Clasificación

Taller de Procesamiento de Señales / Introducción a la Inteligencia Artificial

TPS-IIA Matias Vera Clasificación 1 / 52

Agenda

- 1 Introducción al problema de clasificación
- 2 Regresión Logística Binaria
- Regresión Logística Categórica
- 4 Linear Discriminant Analysis
- 5 K-Vecinos más cercanos
- **6** Support Vector Machines
- Árboles de decisión

TPS-IIA Matias Vera Clasificación 2 / 52

Teoría de Clasificación

Bases

Objetivo: Clasificar Y (con $|\mathcal{Y}|$ finito) a partir del valor de X: $\hat{Y} = \varphi(X)$

Función costo: Hard $\rightarrow \quad \ell(x,y) = \mathbb{1} \{ y \neq \varphi(x) \}$

Riesgo Esperado: Probabilidad de error \to $\mathbb{P}(Y \neq \varphi(X))$

TPS-IIA Matias Vera Clasificación 3 / 52

Teoría de Clasificación

Bases

Objetivo: Clasificar Y (con $|\mathcal{Y}|$ finito) a partir del valor de X: $\hat{Y} = \varphi(X)$

Función costo: Hard $\rightarrow \ell(x,y) = 1 \{ y \neq \varphi(x) \}$

Riesgo Esperado: Probabilidad de error $\rightarrow \mathbb{P}(Y \neq \varphi(X))$

Optimalidad

$$\mathbb{P}\left(Y \neq \varphi(X)\right) \geq 1 - \mathbb{E}\left[\max_{y} P_{Y|X}(y|X)\right]$$

con igualdad si y solo si $\varphi(x) = \arg \max_{y} P_{Y|X}(y|x)$.

Clasificador Bayesiano: $\varphi(x) = \arg \max_{y} P_{Y|X}(y|x)$

Error Bayesiano:
$$1 - \mathbb{E}\left[\max_{y} P_{Y|X}(y|X)\right]$$

TPS-IIA Matias Vera Clasificación 3 / 52

Clasificadores extremos

Clasificador bayesiano

El mejor clasificador (en términos de la probabilidad de error) es:

$$\mathbb{P}\left(Y \neq \varphi(X)\right) \geq 1 - \mathbb{E}\left[\max_{y} P_{Y|X}(y|X)\right]$$

Clasificador al azar para k clases

Cualquier clasificador razonable debe ganarle a la decisión al azar:

$$\mathbb{P}\left(Y\neq\varphi(X)\right)\leq 1-\frac{1}{k}$$

Clasificador dummy

Otro clasificador muy precario (pero mejor que el azaroso) es elegir siempre la clase más probable. La probabilidad de error del dummy es:

$$\mathbb{P}\left(Y \neq \varphi(X)\right) \leq 1 - \max_{y} P_{Y}(y)$$

TPS-IIA Matias Vera Clasificación 4 / 52

Interpretación Gráfica

$$1 - \mathbb{E}\left[\max_{y} P_{Y|X}(y|X)\right] = \sum_{y \in \mathcal{Y}} P_{Y}(y) \mathbb{P}(X \notin \mathcal{R}_{y}|Y = y)$$

donde \mathcal{R}_y es el conjunto de $x \in \mathcal{X}$ donde y es el máximo de $P_{Y|X=x}(y)$:

$$\mathcal{R}_{y} = \left\{ x \in \mathcal{X} : P_{Y|X=x}(y) = \max_{y' \in \mathcal{Y}} P_{Y|X=x}(y') \right\}$$

TPS-IIA Matias Vera Clasificación 5 / 52

Para los $x \in \mathcal{X}$ donde haya dos o más máximos de $P_{Y|X=x}(y)$, se asigna dicho x a solo una de dichas \mathcal{R}_y elegida arbitrariamente.

Interpretación Gráfica

$$1 - \mathbb{E}\left[\max_{y} P_{Y|X}(y|X)\right] = \sum_{y \in \mathcal{Y}} P_{Y}(y) \mathbb{P}(X \notin \mathcal{R}_{y}|Y = y)$$

donde \mathcal{R}_y es el conjunto de $x \in \mathcal{X}$ donde y es el máximo de $P_{Y|X=x}(y)$:

$$\mathcal{R}_{y} = \left\{ x \in \mathcal{X} : P_{Y|X=x}(y) = \max_{y' \in \mathcal{Y}} P_{Y|X=x}(y') \right\}$$

Para los $x \in \mathcal{X}$ donde haya dos o más máximos de $P_{Y|X=x}(y)$, se asigna dicho x a solo una de dichas \mathcal{R}_{y} elegida arbitrariamente.

TPS-IIA Matias Vera Clasificación 5 / 52

Objetivo

Quiero buscar $\varphi(\cdot)$ que minimice $\mathbb{P}(Y \neq \varphi(X))$. Es decir aprender el "clasificador bayesiano": $\varphi(x) = \arg\max_{y} P_{Y|X}(y|x)$.

TPS-IIA Matias Vera Clasificación 6 / 52

Objetivo

Quiero buscar $\varphi(\cdot)$ que minimice $\mathbb{P}(Y \neq \varphi(X))$. Es decir aprender el "clasificador bayesiano": $\varphi(x) = \arg\max_{y} P_{Y|X}(y|x)$.

Problemas numéricos

La propuesta de buscar $\varphi(\cdot)$ que minimice el riesgo empírico:

 $\frac{1}{n}\sum_{i=1}^{n}\mathbb{1}\left\{Y_{i}\neq\varphi(X_{i})\right\}$ suele tener problemas numéricos (no derivable).

TPS-IIA Matias Vera Clasificación 6 / 52

Objetivo

Quiero buscar $\varphi(\cdot)$ que minimice $\mathbb{P}(Y \neq \varphi(X))$. Es decir aprender el "clasificador bayesiano": $\varphi(x) = \arg\max_{y} P_{Y|X}(y|x)$.

Problemas numéricos

La propuesta de buscar $\varphi(\cdot)$ que minimice el riesgo empírico:

 $\frac{1}{n}\sum_{i=1}^{n}\mathbb{1}\left\{Y_{i}\neq\varphi(X_{i})\right\}$ suele tener problemas numéricos (no derivable).

Posible solución

El clasificador bayesiano se aprenderá en dos etapas:

- Aprender toda $P_{Y|X}(y|x)$.
- Quedarse con el máximo.

