Recibiendo telemetría satelital por diversión

Manuel Rábade

Contenido

- Satélites en órbita baja
- Modulación LoRa
- Estacion receptora
 - Partes
 - Antena
 - TinyGS
- Casos de estudio, uso y diversion
- Predicción de órbitas

En onda corta

- ¿Qué tal se escucha?
- ¡Bien!

The Big Picture

Satélites en órbita baja

Comparando satélites y aviones

Vehículo/satélite	Altitud	Peso	Velocidad	Periodo
Aviones comerciales	10 - 13 Km	70 - 400 t	900 km/h	-
CanSats	15 Km	0.05 - 0.1 Kg	-	-
Aviones militares	15 - 20 Km	10 - 40 t	2,000 km/h	-
Concorde	15 - 18 Km	78 t	2,180 km/h	-
Satélites en órbita baja (LEO)	200 - 2,000 Km	100 - 2,000 Kg		
Estación espacial internacional	400 - 420 Km	420 t	28,000 km/h (7.8 km/s)	90 - 120 min
CubeSats	350 - 700 Km	1 - 20 Kg		
Satélites GPS (MEO)	20,200 Km	1-2t	14,000 km/h (3.9 km/s)	2 - 12 horas
Satélites en órbita geoestacionaria (GEO)	35,786 Km	2 - 6.5 t	11,000 km/h (3.1 km/s)	24 horas

Modulación LoRa

- LOng RAnge
- Bitrate: 0.3 50 kbit/s
- Payload: 51 255 bytes
- Bandas que no requieren licencia ISM
 - o 169 MHz
 - o 433 MHz
 - o 868/915 MHz
 - o 2.4 GHz

Estacion receptora

Lista de partes

Cantidad	Parte	Precio
1	Antena 433Mhz	\$ 169
1	LILYGO TTGO LoRa32 433 Mhz	\$ 599
2	Separador M3 - 20 mm	\$ 16
2	Separador M3 - 10 mm	\$ 10
	Total	\$ 794

https://gist.github.com/manuel-rabade/3e20432e063050936ab2534ee6deee56

Optimizando la antena

Zerone 433MHZ gsm GPRS SMA Amplificador de señal de Antena de claxon Macho Plug 3 Metros

\$16200

\$16.44 x 12 meses

Entrega GRATIS entre el 11 - 20 de mar Importación

Construir la antena

TinyGS

DECODER **SERVER** DATABASE **TELEGRAM REST API** PROGRAMATICAL API WEB APP http://tinygs.com **TELEGRAM**

https://tinygs.com

https://tinygs.com/station/Romero@28776673

https://tinygs.com/station/Romero@28776673

Norby

Received on: November 19, 2024 4:42 AM *LoRa* 436.703 Mhz SF: 10 CR: 5 BW: 250 kHz

Sat in Umbra Eclipse Depth: 11.21°

Theoretical coverage 4853 km

€ 7000mW \$ 21°C

8238mV
 1896mW
 21°C

Board PMM: 12°C PAM: 12°C PDM: 9°C

Solar Array X-: -5°C X+: -6°C

·: 3013.42344

Hexadecimal view

Download

0 1 2 3 4 5 6 7 8 012345678 0000 8E FF FF FF FF 0A 06 01 C9 0009 34 84 00 00 00 00 F1 0F 00 4...... 0012 00 68 A5 5C 8A CF 2E 42 52 .h.\...BR 001B 4B 20 4D 57 20 56 45 52 3A K MW VER: 0024 30 35 61 5F 30 31 00 00 00 05a 01...

Casos de uso, estudio y diversión

- 1. Recibir telemetría
- 2. Mejorar tu estación
- 3. Ingeniería inversa
- 4. Retransmitir información
- 5. Diagnóstico de satelites
- 6. Descubrir satélites

Norby

Received on: November 19, 2024 4:42 AM LoRa 436.703 Mhz SF: 10 CR: 5 BW: 250 kHz Sat in Umbra Eclipse Depth: 11.21°

Theoretical coverage 4853 km

- € 7000mW \$ 21°C
- ~ 8238mV 1896mW \$21°C
- Board PMM: 12°C PAM: 12°C PDM: 9°C
- Solar Array X-: -5°C X+: -6°C
- **3013.42344**

Hexadecimal view

Download

```
0 1 2 3 4 5 6 7 8 012345678

0000 8E FF FF FF FF 0A 06 01 C9 .......

0009 34 84 00 00 00 00 F1 0F 00 4......

0012 00 68 A5 5C 8A CF 2E 42 52 .h.\...BR

001B 4B 20 4D 57 20 56 45 52 3A K MW VER:

0024 30 35 61 5F 30 31 00 00 00 05a_01...
```

4. Electrical power system

The NORBY electrical power system is designed to supply power to satellite subsystems. The functionality of the EPS includes the distribution of incoming and stored energy between NORBY subsystems according to a given algorithm, as well as monitoring the current status of system parameters. The EPS comprises four function blocks (figure 3):

- · the power generation block;
- the power storage block;
- the electricity conversion block;
- the monitoring and control block.

