COT 6405 Introduction to Theory of Algorithms

Topic 8. Quicksort

Quicksort

- Sorts "in place"
 - Only a constant number of elements stored outside the sorted array
- Sorts O(n lg n) in the average case
- Sorts O(n²) in the worst case
- So why people use it instead of merge sort?
 - Merge sort does not sort "in place"

Quicksort: divide and conquer

- Divide: Array A[p..r] is partitioned into two nonempty subarrays A[p..q] and A[q+1..r]
 - All elements in A[p..q] are less than all elements in A[q+1..r]
- Conquer: The subarrays are recursively sorted by calls to quicksort
- **Combine:** No work is needed to combine the subarrays, because they are sorted in place.

An example of Quicksort

Quicksort Code

```
Quicksort(A, p, r)
    if (p < r)
        q = Partition(A, p, r);
        Quicksort(A, p, q-1);
        Quicksort(A, q+1, r);
} // what is the initial call?
```

Partition

- Clearly, all the actions take place in the partition() function
 - Rearranges the subarray "in place"
 - End result:
 - Two subarrays
 - All values in 1st subarray < all values in 2nd
 - Returns the index of the "pivot" element separating the two subarrays
- How do we implement this function?

Partition array A[p..r]

```
PARTITION(A, p, r)
         x \leftarrow A[r] // select the pivot
         i \leftarrow p - 1
         for j \leftarrow p to r - 1
                   if A[i] \leq x
                            i \leftarrow i + 1
                             exchange A[i] \longleftrightarrow A[j]
         // move the pivot between the two subarraies
         exchange A[i + 1] \longleftrightarrow A[r]
         // return the pivot
         return i + 1
```

What is the running time of partition ()?

An example of Partition

```
PARTITION(A, p, r)
x \leftarrow A[r] \qquad // \text{ select the pivot}
i \leftarrow p - 1
\text{for } j \leftarrow p \text{ to } r - 1
\text{if } A[j] \leq x
i \leftarrow i + 1
\text{exchange } A[i] \leftrightarrow A[j]
\text{exchange } A[i + 1] \leftrightarrow A[r]
\text{return } i + 1
```

```
PARTITION(A, p, r)
x \leftarrow A[r] \qquad // \text{ select the pivot}
i \leftarrow p - 1
\text{for } j \leftarrow p \text{ to } r - 1
\text{if } A[j] \leq x
i \leftarrow i + 1
\text{exchange } A[i] \leftrightarrow A[j]
\text{exchange } A[i + 1] \leftrightarrow A[r]
\text{return } i + 1
```

```
PARTITION(A, p, r)
x \leftarrow A[r] \qquad // \text{ select the pivot}
i \leftarrow p - 1
\text{for } j \leftarrow p \text{ to } r - 1
\text{if } A[j] \leq x
i \leftarrow i + 1
\text{exchange } A[i] \leftrightarrow A[j]
\text{exchange } A[i + 1] \leftrightarrow A[r]
\text{return } i + 1
```

```
PARTITION(A, p, r)
x \leftarrow A[r] \qquad // \text{ select the pivot}
i \leftarrow p - 1
\text{for } j \leftarrow p \text{ to } r - 1
\text{if } A[j] \leq x
i \leftarrow i + 1
\text{exchange } A[i] \leftrightarrow A[j]
\text{exchange } A[i + 1] \leftrightarrow A[r]
\text{return } i + 1
```

```
PARTITION(A, p, r)
x \leftarrow A[r] \qquad // \text{ select the pivot}
i \leftarrow p - 1
\text{for } j \leftarrow p \text{ to } r - 1
\text{if } A[j] \leq x
i \leftarrow i + 1
\text{exchange } A[i] \leftrightarrow A[j]
\text{exchange } A[i + 1] \leftrightarrow A[r]
\text{return } i + 1
```

```
PARTITION(A, p, r)
x \leftarrow A[r] \qquad // \text{ select the pivot}
i \leftarrow p - 1
\text{for } j \leftarrow p \text{ to } r - 1
\text{if } A[j] \leq x
i \leftarrow i + 1
\text{exchange } A[i] \leftrightarrow A[j]
\text{exchange } A[i + 1] \leftrightarrow A[r]
\text{return } i + 1
```

```
PARTITION(A, p, r)
x \leftarrow A[r] \qquad // \text{ select the pivot}
i \leftarrow p - 1
\text{for } j \leftarrow p \text{ to } r - 1
\text{if } A[j] \leq x
i \leftarrow i + 1
\text{exchange } A[i] \leftrightarrow A[j]
\text{exchange } A[i + 1] \leftrightarrow A[r]
\text{return } i + 1
```

```
PARTITION(A, p, r)
x \leftarrow A[r] \qquad // \text{ select the pivot}
i \leftarrow p - 1
\text{for } j \leftarrow p \text{ to } r - 1
\text{if } A[j] \leq x
i \leftarrow i + 1
\text{exchange } A[i] \leftrightarrow A[j]
\text{exchange } A[i + 1] \leftrightarrow A[r]
\text{return } i + 1
```

```
PARTITION(A, p, r)
x \leftarrow A[r] \qquad // \text{ select the pivot}
i \leftarrow p - 1
\text{for } j \leftarrow p \text{ to } r - 1
\text{if } A[j] \leq x
i \leftarrow i + 1
\text{exchange } A[i] \leftrightarrow A[j]
\text{exchange } A[i + 1] \leftrightarrow A[r]
\text{return } i + 1
```

