kartesisches Produkt

Seien A und B Mengen.

Kartesisches¹ Produkt von A und B:

$$A \times B = \{(x, y) : x \in A, y \in B\}$$

Beispiel

- $A = \{2,5\}, B = \{1,2,3\}, A \times B = \{(2,1), (2,2), (2,3), (5,1), (5,2), (5,3)\}$
- ▶ $A = \emptyset$ oder $B = \emptyset$: $A \times B = \emptyset$

Bemerkung

Eine Teilmenge $R \subseteq A \times B$ nennt man eine binäre oder zweistellige Relation.

¹René Descartes (1596–1650); französischer Mathematiker

Bemerkung

▶ Durchschnitt und Vereinigung der Mengen $A_1, ..., A_n$:

$$\bigcap_{k=1}^n A_k = A_1 \cap \cdots \cap A_n = \{x : x \in A_1 \text{ und } \ldots \text{ und } x \in A_n\},$$

$$\bigcup_{k=1}^{n} A_k = A_1 \cup \cdots \cup A_n = \{x : x \in A_1 \text{ oder } \ldots \text{ oder } x \in A_n\},$$

▶ Das kartesische Produkt der Mengen $A_1, ..., A_n$:

$$A_1 \times \cdots \times A_n = \{(x_1, \ldots, x_n) : x_1 \in A_1, \ldots, x_n \in A_n\}.$$

Eine Teilmenge $R \subseteq A_1 \times \cdots \times A_n$ nennt man eine *n*-stellige Relation.

Potenzmenge

Sei A eine Menge.

Potenzmenge von A:

$$\mathbb{P}(A) = \{M : M \subseteq A\}$$

"Menge aller Teilmengen von A"

Beispiel

- $A = \{2,5\}, \quad \mathbb{P}(A) = \{\emptyset, \{2\}, \{5\}, \{2,5\}\}$
- $ightharpoonup \mathbb{P}(\emptyset) = \{\emptyset\}$

Endliche Mengen

- ▶ Eine Menge A ist endlich, falls $A = \emptyset$ oder die Elemente in A durchnummeriert werden können bis zu einer Zahl $n \in \mathbb{N}$.
- ▶ Dabei bezeichnet |A| die Anzahl der Elemente in A.
- Ist A keine endliche Menge so besitzt A unendlich viele Elemente. Notation in diesem Fall: $|A| = \infty$.

Beispiele:

- $|\{1,7,11\}|=3$,
- $|\{1,2,2\}|=2$,
- $|\emptyset|=0$,
- $ightharpoonup |\mathbb{N}| = \infty.$

Wichtige Mengen: Die Zahlbereiche $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$

- $\mathbb{N}^* = \{1, 2, 3, \ldots\}$
- $ightharpoonup \mathbb{N} = \mathbb{N}^* \cup \{0\}$ "Menge der natürlichen Zahlen"
- $ightharpoonup \mathbb{Z} = \{0,1,-1,2,-2,3,-3,\ldots\}$ "Menge der ganzen Zahlen"
- $ightharpoonup \mathbb{Q} = \left\{ rac{m}{n} : m, n \in \mathbb{Z}, n
 eq 0
 ight\}$ "Menge der rationalen Zahlen"
- $ightharpoonup \mathbb{R} = \mathsf{Menge}$ aller Dezimalzahlen "Menge der reellen Zahlen"

Es gilt

$$\mathbb{N}^* \subsetneq \mathbb{N} \subsetneq \mathbb{Z} \subsetneq \mathbb{Q} \subsetneq \mathbb{R}.$$

Wichtige Mengen: Intervalle in \mathbb{R}

Definition

Seien $a, b \in \mathbb{R}$ und a < b. Dann definiere

- ▶ $[a, b] := \{x \in \mathbb{R} : a \le x \le b\}$, (abgeschlossenes Intervall)
 - a b
- $ightharpoonup (a,b) := \{x \in \mathbb{R} : a < x < b\}, (offenes Intervall)$
 - a b
- ▶ $[a,b) := \{x \in \mathbb{R} : a \le x < b\}$, (nach rechts halboffenes Intervall)
 - _____b
- ▶ $(a, b] := \{x \in \mathbb{R} : a < x \le b\}$, (nach links halboffenes Intervall)

Intervalle in \mathbb{R} (Fortsetzung)

- ▶ a und b sind die Randpunkte des Intervalls.
- ▶ b a ist die Länge des Intervalls.

