R_Code.R

```
# NHANES - PAD
# National Health and Nutrition Examination Survey (NHANES) - Peripheral Arte
ry Disease (PAD)
# Data collection:
# Household screener, interview, and physical examination
# Objectives:
# Understand the survey data and create a predictive model to identify the
# main factors that are related to the disease. The model can also be
# useful to prioritize the physical exams and to support the diagnostics.
# Activities:
# - Start the session
# - Prepare the data for Modelling
# - Data Partition (Training and Validation)
# - Feature Engineering (add additional features)
# - Modelling
# - Scoring
####### SET UP THE CONFIGURATION FOR RStudio IN ORDER TO WORK IN CAS FROM R
## Run the following code on R to install following packages before running t
his:
# 1) install.packages("pkgbuild")
# 2) install.packages('jsonlite')
# 3) install.packages("tidyverse")
## Download and install RTools from:
# 4) https://cran.r-project.org/bin/windows/Rtools/
## Install the SWAT vX.X.X package as indicated here:
# 5) https://github.com/sassoftware/R-swat/releases
## Start the session and prepare the environment
library(swat)
## SWAT 1.8.2
library(ggplot2)
# Connect to CAS (this depends on the environment configuration)
your_host <- 'link_to_your_host'</pre>
your port <- XXX
your_username <- 'user'
your password <- 'password'
conn <- swat::CAS(your_host, your_port, protocol='auto', username=your_userna</pre>
me, password=your password)
```

```
## NOTE: Connecting to CAS and generating CAS action functions for loaded
         action sets...
##
## NOTE: To generate the functions with signatures (for tab completion), set
         options(cas.gen.function.sig=TRUE).
# CAS Server connection details
# out <- cas.builtins.serverStatus(conn)</pre>
# print(out)
### Import action sets
cas.builtins.loadActionSet(conn,actionSet="dataStep")
## NOTE: Added action set 'dataStep'.
## NOTE: Information for action set 'dataStep':
## NOTE:
            dataStep
## NOTE:
               runCodeTable - Runs DATA step code stored in a CAS table
## NOTE:
               runCode - Runs DATA step code
## $actionset
## [1] "dataStep"
cas.builtins.loadActionSet(conn,actionSet="dataPreprocess")
## NOTE: Added action set 'dataPreprocess'.
## NOTE: Information for action set 'dataPreprocess':
## NOTE:
            dataPreprocess
## NOTE:
               rustats - Computes robust univariate statistics, centralized m
oments, quantiles, and frequency distribution statistics
## NOTE:
               impute - Performs data matrix (variable) imputation
## NOTE:
               outlier - Performs outlier detection and treatment
## NOTE:
               binning - Performs unsupervised variable discretization
## NOTE:
               discretize - Performs supervised and unsupervised variable dis
cretization
## NOTE:
               catTrans - Groups and encodes categorical variables using unsu
pervised and supervised grouping techniques
## NOTE:
               histogram - Generates histogram bins and simple bin-based stat
istics for numeric variables
```

```
transform - Performs pipelined variable imputation, outlier de
tection and treatment, functional transformation, binning, and robust univari
ate statistics to evaluate the quality of the transformation
## NOTE:
               kde - Computes kernel density estimation
## NOTE:
               highCardinality - Performs randomized cardinality estimation
## $actionset
## [1] "dataPreprocess"
cas.builtins.loadActionSet(conn,actionSet="cardinality")
## NOTE: Added action set 'cardinality'.
## NOTE: Information for action set 'cardinality':
## NOTE:
            cardinality
## NOTE:
               summarize - Provides actions for evaluating data cardinality
## $actionset
## [1] "cardinality"
cas.builtins.loadActionSet(conn,actionSet="sampling")
## NOTE: Added action set 'sampling'.
## NOTE: Information for action set 'sampling':
## NOTE:
            sampling
## NOTE:
               srs - Samples a proportion of data from the input table or pa
rtitions the data into no more than three portions
## NOTE:
               stratified - Samples a proportion of data or partitions the da
ta into no more than three portions within each stratum
               oversample - Samples a user-specified proportion of data from
the event level and adjusts the ratio between rare events and non-rare events
to a user-specified ratio
## NOTE:
               kfold - K-fold partitioning.
## $actionset
## [1] "sampling"
cas.builtins.loadActionSet(conn,actionSet="decisionTree")
## NOTE: Added action set 'decisionTree'.
## NOTE: Information for action set 'decisionTree':
## NOTE:
            decisionTree
```

```
## NOTE:
               dtreeTrain - Trains a decision tree
## NOTE:
               dtreeScore - Scores a table using a decision tree model
## NOTE:
               dtreeSplit - Splits decision tree nodes
               dtreePrune - Prune a decision tree
## NOTE:
## NOTE:
               dtreeMerge - Merges decision tree nodes
## NOTE:
               dtreeCode - Generates DATA step scoring code from a decision t
ree model
## NOTE:
               forestTrain - Trains a forest. This action requires a SAS Visu
al Data Mining and Machine Learning license
## NOTE:
               forestScore - Scores a table using a forest model
## NOTE:
               forestCode - Generates DATA step scoring code from a forest mo
del
## NOTE:
               gbtreeTrain - Trains a gradient boosting tree. This action req
uires a SAS Visual Data Mining and Machine Learning license
## NOTE:
               gbtreeScore - Scores a table using a gradient boosting tree mo
del
## NOTE:
               gbtreeCode - Generates DATA step scoring code from a gradient
boosting tree model
## NOTE:
               dtreeExportModel - Export the aStore model for a tree model ta
ble
## $actionset
## [1] "decisionTree"
cas.builtins.loadActionSet(conn,actionSet="astore")
