Synchronization in MDPs

Mahsa Shirmohammadi

Laurent Doyen

lsu

Thierry Massart

Highlight 2013, September 19th, Paris

factory

wall

factory

thief

clients send physical requests, and fix a "time" to pick it up

factory

thief sends a request as a honest client with a hidden spy robot, plus the "time"

thief

the factory responses exactly at that "time"

It means that

when robot gets into the factory, it has to accomplish a "mission" at

that exact "time" fixed by thief

no matter how the random behavior of factory responses

factory

thief sends a request as a honest client with a hidden spy robot, plus the "time"

thief

the factory responses exactly at that "time"

It means that

when robot gets into the factory, it has to accomplish a "mission" at

that exact "time" fixed by thief

no matter how the random behavior of factory responses

4 mission could be arriving in a target set T

thief can look at the map and see that

4 mission could be arriving in a target set T

so, he codes the to send it to factory, and declare time 3 to pick up

The code for the spy robot *** a strategy

$$\alpha: Q^* \to A$$

MDP is synchronizing in T, under strategy α at the step 3:

$$Pr_{\alpha,3}(T)=1$$

so, he codes the to send it to factory, and declare

winning modes

For a target set T, we say an MDP is synchronizing for the winning mode

Definition

sure	almost-sure	limit-sure
there exists	there exists	
a strategy $lpha$	a strategy $lpha$	
and a certain step n		
$Pr_{\alpha,n}(T)=1$	$\sup_{n} Pr_{\alpha,n}(T) = 1$	$\sup_{lpha,n} Pr_{lpha,n}(T) = 1$
PSPACE-C	PSPACE-C	PSPACE-C

Complexity

Memory

winning modes

For a target set T, we say an MDP is synchronizing for the winning mode

Definition

	sure	almost-sure	limit-sure
	there exists	there exists	
	a strategy $lpha$	a strategy $lpha$	
	and a certain step n		
	$Pr_{\alpha,n}(T)=1$	$\sup_n Pr_{\alpha,n}(T) = 1$	$\sup_{lpha,n} \mathit{Pr}_{lpha,n}(T) = 1$
/	PSPACE-C	PSPACE-C	PSPACE-C
	Exponential	infinite	unbounded

Complexity

Memory

$$sync(T): q_0 \xrightarrow{a: \frac{1}{2}} q_1 \xrightarrow{b} T \xrightarrow{b} q_2$$

$$a: \frac{1}{2}, b$$
Fix ϵ 1

Almost-sure vs. Limit-sure synchronization

4 Almost-sure and limit-sure synchronization are different!

Almost-sure vs. Limit-sure synchronization

4 Almost-sure and limit-sure synchronization are different!

Contributions.

4 For a target set T, to decide whether an MDP is synchronizing

for the winning mode

Complexity

Memory

sure	almost-sure	limit-sure
PSPACE-C	PSPACE-C	PSPACE-C
exponential	infinite	unbounded

Questions! © and Comments! ©