федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский политехнический университет Петра Великого» Институт компьютерных наук и технологий

Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Выпускная квалификационная работа магистра

Применение генетического алгоритма для задачи понижения размерности пространства признаков

Выполнил студент гр. в3540203/80278

Георгиевский А. А.

Руководитель к.ф.-м.н., доцент ВШИСиСТ

Пак В. Г.

г. Санкт-Петербург 2021 год

Актуальность исследований

Актуальность исследований обусловлена необходимостью применения на практике интеллектуальных методов (подходов), позволяющих выбрать наиболее релевантные комбинации признаков с сохранением их семантики для конкретных моделей обучения и решения поставленных задач.

Цель и задачи исследования

Цель: исследование эффективности применения генетического алгоритма (ГА) и некоторых его модификаций для задачи понижения размерности пространства признаков.

Задачи:

- Реализовать исследуемый (выбранный) метод понижения размерности пространства признаков с применением ГА;
- Реализовать ГА с стандартными и модифицированными операторами;
- Выполнить оценку влияния модификации операторов ГА на эффективность понижения размерности пространства признаков;
- Выполнить сравнительный анализ исследуемого и классических методов понижения размерности пространства признаков.

Методы понижения размерности пространства признаков

Подходы к снижению размерности

- Отбор признаков (feature selection) это процесс выбора наиболее значимых признаков из исходного набора данных с сохранением их семантики.
- Выделение признаков (feature extraction) это процесс снижения размерности пространства признаков посредством специальных методов для перехода в новое пространство с иным семантическим наполнением.

Отбор признаков

• Метод фильтров:

• Метод оболочек (оберток):

Алгоритм поиска оптимального поднабора признаков

• Встроенные методы:

Алгоритм поиска оптимального поднабора признаков

Применение генетического алгоритма в методе отбора признаков

а) Принципиальная схема отбора признаков, метод оболочек (оберток)

Применение генетического алгоритма в методе отбора признаков

b) Отбор признаков с точки зрения генетического алгоритма

Критерий оценки качества классификации в методе отбора признаков

Матрица несоответствия

		пассификации) Экспертная оценка		
		Класс С1	Класс С2	
Оценка модели	Предсказанный класс C1	TP	FP	
	Предсказанный класс C2	FN	TN	

- TP (true positive) классификатор верно отнёс объект к классу С1;
- TN (true negative) классификатор верно отнес объект к классу С2;
- FP (falsee positive) классификатор неверно отнёс объект к классу С1;
- FN (false negative) классификатор неверно отнёс объект к классу С2.

$$Recall = \frac{TP}{TP + FN}$$
 $Precision = \frac{TP}{TP + FP}$ $F_1 = 2 * \frac{Precision * Recall}{Precision + Recall}$

Реализация

Операторы ГА (основные):

- Инициализация первичная популяция создается случайным образом;
- *Приспособленность* классификатор kNN, оценка качества классификации F1 мера;
- Селекция в живых остается 50 % наилучших особей из популяции;
- Генератор нового поколения опциональный принцип элитизма;
- Выбор родителей панмиксия (выбор родителей случайным образом);
- *Кроссинговер* многоточечный, равновероятностная передача генов / передача генов с учетом значения функции приспособленности особи;
- Мутация статическая / динамическая мутации.

Критерий завершения работы метода отбора признаков:

• MAX / Average значение приспособленности особей в популяции.

Программная реализация:

- *Генетический алгоритм:* .Net Core, R.Net;
- *Модель обучения, классификация данных:* R.

Экспериментальные исследования

Оценка влияния модификации операторов генетического алгоритма

Зависимость значения функции приспособленности в популяции от номера поколения

- число параметров в исходном наборе 37;
- точность классификации (F1) на исходном наборе данных, kNN 67,70%;
- число параметров, отобранных алгоритмом 9;
- точность классификации (F1) на отобранных параметрах, kNN 81,80%.

