HOJA 1: Monomios

1. Sumar monomios semejantes:

a)
$$3x^2 + 4x^2 - 5x^2 =$$

b)
$$6x^3 - 2x^3 + 3x^3 =$$

c)
$$x^5 + 4x^5 - 7x^5 =$$

d)
$$-2x^4 + 6x^4 + 3x^4 - 5x^4 =$$

e)
$$7x + 9x - 8x + x =$$

f)
$$2y^2 + 5y^2 - 3y^2 =$$

g)
$$3x^2y - 6x^2y + 5x^2y =$$

h)
$$4xy^2 - xy^2 - 7xy^2 =$$

i)
$$2a^6 - 3a^6 - 2a^6 + a^6 =$$

i)
$$ab^3 + 3ab^3 - 5ab^3 + 6ab^3 - 4ab^3 =$$

k)
$$7xy^2z - 2xy^2z + xy^2z - 6xy^2z =$$

1)
$$-x^3 + 5x - 2x + 3x^3 + x + 2x^3 =$$

m)
$$x^4 + x^2 - 3x^2 + 2x^4 - 5x^4 + 8x^2 =$$

n)
$$3a^2b - 5ab^2 + a^2b + ab^2 =$$

o)
$$\frac{7}{3}x^2 + \frac{4}{3}x^2 =$$

p)
$$12x^5 - x^5 - 4x^5 - 2x^5 - 3x^5 =$$

q)
$$\frac{7}{4}x^5 + \frac{1}{4}x^5 =$$

r)
$$x^2y^2 - 5x^2y^2 - (3x^2y^2 - 4x^2y^2) - 8x^2y^2 =$$
 (Sol: -11x²y²)

s)
$$x^2 + \frac{x^2}{3} =$$

t)
$$x^2 + x^2 =$$

u)
$$\frac{1}{2}x^3 - \frac{5}{2}x^3 + \frac{3}{2}x^3 =$$

$$\mathbf{v}$$
) - (ab³ + a³b) - 3a³b + 5ab³ - (a³b - 2ab³) = (Sol: 6ab³ - 5a³b)

w)
$$7x^2 - \frac{1}{2}x^2 - \frac{5}{2}x^2 + 2x^2 + \frac{3}{2}x^2 =$$
 (Sol: 15x²/2)

x)
$$-x + x^2 + x^3 + 3x^2 - 2x^3 + 2x + 3x^3 =$$

y)
$$2a^2b + 5a^2b - \frac{2}{3}a^2b - a^2b + \frac{a^2b}{2} =$$
 (Sol: 35a²b/6)

z)
$$-x^3 + \frac{5x^3}{4} - \frac{2x^3}{3} + 3x^3 + \frac{x^3}{2} =$$

(Sol: 37x³/12)

2. Efectuar los siguientes productos y cocientes de monomios:

a)
$$3x^2 \cdot 4x^3 =$$

b)
$$2x^3 \cdot 4x^3 \cdot 3x^3 =$$

c)
$$x^3 \cdot x^3 =$$

d)
$$-2x^4 \cdot 3x^3 =$$

e)
$$7x \cdot (-8x^2) =$$

f)
$$(-3y^2) \cdot (-2y^3) =$$

g)
$$3x^2y \cdot 6xy^3 =$$

h)
$$\frac{3}{4}x^2 \cdot \frac{5}{2}x^3 =$$

i)
$$4a^3b^2 \cdot a^2b \cdot 7ab =$$

j)
$$-\frac{1}{2}a^3 \cdot \frac{5}{3}a^4 =$$

k)
$$2a^6 \cdot 3a^6 \cdot 2a^6 =$$

$$1) \quad \frac{2}{5}x^3 \cdot \left(-\frac{3}{2}x\right) =$$

m)
$$ab^3 \cdot (-3a^2b) \cdot 5a^3b =$$

n)
$$x^2 \cdot \frac{1}{3} x^5 =$$

o)
$$-ab^2c^3 \cdot (-3a^2bc) \cdot 3abc =$$

p)
$$(6x^4):(2x^2)=$$

q)
$$\frac{12a^6}{3a^3}$$
 =

r)
$$15x^4$$
: $(-3x)$ =

s)
$$\frac{-14x^7}{7x^2}$$
 =

t)
$$-8x^4:(-4x^3)=$$

u)
$$\frac{5x^7y^3}{x^2y} =$$

v)
$$(-18x^4)$$
: $(6x^3)$ =

w)
$$\frac{-12a^5b^4c^6}{2a^3b^2c}$$
 =

x)
$$2x^4 \cdot 6x^3 : (4x^2) =$$
 (Sol: $3x^5$)

y)
$$\frac{3a^5b \cdot (-12a^4b^2)}{4a^3b^2} =$$
 (Sol: -9a⁶b)

z)
$$27x^4: (-9x^3) \cdot (-2x^2) =$$
 (Sol: $6x^3$)

