

Grundbegriffe der Informatik **Tutorium 33**

Maximilian Staab, maximilian.staab@fsmi.uni-karlsruhe.de Lukas Bach, lukas.bach@student.kit.edu | 26.01.2017

Grundbegriffe Rückblick der Informatik

Maximilian Staab, maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Rückblick

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

• Was ist $\Omega(f)$, $\Theta(f)$, O(f)?

Rückblick

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

- Was ist $\Omega(f)$, $\Theta(f)$, O(f)?
- Wieso messen wir nicht einfach Laufzeit in "Anzahl Operationen"?

Obere und untere Schranke

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.edu

Obere Schranke (Worst-Case Approximation)

Komplexitätstheorie

$$O(f) = \{g | \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : g(n) \le c \cdot f(n)\}$$

Mastertheorer

Obere und untere Schranke

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.edu

Obere Schranke (Worst-Case Approximation)

Komplexitätstheorie

$$O(f) = \{g | \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : g(n) \le c \cdot f(n)\}$$

Mastertheore

Automaten

Untere Schranke (Best-Case Approximation)

$$\Omega(f) = \{g | \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : g(n) \ge c \cdot f(n)\}$$

Obere und untere Schranke

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas bach@student kit edu

Tanas. Sacres o acciro. Ris. Co

Obere Schranke (Worst-Case Approximation)

Komplexitätstheorie

$$O(f) = \{g | \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : g(n) \le c \cdot f(n)\}$$

Mastertheore

Automaten

Untere Schranke (Best-Case Approximation)

$$\Omega(f) = \{g | \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : g(n) \ge c \cdot f(n)\}$$

Average-Case Approximation

$$\Theta(f) = \{g | \exists c, c' \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \geq n_0 : c \cdot f(n) \leq g(n) \leq c' \cdot f(n)\}$$

Obere und untere Schranke

Maximilian Staab

maximilian.staab@fsmi.uni-karlsruhe.de. Lukas Bach.

lukas bach@student kit edu

Obere Schranke (Worst-Case Approximation)

Komplexitätstheorie

$$O(f) = \{g | \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : g(n) \le c \cdot f(n)\}$$

Automaten

Untere Schranke (Best-Case Approximation)

$$\Omega(f) = \{g | \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : g(n) \ge c \cdot f(n)\}$$

Average-Case Approximation

$$\Theta(f) = \{g | \exists c, c' \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : c \cdot f(n) \le g(n) \le c' \cdot f(n)\}$$

Auf welche Weise wird hier approximiert?

Gelten folgende Approximationen?

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Gelten folgende Approximationen?

Maximilian Staab.

maximilian.staab@fsmi.uni-ka1sr4y92 $6+\pi n+2\sqrt{n}\in\Theta(n^2)$? Lukas Bach,

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Gelten folgende Approximationen?

Maximilian Staab.

maximilian staabofsmi uni-ka $_{
m s}$ sr $_{
m s}$ p $_{
m c}$ de $_{
m r}$ r $_{
m s}$ r $_{
m s}$ $_{
m s}$ $_{
m c}$ $_{
m max}$ $_{
m max}$ $_{
m s}$ r $_{
m max}$ $_{
m s}$ $_{
m max}$ $_{
m max}$ $_{
m s}$ $_{
m max}$ $_{
m m$ Lukas Bach,

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Gelten folgende Approximationen?

Maximilian Staab,

maximilian.staab@fsmi.uni-ka $oldsymbol{n}$ sr $oldsymbol{a}$ psr $oldsymbol{a}$ de $+\pi n+2\sqrt{n}\in\Theta(n^2)$? Ja. Lukas Bach.

 ${\tt lukas.bach@student.kit.edu}$

■
$$5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$$
?

Komplexitätstheorie

Mastertheorem

Gelten folgende Approximationen?

Maximilian Staab,

maximilian.staab@fsmi.uni-ka $oldsymbol{n}$ sr $oldsymbol{a}$ psr $oldsymbol{a}$ de $+\pi n+2\sqrt{n}\in\Theta(n^2)$? Ja. Lukas Bach.

 ${\tt lukas.bach@student.kit.edu}$

• $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.

Komplexitätstheorie

Mastertheorem

Gelten folgende Approximationen?

Maximilian Staab,

maximilian.staab@fsmi.uni-ka $oldsymbol{n}$ sr $oldsymbol{a}$ psr $oldsymbol{a}$ de $+\pi n+2\sqrt{n}\in\Theta(n^2)$? Ja. Lukas Bach.

 ${\tt lukas.bach@student.kit.edu}$

• $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.

Komplexitätstheorie

• $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$?

Mastertheoren

Gelten folgende Approximationen?

Maximilian Staab,

maximilian.staab@fsmi.uni-kamsr4m2de $+\pi n+2\sqrt{n}\in\Theta(n^2)$? Ja. Lukas Bach.

lukas.bach@student.kit.edu

• $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.

Komplexitätstheorie

• $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Nein.

Mastertheoren

Gelten folgende Approximationen?

Maximilian Staab,

maximilian.staab@fsmi.uni-kamsr4m2de+ $\pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja. Lukas Bach.

 ${\tt lukas.bach@student.kit.edu}$

• $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.

Komplexitätstheorie

• $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Nein.

Mastertheorem

Es sind immer nur die höchsten Faktoren interessant!

Gelten folgende Approximationen?

Maximilian Staab,

maximilian.staab@fsmi.uni-kamsr4m2de $+\pi n+2\sqrt{n}\in\Theta(n^2)$? Ja. Lukas Bach.

lukas.bach@student.kit.edu

• $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.

Komplexitätstheorie

• $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Nein.

Mastertheoren

Es sind immer nur die höchsten Faktoren interessant!

Automaten

• $4n^4 + 3c^6 \in \Theta(n^4)$?

Gelten folgende Approximationen?

Maximilian Staab,

maximilian.staab@fsmi.uni-kamsr4m2de+ $\pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja. Lukas Bach.

 ${\tt lukas.bach@student.kit.edu}$

• $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.

Komplexitätstheorie

• $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Nein.

Mastertheoren

Es sind immer nur die höchsten Faktoren interessant!

Automaten

• $4n^4 + 3c^6 \in \Theta(n^4)$? Ja

Gelten folgende Approximationen?

