

Vypracované otázky k MSZ pro rok 2022 Specializace NNET

Specializace Počítačové sítě – NNET

- 1. Architektura superskalárních procesorů a algoritmy zpracování instrukcí mimo pořadí, predikce skoků.
- 2. Paměťová konzistence a předbíhání operací čtení a zápisu, podpora virtuálního adresového prostoru.
- 3. Datový paralelismus SIMD, HW implementace a SW podpora.
- 4. Architektury se sdílenou pamětí UMA a NUMA, zajištění lokality dat.
- 5. Problém koherence pamětí cache na systémech se sdílenou pamětí, protokol MSI.
- 6. Paralelní zpracování v OpenMP: Smyčky, sekce a tasky a synchronizační prostředky.
- 7. Pravděpodobnost, podmíněná pravděpodobnost, nezávislost.
- 8. Náhodná proměnná, typy náhodné proměnná, funkční a číselné charakteristiky, významná rozdělení pravděpodobnosti.
- 9. Bodové a intervalové odhady parametrů, testování hypotéz o parametrech.
- 10. Vícevýběrové testy, testy o rozdělení, testy dobré shody.
- 11. Regresní analýza.
- 12. Markovské řetězce a základní techniky pro jejich analýzu.
- 13. Randomizované algoritmy (Monte Carlo a Las Vegas algoritmy).
- 14. Problém generalizace strojového učení a přístup k jeho řešení (trénovací, validační a testovací sada, regularizace, předtrénování, multi-task learning, augmentace dat, dropout, ...)
- 15. Generativní modely a diskriminativní přístup ke klasifikaci (gaussovský klasifikátor, logistická regrese, ...)
- 16. Neuronové sítě a jejich trénování (metoda gradientního sestupu, účelová (loss) funkce, výpočetní graf, aktivační funkce, zápis pomocí maticového násobení, ...)
- 17. Neuronové sítě pro strukturovaná data (konvoluční a rekurentní sítě, motivace, základní vlastnosti, použití)
- 18. Prohledávání stavového prostoru (informované a neinformované metody, lokální prohledávání, prohledávání v nejistém prostředí, hraní her, CSP úlohy)
- 19. Klasifikace formálních jazyků (Chomského hierarchie), vlastnosti formálních jazyků a jejich rozhodnutelnost.
- 20. Konečné automaty (jazyky přijímané KA, varianty KA, minimalizace KA, Mihill-Nerodova věta).
- 21. Regulární množiny, regulární výrazy a rovnice nad regulárními výrazy.
- 22. Zásobníkové automaty (jazyky přijímané ZA, varianty ZA).
- 23. Turingovy stroje (jazyky přijímané TS, varianty TS, lineárně omezené automaty, vyčíslitelné funkce).
- 24. Nerozhodnutelnost (problém zastavení TS, princip diagonalizace a redukce, Postův korespondenční problém).
- 25. Časová a paměťová složitost (třídy složitosti, úplnost, SAT problém).
- 26. Postrelační a rozšířené relační databáze (objektový a objektově relační databázový model struktura a operace; podpora práce s XML a JSON dokumenty v databázích).
- 27. NoSQL databáze (porovnání relačních a NoSQL; CAP věta a ACID/BASE principy; typy NoSQL databází; dotazování v NoSQL databázích; agregace dat pomocí Map-Reduce a agregační pipeline).
- 28. Získávání znalostí z dat (pojem znalost; typické zdroje dat; základní úlohy získávání znalostí; analytické projekty a proces získávání znalostí z dat).

