Intuitionistic modal logic

Philippe Balbiani and Çiğdem Gencer

Logic, Interaction, Language and Computation Toulouse Institute of Computer Science Research CNRS-INPT-UT3, Toulouse, France

Institut de Recherche en Informatique de Toulouse

Intuitionistic modal logics Outline

- Intermediate logics
- Modal logics
- Combining logics
- ► Two peculiar intuitionistic modal logics
- A minimal setting

A minimal setting Outline

- A word about intermediate logics
- A word about modal logics
- ► Then, about intuitionistic modal logics
- Conclusion and perspectives

What is the language of intermediate logics?

Propositional letters

Propositional connectives and parentheses

$$\rightarrow$$
, \perp , \top , \vee , \wedge , (,)

Formulas

$$A ::= p|(A \rightarrow A)| \bot |\top|(A \lor A)|(A \land A)$$

Abbreviations

$$\neg A ::= (A \rightarrow \bot)$$

 $(A \leftrightarrow B) ::= ((A \rightarrow B) \land (B \rightarrow A))$

Notation

FOR: the set of all formulas

Examples of intermediate logics

► CPL : Classical Propositional Logic

▶ IPL : Intuitionistic Propositional Logic

Formal desiderata for intermediate logics

- ▶ Any **L⊆FOR** closed for uniform substitution and such that
 - L contains the standard axioms of IPL
 - **L** is closed with respect to the rule $\frac{p \ p \rightarrow q}{a}$

Relational semantics of intermediate logics

- ▶ Kripke frame : preordered structure (W, ≤) W : nonempty set of "worlds" s, t, etc ≤ : reflexive transitive relation on W
- ▶ Valuation on (W, \leq)

V: propositional letter $p \mapsto \leq$ -closed subset V(p) of W

▶ Truth condition for →

Relational semantics of intermediate logics

- ▶ Kripke frame : preordered structure (W, ≤)
 W : nonempty set of "worlds" s, t, etc
 < : reflexive transitive relation on W</p>
- Valuation on (W, ≤)
 V : propositional letter p → ≤-closed subset V(p) of W
- Truth conditions

$$\begin{array}{lll} s \models p & \Leftrightarrow s \in V(p) \\ s \models A \rightarrow B & \Leftrightarrow \forall t \in W, \ (s \leq t \ \Rightarrow \ t \not\models A \ \text{or} \ t \models B) \\ s \models \bot & \Leftrightarrow \ \text{never} \\ s \models \top & \Leftrightarrow \ \text{always} \\ s \models A \lor B & \Leftrightarrow s \models A \ \text{or} \ s \models B \\ s \models A \land B & \Leftrightarrow s \models A \ \& \ s \models B \end{array}$$

Examples of intermediate logics

ightharpoonup CPL ::= IPL + $p \lor \neg p$

► SmL ::= IPL +
$$(\neg q \rightarrow p) \rightarrow (((p \rightarrow q) \rightarrow p) \rightarrow p)$$

► KC ::= IPL + $\neg p \lor \neg \neg p$
► LC ::= IPL + $(p \rightarrow q) \lor (q \rightarrow p)$
► SL ::= IPL + $((\neg \neg p \rightarrow p) \rightarrow p \lor \neg p) \rightarrow \neg p \lor \neg \neg p$
► KP ::= IPL + $(\neg p \rightarrow q \lor r) \rightarrow (\neg p \rightarrow q) \lor (\neg p \rightarrow r)$
► WKP ::= IPL + $(\neg p \rightarrow \neg q \lor \neg r) \rightarrow (\neg p \rightarrow \neg q) \lor (\neg p \rightarrow \neg r)$

What is the language of modal logics?

Propositional letters

- ▶ Propositional connectives, modal connectives and parentheses \rightarrow , \bot , \top , \lor , \land , \Box , \diamondsuit , (,)
- Formulas

$$A ::= \rho|(A \rightarrow A)|\bot|\top|(A \lor A)|(A \land A)|\Box A|\Diamond A$$

Abbreviations

$$\neg A ::= (A \rightarrow \bot)$$

 $(A \leftrightarrow B) ::= ((A \rightarrow B) \land (B \rightarrow A))$

Notation

FOR: the set of all formulas

Examples of modal logics

▶ **S**5 : a logic of knowledge

▶ **K** : the least modal logic

Formal desiderata for modal logics

▶ Any **L⊆FOR** closed for uniform substitution and such that

L contains the standard axioms of CPL

L is closed with respect to the rule $\frac{p}{a} \frac{p \to q}{a}$

L contains the axiom $\Box p \leftrightarrow \neg \Diamond \neg p$

L contains the axiom $\Diamond p \leftrightarrow \neg \Box \neg p$

L contains the axiom $\Box p \land \Box q \rightarrow \Box (p \land q)$

L contains the axiom $\Diamond(p \lor q) \rightarrow \Diamond p \lor \Diamond q$

L contains the axiom □⊤

L contains the axiom $\neg \Diamond \bot$

L contains the axiom $(\lozenge p \rightarrow \Box q) \rightarrow \Box (p \rightarrow q)$

L contains the axiom $\Diamond(p \rightarrow q) \rightarrow (\Box p \rightarrow \Diamond q)$

L is closed with respect to the rule $\frac{p \to q}{\Box p \to \Box q}$

L is closed with respect to the rule $\frac{\dot{p}\rightarrow q}{\langle p\rightarrow \langle q}$

Relational semantics of modal logics

- Kripke frame : relational structure (W, R)
 - $\ensuremath{\mathcal{W}}$: nonempty set of "worlds" $\ensuremath{\emph{s}}$, $\ensuremath{\emph{t}}$, etc
 - R: binary relation on W
- Valuation on (W, R)
 - V: propositional letter $p \mapsto \text{subset } V(p)$ of W
- ▶ Truth conditions for □ and ◊

