Applied Linear Algebra — Outline for the Final Exam

Anything that is crossed out will NOT be on the final exam!

Main ideas

OLD

- A. Solving linear systems, vector equations, matrix equations
- **B.** Solution sets: writing in parametric vector form and interpreting geometrically
- C. Linear combinations, linear independence, span, basis, dimension
- **D.** Linear transformations
- E. Matrix operations and determinants
- F. Applications: network flow and volume of parallelograms

New

- G. Eigenvalues, eigenvectors, eigenspaces, and the characteristic polynomial
- H. Similarity and diagonalization
- I. Inner product (i.e. dot product), length, distance, and orthogonality
- J. Orthogonal projection
- **K.** Applications: PageRank and least squares solutions

Skills you should have

- 1. Be able to solve linear systems.
 - Be able to determine if the system is consistent/inconsistent and if there are infinitely many solutions.
 - Be able to write the solution set in parametric vector form.
- **2.** Be able to determine if a vector **b** is a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$.
 - Usual process: determine if $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_k\mathbf{v}_k = \mathbf{b}$ is consistent by converting to an augmented matrix and solving as a linear system.
- **3.** Be able to determine if $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent/dependent.
 - Usual process: $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent if and only if $x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \dots + x_k \mathbf{v}_k = \mathbf{0}$ has only the trivial solution (i.e. if there are no free variables).
- 4. Be able to determine if a set of vectors is a basis for a subspace
- 5. Be able to find a basis for subspaces (and their dimension) in the following situations:
 - Be able to find a basis for the null space of a matrix
 - Be able to find a basis for the column space of a matrix
- **6.** Be able investigate and work with linear transformations from \mathbb{R}^n to \mathbb{R}^m

- Be able to find the standard matrix for a linear transformation
- Be able to determine if a given vector is in the range of linear transformation
- Be able to determine if a linear transformation is one-to-one or onto (or both)
- 7. Be able to perform matrix operations
 - This includes addition, subtraction, multiplication, and the transpose
 - Know the formula to find the inverse of a 2×2 matrix, if it exists
 - Be able to use row reduction to find the inverse of a 3×3 matrix, if it exists
 - Know how to use A^{-1} to solve $A\mathbf{x} = \mathbf{b}$
- 8. Be able to compute determinants (using cofactor expansion or row-reduction to triangular form)
- **9.** Be able to apply properties of the determinant
 - Two key properties are $\det(AB) = (\det A)(\det B)$ and $\det(A^{-1}) = \frac{1}{\det A}$ (when $\det A \neq 0$)
 - Know that A is invertible if and only if $\det A \neq 0$
- 10. Be able to find the eigenvalues and bases for the corresponding eigenspaces for a matrix.
 - The eigenvalues are the roots (i.e. zeros) of the characteristic polynomial $p(\lambda) = \det(A \lambda I)$
 - For each eigenvalue λ , you find a basis for the eigenspace by finding a basis for Nul $(A \lambda I)$
- 11. Be able to determine if a matrix A is diagonalizable, and if it is, be able to find a diagonal matrix D and invertible matrix P such that $A = PDP^{-1}$.
- 12. Be able to work with the dot product (i.e. inner product).
 - Be able to compute the dot product, length, and distance
 - Know that two vectors are orthogonal if and only if their inner product is 0
- 13. Be able to find a least squares solution to a linear system
 - Usual process: instead of solving $A\mathbf{x} = \mathbf{b}$, you solve $A^T A\mathbf{x} = A^T \mathbf{b}$
 - Be able to apply this to fitting a linear function or quadratic function to data points

How to study

- I. Review core topics—make sure to have a working understanding of definitions and theorems
- II. Work lots of problems all of the way through—focus on WeBWorK problems and Handout problems
- III. Practice doing several problems in a short amount of time
- IV. Come talk with me if you have any questions