durstion
$$\lim_{\lambda \to 0} \frac{y^{\lambda} - 1}{\lambda} = (og y)$$

$$\lim_{\lambda \to 0} \frac{y^{\lambda} - 1}{\lambda} = (og y)$$

$$\lim_{\lambda \to 0} \frac{y^{\lambda} - 1}{\lambda} = \lim_{\lambda \to 0} (y^{\lambda} - 1)$$

$$\lim_{\lambda \to 0} \frac{y^{\lambda} - 1}{\lambda} = \lim_{\lambda \to 0} (x^{\lambda} - 1)$$

$$\lim_{\lambda \to 0} \frac{y^{\lambda} - 1}{\lambda} = \lim_{\lambda \to 0} (x^{\lambda} - 1)$$

$$\lim_{\lambda \to 0} \frac{y^{\lambda} - 1}{\lambda} = \lim_{\lambda \to 0} (x^{\lambda} - 1)$$

$$\lim_{\lambda \to 0} \frac{\chi(x)}{g(x)} = \lim_{\lambda \to 0} \frac{\chi'(x)}{g'(x)} = \lim_{\lambda \to 0} \frac{y\lambda \log(y)}{1}$$

$$= \frac{1 \cdot \log(y)}{1} = \log(y)$$

$$= \frac{1 \cdot \log(y)}{1} = \log(y)$$

Assignment_2

Mustafa Mohammadi | a1838795 06/04/2021

pacman::p_load(tidyverse, gglm)

Section A

Reading data into R.

companies <- read.table("companies.txt", header = TRUE)
companies</pre>

04/2021 Assignment_								
##		Acco+c	Salos	MarketValue	Profits	CachElow	Employees	
##	1	2687	1870	1890			18.2	
##			9115		-279.0			
##			4848	4572				
##		3614	367	90	14.1			
##		6425	6131	2448				
##		1022	1754	1370	72.0	119.5		
##		1093	1679	1070	100.9			
##		1529	1295	444	25.6		19.4	
##		2788	271	304				
	10	19788	9084	10636				
	11	327	542	959	54.1			
	12	1117	1038	478	59.7			
	13	5401	550	376				
	14	1128	1516	430	-47.0			
	15		701	679				
	16		16197	4653				
	17	5651	1254	2002		407.9		
	18		4053	1601				
	19	278	205	853				
	20	5074		1892				
	21	866	1487		71.7			
	22	4418	8793	4459				
	23	6914	7029	7957				
	24	862	1601	1093	66.9			
	25	401	176	1084				
	26	430	1155	1045				
	27	799	1140	683				
	28	4789	453	367				
	29	2548	264	181	22.2			
	30	5249	527	346				
	31	3494	1653	1442				
	32	1804	2564		70.5	164.9	26.6	
	33	26432	28285	33172	2336.0	3562.0	304.0	
	34	623	2247	797	57.0	93.8	18.6	
##	35	1608	6615	829	56.1	134.0	65.0	
##	36	4662	4781	2988	28.7	371.5		
##	37	5769	6571	9462	482.0	792.0	83.0	
##	38	6259	4152	3090	283.7	524.5	62.0	
##	39	1654	451	779	84.8	130.4	1.6	
##	40	52634	50056	95697	6555.0	9874.0	400.2	
##	41	999	1878	393		-108.1		
##	42	1679	1354	687				
##	43	4178	17124	2091	180.8	390.4	164.6	
##	44	223	557	1040	60.6			
	45	6307		598				
##	46	3720	356	211	26.6	34.8	2.4	
##	47	3442	5080			361.5	77.3	
##	48		3222	1413	201.7	246.7	15.8	
##	49	1257	355	181	167.5	304.0	0.6	
##	50	1743	597	717	121.6	172.4	3.5	
	51	12505	1302	702	108.4	131.4	9.0	
	52	3940	4317	3940	315.2	566.3	62.0	
	53			988				
	54	21419	2516	930	107.6	164.7	15.6	
##	55	2366	3305	1117	131.2	256.5	25.2	
##	56	2448	3484	1036	48.8	257.1	25.4	
##	57	1440	1617	639	81.7	126.4	3.5	
##	58	14045	15636	2754	418.0	1462.0	27.3	
##	59	4084	4346	3023	302.7	521.7	37.5	
##	60	3010	749	1120	146.3	209.2	3.4	
##	61	1286	1734	361	69.2	145.7	14.3	
##	62	707	706	275	61.4	77.8	6.1	

