LERNZIELE HYDROSTATIK

Begriff	Lernziele
Druck	Definition als Kraft pro Fläche Einheiten Pa und bar ineinander umrechnen
Kompressibilität	einfache Berechnungen mit Werten aus der FoTa (T 169) qualitativen Unterschied zwischen Flüssigkeiten und Gasen kennen
Satz von Pascal	Herleitung verstehen, nicht reproduzieren können Anwendung in hydraulischen Systemen (z.B. Presse) beschreiben
Schweredruck	Druckzunahme und Gesamtdruck in einer Flüssigkeit berechnen Faustregel für Wasser auswendig kennen Quecksilberbarometer beschreiben und erklären, Unterschied zwischen Torr und mmHg erklären qualitativen Verlauf des Luftdrucks mit zunehmender Höhe beschreiben und erklären
hydrostatisches Paradoxon	In eigenen Worten formulieren
kommunizierende Gefässe	Aufgaben mit U-Rohr systematisch lösen realisieren, dass Pegeländerung und Volumenänderung bei kommunizierenden Gefässen nicht im gleichen Verhältnis stehen
Auftrieb	qualitatives Verständnis mit Druckkräften Berechnungen immer ausgehend vom Prinzip des Archimedes Zusammenhang zwischen den Dichten von Körper und Flüssigkeit und dem Verhalten des Körpers
Schwimmkörper	Eintauchtiefe eines geometrisch einfachen Körpers berechnen Änderung der Eintauchtiefe beim Beladen berechnen Pegeländerung beim Schmelzen von Eis erklären Dichtemessgerät (Aräometer) beschreiben und erklären
Grösse	Wert
Dichte von Wasser	ρ_W = 1'000 kg/m ³
Dichte von (flüssigem) Quecksilber	ρ_{Hg} = 13'500 kg/m ³
typischer Wert für den Luftdruck	$p_L = 1$ bar