Алгебра

Содержание

Вопро	c 1	4
1.1	Бинарные операции	4
1.2	Полугруппы, моноиды и группы	4
1.3	Коммутативные группы	5
1.4	Примеры групп	Ę
1.5	Порядок группы.	Ę
1.6	Подгруппы	5
1.7	Описание всех подгрупп в группе $(\mathbb{Z},+)$	
Вопро	c 2	6
2.1	Подгруппы	6
2.2	Циклические подгруппы	6
2.3	Циклические группы	7
2.4	Порядок элемента	7
2.5	Связь между порядком элемента и порядком порождаемой им циклической подгруппы	7
Вопро	c 3	8
3.1	Смежные классы	8
3.2	Индекс подгруппы	8
3.3	Теорема Лагранжа	S
Вопро	\mathbf{c} 4	10
4.1	Пять следствий из теоремы Лагранжа	10
Вопро	c 5	11
5.1	Нормальные подгруппы	11
5.2	Факторгруппы	12
Вопро	c 6	13
6.1	Гомоморфизмы групп	13
6.2	Простейшие свойства гомоморфизмов	13
6.3	Изоморфизмы групп	13
6.4	Ядро и образ гомоморфизма групп, их свойства	14
Вопро	c 7	15
7.1	Теорема о гомоморфизме для групп	15
Вопро	c 8	16
8.1	Классификация циклических групп	16
Вопро	c 9	17
9.1	Прямое произведение групп	
9.2	Разложение конечной циклической группы	
9.3	Теорема о строении конечных абелевых групп	
Вопро	c 10	20
_	Экспонента конечной абелевой группы и критерий цикличности	20

Вопро	c 11	21
11.1	Задача дискретного логарифмирования	21
11.2	Криптография с открытым ключом	21
11.3	Система Диффи-Хеллмана обмена ключами (1976)	21
11.4	Криптосистема Эль-Гамаля (1985)	21
Вопрос	c 12	23
12.1	Кольца	23
12.2	Коммутативные кольца.	23
12.3	Обратимые элементы, делители нуля и нильпотенты	23
12.4	Примеры колец	23
12.5	Поля	23
12.6	Критерий того, что кольцо вычетов является полем	23
Вопро	c 13	24
13.1	Идеалы колец	24
	Факторкольцо кольца по идеалу.	24
13.3	Гомоморфизмы и изоморфизмы колец	24
13.4	Ядро и образ гомоморфизма колец	24
13.5	Теорема о гомоморфизме для колец	24
Вопрос	c 14	25
	Кольцо многочленов от одной переменной над полем	25
	14.1.1 Деление с остатком	25
	14.1.2 Наибольший общий делитель двух многочленов	25
	14.1.3 Теорема о существовании НОД'а и о его линейном выражении	25
Вопрос	c 15	26
_	Теорема о том, что кольцо многочленов от одной переменной над полем является кольцом	
	главных идеалов.	26
Вопрос	c 16	27
16.1	Неприводимые многочлены	27
16.2	Факториальность кольца многочленов от одной переменной над полем	27
Вопро	c 17	28
17.1	Критерий того, что факторкольцо $K[x]/(h)$ является полем	28
17.2	Базис и размерность факторкольца $K[x]/(h)$ как векторного пространства над полем K .	28
Вопрос	c 18	29
18.1	Лексикографический порядок на множестве одночленов от нескольких переменных	29
18.2	Лемма о конечности убывающих цепочек одночленов	29
Вопрос	c 19	30
	Старший член многочлена от нескольких переменных.	30
	Элементарная редукция многочлена относительно другого многочлена	30
	Лемма о конечности цепочек элементарных редукций относительно системы многочленов.	
Вопро	c 2 0	31
	Остаток многочлена относительно заданной системы многочленов	31
	Система Грёбнера	31
	Характеризация систем Грёбнера в терминах цепочек элементарных редукций	31

Вопрос	$\simeq 21$	32
21.1	S-многочлены	32
21.2	Критерий Бухбергера	32
Вопрос	22	33
22.1	Базис Грёбнера идеала в кольце многочленов от нескольких переменных	33
	22.1.1 Теорема о трех эквивалентных условиях	33
22.2	Решение задачи вхождения многочлена в идеал	33
Вопрос	23	34
23.1	Лемма о конечности цепочек одночленов, в которых каждый следующий одночлен не	
	делится ни на один из предыдущих.	34
23.2	Алгоритм Бухбергера построения базиса Грёбнера идеала	34
Вопрос	: 24	35
24.1	Теорема Гильберта о базисе идеала.	35
Вопрос	e 25	36
25.1	Редуцируемость к нулю S -многочлена двух многочленов с взаимно простыми старшими	
	членами.	36
Вопрос	: 26	37
26.1	Характеристика поля	37
26.2	Расширение полей	37
26.3	Конечное расширение и его степень.	37
26.4	Степень композиции двух расширений	37
Вопрос	27	38
27.1	Присоединение корня неприводимого многочлена	38
27.2	Существование конечного расширения исходного поля, в котором заданный многочлен	
	(а) имеет корень; (б) разлагается на линейные множители	38
Вопрос		39
	Алгебраические и трансцендентные элементы	39
28.2	Минимальный многочлен алгебраического элемента и его свойства	39
Вопрос	29	40
29.1	Подполе в расширении полей, порожденное алгебраическим элементом	40
Вопрос	e 30	41
30.1	Порядок конечного поля	41
30.2	Автоморфизм Фробениуса	41
Вопрос	2 31	42
31.1	Теорема существования для конечных полей	42
Вопрос	2 32	43
32.1	Цикличность мультипликативной группы конечного поля	43
32.2	Неприводимые многочлены над \mathbb{Z}_n	43

1.1 Бинарные операции.

Пусть M — некоторое множество.

Определение:

Бинарная операция на множестве M это отображение $\circ: M \times M \to M, (a,b) \mapsto a \circ b.$

Если на M задана бинарная операция, то пару (M, \circ) называют *множеством с бинарной операцией*. Классические примеры с бинарной операцией, знакомые со школы, — это операция сложение(+) и умножение(\times) на множестве $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$.

1.2 Полугруппы, моноиды и группы.

Пусть (M, \circ) — множество с бинарной операцией.

Определение:

- I. (M, \circ) называется *группой*, если выполнены следующие три условия(аксиомы):
 - (1) $(a \circ b) \circ c = a \circ (b \circ c) \quad \forall a, b, c \in M(accoulumus hocmb);$
 - (2) существует нейтральный элемент, то есть такой $e \in M$, что $e \circ a = a \circ e = a$, $\forall a \in M$;
 - (3) для всякого $a \in M$ существует обратный элемент, то есть такой $b \in M$, что $a \circ b = b \circ a = e$.
- II. Если требуется выполнение только условия (1), то (M, \circ) называется полугруппой.
- III. Если требуется выполнение только условий (1) и (2), то (M, \circ) называется моноидом.

Примеры для II и III:

 $(\mathbb{N},+)$ — это полугруппа, но не моноид.

