Chapter 5 Multiple Linear Regression Models and Their Analysis

5.1 Model and Assumptions

In many practical problems, a response variable is often related to several predictor variables X_1, X_2, \dots, X_{p-1} , for example, a son's height (Y) is related to his father's height (X_1) and his mother height (X_2) , which results in a multiple linear regression (MLR) model.

• Model

General model: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{p-1} X_{p-1} + \varepsilon$.

Notes: (1) (p-1) predictor variables. (2) p parameters or coefficients (including intercept).

Given observations on

the model becomes: $Y_i=\beta_0+\beta_1X_{i1}+\beta_2X_{i2}+\cdots+\beta_{p-1}X_{i,p-1}+\varepsilon_i,\,i=1,\cdots,n,$ i.e.,

$$\begin{split} Y_1 &= \beta_0 + \beta_1 X_{11} + \beta_2 X_{12} + \dots + \beta_{p-1} X_{1,p-1} + \varepsilon_1 \\ Y_2 &= \beta_0 + \beta_1 X_{21} + \beta_2 X_{22} + \dots + \beta_{p-1} X_{2p-1} + \varepsilon_2 \\ &\vdots \\ Y_n &= \beta_0 + \beta_1 X_{n1} + \beta_2 X_{n2} + \dots + \beta_{p-1} X_{n,p-1} + \varepsilon_n \end{split}$$

Model in matrix form

Let
$$\mathbf{Y} = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix}$$
, $\mathbf{X} = \begin{pmatrix} 1 & X_{11} & X_{12} & \cdots & X_{1,p-1} \\ 1 & X_{21} & X_{22} & \cdots & X_{2,p-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & X_{n1} & X_{n2} & \dots & X_{n,p-1} \end{pmatrix}$, $\boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{pmatrix}$, $\boldsymbol{\varepsilon} = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$.

Then

$$X\beta = \begin{pmatrix} \beta_0 + \beta_1 X_{11} + \beta_2 X_{12} + \dots + \beta_{p-1} X_{1,p-1} \\ \beta_0 + \beta_1 X_{21} + \beta_2 X_{22} + \dots + \beta_{p-1} X_{2,p-1} \\ \vdots \\ \beta_0 + \beta_1 X_{n1} + \beta_2 X_{n2} + \dots + \beta_{p-1} X_{n,p-1} \end{pmatrix},$$

$$Y = X\beta + \varepsilon.$$

Ex. 5.1 Write the matrix form of linear regression for the following data.

Y	34	47	55	64
X_1	1	3	5	7
X_2	12	16	20	18

• Assumptions for MLR

Assumptions for MLR are the same as for SLR:

- (1) $E(\varepsilon_i) = 0$ for all i, (2) $Var(\varepsilon_i) = \sigma^2$ for all i, (3) $\varepsilon_i's$ are independent, (4) ε_i is normally distributed.
- $\varepsilon_i' s$ are iid $N(0, \sigma^2)$.
- Assumptions in matrix form

Definition 5.1 Let $\mathbf{U} = \begin{pmatrix} U_1 \\ U_2 \\ \vdots \\ U_p \end{pmatrix}$ be a random vector.

Mean vector of
$$U$$
: $E(U) = \begin{pmatrix} E(U_1) \\ E(U_2) \\ \vdots \\ E(U_p) \end{pmatrix}$.

Variance-covariance matrix of U:

$$V(\boldsymbol{U}) = \begin{pmatrix} Var(U_1) & Cov(U_1, U_2) & \cdots & Cov(U_1, U_p) \\ Cov(U_2, U_1) & Var(U_2) & \cdots & Cov(U_2, U_p) \\ \cdots & \cdots & \cdots & \cdots \\ Cov(U_p, U_1) & Cov(U_p, U_2) & \cdots & Var(U_p) \end{pmatrix}.$$