TPS-IIA Matias Vera Clasificación 6 / 52

Elementos de Teoría de Información

- $H(X) = \mathbb{E}\left[-\log P_X(X)\right]$ Entropía
- $h(X) = \mathbb{E}\left[-\log p_X(X)\right]$ Entropía diferencial
- $H(Y|X) = \mathbb{E}\left[-\log P_{Y|X}(Y|X)\right]$ Entropía condicional
- $h(Y|X) = \mathbb{E}\left[-\log p_{Y|X}(Y|X)
 ight]$ Entropía diferencial condicional
- ullet KL $(p_X\|q_X)=\mathbb{E}_{p_X}\left[\log\left(rac{p_X(X)}{q_X(X)}
 ight)
 ight]$ Divergencia de Kullback Leibler
- $I(X; Y) = KL(p_{XY} || p_X p_Y)$ Información Mutua

TPS-IIA Matias Vera Clasificación 7/52

Elementos de Teoría de Información

- $H(X) = \mathbb{E}\left[-\log P_X(X)\right]$ Entropía
- $h(X) = \mathbb{E}\left[-\log p_X(X)\right]$ Entropía diferencial
- ullet $H(Y|X) = \mathbb{E}\left[-\log P_{Y|X}(Y|X)
 ight]$ Entropía condicional
- $h(Y|X) = \mathbb{E}\left[-\log p_{Y|X}(Y|X)
 ight]$ Entropía diferencial condicional
- ullet KL $(p_X\|q_X)=\mathbb{E}_{p_X}\left[\log\left(rac{p_X(X)}{q_X(X)}
 ight)
 ight]$ Divergencia de Kullback Leibler
- $I(X; Y) = KL(p_{XY} || p_X p_Y)$ Información Mutua

Teorema

$$\mathsf{KL}(P||Q) \geq 0$$

con igualdad si y solo si P(y) = Q(y) para todo $y \in \mathcal{Y}$. (*Hint*: $\log(x) \le x - 1$).

TPS-IIA Matias Vera Clasificación 7 / 52

Divergencia de Kullback Leibler

Propuesta inicial

Busco $\hat{P}(y|x)$ que minimice:

$$\underbrace{\mathbb{E}\left[\mathit{KL}\left(\mathit{P}_{Y|X}(\cdot|X)\|\hat{\mathit{P}}(\cdot|X)\right)\right]}_{\mathsf{Kullback Leibler}} = \underbrace{\mathbb{E}\left[-\log\hat{\mathit{P}}(Y|X)\right]}_{\mathsf{Cross-entropy}} - \underbrace{\mathit{H}(Y|X)}_{\mathsf{Entropia condicional}}$$

TPS-IIA Matias Vera Clasificación 8 / 52

Divergencia de Kullback Leibler

Propuesta inicial

Busco $\hat{P}(y|x)$ que minimice:

$$\underbrace{\mathbb{E}\left[\mathit{KL}\left(\mathit{P}_{Y|X}(\cdot|X)\|\hat{\mathit{P}}(\cdot|X)\right)\right]}_{\mathsf{Kullback Leibler}} = \underbrace{\mathbb{E}\left[-\log\hat{\mathit{P}}(Y|X)\right]}_{\mathsf{Cross-entropy}} - \underbrace{\mathit{H}(Y|X)}_{\mathsf{Entropia condicional}}$$

Optimalidad para
$$\ell(x,y) = -\log \hat{P}(y|x)$$

$$\mathbb{E}\left[-\log \hat{P}(Y|X)\right] \geq H(Y|X)$$

son igualdad si y solo si $\hat{P}(y|x) = P_{Y|X}(y|x)$ para todo (x, y).

TPS-IIA Matias Vera Clasificación 8 / 52

Divergencia de Kullback Leibler

Propuesta inicial

Busco $\hat{P}(y|x)$ que minimice:

$$\underbrace{\mathbb{E}\left[\mathit{KL}\left(\mathit{P}_{Y|X}(\cdot|X)\|\hat{\mathit{P}}(\cdot|X)\right)\right]}_{\mathsf{Kullback}} = \underbrace{\mathbb{E}\left[-\log\hat{\mathit{P}}(Y|X)\right]}_{\mathsf{Cross-entropy}} - \underbrace{\mathit{H}(Y|X)}_{\mathsf{Entropia}\ \mathsf{condicional}}$$

Optimalidad para
$$\ell(x, y) = -\log \hat{P}(y|x)$$

$$\mathbb{E}\left[-\log \hat{P}(Y|X)\right] \geq H(Y|X)$$

son igualdad si y solo si $\hat{P}(y|x) = P_{Y|X}(y|x)$ para todo (x, y).

Mismatch de métricas

El mínimo de la cross entropy no tiene por que coincidir exactamente con el mínimo de la probabilidad de error. En general se mira la cross entropy para reducir el bias y la probabilidad de error para prevenir el overfitting.

TPS-IIA Matias Vera Clasificación 8 / 52

Hard/Soft Decision

Decisión Suave

Sea $x \in \mathbb{R}^d$, llamamos predicción soft de un algoritmo a la predicción de las probabilidades estimadas $\hat{P}(\cdot|x)$. Esta estimación es un vector de probabilidades de todas las clases posibles (no negativas y suman 1). Su desempeño se suele medir con la entropía cruzada $\mathbb{E}[-\log \hat{P}(Y|X)]$.

Decisión Dura

Sea $x \in \mathbb{R}^d$, llamamos predicción hard de un algoritmo a la predicción final de la clase estimada $\varphi(x)$. Es decir, es una estimación del valor de Y. Generalmente se la suele definir a partir de la predicción soft como:

$$\varphi(x) = \arg\max_{y \in \mathcal{Y}} \hat{P}(y|x)$$

Se desempeño se suele medir con la probabilidad de acierto $\mathbb{P}(Y = \varphi(X))$.

TPS-IIA Matias Vera Clasificación 9 / 52

Outline

- Introducción al problema de clasificación
- 2 Regresión Logística Binaria
- 3 Regresión Logística Categórica
- 4 Linear Discriminant Analysis
- 5 K-Vecinos más cercanos
- 6 Support Vector Machines
- Árboles de decisión

TPS-IIA Matias Vera Clasificación 10 / 52

Función Sigmoide

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

- $\sigma(z)$ representa probabilidades.
- z recibe el nombre de logit.

TPS-IIA Matias Vera Clasificación 11 / 52

Función Sigmoide

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

- $\sigma(z)$ representa probabilidades.
- z recibe el nombre de logit.

