MCV4U Lesson 9.1

1. Intersection of a Line with a Plane

Ex 1

Determine the point of intersection of the line and plane.

a) L:
$$x = 3 + 4t$$
 $y = 2 + 3t$
 $z = -1 + 2t$

Sub in $\pi: x - y - 2z = 0$

$$5 + 4t - (2 + 3t) - 2(-1 + 2t) = 0$$

$$5 + 4t - 2 - 3t + 2 - 4t = 0$$

Where?

$$x = 3 + 4(1) = 1$$

$$x = 3 + 4(1) = 1$$

$$x = 3 + 4(1) = 1$$

$$y = 2 + 3(1) = 5$$

$$z = -1 + 2(1) = 1$$

Sub in $\pi: x - y - 2z = 0$

$$3 + 4t - 2(-1 + 2t) = 0$$

$$4 + 1 - 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t) = 0$$

$$4 - 1 + 2(-1 + 2t)$$

b) L:
$$\vec{r} = (2, -5, 6) + t(3, 1, 8)$$

$$x = 2 + 3t$$

$$y = -5 + t$$

$$z = 6 + 8t$$

$$x = 2 + 3t$$

$$y = -5 + t$$

$$z = 6 + 8t$$

$$x = 2 + 3t$$

$$y = -5 + t$$

$$x = 6 + 8t$$

$$x = 7 + 8t$$

$$x = 6 + 8t$$

$$x = 7 + 8t$$

$$x = 6 + 8t$$

$$x = 7 + 8t$$

$$x = 6 + 8t$$

$$x = 7 + 8t$$

$$x = 6 + 8t$$

$$x = 7 + 8t$$

$$x = 6 + 8t$$

$$x = 7 + 8t$$

$$x = 8 + 8$$

c) L:
$$x = 2 + t$$
 $\pi: 3x + 19y - 7z - 8 = 0$ $y = -1 - 2t$ $z = -3 - 5t$

$$x = 2 + t$$

$$x = 3x + 19y - 7z - 8 = 0$$

$$x = 3(2 + t) + 19(-1 - 2t) - 7(-3 - 5t) - 8 = 0$$

$$x = -3 - 5t$$

$$x = 2 + t$$

$$x = 3x + 19y - 7z - 8 = 0$$

$$x = -3 - 5t$$

$$x = -3$$

*

2. Intersection of Two Lines

Intersect at One Point

Parallel Lines

Intersect at Every Point (Coincident Lines)

Skew Lines

Ex 2.

Determine the point of intersection of the two lines.

a) L1:
$$x = -5 + 3s$$

 $y = 2 + 2s$
 $z = -7 + 6s$

The intersect at a point or ske w

L2: $x = t$
 $y = -6 - 5t$
 $z = -3 - t$
 $not pll$

The intersect at a point or ske w

5ub
$$\pm$$
 from (1) into (2)
2+25=-6-5(-5+35)
2+25=-6+25-155
175=17
(5=1)
5ub \pm into (1)
-5+3(1) = \pm

3rd Check S+t in 3rdeen

b) L1:
$$\overrightarrow{OP} = (-2, 1, 0) + s(1, 3, 7)$$
 L2: $\overrightarrow{r} = (3, -3, 4) + t(5, -4, -2)$
- must have a P.O.1 or be 5kew

- lines are skew

$$\begin{bmatrix} 1 & -1 & | & 5 \\ 6 & 7 & | & 11 \\ 6 & 9 & | & -3 \end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 5 \\
3 & 4 & -4 \\
7 & 2 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 5 \\
6 & 7 & 11
\end{bmatrix}$$

$$75 = 11 - 75 = \frac{11}{7} \text{ in consistant}$$

$$6 & 9 & -31
\end{bmatrix}$$

$$95 = 31 S = \frac{31}{9} \text{ Skew}$$

c) L1:
$$x = 3 + 2t$$

 $y = -1 - 3t$
 $z = 1 + t$

L2:
$$\vec{r} = (1, -1, 3) + s(-4, 6, -2)$$

$$\vec{m}_{3} = (-4, 6, -2)$$

$$= -2(2, -3, 1)$$

$$\vec{m}_{\lambda} = -\lambda \, \vec{m}_{1}$$

- direction vectors are collinear

Hines are parallel or coincident

- Check for coincidence using any point on either line

Sub
$$(1,-1,3)$$
 into L1 $|-3+2+|-1-1-3+|$ 3=14

- in consistent!

- they are pll but not coincident