Relational semantics of modal logics

- Kripke frame : relational structure (W, R) W : nonempty set of "worlds" s, t, etc R : binary relation on W
- ► Valuation on (W, R)
 - V: propositional letter $p\mapsto \mathsf{subset}\ V(p)$ of W
- Truth conditions

$$\begin{array}{lll} s \models p & \Leftrightarrow s \in V(p) \\ s \models A \rightarrow B & \Leftrightarrow s \not\models A \text{ or } s \models B \\ s \models \bot & \Leftrightarrow \text{ never} \\ s \models \top & \Leftrightarrow \text{ always} \\ s \models A \lor B & \Leftrightarrow s \models A \text{ or } s \models B \\ s \models A \land B & \Leftrightarrow s \models A \& s \models B \\ s \models \Box A & \Leftrightarrow \forall t \in R(s), t \models A \\ s \models \Diamond A & \Leftrightarrow \exists t \in R(s), t \models A \end{array}$$

Examples of modal logics

- ▶ KD ::= K + $\Box p \rightarrow \Diamond p$
- ▶ KT $::= K + \Box p \rightarrow p$
- ▶ KB $::= K + p \rightarrow \Box \Diamond p$
- ▶ K4 ::= K + $\Box p \rightarrow \Box \Box p$
- ► K5 ::= $\mathbf{K} + \Diamond p \rightarrow \Box \Diamond p$
- ► S4 ::= $\mathbf{K} + \Box p \rightarrow p + \Box p \rightarrow \Box \Box p$
- ► S5 ::= $\mathbf{K} + \Box p \rightarrow p + \Diamond p \rightarrow \Box \Diamond p$

What is the language of intuitionistic modal logics?

- Propositional letters
 - p, q, etc
- ▶ Propositional connectives, modal connectives and parentheses \rightarrow , \bot , \top , \lor , \land , \Box , \diamondsuit , (,)
- Formulas

$$A ::= p|(A \rightarrow A)|\bot|\top|(A \lor A)|(A \land A)|\Box A|\Diamond A$$

Abbreviations

$$\neg A ::= (A \rightarrow \bot)$$

 $(A \leftrightarrow B) ::= ((A \rightarrow B) \land (B \rightarrow A))$

Notations

 $\mathsf{FOR}_{\{\Box,\Diamond\}}$: the set of all formulas

 $\mathsf{FOR}_{\{\Box\}}$: the set of all formulas without \Diamond

 $\mathsf{FOR}_{\{\lozenge\}}$: the set of all formulas without \square

 FOR_{\emptyset} : the set of all formulas without \square and \lozenge

Examples of intuitionistic modal logics

- ▶ IK : an "intuitionistic" analogue of K
- ▶ **WK** : a "constructive" analogue of **K**

Informal desiderata for intuitionistic modal logics Simpson (1994)

- ▶ Any $L \subseteq FOR_{\{\Box, \diamondsuit\}}$ closed for uniform substitution and such that
 - L∩FOR_∅ is IPL
 - **L** is closed with respect to the rule $\frac{p \ p \rightarrow q}{q}$
 - $\mathbf{L} + p \lor \neg p$ is a modal logic
 - L possesses the disjunction property
 - □ and ◊ are independent in L
 - Given an arbitrary model (W, \leq, R, V) and $s, t \in W$, if $s \models A$ and $s \leq t$ then $t \models A$

Historical perspective

Pioneers

```
Fitch (1948)
Bull (1965, 1966)
```

"Intuitionistic" founders

```
Fischer Servi (1977, 1978, 1984) Plotkin and Stirling (1986)
```

"Constructive" founders

```
Wijesekera (1990)
Alechina, Mendler, de Paiva and Ritter (2001)
```

Relational semantics of intuitionistic modal logics

ightharpoonup Kripke frame : preordered relational structure (W,\leq,R)

W: nonempty set of "worlds" s, t, etc

 \leq : reflexive transitive relation on W

R: binary relation on W

▶ Valuation on (W, \leq, R)

V: propositional letter $p\mapsto \leq$ -closed subset V(p) of W

Truth conditions

$$\begin{array}{lll} s \models p & \Leftrightarrow s \in V(p) \\ s \models A \rightarrow B & \Leftrightarrow \forall t \in W, \ (s \leq t \ \Rightarrow \ t \not\models A \ \text{or} \ t \models B) \\ s \models \bot & \Leftrightarrow \ \text{never} \\ s \models \top & \Leftrightarrow \ \text{always} \\ s \models A \lor B & \Leftrightarrow s \models A \ \text{or} \ s \models B \\ s \models A \land B & \Leftrightarrow s \models A \ \& \ s \models B \\ s \models \Box A & \Leftrightarrow \forall t \in R(s), \ t \models A \ ? \\ s \models \Diamond A & \Leftrightarrow \exists t \in R(s), \ t \models A \ ? \end{array}$$

Relational semantics of intuitionistic modal logics

▶ Kripke frame : preordered relational structure (W, \leq, R)

W: nonempty set of "worlds" s, t, etc

 \leq : reflexive transitive relation on W

R: binary relation on W

Relational semantics of intuitionistic modal logics

- ▶ Kripke frame : preordered relational structure (W, \leq, R)
 - W: nonempty set of "worlds" s, t, etc
 - \leq : reflexive transitive relation on W
 - R: binary relation on W
- ▶ Interactions between ≤ and R : 4 possibilities !
 - ▶ (W, \leq, R) is downward confluent if $\leq \circ R \subseteq R \circ \leq$
 - (W, <, R) is forward confluent if $> \circ R \subseteq R \circ >$
 - ▶ (W, \leq, R) is backward confluent if $R \circ \leq \subseteq \leq \circ R$
 - ▶ (W, \leq, R) is upward confluent if $R \circ \geq \subseteq \geq \circ R$
- ► All in all
 - \triangleright 2 × 2 × 2 × 2 choices at the level of the class of frames !

