Circuiti con diodi

1. Introduzione

L'esercitazione prevede misure delle caratteristiche statiche e dinamiche di circuiti con diodi. Come per tutte le esercitazioni, è prevista un'analisi critica dei risultati ottenuti ed il loro confronto con quanto presentato a lezione. A tale scopo, si raccomanda di eseguire nell'ordine le misure descritte nei paragrafi 1.1-12-1.3-1.4 ed utilizzare la traccia proposta nel paragrafo 2 per raccogliere i dati misurati e rispondere alle domande, così da predisporre la relazione di laboratorio.

1.1 Caratteristiche statiche

Fig. 1(a) - D=1N4148, R=10k Ω . Circuito con alimentatore

Fig. 1(b) - D=1N4148, R=10k Ω . Circuito con generatore di segnali

Fig. 2(a) – Esempio di montaggio circuitale e relativi collegamenti tra i componenti e con l'alimentatore

Fig. 2(b) – Esempio di montaggio circuitale e relativi collegamenti tra i componenti e con il generatore di segnali

- 1) Montare il circuito in Fig.1(a) e misurarne la transcaratteristica $V_u = f(V_e)$. A questo scopo utilizzare un diodo D=1N4148 e un resistore R dal valore nominale di $10k\Omega$ montati e collegati come in Fig.2(a).
 - Misurare con il multimetro in dotazione l'esatto valore di resistenza del resistore R.
 - Collegare l'alimentatore V_e presente sul banco e variarne la tensione per generare i valori definiti in dettaglio nella tabella presente nel paragrafo 2.1.2 (per dare tensioni negative, è sufficiente scambiare tra loro i cavetti collegati alle boccole dell'alimentatore).
 - Misurare con il multimetro il valore della tensione V_{0} come illustrato in Fig.1(a).
 - Sula base di quanto misurato in precedenza, calcolare il valore della corrente nel diodo ID.
- 2) Sulla base dei risultati ottenuti al punto precedente, si tracci per punti la caratteristica $I_D = f(V_D)$ del diodo. Quanto vale la tensione di soglia V_Y ?
- 3) Sostituire l'alimentatore impiegato nei punti precedenti con il generatore di segnali presente sul banco come mostrato in Fig.1(b) in modo tale da fornire in ingresso al circuito una tensione sinusoidale $v_e(t) = V_p \sin(2\pi f t)$ con $V_p = 5V$ e f = 1kHz. La Fig.2(b) mostra la disposizione dei componenti e dei collegamenti da effettuare.
 - Osservare con l'oscilloscopio le forma d'onda della tensione applicata $V_e(t)$ e della tensione $V_u(t)$ ai capi del resistore R collegando le sonde come mostrato in Fig.1(b). Si riporti l'andamento quotato in funzione del tempo delle tensioni $V_e(t)$ e $V_u(t)$ nella relazione di laboratorio.
 - Misurare il valore dell'ampiezza di picco di v_u(t).
 - Sulla base dei risultati delle misure precedenti, si disegni la transcaratteristica statica $V_u = f(V_e)$.
- 4) Ripetere i punti (1), (2) e (3) precedenti sostituendo il diodo D=1N4148 con il diodo zener DZ=1N5228 come illustrato in Fig. 3(a) e (b). Quanto vale la tensione di soglia V_V e la tensione breakdown V_{BR} del diodo zener?
- 5) Completare il paragrafo 2.1.2 con i dati misurati, gli andamenti delle tensioni osservati e le risposte alle domande proposte.

