第1章: 随机事件与概率

第2章: 随机变量及其分布

第3章:多维随机变量及其分布

- 一、重点与难点
- 二、主要内容
- 三、典型例题

- 第三章: 多维随机变量及其分布
 - §1 二维随机变量及其联合分布
 - §2 边缘分布
 - §3 条件分布
 - §4 相互独立的随机变量
 - §5 两个随机变量的函数的分布

■ §1 二维随机变量

■设 E 是一个随机试验,它的样本空间是 $S=\{e\}$,设 X=X(e) 和 Y=Y(e) 是定义在 S 上的随机变量。由它们构成的一个向量 (X,Y) ,叫做二维随机向量,或二维随机变量。

■ 1.2 二维随机变量的分布函数

■定义

设(X, Y)是一个二维随机变量,则对于任意一对实数(x, y),

$$F(x, y)=P\{X\leq x, Y\leq y\}$$

是(x, y)的函数。我们称此函数为二维随机变量(X, Y)的分布函数。

■ 1.2 二维随机变量的分布函数

■几何意义

二维分布函数的几何 意义是: F(x, y)表示平面上的随机 点(X, Y)落在以 (x, y)为右上顶 点的无穷矩形中的 概率.

$$F(x, y)=P\{X\leq x, Y\leq y\}$$

■ 1.2 二维随机变量的分布函数

■一个重要公式

设:
$$x_1 < x_2$$
, $y_1 < y_2$, 则 $P\{x_1 < X \le x_2, y_1 < Y \le y_2\}$
= $F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1)$

■ 1.3 n维随机变量的概念

设 E 是一个随机试验,它的样本空间是 $S = \{e\}$,设 $X_1 = X_1(e), X_2 = X_2(e), ..., X_n = X_n(e)$,是定义在 S 上的随机变量,由它们构成的一个 n 维向量 $(X_1, X_2, ..., X_n)$ 叫做 n 维随机向量或 n 维随机变量.对于任意 n 个实数 $x_1, x_2, ..., x_n$,元函数 $F(x_1, x_2, ..., x_n) = P\{X_1 \le x_1, X_2 \le x_2, ..., X_n \le x_n\}$

称为随机变量 $(X_1, X_2, ..., X_n)$ 的**联合分布函数**.

■ 1.4 二维离散型随机变量的分布律

若二维随机变量(X, Y)的取值是有限个或可列无穷个,则称(X, Y)为二维离散型随机变量.

设(X, Y)二维离散型随机变量

X的取值为 x_1 , x_2 , ..., x_i , ...

Y的取值为 y_1 , y_2 , ..., y_j , ...

则称
$$p_{ij} = P\{X = x_i, Y = y_j\}$$
 $(i, j = 1, 2, ...)$

为二维离散型随机变量X,Y)的(联合)分布律

Y	x_1	\mathcal{X}_2	***	\mathcal{X}_{i}	
\mathcal{Y}_1	p_{11}	p_{21}		p_{i1}	•••
\mathcal{Y}_2	p_{12}	p_{22}	•••	p_{i2}	
:	: 🗸			i 🖍	
\mathcal{Y}_{j}	p_{1j}	p_{2j}	•••	$p_{\it ij}$	
: ;	: 🗸	[: 🗸	I	: \	

离散型随机变量 (X,Y) 的分布函数为

$$F(x,y) = \sum_{x_i \le x} \sum_{y_i \le y} p_{ij},$$

其中和式是对一切满足 $x_i \le x, y_j \le y$ 的i, j求和.

■ 1.5 二维连续型随机变量的概率密度

定义:对于二维随机变量(X,Y)的分布函数 F(x,y),如果存在非负实函数 f(x,y),使得对于任意的实数 x,y

$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(u,v) du dv,$$

则称(X, Y)是连续型的二维随机变量,函数 f(x,y) 称为二维随机变量(X, Y)的概率密度,或称为 X 和 Y 的联合概率密度。

■ 1.5 二维连续型随机变量的概率密度-性质 $\mathbf{1}^0$ $f(x,y) \ge \mathbf{0}$;

$$2^{0} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dx dy = F(\infty,\infty) = 1;$$

 3^{0} 若f(x,y)在点(x,y)连续,则有 $\frac{\partial^{2} F(x,y)}{\partial x \partial y} = f(x,y).$

 4^0 设 G 是平面上的一个区域,点 (X,Y) 落在

$$G$$
 内的概率为: $P\{(X,Y) \in G\} = \iint_G f(x,y) dx dy$.

