Stream cipher v2 (AES Inverse S-box)

Project

Design and implement an AES S-box based stream cipher supporting both encryption and decryption. The encryption algorithm of cipher is performed by XORing each plaintext byte with an 8-bit value obtained by substituting an 8-bit counter value with the Inverse S-box transformation of the AES algorithm. The 8-bit counter value (Counter Block, CB) has to be initialized with the value of an 8-bit symmetric key, K. The encryption law of the stream cipher can be expressed as it follows:

$$C[i] = P[i] \oplus S(CB[i])$$

where

- C[i] is ith byte of ciphertext.
- P[i] is the ith byte of plaintext.
- CB[i] is the 8-bit value of the ith counter (counter block), for i=0,1,2,..., and it can be represented by the formula $CB[i]=K+i\ mod\ 256$, being K the 8-bit symmetric (encryption/decryption) key. Note mod is the modulo operation.
- $S(\)$ is the Inverse S-box transformation of AES algorithm, that works over a byte.
 - is the XOR operator.

Following figure represents the encryption scheme of the stream cipher.

Additional design specifications

- The module shall have an asynchronous active-low reset port;
- The module interface shall include an input flag to be driven as it follows: 1'b1, when input data byte on the corresponding input port is valid and stable (i.e. it can be used by the internal module logic), 1'b0, otherwise.
- The module interface shall include an output flag to be driven as it follows: 1'b1, when output data byte on the corresponding output port is ready and stable (i.e., external modules can read and use it), 1'b0, otherwise.
- For each arbitrary length plaintext/ciphertext message, the counter block shall start from initialization value *K* (the 8-bit key). Therefore, the module interface should also include an input flag to signal when a new message begins.

Hints

• The AES Inverse S-box function is largely documented online: implement the LUT version (for faster developing).

Below it is reported the Inverse S-box of AES algorithm, in hexadecimal format: it works on a byte, using the 4 MSb and the 4 LSb of input byte, respectively, as row and column coordinates to substitute it.

				-										-		
	00	01	02	03	04	05	06	07	80	09	0a	0b	0с	0d	0e	0f
00	52	09	6a	d5	30	36	a5	38	bf	40	a3	9e	81	f3	d7	fb
10	7c	e3	39	82	9b	2f	ff	87	34	8e	43	44	c4	de	e9	cb
20	54	7b	94	32	a6	c2	23	3d	ee	4c	95	0b	42	fa	сЗ	4e
30	08	2e	a1	66	28	d9	24	b2	76	5b	a2	49	6d	8b	d1	25
40	72	f8	f6	64	86	68	98	16	d4	a4	5c	СС	5d	65	b6	92
50	6c	70	48	50	fd	ed	b9	da	5e	15	46	57	a7	8d	9d	84
60	90	d8	ab	00	8c	bc	d3	0a	f7	e4	58	05	b8	b3	45	06
70	d0	2c	1e	8f	ca	3f	0f	02	c1	af	bd	03	01	13	8a	6b
80	3a	91	11	41	4f	67	dc	ea	97	f2	cf	се	f0	b4	e6	73
90	96	ac	74	22	e7	ad	35	85	e2	f9	37	e8	1c	75	df	6e
a0	47	f1	1a	71	1d	29	c5	89	6f	b7	62	0e	aa	18	be	1b
b0	fc	56	3e	4b	c6	d2	79	20	9a	db	c0	fe	78	cd	5a	f4
c0	1f	dd	a8	33	88	07	c7	31	b1	12	10	59	27	80	ec	5f
d0	60	51	7 f	a9	19	b5	4a	0d	2d	e5	7a	9f	93	c 9	9c	ef
e0	a0	e0	3b	4d	ae	2a	f5	b0	с8	eb	bb	3c	83	53	99	61
f0	17	2b	04	7e	ba	77	d6	26	e1	69	14	63	55	21	0c	7d

For example, assuming to apply the Inverse S-box transformation to the byte (hex) 8'h66, the result (hex) is 8'hd3, i.e. the cross between row 60 and column 06: S(8'h66) = 8'hd3.

• For decryption focus on following XOR property:

$$S \oplus S = 0$$
 thus, if $C = P \oplus S$, then $C \oplus S = (P \oplus S) \oplus S = P \oplus S \oplus S = P \oplus (S \oplus S) = P$.