Number Theory – HW 4-5

Number-Theoretic Functions

Problem 1 Find all positive integers n with $\sigma(n) = 24$.

Problem 2 Let σ_k be the number-theoretic function

$$\sigma_k(n) = \sum_{d|n} d^k.$$

(a) Simplify

$$\sum_{d|n} \mu(d) \sigma_k(n/d).$$

Hint: Remember Mobius Inversion Formula.

(b) Prove that the following function is multiplicative:

$$S_k(n) = \sum_{d|n} \mu(d)\sigma_k(d)$$

Hint:

- (H1) We know that μ is multiplicative.
- (H2) Show $\sigma_k(n)$ is multiplicative.
- (H3) We know that if f(n) is multiplicative, then $\sum_{d|n} f(d)$ is multiplicative.

Problem 3 (a) Show that the number-theoretic function $f(n) = (-1)^{n-1}$ is multiplicative.

(b) Let q be the number-theoretic function

$$g(n) = \sum_{d|n} \mu(d) f(d).$$

Prove that q(n) = 0 if n is not a power of 2.

Euler ϕ -Function and Euler's Generalization of Fermat's Little Theorem

Problem 4 Find all positive integers n such that $\phi(n)$ is odd.

Problem 5 We showed in class that there is no positive integer n such that $\phi(n) = 14$. Find the smallest integer m > 14 such that no positive integer n exists satisfying $\phi(n) = m$. Explain your reasoning.

Problem 6 Show that if n > 1, then

$$\prod_{p|n} p \ge \frac{n}{\phi(n)}.$$

Hint:

- (H1) $\phi(n) = n \cdot \prod_{p|n} (1 \frac{1}{p})$ where p is always prime.
- (H2) $\frac{1}{p} \le 1 \frac{1}{p}$ if p is prime.

Problem 7 Find all positive integers n such that $\phi(n) \mid 3n$.

Hint:

- (H1) Can n be odd?
- (H2) If $n=2^k \cdot m$ for odd m, what can you say about $n/\phi(n)$? Hence, what can you say about m?
- (H3) Do you know any prime number that divides m?

Problem 8 (a) Show $\phi(2m) = \phi(m)$ if m is odd.

- (b) Show $\phi(3m) = \phi(2m)$ if m is even and not divisible by 3.
- (c) Use previous results to show that, for any given k, if the equation $\phi(n) = k$ has exactly one solution n, then $36 \mid n$.
- (d) Can you give two integers m and n such that $36 \mid m$, n and $\phi(m) = \phi(n)$? (If you can, this shows that the converse of the previous result is not true.)

Problem 9 Suppose that m = pq, and $\phi = (p-1)(q-1)$ where p, q are real numbers. Find a formula for p and q, in terms of m and ϕ . Supposing that m = 39, 247, 771 is the product of two distinct primes p and q, deduce the factors of m from the information that $\phi(m) = 39, 233, 944$.

Remark: A nice Cryptogtaphy problem!

Problem 10 Let N be a perfect number. Show that

$$\prod_{\substack{p|N\\p \text{ prime}}} \left(1 - \frac{1}{p}\right) < \frac{1}{2}.$$

Hint:

- (H1) A perfect number is a number sum of whose divisors is equal to itself. That is, $\sigma(n) = n$.
- (H2) You might want to check equivalent definition(s) of σ from your book.

Problem 11 Let p > 0 be an odd prime and $n = 3^p + 1$. Let q be an odd prime divisor of n.

(a) What is the order of 3 modulo n?

(b) Show that q is of the form q = 2kp + 1 for some integer k > 0.

Problem 12 Use Fermat's Little Theorem to find a very short calculation of

 $3^{37,123,878,237,982,731,602} \pmod{101}$

Problem 13 (a) Write 1234 in base 2.

- (b) Calculate $2^2, 2^4, \dots, 2^k \pmod{789}$ where $2^k \le 1234$ and $2^{k+1} > 1234$.
- (c) Use (a), (b) to calculate $2^{1234} \pmod{789}$.
- (d) Calculate $\phi(789)$.
- (e) Use parts (b), (d) and a similar idea to (a) to obtain the same result a lot faster.

Problem 14 Let n be an integer with n > 6. Show that

$$\phi(n) > \sqrt{n}$$
.

Hint:

- (H1) You may want to deal with two cases: n = 2m where m is odd and all other cases.
- (H2) When is k 1 > k/2?
- (H3) When is $p-1 > \sqrt{p}$?
- (H4) When is $p 1 > \sqrt{2p}$?

Primite Roots

Problem 15 Describe all primes p such that

$$x^4 + x^3 + x^2 + 2 + 1 \equiv 0 \pmod{p}$$

Hint: Can you multiple the given polynomial and obtain $x^m - 1$ for some m? If yes, you can then use the fact that m must divide $\phi(p)$.

Problem 16 (a) Use the fact that 3 is a primitive root modulo the prime 79 to find all x satisfying

$$x^{40} \equiv 2 \pmod{79}.$$

Hint:

- (H1) What can you say about the order of x modulo 79?
- (H2) Test all possibilities for the order of x. Make sure that your solution for each order actually have the desired order.
- (b) Is 2 a primitive root modulo 79?

Problem 17 Factor $n = 2^{30} - 1$ completely.

Hint:

- (H1) First, calculate all odd m such that $\phi(m) \mid 30$.
- (H2) If m is odd, then (m, 2) = 1 and hence $m \mid n$. The least common multiple of all such m is a divisor of n. Let's call this LCM ℓ .(Why not even m?)
- (H3) Calculate prime numbers $q < \sqrt{n/\ell}$ such that $30 \mid (q-1)$. (You do not really need to calculate $\sqrt{n/\ell}$. Instead try to use $2^{15}/2^k$ such that 2^k is largest integer less than ℓ .)
- (H4) Test whether $2^{30} \equiv 1 \pmod{q}$ for each prime obtained in the previous step. If yes, then $q \mid n$.