Optimiza	ation Algorithm Notes	
	D. M	
	Depu Meng	
	Feb. 2019	
1 Introduction to O	ptimization Algorithms	
1.1 Goal of the Course		
- Understand foundations	of optimization	
	used optimization algorithms	
· · ·	entation of optimization algorithms	
Be familiar with implem	entation of optimization algorithms	
1.2 Topics Involved		
TT	*	
Unconstrained optimizatConstrained optimization		
Constrained optimizationConvex optimization	1	
Sparse optimization		
Sparse optimizationStochastic optimization		
 Stochastic optimization Combinational optimizat 	ion	
- Global optimization		
Grosur optimization		
1.3 Basic Concepts		
Problem Definition Find t	the value of the decision variable s.t. o	shipative funa
tion is maximized/minimized		objective func-
tion is maximized, minimized	under certain conditions.	
	$\min f(x)$	(1)
	$s.t.x \in \mathcal{S} \subset \mathbb{R}^n$	(2)
		(2)
Here, we call S feasible region	n.	
	ned optimization Problem as	
	$\min f(x)$	(3)
s.	f(x) = 0, i = 1,, n	(4)
	$b_i(x) = 0, i \in 1,, m$	(5)
	· · · · · · · · · · · · · · · · · · ·	(*)
Definition 1. Global Optim	vality. For global optimal value $x^* \in \mathcal{S}$	3,
	$f(x^*) \le f(x), \forall x \in \mathcal{S}$	(6)

Definition 2. Local Optimality. For local optimal value $x^* \in \mathcal{S}$, $\exists U(x^*)$, such that

$$f(x^*) \le f(x), \forall x \in \mathcal{S} \cap U(x^*)$$
 (7)

Definition 3. Feasible direction. Let $x \in \mathcal{S}$, $d \in \mathbb{R}^n$ is a non-zero vector. if $\exists \delta > 0$, such that

$$x + \lambda d \in \mathcal{S}, \forall \lambda \in (0, \delta)$$
 (8)

Then d is a **feasible direction** at x. We denote F(x,S) as the set of feasible directions at x.

Definition 4. Descent direction. $f(x): \mathbb{R}^n \to \mathbb{R}, x \in \mathbb{R}^n, d$ is a non-zero vector. If $\exists \delta > 0$, such that

$$f(x + \lambda d) < f(x), \forall \lambda \in (0, \delta)$$
(9)

Then d is a **descent direction** at x. We denote $D(x, f) = \{d | \nabla f(x)^T d < 0\}$ as the set of descent direction at x.

1.4 Optimal Conditions

Unconstrained Optimization

First-order necessary condition: f(x) is differentiable at x,

$$\nabla f(x) = 0 \tag{10}$$

Second-order necessary condition: f(x) is second-order differentiable at x,

$$\nabla f(x) = 0 \tag{11}$$

$$\nabla^2 f(x) > 0 \tag{12}$$

$$\nabla^2 f(x) \ge 0 \tag{12}$$

Constrained Optimization

Theorem 1. Fritz-John Condition For constrained optimization problem

For constrained optimization problem

$$\min f(x) \tag{13}$$

$$s.t. \quad g_i(x) \ge 0, i = 1, ..., n$$
 (14)

$$h_i(x) = 0, i \in 1, ..., m$$
 (15)

Denote $I(x) = \{i \in \{1,...,n\} | g_i(x) = 0\}$. For $x \in \mathcal{S}$, f and $g_i, i \in I(x)$ is differentiable at x, $h_j(x)$ is continuously differentiable at x. If x is local optimal, then there exists non-trivial $\lambda_0, \lambda_i \geq 0, i \in I(x)$ and μ_j , such that

$$\lambda_0 \bigtriangledown f(x) - \sum_{i \in I(x)} \lambda_i \bigtriangledown g_i(x) - \sum_{j=1}^m \mu_j \bigtriangledown h_j(x) = 0$$
 (16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

such that $\sum_{j=1}^{m} \nabla \mu_j h_j(x) = 0$ Let $\lambda_0, \lambda_i, i \in I(x) = 0$, then (13) holds. (ii) If $\{ \nabla h_i(x) \}$ is linearly independent, Denote $F_a = F(x, a) = \{d \mid \nabla g_i(x)^T d > 0, i \in I(x)\}$ If x is a optimal value, then appearently $F(x,\mathcal{S}) \cap D(x,f) = \emptyset$. Due to the

 $F_h = F(x, h) = \{d \mid \nabla h_i(x)^T d = 0, i = 1, ..., m\}$

Proof. (i) If $\{ \nabla h_i(x) \}$ is linearly dependent, then there exists non-trivial μ_i ,

 $\begin{cases} \nabla f(x)^T d < 0 \\ \nabla g_i(x)^T d > 0, i \in I(x) \\ \nabla h_i(x)^T d = 0, j = 1, ..., m \end{cases}$

 $A = \{ \nabla f(x)^T, -\nabla g_i(x) \}^T, i \in I(x) \}$

 $\begin{cases} A^T d < 0 \\ B^T d = 0 \end{cases}$

 $S_1 = \left\{ \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} | y_1 = A^T d, y_2 = B^T d, d \in \mathbb{R}^n \right\}$

 $B = \{ - \nabla h_i(x) \}, j = 1, ..., m$

independence of $\{ \nabla h_i(x) \}$, we have $F_q \cap F_h \subset F(x, \mathcal{S})$, then $F_a \cap F_b \cap D(x, f) = \emptyset$

that is

has no solution. Let

Then (21) is equivalent to

has no solution.

Denote

 $S_2 = \left\{ \left(\frac{y_1}{u_2} \right) | y_1 < 0, y_2 = 0 \right\}$

Theorem: $\exists \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$, such that

 $p_1^T A^T d + p_2^T B^T d \ge p_1^T y_1 + p_2^T y_2, \forall d \in \mathbb{R}^n, \forall \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \in CL(S_2)$

 S_1, S_2 are non-trivial convex sets, and $S_1 \cap S_2 = \emptyset$. From Hyperplane Separation

(27)

Let $y_2 = 0, d = 0, y_1 < 0$, we have

1.5

$$p_{1} \geq 0 \tag{28}$$

$$137$$

$$138$$

$$139 \qquad \text{Let } \binom{y_{1}}{y_{2}} = \binom{0}{0} \in CL(S_{2}) \text{ So that}$$

$$140$$

$$141 \qquad (p_{1}^{T}A^{T} + p_{2}^{T}B^{T})d \geq 0 \tag{29}$$

$$(Ap_{1} + Bp_{2})^{T}d \geq 0 \tag{30}$$

$$143$$

$$144 \qquad \text{Let } d = -(Ap_{1} + Bp_{2}), \text{ we have}$$

$$145$$

$$146 \qquad Ap_{1} + Bp_{2} = 0 \tag{31}$$

$$147$$

$$148 \qquad \text{From above, we have}$$

 $\begin{cases} Ap_1 + Bp_2 = 0\\ p_1 > 0 \end{cases}$

is differentiable at x, $h_i(x)$ is continuously differentiable at x. $\{\nabla g_i(x), i \in$

Let $p_1 = {\lambda_0, ..., \lambda_{I(x)}}, p_2 = {\mu_1, ..., \mu_m}, i.e.,$ $\begin{cases} \lambda_0 \bigtriangledown f(x) - \sum_{i \in I(x)} \lambda_i \bigtriangledown g_i(x) - \sum_{j=1}^m \mu_j \bigtriangledown h_j(x) = 0 \\ \lambda_i > 0 \end{cases}$

Theorem 2. Kuhn-Tucker Condition

For constrained optimization problem $\min f(x)$ s.t. $q_i(x) > 0, i = 1, ..., n$ $h_i(x) = 0, i \in 1, ..., m$ Denote $I(x) = \{i \in \{1,...,n\} | g_i(x) = 0\}$. For $x \in S$, f and $g_i, i \in I(x)$

 $I(x); \nabla h_i(x), j = 1, ..., m$ is linearly independent. If x is local optimal, then $\exists \lambda_i \geq 0 \text{ and } \mu_i, \text{ such that }$ $\nabla f(x) - \sum_{i \in I(x)} \lambda_i \nabla g_i(x) - \sum_{i=1}^m \mu_j \nabla h_j(x) = 0$

Descent function

Definition 5. Descent function. Denote solution set $\Omega \in X$, A is an algorithm

on $X, \psi: X \to \mathbb{R}$. If

Then ψ is a **descent function** of (Ω, \mathcal{A}) .

