Automatic Repeat reQuest (ARQ)

Cpr E 489 -- D.Q. 3.14

Design Goals of ARQ Protocols

- Three Design Goals of ARQ Protocols
 - **♦ Goal #1:** to ensure that each packet is delivered error-free
 - Goal #2: to ensure that each packet is delivered exactly once without duplication
 - ➡ Goal #3: to ensure that packets are delivered in order

1. Stop-and-Wait ARQ (S&W)

- The transmitter and receiver work on the delivery of one frame at a time through alternation of actions
 - Essential Components: ACK, timeout, sequence numbering
 - ACK acknowledges reception of a frame
 - Needs 1-bit sequence numbering to remove ambiguities

Cpr E 489 -- D.Q. 3.16

Problematic Scenario without Sequence Numbering

Problem: B receives the 2nd frame twice

• Solution: Add frame sequence number (S_{recent}) in the frame header

Problematic Scenario without Sequence Numbering

- Problem: A assumes that F1 was delivered error-free
 B discards the new F0 by mistake
- Solution: Add frame sequence number (R_{next}) in the ACK header
 - R_{next} is the sequence number of next frame expected by the receiver
 - → It acknowledges reception of all prior frames implicitly

Cpr E 489 -- D.Q. 3.18

Correct Operation with Sequence Numbering

2. Go-Back-N ARQ (GBN)

- GBN improves S&W by keeping the channel busy when the transmitter waits for acknowledgment from the receiver
 - At the transmitter side:
 Allow up to N
 outstanding frames

At the receiver side: Receive window of size 1

Cpr E 489 -- D.Q. 3.20

GBN Protocol

- Essential Components: ACK, timeout, sequence numbering
 - ◆ ACK acknowledges reception of all prior frames implicitly
- Upon timeout:
 - Frame in error and all subsequent frames are retransmitted
- Needs m-bit sequence numbering to remove ambiguities
 - What is the minimum value for m?

GBN Transmitter & Receiver

- 1. Transmitter waits for error-free ACK with: $R_{next} \in [S_{last}, S_{recent}+1]$
- 2. When such ACK arrives, send window slides forward: $S_{last} = R_{next}$
- When timer expires for S_{last}, transmitter go-back-N to retransmit S_{last} and all subsequent frames

- Receiver only accepts error-free frame with sequence number R_{next}
- 2. When such frame arrives, R_{next} is incremented by one, meaning that receive window slides forward by 1: $R_{next} = R_{next} + 1$
- 3. Erroneous frames and error-free frames with sequence number $\neq R_{next}$ are discarded
- 4. ACK is sent for each error-free frame received

Cpr E 489 -- D.Q. 3.22

$N + 1 \le 2^m$

 Example: 2-bit (m = 2) sequence numbering suffices for Go-Back-3 (N = 3) ARQ

send window

$N + 1 \leq 2^m$

Example: 2-bit (m = 2) sequence numbering is inadequate for
 Go-Back-4 (N = 4) ARQ

send window

Cpr E 489 -- D.Q. 3.24

3. Selective Repeat ARQ (SR)

- SR improves upon GBN by buffering at the receiver side
 - → Allow up to W_s outstanding frames

- → Allow a receive window of size W_r (>1)
 - Receiver buffers the error-free frames with sequence number \in [R_{next}+1, R_{next}+W_r-1]

SR Protocol

- Essential Components: ACK, NAK, timeout, sequence numbering
 - NAK is sent when an error-free out-of-sequence frame is received
 - ◆ ACK is sent for all other error-free frames
 - ▶ Both ACK and NAK acknowledge reception of all prior frames
- Frame in error is retransmitted upon
 - Timeout or reception of NAK
 - Only the frame in error is retransmitted
- Needs m-bit sequence numbering to remove ambiguities
 - ♦ What is the minimum value for m?

Cpr E 489 -- D.Q. 3.26

SR Transmitter & Receiver

- 1. If an error-free ACK or NAK with $R_{next} \in [S_{last}, S_{recent}+1]$ arrives, send window slides forward: $S_{last} = R_{next}$
- When timer for a frame expires or when a NAK arrives, transmitter retransmits the corresponding frame only

- Receiver only accepts error-free frames with sequence number ∈ [R_{next}, R_{next}+W_r-1]
- When frame with sequence number
 R_{next} arrives, R_{next} is incremented to a
 proper value ⇒ receive window may
 slide forward by more than one
- Erroneous frames and error-free frames with sequence number ∉ [R_{next}, R_{next}+W_r-1] are discarded
- 4. NAK is sent when an error-free outof-sequence frame is received
- 5. ACK is sent for all other error-free frames received

$\underline{W_s + W_r \leq 2^m}$

• Example: 2-bit (m = 2) sequence numbering, $W_s = W_r = 2$

$\underline{W_{\underline{s}} + W_{\underline{r}} \leq 2^m}$

Example: Problem when W_s+W_r > 2^m
 2-bit (m = 2) sequence numbering, W_s = W_r = 3

