

Test Report

FCC ID: ZXW-WF68

Date of issue: Jun. 16, 2017

Report Number: MTi170706E053

Sample Description: Mobile Computer

Model(s): WF68, WF68S, WF88

Applicant: Widefly Ltd.

Address: Unit 205, 2/F, Lakeside 2, No.10 Science Park West Avenue,

Hong Kong Science Park, Shatin, N.T., HONG KONG.

Date of Test: May. 26, 2017 to Jun. 16, 2017

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

This test report is valid for the tested samples only. It cannot be reproduced except in full without prior written consent of Shenzhen Microtest Co., Ltd.

Test procedure...... ANSI C63.10-2013

TEST RESULT CERTIFICATION Applicant's name: Widefly Ltd. Unit 205, 2/F, Lakeside 2, No.10 Science Park West Avenue, Address: Hong Kong Science Park, Shatin, N.T., HONG KONG. Manufacture's Name: Widefly Ltd. Unit 205, 2/F, Lakeside 2, No.10 Science Park West Avenue, Address: Hong Kong Science Park, Shatin, N.T., HONG KONG. **Product description** Mobile Computer Product name Model and/or type reference WF68 Serial Model..... WF68S, WF88 Standards: FCC Part15.247

Tested by:	Ace chai	
	Ace Chai	Jun. 15, 2017
Reviewed by:	Snottohen	
	Smith Chen	Jun. 16, 2017
Approved by:	tom Xue	
	Tom Xue	Jun. 16, 2017

Table of Contents

	Page
1 . SUMMARY OF TEST RESULTS	5
1.1 TEST FACILITY	6
1.2 MEASUREMENT UNCERTAINTY	6
2 . GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF EUT	7
2.2 DESCRIPTION OF TEST MODES	9
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTE	D 9
2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	10
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	11
3 . EMC EMISSION TEST	12
3.1 CONDUCTED EMISSION MEASUREMENT	12
3.1.1 POWER LINE CONDUCTED EMISSION LIMITS 3.1.2 TEST PROCEDURE	12 13
3.1.3 DEVIATION FROM TEST STANDARD	13
3.1.4 TEST SETUP	13
3.1.5 EUT OPERATING CONDITIONS	13
3.1.6 TEST RESULTS	14
3.2 RADIATED EMISSION MEASUREMENT	16
3.2.1 RADIATED EMISSION LIMITS	16
3.2.2 TEST PROCEDURE 3.2.3 DEVIATION FROM TEST STANDARD	16 17
3.2.4 TEST SETUP	18
3.2.5 EUT OPERATING CONDITIONS	19
3.2.6 TEST RESULTS (BETWEEN 9KHZ - 30 MHZ)	20
3.2.7 TEST RESULTS (BETWEEN 30MHZ - 1GHZ)	21
3.2.8 TEST RESULTS (ABOVE 1000 MHZ)	22
4 . POWER SPECTRAL DENSITY TEST	40
4.1 APPLIED PROCEDURES / LIMIT	40
4.1.1 TEST PROCEDURE	40
4.1.2 DEVIATION FROM STANDARD	40
4.1.3 TEST SETUP 4.1.4 EUT OPERATION CONDITIONS	40 40
4.1.4 EUT OPERATION CONDITIONS 4.1.5 TEST RESULTS	40 41
5 . BANDWIDTH TEST	49

Table of Contents

	Page
5.1 APPLIED PROCEDURES / LIMIT	49
5.1.1 TEST PROCEDURE	49
5.1.2 DEVIATION FROM STANDARD	49
5.1.3 TEST SETUP	49
5.1.4 EUT OPERATION CONDITIONS	49
5.1.5 TEST RESULTS	50
6 . PEAK OUTPUT POWER TEST	58
6.1 APPLIED PROCEDURES / LIMIT	58
6.1.1 TEST PROCEDURE	58
6.1.2 DEVIATION FROM STANDARD	58
6.1.3 TEST SETUP	58
6.1.4 EUT OPERATION CONDITIONS	58
6.1.5 TEST RESULTS	59
7 . 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	60
7.1 DEVIATION FROM STANDARD	60
7.2 TEST SETUP	60
7.3 EUT OPERATION CONDITIONS	60
7.4 TEST RESULTS	61
8 . ANTENNA REQUIREMENT	69
8.1 STANDARD REQUIREMENT	69
8.2 EUT ANTENNA	69

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C				
Standard Section	Test Item	Judgment	Remark	
15.207	Conducted Emission	PASS		
15.247 (a)(2)	6dB Bandwidth	PASS		
15.247 (b)	Peak Output Power	PASS		
15.247 (c)	Radiated Spurious Emission	PASS		
15.247 (d)	Power Spectral Density	PASS		
15.205	Band Edge Emission	PASS		
15.203	Antenna Requirement	PASS		

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

1.1 TEST FACILITY

Shenzhen Toby Technology Co., Ltd.

Add.: 10/F., A Block, Jiada R&D Bldg., No.5 Songpingshan, Road, Science&Technology Park,

Shenzhen, 518057

FCC Registration No.:811562

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately $\mathbf{95}$ %.