 $\psi(u) < \psi(x), \quad \forall x \notin \Omega, u \in \mathcal{A}(x)$ $\psi(y) < \psi(x), \quad \forall x \in \Omega, y \in \mathcal{A}(x)$

(38)(39)

(32)

(33)

(34)

(35)

(36)

(37)

1.6 Convergence of Algorithm	
Theorem 3. A is an algorithm on X, Ω is the solution set, $x^{(0)}$	$(0) \in X$. If $x^{(k)} \in X$
Ω , then the iteration stops. Otherwise set $x^{(k+1)} = \mathcal{A}(x^{(k)}), k :=$	= k + 1. If
$-\{x^{(k)}\}$ in a compact subset of X	
- There exists a continuous function ψ , ψ is a descent function	on of (Q, A)
- \mathcal{A} is closed on Ω^C	, (12, 0 t)
	_
Then, any convergent subsequence of $\{x^{(k)}\}\ $ converges to $x, x \in$	Ω .
Proof.	
v	
1.7 Search Methods	
Search Methods	
Line Search	
Generate $d^{(k)}$ from $x^{(k)}$,	
$x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}$	(40)
$x = x + \alpha_k a$	(40)
search α_k in 1-D space.	
Trust Region	
Generate local model $Q_k(s)$ of $x^{(k)}$,	
$s^{(k)} = \arg\min Q_k(s)$	(41)
$x^{(k+1)} = x^{(k)} + s^{(k)}$	` ′
$x^{(\kappa+1)} = x^{(\kappa)} + s^{(\kappa)}$	(42)

2 Unconstrained Optimization

2.1 Gradient Based Methods

 $\min_{x \in \mathbb{R}^n} f(x) \tag{43}$

Algorithm 1: Example of gradient based algorithm

2.2 Determine Search Direction

First-order gradient method

For unconstrained optimization problem

$$\min_{x \in \mathbb{R}^n} f(x) \tag{44}$$

We have

$$f(x) = f(x^{(k)}) + \nabla f(x^{(k)})^T (x - x^{(k)}) + O(\|x - x^{(k)}\|^2)$$
 (45)

Set $d^{(k)} = - \nabla f(x^{(k)})$, when α_k is sufficiently small,

$$f(x^{(k)} + \alpha_k d^{(k)}) < f(x^{(k)})$$
(46)

Second-order gradient method – Newton Direction

$$f(x) = f(x^{(k)}) + \nabla f(x^{(k)})^T (x - x^{(k)})$$

$$+ \frac{1}{2} (x - x^{(k)})^T \nabla^2 f(x^{(k)}) (x - x^{(k)}) + O(\|x - x^{(k)}\|^3)$$
(48)

Set $d^{(k)} = -G_k^{-1} \nabla f(x^{(k)})$, where $G_k = \nabla^2 f(x^{(k)})$, i.e., Hesse matrix of f at $x^{(k)}$.

2.3 Determine Step Factor – Line Search

$$\min_{\alpha \ge 0} \varphi(\alpha) = f(x^{(k)} + \alpha d^{(k)}) \tag{49}$$

271	Solve Line Search problem in finite iterations.		271
272	Inexact Line Search		272
273	In some cases, the exact solution of Line Search is not necessary, so we	e can	273
274	use inexace line search to improve algorithm efficiency.		274
275	Goldstein Conditions		275
276			276
277	$\varphi(\alpha) \le \varphi(0) + \rho \alpha \varphi'(0)$	(50)	277
278	$\varphi(\alpha) \ge \varphi(0) + (1-\rho)\alpha\varphi'(0)$	(51)	278
279	$\varphi(\alpha) = \varphi(0) + (1 - p)\alpha\varphi(0)$	(31)	279
280	where $\rho \in (\frac{1}{2}, 1)$ is a fixed parameter.		280
281	However, the downside of Goldstein Conditions is that the optimal	value	281
282	might not lie in the valid area.	varue	282
283	Wolfe-Powell Conditions		283
284	Woije-1 Owell Conditions		284
285	$\varphi(\alpha) \le \varphi(0) + \rho \alpha \varphi'(0)$	(52)	285
286		` /	286
287	$\varphi'(\alpha) \ge \sigma \varphi'(0)$	(53)	287
200			200

 $\theta^{(k)} \le \frac{\pi}{2} - \mu$

2.4 Global Convergence

where $\sigma \in (\rho, 1)$.

Exact Line Search

Theorem 4. Assume $\nabla f(x)$ exists and uniformly continuous on level set $L(x^{(0)}) =$

$$\{x|f(x) \leq f(x^{(0)})\}$$
. Denote $\theta^{(k)}$ as the angle between $d^{(k)}$ and $-\nabla f(x^{(k)})$.

- Goldstein Conditions - Wolfe-Powell Conditions

Then, there exists k, such that $\nabla f(x^{(k)}) = 0$, or $f(x^{(k)}) \to 0$ or $f(x^{(k)}) \to -\infty$.

Proof.

Steepest Descent Method 2.5

Steepest Descent Method is a Line Search Method.

 $x^{(k+1)} = x^{(k)} - \alpha_k \nabla f(x^{(k)})$

(55)

(54)

```
Algorithm 2: Steepest Descent Algorithm
  Data: Termination error \epsilon, cost function f
  x^{(0)} \in \mathbb{R}^n, k := 0:
  while \parallel g^{(k)} \parallel \geq \epsilon \operatorname{do} 
\mid d^{(k)} = -q^{(k)};
       solve \min_{\alpha_k > 0} f(x^{(k)} + \alpha_k d^{(k)}):
       x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}, \ k := k+1;
       Compute q^{(k)} = \nabla f(x^{(k)})
  end
  Steepest Descent Method has linear convergence rate generally.
```

Newton Method 2.6

Newton Method is also a Line Search Method.

$$f(x^{(k)} + s) \approx q^{(k)}(s)f(x^{(k)}) + g^{(k)^T}s + \frac{1}{2}s^TG_ks$$

 $s = G_1^{-1} q^{(k)}$

Notice that
$$G_k^{-1}g^{(k)}$$
 is the Newton Direction.

where $q^{(k)} = \nabla f(x^{(k)})$, $G_k = \nabla^2 f(x^{(k)})$. To minimize $q^{(k)}(s)$, we have

Analysis on quadratic function

For positive definite quadratic function

$$f(x) = \frac{1}{2}x^T G x - c^T x \tag{58}$$

(56)

(57)

In this case, $\nabla^2 f(x) = G$. Let $H_0 = G^{-1}$, then we have

$$d^{(0)} = H_0 \nabla f(x^{(0)})$$

$$= G^{-1}(Gx^{(0)} - c)$$
(59)

$$= r^{(0)} - G^{-1}c \tag{61}$$

$$=x^{(0)} - G^{-1}c (61)$$

$$=x^{(0)} - x^* (62)$$

So that Newton Method can reach global optimal in 1 iteration for quadratic functions.

