Interpolation Categories, Centers and Link Invariants

$$c_1 = \underbrace{\hspace{1cm}} + \underbrace{\hspace{1cm}} + \underbrace{\hspace{1cm}} - \underbrace{\hspace{1cm}} - \underbrace{\hspace{1cm}}$$

ROBERT LAUGWITZ (University of Nottingham) joint with JOHANNES FLAKE (RWTH Aachen)

SUMMARY

Reference: Arxiv:1901.08657

Summary: We construct braided monoidal subcategories

- \triangleright \mathcal{D}_t is a ribbon category
- ▶ For $n \in \mathbb{N}$, $\mathcal{D}_n \longrightarrow \mathcal{Z}(\text{Rep}(S_n))$ is essentially surjective & full
- ► Application: Invariants of framed links, polynomial in *t*

BACKGROUND

The Categories \mathcal{D}_t

RIBBON LINK INVARIANTS

FURTHER QUESTIONS

YETTER-DRINFELD MODULES & DIJKGRAAF-WITTEN THEORY

G a finite group, char k = 0A *Yetter–Drinfeld module* over *G* is a *G*-graded *G*-module

$$V = \bigoplus_{g \in G} V_g$$
, such that $h \cdot V_g = V_{hgh^{-1}}$.

- ► YD modules over *G* form a modular tensor category
- ▶ invariants of links \mathcal{L} and 3-manifolds $C = \mathbb{R}^3 \setminus \overline{\mathcal{L}}$

$$Z_G^{\mathrm{DW}}(C) = \frac{1}{|G|} \underbrace{\left| \mathrm{Hom}_{\mathrm{group}}(\pi_1(C), G) \right|}_{\mathrm{Inv}_G^{\mathrm{DW}}(\mathcal{L})}$$

Dijkgraaf–Witten theory: A fully extended 3D TQFT $Z_{G,\omega}^{DW}$ Here: $1 = \omega \in H^3(G, \mathbb{k}^{\times})$ — the *untwisted* case

DELIGNE'S INTERPOLATION CATEGORY

Motivation: Let $\mathfrak{h} := \mathbb{C}^n$ standard S_n -representation.

- ► Every simple S_n -representation is a direct summand of $\mathfrak{h}^{\otimes k}$ for some k > 0.
- ▶ Partitions of $\{1, ..., k, 1', ..., l'\}$ give morphisms of S_n -representations

$$\mathfrak{h}^{\otimes k} \to \mathfrak{h}^{\otimes l}$$

- ► These morphisms span $\text{Hom}_{S_n}(\mathfrak{h}^{\otimes k}, \mathfrak{h}^{\otimes l})$ as a \mathbb{k} -vector space.
- ▶ Rep(S_n) is the *idempotent completion* (the *Karoubian envelope*) of the full tensor subcategory generated by \mathfrak{h} .
- ▶ Deligne: Composition rule is combinatorial, the number *n* appears "polynomially".
- ▶ replacing n by $t \in \mathbb{C}$ gives new tensor categories $\underline{\text{Rep}}(S_t)$

DELIGNE'S INTERPOLATION CATEGORY

 $\underline{\text{Rep}}(S_t)$ is the *idempotent completion* of $\underline{\text{Rep}}^0(S_t)$ which has:

- ▶ Objects: [m] for $m \in \mathbb{Z}_{\geq 0}$
- ▶ Morphisms $[m] \rightarrow [k]$: Partitions of $\{1, ..., m, 1', ..., k'\}$
- ► Composition: Concatenation for example,

$$\left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) \circ \left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) = \begin{array}{c} \bullet \\ \bullet \end{array} = t \cdot \left(\begin{array}{c} \bullet \\ \bullet \end{array} \right)$$

Deligne '07: Symmetric monoidal category $\underline{\text{Rep}}(S_t)$ for $t \in \mathbb{k}$

- ▶ For *generic* $t \notin \mathbb{Z}_{>0}$: Rep(S_t) is semisimple
- ▶ For $n \in \mathbb{N}$:

$$\mathcal{F}_n$$
: $\underbrace{\operatorname{Rep}(S_n)}_{\text{not semisimple}}$ \longrightarrow $\underbrace{\operatorname{Rep}(S_n)}_{\text{semisimplification}}$

is full & essentially surjective

THE MONOIDAL CENTER

Drinfeld, Majid, Joyal-Street:

 \mathcal{C} monoidal category $\Longrightarrow \mathcal{Z}(\mathcal{C})$ a *braided* monoidal category

