# 实验四 七段数码管显示实验

# 一、实验要求

利用 8255 的 IO 控制 8 位七段数码管显示实验,实现显示。

### 二、实验目的

- 1. 了解数码管显示原理。
- 2. 掌握读表程序的编写。

## 三、实验电路及连线

1. Proteus 实验电路





### 2、硬件验证实验

硬件连接表

| 21,1 = 211   |               |  |  |  |
|--------------|---------------|--|--|--|
| 接线孔 1        | 接线孔 2         |  |  |  |
| 8255 CS      | 08000H-08FFFH |  |  |  |
| LED_A—LED_DP | PA0—PA7       |  |  |  |
| COM_1—COM_8  | PB0—PB7       |  |  |  |

## 四、实验说明

### 1. 主要知识点概述:

#### 1) LED 数码显示原理

七段 LED 显示器内部由七个条形发光二极管和一个小圆点发光二极管组成,根据各管的极管的接线形式,可分成共阴极型和共阳极型。

LED 数码管的 g~a 七个发光二极管因加正电压而发亮,因加零电压而不以发亮,不同亮暗的组合就能形成不同的字形,这种组合称之为字形码,下面给出共阳极的字形码见表 2

| "0" | 0С0Н | "8" | 80H  |
|-----|------|-----|------|
| "1" | 0F9H | "9" | 90H  |
| "2" | 0A4H | "A" | 88H  |
| "3" | 0B0H | "b" | 80H  |
| "4" | 99H  | "C" | 0В6Н |
| "5" | 92H  | "d" | 0B0H |
| "6" | 82H  | "E" | 86НН |
| "7" | F8H  | "F" | 8EH  |

#### 2) 段码表格

由于显示的数字 0-9 的字形码没有规律可循,只能采用查表的方式来完成我们所需的要求了。这样我们按着数字 0-9 的顺序,把每个数字的笔段代码按顺序排好!建立的表格如下所示: TABLE DB 0c0h,0f9h,0a4h,0b0h,99h,92h,82h,0f8h,80h,90h

### 2. 实验效果说明:

数码管循环显示 0~9。

# 五、实验程序流程图



## 六、实验步骤

### 1、Proteus 仿真

- a. 在 Proteus 中打开设计文档 "8 位数码管 STM. DSN";
- b. 建立实验程序并编译, 仿真;
- c. 如不能正常工作, 打开调试窗口进行调试。

### 2、实验板验证

- a. 通过 USB 线连接实验箱
- b. 按连接表连接电路
- c. 运行 PROTEUS 仿真,检查验证结果

# 七、实验结果和体会

八、建议