Report of MCMC Mixing on Treelike Graphs

Yiqun Diao, Xiaosheng He, Guohang Liu Aug 2020

Outline

Preliminaries of MCMC

Randomly coloring graphs of bounded treewidth

Counting independent sets in graphs with bounded bipartite pathwidth

Preliminaries of MCMC

- Irreducible: state space is connected
- Aperiodic: state space is not bipartite
- Irreducible & aperiodic -> converge to a unique stationary distribution
 - Verifying local condition, for all x,y, $\pi(x)p(x,y)=\pi(y)p(y,x)$
- This verifies the correctness of algorithm

Preliminaries of MCMC

- We also want fast mixing in polynomial time
- It is related to the largest eigenvalue of Markov matrix (lazy chain)
- Exponential number of states: impossible to do eigen decomposition

Idea: verifying local condition to prove global property

Preliminaries of MCMC

- If there is a 'bottleneck' in state graph: hard to converge
- Rapid convergence: no 'bottleneck', hard to prove all partition

- Dual problem: find a multi-commodity flow with low congestion!
- Only need to construct one and verify!

We define the congestion on an edge (σ, σ') with respect to a flow f by

$$\rho_f(\sigma, \sigma') = \frac{1}{q(\sigma, \sigma')} \sum_{\alpha, \beta \in \Omega} \sum_{p:(\sigma, \sigma') \in p \in \mathcal{P}_{\alpha, \beta}} f(p)|p|,$$

and the congestion of f by

$$\rho_f = \max_{(\sigma, \sigma') \in F} \rho_f(\sigma, \sigma').$$

1.1 Results

Our main result is an algorithm that efficiently samples a $((1+\epsilon)\Delta)$ -coloring (almost) uniformly at random if the input graph has logarithmically bounded pathwidth, for any $\epsilon > 0$.

Theorem 1.1. (Informal) Let $\epsilon > 0$ and G be a graph with maximal degree Δ and pathwidth bounded by $O(\log n)$. There exists a polynomial time algorithm for sampling a $((1+\epsilon)\Delta)$ -proper coloring of G (almost) uniformly at random.

Using the fact that the pathwidth of a graph is at most $O(\log n)$ times its treewidth [35], we have the following corollary.

Corollary 1.2. (Informal) Let $\epsilon > 0$ and G be a graph with maximal degree Δ and treewidth bounded by a constant. There exists a polynomial time algorithm for sampling a $((1+\epsilon)\Delta)$ -proper coloring of G (almost) uniformly at random.

- Idea for sampling matchings
 - Construct a mutli-commodity flow
 - Find an injective function from paths going through the edge to state space
- It doesn't work for sampling proper colorings!
 - Unlike matchings, we cannot guarantee the following:
 - part of starting state + part of destination = a proper state
 - Changing one vertex may lead to illegal states, and cases vary!
 - This method allows single-flaw state

- Allowing single-flaw state
 - Once entering, we can fix it quickly
 - Not too many single-flaw state, so # of flows are polynomial times of sth.
- Could we eliminate single-flaw state?
 - Using a deterministic method to move to proper state?
 - Failed! A counter-example: star graph
 - Reason: deterministic method leads to large congestion!
- So we use randomness to split the flow!

Let G = (V, E) be a graph with maximal degree Δ and $\epsilon > 0$ such that $(1 + \epsilon)\Delta \geq \Delta + 2$. The state space Ω of Markov chain $\mathcal{MC}(G, \epsilon)$ (or simply \mathcal{MC}) is the set of all proper and singly-flawed k-colorings of G, for $k = \lceil (1 + \epsilon)\Delta \rceil$: $\Omega = \mathcal{C}_p(G, k) \cup \mathcal{C}_{sf}(G, k)$. For simplicity, we henceforth assume that $\epsilon \Delta$, $(1 + \epsilon)\Delta$ and $(1 + \epsilon)\epsilon^{-1}$ are integers. It is easy to generalize the results to real values thereof. For $\sigma \in \Omega$, the transitions $\sigma \to \sigma'$ of \mathcal{MC} are the following

- Let $\sigma' = \sigma$.
- With probability 1/2, do nothing (laziness).
- Otherwise, choose a vertex v and color c uniformly at random from V and [k] respectively. Tentatively, set $\sigma'(v) = c$
- If $\sigma' \notin \Omega$, set $\sigma'(v) = \sigma(v)$.

