INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

1. Name of the Academic Unit: Chemical Engineering

2. Subject Name: Computer Aided Process Engineering

L-T-P: 3-1-0 Credits: 4

3. Pre-requisites: None

4. Syllabus and reference books:

Syllabus

Analytical and numerical (direct and indirect) methods for linear algebraic equation systems; Iterative convergence methods and their applications in process engineering; Numerical methods for ODE-IVP and ODE-BVP systems with chemical process examples; Numerical methods for processes with PDEs; Convergence and stability analysis of chemical processes; Numerical simulation of multivariable and differential algebraic equation (DAE) systems; Method of least-squares; Polynomial interpolation; Numerical integration; Process optimization; Flowsheet simulator like ASPEN; Application of AI in process engineering.

Reference Books

- 1. Ramirez, W.F. (1997). *Computational methods for process simulation*, 2nd ed., Reed Educational and Professional Publishing Ltd., Oxford.
- 2. Bequette, B.W. (1998). *Process dynamics, modeling, analysis, and simulation*, 1st ed., Prentice-Hall, Upper Saddle River, New Jersey.
- 3. Gupta, S.K. (2003). *Numerical methods for engineers*, 1st ed. (reprinted version), New Age International (P) Ltd., New Delhi.
- 4. Luyben, W.L. (1990). *Process modeling, simulation, and control for chemical engineers*, 2nd ed., McGraw-Hill Book Company, Singapore.

5. Lecture-wise break-up:

Sl. No.	Торіс	No. of lectures
	Introduction to computer aided process engineering Analytical vs. numerical methods, process modeling and simulation, definition of error and its various forms, examples	1
	System of linear algebraic equation Method: Analytical and numerical (direct and indirect) method Process example: steady state reactor and separator	3

	Total number of hours	48
10	Flowsheet simulation, process optimization and AI	6 (= 2+2+2)
	Process example: batch reactor, isothermal CSTR	
	Method: Newton-Cotes, Romberg integration, Gauss-Legendre quadrature	
9.	Numerical integration	4
	Process example: Data fitting to various processes	
8.	Method: Newton, Lagrange, Piecewise polynomial interpolation	-
0	Polynomial interpolation	5
	Process example: Data fitting for various processes	
7.	Method: Linear least-squares, least-squares for nonlinear and polynomial functions, nonlinear least-squares	•
7	Method of least-squares	3
	Process example: Nonlinear reaction-diffusion system, Nonisothermal PFR, double pipe heat exchanger	
	Other system: Coupled PDEs	
	analysis	
6.	Method: Finite difference methods (e.g., method of lines, Dufort-Frankel, Crank-Nicholson) and stability	6
	Process example: steady state cooling fin, heat conduction in a slab, reaction-diffusion system System of PDE	6
	Other system: Nonlinear and coupled BVPs	
	Method: Finite difference and initial value (Shooting) methods	
5.	System of ODE: boundary value problem (ODE-BVP)	6
	distillation column	
	Process example: batch reactor, CSTR, fed-batch bioreactor, adsorption, liquid-liquid extraction and	
	Other system: Stiff systems, Multivariable and differential algebraic equation systems	
-•	Method: Euler, Heun, RK family, Adams-Bashforth-Moulton methods, and Convergence and stability analysis	
4.	System of ODE: initial value problem (ODE-IVP)	7
	Process example: heat exchanger, flash drum	
	convergence analysis	
3.	Method: Iterative convergence methods (bisection, secant, false position, Newton, Muller, Chebyshev) and	