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power,conducted	±0.16dB
3	Spurious emissions,conducted	±0.21dB
4	All emissions,radiated(<1G)	±4.68dB
5	All emissions,radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Mobile Computer				
Trade Name	Widefly				
Model Name	WF68				
Serial Model	WF68S, WF88				
Model Difference	N/A				
	The EUT is a Mobile Co				
		802.11b/g/n20:2412~2462 MHz 802.11n40:2422~2452 MHz			
	Modulation Type:	11n: BPSK, QPSK, 16QAM, 64QAM			
		with OFDM			
		11g: BPSK, QPSK, 16QAM, 64QAM,			
		OFDM			
		11b: DQPSK, DBPSK, DSSS, CCK			
	Bit Rate of Transmitter	802.11b:11/5.5/2/1 Mbps 802.11g:54/48/36/24/18/12/9/6Mbps 802.11n:65/52/6.5Mbps			
Product Description	Number Of Channel 802.11b/g/n20:11CH 802.11n40:7 CH				
	Antenna Designation:	Please see Note 3.			
	Output Power(Conducted):	802.11b: 19.75 dBm (Max.)			
	Antenna Gain (dBi)	-0.76dbi			
	Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.				
Channel List	Please refer to the Note	2.			
Adapter	Model: UT-133E- 5200ZY AC Power Input: 100-240V~50/60Hz 0.3A MAX Output :5V DC, 2000mA				
Battery	Model:EU955164PV 3	3.8V 4600mAh			
Connecting I/O Port(s)	Please refer to the User	's Manual			

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

	Channel List for 802.11b/g/n(20)						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462

Tel:(86-755)88850135 Fax: (86-755) 88850136 Web: http://www.mtitest.com E-mail: mti@51mti.com

03 2422 06 2437 09 2452

	Channel List for 802.11n(40)						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
/	/	04	2427	07	2442	/	/
/	/	05	2432	08	2447	/	/
03	2422	06	2437	09	2452		

3. Table for Filed Antenna

Ant	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
A	N/A	N/A	Integrated antenna	-	-0.76dBi	Wifi Antenna

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	802.11b CH1/ CH6/ CH11
Mode 2	802.11g CH1/ CH6/ CH11
Mode 3	802.11n CH1/ CH6/ CH11
Mode 4	802.11n CH3/ CH6/ CH9
Mode 5	Link Mode

For Conducted Emission		
Final Test Mode Description		
Mode 4	Link Mode	

For Radiated Emission			
Final Test Mode	Description		
Mode 1	802.11b CH1/ CH6/ CH11		
Mode 2	802.11g CH1/ CH6/ CH11		
Mode 3	802.11n CH1/ CH6/ CH11		
Mode 4	802.11n CH3/ CH6/ CH9		

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Brand	Model/Type No.	Series No.	Note
E-1	Rugged Smartphone	DragonKing	WF68	N/A	EUT
E-2	Adapter	N/A	PGAK0500100U1EU	N/A	

Item	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	1.0m	
C-2	NO	NO	0.8m	

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

For RF conducted test:

Equipment	Manufacturer	Model	Serial No.	Calibration Due
Signal Analyzer	Agilent	N9010A	MY48030494	2017/11/4
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	TW54063513	2017/11/4
X-series USB Peak and Average Power Sensor	Agilent	U2021XA	MY54080019	2017/11/4
vector Signal Generator	Agilent	E4438C	US44271917	2017/11/4
vector Signal Generator			MY49070163	2017/11/4
Dc Power Supply	GW	GPR-6030D	/	2017/11/4
Temperature & GIANT FORCE		GTH-056P	GF-94454-1	2017/11/4
Wideband Radio Communication Tester		CMW500	120909	2017/11/4

For Radiated test:

Equipment	quipment Manufacturer I		Serial No.	Calibration Due
Broadband TRILOG Antenna	Schwarabeck	VULB9163	9163-872	2017/11/14
Horn Antenna	Schwarzbeck	BBHA 9120 D	9120D-1145	2017/11/14
Amplifier	Amplifier HP		3113A06150	2017/11/4
Amplifier	Amplifier Agilent		3008A02400	2017/7/4
Test Receiver	Schwarabeck	ESPI7	100314	2017/11/4
Spectrum analyzer	Agilent	E4407B	MY41441082	2017/11/4
Signal Generator	R&S	SMT 06	832080/007	2017/11/4

Note: the calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

	Class A	(dBuV)	Class B	Standard		
FREQUENCY (MHz)	Quasi-peak	Average	Quasi-peak	Average	Standard	
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	CISPR	
0.50 -5.0	73.00	60.00	56.00	46.00	CISPR	
5.0 -30.0	73.00	60.00	60.00	50.00	CISPR	

0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	73.00	60.00	56.00	46.00	FCC
5.0 -30.0	73.00	60.00	60.00	50.00	FCC

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

3.1.3 DEVIATION FROM TEST STANDARD

No deviation

3.1.4 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.1.6 TEST RESULTS

EUT:	Mobile Computer	Model Name. :	WF68
Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	1010hPa	Phase :	L
Test Voltage :	DC 5Vfrom adapter AC 120V/60Hz	Test Mode :	Mode 5

