Bayesian Adpative Regression Kernels

November 17, 2021

Problem Setting

Regression problem

$$E[Y | x] = f(x), x \in \mathcal{X}$$

with unknown function f(x)

Write

$$f(\mathbf{x}_i) = \beta_0 + \sum_{j=1}^n \beta_j k(\mathbf{x}_i, \mathbf{x}_j)$$

where $k(x_i, x_j)$ is a kernel function

► Linear Kernel

$$k(x_i, x_j) = x_i^T x_j$$

► Radial or Gaussian Kernel

$$k(x_i, x_j) = \exp(-\frac{\lambda}{2}((x_i - x_j)^T(x_i - x_j))$$

[&]quot;support vectors"

Problem Setting

Regression problem

$$E[Y | x] = f(x), x \in \mathcal{X}$$

with unknown function f(x) Write

$$f(\mathbf{x}_i) = \beta_0 + \sum_{j=1}^n \beta_j k(x_i, x_j)$$

where $k(x_i, x_j)$ is a kernel function

► Linear Kernel

$$k(x_i, x_j) = x_i^T x_j$$

Radial or Gaussian Kernel

$$k(x_i, x_j) = \exp(-\frac{\lambda}{2}((x_i - x_j)^T(x_i - x_j))$$

[&]quot;support vectors"

Write function as

$$f(\mathbf{x}_i) = \sum_{j=0}^{J} \psi(\mathbf{x}_i, \boldsymbol{\omega}_j) \beta_j$$

in terms of an (over-complete) dictionary where

- \blacktriangleright { β_i }: unknown coefficients
- ► J: number of terms in expansion (finite or infinite)
- lacksquare $\psi(\mathbf{x}, \omega_j)$ Dictionary elements from a "generator function" g
 - cubic splines

$$\psi(x_i,\omega_j)=(x_i-\omega_j)^3_+$$

$$\psi(\mathbf{x}_i, \boldsymbol{\omega}_j) = g(\boldsymbol{\Lambda}_j(\mathbf{x} - \boldsymbol{\chi}_j)) = \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\chi}_j)^T \boldsymbol{\Lambda}_j(\mathbf{x} - \boldsymbol{\chi}_j)\right\}$$

- translation and scaling wavelet families
- ► Need not be symmetric!

Write function as

$$f(\mathbf{x}_i) = \sum_{j=0}^{J} \psi(\mathbf{x}_i, \boldsymbol{\omega}_j) \beta_j$$

in terms of an (over-complete) dictionary where

- \blacktriangleright { β_i }: unknown coefficients
- ▶ *J*: number of terms in expansion (finite or infinite)
- $lackbox{}\psi(\mathbf{x}, oldsymbol{\omega}_j)$ Dictionary elements from a "generator function" g
 - cubic splines

$$\psi(x_i,\omega_j)=(x_i-\omega_j)^3_+$$

$$\psi(\mathbf{x}_i, \omega_j) = g(\mathbf{\Lambda}_j(\mathbf{x} - \mathbf{\chi}_j)) = \exp\left\{-\frac{1}{2}(\mathbf{x} - \mathbf{\chi}_j)^T \mathbf{\Lambda}_j(\mathbf{x} - \mathbf{\chi}_j)\right\}$$

- translation and scaling wavelet families
- ► Need not be symmetric!

Write function as

$$f(\mathbf{x}_i) = \sum_{j=0}^{J} \psi(\mathbf{x}_i, \boldsymbol{\omega}_j) \beta_j$$

in terms of an (over-complete) dictionary where

- \blacktriangleright { β_i }: unknown coefficients
- ▶ J: number of terms in expansion (finite or infinite)
- $lackbox{}\psi(\mathbf{x}, oldsymbol{\omega}_j)$ Dictionary elements from a "generator function" g
 - cubic splines

$$\psi(x_i,\omega_j)=(x_i-\omega_j)^3_+$$

$$\psi(\mathbf{x}_i, \boldsymbol{\omega}_j) = g(\boldsymbol{\Lambda}_j(\mathbf{x} - \boldsymbol{\chi}_j)) = \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\chi}_j)^T \boldsymbol{\Lambda}_j(\mathbf{x} - \boldsymbol{\chi}_j)\right\}$$

- translation and scaling wavelet families
- ► Need not be symmetric!

Write function as

$$f(\mathbf{x}_i) = \sum_{j=0}^{J} \psi(\mathbf{x}_i, \boldsymbol{\omega}_j) \beta_j$$

in terms of an (over-complete) dictionary where

- \blacktriangleright { β_i }: unknown coefficients
- ▶ J: number of terms in expansion (finite or infinite)
- $lackbox{}\psi(\mathbf{x},oldsymbol{\omega}_j)$ Dictionary elements from a "generator function" g
 - cubic splines

$$\psi(x_i,\omega_j)=(x_i-\omega_j)^3_+$$

$$\psi(\mathbf{x}_i, \omega_j) = g(\mathbf{\Lambda}_j(\mathbf{x} - \mathbf{\chi}_j)) = \exp\left\{-\frac{1}{2}(\mathbf{x} - \mathbf{\chi}_j)^T \mathbf{\Lambda}_j(\mathbf{x} - \mathbf{\chi}_j)\right\}$$

- translation and scaling wavelet families
- ► Need not be symmetric!

Write function as

$$f(\mathbf{x}_i) = \sum_{j=0}^{J} \psi(\mathbf{x}_i, \boldsymbol{\omega}_j) \beta_j$$

in terms of an (over-complete) dictionary where

- \blacktriangleright { β_i }: unknown coefficients
- ▶ J: number of terms in expansion (finite or infinite)
- lacksquare $\psi(\mathbf{x}, oldsymbol{\omega}_j)$ Dictionary elements from a "generator function" g
 - cubic splines

$$\psi(x_i,\omega_j)=(x_i-\omega_j)^3_+$$

$$\psi(\mathbf{x}_i, \boldsymbol{\omega}_j) = g(\boldsymbol{\Lambda}_j(\mathbf{x} - \boldsymbol{\chi}_j)) = \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\chi}_j)^T \boldsymbol{\Lambda}_j(\mathbf{x} - \boldsymbol{\chi}_j)\right\}$$

- translation and scaling wavelet families
- ► Need not be symmetric!

