Introduction to Mobile Robotics

Bayes Filter – Particle Filter and Monte Carlo Localization

Particle Filter

- Recall: Discrete filter
 - Discretize the continuous state space
 - High memory complexity
 - Fixed resolution (does not adapt to the belief)
- Particle filters are a way to efficiently represent non-Gaussian distributions

- Basic principle
 - Set of state hypotheses ("particles")
 - Survival-of-the-fittest

Mathematical *Description*

Set (actually a multi-set) of weighted samples

$$S = \left\{ \left\langle s^{[i]}, w^{[i]} \right\rangle \mid i = 1, \dots, N \right\}$$
 state hypothesis importance weight

The samples represent the posterior

$$p(x) = \sum_{i=1}^{N} w_i \cdot \delta_{s[i]}(x)$$

 $\begin{cases} 1 & \text{if } x = s^{[i]} \\ 0 & \text{otherwise} \end{cases}$

Function Approximation

Particle sets can be used to approximate functions

 The more particles fall into an interval, the higher the probability of that interval

Bayes Filter with Particle Sets

Measurement update

$$Bel(x) \leftarrow p(z|x)\overline{Bel}(x)$$

$$= p(z|x) \sum_{i} w_{i} \, \delta_{s[i]}(x) = \sum_{i} p(z|s^{[i]}) \, w_{i} \, \delta_{s[i]}(x)$$

Motion update

$$\overline{Bel}(x) \leftarrow \int p(x \mid u, x') Bel(x') dx'$$

$$= \int p(x \mid u, x') \sum_{i} w_{i} \, \delta_{s[i]}(x') dx' = \sum_{i} p(x \mid u, s^{[i]}) \, w_{i}$$

Particle Filter Algorithm

Sample the next generation for particles using the proposal distribution

• Compute the importance weights : weight = target distribution / proposal distribution

Resampling: "Replace unlikely samples by more likely ones"

Particle Filter Algorithm

- 1. Algorithm **particle_filter**(S_{t-1} , u_t , z_t) returns S_t :
- 2. $S_t = \emptyset$, $\eta = 0$ 3. **For** $i = 1, \square$, n

Generate new samples

- 4. Sample index j(i) from the discrete distribution given by w_{t-1}
- 5. Sample x_t^i from $p(x_t | x_{t-1}, u_t)$ using $x_{t-1}^{j(i)}$ and u_t

6. $w_t^i = p(z_t | x_t^i)$ Compute importance weight

7. $h = h + w_t^i$ Update normalization factor

8. $S_t = S_t \, \dot{\Xi} \, \{ \langle x_t^i, w_t^i \rangle \}$ Add to new particle set

Normalize weights

Particle Filter Algorithm

Resampling

• Given: Set S of weighted samples.

• Wanted: Random sample, where the probability of drawing x_i is given by w_i .

 Typically done n times with replacement to generate new sample set S'.

Resampling

- Roulette wheel
- Binary search, O(n log(n))

- Stochastic universal sampling
- Systematic resampling
- Linear time complexity O(n)
- Easy to implement, low variance

Resampling Algorithm

```
1. Algorithm systematic_resampling(S,n):
2. S' = \emptyset, c_1 = w^1

3. For i = 2...n Generate cdf

4. c_i = c_{i-1} + w^i
5. u_1 \sim U[0, n^{-1}], i = 1 Initialize threshold
6. For j = 1...n Draw samples ...
7. While (u_i > c_i) Skip until next threshold reached
8. i = i + 1
9. S' = S' \cup \{ < x^i, n^{-1} > \} Insert
10. u_{j+1} = u_j + n^{-1} Increment threshold
11. Return S'
```

Also called stochastic universal sampling

Mobile Robot Localization

- Each particle is a potential pose of the robot
- Proposal distribution is the motion model of the robot (prediction step)
- The observation model is used to compute the importance weight (correction step)

Motion Model Reminder

- Uncertainty in the translation of the robot:
 Gaussian over the traveled distance
- Uncertainty in the rotation of the robot:
 Gaussians over initial and final rotation
- For each particle, draw a new pose by sampling from these three individual normal distributions

Motion Model Reminder

Proximity Sensor Model Reminder

Laser

Robot Localization using Particle Filters (1)

Each particle is a potential pose of the robot

 The set of weighted particles approximates the posterior belief about the robot's pose (target distribution)

Robot Localization using Particle Filters (2)

- Particles are drawn from the motion model (proposal distribution)
- Particles are weighted according to the observation model (sensor model)
- Particles are resampled according to the particle weights

Robot Localization using Particle Filters (3)

Why is resampling needed?

- We only have a finite number of particles
- Without resampling: The filter is likely to loose track of the "good" hypotheses
- Resampling ensures that particles stay in the meaningful area of the state space

Particle Filters

Sensor Information: Importance Sampling

Robot Motion

$$Bel^{-}(x) \neg \grave{0} p(x | u, x') Bel(x') dx'$$

Sensor Information: Importance Sampling

$$Bel(x)$$
 \neg $\partial p(z|x)Bel^{-}(x)$
 w \neg $\frac{\partial p(z|x)Bel^{-}(x)}{Bel^{-}(x)} = \partial p(z|x)$

Robot Motion

Real World Application (LiDAR)

Highly Precise Localization and Positioning

Localization Accuracy

- KUKA omniMove (11t)
- Safety scanners
- Error in the area of millimeters
- Even in dynamic environments

Sample-based Localization (Ultrasound)

Discrete Filters Reminder (Ultrasound)

Initial Distribution

After Incorporating Ten Ultrasound Scans

After Incorporating 65 Ultrasound Scans

Estimated Path

Importance Sampling with Resampling: Landmark Detection Example

Distributions

Distributions

This is Easy!

• We can draw samples from $p(x|z_i)$ by adding noise to the detection parameters.

Importance Sampling with Resampling

Weighted samples

After resampling

Localization for AIBO Robots

Limitations

- The approach described so far is able
 - to track the pose of a mobile robot and
 - to globally localize the robot
- How can we deal with localization errors (i.e., the kidnapped robot problem)?

Approaches

- Randomly insert a fixed number of samples with randomly chosen poses
- This corresponds to the assumption that the robot can be teleported at any point in time to an arbitrary location
- Alternatively, insert such samples inverse proportional to the average likelihood of the observations (the lower this likelihood the higher the probability that the current estimate is wrong).

Vision-based Localization (Recovery from Failure)

Random samples

Localization for AIBO Robots

Drawing from observations

Summary – Particle Filters

- Particle filters are an implementation of recursive Bayesian filtering
- They represent the posterior by a set of weighted samples
- They can model arbitrary and thus also non-Gaussian distributions
- Proposal to draw new samples
- Weights are computed to account for the difference between the proposal and the target
- Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter

Summary – Particle Filter Localization

- In the context of localization, the particles are propagated according to the motion model.
- They are then weighted according to the likelihood model (likelihood of the observations).
- In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation.
- This leads to one of the most popular approaches to mobile robot localization