Audio Focused Multimodal Representation Learning

Guided by

Prof. Preethi Jyothi

Prof. Ganesh Ramakrishnan

Presented by

Shubham Nemani 203050011

MTech -1 CSE

Content

- Motivation
- Basic Architecture
- Knowledge distillation
- Listen to Look
- Contrastive learning
- Curriculum Learning
- Compositional Contrastive Learning
- Conclusion

Motivation

Importance of modalities

Self-supervised Multimodal Representation Learning Architecture

Knowledge Distillation

Cross-modal knowledge distillation deals with transferring knowledge -

from a model pre-trained with superior modality (**Teacher**)

to another model training with weak modality (Student)

Listen to Look Action Recognition by Previewing Audio

Kristen Grauman, Ruohan Gao (CVPR 2020)

Long Untrimmed Video

Redundancy in Video/Clip

- 1) Clip-level Within each short clip, temporally close frames are visually similar,
- 2) Video-level across all the clips in V, often only a few clips contain key moments.

Listen to Look Results

Method	Backbone	ActivityNet	UCF-101
ListenToLook	ResNet-152	35.5	73.5
ListenToLook	R(2+1)D-152	47.0	82.5

ActivityNet - 200 Classes

MiniSports1M - 437 Classes

Contrastive Learning

- End to End Contrastive Learning
- Memory Bank Approach
- Unimodal NCE
- Multimodal NCE

Contrastive Learning

Contrastive learning aims to group similar samples closer and diverse samples far from each other.

End to End Contrastive Learning -

Audio

Encoder

contrastive loss

Problems -Less number of negatives (batch size -1). Computationally expensive.

K-1 negatives

Positive

Video

Encoder

Memory Bank Approach

Unimodal Noise Contrastive Estimation Loss

It can also be seen as Instance Discrimination Loss, each instance being a class.

Cross Modal Noise Contrastive Estimation Loss

$$L_{visual}^{cross} = -\log \frac{\exp\left(sim\left(v_i, a_i\right)/\tau\right)}{\sum_{j=1}^{K} \exp\left(sim\left(v_i, a_j\right)/\tau\right)}$$
 Audio Encoder is trained
$$L_{audio}^{cross} = -\log \frac{\exp\left(sim\left(a_i, v_i\right)/\tau\right)}{\sum_{j=1}^{K} \exp\left(sim\left(a_i, v_i\right)/\tau\right)}$$

NCE loss forces audio feature vector \mathbf{a}_i and video feature vector \mathbf{v}_i of the i th video to come closer to each other

Enhancing Audio-Visual
Association with
Self-Supervised
Curriculum Learning

Jingran Zhang , Heng Tao Shen (AAAI-21)

2 Stage Recursive Process

Results of Curriculum Learning

Action Recognition

	Clip Size	UCF101	HMDB51	
SSCL-stage-I	16x112x112	81.4	47.7	
SSCL-stage-II	16x112x112	82.6	49.9	
SSCL-stage-II	16x224x224	84.3	54.1	
SSCL-stage-II	32x224x224	87.1	57.6	

Sound Recognition

	Backbone	ESC-50	DCASE
SSCL-stage I	2D-ResNet10	85.8	91.0
SSCL-stage II	2D-ResNet10	88.3	93.0

Distilling Audio-Visual
Knowledge by
Compositional
Contrastive Learning

Yanbei Chen, Yongqin Xian (CVPR-21)

Composition of audio and video

Why Composition?

- 1. the student and teacher embeddings may be semantically unaligned
- 2. an image frame may capture only partial visual cues not directly related to the video event,
- 3. audio of an action video may be irrelevant music or speech.

Results of Compositional Contrastive Learning

Method		UCF51		A	ctivityN	et
	A	I	AI	A	I	AI
baseline	57.5	57.5	57.5	32.6	32.6	32.6
FitNet	48.4	67.4	62.4	21.3	45.8	34.6
PKT	53.2	58.2	62.0	33.4	35.4	35.1
COR	57.7	65.5	66.3	31.4	43.1	41.7
RKD	53.0	55.4	58.2	-	34.3	-
CRD	60.3	61.4	63.2	36.4	37.3	36.6
IFD	56.3	54.2	64.2	34.6	33.8	35.4
CMC	59.2	60.4	63.1	34.4	23.7	33.9
CCL	64.9	69.1	70.0	36.5	46.3	47.3

Conclusion

- We have discussed the importance of multimodal learning.
- We have also focused on efficiency for learning video representations, that can be used in wide variety of downstream tasks.
- How cross modal knowledge distillation helps in learning better features.
- We have explored both supervised and self supervised approaches for multimodal learning.

References (1/2)

• R. Gao, T. Oh, K. Grauman, L. Torresani. "Listen to Look: Action Recognition by Previewing Audio". In CVPR, 2020.

• Yanbei Chen , Yongqin Xian , A. Sophia Koepke , Ying Shan, Zeynep Akata. "Distilling Audio-Visual Knowledge by Compositional Contrastive Learning". In CVPR, 2021.

• Triantafyllos Afouras, Andrew Owens, Joon Son Chung, Andrew Zisserman. "Self-Supervised Learning of Audio-Visual Objects from Video". In CVPR, 2021

• Pedro Morgado, Nuno Vasconcelos, Ishan Misra. Audio-Visual Instance Discrimination with Cross-Modal Agreement. In CVPR-2021.

Reference (2/2)

• Jingran Zhang, Xing Xu, Fumin Shen, Huimin Lu, Xin Liu, Heng Tao Shen. Enhancing Audio-Visual Association with Self-Supervised Curriculum Learning. In AAAI-21.

• Ruohan Gao, Kristen Grauman. VISUALVOICE: Audio-Visual Speech Separation with Cross-Modal Consistency. In CVPR-2021.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, Ross Girshick.
 Momentum Contrast for Unsupervised Visual Representation
 Learning. In CVPR-2020.