

Efficiency

Nate Foster Spring 2020

Today's music: Patience by Tame Impala

CLICKER QUESTION 1

Review

Previously in 3110:

- Functional programming
- Modular programming and software engineering

New unit of course: Efficiency

Today:

- What it means to be efficient
- Big-Oh notation

WHAT IS EFFICIENCY?

Credit: Kleinberg and Tardos, Algorithm Design, chapter 2, 2006.

What is efficiency?

Attempt #1: An algorithm is efficient if, when implemented, it runs in a small amount of time on particular input instances

Exercise: write down three problems with that definition.

Lessons learned from attempt #1

Lesson 1: Time as measured by a clock is not the right metric

Idea: Use number of "steps" taken during evaluation

What counts as a step?

Steps

- Any kind of primitive unit of computation inside a function
- Should be machine independent
- Examples:
 - Pseudocode: one line
 - Imperative language: assignment, array index, pointer dereference, arithmetic operation, etc.
 - OCaml: apply an arithmetic operator or constructor,
 substitute a let-binding, choose a branch of if/match, etc.

Lessons learned from attempt #1

Lesson 2: Running time on particular input instances is not the right metric

Idea: Use "size" of the input instance

How to measure size?

Size

- Some representation of how big input is compared to other inputs
- Examples:
 - Number of elements in list or array
 - Number of bits in number
 - Number of nodes and edges in a graph
 - Etc.

Lessons learned from attempt #1

Lesson 3: "Small" is too relative

Okay idea: beats brute-force search

Lessons learned from attempt #1

Lesson 3: "Small" is too relative

Better idea: Polynomial time

Number of steps is a polynomial function of the input size:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_2 x^2 + a_1 x + a_0$$

Objections to polynomial time

- Some polynomials might be too big?
 e.g. N¹⁰⁰
- Some non-polynomials might be fine?
 e.g. N^{1+.02(log N)}

But in practice, it just works

What is efficiency?

Attempt #2: An algorithm is efficient if its maximum number of steps of execution is polynomial in the size of its input.

let's give that a try...

Analysis of running time

INSERTION-SORT(A)
$$c_1$$
 n

1 for $j = 2$ to A.length c_2 $n-1$

2 $key = A[j]$ 0 $n-1$

3 // Insert $A[j]$ into the sorted sequence $A[1 ... j-1]$ c_4 $n-1$

4 $i = j-1$ c_5 while $i > 0$ and $A[i] < key$

6 $A[i+1] = A[i]$ c_6 $\sum_{j=2}^{n} t_j$

7 $i = i-1$ c_6 $\sum_{j=2}^{n} (t_j - 1)$

8 $A[i+1] = key$ c_7 $\sum_{j=2}^{n} (t_j - 1)$

The running time of the algorithm is the sum of running times for each statement executed; a statement that takes c_i steps to execute and executes n times will contribute $c_i n$ to the total running time. [6] To compute T(n), the running time of INSERTION-SORT on an input of n values, we sum the products of the cost and times columns, obtaining

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1)$$

$$+ c_7 \sum_{j=2}^{n} (t_j - 1) + c_8(n-1)$$
.

Precision of running time

- Precise bounds are exhausting to find
- Precise bounds are to some extent meaningless

Caveat: if you're building code that flies an airplane or controls a nuclear reactor, you do care about precise, real-time guarantees

Simplifying running times

 Goal: identify broad classes of algorithms with similar performance

- Don't say: $1.62N^2 + 3.5N + 8$
- Do say: N²

- Ignore the low-order terms
- Ignore the constant factor of high-order term

Why ignore low-order terms?

max # steps as function of N

size of input

	N	N ²	N ³	2 ^N
N=10	< 1 sec	< 1 sec	< 1 sec	< 1 sec
N=100	< 1 sec	< 1 sec	1 sec	10 ¹⁷ years
N=1,000	< 1 sec	1 sec	18 min	very long
N=10,000	< 1 sec	2 min	12 days	very long
N=100,000	< 1 sec	3 hours	32 years	very long
N=1,000,000	1 sec	12 days	10 ⁴ years	very long

assuming 1 microsecond/step very long = more years than the estimated number of atoms in universe

Why ignore constant factor?

