Linear Algebra - HW 6

Hossein Dehghanipour - $9532250\,$

 $\mathrm{June}\ 15,\ 2020$

 ${\it Teacher: Dr. Mehrzad\ Bighash}$

 $\mathrm{TA}:\mathrm{Ms.F.Lotfi}$

Contents

1	Question 1	1
2	Question 2	2
3	Question 3	3
4	Question 4	4
5	Question 5	5

۱) ثابت کنید تساوی زیر برای معکوس ضرب کرونکر بین دو ماتریس برقرار است.

$$(\mathbf{A} \otimes \mathbf{B})^{-1} = \mathbf{A}^{-1} \otimes \mathbf{B}^{-1}$$

As we already know : $(A \otimes B)(C \otimes D) = AC \otimes BD$

By using that rule we can say : $(A \otimes B)(A^{-1} \otimes B^{-1}) = AA^{-1} \otimes BB^{-1} = I$

We also know that : $X^{-1}X = I \Rightarrow \left(A \otimes B\right)^{-1} = \left(A^{-1} \otimes B^{-1}\right)$

۲) ثابت کنید که اگر ${f A}+{f B}$ ماتریسی معکوسپذیر باشد، تساوی زیر برقرار است:

$$\mathbf{A} - \mathbf{A} (\mathbf{A} + \mathbf{B})^{-1} \mathbf{A} = \mathbf{B} - \mathbf{B} (\mathbf{A} + \mathbf{B})^{-1} \mathbf{B}$$

As we know from a theorem in out book : $(A^{-1}+B^{-1})^{-1}=A-A(B+A)^{-1}A$ by which we can conclude that :

$$(X+Y) = X^{-1} - X^{-1} \big(Y^{-1} + X^{-1}\big)^{-1} X^{-1}$$

Now we can check two situations:

I)

$$\begin{cases} X \to A^{-1} \\ Y \to B^{-1} \end{cases}$$

$$\underbrace{\left(A^{-1} + B^{-1}\right)^{-1}}_{RI} = A - A(B+A)^{-1}A$$

OR

$$\begin{cases} X \to B^{-1} \\ Y \to A^{-1} \end{cases}$$

$$\underbrace{\left(B^{-1} + A^{-1}\right)^{-1}}_{BII} = B - B(A + B)^{-1}B$$

It's crystal clear that $\underbrace{(B^{-1} + A^{-1})^{-1}}_{RII} = \underbrace{(A^{-1} + B^{-1})^{-1}}_{RI}$ which would result in : $A - A(B+A)^{-1}A = B - B(A+B)^{-1}B$

رود.
$$\mathbf{A}\mathbf{B}^{-1}\mathbf{A} = \mathbf{B}\mathbf{A}^{-1}\mathbf{B}$$
 باشد آنگاه $\mathbf{A}^{-1} + \mathbf{B}^{-1} = \left(\mathbf{A} + \mathbf{B}\right)^{-1}$ خواهد بود.

According to what the question is saying, we should assume that $\underbrace{(A^{-1}+B^{-1})}_X = \underbrace{(A+B)^{-1}}_X$. As we already know $(XX^{-1}=I)$ this would mean that $\underbrace{(A^{-1}+B^{-1})}_X\underbrace{(A+B)}_{X^{-1}} = I$

$$\begin{split} (A^{-1}+B^{-1})(A+B) = & A^{-1}A + A^{-1}B + B^{-1}A + B^{-1}B = I \Rightarrow \\ I + A^{-1}B + B^{-1}A + I = I \Rightarrow \\ A^{-1}B + B^{-1}A = -I \end{split}$$

Now we can have two separate approaches:

I)

$$A^{-1}B + B^{-1}A = -I \xrightarrow{*B \text{ from left}} BA^{-1}B + A = -B \rightarrow \underbrace{BA^{-1}B} = -A - B$$

II)

$$A^{-1}B + B^{-1}A = -I \xrightarrow{*A \text{ from left}} B + AB^{-1}A = -A \to AB^{-1}A = -A - B$$

Now from both (I) and (II) we can conclude that:

$$-A - B = AB^{-1}A = BA^{-1}B \Rightarrow AB^{-1}A = BA^{-1}B$$

برابر
$$(\mathbf{I}-\mathbf{A})$$
 برابر ال \mathbf{A} المرتى كه \mathbf{A} ماتريس مربعى بوده و $\mathbf{A}^n=0$ باشد، نشان دهيد معكوس ماتريس ($\mathbf{I}-\mathbf{A}$) برابر است با

$$(\mathbf{I} - \mathbf{A})^{-1} = \mathbf{I} + \mathbf{A} + \mathbf{A}^2 + \mathbf{A}^3 + \cdots$$

As we know from the geometrical series : $S_n = I + A + A^2 + \ldots + A^n, S_0 = I$

$$S_n = \Sigma_{n=0}^{n-1} A^n$$

We also know that for each eigenvalue of λ_i , if $|\lambda_i| < 1$ then the geometric series would converge to :

$$S_n = (I - A^n)(I - A)^{-1}$$

$$\lim_{x\to\infty}S_n=I+A+A^2+\dots$$

$$\Sigma_{n=0}^{\infty}A^n=\lim_{x\to\infty}S_n=\lim_{x\to\infty}\left(I-A\right)^{-1}(I-A^n)=I+A+A^2+\dots\xrightarrow{\lim_{x\to\infty}A^n=0}$$

$$(I-A)^{-1}(I-0) = (I-A)^{-1} = I + A + A^2 + \dots$$

۵) ماتریس مربعی
$$A$$
 را در نظر بگیرید. ثابت کنید که اگر X تنها ماتریسی باشد که در رابطه $XA=I$ صدق کند، آنگاه XX نیز برابر I خواهد بود.

Assume that we have
$$Y = AX + X - I \xrightarrow{*A \text{ from Right Side}} YA = A(XA) + XA - A$$

$$\xrightarrow{(XA = I) \text{ Assumed in the problem description}} YA = A + I - A = I \to YA = I$$

In the description of the question, it's mentioned that "X" is the only matrix that satisfies (XA = I). from this hint we can conclude that Y = X.

$$Y = AX + X - I \xrightarrow{Y = X} X = AX + X - I \rightarrow AX = I$$