CS581 Homework 2 Solution

January 25, 2018

Problem 1.

Since $n! \sim \sqrt{2\pi n} (\frac{n}{e})^n$, then $\lim_{n\to\infty} \frac{n!}{\sqrt{2\pi n} (\frac{n}{e})^n} = 1$. Therefore, the difference of the two terms as n goes to infinity approaches 0, so the proportional error also must go to 0 as n goes to infinity. A more explicit definition is as follows:

$$\lim_{n \to \infty} \frac{n! - \sqrt{2\pi n} \left(\frac{n}{e}\right)^n}{n!} = \lim_{n \to \infty} \left(1 - \frac{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n}{n!}\right)$$

$$= (1 - 1)$$

$$(2)$$

$$=0 (3)$$

Problem 2.

Let $n, c \in \mathbb{R}_{>0}$ be arbitrary. The equality of $n^{log(c)}$ and $c^{log(n)}$ will be shown by transforming one expression into the other through a series of equality preserving transformations.

$n^{\log(c)} = n^{\log(c)}$	True by the symmetric property	(4)
$=e^{\log(n^{\log(c)})}$	Basic property of logarithms	(5)
$= e^{\log(c)*\log(n)}$	Basic property of logarithms	(6)
$= (e^{\log(c)})^{\log(n)}$	Basic property of exponents	(7)
$=c^{log(n)}$	Basic property of logarithms	(8)

Since $n, c \in \mathbb{R}_{>0}$ were arbitrary, and since all of the above transformations preserve equality for positive real numbers, it follows that $n^{\log(c)} = c^{\log(n)}$ for all $n, c \in \mathbb{R}_{>0}$.

Problem 3.

X means true.

A	В	О	О	Ω	Θ	~
$\log(n)$	n	X	X			
$\log(2n)$	n	X	X			
$\log^2(n)$	n	X	X			
n^2	$2n^2$	X		X	X	
$n + \log(n)$	n^2	X	X			
n	2^n	X	X			
$n^3 + 4n^2 + \log^4(n)$	n^3	X		X	X	X
$n + \log(n)$	n	X		X	X	X
\sqrt{n}	$n^{sin(n)}$			X		
n!	n^n	X	X			
$\log(n!)$	$\log(n^n)$	X		Χ	X	X
$25n\log(n) + 5n$	$\frac{1}{2}n\log(n)$	X		X	X	
$\sqrt{n} * \log(n)$	n	X	X			
$4^{\log(n)}$	$2n^2$	X		X	X	
$n\log(n)$	$n^{1.001}$	X	X			