Relational semantics of intuitionistic modal logics

- ▶ Kripke frame : preordered relational structure (W, \leq, R)
- ▶ Valuation on (W, \leq, R) V: propositional letter $p \mapsto \leq$ -closed subset V(p) of W
- ► Truth conditions for \square : 2 possibilities! $s \models \square A \Leftrightarrow \forall t \in W, (s \le t \Rightarrow \forall u \in R(t), u \models A)$ $s \models \square A \Leftrightarrow \exists t \in W, (s \ge t \& \forall u \in R(t), u \models A)$
- ► Truth conditions for \lozenge : 2 possibilities! $s \models \lozenge A \quad \Leftrightarrow \forall t \in W, \ (s \le t \Rightarrow \exists u \in R(t), \ u \models A)$ $s \models \lozenge A \quad \Leftrightarrow \exists t \in W, \ (s \ge t \& \exists u \in R(t), \ u \models A)$
- ► All in all
 - ▶ 2×2 choices at the level of the truth conditions!

Restricting the language to $FOR_{\{\Box\}}$

- ▶ Semantics : all downward confluent (W, \leq, R)
 - ► Truth conditions for □

```
s \models \Box A \Leftrightarrow \forall t \in W, (s \leq t \Rightarrow \forall u \in R(t), u \models A)
```

$$s \models \Box A \quad \Leftrightarrow \exists t \in W, \ (s \geq t \& \forall u \in R(t), \ u \models A)$$

$$s \models \Box A \Leftrightarrow \forall t \in R(s), t \models A$$

Restricting the language to $FOR_{\{\Box\}}$ Božić and Došen (1984) — all down. conf. (W, \leq, R)

- ► Defined logic **HK**□
 - ▶ Least **L**⊂**FOR** closed for uniform substitution and such that
 - L contains the standard axioms of CPL IPL
 - **L** is closed with respect to the rule $\frac{p-p\to q}{r}$
 - **L** contains the axiom $\Box p \leftrightarrow \neg \Diamond \neg p$
 - **L** contains the axiom $\Diamond p \leftrightarrow \neg \Box \neg p$
 - **L** contains the axiom $\Box p \land \Box q \rightarrow \Box (p \land q)$
 - **L** contains the axiom $\Diamond(p \lor q) \rightarrow \Diamond p \lor \Diamond q$
 - **L** contains the axiom $\Box \top$
 - **L** contains the axiom ¬◊⊥
 - **L** contains the axiom $(\Diamond p \rightarrow \Box q) \rightarrow \Box (p \rightarrow q)$
 - **L** contains the axiom $\Diamond(p \rightarrow q) \rightarrow (\Box p \rightarrow \Diamond q)$
 - **L** is closed with respect to the rule $\frac{p \to q}{\Box p \to \Box q}$
 - **L** is closed with respect to the rule $\frac{\Box p \to q}{\Diamond p \to \Diamond q}$

Restricting the language to $FOR_{\{\lozenge\}}$

- ▶ Semantics : all forward confluent (W, \leq, R)
 - ► Truth conditions for ♦

```
\begin{array}{lll} s \models \Diamond A & \Leftrightarrow \forall t \in W, \ (s \leq t \ \Rightarrow \ \exists u \in R(t), \ u \models A) \\ s \models \Diamond A & \Leftrightarrow \exists t \in W, \ (s \geq t \ \& \ \exists u \in R(t), \ u \models A) \\ s \models \Diamond A & \Leftrightarrow \exists t \in R(s), \ t \models A \end{array}
```

```
Restricting the language to FOR_{\{\lozenge\}}
Božić and Došen (1984) — all for. conf. (W, \leq, R)
```

- ▶ Defined logic **HK**◊
 - ▶ Least **L**⊂**FOR** closed for uniform substitution and such that
 - L contains the standard axioms of CPL IPL
 - **L** is closed with respect to the rule $\frac{p-p\to q}{r}$
 - **L** contains the axiom $\Box p \leftrightarrow \neg \Diamond \neg p$
 - **L** contains the axiom $\Diamond p \leftrightarrow \neg \Box \neg p$
 - **L** contains the axiom $\Box p \land \Box q \rightarrow \Box (p \land q)$
 - **L** contains the axiom $\Diamond(p \lor q) \rightarrow \Diamond p \lor \Diamond q$
 - **L** contains the axiom □⊤
 - **L** contains the axiom $\neg \Diamond \bot$
 - **L** contains the axiom $(\Diamond p \rightarrow \Box q) \rightarrow \Box (p \rightarrow q)$
 - **L** contains the axiom $\Diamond(p \rightarrow q) \rightarrow (\Box p \rightarrow \Diamond q)$
 - **L** is closed with respect to the rule $p \rightarrow q$
 - **L** is closed with respect to the rule $\frac{\stackrel{\sim}{p} \stackrel{\sim}{\rightarrow} \stackrel{\sim}{q}}{\stackrel{\sim}{\Diamond} p \rightarrow \Diamond q}$

Considering the full language $FOR_{\{\Box,\Diamond\}}$, a first possibility

- ▶ Semantics : all forward confluent (W, \leq, R)
 - ► Truth conditions for □

$$s \models \Box A \Leftrightarrow \forall t \in W, \ (s \leq t \Rightarrow \forall u \in R(t), \ u \models A)$$

► Truth conditions for ♦

$$s \models \lozenge A \Leftrightarrow \forall t \in W, \ (s \leq t \Rightarrow \exists u \in R(t), \ u \models A)$$

$$s \models \Diamond A \Leftrightarrow \exists t \in W, (s \geq t \& \exists u \in R(t), u \models A)$$

$$s \models \Diamond A \Leftrightarrow \exists t \in R(s), t \models A$$

Considering the full language $FOR_{\{\Box,\Diamond\}}$, a first possibility **Fischer Servi (1984)** — all back. and for. conf. (W, \leq, R)