Uneigentliche Intervalle

Definition

Seien $a, b \in \mathbb{R}$. Dann definiere

$$\blacktriangleright [a,\infty) := \{x \in \mathbb{R} : a \le x\},\,$$

$$(a, \infty) := \{ x \in \mathbb{R} : a < x \},$$

$$(-\infty, b] := \{x \in \mathbb{R} : x \le b\},\$$

$$(-\infty, b) := \{x \in \mathbb{R} : x < b\},\$$

$$\blacktriangleright (-\infty, \infty) := \mathbb{R}.$$

Notation

Für offene Intervallenden werden statt runden Klammern oft auch eckige Klammern verwendet, also

- (a, b) =]a, b[,
- ightharpoonup [a, b] = [a, b[, a]
- ightharpoonup [a, b] =]a, b],
- $\blacktriangleright [a,\infty) = [a,\infty[,$
- $ightharpoonup (a,\infty)=]a,\infty[$,
- $[-\infty, b] =]-\infty, b],$
- $(-\infty, b) =] \infty, b[,$
- $(-\infty, \infty) =] \infty, \infty[.$

Mathematische Grundlagen der Informatik

WiSe 2023/2024

KAPITEL 1: Grundlagen

2. Logik

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Eine mathematische Aussage beschreibt einen mathematischen Sachverhalt, dem ein Wahrheitswert wahr (w) oder falsch (f) zugeordnet werden kann.

Beispiel

```
A: "2 ist eine gerade Zahl." (w)
B: "2 ist eine ungerade Zahl." (f)
```

Aus mathematischen Aussagen A und B kann man mit Hilfe von

```
¬ ("nicht")
∧ ("und")
∨ ("oder")
```

neue mathematischen Aussagen bilden, deren Wahrheitswerte von den Wahrheitswerten von A und B abhängen. Die Wahrheitswerte der neuen Aussagen sind in nachfolgenden Tabellen ("Wahrheitstafeln") definiert.

Negation: $\neg A$

Sprechweise: "A gilt nicht."

$$\begin{array}{c|cc}
A & \neg A \\
\hline
w & f \\
f & w
\end{array}$$

Beispiel

A: ",2 ist eine gerade Zahl." (w) $\neg A$: ",Es gilt nicht, dass 2 eine gerade Zahl ist." (f)

```
Konjunktion (und): A \wedge B
Sprechweise "A und B (gelten)."
"Sowohl A gilt als auch B."
```

Α	В	$A \wedge B$
W	w	W
W	f	f
f	w	f
f	f	f

Beispiel

```
A: ",2 ist eine gerade Zahl." (w)
B: ",3 ist eine gerade Zahl." (f)
A \wedge B: ",2 ist eine gerade Zahl und 3 ist eine gerade Zahl." (f)
```

Disjunktion (oder): $A \vee B$

Sprechweise: "A (gilt) oder B (gilt)."

Α	В	$A \vee B$
W	w	W
W	f	W
f	w	W
f	f	f

Beachte: Dies ist kein ausschließendes "oder". Auch wenn A und B beide wahr sind, ist $A \lor B$ wahr.

Beispiel

A: ",2 ist eine gerade Zahl." (w)

B: "3 ist eine gerade Zahl." (f)

C: ",4 ist eine gerade Zahl." (w)

 $A \lor B$: "2 ist eine gerade Zahl oder 3 ist eine gerade Zahl." (w)

 $A \lor C$: "2 ist eine gerade Zahl oder 4 ist eine gerade Zahl." (w)

Implikation: $A \Rightarrow B$

Sprechweise: "Wenn A (gilt), dann (gilt auch) B."

"Aus A folgt B." "A impliziert B." "A ist hinreichend/eine hinreichende Bedingung für B."

"B ist notwendig/eine notwendige Bedingung für A."

"Nur wenn B, dann A."

Α	В	$A \Rightarrow B$
W	W	W
W	f	f
f	w	W
f	f	W

Beispiel

"Wenn 2 + 2 = 4 ist, dann ist 2 + 3 = 5." (w)

 $\label{eq:wenn} \begin{tabular}{ll} \begin{t$

"Wenn 2 + 2 = 3 ist, dann ist 2 + 3 = 5." (w)

Α	В	$A \Rightarrow B$	$\neg A \lor B$	$\neg B \Rightarrow \neg A$
W	W	W	W	W
W	f	f	f	f
f	w f w f	W	W	W
f	f	w	W	W

Beachten Sie, dass sich $A \Rightarrow B$ auch durch $\neg A \lor B$ bzw. $\neg B \Rightarrow \neg A$ ausdrücken lässt, da die Wahrheitstafeln übereinstimmen.

