Bachelorarbeit

Explizite Berechnung der Levelt-Turrittin-Zerlegung für spezielle D-Moduln

vorgelegt von Maximilian Huber

am Institut für Mathematik der Universität Augsburg

betreut durch Prof. Dr. Marco Hien

abgegeben am 04.07.2013

stand: 3. Juni 2013

Inhaltsverzeichnis

1	Mod	duln über \mathcal{D}_k	1
	1.1	Weyl-Algebra und der Ring \mathcal{D}_k	2
		1.1.1 Alternative Definition / Sichtweise	4
	1.2	(Links) \mathcal{D} -Moduln	5
	1.3	Holonome \mathcal{D}_k -Moduln	6
2	Mer	romorphe Zusammenhänge	8
	2.1	Meromorphe Zusammenhänge	9
	2.2	Äquivalenz zu holonomen lokalisierten \mathcal{D} -Moduln	13
	2.3	Newton Polygon	14
		2.3.1 Die Filtrierung ${}^{\ell}V\mathcal{D}_{\widehat{K}}$ und das ℓ -Symbol	19
	2.4	Operationen auf meromorphen Zusammenhängen	20
		2.4.1 Tensorprodukt	20
		2.4.2 pull-back und push-forward	22
		2.4.3 Fouriertransformation	32
		2.4.4 Betrachten bei Unendlich	33
	2.5	Twisten von meromorphen Zusammenhängen	33
3	Eler	nentare meromorphe Zusammenhänge	41
	3.1	Elementare formale meromorphe Zusammenhänge	41
	3.2	Elementare meromorphe Zusammenhänge	42
	3.3	Definition in [Sab07]	42
	3.4	Levelt-Turrittin-Theorem	43
		3.4.1 Klassische Version	43
		3.4.2 Sabbah's Refined version	46
4	Ехр	lizite Berechnung einer Levelt-Turrittin-Zerlegung	47
	4.1	Rezept für allgemeine (2	47

	4.2	Levelt	ī-Tu	rrit	tin	-Ze	rle	gur	ng i	für	. 1	$\mathcal{1}_{arphi}$	m	it (ρ_1	:=	$=\frac{a}{x}$									53
		4.2.1	K	onv	erge	enz	de	er S	un	nm	an	de	n					 								61
An	hang	g																								66
Α	Auft	teilung	vor	1 $t\varphi$	o'(t))																				67
В	Gen	aueres	zu	(x^2)	$\partial_x)$	k																				68
C	Que	lltexte																								69
	C.1	Comp	lRa	t.hs	3.													 								69
	C.2	Koeffs	m s.hs															 								70
	C.3	SaveT	ЪFі	le.h	ıs .													 		•						74

Abbildungsverzeichnis

2.1	Newton-Polygon zu $P_1 = x\partial_x^2$	16
2.2	Newton-Polygon zu P_2	16
2.3	Newton Polygon zu $P = x(x\partial_x)^2 + x\partial_x + \frac{1}{2}$	18
2.4	Newton Polygon zu P	19
2.5	Newton Polygon zu $P = x^3 \partial_x^2 - 4x^2 \partial_x - 1 \dots \dots \dots \dots \dots$	31
2.6	Newton Polygon zu $\rho^* P = \frac{1}{4} t^4 \partial_t^2 - \frac{1}{2} t^3 \partial_t - 1$	31
2.7	Newton-Polygon zu P	33
2.8	Newton-Polygon zu \mathcal{F}_P	33
4.1	Newton-Polygon zu P_{φ} mit $H(x^{2(q-m)}\partial_x^{q-m})$	50
4.2	Newton Polygon zu P_{φ}	53
4.3	Newton Polygon zu $\rho^* P_{\varphi}$	54
4.4	Newton Polygon zu $\mathcal N$	55
4.5	Newton-Polygon zu Q_1	57
4.6	Newton-Polygon zu Q_2	57
4.7	Die Beträge der v_n in Abhängigkeit von n für unterschiedliche u_{-2}	64

	Quotientenkriterium angewendet auf die Koeffizienten	66
Tabe	ellenverzeichnis	
C.1	Numerisch berechnete Koeffizienten von $v(t)$ für $u_{-2}=i$ bzw. $a=\frac{1}{8}$	73
Listi	ngs	
	ComplRat.hs	69
C.2	Koeffs.hs	69 70
C.2 C.3	Koeffs.hs	
C.2 C.3 C.4	Koeffs.hs	70

1 Moduln über \mathcal{D}_k

Ich werde hier die Weyl Algebra, wie in [Sab90, Chapter 1], in einer Veränderlichen einführen. Ähnlich wird dies auch in [AV09, Kapittel 2] eingeführt. Algemeiner und in merhreren Veränderlichen wird die Weyl-Algebra beispiesweise in [Cou95, Chapter 1] definiert.

Definition 1.1 (Kommutator). Sei R ein Ring. Für $a, b \in R$ wird

$$[a, b] = a \cdot b - b \cdot a$$

als der Kommutator von a und b definiert.

Proposition 1.2. Sei $k = \mathbb{C}[x]$ (bzw. $\mathbb{C}\{x\}$ bzw. $\mathbb{C}[x]$) ein Ring der Potenzreihen in x über \mathbb{C} . Sei $\partial_x : k \to k$ der gewohnte Ableitungsoperator nach x, so gilt

1.
$$[\partial_x, x] = \partial_x x - x \partial_x = 1$$

2. $f\ddot{u}r \ f \in k \ ist$

$$[\partial_x, f] = \frac{\partial f}{\partial x}. \tag{1.1}$$

3. Es gelten die Formeln

$$\left[\partial_x, x^k\right] \stackrel{\text{(1.1)}}{=} \frac{\partial x^k}{\partial x} = kx^{k-1} \tag{1.2}$$

$$[\partial_x^j, x] = j\partial_x^{j-1} \tag{1.3}$$

$$[\partial_x^j, x^k] = \sum_{i \ge 1} \frac{k(k-1)\cdots(k-i+1)\cdot j(j-1)\cdots(j-i+1)}{i!} x^{k-i} \partial_x^{j-i}$$
 (1.4)

Beweis. 1. Klar.

2. Für ein Testobjekt $g \in k$ ist

$$[\partial_x, f] \cdot g = \partial_x(fg) - f\partial_x g = (\partial_x f)g + \underbrace{f(\partial_x g) - f(\partial_x g)}_{=0} = (\partial_x f)g.$$

3. Siehe [Sab90, 1.2.4.] oder [AV09, Kor 2.8].

1.1 Weyl-Algebra und der Ring \mathcal{D}_k

Sei dazu $\frac{\partial}{\partial x} = \partial_x$ der Ableitungsoperator nach x und sei $f \in \mathbb{C}[x]$ (bzw. $\mathbb{C}[x]$). Man hat die folgende Kommutations-Relation zwischen dem *Ableitungsoperator* und dem *Multiplikations Operator* f:

$$\left[\frac{\partial}{\partial x}, f\right] = \frac{\partial f}{\partial x} \tag{1.5}$$

wobei die Rechte Seite die Multiplikation mit $\frac{\partial f}{\partial x}$, also dem bereits abteleiteten f, darstellt. Dies bedeutet, für alle $g \in \mathbb{C}[x]$ hat man

$$[\frac{\partial}{\partial x},f]\cdot g=\frac{\partial fg}{\partial x}-f\frac{\partial g}{\partial x}=\frac{\partial f}{\partial x}\cdot g\,.$$

Definition 1.3. Definiere nun den Ring \mathcal{D}_k als die Quotientenalgebra der freien Algebra, welche von dem Koeffizientenring in k zusammen mit dem Element ∂_x , erzeugt wird, Modulo der Relation (1.5). Wir schreiben diesen Ring auch als

- $A_1(\mathbb{C}) := \mathbb{C}[x] < \partial_x > \text{falls } k = \mathbb{C}[x] := \{ \sum_{i=1}^N a_i x^i \mid N \in \mathbb{N} \}, \text{ und nennen ihn die Weyl Algebra}$
- $\mathcal{D} := \mathbb{C}\{x\} < \partial_x > \text{falls } k = \mathbb{C}\{x\} := \{\sum_{i=1}^{\infty} a_i x^i \mid \text{pos. Konvergenz radius}\}$ die konvergenten Potenzreihen
- $\widehat{\mathcal{D}}:=\mathbb{C}[\![x]\!]<\partial_x>$ falls $k=\mathbb{C}[\![x]\!]:=\{\sum_{i=1}^\infty a_ix^i\}$ die formalen Potenzreihen
- $\mathcal{D}_K := \mathbb{C}(\{x\}) < \partial_x > \text{falls } k = K := \mathbb{C}\{x\}[x^{-1}] \text{ der Ring der Laurent Reihen}$
- $\mathcal{D}_{\widehat{K}} := \mathbb{C}(\!(x)\!) < \partial_x > \text{falls } k = \widehat{K} := \mathbb{C}[\![x]\!][x^{-1}]$ der Ring der formalen Laurent Reihen [1].

Bemerkung 1.4. 1. Es bezeichnet der Hut (^) das jeweils formale Pendant zu einem konvergentem Objekt. Dementsprechend könnte man auch $\mathbb{C}[\![x]\!] = \widehat{\mathbb{C}[\![x]\!]}$ schreiben.

- 2. Es gilt $\mathcal{D}[x^{-1}] = \mathcal{D}_K$ und $\widehat{\mathcal{D}}[x^{-1}] = \mathcal{D}_{\widehat{K}}$.
- 3. Offensichtlich erhält \mathcal{D}_k in kanonischer Weise eine nichtkommutative Ringstruktur, dies ist in [AV09, Kapittel 2 Section 1] genauer ausgeführt.

Proposition 1.5. Jedes Element in \mathcal{D}_k kann auf eindeutige Weise als $P = \sum_{i=0}^n a_i(x) \partial_x^i$, mit $a_i(x) \in k$, geschrieben werden.

 $[\]overline{}^{[1]} \text{Wird in [AV09] mit } \widehat{\mathcal{D}}_{\widehat{K}} \text{ bezeichnet.}$

Kommentar: Gilt das folgende??

$$\alpha_i(x)\partial_x^i \equiv \frac{\alpha_i}{x^i}(x\partial_x)^i \mod F_{i-1}\mathcal{D}$$

Kommentar: Besser?:

erst Filtrierung definieren und dadurch dann den Grad?

Definition 1.6. Sei $P = \sum_{i=0}^{n} a_i(x) \partial_x^i$, wie in Proposition 1.5, gegeben, so definiere

$$\deg P := \max \left\{ \{i \mid a_i \neq 0\} \cup \{-\infty\} \right\}$$

als den Grad (oder den ∂_x -Grad) von P.

Kommentar: Unabhängigkeit von Schreibung? Sabbah Script!

In natürlicher Weise erhält man die aufsteigende Filtrierung $F_N\mathcal{D}:=\{P\in\mathcal{D}|\deg P\leq N\}$ mit

$$\cdots \subset F_{-1}\mathcal{D} \subset F_0\mathcal{D} \subset F_1\mathcal{D} \subset \cdots \subset \mathcal{D}$$

und erhalte $gr_k^F \mathcal{D} \stackrel{\text{def}}{=} F_N \mathcal{D}/F_{N-1} \mathcal{D} = \{P \in \mathcal{D} | \deg P = N\} \cong \mathbb{C}\{x\}.$

Beweis. Sei $P \in F_N \mathcal{D}$ so betrachte den Isomorphismus:

$$F_N \mathcal{D}/F_{N-1} \mathcal{D} \to \mathbb{C}\{x\}; [P] = P + F_{N-1} \mathcal{D} \mapsto a_n(x)$$

Kommentar:

Proposition 1.7. Es gilt:

$$gr^F \mathcal{D} := \bigoplus_{N \in \mathbb{Z}} gr_N^F \mathcal{D} = \bigoplus_{N \in \mathbb{N}_0} gr_N^F \mathcal{D} \cong \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cong \mathbb{C}\{x\}[\xi] = \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cdot \xi^N$$

$$isomorph \ als \ grad. \ Ringe$$

also $gr^F \mathcal{D} \cong \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cdot \xi^N$ als graduierte Ringe.

Beweis. TODO: Treffen?

1.1.1 Alternative Definition / Sichtweise

Kommentar: Nur abgeschrieben

[Kas03, Chap 1.1.] Sei X eine 1-dimensionale komplexe Mannigfaltigkeit und \mathcal{O}_X die Garbe der holomorphen Funktionen auf X. Ein (holomorpher) differenzial Operator auf X ist ein Garben-Morphismus $P: \mathcal{O}_X \to \mathcal{O}_X$, lokal in der Koordinate x und mit holomorphen Funktionen $a_n(x)$ als

$$(Pu)(x) = \sum_{n>0} a_n(x)\partial_x^n u(x)$$

geschrieben (für $u \in \mathcal{O}_X$). Zusätzlich nehmen wir an, dass $a_n(x) \equiv 0$ für fast alle $n \in \mathbb{N}$ gilt. Wir setzten $\partial_x^n u(x) = \frac{\partial^n u}{\partial x^n}(x)$. Wir sagen ein Operator hat höchstens Ordnung m, falls $\forall n \geq m : \alpha_n(x) \equiv 0$.

Definition 1.8. Mit \mathcal{D}_X bezeichnen wir die Garbe von Differentialoperatoren auf X.

Die Garbe \mathcal{D}_X hat eine Ringstruktur mittels der Komposition als Multiplikation und \mathcal{O}_X ist ein Unterring von \mathcal{D}_X . Sei Θ_X die Garbe der Vektorfelder über über X. Es gilt, dass Θ_X in \mathcal{D}_X enthalten ist. Bemerke auch, dass Θ_X ein links \mathcal{O}_X -Untermodul, aber kein rechts \mathcal{O}_X -Untermodul ist.

Proposition 1.9. [Ark12, Exmp 1.1] Sei $X = \mathbb{A}^1 = \mathbb{C}$, $\mathcal{O}_X = \mathbb{C}[t]$ und $\Theta_X = \mathbb{C}[x]\partial_x$. Wobei ∂_x als $\partial_x(x^n) = nx^{n-1}$ wirkt. Dann sind die Differentialoperatoren

$$\mathcal{D}_X = \mathbb{C}[x, \partial_x],$$
 mit $\partial_x x - x \partial_x = 1.$

Somit stimmt die alternative Definition bereits mit der einfachen überein.

Kommentar:

Definition 1.10. [Ark12, Defn 2.1] Sei $X = \mathbb{A}^1$, $\mathcal{O}_X = \mathbb{C}[x]$ und $\mathcal{D}_X = [x, \partial_x]$ mit der Relation $[\partial_x, x] = 1$. Dann definieren wir die links \mathcal{D} -Moduln über \mathbb{A}^1 als die $\mathbb{C}[x, \partial_x]$ -Moduln. Sie werden geschrieben als $\mathcal{D} - mod(\mathbb{A}^1)$

1.2 (Links) \mathcal{D} -Moduln

Da \mathcal{D} ein nichtkommutativer Ring ist, muss man vorsichtig sein und zwischen links und rechts \mathcal{D} -Moduln unterscheiden. Wenn im folgendem von \mathcal{D} -Moduln gesprochen wird, werden immer links \mathcal{D} -Moduln gemeint.

Beispiel 1.11. Hier ein paar Beispiele für (links) \mathcal{D} -Moduln

Kommentar: [Ark12, Exmp 2.2]

- 1. \mathcal{D} ist ein links und rechts \mathcal{D} -Modul
- 2. $\mathcal{M} = \mathbb{C}[x]$ oder $\mathcal{M} = \mathbb{C}[x, x^{-1}]$ jeweils durch $x \cdot x^m = x^{m+1}$ und $\partial(x^m) = mx^{m-1}$
- 3. Führe formal, also ohne analytischen Hintergrund, ein Objekt $\exp(\lambda x)$ ein, mit $\partial(f(x)\exp(\lambda x)) = \frac{\partial f}{\partial x}\exp(\lambda x) + f\lambda\exp(\lambda x)$. So ist $\mathcal{M} = \mathbb{C}[x]\exp(\lambda x)$ ein \mathcal{D} -Modul.

Kommentar: [Ark12, Exmp 2.2]

4. Führe formal ein Symbol $\log(x)$ mit den Eigenschaften $\partial_x \log(x) = \frac{1}{x}$ ein. Erhalte nun das \mathcal{D} -Modul $\mathbb{C}[x] \log(x) + \mathbb{C}[x, x^{-1}]$. Dieses Modul ist über \mathcal{D} durch $\log(x)$ erzeugt und man hat

$$\mathbb{C}[x]\log(x) + \mathbb{C}[x, x^{-1}] = \mathcal{D} \cdot \log(x) = \mathcal{D}/\mathcal{D}(\partial_x x \partial_x).$$

Kommentar: [Gin98, Exmp 3.1.4]

Kommentar

Lemma 1.12. [Sab90, Lem 2.3.3.] Sei \mathcal{M} ein links \mathcal{D} -Modul von endlichem Typ, welches auch von endlichem Typ über $\mathbb{C}\{x\}$ ist. Dann ist \mathcal{M} bereits ein freies $\mathbb{C}\{x\}$ -Modul.

Beweis. Siehe [Sab90, Lem 2.3.3.].

Korollar 1.13. [Sab90, Cor 2.3.4.] Falls \mathcal{M} ein links \mathcal{D} -Modul von endlichem Typ, welches außerdem ein endlich dimensionaler Vektorraum ist, so ist schon $\mathcal{M} = \{0\}$.

1.3 Holonome \mathcal{D}_k -Moduln

Definition 1.14. Sei \mathcal{M}_k ein links \mathcal{D}_k -Modul. \mathcal{M}_k heißt *holonom*, falls es ein Element $m \in \mathcal{M}_k$ gibt, das \mathcal{M}_k als \mathcal{D}_k -Modul erzeugt. Im speziellen folgt damit, dass $\mathcal{M}_k \cong \mathcal{D}_k/\mathfrak{a}$ für ein $0 \neq \mathfrak{a} \triangleleft \mathcal{D}_k$.

Bemerkung 1.15. In [Cou95] wird der Begriff holonom über die Dimension definiert und bei [Sab90] über die charakteristische Varietät.

Bemerkung 1.16. Nach [Cou95, Prop 10.1.1] gilt

- ullet Submoduln und Quotienten von holonomen \mathcal{D}_k -Moduln sind holonom
- sowie endliche Summen von holonomen \mathcal{D}_k -Moduln sind holonom

und laut [Sab90, Thm. 4.2.3] gilt, dass

• für ein holonomes $\mathcal{D}_{\mathbb{C}\{x\}}$ -Modul $\mathcal{M}_{\mathbb{C}\{x\}}$ (bzw. ein $\mathcal{D}_{\mathbb{C}[\![x]\!]}$ -Modul $\mathcal{M}_{\mathbb{C}[\![x]\!]}$) ist die Lokalisierung

$$\mathcal{M}_{\mathbb{C}\{x\}}[x^{-1}] := \mathcal{M}_{\mathbb{C}\{x\}} \otimes_{\mathbb{C}\{x\}} K \qquad \text{(bzw. } \mathcal{M}_{\mathbb{C}\llbracket x \rrbracket}[x^{-1}] := \mathcal{M}_{\mathbb{C}\llbracket x \rrbracket} \otimes_{\mathbb{C}\llbracket x \rrbracket} \widehat{K} \text{)},$$

mit der $\mathcal{D}_{\mathbb{C}\{x\}}$ (bzw. $\mathcal{D}_{\mathbb{C}[x]}$) Modul Struktur durch

$$\partial_x(m\otimes x^{-k})=((\partial_x m)\otimes x^{-k})-km\otimes x^{-k-1}$$

wieder holonom.

Satz 1.17. Sei \mathcal{M}_k ein holonomes \mathcal{D}_k -Modul, dann gilt, dass seine Lokalisierung isomorph zu $\mathcal{D}_k/\mathcal{D}_k \cdot P$, mit einem $P \in \mathcal{D}_k$ ungleich Null, ist.

Beweis. Siehe [Sab90, Cor 4.2.8].

Kommentar:

Alternative Definition B

Definition 1.18. [Sab90, Def 3.3.1.] Sei \mathcal{M} lineares Differentialsystem (linear differential system) . Man sagt, \mathcal{M} ist holonom, falls $\mathcal{M} = 0$ oder falls $\operatorname{Car} \mathcal{M} \subset \{x = 0\} \cup \xi = 0$.

Lemma 1.19. [Sab90, Lem 3.3.8.] Ein \mathcal{D} -Modul ist holonom genau dann, wenn $\dim_{gr^F\mathcal{D},0} gr^F\mathcal{M} = 1$.

Beweis. Siehe [Sab90, Lem 3.3.8.]

Kommentar:

Alternative Definition A

Definition 1.20 (Holonome \mathcal{D} -Moduln). [Cou95, Chap 10 §1] Ein endlich generierter \mathcal{D} -Modul \mathcal{M} ist *holonom*, falls $\mathcal{M} = 0$ gilt, oder falls es die Dimension 1 hat.

Bemerkung 1.21. [Cou95, Chap 10 §1] Sei $\mathfrak{a} \neq 0$ ein Links-Ideal von \mathcal{D} . Es gilt nach [Cou95, Corollary 9.3.5], dass $d(\mathcal{D}/\mathfrak{a}) \leq 1$. Falls $\mathfrak{a} \neq \mathcal{D}$, dann gilt nach der Bernstein's inequality [Cou95, Chap 9 §4], dass $d(\mathcal{D}/\mathfrak{a}) = 1$. Somit ist \mathcal{D}/\mathfrak{a} ein holonomes \mathcal{D} -Modul.

2 Meromorphe Zusammenhänge

 κ_{Ommentar} : Sei \mathcal{M} ein \mathcal{D} -Modul ungleich Null von endlichem Typ. Falls die links-Multiplikation mit x bijektiv ist, so nennen wir \mathcal{M} einen meromorphen Zusammenhang. [Sab90, Chap 4]

Kommentar: [HTT07, Chap 5.1.1]

Wir beginnen mit der klassischen Theorie von Gewöhnlichen Differentialgleichungen. Sei V ein geeigneter Funktionenraum, beispielsweise der Raum der holomorphen Funktionen.

Definition 2.1 (Systeme von ODEs). Für eine Matrix $A = (a_{ij}(x))_{ij} \in M(n \times n, K)$ [1] definieren wir das System von gewöhnlichen Differentialgleichungen (kurz System von ODEs) als

$$\frac{d}{dx}u(x) = Au(x), \qquad (2.1)$$

wobei $u(x) = {}^t(u_1(x), \ldots, u_n(x))$ ein Spaltenvektor^[2] von unbekannten Funktionen. Wir sagen $v(x) = {}^t(v_1(x), \ldots, v_n(x))$ ist eine Lösung von (2.1), falls $v_i \in V$ für alle $i \in \{1, \ldots, n\}$ und v die Gleichung (2.1), auf einer Umgebung um die 0, erfüllt.

Durch setzen von w(x) = Tu(x) für eine invertierbare Matrix $T \in GL(n, K)$ erhält man aus 2.1 das System

$$\frac{d}{dx}w(x) = (T^{-1}AT - T^{-1}\frac{d}{dx}T)w(x),$$

und deshalb erhalten wir die folgende Definition.

$$^{[2]}$$
Für $v=(v_1,\ldots,v_n)$ ein Vektor, bezeichnet $^tv:=\begin{pmatrix}v_1\\\vdots\\v_n\end{pmatrix}$ den transponierten Vektor.