## NOTE: Added action set 'astore'.
## NOTE: Information for action set 'astore':
## NOTE:
            astore
               download - Downloads a remote store to a local store
## NOTE:
## NOTE:
               upload - Uploads a local store to a remote store
## NOTE:
               describe - Describes some of the contents of the analytic stor
e
## NOTE:
               score - Uses an analytic store to score an input table
## $actionset
## [1] "astore"
```

```
cas.builtins.loadActionSet(conn,actionSet="percentile")
## NOTE: Added action set 'percentile'.
## NOTE: Information for action set 'percentile':
## NOTE:
            percentile
## NOTE:
               percentile - Calculate quantiles and percentiles
## NOTE:
               boxPlot - Calculate quantiles, high and low whiskers, and outl
iers
## NOTE:
               assess - Assess and compare models
## $actionset
## [1] "percentile"
## Prepare the data for Modelling and assign variable to the table
path_to_data <- 'path_to_data_folder/nhanes_nof.sas7bdat'</pre>
cas.upload(conn,path_to_data,
           casOut=list(name="NHANES NOF", caslib="CASUSER(alarzo)", replace=T
RUE))
## WARNING: The table NHANES NOF exists as a global table in caslib CASUSER(a
larzo). By adding a session table with the same name, the session-scope table
takes precedence over the global-scope table.
## NOTE: Cloud Analytic Services made the uploaded file available as table NH
ANES_NOF in caslib CASUSER(alarzo).
## NOTE: The table NHANES NOF has been created in caslib CASUSER(alarzo) from
binary data uploaded to Cloud Analytic Services.
## $performance
## $performance$cpuUserTime
## [1] 0.02347
##
## $performance$cpuSystemTime
## [1] 0.042296
## $performance$systemTotalMemory
## [1] 540873932800
##
## $performance$systemNodes
## [1] 1
##
## $performance$systemCores
## [1] 32
## $performance$memory
## [1] 15247392
```

```
##
## $performance$memoryQuota
## [1] 42749952
##
##
## $disposition
## $disposition$severity
## [1] 0
##
## $disposition$reason
## [1] "ok"
##
## $disposition$statusCode
## [1] 0
##
##
## $messages
## $messages[[1]]
## [1] "WARNING: The table NHANES NOF exists as a global table in caslib CASU
SER(alarzo). By adding a session table with the same name, the session-scope
table takes precedence over the global-scope table."
##
## $messages[[2]]
## [1] "NOTE: Cloud Analytic Services made the uploaded file available as tab
le NHANES NOF in caslib CASUSER(alarzo)."
##
## $messages[[3]]
## [1] "NOTE: The table NHANES_NOF has been created in caslib CASUSER(alarzo)
from binary data uploaded to Cloud Analytic Services."
##
## $results
## $results$caslib
## [1] "CASUSER(alarzo)"
##
## $results$tableName
## [1] "NHANES_NOF"
## Check the columns
# cas.table.columnInfo(conn,table="NHANES NOF")
## Create the target variable
cas.dataStep.runCode(conn, code="
    data CASUSER.NHANES_PAD1 promote;
          set CASUSER.NHANES_NOF;
            if LEXRABPI = . then LEXRABPI = LEXLABPI;
            if ((LEXLABPI < 0.9) OR (LEXRABPI < 0.9)) then PAD Target = 1;
                else PAD Target = 0;
    run;")
```

```
## $InputCasTables
                            Name Rows Columns
##
              casLib
## 1 CASUSER(alarzo) NHANES_NOF 6929
                                           47
## $OutputCasTables
##
              casLib
                             Name Rows Columns Append Promoted
## 1 CASUSER(alarzo) NHANES PAD1 6929
                                            48
                                                  NaN
                                                              Ν
## 2 CASUSER(alarzo)
                         promote 6929
                                            48
                                                  NaN
                                                              Ν
## Data Partition (Training and Validation)
cas.sampling.srs(conn,
                 table="NHANES PAD1",
                 samppct=30,
                 partind=TRUE,
                 output=list(casout = list(name="NHANES_PAD_PART", replace=TR
UE),
                              copyvars="ALL")
                 )
## NOTE: Simple Random Sampling is in effect.
## NOTE: Using SEED=1042972783 for sampling.
## $OutputCasTables
                                 Name Label Rows Columns
##
              casLib
                                            6929
## 1 CASUSER(alarzo) NHANES_PAD_PART
                                                       49
##
## $SRSFreq
     NObs NSamp
##
## 1 6929 2079
## Present the partitions on a frequancy table and a bar chart
tablesize <- 6929
# With "CAS.TABLE.FETCH"-ACTION we extract a column from a in-memory table in
# R-Studio local-memory. Since it is a very long column, SAS pull it as a lis
# with many elements. To get it as a unique vector, we use "UNLIST".
# Finally, we use only the numeric elements. For that reason we use "AS.NUMER
IC"
pad target column <- as.numeric(unlist(</pre>
                         cas.table.fetch(conn,
                                         table="NHANES_PAD_PART",
                                         fetchVars="PAD_TARGET",
                                         index=FALSE,
                                         to=tablesize)
                         ))
# To produce frequency table of partition elements
freq_partition <- data.frame(table(pad_target_column))</pre>
freq_partition
```

```
## pad_target_column Freq
## 1      0 6470
## 2      1 459

# To produce bar chart of partition elements
ggplot(data=freq_partition, aes(x=pad_target_column, y=Freq, fill=pad_target_column)) +
    geom_bar(stat="identity")+theme_minimal()
```


on missing values.

