Interferencia en películas delgadas

Universidad Nacional de Tucumán

May Juarez Ferriol

Franjas de interferencia

Figura 1: Índice de refracción en función de longitud de onda para varios materiales

De la figura 1, obtenemos los valores:

$$n = 1,775 \ para \ 400 \ nm$$

 $n = 1,725 \ para \ 600 \ nm$

Si la película tiene espesor t, la luz tiene incidencia normal y longitud de onda l en la película; si ninguna o si ambas ondas reflejadas en las dos superficies tienen un desplazamiento de fase de medio ciclo por reflexión, las condiciones para que haya interferencia constructiva son las dadas por la ecuación (1). [1]

$$2t = m\lambda \quad (m = 0, 1, 2, ...)$$
 (1)

En nuestro caso, la longitud de onda estará dada por la ecuación (2). [1]

$$\lambda = \frac{\lambda_0}{n} \tag{2}$$

Por lo tanto, el grosor de la cuña en distintas posiciones será el mostrado en la tabla 1.

Índice de refracción 1.775	Longitud de onda [nm] 225
N° de mínimo	Grosor de cuña [nm]
0	0
1	112.5
2	225.0
3	337.5
4	450.0
5	562.5

Índice de refracción 1.725	Longitud de onda [nm] 348
N° de mínimo	Grosor de cuña [nm]
0	0
1	174.0
2	348.0
3	522.0
4	696.0
5	870.0

Tabla 1: Grosor de cuña en función de número de mínimo

Cambio de fase de ondas reflejadas

Suponga que una onda de luz con amplitud de campo eléctrico E_i viaja en un material óptico con índice de refracción n_a . La onda incide en dirección normal en la interfaz con otro material óptico con índice n_b . La amplitud E_r de la onda que se refleja en la interfaz es proporcional a la amplitud E_i de la onda incidente, y está dada por la ecuación 3. [1]

$$E_r = \frac{n_a - n_b}{n_a + n_b} E_i \tag{3}$$

En la ecuación podemos ver que si n_a es mayor a n_b (Fig.), las amplitudes tendrán el mismo signo, por lo que no hay desplazamiento de fase entre las ondas, y signo contrario si n_b es mayor, por lo que el desplazamiento de fase entre ambas es π radianes, o medio ciclo.

Si n_a y n_b fueran iguales, es decir, los medios tienen el mismo índice de refracción, entonces no va a haber una onda reflejada.

Interferómetro de Michelson

Referencias

[1] H. D. Young, R. A. Freedman. Sears and Zemansky's University Physics: with Modern Physics, 14th ed. (Pearson, Boston, 2016), p. 1169, 1171, 1172, 1176-1177.