Brain Decoding Using Connectivity Informed Models

Arian Morteza

Department of Electrical and Computer Engineering, Concordia University

June 13, 2024

1 Introduction, and Problem definition

- 1 Introduction, and Problem definition
- Background and Related Work

- 1 Introduction, and Problem definition
- Background and Related Work
- Method
 - Major Perspective
 - Graph Neural Networks
 - Dataset

- 1 Introduction, and Problem definition
- Background and Related Work
- Method
 - Major Perspective
 - Graph Neural Networks
 - Dataset
- 4 Results

- 1 Introduction, and Problem definition
- Background and Related Work
- Method
 - Major Perspective
 - Graph Neural Networks
 - Dataset
- 4 Results
- 6 References

What is Brain Decoding?

 Reconstruction of sensory and other stimuli from information that has already been encoded and represented in the brain by networks of neurons [1]. For example: Image generation, task classification, ...

Background and Related Work

Major Perspective

Problem Definition: Stimuli Classification based on the Graph Neural Network.

- Input: Brain activities and β scores extracted from Voxel FMRI.
- Output: Image Stimuli classification

Graph Neural Networks

- Layer Expression: $H^{l+1} = \sigma(A.H^l.\Theta)$, $H^0 = X$, H is the layer representation, and A is the Adj. Matrix. Θ is the learnable parameters.
- ChebNet: suggested in tutorial [2] 3x[ChebConv(.) + Relue(.)] + 3x[Linear(.) + Relue(.)] + SoftMax(.)

Dataset

• Friends-Dataset To extract Connectomes:

Friends Dataset Parcellation

Dataset

• Things-Dataset (To project Beta scores to each parcel):

Dataset: Highlevel-Categories

• Highlevel-Categories (labels) things Dataset:

Top 8 labels and their counts:

animal: 336 **food**: 294

vegetable: 144

fruit: 132 clothing: 126

tool: 102

sports equipment: 96

insect: 84

Connectom Representation

• Friends Dataset:

Random Graph

• weights *N*(0,1):

Results: Performance Metrics for Different Methods

Method	F1 Score (weighted)	Accuracy
Dummy Classifier	0.1034	0.2548
SVM	0.4603	0.5399
Chebnet	0.5280	0.5170
Chebnet (with Random Graph)	0.5252	0.5320

Table: F1 Score and Accuracy for Different Methods

- Graph Effect
- Generalized classes

Tools and Deliverables

Tools

- model training: torch_geometric
- result visualization and pre processing:nilearn, matplotlib, numpy, pandas
- Deliverables
 - Jupyter Book (online): https://aarian.github.io/BrainDecoding/intro.html
 - Jupyter notebook for the experiments: https://github.com/Aarian/BrainDecoding

References I

- [1] K. O. Johnson, "Neural coding," Neuron, vol. 26, no. 3, pp. 563-566, 2000, ISSN: 0896-6273. DOI: https://doi.org/10.1016/S0896-6273(00)81193-9. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0896627300811939.
- [2] main-educational, *Brain encoding and decoding: Graph construction*, https://github.com/main-educational/brain_encoding_decoding/blob/main/src/graph_construction.py, Accessed: 2024-05-30, 2024.