Write function as

$$f(\mathbf{x}_i) = \sum_{j=0}^{J} \psi(\mathbf{x}_i, \boldsymbol{\omega}_j) \beta_j$$

in terms of an (over-complete) dictionary where

- \blacktriangleright { β_i }: unknown coefficients
- ▶ J: number of terms in expansion (finite or infinite)
- lacksquare $\psi(\mathbf{x}, oldsymbol{\omega}_j)$ Dictionary elements from a "generator function" \mathbf{g}
 - cubic splines

$$\psi(x_i,\omega_j)=(x_i-\omega_j)^3_+$$

$$\psi(\mathbf{x}_i, \omega_j) = g(\mathbf{\Lambda}_j(\mathbf{x} - \mathbf{\chi}_j)) = \exp\left\{-\frac{1}{2}(\mathbf{x} - \mathbf{\chi}_j)^T\mathbf{\Lambda}_j(\mathbf{x} - \mathbf{\chi}_j)\right\}$$

- translation and scaling wavelet families
- ► Need not be symmetric!

Write function as

$$f(\mathbf{x}_i) = \sum_{j=0}^{J} \psi(\mathbf{x}_i, \boldsymbol{\omega}_j) \beta_j$$

in terms of an (over-complete) dictionary where

- \blacktriangleright { β_i }: unknown coefficients
- ▶ J: number of terms in expansion (finite or infinite)
- lacksquare $\psi({m x},{m \omega}_j)$ Dictionary elements from a "generator function" ${m g}$
 - cubic splines

$$\psi(x_i,\omega_j)=(x_i-\omega_j)_+^3$$

$$\psi(\mathbf{x}_i, \omega_j) = g(\mathbf{\Lambda}_j(\mathbf{x} - \mathbf{\chi}_j)) = \exp\left\{-\frac{1}{2}(\mathbf{x} - \mathbf{\chi}_j)^T\mathbf{\Lambda}_j(\mathbf{x} - \mathbf{\chi}_j)\right\}$$

- translation and scaling wavelet families
- Need not be symmetric!

Write function as

$$f(\mathbf{x}_i) = \sum_{j=0}^{J} \psi(\mathbf{x}_i, \boldsymbol{\omega}_j) \beta_j$$

in terms of an (over-complete) dictionary where

- \blacktriangleright { β_i }: unknown coefficients
- ▶ J: number of terms in expansion (finite or infinite)
- lacksquare $\psi(\mathbf{x}, oldsymbol{\omega}_j)$ Dictionary elements from a "generator function" \mathbf{g}
 - cubic splines

$$\psi(x_i,\omega_j)=(x_i-\omega_j)^3_+$$

$$\psi(\mathbf{x}_i, \boldsymbol{\omega}_j) = g(\boldsymbol{\Lambda}_j(\mathbf{x} - \boldsymbol{\chi}_j)) = \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\chi}_j)^T \boldsymbol{\Lambda}_j(\mathbf{x} - \boldsymbol{\chi}_j)\right\}$$

- translation and scaling wavelet families
- ► Need not be symmetric!

Kernel Convolution

Easy to generate *non-stationarity processes

$$f(x) = \sum_{j=0}^{J} \psi(\mathbf{x}, \boldsymbol{\omega}_j) \beta_j$$

- ▶ Poisson prior on *J* (could be infinite!)
- $\Rightarrow J \sim \mathsf{P}(
 u_+)$, $\qquad
 u_+ \equiv
 u(\mathbb{R} imes \mathbf{\Omega}) = \iint v(eta, oldsymbol{\omega}) deta \ doldsymbol{\omega}$
- $\Rightarrow \ \beta_j, \boldsymbol{\omega}_j \mid J \stackrel{\text{iid}}{\sim} \pi(\beta, \boldsymbol{\omega}) \propto \nu(\beta, \boldsymbol{\omega}).$
- lacktriangle Finite number of "big" coefficients $|\beta_j|$
- Possibly infinite number of $\beta \in [-\epsilon, \epsilon]$
- ightharpoonup Coefficients $|\beta_j|$ are absolutely summable
- ightharpoonup Conditions on ν

$$f(x) = \sum_{j=0}^{J} \psi(\mathbf{x}, \boldsymbol{\omega}_j) \beta_j$$

- ▶ Poisson prior on *J* (could be infinite!)
- $\Rightarrow J \sim \mathsf{P}(
 u_+)$, $\qquad
 u_+ \equiv
 u(\mathbb{R} imes \mathbf{\Omega}) = \iint v(eta, oldsymbol{\omega}) deta \ doldsymbol{\omega}$
- $\Rightarrow \ \beta_j, \boldsymbol{\omega}_j \mid J \stackrel{\text{iid}}{\sim} \pi(\beta, \boldsymbol{\omega}) \propto \nu(\beta, \boldsymbol{\omega}).$
- lacktriangle Finite number of "big" coefficients $|\beta_j|$
- Possibly infinite number of $\beta \in [-\epsilon, \epsilon]$
- ightharpoonup Coefficients $|\beta_j|$ are absolutely summable
- ightharpoonup Conditions on ν

$$f(x) = \sum_{j=0}^{J} \psi(\mathbf{x}, \boldsymbol{\omega}_j) \beta_j$$

- ▶ Poisson prior on *J* (could be infinite!)
- $\Rightarrow J \sim \mathsf{P}(
 u_+), \qquad
 u_+ \equiv
 u(\mathbb{R} imes \Omega) = \iint \mathsf{v}(eta, oldsymbol{\omega}) \mathsf{d}eta \; \mathsf{d}oldsymbol{\omega}$
- $\Rightarrow \beta_j, \boldsymbol{\omega}_j \mid J \stackrel{\text{iid}}{\sim} \pi(\beta, \boldsymbol{\omega}) \propto \nu(\beta, \boldsymbol{\omega}).$
- lacktriangle Finite number of "big" coefficients $|\beta_j|$
- ▶ Possibly infinite number of $\beta \in [-\epsilon, \epsilon]$
- ightharpoonup Coefficients $|\beta_j|$ are absolutely summable
- ightharpoonup Conditions on ν

$$f(x) = \sum_{j=0}^{J} \psi(\mathbf{x}, \boldsymbol{\omega}_j) \beta_j$$

- ▶ Poisson prior on *J* (could be infinite!)
- $\Rightarrow J \sim \mathsf{P}(
 u_+), \qquad
 u_+ \equiv
 u(\mathbb{R} imes \Omega) = \iint \mathsf{v}(eta, oldsymbol{\omega}) \mathsf{d}eta \, \mathsf{d}oldsymbol{\omega}$
- $\Rightarrow \beta_j, \omega_j \mid J \stackrel{iid}{\sim} \pi(\beta, \omega) \propto \nu(\beta, \omega).$
- ▶ Finite number of "big" coefficients $|\beta_j|$
- ▶ Possibly infinite number of $\beta \in [-\epsilon, \epsilon]$
- ightharpoonup Coefficients $|\beta_j|$ are absolutely summable
- ightharpoonup Conditions on ν

