Le produit scalaire.

I. Définition.

Définition : L'angle formé par les vecteurs \vec{u} et \vec{v} de même origine se note (\vec{u} , \vec{v}).

Définition: Soit \vec{u} et \vec{v} deux vecteurs du plan.

- Si \vec{u} et \vec{v} sont deux vecteurs non nuls, on appelle produit scalaire de \vec{u} par \vec{v} , le réel noté $\vec{u} \cdot \vec{v}$ définie par $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u}, \vec{v})$.
- Si \vec{u} ou \vec{v} est le vecteur nul, alors $\vec{u} \cdot \vec{v} = 0$.

Attention, le produit scalaire de deux vecteurs n'est pas un vecteur, mais un nombre réel. Le produit scalaire n'a pas d'unité.

Remarques:

- 1) Si A, B et C sont trois points distincts du plan, $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(\widehat{BAC})$.
- 2) Le produit scalaire est symétrique en \vec{u} et \vec{v} . En effet, on sait que $(\vec{v}, \vec{u}) = -(\vec{u}, \vec{v})$. Or $\cos(\vec{v}, \vec{u}) = \cos(-(\vec{u}, \vec{v})) = \cos(\vec{u}, \vec{v})$. Donc $\vec{v} \cdot \vec{u} = ||\vec{v}|| \times ||\vec{u}|| \times \cos(\vec{v}, \vec{u}) = ||\vec{u} \times \vec{v}|| \times \cos(\vec{u}, \vec{v}) = \vec{u} \cdot \vec{v}$.

Un sympathique cas particulier: soient \vec{u} et \vec{v} deux vecteurs colinéaires.

- Si \vec{u} et \vec{v} sont colinéaires dans le même sens, alors $\cos(\vec{u}, \vec{v}) = 1$ et donc $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}||$.
- Si \vec{u} et \vec{v} sont colinéaires de sens contraire, alors $\cos(\vec{u}, \vec{v}) = -1$ et donc $\vec{u} \cdot \vec{v} = -\|\vec{u}\| \times \|\vec{v}\|$.

Exemple: Soit ABCD un carré de côté 2 cm.

Déterminer $\overrightarrow{AB} \cdot \overrightarrow{AC}$.

En utilisant le théorème de Pythagore, on démontre que $AC = \sqrt{8} = 2 \sqrt{2}$ On sait que les diagonales d'un carré sont les bissectrices des angles droits. On sait que $\widehat{BAD} = 90^{\circ}$ d'où $\widehat{BAC} = 45^{\circ}$.

Par suite
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(\widehat{BAC}) = 2 \times 2\sqrt{2} \times \frac{\sqrt{2}}{2} = 4$$
.

II. Orthogonalité.

a. Vecteurs orthogonaux.

Définition: On dit que deux vecteurs \vec{u} et \vec{v} sont orthogonaux si:

- soit $\vec{u} = \vec{0}$ ou $\vec{v} = \vec{0}$,
- soit les droites (OA) et (OB) sont perpendiculaires, avec O, A, B trois points du plan tel que $\vec{u} = \overrightarrow{OA}$ et $\vec{v} = \overrightarrow{OB}$ non nuls.
- b. Propriété.

Si \vec{u} et \vec{v} sont orthogonaux, alors $\cos(\vec{u}, \vec{v}) = 0$, alors $\vec{u} \cdot \vec{v} = 0$.

Étudions la réciproque.

Soit \vec{u} et \vec{v} deux vecteurs tels que $\vec{u} \cdot \vec{v} = 0$.

- 1) Si $\vec{u} = \vec{0}$ ou $\vec{v} = \vec{0}$, alors \vec{u} et \vec{v} sont orthogonaux.
- 2) Considérons $\vec{u} \neq \vec{o}$ et $\vec{v} \neq \vec{0}$, alors $||\vec{u}|| \neq 0$ et $||\vec{v}|| \neq 0$.

Il existe O, A, B distincts tels que $\vec{u} = \overrightarrow{OA}$ et $\vec{v} = \overrightarrow{OB}$.

Donc
$$\vec{u} \cdot \vec{v} = 0$$

 $\Leftrightarrow \overrightarrow{OA} \cdot \overrightarrow{OB} = 0$
 $\Leftrightarrow \cos(\widehat{AOB}) = 0$
 $\Leftrightarrow \widehat{AOB} = \pm \frac{\pi}{2}$

- ⇔ Les droites (OA) et (OB) sont perpendiculaires.
- \Leftrightarrow Les vecteurs \vec{u} et \vec{v} sont orthogonaux.

