```
In [1]: # Step 1: Import necessary libraries
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        from sklearn.cluster import KMeans
        from sklearn.preprocessing import StandardScaler
        from sklearn.metrics import silhouette_score
        # Step 2: Sample Data (you can replace this with your own dataset)
        # For this example, we're assuming three subjects: Data Mining, Web Designin
        # Columns might represent metrics such as "Interest", "Difficulty", "Hours S
        data = {
            'Data Mining': [7, 8, 6, 9, 7, 5, 8, 7],
            'Web Designing': [5, 6, 7, 8, 6, 4, 5, 6],
            'Data Analytics': [8, 9, 7, 8, 9, 6, 7, 8],
            'Interest': [8, 7, 6, 9, 8, 5, 7, 6],
            'Difficulty': [6, 7, 5, 8, 7, 6, 6, 7],
        }
        # Create a DataFrame from the dictionary
        df = pd.DataFrame(data)
        # Step 3: Preprocess the data (optional but important)
        # Normalize the features so that all features contribute equally to the clus
        scaler = StandardScaler()
        scaled_data = scaler.fit_transform(df)
        # Step 4: Apply K-Means Clustering
        # Choose the number of clusters (k)
        k = 3
        kmeans = KMeans(n_clusters=k, random_state=42)
        kmeans.fit(scaled_data)
        # Step 5: Add the cluster labels to the DataFrame
        df['Cluster'] = kmeans.labels_
        # Step 6: Visualize the clusters (assuming 2D data for simplicity)
        # Using PCA to reduce the data to 2D for visualization purposes
        from sklearn.decomposition import PCA
        pca = PCA(n_components=2)
        reduced_data = pca.fit_transform(scaled_data)
        # Plotting the clusters
        plt.figure(figsize=(8, 6))
        plt.scatter(reduced_data[:, 0], reduced_data[:, 1], c=kmeans.labels_, cmap=
        plt.title('K-Means Clustering')
        plt.xlabel('PCA Component 1')
        plt.ylabel('PCA Component 2')
        plt.colorbar(label='Cluster')
        plt.show()
        # Step 7: Evaluate clustering (Optional but recommended)
        silhouette_avg = silhouette_score(scaled_data, kmeans.labels_)
        print(f'Silhouette Score: {silhouette_avg}')
        # Show the resulting clusters in the original DataFrame
        print(df)
```


Silhouette Score: 0.24980500434159675

	Data Mining	Web Designing	Data Analytics	Interest	Difficulty	Clust
er						
0	7	5	8	8	6	
1						
1	8	6	9	7	7	
1						
2	6	7	7	6	5	
0						
3	9	8	8	9	8	
2						
4	7	6	9	8	7	
1						
5	5	4	6	5	6	
0						
6	8	5	7	7	6	
1						
7	7	6	8	6	7	
1						

In []:

```
In [8]: import pandas as pd
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import accuracy_score, classification_report
        from sklearn.datasets import load iris
        # Load the Iris dataset
        data = load iris()
        X = data.data # Features
        y = data.target # Target labels
        # Split the dataset into training and testing sets (80% train, 20% test)
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
        # Create a Random Forest Classifier
        clf = RandomForestClassifier(n_estimators=100, random_state=42)
        # Train the classifier
        clf.fit(X_train, y_train)
        # Make predictions on the test set
        y pred = clf.predict(X test)
        # Calculate accuracy
        accuracy = accuracy_score(y_test, y_pred)
        print(f"Accuracy: {accuracy * 100:.2f}%")
        # Generate a classification report
        print("\nClassification Report:")
        print(classification_report(y_test, y_pred))
```

Accuracy: 100.00%

```
In [1]: import numpy as np
        import pandas as pd
        from sklearn.linear model import LinearRegression
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import mean_squared_error, r2_score
        import matplotlib.pyplot as plt
        # Example dataset
        data = {
            'X': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], # Independent variable
            'Y': [1.1, 2.2, 2.9, 4.0, 5.1, 5.8, 6.9, 8.0, 9.1, 10.0] # Dependent variable
        # Create DataFrame
        df = pd.DataFrame(data)
        # Split the data into features and target
        X = df[['X']] # Features (independent variable)
        Y = df['Y']  # Target (dependent variable)
        # Split the data into training and testing sets
        X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=42)
        # Create and train the model
        model = LinearRegression()
        model.fit(X_train, Y_train)
        # Make predictions on the test set
        Y_pred = model.predict(X_test)
        # Evaluate the model
        mse = mean_squared_error(Y_test, Y_pred)
        r2 = r2_score(Y_test, Y_pred)
        # Print evaluation metrics
        print(f'Mean Squared Error: {mse}')
        print(f'R-squared: {r2}')
        # Visualize the results
        plt.scatter(X_train, Y_train, color='blue', label='Training data')
        plt.scatter(X_test, Y_test, color='green', label='Test data')
        plt.plot(X_test, Y_pred, color='red', label='Regression Line')
        plt.title('Linear Regression')
        plt.xlabel('X')
        plt.ylabel('Y')
        plt.legend()
        plt.show()
```