$$f(x) = \sum_{j=0}^{J} \psi(\mathbf{x}, \boldsymbol{\omega}_j) \beta_j$$

- ▶ Poisson prior on *J* (could be infinite!)
- $\Rightarrow J \sim \mathsf{P}(
 u_+), \qquad
 u_+ \equiv
 u(\mathbb{R} imes \Omega) = \iint \mathsf{v}(eta, oldsymbol{\omega}) \mathsf{d}eta \, \mathsf{d}oldsymbol{\omega}$
- $\Rightarrow \beta_j, \omega_j \mid J \stackrel{iid}{\sim} \pi(\beta, \omega) \propto \nu(\beta, \omega).$
- ▶ Finite number of "big" coefficients $|\beta_j|$
- Possibly infinite number of $\beta \in [-\epsilon, \epsilon]$
- ightharpoonup Coefficients $|\beta_j|$ are absolutely summable
- ightharpoonup Conditions on ν

$$f(x) = \sum_{j=0}^{J} \psi(\mathbf{x}, \boldsymbol{\omega}_j) \beta_j$$

- ▶ Poisson prior on *J* (could be infinite!)
- $\Rightarrow J \sim \mathsf{P}(
 u_+), \qquad
 u_+ \equiv
 u(\mathbb{R} imes \Omega) = \iint \mathsf{v}(eta, oldsymbol{\omega}) \mathsf{d}eta \, \mathsf{d}oldsymbol{\omega}$
- $\Rightarrow \beta_j, \omega_j \mid J \stackrel{iid}{\sim} \pi(\beta, \omega) \propto \nu(\beta, \omega).$
- ▶ Finite number of "big" coefficients $|\beta_j|$
- ▶ Possibly infinite number of $\beta \in [-\epsilon, \epsilon]$
- ightharpoonup Coefficients $|\beta_j|$ are absolutely summable
- ightharpoonup Conditions on ν

$$f(x) = \sum_{j=0}^{J} \psi(\mathbf{x}, \boldsymbol{\omega}_j) \beta_j$$

- ▶ Poisson prior on *J* (could be infinite!)
- $\Rightarrow J \sim \mathsf{P}(
 u_+), \qquad
 u_+ \equiv
 u(\mathbb{R} imes \Omega) = \iint \mathsf{v}(eta, oldsymbol{\omega}) \mathsf{d}eta \, \mathsf{d}oldsymbol{\omega}$
- $\Rightarrow \beta_j, \omega_j \mid J \stackrel{iid}{\sim} \pi(\beta, \omega) \propto \nu(\beta, \omega).$
- ▶ Finite number of "big" coefficients $|\beta_j|$
- ▶ Possibly infinite number of $\beta \in [-\epsilon, \epsilon]$
- ▶ Coefficients $|\beta_j|$ are absolutely summable
- ightharpoonup Conditions on ν

$$f(x) = \sum_{j=0}^{J} \psi(\mathbf{x}, \boldsymbol{\omega}_j) \beta_j$$

- ▶ Poisson prior on *J* (could be infinite!)
- $\Rightarrow J \sim \mathsf{P}(
 u_+), \qquad
 u_+ \equiv
 u(\mathbb{R} imes \Omega) = \iint \mathsf{v}(eta, oldsymbol{\omega}) \mathsf{d}eta \, \mathsf{d}oldsymbol{\omega}$
- $\Rightarrow \beta_j, \omega_j \mid J \stackrel{iid}{\sim} \pi(\beta, \omega) \propto \nu(\beta, \omega).$
- ▶ Finite number of "big" coefficients $|\beta_j|$
- ▶ Possibly infinite number of $\beta \in [-\epsilon, \epsilon]$
- ▶ Coefficients $|\beta_j|$ are absolutely summable
- ightharpoonup Conditions on ν

Lévy measure:
$$\nu(\beta,\omega)=c_{\alpha}|\beta|^{-(\alpha+1)}\pi(\omega)$$
 $0<\alpha<2$ For α - Stable $\nu^+(\mathbb{R},\Omega)=\infty$ Fine in theory, but not in practice for MCMC!

- Finite number of support points ω with β in $[-\epsilon, \epsilon]^c$
- Fix ϵ (for given prior approximation error)
- Use approximate Lévy measure $\nu_{\epsilon}(\beta, \omega) \equiv \nu(\beta, \omega) \mathbf{1}(|\beta| > \epsilon)$
- \Rightarrow $J \sim P(\nu_{\epsilon}^+)$ where $\nu_{\epsilon}^+ = \nu([-\epsilon, \epsilon]^c, \Omega)$
- $\Rightarrow \beta_j, \omega_j \stackrel{iid}{\sim} \pi(d\beta, d\omega) \equiv \nu_{\epsilon}(d\beta, d\omega)/\nu_{\epsilon}^+ (\beta_j \text{ distributed as Pareto})$

Lévy measure:
$$\nu(\beta, \omega) = c_{\alpha} |\beta|^{-(\alpha+1)} \pi(\omega)$$
 $0 < \alpha < 2$
For α - Stable $\nu^{+}(\mathbb{R}, \Omega) = \infty$

- Finite number of support points ω with β in $[-\epsilon, \epsilon]^c$
- Fix ϵ (for given prior approximation error)
- Use approximate Lévy measure $\nu_{\epsilon}(\beta, \omega) \equiv \nu(\beta, \omega) \mathbf{1}(|\beta| > \epsilon)$
- \Rightarrow $J \sim P(\nu_{\epsilon}^+)$ where $\nu_{\epsilon}^+ = \nu([-\epsilon, \epsilon]^c, \Omega)$
- $\Rightarrow \beta_j, \omega_j \stackrel{iid}{\sim} \pi(d\beta, d\omega) \equiv \nu_{\epsilon}(d\beta, d\omega)/\nu_{\epsilon}^+ (\beta_j \text{ distributed as Pareto})$

Lévy measure:
$$\nu(\beta, \omega) = c_{\alpha} |\beta|^{-(\alpha+1)} \pi(\omega)$$
 $0 < \alpha < 2$ For α - Stable $\nu^+(\mathbb{R}, \Omega) = \infty$ Fine in theory, but not in practice for MCMC!

- Finite number of support points ω with β in $[-\epsilon, \epsilon]^c$
- ▶ Fix ϵ (for given prior approximation error)
- Use approximate Lévy measure $\nu_{\epsilon}(\beta, \omega) \equiv \nu(\beta, \omega) \mathbf{1}(|\beta| > \epsilon)$
- \Rightarrow $J \sim P(\nu_{\epsilon}^+)$ where $\nu_{\epsilon}^+ = \nu([-\epsilon, \epsilon]^c, \Omega)$
- $\Rightarrow \beta_j, \omega_j \stackrel{iid}{\sim} \pi(d\beta, d\omega) \equiv \nu_{\epsilon}(d\beta, d\omega)/\nu_{\epsilon}^+ (\beta_j \text{ distributed as Pareto})$

Lévy measure:
$$\nu(\beta, \omega) = c_{\alpha} |\beta|^{-(\alpha+1)} \pi(\omega)$$
 $0 < \alpha < 2$ For α - Stable $\nu^+(\mathbb{R}, \Omega) = \infty$ Fine in theory, but not in practice for MCMC!

