

Escuela Politécnica Superior

Classification

Classification

24.10.19 Source: Towards Data Science 2

Classification

24.10.19 Mondragon Unibertsitatea

Source: Towards Data Science

Given a training set and a sample, for which we want to obtain a prediction

- Given a training set and a sample, for which we want to obtain a prediction:
 - Calculate all pairwise "distances" between the test samples and the train samples

- Given a training set and a sample, for which we want to obtain a prediction:
 - Calculate all pairwise "distances" between the test samples and the train samples
 - Select the K smaller distances

- Given a training set and a sample, for which we want to obtain a prediction:
 - Calculate all pairwise "distances" between the test samples and the train samples
 - Select the K smaller distances
 - Predict the class for the test sample by means of majority voting among its K nearest neighbors

- Given a training set and a sample, for which we want to obtain a prediction:
 - Calculate all pairwise "distances" between the test samples and the train samples
 - Select the K smaller distances
 - Predict the class for the test sample by means of majority voting among its K nearest neighbors

Variants

- Given a training set and a sample, for which we want to obtain a prediction:
 - Calculate all pairwise "distances" between the test samples and the train samples
 - Select the K smaller distances
 - Predict the class for the test sample by means of majority voting among its K nearest neighbors

Variants:

Use a weighted mean, which weights are inversely proportional to the distance

- Given a training set and a sample, for which we want to obtain a prediction:
 - Calculate all pairwise "distances" between the test samples and the train samples
 - Select the K smaller distances.
 - Predict the class for the test sample by means of majority voting among its K nearest neighbors

- Variants:
 - Use a weighted mean, which weights are inversely proportional to the distance
 - Without prefixing K, choose a threshold for defining the neighborhood (radius) and consider as neighbors all training samples that are not further than that radius

- Given a training set and a sample, for which we want to obtain a prediction:
 - Calculate all pairwise "distances" between the test samples and the train samples
 - Select the K smaller distances
 - Predict the class for the test sample by means of majority voting among its K nearest neighbors

- Variants:
 - Use a weighted mean, which weights are inversely proportional to the distance
 - Without prefixing K, choose a threshold for defining the neighborhood (radius) and consider as neighbors all training samples that are not further than that radius

Prefixing K is a tricky task to solve

- Given a training set and a sample, for which we want to obtain a prediction:
 - Calculate all pairwise "distances" between the test samples and the train samples
 - Select the K smaller distances.
 - Predict the class for the test sample by means of majority voting among its K nearest neighbors

- Variants:
 - Use a weighted mean, which weights are inversely proportional to the distance
 - Without prefixing K, choose a threshold for defining the neighborhood (radius) and consider as neighbors all training samples that are not further than that radius
- Prefixing K is a tricky task to solve
- We must design an strategy for breaking ties

- Decision Trees (C4.5)
 - They can handle both continuous and descrete variables
 - They are highly interpretable if the number of variables is not much high
 - They can suffer from overfitting (adapt too much to the training data loosing extrapolation power to unseen data)

- Decision Trees (C4.5)
 - They can handle both continuous and descrete variables
 - They are highly interpretable if the number of variables is not much high
 - They can suffer from overfitting (adapt too much to the training data loosing extrapolation power to unseen data)

- Decision Trees (C4.5)
 - They can handle both continuous and descrete variables
 - They are highly interpretable if the number of variables is not much high
 - They can suffer from overfitting (adapt too much to the training data loosing extrapolation power to unseen data)

- Decision Trees (C4.5)
 - They can handle both continuous and descrete variables
 - They are highly interpretable if the number of variables is not much high
 - They can suffer from overfitting (adapt too much to the training data loosing extrapolation power to unseen data)

- Decision Trees (C4.5)
 - They can handle both continuous and descrete variables
 - They are highly interpretable if the number of variables is not much high
 - They can suffer from overfitting (adapt too much to the training data loosing extrapolation power to unseen data)

