ICMC-USP Resolução P2 - Turma $1A^A$, 06/11/2008 SCE-0185

- 1. Seja a linguagem $L_1 = \{(01)^n 0, n \ge 0\}$. Escreva:
- (1) (a) a máquina de Turing de uma cabeça T_1 que processa L_1 ,

(1) (b) a gramática irrestrita G_1 correspondente à T_1 ,

Solução:

 $S \to BS|SB|\&A$

 $A \rightarrow 0A|A0|1A|A1|q_a$

 $1q_1 \rightarrow q_0 0$

 $0q_0 \rightarrow q_1 1$

 $Bq_a \rightarrow q_1 B$

 $B \to \lambda$

 $\&q_0 \rightarrow \lambda$

(1) (c) uma gramática mais simples que gere L_1 e o parsing bottom-up da cadeia 01010.

Solução:

Gram'atica:

 $S \rightarrow 0 \mid 0A$

 $A \rightarrow 1\dot{S}$

 $parsing\ bottom\hbox{-}up\hbox{:}$

 $0101\underline{0} \Leftarrow 010\underline{1S} \Leftarrow 01\underline{0A} \Leftarrow 0\underline{1S} \Leftarrow \underline{0A} \Leftarrow S$

ICMC-USP Resolução P2 $(1A^A)$, 06/11/2008SCE-0185 (continuação)

 $(1\frac{1}{2})$ 2. Escreva uma máquina de Turing de uma cabeça T_2 que calcula a função numérica sub(x,y), diferença entre x e y. Assuma que $x \geq y$. Os números naturais x e y estão representados em **unário** na fita e separados por um branco simples. No estado inicial q_0 a máquina de Turing está lendo o símbolo mais a esquerda de x^u . Ao final do processamento, a parte não branca da fita deverá conter apenas o resultado. Através de transições entre descrições instantâneas, descreva seu funcionamento para as seguintes configurações de fita:

 $(\frac{1}{2})$ (a) x = 2 e y = 0 (resultado 2),

Solução:

 $q_0111B1 \Rightarrow 1q_111B1 \Rightarrow^* 111q_1B1 \Rightarrow 1111q_21 \Rightarrow 111q_31\# \Rightarrow 111\#q_4\# \Rightarrow 111\#\#q_4B \Rightarrow 111\#\#q_5\# \Rightarrow^* 11q_51$ pára

 $(\frac{1}{2})$ (b) x = 1 e y = 1 (resultado 0).

Solução:

 $q_011B11 \Rightarrow 1q_11B11 \Rightarrow 11q_1B11 \Rightarrow 111q_211 \Rightarrow 11q_31\#1 \Rightarrow 11\#q_4\#1 \Rightarrow 11\#\#q_41 \Rightarrow 11\#\#q_3\#\# \Rightarrow^* 1q_31\#\#\# \Rightarrow 1\#\#q_4\#\#\# \Rightarrow^* 1\#\#\#q_4B \Rightarrow 1\#\#\#q_5\# \Rightarrow^* q_51$ pára

ICMC-USP Resolução P2 $(1A^A)$, 06/11/2008SCE-0185 (continuação)

- 3. Considere a seguinte linguagem $L_3 = \{1^n0^m1^n \mid n, m > 0\}$:
- $\binom{1}{2}$ (a) qual é o tipo de menor complexidade de L_3 ? Explique,

Solução:

Tipo 2, pois pelo Lema do Bombeamento, uv^iwx^iy , $u=y=\lambda$, v=1, $w=0^m$ e x=1.

(1) (b) dê a gramática G_3 que gera L_3 ,

Solução:

$$S \rightarrow 1S1 \mid 1A1$$
$$A \rightarrow 0A \mid 0$$

(1) (c) escreva um autômato limitado linearmente (ALL) A_3 capaz de processar L_3 .

$\begin{array}{c} \text{ICMC-USP} \\ \text{Resolução P2 } (1A^A),\,06/11/2008 \\ \text{SCE-0185 } (\text{continuação}) \end{array}$

(2) 4. Escreva uma máquina de Turing de duas cabeças e uma fita T_4 que processa a linguagem $L_4 = \{wcw \mid w \in \{a,b\}^*\}.$

