Prof. Dr. Peer Küppers

Use Case

Simulated Webshop

https://pk-bigdata.appspot.com

Business Context

- "Personalized recommendations increase turnover."
- → Machine learning-based personalized recommendation

Problem

- Personalization requires knowledge about the <u>age group</u> of a customer
- → Not all users provide their age.

Use Case

Task

■ Age (group) missing? → predict it!

Approach

based on ...

- Region
- Order date
- Contents in the shopping cart predict ...
- Age group

Features

Target

+ Order Date

Use Case: Data Understanding

Use Case: Data Understanding

Patterns in the data, e.g.

Basket-Turnover (Beer) per Region and Age-Group(=Target)

Older customers tend to buy more beer in the south compared to the other regions.

Basket-Turnover (Wine) per Weekday and Age-Group(=Target)

Younger customers seem to fill up their wine stocks at the beginning of the week.

- Patterns identified by machine learning
 - Current solution: <u>Decision Tree</u>
 - Example: Customer from the "South" (region 3) buys 50€ wine and 8€ spirits.
 - What is the predicted age group?

- Patterns identified by machine learning
 - Current solution: <u>Decision Tree</u>
 - Example: Customer from the "South" (region 3) buys 50€ wine and 8€ spirits.
 - What is the predicted age group?

- Patterns identified by machine learning
 - Current solution: <u>Decision Tree</u>
 - Example: Customer from the "South" (region 3) buys 50€ wine and 8€ spirits.
 - What is the predicted age group?

Does the customer stem from the "North" (region 1)?

- Patterns identified by machine learning
 - Current solution: <u>Decision Tree</u>
 - Example: Customer from the "South" (region 3) buys 50€ wine and 8€ spirits.
 - What is the predicted age group? 18-29

Predict age group "18-29"

Use Case: Initial Solution

- Initial solution: Decision Tree
 - It is capable of identifying the patterns in the data.

Age group "30-49" Age group "50-"

Age group "18-29"

Use Case: The Challenge

- Our model achieves an accuracy of ~80%
 - This should lead to ~5.00 % increase in turnover.
- Result:

Goals

- Present the central challenge in machine learning: the "Bias-Variance Tradeoff"
- See its effects in an exemplary use case.
- Learn about the idea to design more effective machine learning solutions with ensemble methods.

Agenda

- Use Case & Goals
- Bias-Variance Tradeoff
- □ Reducing Variance with Ensemble Methods
- ☐ Summary & Outlook

Over- and Underfitting

Fundamental challenge in machine learning

How can a model

- (a) catch the right patterns in historical data
 - (b) work well on new data (i.e. generalize)?

Bias-Variance Tradeoff

Fundamental challenge in machine learning

15

= HIGH BIAS

Use Case: Variance in Current Solution

- Probably, the model has a high variance
 - How does variance look like in classification?
 - Let's take a look at the decision boundaries.

Fix values of 3 features, then a scatterplot is possible, e.g.:

Decision Regions (DecisionTreeClassifier)

Train model multiple times and watch decision boundary

Decision Regions (DecisionTreeClassifier)

Bias-Variance Tradeoff

- Approaching the Bias-Variance Tradeoff numerically
 - Vary model parameters & measure train-test-error

Source: adapted from Fortmann-Roe (2012)

Challenge

Bias-Variance Tradeoff

- Approaching the Bias-Variance Tradeoff numerically
 - Vary model parameters & measure train-test-error

Source: adapted from Fortmann-Roe (2012)

Challenge

Over- and Underfitting

There is a fundamental challenge in machine learning

How should a model be parameterized to work well in its use case?

The model is (potentially) ...

Model complexity

Agenda

- ☐ Use Case & Goals
- Bias-Variance Tradeoff
- **Reducing Variance with Ensemble Methods**
- Summary & Outlook

Reduce Variance with Ensemble Methods

- Idea: combine predictions of <u>multiple</u> models
 - Goal: improve model performance

Reduce Variance with Ensemble Methods

Example: Bagging

How do such models perform regarding the bias-variance tradeoff?

Use Case: The Improvement

- Our model now achieves an accuracy of ~82%
 - This leads to ~5.15 % increase in turnover.
 - Our tests show improved performance and less variance → more effective model.

Performance (=turnover increase) per Day

23 Use Case Results

Agenda

- ☐ Use Case & Goals
- Bias-Variance Tradeoff
- ☐ Reducing Variance with Ensemble Methods
- Summary & Outlook

Summary & Outlook

 Effects of overfitting in a predictive application

 Methods for evaluating bias vs. variance

Ensemble methods to improve model performance

Summary & Outlook

- Approach the next challenge in effective machine learning:
 - Explainability "... can be a mandatory legal requirement [... and] is highly desirable [...] to build trust in the machine learning model." Wick et al. (2020)

- Example
 - "Explainable Gradient Boosting"
 with "Microsoft interpret"
 Cf. Microsoft (2020)

References

Fortmann-Roe, Scott (2012). "Understanding the Bias-Variance Tradeoff." Accessed June 04, 2020. http://scott.fortmann-roe.com/docs/BiasVariance.html.

Microsoft (2020). "Fit Interpretable Models. Explain Blackbox Machine Learning." Accessed June 08, 2020. https://github.com/interpretml/interpret.

Wick, Felix, Ulrich Kerzel, and Michael Feindt (2020). Cyclic Boosting - an Explainable Supervised Machine Learning Algorithm.

Zhou, Zhi-Hua (2012). *Ensemble Methods: Foundations and Algorithms*. Chapman & Hall / CRC Machine Learning & Pattern Recognition. Hoboken: CRC Press. http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=

27

465619.

Thank you!