Logit function

$$p(X) = \frac{e^{(\beta_0 + \beta_1 X)}}{1 + e^{(\beta_0 + \beta_1 X)}}$$

Logit function

$$p(X) = \frac{e^{(\beta_0 + \beta_1 X)}}{1 + e^{(\beta_0 + \beta_1 X)}}$$

- Horizontal asymptotes
 - y = 0, towards the left
 - y = 1, towards the right

Logistic Regression: 1 Feature

Logit function

$$p(X) = \frac{e^{(\beta_0 + \beta_1 X)}}{1 + e^{(\beta_0 + \beta_1 X)}}$$

- Horizontal asymptotes
 - y = 0, towards the left
 - y = 1, towards the right
- It estimates classes probabilities

Logistic Regression: 1 Feature

Logit function

$$p(X) = \frac{e^{(\beta_0 + \beta_1 X)}}{1 + e^{(\beta_0 + \beta_1 X)}}$$

- Horizontal asymptotes
 - y = 0, towards the left
 - y = 1, towards the right
- It estimates classes probabilities
- It is not recommendable for multiclass classification, i.e. not binary

Mondragon Unibertsitatea Escuela Politécnica Superior

We need to calculate

$$p(C|X_1,\ldots,X_n)$$

Mondragon Unibertsitatea Escuela Politécnica

Superior

We need to calculate

$$p(C|X_1,\ldots,X_n)$$

Bayes Theorem,

$$p(C|X_1,\ldots,X_n) = \frac{p(C) \cdot p(X_1,\ldots,X_n|C)}{p(X_1,\ldots,X_n)}$$

We need to calculate

$$p(C|X_1,\ldots,X_n)$$
 Joint probability $p(C,X_1,\ldots,X_n)$

Bayes Theorem,

$$p(C|X_1,\ldots,X_n) = \frac{p(C) \cdot p(X_1,\ldots,X_n|C)}{p(X_1,\ldots,X_n)}$$

We need to calculate

$$p(C|X_1,\ldots,X_n)$$
 joint probability $p(C,X_1,\ldots,X_n)$

Bayes Theorem,

$$p(C|X_1,...,X_n) = \frac{p(C) \cdot p(X_1,...,X_n|C)}{p(X_1,...,X_n)}$$

Applying the chain rule in conditional probability

$$p(C, X_1, ..., X_n) = p(C) \cdot p(X_1|C) \cdot p(X_2|C, X_1) \cdot ... \cdot p(X_n|C, X_1, ..., X_{n-1})$$

We need to calculate

$$p(C|X_1,\ldots,X_n)$$

Loint Probability $p(C,X_1,\ldots,X_n)$

Bayes Theorem,

$$p(C|X_1,\ldots,X_n) = \frac{p(C) \cdot p(X_1,\ldots,X_n|C)}{p(X_1,\ldots,X_n)}$$

Applying the chain rule in conditional probability

$$p(C, X_1, ..., X_n) = p(C) \cdot p(X_1|C) \cdot p(X_2|C, X_1) \cdot ... \cdot p(X_n|C, X_1, ..., X_{n-1})$$

Assuming conditional independence between X_i , then if $i \neq j$

$$p(X_i|C,X_j) = p(X_i|C)$$

We need to calculate

$$p(C|X_1,\ldots,X_n)$$

Loint Probability $p(C,X_1,\ldots,X_n)$

Bayes Theorem,

$$p(C|X_1,\ldots,X_n) = \frac{p(C) \cdot p(X_1,\ldots,X_n|C)}{p(X_1,\ldots,X_n)}$$

Applying the chain rule in conditional probability

$$p(C, X_1, ..., X_n) = p(C) \cdot p(X_1|C) \cdot p(X_2|C, X_1) \cdot ... \cdot p(X_n|C, X_1, ..., X_{n-1})$$

Assuming conditional independence between X_i , then if $i \neq j$

$$p(X_i|C,X_j) = p(X_i|C)$$

Therefore,

$$p(C, X_1, \dots, X_n) = p(C) \cdot \prod_{i=1}^n p(X_i|C)$$

We need to calculate

$$p(C|X_1,\ldots,X_n)$$

loint probability $p(C,X_1,\ldots,X_n)$

Bayes Theorem,

$$p(C|X_1,\ldots,X_n) = \frac{p(C) \cdot p(X_1,\ldots,X_n|C)}{p(X_1,\ldots,X_n)}$$

Applying the chain rule in conditional probability

$$p(C, X_1, ..., X_n) = p(C) \cdot p(X_1|C) \cdot p(X_2|C, X_1) \cdot ... \cdot p(X_n|C, X_1, ..., X_{n-1})$$