 $[\]overline{}^{[1]}$ Es bezeichnet $M(n \times m, k)$ die Menge der n mal m dimensionalen Matrizen mit Einträgen in k.

Definition 2.2 (Differenziell Äquivalent). Man nennt A und $B \in M(n \times n, K)$ (differenziell) äquivalent $(A \sim B)$ genau dann, wenn es ein $T \in GL(n, K)$ gibt, mit $B = T^{-1}AT - T^{-1}\frac{d}{dx}T$. Dementsprechend sind zwei Systeme von ODEs äquivalent, wenn ihre zugeordneten Matrizen differenziell äquivalent sind.

Kommentar:
$$1 = TT^{-1} \rightsquigarrow T'T^{-1} + T(T^{-1})' = 0$$

 $1 = T^{-1}T \rightsquigarrow (T^{-1})'T + T^{-1}T' = 0$

Mit elementarer Theorie über Gewöhnliche Differentialgleichungen lässt sich ein System von ODEs in eine einzige ODE der Form

$$\underbrace{\left(\underline{a_n\partial_x^n + a_{n-1}\partial_x^{n-1} + \dots + a_1\partial_x + a_0}\right) \cdot u(t) = 0,}_{\equiv:P} \tag{2.2}$$

mit $a_i \in K$ für alle $i \in \{0, ..., n\}$, umschreiben. Dieses so erhaltene $P \in \mathcal{D}_K$ ist ein sogenannter linearer Differentialoperator und es gilt

$$v(x)$$
 ist Lösung von $P \cdot u(x) = 0 \quad \Rightarrow \quad \forall Q \in \mathcal{D}_K$ ist $v(x)$ Lösung von $QP \cdot u(x) = 0$.

Also ist eine Lösung von $P \cdot u(x) = 0$ auch eine Lösung von $Q \cdot u(x) = 0$ für alle $Q \in \mathcal{D}_K \cdot P \triangleleft \mathcal{D}_K$.

комментат: Sei P ein linearer Differentialoperator mit Koeffizienten in $a_i(x) \in \mathbb{C}\{x\}$ geschrieben als $P = \sum_{i=0}^d a_i(x) \partial_x^i$. Man sagt eine Funktion $u \in \mathcal{F}$ ist Lösung von P, falls u die Gleichung Pu = 0 erfüllt. Man sagt 0 ist ein singulärer Punkt falls $a_d(0) = 0$. Falls 0 kein singulärer Punkt ist, hat P genau d über \mathbb{C} Unabhängige Lösungen in $\mathbb{C}\{x\}$.

2.1 Meromorphe Zusammenhänge

Nun wollen wir dieses klassische Gebilde nun in die moderne Sprache der meromorphen Zusammenhänge übersetzen.

Definition 2.3 (Meromorpher Zusammenhang). Ein meromorpher Zusammenhang (bei x = 0) ist ein Tupel $(\mathcal{M}_K, \partial)$ und besteht aus folgenden Daten:

• \mathcal{M}_K , ein endlich dimensionaler K-Vektor Raum

• einer \mathbb{C} -linearen Abbildung $\partial: \mathcal{M}_K \to \mathcal{M}_K$, genannt Derivation oder Zusammenhang, welche für alle $f \in K$ und $u \in \mathcal{M}_K$ die Leibnitzregel

$$\partial(fu) = f'u + f\partial u \tag{2.3}$$

erfüllen soll.

Bemerkung 2.4. Analog definiert man einen formalen meromorphen Zusammenhang $(\mathcal{M}_{\widehat{K}}, \partial)$ bestehend, analog wie in Definition 2.3, aus folgenden Daten:

- $\mathcal{M}_{\widehat{K}}$, ein endlich dimensionaler \widehat{K} -Vektor Raum
- einer \mathbb{C} -linearen Derivation $\partial: \mathcal{M}_{\widehat{K}} \to \mathcal{M}_{\widehat{K}}$, welche die *Leibnitzregel* (2.3) erfüllen soll.

Bemerkung 2.5. Später wird man auf die Angabe von ∂ verzichten und einfach \mathcal{M}_K als den meromorphen Zusammenhang bezeichnen, auch wird manchmal auf die Angabe von K im Subscript verzichtet, sofern klar ist, welches K gemeint ist.

Definition 2.6. Seien $(\mathcal{M}, \partial_{\mathcal{M}})$ und $(\mathcal{N}, \partial_{\mathcal{N}})$ zwei meromorphe Zusammenhänge über k. Eine k-lineare Abbildung $\varphi : \mathcal{M} \to \mathcal{N}$ ist ein Morphismus von meromorphen Zusammenhängen, falls sie $\varphi \circ \partial_{\mathcal{M}} = \varphi \circ \partial_{\mathcal{N}}$ erfüllt. In diesem Fall schreiben wir auch $\varphi : (\mathcal{M}, \partial_{\mathcal{M}}) \to (\mathcal{N}, \partial_{\mathcal{N}})$. Ein solcher Morphismus ist ein Isomorphismus, falls die Abbildung $\varphi : \mathcal{M} \to \mathcal{N}$ ein Isomorphismus von k-Vektorräumen ist.

Definition 2.7. Wir erhalten damit die Kategorie der meromorphen Zusammenhänge über k mit

Objekte: (M, ∂) meromorpher Zusammenhang über k

Morphismen: $(M, \partial) \xrightarrow{f} (M', \partial')$ Morphismus von meromorphen Zusammenhängen.

Lemma 2.8. Sei \mathcal{M}_K ein endlich dimensionaler K-Vektor Raum mit ∂_1 und ∂_2 zwei darauf definierte Derivationen, so gilt, die Differenz zweier Derivationen ist K-linear.

Beweis. Seien ∂_1 und ∂_2 zwei Derivationen auf \mathcal{M}_K . Da ∂_1 und ∂_2 \mathbb{C} -linear, ist $\partial_1 - \partial_2$ \mathbb{C} -linear, also muss nur noch gezeigt werden, dass $(\partial_1 - \partial_2)(fu) = f \cdot (\partial_1 - \partial_2)(u) \ \forall f \in K$ und $u \in \mathcal{M}_K$ gilt.

$$(\partial_1 - \partial_2)(fu) = \partial_1(fu) - \partial_2(fu)$$

$$= f'u + f\partial_1 u - f'u - f\partial_2 u$$

$$= \underbrace{f'u - f'u}_{=0} + f \cdot (\partial_1 u - \partial_2 u)$$

$$= f \cdot (\partial_1 - \partial_2)(u)$$

Kommentar:

Korollar 2.9. Für (K^r, ∂) ein meromorpher Zusammenhang existiert ein $A \in M(r \times r, K)$, so dass $\partial = \frac{d}{dx} - A$.

Beweis. Es sei (K^r, ∂) ein meromorpher Zusammenhang. So ist $\frac{d}{dx} - \partial : K^r \to K^r$ K-linear, also lässt sich durch eine Matrix $A \in M(r \times r, K)$ darstellen , also ist, wie behauptet, $\partial = \frac{d}{dx} - A$.

Kommentar: [HTT07, Seite 129]

Definition 2.10 (Zusammenhangsmatrix). Sei $(\mathcal{M}_K, \partial)$ ein meromorpher Zusammenhang so wähle eine K-Basis $\{e_i\}_{i\in\{1,\dots,n\}}$ von \mathcal{M} . Dann ist die Zusammenhangsmatrix bzgl. der Basis $\{e_i\}_{i\in\{1,\dots,n\}}$ die Matrix $A = (a_{ij}(x))_{i,j\in\{1,\dots,n\}} \in M(n \times n, K)$ definiert durch

$$a_{ij}(x) = -^t e_i \partial e_j .$$

Damit ist, bezüglich der Basis $\{e_i\}_{i\in\{1,\ldots,n\}}$, die Wirkung von ∂ auf $u=:{}^t(u_1,\ldots,u_n)$ beschrieben durch

$$\partial(u) = \partial\left(\sum_{i=1}^{n} u_i(x)e_i\right)$$

$$= \sum_{i=1}^{n} \left(u_i'(x) - \sum_{j=1}^{n} a_{ij}u_j(x)\right)e_i$$

$$= \sum_{i=1}^{n} u_i'(x)e_i - \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}u_j(x)e_i$$

$$= u'(x) - Au(x)$$

Damit ist die Bedingung $\partial u(x) = 0$, für $u(x) = \sum_{i=1}^{n} u_i e_i$, äquivalent zu der Gleichung

$$u'(x) = Au(x)$$

für $u(x) = {}^t(u_1(x), \ldots, u_n(x))$. Damit haben wir gesehen, dass jeder meromorphe Zusammanhang (\mathcal{M}, ∂) ausgestattet mit einer K-Basis $\{e_i\}_{i \in \{1, \ldots, n\}}$ von \mathcal{M} zu einem System von gewöhnlichen Differentialgleichungen zugeordnet werden kann.

Kommentar:

Proposition 2.11 (Transformationsformel). [HTT07, Chap 5.1.1] In der Situation

 $mit\ arphi, \psi\ und\ T\ K$ -Linear und $\partial, (\frac{d}{dx}+A)\ und\ (\frac{d}{dx}+B)\ \mathbb{C}$ -Linear, gilt: Der meromorphe Zusammenhang. $\frac{d}{dx}+A\ auf\ K^r\ wird\ durch\ Basiswechsel\ T\in GL(r,K)\ zu$

$$\frac{d}{dx} + (T^{-1} \cdot T' + T^{-1}AT) = \frac{d}{dx} + B$$

Definition 2.12. Wenn wir umgekehrt mit einer Matrix $A = (a_{ij}(x)) \in M(n \times n, K)$, welche eine System von ODEs beschreibt, beginnen, können wir durch

$$\mathcal{M}_A := \bigoplus_{i=1}^n Ke_i$$
 und $\partial_A \sum_{i=1}^n u_i e_i := \sum_{i=1}^n \left(\frac{\partial u_i}{\partial x} - \sum_{j=1}^n a_{ij}(x) u_j \right) e_i$

den assoziierten meromorphen Zusammenhang $(\mathcal{M}_A, \partial_A)$ definieren.

Lemma 2.13. Sind A_1 , $A_2 \in M(n \times n, K)$ zwei Matrizen, die zwei Systeme von ODEs beschreiben, dann gilt

$$\frac{d}{dx}u(x) = A_1u(x) \qquad ist \ \ddot{a}quivalent \ zu \qquad \frac{d}{dx}u(x) = A_2u(x)$$

genau dann, wenn

$$(\mathcal{M}_{A_1}, \partial_{A_1})$$
 ist äquivalent zu $(\mathcal{M}_{A_2}, \partial_{A_2})$.

Damit haben wir eine Eins zu Eins Beziehung zwischen meromorphen Zusammenhängen und Systemen von ODEs. Genauer betrachtet wird dies beispielsweise in [HTT07, Sec 5.1].

2.2 Äquivalenz zu holonomen lokalisierten \mathcal{D} -Moduln

Satz 2.14. Ein meromorpher Zusammenhang bestimmt ein holonomes lokalisiertes \mathcal{D}_K -Modul und umgekehrt.

Beweis. Dies wird beispielsweise in [Sab90, Thm 4.3.2] bewiesen.

Lemma/Definition 2.15. [AV09, Satz 4.12] [Sab90, Thm 4.3.2] Ist \mathcal{M}_K ein meromorpher Zusammenhang, dann existiert ein $P \in \mathcal{D}_K$ so dass $\mathcal{M}_K \cong \mathcal{D}_K/\mathcal{D}_K \cdot P$. So ein wird P dann als Minimalpolynom von \mathcal{M}_K bezeichnet.

Beweis. [AV09, Satz 4.12]
$$\Box$$

Kommentar:

Bemerkung 2.16. [Sab90, Proof of Theorem 5.4.7]

$$\dim_{\widehat{K}} \mathcal{M}_{\widehat{K}} = \deg P \text{ wenn } \mathcal{M}_{\widehat{K}} = \mathcal{D}/\mathcal{D} \cdot P$$

Kommentar: [Sab90, 4.2] Let \mathcal{M} be a left \mathcal{D} -module. First we consider it only as a $\mathbb{C}\{x\}$ -module and let $\mathcal{M}[x^{-1}]$ be the localized module.

Lemma 2.17 (Lemma vom zyklischen Vektor). Sei \mathcal{M}_K ein meromorpher Zusammenhang. Es existiert ein Element $m \in \mathcal{M}_K$ und eine ganze Zahl d so dass $m, \partial_x m, \ldots, \partial_x^{d-1} m$ eine K-Basis von \mathcal{M}_K ist.

Beweis. Ein Beweis ist beispielsweise in [Sab90, Thm 4.3.3] oder ausführlicher in [AV09, Satz 4.8]. \Box

Korollar 2.18. In der Situation von Lemma 2.17 gibt es ein $P \in \mathcal{D}_K$ mit ∂ -Grad von P ist gleich d und $P \cdot m = 0$, in diesem Fall ist P ein Minimalpolynom zu \mathcal{M}_K , also gilt $\mathcal{M}_K = \mathcal{D}_K/\mathcal{D}_K \cdot P$. Explizit ergibt sich aus der Basisdarstellung

$$\partial_x^d m = \alpha_{d-1} \partial_x^{d-1} m + \alpha_{d-2} \partial_x^{d-2} m + \dots + \alpha_1 \partial_x m + \alpha_0 m \qquad \alpha_i \in K$$

von $\partial_x^d m$, dass

$$\mathcal{M}_K = \mathcal{D}_K / \mathcal{D}_K \cdot (\underbrace{\partial^d - \alpha_{d-1} \partial_x^{d-1} - \alpha_{d-2} \partial_x^{d-2} - \dots - \alpha_1 \partial_x - \alpha_0}_{=:P})$$

gilt.

Satz 2.19. [AV09, Seite 64] Ist $P = P_1 \cdot P_2$ mit $P_1, P_2 \in \mathcal{D}_K$ so gilt

$$\mathcal{D}_K/\mathcal{D}_K \cdot P \cong \mathcal{D}_K/\mathcal{D}_K \cdot P_1 \oplus \mathcal{D}_K/\mathcal{D}_K \cdot P_2$$
.

Beweis. [AV09, Seite 57-64]

Korollar 2.20. Sei $P = P_1 \cdot P_2$ mit $P_1, P_2 \in \mathcal{D}_K$ wie in Satz 2.19 so gilt

$$\mathcal{D}_K/\mathcal{D}_K \cdot (P_1 \cdot P_2) \cong \mathcal{D}_K/\mathcal{D}_K \cdot (P_2 \cdot P_1)$$

Beweis. Denn:

$$\mathcal{D}_{K}/\mathcal{D}_{K} \cdot P = \mathcal{D}_{K}/\mathcal{D}_{K} \cdot (P_{1} \cdot P_{2})$$

$$\cong \mathcal{D}_{K}/\mathcal{D}_{K} \cdot P_{1} \oplus \mathcal{D}_{K}/\mathcal{D}_{K} \cdot P_{2}$$

$$= \mathcal{D}_{K}/\mathcal{D}_{K} \cdot P_{2} \oplus \mathcal{D}_{K}/\mathcal{D}_{K} \cdot P_{1}$$

$$\cong \mathcal{D}_{K}/\mathcal{D}_{K} \cdot (P_{2} \cdot P_{1})$$

2.3 Newton Polygon

Kommentar: Quelle: sabbah?

sabbah mach alles formal, Barbara mach alles konvergent

Jedes $P \in \mathcal{D}_{\widehat{K}}$, also insbesondere auch jedes $P \in \mathcal{D}_K$, lässt sich eindeutig als

$$P = \sum_{k=0}^{n} a_k(x) \partial_x^k = \sum_{k=0}^{n} \left(\sum_{l=-N}^{\infty} \alpha_{kl} x^l \right) \partial_x^k$$

mit $\alpha_{ml} \in \mathbb{C}$ schreiben. Betrachte das zu P dazugehörige

$$H(P) := \bigcup_{\substack{m,l \text{ mit } \alpha_{ml} \neq 0}} \left((m,l-m) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) \subset \mathbb{R}^2$$
$$= \bigcup_{\substack{m \text{ mit } a_m \neq 0}} \left((m,deg(a_m) - m) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) \subset \mathbb{R}^2.$$

Definition 2.21. Das Randpolygon der konvexen Hülle conv(H(P)) von H(P) heißt das Newton Polygon von P und wird als N(P) geschrieben.

Bemerkung 2.22. Claude Sabbah definiert das Newton-Polygon in [Sab90, 5.1] auf eine andere Weise. Er schreibt

$$P = \sum_{k} a_k(x) (x\partial_x)^k$$

mit $a_k(x) \in \mathbb{C}\{x\}$ und definiert das Newton-Polygon als das Randpolygon der konvexen Hülle von

$$H'(P) := \bigcup_{m \text{ mit } a_m \neq 0} \left((m, deg(a_m)) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) \subset \mathbb{R}^2.$$

Definition 2.23. Die Menge slopes(P) sind die nicht-vertikalen Steigungen von N(P), die sich echt rechts von $\{0\} \times \mathbb{R}$ befinden.

- \bullet Schreibe $\mathcal{P}(\mathcal{M})$ für die Menge der zu \mathcal{M} gehörigen slopes.
- P heißt regulär oder regulär singulär : \Leftrightarrow slopes $(P) = \{0\}$ oder deg P = 0, sonst irregulär singulär.
- Ein meromorpher Zusammenhang $\mathcal{M}_{\widehat{K}}$ (bzw. \mathcal{M}_K) heißt regulär singulär, falls es ein regulär singuläres $P \in \mathcal{D}_{\widehat{K}}$ (bzw. $P \in \mathcal{D}_K$) gibt, mit $\mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$ (bzw. $\mathcal{M}_K \cong \mathcal{D}_K/\mathcal{D}_K \cdot P$).

Beispiel 2.24. 1. Ein einfaches Beispiel ist $P_1 = x^1 \partial_x^2$. Es ist abzulesen, dass

$$m=2$$
 und $l=1$

so dass

$$H(P_1) = ((2, 1 - 2) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0}) = \{(u, v) \in \mathbb{R}^2 | u \leq 2, v \geq -1\}.$$

In Abbildung 2.1 ist der Quadrant, der zum Monom $x\partial_x^2$ gehört (blau) sowie das Newton Polygon eingezeichnet. Offensichtlich ist slopes $(P_1) = \{0\}$ und damit ist P_1 regulär singulär.

2. Sei $P_2 = x^4(x+1)\partial_x^4 + x\partial_x^2 + \frac{1}{x}\partial_x + 1$, so kann man das entsprechende Newton Polygon konstruieren. Das Newton Polygon wurde in Abbildung 2.2 visualisiert. Man erkennt, dass $\mathcal{P}(P_2) = \{0, \frac{2}{3}\}$ ist.

Abbildung 2.1: Newton-Polygon zu $P_1 = x \partial_x^2$

Abbildung 2.2: Newton-Polygon zu P_2

Bemerkung 2.25. Sei P ein Minimalpolynom zu \mathcal{M}_K . Für jedes $f \in \mathcal{D}_K^{\times[3]}$ gilt, dass $f \cdot P$ ebenfalls ein Minimalpolynom von cM_K ist, denn $\mathcal{D}_K \cdot P = \mathcal{D}_K \cdot (f \cdot P) \triangleleft \mathcal{D}_K$. Allerdings sind die zugehörigen Newton-Polygone möglicherweise vertikal verschoben.

Nach [Sab90, Seite 25] gilt, dass das Newton-Polygon, bis auf vertikales verschieben, nur von dem assoziierten meromorphen Zusammenhang abhängt. Dies wird auch in [AV09, Bem 5.4] diskutiert.

Definition 2.26. In einem Polynom $P = \varepsilon x^p \partial_x^q + \sum_{k=0}^n \left(\sum_{l=-N}^\infty \alpha_{kl} x^l \right) \partial_x^k$, mit $\varepsilon, \alpha_{kl} \in \mathbb{C}, p, q \in \mathbb{Z}$ sind die restlichen Monome *Therme im Quadranten* von $\varepsilon x^p \partial_x^q$, falls für alle $k \in \mathbb{N}$ und $l \in \mathbb{Z}_{\geq -N}$ mit $\alpha_{kl} \neq 0$ gilt: $k \leq q$ und $l - k \geq p - q$.

Bemerkung 2.27. • Anschaulich bedeutet das, dass

$$H(\varepsilon x^p \partial_x^q) = \left((q, p - q) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) \supset \left((k, l - k) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) = H(\alpha_{kl} x^l \partial_x^k),$$

für alle relevanten k und l.

 $\bullet\,$ Sei Pein Polynom, bei dem alle Koeffizienten im Quadranten von $\varepsilon x^p\partial_x^q$ sind, dann gilt:

$$H(P) = H(\varepsilon x^p \partial_x^q + \sum_{k=0}^n \left(\sum_{l=-N}^\infty \alpha_{kl} x^l \right) \partial_x^k)$$

$$= H(\varepsilon x^p \partial_x^q + \mathbf{T.i.Q. \ von} \ x^p \partial_x^q)$$

$$= H(\varepsilon x^p \partial_x^q)$$

$$\Rightarrow N(P) = N(\varepsilon x^p \partial_x^q).$$

Also können Therme, die sich bereits im Quadranten eines anderen Therms befinden und nicht der Therm selbst sind, vernachlässigt werden, wenn das Newton-Polygon gesucht ist. Das **T.i.Q.** ist eine hier Abkürzung für Therme im Quadranten.

 $^{^{[3]}}$ Für einen Ring R, bezeichnet R^\times die Einheitengruppe von R.

Kommentar:

Beispiel 2.28.

$$(x^a \partial_x^b)^c = x^{ac} \partial_x^{bc} + \mathbf{T.i.Q.} \text{ von } x^{ac} \partial_x^{bc}$$

und somit gilt

$$\begin{split} N((x^a\partial_x^b)^c) &= N(x^{ac}\partial_x^{bc} + \mathbf{T.i.Q. \ von} \ x^{ac}\partial_x^{bc}) \\ &= N(x^{ac}\partial_x^{bc}) \end{split}$$

Kommentar:

Lemma 2.29. [Sab90, 5.1]

- 1. $\mathcal{P}(\mathcal{M}_K)$ ist nicht Leer, wenn $\mathcal{M}_K \neq \{0\}$
- 2. Wenn man eine exakte Sequenz $0 \to \mathcal{M}'_K \to \mathcal{M}_K \to \mathcal{M}''_K \to 0$ hat, so gilt $\mathcal{P}(\mathcal{M}_K) = \mathcal{P}(\mathcal{M}'_K) \cup \mathcal{P}(\mathcal{M}''_K)$.

