Die Bestimmung einer fundamentalen Basis von Schleifen in stark zusammenhängenden Graphen

Von K. Hässig, Zürich 1)

Eingegangen am 8. Februar 1973

Zusammenfassung: Ist G=(X,U) ein zusammenhängender, endlicher, gerichteter Graph und S eine fundamentale Matrix [Berge, 1965, S. 151] von G, so ist ein Vektor $\theta=(\theta_1,\ldots,\theta_m)$ genau dann eine Potentialdifferenz, wenn $S'\theta=0$ gilt. S wird also zur Formulierung und Lösung von Potentialdifferenzen-Problemen gebraucht. Die Konstruktion von S ist sehr einfach, da die Spalten einer fundamentalen Basis von Zyklen entsprechen. In dieser Arbeit wird gezeigt, daß in stark zusammenhängenden Graphen auf gleich einfache Weise eine fundamentale Basis von Schleifen gefunden werden kann. Oder anders ausgedrückt, es wird ein konstruktiver Beweis für die Existenz einer fundamentalen Basis von Schleifen in zusammenhängenden, endlichen und gerichteten Graphen angegeben.

Summary: For a connected, finite and directed graph G = (X, U) with a fundamental matrix S [Berge, 1965, S. 151] a vector $\theta = (\theta_1, ..., \theta_m)$ is a potential difference if and only if $S'\theta = 0$. Therefore S can be used to formulate and solve problems of potential differences. The constructions of S is very simple since the columns of S correspond to a fundamental basis of cycles in G. In this paper it will be shown that it is equally easy to construct a fundamental basis of circuits. In other words, a constructive proof will be given for the existence of a fundamental basis of circuits in connected, finite and directed graphs.

1. Definitionen

Ein gerichteter Graph besteht aus zwei disjunkten Mengen X und U sowie einer Abbildung $F\colon U\to X^2$. Bezeichnet wird ein Graph mit G=(X,U,F), G=(X,U) oder einfach mit G. Die Elemente von X heißen Knoten und diejenigen von U Bögen. Die Gleichung $F(u)=(x_a,x_b)$ bedeutet, daß der Bogen $u\in U$ die Knoten x_a und x_b verbindet und von x_a nach x_b gerichtet ist. Im folgenden werden nur endliche Graphen betrachtet, d. h. Graphen mit $|X|<\infty$, $|U|<\infty$. Eine Kette Γ ist eine Folge von Bögen $(u_1,u_2,...,u_q)$ mit der Eigenschaft, daß für k=2,3,...,q-1 der Bogen u_k den einen Knoten mit u_{k-1} und den andern mit u_{k+1} gemeinsam hat. Sehr oft werden Ketten als Folgen von durchlaufenen Knoten dargestellt, z. B. $(x_1,x_2,...,x_q,u_q,x_{q+1})$ oder als Kombination der beiden Möglichkeiten durch $(x_1,u_1,x_2,...,x_q,u_q,x_{q+1})$. Eine Kette Γ , bei der x_1 und x_{q+1} identisch sind, heißt ein Zyklus. Ein Zyklus M heißt elementar, wenn jeder Knoten nur einmal durchlaufen wird. Jedem Zyklus M läßt sich ferner eine Richtung zuordnen. Die Menge der Bögen von M, welche die gleiche Richtung besitzen

Dr. Kurt Hässig, Institut für Operations Research der Universität Zürich, Weinbergstraße 59, CH-8006 Zürich.

wie M, wird mit M_+ bezeichnet. M_- ist dann die Menge der übrigen Bögen. Ist $U = \{1, 2, ..., m\}$, so entspricht jedem elementaren Zyklus M ein Vektor $\mu = (\mu_1, ..., \mu_m)$ mit

$$\mu_i = \left\{ egin{array}{ll} +1 \ , & \mathrm{falls} & i \in M_+ \ -1 \ , & \mathrm{falls} & i \in M_- \ 0 \ , & \mathrm{sonst} \end{array}
ight\}.$$

Ist in einem Zyklus M entweder M_{+} oder M_{-} leer, so nennt man M eine Schleife.