Notes: (1) Since $Cov(U_i, U_j) = Cov(U_j, U_i)$ for $i \neq j$, V(U) is symmetric. (2) If U_i and U_j are independent, $Cov(U_i, U_j) = 0$. The above assumptions are equivalent to:

$$E(\boldsymbol{\varepsilon}) = \begin{pmatrix} E(\varepsilon_i) \\ \vdots \\ E(\varepsilon_n) \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} = \mathbf{0},$$

$$V(\boldsymbol{\varepsilon}) = \begin{pmatrix} Var(\varepsilon_1) & Cov(\varepsilon_1, \varepsilon_2) & \cdots & Cov(\varepsilon_1, \varepsilon_n) \\ Cov(\varepsilon_2, \varepsilon_1) & Var(\varepsilon_2) & \cdots & Cov(\varepsilon_2, \varepsilon_n) \\ \cdots & \cdots & \cdots & \cdots \\ Cov(\varepsilon_n, \varepsilon_1) & Cov(\varepsilon_n, \varepsilon_2) & \cdots & Var(\varepsilon_n) \end{pmatrix}$$

$$= \begin{pmatrix} \sigma^2 & 0 & \cdots & 0 \\ 0 & \sigma^2 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \sigma^2 \end{pmatrix} = \sigma^2 \boldsymbol{I}_n,$$

 ε_i is normally distributed.

$$\Leftrightarrow \boldsymbol{\varepsilon} \sim N_n(0, \sigma^2 \boldsymbol{I}_n).$$

Notes: (1)
$$E(Y) = E(X\beta + \varepsilon) = X\beta$$
, (2) $V(Y) = V(X\beta + \varepsilon) = V(\varepsilon) = \sigma^2 I_n$.

5.2 Fitting a Multiple Linear Regression Model

• Estimates of the coefficients

Recall SLR model:
$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i \Leftrightarrow \varepsilon_i = Y_i - (\beta_0 + \beta_1 X_i), i = 1, \dots, n$$
.

Goal: Find values of β_0 , β_1 that minimize

$$S(\beta_0, \beta_1) = \sum_{i=1}^n [Y_i - (\beta_0 + \beta_1 X_i)]^2 = \sum_{i=1}^n \varepsilon_i^2$$
 — The error sum of squares.

For the multiple regression model, $Y = X\beta + \varepsilon \Leftrightarrow \varepsilon = Y - X\beta$.

The error sum of squares:
$$S(\boldsymbol{\beta}) = \sum_{i=1}^{n} \varepsilon_i^2 = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n) \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix} = \boldsymbol{\varepsilon}' \boldsymbol{\varepsilon} = (\boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta})' (\boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta})$$
$$= (\boldsymbol{Y}' - \boldsymbol{\beta}' \boldsymbol{X}') (\boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta}) = \boldsymbol{Y}' \boldsymbol{Y} - \boldsymbol{Y}' \boldsymbol{X} \boldsymbol{\beta} - \boldsymbol{\beta}' \boldsymbol{X}' \boldsymbol{Y} + \boldsymbol{\beta}' \boldsymbol{X}' \boldsymbol{X} \boldsymbol{\beta}$$
$$= \boldsymbol{Y}' \boldsymbol{Y} - 2 \boldsymbol{\beta}' \boldsymbol{X}' \boldsymbol{Y} + \boldsymbol{\beta}' \boldsymbol{X}' \boldsymbol{X} \boldsymbol{\beta}.$$

Goal: Find the values of $\beta_0, \beta_1, \dots, \beta_{p-1}$ that minimize $S(\boldsymbol{\beta}) \Leftrightarrow \text{Find the vector } \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \end{pmatrix}$ that minimizes $S(\boldsymbol{\beta})$.

Method 1:

$$\begin{cases} \frac{\mathcal{S}}{\partial \beta_0} \equiv 0 \\ \frac{\mathcal{S}}{\partial \beta_1} \equiv 0 \\ \vdots \\ \frac{\mathcal{S}}{\partial \beta_k} \equiv 0 \end{cases}$$
—Normal equations

— Very hard to get an explicit solution.

Method 2:

$$\frac{\partial S}{\partial \boldsymbol{\beta}} = \frac{\partial (Y'Y)}{\partial \boldsymbol{\beta}} - 2 \frac{\partial (\boldsymbol{\beta}' X'Y)}{\partial \boldsymbol{\beta}} + \frac{\partial (\boldsymbol{\beta}' X'X\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = 0 - 2X'Y + 2X'X\boldsymbol{\beta} \equiv 0 \iff X'X\boldsymbol{\beta} = X'Y$$
—The normal equations

If X'X is nonsingular, that is, $|X'X| \neq 0$, then $(X'X)^{-1}$ exists. Premultiplying the normal equations by $(X'X)^{-1}$, we obtain

$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$
 — The least squares estimators of $\mathbf{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{pmatrix}$.