Siehe auch [Sab90, Thm 5.3.4], Dort Steht:

Wir erhalten die Exakte Sequenz

$$0 \to \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P_1 \to \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P \to \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P_2 \to 0$$

Korollar 2.30. [Sab90, Thm 5.3.4] $\mathcal{P}(P) = \mathcal{P}(P_1) \cup \mathcal{P}(P_2)$ und $\mathcal{P}(P_1) \cap \mathcal{P}(P_2) = \emptyset$

Satz 2.31. Sei $\mathcal{M}_{\widehat{K}}$ ein formaler meromorpher Zusammenhang und sei $\mathcal{P}(\mathcal{M}_{\widehat{K}}) = \{\Lambda_1, \dots, \Lambda_r\}$ die Menge seiner slopes. Es existiert eine (bis auf Permutation) eindeutige Zerlegung

$$\mathcal{M}_{\widehat{K}} = \bigoplus_{i=1}^r \mathcal{M}_{\widehat{K}}^{(i)}$$

in formale meromorphe Zusammenhänge mit $\mathcal{P}(\mathcal{M}_{\widehat{K}}^{(i)}) = \{\Lambda_i\}.$

Beweis. Einen Beweis hierfür findet man in [Sab90, Thm 5.3.1] oder [AV09, 5.15].

Bemerkung 2.32. In Satz 2.31 ist es wirklich notwendig, formale meromorphe Zusammenhänge zu betrachten, denn das Resultat gilt nicht für konvergente meromorphe Zusammenhänge.

Kommentar:

Beispiel 2.33. [Sab90, Ex 5.3.6] Sei $P = x(x\partial_x)^2 + x\partial_x + \frac{1}{2}$. So sieht das Newton-Polygon wie folgt aus

Abbildung 2.3: Newton Polygon zu $P = x(x\partial_x)^2 + x\partial_x + \frac{1}{2}$

mit den slopes $\mathcal{P}(P) = \{0,1\} =: \{\Lambda_1, \Lambda_2\}$. Nach dem Satz **2.31** existiert eine Zerlegung $P = P_1 \cdot P_2$ mit $\mathcal{P}(P_1) = \{\Lambda_1\}$ und $\mathcal{P}(P_2) = \{\Lambda_2\}$. Durch scharfes hinsehen erkennt man, dass

$$P = x(x\partial_x)^2 + x\partial_x + \frac{1}{2}$$
...
$$= (x(x\partial_x) + \dots) \cdot (x\partial_x + \dots)$$
...
$$= P_1 \cdot P_2$$

anders geschrieben

$$P = x(x\partial_x)^2 + x\partial_x + \frac{1}{2}$$

$$= xx\partial_x x\partial_x + x\partial_x + \frac{1}{2}$$

$$= x^2(x\partial_x + 1)\partial_x + x\partial_x + \frac{1}{2}$$

$$= x^3\partial_x^2 + x^2\partial_x + x\partial_x + \frac{1}{2}$$

$$= x^3\partial_x^2 + (x^2 + x)\partial_x + \frac{1}{2}$$

So sieht das Newton-Polygon wie folgt aus

2.3.1 Die Filtrierung ${}^{\ell}V\mathcal{D}_{\widehat{K}}$ und das ℓ -Symbol

Kommentar: TODO: mache alle Linearformen L zu ℓ

Sei $\Lambda = \frac{\lambda_0}{\lambda_1} \in \mathbb{Q}_{\geq 0}$ vollständig gekürtzt, also mit λ_0 und λ_1 in \mathbb{N} relativ prim. Definiere die Linearform $\ell(s_0, s_1) = \lambda_0 s_0 + \lambda_1 s_1$ in zwei Variablen, sei $P \in \mathcal{D}_{\widehat{K}}$. Falls $P = x^a \partial_x^b$ mit $a \in \mathbb{Z}$ und $b \in \mathbb{N}$, setzen wir

$$\operatorname{ord}_{\ell}(P) = \ell(b, b - a)$$

und falls $P = \sum_{i=0}^{d} b_i(x) \partial_x^i$ mit $b_i \in \widehat{K}$, setzen wir

$$\operatorname{ord}_{\ell}(P) = \max_{\{i \mid a_i \neq 0\}} \ell(i, i - v(b_i)).$$

Definition 2.34 (Die Filtrierung ${}^{\ell}V\mathcal{D}_{\widehat{K}}$). [Sab90, Seite 25] Nun können wir die aufsteigende Filtration ${}^{\ell}V\mathcal{D}_{\widehat{K}}$, welche mit \mathbb{Z} indiziert ist, durch

$${}^{\ell}V_{\lambda}\mathcal{D}_{\widehat{K}} := \{P \in \mathcal{D}_{\widehat{K}} \mid \operatorname{ord}_{\ell}(P) \leq \lambda\}$$

definieren.

Bemerkung 2.35. Man hat $\operatorname{ord}_{\ell}(PQ) = \operatorname{ord}_{\ell}(P) + \operatorname{ord}_{\ell}(Q)$ und falls $\lambda_0 \neq 0$, hat man auch, das $\operatorname{ord}_{\ell}([P,Q]) \leq \operatorname{ord}_{\ell}(P) + \operatorname{ord}_{\ell}(Q) - 1$.

Definition 2.36 (ℓ -Symbol). [Sab90, Seite 25] Falls $\lambda_0 \neq 0$, ist der graduierte Ring $gr^{\ell V}\mathcal{D}_{\widehat{K}} \stackrel{\text{def}}{=} \bigoplus_{\lambda \in \mathbb{Z}} gr_{\lambda}^{\ell V}\mathcal{D}_{\widehat{K}}$ ein kommutativer Ring. Bezeichne die Klasse von ∂_x in dem Ring durch ξ , dann ist der Ring isomorph zu $\widehat{K}[\xi]$. Sei $P \in \mathcal{D}_{\widehat{K}}$, so ist $\sigma_{\ell}(P)$ definiert als die Klasse von P in $gr_{\operatorname{ord}_{\ell}(P)}^{\ell V}\mathcal{D}_{\widehat{K}}$. σ_{ℓ} wird hierbei als das ℓ -Symbol Bezeichnet.

Zum Beispiel ist $\sigma_{\ell}(x^a \partial_x^b) = x^a \xi^b$.

Bemerkung 2.37. Bei [Sab90] wird der Buchstabe L anstatt ℓ für Linearformen verwendet, dieser ist hier aber bereits für $\mathbb{C}\{t\}$ reserviert. Dementsprechend ist die Filtrierung dort als ${}^LV\mathcal{D}_{\widehat{K}}$ und das ℓ -Symbol als L-Symbol zu finden.

Bemerkung 2.38. Ist $P \in \mathcal{D}_{\widehat{K}}$ geschrieben als $P = \sum_i \sum_j \alpha_{ij} x^j \partial_x^i$. So erhält man $\sigma_\ell(P)$ durch die Setzung

$$\sigma_{\ell}(P) = \sum_{\{(i,j)|\ell(i,i-j) = \operatorname{ord}_{\ell}(P)\}} \alpha_{ij} x^{j} \xi^{i}.$$

Beweis. TODO \Box

Kommentar: Ich will die Linearform vermeiden und direkt die skalare Steigung verwenden

Definition 2.39 (Stützfunktion). Die Funktion

$$\omega_P : [0, \infty) \to \mathbb{R}, \omega_P(t) := \inf\{v - tu \mid (u.v) \in N(P)\}$$

heißt Stützfunktion und wird in [AV09] als Alternative zu dieser Ordnung verwendet.

Bemerkung 2.40. Wenn $\ell(x_0, s_1)$ wie oben aus Λ entstanden ist, so gilt

$$\omega_P(\Lambda) = ord_{\ell}(P)$$
.

Kommentar: TODO: ist ℓ Slope (gehört zu Slope) dann hat $\sigma_{\ell}(P)$ zumindest 2 Monome

2.4 Operationen auf meromorphen Zusammenhängen

2.4.1 Tensorprodukt

Kommentar

Definition 2.41 (Tensorprodukt). [Sta12, 3(Algebra).11.21]

Für eine Abbildung $f:M\to M'$ definiere das Tensorprodukt davon über R mit N als

$$\operatorname{id}_N \otimes f: N \otimes_R M \to N \otimes_R M'$$

 $n \otimes m \mapsto n \otimes f(m)$

Bemerkung 2.42. Hier einige Rechenregeln für das Tensorprodukt,

$$(M \otimes_R N) \otimes_S L \cong M \otimes_R (N \otimes_S L) \tag{2.4}$$

$$M \otimes_R R \cong M \tag{2.5}$$

Sei $f: M' \to M$ eine Abbildung, so gilt

$$N \otimes_R (M/\operatorname{im}(f)) \cong N \otimes_R M/\operatorname{im}(\operatorname{id}_R \otimes f)$$
(2.6)

Proposition 2.43. Seien $(\mathcal{M}, \partial_{\mathcal{M}})$ und $(\mathcal{N}, \partial_{\mathcal{N}})$ meromorphe Zusammenhänge. Sei $n \otimes n \in \mathcal{M} \otimes_K \mathcal{N}$. Durch Setzten von

$$\partial_{\otimes}(m\otimes n) = \partial_{\mathcal{M}}(m)\otimes n + m\otimes \partial_{\mathcal{N}}(n) \tag{2.7}$$

als die Wirkung von ∂ auf das K-Modul $\mathcal{M} \otimes_K \mathcal{N}$, wird $(\mathcal{M} \otimes_K \mathcal{N}, \partial)$ zu einem meromorphen Zusammenhang.

Kommentar: [Sch, Prop 4.1.1]

Kommentar:

Beweis. Klar \Box

Lemma 2.44. [Sab90, Ex 5.3.7] Falls \mathcal{N} regulär und nicht Null, dann ist die Menge der Slopes von $\mathcal{M} \otimes \mathcal{N}$ genau die Menge der Slopes von \mathcal{M} .

Beweis. TODO \Box

2.4.2 pull-back und push-forward

Kommentar: Nach [Sab07, 1.a] und [HTT07, 1.3].

Es sei

$$\rho: \mathbb{C} \to \mathbb{C}, t \mapsto x := \rho(t)$$
 $\in t\mathbb{C}[\![t]\!]$

eine polynomielle Abbildung mit Bewertung $p \ge 1$. Hier werden wir meistens $\rho(t) = t^p$ für ein $p \in \mathbb{N}$ betrachten. Diese Funktion induziert eine Abbildung

$$\rho^*: \mathbb{C}\{x\} \hookrightarrow \mathbb{C}\{t\}, f \mapsto f \circ \rho \qquad \qquad \text{bzw.} \qquad \qquad \rho^*: \mathbb{C}[\![x]\!] \hookrightarrow \mathbb{C}[\![t]\!], f \mapsto f \circ \rho \,.$$

Analog erhalten wir

$$\rho^*: K \hookrightarrow L := \mathbb{C}(\!\{t\}\!), f \mapsto f \circ \rho \qquad \text{bzw.} \qquad \rho^*: \widehat{K} \hookrightarrow \widehat{L} := \mathbb{C}(\!(t)\!), f \mapsto f \circ \rho \,,$$

wobei L (bzw. \widehat{L}) eine endliche Körpererweiterung von K (bzw. \widehat{K}) ist.

Kommentar: TODO: damit wird
$$\widehat{L}$$
 zu einem \widehat{K} Vektorraum.

Sei $\mathcal{M}_{\widehat{K}}$ ein endlich dimensionaler $\mathbb{C}(\!(t)\!)$ Vektorraum ausgestattet mit einem Zusammenhang ∇ .

Der pull-backoder das $inverse\ Bild\ \rho^+\mathcal{M}_{\widehat{K}}$ von $(\mathcal{M}_{\widehat{K}},\nabla)$ ist der Vektorraum

$$\rho^*\mathcal{M}_{\widehat{K}}:=\widehat{L}\otimes_{\widehat{K}}\mathcal{M}_{\widehat{K}}\stackrel{\mathrm{def}}{=}\mathbb{C}(\!(t)\!)\otimes_{\mathbb{C}(\!(x)\!)}\mathcal{M}_{\mathbb{C}(\!(x)\!)}$$

mit dem pull-back Zusammenhang $\rho^* \nabla$ definiert durch

$$\partial_t(1\otimes m) := \rho'(t)\otimes \partial_x m. \tag{2.8}$$

Für ein allgemeines $\varphi \otimes m \in \rho^* \mathcal{M}_{\widehat{K}}$ gilt somit

$$\partial_t(\varphi \otimes m) := \rho'(t)(\varphi \otimes \partial_x m) + \frac{\partial \varphi}{\partial t} \otimes m.$$
 (2.9)

Kommentar: Nun wollen wir uns noch genauer mit dem pull-back beschäftigen, und stellen uns die Frage:

Wie sieht die Wirkung der Derivation auf dem pull-back Zusammenhang aus? Für $\rho(t) = t^p$ betrachten wir beispielsweise ein Element der Form $f(x)m = f(\rho(t))m \in \rho^*\mathcal{M}_{\widehat{K}}$, dann gilt

$$\partial_x(f(x)m) = \partial_{\rho(t)}(f(\rho(t))m)$$

$$= f'(\rho(t)) \cdot \underbrace{\frac{\partial(f(t))}{\partial(f(t))}}_{=1} m + f(\rho(t)) \underbrace{\partial_{\rho(t)}}_{=\partial_x} m$$

$$= f'(\rho(t))m + f(\rho(t))\partial_x m = (\star)$$

$$\rho'(t)^{-1}\partial_t(f(x)m) = \frac{1}{pt^{p-1}}\partial_t(f(t^p)m)$$

$$= f'(t^p)m + f(t^p)\frac{1}{pt^{p-1}}\partial_t m = (\star)$$

Also gilt $\partial_t(f(t)m) = \rho'(u)^{-1}\partial_u(f(t)m)$ und somit lässt sich vermuten, dass die Wirkung von ∂_x gleich der Wirkung von $\rho'(t)^{-1}\partial_t$ ist. In der Tat stimmt diese Vermutung, wie das folgende Lemma zeigt.

Kommentar: Sei
$$f(x)m = f(\rho(t))m \in \rho^* \mathcal{M}_{\widehat{K}}$$
. Es gilt, dass $\partial_x (f(x)m) = \partial_{\rho(t)} (f(\rho(t))m)$

$$= f'(\rho(t)) \cdot \underbrace{\frac{\partial (f(t))}{\partial (f(t))}}_{=1} m + f(\rho(t)) \underbrace{\partial_{\rho(t)} m}_{=\partial_x}$$

$$= f'(\rho(t))m + f(\rho(t))\partial_x m$$

$$= f'(t^p)m + f(t^p) \frac{1}{pt^{p-1}} \partial_t m$$

$$= \frac{1}{pt^{p-1}} \partial_t (f(t^p)m)$$

$$= \rho'(t)^{-1} \partial_t (f(t^p)m)$$

und damit lässt sich vermuten, dass die Wirkung von ∂_x genau die Wirkung von $\rho'(t)^{-1}\partial_t$ ist. In der Tat ist dies, nach dem folgenden Satz, wahr. **Satz 2.46.** In der Situation von Lemma 2.45, mit $\mathcal{M}_{\widehat{K}} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P(x, \partial_x)$ für ein $P(x, \partial_x) \in \mathcal{D}_{\widehat{K}}$, gilt

$$\rho^* \mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot P(\rho(t), \rho'(t)^{-1} \partial_t).$$

Für $P(\rho(t), \rho'(t)^{-1}\partial_t)$ werden wir auch $\rho^*P(t, \partial_t)$ schreiben.

Kommentar: [Cou95, Seite 130] Holonomic modules are preserved under this construction.

Kommentar: [Sab90, Page 34] Sei $\mathcal{M}_{\widehat{K}}$ ein formaler meromorpher Zusammenhang. Man definiert $\pi^*\mathcal{M}_{\widehat{K}}$ als den Vektor Raum über $\widehat{L}: \pi^*\mathcal{M}_{\widehat{K}} = \widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}}$. Dann definiert man die Wirkung von ∂_t durch: $t\partial_t \cdot (1 \otimes m) = q(1 \otimes (x\partial_x \otimes m))$ und damit

$$t\partial_t \cdot (\varphi \otimes m) = q(\varphi \otimes (x\partial_x \cdot m)) + ((t\frac{\partial \varphi}{\partial t}) \otimes m).$$

Man erhält damit die Wirkung von $\partial_t = t^{-1}(t\partial_t)$.

Für den Beweis von Satz 2.46 werden zunächst ein paar Lemmata bewiesen.

Lemma 2.47. Es gilt $\rho^* \mathcal{D}_{\widehat{K}} \stackrel{\text{def}}{=} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \cong \mathcal{D}_{\widehat{L}}$ als $\mathcal{D}_{\widehat{L}}$ -Vektorräume, mittels

Kommentar: TODO: VR oder Moduln??

$$\Phi: \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\cong} \mathcal{D}_{\widehat{L}}$$

$$f(t) \otimes Q(x, \partial_x) \longmapsto f(t)Q(\rho(t), \rho'(t)^{-1}\partial_t)$$

Kommentar:

Beweis. Wir wollen zeigen, dass $\mathcal{D}_{\widehat{L}}$ die universelle Eigenschaft für das Tensorprodukt $\widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}}$ erfüllt, in diesem Fall folgt die Behauptung. Zunächst sei die bilineare Abbildung

$$\kappa: \widehat{L} \times \mathcal{D}_{\widehat{K}} \to \mathcal{D}_{\widehat{L}}, \, (f(t), Q(x, \partial_x)) \mapsto f(t) Q(\rho(t), \rho'(t)^{-1} \partial_t)$$

gegeben, und nach der universellen Eigenschaft des Tensorproduktes gibt es genau eine lineare Abbildung, so dass das folgende Diagramm kommutiert.

Dieser so erhaltene eindeutige Morphismus ist genau unser Φ .

Beweis. Prüfe zunächst die Injektivität. Sei $f(t) \otimes Q(x, \partial_x) \in \ker(\Phi)$ so, dass

$$0 = \Phi(f(t) \otimes Q(x, \partial_x))$$
$$= f(t)Q(\rho(t), \rho'(t)^{-1}\partial_t)$$

und, da hier alles nullteilerfrei ist, ist die Bedingung äquivalent zur folgenden

$$\Leftrightarrow 0 = f(t) \qquad \text{oder} \qquad 0 = Q(\rho(t), \rho'(t)^{-1}\partial_t)$$

$$\Leftrightarrow 0 = f(t) \qquad \text{oder} \qquad 0 = Q(x, \partial_x)$$

$$\Leftrightarrow 0 = f(t) \otimes Q(x, \partial_x).$$

$$\Leftrightarrow$$
 0 = $f(t)$ oder 0 = $Q(x, \partial_x)$

$$\Leftrightarrow$$
 $0 = f(t) \otimes Q(x, \partial_x)$.

Kommentar: TODO: korrekt?

Nun zur Surjektivität. Sei $g(t,\partial_t)=\sum_k a_k(t)\partial_t^k\in\mathcal{D}_{\widehat{L}}$ so gilt

$$g(t, \partial_t) = \sum_k a_k(t) \partial_t^k$$

$$= \sum_{k} a_k(t) \underbrace{(\rho'(t)\rho'(t)^{-1})^k \partial_t^k}_{=1}$$
$$= \sum_{k} a_k(t)\rho'(t)^k (\rho'(t)^{-1} \partial_t)^k$$

und zerlege $a_k(t)\rho'(t)^k = \sum_{i=0}^{p-1} t^i a_{k,i}(t^p)$. Damit gilt dann

$$g(t,\partial_t) = \sum_{k} \sum_{i=0}^{p-1} t^i a_{k,i}(t^p) (\rho'(t)^{-1} \partial_t)^k$$
$$= \sum_{i=0}^{p-1} t^i \Big(\sum_{k} a_{k,i}(t^p) (\rho'(t)^{-1} \partial_t)^k \Big)$$
$$= \Phi\Big(\sum_{i=0}^{p-1} t^i \otimes (\sum_{k} a_{k,i}(x) (\partial_x)^k) \Big).$$

Damit haben wir ein Urbild gefunden und die Surjektivität gezeigt.

Lemma 2.48. Das in Lemma 2.47 definierte Φ ist sogar ein Morphismus von meromorphen Zusammenhängen, also gilt sogar $\rho^*\mathcal{D}_{\widehat{K}} \stackrel{\text{def}}{=} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \cong \mathcal{D}_{\widehat{L}}$ als meromorphe Zusammenhänge.

Beweis. Sei ∂_t wie gewohnt und ∂_{\otimes} der Zusammenhang auf $\widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}}$, welcher wie in Proposition 2.43 definiert sei. Wir wollen noch zeigen, dass $\partial_t \circ \Phi = \Phi \circ \partial_{\otimes}$ gilt, also dass Φ ein Morphismus von meromorphen Zusammenhängen ist. Betrachte dazu das Diagramm

$$\widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\partial_{\otimes}} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \\
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\
\mathcal{D}_{\widehat{L}} \xrightarrow{\partial_{t}} \xrightarrow{\partial_{t}} \mathcal{D}_{\widehat{L}}$$

und für einen Elementartensor $f(t) \otimes Q(x, \partial_x) \in \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}}$

Kommentar: Q wie in großen Beweis später, Namenskollision

folgt dann

$$f(t) \otimes Q(x, \partial_x) \longmapsto \partial_t f(t) \otimes Q(x, \partial_x) + \rho'(t) \otimes \partial_x Q(x, \partial_x)$$

$$\downarrow \Phi \qquad \qquad \partial_t f(t) Q(x, \partial_x) + \underbrace{\rho'(t) \cdot \rho'(t)^{-1}}_{=1} \partial_t Q(\rho(t), \rho'(t)^{-q} \partial_t)$$

$$\downarrow f(t) Q(\rho(t), \rho'(t)^{-1} \partial_t) \longmapsto \partial_t f(t) Q(x, \partial_x) + \partial_t Q(\rho(t), \rho'(t)^{-q} \partial_t)$$

also kommutiert das Diagramm.

Kommentar:

Bemerkung 2.49. BENÜTZT BEREITS DAS NÄCHSTE LEMMA...

Das soeben, in Lemma 2.47, definierte Φ erfüllt für Elementartensoren $1\otimes m\in \widehat{L}\otimes_{\widehat{K}}\mathcal{D}_{\widehat{K}}$

$$\partial_{u}(1 \otimes m) \stackrel{\text{def}}{=} \rho'(t) \otimes \partial_{x} m$$

$$\stackrel{\Phi}{\mapsto} \underbrace{\rho'(t)\rho'(t)^{-1}}_{=1} \partial_{t} m(\rho(t), \rho'(t)^{-1} \partial_{t})$$

$$= \partial_{t} m(\rho(t), \rho'(t)^{-1} \partial_{t})$$

$$= \dots$$

und somit (2.8) wie gewollt.

