

Chapter 5

Finite Fields

Structural sets

Abelian Group

- (G, ∘) is a group, where G is a set of elements and the binary operator ∘ has the following properties:
 - Closure
 - $a \circ b$, for a, b in G
 - Associativity
 - $a \circ (b \circ c) = (a \circ b) \circ c$, for a, b, c in G
 - Identity
 - There is an element e in G such that $a \circ e = e \circ a = a$, for a in G
 - Inverse
 - For each a in G, there is an element a^{-1} in G such that $a \circ a^{-1} = a^{-1} \circ a = e$
 - *Commutative*: $a \circ b = b \circ a$, for a, b in G

4

Examples

- Additive groups
 - \bullet (R, +)
 - \bullet (Z, +)
 - $(Z_n, +)$, $Z_n = \{0, 1, 2, ..., n 1\}$, "+" is mod n
- Multiplicative groups
 - $(R \{0\}, \times)$,
 - $(Q \{0\}, \times)$
 - (Z_n^*, \times) , $Z_n^* = \{a: 1 \le a < n, \gcd(a, n) = 1\}$, "x" is mod n
- $N_n = \{\pi : \pi \text{ is a permuation over } \{1, 2, ..., n\}\}$
 - Not abelian
- The operator is omitted if no misunderstanding occurs

Cyclic group

- G is cyclic if there is a generator $g \in G$ such that for any $a \in G$, $a = g^k$ for some k
 - g spans all elements of G, that is, $G = \{g^k | k \ge 0\}$
- Notation
 - $g^k = g \circ g \circ \cdots \circ g \ (k \text{ times})$
 - $a^0 = e$: identity
 - $a^{-k} = (a^{-1})^k$
- Z_7^* is a cyclic group with generators 3 and 5
 - $3^0 = 1, 3^1 = 3, 3^2 = 2, 3^3 = 6, 3^4 = 4, 3^5 = 5$
 - $5^0 = 1, 5^1 = 5, 5^2 = 4, 5^3 = 6, 5^4 = 2, 5^5 = 3$

Field: $\{F, +, \times\}$

- $\{F, +\}$ is an additive abelian group
- $\{F \{0\}, \times\}$ is a multiplicative abelian group
- Distributive laws
 - $a \times (b + c) = a \times b + a \times c$, for a, b, c in F
 - $(a + b) \times c = a \times c + b \times c$, for a, b, c in F
- 0: the identity for +
- 1: the identity for ×
- -a: the additive inverse of a
- a^{-1} : the multiplicative inverse of a
- $\bullet \ a b = a + (-b)$
- $a/b = a \times b^{-1}$
- We can do 4 operators (+, −, ×, /) over a field

Field: examples

- $\{R, +, \times\}$, where R is the set of reals
- $\{Q, +, \times\}$, where Q is the set of rationals
- $\{Z_p, +, \times\}$, where p is prime and operators are mod p
 - $\bullet a = p a$
 - a^{-1} , $1 \le a < p$
 - Use extended Euclidean algorithm to compute integral (x, y) for xa + yp = 1
 - $a^{-1} = x \mod p$
 - Additive identity: 0
 - Multiplicative identity: 1

Field: types

Finite Field: $GF(p^n)$

- Evariste Galois (1811-1832) first studied finite fields
- Finite fields play crucial role in AES and many cryptosystems
- Every finite field F must have p^n elements for some prime p and $n \ge 1$
- For every prime p and $n \ge 1$, there is a finite field of p^n elements
- F of p^n elements may have different forms. Nevertheless, they are all isomorphic
 - Thus, $GF(p^n)$ is the finite field of p^n elements

Finite Field: GF(p), n = 1

- $GF(p) = \{Z_p, +, \times\}$, where + and \times under "mod p"
 - The finite filed of p elements
- Example
 - $GF(2) = \{Z_2, xor, and\}$: Boolean algebra
 - $GF(7) = Z_7$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	l	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Ordinary polynomials: arithmetic

$$x^{3} + x^{2} + 2$$

$$+ (x^{2} - x + 1)$$

$$x^{3} + 2x^{2} - x + 3$$

(a) Addition

$$x^{3} + x^{2} + 2$$

$$\times (x^{2} - x + 1)$$

$$x^{3} + x^{2} + 2$$

$$-x^{4} - x^{3} - 2x$$

$$x^{5} + x^{4} + 2x^{2}$$

$$x^{5} + x^{4} + 3x^{2} - 2x + 2$$

(c) Multiplication

$$x^{3} + x^{2} + 2$$

$$- (x^{2} - x + 1)$$

$$x^{3} + x + 1$$

(b) Subtraction

$$\begin{array}{r}
 x + 2 \\
 x^{2} - x + 1 \overline{\smash)x^{3} + x^{2}} + 2 \\
 \underline{x^{3} - x^{2} + x} \\
 \underline{2x^{2} - x + 2} \\
 \underline{2x^{2} - 2x + 2} \\
 x
 \end{array}$$

