## Three Position Graphical Linkage Synthesis

Three Position with Specified Fixed Pivots

### Three Position With Specified Fixed Pivots







Coupler AB has three desired positions

$$A_1B_1$$
,  $A_2B_2$ , &  $A_3B_3$ 

A four bar mechanism needs to be designed to generate this movement with the additional constraint that the mechanism must be fixed to the frame at  $O_2$  and  $O_4$ .

## Use Inversion Starting with Position 2



Coupler AB is now fixed and  $O_2O_4$  moves.

Find location of  $O_{2,2}$  and  $O_{4,2}$ 

 The relative position of O<sub>2</sub>O<sub>4</sub> and A<sub>2</sub>B<sub>2</sub> must be maintained

## Use Inversion Starting with Position 3



Coupler AB is now fixed and  $O_2O_4$  moves.

Find location of  $O_{2,3}$  and  $O_{2,3}$ 

 The relative position of O<sub>2</sub>O<sub>4</sub> and A<sub>2</sub>B<sub>2</sub> must be maintained

#### Use Inversion New Problem to Synthesize



Coupler AB is now fixed and  $O_2O_4$  moves.

A<sub>2</sub>B<sub>2</sub> and A<sub>3</sub>B<sub>3</sub> can be removed

A<sub>1</sub>B<sub>1</sub> now becomes the ground

# Perform 3 Position Synthesis Using O<sub>2</sub>O<sub>4</sub> as Moving

Finding the Roto-Pole for  $O_2$ , C

Perpendicular Bisectors for  $O_{2,1}O_{2,2}$ , and  $O_{2,1}O_{2,2}$  locate C

C is a Fixed Roto-Pole



## Perform 3 Position Synthesis Using O<sub>2</sub>O<sub>4</sub> as Moving

Finding the Roto-Pole for O<sub>4</sub>, D

Perpendicular Bisectors for  $O_{4,1}O_{4,2}$ , and  $O_{4,1}O_{4,2}$  locate D

D is a Fixed Roto-Pole



#### Perform 3 Position Synthesis The Inverted Linkage



The Inverted linkage can now be formed.

A link is connected to C from  $O_{2,1}$ 

A link is connected to D from  $O_{4,1}$ 

#### Perform 3 Position Synthesis This linkage is inverted back



 $A_1B_1$  and CD are all on the same link.

The mechanism can now be inverted back to the original grounds,  $O_2O_4$