Loop Transformations for Parallelism & Locality

Last week

- Data dependences and loops
- Loop transformations
 - (Parallelization)
 - Scalar expansion
- Value data dependences

Today and Monday

- Loop transformations and transformation frameworks
 - Loop reversal
 - Loop fusion
 - Loop fission
 - Loop interchange
 - Unroll and Jam

CS553 Lecture

Loop Transformations

2

Review

Distance vectors

- Concisely represent dependences in loops (i.e., in iteration spaces)
- Dictate what transformations are legal
 - e.g., Permutation and parallelization

Legality

- A dependence vector is **legal** when it is lexicographically nonnegative

Loop-carried dependence

– A dependence $D=(d_1,...d_n)$ is **carried** at loop level i if d_i is the first nonzero element of D

CS553 Lecture

Loop Transformations

Loop Permutation

Idea

- Swap the order of two loops to increase parallelism, to improve spatial locality, or to enable other transformations
- Also known as loop interchange

Example

CS553 Lecture Loop Transformations

Loop Interchange (cont)

Example

```
do i = 1,n do j = 1,n do i = 1,n do i = 1,n x = A(i,j) enddo This array has stride enddo This array now has stride 1 enddo enddo enddo access
```

(Assuming column-major order for Fortran)

CS553 Lecture Loop Transformations 5

Legality of Loop Interchange

Case analysis of the direction vectors

(=,=)

The dependence is loop independent, so it is unaffected by interchange

(=,<)

The dependence is carried by the j loop.

After interchange the dependence will be (<,=), so the dependence will still be carried by the j loop, so the dependence relations do not change.

(<,=)

The dependence is carried by the i loop.

After interchange the dependence will be (=,<), so the dependence will still be carried by the i loop, so the dependence relations do not change.

CS553 Lecture

Loop Transformations

6

Legality of Loop Interchange (cont)

Case analysis of the direction vectors (cont.)

(<,<)

The dependence distance is positive in both dimensions.

After interchange it will still be positive in both dimensions, so the dependence relations do not change.

(<,>)

The dependence is carried by the outer loop.

After interchange the dependence will be (>,<), which changes the dependences and results in an illegal direction vector, so interchange is illegal.

(>,*) (=,>)

Such direction vectors are not possible for the original loop.

CS553 Lecture

Loop Transformations

Loop Interchange Example

Consider the (<,>) case

do
$$i = 1,n$$
 do $j = 1,n$ do $i = 1,n$ do $i = 1,n$ $C(i,j) = C(i+1,j-1)$ enddo enddo

Before

enddo

$$(1,1)$$
 $C(1,1) = C(2,0)$

(1,2)
$$C(1,2) = C(2,1)$$

$$d = (<,>)$$

(2,1) $C(2,1) = C(3,0)$

After

enddo

(1,1)
$$C(1,1) = C(2,0)$$

$$(2,1)$$
 $C(2,1) = C(3,0)$

...
$$d = (>,<) \delta$$

(1.2) $C(1.2) = C(2.1)$

CS553 Lecture

Loop Transformations

8

Frameworks for Loop Transformations

Unimodular Loop Transformations [Banerjee 90], [Wolf & Lam 91]

- can represent loop permutation, loop reversal, and loop skewing
- unimodular linear mapping (determinant of matrix is + or 1)
 - -T i = i', T is a matrix, i and i' are iteration vectors

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] \left[\begin{array}{c} i_1 \\ i_2 \end{array}\right] = \left[\begin{array}{c} i_1' \\ i_2' \end{array}\right]$$

- transformation is legal if the transformed dependence vector remain lexicographically positive
- limitations
 - only perfectly nested loops
 - all statements are transformed the same

CS553 Lecture

Loop Transformations

Legality of Loop Interchange, Reprise

$$\left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right] \left[\begin{array}{c} i \\ j \end{array}\right] = \left[\begin{array}{c} j \\ i \end{array}\right]$$

The dependence is loop independent, so it is unaffected by interchange

$$\left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right] \left[\begin{array}{c} 0 \\ 0 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right]$$

The dependence is carried by the j loop.

After interchange the dependence will be (<,=), so the dependence will still be carried by the j loop, so the dependence relations do not change.

The dependence is carried by the outer loop.

CS553 Lecture

Loop Transformations

10

Loop Reversal

Idea

Change the direction of loop iteration
 (i.e., From low-to-high indices to high-to-low indices or vice versa)

Benefits

- Improved cache performance
- Enables other transformations (coming soon)

Example

do
$$i = 6,1,-1$$
 do $i = 1,6$
$$A(i) = B(i) + C(i)$$

$$A(i) = B(i) + C(i)$$
 enddo

CS553 Lecture

Loop Transformations

Loop Reversal and Distance Vectors

Impact

- Reversal of loop i negates the ith entry of all distance vectors associated with the loop
- What about direction vectors?

When is reversal legal?

