Timescale-dependent representation learning in Language Models

Shivangi Mahto

Goal: Timescale-dependent language hierarchy in brain

Objective: LSTM LMs with explicit timescales

- Layers with different contextual memory L1: 20 words, L2: 10 words, L3: 5 words
- Layer units with different contextual memory L1[1-25]: 20 words; L1[25-50]: 10 words

Approach: Chrono Initialization*

> Forget gate bias initialization affects the memory of LSTM

$$\triangleright b_f \sim \log(\mathcal{U}(1, T_{max} - 1)); \quad b_i = -b_f$$

where \mathcal{U} is uniform distribution and T_{max} is expected long term dependency

➤ Timescale-dependent LSTM layers: CHRONO LSTM LMs

L1:
$$b_f \sim \log(\mathcal{U}(1,19))$$

L2:
$$b_f \sim \log(\mathcal{U}(1,9))$$

L3:
$$b_f \sim \log(\mathcal{U}(1,4))$$

LSTM layer architecture

$$i_{t} = \sigma(U_{i}x_{t} + W_{i}s_{t-1} + V_{i}c_{t-1} + b_{i}),$$

$$f_{t} = \sigma(U_{f}x_{t} + W_{f}s_{t-1} + V_{f}c_{t-1} + b_{f}),$$

$$g_{t} = f(Ux_{t} + Ws_{t-1} + Vc_{t-1} + b),$$

$$c_{t} = f_{t} \odot c_{t-1} + i_{t} \odot g_{t},$$

$$o_{t} = \sigma(U_{o}x_{t} + W_{o}s_{t-1} + V_{o}c_{t} + b_{o}),$$

$$s_{t} = o_{t} \cdot f(c_{t}),$$

$$y_{t} = g(Vs_{t} + Mx_{t} + d),$$

^{*}Tallec, Corentin, and Yann Ollivier. "Can recurrent neural networks warp time?." ICLR 2018

Variations of Chrono-Initialization for LSTM-LM

Evaluation

- ➤ Compare Standard LSTM* and Chrono-LSTM LMs
- ➤ Datasets: Penn Tree Bank (PTB)**
 - 10k words in vocabulary, Training/Test (1177*70 words)/Validation
- ➤ Metric: Perplexity (PPL) of LMs

$$-2^{\frac{-1}{N}\sum_{t=1}^{N}LM(w_t|w_1,w_2,...,w_{t-1})}$$

- > Architecture of baseline:
 - 3 LSTM-layer language model 1150, 1150, 400 (tied encoder-decoder)
 - Sequence length -70
 - ASGD optimizer

^{*} Merity, Stephen, Nitish Shirish Keskar, and Richard Socher. "Regularizing and optimizing LSTM language models." (2017).

^{**} Mikolov, Tomáš, et al. "Subword language modeling with neural networks." (2012).

Experiment 1: Chrono-initialize forget gates biases

Model type	Test Perplexity	Description		
1. Baseline	61.70			
2. Chrono layers initialization		Fixed layer-wise initialization		
1. T: 20	60.70	- L1 log(T-1) - L2 log(T/2 - 1) - L3 log (T/4 -1)		
2. T: 70	61.10			
3. T: 200	60.90			
3. Chrono gradient initialization				
1. T: 20	60.73	Gradient init. across all 3 layers For all L1, L2, L3: Init units with log(1> T)		
2. T: 70	61.17			
3. T: 200	61.28			
4. Inverse chrono layers initialization 1. T: 70	61.12	Fixed layer-wise initialization - L1 log(T/4-1) - L2 log(T/2 - 1) - L3 log (T-1)		

Performance is not affected by the initialization at all!

What happened to forget gate biases after training?

- Forget gate bias distribution
 - not affected by initialization
 - specific to each layer rather than initial values
- Training overrides initial values
 - robust training
- What if we fix the forget gate bias values?

Experiment 2: Fixed forget gates biases

Model type	Test Perplexity	Description	
1. Baseline	61.70		
2. Fixed bias using Chrono layers initialization		Five dilavor voice bie socione	
1. T: 20	61.71	Fixed layer-wise bias values - L1 log(T-1) - L2 log(T/2 - 1) - L3 log(T/4 -1)	
2. T: 70	65.53		
3. T: 200	68.25	- L3 log(T/4 -1)	
3. Fixed bias using Chrono Gradient initialization			
1. T: 20	61.02	Gradient bias values across all 3 layers: Fixed units bias with log(1> T-1)	
2. T: 70	64.45		
3. T: 200°	67.23		

A T-dependent pattern among performances!

