<u>связь</u> — множество, являющееся абстрактной моделью связи между описываемыми сущностями, которые или знаки которых являются элементами этого множества.

<u>домен*</u> – <u>Множество</u> di является <u>доменом отношения</u> ri по <u>атрибуту</u> аi в том и только том случае, если элементами этого <u>множества</u> являются все те и только те элементы связок <u>отношения</u> ri, которые умеют. в рамках этих связок <u>атрибут</u> аi.

<u>арность</u> – это <u>параметр</u>, каждый элемент которого представляет собой <u>класс</u> <u>отношений</u>, каждая связка которых имеет одинаковую <u>мощность</u>. Значение данного параметра совпадает со значением <u>мощности</u> каждой из таких связок.

Отношение, заданное на множестве M – это подмножество декартового произведения этого множества самого на себя некоторое количество раз.

//В более широком смысле отношение – это математическая структура, которая //формально определяет свойства различных объектов и их взаимосвязи.

Бинарное отношение – это множество таких отношений на множестве M, являющихся подмножеством декартова произведения множества M.

Соответствие- бинарное отношение, заданное на множествах и задающее наличие отношения, в котором участвуют только элементы этих множеств.

Структура – множество sc-элементов, удаление одного из которых может привести к нарушению целостности этого множества

Полиморфность – это соответствие, заданное на структурах, при котором каждому элементу из области определения соответствия ставится в соответствие один или более элемент из области значения соответствия, при этом существует хотя бы один элемент области определения соответствия, которому соответствуют два или более элемента из области значения соответствия.

Гомоморфность - соответствие, заданное на структурах, при котором каждому элементу из области определения соответствия ставится в соответствие только один элемент из области значения соответствия.

Изоморфность- гомоморфность, при которой каждому элементу из области значений соответствия существует единственный элемент из области определения.

Автоморфность- изоморфность, при которой область определения и область значения совпадают.

Разбиение- система множеств, в которой все попарные пересечения множествпустые множества.

Ключевой SC-элемент- связка ролевого отношения, характеризующего связь между объектом и знаком SC-текста(в кач-ве SC-текста могут выступать пояснения, определения, иллюстрации, утверждения), характеризующего этот объект.

Квазибинарное отношение- множество ориентированных пар, первые компоненты которых являются связками. // возможно просто рефлексивное и транзитивное бинарное отношение

Связь-множество, являющееся абстрактной моделью связи между описываемыми сущностями, которые или знаки которых являются элементами этого множества.

Универсум - некоторое фиксированное множество всех определенных элементов.

Отношение включения- это бинарное ориентированное отношение, каждая связка которого связывает два множества. Будем говорить, что множество si включает в себя множество sj в том и только том случае, если каждый элемент множества sj является также и элементом множества si.

Связываемые переменные- переменные, которые попадают в область действия кванторов.

Свободные переменные -это переменные, которые не попадают в область действия кванторов.

Квантор- это общее название для логических операций, ограничивающих область истинности какого-либо предиката и создающих высказывание.

Трансляция SC-текста- квазибинарное отношение, связывающее множество SC-текстов со знаком поясняемого объекта.

Нейтральная формула- это логическая формула, принимающая на различных наборах значение истина и ложь.

формальная теория — это специального вида высказывание. каждое из которых можно трактовать как множество истинных высказываний, описывающих некоторую предметную область с точки зрения некоторого субъекта

Логической формулой будем называть соответствующим образом оформленный текст логического языка либо фрагмент это него текста.

выполнимая логическая формула – это логическая формула, принимающая хотя бы на одном своем наборе значение истина

Невыполнимая - ни одной истины

тавтология – это логическая формула, принимающая на всех своих наборах одинаковые значения.

Биекция- отображение, которое одновременно является и и инъективным, и сюръективным.

Отображение- это соответствие между элементами двух множеств, установленное по такому правилу, что каждому элементу одного множества ставится в соответствие элемент из другого множества.

Сюръекция - отображение, при котором каждый элемент одного множества является образом хотя бы одного элемента другого множества.

Инъекция - отображение, при котором разные элементы множества X переводятся в разные элементы множества У то есть, если два обр аза при отображении совпадают, то совпадают и прообразы.

