Tutorial tools

National Cheng Kung University

IKM Lab

Outline

- Conda
- Github tutorial repositories
- Jupyter

- Conda
 - Open source package and environment management system for any language
- Install Miniconda
 - Links: <u>https://conda.io/miniconda.html</u>
 - Please download the Python3.6 version

- Install Miniconda
 - Windows
 - Download the exe installer and install it
 - Linux
 - Download the bash installer
 - run "bash Miniconda3-latest-Linux-x86_64.sh" in terminal
 - Mac OS X
 - Download the bash installer
 - run "bash Miniconda3-latest-MacOSX-x86_64.sh" in terminal

		Ć	
	Windows	Mac OS X	Linux
Python 3.6	64-bit (exe installer) 32-bit (exe installer)	64-bit (bash installer)	64-bit (bash installer) 32-bit (bash installer)
Python 2.7	64-bit (exe installer) 32-bit (exe installer)	64-bit (bash installer)	64-bit (bash installer) 32-bit (bash installer)

- Install Miniconda
 - Check installation
 - open a terminal and run "conda list"
 - if you see the following message, the installation is completed.

```
kjes89011@kjes89011-System-Product-Name:~/miniconda3/bin$ conda list
 packages in environment at /home/kjes89011/miniconda3:
                                                            Channel
                          Version
                                                     Build
# Name
asn1crypto
                          0.24.0
                                                    py36 0
ca-certificates
                          2018.03.07
certifi
                          2018.4.16
                                                    py36 0
                                            py36h9745a5d 0
cffi
                          1.11.5
```

- Install necessary python library in tutorial
 - Run the following commands in terminal
 - matplotlib:
 - "conda install matplotlib"
 - scikit-learn:
 - "conda install scikit-learn"
 - pandas:
 - "conda install pandas"
 - keras:
 - "conda install -c conda-forge keras"

Github tutorial

Download and unzip tutorial repositories

Github tutorial

- Download and unzip tutorial repositories
 - Linear and Non Linear regression :
 https://github.com/IKMLab/Linear-Regression-Tutorial
 - Logistic regression :
 https://github.com/IKMLab/Logistic-Regression-Tutorial
 - Decision tree and Random Forest:
 https://github.com/IKMLab/decision-tree-and-random-forest-tuto
 rial

- A IDE on web which allow us to develop the program.
- Install jupyter
 - run "conda install jupyter" in terminal
 - if the program ask you to update package
 - The answer is "yes!"

```
The following packages will be UPDATED:

asn1crypto: 0.24.0-py36_0 --> 0.24.0-py37_0
certifi: 2018.4.16-py36_0 --> 2018.4.16-py37_0
cffi: 1.11.5-py36h9745a5d_0 --> 1.11.5-py37h9745a5d_0
chardet: 3.0.4-py36h0f667ec_1 --> 3.0.4-py37_1

Proceed ([y]/n)? y
```


Start jupyter

run "ipython notebook" in terminal

- Choose the "XXX_tutorial.ipython" file to start!
 - Don't chose the "XXX_tutorial_answers.ipython"

Type your code in "cell."

Linear Regression Tutorial ¶

```
In [1]: 1 # packages we will be using
         2 import matplotlib.pyplot as plt
         3 from sklearn import linear model, metrics, model selection
         4 import numpy as np
         5 import pandas as pd
```

What is Linear Regression?

Finding a straight line of best fit through the data. This works well when the true underlying function is linear.

Example

We use features X to predict a "response" y. For example we might want to regress num hours studied onto exam score - in other words we predict exam score from number of hours studied.

Let's generate some example data for this case and examine the relationship between x and y.


```
In [2]: 1 num hours studied = np.array([1, 3, 3, 4, 5, 6, 7, 7, 8, 8, 10])
         2 exam score = np.array([18, 26, 31, 40, 55, 62, 71, 70, 75, 85, 97])
         3 plt.scatter(num hours studied, exam score)
         4 plt.xlabel('num_hours_studied')
         5 plt.ylabel('exam score')
         6 plt.show()
```

Run your code in current cell

You can also write Markdown syntax in the cell

Run the Markdown cell to get the output

Linear Regression Tutorial

Markdown Here

Hello World!

What is Linear Regression?

Finding a straight line of best fit through the data. This works well when the true underlying function is linear.