Lets, look closer into effect of different timescales in different layers...

Experiment 3: Variation of timescale across layers

Model type	Test Perplexity	Variation in timescales Chrono Layers		
1. Baseline	61.70			
2. First layer – longest timescale		Fixed layer-wise bias values		
1. T: 20	61.71	 L1 log(T-1) – longest L2 log(T/2 - 1) – midrange 		
2. T: 70	65.53	- L3 log (T/4 -1) – smallest		
3. Middle layer – longest timescale		Fixed layer-wise bias values		
1. T:20	60.61	 L1 log(T/4-1) - smallest L2 log(T - 1) - longest 		
2. T:70	63.15	- L3 log (T/2 -1) – mid range		
4. Last layer – longest timescale		Fixed layer-wise bias values		
1. T: 20	60.54	 L1 log(T/4-1) – smallest L2 log(T/2 - 1) – mid range 		
2. T: 70	63.48	- L3 log (T -1) – longest		

Small timescale in first layer – most effective

Change in cell state vs. word position

Ablate words at different positions from context during inference

Original context Ablated contex

• Memory in layer between $< w_{71} >$ and $< w_t > = ||C_i - C(t)'_i||_2$

$$\begin{split} i_t &= \sigma(U_i x_t + W_i s_{t-1} + V_i c_{t-1} + b_i), \\ f_t &= \sigma(U_f x_t + W_f s_{t-1} + V_f c_{t-1} + b_f), \\ g_t &= f(U x_t + W s_{t-1} + V c_{t-1} + b), \\ c_t &= f_t \odot c_{t-1} + i_t \odot g_t, \\ o_t &= \sigma(U_o x_t + W_o s_{t-1} + V_o c_t + b_o), \\ s_t &= o_t \cdot f(c_t), \\ y_t &= g(V s_t + M x_t + d), \end{split}$$

Change in cell memory vs. word position

- Slope of graphs information about timescale
 - Slow decay -> higher information between distant words
- Layer 1 small timescale most effective intuitive ..??
- Layer 3 all model has similar slope irrespective of fixed bias values task-dependency?

Experiment 4: Customize timescale in layers

- 1. Tried different values of X: 5, 10, 20, 30, 70
- 2. Tried mixture of values:
 - 1—20 short memory
 - 70 long memory

3. Pareto – smooth module

Model type		Test ppl	Bootstrapped samples performance	Averaged performance model trained with different seeds (6)
1. Baseline (1k epochs)		61.40	61.42 +/- 1.52	61.64 +/- 0.28
2. L2: Bias value: log(5-1)		60.17	60.19 +/- 1.50	
3. L2: Bias value: log(10-1)		59.88	59.90 +/- 1.49	
4. L2: Bias value: log(20-1)		59.97	60.00 +/- 1.50	
5. L2: Bias value: log(30-1)		60.09	60.12 +/- 1.49	
6. L2: Bias value: log(70-1)		60.71	60.73 +/- 1.52	
 7. L2: Modular I (MOD 5) Half units: Timescale gradient 1> 20 Other half units: Fixed timescale 70 	70 Hooker to) 90 90 90 90 90 90 90 90 90 90 90 90 90 9	60.16	60.18 +/- 1.50	60.34 +/- 0.15
 8 L2: Modular II (MOD 8) 80% units: Timescale gradient 1> 20 Other 20% units: Fixed timescale 70 	70 Hobular 80 90 90 90 90 90 90 90	59.88	59.89 +/- 1.49	59.83 +/- 0.09
9 L2: PARETO: timescales sampled from pareto dist. $(1/x**(1.54))$	107 Tautio 109 109 109 109 109 109 109 109 109 109	59.52	59.55 +/- 1.48	59.66 +/- 0.17

Cell state vs ablated word position

- Can we relate the behavior of cell state change to Mutual Information in Language?
- Can we understand how the LSTM is trying to fit with the mutual information in Language?

Encoding model

Thank you! ©