Antiarrhythmicagent

Action Potential of Nodal Cell (SA Node)

Cardiac Arrythmia

- Simply dysregulation causes abnormalities in impulse formation and conduction in the myocardium
- cardiac arrhythmias may cause the heart to beat
 - ✓ too slowly or too rapidly, and
 - ✓ irregularly
- Arrhythmias are heart-rhythm problems they occur when the electrical impulses to the heart that coordinate heartbeats are not working properly, making the heart beat too fast/slow or inconsistently.
- An electrocardiogram (ECG) provides a record of the electrical activity of the heart. Careful interpretation of the ECG along with a thorough physical assessment is necessary to determine the cause and type of arrhythmia.

Antiarrythmic drug

- Antiarrythmic drug act by blocking myocardial Na⁺, K⁺ or Ca⁺⁺ channels.
- the antiarrhythmic drugs can modify impulse generation and conduction.

Vaugham-Williams classification

Class I – Na+ Channel Blockers

Class II – Beta-adrenergic Blockers

Class III - Potassium channel blockers

Class IV - Calcium Channel Blocker

CLASS I-Na⁺ Channel blocker

- These agents work by selectively blocking the fast sodium channels and depressing phase 0 of the action potential.
- The decrease in phase 0 depolarization results in decreased conduction velocity
- Class I agents can be further subdivided based on their effects on the refractory period and the rate of repolarization.
 - ✓ Ia lengthens the action potential (right shift)
 - ✓ Ib shortens the action potential (left shift)
 - ✓ Ic does not significantly affect the action potential (no shift)

Class IA

- Moderate sodium channel blocker
- Lengthen action potential
- Slow rate of rise of phase 0
- Prolong repolarization
- Increased duration of action potential
- Includes
 - ✓ Quinidine: 1st antiarrhythmic used, treat both atrial and ventricular arrhythmias, increases refractory period
 - ✓ Procainamide
 - ✓ Disopyramide

CLASS IB

- · Mild sodium channel blocker
- Shortened action potential, repolarization
- Limited effect on rate of rise of phase 0
- Includes
 - <u>Lidocane</u> (also acts as local anesthetic) blocks Na+ channels mostly in ventricular cells
 - Mexiletine oral lidocaine derivative, similar activity
 - Phenytoin anticonvulsant that also works as antiarrhythmic similar to lidocane

CLASS IC

- Marked sodium channel blocker
- Markedly reduces rate of rise of phase 0
- No effect of repolarization
- No effect on action potential duration
- Includes
 - ✓ Flecainide
 - ✓ Propafenone

CLASS II- β-adrenergic blockers

- · Decrease sympathetic activity of the heart
- Inhibits phase 4 depolarization in SA and AV nodes
- depress automaticity, prolonging AV conduction, and decreasing heart rate and contractility.
- Useful in the treatment of supraventricular tachycardias, Atrial fibrillation and atrial flutter.
- Includes
 - ✓ Propranolol
 - ✓ Metoprolol
 - ✓ Atenolol
 - √ esmolol

Class III-K+ channel blockers

- Blocks K⁺ channel therefore prolong repolarization (phase 3 of cardiac action potential) with out altering phase 0 of depolarization.
- Prolong the action potential duration (APD) and refractory period.
- Class III agents have the potential to prolong the QT interval of the EKG.
- Useful in the treatment of supraventricular tachycardias (SVT) and ventricular tachycardia (VTach)
- Includes
 - Amiodarone
 - <u>Ibutilide</u>s
 - Bretylium

CLASS IV – Ca²⁺ channel blockers

- They decrease conduction through the AV node.
- Decrease slow inward current by calcium, resulting in a decreased rate of Phase 4 spontaneous depolarization
- reduces the force of contraction
- include verapamil and diltiazem.

Class	Basic Mechanism	Comments
1	sodium-channel blockade	Reduce phase 0 slope and peak of action potential.
IA	- moderate	Moderate reduction in phase 0 slope; increase APD; increase ERP.
IB	- weak	Small reduction in phase 0 slope; reduce APD; decrease ERP.
IC	- strong	Pronounced reduction in phase 0 slope; no effect on APD or ERP.
<u>II</u>	beta-blockade	Block sympathetic activity; reduce rate and conduction.
Ш	potassium-channel blockade	Delay repolarization (phase 3) and thereby increase action potential duration and effective refractory period.
<u>IV</u>	<u>calcium-channel</u> <u>blockade</u>	Block L-type calcium-channels; most effective at SA and AV nodes; reduce rate and conduction.

Abbreviations: APD, action potential duration; ERP, effective refractory period; SA, sinoatrial node; AV, atrioventricular node.

Miscellaneous

- adenosine - electrolyte supplement (magnesium and potassium salts) - digitalis compounds (cardiac glycosides) - atropine (muscarinic receptor antagonist)

Digoxin

 Cardiac glycosides obtained from the foxglove plant Digitalis Lanata

MOA: inhibit Na+/K+ ATPase

- ✓ Increases the force of contraction
- ✓ slowing of the heart rate;
- ✓ decreased conduction velocity through the AV node

A/E

- Narrow therapeutic index (0.8-2.0ng/mL).
- Most common: Hypokalemia
- · loss of appetite, nausea, vomiting and diarrhea
- Visual disturbance (Blurred or yellow vision), confusion, drowsiness, dizziness
- Less: heart block

Reversal of Toxicity

Digoxin immune FAB (Digibind)

Contraindication

Hypokalemia, hypercalcemia, Ventricular tachycardia, Wolf-Parkinson-White syndrome

Nursing Consideration

- Monitor apical pulse for 1 min before administering; hold dose if pulse < 60 in adult or < 90 in infant; retake pulse in 1 hr. If adult pulse remains < 60 or infant < 90, hold drug and notify prescriber.
- Monitor ECG, rhythm or rate.
- Monitor carefully for adverse reactions.
- Report weight gain > 1 kg/d.
- Maintain intake/ output for the few first days because it increases renal output.
- Monitor serum digoxin, potassium, magnesium and calcium level.