Propuesta

$$\hat{P}(1|x) = \sigma(w^T x + b)$$

$$\hat{P}(0|x) = 1 - \sigma(w^T x + b)$$

TPS-IIA Matias Vera Clasificación 11 / 52

Riesgo empírico

$$\frac{1}{n} \sum_{i=1}^{n} \ell(X_i, Y_i) =$$

$$-\frac{1}{n} \sum_{i=1}^{n} Y_i \log \left(\sigma(w^T X_i + b) \right) + (1 - Y_i) \log \left(1 - \sigma(w^T X_i + b) \right)$$

TPS-IIA Matias Vera Clasificación 12 / 52

Riesgo empírico

$$\frac{1}{n} \sum_{i=1}^{n} \ell(X_i, Y_i) =$$

$$-\frac{1}{n} \sum_{i=1}^{n} Y_i \log \left(\sigma(w^T X_i + b) \right) + (1 - Y_i) \log \left(1 - \sigma(w^T X_i + b) \right)$$

Elección del máximo

$$\hat{P}(1|x) \leqslant \hat{P}(0|x) \Leftrightarrow w^T x + b \leqslant 0$$

TPS-IIA Matias Vera Clasificación 12 / 52

Métricas para clases desbalanceadas

Precision-Recall

Cuando el costo de las clases está desbalanceado se utilizan las métricas *Precision* y *Recall*.

- Precision = $\mathbb{P}(Y = \phi(X)|\phi(X) = 1)$. Precision se utiliza cuando los falsos positivos tiene consecuencias graves. Por ejemplo, diagnosticar erróneamente una enfermedad a una persona sana
- Recall (TPR) = $\mathbb{P}(Y = \phi(X)|Y = 1)$. Recall se utiliza cuando cuando los falsos negativos tiene consecuencias graves. Por ejemplo, en la detección de fraudes, no detectar una transacción fraudulenta.

TPS-IIA Matias Vera Clasificación 13/52

Métricas para clases desbalanceadas

Precision-Recall

Cuando el costo de las clases está desbalanceado se utilizan las métricas *Precision* y *Recall.*

- Precision = $\mathbb{P}(Y = \phi(X)|\phi(X) = 1)$. Precision se utiliza cuando los falsos positivos tiene consecuencias graves. Por ejemplo, diagnosticar erróneamente una enfermedad a una persona sana
- Recall (TPR) = $\mathbb{P}(Y = \phi(X)|Y = 1)$. Recall se utiliza cuando cuando los falsos negativos tiene consecuencias graves. Por ejemplo, en la detección de fraudes, no detectar una transacción fraudulenta.

F1-score

Cuando la proporción de las clases está desbalanceada se utiliza la métrica F1:

$$F_1 = 2 \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$$

TPS-IIA Matias Vera Clasificación 13 / 52

Curvas ROC

Agregar un umbral

Puedo darle más peso a una clase:

$$w^T x + b \leq t$$

$$\mathsf{TPR} = \mathbb{P}(Y = \phi(X)|Y = 1)$$

$$\mathsf{FPR} = \mathbb{P}(Y \neq \phi(X)|Y = 0)$$

Area Under the Curve (AUC)

El AUC es el área bajo la curva ROC.

Equal Error Rate (EER)

El EER es el error para el cuál los errores FPR = 1 - TPR.

TPS-IIA Matias Vera Clasificación 14 / 52

Curvas ROC

TPS-IIA Matias Vera Clasificación 15 / 52

Outline

- Introducción al problema de clasificaciór
- 2 Regresión Logística Binaria
- 3 Regresión Logística Categórica
- 4 Linear Discriminant Analysis
- 5 K-Vecinos más cercanos
- Support Vector Machines
- Árboles de decisión

TPS-IIA Matias Vera Clasificación 16 / 52

Regresión Logística Categórica (k clases)

Regresión logística clásica

$$\hat{P}(y|x) = \begin{cases} \frac{e^{w_y^T x + b_y}}{1 + \sum_{j=1}^{k-1} e^{w_j^T x + b_j}} & y \in \{1, \dots, k-1\} \\ \frac{1}{1 + \sum_{j=1}^{k-1} e^{w_j^T x + b_j}} & y = k \end{cases}$$

TPS-IIA Matias Vera Clasificación 17 / 52

Regresión Logística Categórica (k clases)

Regresión logística clásica

$$\hat{P}(y|x) = \begin{cases} \frac{e^{w_y^T x + b_y}}{1 + \sum_{j=1}^{k-1} e^{w_j^T x + b_j}} & y \in \{1, \dots, k-1\} \\ \frac{1}{1 + \sum_{j=1}^{k-1} e^{w_j^T x + b_j}} & y = k \end{cases}$$

Softmax

$$\hat{P}(y|x) = \frac{e^{w_j^T x + b_j}}{\sum_{i=1}^k e^{w_j^T x + b_i}}, \quad y \in \{1, \dots, k\}$$

TPS-IIA Matias Vera Clasificación 17 / 52

Regresión Logística Categórica (k clases)

Regresión logística clásica

$$\hat{P}(y|x) = \left\{ egin{array}{ll} rac{e^{w_{j}^{T} imes h b_{j}}}{1 + \sum_{j=1}^{k-1} e^{w_{j}^{T} imes h b_{j}}} & y \in \{1, \cdots, k-1\} \ \ rac{1}{1 + \sum_{j=1}^{k-1} e^{w_{j}^{T} imes h b_{j}}} & y = k \end{array}
ight.$$

Softmax

$$\hat{P}(y|x) = \frac{e^{w_y^T x + b_y}}{\sum_{i=1}^k e^{w_i^T x + b_i}}, \qquad y \in \{1, \dots, k\}$$

Riesgo empírico

$$\frac{1}{n} \sum_{i=1}^{n} \ell(X_i, Y_i) = \frac{1}{n} \sum_{i=1}^{n} \left[\log \left(\sum_{j=1}^{k} e^{w_j^T X_i + b_j} \right) - \left(w_{Y_i}^T X_i + b_{Y_i} \right) \right]$$

TPS-IIA Matias Vera Clasificación 17 / 52

Regresión Softmax

Elección del máximo

$$\arg\max_{y} \hat{P}(y|x) = \arg\max_{y} w_{y}^{T} x + b_{y}$$

Se separa con hiperplanos!

