Extensions of Barrier Sets to Nonzero Roots of the Matching Polynomials

Cheng Yeaw Ku *

K.B. Wong †

September 29, 2009

Abstract

In matching theory, barrier sets (also known as Tutte sets) have been studied extensively due to its connection to maximum matchings in a graph. In this paper, we first define θ -barrier sets. Our definition of a θ -barrier set is slightly different from that of a barrier set. However we show that θ -barrier sets and barrier sets have similar properties. In particular, we prove a generalized Berge's Formula and give a characterization for the set of all θ -special vertices in a graph.

KEYWORDS: matching polynomial, Gallai-Edmonds Decomposition, barrier sets, extreme sets

1 Introduction

All the graphs in this paper are simple and finite.

Definition 1.1. An r-matching in a graph G is a set of r edges, no two of which have a vertex in common. The number of r-matchings in G will be denoted by p(G,r). We set p(G,0)=1 and define the matching polynomial of G by

$$\mu(G,x) = \sum_{r=0}^{\lfloor n/2 \rfloor} (-1)^r p(G,r) x^{n-2r}.$$

We shall denote the multiplicity of θ as a root of $\mu(G,x)$ by $\operatorname{mult}(\theta,G)$. Let $u \in V(G)$, the graph obtained from G by deleting the vertex u and all edges that contain u will be denoted by $G \setminus u$. Inductively if $u_1, \ldots, u_k \in V(G)$, $G \setminus u_1 \ldots u_k = (G \setminus u_1 \ldots u_{k-1}) \setminus u_k$. Note that the order of which vertex is being deleted first is not important, that is, if i_1, \ldots, i_k is a permutation of $1, \ldots, k$, we have $G \setminus u_1 \ldots u_k = G \setminus u_1 \ldots u_k$. Furthermore if $X = \{u_1, \ldots, u_k\}$, $G \setminus X = G \setminus u_1 \ldots u_k$.

The followings are properties of $\mu(G, x)$.

^{*}Department of Mathematics, National University of Singapore, Singapore 117543. E-mail: matkcy@nus.edu.sg

[†]Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia. E-mail: kb wong@um.edu.my.

Theorem 1.2. (Theorem 1.1 on p. 2 of [1])

- (a) $\mu(G \cup H, x) = \mu(G, x)\mu(H, x)$ where G and H are disjoint graphs,
- (b) $\mu(G,x) = \mu(G \setminus e,x) \mu(G \setminus uv,x)$ if $e = \{u,v\}$ is an edge of G,
- (c) $\mu(G,x) = x\mu(G \setminus u,x) \sum_{i \sim u} \mu(G \setminus ui,x)$ where $i \sim u$ means i is adjacent to u,
- (d) $\frac{d}{dx}\mu(G,x) = \sum_{i \in V(G)} \mu(G \setminus i,x)$ where V(G) is the vertex set of G.

It is well known that all roots of $\mu(G, x)$ are real. Throughout, let θ be a real number and $\operatorname{mult}(\theta, G)$ denote the multiplicity of θ as a root of $\mu(G, x)$. In particular, $\operatorname{mult}(\theta, G) = 0$ if and only if θ is not a root of $\mu(G, x)$. By Theorem 5.3 on p. 29 and Theorem 1.1 on p. 96 of [1], one can easily deduce the following lemma.

Lemma 1.3. Let G be a graph and $u \in V(G)$. Then

$$\operatorname{mult}(\theta, G) - 1 \le \operatorname{mult}(\theta, G \setminus u) \le \operatorname{mult}(\theta, G) + 1.$$

As a consequence of Lemma 1.3, we can classify the vertices in a graph with respect to θ as follows:

Definition 1.4. (see [2, Section 3]) For any $u \in V(G)$,

- (a) u is θ -essential if $\operatorname{mult}(\theta, G \setminus u) = \operatorname{mult}(\theta, G) 1$,
- (b) u is θ -neutral if $\operatorname{mult}(\theta, G \setminus u) = \operatorname{mult}(\theta, G)$,
- (c) u is θ -positive if $\operatorname{mult}(\theta, G \setminus u) = \operatorname{mult}(\theta, G) + 1$.

