NOTE ON SHEAF THEORY

YASSINE AIT MOHAMED

ABSTRACT. In this note, we review some fundamental concepts and constructions in sheaf theory.

1. Presheaves

Notation. Let X be a topological space. We denote by \mathcal{T}_X the category having for objects the open subsets of X and for morphisms identity maps and inclusions. C will denote a category, which can be the category of sets (also denoted by Set), that of groups (also denoted by Gp), that of R-modules (also denoted by Ring), that of R-modules (also denoted by R-R-R), for some ring R.

Definition 1.1. Let X be a topological space. A presheaf \mathcal{F} on X consists of the following deta:

- i) For every open subset U of X, a set $\mathcal{F}(U)$.
- ii) Whenever $U \subseteq V$ are two open subsets of X, a map

$$res_{V,U}: \mathcal{F}(V) \longrightarrow \mathcal{F}(U)$$

called the restriction map, which satisfies the following conditions:

- a) $res_{U,U} = id_{\mathcal{F}(U)}$.
- b) Having three open subsets $U \subseteq V \subseteq W$ of X, then $res_{V,U} \circ res_{W,V} = res_{W,U}$

Remarks 1.1. 1) We will mostly write $s_{|U}$ for s when $s \in \mathcal{F}(U)$. The elements of $\mathcal{F}(U)$ are usually called sections of (the presheaf \mathcal{F}) over U.

- 2) By considering $\mathcal{F}(U)$ as object in some category \mathcal{C} and assuming that $res_{V,U}$ is a morphism between the objects $\mathcal{F}(V)$ and $\mathcal{F}(U)$, we may define more generally a presheaf \mathcal{F} on X into \mathcal{C} .
- 3) Note that we can state definition 1.1 in another way: Let X be a topological space. A presheaf \mathcal{F} on X (into a category \mathcal{C}) is a contravariant functor from \mathcal{T}_X into \mathcal{C} .

$$\begin{array}{cccc} \mathcal{F}: & \mathcal{T}_X & \longrightarrow & \mathcal{C} \\ & U & \longmapsto & \mathcal{F}(U) \end{array}$$

Examples 1.1. 1) For a topological space, a presheaf \mathcal{C}_X of \mathbb{R} -algebras on X is defined by assigning to every open $U \subseteq X$ the set of continuous functions $U \longrightarrow \mathbb{R}$.

Date: Junary 20, 2024.

- 2) Let X be a variety, we previously considered the presheaf of k-algebras \mathcal{O}_X . For any open $U \subseteq X$, $\mathcal{O}_X(U)$ is the k-algebra of regular functions. If X be an affine variety we have $\mathcal{O}_X(U) = k[U]$.
- 3) Let X be a topological space, the formula :

$$U \longmapsto \left\{ \begin{array}{ll} \mathbb{Z} & if & U = X \\ \{0\} & otherwise \end{array} \right.$$

defines a presheaf of abelian groups on X.

Although it is possible to define a presheaf of a topological space X into an arbitrary category \mathcal{C} , we will be interested in what follows only in cases where the objects of \mathcal{C} are sets (that could have an additional structure) and the morphisms $res_{V,U}$ are maps (which are morphisms for the extra structure on $\mathcal{F}(V)$ and $\mathcal{F}(U)$.

Definition 1.2. Let \mathcal{F} be a presheaf on X, a subpresheaf \mathcal{G} (of \mathcal{F}) is a presheaf on X such that $\mathcal{G}(U) \subseteq \mathcal{F}(U)$ for every open $U \subseteq X$, and such that the restriction maps of \mathcal{G} are induced by those of \mathcal{F} .

Example 1.1. If U is an open subset of X, every presheaf \mathcal{F} on X induces, in an obvious way, a presheaf \mathcal{F}_U on U by setting $\mathcal{F}_{|U}(V) = \mathcal{F}(V)$ for every open subset V of U. This is the restriction of \mathcal{F} to U.

1.1. Morphisms of presheaves.

Definition 1.3. Let \mathcal{F} and \mathcal{G} be two presheaves on X. A morphism of presheaves ψ from \mathcal{F} to \mathcal{G} consists of the datum, for all open U of X, of a morphism $\psi(U)$ from $\mathcal{F}(U)$ to $\mathcal{G}(U)$, so that the diagram

commutes for any pair (U, V) of open subsets of X such that $U \subseteq V$.

Remarks 1.2. 1) The commutativity of the diagram is written : $\psi(V)(s)_{|U} = \psi(U)(s_{|U})$, where $s \in \mathcal{F}(V)$.

- 2) Morphisms of presheaves can be composed. So that presheaves on the topological space X form a category, that we will denote by $\mathcal{P}reSh_X$.
- 3) A morphism $\psi : \mathcal{F} \longrightarrow \mathcal{G}$ between two presheaves \mathcal{F} and \mathcal{G} is an isomorphism if it has a two-sided inverse i.e, a morphism $\phi : \mathcal{G} \longrightarrow \mathcal{F}$ such that $\psi \circ \phi = id_{\mathcal{G}}$ and $\phi \circ \psi = id_{\mathcal{F}}$.

Definition 1.4. Assume C has direct limits. The stalk of a presheaf F at a point $x \in X$ is

$$\mathcal{F}_x := \lim_{\overrightarrow{x \in U}} \mathcal{F}(U)$$

The direct limit is taken over open neighborhoods of x, and restriction maps between them. Given a section $s \in \mathcal{F}(U)$, and a point $x \in U$, we let $s_x \in \mathcal{F}_x$ denote the image of s under the natural morphism

$$\begin{array}{ccc} \mathcal{F}(U) & \longrightarrow & \mathcal{F}_x \\ s & \longmapsto & s_x \end{array}$$

An element of the stalk is called a germ.

