PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-080283

(43) Date of publication of application: 21.03.2000

(51)Int.Cl.

C08L101/00 CO8K 5/527 CO8L 69/00 CO9K 21/08 //(C08L101/00 CO8L 27:12) (CO8L 69/00 CO8L 27:12

(21)Application number: 10-248238

(71)Applicant: TEIJIN CHEM LTD

(22)Date of filing:

02.09.1998

(72)Inventor: YAMANAKA KATSUHIRO

TAKEYA YUTAKA

(54) FLAME-RETARDANT RESIN COMPOSITION

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a flame-retardant resin composition having high flame retardance and capable of achieving excellent appearance of the resin surface on burning by including a thermoplastic resin and a specific phosphor-containing flame retarding agent and a fluorine resin.

SOLUTION: This composition is obtained by including (A) 100 pts.wt. of a thermoplastic resin (ex. a polycarbonate resin), (B) 0.5-50 pts.wt. of a phosphor- containing flame retarding agent consisting of (i) a fluid gel obtained by reacting a metal alkoxide of the formula: M(OR)n [(n) is 3-6; R is a 1-10C aliphatic hydrocarbon; M is a metal such as Al, Ti, Si or B] and (ii) a cyclic phosphoric acid ester of the formula (R1 and R2 are each H or a 5-14C aromatic group having a 1-9C organic substituent) and (C) 0.01-5 pts.wt. of a fluorine resin. As the component (i), a product obtained by reacting a metal alkoxide of the formula: M(OR)n in the presence of an acidic or basic catalyst in a solvent consisting of water and a 1-6C monovalent alcohol at 0-100°C is preferable.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

; Y,

17

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-80283 (P2000-80283A)

(43)公開日 平成12年3月21日(2000.3.21)

(51) Int.Cl.7	酸別配号	F I	テーマコード(参考)			
C 0 8 L 101/00		C 0 8 L 101/00	4H028			
COSK 5/527		C 0 8 K 5/527				
CO8L 69/00		C 0 8 L 69/00				
C 0 9 K 21/08		C 0 9 K 21/08				
// (C08L 101/00		7.0				
" (2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	審査請求	・ 未請求 請求項の数6 OL (全9)	頁) 最終頁に続く			
(21)出顯番号	特顧平10-248238	(71) 出願人 00021:3888				
		帝人化成株式会社				
(22) 出顧日	平成10年9月2日(1998.9.%)	東京都千代田区内幸町1	丁目2番2号			
	•	(72)発明者 山中 克浩				
		東京都千代田区内幸町 1	丁目2番2号 帝			
		人化成株式会社内				
		(72)発明者 竹谷 豊				
		東京都千代田区内幸町 1	丁目2番2号 帝			
		人化成株式会社内				
		(74)代理人 10007/263				
		弁理士 前田 純博				
		STATE HOLD WATER	最終頁に続く			

(54) 【発明の名称】 難燃性樹脂組成物

(57)【要約】

【課題】 熱可塑性樹脂の高度な難燃化および燃焼時の 樹脂表面の良好な外観を達成する難燃性樹脂組成物を提 供する。

【解決手段】 (A)熱可塑性樹脂100重量部、

(B)金属アルコキシドを反応させて得られた流動性ゲル及びスピロ構造を有するの環状リン酸エステル化合物よりなるリン系難燃剤 0.5~50重量部及び(C)フッ素系樹脂 0.01~5重量部からなる難燃性樹脂組成物。

【特許請求の範囲】

【請求項1】(A)熱可塑性樹脂100重量部、(B)(b-1)下記一般式(1)、

【化1】

$$M(OR)_n$$
(1)

(式中nは3~6、Rは炭素数1~10の脂肪族炭化水

(式中 R^1 , R^2 は、同一、又は、異なっていても良く、水素または炭素数 $1\sim9$ の有機置換基を有する炭素数 $5\sim14$ の芳香族基である)で表わされる環状リン酸エステル化合物よりなるリン系難燃剤 $0.5\sim50$ 重量部及び(C)フッ素系樹脂 $0.01\sim5$ 重量部からなる難燃性樹脂組成物。

【請求項2】 リン系難燃剤が、環状リン酸エステル化 合物と流動性ゲルとを予め混合して得られたリン系難燃 剤である請求項1記載の難燃性樹脂組成物。

【請求項3】 流動性ゲルが、水および炭素数1~6の 1価のアルコールを溶媒とし、酸又は塩基触媒を用いて 0℃~100℃で金属アルコキシドを反応させて得られ た流動性ゲルである請求項1又は2記載の難燃性樹脂組 成物。

【請求項4】 金属アルコキシドが下記一般式(3) 【化3】

$$M^{1}(OR^{3})_{m}$$
 (3)

(式中mは3または4、 R^3 は炭素数 $1\sim10$ の炭化水素、 M^1 はSi、Ti、Al、Bの中から選ばれる1種以上の金属である)で表される金属アルコキシドである請求項 $1\sim3$ のいずれか1項に記載の難燃性樹脂組成物。