Maximilian Staab,

maximilian.staab@fsmi.uni-kamsr4m2 2 de $+\pi n+2\sqrt{n}\in\Theta(n^{2})$? Ja. Lukas Bach,

lukas.bach@student.kit.edu

• $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.

Komplexitätstheorie

• $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Nein.

Mastertheoren

Es sind immer nur die höchsten Faktoren interessant!

Automaten

■ $4n^4 + 3c^6 \in \Theta(n^4)$? Ja, c ist eine Konstante, $3c^6 = (3c^6)n^0$ hat eine kleinere Potenz als n^4 .

Gelten folgende Approximationen?

Maximilian Staab,

maximilian.staab@fsmi.uni-kamsr4m2de $+\pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja. Lukas Bach.

lukas.bach@student.kit.edu

■ $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.

Komplexitätstheorie

• $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Nein.

Mastertheoren

Es sind immer nur die höchsten Faktoren interessant!

- $4n^4 + 3c^6 \in \Theta(n^4)$? Ja, c ist eine Konstante, $3c^6 = (3c^6)n^0$ hat eine kleinere Potenz als n^4 .

Gelten folgende Approximationen?

Maximilian Staab,

maximilian.staab@fsmi.uni-kamsr4m2de $+\pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja. Lukas Bach.

lukas.bach@student.kit.edu

■ $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.

Komplexitätstheorie

• $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Nein.

Mastertheoren

Es sind immer nur die höchsten Faktoren interessant!

- $4n^4 + 3c^6 \in \Theta(n^4)$? Ja, c ist eine Konstante, $3c^6 = (3c^6)n^0$ hat eine kleinere Potenz als n^4 .
- $\log_{4213}(n) \in \Theta(\log_2(n))$ Ja

Gelten folgende Approximationen?

Maximilian Staab,

maximilian.staab@fsmi.uni-kamsr4m2de $+\pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja. Lukas Bach.

lukas.bach@student.kit.edu

■ $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.

Komplexitätstheorie

• $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Nein.

Mastertheorer

Es sind immer nur die höchsten Faktoren interessant!

- $4n^4 + 3c^6 \in \Theta(n^4)$? Ja, c ist eine Konstante, $3c^6 = (3c^6)n^0$ hat eine kleinere Potenz als n^4 .
- $\log_{4213}(n) \in \Theta(\log_2(n))$ Ja, die Basis des Logarithmus ist im O-Kalkül egal.

Gelten folgende Approximationen?

Maximilian Staab,

maximilian.staab@fsmi.uni-kamsr4m2de $+\pi n+2\sqrt{n}\in\Theta(n^2)$? Ja. Lukas Bach.

lukas.bach@student.kit.edu

■ $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.

Komplexitätstheorie

• $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Nein.

Mastertheoren

Es sind immer nur die höchsten Faktoren interessant!

- $4n^4 + 3c^6 \in \Theta(n^4)$? Ja, c ist eine Konstante, $3c^6 = (3c^6)n^0$ hat eine kleinere Potenz als n^4 .
- $\log_{4213}(n) \in \Theta(\log_2(n))$ Ja, die Basis des Logarithmus ist im O-Kalkül egal.
 - Grund: $O(\log_b n)$

Gelten folgende Approximationen?

Maximilian Staab,

maximilian.staab@fsmi.uni-kamsr4m2de $+\pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.

lukas.bach@student.kit.edu

■ $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.

Komplexitätstheorie

• $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Nein.

Mastertheoren

Es sind immer nur die höchsten Faktoren interessant!

- $4n^4 + 3c^6 \in \Theta(n^4)$? Ja, c ist eine Konstante, $3c^6 = (3c^6)n^0$ hat eine kleinere Potenz als n^4 .
- $\log_{4213}(n) \in \Theta(\log_2(n))$ Ja, die Basis des Logarithmus ist im O-Kalkül egal.
 - Grund: $\mathcal{O}(\log_b n) = \mathcal{O}(\frac{\log_a n}{\log_a b})$

Gelten folgende Approximationen?

Maximilian Staab,

maximilian.staab@fsmi.uni-kamsr4m2de $+\pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja. Lukas Bach,

lukas.bach@student.kit.edu

■ $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.

Komplexitätstheorie

• $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Nein.

Mastertheorer

Es sind immer nur die höchsten Faktoren interessant!

- $4n^4 + 3c^6 \in \Theta(n^4)$? Ja, c ist eine Konstante, $3c^6 = (3c^6)n^0$ hat eine kleinere Potenz als n^4 .
- $\log_{4213}(n) \in \Theta(\log_2(n))$ Ja, die Basis des Logarithmus ist im O-Kalkül egal.
 - Grund: $\mathcal{O}(\log_b n) = \mathcal{O}(\frac{\log_a n}{\log_a b}) = \mathcal{O}(\frac{1}{\log_a b} \log_a n)$

Gelten folgende Approximationen?

Maximilian Staab,

maximilian.staab@fsmi.uni-kamsr4m2de $+\pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja. Lukas Bach,

lukas.bach@student.kit.edu

■ $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.

Komplexitätstheorie

• $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Nein.

Mastertheorer

Es sind immer nur die höchsten Faktoren interessant!

- $4n^4 + 3c^6 \in \Theta(n^4)$? Ja, c ist eine Konstante, $3c^6 = (3c^6)n^0$ hat eine kleinere Potenz als n^4 .
- $\log_{4213}(n) \in \Theta(\log_2(n))$ Ja, die Basis des Logarithmus ist im O-Kalkül egal.
 - Grund: $\mathcal{O}(\log_b n) = \mathcal{O}(\frac{\log_a n}{\log_a b}) = \mathcal{O}(\frac{1}{\log_a b} \log_a n) = \mathcal{O}(\log_a n)$.

Gelten folgende Approximationen?

Maximilian Staab,

maximilian.staab@fsmi.uni-kamsr4m2de $+\pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja. Lukas Bach.

lukas.bach@student.kit.edu

■ $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.

Komplexitätstheorie

• $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Nein.

Mastertheoren

Es sind immer nur die höchsten Faktoren interessant!

- $4n^4 + 3c^6 \in \Theta(n^4)$? Ja, c ist eine Konstante, $3c^6 = (3c^6)n^0$ hat eine kleinere Potenz als n^4 .
- $\log_{4213}(n) \in \Theta(\log_2(n))$ Ja, die Basis des Logarithmus ist im O-Kalkül egal.

