

Data Mining from Two Line Element(TLE)

sets

CS685A COURSE PROJECT

- Name Aaryansh Mohan Bansal
- Email: arynshmb@iitk.ac.in
- Group No 45
- Third Year Undergraduate
- Roll No -190013

TLE Data and its Interpretation

Project Work

1

Error Analysis

The Error in propagation of position and velocities through TLEs is analysed.

2

Catalogue Formation

A Catalogue is created from recent TLE data, which contains several important fields in tabular format. 3

Clustering and Patterns

Satellites within same orbital planes are grouped by clustering & patterns of orbital arrangements.

4

Debris Prediction

Classifier for predicting an celestial object as Space Debris or satellite.

5

Maneuver Detection

Algorithms to detect possible maneuvers done for an active satellite.

Data Mining Methodology

Data Mining Algorithms Used

ERROR ANALYSIS OF TLE DATA

The graphs are plots of future estimates of position and velocity respectively. The variation is observed across 11 TLEs of the same object(ISS-ZARYA) on a timespan of 350 epochs

MANEUVER DETECTION BY USING K-MEANS FOR YAOGAN 9A SATELLITE

Semi-major axis curve marked with orbit control points by the K-means clustering method: the yellow line indicates the natural evolution process; the red asterisk indicates the starting point of the orbital maneuver; and the black asterisk indicates the end point of the orbital maneuver.

DEBRIS AND SATELLITE CLASSIFICATION

Distribution of orbital elements by object type

• DEBRIS AND SATELLITE CLASSIFICATION

		precision	recall	f1-score	support
	Sat	0.96	0.88	0.92	45337
	Deb	0.84	0.95	0.89	30116
accuracy			0.91	75453	
macro	avg	0.90	0.91	0.90	75453
weighted	avg	0.91	0.91	0.91	75453
Accuracy	= 0	.90621976594	70134		

0.30 0.25 Probability 0.20 0.10 0.05 0.00 n dot B* omegan ddot Orbital Elements

Results of Random Forest Classifier

Random Forest Feature Importances

Important Links for Project Work:

LINK TO PROJECT REPOSITORY: https://github.com/Aaryansh7/CS685_G45_project

LINK TO DETAILED DOCUMENTATION:

https://drive.google.com/file/d/1aS3vejtcCvXKGEEbKBBCp3sjcmPoqeuR/view?usp=sharing

References:

- https://www.researchgate.net/publication/242742404_Satellite_Maneuver_Detection_Using_Two-line_Elements_Data
- https://ieeexplore.ieee.org/document/8830454
- https://www.researchgate.net/publication/222413947_Improved_orbit_predictions_using_two-line_elements