【請求項5】 (A) 熱可塑性樹脂がポリカーボネート 樹脂である請求項1~4のいずれか1項に記載の難燃性 熱可塑性樹脂組成物。

【請求項6】 リン系難燃剤が、環状リン酸エステル化合物1モルにつき0.05~60モルの金属アルコキシドを反応させて得られた流動性ゲルよりなるリン系難燃剤である請求項1~5のいずれか1項に記載の難燃性樹脂組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、樹脂組成物の高度な難燃化および燃焼時の樹脂表面の良好な外観を達成する難燃性樹脂組成物に関する。

[0002]

【従来の技術】熱可塑性樹脂は現代社会において必要不可欠な素材である。近年、その活用範囲の広さから熱可塑性樹脂の難燃化が注目されるようになった。

【0003】特に、近年製品の安全性を高めるために、

【化2】

場合が頻繁に生起する。

【0004】一方、材料の絶対量を低くし、軽い、薄いという観点からの要求も多い。しかし、燃焼の際、この様に薄くすると成形品の薄肉部分から、燃焼時に樹脂の溶融滴下(ドリップ)が発生し、他の可燃物に燃え広がるおそれを内在する。従って、樹脂組成物には高度の難燃性が要求される。

格で難燃レベルとされるV‐〇の規格認定が要求される

【0005】難燃性を発現させる為には、各種方法が存在するが、現在一般的に熱可塑性樹脂に用いられているものの多くは、有機化合物骨格中に臭素や塩素を導入したハロゲン系難燃剤を用いた方法である。しかしながら、ハロゲン系難燃剤は焼却時に発ガン性物質であるダイオキシン等を発生する可能性があるということから、ドイツや北欧の民間環境規格である"ブルー・エンジェル"や"ホワイト・スワン"の中でエコラベルの対象から排除する動向がある。また、この様な難燃剤は、一般に、加工時点、或いは燃焼時点で腐食性、或いは、環境に好ましくない有毒性のガスを発生するという難点が存在する。このために、これらの欠点が少ない非ハロゲン系の難燃剤の開発が望まれている。

【0006】非ハロゲン系の材料として、有機リン系の化合物が用いられている。かかる化合物としては、例えば、トリフェニルフォスフェート(TPP)が良く知られているが、本化合物は、耐熱性に問題があり、揮発性が高すぎるという実用上の問題点があり、特に、成形加工時点での環境劣化がこれまでに再三指摘されている。【0007】揮発性の低い有機リン酸誘導体としては、例えば米国特許5204394号、米国特許5122556号では、いわゆる縮合リン酸エステルが開示されている。しかし、これらの化合物は、TPPより耐熱性が優れている点は評価出来るが、難燃性とのバランスで考察すると、まだ十分のものとは言えない。又、全般にこれらの縮合リン酸エステルは液状化合物のものが多く、

【0008】一方、無機の添加剤も各種検討されている

金型汚れが発生し易く、また樹脂の熱変形温度を低下さ

せるなど、樹脂物性の低下も観測される事が多い。

が、水酸化マグネシュウム、水酸化アルミニュウムに代 表されるような難燃剤は、難燃性を発言するために大量 の添加を必要とする。しかしながら大量の添加は樹脂本 来の物性を低下させる原因となるために、特に薄物成型 品には好まれない。

【0009】これらの欠点を克服するために各種検討がされている。例えば、特開平5-1079号公報には、室温で固体である縮合系リン酸エステル難燃剤が開示されている。

【0010】しかしながら、該化合物は、その化学骨格の剛直性から、樹脂に混在した折りに物性低下の可能性を含むと共に、一般に、製造工程から容易に類推出来る様に、オリゴマーの混在が避けられず、製造収率が産業上の観点では低く、製造の観点で問題を内在する。

【0011】一方、別の観点からのリン酸エステル誘導体の検討もなされており、米国特許3090799号には、環状リン酸エステルの製造法(主として脂肪族エステル)、並びに繊維を主たる対象とする難燃剤機能が開示されている。該化合物は、構成が脂肪族エーテル骨格であるので、上記樹脂成分との相溶性がより好適で、樹脂物性を低下する現象を殆ど示さないという大きな利点が存在するものの、難燃機能は、上記開示された縮合系リン酸誘導体に比べて落ちる事が一般に知られている。例えば、特開平9-227772号に於いては、14%という高濃度の添加でも、所望の難燃性が得られていない事が開示されている。その上、リン化合物を高濃度に含有するため、金型汚れや樹脂が可塑化され耐熱性が低下する欠点がある。

[0012]

【0018】(式中R¹, R²は、同一、又は、異なっていても良く、水素または炭素数1~9の有機置換基を有する炭素数5~14の芳香族基である)で表わされる環状リン酸エステル化合物よりなるリン系難燃剤0.5~50重量部及び(C)フッ素系樹脂0.01~5重量部からなる難燃性樹脂組成物に関する。