 $(\mathbb{N} \cup \{0\}, +)$ — моноид, но не группа.

Замечание:

- 1. Ассоциативность довольно редкое свойство. Примеры неассоциативных бинарных операций: $M=\mathbb{Z}, a\circ b:=a-b$ или $M=\mathbb{N}, a\circ b:=a^b$.
- 2. Нейтральный элемент в моноиде (и группе) единствен: если $e_1, e_2 \in M$ два нейтральных элемента, то $e_1 = e_1 \circ e_2 = e_2$.
- 3. Обратный элемент в группе единствен: если b_1, b_2 два обратных к a элемента, то

$$b_1 = b_1 \circ e = b_1 \circ (a \circ b_2) = (b_1 \circ a) \circ b_2 = e \circ b_2 = b_2.$$

Ввиду единственности обратный к a элемент обозначается символом a^{-1} .

4. $(a \circ b)^{-1} = b^{-1} \circ a^{-1}$:

$$(a \circ b) \circ (b^{-1} \circ a^{-1}) = a \circ (b \circ b^{-1}) \circ a^{-1} = a \circ e \circ a^{-1} = a \circ a^{-1} = e.$$

Соглашение: вместо (G, \circ) будем писать G, вместо $a \circ b$ будем писать ab и операцию \circ будем называть умножением.

1.3 Коммутативные группы.

Определение:

Группа G называется коммутативной (или абелевой), если ab = ba для всех $a, b \in G$.

При работе с абстрактными группами для обозначения групповой операции, нейтрального и обратного элементов принято использовать *мультипликативную запись*: ab, e, a^{-1} . Однако в теории абелевых групп употребляется addumuehaa запись: a+b, 0, -a (при этом сама операция называется сложением).

1.4 Примеры групп.

- 1) Числовые аддитивные группы: $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$, $(\mathbb{C},+)$, $(\mathbb{Z}_n,+)$.
- 2) Числовые мультипликативные группы: $(\mathbb{Q}\setminus\{0\},\times)$, $(\mathbb{R}\setminus\{0\},\times)$, $(\mathbb{C}\setminus\{0\},\times)$, $(\mathbb{Z}_p\setminus\{\overline{0}\},\times)$, p—простое.
- 3) Группы матриц (с операцией умножения):

$$\mathrm{GL}_n(\mathbb{R}) = \{ A \in \mathrm{M}_n(\mathbb{R}) \mid \det A \neq 0 \}$$
 — полная линейная группа;

$$\mathrm{SL}_n(\mathbb{R})=\{A\in\mathrm{M}_n(\mathbb{R})\mid \det A=1\}$$
 — специальная линейная группа.

4) Группы перестановок (с операцией композиции):

симметрическая группа S_n — все перестановки длины $n, |S_n| = n!$.

знакопеременная группа A_n — все четные перестановки длины $n, |A_n| = n!/2.$

1.5 Порядок группы.

Определение:

 Π орядком группы G называется число элементов в ней.

Группа называется конечной, если ее порядок конечен, и бесконечной иначе.

Обозначение: |G|.

1.6 Подгруппы.

Определение:

Подмножество H группы G называется nodepynnoй, если

- 1) $e \in H$;
- $2) \ a,b \in H \Longrightarrow ab \in H;$
- 3) $a \in H \Longrightarrow a^{-1} \in H$;

В каждой группе есть несобственные подгруппы $H = \{e\}$ и H = G.

Остальные подгруппы называются собственными.

1.7 Описание всех подгрупп в группе $(\mathbb{Z}, +)$.

Предложение:

Всякая подгруппа в $(\mathbb{Z},+)$ имеет вид $k\mathbb{Z}$ для некоторого $k\geqslant 0$.

Доказательство:

Пусть $H\subseteq \mathbb{Z}$ — некоторая подгруппа. Если $H=\{0\}$, то $H=0\cdot \mathbb{Z}$. Далее считаем $H\neq \{0\}$. По определению подгруппы для всякого $x\in H$ имеем $-x\in H$, поэтому множество $H\cap \mathbb{N}$ не пусто, и мы положим $k=\min(H\cap \mathbb{N})$. Тогда опять же по определению подгруппы получаем $k\mathbb{Z}\subseteq H$. Пусть теперь $a\in H$ — произвольный элемент. Поделим его на k с остатком: $a=qk+r,\ 0\leqslant r< k$. Снова воспользовавшись определением подгруппы, мы получаем $r=a-qk\in H$, откуда в силу минимальности k вытекает r=0 и $a\in k\mathbb{Z}$. Значит, $k\mathbb{Z}=H$.

2.1 Подгруппы.

Пусть G — группа, $g \in G$ и $n \in \mathbb{Z}$. Определим n-ю степень g^n следующим образом:

$$g^n := egin{cases} \underbrace{g \cdot \ldots \cdot g}, & ext{eсли } n > 0; \ e, & ext{eсли } n = 0; \ \underbrace{g^{-1} \cdot \ldots \cdot g^{-1}}, & ext{eсли } n < 0. \end{cases}$$

Замечание:

Если G — абелева группа с операцией сложения, то в аддитивной записи определенная выше «n-я степень» элемента $g \in G$ будет не чем иным, как ng (то есть кратным элемента g).

Свойства:

1) $g^n g^m = g^{n+m}$:

$$g^n g^m = \underbrace{g \cdot \ldots \cdot g}_n \cdot \underbrace{g \cdot \ldots \cdot g}_m = \underbrace{g \cdot \ldots \cdot g}_{m+n} = g^{n+m};$$

2) $(g^n)^{-1} = g^{-n}$:

$$g^n \cdot g^{-n} = g^{n-n} = g^0 = e;$$

3) $(q^m)^n = q^{mn}$:

$$(g^m)^n = (\underbrace{g \cdot \ldots \cdot g}_m)^n = \underbrace{g \cdot \ldots \cdot g}_m \cdot \ldots \cdot \underbrace{g \cdot \ldots \cdot g}_n = g^{mn}.$$

Для каждого $g \in G$ положим $\langle g \rangle := \{ g^n \mid n \in \mathbb{Z} \}$. В силу упомянутых выше свойств $\langle g \rangle$ является подгруппой в G.

2.2 Циклические подгруппы.

Определение:

Подгруппа $\langle g \rangle$ называется *циклической подгруппой* в G, порождаемой элементом g. При этом g называется образующим или порождающим элементом для $\langle g \rangle$.

Пример:

 $2\mathbb{Z} \in \mathbb{Z}$ — циклическая подгруппа, $2\mathbb{Z} = \langle 2 \rangle = \langle -2 \rangle$.

Замечание:

Циклическая подгруппа $\langle g \rangle$ всегда коммутативна.

2.3 Циклические группы.

Определение:

Группа G называется $uu\kappa nuveckoŭ$, если существует такое $g \in G$, что $G = \langle g \rangle$.

Пример:

Группы $(\mathbb{Z}, +), (\mathbb{Z}_n, +)$ при $n \geqslant 1$ являются циклическими.

