Functional Analysis Assignment 1

Edward McDonald z3375335

Question 1

Theorem 1 Suppose that B_k is the kth Bernoulli polynomial, and $e_n(t) = \exp(2\pi i n t)$. Then for $n \neq 0$, we have

$$\langle B_k, e_n \rangle = -\frac{k!}{(2\pi i n)^k}$$

and

$$\langle B_k, e_0 \rangle = 0.$$

Proof Put $n \neq 0$.

Consider first k = 1. By definition, $B_1(t) = t - \frac{1}{2}$. Then,

$$\langle B_1, e_n \rangle = \int_0^1 (x - \frac{1}{2}) e^{-2\pi i n x} dx$$
$$= \int_0^1 x e^{-2\pi i n x} dx$$

since $\int_0^1 e^{2\pi i nx} dx = 0$. Then using integration by parts,

$$\int_0^1 x e^{-2\pi i nx} dx = -\frac{1}{2\pi i n}.$$

Hence the result holds for k = 1. Suppose now that k > 1.

The kth Bernoulli polynomial can be found by the formula $kB_{k-1}(t) = B'_k(t)$ when k > 1. Since $B_k(0) = B_k(1)$, and $e_n(0) = e_n(1)$, we have the relation

$$\langle B'_k, e_n \rangle = -\int_0^1 B_k(t) \frac{d}{dt} [e^{-2\pi i n t}] dt$$

This gives us

$$2\pi i n \langle B_k, e_n \rangle = k \langle B_{k-1}, e_n \rangle.$$

Thus we have a recurrence relation:

$$\langle B_k, e_n \rangle = \frac{k}{2\pi i n} \langle B_{k-1}, e_n \rangle$$

valid for k > 1. Hence by induction,

$$\langle B_k, e_n \rangle = \frac{k!}{(2\pi i n)^{k-1}} \langle B_1, e_n \rangle.$$

So finally,

$$\langle B_k, e_n \rangle = -\frac{k!}{(2\pi i n)^k}$$

for $n \neq 0$.

For n = 0, we have

$$\langle B_k, e_0 \rangle = \int_0^1 B_k(x) dx$$

$$= \int_0^1 \frac{1}{k+1} B'_{k+1}(x) dx$$

$$= \frac{1}{k+1} (B_{k+1}(1) - B_{k+1}(0))$$

$$= 0$$

as required. \square

Hence we have the expansion,

$$B_k(t) = \sum_{n \in \mathbb{Z} \setminus \{0\}} -\frac{k!}{(2\pi i n)^k} e^{2\pi i n t}.$$

Question 2

For this question, t is a variable defined on [-1,1], and we consider functions in $L^2(-1,1)$.

Definition The *n*th Legendre polynomials L_n is

$$L_n(t) := \frac{1}{2^n n!} \sqrt{\frac{2n+1}{2}} \frac{d^n}{dx^n} [(t^2 - 1)^n]$$

and $L_0(t) := 1$. Define $v_n(t) = t^n$.

Lemma 2

$$\langle L_n, v_m \rangle = \begin{cases} 0 & \text{if } n > m \\ 0 & \text{if } m - n \text{ is odd and positive.} \\ \frac{1}{2^n} \sqrt{\frac{2n+1}{2}} \binom{m}{n} B(\frac{m-n+1}{2}, n+1) & \text{if } m - n \text{ is even and positive.} \end{cases}$$

where B is the beta function.

Proof Since the function $f(t) = t^2 - 1$ has f(0) = f(1) = 0, we can use the integration by parts rule,

$$\langle L_n, v_m \rangle = \frac{1}{2^n n!} \sqrt{\frac{2n+1}{2}} \int_{-1}^1 \frac{d^n}{dx^n} [(x^2 - 1)^n] x^m dx$$
$$= \frac{(-1)^n}{2^n n!} \sqrt{\frac{2n+1}{2}} \int_{-1}^1 (x^2 - 1)^n \frac{d^n}{dx^n} (x^m) dx.$$

If n > m, $\frac{d^n}{dx^n}x^m$ vanishes, and we get $\langle L_n, v_m \rangle = 0$.