Оценка влияния модификации операторов генетического алгоритма

Зависимость значения функции приспособленности в популяции от номера поколения

- число параметров в исходном наборе 37;
- точность классификации (F1) на исходном наборе данных, kNN 67,70%;
- число параметров, отобранных алгоритмом 13;
- точность классификации (F1) на отобранных параметрах, kNN 94,59%.

Сравнительный анализ методов понижения размерности пространства признаков

Методы для сравнения:

• PCA; random forest; filter(information gain).

Наборы данных для бинарной классификации:

- диагностика неисправности ультразвуковых расходомеров жидкости «ultrasonic flowmeter diagnostics» (число параметров –37, число выборок –86);
- предсказание биологического ответа молекул, по их химическому свойству «bioresponse» (число параметров –1777, число выборок –3751).

Классификаторы для итоговой оценки эффективности:

naive Bayes, kNN, tree, SVM, random forest.

Способ тестирования:

• кросс-валидация с разбиением набора на 20 частей.

Сравнительный анализ методов понижения размерности пространства признаков

Набор данных: «ultrasonic flowmeter diagnostics».

Параметр		Исходный набор данных	Методы снижения размерности			
			оболочка (ГА + kNN)	PCA	random forest	фильтр (information gain)
Число параметров в наборе		37	13	13	13	13
AUC, %	kNN	82,70	89,20	93,30	75,90	76,50
	Tree	80,40	84,60	78,50	90,20	88,60
	SVM	98,30	92,10	94,30	96,20	91,90
	random forest	95,80	93,80	89,40	94,70	93,90
	naive Bayes	82,50	78,70	89,60	83,50	84,80
Лучший пезультат точности классификации в строке						

Лучший результат точности классификации в строке

Худший результат точности классификации в строке

Для исследуемого метода отбора признаков (оболочка):

- число параметров в исходном наборе − 37;
- точность классификации (AUC) на исходном наборе данных, kNN − 82,70%;
- число параметров, отобранных алгоритмом 13;
- точность классификации (AUC) на отобранных параметрах, kNN 89,20%;
- процент сжатия параметров в наборе − 64,9%.

Сравнительный анализ методов понижения размерности пространства признаков

Набор данных: «bioresponse».

* Для методов оболочка и random forest проводилась предварительная фильтрация (information gain), исходный набор сокращен до 500 параметров.

Параметр		Исходный набор данных	Методы снижения размерности			
			оболочка (ГА + kNN)*	PCA	random forest*	фильтр (information gain)
Число параметров в наборе		1777	130	130	130	130
AUC, %	kNN	72,60	83,10	78,10	82,60	80,50
	Tree	64,40	69,70	60,90	63,50	67,60
	SVM	70,00	79,10	76,80	77,30	78,00
	random forest	76,80	81,50	71,00	81,00	80,70
	naive Bayes	70,90	77,40	67,40	73,00	76,10

Лучший результат точности классификации в строке

Худший результат точности классификации в строке

Для исследуемого метода отбора признаков (оболочка):

- число параметров в исходном наборе − 1777;
- точность классификации (AUC) на исходном наборе данных, kNN − 72,60%;
- число параметров, отобранных алгоритмом 130;
- точность классификации (AUC) на отобранных параметрах, kNN − 83,10%;
- процент сжатия параметров в наборе 92,7%.

Заключение

В ходе выполнения работы были решены поставленные задачи:

- ✓ Выполнен обзор существующих подходов к снижению размерности пространства признаков, и выбран метод для исследования.
- ✓ Реализован ГА с модифицированными операторами для исследуемого метода.
- ✓ Проведена оценка влияния модификации операторов ГА на эффективность понижения размерности пространства признаков.
- ✓ Выполнен сравнительный анализ исследуемого и часто используемых методов понижения размерности пространства признаков.
- ✓ Все исследования проводились с использованием реальных наборов данных из открытых источников.