▶ Objects: (V,c), $V \in C$, half-braiding c_W : $V \otimes W \to W \otimes V$, natural in W, such that

$$c_{W\otimes U} = (\mathrm{Id}_W \otimes c_U)(c_W \otimes \mathrm{Id}_U) \Longrightarrow$$

- $ightharpoonup (V, c_V)$ is a solution to the Quantum Yang–Baxter Equation
- ► Morphisms: required to commute with the half-braidings

Goals:

- ▶ Obtain an interpolation category for Yetter–Drinfeld modules over S_n ✓
- ► Classify all objects in $\mathcal{Z}(\text{Rep}(S_t))$ (work in progress)

All *simple* Yetter–Drinfeld modules over S_n are:

$$\{W_{\mu,V} \mid \mu \vdash n, \ V \text{ simple } Z(\mu)\text{-module}\}$$

- ► $Z(\mu)$ is the centralizer of $\sigma \in S_n$ of cycle type μ
- ► $W_{\mu,V} \cong \operatorname{Ind}_{Z(\mu)}^{S_n}(V)$ as an S_n -module

Proposition (Flake-L.)

Given μ , V as above, construct in $\underline{\text{Rep}}(S_t)$:

- ▶ an idempotent $e_V : [n] \to [n]$
- ▶ a morphism c_1^V : $([n], e_V) \otimes [1] \rightarrow [1] \otimes ([n], e_V)$
- \Rightarrow These determine an interpolation object $\underline{W}_{\mu,V}$ in $\mathcal{Z}(\underline{\text{Rep}}(S_t))$.

Data: $n \ge 1$, $\mu \vdash n$, $\sigma \in S_n$ of cycle type μ ,

$$\rho \colon Z(\mu) \to \operatorname{Mat}_{k \times k}(\mathbb{k})$$
 simple representation V

Interpolation Object: Define $\underline{W}_{\mu,V} = (([n]^{\oplus k}, e_{\rho}), c^{\mu})$ in $\mathcal{Z}(\underline{\text{Rep}}(S_t))$:

$$e_{\rho} = \frac{1}{|Z(\mu)|} \sum_{z \in Z(\mu)} x_z \otimes \rho(z)$$

$$E_j^i = \int_{-\infty}^{\infty} \frac{1}{|z|} \int_{-\infty}^{\infty} \frac{n+1}{(n+1)'}$$

$$c_{[1]}^{\mu} = \Psi_{[n],[1]}^{\oplus k} \left(\operatorname{Id}_{[n+1]} + \sum_{i=1}^{n} \left(E_{\sigma(i)}^i - E_i^i \right) \right)^{\otimes k} (e_{\rho} \otimes \operatorname{Id}_{[1]})$$

Proposition (Flake-L.)

Let $n \in \mathbb{N}$. For the induced functor

$$\mathcal{F}_n \colon \mathcal{Z}(\underline{\operatorname{Rep}}(S_n)) \longrightarrow \mathcal{Z}(\operatorname{Rep}(S_n))$$

we have $\mathcal{F}_n(\underline{W}_{\mu,V}) \cong W_{\mu,V}$ as a Yetter–Drinfeld modules over S_n .

Example

For
$$\mu = (2) \vdash 2$$
, $Z(\mu) = \mathbb{Z}_2$, $V = \mathbb{k}^{\text{triv}}$, the object $\underline{W}_{(2),\mathbb{k}^{\text{triv}}}$ has

$$e = \frac{1}{2} \left(\left[\begin{array}{c} \\ \\ \end{array} \right] + \left[\begin{array}{c} \\ \\ \end{array} \right] - \left[\begin{array}{c} \\ \\ \end{array} \right] \left(e \otimes \operatorname{Id}_{[1]} \right)$$

Example

For $\mu = (3) \vdash 3$, $Z(\mu) = \mathbb{Z}_3$, irreducible modules V^{ξ} , ξ third root of unity, the object $\underline{W}_{(3),V^{\xi}}$ has

The Category \mathcal{D}_t

Definition

Let \mathcal{D}_t denote the idempotent completion of the full subcategory of $\mathcal{Z}(\underline{\text{Rep}}(S_t))$ generated by *all* interpolation objects $\underline{W}_{\mu,V}$.

Theorem (Flake-L.)