Замечание:

Если G — циклическая группа, то G коммутативна и не более чем счётна.

2.4 Порядок элемента.

Пусть G — группа и $g \in G$. Рассмотрим множество $M(g) = \{n \in \mathbb{N} \mid g^n = e\}$.

Определение:

 $\Pi op s \partial o \kappa$ элемента g — это величина

$$\operatorname{ord}(g) := egin{cases} \min M(g), & \operatorname{если} M(g)
eq \varnothing; \\ \infty, & \operatorname{если} M(g) = \varnothing. \end{cases}$$

Замечание:

 $\operatorname{ord}(g) = 1 \iff g = e.$

2.5 Связь между порядком элемента и порядком порождаемой им циклической подгруппы.

Предложение:

 $\operatorname{ord}(g) = |\langle g \rangle|.$

Доказательство:

Пусть $k, s \in \mathbb{Z}$, такие что $g^k = g^s$. Тогда домножая обе части равенства на g^{-s} , получаем, что

$$g^k = g^s \Longleftrightarrow g^{k-s} = e. \tag{*}$$

Далее рассмотрим два случая.

- 1) Если $\operatorname{ord}(g) = \infty$, то нет таких двух различных чисел $k, s \in \mathbb{Z}$, что $g^{k-s} = e$, а значит, в силу (*) все элементы в подгруппе различны $\implies |\langle g \rangle| = \infty$.
- 2) Если $\operatorname{ord}(g) = m < \infty$, то элементы $e = g^0, g = g^1, g^2, \dots, g^{m-1}$ попарно различны в силу (*). Покажем, что эти элементы исчерпывают всю группу $\langle g \rangle$. Возьмем произвольное $n \in \mathbb{Z}$ и разделим его на m с остатком: $n = qm + r, \ 0 \leqslant r < m$. Тогда $g^n = g^{qm} \cdot g^r = (g^m)^q \cdot g^r = e^q \cdot g^r = e \cdot g^r = g^r$. Получили, что всякий элемент из $\langle g \rangle$ принадлежит $\{e, g, g^2, \dots, g^{m-1}\} \implies \langle g \rangle = \{e, g, g^2, \dots, g^{m-1}\}$, значит, $|\langle g \rangle| = m$.

3.1 Смежные классы.

Пусть теперь G — группа, $H \subseteq G$ — подгруппа. Определим на G отношение L_H следующим образом: $(a,b) \in L_H \iff a^{-1}b \in H$.

Предложение:

 L_H — отношение эквивалентности.

Доказательство:

Проверим все необходимые свойства, они вытекают аккурат из определения подгруппы.

- 1. Рефлексивность: $a^{-1}a = e \in H$.
- 2. Симметричность: $a^{-1}b \in H \Longrightarrow b^{-1}a = (a^{-1}b)^{-1} \in H$.
- 3. Транзитивность: $a^{-1}b \in H, b^{-1}c \in H \Longrightarrow a^{-1}c = (a^{-1}b)(b^{-1}c) \in H.$

Теперь заметим, что $a^{-1}b \in H \iff b \in aH$, поэтому класс эквивалентности элемента $a \in G$ для отношения L_H совпадает с множеством aH.

Определение:

Множество $aH := \{ah \mid h \in H\}$ называется левым смежным классом элемента $a \in G$ по подгруппе H.

Из предложения и общих фактов об отношениях эквивалентности вытекает, что группа G разбивается в объединение попарно непересекающихся левых смежных классов по подгруппе H.

Следующая лемма показывает, что в случае конечной подгруппы H все левые смежные классы содержат одинаковое число элементов, равное |H|.

Лемма:

Если $|H| < \infty$, то |aH| = |H| для всех $a \in G$.

Доказательство:

Из определения следует, что $|aH| \leq |H|$. Если $ah_1 = ah_2$ для каких-то $h_1, h_2 \in H$, то, умножая на a^{-1} слева, получаем $h_1 = h_2$, откуда |aH| = |H|.

3.2 Индекс подгруппы.

Определение:

 $\mathit{Индекc}$ подгруппы H в группе G — это число левых смежных классов G по H.

Обозначение: [G:H].

Отметим, что индекс подгруппы — это либо натуральное число, либо бесконечность.

3.3 Теорема Лагранжа.

Теорема:

Пусть G — конечная группа, $H \subseteq G$ — подгруппа, тогда $|G| = |H| \cdot [G:H]$.

Доказательство:

Следует из предложения и леммы: группа G разбивается в объединение попарно непересекающихся левых смежных классов в количестве [G:H] штук, а каждый класс содержит ровно |H| элементов. \square

4.1 Пять следствий из теоремы Лагранжа.
Следствие 1. Пусть G — конечная группа и $H\subseteq G$ — подгруппа. Тогда $ H $ делит $ G $.
Следствие 2. Пусть G — конечная группа и $g \in G$. Тогда $\operatorname{ord}(g)$ делит $ G $.
Доказательство:
Это вытекает из следствия 1 и предложения 2.5.
Следствие 3. Пусть G — конечная группа и $g \in G$. Тогда $g^{ G } = e$.
Доказательство:
Согласно следствию 2, мы имеем $ G = \operatorname{ord}(g) \cdot s$, откуда $g^{ G } = \left(g^{\operatorname{ord}(g)}\right)^s = e^s = e$.
Следствие 4 (Малая теорема Ферма). Пусть \bar{a} — ненулевой вычет по простому модулю p . Тогда
$\bar{a}^{p-1} = \bar{1}.$
Доказательство:
Вытекает из следствия 3, примененного к группе $(\mathbb{Z}_p \setminus \{\bar{0}\}, \times)$.
Следствие 5. Пусть G — группа и $ G $ — простое число. Тогда G — циклическая группа, порождаемая любым своим неединичным элементном.
Доказательство:
Пусть $g \in G$ — произвольный неединичный элемент. Тогда циклическая подгруппа $\langle g \rangle$ содержит более одного элемента и $ \langle g \rangle $ делит $ G $ по следствию 1. Так как $ G $ — простое число, то последнее

возможно только при $|\langle g \rangle| = |G|,$ откуда $G = \langle g \rangle.$

По аналогии с отношением L_H на группе G можно определить другое отношение R_H следующим образом: $(a,b) \in R_H \leftrightarrow ba^{-1} \in H$. Совершенно аналогично показывается, что R_H — тоже отношение эквивалентности на G и что классом элемента a будет множество $Ha := \{ha \mid h \in H\}$, называется правым смежным классом элемента a.

Для нейтрального элемента $e \in G$ имеем eH = H = He, так что левый и правые смежные классы для e равны между собой и совпадают с H. Подчеркнем однако, что в общем случае для одного и того же элемента $a \in G$ смежные классы aH и Ha вполне могут оказаться разными множествами даже несмотря на то, что сам элемент a принадлежит каждому из них.