(d) Division

Polynomials over GF(p)

• A polynomial of degree n-1 over GF(p) is of form

$$f(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_1x + a_0$$

where each $a_i \in GF(p)$, $0 \le i < n$

• Polynomials over GF(2)

•
$$0, 1, x, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x + 1, x^3, \dots$$

Addition over GF(2)

•
$$(x^2 + 1) + (x^2 + x) = 2x^2 + x + 1 = x + 1$$

Multiplication over GF(2)

•
$$(x^2 + 1) \times (x^2 + 1) = x^4 + x^2 + x^2 + 1 = x^4 + 1$$

Polynomials over $GF(p) \mod m(x)$

- $f(x) \mod m(x) = r(x)$, where $\deg(r(x)) < \deg(m(x))$
 - f(x) = q(x)m(x) + r(x)
- Example
 - $f(x) = x^4 + x^2 + 1$
 - $m(x) = x^3 + x + 1$
 - $\bullet \ f(x) = x \cdot m(x) + (x+1)$
- Simple way of computing $f(x) \mod m(x)$
 - Substitute m(x) = 0 to f(x) and get r(x)
 - $m(x) = 0 \rightarrow x^3 = x + 1$
 - $f(x) \mod m(x) = x(x+1) + x^2 + 1 = x + 1$

Irreducible polynomial over GF(p)

- m(x) is *irreducible* if m(x) cannot be factored into a product of two polynomials over GF(p) of degree ≥ 1
- Example
 - $x^3 + x + 1$ is irreducible over GF(2)
 - $x^3 + x^2 + x + 1 = (x + 1)^3$ is reducible over GF(2)
- Let m(x) be degree-n irreducible polynomial over GF(p)
 - f(x) over GF(p) with $\deg(f(x)) \le n-1$
 - gcd(f(x), m(x)) = 1 for $f(x) \neq 0$
 - $f^{-1}(x) \mod m(x)$ exists for $f(x) \neq 0$
 - Use extended Euclidean algorithm to find (a(x), b(x)) for $a(x)f(x) + b(x)m(x) = 1 = \gcd(f(x), m(x))$
 - $\bullet f^{-1}(x) \bmod m(x) = a(x) \bmod m(x)$

Finite field: $GF(p^n)/m(x)$, $n \ge 2$

- $GF(p^n)$ is the set of polynomials over GF(p) of degree at most n-1
- m(x) is an irreducible degree-n monic polynomial over GF(p)
- Coefficient operations are over GF(p)
- Multiplicative operations are "mod m(x)"
- Additive identity: 0
- Additive inverse: -f(x)
- Multiplicative identity: 1
- Multiplicative inverse: $f(x)^{-1} \mod m(x)$
- Closure, inverse, associative, commutative, and distributive rules are satisfied

Finite field $GF(2^3)/x^3 + x + 1$

- S = $\{0, 1, x, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x + 1\}$
- $m(x) = x^3 + x + 1$: irreducible over GF(2)
- Example
 - $\bullet (x^2 + 1) + (x + 1) = x^2 + x$
 - $(x^2 + 1) \times (x + 1) \mod m(x) = x^2$
 - $-(x^2 + x) = x^2 + x$
 - $(x^2 + x)^{-1} \mod m(x) = x + 1$
 - $(x^2)^{-1} \mod m(x) = x^2 + x + 1$
- $GF(2^3)/x^3+x+1$ and $GF(2^3)/x^3+1$ are isomorphic since x^3+x^2+1 is also irreducible over GF(2)