Diese Formeln nennt man dann (semantisch) äquivalent und drückt dies mit dem Symbol "≡" aus:

- $ightharpoonup A \Rightarrow B \equiv \neg A \lor B$,
- $ightharpoonup A \Rightarrow B \equiv \neg B \Rightarrow \neg A.$

Mathematische Sätze

Mathematische Sätze sind oft von der Form

Satz: Wenn A, dann B.

In Symbolen: $A \Rightarrow B$

Beispiel

Satz: Wenn n eine gerade Zahl ist, dann ist auch n^2 eine gerade Zahl.

In Symbolen: $\underbrace{n \text{ gerade}}_{A} \Rightarrow \underbrace{n^2 \text{ gerade}}_{B}$

In einem Beweis wird gezeigt, dass die Aussage $A \Rightarrow B$ wahr ist.

Wahrheitstafel von $A \Rightarrow B$

Α	В	$A \Rightarrow B$
W	W	W
W	f	f
f	W	W
f	f	w

Idee:

Um den Satz

"Aus A folgt B."

zu beweisen, setze A voraus und schließe auf B.

Beweis von $A \Rightarrow B$ durch direkten Beweis

Beispiel

Satz: Sei $n \in \mathbb{N}$. Wenn n gerade ist, dann ist auch n^2 gerade.

Beweis: Sei n gerade. Dann existiert ein $m \in \mathbb{N}$ mit n = 2m. Wir erhalten

$$n^2 = (2m)^2 = 4m^2 = 2 \cdot 2m^2.$$

Somit ist n^2 gerade. \square

Wahrheitstafeln von $A \Rightarrow B$ und $\neg B \Rightarrow \neg A$

Α	В	$A \Rightarrow B$	$\neg B \Rightarrow \neg A$
W	W	W	W
w w f	f	f	f
f	w f w	w	w
f	f	w	w

Idee:

Um den Satz

"Aus A folgt B."

zu beweisen, beweise seine Kontraposition

$$\neg B \Rightarrow \neg A$$
.

Beweis von $A \Rightarrow B$ durch Beweis seiner Kontraposition

Beispiel

Satz: Sei $n \in \mathbb{N}$. Wenn n^2 gerade ist, dann ist n gerade.

Beweis: (Wir zeigen die Kontraposition: n nicht gerade \Rightarrow n^2 nicht gerade.)

Sei n nicht gerade. Dann existiert ein $m \in \mathbb{N}$ mit n = 2m + 1. Wir erhalten

$$n^2 = (2m+1)^2 = 4m^2 + 4m + 1 = \underbrace{2 \cdot (2m(m+1))}_{\text{gerade}} + 1.$$

Somit ist n^2 ungerade. \square

Beweis von $A \Rightarrow B$ durch Widerspruch

Idee:

Nimm an, dass $A \land \neg B$ wahr ist, und führe dies auf einen Widerspruch der Form " $C \land \neg C$ ist wahr" für eine mathematische Aussage C.

- ▶ Da $C \land \neg C$ nicht wahr sein kann, muss unsere Annahme $A \land \neg B$ falsch gewesen sein.
- ▶ Dann ist aber $\neg(A \land \neg B)$ wahr.

Α	В	$\neg (A \land \neg B)$	$A \Rightarrow B$
W	W	W	W
W W f f	w f	f	f
f	W	W	w
f	f	W	w

 $ightharpoonup \neg (A \land \neg B)$ ist genau dann wahr, wenn $A \Rightarrow B$ wahr ist.

Widerspruchsbeweis – Beispiel

Satz: $(,,\sqrt{2} \text{ ist nicht rational"})$ Seien $p,q\in\mathbb{N}$. Wenn p und q teilerfremd sind, dann ist $\left(\frac{p}{q}\right)^2\neq 2$.

Beweis: Wir nehmen an, dass p und q teilerfremd sind und dass $\left(\frac{p}{q}\right)^2 = 2$ gilt. Dann ist

$$p^2=2q^2. (1)$$

Also ist p^2 gerade. Nach vorigem Satz ist auch p gerade, das heißt, es existiert ein $m \in \mathbb{N}$ mit p = 2m. Setzt man dies in (1) ein, so erhält man

$$4m^2 = 2q^2$$
 bzw. $2m^2 = q^2$.

Also ist nach vorigem Satz auch q gerade. Damit besitzen p und q den gemeinsamen Teiler 2 $\frac{1}{2}$ (im Widerspruch zu deren Teilerfremdheit).

