Classical Encryption Techniques

4CS401

M. K. Chavan,

Asst. Professor, CSE Department, Walchand College of Engineering, Sangli

Classical encryption techniques

- As opposed to modern cryptography
- Goals:
 - to introduce basic concepts & terminology of encryption
 - to prepare us for studying modern cryptography

Basic terminology

- Plaintext: original message to be encrypted
- Ciphertext: the encrypted message
- Enciphering or encryption: the process of converting plaintext into ciphertext
- Encryption algorithm: performs encryption
 - Two inputs: a plaintext and a secret key

Symmetric Cipher Model

- Deciphering or decryption: recovering plaintext from ciphertext
- Decryption algorithm: performs decryption
 - Two inputs: ciphertext and secret key
- Secret key: same key used for encryption and decryption
 - Also referred to as a symmetric key

- Cipher or cryptographic system : a scheme for encryption and decryption
- Cryptography: science of studying ciphers
- Cryptanalysis: science of studying attacks against cryptographic systems
- Cryptology: cryptography + cryptanalysis

Ciphers

- Symmetric cipher: same key used for encryption and decryption
 - Block cipher: encrypts a block of plaintext at a time (typically 64 or 128 bits)
 - Stream cipher: encrypts data one bit or one byte at a time
- Asymmetric cipher: different keys used for encryption and decryption

Symmetric Encryption

- or conventional / secret-key / single-key
- sender and recipient share a common key
- all classical encryption algorithms are symmetric
- The only type of ciphers prior to the invention of asymmetric-key ciphers in 1970's
- by far most widely used

Symmetric Encryption

Mathematically:

$$Y = E_K(X)$$
 or $Y = E(K, X)$
 $X = D_K(Y)$ or $X = D(K, Y)$

- *X* = plaintext
- Y = ciphertext
- K = secret key
- E = encryption algorithm
- D = decryption algorithm
- Both E and D are known to public

Cryptanalysis

- Objective: to recover the plaintext of a ciphertext or, more typically, to recover the secret key.
- Two general approaches:
 - brute-force attack
 - non-brute-force attack (cryptanalytic attack)

Brute-Force Attack

- Try every key to decipher the ciphertext.
- On average, need to try half of all possible keys
- Time needed proportional to size of key space

Key Size (bits)	Number of Alternative Keys	Time required at 1 decryption/µs	Time required at 10 ⁶ decryptions/µs	
32	$2^{32} = 4.3 \times 10^9$	$2^{31} \mu s = 35.8 \text{ minutes}$	2.15 milliseconds	
56	$2^{56} = 7.2 \times 10^{16}$	$2^{55} \mu s = 1142 \text{ years}$	10.01 hours	
128	$2^{128} = 3.4 \times 10^{38}$	$2^{127} \mu s = 5.4 \times 10^{24} \text{years}$	5.4×10^{18} years	
168	$2^{168} = 3.7 \times 10^{50}$	$2^{167} \mu s = 5.9 \times 10^{36} \text{years}$	5.9×10^{30} years	
26 characters (permutation)	$26! = 4 \times 10^{26}$	$2 \times 10^{26} \mu s = 6.4 \times 10^{12} \text{years}$	6.4×10^6 years	

Classical Cryptography

- Sender, receiver share common key
 - Keys may be the same, or trivial to derive from one another
 - Sometimes called symmetric cryptography
- Two basic types
 - Transposition ciphers
 - Substitution ciphers
 - Combinations are called product ciphers

Classical Ciphers

- Plaintext is viewed as a sequence of elements (e.g., bits or characters)
- Substitution cipher: replacing each element of the plaintext with another element.
- Transposition (or permutation) cipher: rearranging the order of the elements of the plaintext.
- Product cipher: using multiple stages of substitutions and transpositions

Transposition Cipher

- Rearrange letters in plaintext to produce ciphertext
- Example (Rail-Fence Cipher or 2-columnar transposition)

```
- Plaintext is HELLO WORLD
- HE
LL
OW
OR
LD
```

– Ciphertext is HLOOL ELWRD

Transposition Cipher

- Generalize to n-columnar transpositions
- Example 3-columnar
 - HEL LOW ORL
 - DXX
 - HLODEORXLWLX

Caesar Cipher

- Earliest known substitution cipher
- Invented by Julius Caesar
- Each letter is replaced by the letter three positions further down the alphabet.
- Plain: a b c d e f g h i j k l m n o p q r s t u v w x y z
 Cipher: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
- Example: ohio state □ RKLR VWDWH

Caesar Cipher

Mathematically, map letters to numbers:

Then the general Caesar cipher is:

$$c = E_{\kappa}(p) = (p + k) \mod 26$$

 $p = D_{\kappa}(c) = (c - k) \mod 26$

Can be generalized with any alphabet.

Cryptanalysis of Caesar Cipher

- Key space: {0, 1, ..., 25}
- Vulnerable to brute-force attacks.
- E.g., break ciphertext "DWWDFN"

Monoalphabetic Substitution Cipher

 Shuffle the letters and map each plaintext letter to a different random ciphertext letter:

Plain letters: abcdefghijklmnopqrstuvwxyz

Cipher letters: DKVQFIBJWPESCXHTMYAUOLRGZN

Plaintext: ifwewishtoreplaceletters

Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA

Monoalphabetic Cipher Security

- With so many keys, it is secure against brute-force attacks.
- But not secure against some cryptanalytic attacks.
- Problem is language characteristics.