Assuming conditional independence between X_i , then if $i \neq j$

$$p(X_i|C,X_j) = p(X_i|C)$$

Therefore,

$$p(C, X_1, \ldots, X_n) = p(C) \cdot \prod_{i=1}^n p(X_i|C)$$

Then,

$$p(C|X_1,\ldots,X_n) \propto p(C) \cdot \prod_{i=1}^n p(X_i|C)$$

We need to calculate

$$p(C|X_1,\ldots,X_n)$$
 joint probability $p(C,X_1,\ldots,X_n)$

Bayes Theorem,

$$p(C|X_1,...,X_n) = \frac{p(C) \cdot p(X_1,...,X_n|C)}{p(X_1,...,X_n)}$$

Applying the chain rule in conditional probability

$$p(C, X_1, ..., X_n) = p(C) \cdot p(X_1|C) \cdot p(X_2|C, X_1) \cdot ... \cdot p(X_n|C, X_1, ..., X_{n-1})$$

Assuming conditional independence between X_i , then if $i \neq j$

$$p(X_i|C,X_j) = p(X_i|C)$$

Therefore,

$$p(C, X_1, \ldots, X_n) = p(C) \cdot \prod_{i=1}^n p(X_i|C)$$

Then,

$$p(C|X_1,\ldots,X_n) \propto p(C) \cdot \prod_{i=1}^n p(X_i|C)$$

where the proportionality constant is

$$\frac{1}{p(X_1,...,X_n)}$$

We need to calculate

$$p(C|X_1,\ldots,X_n)$$
_{joint probability} $p(C,X_1,\ldots,X_n)$

Bayes Theorem,

$$p(C|X_1,...,X_n) = \frac{p(C) \cdot p(X_1,...,X_n|C)}{p(X_1,...,X_n)}$$

Applying the chain rule in conditional probability

$$p(C, X_1, ..., X_n) = p(C) \cdot p(X_1|C) \cdot p(X_2|C, X_1) \cdot ... \cdot p(X_n|C, X_1, ..., X_{n-1})$$

Assuming conditional independence between X_i , then if $i \neq j$

$$p(X_i|C,X_j) = p(X_i|C)$$

Therefore,

$$p(C, X_1, \ldots, X_n) = p(C) \cdot \prod_{i=1}^n p(X_i|C)$$

Then,

$$p(C|X_1,\ldots,X_n) \propto p(C) \cdot \prod_{i=1}^n p(X_i|C)$$

where the proportionality constant is

$$\frac{1}{p(X_1,...,X_n)}$$

Bayes Theorem Prediction

ε-loss

Support Vector Machines

subject to
$$\sum_{j=1}^{n} \beta_j^2 = 1$$
,

$$y_i * (\beta_0 + \sum_j X_{ij}\beta_{ij}) \ge M(1 - \epsilon_i)$$

$$\epsilon_i \ge 0, \sum_i \epsilon_i \le C$$

ε-loss

Neuron

Neuron

Neural Network

Neuron

Neural Network

The union, in reticular form, of neurons is **neural network**.

Neuron

Neural Network

The union, in reticular form, of neurons is **neural network**.

It is divided into layers, having an input layer, one or more hidden layers and an output layer.

Neuron

Neural Network

The union, in reticular form, of neurons is **neural network**.

It is divided into layers, having an input layer, one or more hidden layers and an output layer.

They are used as many neurons as variables in the input and as many as classes in the output.

Neuron

Neural Network

The union, in reticular form, of neurons is **neural network**.

It is divided into layers, having an input layer, one or more hidden layers and an output layer.

They are used as many neurons as variables in the input and as many as classes in the output.

