Orthogonal Projections

<u>The Idea for this Section</u>: Given a vector \mathbf{y} in and a subspace W in \mathbb{R}^n , there is a vector $\hat{\mathbf{y}}$ in W such that...

- 1. $\hat{\mathbf{y}}$ is the unique vector in W for which $\mathbf{y} \hat{\mathbf{y}}$ is orthogonal to W, and
- 2. $\hat{\mathbf{y}}$ is the unique vector in W closest to \mathbf{y} .

Example 27.1:

$\underline{\text{Theorem 27.2}}:$

Property of Projections:

<u>Theorem 27.4</u>:

Example 27.5:

Example 27.6:

Theorem 27.7