Language Statistics and Cryptanalysis

- Human languages are not random.
- Letters are not equally frequently used.
- In English, E is by far the most common letter, followed by T, R, N, I, O, A, S.
- Other letters like Z, J, K, Q, X are fairly rare.
- There are tables of single, double & triple letter frequencies for various languages

English Letter Frequencies

Statistics for double & triple letters

In decreasing order of frequency

Double letters:

th he an in er re es on, ...

Triple letters:

the and ent ion tio for nde, ...

Use in Cryptanalysis

- Key concept: monoalphabetic substitution does not change relative letter frequencies
- To attack, we
 - calculate letter frequencies for ciphertext
 - compare this distribution against the known one

Example Cryptanalysis

Given ciphertext:

```
UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ
VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX
EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ
```

- Count relative letter frequencies (see next page)
- Guess {P, Z} = {e, t}
- Of double letters, ZW has highest frequency, so guess ZW = th and hence ZWP = the
- Proceeding with trial and error finally get:

it was disclosed yesterday that several informal but direct contacts have been made with political representatives of the viet cong in moscow

Letter frequencies in ciphertext

P	13.33	H 5.83	F	3.33	В	1.67	C	0.00
Z	11.67	D 5.00	W	3.33	G	1.67	K	0.00
S	8.33	E 5.00	Q	2.50	Y	1.67	L	0.00
U	8.33	V 4.17	Т	2.50		0.83	N	0.00
0	7.50	X 4.17	Α	1.67	J	0.83	R	0.00
M	6.67							

Playfair Cipher

- Not even the large number of keys in a monoalphabetic cipher provides security.
- One approach to improving security is to encrypt multiple letters at a time.
- The Playfair Cipher is the best known such cipher.
- Invented by Charles Wheatstone in 1854, but named after his friend Baron Playfair.

Playfair Key Matrix

- Use a 5 x 5 matrix.
- Fill in letters of the key (w/o duplicates).
- Fill the rest of matrix with other letters.
- E.g., key = MONARCHY.

M	0	N	A	R
С	Η	Y	В	D
E	F	G	I/J	K
L	Р	Q	S	Т
U	V	W	X	Z

Encrypting and Decrypting

Plaintext is encrypted two letters at a time.

- If a pair is a repeated letter, insert filler like 'X'.
- 2. If both letters fall in the same row, replace each with the letter to its right (circularly).
- 3. If both letters fall in the same column, replace each with the the letter below it (circularly).
- 4. Otherwise, each letter is replaced by the letter in the same row but in the column of the other letter of the pair.

Polyalphabetic Substitution Ciphers

- A sequence of monoalphabetic ciphers (M₁, M₂, M₃, ..., M_k) is used in turn to encrypt letters.
- A key determines which sequence of ciphers to use.
- Each plaintext letter has multiple corresponding ciphertext letters.
- This makes cryptanalysis harder since the letter frequency distribution will be flatter.

Vigenère Cipher

- Simplest polyalphabetic substitution cipher
- Consider the set of all Caesar ciphers:

$$\{ C_a, C_b, C_c, ..., C_z \}$$

- Key: e.g. security
- Encrypt each letter using C_s, C_e, C_c, C_u, C_r,
 C_i, C_t, C_v in turn.
- Repeat from start after C_v.
- Decryption simply works in reverse.

Example of Vigenère Cipher

Keyword: deceptive

```
key: deceptivedeceptive
plaintext: wearediscoveredsaveyourself
ciphertext: ZICVTWQNGRZGVTWAVZHCQYGLMGJ
C=(p+k) mod 26
```

Transposition Ciphers

- Also called **permutation** ciphers.
- Shuffle the plaintext, without altering the actual letters used.
- Example: Row Transposition Ciphers

Rail Fence cipher

- write message letters out diagonally over a number of rows
- then read off cipher row by row
- eg. write message out as:

```
m e m a t r h t g p r y e t e f e t e o a a t
```

giving ciphertext

MEMATRHTGPRYETEFETEOAAT

Row Transposition Ciphers

- Plaintext is written row by row in a rectangle.
- Ciphertext: write out the columns in an order specified by a key.

```
Key: 4 3 1 2 5 6 7
```

Plaintext:

```
    a t t a c k p
    o s t p o n e
    d u n t i l t
    w o a m x y z
```

Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

Product Ciphers

- Uses a sequence of substitutions and transpositions
 - Harder to break than just substitutions or transpositions
- This is a bridge from classical to modern ciphers.

Unconditional & Computational Security

- A cipher is unconditionally secure if it is secure no matter how much resources (time, space) the attacker has.
- A cipher is computationally secure if the best algorithm for breaking it will require so much resources (e.g., 1000 years) that practically the cryptosystem is secure.
- All the ciphers we have examined are not unconditionally secure.

An unconditionally Secure Cipher

Vernam's one-time pad cipher

- Key = $k_1k_2k_3k_4$... (random, used one-time only)
- Plaintext = $m_1 m_2 m_3 m_4 \dots$
- Ciphertext = $c_1 c_2 c_3 c_4 \dots$ where $c_i = m_i \oplus k_i$
- Can be proved to be unconditionally secure.

Summary

- Have considered:
 - classical cipher techniques and terminology
 - monoalphabetic substitution ciphers
 - cryptanalysis using letter frequencies
 - Playfair cipher
 - polyalphabetic ciphers
 - transposition ciphers
 - product ciphers