

Attorney Docket No.: 4216.260-US

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of: Royer et al.

Confirmation No. 3928

Serial No.: 09/461,537

Group Art Unit: 1636

Filed: December 15, 1999

Examiner: Marvich, M.

For: Non-Toxic, Non-Toxigenic, Non-Pathogenic Fusarium Expression System and Promoters
and Terminators for Use Therein

VERIFIED STATEMENT

Commissioner of Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Sir:

Applicants submit a computer readable form of a sequence listing. The content of the paper copy and computer readable form is the same..

I also state that the listing does not include matter which goes beyond the disclosure in the Application as filed.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issue thereon.

Respectfully submitted,

Robert L. Starnes, Reg. No.: 41,324
Novozymes Biotech, Inc.
1445 Drew Avenue
Davis, CA 95616
(530) 757-8100

Date: October 27, 2004

SEQUENCE LISTING

<110> Novozymes Biotech
Royer, John C
Moyer, Donna L
Yoder, Wendy T
Shuster, Jeffrey R

<120> Non-Toxic, Non-Pathogenic, Non-Pathogenic Fusarium Expression System

<130> 4216.260-US

<140> 09/461,537

<141> 1999-12-15

<150> 08/816,915

<151> 1997-03-13

<150> 08/726,105

<151> 1996-10-04

<150> 08/404,678

<151> 1995-03-15

<150> 08/269,449

<151> 1994-06-30

<160> 16

<170> PatentIn version 3.2

<210> 1

<211> 30

<212> DNA

<213> Fusarium oxysporum

<400> 1

tgcggatcca tggtaagtt cgcttccgtc

30

<210> 2

<211> 30

<212> DNA

<213> Fusarium oxysporum

<400> 2

gacctcgagt taagcatagg tgtcaatgaa

30

<210> 3

<211> 998

<212> DNA

<213> Fusarium oxysporum

<400> 3

atcatcaacc actcttcact cttcaactct cctctttgg atatctatct cttcaccatg	60
gtcaagttcg cttccgtcgt tgcacttgtt gctccctgg ctgctgccgc tcctcaggag	120
atccccaaaca ttgttgtgg cacttctgcc agcgctggcg actttccctt catcgtagc	180
attagccgca acgggtggccc ctgggtgtgg a gttctctcc tcaacgccaa caccgtctt	240
actgctgccc actgcgttcc cgatcacgct cagagcgggt tccagattcg tgctggcagt	300
ctgtctcgca cttcttgtgg tattacctcc tcgctttccct ccgtcagagt tcaccctagc	360
tacagcggaa acaacaacga tcttgctatt ctgaagctct ctacttccat cccctccggc	420
ggaaacatcg gctatgctcg cctggctgct tccggctctg accctgtcgc tggatcttct	480
gccactgttg ctggctgggg cgtaacctct gagggcggca gctctactcc cgtcaacacctt	540
ctgaaggta ctgtccctat cgctctcgat gctacctgcc gagctcagta cggcacctcc	600
gccatcacca accagatgtt ctgtgctggt gtttctccg gtggcaagga ctcttgcacag	660
ggtgacagcg gggccccat cgtcgacagc tccaacactc ttatcggtgc tgtctttgg	720
ggtaacggat gtgcccggacc caactactct ggtgtctatg ccagcgttgg tgctctccgc	780
tctttcattt acacccatgc taaaatacct ttttggaaagc gtcgagatgt tccttgaata	840
ttctcttagct tgagtcttgg atacgaaacc ttttggaaatagtttca acgagttaaag	900
aagatatgag ttgatttcag ttggatctta gtcctggttt ctcgtaatag agcaatctag	960
atagcccaa ttgaatatga aatttgcataaaatattc	998

<210> 4
 <211> 248
 <212> PRT
 <213> Fusarium oxysporum

<220>
 <221> PROPEP
 <222> (1)..(24)

 <220>
 <221> mat_peptide
 <222> (25)..(248)

