TRIBHUVAN UNIVERSITY

PATAN MULTIPLE CAMPUS

PATAN DHOKA, LALITPUR

DIGITAL LOGIC (BIT 103) LAB 4

SUBMITTED BY	SUBMITTED TO
NAME: SURESH DAHAL	JYOTI PRAKASH CHAUDHARY
CLASS: BIT – I / I	
ROLL NO: 23	

CHECKED BY

DATE: 2080/10/17

TITLE: STATE AND PROVE DE-MORGAN'S THEOREMS WITH TRUTH TABLE AND LOGIC DIAGRAM

1.
$$(X+Y)' = X'.Y'$$

a) OBJECTIVE

• To practically prove De-Morgan's theorems with logic diagram and truth table.

b) REQUIREMENTS

- i. Digital Learning Kit and Simulator
- ii. 1 NOR gate, 2 NOT gates, 1 AND gate
- iii. Connecting wires
- iv. Interactive / Sequence generator as input
- v. LED as output

c) THEORY

1. INTRODUCTION

De Morgan's theorem states that complementing the result of OR'ing variables together is equivalent to AND'ing the complements of the individual variables.

2. LOGIC EXPRESSION

$$(X+Y)' = X'.Y'$$

3. CIRCUIT DIAGRAM

4. TRUTH TABLE

X	Y	(X+Y)'	X'.Y'
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

d) CONCLUSION

Hence, by doing this practical experiment, we have practically verified that complementing the result of OR'ing variables together is equivalent to AND'ing the complements of the individual variables.

2.
$$(X.Y)' = X' + Y'$$

a) OBJECTIVES

• To practically prove De-Morgan's theorems with logic diagram and truth table.

b) REQUIREMENTS

- i. Digital Learning Kit and Simulator
- ii. 1 NAND gate, 2 NOT gates, 1 OR gate
- iii. Connecting wires
- iv. Interactive / Sequence generator as input
- v. LED as output

c) THRORY

1. INTRODUCTION

De Morgan's theorem states that complementing the result of AND'ing variables together is equivalent to OR'ing the complements of the individual variables.

2. LOGIC EXPRESSION

$$(X.Y)' = X' + Y'$$

3. CIRCUIT DIAGRAM

4. TRUTH TABLE

X	Y	(X+Y)'	X'.Y'
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

d) CONCLUSION

Hence, by doing this practical experiment, we have practically verified that complementing the result of AND'ing variables together is equivalent to OR'ing the complements of the individual variables.