

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики

Суперкомпьютерное моделирование и технологии

Отчет по заданию $N^{o}2$ «Задача Дирихле для уравнения Пуассона в криволинейной области»

ВАРИАНТ 9

Отчет выполнил: студент 614 группы Артамонов Георгий

Оглавление

1	Задача Дирихле для уравнения Пуассона					
	1.1	Мате	матическая постановка задачи	3		
	1.2	Числе	енный метод решения	4		
		1.2.1	Метод фиктивных областей	4		
		1.2.2	Разностная схема решения	5		
		1.2.3	Метод минимальных невязок	7		
	1.3	Описа	ание программной реализации	8		
		1.3.1	Результаты расчетов	8		
		1.3.2	Графики ускорений	9		
		1.3.3	Графики нормы невязки	10		
		1.3.4	Точка максимума невязки	11		
		1.3.5	Графики приближенного решения	12		

Глава 1

Задача Дирихле для уравнения Пуассона

1.1 Математическая постановка задачи

В области $D \subset \mathbb{R}^2$, ограниченной контуром γ , рассматривается дифференциальное уравнение Пуассона (1):

$$-\Delta u = f(x, y)$$

в котором оператор Лапласа

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

Для выделения единственного решения уравнение дополняется граничным условием Дирихле (2):

$$u(x,y) = 0, \ (x,y) \in \gamma$$

Требуется найти функцию u(x,y), удовлетворяющую уравнению (1) в области D и краевому условию (2) на ее границе.

Рассмотрим задачу в случае, когда правая часть уравнения f(x,y)=1, а область D представляет собой внутренность эллипса: $D=\{(x,y)\mid x^2+4y^2<1\}$

1.2 Численный метод решения

1.2.1 Метод фиктивных областей

Для решения поставленной задачи предлагается использовать метод фиктивных областей. Идея метода заключается в приближенной замене исходной задачи Дирихле в криволинейной области задачей Дирихле в прямоугольнике с кусочно-постоянным коэффициентом k(x,y). Пусть область D принадлежит прямоугольнику $\Pi = \{(x,y) \mid A_1 < x < B_1, A_2 < y < B_2\}$. Разность множеств Π и \bar{D} обозначим $\hat{D} = \Pi \setminus \bar{D}$, границу прямоугольника Π обозначим Γ .

В прямоугольнике П рассмотрим задачу Дирихле (3):

$$-\frac{\partial}{\partial x}(k(x,y)\frac{\partial v}{\partial x}) - \frac{\partial}{\partial y}(k(x,y)\frac{\partial v}{\partial y}) = F(x,y)$$
$$v(x,y) = 0, (x,y) \in \Gamma$$

с кусочно-постоянным коэффициентом:

$$k(x,y) = \begin{cases} 1, & (x,y) \in D, \\ 1/\varepsilon & (x,y) \in \hat{D} \end{cases}$$

и правой частью:

$$F(x,y) = \begin{cases} f(x,y), & (x,y) \in D, \\ 0, & (x,y) \in \hat{D} \end{cases}$$

Требуется найти непрерывную в $\bar{\Pi}$ функцию v(x,y), удовлетворяющую дифференциальному уравнению всюду в $\Pi \setminus \gamma$, равную нулю на границе Γ прямочгольника, и такую, чтобы вектор потока:

$$W(x,y) = -k(x,y)(\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y})$$

имел непрерывную нормальную компоненту на общей части криволинейной границы области D и прямоугольника Π .

Переход к новой задаче позволяет получить решение исходной задачи с любой наперед заданной точностью $\varepsilon > 0$, решая при этом задачу Дирихле в прямо-

угольнике П, содержащем исходную область.

$$\max_{P \in \bar{D}} \|v(x, y) - u(x, y)\| \le C\varepsilon, C > 0$$

Для случая, когда область D представляет собой внутренность эллипса, выберем прямоугольник $\Pi = \{(x,y) \mid -1.0 < x < 1.0, -0.5 < y < 0.5\}.$

1.2.2 Разностная схема решения

В замыкании прямогольника $\bar{\Pi}$ определим равномерную прямоугольную сетку $\bar{\omega}_h = \bar{\omega}_1 \times \bar{\omega}_2$, где

$$\bar{\omega}_1 = \{x_i = A_1 + ih_1, i = 0, \dots, M\}, \quad h_1 = (B_1 - A_1)/M$$

 $\bar{\omega}_2 = \{y_j = A_2 + jh_2, j = 0, \dots, N\}, \quad h_2 = (B_2 - A_2)/N$

Множество внутренних узлов сетки $\bar{\omega}_h$ обозначим ω_h .