- ► Defined logic **IK**
 - ▶ Least **L**⊂**FOR** closed for uniform substitution and such that
 - L contains the standard axioms of CPL IPL
 - **L** is closed with respect to the rule $\frac{p \ p \rightarrow q}{q}$
 - **L** contains the axiom $\Box p \leftrightarrow \neg \Diamond \neg p$
 - **L** contains the axiom $\Diamond p \leftrightarrow \neg \Box \neg p$
 - **L** contains the axiom $\Box p \land \Box q \rightarrow \Box (p \land q)$
 - **L** contains the axiom $\Diamond(p \lor q) \rightarrow \Diamond p \lor \Diamond q$
 - **L** contains the axiom $\Box \top$
 - **L** contains the axiom $\neg \Diamond \bot$
 - **L** contains the axiom $(\lozenge p \rightarrow \Box q) \rightarrow \Box (p \rightarrow q)$
 - **L** contains the axiom $\Diamond(p \rightarrow q) \rightarrow (\Box p \rightarrow \Diamond q)$
 - **L** is closed with respect to the rule $\frac{p \rightarrow q}{\Box p \rightarrow \Box q}$
 - **L** is closed with respect to the rule $\frac{\tilde{p}\overset{\sim}{\rightarrow}\tilde{q}}{\stackrel{\sim}{\Diamond}p\rightarrow\Diamond q}$

Considering the full language $FOR_{\{\Box, \Diamond\}}$, a first possibility **B., Gao, Gencer and Olivetti** — all for. conf. (W, \leq, R)

- ▶ Defined logic FIK
 - ▶ Least **L**⊂**FOR** closed for uniform substitution and such that
 - L contains the standard axioms of CPL IPL
 - **L** is closed with respect to the rule $\frac{p \ p \to q}{q}$
 - **L** contains the axiom $\Box p \leftrightarrow \neg \Diamond \neg p$
 - **L** contains the axiom $\Diamond p \leftrightarrow \neg \Box \neg p$
 - **L** contains the axiom $\Box p \land \Box q \rightarrow \Box (p \land q)$
 - **L** contains the axiom $\Diamond(p \lor q) \rightarrow \Diamond p \lor \Diamond q$
 - **L** contains the axiom $\Box \top$
 - **L** contains the axiom $\neg \Diamond \bot$
 - **L** contains the axiom $(\Diamond p \rightarrow \Box q) \rightarrow \Box (p \rightarrow q)$
 - **L** contains the axiom $\Diamond(p \rightarrow q) \rightarrow (\Box p \rightarrow \Diamond q)$
 - **L** is closed with respect to the rule $\frac{p \to q}{\Box p \to \Box q}$
 - **L** is closed with respect to the rule $\frac{p \rightarrow q}{\langle p \rightarrow q \rangle q}$
 - **L** contains the axiom $\Box(p \lor q) \to ((\Diamond p \to \Box q) \to \Box q)$
 - **L** contains the axiom $\Box(p \rightarrow q) \rightarrow (\Diamond p \rightarrow \Diamond q)$

Considering the full language $FOR_{\{\Box,\Diamond\}}$, a second possibility

- ▶ Semantics : all (W, \leq, R)
 - ► Truth conditions for \square $s \models \square A \Leftrightarrow \forall t \in W, (s \le t \Rightarrow \forall u \in R(t), u \models A)$
 - ► Truth conditions for \Diamond $s \models \Diamond A \Leftrightarrow \forall t \in W, (s \leq t \Rightarrow \exists u \in R(t), u \models A)$

Considering the full language $FOR_{\{\Box,\Diamond\}}$, a second possibility Wijesekera (1990) — all (W, \leq, R)

- ▶ Defined logic WK
 - ▶ Least **L**⊂**FOR** closed for uniform substitution and such that
 - L contains the standard axioms of CPL IPL
 - **L** is closed with respect to the rule $\frac{p-p\to q}{r}$
 - **L** contains the axiom $\Box p \leftrightarrow \neg \Diamond \neg p$
 - **L** contains the axiom $\Diamond p \leftrightarrow \neg \Box \neg p$
 - **L** contains the axiom $\Box p \land \Box q \rightarrow \Box (p \land q)$
 - **L** contains the axiom $\Diamond(p \lor q) \to \Diamond p \lor \Diamond q$
 - **L** contains the axiom $\Box \top$
 - **L** contains the axiom $\neg \Diamond \bot$
 - **L** contains the axiom $(\Diamond p \rightarrow \Box q) \rightarrow \Box (p \rightarrow q)$
 - **L** contains the axiom $\Diamond(p \rightarrow q) \rightarrow (\Box p \rightarrow \Diamond q)$
 - **L** is closed with respect to the rule $\frac{p \to q}{\Box p \to \Box q}$
 - **L** is closed with respect to the rule $\frac{\stackrel{\sim}{p} \stackrel{\sim}{\rightarrow} \stackrel{\sim}{q}}{\stackrel{\sim}{\Diamond} p \rightarrow \Diamond q}$

Considering the full language $FOR_{\{\Box,\Diamond\}}$, a third possibility

- ▶ Semantics : all (W, \leq, R)
 - ► Truth conditions for \square $s \models \square A \Leftrightarrow \forall t \in W, (s \le t \Rightarrow \forall u \in R(t), u \models A)$
 - ► Truth conditions for \Diamond $s \models \Diamond A \Leftrightarrow \exists t \in W, (s \geq t \& \exists u \in R(t), u \models A)$

Considering the full language $FOR_{\{\Box,\Diamond\}}$, a third possibility **Plotkin and Stirling** — all (W, \leq, R)

- ▶ Defined logic ?
 - ▶ Simpson (1994): "axiomatization is rather complicated"

A minimal setting: Then, about intuitionistic modal logics Considering the full language $FOR_{\{\Box,\Diamond\}}$, a third possibility **B. and Gencer** — all (W, \leq, R)

