AUA CS 108, Statistics, Fall 2019 Lecture 38

Michael Poghosyan YSU, AUA michael@ysu.am, mpoghosyan@aua.am

20 Nov 2019

Contents

- ► HypoTesting and CIs
- ▶ *t*-Test

▶ How many Errors we can do when Testing a Hypo?

▶ How many Errors we can do when Testing a Hypo?

Correct Answer: $0,1,2,3,4,\ldots$, $+\infty$. Depends on how well we understand HypoTesting $\ddot{-}$

How many Errors we can do when Testing a Hypo?

Correct Answer: 0,1,2,3,4,..., $+\infty$. Depends on how well we understand HypoTesting $\ddot{-}$

What is the Significance of the Test?

How many Errors we can do when Testing a Hypo?

Correct Answer: $0,1,2,3,4,\ldots$, $+\infty$. Depends on how well we understand HypoTesting $\ddot{-}$

- What is the Significance of the Test?
- ▶ What is the Power of the Test?

How many Errors we can do when Testing a Hypo?

Correct Answer: $0,1,2,3,4,\ldots$, $+\infty$. Depends on how well we understand HypoTesting $\ddot{-}$

- ▶ What is the Significance of the Test?
- ▶ What is the Power of the Test?
- ▶ Describe the *Z*-Test.

Generally, it can be proven that there is a duality/association between Hypothesis Testing and a CI construction. Let me give the relation for our case, for Normal $\mathcal{N}(\mu, \sigma^2)$ Model, when σ is known.

Generally, it can be proven that there is a duality/association between Hypothesis Testing and a CI construction. Let me give the relation for our case, for Normal $\mathcal{N}(\mu, \sigma^2)$ Model, when σ is known. Recall that we have obtained the following $1-\alpha$ -level CI for μ :

$$\left(\overline{X} - z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} ; \ \overline{X} + z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right)$$

Generally, it can be proven that there is a duality/association between Hypothesis Testing and a CI construction. Let me give the relation for our case, for Normal $\mathcal{N}(\mu, \sigma^2)$ Model, when σ is known.

Recall that we have obtained the following $1-\alpha$ -level CI for μ :

$$\left(\overline{X}-z_{1-\alpha/2}\cdot\frac{\sigma}{\sqrt{n}}\;;\;\overline{X}+z_{1-\alpha/2}\cdot\frac{\sigma}{\sqrt{n}}\right)$$

Now, consider the following two-tailed Test:

$$\mathcal{H}_0: \ \mu = \mu_0 \qquad \textit{vs} \qquad \mathcal{H}_1: \ \mu
eq \mu_0$$

Generally, it can be proven that there is a duality/association between Hypothesis Testing and a CI construction. Let me give the relation for our case, for Normal $\mathcal{N}(\mu, \sigma^2)$ Model, when σ is known. Recall that we have obtained the following $1-\alpha$ -level CI for μ :

$$\left(\overline{X}-z_{1-\alpha/2}\cdot\frac{\sigma}{\sqrt{n}}\;;\;\overline{X}+z_{1-\alpha/2}\cdot\frac{\sigma}{\sqrt{n}}\right)$$

Now, consider the following two-tailed Test:

$$\mathcal{H}_0: \ \mu = \mu_0 \qquad \text{vs} \qquad \mathcal{H}_1: \ \mu \neq \mu_0$$

Our Test procedure was:

▶ calculate
$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$
.

Generally, it can be proven that there is a duality/association between Hypothesis Testing and a CI construction. Let me give the relation for our case, for Normal $\mathcal{N}(\mu, \sigma^2)$ Model, when σ is known. Recall that we have obtained the following $1-\alpha$ -level CI for μ :

$$\left(\overline{X} - z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} ; \ \overline{X} + z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right)$$

Now, consider the following two-tailed Test:

$$\mathcal{H}_0: \ \mu = \mu_0 \qquad \textit{vs} \qquad \mathcal{H}_1: \ \mu \neq \mu_0$$

Our Test procedure was:

- ► calculate $Z = \frac{\overline{X} \mu_0}{\sigma / \sqrt{n}}$.
- ▶ Reject Null if $|Z| > z_{1-\alpha/2}$, otherwise, Do Not Reject Null.

