Department of Mathematics, IIT Guwahati MA 622: Galois Theory Problem Sheet- I January-May 2025

- 1. Determine the minimal polynomials of $1+i, 2+\sqrt{3}$, and $1+\sqrt[3]{2}+\sqrt[3]{4}$ over \mathbb{Q} .
- 2. Prove that $x^3 2$ and $x^3 3$ are irreducible over $\mathbb{Q}(i)$.
- 3. Let F/K be an algebraic field extension and R be a ring such that $K \subset R \subset F$. Show that R is a field.
- 4. Let F/K be an extension of degree n.
 - (a) For any $a \in F$, prove that the map $T_a : F \to F$ defined by $T_a(x) = ax$ for all $x \in F$, is a linear transformation of the K-vector space F.
 - (b) Prove that a is a root of the characteristic polynomial of T_a . Use this procedure to find monic polynomials satisfied by $\sqrt[3]{2}$ and $1 + \sqrt[3]{2} + \sqrt[3]{4}$.
- 5. Prove that -1 is not a sum of squares in the field $\mathbb{Q}(\beta)$, where $\beta = \sqrt[3]{2} e^{2\pi i/3}$.
- 6. Let R be an integral domain containing \mathbb{C} . Suppose that R is a finite dimensional \mathbb{C} -vector space. Show that $R = \mathbb{C}$.
- 7. Let K be a field and x be an indeterminate. Let $y = x^3/(x+1)$. Find the minimal polynomial of x over K(y).
- 8. Find an algebraic extension K of $\mathbb{Q}(x)$ such that the polynomial $f(y) = y^2 x^3/(x^2 + 1) \in \mathbb{Q}(x)[y]$ has a root in K.
- 9. Find degrees of splitting fields over \mathbb{Q} of each of the following polynomials: (a) $x^3 2$ (b) $x^4 1$ (c) $x^4 + 1$ (d) $x^6 + 1$ (e) $(x^2 + 1)(x^3 1)$ and (f) $x^6 + x^3 + 1$.
- 10. Find a splitting field of $x^3 10$ over $\mathbb{Q}(\sqrt{2})$.
- 11. Let p be a prime. Show that the degree of a splitting field of $x^p 2$ over \mathbb{Q} is p(p-1).
- 12. Let $K \subset \mathbb{C}$ be a splitting field of $f(x) = x^3 2$ over \mathbb{Q} . Find a complex number z such that $K = \mathbb{Q}(z)$.
- 13. Let F be a field of characteristic p. Let $f(x) = x^p x c \in F[x]$. Show that either all roots of f(x) lie in F or f(x) is irreducible in F[x].
- 14. Let F be a field of characteristic zero and let p be an odd prime. Let $a \in F^{\times}$ such that a is not a pth power of any element in F. Show that $x^p a$ is irreducible over F. What can you say about the degree of its splitting field over F?
- 15. Let $a \in \mathbb{C}$ and $\sigma_a : \mathbb{C}(x) \to \mathbb{C}(x)$ be the automorphism that substitutes x by x + a. Pur $G = {\sigma_a : a \in \mathbb{C}}$. Show that the fixed field of G is \mathbb{C} , that is, $G' = \mathbb{C}$.
- 16. Let $\omega = e^{2\pi i/3}$. Define the \mathbb{C} -automorphisms σ and τ of C(x) by the equations $\sigma(x) = \omega x$ and $\tau(x) = 1/x$. Show that $\sigma^3 = \tau^2 = id$ and $\tau \sigma = \sigma^{-1}\tau$. Show that the group G of automorphisms generated by σ and τ has order 6 and $G' = \mathbb{C}(x^3 + x^{-3})$.