4.1 Jacobi method

A is decomposed into a sum of lower-triangular (L), diagonal (D) and upper-triangular terms (U):

4.1.1 Example

A for Backward Euler Method with Dirichlet boundary conditions:

$$\mathbf{A} = \begin{pmatrix} 1+2s & -s & & 0 \\ -s & 1+2s & -s & \\ & \ddots & & \ddots & \\ & -s & 1+2s & -s \\ 0 & & -s & 1+2s \end{pmatrix}$$

$$\Rightarrow \mathbf{D} = \begin{pmatrix} 1+2s & & & 0 \\ & & 1+2s & \\ & & & \ddots & \\ 0 & & & 1+2s \end{pmatrix}, \mathbf{L} = \begin{pmatrix} 0 & & 0 \\ -s & \ddots & \\ & \ddots & \ddots & \\ 0 & -s & 0 \end{pmatrix},$$

$$\mathbf{U} = \begin{pmatrix} 0 & -s & 0 \\ \ddots & \ddots & \\ & \ddots & -s \\ & & \ddots & -s \end{pmatrix}$$

We want to solve $A\vec{x} = b$

$$\Rightarrow (D+L+U)\vec{x} = \vec{b}$$

or
$$D\vec{x} = b - (L + U)\vec{x}$$

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

If \vec{x}^k is k^{th} estimate of solution $A\vec{x} = \vec{b}$ then the $(k+1)^{th}$ estimate is:

$$D\vec{x}^{k+1} = b - (L+U)\vec{x}^k$$
 (Jacobi Method)

Since D is diagonal $(D_{ij} = \delta_{ij}A_{ij})$, we can write the vector equation above for \vec{x}^{k+1} for each component $(x_1^{k+1}, ... x_n^{k+1})$.

$$x_i^{k+1} = \underbrace{\frac{1}{A_{ii}}}_{D^{-1}} \left(b_i - \underbrace{\sum_{j \neq i} A_{ij} x_j^k}_{L+U \text{ part}} \right), \qquad 1 \le i \le n$$
 (4.1)

Applying the Jacobi method 4.1.2

To start the scheme use an initial guess \vec{x}^0 , (eg. $\vec{x}^0 = \vec{0}$). The iterations are repeated until $A\vec{x}^k \approx \vec{b}$ or the residual:

$$|\vec{b} - A\vec{x}^k|$$
 < error tolerance (eg.10⁻⁵)

Jacobi method converges to correct solution $x^k \to x$ as $k \to \infty$ if:

$$||D^{-1}(L+U)|| < 1 \Rightarrow \underbrace{|A_{ii}| > \sum_{j \neq i} |A_{ij}|}_{\text{A is strictly diagonally dominant}}, \quad 1 \leq i \leq n$$

where ||B|| is the row-sum norm defined below:

$$||B|| = \max_{1 \le i \le n} \sum_{j=1}^{n} |B_{ij}| = \max_{1 \le i \le n} \sum_{j=1, j \ne i}^{n} \frac{|a_{ij}|}{|a_{ii}|} < 1.$$

The degree to which the convergence criteria:

$$|A_{ii}| > \sum_{j \neq i} |A_{ij}|, 1 \le i \le n$$

holds is a measure of how fast the estimate \vec{x}^k converges to actual solution \vec{x}

Look for matlab code on this free source website: http://www.netlib.org/which implements the Jacobi method and try for yourself.

4.2 Gauss-Seidel Method

- improves convergence of Jacobi method by simple modification
- in Jacobi method the new estimate, x_i^{k+1} is computed using only the current estimate, x_i^k
- Gauss-Seidel method uses all the possible new estimates $(j \le i-1)$ $x_{i-1}^{k+1}, x_{i-2}^{k+1}, ..., x_1^{k+1}, x_0^{k+1}$ when updating the new estimate x_i^{k+1} :

$$x_i^{k+1} = \frac{1}{A_{ii}} \left(b_i - \sum_{j=1}^{i-1} A_{ij} x_j^{k+1} - \sum_{j=i+1}^{n} A_{ij} x_j^k \right), \qquad 1 \le i \le n.$$

This is an improvement over the Jacobi method because it uses the new estimate x_j^{k+1} when it can. In vector form: $\vec{x}^{k+1} = D^{-1}(b - L\vec{x}^{k+1} - U\vec{x}^k)$ or $(D+L)\vec{x}^{k+1} = b - Ux^k$.

• solution converges $x^k \to x$ as $k \to \infty$ if: $||(D+L)^{-1}U|| \le 1$.

4.2.1 Example: using Gauss-Seidel method to solve a matrix equation

The matlab code for this example is **GaussSeidel.m**.

Solve $A\vec{x} = \vec{b}$ for $Res = |b - Ax^{k+1}| < 1e^{-3}$ with:

$$A = \begin{pmatrix} 5 & 0 & -2 \\ 3 & 5 & 1 \\ 0 & -3 & 4 \end{pmatrix}, \quad b = \begin{pmatrix} 7 \\ 2 \\ -4 \end{pmatrix}, \quad x^0 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

with initial guess $\vec{x}^0 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow$ takes 9 iterations. The Jacobi method needs

17 iterations to converge so takes nearly twice as long as the Gauss-Seidel method.

Figure 4.1: Plot of residual using the Gauss-Seidel method after each iteration

Figure 4.1 shows the residual using the Gauss-Seidel method after each iteration, it takes 9 iterations for the residual error to be less than 0.001.

4.3 Relaxation Methods

Relaxation methods generalise Gauss-Seidel method by introducing a relaxation factor, $\alpha > 0$. If α is optimised for the system this can increase the rate of convergence of the solution x^k by modifying the size of the correction:

$$x_i^{k+1} = x_i^k + \frac{\alpha}{A_{ii}} \left(b_i - \sum_{j=1}^{i-1} A_{ij} x_j^{k+1} - \sum_{j=i}^n A_{ij} x_j^k \right), \qquad 1 \le i \le n.$$
 (4.2)

This is called the successive relaxation (SR) method and for:

- $0 < \alpha < 1 \Rightarrow$ under-relaxation
- $\alpha = 1 \Rightarrow$ Gauss-Seidel method
- $\alpha > 1 \Rightarrow$ over-relaxation

We can re-write equation 4.2:

$$x_i^{k+1} = (1 - \alpha)x_i^k + \frac{\alpha}{A_{ii}} \left[b_i - \sum_{j=1}^{i-1} A_{ij} x_j^{k+1} - \sum_{j=i+1}^n A_{ij} x_j^k \right], \qquad 1 \le i \le n$$

Solution converges, ie $x^k \to x$ as $k \to \infty$ if: $\|(D + \alpha L)^{-1}[(1 - \alpha)D - \alpha U]\| < 1$.