Geometric Modeling 2015

Surface Smoothing

Last Lecture

Lagrange Basis Functions

Functions on a mesh

Index	
_ □ 0	2.6
□ 1	1.1
≣ □ 2	0.5

Lagrange basis functions

$$u(p) = \sum_{i=1}^{3} u_i \, \varphi_i(p)$$

Gradient

What is the gradient of a function in S_h ?

- A constant tangential vector in every triangle
- ullet Denote space of piecewise constant vector fields by V_h

Gradient matrix

Gradient

Linear map from functions to vector fields

$$G: S_h \mapsto V_h$$

Matrix representation of G

- $m \times n \ (3\#T \times \#V) \ \text{matrix}$
- Assembled from the elementary matrices:

$$\frac{1}{2\text{area}(T)}(R^{90^{\circ}}e_1 \quad R^{90^{\circ}}e_2 \quad R^{90^{\circ}}e_3)$$

Mass Matrix

Matrix representation

- Often called the mass matrix
- We denote the matrix by M

$$\sum_{p_i \in M} A_{p_i} u_i v_i = (u_1 \quad \dots \quad u_n) \begin{pmatrix} A_{p_1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & A_{p_n} \end{pmatrix} \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

Stiffness Matrix

Dirichlet Energy

$$u \to \frac{1}{2} \int_{M} \langle \nabla u, \nabla u \rangle dx$$

Matrix representation

$$S = G^T M_V G$$
$$E_D(\mathbf{u}) = \frac{1}{2} u^T S u$$

Matrix S explicitly:

$$s_{ij} = -\frac{1}{2} \left(\cot(\alpha_{ij}) + \cot(\beta_{ij}) \right) \text{ for } i \neq j$$

$$s_{ii} = -\sum_{j=1}^{n} s_{ij}$$

Discrete Laplace-Beltrami Operator

Laplace Matrix

• We call the matrix $L = M^{-1}S$ the Laplace matrix

Remarks

- Maps functions to functions
- Continous analog for \mathbb{R}^2

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) u$$
 or Δu

The constant functions are in the kernel of L

Overview Matrices

Matrices

M, M_V :

- diagonal matrices
- positive entries (areas)

$$S = G^T M_V G:$$

- symmetric $(n \times n)$
- sparse
- non-negative: $u^T S u \ge 0$ for all u
- kernel are the constants

G:

- rectangular matrix $(m \times n)$
- sparse

$$L = M^{-1}S$$

- not symmetric $(n \times n)$
- sparse
- non-negative eigenvalues
- kernel are the constants

Displacement Vector

Notation

• Denote by $x \in S_h^3$ the map that maps every vertex to its positions in \mathbb{R}^3 and by $u \in S_h^3$ a displacement of the surface

Deformation Energies

General deformation energies

 A deformation energy measures the "energy" stored in a deformation (or the "cost" of a deformation)

Mesh and Surface Analysis

Mesh and Surface Analysis

Mesh Analysis

- Properties of a mesh
 - Shapes of triangles
 - Uniform/adaptive mesh

Surface Analysis

- Properties of the surface described by the mesh
 - Area, enclosed volume
 - Mean curvature (tension in the surface)
 - Visual quality

Mesh Analysis

Types of meshes

irregular

Examples

3D-Scanner range image

- Quads
- Noise
- Holes

Examples

A simplified 3D-scan

- Irregular
- Adaptive

Examples

Subdivision

- Refinement inserts regular vertices (valence 6)
- Inital irregular vertices still present

Shape regularity of a triangle

Ratio of the diameters of the inscribed and the circumscribed circle

Appears in error bounds for many approximations

Shape regularity of a triangle

• Estimate: $2/\sin(\theta)$, where θ is the smallest angle of the triangle

Shape regularity of a mesh

Minimum of the shape regularities of all triangles

However skinny triangles are not always bad

- Two surfaces below approximate the cylinder equally well
- However, the right one has fewer triangles

Surface Analysis

Properties of a surface

- Area of a surface
- Enclosed volume
 - What is the area/volume of David?
- Special geometric lines on a surface
- Curvatures

Visual Quality

Analysis of visual quality with reflection lines

Visual Quality

This can be done easier on digitalized surfaces

Mesh Smoothing

Smoothing

Applications

Denoising

Applications

Remove Artifacts

Consider curves first

Compute difference to average of neighbors

$$\frac{x_{k-1}+x_{k+1}}{2}-x_k$$

Smoothing step

 Iterate: Move every vertex towards to average of its neighbors

•
$$x_k \leftarrow x_k + \tau \left(\frac{x_{k-1} + x_{k+1}}{2} - x_k \right)$$

• $\tau \in (0,1]$ is the stepsize

For surface meshes

Same as for curves

For surface meshes

- Iterate: Move every vertex towards the average of its neighbors
- $x_k \leftarrow x_k + \tau \left(\frac{1}{|N_k|} \sum_{l \in N_k} x_l x_k \right)$

Example

Problems

Irregular meshes

Problems

Tangential Drift

Smoothing

Problems

Tangential Drift

What happens when smoothing a planar mesh?