For general non-linear functions, if we follow

 $x^{(k+1)} = x^{(k)} - G_{-1}^{-1} q^{(k)}$

$$x^{(k+1)} = x^{(k)} - G_k^{-1} g^{(k)} (63)$$

we called it Newton Method.

Convergence Rate of Newton Method

Theorem 5. $f \in C^2$, $x^{(k)}$ is sufficiently closed to optimal point x^* , where $\nabla f(x^*) = 0$. If $\nabla^2 f(x^*)$ is positive definite, Hesse matrix of f satisfies Lipschitz Condition, i.e., $\exists \beta > 0$, such that for all (i,j),

$$|G_{ij}(x) - G_{ij}(y)| \le \beta \parallel x - y \parallel$$
 (64)

Then $\{x^{(k)}\} \to x^*$, and have quadratic convergence rate.

Proof. Denote $q(x) = \nabla f(x)$, then we have

$$g(x - h) = g(x) - G(x)h + O(\|h\|^2)$$
(65)

Let $x = x^{(k)}$, $h = h^{(k)} = x^{(k)} - x^*$, then

$$g(x^*) = g(x^{(k)}) - G(x^{(k)})(h^{(k)}) + O(\|h^{(k)}\|^2) = 0$$
(66)

From Lipschitz Condition, we can easily get $G(x^{(k)})^{-1}$ is finite. Then we left multiply $G(x^{(k)})^{-1}$ to Equation (66)

$$0 = G(x^{(k)})^{-1}g(x^{(k)}) - h^{(k)} + O(\|h^{(k)}\|^2)$$
(67)

$$= x^* - x^{(k)} + G(x^{(k)})^{-1} q(x^{(k)}) + O(\|h^{(k)}\|^2)$$
(68)

$$= x^* - x^{(k+1)} + O(\|h^{(k)}\|^2)$$
(69)

$$= -h^{(k+1)} + O(\|h^{(k)}\|^2)$$
(70)

,

i.e.,

$$||h^{(k+1)}|| = O(||h^{(k)}||^2)$$
 (71)

2.7 Quasi-Newton Methods

Newton Method has a fast convergence rate. However, Newton Method requires second-order derivative, if Hesse matrix is not positive definite, Newton Method might not work well.

In order to overcome the above difficulties, Quasi-Newton Method is introduced. Its basic idea is that: Using second-order derivative free matrix H_k to approximate $G(x^{(k)})^{-1}$. Denote $s^{(k)} = x^{(k+1)} - x^{(k)}$, $y^{(k)} = \nabla f(x^{(k+1)}) - \nabla f(x^{(k)})$, then we have

$$\nabla^2 f(x^{(k)}) s^{(k)} \approx y^{(k)} \tag{72}$$

or

$$\nabla^2 f(x^{(k)})^{-1} y^{(k)} \approx s^{(k)}$$
 (73)

So we need to construct H_{k+1} such that

$$H_{k+1}y^{(k)} \approx s^{(k)} \tag{74}$$

or

$$y^{(k)} \approx B_{k+1} s^{(k)} \tag{75}$$

we called (74), (75) Quasi-Newton Conditions or Secant Conditions.

Algorithm 3: Quasi-Newton Algorithm

Data: Cost function f $x^{(0)} \in \mathbb{R}^n, H_0 = I, k := 0;$

while some conditions do

 $d^{(k)} = -H_k q^{(k)}$;

solve $\min_{\alpha_k>0} f(x^{(k)} + \alpha_k d^{(k)})$: $x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}$:

generate H_{k+1} , k := k+1

end

How to generate H_k

 H_k is the approximation matrix in kth iteration, we want to generate H_{k+1} from H_k

Symmetric Rank 1

Assume

$$H_{k+1} = H_k + a\mathbf{u}\mathbf{u}^T, \quad a \in \mathbb{R}, \mathbf{u} \in \mathbb{R}^n$$
 (76)

From the Quasi-Newton Conditions, we have

$$H_{k+1}\mathbf{y}^{(k)} = \mathbf{s}^{(k)} \tag{77}$$

$$H_k \mathbf{y}^{(k)} + a \mathbf{u} \mathbf{u}^T \mathbf{y}^{(k)} = \mathbf{s}^{(k)}$$
(78)

$$H_k \mathbf{y}^{(k)} + a \mathbf{u}^T \mathbf{y}^{(k)} \mathbf{u} = \mathbf{s}^{(k)}$$
(79)

Let $\mathbf{u} = \mathbf{s}^{(k)} - H_k \mathbf{y}^{(k)}$, $a = \frac{1}{\mathbf{u}^T \mathbf{v}}$, clearly this is a solution of the equation. Here we have

$$H_{k+1} = \frac{(\mathbf{s}^{(k)} - H_k \mathbf{y}^{(k)})(\mathbf{s}^{(k)} - H_k \mathbf{y}^{(k)})^T}{(\mathbf{s}^{(k)} - H_k \mathbf{y}^{(k)})^T \mathbf{y}^{(k)}}$$
(80)

(79) is Symmetric Rank 1 Update. The problem of Symmetric Rank 1 Update is that the positive-definite property of H_k can not be preserved.

Symmetric Rank 2 Update

Assume

$$H_{k+1} = H_k + a\mathbf{u}\mathbf{u}^T + b\mathbf{v}\mathbf{v}^T, \quad a, b \in \mathbb{R}, \mathbf{u}, \mathbf{v} \in \mathbb{R}^n$$
 (81)

such that Quasi-Newton Conditions stand. We can find a solution of $a, b, \mathbf{u}, \mathbf{v}$ that is

$$\begin{cases} \mathbf{u} = \mathbf{s}^{(k)}, & a\mathbf{u}^T\mathbf{y} = 1\\ \mathbf{v} = H_k \mathbf{v}^{(k)}, & b\mathbf{v}^T\mathbf{v} = -1 \end{cases}$$
(82)

So that we have

$$H_{k+1} = H_k + \frac{\mathbf{s}^{(k)}\mathbf{s}^{(k)T}}{\mathbf{s}^{(k)T}\mathbf{y}^{(k)}} - \frac{H_k\mathbf{y}^{(k)}\mathbf{y}^{(k)T}H_k}{\mathbf{y}^{(k)T}H_k\mathbf{y}^{(k)}}$$
(83)

We called (83) the DFP (Davidon-Fletcher-Powell) update.

From Quasi-Newton Condition (75), we can get the BFGS (Broyden-Fletcher-Goldfarb-Shanno) update

$$B_{k+1}^{(BFGS)} = B_k + \frac{\mathbf{y}^{(k)}\mathbf{y}^{(k)T}}{\mathbf{y}^{(k)T}\mathbf{s}^{(k)}} - \frac{B_k\mathbf{s}^{(k)}\mathbf{s}^{(k)T}B_k}{\mathbf{s}^{(k)T}B_k\mathbf{s}^{(k)}}$$
(84)

Inverse of SR1 update

Theorem 6 (Sherman-Morrison). $A \in \mathbb{R}^n \times \mathbb{R}^n$ is a non-singular matrix, $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. If $1 + \mathbf{v}^T A^{-1} \mathbf{u} \neq 0$, then SR1 update of A is non-singular, and its inverse can be represented as

$$(A + a\mathbf{u}\mathbf{v}^{T})^{-1} = A^{-1} - \frac{A^{-1}\mathbf{u}\mathbf{v}^{T}A^{-1}}{1 + \mathbf{v}^{T}A^{-1}\mathbf{u}}$$
(85)

2.8 Conjugate Gradient Method

Definition 6. Conjugate Direction. G is a $n \times n$ positive definite matrix, for non-zero vector set $\{\mathbf{d}^{(0)},...,\mathbf{d}^{(k)}\}\in\mathbb{R}^n$, if $\mathbf{d}^{(i)T}G\mathbf{d}^{(j)}=0, (i\neq j)$, then we called $\{\mathbf{d}^{(0)},...,\mathbf{d}^{(k)}\}$ is G-Conjugate. **Lemma 1.** For non-zero conjugate vector set $\{\mathbf{d}^{(0)},...,\mathbf{d}^{(k)}\}\in\mathbb{R}^n$, $\{\mathbf{d}^{(0)},...,\mathbf{d}^{(k)}\}$

are linearly independent.

