"Prediction of building energy consumption"

- ◆ Artificial neural network model for forecasting sub-hourly electricity usage in Commercial buildings. Energy Build 2016;111:184–94.
- ◆ A hybrid model approach for forecasting future residential electricity consumption. Energy Build 2016;117:341–51.

Energy Al Track Kim Sohee

Al application for energy system 22.06.14

Contents

- Prediction models for forecasting building energy consumption
- Artificial neural network model for forecasting sub-hourly electricity usage in Commercial buildings
- A hybrid model approach for forecasting future residential electricity consumption

Prediction models

Engineering models (Physical models)

- Rely on thermodynamic rules for detailed energy modelling and analysis
- Software: EnergyPlus, eQuest, and Ecotect
 - Calculate building energy consumption based on detailed building and environmental parameters
- Detailed data may not be available to the users at the time of simulation
 - ⇒ Failure to provide accurate input can result in poor prediction performance

> EnergyPlus (whole building energy simulation program)

> eQuest (Building energy analysis program)

> EcoTect

Prediction models

♦ Data-driven models

- Learns from historical/available data for prediction
- Correlate the energy consumption or energy index with the influencing variables
- 4 steps: data collection, data preprocessing, model training, and model testing
- Machine learning algorithms: SVM, ANN, decision trees, and other statistical algorithms

Reference	Learning algorithm (type)	Building type	Temporal granularity	Type of energy consumption predicted	Purpose of prediction	Type of dataset (simulation tool)	Types of feature	Data size	Performance (metric)
SVM (RBI	SVM (RBF)	Non-residential	Hourly		HVAC system operation	Real (N/A)	Date, daily average	620	0.17 (RMSE)
[26]	PCA-SVM (RBF)			Cooling			temperature, daily lowest temperature, daily highest		0.04 (RMSE)
	KPCA-SVM (RBF) improvement		temperature	instances	0.02 (RMSE)				
	SVM (RBF)	Non-residential	Hourly	Cooling	N/S	Real (N/A)	Date, daily average temperature, daily lowest temperature, daily highest temperature	620 instances	0.17 (RMSE)
	PCA-SVM (RBF)								0.04 (RMSE)
	PCA-WSVM (RBF)								0.03 (RMSE)
[20]	SVM (RBF)	Non-residential	Hourly	Cooling	HVAC system	Simulated	Dry-bulb temperature, relative	5 months	1.15% - 1.18% (CV)
[20]	ANN(BPNN)	Non-residential	riouriy	Cooling	design	(DeST)	humidity, solar radiation		2.22% - 2.36% (CV)
	SVM (RBF)	_			HVAC system design	Simulated	Dry-bulb temperature, relative humidity, solar radiation	5 months	1.15% - 1.18% (CV)
1271	ANN(BPNN)	- Non-residential	Haurin	Cooling					2.22% - 2.36% (CV)
[37]	ANN(RBFNN)		Hourly	Cooling		(DeST)			1.43% - 1.51% (CV)
	ANN(GRNN)								1.19% - 1.20% (CV)
[20]	LS-SVM (RBF)	Non residential	Haude	Cooling	HVAC system	Simulated (DeST)	Dry-bulb temperature, relative	4 months	5.56% (CV)
[29]	A NUNTETER PROPERTY.	- Non-residential	Hourly	Cooling					11.0407.72325

Prediction models

- **◆** Data-driven models Limitations
 - Data-driven prediction models may not perform well outside of their training range.
 - Black-box models their internals are not known
 - ⇒ **Hybrid or grey-box modelling approaches** (physical + data-driven)

Black-box model

Artificial neural network model for forecasting sub-hourly electricity usage in Commercial buildings.

Chae YT, Horesh R, Hwang Y, Lee YM. Energy Build 2016;111:184-94.

Grey-box model (hybrid)

A hybrid model approach for forecasting future residential electricity consumption.

Dong B, Li Z, Rahman SMM, Vega R. Energy Build 2016;117:341–51.

2. Artificial neural network model for forecasting sub-hourly electricity usage in Commercial buildings.

Chae YT, Horesh R, Hwang Y, Lee YM. Energy Build 2016;111:184–94.

