Matematica Discreta

Ivan A. Arena

Marzo 2021

Indice

1	Prefazione	2
2	Grafi non-orientati 2.1 Regolarità e completezza	2
3	Sottografi e sottografi indotti	2
4	Cammini e cicli 4.1 Lunghezza e parità	2
5	Percorsi	3
6	Componenti connesse di un grafo 6.1 Grafi connessi	3

1 Prefazione

Appunti della parte di *matematica discreta* del corso di *algebra lineare e matematica* discreta dellà Facoltà di Informatica dell'Università degli Studi di Padova.

2 Grafi non-orientati

Un grafo (non-orientato) G(V, E) è costituito da (1) un insieme finito $V = v_1, v_2, ..., v_n$ di **vertici** (o **nodi**) e da (2) un insieme finito $E = e_1, e_2, ..., e_n$ di **archi**, con il cui termine si indica una coppia non-ordinata di vertici/nodi.

Teorema 1: $\sum_{v \in V} d(v) = 2|E|$;

Corollario: La somma dei vertici di grado dispari è un numero pari, quindi, anche il numero di tali vertici è pari.

2.1 Regolarità e completezza

Un grafo si dice **K-regolare** se ogni vertice ha grado K (es.: 2-regolare (vertici di grado 2), 3-regolare (o cubico, vertici di grado 3)). Un grafo si dice **completo** se ogni coppia di vertici è adiacente e si indica con K_n .

3 Sottografi e sottografi indotti

Un grafo $G^I(V^I, E^I)$ è **sottografo** del grafo G(V, E) se $V^I \subseteq V$ e $E^I \subseteq E$. Un sottografo $G^I(V^I, E^I)$ si dice **indotto** dal grafo G(V, E) se contiene tutti gli archi di E che hanno estremi in V^I .

N.B.: Un grafo può essere sottografo di un altro ma non essere indotto.

4 Cammini e cicli

Un cammino è una sequenza di vertici distinti in cui ogni coppia di vertici consecutivi è collegata da un arco; il primo e l'ultimo vertice sono detti **estremi** del cammino. Un **ciclo** (o **circuito**) è una cammino con estremi coincidenti.

4.1 Lunghezza e parità

La lunghezza di un cammino (o di un ciclo) è il numero di archi del cammino (o del ciclo). Un cammino (o un ciclo) si dice **pari** se la sua lunghezza è pari, dispari se la sua lunghezza è dispari.

N.B.: Un cammino (o un ciclo) può avere lunghezza zero.

5 Percorsi

Un **percorso** è una sequenza di vertici, non necessariamente distinti, in cui ogni coppia di vertici consecutivi è collegata da un arco. Un percorso si dice **chiuso** se i suoi estremi coincidono. La **lunghezza** di un percorso è il numero di archi attraversati.

Teorema 2: Dato un percorso con estremi v_1 e v_n , con $v_1 \neq v_n$ (non-chiuso) esiste un cammino con estremi v_1 e v_n .

Teorema 3: Un percorso chiuso di lunghezza dispari contiene almeno un ciclo di lunghezza dispari.

6 Componenti connesse di un grafo

Siano $u,v \in V$ (vertici del grafo), si dice che u è **connesso** a v ($u \sim v$) se esiste un cammino con estremi u e v.

 $\mathbf{N.B.:}$ L'essere connesso a è una relazione d'equivalenza; gode, dunque, delle proprietà riflessiva, simmetrica e transitiva.

6.1 Grafi connessi

Le classi di equivalenza del tipo $[u] = \{v \in V : u \sim v\}$ (insieme dei vertici $v \in V$ connessi ad u) si chiamano **componenti connesse** del grafo. Un grafo si dice **connesso** se ha un'unica componente connessa.