【0019】本発明における(A)熱可塑性樹脂としてはポリカーボネート樹脂、スチレン系樹脂、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリオレフィン、ポリアミド、ポリアセタール、飽和ポリエステル、ポリ(アルキル)アクリレート等が挙げられ、また、本発明に使用される熱可塑性樹脂は2種類以上併用して用いることができる。これらの中で、好ましくはポリカーボネート樹脂、スチレン系樹脂、ポリフェニレンエーテル、ポリブチレンテレフタレート等の飽和ポリエステルが挙げられ、より好ましくは、ポリカーボネート樹脂もしくはポリカーボネート樹脂とABSのアロイで

【発明が解決しようとする課題】すなわち、本発明の目的は、高度な難燃化および燃焼時の樹脂表面の良好な外観、即ち万一燃焼した時にもスス発生がほとんどなく近隣の器具を汚染しない利点を有する難燃性樹脂組成物を提供することにある。更には、金型汚れがほとんどなく成加工時に操作性に優れ、且つ燃焼時に有毒ガスの発生がない難燃性樹脂組成物を提供することにある。

[0013]

【課題を解決するための手段】本発明者は、前記目的を 達成するために、鋭意検討して本発明に到達した。すな わち、本来の樹脂の物性低下を生起しにくい環状リン酸 エステル化合物を用い、これに金属アルコキシドを原料 とした流動性ゲルを組合せることによって、環状リン酸 エステル化合物単独では達しえない難燃性を有すると共 に燃焼時の樹脂表面の良好な外観を達成する難燃性樹脂 組成物を見いだし本発明を完成した。

【0014】すなわち、本発明は、(A)熱可塑性樹脂 100重量部、(B)(b-1)下記一般式(1)、 【0015】

(化4)

$$M(OR)_n$$
(1)

【0016】(式中nは3 \sim 6、Rは炭素数 $1\sim$ 10の 脂肪族炭化水素、MはB、Al、Ga、Y、Ti、S i、Ge、Pb、P、Sb、V、Ta、W、La、Nd の中から選ばれた金属)で表される1種または2種以上 の金属アルコキシドを反応させて得られた流動性ゲル及 び(b-2)下記一般式(2)、

[0017]

【化5】

ある。

【0020】本発明にのべるポリカーボネート樹脂としては、塩化メチレン等の溶媒を用いて種々のジヒドロキシアリール化合物とホスゲンとの界面重合反応によって得られるもの、又はジヒドロキシアリール化合物とジフェニルカーボネートとのエステル交換反応により得られるものが挙げられる。代表的なものとしては、2,2'ービス(4ーヒドロキシフェニル)プロパンとホスゲンの反応で得られるポリカーボネートである。

 ${0021}$ ポリカーボネートの原料となるジヒドロキシアリール化合物としては、ビス(4ーヒドロキシフェニル)メタン、1, 1 ービス(4ーヒドロキシフェニル)エタン、2, 2 ービス(4ーヒドロキシフェニル)プロパン、2, 2 ービス(4ーヒドロキシフェニル)ブタン、2, 2 ービス(4ーヒドロキシフェニル)オクタン、2, 2 ービス(4ーヒドロキシー3ーメチルフェニル)プロパン、2, 2 ービス(4ーヒド

ロキシー3-t-ブチルフェニル)プロパン、2,2' ービス(3,5ージメチルー4ーヒドロキシフェニル) プロパン、2,2'ービス(4-ヒドロキシー3-シク ロヘキシルフェニル)プロパン、2,2'ービス(4-ヒドロキシー3-メトキシフェニル)プロパン、1, 1'-ビス(4-ヒドロキシフェニル)シクロペンタ ン、1,1'ービス(4-ヒドロキシフェニル)シクロ ヘキサン、1,1'ービス(4ーヒドロキシフェニル) シクロドデカン、4,4'ージヒドロキシフェニルエー テル、4,4'ージヒドロキシー3,3'ージメチルフ ェニルエーテル、4,4'ージヒドロキシジフェニルス ルフィド、4,4'ージヒドロキシー3,3'ージメチ ルジフェニルスルフィド、4,4'-ジヒドロキシジフ ェニルスルホキシド、4,4'-ジヒドロキシジフェニ ルスルホン、ビス(4-ヒドロキシフェニル)ケトンな どがある。これらのジヒドロキシアリール化合物は単独 で又は2種以上組み合わせて使用できる。

【0022】好ましいジヒドロキシアリール化合物には、耐熱性の高い芳香族ポリカーボネートを形成するビスフェノール類、2,2'ービス(4ーヒドロキシフェニル)プロパンなどのビス(ヒドロキシフェニル)シクロへキサンなどのビス(ヒドロキシフェニル)シクロアルカン、ジヒドロキシジフェニルスルフィド、ジヒドロキシジフェニルスルホン、ジヒドロキシジフェニルケトンなどである。特に好ましいジヒドロキシアリール化合物には、ビスフェノールA型芳香族ポリカーボネートを形成する2,2'ービス(4ーヒドロキシフェニル)プロパンである。