Partitioning

- PARTITION first selects the pivot (How?)
 - the last element A[r] in the subarray A[p...r]
- The array is partitioned into four regions
 - some of which may be empty

Loop invariant:

- 1. All entries in A[p...i] are \leq pivot.
- 2. All entries in A[i + 1...j 1] are > pivot.
- 3. A[r] = pivot.
- 4. It's not needed as part of the loop invariant, but the fourth region is A[j..r-1], whose entries have not yet been examined.

Analyzing Quicksort

- Worst-case performance
 - The worst-case behavior for quicksort occurs when the partitioning routine produces with n-1 elements and one with 0 elements
- The recurrence is

$$-T(n) = T(n-1) + T(0) + \Theta(n)$$
$$= T(n-1) + \Theta(n)$$

Exercise

• For $T(n) = T(n-1) + \Theta(n)$, use substitution method to show that the $T(n) = \Theta(n^2)$.

Exercise (cont'd)

- $T(n) = T(n-1) + \Theta(n)$
- Basis: n = 1, $T(1) = \Theta(1)$ Inductive step: suppose $T(k) \le ck^2$ for all k < n, then $\mathsf{T}(\mathsf{n}) \le \mathsf{c}(n-1)^2 + c'n$ $= cn^2 - 2cn + c + c'n$ $= cn^2 - (2c - c')n + c$ $\leq cn^2 - (2c - c')n + cn (n > 1)$ \leq c n^2 when -(2c-c')n + cn \geq 0 -> n_0 = 1 and c' \geq c Thus, $T(n) = O(n^2)$

Exercise (cont'd)

- $T(n) = T(n-1) + \Theta(n)$
- Basis: n = 1, $T(1) = \Theta(1)$ Inductive step: suppose $T(k) \ge ck^2$ for all k < n, then

T(n)
$$\geq c(n-1)^2 + c'n$$

 $\geq cn^2 - 2cn + c + c'n$
 $\geq cn^2 - 2cn + c'n$
 $\geq cn^2$ if $-2cn + c'n \geq 0$ (c $\leq c'/2$)

A question

- Will any particular input elicit the worst case?
 - Yes, the array is already sorted in the reverse order
 - Or it is already sorted

```
      15
      14
      11
      9
      6
      5
      3
      1

      1
      3
      5
      6
      9
      11
      14
      15
```

```
PARTITION(A, p, r)

x \leftarrow A[r] // select the pivot

i \leftarrow p - 1

for j \leftarrow p to r - 1

if A[j] \le x

i \leftarrow i + 1

exchange A[i] \leftrightarrow A[j]

exchange A[i+1] \leftrightarrow A[r]

return i+1
```

```
Quicksort(A, p, r)
{
    if (p < r)
    {
        q = Partition(A, p, r);
        Quicksort(A, p, q-1);
        Quicksort(A, q+1, r);
    }
}</pre>
```

Best-case performance

- The best-case behavior occurs when Partition() produces two sub-problems of equal size, the total size of two sub-problems is n-1.
- The recurrence for the running time is
 - $-T(n) = 2T(n-1/2) + \Theta(n)$
 - By case 2 of the master theorem, $T(n) = \Theta(n \lg n)$

Performance of quicksort

- The running time of quicksort depends on the partitioning of the subarrays:
 - If the subarrays are balanced, then quicksort can run as fast as mergesort.
 - If they are unbalanced, then quicksort can run as slowly as insertion sort.