Man sagt, die Zyklen $\mu^1, \mu^2, ..., \mu^k$ seien linear unabhängig, wenn aus $\sum_{i=1}^k s_i \mu^i = 0$

folgt, daß $s_i = 0$ ist für alle i = 1,...,k. Andernfalls seien die Vektoren linear abhängig. Eine fundamentale Basis von Zyklen ist eine Menge $\{\mu^1,...,\mu^k\}$ von elementaren, unabhängigen Zyklen mit der Eigenschaft, daß für jeden andern elementaren Zyklus μ gilt:

$$\mu = \sum_{i=1}^k s_i \mu^i, \quad s_i \in \mathbb{Z}.$$

Ein Graph G = (X, U) heißt zusammenhängend, wenn für je zwei Knoten $x_i, x_j \in X$ eine Kette von x_i nach x_j führt. Man nennt G stark zusammenhängend, wenn durch je zwei Knoten $x_i, x_i \in X$ mindestens eine Schleife existiert.

Ein Graph B = (Y, V) heißt ein Baum, falls B zusammenhängend ist und keine Zyklen enthält. Ein Baum B heißt ein Gerüst G = (X, U), falls B = (X, V) gilt mit $V \subset U$. Die Bögen eines Baumes nennt man Äste.

2. Die Bestimmung einer fundamentalen Basis von Zyklen

Satz 1:

In einem zusammenhängenden Graphen G = (X, U) enthält eine fundamentale Basis von Zyklen k(G) = |U| - |X| + 1 Elemente¹).

Beweis:

Siehe Berge [1965, S. 124].

Satz 2:

Sei G = (X, U) ein zusammenhängender, gerichteter Graph und B = (X, V) ein Gerüst. Durch Adjunktion eines Bogens $i \in U - V$ erhält man genau einen Zyklus μ^i . Die Menge der Zyklen $\mu^i, i \in U - V$, bildet eine fundamentale Basis von Zyklen.

Beweis:

I. Jeder Baum enthält |X|-1 Äste [Berge, 1965, S. 129]. Durch Adjunktion eines Bogens i erhält man dann $k(B_i) = [(|X|-1)+]-|X|+1=1$ Zyklus, mit $B_i = (X, V \cup i)$.

¹⁾ k(G) heißt zyklomatische Zahl.

II. Die Anzahl der Zyklen μ^i , die man so erhält, beträgt also |U| - |V|. Wegen |V| = |X| - 1 ist diese Anzahl gleich k(G) = |U| - (|X| - 1). Die Zyklen sind auch linear unabhängig, da $i \in U - V$ nur in M^i enthalten ist. q.e.d.

Ein Gerüst B kann sehr leicht mit dem folgenden Verfahren bestimmt werden:

- a) Es sei $B_1 = (\{x\}, \emptyset)$, wobei x ein beliebiger Knoten aus X ist.
- b) $B_{q+1} = (X_{q+1}, U_{q+1})$, entstehe aus $B_q = (X_q, U_q)$ durch folgende Vorschrift: Suche $u_{q+1} \in U$, so daß der eine Endknoten in X_q und der andere, es sei dies x_{q+1} , nicht in X_q liegt. $B_{q+1} := (X_q \cup x_{q+1}, U_q \cup u_q)$.

Satz 3:

$$B = B_n$$
, $n = |X|d$ ist ein Gerüst.

Beweis:

Da nach Voraussetzung G zusammenhängend ist, ist nach Konstruktion B ebenfalls zusammenhängend und umfaßt überdies alle Knoten. Ferner ist B ein Baum, denn es gilt k(B) = (|X| - 1) - |X| + 1 = 0.

Anschließend können die einzelnen Zyklen μ^i , i = 1, ..., k(G) durch einen einfachen Markierungsprozeß gefunden werden.

Im Algorithmus, der im nächsten Abschnitt beschrieben ist, sind elementare Schleifen durch einen Bogen $\bar{u} \in U$ zu bestimmen. Dies kann wie folgt geschehen:

- a) Markiere x_b von $\bar{u} = (x_a, x_b)$ mit $[x_a]$.
- b) Existiert ein Bogen $u = (x_i, x_j)$, wobei x_i markiert und x_j nicht markiert ist, dann sind zwei Fälle möglich:
 - b_1) $x_j = x_a$: Anhand der Markierungen wird rückwärts gehend eine elementare Schleife gefunden.
 - b_2) $x_i \neq x_a$: Markiere x_i mit $[x_i]$.