■ 1.5 二维连续型随机变量的概率密度-几何意义

几何上, z = f(x,y) 表示空间的一个曲面.

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, \mathrm{d}x \, \mathrm{d}y = 1$$

表示介于f(x, y)和 xoy 平面之间的空间区域的全部体积等于1.

$$P\{(X,Y)\in G\}=\iint_G f(x,y)\,\mathrm{d}x\,\mathrm{d}y,$$

 $P\{(X,Y) \in G\}$ 的值等于以G为底,以曲面z = f(x,y)为顶面的柱体体积.

■ 1.5 二维连续型随机变量的概率密度-常用分布

二维均匀分布:设D是平面上的有界区域,其面积为A

如果二维随机变量X,Y)的密度函数为

$$f(x, y) = \begin{cases} \frac{1}{A} & (x, y) \in D \\ 0 & (x, y) \notin D \end{cases}$$

则称二维随机变量X,Y)服从区域D上的均匀分布。

■ 1.5 二维连续型随机变量的概率密度-常用分布

二维正态分布:设二维随机变量X,Y)的密度函数为

$$f(x, y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$

$$\cdot \exp \left\{ -\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right] \right\}$$

则称随机变量(X, Y)服从参数为 $(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$ 的正态分布,记作(X, Y)~ $N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$

$$-\infty < \mu_i < +\infty \ (i = 1, 2), \quad \sigma_i > 0 \ (i = 1, 2), \quad -1 < \rho < 1.$$

■ § 2 边缘分布

如果(X, Y)是一个二维随机变量,则它的分量X(或者Y)是一维随机变量,因此分量X(或者Y) 也有分布.我们称X(或者Y)的分布为二维随机变量X0、X1、X2、X3、X3。

边缘分布也称为边沿分布或边际分布.

联合分布 边缘分布

■(1)已知联合分布函数求边缘分布函数

设二维随机变量X, Y)的分布函数为(x, y),则分量 X的分布函数为

$$F_X(x) = P\{X \le x\} = P\{X \le x, Y < +\infty\}$$
$$= \lim_{y \to +\infty} F(x, y) = F(x, +\infty)$$

同理,分量Y的分布函数为

$$F_{Y}(y) = P\{Y \le y\} = P\{X < +\infty, Y \le y\}$$
$$= \lim_{x \to +\infty} F(x, y) = F(+\infty, y)$$

■(2)已知联合分布律求边缘分布律 X以及Y的边缘分布律也可以由表表示

X	y_1	y_2		y _j	•••	p_i .	
x_1	p_{11}	p_{12}	•••	p_{1j}		p_1 .	
x_2	p_{21}	p_{22}		p_{2j}		p_2 .	
:	•	•	•••	• •	٠.	•	
x_i	p_{i1}	p_{i2}		p_{ij}		p_i .	
		•	••	0 0	·./		
$p_{\cdot j}$	$p_{\cdot 1}$	$p_{\cdot 2}$		$p_{.j}$		1	19

■(3)已知联合密度函数求边缘密度函数

若(X, Y)的联合密度函数为 f(x, y),则随机变量 X 的边缘密度函数为

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

随机变量 Y 的边缘密度函数为

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx$$

■ § 3.1 离散型随机变量的条件分布

设(X,Y) 是二维离散型随机变量,对于固定的j,若 $P{Y=y_i}>0$,则称

$$P\{X = x_i \mid Y = y_j\} = \frac{P\{X = x_i, Y = y_j\}}{P\{Y = y_j\}} = \frac{p_{ij}}{p_{\bullet j}}, i = 1, 2, \dots$$

为在 $Y=y_j$ 条件下随机变量 X 的条件分布律。

对于固定的 i, $P{X = x_i} > 0$, 则称

$$P\{Y = y_{j} | X = x_{i}\} = \frac{P\{X = x_{i}, Y = y_{j}\}}{P\{X = x_{i}\}} = \frac{p_{ij}}{p_{i\bullet}},$$

$$j = 1, 2, \dots$$

为在 $X = x_i$ 条件下随机变量 Y 的条件分布律.