- Defined logic L_{min}
 - ▶ Least **L**⊂**FOR** closed for uniform substitution and such that
 - L contains the standard axioms of CPL IPL
 - **L** is closed with respect to the rule $\frac{p-p\to q}{q}$
 - **L** contains the axiom $\Box p \leftrightarrow \neg \Diamond \neg p$
 - **L** contains the axiom $\Diamond p \leftrightarrow \neg \Box \neg p$
 - **L** contains the axiom $\Box p \land \Box q \rightarrow \Box (p \land q)$
 - **L** contains the axiom $\Diamond(p \lor q) \rightarrow \Diamond p \lor \Diamond q$
 - **L** contains the axiom $\Box \top$
 - **L** contains the axiom $\neg \Diamond \bot$
 - **L** contains the axiom $(\Diamond p \rightarrow \Box q) \rightarrow \Box (p \rightarrow q)$
 - **L** contains the axiom $\Diamond(p \rightarrow q) \rightarrow (\Box p \rightarrow \Diamond q)$
 - **L** is closed with respect to the rule $\frac{p \to q}{\Box p \to \Box q}$
 - **L** is closed with respect to the rule $\frac{p \to q}{\langle p \to \langle q \rangle}$
 - **L** contains the axiom $\Box(p \lor q) \to ((\Diamond p \to \Box q) \to \Box q)$
 - **L** is closed with respect to the rule $\frac{\Diamond p \to q \lor \Box (p \to r)}{\Diamond p \to q \lor \Diamond r}$

Considering the full language $\mathbf{FOR}_{\{\Box,\Diamond\}}$, a fourth possibility

- ▶ Semantics : all downward and forward confluent (W, \leq, R)
 - ► Truth conditions for □

```
s \models \Box A \Leftrightarrow \forall t \in W, (s \leq t \Rightarrow \forall u \in R(t), u \models A)
```

$$s \models \Box A \Leftrightarrow \exists t \in W, (s \geq t \& \forall u \in R(t), u \models A)$$

$$s \models \Box A \Leftrightarrow \forall t \in R(s), t \models A$$

► Truth conditions for ◊

$$s \models \lozenge A \quad \Leftrightarrow \forall t \in W, \ (s \le t \ \Rightarrow \ \exists u \in R(t), \ u \models A)$$

$$s \models \Diamond A \Leftrightarrow \exists t \in W, \ (s \geq t \& \exists u \in R(t), \ u \models A)$$

$$s \models \Diamond A \Leftrightarrow \exists t \in R(s), t \models A$$

A minimal setting: Then, about intuitionistic modal logics

Considering the full language $\mathbf{FOR}_{\{\Box,\Diamond\}}$, a fourth possibility **B. and Gencer** — all down. and for. conf. (W, \leq, R)

▶ Defined logic $\mathsf{HK}\Box\Diamond = \mathsf{L}_{\mathsf{min}} + \Box(p\lor q) \rightarrow \Diamond p\lor \Box q + \Diamond(p\rightarrow q) \rightarrow (\Box p \rightarrow \Diamond q)$

Fischer Servi (1984)

- ▶ Semantics : all forward and backward confluent (W, \leq, R)
 - ► Truth conditions for \square $s \models \square A \Leftrightarrow \forall t \in W, (s \le t \Rightarrow \forall u \in R(t), u \models A)$
 - ► Truth conditions for ♦

$$\begin{array}{lll} s \models \Diamond A & \Leftrightarrow \forall t \in W, \ (s \leq t \ \Rightarrow \ \exists u \in R(t), \ u \models A) \\ s \models \Diamond A & \Leftrightarrow \exists t \in W, \ (s \geq t \ \& \ \exists u \in R(t), \ u \models A) \end{array}$$

- $s \models \Diamond A \Leftrightarrow \exists t \in R(s), t \models A$
- Defined logic IK
- Extensions of IK
 - ▶ IT ::= IK + $\Box p \rightarrow p + p \rightarrow \Diamond p$
 - ▶ **I**4 ::= **IK** + $\Box p \rightarrow \Box \Box p + \Diamond \Diamond p \rightarrow \Diamond p$
 - ▶ IB ::= IK + $p \rightarrow \Box \Diamond p + \Diamond \Box p \rightarrow p$
 - ► I5 ::= IK + $\Box p \rightarrow p + p \rightarrow \Diamond p + \Diamond p \rightarrow \Box \Diamond p + \Diamond \Box p \rightarrow \Box p$

B., Gao, Gencer and Olivetti

- ▶ Semantics : all forward confluent (W, \leq, R)
 - ► Truth conditions for \square $s \models \square A \Leftrightarrow \forall t \in W, (s \le t \Rightarrow \forall u \in R(t), u \models A)$
 - ► Truth conditions for \lozenge $s \models \lozenge A \iff \forall t \in W, \ (s \le t \implies \exists u \in R(t), \ u \models A)$ $s \models \lozenge A \iff \exists t \in W, \ (s \ge t \& \exists u \in R(t), \ u \models A)$ $s \models \lozenge A \iff \exists t \in R(s), \ t \models A$
- ▶ Defined logic FIK

Wijesekera (1990)

- ▶ Semantics : all (W, \leq, R)
 - ► Truth conditions for □
 - $s \models \Box A \Leftrightarrow \forall t \in W, \ (s \le t \Rightarrow \forall u \in R(t), \ u \models A)$
 - ► Truth conditions for \Diamond $s \models \Diamond A \iff \forall t \in W, (s < t \implies \exists u \in R(t), u \models A)$
- ► Defined logic **WK**
- Extension of WK
 - $\qquad \qquad \mathbf{WK} + \neg \Diamond \top \rightarrow \Box \bot + (\Diamond \top \rightarrow \Box p) \rightarrow \Box p$

B. and Gencer

- Semantics : all (W, \leq, R)
 - ► Truth conditions for \square $s \models \square A \Leftrightarrow \forall t \in W, (s \le t \Rightarrow \forall u \in R(t), u \models A)$
 - ► Truth conditions for \Diamond $s \models \Diamond A \Leftrightarrow \exists t \in W, (s \geq t \& \exists u \in R(t), u \models A)$
- Defined logic L_{min}
- Extensions of L_{min}

 - $\qquad \qquad \mathbf{L}_{\mathsf{dfc}} ::= \mathbf{L}_{\mathsf{min}} + \Box(p \lor q) \rightarrow \Diamond p \lor \Box q + \Diamond(p \rightarrow q) \rightarrow (\Box p \rightarrow \Diamond q)$