<400> 4

Met Val Lys Phe Ala Ser Val Val Ala Leu Val Ala Pro Leu Ala Ala
 -20 -15 -10

Ala Ala Pro Gln Glu Ile Pro Asn Ile Val Gly Gly Thr Ser Ala Ser

-5

-1 1

5

Ala Gly Asp Phe Pro Phe Ile Val Ser Ile Ser Arg Asn Gly Gly Pro
10 15 20

Trp Cys Gly Gly Ser Leu Leu Asn Ala Asn Thr Val Leu Thr Ala Ala
25 30 35 40

His Cys Val Ser Gly Tyr Ala Gln Ser Gly Phe Gln Ile Arg Ala Gly
45 50 55

Ser Leu Ser Arg Thr Ser Gly Gly Ile Thr Ser Ser Leu Ser Ser Val
60 65 70

Arg Val His Pro Ser Tyr Ser Gly Asn Asn Asn Asp Leu Ala Ile Leu
75 80 85

Lys Leu Ser Thr Ser Ile Pro Ser Gly Gly Asn Ile Gly Tyr Ala Arg
90 95 100

Leu Ala Ala Ser Gly Ser Asp Pro Val Ala Gly Ser Ser Ala Thr Val
105 110 115 120

Ala Gly Trp Gly Ala Thr Ser Glu Gly Gly Ser Ser Thr Pro Val Asn
125 130 135

Leu Leu Lys Val Thr Val Pro Ile Val Ser Arg Ala Thr Cys Arg Ala
140 145 150

Gln Tyr Gly Thr Ser Ala Ile Thr Asn Gln Met Phe Cys Ala Gly Val
155 160 165

Ser Ser Gly Gly Lys Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Ile
170 175 180

Val Asp Ser Ser Asn Thr Leu Ile Gly Ala Val Ser Trp Gly Asn Gly
185 190 195 200

Cys Ala Arg Pro Asn Tyr Ser Gly Val Tyr Ala Ser Val Gly Ala Leu
205 210 215

Arg Ser Phe Ile Asp Thr Tyr Ala

<210> 5
 <211> 1206
 <212> DNA
 <213> Fusarium oxysporum

<400> 5		
gaattttac aaaccaa cagtggagac ttccgacacg acatatcgat ccttgaaga	60	
tacggtgagc gtcagatcat gaatttata catctcacg tccttcctt ttcaaactat	120	
gcaaagtct tcttagtacct cccaaaactt gattacgct ctctccaatc aaaagtacct	180	
tccaaaagtgt atctaccta gctctagatc agggcaccta ttgcgaaaga tctacaagct	240	
gaactagtaa gcatagcggg agaatatccc acatcattcg agaaggcctt cgtattagac	300	
ctagtggtt cgacagaaaa gataagacgg agatagatgc tatgttttggaa aggttagggaa	360	
tggaatagga tgcaacaggt attggcataa gcgatgcaat aggtgcattt agaaactagg	420	
tgacagactg gccacagagg tgtatccat gcaggtcgat gctgcgtt tcgcagggt	480	
gctattgcgt ggtgggtt acaaaaatgc tatgtggttt ccagtttcaag aatattggc	540	
catttgtattt gatggcgtt gaccgaatta tagcagtgaa ccccccccaag agtagtagtg	600	
cagatgcgtt ttgatgcctt gcgattccctt gggctaaata actccggttt gtctgttagaa	660	
tgctgacgctt atgatccctt ggcattaaatc gtatgcctt gggggggata agccgatcaa	720	
agacacactg tagatcagct ctgcgttgc tcttaccagec ttataataaa cattcatctt	780	
gaacgtctt ttgcgttccgtt gtttacctt cgtccattt atccgtcata tccacagtgt	840	
tattggcgat agagttatcg actttccatca tcgggataact ggccctgtt gccaaggccc	900	
ttatatgecg atcactttca cgggagcatg ataaggtaa tgcgttccgtt gaatgccgaa	960	
ctagactacg gaacaacggc gcttagtacc agaaaggcag gtacgcctat tcgcaaactc	1020	
cgaagataca accaagcaag cttatcgccg gatagtaacc agagaggcag gtaagaagac	1080	
acaacaacat ccatacgatgtt gtagattctt gatataaaa ggaccaagat ggactatcg	1140	
aagtagtcta tcatcaacca ctcttactc ttcaactctc ctctttggaa tatctatctc	1200	
 ttcacc	1206	