Usual activation functions

Shallow Learning

Mondragon
Unibertsitatea
Escuela Politécnica
Superior

Shallow Learning

Deep Learning

 Combination of several predictions for a given paradigm

- Combination of several predictions for a given paradigm
- Different configurations and/or training data subsets are employed

- Combination of several predictions for a given paradigm
- Different configurations and/or training data subsets are employed
- Results aggregation. Several ways depending of the type of problem or data

- Combination of several predictions for a given paradigm
- Different configurations and/or training data subsets are employed
- Results aggregation. Several ways depending of the type of problem or data
- Variance reduction keeping bias

Mondragon Unibertsitatea Escuela Politécnica Superior

- Combination of several predictions for a given paradigm
- Different configurations and/or training data subsets are employed
- Results aggregation. Several ways depending of the type of problem or data
- Variance reduction keeping bias

Question: Can a set of weak learners create a single strong learner? (Kearns & Valiant)

- Question: Can a set of weak learners create a single strong learner? (Kearns & Valiant)
- Answer: Yes. Think of an analogy with a set of experts with different levels of expertise taking decisions vs a single oracle.

- Question: Can a set of weak learners create a single strong learner? (Kearns & Valiant)
- Answer: Yes. Think of an analogy with a set of experts with different levels of expertise taking decisions vs a single oracle.

Boosting steps

- Question: Can a set of weak learners create a single strong learner? (Kearns & Valiant)
- Answer: Yes. Think of an analogy with a set of experts with different levels of expertise taking decisions vs a single oracle.
- Boosting steps:
 - Train the weak learners iteratively

- Question: Can a set of weak learners create a single strong learner? (Kearns & Valiant)
- Answer: Yes. Think of an analogy with a set of experts with different levels of expertise taking decisions vs a single oracle.
- Boosting steps:
 - Train the weak learners iteratively
 - Aggregate their predictions using a weighted voting process, where the weights are adjusted using the weak kearners performance

- Question: Can a set of weak learners create a single strong learner? (Kearns & Valiant)
- <u>Answer</u>: Yes. Think of an analogy with a set of experts with different levels of expertise taking decisions vs a single oracle.
- Boosting steps:
 - Train the weak learners iteratively
 - Aggregate their predictions using a weighted voting process, where the weights are adjusted using the weak kearners performance

Update the weights every time a new weak learner is trained

- Question: Can a set of weak learners create a single strong learner? (Kearns & Valiant)
- Answer: Yes. Think of an analogy with a set of experts with different levels of expertise taking decisions vs a single oracle.
- Boosting steps:
 - Train the weak learners iteratively
 - Aggregate their predictions using a weighted voting process, where the weights are adjusted using the weak kearners performance
 - Update the weights every time a new weak learner is trained

Adaboost stands for adaptive boosting

- Question: Can a set of weak learners create a single strong learner? (Kearns & Valiant)
- <u>Answer</u>: Yes. Think of an analogy with a set of experts with different levels of expertise taking decisions vs a single oracle.
- Boosting steps:
 - Train the weak learners iteratively
 - Aggregate their predictions using a weighted voting process, where the weights are adjusted using the weak kearners performance
 - Update the weights every time a new weak learner is trained
- Adaboost stands for adaptive boosting
- It is a boosting algorithm in which the sequential aggregation of weak learners is guided by an adaptive process

- Question: Can a set of weak learners create a single strong learner? (Kearns & Valiant)
- Answer: Yes. Think of an analogy with a set of experts with different levels of expertise taking decisions vs a single oracle.
- Boosting steps:
 - Train the weak learners iteratively
 - Aggregate their predictions using a weighted voting process, where the weights are adjusted using the weak kearners performance
 - Update the weights every time a new weak learner is trained
- Adaboost stands for adaptive boosting
- It is a boosting algorithm in which the sequential aggregation of weak learners is guided by an adaptive process
- Such process considers the error of each weak learner on each sample in order to adapt the
 weights for the weak learners to be aggregated, so that the overall error decreases as
 much as possible.

Mondragon Unibertsitatea Escuela Politécnica Superior

Bagging stands for boostrap aggregating

Mondragon Unibertsitatea Escuela Politécnica Superior

Bagging stands for boostrap aggregating

Process

Bagging stands for boostrap aggregating

Process:

Given a dataset A with n samples, a number of samples $n' \leq n$, and a number of models m,

Bagging stands for boostrap aggregating

Process:

Given a dataset A with n samples, a number of samples $n' \leq n$, and a number of models m,

- Sample m datasets, with n' samples each, by sampling with replacement

Bagging stands for boostrap aggregating

Process:

Given a dataset A with n samples, a number of samples $n' \leq n$, and a number of models m,

