

University of Tehran Electrical and Computer Engineering Department Neural Networks and Deep Learning Extra Homework

Name	Danial Saeedi
Student No	810198571
Date	Wednesday, December 15, 2021

1. Solving CartPole Problem using Policy Gradient Method

Part 1

Import Dependencies

First of all, we have to import dependencies:

```
In []:
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch
import gym
from torch.autograd import Variable
import random
```

Define Parameters

Through trial and error, the chosen learning rate and gamma parameters are 0.01 and 0.99 respectively.

```
In [ ]: LR = 0.01
GAMMA = 0.99
```

Creating an environment in OpenAl Gym

```
In [ ]: env = gym.make('CartPole-v0').unwrapped
history = []
```

Setting up the policy network

The input and output size of policy network is 4 and 2 respectively because the dimension of observation space is 4 and there are 2 possible actions (either going left or right) in this problem. The chosen optimizer is Adam.

```
In []:
    class Network(nn.Module):
        def __init__(self):
            super(Network, self).__init__()
            # define forward pass with one hidden layer with ReLU activation and sofmax after output layer
            self.ll = nn.Linear(4, 150)
            self.l2 = nn.Linear(150, 2)
        def forward(self, x):
            x = F.relu(self.ll(x))
            x = F.relu(self.ll(x))
            x = F.softmax(self.l2(x))
            return x

In []: model = Network()
        use_cuda = torch.cuda.is_available()
        if use_cuda:
            model.cuda()
        FloatTensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor
        LongTensor = torch.outa.LongTensor if use_cuda else torch.LongTensor
        optim = torch.optim.Adam(model.parameters(), lr=LR)
```

Calculate Discount Rewards

Here, we calculate discount reward based on this formula:

$$R_t = \sum_{k=t}^T \gamma^{(k-t)} r_k(s_k, a_k)$$

```
In [ ]: def calculate_discount_rewards(r):
    discounted_r = torch.zeros(r.size())
    running_add = 0
    for t in reversed(range(len(r))):
        running_add = running_add * GAMMA + r[t]
        discounted_r[t] = running_add
```

Training

The summary of section:

- Calculate the probability of the action taken at each time step.
- Multiply the probability by the discounted return (the sum of rewards).
- Use this probability-weighted return to backpropagate and minimize the loss.

```
In [ ]: for e in range(10000):
           complete = run_episode(model, e, env)
           if complete:
        [Episode
                    0] reward: 12.0
        [Episode
                    1] reward: 14.0
                   2] reward: 31.0
        [Episode
        [Episode
                   3] reward: 42.0
        [Episode
                   4] reward: 33.0
        [Episode
                   5] reward: 25.0
        [Episode
                   6] reward: 27.0
        [Episode
                   71 reward: 25.0
                   8] reward: 33.0
        [Episode
        [Episode
                    9] reward: 36.0
        [Episode
                   10] reward: 75.0
        [Episode
                   11] reward: 50.0
        [Episode
                   12] reward: 39.0
        [Episode
                   13] reward: 73.0
        [Episode
                   14] reward: 31.0
        [Episode
                   15] reward: 28.0
        [Episode
                   16] reward: 53.0
        [Episode
                   17] reward: 83.0
                   18] reward: 100.0
        [Episode
        [Episode
                  19] reward: 41.0
        [Episode
                  20] reward: 103.0
        [Episode
                   21] reward: 169.0
        [Episode
                  22] reward: 159.0
```