Lemma 2.50. Sei $P(x, \partial_x) \in \mathcal{D}_K$. In der Situation

$$\widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes \underline{\cdot} P(x, \partial_{x})} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \\
\downarrow \qquad \qquad \qquad \downarrow \\
\mathcal{D}_{\widehat{L}} \xrightarrow{\alpha} \mathcal{D}_{\widehat{L}}$$

 $mit \ \Phi \ wie \ in \ Lemma \ 2.47 \ macht \ \alpha := \underline{} \cdot P(\rho(t), \rho'(t)^{-1} \partial_t) \ das \ Diagramm \ kommutativ.$

Beweis. Betrachte ein $f(t) \otimes Q(x, \partial_x) \in \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}}$. So gilt

$$f(t) \otimes Q(x, \partial_x) \xrightarrow{\operatorname{id} \otimes_{-} \cdot P(x, \partial_x)} f(t) \otimes Q(x, \partial_x) \cdot P(x, \partial_x)$$

$$\downarrow^{\Phi}$$

$$f(t)Q(\rho(t), \rho'(t)^{-1}\partial_t) \cdot P(\rho(t), \rho'(t)^{-1}\partial_t)$$

und

$$\int_{\Phi} \Phi$$

$$f(t)Q(\rho(t), \rho'(t)^{-1}\partial_t) \longmapsto f(t)Q(\rho(t), \rho'(t)^{-1}\partial_t) \cdot P(\rho(t), \rho'(t)^{-1}\partial_t)$$

also kommutiert das Diagramm mit $\alpha = \underline{} \cdot P(\rho(t), \rho'(t)^{-1} \partial_t).$

Beweis zu Satz 2.46. Sei $P \in \mathcal{D}_{\widehat{K}}$ und $\mathcal{M}_{\widehat{K}} := \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$. Wir wollen zeigen, dass

$$\rho^* \mathcal{M}_{\widehat{K}} \stackrel{!}{\cong} \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot Q$$

für $Q = P(\rho(t), \rho'(t)^{-1}\partial_t)$ gilt. Betrachte dazu die kurze Sequenz

$$0 \longrightarrow \mathcal{D}_{\widehat{K}} \xrightarrow{-\cdot P} \mathcal{D}_{\widehat{K}} \xrightarrow{\pi_{\widehat{K}}} \mathcal{M}_{\widehat{K}} \longrightarrow 0$$

$$u \longmapsto u \cdot P$$

$$u \longmapsto u \mod \mathcal{D}_{\widehat{K}} \cdot P$$

ist exakt, weil $\mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot P = \operatorname{coker}(_ \cdot P)$. Weil \widehat{K} flach ist, da Körper, ist auch, nach Anwenden des Funktors $\widehat{L} \otimes_{\widehat{K}}$, die Sequenz

$$0 \longrightarrow \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes_{-} \cdot P} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes \pi_{\widehat{K}}} \widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}} \longrightarrow 0$$

$$\rho^{*} \mathcal{M}_{\widehat{K}}$$

exakt.

Kommentar: Deshalb ist
$$\rho^* \mathcal{M}_{\widehat{K}} \cong \operatorname{coker}(\operatorname{id} \otimes \underline{\hspace{0.5cm}} \cdot P) \qquad \qquad (\text{weil exakt})$$

$$\cong \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} / \left((\widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}}) \cdot (\operatorname{id} \otimes \underline{\hspace{0.5cm}} \cdot P) \right) \qquad (\text{nach def. von coker})$$

Also mit Φ wie in Lemma 2.47 und $Q(t, \partial_t) := P(\rho(t), \rho'(t)^{-1}\partial_t)$ nach Lemma 2.50 ergibt sich

$$0 \longrightarrow \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes \underline{\cdot} P} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \longrightarrow \widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}} \longrightarrow 0$$

$$\downarrow \\ \cong \Phi \qquad \qquad \downarrow \\ \downarrow \\ \mathcal{D}_{\widehat{L}} \longrightarrow Q \qquad \mathcal{D}_{\widehat{L}}$$

als kommutatives Diagramm. Nun, weil $_\cdot Q$ injektiv ist, lässt sich die untere Zeile zu einer exakten Sequenz fortsetzen

$$0 \longrightarrow \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes \underline{-} \cdot P} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes \pi_{\widehat{K}}} \widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

und damit folgt, wegen Isomorphie der Kokerne, die Behauptung.

Lemma 2.51. Sei $\mathcal{P}(\mathcal{M}_{\widehat{K}}) = \{\Lambda_1, \dots, \Lambda_r\}$ die Menge der Slopes von $\mathcal{M}_{\widehat{K}}$ und $\rho : t \mapsto x := t^p$, dann gilt für $\mathcal{P}(\rho^*\mathcal{M}_{\widehat{K}}) = \{\Lambda'_1, \dots, \Lambda'_r\}$, dass $\Lambda'_n = p \cdot \Lambda_n$.

Beweis. Siehe [Sab90, 5.4.3] für einen Beweis.

Kommentar:

Beweis. Sei
$$\mathcal{M}_{\widehat{K}} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$$
 mit $P = \sum a_i(x)\partial_x^i$, dann ist $\rho^*\mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot P'$ mit $H(P'(t,\partial_t)) = H(P(\rho(t),\rho'(t)^{-1}\partial_t))$

$$= H(\sum_i a_i(\rho(t))(\rho'(t)^{-1}\partial_t)^i i)$$

$$= H(\sum_i a_i(\rho(t))(\rho'(t)^{-1}\partial_t)^i i)$$

$$= H(\sum_{i} a_{i}(t^{p})((p \cdot t^{p-1})^{-1}\partial_{t})^{i})$$

$$= H(\sum_{i} a_{i}(t^{p})(p \cdot t^{p-1})^{-i}\partial_{t}^{i})$$

$$= H(\sum_{i} a_{i}(t^{p})t^{-i(p-1)}\partial_{t}^{i})$$

$$= \dots$$

Beispiel 2.52 (pull-back). Hier nun ein explizit berechneter pull-back. Wir wollen $\mathcal{M}_{\widehat{K}} := \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$ bzgl. $P := x^3 \partial_x^2 - 4x^2 \partial_x - 1$ betrachten. Unser Ziel ist es hier ganzzahlige Slopes zu erhalten. Es gilt slopes $(P) = \{\frac{1}{2}\}$ (siehe Abbildung 2.5). Wende den pull-back mit $\rho: t \to x := t^2$ an. Zunächst ein paar Nebenrechnungen, damit wir Satz 2.46 einfacher anwenden können:

$$\begin{split} \partial_x &\leadsto \frac{1}{\rho'(t)} \partial_t = \frac{1}{2t} \partial_t \,, \\ \partial_x^2 &\leadsto (\frac{1}{2t} \partial_t)^2 = \frac{1}{2t} \partial_t (\frac{1}{2t} \partial_t) = \frac{1}{2t} (-\frac{1}{2t^2} \partial_t + \frac{1}{2t} \partial_t^2) = \frac{1}{4t^2} \partial_t^2 - \frac{1}{4t^3} \partial_t \,. \end{split}$$

Also ergibt Einsetzen

$$\begin{split} \rho^* P &= (t^2)^3 (\frac{1}{4t^2} \partial_t^2 - \frac{1}{4t^3} \partial_t) - 4(t^2)^2 \frac{1}{2t} \partial_t - 1 \\ &= \frac{1}{4} t^4 \partial_t^2 - t^3 \frac{1}{4} \partial_t - 4t^3 \frac{1}{2} \partial_t - 1 \\ &= \frac{1}{4} t^4 \partial_t^2 - 2 \frac{1}{4} t^3 \partial_t - 1 \,. \end{split}$$

Also ist $\rho^*P = \frac{1}{4}t^4\partial_t^2 - \frac{1}{2}t^3\partial_t - 1$ mit $\operatorname{slopes}(\rho^*P) = \{1\}$ (siehe Abbildung 2.6) und somit $\rho^*\mathcal{M}_{\widehat{K}} = \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot (\frac{1}{4}t^4\partial_t^2 - \frac{1}{2}t^3\partial_t - 1).$

Sei $\mathcal{N}_{\widehat{L}}$ ein endlich dimensionaler \widehat{L} -VR mit Verknüpfung, so definiere den push-forward wie folgt.

Definition 2.53 (push-forward). Der push-forward oder das direktes Bild $\rho_+ \mathcal{N}_{\widehat{L}}$ von $\mathcal{N}_{\widehat{L}}$ ist

- der \widehat{K} -VR $\rho_*\mathcal{N}$ ist definiert als der \mathbb{C} -Vektor Raum $\mathcal{N}_{\widehat{L}}$ mit der \widehat{K} -Vektor Raum Struktur durch die skalare Multiplikation $\cdot: \widehat{K} \times \mathcal{N}_{\widehat{L}} \to \mathcal{N}_{\widehat{L}}$ und $(f(x),m) \mapsto f(x) \cdot m := f(\rho(t))m$
- mit der Wirkung ∂_x beschrieben durch $\rho'(t)^{-1}\partial_t$.

 $N(\rho^*P)$

Abbildung 2.5: Newton Polygon zu

$$P = x^3 \partial_x^2 - 4x^2 \partial_x - 1$$

Abbildung 2.6: Newton Polygon zu

$$\rho^* P = \frac{1}{4} t^4 \partial_t^2 - \frac{1}{2} t^3 \partial_t - 1$$

Newton-Polygon zu ${\cal P}$

Beispiel 2.54 (push-forward). Für $\rho:t\rightarrow u^2,\,\varphi=\frac{1}{u^2}$ betrachte

$$\mathcal{E}^{\varphi} \cong \widehat{\mathcal{D}}/\widehat{\mathcal{D}} \cdot (\partial_u + \partial_u \frac{1}{u^2})$$
$$= \widehat{\mathcal{D}}/\widehat{\mathcal{D}} \cdot (\underbrace{\partial_u + \frac{2}{u^3}}_{=:P})$$

mit slopes(P) = {2} (siehe Abbildung 2.4.2). Bilde nun das Direkte Bild über ρ , betrachte dazu

$$\partial_u + \frac{2}{u^3} = 2u(\frac{1}{2u}\partial_u + \frac{1}{u^4})$$
$$= 2u(\rho'(u)^{-1}\partial_u + \frac{1}{u^4})$$

$$=2u(\partial_t+\frac{1}{t^2})$$

Also ist $\rho_+ \mathscr{E}^{\varphi} \cong \widehat{\mathcal{D}}/\widehat{\mathcal{D}} \cdot (\partial_t + \frac{1}{t^2})$ mit $\rho_+ P = \partial_t + \frac{1}{t^2}$ und slopes $(\rho_+ P) = \{1\}$ (siehe Abbildung 2.4.2)

Satz 2.55. [Sab07, 1.a] Es gilt die Projektionsformel

$$\rho_{+}(\mathcal{N}_{\widehat{L}} \otimes_{\widehat{L}} \rho^{+} \mathcal{M}_{\widehat{K}}) \cong \rho_{+} \mathcal{N}_{\widehat{L}} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}}. \tag{2.10}$$

Beweis.

$$\rho_{+}(\mathcal{N}_{\widehat{L}} \otimes_{\widehat{L}} \rho^{+} \mathcal{M}_{\widehat{K}}) = \rho_{+}(\mathcal{N}_{\widehat{L}} \otimes_{\widehat{L}} (\widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{L}})) \qquad (\text{def von } \rho^{+} \mathcal{M}_{\widehat{K}})$$

$$\cong \rho_{+}((\mathcal{N}_{\widehat{L}} \otimes_{\widehat{L}} \widehat{L}) \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}}) \qquad (\text{Rechenregeln Tensorprodukt})$$

$$\cong \rho_{+}(\mathcal{N}_{\widehat{L}} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}}) \qquad (\text{Rechenregeln Tensorprodukt})$$

$$= \rho_{+} \mathcal{N}_{\widehat{L}} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}}$$

2.4.3 Fouriertransformation

Definition 2.56 (Fouriertransformation). Sei $P = \sum_{i=0}^{d} a_i(x) \partial_x^i$, dann ist die fouriertransformation P gegeben durch

$$\mathcal{F}_P := \mathcal{F}_P(z, \partial_z) = \sum_{i=0}^d a_i(\partial_z)(-z)^i$$
.

Kommentar: [Blo04, Def 3.1] [GL04] [AV09, Def 6.1]

Definition 2.57 (Fouriertransformation von lokalisierten holonomen D-Moduln). Ist $\mathcal{M}_{\widehat{K}} = \widehat{K}/\widehat{K} \cdot P$ so ist die Fouriertransformierte davon ${}^{\mathcal{F}}\mathcal{M}_{\widehat{K}} = \widehat{K}/\widehat{K} \cdot \mathcal{F}_P(x, \partial_x)$.

Beispiel 2.58. Sei $P=x^3\partial_x^4+x^2\partial_x^2+x$ dann ist die Fouriertransformierte davon

$$\mathcal{F}_{P} = \partial_{z}^{3}(-z)^{4} + \partial_{z}^{2}(-z)^{2} + \partial_{z}$$

$$= \partial_{z}^{2}z^{2} + \partial_{z}^{3}z^{4} + \partial_{z}$$

$$= z^{4}\partial_{z}^{3} + [\partial_{z}^{3}, z^{4}] + z^{2}\partial_{z}^{2} + [\partial_{z}^{2}, z^{2}] + \partial_{z}$$

$$= z^{4}\partial_{z}^{3} + \sum_{i=1}^{3} \frac{4 \cdot 3 \dots (5-i) \cdot 3 \cdot 2 \dots (4-i)}{i!} z^{4-i}\partial_{z}^{3-i} + z^{2}\partial_{z}^{2}$$

$$+ \sum_{i=1}^{2} \frac{2 \cdot 1 \dots (3-i) \cdot 2 \cdot 1 \dots (3-i)}{i!} z^{2-i}\partial_{z}^{2-i} + \partial_{z}$$

$$= z^{4}\partial_{z}^{3} + 12z^{3}\partial_{z}^{2} + \frac{72}{2}z^{2}\partial_{z} + \frac{144}{6}z + z^{2}\partial_{z}^{2} + 4z\partial_{z} + \frac{4}{2} + \partial_{z}$$

$$= z^{4}\partial_{z}^{3} + (12z^{3} + z^{2})\partial_{z}^{2} + (36z^{2} + 4z + 1)\partial_{z} + 24z + 2$$

mit den Newton Polygonen wie in Abbildung 2.7 und 2.8.

Abbildung 2.7: Newton-Polygon zu P

Abbildung 2.8: Newton-Polygon zu \mathcal{F}_P

Kommentar:

2.4.4 Betrachten bei Unendlich

2.5 Twisten von meromorphen Zusammenhängen

Kommentar: ALT:

Definition 2.59. [Sab07, 1.a] Sei $\varphi \in \widehat{K}$. Wir schreiben $\mathscr{E}_{\widehat{K}}^{\varphi}$ für den (formalen) Rang 1 Vektorraum $\mathbb{C}(\!(x)\!) \stackrel{\text{def}}{=} \widehat{K}$ ausgestattet mit dem Zusammenhang $\nabla = \partial_x + \partial_x \varphi$, im speziellen

also $\nabla_{\partial_x} 1 = \partial_x 1 = \varphi'$.

Definition 2.60. [Sab07, 1.a] Sei $\varphi \in \widehat{K}$. Wir schreiben $\mathscr{E}_{\widehat{K}}^{\varphi}$ für den (formalen) Rang 1 Vektorraum $e \cdot \widehat{K}$, wobei $e \in \mathscr{E}_{\widehat{K}}^{\varphi}$ Basis ist, ausgestattet mit $\partial_x (f \cdot e) = (\frac{\partial f}{\partial x} + f \cdot \frac{\partial \varphi}{\partial x}) \cdot e$, im speziellen also $\partial_x e = \varphi'$.

Bemerkung 2.61. 1. Auf die Angabe des Rang 1 Vektorraums im Subscript wird, falls dieser klar ist, meist verzichtet.

- 2. Es ist $\mathscr{E}^{\varphi} \cong \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot (\partial_x \varphi'(x))$, denn für den zyklischen Vektor e gilt, dass $\partial_x \cdot e = \varphi'(x) \cdot e$.
- 3. Wir werden oft e = 1 als Basis nehmen.

$$\mathbf{Lemma 2.62.} \ F\ddot{u}r \, \varphi(x) = \sum_{i=-p}^{\infty} a_i x^i \in \widehat{K} \ mit \, a_{-p} \neq 0 \ gilt, \ dass \, \mathcal{P}(\mathscr{E}_{\widehat{K}}^{\varphi}) = \begin{cases} \{p\} &, \ wenn \ p \geq 0 \\ \{0\} &, \ wenn \ p < 0 \end{cases}.$$

Beweis. Es ist

$$\varphi'(x) = \sum_{i=-p}^{\infty} i a_i x^{i-1}$$

$$= \sum_{i=-p+1}^{\infty} (i+1) a_{i+1} x^i$$

$$= \underbrace{-p a_{-p} x^{-(p+1)}}_{\neq 0} + \sum_{i=-p}^{\infty} (i+1) a_{i+1} x^i$$

und damit wissen wir, dass die einzigen zwei Punkte, die Ecken des Newton Polygons sein können, (1,-1) und (0,-(p+1)) sind. Da einer der Punkte auf der vertikalen Achse liegt, kann es insgesamt nur einen Slope Λ geben, welcher sich wie folgt berechnet:

$$\begin{split} &\Lambda = \max\{0, \frac{-1 - (-(p+1))}{1}\}\\ &= \max\{0, p\}\\ &= \begin{cases} p & \text{, wenn } p \geq 0\\ 0 & \text{, wenn } p < 0 \end{cases} \end{split}$$

Bemerkung 2.63. Nach [Sab07, 1.a] gilt $\mathscr{E}^{\varphi} \cong \mathscr{E}^{\psi}$ genau dann wenn $\varphi \equiv \psi \mod \mathbb{C}[\![x]\!]$.

Kommentar: [Cou95, Chap 5 §2]

Lemma 2.64. Sei $\mathcal{M} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$ ein meromorpher Zusammenhang mit P von Grad q und mit e als ein zyklischer Vektor, so ist $e \otimes \underbrace{1}_{\in \widehat{K}}$ ein zyklischer Vektor für $\mathcal{N} := \mathcal{M} \otimes_{\widehat{K}} \mathscr{E}_{\widehat{K}}^{\psi}$.

Beweis. Da der Grad von P gleich q ist, ist nach Lemma 2.65 auch Q von grad q und somit $\dim_{\widehat{K}} \mathcal{N} = q$. Also reicht es zu zeigen, dass $e \otimes 1$, $\partial_x(e \otimes 1)$, $\partial_x^2(e \otimes 1)$,..., $\partial_x^{q-1}(e \otimes 1)$ ein linear unabhängiges System ist. Es gilt

$$\partial_x(e\otimes 1) = (\partial_x e)\otimes 1 + x\otimes \partial_x 1$$

$$= (\partial_x e)\otimes 1 + e\otimes \psi'(x)$$

$$= (\partial_x e)\otimes 1 + \psi'(x)(e\otimes 1)$$

$$\partial_x^2(e\otimes 1) = \partial_x((\partial_x e)\otimes 1 + \psi'(x)(e\otimes 1))$$

$$= (\partial_x^2 e)\otimes 1 + (\partial_x e)\otimes \psi'(x) + \psi''(x)(e\otimes 1) + \psi'(x)((\partial_x e)\otimes 1 + e\otimes \psi'(x))$$

$$= (\partial_x^2 e)\otimes 1 + \psi'(x)(\partial_x e)\otimes 1 + \psi''(x)(e\otimes 1) + \psi'(x)(\partial_x e)\otimes 1 + \psi'(x)^2(e\otimes 1)$$

$$= (\partial_x^2 e)\otimes 1 + 2\psi'(x)(\partial_x e)\otimes 1 + (\psi''(x) + \psi'(x)^2)(e\otimes 1)$$

$$\vdots$$

$$\partial_x^{q-1}(e\otimes 1) = (\partial_x^{q-1} e)\otimes 1 + \lambda_{q-2}(\partial_x^{q-2} e)\otimes 1 + \dots + \lambda_1(\partial_x e)\otimes 1 + \lambda_0(e\otimes 1)$$

und somit ist dann

$$\begin{pmatrix} \boldsymbol{e} \otimes 1 \\ \partial_x(\boldsymbol{e} \otimes 1) \\ \partial_x^2(\boldsymbol{e} \otimes 1) \\ \vdots \\ \partial_x^{q-2}(\boldsymbol{e} \otimes 1) \\ \partial_x^{q-1}(\boldsymbol{e} \otimes 1) \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ \psi'(x) & 1 & 0 & & \vdots \\ \star & \star & 1 & 0 & & \vdots \\ \star & \cdots & \ddots & \ddots & \vdots \\ \star & \cdots & \cdots & \star & 1 & 0 \\ \lambda_0 & \lambda_1 & \cdots & \lambda_{q-2} & 1 \end{pmatrix} \begin{pmatrix} \boldsymbol{e} \otimes 1 \\ (\partial_x \boldsymbol{e}) \otimes 1 \\ (\partial_x^2 \boldsymbol{e}) \otimes 1 \\ \vdots \\ (\partial_x^{q-2} \boldsymbol{e}) \otimes 1 \\ (\partial_x^{q-1} \boldsymbol{e}) \otimes 1 \end{pmatrix}.$$

Da bekanntlich $e \otimes 1$, $(\partial_x e) \otimes 1$, $(\partial_x^2 e) \otimes 1$,..., $(\partial_x^{q-1} e) \otimes 1$ linear unabhängig sind, gilt dies auch für $e \otimes 1$, $\partial_x (e \otimes 1)$, $\partial_x^2 (e \otimes 1)$,..., $\partial_x^{q-1} (e \otimes 1)$. Damit folgt die Behauptung.

Lemma 2.65. Sei $\mathcal{M}_{\widehat{K}} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P(x, \partial_x)$ und sei $\varphi \in \widehat{K}$. So gilt

$$\mathcal{M}_{\widehat{K}} \otimes_{\widehat{K}} \mathscr{E}^{\varphi} = \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot Q(x, \partial_x)$$

$$mit \ Q(x, \partial_x) = P(x, \partial_x - \frac{\partial \varphi}{\partial x}).$$

Beweisskizze. Zeige, dass $P(x, \partial_x - \frac{\partial \varphi}{\partial x})e \otimes 1 = 0$ gilt, da $e \otimes 1$ eine zyklischer Vektor ist folgt damit aus Gradgründen die Behauptung. Genauer ausgeführt wird dies in [Hei10, Seiten 39 bis 44].

Kommentar:

$$P(x, \partial_x - \frac{\partial \varphi}{\partial x})e \otimes 1 = TODO$$

Korollar 2.66. Sei $\mathcal{M}_{\widehat{K}}$ und φ wie in 2.65, so gilt

$$\mathcal{M}_{\widehat{K}} \otimes_{\widehat{K}} \mathscr{E}^{\varphi} \otimes_{\widehat{K}} \mathscr{E}^{-\varphi} = \mathcal{M}_{\widehat{K}}.$$

Beweis. Denn

$$\begin{split} \mathcal{M}_{\widehat{K}} \otimes_{\widehat{K}} \mathscr{E}^{\varphi} \otimes_{\widehat{K}} \mathscr{E}^{-\varphi} &= \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot P(x, \partial_x) \otimes_{\widehat{K}} \mathscr{E}^{\varphi} \otimes_{\widehat{K}} \mathscr{E}^{-\varphi} \\ &= \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot P(x, \partial_x - \frac{\partial \varphi}{\partial x}) \otimes_{\widehat{K}} \mathscr{E}^{-\varphi} \\ &= \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot P(x, \partial_x - \frac{\partial \varphi}{\partial x} - \frac{\partial (-\varphi)}{\partial x}) \\ &= \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot P(x, \partial_x) = \mathcal{M}_{\widehat{K}} \,. \end{split}$$

Sei $\rho: t \mapsto x := t^p$ und $\mu_{\xi}: t \mapsto \xi t$.