3. Efectuar las siguientes **operaciones combinadas** con monomios:

a)
$$15x^5 - 3x^3 \cdot 4x^2 =$$
 (Sol: $3x^5$)

b)
$$2x^3 + 4x^3 \cdot 5x - 2x \cdot (-x^2) =$$
 (Sol: $4x^3 + 20x^4$)

c)
$$3a \cdot ab - 2a^2 \cdot (-4b) - 8 \cdot (2a^2b) =$$
 (Sol: -5a^2b)

d)
$$3x^2 + 4x^2 - 2x^2 \cdot (-3x) - [(4x^3 + x^2 - 2x \cdot (x^2)] =$$
(Sol: $4x^3 + 6x^2$)

e)
$$-3xy^2 - (-4x \cdot 7y^2) + (8x^2y^3 : 2xy) =$$
 (Sol: 29xy²)

f)
$$(-y^2) \cdot (-2y^2) - 5y \cdot (-2y^3) + 3y^3 \cdot (-4y) =$$
 (Sol: 0)

g)
$$(3x^3 \cdot 6x - 2x^2 \cdot x^2) : (4x^2 \cdot 3x^2 - 8x \cdot x^3) =$$
 (Sol. 4)

h)
$$3x^5 - \frac{4}{3}x^2 \cdot \frac{3}{2}x^3 =$$
 (Sol: x^5)

i)
$$4a^2b \cdot (-ab^2) \cdot 5ab - 8a^4b^4 =$$
 (Sol:-28a⁴b⁴)

j)
$$a^5 + \frac{5}{6}a^3 \cdot \frac{3}{5}a^2 =$$
 (Sol: $3a^5/2$)

k)
$$5x^6 - 2x^6 \cdot 3x^6 : (-2x^6) =$$
 (Sol: $8x^6$)

1)
$$\left(-\frac{7}{3}x^3\right) \cdot \left(-\frac{4}{7}x\right) + \frac{2}{3}x^4 =$$
 (Sol: 2x⁴)

m)
$$2ab \cdot (-a^3b) + [ab^2 \cdot (-3a^2b)] - 5a^3b \cdot ab + ab \cdot a^2b^2 =$$

$$(Sol: -7a^4b^2 - 2a^3b^3)$$

n)
$$2x^2 \cdot \frac{1}{3}x^3 + \frac{21x^7}{3x^2} =$$
 (Sol: 23x⁵/3)

HOJA 2: Valor numérico de un polinomio. Sumas y restas de polinomios.

1. Hallar el valor numérico de cada polinomio para el valor indicado de la indeterminada:

a)
$$P(x) = x^2 + x + 1$$
, para $x = 2$ (Sol: 7)

b)
$$P(x) = x^2 + x + 1$$
, para $x = -2$ (Sol: 3)

c)
$$P(x) = 2x^2 - x + 2$$
, para $x = 3$ (Sol: 17)

d)
$$P(x) = 2x^2 - x + 2$$
, para $x = -2$ (Sol: 12)

e)
$$P(x) = -x^2 - 3x + 4$$
, para $x = 4$ (Sol: -24)

f)
$$P(x) = -x^2 + 3x + 4$$
, para $x = -1$ (Sol: 0)

g)
$$P(x) = x^3 + 3x^2 + 1$$
, para $x = 0$ (Sol: 1)

h) P(x) =
$$x^3 - 4x^2 + x + 3$$
, para x = -3 (Sol: -63)

i)
$$P(x) = x^4 - 4x^2 - 1$$
, para $x = 2$ (Sol: -1)

j)
$$P(x) = -x^3 - 3x^2 - x + 2$$
, para $x = -4$ (Sol: -106)

k) P
$$(x) = x^3 - \frac{4}{3}x^2 + \frac{5}{2}x - 1$$
, para $x = 5$ (Sol: 629/6)