【0023】なお、耐熱性、機械的強度などを損なわない範囲であれば、ビスフェノールA型芳香族ポリカーボネートを製造する際、ビスフェノールAの一部を、他のジヒドロキシアリール化合物で置換してもよいが、その中でも、芳香族ポリカーボネート成分を少なくとも40モル%以上含有し、その芳香族の少なくとも40モル%以上が、ビスフェノールA型ポリカーボネートであれば良い。

【0024】ポリカーボネート樹脂の分子量は特に制限する必要はないが、あまりに低いと強度が十分でなく、あまりに高いと溶融粘度が高くなり成形し難くなるので、粘度平均分子量で表して通常10,000~50,000、好ましくは、15,000~30,000である。ここでいう粘度平均分子量(M)は塩化メチレン100mlにポリカーボネート樹脂0.7gを20℃で溶解した溶液から求めた比粘度(カsp)を次式に挿入して求めたものである。

 $n_{\rm sp}/C = [n] + 0.45 \times [n]^2 C$ [n] = 1.23 × 10⁻⁴ $M^{0.83}$ (但し[n] は極限粘度、Cはポリマー濃度で0.7) 【0025】ポリカーボネート樹脂を製造する基本的な

手段を簡単に説明する。カーボネート前駆物質としてホスゲンを用いる界面重合法では、通常酸結合剤及び有機溶媒の存在下に反応を行う。酸結合剤としては例えば水酸化ナトリウムや水酸化カリウム等のアルカリ金属の水酸化物、又はピリジン等のアミン化合物が用いられる。有機溶媒としては例えば塩化メチレン、クロロベンゼン等のハロゲン化炭化水素が用いられる。また反応促進のために例えば第三級アミンや第四級アンモニウム塩等の触媒を用いることができ、分子量調節剤として例えばフェノールやpーtertーブチルフェノールのようなアルキル置換フェノール等の末端停止剤を用いることが望ましい。反応温度は通常0~40℃、反応時間は数分~5時間、反応中のpHは10以上に保つのが好ましい。尚結果として得られた分子鎖末端の全てが末端停止剤に由来の構造を有する必要はない。

【0026】カーボネート前駆物質として炭酸ジエステ ルを用いるエステル交換反応(溶融法)では、不活性ガ スの存在下に所定割合の二価フェノールを炭酸ジエステ ルと加熱しながら攪拌し、生成するアルコール又はフェ ノール類を留出させる方法により行う。反応温度は生成 するアルコール又はフェノール類の沸点等により異なる が、通常120~300℃の範囲である。反応はその初 期から減圧にして生成するアルコール又はフェノール類 を留出させながら反応を完結させる。かかる反応の初期 段階で二価フェノール等と同時に又は反応の途中段階で 末端停止剤を添加させる。また反応を促進するために現 在公知のエステル交換反応に用いられる触媒を用いるこ とができる。このエステル交換反応に用いられる炭酸ジ エステルとしては、例えばジフェニルカーボネート、ジ ナフチルカーボネート、ジメチルカーボネート、ジエチ ルカーボネート、ジブチルカーボネート等があげられ る。これらのうち特にジフェニルカーボネートが好まし

【0027】本発明で述べるスチレン系樹脂とは、スチ レン又はαーメチルスチレン、ビニルトルエン等のスチ レン誘導体の単独重合体又は共重合体、これらの単量体 とアクリロニトリル、メチルメタクリレート等のビニル モノマーとの共重合体、ポリブタジエン等のジエン系ゴ ム、エチレン・プロピレン系ゴム、アクリル系ゴムなど にスチレン及び/又はスチレン誘導体、又はスチレン及 び/又はスチレン誘導体と他のビニルモノマーをグラフ ト重合させたものであり、例えばポリスチレン、耐衝撃 性ポリスチレン (HIPS)、アクリロニトリル・スチ レン共重合体(AS樹脂)、アクリロニトリル・ブタジ エン・スチレン共重合体(ABS樹脂)、メチルメタク リレート・ブタジエン・スチレン共重合体(MBS樹 脂)、メチルメタクリレート・アクリロニトリル・ブタ ジエン・スチレン共重合体(MABS樹脂)、アクリロ ニトリル・アクリルゴム・スチレン共重合体(AAS樹 脂)、アクリロニトリル・エチレンプロピレン系ゴム・