Lemma 2.67. [Sab07, Lem 2.4] Für alle $\varphi \in \widehat{L}$ gilt

$$\rho^+ \rho_+ \mathscr{E}^{\varphi} = \bigoplus_{\xi^p = 1} \mathscr{E}^{\varphi \circ \mu_{\xi}}.$$

Beweis. Wir wollen zeigen, dass das folgende Diagramm, für einen passenden Isomorphismus, kommutiert:

$$\rho^{+}\rho_{+}\mathscr{E}^{\varphi(u)} \xrightarrow{\cong} \bigoplus_{\xi^{p}=1} \mathscr{E}^{\varphi\circ\mu_{\xi}} \\
\downarrow \partial_{t} \qquad \qquad \downarrow \partial_{t} \\
\rho^{+}\rho_{+}\mathscr{E}^{\varphi(u)} \xrightarrow{\cong} \bigoplus_{\xi^{p}=1} \mathscr{E}^{\varphi\circ\mu_{\xi}}$$

Es sei oBdA $\varphi \in t^{-1}\mathbb{C}[t^{-1}]$, dies ist nach Bemerkung 2.63 berechtigt. Wir wählen eine \widehat{L} Basis e des Rang 1 \widehat{L} -Vektorraum \mathscr{E}^{φ} und damit erhält man die Familie $e, te, ..., t^{p-1}e$ als \widehat{K} -Basis von $\rho_+\mathscr{E}^{\varphi}$. Es gilt

$$\partial_x t^k \mathbf{e} = \rho'(t)^{-1} \partial_t t^k \mathbf{e}$$

$$= \rho'(t)^{-1} (t^k \partial_t + k t^{k-1}) \mathbf{e}.$$
(2.11)

Durch die Setzung $e_k := t^{-k} \otimes_{\widehat{K}} t^k e$ wird die Familie $e := (e_0, ..., e_{p-1})$ eine \widehat{L} -Basis von $\rho^+ \rho_+ \mathcal{E}^{\varphi}$. Zerlege nun $t\varphi'(t)$, wie in Anhang A beschrieben, in

$$t\varphi'(t) = \sum_{j=0}^{p-1} t^j \psi_j(t^p) \qquad \in t^{-2} \mathbb{C}[t^{-1}]$$
 (2.12)

mit $\psi_j \in \mathbb{C}[x^{-1}]$ für alle j > 0 und $\psi_0 \in x^{-1}\mathbb{C}[x^{-1}]$. Damit gilt

$$t\partial_t e_k = \sum_{i=0}^{p-1-k} t^i \psi_i(t^p) e_{k+1} + \sum_{i=p-k}^{p-1} t^i \psi_i(t^p) e_{k+i-p},$$

denn:

$$t\partial_{t}e_{k} = t \partial_{t}(t^{-k} \otimes_{\widehat{K}} t^{k}e)$$

$$\stackrel{(2.7)}{=} t (-kt^{-k-1} \otimes_{\widehat{K}} t^{k}e + pt^{p-1} \cdot t^{-k} \otimes_{\widehat{K}} \partial_{x}(\underbrace{t^{k}e}))$$

$$\stackrel{(2.11)}{=} -kt^{-k} \otimes_{\widehat{K}} t^{k}e + pt^{p-1}t^{-k+1} \otimes_{\widehat{K}} (pt^{p-1})^{-1}(kt^{k-1}e + t^{k}\varphi'(t)e)$$

$$= -kt^{-k} \otimes_{\widehat{K}} t^{k}e + t^{-k+1} \otimes_{\widehat{K}} (kt^{k-1}e + t^{k}\varphi'(t)e)$$

$$= -kt^{-k} \otimes_{\widehat{K}} t^{k}e + t^{-k+1} \otimes_{\widehat{K}} kt^{k-1}e + t^{-k+1} \otimes_{\widehat{K}} t^{k}\varphi'(t)e$$

$$= t^{-k} \otimes_{\widehat{K}} t^{k} t\varphi'(t) e$$

$$\stackrel{(2.12)}{=} t^{-k} \otimes_{\widehat{K}} t^{k} \sum_{i=0}^{p-1} t^{i}\psi_{i}(t^{p}) e$$

$$= \sum_{i=0}^{p-1} \psi_{i}(t^{p})(t^{-k} \otimes_{\widehat{K}} t^{k}t^{i}e)$$

$$= \sum_{i=0}^{p-1} t^{i}\psi_{i}(t^{p})(t^{-k-i} \otimes_{\widehat{K}} t^{k+i}e)$$

$$= \sum_{i=0}^{p-1-k} t^{i}\psi_{i}(t^{p})e_{k+i} + \sum_{i=p-k}^{p-1} t^{i}\psi_{i}(t^{p})e_{k+i-p}.$$

Sei

$$V := egin{pmatrix} 0 & & & 1 \ 1 & 0 & & \ & \ddots & \ddots & \ & & 1 & 0 \end{pmatrix},$$

so dass $\mathbf{e} \cdot V = (\mathbf{e}_1, ..., \mathbf{e}_{p-1}, \mathbf{e}_0)$ gilt. Es gilt

$$t\partial_t \mathbf{e} = \mathbf{e} \left[\sum_{j=0}^{p-1} t^j \psi_j V^j \right] ,$$

denn:

$$t\partial_{t}\mathbf{e} = (t\partial_{t}\mathbf{e}_{0}, \dots, t\partial_{t}\mathbf{e}_{p-1})$$

$$= \left(\sum_{i=0}^{p-1-k} t^{i}\psi_{i}(t^{p})\mathbf{e}_{k+1} + \sum_{i=p-k}^{p-1} t^{i}\psi_{i}(t^{p})\mathbf{e}_{k+i-p}\right)_{k \in \{0,\dots,p-1\}}$$

$$= \mathbf{e} \begin{pmatrix} u^{p-1}\psi_{p-1}(t^{p}) & \cdots & t^{3}\psi_{3}(t^{p}) & t^{2}\psi_{2}(t^{p}) & t^{1}\psi_{1}(t^{p}) \\ t^{1}\psi_{1}(t^{p}) & t^{p-1}\psi_{p-1}(t^{p}) & \ddots & t^{2}\psi_{2}(t^{p}) \\ t^{2}\psi_{2}(t^{p}) & t^{1}\psi_{1}(t^{p}) & \ddots & \ddots & \vdots \\ \vdots & & \ddots & t^{1}\psi_{1}(t^{p}) & t^{p-1}\psi_{p-1}(t^{p}) \\ \vdots & & \ddots & t^{1}\psi_{1}(t^{p}) & t^{p-1}\psi_{p-1}(t^{p}) \\ t^{p-2}\psi_{p-2}(t^{p}) & \cdots & t^{3}\psi_{3}(t^{p}) & t^{2}\psi_{2}(t^{p}) & t^{1}\psi_{1}(t^{p}) & t^{p-1}\psi_{p-1}(t^{p}) \end{pmatrix}$$

$$= \mathbf{e} \begin{bmatrix} \sum_{j=0}^{p-1} t^{j}\psi_{j}(t^{p})V^{j} \end{bmatrix}.$$

Die Wirkung von ∂_t auf die Basis e von $\rho^+\rho_+\mathscr{E}^{\varphi(t)}$ ist also beschrieben durch

$$\partial_t \mathbf{e} = \mathbf{e} \left[\sum_{j=0}^{p-1} t^{j-1} \psi_j V^j \right].$$

Da V das Minimalpolynom $\chi_V(X)=X^p-1$ hat, können wir diese Matrix durch Ähnlichkeitstransformation mit T auf die Form

$$D := TVT^{-1} = \begin{pmatrix} \xi^0 & & & \\ & \xi^1 & & \\ & & \ddots & \\ & & & \xi^{p-1} \end{pmatrix},$$

mit $\xi^p = 1$, bringen. Sei so ein ξ ab jetzt fixiert. So dass gilt:

$$T\left[\sum_{j=0}^{p-1} t^{j-1} \psi_j(t^p) V^j\right] T^{-1} = \left[\sum_{j=0}^{p-1} t^{j-1} \psi_j(t^p) (TVT^{-1})^j\right]$$

da $\varphi'(t) = pt^{p-1}$. Damit wissen wir bereits, dass im Diagramm

der mit (\star) bezeichnete Teil kommutiert, wobei $\Phi:(0,\ldots,0,\ 1\ ,0,\ldots,0)\mapsto e_k$ der kanonische Basisisomorphismus und e_k Basis von $\mathscr{E}^{\varphi\circ\mu_{\xi^{k-1}}}$. Um zu zeigen, dass das vollständige Diagramm

k-te Stelle

kommutiert, zeigen wir noch, dass

$$\partial_t(v) = \Phi(\Phi^{-1}(v) \cdot \left[\sum_{j=0}^{p-1} t^{j-1} \psi_j(t^p) D^j \right]$$

$$\forall v \in \bigoplus_{i=0}^{p-1} \mathscr{E}^{\varphi \circ \mu_{\xi^i}}$$

gilt. Es reicht zu zeigen, dass die Aussage für alle Basiselemente \boldsymbol{e}_k gilt. Nach Definition 2.60 gilt

$$\partial_t e_k = (\varphi \circ \mu_{\xi^{k-1}})'(t) e_k$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$= (\varphi(\mu'_{\xi^{k-1}}) \cdot \varphi'(t) e_k$$

$$= (\xi^{k-1})^p \cdot (pt^{p-1}) e_k$$

$$= p(\xi^{k-1}t)^{p-1} \xi^{k-1} e_k$$

und auf dem anderem Weg gilt:

Also kommutiert das Diagramm und damit ist die Aussage gezeigt.

3 Elementare meromorphe Zusammenhänge

3.1 Elementare formale meromorphe Zusammenhänge

Definition 3.1. Ein elementarer formaler meromorpher Zusammenhang ist ein Zusammenhang \mathcal{M} , welcher isomorph zu $\mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot (x\partial_x - \alpha)^p$, mit passendem α und p, ist.

Lemma 3.2. Es existiert eine Basis von $\mathcal{M}_{\widehat{K}}$ über \widehat{K} mit der Eigenschaft, dass die Matrix, die $x\partial_x$ beschreibt, nur Einträge in $\mathbb{C}[\![x]\!]$ hat.

Kommentar: [Sab90, Lem 5.2.1.]

Beweis. Wähle einen zyklischen Vektor $m \in \mathcal{M}_{\widehat{K}}$ und betrachte die Basis $m, \partial_x m, \dots, \partial_x^{d-1} m$ (siehe Lemma 2.17). Schreibe $\partial_x^d m = \sum_{i=0}^{d-1} (-b_i(x)) \partial_x^i m$ in Basisdarstellung mit Koeffizienten $b_i \in \widehat{K}$. Also erfüllt m die Gleichung $\partial_x^d m + \sum_{i=0}^{d-1} b_i(x) \partial_x^i m = 0$.

Kommentar: TODO: bis hier schon klar

Tatsächlich kann man $b_i(x) = x^i b_i'(x)$ mit $b_i' \in \mathbb{C}[\![x]\!]$ schreiben (wegen Regularität). Dies impliziert, dass $m, x \partial_x m, \dots, (x \partial_x)^{d-1} m$ ebenfalls eine Basis von $\mathcal{M}_{\widehat{K}}$ ist. Die Matrix von $x \partial_x$ zu dieser neuen Basis hat nur Einträge in $\mathbb{C}[\![x]\!]$.

Lemma 3.3. Es existiert sogar eine Basis von $\mathcal{M}_{\widehat{K}}$ über \widehat{K} so dass die Matrix zu $x\partial_x$ konstant ist.

Beweis. Siehe [Sab90, Thm 5.2.2].

Satz 3.4. Ein regulärer formaler Zusammenhang $\mathcal{M}_{\widehat{K}}$ ist isomorph zu einer direkten Summe von elementaren formalen meromorphen Zusammenhängen.

Beweisskizze. Man wählt eine Basis von $\mathcal{M}_{\widehat{K}}$, in der die Matrix zu $x\partial_x$ konstant ist. Diese Matrix kann in Jordan Normalform gebracht werden und damit erhält man das Ergebnis. Ausgeführt wurde das in [Sab90, Cor. 5.2.6].

3.2 Elementare meromorphe Zusammenhänge

kommentar: einführen als Bausteine oder kleinste meromorphe Zusammenhänge

Definition 3.5. Ein elementarer meromorpher Zusammenhang ist ein Zusammenhang \mathcal{M} , für den es $\psi \in \mathbb{C}((x))$, $\alpha \in \mathbb{C}$ und $p \in \mathbb{N}$ gibt, so dass

$$\mathcal{M} \cong \mathscr{E}^{\psi} \otimes R_{\alpha,p}$$
,

mit $R_{\alpha,p} := \mathcal{D}/\mathcal{D}(x\partial_x - \alpha)^p$, also ein elementarer formaler meromorpher Zusammenhang, ist.

Lemma 3.6. In der Situation von Definition 3.5 gilt $\mathscr{E}^{\psi} \otimes R_{\alpha,p} \cong \mathcal{D}/\mathcal{D} \cdot (x\partial_x - (\alpha + x\frac{\partial \psi}{\partial x}))^p$.

Beweis. Denn

$$\mathcal{E}^{\psi} \otimes R_{\alpha,p} = \mathcal{E}^{\psi} \otimes \mathcal{D}/\mathcal{D}(x\partial_{x} - \alpha)^{p}$$

$$\stackrel{2.65}{=} \mathcal{D}/\mathcal{D}(x(\partial_{x} - \frac{\partial \psi}{\partial x}) - \alpha)^{p}$$

$$= \mathcal{D}/\mathcal{D}(x\partial_{x} - (\alpha + x\frac{\partial \psi}{\partial x}))^{p}.$$

Kommentar:

3.3 Definition in [Sab07]

Definition 3.7 (Elementarer formaler Zusammenhang). [Sab07, Def 2.1] Zu einem gegebenen $\rho \in t\mathbb{C}[\![t]\!], \varphi \in \widehat{L} \stackrel{\text{def}}{=} \mathbb{C}(\!(t)\!)$ und einem endlich dimensionalen \widehat{L} -Vektorraum R mit regulärem Zusammenhang ∇ , definieren wir den assoziierten elementaren endlich dimensionalen \widehat{K} -Vektorraum mit Zusammenhang, durch:

$$El(\rho, \varphi, R) = \rho_{+}(\mathscr{E}^{\varphi} \otimes R)$$

[Sab07, nach Def 2.1] Bis auf Isomorphismus hängt $El(\rho, \varphi, R)$ nur von φ mod $\mathbb{C}[\![t]\!]$ ab.

Lemma 3.8. |Sab07, Lem 2.2|

Lemma 3.9. [Sab07, Lem 2.6.] Es gilt $El([t \mapsto t^p], \varphi, R) \cong El([t \mapsto t^p], \psi, S)$ genau dann, wenn

- es ein ζ gibt, mit $\zeta^p = 1$ und $\psi \circ \mu_{\zeta} \equiv \varphi \mod \mathbb{C}[\![t]\!]$
- und $S \cong R$ als \widehat{L} -Vektorräume mit Zusammenhang.

Beweis. Siehe [Sab07, Lem 2.6.]

Proposition 3.10. [Sab07, Prop 3.1] Jeder irreduzible endlich dimensionale \widehat{K} -Vektorraum \mathcal{M} mit Zusammenhang ist isomorph zu $\rho_+(\mathcal{E}^{\varphi}\otimes L)$, wobei $\varphi\in t^{-1}\mathbb{C}[t^{-1}]$, $\rho:t\to t^p$ vom Grad $p\geq 1$ und ist minimal unter φ . (siehe [Sab07, Rem 2.8]) und L ist ein Rang 1 \widehat{L} -Vektrorraum mit regulärem Zusammenhang.

Beweis. Siehe [Sab07, Prop 3.1]

3.4 Levelt-Turrittin-Theorem

Kommentar: Das Levelt-Turrittin-Theorem ist ein Satz, der hilft, meromorphe Zusammenhänge in ihre irreduziblen Komponenten zu zerlegen.

Kommentar:

3.4.1 Klassische Version

Satz 3.11. [Sab90, Thm 5.4.7] Sei $\mathcal{M}_{\widehat{K}}$ ein formaler meromorpher Zusammenhang, so gibt es eine ganze Zahl p, so dass der Zusammenhang $\mathcal{M}_{\widehat{L}} := \rho^+ \mathcal{M}_{\widehat{K}}$, mit $\rho : t \mapsto x := t^p$, isomorph zu einer direkten Summe von formalen elementaren meromorphen Zusammenhänge ist.

Der folgende Beweis stammt hauptsächlich aus [Sab90, Seite 35].

Beweis. Zum Beweis wird Induktion auf die lexicographisch geordnetem Paare $(\dim_{\widehat{K}} \mathcal{M}_{\widehat{K}}, \kappa)$ angewendet. Wobei $\kappa \in \mathbb{N} \cup \{\infty\}$ dem größtem Slope von $\mathcal{M}_{\widehat{K}}$ entspricht. Es wird $\kappa = \infty$ gesetzt, falls der größte Slope nicht ganzzahlig ist.

Kommentar: TODO: Induktionsanfang und -schritt kennzeichnen

Wir nehmen oBdA an, dass $\mathcal{M}_{\widehat{K}}$ genau einen Slope Λ hat, sonst Teile $\mathcal{M}_{\widehat{K}}$ mittels Satz 2.31 in meromorphe Zusammenhänge mit je einem Slope und wende jeweils die Induktion an. Mit $\Lambda =: \frac{\lambda_0}{\lambda_1}$ (vollständig gekürtzt) definieren wir die dem Slope entsprechende Linearform $L(s_0, s_1) := \lambda_0 s_0 + \lambda_1 s_1$. Wir nennen $\sigma_L(P) \in \widehat{K}[\xi]$ die Determinanten Gleichung von P. Da L zu einem Slope von P gehört, besteht $\sigma_L(P)$ aus zumindest zwei Monomen.

 κ_{ommentar} : and is homogeneous of degree $\operatorname{ord}_L(P) = 0$ because P is chosen with coefficients in $\mathbb{C}[\![x]\!]$, one of them, being a unit.

Schreibe

$$\sigma_L(P) = \sum_{L(i,i-j) = \operatorname{ord}_L(P)} \alpha_{ij} x^j \xi^i$$
$$= \sum_{L(i,i-j) = 0} \alpha_{ij} x^j \xi^i.$$

Sei $\theta := x^{\lambda_0 + \lambda_1} x i^{\lambda_1}$ so können wir

$$\sigma_L(P) = \sum_{k>0} \alpha_k \theta^k$$

schreiben, wobei $\alpha_0 \neq 0$ ist.

Erster Fall: $\lambda_1 = 1$. Das bedeutet, dass der Slope ganzzahlig ist. Betrachte die Faktorisierung

$$\sigma_L(P) = \varepsilon \prod_{\beta} (\theta - \beta)^{\gamma_{\beta}}.$$

Wobei $\varepsilon \in \mathbb{C}$ eine Konstante ist. Sei β_0 eine der Nullstellen, so setze $R(z) := (\beta_0/(\lambda_0+1))z^{\lambda_0+1}$ und betrachte $\mathcal{M}_{\widehat{K}} \otimes \mathcal{F}_{\widehat{K}}^R$.

Kommentar: AB HIER VLT NICHT RICHTIG, nur versuch

Falls $P(x, \partial_x) \cdot e = 0$ gilt

$$P(x, \partial_x - \frac{\partial R(x^{-1})}{\partial x}) \cdot e \otimes e(R) = 0$$

und hier haben wir

$$\frac{\partial R(x^{-1})}{\partial x} = \frac{\partial (\frac{\beta_0}{\lambda_0 + 1} x^{-(\lambda_0 + 1)})}{\partial x}$$
$$= -\beta_0 z^{-(\lambda_0 + 2)}.$$

Schreibe $P' = P(x, \partial_x + \beta_0 x^{-(\lambda_0 + 2)}).$

Lemma 3.12. Es gilt, dass P' Koeffizienten in $\mathbb{C}[x]$ hat.

Beweis. TODO

Des weiteren ist $\sigma_L(P') = \sum_{k \geq 0} \alpha_k (\theta + \beta_0)^k$. Wir unterscheiden nun 2 Unterfälle:

1. Die Determinanten Gleichung $\sigma_L(P)$ hat nur eine Nullstelle.

Kommentar: TODO: Hier weiter

2. Die Determinanten Gleichung $\sigma_L(P)$ hat mehrere Nullstellen.

Kommentar: TODO: Hier weiter

Zweiter Fall: $\lambda_1 \neq 1$. In diesem Fall ist einzige Slope Λ nicht ganzzahlig. Mache deshalb einen pull-back mit λ_1 . Sei $\rho: t \mapsto x := t^{\lambda_1}$ und erhalte P' so dass $\rho^* \mathcal{M}_{\widehat{K}} = \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot P'$. Nach Lemma 2.51 hat P' den einen Slope $\Lambda \cdot \lambda_1 = \lambda_0$. Damit können wir nun die zugehörige Linearform $L' := \lambda_0 s_0 + s_1$ definieren. Es gilt dass

$$\sigma_{L'}(P') = \dots$$

ist, welches zumindest zwei unterschiedliche Nullstellen hat. Nun wendet man den zweiten Unterfall des ersten Fall an.

Kommentar:

3.4.2 Sabbah's Refined version

Proposition 3.13. [Sab07, Prop 3.1] Jeder irreduzible endlich dimensionale formale meromorphe Zusammenhang $\mathcal{M}_{\widehat{L}}$ ist isomorph zu $\rho_+(\mathscr{E}^{\varphi}\otimes_{\widehat{K}}S)$, wobei $\varphi\in x^{-1}\mathbb{C}[x^-1]$, $\rho:x\mapsto t=x^p$ mit grad $p\geq 1$ minimal bzgl. φ (siehe [Sab07, Rem 2.8]), und S ist ein Rang 1 \widehat{K} -Vektor Raum mit regulärem Zusammenhang.

Beweis. [Sab07, Prop 3.1]

Satz 3.14 (Refined Turrittin-Levelt). [Sab07, Cor 3.3] Jeder endlich dimensionale meromorphe Zusammenhang $\mathcal{M}_{\widehat{K}}$ kann in eindutiger weiße geschrieben werden als direkte Summe $\bigoplus El(\rho, \varphi, R) \stackrel{\text{def}}{=} \bigoplus \rho_{+}(\mathcal{E}^{\varphi}) \otimes R$, so dass jedes $\rho_{+}\mathcal{E}^{\varphi}$ irreduzibel ist und keine zwei $\rho_{+}\mathcal{E}^{\varphi}$ isomorph sind.

Beweis. [Sab07, Cor 3.3]

4 Explizite Berechnung einer Levelt-Turrittin-Zerlegung

In diesem Kapitel werden Beispiele einer speziellen Klasse von \mathcal{D} -Moduln diskutiert. Dazu wird im folgendem zu einem Beispiel unter anderem explizit der Beweis aus [Sab90] zur Levelt-Turrittin-Zerlegung nachvollzogen.

Es wird zunächst ein allgemeines Rezept gegeben, welches zu gegebenem φ D-Moduln ergibt. Im laufe des Kapitels werden immer speziellere φ betrachtet und zuletzt wird für konkrete Beispiele eine explizite Rechnung gegeben.

4.1 Rezept für allgemeine φ

Hier wollen wir nun eine spezielle Klasse von meromorphen Zusammenhängen, die die durch das folgende Rezept entstehen.