Proof. From Definition 6, we have

$$\mathbf{d}^{(i)T}G\mathbf{d}^{(j)} = 0, \forall i, j, i \neq j \tag{86}$$

if $\{\mathbf{d}^{(0)}, ..., \mathbf{d}^{(k)}\}$ is linearly dependent, there exists

$$\mathbf{d}^{(t)} = \sum_{j=0}^{k} c_j \mathbf{d}^{(j)} \tag{87}$$

then

$$\mathbf{d}^{(t)T}G\mathbf{d}^{(i)} = \sum_{i=0}^{k} c_j \mathbf{d}^{(j)}G\mathbf{d}^{(i)} = c_i \mathbf{d}^{(i)}G\mathbf{d}^{(i)} \neq 0$$
 (88)

so that $\{\mathbf{d}^{(0)},...,\mathbf{d}^{(k)}\}$ are linearly independent.

```
495
496
```

Data: Cost function f

while some conditions do

 $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)};$

end

Algorithm 4: Conjuggte Gradient Algorithm

 $x^{(0)} \in \mathbb{R}^n$, positive definite matrix G, k := 0:

Construct $\mathbf{d}^{(0)}$ such that $\mathbf{g}^{(0)T}\mathbf{d}^{(0)} < 0$:

solve $\min_{\alpha_k > 0} f(\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)});$

Construct $\mathbf{d}^{(k+1)}$ such that $\mathbf{d}^{(k+1)}G\mathbf{d}^{(j)} = 0, i = 0, ..., k$.: k := k + 1

Theorem 7 (Conjugate Gradient). For strictly convex quadratic function $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T G \mathbf{x} + \mathbf{c}^T \mathbf{x}$, apply conjugate gradient method combined with exact line search, then $\mathbf{x}^{(k+1)}$ is the global minima in manifold

$$\mathcal{V} = \{ \mathbf{x} | \mathbf{x} = \mathbf{x}^{(0)} + \sum_{j=0}^{k} \beta_j \mathbf{d}^{(j)}, \forall \beta_j \in \mathbb{R} \}$$
 (89)

Proof. Firstly, from Lemma 2, we have $\{\mathbf{d}^{(0)}, ..., \mathbf{d}^{(k)}\}\$ are linearly independent. So we only need to prove that for all k < n

$$\mathbf{g}^{(k+1)T}\mathbf{d}^{(j)} = 0, j = 0, ..., k \tag{90}$$

i.e., $\mathbf{g}^{(k+1)}$ is orthogonal with subspace $span\{\mathbf{d}^{(0)},...,\mathbf{d}^{(k)}\}$.

Due to the exact line search, $\forall i$

$$\mathbf{g}^{(j+1)T}\mathbf{d}^{(j)} = 0 \tag{91}$$

especially $\mathbf{g}^{(k+1)T}\mathbf{d}^{(k)} = 0.$

Notice that

$$\mathbf{g}^{(k+1)} - \mathbf{g}^{(k)} = G(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) = \alpha_k G \mathbf{d}^{(k)}$$
(92)

so that we have $\forall i \leq k$

$$\mathbf{g}^{(k+1)T}\mathbf{d}^{(j)} = \left(\sum_{m=j+1}^{k} (\mathbf{g}^{(m+1)T} - \mathbf{g}^{(m)T}) + \mathbf{g}^{(j+1)T})\mathbf{d}^{(j)}\right)$$
(93)

$$= \sum_{m=j+1} \alpha_m \mathbf{d}^{(m)T} G \mathbf{d}^{(j)} + \mathbf{g}^{(j+1)T} \mathbf{d}^{(j)}$$
 (94)

$$=0 (95)$$

Lemma 2. For strictly convex quadratic function $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T G\mathbf{x} + \mathbf{c}^T \mathbf{x}$, apply conjugate gradient method combined with exact line search, $\mathbf{g}(\mathbf{x}) = \nabla f(\mathbf{x}) = G\mathbf{x} + \mathbf{c}$, we have

$$\mathbf{g}^{(k)T}\mathbf{g}^{(j)} = 0, \forall j = 0, ..., k-1$$
 (96)

Proof. From Theorem 7, we have

$$\mathbf{g}^{(k)T}\mathbf{g}^{(j)} = \mathbf{g}^{(k)T}(-\mathbf{d}^{(j)} + \sum_{i=0}^{j-1} \beta_i^{(j)} \mathbf{d}^{(i)}) = 0$$
 (97)

Quadratic function case

For $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T G \mathbf{x} + \mathbf{c}^T x$, G is a $n \times n$ positive definite matrix.

$$\mathbf{g}(\mathbf{x}) = G\mathbf{x} + \mathbf{c} \tag{98}$$

Set $\mathbf{d}^{(0)} = -\mathbf{g}^{(0)}$, exact line search for α_0 such that $\mathbf{g}^{(1)T}\mathbf{d}^{(0)} = 0$. Assume

$$\mathbf{d}^{(1)} = -\mathbf{g}^{(1)} + \beta_0^{(1)} \mathbf{d}^{(0)}, \text{ select } \beta_0^{(1)} \text{ such that } \mathbf{d}^{(1)} G \mathbf{d}^{(0)} = 0$$

$$\beta_0^{(1)} = \frac{\mathbf{g}^{(1)T}\mathbf{g}^{(1)}}{\mathbf{g}^{(0)T}\mathbf{g}^{(0)}} \tag{99}$$

Proof. From (92), we have

$$\mathbf{d}^{(1)T}G\mathbf{d}^{(0)} = 0 \tag{100}$$

$$\Leftrightarrow \mathbf{d}^{(1)T}(\mathbf{g}^{(1)} - \mathbf{g}^{(0)}) = 0 \tag{101}$$

$$\Leftrightarrow (\mathbf{g}^{(1)} + \beta_0^{(1)} \mathbf{g}^{(0)})^T (\mathbf{g}^{(1)} - \mathbf{g}^{(0)}) = 0$$
 (102)

$$\Leftrightarrow \mathbf{g}^{(1)T}\mathbf{g}^{(1)} - \beta_0^{(1)}\mathbf{g}^{(0)T}\mathbf{g}^{(0)} = 0$$
 (103)

$$\Leftrightarrow \quad \beta_0^{(1)} = \frac{\mathbf{g}^{(1)T}\mathbf{g}^{(1)}}{\mathbf{g}^{(0)T}\mathbf{g}^{(0)}} \tag{104}$$