• Grund:
$$\mathcal{O}(\log_b n) = \mathcal{O}(\frac{\log_a n}{\log_a b}) = \mathcal{O}(\frac{1}{\log_a b} \log_a n) = \mathcal{O}(\log_a n)$$
.

■
$$n! \in \Theta(n^{\pi e 2000})$$

Gelten folgende Approximationen?

Maximilian Staab,

maximilian.staab@fsmi.uni-kamsr4m2de+ $\pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja. Lukas Bach,

lukas.bach@student.kit.edu

■ $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.

Komplexitätstheorie

• $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Nein.

Mastertheoren

Es sind immer nur die höchsten Faktoren interessant!

Automaten

- $4n^4 + 3c^6 \in \Theta(n^4)$? Ja, c ist eine Konstante, $3c^6 = (3c^6)n^0$ hat eine kleinere Potenz als n^4 .
- $\log_{4213}(n) \in \Theta(\log_2(n))$ Ja, die Basis des Logarithmus ist im O-Kalkül egal.

• Grund:
$$\mathcal{O}(\log_b n) = \mathcal{O}(\frac{\log_a n}{\log_a b}) = \mathcal{O}(\frac{1}{\log_a b} \log_a n) = \mathcal{O}(\log_a n)$$
.

• $n! \in \Theta(n^{\pi e 2000})$ Nein

Gelten folgende Approximationen?

Maximilian Staab,

maximilian.staab@fsmi.uni-kamsr4m2de $+\pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja. Lukas Bach.

lukas.bach@student.kit.edu

■ $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.

Komplexitätstheorie

• $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Nein.

Mastertheorer

Es sind immer nur die höchsten Faktoren interessant!

- $4n^4 + 3c^6 \in \Theta(n^4)$? Ja, c ist eine Konstante, $3c^6 = (3c^6)n^0$ hat eine kleinere Potenz als n^4 .
- $\log_{4213}(n) \in \Theta(\log_2(n))$ Ja, die Basis des Logarithmus ist im O-Kalkül egal.
 - Grund: $\mathcal{O}(\log_b n) = \mathcal{O}(\frac{\log_a n}{\log_a b}) = \mathcal{O}(\frac{1}{\log_a b} \log_a n) = \mathcal{O}(\log_a n)$.
- $n! \in \Theta(n^{\pi e^{2000}})$ Nein, Fakultät wächst asymptotisch schneller als fast alles andere.

Maximilian Staab,

maximilian.staab@fsmi.uni**Gelten**efolgende Approximationen?

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Maximilian Staab,

maximilian.staab@fsmi.uniGelten•folgende Approximationen?

lukas.bach@student.kit.edu

■
$$4n^3 + 2n^2 \in \mathcal{O}(n^5)$$
?

Komplexitätstheorie

Mastertheorem

Maximilian Staab,

maximilian.staab@fsmi.uniGelten•folgende Approximationen?

lukas.bach@student.kit.edu

•
$$4n^3 + 2n^2 \in \mathfrak{O}(n^5)$$
? Ja.

Komplexitätstheorie

Mastertheorem

Maximilian Staab,

maximilian.staab@fsmi.uniGelten•folgende Approximationen?

lukas.bach@student.kit.edu

•
$$4n^3 + 2n^2 \in \mathfrak{O}(n^5)$$
? Ja.

Komplexitätstheorie

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^4)$$
?

Mastertheorem

Maximilian Staab,

maximilian.staab@fsmi.uniGelten•folgende Approximationen?

lukas.bach@student.kit.edu

•
$$4n^3 + 2n^2 \in \mathfrak{O}(n^5)$$
? Ja.

Komplexitätstheorie 4

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^4)$$
? Ja.

Mastertheorem

Maximilian Staab,

maximilian.staab@fsmi.uniGelten•folgende Approximationen?

lukas.bach@student.kit.edu

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^5)$$
? Ja.

Komplexitätstheorie

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^4)$$
? Ja.

Mastertheorem

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^3)$$
?

Maximilian Staab,

maximilian.staab@fsmi.uniGelten•folgende Approximationen?

lukas.bach@student.kit.edu

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^5)$$
? Ja.

Komplexitätstheorie

•
$$4n^3 + 2n^2 \in \mathfrak{O}(n^4)$$
? Ja.

Mastertheorem

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^3)$$
? Ja.

Maximilian Staab,

maximilian.staab@fsmi.uniGelten•folgende Approximationen?

lukas.bach@student.kit.edu

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^5)$$
? Ja.

Komplexitätstheorie

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^4)$$
? Ja.

Mastertheorer

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^3)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^2)$$
?

Maximilian Staab,

maximilian.staab@fsmi.uniGelten•folgende Approximationen?

lukas.bach@student.kit.edu

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^5)$$
? Ja.

Komplexitätstheorie

•
$$4n^3 + 2n^2 \in \mathfrak{O}(n^4)$$
? Ja.

Mastertheorer

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^3)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^2)$$
? Nein.

Maximilian Staab,

maximilian.staab@fsmi.uniGelten•folgende Approximationen?

lukas.bach@student.kit.edu

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^5)$$
? Ja.

Komplexitätstheorie

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^4)$$
? Ja.

Mastertheorer

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^3)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^2)$$
? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^5)$$
?

Maximilian Staab,

 ${\tt maximilian.staab@fsmi.uni}$ Gelten folgende Approximationen? Lukas Bach,

lukas.bach@student.kit.edu

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^5)$$
? Ja.

Komplexitätstheorie

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^4)$$
? Ja.

Mastertheorer

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^3)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^2)$$
? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^5)$$
? Nein.

Maximilian Staab,

maximilian.staab@fsmi.uniGelten•folgende Approximationen?

lukas.bach@student.kit.edu

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^5)$$
? Ja.

Komplexitätstheorie

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^4)$$
? Ja.

Mastertheorer

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^3)$$
? Ja.
• $4n^3 + 2n^2 \in \mathcal{O}(n^2)$? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^5)$$
? Nein.

$$4H + 2H \in \Omega(H)$$
; NeIII.

•
$$4n^3 + 2n^2 \in \Omega(n^4)$$
?