Introduction

Forecasting electricity load

- commercial & industrial buildings
 - To be able to better manage energy usage

The short-term load forecast (STLF)

a period shorter than a day → more interest

The utility prices may change by seasonality, time-of-use in on/off peak period, and contract demand

Introduction

■ The short-term load forecast (STLF) – sub-hourly electricity consumption of buildings

- ✓ Escriva-Escriva et al. STLF model using ANNs
 - Requires an entire whole year's data set
 - Not be stable when the energy consumption pattern has large daily or annual variability
- ⇒ A short-term load forecasting model using data mining and machine learning technique while assuming limited availability of data.
- ⇒ ANN models commercial building complex

1. Description of a case study: a building complex

- Two absorption chiller systems
 - Constant air volume (CAV) BLDG 1
 - Fan coil units (FCU) BLDG 2
- Electric heat pump (EHP) BLDG 1, 2, 3
- Building management system (BMS): monitor operational conditions

Fig. 2. Electricity delivery hierarchy and meter installation at the site.

2. Data collection and processing

Fig. 3. Data collecting system.

2. Data collection and processing

> Potential predictor variables

Category	Variables	Unit/index		
Environment	Outdoor dry-bulb temp. (ODT)	°C		
	Outdoor relative humidity (ODH)	%		
Precipitation probability (PPT)		%		
Rain indicator (RAN)		0: No rain 1: Rain 2: Snow 3: Rain and snow		
	Wind speed (WSD)	km/h		
	Sky condition (SKC)	0: Clear sky1: Partially cloud2: Cloud3: Overcast		
Time indicator	Day indicator (DTF)	0: Weekdays 1: Saturday 2: Sunday		
	Interval stamp (TIF)	0-95		
Operational condition	HVAC operation schedule(OPC)	Discretized		

- Environmental data
 - ODT, ODH, PPT, RAN, WSD, SKC
- Time indicator
 - DTF, TIF
- Operational condition
 - OPC

9 potential variables

3. Feature extraction for dimension reduction

Variables	Conditioned permutation-importance
TIF	482.27
DTF	354.03
OPC	296.50
ODT	222.01
ODH	212.01
PPT	92.56
WSD	90.42
SKC	81.95
RAN	32.36

Random forests algorithm

Variables

Outdoor dry-bulb temp. (ODT)
Outdoor relative humidity (ODH)
Precipitation probability (PPT)
Rain indicator (RAN)
Wind speed (WSD)
Sky condition (SKC)
Day indicator (DTF)
Interval stamp (TIF)

variables

+ Previous electricity usages

HVAC operation schedule(OPC)

4. Predictive model selection

Table 4 Evaluation of different machine-learning algorithms.

Algorithm	Correlation coefficient	CV(RMSE)
Gaussian process with radial basis function (RBF) kernel	0.94	0.11
Gaussian process with polynomial kernel	0.87	0.15
Linear regression	0.83	0.16
Artificial neural network	0.96	0.08
Support vector machine (SVM) with normalized polynomial kernel	0.92	0.13
SVM with RBF kernel	0.88	0.14
K-Star classifier	0.92	0.12
Nearest neighbour ball free	0.94	0.11
Simple model	0.81	0.18

> 9 machine-learning algorithms

5. ANN model architecture

- 15-min interval data set E_i (energy consumption)
- 5 predictor variables (July 1st ~ July 31st, 2012)
 - ⇒ Train : 2880 data points for 6 input variables

2. Model implementation

> Comparisons of actual observed and forecasted electricity usage

Training method

- Static
- Accumulative
- Sliding windows

2. Model implementation

> Actual forecast result

2. Model implementation

Table 615 min prediction results with each training type.

Month	Day type (days)	Static		Accumulative		Sliding window		
		CV(RMSE) [%]	σ	CV(RMSE) [%]	σ	CV(RMSE) [%]	σ	
August	Weekday (21)	8.44	2.41	7.97	2.53	8.74	2.53	
	Weekend (8)	11.16	3.61	9.91	2.11	9.62	2.31	
September	Weekday (19)	13.76	5.03	9.35	2.14	9.20	2.25	
	Weekend (10)	26.74	11.97	11.06	2.44	11.20	3.60	

Daily peak

Table 7Daily peak prediction results with each training type.

