基于 transformer 特征提取器的改进

一、transformer 与 RNN 的区别

1.1 transformer 整体结构

Transformer 主要两个部分组成: encoder 与 decoder,encoder、decoderf 分别由 6 层 encode_block、decode_block 组成。

Transformer 整体结构图

Transformer 中 encoder 与 decoder 交互如下图表示:

Transformer 结构图

1.2 Block 结构

block 结构主要 self-attention 和 ffn 两部分组成。

1.2.1 自注意力

自注意力是对输入的一个序列中的每一token之间的互相注意力机制。与seq2seq中 attention 是两个句子之间的关系,与自注意力有一定的区别。Token 与 token 之间存在直接的关系,具体更直接的感受如下图表示:

图 1.2.1

(1) self-attention

从代码上进行分析,输入的表征采用的是 embedding 特征,表示为 X,首先会

先将 x_i 分别与 W_Q 、 W_K 、 W_V 相乘,得到 q_i , k_i , v_i ,如图 1.2.2 表示:

图 1.2.2

得到 q_i、k_i、v_i 之后,①先将 q_i 与 k_i 点乘,得到 score;②然后对 score/sqrt(d_k)进行缩放,最后进行 softmax 操作得到 attention_weight;③v_i 与 attention_weight 得到输出。

Self-attention 公式图

为什么要进行缩放 sqrt(d k)?

答:缩放的原因:因为 softmax 在一定范围内梯度更新的效果更好,一旦超过这个范围就不好了,因此要缩放。

缩放 $sqrt(d_k)$:参数初始化的时候,分布在 N(0,1)附近,q 与 k 相乘之后,score 分布在 $N(0,d_k)$,因此要进行 $sqrt(d_k)$ 的缩放。

1.2.2 多头自注意力(Multi-headed)

将W切分成8个头进行计算 attention 计算, 计算结束后再进行 concat 还原。

Multi-head 结构图

1.2.3 FFN

FFN 结构: ①全连接+relu/gelu 激活函数; ②全连接。目的是对 concat 的 z 再次进行学习,由于 attention 都是线性计算,通过 FFN 可以进行非线性计算,是 transform_block 的关键。

Block 中用到残差结构的作用是什么?

答: 残差结构是为解决梯度消失

为什么用 layerNorm 而不采用 BN?

答: BN 是对 batch_size 维度进行归一化,在 CV 中适用,因为图片上每一个像素都有特定的含义,然而在文本中,存在 pad 的情况,BN 不见得好;用 LN 的原因:对最后一维进行归一化(dim),每一个元素都有意义。

1.3 Position embedding

公式如下:

1.4 RNN、CNN、Transformer 对比

答: rnn 的缺点:不能并行计算,文本过长时,无法长时记忆,抽取到的信息特征有限; cnn 的缺点:只能学习较近的词关系,长距离学习能力欠缺,但可并行计算 cnn 改进: Text_cnn 可以采用多层的卷积,增强长距离学习能力,或者采用空洞卷积,增加感受野

①rnn、cnn、transformer 的特征提取能力、张距离捕获能力如下:

语义特征提取能力、任务综合特征抽取能力 🦪 🗸 📉

Model	DE→EN ✓				DE→FR 1		
Model	PPL	2014	2017	Acc(%)	PPL	2012	Acc(%)
RNNS2S	5.7	29.1	30.1	84.0	7.06	16.4	72.2
ConvS2S	6.3	29.1	30.4	82.3	7.93	16.8	72.7
Transformer	4.3	32.7	33.7	90.3	4.9	18.7	76.7
uedin-wmt17	-	-	35.1	87.9	-	-	-
TransRNN	5.2	30.5	31.9	86.1	6.3	17.6	74.2

长距离特征捕获能力 ->

Model	2014	2017	PPL	Acc(%)
RNNS2S	23.3	25.1	6.1	95.1
ConvS2S	23.9	25.2	7.0	84.9 x
Transformer	26.7	27.5	4.5	97.1
RNN-bideep	24.7	26.1	5.7	96.3

Why Self-Attention?
A Targeted Evaluation of Neural Machine Translation
Architectures

性能比较图

②rnn、cnn、transformer 的计算能力与运行效率如下:

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential	Maximum Path Length	
		Operations		
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)	
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)	
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$	
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)	

效率比较图

二、Transformer 模型改进

2.1 PGN-transformer

Transformer 的 PGN 的实现,与 seq2seq 大致类似,涉及两个概率 p_vocab 与 attention_weight 这个概率;因此,需要根据 encode 与 decode 的输出求出 attention_weight, p_gen 放在 atention 计算去求解,剩下的按公式计算即可。

Pgn-transformer 结构图

三、图神经网络在摘要中的应用

图神经网络与CNN的区别,每一层不是一个个离散的神经元,而是一个图,常用的图神经网络:GCN、GAT。

图神经网络图

图网络应用于摘要问题:用单词训练 word 的向量作为 word Node,将句子通过 cnn、bilstm 得出句子向量作为 sentence Node,TF-IDF 的权重值作为连接的边,构成最终的 graph layer。论文中提出添加 docment 节点,用于训练多篇文档之间的摘要,具体结构 如图 3.1。

Graph for summarization

近 2 年摘要研究的论文:

- Modeling Global and Local Node Contexts for Text Generation from Knowledge Graphs
- Text Generation from Knowledge Graphs with Graph Transformers
- Structured Neural Summarization
- Discourse-Aware Neural Extractive Model for Text Summarization
- Graph-based Neural Multi-Document Summarization