More generally, if $Y \subseteq X$ is a closed and irreducible subset. Then, we set

$$\mathcal{F}_Y := \varinjlim_{U \cap Y \neq \emptyset} \mathcal{F}(U)$$

Notation. Let X be a topological space and $x \in X$, we denote by \mathcal{V} the set of open neighborhoods of x, which is filtering for the opposite order to inclusion i.e, for all $U, V \in \mathcal{V}$ we have

$$U \leq V \iff V \subseteq U$$
.

Remark 1.1. We can identify \mathcal{F}_x as the quotient of the set of pairs (U, s), where $U \in \mathcal{V}$ and where s is a section of \mathcal{F} on U, by the relation of equivalence defined as follows: $(U, s) \sim (V, t)$ if and only if there exists an open neighborhood W of x in $U \cap V$ such that $s_{|W} = t_{|W}$.

Moreover, we can see \mathcal{F}_x as the set of sections of \mathcal{F} defined in the neighborhood of x. Two sections belonging to \mathcal{F}_x being considered as equal if they coincide in some neighborhood of x.

Example 1.2. Let $\mathcal{F}(U) = \{ \text{ Continuous functions } U \longrightarrow \mathbb{R} \}$. Then \mathcal{F}_x the set of germs of continuous functions at x.

Proposition 1.1. Let $\psi : \mathcal{F} \longrightarrow \mathcal{G}$ be a morphism of presheaves, then ψ induces for every point $x \in X$ a morphism $\psi_x : \mathcal{F}_x \longrightarrow \mathcal{G}_x$ between the stalks, where ψ_x is defined by $\psi_x(s_x) = (\psi(U)(s))_x$ for any open subset U of X, $s \in \mathcal{F}(U)$, and $x \in U$.

Proof. If $s \in \mathcal{F}(U)$ and $t \in \mathcal{F}(V)$ are such that $s_x = t_x$, then there exists an open neighborhood W of x such that $s_{|W} = t_{|W}$. So $\psi(U)(s)_{|W} = \psi(W)(s_{|W})$ and $\psi(V)(t)_{|W} = \psi(V)(t_{|W})$. Hence $(\psi(U)(s))_x = (\psi(V)(t))_x$.

Note that if $\psi : \mathcal{F} \longrightarrow \mathcal{G}$ and $\phi : \mathcal{G} \longrightarrow \mathcal{Z}$ are two morphisms of sheaves we have $(\psi \circ \phi)_x = \psi_x \circ \phi_x$ and $(id_{\mathcal{F}})_x = id_{\mathcal{F}_x}$. Moreover, $\psi \longrightarrow \psi_x$ define a functor from the category of sheaves over X to the category \mathcal{C} .

Definition 1.5. Let $\psi : \mathcal{F} \longrightarrow \mathcal{G}$ be a morphism of presheaves

- i) We say that ψ is injective if for any open subset U of X, $\psi(U) : \mathcal{F}(U) \longrightarrow \mathcal{G}(U)$ is injective.
- ii) We say that ψ is surjective if for all $x \in X$, $\psi_x : \mathcal{F}_x \longrightarrow \mathcal{G}_x$ is surjective.

2. Sheaves

Definition 2.1. We say that a presheaf \mathcal{F} is a sheaf if we have the following properties:

i) (Uniqueness) Let U be an open subset of X, $s \in \mathcal{F}(U)$, $\{U_i\}_{i \in I}$ a covering of U by open subsets U_i . If $s_{|U_i} = 0$ for every $i \in I$, then s = 0.

ii) (Gluing axiom) If $U = \bigcup_{i \in I} U_i$, and if $s_i \in \mathcal{F}(U_i)$ is a collection of sections matching on the overlaps; that is, they satisfy

$$s_{i|U_i\cap U_i} = s_{j|U_i\cap U_i}$$

for all $i, j \in I$, then there exists a section $s \in \mathcal{F}(U)$ so that $s_{|U_i} = s_i$, for all $i \in I$

- **Remarks 2.1.** 1) When \mathcal{F} is a presheaf of groups or of an algebraic structure that is in particular a group, we can replace i) by: for all $s, t \in \mathcal{F}(U)$ such that for $i \in I$, $s_{|U_i} = t_{|U_i}$ then s = t.
 - 2) The section s in ii) is unique by condition i).
- **Examples 2.1.** 1) Let X be a topological space, $U \mapsto C^0(U, \mathbb{R})$ is a sheaf of \mathbb{R} -algebras over X.
 - 2) In example 1.1, if moreover, \mathcal{F} is a sheaf then $\mathcal{F}_{|U}$ is still a sheaf.
- 2.1. Morphisms of sheaves.
- **Definition 2.2.** A morphism of sheaves is just a morphism of the underlying presheaves.
- **Remarks 2.2.** 1) The sheaves of X form a full subcategory Sh_X of category of the presheaves on X.
 - 2) The notions injective, surjective and isomorphism for sheaves are defined in the same way as for presheaves.
- **Lemma 2.1.** Let X be a topological space and let U be an open subset of X.
 - 1) Let \mathcal{F} be a sheaf on X and let $s, t \in \mathcal{F}(U)$ be two sections such that $s_x = t_x$ for every $x \in U$. Then s = t.
 - 2) Let \mathcal{F} , \mathcal{G} be presheaves on X and let $\psi, \phi : \mathcal{F} \longrightarrow \mathcal{G}$ be morphisms of presheaves on X such that $\mathcal{F}_x = \mathcal{G}_x$ for every $x \in X$. If \mathcal{G} is a sheaf, then $\mathcal{F} = \mathcal{G}$.
- **Proof.** 1) Let $x \in U$, since $s_x = t_x$, there exists an open subset W_x of U containing x such that $s_{|W_x} = t_{|W_x}$. Since $(W_x)_x$ is an open covering of U, according to condition i) in definition 2.1, it comes that s = t.
 - 2) Let W be an open subset of X and let $s \in \mathcal{F}(W)$. We need to prove that s has the same image under the maps $\psi(W)$ and $\phi(W)$, let $t = \psi(U)(s)$ and $l = \phi(U)(s)$. For all $x \in W$, we have $t_x = \psi_x(s_x) = \phi_x(s_x) = l_x$. Since \mathcal{G} is a sheaf, so by 1) we get that t = l.
- **Proposition 2.1.** Let $\psi : \mathcal{F} \longrightarrow \mathcal{G}$ be a morphism of sheaves. Then ψ is injective if and only if $\psi_x : \mathcal{F}_x \longrightarrow \mathcal{G}_x$ is injective for every $x \in X$.
- **Proof.** Suppose ψ is injective. Let $x \in X$ and $s_x \in \mathcal{F}_x$ such that $\psi_x(s_x) = 0$, where $s \in \mathcal{F}(U)$ and U is an open neighborhood of x, so $(\psi(U)(s))_x = 0$. Then, there exists an open neighborhood W of x such that $\psi(U)(s)_{|W} = 0$ or that $\psi(W)(s_{|W}) = 0$. From the injectivity of ψ it comes that $s_{|W}$, thus $s_x = 0$. Conversely, suppose that for all $x \in X$, ψ_x is injective, we fix an open subset V of X and $s \in \mathcal{F}(V)$ such that $\psi(V)(s) = 0$, locally we have, for all $x \in V$, $\psi_x(s_x) = (\psi(U))(s)_x = 0$, it comes from local injectivity, that for all $x \in V$, $s_x = 0$. Hence s = 0.

