

EPITA / InfoS1

Partiel de physique : (1h)

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif. Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. Questions de cours (6 points - pas de points négatifs pour le QCM)

Choisissez la ou les bonnes réponses :

- 1. Lors d'un mouvement quelconque, la vitesse et l'accélération sont toujours colinéaires.
 - a- Vrai.

2. Pour un mouvement circulaire à vitesse quelconque :

$$\begin{array}{ccc}
 & \overrightarrow{v} = R\dot{\theta} \ \overrightarrow{u_{\theta}} \\
 & \overrightarrow{v} = R \ \overrightarrow{u_{\theta}}
\end{array}$$

- 3. Quelles affirmations sur le moment d'une force sont justes ? On note OP la distance entre le pivot et le point d'application de la force.
 - a- Le moment d'une force dépend uniquement du bras de levier.
 - b- Le moment d'une force est maximisé
 à angle nul entre la force et la
 direction OP.
- c- Le moment d'une force est maximisé à angle droit entre la force et la direction OP.
 - d- Le moment d'une force dont la droite d'action passe par le pivot est nul.
- 4. On donne $\|\vec{F}\| = 10 \text{ N}$; L = 1 m; x = 60 cm; $\theta = 30^{\circ}$. Le moment de la force \vec{F} par rapport au point O vaut :

a-
$$\frac{\sqrt{3}}{2}$$
 N.m

5. On donne L = 1 m ; d = 40 cm ; $\|\overrightarrow{F_1}\| = 15 N$; $\|\overrightarrow{F_2}\| = 6 N$. La barre schématisée cidessous est à l'équilibre de rotation.

6. On donne L = 1 m ; $\|\overrightarrow{F_1}\| = 6 N$; $\|\overrightarrow{F_2}\| = 8 N$; $\theta = 30^\circ$. Quelle doit être la distance d pour que la barre ci-dessous soit à l'équilibre de rotation ?

a.
$$\frac{8}{3\sqrt{3}}$$
 m

$$\begin{array}{c|c} \hline b. & \frac{8}{11} & m \end{array}$$

c.
$$\frac{8}{3}$$
 m

d.
$$\frac{8}{8+3\sqrt{3}}$$
 m

Exercice 2. Mouvement elliptique (5,5 points)

Un point matériel M se déplace sur une ellipse d'équation en coordonnées cartésiennes : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ (voir figure ci-dessous)}. \text{ La direction de } \overrightarrow{\text{OM}} \text{ par rapport à l'axe Ox est repérée par l'angle } \phi.$

Les équations horaires du mouvement de M peuvent se mettre sous la forme :

$$\begin{cases} x(t) = x_0 cos \left(\omega t + \phi_0\right) \\ y(t) = y_0 sin \left(\omega t + \phi_0\right) \end{cases}$$
 où ω est une constante, x_0 , y_0 , ϕ_0 des constantes à déterminer.

Conditions initiales : à l'instant t = 0, le point M se trouve en M_0 .

1. Déterminer x_0 et ϕ_0 d'après les conditions initiales.

à l'ansfort t=0, le point 17 se houre en Mo Done ze=a et 90=0 (1) (a la existance)

2. En utilisant l'équation de la trajectoire, en déduire que $y = b \sin(\omega t)$.

$$\frac{2e^{2} + y^{2}}{a^{2}} = 1 \quad \text{done} \quad \frac{a^{2}\cos(\omega t)^{2} + y^{2}\sin(\omega t)^{2}}{a^{2}} = 1$$

