Week 15 Report Spring 2019: Thesis Results and Conclusions

Sam Frederick

Comparing Ellipticity Results Against Published Work

- Compute equilibrium configuration (perturbed stellar structure due to B-field) via relativistic equations.
- "Mean deformation rate", similar calculation to what we call

Simple deformations [edit]

In simple contexts, a single number may suffice to describe the strain, and therefore the strain rate. For example, when a long and uniform rubber band is gradually stretched by pulling at the ends, the strain can be defined as the ratio ϵ between the amount of stretching and the original length of the band:

$$\epsilon(t) = rac{L(t) - L_0}{L_0}$$

where L_0 is the original length and L(t) its length at each time t. Then the strain rate will be

$$\dot{\epsilon}(t)=rac{d\epsilon}{dt}=rac{d}{dt}\left(rac{L(t)-L_0}{L_0}
ight)=rac{1}{L_0}rac{dL}{dt}(t)=rac{v(t)}{L_0}$$

where v(t) is the speed at which the ends are moving away from each other.

PHYSICAL REVIEW D 78, 044045 (2008)

Relativistic stars with purely toroidal magnetic fields

Kenta Kiuchi^{1,*} and Shijun Yoshida^{2,+}

¹Department of Physics, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

²Astronomical Institute, Tohoku University, Sendai 980-8578, Japan

(Received 21 February 2008; published 26 August 2008)

$$\bar{e} = \frac{I_{zz} - I_{xx}}{I_{zz}}$$

Appear analogous calculations to me.

Deformation rate??

Wikipedia: Strain rate

Qualitative Comparison: Relativistic Results vs. Newtonian

TABLE I. Global physical quantities for the maximum gravitational mass models of the constant magnetic flux sequences of the nonrotating stars.

$\Phi (10^{22} \text{ Wb})$	$\rho_c \ (10^{15} \ \mathrm{g/cm^3})$	$M(M_{\odot})$	$M_0 (M_{\odot})$	$R_{\rm cir}$ (km)	$B_{\rm max}~(10^{18}~{\rm G})$	H/ W	ē
			k	= 1		- At	
0.000×10^{0}	1.797×10^{0}	1.719×10^{0}	1.888×10^{0}	1.180×10^{1}	0.000×10^{0}	0.000×10^{0}	0.000×10^{0}
1.616×10^{0}	2.032×10^{0}	1.843×10^{0}	2.014×10^{0}	1.457×10^{1}	1.008×10^{0}	1.253×10^{-1}	-4.284×10^{-1}
2.155×10^{0}	2.026×10^{0}	1.935×10^{0}	2.107×10^{0}	1.667×10^{1}	1.129×10^{0}	1.737×10^{-1}	-6.933×10^{-1}
2.694×10^{0}	1.914×10^{0}	2.041×10^{0}	2.210×10^{0}	1.951×10^{1}	1.168×10^{0}	2.186×10^{-1}	-1.012×10^{0}
			k	= 2			
0.000×10^{0}	1.797×10^{0}	1.719×10^{0}	1.888×10^{0}	1.180×10^{1}	0.000×10^{0}	0.000×10^{0}	0.000×10^{0}
1.077×10^{0}	2.032×10^{0}	1.855×10^{0}	2.055×10^{0}	1.361×10^{1}	8.023×10^{-1}	8.068×10^{-2}	-3.874×10^{-1}
1.347×10^{0}	2.039×10^{0}	1.920×10^{0}	2.128×10^{0}	1.444×10^{1}	8.630×10^{-1}	1.024×10^{-1}	-5.315×10^{-1}
1.616×10^{0}	2.126×10^{0}	1.990×10^{0}	2.210×10^{0}	1.516×10^{1}	9.205×10^{-1}	1.198×10^{-1}	-6.721×10^{-1}

We Find:

$$\varepsilon(t = 5 \text{ s}) = -7.1 \text{ x } 10^{-2}$$

d ε / dt ($t = 5 \text{ s}$) = -2.7 x 10⁻²

Our *Newtonian* results

The Main Point: Gravitational Wave Strain Estimates

- I realize the wavestrain value I computed earlier was FAR too high, realized where I went wrong.
- Using this expression, we find wavestrain is ~ 10⁻²⁸ for galactic magnetar sources.

Publications of the Astronomical Society of Australia (PASA), Vol. 32, e034, 11 pages (2015).
© Astronomical Society of Australia 2015; published by Cambridge University Press. doi:10.1017/pasa.2015.3

Gravitational Waves from Neutron Stars: A Review

Paul D. Lasky

Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, VIC 3800, Australia Email: paul.lasky@monash.edu

(RECEIVED August 20, 2015; ACCEPTED August 26, 2015)

$$h_0 = \frac{4\pi^2 G}{c^4} \frac{I_{zz} f_{gw}^2 \epsilon}{d}$$

$$= 4.2 \times 10^{-26} \left(\frac{\epsilon}{10^{-6}}\right) \left(\frac{P}{10 \text{ ms}}\right)^{-2} \left(\frac{d}{1 \text{ kpc}}\right)^{-1}$$

The Future

- Current detectors can't pick up NS continuous GW signals.
- LISA (Laser Interferometer Space Antenna) will operate from .1 mHz to 1 Hz. Will be able to detect GWs from magnetars!

The Gravitational Wave Spectrum

Image Credit: NASA