ЛЕКЦИЯ 11.

ПОНЯТИЕ КОНФОРМНОГО ОТОБРАЖЕНИЯ

§1. Определение конформного отображения в точке и в области. Основные свойства конформного отображения

Ранее мы показали (см. лекцию 2), что однозначная функция f(z) = u(x, y) + iv(x, y) имеет производную f'(z) в точке z тогда и только тогда, функция дифференцируема в вещественном смысле и выполняются условия Коши-Римана:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \tag{1}$$

Напомним, что такую функцию называют аналитической в точке z.

Рассмотрим некоторые геометрические свойства аналитической функции f(z) в малой окрестности точки z_0 , считая $f'(z_0) \neq 0$. Пусть C – кривая, выходящая из точки z_0 . На плоскости w=u+iv ей соответствует кривая Γ , выходящая из точки $w_0=f(z_0)$ (рис.1, рис. 2) . Пусть z – соседняя точка кривой C, w=f(z) – соответствующая ей точка кривой Γ . При $z \to z_0$ будет

 $w \to w_0$, тогда

$$\frac{w - w_0}{z - z_0} \to f'(z_0) \implies \frac{\left| w - w_0 \right|}{\left| z - z_0 \right|} \to \left| f'(z_0) \right| \tag{2}$$

Предельное соотношение (2) допускает следующую трактовку. Вспомним, что величины $|z-z_0|$ и $|w-w_0|$ являются хордами кривых C и Γ соответственно, и, в случае их малости, эти хорды называют линейными элементами кривых C и Γ в точках z_0 и w_0 соответственно. Тогда, предельное равенство (1) указывает на то, что отношение линейного элемента кривой Γ к линейному элементу кривой C одно и тоже, не зависит от вида кривых C и Γ и равно модулю производной функции f(z) в точке z_0 .

Итак, величина $|f'(z_0)|$ характеризует увеличение линейных элементов в точке z_0 . Она называется коэффициентом растяжения в точке z_0 .

Далее, поскольку производная $f'(z_0)$ является комплексным числом, то она имеет аргумент. Из предельного равенства (2) следует, что этот аргумент совпадает, с точностью до малых высокого порядка, с выражением

$$\arg f'(z_0) \approx \arg \frac{w - w_0}{z - z_0} = \arg(w - w_0) - \arg(z - z_0)$$

Но $\arg(w-w_0)=\beta$, $\arg(z-z_0)=\alpha$ (см. рис.1, рис. 2). Тогда, в пределе при $z\to z_0$ и $w\to w_0$ имеем $\alpha\to\alpha_0,\,\beta\to\beta_0$, где $\alpha_0,\,\beta_0$ — углы наклона касательных к кривым C и Γ соответственно. В пределе получим

$$\arg f'(z_0) = \beta_0 - \alpha_0$$

Итак, $\arg f'(z_0)$ равен углу, на который надо повернуть касательную к кривой C в точке z_0 , чтобы получить касательную к кривой Γ в точке w_0 . В силу этого свойства $\arg f'(z_0)$ задает вращение отображения в точке z_0 .

Отсюда следует, что угол φ пересечения двух кривых C_1 и C_2 в точке z_0 равен углу Φ пересечения кривых $\Gamma_1 = f(C_1)$ и $\Gamma_2 = f(C_2)$ в точке w_0 (см. рис. 3), т.е. $\Phi = \varphi$. Действительно, каждая из сторон угла φ направлена по касательной либо к кривой C_1 , либо к кривой C_2 . Поэтому две стороны угла поворачивается на один и тот же угол $(\beta_0 - \alpha_0)$ и совпадают, при отображении, задаваемом функцией w = f(z), со сторонами угла Φ . Следовательно, $\Phi = \varphi$.

Итак, отображение

$$u = u(x, y), v = v(x, y),$$
 (3)

задаваемое однозначной аналитической функцией f(z), $f'(z_0) \neq 0$, сохраняет — в малой окрестности точки z_0 — углы пересечения кривых образа и прообраза и растягивает линейные элементы кривых с коэффициентом подобия $k = |f'(z_0)|$. Такие отображения называют конформными в окрестности точки z_0 .