2. a) Dado
$$P(x) = x^2 + 2x + k$$
, hallar el valor de **k** para que $P(2)=6$ (Sol: K=-2)

b) Dado
$$P(x) = x^2 - kx + 2$$
, hallar el valor de **k** para que $P(-2)=8$ (Sol: K=1)

c) Dado
$$P(x) = kx^3 - x^2 + 5$$
, hallar el valor de **k** para que $P(-1)=1$ (Sol: K=3)

3. Dados los siguientes polinomios:
$$P(x) = 2x^3 - 3x^2 + 4x - 2$$

 $Q(x) = x^4 - x^3 + 3x^2 + 4$

$$Q(x) = x - x + 3x - 3$$

$$R(x) = 3x^2 - 5x + 5$$

$$S(x) = 3x - 2$$

Hallar:

a)
$$P(x) + Q(x) =$$
 (Sol: $x^4 + x^3 + 4x + 2$)

b)
$$P(x) + R(x) =$$
 (Sol: $2x^3 - x + 3$)

c)
$$P(x) + S(x) =$$
 (Sol: $2x^3 - 3x^2 + 7x - 4$)

d)
$$S(x) + P(x) =$$
 (Sol: idem)

e)
$$P(x) + P(x) =$$
 (Sol: $4x^3 - 6x^2 + 8x - 4$)

f)
$$Q(x) - S(x) =$$
 (Sol: $x^4 - x^3 + 3x^2 - 3x + 6$)

g)
$$Q(x) + R(x) =$$
 (Sol: $x^4 - x^3 + 6x^2 - 5x + 9$)

h)
$$P(x) - R(x) =$$
 (Sol: $2x^3 - 6x^2 + 9x - 7$)

i)
$$Q(x) + S(x) =$$
 (Sol: $x^4 - x^3 + 3x^2 + 3x + 2$)

j)
$$P(x) - S(x) =$$
 (Sol: $2x^3 - 3x^2 + x$)

k)
$$S(x) - P(x) =$$
 (Sol: $-2x^3 + 3x^2 - x$)

1)
$$P(x) - P(x) =$$
 (Sol: 0)

m)
$$R(x) - S(x) =$$
 (Sol: $3x^2 - 8x + 7$)

n)
$$P(x) - Q(x) + R(x) =$$
 (Sol: $-x^4 + 3x^3 - 3x^2 - x - 1$)

o)
$$Q(x) - [R(x) + S(x)] =$$
 (Sol: $x^4 - x^3 + 2x + 1$)

p)
$$S(x) - [R(x) - Q(x)]$$
 (Sol: $x^4 - x^3 + 11x - 3$)

Ejercicios libro: **pág. 71: 51, 52 y 53**; pág. 62: 16

HOJA 3: Productos de polinomios. Operaciones combinadas.

1. Efectuar los siguientes **productos** en los que intervienen **monomios**, dando el resultado simplificado:

a)
$$(-2x^3) \cdot \left(\frac{4}{5}x^2\right) \cdot \left(\frac{1}{2}x\right) =$$

b)
$$\left(-\frac{5}{7}x^7\right)\cdot\left(\frac{3}{5}x^2\right)\cdot\left(-\frac{4}{3}x\right) =$$
 (Soluc: $\frac{4}{7}x^{10}$)

c)
$$5x^3 \cdot 3x^2y \cdot (-4xz^3) =$$
 (Soluc: -60 x^6yz^3)

d)
$$-3ab^2 \cdot 2ab \cdot \left(-\frac{2}{3}a^2b\right) =$$
 (Soluc: $4a^4b^4$)

e)
$$(3x^4 - 2x^3 + 2x^2 + 5) \cdot 2x^2 =$$
 (Soluc: $6x^6 - 4x^5 + 4x^4 + 10x^2$)

f)
$$(-2x^5 + 3x^3 - 2x^2 - 7x + 1) \cdot (-3x^3) =$$
 (Soluc: $6x^8 - 9x^6 + 6x^5 + 21x^4 - 3x^3$)

g)
$$\left(\frac{2}{3}x^3 - \frac{3}{2}x^2 + \frac{4}{5}x - \frac{5}{4}\right) \cdot 12x^2 =$$
 (Soluc: $8x^5 - 18x^4 + \frac{48}{5}x^3 - 15x^2$)

h)
$$\left(\frac{1}{2}ab^3 - a^2 + \frac{4}{3}a^2b + 2ab\right) \cdot 6a^2b =$$
 (Soluc: $3a^3b^4 - 6a^4b + 8a^4b^2 + 12a^3b^2$)