- lacktriangle Finite number of support points ω with β in $[-\epsilon,\epsilon]^c$
- ightharpoonup Fix ϵ (for given prior approximation error)
- Use approximate Lévy measure $\nu_{\epsilon}(\beta, \omega) \equiv \nu(\beta, \omega) \mathbf{1}(|\beta| > \epsilon)$
- $\Rightarrow J \sim P(\nu_{\epsilon}^+) \text{ where } \nu_{\epsilon}^+ = \nu([-\epsilon, \epsilon]^c, \Omega)$
- $\Rightarrow \beta_j, \omega_j \stackrel{iid}{\sim} \pi(d\beta, d\omega) \equiv \nu_{\epsilon}(d\beta, d\omega)/\nu_{\epsilon}^+ \ (\beta_j \text{ distributed as Pareto})$

Lévy measure:
$$\nu(\beta, \omega) = c_{\alpha} |\beta|^{-(\alpha+1)} \pi(\omega)$$
 $0 < \alpha < 2$ For α - Stable $\nu^+(\mathbb{R}, \Omega) = \infty$ Fine in theory, but not in practice for MCMC!

- ▶ Finite number of support points ω with β in $[-\epsilon, \epsilon]^c$
- Fix ϵ (for given prior approximation error)
- Use approximate Lévy measure $\nu_{\epsilon}(\beta, \omega) \equiv \nu(\beta, \omega) \mathbf{1}(|\beta| > \epsilon)$
- $\Rightarrow J \sim P(\nu_{\epsilon}^+) \text{ where } \nu_{\epsilon}^+ = \nu([-\epsilon, \epsilon]^c, \Omega)$
- $\Rightarrow \beta_j, \omega_j \stackrel{iid}{\sim} \pi(d\beta, d\omega) \equiv \nu_{\epsilon}(d\beta, d\omega)/\nu_{\epsilon}^+ (\beta_j \text{ distributed as Pareto})$

Lévy measure:
$$\nu(\beta, \omega) = c_{\alpha} |\beta|^{-(\alpha+1)} \pi(\omega)$$
 $0 < \alpha < 2$ For α - Stable $\nu^+(\mathbb{R}, \Omega) = \infty$ Fine in theory, but not in practice for MCMC!

- ▶ Finite number of support points ω with β in $[-\epsilon, \epsilon]^c$
- Fix ϵ (for given prior approximation error)
- Use approximate Lévy measure $\nu_{\epsilon}(\beta, \omega) \equiv \nu(\beta, \omega) \mathbf{1}(|\beta| > \epsilon)$
- $\Rightarrow J \sim P(\nu_{\epsilon}^+) \text{ where } \nu_{\epsilon}^+ = \nu([-\epsilon, \epsilon]^c, \Omega)$
- $\Rightarrow \beta_j, \omega_j \stackrel{iid}{\sim} \pi(d\beta, d\omega) \equiv \nu_{\epsilon}(d\beta, d\omega)/\nu_{\epsilon}^+ (\beta_j \text{ distributed as Pareto})$

Lévy measure:
$$\nu(\beta, \omega) = c_{\alpha} |\beta|^{-(\alpha+1)} \pi(\omega)$$
 $0 < \alpha < 2$ For α - Stable $\nu^+(\mathbb{R}, \Omega) = \infty$ Fine in theory, but not in practice for MCMC!

- ▶ Finite number of support points ω with β in $[-\epsilon, \epsilon]^c$
- Fix ϵ (for given prior approximation error)
- Use approximate Lévy measure $\nu_{\epsilon}(\beta, \omega) \equiv \nu(\beta, \omega) \mathbf{1}(|\beta| > \epsilon)$
- \Rightarrow $J \sim \mathsf{P}(\nu_{\epsilon}^{+})$ where $\nu_{\epsilon}^{+} = \nu([-\epsilon, \epsilon]^{c}, \Omega)$
- $\Rightarrow \beta_j, \omega_j \stackrel{\text{iid}}{\sim} \pi(d\beta, d\omega) \equiv \nu_{\epsilon}(d\beta, d\omega)/\nu_{\epsilon}^+ \ (\beta_j \text{ distributed as Pareto})$

Lévy measure:
$$\nu(\beta, \omega) = c_{\alpha} |\beta|^{-(\alpha+1)} \pi(\omega)$$
 $0 < \alpha < 2$ For α - Stable $\nu^+(\mathbb{R}, \Omega) = \infty$ Fine in theory, but not in practice for MCMC!

- ▶ Finite number of support points ω with β in $[-\epsilon, \epsilon]^c$
- Fix ϵ (for given prior approximation error)
- Use approximate Lévy measure $\nu_{\epsilon}(\beta, \omega) \equiv \nu(\beta, \omega) \mathbf{1}(|\beta| > \epsilon)$
- \Rightarrow $J \sim \mathsf{P}(
 u_{\epsilon}^{+})$ where $u_{\epsilon}^{+} =
 u([-\epsilon, \epsilon]^{\mathtt{c}}, \mathbf{\Omega})$
- $\Rightarrow \beta_j, \omega_j \stackrel{iid}{\sim} \pi(d\beta, d\omega) \equiv \nu_{\epsilon}(d\beta, d\omega)/\nu_{\epsilon}^+ \ (\beta_j \text{ distributed as Pareto})$

Truncated Cauchy Process

Restriction $|\beta| > \epsilon$

Contours of Log Prior (in \mathbb{R}^2) – Penalties

Penalized Likelihood:

$$-\frac{1}{2\sigma^2}\sum_i (Y_i - f(\mathbf{x}_i))^2 - (\alpha + 1)\sum_i \log(|\beta_j|) - \nu_{\epsilon}^+ \dots$$

Higher Dimensional ${\mathcal X}$

MCMC is (currently) too slow in higher dimensional space to allow

- $ightharpoonup \chi$ to be completely arbitrary; restrict support to observed $\{x_i\}$ like in SVM
- ightharpoonup use diagonal Λ

Kernels take form:

$$\psi(\mathbf{x}, \omega_j) = \prod_d \exp\{-\frac{1}{2}\lambda_d(\mathbf{x}_d - \chi_d)^2\}$$
$$f(\mathbf{x}) = \sum_j \psi(\mathbf{x}, \omega_j)\beta_j$$