<210> 6
 <211> 2148
 <212> DNA
 <213> Fusarium oxysporum

<400> 6
 gaattcttac aaaccccaa cagtggagac ttccgacacg acatatcgat cctttgaaga 60
 tacggtgagc gtcagatcat gaatttcata catcctcagc tccttcctct ttcaaaactat 120
 gcaaaagtcc tctagtacct cccaaaactt gattacgcg ctctccaatc aaaagtacct 180
 tccaaaagtg atctaccta gctctagatc agggcaccta ttgcacaaga tctacaagct 240
 gaacttagtaa gcatacgccc agaatatccc acatcattcg agaaggcctt cgtattagac 300
 ctatgtggat cgacagaaaa gataagacgg agatagatgc tatgtttgga aggttagggga 360
 tggaaatagga tgcaacaggt attggcataa gcgatgcaat aggtgcattt agaaactagg 420
 tgacagactg gccacagagg tgtatcctat gcaggtcgat gcgtgcgtta tcgcaggcgt 480
 gctattgcgt ggtggggct acaaaagttc tatgtggttt ccagtttcag aatattggc 540
 cattgtgatt gatggcgcatt gaccgaatta tagcagtgaa ccccccccaag agtagtagtg 600
 cagatgcgtt ttgatgcttg gcgattcctc gggctaaata actccggttt gtctgttagaa 660
 tgctgacgcg atgatccttc ggcattaatc gtagatctt gggggggata agccgatcaa 720
 agacacactg tagatcagct ctgcgtgac tcttaccagc ttataataa cattcatctt 780
 gaacgtcttt ttgcgtccagt gtttacctt cgtccttattt atccgtcata tccacagtgt 840
 tattggcgat agagttatcg actttcctca tcgggatact ggccccgtct gccaagggcc 900
 ttatatgcgg atcaacttca cgggagcatg ataaggttaa tgcttcttcgaaatgccc 960
 taaatacctt gtttggaaagcg tcgagatgtt ctttgaatat tctctagctt gagtcttgga 1020
 tacgaaacctt gtttggaaagaa taggtttcaa cgagttttaga agatatgagt tgatttcagt 1080
 tggatcttag tccctgggttgc tcgtaataga gcaatctaga tagcccaat tgaatatgaa 1140
 atttgtatgga aatattcatt tcgatagaag caacgtgaaa tgtcttagcag gacgaaaagt 1200
 agatcaaggc tggatgttc cccgaccaac ctaccttgc gtcgtctgc gagtcgtgtg 1260
 cagtgcacca gaatgtatgga ttgacttgga cattttctgt ctatgaagta ttatgaacat 1320
 gaatatcgat tcccttattt ctatgttggc agcctaaagt tttaccatat agcttagcaat 1380
 cagtcaagta tctgcgtatg aagggttgtt aagccaggac ggtatcagcg ttgaatattt 1440
 aaagaatgat atgagataat caacattgac atgataaaag aaaagggaa acaaattgtg 1500
 catatagtaa agacttcagg tcgacccctc aatagacata tgcgacccga aaaccaacag 1560
 gataacaattt atagataagt ataactacag ttatctgtct gccgaacaaa tactctttt 1620

tgaaaacaaat gaagagtaca taagctacag ttccctcagta ggaacatcct ttacaataac 1680
tcccttgcact tccttcagct tctcaatagc ctccaaagtc atcggctgc catcaaggca 1740
cgtagctct ggtgttagcat acagcagtgc catacttacg gaggatagga agtggggagga 1800
atcgttcggt tctgcctcca aaaatcgaca ccagtgctt ttttgcgtat actgatatgg 1860
tggtaagctt gggagtctat tggtgacgtt gcatcaactt cttaaagcacg gtttcattcc 1920
tctgctgata gtcctccaac ttctcgaagt cgtaaacgt ggcctatagt atcttattga 1980
gaaatatatgtc..ttctcagaaa..attatatctt..gtttaccttt..cggtccggca..tggctgctaa.. 2040..
aactgctggg aaattcaaaa gcgcagcaca agcagcaaga gtgatggca caacgtgata 2100
tggtgataaaa agcatcagta tcgataagtt ccactcagaa acctgcag 2148

<210> 7
<211> 1060
<212> DNA
<213> *Humicola insolens*

<220>
<221> CDS
<222> (10) . . (924)

<220>
<221> sig_peptide
<222> (10)..(72)

<220>
<221> mat_peptide
<222> (73)..(924)