В окрестности точки z_0 однозначная функция $f(z), f'(z_0) \neq 0$ будет взаимно однозначной. Действительно, разложим отображение (1) в ряд Тейлора в окрестности точки z_0 :

$$u - u_0 = \left(\frac{\partial u}{\partial x}\right)_0 (x - x_0) + \left(\frac{\partial u}{\partial y}\right)_0 (y - y_0) + \cdots$$
$$v - v_0 = \left(\frac{\partial v}{\partial x}\right)_0 (x - x_0) + \left(\frac{\partial v}{\partial y}\right)_0 (y - y_0) + \cdots$$

Если пренебречь членами высшего порядка малости, то отображение (3) будет обратимым, если

$$\Delta = \left(\frac{\partial u}{\partial x}\right)_0 \left(\frac{\partial v}{\partial y}\right)_0 - \left(\frac{\partial u}{\partial y}\right)_0 \left(\frac{\partial v}{\partial x}\right)_0 \neq 0$$

Так как функция f(z) = u(x, y) + iv(x, y) является аналитической, мы можем производные по y, пользуясь условиями Коши-Римана (1), выразить через производные по x:

$$\Delta = \left(\frac{\partial u}{\partial x}\right)_0^2 + \left(\frac{\partial v}{\partial x}\right)_0^2 = \left|\left(\frac{\partial u}{\partial x}\right)_0 + i\left(\frac{\partial v}{\partial x}\right)_0\right|^2 = \left|f'(z_0)\right|^2 \neq 0$$

Отсюда следует, что величины $(x-x_0)$, $(y-y_0)$ однозначно выражаются через величины $(u-u_0)$, $(v-v_0)$, поэтому – в малой окрестности точки z_0 – определено обратное, однозначное отображение z=g(w), аналитическое в малой окрестности точки z_0 .

Это значит, что между малыми окрестностями точек z_0 и w_0 устанавливается взаимнооднозначное соответствие.

Распространим локальные свойства отображения f(z) на всю односвязную область G комплексной плоскости z. Пусть D – образ G при отображении f(z), т.е. D = f(G).

Определение 1. Отображение области G комплексной плоскости z на область D комплексной плоскости w, задаваемое непрерывной функцией f(z), будем называть конформным g G, если это отображение во g всех точках g g обладает свойствами сохранения углов пересечения кривых образа и прообраза и постоянства растяжений.

Очевидно, что аналитическая функция f(z) такая, что $f'(z) \neq 0$ в каждой точке области G отображает G на D конформно. Поэтому f(z) конформно в G в силу определения 1.

Если в области D введена некоторая ортогональная криволинейная система координат, то при конформном отображении эта система координат перейдет также в ортогональную систему.

Лемма. Пусть функция f(z) является однозначной аналитической функцией в области G и $f'(z) \neq 0$ в каждой точке $z \in G$. Тогда функция f(z) производит конформное отображение области G на область D комплексной плоскости w.

Доказательство следует из определения 1 и описанных выше свойств аналитической функции в окрестности точки z_0 , когда $f'(z_0) \neq 0$.

Оказывается, что взаимно - однозначное аналитическое отображение области G комплексной плоскости z на область D комплексной плоскости w является определяющим свойством конформного отображения.

Теорема. Для того, чтобы непрерывная функция f(z) задавала конформное отображение области G на область D необходимо и достаточно, чтобы она была взаимнооднозначной аналитической функцией.

Доказательство опускаем. Отметим только, что при доказательстве теоремы показывают, что из конформности следует взаимная однозначность и аналитичность функции, при этом $f'(z) \neq 0$ в любой точке $z \in G$. Тогда теорема следует из леммы.

§2. Примеры конформных отображений

І. Отображение посредством линейной функции

Рассмотрим линейную функцию $L(z) = \alpha z + \beta$, где α , β — комплексные константы. В действительных переменных это функция задает отображение $x, y \rightarrow u, v$ в виде

$$u = \alpha_1 x - \alpha_2 y + \beta_1$$
$$v = \alpha_2 x + \alpha_1 y + \beta_2$$

Здесь $\alpha = \alpha_1 + i\alpha_2$, $\beta = \beta_1 + i\beta_2$

Очевидно, что $L'(z) = \alpha$, причем $L'(z) \neq 0$, если $\alpha \neq 0$. Поэтому L(z) производит конформное отображение всей плоскости комплексного переменного z. При этом отображении

касательные ко всем кривым плоскости z поворачиваются на *один и тот же угол*, равный $\operatorname{Arg} \alpha$, и растяжение во всех точках оказываются равным $|\alpha|$.

Пусть $\alpha = 1$. Тогда $L(z) = z + \beta$, имеем сдвиг всей плоскости как целого на вектор β . Поворот отсутствует, растяжение отсутствует (коэффициент $k = |\alpha| = 1$).

