Лабораторные работы по разделу «Криптографические системы с открытым ключом»

Лабораторная работа № 10

Проверка ЭЦП на основе эллиптических кривых

Цель работы: проверить подлинность ЭЦП (r,s) для сообщения с известным значением хэш-свертки e, зная открытый ключ проверки подписи Q. Используется эллиптическая кривая $E_{751}(-1,1)$ и генерирующая точка G=(562,89) порядка n=13.

Ход работы:

- ознакомиться с теорией в учебном пособии «Криптография», а также в учебно-методическом пособии к выполнению лабораторного практикума по дисциплине «Криптография;
 - получить вариант задания у преподавателя;
 - проверить подлинность ЭЦП для сообщения;
 - результаты и промежуточные вычисления оформить в виде отчета.

Пример генерации и проверки подписи

Пусть используется эллиптическая кривая $E_{751}(-1,1)$ — и генерирующая точка $G=(384,\ 475)$ порядка n=13 (13 — наибольший из делителей порядка кривой N=728). Предположим, абонент подписывает личным секретным ключом d=12 сообщение, хеш-свертка которого равна e=12.

Пусть абонент, подписывающий сообщение, выбрал случайное k=3. Тогда он вычисляет $kG=(x,y)=3\cdot (384,\ 475)=(596,\ 318)$ и затем $r=x \mod n=596 \mod 13=11$. Используя расширенный алгоритм Евклида, определяем $z=k-1 \mod n=3^{-1}\mod 13=9$ (так как $3\cdot 9=27\equiv 1\pmod 13$). Наконец, $s=z(e++dr)\mod n=9\cdot (12+12\cdot 11)\mod 13=9$. Таким образом, $(r,\ s)=(11,9)$ — цифровая подпись данного абонента для сообщения.

Пусть теперь необходимо проверить подлинность данной подписи. Открытый ключ абонента, подписавшего сообщение, равен $Q = dG = 12 \cdot (384, 475) = (384, 276)$. Проверка подписи начинается с проверки условий $1 \le r \le n-1$, $1 \le s \le n-1$ — в данном случае они соблюдаются. Затем последовательно вычисляем $v = s^{-1} \mod n = 9^{-1} \mod 13 = 3$, $u_1 = ev \mod 12 \cdot 3 \mod 13 = 10$ и $u_2 = 11 \cdot 3 \mod 13 = 7$. Находим точку $X = u_1 \cdot G + u_2 \cdot Q = 10 \cdot (384, 475) + 7 \cdot (384, 276) = (596, 318)$. Наконец, сравниваем значения r = 11 и $s \mod n = 596 \mod 13 = 11$ — они совпадают, следовательно, подпись действительная.

Варианты заданий

№ варианта	e	Q	(r, s)
1	4	(596, 318)	(11, 4)
2	5	(455, 368)	(3, 7)
3	6	(135, 669)	(5,7)
4	6	(562, 662)	(5,7)
5	2	(135, 669)	(7, 6)
6	8	(135, 82)	(11, 10)
7	4	(384, 475)	(11, 9)
8	7	(596, 433)	(11, 1)
9	7	(455, 368)	(11, 11)
10	7	(384, 475)	(5,5)