3. Die Bestimmung einer fundamentalen Basis von Schleifen in stark zusammenhängenden Graphen

Eine fundamentale Basis von Schleifen kann in stark zusammenhängenden Graphen durch das folgende Verfahren gewonnen werden:

- a) Wähle einen beliebigen Knoten $x_j \in X$. G_0 sei gegeben durch $G_0 = (\{x_i\}, \emptyset)$.
- b) Sei G_q der Graph, den man nach q Schritten erhalten hat. Suche einen Bogen $u_{q+1} \in U$, der nicht zu G_q gehört, dessen Anfangsknoten aber in G_q liegt.
 - b₁) Es existiert ein solcher Bogen u_{q+1} . Suche in G=(X,U) eine elementare Schleife durch u_{q+1} , die, sobald ein Knoten von G_q erreicht wird, in G_q verläuft. Dies ist die neue Basisschleife \hat{M}^{q+1} . Setze $G_{q+1}=G_q\cup\hat{M}^{q+1}$ und q=q+1.

¹⁾ Mit der Vereinigung ist der Graph gemeint, den man erhält, wenn die Knoten und die Bögen der beiden Teilgraphen vereinigt werden.

 b_2) Es existiert kein solcher Bogen u_{q+1} . Dann bilden $\hat{M}^1, ..., \hat{M}^q$ eine fundamentale Basis von Schleifen.

Satz 4:

Sei G = (X, U) stark zusammenhängend. Dann existiert eine fundamentale Basis von k(G) Schleifen und eine solche wird durch das obige Verfahren gefunden.

Beweis:

I. Das Verfahren endet mit $G_q = G$.

Beweis: Nach q Schritten sei G_q gegeben und u_{q+1} ein Bogen, der nicht zu G_q gehört, dessen Anfangsknoten aber in G_q liegt. Da G nach Voraussetzung und G_q nach Konstruktion stark zusammenhängend sind, existiert durch u_{q+1} immer eine Schleife in G, die, sobald ein Knoten von G_q erreicht wird, in G_q verläuft. Unter diesen Voraussetzungen ist es also stets möglich, aus G_q den Graphen G_{q+1} zu konstruieren.

Existiert kein u_{q+1} mit den verlangten Eigenschaften, dann ist $G_q = G$, denn andernfalls gäbe es, weil G zusammenhängend ist, ein $u \in U$, dessen Endknoten in G_q läge aber nicht der Anfangsknoten. Daraus ergibt sich aber, daß G im Widerspruch zur Annahme nicht stark zusammenhängend wäre.

II. Bezüglich der Schleifen $\hat{M}^1, \hat{M}^2, ..., \hat{M}^q$ gilt q = k(G).

Beweis: Sei $\bar{G}_0 = G_0$ und $\bar{G}_{p+1} = \bar{G}_p \cup (\hat{M}^{p+1} - G_p) - u_{p+1}$, wobei u_{p+1} der Bogen von \hat{M}^{p+1} sei, der den Anfangsknoten mit G_p gemeinsam hat, $0 \le p \le q-1$.

Für \bar{G}_0 gilt offensichtlich $k(\bar{G}_0)=0$. Bei jeder Erweiterung eines \bar{G}_p auf \bar{G}_{p+1} , p=0,1,...,q-1, ist die Anzahl der neu hinzukommenden Bögen gleich groß wie die Anzahl der neu hinzukommenden Knoten, weil u_{p+1} weggelassen wird und die Schleife, sobald sie einen Knoten von G_p erreicht, in G_p verläuft. Nach Satz 1 ist deshalb $k(\bar{G}_p)=0$ für p=1,...,q. Jeder Graph \bar{G}_p ist zusammenhängend, denn durch das Weglassen von u_p wird zwar der Schleife, nicht aber der Zusammenhang unterbrochen. Ferner umfaßt \bar{G}_q alle Knoten von G, weil überdies nach I. $G_q=G$ ist. Daraus folgt, daß \bar{G}_q ein Gerüst ist und somit |X|-1 Bögen enthält. Die Anzahl der Bögen von G, die nicht zu \bar{G}_q gehören, beträgt also k(G)=|U|-|X|+1. Jedem dieser Bögen ist aber eine Schleife \hat{M}^p zugeordnet, d. h. es gilt q=k(G).