TPS-IIA Matias Vera Clasificación 18 / 52

Confusion Matrix

TPS-IIA Matias Vera Clasificación 19 / 52

Generalización del F1 score

		Predicted					
		Airplane	≜ Boat	€ Car			
	Airplane	2	1	0			
Actual	📤 Boat	0	1	0			
	€ Car	1	2	3			

TPS-IIA Matias Vera Clasificación 20 / 52

Generalización del F1 score

		Predicted					
		Airplane	≜ Boat	€ Car			
Actual	Airplane	2	1	0			
	📤 Boat	0	1	0			
	⇔ Car	1	2	3			

	Label	True Positive (TP)	False Positive (FP)	False Negative (FN)	Precision	Recall	F1 Score
ST.	Airplane	2	1	1	0.67	0.67	2 * (0.67 * 0.67) / (0.67 + 0.67) = 0.67
<u></u>	Boat	1	3	0	0.25	1.00	2*(0.25 * 1.00) / (0.25 + 1.00) = 0.40
	Car	3	0	3	1.00	0.50	2 * (1.00 * 0.50) / (1.00 + 0.50) = 0.67

TPS-IIA Matias Vera Clasificación 20 / 5:

Generalización del F1 score

		Predicted					
		Airplane	≜ Boat	Car			
	Airplane	2	1	0			
Actual	≜ Boat	0	1	0			
	⇔ Car	1	2	3			

	Label	True Positive (TP)	False Positive (FP)	False Negative (FN)	Precision	Recall	F1 Score
ST.	Airplane	2	1	1	0.67	0.67	2 * (0.67 * 0.67) / (0.67 + 0.67) = 0.67
≜	Boat	1	3	0	0.25	1.00	2*(0.25 * 1.00) / (0.25 + 1.00) = 0.40
6	Car	3	0	3	1.00	0.50	2 * (1.00 * 0.50) / (1.00 + 0.50) = 0.67

$$\mathsf{Macro-} F_1 = \frac{0.67 + 0.40 + 0.67}{3} = 0.58$$

TPS-IIA Matias Vera Clasificación 20 / 52

Calibración

Si valido hiperparámetros con respecto a la probabilidad de error, ¿la salida siguen siendo probabilidades?

La concentración de probabilidades natural del softmax es buena para acercarme al clasificador bayesiano, pero puede descalibrar la interpretación probabilística de \hat{P} .

Guo et al. 2017: "On Calibration of Modern Neural Networks".

TPS-IIA Matias Vera Clasificación 21/52

Calibración

Temperature Scaling

Se soluciona con la inclusión de un nuevo parámetro (o hiper) au>0:

$$\hat{P}(y|x) = \frac{e^{(z(x))_y/\tau}}{1^T \cdot e^{z(x)/\tau}}$$

Es importante mirar la cross-entropy en la etapa de validación!

Dataset	Model	Uncalibrated	Temp. Scaling
Birds	ResNet 50	0.9786	0.8792
Cars	ResNet 50	0.5488	0.5311
CIFAR-10	ResNet 110	0.3285	0.2102
CIFAR-10	ResNet 110 (SD)	0.2959	0.1718
CIFAR-10	Wide ResNet 32	0.3293	0.2283
CIFAR-10	DenseNet 40	0.2228	0.1750
CIFAR-10	LeNet 5	0.4688	0.459
CIFAR-100	ResNet 110	1.4978	1.0442
CIFAR-100	ResNet 110 (SD)	1.1157	0.8613
CIFAR-100	Wide ResNet 32	1.3434	1.0565
CIFAR-100	DenseNet 40	1.0134	0.9026
CIFAR-100	LeNet 5	1.6639	1.6560
ImageNet	DenseNet 161	0.9338	0.8885
ImageNet	ResNet 152	0.8961	0.8657
SVHN	ResNet 152 (SD)	0.0842	0.0821
20 News	DAN 3	0.7949	0.7387
Reuters	DAN 3	0.102	0.0994
SST Binary	TreeLSTM	0.3367	0.2739
SST Fine Grained	TreeLSTM	1.1475	1.1168

Guo et al. 2017: "On Calibration of Modern Neural Networks".

TPS-IIA Matias Vera Clasificación 22 / 52

Outline

- Introducción al problema de clasificación
- 2 Regresión Logística Binaria
- 3 Regresión Logística Categórica
- 4 Linear Discriminant Analysis
- 5 K-Vecinos más cercanos
- Support Vector Machines
- Árboles de decisión

TPS-IIA Matias Vera Clasificación 23 / 52

Modelos Discriminativos y Generativos

Clasificación de Algoritmos

- Modelos Discriminativos: Modelan la dist. condicional $\hat{P}(y|x)$.
- Modelos Generativos: Modelan la dist. conjunta $\hat{P}(x, y)$.

Los modelos generativos permiten generar datos sintéticos!

TPS-IIA Matias Vera Clasificación 24 / 52

Modelos Discriminativos y Generativos

Clasificación de Algoritmos

- Modelos Discriminativos: Modelan la dist. condicional $\hat{P}(y|x)$.
- Modelos Generativos: Modelan la dist. conjunta $\hat{P}(x, y)$.

Los modelos generativos permiten generar datos sintéticos!

Linear Discriminant Analysis (LDA)

$$Y \sim \text{Cat}(\{c_1, \dots, c_K\}), \qquad X|Y = k \sim \mathcal{N}(\mu_k, \Sigma)$$

TPS-IIA Matias Vera Clasificación 24 / 52

Linear Discriminant Analysis

Expresiones Matemáticas

$$\hat{\rho}(x) = \sum_{k=1}^{K} c_k \frac{e^{-\frac{1}{2}(x-\mu_k)^T \Sigma^{-1}(x-\mu_k)}}{(2\pi)^{d_x/2} |\Sigma|^{1/2}}$$

$$\hat{P}(y|x) = \frac{e^{\mu_y^T \Sigma^{-1} x - \frac{1}{2} \mu_y^T \Sigma^{-1} \mu_y + \log(c_y)}}{\sum_{k=1}^K e^{\mu_k^T \Sigma^{-1} x - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log(c_k)}}$$

Relación con Regresión Logística

Si $w_y = \Sigma^{-1} \mu_y$ y $b_y = -\frac{1}{2} \mu_y^T \Sigma^{-1} \mu_y + \log(c_y)$, $\hat{P}(y|x)$ es el softmax. LDA utiliza hipótesis más fuertes ya que no solo asume $\hat{P}(y|x)$ softmax, sino también $\hat{p}(x)$ mezcla de gaussianas.

TPS-IIA Matias Vera Clasificación 25 / 52

Regresión Softmax

Elección del máximo

$$\arg\max_{y} \hat{P}(y|x) = \arg\max_{y} w_{y}^{T} x + b_{y}$$

Se separa con hiperplanos!