Mean Curvature Vector

Mean curvature vector field

- Normal field
- Length equals the mean curvature

Connection to Laplacian

 Mean curvature vector field equals the Laplacian of the embedding of a surface

$$\overline{H} = \Delta x$$

On a mesh

• Discrete mean curvature vector is $\vec{H}_h \in S_h^3$

$$\overline{H}_h = Lx$$

Discrete Mean Curvature Vector

Discrete Mean Curvature Vector

$$\vec{H}_h(x_i) = \frac{3}{2\operatorname{area}(\operatorname{star}(x_i))} \sum_{x_j \in link(x_i)} (\cot \alpha_{ij} + \cot \beta_{ij}) (x_i - x_j)$$

Remark: d area(x)(v) = $\langle \vec{H}_h, v \rangle_M = x^T S v$

Mean Curvature Flow

Mean curvature flow

- Surface flows
- Velocity of every vertex equals the negative of the mean curvature vector

$$\frac{d}{dt}x(t) = -\vec{H}(t)$$

Geometric diffusion

- Mean curvature flow equals a non-linear diffusion
- Laplace operator changes during the evolution

$$\frac{d}{dt}x(t) = -\Delta x(t)$$

Discretization

On a mesh

Time continuous:

$$\frac{d}{dt}x(t) = -Lx(t)$$

Matrix L changes during the evolution

Time discretization

Simplest scheme

$$\frac{d}{dt}x(i\tau) \approx \frac{x^{i+1} - x^i}{\tau}$$

Explicit Euler

Explicit Euler

$$\frac{x^{i+1} - x^i}{\tau} = -Lx^i$$

Algorithm:

Iterate:

- 1. Set up the Laplace matrix L of the current embedding x
- 2. Compute -Lx
- 3. Set $x \leftarrow x \tau Lx$

Irregular Meshes

Can process irregular meshes

No Tangential Drift

Tangential motion

Geometric discretization

Relation to Iterated Averaging

Iterated Averaging

$$x_k \leftarrow x_k + \tau \left(\frac{1}{|N_k|} \sum_{l \in N_k} x_l - x_k \right)$$

Explicit MCF

$$x \leftarrow x - \tau L x$$

- Reminder $L = M^{-1}S$
- Cotangent weights
- M^{-1} to get mesh independence

$$\vec{H}_h(x_i) = \frac{3}{2\operatorname{area}(\operatorname{star}(x_i))} \sum_{x_j \in link(x_i)} (\cot \alpha_{ij} + \cot \beta_{ij}) (x_i - x_j)$$

Implicit Euler

Limitation of explicit scheme:

Stable only for small time steps

Semi-Implicit Euler

$$\frac{x^{i+1} - x^i}{\tau} = -L^i x^{i+1}$$

Algorithm:

Iterate:

- 1. Set up the matrices M, S of the current embedding x
- 2. Solve linear System: $(M + \tau S)x^{i+1} = Mx^i$

Implicit Scheme

Shrinkage

Problem: Shrinkage and loss of features.

Anisotropic Smoothing

Anisotropic Diffusion:

w.r.t. basis of principal curvature directions.

Edge-Based Mean Curvature Vector

Discrete Mean Curvature Vectors

Anisotropic MC Vector

The discrete anisotropic mean curvature vector at an edge is

At a vertex:

Example

Example

Constrained Smoothing

Fairness Energy

$$E(\mathbf{x}) = \frac{1}{2} \int_{M} \|\Delta \mathbf{x}\|^{2} dA$$

Matrix representation

$$E(\mathbf{x}) = \frac{1}{2} x^T S M^{-1} S x$$

Constrained Smoothing

Minimizes *E* over the feasible set

Results

Chinese Lion

1.3m triangles

Size ~ 100mm

Max. deviation: 0.1mm

