Monetary Policy & Anchored Expectations An Endogenous Gain Learning Model

Laura Gáti

Boston College

TO DO April 15, 2020

Inflation that runs below its desired level can lead to an unwelcome fall in longer-term inflation expectations, which, in turn, can pull actual inflation even lower, resulting in an adverse cycle of ever-lower inflation and inflation expectations. [...] Well-anchored inflation expectations are critical[.]

Jerome Powell, Chairman of the Federal Reserve ¹

¹"New Economic Challenges and the Fed's Monetary Policy Review," August 27, 2020.

Figure: Expectations of average inflation over 10 years

This project

 How to conduct monetary policy in interaction with the anchoring expectation formation?

 Model of anchoring expectation formation as an endogenous gain adaptive learning scheme

 Estimation of the anchoring function: when do expectations become unanchored?

Preview of results

- Optimal monetary policy responsiveness time-varying
- \hookrightarrow Optimal policy aggressive when expectations unanchor, dovish when anchored

- Taylor rule policy less aggressive on inflation than under rational expectations
- \hookrightarrow Anchoring-optimal Taylor rule eliminates 90% of loss from volatility

Related literature

 Optimal monetary policy in New Keynesian models Clarida, Gali & Gertler (1999), Woodford (2003)

• Adaptive learning

Evans & Honkapohja (2001, 2006), Bullard & Mitra (2002), Preston (2005, 2008), Ferrero (2007), Molnár & Santoro (2014), Eusepi & Preston (2011), Milani (2007, 2014), Lubik & Matthes (2018), Mele et al (2019)

• Anchoring and the Phillips curve

Sargent (1999), Svensson (2015), Hooper et al (2019), Afrouzi & Yang (2020), Reis (2020), Gobbi et al (2019), Carvalho et al (2019)

Structure of talk

1. Unanchoring in the data

- 2. Model of anchoring expectations
- 3. Solving the Ramsey problem

4. Implementing optimal policy

Structure of talk

- 1. Unanchoring in the data
- 2. Model of anchoring expectations
- 3. Solving the Ramsey problem
- 4. Implementing optimal policy

Figure: Inflation and expectations

Second half of sample: estimate

$$\bar{\pi}_t = \beta_0 + \beta_1 f e_{t|t-1} + \epsilon_t \tag{1}$$

$$\bar{\pi}_t \equiv \mathbb{E}_t(\pi_{t+10}) \tag{2}$$

$$fe_{t|t-1} \equiv \pi_t - \mathbb{E}_{t-1}(\pi_t) \tag{3}$$

$$\hat{\beta}_1 = 0.04$$
 (p-value: 0.0016)

1 pp forecast error \rightarrow 4 bp revision in long-run expectations

Structure of talk

1. Unanchoring in the data

2. Model of anchoring expectations

3. Solving the Ramsey problem

4. Implementing optimal policy

Households: standard up to $\hat{\mathbb{E}}$

Maximize lifetime expected utility

$$\hat{\mathbb{E}}_t \sum_{T=t}^{\infty} \beta^{T-t} \left[U(C_T^i) - \int_0^1 v(h_T^i(j)) dj \right]$$
 (4)

Budget constraint

$$B_t^i \le (1 + i_{t-1})B_{t-1}^i + \int_0^1 w_t(j)h_t^i(j)dj + \Pi_t^i(j)dj - T_t - P_tC_t^i$$
 (5)

▶ Consumption, price level

Firms: standard up to $\hat{\mathbb{E}}$

Maximize present value of profits

$$\hat{\mathbb{E}}_{t} \sum_{T=t}^{\infty} \alpha^{T-t} Q_{t,T} \left[\Pi_{t}^{j}(p_{t}(j)) \right]$$
 (6)

subject to demand

$$y_t(j) = Y_t \left(\frac{p_t(j)}{P_t}\right)^{-\theta} \tag{7}$$

▶ Profits, stochastic discount factor

Expectations: $\hat{\mathbb{E}}$ instead of \mathbb{E}

• If use \mathbb{E} (rational expectations, RE)