- 1. Wähle zunächst ein $\varphi \in \{\varphi = \sum_{k \in I} \frac{a_k}{t^k} | I \subset \mathbb{N} \text{ endlich}, a_k \in \mathbb{C}\}$ aus
- 2. und beginne mit \mathcal{E}^{φ} . Es gilt

$$\begin{split} \mathscr{E}^{\varphi} &= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \left(\partial_t - \frac{d}{dt}\varphi(t)\right) \\ &= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \left(\underbrace{\mathbf{Hauptnenner \ von } \frac{d}{dt}\varphi(t)}_{\in \mathbb{C}[t] \subset \mathcal{D}_{\widehat{L}}^*} \cdot \left(\partial_t - \frac{d}{dt}\varphi(t)\right)\right) \\ &= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \left(\underbrace{t^{\max(I)+1} \cdot \left(\partial_t - \frac{d}{dt}\varphi(t)\right)}_{=:Q(t,\partial_t)}\right). \end{split}$$

Kommentar: Dies ändert den meromorphen Zusammenhang nicht, weil $t^{\max(I)+1}$ eine Einheit in $\mathcal{D}_{\widehat{L}}$ (und auch in \mathcal{D}_L) ist.

3. Fouriertransformiere \mathscr{E}^{φ} und erhalte

$$\label{eq:force_eq} \begin{split} {}^{\mathcal{F}}\!\!\mathscr{E}^\varphi &= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \mathcal{F}_Q(z,\partial_z) \\ \stackrel{\mathrm{def}}{=} \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \underbrace{Q(\partial_z,-z)}_{\in \mathbb{C}[z] < \partial_z >}. \end{split}$$

4. Betrachte den Zusammenhang bei Unendlich, also wende den Übergang $x \rightsquigarrow z^{-1}$ an. Was passiert mit der Ableitung ∂_x ? Es gilt

$$\partial_x(f(\frac{1}{x})) = \partial_z(f) \cdot (-\frac{1}{x^2}) = -\partial_z(f) \cdot z^2 = -z^2 \cdot \partial_z(f)$$

also $\partial_x \rightsquigarrow -z^2 \partial_z$, und somit

$$P_{\varphi}(x, \partial_x) := \mathcal{F}_Q(x^{-1}, -x^2 \partial_x) \in \mathbb{C}[t] < \partial_t > .$$

Im folgendem werden wir den zum Minimalpolynom P_{φ} assoziierten formalen meromorphen Zusammenhang $\mathcal{M}_{\varphi} := \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P_{\varphi}$ betrachten.

Lemma 4.1. Zu einem $\varphi = \sum_{k \in I} \frac{a_k}{t^k} \in \{ \varphi = \sum_{k \in I} \frac{a_k}{t^k} | I \subset \mathbb{N} \text{ endlich, } a_k \in \mathbb{C} \}$ ist das Minimalpolynom von \mathcal{M}_{φ} explizit gegeben durch

$$P_{\varphi}(x,\partial_x) = (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k \in I} ka_k(-x^2\partial_x)^{\max(I)-k} \qquad \in \mathbb{C}[x] < \partial_x > .$$

Beweis. Sei $\varphi = \sum_{k \in I} \frac{a_k}{t^k}$, so ist

$$\begin{split} Q(t,\partial_t) &= t^{\max(I)+1} (\partial_t - \frac{d}{dt} \varphi(t)) \\ &= t^{\max(I)+1} \Big(\partial_t + \sum_{k \in I} k \frac{a_k}{t^{k+1}} \Big) \\ &= t^{\max(I)+1} \partial_t + \sum_{k \in I} k a_k t^{\max(I)-k} \\ \mathcal{F}_Q(z,\partial_z) &= Q(\partial_z,-z) \\ &= -\partial_z^{\max(I)+1} z + \sum_{k \in I} k a_k \partial_z^{\max(I)-k} \end{split}$$

und damit ist

$$\begin{split} P_{\varphi}(x,\partial_x) &= \mathcal{F}_Q(x^{-1},-x^2\partial_x) \\ &= \underbrace{-(-x^2\partial_x)^{\max(I)+1}x^{-1}}_{k\in I} + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= \underbrace{(-x^2\partial_x)^{\max(I)}x^2}_{k\in I} \underbrace{\partial_x x^{-1}}_{k\in I} + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \end{split}$$

$$= (-x^2 \partial_x)^{\max(I)} x^2 (x^{-1} \partial_x - x^{-2}) + \sum_{k \in I} k a_k (-x^2 \partial_x)^{\max(I) - k}$$

$$= (-x^2 \partial_x)^{\max(I)} (x \partial_x - 1) + \sum_{k \in I} k a_k (-x^2 \partial_x)^{\max(I) - k} \in \mathbb{C}[x] < \partial_x > 0$$

Im Anhang B wird das $(x^2\partial_x)^k$ genauer diskutiert. Dies führt aber hier an dieser Stelle nicht mehr weiter in die gewünschte Richtung.

Lemma 4.2. Es gilt $\mathcal{P}(\mathcal{M}_{\varphi}) = \{\frac{q}{q+1}\}.$

Um zu zeigen, dass die Behauptung gilt, formen wir P_{φ} um und isolieren die Monome, die für das Newton-Polygon nicht von Bedeutung sind und deshalb vernachlässigt werden können. Betrachte dazu die konvexen Hüllen, die wie in Abschnitt 2.3 konstruiert werden. Sei $q:=\max(I)$.

$$\begin{split} H\Big(P_{\varphi}(x,\partial_x)\Big) &= H\Big(\underbrace{(-x^2\partial_x)^q(x\partial_x - 1)} + \sum_{k \in I} ka_k(-x^2\partial_x)^{q-k}\Big) \\ &= H\Big(\underbrace{(-1)^q(x^{2q}\partial_x^q + \underbrace{\mathbf{T.i.Q. \ von}\ x^{2q}\partial_x^q)}(x\partial_x - 1)}_{\text{liefern keinen Beitrag}} + \sum_{k \in I} ka_k(-x^2\partial_x)^{q-k}\Big) \\ &= H\Big(\underbrace{(-1)^q}_{\text{liefert keinen Beitrag}} \frac{x^{2q}\partial_x^q(x\partial_x - 1)}{x^2} + \sum_{k \in I} ka_k(-x^2\partial_x)^{q-k}\Big) \\ &= H\Big(x^{2q}\partial_x^q x \, \partial_x - x^{2q}\partial_x^q + \sum_{k \in I} ka_k(-x^2\partial_x)^{q-k}\Big) \\ &= H\Big(x^{2q}(x\partial_x^q + q\partial_x^{q-1}) \, \partial_x - x^{2q}\partial_x^q + \sum_{k \in I} ka_k(-x^2\partial_x)^{q-k}\Big) \\ &= H\Big(x^{2q+1}\partial_x^{q+1} + \underbrace{qx^{2q}\partial_x^q - x^{2q}\partial_x^q}_{\text{sind also vernachlässigbar}} + \sum_{k \in I} ka_k(-x^2\partial_x)^{q-k}\Big) \\ &= H\Big(x^{2q+1}\partial_x^{q+1} + qa_q + \sum_{k \in I \setminus \{q\}} ka_k(-x^2\partial_x)^{q-k}\Big) \end{split}$$

Nun wollen wir noch zeigen, dass die Summe auch vernachlässigt werden kann.

Behauptung: Es gilt

$$H\Big(x^{2q+1}\partial_x^{q+1} + qa_q + \sum_{k \in I \setminus \{q\}} ka_k(-x^2\partial_x)^{q-k}\Big) \subset H\Big(x^{2q+1}\partial_x^{q+1} + qa_q\Big)$$

-49-

Denn: Betrachte zu einem $m \in I \setminus \{q\}$, einen Summanden $ma_m(-x^2\partial_x)^{q-m}$ aus der Summe:

$$H(ma_{m}(-x^{2}\partial_{x})^{q-m}) = H(ma_{m}(-1)^{q}(x^{2(q-m)}\partial_{x}^{q-m} + \mathbf{T.i.Q. von} \ x^{2(q-m)}\partial_{x}^{q-m}))$$

$$= H(x^{2(q-m)}\partial_{x}^{q-m})$$

$$= (q-m, q-m) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0}$$

In Abbildung 4.1 ist die Situation, die wir gerade betrachten, mit $N(x^{2q+1}\partial_x^{q+1}+qa_q)$ in der gewohnten Farbe und $H(x^{2(q-m)}\partial_x^{q-m})$ in Blau, dargestellt. Man sieht also, dass die Behauptung gilt.

Abbildung 4.1: Newton-Polygon zu P_{φ} mit $H(x^{2(q-m)}\partial_x^{q-m})$

Mit der Behauptung gilt dann, dass

$$\begin{split} H\Big(P_{\varphi}(x,\partial_x)\Big) &= H\Big(x^{2q+1}\partial_x^{q+1} + qa_q + \sum_{k \in I \backslash \{q\}} ka_k(-x^2\partial_x)^{q-k}\Big) \\ &\stackrel{\text{Beh. }}{=} H\Big(x^{2q+1}\partial_x^{q+1} + qa_q\Big) \,. \end{split}$$

Also ist

$$N\Big(P_{\varphi}(x,\partial_x)\Big) = N\Big(x^{2q+1}\partial_x^{q+1} + qa_q\Big).$$

womit die Behauptung des Lemmas folgt und das Newton-Polygon wie in Abbildung 4.1 aussieht. $\hfill\Box$

Also ist, nach Lemma 2.51, ein pull-back mit Grad q+1 hinreichend, um einen ganzzahligen Slope zu bekommen. Denn wir wissen, dass nach Anwenden eines solchem pull-backs die Slopes mit q+1 multipliziert werden, also gilt $\mathcal{P}(\rho^+\mathcal{M}_\varphi)=\{q\}\subset\mathbb{N}$.

Lemma 4.3. Im Fall $\varphi = \frac{a}{t^q}$ ist mit $\rho: t \mapsto x := -(q+1)t^{q+1}$ der pull-back gegeben durch

$$\rho^{+}\mathcal{M}_{\varphi} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot ((t^{q+2}\partial_{t})^{q}(t\partial_{t} - (q+1)) + (q+1)qa).$$

Beweis. Sei $\varphi=\frac{a}{t^q},$ so ist P gegeben durch

$$P_{\varphi}(x, \partial_x) = (-x^2 \partial_x)^q (x \partial_x - 1) + qa,$$

und sei $\rho: t \mapsto x := -(q+1)t^{q+1}$. Damit gilt

$$\begin{split} \rho^{+}\mathcal{M}_{\varphi} &= \rho^{+}(\mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P_{\varphi}(x,\partial_{x})) \\ &= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \rho^{*}P_{\varphi}(t,\partial_{t}) \\ &= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot P_{\varphi}(\rho(t),\rho'(t)^{-1}\partial_{t}) \\ &= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot P_{\varphi}\Big(-(q+1)t^{q+1},-\frac{1}{(q+1)^{2}t^{q}}\partial_{t}\Big) \\ &= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \left(\left(-(-(q+1)t^{q+1})^{2}\frac{-1}{(q+1)^{2}t^{q}}\partial_{t}\right)^{q} \left(-(q+1)t^{q+1}\frac{-1}{(q+1)^{2}t^{q}}\partial_{t} - 1\right) + qa \right) \\ &= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \left(\left(\frac{(q+1)^{2}}{(q+1)^{2}}t^{2(q+1)-q}\partial_{t}\right)^{q} \left(\frac{1}{q+1}t\partial_{t} - 1\right) + qa \right) \\ &= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \left((t^{q+2}\partial_{t})^{q}(\frac{1}{q+1}t\partial_{t} - 1) + qa \right) \\ &= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \left((t^{q+2}\partial_{t})^{q}(t\partial_{t} - (q+1)) + (q+1)qa \right) \end{split}$$

Kommentar:

Korollar 4.4. Ordnung vom pull-back ist 0

Definiere mittels $q = \frac{q}{1} =: \frac{\lambda_0}{\lambda_1}$ die Linearform

$$\ell(s_0, s_1) = \lambda_0 s_0 + \lambda_1 s_1 = q s_0 + s_1.$$

Schreibe $\rho^* P_{\varphi} = \sum_i \sum_j \alpha_{ij} t^j \partial_t^i$ und berechne die *Determinanten Gleichung* $\sigma_{\ell}(\rho^* P_{\varphi}) \in \widehat{L}[\xi]$.

Kommentar: Schon gezeigt, das $ord_{\ell} = 0$?

$$\sigma_L(\rho^* P_{\varphi}) = \sum_{\{(i,j) \in \mathbb{N} \times \mathbb{Z} | \ell(i,i-j) = 0\}} \alpha_{ij} t^j \xi^i$$
$$= \sum_{\{(i,j) \in \mathbb{N} \times \mathbb{Z} | (q+1)i-j = 0\}} \alpha_{ij} t^j \xi^i$$

Da $\widehat{L}[\xi]$ kommutativ ist, gilt hier, dass $(t^j \xi^i)^k = t^{jk} \xi^{ik}$ ist. Setze $\theta = t^{\lambda_0 + \lambda_1} \xi^{\lambda_1} = t^{q+1} \xi$ so, können wir

$$\sigma_L(\rho^* P_\varphi) = \sum_{k>0} \alpha_k \theta^k \qquad \alpha_k \in \mathbb{C}$$

schreiben, welches wir als nächsten Schritt faktorisieren

$$\sigma_L(\rho^* P_{\varphi}) = \varepsilon \prod_{\beta \text{ Nullstelle}} (\theta - \beta)^{\gamma_{\beta}}.$$

Wobei $\varepsilon \in \mathbb{C}^{\times}$ eine Konstante ist. Sei β eine der Nullstellen. Da $\operatorname{ord}_{\ell}(\rho^* P_{\varphi}) = 0$ und der einzige Slope von $\rho^* P_{\varphi}$ nicht gleich 0 ist, gilt offensichtlich, dass $\alpha_0 \neq 0$. Also ist 0 keine Nullstelle von $\sigma_L(\rho^* P_{\varphi})$. Setze $\psi(x) := (\beta/\lambda_0)t^{-\lambda_0} = (\beta/q)t^{-q}$ und betrachte

$$\begin{split} \mathcal{N} &:= \rho^{+} \mathcal{M}_{\varphi} \otimes_{\widehat{L}} \mathscr{E}_{\widehat{L}}^{\psi} \\ &= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (\rho^{*} P_{\varphi}(t, \partial_{t})) \otimes_{\widehat{L}} \mathscr{E}_{\widehat{L}}^{\psi} \\ &\stackrel{2.65}{=} \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (\rho^{*} P_{\varphi}(t, \partial_{t} - \frac{\partial \psi}{\partial t})) \\ &= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (\rho^{*} P_{\varphi}(t, \partial_{t} + \frac{\beta}{t^{\lambda + 1}})) \\ &= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (t^{q + 2} (\partial_{t} + \frac{\beta}{t^{\lambda + 1}}))^{q} (t(\partial_{x} + \frac{\beta}{t^{\lambda + 1}}) - (q + 1)) + (q + 1) q a \end{split}$$

Kommentar: TODO: hier weiter vereinfachen

Zerlege nun wie in Satz 2.31 den meromorphen Zusammenhang \mathcal{N} in $\mathcal{N} = \bigoplus_i \mathcal{N}_i$ wobei \mathcal{N}_i meromorphe Zusammenhänge mit genau einem Slope sind. Twiste die \mathcal{N}_i jeweils mit $\mathscr{E}_{\widehat{L}}^{-\psi}$ und somit ist dann

$$\rho^+ \mathcal{M}_{\varphi} = \bigoplus_{i} \mathcal{N}_i \otimes_{\widehat{L}} \mathscr{E}_{\widehat{L}}^{-\psi}.$$

Für jeden Summanden lässt sich nun, falls dieser nicht schon ein elementarer meromorpher Zusammenhang ist, Induktion anwenden.

Kommentar: nicht elementar, sondern regulär otimes E

4.2 Levelt-Turrittin-Zerlegung für \mathcal{M}_{arphi} mit $arphi_1:=rac{a}{x}$

Kommentar: rechtfertigen, das mehr gerechnet wird, als nötig

Als konkreten Fall betrachten wir nun \mathcal{M}_{φ} bezüglich $\varphi_1 := \frac{a}{x}$. Es ist das zugehörigen Minimalpolynom gegeben durch

$$P_{\varphi}(x, \partial_x) = -x^2 \partial_x (x \partial_x - 1) + a$$

$$= -x^2 \partial_x x \partial_x + x^2 \partial_x + a$$

$$= -x^2 (x \partial_x + 1) \partial_x + x^2 \partial_x + a$$

$$= -x^3 \partial_x^2 - x^2 \partial_x + x^2 \partial_x + a$$

$$= -x^3 \partial_x^2 + a.$$

Erhalte daraus das Newton-Polygon mit den Slopes $\mathcal{P}(\mathcal{M}_{\varphi}) = \{\frac{1}{2}\}.$

Abbildung 4.2: Newton Polygon zu P_{φ}

Berechne nun zu $\rho:t\mapsto x:=-2t^2$ ein Minimalpolynom ρ^*P_φ zu $\rho^+\mathcal{M}_\varphi$:

$$\rho^* P_{\varphi}(x, \partial_x) = t^3 \partial_t (t \partial_t - 2) + 2a$$

$$= t^3 \partial_t t \partial_t - 2t^3 \partial_t + 2a$$

$$= t^3 (t \partial_t + 1) \partial_t - 2t^3 \partial_t + 2a$$

$$= t^4 \partial_t^2 + t^3 \partial_t - 2t^3 \partial_t + 2a$$

$$= t^4 \partial_t^2 - t^3 \partial_t + 2a$$

und erhalte einen meromorphen Zusammenhang $\rho^+ \mathcal{M}_{\varphi} = \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot \rho^* P_{\varphi}$ mit genau dem Slope $1 = \frac{1}{1} =: \frac{\lambda_0}{\lambda_1}$.

Abbildung 4.3: Newton Polygon zu $\rho^* P_{\varphi}$

Definiere die Linearform $\ell(s_0, s_1) := \lambda_0 s_0 + \lambda_1 s_1 = s_0 + s_1$. Berechne nun die *Determinanten Gleichung* $\sigma_{\ell}(\rho^* P_{\varphi}) \in \widehat{L}[\xi]$ von $\rho^* P_{\varphi}$.

$$\sigma_{\ell}(\rho^* P_{\varphi}) = \sum_{\{(i,j)|2i-j=0\}} \alpha_{ij} x^j \xi^i$$
$$= t^4 \xi^2 + 2a$$

Setze $\theta := t^{\lambda_0 + \lambda_1} \xi^{\lambda_1} = t^2 \xi$, so erhalten wir

$$\sigma_{\ell}(\rho^* P_{\varphi}) = \theta^2 + 2a \,,$$

mit den Nullstellen $i\sqrt{2a}=:\beta$ und $-i\sqrt{2a}$. Setze $\psi(x):=(\beta/\lambda_0)t^{-\lambda_0}=i\sqrt{2a}t^{-1}$ und betrachte den Twist $\mathcal{N}:=\rho^+\mathcal{M}_\varphi\otimes\mathscr{E}^\psi$ von $\rho^+\mathcal{M}$. Es ist $e\otimes 1$ ein zyklischer Vektor, wobei e ein zyklischer Vektor von $\rho^+\mathcal{M}$ ist. Mit dem Lemma vom Zyklischen Vektor, bzw. dem Korollar 2.18, wollen wir nun ein Minimalpolynom zu \mathcal{N} berechnen^[1]:

$$\partial_t^2(\boldsymbol{e} \otimes 1) = \partial_t(\partial_t(\boldsymbol{e} \otimes 1))$$

$$\stackrel{(2.7)}{=} \partial_t((\partial_t \boldsymbol{e}) \otimes 1 + \boldsymbol{e} \otimes \psi'(t))$$

$$\stackrel{(2.7)}{=} (\partial_t^2 \boldsymbol{e}) \otimes 1 + (\partial_t \boldsymbol{e}) \otimes \psi'(t) + (\partial_t \boldsymbol{e}) \otimes \psi'(t) + \boldsymbol{e} \otimes \underbrace{(\psi''(t) + \psi'(t)^2)}_{\in K}$$

$$= \underbrace{((t^{-1}\partial_t - 2at^{-4})\boldsymbol{e}) \otimes 1 + 2\psi'(t)(\partial_t \boldsymbol{e}) \otimes 1 + (\psi''(t) + \psi'(t)^2)\boldsymbol{e} \otimes 1}_{=(t^{-1}\partial_t \boldsymbol{e}) \otimes 1 - 2at^{-4}\boldsymbol{e} \otimes 1 + 2\psi'(t)(\partial_t \boldsymbol{e}) \otimes 1 + \psi''(t)\boldsymbol{e} \otimes 1 + \psi'(t)^2\boldsymbol{e} \otimes 1$$

 $^{^{[1]}}$ Dies wäre auch schneller, aber weit weniger interessanter, mit Lemma 2.65 möglich.

$$= (t^{-1} + 2\psi'(t)) \underbrace{(\partial_{t}\mathbf{e}) \otimes 1 + (-2at^{-4} + \psi''(t) + \psi'(t)^{2})}_{(2.7)} \mathbf{e} \otimes 1$$

$$\stackrel{(2.7)}{=} (t^{-1} + 2\psi'(t)) \underbrace{(\partial_{t}(\mathbf{e} \otimes 1) - \mathbf{e} \otimes \psi'(t))}_{(2} + (-2at^{-4} + \psi''(t) + \psi'(t)^{2})}_{(2.7)} \mathbf{e} \otimes 1$$

$$= (t^{-1} + 2\psi'(t))\partial_{t}(\mathbf{e} \otimes 1) - (\psi'(t)t^{-1} + 2\psi'(t)^{2})\mathbf{e} \otimes 1$$

$$+ (-2at^{-4} + \psi''(t) + \psi'(t)^{2})\mathbf{e} \otimes 1$$

$$= ((t^{-1} + 2\psi'(t))\partial_{t} - \psi'(t)t^{-1} - 2\psi'(t)^{2} - 2at^{-4} + \psi''(t) + \psi'(t)^{2})\mathbf{e} \otimes 1$$

$$= ((t^{-1} + 2\psi'(t))\partial_{t} - \psi'(t)t^{-1} - 2at^{-4} + \psi''(t) - \psi'(t)^{2})\mathbf{e} \otimes 1$$

also

$$0 = \left(\underbrace{\partial_t^2 - (t^{-1} + 2\psi'(t))\partial_t + \psi'(t)t^{-1} + 2at^{-4} - \psi''(t) + \psi'(t)^2}_{=:P'}\right) e \otimes 1$$

und mit $\psi(t) = i\sqrt{2a}t^{-1}$ ist $\psi'(t) = -i\sqrt{2a}t^{-2}$ und $\psi''(t) = 2i\sqrt{2a}t^{-3}$. Also durch Einsetzen ergibt sich

$$P' = \partial_t^2 - (t^{-1} + 2\psi'(t))\partial_t + \psi'(t)t^{-1} + 2at^{-4} - \psi''(t) + \psi'(t)^2$$

$$= \partial_t^2 - (t^{-1} - 2i\sqrt{2a}t^{-2})\partial_t - i\sqrt{2a}t^{-3} + 2at^{-4} - 2i\sqrt{2a}t^{-3} + \underbrace{(-i\sqrt{2a}t^{-2})^2}_{=0}$$

$$= \partial_t^2 - (t^{-1} - 2i\sqrt{2a}t^{-2})\partial_t - 3i\sqrt{2a}t^{-3} + \underbrace{2at^{-4} - 2at^{-4}}_{=0}$$

$$= \partial_t^2 - (t^{-1} - 2i\sqrt{2a}t^{-2})\partial_t - 3i\sqrt{2a}t^{-3}$$

mit, wie gewünscht, einem regulärem Anteil.