Maximilian Staab,

maximilian.staab@fsmi.uni**Gelten-fol**gende Approximationen?

lukas.bach@student.kit.edu

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^5)$$
? Ja.

Komplexitätstheorie

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^4)$$
? Ja.

Mastertheorer

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^3)$$
? Ja.
• $4n^3 + 2n^2 \in \mathcal{O}(n^2)$? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^5)$$
? Nein.

$$\frac{1}{2}$$

•
$$4n^3 + 2n^2 \in \Omega(n^4)$$
? Nein.

Maximilian Staab,

maximilian.staab@fsmi.uniGeltenofolgende Approximationen?

lukas.bach@student.kit.edu

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^5)$$
? Ja.

Komplexitätstheorie

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^4)$$
? Ja.

Mastertheorer

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^3)$$
? Ja.

■
$$4n^3 + 2n^2 \in \mathcal{O}(n^2)$$
? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^5)$$
? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^4)$$
? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^3)$$
?

Maximilian Staab,

maximilian.staab@fsmi.uniGeltenofolgende Approximationen?

lukas.bach@student.kit.edu

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^5)$$
? Ja.

Komplexitätstheorie

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^4)$$
? Ja.

Mastertheorer

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^3)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^2)$$
? Nein.
• $4n^3 + 2n^2 \in \Omega(n^5)$? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^4)$$
? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^3)$$
? Ja.

Maximilian Staab,

maximilian.staab@fsmi.uniGelten•folgende Approximationen?

lukas.bach@student.kit.edu

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^5)$$
? Ja.

Komplexitätstheorie

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^4)$$
? Ja.

Mastertheorer

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^3)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^2)$$
? Nein.
• $4n^3 + 2n^2 \in \Omega(n^5)$? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^4)$$
? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^3)$$
? Ja.

•
$$4n^3 + 2n^2 \in \Omega(n^2)$$
?

Maximilian Staab,

maximilian.staab@fsmi.uniGelten•folgende Approximationen?

lukas.bach@student.kit.edu

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^5)$$
? Ja.

Komplexitätstheorie

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^4)$$
? Ja.

Mastertheorer

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^3)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^2)$$
? Nein.
• $4n^3 + 2n^2 \in \Omega(n^5)$? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^3)$$
? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^4)$$
? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^3)$$
? Ja.

•
$$4n^3 + 2n^2 \in \Omega(n^2)$$
? Ja.

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Übungsaufgabe

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	(0 (3)	(0 ()	0(1)	$O(\pi)$	0(6)	0(1)
	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$						
π						
$\log(n)$						
$n \log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
<i>n</i> !						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.un Lukas Bach,

lukas.bach@student.kit.

Übungsaufgabe

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in					
π						
$\log(n)$						
$n \log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
<u>n!</u>						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.uri Lukas Bach,

lukas.bach@student.kit.

Übungsaufgabe

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$\frac{2n^2+4n}{2n^2+4n}$,	(0.)	0(11)	32(11)	\$2(11.)
	€	∉				
π						
$\frac{\log(n)}{\log(n)}$						
$n \log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
<i>n</i> !						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.un Lukas Bach,

lukas.bach@student.kit.

Übungsaufgabe

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$	\in	∉	∉			
π						
$\log(n)$						
$n \log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
<i>n</i> !						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.un Lukas Bach,

lukas.bach@student.kit.

Übungsaufgabe

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉		
π						
$\log(n)$						
$n \log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
<u>n!</u>						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.uri Lukas Bach,

lukas.bach@student.kit.

Übungsaufgabe

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	
π						
$\log(n)$						
$n \log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Übungsaufgabe

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$	\in	∉	∉	∉	∉	∉
π						
$-\log(n)$						
$n \log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
<u>n!</u>						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.un Lukas Bach,

lukas.bach@student.kit.

Übungsaufgabe

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$	\in	∉	∉	∉	∉	∉
π	\in					
$\log(n)$						
$n \log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.um Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in				
$\log(n)$						
$n \log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€			
$\log(n)$						
$n \log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉		
$\log(n)$						
$n \log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
<i>n</i> !						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.un Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	Θ(c !)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	
$\log(n)$						
$n \log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
<u>n!</u>						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.un Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	∉
$-\log(n)$						
$n \log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.un Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	∉
$\log(n)$	\in					
$n \log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
<i>n</i> !						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.um Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	∉
$\log(n)$	\in	€				
$n \log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
<i>n</i> !						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.un Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	∉
$-\log(n)$	\in	€	∉			
$n \log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉		
$n \log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
<i>n</i> !						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.un Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	∉
$-\log(n)$	\in	\in	∉	∉	∉	
$n \log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
<i>n</i> !						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n \log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.um Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n \log(n)$	\in					
n^{π}						
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	∉
$\log(n)$	\in	\in	∉	∉	∉	∉
$n \log(n)$	\in	∉				
n^{π}						
$12n^3 + 7000n^2$						
n ³						
<i>n</i> !						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.un Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	∉
$-\log(n)$	\in	€	∉	∉	∉	∉
$n \log(n)$	€	∉	∉			
n^{π}						
$12n^3 + 7000n^2$						
n ³						
<u>n!</u>						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.un Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$-\log(n)$	\in	€	∉	∉	∉	∉
$n \log(n)$	\in	∉	∉	∉		
n^{π}						
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n \log(n)$	€	∉	∉	∉	∉	
n^{π}						
$12n^3 + 7000n^2$						
n ³						
<i>n</i> !						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n \log(n)$	€	∉	∉	∉	∉	∉
n^{π}						
$12n^3 + 7000n^2$						
n ³						
<u>n!</u>						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$-\log(n)$	\in	€	∉	∉	∉	∉
$n\log(n)$	\in	∉	∉	∉	∉	∉
n^{π}	∉					
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n \log(n)$	€	∉	∉	∉	∉	∉
n^{π}	∉	∉				
$12n^3 + 7000n^2$						
n ³						
<i>n</i> !						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n \log(n)$	€	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉			
$12n^3 + 7000n^2$						
n ³						
<i>n</i> !						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$-\log(n)$	\in	€	∉	∉	∉	∉
$n \log(n)$	\in	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€		
$12n^3 + 7000n^2$						
n ³						
<i>n</i> !						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n \log(n)$	€	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	
$12n^3 + 7000n^2$						
n ³						
<i>n</i> !						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n \log(n)$	€	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$						
n ³						
<i>n</i> !						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n \log(n)$	€	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$	\in					
n ³						
<i>n</i> !						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n \log(n)$	€	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$	\in	∉				
n ³						
<i>n</i> !						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.um Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n \log(n)$	€	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$	\in	∉	∉			
n ³						
<i>n</i> !						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	Θ(c !)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n \log(n)$	€	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$	\in	∉	∉	∉		
n ³						
<i>n</i> !						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(\textit{n}^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n \log(n)$	\in	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	\in	∉	∉
$12n^3 + 7000n^2$	\in	∉	∉	∉	∉	
n ³						
<i>n</i> !						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.un Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$-\log(n)$	\in	€	∉	∉	∉	∉
$n \log(n)$	€	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$	\in	∉	∉	∉	∉	∉
n ³						
<i>n</i> !						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(\textit{n}^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n \log(n)$	€	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$	\in	∉	∉	∉	∉	∉
n ³	\in					
<i>n</i> !						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.um Lukas Bach,