TPS-IIA Matias Vera Clasificación 26 / 52

Estimación Insesgada de Parámetros

Estimadores

$$\mathcal{D}_{k} = \{x_{i}: 1 \leq i \leq n \land y_{i} = k\}$$

$$c_{k} = \frac{\#(\mathcal{D}_{k})}{n}$$

$$\mu_{k} = \frac{1}{\#(\mathcal{D}_{k})} \sum_{x \in \mathcal{D}_{k}} x$$

$$\Sigma_{k} = \frac{1}{\#(\mathcal{D}_{k}) - 1} \sum_{x \in \mathcal{D}_{k}} (x - \mu_{k})(x - \mu_{k})^{T}$$

$$\Sigma = \frac{1}{n - K} \sum_{k=1}^{K} (\#(\mathcal{D}_{k}) - 1) \Sigma_{k}$$

TPS-IIA Matias Vera Clasificación 27 / 52

Quadratic Discriminant Analysis

Quadratic Discriminant Analysis (QDA)

$$Y \sim \text{Cat}(\{c_1, \cdots, c_K\}), \qquad X|Y = k \sim \mathcal{N}(\mu_k, \Sigma_k)$$

TPS-IIA Matias Vera Clasificación 28 / 52

Quadratic Discriminant Analysis

Quadratic Discriminant Analysis (QDA)

$$Y \sim \mathsf{Cat}(\{c_1, \cdots, c_K\}), \qquad X|Y = k \sim \mathcal{N}(\mu_k, \Sigma_k)$$

Expresiones Matemáticas

$$\hat{\rho}(x) = \sum_{k=1}^{K} c_k \frac{e^{-\frac{1}{2}(x-\mu_k)^T \sum_k^{-1}(x-\mu_k)}}{(2\pi)^{d_x/2} |\Sigma_k|^{1/2}}$$

$$\hat{P}(y|x) = \frac{e^{-\frac{1}{2}(x-\mu_y)^T \sum_y^{-1}(x-\mu_y) + \log(c_y) - \frac{\log|\Sigma_y|}{2}}}{\sum_{k=1}^K e^{-\frac{1}{2}(x-\mu_k)^T \sum_k^{-1}(x-\mu_k) + \log(c_k) - \frac{\log|\Sigma_k|}{2}}}$$

TPS-IIA Matias Vera Clasificación 28 / 52

Quadratic Discriminant Analysis

Quadratic Discriminant Analysis (QDA)

$$Y \sim \text{Cat}(\{c_1, \cdots, c_K\}), \qquad X|Y = k \sim \mathcal{N}(\mu_k, \Sigma_k)$$

Expresiones Matemáticas

$$\hat{\rho}(x) = \sum_{k=1}^{K} c_k \frac{e^{-\frac{1}{2}(x-\mu_k)^T \sum_k^{-1} (x-\mu_k)}}{(2\pi)^{d_x/2} |\Sigma_k|^{1/2}}$$

$$\hat{P}(y|x) = \frac{e^{-\frac{1}{2}(x-\mu_y)^T \sum_y^{-1}(x-\mu_y) + \log(c_y) - \frac{\log|\Sigma_y|}{2}}}{\sum_{k=1}^K e^{-\frac{1}{2}(x-\mu_k)^T \sum_k^{-1}(x-\mu_k) + \log(c_k) - \frac{\log|\Sigma_k|}{2}}}$$

Elección del máximo: NO ES LINEAL, ES CUADRÁTICO

$$\arg\max_{\mathbf{y}} \ -\frac{1}{2}(\mathbf{x}-\mu_{\mathbf{y}})^T \varSigma_{\mathbf{y}}^{-1}(\mathbf{x}-\mu_{\mathbf{y}}) + \log(c_{\mathbf{y}}) - \frac{\log|\varSigma_{\mathbf{y}}|}{2}$$

TPS-IIA Matias Vera Clasificación 28 / 52

Outline

- Introducción al problema de clasificación
- 2 Regresión Logística Binaria
- 3 Regresión Logística Categórica
- 4 Linear Discriminant Analysis
- 5 K-Vecinos más cercanos
- Support Vector Machines
- Árboles de decisión

TPS-IIA Matias Vera Clasificación 29 / 52

Modelos Paramétricos y No Paramétricos

Clasificación de Algoritmos

- Modelos Paramétrcios: Asumen conocimiento parcial sobre la distribución, indexándola por parámetros.
- Modelos No Paramétricos: No se asume una estructura a priori para la distribución.

TPS-IIA Matias Vera Clasificación 30 / 52

Modelos Paramétricos y No Paramétricos

Clasificación de Algoritmos

- Modelos Paramétrcios: Asumen conocimiento parcial sobre la distribución, indexándola por parámetros.
- Modelos No Paramétricos: No se asume una estructura a priori para la distribución.

Histograma

El histograma asume una densidad constante por regiones. En cada región asigna $\hat{p}(x) = \frac{K}{n \cdot V}$ donde n es la cantidad de muestras totales, K la cantidad de muestras en dicha región y V el volumen de la región.

TPS-IIA Matias Vera Clasificación 30 / 52

Adaptando el concepto a aprendizaje supervisado

Asumiendo que $\hat{P}(y) = \frac{N_y}{n}$ con N_y el número de muestras de la clase y, y que (en cada región) $\hat{p}(x|y) = \frac{K_y}{N_y \cdot V}$ con K_y la cantidad de muestras que caen en la región de la clase y, se obtiene:

$$\hat{P}(y|x) = \frac{\hat{p}(x|y)\hat{P}(y)}{\sum_{i=1}^{K} \hat{p}(x|i)\hat{P}(i)} = \frac{K_y}{K}$$

Es decir, la proporción de muestras de la clase y en la región.

TPS-IIA Matias Vera Clasificación 31 / 52

Adaptando el concepto a aprendizaje supervisado

Asumiendo que $\hat{P}(y) = \frac{N_y}{n}$ con N_y el número de muestras de la clase y, y que (en cada región) $\hat{p}(x|y) = \frac{K_y}{N_y \cdot V}$ con K_y la cantidad de muestras que caen en la región de la clase y, se obtiene:

$$\hat{P}(y|x) = \frac{\hat{p}(x|y)\hat{P}(y)}{\sum_{i=1}^{K} \hat{p}(x|i)\hat{P}(i)} = \frac{K_y}{K}$$

Es decir, la proporción de muestras de la clase y en la región.