■ § 3. 2 连续型随机变量的条件分布和密度

则当 $f_Y(y) > 0$ 时,可得随机变量 $X \neq Y = y$ 的条件下的条件密度函数

$$f_{X|Y}(x|y) = \frac{f(x, y)}{f_Y(y)}$$

当 $f_X(x) > 0$ 时,可得随机变量 在X = x的条件下的条件密度函数

$$f_{Y|X}(y|x) = \frac{f(x, y)}{f_X(x)}$$

联合分布、边缘分布、条件分布的关系

■ § 4 独立分布

设(X, Y)是二维随机变量,其联合分布函数为F(x, y),又随机变量X的分布函数为 $F_{X}(x)$,随机变量Y的分布函数为 $F_{Y}(y)$. 如果对于任意的x, y, 有

$$F(x, y) = F_X(x) \cdot F_Y(y)$$

则称X,Y是相互独立的随机变量.

■ § 4.1 离散型随机变量的独立性

设(X, Y)是二维离散型随机变量 其联合分布律为

$$p_{ij} = P\{X = x_i, Y = y_j\}$$
 ($i, j = 1, 2, ...$)

又随机变量X的分布律为

$$p_{i} = P\{X = x_i\} \qquad (i = 1, 2, \dots)$$

随机变量的分布律为

$$p_{.j} = P\{Y = y_j\}$$
 ($j = 1, 2, ...$)

如果对于任意的,j $p_{ii} = p_{i.} p_{.i}$

则称X, Y是相互独立的随机变量

联合分布律以及边缘分布律表

$\searrow Y$						
X	\mathcal{Y}_1	\mathcal{Y}_2	• • •	${\mathcal Y}_j$	• • •	$p_{i\cdot}$
x_1	p_{11}	p_{12}	• • •	p_{1j}	• • •	$p_{1\cdot}$
\mathcal{X}_2	p_{21}	p_{22}	• • •	p_{2j}	• • •	$p_{2\cdot}$
:	•	•		•		•
\mathcal{X}_{i}	p_{i1}	p_{i2}	• • •	p_{ij}	• • •	$ p_{i\cdot} $
:	:	• •		:		:
$\overline{p_{\cdot j}}$	$p_{\cdot 1}$	$p_{\cdot 2}$	• • •	$p_{\cdot j}$	• • •	
•						

■ § 4. 2 连续型随机变量的独立性

设(X, Y)是二维连续型随机变量 其联合密度函数为f(x, y),又随机变量X的边缘密度函数为 $f_X(x)$,随机变量Y的边缘密度函数为 $f_Y(y)$,

如果对于几乎所有的 x, y 有 $f(x, y) = f_x(x)f_y(y)$

则称 X, Y是相互独立的随机变量 .

特别地,上式对f(x,y)的所有连续点(x,y)必须成立.

■ § 4. 3 n维随机变量的独立性

设(X_1 , X_2 , ..., X_n)是n维随机变量,其联合分布函数为 $F(x_1$, x_2 , ..., x_n),又随机变量 X_i 的分布函数为 $F_{X_i}(x_i)$,(i=1, 2, ..., n). 如果对于任意的n维实数组(x_1 , x_2 , ..., x_n),有 $F(x_1$, x_2 , ..., x_n)= $F_{X_1}(x_1)F_{X_2}(x_2)$... $F_{X_n}(x_n)$ 则称 X_1 , X_2 , ..., X_n 是相互独立的随机变量.

- § 5 连续型随机变量函数的分布
 - (1) 连续型随机变量和的分布

设二维连续型随机变量(X, Y)的联合密度函数为f(x, y),则Z = X + Y的密度函数为

$$f_Z(z) = \int_{-\infty}^{+\infty} f(x, z-x) dx$$

或
$$f_Z(z) = \int_{-\infty}^{+\infty} f(z - y, y) dy$$

特别地,如果随机变量与Y相互独立,则有

$$f(x, y) = f_X(x)f_Y(y)$$

此时,我们有

$$f_{Z}(z) = \int_{-\infty}^{+\infty} f_{X}(x) f_{Y}(z-x) dx$$

$$f_{Z}(z) = \int_{-\infty}^{+\infty} f_{X}(z-y) f_{Y}(y) dy$$

$$f_X(x) * f_Y(y)$$
 卷积公式!