2. Dados los siguientes polinomios:
$$P(x) = 2x^3 - 3x^2 + 4x - 2$$

 $Q(x) = x^4 - x^3 + 3x^2 + 4$

$$R(x) = 3x^2 - 5x + 5$$

$$S(x) = 3x - 2$$

Hallar los siguientes productos:

a)
$$P(x) \cdot R(x) =$$
 (Sol: $6x^5 - 19x^4 + 37x^3 - 41x^2 + 30x - 10$)

b)
$$P(x) \cdot S(x) =$$
 (Sol: $6x^4 - 13x^3 + 18x^2 - 14x + 4$)

c)
$$S(x) \cdot P(x) =$$
 (Sol: Ídem)

d)
$$P(x) \cdot P(x) =$$
 (Sol: $4x^6 - 12x^5 + 25x^4 - 32x^3 + 4x^2 - 8x + 4$)

e)
$$Q(x) \cdot S(x) =$$
 (Sol: $3x^5 - 5x^4 + 11x^3 - 6x^2 + 12x - 8$)

f)
$$[Q(x)]^2 =$$

(Sol:
$$x^8 - 2x^7 + 7x^6 - 6x^5 + 17x^4 - 8x^3 + 24x^2 + 16$$
)

g)
$$R(x) \cdot S(x) =$$

(Sol:
$$9x^3 - 21x^2 + 25x - 10$$
)

h)
$$[R(x)]^2 =$$

(Sol:
$$9x^4 - 30x^3 + 55x^2 - 50x + 25$$
)

i)
$$P(x) \cdot Q(x) \cdot R(x) =$$

(Sol:
$$6x^9 - 25x^8 + 74x^7 - 135x^6 + 52x^5 - 77x^4 + 248x^3 - 194x^2 + 40x - 40$$
)

$$\mathbf{j)} \quad \mathsf{Q}(\mathsf{x}) \cdot \mathsf{R}(\mathsf{x}) \cdot \mathsf{S}(\mathsf{x}) =$$

(Sol:
$$9x^7 - 30x^6 + 73x^5 - 98x^4 + 121x^3 - 114x^2 - 40$$
)

k)
$$[S(x)]^4 =$$

(Sol:
$$81x^4 - 216x^3 + 216x^2 - 96x + 16$$
)

3. Realizar las siguientes operaciones combinadas de polinomios:

a)
$$(x^3 + 2) \cdot [(4x^2 + 2) - (2x^2 + x + 1)] =$$

(Sol:
$$2x^5 - x^4 + x^3 + 4x^2 - 2x + 2$$
)

b)
$$(x^3 + 2) \cdot (4x^2 + 2) - (2x^2 + x + 1) =$$

(Sol:
$$4x^5 + 2x^3 + 6x^2 - x + 3$$
)

c)
$$(2x^2 + x - 2)(x^2 - 3x + 2) - (5x^3 - 3x^2 + 4) =$$

(Sol:
$$2x^4 - 5x^3 - x^2 + 8x - 4$$
)

d)
$$(x^2 - 3x + 2) \cdot [(5x^3 - 3x^2 + 4) - (2x^2 + x - 2)] =$$

(Sol:
$$5x^5 - 20x^4 + 12x^3 - x^2 - 20x + 12$$
)

e)
$$2x^2 + x - 2 - (x^2 - 3x + 2) \cdot (5x^3 - 3x^2 + 4) =$$

(Sol:
$$-5x^5 + 18x^4 - 19x^3 + 4x^2 + 13x - 10$$
)