Abbildung 4.4: Newton Polygon zu \mathcal{N}

Kommentar

Bemerkung 4.5. Alternativ ließe sich ein Minimalpolynom von \mathcal{N} mit der Formel aus Lemma 2.65 berechnen. Denn mit $\rho^* P(t, \partial_t) = t^4 \partial_t^2 - t^3 \partial_t + 2a$, ist

$$\rho^* P(t, \partial_t - \frac{\partial \psi}{\partial t}) = \rho^* P(t, \partial_t - \frac{-i\sqrt{2a}}{t^2})$$

$$= t^4 \left(\partial_t + \frac{i\sqrt{2a}}{t^2}\right)^2 - t^3 \left(\partial_t + \frac{i\sqrt{2a}}{t^2}\right) + 2a$$

$$= t^4 \left(\partial_t + i\sqrt{2a}t^{-2}\right) \left(\partial_t + i\sqrt{2a}t^{-2}\right) - t^3 \partial_t - i\sqrt{2a}t + 2a$$

$$= t^4 \left(\partial_t^2 + i\sqrt{2a}t^{-2}\partial_t + \partial_t i\sqrt{2a}t^{-2} + \left(i\sqrt{2a}t^{-2}\right)^2\right) - t^3 \partial_t - i\sqrt{2a}t + 2a$$

$$= t^4 \partial_t^2 + i\sqrt{2a}t^2 \partial_t + i\sqrt{2a}t^4 \partial_t t^{-2} - 2at^{-4}t^4 - t^3 \partial_t - i\sqrt{2a}t + 2a$$

$$= t^4 \partial_t^2 + i\sqrt{2a}t^2 \partial_t + i\sqrt{2a}t^4 \left(t^{-2}\partial_t - 2t^{-3}\right) - t^3 \partial_t - i\sqrt{2a}t$$

$$= t^4 \partial_t^2 + i\sqrt{2a}t^2 \partial_t + i\sqrt{2a}t^2 \partial_t - 2i\sqrt{2a}t - t^3 \partial_t - i\sqrt{2a}t$$

$$= t^4 \partial_t^2 - \left(t^3 - 2i\sqrt{2a}t^2\right) \partial_t - 3i\sqrt{2a}t$$

$$= t^4 P'(t, \partial_t)$$

Nachdem wir jetzt ein Minimalpolynom gefunden haben, ist unser nächstes Ziel, $\mathcal{N} = \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}}$. P' in zwei meromorphe Zusammenhänge mit nur einem Slope zerlegen. Betrachte hierzu das Minimalpolynom und zerlege dieses in ein Produkt $P'(t, \partial_t) = Q_1(t, \partial_t) \cdot Q_2(t, \partial_t)$.

Da der ∂_t -Grad von P' genau 2 ist, müssen die Q_i jeweils den Grad 1 haben, um eine nichttriviale Zerlegung zu bekommen. Allgemein haben dir Q_i also die Form

$$Q_1 := \bar{v}(t)\partial_t + v(t) \qquad \qquad Q_2 := \bar{u}(t)\partial_t + u(t) \qquad \qquad \text{mit } \bar{v}(t), v(t), \bar{u}(t), u(t) \in \widehat{L}.$$

Beobachtung 4.6. Ist Q_1 und Q_2 so ein solches Paar, dann ist für $\sigma \in \hat{L}$ das Paar $\bar{Q}_1 := Q_1 \cdot \sigma^{-1}$ und $\bar{Q}_2 := \sigma \cdot Q_2$ ebenfalls eine Zerlegung, denn

$$P' = Q_1 \cdot Q_2 = Q_1 \cdot \underbrace{\sigma^{-1} \cdot \sigma}_{-1} \cdot Q_2 = \bar{Q}_1 \cdot \bar{Q}_2.$$

Mit der Beobachtung 4.6 ist klar, dass wir den Faktor vor ∂_t in Q_2 frei wählen können. Setze $\bar{u}(t):=1$ und erhalte

$$Q_1 = \bar{v}(t)\partial_t + v(t)$$
 $Q_2 = \partial_t + u(t)$ mit $\bar{v}(t), v(t), u(t) \in \hat{L}$

und somit ist ist das Produkt gegeben durch

$$Q_1 \cdot Q_2 = \bar{v}(t)\partial_t^2 + \bar{v}(t)\partial_t u(t) + v(t)\partial_t + v(t)u(t)$$

$$\stackrel{!}{=} \partial_t^2 - (t^{-1} - 2i\sqrt{2a}t^{-2})\partial_t - 3i\sqrt{2a}t^{-3}.$$

$$(4.1)$$

Damit ist ebenfalls $\bar{v}(t) = 1$.

Durch das Wissen über die Slopes der Q_i erhalten wir noch Informationen über die Reihen $v(t) := \sum_n v_n t^n$ und $u(t) := \sum_n u_n t^n$. Die beiden Polynome Q_1 und Q_2 enthalten ∂_t als einziges Monom vom ∂_t -Grad 1, deshalb ist (1,-1) in beiden zugehörigen Newton-Polygonen enthalten. Da Q_1 nur den Slope 0 hat, muss das Newton-Polygon wie in Abbildung 4.5 aussehen und somit wissen wir, dass $v_n = 0$ für alle n < -1. Da Q_2 genau den Slope 1 hat, ist das Newton-Polygon gegeben durch Abbildung 4.6. Damit ist $u_n = 0$ für alle n < -2 und $u_{-2} \neq 0$.

Abbildung 4.5: Newton-Polygon zu Q_1

Abbildung 4.6: Newton-Polygon zu Q_2

Mit diesen Informationen erhalten wir aus (4.1) die Gleichung

$$Q_1 \cdot Q_2 = \partial_t^2 + \partial_t \sum_{n=-2}^{\infty} u_n t^n + \sum_{n=-1}^{\infty} v_n t^n \partial_t + \left(\sum_{n=-1}^{\infty} v_n t^n\right) \left(\sum_{n=-2}^{\infty} u_n t^n\right)$$

$$(4.2)$$

und mit denn Kommutatorregeln gilt

$$\partial_t \sum_{n=-2}^{\infty} u_n t^n = \sum_{n=-2}^{\infty} (u_n t^n \partial_t + [\partial_t, u_n t^n])$$

$$\stackrel{(1.1)}{=} \sum_{n=-2}^{\infty} (u_n t^n \partial_t + n u_n t^{n-1})$$

$$= \sum_{n=-2}^{\infty} u_n t^n \partial_t + \sum_{n=-2}^{\infty} n u_n t^{n-1}$$

Wenn wir dieses Ergebnis nun in (4.2) einsetzen, ergibt sich

$$Q_{1} \cdot Q_{2} = \partial_{t}^{2} + \sum_{n=-2}^{\infty} u_{n} t^{n} \partial_{t} + \sum_{n=-2}^{\infty} n u_{n} t^{n-1} + \sum_{n=-1}^{\infty} v_{n} t^{n} \partial_{t} + \left(\sum_{n=-1}^{\infty} v_{n} t^{n}\right) \left(\sum_{n=-2}^{\infty} u_{n} t^{n}\right)$$

$$= \partial_{t}^{2} + \sum_{n=-2}^{\infty} (u_{n} + v_{n}) t^{n} \partial_{t} + \sum_{n=-3}^{\infty} (n+1) u_{n+1} t^{n} + \left(\sum_{n=-1}^{\infty} v_{n} t^{n}\right) \left(\sum_{n=-2}^{\infty} u_{n} t^{n}\right).$$

$$(4.3)$$

Betrachte nun das letzte Glied, auf welches wir die Cauchy-Produktformel anwenden wollen:

$$\begin{split} & \underbrace{\left(\sum_{n=-1}^{\infty} v_n t^n\right) \left(\sum_{n=-2}^{\infty} u_n t^n\right)}_{} \stackrel{\downarrow}{=} t^{-3} \underbrace{\left(\sum_{n=0}^{\infty} v_{n-1} t^n\right) \left(\sum_{n=0}^{\infty} u_{n-2} t^n\right)}_{} \\ & \underbrace{\left(\sum_{n=0}^{\infty} v_{n-1} t^n\right) \left(\sum_{n=0}^{\infty} u_{n-2} t^n\right)}_{} \\ & = t^{-3} \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} v_{k-1} t^k u_{n-k-2} t^{(n-k)}\right) \\ & = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} v_{k-1} u_{n-k-2} t^{k+(n-k)-3}\right) \\ & = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} v_{k-1} u_{n-k-2}\right) t^{n-3} \\ & \underbrace{\left(\sum_{n=0}^{\infty} v_{n-1} u_{n-k-2}\right) t^{n-3}}_{} \\ & \underbrace{\left(\sum_{n=0}^{\infty} v_{n-1} u_{n-k-1}\right) t^n}_{} \\ & = \sum_{n=-3}^{\infty} \left(\sum_{k=0}^{n+3} v_{k-1} u_{n-k+1}\right) t^n \end{split}$$

Wenn wir auch diese Rechnung in (4.3) integrieren, erhalten wir

$$Q_1 \cdot Q_2 = \partial_t^2 + \sum_{n=-2}^{\infty} (u_n + v_n) t^n \partial_t + \sum_{n=-3}^{\infty} (n+1) u_{n+1} t^n + \sum_{n=-3}^{\infty} \left(\sum_{k=0}^{n+3} v_{k-1} u_{n-k+1} \right) t^n$$

$$= \partial_t^2 + \sum_{n=-2}^{\infty} (u_n + v_n) t^n \partial_t + \sum_{n=-3}^{\infty} \left((n+1) u_{n+1} + \sum_{k=0}^{n+3} v_{k-1} u_{n-k+1} \right) t^n$$

$$\stackrel{!}{=} \partial_t^2 - (t^{-1} - 2i\sqrt{2a}t^{-2}) \partial_t - 3i\sqrt{2a}t^{-3}.$$

Damit haben wir ein Ergebnis, das sich Koeffizientenweise mit der gewünschten Formel vergleichen lässt:

$$2i\sqrt{2a}t^{-2} - t^{-1} = \sum_{n=-2}^{\infty} (u_n + v_n)t^n$$
(4.4)

$$-3i\sqrt{2a}t^{-3} = \sum_{n=-3}^{\infty} \left((n+1)u_{n+1} + \sum_{k=0}^{n+3} v_{k-1}u_{n-k+1} \right) t^n$$
(4.5)

Nun können wir mit (4.4) und (4.5) jeweils nochmals einen Koeffizientenvergleich durchführen und erhalten zunächst aus (4.4), die Bedingungen

$$2i\sqrt{2a} = u_{-2} + \underbrace{v_{-2}}_{=0} = u_{-2} \tag{4.6}$$

$$-1 = u_{-1} + v_{-1} \tag{4.7}$$

$$0 = u_n + v_n \qquad \forall n \ge 0 \tag{4.8}$$

welche wir als nächstes mit (4.5) kombinieren wollen. Betrachte zunächst die Vorfaktoren vor t^{-3} :

$$-3i\sqrt{2a} = (-2)u_{-2} + \sum_{k=0}^{0} v_{k-1}u_{-3-k+1}$$

$$= -2u_{-2} + v_{-1}u_{-2}$$

$$\stackrel{(4.6)}{=} -2 \cdot 2i\sqrt{2a} + v_{-1}2i\sqrt{2a}$$

$$\stackrel{a\neq 0}{\Rightarrow} v_{-1} = \frac{4i\sqrt{2a} - 3i\sqrt{2a}}{2i\sqrt{2a}}$$

$$= \frac{1}{2}$$

und somit

$$\stackrel{(4.7)}{\Rightarrow} -1 = u_{-1} + v_{-1}$$

$$= u_{-1} + \frac{1}{2}$$

$$\Rightarrow u_{-1} = -\frac{3}{2}.$$

Nun zum allgemeinem Koeffizienten vor t^n mit n > -3:

$$0 = (n+1)u_{n+1} + \sum_{k=0}^{n+3} v_{k-1}u_{n-k+1}$$

$$= (n+1)u_{n+1} + (\sum_{k=0}^{n+2} v_{k-1}u_{n-k+1}) + v_{n+3-1}u_{n-(n+3)+1}$$

$$= (n+1)u_{n+1} + (\sum_{k=0}^{n+2} v_{k-1}u_{n-k+1}) + v_{n+2}u_{-2}$$

$$\Rightarrow v_{n+2}u_{-2} = -\left((n+1)u_{n+1} + \sum_{k=0}^{n+2} v_{k-1}u_{n-k+1}\right)$$

$$\stackrel{u_{-2} \neq 0}{\Rightarrow} v_{n+2} = -\frac{1}{u_{-2}} \left((n+1)u_{n+1} + \sum_{k=0}^{n+2} v_{k-1}u_{n-k+1} \right)$$

und nach passendem Indexshift folgt

Kommentar: $n+2 \rightarrow n$

$$\Rightarrow v_n = -\frac{1}{u_{-2}} \left((n-1)u_{n-1} + \sum_{k=0}^n v_{k-1}u_{n-k-1} \right)$$

$$\stackrel{(4.6)}{=} -\frac{1}{2i\sqrt{2a}} \left((n-1)u_{n-1} + \sum_{k=0}^n v_{k-1}u_{n-k-1} \right)$$

$$= \frac{i}{2\sqrt{2a}} \left((n-1)u_{n-1} + \sum_{k=0}^n v_{k-1}u_{n-k-1} \right)$$

Also ist $\mathcal{N} = \mathcal{N}_1 \oplus \mathcal{N}_2$ mit $\mathcal{N}_1 = \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (\partial_t + \sum_{n=-1}^{\infty} v_n t^n)$ und $\mathcal{N}_2 = \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (\partial_t + \sum_{n=-2}^{\infty} u_n t^n)$ Zusammen mit $u_{-2} = 2i\sqrt{2a}$, $u_{-1} = -\frac{3}{2}$ und $v_{-1} = \frac{1}{2}$ sind durch

$$v_n = -u_n = \frac{i}{2\sqrt{2a}} \left((n-1)u_{n-1} + \sum_{k=0}^n v_{k-1}u_{n-k-1} \right) \qquad \forall n \ge 0$$
 (4.9)

die Koeffizienten von v(t) und u(t) vollständig bestimmt.

Nun lässt sich diese Zerlegung mit $\mathscr{E}^{-\psi(t)}$ zurücktwisten und wir erhalten damit die Zerlegung

$$\rho^{+}\mathcal{M}_{\varphi} \stackrel{2.66}{=} \rho^{+}\mathcal{M}_{\varphi} \otimes \mathscr{E}^{\psi(t)} \otimes \mathscr{E}^{-\psi(t)}$$

$$= (\mathcal{N}_{1} \oplus \mathcal{N}_{2}) \otimes \mathscr{E}^{-\psi(t)}$$

$$= \mathcal{N}_{1} \otimes \mathscr{E}^{-\psi(t)} \oplus \mathcal{N}_{2} \otimes \mathscr{E}^{-\psi(t)}$$

$$= (\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot Q_{1} \otimes \mathscr{E}^{-\psi(t)}) \oplus (\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot Q_{2} \otimes \mathscr{E}^{-\psi(t)})$$

wobei Q_1 bereits regulär. Betrachte also noch $\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}}\cdot Q_2\otimes \mathscr{E}^{-\psi(t)}$:

$$\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot Q_{2} \otimes \mathscr{E}^{-\psi(t)} \stackrel{2.65}{=} \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot Q_{2}(t, \partial_{t} - i\sqrt{2a}t^{-2})$$

$$= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot (\partial_{t} - i\sqrt{2a}t^{-2} + u(t))$$

$$= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot (\partial_{t} + i\sqrt{2a}t^{-2} + \sum_{n=-1}^{\infty} u_{n}t^{n})$$

$$\stackrel{2.65}{=} \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot (\partial_{t} + \sum_{n=-1}^{\infty} u_{n}t^{n}) \otimes \mathscr{E}^{\psi(t)}$$
regulär

Kommentar: Damit ist der zweite Summand also auch ein elementarer meromorpher Zusammenhang.

Also zerlegt sich \mathcal{M} , nach einem pull-back mit $\rho: t \mapsto x = -2t^2$, in

$$\rho^{+}\mathcal{M}_{\varphi} = \left(\underbrace{\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \left(\partial_{t} + \sum_{n=-1}^{\infty} v_{n} t^{n}\right)}_{=:\mathcal{R}_{1}} \otimes \mathscr{E}^{-\psi(t)}\right) \oplus \left(\underbrace{\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \left(\partial_{t} + \sum_{n=-1}^{\infty} u_{n} t^{n}\right)}_{=:\mathcal{R}_{2}} \otimes \mathscr{E}^{\psi(t)}\right).$$

Nach Zerlegen von \mathcal{R}_1 und \mathcal{R}_2 in eine direkte Summe von elementaren formalen meromorphen Zusammenhängen, wie in Satz 3.4, ist die Levelt-Turrittin-Zerlegung vollständig gegeben.

4.2.1 Konvergenz der Summanden

Kommentar: TODO: text

Es ist klar, dass die Potenzreihen nicht konvergent sein dürfen, trotzdem wollen wir die Potenzreihen auf Konvergenz untersuchen

Für n > 0 gilt $v_{n-1} \stackrel{(4.8)}{=} -u_{n-1}$ und damit wollen wir die Formel (4.9) noch weiter vereinfachen, um eine Version zu bekommen, die sich gut implementieren lässt. Aus (4.9) ergeben sich zunächst für n = 0 die Koeffizienten

$$v_0 = -\frac{1}{u_{-2}}((-1)u_{-1} + \sum_{k=0}^{0} v_{k-1}u_{-k-1})$$

$$= -\frac{1}{u_{-2}}(\frac{3}{2} - \frac{3}{4})$$

$$= -\frac{3}{4u_{-2}}$$

$$\stackrel{(4.6)}{=} \frac{3i}{8\sqrt{2a}} = -u_0$$

Kommentar: Somit ergeben sich für n=1 die Koeffizienten

$$v_1 = -\frac{1}{u_{-2}}((1-1)u_{1-1} + \sum_{k=0}^{1} v_{k-1}u_{1-k-1})$$
$$= -\frac{1}{u_{-2}}(v_{-1}u_0 + v_0u_{-1})$$

$$= -\frac{v_0}{u-2}(-v_{-1} + u_{-1})$$

$$= \frac{3}{u_{-2} \cdot 4u_{-2}}(-\frac{1}{2} - \frac{3}{2})$$

$$= \frac{3}{4u_{-2}^2}(-2)$$

$$= -\frac{3}{2u_{-2}^2}$$

$$= \frac{3}{16a} = -u_1$$

$$= -\frac{1}{u-2}((2-1)u_{2-1} + \sum_{k=0}^2 v_{k-1}u_{2-k-1})$$

$$= -\frac{1}{u-2}(u_1 + v_{-1}u_1 + v_0u_0 + v_1u_{-1})$$

$$= -\frac{1}{u-2}(\frac{3}{2u_{-2}^2} + \frac{1}{2}\frac{3}{2u_{-2}^2} + \frac{-3}{4u_{-2}}\frac{3}{4u_{-2}} + \frac{-3}{2u_{-2}^2}\frac{-3}{2})$$

$$= -\frac{1}{u_{-2}^2}(\frac{21}{16} + \frac{12}{16} - \frac{9}{16} + \frac{36}{16})$$

$$= -\frac{63}{16u_{-2}^3}$$

$$= -\frac{63}{16u_{-2}^3}$$

$$= -\frac{63}{256ia\sqrt{2a}}$$

$$= -\frac{63}{256ia\sqrt{2a}}$$

$$= u_{-2}((3-1)u_{3-1} + \sum_{k=0}^3 v_{k-1}u_{3-k-1})$$

$$\approx -u_{-2}^{-4}(-\frac{63}{8} - \frac{1}{2}v_{2} - v_{0}v_{1} - v_{1}v_{0} - \frac{3}{2}v_{2})$$

$$= -u_{-2}^{-4}(-\frac{63}{8} - \frac{1}{2}v_{2} - v_{0}v_{1} - v_{1}v_{0} - \frac{3}{2}v_{2})$$

$$= -u_{-2}^{-4}(-\frac{63}{8} - \frac{1}{2}v_{2} - v_{0}v_{1} - v_{1}v_{0} - \frac{3}{2}v_{2})$$

$$= -u_{-2}^{-4}(-\frac{63}{8} - \frac{1}{2}v_{2} - v_{0}v_{1} - v_{1}v_{0} - \frac{3}{2}v_{2})$$

$$= -u_{-2}^{-4}(-\frac{63}{8} - \frac{1}{2}v_{2} - v_{0}v_{1} - v_{1}v_{0} - \frac{3}{2}v_{2})$$

$$= -u_{-2}^{-4}(-\frac{(4-1)63}{32u_{-2}^4} - \frac{3-3}{4} - \frac{3-63}{2} - \frac{3-63}{16})$$

$$= -\frac{(4-1)63-8\cdot9+3\cdot63}{32u_{-2}^4}$$

$$= -\frac{8\cdot9}{8\cdot4u_{-2}^4}$$

$$= \frac{9}{4u_{-2}^4}$$

Kommentar: und analog, für n = 1 und n = 2

$$v_1 = -\frac{3}{2u_{-2}^2} = \frac{3}{16a} = -u_1$$
 und $v_2 = -\frac{63}{16u_{-2}^3} = -\frac{63i}{256a\sqrt{2a}} = -u_2$.

Die letzten zwei Paare sind für die Berechnung nicht von Bedeutung und dienen nur dazu, das Programm zu prüfen.

Nun vereinfachen wir die Formel:

$$\begin{split} v_n &= -\frac{1}{u_{-2}} \Big((n-1)u_{n-1} + \sum_{k=0}^n v_{k-1}u_{n-k-1} \Big) \\ &= -\frac{1}{u_{-2}} \Big(\underbrace{(n-1)u_{n-1} + v_{-1} u_{n-1} + (\sum_{k=1}^{n-1} v_{k-1} u_{n-k-1}) + v_{n-1}u_{-1}} \Big) \\ \overset{(4.8)}{=} &- \frac{1}{u_{-2}} \Big(-(n-1)v_{n-1} + \underbrace{v_{-1} \left(-v_{n-1} \right) + (\sum_{k=1}^{n-1} v_{k-1} \left(-v_{n-k-1} \right) + \underbrace{v_{n-1}u_{-1}} \Big) \\ &= -\frac{1}{u_{-2}} \Big(-(n-1)v_{n-1} - \frac{1}{2}v_{n-1} - \sum_{k=1}^{n-1} v_{k-1}v_{n-k-1} - \frac{3}{2}v_{n-1} \Big) \\ &= \frac{1}{u_{-2}} \Big((n-1)v_{n-1} + \sum_{k=1}^{n-1} v_{k-1}v_{n-k-1} \Big) \\ &= \frac{1}{u_{-2}} \Big((n+1)v_{n-1} + \sum_{k=1}^{n-1} v_{k-1}v_{n-k-1} \Big) \end{split}$$

Zu gegebenem $u_{-2}=2i\sqrt{2a},$ sind die Koeffizienten gegeben durch:

$$v_{-1} = \frac{1}{2}$$

$$v_{0} = -u_{0} = -\frac{3}{4u_{-2}}$$

$$v_{n} = -u_{n} = \frac{1}{u_{-2}} \left((n+1)v_{n-1} + \sum_{k=1}^{n-1} v_{k-1}v_{n-k-1} \right)$$

$$\forall n > 0$$

Im Anhang wird in Abschnitt C.2 eine Haskell Modul vorgestellt, welches zu gegebenem u_{-1} die Werte von v(t) und u(t) berechnet.