スチレン共重合体(AES樹脂)、アクリロニトリル・ 塩素化ポリエチレン・スチレン共重合体(ACS樹脂) 等の樹脂、又はこれらの混合物が挙げられる。中でも耐 衝撃性ポリスチレン(HIPS)、アクリロニトリル・ スチレン共重合体(AS樹脂)、アクリロニトリル・ブ タジエン・スチレン共重合体 (ABS樹脂)が好まし く、耐衝撃性の観点からABS樹脂が最も好ましい。 【0028】かかるABS樹脂とは、ジエン系ゴム成分 にシアン化ビニル化合物と芳香族ビニル化合物をグラフ ト重合した熱可塑性グラフト共重合体とAS樹脂等の重 合体の混合物である。このABS樹脂を形成するジエン 系ゴム成分としては、例えばポリブタジエン、ポリイソ プレン及びスチレン-ブタジエン共重合体等のガラス転 移点が10℃以下のゴムが用いられ、その割合はABS 樹脂成分100重量%中5~80重量%であるのが好ま しい。ジエン系ゴム成分にグラフトされるシアン化ビニ ル化合物としては、例えばアクリロニトリル、メタアク リロニトリル等を挙げることができ、またジエン系ゴム 成分にグラフトされる芳香族ビニル化合物としては、例 えばスチレン、αーメチルスチレン及び核置換スチレン を挙げることができる。かかるシアン化ビニル化合物及 び芳香族ビニル化合物の含有割合は、かかるシアン化ビ ニル化合物及び芳香族ビニル化合物の合計量100重量 %に対して、シアン化ビニル化合物が5~50重量%、 芳香族ビニル化合物が95~50重量%である。更にメ チル (メタ) アクリレート、エチルアクリレート、無水 マレイン酸、N置換マレイミド等を混合使用することが でき、これらの含有割合はABS樹脂中15重量%以下

であるものが好ましい。この熱可塑性グラフト共重合体 は塊状重合、懸濁重合、乳化重合のいずれの方法で製造 されたものでもよく、また共重合の方法も一段で共重合 しても、多段で共重合してもよい。

【0029】ポリカーボネート樹脂とスチレン系樹脂を併用して使用する場合は、ポリカーボネート樹脂に対してスチレン系樹脂の割合は、ポリカーボネート樹脂を40~100重量部の時、スチレン系樹脂が0~60重量部であり、好ましくはポリカーボネート樹脂を40~95重量部の時、スチレン系樹脂が5~60重量部であり、より好ましくはポリカーボネート樹脂を70~95重量部の時、スチレン系樹脂が5~30重量部である。この範囲であると難燃性、耐熱性と耐衝撃性が満足する。

【0030】本発明で述べられる(B)リン系難燃剤は下記一般式(1)、

[0031]

【化6】

M (OR) n …… (1) 【0032】 (式中nは3~6、Rは炭素数1~10の 脂肪族炭化水素、MはB、Al、Ga、Y、Ti、Si、Ge、Pb、P、Sb、V、Ta、W、La、Ndの中から選ばれた金属)で表される1種または2種以上の金属アルコキシドを反応させて得られた流動性ゲル及

【0033】 【化7】

び下記一般式(2)、

$$R^{1}-O-P$$
 $O-CH_{2}$
 $CH_{2}-O$
 $P-O-R^{2}$ (2)

【0034】(式中R1, R2は、同一、又は、異なって いても良く、水素または炭素数1~9の有機置換基を有 する炭素数5~14の芳香族基である)で表わされる環 状リン酸エステル化合物よりなるリン系難燃剤である。 【0035】かかるリン系難燃剤は、難燃性樹脂組成物 を配合する時に、環状リン酸エステル化合物を反応前の 金属アルコキシドに混合した後、金属アルコキシドを反 応させ、環状リン酸エステル化合物と流動性ゲルが一体 になったものを用いて配合してもよく、また予め環状リ ン酸エステル化合物と適度に反応した流動性ゲルとを混 合した得られたものを用いて配合してもよい。更に、環 状リン酸エステル化合物と流動性ゲルとを各々別個に配 合してもよい。より良好な難燃性と燃焼時の樹脂表面の 外観を達成するには、予め環状リン酸エステル化合物と 流動性ゲルとを混合した得られたものを用いることが好 ましい。かかる混合方法として、環状リン酸エステル化 合物に流動性ゲルを添加混合する方法であっても、流動 性ゲルに環状リン酸エステル化合物を添加混合する方法

であってもよい。

【0036】本発明で述べられる金属アルコキシドは、 下記一般式(1)で表される化合物である。

[0037]

【化8】

$$M(OR)_n$$
(1)

【0038】(式中nは $3\sim6$ 、Rは炭素数 $1\sim10$ の脂肪族炭化水素、MはB、A1、Ga、Y、Ti、Si、Ge、Pb、P、Sb、V、Ta、W、La、Ndの中から選ばれた金属)しかしながら本発明のさらなる効果発現、取り扱い性、および低コストのためには、金属アルコキシドが下記一般式(3)

【0039】

【化9】

$$M^{1}(OR^{3})_{m}$$
 (3)

【0040】 (式中mは3または4、 R^3 は炭素数 $1\sim 10$ の炭化水素、 M^1 はSi、Ti、Al、Bの中から選ばれた金属)で表される金属アルコキシドであること

が好ましい。更に、上記Rはメチル基、エチル基、異性体を含むプロピル基、異性体を含むブチル基であることが好ましい。また、本発明における金属アルコキシドは発明の効果が損なわれない程度(金属アルコキシド100重量部に対して0~50重量部)で、他の金属アルコキシドを含有することも可能であり、例えば、金属としてはNa、Li、Ca、Zn、Cu、Ba、Sr等の金属、アルコキシ基としては炭素数1~10の脂肪族炭化水素であるような金属アルコキシドを含有することも可能である。