Propriété: Deux vecteurs \vec{u} et \vec{v} sont orthogonaux si et seulement si $\vec{u} \cdot \vec{v} = 0$.

- III. Avec les coordonnées.
 - a. Une autre expression du produit scalaire.

Dans un repère orthonormé (O, \vec{i} , \vec{j}), les vecteurs \vec{u} et \vec{v} ont pour coordonnées (x; y) et (x'; v')

On cherche à exprimer $\vec{u} \cdot \vec{v}$ en fonction de x, y, x', y'.

Soit A et B deux points tels que $\vec{u} = \overrightarrow{OA}$ et $\vec{v} = \overrightarrow{OB}$,

alors A a pour coordonnées (x, y), B a pour coordonnées (x', y').

Soit (r, θ) le couple de réel tels que $\overrightarrow{OA} = r$ et $(\vec{i}; \overrightarrow{OA}) = \theta$. On sait que $x = rcos(\theta)$ et $y = rsin(\theta)$.

Soit (r', θ') le couple de réel tels que OB = r' et $(\vec{i}; \overrightarrow{OB}) = \theta'$. On sait que $x' = r' \cos(\theta')$ et $y' = r' \sin(\theta')$.

On a de plus
$$(\overrightarrow{OA}, \overrightarrow{OB}) = \theta' - \theta(2\pi)$$
, $\|\overrightarrow{OA}\| = r$ $\|\overrightarrow{OB}\| = r'$

Donc
$$\vec{u} \cdot \vec{v} = \overrightarrow{OA} \cdot \overrightarrow{OB} = r \cdot r' \cdot \cos(\theta' - \theta)$$

= $rr'(\cos \theta' \cos \theta + \sin \theta' \sin \theta)$
= $r\cos \theta \cdot r' \cos \theta' + r\sin \theta \cdot r' \sin \theta'$
= $xx' + yy'$.

Propriété: Si deux vecteurs \vec{u} et \vec{v} ont pour coordonnées respectives (x; y) et (x'; y') dans un repère orthonormal, alors $\vec{u} \cdot \vec{v} = xx' + yy'$.

Exemple: Soit A(-2;-3), B(1;1), C(-3; -1) dans un repère orthonormé.

Le triangle ABC est-il rectangle en C?

Déterminons les coordonnées des vecteurs \overrightarrow{CA} et \overrightarrow{CB} puis testons la nullité de $\overrightarrow{CA} \cdot \overrightarrow{CB}$.

$$\overrightarrow{CA} \begin{pmatrix} -2+3 \\ -3+1 \end{pmatrix} \text{ d'où } \overrightarrow{CA} \begin{pmatrix} 1 \\ -2 \end{pmatrix}.$$

$$\overrightarrow{CB} \begin{pmatrix} 1+3 \\ 1+1 \end{pmatrix} \text{ d'où } \overrightarrow{CB} \begin{pmatrix} 4 \\ 2 \end{pmatrix}.$$

$$\overrightarrow{CA} \cdot \overrightarrow{CB} = 1 \times 4 + (-2) \times 2 = 0.$$

Par suite, les vecteurs \overline{CA} et \overline{CB} sont orthogonaux et donc les droites (CA) et (CB) sont perpendiculaires. Donc le triangle ABC est rectangle en C.

Soit \vec{u} un vecteur ayant pour coordonnées (x; y) dans un repère orthonormal. $\vec{u} \cdot \vec{u} = x^2 + y^2 = ||\vec{u}||^2$.

Définition:

Si \vec{u} est un vecteur du plan, $\vec{u} \cdot \vec{u} = ||\vec{u}||^2$.

Ce nombre est appelé carré scalaire de \vec{u} et est aussi noté \vec{u} ².

b. Propriétés du produit scalaire.

Propriétés:

Pour tous vecteurs \vec{u} , \vec{v} , \vec{w} et tout réel k,

- 1) $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$.
- 2) $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$
- 3) $(k\vec{u}).\vec{v} = k(\vec{u}\cdot\vec{v})$.

Preuve: Soit \vec{u} , \vec{v} , \vec{w} trois vecteurs de coordonnées respectives dans un repère orthonormal (x; y), (x'; y'), (x''; y'').

