

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

employed, the author proceeds to develope the process he uses for obtaining one of the roots of a numerical equation. Passing over the difficult question of determining the limits of the roots, he supposes the first significant figure (R) of a root to have been ascertained, and transforms the proposed equation into one whose roots are the

roots of the original, divided by this figure $\left(\operatorname{or} \frac{x}{R}\right)$: one root of this

equation lying between 1 and 2, the first significant figure (r) of the decimal part is obtained, and the equation transformed into another whose roots are those of the former, divided by 1+ this decimal $(or\ 1+r)$. This last equation is again similarly transformed; these transformations being readily effected by the methods first given. Proceeding thus, the root of the original equation is obtained in the form of a continued product. After applying this method to finding a root of an equation of the 4th, and likewise one of the 5th degree, the author applies it to a class of equations to which he considers it peculiarly adapted, namely, those in which several terms are wanting. One of these is of the 16th degree, having only six terms; and another is of the 622nd degree, having only four terms.

3. "Additional Note on the Contraction of Voluntary Muscles in the living body." By William Bowman, Esq., F.R.S., Demonstrator of Anatomy in King's College, London, and Assistant Surgeon to King's College Hospital.

This communication contains a short account of some recent examinations made by the author on the human muscular fibre affected The effect of the violent contractions which characterize this disease, is to produce, in many parts of the muscles, considerable ecchymosis, which gives the contiguous portions a pale and gray aspect. In other places the muscles lose, in a great measure, their fine fibrous character, and exhibit a soft mottled surface. which is easily torn. The primitive fasciculi, when microscopically examined, present indications of strong contraction, appearing swollen into a fusiform shape, and having their transverse striæ in some parts much more closely approximated, and in others separated to much greater distances than in the natural state, or even altogether obliterated, in consequence of the whole texture being broken up into those primitive elements of which the discs are constructed; and frequently they are broken across without a corresponding rupture of the sarcolemma.

The author is led from his observations to the conclusions,—1st, that the contraction of a muscle is the essential cause of its rupture, 2ndly, that there is no repellent force between the contractile elements of muscular fibre; and, lastly, that the contraction of voluntary muscle is not a sustained act of the whole congeries of contractile elements composing it, but a rapid series of partial acts, in which all duly share, becoming by turns contracted and relaxed.

The paper is accompanied by drawings of the microscopic appearances therein described.