			: FCC PART							Hum:
1	tem	Free	g Read dBuV	LISN Factor dB	Factor		dBuV	dBuV	Margin dBuV	Remark
	1	0.159	31.41	0.03	-9.72	0.10	41.26	65.52	-24.26	QP
	2	0.159	17.00	0.03	-9.72	0.10	26.85	55.52	-28.67	Average
	3	0.280	27.56	0.03	-9.72	0.10	37.41	60.81	-23.40	QP
	4	0.280	15.00	0.03	-9.72	0.10	24.85	50.81	-25.96	Average
	5	0.775	25.53	0.00	-9.71	0.10	35.34	56.00	-20.66	QP
	6	0.775	13.00	0.00	-9.71	0.10	22.81	46.00	-23.19	Average
	7	1.403	21.86	0.05	-9.71	0.10	31.72	56.00	-24.28	QP
	В	1.403	11.00	0.05	-9.71	0.10	20.86	46.00	-25.14	Average
	9	5.058	11.08	0.10	-9.68	0.12	20.98	60.00	-39.02	QP
1	0	5.058	-1.00	0.10	-9.68	0.12	8.90	50.00	-41.10	Average
1	1	28.755	9.60	0.48	-9.78	0.60	20.46	60.00	-39.54	QP
1	2	28.755	-2.00	0.48	-9.78	0.60	8.86	50.00	-41.14	Average

EUT: Mobile Computer WF68 Model Name. : 26 ℃ Relative Humidity: 54% Temperature: 1010hPa Ν Phase: Pressure: DC 5Vfrom adapter AC Test Voltage: Test Mode: Mode 5 120V/60Hz

Conditio	n : F0	C PART 1	5 B QP		PO:L	: NEUTR	AL Tem	p:	Hum:
Iter	n Freq	Read	LISN Factor	Preamp Factor	Cable Lose	Level	Limit	Margin	Remark
	MHZ	dBuV	dВ	dВ	dΒ	dBuV	dBuV	dBuV	
1	0.168	33.04	0.03	-9.72	0.10	42.89	65.08	-22.19	QP
2	0.168	18.00	0.03	-9.72	0.10	27.85	55.08	-27.23	Average
3	0.303	28.30	0.03	-9.72	0.10	38.15	60.15	-22.00	QP
4	0.303	16.00	0.03	-9.72	0.10	25.85	50.15	-24.30	Average
5	1.403	23.65	0.05	-9.71	0.10	33.51	56.00	-22.49	QP
6	1.403	11.00	0.05	-9.71	0.10	20.86	46.00	-25.14	Average
7	2.500	17.68	0.06	-9.70	0.11	27.55	56.00	-28.45	QP
8	2.500	6.00	0.06	-9.70	0.11	15.87	46.00	-30.13	Average
9	5.653	12.06	0.10	-9.64	0.13	21.93	60.00	-38.07	QP
10	5.653	0.00	0.10	-9.54	0.13	9.87	50.00	-40.13	Average
11	25.321	9.85	0.46	-9.61	0.49	20.41	60.00	-39.59	QP
12	25.321	-3.00	0.46	-9.61	0.49	7.56	50.00	-42.44	Average

Remarks: Level - Read + LISN Factor - Preamp Factor + Cable loss

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Field Strength	
i ieid Strengtri	Measurement Distance
(micorvolts/meter)	(meters)
2400/F(KHz)	300
24000/F(KHz)	30
30	30
100	3
150	3
200	3
500	3
	(micorvolts/meter) 2400/F(KHz) 24000/F(KHz) 30 100 150 200

Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RB / VB (emission in restricted	4 Mile / 4 Mile for Dook 4 Mile / 40/le for Avorage		
band)	1 MHz / 1 MHz for Peak, 1 MHz / <i>10Hz</i> for Average		

Receiver Parameter	Setting				
Attenuation	Auto				
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP				
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP				
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP				

3.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

Tel:(86-755)88850135 Fax: (86-755) 88850136 Web: http://www.mtitest.com E-mail: mti@51mti.com

e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.

f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

3.2.3 DEVIATION FROM TEST STANDARD

No deviation

3.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

Tel:(86-755)88850135 Fax: (86-755) 88850136 Web: http://www.mtitest.com Address: No.102A & 302A, East Block, Hengfang Industrial Park, Xingye Road, Xixiang, Bao'an District, Shenzhen, Guangdong, China

Report No.: MTi170706E053

Micr©test

微测检测 (C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

3.2.6 TEST RESULTS (BETWEEN 9KHZ - 30 MHZ)

EUT:	Mobile Computer	Model Name. :	WF68
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	LIEST VOITAGE .	DC 5Vfrom adapter AC 120V/60Hz
Test Mode:	TX	Polarization:	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

3.2.7 TEST RESULTS (BETWEEN 30MHZ - 1GHZ)

EUT:	Mobile Computer	Model Name :	WF68
Temperature :	20 ℃	Relative Humidity:	48%
Pressure:	1010 hPa	Test Voltage:	DC 5Vfrom adapter
Test Mode:	TX		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
V	119.4360	15.99	12.08	28.07	43.5	15.43	QP
V	128.1129	15.95	12.2	28.15	43.5	15.35	QP
V	170.7926	20.35	10.35	30.7	43.5	12.8	QP
V	341.9786	12.13	16.19	28.32	46	17.68	QP
V	468.8761	17.25	19.69	36.94	46	9.06	QP
V	935.5462	9.13	29.42	38.55	46	7.45	QP
Н	170.7923	27.37	10.35	37.72	43.5	5.78	QP
Н	341.9786	24.93	16.19	41.12	46	4.88	QP
Н	468.8761	20.88	19.69	40.57	46	5.43	QP
Н	726.8052	14.56	26	40.56	46	5.44	QP
Н	813.1114	16.1	26.35	42.45	46	3.55	QP
Н	854.0247	12.27	27.51	39.78	46	6.22	QP