<400> 7
ggatccaaag atg cgt tcc tcc ccc ctc ctc ccg tcc gcc gtt gtg gcc gcc 51
Met Arg Ser Ser Pro Leu Leu Pro Ser Ala Val Val Ala Ala
-20 -15 -10

ctg ccg gtg ttg gcc ctt gcc gct gat ggc agg tcc acc cgc tac tgg 99
 Leu Pro Val Leu Ala Leu Ala Ala Asp Gly Arg Ser Thr Arg Tyr Trp
 -5 -1 1 5

gac tgc tgc aag cct tcg tgc ggc tgg gcc aag aag gct ccc gtg aac 147
 Asp Cys Cys Lys Pro Ser Cys Gly Trp Ala Lys Lys Ala Pro Val Asn
 10 15 20 25

cag cct gtc ttt tcc tgc aac gcc aac ttc cag cgt atc acg gac ttc 195
 Gln Pro Val Phe Ser Cys Asn Ala Asn Phe Gln Arg Ile Thr Asp Phe
 30 35 40

gac gcc aag tcc ggc tgc gag ccg ggc ggt gtc gcc tac tcg tgc gcc 243
Asp Ala Lys Ser Gly Cys Glu Pro Gly Gly Val Ala Tyr Ser Cys Ala

45	50	55	
gac cag acc cca tgg gct gtg aac gac gac ttc ggc ctc ggt ttt gct Asp Gln Thr Pro Trp Ala Val Asn Asp Asp Phe Ala Leu Gly Phe Ala			291
60	65	70	
gcc acc tct att gcc ggc agc aat gag ggc ggc tgg tgc tgc gcc tgc Ala Thr Ser Ile Ala Gly Ser Asn Glu Ala Gly Trp Cys Cys Ala Cys			339
75	80	85	
tac gag ctc acc ttc aca tcc ggt cct gtt gct ggc aag aag atg gtc Tyr Glu Leu Thr Phe Thr Ser Gly Pro Val Ala Gly Lys Lys Met Val			387
90	95	100	105
gtc cag tcc acc agc act ggc ggt gat ctt ggc agc aac cac ttc gat Val Gln Ser Thr Ser Thr Gly Gly Asp Leu Gly Ser Asn His Phe Asp			435
110	115	120	
ctc aac atc ccc ggc ggc gtc ggc atc ttc gac gga tgc act ccc Leu Asn Ile Pro Gly Gly Val Gly Ile Phe Asp Gly Cys Thr Pro			483
125	130	135	
cag ttc ggc ggt ctg ccc ggc cag cgc tac ggc ggc atc tcg tcc cgc Gln Phe Gly Gly Leu Pro Gly Gln Arg Tyr Gly Ile Ser Ser Arg			531
140	145	150	
aac gag tgc gat cgg ttc ccc gac gcc ctc aag ccc ggc tgc tac tgg Asn Glu Cys Asp Arg Phe Pro Asp Ala Leu Lys Pro Gly Cys Tyr Trp			579
155	160	165	
cgc ttc gac tgg ttc aag aac gcc gac aat ccg agc ttc agc ttc cgt Arg Phe Asp Trp Phe Lys Asn Ala Asp Asn Pro Ser Phe Ser Phe Arg			627
170	175	180	185
cag gtc cag tgc cca gcc gag ctc gtc gct cgc acc gga tgc cgc cgc Gln Val Gln Cys Pro Ala Glu Leu Val Ala Arg Thr Gly Cys Arg Arg			675
190	195	200	
aac gac gac ggc aac ttc cct gcc gtc cag atc ccc tcc agc agc acc Asn Asp Asp Gly Asn Phe Pro Ala Val Gln Ile Pro Ser Ser Thr			723
205	210	215	
agc tct ccg gtc aac cag cct acc agc acc agc acc acg tcc acc tcc Ser Ser Pro Val Asn Gln Pro Thr Ser Thr Ser Thr Ser Thr Ser			771
220	225	230	
acc acc tcg agc ccg cca gtc cag cct acg act ccc agc ggc tgc act Thr Thr Ser Ser Pro Pro Val Gln Pro Thr Thr Pro Ser Gly Cys Thr			819
235	240	245	
gct gag agg tgg gct cag tgc ggc ggc aat ggc tgg agc ggc tgc acc Ala Glu Arg Trp Ala Gln Cys Gly Gly Asn Gly Trp Ser Gly Cys Thr			867
250	255	260	265
acc tgc gtc gct ggc agc act tgc acg aag att aat gac tgg tac cat Thr Cys Val Ala Gly Ser Thr Cys Thr Lys Ile Asn Asp Trp Tyr His			915

