Exercice 1

Appliquer la méthode de la sécante à $f(x)=x^3$ sur le segment $[-\frac{1}{2},1]$. On montrera que la suite est croissante à valeurs strictement négatives. Estimer sa vitesse de convergence (on posera $y_n=-1/x_n$ et on appliquera le lemme de Cesaro à $(y_{n+1}^2-y_n^2)$).

Exercice 2

- a) Soit $\varphi(x) = x + x^3$ définie sur \mathbb{R} . Montrer que le point fixe x = 0 de φ est instable (répulsif).
- b) Soit $\varphi(x) = x + x^2$ définie sur \mathbb{R} . Montrer que selon le choix de x_0 , on peut avoir divergence de la suite $x_{n+1} = \varphi(x_n)$ ou bien convergence. Estimer la vitesse de convergence dans ce dernier cas.

Exercice 3

Soient $\alpha > 0$ et $b > \sqrt{\alpha}$. Montrer que la fonction

$$\varphi(x) = \frac{bx + \alpha}{b + x}$$

est contractante sur l'intervalle [0,b] et que cet intervalle est stable par φ . Que calcule-t-on en itérant φ ?

Exercice 4

Soient $\alpha > 0, t \in \mathbb{R}, p > 1$ et

$$\varphi(x) = (1 - t)x + \frac{\alpha t}{r^{p-1}}$$

Quel est le point fixe de φ et comment choisir t pour que ce point fixe soit superattractif (convergence plus rapide que linéaire)?

Exercice 5

On étudie le comportement des itérées d'une fonction au voisinage d'un point fixe dans le cas critique où la dérivée vaut 1 en ce point. Soit $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ une fonction de classe \mathcal{C}^1 . On suppose que $\varphi(0) = 0$, $\varphi'(0) = 1$ et que φ admet un développement limité de la forme :

$$\varphi(x) = x - ax^k + o(x^k)$$

avec a > 0 et k > 1.

- a) Montrer qu'il existe h>0 tel que $\forall\,x_0\in]0,h],$ la suite itérée $x_{p+1}=\varphi(x_p)$ converge vers 0.
- b) On pose $u_p = x_p^m$ avec $m \in \mathbb{R}$. Déterminer un équivalent de $(u_{p+1} u_p)$ en fonction de x_p .
- c) Montrer qu'il existe une valeur de m pour laquelle $(u_{p+1} u_p)$ possède une limite finie non nulle. En déduire un équivalent de x_p .
- d) Pour $\varphi(x) = \sin x$ et $x_0 = 1$, estimer le nombre d'itérations nécessaires pour atteindre $x_p < 10^{-5}$.