ 是平稳随机序列。s(t) 的功率谱密度包含时钟线谱分量的条件是 a_n 的均值 $E[a_n]$ (16)零,g(t) 的傅氏变换在 $f = \frac{1}{T_s}$ 处的值 $G(\frac{1}{T_s})$ (17)零。

(16) (17)	(A) 等于	(B) 不等于	(C) 大于等于	(D) 小于等于

6. 若角调信号为 $s(t) = 2\cos(2\pi f_c t + 4\sin 200\pi t)$,则基带调制信号m(t)是频率为(18)Hz 的单音信号,已调信号s(t)的最大频偏为(19)Hz,近似带宽为(20)Hz。若s(t)是 PM 信号,相位偏移常数为 $K_p = 4$ (rad/V),则m(t) = (21)。若s(t)是 FM 信号,频率偏移常数为 $K_f = 400$ (Hz/V),则m(t) = (22)。

(18) (19) (20)	(A) 100	(B) 400	(C) 800	(D) 1000
(21) (22)	(A) $\sin 200\pi t$	(B) $4\sin 200\pi t$	(C) $4\cos 200\pi t$	(D) $\cos 200\pi t$

7. 数据 1111000011110000 经过 AMI 编码后是(23), 经过 HDB3 编码后是 (24)。

(23)	(A) +-+-0000+-+-0000	(B) +-+-0000-+-+0000
(24)	(C) + - + -000 - + - + -000 -	(D) + -+ -000 - +- +- +00 +

8. 假设二进制数据独立等概,速率为 1000bit/s。双极性 NRZ 码、单极性 RZ 码(半占空比)、 AMI 码、数字双相码(Manchester 码)的主瓣带宽分别是(25)Hz、(26)Hz、(27)Hz、(28)Hz, 其中对时钟提取最有利的是(29)。

(25) (26) (27) (28)	(A) 500	(B) 1000	(C) 1500	(D) 2000
(29)	(A) 双极性 NRZ	(B) 单极性 RZ	(C) AMI	(D) Manchester

9. MPAM 的符号速率是 1000Baud, 按照奈奎斯特极限, 无符号间干扰传输时所需的信道带宽最小是(30)Hz, 相应的频带利用率是(31)Baud/Hz。

(30)	(A) 500	(B) 1000	(C) 1500	(D) 2000
(31)	(A) 0.5	(B) 1	(C) 1.5	(D) 2

10. 设m(t)是平稳过程,m 在区间[-1,+1]内均匀分布。m(t)的平均功率是 $E[m^2(t)]=(32)$ 。m(t)对载波进行 AM 调制得到 $[1+m(t)]\cos(2\pi f_c t)$,已调信号的调制效率是(33),调制指数是(34)。

	_	() _ () _ /		
(32) (33) (34) (A) 1/4		(B) 1/3	(C) 1/2	(D) 1

11. MPAM 系统的符号速率是 1000Baud,采用了升余弦滚降,滚降系数为 0.5。此系统所需的信道带宽是(35)Hz,相应的频带利用率是(36)Baud/Hz。

(35) (A) 500	(B) 750	(C) 1000	(D) 1500
--------------	---------	----------	----------

12. 下图是一个基带传输系统。为了使采样值中的符号间干扰最小,从时域来说,系统总体冲激响应x(t)按符号间隔 T_s 采样后的采样值 $\{x(kT_s)\}=\{x_k\}$ 应满足(37);从频域来说,系统的总体传递函数X(f)应满足(38)。为了使采样值中的信噪比最大,从时域来说,接收滤波器的冲激响应 $g_R(t)$ 应满足(39);从频域来说,接收滤波器的传递函数 $G_R(f)$ 应满足(40)。

(37)	(A) $x_k = \begin{cases} 1, & k = 0 \\ 0, & k = \pm 1, \pm 2, \dots \end{cases}$	(B) $x_k = \begin{cases} 0, & k = 0 \\ 1, & k = \pm 1, \pm 2, \dots \end{cases}$	
	(C) $\{x_k\}$ 的极性交替反转	(D) $x_k = 1, k = 0, \pm 1, \pm 2, \cdots$	
(38)	3	(B) $\sum_{n=-\infty}^{\infty} X \left(f - \frac{n}{T_{s}} \right) = \begin{cases} T_{s}, & f \le \frac{1}{T_{s}} \\ 0 & f > \frac{1}{T_{s}} \end{cases}$	
	(C) $\sum_{n=-\infty}^{\infty} X\left(f - \frac{n}{T_{s}}\right) = T_{s}, -\infty < f < \infty$	(D) $\sum_{n=-\infty}^{\infty} X \left(f - \frac{n}{T_{s}} \right) = 0, -\infty < f < \infty$	
(39)	$(A) g_{R}(t) = g_{T}(-t)$	(B) $g_{R}(t) = g_{T}(t)$	
	(C) $g_{R}(t) = -g_{T}(t)$	(D) $g_{R}(t) = 1/g_{T}(t)$	
(40)	(A) $G_{R}(f) = G_{T}(f)$	(B) $G_{\mathbb{R}}(f) = G_{\mathbb{T}}^*(-f)$	
	(C) $G_{R}(f) = G_{T}^{*}(f)$	(D) $G_{R}(f) = 1/G_{T}(f)$	