Analyzing Quicksort: Average Case

- Assuming random input → average-case running time is much closer to O(n lg n) than O(n²)
- First, a more intuitive explanation/example:
 - Suppose that partition() always produces a 9-to-1 split. This looks quite unbalanced!
 - The recurrence is thus:
 - T(n) = T(9n/10) + T(n/10) + cn
 - How deep will the recursion go? (draw it)

• T(n) = T(9n/10) + T(n/10) + cn

27

- For shortest path for the root to the leaf
 - The subproblem size for a node at depth i is $(\frac{1}{10})^i$ cn
 - The subproblem size hits T(1), when $(\frac{1}{10})^i$ cn= 1, or $i = \log_{10} cn$
 - Thus, the length of the shortest path is $\log_{10} cn$

- For longest path for the root to the leaf
 - The subproblem size for a node at depth i is $(\frac{9}{10})^i$ cn
 - The subproblem size hits T(1), when $(\frac{9}{10})^i$ cn= 1, or $i = \log_{10/9} cn$
 - Thus, the length of the longest path is $\log_{10/9} cn$

- Notice that every level of the tree has a cost of cn, until the recursion reaches a boundary condition at depth $\log_{10} cn = \Theta(lgn)$
- Then, the levels have cost at most cn
- The recursion terminates at depth $\log_{10/9} n = \Theta(lgn)$

The total cost of quicksort T(n)

$$T(n) > (1 + \log_{10} cn) cn -> \Omega \text{ (nlgn)}$$

$$T(n) < (1 + \log_{10/9} cn) cn -> O(\text{nlgn})$$

$$T(n) = \Theta(\text{nlgn})$$

Analyzing Quicksort: Average Case

- Intuitively, a real-life run of quicksort will produce a mix of "bad" and "good" splits
 - Randomly distributed among the recursion tree
 - Pretend for intuition that they alternate between best-case (n-1/2: n-1/2) and worst-case (n-1:0)
 - What happens if we bad-split root node, then good-split the resulting size (n-1) node?
 - We end up with 3 subarrays, size 0, (n-1)/2-1, (n-1)/2
 - Combined cost of splits = $n + n 1 = 2n 1 = \Theta(n)$
 - No worse than if we had good-split the root node!
 - Good-split: $T(n) = 2T(n-1/2) + \Theta(n)$
 - Mix-split: $T(n) = T(0) + T(n-1/2) + T((n-1)/2-1) + \Theta(n)$ <= $2T(n-1/2) + \Theta(n)$ -> good split complexity

Partition cost in Elliptical Shading

Figure 7.5 (a) Two levels of a recursion tree for quicksort. The partitioning at the root costs n and produces a "bad" split: two subarrays of sizes 0 and n-1. The partitioning of the subarray of size n-1 costs n-1 and produces a "good" split: subarrays of size (n-1)/2-1 and (n-1)/2. (b) A single level of a recursion tree that is very well balanced. In both parts, the partitioning cost for the subproblems shown with elliptical shading is $\Theta(n)$. Yet the subproblems remaining to be solved in (a), shown with square shading, are no larger than the corresponding subproblems remaining to be solved in (b).

Analyzing Quicksort: Average case

- Intuitively, the O(n) cost of a bad split (or 2 or 3 bad splits) can be absorbed into the O(n) cost of each good split
- Thus running time of alternating bad and good splits is still O(n lg n), with slightly higher constants
- How can we be more rigorous?

Analyzing Quicksort: Average case

- For simplicity, assume:
 - All inputs distinct (no repeats)
- Partition around a random element
 - all splits (0:n-1, 1:n-2, 2:n-3, ..., n-1:0) are equally likely
 - In general, a split can be represented by (k : n-1-k)
- What is the probability of a particular split happening?
- Answer: 1/n

Analyzing Quicksort: Average case

- So partition generates splits

 (0:n-1, 1:n-2, 2:n-3, ..., n-2:1, n-1:0)
 each with probability 1/n
- T(n) is the expected running time, T(n) = ?

$$T(n) = \frac{1}{n} \sum_{k=0}^{k=n-1} T(k) + T(n-1-k) + \Theta(n)$$

- What is each term under the summation for?
- What is the $\Theta(n)$ term for?

