

Increasing Dynamism in Plasticine

Alexander Rucker acrucker@stanford.edu

YaqiZhang yaqiz@stanford.edu

Matthew Vilim mvilim@stanford.edu

— Background

Plasticine is a vectorized Coarse-Grained Reconfigurable Array (CGRA), with the following key features:

- 6-stage, 16-lane 32-bit floating point SIMD pipelines
- Distributed 256-kByte memories
- DRAM controllers with tile load and scatter-gather support *Plasticine* demonstrated an average speedup of XXX and XXX times performance per watt than an FPGA.

How can we retain Plasticine's performance and efficiency while enabling new classes of applications?

— Compiler & Mapping Flow –

— Hybrid Networks -

Host CU

Physical Compute Unit