30 Days of RTL Coding

-By T Tushar Shenoy

Day 19

Problem Statement: Implementing Comparator in Gate level of Implementation.

Theory:

1-Bit Magnitude Comparator

Truth Table

Inputs		Outputs				
В	Α	A > B	A = B	A < B		
0	0	0	1	0		
0	1	1	0	0		
1	0	0	0	1		
1	1	0	1	0		

FIG: 1-Bit Magnitude Comparator

Verilog Code:

```
//Verilog Code for 1 Bit Comparator
module comparator1bit(A,B,AeB,AgB,AlB);
input A,B;
output AeB,AgB,AlB;
wire w1,w2;
not N1(w1,A);
not N2(w2,B);
and A1(AlB,w1,B);
and A2(AgB,w2,A);
nor NO1(AeB,AlB,AgB);
endmodule
```

Testbench Code:

endmodule

```
//Testbench code for 1 Bit Comparator
module comparator1bit_tb();
reg A,B;
wire AeB,AgB,AlB;
comparator1bit dut(.A(A),.B(B),.AeB(AeB),.AgB(AgB),.AlB(AlB));
initial begin
 A=1'b0;B=1'b0;
#5 A=1'b0;B=1'b1;
#5 A=1'b1;B=1'b0;
#5 A=1'b1;B=1'b1;
#5 $finish;
end
```

Schematic:

Simulation Output:

2-Bit Magnitude Comparator

Truth Table

	Inp	outs				
A		В		Outputs		
al	a0	b1	ьо	A = B	A > B	A < B
0	0	0	0	1	0	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	0	1	0
0	1	0	1	1	0	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	0	1	0
1	0	0	1	0	1	0
1	0	1	0	1	0	0
1	0	1	1	0	0	1
1	1	0	0	0	1	0
1	1	0	1	0	1	0
1	1	1	0	0	1	0
1	1	1	1	1	0	0

FIG: 2-Bit Magnitude Comparator

Verilog Code:

```
//Verilog Code for 2 Bit Comparator
module comparator2bit(A,B,AeB,AgB,AlB);
input [1:0]A,B;
output AeB,AgB,AlB;
wire [11:0]w;
not N1(w[0],A[1]);
not N2(w[1],A[0]);
not N3(w[2],B[1]);
not N4(w[3],B[0]);
and A1(w[4],A[0],w[2],w[3]);
and A2(w[5],A[1],w[2]);
and A3(w[6],A[1],A[0],w[3]);
or O1(AgB,w[4],w[5],w[6]);
xnor XNO1(w[7],A[0],B[0]);
xnor XNO2(w[8],A[1],B[1]);
and A7(AeB,w[7],w[8]);
and A4(w[9],w[0],w[1],B[0]);
and A5(w[10],w[1],B[1],B[0]);
```

and A6(w[11],w[0],B[1]);

```
or O2(AlB,w[9],w[10],w[11]);
```

endmodule

```
Testbench Code:
//Testbench code for 2 Bit Comparator
module comparator2bit_tb();
reg [1:0]A,B;
wire AeB,AgB,AlB;
comparator2bit dut(.A(A),.B(B),.AeB(AeB),.AgB(AgB),.AlB(AlB));
initial begin
 A=2'b00;B=2'b11;
#5 A=2'b01;B=2'b10;
#5 A=2'b10;B=2'b01;
#5 A=2'b11;B=2'b00;
#5 A=2'b00;B=2'b00;
//Add More Test Cases Here
#5 $finish;
end
```

endmodule

Schematic:

Simulation Output:

GitHub Repository URL: https://github.com/tusharshenoy/RTL-Day-19-comparator-Stuctural