Model solution

$$s_t = h s_{t-1} + \epsilon_t \qquad \epsilon_t \sim \mathcal{N}(\mathbf{0}, \Sigma)$$
 (8)

$$y_t = gs_t \tag{9}$$

```
s_t \equiv \text{states}

y_t \equiv \text{jumps}

\epsilon_t \equiv \text{disturbances}
```

Expectations: $\hat{\mathbb{E}}$ instead of \mathbb{E}

• If use \mathbb{E} (rational expectations, RE)

Model solution

$$s_t = h s_{t-1} + \epsilon_t \qquad \epsilon_t \sim \mathcal{N}(\mathbf{0}, \Sigma)$$
 (8)

$$y_t = gs_t \tag{9}$$

 $s_t \equiv \text{states}$ $y_t \equiv \text{jumps}$ $\epsilon_t \equiv \text{disturbances}$

- If use $\hat{\mathbb{E}} \to \text{private sector does not know (9)}$
 - ⇔ estimate using observed states & knowledge of (8)

• Postulate linear functional relationship instead of (9):

$$\hat{\mathbb{E}}_t y_{t+1} = a_{t-1} + b_{t-1} s_t \tag{10}$$

• Postulate linear functional relationship instead of (9):

$$\hat{\mathbb{E}}_t y_{t+1} = a_{t-1} + b_{t-1} s_t \tag{10}$$

In RE,
$$a_{t-1} = 0$$
, $b_{t-1} = g h \quad \forall t$

• Postulate linear functional relationship instead of (9):

$$\hat{\mathbb{E}}_t y_{t+1} = a_{t-1} + b_{t-1} s_t \tag{10}$$

In RE,
$$a_{t-1} = 0$$
, $b_{t-1} = g h \quad \forall t$

 $a \rightarrow$ concept of long-run expectations in the model

• Postulate linear functional relationship instead of (9):

$$\hat{\mathbb{E}}_t y_{t+1} = a_{t-1} + b_{t-1} s_t \tag{10}$$

In RE,
$$a_{t-1} = 0$$
, $b_{t-1} = g h \quad \forall t$

 $a \rightarrow$ concept of long-run expectations in the model

• Estimate *a*, *b* using recursive least squares (RLS)

Jumps are: $(\pi, x, i)'$

Jumps are: $(\pi, x, i)'$

Special case: learn only intercept of inflation:

$$a_{t-1} = (\bar{\pi}_{t-1}, 0, 0)', \quad b_{t-1} = g h \quad \forall t$$
 (11)

Jumps are: $(\pi, x, i)'$

Special case: learn only intercept of inflation:

$$a_{t-1} = (\bar{\pi}_{t-1}, 0, 0)', \quad b_{t-1} = g h \quad \forall t$$
 (11)

 $\bar{\pi}_{t-1}$: long-run inflation expectations \rightarrow anchoring

Jumps are: $(\pi, x, i)'$

Special case: learn only intercept of inflation:

$$a_{t-1} = (\bar{\pi}_{t-1}, 0, 0)', \quad b_{t-1} = g h \quad \forall t$$
 (11)

 $\bar{\pi}_{t-1}$: long-run inflation expectations \rightarrow anchoring

$$\rightarrow$$
 RLS

$$\bar{\pi}_t = \bar{\pi}_{t-1} + k_t \underbrace{\left(\pi_t - (\bar{\pi}_{t-1} + b_1 s_{t-1})\right)}_{\equiv fe_{tt-1}, \text{ forecast error}}$$
(12)

 $k_t \in (0,1)$ gain b_1 first row of b

Decreasing versus constant gain

Decreasing gain learning:

$$\bar{\pi}_t = \bar{\pi}_{t-1} + \frac{1}{t} f e_{t|t-1} \tag{13}$$

 \rightarrow consider sample mean of full sample of forecast errors

Constant gain learning:

$$\bar{\pi}_t = \bar{\pi}_{t-1} + k f e_{t|t-1} \tag{14}$$

 \rightarrow consider sample mean of most recent observations only

Anchoring mechanism: endogenous gain

$$\bar{\pi}_t = \bar{\pi}_{t-1} + k_t \left(\pi_t - (\bar{\pi}_{t-1} + b_1 s_{t-1}) \right) \tag{15}$$

$$k_t = \mathbf{g}(fe_{t|t-1})$$
: anchoring function

Anchoring mechanism: endogenous gain

$$\bar{\pi}_t = \bar{\pi}_{t-1} + k_t \big(\pi_t - (\bar{\pi}_{t-1} + b_1 s_{t-1}) \big) \tag{15}$$