一般地,我们有如下缝:

如果随机变量X = Y相互独立,且

$$X \sim N(\mu_1, \sigma_1^2), \quad Y \sim N(\mu_2, \sigma_2^2)$$

$$Z = X + Y$$
,

则
$$Z \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

更一般地,我们有如下结论:

如果随机变量
$$X_1$$
, X_2 , \cdots , X_n 相互独立,

$$X_i \sim N(\mu_i, \sigma_i^2)$$
 $(i=1, 2, ..., n)$

又
$$a_1$$
, a_2 , ..., a_n 为 n 个实常数,

- § 5 连续型随机变量函数的分布
 - (2) 其它的分布

设(X, Y)是二维连续型随机变量 其联合密度逐数为f(x, y), Z = g(X, Y)

求随机变量函数Z = g(X, Y)的密度函数 $f_Z(z)$

解题步骤

- 1. 先求随机变量函数Z = g(X, Y)的分布函数 $F_Z(Z)$
- 2. 再求随机变量函数Z = g(X,Y)的密度函数 $f_Z(z) = F'_Z(z)$,

设 X_1, X_2, \cdots, X_n 是独立的连续型随机变量, X_i 的分布函数为 $F_i(x)$ ($i = 1, 2, \cdots n$). 令:

$$\mathbf{Z_1} = \min(X_1, X_2, \cdots, X_n)$$
,
 $\mathbf{Z_2} = \max(X_1, X_2, \cdots, X_n)$,

设随机变量 Z_1 的分布函数为 $F_{Z_1}(z)$,

$$F_{Z_1}(z) = P\{Z_1 \le z\}$$

$$= 1 - [1 - F_1(z)][1 - F_2(z)] \dots 1 - F_n(z)]$$

设随机变量 Z_2 的分布函数为 $F_{Z_2}(z)$,

$$F_{\mathbf{Z}_2}(\mathbf{z}) = P\{\mathbf{Z}_2 \le \mathbf{z}\} = F_1(\mathbf{z})F_2(\mathbf{z})\cdots F_n(\mathbf{z})$$

■ § 5 连续型随机变量函数的分布

解题步骤

- 1. 先求随机变量函数Z = g(X, Y)的分布函数 $F_Z(Z)$
- 2. 再求随机变量函数Z = g(X,Y)的密度函数 $f_Z(z) = F'_Z(z)$,

直观理解

$$Z = X + Y \qquad \rightarrow \qquad f_{Z}(z) = \int_{-\infty}^{\infty} f(x, z - x) dx$$

$$Z = Y/X \qquad \rightarrow \qquad f_{Z}(z) = \int_{-\infty}^{\infty} |x| f(x, xz) dx$$

$$Z = XY \qquad \rightarrow \qquad f_{Z}(z) = \int_{-\infty}^{\infty} \left| \frac{1}{x} \right| f\left(x, \frac{z}{x}\right) dx$$

$$F(z) = \iint_{D} f(x,y) dxdy \qquad dy \to ? dz$$

例1 某箱装有100件产品,其中一、二、三等品数目分别 是80,10,10件,现在从中不放回地依次取两件,令

$$X_i = \begin{cases} 1, \ \text{第} i \ \text{件是一等品} \\ 0, \ \text{其它} \end{cases}$$
 $i = 1, 2.$ 试求:

(1) X_1 和 X_2 的联合分布率; (2) 说明 X_1 和 X_2 是否独立.

$$P\{X_1 = 1, X_2 = 1\}$$

$$P\{X_1 = 1, X_2 = 0\}$$

$$P\{X_1 = 0, X_2 = 1\}$$

$$P\{X_1 = 0, X_2 = 0\}$$

X1 X2	1	0	p_i .
1	0.638	0.162	8.0
0	0.162	0.038	0.2
$p_{\cdot j}$	8.0	0.2	1

 $\oplus \exists P\{X_1 = 1, X_2 = 1\} = \mathbf{0.638} \neq P\{X_1 = 1\} \cdot P\{X_2 = 1\} = \mathbf{0.8} * \mathbf{0.8} = \mathbf{0.64},$

因此 X_1 与 X_2 是不独立。

例2: 盒子里装有3只黑球,2只红球,2只白球,在其中任意取4只。以X表示取到黑球的只数,Y表示取到红球的只数。

- (1) 求X和Y的联合分布律;
- (2) 求P{X>Y}, P{X+Y=3}

 $\mathbf{\hat{R}}$: (1) $X=\{0, 1, 2, 3\}$, $Y=\{0, 1, 2\}$

X(黑) Y(红)	0	1	2	3
0				
1				
2				

例2: 盒子里装有3只黑球,2只红球,2只白球,在其中任意取4只。以X表示取到黑球的只数,Y表示取到红球的只数。

- (1) 求X和Y的联合分布律;
- (2) 求P{X>Y}, P{X+Y=3}

 $\mathbf{\hat{R}}$: (1) $X=\{0, 1, 2, 3\}$, $Y=\{0, 1, 2\}$

X(黑) Y(红)	0	1	2	3
0	0	0	$\frac{3}{35}$	$\frac{2}{35}$
1	0	$\frac{6}{35}$	$\frac{12}{35}$	$\frac{2}{35}$
2	$\frac{1}{35}$	$\frac{6}{35}$	$\frac{3}{35}$	0