Average case

• T(n) =
$$\frac{1}{n} \sum_{k=0}^{k=n-1} T(k) + T(n-1-k) + \Theta(n)$$

We can rewrite the above equation as

• T(n) =
$$\frac{2}{n} \sum_{k=0}^{k=n-1} T(k) + \Theta(n)$$

Why?

• $T(n) = \frac{1}{n}(T(0)+T(n-1)+T(1)+T(n-2)+...+T(n-1)+T(0))$

- We can solve this recurrence using the dreaded substitution method
 - Guess the answer
 - $T(n) = O(n \lg n)$
 - Assume that the inductive hypothesis holds
 - What's the inductive hypothesis?
 - $T(k) \le a k \lg k + b$ for some constants a>0 and b>0 and k< n

The recurrence to be solved

$$-T(n) = \frac{2}{n} \sum_{k=0}^{k=n-1} T(k) + \Theta(n)$$

- What next?
 - Plug in the inductive hypothesis

$$-T(n) \le \frac{2}{n} \sum_{k=0}^{k=n-1} (aklgk + b) + \Theta(n)$$

The recurrence to be solved

$$-T(n) \le \frac{2}{n} \sum_{k=0}^{k=n-1} (aklgk + b) + \Theta(n)$$

- What next?
 - Expand out the k=0 case
 - For simplicity, when n = 0, we define
 - $anlgn = \lim_{n \to 0} anlgn = 0$

$$-T(n) \le \frac{2}{n} \left[b + \sum_{k=1}^{k=n-1} (aklgk + b) \right] + \Theta(n)$$

The recurrence to be solved

$$-T(n) \le \frac{2}{n} \left[b + \sum_{k=1}^{k=n-1} (aklgk + b) \right] + \Theta(n)$$

$$= \frac{2}{n} \left[\sum_{k=1}^{k=n-1} (aklgk + b) \right] + \frac{2b}{n} + \Theta(n)$$

2b/n is just a constant, so fold it into Θ(n)

$$-T(n) \le \frac{2}{n} \sum_{k=1}^{k=n-1} (aklgk + b) + \Theta(n)$$

The recurrence to be solved

$$-T(n) \le \frac{2}{n} \sum_{k=1}^{k=n-1} (aklgk + b) + \Theta(n)$$

- What next?
 - Distribute the summation

$$-T(n) = \frac{2}{n} \sum_{k=1}^{k=n-1} ak lg k + \frac{2}{n} \sum_{k=1}^{k=n-1} b + \Theta(n)$$

The recurrence to be solved

$$-T(n) = \frac{2}{n} \sum_{k=1}^{k=n-1} aklgk + \frac{2}{n} \sum_{k=1}^{k=n-1} b + \Theta(n)$$

- What next?
 - Evaluate the summation

$$- T(n) = \frac{2}{n} \sum_{k=1}^{k=n-1} ak lg k + \frac{2}{n} \sum_{k=1}^{k=n-1} b + \Theta(n)$$
$$= \frac{2a}{n} \sum_{k=1}^{k=n-1} k lg k + \frac{2b}{n} (n-1) + \Theta(n)$$

The recurrence to be solved

$$-T(n) = \frac{2a}{n} \sum_{k=1}^{k=n-1} k l g k + \frac{2b}{n} (n-1) + \Theta(n)$$

- What next?
 - Since n-1<n, 2b(n-1)/n < 2b

$$-T(n) \le \frac{2a}{n} \sum_{k=1}^{k=n-1} k lgk + 2b + \Theta(n)$$

$$T(n) \le \frac{2a}{n} \sum_{k=1}^{k=n-1} k lgk + 2b + \Theta(n)$$

It can be proved that

This summation gets its own set of slides later

46

The recurrence to be solved

$$-T(n) \le \frac{2a}{n} \sum_{k=1}^{k=n-1} k lgk + 2b + \Theta(n)$$

What next?