Generally, we can select $\beta_j^{(k)}$ such that $\mathbf{d}^{(k)T}G\mathbf{d}^{(j)}=0, j=0,1,...,k-1$ that is

$$\mathbf{d}^{(k)T}G\mathbf{d}^{(j)} = 0 \tag{105}$$

$$(-\mathbf{g}^{(k)T} + \sum_{i=0}^{k-1} \beta_i^{(k)} \mathbf{d}^{(i)T}) G \mathbf{d}^{(j)} = 0$$
 (106)

$$-\mathbf{g}^{(k)T}G\mathbf{d}^{(j)} + \beta_i^{(k)}\mathbf{d}^{(j)T}G\mathbf{d}^{(j)} = 0$$

$$(107)$$

so we have

$$\beta_j^{(k)} = \frac{\mathbf{g}^{(k)T}G\mathbf{d}^{(j)}}{\mathbf{d}^{(j)T}G\mathbf{d}^{(j)}} = \frac{\mathbf{g}^{(k)T}(\mathbf{g}^{(j+1)} - \mathbf{g}^{(j)})}{\mathbf{d}^{(j)T}(\mathbf{g}^{(j+1)} - \mathbf{g}^{(j)})}$$
(108)

From Lemma 2, we have

$$\mathbf{g}^{(k)T}\mathbf{g}^{(j)} = 0, \forall j = 0, ..., k - 1$$
(109)

So

$$\beta_j^{(k)} = 0, j = 0, ..., k - 2$$

$$\beta_{k-1}^{(k)} = \frac{\mathbf{g}^{(k)T}(\mathbf{g}^{(k)})}{\mathbf{g}^{(k-1)T}(\mathbf{g}^{(k-1)})}$$
(111)

Trust Region Method 2.9

Previously, we use a direction search strategy to determine a search direction, then use line search method to determine step length.

Now we discuss a new global convergence strategy – Trust-Region Method.

Definition 7 (Trust Region).

$$\Omega_k = \{ \mathbf{x} \in \mathbb{R}^n \mid \| \mathbf{x} - \mathbf{x}^{(k)} \| \le e_k \}$$
 (112)

We called Ω_k Trust Region, e_k is the Trust radius.

Suppose in this neighborhood, quadratic model $q^{(k)}(\mathbf{s})$ is a proper approximation of $f(\mathbf{x})$. We minimize the quadratic model in trust region, derive approximate minima $\mathbf{s}^{(k)}$, and set $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{s}^{(k)}$.

Trust Region Subproblem

$$\min_{\|\mathbf{s}\| \le e_k} q^{(k)}(\mathbf{s}) = f(\mathbf{x}^{(k)}) + \mathbf{g}^{(k)T}\mathbf{s} + \frac{1}{2}\mathbf{s}^T B_k \mathbf{s}$$
(113)

Where $\mathbf{s} = \mathbf{x} - \mathbf{x}^{(k)}$, $\mathbf{g}^{(k)} = \nabla f(\mathbf{x}^{(k)})$, $B_k = \nabla^2 f(\mathbf{x}^{(k)})$, e_k is the trust region radius.

How to select e_k

Denote the solution of the subproblem as $\mathbf{s}^{(k)}$, then let

$$Act_k = f(\mathbf{x}^{(k)}) - f(\mathbf{x}^{(k)} + \mathbf{s}^{(k)})$$

$$\operatorname{Pre}_{k} = q^{(k)}(\mathbf{0}) - q^{(k)}(\mathbf{s}^{(k)})$$
 (115)

$$\operatorname{Pre}_{k} = q^{(k)}(\mathbf{0}) - q^{(k)}(\mathbf{s}^{(k)}) \tag{115}$$

Define

$$r_k = \frac{\operatorname{Act}_k}{\operatorname{Pre}_k} = \frac{f(\mathbf{x}^{(k)}) - f(\mathbf{x}^{(k)} + \mathbf{s}^{(k)})}{q^{(k)}(\mathbf{0}) - q^{(k)}(\mathbf{s}^{(k)})}$$
(116)

(114)

to measure the difference between objective function and the quadratic approximate model.

We can update e_k according to r_k . If r_k is too small, that means our model can not fit the objective function well, so we need to decrease e_k . If r_k is close to 1, that means out model is good and we can increase r_k . Set the parameters $0 < \gamma_1 < \gamma_2 < 1$ and $0 < \eta_1 < 1 < \eta_2$, we can have the following update rule

$$e_{k+1} = \begin{cases} \eta_1 e_k & \text{if } r_k < \gamma_1 \\ e_k & \text{if } \gamma_1 < r_k < \gamma_2 \\ \min(\eta_2 e_k, \bar{e}) & \text{if } r_k \ge \gamma_2 \end{cases}$$

$$(117)$$

```
Algorithm 5: Trust Region Algorithm

Data: Cost function f
x^{(0)} \in \mathbb{R}^n, e_0 \in (0, \bar{e}), \epsilon > 0, 0 < \gamma_1 < \gamma_2 < 1, 0 < \eta_1 < 1 < \eta_2, k := 0;
while \| \mathbf{g}^{(k)} \| \ge \epsilon do

solve the subproblem to derive \mathbf{s}^{(k)};
calculate r_k, update \mathbf{x};
if r_k > 0 then

\| \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{s}^{(k)} \|
else

\| \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} \|
end

update e_k following (117);
k := k + 1;
end
```

3 Constrained Optimization

3.1 Quadratic Programming

$$\min \ Q(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T G \mathbf{x} + \mathbf{c}^T \mathbf{x})$$
 (118)

s.t.
$$\mathbf{a}_i^T \mathbf{x} = b_i, i \in \mathcal{E} = \{1, ..., m_e\}$$
 (119)

$$\mathbf{a}_i^T \mathbf{x} \ge b_i, i \in \mathcal{I} = \{m_e + 1, ..., m\}$$

$$\tag{120}$$

We assume that G is a symmetric matrix and $\mathbf{a}_i, i \in \mathcal{E}$ be linearly independent.

Solution of Quadratic Programming

If G be positive semi-definite matrix, the Quadratic Programming problem is a convex optimization problem, so any of its local minima is a global minima.

If G be positive definite matrix, the solution to the Quadratic Programming problem is unique, if exists.

If G be indefinite, there is no guarantee to the solution.

Equality Constrained Quadratic Programming

$$\min \ Q(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T G \mathbf{x} + \mathbf{c}^T \mathbf{x}$$
 (121)

$$s.t. \quad A\mathbf{x} = \mathbf{b} \tag{122}$$

General Quadratic Programming

$$\min \ Q(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T G \mathbf{x} + \mathbf{c}^T \mathbf{x})$$
 (123)

$$s.t. \quad \mathbf{a}_i^T \mathbf{x} = b_i, i \in \mathcal{E} = \{1, ..., m_e\}$$
 (124)

$$\mathbf{a}_{i}^{T}\mathbf{x} \ge b_{i}, i \in \mathcal{I} = \{m_{e} + 1, ..., m\}$$
 (125)

The idea is to remove or transform the inequality constraints. If the inequality constraint is not active near the solution, we can ignore the constraint; For the active inequality constraints, we can use equality constraints to replace them.

Theorem 8 (Active Set). Denote \mathbf{x}^* as a local minima of general quadratic problem (123), then \mathbf{x}^* must be a local minima of the equality constrained problem

(EQ)
$$\begin{cases} \min & Q(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T G \mathbf{x} + \mathbf{c}^T \mathbf{x} \\ s.t. & \mathbf{a}_i^T \mathbf{x} = b_i, i \in \mathcal{E} \cup \mathcal{I}(\mathbf{x}^*) \end{cases}$$
(126)

Meanwhile, if \mathbf{x}^* is a feasible point of (123), and the K-T point of (EQ), $\lambda^* \geq 0, i \in \mathcal{I}(\mathbf{x}^*)$, then \mathbf{x}^* must be the K-T point of (123).