III. Die Vektoren $\hat{\mu}^1, \hat{\mu}^2, ..., \hat{\mu}^{k(G)}$ sind linear unabhängig.

Beweis: Da \bar{G}_q bzw. \bar{G}_k mit k=k(G) ein Gerüst ist, erhält man gemäß Satz 2 durch Adjunktion der Bögen u_1, \ldots, u_k eine fundamentale Basis von Zyklen M^1, \ldots, M^k , wobei diesen die Richtung der Bögen u_1, \ldots, u_k zugeordnet wird. Die Schleifen \hat{M}^p können nun durch Linearkombination aus diesen M^p gewonnen werden. Aus der Art und Weise, wie die \hat{M}^p konstruiert wurden, folgt

$$\hat{\mu}^p = \mu^p + \sum_{u_i \in S_p} \mu^{u_i}, \quad S_p \in \{u_1, ..., u_{p-1}\},$$
 (*)

denn einerseits ist u_i in keinem anderen Zyklus M^p enthalten und andererseits gilt nach Voraussetzung $\mu_{u_i}^{u_i} = +1$.

Sei P nun die Matrix, deren Spalten die Vektoren μ_1^1, \ldots, μ^k sind. P ist also eine $(m \times k)$ -Matrix mit dem Rang r(P) = k. Ferner sei \hat{P} die $(m \times k)$ -Matrix mit den Spalten $\hat{\mu}^1, \ldots, \hat{\mu}^k$. Dann gilt

 $\hat{P} = PA$,

wobei A eine $\{k \times k\}$ -Matrix ist. Die p-te Spalte von A enthält gemäß (*) die Elemente

$$a_{ip} = \begin{cases} 1, & \text{falls} \quad u_i \in S_p \quad \text{oder} \quad i = p \\ 0, & \text{sonst} \end{cases}.$$

Ferner folgt aus (*), daß A eine Dreiecksmatrix mit Nullen unterhalb und Einern auf der Diagonalen ist, d. h. A hat den Rang r(A) = k. Daraus folgt aber, daß $r(\hat{P}) = k$ gilt, d. h. M^1, \ldots, M^k sind linear unabhängige Schleifen.

Da die Schleifen elementar sind, folgt die Behauptung aus I., II., III. und Satz 1. q.e.d.

4. Beispiel

Wir betrachten den folgenden Graphen G = (X, U):

Man kann sich leicht davon überzeugen, daß dieser Graph stark zusammenhängend ist.

Schritt 0:

Wir setzen z. B. $G_0 = (\{x_6\}, \emptyset)$.

Schritt 1:

Sei $u_1 = 1$ und $\hat{M}^1 = (x_6, 1, x_7, 11, x_4, 10, x_6)$. $G_1 = G_0 \cup M^1$ ist gegeben durch

Abb. 2

Schritt 2:

Sei $u_2 = 2$ und z. B. $\hat{M}^2 = (x_7, 2, x_3, 9, x_4, 10, x_6, 1, x_7)$. Dann sieht G_2 wie folgt aus:

Schritt 3:

Sei $u_3 = 3$ und z. B. $\hat{M}^3 = (x_3, 3, x_1, 7, x_2, 8, x_4, 10, x_6, 1, x_7, 2, x_3)$. G_3 ist dann gegeben durch

Schritt 4:

Sei $u_4 = 4$. Dann ist $\hat{M}^4 = (x_2, 4, x_5, 12, x_7, 2, x_3, 3, x_1, 7, x_2)$. G_4 ist gegeben durch

Schritt 5:

Sei $u_5 = 5$. M^5 ist die Schleife $\hat{M}^5 = (x_7, 5, x_2, 4, x_5, 12, x_7)$ und G_5 der Graph

Schritt 6:

Als letztes ist $u_6 = 6$ und M^6 z. B. gegeben durch $\hat{M}^6 = (x_3, 6, x_6, 1, x_7, 2, x_3)$. Offensichtlich ist $G_6 = G$ und zugleich k(G) = 12 - 7 + 1 = 6.

\bar{G}_6 ist folgender Graph:

Mit den dazugehörigen Zyklen $M^1,...,M^6$ sind die Basisschleifen wie folgt entstanden:

$$\hat{M}^{1} = M^{1}$$

$$\hat{M}^{2} = M^{2} + M^{1}$$

$$\hat{M}^{3} = M^{3} + M^{1} + M^{2}$$

$$\hat{M}^{4} = M^{4} + M^{2} + M^{3}$$

$$\hat{M}^{5} = M^{5} + M^{4}$$

$$\hat{M}^{6} = M^{6} + M^{1} + M^{2}.$$

Daraus ist nun ersichtlich, daß die Matrix A folgendermaßen aussieht:

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

Literaturverzeichnis

Berge, C., and A. Ghouila-Houri: Programming, Games & Transportation Networks, Methuen and Co Ltd, London 1965.