Remark 2.1. Proposition 2.1 gives a local characterization of the injectivity.

Theorem 2.1. Let $\psi : \mathcal{F} \longrightarrow \mathcal{G}$ be a morphism of sheaves. The following assertions are equivalent:

- 1) ψ is an isomorphism.
- 2) For every $x \in X$, $\psi_x : \mathcal{F}_x \longrightarrow \mathcal{G}_x$ is an isomorphism.
- 3) ψ is both injective and surjective.

Proof. 1) \Rightarrow 2) Let ϕ be the inverse morphism of ψ . Plainly, for every $x \in X$, we have $\phi_x \circ \psi_x = id_{\mathcal{F}_x}$ and $\psi_x \circ \phi_x = id_{\mathcal{G}_x}$. So ψ_x is an isomorphism.

- $(2) \Rightarrow 3)$ Immediate, according to proposition 2.1 and definition 1.5, 2)
- 3) \Rightarrow 1) We will construct the inverse ϕ of ψ . Let W be an open subset of X and $t \in \mathcal{G}(W)$, for every $x \in W$, there exists U_x an open neighborhood of x and $s^x \in \mathcal{F}(U_x)$ such that $t_x = \psi_x(s_x^x) = (\psi(U_x)(s^x))_x$. Hence there exists $V_x \subseteq U_x \cap W$ neighborhood of x such that $t_{|V_x} = (\psi(V_x)(s_{|V_x}^x))_{|V_x}$. If $y \in W$, then $\psi(V_x \cap V_y)(s_{|V_x \cap V_y}^x) = \psi(V_x \cap V_y)(s_{|V_x \cap V_y}^y)$, so $s_{|V_x \cap V_y}^x = s_{|V_x \cap V_y}^y$, as the family $(V_x)_{x \in U}$ forms a covering of U, then $(s^x)_x$ rises to a section s of \mathcal{F} on U, and we have $\psi(U)(s) = t$, the uniqueness of s follows from the injectivity of ψ . We set $\phi(U)(t) = s$, then ϕ is the inverse of ψ .

3. Sheafification

In this section, we answer the following question: How to build a sheaf from a presheaves?

Definition 3.1. Let \mathcal{F} be a presheaf on a topological space X. We call associated sheaf with \mathcal{F} any sheaf \mathcal{F}^{\dagger} equipped with a morphism of presheaves $\beta: \mathcal{F} \longrightarrow \mathcal{F}^{\dagger}$ satisfying the following universal property:

For any morphism of presheaves $\psi : \mathcal{F} \longrightarrow \mathcal{G}$, where \mathcal{G} is a sheaf, there exists a unique morphism of sheaves $\overline{\psi} : \mathcal{F}^{\dagger} \longrightarrow \mathcal{G}$ such that the following diagram is commutative:

Remark 3.1. The uniqueness of \mathcal{F}^{\dagger} when it exists is an immediate consequence of the universal property.

Proposition 3.1. Let \mathcal{F} be a presheaf on a topological space X. Then the sheaf \mathcal{F}^{\dagger} associated with \mathcal{F} exists and is a unique up to isomorphism. Moreover, using the above notation, all $x \in X$, the induced morphism $\beta : \mathcal{F}_x \longrightarrow \mathcal{F}_x^{\dagger}$ is an isomorphism.

Proof. Let \mathcal{F} be a presheaf on X. Consider $Z := \coprod_{x \in X} \mathcal{F}_x$ (disjoint union) and consider the map $\pi : Z \longrightarrow X$ defined by : for all s_x , $\pi(s_x) = x$. For any open V of X and $s \in \mathcal{F}(V)$, let π_s be the map $\pi_s : V \longrightarrow X$ defined by $\pi_s(x) = s_x$. Note that $\pi(\pi_s(x)) = x$ i.e $\pi \circ \pi_s = id_U$ (π_s is a section and π is a retraction). We now endow

Z with the topology which makes all maps $\pi_s: V \longrightarrow Z$, V open subset of X and $s \in \mathcal{F}(V)$, continuous.

For any open subset V of X, we define $\mathcal{F}^{\dagger}(V) := \{g : V \longrightarrow Z/g \text{ continuous and } \pi \circ g = id_V\}$ it is the set of sections of Z on V.