例2: 盒子里装有3只黑球,2只红球,2只白球,在其中任意取4只。以X表示取到黑球的只数,Y表示取到红球的只数。

- (1) 求X和Y的联合分布律;
- (2) 求P{X>Y}, P{X+Y=3}

X(黑) Y(红)	0	1	2	3
0	0	0	3 35	$\frac{2}{35}$
1	0	$\frac{6}{35}$	$\frac{12}{35}$	2 35
2	$\frac{1}{35}$	$\frac{6}{35}$	$\frac{3}{35}$	0

例2: 盒子里装有3只黑球,2只红球,2只白球,在其中任意取4只。以X表示取到黑球的只数,Y表示取到红球的只数。

- (1) 求X和Y的联合分布律;
- (2) 求P{X>Y}, P{X+Y=3}

解: (2) 求P{X+Y=3}=P{X=1, Y=2}+P{X=2, Y=1}+P{X=3, Y=0}= $\frac{20}{35}$

X(黑) Y(红)	0	1	2	3
0	0	0	$\frac{3}{35}$	$\frac{2}{35}$
1	0	$\frac{6}{35}$	$\frac{12}{35}$	$\frac{2}{35}$
2	$\frac{1}{35}$	$\frac{6}{35}$	$\frac{3}{35}$	0

例3 设二维随机变量 (X, Y) 的概率密度函数为

$$f(x,y) = \begin{cases} 15x^2y & 0 < x < y < 1 \\ 0 & \sharp \stackrel{\sim}{\Sigma} \end{cases}$$

- (1) 求边缘概率密度函数 $f_X(x)$, $f_Y(y)$;
- (2) 求 $f_{Y|X}(y|x)$;
- (3) **求***P*{X + Y ≤ 1}.

解: (1)由
$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

则
$$0 < x < 1$$
时, $f_X(x) = \int_x^1 15x^2y dy = \frac{15}{2}x^2(1-x^2).$

因此
$$f_X(x) = \begin{cases} \frac{15}{2}x^2(1-x^2) & 0 < x < 1 \\ 0 & 其它 \end{cases}$$

则
$$0 < y < 1$$
时, $f_Y(y) = \int_0^y 15x^2y dx = 5y^4$.

因此
$$f_Y(y) = \begin{cases} \mathbf{5}y^4 & \mathbf{0} < y < \mathbf{1} \\ \mathbf{0} &$$
其它

(2)由于
$$0 < x < 1$$
时, $f_X(x) > 0$,

因此
$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \begin{cases} \frac{2y}{1-x^2} & x < y < 1\\ 0 & 其它. \end{cases}$$

$$(3)P\{X+Y \le 1\} = \iint_{x+y \le 1} f(x,y) dx dy = \int_{0}^{\frac{1}{2}} dx \int_{x}^{1-x} 15x^{2}y dy = \frac{5}{64}.$$

例4 设(X, Y)在区域 $D=\{(x,y)|0< x<1,0< y<2\}$ 上服从均匀分布,

- (1) 求X和Y的联合概率密度。
- (2) 设含有a的二次方程为 $a^2 + 2Xa + Y = 0$. 试求a有实根的概率。

解: 由题意知

$$f(x,y) = \begin{cases} \frac{1}{2}, (x,y) \in D, \\ 0, 其它。 \end{cases}$$

方程有实根的条件为

$$4X^2 - 4Y \ge 0$$
, $\exists IY \le X^2$.

因此
$$P{Y \le X^2} = \int_0^1 \int_0^{x^2} \frac{1}{2} dy dx = \int_0^1 \frac{x^2}{2} dx = \frac{1}{6}.$$

例5 设 ξ_1,ξ_2,ξ_3,ξ_4 独立同分布,且

$$P\{\xi_i=0\}=0.6, P\{\xi_i=1\}=0.4, i=1,2,3,4.$$

求:(1) 行列式
$$\xi = \begin{vmatrix} \xi_1 & \xi_2 \\ \xi_3 & \xi_4 \end{vmatrix}$$
 的概率分布;

(2) 方程组
$$\begin{cases} \xi_1 x_1 + \xi_2 x_2 = 0 \\ \xi_3 x_1 + \xi_4 x_2 = 0 \end{cases}$$
 只有零解的概率.

