Eks 2: Grafitt og diamant

- · Hua er mest stabilt ved normale betingelser?
- · Hvor stort trykk gjor grafitt og diamant like stabile?

Losn 2: • Tabellverdier gir $\Delta G_g^o = 0$ for grafitt og $4G_a^o = 2.9 \text{ kJ/mol}$ for diamant. Dus, grafitt er "standard tilstand" for karbon, og mer stabilt enn diamant.

· Fra s. 67: V = (∂G/∂p)_T ⇒ dG = V·dp

 \Rightarrow $G(p) = G(p_0) + V \cdot (p - p_0)$; $p_0 = latm$; V = konst.

Vi trenger molare volum for grafitt og diamant.

Massetetheter: g = 2.3 g/cm3; g = 3.5 g/cm3

Molar masse: mg = mg = mc = 12g/mol

=> Molare volum: $V_g = m_g/g_g = 5.2 \text{ cm}^3/\text{mol}$ $V_d = m_d/g_d = 3.4 \text{ cm}^3/\text{mol}$

Like stabile nar Gg (p) = Gg (p):

P = Po + {Ga(po) - Gg(po)}/{Vg-Va}

= Po + {2.9 kJ/mol}/ {1.8.10 m3/mol}

= $p_0 + 1.6 \cdot 10^9 \frac{3}{10^3} = 1.6 \cdot 10^4 \text{ atm}$

- (publiserle!),
 Forste syntetiske diamanter ble produsert av Geneval Electric

 a desember 1954, med trykk opp mot 10⁵ atm.

 Aller forste av ASEA i Stockholm å februar 1953,

 med trykk 8.4·10⁴ atm. (Publisert etter GE.)
- · Diamanter er stabile (og varer evig): Høy evergibarnere hindrer spontan omvandling til grafitt.

5.3 Maksimalt arbeid: Eksergi [LHL 17.7]

Hva er <u>maksimalt</u> nyttig <u>arbeid</u>, W_{max}, et system kan utfore i omgivelser med gitt trykk po og temperatur To?

NB: Her anses arbeidet po AV ved (en eventuell) utvidelse mot det omgivende trykket po ikke som "nyttig arbeid". Dvs:

Q = AU + PO AV + Wmax (1.low for systemet)

Wmax oppnås med <u>reversibel</u> prosess mot likevekt. Da er

 $\Delta S_{tot} = 0$, dus $\Delta S + \Delta S_o = 0$ systemet omgivelsene

Som s. 68: $\Delta S = -Q/T_0$, da omgivelsene er i likevekt

 $\Rightarrow \Delta S = -\Delta S_o = Q/T_o \Rightarrow Q = T_o \Delta S$ Dermed:

 $W_{max} = T_0 \Delta S - \Delta U - P_0 \Delta V$ $= -\Delta \left(U + P_0 V - T_0 S \right)$

= - AG

Med andre ord: Wmax = Gstart - Gslutt

Eks: Reversibel trykkutjevning mellom to ideelle gasser	
startsituasjon likevekt	
P2>P1 P1 P0 P0 T0 Wmax = ? T0 V0 T0 V0 T0 T0 T0	
Losn: Systemet tilsvarer gass 1 og gass 2 samlet. $2V_0 = V_2 + V_1 \Rightarrow \Delta V = 0$ $U = U(T) \Rightarrow \Delta U = 0$	
=> Wmax = - DG = To DS = To (DS2 + DS1)	
Fra for: $dS = G_v dT/T + (\partial p/\partial T)_v dV = nR \frac{dV}{V} (dT = V)$	0)
$\Rightarrow W_{\text{max}} = T_0 R \left(n_2 \ln \frac{V_2}{V_0} + n_1 \ln \frac{V_1}{V_0} \right)$	
$n_2 RT_0 = P_2 V_0 = P_0 V_2$; $V_2/V_0 = P_2/P_0$	
n, RTo = PIVO = POVI; VI/VO = PI/PO	
$\Rightarrow (p_2 + p_1) \vee_0 = p_0 (\vee_2 + \vee_1) = 2p_0 \vee_0 = p_0 = (p_2 + p_1)/2$	
$\Rightarrow W_{\text{max}} = P_2 V_0 \ln \frac{2P_2}{P_2 + P_1} + P_1 V_0 \ln \frac{2P_1}{P_2 + P_1}$	
Gass 2 motter varme $Q_2 = T_0 \Delta S_2$ fra omgivelsene og utfører positivt arbeid W_2 .	
Gass 1 augir varme Q, = To AS, til omgivelsene	
og utfører negativt arbeid W_1 . Netto varme mottatt fra omgivelsene omsettes i nythig arbeid, $W_{\text{max}} = Q_2 + Q_1 = W_2 + W_1$.	

Vare 4 potensialer (energifunksjoner) er:

U; H=U+pV; F=U-TS; G=U+pV-TS

De naturlige variable til disse potensialene framtrer ved å se på små endninger:

QU = TdS - pdV (1. Lov + 2. Lov)

QH = TdS + Vdp

dF = -SdT - pdV

2G = -SOT + Vap

→ Naturlige variable er:

U(S,V); H(S,p); F(T,V); G(T,p)

Generelt: df = udx + vdy

potensial naturlige variable

Da er u = (0f/0x), og v = (0f/0y), og dermed

 $\left(\frac{\partial u}{\partial y}\right)_{x} = \left(\frac{\partial v}{\partial x}\right)_{y}$ som er Maxwellrelasjonene

Eles: $T = \left(\frac{\partial U}{\partial S}\right)_{V}$ og $P = -\left(\frac{\partial U}{\partial V}\right)_{S}$

 $\Rightarrow \left(\frac{\partial V}{\partial V}\right)_{c} = -\left(\frac{\partial P}{\partial S}\right)_{V}$

Legendretransformasjon og variabelskifte

Med U(5,V) og dU = Td5 - pdV som utgangspunkt kan H, F og G begrunnes med et ønske om variabelskifte, som oppnås med en Legendretransformasjon. Generelt:

Har f(x,y) med df = udx + vdy; $u = \frac{\partial f}{\partial x}$, $v = \frac{\partial f}{\partial y}$ Onsker g(u,y), som oppnås med

ny funksjon oppr. Iny variabel funksjon

Dermed:

 $dg = df - u dx - x du = \sigma dy - x du$ $dvs g = g(u, y) \text{ med } x = -\partial g/\partial u, \quad \sigma = \partial g/\partial y$

Entalpi: Ønsker H(S, p). Oppnås med $H = U - (-p) \cdot V$. dH = dU + p dV + V dp = T dS + V dpH = H(S, p) med $T = (\partial H/\partial S)_p$, $V = (\partial H/\partial p)_s$

Helmholtz: Ønsker F(T,V). Oppnås med $F = U - T \cdot S$. funksjon dF = dU - TdS - SdT = -pdV - SdT $F = F(T,V) \text{ med } p = -(\partial F/\partial V)_T, S = -(\partial F/\partial T)_V$

Gibbs: Ønsker G(p,T). Oppnås med $G = F - (-p) \cdot V$ funksjon dG = dF + pdV + Vdp = -SdT + VdpG = G(p,T) med $V = (\partial G/\partial p)_T$, $S = -(\partial G/\partial T)_p$