In the case $n \leq m$, we have $\frac{d^n}{dx^n}(x^m) = \frac{m!}{(m-n)!}x^{m-n}$. Hence,

$$\langle L_n, v_m \rangle = \frac{1}{2^n} \sqrt{\frac{2n+1}{2}} \binom{m}{n} \int_{-1}^1 (1-x^2)^n x^{m-n} dx.$$

Now if n-m is odd, this is an integral of an odd function over a symmetric domain. So $\langle L_n, v_m \rangle = 0$ when n-m is odd.

Now if n-m is even, use the substitution $u=x^2$ so that

$$\langle L_n, v_m \rangle = \frac{1}{2^n} \binom{m}{n} \sqrt{\frac{2n+1}{2}} \int_0^1 (1-u)^n u^{\frac{m-n}{2} - \frac{1}{2}} du.$$

Hence we have by the definition of the beta function,

$$\langle L_n, v_m \rangle = \frac{1}{2^n} \binom{m}{n} \sqrt{\frac{2n+1}{2}} B(\frac{m-n+1}{2}, n+1)$$

as required. \square

Theorem 3 The set $\{L_n\}_{n=1}^{\infty}$, when normalised, is the result of Gram-Schmidt orthonormalisation applied to the set $\{v_n\}_{n=0}^{\infty}$.

Proof Define the set $\{B_n\}_{n=0}^{\infty}$ as the result of Gram-Schmidt orthogonalisation applied to $\{v_n\}_{n=0}^{\infty}$. That is,

$$B_0 = v_0$$

$$B_n = v_n - \sum_{k=0}^{n-1} \frac{\langle B_k, v_n \rangle}{\langle B_k, B_k \rangle} B_k.$$

Write $P_n = \text{span}\{v_k\}_{k=0}^n$ as the set of polynomials of degree at most n. Note that by construction $\text{span}\{B_k\}_{k=0}^n = P_n$.

We show that B_n is parallel L_n for $n \ge 0$. For n = 0, we have $B_0(t) = 1 = L_0(t)$.

By construction, B_n is in the orthogonal complement of P_{n-1} in P_n . Since P_{n-1} is n dimensional, and P_n is n+1 dimensional, the orthogonal complement of P_{n-1} in P_n is one dimensional.

Hence to show that L_n is parallel to B_n it will be enough to show that L_n lies in the orthogonal complement to P_{n-1} in P_n , since then both B_n and L_n lie in the same one dimensional subspace of P_n .

Clearly since L_n is a polynomial of degree n, we have $L_n \in P_n$.

By lemma 2, $L_n, v_k = 0$ for k < n. Hence L_n is orthogonal to every element P_{n-1} .

Hence, L_n is parallel to B_n . So if we normalise each L_n , we obtain the result of Gram-Schmidt orthonormalisation applied to the set $\{v_n\}_{n=0}^{\infty}$. \square

Question 3

Lemma 2 gives us the decomposition of v_n in terms of L_n . So,

$$v_m = \sum_{n=0}^{\infty} \langle L_n, v_m \rangle L_n$$
$$= \sum_{n=0}^{\infty} \langle L_n, v_m \rangle L_n$$

since $\langle L_n, v_m \rangle$ vanishes for n > m. So if m is even, we have

$$v_m = \sum_{k=0}^{m/2} \frac{1}{2^{2k}} {m \choose 2k} \sqrt{\frac{4k+1}{2}} B(\frac{m-2k+1}{2}, n+1) L_{2k}.$$

If m is odd, we have

$$v_m = \sum_{k=0}^{(m-1)/2} \frac{1}{2^{2k+1}} {m \choose 2k+1} \sqrt{\frac{4k+2}{2}} B(\frac{m-2k-1}{2}, n+1) L_{2k+1}.$$