Run Episode

```
In [ ]: def run_episode(net, e, env):
             state = env.reset()
             reward_sum = 0
             xs = FloatTensor([])
ys = FloatTensor([])
             rewards = FloatTensor([])
             steps = 0
             while True:
                 x = FloatTensor([state])
                 xs = torch.cat([xs, x])
                 action_prob = net(Variable(x))
                 # select an action depends on probability
                 action = 0 if random.random() < action_prob.data[0][0] else 1</pre>
                 y = FloatTensor([[1, 0]] if action == 0 else [[0, 1]])
                 ys = torch.cat([ys, y])
                                         = env.step(action)
                 state, reward, done,
                 rewards = torch.cat([rewards, FloatTensor([[reward]])])
                 reward_sum += reward
                 steps - 1
                 if done or steps >= 500:
                      adv = calculate_discount_rewards(rewards)
                      adv = (adv - adv.mean())/(adv.std() + 1e-7)
                      loss = learn(xs, ys, adv)
                      \verb|history.append(reward_sum)|
                      print("[Episode {:>5}] reward: {}".format(e, reward_sum))
if sum(history[-5:])/5 > 490:
                          return True
                          return False
```

Learning Function

```
In []: def learn(x, y, adv):
    # calculate probabilities of taking each action
    action_pred = model(Variable(x))
    y = Variable(y, requires_grad=True)
    adv = Variable(adv).cuda()
    log_lik = -y * torch.log(action_pred)
    log_lik_adv = log_lik * adv
    loss = torch.sum(log_lik_adv, 1).mean()

    optim.zero_grad()
    loss.backward()
    optim.step()

return loss.data
```

Plotting average reward per episode

Figure 1 Average reward per episode

Part 2

These type of problem in RL require techniques such as mathematical programming and heuristic reduction to keep them manageable. A linear program with tons of actions might be solvable within seconds. Lots of real-life problems are convex or even (approximately) linear. This is a very powerful property that often makes problem solving considerably easier.

But linear programming can't solve every problem. The solution proposed here is based on this paper. The paper proposed a new policy architecture called Wolpertinger. This architecture avoids the heavy cost of evaluating all actions while **retaining generalization over actions**. The solution is based on actor-critic framework. We use multi-layer neural networks as function approximators for both our actor and critic functions. Training this policy is based on <u>Deep</u> <u>Deterministic Policy Gradient</u>.

Algorithm 1 Wolpertinger Policy

State s previously received from environment.

 $\hat{\mathbf{a}} = f_{\theta^{\pi}}(\mathbf{s})$ {Receive proto-action from actor.}

 $A_k = g_k(\hat{\mathbf{a}})$ {Retrieve k approximately closest actions.}

 $\mathbf{a} = \arg \max_{\mathbf{a}_j \in \mathcal{A}_k} Q_{\theta^Q}(\mathbf{s}, \mathbf{a}_j)$

Apply a to environment; receive r, s'.

Figure 2 Wolpertinger Policy Algorithm

1) Action Generation

This architecture reasons over actions within a **continuous space** \mathbb{R}^n , and then maps this output to the discrete action Discrete Action Spaces set \mathcal{A} :

$$f_{\theta^{\pi}}: \mathcal{S} \to \mathbb{R}^n$$

$$f_{\theta^{\pi}}(\mathbf{s}) = \hat{\mathbf{a}}.$$

f θ is a function parametrized by θ^{π} , mapping from the state representation space \mathbb{R}^m to the action representation space \mathbb{R}^n . We need to be able to map from a to an element in A

$$g:\mathbb{R}^n\to\mathcal{A}$$

$$g_k(\hat{\mathbf{a}}) = \operatorname*{arg\,min}_{\mathbf{a} \in A} |\mathbf{a} - \hat{\mathbf{a}}|_2.$$

gk is a k-nearest-neighbor mapping from a continuous space to a discrete set. It returns the k actions in A that are closest to a by D distance. This is called proto-action. In the bottom half of Figure 2 we can see proto action.

2) Action Refinement

Certain actions may be near each other in the action embedding space, but in certain states they must be distinguished as one has a particularly low long-term value relative to its neighbors.

The model refines the choice of action by selecting the highest-scoring action according to Q-value:

$$\pi_{ heta}(\mathbf{s}) = rg \max_{a \in g_k \circ f_{ heta^{\pi}}(\mathbf{s})} Q_{ heta^{Q}}(\mathbf{s}, \mathbf{a})$$

The size of the generated action set, k, is task specific, and allows for an explicit trade-off between policy quality and speed.

Figure 3 Wolpertinger Architecture