13. 眼图在特定采样时刻的张开度决定了系统的(41)容限。

(41) (A) 失真 (B) 干扰 (C) 噪声 (D) 抖动

14. MPAM 系统的传输速率是 200Baud,当系统的总体传递函数 X(f) 是下列中的(42)时,采样点将存在符号间干扰,此时可以采用(43)来减小符号间干扰。

15.设基带信号m(t)是平稳过程,其自相关函数为 $R_m(\tau) = \begin{cases} 1-1000|\tau|, & |\tau| < 0.001s \\ 0 & \text{else} \end{cases}$,则已调信号 $m(t)\cos(2\pi f_c t)$ 的功率为(44),主瓣带宽为(45)kHz。

16.FM 鉴频器输出端噪声的功率谱密度呈现出(46)形状。

(46) (A) 双曲线	(B) 抛物线	(C) 平坦	(D) 上凸
--------------	---------	--------	--------

17. 部分响应系统通过引入人为的(47)来提高频谱利用率,其频谱利用率可达到(48)Baud/Hz。下列框图中,(49)是第一类部分响应基带传输系统框图。

18. 考虑几种二进制信号的时钟提取方案,假设数据独立等概,不考虑噪声。对幅度为 0、1 的单极性归零信号来说,平方没有意义,由于此信号包含时钟的线谱分量,故可以采用下面的方案(50)。双极性升余弦滚降信号适合采用线谱法,即方案(51)。双极性归零信号由于其自身的特点,可直接采用方案(52)来得到方波时钟。

- 二. 基带信号 $m(t) = \cos(200\pi t)$ 对载波 $\cos(2000\pi t)$ 做 AM 调制得到已调信号 $s(t) = 2[2+m(t)]\cos(2000\pi t)$ 。
- (1)求s(t)的复包络 $s_L(t)$ 的傅氏变换 $S_L(f)$ 、功率谱密度 $P_L(f)$;
- (2)求s(t)的傅氏变换S(f)、功率谱密度 $P_s(f)$ 。

参考答案:

$$\begin{split} s_{\mathrm{L}}(t) &= 2 \Big[2 + m(t) \Big] \\ s_{\mathrm{L}}(f) &= 4 \delta(f) + \delta(f - 100) + \delta(f + 100) \\ P_{\mathrm{L}}(f) &= 16 \delta(f) + \delta(f - 100) + \delta(f + 100) \end{split}$$

$$S(f) = 2\delta(f - 1000) + \frac{\delta(f - 1100)}{2} + \frac{\delta(f - 900)}{2} + 2\delta(f + 1000) + \frac{\delta(f + 1100)}{2} + \frac{\delta(f + 900)}{2} + \frac{\delta(f - 900)}{2}$$

$$P_s(f) = 4\delta(f - 1000) + \frac{\delta(f - 1100)}{4} + \frac{\delta(f - 900)}{4} + 4\delta(f + 1000) + \frac{\delta(f + 1100)}{4} + \frac{\delta(f + 900)}{4}$$

三.下图中 $s(t)=m(t)\cos(2\pi f_c t)$,其中m(t)的带宽为W,功率为 P_m 。 $n_w(t)$ 是功率谱密度为 $N_0/2$ 的高斯白噪声。理想带通滤波器的中心频率是 f_c ,其带宽正好能使s(t)无失真通过。 $n_i(t)$ 是带通滤波器输出的窄带高斯噪声。理想低通滤波器的截止频率是W。 $s_o(t)$ 和 $n_o(t)$ 分别是低通滤波器输出端的有用信号及噪声。试写出 $n_i(t)$ 、 $s_o(t)$ 、 $n_o(t)$ 的表达式,并求带通滤波器输出端的信噪比 $\left(\frac{S}{N}\right)$ 以及低通滤波器输出端的信噪比 $\left(\frac{S}{N}\right)$ 。

参考答案:

$$n_{\rm i}(t) = n_{\rm c}(t)\cos 2\pi f_{\rm c}t - n_{\rm s}(t)\sin 2\pi f_{\rm c}t$$

$$s_{o}(t) = \frac{m(t)}{\sqrt{2}}$$

$$n_{\rm o}(t) = \frac{n_{\rm c}(t)}{\sqrt{2}} + \frac{n_{\rm s}(t)}{\sqrt{2}}$$

$$\left(\frac{S}{N}\right)_{i} = \frac{P_{m}}{4N_{0}W}$$

$$\left(\frac{S}{N}\right)_{0} = \frac{P_{m}}{4N_{0}W}$$

四. 设有 PAM 信号 $s(t) = \sum_{n=-\infty}^{\infty} a_n g(t-nT_b)$, 其中 $g(t) = \begin{cases} 1 & |t| \le \frac{T_b}{4} \\ 0 & |t| > \frac{T_b}{4} \end{cases}$ 。序列 $\{a_n\}$ 中的元素以独立