Higher Dimensional ${\mathcal X}$

MCMC is (currently) too slow in higher dimensional space to allow

- $ightharpoonup \chi$ to be completely arbitrary; restrict support to observed $\{x_i\}$ like in SVM
- ightharpoonup use diagonal Λ

Kernels take form:

$$\psi(\mathbf{x}, \omega_j) = \prod_d \exp\{-\frac{1}{2}\lambda_d(x_d - \chi_d)^2\}$$
$$f(\mathbf{x}) = \sum_j \psi(\mathbf{x}, \omega_j)\beta_j$$

Higher Dimensional ${\mathcal X}$

MCMC is (currently) too slow in higher dimensional space to allow

- $ightharpoonup \chi$ to be completely arbitrary; restrict support to observed $\{x_i\}$ like in SVM
- ightharpoonup use diagonal Λ

Kernels take form:

$$\psi(\mathbf{x}, \boldsymbol{\omega}_j) = \prod_{d} \exp\{-\frac{1}{2}\lambda_d(x_d - \chi_d)^2\}$$
$$f(\mathbf{x}) = \sum_{j} \psi(\mathbf{x}, \boldsymbol{\omega}_j)\beta_j$$

Approximate Lévy Prior II

Continuous Approximation Student $t(\alpha, 0, \epsilon)$ approximation:

$$\nu_{\epsilon}(d\beta, d\omega) = c_{\alpha}(\beta^2 + \alpha \epsilon^2)^{-(\alpha+1)/2} d\beta \ \gamma(d\omega)$$

Based on the following hierarchical prior

$$eta_j \mid \phi_j \stackrel{ind}{\sim} \operatorname{N}(0, \varphi_j^{-1})$$
 $\phi_j \stackrel{ind}{\sim} \operatorname{G}\left(\frac{\alpha}{2}, \frac{\alpha \epsilon^2}{2}\right)$
 $J \sim \operatorname{P}(\nu_{\epsilon}^+)$

where
$$\nu_{\epsilon}^{+} = \nu_{\epsilon}(\mathbb{R}, \Omega) = \frac{\alpha^{1-\alpha/2} \Gamma(\alpha) \Gamma(\alpha/2)}{\epsilon^{\alpha} \pi^{1/2} \Gamma(\frac{\alpha+1}{2})} \sin(\frac{\pi \alpha}{2}) \gamma(\Omega)$$

Key: need to have variance of coefficients decrease as J increases

Approximate Lévy Prior II

Continuous Approximation Student $t(\alpha, 0, \epsilon)$ approximation:

$$\nu_{\epsilon}(d\beta, d\omega) = c_{\alpha}(\beta^2 + \alpha \epsilon^2)^{-(\alpha+1)/2} d\beta \ \gamma(d\omega)$$

Based on the following hierarchical prior

where
$$\nu_{\epsilon}^+ = \nu_{\epsilon}(\mathbb{R}, \mathbf{\Omega}) = \frac{\alpha^{1-\alpha/2}\Gamma(\alpha)\Gamma(\alpha/2)}{\epsilon^{\alpha}\pi^{1/2}\Gamma(\frac{\alpha+1}{2})}\sin(\frac{\pi\alpha}{2})\gamma(\mathbf{\Omega})$$

Key: need to have variance of coefficients decrease as J increases

Limiting Case

$$eta_j \mid arphi_j \ \stackrel{\textit{ind}}{\sim} \ \mathrm{N}(0, 1/arphi_j) \ arphi_j \ \stackrel{\textit{iid}}{\sim} \ \mathsf{G}(lpha/2, "0")$$

Notes

- ▶ Require $0 < \alpha < 2$ Additional restrictions on ω
- lacktriangle Cauchy process corresponds to lpha=1
- Tipping's "Relevance Vector Machine" corresponds to $\alpha=0$ (improper posterior!)
- Provides an extension of Generalized Ridge Priors to infinite dimensional case
- Infinite dimensional analog of Cauchy priors

$$eta_j \mid arphi_j \ \stackrel{ ext{ind}}{\sim} \ \mathrm{N}(0, 1/arphi_j) \ arphi_j \ \stackrel{ ext{iid}}{\sim} \ \mathrm{G}(lpha/2, "0")$$

- ▶ Require $0 < \alpha < 2$ Additional restrictions on ω
- lacktriangle Cauchy process corresponds to lpha=1
- Tipping's "Relevance Vector Machine" corresponds to $\alpha=0$ (improper posterior!)
- Provides an extension of Generalized Ridge Priors to infinite dimensional case
- Infinite dimensional analog of Cauchy priors

$$eta_j \mid arphi_j \ \stackrel{ ext{ind}}{\sim} \ \mathrm{N}(0, 1/arphi_j) \ arphi_j \ \stackrel{ ext{iid}}{\sim} \ \mathrm{G}(lpha/2, "0")$$

- ▶ Require $0 < \alpha < 2$ Additional restrictions on ω
- ightharpoonup Cauchy process corresponds to $\alpha=1$
- ► Tipping's "Relevance Vector Machine" corresponds to $\alpha = 0$ (improper posterior!)
- ▶ Provides an extension of Generalized Ridge Priors to infinite dimensional case
- Infinite dimensional analog of Cauchy priors

$$eta_j \mid arphi_j \ \stackrel{ ext{ind}}{\sim} \ \mathrm{N}(0, 1/arphi_j) \ arphi_j \ \stackrel{ ext{iid}}{\sim} \ \mathrm{G}(lpha/2, "0")$$

- ▶ Require $0 < \alpha < 2$ Additional restrictions on ω
- lacktriangle Cauchy process corresponds to lpha=1
- ▶ Tipping's "Relevance Vector Machine" corresponds to $\alpha = 0$ (improper posterior!)
- Provides an extension of Generalized Ridge Priors to infinite dimensional case
- Infinite dimensional analog of Cauchy priors

$$eta_j \mid \varphi_j \ \stackrel{\textit{ind}}{\sim} \ \mathrm{N}(0, 1/\varphi_j)$$
 $\varphi_j \ \stackrel{\textit{iid}}{\sim} \ \mathrm{G}(\alpha/2, 0)$

- ▶ Require $0 < \alpha < 2$ Additional restrictions on ω
- lacktriangle Cauchy process corresponds to lpha=1
- ▶ Tipping's "Relevance Vector Machine" corresponds to $\alpha = 0$ (improper posterior!)
- Provides an extension of Generalized Ridge Priors to infinite dimensional case
- Infinite dimensional analog of Cauchy priors

$$eta_j \mid \varphi_j \ \stackrel{\textit{ind}}{\sim} \ \mathrm{N}(0, 1/\varphi_j)$$
 $\varphi_j \ \stackrel{\textit{iid}}{\sim} \ \mathrm{G}(\alpha/2, 0)$