 - $\qquad \qquad \mathbf{L}_{\mathsf{fbc}} ::= \mathbf{L}_{\mathsf{min}} + \Diamond(p \rightarrow q) \rightarrow (\Box p \rightarrow \Diamond q) + (\Diamond p \rightarrow \Box q) \rightarrow \Box(p \rightarrow q)$
 - ► $\mathbf{L}_{dfbc} ::= \mathbf{L}_{min} + \Box(p \lor q) \rightarrow \Diamond p \lor \Box q + \Diamond(p \rightarrow q) \rightarrow (\Box p \rightarrow \Diamond q) + (\Diamond p \rightarrow \Box q) \rightarrow \Box(p \rightarrow q)$

B. and Gencer

- ▶ Semantics : all down. and for. conf. (W, \leq, R)
 - ► Truth conditions for □

$$\begin{array}{lll} s \models \Box A & \Leftrightarrow \forall t \in W, \ (s \leq t \ \Rightarrow \ \forall u \in R(t), \ u \models A) \\ s \models \Box A & \Leftrightarrow \exists t \in W, \ (s \geq t \ \& \ \forall u \in R(t), \ u \models A) \\ s \models \Box A & \Leftrightarrow \forall t \in R(s), \ t \models A \end{array}$$

▶ Truth conditions for ◊

```
\begin{array}{ll} s \models \Diamond A & \Leftrightarrow \forall t \in W, \ (s \leq t \ \Rightarrow \ \exists u \in R(t), \ u \models A) \\ s \models \Diamond A & \Leftrightarrow \exists t \in W, \ (s \geq t \ \& \ \exists u \in R(t), \ u \models A) \\ s \models \Diamond A & \Leftrightarrow \exists t \in R(s), \ t \models A \end{array}
```

▶ Defined logic **HK**□◊

Computability and complexity

IS5 is decidable

► Mints (1971)

WK is decidable

▶ Wijesekera (1990)

IK is decidable

► Grefe (1998)

IS4 is decidable

Girlando, Kuznets, Marin, Morales, Straßburger (2023)

FIK is decidable

B., Gao, Gencer, Olivetti (2024)

 $HK\square\lozenge$ is decidable

▶ B., Gao, Gencer, Olivetti (2024)

Correspondence Theory à la Fischer Servi

For all forward confluent frames $\mathcal{F}=(W,\leq,R)$,

- 1. $\mathcal{F} \models \Box \bot \rightarrow \bot$ if and only if $\leq \circ R$ is serial,
- 2. $\mathcal{F} \models \top \rightarrow \Diamond \top$ if and only if R is serial,
- 3. $\mathcal{F} \models \Box p \rightarrow p$ if and only if $\leq \circ R \circ \leq$ is reflexive,
- 4. $\mathcal{F} \models p \rightarrow \Diamond p$ if and only if $R \circ \geq$ is reflexive,
- 5. $\mathcal{F} \models \Box p \rightarrow \Box \Box p$ if and only if $R \circ \leq \circ R$ is included in $\leq \circ R \circ \leq$,
- 6. $\mathcal{F} \models \Diamond \Diamond p \rightarrow \Diamond p$ if and only if $R \circ R$ is included in $R \circ \geq$,
- 7. $\mathcal{F} \models \Diamond \Box p \rightarrow p$ if and only if R^{-1} is included in $\leq \circ R \circ \leq$,
- 8. $\mathcal{F} \models p \to \Box \Diamond p$ if and only if R^{-1} is included in $R \circ \geq$,
- 9. $\mathcal{F} \models \Diamond \Box p \rightarrow \Box p$ if and only if $R^{-1} \circ R$ is included in $\leq \circ R \circ \leq$,
- 10. $\mathcal{F} \models \Diamond p \to \Box \Diamond p$ if and only if $R^{-1} \circ R$ is included in $R \circ \geq$.

Correspondence Theory à la Fischer Servi

For all forward and backward confluent frames $\mathcal{F}=(W,\leq,R)$,

- 1. $\mathcal{F} \models \Box \bot \rightarrow \bot$ if and only if $\leq \circ R$ is serial,
- 2. $\mathcal{F} \models \top \rightarrow \Diamond \top$ if and only if R is serial,
- 3. $\mathcal{F} \models \Box p \rightarrow p$ if and only if $\leq \circ R$ is reflexive,
- 4. $\mathcal{F} \models p \rightarrow \Diamond p$ if and only if $R \circ \geq$ is reflexive,
- 5. $\mathcal{F} \models \Box p \rightarrow \Box \Box p$ if and only if $R \circ R$ is included in $\leq \circ R$,
- 6. $\mathcal{F} \models \Diamond \Diamond p \rightarrow \Diamond p$ if and only if $R \circ R$ is included in $R \circ \geq$,
- 7. $\mathcal{F} \models \Diamond \Box p \rightarrow p$ if and only if R^{-1} is included in $\leq \circ R$,
- 8. $\mathcal{F} \models p \to \Box \Diamond p$ if and only if R^{-1} is included in $R \circ \geq$,
- 9. $\mathcal{F} \models \Diamond \Box p \rightarrow \Box p$ if and only if $R^{-1} \circ R$ is included in $\leq \circ R$,
- 10. $\mathcal{F} \models \Diamond p \to \Box \Diamond p$ if and only if $R^{-1} \circ R$ is included in $R \circ \geq$.

Correspondence Theory à la Fischer Servi

For all forward and downward confluent frames $\mathcal{F} = (W, \leq, R)$,

- 1. $\mathcal{F} \models \Box \bot \rightarrow \bot$ if and only if R is serial,
- 2. $\mathcal{F} \models \top \rightarrow \Diamond \top$ if and only if R is serial,
- 3. $\mathcal{F} \models \Box p \rightarrow p$ if and only if $R \circ \leq$ is reflexive,
- 4. $\mathcal{F} \models p \rightarrow \Diamond p$ if and only if $R \circ \geq$ is reflexive,
- 5. $\mathcal{F} \models \Box p \rightarrow \Box \Box p$ if and only if $R \circ R$ is included in $R \circ \leq$,
- 6. $\mathcal{F} \models \Diamond \Diamond p \rightarrow \Diamond p$ if and only if $R \circ R$ is included in $R \circ \geq$,
- 7. $\mathcal{F} \models \Diamond \Box p \rightarrow p$ if and only if R^{-1} is included in $R \circ \leq$,
- 8. $\mathcal{F} \models p \to \Box \Diamond p$ if and only if R^{-1} is included in $R \circ \geq$,
- 9. $\mathcal{F} \models \Diamond \Box p \rightarrow \Box p$ if and only if $R^{-1} \circ R$ is included in $R \circ \leq$,
- 10. $\mathcal{F} \models \Diamond p \to \Box \Diamond p$ if and only if $R^{-1} \circ R$ is included in $R \circ \geq$.

