Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

Chapter 2

with Question/Answer Animations

Sets Section 2.1

Section Summary

- Definition of sets
- Describing Sets
 - O Roster Method
 - O Set-Builder Notation
- Some Important Sets in Mathematics
- Empty Set and Universal Set
- Subsets and Set Equality
- Cardinality of Sets
- Tuples
- Cartesian Product

Introduction

- Sets are one of the basic building blocks for the types of objects considered in discrete mathematics.
 - Important for counting.
 - O Programming languages have set operations.
- Set theory is an important branch of mathematics.
 - Many different systems of axioms have been used to develop set theory.
 - O Here we are not concerned with a formal set of axioms for set theory. Instead, we will use what is called naïve set theory.

Sets

- A set is an unordered collection of objects.
 - $^{ extsf{O}}$ the students in this class
 - O the chairs in this room
- The objects in a set are called the *elements*, or *members* of the set. A set is said to *contain* its elements.
- The notation $a \in A$ denotes that a is an element of the set A.
- If a is not a member of A, write $a \notin A$

Describing a Set: Roster Method

- Order not important

$$S = \{a,b,c,d\} = \{b,c,a,d\}$$

• Each distinct object is either a member or not; listing more than once does not change the set.

$$S = \{a,b,c,d\} = \{a,b,c,b,c,d\}$$

Elipses (...) may be used to describe a set without listing all of the members when the pattern is clear.

$$S = \{a,b,c,d,,z\}$$

Roster Method

Set of all vowels in the English alphabet:

$$V = \{a,e,i,o,u\}$$

Set of all odd positive integers less than 10:

$$O = \{1,3,5,7,9\}$$

Set of all positive integers less than 100:

• Set of all integers less than 0:

$$S = \{..., -3, -2, -1\}$$

Some Important Sets

```
N = natural numbers = {0,1,2,3....}
Z = integers = {...,-3,-2,-1,0,1,2,3,....}
Z<sup>+</sup> = positive integers = {1,2,3,.....}
R = set of real numbers
R<sup>+</sup> = set of positive real numbers
C = set of complex numbers
Q = set of rational numbers
```

Set-Builder Notation

Specify the property or properties that all members must satisfy:

```
S = \{x \mid x \text{ is a positive integer less than } 100\}

O = \{x \mid x \text{ is an odd positive integer less than } 10\}

O = \{x \in Z^+ \mid x \text{ is odd and } x < 10\}
```

A predicate may be used:

$$S = \{x \mid P(x)\}$$

- Example: $S = \{x \mid Prime(x)\}$
- Positive rational numbers:

```
Q^+ = \{x \in R \mid x = p/q, \text{ for some positive integers } p,q\}
```

Interval Notation

$$[a,b] = \{x \mid a \le x \le b\}$$

 $[a,b) = \{x \mid a \le x < b\}$
 $(a,b] = \{x \mid a < x \le b\}$
 $(a,b) = \{x \mid a < x < b\}$

closed interval [a,b] open interval (a,b)

Universal Set and Empty Set

- The universal set U is the set containing everything currently under consideration.
 - Sometimes implicit
 - Sometimes explicitly stated.
 - O Contents depend on the context.
- The empty set is the set with no elements. Symbolized Ø, but {} also used.

Venn Diagram

John Venn (1834-1923) Cambridge, UK

Russell's Paradox

- Let S be the set of all sets which are not members of themselves. A paradox results from trying to answer the question "Is S a member of itself?"
- Related Paradox:
 - O Henry is a barber who shaves all people who do not shave themselves. A paradox results from trying to answer the question "Does Henry shave himself?"

Bertrand Russell (1872-1970) Cambridge, UK Nobel Prize Winner

Some things to remember

Sets can be elements of sets.

```
\{\{1,2,3\},a,\{b,c\}\}\
\{N,Z,Q,R\}
```

The empty set is different from a set containing the empty set.

```
\emptyset \neq \{\emptyset\}
```

Set Equality

Definition: Two sets are *equal* if and only if they have the same elements.

O Therefore if A and B are sets, then A and B are equal if and only if

$$\forall x (x \in A \leftrightarrow x \in B)$$

 \bigcirc We write A = B if A and B are equal sets.

$$\{1,3,5\} = \{3,5,1\}$$

 $\{1,5,5,5,3,3,1\} = \{1,3,5\}$

Subsets

Definition: The set *A* is a *subset* of *B*, if and only if every element of *A* is also an element of *B*.