【0041】本発明で用いられる流動性ゲルは、上記の金属アルコキシドを原料とし、水および炭素数1~10の低級アルコール(好ましくはメタノールまたはエタノール)を混合し、酸または塩基触媒(好ましくは塩酸、酢酸、またはアンモニア水)存在下で反応を行う方法である。さらに本発明では上記の反応を0℃~100℃で行うことが好ましく、15℃~90℃が更に好ましい。【0042】本発明で述べられる環状リン酸エステル化

合物は、基本的に隣接ジオール骨格にオキシ3塩化リンを反応させしかる後に、適宜フェノール性水酸基を反応させることによって得られる。かかる反応は、例えば、特開平9-183786号公報に開示されている手法、或いは、R. M. McConnell等、J. Org. Chem., 24巻、630~635ページ(1959)に記載されている。

【0043】かかる化合物としては、ペンタエリスリトールにオキシ3塩化リンを反応させた後、例えばフェノール、2,5ージメチルフェノール、クレゾール等を反応させる事によって得られる。或いは、事前に、オキシ3塩化リンの塩素の一部をこれらのフェノール類で変成した後に、同じように反応させれば良い。本発明において、さらに好ましい環状リン酸エステル化合物は下記一般式(2)で表される。

【0044】 【化10】

$$R^{1}-O-P$$
 $O-CH_{2}$
 $CH_{2}-O$
 $P-O-R^{2}$ (2)

【0045】(式中 R^1 、 R^2 は同一又は、異なっていても良く、下記一般式(4)で表される1 価の芳香族基である)

【0046】 【化11】

$$-Ar - (R^4)_k \cdots (4)$$

【0047】(ここで、Arはアリル基、kは0~5の整数で、R⁴は、メチル、エチル、異性体を含むプロピル、異性体を含むブチル、そのArへの結合基が、酸素、イオウ、又は、炭素数1~4の脂肪族炭化水素基である炭素数5~14の芳香族基を有するアラリキル基で、その芳香族基が直接Arと結合しても構わない、から選ばれる1種、又は、2種以上の有機基を示す)

【0048】式中、R¹、R²としては、フェニル、クレジル、キシリル、トリメチルフェニル、4-フェノキシフェニル、クミル、ナフチル、 4-ベンジルフェニル等を挙げることができ、フェニル、クレジル、キシリルが好ましく、特にフェニルが好ましい。

【0049】本発明のリン系難燃剤では、金属アルコキシドを反応させて得られた流動性ゲルと環状リン酸エステル化合物との割合が、環状リン酸エステル化合物1モルにつき、0.05~60モルの金属アルコキシドを反応させて得られた流動性ゲルよりなるリン系難燃剤が好ましく、0.30~7モルの金属アルコキシドを反応させて得られた流動性ゲルよりなるリン系難燃剤が更に好ましい。

【0050】本発明で言う流動性ゲルとは、その流動性が実施例の流動性評価方法により、0~100%の範囲

のものである。好ましくは流動性が $0.5\sim90\%$ の範囲であり、 $10\sim50\%$ の範囲が最も好ましい。

【0051】しかし、この流動性ゲルそのものだけでは 当然無機物であるので、例えば、ポリオレフィン系で使 用されている水酸化アルミとか、水酸化マグネシュウム の如く大過剰に添加すれば、若干の燃焼阻害効果は認め られるものの、その場合には、樹脂本来の機械物性が著 しく低下して、実用に供する事が困難となり、本来的に は難燃性の向上に何らの寄与をしない事が一般に知られ ており、流動性ゲル単独での添加効果は低い。更に、ほ ぼ完全にゲル化したものや完全にシリカになったもの は、例え環状リン酸エステル化合物と併用しても、難燃 性向上の効果がほとんど認められない。

【0052】本発明のリン系難燃剤の含有量は、本発明の難燃性樹脂組成を構成する(A)熱可塑性樹脂100重量部に対して0.05~50重量部あればよいが、好ましくは0.5~20重量部、最も好ましくは、0.8~12重量部である。リン系難燃剤の含有量が、0.5重量部未満では好ましい難燃性が得られず、50重量部を越えると樹脂本来の性質が低下する。

【0053】本発明で述べる(C)フッ素系樹脂は、火種、及び溶融物の落下抑制剤であり、本機能は、当業者にとっては、すでに一般に知られた事である。かかるフッ素系樹脂には、例えば、テトラフルオロエチレン、クロロトリフルオロエチレン、ビニルフルオライド、ビニリデンフルオライド、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテルなどのフッ素含有モノマーと、マーの単独又は共重合体や前記フッ素含有モノマーと、

