Verilog HDL: A solution for Everybody

Pravin Zode

Outline

- Traditional Design Approach
- Complexity and Design
- Design Abstraction
- Modern Digital Design Flow
- Importance of HDLs
- Comparison of HDLs

Traditional Design approaches

File Edit Mode Options Hierarchy View Display

Bile Edit Mode Options Hi

Gate Level Design

Schematic Design

Where is the problem?

- System specification is behavioral
- Manual Translation of design in Boolean equations
- Handling of large Complex Designs
- Can we still use SPICE for simulating Digital circuits?

Advancements over the years

- © Intel 4004 Processor
- Introduced in 1971
- 2300 Transistors
- 108 KHz Clock

- © Intel P4 Processor
- Introduced in 2000
- 40 Million Transistors
- 1.5GHz Clock

Complexity and Design

- Creating a design team provides a realistic approach to approaching a VLSI project
- it allows each person to study small sections of the system
- Needing hundreds of engineers, scientists, and technicians
- Needing hierarchy design and many different Level Views
- Everyone of each level depends upon the CAD tools

Development Process

Design Abstraction

Design Abstraction

Design Abstraction

9

Classical Digital Design Flow

Modern Digital Design Flow

Simulation and Synthesis Flow

Modern Digital Design Flow

Importance of HDLs

- Designs can be described at a very abstract level using HDLs
- RTL descriptions are independent of specific fabrication technologies
- Logic synthesis tools convert designs to any fabrication technology
- New technologies only require re-synthesis, not redesign
- Circuits are optimized for area and timing with new technologies

Early Functional Verification

- Functional verification can be done early in the design cycle
- Designers work at the RTL level to optimize and modify designs
- Most design bugs are eliminated early, reducing later-stage errors
- Shortens the overall design cycle

Development and Debugging Efficiency

- Designing with HDLs is similar to computer programming
- Textual descriptions with comments make development and debugging easier
- Provides a concise representation compared to gatelevel schematics
- Gate-level schematics become impossible to understand for complex designs.

Popularity of Verilog

- Verilog HDL is a general-purpose hardware description language, easy to learn and use
- Similar syntax to C programming, making it accessible to C programmers
- Supports mixed levels of abstraction within the same model: switches, gates, RTL, or behavioral code
- One language suffices for stimulus and hierarchical design
- Supported by most popular logic synthesis tools, ensuring wide adoption
- Fabrication vendors provide Verilog HDL libraries for post-logic synthesis simulation

Comparison of HDLs

Feature	Verilog	VHDL
Syntax	C-like syntax; easy to learn	Complex syntax; derived from ADA
Suitability	Best for simulation and hardware modeling	Excellent for large- scale/system modeling
Industry Adoption	Popular in U.S. semiconductor industry	Popular in Europe and defense industries
Type System	Less strict	Strongly typed, reducing ambiguity
Libraries	Limited libraries	Rich set of libraries
Simulation Speed	Faster for large designs	Slower compared to Verilog
Abstraction Levels	Strong support for mixed-level modeling	Focus on high-level abstractions

Hardware Description Languages

Verilog

Verilog HDL Name: Open Verilog International Coach: (www.ovi.org) **Characteristics**: Has very good acceptance in ASIC, particularly lower level designs (register level transfer and below); results in fast simulations, relatively simple, easy in first contacts, especially for C Language users. In long term might have problems with handling system. level designs. Fan clubs: Mostly in North America and Asia Japan, especially among industrial supporters. Not popular in Europe.

VHDL

Hardware Description Languages

Verilog

VHDL

Summary

- Traditional Design Approach is Error-prone and time-consuming
- Increasing circuit complexity necessitates structured design and efficient methodologies for scalability.
- Multi-level abstraction (behavioral, RTL, gate-level, physical) simplifies large-scale system development
- The modern digital design flow follows systematic steps (Specification →RTL Design → Synthesis → Verification → Fabrication) to ensure efficiency and correctness in complex designs.
- HDLs (VHDL, Verilog) enable simulation and synthesis, making them essential for automation in modern design tools.
- Verilog is easier for beginners and widely used in industry, while
 VHDL has stronger typing and is suited for complex designs;
 selection depends on project requirements

Thank you!

Happy Learning