SOLUTIONS HW 2

1 Problem 1

1. We have

$$\nabla f = \left[2x_1 + 2\frac{1-\epsilon}{1+\epsilon}x_2, 2x_2 + 2\frac{1-\epsilon}{1+\epsilon}x_1\right]^T, \quad \text{and} \quad \nabla^2 f = \begin{pmatrix} 2 & 2\frac{1-\epsilon}{1+\epsilon} \\ 2\frac{1-\epsilon}{1+\epsilon} & 2 \end{pmatrix}$$
 (1)

Since $0 < (1 - \epsilon)/(1 + \epsilon) < 1$ we have $\nabla^2 f > 0$, the unique minimizer is the solution of $\nabla f = 0$ which is $x_1 = x_2 = 0$.

2. We must have

$$\begin{pmatrix} 2-m & 2\frac{1-\epsilon}{1+\epsilon} \\ 2\frac{1-\epsilon}{1+\epsilon} & 2-m \end{pmatrix} \succeq 0, \quad \begin{pmatrix} M-2 & -2\frac{1-\epsilon}{1+\epsilon} \\ -2\frac{1-\epsilon}{1+\epsilon} & M-2 \end{pmatrix} \succeq 0$$
 (2)

or equivalently

$$2 - m \ge 0$$
, $(2 - m)^2 - \left(2\frac{1 - \epsilon}{1 + \epsilon}\right)^2 \ge 0$ and $M - 2 \ge 0$, $(M - 2)^2 - \left(2\frac{1 - \epsilon}{1 + \epsilon}\right)^2 \ge 0$ (3)

The largest possible m is $2-2\frac{1-\epsilon}{1+\epsilon}$ and the smallest possible M is $2+2\frac{1-\epsilon}{1+\epsilon}$. Hence, $\kappa=M/m=1/\epsilon$

3. As $\epsilon \to 0$, it holds $\kappa = 1/\epsilon \to \infty$. Thus, we should expect gradient descent to converge slower.