Remark:

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level- Limit

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Factor added by measurement software automatically

3.2.8 TEST RESULTS (1G-25GHZ)

802.11b

Normal Voltage

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector						
(H/V)	(MHz)	(dBuV) (dB) (dBu\		(dBuV/m)	(dBuV/m)	(dB)	Туре						
	Low Channel (2412 MHz)												
Vertical	2491.777	60.51	-11.65	48.86	74	25.14	Pk						
Horizontal	2498.247	57.41	-12.73	44.68	74	29.32	Pk						
Vertical	4824.184	57.51	-3.6	53.91	74	20.09	Pk						
Horizontal	4824.184	57.51	-9.23	48.28	74	25.72	Pk						
Vertical	1485.838	61.21	-17.1	44.11	74	29.89	Pk						
Vertical	1636.784	60.9	-16.06	44.84	74	29.16	Pk						
Vertical	2095.928	59.71	-11.88	47.83	74	26.17	Pk						
Horizontal	1074.301	61.44	-19.69	41.75	74	32.25	Pk						
Horizontal	1483.178	60.43	-17.09	43.34	74	30.66	Pk						
Horizontal	1895.832	57.45	-14.25	43.2	74	30.8	Pk						
		Mi	d Channel	(2437 MHz)									
Vertical	2474.777	57.13	-11.65	45.48	74	28.52	Pk						
Horizontal	2474.144	57.82	-9.37	48.45	74	25.55	Pk						
Vertical	4874.425	57.2	-6.15	51.05	74	22.95	Pk						
Horizontal	4874.979	57.2	-6.83	50.37	74	23.63	Pk						
Vertical	1433.535	64.19	-17.12	47.07	74	26.93	Pk						
Vertical	1636.784	61.52	-16.06	45.46	74	28.54	Pk						
Vertical	2284.166	55.26	-12.83	42.43	74	31.57	Pk						
Horizontal	1280.515	60.92	-17.82	43.1	74	30.9	Pk						
Horizontal	1636.784	59.75	-16.06	43.69	74	30.31	Pk						
Horizontal	1892.438	59.87	-14.28	45.59	74	28.41	Pk						
		Hig	h Channe	(2462 MHz)									
Vertical	2453.883	57.79	-12.91	44.88	74	29.12	Pk						
Horizontal	2453.839	57.79	-11.59	46.2	74	27.8	Pk						
Vertical	4926.325	54.3	-9.22	45.08	74	28.92	Pk						
Horizontal	4926.683	54.3	-3.64	50.66	74	23.34	Pk						
Vertical	1187.688	58.82	-18.27	40.55	74	33.45	Pk						
Vertical	1636.784	57.63	-16.06	41.57	74	32.43	Pk						
Vertical	2084.693	55.22	-11.99	43.23	74	30.77	Pk						
Horizontal	1534.540	57.88	-16.94	40.94	74	33.06	Pk						
Horizontal	1786.985	57.59	-15.04	42.55	74	31.45	Pk						
Horizontal	1892.438	57.47	-14.28	43.19	74	30.81	Pk						