Furthermore if u is not θ -essential but it is adjacent to some θ -essential vertex, we say u is θ -special.

It turns out that θ -special vertices play an important role in the Gallai-Edmonds Decomposition of a graph (see [3]). One of our main result is a characterization of the set of these vertices in terms of θ -barriers.

Note that if $\operatorname{mult}(\theta, G) = 0$ then for any $u \in V(G)$, u is either θ -neutral or θ -positive and no vertices in G can be θ -special. By Corollary 4.3 of [2], a θ -special vertex is θ -positive. Therefore

$$V(G) = D_{\theta}(G) \cup A_{\theta}(G) \cup P_{\theta}(G) \cup N_{\theta}(G),$$

where

- $D_{\theta}(G)$ is the set of all θ -essential vertices in G,
- $A_{\theta}(G)$ is the set of all θ -special vertices in G,
- $N_{\theta}(G)$ is the set of all θ -neutral vertices in G,
- $P_{\theta}(G) = Q_{\theta}(G) \setminus A_{\theta}(G)$, where $Q_{\theta}(G)$ is the set of all θ -positive vertices in G,

is a partition of V(G). Note that there is no 0-neutral vertices. So $N_0(G) = \emptyset$ and $V(G) = D_0(G) \cup A_0(G) \cup P_0(G)$.

Definition 1.5. (see [2, Section 3]) A graph G is said to be θ -critical if all vertices in G are θ -essential and $\text{mult}(\theta, G) = 1$.

The Gallai-Edmonds Structure Theorem describes a certain canonical decomposition of V(G) with respect to the zero root of $\mu(G, x)$. In [3], Chen and Ku proved the Gallai-Edmonds Structure Theorem for graph with any root θ .

Theorem 1.6. (Theorem 1.5 of [3]) Let G be a graph with θ a root of $\mu(G, x)$. If $u \in A_{\theta}(G)$ then

- (i) $D_{\theta}(G \setminus u) = D_{\theta}(G)$,
- (ii) $P_{\theta}(G \setminus u) = P_{\theta}(G)$,
- (iii) $N_{\theta}(G \setminus u) = N_{\theta}(G)$,
- (iv) $A_{\theta}(G \setminus u) = A_{\theta}(G) \setminus \{u\}.$

Theorem 1.7. (Theorem 1.7 of [3]) If G is connected and every vertex of G is θ -essential then $\text{mult}(\theta, G) = 1$.

By Theorem 1.6 and Theorem 1.7, it is not hard to deduce the following whose proof is omitted. For convenience, a connected component will be called a component.

Corollary 1.8.

- (i) $A_{\theta}(G \setminus A_{\theta}(G)) = \emptyset$, $D_{\theta}(G \setminus A_{\theta}(G)) = D_{\theta}(G)$, $P_{\theta}(G \setminus A_{\theta}(G)) = P_{\theta}(G)$, and $N_{\theta}(G \setminus A_{\theta}(G)) = N_{\theta}(G)$.
- (ii) $G \setminus A_{\theta}(G)$ has exactly $|A_{\theta}(G)| + \text{mult}(\theta, G)$ θ -critical components.
- (iii) If H is a component of $G \setminus A_{\theta}(G)$ then either H is θ -critical or $\operatorname{mult}(\theta, H) = 0$.
- (iv) The subgraph induced by $D_{\theta}(G)$ consists of all the θ -critical components in $G \setminus A_{\theta}(G)$.

Let G be a graph. The number of odd components in G is denoted by $c_{odd}(G)$. Recall the following famous Berge's Formula.

Theorem 1.9. mult $(0,G) = \max_{X \subset V(G)} c_{odd}(G \setminus X) - |X|$.

Definition 1.10. Motivated by the Berge's Formula, a barrier set is defined to be a set $X \subseteq V(G)$ for which $\operatorname{mult}(0,G) = c_{odd}(G\backslash X) - |X|$. An extreme set is defined to be the set for which $\operatorname{mult}(0,G\backslash X) = \operatorname{mult}(0,G) + |X|$.

