

In [3]: Supra_options = avp.loc[avp["Model"] == 'Supra']
Supra_options[['Year', 'Model', 'Title', 'Price']]

Out[3]:

	Year	Model	Title	Price
7588	2022.0	Supra	2022 Toyota Supra GTS +alcantara Seats	95888
8661	2021.0	Supra	2021 Toyota Supra GTS	97990
12246	2020.0	Supra	2020 Toyota Supra GTS	87990
12261	2021.0	Supra	2021 Toyota Supra GTS +alcantara Seats	94995
15491	2023.0	Supra	2023 Toyota Supra GTS +alcant Seats +matte Paint	102000
15670	1993.0	Supra	1993 Toyota Supra	69880
15971	1994.0	Supra	1994 Toyota Supra TURBO 1994	77888


```
In [5]: avp.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 16734 entries, 0 to 16733
        Data columns (total 19 columns):
             Column
                                Non-Null Count
                                16733 non-null
                                                float64
             Year
             Model
                                16733 non-null
                                16706 non-null
             Car/Suv
             UsedOrNew
                                16733 non-null
                                                object
             Transmission
                                16733 non-null
                                                object
             Engine
                                16733 non-null
                                                object
                                                object
            DriveType
                                16733 non-null
             FuelTyne
                                16733 non-null
                                                object
         10 FuelConsumption
                                16733 non-null
                                                object
         11 Kilometres
                                                object
                                16733 non-null
                                                object
         13 Cation
                                16284 non-null
                                                object
         14 CylindersinEngine
                               16733 non-null
                                                object
                                16452 non-null
                                15130 non-null
                                                object
         16 Doors
         17 Seats
                                15029 non-null
                                                object
       18 Price
                                16731 non-null
                                                object
        dtypes: float64(1), object(18)
        memory usage: 2.4+ MB
```

Value for Money

Price

Fuel Consumption

import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings('ignore') sns.pairplot(avp)
plt.show() 300000 <u>200000</u> 1990 2000 2010 2020 0 20 0 200000 400000 Kilometres 10000 Price 20000 2 4 Engine_size FuelConsumption

1st Iteration

Fit OLS Regression Model

2nd Iteration

In [48]: import statsmodels.api as

In [49]: # Add constant term to th
X_train_model1 = sm.add_c

Fit OLS model
ols_model1 = sm.OLS(y_tra
ols_results1 = ols_model1

Print summary of the OL print(ols_results1.summar

Dep. Variable:
Model:
Method:
L
Date:
Wed,
Time:
No. Observations:
Df Residuals:
Df Model:

Covariance Type:

const
log_Kilometres
log_Engine_size
Transmission_Manual
DriveType_AND
DriveType_Front
DriveType_Front
DriveType_Rear
CylindersinEngine_3 cyl
CylindersinEngine_5 cyl
CylindersinEngine_5 cyl
CylindersinEngine_6 cyl
CylindersinEngine_8 cyl

Omnibus: Prob(Omnibus): Skew: Kurtosis:

Notes:

[1] Standard Errors assum [2] The condition number strong multicollinearity

In [53]: # Fit OLS model
 ols_model2 = sm
 ols_results2 =
Print summary

Dep. Variable:
Model:
Method:

print(ols_result

Date:
Time:
No. Observation:
Df Residuals:
Df Model:
Covariance Type

const log_Year log_Kilometres log Engine size Transmission Mar DriveType_AWD DriveType_Front DriveType_Rear CylindersinEngi CylindersinEngi CylindersinEngi CylindersinEngi _____ Omnibus: Prob(Omnibus): Skew: Kurtosis:

Notes:

[1] Standard Err [2] The condition strong multicol

3rd Iteration

In [55]: # Fit OLS model
 ols_model3 = sm.OLS(y_train, X_train_model3)
 ols_results3 = ols_model3.fit()

Print summary of the OLS regression results
print(ols_results3.summary())

OLS Regression Results

______ Dep. Variable: log Value R-squared: Model: OLS Adj. R-squared: 0.699 Method: F-statistic: 761.4 Least Squares Date: Wed, 01 May 2024 Prob (F-statistic): 0.00 Time: 09:05:47 Log-Likelihood: -213.18 No. Observations: 2291 AIC: 442.4 Df Residuals: 2283 BIC: 488.2 Df Model: Covariance Type: nonrobust

