Processamento Paralelo e Distribuído

Relatório

Trabalho 1

Ataque de Dicionário

Nome: Wanderson Ralph Silva Vita

Matrícula: 2013101887

Professor: João Paulo

Sumário

Processamento Paralelo e Distribuido Relatório	1
	1
Trabalho 1	1
Ataque de Dicionário	1
Sumário	2
Configurações	3
Executar	3
Compilar	3
Executar Metres	3
Executar Escravo	3
Executar Cliente	3
Para rodar a aplicação siga essa ordem	3
Tempo de Resposta	4
Speed Up	5
Eficiência	5
Overhead	6

Configurações

Os fontes possi o arquivo de configuração config.properties onde pode ser configurado o ip do mestre, além do nome do mesmo, tempos de checkpoint e monitoramento.

```
trab1 > properties > ① config.properties

1 master.name = mestre

2 run.parallel = true

3 size.vector = 1000

4 timer.monitor = 20

5 timer.checkpoint = 10

6 timer.addSlave = 30

7 server.hostname = localhost
```

Executar

O código fonte possui um arquivo makefile que permite compilar, e executar o mestre, escravo e cliente.

Compilar

make

Executar Metres

make master

Executar Escravo

make slave

Executar Cliente

make client

Para rodar a aplicação siga essa ordem

- 1. make
- 2. Terminal 1
 - a. cd bin
 - b. rmiregistry
- 3. Terminal 2
 - a. make master
- 4. Terminal 3 à n
 - a. make slave
- 5. Terminal n+1
 - a. make client
 - i. Esse já passa um arquivo e knotext de teste.

Tempo de Resposta

Como esperado, o tempo de resposta diminui conforme aumenta o número de máquinas. E conforme vai aumentando, a diferença de tem vai diminuindo.

Speed Up

Eficiência

Overhead

Intuitivamente com o aumento do número máquinas, o overhead deveria ser maior. Mas como o vetor é dividido em faixas iguais de mil em mil, isso permite que enquanto espera resposta de uma, faça requisição das outras, fazendo com que o tempo de overhead de uma requisição seja preenchido com processamento de outras requisições.