- 1) $\vec{u} \cdot \vec{v} = xx' + yy' = x'x + y'y = \vec{v} \cdot \vec{u}$.
- 2) Le vecteur $\vec{v} + \vec{w}$ a pour coordonnées (x' + x''; y' + y''). $\vec{u} \cdot (\vec{v} + \vec{w}) = x \times (x' + x'') + y \times (y' + y'')$ = xx' + xx'' + yy' + yy'' = xx' + yy' + xx'' + yy'' $= \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$.
- 3) Le vecteur $k \vec{u}$ a pour coordonnées (kx;ky). $(k \vec{u}) \cdot \vec{v} = kxx' + kyy' = k(xx' + yy') = k(\vec{u} \cdot \vec{v})$.
- c. Égalités remarquables.

Propriété: si \vec{u} et \vec{v} sont des vecteurs du plan, on a les égalités suivantes:

- 1) $(\vec{u} + \vec{v})^2 = \vec{u}^2 + 2\vec{u} \cdot \vec{v} + \vec{v}^2$ donc $||\vec{u} + \vec{v}||^2 = ||\vec{u}||^2 + 2\vec{u} \cdot \vec{v} + ||\vec{v}||^2$.
- 2) $(\vec{u} \vec{v})^2 = \vec{u}^2 2\vec{u} \cdot \vec{v} + \vec{v}^2$ donc $||\vec{u} \vec{v}||^2 = ||\vec{u}||^2 2\vec{u} \cdot \vec{v} + ||\vec{v}||^2$.
- 3) $(\vec{u} + \vec{v}) \cdot (\vec{u} \vec{v}) = \vec{u}^2 \vec{v}^2 \text{ donc } (\vec{u} + \vec{v}) \cdot (\vec{u} \vec{v}) = ||\vec{u}||^2 ||\vec{v}||^2$.

Conséquence: les identités fournissent des expressions du produit scalaire en fonction des normes.

$$\vec{u} \cdot \vec{v} = \frac{1}{2} (||\vec{u} + \vec{v}||^2 - ||\vec{u}||^2 - ||\vec{v}||^2)$$

$$\vec{u} \cdot \vec{v} = \frac{1}{2} (||\vec{u}||^2 + ||\vec{v}||^2 - ||\vec{u} - \vec{v}||^2)$$

On peut donc calculer un produit scalaire uniquement à partir de distances:

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2} (AB^2 + AC^2 - BC^2)$$
.

Exemple: Soit un triangle ABC tel que AB = 5, AC = 4 et BC = 7.

- a. Déterminer $\overrightarrow{AB} \cdot \overrightarrow{AC}$.
- b. Déterminer une valeur approchée au degré près de l'angle \widehat{BAC} .
- a. En utilisant la formule ci-dessous,

$$\overline{AB} \cdot \overline{AC} = \frac{1}{2} (AB^2 + AC^2 - BC^2) = \frac{1}{2} (5^2 + 4^2 - 7^2) = -4.$$

b. Or on sait que $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(\widehat{BAC}) = 5 \times 4 \times \cos(\widehat{BAC})$.

D'où $5\times 4\times \cos{(\widehat{BAC})} = -4$. Par suite, $\cos{(\widehat{BAC})} = -\frac{1}{5}$. Donc $\widehat{BAC} \approx 102^{\circ}$.

Application:

Théorème de la médiane : Soient A et B deux points du plan et I le milieu de [AB]. Pour tout point M du plan, $MA^2 + MB^2 = 2MI^2 + \frac{AB^2}{2}$.

Démonstration:

$$MA^2 + MB^2 = (\overrightarrow{MI} + \overrightarrow{IA})^2 + (\overrightarrow{MI} + \overrightarrow{IB})^2$$

Or I est le milieu de [AB], donc $\vec{IB} = -\vec{IA} = \frac{1}{2} \vec{AB}$.

Donc
$$MA^2 + MB^2 = \left(\overline{MI} - \frac{1}{2}\overline{AB}\right)^2 + \left(\overline{MI} + \frac{1}{2}\overline{AB}\right) = 2MI^2 + \frac{AB^2}{2}$$
.

Exemple : Soit un triangle ABC tel que AB=5, AC=8 et BC= 7. Soit I le milieu de [AB]. Déterminer la longueur CI.