For $n \in \mathbb{Z}_{>0}$, the functor

$$\mathcal{F}_n \colon \mathcal{D}_n \longrightarrow \mathcal{Z}(\operatorname{Rep}(S_n))$$

of braided monoidal categories is essentially surjective and full on morphism spaces.

\mathcal{D}_t is a Ribbon Category

A *ribbon* category is a braided monoidal category with two-sided duals (i.e. a pivotal category) in which

$$\theta_X^l = \bigvee_X^X = \bigvee_X^X = \theta_X^r,$$

RIBBON LINK INVARIANTS

for any object X, i.e. left and right *twists* are equal.

Theorem (Flake–L.)

 \mathcal{D}_t is a ribbon category.

For $W = \underline{W}_{\mu,V}$, $k = \dim V$, the left and right twists are given by

$$\theta_W^l = \theta_W^r = (\sigma^{-1})^{\oplus k} e_V,$$
 where σ has cycle type μ .

FRAMED RIBBON LINKS

- ▶ Let \mathcal{L} be a *framed ribbon link*, i.e. an oriented link with ribbons instead of strings.
- ► Two framed ribbon links are *equivalent* if related through three *Reidemeister moves*:

FRAMED RIBBON LINK INVARIANTS

- ► The category of *framed ribbon tangles* is a *free* ribbon category
- ► Every object X in a ribbon category provides an invariant $Inv_X(\mathcal{L})$ of framed ribbon links [Reshetikhin–Turaev]
- ► The category *Z*(Rep(*G*)) gives the untwisted Dijkgraaf–Witten invariants

Corollary

Let $\mu \vdash n$. Given an interpolation object $\underline{W}_{\mu,V}$ in \mathcal{D}_t , the polynomial

$$P_{\mu,V}(\mathcal{L},t) := Inv_{\underline{W}_{\mu,V}}(\mathcal{L}) \in \mathbb{k}[t]$$

is an invariant of framed ribbon links.

The evaluation $P_{\mu,V}(\mathcal{L}, \mathbf{n})$ recovers the corresponding untwisted Dijkgraaf-Witten invariant.

EXAMPLES OF RIBBON LINK POLYNOMIALS

	Ribbon torus link \mathcal{T}	$\frac{P_{(2),k}^{\text{triv}}(7,t)}{\dim \underline{W}_{(2),k}^{\text{triv}}}$	$\frac{P_{(3), k \text{triv}}(7, t)}{\dim \underline{W}_{(3), k \text{triv}}}$
	$\mathcal{T}_{2,-2} = \bigcirc$	$\tfrac{t^2}{2} - \tfrac{5t}{2} + 4$	$\frac{t^3}{3} - 4t^2 + \frac{47t}{3} - 18$
	$\mathcal{T}_{2,-3} = \bigcirc$	2t - 3	3t-8
	$\mathcal{T}_{2,-6} = \bigcirc$	$\frac{t^2}{2} - \frac{t}{2}$	$\frac{t^3}{3} - 4t^2 + \frac{56t}{3} - 27$
	$\mathcal{T}_{3,-4} = \bigcirc$	$2t^2 - 8t + 9$	$3t^3 - 36t^2 + 144t - 188$
$\dim \underline{W}_{(2),k^{\text{triv}}} = \frac{1}{2}t(t-1), \ \dim \underline{W}_{(3),k^{\text{triv}}} = \frac{1}{3}t(t-1)(t-2)$			

SOME MORE TREFOIL INVARIANTS

The *left-handed* trefoil link

$$\mathcal{T}_{2,-3} = \bigcirc$$

Cycle type μ	$\frac{P_{\mu, ktriv}(\mathcal{T}_{2, -3}, t)}{\dim \underline{W}_{\mu, ktriv}}$
(1)	1
(2)	2t - 3
(3)	3t-8
(4)	$2t^2 - 16t + 37$
(2, 2)	$4t^2 - 28t + 49$

FURTHER QUESTIONS

- ► Effective computation of the ribbon link polynomials, currently computed using *Wolfram Mathematica*®
- ▶ \mathcal{D}_t is non-semisimple for $t \in \mathbb{Z}_{\geq 0}$ Is \mathcal{D}_t semisimple (like $\underline{\text{Rep}}(S_t)$) if t is generic? \checkmark Yes
- ▶ Is $\mathcal{D}_t \simeq \mathcal{Z}(\underline{\text{Rep}}(S_t))$? (work in progress)
- ► Applications to invariants of 3-manifolds and TQFT?
- ► Can anything be done in the *twisted* case?

Thank you for your attention!