Взаимно-однозначное соответствие-это инъективное соответствие, являющееся всюду определенным и сюръективным.

Логическая операция – это операция над высказываниями, позволяющая составлять новые высказывания путем соединения более простых.

Конъюнкция-логическая операция, ставящая в соответствие каждым 2м высказываниям составное высказывание, являющееся истинным тогда и только тогда, когда истинны оба исходных высказывания.

Дизъюнкция-логическая операция, ставящая в соответствие каждым 2м высказываниям составное высказывание, являющееся ложным тогда и только тогда, когда ложны оба исходных высказывания

Отрицание- унарная операция, которая исходному высказыванию ставит в соответствие составное высказывание, заключающееся в том, что исходное высказывание отрицается.

всеобщность* - предикат свойства или отношения для всех элементов области определения.

Существование* - предикат свойства или отношения для, по крайней мере, одного элемента области определения

существование и единственность – это предикат свойства или отношения для одного, и только для одного элемента области определения.

Эквиваленция - это множество логических связок эквиваленций, которые связывают логически эквивалентные кванторы и/или логические связки)

высказывание, которое истинно тогда и тогда, когда оба исходных высказывания одновременно истинны или ложны.

Импликация - это множество импликативных логических связок, которые связывают кванторы и/или логические связки как посылки и следствия.

высказывание, которое ложно тогда и тогда, когда условие истинно, а следствиеложно.

если'- это ролевое отношение, используемое в связках импликации*, для указания посылки.

То'- это ролевое отношение, используемое в связках импликации*, для указания следствия.

ГРАФЫ

Гиперграф- такое обобщение графов, в котором каждым ребром могут соединяться не только две вершины, но и любое подмножество вершин.

Псевдограф- граф, который может содержать петли и/или кратные рёбра.

Мультиграф- граф, в котором пара вершин может быть соединены более, чем одним ребром, или более, чем 2мя дугами противоположного направления (нет петель).

Граф- совокупность непустого множества вершин и множества пар вершин(связи между вершинами, где каждая связь установлена ровно между двумя вершинами).

Компонента связности графа- некоторое подмножество вершин, такое, что для для любых двух вершин этого множества существует путь из одной в другую и не существует пути из вершины этого подмножества в вершину другого подмножества.

Маршрут графа- последовательность вершин и связок в графе, которая начинается и заканчивается вершиной, и каждая связка последовательности (дуга или ребро) инцидентна двум вершинам.

Цепь- маршрут, все связки которого различны.

Путь- цепь, все вершины которой различны.

Неориентированный граф-граф, в котором все связки-ребра.

Орграф-граф, в котором все связки дуги.

Взвешенный граф- граф, к каждому ребру которого поставлено в соответствие некоторое значение(вес ребра).

Планарный граф- граф, который может быть представлен на плоскости без пересечений.

Эйлеров граф- граф в котором содержится Эйлеров цикл, содержащий вес ребер графа, вершины могут повторяться.

Гамильтонов граф- граф, в котором существует Гамильтонов цикл, содержащий вес ребер графа, при этом вершины встречаются по одному разу.

Нормированный граф- граф без циклов. (лес)

Графовая структура- структура, связки которой могут быть любой арности, могут быть ориентированными и неориентированными, а также компонентами этих связок могут быть не только вершины, но и другие связки.

19)

четкое множество – это множество, принадлежность элементов которому достоверна и указывается при помощи четких позитивных sc-дуг принадлежности.

!!!!**!нечёткое** множество – это множество, которое представляет собой совокупность элементов произвольной природы, относительно которых нельзя точно утверждать – обладают ли эти элементы некоторым характеристическим свойством, которое используется для задания этого нечеткого множества. Принадлежность элементов такому множеству указывается при помощи нечетких позитивных sc-дуг принадлежности.

Два нечётких множества равны тогда и только тогда, когда равны степени принадлежности для всех соответствующих друг другу элементов обоих нечётких множеств.

нечёткое множество непусто, если степень принадлежности хотя бы одного элемента этому множеству отлична от 0.

множество первичных сущностей и множеств— это множество, элементами которого являются как знаки множеств, так и знаки сущностей, не являющихся множествами.

