A SHORT PROOF OF THE BOUNDED GEODESIC IMAGE THEOREM

RICHARD C. H. WEBB

ABSTRACT. We give a combinatorial proof, using the hyperbolicity of the curve graphs, of the bounded geodesic image theorem of Masur–Minsky. Recently it has been shown that curve graphs are uniformly hyperbolic, thus a universal bound can be given for the diameter of the geodesic image. We also generalize the theorem for projections to markings of the whole surface.

1. Introduction

We write $S_{g,p}$ to denote the genus g surface with p points removed and $\xi(S) = 3g - 3 + p$ to denote the *complexity* of $S = S_{g,p}$. We say a simple closed curve on S is essential if it does not bound a disc or once-punctured disc. In general, we say that an isotopy class of some subset of S misses another isotopy class of some subset if they admit disjoint representatives, and otherwise we say that they cut. A curve is an isotopy class of essential simple closed curve. We write $\mathcal{C}(S)$ to denote the curve graph of S, whose vertex set is the set of curves on S with edges between non-equal curves that miss; this is the 1-skeleton of the curve complex which was introduced by Harvey [6]. Throughout, $S = S_{g,p}$ with $\xi(S) \geq 2$. For the surfaces $S_{0,4}$ and $S_{1,2}$, one can use the Farey graph, the description of its geodesics and a lifting argument to prove Theorem 3.2.

We shall abuse notation by simply writing γ to mean both the simple closed curve γ and its isotopy class. We write d_S to denote the path metric on $\mathcal{C}(S)$ with unit length edges. A sequence of curves $g = (\gamma_i)$ is a geodesic if for all $i \neq j$, we have $d_S(\gamma_i, \gamma_j) = |i - j|$. We say $\mathcal{C}(S)$ is δ -hyperbolic if for all geodesic triangles g_1, g_2, g_3 , we have $g_1 \subset N_{\delta}(g_2 \cup g_3)$, where N_{δ} is the metric closed δ -neighbourhood.

Theorem 1.1 ([12]). Fix $S = S_{g,p}$ with $\xi(S) \geq 2$. There exists $\delta \geq 0$ such that $\mathcal{C}(S)$ is δ -hyperbolic.

We write subsurface to denote a compact, connected, proper subsurface of S such that each component of its boundary is essential in S. Throughout, we do not consider subsurfaces that are homotopy equivalent to $S_{0,3}$; in this case Theorem 3.2 is straightforward.

For a non-annular subsurface $Y \subset S$. We write ∂Y for the boundary of Y. We now define a map $\pi_Y : \mathcal{C}_0(S) \to \mathcal{P}(\mathcal{AC}_0(Y))$, where $\mathcal{AC}(Y)$ is the arc and curve complex of Y, and generally $\mathcal{P}(X)$ is the set of subsets of X. Given a curve $\gamma \in \mathcal{C}(S)$, isotope γ so that it intersects Y minimally. We define $\pi_Y(\gamma)$ to be the arcs and/or curves $\gamma \cap Y \subset Y$. This is non-empty if and only if γ cuts Y. The map π_Y is the subsurface projection to the arc and curve complex of Y. We write $\pi_Y(A) = \bigcup_{\gamma \in A} \pi_Y(\gamma)$.

When Y is an annulus we write ∂Y for the core curve of Y. This core curve represents a subgroup of $\pi_1(S)$ and therefore there is an associated cover p_Y : $S_Y \to S$, where S_Y is homeomorphic to the interior of an annulus. There is a homeomorphic lift of Y to S_Y which we write Y'. One can compactify S_Y to a closed annulus by using a hyperbolic metric on S. Let $\mathcal{AC}_0(Y)$ be the set of arcs that connect one boundary component of S_Y to the other, modulo isotopies that fix the endpoints. Two arcs are adjacent if they admit disjoint representatives. We write $\mathcal{AC}(Y)$ to denote this graph. Given a curve γ that cuts Y, we define $\pi_Y(\gamma)$ to be the set of arcs of the preimage $\tilde{\gamma} = p_Y^{-1} \gamma$ that connect the two boundary components of S_Y . Otherwise, $\pi_Y(\gamma) = \emptyset$. This defines the subsurface projection $\pi_Y: \mathcal{C}_0(S) \to \mathcal{P}(\mathcal{AC}_0(Y))$ when Y is an annulus.