##	63	3086	1739	1507	202.7	335.2	4.9
##	64	252	312	883	41.7	60.6	3.3
##	65	11052	1097	606	64.9	97.6	7.0
##	66	9672	1037	829	92.6	118.2	8.2
##	67	1112	3689	542	30.3	96.9	43.5
##	68	1104	5123	910	63.7	133.3	48.5
##	69	478	672	866	67.1	101.6	5.4
##	70	10348	5721	1915	223.6	322.5	49.5
##	71	2769	3725	663	-208.4	12.4	29.1
##	72	752	2149	101	11.1	15.2	2.6
##	73	4989	518	53	-3.1	-0.3	0.8
##	74	10528	14992	5377	312.7	710.7	184.8
##	75	1995	2662	341	34.7	100.7	2.3
##	76	2286	2235	2306	195.3	219.0	8.0
##	77	952	1307	309	35.4	92.8	10.3
##	78	2957	2806	457	40.6	93.5	50.0
##	79	2535	5958	1921	177.0	288.0	118.1

Section B

EDA: Perform an EDA of the data - skim() and histogram of response is fine.

skimr::skim(companies)

Data summary

Data Suffillary	
Name	companies
Number of rows	79
Number of columns	6
Column type frequency:	
numeric	6
Group variables	None

Variable type: numeric

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100	hist
Assets	0	1	5940.53	9156.78	223.0	1122.50	2788.0	5802.00	52634.0	
Sales	0	1	4178.29	7011.63	176.0	815.50	1754.0	4563.50	50056.0	
MarketValue	0	1	3269.75	11303.55	53.0	512.50	944.0	1961.50	95697.0	
Profits	0	1	209.84	796.98	-771.5	39.00	70.5	188.05	6555.0	
CashFlow	0	1	400.93	1205.53	-651.9	75.15	133.3	328.85	9874.0	
Employees	0	1	37.60	64.50	0.6	3.95	15.4	48.50	400.2	

hist(companies\$MarketValue, main = "Histogram of Market Values",xlab = "Market Value")

Histogram of Market Values

Section C

Produce scatterplots of MarketValue against each of the other predictors.

```
plot(MarketValue ~ Assets, data = companies, main = "Market Value vs Assets")
```

Market Value vs Assets

plot(MarketValue ~ Sales, data = companies, main = "Market Value vs Sales")

Market Value vs Sales

plot(MarketValue ~ CashFlow, data = companies, main = "Market Value vs CashFlow")

Market Value vs CashFlow

plot(MarketValue ~ Profits, data = companies, main = "Market Value vs Profits")

Market Value vs Profits

plot(MarketValue ~ Employees, data = companies, main = "Market Value vs Employees")

Market Value vs Employees

Section D

Produce scatter plots of Market Value against each of the other predictors with both the y-axis and x-axis on a log scale.

plot(log(MarketValue) ~ log(Assets), data = companies, main = "Log(Market Value) vs Log(Asset
s)")

Log(Market Value) vs Log(Assets)

plot(log(MarketValue) ~ log(Sales), data = companies, main = "Log(Market Value) vs Log(Sales)")

Log(Market Value) vs Log(Sales)

plot(log(MarketValue)~ log(CashFlow), data = companies, main = "Log(Market Value) vs Log(CashFlow)")

Warning in log(CashFlow): NaNs produced

Log(Market Value) vs Log(CashFlow)

plot(log(MarketValue) ~ log(Profits), data = companies, main = "Log(Market Value) vs Log(Profits)")

Warning in log(Profits): NaNs produced

Log(Market Value) vs Log(Profits)

plot(log(MarketValue)~ log(Employees), data = companies,main = "Log(Market Value) vs Log(Employ
ees)")

Log(Market Value) vs Log(Employees)

Section E

Fit the model

M1 <- lm(MarketValue ~ log(Assets) + log(Sales) + Profits + CashFlow + log(Employees), data = c ompanies) summary(M1)

```
##
## Call:
## lm(formula = MarketValue ~ log(Assets) + log(Sales) + Profits +
      CashFlow + log(Employees), data = companies)
##
## Residuals:
##
      Min
             10 Median
                              3Q
                                     Max
## -8331.8 -974.1 -164.2 643.5 11501.0
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3650.342 3952.267 -0.924
                                              0.3587
                 157.792
                            320.628 0.492
                                              0.6241
## log(Assets)
## log(Sales)
                 257.400
                           676.877 0.380 0.7048
                              3.045 2.770 0.0071 **
## Profits
                   8.436
## CashFlow
                    3.275
                               2.103
                                     1.557
                                              0.1237
                                     0.509 0.6122
## log(Employees) 240.260
                            471.913
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2674 on 73 degrees of freedom
## Multiple R-squared: 0.9476, Adjusted R-squared: 0.944
## F-statistic: 264.1 on 5 and 73 DF, p-value: < 2.2e-16
```

Section F

Why did we log some of the variables and not the others.