```
##
         Each place is given by: (Number of times) at (Line):(Column).
##
         4 at 0:153
                      2 at 0:208
##
         1 at 0:153
                      1 at 0:208
##
         4 at 0:153
                       19 at 0:208
##
         1 at 0:153
         6 at 0:153
                       22 at 0:208
##
                      7 at 0:208
##
         6 at 0:153
         9 at 0:153
                       16 at 0:208
##
##
         7 at 0:153
                       22 at 0:208
##
         4 at 0:153
                       11 at 0:208
##
         11 at 0:153
                       12 at 0:208
##
         4 at 0:153
                       16 at 0:208
##
         6 at 0:153
                       11 at 0:208
         9 at 0:153
                       14 at 0:208
##
##
         5 at 0:153
                       12 at 0:208
##
         8 at 0:153
                      9 at 0:208
         12 at 0:153
                       6 at 0:208
##
##
         5 at 0:153
                       15 at 0:208
         8 at 0:153
                      7 at 0:208
##
##
         6 at 0:153
                       18 at 0:208
##
         5 at 0:153
                       19 at 0:208
##
         1 at 0:153
                       10 at 0:208
##
         12 at 0:153
                       11 at 0:208
##
         3 at 0:153
                       22 at 0:208
                       19 at 0:208
##
         10 at 0:153
## NOTE: Duplicate messages output by DATA step:
## NOTE: Missing values were generated as a result of performing an operation
on missing values. (occurred 25 times)
```

```
Each place is given by: (Number of times) at (Line):(Column). (occu
rred 25 times)
##
        ## $InputCasTables
                               Name Rows Columns
## 1 CASUSER(alarzo) NHANES PAD PART 6929
##
## $OutputCasTables
##
             casLib
                           Name Rows Columns Append Promoted
## 1 CASUSER(alarzo) NHANES_PAD1 6929
                                          53
                                               NaN
## Check the columns
# cas.table.columnInfo(conn,table="NHANES PAD1")
## Modelling
# Specify the data set inputs and target
interval_inputs <- c('RIDAGEMN_Recode', 'PulsePreassure', 'BMXBMI', 'TC_HDL',</pre>
'LBXGH', 'Diabetes', 'Hypertension')
class_inputs <- c('INDHHINC', 'DMDEDUC2', 'RIDRETH1', 'DIQ150', 'DIQ110', 'SM</pre>
Q040', 'ALQ100', 'RIAGENDR')
class_vars <- c('INDHHINC', 'DMDEDUC2', 'RIDRETH1', 'DIQ150', 'DIQ110', 'SM
Q040', 'ALQ100', 'RIAGENDR', 'PAD_Target')
            <- 'PAD Target'
target
# Specify a generic cut-off
Gen cutoff <- 0.5
# Train the model
cas.decisionTree.gbtreeTrain(conn,
                             table=list(name="NHANES_PAD1", where="strip(put
(_PartInd_, best.))='0'"),
                             target=target,
                             inputs=c(class inputs,interval inputs),
                             nominals=class_vars,
                             nTree=150, m=7, lasso=0.777, learningrate=1,
subsamplerate=0.883, ridge=6.03, seed=1634211770,
                             leafsize=5, maxbranch=2, binorder=TRUE, enco
                             nBins=20, maxLevel=6,
dename=TRUE, mergebin=TRUE,
                             varImp=TRUE, missing="USEINSEARCH",
                             casOut=list(name="gb_model", replace=TRUE)
)
## $DTreeVarImpInfo
##
            Variable Importance
            INDHHINC 1.04495306 0.6177220
## 1
## 2 RIDAGEMN Recode 0.84121549 4.4450680
## 3 PulsePreassure 0.55166643 0.5909193
```

```
## 4
               BMXBMI 0.46825188 0.3422344
## 5
               TC HDL 0.45360413 0.2687546
## 6
                LBXGH 0.44745203 0.3870789
## 7
               SMQ040 0.36226398 1.7154911
## 8
             RIDRETH1 0.28482808 0.5655375
## 9
             DMDEDUC2 0.28295051 0.2753196
## 10
               DI0150 0.13432039 0.7537135
## 11
               DIQ110 0.12025807 0.2131510
## 12
               ALQ100 0.09798494 0.4731479
## 13
         Hypertension 0.05188719 0.3039457
## 14
             Diabetes 0.05013120 0.2181774
             RIAGENDR 0.04074772 0.3559001
## 15
##
## $ModelInfo
##
                                               Value
                                  Descr
## 1
                        Number of Trees 1.500000e+02
## 2
                           Distribution 2.000000e+00
## 3
                          Learning Rate 1.000000e+00
## 4
                       Subsampling Rate 8.830000e-01
## 5
      Number of Selected Variables (M) 7.000000e+00
## 6
                         Number of Bins 2.000000e+01
                   Number of Variables 1.500000e+01
## 7
              Max Number of Tree Nodes 6.300000e+01
## 8
## 9
              Min Number of Tree Nodes 2.500000e+01
## 10
                Max Number of Branches 2.000000e+00
## 11
                Min Number of Branches 2.000000e+00
                  Max Number of Levels 6.000000e+00
## 12
                  Min Number of Levels 6.000000e+00
## 13
                  Max Number of Leaves 3.200000e+01