Month	Day type (days)	Static			Accumulative			Sliding window		
		Max/min APE [%]	Averaged APE [%]	σ	Max/min APE [%]	Averaged APE [%]	σ	Max/min APE	Averaged APE [%]	σ
August	Weekday (21)	7.57/0.16	2.84	2.79	7.62/0.05	3.37	2.38	8.58/0.02	3.30	2.81
_	Weekend (8)	20.33/2.0	8.77	6.67	13.28/3.03	7.28	3.78	13.67/3.75	8.10	2.83
September	Weekday (19)	13.17/0.2	4.40	3.92	11.6/0.2	4.52	2.71	9.7/0.6	4.26	2.64
-	Weekend (10)	59.4/4.4	24.9	1.77	17.4/0.6	6.48	3.01	7.7/0.8	4.25	2.80

Conclusion

- The short-term load forecast (STLF) sub-hourly electricity consumption of buildings
 - Still a challenging problem complexity of usage pattern & highly noisy input data
- A new approach using feature extraction and an ANN
 - → A-day-ahead forecast of the electricity usage for a commercial building complex (15 min)
- ✓ Developed model for 2 months
 - Daily error : stable around averaged CV of 10%
 - Daily peak demand : averaged APE of 5%
 - ⇒ The model can provide a day-ahead electricity usage profile with sub-hourly intervals and daily peak electricity consumption with a reasonable accuracy
- A good predictive model of energy consumption in buildings
 - → Useful in developing a good model predictive control (MPC) method that can reduce energy costs in buildings.

3. A hybrid model approach for forecasting future residential electricity consumption

Dong B, Li Z, Rahman SMM, Vega R. Energy Build 2016;117:341–51..

Introduction

- ◆ Data-driven Black-box : machine learning driven, derived by measured data
 - Limited in one type of methods (neural networks)
- ◆ Physical + Data-driven = Grey-box
 - Built upon physical relationship parameters of physical model are unknown or uncertain.
 - + Measured data → identify those parameters, model tuning for better accuracy

Commercial vs Residential building

1. The lack of hourly or more granular data

기타 전기부하 비율

- 2. The growing percentage of miscellaneous electrical load (MEL) in residential building (~52%)
- ⇒ A new hybrid modeling approach
- ⇒ Forecast hour ahead and 24 ahead residential electrical load

Current state of the art

- ◆ Data-driven models machine learning algorithms
 - ANN, SVR, LS-SVM, GPR, GMM
 - Only conducted on **total** building energy consumption forecast

- ◆ Physical models (Forward models) Use laws of thermodynamics (열역학)
 - 2 main parts: Building thermal zone envelopes / Air conditioning modeling
 - Physical phenomena (convection, conduction, radiation) → 1 layer
 - All layers (walls, floor, roof, etc.) → Thermal envelope zone (thermal resistance-capacity (RC) networks)
 - Suffers from a lack of building information
 - Limited to thermal usage prediction such as air conditioning
 - ⇒ A new hybrid modeling approach
 - ⇒ Forecast both total and air-conditioning (AC) energy consumption

Methodology and approach

♦ Test bed and performance metrics

Fig. 1. Four test houses.

- \triangleright 4 residential houses in San Antonio (110 m^2 each)
 - SIP (Structure Insulated Panel)
 - ACC (Autoclaved Aerated Concrete)
 - Container
 - Stick

Material information

- Calibrated thermal resistances and capacities
 - manufactures (119mm SIP U-value is $0.22W/m^2K$)
- Energy consumption 5 min intervals for all rooms
- Outdoor air temperature, global horizontal solar radiation
 - weather station near the position
- Solar radiations on the surface sensors installed on site
- Hour ahead, 24-h ahead models evaluated

MAPE(%) =
$$\frac{1}{N} \sum_{i=1}^{N} \frac{\left| y_i - y_p \right|}{y_i} \times 100$$

- ⇒ % of error per prediction
- ⇒ Smaller is better

$$CV(\%) = \frac{\sqrt{1/N - 1\sum_{i=1}^{N} (y_i - y_p)^2}}{\overline{y}} \times 100$$

- ⇒ Variation of overall prediction
- ⇒ Smaller, more similar dispersions

Methodology and approach

♦ Hybrid model

Fig. 3. Hybrid approach.

- 1. Historical information
 - → Forecast non-AC electricity consumption
 - → Internal heat gain
- 2. Predicted weather + internal gain forecast
 - → The thermal network differential algebraic equations (DAEs)
 - → Zone temperature + Set point schedule
 - → AC regression model
- \rightarrow AC + non-AC
 - = a total electricity consumption

Methodology and approach

- **♦** Hybrid model
- Non-AC forecast
- Hour ahead

H1:
$$f(t, L_{t-1}, L_{t-2}, ..., L_{t-5})$$

- Previous 1-5 h historical load information
- > 24-hour ahead

H2:
$$f(t, L_{t-24}, ..., L_{t-31}, avg(L_{t-24}, L_{t-25}),$$

 $avg(L_{t-24}, L_{t-25}, L_{t-26}), ..., avg(L_{t-24}, ..., L_{t-31})$

• Previous 24-31 h historical load + moving averages

AC forecast

$$P = \frac{m \sum_{i=1}^{n} q_i}{\text{COP}}$$

- P: electricity consumption forecast
- q_i : minutes resolution AC cooling or heating load in the forecast time window
- COP : coefficient of performance
- m: time scale (if q = 5 min temporal load, m=1/12)