- * For every $W \subseteq V$, the restriction $\mathcal{F}^{\dagger}(V) \longrightarrow \mathcal{F}^{\dagger}(W)$ is the usual restriction, i.e $g \longrightarrow g_{|_{W}}$. In particular \mathcal{F}^{\dagger} is a presheaf.
- * Condition i) in definition 2.1 is immediate.
- * If $(W_j)_j$ is a covering of V and $g_j \in \mathcal{F}^{\dagger}(W_j)$ are such that for all $i, j, g_{i|W_i \cap W_j} = g_{j|W_i \cap W_j}$, then as the g_j are continuous, and coincide on the intersections, there exists $g: V \longrightarrow X$ which is continuous such that for all $j, g_{|W_j} = g_j$. Moreover g is a section in fact: for all $x \in V$, there is some j such that $x \in W_j$, $\pi \circ g(x) = \pi(g(x)) = \pi(g_j(x)) = x$. \mathcal{F}^{\dagger} is a sheaf.
- * Definition of $\beta: \mathcal{F} \longrightarrow \mathcal{F}^{\dagger}:$ For any open subset V of X and $s \in \mathcal{F}(V)$, we define $\beta(V)(S) := \pi_s \in \mathcal{F}^{\dagger}(V)$.
- * Compatibility with restrictions: let $W \subseteq V$ two open subsets of X, $s \in \mathcal{F}(V)$ and $x \in W$, we have $\beta(V)(s)_{|W}(x) = \pi_s(x) = s_x = (s_{|W})(x) = \pi_{s|W}(x)$. So $\beta(V)(s)_{|W} = \beta(W)(s_{|W})$.
- * Let \mathcal{G} be a sheaf, and $\psi : \mathcal{F} \longrightarrow \mathcal{G}$ be a morphism of presheaves. We cut a section g of $\mathcal{F}^{\dagger}(V)$ into small sections (sections of \mathcal{F}) on a covering W_j of V, then by sending them to the $\mathcal{G}(W_j)$, then we stick back into \mathcal{G} . Sections of \mathcal{F}^{\dagger} are obtained by gluing sections of \mathcal{F} , so $\mathcal{F}_x = \mathcal{F}_x^{\dagger}$.

Remark 3.2. If \mathcal{F} is a sheaf, it follows from the universal property that $\mathcal{F} \simeq \mathcal{F}^{\dagger}$.

Example 3.1. Let A be a group (or a ring, an algebra,...), then

$$U \longmapsto \begin{cases} A & if & U \neq \emptyset \\ \{0\} & otherwise \end{cases}$$

is a presheaf and the associated sheaf is called the constant sheaf associated to A. We denoted by \underline{A} . For any $x \in X$, we have $\underline{A}_x = A$.

4. Subsheaves and Quotient sheaves

Throughout, we fix a category of objects that have an algebraic structure which are in particular groups, say e.g., $C = \mathcal{G}p$ or $R\text{-}\mathcal{M}od$.

4.1. Subsheaves.

Definition 4.1. Let \mathcal{F} and \mathcal{G} be two sheaves on X, we say that \mathcal{F} is a subsheaf of \mathcal{G} , if for any open subset U of X, $\mathcal{F}(U) \subseteq \mathcal{G}(U)$ and such that we have compatibility with the restrictions induced from \mathcal{F} and \mathcal{G} , i.e., For every open subsets $U \subseteq V$ of X, the following diagram is commutative:

$$\begin{array}{ccc}
\mathcal{F}(V) & \hookrightarrow & \mathcal{G}(V) \\
 & \downarrow^{res_{V,U}} & & \downarrow^{res_{V,U}} \\
\mathcal{F}(U) & \hookrightarrow & \mathcal{G}(U)
\end{array}$$

Remark 4.1. \mathcal{F} is a subsheaf of \mathcal{G} if, the canonical injection $i: \mathcal{F} \longrightarrow \mathcal{G}$ is a morphism of sheaves.

Definition 4.2. Let $\psi : \mathcal{F} \longrightarrow \mathcal{G}$ a morphism of presheaves on X. We define the presheaf $ker(\psi)$ by the formula :

$$U \longrightarrow ker(\psi(U))$$

for any open subset U of X. $ker(\psi)$ is said to be the kernel of ψ , it's a subpresheaf of \mathcal{F} . and ψ is injective if and only if its kernel is the trivial presheaf.

Using the notation of Definition 4.2, one can easily see that ψ is injective if and only if its kernel is the trivial presheaf.

Lemma 4.1. Let $\psi : \mathcal{F} \longrightarrow \mathcal{G}$ be a morphism of sheaves. Then the presheaf $ker(\psi)$ is a sheaf.

Proof. Let U be an open of X, $(U_j)_j$ be a covering of U and $s_j \in ker(\psi(U_j))$ such that for i, j, $s_{i|U_i \cap U_j} = s_{j|U_i \cap U_j}$. Since $s_j \in \mathcal{F}(U_j)$, then $(s_j)_j$ rises to a section s of \mathcal{F} over U, but for every $x \in U$, there exists i such that $x \in U_j$, and we have $(\psi(U))(s)_x = (\psi(U_j))(s_j)_x = 0$. So $\psi(U)(s) = 0$. Hence $s \in ker(\psi(U))$. On the other hand, if $s \in ker(\psi(U))$ such that for every j, $s_{|U_j} = 0$, then s = 0 (because $s \in \mathcal{F}(U)$ and \mathcal{F} is a sheaf).

Definition 4.3. Let $\psi : \mathcal{F} \longrightarrow \mathcal{G}$ be a morphism of presheaves on X. We define the $im(\psi)$ presheaf by the formula :

$$U \longmapsto im(\psi(U))$$

for any open set U of X. One can easily see that $im(\psi)$ is indeed a subpresheaf of \mathcal{G} . We say that $im(\psi)$ is the image presheaf of ψ .

Remark 4.2. Note that the presheaf $im(\psi)$ is not in general a sheaf. In the same way we define the presheaf $U \longmapsto coker - pr(im(\psi))$ which too is not in general a sheaf. This justifies the following definition.