## 14
## 15
                  Min Number of Leaves 1.300000e+01
## 16
                Maximum Size of Leaves 1.870000e+03
## 17
                Minimum Size of Leaves 5.000000e+00
## 18
                     Random Number Seed 1.634212e+09
## 19
                    Lasso (L1) penalty 7.770000e-01
                    Ridge (L2) penalty 6.030000e+00
## 20
## 21
                Actual Number of Trees 1.500000e+02
              Average number of Leaves 2.444667e+01
## 22
##
## $OutputCasTables
##
              casLib
                          Name Rows Columns
## 1 CASUSER(alarzo) gb_model 7184
                                         46
## Score the model
cas.decisionTree.gbtreeScore(conn,
                              table=list(name="NHANES_PAD1"),
                              modelTable=list(name="gb model"),
                              casOut=list(name='scored_gb', replace=TRUE),
                              copyVars=list("PAD_Target", "_PartInd_"),
                              encodename = TRUE,
```

```
assessonerow = TRUE
)
## $EncodedName
          LEVNAME LEVINDEX
                                  VARNAME
## 1
                1
                          0 P PAD Target1
## 2
                0
                          1 P_PAD_Target0
##
## $EncodedTargetName
     LEVNAME LEVINDEX
                            VARNAME
                     0 I PAD Target
## 1
##
## $ErrorMetricInfo
##
       TreeID Trees NLeaves
                                    MCR
                                           LogLoss
                                                          ASE
                                                                    RASE
                                                                             MAX
AΕ
                          28 0.06624333 0.2194148 0.05988815 0.2447206 0.96938
## 1
26
                          56 0.06609900 0.2027616 0.05533159 0.2352267 0.98582
## 2
            1
                  2
40
                          82 0.06537740 0.1951989 0.05317783 0.2306032 0.99183
## 3
            2
                   3
82
## 4
                         113 0.06407851 0.1891716 0.05184391 0.2276926 0.99480
            3
                  4
96
                         144 0.06148073 0.1835200 0.05027885 0.2242295 0.99676
                  5
## 5
            4
94
            5
                         174 0.06075913 0.1786750 0.04894655 0.2212387 0.99596
## 6
                   6
96
                         205 0.06090345 0.1752561 0.04785295 0.2187532 0.99723
## 7
            6
                  7
80
## 8
            7
                   8
                         237 0.05772839 0.1721860 0.04677588 0.2162773 0.99766
14
            8
                  9
                         262 0.05830567 0.1696846 0.04628383 0.2151368 0.99819
## 9
35
                         289 0.05715110 0.1664084 0.04541226 0.2131015 0.99838
## 10
            9
                 10
57
                         321 0.05729543 0.1637129 0.04463766 0.2112763 0.99820
## 11
           10
                 11
37
## 12
           11
                 12
                         350 0.05686246 0.1613807 0.04382542 0.2093452 0.99783
78
                         382 0.05599654 0.1591302 0.04307493 0.2075450 0.99859
## 13
           12
                 13
61
## 14
           13
                         414 0.05397604 0.1568138 0.04232646 0.2057340 0.99853
                 14
48
                         446 0.05397604 0.1537033 0.04147311 0.2036495 0.99897
## 15
           14
                 15
15
                         474 0.05094530 0.1515947 0.04048426 0.2012070 0.99885
## 16
           15
                 16
30
## 17
           16
                 17
                         506 0.05065666 0.1494457 0.03968736 0.1992169 0.99913
88
           17
                         536 0.05036802 0.1471728 0.03862847 0.1965413 0.99936
## 18
                 18
```

61 ##	19	18	19	558	0.04849185	0.1455939	0.03833423	0.1957913	0.99940
68 ##	20	10	20	E00	0 04710206	0 1444404	A A2765027	0 1040602	a 00029
32	20	19	20	200	0.04719296	0.1444404	0.03/0393/	0.1940002	0.99928
## 31	21	20	21	617	0.04430654	0.1422244	0.03681740	0.1918786	0.99951
##	22	21	22	648	0.04387357	0.1412579	0.03630725	0.1905446	0.99969
96 ##	23	22	23	678	0.04358493	0.1393465	0.03557285	0.1886077	0.99966
96 ##	24	23	24	709	0.04257469	0.1389331	0.03530642	0.1879000	0.99965
63 ##	25	24	25	740	0.04142012	0.1379942	0.03495654	0.1869667	0.99973
28 ##	26	25	26	770	0.04026555	0.1358480	0.03414529	0.1847845	0.99978
26 ##	27	26	27	796	0.03939962	0.1342035	0.03374582	0.1837004	0.99980
	28	27	28	826	0.03954395	0.1329134	0.03328114	0.1824312	0.99982
43 ##	29	28	29	853	0.03810074	0.1317945	0.03278742	0.1810730	0.99986
85 ##	30	29	30	884	0.03737913	0.1303998	0.03227251	0.1796455	0.99991
08 ##	31	30	31	912	0.03752345	0.1295535	0.03185443	0.1784781	0.99988
02 ##	32	31	32	942	0.03622456	0.1289201	0.03146971	0.1773970	0.99992
13	22	22	22	070	0.02010074	0 1204040	0.02120506	0 1760701	0.00000