Пусть $\alpha \neq 1$. То отображение w = L(z) можно представить в виде $w - \gamma = \alpha(z - \gamma)$, где $\gamma - \alpha \gamma = \beta$. Отсюда следует, что γ есть неподвижная точка отображения, так как из равенства $z = \gamma$ следует равенство $w = \gamma$. Далее, каждый вектор $(z - \gamma)$, выходящий из точки γ , поворачивается на угол $\operatorname{Arg} \alpha$ и подвергается растяжению в $|\alpha|$ раз, превращаясь в вектор $(w - \gamma)$, выходящий из той же точки γ . Итак, отображение $L(z) = \alpha z + \beta$, $\alpha \neq 1$ сводится к повороту всей плоскости как целого вокруг точки $\gamma = \frac{\beta}{1-\alpha}$ на угол $\operatorname{Arg} \alpha$ и к растяжению относительно этой точки в $|\alpha|$ раз.

II. Конформное отображение посредством показательной функции.

Из определения показательной функции имеем

$$w = e^z = e^x (\cos y + i \sin y)$$
 $(z = x + iy)$

Здесь $|w| = e^x$, Arg $w = y + 2k\pi$ ($y = \arg w$, $0 \le y < 2\pi$). Несложно видеть, что период этой функции есть $2\pi i$:

$$e^{z+2\pi i} = e^z e^{2\pi i} = e^z (\cos 2\pi + i \sin 2\pi) = e^z$$

Исследуем отображение плоскости, задаваемое этой функцией. Заметим, что значение w=0 не принимается этой функцией ни при каком z, т.к. $w=e^z>0$ при любом z. Любой другой точке $w\neq 0$ соответствует z, удовлетворяющее равенству $w=e^z$. Действительно, рассматривая равенство $w=e^z$ как уравнение относительно z, получим

$$z = \text{Ln } w = \ln|w| + i \text{ Arg } w = \ln|w| + i \left(\arg w + 2k\pi\right), \ k = 0, \pm 1, \pm 2...$$
 (4)

Все эти точки — при фиксированном w — расположены на расстоянии 2π друг от друга на одной прямой $x = \ln |w|$, параллельной мнимой оси (см. левую часть рис. 5, где точки (4) обозначены крестиками). Этих точек бесконечно много, поэтому Ln w — многозначная функция.

Рис. 4

Рассмотрим, во что отображается сетка декартовых координат точки z. Пусть z=c+it — прямая, проходящая через точку x=c параллельно мнимой оси y. Тогда $w=e^c(\cos t+i\sin t)$, т.е. изображающая точка будет находится на окружности с центром в начале координат и радиусом e^c . При $-\infty < t < +\infty$ точка z обегает прямую от $-\infty$ до $+\infty$, изображающая точка w обегает окружность бесконечно много раз.

Пусть z = t + ic' -- прямая, параллельная действительной оси x и проходящая через точку y = c' (рис.3). Тогда $w = e^t (\cos c' + i \sin c')$. Точка w движется по прямой, проходящей

через начало координат и составляющей с осью x угол c'. При $-\infty < t < +\infty$ точка w движется по лучу от w = 0 до $w = \infty$.

Итак, при отображении плоскости z посредством функции $w=e^z$ семейство прямых, параллельных мнимой оси, преобразуется в семейство окружностей, а семейство прямых, параллельных действительной оси, — в семейство прямолинейных лучей, выходящих из начала координат. Это значит, что декартовая сетка координат отображается в сетку полярных координат.

Опишем теперь отображение $w = e^z$ как конформное отображение. Это отображение должно быть — по теореме предыдущего параграфа — взаимно однозначным, поэтому рассмотрим его на области G, где обратное отображение

$$z = \text{Ln } w = \ln |w| + i (\arg w + 2k\pi), k = 0, \pm 1, \pm 2...$$

является однозначным (прямое отображение $w=e^z$ уже однозначно). Область G должна содержать $o\partial hy$ точку многозначной функции ${\rm Ln}\,w$. Этому условию удовлетворяет прямолинейная полоса шириной $h,\,0\leq h<2\pi$, параллельная действительной оси:

Рис. 5

Полоса G ограничена прямыми линиями $y = \varphi_0$, $y = \varphi_0 + h$. Образ полосы (область D) есть угол раствора h с вершиной в начале координат, ограниченный прямолинейными лучами $\arg w = \varphi_0$, $\arg w = \varphi_0 + h$. При этом соответствие между точками областей G и D будет взаимно однозначным, так как в рассматриваемой полосе G обратное отображение $\ln w$ будет однозначным (полоса G содержит одно значение $\ln w$).

Мы видим, что показательная функция $w = e^z$ отображает полосу G шириной h $(0 \le h < 2\pi)$, параллельную действительной оси, на угол раствора h c вершиной g начале координат конформно.

При этом отображении сетка декартовых координат переходит в сетку полярных координат. Поэтому к показательной функции прибегают каждый раз, когда нужно конформно отобразить некоторую прямолинейную полосу на внутренность угла раствора.