Properties of extreme and barrier sets can be found in [4, Section 3.3]. In fact a barrier set is an extreme set. An extreme set is not necessary a barrier set, but it can be shown that an extreme set is contained in some barrier set. In general the union or intersection of two barrier sets is not a barrier set. However it can be shown that the intersection of two (inclusionwise) maximal barriers set is a barrier set. $A_0(G)$ is a barrier and extreme set. It can be shown that $A_0(G)$ is in fact the intersection of all the maximal barrier sets in G. Here we extend this fact to $A_{\theta}(G)$:

Theorem 1.11. Suppose $N_{\theta}(G) = \emptyset$. Then $A_{\theta}(G)$ is the intersection of all maximal θ -barrier sets in G.

2 Properties of θ -barrier sets

The number of θ -critical components in G is denoted by $c_{\theta}(G)$. An immediate consequence of part (a) of Theorem 1.2 and Theorem 1.7 is the following inequality which is used frequently.

$$\operatorname{mult}(\theta, G \setminus X) \ge c_{\theta}(G \setminus X) \quad \text{for any } X \subseteq V(G).$$
 (1)

We prove the following analogue of Berge's Formula.

Theorem 2.1. [Generalized Berge's Formula]

$$\operatorname{mult}(\theta, G) = \max_{X \subseteq V(G)} c_{\theta}(G \setminus X) - |X|.$$

Proof. We claim that, $c_{\theta}(G \setminus X) \leq |X| + \text{mult}(\theta, G)$ for all $X \subseteq V(G)$. Suppose the contrary. Then $c_{\theta}(G \setminus X) > |X| + \text{mult}(\theta, G)$ for some $X \subseteq V(G)$. Recall that $\text{mult}(\theta, G \setminus X) \geq c_{\theta}(G \setminus X)$. Together with Lemma 1.3, we have $\text{mult}(\theta, G) \geq \text{mult}(\theta, G \setminus X) - |X| > \text{mult}(\theta, G)$, a contradiction. Hence $c_{\theta}(G \setminus X) \leq |X| + \text{mult}(\theta, G)$ for all $X \subseteq V(G)$.

Now it is sufficient to show that there is a set $X \subseteq V(G)$ for which $\operatorname{mult}(\theta, G) = c_{\theta}(G \setminus X) - |X|$. By (ii) of Corollary 1.8 and taking $X = A_{\theta}(G)$, we are done.

Definition 2.2. Motivated by the Generalized Berge's Formula, we define a θ -barrier set to be a set $X \subseteq V(G)$ for which $\text{mult}(\theta, G) = c_{\theta}(G \setminus X) - |X|$.

We define a θ -extreme set to be a set $X \subseteq V(G)$ for which $\operatorname{mult}(\theta, G \setminus X) = \operatorname{mult}(\theta, G) + |X|$.

Note that the definitions of 0-extreme set and extreme set coincide. But the definitions of 0-barrier set and barrier set are different. Our next proposition shows that a 0-barrier set is a barrier set.

Proposition 2.3. A 0-barrier set is a barrier set.

Proof. Let X be a 0-barrier set. Then $c_0(G \setminus X) = \text{mult}(0, G) + |X|$. Note that $c_0(G \setminus X) \leq c_{odd}(G \setminus X)$. Using Theorem 1.9, we conclude that $c_{odd}(G \setminus X) = \text{mult}(0, G) + |X|$. Hence X is a barrier set. \square

The converse of Proposition 2.3 is not true. In Figure 1, $X = \{u, v\}$ is a barrier set in G but it is not a 0-barrier set.

Figure 1.

However we have a weak converse of Proposition 2.3.

Proposition 2.4. A (inclusionwise) maximal barrier set is a maximal 0-barrier set.

Proof. Let X be a maximal barrier set. Note that $|X| + \text{mult}(0, G) \ge \text{mult}(0, G \setminus X) \ge c_{odd}(G \setminus X) = |X| + \text{mult}(0, G)$, where the first inequality follows from Lemma 1.3 and the last inequality follows from the fact that X is a barrier set. Therefore, equality holds throughout whence $\text{mult}(0, G \setminus X) = c_{odd}(G \setminus X)$ and 0 is a root of multiplicity 1 in each of the odd components in $G \setminus X$.

