

Model Report: DeepNN

18/12/2024

Introduction

This is an automated report for the Experiment with neural networks on traffic volume dataset; the DeepNN model.

This report will first introduce the model setup, including the hyperparameters and search algorithms used. Hereafter the base dataset will be described, and the differently created training datasets will be listed. After that, the results for the different forecast types will be presented, and the best results will be shown in plots.

Experiment description:

Experiment with neural networks on traffic volume dataset

Model setup

The model has been used for the following forecast purposes

- one_step
- o multistep
- o recursive

The model has been optimized using the following hyperparameters:

- optimizer: ['adam', 'sgd']
- epochs: [100, 200]
- batch_size: [32, 64]
- scaler: [None, StandardScaler(), MinMaxScaler(), RobustScaler(), PowerTransformer()]

And with the following search algorithms:

- o grid
- o random

The used performance measure is the neg_mean_absolute_error measure.

DeepNN: Introduction Page 1

Dataset setup

The baseline dataset used for these forecasts is

the 'Metro Interstate Traffic Volume with hourly features and holiday markings.' dataset: 'Metro Interstate Traffic Volume with hourly features and holiday markings.'.

The test size used for the forecasts is 0.2.

ODataset 1

- name: univariate_lagged

- dataset_type: univariate

prediction_type: one_step

- components: ['one_step_target', 'lagged_target']

ODataset 2

- name: univariate_temporal

- dataset_type: univariate

prediction_type: one_step

- components: ['one_step_target', 'temporal_features']

ODataset 3

name: multivariate_lagged

- dataset_type: multivariate

prediction_type: one_step

- components: ['one_step_target', 'lagged_target', 'feature_columns']

ODataset 4

- name: multivariate_lagged_temporal

- dataset_type: multivariate

prediction_type: one_step

- components: ['one_step_target', 'temporal_features', 'feature_columns', 'lagged_target']

ODataset 5

DeepNN: Introduction Page 2

- name: univariate_lagged_multistep

- dataset_type: univariate

- prediction_type: multistep

- components: ['multistep_target', 'lagged_target']

ODataset 6

- name: multivariate_lagged_temporal_multistep

- dataset_type: multivariate

- prediction_type: multistep

- components: ['multistep_target', 'temporal_features', 'feature_columns', 'lagged_target']

DeepNN: Introduction Page 3

Results: DeepNN

The presentation of the results follows this system: For each prediction type, the best and worst results for each combination of search method and dataset type are presented in heat plots along with the corresponding model setup.

- Then, if the prediction type is one-step forecasts, the best prediction over time is visualized in a line plot.
- If the prediction type is a multi-step forecast, either direct or recursive, the model with the average best r2 score is chosen, and the three best and worst predictions are visualized in a line plot. Furthermore, three steps of the forecasts are plotted.

Results Page 4

Results for the one_step forecast.

The best results (one_step) for the different setup combinations are as follows:

The worst results (one_step) for the different setup combinations are as follows:

Best one_step forecast over time

Results for the multistep forecast.

The best results (multistep) for the different setup combinations are as follows:

The worst results (multistep) for the different setup combinations are as follows:

Best predicted days for DeepNN.

Worst predicted days for DeepNN.

Steps plots for DeepNN forecasts over time

Results for the recursive forecast.

The best results (recursive) for the different setup combinations are as follows:

The worst results (recursive) for the different setup combinations are as follows:

Best predicted days for DeepNN.

Worst predicted days for DeepNN.

Steps plots for DeepNN forecasts over time

