Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

UČEBNÉ PROSTREDIE PRE ONLINE KOLEKTÍVNY VÝVOJ AGILNÝCH PROGRAMOV ZA POMOCI ZDIEĽATEĽNÉHO EDITORU BAKALÁRSKA PRÁCA

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

UČEBNÉ PROSTREDIE PRE ONLINE KOLEKTÍVNY VÝVOJ AGILNÝCH PROGRAMOV ZA POMOCI ZDIEĽATEĽNÉHO EDITORU BAKALÁRSKA PRÁCA

Študijný program: Informatika Študijný odbor: Informatika

Školiace pracovisko: Katedra aplikovanej informatiky Školiteľ: Ing. František Gyarfaš, CSc.

Bratislava, 2018 Emanuel Tesař

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Emanuel Tesař

Študijný program: informatika (Jednoodborové štúdium, bakalársky I. st., denná

forma)

Študijný odbor:informatikaTyp záverečnej práce:bakalárskaJazyk záverečnej práce:slovenskýSekundárny jazyk:anglický

Názov: Učebné prostredie pre online kolektívny vývoj agilných programov za pomoci

zdieľateľného editoru

Learning environment for online collaborative programming using sharable

editor

Anotácia: Cieľom bakalárskej práce je vytvorenie web online editora pre kolektívne

riešenie agilných úloh z programovania. Editor s kódom a testmi zdieľajú všetci účastníci skupiny, všetci môžu upravovať kód, pridávať testy, vyberať testy na zbiehanie a zbiehať ich vo virtuálnom prostredí na serveri. Aplikácia umožní pripojeným účastníkom zobrazenie kompilačných chýb, zobrazenie zbehnutých testov ako aj verzionovanie zdrojových súborov na serveri. Program umožní tvorbu skupín a ohodnocovanie úloh učiteľom. Súčasťou bude aj administratívne rozhranie pre zadávateľa úloh pre prípravu zadaní, viditeľné aj skryté testy, podľa ktorých sa automatizovane hodnotia výsledky. Technológie/ nástroje: HTML 5, CSS, JavaScript (React), serverový framework (Express),

Psql, virtuálny server.

Vedúci: Ing. František Gyarfaš, CSc.

Katedra: FMFI.KAI - Katedra aplikovanej informatiky

Vedúci katedry: prof. Ing. Igor Farkaš, Dr.

Dátum zadania: 26.10.2018

Dátum schválenia: 06.11.2018 doc. RNDr. Daniel Olejár, PhD.

garant študijného programu

študent	vedúci práce

Poďakovanie: TODO: Tu môžete poďakovať školiteľovi, prípadne ďalším osobám, ktoré vám s prácou nejako pomohli, poradili, poskytli dáta a podobne.

Abstrakt

Cieľom práce bol návrh a funkčná implementácia zdieľateľného editora podporujúca súbežné písanie kódu viacerých používateľov. Používatelia okrem písania kódu, možu pridávať testy, ktoré sa dajú spustiť vo virtuálnom prostredí na serveri. V prípade neskompilovateľného kódu, chyby počas behu programu, prípadne inej chyby, zobrazí chybovú hlášku. Okrem pohodlného prostredia pre používateľa obsahuje aj administrátorské rozhranie, v ktorom sa dajú pridávať neviditeľné testy pre používateľov. Toto rozhranie umožňuje profesorom vytvárať zadania pre študentov, ktorý následne možu úlohu riešit priamo vo webovom prehliadači.

Kľúčové slová: jedno, druhé, tretie (prípadne štvrté, piate)

Abstract

TODO: Abstract in the English language (translation of the abstract in the Slovak language).

Keywords:

• Latencia - reakčný čas označújúci dobu akciu a následnou reakciou. Vo webových technológiách sa pod letenciou rozumie čas, medzi poslaním webového request-u a následnej odpovede zo servera.