We claim that an odd component in $G \setminus X$ is 0-critical. Suppose the contrary. Let H be an odd component in $G \setminus X$ and H is not 0-critical. Then $A_0(H) \neq \varnothing$. Now mult(0, H) = 1. By (ii) of Corollary 1.8, $c_0(H \setminus A_0(H)) = |A_0(H)| + 1$. Since $c_0(H \setminus A_0(H)) \leq c_{odd}(H \setminus A_0(H))$, by Theorem 1.9, we conclude that $c_{odd}(H \setminus A_0(H)) = |A_0(H)| + 1$. Therefore $c_{odd}(G \setminus (X \cup A_0(H))) = |C_{odd}(G \setminus X) - 1 + c_{odd}(H \setminus A_0(H)) = |X| + \text{mult}(0, G) - 1 + |A_0(H)| + 1 = |X \cup A_0(H)| + \text{mult}(0, G)$. But then $X \cup A_0(H)$ is a barrier set in G, a contrary to the maximality of X. Hence an odd component in $G \setminus X$ must be 0-critical. This means that $c_{odd}(G \setminus X) = c_0(G \setminus X)$ and X is a 0-barrier set. By Proposition 2.3, we conclude that X must be a maximal 0-barrier set.

Now we shall study the properties of θ -barrier and θ -extreme sets.

Lemma 2.5. A subset of a θ -extreme set is a θ -extreme set.

Proof. Let X be an θ -extreme set and $Y \subseteq X$. Now $\operatorname{mult}(\theta, G \setminus X) = \operatorname{mult}(\theta, G) + |X|$. By Lemma 1.3, $\operatorname{mult}(\theta, G \setminus Y) \le \operatorname{mult}(\theta, G) + |Y|$. If Y is not θ -extreme then $\operatorname{mult}(\theta, G \setminus Y) < \operatorname{mult}(\theta, G) + |Y|$, and by Lemma 1.3 again, $\operatorname{mult}(\theta, G \setminus X) \le \operatorname{mult}(\theta, G \setminus Y) + |X \setminus Y| < \operatorname{mult}(\theta, G) + |X|$, a contradiction. Hence a subset of an θ -extreme set is θ -extreme.

Lemma 2.6. If X is a θ -barrier $[\theta$ -extreme] set and $Y \subseteq X$ then $X \setminus Y$ is a θ -barrier $[\theta$ -extreme] set in $G \setminus Y$.

Proof. Note that $c_{\theta}(G \setminus X) = |X| + \text{mult}(\theta, G)$. By Theorem 2.1 and Lemma 1.3, $c_{\theta}(G \setminus X) \leq |X \setminus Y| + \text{mult}(\theta, G \setminus Y) \leq |X \setminus Y| + \text{mult}(\theta, G) + |Y| = |X| + \text{mult}(\theta, G)$. Hence $c_{\theta}(G \setminus X) = |X \setminus Y| + \text{mult}(\theta, G \setminus Y)$ and $X \setminus Y$ is a θ -barrier set in $G \setminus Y$.

Lemma 2.7. Every θ -extreme set of G lies in a θ -barrier set.

Proof. Let X be a θ -extreme set and $T = A_{\theta}(G \setminus X) \cup X$. Then

$$c_{\theta}(G \setminus T) = c_{\theta}(G \setminus (A_{\theta}(G \setminus X) \cup X))$$

$$= c_{\theta}((G \setminus X) \setminus A_{\theta}(G \setminus X))$$

$$= |A_{\theta}(G \setminus X)| + \text{mult}(\theta, G \setminus X) \text{ (by (ii) of Corollary 1.8)}$$

$$= |A_{\theta}(G \setminus X)| + \text{mult}(\theta, G) + |X| \text{ (X is θ-extreme)}$$

$$= |T| + \text{mult}(\theta, G),$$

and hence T is a θ -barrier set.

Lemma 2.8. Let X be a θ -barrier set. Then X is a θ -extreme set.

