

Распределување на процеси

Оперативни системи 2014 Аудиториски вежби

Процеси

- Процесот се дефинира како програма во извршување.
- Како процесот се извршува, тој ги менува своите состојби. Секој процес може да се најде во некоја од наведените состојби:
 - HOB
 - **с**премен
 - чека/блокиран
 - активен
 - терминиран
- Секој процес во оперативниот систем се претставува со неговиот контролен блок (РСВ).

Распределување на процеси

- Кога процесите се наоѓаат во редицата спремни да се извршат, одлуката за тоа кој процес ќе премине од состојба на спремен процес, во состојба на активен процес не е едноставна.
- Поради тоа, постојат повеќе алгоритми за распределување на процеси.
- Во продолжение ќе разгледаме неколку од нив:
 - FCFS (First-Come First-Served)
 - SJF (Shortest Job First)
 - SRTN (Shortest Remaining Time Next)
 - RR (Round-Robin)

Алгоритамот FCFS

- Овој алгоритам е наједноставен и наједноставно се имплементира со помош на FIFO редица.
- Секој процес кој што ќе премине во состојба на спремен процес се придружува на крајот на редицата на спремни процеси за извршување.
- Прв започнува да се извршува оној процес кој што прв влегол во оваа редица на спремни процеси, втор започнува процесот кој влегол во редицата по него, итн.
- Средното време на чекање со овој алгоритам е често доста долго.

Алгоритамот SJF

- Со овој алгоритам CPU се доделува на оној процес кој што има најмало очекувано време на извршување.
- Овој алгоритам им дава предност на извршување на малите процеси.
- Доколку процесите се со иста должина, тогаш се користи FCFS за да се разреши дилемата.

Алгоритамот SRTN

- Со овој алгоритам, распределувачот секогаш го избира процесот чие што преостанато време за извршување е помало.
- Кога ќе пристигне нов процес во редицата на спремни процеси, неговото вкупно време се споредува со преостанатото време на извршување на процесот кој веќе е во состојба на извршување.
- Ако на новиот процес му е потребно помало време за да заврши отколку на тековниот процес, тогаш тековниот процес се прекинува и новиот процес преминува во состојба на активен.

Алгоритамот RR

- Еден од најстарите, наједноставните и најшироко употребуваните алгоритми.
- За да функционира овој алгоритам потребно е распределувачот однапред да го знае временскиот квантум кој што е определен за извршување на секој процес.
- Редицата на спремни процеси со овој алгоритам се третира како кружна редица и притоа начинот на извршување на процесите е според FCFS.

Задача 1

- Нека се дадени 5 процеси: А, В, С, D и Е и соодветно нивните времиња на извршување: 25, 22, 33, 35 и 28.
 Процесите пристигнуваат (скоро) истовремено.
- Да се нацрта соодветниот Гантограм (временски дијаграм) за секој од распределувачките алгоритми дадени во табелата и да се пополнат соодветните полиња во неа.

Задача 1

			Алгоритми за распределување					
процес време на извршување	вање	време на извршување време на пристигнување	FCFS		SJF		Round Robin со квантум 10 ms	
	време на извршу		време на чекање	вкупно време во систем	време на чекање	вкупно време во систем	време на чекање	вкупно време во систем
Α	25	0						
В	22	0						
С	33	0						
D	35	0						
E	28	0						

• Гантограм за FCFS e:

Вкупното време на чекање на процесите е:

Процес	Време на чекање			
А	0			
В	25			
С	47			
D	80			
E	115			

 Вкупното време во системот на секој од процесите е времето кое поминало од нивното пристигнување, па сè до нивното комплетно завршување.

Процес	Време во системот
Α	25
В	47
С	80
D	115
Е	143

• Гантограм за SJF e:

Вкупното време на чекање на процесите е:

Процес	Време на чекање			
А	22			
В	0			
С	75			
D	108			
E	47			

 Вкупното време во системот на секој од процесите е времето кое поминало од нивното пристигнување, па сè до нивното комплетно завршување.

