การระบายอากาศและการกรองอากาศ มีบทบาทสำคัญ ในการป้องกันการแพร่กระจายของเชื้อ COVID-19 ภายในอาคาร

เมื่อโรงเรียนและสำนักงานเปิดทำการ นี่คือสิ่งที่ผู้จัดการอาคารควรทำ เพื่อ ลดปริมาณอนุภาคของ SARS-CoV-2 ในอากาศที่เราหายใจ

เมื่อมีการเปิดประเทศ หลังจากการควบคุมการแพร่ระบาดของ COVID-19 ประชาชนทั่วประเทศกำลังตัดสินใจ
ที่จะกลับไปทำงานในออฟฟิศ หรือส่งลูกหลานกลับเข้าสู่ห้องเรียน แต่คุณจะตัดสินใจอย่างไรให้ถูกต้อง? เราได้
สอบถามผู้เชี่ยวชาญเกี่ยวกับการปรับปรุงคุณภาพอากาศภายในอาคาร รวมถึงคำถามที่ควรจะถามหัวหน้าของคุณ
หรือเจ้าหน้าที่ของโรงเรียน

"บ่อยครั้งที่คนเป็นแหล่งในการนำสิ่งปนเปื้อนเข้ามาในอาคาร" คร.เชลลี มิลลเลอร์ อาจารย์ประจำคณะวิศวกรรม เครื่องกล มหาวิทยาลัยโคโรลาโด โบลเดอร์ กล่าว

โอกาสในการติดเชื้อของกุณ ขึ้นอยู่กับขนาดของห้อง และจำนวนของผู้ติดเชื้อ COVID-19 ภายในห้อง

"เวลาพูด พูดเสียงดัง เวลาหายใจ จะมีละอองขนาดเล็กถูกปล่อยออกมา" คร.มิลเลอร์กล่าว

หากกุณอยู่ในห้องเรียน ออฟฟิส หรือพื้นที่ปิดอื่นๆ เมื่อเวลาผ่านไปสามารถเกิดการสะสมของละอองฝอยเหล่านี้ได้

"มันคล้ายกับการที่คุณอยู่ในบาร์ที่มีคนสูบบุหรื่" คร.มิลเลอร์กล่าว "ตอนที่เปิดร้าน ก็จะยังไม่มีควันบุหรื่มาก แต่เมื่อ
คนเริ่มสูบบุหรื่มากขึ้น ภายในห้องก็จะถูกปกคลุมไปด้วยควัน การแพร่กระจายของไวรัสก็เป็นลักษณะเดียวกัน"

อะไรคือ อัตราการระบายอากาศ และอัตราการหมุนเวียนอากาศ? ทำไมจึง สำคัญต่อ COVID-19?

เมื่อกุณตัดสินใจที่จะกลับไปทำงานที่ออฟฟิศ หรือส่งลูกของคุณกลับไปที่โรงเรียน การรู้คำศัพท์เกี่ยวกับคุณภาพ อากาศจะสามารถช่วยให้คุณถามคำถามที่ถูกต้องได้

อัศราการระบายอากาศ (Ventilation rate) คือ ปริมาตรของอากาศภายนอกอาคารต่อหน่วยเวลา **อัศราการหมุนเวียนอากาศ (Air change rate)** คือ อัตราการระบายอากาศของพื้นที่นั้น หารด้วยปริมาตรของ
พื้นที่

