Comment évaluer l'efficacité énergétique d'un système?

Sciences de l'ingénieur - Première spécialité

I. L'énergie

a. Définitions

Énergie: grandeur qui caractérise le changement d'état d'un système (unité de compte). Elle est abstraite (ne se mesure pas mais se calcule) et <u>se conserve</u>. Plus généralement, c'est un <u>concept</u>

Énergie primaire : disponible dans l'environnement, exploitable sans transformation

Types d'énergies : mécanique, <u>électrique</u>, <u>thermique</u>, chimique, <u>hydraulique</u>, rayonnante,

nucléaire

Énergie d'entrée absorbée, énergie de sortie utile, énergie perdue dissipée

b. Formules générales

$$\mathcal{E} = P \times t$$
 $\mathcal{E} = \text{énergie en Joules (J) 1 Wh = 3600 J}$
 $P = \text{Puissance en Watts (W)}$
 $t = \text{temps en secondes (s)}$
 $\mathcal{E}_{perdue} = \mathcal{E}_{conso} - \mathcal{E}_{utile}$

c. L'énergie mécanique

Énergie potentielle
$$\mathscr{E}_{p} = m \times g \times h$$

 $m = masse (kg)$
Sur Terre, $g = 9.81 \ m.s^{-2}$
 $h = altitude (m)$

Énergie cinétique en translation
$$\mathscr{E}_c = \frac{1}{2} \times m \times v^2$$

Énergie cinétique en rotation $\mathscr{E}_c = \frac{1}{2} \times I \times \omega^2$
 $I = moment \ d'inertie \ (kg/m2)$
 $\omega = vitesse \ de \ rotation \ angulaire \ (rad/s)$

II. Le rendement

Rendement
$$\eta = \frac{E_{utile}}{E_{conso}}$$

S'exprime en pourcentage, toujours inférieur ou égal à 100% car un système ne peut fournir plus d'énergie qu'il en consomme (il y a toujours des pertes).

Le rendement global est le produit des rendements de chaque bloc fonctionnel de la chaîne de puissance (Alimenter - Distribuer - Convertir - Transmettre) et est toujours inférieur au plus petit des rendements

$$\eta_{global} = \eta_{alimenter} \times \eta_{distribuer} \times \eta_{convertir} \times \eta_{transmettre}$$

III. La puissance

La puissance est le produit de deux grandeurs :

- Une grandeur d'effort, qui « tend » à déplacer une certaine quantité de matière
- Une grandeur de flux, qui traduit le déplacement avec un certain « débit » d'une quantité de matière

Nature de l'énergie		Grandeur de flux (cinétique)	Grandeur d'effort (potentiel)	Forme de la puissance en Watts (W)
Domaine électrique		Courant électrique I en Ampères (A)	Tension électrique U en Volts (V)	$P_e = U \times I$
Domaine mécanique	Translation	Vitesse linéaire v en m.s ⁻¹	Force F en Newton (N)	$P_{mt} = F \times V$
	Rotation	Vitesse angulaire relative ω en rad.s ⁻¹	Couple C en N.m	$P_{mr} = C \times \omega$
Domaine hydraulique		Débit volumique Q _V en m ³ .s ⁻¹	Différence de pression Δp en Pascal (Pa)	$P_H = \Delta p \times Q$
Domaine thermique		Dans le domaine thermique, la grandeur de flux a déjà l'unité d'une puissance et la puissance thermique est égale au flux. C'est donc l'analogie électrique (en partant de la loi d'Ohm) que nous utiliserons pour simuler en thermique.		

$$\Delta \mathbf{p} = \mathbf{\rho} \times \mathbf{g} \times \mathbf{h}$$
 ρ = masse volumique (eau : 1000 kg/m3)
 h = altitude (m)

$$\mathscr{E}_{elec} = \mathbf{U} \times \mathbf{I} \times \mathbf{t} = \mathbf{U} \times \mathbf{Q}$$

 $Q = capacité (A.h ou A.s)$

Batteries branchées en **série** : même capacité, augmentation de la tension Batteries branchées en **dérivation** (ou **parallèle**) : même tension, augmentation de la capacité

IV. Conseils pour les calculs

- Regarder l'unité de la grandeur à calculer et adapter les unités de la formule en conséquence
- Écrire d'abord la formule avec ses unités, éventuellement l'isolation d'une grandeur et après l'application numérique
- Dans la chaîne de puissance, mettre les informations qu'on connaît sur chaque bloc fonctionnel (exemple : dans Alimenter, si on a une grandeur de ce qui rentre, la préciser)
- Regarder dans l'énoncé si on parle d'une ou plusieurs sources d'énergie (exemple : dans une station STEP, il y a peut-être plusieurs groupes turbine/alternateur)
- Si un calcul inconnu est présent, regarder en quelle unité le résultat est attendu afin d'adapter les valeurs et les opérations à faire
- Laisser les termes de l'énoncé s'ils sont explicitement donnés (ex : si la puissance est symbolisée W, laisser ainsi) + mettre noms adaptés (ex : quand on parle de batteries mettre en indice « bat »)
- Calculs sur schéma électrique, regarder la consigne :
 - <u>Calculer un courant :</u> loi des nœuds s'il y en a et qu'on connaît les autres courants / loi d'Ohm s'il y a une résistance traversée par ce courant
 - o <u>Calculer une tension</u>: loi des mailles si on connaît les autres tensions / loi d'Ohm s'il y a une résistance
 - <u>Calculer une résistance</u>: loi d'Ohm si on connaît le courant et la tension / Résistance équivalente si on connaît la valeur des autres résistances