Figure 3. Functional diagram of the NORBY electrical power system.

The power generation block is a functional unit that converts solar energy into electrical energy and then transfers it to the other EPS blocks.

NORBY has six solar panels. Four of them are rigidly fixed to the outer sides of the satellite structure. Two of the panels are fold-out. Between 6 and 12 photovoltaic (PV) cells are located on each solar panel. Solar panels on the sunny side of the orbit generate electricity proportional to the power of incident light, with cell efficiency reaching 28% and a maximum output power of 1.25 W per PV cell. Each PV cell is connected to its own DC/DC converter, which ensures that maximum power is withdrawn from the cell. Each converter is daisy-chained to another of the same converters to produce a total output voltage in the range of 5 V to 8.3 V. At the output of each such pair is a diode to protect the entire solar panel in case one of the panel elements fails. The maximum power of the

https://tinygs.com/station/OX3HI 1@1762931706

Status	Listening	Version	Creation date
Online	Surv-251	2403241	4 years ago
Last seen	Last Packet	Position (Lat, Long)	QTH Locator
a few seconds ago	18 minutes ago	67.011, -50.73	GP47pa
Elevation	Auto tuning	Test mode	Confirmed packet
37.00 m	433	OFF	305582
Telemetry packets	Type of antenna	Band	Record distance
300334	Eggbeater	401 - 479 MHz	3482.5 Km

Antenna: EB-432 EGGBEATER Preamplifier: SSB Super-Amp SP-70 Receive: LILYGO® TTGO LoRa32 V1.1 433MHZ LoRa ESP-32 OLED 0.96 Inch

My Sunday Sudoku is reverse-engineering the new * Starlink telemetry format.

26 de enero de 2025, 5:54 2 Todos pueden responder

HOD-HOD-1A Received on: January 1, 2025 1:19 PM LoRa 436.25 Mhz SF: 9 CR: 6 BW: 250 kHz Sat in Sun * Eclipse Depth: -32.68° Theoretical coverage 4813 km Download Hexadecimal view 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0000 54 49 4E 59 47 53 20 4B 34 4B 44 52 20 48 65 6C TINYGS K4KDR Hel lo from FM17! 0010 6C 6F 20 66 72 6F 6D 20 46 4D 31 37 21 20 Raw parsed view сору **▶**{ · · · }

Filip Tomczyk / SQ3TLE

Kubuś

Quick summary about HYPE as for now: the mission began nominally a...

Technical update on that:

We reproduced the issue about 16 hours after the anomaly on the engineering model in our lab, using the last valid telemetry data from TinyGS . Lab testing showed us that at temperatures below 5°C, the SX1268's PLL failed to lock within the timeframe specified by our software. As a result, the radio entered an invalid state, reported failure to initialize to OBC and rest of the satellite continued working in safe mode.

Thankfully, our "dead man switch" mechanism rebooted the satellite after 24 hours of no valid, cryptographically signed commands from the ground. On the second attempt, 48 hours after the initial failed reboot, the satellite successfully restarted at a higher temperature.

At the moment, we're operating with the awareness that HYPE cannot be rebooted in low temperatures without facing a potential wait of one to few days. However, a software update to fix this issue is now scheduled for upload within the next two weeks.

Fun fact:

During preflight thermal tests, we verified continuous operation from -40°C to +60°C with the pass condition being no restarts, so this bug managed to slip through $\ensuremath{\ensuremath{\omega}}$

17.38

https://bsky.app/profile/tinygs.bsky.social/post/3lct7qx64fs2s

Found : HOD-HOD-1A fits TLE 2024-199AK. Our <a href="mailto:ottology.ottolo

Predicción de órbitas

https://api.tinygs.com/v1/tinygs_supported.txt

Conectemos

manuel@rabade.net

@manuelrabade