 $k_t = \mathbf{g}(fe_{t|t-1})$: anchoring function

$$\mathbf{g}(fe_{t|t-1}) = \sum_{i} \alpha_i b_i (fe_{t|t-1}) \tag{16}$$

 $b_i(fe_{t|t-1}) = \text{basis}$, here: second order spline (piecewise linear)

 α_i = approximating coefficients, here: use $\hat{\alpha}$ from estimation

▶ Functional forms in literature

Model summary

• IS- and Phillips curve:

$$x_{t} = -\sigma i_{t} + \hat{\mathbb{E}}_{t} \sum_{T=t}^{\infty} \beta^{T-t} \left((1-\beta) x_{T+1} - \sigma(\beta i_{T+1} - \pi_{T+1}) + \sigma r_{T}^{n} \right)$$
 (17)

$$\pi_t = \kappa x_t + \hat{\mathbb{E}}_t \sum_{T=1}^{\infty} (\alpha \beta)^{T-t} \left(\kappa \alpha \beta x_{T+1} + (1-\alpha) \beta \pi_{T+1} + u_T \right)$$
 (18)

► Derivations ► Actual laws of motion

- Expectations evolve according to RLS with the endogenous gain given by (16)
- \rightarrow How should $\{i_t\}$ be set?

Structure of talk

- 1. Unanchoring in the data
- 2. Model of anchoring expectations
- 3. Solving the Ramsey problem
- 4. Implementing optimal policy

Ramsey problem

$$\min_{\{y_t, \bar{\pi}_{t-1}, k_t\}_{t=t_0}^{\infty}} \mathbb{E}_{t_0} \sum_{t=t_0}^{\infty} \beta^{t-t_0} (\pi_t^2 + \lambda_x x_t^2)$$

- s.t. model equations
- s.t. evolution of expectations

- \mathbb{E} is the central bank's (CB) expectation
- Assumption: CB observes private expectations and knows the model

Target criterion

Proposition

In the model with anchoring, monetary policy optimally brings about the following target relationship between inflation and the output gap

$$\pi_t = -\frac{\lambda_x}{\kappa} x_t + \frac{\lambda_x}{\kappa} \frac{(1-\alpha)\beta}{1-\alpha\beta} \left(k_t + ((\pi_t - \bar{\pi}_{t-1} - b_1 s_{t-1})) \mathbf{g}_{\pi,t} \right)$$

$$\left(\mathbb{E}_{t} \sum_{i=1}^{\infty} x_{t+i} \prod_{j=0}^{i-1} (1 - k_{t+1+j} - (\pi_{t+1+j} - \bar{\pi}_{t+j} - b_{1}s_{t+j}) \mathbf{g}_{\bar{\pi}, \mathbf{t}+\mathbf{j}})\right)$$

where $\mathbf{g}_{z,t} \equiv \frac{\partial \mathbf{g}}{\partial z}$ at t, $\prod_{i=0}^{0} \equiv 1$ and b_1 is the first row of b.

Two layers of intertemporal stabilization tradeoffs

$$\begin{aligned} & \boldsymbol{\pi_t} = & -\frac{\lambda_x}{\kappa} \boldsymbol{x_t} + \frac{\lambda_x}{\kappa} \frac{(1-\alpha)\beta}{1-\alpha\beta} \left(k_t + f e_{t|t-1} \mathbf{g}_{\pi,t} \right) \mathbb{E}_t \sum_{i=1}^{\infty} \boldsymbol{x_{t+i}} \\ & -\frac{\lambda_x}{\kappa} \frac{(1-\alpha)\beta}{1-\alpha\beta} \left(k_t + f e_{t|t-1} \mathbf{g}_{\pi,t} \right) \mathbb{E}_t \sum_{i=1}^{\infty} \boldsymbol{x_{t+i}} \prod_{j=0}^{i-1} (k_{t+1+j} + f e_{t+1+j|t+j} \mathbf{g}_{\bar{\pi},t+j}) \end{aligned}$$

Intratemporal tradeoffs in RE (discretion)

Intertemporal tradeoff: current level and change of the gain

Intertemporal tradeoff: future expected levels and changes of the gain

Lemma

The discretion and commitment solutions of the Ramsey problem coincide.

