实验题目: 仪器使用及常用基本电量的测量

班级: 工82

学号: 2018010895

姓名: 刘子源

日期: 2019.3.20

一、 实验目的

- 1. 掌握直流稳压电源、数字万用表的使用方法。
- 2. 掌握电压、电流和电阻的测量方法。
- 3. 理解仪表内阻对测量结果的影响
- 4. 通过对电阻的测量,了解器件的偏差,理解测量误差

二、 实验电路图及其说明

在用数字万用表测量直流电压实验中,将三个电阻串联,用万用表的电阻档分别测量 AB、BC、CD、AC、BD、AD 两端电压,并根据 CD 两端电压与 R_3 阻值间接测出电路电流。三次测试的电路图如下。

第一次测试中, $V_s=+10$ V, $R_1=100$ k Ω , $R_2=51$ k Ω , $R_3=1$ k Ω

第二次测试中, $V_s=-10\,\mathrm{V}$, $R_1=100\,\mathrm{k}\,\Omega$, $R_2=51\,\mathrm{k}\,\Omega$, $R_3=1\,\mathrm{k}\,\Omega$

第三次测试中, $V_s=+10~{
m V}$, $R_1=10~{
m M}\,\Omega$, $R_2=5.1~{
m M}\,\Omega$, $R_3=100~{
m k}\,\Omega$

三、 预习

理论计算

1. 用数字万用表测量电阻

- (1) 数字万用表置于电阻测量档,双手握住表笔保护环的后端即橡胶部分,用万用表分别测量 5 个 200k Ω 的电阻和 5 个 1k Ω 的电阻,注意根据所测电阻阻值的不 同更换万用表的档位,使显示的位数尽可能多,以提高测量精度,并记录测量结果。
- (2) 用双手分别握住表笔的前端金属部分,测量 1 个 200k Ω 的电阻,观察所看到的现象并加以分析。

2. 用数字万用表测量直流电压

- (1) 将 R1=100 k Ω 、R2=51 k Ω 、R3=1 k Ω 三只电阻按图 5.1 与直流稳压电源连接, 其中输入电压 Vi 由直流稳压电源产生。设置 Vi 为+10.0V,分别测量 A-B、B-C、 C-D、A-C、B-D、A-D 之间的电压值,并记录测量结果。
- (2) 将 R1=100 k Ω 、R2=51 k Ω 、R3=1 k Ω 三只电阻接图 5.1 与直流稳压电源连接, 其中输入电压 Vi 由直流稳压电源产生。设置 Vi 为-10.0V,分别测量 A-B、B-C、 C-D、A-C、B-D、A-D 之间的电压值,并记录测量结果。
- (3) 将 R1=10 M Ω 、R2=5.1M Ω 、R3=100 k Ω 三只电阻按图 5.1 与直流稳压电源连接, 其中输入电压 Vi 由直流稳压电源产生。设置 Vi 为+10.0V,重复测量 A-B、B-C、C-D、A-C、B-D、A-D 之间的电压值,并记录测量结果。

3. 考察万用表内阻对测量结果的影响,设计的电路、修正前和修正后的测量结果。

仿真结果

实验表格

1. 用数字万用表测量电阻

阻值\测量值	1	2	3	4	5
200k Ω					
1k Ω					

双手握住表笔前段测量 200kΩ电阻的阻值为: _____

2. 用数字万用表测量直流电压

测试条件	A-B	В-С	C-D	A-C	B-D	A-D	由 C-D 电 压换算的 电流值
$R_1 = 100 \text{ k}\Omega$ $R_2 = 51 \text{ k}\Omega$ $R_3 = 1 \text{ k}\Omega$ $V_i = +10.0 \text{ V}$							
$R_1 = 100 \text{ k}\Omega$ $R_2 = 51 \text{ k}\Omega$ $R_3 = 1 \text{ k}\Omega$ $V_i = -10.0 \text{ V}$							
$R_1 = 10 \text{ M}\Omega$ $R_2 = 5.1 \text{ M}\Omega$ $R_3 = 100 \text{ k}\Omega$ $V_i = +10.0 \text{ V}$							

3. 考察万用表内阻对测量结果的影响

	V_1	V_2	V_3	V_4
理论值				
测量值				
修正后				

四、 实验数据

阻值\测量		2	-		1961	-	5	
200kΩ 1kΩ	198 kg	The second secon	-0	-00-			195ka 1920	
2. 用数字	表笔前段测量	[流电压				D.D	A-D	由 C-D
測试条件	A-B	В-С	C-D	A-(B-D	N-D	压换算的电流值
$R_1 = 100 \text{ k}\Omega$ $R_2 = 51 \text{ k}\Omega$ $R_3 = 1 \text{ k}\Omega$	6.±6V	3,350	0.070	9.9	TV	3.421	10.02	y Tom
$V_t = +10.0 \text{ V}$ $R_1 = 100 \text{ k}\Omega$ $R_2 = 51 \text{ k}\Omega$ $R_3 = 1 \text{ k}\Omega$ $V_t = -10.0 \text{ V}$	-6.540	-3.341	-0105V	-9.	921	-3.40	V - 9.98	63
$R_1 = 10 \text{ M}\Omega$ $R_2 = 5.1 \text{ M}\Omega$ $R_3 = 100 \text{ k}\Omega$ $R_4 = +10.0 \text{ V}$	4.86V	254	0.06th	/ -9.8	.4V	2.59	V 10.0	13 10
Vi · Ai R. Bi R. Ci R. Ci R. Si I)	3	老菜	万用麦	肉锤	[2]n	则量	这来来	540