- Substitute
$$\sum_{k=1}^{k=n-1} k lgk \le \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2$$

$$-T(n) \le \frac{2a}{n} \left(\frac{1}{2}n^2 \lg n - \frac{1}{8}n^2\right) + 2b + \Theta(n)$$

The recurrence to be solved

$$-T(n) \le \frac{2a}{n} \left(\frac{1}{2}n^2 \lg n - \frac{1}{8}n^2\right) + 2b + \Theta(n)$$

- What next?
 - Distribute the (2a/n) term

$$-T(n) \le an \lg n - \frac{an}{4} + 2b + \Theta(n)$$

The recurrence to be solved

$$-T(n) \le an \lg n - \frac{an}{4} + 2b + \Theta(n)$$

- What is our goal?
 - Our goal is to get $T(n) \le anlg n + b$
 - We rewrite T(n) as

$$T(n) \le an \lg n + b + \left[\Theta(n) + b - \frac{an}{4}\right]$$

- $T(n) \le an \lg n + b + [\Theta(n) + b \frac{an}{4}]$
- What next?

$$-\Theta(n) + b - \frac{an}{4} \le 0$$

- $\Theta(n)+b-\frac{an}{4} \le \Theta(n)+bn-\frac{an}{4} \le c'n+bn-\frac{an}{4} \le 0$, when $a \ge 4(c'+b)$.
- Thus, pick a large enough that an/4 dominates $\Theta(n)+b$
- Then, $T(n) \leq an \lg n + b$

Average case summary

$$T(n) = \frac{2}{n} \sum_{k=0}^{k=n-1} T(k) + \Theta(n)$$

$$\leq \frac{2}{n} \sum_{k=0}^{k=n-1} (aklgk + b) + \Theta(n)$$

$$= \frac{2}{n} \left[b + \sum_{k=1}^{k=n-1} (aklgk + b) \right] + \Theta(n)$$

$$= \frac{2}{n} \left[\sum_{k=1}^{k=n-1} (aklgk + b) \right] + \frac{2b}{n} + \Theta(n)$$

$$= \frac{2}{n} \sum_{k=1}^{k=n-1} (aklgk + b) + \Theta(n)$$
(when $n \to \infty, \frac{2b}{n} \to 0$)

Average case summary(cont'd)

$$= \frac{2}{n} \sum_{k=1}^{k=n-1} (aklgk + b) + \Theta(n)$$

$$= \frac{2}{n} \sum_{k=1}^{k=n-1} aklgk + \frac{2}{n} \sum_{k=1}^{k=n-1} b + \Theta(n)$$

$$= \frac{2a}{n} \sum_{k=1}^{k=n-1} klgk + \frac{2b}{n} (n-1) + \Theta(n)$$

$$\leq \frac{2a}{n} \sum_{k=1}^{k=n-1} klgk + 2b + \Theta(n)$$

Average case summary (cont'd)

$$T(n) \leq \frac{2a}{n} \sum_{k=1}^{k=n-1} k l g k + 2b + \Theta(n)$$

$$\leq \frac{2a}{n} \left(\frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \right) + 2b + \Theta(n)$$

$$= an \lg n - \frac{an}{4} + 2b + \Theta(n)$$

$$= an \lg n + b + \Theta(n) + b - \frac{an}{4}$$

$$\leq an \lg n + b$$

Pick a large enough that an/4 dominates $\Theta(n)+b$

- So $T(n) \le an \lg n + b$ for certain a and b
 - Thus the induction holds
 - Thus $T(n) = O(n \lg n)$
 - Thus quicksort runs in O(n lg n) time on average
- Now let's prove the summation

$$\sum_{k=1}^{k=n-1} k l g k \le \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2$$

Tightly Bounding

- Prove $\sum_{k=1}^{k=n-1} k l g k \le \frac{1}{2} n^2 \lg n \frac{1}{8} n^2$
- Split the summation for a tighter bound

$$\sum_{k=1}^{k=n-1} k l g k = \sum_{k=1}^{k=\lceil \frac{n}{2} \rceil - 1} k l g k + \sum_{k=\lceil \frac{n}{2} \rceil}^{k=n-1} k l g k$$

•
$$\sum_{k=1}^{k=n-1} k l g k = \sum_{k=1}^{k=\lceil \frac{n}{2} \rceil - 1} k l g k + \sum_{k=\lceil \frac{n}{2} \rceil}^{k=n-1} k l g k$$