In der Abbildung 4.7 sind die Beträge der Koeffizienten von v(t) in Abhängigkeit von n für verschiedene u_{-2} angetragen.

Nun zum Konvergenzverhalten. Es ist klar, dass

$$Q_1 \in \mathcal{D}_{\widehat{L}} \backslash \mathcal{D}_L \Leftrightarrow v(t) \in \widehat{L} \backslash L$$
 bzw. $(\partial_t + \sum_{n=-1}^{\infty} u_n t^n) \in \mathcal{D}_{\widehat{L}} \backslash \mathcal{D}_L \Leftrightarrow u(t) \in \widehat{L} \backslash L$

Abbildung 4.7: Die Beträge der v_n in Abhängigkeit von n für unterschiedliche u_{-2} .

gilt. Deshalb wollen wir die Potenzreihen v und u und im besonderen deren Konvergenzverhalten, noch genauer betrachten. Außerdem gilt, dass $v(t) \in \widehat{L} \setminus L \Leftrightarrow u(t) \in \widehat{L} \setminus L$. Wir betrachten die folgenden zwei klassischen Konvergenzkriterien.

Satz 4.7 (Wurzlkriterium nach Cauchy). Sei $\sum_n a_n x^n$ eine Potenzreihe. Es gilt:

$$\limsup_{n\to\infty} \sqrt[n]{|a_n|} = +\infty \Rightarrow die \ Potenzreihe \ ist \ nirgends \ konvergent.$$

Beweis. siehe [Kno64, §18, Satz 94].

Abbildung 4.8: Wurzlkriterium angewendet auf die Koeffizienten

Satz 4.8 (Quotientenkriterium). Sei $\sum_n a_n x^n$ eine Potenzreihe. Es gilt:

$$\lim_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}=0 \Rightarrow \ \ die \ Potenzreihe \ ist \ nirgends \ konvergent.$$

Beweis. Es gilt, dass $\sum_n a_n x^n$ für ein $x \in \mathbb{C}$ konvergent ist, falls

$$\exists N \in \mathbb{N} : \forall n > N : \left| \frac{a_{n+1}x^{n+1}}{a_nx^n} \right| \le \eta < 1$$

und das ist äquivalent zu

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| |x| < 1.$$

Also konvergiert die Reihe für alle x mit $|x| < \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$.

Abbildung 4.9: Quotientenkriterium angewendet auf die Koeffizienten

A Aufteilung von $t\varphi'(t)$

Sei $\varphi \in t^{-1}\mathbb{C}[t^{-1}]$, so ist $\varphi' \coloneqq \sum_{i=2}^N a_{-i}t^{-i} \in t^{-2}\mathbb{C}[t^{-1}]$ also $u\varphi'(t) = \sum_{i=1}^N a_{-i-1}t^{-i} \in t^{-1}\mathbb{C}[t^{-1}]$, welches wir zerlegen wollen. Zerlege also $t\varphi'(t) = \sum_{j=0}^{p-1} t^j \psi_j(t^p)$ mit $\psi_j \in \mathbb{C}[x^{-1}]$ für alle j > 0 und $\psi_0 \in x^{-1}\mathbb{C}[x^{-1}]$:

also:

$$\psi_0(t^p) = a_{-(p+1)}t^{-p} + a_{-(2p+1)}t^{-2p} + \dots$$

$$\psi_1(t^p) = a_{-p}t^{-p} + a_{-2p}t^{2p} + \dots$$

$$\vdots$$

$$\psi_{p-1}(t^p) = a_{-2}t^p + a_{-(p+2)}t^{2p} + \dots$$

B Genaueres zu $(x^2\partial_x)^k$

Nun wollen wir noch $(x^2\partial_x)^{k+1}$ besser verstehen.

$$(x^{2}\partial_{x})^{k+1} = x^{2} \underbrace{\partial_{x}x^{2}}_{} \partial_{x}(x^{2}\partial_{x})^{k-1}$$

$$= x^{2} \underbrace{(2x + x^{2}\partial_{x})}_{} \partial_{x}(x^{2}\partial_{x})^{k-1}$$

$$= (2x^{3}\partial_{x} + x^{4}\partial_{x}^{2})(x^{2}\partial_{x})^{k-1}$$

$$= (2x^{3}\partial_{x} + x^{4}\partial_{x}^{2})(x^{2}\partial_{x})(x^{2}\partial_{x})^{k-2}$$

$$= (2x^{3}\underbrace{\partial_{x}x^{2}}_{} \partial_{x} + x^{4}\underbrace{\partial_{x}^{2}x^{2}}_{} \partial_{x})(x^{2}\partial_{x})^{k-2}$$

$$= (2x^{3}\underbrace{(2x + x^{2}\partial_{x})}_{} \partial_{x} + x^{4}\underbrace{(2x\partial_{x} + 1 + x^{2}\partial_{x}^{2})}_{} \partial_{x})(x^{2}\partial_{x})^{k-2}$$

$$= (4x^{4}\partial_{x} + 2x^{5}\partial_{x}^{2} + 2x^{5}\partial_{x}^{2} + x^{4}\partial_{x} + x^{6}\partial_{x}^{3})(x^{2}\partial_{x})^{k-2}$$

$$= (5x^{4}\partial_{x} + 4x^{5}\partial_{x}^{2} + x^{6}\partial_{x}^{3})(x^{2}\partial_{x})^{k-2}$$

$$= \sum_{n=1}^{k+1} \binom{k}{n-1} \underbrace{(k+1)!}_{n!} x^{n+k} \partial_{x}^{n}$$

Kommentar: Stirlingzahlen

also gilt für spezielle k

$$(x^{2}\partial_{x})^{k+1} = \begin{cases} 2x^{3}\partial_{x} + x^{4}\partial_{x}^{2} & \text{falls } k = 1\\ 5x^{4}\partial_{x} + 4x^{5}\partial_{x}^{2} + x^{6}\partial_{x}^{3} & \text{falls } k = 2\\ \sum_{n=1}^{k+1} {k \choose n-1} \frac{(k+1)!}{n!} x^{n+k} \partial_{x}^{n} \end{cases}$$
 (B.1)

C Quelltexte

C.1 ComplRat.hs

Das Modul Compl
Rat implementiert die Zahlen $\mathbb{Q}(i)$.

Listing C.1: ComplRat.hs

```
1 -- | Dieses Modul stellt den Datentyp 'ComplRat' komplexrationaler
   -- Zahlen, also den Elementen von /Q(i)/, bereit.
3 module ComplRat
       ( ComplRat(..)
       , realPart
       , imagPart
6
       , magnitude
       , magnitudeSq
8
       ) where
9
10 import Data. Ratio
11
  -- | Typ für komplexrationale Zahlen in kartesischer Darstellung.
   -- Der Konstruktor ist strikt in seinen beiden Argumenten.
14 data ComplRat = !Rational :+: !Rational
       deriving (Eq)
16
17
   -- Funktionen
20 -- | Gibt den reelen Teil einer gegebenen complexen Zahl zurück
21 realPart :: ComplRat -> Rational
22 realPart (x :+: _) = x
24
   -- | Gibt den imaginären Teil einer gegebenen complexen Zahl zurück
25 imagPart :: ComplRat -> Rational
26 imagPart (_ :+: y) = y
27
28 -- | Der nichtnegative Betrag einer complexen Zahl
   -- nur für rein reele oder complexe Zahlen, da es sonst, aufgrund der fehlenden
30 -- Wurzel, zu problemen kommt
31 magnitude :: ComplRat -> Rational
32 magnitude (x :+: 0) = abs x
33 magnitude (0 :+: y) = abs y
```

```
magnitude (_ :+: _) = error "Oops! Use magnitudeSq instead."
   \{-\text{magnitude} (x : +: y) = P. \text{sqrt} ( \text{sqr} x P. + (\text{sqr} y) ) - \}
35
     \{-\text{where sqr } z = z P.* z-\}
36
37
   -- | Das quadrat des Betrags einer complexen Zahl
38
   -- ist für alle complexen zahlen geeignet
  magnitudeSq :: ComplRat -> Rational
41
   magnitudeSq (x :+: y) = x*x + y*y
43
   -- Instanzen von ComplRat
45
   instance Show ComplRat where
46
        show (x :+: y) | y == 0
                                    = show x
47
                        | otherwise = "(" ++ show x ++ "+i" ++ show y ++ ")"
48
49
   instance Num ComplRat where
50
        (x :+: y) + (x' :+: y') = (x+x') :+: (y+y')
51
52
        (x :+: y) * (x' :+: y') = (x*x' - y*y') :+: (x*y' + y*x')
                                 = negate x :+: negate y
       negate (x :+: y)
53
54
       fromInteger i
                                = fromInteger i :+: 0
55
       abs z
                                = magnitude z :+: 0
        signum (0:+:0)
56
        {-signum z@(x:+:y)
                                   = x P./ r :+: y P./ r where r = magnitude z-
57
58
59
  instance Fractional ComplRat where
                         = fromRational r :+: 0
     fromRational r
     (a :+: b)/(c :+: d) = ((a*c + (b*d))/n) :+: ((b*c - (a*d))/n)
61
        where n = c*c + d*d
```

Hier ist :+: ein Infix-Konstruktor der Klasse ComplRat und erzeugt mit einem Aufruf der Form a :+: b eine Imaginärzahl, die a + ib entspricht.

C.2 Koeffs.hs

Dieses Modul Koeffs stelle die Funktionen vKoeffs und uKoeffs bereit, welche zu einem gegebenem Wert von u_{-2} eine unendliche Liste der Koeffizienten generieren. Die Einträge in der Liste sind vom Typ ComplRat. Dies ermöglicht es, dass die Berechung ohne numerische Fehler erfolgt, da nie gerundet wird.

Listing C.2: Koeffs.hs

```
1 -- | Dieses Modul stellt Funktionen bereit, welche die zu einem Startwert
2 -- gehörigen Koeffizienten von v(t) und u(t) generieren
3 module Koeffs
4 ( vKoeffs
5 , uKoeffs
```

```
) where
   import ComplRat
   import Data.MemoTrie (memo) -- https://github.com/conal/MemoTrie
   -- returns array with the coefficients of v(t)
10
   -- first element in array is koefficient from t^{-1}
  vKoeffs :: ComplRat -> [ComplRat]
   vKoeffs uMin2 = 1/2:+:0 : [koeff i|i <- [0..]]
     where koeff :: Int -> ComplRat
14
           koeff = memo koeff'
15
           koeff' :: Int -> ComplRat
           koeff' n \mid n > 0 = (koeff (n-1)*(fromIntegral n+1)+summe)/uMin2
17
                     | n == 0
                                = -3/(uMin2*4)
                    | n == -1
                                = 1/2
19
                    | otherwise = 0
20
21
                    where summe = sum [koeff (k-1)*(koeff (n-k-1))|k <- [1..n-1]]
22
   -- returns array with the coefficients of u(t)
23
   -- first element in array is koefficient from t^{-2}
  uKoeffs :: ComplRat -> [ComplRat]
  uKoeffs uMin2 = uMin2 : -3/2:+:0 : (map negate (tail $ vKoeffs uMin2))
```

Beispielhaft kann man mit dem folgendem Programm die Koeffizienten von v(t), zu $a = \frac{1}{8}$ also $u_{-2} = i = 2i\sqrt{2a}$, erzeugen lassen.

Listing C.3: testKoeffs.hs

```
module Main where
2 import ComplRat
   import Koeffs
   import System. Environment
  uMin2=(0:+:1)
  main :: IO()
   main = do x \leftarrow getArgs
             putStrLn $ "n \t| v_n\n----+"++(replicate 70 '-')
10
              main' \ head \ map (\xspace x -> read x :: Int) x
11
     where main' :: Int -> IO()
12
            main' end = mapM_ addLine $ zip [-1..end] $ vKoeffs uMin2
13
              where addLine (i,a) = putStrLn $ show i ++ "\t| " ++ show a
```

Ist der Code in einer Datei /**Pfad**/**zu**/**testKoeffs.hs** gespeicher, so lässt er sich in Unix-Artigen Systemen beispielsweise mit den folgenden Befehlen compilieren und ausführen.

```
1 $ ghc --make /Pfad/zu/testKoeffs.hs
2 $ /Pfad/zu/testKoeffs 15
```

Durch das Ausführen berechnet das Programm die Koeffizienten von v bis zum Index 15 und gibt in der Konsole das folgende aus

```
1 n | v_n
3 -1
           1 1 % 2
           | (0 % 1+i3 % 4)
5 1
           | 3 % 2
           | (0 % 1+i(-63) % 16)
7 3
           | (-27) % 2
           | (0 % 1+i1899 % 32)
8 4
9
           | 324 % 1
10 6
          | (0 % 1+i(-543483) % 256)
11 7
          | (-32427) % 2
          | (0 % 1+i72251109 % 512)
12 8
           | 2752623 % 2
13 9
14
   10
           | (0 % 1+i(-30413055339) % 2048)
15 11
           | (-175490226) % 1
16 12
           | (0 % 1+i9228545313147 % 4096)
17 13
           | 31217145174 % 1
           | (0 % 1+i(-30419533530730323) % 65536)
18 14
           | (-14741904895227) % 2
```

Übersetzt in unsere Zahlenschreibweise ergibt sich daraus die folgende Tabelle:

n	v_n
-1	$\frac{1}{2}$
0	$\frac{3}{4}i$
1	$\frac{4}{3}$
2	$-rac{2}{16}i$
3	$-\frac{16}{27}$
	2
4	$\frac{1899}{32}i$
5	$\frac{342}{1}$
6	$-\frac{543483}{256}i$
7	$-\frac{32427}{2}$
8	$\frac{72251109}{512}i$
9	$\frac{2752623}{2}$
10	$-\frac{30413055339}{2048}i$
11	$-\frac{175490226}{1}$
12	$\frac{9228545313147}{4096}i$
13	$\frac{31217145174}{1}$
14	$-\frac{30419533530730323}{65536}i$
15	$-\frac{14741904895227}{2}$

Tabelle C.1: Numerisch berechnete Koeffizienten von v(t) für $u_{-2}=i$ bzw. $a=\frac{1}{8}$

$$v(t) = \frac{1}{2}t^{-1} + \frac{3}{4}it^{0} + \frac{3}{2}t^{1} + \frac{-63}{16}it^{2} + \frac{-27}{2}t^{3} + \frac{1899}{32}it^{4} + \frac{324}{1}t^{5} + \frac{-543483}{256}it^{6} + \\ -\frac{32427}{2}t^{7} + \frac{72251109}{512}it^{8} + \frac{2752623}{2}t^{9} + \frac{-30413055339}{2048}it^{10} + \frac{-175490226}{1}t^{11} + \\ \frac{9228545313147}{4096}it^{12} + \frac{31217145174}{1}t^{13} + \frac{-30419533530730323}{65536}it^{14} + \\ -\frac{14741904895227}{2}t^{15} + \frac{16317191917079376129}{131072}it^{16} + \frac{4456057685561073}{2}t^{17} + \\ -\frac{22082325223708363779009}{524288}it^{18} + \frac{-1677161966915352627}{2}t^{19} + \\ \frac{18391039987731669876160557}{1048576}it^{20} + \frac{384452768592440499024}{1}t^{21} + \\ -\frac{73930258776609869550094166319}{8388608}it^{22} + \frac{-210878717949731493002826}{1}t^{23} + \\ \frac{88204980719873920964105544038937}{16777216}it^{24} + \frac{136346686011011135869054074}{1}t^{25} + \\ -\frac{246474684300724210330466557670749827}{67108864}it^{24} + \frac{1}{1}$$

```
\frac{-102614997677451303311734530276}{1}t^{27} + \\ \frac{398608966820777951112056743321778108571}{134217728}it^{28} + \\ \frac{88929857099067937229443324337874}{1}t^{29} + \\ \frac{-11819876688678190917510659802435441505814403}{4294967296}it^{30} + \dots
```

C.3 SaveToFile.hs

Listing C.4: SaveToFile.hs

```
1 module Main where
2 import ComplRat
3 import Koeffs
  import qualified Control.Monad.Parallel as P
   import System. Environment
7
8 import System. IO
   import Data.Time
10
11
   main :: IO()
   main = do x <- getArgs
12
             P.sequence_ (main' $ head $ map (\x -> read x :: Int) x)
13
14
       main' x = map (saveData x) [ ("./data/u_-2=i"
15
                                                          , (0:+:1))
                                    {-, ("./data/u_-2=10000i" , (0:+:10000))-}
                                                              , (0:+:1000))-}
                                    {-, ("./data/u_-2=1000i"
17
                                    {-, ("./data/u_-2=100i" , (0:+:100))-}
18
                                   {-, ("./data/u_-2=10i"
                                                               , (0:+:10))-}
                                   \{-, ("./data/u_-2=1.0e-1i", (0:+:1.0e-1))-\}
20
                                    , ("./data/u_-2=1.0e-2i" , (0:+:1.0e-2))
21
                                    \{-, ("./data/u_-2=1.0e-3i", (0:+:1.0e-3))-\}
                                   \{-, ("./data/u_-2=1.0e-4i", (0:+:1.0e-4))-\}
23
                                    \{-, ("./data/u_-2=1.0e-5i", (0:+:1.0e-5))-\}
24
25
26
       saveData :: Int -> (String, ComplRat) -> IO()
       saveData end (fn, uMin2) =
28
29
         do start <- getCurrentTime</pre>
            withFile fn WriteMode (\handle -> do
30
              hPutStr handle (concat $ take end $ map genLine triples))
31
            stop <- getCurrentTime</pre>
             putStrLn $ fn ++ " " ++ (show $ diffUTCTime stop start)
33
```

```
where vals
                        = vKoeffs uMin2
34
                triples = zip3 [0..] (tail vals) vals
35
36
       genLine :: (Int, ComplRat, ComplRat) -> String
37
                                                               , "\t"
       genLine (i,v1,v2) = concat [ show i
38
                                    , genItemBetrag (i,v1,v2) , "\t"
39
                                    , genItemCauchy (i,v1,v2) , "\t"
40
41
                                    , genItemQuot (i,v1,v2)
42
         where genItemBetrag :: (Int, ComplRat, ComplRat) -> String
                genItemBetrag (_,v,_) = show $ fromRational $ magnitude v
43
                genItemCauchy :: (Int, ComplRat, ComplRat) -> String
45
                genItemCauchy (i,v,_) = show $ genItemCauchy'**(1/(fromIntegral i))
                  where genItemCauchy ' = fromRational $ magnitude v
47
48
                genItemQuot :: (Int, ComplRat, ComplRat) -> String
49
                genItemQuot (_,v1,v2) = show $ sqrt $ fromRational $ genItemQuot'
50
                  where genItemQuot' = magnitudeSq v2/magnitudeSq v1
51
```

Das folgende Script nutzt 7 Prozessoren, um mit SaveToFile.hs die ersten 10000 werte zu berechnen. Anschließend werden mittels gnuplot die Plots als PDF erzeugt.

Listing C.5: GeneratePlots.sh

```
1 #!/bin/sh
2 \text{ max} = 10000
3 ghc --make -threaded ./SaveToFile.hs
   mkdir -p ./data
    ./SaveToFile $max +RTS -N7
5
6
   mkdir -p ./plot
7
   art[2]="betrag"; art[3]="cauchy"; art[4]="quot";
8
   for i in 2 3 4; do
     name="${art[i]}"
9
10
      echo $name
      gnuplot << EOF
11
12 set samples 1001
13 set key below
14 set term push #TODO: unnötig?
   set term post enh color lw 1 12 "Times-Roman"
16
   set output "${name}.eps"
17 set log xy
   plot for [fn in system("ls data/*")] fn every ::0::${max} using 1:${i}\
18
19
     with lines title system("basename ".fn)
20
  EOF
21
      epstopdf "${name}.eps" --outfile "./plot/${name}.pdf"
22
     rm "${name}.eps"
23 done
```

Literaturverzeichnis

- [Ara] D. Arapura, Notes on d-modules and connections with hodge theory, Notizen?
- [Ark12] S. Arkhipov, *D-modules*, unpublished lecture notes available online, May 2012.
- [AV09] B. Alkofer and F. Vogl, Lineare differentialgleichungen und deren fouriertransformierte aus algebraischer sicht / lineare differentialgleichungen aus algebraischer sicht, 2009.
- [Ayo09] J. Ayoub, Introduction to algebraic d-modules, Vorlesungsskript, 2009.
- [BD04] A. Beilinson and V.G. Drinfeld, *Chiral algebras*, Colloquium Publications American Mathematical Society, no. Bd. 51, American Mathematical Society, 2004.
- [Blo04] Spencer Bloch, Local fourier transforms and rigidity for d-modules, Asian J. Math (2004), 587–605.
- [Cou95] S.C. Coutinho, A primer of algebraic d-modules, London Mathematical Society Student Texts, Cambridge University Press, 1995.
- [Ell10] C. Elliott, *D-modules*, unpublished notes available online, April 2010.
- [Gin98] V. Ginzburg, Lectures on d-modules, Vorlesungsskript, 1998.
- [GL04] Ricardo García López, Microlocalization and stationary phase, Asian J. Math. 8 (2004), no. 4, 747–768. MR MR2127946 (2005m:32014)
- [Har77] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, Springer, 1977.
- [Hei10] Hedwig Heizinger, Verschwindungszykel regulär singulärer D-Moduln und Fouriertransformation, 2010.
- [HTT07] R. Hotta, K. Takeuchi, and T. Tanisaki, *D-modules, perverse sheaves, and representation theory*, Progress in Mathematics, Birkhäuser Boston, 2007.
- [Hut07] Graham Hutton, Programming in Haskell, Cambridge University Press, January 2007.
- [Kas03] M. Kashiwara, *D-modules and microlocal calculus*, Translations of Mathematical Monographs, American Mathematical Society, 2003.

- [Kno64] Konrad Knopp, Theorie und anwendung der unendlichen reihen, Die Grundlehren der mathematischen Wissenschaften, Springer, Berlin, 1964.
- [MR89] H. Matsumura and M. Reid, *Commutative ring theory*, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1989.
- [Sab90] C. Sabbah, Introduction to algebraic theory of linear systems of differential equations, Vorlesungsskript, 1990.
- [Sab07] _____, An explicit stationary phase formula for the local formal Fourier-Laplace transform, June 2007.
 - [Sch] J.P. Schneiders, An introduction to d-modules.
- [Sta12] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, December 2012.

Kommentar: TODO: Erklärung das das wirklich selbstgemacht ist