Session 6: Avnet Lighting Accelerated

How To Design a Connected Lighting System

Session overview

Understand how to leverage IoT platforms and methodologies, to effectively manage and monitor a holistic horticulture environment. Utilizing lighting systems, sensors, and HVAC, growers can provision and control key systems, while providing persona specific information via KPIs to all involved stakeholders, both internal and external to the environment.

- Providing "screens" based on persona(s) for asset availability and control energy consumption and additional sensor systems (soil, moisture, etc.)
- The concept of systems integration (systems of systems)
- Building actionable solutions based on human, environmental and/or security conditions
- Utilize a single cloud-based platform for monitoring and control of lighting systems.

Agenda

- The Market
- Lighting
- Automation
- The Art of the Possible
- Demo
- Getting Started
- Q&A

Understanding the Market

Types of growers & their drivers

Horticulture Business Types

Commercial Greenhouse

- High Wire Crops
- Lettuce and Herbs
- Flowers and potted plants
- Pharmaceutical

Vertical Farming

Indoor Growers

Hydroponics

Urban Farming

Universities and Research Facilities

- Lighting Science
- Horticulture Science

Controlled Environment Agriculture (CEA)

 Aeroponics, hydroponics, aquaponics, aquaculture, etc.

Horticulture Business Drivers

Higher and Faster Yields

Operational Efficiencies

Cost containment

- Analysis of data on lighting techniques vs. crop yield, crop quality, grow time, etc.
- Streamlining propagation

Control Morphology

Lighting in Horticulture

Light that matters

PAR: is the Photosynthetic Active Radiation. The wavelengths that make up the PAR are between 400 and 700nm used for photosynthesis.

PPF: The PPF is the photosynthetic photon flux. It is a direct analogy to Lumen. How many photons in the PAR band does my lighting deliver?

PPFD: PPFD is the flux density of photosynthetic photons. How many PAR photons on a surface? Measured in micromoles

Radiometric Efficiency – How many PAR photons are delivered per Watt consumed?

Lighting in Horticulture

Light	Wavelength	Effects on plant
Blue	400-499nm	Inhibits stem elongation
		Influences chlorophyll synthesis
		Assists in regulatory functions
Green	500-599nm	Assists in regulatory functions
		Penetrates a canopy better than other wavebands of light
		being photosynthesized at higher rates lower in the leaf structure
		Needed for visual assessment of plant growth
Red	600-700nm	Encourages stem growth
Red	600-700nm	Encourages stem growth Influences the flowering and fruit production process
Red	600-700nm	0
Red	600-700nm	Influences the flowering and fruit production process
Red Far Red	600-700nm 701-750nm	Influences the flowering and fruit production process Influences seed germination
		Influences the flowering and fruit production process Influences seed germination Influences chlorophyll process

Sources: Fluence and ams

Automating the Greenhouse

Think loT

Lighting OEMs and Where They're Headed

- Solutions are varied and in early stages of automation
- Major OEMs are building out IoT solutions
- Integration is key OEMs, Suppliers, Independent Design Houses (IDH), System Integrators (SIs)
- Retrofitting will be important
- Collaborations are integral to success

Collaboration with OEM's: Example

MULTIGROW

MultiGrow is an all-in-one, multiple grow area controller. It runs up to 8 different growing zones, managing climates, reservoirs and irrigation schedules.

INTELLICLIMATE

IntelliClimate automatically manages all aspects of grow room climate control from temperature to CO2, lighting to humidity, all in one simple controller.

Automation in Horticulture: Example

Can potentially replace

Partnerships are key...

- On Semiconductor
- Advantech
- Digi
- CartesiumAI:
 https://data.cartesiam.ai/dataset/6037752e5d7
 dc7d3f3914df3?nr=1
- Canonical Ubuntu Core
- Nordic
- Microsoft

Controllable Lighting Solution - Example

Architecture of iHP Remote Power System for Horticulture LED Lighting

Create a System of Systems

The Art of the Possible

Why consider IoT for a Holistic Solution?

IoT enablement of holistic solutions for growers

Connect different ecosystems = System of Systems concept

- Facility management systems
- Sensors
- Lighting controllers / actuators
- HVACD heating, ventilation, air conditioning and dehumidification
- Analytics via data aggregation, providing depth analysis of historical light information, correlated with other sensor data

Sensors used in Horticulture

	Alps	Amphenol Telair	AVX	Bourns	Branium	Broadcom	Cirrus Logic	Diodes	Everlight	Infineon	InvenSense (TDK)	ISSI	Kemet	LiteOn	Maxim	microchip	MPS	Murata	NXP	OMRON	OnSemi/Fairchild	OSRAM	Panasonic	PUI Audio	Reseses/IDT	Rohm	Semtech	ST Micro	TDK	2	TE	Toshiba	Vishay
Air Quality/VOC		С																		С					С					C			
Ozone																									С								
Oxygen		М																												С			
Barometric										С																							
CO2		М								М															С					С			\neg
Dust		М																		С			С										
Environmental (multi)																				М													
Turbidity		М																С															
Humidity	С	М		С	М															С					С				С	С	М		
Moisture		М																															
PH																																	
Temperature		М	С	С	М			С					C		С	C		С	C	C	С		СМ			С		C	С	С	М		C
Water level		М																			С									С			
Pressure	С	М	M	С	М					С	С							С		С			С					С	С	С	М		

Integration Example - Hydroponics

Al in Agriculture: The Future of Sustainable Farming

With the help of Smart sensors/IoT infrastructure, growers can collect an entirely new set of granular factors, including:

- Spectra of light
- Photoperiod (day/night cycles)
- Light Intensity
- Irrigation schedules
- Nutrients
- Airflow
- Temperature
- Humidity
- CO2
- Others

Al in Agriculture: Example

Product differentiation options made possible by IoT

Workflow for getting to your IoT product vision

Successful IoT initiatives begin with a decisive Business Case

Capturing & Identifying the true business case leads to successful Smart App deployments → better leadership engagement with accelerated time to market.

Effective process for outcome-based initiatives:

Demo

Getting Started: Key Considerations for Designing a Holistic Greenhouse Solution

Growers - All

- Assess current infrastructure replace, retrofit, augment
- Talk to your vendors coming capabilities, enhancements
- Define key business drivers Monitoring, operational efficiency, cost containment, etc.
- Workshop internally (or with partner help), if starting or stalled
- Start small POC / Pilot

Getting Started: Key Considerations for Designing a Holistic Greenhouse Solution

OEMs - lighting designers and product managers

- Opportunities with Avnet (SMEs, Design Services, Partner Program, etc.)
- Talk to Independent Design Houses or like services by suppliers
- Look for opportunities for retrofit
- Research supplier programs Example Avnet Partner Program
- Get to market quicker
- Build smarter devices to address customer needs

A&Q