We write $d_{\mathcal{AC}(Y)}$ to denote the standard metric on the graph $\mathcal{AC}(Y)$. We write $d_Y(A) = \operatorname{diam}_{\mathcal{AC}(Y)}(\pi_Y A)$ and $d_Y(A, B) = \operatorname{diam}_{\mathcal{AC}(Y)}(\pi_Y (A) \cup \pi_Y (B))$. The following lemma is immediate, see also [9, Lemma 2.2].

Lemma 1.2. Let Y be a subsurface of S and let γ_1, γ_2 be curves on S. Suppose that γ_1 cuts Y, γ_2 cuts Y and γ_1 misses γ_2 . Then $d_Y(\gamma_1, \gamma_2) \leq 1$.

We shall give a proof of the bounded geodesic image theorem of Masur–Minsky [9, Theorem 3.1]. We shall give a bound that depends only on δ , where $\mathcal{C}(S)$ is δ -hyperbolic.

Theorem 3.2. Given a surface S there exists $M = M(\delta)$ such that whenever Y is a subsurface and $g = (\gamma_i)$ is a geodesic such that γ_i cuts Y for all i, then $d_Y(g) \leq M$.

Recently, it has been shown that there exists δ such that $\mathcal{C}(S)$ is δ -hyperbolic for all surfaces S in Theorem 1.1, see Aougab [1], Bowditch [2], Clay–Rafi–Schleimer [4] and Hensel–Przytycki–Webb [7].

Corollary 1.3. There exists M independent of the surface S in Theorem 3.2.

In the last section, we describe markings on S in terms of graphs embedded in S that fill. Given a multicurve α , and a curve γ that fills with α , one can define such a graph $\Gamma_{\alpha}(\gamma)$. This gives a projection Γ_{α} to a set of markings. Our proof of Theorem 3.2 generalizes to these projections.

Theorem 4.1. Suppose a multicurve α and a geodesic $g = (\gamma_i)$ satisfy γ_i, α fill S for each i. Then $\operatorname{diam}_{\mathcal{M}_{k,l}(S)}(\Gamma_{\alpha}(g)) \leq M$, where M depends on S.

2. Loops and surgery

2.1. **Loops.** Throughout this section, α and β are both collections of pairwise disjoint, essential, simple closed curves on S such that α and β intersect minimally (equivalent to α and β do not share a bigon, see for example [5, Proposition 1.7]) and α, β fill S.

We say a collection of simple closed curves $\{\gamma_i\}$ is *sensible* if they are essential, pairwise in minimal position, and with no triple points, i.e. for distinct i, j, k, we have $\gamma_i \cap \gamma_j \cap \gamma_k = \emptyset$.

Let γ, α, β be sensible. Recall that whenever we orient γ and β arbitrarily, each point $\gamma \cap \beta$ has a sign of intersection ± 1 . We say a pair of such points *have opposite* sign if the signs of intersection are non-equal, and *have same sign* otherwise. This notion does not depend on the orientation of γ, β or S.

FIGURE 1. The curve γ' is dotted.

Definition 2.1. We say that γ is an (α, β) -loop if for each arc $b \subset \beta - \alpha$ we have $|\gamma \cap b| \leq 2$ with equality only if $\gamma \cap \beta$ have opposite sign.

Definition 2.1 is inspired by Leasure's $(\alpha \cup \beta)$ -cycles [8, Definition 3.1.6]. These cycles allow one to construct quasigeodesics on closed surfaces with a combinatorial description. Definition 2.1 is an adaptation, which allows one to work on punctured surfaces. Both (α, β) -loops and Leasure's cycles satisfy some variant of Lemma 2.5, however cycles a priori require larger constants for Lemma 2.5 and a more careful proof since they are not necessarily in minimal position with α and β . Our surgery argument to construct (α, β) -loops from curves is necessarily more technical, but they will intersect α and β minimally.