エチレン、プロピレン、アクリレートなどの重合性モノマーとの共重合体が含まれる。フッ素系樹脂の代表例としては、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリビニリデンフルオライドなどの単独重合体、テトラフルオロエチレンーへキサフルオロアルキルビニルエーテル共重合体、テトラフルオロアルキルビニルエーテル共重合体、エチレンーテトラフルオロエチレン共重合体、エチレンーテトラフルオロエチレン共重合体、エチレンークロロトリフルオロエチレン共重合体などである。これらのフッ素系樹脂は1種又は2種以上混合して使用できる。これらのフッ素系樹脂は1種又は2種以上混合して使用できる。これらのフッ素系樹脂の中で、ポリテトラフルオロエチレンが好ましい。

【0054】なお、フッ素系樹脂は慣用の方法、例えば、米国特許第2,393,967号明細書に記載の乳 化重合法などにより得ることができる。

【0055】前記フッ素系樹脂は、芳香族ポリカーボネート及びスチレン系樹脂との溶融混合により混和しても良いが、粒状、例えば、平均粒径 $10\sim5000\mu$ m、好ましくは $100\sim1000\mu$ m、さらに好ましくは $200\sim700\mu$ m程度の粉粒体として使用する場合が多い。

【0056】(C)フッ素系樹脂の含有量は、本発明の難燃性樹脂組成を構成する(A)熱可塑性樹脂100重量部に対して0.01~5重量部あればよいが、好ましくは0.05~5重量部、より好ましくは、0.1~2重量部、最も好ましくは、0.2~1重量部である。フッ素系樹脂の含有量が、0.01重量部未満ではドリップ防止効果が少なく、高い難燃性を成形品に付与する事が困難であり、5重量部を越えると成形品の熱収縮が大きく、加熱時の寸法安定性に問題を生じる。

【0057】本発明の難燃性樹脂組成物は、種々の添加 剤、例えば、酸化防止剤、紫外線吸収剤、耐光安定剤な どの劣化防止剤、滑剤、帯電防止剤、離型剤、可塑剤、 ガラス繊維、炭素繊維などの補強繊維、タルク、マイ カ、ワラストナイトなどの充填剤、顔料などの着色剤な どを併用してもよい。前記添加剤の使用量は、樹脂本来 の物性を損なわない範囲で、添加剤の種類に応じて適当 に選択できる。

【0058】本発明の難燃性樹脂組成物は、家庭電化製品、OA機器などのハウジングやエンクロージャー、携帯電話機などのハウジングやケーシングなどの種々の成形品を成形する材料の難燃性樹脂組成物として有用である。このような成形品は慣用の方法、例えば、射出成形機を用いてペレット状難燃性樹脂組成物を射出成形することにより製造できる。

[0059]

【実施例】以下に実施例を挙げて本発明を説明するが、 本発明の範囲がこれらの実施例に限定されるものではな い。なお、評価は下記の方法で行った。

【0060】(1)流動性

100mlビーカーに50mlの試料を入れ、その試料の重量を測定する。その100mlビーカーを反転し、1分間静置した後に、容器外に出た試料の重量を測定する。容器外に出た試料の重量百分率によって流動性を評価する。

【0061】(2)難燃性(酸素指数)

酸素指数 (以下O. I. と称する。) はASTM 286 3-70に従い測定した。

【0062】(3)燃焼後の外観

燃焼試験後の成形品を用いて、成形品表面のスス付着状況を目視にて判断した。判定結果は以下の通りである。
○:燃焼中ススの発生がほとんどなく、消火後の成形品表面にススが全く付着していなかった。

△:燃焼中ススが若干発生し、成形品表面の一部にススが付着していた。

×:燃焼中ススの発生が多く、燃焼後の消火面から2cmのところまで成形品表面にススが完全に付着していた

【0063】 [実施例1~7および比較例1及び2]表 1記載の各成分を、表1記載の量になる様タンブラーに て配合し、15mm φベント付き二軸押し出し機 (MP V製 MP2015) にて樹脂温度260℃でペレット 化し、得られたペレットを熱風乾燥機にて95℃で4時間乾燥した。成形は射出成形機 ((株)日本製鋼所 J75Si)にてシリンダー温度250℃で行った。

【0064】なお表1記載の各成分を示す記号は以下の通りである。

(A)熱可塑性樹脂

PC:ポリカーボネート樹脂(帝人化成(株)製 パンライトL1225WP粘度平均分子量22500)

ABS:ABS樹脂(三井東圧化学(株)製 サンタックUT61)

【0065】(B)リン系難燃剤

FR:一般式(2)でR¹、R²がともにフェニル基である環状リン酸エステル化合物

[0066](1) fr-1

2000mlビーカーにテトラエトキシシラン208.33g、蒸留水187.30g、エタノール101.35gを測り取り、約1 m l の 濃塩酸を添加した後に、室温(約20℃)で1時間、70℃で1時間攪拌を行う。得られた混合物に上記の環状リン酸エステル化合物(FR)を1201.6g添加し、さらに70℃~80℃で攪拌を行う。得られたゲル状物質を160℃で減圧乾燥することによって得られた固体を、流動性ゲルの流動性が30%であり、且つ環状リン酸エステル化合物1モルに対して0.32モルの金属アルコキシド反応物である流動性ゲル含有リン系難燃剤(fr-1)とする。