▶ Why no commitment?

Corollary

Optimal policy under adaptive learning is time-consistent.

 \hookrightarrow Foreshadow: optimal policy aggressiveness time-varying

Structure of talk

- 1. Unanchoring in the data
- 2. Model of anchoring expectations
- 3. Solving the Ramsey problem
- 4. Implementing optimal policy

Solution procedure

Solve system of model equations + target criterion

 \hookrightarrow solve using parameterized expectations (PEA)

 \hookrightarrow obtain a cubic spline approximation to optimal policy function

Calibration - parameters from the literature

β	0.98	stochastic discount factor	
$\overline{\sigma}$	1	intertemporal elasticity of substitution	
α	0.5	Calvo probability of not adjusting prices	
κ	0.0842	slope of the Phillips curve	
$\overline{\psi_{\pi}}$	1.5	coefficient of inflation in Taylor rule*	
$\overline{\psi_x}$	0.3	coefficient of the output gap in Taylor rule*	
\bar{g}	0.145	initial value of the gain	
λ_x	0.05	weight on the output gap in central bank loss	
$-\rho_r$	0	persistence of natural rate shock	
$\overline{\rho_i}$	0	persistence of monetary policy shock*	
ρ_u	0	persistence of cost-push shock	

^{*} pertains to sections where Taylor rule is in effect

Calibration - matching moments

σ_r	0.01	standard deviation, natural rate shock
σ_i	0.01	standard deviation, monetary policy shock*
σ_u	0.5	standard deviation, cost-push shock
$\hat{\alpha}_i$	(0.33; 0.25; 0.001; 0.24; 0.33)	coefficients in anchoring function

Calibrated $(\sigma_j, j = r, i, u)$ or estimated $(\hat{\alpha}_i)$ to match the autocovariances of inflation, output gap, interest rate and one-period ahead inflation expectations for lags $0, \dots, 4$.

^{*} pertains to sections where Taylor rule is in effect

Optimal policy - responding to unanchoring

Figure: Policy function: $i(\bar{\pi}, \text{all other states at their means})$

The intertemporal volatility tradeoff

Figure: Impulse responses after a contractionary monetary policy shock

Intertemporal volatility tradeoff: term structure of expectations

IS- and Phillips curve:

$$x_t = -\sigma i_t + \hat{\mathbb{E}}_t \sum_{T=t}^{\infty} \beta^{T-t} \left((1-\beta) x_{T+1} - \sigma (\beta i_{T+1} - \pi_{T+1}) + \sigma r_T^n \right)$$

$$\pi_t = \kappa x_t + \hat{\mathbb{E}}_t \sum_{T=t}^{\infty} (\alpha \beta)^{T-t} \left(\kappa \alpha \beta x_{T+1} + (1-\alpha) \beta \pi_{T+1} + u_T \right)$$

Optimal Taylor-coefficient on inflation

Figure: Central bank loss as a function of ψ_π

The intertemporal volatility tradeoff - again

Losses for optimal Taylor-rule coefficient on inflation

RE-optimal coefficient: $\psi_{\pi}^{RE} = 2.21$

Anchoring-optimal coefficient: $\psi_{\pi}^{A} = 1.09$

Table: Loss for RE and anchoring models for choice of RE- or anchoring-optimal ψ_π

Anchoring, ψ_{π}^{RE}	Anchoring, ψ_{π}^{A}	RE, ψ_{π}^{RE}
9.6901	5.8296	5.3148

 \to If model is anchoring, anchoring-optimal ψ_π^A gets 90% of the distance to RE-optimal ψ_π^{RE} under RE

Conclusion

- First theory of monetary policy for potentially unanchored expectations
- Optimal policy conditions on stance of current and expected future anchoring

 \hookrightarrow determine intertemporal tradeoffs

- Frontloads aggressive interest rate response to suppress potential unanchoring
- \bullet Matters: already anchoring-optimal Taylor rule reduces losses by 50%
- Future work: how to anchor at zero-lower bound?