Generally, it can be proven that there is a duality/association between Hypothesis Testing and a CI construction. Let me give the relation for our case, for Normal $\mathcal{N}(\mu, \sigma^2)$ Model, when σ is known. Recall that we have obtained the following $1-\alpha$ -level CI for μ :

$$\left(\overline{X} - z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \; ; \; \overline{X} + z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right)$$

Now, consider the following two-tailed Test:

$$\mathcal{H}_0: \ \mu = \mu_0 \qquad \textit{vs} \qquad \mathcal{H}_1: \ \mu \neq \mu_0$$

Our Test procedure was:

- ightharpoonup calculate $Z = \frac{\overline{X} \mu_0}{\sigma / \sqrt{n}}$.
- ▶ Reject Null if $|Z| > z_{1-\alpha/2}$, otherwise, Do Not Reject Null.

This is equilvalent to: Do Not Reject, if

$$-z_{1-\alpha/2} \leq \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \leq z_{1-\alpha/2},$$

$$\mu_0 \in \left[\overline{X} - z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} ; \overline{X} + z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \right].$$

¹Well, we have obtained Closed CI, but that is OK.

i.e., if $\mu_0 \in \left[\overline{X} - z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \; ; \; \overline{X} + z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \right].$

Hence, the relation: we Reject \mathcal{H}_0 , if μ_0 is not in the CI, and otherwise, we Fail to Reject¹.

¹Well, we have obtained Closed CI, but that is OK.

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ is known, the Parameter (our unknown) is μ ;

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ is known, the Parameter (our unknown) is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ is known, the Parameter (our unknown) is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ is known, the Parameter (our unknown) is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics: Z =

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ is known, the Parameter (our unknown) is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics: $Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ is known, the Parameter (our unknown) is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics: $Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$

Distrib of the Test-Statistics Under \mathcal{H}_0 : $Z \sim$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ is known, the Parameter (our unknown) is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics: $Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ is known, the Parameter (our unknown) is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics: $Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$

$$\mathcal{H}_1$$
 is RR is $\mu \neq \mu_0$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ is known, the Parameter (our unknown) is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics: $Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$

$$\mathcal{H}_1$$
 is RR is $\mu
eq \mu_0 \mid |Z| > z_{1-rac{lpha}{2}}$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ is known, the Parameter (our unknown) is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics: $Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ is known, the Parameter (our unknown) is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics: $Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$

$$\mathcal{H}_1$$
 is RR is
$$\mu \neq \mu_0 \quad |Z| > z_{1-\frac{\alpha}{2}}$$

$$\mu > \mu_0 \quad Z > z_{1-\alpha}$$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ is known, the Parameter (our unknown) is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics: $Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$

$$\mathcal{H}_1$$
 is RR is
$$\mu \neq \mu_0 \quad |Z| > z_{1-\frac{\alpha}{2}}$$

$$\mu > \mu_0 \quad Z > z_{1-\alpha}$$

$$\mu < \mu_0 \quad$$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ is known, the Parameter (our unknown) is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics: $Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$

$$\mathcal{H}_1$$
 is RR is
$$\mu \neq \mu_0 \quad |Z| > z_{1-\frac{\alpha}{2}}$$

$$\mu > \mu_0 \quad Z > z_{1-\alpha}$$

$$\mu < \mu_0 \quad Z < z_{\alpha}$$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ is unknown, the Parameter (our unknown) is μ ;

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ is unknown, the Parameter (our unknown) is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ is unknown, the Parameter (our unknown) is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ is unknown, the Parameter (our unknown) is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ is unknown, the Parameter (our unknown) is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics: t =

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ is unknown, the Parameter (our unknown) is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics: $t = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}$,

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ **is unknown**, the Parameter (our unknown) is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics: $t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$, where $S^2 =$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ is unknown, the Parameter (our unknown) is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics: $t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$, where $S^2 = \frac{\sum_{k=1}^{n} (X_k - \overline{X})^2}{n-1}$.

