Facultad de Ingeniería y Ciencias Exactas

Departamento de Ciencias Básicas

Materia FÍSICA 2 FÍSICA APLICADA A LA BIOCIENCIAS Código: 3.1.055

Guía de Actividades de Formación Práctica Nro 5

HIDROSTÁTICA

Ejercicio 5-1

Hallar el valor en Pascales de las unidades de presión:

- a) 13 kp/cm^2
- b) b) 736 cm Hg
- c) c) 1200 mb.

Rtas: a) 1.27 10⁶ Pa; b) 9.73 10 ⁴ Pa; c) 1.2 10⁵ Pa.

Ejercicio 5-2

Un hombre de 70 kg de masa está parado y apoyado en sus dos pies. La superficie de apoyo de cada zapato es de 200 cm^2 ¿Cuál será la presión, expresada en Pa, ejercida sobre el zapato por el suelo? Datos: $g = 9.81 \text{ m/s}^2$.

Rta: 17167,5 Pa.

Ejercicio 5-3

Encontrar la diferencia de presión entre los tanques A y B si d_1 = 300mm, d_2 = 150 mm, d_3 = 460 mm, d_4 = 200mm, densidad relativa del mercurio = 13,6.

Rta: 77.131 kPa.

Facultad de Ingeniería y Ciencias Exactas

Departamento de Ciencias Básicas

Materia FÍSICA 2 FÍSICA APLICADA A LA BIOCIENCIAS Código: 3.1.055

Ejercicio 5-4

Un tubo en U sencillo contiene mercurio. Si se vierten 11,2 cm de agua, determinar a qué altura se elevará el mercurio en la rama izquierda a partir del nivel inicial.

Rta.: 0,41 cm.

Ejercicio 5-5

¿Cuál es en centímetros, la altura h del nivel de aceite de la figura? ¿Qué sucederá si en vez de agua hay mercurio?

Rta: 16.58 cm.

Ejercicio 5-6

Un trozo de caucho pesa 0,285 N en el aire. Cuando se lo mantiene sumergido en agua mediante un dinamómetro como muestra la figura 9-7, se lee en la escala del mismo 0,855N. Hallar la densidad relativa del corcho.

Rta: 0,250.

Ejercicio 5-7

Una esfera hueca de radio interior 9 cm y radio exterior 10 cm flota sumergida hasta la mitad en un líquido de densidad relativa 0,8.

- a) Calcular la densidad relativa del material de la esfera.
- b) ¿Cuál será la densidad relativa de un líquido en el cual la esfera pudiera justo flotar totalmente sumergida?

Rta: a) $1,48 \times 10^{3} \text{ kg/m}^{3}$; b) 400 kg/m^{3} .

Ejercicio 5-8

¿Qué área deberá tener el bloque de hielo más pequeño de 0,5 m de espesor para soportar a un hombre de 100 kg de masa? La densidad relativa del hielo es de 0,917 y está flotando en agua dulce.

Rta: $2,41 \text{ m}^2$.

5-2

Facultad de Ingeniería y Ciencias Exactas

Departamento de Ciencias Básicas

Materia FÍSICA 2 FÍSICA APLICADA A LA BIOCIENCIAS Código: 3.1.055

Ejercicio 5-9

Un bloque cúbico de acero ($\rho_r = 7.8$) de arista "a" flota en mercurio ($\rho_r = 13.6$).

- a) ¿Qué fracción del bloque se encuentra por encima de la superficie de mercurio?
- b) Se vierte agua sobre la superficie de mercurio, ¿qué profundidad –como fracción de la arista- ha de tener la capa de agua para que su superficie alcance justamente la superficie superior del bloque de acero?

Rtas: a) 0,426: b) 0,46a.

Ejercicio 5-10

Un bloque de madera tiene 0,5 m de largo, 0,2 m de ancho y 0,02 m de espesor. Su densidad relativa es 0,6 ¿Qué volumen de plomo ($\rho_r = 11,3$) ha de sujetarse debajo del bloque para que éste se hunda en agua en calma hasta que su superficie superior quede justo al nivel del agua?

Rta: 77.7 cm³.

Ejercicio 5-11

Un bloque cúbico de madera de 10 cm de arista y 0.5 de densidad relativa flota en una vasija con agua. Se vierte sobre el agua un aceite de densidad relativa 0,8 hasta que la superficie superior de la capa de aceite está a 4 cm por debajo de la superficie exterior del bloque.

- a) ¿Qué profundidad tiene la capa de aceite?
- b) ¿Cuál es la presión manométrica en la cara inferior del bloque?

Rta: a) 5 cm, b) 490 Pa.