Correcting the TIPS from liquidity risk

Figure: Market-based inflation expectations, 10 year, average, %

Oscillatory dynamics in adaptive learning

Consider a stylized adaptive learning model in two equations:

$$\pi_t = \beta f_t + u_t \tag{19}$$

$$f_t = f_{t-1} + k(\pi_t - f_{t-1})$$
 (20)

Solve for the time series of expectations f_t

$$f_t = \underbrace{\frac{1 - k^{-1}}{1 - k^{-1}\beta}}_{\approx 1} f_{t-1} + \frac{k^{-1}}{1 - k^{-1}\beta} u_t \tag{21}$$

Solve for forecast error $fe_t \equiv \pi_t - f_{t-1}$:

$$fe_t = \underbrace{-\frac{1-\beta}{1-k\beta}}_{\lim_{t \to 1} = -1} f_{t-1} + \frac{1}{1-k\beta} u_t \tag{22}$$

Functional forms for g in the literature

• Smooth anchoring function (Gobbi et al, 2019)

$$p = h(y_{t-1}) = A + \frac{BCe^{-Dy_{t-1}}}{(Ce^{-Dy_{t-1}} + 1)^2}$$
 (23)

 $p \equiv Prob(\text{liquidity trap regime})$ y_{t-1} output gap

• Kinked anchoring function (Carvalho et al, 2019)

$$k_t = \begin{cases} \frac{1}{t} & \text{when } \theta_t < \bar{\theta} \\ k & \text{otherwise.} \end{cases}$$
 (24)

 θ_t criterion, $\bar{\theta}$ threshold value

Choices for criterion θ_t

• Carvalho et al. (2019)'s criterion

$$\theta_t^{CEMP} = \max |\Sigma^{-1}(\phi_{t-1} - T(\phi_{t-1}))|$$
 (25)

 Σ variance-covariance matrix of shocks $T(\phi)$ mapping from PLM to ALM

CUSUM-criterion

$$\omega_t = \omega_{t-1} + \kappa k_{t-1} (f e_{t|t-1} f e'_{t|t-1} - \omega_{t-1})$$
(26)

$$\theta_t^{CUSUM} = \theta_{t-1} + \kappa k_{t-1} (f e'_{t|t-1} \omega_t^{-1} f e_{t|t-1} - \theta_{t-1})$$
 (27)

 ω_t estimated forecast-error variance

Recursive least squares algorithm

$$\phi_t = \left(\phi'_{t-1} + k_t R_t^{-1} \begin{bmatrix} 1 \\ s_{t-1} \end{bmatrix} \left(y_t - \phi_{t-1} \begin{bmatrix} 1 \\ s_{t-1} \end{bmatrix} \right)' \right)'$$
 (28)

$$R_{t} = R_{t-1} + k_{t} \begin{pmatrix} 1 \\ s_{t-1} \end{pmatrix} \begin{bmatrix} 1 & s_{t-1} \end{bmatrix} - R_{t-1}$$
 (29)

Actual laws of motion

$$y_{t} = A_{1}f_{a,t} + A_{2}f_{b,t} + A_{3}s_{t}$$

$$s_{t} = hs_{t-1} + \epsilon_{t}$$
(30)

where

$$y_t \equiv \begin{pmatrix} \pi_t \\ x_t \\ i_t \end{pmatrix} \qquad s_t \equiv \begin{pmatrix} r_t^n \\ u_t \end{pmatrix} \tag{32}$$

and

$$f_{a,t} \equiv \hat{\mathbb{E}}_t \sum_{T-t}^{\infty} (\alpha \beta)^{T-t} y_{T+1} \qquad f_{b,t} \equiv \hat{\mathbb{E}}_t \sum_{T-t}^{\infty} (\beta)^{T-t} y_{T+1}$$
 (33)

