Corrigé du devoir surveillé n°7

Exercice 1

1. $e^{2x} - 2 = 7 \iff e^{2x} = 9 \iff \ln(e^{2x}) = \ln 9 \iff 2x = \ln 9 \iff x = \frac{1}{2}\ln 9 = \ln(\sqrt{9}) = \ln 3.$

Conclusion: l'unique solution est $x = \ln 3$.

2. On résout l'inéquation :

$$0,95^n \le 0,01$$
 $\iff \ln(0,95^n) \le \ln(0,01)$ (par stricte croissance de la fonction \ln)
 $\iff n \ln 0,95 \le \ln 0,01$
 $\iff n \ge \frac{\ln 0,01}{\ln 0,95}$ (car $\ln 0,95 < 0$, donc \le devient \ge).

Avec la calculatrice on trouve $\frac{\ln 0,01}{\ln 0,95} \approx 89,78$, donc l'ensemble des solutions est $[90;+\infty[$.

3. (a) Les solutions de l'équation différentielle

$$(E) y' = 4y$$

sont les fonctions de la forme

$$y(x) = Ce^{4x},$$

où C est une constante.

(b)
$$y(1) = 5 \iff Ce^{4 \times 1} = 5 \iff Ce^4 = 5 \iff Ce^4 \times e^{-4} = 5 \times e^{-4} \iff C = 5e^{-4}$$

Conclusion : l'unique solution de (E) vérifiant y(1) = 5 est définie par

$$y(x) = 5e^{-4} \times e^{4x} = 5e^{4x-4}$$
.

- 4. $\lim_{x\to +\infty} x\mathrm{e}^{-x} = 0$ par C.C., donc $\lim_{x\to +\infty} \ln\left(1+x\mathrm{e}^{-x}\right) = \ln(1+0) = 0$, par continuité de la fonction $x\mapsto \ln(1+x)$ en 0.
- 5. On résout dans $]0; +\infty[$:

$$\ln x \le 2$$

$$e^{\ln x} \le e^2 \qquad \text{(car la fonction exp est strictement croissante sur } \mathbb{R}\text{)}$$

$$x \le e^2.$$

Les solutions sont les nombres de l'intervalle $]0; e^2]$.

Attention : les solutions ne sont pas les nombres de l'intervalle $]-\infty; e^2]$, car on résout dans $]0; +\infty[$.

Exercice 2

La fonction f est définie sur $]0; +\infty[$ par

$$f(x) = \frac{1 + 2\ln x}{x}.$$

- 1. $f(e^{1/2}) = \frac{1+2\ln(e^{1/2})}{e^{1/2}} = \frac{1+2\times\frac{1}{2}}{e^{1/2}} = 2e^{-1/2}$.
- 2. La fonction f s'écrit comme un quotient : $f = \frac{u}{v}$, avec $u(x) = 1 + 2 \ln x$ et v(x) = x. Les fonctions u et v sont dérivables sur]0; $+\infty[$ et pour tout $x \in]0$; $+\infty[$:

$$u(x) = 1 + 2 \ln x$$
 , $v(x) = x$
 $u'(x) = 2 \times \frac{1}{x} = \frac{2}{x}$, $v'(x) = 1$

Donc en appliquant la formule pour la dérivée d'un quotient, pour tout $x \in]0$; $+\infty[$:

$$f'(x) = \frac{u'(x) \times v(x) - u(x) \times v'(x)}{(v(x))^2} = \frac{\frac{2}{x} \times x - (1 + 2\ln x) \times 1}{x^2} = \frac{2 - 1 - 2\ln x}{x^2} = \frac{1 - 2\ln x}{x^2}.$$

3. On résout l'équation :

$$1 - 2 \ln x = 0 \iff \ln x = \frac{1}{2} \iff x = e^{1/2}.$$

On en déduit le signe de f' et les variations de f:

x	0			$e^{1/2}$		$+\infty$
$1 - 2 \ln x$		+	-	0	_	
x^2	0	+	-		+	
f'(x)		+	-	0	_	
f(x)		$-\infty$	<i>≯</i>	$2e^{-1/2}$		<u> </u>

4. Limite en $+\infty$: on écrit $f(x) = \frac{1}{x} + 2\frac{\ln x}{x}$.

$$\lim_{\substack{x \to +\infty \\ \lim_{x \to +\infty}}} \frac{1}{x} = 0$$

$$\lim_{\substack{x \to +\infty \\ x}} \frac{\ln x}{x} = 0 \text{ (par croiss. comp.)}$$

$$\implies \lim_{\substack{x \to +\infty }} f(x) = 0.$$

Limite en 0 : on écrit $f(x) = (1 + 2 \ln x) \times \frac{1}{x}$. On sait que $\lim_{x \to 0, x > 0} \ln x = -\infty$, donc :

$$\left| \lim_{\substack{x \to 0, \ x > 0}} \left(1 + 2 \ln x \right) \right| = -\infty$$

$$\left| \lim_{\substack{x \to 0, \ x > 0}} \frac{1}{x} \right| = +\infty$$

$$\Rightarrow \lim_{\substack{x \to 0, \ x > 0}} f(x) = -\infty.$$

Exercice 3

1. La fonction g est solution de l'équation différentielle y' = -0.04y + 0.8, donc g est définie sur $[0; +\infty[$ par

$$g(t) = Ce^{-0.04t} - \frac{0.8}{-0.04} = Ce^{-0.04t} + 20,$$

où C est une constante.

On sait de plus que g(0) = 100, donc $Ce^{-0.04 \times 0} + 20 = 100$, et ainsi C = 100 - 20 = 80. Conclusion :

$$g(t) = 80e^{-0.04t} + 20.$$

2. La température après 30 minutes est

$$q(30) = 80e^{-0.04 \times 30} + 20 \approx 44$$
°C.

3. On résout l'équation g(t) = 36:

$$80e^{-0.04t} + 20 = 36 \iff e^{-0.04t} = \frac{36 - 20}{80} \iff \ln\left(e^{-0.04t}\right) = \ln\left(0, 2\right)$$
$$\iff -0.04t = \ln\left(0, 2\right) \iff t = -\frac{\ln\left(0, 2\right)}{-0.04t}.$$

On calcule une valeur approchée avec la calculatrice et on trouve que la température est de 36° C après 40 minutes environ.