K-Vecinos más cercanos

KNN fija el valor de vecinos K y en base a esto define las regiones. Por ejemplo, la región utilizada para computar un *feature* x es la región centrada en x que posee K muestras (las K más cercanas a x).

TPS-IIA Matias Vera Clasificación 31/52

TPS-IIA Matias Vera Clasificación 32 / 52

Elección del máximo

Notar que para quedarse con el máximo de $\hat{P}(y|x)$ no hace falta computarla. Simplemente se clasifica según sus K vecinos más cercanos, por mayoría.

TPS-IIA Matias Vera Clasificación 32 / 52

Outline

- Introducción al problema de clasificación
- 2 Regresión Logística Binaria
- 3 Regresión Logística Categórica
- 4 Linear Discriminant Analysis
- 5 K-Vecinos más cercanos
- 6 Support Vector Machines
- Árboles de decisión

TPS-IIA Matias Vera Clasificación 33 / 52

Clases linealmente separables

Sea la clasificación binaria $y \in \{-1,1\}$ y $z(x) = w^T \cdot x + b = 0$ su frontera de decisión. Decimos que las clases son linealmente separables, si existen w y b tales que $y \cdot z(x) > 0$ para todo $(x,y) \in \mathcal{D}_n$ (set de entrenamiento). Llamamos $f_i(w,b) = y_i z(x_i) > 0$ con $1 \le i \le n$.

TPS-IIA Matias Vera Clasificación 34 / 52

Clases linealmente separables

Sea la clasificación binaria $y \in \{-1,1\}$ y $z(x) = w^T \cdot x + b = 0$ su frontera de decisión. Decimos que las clases son linealmente separables, si existen w y b tales que $y \cdot z(x) > 0$ para todo $(x,y) \in \mathcal{D}_n$ (set de entrenamiento). Llamamos $f_i(w,b) = y_i z(x_i) > 0$ con $1 \le i \le n$.

• w es ortogonal a la frontera y por lo tanto $w//(x-x_*)$ con x_* la proyección ortogonal de x sobre la frontera.

$$|w^T(x-x_*)| = ||w|| ||x-x_*||$$

• Dado que x_* está sobre la frontera, $w^T(x - x_*) = z(x)$ y por lo tanto:

$$d(x_i) = ||x_i - x_*|| = \frac{|z(x_i)|}{||w||} = \frac{y_i \cdot z(x_i)}{||w||}$$

TPS-IIA Matias Vera Clasificación 34 / 52

Margen

Se define el margen unilateral como criterio de peor caso:

$$m(w,b) = \min_{1 \le i \le n} \frac{y_i(w^T \cdot x_i + b)}{\|w\|} = \frac{1}{\|w\|} \min_{1 \le i \le n} f_i(w,b) = \frac{f_k(w,b)}{\|w\|}$$

con k un índice óptimo (función de w y b). Por lo tanto, el problema a resolver es maximizar el margen: $\max_{w,b} m(w,b)$ st. $f_i(w,b) > 0$ para $i = 1, \dots, n$.

TPS-IIA Matias Vera Clasificación 35 / 52

Margen

Se define el margen unilateral como criterio de peor caso:

$$m(w,b) = \min_{1 \le i \le n} \frac{y_i(w^T \cdot x_i + b)}{\|w\|} = \frac{1}{\|w\|} \min_{1 \le i \le n} f_i(w,b) = \frac{f_k(w,b)}{\|w\|}$$

con k un índice óptimo (función de w y b). Por lo tanto, el problema a resolver es maximizar el margen: $\max_{w,b} m(w,b)$ st. $f_i(w,b) > 0$ para $i = 1, \dots, n$.

Escala

Sea $\alpha>0$, está claro la decisión $z(x)\geqslant 0$ no se ve afectada si reescalamos los parámetros $w\leftarrow \alpha w$ y $b\leftarrow \alpha b$. Esto mismo ocurre con el margen $m(\alpha w,\alpha b)=m(w,b)$. Con lo cuál no se pierde generalidad al asumir $f_k(w,b)=1$. Luego $m(w,b)=\frac{1}{\|w\|}$ y $f_i(w,b)\geq 1$ para todo $1\leq i\leq n$.

Las muestras en las que $f_i(w,b)=1$ se denominan vectores soporte.

TPS-IIA Matias Vera Clasificación 35/52

Problema de optimización primal

$$\min_{w,b} \frac{1}{2} ||w||^2$$
 s.t. $y_i(w^T x_i + b) \ge 1$ $(\forall \ 1 \le i \le n)$

Bishop - "Pattern Recognition and Machine Learning" Capítulo 7.

TPS-IIA Matias Vera Clasificación 36 / 52

Problema de optimización primal

$$\min_{w,b} \frac{1}{2} ||w||^2 \quad \text{s.t.} \quad y_i(w^T x_i + b) \ge 1 \quad (\forall \ 1 \le i \le n)$$

Relajando los márgenes

Mitigar problemas con outlaiers. Sea $C \geq 0$,

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i \quad \text{s.t.} \quad \left\{ \begin{array}{c} y_i(w^T x_i + b) \ge 1 - \xi_i \\ \xi_i \ge 0 \end{array} \right. \quad (\forall \ 1 \le i \le n)$$

Bishop - "Pattern Recognition and Machine Learning" Capítulo 7.

TPS-IIA Matias Vera Clasificación 36 / 52

Generalización a fronteras no lineales

Este método es adaptable a diferentes fronteras $z(x) = w^T \phi(x) + b$. Se puede demostrar, que el resultado final del entrenamiento depende de los predictores a través de $k(x_1,x_2) = \phi^T(x_1)\phi(x_2)$, función que recibe el nombre de kernel. Es por este motivo que se elige el kernel en lugar de $\phi(\cdot)$, siendo el más utilizado en SVM el denominado gaussiano o rbf: $k(x_1,x_2) = e^{-\gamma ||x_1-x_2||^2}$.

TPS-IIA Matias Vera Clasificación 37 / 52

Generalización a K-clases

- one-vs-one: Se toman todas las combinaciones de pares de clases (son $\frac{K(K-1)}{2}$) y se entrenan clasificadores binarios. Se clasifica seleccionando a la clase con más votos.
- one-vs-the-rest: Se entrenan K clasificadores binarios, donde cada uno toma una clase como positiva y el resto como negativa. Se clasifica según arg $\max_{k} w_k^T \phi(x) + b_k$.