Correspondence Theory à la Wijesekera

For all frames $\mathcal{F} = (W, \leq, R)$,

- 1. $\mathcal{F} \models \Box \bot \rightarrow \bot$ if and only if ???
- 2. $\mathcal{F} \models \top \rightarrow \Diamond \top$ if and only if ???
- 3. $\mathcal{F} \models \Box p \rightarrow p$ if and only if ???
- 4. $\mathcal{F} \models p \rightarrow \Diamond p$ if and only if ???
- 5. $\mathcal{F} \models \Box p \rightarrow \Box \Box p$ if and only if ???
- 6. $\mathcal{F} \models \Diamond \Diamond p \rightarrow \Diamond p$ if and only if ???
- 7. $\mathcal{F} \models \Diamond \Box p \rightarrow p$ if and only if ???
- 8. $\mathcal{F} \models p \rightarrow \Box \Diamond p$ if and only if ???
- 9. $\mathcal{F} \models \Diamond \Box p \rightarrow \Box p$ if and only if ???
- 10. $\mathcal{F} \models \Diamond p \rightarrow \Box \Diamond p$ if and only if ???

Correspondence Theory

Modal formulas vs. sentences

- ➤ A modal formula is first-order definable in a class of frames if there exists a sentence that is true exactly in the frames of that class validating the modal formula
- ► A sentence is modally definable in a class of frames if there exists a modal formula that is valid exactly in the frames of that class satisfying the sentence
- ► A modal formula and a sentence correspond in a class of frames if they are respectively valid and true in the same frames of that class

In the case of classical modal logic

Sahlqvist's Correspondence and Completeness Theorems:

- ► Large set of modal formulas which guarantee completeness with respect to first-order definable classes of frames
- ► The first-order conditions corresponding to Sahlqvist formulas are effectively computable

Chagrova's Undecidability Theorems: The following decision problems are undecidable:

- Given a modal formula, determine whether it is first-order definable with respect to the class of all frames
- Given a sentence, determine whether it is modally definable with respect to the class of all frames
- Given a modal formula and a sentence, determine whether they correspond with respect to the class of all frames

In the case of intuitionistic modal logic?

Intuitionistic dynamic epistemic logics

▶ Formulas

$$A ::= p|(A \rightarrow A)|\bot|\top|(A \lor A)|(A \land A)|\Box A|\Diamond A|[A]A|\langle A \rangle A$$

Sadrzadeh, Palmigiano and Ma (2011) Maffezioli and Negri (2015) Nomura, Sano and Tojo (2015) B. and Galmiche (2016)

In the case of intuitionistic modal logic?

Extended language of intuitionistic modal logics

Formulas

$$A ::= p|(A \rightarrow A)|\bot|\top|(A \lor A)|(A \land A)|\Box_1 A|\lozenge_1 A|\Box_2 A|\lozenge_2 A$$

Extended relational semantics of intuitionistic modal logics

► Truth conditions

$$\begin{array}{lll} s \models p & \Leftrightarrow s \in V(p) \\ s \models A \rightarrow B \Leftrightarrow \forall t \in W, \; (s \leq t \; \Rightarrow \; t \not\models A \; \text{or} \; t \models B) \\ \dots \\ s \models \Box_1 A & \Leftrightarrow \forall t \in W, \; (s \leq t \; \Rightarrow \; \forall u \in R(t), \; u \models A) \\ s \models \Diamond_1 A & \Leftrightarrow \exists t \in W, \; (s \geq t \; \& \; \exists u \in R(t), \; u \models A) \\ s \models \Box_2 A & \Leftrightarrow \exists t \in W, \; (s \geq t \; \& \; \forall u \in R(t), \; u \models A) \\ s \models \Diamond_2 A & \Leftrightarrow \forall t \in W, \; (s \leq t \; \Rightarrow \; \exists u \in R(t), \; u \models A) \end{array}$$

Extended language of intuitionistic modal logics

Formulas

$$A ::= p|(A \rightharpoonup A)|(A \leftarrow A)|\bot|\top|(A \lor A)|(A \land A)|\Box_1 A|\Diamond_1 A|\Box_2 A|\Diamond_2 A$$

Extended relational semantics of intuitionistic modal logics

Truth conditions

 $s \models p \qquad \Leftrightarrow s \in V(p)$

$$\begin{array}{l} s \models A \rightharpoonup B \Leftrightarrow \forall t \in W, \ (s \leq t \Rightarrow t \not\models A \text{ or } t \models B) \\ s \models A \multimap B \Leftrightarrow \exists t \in W, \ (s \geq t \& t \not\models A \& t \models B) \\ \dots \\ s \models \Box_1 A \Leftrightarrow \forall t \in W, \ (s \leq t \Rightarrow \forall u \in R(t), \ u \models A) \\ s \models \Diamond_1 A \Leftrightarrow \exists t \in W, \ (s \geq t \& \exists u \in R(t), \ u \models A) \\ s \models \Box_2 A \Leftrightarrow \exists t \in W, \ (s \geq t \& \forall u \in R(t), \ u \models A) \\ s \models \Diamond_2 A \Leftrightarrow \forall t \in W, \ (s \leq t \Rightarrow \exists u \in R(t), \ u \models A) \end{array}$$

- Alechina, N., Mendler, M., de Paiva, V., Ritter, E.: Categorical and Kripke semantics for constructive S4 modal logic. In CSL 2001. Springer (2001) 292–307.
- Alechina, N., Shkatov, D.: A general method for proving decidability of intuitionistic modal logics. Journal of Applied Logics 4 (2006) 219–230.
- Amati, G., Pirri, F.: A uniform tableau method for intuitionistic modal logics I. Studia Logica 53 (1994) 29–60.
- ▶ Bierman, G., de Paiva, V.: *On an intuitionistic modal logic.* Studia Logica **65** (2000) 383–416.