- Technique: vertex separator, if there are not too many undeterministic vertices, i.e. vertex separator size is O(log n)
- The whole mixing time will be polynomial

- VSN = pathwidth, so pw = O(log n)
- tw = O(1) -> pw = O(log n)

- Canonical paths: n phases, each phase j with |S_i|+1 steps
- Order vertices from 1 to n, using minimal order (i.e., reaching VSN)
- For any a, b $\subseteq \Omega$, phase j will change color of vertex j from a to b, and fix the conflicts

• First, assume a,b are proper colors

• Phase j step 1: change j to its color in b

• Phase j, the next $|S_i|$ steps: randomly choose one of feasible colors

for each vertex in S_j

• VSN is O(log n)

- Similarly, we want an injective function from (a,b) to something
- In order to bound the number of flows
- From a to b, the current state has same A_j as b, the same B_j as a
- Get a proper coloring X, same A_i as a, same B_i as b!

- Y is $[(1+\epsilon)\epsilon^{-1}]^{|S_j|}$, allowing us to pinpoint $\beta(v)$ for every $v \in S_j$. tell the random choice of S_j by b
- Finally, Z is simply all possible colorings of the vertices of QS(j,t) under α . tell the random choice of (part of) S_j (needs randomness) by a

Clearly x, y, z, j and t allow us to recover α and β . The size of the co-domain is at most

$$|\mathcal{C}_p| \cdot ((1+\epsilon)\epsilon^{-1})^{|S_j|} \cdot k^{|QS(j,t)|}.$$

t tells which step we are in phase j

Why Y is this way?

- Y is $[(1+\epsilon)\epsilon^{-1}]^{|S_j|}$, allowing us to pinpoint $\beta(v)$ for every $v \in S_j$.
- Finally, Z is simply all possible colorings of the vertices of QS(j,t) under α .

Clearly x, y, z, j and t allow us to recover α and β . The size of the co-domain is at most

$$|\mathcal{C}_p| \cdot ((1+\epsilon)\epsilon^{-1})^{|S_j|} \cdot k^{|QS(j,t)|}.$$

In canonical path, we 'split' the flow evenly, but not randomly. Evenly is enough!

For its previous color, we project to a feasible color evenly We only use ϵ^{\triangle} feasible colors (even if we can use more for some vertex), so we can recover the info in $(1+\epsilon)/\epsilon$ size set! Because in flow size, we only split ϵ^{\triangle} times for each 'unknown' state!

• Each flow will split in the undeterministic vertices, so

Claim 3.3. The flow routed from α to β through any $t = (\sigma, \sigma') \in F$ in any phase $j \in [n]$ is at most $f_{j,t,\alpha,\beta} \leq \frac{\pi(\alpha)\pi(\beta)}{(\epsilon\Delta)^{|QS(j,t)|}}.$

- Combining together, we'll get a polynomial mixing time
- What does undeterministic give us? (my view)
 - Each flow becomes smaller
 - But there are many more flows
 - Leading to $|S_i|$ in the exponential part, so we have to bound it in $O(\log n)$
- Another question: it seems that k=△+1 also works
 - Since we have single-flaw states, MC is no longer reducible

- The last problem: flows may start / end at a single-flaw state
- There are not too many, each proper state may have kn times more neighbors, # of flows multiply at most 4k²n²

mixing time is still polynomial

Corollary 2.2. For any G = (V, E) such that |V| = n and $k \ge \Delta + 2$,

$$|\mathcal{C}_{sf}(G,k)| \leq kn|\mathcal{C}_p(G,k)|.$$

Proof. Immediate from the surjectivity of the function g in Lemma 2.1.

Corollary 2.3. For any G = (V, E) such that |V| = n and $k \ge \Delta + 2$, there exists a function

$$g': \mathcal{C}_{sf}(G,k) \to \mathcal{C}_p(G,k),$$

for which each element in the co-domain has at most kn pre-images in the domain.

Proof. For every $\sigma' \in \mathcal{C}_{sf}$, arbitrarily select one pre-image (σ, v, c) w.r.t. g, and set σ as the image for σ' under g'.

References

- Jerrum, M. (2003). Canonical paths and matchings. In Counting, Sampling and Integrating: Algorithm and Complexity (pp. 49-64). Birkhäuser Basel.
- Slides of Advanced Algorithms, by Professor Chihao Zhang, Shanghai Jiao Tong University
- Vardi, S. (2017). Randomly coloring graphs of bounded treewidth. arXiv preprint arXiv:1708.02677.
- Dyer, M., Greenhill, C., & Müller, H. (2019, June). Counting independent sets in graphs with bounded bipartite pathwidth. In International Workshop on Graph-Theoretic Concepts in Computer Science (pp. 298-310). Springer, Cham.