Image Captioning with Show and Tell Model

Gizem Tabak (tabak2) Safa Messaoud (messaou2) Ankit Rai (rai5) Tarek Elgamal (telgama2)

Image Captioning

Image Captioning Examples

"Girl in pink dress is jumping in the air."

"Black and white dog jumping over the bar."

"Man in a blue wetsuit is surfing on a wave."

Caption typically conveys: Main character, color, activity

Show and Tell Model

- Pre-trained CNN
 (Inception) on ImageNet
- One LSTM unit
- Developed by Google
- Winner of MSCoCo image Captioning challenge 2015

Running Example

Implementation Overview

- Show and Tell open-sourced in Tensorflow
- Flickr8K* instead of MSCOCO
- Different RNN units
 - LSTM, GRU, Basic RNN
- Model training parameters
 - Learning rate, optimizer, dropout, decay, gradient clipping, batch size, RNN nodes
- Evaluation on validation set
 - BLEU score
 - Log-probabilities
- Training best model for longer time
- Merging it with txt2im (text to image)

^{*}Source (Flickr8K Dataset)- M. Hodosh, P. Young and J. Hockenmaier (2013) "Framing Image Description as a Ranking Task: Data, Models and Evaluation Metrics", Journal of Artificial Intelligence Research, Volume 47, pages 853-899

	Dropout	Learning Rate	Sequential Model (Nodes)	Optimizer (Batch Size)	Training Loss
Baseline	0.3	1	LSTM (512)	SGD (32)	2.4651
Model 1	0.5	3	LSTM (512)	SGD (32)	2.5575
Model 2	0.5	3	GRU	SGD (32)	2.3606
Model 3	0.3	0.01 Decay 0.7	LSTM (512)	Adam	2.7263
Model 4	0	1	LSTM (512)	SGD (32)	1.6204
Model 5	0.5	0.5	RNN	SGD (16)	3.2560
Model 6	0.3	1	LSTM (256)	SGD (32)	2.5599
Model 7	0.3	0.01 Decay 0.9	LSTM (512)	Adam	2.5544

	Dropout	Learning Rate	Sequential Model (Nodes)	Optimizer (Batch Size)
Baseline	0.3	1	LSTM (512)	SGD (32)
Model 1	0.5	3	LSTM (512)	SGD (32)
Model 2	0.5	3	GRU	SGD (32)
Model 3	0.3	0.01 Decay 0.7	LSTM	Adam
Model 4	0	1	LSTM	SGD (32)
Model 5	0.5	0.5	RNN	SGD (16)
Model 6	0.3	1	LSTM (256)	SGD (32)
Model 7	0.3	0.01 Decay 0.9	LSTM	Adam

BLEU Scores

Baseline Model: A skateboarder jumps off a ramp.

Model 1: A man in a blue shirt and jeans is jumping off a ramp.

Model 2: A boy in a blue shirt and jeans is jumping on a skateboard.

Model 3: A young boy in a red shirt is playing in the water.

Model 4: A man does a skateboard trick in midair.

Model 5: A boy is doing a trick on a skateboard.

Model 6: A man on a skateboard jumps over a ramp.

Model 7: A man in a black shirt is standing on a snowy mountain.

Bicyclist is jumping on ramp covered with graffiti.

"A young boy in a red shirt is playing in the water."

SAME CAPTION FOR ALL IMAGES

"A man in a black shirt is standing on a snowy mountain."

- Even though BLEU metric gave high evaluation score, some of the models are not properly trained.
- BLEU score is not representative for sentence-level comparison.
 - It depends on caption length.
- Log-probabilities of captions (confidence)

	Training Loss	BLEU Score	Probability (Confidence)	
Baseline	2.4651	0.280	0.001722	
Model 1	2.5575	0.286	0.000833	
Model 2	2.3606	0.290	0.000583	
Model 3	2.7263	0.303	0	
Model 4	1.6204	0.279	0.002017	
Model 5	3.2560	0.251	0.001268	
Model 6	2.5599	0.285	0.000415	
Model 7	2.5544	0.306	0	

Confidence

	Dropout	Learning Rate	Sequential Model (Nodes)	Optimizer (Batch Size)	Training Loss	BLEU Score	Probability (Confidence)
Baseline	0.3	1	LSTM (512)	SGD (32)	2.4651	0.280	0.001722
Model 1	0.5	3	LSTM (512)	SGD (32)	2.5575	0.286	0.000833
Model 2	0.5	3	GRU	SGD (32)	2.3606	0.290	0.000583
Model 3	0.3	0.01 Decay 0.7	LSTM (512)	Adam	2.7263	0.303	0
Model 4	0	1	LSTM (512)	SGD (32)	1.6204	0.279	0.002017
Model 4 (50k)	0	1	LSTM (512)	SGD (32)	2.3384	0.288	0.002147
Model 5	0.5	0.5	RNN	SGD (16)	3.2560	0.251	0.001268
Model 6	0.3	1	LSTM (256)	SGD (32)	2.5599	0.285	0.000415
Model 7	0.3	0.01 Decay 0.9	LSTM (512)	Adam	2.5544	0.306	0

GOOD CAPTIONS

"A dog swimming in water." p = 0.019199

"Two men play basketball." p=0.050603

"The surfer is riding a wave in the ocean." p=0.028798

"A little girl in a white shirt and black skirt is holding up a red bag." p=0.000000

BAD CAPTIONS

"A man in a purple shirt is playing a guitar." p = 0.000006

"A man in a red shirt is standing in front of a white truck."
p = 0.000014

txt2im

Based on "Generating Images from Captions with Attention" by Elman Mansimov et al (ICLR 2016)

In every iteration, we generate a patch in the output canvas c, given a sentence representation and a latent variables z which capture salient information about the training images.

txt2im

Experiments

Data MS COCO

Number of Epochs 6 (18 in the paper)

Run-Time per Epoch 15 h of BW

Vocabulary size 25323

Processing step convert all capital letters to small letters

Tool Theano

"A black and white dog swims in the water."

"A black and white dog swims in the water."

"A brown dog jumps into the water."

"A man in a red jacket is skiing down ■ a snowy hill."

"A brown dog is running through the grass."

Conclusions

- LSTM outperformed RNN and GRU
- Nonunique representation of image captions
 - For the same image, even people might focus on different things and generate different captions
- Caption evaluation uncertainty
 - BLEU score drawbacks

References

- Vinyals, Oriol, et al. "Show and tell: A neural image caption generator." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2015.
- Vinyals, Oriol, et al. "Show and tell: Lessons learned from the 2015 MSCOCO image captioning challenge." *IEEE Transactions on Pattern Analysis and Machine Intelligence* (2016).
- Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating image descriptions."
 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.