[思路]

要求行列式 ξ 的分布律,先要将 ξ 的所有可能值找到,然后利用独立性将取这些值的概率计算出来,而第二问就是求系数行列式 $\xi \neq 0$ 的概率.

解: (1) 记
$$\eta_1 = \xi_1 \xi_4$$
, $\eta_2 = \xi_2 \xi_3$,

则
$$\xi = \xi_1 \xi_4 - \xi_2 \xi_3 = \eta_1 - \eta_2$$
,

由于 ξ_1,ξ_2,ξ_3,ξ_4 相互独立,故 η_1,η_2 也相互独立,

且 η_1,η_2 都只能取0,1两个值,

$$\overrightarrow{\text{IM}}$$
 $P\{\eta_1=1\}=P\{\eta_2=1\}=P\{\xi_2=1,\xi_3=1\}$

$$= P\{\xi_2 = 1\}P\{\xi_3 = 1\} = 0.16,$$

$$P{\eta_1 = 0} = P{\eta_2 = 0} = 1 - 0.16 = 0.84.$$

随机变量 $\xi = \eta_1 - \eta_2$ 有3个可能取值 -1, 0, 1.

$$P\{\xi = -1\} = P\{\eta_1 = 0, \eta_2 = 1\} = P\{\eta_1 = 0\} P\{\eta_2 = 1\}$$

$$= 0.84 \times 0.16 = 0.1344,$$

$$P\{\xi = 1\} = P\{\eta_1 = 1, \eta_2 = 0\}$$

$$= P\{\eta_1 = 1\} P\{\eta_2 = 0\}$$

$$= 0.16 \times 0.84 = 0.1344,$$

$$P\{\xi = 0\} = 1 - P\{\xi = -1\} - P\{\xi = 1\} = 0.7312.$$

于是行列式ξ的分布律为

$$\xi$$
 -1 0 1

 P 0.1344 0.7312 0.1344

(2)由于齐次方程

$$\begin{cases} \xi_1 x_1 + \xi_2 x_2 = 0 \\ \xi_3 x_1 + \xi_4 x_2 = 0 \end{cases}$$

只有零解的充要条件是系数行列式不为0,等价于

$$P\{\xi \neq 0\} = 1 - P\{\xi = 0\} = 1 - 0.7312 = 0.2688.$$

06 设随机变量X,Y相互独立,且具有相同的分布,它们的概率密度均如下,求Z=Y/X的概率密度

$$f(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & \sharp \stackrel{\sim}{\subset} \end{cases}$$

$$\begin{aligned}
\mathbf{f}_{Z}(z) &= \int_{-\infty}^{\infty} |x| f(x, zx) dx = \int_{-\infty}^{\infty} |x| f(x) f(zx) dx \\
&= \int_{0}^{\infty} x e^{-(1+z)x} dx \\
&= x \left(-\frac{1}{1+z} e^{-(1+z)x} \right) |_{0}^{\infty} - \int_{0}^{\infty} -\frac{1}{1+z} e^{-(1+z)x} dx \\
&= -\frac{1}{(1+z)^{2}} e^{-(1+z)x} |_{0}^{\infty} &= \frac{1}{(1+z)^{2}}
\end{aligned}$$

$$f_{Z}(z) = \begin{cases} \frac{1}{(1+z)^{2}}, & z > 0\\ 0, & \sharp \dot{\Xi} \end{cases}$$

$$\int f(x)g(x)dx = f(x)G(x) - \int f'(x)G(x)dx$$

例 7 设随机变量 X 与 Y 相互独立,分别服从参数为 λ_1 与 λ_2 的指数分布,令 $Z = \frac{X}{Y}$,试求随机变量 Z 的密度函数.