Процес	Време во системот				
Α	47				
В	22				
С	108				
D	143				
E	75				

Гантограм за RR со квантум 10ms e:

Вкупното време на чекање на процесите е:

Процес	Време на чекање			
Α	0+(50-10)+(100-60) = 80			
В	10+(60-20)+(105-70) = 85			
С	20+(70-30)+(107-80)+(135-117) = 105			
D	30+(80-40)+(117-90)+(138-127) = 108			
E	40+(90-50)+(127-100) = 107			

 Вкупното време во системот на секој од процесите е времето кое поминало од нивното пристигнување, па сè до нивното комплетно завршување.

Процес	Време во системот
А	105
В	107
С	138
D	143
Е	135

После пресметките табелата би изгледала вака:

			Алгоритми за распределување						
процес време на извршување	вање	време на извршување време на пристигнување	FCFS		S.	SJF		Round Robin со квантум 10 ms	
	време на извршу		време на чекање	вкупно време во систем	време на чекање	вкупно време во систем	време на чекање	вкупно време во систем	
Α	25	0	0	25	22	47	80	105	
В	22	0	25	47	0	22	85	107	
С	33	0	47	80	75	108	105	138	
D	35	0	80	115	108	143	108	143	
E	28	0	115	143	47	75	107	135	

Задача 2

- ▶ Со помош на алгоритамот SRTN да се распределат 6 процеси A, B, C, D, E и F кои што имаат соодветно 22, 30, 15, 28, 12 и 25 времиња на извршување. Меѓутоа, процесите не се придружуваат истовремено на редицата на спремни процеси. Нивните времиња на придружување се: 5, 10, 80, 0, 15 и 50 ms соодветно.
- Да се нацрта соодветниот Гантограм и да се пресмета времето на одзив на секој од процесите во системот.

▶ Гантограм за SRTN е:

- Времето на одзив се пресметува како резултат од времето на поднесување барање, до прв добиен резултат.
 - Притоа, ќе претпоставиме дека процесот веднаш штом ќе стане активен го дава својот прв резултат.

- Времето на одзив за процесот А би било:
 - ▶ време на поднесување барање 5ms
 - ▶ прв добиен резултат 5ms
 - ▶ време на одзив: 5 5 = 0ms
- Времето на одзив за процесот В би било:
 - ▶ време на поднесување барање 10ms
 - ▶ прв добиен резултат 102ms
 - ▶ време на одзив: 102 10 = 92ms
- Времето на одзив за процесот С би било:
 - време на поднесување барање 80ms
 - ▶ прв добиен резултат 87ms
 - ▶ време на одзив: 87 80 = 7ms

- ▶ Времето на одзив за процесот D би било:
 - ▶ време на поднесување барање 0ms
 - ▶ прв добиен резултат 0ms
 - ▶ време на одзив: 0 − 0 = 0ms
- Времето на одзив за процесот Е би било:
 - ▶ време на поднесување барање 15ms
 - ▶ прв добиен резултат 27ms
 - ▶ време на одзив: 27 15 = 12ms
- Времето на одзив за процесот F би било:
 - ▶ време на поднесување барање 50ms
 - ▶ прв добиен резултат 62ms
 - ▶ време на одзив: 62 50 = 12ms

Задача за дома:

- Процесите од Задача 2 да се распределат со алгоритмите :
 - ► FCFS
 - SJF
 - ▶ RR со квантум 5ms
- Да нацрта соодветниот Гантограм за секоја од алгоритмите и да се пресмета времето на одзив на секој од процесите во ситемот, ако претпоставиме дека процесите го даваат својот прв резултат 1ms откако ќе станат активни.

Распределување кај системи во реално време

- Систем во реално време е систем каде што времето ја игра најзначајна улога.
- Примери за таков вид системи се:
 - Системот во компакт диск плеерите, кој што ги зема битовите онака како што пристигнуваат од диск единицата и ги претвара во музика во многу краток временски интервал.
 - Ако пресметката би зела подолго време, музиката би звучела чудно.
 - Системите во авионите, системите кои ги контролираат роботите во една автоматизирана фабрика, мониторирањето на пациентите во одделите за интензивна нега, итн.