Proof. Recall the K-T condition, we can get that there exists $\lambda_i \geq 0, i \in I(\mathbf{x}^*)$ and μ_j s.t.

$$\nabla Q(\mathbf{x}^*) - \sum_{i \in I(\mathbf{x}^*)} \lambda_i \mathbf{a}_i - \sum_{j \in \mathcal{E}} \mu_j \mathbf{a}_j = 0$$
 (127)

the K-T condition of (EQ) is there exists $\lambda_i, i \in \mathcal{E} \cup \mathcal{I}(\mathbf{x}^*)$, s.t.

$$\nabla Q(\mathbf{x}^*) - \sum_{j \in \mathcal{E} \cup \mathcal{I}(\mathbf{x}^*)} \lambda_j \mathbf{a}_j = 0$$
 (128)

Appearently If \mathbf{x}^* satisfies (127), then it also satisfies (128). On the other hand,

if
$$\mathbf{x}^*$$
 satisfies (128) and $\lambda_i \ge 0, i \in I(\mathbf{x}^*)$, we have
$$\nabla O(\mathbf{x}^*) = \sum_{i \ge 1, i \ge 1} \lambda_i \mathbf{x}_i = 0 \tag{120}$$

$$\nabla Q(\mathbf{x}^*) - \sum_{j \in \mathcal{E} \cup \mathcal{I}(\mathbf{x}^*)} \lambda_j \mathbf{a}_j = 0$$
 (129)

$$\Leftrightarrow \nabla Q(\mathbf{x}^*) - \sum_{i \in I(\mathbf{x}^*)} \lambda_i \mathbf{a}_i - \sum_{j \in \mathcal{E}} \lambda_j \mathbf{a}_j = 0$$
 (130)

$$i \in I(\mathbf{x}^*)$$
 $j \in \mathcal{E}$ i.e., \mathbf{x}^* satisfies (127).

3.2 Non-linear Constrained Optimization

Equality Constrained Problem Lagrange-Newton method

$$\min f(\mathbf{x})$$
 $s.t. \ \mathbf{c}(\mathbf{x}) = \mathbf{0}$

where
$$\mathbf{c}(\mathbf{x}) = (c_1(\mathbf{x}), ..., c_m(\mathbf{x}))^T$$
.

Denote $A(\mathbf{x}) = [\nabla \mathbf{c}(\mathbf{x})]^T = (\nabla c_1(\mathbf{x}), ..., \nabla c_m(\mathbf{x}))^T$. The K-T condition of

the problem is there exists $\lambda \in \mathbb{R}^m$ s.t.

$$\nabla f(\mathbf{x}) - A(\mathbf{x})^T \lambda = \mathbf{0}$$

and $\mathbf{c}(\mathbf{x}) = \mathbf{0}$.

We can use Newton-Raphson method to solve the equations by

$$\begin{pmatrix} W(\mathbf{x}, \lambda) - A(\mathbf{x})^T \\ -A(\mathbf{x}) & 0 \end{pmatrix} \begin{pmatrix} \delta_x \\ \delta_\lambda \end{pmatrix} = -\begin{pmatrix} \nabla f(\mathbf{x}) - A(\mathbf{x})^T \lambda \\ \mathbf{c}(\mathbf{x}) \end{pmatrix}$$

where $W(\mathbf{x}, \lambda) = \nabla^2 f(\mathbf{x}) - \sum_{i=1}^m \lambda_i \nabla^2 c_i(\mathbf{x})$. We called the method above as Lagrange-Newton Method.

Here we can define

$$\psi(\mathbf{x}, \lambda) = \parallel \nabla f(\mathbf{x}) - A(\mathbf{x})^T \lambda \parallel^2 + \parallel \mathbf{c}(\mathbf{x}) \parallel^2$$
(135)

so that ψ is a descent function to Lagrange-Newton method.

$$\nabla \psi(\mathbf{x}, \lambda)^T \begin{pmatrix} \delta_x \\ \delta_\lambda \end{pmatrix} = -2\psi(\mathbf{x}, \lambda) \neq 0$$
 (136)

Sequential Quadratic Programming method

(131)

(132)

(133)

(134)

(134) can be rewritten into

$$\begin{cases} W(\mathbf{x}, \lambda)\delta_x + \nabla f(\mathbf{x}) = A(\mathbf{x})^T (\lambda + \delta_\lambda) \\ \mathbf{c}(\mathbf{x}) + A(\mathbf{x})\delta_x = \mathbf{0} \end{cases}$$
(137)

From K-T condition, we notice that δ_x is the K-T point of the following Quadratic Programming problem

$$\min \frac{1}{2} \mathbf{d}^T W(\mathbf{x}, \lambda) \mathbf{d} + \nabla f(\mathbf{x})^T \mathbf{d}$$
 (138)

$$s.t. \ \mathbf{c}(\mathbf{x}) + A(\mathbf{x})\mathbf{d} = 0 \tag{139}$$

So we can solve a Quadratic Programming subproblem to derive δ_x , we called this method Sequential Quadratic Programming.

General Nonlinear Constrained Problem

Sequential Quadratic Programming method

$$\min f(\mathbf{x}) \tag{140}$$

$$s.t. \ c_i(\mathbf{x}) = 0, \quad i \in \mathcal{E} = \{1, \dots, m_e\} \tag{141}$$

$$c_i(\mathbf{x}) \ge 0, \quad i \in \mathcal{I} = \{m_e + 1, ..., m\}$$
 (142)

Similarly, we can construct subproblem

$$\min \frac{1}{2} \mathbf{d}^T W \mathbf{d} + \mathbf{g}^T \mathbf{d} \tag{143}$$

s.t.
$$c_i(\mathbf{x}) + \mathbf{a}_i(\mathbf{x})^T \mathbf{d} = 0, i \in \mathcal{E}$$
 (144)
 $c_i(\mathbf{x}) + \mathbf{a}_i(\mathbf{x})^T \mathbf{d} > 0, i \in \mathcal{I}$ (145)

$$c_i(\mathbf{x}) + \mathbf{a}_i(\mathbf{x})^T \mathbf{d} \ge 0, i \in \mathcal{I}$$
 (145)

Here, W is the Hesse matrix (or its approximation) of the Lagrange function of (140), $\mathbf{g} = \nabla f(\mathbf{x})$, $A(\mathbf{x}) = (\mathbf{a}_1(\mathbf{x}), ..., \mathbf{a}_m(\mathbf{x}))$.

Denote the solution to subproblem (143) as \mathbf{d} , the corresponding Lagrange multiplier vector $\bar{\lambda}$, so we have

$$\begin{cases}
W\mathbf{d} + \mathbf{g} = A(\mathbf{x})^T \bar{\lambda} \\
\bar{\lambda}_i \ge 0, i \in \mathcal{I} \\
\mathbf{c}(\mathbf{x}) + A(\mathbf{x})\mathbf{d} = 0, i \in \mathcal{E} \\
\mathbf{c}(\mathbf{x}) + A(\mathbf{x})\mathbf{d} \ge 0, i \in \mathcal{I}
\end{cases}$$
(146)

Penalty method

For nonlinear constrained porblem (140), we can use objective function $f(\mathbf{x})$ and constraint function $\mathbf{c}(\mathbf{x})$ to construct *Penalty function*

$$P(\mathbf{x}) = P(f(\mathbf{x}), \mathbf{c}(\mathbf{x})) \tag{147}$$

We need the penalty function have the property that: for feasible points, $P(\mathbf{x}) = f(\mathbf{x})$, otherwise, $P(\mathbf{x}) > f(\mathbf{x})$.