The lgk in the second term is bounded by lg n

$$\sum_{k=1}^{k=n-1} k l g k \le \sum_{k=1}^{k=\left[\frac{n}{2}\right]-1} k l g k + \sum_{k=\left[\frac{n}{2}\right]}^{k=n-1} k l g n$$

•
$$\sum_{k=1}^{k=n-1} k l g k \le \sum_{k=1}^{k=\left[\frac{n}{2}\right]-1} k l g k + \sum_{k=\left[\frac{n}{2}\right]}^{k=n-1} k l g n$$

Move the Ign outside the summation

$$\sum_{k=1}^{k=n-1} k l g k \leq \sum_{k=1}^{k=\lceil \frac{n}{2} \rceil - 1} k l g k + \lg n \sum_{k=\lceil \frac{n}{2} \rceil}^{k=n-1} k$$

•
$$\sum_{k=1}^{k=n-1} k lgk \le \sum_{k=1}^{k=\lceil \frac{n}{2} \rceil - 1} k lgk + \lgn \sum_{k=\lceil \frac{n}{2} \rceil}^{k=n-1} k$$

What next?

The lg k in the first term is bounded by lg n/2

$$\sum_{k=1}^{k=n-1} k l g k \leq \sum_{k=1}^{k=\lceil \frac{n}{2} \rceil - 1} k l g \frac{n}{2} + \operatorname{Ign} \sum_{k=\lceil \frac{n}{2} \rceil}^{k=n-1} k$$

•
$$\sum_{k=1}^{k=n-1} k l g k \le \sum_{k=1}^{k=\lceil \frac{n}{2} \rceil - 1} k l g \frac{n}{2} + \operatorname{Ign} \sum_{k=\lceil \frac{n}{2} \rceil}^{k=n-1} k$$

What next?

$$\lg n/2 = \lg n - 1$$

$$\sum_{k=1}^{k=n-1} k lgk \leq \sum_{k=1}^{k=\lceil \frac{n}{2} \rceil - 1} k (lgn - 1) + \lgn \sum_{k=\lceil \frac{n}{2} \rceil}^{k=n-1} k$$

•
$$\sum_{k=1}^{k=n-1} k lgk \le \sum_{k=1}^{k=\lceil \frac{n}{2} \rceil - 1} k (lgn - 1) + \lgn \sum_{k=\lceil \frac{n}{2} \rceil}^{k=n-1} k$$

- What next?
 - Move (lg n 1) outside the summation

$$\sum_{k=1}^{k=n-1} k lgk \le (lgn-1) \sum_{k=1}^{k=\lceil \frac{n}{2} \rceil - 1} k + \lgn \sum_{k=\lceil \frac{n}{2} \rceil}^{k=n-1} k$$

•
$$\sum_{k=1}^{k=n-1} k lgk \le (lgn-1) \sum_{k=1}^{k=\lfloor \frac{n}{2} \rfloor -1} k + \lgn \sum_{k=\lfloor \frac{n}{2} \rfloor}^{k=n-1} k$$

- What next?
 - Distribute the (lg n 1)

$$\sum_{k=1}^{k=n-1} k lgk \leq lgn \sum_{k=1}^{k=\left|\frac{n}{2}\right|-1} k - \sum_{k=1}^{k=\left|\frac{n}{2}\right|-1} k + \lgn \sum_{k=\left[\frac{n}{2}\right]}^{k=n-1} k$$

- What next?
 - The summations overlap in range; combine them

$$\sum_{k=1}^{k=n-1} k lgk \le lgn \sum_{k=1}^{k=n-1} k - \sum_{k=1}^{k=\left|\frac{n}{2}\right|-1} k$$

•
$$\sum_{k=1}^{k=n-1} k lgk \le lgn \sum_{k=1}^{k=n-1} k - \sum_{k=1}^{k=\left[\frac{n}{2}\right]-1} k$$

- What next?
 - The Gaussian series

$$\sum_{k=1}^{k=n-1} k lgk \le \operatorname{Ign}\left(\frac{(n-1)n}{2}\right) - \sum_{k=1}^{k=\left\lfloor\frac{n}{2}\right\rfloor-1} k$$

9/17/2018

63

•
$$\sum_{k=1}^{k=n-1} k lgk \le \operatorname{Ign}\left(\frac{(n-1)n}{2}\right) - \sum_{k=1}^{k=\left|\frac{n}{2}\right|-1} k$$

