Multi-channel Communications Fall 2022

Lecture 6
Introduction to Beamforming

Dr. R. M. Buehrer

Introduction

- In our first discussion about MIMO communications we will assume that there is no multipath present near the array.
 - o This is often referred to as the plane wave assumption
 - Channels seen by each antenna are perfectly correlated
- o This use of multiple antennas provides an SNR improvement. Known as
 - o Beamforming gain or
 - O Array gain
- Classically this use of multiple antennas is known as **beamforming**

Beamforming

O Consider a received signal arriving from angle θ , impinging on a linear array of M_r uniformly spaced antennas

Multi-Channel Communications ECE 6634 Fall 2022

$|f(\psi)|/M_r$

Multi-Channel Communications ECE 6634 Fall 2022

Beamforming Plots

- Two elements
- o d = 0.5λ
- o w = [1,1]
- o Polar Plot

Beamforming Plots

- Four elements
- o d = 0.5λ
- $\mathbf{o} \ \mathbf{w} = [1,1,1,1]$

Beamforming Plots

Impact of Antenna Spacing

- The relationship between ψ and θ determines the amount of the pattern that is visible
- In general

$$\psi = \frac{2\pi d}{\lambda} \sin \theta$$

• For the example to the right, $d = \lambda/2$, thus

$$\psi = \pi \sin \theta$$

Impact of Antenna Spacing

The array gain of a uniformly spaced linear array can be written as $|\sin(M_W/2)|$

 $\left| f\left(\psi \right) \right| = \left| \frac{\sin\left(M_r \psi / 2 \right)}{\sin\left(\psi / 2 \right)} \right|$

o The range of values can be found by considering the range of θ $-\pi < \theta < \pi$

$$-\frac{2\pi d}{\lambda} \le \underbrace{\psi}_{=\frac{2\pi d}{\lambda}\sin\theta} \le \frac{2\pi d}{\lambda}$$

- The total range of ψ is then $\frac{2\pi d}{\lambda} \sin \theta$
- o In order for one cycle of θ to correspond to one cycle to ψ , we must have

$$\frac{4\pi d}{\lambda} = 2\pi \implies \frac{d}{\lambda} = \frac{1}{2}$$

o If $d/\lambda < \frac{1}{2}$ the visible pattern will be less than what is available, and if d/λ is greater than $\frac{1}{2}$, the pattern will begin to repeat

Spacing = $\lambda/2$

o $M_r = 8$ o d = 0.5 λ

 $\phi \quad \psi = \pi \sin \theta$

Smaller than $\lambda/2$ spacing

$$o M_r = 8$$

o d =
$$0.25\lambda$$

$$\psi = \frac{\pi}{2}\sin\theta$$

Smaller aperture → wider main beam

Multi-Channel Communications ECE 6634 Fall 2022

Greater than $\lambda/2$ spacing

0.9

ECE 6634

Fall 2022

$$_{0} M_{r} = 8$$

$$o d = 0.75\lambda$$

o d =
$$0.75\lambda$$

o $\psi = \frac{3\pi}{2}\sin\theta$

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 8.0 0.6 0.4 0.2 -0.2 -0.4 -0.6 -0.8 **Multi-Channel Communications** 12 -0.5 0 0.5

Observations

- o As the number of antennas M_r is increased,
 - o The main beamwidth narrows
 - o Beamwidth = $4\pi/M_r$ in ψ
 - o The number of sidelobes increases
 - o Number of lobes in $f(\psi)$ is M_r -1 (M_r -2 sidelobes)
 - o The gain increases (Gain = M_r)
- As the distance between antennas increases
 - o The main beamwidth narrows
 - o More of the pattern is visible
 - o Grating lobes often appear for $d/\lambda > \frac{1}{2}$

Beam-steering (The Phased Array)

- o The previous discussion assumed that the weights were all unity, w = [1,1,1...1]
- o This places the maximum gain at an AOA of 0°. What if signal has an AOA other than 0°?

Go to the board...

o
$$d = \lambda/2$$

$$o M_r = 4$$

o
$$M_r = 4$$

o $\theta_0 = 0^{\circ}$

O w =
$$\begin{bmatrix} 1 & e^{j\pi \sin \pi/6} & e^{j2\pi \sin \pi/6} & e^{j3\pi \sin \pi/6} \\ 0 & d = \lambda/2 & 0.8 \\ 0 & M_r = 4 & 0.4 \\ 0 & \theta_o = 30^o & 0.2 \end{bmatrix}$$

Multi-Channel Communications ECE 6634

Fall 2022

$$0 \quad \mathbf{w} = \begin{bmatrix} 1 & e^{j\pi \sin \pi/4} & e^{j2\pi \sin \pi/4} & \frac{1}{e^{j3\pi \sin \pi/4}} \\ 0.8 \end{bmatrix}$$

o
$$d = \lambda/2$$

$$o M_r = 4$$

o
$$M_r = 4$$

o $\theta_0 = 45^{\circ}$

o
$$d = \lambda/2$$

$$OM_r = 4$$

o
$$M_r = 4$$

o $\theta_0 = 90^{\circ}$

Observations

O Changing the phase progression across the array steers the beam

Change in phase of $\pi \sin \theta$

- As the steering angle approaches 90, the beam widens
- o Steering the beam towards θ and $\pi-\theta$ provides the same beam pattern

Pattern Multiplication

- What we have examined so far is termed the array factor.
- The overall antenna pattern of the antenna array obeys the law of pattern multiplication which states

$$G_{tot}(\theta) = g_A(\theta)G(\theta)$$
 Array factor Overall Gain Pattern

Individual element pattern

Directivity

- Directivity measures an antenna's (or array of antennas) ability to focus energy in a particular direction relative to a point source
- We can measure directivity for a linear array

Go to the board...

Directivity

- Uniform linear array
- o $M_r = 2, 4,$
- o AOA = 0° and 90°

Transmit vs Receive Beamforming

- Although we have derived the characteristics of a beamforming array in receive mode, the exact same array can be used in transmit mode
- In transmit mode, the transmit antenna pattern is adjusted by changing the phases on the various antennas.
- o The gain in power in the main beam direction is equal to N_t the number of transmit antennas
 - o This is the same gain as seen in receive beamforming
 - However this requires prior knowledge of the proper transmit angle to achieve the gain – in receive beamforming the receiver can determine the angle through post processing before applying the appropriate weights

Circular Arrays

o A major disadvantage of linear arrays is that they have a line of symmetry (i.e., we cannot distinguish θ from π - θ with a linear array)

o This can be mitigated with the use of a

circular array

Go to the board...

Circular Array

$$M_r = 4$$

$$\theta_0 = 90^\circ$$

$$o R/\lambda = 1/4$$

Circular Array

$$M_r = 4$$

$$\theta_{0} = 45^{\circ}$$

$$o R/\lambda = 1/4$$

Circular Array

$$M_r = 4$$

$$\theta_{0} = 45^{\circ}$$

o
$$R/\lambda = 1/2$$

Conclusions

- In this lecture we have investigated a use of multiple antenna systems known as beamforming
- Beamforming arrays (classically) assume plane wave propagation (i.e., perfectly correlated channels) unlike diversity arrays
- Linear arrays have good properties in terms of beamwidth and directivity, but suffer from direction ambiguity
- Circular arrays can overcome this limitation