

Non Parametric Bayesian Acoustic Model Discovery for Phoneme Classification

Tanuj Jain

26-03-2015

Problem Description

- Classification of Phonemes:
 - Unsupervised: Labels absent
 - Non Parametric: Varying number of parameters
 - Language Independent
- Phoneme:
 - Basic unit of Language's Phonology
 - Number varies from language to language
 - Multiple phonemes combine to form meaningful entity
 - Example:

table = /t/, /a/, /bl/

Agenda

- Modeling the Problem
 - Hidden Markov Model (HMM)
 - Basics of HMM
 - Our model
 - Baum Welch Algorithm
- Learning Approach: Gibbs Sampling
 - Basic Idea
 - Parameter sampling on a 2-D gaussian
 - Extension to estimation of parameters of our model
- Non-parametric case
- Results so far
- Future work

Modeling Phonemes

Each Phoneme represented by an HMM

Why HMMs?

1. Model Observations with temporal dependence

$$P(q_{t+1} = s_i \mid q_t = s_j, \dots, q_0 = s_0) = P(q_{t+1} = s_i \mid q_t = s_j)$$

$$P(X_{t+1} | q_{t+1}, q_t) = P(X_{t+1} | q_{t+1})$$

26.03.2015

Why HMMs?

- 2. Given HMM $\Theta = \{A,B,\pi\}$, Observations : $O = O_1,O_2,....,O_T$
- Application:

The Evaluation Problem: Find $P(O | \Theta_i)$

The Learning Problem:

Adjust the Model Parameters $\Theta = \{A,B,\pi\}$

Hidden Markov Model: Markov Chain

Markov Chain

$$\Omega = \{s0, s1, s2\}$$

$$A = \{a_{ij}\} = P(q_{t+1} = s_i \mid q_t = s_j)$$

$$\pi = \{\pi_i\} = P(q_0 = s_i)$$

Sequence of Random Variables {q_t} on Ω for t=0,1,2, ...

Hidden Markov Model: Markov Chain

1st Order property:

$$P(q_{t+1} = s_i | q_t = s_j, ..., q_0 = s_0) = P(q_{t+1} = s_i | q_t = s_j)$$

- Problems of type:
 - Given: **A**, π
 - To find: $P(q_t = s_i, q_{t+1} = s_j, q_{t+2} = s_k)$

Hidden Markov Model

Bayes' Rule & 1st Order Assumption:

$$P(q_1, q_2,, q_n \mid X_1, X_2,, X_n) = \prod_{i=1}^n P(X_i \mid q_i) \cdot \prod_{i=1}^n P(q_i \mid q_{i-1})$$

- Weather Example:
 - States: **, ; **

- Observations:
 - ➤ Umbrella

No Umbrella

Observation probability distribution

$$B=\{b_i(v)\} = P(X_t = v | q_t = s_i)$$

Weather Example: HMM

A =

Today's	Tomorrow's Weather		
Weather	*	₩.	*
*	0.8	0.05	0.15
M	0.2	0.6	0.2
0	0.2	0.3	0.5

B =

Weather	Umbrella Probability
*	0.1
₩.	0.8
●	0.3

Weather Example: HMM

$$P(q_1 = , q_2 = , q_3 = , | X_1 = , X_2 = , X_3 = ,$$

$$\{ P(X_1 = X | q_1 = A) | P(X_2 = X | q_2 = A) | P(X_3 = X | q_3 = A) \}$$

$$\left\{ P(q_1 = \mbox{?}) P(q_2 = \mbox{?}) P(q_3 = \mbox{?}) P(q_3 = \mbox{?}) P(q_2 = \mbox{?}) \right\}$$

Our Model

- 1 Phoneme = 1 HMM
- 3 state Left-Right HMM
- Each state Density ~ GMM

Learning Model Parameters: Baum Welch

- Traditional EM Approach: Baum Welch Algorithm
 - E-Step: Evaluate Posterior Probability ~ $P(q_t = s_i | O_1, O_2, ..., O_T)$
 - M-Step: Update Parameters using Posterior ~ (π,A,B)

26.03.2015

Learning Approach: Gibbs Sampling

- Purpose:
 - To generate samples from a joint distribution
- Idea:
 - generate a sequence of samples from conditional distributions
 - Stationary Markov Chain to approximate joint distribution
- Distribution to sample: P(a,b,c)