Notes: In the textbook, X'Xb = X'Y are called normal equations.

• Properties of **b**

Results: Let $\boldsymbol{U} = \begin{pmatrix} U_1 \\ U_2 \\ \vdots \\ U_p \end{pmatrix}$ be a random vector, $\mathbf{A} = \begin{pmatrix} a_{11} \cdots a_{1p} \\ \cdots \cdots \\ a_{n1} \cdots a_{np} \end{pmatrix}$ be a constant matrix. Then

- (1) $E(\mathbf{A}\mathbf{U}) = \mathbf{A}E(\mathbf{U})$.
- (2) $V(\mathbf{A}\mathbf{U}) = \mathbf{A}V(\mathbf{U})\mathbf{A}'$.
- (3) If $U \sim N_p(E(U), V(U))$, then $AU \sim N_n(AE(U), AV(U) A')$.

Utilizing those results, we have

$$E(b) = E((X'X)^{-1}X'Y) = (X'X)^{-1}X'E(Y) = (X'X)^{-1}X'X\beta = \beta.$$

 \Rightarrow **b** is an unbiased estimator of $\beta \Leftrightarrow$ Each b_i is an unbiased estimator of β_i , $i = 0, 1, \dots, p-1$.

$$V(\boldsymbol{b}) = V((X'X)^{-1}X'Y) = [(X'X)^{-1}X']V(Y)[(X'X)^{-1}X']' = [(X'X)^{-1}X']\sigma^2 I_n[X(X'X)^{-1}]$$

$$= \sigma^{2}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} = \sigma^{2}(\mathbf{X}'\mathbf{X})^{-1} = \begin{pmatrix} Var(b_{0}) & \cdots & Cov(b_{0}, b_{p-1}) \\ \cdots & \cdots & \cdots \\ Cov(b_{p-1}, b_{0}) & \cdots & Var(b_{p-1}) \end{pmatrix}.$$

$$\boldsymbol{b} \sim N_{\boldsymbol{p}}(\boldsymbol{\beta}, \sigma^{2}(\boldsymbol{X}'\boldsymbol{X})^{-1}).$$

Vector of predicted values:

$$\widehat{\mathbf{Y}} = \begin{pmatrix} \widehat{Y}_1 \\ \widehat{Y}_2 \\ \vdots \\ \widehat{Y}_n \end{pmatrix} = \begin{pmatrix} b_0 + b_1 X_{11} + b_2 X_{12} + \dots + b_{p-1} X_{1,p-1} \\ b_0 + b_1 X_{21} + b_2 X_{22} + \dots + b_{p-1} X_{2,p-1} \\ \vdots \\ b_0 + b_1 X_{n1} + b_2 X_{n2} + \dots + b_{p-1} X_{n,p-1} \end{pmatrix} = \mathbf{X} \mathbf{b} = \mathbf{X} (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}' \mathbf{Y} = \mathbf{H} \mathbf{Y},$$

where $H = X(X'X)^{-1}X'$ is called the "hat matrix" since $\widehat{Y} = HY$ (i.e., H converts Y into \widehat{Y}).

$$\textit{Vector of residuals: } \boldsymbol{e} = \begin{pmatrix} Y_1 - \hat{Y}_1 \\ Y_2 - \hat{Y}_2 \\ \vdots \\ Y_n - \hat{Y}_n \end{pmatrix} = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix} - \begin{pmatrix} \hat{Y}_1 \\ \hat{Y}_2 \\ \vdots \\ \hat{Y}_n \end{pmatrix} = \boldsymbol{Y} - \hat{\boldsymbol{Y}} = \boldsymbol{Y} - \boldsymbol{H}\boldsymbol{Y} = (\boldsymbol{I}_n - \boldsymbol{H})\boldsymbol{Y}$$

