Software Structured Design & Architecture

Assignment 1

stability vs. reliability

1. scenario

- a) stability
 - i. General scenario

Portion of Scenario	Possible Values		
Source	Internal and external sources		
Stimulus	Some unstable factors: increased system business pressure or		
	increased data volume or too long run time		
Artifact	System services		
Environment	At runtime		
Response	Reduce the crash and ensure that no exceptions are thrown:		
	improve system architecture		
	improve database design		
	do pressure test (do more test)		
Response Measure	The number of exceptions and crash thrown		

ii. Typical concrete scenario

b) reliability

i. General scenario

Portion Scenario	of	Possible Values		
Source		Internal and external sources		
Stimulus		The system has thrown an exception		
Artifact		System services, data		
Environment		At runtime		
Response		Reduce data loss and data errors, ensure data accuracy: re-establish the connection as soon as possible back up the data recover quickly		
Response Measure		Fault tolerance of data, the rate of recovery		

ii. Typical concrete scenario

2. relationships and differences

- a) relationships:
 - 1. Their goals are both to ensure no mistakes when using the system.
 - 2. They both reflect the system's ability to adapt to unstable phenomena.

b) differences:

- 1. Stability means that the system can run without crash, jam, or exception.
- 2. Reliability means that after a system failure, such as a network connection is interrupted, or the system is disconnected, data and network can still be restored to their original state without causing errors.
- 3. Reliability is that some faults have occurred in the system but the data is guaranteed to be error-free; the stability is guaranteed not to fail but the data is not necessarily correct.

c) examples:

- 1. If the system fails and the system can quickly recover the correct data and network connections. It has reliability.
- 2. If the system can guarantee as few failures, jams, and anomalies as possible. It has stability.

3. strategies and tactics

QA	Strategy	Tactic	Impact
stability	Improve system architecture design	improve code architecture	more excellent code style, more stable system architecture
		improve database design	enhance the stability in the face of large data access and storage
	plan the test reasonably	do 7*24 pressure test	strengthen the system's compressive resistance to long-term work
		do the edge test	ensure system stability on boundary issues
	back up the date	back up the data of usage	ensure the correctness of the data
reliability		back up the configuration information	ensure the correctness of the configuration information
	reduce the time to recover	Improve code to detect accidents	reduce the time to find an accident
		improve	reduce the time to re-establish

	reconnection	the connection
	mechanism	

security vs. safety

1. scenario

cated user

- a) stability
 - i. General scenario

Portion of Scenario	Possible Values		
Source	Malicious attackers, destructive forces, unauthorized users		
Stimulus	Attack (or exploit), the action taken to harm the system/data.		
Artifact	System services, data within the system, a component or resouces of		
	the system, data produced or consumed by the system.		
Environment	The system is either online or offline; either connected to or		
	disconnected from a network; either behind a firewall or open to a		
	network; fully operational, partially operational, or not operational.		
Response	The data/services can be accessed, manipulated only when		
	authorized and will be available for legitimate use.		
	Parties to a transaction are identified with assurance.		
	The parties to the transaction cannot repudiate their involvement.		
Response Measure	The rate of recover. The time passed before an attack was detected.		
	How many attacks were resisted.		
	How much data is vulnerable to a particular attack.		
	How much of a system is compromised when a particular component		
	or data value is compromised.		

ii. Typical concrete scenario

Environment: at runtime

Response Measure:

The time of data recovery is less than 5s.

99.9% attacks are resisted.

An attack can be detected in 3s.

Source:

Malicious intruder Stimulus:

Attempt to edit the system configuration

ation

at runtime

Environment:

Artifact:

system configuration , system service Response:

The service can be accessed only when authorized and will be available for legitimate use.

Reject the request.

Response Measure:

99.9% attacks are resisted.
0.01% is compromised when a particular component or data value is compromised.

The time of data recovery is less than 5s.

b) safety

i. General scenario

Portion of Scenario	Possible Values		
Source	Authorized users, system administer, developer.		
Stimulus	Unintentional accidents in normal use.		
Artifact	System services, data within the system, a component or resouces of		
	the system, data produced or consumed by the system.		
Environment	The system is either online or offline; either connected to or		
	disconnected from a network; either behind a firewall or open to a		
	network; fully operational, partially operational, or not operational.		
Response	Design:		
	Software safety requirements analysis		
	Software safety design analysis		
	Software safety test analysis		
	Software safety change analysis		
	Software security and various software protection technologies		
	should be used in the system.		
	Runtime:		
	Back up the data in time		
	The data/services can be accessed, manipulated only when authorized.		
	Deal with the accidents:		
	Reduce the data/service losses/error:		
	ignore(if the incident doesn't affect the system)		
	pause->repair and continue/(if can't be repair)stop		
Response Measure	The rate of recover. The time passed before an attack was detected.		
	How many accidents were resisted.		
	How much data is vulnerable to a particular attack.		

ii. Typical concrete scenario

Stimulus:

Attempt to edit the system configuration

Artifact: system

configuration , system service

Response:

The service can be manipulated only when authorized and will be available for legitimate

Reject the request.

Source:

Authenticated user(but not the system administer)

Environment:

at runtime

Response Measure:

99.9% attacks are resisted. 0.01% is compromised when a particular component or data value is compromised.

The time of data recovery is less than 5s.

Source:

Authentica ted user

Artifact:

Data within the system

Succeed to pay the bill which is Environment:

larger than the at runtime balance

Stimulus:

Response:

Repair the system and recover the data in time

Response Measure:

The time of data recovery is less than

This accident can be detected in 3s.

The service can be repaired in 5s.

2. relationships and differences

- a) relationships:
 - 1. Their goals are both to ensure the safe when using the system.
 - 2. They both reflect the system's ability to adapt to the unsafe situation, whether the accident is cause intentionally or unintentionally.

b) differences:

- 1. Safety refers to the loss of system prevention caused by **unintentional** actions by **non-malicious** users.
- 2. Security refers to the loss of system prevention caused by **malicious** operators due to **intentional** actions.

c) examples:

1. The **authenticated** user(not the system administer) doesn't have the permission to modify the system configuration. If he submits the request to modify the system configuration **unintentionally**, the system will refuse his request. This attributes is called Safety.

The **malicious** intruder attempts to modify the system configuration **intentionally**, the system will refuse his request. This attributes is called Security.

3. strategies and tactics

QA	Strategy	Tactic	Impact
	regulate the authority to obtain and modify data	Configuration information is only available to administrators to modify	ensure the security of the configuration file
security		The normal user authenticated also cannot perform operations beyond the authority.	regulate user behavior better.
	strengthen the management of users' rights	Users must log in first.	strengthen the system's compressive resistance to long-term work
		detecting the user's operating environment	reduce the risk
	back up the date	back up the data of usage	ensure the correctness of the data
		back up the configuration information	ensure the correctness of the configuration information
safety	deal with the accidents quickly	judge the impact of the accident on the process	do more efficient processing
		Improve code to increase the rate of process repair	reduce the time to re-establish the connection
	improve the software safety design	do software safety test analysis	make system design more reasonable and enhance system security

do software safety design analysis	make system design more reasonable and enhance system
	security