4. Dados los polinomios del ejercicio 2, hallar las siguientes **operaciones combinadas**:

a)
$$[P(x) + Q(x)] \cdot R(x) =$$

(Sol:
$$3x^7 + 3x^6 + 2x^5 + 17x^3 - 14x^2 + 10x + 10$$
)

b)
$$[Q(x) - R(x)] \cdot S(x) =$$

(Sol:
$$3x^5 - 5x^4 + 2x^3 + 15x^2 - 13x + 2$$
)

c)
$$[P(x) + Q(x) - S(x)] \cdot R(x) =$$

(Sol:
$$3x^6 - 2x^5 + 8x^3 + 7x^2 - 20x + 20$$
)

d)
$$[P(x) - Q(x)] \cdot [R(x) + S(x)] =$$

(Sol:
$$-3x^6+11x^5-28x^4+33x^3-44x^2+24x-18$$
)

e)
$$P(x) + 2Q(x) =$$

(Sol:
$$2x^4 + 3x^2 + 4x + 6$$
)

f)
$$P(x) - 3[Q(x) + R(x)] =$$

(Sol:
$$-3x^4+5x^3-21x^2+19x-29$$
)

g)
$$P(x) - 2Q(x) + 3R(x) =$$

(Sol:
$$-2x^4+4x^3-11x+5$$
)

h)
$$2 P(x) \cdot Q(x) - R(x) =$$

(Sol: $4x^7 - 10x^6 + 26x^5 - 26x^4 + 44x^3 - 39x^2 + 37x - 21$)

i)
$$Q(x) \cdot [2R(x) - 3S(x)] =$$

(Sol: $6x^6 - 25x^5 + 53x^4 - 73x^3 + 72x^2 - 76x + 64$)

j)
$$-[Q(x) + 2R(x)] \cdot S(x) =$$

(Sol: $-3x^5 - x^4 - 29x^3 + 48x^2 - 62x + 28$)

HOJA 4: Cocientes de polinomios.

1. Efectuar los siguientes **cocientes** en los que intervienen **monomios**, dando el resultado simplificado:

a)
$$\frac{4x^3}{2x^2} =$$

b)
$$8x^4:(-2x^2)=$$

c)
$$\frac{7x^5}{2x^3} =$$

d)
$$-8x^3:(2x^2)=$$

e)
$$\frac{-3x^7}{-9x^4}$$
 =

$$f) \ \frac{-3x^4 + 6x^3 - 12x^2}{3x^2} =$$

g)
$$(8x^8 - 6x^4 - 4x^3) : (-4x^3) =$$

h)
$$\frac{-12x^9 + 2x^5 - x^4}{4x^4} =$$

i)
$$(-18x^3yz^3)$$
: $(6xyz^3)$ =

j)
$$\left[-3a \cdot (a^3b) + 5a^4b \right] : \left(-ab \right) =$$
 (Sol: -2a³)

k)
$$\frac{-3xy^2 + (2x^3y)}{4x^2y}$$
 = (Sol: $3x^2y^2/2$)

2. Efectuar (en el cuaderno) las siguientes **divisiones de polinomios**, y <u>comprobar</u> mediante la regla D=d-C+R:

a)
$$x^4 - x^3 + 7x^2 + x + 15$$
 $x^2 + 2$

b)
$$2x^5 - x^3 + 2x^2 - 3x - 3 \left[2x^2 - 3 \right]$$

c)
$$6x^4 - 10x^3 + x^2 + 11x - 6 \mid 2x^2 - 4x + 3$$

d)
$$x^3+2x^2+x-1 \mid x^2-1$$

e)
$$8x^5 - 16x^4 + 20x^3 - 11x^2 + 3x + 2 \mid 2x^2 - 3x + 2$$

f)
$$x^4 + 3x^3 - 2x + 5 \ x^3 + 2$$

g)
$$x^5-2x^4+3x^2-6 \mid x^4+1$$

h)
$$x^2 | x^2 + 1$$

(Soluc:
$$C(x)=x^2-x+5$$
; $R(x)=3x+5$)

(Soluc:
$$C(x)=x^3+x+1$$
; División exacta)

(Soluc:
$$C(x)=3x^2+x-2$$
; División exacta)

$$\mathbf{Condo}. \ \mathbf{C(n)} = \mathbf{Cn} \ \mathbf{Cn}$$

(Soluc:
$$C(x)=x+2$$
; $R(x)=2x+1$)

(Soluc:
$$C(x)=4x^3-2x^2+3x+1$$
; División exacta)

(Soluc:
$$C(x)=x+3$$
; $R(x)=-4x-1$)

(Soluc:
$$C(x)=x-2$$
; $R(x)=3x^2-x-4$)