- 2.2. **Surgery.** Suppose that γ, α, β are sensible. We shall describe a surgery process on γ to construct an (α, β) -loop which will be written γ' . If γ is an (α, β) -loop then we set $\gamma' = \gamma$. If γ is not an (α, β) -loop then let c be a minimal (with respect to inclusion) connected subarc $c \subset \gamma$ such that there exists an arc $b \subset \beta \alpha$ with either
 - $c \cap b$ is a pair of points with same sign
 - $c \cap b$ has cardinality at least 3

Since c is minimal we have that c has endpoints on b, b is the unique arc with properties described above, and $|c \cap b| \leq 3$. Thus, each arc $b' \subset \beta - \alpha$ such that $b' \neq b$, we have $|c \cap b'| \leq 2$ with equality only if $c \cap b'$ have opposite sign.

In what follows, we write $N = N(\beta)$ to denote a closed regular neighbourhood of β . We now describe how to construct γ' , in each case of how c intersects b.

- Case 1: $|c \cap b| = 2$ and $c \cap b$ have same sign. See Figure 1. Write $R \subset N \alpha$ to denote the rectangle with $b \subset R$. Let $\{p_1, p_2\} = c \cap \partial R$. Connect p_1 to p_2 by an arc $a \subset R$ that intersects b once and intersects c only at the endpoints of a. We let γ' be the simple closed curve $a \cup (c R)$.
- Case 2: $|c \cap b| = 3$ with alternating signs of intersection with respect to some order on b. See Figure 2. Let p_1, p_2, p_3 be the points $c \cap b$ in some order along b. Let $c_1, c_2 \subset c$ be arcs such that $c_1 \cup c_2 = c$, $\partial c_1 = \{p_1, p_2\}$ and $\partial c_2 = \{p_2, p_3\}$. Connect $c_1 \cap \partial R$ to $c_2 \cap \partial R$ by two disjoint arcs $a_1, a_2 \subset R$ so that a_1 intersects c_1, c_2 only at its endpoints and intersects b once, and similarly a_2 . We let $\gamma' = a_1 \cup (c_1 R) \cup a_2 \cup (c_2 R)$.

FIGURE 2. Surgery in Case 2 on the left, and Case 3 on the right.

FIGURE 3. The argument in Lemma 2.2

Case 3: $|c \cap b| = 3$ with non-alternating signs of intersection. See Figure 2. We define γ' in a similar fashion as Case 1.

Lemma 2.2. In each case above, γ' is in minimal position with β and with α . Furthermore, γ' is essential and an (α, β) -loop.

Proof. Any arc of $\gamma' - \beta$ is isotopic in $S - \beta$ to some arc of $\gamma - \beta$. Therefore, γ' and β cannot share a bigon since γ and β do not, thus γ' is essential. We now show that γ' and α do not share a bigon in all the cases of the surgery process described above, via contradiction.

Case 1: See Figure 3. Pick an innermost bigon B between the pair γ', α . We must have the arc $a \subset \partial B$, otherwise γ and α share a bigon. We have $a \cap b \neq \emptyset$, and since γ' and β do not share a bigon, we must have one endpoint of b in ∂B . Let $\{p\} = B \cap c \cap b$, and $c_{\alpha} \subset \gamma - \alpha$ be the arc with $p \in c_{\alpha}$. Now γ and β do not share a bigon, and neither does γ intersect itself, thus c_{α} is contained with the disc $B \cup T$, where T is the triangle region adjacent to B cobounded by γ', γ and β . We conclude that c_{α} and α cobound a bigon, contradicting γ and α do not share a bigon.

Case 2: It suffices to show each connected component of $S-(\gamma'\cup\alpha)$ adjacent to at least one of the arcs a_1,a_2 is not a bigon. We start with the component containing p_2 : if this is a bigon B, then the arc $b'\subset b-\gamma'$ with $p_2\in b'$ satisfies $b'\subset B$ hence b' cobounds a bigon with γ' . This contradicts γ' and β do not share a bigon. Now we argue that the component containing p_1 is not a bigon (and similarly p_3). Suppose this component was a bigon B, first suppose that $a_1\subset\partial B$ but $a_2\cap\partial B=\emptyset$, then one can follow a similar argument as in Case 1. If $a_1,a_2\subset\partial B$, then see Figure 3 on the right. A similar argument again can be given as in Case 1.