- > Train 1 week ~ 1 month before tested period (before 2013.9.17)
- > Test 1 week (2013.9.17 ~ 2013.9.24)
- AC / non-AC / total building energy consumption

◆ Air-conditioning energy consumption

MAPE

• SIP: 7.03%

• ACC: 8.29%

• Container : 9.15%

• Stick: 8.03%

◆ Non-air-conditioning energy consumption

Reduced performance due to

- Constraints on **input feature**
 - Hour: previous 1~5 h
 - 24-h: yesterday
 - → Key assumption :

Daily usages are similar without large deviation

Random behavior of residents creates the randomness

Inability to capture the random spikes

→ Short period of time (5 min)

◆ Total building energy consumption

> Hour ahead

Model	MAPE	CV	Model	MAPE	CV
House: SIP			House: cor	ntainer	
Hybrid	8.16%	11.21%	Hybrid	21.44%	25.58%
ANN	9.26%	12.49%	ANN	22.80%	27.54%
SVR	9.58%	12.76%	SVR	22.11%	26.07%
LSSVM	9.09%	13.18%	LSSVM	23.26%	28.70%
GMM	14.29%	19.50%	GMM	28.44%	31.91%
GPR	15.86%	21.39%	GPR	26.24%	29.75%
House: AC	С		House: stic	ck	
Hybrid	12.60%	14.14%	Hybrid	21.51%	26.17%
ANN	12.50%	15.08%	ANN	23.86%	28.19%
MININ					
SVR	12.70%	15.72%	SVR	23.22%	27.28%
	12.70% 12.94%	15.72% 15.47%	SVR LSSVM	23,22% 23,44%	27.28% 27.42%
SVR					

> 24-hour ahead

		<i>a</i> 01			
Model	MAPE	CV	Model	MAPE	CV
House: SIP			House: cor	ntainer	
Hybrid	10.02%	11.28%	Hybrid	26.43%	32.82%
ANN	11.92%	12.59%	ANN	27.39%	33.35%
SVR	11.97%	12.42%	SVR	28.25%	34.91%
LSSVM	10.39%	11.83%	LSSVM	28.95%	34.19%
GMM	17.80%	20.24%	GMM	34.01%	37.81%
GPR	18.85%	22.69%	GPR	35.94%	38.57%
House: ACC			House: stic	ck	
Hybrid	14.36%	17.06%	Hybrid	27.52%	29.26%
ANN	14.41%	18.85%	ANN	30.22%	34.40%
SVR	15.69%	19.55%	SVR	28.56%	31.87%
LSSVM	15.10%	19.72%	LSSVM	28.32%	31.36%
GMM	25.47%	28.85%	GMM	31.13%	35.15%
GPR	27.12%	30.03%	GPR	35.76%	39.34%

♦ Discussions

Table 3 Hour ahead forecast performance of recent studies.

Reference	Year	Туре	Location	Method	Forecast	Performance
Ghofrani et al. [52]	2011	Dwelling	Navada	Kalman filter	Hour ahead	MAPE: 12-30%
Edwards et al. [1]	2012	Two-floor house	Tennessee	Linear regression various types of ANN, SVR, LSSVM	Hour ahead	MAPE: 9-30%; CV: 11-38%
Jain et al. [38]	2014	Multi-family	New York	SVR	Hour ahead	CV: 10-11%

➤ 3 previous research for hour ahead total energy consumption forecasting of residential buildings

■ MAPE : 9% ~ 30%

• CV: 10% ~ 38%

 Our hybrid approach is slightly better than other existing models

Hybrid approach

- Improvements decomposition of total building energy consumption
 - Isolate certain appliances (AC)
- Simultaneous prediction 동시 예측
 - both total & sub-meter appliances (AC)

Conclusion

- An innovative hybrid modeling approach for residential building energy consumption forecasting
 - Data-driven + physic-based models
 - Single-family residential houses
 - Validated through 1 month measured data 4 residential buildings

- Hybrid modeling approach
 - Hour ahead : slightly better
 - 24-h ahead : similar
- AC prediction 5 min interval data
 - → Not typically available to homeowners and utility companies

- Using hourly data
- Improve 24h ahead forecasting

Thank You!