$$C=) \quad \cos(\omega t)^{2} + y^{2}\sin(\omega t)^{2} = 1$$

$$C=) \quad b^{2}\cos(\omega t)^{2} + y^{2}\sin(\omega t)^{2} = 1$$

$$C=) \quad b^{2}\cos(\omega t)^{2} + y^{2}\sin(\omega t)^{2} = b^{2}$$

3. Déterminer les composantes du vecteur vitesse. Calculer sa norme.

 $\begin{cases} x(t) = x_0 \cos(wt + f_0) \\ y(t) = y_0 \sin(wt + f_0) \end{cases}$ $\vec{v} = x_0 \vec{v} + y_0 \vec{v}$ $= -awgin (wt) \vec{v} + y_0 w \cos(wt) \vec{v}$ $= -awgin (wt) \vec{v} + y_0 w \cos(wt) \vec{v}$ $= -awgin (wt) \vec{v} + y_0 w \cos(wt) \vec{v}$ $= -awgin (wt) \vec{v} + y_0 w \cos(wt) \vec{v}$ $= -awgin (wt) \vec{v} + y_0 w \cos(wt) \vec{v}$ $= -awgin (wt) \vec{v} + y_0 w \cos(wt) \vec{v}$ $= -awgin (wt) \vec{v} + y_0 w \cos(wt) \vec{v}$ $= -awgin (wt) \vec{v} + y_0 w \cos(wt) \vec{v}$ $= -awgin (wt) \vec{v} + y_0 w \cos(wt) \vec{v}$ $= -awgin (wt) \vec{v} + y_0 w \cos(wt) \vec{v}$ $= -awgin (wt) \vec{v} + y_0 w \cos(wt) \vec{v}$ $= -awgin (wt) \vec{v} + y_0 w \cos(wt) \vec{v}$ $= -awgin (wt) \vec{v} + y_0 w \cos(wt) \vec{v}$ $= -awgin (wt) \vec{v} + y_0 w \cos(wt) \vec{v}$ $= -awgin (wt) \vec{v} + y_0 w \cos(wt) \vec{v} + y_0 w \cos(wt) \vec{v}$ $= -awgin (wt) \vec{v} + y_0 w \cos(wt) \vec{v} + y_0 w \cos(wt) \vec{v}$ $= -awgin (wt) \vec{v} + y_0 w \cos(wt) \vec{v}$ $= -awgin (wt) \vec{v} + y_0 w \cos(wt) \vec{v} + y_0 w \cos$

4. Déterminer les composantes du vecteur accélération. Calculer sa norme.

= -aw²cos(wt)u₃ - yow²sun(wt)

[all=\w4(1+a²+y₀) mal developed

= w²(1+a²+y₀) mal Siphfor

5. Montrer que l'on peut écrire $\vec{a} = k \ \overrightarrow{OM}$; et déterminer la valeur de k.

 $OM = 20 \cos(wt + 90) \overline{u}t y_0 \sin(wt + 90) \overline{u}y$ $= a \cos(wt) \overline{t} + y_0 \sin(wt) \overline{u}y$ $\overline{a} = -w^2 OM$ dere $K = -w^2$

Exercice 3. Etude des forces et moments sur un plongeoir (4,5 points)

On se propose ici d'étudier un plongeoir de piscine immobile à l'horizontale. Le contact au niveau de l'appui simple au point B est considéré constamment maintenu (par un boulonnage adapté). Le plongeoir prend appui au point C.

Un plongeur de masse m est situé au point D. La masse de la planche est négligée. Le but est d'étudier les conditions d'équilibre.

a.	Nommer les fo	orces	<u>en jeu sur le schéma</u>	a et choisir un pivo	ot adapté à	cette é	tude.
ころう	: Réachion	du	support Therseon	pount de	perot	au	point C

 Ecrire la condition d'équilibre de translation, et la condition d'équilibre de rotation dans le cas présent.

c. Calculer la norme de la force s'exerçant au point B en fonction des grandeurs a, L, m et de g intensité du champ de pesanteur.

EPITA / InfoS1 NOM :ELOU	Prénom: Luelle	Décembre 2022 Groupe :
	*	2
v v		
d. En déduire la valeur d	de la norme de la force s'exerçant au point C.	
		ł

Exercice 4. Condition d'équilibre d'une masse accrochée à deux fils (4+2 points)

On considère un fil inextensible de masse négligeable, fixé en A à un socle horizontal AB de longueur a, et passant en B par une poulie parfaite, de dimension négligeable.

En un point M, tel que AM = a, est fixée une masse ponctuelle m et, au bout du fil, est aussi accrochée une masse m' en N

La poulie transmet parfaitement en M le poids du point N de masse m' (voir schéma), sans tension supplémentaire. Le point M est **immobile.**

- 1. Représenter toutes les forces qui s'exercent sur la masse m.
- 2. Exprimer les moments des forces par rapport au point A, en fonction de l'angle θ , des masses m et m' et de g intensité du champ de pesanteur.

3. Ecrire la condition d'équilibre de rotation en fonction de ces mêmes grandeurs.

Condition d'équilibre de notation:

\[\int \mathcal{H}(\vec{Fest}) = \int \mathcal{O} \]

BONUS:

4. En utilisant le fait que $\cos^2\theta=\frac{1+\cos(2\theta)}{2}$, écrire l'équation de la question 3 sous la forme suivante : $2mX^2-m'X-m=0$; en précisant X.

5. Résoudre le polynôme en tenant compte des valeurs possibles que peut prendre l'angle θ ; et indiquer quelle racine est valide. Conclure en indiquant une condition reliant m et m'.