- lacktriangle Require 0<lpha<2 Additional restrictions on ω
- lacktriangle Cauchy process corresponds to lpha=1
- ▶ Tipping's "Relevance Vector Machine" corresponds to $\alpha = 0$ (improper posterior!)
- Provides an extension of Generalized Ridge Priors to infinite dimensional case
- Infinite dimensional analog of Cauchy priors

Further Simplification in Case with $\alpha=1$

- Poisson number of points $J_{\epsilon} \sim P(\nu_{\epsilon}^{+}(\alpha, \gamma))$ with $\nu_{\epsilon}^{+}(\alpha, \gamma) = \frac{\gamma \alpha^{1-\alpha/2}}{2^{1-\alpha}\epsilon^{\alpha}} \frac{\Gamma(\alpha/2)}{\Gamma(1-\alpha/2)}$
- ▶ Given J, $[n_1:n_n] \sim MN(J,1/(n+1))$ points supported at each kernel located at x_j

The regression mean function can be rewritten as

$$f(\mathbf{x}) = \sum_{i=0}^{n} \tilde{\beta}_{i} \psi(\mathbf{x}, \boldsymbol{\omega}_{i}), \quad \tilde{\beta}_{i} = \sum_{\{j \mid \boldsymbol{\chi}_{j} = \mathbf{x}_{i}\}} \beta_{j}.$$

In particular, if $\alpha=1$, not only the Cauchy process is infinitely divisible, the approximated Cauchy prior distributions on the regression coefficients are also infinitely divisible:

$$\tilde{\beta}_i \stackrel{ind}{\sim} N(0, n_i^2 \tilde{\varphi}_i^{-1}), \qquad \tilde{\varphi}_i \stackrel{iid}{\sim} G(1/2, \epsilon^2/2)$$

Further Simplification in Case with $\alpha=1$

- Poisson number of points $J_{\epsilon} \sim P(\nu_{\epsilon}^{+}(\alpha, \gamma))$ with $\nu_{\epsilon}^{+}(\alpha, \gamma) = \frac{\gamma \alpha^{1-\alpha/2}}{2^{1-\alpha} \epsilon^{\alpha}} \frac{\Gamma(\alpha/2)}{\Gamma(1-\alpha/2)}$
- ▶ Given J, $[n_1:n_n] \sim MN(J,1/(n+1))$ points supported at each kernel located at x_j

The regression mean function can be rewritten as

$$f(\mathbf{x}) = \sum_{i=0}^{n} \tilde{\beta}_{i} \psi(\mathbf{x}, \boldsymbol{\omega}_{i}), \quad \tilde{\beta}_{i} = \sum_{\{j \mid \boldsymbol{\chi}_{j} = \mathbf{x}_{i}\}} \beta_{j}.$$

In particular, if $\alpha=1$, not only the Cauchy process is infinitely divisible, the approximated Cauchy prior distributions on the regression coefficients are also infinitely divisible:

$$\tilde{\beta}_i \stackrel{ind}{\sim} N(0, n_i^2 \tilde{\varphi}_i^{-1}), \qquad \tilde{\varphi}_i \stackrel{iid}{\sim} G(1/2, \epsilon^2/2)$$

Further Simplification in Case with $\alpha=1$

- Poisson number of points $J_{\epsilon} \sim P(\nu_{\epsilon}^{+}(\alpha, \gamma))$ with $\nu_{\epsilon}^{+}(\alpha, \gamma) = \frac{\gamma \alpha^{1-\alpha/2}}{2^{1-\alpha} \epsilon^{\alpha}} \frac{\Gamma(\alpha/2)}{\Gamma(1-\alpha/2)}$
- ▶ Given J, $[n_1:n_n] \sim MN(J,1/(n+1))$ points supported at each kernel located at x_j

The regression mean function can be rewritten as

$$f(\mathbf{x}) = \sum_{i=0}^{n} \tilde{\beta}_{i} \psi(\mathbf{x}, \boldsymbol{\omega}_{i}), \quad \tilde{\beta}_{i} = \sum_{\{j \mid \boldsymbol{\chi}_{j} = \mathbf{x}_{i}\}} \beta_{j}.$$

In particular, if $\alpha=1$, not only the Cauchy process is infinitely divisible, the approximated Cauchy prior distributions on the regression coefficients are also infinitely divisible:

$$\tilde{\beta}_i \stackrel{ind}{\sim} N(0, n_i^2 \tilde{\varphi}_i^{-1}), \qquad \tilde{\varphi}_i \stackrel{iid}{\sim} G(1/2, \epsilon^2/2)$$

Further Simplification in Case with lpha=1

- Poisson number of points $J_{\epsilon} \sim P(\nu_{\epsilon}^{+}(\alpha, \gamma))$ with $\nu_{\epsilon}^{+}(\alpha, \gamma) = \frac{\gamma \alpha^{1-\alpha/2}}{2^{1-\alpha} \epsilon^{\alpha}} \frac{\Gamma(\alpha/2)}{\Gamma(1-\alpha/2)}$
- ▶ Given J, $[n_1:n_n] \sim MN(J,1/(n+1))$ points supported at each kernel located at x_j

The regression mean function can be rewritten as

$$f(\mathbf{x}) = \sum_{i=0}^{n} \tilde{\beta}_{i} \psi(\mathbf{x}, \boldsymbol{\omega}_{i}), \quad \tilde{\beta}_{i} = \sum_{\{j \mid \boldsymbol{\chi}_{j} = \mathbf{x}_{i}\}} \beta_{j}.$$

In particular, if $\alpha=1$, not only the Cauchy process is infinitely divisible, the approximated Cauchy prior distributions on the regression coefficients are also infinitely divisible:

$$\tilde{\beta}_i \stackrel{ind}{\sim} \mathsf{N}(0, n_i^2 \tilde{\varphi}_i^{-1}), \qquad \tilde{\varphi}_i \stackrel{iid}{\sim} \mathsf{G}(1/2, \epsilon^2/2)$$

Further Simplification in Case with lpha=1

- Poisson number of points $J_{\epsilon} \sim P(\nu_{\epsilon}^{+}(\alpha, \gamma))$ with $\nu_{\epsilon}^{+}(\alpha, \gamma) = \frac{\gamma \alpha^{1-\alpha/2}}{2^{1-\alpha} \epsilon^{\alpha}} \frac{\Gamma(\alpha/2)}{\Gamma(1-\alpha/2)}$
- ▶ Given J, $[n_1:n_n] \sim MN(J,1/(n+1))$ points supported at each kernel located at x_j

