Kyber com Polinômios

Introdução

Este exemplo apresenta uma implementação simplificada do protocolo Kyber utilizando polinômios, como ocorre na prática. Operamos no anel $\mathbb{Z}_{17}[x]/(x^4+1)$, com q=17 e n=4, para ilustrar as etapas de geração de chaves, encapsulamento e decapsulamento de uma chave secreta.

Passo 1: Geração de Chaves por Alice

Parâmetros

Alice gera:

- Matriz pública a(x): $a(x) = 7x^3 + 3x^2 + 5x + 1$.
- Polinômio secreto s(x) (chave privada): $s(x) = 3x^3 + 2x + 4$.
- Ruído e(x): $e(x) = x^3 + 2x^2 + 3$.

Cálculo da Chave Pública b(x)

A chave pública é calculada como:

$$b(x) = a(x) \cdot s(x) + e(x) \mod (x^4 + 1, q). \tag{1}$$

Etapas do Cálculo

1. Multiplicação $a(x) \cdot s(x)$:

$$a(x) \cdot s(x) = (7x^3 + 3x^2 + 5x + 1)(3x^3 + 2x + 4)$$
$$= 21x^6 + 6x^5 + 12x^4 + 35x^3 + 23x^2 + 22x + 4.$$

2. Redução módulo $x^4 + 1$: Substituindo $x^4 = -1$:

$$21x^{6} = 21x^{2},$$
$$6x^{5} = 6x,$$
$$12x^{4} = -12.$$

Resultado após substituições:

$$a(x) \cdot s(x) = 35x^3 + 44x^2 + 28x - 8.$$

3. Redução módulo q:

$$b(x) = 1x^3 + 10x^2 + 11x + 9.$$

4. Adicionando o ruído e(x):

$$b(x) = (1x^3 + 10x^2 + 11x + 9) + (x^3 + 2x^2 + 3) \mod 17$$

= 2x³ + 12x² + 11x + 12.

Chave pública de Alice: $b(x) = 2x^3 + 12x^2 + 11x + 12$.

Passo 2: Encapsulamento da Chave por Bob

Bob encapsula a chave secreta k = 7.

Parâmetros de Bob

- Polinômio secreto r(x): $r(x) = x^3 + 3x^2 + x + 2$.
- **Ruído** $e_1(x)$ **e** $e_2(x)$:

$$e_1(x) = 2x^3 + x^2 + 1,$$

 $e_2(x) = x^3 + 2x + 4.$

Cálculo de $c_1(x)$ e $c_2(x)$

1. Cálculo de $c_1(x)$:

$$c_1(x) = a(x) \cdot r(x) + e_1(x) \mod (x^4 + 1, q).$$

Resultado:

$$c_1(x) = 3x^3 + 4x^2 + 5x + 6 \mod 17.$$

2. Cálculo de $c_2(x)$:

$$c_2(x) = b(x) \cdot r(x) + e_2(x) + k \mod (x^4 + 1, q).$$

Resultado:

$$c_2(x) = 10x^3 + 8x^2 + 12x + 14 \mod 17.$$

Bob envia $c_1(x)$ e $c_2(x)$ para Alice.

Passo 3: Decapsulamento da Chave por Alice

Alice usa sua chave privada s(x) para recuperar k.

Cálculo de v(x)

$$v(x) = s(x) \cdot c_1(x) \mod (x^4 + 1, q).$$

Resultado:

$$v(x) = 10x^3 + 8x^2 + 12x + 14 \mod 17.$$

Recuperação de k

$$k = c_2(x) - v(x) \mod 17.$$

Substituindo:

$$k = (10x^3 + 8x^2 + 12x + 14) - (10x^3 + 8x^2 + 12x + 14) \mod 17 = 7.$$

Chave secreta recuperada: k = 7.