Definition 4.4. Let $\psi : \mathcal{F} \longrightarrow \mathcal{G}$ be a morphism of sheaf. The sheaf associated with the image presheaf $im - pr(\psi)$ called the image sheaf of ψ is denoted $im(\psi)$. In the same way we define the cokernel sheaf and that we denote by $coker(\psi)$

Note that in general $(im(\psi))(U) \neq im(\psi(U))$. The first term is section of the sheaf $im(\psi)$ on the open set U, while the second is the image of the morphism $\psi(U)$. More precisely, we have:

Theorem 4.1. Let $\psi : \mathcal{F} \longrightarrow \mathcal{G}$ be a morphism of sheaves. Then, the following assertions hold:

- 1) For any open subset U of X, and $s \in \mathcal{G}(U)$. $s \in (im(\psi)(U))$ if and only if there exists an open covering (U_j) of U and $t_j \in \mathcal{F}(U_j)$ such that, for any j, $s_{|U_j} = \psi(U_j)(t_j)$.
- 2) ψ is surjective if and only if, for any open subset U of X and $s \in \mathcal{G}(U)$, there exists an open covering $(U_j)_j$ of U and $t_j \in \mathcal{F}(U_j)$ such that, for any j, $s_{|U_j} = \psi(U_j)(t_j)$.

- 3) ψ is surjective if and only if $\mathcal{G} = im(\psi)$.
- 1) $im(\psi)$ is a the sheaf associated with presheaf $U \longmapsto im(\psi(U))$, hence Proof. the result.
 - 2) If ψ is surjective, let U an open subset of X and $s \in \mathcal{G}(U)$, for all $x \in U$, by theorem 2.1, the map ψ_x is surjective. So there exists $t_x \in \mathcal{F}_x$ such that $\psi_x(t_x) = s_x$. Therefore, there there exists an open neighborhood $U_x \subseteq U$, and $t^x \in U_x$ such that $s_{|U_x} = \psi(U_x)(t^x)$. The covering $(U_x)_{x \in U}$ answers the question. Conversely, let $x \in X$ and $s \in \mathcal{G}(U)$. Let $(U_i)_i$ be covering of U and $t_i \in \mathcal{F}(U_i)$ such that $s_{|U_j} = \psi(U_j)(t_j)$ for all j. Since \mathcal{F} is a sheaf then there is $t \in \mathcal{F}(U)$ such that $t_{|U_j|} = t_j$ for all j. In particular, for every j such that $x \in U_j$, $s_x = (s_{|U_j})_x = (\psi(U_j)(t_j))_x = \psi_x(t_x)$. Hence ψ is surjective. 3) Immediate from 1) and 2).
- 4.2. Quotients sheaves. Assume that \mathcal{F} is a subsheaf of the sheaf \mathcal{G} . Then we can define a presheaf whose sections over U are the quotient $\mathcal{G}(U)/\mathcal{F}(U)$. The restriction maps of \mathcal{F} and \mathcal{G} are compatible the inclusions $\mathcal{F}(U) \subseteq \mathcal{G}(U)$ and hence pass to the quotient $\mathcal{G}(U)/\mathcal{F}(U)$. This presheaf, i.e., $U \longmapsto \mathcal{G}(U)/\mathcal{F}(U)$, is called quotient presheaf of \mathcal{G} by \mathcal{F} .

Definition 4.5. The quotient sheaf \mathcal{G}/\mathcal{F} is the sheafification of the quotient presheaf of \mathcal{G} by \mathcal{F} .

Proposition 4.1. Let \mathcal{F} be a subsheaf of \mathcal{G} , $x \in X$. Then $(\mathcal{G}/\mathcal{F})_x = \mathcal{G}_x/\mathcal{F}_x$.

Proof. \mathcal{G}/\mathcal{F} is the sheaf associated with the presheaf $U \longmapsto \mathcal{G}(U)/\mathcal{F}(U)$ whose stalks at x is clearly isomorphic to $\mathcal{G}_x/\mathcal{F}_x$.

5. Continuous maps and sheaves

5.1. Pushforward.

Definition 5.1. Let $f: Y \longrightarrow X$ be a continuous map between topological spaces. Let \mathcal{F} be a presheaf on X. We define the pushforward of \mathcal{F} by the formula :

$$f_*\mathcal{F}(V) = \mathcal{F}(f^{-1}(V))$$

for any open $V \subseteq Y$.

Given opens $W \subseteq V$ of Y open the restriction map is given by the commutativity of the diagram

$$f_*\mathcal{F}(V) = \mathcal{F}(f^{-1}(V))$$

$$\downarrow res_{f^{-1}(V),f^{-1}(W)}$$

$$f_*\mathcal{F}(W) = \mathcal{F}(f^{-1}(W))$$

It is clear that this defines a presheaf on Y.

Remark 5.1. The construction is clearly functorial in the presheaf \mathcal{F} and hence we obtain a functor

$$f_*: \mathcal{P}reSh_X \longrightarrow \mathcal{P}reSh_Y$$
 $\mathcal{F} \longmapsto f_*\mathcal{F}$

Proposition 5.1. Let $f: X \longrightarrow Y$ be a continuous map and \mathcal{F} be a sheaf on X. Then $f_*\mathcal{F}$ is a sheaf on Y.

Proof. This immediately follows from the fact that if $(W_j)_j$ is an open covering of some open subset W of Y then, $\bigcup_j f^{-1}(W_j)$ is an open covering of the open $f^{-1}(W)$. Consequently, we obtain a functor

$$f_*: \mathcal{S}h_X \longrightarrow \mathcal{S}h_Y$$

This is compatible with composition in the following strong sense:

Lemma 5.1. Let $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ be continuous maps of topological spaces. Then, the functors $(g \circ f)_*$ and $g_* \circ f_*$ are equal.

Proof. Immediate.