802.11g

Normal Voltage

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector					
(MHz)	(dBuV) (dB) (dBuV/m)		(dBuV/m)	(dB)	Туре						
operation frequency:2412											
4824.428	52.86	-3.53	49.33	74	24.67	Pk					
4824.428	32.95	-3.53	29.42	54	24.58	AV					
4824.529	54.77	-3.54	51.23	74	22.77	Pk					
4824.529	33.04	-3.54	29.5	54	24.5	AV					
	ор	eration fre	quency:2437								
4873.548	53.05	-3.64	49.41	74	24.59	Pk					
4873.548	34.78	-3.64	31.14	54	22.86	AV					
4875.279	54.25	-3.64	50.61	74	23.39	Pk					
4875.279	33.8	-3.64	30.16	54	23.84	AV					
	ор	eration fre	quency:2462								
4924.358	55.27	-3.75	51.52	74	22.48	pk					
4924.358	34.94	-3.75	31.19	54	22.81	AV					
4924.591	51.45	-3.74	47.71	74	26.29	pk					
4924.591	35.09	-3.74	31.35	54	22.65	pk					
	(MHz) 4824.428 4824.529 4824.529 4824.529 4873.548 4873.548 4875.279 4875.279 4924.358 4924.358 4924.591	requency Reading (MHz) (dBuV) 4824.428 52.86 4824.428 32.95 4824.529 54.77 4824.529 33.04 op 4873.548 53.05 4873.548 34.78 4875.279 54.25 4875.279 33.8 4924.358 55.27 4924.358 34.94 4924.591 51.45	requency Reading Factor (MHz) (dBuV) (dB) 0peration free 4824.428 52.86 -3.53 4824.428 32.95 -3.53 4824.529 54.77 -3.54 4824.529 33.04 -3.54 operation free 4873.548 53.05 -3.64 4873.548 34.78 -3.64 4875.279 54.25 -3.64 4875.279 33.8 -3.64 operation free 4924.358 55.27 -3.75 4924.358 34.94 -3.75 4924.591 51.45 -3.74	requency Reading Factor Level (MHz) (dBuV) (dB) (dBuV/m) operation frequency:2412 4824.428 52.86 -3.53 49.33 4824.428 32.95 -3.53 29.42 4824.529 54.77 -3.54 51.23 4824.529 33.04 -3.54 29.5 operation frequency:2437 4873.548 53.05 -3.64 49.41 4873.548 34.78 -3.64 31.14 4875.279 54.25 -3.64 50.61 4875.279 33.8 -3.64 30.16 operation frequency:2462 4924.358 55.27 -3.75 51.52 4924.358 34.94 -3.75 31.19 4924.591 51.45 -3.74 47.71	(MHz) (dBuV) (dB) (dBuV/m) (dBuV/m) operation frequency:2412 4824.428 52.86 -3.53 49.33 74 4824.428 32.95 -3.53 29.42 54 4824.529 54.77 -3.54 51.23 74 4824.529 33.04 -3.54 29.5 54 operation frequency:2437 4873.548 53.05 -3.64 49.41 74 4873.548 34.78 -3.64 31.14 54 4875.279 54.25 -3.64 50.61 74 4875.279 33.8 -3.64 30.16 54 operation frequency:2462 4924.358 55.27 -3.75 51.52 74 4924.358 34.94 -3.75 31.19 54 4924.591 51.45 -3.74 47.71 74	(MHz) (dBuV) (dB) (dBuV/m) (dBuV/m) (dBuV/m) (dB) operation frequency:2412 4824.428 52.86 -3.53 49.33 74 24.67 4824.428 32.95 -3.53 29.42 54 24.58 4824.529 54.77 -3.54 51.23 74 22.77 4824.529 33.04 -3.54 29.5 54 24.5 operation frequency:2437 4873.548 53.05 -3.64 49.41 74 24.59 4873.548 34.78 -3.64 31.14 54 22.86 4875.279 54.25 -3.64 50.61 74 23.39 4875.279 33.8 -3.64 30.16 54 23.84 operation frequency:2462 4924.358 55.27 -3.75 51.52 74 22.48 4924.358 34.94 -3.75 31.19 54 22.81 4924.591 51.45					

Remark:

Absolute Level= Reading Level+ Factor, Margin= Absolute Level - Limit

802.11n(20)

Normal Voltage

Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector					
	(MHz)	(dBuV) (dB)		(dBuV/m)	(dBuV/m)	(dB)	Туре					
	operation frequency:2412											
V	4824.428	51.22	-3.53	47.69	74	26.31	Pk					
Н	4824.529	54.27	-3.54	50.73	74	23.27	Pk					
		ор	eration fre	quency:2437								
V	4873.548	51.62	-3.64	47.98	74	26.02	Pk					
Н	4875.279	53.91	-3.64	50.27	74	23.73	Pk					
	operation frequency:2462											
V	4924.358	52.68	-3.75	48.93	74	25.07	pk					
Н	4924.591	51.54	-3.74	47.8	74	26.2	pk					
	1	_				•						

Remark:

Absolute Level= Reading Level+ Factor, Margin= Absolute Level - Limit

Note: The PK value is less than the AV value, AV value is not required Factor added by measurement software automatically.

802.11n(40)

Normal Voltage

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector				
(H/V)	(MHz)	(dBuV)	(dBuV) (dB) (dBuV/m)		(dBuV/m)	(dB)	Туре				
operation frequency:2422											
V	4844.537	50.82	-3.56	47.26	74	26.74	Pk				
Н	4824.614	52.16	-3.56	48.6	74	25.4	Pk				
	operation frequency:2437										
V	4873.548	50.95	-3.64	47.31	74	26.69	Pk				
Н	4875.279	53.73	-3.64	50.09	74	23.91	Pk				
		ор	eration fre	quency:2452							
V	4904.158	52.02	-3.71	48.31	74	25.69	pk				
Η	4904.476	51.16	-3.71	47.45	74	26.55	pk				
Remar	k:										
Ahsoli	Ita I aval- Ra	ading Level+ F	actor Mar	ain- Ahsoluta I	aval - Limit						

Absolute Level= Reading Level+ Factor, Margin= Absolute Level - Limit

Note:The PK value is less than the AV value, AV value is not required Factor added by measurement software automatically.

BAND EDGE(Radiated)

Condition EUT		:	FCC PART 15	_18G PEA	K 3m	POL: HORI	ZONTAL			
Model N	0	:								
Test Mo	de	:	IEEE.802.b	CH Low:	2412					
Power		:								
Test En	gineer	:								
Remark		:								
Temp		:	24.2°C							
Hum		:	54%							
Item	Freq		Read	Antenna	Preamp	Cable	Level	Limit	Margin	Remark
			Level	Factor	Factor	Loss				
	MHz		dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	2390.0	0	42.50	27.62	34.97	3.92	39.07	74.00	-34.93	Peak
2	2400.0	Ū	46.92	27.62	34.97	3.94	43.51	74.00	-30.49	Peak

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

2360.

Frequency (MHz)

POL: VERTICAL

2380.

2400.

2420

Condition : FCC PART 15_18G PEAK 3m

2340.

EUT

⁰2310 2320.