Таким образом, мы выяснили, что, с одной стороны, группа G разбивается в объединение попарно непересекающихся левых смежных классов, а с другой стороны, G разбивается в объединение попарно непересекающихся левых смежных классов. Вообще говоря, это **два разных разбиения**. А вот ситуация, когда эти два разбиения совпадают, заметно выделяется среди остальных наличием замечательных свойств, которые мы сейчас и обсудим.

5.1 Нормальные подгруппы.

Определение:

Подгруппа $H \subseteq G$ называется нормальной, если gH = Hg для всех $g \in G$.

Обозначение: $H \triangleleft G$.

Примеры:

- 1) G абелева \Longrightarrow всякая подгруппа в G автоматически нормальна.
- 2) $G = S_3, H = \{id, (12)\} \Longrightarrow H$ не является нормальной подгруппой в G.
- 3) $H = \{e\}$ или H = G (то есть H несобственная подгруппа) $\Longrightarrow H \triangleleft G$.

Следующее предложение дает несколько эквивалентных условий, определяющих нормальную подгруппу.

Предложение:

Пусть H — подгруппа группы G. Тогда следующие условия эквивалентны:

- (1) $H \triangleleft G$;
- $(2) gHg^{-1} = H \ \forall g \in G;$
- (3) $gHg^{-1} \subseteq H \ \forall g \in G$.

Доказательство:

- (1)⇒(2) Если gH = Hg, то, умножая обе части на g^{-1} справа, получаем $gHg^{-1} = H$.
- $(2) \Rightarrow (3)$ Тривиально.
- $(3)\Rightarrow (1)$ Пусть $gHg^{-1}\subseteq H$. Умножая обе части на g^{-1} справа, получаем $gH\subseteq Hg$. Поскольку условие (3) верно для любого $g\in G$, то оно останется верным после замены в нем g на g^{-1} , так что $g^{-1}Hg\subseteq H$. Умножая обе части последнего включения на g слева, получаем $Hg\subseteq gH$. Значит, gH=Hg.

5.2 Факторгруппы.

Пусть H — нормальная подгруппа группы G. Согласно определению, в этой ситуации левые и правые смежные классы G по H — это одно и то же, и тогда мы будем называть их просто смежными классами.

Обозначим через G/H множество всех смежных классов G по H. Оказывается, что на G/H можно ввести структуру группы.

Сначала введем на G/H бинарную операцию, положив $(g_1H)\cdot (g_2H):=(g_1g_2)H$ для любых $g_1,g_2\in G$.

Как это понимать? Мы хотим перемножить два смежных класса и получить в результате третий смежный класс. Для этого мы берем какой-нибудь элемент g_1 из первого смежного класса, элемент g_2 из второго смежного класса и объявляем, что результатом перемножения наших двух смежных классов будет смежный класс элемента g_1g_2 . Однако тут возникает потенциальная проблема: а вдруг при другом выборе элементов g_1 и g_2 из тех же смежных классов смежный класс элемента g_1g_2 окажется другим? Оказывается, в нашей ситуации такое невозможно, что доказывается так называемой проверкой корректности.

Корректность: пусть элементы $g_1', g_2' \in G$ таковы, что $g_1'H = g_1H$ и $g_2'H = g_2H$ (то есть g_1' и $g_2' -$ другие представители наших исходных смежных классов g_1H и g_2H соответственно). Тогда $g_1' = g_1h_1$ и $g_2' = g_2h_2$ для некоторых $h_1, h_2 \in H$. Следовательно,

$$(g_1'H) \cdot (g_2'H) = (g_1'g_2')H = (g_1h_1g_2h_2)H = (g_1g_2\underbrace{g_2^{-1}h_1g_2}_{\in H}h_2)H \subseteq (g_1g_2)H \Longrightarrow (g_1'g_2')H = (g_1g_2)H$$

Итак, на множестве G/H корректно определена бинарная операция. Теперь легко проверить, что $(G/H,\cdot)$ является группой:

• Ассоциативность:

$$((aH)(bH))(cH) = ((ab)H)(cH) = ((ab)c)H = (a(bc))H = (aH)((bc)H) = (aH)((bH)(cH));$$

• Нейтральный элемент — это eH:

$$(eH)(aH) = (ea)H = aH = (ae)H = (aH)(eH);$$

• Обратный к qH элемент — это $q^{-1}H$:

$$(g^{-1}H)(gH) = (g^{-1}g)H = H = (gg^{-1})H = (gH)(g^{-1}H).$$

Определение:

Группа $(G/H,\cdot)$ называется факторгруппой группы G по нормальной подгруппе H.

Пример:

Пусть $G = (\mathbb{Z}, +)$ и $H = n\mathbb{Z}$ для некоторого $n \in \mathbb{N}$. Тогда $G/H = (\mathbb{Z}_n, +)$ — знакомая нам группа вычетов.

Подчеркнем, что группу $(\mathbb{Z}_n, +)$ довольно затруднительно определить в обход конструкции факторгруппы.

Пусть G, F — две группы.

6.1 Гомоморфизмы групп.

Определение:

Отображение $\varphi:G\to F$ называется гомоморфизмом, если $\varphi(ab)=\varphi(a)\cdot\varphi(b)$ для любых $a,b\in G.$

6.2 Простейшие свойства гомоморфизмов.

Пусть $\varphi: G \to F$ — гомоморфизм групп, тогда выполнены следующие простейшие свойства:

1) Если $e_G \in G$ и $e_F \in F$ — нейтральные элементы, то $\varphi(e_G) = e_F$. Иными словами, при гомоморфизме групп нейтральный элемент переходит в нейтральный. Действительно, имеем

$$\varphi(e_G) = \varphi(e_G \cdot e_G) = \varphi(e_G) \cdot \varphi(e_G).$$

Умножая на $\varphi(e_G)^{-1}$ (слева или справа — без разницы), получаем $e_F = \varphi(e_G)$.

2) $\varphi(a^{-1}) = (\varphi(a))^{-1}$ для всякого $a \in G$. Иными словами, при гомоморфизме обратный элемент переходит в обратный. Действительно, имеем $\varphi(a^{-1}) \cdot \varphi(a) = \varphi(a^{-1} \cdot a) = \varphi(e_G) = e_F$ и аналогично $\varphi(a) \cdot \varphi(a^{-1}) = e_F$, откуда и следует требуемое.

6.3 Изоморфизмы групп.

Определение:

Гомоморфизм $\varphi:G\to F$ называется изоморфизмом, если φ — биекция.

Замечание:

Если $\varphi:G\to F$ — изоморфизм, то обратное отображение $\varphi^{-1}:F\to G$ — тоже изоморфизм. Обратное отображение сохраняет биективность, остается проверить на гомоморфизм: пусть $\varphi(a)=a'$ и $\varphi(b)=b'$, тогда получаем

$$\varphi^{-1}(a'b') = \varphi^{-1}(\varphi(a) \cdot \varphi(b)) = \underbrace{\varphi^{-1}(\varphi(ab))}_{Id}(ab) = ab = \varphi^{-1}(a') \cdot \varphi^{-1}(b')$$

получили, что φ^{-1} — это биекция и гомоморфизм \Longrightarrow изоморфизм.