- For classifying algorithms, constants are irrelevant in practice
 - 1.62N² steps in pseudocode might be 1620 steps in assembly
 - My current laptop might be 2x as fast as last year's
 - ...but those aren't interesting properties of the algorithm
- Caveat: Performance tuning real-world code actually can be about getting the constants to be small!

Imprecise abstraction

- Exact: $1.62N^2 + 3.5N + 8$
- Imprecise abstraction: N²

Other abstractions

- OCaml's int type abstracts (subset of) Z
- ±1 is an abstraction of {1,-1}

• Big Oh...

BIG ELL

Credit: Graham, Knuth, and Patashnik, Concrete Mathematics, chapter 9, 1989.

Big Ell

$$L(n) = \{m \mid 0 \le m \le n\}, \text{ where } m, n \in \mathbb{N}$$

L(n) represents a natural number less than or equal to n

e.g.,
$$L(5) = \{0, 1, 2, 3, 4, 5\}$$

Big Ell

Exercise: what is 1 + L(5)?

Try to express answer in the form L(x), for some x.

Hint: there are some ambiguities in this question.

CLICKER QUESTION 2

A little trickier...

What is $2^{L(3)}$?

...we can use this idea of Big Ell to invent an imprecise abstraction for running times

BIG OH

- L(n) represents any natural number that is less than or equal to a natural number n
- A natural function is a function of type $\mathbb{N} \to \mathbb{N}$
- O(g) represents any natural function that is less than or equal to a natural function g, for every input n
- Big Oh is a higher-order version of Big Ell: generalize from naturals to functions on naturals

Definition: $O(g) = \{ f \mid \forall n . f(n) \le g(n) \}$ e.g.

- O(fun $n \rightarrow 2n$) = {f | $\forall n . f(n) \le 2n$ }
- $(\text{fun } n \rightarrow n) \in O(\text{fun } n \rightarrow 2n)$

Note: these are mathematical functions written in OCaml notation, not OCaml functions

Recall: we want to ignore constant factors (fun $n \rightarrow n$), (fun $n \rightarrow 2n$), (fun $n \rightarrow 3n$) ...all should be in O(fun $n \rightarrow n$)

Revised intuition: O(g) represents any natural function that is less than or equal to natural function g times some positive constant c, for every input n

Definition: $O(g) = \{ f \mid \exists c>0 : \forall n : f(n) \le c g(n) \}$

e.g.

- O(fun n → n^3) = { f | $\exists c>0 . \forall n . f(n) \le cn^3$ }
- (fun n → $3n^3$) ∈ O(fun n → n^3) because $3n^3 \le cn^3$, where c = 3 (or c=4, ...)

Recall: THINK BIG

could just build a lookup table for inputs in the range 0..2

Revised intuition: O(g) represents any function that is less than or equal to function g times some positive constant c, for every input n greater than or equal to some positive constant n_0

Definition:

$$O(g) = \{ f \mid \exists c > 0, n_0 > 0 . \forall n \ge n_0 . f(n) \le c g(n) \}$$

this is the important, final definition you should know!

e.g.:

- O(fun n \rightarrow n²) = { f | \exists c>0, n₀>0 . \forall n \ge n0 . f(n) \le cn²}
- (fun $n \rightarrow 2n$) \in O(fun $n \rightarrow n^2$) because $2n \le cn^2$, where c = 2, for all $n \ge 1$

Asymptotic bound

Big Oh is an asymptotic upper bound If $f \in O(g)$ then f is at least as efficient as g, and might be more efficient

Big Oh Notation: Warning 1

```
Instead of O(g) = \{f \mid ...
most authors write
O(g(n)) = \{f(n) \mid ...
```

- They don't really mean g applied to n; they mean a function g parameterized on input n but not yet applied
- Maybe they never studied functional programming

Big Oh Notation: Warning 2

Instead of

```
(\text{fun n} \rightarrow 2\text{n}) \in O(\text{fun n} \rightarrow \text{n}^2)
```

Nearly all authors write

```
2n = O(n^2)
```

- The standard defense is that = should be read here as "is" not as "equals"
- Be careful: one-directional "equality"!

EFFICIENCY

What is efficiency?

Final answer:

An algorithm is efficient if its worst-case running time on input size N is $O(N^d)$ for some constant d.

Upcoming events

- [today] A3 out
- [Monday] R4 due

This is efficient.

THIS IS 3110