5.2. **Pullback.** We saw in example 1.1 that if \mathcal{F} is a sheaf on X, then for any open subset U of X $\mathcal{F}_{|U}$ is a sheaf on U. Now if we take an arbitrary subset Z of X. the restriction of \mathcal{F} on Z is not necessarily a sheaf because an open set W of Z is not necessarily an open set of X. Next definition gives the meaning of $\mathcal{F}_{|Z}$, when Z is a closed subset of X. This will be generalized in Definition 5.3 to give the meaning of the pullback presheaf defined by a continuous map. For this purpose, note that if $f: X \longrightarrow Y$ is a continuous map between topological spaces and V is an open of Y, then the family $(U)_{f(U)\subseteq V}$ consisting of all open subsets U of X satisfying $f(U)\subseteq V$, is an inductive system for the inverse of the inclusion relation.

Definition 5.2. If $i: Z \longrightarrow X$ is the inclusion of a closed subset Z of X, and V is an open subset of Z. We define the restriction $\mathcal{F}_{|Z}$ as the sheafification of the following presheaf

$$V \longmapsto \lim_{\stackrel{\longrightarrow}{V \subset U}} \mathcal{F}(U)$$

Definition 5.3. Let $f: X \longrightarrow Y$ be a continuous map between topological spaces and \mathcal{G} be a presheaf on Y. We define the pullback presheaf of \mathcal{G} by the formula :

$$f_p \mathcal{G}(U) = \lim_{f(U) \subseteq V} \mathcal{G}(V).$$

Remark 5.2. In the language of categories. The pullback presheaf $f_p\mathcal{G}$ of \mathcal{G} is defined as the left adjoint of the pushforward f_* on presheaves. In other words, $f_p\mathcal{G}$ will be a presheaf on X such that

$$Mor_{\mathcal{P}reSh_X}(f_p\mathcal{G},\mathcal{F}) = Mor_{\mathcal{P}reSh_Y}(G,f_*\mathcal{F})$$

Proposition 5.2. Let $f: X \longrightarrow Y$ be a continuous map between topological spaces, x be a point of X and G be a presheaf on Y. Then, up to an isomorphism, we have $(f_pG)_x = G_{f(x)}$.

Proof.

$$(f_{p}\mathcal{G})_{x} = \underset{x \in U}{\underbrace{\lim}} f_{p}\mathcal{G}(U)$$

$$= \underset{x \in U}{\underbrace{\lim}} \underset{f(U) \subseteq V}{\underbrace{\lim}} \mathcal{G}(V)$$

$$= \underset{f(x) \in V}{\underbrace{\lim}} \mathcal{G}(V)$$

$$= \mathcal{G}_{f(x)}$$

Definition 5.4. Let $f: X \longrightarrow Y$ be a continuous map between topological spaces and \mathcal{G} be a sheaf on Y. The pullback sheaf $f^{-1}\mathcal{G}$ is defined by the formula :

$$f^{-1}\mathcal{G} = (f_p\mathcal{G})^{\dagger}$$

 $f^{-1}\mathcal{G}$ is also called the inverse image along the map f.

Remark 5.3. f^{-1} defines a functor :

$$f^{-1}: \mathcal{S}h_Y \longrightarrow \mathcal{S}h_X$$

 $\mathcal{G} \longmapsto f^{-1}\mathcal{G}$

The pullback f^{-1} is a left adjoint of pushforward on sheaves.

$$Mor_{Sh_X}(f^{-1}\mathcal{G}, \mathcal{F}) = Mor_{Sh_Y}(\mathcal{G}, f_*\mathcal{F}).$$

Example 5.1. Let \mathcal{F} be a sheaf on X and $x \in X$. Let $i : \{x\} \longrightarrow X$ be the inclusion map, then $i^{-1}\mathcal{F} = \mathcal{F}_x$

Lemma 5.2. Let $f: X \to Y$ be a continuous map between topological spaces, $x \in X$ and \mathcal{G} be a sheaf on Y, then the stalks $(f^{-1}\mathcal{G})_x$ and $\mathcal{G}_{f(x)}$ are equals.

Proof. This a combination of proposition 3.1 and proposition 5.2.

Lemma 5.3. Let $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ be continuous maps of topological spaces. The functors $(g \circ f)^{-1}$ and $f^{-1} \circ g^{-1}$ are canonically isomorphic. Similarly, $(g \circ f)_p = f_p \circ g_p$, for presheaves.

Proof. This follows from the fact that adjoint functors are unique up to unique isomorphism, and Lemma 5.1.

6. Exact sequences of sheaves

Definition 6.1. A sequence of presheaves with presheaves morphisms

$$\cdots \longrightarrow \mathcal{F}^{j-1} \xrightarrow{\psi^{j-1}} \mathcal{F}^{j} \xrightarrow{\psi^{j}} \mathcal{F}^{j+1} \xrightarrow{\psi^{j+1}} \cdots$$

is said to be exact if for all i, $Im(\psi^{j-1}) = ker(\psi^j)$. In particular the following exact sequence is call a short exact sequence when it is exact:

$$0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{G} \longrightarrow \mathcal{H} \longrightarrow 0$$

Remark 6.1. Let $\psi : \mathcal{F} \longrightarrow \mathcal{G}$ be a morphism of sheaves. Then by,

i) ψ is injective if and only if

$$0 \longrightarrow \mathcal{F} \stackrel{\psi}{\longrightarrow} \mathcal{G}$$

is an exact sequence.

ii) ψ is surjective if and only if

$$\mathcal{F} \xrightarrow{\psi} \mathcal{G} \longrightarrow 0$$

is an exact sequence.

Example 6.1. Let $X = \mathbb{C}$, and \mathcal{O}_X the sheaf of holomorphic functions and consider the map $d: \mathcal{O}_X \longrightarrow \mathcal{O}_X$, sending f(z) to f'(z). There is an exact sequence

$$0 \longrightarrow \mathbb{C}_X \longrightarrow \mathcal{O}_X \stackrel{d}{\longrightarrow} \mathcal{O}_X \longrightarrow 0$$

Indeed,

- * A function whose derivative vanishes identically is locally constant, so ker(d) is the constant sheaf \mathbb{C}_X .
- * In small open disks any holomorphic function is a derivative.