Определение:

Группы G, F называются изоморфными, если существует изоморфизм $\varphi: G \to F$.

Обозначение: $G \simeq F$, $G \cong F$, $G \xrightarrow{\sim} F$.

Можно показать, что отношение «G изоморфна F» на множестве всех групп является отношением эквивалентности, и тогда все группы разбиваются на классы изоморфизма таким образом, что внутри одного класса все группы изоморфны между собой. Изоморфные группы с алгебраической точки зрения рассматриваются как «одинаковые», и в этом основная ценность самого понятия изоморфности.

Пример:

Отображение взятия экспоненты $\varphi: \mathbb{R} \to \mathbb{R}_{>0}, a \mapsto e^a$, является изоморфизмом между группами $(\mathbb{R},+)$ и $(\mathbb{R}_{>0},\times)$. Обратный изоморфизм дается отображением логарифмирования $a\mapsto \ln a$.

6.4 Ядро и образ гомоморфизма групп, их свойства.

Пусть $\varphi:G o F$ — гомоморфизм групп.

Определение:

 \mathcal{A} дро гомоморфизм φ — это множество $\operatorname{Ker} \varphi := \{g \in G \mid \varphi(g) = e_F\} \subseteq G.$

Образ гомоморфизма φ — это множество $\operatorname{Im} \varphi := \varphi(G) \subseteq F$.

Свойства:

- 1. Кег φ подгруппа в G, Іт φ подгруппа F. Проверка:
 - Принадлежность нейтрального элемента: из простейших свойств гомоморфизма получаем, что $\varphi(e_G) = e_F \Longrightarrow e_G \in \operatorname{Ker} \varphi$ и $e_F \in \operatorname{Im} \varphi$.
 - Замкнутость множества относительно бинарной операции: Ядро: пусть $a,b \in \operatorname{Ker} \varphi$, тогда $\varphi(ab) = \varphi(a) \cdot \varphi(b) = e_F \cdot e_F = e_F \Longrightarrow ab \in \operatorname{Ker} \varphi$. Образ: пусть $a',b' \in \operatorname{Im} \varphi$, где $\varphi(a) = a'$ и $\varphi(b) = b'$, тогда $\varphi(ab) = \varphi(a) \cdot \varphi(b) = a'b' \Longrightarrow a'b' \in \operatorname{Im} \varphi$.
 - Принадлежность обратного элемента: Ядро: пусть $a \in \operatorname{Ker} \varphi$, тогда $e_F = \varphi(e_G) = \varphi(a \cdot a^{-1}) = \varphi(a) \cdot \varphi(a^{-1}) = e_F \cdot \varphi(a^{-1}) = \varphi(a^{-1}) \Longrightarrow a^{-1} \in \operatorname{Ker} \varphi$. Образ: пусть $y \in \operatorname{Im} \varphi$, где $\varphi(x) = y$, тогда $y^{-1} = (\varphi(x))^{-1} = \varphi(x^{-1}) \Longrightarrow y^{-1} \in \operatorname{Im} \varphi$, в последнем переходе воспользовались простейшим свойством гомоморфизма.
- 2. φ инъективен тогда и только тогда, когда ${\rm Ker}\, \varphi = \{e\}.$

Доказательство:

От противного: предположим, что f(a) = f(b), где $a \neq b$, тогда домножим справа на $f(b^{-1})$ и получим $f(a) \cdot f(b^{-1}) = e_F \iff f(ab^{-1}) = e_F \implies ab^{-1} = e_G \implies a = b$.

3. φ — изоморфизм тогда и только тогда, когда $\operatorname{Ker} \varphi = \{e\}$ и $\operatorname{Im} \varphi = F$.

Локазательство:

Из условия известно, что φ гомоморфизм, получаем, что в данном случае изоморфизм равносилен биективности.

Известно, что отображение называется биекцией, когда оно одновременно инъективно и суръективно. Условие ${\rm Im}\,\varphi=F$ это прямое следствие из определения суръективности, а эквивалентность условия ${\rm Ker}\,\varphi=\{e\}$ и инъективности следует из предыдущего свойства.

Лемма:

 $\operatorname{Ker} \varphi$ — нормальная подгруппа в G.

Доказательство:

Покажем, что $g(\operatorname{Ker}\varphi)g^{-1}\subseteq \operatorname{Ker}\varphi$ для всякого $g\in G$. Действительно, для каждого $x\in \operatorname{Ker}\varphi$ имеем $\varphi(gxg^{-1})=\varphi(g)\cdot \varphi(x)\cdot \varphi(g^{-1})=\varphi(g)\cdot e_F\cdot \varphi(g^{-1})=\varphi(g)\cdot (\varphi(g))^{-1}=e_F,$ откуда $gxg^{-1}\in \operatorname{Ker}\varphi,$ что и требовалось.

Из леммы следует, что определена факторгруппа $G/\operatorname{Ker}\varphi$.

7.1 Теорема о гомоморфизме для групп.

Теорема:

 $G/\operatorname{Ker}\varphi\simeq\operatorname{Im}\varphi.$

Доказательство:

Определим отображение $\psi: G/\operatorname{Ker} \varphi \to \operatorname{Im} \varphi$, положив $\psi(g\operatorname{Ker} \varphi) := \varphi(g)$ для всех $g \in G$.

1) Корректность: если $g \operatorname{Ker} \varphi = g' \operatorname{Ker} \varphi$, то g' = gh для некоторого $h \in \operatorname{Ker} \varphi$, и тогда

$$\psi(g'\operatorname{Ker}\varphi) = \varphi(g') = \varphi(gh) = \varphi(g) \cdot \varphi(h) = \varphi(g) \cdot e = \varphi(g) = \psi(g\operatorname{Ker}\varphi).$$

2) Покажем, что φ — гомоморфизм. Имеем

$$\psi((g_1 \operatorname{Ker} \varphi)(g_2 \operatorname{Ker} \varphi)) = \psi((g_1 g_2) \operatorname{Ker} \varphi) = \varphi(g_1 g_2) = \varphi(g_1) \cdot \varphi(g_2) = \psi(g_1 \operatorname{Ker} \varphi) \cdot \psi(g_2 \operatorname{Ker} \varphi).$$

- 3) Отображение ψ сюръективно по определению.
- 4) Проверим, что ψ инъективно. Пусть $\psi(g_1 \operatorname{Ker} \varphi) = \psi(g_2 \operatorname{Ker} \varphi)$ для некоторых $g_1, g_2 \in G$, тогда

$$\varphi(g_1) = \varphi(g_2) \Longrightarrow e = \varphi(g_1)^{-1} \varphi(g_2) = \varphi(g_1^{-1} g_2) \Longrightarrow g_1^{-1} g_2 \in \operatorname{Ker} \varphi \Longrightarrow g_1 \operatorname{Ker} \varphi = g_2 \operatorname{Ker} \varphi.$$

Таким образом, мы показали, что ψ является изоморфизмом.