(Soluc:
$$C(x)=1$$
; $R(x)=-1$)

i) $3x^6+2x^4-3x^2+5 | x^3-2x+4$

j)
$$x^{8} x^{2}+1$$

k) x^3-4x^2+5x-8 x-2

1)
$$2x^5+3x^2-6 \mid x+3$$

m)
$$x^4 - 7x^3 + 8x^2 - 2 \mid x - 1$$

n)
$$3x^5 - x^4 + 8x^2 - 5x - 2 \left[x^2 - x + 1 \right]$$

o)
$$5x^4-2x^3+x-7 | x^2-1$$

p)
$$4x^5 - 3x^3 + 5x^2 - 7 2x^2 - 3x + 5$$

q)
$$9x^3 + 3x^2 - 7x + 2$$
 $3x^2 + 5$

r)
$$4x^4 - 3x^2 + 5x - 7 \left[2x^2 + x - 3 \right]$$

s)
$$4x^5 + 3x^3 - 2x^2 + 5 \mid 2x^2 - x + 3$$

t)
$$6x^4 + 5x^2 - 3x + 8 \mid 3x^3 - 2x - 3$$

u)
$$4x^4+2x^3-3x^2+5x-1 \mid 2x^2-3$$

v)
$$8x^4 + 3x^3 + 2x - 2 \mid 4x^2 + x - 3$$

w)
$$2x^5-x^3+3x-9 \mid 2x^2-x+2$$

x)
$$6x^3 - 3x^2 + 2x - 5 \mid 3x - 2$$

y)
$$4x^4-x^3+x+5 \mid 2x^2-x+3$$

z)
$$6x^4 + 3x^3 - 5x^2 + x - 8 \mid 3x^2 - 5x + 2$$

$$\alpha$$
) $8x^4 - 3x^2 + 7x - 5$ $4x^2 - 3x + 2$

β)
$$6x^5 + 5x^4 + 31x^2 + 2 \mid 2x^2 + 2$$

γ)
$$3x^5-6x^4-x^3+10x^2-8x+2$$
 $3x^2-6x+1$

δ)
$$6x^4 - x^3 + 2x^2 - x - 1$$
 $3x^2 + 2$

(Soluc: $C(x)=3x^3+8x+12$; $R(x)=13x^2-56x+53$)

(Soluc: $C(x)=x^6-x^4+x^2-1$; R(x)=1)

(Soluc: $C(x)=x^2-2x+1$; R=-6)

(Soluc: $C(x)=2x^4-6x^3+18x^2-51x+153$; R(x)=-465)

(Soluc: $C(x)=x^3-6x^2+2x+2$; División exacta)

(Soluc: $C(x)=3x^3+2x^2-x+5$; R(x)=x-7)

(Soluc: $C(x)=5x^2-2x+20$; R(x)=-7x+73)

(Soluc: $C(x)=2x^3+3x^2-2x-8$; R(x)=-14x+33)

(Soluc: C(x)=3x+1; R(x)=-22x-3)

(Soluc: $C(x)=2x^2-x+2$; R(x)=-1)

(Soluc: $C(x)=2x^3+x^2-x-3$; R(x)=14)

(Soluc: C(x)=2x; $R(x)=9x^2+3x+8$)

(Soluc: $C(x)=2x^2+x+3/2$; R(x)=8x+7/2)

(Soluc: $C(x)=2x^2+x/4+23/16$; R(x)=21x/16+37/16)

(Soluc: $C(x)=x^3+x^2/2-5x/4-9/8$; R(x)=35x/8-27/4)

(Soluc: $C(x)=2x^2+x/3+8/9$; R(x)=-29/9)

(Soluc: $C(x)=2x^2+x/2-11/4$; R(x)=-13x/4+53/4)

(Soluc: $C(x)=2x^2+13x/3+38/9$; R(x)=121x/9-148/9)

(Soluc: $C(x)=2x^2+3x/2-5/8$; R(x)=17x/8-15/4)

(Soluc: $C(x)=3x^3+5x^2/2-3x+13$; R(x)=6x-24)

(Soluc: $C(x)=x^3-2x/3+2$; R(x)=14x/3)

(Soluc: $C(x)=2x^2-x/3-2/3$; R(x)=-x/3+1/3)

3. Inventar una división de polinomios cuyo cociente sea $C(x) = x^2 - 3x + 1$, el resto R(x) = x - 1 y el dividendo un polinomio de 4º grado.

