Stat 86 lec 3

1:00-5:10

(ex 1,4,5)

If a stodent applies to ten colleges with a 20% chance of being accepted to each, what are the chances that he will be accepted by at least one college?

Be dear about any assumptions you are making,

maxim no assuptions:

$$C_i = \text{count} \text{ get byth sith college}$$

$$P(A_1 \cup ... A_{10}) \geq P(A_1)$$

Bernoull ghour $P(C_1 \cup \dots \cup C_{10}) \leq \underset{=}{\overset{1}{\sim}} P(C_1 \cup \dots \cup C_{n}) \leq 1$ $\Rightarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \Rightarrow$

CHOCH

$$P(C_{1} \cup \cdots \cup C_{p}) = 1 - P((C_{1} \cup \cdots \cup C_{p})^{C})$$

$$= 1 - P((C_{1} \cup \cdots \cup C_{p})^{C})$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

$$= (-P((C_{1} \cup \cdots \cup C_{p})^{C}) \text{ assumbly index}$$

hast there
Sec 1.3 Fundamental rules and bounds
Addition rule (OR rule)
OR DINIPPED IT A ON B EVE
WHOOD EP(AUB) & P(A) + P(B) Max(P(A), P(B)) & P(AUB) & Parkerrord / Book ineq
· · · · · · · · · · · · · · · · · · ·
De Morgen role? (As UBS) = AB
$C_{\infty}(P(AB) = P(AB) $
NOTE P(ACUBC) = P(A)+1(B) = -1(A-1B)=-P(A-)-1-B)
=> P(AB) = 1-P(A)-P(BC)
Also P(AK) S mbn (P(A), P(B))
SO (-P(A)-P(B) & P(AB) & min (PA) P(B)

TodayOSec 2,1 the chance of an intersection

(2) Sec 2,2 Symmetry in Sampling

1) Sec 2,1 the chance of an intersection 3 card deck (R,B,G) Pick Z couls w/o replacement Filal P (1st cound B and 2nd cound B) D= {RB, R6, B6, BR, GR, 6B} ansu (1/6) Alternatively, use the multiplication role $P(BR) = P(Z^{R}|1^{S}B) \cdot P(1^{S}B)$

mult me (and)

P(AB) = P(B \ A)P(A)

NOTE ABEBA SINCE ANBEBNA,

$$\Rightarrow P(AB) = P(BA) = P(A \mid B)P(B)$$

What is chance 1st could in a 52 card deck is queen and the last is queen?

$$P(12 Q \text{ and } 1 \text{ cast } Q) = P(12 Q) P(\text{last } Q) 12 Q)$$

$$\frac{11}{52}$$

$$\frac{4}{52}$$

$$\frac{8}{51}$$

Industran - Exclusion (or)

P(AUB) = P(A)+P(B) - P(AB)

What is chance 1st could in a 52 card deck & queen or the best is queen?

tingurl.com/jan24-P+1

1. A deck of cards is shuffled. What is the chance that the top card is the king of spades or the bottom card is the king of spades

$$\mathbf{a} \; \frac{1}{52} + \frac{1}{52} - \frac{1}{52} \times \frac{1}{52}$$

$$\mathbf{b} \frac{1}{52} + \frac{1}{51}$$

$$\mathbf{c} \; \frac{1}{52} + \frac{1}{52} - \frac{1}{52} \times \frac{1}{51}$$

d none of the above

Assone you deal could w/o repleasement unlast toll otherwise

$$P(KS_1 \circ KS_{52}) = P(KS_1) + P(KS_{52}) - P(KS_1 \cdot KS_{52}) = \frac{1}{52} + \frac{1}{52}$$

Consider a potent hand (5 ands randonly drawn 4/0 replacement)
What is chance all 5 ands are hearts?

13 17 11 10 9 52 5) 50 49 48

 $P(H_1)P(H_2|H_1)P(H_2|H_1)P(H_2)$

What is the chance all 5 caude are of the same soit? (i.e have a flush?)

4 x answ, Nant 1

52 51 50 49 44

@ Sec 2.2 Symmetry in Shaple Roandown Sampling

Recoil a deak of 52 ands has 4 suffs

How many possible pairs of and are there?

If you don't a courds, what is the chance the 2nd and I red?

method ((eastest)

Image dead of and before it I death, nothing special about 1st could,

$$P(R_2) = P(R_1) = \frac{26}{52}$$

method 2 (partition event according to what first and 12)

$$P(R_{2}) = P(R_{1}R_{2}) + P(R_{1}R_{2})$$

$$= \frac{26}{52} \cdot \frac{26}{51} + \frac{26}{32} \cdot \frac{25}{51} = \frac{26}{52} \left(\frac{26 + 25}{51} \right) = \frac{26}{52}$$