By the same arguments as in Chapter 1, we have

$$TSS = SS_{reg} + RSS.$$

Now,
$$RSS = \sum_{i=1}^{n} e_i^2 = e'e = (Y - \widehat{Y})'(Y - \widehat{Y}) = [(I_n - H)Y]'[(I_n - H)Y] = Y'(I_n - H)Y.$$

$$TSS = S_{YY} = Y'(I_n - \frac{1}{n}\mathbf{1}\mathbf{1}')Y, \text{ where } \mathbf{1} = \begin{pmatrix} 1\\1\\\vdots\\1 \end{pmatrix}.$$

$$SS_{reg} = TSS - RSS = Y'(I_n - \frac{1}{n}\mathbf{1}\mathbf{1}')Y - Y'(I_n - H)Y = Y'(H - \frac{1}{n}\mathbf{1}\mathbf{1}')Y.$$

$$(df \text{ of } TSS) = n - 1.$$

$$(df \text{ of } RSS) = (\# \text{ of summands}) - (\# \text{ of parameters estimated}) = n - p.$$

$$(df \text{ of } SS_{reg}) = (df \text{ of } TSS) - (df \text{ of } RSS) = (n - 1) - (n - p) = p - 1.$$

ANOVA table

Source of variation
Regressiondf
$$p-1$$
SS
SSregMS
MSreg = $\frac{SSreg}{p-1}$ Residual $n-p$ RSSMSresid = $\frac{RSS}{n-p}$ Total $n-1$ TSS

Notes: (1) σ^2 is estimated by $s^2 = MS_{resid} = \frac{RSS}{n-p}$. (2) Coefficient of determination: $R^2 = \frac{SS_{reg}}{TSS}$ — the proportion of variation in Y explained by the fitted equation.

Ex. 5.2 For the data in Example 1.1,

No. of cigarettes per $day(X)$	21	12	28	10	24	5
Birthweight (<i>Y</i>)	6.0	8.0	5.6	7.5	6.2	8.5

- (1) Write out the linear regression model in matrix form.
- (2) Compute X'X and X'Y.
- (3) Find $(X'X)^{-1}$.
- (4) Find **b**.
- (5) Find $\hat{\mathbf{Y}}$.
- (6) Fine *e*.
- (7) Find RSS and s^2 . (8) Find TSS and SS_{reg} . (9) Find R^2 and r_{XY} .

5.3 Inferences in Multiple Regression

• Test of overall linear relationship

 $H_0: \beta_1 = \beta_2 = \dots = \beta_{p-1} = 0$ (There is not a linear relationship with X_1, X_2, \dots, X_{p-1}) vs. H_a : at least one $\beta_i \neq 0$ (There is a linear relationship with X_1, X_2, \dots, X_{p-1})

Test statistic:
$$F = \frac{MS_{reg}}{MS_{resid}}$$

Test statistic: $F = \frac{MS_{reg}}{MS_{resid}}$ If $\varepsilon_1, \dots, \varepsilon_n$ are $iid\ N(0, \sigma^2)$ and H_0 is true, $F \sim F_{(p-1),(n-p)}$.

Reject
$$H_0$$
 if p -value = $P(F_{(p-1),(n-p)} > F_{obs}) \le \alpha$ or $F_{obs} \ge F_{(p-1),(n-p)}(1-\alpha)$.

For the test of overall linear relationship, if we reject H_0 , we can conclude that at least one of the predictor variables has a linear relationship with the response variable Y.

Q: Which predictor variable(s) has a linear relationship with Y?

• Tests for coefficients in multiple regression

$$H_0$$
: $\beta_i = \beta_{i0}$ vs. H_a : $\beta_i \neq \beta_{i0}$, where i can be $0, 1, \dots, p-1$.

Test statistic:
$$t = \frac{b_i - \beta_{io}}{se(b_i)}$$

If $\varepsilon_1, \dots, \varepsilon_n$ are *iid* $N(0, \sigma^2)$ and H_0 is true, $t \sim t_{n-p}$.

Reject
$$H_0$$
 if p -value = $2P(t_{n-p} \ge |t_{obs}|) \le \alpha$ or $|t_{obs}| \ge t_{n-p}(1-\frac{\alpha}{2})$.

Notes: (1) The most important tests are: H_0 : $\beta_i = 0$ vs. H_a : $\beta_i \neq 0$, $i = 0, 1, \dots, p-1$.

