Schema Theorem for Binary Coded GA

- Proposed by Prof. John Holland
- An attempt to give GA a mathematical foundation

Let us consider a population of binary-strings created at random

Let us assume the following two schemata (templates):

```
H<sub>1</sub>: * 1 0 * * *
H<sub>2</sub>: * 1 0 * 0 0 (* could be either 1 or 0)
```

 H_1 : * 1 0 * * *

 H_2 : * 1 0 * 0 0

• Order of schema O(H):

No. of fixed positions (bits) present in a schema

For example: $O(H_1) = 2$; $O(H_2) = 4$

• Defining length of schema $\delta(H)$:

Distance between the first and last fixed positions in a string

For example: $\delta(H_1) = 3-2 = 1$; $\delta(H_2) = 6-2 = 4$

• Effect of Selection:

Let m(H, t) = No. of strings belonging to schema H at t^{th} Gen.

m(H, t+1) = No. of strings belonging to schema H at (t+1)th Gen.

$$\mathbb{E}\left[m(H,t+1)\right] = m(H,t)\frac{f(H)}{\overline{f}}$$

f (H) = Schema fitness or Avg. fitness of the strings represented by schema H

 \overline{f} = Avg. fitness of the entire population at t-th Gen.

• Effect of Crossover (Single-point):

Let P_c = Probability of crossover and

L = String length

A schema is destroyed if crossover site falls within the defining length

Probability of destruction =
$$p_c \frac{\delta(H)}{L-1}$$

Probability of survival =
$$1 - p_c \frac{\delta(H)}{L-1}$$

• Effect of Mutation (Bit-wise Mutation):

To protect a schema, mutation should not occur at the fixed bits

Let p_m : probability of mutation $probability \ of \ destruction \ of \ a \ single \ bit = p_m$ $probability \ of \ survival \ of \ a \ single \ bit = 1-p_m$

Probability of survival of the whole schema,

$$p_s = (1 - p_m) (1 - p_m)....O(H)$$

= $(1 - p_m)^{O(H)}$
= $1 - O(H) p_m$ as $p_m << 1$

Considering the contributions of all three operators,

$$E\left[m(H,t+1)\right] = m(H,t)\frac{f(H)}{\overline{f}}\left[1 - p_c \frac{\delta(H)}{L-1} - O(H)p_m\right] \qquad \text{(neglecting 2nd order term)}$$

Building-Block Hypothesis:

The schemata having low order, short defining length and fitness considerably more than average fitness of the population will have more and more representations in future generations

Limitations of Binary Coded GA

• Unable to yield any arbitrary precision in the solution \rightarrow Real Coded GA

• Hamming Cliff problem → creates an artificial hindrance to the gradual search of $GA \rightarrow Gray Coded GA$

1 change

5 changes

Real Coded GA:

Chromosome:

x 1	x2	x 3	x4	x5	x6
5.82	1.10	9.22	3.61	8.30	2.99

✓ Selection: Same as Binary Coded GA

✓ Crossover: Single point

Linear Crossover

Ch1 =
$$0.5*Pr1+0.5*Pr2$$

Ch2 = $1.5*Pr1-0.5*Pr2$
Best
Two
Ch3 = $-0.5*Pr1+1.5*Pr2$

$$C2, C3 = \frac{P1 + P2}{2} \pm (P1 - P2)$$

Blend Crossover

$$Ch1 = (1-\gamma)*Pr1 + \gamma *Pr2$$

$$Ch2 = \gamma *Pr1 + (1 - \gamma)*Pr2$$

 $\gamma = 2*r - 0.5$ where r is a uniform random number in [0,1]

i.e. γ is a uniform random number in [-0.5,1.5]

Simulated Binary Crossover

✓ Mutation: Replace a value with a random value in the entire range or in a random neighbourhood

(neighbourhood may shrink as generation increases)

• Mutation probability in RCGA is more than that in BCGA

Let m be the string length for a variable x1 in BCGA

Probability that this variable survives mutation is $(1 - P_m)^m$

$$\approx (1 - mP_m)$$

Hence,
$$(1 - P_m^R) = (1 - mP_m^B)$$

 $P_m^R = m P_m^B$

Numerical Example:

maximize
$$f(x_1, x_2) = -x_1^2 - 2x_2^2 - x_1x_2$$
; $-5 \le x_1, x_2 \le 5.0$

Assume the mating pool to be (4,0); (-2,2); (3,1); (3,1)

Consider mating pairs as 1-3 and 2-4

Obtain the next generation by linear crossover.

Assume Pc = 1.0 and Pm = 0.

Answer:

(3.5, 0.5); (2.5, 1.5); (0.5, 1.5); (-4.5, 2.5)

Constraints Handling in GA (also applicable to PSO)

optimize
$$f(\underline{x})$$

subject to

$$g_{j}(\underline{x}) \leq 0, j = 1,2,...,m$$

$$h_k(\underline{x}) = 0, k = 1,2,...,p$$

$$\underline{x} = [x_1 \ x_2 \dots \ x_n]^T$$

$$\underline{x}_{\min} \leq \underline{x} \leq \underline{x}_{\max}$$

Let
$$m+p = q$$

Functional constraints

$$\Phi_k(\underline{x})$$
, $k = 1,2,...,q$

Penalty Function Approach

Fitness function of ith solution

$$F_i(X) = f_i(X) \pm P_i$$
 (+ for minimization problems)

where P_i indicates penalty given by

$$P_i = C \sum_{k=1}^q \left\{ arphi_{ik}(X)
ight\}^2$$

C indicates penalty coefficient

Example:

Static Penalty

Fitness of i-th solution

$$F_i(X) = f_i(X) + \sum_{k=1}^{q} C_{k,r} \{ \varphi_{ik}(X) \}^2$$

where $C_{k,r}$: r^{th} level violation of k^{th} constraint

(amount of violation is divided into various pre-defined levels)

Dynamic Penalty

Fitness
$$F_i(X) = f_i(X) + (C.t)^{\alpha} \sum_{k=1}^{q} |\varphi_{ik}(X)|^{\beta}$$

where C, α , β are user-defined constants

t = number of generations

✓ Penalty increasing with generation number (pressurizing GA)

Adaptive Penalty

Fitness
$$F_i(X) = f_i(X) + \lambda(t) \sum_{k=1}^q \left\{ \phi_{ik}(X) \right\}^2$$

where t: number of generations

$$\lambda(t+1) = \begin{cases} \frac{1}{\beta_1} . \lambda(t), & \text{if best soln. of last Nf GEN were feasible} \\ \beta_2 . \lambda(t), & \text{if infeasible} \end{cases}$$

if neither, $\lambda(t+1) = \lambda(t)$ (where $\beta_1 \neq \beta_2$ and β_1 , $\beta_2 > 1$)