Рассмотрим линейное пространство H функций, заданных на сетке ω_h .

Обозначим через w_{ij} значение сеточной функции H в узле сетки $(x_i, y_j) \in \omega_h$. Определим скалярное произведение и норму в пространстве сеточных функций H:

$$(u, v) = \sum_{i=1}^{M-1} \sum_{j=1}^{N-1} h_1 h_2 u_{ij} v_{ij}$$
$$||u|| = \sqrt{(u, u)}$$

Будем использовать метод конечных разностей, который заключается в замене дифференциальной задачи математической физики на конечно-разностную операторную задачу вида:

$$A\omega = B$$

$$A:H\to H$$

Дифференциальное уравнение задачи (3) во всех внутренних точках сетки аппроксимируется разностным уравнением:

$$-\frac{1}{h_1}\left(a_{i+1j}\frac{\omega_{i+1j}-\omega_{ij}}{h_1}-a_{ij}\frac{\omega_{ij}-\omega_{i-1j}}{h_1}\right)-\frac{1}{h_2}\left(b_{ij+1}\frac{\omega_{ij+1}-\omega_{ij}}{h_2}-b_{ij}\frac{\omega_{ij}-\omega_{ij-1}}{h_2}\right)=F_{ij}$$

$$i=1,\ldots,M-1,\ j=1,\ldots,N-1$$

в котором коэффициенты при i = 1, ..., M, j = 1, ..., N

$$a_{ij} = \frac{1}{h_2} \int_{y_{j-1/2}}^{y_{j+1/2}} k(x_{i-1/2}, t) dt$$

$$b_{ij} = \frac{1}{h_1} \int_{x_{i-1/2}}^{x_{i+1/2}} k(t, y_{j-1/2}) dt$$

и правая часть при $i=1,\dots,M-1,\ j=1,\dots,N-1$

$$F_{ij} = \frac{1}{h_1 h_2} \iint_{\Pi_{ij}} F(x, y) \, dx dy$$

$$\Pi_{ij} = \{(x,y) : x_{i-1/2} \le x \le x_{i+1/2}, y_{j-1/2} \le y \le y_{j+1/2}\}$$

Краевые условия Дирихле в задаче (3) аппроксимируются точно равенством

$$w_{ij} = w(x_i, y_j) = 0, (x_i, y_j) \in \Gamma$$

Полуцелые узлы означают:

$$x_{i\pm 1/2} = x_i \pm 0.5h_1, \ y_{j\pm 1/2} = y_j \pm 0.5h_2$$

Полученная система является линейной относительно неизвестных величин и может быть представлена в виде $A\,\omega=B$ с самосопряженным и положительно определенным оператором A. Построенная разностная схема линейна и имеет единственное решение при любой правой части.

Интегралы a_{ij}, b_{ij} будем вычислять аналитически: $a_{ij} = h_2^{-1} l_{ij} + (1 - h_2^{-1} l_{ij})/\varepsilon$, где l_{ij} длина части отрезка $[y_{j-1/2}, y_{j+1/2}]$, которая принадлежит области D. Для вычисления l_{ij} для заданного $\hat{x} = x_{i-1/2}$ вычислим точки пересечения прямой

 $x=\hat{x}$ с границей эллипса γ . Тогда $l_{ij}=\min(y_1,y_{j+1/2})-\max(y_2,y_{j-1/2})$, где

$$y_{1,2} = \pm \frac{1}{4} \sqrt{1 - \hat{x}^2}$$

Правую часть разностной схемы приближенно заменим на значение в центре квадрата Π_{ij} :

$$F_{ij} = F(x_i, y_j) = \begin{cases} 1, & (x_i, y_j) \in D, \\ 0, & (x_i, y_j) \in \hat{D} \end{cases}$$

1.2.3 Метод минимальных невязок

Приближенное решение разностной схемы предлагается вычислять методом наименьших невязок. Метод позволяет получить последовательность сеточных функций $\omega^{(k)} \in H, \, k=1,2,\ldots$, сходяющуюся по норме пространства H к решению разностной схемы.