(2) The *t* test can be used for one-tailed tests (i.e., H_a : $\beta_i > 0$ or $\beta_i < 0$).

Interpretation of the tests

- (i) Test of $\beta_0 = 0$: regression through the origin in *p*-dimensional space.
- (ii) Test of $\beta_i = 0$ for some i = 1, 2, ..., p-1: tests for the importance of the *i*th variable in the model that includes all the remaining variables. Specifically,

 $H_0: \beta_i = 0$ (X_i does not contribute much (significantly) to the prediction of Y given the other predictor variables in the model. So can drop it.)

 H_a : $\beta_i \neq 0$ (X_i contributes significantly to the prediction of Y given the other predictor variables in the model. So must keep it.)

If we fail to reject H_0 , conclusion can be stated as: After accounting for the linear relationship between Y and $X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_{p-1}$, there is no sufficient evidence that a linear relationship between Y and Y_i is significant.

Similarly, we can test whether it is necessary to add a new predictor variable X_{new} into an existing model $Y = \beta_0 + \beta_1 X_1 + \dots + \beta_{p-1} X_{p-1} + \varepsilon$. Consider the new model: $Y = \beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1} + \beta_{new} x_{new} + \varepsilon$ and test:

 H_0 : $\beta_{new} = 0$ (it is not necessary to add x_{new}) vs. H_a : $\beta_{new} \neq 0$ (it is necessary to add x_{new})

• Application to variable selection

Q: The more predictor variables we use, the better the model is? A: No.

When we overfit or underfit a linear regression model, $E(\mathbf{b}) \neq \beta$, that is, \mathbf{b} is not an unbiased estimator of β .

<u>Principle for variable selection</u>: Use as few predictor variables as possible that adequately explain the relationship between Y and X_1, X_2, \dots, X_{p-1} .

Reasons

- A simple model is easier to explain.
- More precise estimates and predictions might be achieved with a simpler model
- —Reduce the effect of collinearity.

Backward elimination: Start with all predictor variables in the model. Then eliminate all insignificant predictor variables one by one, with the predictor variable corresponding to the largest *p*-value being eliminated each time, until all predictor variables are significant.

• Confidence intervals for coefficients in multiple regression

A $100(1 - \alpha)\%$ confidence interval (CI) for β_i is

$$b_i \pm t_{n-p}(1-\frac{\alpha}{2}) \cdot se(b_i)$$

Notes: (1) $V(\mathbf{b}) = \sigma^2 (\mathbf{X}'\mathbf{X})^{-1}$ is estimated by $\widehat{V(\mathbf{b})} = s^2 (\mathbf{X}'\mathbf{X})^{-1}$. $se(b_i)$ is square root of the (i+1)th diagonal element of $\widehat{V(\mathbf{b})}$.

• Some notes

Interpretation of β_i , $i=1,\cdots,p-1$, called *partial slopes*: the expected increase in Y when X_i increases by 1 unit but all other X's are held constant.

Note on R^2 (coefficient of determination)

In multiple regression, $R^2 = \frac{SS_{reg}}{TSS} = \frac{TSS^-RSS}{TSS} = 1 - \frac{RSS}{TSS}$ is the proportion of variability in Y that is explained by the fitted equation $\hat{Y} = b_0 + b_1 X_1 + \dots + b_{p-1} X_{p-1}$.

A property of R^2 : As a new variable is added to a model, R^2 will not decrease (more exactly, R^2 will increase unless the new variable is a linear combination of the predictors already in the model).

— Not reasonable.

Adjusted R²

— Adjust R^2 for the # of parameters (including β_0) in the model:

$$R_a^2 = 1 - \frac{RSS/(n-p)}{TSS/(n-1)} = 1 - (\frac{n-1}{n-p}) \frac{RSS}{TSS}$$

which measures effectiveness of the fitted equation.

Properties of R_a^2 : (1) $R_a^2 \le R^2$.

(2) As a predictor variable is added to a model, R_a^2 may decrease.

Note on plots

(1) We can no longer use scatter plot to identify relationship. Generally, plot Y vs. X_i for $i = 1, 2, \dots, p-1$ to look for approximate linear relationship.