______ coef [0.025 -1125.9484 24.227 -46.475 0.000 -1173.458 -1078.439 const log Year 149.2425 3.178 46.965 0.000 143.011 155.474 log_Kilometres -0.1407 0.012 -12.215 0.000 -0.163 -0.118 log_Engine_size -0.2922 0.027 -10.840 0.000 -0.345 -0.239 Transmission_Manual -0.0735 0.014 -5.093 -0.102 -0.045 0.000 -0.0806 DriveType Front 0.015 -5.212 0.000 -0.111 -0.050 CylindersinEngine 4 cyl 0.0405 0.018 2.244 0.025 0.005 0.076 CylindersinEngine 8 cyl 0.2408 0.053 4.515 0.000 0.136 0.345 _____ Omnibus: Durbin-Watson: 2.010 267.973 Prob(Omnibus): 0.000 Jarque-Bera (JB): 781.348

Notes:

Skew:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Prob(JB):

Cond. No.

2.15e-170

6.22e+04

[2] The condition number is large, 6.22e+04. This might indicate that there are strong multicollinearity or other numerical problems.

-0.616

5.583

Variance Inflation Factor

Out[50]:

	Features	VIF
0	const	19404227.17
9	CylindersinEngine_4 cyl	399.38
11	CylindersinEngine_6 cyl	350.37
8	CylindersinEngine_3 cyl	50.24
12	CylindersinEngine_8 cyl	29.45
10	CylindersinEngine_5 cyl	9.09
3	log_Engine_size	4.08
6	DriveType_Front	3.88
7	DriveType_Rear	2.49
5	DriveType_AWD	2.05
2	log_Kilometres	1.50
1	log_Year	1.48
4	Transmission_Manual	1.05

Correlation Coefficient

Out[51]:

	-
pairs	
(CylindersinEngine_4 cyl, CylindersinEngine_6 cyl)	0.888923
(log_Engine_size, CylindersinEngine_6 cyl)	0.715344
(CylindersinEngine_4 cyl, log_Engine_size)	0.658813
(DriveType_Front, log_Engine_size)	0.615525
(DriveType_Front, DriveType_Rear)	0.609671
(log_Kilometres, log_Year)	0.508714

Train Model Summary:

Mean Squared Error (MSE) on training data: 0.07052568163676846

R-squared on training data: 0.700096565076077

Test Model Summary:

Mean Squared Error on testing data: 0.2995668811992725

R-squared: 0.6596185666202541

- 1. Year of Manufacture
- 2. Engine Size

Further findings

- Avoid manual
- Avoid Front Wheel Drive
- 4 cylinder vehicles

3rd Iteration

In [55]: # Fit OLS model ols_model3 = sm.OLS(y_train, X_train_model3) ols_results3 = ols_model3.fit() # Print summary of the OLS regression results print(ols_results3.summary()) OLS Regression Results Dep. Variable: log_Value R-squared: Model: OLS Adj. R-squared: Method: Least Squares F-statistic: 761.4 Date: Wed, 01 May 2024 Prob (F-statistic): 0.00 09:05:47 Log-Likelihood: Time: -213.18 2291 AIC: 442.4 No. Observations: Df Residuals: 2283 BIC: 488.2 Df Model: Covariance Type: nonrobust _____ coef std err P>|t| [0.025 0.975] -1125.9484 -46.475 -1173.458 -1078.439 log Year 149.2425 3.178 46.965 143.011 155.474 log Kilometres -0.1407 0.012 -12.215 0.000 -0.163 -0.118 log Engine size -0.2922 -0.239 0.027 -10.840 -0.345

-0.0735

-0.0806

0.0405

0.2408

0.000

-0.616

5.583

Notes:

Skew:

Omnibus:

Kurtosis:

Transmission Manual

CylindersinEngine 4 cyl

CylindersinEngine 8 cyl

DriveType Front

Prob(Omnibus):

Standard Errors assume that the covariance matrix of the errors is correctly specified.
 The condition number is large, 6.22e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Durbin-Watson:

Prob(JB):

Cond. No.

Jarque-Bera (JB):

-0.045

-0.050

0.076

0.345

0.136

781.348

2.15e-170

6.22e+04