Примеры:

1) Пусть $G = (\mathbb{R}, +), H = (\mathbb{Z}, +),$ что представляет собой факторгруппа G/H?

Положим $F = (\mathbb{C} \setminus \{0\}, \times)$ и рассмотрим отображение $\varphi : G \to F, a \mapsto e^{2\pi i a} = \cos(2\pi a) + i\sin(2\pi a)$. Легко видеть, что φ — гомоморфизм. Тогда $\operatorname{Im} \varphi$ есть просто единичная окружность

 $S^1:=\{z\in\mathbb{C}\mid |z|=1\}$ (с операцией умножения, она же сложение аргументов = углов). С другой стороны, легко видеть, что $\ker\varphi=H$, и по теореме о гомоморфизме мы окончательно получаем $G/H\simeq S^1.$

- 2)Для произвольной группы G рассмотрим тождественное отображение $id: G \to G, g \mapsto g$, по очевидным причинам оно является гомоморфизмом группы G в себя. Тогда $\mathrm{Ker}\,id=\{e\}, \mathrm{Im}\,id=G,$ и по теореме о гомоморфизме мы получаем $G/\{e\}\simeq G.$
- 3) Снова возьмем произвольную группу G и рассмотрим отображение $\varphi: G \to \{e\}, g \mapsto e$, оно также является гомоморфизмом. Тогда $\mathrm{Ker}\,id = \{e\}, \mathrm{Im}\,id = G$, и по теореме о гомоморфизме мы получаем $G/\{e\} \simeq G$.

Отметим, что в примерах 2) и 3) мы вычислили факторгруппы произвольной группы по ее обеим несобственным подгруппам.

8.1 Классификация циклических групп.

Предложение:

Пусть G — циклическая группа. Тогда

(a)
$$|G| = \infty \Longrightarrow G \simeq (\mathbb{Z}, +);$$

(6)
$$|G| = n \Longrightarrow G \simeq (\mathbb{Z}_n, +).$$

Доказательство:

Пусть $G=\langle g \rangle$. Рассмотрим отображение $\varphi: \mathbb{Z} \to G, k \mapsto g^k$. Тогда $\varphi(k+l)=g^{k+l}=g^kg^l=\varphi(k)\varphi(l)$, поэтому φ — гомоморфизм. Из определения циклической группы следует, что φ сюръективен, то есть $\operatorname{Im} \varphi=G$. Тогда по теореме о гомоморфизме мы получаем $G\simeq \mathbb{Z}/\operatorname{Ker} \varphi$. Так как $\operatorname{Ker} \varphi$ — подгруппа в \mathbb{Z} , то по предложению 1.7 получаем $\operatorname{Ker} \varphi=m\mathbb{Z}$ для некоторого $m\geqslant 0$.

Если
$$m=0$$
, то $\operatorname{Ker} \varphi=\{0\}$, откуда $G\simeq \mathbb{Z}/\{0\}\simeq \mathbb{Z}.$

Если
$$m > 0$$
, то $G \simeq \mathbb{Z}/m\mathbb{Z} = \mathbb{Z}_m$.

9.1 Прямое произведение групп.

Пусть G_1, \ldots, G_m — группы.

Определение:

Прямое произведение групп G_1, \ldots, G_m — это множество $G_1 \times \ldots \times G_m$ с бинарной операцией $(g_1, \ldots, g_m)(g'_1, \ldots, g'_m) := (g_1 g'_1, \ldots, g_m g'_m).$

Проверим, что $G_1 \times \ldots \times G_m$ — действительно группа:

1. Ассоциативность:

$$((g_1, \dots, g_m)(g'_1, \dots, g'_m))(g''_1, \dots, g''_m) = ((g_1g'_1)g''_1, \dots, (g_mg'_m)g''_m) =$$

$$= (g_1(g'_1g''_1), \dots, g_m(g'_mg''_m)) = (g_1, \dots, g_m)((g'_1, \dots, g'_m)(g''_1, \dots, g''_m));$$

2. Нейтральный элемент — e_{G_1}, \ldots, e_{G_m} :

$$(e_{G_1}, \dots, e_{G_m})(g_1, \dots, g_m) = (e_{G_1}g_1, \dots, e_{G_m}g_m) = (g_1, \dots, g_m) =$$

= $(g_1e_{G_1}, \dots, g_me_{G_m}) = (g_1, \dots, g_m)(e_{G_1}, \dots, e_{G_m});$

3. Обратный к (g_1, \ldots, g_m) элемент — это $(g_1^{-1}, \ldots, g_m^{-1})$:

$$(g_1, \dots, g_m)(g_1^{-1}, \dots, g_m^{-1}) = (g_1g_1^{-1}, \dots, g_mg_m^{-1}) = (e_{G_1}, \dots, e_{G_m}) =$$

= $(g_1^{-1}g_1, \dots, g_m^{-1}g_m) = (g_1^{-1}, \dots, g_m^{-1})(g_1, \dots, g_m)$

Как видно, и тут все необходимые свойства вытекают из того, что G_1, \ldots, G_m — группы.

Пример:

- 1) $\underbrace{\mathbb{R} \times \ldots \times \mathbb{R}}_{} = \mathbb{R}^n$ знакомый нам из курса линейной алгебры объект.
- 2) $\underbrace{\mathbb{Z} \times \ldots \times \mathbb{Z}}_n = \mathbb{Z}^n$ это подгруппа в \mathbb{R}^n , состоящая из всех векторов с целочисленными координаами.

Группа \mathbb{Z}^n называется pememkoŭ ранга n.

Замечание:

- 1) Группа $G_1 \times \ldots \times_m$ абелева тогда и только тогда, когда все группы G_1, \ldots, G_m абелевы.
- 2) Если группы G_1, \ldots, G_m конечны, то $|G_1 \times \ldots \times G_m| = |G_1| \cdot \ldots \cdot |G_m|$.

Обратим внимание, что для каждого $i = 1, \dots, m$ естественный гомоморфизм

$$G_i \to G, g \mapsto (e_{G_1}, \dots, e_{G_{i-1}}, g, e_{G_{i+1}}, \dots, e_{G_m}),$$

является вложением, ввиду чего G_i обычно отождествляется с его образом и рассматривается как подгруппа $\{(e_{G_1},\ldots,e_{G_{i-1}},g,e_{G_{i+1}},\ldots,e_{G_m}))\mid g\in G_i\}$ группы $G_1\times\ldots\times G_m$.

Пусть G — некоторая группа и H_1, \ldots, H_m — ее подгруппы.

Определение:

Говорят, что G разлагается в прямое произведение своих подгрупп H_1, \ldots, H_m , если отображение $H_1 \times \ldots \times H_m \to G$, $(h_1, \ldots, h_m) \mapsto h_1 \cdot \ldots \cdot h_m$, является изоморфизмом.