To measure the destructiveness to the constraints, we define $\mathbf{c}(\mathbf{x})$

$$\begin{cases}
c_i(\mathbf{x})_- = c_i(\mathbf{x}), & i \in \mathcal{E} \\
c_i(\mathbf{x})_- = |\min\{0, c_i(\mathbf{x})\}|, & i \in \mathcal{I}
\end{cases}$$
(148)

Consider simple penalty function

$$P_{\sigma}(\mathbf{x}) = f(\mathbf{x}) + \sigma \parallel \mathbf{c}(\mathbf{x}) \parallel^{2}$$
(149)

Denote $\mathbf{x}(\sigma)$ as the solution to unconstrained problem min $P_{\sigma}(\mathbf{x})$, we have the following lemma:

Lemma 3 (Penalty method). If $\mathbf{x}(\sigma)$ is a feasible point of nonlinear constrained problem (140), then $\mathbf{x}(\sigma)$ as is the solution to (140).

Proof. From the definition of penalty function, we have $P(\mathbf{x}) = f(\mathbf{x}), \mathbf{x} \in \mathcal{S}$. If $\mathbf{x}(\sigma)$ is the solution to min $P(\mathbf{x})$, i.e.,

$$P(\mathbf{x}(\sigma)) \le P(\mathbf{x}_0), \ \forall \mathbf{x}_0 \in \mathbb{R}^n$$
 (150)

$$f(\mathbf{x}(\sigma)) \le f(\mathbf{x}_0), \ \forall \mathbf{x}_0 \in \mathcal{S}$$
 (151)

that is, $\mathbf{x}(\sigma)$ is the solution to (140).

Algorithm 6: Penalty Method Algorithm Data: Cost function f

 $x^{(0)} \in \mathbb{R}^n, \ \sigma_0 > 0, \ \beta > 1, \ \epsilon > 0, \ k := 0;$

while $\| \mathbf{c}(\mathbf{x}(\sigma_{k-1}))_{-} \| \ge \epsilon \mathbf{do} \|$ solve the subproblem $\min_{\mathbf{x} \in \mathbb{R}^n} P_{\sigma_k}(\mathbf{x})$ to get the solution $\mathbf{x}(\sigma_k)$;

 $\mathbf{x}^{(k+1)} = \mathbf{x}(\sigma_k), \, \sigma_{k+1} = \beta \sigma_k;$ k := k+1;

 \mathbf{end}

return: $\mathbf{x}(\sigma_{k-1})$

Theorem 9 (Convergence of Penalty method). If $\epsilon > \min_{\mathbf{x} \in \mathbb{R}^n} \| \mathbf{c}(\mathbf{x})_- \|$, then the algorithm can terminate in finite steps.

Lemma 4. Let $\sigma_{k+1} > \sigma_k > 0$, then we have $P_{\sigma_k}(\mathbf{x}(\sigma_k)) \leq P_{\sigma_{k+1}}(\mathbf{x}(\sigma_{k+1}))$, $\|\mathbf{c}(\mathbf{x}(\sigma_k))_-\| \geq \|\mathbf{c}(\mathbf{x}(\sigma_{k+1}))_-\|$, $f(\mathbf{x}(\sigma_k)) \leq f(\mathbf{x}(\sigma_{k+1}))$.

Proof.

$$P_{\sigma_{k+1}}(\mathbf{x}(\sigma_{k+1})) = f(\mathbf{x}(\sigma_{k+1})) + \sigma_{k+1} \parallel \mathbf{c}(\mathbf{x}(\sigma_{k+1})) - \parallel^2$$
 (152)

$$\geq f(\mathbf{x}(\sigma_{k+1})) + \sigma_k \parallel \mathbf{c}(\mathbf{x}(\sigma_{k+1})) \parallel^2$$
 (153)

$$\geq \min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) + \sigma_k \parallel \mathbf{c}(\mathbf{x})_{-} \parallel^2$$
 (154)

$$=P_{\sigma_k}(\mathbf{x}(\sigma_k))\tag{155}$$

From the definition, we have

 $f(\mathbf{x}(\sigma_k)) + \sigma_{k+1} \parallel \mathbf{c}(\mathbf{x}(\sigma_k)) \parallel^2$ (156) $> f(\mathbf{x}(\sigma_{k+1})) + \sigma_{k+1} \parallel \mathbf{c}(\mathbf{x}(\sigma_{k+1})) \parallel^2$ (157) $> f(\mathbf{x}(\sigma_{k+1})) + \sigma_k \parallel \mathbf{c}(\mathbf{x}(\sigma_{k+1})) \parallel^2$ (158) $> f(\mathbf{x}(\sigma_h)) + \sigma_h \parallel \mathbf{c}(\mathbf{x}(\sigma_h)) \parallel^2$ (159)

 $<\sigma_{k+1}(\|\mathbf{c}(\mathbf{x}(\sigma_k))_-\|^2 - \|\mathbf{c}(\mathbf{x}(\sigma_{k+1}))_-\|^2)$

 $\parallel \mathbf{c}(\mathbf{x}(\sigma_k))_{-} \parallel > \parallel \mathbf{c}(\mathbf{x}(\sigma_{k+1}))_{-} \parallel$

 $f(\mathbf{x}(\sigma_{k+1})) > f(\mathbf{x}(\sigma_k))$

 $f(\bar{\mathbf{x}}) > P_{\sigma_k}(\mathbf{x}(\sigma_k)) > f(\mathbf{x}(\sigma_k))$

From the inequalities above, we have

$$\sigma_k(\parallel \mathbf{c}(\mathbf{x}(\sigma_{k+1}))_- \parallel^2 - \parallel \mathbf{c}(\mathbf{x}(\sigma_k))_- \parallel^2)$$

$$\leq f(\mathbf{x}(\sigma_{k+1})) - f(\mathbf{x}(\sigma_k))$$

Then

$$0 \le \sigma_k(\|\mathbf{c}(\mathbf{x}(\sigma_{k+1})) - \|^2 - \|\mathbf{c}(\mathbf{x}(\sigma_k)) - \|^2) \le f(\mathbf{x}(\sigma_{k+1})) - f(\mathbf{x}(\sigma_k))$$

Lemma 5. Denote $\bar{\mathbf{x}}$ as the solution to problem (140), then for all $\sigma_k > 0$,

Proof. For all
$$\sigma_k > 0$$
,

 $f(\bar{\mathbf{x}}) = \min_{\mathbf{x} \in \mathbb{R}^n} \lim_{\tau \to \infty} f(\mathbf{x}) + \sigma \parallel \mathbf{c}(\mathbf{x}) \parallel^2$

Lemma 6 Let
$$\delta = \|\mathbf{c}(\mathbf{v})\|$$

Lemma 6. Let
$$\delta = \| \mathbf{c}(\mathbf{x}(\sigma))_{-} \|$$
, then $\mathbf{x}(\sigma)$ is also the solution to the problem

$$(\sigma))_-\parallel, then$$

$$(\sigma))_-\parallel, then$$

$$\min f(\mathbf{x})$$

$$s.t. \parallel \mathbf{c}(\mathbf{x})_{-} \parallel \leq \delta$$

(160)

(161)

(162)

(163)

(164)

(165)

(166)

(167)

(168)

П

$$\geq \min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) + \sigma_k \parallel \mathbf{c}(\mathbf{x}) \parallel^2$$

$$= f(\mathbf{x}(\sigma_k)) + \sigma_k \parallel \mathbf{c}(\mathbf{x}(\sigma_k)) \parallel^2$$
(169)

$$= f(\mathbf{x}(\sigma_k)) + \sigma_k \parallel \mathbf{c}(\mathbf{x}(\sigma_k)) - \parallel$$

$$> f(\mathbf{x}(\sigma_k))$$
(170)

(173)