4. Una cuestión de jerarquía: ¿Es lo mismo $(6x^4)$: $(2x^2)$ y $6x^4$: $2x^2$? Razonar la respuesta. (Soluc: No es lo mismo)

HOJA 5: Regla de Ruffini. Extraer factor común.

1. Efectuar (en el cuaderno) las siguientes divisiones mediante la **regla de Ruffini**, y <u>comprobar</u> mediante la regla D=d-C+R:

a)
$$x^3-4x^2+5x-8 \mid x-2$$

b)
$$x^4 - 7x^3 + 8x^2 - 2 \mid x - 1$$

c)
$$2x^4 + 3x^3 - 4x^2 + x - 18 \mid x - 2 \mid x$$

d)
$$x^3+x^2+x+1 \mid x+1$$

e)
$$2x^4+x^3-2x^2-1$$
 | x+2

f)
$$2x^5 + 3x^2 - 6$$
 $x+3$

g)
$$3x^4 - 10x^3 - x^2 - 20x + 5 \mid x - 4$$

h)
$$2x^4 - 10x + 8 \ x + 2$$

i)
$$10x^3 - 15 x + 5$$

j)
$$x^3+2x^2+3x+1$$
 | $x-1$

k)
$$x^4-2x^3+x^2+3x+1$$
 $x-2$

I)
$$2x^4-7x^3+4x^2-5x+6 \mid x-3$$

m)
$$x^5+1 | x-1$$

n)
$$x^4 + x^3 - x^2 + x - 1 x + 2$$

o)
$$x^3 - 7x^2/2 - 10x/3 - 70 \mid x - 6$$

p)
$$x^4-2x^3/3+x^2/2+3x+1$$
 $x+3$

q)
$$2x^3 + 3x^2 - 1 \left[x - 1/2 \right]$$

r)
$$3x^3 + 2x^2 + 2x - 1 \left[x - 1/3 \right]$$

s)
$$ax^3-3a^2x^2+2a^3x+1 \mid x-a$$

(Soluc:
$$C(x)=x^2-2x+1$$
; $R=-6$)

(Soluc:
$$C(x)=x^3-6x^2+2x+2$$
; División exacta)

(Soluc:
$$C(x)=2x^3+7x^2+10x+21$$
; $R=24$)

(Soluc:
$$C(x)=x^2+1$$
; División exacta)

(Soluc:
$$C(x)=2x^3-3x^2+4x-8$$
; $R=15$)

(Soluc:
$$C(x)=2x^4-6x^3+18x^2-51x+153$$
; $R=-465$)

(Soluc:
$$C(x)=3x^3+2x^2+7x+8$$
; $R=37$)

(Soluc:
$$C(x)=2x^3-4x^2+8x-26$$
; $R=60$)

(Soluc:
$$C(x)=10x^2-50x+250$$
; $R=-1265$)

(Soluc:
$$C(x)=x^2+3x+6$$
; $R=7$)

(Soluc:
$$C(x)=x^3+x+5$$
; $R=11$)

(Soluc:
$$C(x)=2x^3+5x^2+x-2$$
; División exacta)

(Soluc:
$$C(x)=x^4+x^3+x^2+x+1$$
; $R=2$)

(Soluc:
$$C(x)=x^3-x^2+x-1$$
; $R=1$)

(Soluc:
$$C(x)=x^2+5x/2+35/3$$
; División exacta)

Soluc:
$$C(x) = x^3 - \frac{11}{3}x^2 + \frac{23}{2}x - \frac{63}{2}$$
; $R(x) = \frac{191}{2}$

(Soluc:
$$C(x)=2x^2+4x+2$$
; División exacta)

(Soluc:
$$C(x)=3x^2+3x+3$$
; División exacta)

(Soluc:
$$C(x)=ax^2-2a^2x$$
; $R=1$)

2. Extraer el máximo factor común posible (y comprobar):

a)
$$4x^2 - 6x + 2x^3 =$$

b)
$$3x^3 + 6x^2 - 12x =$$

c)
$$12x^4v^2 + 6x^2v^4 - 15x^3v =$$

d)
$$-12x^3 - 8x^4 + 4x^2 + 4x^6 =$$

e)
$$-3xy - 2xy^2 - 10x^2yz =$$

f)
$$-3x + 6x^2 + 12x^3 =$$

a)
$$2ab^2 - 4a^3b + 8a^4b^3 =$$

h)
$$6x^3v^2 - 3x^2vz + 9xv^3z^2 =$$

i)
$$-2x(x-3)^2 + 4x^2(x-3) =$$

(Soluc:
$$2x(x^2+2x-3)$$
)