等概方式取值于 $\{+3,-1\}$ 。令 $\mu(t)=E[s(t)]$ 、 $x(t)=s(t)-\mu(t)$,试写出x(t)、 $\mu(t)$ 的功率谱密度表达式。

参考答案:

$$G(f) = \frac{T_{b}}{2}\operatorname{sinc}\left(\frac{fT_{b}}{2}\right) = \frac{\sin\left(\frac{\pi fT_{b}}{2}\right)}{\pi f}$$

$$\mu(t) = \sum_{n=-\infty}^{\infty} g(t - nT_{b})$$

$$P_{\mu}(f) = \frac{1}{T_{b}^{2}} \sum_{n=-\infty}^{\infty} \left| G\left(\frac{n}{T_{b}}\right) \right|^{2} \delta\left(f - \frac{n}{T_{b}}\right)$$

$$= \frac{1}{4} \sum_{n=-\infty}^{\infty} \operatorname{sinc}^{2}\left(\frac{n}{2}\right) \delta\left(f - \frac{n}{T_{b}}\right)$$

$$= \frac{1}{4} \delta(f) + \frac{1}{\pi^{2}} \sum_{n=+1+3,\dots,n} \frac{1}{n^{2}} \delta\left(f - \frac{n}{T_{b}}\right)$$

 $x(t) = \sum_{n=-\infty}^{\infty} b_n g(t-nT_b)$, 其 中 $\{b_n\}$ 的 元 素 以 独 立 等 概 方 式 取 值 于 $\{\pm 2\}$,

$$P_{x}(f) = \frac{4}{T_{b}} |G(f)|^{2} = T_{b} \operatorname{sinc}^{2} \left(\frac{fT_{b}}{2}\right) = \frac{4 \sin^{2} \left(\frac{\pi fT_{b}}{2}\right)}{T_{b} (\pi f)^{2}}$$

五. 图(a)中的基带传输系统在 $[0,T_b]$ 时间内等概发送+g(t)或-g(t)。g(t)的傅氏变换的模平方 $\left|G(f)\right|^2$ 示于图(b)。发送信号叠加了功率谱密度为 $N_0/2$ 的高斯白噪声后通过冲激响应为 $h(t)=g(t_0-t)$ 的滤波器,在 t_0 时刻采样得到样值y。

- (1) 画出滤波器输出的噪声的功率谱密度图,并求噪声功率;
- (2) 求发送+g(t)条件下,样值y的均值、方差以及y<0的概率。

参考答案

- (1) 噪声功率= $\frac{N_0W}{2}$;
- (2) y 的均值=W、方差= $\frac{N_0W}{2}$, y < 0 的概率= $\frac{1}{2}$ erfc $\left(\sqrt{\frac{W}{N_0}}\right)$

六. 图(a)中基带传输系统的传输速率是 $R_s = \frac{1}{T_s}$,幅度序列 $\{a_n\}$ 的元素均值为 0,方差为 1,且

不同的元素相互独立。系统的总体冲激响应x(t)的时域波形如图(b)所示。第 m 个采样值是 $y_m = a_m + i_m + \gamma_m$,其中 γ_m 是噪声分量, i_m 是符号间干扰。

分别就符号速率为 $R_s=1000$ Baud、 $R_s=2000$ Baud 的情形,求符号间干扰 i_m 的均值、方差,并求

$$\sum_{n=-\infty}^{\infty} X(f - nR_{\rm s}) = ?$$

参考答案:

 R_s =1000Baud 时,无 ISI, i_m 的均值、方差都是零, $\sum_{n=-\infty}^{\infty} X(f-nR_s) = \frac{1}{1000}$

$$R_s = 2000 \text{ Baud }$$
 $\exists x_k = \left\{ \cdots, 0, \frac{1}{2}, 1, \frac{1}{2}, 0, \cdots \right\}$

$$i_m = \frac{a_{m-1} + a_{m+1}}{2}$$
,其均值=0,方差是 $\frac{1}{2}$ 。

频域的平移叠加对应时域采样。 $\frac{1}{T_s}\sum_{n=-\infty}^{\infty}X(f-nR_s)$ 是理想采样

$$x(t)\sum_{n=-\infty}^{\infty}\delta(t-kT_{s})=\sum_{n=-\infty}^{\infty}x_{n}\delta(t-nT_{s})$$
的傅氏变换,今
$$\sum_{n=-\infty}^{\infty}x_{n}\delta(t-nT_{s})=\frac{\delta(t+T_{s})}{2}+\delta(t)+\frac{\delta(t-T_{s})}{2},$$

因此
$$\sum_{n=-\infty}^{\infty} X(f - nR_s) = T_s(1 + \cos 2\pi f T_s) = \frac{\cos^2(\frac{\pi f}{1000})}{500}$$