Komplexitätstheorie

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte liegt.

Mastertheorer

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n \log(n)$	€	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$	\in	∉	∉	∉	∉	∉
n ³	\in	∉				
n!						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.um Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n \log(n)$	\in	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$	\in	∉	∉	∉	∉	∉
n ³	\in	∉	∉			
n!						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n \log(n)$	€	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$	\in	∉	∉	∉	∉	∉
n ³	\in	∉	∉	∉		
<i>n</i> !						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.um Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n \log(n)$	€	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$	\in	∉	∉	∉	∉	∉
n ³	\in	∉	∉	∉	∉	
n!						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.un Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n \log(n)$	\in	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	\in	∉	∉
$12n^3 + 7000n^2$	\in	∉	∉	∉	∉	∉
n ³	\in	∉	∉	∉	∉	∉
<i>n</i> !						

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.um Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n \log(n)$	€	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$	\in	∉	∉	∉	∉	∉
n ³	\in	∉	∉	∉	∉	∉
<i>n</i> !	∉					

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.um Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n \log(n)$	€	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$	\in	∉	∉	∉	∉	∉
n ³	\in	∉	∉	∉	∉	∉
n!	∉	∉				

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.um Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n \log(n)$	€	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$	\in	∉	∉	∉	∉	∉
n ³	\in	∉	∉	∉	∉	∉
<i>n</i> !	∉	∉	∉			

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.um Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n \log(n)$	\in	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$	\in	∉	∉	∉	∉	∉
n ³	\in	∉	∉	∉	∉	∉
<i>n</i> !	∉	∉	∉	∉		

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.um Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n \log(n)$	\in	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$	\in	∉	∉	∉	∉	∉
n ³	\in	∉	∉	∉	∉	∉
n!	∉	∉	∉	∉	€	

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.um Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorer

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n\log(n)$	\in	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$	\in	∉	∉	∉	∉	∉
n ³	\in	∉	∉	∉	∉	∉
n!	∉	∉	∉	∉	\in	€

Maximilian Staab, maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

$$\bullet \ \mathcal{O}(n^2) \cap \mathcal{O}(n) = \mathcal{O}(?)?$$

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

$$\bullet \ \mathbb{O}(n^2) \cap \mathbb{O}(n) = \mathbb{O}(?)? = \mathbb{O}(n).$$

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

$$\bullet \ \mathbb{O}(n^2) \cap \mathbb{O}(n) = \mathbb{O}(?)? = \mathbb{O}(n).$$

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

$$\bullet \ \mathcal{O}(n^2) \cap \mathcal{O}(n) = \mathcal{O}(?)? = \mathcal{O}(n).$$

Grundlegende Reihenfolge von Größen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheoren

 $1 \preceq \log n \preceq n \log n \preceq n^2 \preceq n^3 \preceq n^{10000} \preceq n^2 \preceq 3^n \preceq 1000^n \preceq n! \preceq n^n$

Mathematische Definitionen

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

$$f(n) \in \Omega(g(n)) \Leftrightarrow 0 < \liminf_{n \to \infty} \frac{f(n)}{g(n)} \le \infty$$

Komplexitätstheorie

$$f(n) \in \Theta(g(n)) \Leftarrow 0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} = c < \infty$$

$$f(n) \in \mathcal{O}(g(n)) \Leftrightarrow 0 \leq \limsup_{n \to \infty} \frac{f(n)}{g(n)} = c < \infty$$

Mathematische Definitionen

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

$$f(n) \in \Omega(g(n)) \Leftrightarrow 0 < \liminf_{n \to \infty} \frac{f(n)}{g(n)} \le \infty$$

Komplexitätstheorie

Mastertheore

$$f(n) \in \Theta(g(n)) \Leftarrow 0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} = c < \infty$$

Automaten

$$f(n) \in \mathcal{O}(g(n)) \Leftrightarrow 0 \leq \limsup_{n \to \infty} \frac{f(n)}{g(n)} = c < \infty$$

Z

eige:

- $3n^2 + 14n + 159 \in \Theta(n^2)$
- $\log n^2 \in \Theta(\log n^3)$
- $\log^2 n \in \mathcal{O}(\log^3 n)$

Komplexität mit vollständiger Induktion beweisen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheore

Z

Automaten

eige mittels vollständiger Induktion:

- $\mathbf{2}^n \in \Theta(n^3)$
- $(n+1)! \in \Theta(n!+2^n)$

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.edu Größenordnung Be

Bezeichnung

Komplexitätstheorie

Mastertheorem

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.edu Größenordnung Bezeichnung

Komplexitätstheorie O(1) konstante Laufzeit

Mastertheorem

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas . bach@student . kit . equ Größenordnung Bezeichnung

Komplexitätstheorie

O(1) konstante Laufzeit $O(\log n)$ logarithmische Laufzeit

Mastertheorem

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.edu Größenordnung Bezeichnung O(1)konstante Laufzeit Komplexitätstheorie $O(\log n)$ logarithmische Laufzeit $O(\log^2 n)$

quadratisch logarithmische Laufzeit

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.edu Größenordnung Bezeichnung O(1)konstante Laufzeit Komplexitätstheorie $O(\log n)$ logarithmische Laufzeit $O(\log^2 n)$ quadratisch logarithmische Laufzeit $\mathcal{O}(n)$ lineare Laufzeit Automaten

