

Vergleich eines Usecases mit Serverless Technologie gegenüber Spring Boot Technologie am Beispiel von Instant Payments

Silas Hoffmann

16 September 2021

Inhalt

- Ist-Analyse
- Zielsetzung
- Vorgehensmodell
- Implementierung des Prototypen
- Optimierungspotenzial

Ist-Analyse

- Verwendet Application Server
- Aufteilung der Last durch Loadbalancer
- Request-Queue bei Überlauf befüllt
- Dynamische Prozessanzahl
- Monolith: Probleme
 - Skalierte Entwicklung
 - Unabhängiges Deployment
 - Skalierung innerhalb einer Produktivumgebung

Zielsetzung

- Cloudfähigkeit von Spring Boot und Serverless Tech. Vergleichen
- Container Startupzeiten / Verarbeitungsgeschwindigkeiten evaluieren
 - Startupzeiten müssen absolut minimal sein um fachliche Timeout bei Instant-Payments zu vermeiden (End-to-End max. 7 Sekunden)

Vorgehensmodell

Quelle: ISO/IEC 25010

Implementierung des Prototypen

Implementierung des Prototypen

Queue / Consumer Overview

Ergebnisanalyse / Fazit

- Node.js: 6,9 Sek.
- Spring: 36,6 Sek.

Stufen ab denen Skalierer neue Instanzen startet

- Stufe 1: 15 Msg. -> 5 Container
- Stufe 2: 30 Msg. -> 10 Container
- Stufe 3: 100 Msg. -> 30 Container

Linearer Anstieg:

Startzeit

- Node.js: 194 Millis pro Container
- Spring: 1611 Millis pro Container

Ergebnisanalyse / Fazit

- Node.js mit besserem Skalierungsverhalten
- Spring Boot mit besserer Verarbeitungsgeschwindigkeit
- Unterschied beim Nachrichteneingang vernachlässigbar

• Spring: 29 Millis.

Quelle: Hoffmann – Bsc. Thesis

Node.js: 38,4 Sek.

• Spring: 61,8 Sek.

Optimierungspotenzial

Docker	Spring			
Ressourcenoptimierung	Spring-Bean - Optimierung der Initialisierungsphase			
Ausführungsreihenfolge				
Design For Failure (chaos monkey etc.)				

Vergleich eines Usecases mit Serverless Technologie gegenüber Spring Boot Technologie am Beispiel von Instant Payments

Silas Hoffmann

16 September 2021

JVM (JIT Compiler)

https://rieckpil.de/whatis-graalvm/

Implementierung des Prototypen

Skalierung - Regelsatz

$\underline{\text{QL3}}$	UP	UP UP		OK		
QB2 < MC	abs(CB0-CB3)	abs(CB1-CB3)	abs(CB2-CB3)	_		
$\mathrm{QL}2$	UP	UP	OK	DOWN		
$QB1 < \overline{MC} \le QB2$	abs(CB0-CB2)	abs(CB1-CB2)	_	abs(CB2-CB3)		
QL1	UP	OK	DOWN	DOWN		
$QB0 < \overline{MC} \le QB1$	abs(CB0-CB1)	_	abs(CB1-CB2)	abs(CB1-CB3)		
QL0	OK	DOWN	DOWN	DOWN		
$MC \leq QB0$	_	abs(CB0-CB1)	abs(CB0-CB2)	abs(CB0-CB3)		
	$\underline{\text{CL0}}$	$\underline{\text{CL1}}$	$\underline{\text{CL2}}$	CL3		
	CB0 == CC	$CB0 < CC \le CB1$	$CB1 < CC \le CB2$	$CB2 < CC \le CB3$		

CB0=1 CB2=10 QB0=15 QB2=100 CC: Container Count CB1=5 CB3=30 QB1=30 MC: Message Count

Prometheus / Altermanager

Quelle: Brazil - Prometheus: Up & Running (S. 291)

Tier - Modell

Quelle: https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch01.html

Docker - Aufbau

Quelle: J. Turnbull – The Docker Book (S. 72)

Prometheus - Architecture

Docker – Types of mounts

Quelle: Docker Documentation - Kapitel /storage/volumes/

Spring Bean - Lifecycle

Agile Testing Quadrants

Business Facing Exploratory Testing Functional Tests Scenarios Examples Usability Testing Story Tests UAT (User Acceptance Testing) Prototypes Alpha / Beta Simulations Supporting Performance and Load Testing Unit Tests Security Testing Component Tests "ility" Testing

Technology Facing

Quelle: Hoffmann – Bsc. Thesis

Critique

Implementierung des Prototypen

Activemq - Dashboard

Input UI

Grafana - PromQL

× 5	spring-queue-siz	ze (Prometheus)	?	C	0	⊕ ∷
М	letrics browser >	<pre>org_apache_activemq_Broker_QueueSize{brokerName="localhost", destinationName="springq destinationType="Queue", instance="activemq:8080", job="services"}</pre>	ueue	",		
Le	egend ①	Spring Queue - unacknow Min step ① Resolution 1/1 ~				
Fo	ormat	Time series Instant Prometheus Exemplars				

Prometheus - Datasource

Input - UML

Supplier - UML

Consumer - UML

Scaler Proxy - UML