"อัตราการหมุนเวียนอากาศ บอกถึงความเร็วในการไถ่สิ่งแปลกปลอมที่ลอยอยู่ในอากาศออกจากห้อง" คร. มิลเลอร์กล่าว "และโดยเฉพาะเชื้อโคโรน่าไวรัส ถ้าคุณสามารถไล่ไวรัสในอากาศได้เร็ว คุณก็จะลดความเสี่ยงใน การแพร่เชื้อ" ระบบทำความเย็น และระบบทำความร้อน จะหมุนเวียนอากาศบริสุทธิ์เข้าสู่อาคารประมาณ 20 เปอร์เซ็นต์ และหมุนเวียนอากาศที่เหลืออีก 80 เปอร์เซ็นต์โดยประมาณ กลับมาใช้ใหม่ เพื่อการประหยัดพลังงาน American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHARE) ได้จัดทำมาตรฐานการระบายอากาศภายนอกอาการ สำหรับอาการพาณิชย์ รวมถึง โรงเรียน ศูนย์ เลี้ยงเด็กเล็ก ห้องปฏิบัติการคอมพิวเตอร์ และ ห้องผลิตงานไม้ โดยอัตราการระบายอากาศขั้นต่ำนั้น จะแตกต่างกัน ไป ขึ้นอยู่กับประเภทของกิจกรรมที่เกิดขึ้นในห้อง และใช้อากาศภายนอกอาการเพื่อเจือจางสิ่งแปลกปลอมที่เกิด จากคนในห้องและตัวอาการ ดังนั้นอัตราจึงขึ้นอยู่กับทั้ง จำนวนคนมากที่สุดที่ห้องถูกออกแบบมาให้จุได้ และ ขนาดของห้องเอง เช่น ห้องผลิตงานไม้ จะมีอัตราการระบายอากาศที่แนะนำ สูงกว่าเมื่อเทียบกับห้องเรียน เนื่องจากมีกิจกรรม เช่น การขัดไม้หรือตัดไม้

อัตราการระบายอากาศที่แนะนำ ก่อนเกิดการระบาด คือเท่าไหร่?

สำหรับห้องเรียนขนาด 1,000 ตารางฟุต จุได้ 35 คน ประกอบด้วย ครู และนักเรียนอายุ 9 ปีขึ้นไป ASHARE ได้แนะนำให้มีอัตราการระบายอากาศ ของอากาศภายนอกอาการ เท่ากับ 500 ลูกบาศก์ฟุตต่อนาที "ถ้าความสูงเพดานห้องเรียน คือ 10 ฟุต นั่นเท่ากับ การหมุนเวียนอากาศภายนอกอาการ โดยรวม 3 ครั้งต่อชั่วโมง" คร.มิลเลอร์ ซึ่งเป็นผู้เชี่ยวชาญด้านคุณภาพอากาศภายในอาการ กล่าว "ในช่วงการระบาด เราแนะนำให้พยายามเพิ่ม อัตราการระบายอากาศเป็น 2 เท่า"

อัตราการระบายอากาศ ที่ ASHARE แนะนำ ก่อนเกิด สำหรับห้องขนาด
1,000
ตารางฟุต ที่มีเพดานสูง 10 ฟุต

จุได้
35
คน อายุ 9 ปีขึ้นไป
จะต้องมี อัตราการระบายอากาศ เท่ากับ
500 ลูกบาศก์ฟุต ต่อนาที
ของอากาศภายุนอกอาคาร

ผู้เชี่ยวชาญแนะนำให้ ลดจำนวนคนในห้อง เพื่อปรับปรุงคุณภาพอากาศ ใน ช่วงที่มีการระบาด

หนึ่งในวิธีที่ดีที่สุดในการลดความเสี่ยงของการแพร่เชื้อ คือ การลดจำนวนของคนในออฟฟิศหรือห้องเรียน ทำให้ เกิดการเว้นระยะห่างทางสังคม (Social distancing) ซึ่งจะลดความเสี่ยงในการเกิดการแพร่เชื้อจากการสัมผัส ใกล้ชิด นอกจากนี้ยังช่วยลดโอกาสในการติดเชื้อที่อาจเกิดขึ้นได้ หากมีผู้ติดเชื้ออยู่ในห้องเรียน และยังมีประโยชน์ เพิ่มเติม ในการที่จะทำให้มีอากาสภายนอกเพิ่มขึ้นต่อคน ซึ่งมีส่วนให้ คุณภาพอากาสโดยรวมดีขึ้นอีกด้วย "ถ้าเราลดจำนวนนักเรียนจาก 35 คน เป็น 17 คน ตอนนี้ การระบายอากาศจะทำให้มีอากาศภายนอกต่อคน เพิ่ม ขึ้นได้ถึง 2 เท่า ซึ่งเป็นเรื่องที่ดีมาก" คร.มิลเลอร์กล่าว