Lemma 6.1. Let $\psi : \mathcal{F} \longrightarrow \mathcal{G}$ be a morphism of sheaves on X. Then for any $x \in X$, we have $(ker\psi)_x = ker(\psi_x)$ and $(im\psi)_x = im(\psi_x)$.

Proof. Let $s_x \in (ker(\psi))_x$, and let U an open neighborhood of x such that $s \in (ker(\psi))(U) = ker(\psi(U))$, so $\psi(U)(s) = 0$, hence $\psi_x(s_x) = (\psi(U)(s))_x = 0$, so $s_x \in ker(\psi_x)$. Conversely, if $\psi_x(s_x) = 0$, then $(\psi(U)(s))_x = 0$ (U is an open neighborhood of x and $s \in \mathcal{F}(U)$), then there exists an open neighborhood $W \subseteq U$ of x such that $\psi(U)(s)_{|W} = 0$, it comes while $\psi(W)(s_{|W}) = 0$ and therefore $s_{|W} \in ker(\psi(W))$ whence $s_x = (s_{|V})_x \in (ker(\psi))_x$. One can proceed similarly for the image.

Theorem 6.1. A sequence of sheaves with sheaves morphisms

$$\cdots \longrightarrow \mathcal{F}^{j-1} \xrightarrow{\psi^{j-1}} \mathcal{F}^{j} \xrightarrow{\psi^{j}} \mathcal{F}^{j+1} \xrightarrow{\psi^{j+1}} \cdots$$

is an exact sequence if and only if for any $x \in X$

$$\cdots \longrightarrow \mathcal{F}_x^{j-1} \xrightarrow{\psi_x^{j-1}} \mathcal{F}_x^j \xrightarrow{\psi_x^j} \mathcal{F}_x^{j+1} \xrightarrow{\psi_x^{j+1}} \cdots$$

is an exact sequence.

Proof.

$$\cdots \longrightarrow \mathcal{F}^{j-1} \xrightarrow{\psi^{j-1}} \mathcal{F}^{j} \xrightarrow{\psi^{j}} \mathcal{F}^{j+1} \xrightarrow{\psi^{j+1}} \cdots$$

is exact sequence if and only if, for any j, $im(\psi^{j-1}) = ker(\psi^j)$ if and only if, for any $x \in X$ and for any j, $im(\psi^{j-1}_x) = ker(\psi^j_x)$ if and only if,

$$\cdots \longrightarrow \mathcal{F}_x^{j-1} \xrightarrow{\psi_x^{j-1}} \mathcal{F}_x^j \xrightarrow{\psi_x^j} \mathcal{F}_x^{j+1} \xrightarrow{\psi_x^{j+1}} \cdots$$

is exact sequence.

Proposition 6.1. Let \mathcal{F} be a subsheaf of \mathcal{G} on X. Then

$$0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{G} \longrightarrow \mathcal{G}/\mathcal{F} \longrightarrow 0$$

is exact sequence.

Proof. By proposition 4.1, for any $x \in X$,

$$0 \longrightarrow \mathcal{F}_x \longrightarrow \mathcal{G}_x \longrightarrow \mathcal{G}_x/\mathcal{F}_x = (\mathcal{G}/\mathcal{F})_x \longrightarrow 0$$

is exact sequence. Hence the result.

Remark 6.2. If

$$0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{G} \longrightarrow \mathcal{H} \longrightarrow 0$$

is an exact sequence over X, then \mathcal{F} identified with a sub-sheaf of \mathcal{G} and $\mathcal{G}/\mathcal{F} \simeq \mathcal{H}$.

Corollary 6.1. Let $\psi : \mathcal{F} \longrightarrow \mathcal{G}$ be a morphism of sheaves. Then

- 1) $im(\psi) \simeq \mathcal{F}/ker(\psi)$.
- 2) $coker(\psi) \simeq \mathcal{G}/im(\psi)$

Proof. 1) It is easy to check that for all $x \in X$, we have

$$0 \longrightarrow (ker(\psi))_x \longrightarrow \mathcal{F}_x \longrightarrow im(\psi)_x \longrightarrow 0$$

It follows by theorem 6.1, that

$$0 \longrightarrow ker(\psi) \longrightarrow \mathcal{F} \longrightarrow im(\psi) \longrightarrow 0$$

is an exact sequence. Also by remark 6.2 we have $im(\psi) \simeq \mathcal{F}/ker(\psi)$ 2) Similar to 1).

7. Glueing sheaves

In this section, we fix a topological space X, and we consider an open covering $\{U_i\}_{i\in I}$ of X with a sheaf \mathcal{F}_i on each subset U_i . Our goal is to "glue" the \mathcal{F}_i together, that is we search for a global sheaf \mathcal{F} such that $\mathcal{F}_{|U_i} = \mathcal{F}_i$ for all $i \in I$.

i) For $i, j \in I$, we denote by U_{ij} the intersection $U_i \cap U_j$. ii) For $i, j, k \in I$, we denote by U_{ijk} the intersection $U_i \cap U_j \cap U_k$.

Definition 7.1. A Gluing Datum consists of a family of sheaves \mathcal{F}_i over U_i and a family of morphisms $\delta_{ij}: \mathcal{F}_{i|U_{ij}} \longrightarrow \mathcal{F}_{j|U_{ij}}$ such that

- $i) \ \delta_{ii} = id_{\mathcal{F}_i}.$
- ii) $\delta_{ji} = \delta_{ij}^{-1}$. iii) $\delta_{ik} = \delta_{jk} \circ \delta_{ij}$ on U_{ijk} .

A morphism of gluing datum $(\mathcal{F}_i, \delta_{ij}) \longrightarrow (\mathcal{G}_i, \eta_{ij})$ is a family of morphism of sheaves $\psi_i : \mathcal{F}_i \longrightarrow \mathcal{G}_i$ such that the following diagram

is commutative.