		000	001	010	011	100	101	110	111
	+	0	1	X	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
000	0	0	1	Х	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
001	1	1	0	x + 1	Х	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$
010	X	X	x + 1	0	1	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$
011	x + 1	x + 1	X	1	0	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2
100	x^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	Х	<i>x</i> + 1
101	$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$	1	0	x + 1	Х
110	$x^2 + x$	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$	X	x + 1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2	x + 1	Х	1	0
		000	001	010	011	100	101	110	111
	×	0	1	x	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
000	0	0	0	0	0	0	0	0	0
001	1	0	1	X	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
010	х	0	х	x^2	$x^2 + x$	x + 1	1	$x^2 + x + 1$	$x^2 + 1$
011	x + 1	0	<i>x</i> + 1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	x
100	x^2	0	x^2	<i>x</i> + 1	$x^2 + x + 1$	$x^2 + x$	х	$x^2 + 1$	1
101	$x^2 + 1$	0	$x^2 + 1$	1	x^2	Х	$x^2 + x + 1$	<i>x</i> + 1	$x^2 + x$
110	$x^2 + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^2 + 1$	<i>x</i> + 1	х	x^2
111						1	$x^2 + x$	x^2	x + 1

Finite field $GF(3^2)/x^2+1$

- $S = \{0, 1, 2, x, x + 1, x + 2, 2x, 2x + 1, 2x + 2\}$
- $m(x) = x^2 + 1$: irreducible over GF(3)
- Example
 - $\bullet (x + 1) + (x + 2) = 2x$
 - $\bullet (x+1) \times (x+2) \mod m(x) = 1$
 - -(x+2) = 2x + 1
 - $(x+1)^{-1} \mod m(x) = x+2$
 - $\bullet (2x)^{-1} \bmod m(x) = x$

+	0	1	2	x	x+1	x+2	2 <i>x</i>	2 <i>x</i> +1	2 <i>x</i> +2
0	0	1	2	x	x+1	x+2	2 <i>x</i>	2x+1	2 <i>x</i> +2
1	1	2	0	x+1	x+2	x	2 <i>x</i> +1	2 <i>x</i> +2	2 <i>x</i>
2	2	0	1	x+2	x	x+1	2 <i>x</i> +2	2 <i>x</i>	2 <i>x</i> +1
x	x	x+1	x+2	2 <i>x</i>	2 <i>x</i> +1	2 <i>x</i> +2	0	1	2
x+1	x+1	x+2	x	2 <i>x</i> +1	2 <i>x</i> +2	2 <i>x</i>	1	2	0
x+2	x+2	x	x+1	2 <i>x</i> +2	2 <i>x</i>	2x+1	2	0	1
-2x	2 <i>x</i>	2 <i>x</i> +1	2 <i>x</i> +2	0	1	2	x	x+1	x+2
2 <i>x</i> +1	2x+1	2 <i>x</i> +2	2 <i>x</i>	1	2	0	x+1	x+2	x
2 <i>x</i> +2	2 <i>x</i> +2	2 <i>x</i>	2 <i>x</i> +1	2	0	1	x+2	x	x+1
v I		1 1	_		1	20-1-2	234	221	222
×	0	1	2	x	x+1	x+2	2 <i>x</i>	2 <i>x</i> +1	2 <i>x</i> +2
× 0	0	0	0	0	x+1 0	x+2 0	2 <i>x</i>	2 <i>x</i> +1	2 <i>x</i> +2
									
0	0	0	0	0	0	0	0	0	0
0	0	0	0 2	0 x	0 x+1	0 x+2	0 2x	0 2x+1	0 2x+2
0 1 2	0 0	0 1 2	0 2 1	0 x 2x	0 x+1 2x+2	0 x+2 2x+1	0 2x x	0 2x+1 x+2	0 2x+2 x+1
$ \begin{array}{c c} \hline 0 \\ \hline 1 \\ \hline 2 \\ x \end{array} $	0 0 0	0 1 2 x	0 2 1 2x	0 x 2x 2	0 x+1 2x+2 x+2	0 x+2 2x+1 2x+2	0 2x x 1	0 2x+1 x+2 x+1	0 2x+2 x+1 2x+1
$ \begin{array}{c c} \hline 0\\ \hline 1\\ \hline 2\\ \hline x\\ \hline x+1 \end{array} $	0 0 0 0	0 1 2 x x+1	0 2 1 2x 2x+2	0 x 2x 2 x+2	0 x+1 2x+2 x+2 2x	0 x+2 2x+1 2x+2 1	0 2x x 1 2x+1	0 2x+1 x+2 x+1 2	0 2x+2 x+1 2x+1 x
	0 0 0 0 0	0 1 2 x x+1 x+2	0 2 1 2x 2x+2 2x+1	0 x 2x 2 x+2 2x+2	0 x+1 2x+2 x+2 2x 1	0 x+2 2x+1 2x+2 1 x	0 2x x 1 2x+1 x+1	0 2x+1 x+2 x+1 2 2x	0 2x+2 x+1 2x+1 x