No commitment - no lagged multipliers

Simplified version of the model: planner chooses $\{\pi_t, x_t, f_t, k_t\}_{t=t_0}^{\infty}$ to minimize

$$\mathcal{L} = \mathbb{E}_{t_0} \sum_{t=t_0}^{\infty} \beta^{t-t_0} \left\{ \pi_t^2 + \lambda x_t^2 + \varphi_{1,t} (\pi_t - \kappa x_t - \beta f_t + u_t) + \varphi_{2,t} (f_t - f_{t-1} - k_t (\pi_t - f_{t-1})) + \varphi_{3,t} (k_t - \mathbf{g}(\pi_t - f_{t-1})) \right\}$$

$$2\pi_t + 2\frac{\lambda}{\kappa}x_t - \varphi_{2,t}(k_t + \mathbf{g}_{\pi}(\pi_t - f_{t-1})) = 0$$
 (34)

$$-2\beta \frac{\lambda}{\kappa} x_t + \varphi_{2,t} - \varphi_{2,t+1} (1 - k_{t+1} - \mathbf{g_f}(\pi_{t+1} - f_t)) = 0$$
 (35)

Target criterion system for anchoring function as changes of the gain

$$\varphi_{6,t} = -cfe_{t|t-1}x_{t+1} + \left(1 + \frac{fe_{t|t-1}}{fe_{t+1|t}}(1 - k_{t+1}) - fe_{t|t-1}\mathbf{g}_{\bar{\pi},t}\right)\varphi_{6,t+1}$$
$$-\frac{fe_{t|t-1}}{fe_{t+1|t}}(1 - k_{t+1})\varphi_{6,t+2} \tag{36}$$

$$0 = 2\pi_t + 2\frac{\lambda_x}{\kappa} x_t - \left(\frac{k_t}{f e_{t|t-1}} + \mathbf{g}_{\pi,t}\right) \varphi_{6,t} + \frac{k_t}{f e_{t|t-1}} \varphi_{6,t+1}$$
(37)

 $\varphi_{6,t}$ Lagrange multiplier on anchoring function

The solution to (37) is given by:

$$\varphi_{6,t} = -2 \, \mathbb{E}_t \sum_{i=0}^{\infty} (\pi_{t+i} + \frac{\lambda_x}{\kappa} x_{t+i}) \prod_{j=0}^{i-1} \frac{\frac{k_{t+j}}{f_{e_{t+j|t+j-1}}}}{\frac{k_{t+j}}{f_{e_{t+j|t+j-1}}} + \mathbf{g}_{\pi,t+j}}$$
(38)

Details on households and firms

Consumption:

$$C_t^i = \left[\int_0^1 c_t^i(j)^{\frac{\theta - 1}{\theta}} dj \right]^{\frac{\sigma}{\theta - 1}}$$
(39)

 $\theta > 1$: elasticity of substitution between varieties

Aggregate price level:

$$P_{t} = \left[\int_{0}^{1} p_{t}(j)^{1-\theta} dj \right]^{\frac{1}{\theta-1}}$$
 (40)

Profits:

$$\Pi_t^j = p_t(j)y_t(j) - w_t(j)f^{-1}(y_t(j)/A_t)$$
(41)

Stochastic discount factor

$$Q_{t,T} = \beta^{T-t} \frac{P_t U_c(C_T)}{P_T U_c(C_t)}$$
(42)

Derivations

Household FOCs

$$\hat{C}_t^i = \hat{\mathbb{E}}_t^i \hat{C}_{t+1}^i - \sigma(\hat{i}_t - \hat{\mathbb{E}}_t^i \hat{\pi}_{t+1})$$

$$\tag{43}$$

$$\hat{\mathbb{E}}_t^i \sum_{s=0}^{\infty} \beta^s \hat{C}_t^i = \omega_t^i + \hat{\mathbb{E}}_t^i \sum_{s=0}^{\infty} \beta^s \hat{Y}_t^i$$
(44)

where 'hats' denote log-linear approximation and $\omega_t^i \equiv \frac{(1+i_{t-1})B_{t-1}^i}{P_tY^*}$.

- 1. Solve (43) backward to some date *t*, take expectations at *t*
- 2. Sub in (44)
- 3. Aggregate over households *i*
- \rightarrow Obtain (17)