- ▶ Božić, M., Došen, K.: Models for normal intuitionistic modal logics. Studia Logica 43 (1984) 217–245.
- ▶ Bull, R.: *A modal extension of intuitionist logic.* Notre Dame Journal of Formal Logic **6** (1965) 142–146.
- ▶ Bull, R.: **MIPC** as the formalisation of an intuitionist concept of modality. The Journal of Symbolic Logic **31** (1966) 609–616.
- Celani, S.: Remarks on intuitionistic modal logics. Divulgaciones Matemáticas 9 (2001) 137–147.

- ▶ Dalmonte, T., Grellois, C., Olivetti, N.: *Intuitionistic* non-normal modal logics: a general framework. Journal of Philosophical Logic **49** (2020) 833–882.
- Davoren, J.: On intuitionistic modal and tense logics and their classical companion logics: topological semantics and bisimulations. Annals of Pure and Applied Logic 161 (2009) 349–367.
- Došen, K.: Models for stronger normal intuitionistic modal logics. Studia Logica 44 (1985) 39–70.
- ► Ewald, W.: *Intuitionistic tense and modal logic.* The Journal of Symbolic Logic **51** (1986) 166–179.

- ► Fairtlough, M., Mendler, M.: *Propositional Lax Logic*. Information and Computation **137** (1997) 1–33.
- ► Fariñas del Cerro, L., Raggio, A.: Some results in intuitionistic modal logic. Logique et Analyse **26** (1983) 219–224.
- ► Fischer Servi, G.: *On modal logic with an intuitionistic base.* Studia Logica **36** (1977) 141–149.
- ► Fischer Servi, G.: Semantics for a class of intuitionistic modal calculi. Bulletin of the Section of Logic **7** (1978) 26–29.

- Fischer Servi, G.: Axiomatizations for some intuitionistic modal logics. Rendiconti del Seminario Matematico Università e Politecnico di Torino 42 (1984) 179–194.
- ► Fitch, F.: *Intuitionistic modal logic with quantifiers*. Portugaliae Mathematica **7** (1948) 113–118.
- Font, J.: Modality and possibility in some intuitionistic modal logics. Notre Dame Journal of Formal Logic 27 (1986) 533–546.
- ► Girlando, M., Kuznets, R., Marin, S., Morales, M., Straßburger, L.: *Intuitionistic* **S**4 *is decidable.* In *38th Annual ACM/IEEE Symposium on Logic in Computer Science.* IEEE (2023) 10.1109/LICS56636.2023.10175684.

- ► Grefe, C.: Fischer Servi's intuitionistic modal logic has the finite model property. In Advances in Modal Logic. Volume 1. CSLI Publications (1998) 85–98.
- lemhoff, R.: Terminating sequent calculi for two intuitionistic modal logics. Journal of Logic and Computation 28 (2018) 1701–1712.
- Iturrioz, L.: Les algèbres de Heyting-Brouwer : point de rencontre de plusieurs structures. Publications du Département de Mathématiques de Lyon 12 (1975) 91–113.
- Kojima, K., Igarashi, A.: Constructive linear-time temporal logic: proof systems and Kripke semantics. Information and Computation 209 (2011) 1491–1503.

- ► Lin, Z., Ma, M.: A proof-theoretic approach to negative translations in intuitionistic tense logics. Studia Logica 110 (2022) 1255–1289.
- Ma, M., Palmigiano, A., Sadrzadeh, M.: Algebraic semantics and model completeness for intuitionistic public announcement logic. Annals of Pure and Applied Logic 165 (2014) 963–995.
- Murai, R., Sano, K.: Intuitionistic epistemic logic with distributed knowledge. Computación y Systemas 26 (2022) 823–834.
- Nomura, S., Sano, K., Tojo, S.: A labelled sequent calculus for intuitionistic public announcement logic. In Logic for Programming, Artificial Intelligence, and Reasoning. Springer (2015) 187–202.

- ▶ Plotkin, G., Sterling, C.: A framework for intuitionistic modal logics. In Theoretical Aspects of Reasoning About Knowledge. Morgan Kaufmann Publishers (1986) 399–406.
- Přenosil, A.: A duality for distributive unimodal logic. In Advances in Modal Logic. Volume 10. College Publications (2014) 423–438.
- ► Simpson, A.: *The Proof Theory and Semantics of Intuitionistic Modal Logic.* Doctoral Thesis at the University of Edinburgh (1994).
- Sotirov, V.: Nonfinitely approximable intuitionistic modal logics. Mathematical Notes of the Academy of Sciences of the USSR 27 (1980) 47–49.

- ► Sotirov, V.: *Modal theories with intuitionistic logic*. In *Mathematical Logic*. Publishing House of the Bulgarian Academy of Sciences (1984) 139–171.
- ► Vakarelov, D.: Intuitionistic modal logics incompatible with the law of the excluded middle. Studia Logica **40** (1981) 103–111.
- Vakarelov, D.: An application of Rieger-Nishimura formulas to the intuitionistic modal logics. Studia Logica 44 (1985) 79–85.
- ▶ Wijesekera, D.: *Constructive modal logics I.* Annals of Pure and Applied Logic **50** (1990) 271–301.

- Wolter, F., Zakharyaschev, M.: Intuitionistic modal logic. In Logic and Foundations of Mathematics: Selected Contributed Papers of the Tenth International Congress of Logic, Methodology and Philosophy of Science. Springer (1995) 227–238.
- Wolter, F., Zakharyaschev, M.: The relation between intuitionistic and classical modal logics. Algebra and Logic 36 (1997) 73–92.

Contact

- philippe.balbiani@irit.fr
- cigdem.gencer@irit.fr