P525/1 Chemistry Paper 1 Jan - Feb 2021 2¾ hours

UGANDA MUSLIM TEACHERS 'ASSOCIATION UMTA RESOURCE PAPERS – 2021

NAME	
INDEX NO	.SIGNATURE

UGANDA ADVANCED CERTIFICATE OF EDUCATION Chemistry

Paper 1

2 hour 45 minutes

INSTRUCTIONS TO CANDIDATES;

Answer all questions in Section A and any six in Section B.

All questions must be answered in spaces provided.

Illustrate your answers with equations where applicable.

Molar gas constant, R=8.314jk⁻¹mol⁻¹

Molar volume for a gas at s.t.p is 22400cm³

 $Standard\ temperature = 273k$

Standard pressure = 101325 Nm^{-2}

F	o	R	E	X	A	M	I	N E	R	S	U	S I	E	0	N L	Y	Total
1	2	3	4	5	6	7	8	9	1 0	11	1 2	1 3	1 4	1 5	1 6	17	

SECTION A (46 marks)

l.	(a)	(i) Write the equation for the ionization of ammonia in water	·.
			(01 mark)
	••••	(ii) Calculate the concentration of ammonium ions in the solu	
			(01 mark)
	•••••	(iii) Calculate the ionization constant of ammonia in water.	(01 mark)
	(b)	0.05 mole of ammonium chloride was added to one litre of the a solution in (a). Calculate the concentration of hydroxide ions in	mmonia the solution. (02 marks)
	•••••		
2.		g equations show how the following conversions can be brought a CH_2Cl OH	
	•••••		

	(b) Cl from OH	(2½ marks)
3.	Write equations for the reactions that take place between the followin and aqueous sodium hydroxide.	g substances
	(a) Chromium (VI) oxide.	(1½ marks)
	(b) Zinc oxide.	(1½ marks)
	(c) Trilead tetraoxide (red lead oxide)	(1½ marks)
1.	(a) (i) Define the term nuclear stability .	(01 mark)

		(ii)	State how any two	factor affect nuclear stability.	(02 marks)
	•••••	• • • • • • • •			
		• • • • • • •			
	(b)	The	half-life for beta dec	eay of potassium – 40 is 1.83 x	10 ⁹ years.
		(i)	Write an expression potassium decays.	on for the transformation that oc	ecurs when (01 mark)
		(ii)	Calculate the perc 9.5 x 10 ⁸ years.	entage of potassium which will	have decayed after (02 marks)
		• • • • • • • • • • • • • • • • • • • •			
	•••••	• • • • • • • • • • • • • • • • • • • •			
	•••••	• • • • • • •			
5.	(a)		each of the following the oxidation state of	g species, draw the structure, na of central atoms.	me the shape and (03 marks)
Spec	ies	Stru	cture	Shape	Oxidation state
(i)	NO_2^-				
(ii)	PO ₄ ³⁻				

	(b)	(i)		t would be observed if an aqueous solution of ove was added to an acidified solution of potaste (VI).	-
	••••	• • • • • • • •			
	•••••	(ii)	Write equ	ation for the reaction that takes place.	(1½ marks)
5.	Com	_	ne followin	g organic reactions and in each case name the	main organic (04 marks)
	(a)	CH ₃ C	$CH = CH_2$	$\frac{\text{MnO}_{4}^{-}/\overline{\text{O}}\text{H}}{\Rightarrow}$	
		Nam	e :		
	(b)	(CH ₃	(COO) ₂ Ca	heat >	
		Nam	e :		
	(c)	CH ₃ C	CH ₂ CONH ₂	Br₂/NaOH warm	
		Nam	e :		
	(d)	CH ₃ C	СН ₂ ОН <u>С</u>	$\frac{\text{onc. H}_2\text{SO}_4}{140^0\text{C}} \Rightarrow$	
		Nam	e :		

(a)	(i)	Define the term diagonal relationship.	(01 mark)
••••			
••••	(ii)	Other than Beryllium and aluminium, name another pair that exhibit diagonal relationship in periodic Table.	of elements (01 mark)
(b)	Both (i)	beryllium and calcium belong to group II of the periodic To Give two reasons why Beryllium differs from calcium in properties.	Γable. some of its (02 marks)

8. Some bond energies are given in the table below:

Bond	Energy (KJ mol ⁻¹)
C-C	- 337
C – H	- 414
C – O	- 360
O – H	- 123

Calcu	late the heat of formation of gaseous ethanol.	(03 marks)
		• • • • • • • • • • • • • • • • • • • •
• • • • • •		••••••
(b)	Carbon monoxide burns in oxygen according to the equation. $2 \text{ CO}(g) + \text{O}_2(g) \longrightarrow 2 \text{CO}_2(g)$ Calculate the enthalpy of combustion of carbon monoxide. (Heats of formation of carbondioxide and carbon monoxide are -393KJ mol ⁻¹ and -108KJ mol ⁻¹ respectively)	(2½ marks)
•••••		•••••
•••••		

