# 問題4 次のプログラムの説明を読み、各設問に答えよ。

# [プログラムの説明]

階乗を再帰的に求めるプログラムFactである。例えば、n の階乗はn! と表し、n! =  $n \times (n-1) \times (n-2) \times \cdot \cdot \cdot \times 2 \times 1$  (n=0 の場合は 1) と求めることができる。また、 $(n-1)! = (n-1) \times (n-2) \times \cdot \cdot \cdot \times 2 \times 1$  を用いて、

 $n! = n \times (n-1)!$  (ただし, 0! = 1) と再帰的に求めることもできる。

# [擬似言語の記述形式の説明]

| 記述形式     | 説明                   |  |  |  |  |
|----------|----------------------|--|--|--|--|
| 0        | 手続き、変数などの名前、型などを宣言する |  |  |  |  |
| · 変数 ← 式 | 変数に式の値を代入する          |  |  |  |  |
| /* 文 */  | 注釈を記述する              |  |  |  |  |
| ▲ 条件式    | 選択処理を示す。             |  |  |  |  |
| • 処理 1   | 条件式が真の時は処理1を実行し,     |  |  |  |  |
| <u> </u> | 偽の時は処理2を実行する。        |  |  |  |  |
| • 処理 2   |                      |  |  |  |  |
| ▼        |                      |  |  |  |  |
| ■ 条件式    | 前判定繰り返し処理を示す。        |  |  |  |  |
| • 処理     | 条件式が真の間、処理を実行する。     |  |  |  |  |
| •        |                      |  |  |  |  |

### [演算子と優先順位]

| 演算の種類 | 演算子                                        | 優先順位     |
|-------|--------------------------------------------|----------|
| 単項演算  | +, -, not                                  | 高        |
| 乗除演算  | ×, ÷, %                                    | <b>†</b> |
| 加減演算  | +, -                                       |          |
| 関係演算  | $>$ , $<$ , $\geq$ , $\leq$ , $=$ , $\neq$ |          |
| 論理積   | and                                        | ↓        |
| 論理和   | or                                         | 低        |

注記 整数同士の除算では,整数の商を結果として返す。%演算子は剰余算を表す。

#### 「プログラム]

○Fact (整数型:n)

/\* 階乗の計算をする \*/



<設問1> 4の階乗を求める場合、プログラム中の $\alpha$ を実行するときの変数nをト レースした表のに入れるべき適切な字句を解答群から選べ。

表 トレースの内容

| 順番 | 1回目 | 2回目 | 3回目 | 4回目 | 5回目 |
|----|-----|-----|-----|-----|-----|
| n  | (1) | 3   | (2) | 1   | (3) |

### (1) ~ (3) の解答群

ア.0

イ.1 ウ.2 エ.3 オ.4

<設問2> プログラム中の に入れるべき適切な字句を解答群から選べ。

次は、階乗を求めるプログラムを利用して、組合せ(Combination)の総数を求める プログラムComb\_nである。組合せとは、異なるn個のものの中から、異なるr個のも のを取り出し,順序を考えず1組にしたものであり, n個からr個取る組合せといい. その総数を<sub>n</sub>C<sub>r</sub>で表し、次の式で求めることができる。

$$_{n}C_{r}=n! \div \{r! \times (n-r)!\}$$
  $(r=0$  または $r=n$  の場合は 1)

### [プログラム]

○Comb\_n (整数型: n, 整数型: r)

/\* 組合せの計算をする \*/



#### (4) . (5) の解答群

ア. Fact(n)

イ. Fact(n-r) ウ. Fact(r)

エ. (n-1) × Fact(n) オ. n × Fact(n-r)

力. n imes Fact(n)