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ is unknown, the Parameter (our unknown) is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
, where $S^2 = \frac{\sum_{k=1}^n (X_k - \overline{X})^2}{n-1}$.

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ is unknown, the Parameter (our unknown) is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics: $t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$, where $S^2 = \frac{\sum_{k=1}^n (X_k - \overline{X})^2}{n-1}$.

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ is unknown, the Parameter (our unknown) is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
, where $S^2 = \frac{\sum_{k=1}^n (X_k - \overline{X})^2}{n-1}$.

$$H_1$$
 is RR is $\mu \neq \mu_0$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ is unknown, the Parameter (our unknown) is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
, where $S^2 = \frac{\sum_{k=1}^n (X_k - \overline{X})^2}{n-1}$.

$$\mathcal{H}_1$$
 is RR is $\mu
eq \mu_0 \mid |t| > t_{n-1,1-rac{lpha}{2}}$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ is unknown, the Parameter (our unknown) is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
, where $S^2 = \frac{\sum_{k=1}^n (X_k - \overline{X})^2}{n-1}$.

$$egin{array}{|c|c|c|c|}\hline \mathcal{H}_1 & \text{is} & \text{RR is} \\ \hline \hline \mu
eq \mu_0 & |t| > t_{n-1,1-rac{lpha}{2}} \\ \mu > \mu_0 & \hline \end{array}$$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ is unknown, the Parameter (our unknown) is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
, where $S^2 = \frac{\sum_{k=1}^n (X_k - \overline{X})^2}{n-1}$.

$$egin{array}{|c|c|c|c|} \mathcal{H}_1 & \mathsf{RR} & \mathsf{RR} & \mathsf{is} \\ \hline \mu
eq \mu_0 & |t| > t_{n-1,1-rac{lpha}{2}} \\ \mu > \mu_0 & t > t_{n-1,1-lpha} \\ \hline \end{array}$$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ is unknown, the Parameter (our unknown) is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
, where $S^2 = \frac{\sum_{k=1}^n (X_k - \overline{X})^2}{n-1}$.

$$egin{array}{|c|c|c|c|} \mathcal{H}_1 ext{ is } & \mathsf{RR} ext{ is } \\ \hline \mu
eq \mu_0 & |t| > t_{n-1,1-rac{lpha}{2}} \\ \mu > \mu_0 & t > t_{n-1,1-lpha} \\ \mu < \mu_0 & \end{array}$$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ is unknown, the Parameter (our unknown) is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
, where $S^2 = \frac{\sum_{k=1}^n (X_k - \overline{X})^2}{n-1}$.

t-test Example

Example: Again, I have generated in \mathbf{R} a Sample of Size 20 from $\mathcal{N}(3.12, 2^2)$ and made some rounding:

```
set.seed(20112019)
s.size <-20; sigma <- 2
obs <- rnorm(s.size, mean = 3.12, sd = sigma)
obs <- round(obs, digits = 2); obs</pre>
```

```
## [1] 1.80 5.60 1.10 3.20 4.91 5.15 1.76 2.47
## [13] 3.98 4.79 1.98 4.50 3.52 4.13 -0.08 3.87
```

t-test Example

Example: Again, I have generated in $\bf R$ a Sample of Size 20 from $\mathcal{N}(3.12,2^2)$ and made some rounding:

```
set.seed(20112019)
s.size <-20; sigma <- 2
obs <- rnorm(s.size, mean = 3.12, sd = sigma)
obs <- round(obs, digits = 2); obs</pre>
```

```
## [1] 1.80 5.60 1.10 3.20 4.91 5.15 1.76 2.47 (## [13] 3.98 4.79 1.98 4.50 3.52 4.13 -0.08 3.87
```

Now, let us forget about the fact that the actual value of μ is 3.12 and that $\sigma=2$, and do some Testing, just assuming that our Observation is coming from a Normal Distribution.