(Soluc:
$$3x(x^2+2x-4)$$
)

(Soluc:
$$3x^2y(4x^2y+2y^3-5x)$$
)

(Soluc:
$$4x^2(x^4-2x^2-3x+1)$$
)

$$(Soluc: -xy(3+2y+10xz))$$

(Soluc:
$$3x(4x^2+2x-1)$$
)

(Soluc:
$$2ab(b-2a^2+4a^3b^2)$$
)

(Soluc:
$$3(2x^3y^2-x^2yz+3xy^3z^2)$$
)

(Soluc:
$$2x(x-3)(x+3)$$
)

HOJA 6: IDENTIDADES NOTABLES

$$(A + B)^{2} = A^{2} + 2AB + B^{2}$$
$$(A - B)^{2} = A^{2} - 2AB + B^{2}$$
$$(A + B)(A - B) = A^{2} - B^{2}$$

- **1.** Desarrollar las siguientes expresiones utilizando la identidad notable correspondiente, y simplificar. Obsérvense los primeros ejemplos:
 - **a)** $(x+5)^2 = x^2 + 2 \cdot x \cdot 5 + 5^2 = x^2 + 10x + 25$
 - **b)** $(x-6)^2 = x^2 2 \cdot x \cdot 6 + 6^2 = x^2 12x + 36$
 - **c)** $(x+2)(x-2) = x^2 2^2 = x^2 4$
 - **d)** $(x+2)^2 =$ (Soluc: $x^2 + 4x + 4$)
 - **e)** $(x-3)^2 =$ (Soluc: $x^2 6x + 9$)
 - f) (x+4)(x-4) = (Soluc: $x^2 16$)
 - g) $(x+3)^2 =$ (Soluc: $x^2 + 6x + 9$)
 - **h)** $(x-4)^2 =$ (Soluc: $x^2 8x + 16$)
 - i) (x+5)(x-5) = (Soluc: $x^2 25$)
 - j) $(a+4)^2 =$ (Soluc: $a^2 + 8a + 16$)
 - **k)** $(a-2)^2 =$ (Soluc: $a^2 4a + 4$)
 - (Soluc: $a^2 9$)
 - **m)** $(2x+3)^2 =$ (Soluc: $4x^2 + 12x + 9$)
 - n) $(3x-2)^2 =$ (Soluc: $9x^2 12x + 4$)
 - **o)** (2x+1)(2x-1) = (Soluc: $4x^2 1$)
 - **p)** $(3x+2)^2 =$ (Soluc: $9x^2 + 12x + 4$)
 - **q)** $(2x-5)^2 =$ (Soluc: $4x^2 20x + 25$)

r) (3x+2)(3x-2) = (Soluc: $9x^2 - 4$)

s) $(4b+2)^2 =$ (Soluc: $16b^2 + 16b + 4$)

(Soluc: $25b^2 - 30b + 9$)

u) (b+1)(b-1) = (Soluc: $b^2 - 1$)

v) $(4a+5)^2 =$ (Soluc: $16a^2 + 40a + 25$)

w) $(5a-2)^2 =$ (Soluc: $25a^2 - 20a + 4$)

x) (5a+2)(5a-2) = (Soluc: $25a^2 - 4$)

y) $(4y+1)^2 =$ (Soluc: $16y^2 + 8y + 1$)

z) $(2y-3)^2 =$ (Soluc: $4y^2 - 12y + 9$)

(Soluc: $4y^2 - 9$)

 $\beta) (3x+4)^2 = (Soluc: 9x^2 + 24x + 16)$

 γ) $(3x-1)^2 =$ (Soluc: $9x^2 - 6x + 1$)

δ) (3x+4)(3x-4) = (Soluc: $9x^2 - 16$)

 $(5b+1)^2 = (Soluc: 25b^2 + 10b+1)$

(Soluc: $4x^2 - 16x + 16$)

 η) (4x+3)(4x-3) = (Soluc: $16x^2 - 9$)

2. Carlos, un alumno de 3º de ESO, indica lo siguiente en un examen:

$$(x+2)^2 = x^2 + 4$$

Razonar que se trata de un grave error. ¿Cuál sería la expresión correcta?