Obsah

\mathbf{U}^{\cdot}	vod			1	
1	1 TODO: Základné pojmy a definície				
2	Edi	tor un	nožňujúci konkurentné úpravy jedného dokumentu	5	
	2.1	Real t	ime kolaboratívnt editor	5	
		2.1.1	Technické výzvy	6	
		2.1.2	Algoritmy riešiace konkurentné modifikácie	7	
		2.1.3	Súčasný stav	7	
		2.1.4	Cieľ práce	8	
		2.1.5	Metodika práce a metódy skúmania	8	
		2.1.6	Výsledky práce a diskusia	8	
3	LaT	TeX		9	
	3.1	Obráz	ky	9	
4	Lor	em Ips	sum	11	
Zá	Záver				

viii OBSAH

Zoznam obrázkov

2.1	Nekomutativita textových operácii	 7
3.1	Ukážka hry Červík	 10

Zoznam tabuliek

3.1 Doba výpočtu a operačná pamäť potrebná na spracovanie vstupu XYZ 10

Úvod

Cieľom tejto práce je poskytnúť študentom posledného ročníka bakalárskeho štúdia informatiky kostru práce v systéme LaTeX a ukážku užitočných príkazov, ktoré pri písaní práce môžu potrebovať. Začneme stručnou charakteristikou úvodu práce podľa smernice o záverečných prácach [8], ktorú uvádzame ako doslovný citát.

Úvod je prvou komplexnou informáciou o práci, jej cieli, obsahu a štruktúre. Úvod sa vzťahuje na spracovanú tému konkrétne, obsahuje stručný a výstižný opis problematiky, charakterizuje stav poznania alebo praxe v oblasti, ktorá je predmetom školského diela a oboznamuje s významom, cieľmi a zámermi školského diela. Autor v úvode zdôrazňuje, prečo je práca dôležitá a prečo sa rozhodol spracovať danú tému. Úvod ako názov kapitoly sa nečísluje a jeho rozsah je spravidla 1 až 2 strany.

V nasledujúcej kapitole nájdete ukážku členenia kapitoly na menšie časti a v kapitole 3 nájdete príkazy na prácu s tabuľkami, obrázkami a matematickými výrazmi. V kapitole 4 uvádzame klasický text Lorem Ipsum a na koniec sa budeme venovať záležitostiam záveru bakalárskej práce.

 $\acute{U}vod$

Kapitola 1

TODO: Základné pojmy a definície

Kapitola 2

Editor umožňujúci konkurentné úpravy jedného dokumentu

Myšlienka kolaboratývneho editora bola prvýkrát zaznamenaná už v roku 1968 Douglas Engelbart-om. Avšak do popularity sa dostala až nedávno, približne 20 rokov od prvého záznamu. Kolaboratívny editor umožnuje viacerým užívaťeľom upravovať jeden dokument. Tieto editory sa rozďeľujú na dve kategórie

- Real time zmeny dokumentu sa okamžite zobrazia všetkým používateľom
- Non-real-time zmeny dokumentu sa nedejú okamžite (podobne ako pri verzionovacých systémoch ako Git, Mercurial)

My sa v práci zameriavame real time editormi, kde je treba riešiť synchronizáciu editorových inštancii používateľov a riešenie možných konfliktov.

2.1 Real time kolaboratívnt editor

Problematika real time kolaboratívnych editorov sa dá rozdeliť do samostatných zmysluplných podkapitol

- technické výzvy
- algoritmy riešiace konkurentné modifikácie jedného zdroja
- súčasný stav riešenej problematiky doma a v zahraničí,
- cieľ práce,
- metodika práce a metódy skúmania,
- výsledky práce,

2.1.1 Technické výzvy

Technické vžyvy pramenia z asynchrónnej komunikácie po sieti. Teoreticky, keby táto komnikácia bola instantná, tak vytvorenie takéhoto editora, by nebolo priveľmi odlišné od editora pre jedného používateľa. Algoritmus, rišiaci takýto problém by mohol fungovať na základe *upravovacieho zámku*. Fungoval by celkom jednoducho:

- 1. Požiadanie servera o upravovacý zámok
- 2. Počkanie na schválenie zo servera, že sme na rade s úpravou
- 3. Úprava dokumentu
- 4. Vzdanie sa upravovacieho zámku

Avšak rýchlosť komunikácie je obmedzená latenciou siete. To vytvára základnú dilemu: užívatelia potrebujú okamžite vlastné úpravy, ktoré sú do dokumentu zapracované, ale ak sú začlenené okamžite, potom kvôli latencii komunikácie musia byť ich úpravy nevyhnutne vložené do rôznych verzií dokumentu.

Výzvou v spolupráci v reálnom čase je teda presne zistiť, ako možno aplikovať úpravy od vzdialených používateľov, ktoré boli pôvodne vytvorené vo verziách dokumentu, ktor nikdy neexistovali na mieste a ktoré môžu byť v rozpore s vlastnými miestnymi úpravami používateľa.