Proof. Recall from (1) that $\operatorname{mult}(\theta, G \setminus X) \ge c_{\theta}(G \setminus X)$. Since $c_{\theta}(G \setminus X) = |X| + \operatorname{mult}(\theta, G)$, by Lemma 1.3, we have

$$\operatorname{mult}(\theta, G) \ge \operatorname{mult}(\theta, G \setminus X) - |X| \ge c_{\theta}(G \setminus X) - |X| = \operatorname{mult}(\theta, G).$$

Hence $\operatorname{mult}(\theta, G \setminus X) = \operatorname{mult}(\theta, G) + |X|$ and so X is a θ -extreme set.

Note that in general a θ -extreme set is not a θ -barrier set. In Figure 1, $X_1 = \{u\}$ is a 0-extreme set but it is not a 0-barrier set.

Lemma 2.9. Let X be a θ -barrier set and H be a component of $G \setminus X$. Then either H is θ -critical or $\text{mult}(\theta, H) = 0$.

Proof. Note that $c_{\theta}(G \setminus X) = |X| + \text{mult}(\theta, G)$. By Lemma 2.8, X is a θ -extreme set. Therefore $\text{mult}(\theta, G \setminus X) = \text{mult}(\theta, G) + |X| = c_{\theta}(G \setminus X)$. Now if H is not θ -critical and $\text{mult}(\theta, H) > 0$, then by (1), $\text{mult}(\theta, G \setminus X) > c_{\theta}(G \setminus X)$, a contradiction. Hence either H is θ -critical or $\text{mult}(\theta, H) = 0$. \square

Lemma 2.10. Let X be a maximal θ -barrier set. Let H be a component of $G \setminus X$ and $\operatorname{mult}(\theta, H) = 0$. Then for all $u \in V(H)$, u is θ -neutral in H. Furthermore for all $Y \subseteq V(H)$ and $Y \neq \emptyset$, $c_{\theta}(H \setminus Y) \leq |Y| - 1$.

Proof. Suppose H has a θ -positive vertex, say u. Then $\operatorname{mult}(\theta, H \setminus u) = 1$. By (ii) of Corollary 1.8, $c_{\theta}((H \setminus u) \setminus A_{\theta}(H \setminus u)) = |A_{\theta}(H \setminus u)| + \operatorname{mult}(\theta, H \setminus u) = |A_{\theta}(H \setminus u)| + 1$. But then

$$c_{\theta}(G \setminus (X \cup \{u\} \cup A_{\theta}(H \setminus u))) = c_{\theta}(G \setminus X) + c_{\theta}((H \setminus u) \setminus A_{\theta}(H \setminus u))$$
$$= |X| + \operatorname{mult}(\theta, G) + |A_{\theta}(H \setminus u)| + 1$$
$$= |X \cup \{u\} \cup A_{\theta}(H \setminus u)| + \operatorname{mult}(\theta, G),$$

and so $X \cup \{u\} \cup A_{\theta}(H \setminus u)$ is a θ -barrier in G, a contrary to the maximality of X. Hence for all $u \in V(H)$, u is θ -neutral in H.

Since $Y \neq \emptyset$, there is a $y \in Y$. Let $Y' = Y \setminus y$ and $H' = H \setminus y$. Note that $\operatorname{mult}(\theta, H \setminus y) = 0$ since y is θ -neutral in H. By Theorem 2.1, $c_{\theta}(H' \setminus Y') \leq |Y'|$. Since $H \setminus Y = H' \setminus Y'$, we have $c_{\theta}(H \setminus Y) \leq |Y| - 1$.

Lemma 2.11. Let G be θ -critical. Then for all $Y \subseteq V(G)$ and $Y \neq \emptyset$, $c_{\theta}(G \setminus Y) \leq |Y| - 1$.

Proof. Since $Y \neq \emptyset$, there is a $y \in Y$. Let $Y' = Y \setminus y$ and $G' = G \setminus y$. Note that $\operatorname{mult}(\theta, G \setminus y) = 0$ since y is θ -essential in G. By Theorem 2.1, $c_{\theta}(G' \setminus Y') \leq |Y'|$. Since $G \setminus Y = G' \setminus Y'$, we have $c_{\theta}(G \setminus Y) \leq |Y| - 1$.