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.edu Größenordnung Bezeichnung $\mathcal{O}(1)$ konstante Laufzeit Komplexitätstheorie $O(\log n)$ logarithmische Laufzeit $O(\log^2 n)$ quadratisch logarithmische Laufzeit $\mathcal{O}(n)$ lineare Laufzeit Automaten

quadratische Laufzeit

 $O(n^2)$

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.edu Größenordnung Bezeichnung

(O(1) konstante Laufzeit

Komplexitätstheorie

Mastertheorem

aroboriorariarig	Bozolomang
0(1)	konstante Laufzeit
$\mathcal{O}(\log n)$	logarithmische Laufzeit
$O(\log^2 n)$	quadratisch logarithmische Laufzeit
O(n)	lineare Laufzeit
$O(n^2)$	quadratische Laufzeit
$O(n^3)$	kubische Laufzeit

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.edu Größenordnung

Größenordnung

O(1)

Bezeichnung konstante Laufzeit

Komplexitätstheorie

Mactorthogram

 $O(\log n)$ | logarithmische Laufzeit $O(\log^2 n)$ | quadratisch logarithmische Laufzeit

iviastei tileoren

O(n) lineare Laufzeit

Automaten

 $O(n^2)$ quadratische Laufzeit $O(n^3)$ kubische Laufzeit

 $\frac{O(n^k)}{O(n^k)}$

omielle I aufzi

 $O(n^k)$

polynomielle Laufzeit

 $r \leftarrow 0$ Grundbegriffe der Informatik for $i \leftarrow 0$ to n/2 do Maximilian Staab. s ← 0 maximilian.staab@fsmi.uni Lukas Bach, for $j \leftarrow i$ to n - i do lukas.bach@student.kit.ed $s \leftarrow s + j$ Komplexitätstheorie od Mastertheorem $r \leftarrow s + n * i$ Automaten $r \leftarrow r + s$ od

 $r \leftarrow 0$ Grundbegriffe for $i \leftarrow 0$ to n/2 do der Informatik Maximilian Staab. s ← 0 maximilian.staab@fsmi.uni Lukas Bach, for $j \leftarrow i$ to n - i do lukas.bach@student.kit.ed $s \leftarrow s + j$ Komplexitätstheorie od $r \leftarrow s + n * i$ Automaten $r \leftarrow r + s$ od

Wie oft wird die innere Schleife durchlaufen?

 $r \leftarrow 0$ Grundbegriffe for $i \leftarrow 0$ to n/2 do der Informatik Maximilian Staab. s ← 0 maximilian.staab@fsmi.uni Lukas Bach, for $j \leftarrow i$ to n - i do lukas.bach@student.kit.ed $s \leftarrow s + j$ Komplexitätstheorie od $r \leftarrow s + n * i$ Automaten $r \leftarrow r + s$ od

• Wie oft wird die innere Schleife durchlaufen? n - 2i + 1 mal.

$r \leftarrow 0$ Grundbegriffe for $i \leftarrow 0$ to n/2 do der Informatik Maximilian Staab. s ← 0 maximilian.staab@fsmi.uni Lukas Bach. for $i \leftarrow i$ to n - i do lukas bach@student kit ed $s \leftarrow s + j$ Komplexitätstheorie od $r \leftarrow s + n * i$ Automaten $r \leftarrow r + s$

od

- Wie oft wird die innere Schleife durchlaufen? n 2i + 1 mal.
- Wie kommen wir jetzt auf die Gesamtlaufzeit?

 $r \leftarrow s + n * i$

Maximilian Staab, maximilian.staab@fsmi.uni Lukas Bach, lukas bach@student kit ed

$$s \leftarrow 0$$

for $j \leftarrow i$ to $n - i$ do
 $s \leftarrow s + j$

Komplexitätstheorie

Mastertheorem

Automaten

$$r \leftarrow r + s$$
 od

od

 $r \leftarrow 0$

- Wie oft wird die innere Schleife durchlaufen? n-2i+1 mal.
- Wie kommen wir jetzt auf die Gesamtlaufzeit?

$$\sum_{i=0}^{n/2} (n-2i+1)$$

for
$$i \leftarrow 0$$
 to $n/2$ do

 $r \leftarrow s + n * i$

Maximilian Staab, maximilian.staab@fsmi.uni Lukas Bach, lukas bach@student kit ed

$$s \leftarrow 0$$

for $j \leftarrow i$ to $n - i$ do
 $s \leftarrow s + j$

Komplexitätstheorie

Mastertheorem

Automaten

od

 $r \leftarrow 0$

od

- Wie oft wird die innere Schleife durchlaufen? n 2i + 1 mal.
- Wie kommen wir jetzt auf die Gesamtlaufzeit?

$$\sum_{i=0}^{n/2} (n-2i+1) = \frac{n}{2}n - 2\sum_{i=0}^{n/2} i + \frac{n}{2}$$

for
$$i \leftarrow 0$$
 to $n/2$ do

 $r \leftarrow 0$

Maximilian Staab, maximilian.staab@fsmi.uni Lukas Bach, lukas bach@student kit ed

$$s \leftarrow 0$$

for $j \leftarrow i$ to $n - i$ do
 $s \leftarrow s + j$

Komplexitätstheorie

od

 $r \leftarrow r + s$

od

• Wie oft wird die innere Schleife durchlaufen? n - 2i + 1 mal.