[0067](2) fr-2

fr-1の製造法において環状リン酸エステル化合物 (FR)を600.8g添加することによって得られた固体 を、流動性ゲルの流動性が30%であり、且つ環状リン酸エステル化合物1モルに対して0.64モルの金属アルコキシド反応物である流動性ゲル含有リン系難燃剤 (fr-2)とする。

[0068](3) fr-3

fr-1の製造法において環状リン酸エステル化合物 (FR)を300.4g添加することによって得られた固体 を、流動性ゲルの流動性が30%であり、且つ環状リン酸エステル化合物1モルに対して1.28モルの金属アルコキシド反応物である流動性ゲル含有リン系難燃剤 (fr-3)とする。

 $\{0069\}(4)$ fr-4

fr-1の製造法において環状リン酸エステル化合物 (FR)を200.3g添加することによって得られた固体 を、流動性ゲルの流動性が30%であり、且つ環状リン酸エステル化合物1モルに対して1.92モルの金属アルコキシド反応物である流動性ゲル含有リン系難燃剤 (fr-4)とする。

[0070](5) fr-6

2000ml ビーカーにテトラエトキシシラン208.33 g、テト

ラエトキシチタン171.60g、蒸留水328.16g、エタノール177.57gを測り取り、約1 m 1 の濃塩酸を添加した後に、室温(約20℃)で1 時間、70℃で1 時間撹拌を行う。得られた混合物に上記の環状リン酸エステル化合物 (FR)を300.4g添加し、さらに70℃~80℃で搅拌を行う。得られたゲル状物質を160℃で滅圧乾燥することによって得られた固体を、流動性ゲルの流動性が30%であり、またSiとTi由来成分が重量で1:1であり、かつ環状リン酸エステル化合物1モルに対して2.24モルの金属アルコキシド反応物である流動性ゲル含有リン系難燃剤(fr-6)とする。

【0071】(6)その他成分

fr-5(SiO,成分のみ)

fr-1の製造法において環状リン酸エステル化合物 (FR)を添加しないことによって得られた固体を、流動性ゲル成分 (fr-5)とする。

【0072】(C)フッ素系樹脂

PTFE: ポリテトラフルオロエチレン (ダイキン工業 (株) 製 ポリフロンFA500)

[0073]

【表1】

	難燃性樹脂組成							評価結果	
	熱可塑性樹脂		リン系難燃剤						
	PС	ABS	合計	種類	添加量		PTFE	0.1.	燃焼時の
					各成分量	合計量			表面外観
	(重量%)	(重量%)	(重量部)		(重量部)	(電量部)	(重量部)		
実施例 1	78. 2	21. 8	100	fr-1	5. 57	5. 57	0. 32	25. 0	0
実施例 2	78. 8	21. 2	100	fr-2	5. 91	5. 91	0. 32	25. 2	0
実施例3	78. 6	21. 4	100	fr-3	6. 69	6. 69	0. 32	25. 3	0
実施例4	78. 4	21. 6	100	fr-4	7. 71	7, 71	0. 32	25. 3	0
実施例5	78. 6	21. 4	100	fr-6	6. 69	6. 69	0. 32	25. 7	0
実施例 6	78. 2	21. 8	100	FR/fr-5	5. 29/0. 28	5. 57	0. 32	24. 7	Δ
実施例7	78. 4	21. 6	100	FR/fr-5	5. 40/2. 31	7. 71	0. 32	24. 2	Δ
比較例1	19. 9	20. 1	100	-	-		0. 30	21. 8	×
比較例2	18. 2	21. 8	100	FR	5. 29	5. 29	0. 31	23. 8	×

[0074]

【発明の効果】表1より明らかなように、本発明の難燃性樹脂組成物は、樹脂組成物の難燃性を飛躍的に向上させる上に、万一燃焼した時にもスス発生がほとんどなく近隣の器具を汚染しない利点を有する。そのため、OA

機器や家電等に用いられる難燃性樹脂組成物に利用する ことができ、本発明の難燃性樹脂組成物はノンハロゲン 系難燃組成物として種々の環境問題に適合しており、工 業的に極めて有用である。

フロントページの続き

(51) Int. Cl. 7 識別記号 F I (参考)

CO8L 27:12) (CO8L 69/00 27:12)

Fターム(参考) 4H028 AA08 AA11 AA12 AA35 AA43

BA06

4J002 AA011 AC031 BB001 BB151

BC021 BC022 BC031 BC032

BC041 BC042 BC052 BC061

BC062 BC071 BC072 BC091

BC092 BD123 BD133 BD143

BD153 BD163 BE043 BG021 BG041 BN071 BN101 BN121

BN141 BN151 BN152 BN161

CB001 CF031 CF071 CG001

CG011 CG021 CG041 CH071

CL001 CN011 EC076 EW047

FD010 FD136 FD137 GC00

many and the second of the sec