$$\|\omega - \omega^{(k)}\|_E \to 0, k \to \infty$$

Начальное приближение $\omega^{(0)}$ выберем равным нулю во всех точках сетки. Итерация $\omega^{(k+1)}$ вычисляется по итерации $\omega^{(k)}$ по формуле:

$$\omega_{ij}^{(k+1)} = \omega_{ij}^{(k)} - \tau_{k+1} r_{ij}^{(k)}$$

где невязка $r^{(k)} = A\omega^{(k)} - B$, итерационный параметр

$$\tau_{k+1} = \frac{(Ar^{(k)}, r^{(k)})}{\|Ar^{(k)}\|_E^2}$$

В качестве критерия останова можно использовать условие:

$$||r^{(k)}||_E < \delta$$

с некоторой положительной константой $\delta>0,$ задающей точность приближенного решения.

1.3 Описание программной реализации

Для выполнения задания был разработан последовательный код, представляющий собой программу на языке C sequantial.c, реализующую описанный численный метод. Были выполнены расчеты на сгущающихся сетках (M, N) = (10, 10), (20, 20), (40, 40) и построены графики полученных приближенных решений. Для написания parallel.c вложенные циклы в функциях, вызывающихся на каждой итерации метода минимальных невязок (scalar_product, apply_diff_operator, linear_comb), были размечены с помощью директивы OpenMP: pragma omp parallel for collapse(2). Были проведены расчеты на сетках (40, 40), (80, 80), (160, 160) на разном числе потоков. Полученные приближенные решения совпали с соответствующими решениями при последовательных вычислениях, но время их вычисления удалось уменьшить за счет использования параллелизма. Результаты приведены в таблице.

1.3.1 Результаты расчетов

Число OpenMP-нитей	Число точек сетки $M imes N$	Время решения	Ускорение
2	40×40	91.549	1.298
4	40×40	57.722	2.059
6	40×40	48.929	2.430
8	40×40	45.768	2.597
16	40×40	46.381	2.563
2	80×80	337.001	1.599
4	80×80	183.397	2.938
6	80×80	130.966	4.106
8	80×80	111.136	4.848
16	80×80	90.581	5.948
2	160×160	321.049	1.689
4	160×160	164.734	3.292
8	160×160	86.978	6.235
16	160×160	53.271	10.180
32	160×160	51.108	10.611

Таблица 1.1: Зависимость времени решения от числа нитей для разных сеток

Был проведен дополнительный эксперимент для сетки (40, 40). Последовательный и параллельный варианты программы были скомпилированы с флагом жесткой оптимизации -О3. При любом числе потоков получили проигрыш по сравнению с последовательным вариантом алгоритма. Компилятор GCC довольно хорошо оптимизирует последовательный код.

Число OpenMP-нитей	Число точек сетки $M imes N$	Время решения	Ускорение
2	40×40	52.303	0.676
4	40×40	39.793	0.889
6	40×40	36.659	0.965
8	40×40	36.883	0.959
16	40×40	36.525	0.969

Таблица 1.2: Зависимость времени решения от числа нитей с флагом -О3

1.3.2 Графики ускорений

Рис. 1.1: Зависимость ускорения от числа потоков для разных для сеток

1.3.3 Графики нормы невязки

Рис. 1.2: Зависимость нормы невязки от числа итераций для сетки (40, 40)

Рис. 1.3: Зависимость нормы невязки от числа итераций для сетки (80, 80)

1.3.4 Точка максимума невязки

Построим графики для определения точек, где ошибка принимает наибольшие значения. Каждую 1000 итераций вычисляем, в какой точке абсолютная величина ошибки равна L1 норме невязки, иными словами, в какой точке на этой итерации абсолютная величина ошибки принимает наибольшее значение. Из графиков видно, что это точка (0,0), являющаяся центром эллипса.

Рис. 1.4: для сетки (40,40)

Рис. 1.5: для сетки (80, 80)

1.3.5 Графики приближенного решения

Рис. 1.6: График решения с сеткой 40×40 точек

Рис. 1.7: Линии уровня с сеткой 40×40 точек

Рис. 1.8: График решения с сеткой 80×80 точек

Рис. 1.9: Линии уровня с сеткой 80×80 точек