9.	(a)	A compound A contains Fe, 28%, O,48% and S, 24%. Calculate empirical formula of A .	te the (02 marks)
	••••		
	••••		
	(b)	If the molecular mass of A is 400, determine the molecular for	mula of A . (01 mark)
	(c)	A solution of A in water was added onto a piece of magnesium test tube. State what was observed and write equation for the retook place.	
	Obs	ervation	
	••••		• • • • • • • • • • • • • • • • • • • •
			• • • • • • • • • • • • • • • • • • • •
	Equ	ation	(1½ marks)
	••••		

SECTION B (54 marks)

The two common oxidation states of chromium are $+3$ and $+6$.							
(a)		e the electronic configuration of chromium ions in which c vs the above two oxidation states.	hromium (02 marks)				
••••	•••••						
••••	•••••		• • • • • • • • • • • • • • • • • • • •				
(b)		lute solution of chrome alum, $K_2Cr_2(SO_4)_4$. $2H_2O$ was preded into two portions.	pared and				
	(i)	To the first portion sodium hydroxide solution was added until in excess. State what was observed and write equation reaction(s) that took place.	on(s) for the (03 marks)				
			•••••				
	(ii)	To the second part, a few drops of sodium hydrogen carb added. Explain what was observed.	onate were (04 marks)				
••••							
• • • • •							

11.	Name a reagent that can be used to distinguish the following species. In each case state what would be observed if each member of the pair is treated with the named reagent.									
	(a)	HCOOH and (HOOC) ₂	(03 marks)							
	••••									
	••••									
	(b)	OH and $COOH$	(03 marks)							
	••••									
	(c)	$ \begin{array}{c c} \hline CHCH_3 \\ OH \end{array} $ and $ \begin{array}{c c} CHCH_2CH_3 \\ OH \end{array} $	(03 marks)							
	••••		•••••							
	••••									
	••••		• • • • • • • • • • • • • • • • • • • •							

12.	Expl	ain what would be observed if the following substances were allowed to reac (09 marks)
	(a)	Copper (II) ethanoate solution and potassium iodide solution.
	••••	
	•••••	
	••••	
	•••••	
	• • • • •	
	(b)	Sodium chromate (VI) solution and dilute sulphuric acid.
	• • • • •	
	••••	
	••••	
	••••	
	• • • • •	
	(c)	Lead (IV) oxide and manganese (II) chloride acidified with dilute sulphuric acid when heated.
	••••	
	•••••	
	••••	
	••••	

Nitrogen monoxide reacts with oxygen to form nitrogen dioxide according to equation below: $2NO(g) + O_2(g) = 2NO_2(g)$										
(a)										
•••••	• • • • • • • • • • • • • • • • • • • •									
•••••	• • • • • • •									
(b)	(i)	3 moles of nitrogen monoxide and 1.5 moles of oxyga vessel that was heated to 400°C. When equilibrium the vessel was found to contain 0.5 moles of oxygen value of Kc at this temperature.	was establis							
	• • • • • • •									
	· • • • • • • •		• • • • • • • • • • • • • • • • • • • •							
	(ii)	When the temperature was raised to 500°C the mixture found to contain 25% of the initial nitrogen monoxide equilibrium constant at this new temperature.								
	• • • • • • •									
	• • • • • • • •									
	• • • • • • •									
	• • • • • • •									
(c)		m your answers in (b) above explain whether the process to thermic.	ss is endothe (02 ma							

(u)			ixture.		ect on r	XC II ali	mert ga	as like li	enum is a	(01 mark))
	•••••						• • • • • • • • • • • • • • • • • • • •				• • • •
•••••	•••••	• • • • • • •		• • • • • • • • •		• • • • • • • • • •	•••••		•••••	•••••	
_	of con ume o	-		t a pres	ssure of	209.94	kPa wł	hen vapo	orized at 1	27°C occup	oied
(a)	(i)	Calc	culate	the rel	lative m	olecula	r mass	of P .		(2½ mark	s)
•••••	•••••	• • • • • •		•••••	· • • • • • • • • • •						• • • •
					, 			•••••	•••••	•••••	••••
•••••	(ii)	The	empir	rical fo	ormula o	of P is (C_2H_4O			(01 mark)	
•••••	•••••										
	(iii)	Writ	te the	structi	ures of p	possible	isomei	rs of P .		(01 mark))
(b)	swee	t smel	lling s	substar	nce Q ar	nd when	n reacte	ed with p	hosphoru	and P forme s nce R forme	
	Ident	tify co	mpou	unds							
	(i)	P	:		• • • • • • • • • • • • • • • • • • • •				•••••	(½ marks)
	(ii)	Q	:	••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	(½ marks)
	(iii)	R	:							(½ marks)

