PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS

DC	PURIU					
Ano	ANO LECTIVO: 2011/2012 1) DATA: 14/05/2011 PROVA: MALEMATICA		da Prova: <u>2h</u> a: <u>15 min</u>			
	Escola onde realiza est	a prova: ESEIG E	STGF ISCAP	☐ ISEP		Rubrica de Docente em Vigilância
ato	Nome do Candidato: _					
A preencher pelo candidato	Documento de Identificação apresentado: 🔲 BI 🔲 C.Cid. 🔲 Pas. 🔲 C.Cond. 🔲 Outro					Classificação Final
	Número do Document	o de Identificação:]	
	Escola(s) a que se candidata: ESEIG ESTGF ISCAP ISEP			(0-200)		
	Curso(s) a que se cand	idata:				Rubrica de Docente (Júri de Prova)
	Número de <u>folhas extr</u>	<u>a</u> entregues pelo Candidato:				
	É obrigatória a apresentação de documento de identificação com fotografia ao docente encarregado da vigilância					

Material admitido:

- Material de escrita.
- Máquina de calcular elementar ou máquina de calcular científica (não gráfica).

Utilize apenas caneta ou esferográfica de tinta indelével, azul ou preta, excepto nas respostas que impliquem a elaboração de construções, de desenhos ou de outras representações, que podem ser primeiramente elaborados a lápis, sendo, a seguir, passados a tinta.

Não é permitido o uso de corrector. Em caso de engano, deve riscar, de forma inequívoca, aquilo que pretende que não seja classificado.

A prova é constituída por dois grupos, I e II.

- O Grupo I inclui 7 questões de escolha múltipla.
 - Para cada uma delas, são indicadas quatro alternativas, das quais apenas uma está correcta.
 - Responda na página fornecida para o efeito, respeitando as regras nela indicadas. Só serão consideradas as respostas dadas nessa página.
- O Grupo II inclui 6 questões de resposta aberta, algumas delas subdivididas em alíneas, num total de 10.
 - Nas questões deste grupo apresente de forma clara o seu raciocínio, indicando todos os cálculos que tiver de efectuar e todas as justificações necessárias.
 - Quando, para um resultado, não é pedida a aproximação, pretende-se sempre o valor exacto.
 - Cada questão deve ser respondida na própria folha do enunciado.
 - Devem ser pedidas folhas adicionais caso a resposta à pergunta não caiba na folha respectiva.

A prova tem 16 páginas e termina com a palavra FIM.

Na página 15 é indicada a cotação de cada pergunta.

Na página 16 é disponibilizado um formulário.

PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS

Nº Respostas CERTAS:

Classificação Grupo I:

Rubrica de Docente Corrector

FOLHA DE RESPOSTAS DO GRUPO I

Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a resposta for ilegível. Não apresente cálculos, nem justificações.

Assinalar resposta correcta:	(A) (% ©	D	
Anular a resposta:	(A)	© C	D	
Assinalar de novo resposta anulada:	A		D	
1	A	B	C	D
2	A	B	C	D
3	A	B	(C)	D
4	A	B	(C)	D
5	A	B	(C)	D
6	A	B	(C)	D

7

PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS

A preencher pelo candidato

Nome do Candidato:

Número do Documento de Identificação:

Escola(s) a que se candidata:

ESEIG ESTGF ISCAP ISEP

Curso(s) a que se candidata:

GRUPO I — RESPONDA NA PÁGINA FORNECIDA PARA O EFEITO

- 1. Na loja "FitIPP" as promoções em artigos de desporto, durante o mês de Maio, são de 15% sobre o preço marcado na etiqueta. Se o preço a pagar por umas sapatilhas, em promoção, for de €68 então o valor do desconto efectuado é de:
 - **(A)** €57,8