Model No

Test Mode : IEEE.802.b CH Low: 2412

Power Test Engineer :

Remark

Temp : 24.2°C : 54% Hum

Item	Freq	Read Level	Antenna Factor	Preamp Factor	Cable Loss	Level	Limit	Margin	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	2390.00	41.16	27.62	34.97	3.92	37.73	74.00	-36.27	Peak
2	2400.00	49.60	27.62	34.97	3.94	46.19	54.00	-7.81	Average
3	2400.00	58.60	27.62	34.97	3.94	55.19	74.00	-18.81	Peak

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

Condition : FCC PART 15_18G PEAK 3m

EUT Model No

Test Mode : IEEE.802.b CH High: 2462

Power Test Engineer :

Remark

: 24.2°C Temp : 54%

Item	Freq	Read	Antenna	Preamp	Cable	Level	Limit	Margin	Remark
		Level	Factor	Factor	Loss				
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	2483.50	42 86	27.59	34 97	4.00	39 48	74.00	-34.52	Dest

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

Condition : FCC PART 15_18G PEAK 3m

POL: VERTICAL

EUT Model No

Test Mode : IEEE.802.b CH High: 2462

Power Test Engineer : .

Remark

: 24.2°C Temp Hum : 54%

Item	Freq	Read	Antenna	Preamp	Cable	Level	Limit	Margin	Remark
		Level	Factor	Factor	Loss				
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	2483.50	42.85	27.59	34.97	4.00	39.47	74.00	-34.53	Peak

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

Condition : FCC PART 15_18G PEAK 3m POL: HORIZONTAL EUT :

EUT Model No

Test Mode : IEEE.802.g CH Low: 2412

Power F

Test Engineer : Remark :

Temp : 24.2°C Hum : 54%

Item	Freq	Read Level	Antenna Factor	Preamp Factor	Cable Loss	Level	Limit	Margin	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	2390.00	42.31	27.62	34.97	3.92	38.88	74.00	-35.12	Peak
2	2400.00	51.16	27.62	34.97	3.94	47.75	54.00	-6.25	Average
3	2400.00	64.99	27.62	34.97	3.94	61.58	74.00	-12.42	Peak

Frequency (MHz)

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

2360.

Frequency (MHz)

2380.

2400.

2420

Condition : FCC PART 15_18G PEAK 3m POL: VERTICAL EUT

2340.

Model No

Test Mode : IEEE.802.g CH Low: 2412

Power Test Engineer : Remark

: 24.2°C Temp Hum : 54%

Item	Freq	Read Level	Antenna Factor	Preamp Factor	Cable Loss	Level	Limit	Margin	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	2390.00	42.48	27.62	34.97	3.92	39.05	74.00	-34.95	Peak
2	2400.00	50.83	27.62	34.97	3.94	47.42	54.00	-6.58	Average
3	2400.00	63.45	27.62	34.97	3.94	60.04	74.00	-13.96	Peak

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

Condition : FCC PART 15_18G PEAK 3m POL: HORIZONTAL EUT Model No Test Mode : IEEE.802.g CH High: 2462 Power Test Engineer : Remark Temp : 24.2°C Hum : 54%

2480.

2470.

Item	Freq	Read	Antenna	Preamp	Cable	Level	Limit	Margin	Remark
		Level	Factor	Factor	Loss				
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	2483.50	42.02	27.59	34.97	4.00	38.64	74.00	-35.36	Peak

2500.

Frequency (MHz)

2510.

2520.

2530.

2540. 2550

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

2490.

Item	Freq	Read	Antenna	Preamp	Cable	Level	Limit	Margin	Remark
		Level	Factor	Factor	Loss				
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	2483.50	45.60	27.59	34.97	4.00	42.22	74.00	-31.78	Peak

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

Condition : FCC PART 15_18G PEAK 3m POL: HORIZONTAL

Model No :

Test Mode : IEEE.802.n/HT20 CH Low: 2412

Power : Test Engineer : Remark : Temp : 24.2°C Hum : 54%

Item	Freq	Read Level	Antenna Factor	Preamp Factor	Cable Loss	Level	Limit	Margin	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	2390.00	42.84	27.62	34.97	3.92	39.41	74.00	-34.59	Peak
2	2400.00	51.06	27.62	34.97	3.94	47.65	54.00	-6.35	Average
3	2400.00	61.61	27.62	34.97	3.94	58.20	74.00	-15.80	Peak

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

Condition : FCC PART 15_18G PEAK 3m POL: VERTICAL

EUT

:

Model No : Test Mode : IEEE.802.n/HT20 CH Low: 2412

Power : Test Engineer :

Remark

Temp : 24,2°C

Item	Freq	Read	Antenna	Preamp	Cable	Level	Limit	Margin	Remark
		Level	Factor	Factor	Loss				
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	2390.00	46.21	27.62	34.97	3.92	42.78	74.00	-31.22	Peak
2	2400.00	52.33	27.62	34.97	3.94	48.92	54.00	-5.08	Average
3	2400.00	64.99	27.62	34.97	3.94	61.58	74.00	-12.42	Peak

Frequency (MHz)

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

Item	Freq	Read	Antenna	Preamp	Cable	Level	Limit	Margin	Remark
		Level	Factor	Factor	Loss				
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	2483.50	50.81	27.59	34.97	4.00	47.43	74.00	-26.57	Peak

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

Condition : FCC PART 15 18G PEAK 3m POL: VERTICAL EUT : Model No : Test Mode : IEEE.802.n/HT20 CH High: 2462 Power : Test Engineer :

Test Engineer :
Remark :
Temp : 24.2°C
Hum : 54%

Item	Freq	Read	Antenna	Preamp	Cable	Level	Limit	Margin	Remark
		Level	Factor	Factor	Loss				
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	2483.50	46.02	27.59	34.97	4.00	42.64	74.00	-31.36	Peak

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

2360.