- Sample m datasets, with n' samples each, by sampling with replacement
- For each dataset, create a predictive model

Bagging stands for boostrap aggregating

Process:

Given a dataset A with n samples, a number of samples $n' \leq n$, and a number of models m,

- Sample m datasets, with n' samples each, by sampling with replacement
- For each dataset, create a predictive model
- Aggregate the output of all m models by voting

Bagging stands for boostrap aggregating

Process:

Given a dataset A with n samples, a number of samples $n' \leq n$, and a number of models m,

- Sample m datasets, with n' samples each, by sampling with replacement
- For each dataset, create a predictive model
- Aggregate the output of all m models by voting
- The most famous bagging-type algorithm is Random Forests

- Bagging stands for boostrap aggregating
- Process:

Given a dataset A with n samples, a number of samples $n' \leq n$, and a number of models m,

- Sample m datasets, with n' samples each, by sampling with replacement
- For each dataset, create a predictive model
- Aggregate the output of all m models by voting
- The most famous bagging-type algorithm is Random Forests
- More recently, new approaches arised, such as Gradient Boosting classifiers, being Extreme Gradient Boosting (XGBoost) the new ML rockstar

Mondragon Unibertsitatea Escuela Politécnica Superior

Ensemble learning for decision trees

Mondragon Unibertsitatea Escuela Politécnica Superior

- Ensemble learning for decision trees
- The number *n* of trees is chosen

Mondragon Unibertsitatea Escuela Politécnica Superior

- Ensemble learning for decision trees
- The number *n* of trees is chosen
- For each tree

Mondragon Unibertsitatea Escuela Politécnica Superior

- Ensemble learning for decision trees
- The number *n* of trees is chosen
- For each tree:
 - A **subset of** *L* **variables** are randomly chosen. By default, $L = \lceil \sqrt{M} \rceil$

Mondragon Unibertsitatea Escuela Politécnica Superior

- Ensemble learning for decision trees
- The number *n* of trees is chosen
- For each tree:
 - A **subset of** *L* **variables** are randomly chosen. By default, $L = \lceil \sqrt{M} \rceil$
 - K samples are chosen by random
 sampling with reposition. By default,
 K = N

- Ensemble learning for decision trees
- The number *n* of trees is chosen
- For each tree:
 - A subset of *L* variables are randomly chosen. By default, $L = \lceil \sqrt{M} \rceil$
 - K samples are chosen by random
 sampling with reposition. By default,
 K = N

All trees are trained

Mondragon Unibertsitatea Escuela Politécnica Superior

- Ensemble learning for decision trees
- The number *n* of trees is chosen
- For each tree:
 - A **subset of** *L* **variables** are randomly chosen. By default, $L = \lceil \sqrt{M} \rceil$
 - K samples are chosen by random sampling with reposition. By default,
 K = N
- All trees are trained
- For each sample, n predictions are obtained

Mondragon Unibertsitatea Escuela Politécnica Superior

- Ensemble learning for decision trees
- The number *n* of trees is chosen
- For each tree:
 - A **subset of** *L* **variables** are randomly chosen. By default, $L = \lceil \sqrt{M} \rceil$
 - K samples are chosen by random sampling with reposition. By default,
 K = N
- All trees are trained
- For each sample, n predictions are obtained

Mondragon Unibertsitatea Escuela Politécnica Superior

- Ensemble learning for decision trees
- The number *n* of trees is chosen
- For each tree:
 - A **subset of** *L* **variables** are randomly chosen. By default, $L = \lceil \sqrt{M} \rceil$
 - K samples are chosen by random sampling with reposition. By default,
 K = N
- All trees are trained.
- For each sample, n predictions are obtained
- Predictions are aggregated by majority voting. Different possible options

Mondragon Unibertsitatea Escuela Politécnica Superior

- Ensemble learning for decision trees
- The number *n* of trees is chosen
- For each tree:
 - A **subset of** *L* **variables** are randomly chosen. By default, $L = \lceil \sqrt{M} \rceil$
 - K samples are chosen by random sampling with reposition. By default,
 K = N
- All trees are trained
- For each sample, n predictions are obtained
- Predictions are aggregated by majority voting. Different possible options