TPS-IIA Matias Vera Clasificación 38 / 52

Generalización a K-clases

- one-vs-one: Se toman todas las combinaciones de pares de clases (son $\frac{K(K-1)}{2}$) y se entrenan clasificadores binarios. Se clasifica seleccionando a la clase con más votos.
- one-vs-the-rest: Se entrenan K clasificadores binarios, donde cada uno toma una clase como positiva y el resto como negativa. Se clasifica según arg $\max_k w_k^T \phi(x) + b_k$.

Generalización a Regresión

$$\min_{w,b} \frac{1}{2} ||w||^2 \quad \text{s.t.} \quad |w^T x_i + b - y_i| \le \epsilon \quad (\forall \ 1 \le i \le n)$$

TPS-IIA Matias Vera Clasificación 38 / 52

Tomemos el problema básico de SVM. Sea

$$J_1 = \min_{w,b} \frac{1}{2} ||w||^2$$
 s.t. $y_i(w^T \phi(x_i) + b) \ge 1$ $(\forall 1 \le i \le n)$

Dicho problema puede reescribirse usando multiplicadores de Lagrange α_i :

$$J_1 = \min_{w,b} \max_{\alpha_i \geq 0} \frac{1}{2} ||w||^2 - \sum_{i=1}^n \alpha_i [y_i(w^T \phi(x_i) + b) - 1]$$

Vectores Soportes

Notar que, el multiplicador óptimo (la solución del problema) debe cumplir que $\alpha_i=0$ para toda muestra que no sea vector soporte. En contraste, para los vectores soporte ocurre que $y_i(w^T\phi(x_i)+b)=1$.

Llamamos problema dual al problema definido a partir de invertir el mínimo y el máximo:

$$J_2 = \max_{\alpha_i \geq 0} \min_{w,b} \frac{1}{2} ||w||^2 - \sum_{i=1}^n \alpha_i [y_i(w^T \phi(x_i) + b) - 1]$$

TPS-IIA Matias Vera Clasificación 39 / 52

Teorema: Weak and Strongh duality

Para cualquier problema de optimización $J_1 \geq J_2$. En el caso particular del problema de SVM, por ser convexo, se obtiene que $J_1 = J_2$.

Fijo los multiplicadores $\alpha_i \geq 0$, igualamos a cero la derivada respecto de los parámetros para buscar el mínimo:

•
$$w - \sum_{i=1}^{n} \alpha_i y_i \phi(x_i) = 0$$
 \rightarrow $w = \sum_{i=1}^{n} \alpha_i y_i \phi(x_i)$

$$\bullet - \sum_{i=1}^{n} \alpha_i y_i = 0 \quad \to \quad \sum_{i=1}^{n} \alpha_i y_i = 0$$

La suma dentro de J_2 queda como:

$$\sum_{i=1}^{n} \alpha_{i} [y_{i}(w^{T}\phi(x_{i}) + b) - 1] = \sum_{i=1}^{n} \alpha_{i} y_{i} w^{T} \phi(x_{i}) + \sum_{i=1}^{n} \alpha_{i} y_{i} b - \sum_{i=1}^{n} \alpha_{i}$$
$$= ||w||^{2} + 0 - \sum_{i=1}^{n} \alpha_{i}$$

TPS-IIA Matias Vera Clasificación 40 / 52

La función a optimizar se puede reescribir como

$$\frac{1}{2} \|w\|^2 - \sum_{i=1}^n \alpha_i [y_i(w^T \phi(x_i) + b) - 1] = \left(\sum_{i=1}^n \alpha_i\right) - \frac{1}{2} \|w\|^2$$

La norma cuadrática puede vectorizarse como

$$\|\mathbf{w}\|^2 = \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j) = \alpha^T Q \alpha$$

donde Q es una matriz de elementos $Q_{i,j} = y_i y_j \phi(x_i)^T \phi(x_j)$ (depende de los predictores a través del kernel). Entonces, el problema se reduce a:

Problema de optimización dual

$$\max_{\alpha} \alpha^{T} 1 - \frac{1}{2} \alpha^{T} Q \alpha \quad \text{s.t.} \quad \alpha^{T} y = 0, \ \alpha_{i} \geq 0$$

Por cuestiones numéricas, suele traer complicaciones detectar vectores soportes como $\alpha_i > 0$. En la práctica suele compararse $\alpha_i > \epsilon$ con $\epsilon > 0$ un número pequeño.

TPS-IIA Matias Vera Clasificación 41 / 52

Bias

Sea \mathcal{S} el conjunto de índices de vectores soporte y $N_{\mathcal{S}}$ la cantidad de elementos de dicho conjunto; luego $y_i(w^T\phi(x_i)+b)=1 \ \forall \ i\in\mathcal{S}$ y $\alpha_i=0 \ \forall \ i\not\in\mathcal{S}$. El bias solo depende de los predictores a través del kernel:

$$b = \frac{1}{N_S} \sum_{i \in S} \left(y_i - w^T \phi(x_i) \right) = \frac{1}{N_S} \sum_{i \in S} \left(y_i - \sum_{j \in S} \alpha_j y_j \phi(x_j)^T \phi(x_i) \right)$$

Regla de decisión

Una vez entrenado, la regla de decisión para por evaluar el signo de z(x). Dicha decisión solo depende de los predictores a través del kernel:

$$z(x) = \sum_{j \in \mathcal{S}} \alpha_j y_j \phi(x_j)^T \phi(x) + b$$

TPS-IIA Matias Vera Clasificación 42 / 52

Outline

- 1 Introducción al problema de clasificación
- 2 Regresión Logística Binaria
- 3 Regresión Logística Categórica
- 4 Linear Discriminant Analysis
- 5 K-Vecinos más cercanos
- Support Vector Machines
- Árboles de decisión

TPS-IIA Matias Vera Clasificación 43 / 52

CART: Classification and Regression Trees

TPS-IIA Matias Vera Clasificación 44 / 52

TPS-IIA Matias Vera Clasificación 45 / 52

Modelado matemático por nodo

Llamamos:

- Q_m al conjunto de datos en el nodo m.
- $Q_m^L(j_m, t_m) = \{(x, y) \in Q_m : x_{j_m} \leq t_m\}.$
- $Q_m^R(j_m, t_m) = \{(x, y) \in Q_m : x_{j_m} > t_m\}.$
- $H(Q_m)$ a la función impureza del conjunto Q_m .
- $G_m(j_m, t_m) = \frac{|Q_m^L(j_m, t_m)|}{|Q_m|} H(Q_m^L(j_m, t_m)) + \frac{|Q_m^R(j_m, t_m)|}{|Q_m|} H(Q_m^R(j_m, t_m)).$
- ullet Busco para cada nodo $(j_m^*,t_m^*)=rg\min_{j_m,t_m}G_m(j_m,t_m)$