Najsofistikovanejšie riešenia vyriešia tento problém spôsobom, ktorý nevyžaduje server, nepoužíva uzamknutie (všetci používatelia môžu voľne upravovať všetky časti dokumentu súčasne) a podporuje ľubovoľný počet používateľov (obmedzený iba zdrojmi počítačov). UNA a SubEthaEdit sú príklady dvoch programov, ktoré využívajú tento prístup. Tieto programy sú však dostupné iba pre operačných systémoch macOS a využívajú technológie, ako napríklad [1],ktoré sú špecifické pre tento OS.

Zatiaľ čo tieto sofistikované prístupy umožňujú najlepšiu používateľskú skúsenosť, v klientskom serveri môže byť vytvorený aj základný editor pre spoluprácu. Pri scenári klient-server je pri otvorení dokumentu priradená jedna z inštancií editora úloha servera spolupráce. Tento server zaisťuje, že ostatné editory sú synchronizované určovaním latencie siete a fungovaním ako server synchronizácie času. Server obdrží upozornenia na časové označenie zmien vykonaných v dokumente inými používateľmi. Určuje, ako majú tieto zmeny ovplyvňovať svoju lokálnu kópiu, a vysiela jej zmeny do fondu spolupráce. V niektorých modeloch sa zmeny na klienta neodzrkadľujú dovtedy, kým sa zo servera nevráti oficiálna odpoveď, a to aj vtedy, ak boli tieto zmeny vykonané lokálne. Príkladom takéhoto editora je napríklad Gobby.

My sme sa v práci rozhodli použiť klient-server model, pričom za synchronizáciu klientov je zodpovedný výhradne server. Podobný prístup používa napr. spoločnost Google v produktoch ako Google dokumenty a tabuľky.

Obr. 2.1: Nekomutativita textových operácii

2.1.2 Algoritmy riešiace konkurentné modifikácie

Na riešenie synchronizácie klientov existujú dva dobre preskúmané typy algoritmov.

- 1. OT Prevádzková transformácia (Operational transformation)
- 2. CRDT Bezkonfliktné idempotentné dátové typy (Conflict-free replicated data type)

V práci použijeme CRDT, pretože OT je predchodca CRDT a v praxi často nefunguje tak dobre, ako to autori zamýšľali. Taktiež použitie OT je komplikované a neškálovateľné [6].

CRDT

Problém súbežnej modifikácie jedného textového poľa je, že jednoduché operácie ako pridaj písmeno a zmaž písmneo, nie sú komutatívne. Keďže používatelia modifikujú dokument cez sieť, nemáme zaručené v akom poradí sa modifikácie uskutočnia. Ilustrujme tento problém na príklade:

TODO: nieco o tom ako ako CRDT funguje

2.1.3 Súčasný stav

V časti súčasný stav riešenej problematiky doma a v zahraničí autor uvádza dostupné informácie a poznatky týkajúce sa danej témy. Zdrojom pre spracovanie sú aktuálne publikované práce domácich a zahraničných autorov. Podiel tejto časti práce má tvoriť približne 30 % práce.

2.1.4 Cieľ práce

Časť cieľ práce školského diela jasne, výstižne a presne charakterizuje predmet riešenia. Súčasťou sú aj rozpracované čiastkové ciele, ktoré podmieňujú dosiahnutie cieľa hlavného.

2.1.5 Metodika práce a metódy skúmania

Časť metodika práce a metódy skúmania spravidla obsahuje:

- 1. charakteristiku objektu skúmania,
- 2. pracovné postupy,
- 3. spôsob získavania údajov a ich zdroje,
- 4. použité metódy vyhodnotenia a interpretácie výsledkov,
- 5. štatistické metódy.

2.1.6 Výsledky práce a diskusia

Časti výsledky práce a diskusia sú najvýznamnejšími časťami školského diela. Výsledky (vlastné postoje alebo vlastné riešenia), ku ktorým autor dospel, sa musia logicky usporiadať a pri opisovaní sa musia dostatočne zhodnotiť. Zároveň sa komentujú všetky skutočnosti a poznatky v konfrontácii s výsledkami iných autorov. Výsledky práce a diskusia môžu tvoriť aj jednu samostatnú časť a spoločne tvoria spravidla 30 až 40 % školského diela.