Äquivalenz:
$$A \Leftrightarrow B$$
 (das heißt $(A \Rightarrow B) \land (B \Rightarrow A)$)
Sprechweise: "A (gilt) genau dann, wenn B (gilt)."

"A (gilt) dann und nur dann, wenn B (gilt)."

"A ist notwendig und hinreichend für B."

"A und B sind äquivalent."

Α	В	$A \Rightarrow B$	$B \Rightarrow A$	$A \Leftrightarrow B$
W	W	W	W	W
w f	f	f	W	f
f	w	W	f	f
f	f	W	W	W

Beispiel

Wir haben soeben für eine Zahl $n \in \mathbb{N}$ gezeigt: "n ist genau dann gerade, wenn n^2 gerade ist."

Normalformen

Bemerkung

Seien A_1, A_2, A_3, \ldots mathematische Aussagen. Man kann jede logische Formel F in disjunktiver Normalform schreiben, also

$$F \equiv (L_{1,1} \wedge \ldots \wedge L_{1,m_1}) \bigvee \ldots \bigvee (L_{n,1} \wedge \ldots \wedge L_{n,m_n})$$

und in konjunktiver Normalform, also

$$F \equiv (L_{1,1} \vee \ldots \vee L_{1,m_1}) \bigwedge \ldots \bigwedge (L_{n,1} \vee \ldots \vee L_{n,m_n}),$$

wobei
$$L_{i,j} \in \{A_1, \neg A_1, A_2, \neg A_2, A_3, \neg A_3, \ldots\}.$$

Mehr dazu in der Veranstaltung "Digitaltechnik und Rechnersysteme".

Boolesche Algebra

Eine boolesche Algebra $\mathcal{B}=(B,0,1,\oplus,\odot,{}^-)$ ist gegeben durch eine Menge B mit $0,1\in B$ (dem Null- und Einselement) und den "zweistelligen Verknüpfungen" " \odot " und " \oplus " (ergeben angewendet auf zwei Elemente aus B wieder ein Element aus B) und der "einstelligen Verknüpfung" " $^-$ "(ergibt angewendet auf ein Element aus B wieder ein Element aus B), so dass für alle $a,b,c\in B$ gilt:

- 1. $a \oplus b = b \oplus a$ und $a \odot b = b \odot a$ (Kommutativgesetze)
- 2. $a \oplus (b \oplus c) = (a \oplus b) \oplus c$ und $a \odot (b \odot c) = (a \odot b) \odot c$ (Assoziativgesetze)
- 3. $a \oplus (b \odot c) = (a \oplus b) \odot (a \oplus c)$ und $a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c)$ (Distributivgesetze)
- 4. $a \oplus 0 = a$ und $a \odot 0 = 0$ $a \oplus 1 = 1$ und $a \odot 1 = a$ (Eigenschaften von 0 und 1)
- 5. $a \oplus \overline{a} = 1$ und $a \odot \overline{a} = 0$ (Eigenschaften von "—")
- 6. $a \oplus (a \odot b) = a \text{ und } a \odot (a \oplus b) = a$ (Absorption)

Beispiele

- ▶ $(\{w, f\}, w, f, \lor, \land, \neg)$ ist eine boolesche Algebra.
- \blacktriangleright ({0,1},0,1,+,·, $^-$) mit
 - \triangleright 0+0=0,1+0=0+1=1+1=1.
 - $ightharpoonup 0 \cdot 0 = 0 \cdot 1 = 1 \cdot 0 = 0, 1 \cdot 1 = 1$
 - $ightharpoonup \overline{0} = 1, \overline{1} = 0$

ist eine boolesche Algebra.

Sie ist "isomorph" zu $(\{w, f\}, w, f, \lor, \land, \neg)$.

- ▶ Sei X eine nicht-leere Menge. Dann ist $(\mathbb{P}(X), \emptyset, X, \cup, \cap, \overline{\ })$, wobei "—" die Komplementbildung in X bezeichnet, eine boolesche Algebra.
- $(\mathbb{N},0,1,+,\cdot,-)$ mit üblicher Addition und Multiplikation kann keine boolesche Algebra sein, egal wie "—" definiert ist.

De Morgansche Regeln

Aus den Eigenschaften einer booleschen Algebra kann man folgenden Satz herleiten:

Satz

Sei $\mathcal{B}=(B,0,1,\oplus,\odot,^-)$ eine boolesche Algebra. Dann gilt für alle $a,b\in B$

$$\overline{a \oplus b} = \overline{a} \odot \overline{b},$$
$$\overline{a \odot b} = \overline{a} \oplus \overline{b}.$$