(C) €10,2

(B) €80

- **(D)** €12
- **2.** Dadas as equações $(x^2-4)(x+5)=0$ e $(x+2)^2(x+5)^2=0$, podemos afirmar que:
 - (A) Uma das equações não tem solução
- (C) As equações são equivalentes
- (B) As soluções da segunda equação são soluções da primeira
- (D) As soluções da primeira equação são soluções da segunda
- **3.** Em \mathbb{R} , a solução da equação $\log_2(-4x) = 3$ é:

(A)
$$x = -\frac{9}{4}$$

(C)
$$x = -2$$

(B)
$$x = 8$$

(D)
$$x = -\frac{4}{3}$$

- **4.** O domínio da função real de variável real f , definida por $f(x) = \frac{\log(1-x)}{1-x^2}$, é:
 - (A) $]-1,+\infty[\setminus\{1\}]$

(c) $]-\infty,1[\setminus\{-1\}]$

(B) $]-\infty,1[$

(D) $]1,+\infty[$

- **5.** A expressão $\frac{\cos(90^{\circ} \alpha)}{\sin(90^{\circ} + \alpha)}$ é igual a:
 - (A) $tg(\alpha)$

(c) $-\frac{\cos(\alpha)}{\sin(\alpha)}$

(B) $-tg(\alpha)$

- **(D)** $tg(90^{\circ} \alpha)$
- **6.** Considere a função real de variável real h, definida por $h(x) = k.e^{3-3x^2}$, $k \in \mathbb{R}$. Sabendo que h'(1) = 12, então o valor de k é:
 - **(A)** 4

(C) 2

(B) -4

- **(D)** -2
- **7.** Seja g uma função real de variável real que satisfaz as seguintes condições:

$$\lim_{x\to+\infty}g\left(x\right)=1,$$

$$\lim_{x \to 0^+} g(x) = -\infty$$

e g'(2) = 0

Então, uma representação gráfica da função g poderá ser:

(A)

(C)

(B)

(D)

POLITÉCNICO DO PORTO		PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 2	23 ANOS	
0	Nome do Candidato):	GII Q1.	GII Q2.
reencher pelo candidato	Número do Docum	ento de Identificação:	Clas. Parc	ial Q1+Q2
Ω	Escola(s) a que se c	andidata: ESEIG ESTGF ISCAP ISEP	Rubrica de Corre	e Docente ector
⋖	Curso(s) a que se ca	andidata:		

GRUPO II

1. Para fugir à violência do norte de África, um homem tinha uma longa distância a percorrer até à fronteira do seu país. Sabe-se que fez metade da viagem de carro e, acabada a gasolina, fez um terço da viagem de comboio. Como a fronteira ficava a 25 km da última estação de caminho de ferro, este efectuou o restante percurso a pé. Determine a distância percorrida pelo homem.

2. Calcule e simplifique o valor da seguinte expressão numérica: $\frac{1 - \left(\frac{3}{4}\right)^{-17} \times \left(\frac{2}{5}\right)^{-17} \div \left(0,3\right)^{-15}}{\left[\left(-1\right)^{-3}\right]^{2} - \left(0,3\right)^{-2}}$

POLITÉCNICO PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS **DO PORTO** Clas. Parcial GII Q3 Nome do Candidato: _____ A preencher pelo candidato Número do Documento de Identificação: Rubrica de Docente Escola(s) a que se candidata: ESEIG ESTGF □ISCAP **□** ISEP Corrector

3. Determine os valores <u>inteiros</u> de x que verificam simultaneamente as inequações:

$$(x-2)^2 < (x+1)(x-1)$$
 e $\frac{3-x}{2} + 1 > 0$

Curso(s) a que se candidata: _____

e
$$\frac{3-x}{2}+1>0$$

4. Determine a **expressão analítica mais simples** da **função derivada** de cada uma das seguintes funções reais de variável real:

