

Projeto com Circuitos Reconfiguráveis Projeto de Sistemas em Chip

Fault Tolerant System Design

Prof. Daniel M. Muñoz Arboleda

FGA - UnB

Overview

- Introduction
 - Definition of fault tolerance
 - Applications of fault tolerant system design
- Fundamentals of dependability
 - dependability attributes: reliability, availability, safety
 - dependability impairments: faults, errors, failures
- Some dependability evaluation techniques
 - common measures: failure rate, MTTF, MTTR
- Redundancy techniques
 - space redundancy
 - hardware redundancy
 - information redundancy
 - software redundancy
 - time redundancy

Techniques for fault tolerance

- Fault masking "hides" faults that occur. Do not require detecting faults, but require containment of faults (the effect of all faults should be local)
- Another approach is to first to detect, locate and contain faults, and then to recover from faults using reconfiguration.

Redundancy

- hardware redundancy
 - 2nd CPU, 2nd ALU, ...
- software redundancy
 - validation test...
- information redundancy
 - error-detecting and correcting codes, ...
- time redundancy
 - repeating tasks several times, ...

Redundancy

- NOTHING FOR FREE!
- costs
 - HW: components, area, power, ...
 - SW: development costs, ...
 - information: extra HW to code / decode
 - time: faster CPUs, components
- trade-off against increase in dependability

Overview

- Introduction
 - Definition of fault tolerance
 - Applications of fault tolerant system design
- Fundamentals of dependability
 - dependability attributes: reliability, availability, safety
 - dependability impairments: faults, errors, failures
- Some dependability evaluation techniques
 - common measures: failure rate, MTTF, MTTR
- Redundancy techniques
 - space redundancy
 - hardware redundancy
 - information redundancy
 - software redundancy
 - time redundancy

HW redundancy: overview

- passive redundancy techniques
 - fault masking
- active redundancy techniques
 - detection, localization, containment, recovery
- hybrid redundancy techniques
 - static + dynamic
 - fault masking + reconfiguration

Passive HW redundancy Triple Modular Redundancy (TMR)

- 3 active components
- fault masking by voter
- Problem: voter is a single point of failure

Passive HW redundancy N Modular Redundancy (NMR)

- *N*-modular redundancy (NMR)
 - -N active components
 - -N odd, for majority voting
 - tolerates |N/2| module faults
- example Apollo
 - -N=5
 - 2 faults can be tolerated (masked)

Passive HW redundancy N Modular Redundancy (NMR)

- *N*-modular redundancy (NMR)
 - -N active components
 - -N odd, for majority voting
 - tolerates |N/2| module faults

HW voting

• hardware realisation of 1-bit majority voter

- *n*-bit majority voter: *n* times 1-bit
- requires 2 gate delays

SW voting

- Voting can be performed using software
- voter is software implemented by a microprocessor
- voting program can be as simple as a sequence of three comparisons, with the outcome of the vote being the value that agrees with at least on on the other two
- HW: fast, but expensive
 - 32-bit voter: 128 gates and 256 flip-flops
- SW: slow, but more flexible
 - use existing CPUs

Problem with voting

- Major problem with practical application of voting is that the three results may not completely agree
 - sensors, used in many control systems, can seldom be manufactured so that their values agree exactly
 - analog-to-digital converter can produce quantities that disagree in the least significant bits