 When the loop being reversed does not carry a dependence (i.e., When the transformed distance vectors remain legal)

Example
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} = \begin{bmatrix} i \\ -j \end{bmatrix}$$
do i = 1,5
 do j = 1,6
 A(i,j) = A(i-1,j-1)+1
 enddo
 enddo
 Distance Vector: (1,1)
 Transformed
 Distance Vector: (1,-1) legal
enddo

CS553 Lecture Loop Transformations 12

Loop Reversal Example

Legality

- Loop reversal will change the direction of the dependence relation

Is the following legal?

do i = 1,6

CS553 Lecture Loop Transformations 13

Loop Skewing

Original code

Distance vector:

(1, -1)

Can we permute the original loop?

Skewing:

$$\left[egin{array}{cc} 1 & 0 \ 1 & 1 \end{array}
ight] \left[egin{array}{cc} i \ j \end{array}
ight] = \left[egin{array}{cc} i \ i+j \end{array}
ight]$$

CS553 Lecture

Loop Transformations

14

Transforming the Dependences and Array Accesses

Original code

do i = 1,6
do j = 1,5

$$A(i,j) = A(i-1,j+1)+1$$

enddo

Dependence vector:

$$\left[\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right] \left[\begin{array}{c} 1 \\ -1 \end{array}\right] = \left[\begin{array}{c} 1 \\ 0 \end{array}\right]$$

New Array Accesses:

$$A\left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix}\right) = A(i,j)$$

$$A\left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}\begin{bmatrix} i' \\ j' \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}\begin{bmatrix} i' \\ j' \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix}\right) = A(i',j'-i')$$

$$A\left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) = A(i-1,j+1)$$

$$A\left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} 1 & 0 \end{bmatrix}\begin{bmatrix} 1 & 0 \end{bmatrix}\begin{bmatrix} i' \\ -1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \end{bmatrix}\begin{bmatrix} 1 & 0 \end{bmatrix}\begin{bmatrix} 1 & 0 \end{bmatrix}\begin{bmatrix} i' \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix}\right)$$

CS553 Lecture

Loop Transformations

Transforming the Loop Bounds

Original code

Bounds:

$$\begin{bmatrix} -1 & 0 \\ 1 & 0 \\ 0 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} \le \begin{bmatrix} -1 \\ 6 \\ -1 \\ 5 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 \\ 1 & 0 \\ 0 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} i' \\ j' \end{bmatrix} \le \begin{bmatrix} -1 \\ 6 \\ -1 \\ 5 \end{bmatrix}$$

$$\begin{bmatrix} i \\ j \end{bmatrix} \le \begin{bmatrix} -1 \\ 6 \\ -1 \\ 5 \end{bmatrix} \qquad \begin{bmatrix} -1 & 0 \\ 1 & 0 \\ 0 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i' \\ j' - i' \end{bmatrix} \le \begin{bmatrix} -1 \\ 6 \\ -1 \\ 5 \end{bmatrix} \\
\begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} i' \\ j' \end{bmatrix} \le \begin{bmatrix} -1 \\ 6 \\ -1 \\ 5 \end{bmatrix} \qquad \begin{bmatrix} -1 & 0 \\ 1 & 0 \\ 0 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i' \\ j' \end{bmatrix} \le \begin{bmatrix} -1 - i' \\ 6 + i' \\ -1 - i' \\ 5 + i' \end{bmatrix}$$

Transformed code

CS553 Lecture

Loop Transformations

16

Loop Fusion

Idea

- Combine multiple loop nests into one

Example

do i = 1,nA(i) = A(i-1)B(i) = A(i)/2enddo

Pros

Cons

- May improve data locality
- May hurt data locality
- Reduces loop overhead
- May hurt icache performance
- -Enables array contraction (opposite of scalar expansion)
- May enable better instruction scheduling

CS553 Lecture

Loop Transformations

Legality of Loop Fusion

Basic Conditions

- Both loops must have same structure
 - Same loop depth
 - Same loop bounds
 - Same iteration directions

Can we relax any of these restrictions?

- Dependences must be preserved

e.g., Flow dependences must not become anti dependences

do i = 1,n
body1
body2
enddo

Ensure that fusion does not introduce dependences from body2 to body1

CS553 Lecture

Loop Transformations

18

Loop Fusion Example

What are the dependences?

What are the dependences?

Fusion changes the dependence between s₂ and s₃, so fusion is illegal

Is there some transformation that will enable fusion of these loops?

CS553 Lecture

enddo

Loop Transformations

Loop Fusion Example (cont)

Loop reversal is legal for the original loops

- Does not change the direction of any dep in the original code
- Will reverse the direction in the fused loop: $s_3\delta^a s_2$ will become $s_2\delta^f s_3$

CS553 Lecture Loop Transformations 20

Concepts

Using direction and distance vectors

Transformations:

- What is the benefit?
- What do they enable?
- When are they legal?

Unimodular transformation framework

- represents loop permutation, loop reversal, and loop skewing
- $\boldsymbol{-}$ provides mathematical framework for \dots
 - testing transformation legality,
 - transforming array accesses and loop bounds*,
 - and combining transformations

* The example did not require Fourier Motzkin elimination.

CS553 Lecture Loop Transformations 21

Next Time

Lecture

- More loop transformations
- An even cooler transformation framework

CS553 Lecture Loop Transformations

11