Frequency (MHz)

2380.

2400.

2420

Condition POL: HORIZONTAL : FCC PART 15_18G PEAK 3m

2340.

Model No

2310 2320.

Test Mode : IEEE.802.n/HT40 CH Low: 2422

Power Test Engineer :

Remark Temp

: 24.2°C : 54% Hum

Item	Freq	Read	Antenna	Preamp	Cable	Level	Limit	Margin	Remark
		Level	Factor	Factor	Loss				
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	2390.00	45.72	27.62	34.97	3.92	42.29	74.00	-31.71	Peak
2	2400.00	53,14	27.62	34.97	3.94	49.73	74.00	-24.27	Peak

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

42.67

50.62

74.00

74.00

-31.33

-23.38

Peak

Peak

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

34.97 3.94

NOTE: The PK value is less than the AV value, AV value is not required.

1 2390.00 46.10 27.62 34.97 3.92

2 2400.00 54.03 27.62

4. POWER SPECTRAL DENSITY TEST

4.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C								
Section	Test Item	Limit	Frequency Range (MHz)	Result				
15.247	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS				

4.1.1 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW \geq 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

4.1.2 DEVIATION FROM STANDARD

No deviation.

4.1.3 TEST SETUP

4.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

Tel:(86-755)88850135 Fax: (86-755) 88850136 Web: http://www.mtitest.com E-mail: mti@51mti.com

4.1.5 TEST RESULTS

EUT:	Mobile Computer	Model Name :	WF68
Temperature :	25 °C	Relative Humidity:	60%
Pressure ·	1015 hPa	Test Voltage ·	DC 5Vfrom adapter

Test Mode: TX b Mode /CH01, CH06, CH11

Frequency	Power Density (dBm)	Limit (dBm)	Result
2412 MHz	-1.872	8	PASS
2437 MHz	-2.232	8	PASS
2462 MHz	-3.018	8	PASS

EUT: Mobile Computer Model Name: WF68

Temperature: 25 °C Relative Humidity: 60%

Pressure: 1015 hPa Test Voltage: DC 5Vfrom adapter

Test Mode: TX g Mode /CH01, CH06, CH11

Frequency	Power Density (dBm)	Limit (dBm)	Result
2412 MHz	-3.641	8	PASS
2437 MHz	-3.891	8	PASS
2462 MHz	-4.158	8	PASS

EUT: Mobile Computer Model Name: WF68

Temperature: 25 °C Relative Humidity: 60%

Pressure: 1015 hPa Test Voltage: DC 5Vfrom adapter

Test Mode: TX n20 Mode /CH01, CH06, CH11

Frequency	Power Density (dBm)	Limit (dBm)	Result
2412 MHz	-4.311	8	PASS
2437 MHz	-4.532	8	PASS
2462 MHz	-4.336	8	PASS

EUT:	Mobile Computer	Model Name :	WF68		
Temperature :	25 ℃	Relative Humidity:	60%		
Pressure :	1015 hPa	Test Voltage :	DC 5Vfrom adapter		
Test Mode : TX n40 Mode /CH03, CH06, CH09					

Frequency	Power Density (dBm)	Limit (dBm)	Result
2422 MHz	-5.332	8	PASS
2437 MHz	-6.331	8	PASS
2452 MHz	-5.966	8	PASS

5. BANDWIDTH TEST

5.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS		

5.1.1 TEST PROCEDURE

- 1. Set RBW= 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.1.2 DEVIATION FROM STANDARD

No deviation.

5.1.3 TEST SETUP

5.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.1.5 TEST RESULTS

EUT:	Mobile Computer	Model Name :	WF68		
Temperature :	25 ℃	Relative Humidity:	60%		
Pressure :	1012 hPa	Test Voltage :	DC 5Vfrom adapter		
Test Mode :	TX b Mode /CH01, CH06, CH11				

Channel	Frequency (MHz)	6dB bandwidth (MHz)	Limit (kHz)	Result
Low	2412	10.09	500	Pass
Middle	2437	10.08	500	Pass
High	2462	10.09	500	Pass

EUT:	Mobile Computer	Model Name :	WF68	
Temperature :	25 ℃	Relative Humidity:	60%	
Pressure :	1012 hPa	Test Voltage :	DC 5Vfrom adapter	
Test Mode :	TX g Mode /CH01, CH06, CH11			

Channel	Frequency (MHz)	6dB bandwidth (MHz)	Limit (kHz)	Result
Low	2412	16.59	500	Pass
Middle	2437	16.61	500	Pass
High	2462	16.59	500	Pass

TX CH 11

STATUS

EUT:	Mobile Computer	Model Name :	WF68	
Temperature :	25 ℃	Relative Humidity:	60%	
Pressure :	1012 hPa	Test Voltage :	DC 5Vfrom adapter	
Test Mode :	TX n20 Mode /CH01, CH06, CH11			