Kapitola 3

Ukážky užitočných príkazov v systéme LaTeX

V tejto kapitole si ukážeme príklady niektorých užitočných príkazov, ako napríklad správne používanie tabuliek a obrázkov, číslovanie matematických výrazov a podobne. Konkrétne príkazy použité v tejto kapitole nájdete v zdrojovom súbore latex.tex. Všimnite si, že pre potreby obsahu a hlavičky stránky je v zdrojovom súbore uvedený aj skrátený názov tejto kapitoly. Ďalšie užitočné príkazy nájdete aj v kapitole ??, na ktorú sme sa na tomto mieste odvolali príkazom \ref.

3.1 Obrázky

Vašu prácu ilustrujte vhodnými obrázkami. Pri použití programu pdflatex je potrebné pripraviť obrázky vo formáte pdf, jpg alebo png. Vektorové obrázky (napr. eps, svg) je najvhodnejšie skonvertovať do formátu pdf, napríklad programom Inkscape.

Na vkladanie obrázkov použite prostredie figure, ktoré obrázok umiestni na vhodné miesto, väčšinou na vrch alebo spodok stránky a tiež sa stará o automatické číslovanie obrázkov. Na každý obrázok sa treba v hlavnom texte odvolať. Napríklad ilustráciu hry Červík vidíme na obrázku 3.1. Pri odvolávaní sa na číslo obrázku používame príkaz \ref. Pri vložení alebo zmazaní obrázku tak nemusíme ručne všetky ostatné obrázky prečíslovať.

Podobne tabuľky vkladajte pomocou prostredia table, pričom samotnú tabuľku vytvoríte príkazom tabular. Každú tabuľku potom spomeňte aj v hlavnom texte. Napríklad v tabuľke 3.1 vidíme porovnanie časov niekoľkých fiktívnych programov.

V texte môžete tiež potrebovať dlhšie matematické výrazy, ako napríklad tento

$$\sum_{k=0}^{n} q^k = \frac{q^{n+1} - 1}{q - 1}. (3.1)$$

Použitím prostredia equation bol tento výraz zarovnaný na stred na zvláštnom riadku

Obr. 3.1: Ukážka hry Červík. Červík je znázornený červenou farbou, voľné políčka sivou, jedlo zelenou a steny čiernou. Hoci tento popis obrázku je dlhší, v zdrojovom texte je aj kratšia verzia, ktorá sa zobrazí v zozname obrázkov.

Tabuľka 3.1: Doba výpočtu a operačná pamäť potrebná na spracovanie vstupu XYZ. V tomto popise môžeme vysvetliť detaily potrebné pre pochopenie údajov v tabuľke.

Meno programu	Čas (s)	Pamäť (MB)
Môj super program	25.6	120
Speedy 3.1	32.1	100
VeryOld	244.1	200

a očíslovaný. Na toto číslo sa tiež môžeme odvolať príkazom \ref. Napríklad rovnica (3.1) predstavuje súčet geometrickej postupnosti.

Napokon, v texte nezabudnite citovať použitú literatúru pomocou príkazu \cite Napríklad ďalšie detaily o systéme LaTeX nájdete v knihe od Tobiasa Oetikera a kolektívu [7].

Kapitola 4

Lorem Ipsum

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed mollis nisi eget arcu dictum posuere. Praesent ullamcorper malesuada magna ut viverra. Aenean bibendum turpis a sagittis rhoncus. Morbi tristique, dolor a mollis malesuada, eros nibh laoreet massa, placerat tempor purus magna et enim. Fusce tempus, nibh sed vehicula semper, nibh justo semper quam, posuere varius ante arcu ac nunc. Cras tincidunt lacus pretium tellus porta aliquet. Suspendisse faucibus porta dolor ac lobortis. Donec molestie erat nec molestie commodo. Phasellus cursus tempus convallis. Cras nec placerat dui, in congue quam.

Suspendisse eu consectetur ante. Proin dapibus efficitur convallis. Sed viverra, libero vitae tincidunt malesuada, ante felis tempus ipsum, a rhoncus turpis lacus ut arcu. Phasellus tristique non lectus in vehicula. Sed id nibh metus. Duis et magna ac neque mollis volutpat ac non leo. Nulla imperdiet vulputate nisi, eget mattis leo bibendum non.

Maecenas maximus rutrum enim quis cursus. Curabitur dolor erat, bibendum nec facilisis a, congue ac turpis. Nullam ex urna, iaculis ut dui at, auctor dictum lacus. Pellentesque at pellentesque mi. Aliquam pretium vestibulum felis ut facilisis. In hac habitasse platea dictumst. Nam felis mi, convallis at tempus id, faucibus sed odio. Suspendisse sit amet arcu fermentum, lobortis massa ultrices, auctor metus. Nulla eu metus ante. Suspendisse potenti. Sed pellentesque augue et ultricies lobortis. Nunc id lorem sit amet nisl lobortis semper eget ut massa. Nam tristique gravida est, sed pretium ipsum convallis dictum.