4.1.
$$f(x) = \frac{\sqrt{x-1}}{2x} - (3x)^2$$

4.2.
$$g(x) = 3^{\cos(x)} + \ln^3(2x) + x.\operatorname{sen}(x^2 - 1)$$

PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS

A preencher pelo candidato

Nome do Candidato:	Clas. Parcial GII Q5
Número do Documento de Identificação:	Rubrica de Docente
Escola(s) a que se candidata: ESEIG ESTGF ISCAP ISEP	Corrector
Curso(s) a que se candidata:	

- 5. Na figura ao lado está representado o percurso realizado por um helicóptero que se inicia e termina no heliporto (H) do hospital de S. João. Sabendo que:
 - o [ABC] é um triângulo rectângulo em C;
 - o A amplitude do ângulo em B é o dobro da amplitude do ângulo em A;
 - o $\overline{AB} = 1900 \, m \, e \, \overline{HA} = 870 \, m$

determine a distância total percorrida pelo helicóptero, desde que saiu até que regressou ao heliporto, arredondando o resultado às unidades.

POLITÉCNICO DO PORTO		PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 2	23 ANOS
			GII Q6.1
	Nome do Candidato:		GII Q6.2
pelo o			GII Q6.3
er p			GII Q6.4
eencher p candidato	Número do Docum	ento de Identificação:	Clas. Parcial GII Q6
A preen cano	Escola(s) a que se c	andidata: ESEIG ESTGF ISCAP ISEP	Rubrica de Docente Corrector
	Curso(s) a que se ca	indidata:	

- **6.** Foi administrado um fármaco a um doente de modo a combater o aumento da sua temperatura corporal. Sabendo que temperatura do doente, em graus Celsius (${}^{\circ}$ C), t horas após administração da medicação (e até restabelecer a temperatura normal) é dada por: $h(t) = -\frac{1}{2}t^2 + t + 39$, determine:
 - **6.1.** A temperatura do doente aquando da administração do fármaco;
 - **6.2.** Ao fim de quantas horas a temperatura corporal do doente começou a diminuir;
 - **6.3.** A temperatura máxima atingida pelo doente;
 - **6.4.** Ao fim de quanto tempo o doente restabeleceu a temperatura corporal de 37ºC. Apresente o valor aproximado a duas casas decimais e traduza-o em horas e minutos.

COTAÇÕES

Grupo I		84 pontos
Cada resposta certa	12 pontos	
Cada questão errada, não respondida ou anulada	0 pontos	
Grupo II		116 pontos
1	10 pontos	
2	10 pontos	
3	16 pontos	
4	30 pontos	
4.1.		
4.2.		
5	20 pontos	
6	30 pontos	
6.1. 5 pontos		
6.2.		
6.3. 3 pontos		
6.4		
	_	

FORMULÁRIO

Relações trigonométricas de ângulos agudos

	$sen(\alpha)$	$\cos(\alpha)$	$\operatorname{tg}(lpha)$
$\alpha = 0^{\circ}$	0	1	0
$\alpha = 30^{\circ}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
$\alpha = 45^{\circ}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\alpha = 60^{\circ}$	$\frac{\sqrt{3}}{2}$	1/2	$\sqrt{3}$
α = 90°	1	0	-

Trigonometria

•
$$\operatorname{sen}^{2}(\alpha) + \cos^{2}(\alpha) = 1$$

•
$$\operatorname{sen}(\alpha + \beta) = \operatorname{sen}(\alpha) \cdot \cos(\beta) + \operatorname{sen}(\beta) \cdot \cos(\alpha)$$

•
$$\cos(\alpha + \beta) = \cos(\alpha) \cdot \cos(\beta) - \sin(\alpha) \cdot \sin(\beta)$$

•
$$\operatorname{tg}(\alpha) = \frac{\operatorname{sen}(\alpha)}{\operatorname{cos}(\alpha)}$$

Regras de derivação

$$(u \cdot v)' = u' \cdot v + u \cdot v'$$

$$(\cos(u))' = -u' \cdot \sin(u)$$

$$\bullet (e^u)' = u' \cdot e^u$$

FIM