Statistical Distributions

- Density, cumulative distribution function, quantile function and random variate generation for many standard probability distributions are available in the stats package.
 - dxxx: functions for the density/mass function,
 - pxxx : cumulative distribution function
 - qxxx : quantile function
 - rxxx : random variable generation.

2.3 pxxx

Cumulative distribution function (lower tail probability)

Example: Standard normal distribution

- pnorm(value-of-x-axis) or pnorm(quantile)
- pnorm(0) = 0.5 (the area under the standard normal curve to the left of zero).

Figure 2.1: Standard normal distribution

• pnorm(1.281552) = 0.9000 (the area under the standard normal curve to the left of 1.281).

Figure 2.2: Standard normal distribution

- The pnorm function also takes the argument lower.tail. If lower.tail is set equal to FALSE then pnorm returns the upper tail probability (the integral from q to ∞ of the pdf) of the normal distribution.
- Note that

Riepared by Dr. Priyanga D. Talagala (Copyright 2020 Priyanga D. Talagala)

```
pnorm(1.281552)

## [1] 0.9000001

pnorm(1.281552, lower.tail = TRUE)

## [1] 0.9000001

pnorm(1.281552, lower.tail = FALSE)

## [1] 0.09999992

1-pnorm(1.281552, lower.tail = TRUE)

## [1] 0.09999992
```

2.4 qxxx

 $Example: Standard\ normal\ distribution$

The quorm function is simply the inverse of the cdf, which you can also think of as the inverse of pnorm!

- qnorm(probability)
- qnorm(0.5) = 0 (0 is the 50th percentile of the standard normal distribution)

Figure 2.3: Standard normal distribution

Prepared by Dr. Priyanga D. Talagala (Copyright 2020 Priyanga D. Talagala7

```
qnorm(0.5)
## [1] 0
qnorm(0.9)
## [1] 1.281552
qnorm(0.1, lower.tail = FALSE)
## [1] 1.281552
qnorm(0.9, lower.tail = FALSE)
## [1] -1.281552
```


Figure 2.4: Standard normal distribution

2.5 dxxx

 $Example\,:\,Standard\,\,normal\,\,distribution$

The function dnorm returns the value of the probability density function for the normal distribution given parameters for x, μ , and σ .

• dnorm(0) == 1/sqrt(2*pi)

Perepared by Dr. Priyanga D. Talagala (Copyright 2020 Priyanga D. Talagala)

If $Z \sim N(0, 1)$, then

$$\phi_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}; \quad -\infty < z < \infty$$

$$\phi_Z(0) = \frac{1}{\sqrt{2\pi}} = 0.3989423$$

dnorm(0)

[1] 0.3989423

1/sqrt(2*pi)

[1] 0.3989423

Figure 2.5: Standard normal distribution

$$\phi_Z(1) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}} = 0.3989423$$

dnorm(1)

[1] 0.2419707

Prepared by Dr. Priyanga D. Talagala (Copyright 2020 Priyanga D. Talagala)

```
(1/sqrt(2*pi)) * exp(-1/2)
```

[1] 0.2419707

Figure 2.6: Standard normal distribution

2.6 rxxx

 $Example: Standard\ normal\ distribution$

 ${\tt rnorm(100)}$ generates 100 random deviates from a standard normal distribution.

```
x <- rnorm(10)
x
## [1] -1.0080707 1.3549394 -0.4689749 1.4681936 0.4425564 0.1462031
```

```
hist(x)
```

0.1715031 0.5925072 2.7647493 0.6192188

Repared by Dr. Priyanga D. Talagala (Copyright 2020 Priyanga D. Talagala)

2.7 Distributions in R

Distribution	R name	Additional arguments
beta	beta	shape1, shape 2, ncp
binomial	binom	size, prob
Cauchy	cauchy	location, scale
chi-squared	chisq	df, ncp
exponential	exp	rate
F	f	df1, df2, ncp

Prepared by Dr. Priyanga D. Talagala (Copyright 2020 Priyanga D. Talagala)

Distribution	R name	Additional arguments
gamma	gamma	shape, scale
geometric	geom	prob
hypergeometric	hyper	m, n, k
log-normal	lnorm	meanlog, sdlog
logistic	logis	location, scale
negative binomial	nbinom	size, prob
normal	norm	mean, sd
Poisson	pois	lambda
signed rank	signrank	n
Student's t	t	df, ncp
uniform	unif	min, max
Weibull	weibull	shape, scale
Wilcoxon	wilcox	m, n

2.8 Exercise

2.8.1 Normal

Figure 2.7: Standard normal distribution

```
# ?dnorm - Help page

dnorm(2, mean = 2, sd = 1, log = FALSE)
pnorm(2, mean = 2, sd = 1, lower.tail = TRUE, log.p = FALSE)
qnorm(0.5, mean = 2, sd = 1, lower.tail = TRUE, log.p = FALSE)
rnorm(n=10, mean = 2, sd = 1)
```

P2repared by Dr. Priyanga D. Talagala (Copyright 2020 Priyanga D. Talagala)

```
# ?dnorm - Help page
dnorm(2, mean = 2, sd = 1, log = FALSE)

## [1] 0.3989423

pnorm(2, mean = 2, sd = 1, lower.tail = TRUE, log.p = FALSE)

## [1] 0.5

qnorm(0.5, mean = 2, sd = 1, lower.tail = TRUE, log.p = FALSE)

## [1] 2

rnorm(n=10, mean = 2, sd = 1)

## [1] 0.9919293 3.3549394 1.5310251 3.4681936 2.4425564 2.1462031 2.1715031 ## [8] 2.5925072 4.7647493 2.6192188
```

2.8.2 Gamma

Figure 2.8: Standard normal distribution

Prepared by Dr. Priyanga D. Talagala (Copyright 2020 Priyanga D. Talagala)

```
dgamma(1, shape =2, scale = 1/3, log = FALSE)
pgamma(1, shape =2, scale = 1/3, lower.tail = TRUE,
      log.p = FALSE)
qgamma(0.8, shape = 2, scale = 1/3, lower.tail = TRUE,
      log.p = FALSE)
rgamma(10, shape = 2, scale = 1/3)
dgamma(1, shape =2, scale = 1/3, log = FALSE)
## [1] 0.4480836
pgamma(1, shape =2, scale = 1/3, lower.tail = TRUE,
       log.p = FALSE)
## [1] 0.8008517
qgamma(0.8, shape = 2, scale = 1/3, lower.tail = TRUE,
      log.p = FALSE)
## [1] 0.9981028
rgamma(10, shape = 2, scale = 1/3)
   [1] 0.3117027 0.5663228 1.8567817 0.1403567 0.7776307 0.8252981 1.4063366
## [8] 0.7292312 0.9434481 0.9001169
```