8. Association Rule Mining using Apriori.

```
--import pandas as pd
import matplotlib.pyplot as plt
import networkx as nx
from mlxtend.frequent_patterns import apriori, association_rules
# Sample dataset (Market Basket Data)
    'Milk': [1, 0, 1, 1, 0, 1],
    'Bread': [1, 1, 1, 0, 1, 1],
    'Butter': [0, 1, 1, 1, 1, 0],
    'Eggs': [1, 0, 0, 1, 0, 1],
    'Cheese': [0, 1, 0, 1, 1, 1],
    'Cereal': [1, 0, 1, 0, 1, 1]
df = pd.DataFrame(data)
# Apply the Apriori algorithm to find frequent itemsets
frequent_itemsets = apriori(df, min_support=0.4, use_colnames=True)
print("Frequent Itemsets:")
print(frequent_itemsets)
# Generate association rules
rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1.0)
print("\nAssociation Rules:")
print(rules)
# Visualization of Association Rules
def draw_graph(rules):
   G = nx.DiGraph()
    for i, row in rules.iterrows():
        for antecedent in row['antecedents']:
            for consequent in row['consequents']:
               G.add_edge(antecedent, consequent, weight=row['lift'])
    plt.figure(figsize=(8, 6))
    pos = nx.spring_layout(G, k=0.5)
   edges = G.edges(data=True)
    nx.draw(G, pos, with_labels=True, node_size=3000, node_color="lightblue", edge_color="gray")
   labels = {(u, v): f"{d['weight']:.2f}" for u, v, d in edges}
   nx.draw_networkx_edge_labels(G, pos, edge_labels=labels)
   plt.title("Association Rules Network")
   plt.show()
# Draw the graph of association rules
draw_graph(rules)
```

0	0.666667	(Milk)
1	0.833333	(Bread)
2	0.666667	(Butter)
3	0.500000	(Eggs)
4	0.666667	(Cheese)
5	0.666667	(Cereal)
6	0.500000	(Milk, Bread)
7	0.500000	(Milk, Eggs)
8	0.500000	(Milk, Cereal)
9	0.500000	(Butter, Bread)
1	0.500000	(Cheese, Bread)
1	0.666667	(Bread, Cereal)
1	2 0.500000	(Butter, Cheese)
1	8 0.500000	(Milk, Bread, Cereal)

Association Rules:

	antecedents	consequents	antecedent support	consequent support	1
0	(Milk)	(Eggs)	0.666667	0.500000	
1	(Eggs)	(Milk)	0.500000	0.666667	
2	(Milk)	(Cereal)	0.666667	0.666667	
3	(Cereal)	(Milk)	0.666667	0.666667	
4	(Bread)	(Cereal)	0.833333	0.666667	
5	(Cereal)	(Bread)	0.666667	0.833333	
6	(Butter)	(Cheese)	0.666667	0.666667	
7	(Cheese)	(Butter)	0.666667	0.666667	
8	(Milk, Bread)	(Cereal)	0.500000	0.666667	
9	(Milk, Cereal)	(Bread)	0.500000	0.833333	
10	(Bread, Cereal)	(Milk)	0.666667	0.666667	
11	(Milk)	(Bread, Cereal)	0.666667	0.666667	
12	(Bread)	(Milk, Cereal)	0.833333	0.500000	
13	(Cereal)	(Milk, Bread)	0.666667	0.500000	

	support	confidence	lift	representativity	leverage	conviction	1
0	0.500000	0.75	1.500	1.0	0.166667	2.000000	
1	0.500000	1.00	1.500	1.0	0.166667	inf	
2	0.500000	0.75	1.125	1.0	0.055556	1.333333	
3	0.500000	0.75	1.125	1.0	0.055556	1.333333	
4	0.666667	0.80	1.200	1.0	0.111111	1.666667	
5	0.666667	1.00	1.200	1.0	0.111111	inf	
6	0.500000	0.75	1.125	1.0	0.055556	1.333333	
7	0.500000	0.75	1.125	1.0	0.055556	1.333333	
8	0.500000	1.00	1.500	1.0	0.166667	inf	
9	0.500000	1.00	1.200	1.0	0.083333	inf	
10	0.500000	0.75	1.125	1.0	0.055556	1.333333	
11	0.500000	0.75	1.125	1.0	0.055556	1.333333	
12	0.500000	0.60	1.200	1.0	0.083333	1.250000	
13	0.500000	0.75	1.500	1.0	0.166667	2.000000	