902	J (-2)	(1.5)	902
903	$s.t. \parallel \mathbf{c}(\mathbf{x})_{-} \parallel \leq \parallel \mathbf{c}(\mathbf{x}(\sigma))_{-} \parallel$	(174)	903
904			904
905	$\mathfrak{c}(\langle \rangle)$. $\mathfrak{g}(\langle \rangle)$ $\mathfrak{g}(\langle \rangle)$ $\mathfrak{g}(\langle \rangle)$. $\mathfrak{g}(\langle \rangle)$ $\mathfrak{g}(\langle \rangle)$	(155)	905
906	$f(\mathbf{x}(\sigma)) + \sigma \parallel \mathbf{c}(\mathbf{x}(\sigma))_{-} \parallel^{2} = \min_{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x}) + \sigma \parallel \mathbf{c}(\mathbf{x})_{-} \parallel^{2}$	(175)	906
907			907
908	Then for all $\mathbf{x} \in \mathbb{R}^n$, we have		908
909	$f(\mathbf{x}(\sigma)) + \sigma \parallel \mathbf{c}(\mathbf{x}(\sigma))_{-} \parallel^{2} \le f(\mathbf{x}) + \sigma \parallel \mathbf{c}(\mathbf{x})_{-} \parallel^{2}$	(176)	909
910		` ′	910
911	$f(\mathbf{x}(\sigma)) - f(\mathbf{x}) \le \sigma(\ \mathbf{c}(\mathbf{x})\ ^2 - \ \mathbf{c}(\mathbf{x}(\sigma))\ ^2)$	(177)	911
912 913	That is, if $\ \mathbf{c}(\mathbf{x})_{-}\ \leq \ \mathbf{c}(\mathbf{x}(\sigma))_{-}\ $, then		912 913
914			914
915	$f(\mathbf{x}(\sigma)) - f(\mathbf{x}) \le \sigma(\ \mathbf{c}(\mathbf{x})\ ^2 - \ \mathbf{c}(\mathbf{x}(\sigma))\ ^2) \le 0$	(178)	915
916	f(x) = f(x) = f(x) = f(x)		916
917	i.e., for all $\mathbf{x} \in \mathbb{R}^n$, $f(\mathbf{x}(\sigma)) \le f(\mathbf{x})$.		917
918			918
919			919
920			920
921			921
922			922
923			923
924			924
925			925
926			926
927			927
928			928
929			929
930			930
931			931
932 933			932 933
933			933
934			934
936			936
937			937
938			938

Proof. The problem is equivalent to

 $\min f(\mathbf{x})$

Convex Optimization

4.1 Convex set

4.2 Convex function

$$\min \frac{1}{2} \mathbf{x}^T P_0 \mathbf{x} + \mathbf{q}_0^T \mathbf{x} + r_0$$

s.t.
$$\frac{1}{2}\mathbf{x}^T P_i \mathbf{x} + \mathbf{q}_i^T \mathbf{x} + r_i \le 0, \quad i = 1, ..., m$$

$$A\mathbf{x} = \mathbf{b}$$

$$min \mathbf{f}^T \mathbf{v}$$

$$\min \mathbf{f}^T \mathbf{x}$$

s.t.
$$||A_i\mathbf{x} + \mathbf{b}_i|| \le \mathbf{c}_i^T\mathbf{x} + \mathbf{d}_i, \quad i = 1, ..., m$$

 $F\mathbf{x} = \mathbf{g}$

Proof. The QCQP problem is equivalent to

$$\min_{i} - r_0$$

s.t.
$$\frac{1}{2}\mathbf{x}^T P_i \mathbf{x} + \mathbf{q}_i^T \mathbf{x} + r_i \le 0, \quad i = 0, ..., m$$

$$A\mathbf{x} = \mathbf{b}$$

$$\frac{1}{2}\mathbf{x}^T P_i \mathbf{x} + \mathbf{q}_i^T \mathbf{x} + r_i \le 0$$

$$\Leftrightarrow \mathbf{x}^T P_i \mathbf{x} + 2(\mathbf{q}_i^T \mathbf{x} + r_i) \le 0$$

$$\Leftrightarrow \mathbf{x}^T P_i \mathbf{x} + 2(\mathbf{q}_i^T \mathbf{x} + r_i) + (\mathbf{q}_i^T \mathbf{x} + r_i - \frac{1}{2})^2 \le (\mathbf{q}_i^T \mathbf{x} + r_i - \frac{1}{2})^2$$

$$\Leftrightarrow \mathbf{x}^T P_i \mathbf{x} + (\mathbf{q}_i^T \mathbf{x} + r_i + \frac{1}{2})^2 \le (\mathbf{q}_i^T \mathbf{x} + r_i - \frac{1}{2})^2$$

Since
$$P_i$$
 is positive semi-definite, $P_i = A_i^T A_i$, then

$$\Leftrightarrow \mathbf{x}^T P_i \mathbf{x} + (\mathbf{q}^T \mathbf{x} + r_i + \frac{1}{2})^2 < (\mathbf{q}^T \mathbf{x} + r_i + r_i + \frac{1}{2})^2 < (\mathbf{q}^T \mathbf{x} + r_i + r_i + r_i + r_i + \frac{1}{2})^2 < (\mathbf{q}^T \mathbf{x} + r_i + r_i + r_i + r_i + r_i + r_i + \frac{1}{2})^2 < (\mathbf{q}^T \mathbf{x} + r_i + r_i$$

$$\Leftrightarrow \mathbf{x}^T P_i \mathbf{x} + (\mathbf{q}_i^T \mathbf{x} + r_i + \frac{1}{2})^2 \le (\mathbf{q}_i^T \mathbf{x} + r_i + \frac{1}{2})^2$$

$$\Leftrightarrow \mathbf{x}^T P_i \mathbf{x} + (\mathbf{q}_i^T \mathbf{x} + r_i + \frac{1}{2})^2 \le (\mathbf{q}_i^T \mathbf{x} + r_i - \frac{1}{2})^2$$

$$1_{12}$$

$$\mathbf{q}^2 \le (\mathbf{q}_i^T \mathbf{x} + \mathbf{q}^T)^2$$

$$(\mathbf{q}_i^{\mathbf{r}} \mathbf{x} +$$

$$(\mathbf{q}_i \mathbf{x} + \mathbf{q}_i)$$

$$\Leftrightarrow \|A_i\mathbf{x}\|^2 + \|\mathbf{q}_i^T\mathbf{x} + r_i + \frac{1}{2}\|^2 \le (\mathbf{q}_i^T\mathbf{x} + r_i - \frac{1}{2})^2$$

$$(r_i - \frac{1}{2})^2$$
 (193)

$$(192)$$

(179)

(180)

(181)

(182)

(183)

(184)

(185)

(186)

(187)

(188)

(189)

(190)

(191)

91 92	A = A	(104)
	$A_i' = \left(egin{array}{c} A \ \mathbf{q}^T \end{array} ight)$	(194)
		, ,
	$\mathbf{b}_i = \left(egin{matrix} 0_{n imes 1} \ r_i + rac{1}{2} \end{matrix} ight)$	(195)
	(- 2/	
	From (123) and $\mathbf{x}^T P_i \mathbf{x} \geq 0$, we can derive that $\mathbf{q}_i^T \mathbf{x} + r_i \leq 0$, i.e., $\mathbf{q}_i^T \mathbf{x} +$	$r_i - \frac{1}{2} \le 0.$
	Then (128) can be formulated as	-
	1	
	$\parallel A_i'\mathbf{x} + \mathbf{b}_i \parallel^2 \le (\mathbf{q}_i^T\mathbf{x} + r_i - \frac{1}{2})^2$	(196)
	$\Leftrightarrow \parallel A_i'\mathbf{x} + \mathbf{b}_i \parallel \leq -(\mathbf{q}_i^T\mathbf{x} + r_i - \frac{1}{2})$	(197)
	2	

Let