In general the union or intersection of two θ -barrier sets is not necessary a θ -barrier set. In Figure 1, $X_2 = \{u, v, w\}$ and $X_3 = \{v, w, z\}$ are two 0-barrier sets. But $X_2 \cap X_3$ and $X_2 \cup X_3$ are not a 0-barrier set. However the intersection of two maximal θ -barrier sets is a θ -barrier set.

Theorem 2.12. The intersection of two maximal θ -barrier sets is a θ -barrier set.

Proof. Let X and Y be two maximal θ -barrier sets. Let G_1, G_2, \ldots, G_k be all the θ -critical components of $G \setminus X$ and H_1, H_2, \ldots, H_m be all the components of $G \setminus Y$. Note that $k = |X| + \text{mult}(\theta, G)$. Let $X_i = X \cap V(H_i), \ Y_i = Y \cap V(G_i)$ and $Z = X \cap Y$. By relabelling if necessary we may assume that $X_1, \ldots, X_{m_1} \neq \emptyset, \ Y_1, \ldots, Y_{k_1} \neq \emptyset$, but $X_{m_1+1} = \cdots = X_m = Y_{k_1+1} = \cdots = Y_k = \emptyset$, and also that $k_1 \leq m_1$. Note that G_{k_1+1}, \ldots, G_k are θ -critical components in $(G \setminus X) \setminus Y$. So each of them is contained in a component of $G \setminus Y$. Now let us count the number of G_i 's where $k_1 + 1 \leq i \leq k$ that are contained in some H_i .

Suppose $m_1 + 1 \leq j \leq m$. Then H_j is a component in $(G \setminus X) \setminus Y$. So if $G_i \subseteq H_j$, we must have $G_i = H_j$. Furthermore G_i is a component of $G \setminus Z$. By Theorem 2.1, the number of such G_i 's is at most $c_{\theta}(G \setminus Z) \leq |Z| + \text{mult}(\theta, G)$.

Suppose $1 \leq j \leq m_1$. Let G_{i_1}, \ldots, G_{i_t} be all the G_i 's that are contained in H_j . Then G_{i_1}, \ldots, G_{i_t} are θ -critical components in $H_j \setminus X_j$. By Lemma 2.9, H_j is either θ -critical or $\operatorname{mult}(\theta, H) = 0$. If $\operatorname{mult}(\theta, H) = 0$, we have, by Lemma 2.10, $c_{\theta}(H_j \setminus X_j) \leq |X_j| - 1$. If H_i is θ -critical, we have, by Lemma 2.11, $c_{\theta}(H_j \setminus X_j) \leq |X_j| - 1$. Therefore in either cases, we have $t \leq |X_j| - 1$.

The number of G_i 's where $k_1 + 1 \le i \le k$ that are disjoint from Y is at most

$$c_{\theta}(G \setminus Z) + \sum_{j=1}^{m_1} (|X_j| - 1) \le |Z| + \operatorname{mult}(\theta, G) + |X \setminus Z| - m_1$$

$$= |X| + \operatorname{mult}(\theta, G) - m_1$$

$$= k - m_1$$

$$\le k - k_1.$$

Since this number is exactly $k - k_1$, we infer that equality must hold throughout. Hence $c_{\theta}(G \setminus Z) = |Z| + \text{mult}(\theta, G)$ and Z is a θ -barrier set.

3 Characterizations of $A_{\theta}(G)$

A characterization of $A_{\theta}(G)$ is that it is the minimal (inclusionwise) θ -barrier set (see Theorem 3.5). Furthermore if $N_{\theta}(G) = \emptyset$, we have another characterization of $A_{\theta}(G)$, that is, it is the intersection of all maximal θ -barrier sets in G (see Theorem 3.6).

Lemma 3.1. If X is a θ -barrier or a θ -extreme set then $X \subseteq A_{\theta}(G) \cup P_{\theta}(G)$.

