INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA DO MATO GROSSO Campus Octayde Jorge da Silva.

CLAUDIA JOSEPH NEHME

ESTUDO DAS SUBSTÂNCIAS E MISTURAS

SUBSTÂNCIA: forma particular de matéria, apresentando composição fixa, definida.

Substância simples: é constituída de uma molécula formada por átomos do mesmo elemento químico (mesmo tipo de átomo).

Substância	Fórmula	Representação
Gás hidrogênio	H ₂	
Gás oxigênio	O ₂	
Gás ozônio	O ₃	

Substância composta: é constituída por uma molécula formada por mais de um elemento químico.

Substância	Fórmula	Representação
Água	H ₂ O	
Sal de cozinha	NaCℓ	
Açúcar	C ₁₂ H ₂₂ O ₁₁	

Substâncias Puras

SIMPLES

COMPOSTA

Mistura: material formado por duas ou mais substâncias, sendo cada uma destas denominada **componente**.

Fase: em uma mistura, é cada uma das porções que apresenta aspecto homogêneo ou uniforme.

CLASSIFICAÇÃO DAS MISTURAS

Mistura homogênea: toda mistura que apresenta uma única fase.

Mistura heterogênea: toda mistura que apresenta pelo menos duas fases.

MISTURAS

AR

HOMOGÊNEA

ÁGUA + AREIA

HETEROGÊNEA

EXEMPLO:

Água (H₂O) + açúcar dissolvido (C₁₂H₂₂O₁₁) Aspecto visual contínuo: uma única fase Óleo(C_xH_y) + água (H₂O) Aspecto visual descontínuo: duas fases

Água gaseificada Aspecto visual descontínuo: duas fases

Misturas homogêneas

Nome	Componentes principais				
Amálgama	Mercúrio (Hg) + Prata (Ag) + Estanho (Sn)				
Vinagre	Água (H ₂ Ó) + ácido acético (CH ₃ COOH)				
Latão	Cobre (Cu) + zinco (Zn)				
Bronze	Cobre (Cu) + estanho (Sn)				
Aço	Ferro (Fe) + carbono (C)				
Álcool hidratado	Etanol (CH ₃ OH) + água (H ₂ O)				

O *leite* é considerado uma mistura heterogênea.

Solução: É uma *mistura homogênea* composta de dois ou mais componentes que consiste de:

Solvente: É o componente da solução que se apresenta em maior quantidade. Freqüentemente, mas não necessariamente, ele é a água, o que caracteriza uma solução aquosa.

Soluto: Este é o componente que se apresenta em menor quantidade. É a substância que se dissolve no solvente.

Conforme o critério adotado, as soluções admitem diversas classificações:

- a) Quanto ao estado físico:
 - soluções sólidas: ouro 18 quilates, aço, latão, bronze, etc.
 - soluções líquidas: soro fisiológico, álcool comercial, vinagre, etc.
 - soluções gasosas: ar atmosférico, a mistura O2 e He, etc.

Tipos de Soluções

Solução	Soluto	Solvente	Exemplo
Sólida	Sólido	Sólido	Liga metálica Cu – Ni
	Líquido	Sólido	Hg em Cu (amálgama de cobre)
	Gasoso	Sólido	H_2 dissolvido em Ni
Líquida	Sólido	Líquido	NaCl em H_2O
	Líquido	líquido	Álcool em H_2O
	Gasoso	Líquido	CO_2 dissolvido em H_2O
	Sólido	Gasoso	Poeira no ar atmosférico
Gasosa	Líquido	Gasoso	Água no ar atmosférico
	Gasoso	Gasoso	Ar atmosférico

Quanto à natureza do soluto as soluções são classificadas em:

Soluções Iônicas (eletrolíticas)

São aquelas em que o soluto é um composto iônico.

Exemplo: água + sal de cozinha.

Soluções Moleculares (não - eletrolíticas)

São aquelas em que o soluto é um composto molecular.

Exemplo: água + açúcar.

Obs.:os ácidos são compostos moleculares, que em água, originam uma solução eletrolítica.

- d) Quanto à relação entre soluto e solvente:
- soluções insaturadas: que apresentam uma quantidade inferior de soluto em relação ao máximo que poderia se dissolver;
- soluções saturadas: aquelas que contêm a quantidade máxima de soluto em dada quantidade de solvente, em determinada temperatura e pressão;
- soluções supersaturadas: aquelas que contêm maior quantidade de soluto do que a solução saturada correspondente. São soluções instáveis e só se mantêm em condições particulares. Uma simples agitação mecânica faz com que o excesso de soluto sedimente. Conseguem-se soluções supersaturadas fazendo-se acréscimo de soluto acima da saturação com aquecimento e processando-se um resfriamento sem perturbação do sistema.