	zhangs_metric	jaccard	certainty	kulczynski
0	1.000000	0.75	0.50	0.875
1	0.666667	0.75	1.00	0.875
2	0.333333	0.60	0.25	0.750
3	0.333333	0.60	0.25	0.750
4	1.000000	0.80	0.40	0.900
5	0.500000	0.80	1.00	0.900
6	0.333333	0.60	0.25	0.750
7	0.333333	0.60	0.25	0.750
8	0.666667	0.75	1.00	0.875
9	0.333333	0.60	1.00	0.800
10	0.333333	0.60	0.25	0.750
11	0.333333	0.60	0.25	0.750
12	1.000000	0.60	0.20	0.800
13	1.000000	0.75	0.50	0.875

Association Rules Network

Practical 9 visualize the result of the clustering and compare.

```
In [1]: import numpy as no
        import pandas as pd
        from sklearn.cluster import KMeans
        from sklearn.datasets import make_blobs
        import matplotlib.pyplot as plt
        # Step 1: Generate synthetic data
        X, y = make_blobs(n_samples=300, centers=4, random_state=42)
        # Step 2: Apply KMeans clustering
        kmeans = KMeans(n_clusters=4, random_state=42)
        kmeans.fit(X)
        # Step 3: Get the labels and centers
        labels = kmeans.labels
        centers = kmeans.cluster centers
        # Step 4: Visualize the results
        plt.figure(figsize=(8, 6))
        # Plot data points with color based on the labels
        plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', label='Data points')
        # Plot the cluster centers
        plt.scatter(centers[:, 0], centers[:, 1], s=200, c='red', marker='X', label='Cluster Centers')
        plt.title('K-Means Clustering')
        plt.xlabel('Feature 1')
        plt.ylabel('Feature 2')
        plt.legend()
        plt.show()
```


Practical-10: Visualize the correlation matrix using a pseudocolor plot.

```
In [1]: # Step 1: Import necessary libraries
        import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        # Step 2: Load or create your dataset (Example using the Iris dataset)
        from sklearn.datasets import load iris
        import numpy as np
        # Load the Iris dataset as an example
        data = load_iris()
        df = pd.DataFrame(data=data.data, columns=data.feature names)
        # Step 3: Compute the correlation matrix
        corr_matrix = df.corr()
        # Step 4: Plot the correlation matrix using a heatmap
        plt.figure(figsize=(8, 6)) # Set the figure size
        sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f', linewidths=0.5)
        plt.title('Correlation Matrix Heatmap')
        plt.show()
```


Practical-11: Use of degrees distribution of a network.

Practical-12: Graph visualization of a network using maximum, minimum, median, first quartile and third quartile.

```
In [10]: import networkx as nx
         import matplotlib.pyplot as plt
         import numpy as np
        # Step 1: Create a network (Graph)
        G = nx.erdos renyi graph(100, 0.1) # Create a random graph with 100 nodes and edge probability 0.1
         # Step 2: Calculate the degree of each node
        degree_sequence = [d for n, d in G.degree()]
         # Step 3: Calculate the statistical measures
         min degree = np.min(degree sequence)
         max_degree = np.max(degree_sequence)
        median degree = np.median(degree sequence)
        Q1 = np.percentile(degree_sequence, 25)
        Q3 = np.percentile(degree_sequence, 75)
        # Print the statistics
        print(f"Min degree: {min_degree}")
         print(f"Max degree: {max_degree}")
         print(f"Median degree: {median_degree}")
        print(f"1st Quartile (Q1): {Q1}")
        print(f"3rd Quartile (Q3): {Q3}")
         # Step 4: Visualize the network, with node color based on degree
         plt.figure(figsize=(10, 8))
         # Choose node color based on degree
        node_color = [d for n, d in G.degree()]
         # Create a spring layout for the graph
        pos = nx.spring layout(G)
         # Draw the graph with node size proportional to degree
         nx.draw(G, pos, with_labels=True, node_size=[d * 50 for d in degree_sequence],
                 node color=node color, cmap=plt.cm.Blues, edge color='gray', font size=10)
         # Add labels for the statistics on the plot
         plt.title(f"Network Graph\nHin:{min_degree}, Max: {max_degree}, Median: {median_degree}\nQ1: {Q1}, Q3: {Q3}", fontsize=14)
         plt.show()
```

Min degree: 2 Max degree: 19 Median degree: 10.8 Ist Quartile (Q1): 7.8 ard Quartile (Q3): 12.8

Network Graph Min;2,Max: 19, Median: 10.0 Q1: 7.0, Q3: 12.0