## 57	33	32	33	970	0.03810074	0.1284048	0.03128586	0.1/68/81	0.99988
## 79	34	33	34	999	0.03636888	0.1275673	0.03101773	0.1761185	0.99985
## 79		34	35	1029	0.03449271	0.1262531	0.03053850	0.1747527	0.99985
	36	35	36	1055	0.03478135	0.1254511	0.02992796	0.1729970	0.99985
_	37	36	37	1084	0.03478135	0.1251913	0.02963909	0.1721601	0.99987
## 97	38	37	38	1111	0.03478135	0.1238677	0.02929433	0.1711559	0.99989
##	39	38	39	1139	0.03377111	0.1226153	0.02894644	0.1701365	0.99990
09 ## 80	40	39	40	1170	0.03420407	0.1229753	0.02895235	0.1701539	0.99990
## 97	41	40	41	1200	0.03319382	0.1221310	0.02856038	0.1689982	0.99987
## 79	42	41	42	1228	0.03247222	0.1217455	0.02817748	0.1678615	0.99987
/9 ##	43	42	43	1258	0.03160629	0.1217747	0.02796500	0.1672274	0.99987

	44	43	44	1287	0.03088469	0.1211079	0.02768060	0.1663749	0.99989
25 ##	45	44	45	1316	0.03045172	0.1207887	0.02745929	0.1657084	0.99991
20 ##	46	45	46	1345	0.03059605	0.1206068	0.02741983	0.1655893	0.99993
24									
## 49	47	46	47	1375	0.02973012	0.1196409	0.02702699	0.1643989	0.99993
	48	47	48	1400	0.02944148	0.1198514	0.02689806	0.1640063	0.99993
## 08	49	48	49	1428	0.02958580	0.1198354	0.02676944	0.1636137	0.99993
	50	49	50	1455	0.02973012	0.1196954	0.02675469	0.1635686	0.99994
	51	50	51	1484	0.02987444	0.1194331	0.02660481	0.1631098	0.99995
	52	51	52	1508	0.02944148	0.1189167	0.02628120	0.1621148	0.99994
##	53	52	53	1538	0.02843123	0.1184713	0.02612137	0.1616211	0.99994
	54	53	54	1563	0.02785395	0.1181798	0.02591347	0.1609766	0.99995
	55	54	55	1594	0.02814259	0.1180376	0.02576269	0.1605076	0.99993
	56	55	56	1624	0.02785395	0.1177876	0.02564978	0.1601555	0.99994
46 ##	57	56	57	1653	0.02814259	0.1176966	0.02552830	0.1597758	0.99995
49									
## 99	58	57	58	1677	0.02742098	0.1177341	0.02555607	0.1598627	0.99994
## 32	59	58	59	1704	0.02684370	0.1175049	0.02535244	0.1592245	0.99995
	60	59	60	1732	0.02583345	0.1171037	0.02513927	0.1585537	0.99994
	61	60	61	1756	0.02641074	0.1176106	0.02515658	0.1586083	0.99994
	62	61	62	1786	0.02626642	0.1172461	0.02491112	0.1578326	0.99994
##	63	62	63	1815	0.02597777	0.1171786	0.02484646	0.1576276	0.99994
	64	63	64	1840	0.02612210	0.1169402	0.02472020	0.1572266	0.99994
	65	64	65	1863	0.02612210	0.1167672	0.02460291	0.1568531	0.99994
	66	65	66	1890	0.02583345	0.1166485	0.02450196	0.1565310	0.99994
	67	66	67	1919	0.02554481	0.1166191	0.02433105	0.1559841	0.99994
58 ##	68	67	68	1945	0.02511185	0.1161239	0.02418079	0.1555017	0.99994

05 ##	69	68	69	1969	0.02554481	0.1163532	0.02422847	0.1556550	0.99994
97 ##	70	69	70	1996	0.02540049	0.1163599	0.02422199	0.1556341	0.99995
82 ##	71	70	71	2025	0.02525617	a 116227a	a a2417893	0 155/1957	0 99995
82	/ 1	70	/ 1	2023	0.02525017	0.1102270	0.02417055	0.1334337	0.0000
## 13	72	71	72	2048	0.02467889	0.1160435	0.02403463	0.1550310	0.99995
## 92	73	72	73	2074	0.02511185	0.1157842	0.02392009	0.1546612	0.99995
## 73	74	73	74	2104	0.02453456	0.1155296	0.02367824	0.1538773	0.99996
## 07	75	74	75	2128	0.02467889	0.1156141	0.02370349	0.1539594	0.99996
##	76	75	76	2152	0.02467889	0.1153753	0.02358465	0.1535729	0.99996
	77	76	77	2179	0.02453456	0.1149917	0.02342620	0.1530562	0.99996
	78	77	78	2202	0.02439024	0.1150853	0.02340205	0.1529773	0.99996
05 ##	79	78	79	2227	0.02395728	0.1147920	0.02326686	0.1525348	0.99996
63 ##	90	79	80	2251	0.02424592	a 11/19270	a a222210 <i>1</i>	A 1522075	0 00006
63	80	75	80	2231	0.02424332	0.11402/3	0.02322134	0.1323673	0.55550
## 32	81	80	81	2276	0.02410160	0.1148631	0.02319685	0.1523051	0.99996
## 32	82	81	82	2302	0.02453456	0.1145263	0.02314293	0.1521280	0.99996
	83	82	83	2323	0.02424592	0.1144925	0.02310814	0.1520136	0.99996
	84	83	84	2349	0.02424592	0.1143135	0.02303488	0.1517725	0.99997
##		84	85	2370	0.02424592	0.1140357	0.02300035	0.1516586	0.99996
	86	85	86	2388	0.02424592	0.1142366	0.02293500	0.1514431	0.99997
	87	86	87	2413	0.02381296	0.1139826	0.02288725	0.1512853	0.99996
	88	87	88	2438	0.02467889	0.1143097	0.02286737	0.1512196	0.99997
	89	88	89	2467	0.02395728	0.1142631	0.02276360	0.1508761	0.99997
	90	89	90	2495	0.02395728	0.1141786	0.02275419	0.1508449	0.99997
15 ##	91	90	91	2515	0.02395728	0.1140929	0.02273454	0.1507798	0.99996
71 ##	92	91	92	2539	0.02395728	0.1137375	0.02265825	0.1505266	0.99996
32 ##	93	92	93	2550	0.02395728	0 1135035	0 02257/00	0 1502467	0 99996
πт	75	72))	2550	0.02333720	0.1100000	0.0223/400	0.1702407	0.00000

01 ##	94	93	94	2585	0.02366864	0.1135676	0.02247222	0.1499074	0.99996
70 ##	95	94	95	2607	0.02395728	0.1137098	0.02239291	0.1496426	0.99997
07 ## 07	96	95	96	2633	0.02410160	0.1136250	0.02239225	0.1496404	0.99997
## 97	97	96	97	2659	0.02410160	0.1135120	0.02235404	0.1495127	0.99996
## 97	98	97	98	2681	0.02366864	0.1133001	0.02223710	0.1491211	0.99996
## 82	99	98	99	2708	0.02453456	0.1131791	0.02227069	0.1492337	0.99996
	100	99	100	2733	0.02424592	0.1131912	0.02221187	0.1490365	0.99996
	101	100	101	2753	0.02453456	0.1134075	0.02229641	0.1493198	0.99996
	102	101	102	2774	0.02467889	0.1136015	0.02227946	0.1492630	0.99996
	103	102	103	2796	0.02395728	0.1136173	0.02218132	0.1489340	0.99997
	104	103	104	2815	0.02439024	0.1134755	0.02216690	0.1488855	0.99997