IV. Produit scalaire et projection orthogonale.

Théorème: Si A, B et sont trois points du plan (A distinct de B et de C) et si H est le projeté orthogonal de C sur (AB), alors $\overline{AB} \cdot \overline{AC} = \overline{AB} \cdot \overline{AH}$.

On distingue deux cas:

1)

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AH} = AB \times AH \text{ si H} \in (AB).$$

2)

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AH} = -AB \times AH \text{ si } H \not\in AB).$$

Il existe une manière similaire de calculer $\vec{u} \cdot \vec{v}$.

Théorème-définition: soit \vec{u} un vecteur unitaire d'un axe (A, \vec{u}) et \vec{v} un vecteur.

- Il existe un unique vecteur $\overrightarrow{v'}$ colinéaire à \overrightarrow{u} tel que $\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{u} \cdot \overrightarrow{v'}$. On l'appelle projeté orthogonal de \overrightarrow{v} sur (A, \overrightarrow{u}) .
- \vec{v}' est le projeté orthogonal de \vec{v} sur (A, \vec{u}) si et seulement si $\vec{v}' = (\vec{u} \cdot \vec{v})\vec{u}$.
- Si $\vec{v} = \overline{MN}$, alors $\vec{v'} = \overline{M'N'}$ où M' et N' sont les projetés orthogonaux de M et N sur (A, \vec{u}) .

Preuve:

• Tout vecteur \vec{v} colinéaire à \vec{u} s'écrit $\vec{v} = k \vec{u}$ avec $k \in \mathbb{R}$ Alors $\vec{u} \cdot \vec{v} = k ||\vec{u}||^2 = k$ puisque \vec{u} est unitaire.

Donc $\vec{u} \cdot \vec{v'} = \vec{u} \cdot \vec{v}$ si et seulement si $k = \vec{u} \cdot \vec{v}$, ce qui prouve l'existence et l'unicité de $\vec{v'}$

• Si $\vec{v} = \overline{MN}$ et si M' et N' sont respectivement les projetés orthogonaux de M et N sur l'axe (A, \vec{u}) , alors $\overline{M'N'}$ est un vecteur colinéaire à \vec{u} .

De plus, $\overrightarrow{M'N'} \cdot \overrightarrow{u} = (\overrightarrow{M'M} + \overrightarrow{MN} + \overrightarrow{NN'}) \cdot \overrightarrow{u} = \overrightarrow{M'M} \cdot \overrightarrow{u} + \overrightarrow{MN} \cdot \overrightarrow{u} + \overrightarrow{NN'} \cdot \overrightarrow{u}$.

Or les vecteurs $\overline{MM'}$ et \vec{u} sont orthogonaux, d'où $\overline{MM'} \cdot \vec{u} = 0$.

Les vecteurs $\overline{NN'}$ et \vec{u} sont orthogonaux, d'où $\overline{NN'} \cdot \vec{u} = 0$.

Par suite, on a $\overline{M'N'} \cdot \vec{u} = \overline{MN} \cdot \vec{u}$.

Ce qui prouve que le vecteur $\overline{M'N'}$ est le projeté orthogonal de $\overline{MN} = \vec{v}$ sur (A, \vec{u}).

Application: Soit ABC un triangle équilatéral de côté 2.

Soit H le milieu de [BC].

Déterminer $\overrightarrow{BA} \cdot \overrightarrow{BC}$ et $\overrightarrow{AB} \cdot \overrightarrow{AH}$.

Puisque ABC est un triangle équilatéral, la médiane et la hauteur issue de A sont confondus. Par suite, H est le projeté orthogonal de A sur (BC).

$$\overrightarrow{BA} \cdot \overrightarrow{BC} = \overrightarrow{BH} \cdot \overrightarrow{BC} = BH \times BC = 1 \times 2 = 2$$
.

On sait que les droites (BH) et (AH) sont orthogonales, donc H est le projeté orthogonal de B sur la droite (AH). Par suite, $\overline{AB} \cdot \overline{AH} = \overline{AH} \cdot \overline{AH} = AH^2$.

On détermine AH en utilisant le théorème de Pythagore dans le triangle ABH.

On a
$$AH^2 = AB^2 - BH^2 = 2^2 - 1^2 = 3$$
.

Donc, $\overrightarrow{AB} \cdot \overrightarrow{AH} = 3$.