The variables Asset, sales and Employees are log transformed to scale down their values; and fit the values to the lines relatively better. For example, Residual vs Fitted seems more clustered when logged. Normal Q-Q seems more fitted around the line when logged. Residual Vs leverage, when logged, the data seems to be more clustered, reducing the influence of higher leverage points. Furthermore, we did not apply the log transform for Profits and CashFlow since they have negative values.

Below is the comparison between fitting the model without performing log transformation for any of the predictor variables and fitting M1.

```
m1_without_log_transformation <- lm(MarketValue ~ Assets + Sales + Profits + CashFlow + Employe
es, data = companies)
summary(m1_without_log_transformation)</pre>
```

```
##
## Call:
## lm(formula = MarketValue ~ Assets + Sales + Profits + CashFlow +
       Employees, data = companies)
##
## Residuals:
##
       Min
                10 Median
                                 3Q
                                        Max
   -6493.0 -782.6
                     218.2
                                     7421.1
##
                              666.6
##
##
  Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
  (Intercept) -956.04163
                           322.01647
                                       -2.969
                                               0.00404 **
##
                  0.09558
                              0.04428
                                        2.159
## Sales
                  0.29949
                              0.14680
                                        2.040
                                               0.04496 *
## Profits
                 11.25226
                              2.38524
                                        4.717 1.12e-05 ***
  CashFlow
                 -0.47715
                              1.76501
                                       -0.270
                                               0.78766
                  6.29761
                             11.29525
                                        0.558
                                               0.57886
##
  Employees
##
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2209 on 73 degrees of freedom
## Multiple R-squared: 0.9643, Adjusted R-squared: 0.9618
## F-statistic: 393.9 on 5 and 73 DF, p-value: < 2.2e-16
```

```
gglm(m1 without log transformation)
```


gglm(M1)

Section G

Check the assumptions of the linear model M1.

gglm(M1)

Independence:

According to the dataset <code>companies.txt</code>, there is no dependencies can be seen. The dataset is not ordered in ordinal manner. Assuming that the data was randomly sampled according to the correct standard of data collection, we can safely assume there is no chronological or spacial relationship present.

Linearity (Residual Vs the Fitted plot):

As can be seen in the Residuals vs Fitted plot, there is a visible trend of a line with a downward slope. Residual points are not randomly distributed around the zero line showing signs of non-linearity.

Homoscedascity:

A curvature in the line is clearly visible in the scale-location plot with residuals not randomly distributed around y = 1. In fact the residuals are clustered in somewhat of a V-shape, suggesting that the constant error assumption is not met.

Normality (QQ plot):

While the majority of residuals fall on the line in QQ plot, we see many points depart at the two ends of the line suggesting some degrees of skewness or the present of unusual observations.

Leverage:

It can be in the Leverage point that there is one data point with substantially higher leverage comparing to the rest of the

It can quickly be found that the mentioned data point is an outlier in the dataset where each of its attribute is the maximum value for each of the corresponding variable. The difference can be seen more clearly when we investigate the distance between the minimum value to the 3rd quantile and from the 3rd quantile to the maximum value. For instance, the distance between the minimum value to the 3rd quantile in Assets is 5579 while the distance between the 3rd quantile to the maximum value is 46,832, which is 8.3 times more. This large distance can be seen across all variables.

In addition, the Cook's Distance plot confirm this information where the influence of data point 40 is evidently high. Elimination of this data point should be carefully considered.

```
companies[40,]
```

```
## Assets Sales MarketValue Profits CashFlow Employees
## 40 52634 50056 95697 6555 9874 400.2
```

```
summary(companies)
```

```
##
                     Sales
                                  MarketValue
                                                     Profits
       Assets
                                            53.0 Min.
##
   Min. : 223
                 Min.
                        : 176.0
                                  Min.
                                        :
                                                         :-771.5
##
   1st Qu.: 1122
                 1st Qu.: 815.5
                                  1st Qu.: 512.5
                                                 1st Qu.: 39.0
   Median : 2788 Median : 1754.0
##
                                  Median: 944.0 Median: 70.5
##
   Mean
        : 5941 Mean : 4178.3
                                       : 3269.8
                                                  Mean : 209.8
                                  Mean
##
   3rd Qu.: 5802 3rd Qu.: 4563.5
                                  3rd Qu.: 1961.5
                                                  3rd Qu.: 188.1
         :52634
                                                  Max.
                                                         :6555.0
##
   Max.
                 Max.
                       :50056.0
                                  Max.
                                        :95697.0
##
      CashFlow
                     Employees
##
   Min.
        :-651.90 Min. : 0.60
   1st Qu.: 75.15 1st Qu.: 3.95
##
##
   Median: 133.30 Median: 15.40
        : 400.93
                         : 37.60
##
   Mean
                   Mean
                   3rd Qu.: 48.50
##
   3rd Qu.: 328.85
         :9874.00
   Max.
                   Max.
                          :400.20
```

```
barplot(hatvalues(M1), main = "Cook's Distance", ylab = "Cook's Distance", xlab = "Index")
```