การเพิ่มการระบายอากาศด้วย อากาศจากภายนอกอาคาร ได้รับการพิสูจน์ว่า สามารถลดการแพร่ ของโรคที่สามารถแพร่เชื้อทางอากาศได้ โดยการลดความเข้มข้นของอนุภาคของเชื้อในอากาศ ใน ปี 2019 มีการศึกษาเกี่ยวกับการระบาดของวัณโรคที่มหาวิทยาลัยไทเป ในประเทศไต้หวัน พบว่า ห้องต่างๆในมหาวิทยาลัยมีอัตราการระบายอากาศต่ำกว่ามาตรฐาน ที่ 3.6 ลูกบาศก์ฟุต ต่อนาที/คน และมีระดับคาร์บอนไดออกไซด์ ที่ 1,200 ถึง 3,000 ส่วนในล้านส่วน (PPM) เช่นเดียวกันกับ COVID-19 วัณโรคเป็นโรคที่ติดต่อผ่านทางอากาศ ทางมหาวิทยาลัยได้เพิ่มอัตราการระบาย อากาศเป็น 51 CFM ต่อคน ซึ่งส่งผลให้ระดับคาร์บอนไดออกไซต์ลดลงมาที่ 600 PPM และยุติ การแพร่ระบาด

ตามทฤษฎีแล้ว ออฟฟิศหรือโรงเรียนของคุณจะ ต้องมีการปรับปรุงหลายอย่าง

ตามที่กล่าวไปข้างต้น การลดจำนวนคนในห้องเป็นสิ่งสำคัญ ยกตัวอย่างเช่น การลดขนาดชั้นเรียน จาก 35 คน เป็น 17 คน

ทุกคนจะได้รับอากาศภายนอกอาคาร จะการระบายอากาศเพียงอย่างเคียว 26 CFM ต่อคน เทียบกับ มาตรฐานกำหนดไว้ที่ 13 CFM

นอกจากนี้ การลคขนาคชั้นเรียนยังช่วยเพิ่มพื้นที่ในการเว้นระยะห่างทางสังคม การใช้หน้ากาก อนามัยช่วยลคความเสี่ยงในการติคเชื้อและจำกัดปริมาณอนุภาคที่ถูกปล่อยออกมา ขณะพูคหรือจาม

ตัวกรองอากาศ MERV-13 สามารถกำจัดอนุภาคขนาดใหญ่กว่า 1 ไมครอน ได้อย่างน้อย 85% เมื่อผ่านระบบ HVAC ซึ่งเป็นระบบที่หมุนเวียนอากาศภายในอาคารกลับมาใช้ใหม่

เครื่องฟอกอากาศที่ผ่านการรับรองมาตรฐาน HEPA มีขนาคที่เหมาะสมสำหรับใช้ในห้อง โดยแผ่น กรองอากาศ HEPA filter สามารถกรองอนุภาคในอากาศที่ผ่านตัวกรองได้มากกว่า 99% การเปิดหน้าต่าง ทุกครั้งที่มีโอกาส เพื่อช่วยให้อากาศบริสุทธิ์ถ่ายเทเข้า - ออก และช่วยเจือจางความ เข้มข้นของไวรัสในอากาศภายในห้อง

ติดตั้งพัดลมในตำแหน่งที่สามารถพัดอากาศจากภายในอาคาร ออกสู่ภายนอกได้ หลีกเลี่ยงการพัด อากาศให้หมุนวนอยู่ภายในห้อง ซึ่งอาจทำให้เกิดการแพร่กระจายของไวรัส

"หากคุณอยู่ในพื้นที่ที่อาจมีผู้ติดเชื้ออยู่ คุณจะต้องพัดอากาศจากข้างในออกสู่ข้างนอก" คร. มิลเลอร์กล่าว "คุณจะต้องนำไวรัสที่อาจลอยอยู่ในอากาศภายในห้อง เป่ามันออกไปข้างนอก และ ขณะที่คุณพัดอากาศออกไปข้างนอกนั้น อากาศบริสุทธิ์จากที่อื่นจะเข้ามาแทน"