Note: Linear relationship between Y and $X_1, X_2, \dots, X_{p-1} \Rightarrow$ Linear pattern in plot of Y vs. X_i , $i = 1, 2, \dots, p-1$. However, the converse is not true.

(2) Residual plot: plot e vs. \hat{Y} (sometimes, e vs. X_i for $i=1,2,\cdots,p-1$).

<u>Note on the lack of fit test</u>: Can conduct the lack of fit test as long as there is more than one *Y*-value at at least one combination of values predictor variables. — Replication.

Note on the CI for $E(Y) = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_{p-1}$ and the prediction interval: The CI for $E(Y) = \beta_0 + \beta_1 X_1 + \dots + \beta_{p-1} X_{p-1}$ and the prediction interval can also be constructed.

Ex. 5.3 The following observations were taken at intervals from a steam plant at a large industrial concern. Ten variables, some of them in coded form, were recorded as follows:

Y = Pounds of steam used monthly, in coded form.

 X_1 = Pounds of real fatty acid in storage per month.

 X_2 = Pounds of crude glycerin made.

 X_3 = Average wind velocity (in mph).

 X_4 = Calendar days per month.

 X_5 = Operating days per month.

 X_6 = Days below 32°F.

 X_7 = Average atmospheric temperature (°F).

 X_8 = Average wind velocity squared.

 X_9 = Number of start-ups.

- (1) Find the fitted equation relating Y to all nine predictor variables. Interpret the estimated coefficient of X_7 in the context of the problem.
- (2) Find the predicted Y value and a 90% prediction interval for Y when $X_1 = 5.00$, $X_2 = 0.80$, $X_3 = 6.0$, $X_4 = 30$, $X_5 = 20$, $X_6 = 10$, $X_7 = 60$, $X_8 = 80.0$, and $X_9 = 6$.
- (3) Find and interpret R^2 .
- (4) Test to determine whether the overall regression is significant at $\alpha = 0.05$.
- (5) Test to determine whether there is a linear relationship between Y and X_8 in the model that includes all the remaining predictor variables.
- (6) Construct a 95% confidence interval for β_8 and interpret the confidence interval. What is your conclusion based on the confidence interval?
- (7) Fit an appropriate model for the data using $\alpha = 0.05$.

Υ	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X_9
10.98	5.2	0.61	7.4	31	20	22	35.3	54.8	4
11.13	5.12	0.64	8	29	20	25	29.7	64	5
12.51	6.19	0.78	7.4	31	23	17	30.8	54.8	4
8.4	3.89	0.49	7.5	30	20	22	58.8	56.3	4
9.27	6.28	0.84	5.5	31	21	0	61.4	30.3	5
8.73	5.76	0.74	8.9	30	22	0	71.3	79.2	4
6.36	3.45	0.42	4.1	31	11	0	74.4	16.8	2
8.5	6.57	0.87	4.1	31	23	0	76.7	16.8	5
7.82	5.69	0.75	4.1	30	21	0	70.7	16.8	4
9.14	6.14	0.76	4.5	31	20	0	57.5	20.3	5
8.24	4.84	0.65	10.3	30	20	11	46.4	106.1	4
12.19	4.88	0.62	6.9	31	21	12	28.9	47.6	4
11.88	6.03	0.79	6.6	31	21	25	28.1	43.6	5
9.57	4.55	0.6	7.3	28	19	18	39.1	53.3	5
10.94	5.71	0.7	8.1	31	23	5	46.8	65.6	4
9.58	5.67	0.74	8.4	30	20	7	48.5	70.6	4
10.09	6.72	0.85	6.1	31	22	0	59.3	37.2	6
8.11	4.95	0.67	4.9	30	22	0	70	24	4
6.83	4.62	0.45	4.6	31	11	0	70	21.2	3
8.88	6.6	0.95	3.7	31	23	0	74.5	13.7	4
7.68	5.01	0.64	4.7	30	20	0	72.1	22.1	4
8.47	5.68	0.75	5.3	31	21	1	58.1	28.1	6
8.86	5.28	0.7	6.2	30	20	14	44.6	38.4	4
10.36	5.36	0.67	6.8	31	20	22	33.4	46.2	4
11.08	5.87	0.7	7.5	31	22	28	28.6	56.3	5