MERmaid: Distributed *de novo*Assembler

Richard Xia, Albert Kim, Jarrod Chapman, Dan Rokhsar

The Challenge

- Historically, sequencing machines slow, but accurate
- Today, massively parallel sequencing platforms
 - Shorter reads, lower accuracy, greater redundancy
 - Total number of bases sequenced is orders of magnitude greater
- Software is needed to reassemble these short reads into a full genome

"Shotgun" Sequencing

General Assembly (*k*-mers)

- Divide reads into smaller strings of size k (kmers)
- Why create even smaller segments?
 - Smaller chance of containing erroneous base
 - But the tradeoff is that repetitive sequences are

General Assembly (de Bruijn Graph)

- Combine k-mers into a complete genome
- Model the set of k-mers as a de Bruijn graph
 - Nodes are k-mers
 - Edges are overlaps of (k-1) between k-mers

http://compbio.davidson.edu/phast/debruijn.html

General Assembly (Contigs)

- We combine contiguous paths of k-mers into longer sequences (contigs)
 - We stop when we reach a fork or a dead-end
 - We end up with the longest sequences obtained by following unambiguous edges in the de Bruijn graph

http://genome.cshlp.org/content/20/9/1165

Naïve Implementation

- 1. Parallel reading of data
- 2. Generate *k*-mers and place into bins
- 3. Build distributed hash table
 - Represents de Bruijn graph
 - Maps k-mers to their frequencies and extensions
- 4. Discard *k*-mers of low frequency
 - Assumed to be erroneous
- 5. Build contigs by walking de Bruijn graph

Architecture

Parallel Reading Stage **Binning Stage**

Contig Building Stage

Current Problems

- Most current assemblers do not run on commodity clusters
 - Expected to run on supercomputers
- k-mer generation causes an explosion of data
 - Each read of length l generates (l k + 1) k-mers
- High memory usage
- I/O intensive
- Long running time

MERmaid

- Runs on commodity clusters (EC2)
- Smaller memory footprint
 - Bloom filters to exclude erroneous k-mers
 - Compression of k-mers
- Less network I/O
 - Locality-sensitive hashing

Erroneous k-mers

Bi-modal distribution

of times k-mer occurs in data

Bloom Filters

- Use a Bloom filter
 - Used first to catch low-frequency k-mers
 - On collision, insert k-mer into traditional hash table, which saves the k-mer as the key
 - Erroneous k-mers rarely get inserted into traditional hash table
- Multiple tiers of Bloom filters to save more memory

Compression

- Transform k-mers to reduce encoding entropy
 - Burrows-Wheeler Transform (BWT)
 - Move-To-Front (MTF) Transform
- Run-length and Huffman Encoding
 - Binary representation dependent on compressibility of reads

Locality-Sensitive Hashing

- Bin together k-mers which are likely to be connected in the de Bruijn graph
- Local assembly of contigs before going offcore/off-machine
- Hash based on presence of "shingles", or ngrams
- With 16 bins, 93% of extension k-mers can be found on same bin

Results

Number of Processes	Memory Usage	Wall Time
1	11.9 GB	51m 3s
2	12.2 GB	31m 7s
4	12.8 GB	24m 5s
8	13.6 GB	16m 53s

Pichia (a fungus) 100 Megabase Genome No Bloom Filter, no LSH

EC2 4x Extra Large Cluster Instance

- •23 GB Memory
- •2 Quad Core Intel Xeon "Nehalem" 5570
- •10 Gigabit Ethernet

Additional Results

Type (8 processes)	Memory Usage	Wall Time
Basic	13.6 GB	16m 53s
Bloom Filter	6.28 GB	18m 23s
LSH	14.0 GB	16m 25s
Bloom Filter + LSH	6.98 GB	19m 34s

Pichia (a fungus) 100 Megabase Genome

EC2 4x Extra Large Cluster Instance

- •23 GB Memory
- •2 Quad Core Intel Xeon "Nehalem" 5570
- •10 Gigabit Ethernet

Compression

- 2-bits per base (ACGT)
 - Very difficult to compress, BWT + MTF increase space required by 20%
 - Theoretical limit of compression: ~20% savings
- 3-bits per base (ACGT + special characters)
 - BWT + MTF + Huffman: ~16% savings
 - BWT + Huffman: ~20% savings
- No significant savings

Conclusion/Future Work

- We did memory and I/O tradeoffs in order to make this run on commodity clusters
- 1-level Bloom filter saves ~50% memory usage
 - Future work: Experiment with multiple levels
- Compression not worthwhile
- No data to support LSH yet
 - Future work: Run on multiple nodes
- Automatic preprocessing to find cutoff parameters
- GPU implementation