В этой ситуации обычно допускают вольность в обозначениях и пишут $G = H_1 \times \ldots \times H_m$, хотя формально G и $H_1 \times \ldots \times H_m$ — это разные группы. Как говорят, G и $H_1 \times \ldots \times H_m$ отождествляются по указанному выше изоморфизму между ними.

Возвращаясь к ситуации определения 9.1 и отождествляя каждую группу G_i с подгруппой в $G_1 \times \ldots \times G_m$, как выше, мы теперь можем сказать, что группа $G_1 \times \ldots \times G_m$ является прямым произведением своих подгрупп G_1, \ldots, G_m .

Конструкцию прямого произведения в смысле определения 9.1 иногда называют внешним прямым произведением, а в смысле определения 9.1 — внутренним прямым произведением. Однако ввиду сделанных выше отождествлений на практике зачастую не делается различий между этими двумя понятиями.

Далее мы будем работать только с абелевыми группами и в соответствии с этим будем пользоваться аддитивной записью групповой операции.

9.2 Разложение конечной циклической группы.

Теорема:

Пусть числа $n, m, l \in \mathbb{N}$ такомы, что n = ml и HOД(m,l) = 1. Тогда $\mathbb{Z}_n \simeq \mathbb{Z}_m \times \mathbb{Z}_l$.

Доказательство:

Рассмотрим отображение $\varphi: \mathbb{Z}_n \to \mathbb{Z}_m \times \mathbb{Z}_l, \ \varphi(a \mod n) := (a \mod m, \ a \mod l),$ и покажем, что оно является изоморфизмом.

- 1) Корректность: есть, так как из делимости на n автоматически следует делимость на m и l.
- $2) \varphi$ гомоморфизм:

$$\varphi((a+b) \mod n) = ((a+b) \mod m, (a+b) \mod l) =$$

$$= (a \mod m, a \mod l) + (a \mod m, a \mod l) = \varphi(a \mod n) + \varphi(b \mod n).$$

- 3) Инъективность: если $\varphi(a \mod n) = (0,0),$ то a : m и a : l, откуда a : n в силу НОД(m,l) = 1, откуда $a \mod n = 0.$ Значит, $\operatorname{Ker} \varphi = \{0\}$ и φ инъективно.
- 4) Сюръективность: имеем $|\mathbb{Z}_n| = n = m \cdot l = |\mathbb{Z}_m \times \mathbb{Z}_l|$, и тогда требуемое следует из 3), поскольку всякое инъективное отображение между двумя конечными множествами одной мощности автоматически сюръективно.

Следствие (Разложение конечной циклической группы).

Пусть $n\leqslant 2$ — натуральное число и $n=p_1^{k_1}\cdot\ldots\cdot p_s^{k_s}$ — его разложение на простые множители $(p_i\neq p_j)$ при $i\neq j$). Тогда $\mathbb{Z}_n\simeq\mathbb{Z}_{p_1^{k_1}}\times\ldots\times\mathbb{Z}_{p_s^{k_s}}$.

9.3 Теорема о строении конечных абелевых групп.

Определение:

Конечная абелева группа A называется npuмарной, если $|A| = p^k$, где p — простое и $k \in \mathbb{N}$.

Следующая важная теорема дает классификацию всех конечных абелевых групп с точностью до изоморфизма. Поскольку этот результат нам не понадобится в дальнейшем, мы не будем тратить время на его доказательство.

Теорема:

Пусть A — конечная абелева группа. Тогда $A \simeq \mathbb{Z}_{p_1^{k_1}} \times \ldots \times \mathbb{Z}_{p_t^{k_t}}$, где p_1, \ldots, p_t — простые числа (не обязательно попарно различные!) и $k_1, \ldots, k_t \in \mathbb{N}$. Более того, набор примарных циклических множителей $\mathbb{Z}_{p_1^{k_1}}, \ldots, \mathbb{Z}_{p_t^{k_t}}$ определен однозначно с точностью до перестановки.

Глобальный смысл этой теоремы заключается в том, что конечные абелевы группы устроены очень просто и все они получаются конструкцией прямого произведения из примарных циклических групп (играющих здесь роль «кирпичиков», из которых все строится). Отметим, что частным случаем теоремы случит следствие 5 из теоремы Лагранжа, согласно которому (с учетом классификации циклических групп) вообще любая (не обязательно абелева) конечная группа простого порядка p изоморфна \mathbb{Z}_p .

10.1 Экспонента конечной абелевой группы и критерий цикличности.

Пусть A — конечная абелева группа.

Определение:

Экспонентой группы A называется число

$$\exp A := \min\{m \in \mathbb{N} \mid ma = 0 \text{ для всех } a \in A\}.$$

Замечание:

- 1) Так как $ma=0 \iff m : \operatorname{ord}(a)$ для всех $a \in A$ и $m \in \mathbb{Z}$, то определение экспоненты можно переписать еще в таком виде: $\exp A = \operatorname{HOK}\{\operatorname{ord}(a) \mid a \in A\}$.
- 2) Так как |A| : ord(a) для всех $a \in A$ (следствие 2 из теоремы Лагранжа), то |A| общее кратное множества $\{\operatorname{ord}(a) \mid a \in A\}$, а значит, |A| : exp A. В частности, exp $A \leq |A|$.

В дальнейшем нам понадобится следующий факт (Критерий цикличности), который показывает, когда в последнем неравенстве достигается равенство.

Предложение:

 $\exp A = |A| \iff$ группа A является циклической.

Доказательство:

Положим n = |A| и рассмотрим разложение на простые множители: $n = p_1^{k_1} \cdot \ldots \cdot p_s^{k_s}$, где p_i — простое и $k_i \in \mathbb{N}$ для всех $i = 1, \ldots, s, p_i \neq p_j$ при $i \neq j$.

- (\Leftarrow) Если $A = \langle a \rangle$, то $\operatorname{ord}(a) = n$, откуда в силу неравенства сразу получаем $\exp A = n$.
- (\Rightarrow) Если $\exp A=n$, то для каждого $i=1,\ldots,s$ существует элемент $c_i\in A$, такой что $\operatorname{ord}(c_i)=p_i^{k_i}m_i$, где $m_i\in\mathbb{N}$. Для каждого $i=1,\ldots,s$ положим $a_i=m_ic_i$, тогда $\operatorname{ord}(a_i)=p_i^{k_i}$. Теперь рассмотрим элемент $a=a_1+\ldots+a_s$ и покажем, что $\operatorname{ord}(a)=n$. Пусть ma=0 для некоторого $m\in\mathbb{N}$, то есть $ma_1+\ldots+ma_s=0$. При фиксированном $i\in\{1,\ldots,s\}$ умножим обе части последнего равенства на $n_i:=n/p_i^{k_i}$. Легко видеть, что $mn_ia_j=0$ при всех $i\neq j$, поэтому в левой части выживет только слагаемое mn_ia_i , откуда получаем $mn_ia_1=0$. Следовательно, $mn_i:p_i^{k_i}$, а так как n_i не делится на p_i , то $m:p_i^{k_i}$. В силу произвольности выбора i отсюда вытекает, что m:n. Так как na=0, то мы окончательно получаем $\operatorname{ord}(a)=n$. Значит, $A=\langle a\rangle$ циклическая группа.