Channel	Frequency (MHz)	6dB bandwidth (MHz)	Limit (kHz)	Result
Low	2412	17.87	500	Pass
Middle	2437	17.84	500	Pass
High	2462	17.84	500	Pass

CF Step 3.000000 MHz

Frea Offset

0 Hz

Span 30 MHz Sweep 2.933 ms

14.9 dBm

99.00 %

-6.00 dB

STATUS

Center 2.462 GHz #Res BW 100 kHz

Occupied Bandwidth

Transmit Freq Error

x dB Bandwidth

17.726 MHz

-3.560 kHz

17.84 MHz

TX CH 06 GHZ Center Freq: 2.437000000 GHz
Trig: Free Run Avg|Hol.
#Atten: 18 dB Frequency Radio Std: None Center Freq 2.437000000 GHz Avg|Hold:>10/10 Radio Device: BTS Center Freq 2.437000000 GHz **CF Step** 3.000000 MHz Center 2.437 GHz #Res BW 100 kHz Span 30 MHz Sweep 2.933 ms **#VBW 300 kHz** Occupied Bandwidth **Total Power** 17.7 dBm Freq Offset 17.729 MHz 0 Hz -561 Hz **OBW Power** 99.00 % Transmit Freq Error 17.84 MHz -6.00 dB x dB Bandwidth x dB STATUS **TX CH 11** Center Freq: 2.462000000 GHz
Trig: Free Run Avg|Hold:>10/10
#Atten: 18 dB Frequency Radio Std: None Center Freq 2.462000000 GHz Radio Device: BTS Ref Offset 3 dB Ref 10.00 dBm Center Freq 2.462000000 GHz

#VBW 300 kHz
Total Power

OBW Power

x dB

EUT: Mobile Computer Model Name: WF68

Temperature: 25 °C Relative Humidity: 60%

Pressure: 1012 hPa Test Voltage: DC 5Vfrom adapter

Test Mode: TX n40 Mode /CH01, CH06, CH11

Channel	Frequency (MHz)	6dB bandwidth (MHz)	Limit (kHz)	Result
Low	2422	36.51	500	Pass
Middle	2437	36.48	500	Pass
High	2452	36.50	500	Pass

6. PEAK OUTPUT POWER TEST

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section Test Item Limit Frequency Range (MHz) Result				Result
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

6.1.1 TEST PROCEDURE

a. The EUT was directly connected to the Power meter

6.1.2 DEVIATION FROM STANDARD

No deviation.

6.1.3 TEST SETUP

6.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

6.1.5 TEST RESULTS

EUT:	Mobile Computer	Model Name :	WF68
Temperature :	25 ℃	Relative Humidity:	60%
Pressure :	1012 hPa	Test Voltage :	DC 5Vfrom adapter
Test Mode :	TX b/g/n Mode /CH01, CH06, CH11		

	TX 802.11b Mode			
Test Channe	Frequency	Maximum Conducted Output Power(PK)	LIMIT	
	(MHz)	(dBm)	dBm	
CH01	2412	19.61	30	
CH06	2437	19.75	30	
CH11	2462	19.59	30	
		TX 802.11g Mode		
CH01	2412	18.61	30	
CH06	2437	18.68	30	
CH11	2462	18.59	30	
		TX 802.11n20 Mode		
CH01	2412	17.59	30	
CH06	2437	17.38	30	
CH11	2462	17.52	30	
TX 802.11n40 Mode				
CH03	2412	17.67	30	
CH06	2437	17.21	30	
CH09	2462	17.15	30	

W

7. 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE&CONDUCTED EMISSIONS APPLICABLE STANDARD

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST PROCEDURE

- a) Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b) Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- c) Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- d) Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- e) Repeat above procedures until all measured frequencies were complete.

7.1 DEVIATION FROM STANDARD

No deviation.

7.2 TEST SETUP

EUT	SPECTRUM
	ANALYZER

7.3 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

7.4 TEST RESULTS

EUT:	Mobile Computer	Model Name :	WF68
Temperature :	25 ℃	Relative Humidity:	60%
Pressure :	1012 hPa	Test Voltage :	DC 5Vfrom adapter

Frequency Band	Delta Peak to band emission (dBc)	> Limit	Result	
	802.11b mode	9		
Left-band	47.464	20	Pass	
Right-band	50.289	20	Pass	
	802.11g mode)		
Left-band	28.493	20	Pass	
Right-band	48.211	20	Pass	
	802.11n20 mod	de		
Left-band	26.468	20	Pass	
Right-band	45.945	20	Pass	
802.11n40 mode				
Left-band	23.024	20	Pass	
Right-band	37.707	20	Pass	

802.11b: Band Edge, Right Side

802.11g: Band Edge, Left Side

802.11g: Band Edge, Right Side

802.11n20: Band Edge, Left Side

802.11n20: Band Edge, Right Side

000 44 × 40 · D = × 4 E d = 1 × 6 · Obd =

802.11n40: Band Edge, Right Side

All mode has been tested, and only worst data listed.

8. ANTENNA REQUIREMENT

8.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

8.2 EUT ANTENNA

The EUT antenna is Integrated antenna,-0.76dbi. It comply with the standard requirement. In case of replacement of broken antenna the same antenna type must be used.

END OF REPORT