- 29. Porozumění datům (důvod a cíl; popisné charakteristiky dat a vizualizační techniky; korelační analýza).
- 30. Prostorové DB (problematika mapování prostoru, ukládání, indexace; využití).
- 31. Indexace (nejen) v prostorových DB (kD-Tree a Grid File (a jejich varianty), R-Tree).
- 32. Lambda kalkul (definice všech pojmů, operací...).
- 33. Práce v lambda kalkulu (demonstrace reprezentace čísel a pravdivostních hodnot a operací nad nimi).
- 34. Haskell lazy evaluation (typy v jazyce včetně akcí, uživatelské typy, význam typových tříd, demonstrace lazy evaluation).
- 35. Prolog způsob vyhodnocení (základní princip, unifikace, chování vestavěných predikátů, operátor řezu vhodné a nevhodné užití).
- 36. Prolog změna DB/programu za běhu (demonstrace na prohledávání stavového prostoru, práce se seznamy).
- 37. Model PRAM, suma prefixů a její aplikace.
- 38. Distribuované a paralelní algoritmy algoritmy nad seznamy, stromy a grafy.
- 39. Interakce mezi procesy a typické problémy paralelismu (synchronizační a komunikační mechanismy).
- 40. Distribuované a paralelní algoritmy předávání zpráv a knihovny pro paralelní zpracování (MPI).
- 41. Distribuovaný broadcast, synchronizace v distribuovaných systémech.
- 42. Klasifikace a vlastnosti paralelních a distribuovaných architektur, základní typy jejich topologií.
- 43. Distribuované a paralelní algoritmy algoritmy řazení, select, algoritmy vyhledávání.
- 44. Bezdrátové lokální sítě (Wifi, Bluetooth).
- 45. Hledání minimální kostry obyčejného grafu (pojmy, stromy a kostry, Kruskalův algoritmus, Primův algoritmus).
- 46. Hledání nejkratších cest ze zdrojového uzlu do všech ostatních uzlů grafu (Bellman-Fordův algoritmus, Dijkstrův algoritmus).
- 47. Klasifikace algoritmů volby koordinátora, algoritmus Bully a jeho složitost.
- 48. Podmínky konsistentního globálního stavu distribuovaného systému.
- 49. Principy distribuovaného zpracování MapReduce, průběh a jednotlivé operace distribuovaného výpočtu pomocí MapReduce, jeho implementace v Apache Hadoop a Apache Spark.
- 50. Symetrická kryptografie. Vlastnosti, vlastnosti bezpečného algoritmu, délka klíče, útok silou, příklady symetrických algoritmů, Feistelovy šifry, DES, režimy činnosti, proudové šifry.
- 51. Asymetrická kryptografie, vlastnosti, způsoby použití, poskytované bezpečnostní funkce, elektronický podpis a jeho vlastnosti, hybridní kryptografie, algoritmus RSA, generování klíčů, šifrování, dešifrování.
- 52. Hašovací funkce, klíčovaný haš a MAC a jejich použití a vlastnosti.
- 53. Správa klíčů v asymetrické kryptografii (certifikáty X.509).
- 54. Základní architektury přepínačů, algoritmy pro plánování, řešení blokování, vícestupňové přepínací sítě.
- 55. Základní funkce směrovače, zpracování paketů ve směrovači, typy přepínání a architektur.
- 56. Metody pro výpočet směrování v sítích (Bellman-Ford, Dijkstra, Path vector, DUAL).
- 57. Řízení toku dat (flow-control) a prevence zahlcení (congestion-control) na transportní vrstvě (MP-TCP, QUIC, SCTP, DCCP).
- 58. Metody detekce síťových incidentů (signatury, statistické metody) a nástroje (IDS/IPS).
- 59. Sítě Peer-to-Peer: vlastnosti, chování, způsoby směrování. Strukturované a nestrukturované sítě.

- 60. Události v JavaScriptu (smyčka událostí, asynchronní programování, klientské události, obsluha událostí)
- 61. Přenos a distribuce webových dat (URI, protokol HTTP, proudy HTTP, CDN, XHR)
- 62. Bezpečnost webových aplikací (SOP, XSS, CSRF, bezpečnostní hlavičky HTTP)

Obsah

1	Klasifikace algoritmů volby koordinátora, algoritmus Bully a jeho	
	složitost.	5
	1.1 Metadata	5
	1.2 Úvod, kontext	5
2	Podmínky konsistentního globálního stavu distribuovaného systému.	6
	2.1 Metadata	6
	2.2 Úvod, kontext	6

1 Klasifikace algoritmů volby koordinátora, algoritmus Bully a jeho složitost.

1.1 Metadata

• Předmět: Prostředí distribuovaných aplikací (PDI)

• Přednáška: 7 – Synchronizace

• Záznam: 2020-11-02

1.2 Úvod, kontext

todo

2 Podmínky konsistentního globálního stavu distribuovaného systému.

2.1 Metadata

• Předmět: Prostředí distribuovaných aplikací (PDI)

• Přednáška: 4 – Globální stav a snapshots

• Záznam: 2020-10-12

2.2 Úvod, kontext

todo