- \bigcirc The notation $A \subseteq B$ is used to indicate that A is a subset of the set B.
- \circ $A \subseteq B$ holds if and only if $\forall x (x \in A \rightarrow x \in B)$ is true.
 - 1. Because $a \in \emptyset$ is always false, $\emptyset \subseteq S$, for every set S.
 - 2. Because $a \in S \rightarrow a \in S$, $S \subseteq S$, for every set S.

Showing a Set is or is not a Subset of Another Set

- **Showing that A is a Subset of B**: To show that $A \subseteq B$, show that if x belongs to A, then x also belongs to B.
- **Showing that A is not a Subset of B**: To show that *A* is not a subset of *B*, $A \nsubseteq B$, find an element $x \in A$ with $x \notin B$. (Such an x is a counterexample to the claim that $x \in A$ implies $x \in B$.)

Examples:

- 1. The set of all computer science majors at your school is a subset of all students at your school.
- **2.** The set of integers with squares less than 100 is not a subset of the set of nonnegative integers.

Another look at Equality of Sets

- ullet Recall that two sets A and B are equal, denoted by A = B, iff $\forall x (x \in A \leftrightarrow x \in B)$
- Using logical equivalences we have that A = B iff

$$\forall x[(x \in A \to x \in B) \land (x \in B \to x \in A)]$$

This is equivalent to

$$A \subseteq B$$
 and $B \subseteq A$

Proper Subsets

Definition: If $A \subseteq B$, but $A \neq B$, then we say A is a *proper subset* of B, denoted by $A \subset B$. If $A \subset B$, then

$$\forall x (x \in A \to x \in B) \land \exists x (x \in B \land x \notin A)$$

is true.

Venn Diagram

Set Cardinality

Definition: If there are exactly n distinct elements in *S* where *n* is a nonnegative integer, we say that *S* is *finite*. Otherwise it is *infinite*.

Definition: The *cardinality* of a finite set A, denoted by |A|, is the number of (distinct) elements of A.

Examples:

- $1. \qquad |\emptyset| = 0$
- 2. Let S be the letters of the English alphabet. Then |S| = 26
- **3.** |{1,2,3}| = 3
- 4. $|\{\emptyset\}| = 1$
- **5.** The set of integers is infinite.

Power Sets

Definition: The set of all subsets of a set A, denoted P(A), is called the *power set* of A.

Example: If $A = \{a,b\}$ then

$$P(A) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}\$$

• If a set has n elements, then the cardinality of the power set is 2^n . (In Chapters 5 and 6, we will discuss different ways to show this.)

Tuples

- The ordered n-tuple $(a_1, a_2,, a_n)$ is the ordered collection that has a_1 as its first element and a_2 as its second element and so on until a_n as its last element.
- Two n-tuples are equal if and only if their corresponding elements are equal.
- 2-tuples are called ordered pairs.
- The ordered pairs (a,b) and (c,d) are equal if and only if a=c and b=d.

Cartesian Product

René Descartes (1596-1650)

Definition: The Cartesian Product of two sets A and B, denoted by $A \times B$ is the set of ordered pairs (a,b) where $a \in A$ and $b \in B$.

Example:

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

$$A = \{a,b\}$$
 $B = \{1,2,3\}$
 $A \times B = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$

 Definition: A subset R of the Cartesian product A × B is called a relation from the set A to the set B. (Relations will be covered in depth in Chapter 9.)

Cartesian Product

Definition: The cartesian products of the sets A_1, A_2, \dots, A_n , denoted by $A_1 \times A_2 \times \dots \times A_n$, is the set of ordered n-tuples (a_1, a_2, \dots, a_n) where a_i belongs to A_i for $i = 1, \dots n$.

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) | a_i \in A_i \text{ for } i = 1, 2, \dots n\}$$

Example: What is $A \times B \times C$ where $A = \{0,1\}$, $B = \{1,2\}$ and $C = \{0,1,2\}$ Solution: $A \times B \times C = \{(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,1,2)\}$

Truth Sets of Quantifiers

• Given a predicate P and a domain D, we define the *truth* set of P to be the set of elements in D for which P(x) is true. The truth set of P(x) is denoted by

• **Example**: The truth set of P(x) where the domain is the integers and P(x) is "|x| = 1" is the set $\{-1,1\}$