Algorithm:

$$a_i \sim P(a \mid b_{i-1}, c_{i-1})$$

$$b_i \sim P(b \mid a_i, c_{i-1})$$

$$c_i \sim P(c \mid a_i, b_i)$$

With Initializations: $b = b_0$, $c = c_0$

Sample from Bivariate Gaussian

- Task: To generate samples from a 2-D Gaussian
- Given: (μ,σ)

$$P(x_1, x_2) = N(X; \mu, \Sigma)$$

$$\mu = [\mu_1, \mu_2]$$

$$\Sigma = \begin{pmatrix} \delta_{1,1}^2 & \delta_{1,2}^2 \\ \delta_{2,1}^2 & \delta_{2,2}^2 \end{pmatrix}$$

$$P(x_i \mid x_j) = N(x_i; \widetilde{\mu}_i, \widetilde{\delta}_i)$$

Sample from Bivariate Gaussian: Process

Sample from Bivariate Gaussian: Actual Samples

26.03.2015

Sampling Parameters of Gaussian

- Given: Data (X)
- To determine: (μ,λ) for X ~ M(X; μ, λ)
- Assume Normal-Gamma Prior on P(μ, λ) ,i.e.,

$$P(\mu, \lambda) \sim NG(\mu, \lambda \mid \mu_0, \kappa_0, \alpha_0, \beta_0)$$

$$NG(\mu, \lambda \mid \mu_0, \kappa_0, \alpha_0, \beta_0) = N(\mu \mid \mu_0, (\kappa_0 \lambda)^{-1})Ga(\lambda \mid \alpha_0, \beta_0)$$

$$P(\mu \mid \lambda, X) = N(\mu; \frac{\kappa_0 \mu_0 + n\overline{x}}{\kappa_0 + n}, ((\kappa_0 + n)\lambda^{-1}))$$

$$P(\lambda \mid X) = Ga(\lambda; \alpha_0 + n/2, \beta_0 + \frac{1}{2} \sum_{i=1}^{n} (x_i - \bar{x})^2 + \frac{\kappa_0 n(\bar{x} - \mu_0)^2}{2(\kappa_0 + n)})$$

Sample HMM Parameters

Getting HMM Labels for each sequence

Sample HMM Parameters

Sampling Equation:

$$P(L_k = p \mid ...) = \frac{(N_p + \gamma / P)}{K - 1 + \gamma} P(O_k \mid \theta_p)$$

Multiple States: Sample State Labels

- Getting State Labels for each sample within a Sequence
- Updating transition probabilities

23

Multiple States: Sample State Labels

- 3 states
- Block sampling state labels within sequence: s_i
 - Calculate $\alpha_{ti} = P(O_1, O_2, \dots, O_t, q_t = s_i \mid \theta_p)$
 - Back Track using transition probabilities to get states
- Transition probabilities {a_{ii}}

Prior
$$\longrightarrow P(a_{ij}) \sim Dir(a_{ij}; \eta_0)$$
Posterior $\longrightarrow P(a_{ii} \mid ...) \sim Dir(a_{ii}; \eta_0 + \eta_{ii})$

Multiple States: Sample State Labels

Sample S_i from Probabilities:

$$\begin{bmatrix} lpha_{1,T-1} * a_{13} \\ lpha_{2,T-1} * a_{23} \\ lpha_{3,T-1} * a_{33} \end{bmatrix}$$

Sample GMM Parameters

- Each state represents one GMM
- Sample mixture Labels c_n
- Update μ_m, λ_m, π_m

Sample GMM Parameters

- Parameters to be sampled: (μ,λ,c₁,c₂,....,c_T)
- Priors:

$$P(\mu_{m}, \lambda_{m}) \sim NG(\mu_{m}, \lambda_{m} \mid \mu_{0}, \kappa_{0}, \alpha_{0}, \beta_{0})$$

$$P(\pi) \sim Dir(\pi; \beta)$$

$$P(c_{n} \mid \pi) \sim Cat(c_{n} \mid \pi)$$

Posteriors:

$$P(c_{n} = m \mid \pi_{1}, \pi_{2}, ..., \pi_{m}, \mu_{1}, \mu_{2}, ..., \mu_{m}, \lambda_{1}, \lambda_{2},, \lambda_{m}, X) = \frac{P(X \mid c_{n} = m)P(c_{n} = m)}{P(X)}$$

$$P(\pi \mid c_1, c_2,, c_n, \mu_1, \mu_2, ..., \mu_m, \lambda_1, \lambda_2,, \lambda_m, X) = Dir(\pi, \beta + N_m)$$

26.03.2015

Outlook: Non Parametric

- Number of HMMs unknown
- Each iteration:
 - 1. Calculate Posterior for existing HMMs
 - Sample new HMM parameter set
 Onew
 - Calculate Posterior for this new HMM
 - 4. Sample HMM label (L_i) for each sequence
 - ➤ If assigned Label ~ Newly sampled HMM, keep HMM parameters
 - > Else continue with old HMM count

Results

Evaluation Measure: Cluster Purity

$$Purity = \frac{1}{N} \sum_{k} \max |\omega_k \cap c_j|$$

$$Purity = \frac{1}{17} \times (5 + 4 + 3) = 0.71$$

Supervised: Known Number of Classes

26.03.2015

Unsupervised: Known Number of Classes

26.03.2015

Future Work

- Extension to Non Parametric Case .i.e., unknown number of HMMs.
- Use of Un-segmented Data.

Thank You!

Questions?