Proof. By Lemma 2.8, we may assume X is a θ -extreme. Let $x \in X$. By Lemma 2.5, $\{x\}$ is a θ -extreme set. Therefore $\operatorname{mult}(\theta, G \setminus x) = \operatorname{mult}(\theta, G) + 1$ and x is θ -positive. So $x \in A_{\theta}(G) \cup P_{\theta}(G)$ and $X \subseteq A_{\theta}(G) \cup P_{\theta}(G)$.

Lemma 3.2. Let X be a θ -barrier set. If $X \subseteq A_{\theta}(G)$ then $X = A_{\theta}(G)$.

Proof. Note that $c_{\theta}(G \setminus X) = \text{mult}(\theta, G) + |X|$. By Lemma 2.9, we conclude that $A_{\theta}(G \setminus X) = \emptyset$. By Theorem 1.6, $A_{\theta}(G \setminus X) = A_{\theta}(G) \setminus X$. Hence $X = A_{\theta}(G)$.

We shall require the following result of Godsil [2].

Theorem 3.3. (Theorem 4.2 of [2]) Let θ be a root of $\mu(G, x)$ with non-zero multiplicity k and let u be a θ -positive vertex in G. Then

- (a) if v is θ -essential in G then it is θ -essential in $G \setminus u$;
- (b) if v is θ -positive in G then it is θ -essential or θ -positive in $G \setminus u$;
- (c) if u is θ -neutral in G then it is θ -essential or θ -neutral in $G \setminus u$.

Lemma 3.4. Let $u \in P_{\theta}(G)$. Then $A_{\theta}(G) \subseteq A_{\theta}(G \setminus u)$.

Proof. If $A_{\theta}(G) = \emptyset$, then we are done. Suppose $A_{\theta}(G) \neq \emptyset$. Let $v \in A_{\theta}(G)$. Then v is adjacent to a θ -essential vertex w. By Theorem 3.3, w is θ -essential in $G \setminus u$ and v is either θ -positive or θ -essential in $G \setminus u$. Suppose v is θ -essential in $G \setminus u$. Then $\operatorname{mult}(\theta, G \setminus uv) = \operatorname{mult}(\theta, G)$. By Theorem 1.6, $u \in P_{\theta}(G) = P_{\theta}(G \setminus v)$. Since v is θ -special in G, v is θ -positive in G (see Corollary 4.3 of [2]). So $\operatorname{mult}(\theta, G \setminus uv) = \operatorname{mult}(\theta, G) + 2$, a contradiction. Therefore v is θ -positive in $G \setminus u$. Since v is adjacent to w, we must have $v \in A_{\theta}(G \setminus u)$. Hence $A_{\theta}(G) \subseteq A_{\theta}(G \setminus u)$.

Theorem 3.5. Let X be a θ -barrier set in G. Then $A_{\theta}(G) \subseteq X$. In particular, $A_{\theta}(G)$ is the minimal θ -barrier set.

Proof. By Lemma 3.1, $X \subseteq A_{\theta}(G) \cup P_{\theta}(G)$. We shall prove the result by induction on $|X \cap P_{\theta}(G)|$. Suppose $|X \cap P_{\theta}(G)| = 0$. Then $X \subseteq A_{\theta}(G)$ and by Lemma 3.2, $X = A_{\theta}(G)$. Suppose $|X \cap P_{\theta}(G)| \ge 1$. We may assume that if X' is a θ -barrier set in G' with $|X' \cap P_{\theta}(G')| < |X \cap P_{\theta}(G)|$, then $A_{\theta}(G') \subseteq X'$.

Let $x \in X \cap P_{\theta}(G)$. By Lemma 2.6, $X' = X \setminus x$ is a θ -barrier set in $G' = G \setminus x$. By Lemma 3.1 and Lemma 3.4, we have $X' \subseteq A_{\theta}(G') \cup P_{\theta}(G')$ and $A_{\theta}(G) \subseteq A_{\theta}(G')$. Therefore $|X' \cap P_{\theta}(G')| < |X \cap P_{\theta}(G)|$. By induction $A_{\theta}(G') \subseteq X'$. Hence $A_{\theta}(G) \subseteq X$.