การปรับปรุงระบบกรองอากาศ HVAC ภายในอาคาร ลดความเสี่ยงการติด เชื้อ COVID-19

ตามที่กล่าวไปข้างต้น แผ่นกรองอากาศมีบทบาทสำคัญในการปรับปรุงคุณภาพอากาศภายในอาคาร นอกจากการที่ คุณต้องการเพิ่มปริมาณอากาศภายนอกอาคารเข้ามาสู่ในห้อง คุณก็ยังต้องการกรองอากาศที่จะถูกนำมาหมุนเวียน ใช้ใหม่ด้วย สิ่งหนึ่งที่คุณควรจะถามผู้จัดการอาคารของออฟฟิศ หรือตัวแทนโรงเรียน ก็คือ ได้มีการปรับปรุงระบบ กรองอากาศ HVAC หรือไม่

Minimum efficiency reporting value หรือ MERV คือคะแนนที่แสดงถึงประสิทธิภาพของตัวกรอง ใน การกรองอนุภาคขนาดต่างๆ ในการกรองแต่ละครั้ง ยิ่งคะแนนสูง ยิ่งกรองอากาศในห้องได้ดี ระบบ HVAC หลาย ระบบ ถูกสร้างขึ้นมาเพื่อใช้งานร่วมกับตัวกรอง MERV-8 ซึ่งอากาศสามารถไหลผ่านได้เร็ว และมีแรงต้านทาน น้อย แต่การไหลผ่านได้เร็วนี้ ก็มาพร้อมกับการที่ ตัวกรองสามารถดักจับอนุภาคขนาด 1 ไมครอนได้เพียง 40% เท่านั้น ในทางกลับกัน ถ้าหากระบบสามารถรองรับแรงต้านทานของตัวกรอง MERV-13 ได้ ความสามารถใน การกรองอากาศจะเพิ่มอย่างมีนัยสำคัญ

"สำหรับตัวกรอง MERV-13 ประสิทธิภาพในการกรองอนุภาคขนาด 1 ไมครอน คือ 85% ขึ้นไป" คร. มิลเลอร์กล่าว "เราต้องการที่จะ สามารถกรองอนุภาคขนาดประมาณ 0.5 ถึงเล็กกว่า 5 ไมครอนได้อย่างมี ประสิทธิภาพ เพราะเรารู้ว่า อนุภาคขนาดเท่านี้อาจมีไวรัสอยู่ได้"

ตัวกรองทางกลจะมีประสิทธิภาพเพิ่มขึ้นเมื่ออนุภาคมีขนาดใหญ่ขึ้น และเนื่องจากการแพร่และแรงไฟฟ้าสถิต ประสิทธิภาพก็จะเพิ่มขึ้นเช่นกัน เมื่ออนุภาคมีขนาดเล็กลง

"ในการคักจับอนุภาค อนุภาคไม่จำเป็นต้องมีขนาดใหญ่กว่าช่องว่างระหว่างตัวกรอง ดังนั้นตัวกรองสามารถคักจับ อนุภาคขนาดเล็กที่เกิดจากการหายใจ ที่อาจมีเชื้อ SARS-CoV-2 หรือเชื้อโรคจากระบบทางเดินหายใจอื่นๆ ได้ อย่างมีประสิทธิภาพ" คร.วิลเลียม พี. บาร์นเฟล็ธ วิศวกรและอาจารย์ประจำคณะวิศวกรรมสถาปัตยกรรม มหาวิทยาลัยเพนน์ สเตท และประธานคณะทำงานโรคระบาด ASHARE กล่าวเสริม โดยคณะทำงานเดียวกันนี้ ได้จัดทำแผนการเตรียมตัวสำหรับอาคาร เพื่อช่วยให้แนวทางเกี่ยวกับการเปิดอาคาร หลังการระบาด การลดจำนวนคนในอาคาร ยังคงเป็นวิธีหลัก และมีประสิทธิภาพมากที่สุดในการลดความเสี่ยง โดยในสถานการณ์ ที่ระบบกรองอากาศ HVAC ไม่สามารถปรับปรุงได้ หรือไม่มีหน้าต่าง สามารถใช้เครื่องฟอกอากาศแบบเคลื่อนที่ และไฟอัลตราไวโอเลตสำหรับฆ่าเชื้อ ช่วยได้