(6)	when substance \mathbf{R} is reacted with concentrated ammonia.	1
•••••		
•••••		
•••••		
		• • • • • • • • • • • • • • • • • • • •
Com	plete the following equations and in each case write a mechanism	m.
(a)	$\stackrel{O}{\longrightarrow} \text{NaHSO}_3$	(3½ marks)
•••••		• • • • • • • • • • • • • • • • • • • •
•••••		• • • • • • • • • • • • • • • • • • • •
•••••		
(b)	$CH_3CH = CH_2/H_3PO_4$	(03 marks)
•••••		
•••••		
•••••		

	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • •	• • • • • • • • • •	••••••	
	(c)	CH ₃ C C Br	H ₃ CH ₂ CH ₃	Na(OH(aq) heat		→		(2½ marks)
	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •					
			•••••				• • • • • • • • • • • • • • • • • • • •		
16. 8H+(luction po				MnO ₄ (aq) +
	MnO	$_{2}(s) + 4$	H+(aq) +	- 2e		Mn ²⁺ (a	aq) + 2H	(20(i) E =	= +1.23V
	Sn ²⁺	(aq) + 2	?e	Si	n(s)	E =	-0.136	V	
	Sn ⁴⁺	(aq) + 2	2e		n ²⁺ (aq)	E =	+0.15V		
	(a)						-		d to acidified (03 marks)
	•••••	••••••	••••••	• • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • •	••••••	
	•••••								
	•••••								

17.	(b)	For the reaction in (a) write equation for the reactions that occur at the negative and positive electrodes.										
		(i)	- Positive electrode.	(01 mark)								
			- Negative electrode.	(01 mark)								
	••••	(ii)	Calculate the emf of the cell in (a).	(01 mark)								
	••••		•••••••••••									
	(c)	Solid (II) i	d manganese (IV) oxide was added to acidified ions. lain what was observed.									
	••••											
	• • • • •											
17.	(a)	Disti	inguish between addition and condensation pe	olymerization.								
				(02 marks)								
	••••	• • • • • • •										
	••••	• • • • • • • • • • • • • • • • • • • •										
	•											

(b) The structural formulae of polymers P, Q, R and S are given below:

$$\mathbf{Q}: - \begin{bmatrix} H & O & O & H & H & O \\ I & II & II & I & ICH_2 \end{bmatrix}_6 - \mathbf{N} - \mathbf{C} = \begin{bmatrix} H & O & H & H & O \\ I & II & ICH_2 \end{bmatrix}_6$$

$$\mathbf{R}: - CH_2 - C = CH - CH_2 - C = CH - CH_2 - C = CH - CH_2$$

$$CH_3 \qquad CH_3 \qquad CH_3$$

S:
$$-\left\{0-\left(CH_2\right)_8CO\right\}$$
 $\frac{1}{n}$

In the table below, write the structural formula of the monomer(s) in each case and name the type of polymerization that leads to the formation of each polymer.

(05 marks)

_	Structural formula of monomer(s)	Types of polymerisation
P		
Q		
R		
S		

(c)	(i)	Give one use Q .	(½ mark)
	(ii)	R exists as natural rubber. State how it is treated by	pefore putting it to
		industrial use.	(1½ marks)
•••••	• • • • • • •	••••••	

THE PERIODIC TABLE

1	2											3	4	5	6	7	8
1.0 H 1												.1	1	-1		1.0 H 1	4.0 H
6.9 Li 3	9.0 Be 4		.•									10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	20.2 No 10
Na	24.3 Mg 12											27.0 Al 13	28.1 Si 14	31.0 P 15	32.1 S 16	35.4 Cl 17	1
39.1 K 19	40.1 Ca 20	45.0 Sc 21		50.9 V 23	52.0 Cr 24			58.9 Co 27		1	65.7 Zn 30	69.7 Ga 31	72.6 Ge 32	74.9 As 33	79.0 Se 34	79.9 Br 35	83.8 Kı 36
85.5 Rb 37	87.6 Sr 38	88.9 Y 39	91.2 Zr 40	92.9 Nb 41		98.9 Tc 43	101 Ru 44		106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
133 Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73		186 Re 75	190 Os 76		195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	209 Bi 83		210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89		I	<u> </u>			!	<u> </u>	I	L	<u> </u>		L	l	L	<u> </u>
			139 La 57	140 Ce 58		144 Nd 60	147 Pm 61	150 Sm 62	152 Eu 63			162 Dy 66	165 Ho 67		169 Tm 69		175 Lu 71
			227 Ac 89	232 Th 90	231 Pa 91	238 U 92	237 Np 93		243 Am 95		247 Bk 97	251 Cf 98	Es		Md	No	260 Lw 103