Wichtigen Parametrisierte Moechte

Hier sind die wichtigsten Formeln für parametrisierte Kurven und Linienintegrale aus dem gegebenen Kontext:**Definition einer parametrisierten Kurve**:

$$s: [\tau_0, \tau_E] \to \mathbb{R}^n, \quad \tau \mapsto s(\tau) = \begin{bmatrix} s_1(\tau) \\ s_2(\tau) \\ \vdots \\ s_n(\tau) \end{bmatrix}$$

Geschwindigkeitsvektor:

$$v(\tau) := \dot{s}(\tau)$$

Bahngeschwindigkeit:

$$v(\tau) := |v(\tau)|$$

**Bahnvektor für $v(\tau) \neq 0$ **:

$$\hat{e}(\tau) := \frac{v(\tau)}{|v(\tau)|}$$

Beschleunigungsvektor:

$$a(\tau) := \dot{v}(\tau)$$

Bahnbeschleunigung:

$$a_B(\tau) := \langle a(\tau), \hat{e}(\tau) \rangle$$

Bahn der parametrisierten Kurve:

$$B = s[\tau_0, \tau_E]$$

**Linienintegral eines Vektorfeldes w entlang einer Kurve $s(\tau)$ **:

$$I = \int_{\tau_0}^{\tau_E} \langle w, v \rangle \, d\tau$$

Umrechnung des Linienintegrals bei Parametrisierung durch die geometrische Weglänge $\tau = s^{}$:

$$I = \int_{s_0}^{s_E} \langle w, \hat{e} \rangle \, ds$$

. **Verschiedene Schreibweisen für das Linienintegral entlang einer Kurve γ^{**} :

$$I = \int_{\tau_0}^{\tau_E} \langle w, v \rangle \, d\tau = \int_{s_0}^{s_E} \langle w, \hat{e} \rangle \, ds = \int_{\gamma} \langle w, \hat{e} \rangle \, ds = \int_{\gamma} w \cdot ds$$

. **Linienintegral über eine geschlossene Kurve (Zirkulation)**:

$$\Upsilon = \oint_{\gamma} w \cdot ds$$

Diese Formeln bieten eine umfassende Grundlage für das Arbeiten mit parametrisierten Kurven und das Berechnen von Linienintegralen in der Vektoranalysis.