	105	104	105	2836	0.02424592	0.1133409	0.02212538	0.1487460	0.99997
	106	105	106	2854	0.02467889	0.1134359	0.02213295	0.1487715	0.99997
	107	106	107	2875	0.02424592	0.1133640	0.02205532	0.1485103	0.99997
	108	107	108	2898	0.02424592	0.1136063	0.02211010	0.1486946	0.99997
## 24	109	108	109	2916	0.02424592	0.1135287	0.02208725	0.1486178	0.99997
## 07	110	109	110	2936	0.02424592	0.1134638	0.02209893	0.1486571	0.99997
## 51	111	110	111	2956	0.02410160	0.1135683	0.02209388	0.1486401	0.99997
## 52	112	111	112	2978	0.02439024	0.1135395	0.02207753	0.1485851	0.99997
## 52	113	112	113	2997	0.02424592	0.1135041	0.02202085	0.1483942	0.99997
## 32	114	113	114	3022	0.02439024	0.1134757	0.02200436	0.1483387	0.99997
## 63	115	114	115	3040	0.02410160	0.1136800	0.02203344	0.1484367	0.99997
## 62	116	115	116	3057	0.02424592	0.1136611	0.02207569	0.1485789	0.99997
## 62	117	116	117	3074	0.02410160	0.1133324	0.02198178	0.1482625	0.99997
##	118	117	118	3094	0.02410160	0.1131869	0.02199643	0.1483119	0.99997

43 ##	119	118	119	3113	0.02410160	0.1131612	0.02195574	0.1481747	0.99997
43	120	119	120	2121	0.02395728	a 1120261	a a21947a2	0 1/7907/	0 00007
56	120	119	120	2121	0.02595726	0.1120301	0.02104/02	0.14/00/4	0.33337
## 61	121	120	121	3149	0.02410160	0.1127946	0.02185928	0.1478489	0.99997
	122	121	122	3172	0.02424592	0.1126032	0.02176640	0.1475344	0.99997
	123	122	123	3193	0.02395728	0.1130660	0.02177833	0.1475748	0.99997
	124	123	124	3213	0.02395728	0.1128943	0.02176344	0.1475244	0.99997
	125	124	125	3229	0.02410160	0.1128512	0.02177883	0.1475765	0.99997
	126	125	126	3242	0.02424592	0.1127557	0.02179317	0.1476251	0.99998
##	127	126	127	3257	0.02424592	0.1126666	0.02180428	0.1476627	0.99997
	128	127	128	3274	0.02395728	0.1129574	0.02178514	0.1475979	0.99998
	129	128	129	3294	0.02424592	0.1132681	0.02178892	0.1476107	0.99998
	130	129	130	3309	0.02410160	0.1130785	0.02181046	0.1476837	0.99998
	131	130	131	3324	0.02395728	0.1132568	0.02182529	0.1477339	0.99998
	132	131	132	3344	0.02395728	0.1133443	0.02181584	0.1477019	0.99998
	133	132	133	3365	0.02381296	0.1134164	0.02179765	0.1476403	0.99998
16 ##	134	133	134	3382	0.02395728	0.1133906	0.02174700	0.1474686	0.99997
97 ##	135	134	135	3404	0.02410160	0.1132889	0.02171679	0.1473662	0.99998
01 ##	136	135	136	3/126	0.02395728	a 11329a/	a a2171331	0 1/735//	a 99998
09									
## 18	137	136	137	3441	0.02410160	0.1134743	0.02168419	0.1472555	0.99998
## 18	138	137	138	3459	0.02410160	0.1134270	0.02168696	0.1472649	0.99998
	139	138	139	3477	0.02410160	0.1133888	0.02167106	0.1472109	0.99998
	140	139	140	3499	0.02366864	0.1135619	0.02167653	0.1472295	0.99998
	141	140	141	3520	0.02366864	0.1134631	0.02160580	0.1469891	0.99998
##	142	141	142	3541	0.02366864	0.1132069	0.02160808	0.1469969	0.99998
41 ##	143	142	143	3557	0.02395728	0.1132941	0.02159744	0.1469607	0.99998

```
41
## 144
          143
                144
                       3578 0.02424592 0.1131506 0.02156345 0.1468450 0.99998
41
                       3593 0.02410160 0.1133653 0.02155900 0.1468298 0.99998
## 145
          144
                145
41
## 146
          145
                       3608 0.02410160 0.1130494 0.02144378 0.1464369 0.99998
                146
41
                       3621 0.02410160 0.1131867 0.02146724 0.1465170 0.99998
## 147
          146
                147
50
                       3636 0.02410160 0.1133475 0.02146887 0.1465226 0.99998
## 148
          147
                148
55
          148
                       3654 0.02410160 0.1136613 0.02148860 0.1465899 0.99998
## 149
                149
55
## 150
          149
                150
                       3667 0.02410160 0.1137400 0.02151608 0.1466836 0.99998
46
##
## $OutputCasTables
              casLib
                          Name Rows Columns
## 1 CASUSER(alarzo) scored gb 6929
##
## $ScoreInfo
                                                              Value
                            Descr
## 1 Number of Observations Read
                                                               6929
## 2 Number of Observations Used
                                                               6929
## 3 Misclassification Error (%)
                                                      2.4101601963
## Assess and compare model
assessed <- cas.percentile.assess(conn,</pre>
                                   table = 'scored gb',
                                   inputs = 'P_PAD_Target1',
                                   casout = list(name = 'assessed', replace =
TRUE),
                                   response = target,
                                   event = '1'
)
## We get 2 produced tables from the previous step that we can use to plot RO
C and LIFT
assessed[["OutputCasTables"]]
                              Name Rows Columns
              casLib
## 1 CASUSER(alarzo)
                         assessed
                                     20
                                             21
## 2 CASUSER(alarzo) assessed_ROC
                                             21
cas.table.columnInfo(conn,table="assessed")
## $ColumnInfo
##
                Column
