Video Object Segmentation with Joint Re-identification and Attention-Aware Mask Propagation No. 1 in DAVIS 2017 Challenge

Presentator: Jia Zheng

SIST, ShanghaiTech

May 23, 2018

Outline

- Introduction
- Approach
- Experiments
 - Ablation Study
 - Benchmark

Outline

- Introduction
- Approach
- - Ablation Study
 - Benchmark

Multiple objects semi-supervised video object segmentation

Task

Segment foreground multiple objects from the background region in a video sequence when given each mask of the first frame.

Challenge

- Scale and pose variations
- Occlusion

Recap: Two main approach to DAVIS 2016

- OSVOS [1]: segment the frames independently, no use of temporal information in the video.
- MaskTrack [6]: take temporal information into account.

OSVOS

Figure: OSVOS pipeline. Figure extracted from OSVOS [1].

MaskTrack

Figure: Network architecture (DeepLabv2-VGG). Expand input from RGB to RGB + mask channels. Figure extracted from MaskTrack [6].

Outline

- Approach
- - Ablation Study
 - Benchmark

Overview

Figure: DyeNet joints template matching and temporal propagation into a unified framework.

Pipeline

Inference

- Extract feature by ResNet-101 [2]
- Re-ID generates a set of masks from object proposals and compare them with templates. Masks with a high similarity to templates are chosen as a starting points for Re-MP module.
- Re-MP propagates each selected mask bidirectionally, and generates a sequence of segmentation masks (tracklets).
- Post-processing to link tracklets.

Re-ID Module

- Use RPN[7] to propose candidate object bounding boxes on every frame.
- Extract its feature, resize by RolAlign[3], feed into two sub-networks to get binary mask and mask feature
- Use cosine distance to measure similarities between candidate bounding box and templates.
- If a candidate is sufficiently similar to any template, keep its mask as a starting point for Re-MP.

Re-MP Module

$$h_j = \mathcal{N}_R(h_{(j-1)\to j}, x_j) \qquad (1)$$

$$y_i = \mathcal{N}_O(h_i) \qquad (2)$$

$$y_j = \mathcal{N}_O(h_j) \tag{2}$$

- warp previous mask y_{i-1} and hidden state h_{i-1} by optical flow
- obtain bounding box according to the warped mask, extract its feature x_i by RolAlign
- propagate mask by RNN by Equ. 1 and Equ. 2

Attention Mechanism

Feed warped hidden state $h_{(j-1)\to j}$ into a single convolutional layer, and then a softmax function.

Region Attention

(b) Re-MP with Attention Mechanism

Linking the tracklets

Greedy approach

- Sort all tracklets descendingly by cosine similarities between their respective starting point and templates. Extend the starting points according to the sorted order.
- Skip the starting point whose mask highly overlaps with a mask in existing tracklets.
- Tracklet with the highest similarities are assigned to the respective templates.
- A tracklet is merged with a tracklet of higher order if there is no contradiction between them.

Outline

- Approach
- Experiments
 - Ablation Study
 - Benchmark

Re-MP module

Table: Ablation study on Re-MP with DAVIS₁₇ val.

	Variant	${\mathcal J}$ -mean	${\mathcal F}$ -mean	\mathcal{G} -mean
MaskTrack [6]	ResNet-101	63.3	67.2	65.3
Re-MP	no attention	65.3	69.7	67.5
IXE-IVII	full	67.3	71.0	69.1

Re-MP module

Re-ID Module

Table: Ablation study on Re-ID with DAVIS₁₇ val. The improvement of \mathcal{G} -mean between rows is because of template expansion.

$ ho_{\it reid}$	0.9	0.8	0.7	0.6
	\mathcal{G} -mean	\mathcal{G} -mean	\mathcal{G} -mean	\mathcal{G} -mean
Iter. 1	72.3	73.2	73.2	73.4
Iter. 2	73.3	73.7	74.1	74.0
Iter. 3 ⁺	73.6	73.7	74.1	73.9

Each component in DyeNet

Table: Ablation study of each module in DyeNet with DAVIS₁₇ test-dev.

	Variant	${\mathcal J}$ -mean	${\mathcal F}$ -mean	\mathcal{G} -mean	$\Delta \mathcal{G}$ -mean
MaskTrack [6]	ResNet-101	50.9	52.6	51.7	-
Re-MP	no attention	55.4	60.5	58.0	+ 6.2
	full	59.1	62.8	61.0	+ 9.2
+ Re-ID		65.8	70.5	68.2	+ 7.2
offline	offline only	60.2	64.8	62.5	- 5.6

DAVIS 2017 Benchmark

Table: Results on DAVIS₁₇ test-dev

	online training		\mathcal{J} -mean	${\mathcal F}$ -mean	<i>G</i> -mean
	dataset	video	J-illean	J-mean	g-mean
OnAVOS [8] [†]	$\sqrt{}$		53.4	59.6	56.5
LucidTracker [4]	$ \sqrt{ }$	$\sqrt{}$	60.1	68.3	64.2
VS-ReID [5]	$ \sqrt{ }$	×	64.4	67.8	66.1
LucidTracker [4] [†]	$\sqrt{}$	$\sqrt{}$	63.4	69.9	66.6
DyeNet (offline)	×	X	60.2	64.8	62.5
DyeNet	$\sqrt{}$	×	65.8	70.5	68.2

Approaches with ensemble are marked with †.

Visualization

Figure: Visualization of DyeNet's prediction.

Reference

Sergi Caelles et al. "One-shot video object segmentation". In: CVPR. 2017.

Kaiming He et al. "Deep residual learning for image recognition". In: CVPR. 2016.

Kaiming He et al. "Mask r-cnn". In: ICCV. 2017.

A. Khoreva et al. "Lucid Data Dreaming for Multiple Object Tracking". In: arXiv preprint arXiv: 1703.09554. 2017.

X. Li et al. "Video Object Segmentation with Re-identification". In: The 2017 DAVIS Challenge on Video Object Segmentation - CVPR Workshops (2017).

Federico Perazzi et al. "Learning video object segmentation from static images". In: CVPR. 2017.

Shaoqing Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks". In: NIPS. 2015.

Paul Voigtlaender and Bastian Leibe. "Online Adaptation of Convolutional Neural Networks for Video Object Segmentation". In: BMVC. 2017.

Thanks

Thanks for Attention!