270

275

280

cag tgc ctg tagacgcagg gcagctttag ggccttactg gtggccgcaa 964
 Gln Cys Leu

cgaaatgaca ctcccaatca ctgtattagt tcttgatcat aatttcgtca tccctccagg 1024
 gattgtcaca taaatgcaat gaggaacaat gagtac 1060

<210> 8
 <211> 305
 <212> PRT
 <213> Humicola insolens

<400> 8

Met Arg Ser Ser Pro Leu Leu Pro Ser Ala Val Val Ala Ala Leu Pro
 -20 -15 -10

Val Leu Ala Leu Ala Ala Asp Gly Arg Ser Thr Arg Tyr Trp Asp Cys
 -5 -1 1 5 10

Cys Lys Pro Ser Cys Gly Trp Ala Lys Lys Ala Pro Val Asn Gln Pro
 15 20 25

Val Phe Ser Cys Asn Ala Asn Phe Gln Arg Ile Thr Asp Phe Asp Ala
 30 35 40

Lys Ser Gly Cys Glu Pro Gly Gly Val Ala Tyr Ser Cys Ala Asp Gln
 45 50 55

Thr Pro Trp Ala Val Asn Asp Asp Phe Ala Leu Gly Phe Ala Ala Thr
 60 65 70 75

Ser Ile Ala Gly Ser Asn Glu Ala Gly Trp Cys Cys Ala Cys Tyr Glu
 80 85 90

Leu Thr Phe Thr Ser Gly Pro Val Ala Gly Lys Lys Met Val Val Gln
 95 100 105

Ser Thr Ser Thr Gly Gly Asp Leu Gly Ser Asn His Phe Asp Leu Asn
 110 115 120

Ile Pro Gly Gly Val Gly Ile Phe Asp Gly Cys Thr Pro Gln Phe
 125 130 135

Gly Gly Leu Pro Gly Gln Arg Tyr Gly Gly Ile Ser Ser Arg Asn Glu
140 145 150 155

Cys Asp Arg Phe Pro Asp Ala Leu Lys Pro Gly Cys Tyr Trp Arg Phe
160 165 170

Asp Trp Phe Lys Asn Ala Asp Asn Pro Ser Phe Ser Phe Arg Gln Val
175 180 185

Gln Cys Pro Ala Glu Leu Val Ala Arg Thr Gly Cys Arg Arg Asn Asp
190 195 200

Asp Gly Asn Phe Pro Ala Val Gln Ile Pro Ser Ser Ser Thr Ser Ser
205 210 215

Pro Val Asn Gln Pro Thr Ser Thr Ser Thr Ser Thr Ser Thr Thr
220 225 230 235

Ser Ser Pro Pro Val Gln Pro Thr Thr Pro Ser Gly Cys Thr Ala Glu
240 245 250

Arg Trp Ala Gln Cys Gly Gly Asn Gly Trp Ser Gly Cys Thr Thr Cys
255 260 265

Val Ala Gly Ser Thr Cys Thr Lys Ile Asn Asp Trp Tyr His Gln Cys
270 275 280

Leu

<210> 9
<211> 876
<212> DNA
<213> Thermomyces lanuginosus

<400> 9
atgaggagct cccttgtgt gttctttgtc tctgcgtggc cggcccttggc cagtcctatt 60
cgtcgagagg tctcgcaggc tctgttaac cagttcaatc tctttgcaca gtattctgca 120
gccgcatact gcggaaaaaaa caatgatgcc ccagctggta caaacattac gtgcacggga 180
aatgcctgcc ccgaggtaga gaaggcggat gcaacgtttc tctactcggt tgaagactct 240