■ Wie kommen wir jetzt auf die Gesamtlaufzeit?

$$\sum_{i=0}^{n/2} (n-2i+1) = \frac{n}{2}n - 2\sum_{i=0}^{n/2} i + \frac{n}{2} = \frac{n^2}{2} + \frac{n}{2} - 2\frac{\frac{n}{2} \cdot (\frac{n}{2} + 1)}{2}$$

for
$$i \leftarrow 0$$
 to $n/2$ do

 $r \leftarrow 0$

Maximilian Staab, maximilian.staab@fsmi.uni Lukas Bach, lukas bach@student kit ed

$$s \leftarrow 0$$

for $j \leftarrow i$ to $n - i$ do
 $s \leftarrow s + j$

Komplexitätstheorie

Mastertheorem

$$r \leftarrow s + n * i$$

 $r \leftarrow r + s$

od

od

- Wie oft wird die innere Schleife durchlaufen? n 2i + 1 mal.
- Wie kommen wir jetzt auf die Gesamtlaufzeit?

$$\sum_{i=0}^{n/2} (n-2i+1) = \frac{n}{2}n - 2\sum_{i=0}^{n/2} i + \frac{n}{2} = \frac{n^2}{2} + \frac{n}{2} - 2\frac{\frac{n}{2} \cdot (\frac{n}{2}+1)}{2} = \frac{n^2}{2} + \frac{n}{2} - \frac{n^2}{2} \cdot \frac{n}{2} = \frac{n^2}{2} + \frac{n}{2} - \frac{n^2}{2} = \frac{n^2}{2} + \frac{n}{2} = \frac{n^2}{2} + \frac{n}{2} - \frac{n^2}{2} = \frac{n^2}{2} + \frac{n}{2} = \frac{n}{2} + \frac{n}{2} = \frac{n^2}{2} + \frac{n}{2} = \frac{n^2}{2} + \frac{n}{2} = \frac{n}{2} = \frac{n}{2} + \frac{n}{2} = \frac{n}{2} + \frac{n}{2} = \frac{n}{2} + \frac{n}{2} = \frac{n}{2} = \frac{n}{2} + \frac{n}{2} = \frac{n}{2} =$$

for
$$i \leftarrow 0$$
 to $n/2$ do

Maximilian Staab, maximilian.staab@fsmi.uni Lukas Bach, lukas bach@student kit ed

$$s \leftarrow 0$$

for $j \leftarrow i$ to $n - i$ do
 $s \leftarrow s + j$

Komplexitätstheorie

od

 $r \leftarrow 0$

Mastertheoren

$$r \leftarrow s + n * i$$

 $r \leftarrow r + s$

- Wie oft wird die innere Schleife durchlaufen? n-2i+1 mal.
- Wie kommen wir jetzt auf die Gesamtlaufzeit?

$$\sum_{i=0}^{n/2} (n-2i+1) = \frac{n}{2}n - 2\sum_{i=0}^{n/2} i + \frac{n}{2} = \frac{n^2}{2} + \frac{n}{2} - 2\frac{\frac{n}{2} \cdot (\frac{n}{2} + 1)}{2} = \frac{n^2}{2} + \frac{n}{2} - \frac{n^2}{4} - \frac{n}{2} = \frac{1}{4}n^2$$

for
$$i \leftarrow 0$$
 to $n/2$ do

 $r \leftarrow s + n * i$

Maximilian Staab, maximilian.staab@fsmi.uni Lukas Bach, lukas.bach@student.kit.ed

$$s \leftarrow 0$$

for $j \leftarrow i$ to $n - i$ do $s \leftarrow s + j$

Komplexitätstheorie

Mastertheorem

od

od

 $r \leftarrow 0$

• Wie oft wird die innere Schleife durchlaufen?
$$n-2i+1$$
 mal.

Wie kommen wir jetzt auf die Gesamtlaufzeit?

$$\sum_{i=0}^{n/2} (n-2i+1) = \frac{n}{2}n - 2\sum_{i=0}^{n/2} i + \frac{n}{2} = \frac{n^2}{2} + \frac{n}{2} - 2\frac{\frac{n}{2} \cdot (\frac{n}{2}+1)}{2} = \frac{n^2}{2} + \frac{n}{2} - \frac{n^2}{4} - \frac{n}{2} = \frac{1}{4}n^2$$

Kann man das einfacher machen?

Mastertheorem

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Mastertheorem

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach, lukas.bach@student.kit.

Formel für Mastertheorem

Komplexitätstheorie

Mastertheorem

Mastertheorem

Maximilian Staab.

maximilian.staab@fsmi.ur Formel für Mastertheorem lukas.bach@student.kit.

Rekursive Komplexitätsformeln der Form

Komplexitätstheorie

Mastertheorem

Mastertheorem

Maximilian Staab.

maximilian.staab@fsmi.um Lukas Bach,

Formel für Mastertheorem lukas.bach@student.kit.

Rekursive Komplexitätsformeln der Form

Komplexitätstheorie

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$

Mastertheorem

Mastertheorem

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Formel für Mastertheorem

Rekursive Komplexitätsformeln der Form

Komplexitätstheorie

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$

Mastertheorem

lassen sich mit dem Mastertheorem Komplexitätsklassen zuordnen.

Automaten

Auflösung des Mastertheorem

Fall 1: Wenn $f \in \mathcal{O}(n^{\log_b a - \varepsilon})$ für ein $\varepsilon > 0$ ist, dann ist $T \in \Theta(n^{\log_b a})$.

Fall 2: Wenn $f \in \Theta(n^{\log_b a})$ ist, dann ist $T \in \Theta(n^{\log_b a} \log n)$.

Fall 3: Wenn $f \in \mathcal{O}(n^{\log_b a + \varepsilon})$ für ein $\varepsilon > 0$ ist, und wenn es eine Konstante d gibt mit 0 < d < 1, so dass für alle hinreichend großen n gilt af(n/b) < df, dann ist $T \in \Theta(f)$.

Aufgaben zum Mastertheorem

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Aufgaben zum Mastertheorem

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

$$T(n) := 2T(\frac{n}{4}) + \sqrt{n}$$

Aufgaben zum Mastertheorem

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

•
$$T(n) := 2T(\frac{n}{4}) + \sqrt{n}$$
, also $a = 2, b = 4, f(n) = \sqrt{n}$

Aufgaben zum Mastertheorem

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

■ $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also $a = 2, b = 4, f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems

Aufgaben zum Mastertheorem

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

■ $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also $a = 2, b = 4, f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems. $T \in \Theta(\sqrt{n} \log n)$

Aufgaben zum Mastertheorem

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

■ $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also $a = 2, b = 4, f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems. $T \in \Theta(\sqrt{n} \log n)$

Automaten

 $T(n) := 3T(\frac{n}{2}) + n\log n$

Aufgaben zum Mastertheorem

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

■ $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also $a = 2, b = 4, f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems. $T \in \Theta(\sqrt{n} \log n)$