- What next?
 - Rearrange first term, place upper bound on second

$$\sum_{k=1}^{k=n-1} k lgk \le \frac{1}{2} [n(n-1)] lgn - \sum_{k=1}^{k=n/2-1} k$$

•
$$\sum_{k=1}^{k=n-1} k lgk \le \frac{1}{2} [n(n-1)] lgn - \sum_{k=1}^{k=n/2-1} k$$

- What next?
 - The Gaussian series

$$-\sum_{k=1}^{k=n-1} k l g k \le \frac{1}{2} \left[n(n-1) \right] l g n - \frac{1}{2} \left(\frac{n}{2} \right) \left(\frac{n}{2} - 1 \right)$$

•
$$\sum_{k=1}^{k=n-1} k lgk \le \frac{1}{2} [n(n-1)] lgn - \frac{1}{2} (\frac{n}{2}) (\frac{n}{2} - 1)$$

- What next?
 - Multiply it all out

$$-\sum_{k=1}^{k=n-1} k l g k \leq \frac{1}{2} (n^2 l g n - n l g n) - \frac{1}{8} n^2 + \frac{n}{4}$$

$$= \frac{1}{2} n^2 l g n - \frac{1}{8} n^2 - \frac{1}{2} n l g n + \frac{n}{4}$$

$$\leq \frac{1}{2} n^2 l g n - \frac{1}{8} n^2 \text{ when } n \geq 2$$

Done !!!!

Tightly Bounding Summary

$$\begin{split} \sum_{k=1}^{k=n-1} k l g k &= \sum_{k=1}^{k=\lfloor n/2 \rfloor - 1} k l g k + \sum_{k=\lfloor n/2 \rfloor}^{k=n-1} k l g k \\ &\leq \sum_{k=1}^{k=\lceil n/2 \rfloor - 1} k l g (\frac{n}{2}) + \sum_{k=\lceil n/2 \rfloor}^{k=n-1} k l g n \\ &= \sum_{k=1}^{k=\lceil n/2 \rfloor - 1} k (l g n - 1) + \lg n \sum_{k=\lceil n/2 \rfloor}^{k=n-1} k \\ &= (l g n - 1) \sum_{k=1}^{k=\lceil n/2 \rfloor - 1} k + \lg n \sum_{k=\lceil n/2 \rfloor}^{k=n-1} k \end{split}$$

Tightly Bounding Summary (cont'd)

$$\begin{split} \sum_{k=1}^{k=n-1} k l g k &\leq (lgn-1) \sum_{k=1}^{k=\lfloor n/2 \rfloor - 1} k + \lg n \sum_{k=\lfloor n/2 \rfloor}^{k=n-1} k \\ &= \lg n \sum_{k=1}^{k=\lfloor n/2 \rfloor - 1} k - \sum_{k=1}^{k=\lfloor n/2 \rfloor - 1} k + \lg n \sum_{k=\lfloor n/2 \rfloor}^{k=n-1} k \\ &= \lg n \sum_{k=1}^{k=n-1} k - \sum_{k=1}^{k=\lfloor n/2 \rfloor - 1} k \\ &= \lg n \left(\frac{(n-1)n}{2} \right) - \sum_{k=1}^{k=\lfloor n/2 \rfloor - 1} k \\ &\leq \frac{1}{2} \left[n(n-1) \right] \lg n - \sum_{k=1}^{k=n/2 - 1} k \end{split}$$

9/17/2018 68

Tightly Bounding Summary(cont'd)

$$\begin{split} \sum_{k=1}^{k=n-1} k l g k &\leq \frac{1}{2} [n(n-1)] l g n - \sum_{k=1}^{k=n/2-1} k \\ &= \frac{1}{2} [n(n-1)] l g n - \frac{1}{2} \left(\frac{n}{2}\right) \left(\frac{n}{2} - 1\right) \\ &= \frac{1}{2} (n^2 l g n - n l g n) - \frac{1}{8} n^2 + \frac{n}{4} \\ &= \frac{1}{2} n^2 l g n - \frac{1}{8} n^2 - \frac{1}{2} n l g n + \frac{n}{4} \\ &\leq \frac{1}{2} n^2 l g n - \frac{1}{8} n^2 \text{ when } n \geq 2 \end{split}$$

Done !!!!