SOLUÇÕES

- CS do NaCl a 0° C = 35,7 g / 100g de H_2 O
- CS do NaCl a 25° C = 42,0 g / 100g de H_2 O

SOLUÇÃO SUPERSATURADA

• A concentração na solução final está acima do CS do NaCl a 0°C.

Solubilidade de compostos iônicos em água

Solvatação

Solubilidade de compostos orgânicos em água

Soluções Concentradas

Contêm muito soluto em relação ao solvente.

Exemplo: 500g de sal para 1L de água.

Contêm pouco soluto em relação ao solvente.

Exemplo: 10g de sal para 1L de água.

- •CS do NaCl a 0° C = 35,7 g / 100g de H_2 O
- CS do NaCl a 25° C = 42,0 g / 100g de H_2 O

Quantidade de componente de interesse

Concentração =

Quantidade de material total

ou seja,

Concentração de solução =

Quantidade de soluto

Quantidade de solução (soluto + solvente)

Expressão de concentrações em:

- gramas por litro (g.L⁻¹)

- porcentagem (%): Peso por volume (g.100mL⁻¹); peso por peso (g.100 g⁻¹); volume por volume (mL.100mL⁻¹)

- partes por milhão (ppm), p.ex: mg.L⁻¹

- partes por bilhão (ppb), p. ex: μg.L⁻¹

Concentração em percentagem

Às vezes, a concentração aparece expressa como %, mas, nesse caso, é necessário especificar o estado físico do que se mede. Por exemplo:

2% (p/p) ácido acético = 2 g ácido acético em 100 g água 2% (p/v) ácido acético = 2 g ácido acético em 100 ml água 2% (v/v) ácido acético = 2 ml ácido acético em 100 ml água

Por convenção (p/v) ou (v/v) podem ser omitidos para soluções aquosas abaixo de 1%.

Weight/Volume %

If 5 grams of NaCl is dissolved in water to make 200 ml of solution, what is the concentration?

Saline is a 0.9 wt/v% solution of NaCl in water.

Weight/Weight %

If a ham contained 5 grams of fat in 200 g of ham, what is the % wt/wt?

Volume/Volume %

If 10 ml of akohol is dissolved in water to make 200 ml of solution, what is the concentration?

10 ml / 200 ml * 100 = 5 V/V%

Alcohol in wine is measured as a V/V%.

Other units of concentration

Parts per million and parts per billion

These are extensions of the % system which are used for very dilute solutions

Other units of concentration

```
For aqueous solutions - mg / liter
For gas solutions mg / meter<sup>3</sup>

PPb

For aqueous solutions - µg / liter
For gas solutions µg / meter<sup>3</sup>
```

A expressão de concentração pelo sistema internacional é em número de mols, ou seja, a concentração de uma solução é definida como o número de mols de soluto em um litro (L) ou em decímetro cúbico (dm³) de solução. A unidade de concentração portanto é em mol.L-¹ ou mol.dm-³ ou molaridade, abreviadamente "M".

Lembrando:

1 mol = $6,022 \times 10^{23}$ moléculas ou átomos

6,022 x 10²³ moléculas ou átomos = n^o de Avogadro

A concentração da solução pode ser definida como:

Concentração de solução: No

Nº de mols de soluto

Volume da solução em L ou dm³

O Nº de mols de soluto é:

 N^0 de mols =

Massa em gramas

Massa molecular (MM) ou mol

Assim, a concentração da solução fica:

Concentração de solução = Massa em gramas

(MM ou mol) x Volume da solução em dm³ ou L

No laboratório é usado um balão volumétrico de volume calibrado para o preparo das soluções, as quais assim preparadas, passam a ser denominadas de concentração analítica.

DILUIÇÃO

As soluções concentradas também podem ser misturadas com solventes para torná-las diluídas.

Em diluições a quantidade de solvente é que aumenta e a quantidade de soluto permanece sempre constante. Assim, o número inicial de mols do soluto é igual ao número de mols do soluto no final.

A molaridade (M) é expressa como: nº de mols/volume (dm³ ou L)

Observa-se então que o nº de mols = M x V

Portanto: $M_1 \times V_1 = M_2 \times V_2$ (Equação geral da diluição)

Dissolvem-se 8g de NaOH em 400 mL de solução. Pede-se:

- a) Concentração em g/L.
- b) Concentração em mol/L(molaridade).

(dado: $MM_{NaOH} = 40 \text{ g/mol}$)

Uma solução possui concentração de 120 g/L de NaOH. Qual sua concentração molar (mol/L)?

Dissolvem-se 50 g de glicose em 1000 ml de solução, qual a % (p/v)?

Qual a quantidade de água que deve ser adicionada a 100 mL de uma solução de NaCl 1,5 M para se obter 1 litro de solução a 0,15 M?