Case 3: One can argue similarly to that of Case 1.

Our Lemma 2.3 is the generalization of [8, Proposition 3.1.7].

Lemma 2.3. Suppose $\gamma_1, \gamma_2, \alpha, \beta$ are sensible and γ_1 misses γ_2 . Then the (α, β) -loops γ'_1, γ'_2 constructed by the surgery method above satisfy $i(\gamma'_1, \gamma'_2) \leq 4$. Furthermore, if γ_1 misses α , or β , then γ'_1 misses α , or β , respectively.

Lemma 2.4. Let α' be a component of a multicurve α on S and let β be a curve on S. Suppose α' , β fill S. Then there exists a (4,0)-quasigeodesic $\alpha' = \gamma_0, \gamma_1, ..., \gamma_n = \beta$ with γ_i a (α, β) -loop for every 0 < i < n.

Proof. Start with a geodesic $\gamma_0, ..., \gamma_m$ of curves from α' to β , such that this collection of curves is sensible. Using the surgery process on each γ_i with $1 \le i \le n-1$, we obtain a sequence $\gamma'_1, ..., \gamma'_{m-1}$ of (α, β) -loops. We have $i(\gamma'_i, \gamma'_{i+1}) \le 4$ for each i by Lemma 2.3, therefore $d_S(\gamma'_i, \gamma'_{i+1}) \le 4$ and $d_S(\gamma'_i, \gamma'_j) \le 4|i-j|$ for each i, j. If for some i > j we have $i - j > d_S(\gamma'_i, \gamma'_j)$, then we connect γ'_i and γ'_j with a geodesic and surger each vertex of it using α, β again. Repeating this process, we obtain the required quasigeodesic of (α, β) -loops.

We remark that if $S \neq S_{1.2}$ then in Lemma 2.4 we can take a (3,0)-quasigeodesic, and for all but finitely many surfaces we can take a (2,0)-quasigeodesic.

Lemma 2.5. Let Y be a subsurface of S and suppose ∂Y and β fill S. Let γ be a $(\partial Y, \beta)$ -loop that cuts ∂Y . Then $d_Y(\gamma, \beta) \leq 2$ if Y is non-annular and $d_Y(\gamma, \beta) \leq 5$ otherwise.

Proof. If Y is non-annular then any pair of arcs in the projection will intersect at most twice by Definition 2.1, so one can consider a closed regular neighbourhood of the arcs to prove the required bound on distance.

If Y is annular then suppose for contradiction that $d_Y(\gamma, \beta) \geq 6$. Then there exist arcs $\delta^* \in \pi_Y(\gamma)$ and $\epsilon^* \in \pi_Y(\beta)$ with $|\delta^* \cap \epsilon^*| \geq 5$. Following a claim from [11, Section 10], if we isotope the triangles cobounded by $\partial Y, \beta, \gamma$ into Y (this retains minimal position), we have that $|\delta^* \cap \epsilon^* \cap Y'| \geq 3$, where Y' is the homeomorphic lift of Y. Therefore there exists an arc of $\beta - \partial Y$ which intersects γ at least two times with the same sign, contradicting γ a $(\partial Y, \beta)$ -loop.

3. The proof

Let γ be a curve and P be a set of curves. We say γ is ϵ -close to P if for some curve β of P we have $d_S(\gamma, \beta) \leq \epsilon$. Throughout this section, δ is a constant such that $\mathcal{C}(S)$ is δ -hyperbolic, see Theorem 1.1.

Lemma 3.1. There exists $D = D(\delta)$ such that for any subsurface Y, component $\alpha \subset \partial Y$, and geodesic $\alpha = \gamma_0, \gamma_1, ..., \gamma_n = \beta$ with $n \geq 3$, we have $d_Y(\gamma_i, \beta) \leq D$ whenever $i \geq 2$.