Fig. 3(a) – DZ=1N5228, R=10k Ω

Fig. 3(b) - DZ=1N5228, R=10k Ω

Circuiti con diodi

1.2 Raddrizzatore a semplice semionda

Fig. 4(a)

Fig. 4(b)

- 1) Montare nuovamente il circuito in Fig.1(b) con il diodo D=1N4148 e il resistore R=10k Ω ed inserire, uno alla volta, i condensatori C da 10nF, 100nF e 1 μ F, presenti nella bustina dei componenti, in parallelo al resistore R, ottenendo così il circuito in Fig.4(a), i cui collegamenti sono mostrati in Fig.4(b). Applicare una tensione in ingresso $v_e(t) = V_p \sin(2\pi f t)$ con $V_p = 5V$ e f=1kHz, esattamente come nel punto (3) e (4) dell'esercizio precedente. Visualizzare tramite oscilloscopio le forme d'onda delle tensioni $v_e(t)$ e $v_u(t)$ collegando le sonde come mostrato in Fig.4(a).
 - Misurare l'ampiezza picco-picco ΔV della tensione $v_{\rm u}(t)$ per ciascuno dei tre condensatori dati.
 - Si riporti l'andamento quotato in funzione del tempo delle tensioni $V_e(t)$ e $V_u(t)$ per ciascun condensatore C
 - Si fornisca una spiegazione qualitativa che giustifichi l'andamento di $V_{u}(t)$ e in cui si metta in evidenza come varia lo stato di conduzione del diodo nel tempo.
- 2) Con riferimento al circuito in Fig.4(a) in cui si usi C=1uF, applicare una tensione in ingresso $v_e(t)=V_p\sin(2\pi ft)$ con $V_p=5$ V.
 - Osservare sull'oscilloscopio le tensioni $v_e(t)$ e $v_u(t)$ per tre diverse frequenze del segnale sinusoidale: f=1kHz, 500Hz e 100Hz. Si riporti l'andamento quotato in funzione del tempo delle tensioni $v_e(t)$ e $v_u(t)$ nella relazione di laboratorio.
- 3) Completare il paragrafo 2.1.3 con i dati misurati, gli andamenti delle tensioni osservati e le risposte alle domande proposte.

1.3 Rivelatore di picco

Fig. 5

Circuiti con diodi

- 1) A partire dal circuito di Fig.4(a) dell'esercizio precedente, rimuovere il resistore R ed utilizzare uno qualunque dei condensatori presenti nella bustina dei componenti ottenendo così il circuito di Fig.5. Utilizzare il generatore di segnali per dare in ingresso al circuito la tensione sinusoidale $v_e(t) = V_p \sin(2\pi f t)$ con $V_p = 5V$ e f = 1kHz
 - Osservare la forma d'onda delle tensioni $v_e(t)$ e $v_u(t)$ con l'oscilloscopio collegando le sonde come illustrato in Fig.5.
 - Si fornisca una spiegazione qualitativa che giustifichi l'andamento osservato di $V_{u}(t)$ e in cui si metta in evidenza come varia lo stato di conduzione del diodo nel tempo.
- 2) Completare il paragrafo 2.1.4 con i dati misurati, gli andamenti delle tensioni osservati e le risposte alle domande proposte.

1.4 Circuito per la protezione da scariche elettrostatiche

- Fig. 6(a)
- 1) Montare il circuito in Fig.6(a). A tale scopo utilizzare due diodi D1=D2=1N4148 e il resistore R=10k Ω montati e collegato come in Fig.6(b). Collegare il generatore di segnali per dare in ingresso al circuito una tensione sinusoidale $v_e(t) = V_p \sin(2\pi f t)$ con $V_p = 10V$ e f = 1kHz. Utilizzare l'alimentatore per generare la tensione $V_p = 5V$.
 - Osservare con l'oscilloscopio le forma d'onda della tensione applicata $V_e(t)$ e della tensione $V_u(t)$ ai capi del diodo D1 con l'oscilloscopio collegando le sonde come illustrato in Fig.6(b).
 - Si misuri il valore minimo e quello massimo della tensione $V_u(t)$.
- 2) Utilizzare l'oscilloscopio in modalità XY per visualizzare la transcaratteristica $V_u = f(V_e)$.
- 3) Completare il paragrafo 2.1.5 con i dati misurati, gli andamenti delle tensioni osservati e le risposte alle domande proposte.