解:

由题意,可知

$$f_X(x) = \begin{cases} \lambda_1 e^{-\lambda_1 x} & x > 0 \\ 0 & x \le 0 \end{cases} \quad f_Y(y) = \begin{cases} \lambda_2 e^{-\lambda_2 y} & y > 0 \\ 0 & y \le 0 \end{cases}$$

由随机变量X与Y相互独立性,我们有

$$f_Z(z) = \int_{-\infty}^{+\infty} |y| f_X(yz) f_Y(y) dy \qquad yz > 0, y > 0$$

(1). 若
$$z \leq 0$$
, $f_z(z) = 0$.

$$(2)$$
. 若 $z > 0$,

$$f_{Z}(z) = \int_{0}^{+\infty} y \lambda_{1} e^{-\lambda_{1} y z} \lambda_{2} e^{-\lambda_{2} y} dy$$

$$= \lambda_{1} \lambda_{2} \int_{0}^{+\infty} y e^{-(\lambda_{2} + \lambda_{1} z) y} dy = \frac{\lambda_{1} \lambda_{2}}{(\lambda_{2} + \lambda_{1} z)^{2}}$$

所以, $Z = \frac{X}{Y}$ 的密度函数为

$$f_{Z}(z) = \begin{cases} \frac{\lambda_{1}\lambda_{2}}{(\lambda_{2} + \lambda_{1}z)^{2}} & z > 0\\ 0 & z \le 0 \end{cases}$$

 $\boxed{\textbf{例}8}$ 设随机变量X,Y相互独立,且具有相同的分布,它们的概率密度均如下,求Z=X+Y的概率密度

$$f(x) = \begin{cases} e^{1-x}, & x > 1 \\ 0, & \sharp \dot{\Xi} \end{cases}$$

$$\mathbf{F}: f_{Z}(z) = \int_{-\infty}^{\infty} f(x, z - x) dx = \int_{-\infty}^{\infty} f(x) f(z - x) dx
= \int_{1}^{\infty} e^{(1-x)+(1-z+x)} dx
= \int_{1}^{\infty} e^{(2-z)} dx = \int_{1}^{z-1} e^{(2-z)} dx
= e^{(2-z)} x |_{1}^{z-1} = (z-2) e^{(2-z)}$$

$$f_Z(x) = \begin{cases} (z-2)e^{(2-z)}, & z > 2\\ 0, & \sharp \dot{\Xi} \end{cases}$$

例9 设二维随机变量有密度函数:

$$f(x,y) = \begin{cases} Ae^{-(4x+3y)}, & x > 0, y > 0; \\ 0, & \text{id} \end{cases}$$

- (1) 求常数A
- (2) 求边缘概率密度 $f_X(x), f_Y(y)$
- (3) X,Y 是否相互独立。

#: (1)
$$1 = \int_0^{+\infty} \int_0^{+\infty} f(x, y) dx dy = \int_0^{+\infty} \int_0^{+\infty} A e^{-(4x+3y)} dx dy = \frac{A}{12}$$

则
$$A = 12$$
.

(2)
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} 4e^{-4x}, x > 0 \\ 0, & \text{#w} \end{cases}$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} 3e^{-3y}, y > 0 \\ 0, & \text{#} \end{cases}$$

(3)
$$f(x, y) = f_X(x) f_Y(y)$$

所以 X,Y 相互独立.

例10设随机变量(X,Y)的联合概率密度为

$$f(x,y) = \begin{cases} cxe^{-y}, & 0 < x < y < +\infty, \\ 0, & \text{#e.} \end{cases}$$

- (1) 求常数 c;
- (2) X 与 Y 是否独立?为什么?
- (3) $Rec{R} f_{X|Y}(x|y), f_{Y|X}(y|x);$
- (4) $\Re P\{X < 1 | Y < 2\}, P\{X < 1 | Y = 2\};$
- (5) 求 (X,Y) 的联合分布函数;
- (6) 求 Z = X + Y 的密度函数;
- (7) $\Re P\{X+Y<1\}$; (8) $\Re P\{\min(X,Y)<1\}$.

解: (1) 由
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = 1$$
, 得

$$1 = \int_0^{+\infty} dy \int_0^y cx e^{-y} dx = \frac{c}{2} \int_0^{+\infty} y^2 e^{-y} dy = \frac{c}{2} \Gamma(3) = c,$$

$$\Rightarrow c = 1$$
.

$$\Gamma(\mathbf{r}) = \int_0^\infty x^{r-1} e^{-x} dx$$
, = $(r-1)!$

(2)
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_{x}^{+\infty} x e^{-y} dy, & x > 0, \\ 0, & x \le 0. \end{cases}$$

$$=\begin{cases} xe^{-x}, & x>0, \\ 0, & x\leq 0. \end{cases}$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d}x$$

$$=\begin{cases} \int_0^y xe^{-y} dx, & y > 0, \\ 0, & y \le 0. \end{cases}$$

$$= \begin{cases} \frac{1}{2} y^2 e^{-y}, & y > 0, \\ 0, & y \le 0. \end{cases}$$

由于在 $0 < x < y < +\infty$ 上, $f(x,y) \neq f_X(x) \cdot f_Y(y)$, 故 X 与 Y 不独立.