$GF(2^n)/m(x)$: computation

- Represent polynomial $f(x) = \sum_{i=0}^{n-1} b_i x^i$ as binary string $b_{n-1}b_{n-2}\cdots b_1b_0$
- Addition: bitwise XOR (no need to carry)

		000	001	010	011	100	101	110	111
	+	0	1	2	3	4	5	6	7
000	0	0	1	2	3	4	5	6	7
001	1	1	0	3	2	5	4	7	6
010	2	2	3	0	1	6	7	4	5
011	3	3	2	1	0	7	6	5	4
100	4	4	5	6	7	0	1	2	3
101	5	5	4	7	6	1	0	3	2
110	6	6	7	4	5	2	3	0	1
111	7	7	6	5	4	3	2	1	0

- Multiplication: Shift-XOR
 - long-hand multiplication, but from high bit to low bit
 - Example: 1001 × 1101
 - Let $1101 = b_3b_2b_1b_0$
 - Initiation: f = 0000 0000
 - $b_3 = 1 \rightarrow f = \text{shift-left}(f) \oplus 1001 = 0000 \ 1001$
 - $b_2 = 1 \rightarrow f = \text{shift-left}(f) \oplus 1001 = 0001 \ 1011$
 - $b_1 = 0 \rightarrow f = \text{shif-left}(f) = 0011\ 0110$
 - $b_0 = 1 \rightarrow f = \text{shift-left}(f) \oplus 1001 = 0110 \ 0101$

Modular multiplication

• Shift-XOR-Mod: like Shift-XOR, do modulo whenever necessary

•
$$m(x) = x^8 + x^4 + x^3 + x + 1$$
 (binary: 1 0001 1011)

•
$$a \times b = 3F \times 86 = 001111111 \times 10000110$$

i	b _i	f: shift-XOR	f: mod g(x)> bitwise XOR
Initial			0000 0000
7	1	0011 1111	0011 1111
6	0	0111 1110	0111 1110
5	0	1111 1100	1111 1100
4	0	1 1111 1000	1110 0011
3	0	1 1100 0110	1101 1101
2	1	1 1000 0101	1001 1110
1	1	1 0000 0011	0001 1000
0	0	0011 0000	0011 0000

Computation: table lookup

- $GF(2^8) / x^8 + x^4 + x^3 + x + 1$
- Build a table for $a(x)b(x) \mod x^8 + x^4 + x^3 + x + 1$
- Table size: $2^8 \times 2^8 \times 2^8$ bits = 2^{16} bytes = 64K bytes

Field: $GF(p^{n_1 \times n_2})/m_1(x), m_2(y)$

- Consider degree- $(n_2$ -1) polynomials of y over $GF(p^{n_1})/m_1(x)$
- Example
 - $p = 2, n_1 = 3, n_2 = 4$
 - $GF(p^{n_1})/m_1(x) = GF(2^3)/x^3 + x + 1$
 - A polynomial of the field is like: $(x + 1)y^3 + (x^2)y^2 + 1$
- Let $m_2(y)$ be an irreducible degree- n_2 polynomial with coefficients over $GF(p^{n_1})/m_1(x)$
- $GF(p^{n_1 \times n_2})/m_1(x), m_2(y)$
 - The element set consists of all degree- $(n_2$ -1) polynomials (of y) with coefficients over $G(p^{n_1})/m_1(x)$
 - Coefficients are operated over $G(p^{n_1})/m_1(x)$

Example: $GF(2^{3\times 4})/m_1(x), m_2(y)$

- $GF(2^{3\times4})/x^3 + x + 1, y^4 + (x^2 + 1)y^2 + (x + 1)$
- $m_2(y) = y^4 + (x^2 + 1)y^2 + (x + 1)$ is irreducible over field $GF(2^3)/x^3 + x + 1$

26

Multiplication

$$[(x+1)y^{3} + xy^{2} + 1)] \times [y + (x^{2} + 1)] \mod m_{2}(y)$$

$$= (x+1)y^{4} + [(x+1)(x^{2} + 1) + x]y^{3} + [x(x^{2} + 1)]y^{2}$$

$$+y + (x^{2} + 1) \mod m_{2}(y)$$

$$= (x+1)[(x^{2} + 1)y^{2} + (x+1)] + (x^{2} + x)y^{3} + y^{2}$$

$$+y + (x^{2} + 1) \mod m_{2}(y)$$

$$= (x^{2} + x)y^{3} + (x^{2} + 1)y^{2} + y$$