ggagtggcg atgtcaccgg cttccctgct ctgcacaaca cgaacaaatt gategttc	300
tcttccgtg gctctcggtc catagagaac tggatggga atcttaactt cgacttgaaa	360
gaaataaaatg acatttgctc cggctgcagg ggacatgacg gcttcacttc gtcctggagg	420
tctgttagccg atacgttaag gcagaagggtg gaggatgtg tgagggagca tcccgactat	480
cgcgtggtgt ttacccggaca tagcttgggt ggtgcattgg caactgttgc cggagcagac	540
ctgcgtggaa atgggtatga tatcgacgtg ttttcatatg gcccccccg agtcggaaac	600
aggcgttttgcagaatttccgaccgtacag accggcgaa cactctaccg cattaccac	660
accaatgata ttgtccctag actcccgccg cgcgaattcg gttacagcca ttctagccca	720
gagtaactgga tcaaatactgg aacccttgc cccgtcaccc gaaacgatat cgtgaagata	780
gaaggcatcg atgccaccgg cggcaataac cagcctaaca ttccggatat ccctgegcac	840
ctatggtaact tcgggttaat tgggacatgt cttag	876

<210> 10

<211> 291

<212> PRT

<213> Thermomyces lanuginosus

<400> 10

Met Arg Ser Ser Leu Val Leu Phe Phe Val Ser Ala Trp Thr Ala Leu			
1	5	10	15

Ala Ser Pro Ile Arg Arg Glu Val Ser Gln Asp Leu Phe Asn Gln Phe		
20	25	30

Asn Leu Phe Ala Gln Tyr Ser Ala Ala Tyr Cys Gly Lys Asn Asn		
35	40	45

Asp Ala Pro Ala Gly Thr Asn Ile Thr Cys Thr Gly Asn Ala Cys Pro		
50	55	60

Glu Val Glu Lys Ala Asp Ala Thr Phe Leu Tyr Ser Phe Glu Asp Ser			
65	70	75	80

Gly Val Gly Asp Val Thr Gly Phe Leu Ala Leu Asp Asn Thr Asn Lys		
85	90	95

Leu Ile Val Leu Ser Phe Arg Gly Ser Arg Ser Ile Glu Asn Trp Ile		
100	105	110

Gly Asn Leu Asn Phe Asp Leu Lys Glu Ile Asn Asp Ile Cys Ser Gly
115 120 125

Cys Arg Gly His Asp Gly Phe Thr Ser Ser Trp Arg Ser Val Ala Asp
130 135 140

Thr Leu Arg Gln Lys Val Glu Asp Ala Val Arg Glu His Pro Asp Tyr
145 150 155 160

Arg Val Val Phe Thr Gly His Ser Leu Gly Gly Ala Leu Ala Thr Val
165 170 175

Ala Gly Ala Asp Leu Arg Gly Asn Gly Tyr Asp Ile Asp Val Phe Ser
180 185 190

Tyr Gly Ala Pro Arg Val Gly Asn Arg Ala Phe Ala Glu Phe Leu Thr
195 200 205

Val Gln Thr Gly Gly Thr Leu Tyr Arg Ile Thr His Thr Asn Asp Ile
210 215 220

Val Pro Arg Leu Pro Pro Arg Glu Phe Gly Tyr Ser His Ser Ser Pro
225 230 235 240

Glu Tyr Trp Ile Lys Ser Gly Thr Leu Val Pro Val Thr Arg Asn Asp
245 250 255

Ile Val Lys Ile Glu Gly Ile Asp Ala Thr Gly Gly Asn Asn Gln Pro
260 265 270

Asn Ile Pro Asp Ile Pro Ala His Leu Trp Tyr Phe Gly Leu Ile Gly
275 280 285

Thr Cys Leu
290

<210> 11
<211> 42
<212> DNA
<213> Fusarium oxysporum

<400> 11

gcacaccatg gtcgctggat ccatacccttg ttggaagcgt cg 42

<210> 12
<211> 56
<212> DNA
<213> *Fusarium oxysporum*

<400> 12
atcgaggcat geggtaccgt ttaaacgaat tcaggtaaac aagatataat tttctg 56

<210> 13
<211> 44
<212> DNA
<213> *Humicola insolens*

<400> 13
ctcttggata tcttatctctt caccatgcgt tcttcccccc tctt 44

<210> 14
<211> 20
<212> DNA
<213> *Humicola insolens*

<400> 14
caatagaggt ggcagcaaaa 20

<210> 15
<211> 25
<212> DNA
<213> *Thermomyces lanuginosus*

<400> 15
atcttatctt tcaccatgag gagct 25

<210> 16
<211> 21
<212> DNA
<213> *Thermomyces lanuginosus*

<400> 16
tagatagaga agtggtaactc c 21