Proof. Use Lemma 2.4 to construct a (4,0)-quasigeodesic Q of $(\partial Y, \beta)$ -loops from α to β . For each i, we have γ_i is D'-close to Q where $D' = D'(\delta)$. For an explicit D', we can take D' = D'' + 2, where D'' is the largest integer with $D'' \leq \delta \lceil \log_2(26D'') \rceil$. See for example [3, Chapter III.H]. Using Lemma 1.2, we can take D = 2D' + B, where B is the bound provided in Lemma 2.5.

Theorem 3.2. Given a surface S there exists $M = M(\delta)$ such that whenever Y is a subsurface and $g = (\gamma_i)$ is a geodesic such that γ_i cuts Y for all i, then $d_Y(g) \leq M$.

Proof. Take $M = 4\delta + 2D + 4$, where D is defined as in Lemma 3.1. Fix i < j. We shall show that $d_Y(\gamma_i, \gamma_j) \le M$. Fix α a component of ∂Y . Let $I = N_{\delta+1}(\alpha) \cap g$. There exists $g' = (\gamma_{i'}, ..., \gamma_{j'})$ a geodesic of length at most $2\delta + 2$ such that $I \subset g' \subset g$.

Let P be a geodesic from α to γ_i and Q be a geodesic from β to γ_j . Let $i'' = \max\{i, i' - 1\}$ and $j'' = \min\{j, j' + 1\}$. Since geodesic triangles are δ -slim, we have either $\gamma_{i''}$ is δ -close to P and $\gamma_{j''}$ is δ -close to Q, or, there exists adjacent vertices of g - g' with one δ -close to P and the other δ -close to Q. By lemmas 1.2 and 3.1 we have that $d_Y(\gamma_i, \gamma_j) \leq D + \delta + (2\delta + 4) + \delta + D = M$.

We remark that M need not be optimal for each surface. For example, for S_2 it may be better to consider Leasure's cycles, which give (2,0)-quasigeodesics, whereas a priori we are taking (3,0)-quasigeodesics in Lemma 2.4. Similar surgery arguments may produce better results for other surfaces. Also, for all but finitely many surfaces, in Lemma 2.4 we can take a (2,0) quasigeodesic; this improves on the constant D.

4. Generalization to markings

We thank Brian Bowditch for suggesting this generalization and set-up. Defining the markings that we wish to discuss has similarities with [10, Section 6].

Given a multicurve α and a curve β such that α, β fill S, let B be a maximal collection of pairwise non-isotopic arcs of $\beta - \alpha$ in $S - \alpha$. We let $\Gamma_{\alpha}(\beta)$ be the graph embedded in S by taking the union $\alpha \cup B$. This may not be well-defined but there is bounded intersection between two such graphs, in terms of S, between any pair of choices of S.

Since α, β fill S, it follows that there are no essential simple closed curves on S that are disjoint from $\Gamma_{\alpha}(\beta)$, i.e. $\Gamma_{\alpha}(\beta)$ fills S. Furthermore, by an Euler characteristic argument, the number of edges of $\Gamma_{\alpha}(\beta)$ can be bounded in terms of the surface S. Let k_1 be this bound.

We write $\mathcal{M}_k(S)$ to denote the set of (isotopy classes of) embedded graphs that fill S with at most k edges. Let $\mathcal{M}_{k,l}(S)$ be the graph with vertex set $\mathcal{M}_k(S)$ with two vertices G_1, G_2 adjacent if $i(G_1, G_2) \leq l$. Here, $i(G_1, G_2) = \min |\Gamma_1 \cap \Gamma_2|$ where the minimum is taken over representatives Γ_i of the isotopy classes G_i , where i = 1, 2.

Let k_2 be a bound for the number of edges of any clean complete marking on S regarded as a graph on S, see [9] for definitions. The graph of clean complete markings on S is connected. Write $l_1 = \max_M i(M, M')$, where the maximum is taken for all clean complete markings of M, where M' differs from M by an elementary move. Let $l_2 = \max_G \min_M i(G, M)$, where the minimum is taken over graphs with at most $k = \max(k_1, k_2)$ edges that fill S and the maximum is taken over clean complete markings of S.