In general, $A_{\theta}(G)$ is not the intersection of all maximal θ -barrier sets in G. For instance, in Figure 2, $\operatorname{mult}(\sqrt{3}, G) = 0$ and $A_{\sqrt{3}}(G) = \emptyset$. Now $\{u\}$ is the only maximal $\sqrt{3}$ -barrier set. But $A_{\sqrt{3}}(G) \neq \{u\}$. However we can show that $A_{\theta}(G)$ is the intersection of all maximal θ -barrier sets in G if $N_{\theta}(G) = \emptyset$.

Figure 2.

Theorem 3.6. Suppose $N_{\theta}(G) = \emptyset$. Then $A_{\theta}(G)$ is the intersection of all maximal θ -barrier sets in G.

Proof. By Theorem 3.5, $A_{\theta}(G)$ is contained in the intersection of all maximal θ -barriers in G. It is sufficient to show that for each $x \in V(G) \setminus A_{\theta}(G)$ there is a maximal barrier that does not contain x. If $x \in D_{\theta}(G)$, by Lemma 3.1, x is not contained in any θ -barriers and thus any maximal θ -barriers. Suppose $x \in P_{\theta}(G)$. Then x is contained in a component H in $G \setminus A_{\theta}(G)$ with mult $(\theta, H) = 0$. Note that $|V(H)| \geq 2$, for $x \in P_{\theta}(G) = P(G \setminus A_{\theta}(G))$ and mult $(\theta, H \setminus x) = 1$ (see Theorem 1.6). By (c) of Theorem 1.2 and the fact that mult $(\theta, H) = 0$, we deduce that there is a vertex $y \in V(H \setminus x)$ for which mult $(\theta, H \setminus x) = 0$. Now $y \in P_{\theta}(G)$ for $N_{\theta}(G) = \varnothing$. Furthermore $x \in A_{\theta}(H \setminus y)$ and by (ii) of Corollary 1.8, $c_{\theta}((H \setminus y) \setminus A_{\theta}(H \setminus y)) = |A_{\theta}(H \setminus y)| + 1$. Hence

$$c_{\theta}(G \setminus (A_{\theta}(G) \cup \{y\} \cup A_{\theta}(H \setminus y))) = c_{\theta}(G \setminus A_{\theta}(G)) + c_{\theta}((H \setminus y) \setminus A_{\theta}(H \setminus y))$$

$$= |A_{\theta}(G)| + \operatorname{mult}(\theta, G) + |A_{\theta}(H \setminus y)| + 1$$

$$= |A_{\theta}(G) \cup \{y\} \cup A_{\theta}(H \setminus y)| + \operatorname{mult}(\theta, G),$$

and so $A_{\theta}(G) \cup \{y\} \cup A_{\theta}(H \setminus y)$ is a θ -barrier set not containing x. Let Z be a maximal θ -barrier set containing $Y = A_{\theta}(G) \cup \{y\} \cup A_{\theta}(H \setminus y)$. By Lemma 2.6, $Z \setminus Y$ is a θ -barrier set in $G \setminus Y$. Using Theorem 1.6 and the fact that x is θ -essential in $H \setminus y$, we can deduce that $x \in D_{\theta}(G \setminus Y)$. By Lemma 3.1, we conclude that $x \notin Z \setminus Y$ and hence $x \notin Z$. The proof of the theorem is completed. \square

Since $N_0(G) = \emptyset$, by Theorem 3.6 and Proposition 2.4, we deduce the following classical result.

Corollary 3.7. (Theorem 3.3.15 of [4]) $A_0(G)$ is the intersection of all maximal barrier sets in G.

References

- [1] C. D. Godsil, Algebraic Combinatorics, Chapman and Hall, New York (1993).
- [2] C. D. Godsil, Algebraic matching theory, The Electronic Journal of Combinatorics $\bf 2$ (1995), # R8
- [3] W. Chen and C.Y. Ku, An analogue of the Gallai-Edmonds Structure Theorem for nonzero roots of the matching polynomial, J. Combin. Theory Ser. B (2009), doi:10.1016/j.jctb.2009.05.001.
- [4] L. Lovász and M.D. Plummer, Matching Theory, Elsevier Science Publishers, Budapest (1986).