五、 实验数据整理与分析

数据整理

阻值\测量值	1	2	3	4	5
$200 \mathrm{k}\Omega$	198 k Ω	198 k Ω	199k Ω	196k Ω	195 k Ω
1k Ω	997Ω	998Ω	995Ω	993Ω	992Ω

湖口土夕 /中	A D	D. C	C D	A . C	D D	4 D	H C D
测试条件	A-B	В-С	C-D	A-C	B-D	A-D	由 C-D
							电压换
							算的电
							流值
$R_1 = 100 \text{ k}\Omega$	6. 56V	3.35V	0. 07V	9. 95V	3. 42V	10. 02V	70mA
	0. 501	J. JJV	0.011	3. 33 V	J. 42V	10.021	TOMA
$R_2 = 51 \text{ k}\Omega$							
$R_3 = 1 \text{ k}\Omega$							
$V_i = +10.0 \text{ V}$							
$R_1 = 100 \text{ k}\Omega$	-6.54V	-3.34V	-0.065V	-9.92V	-3. 40V	-9. 98V	65mA
$R_2 = 51 \text{ k}\Omega$							
$R_3 = 1 \text{ k}\Omega$							
$V_i = -10.0 \text{ V}$							
$R_1 = 10 \text{ M}\Omega$	4.86V	2.54V	0.065V	9.84V	2.59V	10. 00V	65mA
$R_2 = 5.1 \text{ M}\Omega$							
$R_3 = 100 \text{ k}\Omega$							
$V_i = +10.0 \text{ V}$							

测量电压时由万用表内阻造成的误差分析

六、 实验总结

通过本次实验,我掌握了数字万用表测量电阻和电压的正确使用方法,了解了万用表内阻对测量的影响并设计了修正电路。

数字万用表测量电阻的使用方法

- 1. 被测电阻一定要与电源、其他电路断开,避免将其他元件并入其中使测量不准或损坏万 用表。
- 2. 万用表置于电阻测量档,且从高档位开始降低档位,在不超过量程的前提下,使显示位数尽可能多,以提高测量精度。
- 3. 双手应握住表笔的橡胶部分,不能接触金属部分。
- 4. 测量时,表笔两端分别与电阻两端引脚相连。
- 5. 对同一电阻应多次测量取平均值,以减小随机误差。

6. 测量结束后,关闭数字万用表的开关。

数字万用表测量电压的使用方法及误差修正

- 1. 测量电压时,首先确定测量的是直流电压还是交流电压,否则轻则在实验课上浪费大量时间检查电路,重则损坏电表。
- 2. 确定电压类型后,将表笔与待测两点相接,从高量程到低量程调节量程,使示数尽量大以减小误差,注意不要超过量程。
- 3. 切记不要用手接触表笔金属端!后果十分严重。
- 4. 测量结束后,关闭数字万用表的开关。

万用表测量电压时实际上是将自身内阻并联进电路,由于万用表有着 10MΩ的内阻,在测量小电阻两端电压时误差可以忽略不计,但当测量阻值相当的电阻两端电压时则会产生不容忽视的误差,由于万用表并入电路后会使测量部分电路电阻变小,分压变小,测量值会较实际值偏小。这时要想办法修正误差。

我采用的是两步等效的方法,具体理论推理过程见上面"实验数据整理与分析",原理就是在不改变对外端口的 U-I 关系条件下,内部电路可通过一系列等效方法化简,而不改变外电路的工作状态。

七、 思考题解答

1. 用数字万用表对电路进行测量时,为什么人体不能碰触被测电路的金属部分?

解答:这道题可以从两方面考虑。一方面,在测量电阻时,如果人体不能碰触被测电路的金属部分,相当于将人体并入电路,那么实际测量的将会是人体和电阻并联后的阻值,人体电阻不容忽略,以下为人体不同部位在不同状态下的阻值:

状况或部位	电阻值
干燥,手腕到大地(经皮肤)	100k Ω -600k Ω
潮湿, 手腕到大地(经皮肤)	$1k\Omega - 6k\Omega$
潮湿,手腕到手腕(经皮肤)	$6k\Omega$ $-20k\Omega$
身体: 头到脚	$400\Omega - 600\Omega$
耳到耳	100Ω

综上所述,测量电阻时双手接触表笔金属部分时,测量值会偏小。

另一方面,当测量电压或电流时用手接触表笔金属端时,情况就更危险了。这时候相当于把人体接入的电路,其后果可想而知。

综上所述,用数字万用表对电路进行测量时,一定不要碰触被测电路的金属部分!

2. 结合数字万用表测量电阻的原理,用数字万用表测量电路中的某一电阻阻值时,必须将被测电阻从电路中断开吗?

解答: 我的答案为是的。同样从两方面考虑。

第一次实验

上面是数字万用表测量电阻时的原理图,我们可以看到,万用表内部是有电源的。如果不将待测电阻从电路中断开,可能会将电路中的电源接入测量电路,从而影响万用表的正常工作,甚至损坏电表的内部电源或其他元件。

图 3.5 直流电阻的测量

另一方面,电路中还有其他电阻等元件,不断开电路的话,可能导致电路其他部分并入 测量电路,从而使测量不准。

3. 结合实验分析回答数字万用表的内阻对电压测量结果的影响?

解答:数字万用表测量电压时必然会将自身电阻并入被测电路中,使测量部分电阻变小,分压变小,最终导致测量值偏小。由于万用表有着高达 10MΩ的内阻,在测量小电阻两端电压时内阻产生的误差可以忽略不计,但当测量阻值相当的电阻两端电压时则会产生不容忽视的误差,这时要想办法修正误差,修正方法在前面已详细介绍。