семейство множеств – это множество, элементами которого являются знаки множеств.

множество первичных сущностей – это множество, элементы которого не являются знаками множеств.

рефлексивное множество – это множество, знак которого является элементом этого множеств.

Множество является рефлексивным множеством тогда и только тогда, когда ему принадлежит обозначение.

нерефлексивное множество — это множество, знак которого не является элементом этого множества

конечное множество – это множество, количество элементов которого конечно, то есть, существует неотрицательное целое число k, равное количеству элементов этого множества.

Конечное множество - это либо пустое множество, либо множество мощность которого есть натуральное число.

бесконечное множество – это множество, в котором для любого натурального числа п найдётся конечное подмножество из элементов.

несчетное множество - это бесконечное множество, элементы которого невозможно пронумеровать натуральными числами.

счетное множество - это бесконечное множество, для которого существует взаимно-однозначное соответствие с натуральным рядом чисел.

несформированное множество - это множество, не все элементы которого известны и перечислены в данный момент времени.

сформированное множество - это множество, все элементы которого известны и перечислены в данный момент.

ориентированное множество – это множество, представляющее собой упорядоченный набор элементов, т.е. такое множество, порядок элементов в котором имеет значение.

Пары принадлежности элементов ориентированному множеству могут дополнительно принадлежать каким-либо ролевым отношениям, при этом, в рамках каждого ориентированного множества должен существовать хотя бы один элемент, роль которого дополнительно уточнена ролевым отношением.

кортеж - это упорядоченная последовательность конечного числа элементов.

мультимножество – это множество, для которого существует хотя бы одна кратная пара принадлежности, выходящая из знака этого множества. множество, по крайней мере один элемент которого входит в его состав многократно

множество без кратных элементов – это множество, для каждого элемента которого существует только одна пара принадлежности, выходящая из знака этого множества в указанный элемент.

Под частично ситуативным множеством понимается постоянное множество, у которого некоторые (но не все) выходящие из него связи принадлежности являются временными сущностями.

Под ситуативным множеством понимается постоянное множество, у которого все выходящие из него связи принадлежности являются временными сущностями.

Под неситуативным множеством понимается постоянное множество, у которого все выходящие из него связи принадлежности являются постоянными сущностями

2.1 Типы графов

Граф G = (V, E) называют **полным**, если для любой пары вершин v_i

и v_i в V существует ребро $(v_i,\ v_i)$ в неориентированном графе $\overline{\textbf{\textit{G}}}$

=(V, E) т. е. для каждой пары вершин графа G должна существовать, по крайней мере, одна дуга, соединяющая их (рис. 5,a).

Граф G = (V, E) называется *симметрическим*, если в множестве дуг E для любой дуги (v_i , v_j) существует также противоположно ориентированная дуга (v_i , v_i) (рис. 5,б).

Антисимметрическим называется такой граф, для которого справедливо следующее условие: если дуга (vi, vj) \in A, то во множестве A нет противоположно ориентированной дуги, т. е. (v_j, v_i) \notin A (рис. 5,в). Очевидно, что в антисимметрическом графе нет петель.

Ориентированное дерево представляет собой ориентированный граф без циклов, в котором полустепень захода каждой вершины, за исключением одной (например, вершины v_1), равна 1, а полустепень захода вершины v_1 (называют корнем этого дерева) равна 0 (рис 6,б).

Граф G =(V, E), который может быть изображен на плоскости или сфере без пересечений называется **планарным** (рис 7).

Рисунок 3

На рис. 8 показаны **непланарные** графы. Эти два графа играют важную роль в теории планарных графов и известны как графы Куратовского.

Рисунок 4

Неориентированный граф G = (V, E)называют **двудольным**, если множество его вершин V может быть разбито на такие два подмножества V^a и V^b , что каждое ребро имеет один конец в V^a , а другой в V^b (рис. 9,a).

Ориентированный граф G называется двудольным, если его неориентированный двойник – двудольный граф (рис. 9, б, в).

Двудольный граф $G=(V^a \cup V^b, E)$ называют полным, если для любых двух вершин $v_i \in V^a$ и $v_j \in V^b$ существует ребро (v_i, v_j) в G=(V,E) (рис. 9,г).