Circuiti con diodi

2 Traccia per la relazione

Esercitazione	1:	Circuiti	con	diodi

Data:

2.1.1 Gruppo composizione:

Nome	Cognome	Firma

2.1.2 Caratteristiche statiche

- Valori misurati richiesti:

Resistenza <i>R</i>

- Caratteristica statica $I_D(V_D)$ del diodo 1N4148

Ve, [V]	Vu, [V]	<i>I_D</i> (diodo 1N4148), [A]
-4		
-3.5		
-3		
-2		
-1		
0		
0.2		
0.4		
0.6		
0.8		
1		
1.5		
2		

	ella caratteristica statica $I_D(V_D)$ del diodo D=1N4148
Tensione di soglia V_{Y}	
ndamanta qualitativa da	
nuamento quantativo de	ella tensione di ingresso $v_e(t)$ e della tensione di uscita $v_u(t)$
	ella tensione di ingresso $v_e(t)$ e della tensione di uscita $v_u(t)$
	ella tensione di ingresso $v_e(t)$ e della tensione di uscita $v_u(t)$
	ella tensione di ingresso $v_e(t)$ e della tensione di uscita $v_u(t)$
idamento quantativo de	ella tensione di ingresso $v_e(t)$ e della tensione di uscita $v_u(t)$
idamento quantativo de	ella tensione di ingresso $v_e(t)$ e della tensione di uscita $v_u(t)$
idamento quantativo de	ella tensione di ingresso $v_e(t)$ e della tensione di uscita $v_u(t)$
idamento quantativo de	ella tensione di ingresso $v_e(t)$ e della tensione di uscita $v_u(t)$
idamento quantativo de	ella tensione di ingresso $v_e(t)$ e della tensione di uscita $v_u(t)$
nuamento quantativo de	ella tensione di ingresso $v_e(t)$ e della tensione di uscita $v_u(t)$
idamento quantativo de	ella tensione di ingresso $v_e(t)$ e della tensione di uscita $v_u(t)$
idamento quantativo de	ella tensione di ingresso $v_e(t)$ e della tensione di uscita $v_u(t)$
- Valori misurati richi	

Circuiti con diodi

-	Disegnare la transcaratteristica statica	$V_u =$	$f(V_e)$	
---	--	---------	----------	--

- Caratteristica statica $I_Z(V_Z)$ del diodo zener 1N5228

Ve, [V]	Vu, [V]	I_Z (1N5228), [A]
-4		
-3.5		
-3		
-2		
-1		
0		
0.2		
0.4		
0.6		
0.8		
1		
1.5		
2		

- Andamento qualitati	vo della cai	ratteristica s	tatica $I_Z(V_Z)$	del diodo zer	ner 1N5228	
		<u> </u>				
Tensione di soglia						
Tensione di breakdow	in v_{BR}					
ndamento qualitativo dell	a tensione	di ingresso 1	$v_e(t)$ e della t	tensione di us	scita $v_u(t)$	
Valori misurati richiesti:						
Tensione V_{u} di picco						

egnare la transcaratte	eristica statica $V_u = f$	(V_e)			
	emplice semionda icco-picco ΔV della tens	sione d'uscita <i>v</i> .	,,(t)		
С	ΔV, [V]		u ()		
10nF					
100nF					
1μF					
Andamento qualitat ciascuno dei tre con	tivo della tensione di in Idensatori <i>C</i>	ngresso $v_e(t)$ (e della tens	sione di us	scita $v_u(t)$ misu

	Spiegazione qualitativa dell'andamento di $v_u(t)$ (discutere lo stato di conduzione del dioc
4	Rivelatore di Picco
-	forma d'onda dell'uscita $v_u(t)$
-	Spiegazione qualitativa dell'andamento di $v_u(t)$ (discutere lo stato di conduzione del dioc

-	Forma d'onda delle tensioni ve(t) e vu(t) per tre diverse frequenze del segnale sinusoidale f =1kHz, 500Hz e 100Hz
2.1.5 -	Circuito per la protezione da scariche elettrostatiche forma d'onda dell'uscita $v_u(t)$
	Valari minumati riahinati
-	Valori misurati richiesti:
	alore minimo di $v_u(t)$
Va	alore massimo di $v_u(t)$
-	Disegnare l'andamento qualitativo della transcaratteristica $V_u=f(V_e)$.