                                                      Label ID
                                                                  Type RawLengt
h
## 1
              Column
                                          Analysis Variable 1
                                                                  char
                                                                              1
```

```
## 2
                                                      Event 2 char
                                                                              1
               _Event_
2
## 3
               _Depth_
                                                      Depth
                                                             3 double
8
## 4
                                                      Value 4 double
               _Value_
8
                                        Sum of Frequencies
## 5
                _NObs_
                                                             5 double
                                           Number of Events
## 6
             NEvents
                                                             6 double
                                     Best Number of Events 7 double
## 7
         _NEventsBest_
                                       % Captured Response 8 double
## 8
                _Resp_
## 9
            RespBest
                                  Best % Captured Response 9 double
## 10
                _Lift_
                                                       Lift 10 double
            _LiftBest_
                                                  Best Lift 11 double
## 11
8
                           Cumulative % Captured Response 12 double
## 12
             CumResp
8
## 13
         _CumRespBest_ Cumulative Best % Captured Response 13 double
                                            Cumulative Lift 14 double
## 14
             _CumLift_
                                      Best Cumulative Lift 15 double
         CumLiftBest
## 15
## 16
                                                 % Response 16 double
             _PctResp_
## 17
         _PctRespBest_
                                            Best % Response 17 double
## 18
          CumPctResp
                                     Cumulative % Response 18 double
## 19 _CumPctRespBest_
                                Cumulative Best % Response 19 double
## 20
                                                       Gain 20 double
                _Gain_
8
## 21
            _GainBest_
                                                  Best Gain 21 double
8
      FormattedLength Format NFL NFD
##
## 1
                   13
                           $
## 2
                   12
                                0
                                    0
                   12
                        BEST
                                    0
## 3
                   12
                        BEST
                                    0
## 4
## 5
                   12
                        BEST
                                    0
## 6
                   12
                        BEST
                                0
                                    0
                                0
                                    0
## 7
                   12
                        BEST
## 8
                   12
                        BEST
                                0
                                    0
                   12
                        BEST
## 9
```

```
## 10
                   12
                        BEST
                               0
                                   0
## 11
                   12
                        BEST
                                   0
                   12
## 12
                        BEST
                                   0
## 13
                   12
                        BEST
                                   0
## 14
                   12
                        BEST
                                   0
## 15
                   12
                        BEST
                                   0
## 16
                   12
                        BEST
                                   0
## 17
                   12
                        BEST
## 18
                   12
                        BEST
                   12
## 19
                        BEST
                                   0
                   12
                        BEST
                                   0
## 20
                               0
                   12
                        BEST
                                   0
## 21
                               0
cas.table.columnInfo(conn,table="assessed_ROC")
## $ColumnInfo
                                        Label ID
                                                   Type RawLength FormattedLe
##
             Column
ngth
                           Analysis Variable 1
## 1
           Column
                                                   char
                                                                13