•
$$T(n) := 3T(\frac{n}{2}) + n \log n$$
, also $a = 3, b = 2, f(n) = n \log n$

Aufgaben zum Mastertheorem

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

■ $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also a = 2, b = 4, $f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems. $T \in \Theta(\sqrt{n} \log n)$

Automaten

■ $T(n) := 3T(\frac{n}{2}) + n \log n$, also $a = 3, b = 2, f(n) = n \log n$, also erster Fall des Mastertheorems

Aufgaben zum Mastertheorem

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Automaten

■ $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also $a = 2, b = 4, f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems. $T \in \Theta(\sqrt{n} \log n)$

■ $T(n) := 3T(\frac{n}{2}) + n \log n$, also $a = 3, b = 2, f(n) = n \log n$, also erster Fall des Mastertheorems, $T \in \Theta(n^{\log_2 3})$

Aufgaben zum Mastertheorem

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Automaten

■ $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also $a = 2, b = 4, f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems. $T \in \Theta(\sqrt{n} \log n)$

- $T(n) := 3T(\frac{n}{2}) + n \log n$, also $a = 3, b = 2, f(n) = n \log n$, also erster Fall des Mastertheorems, $T \in \Theta(n^{\log_2 3})$
- $T(n) := 4T(\frac{n}{2}) + n^2\sqrt{n}$

Aufgaben zum Mastertheorem

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Automaten

■ $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also $a = 2, b = 4, f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems. $T \in \Theta(\sqrt{n} \log n)$

- $T(n) := 3T(\frac{n}{2}) + n \log n$, also $a = 3, b = 2, f(n) = n \log n$, also erster Fall des Mastertheorems, $T \in \Theta(n^{\log_2 3})$
- $T(n) := 4T(\frac{n}{2}) + n^2\sqrt{n}$, also $a = 4, b = 2, f(n) = n^2\sqrt{n}$

Aufgaben zum Mastertheorem

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

- $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also $a = 2, b = 4, f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems. $T \in \Theta(\sqrt{n} \log n)$
- $T(n) := 3T(\frac{n}{2}) + n \log n$, also $a = 3, b = 2, f(n) = n \log n$, also erster Fall des Mastertheorems, $T \in \Theta(n^{\log_2 3})$
- $T(n) := 4T(\frac{n}{2}) + n^2\sqrt{n}$, also a = 4, b = 2, $f(n) = n^2\sqrt{n}$, also dritter Fall des Mastertheorems

Aufgaben zum Mastertheorem

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Automaten

■ $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also $a = 2, b = 4, f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems. $T \in \Theta(\sqrt{n} \log n)$

- $T(n) := 3T(\frac{n}{2}) + n \log n$, also $a = 3, b = 2, f(n) = n \log n$, also erster Fall des Mastertheorems, $T \in \Theta(n^{\log_2 3})$
- $T(n) := 4T(\frac{n}{2}) + n^2\sqrt{n}$, also a = 4, b = 2, $f(n) = n^2\sqrt{n}$, also dritter Fall des Mastertheorems, $T \in \Theta(n^2\sqrt{n})$.

Definition eines endlichen Automaten

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.

Endlicher Automat

Komplexitätstheorie Ein endlicher Automat ist ein Tupel $A = (Z, z_0, X, f, Y, g)$ mit...

Mastertheoren

Definition eines endlichen Automaten

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.

Endlicher Automat

Komplexitätstheorie Ein endlicher Automat ist ein Tupel $A = (Z, z_0, X, f, Y, g)$ mit...

Mastertheorer

endliche Zustandsmenge Z

Definition eines endlichen Automaten

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.

Endlicher Automat

Komplexitätstheorie Ein endlicher Automat ist ein Tupel $A = (Z, z_0, X, f, Y, g)$ mit...

Mastertheorer

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$

Definition eines endlichen Automaten

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.

Endlicher Automat

Komplexitätstheorie Ein endlicher Automat ist ein Tupel $A = (Z, z_0, X, f, Y, g)$ mit...

Mastertheorer

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$
- Eingabealphabet X

Definition eines endlichen Automaten

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.

Endlicher Automat

Komplexitätstheorie Ein endlicher Automat ist ein Tupel $A = (Z, z_0, X, f, Y, g)$ mit...

Mastertheorer

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$
- Eingabealphabet X
- Zustandsübergangsfunktion $f: Z \times X \rightarrow Z$

Definition eines endlichen Automaten

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.

Endlicher Automat

Komplexitätstheorie Ein endlicher Automat ist ein Tupel $A = (Z, z_0, X, f, Y, g)$ mit...

Mastertheorer

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$
- Eingabealphabet X
- Zustandsübergangsfunktion $f: Z \times X \rightarrow Z$
- Ausgabealphabet Y

Definition eines endlichen Automaten

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.

Endlicher Automat

Komplexitätstheorie Ein endlicher Automat ist ein Tupel $A = (Z, z_0, X, f, Y, g)$ mit...

Mastertheore

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$
- Eingabealphabet X
- Zustandsübergangsfunktion $f: Z \times X \rightarrow Z$
- Ausgabealphabet Y
- Ausgabefunktion

Definition eines endlichen Automaten

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.

Endlicher Automat

Ein endlicher Automat ist ein Tupel $A = (Z, z_0, X, f, Y, g)$ mit... Komplexitätstheorie

- endliche Zustandsmenge Z
 - Anfangszustand $z_0 \in Z$
 - Eingabealphabet X
 - **u** Zustandsübergangsfunktion $f: Z \times X \rightarrow Z$
 - Ausgabealphabet Y
 - Ausgabefunktion
 - Mealy-Automat: $q: Z \times X \rightarrow Y^*$

Definition eines endlichen Automaten

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.

Endlicher Automat

Komplexitätstheorie Ein endlicher Automat ist ein Tupel $A = (Z, z_0, X, f, Y, g)$ mit...

Mastertheore

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$
- Eingabealphabet X
 - Zustandsübergangsfunktion $f: Z \times X \rightarrow Z$
 - Ausgabealphabet Y
 - Ausgabefunktion
 - Mealy-Automat: $g: Z \times X \rightarrow Y^*$
 - Moore-Automat: $h: Z \rightarrow Y^*$

Maximilian Staab,

maximilian.staab@fsmi.uni Lukas Bach,

lukas.bach@student.kit.ed

Komplexitätstheorie

Mastertheorem