t-test Example

Example: Again, I have generated in $\bf R$ a Sample of Size 20 from $\mathcal{N}(3.12,2^2)$ and made some rounding:

```
set.seed(20112019)
s.size <-20; sigma <- 2
obs <- rnorm(s.size, mean = 3.12, sd = sigma)
obs <- round(obs, digits = 2); obs</pre>
```

```
## [1] 1.80 5.60 1.10 3.20 4.91 5.15 1.76 2.47 (
## [13] 3.98 4.79 1.98 4.50 3.52 4.13 -0.08 3.87
```

Now, let us forget about the fact that the actual value of μ is 3.12 and that $\sigma=2$, and do some Testing, just assuming that our Observation is coming from a Normal Distribution. Say, let us Test, at the 5% Significance Level, the following Hypothesis:

$$\mathcal{H}_0$$
: $\mu = 4$ vs \mathcal{H}_1 : $\mu \neq 4$.

First, we calculate *t*-statistic:

```
mu0 <- 4
t <- (mean(obs) - mu0)/(sd(obs)/sqrt(s.size)); t
## [1] -1.795358
```

[1] 2.093024

First, we calculate *t*-statistic:

```
mu0 <- 4 t <- (mean(obs) - mu0)/(sd(obs)/sqrt(s.size)); t ## [1] -1.795358 Now, we calculate the critical value, the quantile t_{n-1,1-\alpha/2}: a <- 0.05 c <- qt(1-a/2, df = s.size-1); c
```

```
First, we calculate t-statistic:
```

```
mu0 < -4
t <- (mean(obs) - mu0)/(sd(obs)/sqrt(s.size)); t
## [1] -1.795358
Now, we calculate the critical value, the quantile t_{n-1,1-\alpha/2}:
a < -0.05
c \leftarrow qt(1-a/2, df = s.size-1); c
## [1] 2.093024
Finally, we check if t is in RR, i.e., if |t| > t_{n-1,1-\alpha/2}:
abs(t) > c
```

[1] FALSE

First, we calculate *t*-statistic:

```
mu0 < -4
t <- (mean(obs) - mu0)/(sd(obs)/sqrt(s.size)); t
## [1] -1.795358
Now, we calculate the critical value, the quantile t_{n-1,1-\alpha/2}:
a < -0.05
c \leftarrow qt(1-a/2, df = s.size-1); c
## [1] 2.093024
Finally, we check if t is in RR, i.e., if |t| > t_{n-1,1-\alpha/2}:
abs(t) > c
```

[1] FALSE

So the decision is:

First, we calculate *t*-statistic:

```
mu0 <- 4
t <- (mean(obs) - mu0)/(sd(obs)/sqrt(s.size)); t</pre>
```

[1] -1.795358

Now, we calculate the critical value, the quantile $t_{n-1,1-\alpha/2}$:

```
a \leftarrow 0.05
c \leftarrow qt(1-a/2, df = s.size-1); c
```

[1] 2.093024

Finally, we check if t is in RR, i.e., if $|t| > t_{n-1,1-\alpha/2}$:

```
abs(t) > c
```

[1] FALSE

So the decision is: Fail to Reject \mathcal{H}_0 at 5% level.

Now, the same, but with an R built-in function t.test:

t.test(obs, mu = mu0, conf.level = 0.95)

```
##
##
   One Sample t-test
##
## data: obs
## t = -1.7954, df = 19, p-value = 0.08852
## alternative hypothesis: true mean is not equal to 4
## 95 percent confidence interval:
## 2.524009 4.112991
## sample estimates:
## mean of x
## 3.3185
```

Now, for the same Data, let us Test, at the 10% Significance Level, the following Hypothesis:

$$\mathcal{H}_0: \ \mu = 3 \quad vs \quad \mathcal{H}_1: \ \mu > 3.$$

mean of x ## 3.3185

Now, for the same Data, let us Test, at the 10% Significance Level, the following Hypothesis:

$$\mathcal{H}_0: \ \mu = 3 \qquad \textit{vs} \qquad \mathcal{H}_1: \ \mu > 3.$$

t.test(obs, mu=3,alternative="greater", conf.level=0.9)