แผ่นกรองอากาศ HEPA filter ช่วยได้หรือไม่? นักวิทยาศาสตร์กล่าวว่า เครื่องฟอกอากาศแบบเคลื่อนที่ ที่มีแผ่นกรองอากาศ HEPA filter สามารถกำจัดอนุภาคไวรัสที่ทำให้เกิด COVID-19 ได้

แผ่นกรองอากาศ HEPA filter (แผ่นกรองอากาศประสิทธิภาพสูง) สามารถกำจัดอนุภาคในอากาศทุกขนาดได้ มากกว่า 99% โดยทีมของคร.มิลเลอร์ได้ร่วมมือกับมหาวิทยาลัยฮาร์วาร์ด ในการสร้างวิธีคำนวณเพื่อช่วยในการ เลือกเครื่องฟอกอากาศให้เหมาะสมกับขนาดและประเภทของห้องคุณ ซึ่งจะมีใบรับรองจาก สมาคมผู้ผลิตเครื่องใช้ ไฟฟ้าภายในบ้าน (AHAM) โดยสามารถดูรายการอุปกรณ์ต่างๆ ที่ผ่านการรับรอง ที่นี่ และควรตรวจสอบ อัตรา การนำส่งอากาศที่ฟอกแล้ว (CADR) ว่าเท่ากับหรือมากกว่า ขนาดของห้อง (ตารางฟุต) ที่ต้องการจะฟอกอากาศ "เมื่อจำเป็นต้องใช้การฟอกอากาศเสริม แนะนำให้ใช้เครื่องฟอกอากาศภายในห้องที่มีแผ่นกรองอากาศ HEPA filter เพราะสามารถกำจัดอนุภาคขนาดที่น่าเป็นห่วง ได้เกือบทั้งหมด ในการกรองเพียงครั้งเดียว" คร.บาร์นเฟลิ์ธ กล่าว

การใช้แสงอัลตราไวโอเลตสำหรับฆ่าเชื้อ เพื่อต่อสู้กับเชื้อ COVID-19 ภายในอาคาร

แสงอัลตราไวโอเลตสำหรับพ่าเชื้อ (UVC) มีความยาวคลื่นที่ต่างไปจาก UVA หรือ UVB ซึ่ง UVC มี ประสิทธิภาพสูงมากในการพ่าเชื้อไวรัส

"แสงยูวีฆ่าเชื้อนี้ มีความสามารถในการทำลายดีเอ็นเอของสิ่งมีชีวิตขนาดเล็ก และทำให้ไม่สามารถเพิ่มจำนวนต่อ ไปได้" คร.มิลเลอร์กล่าว "เชื้อไวรัสโคโรน่า มีความไวต่อแสงยูวีฆ่าเชื้อมาก คังนั้นถ้าฉายแสงนี้เป็นระยะเวลาหนึ่ง เชื้อไวรัสจะตาย และไม่สามารถติดต่อได้อีก"

แสงยูวีฆ่าเชื้อที่ใช้ฆ่าเชื้อในอากาศนี้ มีอยู่ 2 ประเภทในตลาด ประเภทแรกเป็นแบบติดผนัง และจะฉายไฟส่องไป ทั่วห้อง ดร.บาร์นเฟล็ธกล่าวว่า "ระบบ "ติดเพดาน" นี้สามารถลดปริมาณไวรัสที่ยังติดเชื้อได้ ในอากาศ ได้มากกว่า หรือเท่ากับ การหมุนเวียนอากาศภายนอก 10 ครั้งต่อชั่วโมง และใช้พลังงานน้อยกว่ามาก" ส่วนอีกประเภท เป็นการติดตั้งแสง UVC ในท่ออากาศที่ใช้หมุนเวียนภายในอาการ ซึ่งจะนำอากาศจากห้องที่คุณอยู่ออกมา ฉาย แสง แล้วส่งอากาศที่สะอาดกลับเข้าไปในห้องเดิม