We then have $\mathcal{M}_{k,l}(S)$ connected, where $l = \max(l_1, l_2)$. Endow the graph $\mathcal{M}_{k,l}(S)$ with a metric where each edge has unit length, and distance is given by shortest paths. Vertex stabilizers are uniformally bounded, by the Alexander method. The mapping class group $\mathcal{MCG}(S)$ acts on $\mathcal{M}_{k,l}(S)$, and thus by the Milnor-Švarc Lemma [3, Proposition I.8.19] the mapping class group is quasi-isometric to the marking graph $\mathcal{M}_{k,l}(S)$.

Theorem 4.1. Suppose a multicurve α and a geodesic $g = (\gamma_i)$ satisfy γ_i, α fill S for each i. Then $\operatorname{diam}_{\mathcal{M}_{k,l}(S)}(\Gamma_{\alpha}(g)) \leq M$, where M depends on S.

Proof. We sketch a proof for brevity, since most of the proof is a generalization of earlier lemmas. Firstly, if Γ_1 intersects Γ_2 boundedly many times, then there are only finitely many possibilities for Γ_2 in terms of Γ_1 . There are only finitely many possibilities for Γ_1 modulo homeomorphism. Thus, if intersection between markings is bounded then their distance is bounded.

Secondly, one bounds $i(\Gamma_{\alpha}(\gamma_1), \Gamma_{\alpha}(\gamma_2))$ when γ_1 and γ_2 are disjoint, in terms of S. This generalizes Lemma 1.2. Then one bounds $i(\Gamma_{\alpha}(\beta), \Gamma_{\alpha}(\gamma))$ when γ is a (α, β) -loop, in terms of S. This generalizes Lemma 2.5. Using these lemmas, one can generalize Lemma 3.1 then finish the argument analogously to Theorem 3.2.

Acknowledgements. The author would like to thank Saul Schleimer for thorough comments on the paper. We thank Brian Bowditch, Saul Schleimer and Robert Tang for interesting conversations.

References

- [1] T. Aougab, Uniform hyperbolicity of the graphs of curves. http://arxiv.org/abs/1212.3160.
- [2] B.H. Bowditch, *Uniform hyperbolicity of the curve graphs*. http://homepages.warwick.ac.uk/~masgak/papers/uniformhyp.pdf.
- [3] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR1744486 (2000k:53038)
- [4] M.T. Clay, K. Rafi, and S. Schleimer, Uniform hyperbolicity of the curve graph via surgery sequences. in preparation.
- [5] Benson Farb and Dan Margalit, A primer on mapping class groups, Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, NJ, 2012. MR2850125 (2012h:57032)
- [6] W. J. Harvey, Boundary structure of the modular group, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), 1981, pp. 245–251. MR624817 (83d:32022)
- [7] S. Hensel, P. Przytycki, and R. C. H. Webb, Slim unicorns and uniform hyperbolicity for arc graphs and curve graphs. http://arxiv.org/abs/1301.5577.
- [8] Jason Paige Leasure, Geodesics in the complex of curves of a surface, ProQuest LLC, Ann Arbor, MI, 2002. Thesis (Ph.D.)—The University of Texas at Austin. MR2705485
- [9] H. A. Masur and Y. N. Minsky, Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal. 10 (2000), no. 4, 902–974. MR1791145 (2001k:57020)
- [10] Howard Masur, Lee Mosher, and Saul Schleimer, On train-track splitting sequences, Duke Math. J. 161 (2012), no. 9, 1613–1656. MR2942790
- [11] Howard Masur and Saul Schleimer, The geometry of the disk complex, J. Amer. Math. Soc. 26 (2013), no. 1, 1–62. MR2983005
- [12] Howard A. Masur and Yair N. Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 138 (1999), no. 1, 103–149. MR1714338 (2000i:57027)

MATHEMATICS INSTITUTE, UNIVERSITY OF WARWICK, COVENTRY, CV4 7AL, UNITED KINGDOM. $E\text{-}mail\ address$: R.C.H.Webb@warwick.ac.uk