Microarray analysis of alternative transcription

Malachi Griffith
Genome Sciences Centre

GSC Science Retreat - Nov. 2 2006

Background and rationale

- Alternative transcription generates multiple isoforms from most human loci
 - ~75% of human genes are alternatively spliced (Johnson 2003)
- Specific isoforms may represent useful therapeutic targets or diagnostic markers
- Recent developments in microarray technology allow the efficient detection of specific isoforms
 - A) Affymetrix exon microarrays
 - B) Custom splicing microarrays

Therapeutic antibody specific to CD44 alternate exon 6 (Venables, 2006)

2

A) Description of Affymetrix exon arrays

- Array design (Human exon 1.0 ST)
 - $-\sim 150,000 loci$
 - $-\sim$ 5.5 million probes (25-mer oligos)
 - $-\sim$ 1.4 million exons (4 probes per exon).
 - ~60% of these exons are 'speculative'
- Samples
 - 1-5 μg total RNA input
- Analysis
 - Identify differential transcription events corresponding to one or more exons

© British Columbia Cancer Agency Branch

Affymetrix exon array strategy

5-FU resistance is associated with overexpression of a short HHIP isoform

HHIP – Hedgehog interacting protein, a HH antagonist

B) Description of ALEXA platform

- Array design
 - ALEXA platform (Perl, R, mySQL)
 - Works on any EnsEMBL genome
 - Extract probes corresponding to all exons, exon-exon junctions, exon boundaries and introns
 - Vary probe length to achieve target Tm (e.g. 36 bp +/- 10 bp)
 - Filter probes for specificity and thermodynamic properties
 - Select ~400,000 probes and submit to NimbleGen
- Samples
 - 4 μg mRNA (polyA+) input
- Analysis
 - In addition to identifying differential exons, the connections and boundaries of exons are interrogated

© British Columbia Cancer Agency Branch

ALEXA splicing array strategy

Affymetrix versus custom ALEXA arrays

Conclusions

- Preliminary experiments with Affymetrix exon arrays seem promising
 - Identify differential expression of novel and known isoforms. 35 events with 4-fold change or greater
 - 25 affect ORF
 - 9 in 5' UTR and
 - 1 in 3' UTR
 - Low cost, low sample requirements, fast turn-over
- Proof-of-principle custom ALEXA experiments with NimbleGen arrays are also encouraging
 - Moderate cost, high sample requirements, moderate turnover, customizable, open source, species generic
- Experiments to directly compare platforms underway

9

Acknowledgements

Marco Marra Joseph Connors Stephane Flibotte Steve Jones Gregg Morin

Prostate Cancer Group

- Marianne Sadar
- Tammy Romanuik

Bioinformatics

- Obi Griffith, Anca Petrescu

MGC Group

- Martin Hirst, Thomas Zeng

GI Cancer Group

- Isabella Tai, Michelle Tang

Affymetrix Group

- Agnes Baross, Susanna Chan, Jennifer Asano

Proteomics Group

- Gregg Morin, Grace Cheng