Theorem 7.1. (Gluing sheaves) There exists a sheaf \mathcal{F} on X, unique up to ismorphism such that there are isomorphisms $\theta_i : \mathcal{F}_{U_i} \longrightarrow \mathcal{F}_i$ such that there are satisfying

$$\theta_j = \delta_{ij} \circ \theta_i$$
.

Proof. Let W be an open subset of X. We write $W_i = U_i \cap W$, and $W_{ij} = U_{ij} \cap W$. We are going to define the sections of \mathcal{F} over W by gluing sections of the \mathcal{F}'_i 's over W'_i 's along the W'_{ij} 's using the isomorphisms δ_{ij} . We define

$$\mathcal{F}(W) := \left\{ (s_i)_{i \in I} | \delta_{ji}(s_{i|W_{ij}}) = \delta_{j|W_{ij}}(s_{j|W_{ij}}) \right\} \subseteq \prod_{i \in I} \mathcal{F}_i(W_i). \tag{7.1}$$

The δ_{ij} 's are morphisms of sheaves and therefore are compatible with all restrictions maps (see definition 1.3). So if $V \subseteq W$ is another open subset we have

$$\delta_{ij}(s_{i|W_{ij}}) = s_{j|W_{ij}}.$$

Because of this, the defining condition (7.1) is compatible with componentwise restrictions, and they can therefore be used as the restriction maps in \mathcal{F} . So We have defined a presheaf on X.

* The first step: is to establish the isomorphisms $\theta_i : \mathcal{F}_{|U_i} \longrightarrow \mathcal{F}_i$. To avoid getting confused by the names of the indices, we shall work with a fixed index $j \in I$. Suppose $W \subseteq U_j$ is an open set. We have $W = W_j$, and projecting from the product $\prod_{i \in I} \mathcal{F}_i(W_i)$ onto the component

$$\mathcal{F}_j(W) = \mathcal{F}_j(W_j)$$

gives us a map $\theta: \mathcal{F}_{j|W_j} \longrightarrow \mathcal{F}_j$. Moreover, $\theta((s_i)_{i \in I}) = s_j$. The situation is summarized in the following commutative diagram

Now, we want to show that θ_j 's give the desired isomorphisms. We note that on the restrictions $W_{jj'}$, the requirement in the proposition, that

$$\theta_{j'} = \eta_{j'j} \circ \theta_j$$

is fulfilled. This follows directly from the (7.1) that

$$s_{j|W_{jj'}} = \delta_{jj'}(s_{j'|W_{jj'}}).$$

* θ_j is surjective: Let α a section of $\mathcal{F}_j(W)$ over some $W \subseteq U_j$, and pose $s = (\delta_{ij}(\alpha_{|W_{ij}})_{i \in I})$. Then s satisfies (7.1) and is an element $\mathcal{F}(W)$. Indeed, by definition 7.1 iii) we obtain

$$\delta_{ki}(\delta_{ij}(\alpha_{|W_{kij}})) = \delta_{kj}(\alpha_{|W_{kij}}).$$

for each $i, k \in I$, and that is just the condition (7.1). As $\delta_{jj}(\alpha_{|W_{jj}}) = \alpha$ by the first gluing request, the element s projects to the section α of \mathcal{F}_j .

- * θ_j is injective: Since $s_j = 0$ if follows that $s_{i|W_{ij}} = \delta_{ij}(s_j) = 0$ for each $i \in I$. Now \mathcal{F}_j is a sheaf, and the $\{V_{ij}\}_{i \in I}$ constitute an open covering of W_j , so we may conclude that s = 0 by definition 2.1 i).
- * The final step: To show that \mathcal{F} is a sheaf. Let $\{W_j\}_{j\in I}$ be an open covering of $W\subseteq U$, and $s_j\in \mathcal{F}(W_j)$ is a bunch of sections matching on the intersections $W_{jj'}$. Since $\mathcal{F}_{|U_i\cap W|}$ is a sheaf patch together to give sections s_i in $\mathcal{F}_{U_i\cap W}$ matching on the overlaps $U_{ij}\cap W$. This last condition means that $\delta ij(s_i)=s_j$. By definition $(s_i)i\in I$, then is a section in $\mathcal{F}(W)$ restricting to s_i . Hence the result.

The Gluing axiom (see definition 2.1) is easier: Let $s = (s_i)_{i \in I}$ in $\mathcal{F}(W)$, and a covering $\mathcal{L} = \{V_j\}_{j \in J}$ of W such that $s_{|V_j|} = 0$ for all $j \in J$, then also $s_{|V_j \cap W_i|} = 0$, and since $\{V_j \cap W_i\}_{j \in J}$ forms a covering of W_i , we must have $s_{|W_i|} = 0$ as well, since $\mathcal{F}_{W_i} = \mathcal{F}_i$ is a sheaf. But from the (7.1) we thus see that s = 0.

References

- [1] Bredon, G. E., *Sheaf Theory*, Second edition, Graduate Texts in Mathematics 170, Springer-Verlag, New York/Heidelberg/Berlin, 1997. ISBN 0-387-94905-4.
- [2] Godement, R., Topologie algébrique et théorie des faisceaux, Publications de l'Institut de mathématique de l'Université de Strasbourg 13, Hermann, Paris, 1958.
- [3] Grothendieck, A. and Dieudonné, J., Éléments de Géométrie Algébrique (EGA), Publications Mathématiques de l'IHÉS 4, 8, 11, 17, 20, 24, 28, 32, 1960–1967.
- [4] Kriz, I. Sophie, Introduction to Algebraic Geometry, Kindle Edition, 2021.
- [5] Spivak, M., A Comprehensive Introduction to Differential Geometry, Publish or Perish, Incorporated, 1975.

SIDI MOHAMED BEN ABDELLAH, FEZ, MOROCCO *Email address*: y.aitmohamed@yahoo.com