Распределување кај системи во реално време

- Настаните кои се случуваат во овие системи може да бидат периодични (се случуваат во регуларни интервали) или непериодични (се случуваат непредвидливо).
- Еден систем во реално време може да одговори на повеќе периодичен поток од настани (процеси) и тој одговор ќе зависи од две работи:
 - колку време му треба на секој од процесите за да се изврши;
 - која е неговата периода на појавување;

Распределување кај системи во реално време

Ако имаме m периодични процеси и секој процес се појавува со периода P_i и побарува C_i секунди од времето на CPU, тогаш системот ќе може да управува со тој поток само ако е задоволено следново:

$$\sum_{i=1}^{m} \frac{C_i}{P_i} \le 1$$

 Системите во реално време кои што го задоволуваат овој критериум се наречени распределиви системи.

Задача 3:

- Нека е даден еден систем во реално време со три периодични настани. Процесите кои што ги отсликуваат овие настани се со периоди од 100, 200 и 500 msec, соодветно. Ако овие процеси побаруваат 50, 30 и 100 msec од времето на СРU, дали системот ќе може да управува со овие процеси, односно дали системот ќе биде распределив?
- Ако се додаде 4-ти процес со периода од 1 sec, колкаво треба да биде неговото максимално време на извршување за да може системот да биде распределив?

 Системот за да биде распределив треба да го задоволува следново неравенство:

$$\sum_{i=1}^{3} \frac{C_i}{P_i} \le 1$$

 \blacktriangleright каде што C_1 = 50, C_2 = 30, C_3 = 100 и P_1 = 100, P_2 = 200, P_3 = 500, па имаме:

$$\sum_{i=1}^{3} \frac{C_i}{P_i} = \frac{50}{100} + \frac{30}{200} + \frac{100}{500} = 0.5 + 0.15 + 0.2 = 0.85 \le 1$$

 Значи овој систем може да управува со потокот од дадените повеќе периодични настани.

 Ако се додаде уште еден процес со периода од 1sec = 1000 msec тогаш за системот да биде распределив треба да биде исполнето следново:

$$\frac{50}{100} + \frac{30}{200} + \frac{100}{500} + \frac{x}{1000} \le 1$$

▶ Од каде што следува дека $x \le 0.15$ или процесот да има максимално време на извршување од 150 msec.

Задача 4:

За предвидување на времетраење на процеси се користи алгоритам на стареење со α=1/2. Ако времетраењата на претходните 4 извршувања биле 40, 20, 40 и 15 ms, кое е предвидувањето за следното време на извршување?

 Алгоритамот на стареење го пресметува следното предвидување како тежинска сума од претходните две извршувања, т.е. ако Т₀ и Т₁ се две последователни времиња на извршување, тогаш Т₂ се пресметува како:

$$T_2 = \alpha \cdot T_1 + (1 - \alpha) \cdot T_0$$

- Проценката за времетраењето на следното извршување на процес можеме да ја направиме на следниов начин:
- Нека ги имаме двете претходни вредности за времето на извршување на процесот, T_0 и T_1

$$F_1 = T_0$$
,
 $F_2 = \alpha \cdot T_1 + (1 - \alpha) \cdot F_1$,
 $F_k = \alpha \cdot T_{k-1} + (1 - \alpha) \cdot F_{k-1}$, $k = 3, 4, ...$

 Ако α=1/2 се добиваат следните последователни предвидувања:

$$T_0$$

 $T_0/2 + T_1/2$,
 $T_0/4 + T_1/4 + T_2/2$,
 $T_0/8 + T_1/8 + T_2/4 + T_3/2$,

За вредностите во задачата ќе имаме предвидување:

$$T_0/8 + T_1/8 + T_2/4 + T_3/2 = 40/8 + 20/8 + 40/4 + 15/2 = 25 ms$$