The regression mean function can be rewritten as

$$f(\mathbf{x}) = \sum_{i=0}^{n} \tilde{\beta}_{i} \psi(\mathbf{x}, \boldsymbol{\omega}_{i}), \quad \tilde{\beta}_{i} = \sum_{\{j \mid \boldsymbol{\chi}_{j} = \mathbf{x}_{i}\}} \beta_{j}.$$

In particular, if $\alpha=1$, not only the Cauchy process is infinitely divisible, the approximated Cauchy prior distributions on the regression coefficients are also infinitely divisible:

$$\tilde{\beta}_i \stackrel{ind}{\sim} \mathsf{N}(0, n_i^2 \tilde{\varphi}_i^{-1}), \qquad \tilde{\varphi}_i \stackrel{iid}{\sim} \mathsf{G}(1/2, \epsilon^2/2)$$

BARK: Bayesian Additive Regression Kernels

```
#library(devtools)
#suppressMessages(install_github("merliseclyde/bark"))
library(bark)

set.seed(42)
n = 500
circle2 = as.data.frame(sim_circle(n, dim = 2))
```

Circle

Circle Example

```
set.seed(42)
train = sample(1:n, size = floor(n/2), rep=FALSE)
circle2.bark = bark(as.matrix(circle2[train, 1:2]),
                    circle2[train, 3],
                    x.test = as.matrix(circle2[-train, 1:2]
                    classification = TRUE,
                    printevery = 10000,
                    type="se")
   [1] "Starting BARK-se for this classification problem"
   [1] "burning iteration 10000, J=5, max(nj)=2"
   [1] "posterior mcmc iteration 10000, J=4, max(nj)=1"
```

Missclassification

Missclassification Rate 0.02

SVM

BART

```
## [1] 0.036
```

- ▶ Product structure allows interactions between variables
- ► Many input variables may be irrelevant
- ► Feature selection; if $\lambda_d = 0$ variable x_d is removed from all kernels
- Allow point mass on $\lambda_h=0$ with probability $p_\lambda\sim B(a,b)$ (in practice have used a=b=1

- ▶ D Different λD parameters in each dimension
- ▶ S + D Different λ_d parameters + Selection
- ► S + E Selection + Equal for Remaining $\lambda_d = \lambda$

- ▶ Product structure allows interactions between variables
- Many input variables may be irrelevant
- ► Feature selection; if $\lambda_d = 0$ variable x_d is removed from all kernels
- Allow point mass on $\lambda_h=0$ with probability $p_\lambda\sim B(a,b)$ (in practice have used a=b=1

- ▶ *D* Different λD parameters in each dimension
- ▶ S + D Different λ_d parameters + Selection
- ▶ S + E Selection + Equal for Remaining $\lambda_d = \lambda$

- ▶ Product structure allows interactions between variables
- Many input variables may be irrelevant
- ► Feature selection; if $\lambda_d = 0$ variable x_d is removed from all kernels
- Allow point mass on $\lambda_h=0$ with probability $p_\lambda\sim B(a,b)$ (in practice have used a=b=1

- ▶ *D* Different λD parameters in each dimension
- ▶ S + D Different λ_d parameters + Selection
- ► S + E Selection + Equal for Remaining $\lambda_d = \lambda$

- ▶ Product structure allows interactions between variables
- Many input variables may be irrelevant
- ► Feature selection; if $\lambda_d = 0$ variable x_d is removed from all kernels
- Allow point mass on $\lambda_h=0$ with probability $p_\lambda\sim B(a,b)$ (in practice have used a=b=1

- ▶ *D* Different λD parameters in each dimension
- ▶ S + D Different λ_d parameters + Selection
- ▶ S + E Selection + Equal for Remaining $\lambda_d = \lambda$

- ▶ Product structure allows interactions between variables
- Many input variables may be irrelevant
- ► Feature selection; if $\lambda_d = 0$ variable x_d is removed from all kernels
- Allow point mass on $\lambda_h=0$ with probability $p_\lambda\sim B(a,b)$ (in practice have used a=b=1

- ▶ D Different λD parameters in each dimension
- ▶ S + D Different λ_d parameters + Selection
- ▶ S + E Selection + Equal for Remaining $\lambda_d = \lambda$

- ▶ Product structure allows interactions between variables
- Many input variables may be irrelevant
- ► Feature selection; if $\lambda_d = 0$ variable x_d is removed from all kernels
- Allow point mass on $\lambda_h=0$ with probability $p_\lambda\sim B(a,b)$ (in practice have used a=b=1

- ▶ D Different λD parameters in each dimension
- ▶ S + D Different λ_d parameters + Selection
- ▶ S + E Selection + Equal for Remaining $\lambda_d = \lambda$

- Product structure allows interactions between variables
- Many input variables may be irrelevant
- ► Feature selection; if $\lambda_d = 0$ variable x_d is removed from all kernels
- Allow point mass on $\lambda_h=0$ with probability $p_\lambda\sim B(a,b)$ (in practice have used a=b=1

- ▶ D Different λD parameters in each dimension
- ▶ S + D Different λ_d parameters + Selection
- ▶ S + E Selection + Equal for Remaining $\lambda_d = \lambda$

Regression Out of Sample Prediction

Average Relative MSE to best procedure

	BARK	C)/N/	BART	
D	S + E	S + D	3 7 171	DAILI
1.22	2.26	1.93	5.36	1.97
1.07	1.09	1.04	4.36	3.64
1.46	2.30	1.44	2.70	1.00
1.09	1.23	1.20	1.56	1.01
1.81	1.01	2.19	4.04	1.68
1.01	1.01	1.02	1.16	1.10
	1.22 1.07 1.46 1.09 1.81 1.01	D S + E 1.22 2.26 1.07 1.09 1.46 2.30 1.09 1.23 1.81 1.01 1.01 1.01	D S + E S + D 1.22 2.26 1.93 1.07 1.09 1.04 1.46 2.30 1.44 1.09 1.23 1.20 1.81 1.01 2.19 1.01 1.02	D S + E S + D SVM 1.22 2.26 1.93 5.36 1.07 1.09 1.04 4.36 1.46 2.30 1.44 2.70 1.09 1.23 1.20 1.56 1.81 1.01 2.19 4.04 1.01 1.02 1.16

D: dimension specific scale λ_d

E: equal scales $\lambda_d = \lambda \, \forall \, d$

S: selection $\lambda_d = 0$ with probability ρ

Feature Selection in Boston Housing Data

Posterior Distribution of λ_d

Classification Examples

Name	d	data type	<pre>n (train/test)</pre>
Circle	2	simulation	200/1000
Circle (3 null)	5	simulation	200/1000
Circle (18 null)	20	simulation	200/1000
Swiss Bank Notes	6	real data	200 (5 <i>cv</i>)
Breast Cancer	30	real data	569 (5 <i>cv</i>)
lonosphere	33	real data	351 (5 <i>cv</i>)

