Byzantine-Resilient Federated Alternating Gradient Descent and Minimization for Partly-Decoupled Low Rank Matrix Learning

Problem Setting

Learn a low rank $r \ll n, q$ matrix $\mathbf{\Theta}^* \in \Re^{n \times q}$ from measurements of the form

$$\boldsymbol{y}_k := \boldsymbol{X}_k \boldsymbol{\theta}_k^*, k \in [q].$$

In a federated setting, while being resilient to **Byzantine**Attacks.

Factor $\Theta = UB$. Solving this problem requires solving (AltGDmin [Nayer and Vaswani 2022] and FedRep [Collins et al. 2021]),

$$\min_{\substack{\tilde{\boldsymbol{U}} \in \Re^{n \times r} \\ \tilde{\boldsymbol{B}} \in \Re^{r \times q}}} f(\tilde{\boldsymbol{U}}, \tilde{\boldsymbol{B}}) = \min_{\substack{\tilde{\boldsymbol{U}} \in \Re^{n \times r} \\ \tilde{\boldsymbol{B}} \in \Re^{r \times q}}} \sum_{k=1}^{q} \|\boldsymbol{y}_k - \boldsymbol{X}_k \tilde{\boldsymbol{U}} \tilde{\boldsymbol{b}}_k\|^2$$

Theorem 1: Byz-Fed-AltGDmin-Learn

Bounded heterogeneity:

 $\max_{\ell,\ell' \in [L]} \| \boldsymbol{B}_{\ell}^* - \boldsymbol{B}_{\ell'}^* \|_F^2 \le G_B^2 \sigma_{\max}^{*2}$

Assume RSV incoherence, Bounded heterogeneity Assumption holds, and $\frac{L_{byz}}{L} < 0.4$. If

$$n\tilde{q}p \ge C\tilde{\kappa}^{10}\mu^2\tilde{q}r^2\log\tilde{q}\log\left(\frac{1}{\epsilon}\right)$$

then, w.h.p. after $T = C\tilde{\kappa}^2 \log(\frac{1}{\epsilon})$ iterations, $SD_F(U^*, U_T) \leq \max(\epsilon, 14C\tilde{\kappa}^2 G_B)$

Experiments

Figure 1. LRMC experiment.

Figure 2. Heterogeneity Effect.

Applications

The way matrix X_k is defined it gives variety of differently problems:

- LoRA technique for large language models PEFT, X_k being identity matrices.
- For collaborative filtering in recommendation systems a.k.a (LRMC) problem it is a diagonal 1-0 matrix.
- For **linear multi task learning** a.k.s LRCS problem it is a random Gaussian matrix.
- For nonlinear multi task representation a.k.s LRPR problem it is a random Gaussian matrix, but only the magnitudes of the measurements are observed i.e., $\boldsymbol{z}_k = |\boldsymbol{y}_k|$.
- Initialization: All these problems require initialization, which reduces to a subspace estimation or PCA problem.

Byz-AltGDmin-LRMC algorithm

AltGDmin Initialization:

Nodes $\ell = 1, ..., L$

Calculate and Push $oldsymbol{U}_{0\ell}$ to center

Central Server

Define set $\mathcal{I}_0 = \{\}$

Key Idea 1: Subspace Median with filtering

for $\ell=1$ to L do

if $\| \boldsymbol{u}_{0\ell}^{\mathcal{I}} \| \leq 1.5 \mu \sqrt{\frac{r}{n}}$ for all $j \in [n]$ then Add ℓ to set \mathcal{I}_0

end for

 $U_0 \leftarrow \text{Byz} - \text{SubspaceEstimation}\{U_{0\ell}\}_{\ell \in \mathcal{I}_0}$

Push U_0 to nodes.

AltGDmin Iterations:

for t = 1 to T do

Nodes $\ell = 1, ..., L$

Calculate and Push ∇_ℓ to center

Central Server

Define set $\mathcal{I}_t = \{\}$

Key Idea 2: Filtering with robust aggregation

for $\ell=1$ to L do

Compute $oldsymbol{U}_{temp} \leftarrow oldsymbol{U}_{t-1} - \eta
abla_{\ell}$

if $\| \boldsymbol{u}_{temp}^j \| \leq (1 - \frac{0.4}{\tilde{\kappa}^2}) \| \boldsymbol{u}_{t-1}^j \| + 1.4 \mu \sqrt{\frac{r}{n}}$ for all $j \in [n]$ then Add ℓ to set \mathcal{I}_t

end for

 $\nabla_{Kr/GM} = \text{Krum}/\text{GM}\{\nabla_{\ell}\}_{\ell \in \mathcal{I}_t}$

Compute $U_t \leftarrow QR(U_{t-1} - \eta \nabla_{Kr/GM})$

Push U_t to nodes.

end for

Output U_T .