

RBE 1001: Introduction to Robotics

C-Term 2019-20 HW 3.1: Solutions

Solutions

From Introduction to Circuit Analysis and Design by Glisson.

Problem 5.12

The total resistance on line (1) is 4R. The total resistance on line (2) is also 4R = R + R + 2R. Therefore the current gets split evenly across both paths.

The power consumption of each resistor is:

$$P_1 = 4R(I_0/2)^2$$
 $P_2 = 2R(I_0/2)^2$
 $P_3 = R(I_0/2)^2$ $P_4 = R(I_0/2)^2$

Establish that $P_1=2P_2=4P_3=4P_4$. Thus, resistor (1) consumes the most power.

Problem 5.13

The given is

$$V_0 = 50 \text{V}$$
 $P_0 = 90.2 \text{mW}$ $V_A = 32 \text{V}$ $R_3 = 91 \text{k}\Omega$

From this deduce,

$$V_1 = V_0 - V_A = 18V$$
 $V_2 = V_3 = V_A - 0 = 32V$

The current provided by the power source is $I_0 = P_0/V_0 = 1.8 \text{mA}$.

The current across R_1 is also I_0 , and so $R_1 = V_1/I_0$.

The current across R_3 is $I_3 = V_3/R_3 = 0.35$ mA.

The current across R_2 is thus $I_2=I_0-I_3=1.45 \mathrm{mA}$.

Obtain $R_2 = V_2/I_2$.

The numerical answer is,

$$R_1 = 9977\Omega$$
 $R_2 = 22033\Omega$