- ▶ Add latent Gaussian Z_i for probit regression (as in Albert & Chib)
- ► Same model as before conditional on **Z**
- lacktriangle Advantage: Draw eta in a block from full conditional
- ► Can extend to Logistic

Predictive Error Rate for Classification

Data Sets	BARK			SVM	BART
Data Sets	D	S + E	S + D	JVIVI	ואלט
Circle 2	4.91%	1.88%	1.93%	5.03%	3.97%
Circle 5	4.70%	1.47%	1.65%	10.99%	6.51%
Circle 20	4.84%	2.09%	3.69%	44.10%	15.10%
Bank	1.25%	0.55%	0.88%	1.12%	0.50%
BC	4.02%	2.49%	6.09%	2.70%	3.36%
Ionosphere	8.59%	5.78%	10.87%	5.17%	7.34%

D: dimension specific scale λ_d

E: equal scales $\lambda_d = \lambda \forall d$

S: selection $\lambda_d = 0$ with probability ρ

- ► NP Bayes of many flavors often does better than frequentist methods (BARK, BART, Treed GP, more)
- ► Hyper-parameter specification theory & computational approximation
- need faster code for BARK that is easier for users (BART & TGP are great!) (library(bark) or github
- Can these models be added to JAGS, STAN, etc instead of stand-alone R packages
- ▶ With availability of code what are caveats for users?

- ► NP Bayes of many flavors often does better than frequentist methods (BARK, BART, Treed GP, more)
- ► Hyper-parameter specification theory & computational approximation
- need faster code for BARK that is easier for users (BART & TGP are great!) (library(bark) or github
- Can these models be added to JAGS, STAN, etc instead of stand-alone R packages
- ▶ With availability of code what are caveats for users?

- ▶ NP Bayes of many flavors often does better than frequentist methods (BARK, BART, Treed GP, more)
- ► Hyper-parameter specification theory & computational approximation
- need faster code for BARK that is easier for users (BART & TGP are great!) (library(bark) or github
- Can these models be added to JAGS, STAN, etc instead of stand-alone R packages
- ▶ With availability of code what are caveats for users?

- ▶ NP Bayes of many flavors often does better than frequentist methods (BARK, BART, Treed GP, more)
- ► Hyper-parameter specification theory & computational approximation
- need faster code for BARK that is easier for users (BART & TGP are great!) (library(bark) or github
- Can these models be added to JAGS, STAN, etc instead of stand-alone R packages
- ▶ With availability of code what are caveats for users?

- ▶ NP Bayes of many flavors often does better than frequentist methods (BARK, BART, Treed GP, more)
- ► Hyper-parameter specification theory & computational approximation
- need faster code for BARK that is easier for users (BART & TGP are great!) (library(bark) or github
- Can these models be added to JAGS, STAN, etc instead of stand-alone R packages
- With availability of code what are caveats for users?

- Provide limit of finite dimensional priors (GRP & SVSS) to infinite dimensional setting
- Adaptive bandwidth for kernel regression
- Allow flexible generating functions
- Provide sparser representations compared to SVM & RVM, with coherent Bayesian interpretation
- Incorporation of prior knowledge if available
- Relax assumptions of equally spaced data and Gaussian likelihood
- Hierarchical Extensions
- Formulation allows one to define stochastic processes on arbitrary spaces (spheres, manifolds)

- Provide limit of finite dimensional priors (GRP & SVSS) to infinite dimensional setting
- Adaptive bandwidth for kernel regression
- Allow flexible generating functions
- Provide sparser representations compared to SVM & RVM, with coherent Bayesian interpretation
- ► Incorporation of prior knowledge if available
- Relax assumptions of equally spaced data and Gaussian likelihood
- Hierarchical Extensions
- Formulation allows one to define stochastic processes on arbitrary spaces (spheres, manifolds)

- Provide limit of finite dimensional priors (GRP & SVSS) to infinite dimensional setting
- Adaptive bandwidth for kernel regression
- Allow flexible generating functions
- Provide sparser representations compared to SVM & RVM, with coherent Bayesian interpretation
- ► Incorporation of prior knowledge if available
- Relax assumptions of equally spaced data and Gaussian likelihood
- Hierarchical Extensions
- Formulation allows one to define stochastic processes on arbitrary spaces (spheres, manifolds)

- Provide limit of finite dimensional priors (GRP & SVSS) to infinite dimensional setting
- Adaptive bandwidth for kernel regression
- Allow flexible generating functions
- Provide sparser representations compared to SVM & RVM, with coherent Bayesian interpretation
- ► Incorporation of prior knowledge if available
- Relax assumptions of equally spaced data and Gaussian likelihood
- Hierarchical Extensions
- Formulation allows one to define stochastic processes on arbitrary spaces (spheres, manifolds)

- Provide limit of finite dimensional priors (GRP & SVSS) to infinite dimensional setting
- Adaptive bandwidth for kernel regression
- Allow flexible generating functions
- Provide sparser representations compared to SVM & RVM, with coherent Bayesian interpretation
- ► Incorporation of prior knowledge if available
- Relax assumptions of equally spaced data and Gaussian likelihood
- Hierarchical Extensions
- Formulation allows one to define stochastic processes on arbitrary spaces (spheres, manifolds)

- Provide limit of finite dimensional priors (GRP & SVSS) to infinite dimensional setting
- Adaptive bandwidth for kernel regression
- Allow flexible generating functions
- Provide sparser representations compared to SVM & RVM, with coherent Bayesian interpretation
- Incorporation of prior knowledge if available
- Relax assumptions of equally spaced data and Gaussian likelihood
- Hierarchical Extensions
- Formulation allows one to define stochastic processes on arbitrary spaces (spheres, manifolds)

- Provide limit of finite dimensional priors (GRP & SVSS) to infinite dimensional setting
- Adaptive bandwidth for kernel regression
- Allow flexible generating functions
- Provide sparser representations compared to SVM & RVM, with coherent Bayesian interpretation
- ► Incorporation of prior knowledge if available
- Relax assumptions of equally spaced data and Gaussian likelihood
- Hierarchical Extensions
- Formulation allows one to define stochastic processes on arbitrary spaces (spheres, manifolds)

- Provide limit of finite dimensional priors (GRP & SVSS) to infinite dimensional setting
- Adaptive bandwidth for kernel regression
- Allow flexible generating functions
- Provide sparser representations compared to SVM & RVM, with coherent Bayesian interpretation
- Incorporation of prior knowledge if available
- Relax assumptions of equally spaced data and Gaussian likelihood
- Hierarchical Extensions
- Formulation allows one to define stochastic processes on arbitrary spaces (spheres, manifolds)