Section H

Use the Box-Cox method to find a suitable transformation of the data in the context of the model. State, with justification, your chosen value of λ .

```
library(MASS)

##
## Attaching package: 'MASS'

## The following object is masked from 'package:dplyr':
##
## select

M1_box_cox <- boxcox(lm(MarketValue ~ log(Assets) + log(Sales) + Profits + CashFlow + log(Emplo yees), data = companies))</pre>
```



```
lambda <- M1_box_cox$x[which.max(M1_box_cox$y)]
lambda</pre>
```

```
## [1] 0.1818182
```

Given that the Box-Cox function plots the log-likelihood function with the two outer dashed lines represent the 95% confidence interval for the estimate of λ and that $\lambda=0.182$ is the value that maximises this likelihood function, we can ensure that the chosen value of $\lambda=0.182$ is an appropriate value.

Section I

Refit the model M1 but with the transformed response variable: denote this M2.

```
MarketValue_transformed = (companies$MarketValue^(0.182)-1)/(0.182)
M2 = lm(MarketValue_transformed ~ log(Assets) + log(Sales) + Profits + CashFlow + log(Employee
s), data = companies)
summary(M2)
```

```
##
## Call:
## lm(formula = MarketValue transformed ~ log(Assets) + log(Sales) +
       Profits + CashFlow + log(Employees), data = companies)
##
## Residuals:
##
       Min
                10 Median
                                 3Q
                                        Max
   -4.4237 -1.9656 -0.2927 1.6464
                                    5.6205
##
  Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
  (Intercept)
                   4.927816
                              3.676033
                                          1.341
                                                 0.18423
  log(Assets)
                   0.382807
                              0.298219
## log(Sales)
                   0.312683
                              0.629569
                                          0.497
                                                 0.62092
                                                 0.67097
## Profits
                  -0.001208
                               0.002833
                                         -0.427
  CashFlow
                   0.002972
                               0.001956
                                          1.519
                                                 0.13308
                   1.273342
                               0.438929
                                          2.901
                                                 0.00491 **
  log(Employees)
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 2.488 on 73 degrees of freedom
## Multiple R-squared: 0.7716, Adjusted R-squared: 0.756
## F-statistic: 49.32 on 5 and 73 DF, p-value: < 2.2e-16
```

Section J

Check the assumptions for M2.

gglm(M2)

independence:

Independence assumption is met, as discussed above.

Linearity:

The residuals are now randomly distributed around the zero line, with the expection of a few outliers.

Homoscedascity:

The V-shape cluster as seen in M1 is no longer visible as the residuals are spread out more evenly. Within the ftted values of 3 to 5, the values are distributed in a fairly random manner. However, we see some inconsistencies in the two ends of the plot which causes the line to be not flat and suggests the assumption of constant variance is not met.

Normality:

Similar to M1, the majority of data points lie on the QQ line. We continue to see some departures at the two ends, however the departures are now of smaller values which indicates the normality assumption is met.

Leverage:

The outlier as mentioned above is still present and largely influential to the fit of M2.

barplot(hatvalues(M2), main = "Cook's Distance", ylab = "Cook's Distance", xlab = "Index")

Section K

What is your preferred model M1 or M2? Justify your answer.

My preferred model is M2 due to the following reasons:

- The new model M2 has now met the normality assumption, which is the very first reason why we decided to perform Box-Cox transformation.
- The violation on the linearity and homoscedascity is largely due to the outliers.

Section L

Using your preferred model, obtain a 95% prediction interval for MarketValue for a company with

```
companies_pred <- predict(M2, newdata = data.frame(Assets = 1065, Sales = 642, Profits = 30, Ca
shFlow = 59, Employees = 3.5), interval = "prediction")

companies_pred_res = exp(log(companies_pred*0.182 + 1) / 0.182)
companies_pred_res</pre>
```

```
## fit lwr upr
## 1 471.5302 67.36555 1978.401
```

Thus, M2 predicts that the Market Value of the company with the given attributes (in the original scale) to be 471.530 million dollars with the 95% prediction interval (67.366, 1978.401) million dollars.