TPS-IIA Matias Vera Clasificación 46 / 52

Modelado matemático por nodo

Llamamos:

- Q_m al conjunto de datos en el nodo m.
- $Q_m^L(j_m, t_m) = \{(x, y) \in Q_m : x_{j_m} \leq t_m\}.$
- $Q_m^R(j_m, t_m) = \{(x, y) \in Q_m : x_{j_m} > t_m\}.$
- $H(Q_m)$ a la función impureza del conjunto Q_m .
- $G_m(j_m, t_m) = \frac{|Q_m^L(j_m, t_m)|}{|Q_m|} H(Q_m^L(j_m, t_m)) + \frac{|Q_m^R(j_m, t_m)|}{|Q_m|} H(Q_m^R(j_m, t_m)).$
- ullet Busco para cada nodo $(j_m^*,t_m^*)=rg\min_{j_m,t_m}G_m(j_m,t_m)$

Funciones impurezas habituales

Sea $p_{m,k}$ la proporción de muestras de la clase k en el nodo m:

- Gini: $H(Q_m) = \sum_k p_{m,k} (1 p_{m,k})$.
- Entropía: $H(Q_m) = \sum_k -p_{m,k} \log_2(p_{m,k})$.

TPS-IIA Matias Vera Clasificación 46 / 52

Condiciones de Parada

- Todas las observaciones tienen la misma etiqueta.
- Si la rama tiene menos de un número preestablecido de observaciones.
- Otras (ver documentación).

TPS-IIA Matias Vera Clasificación 47 / 52

Condiciones de Parada

- Todas las observaciones tienen la misma etiqueta.
- Si la rama tiene menos de un número preestablecido de observaciones.
- Otras (ver documentación).

No se Normaliza

Dado que los árboles trabajan comparando de a un feature por vez, no tiene sentido normalizar. Además al no utilizar gradientes para la optimización, no hay problemas de convergencia.

TPS-IIA Matias Vera Clasificación 47 / 52

Condiciones de Parada

- Todas las observaciones tienen la misma etiqueta.
- Si la rama tiene menos de un número preestablecido de observaciones.
- Otras (ver documentación).

No se Normaliza

Dado que los árboles trabajan comparando de a un feature por vez, no tiene sentido normalizar. Además al no utilizar gradientes para la optimización, no hay problemas de convergencia.

Importancia de cada Feature

La *Gini Importance* se define como la disminución total de la impureza del nodo, ponderada por la probabilidad de llegar a ese nodo (normalizado).

TPS-IIA Matias Vera Clasificación 47 / 52

Problemas de regresión

Modelando la función regresión como constante por regiones, este método puede ser adaptado. Como función impureza suele usarse el error cuadrático medio:

$$H(Q_m) = \sum_{(x,y)\in Q_m} (y - \bar{y}_m)^2$$

donde \bar{y}_m es el promedio de las y en Q_m .

TPS-IIA Matias Vera Clasificación 48 / 52

Problemas de regresión

Modelando la función regresión como constante por regiones, este método puede ser adaptado. Como función impureza suele usarse el error cuadrático medio:

$$H(Q_m) = \sum_{(x,y)\in Q_m} (y - \bar{y}_m)^2$$

donde \bar{y}_m es el promedio de las y en Q_m .

Podado: Regularización

Sea T un árbol determinado (sin condiciones de parado fuertes), L(T) su respectivo conjunto de hojas y α el parámetro de complejidad. Se denomina medida de costo-complejidad a

$$H_{\alpha}(T) = \sum_{m \in L(T)} \frac{|Q_m|}{n} \cdot H(Q_m) + \alpha \cdot |L(T)|$$

La poda se basa en quedarse con el subárbol de menor costo-complejidad.

TPS-IIA Matias Vera Clasificación 48 / 52

Poda

TPS-IIA Matias Vera Clasificación 49 / 52

Poda

TPS-IIA Matias Vera Clasificación 50 / 52

- La cantidad de candidatos a óptimos es menor a la cantidad de subárboles (el T_2 nunca es el de menor costo-complejidad).
- El subárbol se elige por validación (típicamente sobre el error de clasificación) comparando todos los casos posibles (en este caso 4 candidatos).

TPS-IIA Matias Vera Clasificación 50 / 52

Bosques aleatorios

Bagging

El problema de los árboles de decisión es el *overfitting*. Las condiciones de stop y la poda ayudan a combatirlo, pero muchas veces no son suficiente. Es por eso que surge *Bagging*: Entrenar múltiples algoritmos y decidir por mayoría o promedio (en clasificación o regresión respectivamente). Un algoritmo de múltiples árboles se llama bosque.

¿Por que promediar?

 El promedio mantiene la esperanza y reduce la varianza en muestras i.i.d:

$$\mathbb{E}\left[\frac{1}{B}\sum_{b=1}^{B}Z_{b}\right] = \mu, \qquad \operatorname{var}\left(\frac{1}{B}\sum_{b=1}^{B}Z_{b}\right) = \frac{\sigma^{2}}{B}$$

 En clasificación, si se piensan etiquetas en codificación one-hot, promediar para luego elegir el máximo equivale a elegir la respuesta mayoritaria.

TPS-IIA Matias Vera Clasificación 51 / 52

Bosques aleatorios

Se desea entrenar varios algoritmos (de manera que sean variados). Para asegurar ésto, se toman dos decisiones:

No usar todos los features

En lugar de usar todos los d_x features, para asegurar variedad en los árboles, para cada nodo se eligen al azar $\sqrt{d_x}$ features.

TPS-IIA Matias Vera Clasificación 52 / 52

Bosques aleatorios

Se desea entrenar varios algoritmos (de manera que sean variados). Para asegurar ésto, se toman dos decisiones:

No usar todos los features

En lugar de usar todos los d_x features, para asegurar variedad en los árboles, para cada nodo se eligen al azar $\sqrt{d_x}$ features.

Bootstrap

Generar B conjuntos de datos diferentes del mismo tamaño que el dataset original n. Para esto, se utiliza una técnica llamada Bootstrap: Se eligen al azar n datos del conjunto $con\ reposición\ y$ se arma cada conjunto Bootstrap, de manera que la probabilidad que un dato no esté en el conjunto es del $\approx 37\%$:

$$\left(1-\frac{1}{n}\right)^n\to e^{-1}$$

TPS-IIA Matias Vera Clasificación 52 / 52