Расскажем об одном весьма элементарном, однако очень важном и используемом на практике применении конечных циклических групп к задачам криптографии с открытым ключом. Одним из основных примеров групп, к которым применяются описанные ниже криптосистемы, служит мультипликативная группа вычетов $G = (\mathbb{Z}_p \setminus \{0\}, \times)$ по простому модулю p. Поэтому мы вернемся к мультипликативным обозначениям.

11.1 Задача дискретного логарифмирования.

Пусть G — конечная группа и $g \in G$ — элемент достаточно большого порядка. Для данного элемента $h \in \langle g \rangle$ найти такое $k \in \mathbb{N}$, что $h = g^k$.

11.2 Криптография с открытым ключом.

Метод шифрования информации с открытым ключом основан на предположении о том, что для данных элементов g и h решение задачи дискретного логарифмирования трудоемко и при подходящих входных данных и текущем уровне вычислительных мощностей практически не реализуемо. Напротив, возведение элемента в заданную степень можно произвести достаточно эффективно, использую, например, метод повторного возведения в квадрат.

Следующий метод позволяет двум участникам переписки у всех на глазах добиться того, что у них появляется элемент, известный только им двоим.

11.3 Система Диффи-Хеллмана обмена ключами (1976).

Всем участникам переписки известны конечная группа G и элемент $g \in G$ достаточно большого порядка. Каждый участник A загадывает свое натуральное число a, которое держит в секрете, и сообщает всем значение g^a . После этого каждая пара участников A и B может составить общий для нее ключ: A возводит элемент g^b в степень a, а B возводит g^a в степень b. В результате элемент g^{ab} есть только у A и B, и они могут использовать его в качестве ключа для дальнейшей конфиденциальной переписки.

11.4 Криптосистема Эль-Гамаля (1985).

Сначала обсудим основную идею. обсудим основную идею. Пусть все так же, как в описании системы Диффи-Хеллмана, и участники A и B уже сгенерировали свой секретный ключ g^{ab} . В дальнейшем участнику A понадобится также элемент $(g^{ab})^{-1}$, который, зная g^b и a, можно сразу вычислить как $(g^b)^{|G|-a}$ (вспомним следствие 3 из теоремы Лагранжа). Если теперь участник B хочет конфиденциально передать участнику A элемент $h \in G$ (кодирующий какое-то важное сообщение), то он вычисляет и сообщает всем элемент $y = hg^{ab}$. Теперь участник A может восстановить h, домножая y справа на $(g^{ab})^{-1}$, то есть по формуле $h = y \left(g^b\right)^{|G|-a}$. Заметим, что никто из толпы шпионов, наблюдающих за данной перепиской, не в состоянии определить элемент h по y, так как не знает секретного ключа g^{ab} .

Теперь опишем собственно криптосистему Эль-Гамаля. По существу в ней происходит все то же самое, что описано выше, однако генерация секретного ключа для участников A и B происходит не заранее, а встроена в сам процесс обмена информацией.

Итак, снова всем участникам переписки известны конечная группа G и элемент $g \in G$ достаточно большого порядка. Каждый участник A загадывает свой натуральное число a, которое держит в секрете, и сообщает всем значение g^a . Если участник B хочет передать участнику A элемент $h \in G$, он случайным образом выбирает натуральное b и сообщает всем пару $(x,y)=(g^b,h(g^a)^b)$. По этим данным восстановить элемент h может только A, и делает он это так: $h=yx^{|G|-a}$.

Важная особенность криптосистемы Эль-Гамаля: если участнику B нужно передать много сообщений для A, то для каждого следующего сообщения он может использовать новое случайное значение параметра b, что многократно повышает надежность всей системы.

- 12.1 Кольца.
- 12.2 Коммутативные кольца.
- 12.3 Обратимые элементы, делители нуля и нильпотенты.
- 12.4 Примеры колец.
- 12.5 Поля.
- 12.6 Критерий того, что кольцо вычетов является полем.

- 13.1 Идеалы колец.
- 13.2 Факторкольцо кольца по идеалу.
- 13.3 Гомоморфизмы и изоморфизмы колец.
- 13.4 Ядро и образ гомоморфизма колец.
- 13.5 Теорема о гомоморфизме для колец.

- 14.1 Кольцо многочленов от одной переменной над полем.
- 14.1.1 Деление с остатком.
- 14.1.2 Наибольший общий делитель двух многочленов.
- 14.1.3 Теорема о существовании НОД'а и о его линейном выражении.

- 16.1 Неприводимые многочлены.
- 16.2 Факториальность кольца многочленов от одной переменной над полем.

- 17.1 Критерий того, что факторкольцо K[x]/(h) является полем.
- 17.2 Базис и размерность факторкольца K[x]/(h) как векторного пространства над полем K.

18.2 Лемма о конечности убывающих цепочек одночленов.

- 19.1 Старший член многочлена от нескольких переменных.
- 19.2 Элементарная редукция многочлена относительно другого многочлена.
- 19.3 Лемма о конечности цепочек элементарных редукций относительно системы многочленов.

- 20.1 Остаток многочлена относительно заданной системы многочленов.
- 20.2 Система Грёбнера.
- 20.3 Характеризация систем Грёбнера в терминах цепочек элементарных редукций.

- **21.1** *S*-многочлены.
- 21.2 Критерий Бухбергера.

- 22.1 Базис Грёбнера идеала в кольце многочленов от нескольких переменных.
- 22.1.1 Теорема о трех эквивалентных условиях.
- 22.2 Решение задачи вхождения многочлена в идеал.

- 23.1 Лемма о конечности цепочек одночленов, в которых каждый следующий одночлен не делится ни на один из предыдущих.
- 23.2 Алгоритм Бухбергера построения базиса Грёбнера идеала.

24.1 Теорема Гильберта о базисе идеала.

25.1

старшими членами.

Редуцируемость к нулю S-многочлена двух многочленов с взаимно простыми

- 26.1 Характеристика поля.
- 26.2 Расширение полей.
- 26.3 Конечное расширение и его степень.
- 26.4 Степень композиции двух расширений.

- 27.1 Присоединение корня неприводимого многочлена.
- 27.2 Существование конечного расширения исходного поля, в котором заданный многочлен (а) имеет корень; (б) разлагается на линейные множители.

- 28.1 Алгебраические и трансцендентные элементы.
- 28.2 Минимальный многочлен алгебраического элемента и его свойства.

Подполе в расширении полей, порожденное алгебраическим элементом.

29.1

- 30.1 Порядок конечного поля.
- 30.2 Автоморфизм Фробениуса.

31.1 Теорема существования для конечных полей.

- 32.1 Цикличность мультипликативной группы конечного поля.
- 32.2 Неприводимые многочлены над \mathbb{Z}_p .