(3)
$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

$$= \begin{cases} \frac{2x}{y^2}, & 0 < x < y < +\infty, \\ 0, & 其他. \end{cases}$$

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$$

$$= \begin{cases} e^{x-y}, & 0 < x < y < +\infty, \\ 0, & 其他. \end{cases}$$

(4)
$$P\{X < 1 | Y < 2\} = \frac{P\{X < 1, Y < 2\}}{P\{Y < 2\}}$$

$$= \frac{\int_{-\infty}^{1} \int_{-\infty}^{2} f(x,y) dx dy}{\int_{-\infty}^{2} f_{Y}(y) dy} = \frac{\int_{0}^{1} dx \int_{x}^{2} x e^{-y} dy}{\int_{0}^{2} \frac{1}{2} y^{2} e^{-y} dy}$$

$$=\frac{1-2e^{-1}-\frac{1}{2}e^{-2}}{1-5e^{-2}}.$$

又由条件密度的性质知

$$P\{X < 1 | Y = 2\} = \int_{-\infty}^{1} f_{X|Y}(x|2) dx,$$

而
$$f_{X|Y}(x|2) =$$

$$\begin{cases} \frac{x}{2}, & 0 < x < 2, \\ 0, & 其他. \end{cases}$$

从而有

$$P\{X < 1|Y = 2\} = \int_0^1 \frac{x}{2} dx = \frac{1}{4}.$$

(5) 由于
$$F(x,y) = P\{X \le x, Y \le y\}$$
,故有:

当
$$x < 0$$
或 $y < 0$ 时,有 $F(x,y) = 0$.

当
$$0 \le y < x < +\infty$$
时,有

$$F(x,y) = P\{X \le x, Y \le y\}$$

$$= \int_0^y dv \int_0^v u e^{-v} du = \frac{1}{2} \int_0^y v^2 e^{-v} dv$$

$$= 1 - (\frac{y^2}{2} + y + 1)e^{-y}.$$

$$\stackrel{\text{def}}{=} 0 \le x < y < +\infty \text{ for } f(x)g(x)dx = f(x)G(x) - \int f'(x)G(x)dx$$

$$F(x,y) = P\{X \le x, Y \le y\} = \int_0^x du \int_u^y u e^{-v} dv$$

$$= \int_0^x u(e^{-u} - e^{-y}) du$$

$$= 1 - (x + 1)e^{-x} - \frac{1}{2}x^2 e^{-y}.$$

故得 $F(x,y) = \begin{cases} 0, & x < 0 \text{ od } y < 0, \\ 1 - (\frac{y^2}{2} + y + 1)e^{-y}, & 0 \le y < x < \infty, \\ 1 - (x + 1)e^{-x} - \frac{1}{2}x^2e^{-y}, 0 \le x < y < \infty. \end{cases}$

(6) 根据
$$f_Z(z) = \int_{-\infty}^{+\infty} f(x,z-x) dx$$
,

由于要被积函数f(x,z-x)非零,只有当

$$0 < x < z - x$$
,即 $0 < x < \frac{z}{2}$ 时,从而有:

当
$$z < 0$$
时, $f_z(z) = 0$;

(7)
$$P{X + Y < 1} = \int_{-\infty}^{1} f_{z}(z) dz$$

$$= \int_0^1 \left[e^{-z} + \left(\frac{z}{2} - 1 \right) e^{-\frac{z}{2}} \right] dz = 1 - e^{-\frac{1}{2}} - e^{-1}.$$

(8)
$$P\{\min(X,Y) < 1\} = 1 - P\{\min(X,Y) \ge 1\}$$

$$=1-P\{X \ge 1, Y \ge 1\}$$

$$=1-\int_1^{+\infty}\mathrm{d}v\int_0^v u\mathrm{e}^{-v}\,\mathrm{d}u$$

$$=1-\frac{1}{2}\int_{1}^{+\infty}v^{2}e^{-v}\,dv=1-\frac{5}{2}e^{-1}.$$