13
## 2
                                        Event 2
                                                   char
                                                                12
            _Event_
12
## 3
           _Cutoff_
                                       Cutoff 3 double
                                                                 8
12
                               True Positive 4 double
## 4
               _TP_
                                                                 8
12
                               False Positive 5 double
               _FP_
                                                                 8
## 5
12
## 6
               _FN_
                               False Negative 6 double
                                                                 8
12
## 7
                               True Negative 7 double
                                                                 8
               _TN_
12
                                  Sensitivity 8 double
                                                                 8
## 8 _Sensitivity_
12
## 9 _Specificity_
                                Specificity 9 double
                                                                 8
12
## 10
                                    KS Cutoff 10 double
                                                                 8
               _KS_
12
## 11
              _KS2_
                      Kolmogorov-Smirnov (KS) 11 double
                                                                 8
12
                                   F0.5 Score 12 double
                                                                 8
## 12
            _FHALF_
12
                        False Positive Rate 13 double
## 13
              _FPR_
                                                                 8
12
                                     Accuracy 14 double
                                                                 8
## 14
              _ACC_
12
              _FDR_ False Discovery Rate 15 double
## 15
                                                                 8
12
## 16
                                     F1 Score 16 double
                                                                 8
              _F1_
12
```

```
## 17
                                  Area Under ROC 17 double
                                                                     8
                 _c_
12
                               Gini Coefficient 18 double
                                                                     8
## 18
              GINI
12
             GAMMA
                                           Gamma 19 double
                                                                      8
## 19
12
## 20
               _TAU_
                                             Tau 20 double
                                                                     8
12
        _MiscEvent_ Misclassification (Event) 21 double
## 21
                                                                     8
12
##
      Format NFL NFD
## 1
            $
                0
            $
## 2
                0
                    0
## 3
        BEST
                0
                    0
## 4
        BEST
                0
                    0
## 5
        BEST
                    0
## 6
        BEST
                    0
## 7
        BEST
                    0
## 8
        BEST
                    0
## 9
        BEST
                    0
## 10
        BEST
                    0
                0
                    0
## 11
        BEST
                0
## 12
        BEST
                    0
                0
## 13
        BEST
                0
                    0
## 14
                    0
        BEST
## 15
        BEST
                    0
## 16
                    0
        BEST
## 17
        BEST
                    0
## 18
                    0
        BEST
                0
## 19
        BEST
                0
                    0
## 20
        BEST
                0
                    0
## 21
        BEST
## Plot ROC-Curve
specifity_ROC <- as.numeric(unlist(</pre>
  cas.table.fetch(conn,
                   table="assessed_ROC",
                   fetchVars="_Specificity_",
                   index=FALSE,
                   to=tablesize)
))
False_Positive_Rate <- 1-specifity_ROC</pre>
sensitivity_ROC <- as.numeric(unlist(</pre>
  cas.table.fetch(conn,
                   table="assessed_ROC",
                   fetchVars="_Sensitivity_",
                   index=FALSE,
                   to=tablesize)
))
```

ROC Curve for Gradient Boosting


```
to=tablesize)
))

df2 <- data.frame(depth_LIFT, cumulative_LIFT)

LIFT_Curve <- ggplot(df2, aes(x = depth_LIFT, y = cumulative_LIFT)) +
    geom_path(color='red') + geom_point(size = 2, color='red') +
    labs(title="Cumulative Lift Curve for Gradient Boosting", x="Depth", y="Cumulative Lift")

LIFT_Curve</pre>
```

Cumulative Lift Curve for Gradient Boosting


```
cas.terminate(conn)
## [1] 0
```