Mondragon Unibertsitatea Escuela Politécnica Superior

We must distinguish binary from multiclass classification

- We must distinguish binary from multiclass classification
- All classification metrics seen in FAA are valid for the binary case

- We must distinguish binary from multiclass classification
- All classification metrics seen in FAA are valid for the binary case
- Only a few are directly applicable to multiclass situations

- We must distinguish binary from multiclass classification
- All classification metrics seen in FAA are valid for the binary case
- Only a few are directly applicable to multiclass situations

		Predicted			
		Iris-setosa	lris-versicolor	Iris-virginica	Σ
traal	Iris-setosa	100.0 %	0.0 %	0.0 %	50
	Iris-versicolor	0.0 %	88.7 %	6.4 %	50
Ä	Iris-virginica	0.0 %	11.3 %	93.6 %	50
	Σ	50	53	47	150

- We must distinguish binary from multiclass classification
- All classification metrics seen in FAA are valid for the binary case
- Only a few are directly applicable to multiclass situations

		Predicted			
		Iris-setosa	Iris-versicolor	Iris-virginica	Σ
tual	Iris-setosa	100.0 %	0.0 %	0.0 %	50
	Iris-versicolor	0.0 %	88.7 %	6.4 %	50
Ä	Iris-virginica	0.0 %	11.3 %	93.6 %	50
	Σ	50	53	47	150

All scores are usable by means of 2 possible simplifications:

- We must distinguish binary from multiclass classification
- All classification metrics seen in FAA are valid for the binary case
- Only a few are directly applicable to multiclass situations

		Predicted			
		Iris-setosa	Iris-versicolor	Iris-virginica	Σ
tual	Iris-setosa	100.0 %	0.0 %	0.0 %	50
	Iris-versicolor	0.0 %	88.7 %	6.4 %	50
Ä	Iris-virginica	0.0 %	11.3 %	93.6 %	50
	Σ	50	53	47	150

- All scores are usable by means of 2 possible simplifications:
 - One-vs-All: If we have k classes, we train k binary model predicting each class against the rest iteratively

- We must distinguish binary from multiclass classification
- All classification metrics seen in FAA are valid for the binary case
- Only a few are directly applicable to multiclass situations

		Predicted			
		Iris-setosa	lris-versicolor	Iris-virginica	Σ
tual	Iris-setosa	100.0 %	0.0 %	0.0 %	50
	Iris-versicolor	0.0 %	88.7 %	6.4 %	50
Ä	Iris-virginica	0.0 %	11.3 %	93.6 %	50
	Σ	50	53	47	150

- All scores are usable by means of 2 possible simplifications:
 - One-vs-All: If we have k classes, we train k binary model predicting each class against the rest iteratively
 - One-vs-One: If we have k classes, we train all pairwise possible binary models. In total, the total number of binary models is k(k-1)/2

- We must distinguish binary from multiclass classification
- All classification metrics seen in FAA are valid for the binary case
- Only a few are directly applicable to multiclass situations

- All scores are usable by means of 2 possible simplifications:
 - One-vs-All: If we have k classes, we train k binary model predicting each class against the rest iteratively
 - One-vs-One: If we have k classes, we train all pairwise possible binary models. In total, the total number of binary models is k(k-1)/2

In both cases, numerical scores are aggregated by averaging

Python functions

Algoritmo	Entorno	Función
K-Nearest Neighbors	Scikit-learn	KNeighborsClassifier
Decision tree	Scikit-learn	DecisionTreeClassifier
Logistic Regression	Scikit-learn	LogisticRegression
Naïve Bayes	Scikit-learn	GaussianNB MultinomialNB ComplementNB BernoulliNB
Support Vector Machines	Scikit-learn	SVC NuSVC LinearSVC
Neural Networks	Scikit-learn	MLPClassifier
AdaBoost	Scikit-learn	AdaBoostClassifier
Bagging	Scikit-learn	BaggingClassifier
Random Forests	Scikit-learn	RandomForestClassifier
Gradient Boosting	Scikit-learn	GradientBoostingClassifier
		HistGradientBoostingClassifier

Eskerrik asko Muchas gracias Thank you

Carlos Cernuda

ccernuda@mondragon.edu

MGEP Goiru, 2 20500 Arrasate – Mondragon Tlf. 662420414