Nam urna eros, porttitor et vehicula a, sodales sed est. Vestibulum non porttitor justo, ut pellentesque nisl. Donec a sem nulla. Maecenas mi lacus, consectetur nec lacus quis, mollis convallis nunc. Vestibulum auctor tellus et gravida scelerisque. Sed porttitor consectetur aliquam. Pellentesque tempor rutrum elit id consequat. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Pellentesque volutpat, erat quis scelerisque molestie, ex lectus facilisis ante, ut ultricies sem elit id diam. Fusce sit amet dui nec ex

eleifend vehicula vitae eu nisl. Integer lorem elit, tempor et sollicitudin et, blandit vel ante.

Morbi facilisis massa quis dolor pharetra, fringilla volutpat ligula ullamcorper. Praesent blandit pellentesque neque, condimentum porta felis suscipit volutpat. In sit amet nulla maximus, viverra nibh eu, lacinia odio. Sed a odio at purus egestas cursus. Nulla facilisi. Pellentesque non leo mollis ligula consequat volutpat quis in augue. Vivamus luctus diam a felis fringilla, id egestas nibh venenatis. Ut ligula libero, vehicula vel pulvinar et, convallis eget tortor. Donec tincidunt est a nisi rhoncus placerat.

Záver

Na záver už len odporúčania k samotnej kapitole Záver v bakalárskej práci podľa smernice [8]: "V závere je potrebné v stručnosti zhrnúť dosiahnuté výsledky vo vzťahu k stanoveným cieľom. Rozsah záveru je minimálne dve strany. Záver ako kapitola sa nečísluje."

Všimnite si správne písanie slovenských úvodzoviek okolo predchádzajúceho citátu, ktoré sme dosiahli príkazmi \glqq a \grqq.

V informatických prácach niekedy býva záver kratší ako dve strany, ale stále by to mal byť rozumne dlhý text, v rozsahu aspoň jednej strany. Okrem dosiahnutých cieľov sa zvyknú rozoberať aj otvorené problémy a námety na ďalšiu prácu v oblasti.

Abstrakt, úvod a záver práce obsahujú podobné informácie. Abstrakt je kratší text, ktorý má pomôcť čitateľovi sa rozhodnúť, či vôbec prácu chce čítať. Úvod má umožniť zorientovať sa v práci skôr než ju začne čítať a záver sumarizuje najdôležitejšie veci po tom, ako prácu prečítal, môže sa teda viac zamerať na detaily a využívať pojmy zavedené v práci.

Záver

Literatúra

- [1] Bonjour (software). https://en.wikipedia.org/wiki/Bonjour_(software).
- [2] X. Autor1 and Y. Autor2. Názov knihy. Vydavateľstvo, 1900.
- [3] X. Autor1 and Y. Autor2. Názov článku (väčšinou z konferencie). In Názov zborníka (väčšinou názov konferencie spolu s ročníkom), pages 1–100, 1900.
- [4] X. Autor1 and Y. Autor2. Názov článku z časopisu. Názov časopisu, ktorý článok uverejnil, 4(3):1–100, 1900.
- [5] X. Autor1 and Y. Autor2. Názov technickej správy. Technical Report TR123/1999,
 Inštitút vydávajúci správu, June 1999.
- [6] Abdessamad Imine, Michaël Rusinowitch, Gérald Oster, and Pascal Molli. Formal design and verification of operational transformation algorithms for copies convergence. *Theor. Comput. Sci.*, 351(2):167–183, February 2006.
- [7] Tobias Oetiker, Hubert Partl, Irene Hyna, and Elisabeth Schlegl. *Nie príliš stručný úvod do systému LaTeX2e.* 2002. Preklad Ján Buša ml. a st.
- [8] Univerzita Komenského v Bratislave. Vnútorný predpis č. 12/2013, smernica rektora Univerzity Komenského v Bratislave o základných náležitostiach záverečných prác, rigoróznych prác a habilitačných prác, kontrole ich originality, uchovávaní a sprístupňovaní na Univerzite Komenského v Bratislave, 2013. https: //uniba.sk/fileadmin/ruk/legislativa/2013/Vp_2013_12.pdf.