CS1022 Inducción - recursividad UTEC UNIVERSIDAD DE INGENERIA

Resumen

Sucesiones recurrentes

Otros esquemas de inducción

Sucesiones recurrentes

Una sucesión formada por números reales es llamada recurrente si cada término, a partir de cierta posición, se define a partir de los anteriores.

En otras palabras, tenemos una sucesión x_1, x_2, x_3, \ldots en la que se <u>utrec</u> cumple que x_n está expresado en función de los términos anteriores $x_1, x_2, \ldots, x_{n-1}$, desde cierto valor de n en adelante.

Sucesiones recurrentes

Una sucesión formada por números reales es llamada recurrente si cada término, a partir de cierta posición, se define a partir de los anteriores.

En otras palabras, tenemos una sucesión x_1, x_2, x_3, \ldots en la que se utro cumple que x_n está expresado en función de los términos anteriores $x_1, x_2, \ldots, x_{n-1}$, desde cierto valor de n en adelante.

Aclaración: en la notación x_k , la letra k es llamada índice. Una sucesión puede empezar con el índice 0 o cuaquier otro índice.

Consideremos la sucesión cuyo primer término es $x_1=1$ y satisface la recurrencia $x_n=2x_{n-1}$ para todo $n\geq 2$, es decir, cada término a partir del segundo es el doble del término anterior.

Consideremos la sucesión cuyo primer término es $x_1=1$ y satisface la recurrencia $x_n=2x_{n-1}$ para todo $n\geq 2$, es decir, cada término a partir del segundo es el doble del término anterior.

Esta sucesión es $x_1 = 1$, $x_2 = 2$, $x_3 = 4$, $x_4 = 8$, $x_5 = 16$, etc.

Como se puede observar, es una progresión geométrica.

Consideremos la sucesión cuyo primer término es $x_1=1$ y satisface la recurrencia $x_n=2x_{n-1}$ para todo $n\geq 2$, es decir, cada término a partir del segundo es el doble del término anterior.

Esta sucesión es $x_1 = 1$, $x_2 = 2$, $x_3 = 4$, $x_4 = 8$, $x_5 = 16$, etc.

Como se puede observar, es una progresión geométrica.

Aclaración: La recurrencia $x_n = 2x_{n-1}$ para todo $n \ge 2$ también se puede expresar como $x_{n+1} = 2x_n$ para todo $n \ge 1$. ¿De qué otra forma se puede expresar?

7

Consideremos la sucesión cuyo primer término es $y_1=2$ y satisface la recurrencia $y_n=2y_{n-1}+1$ para todo $n\geq 2$, es decir, cada término a partir del segundo es el doble del término anterior sumado con 1.

Consideremos la sucesión cuyo primer término es $y_1=2$ y satisface la recurrencia $y_n=2y_{n-1}+1$ para todo $n\geq 2$, es decir, cada término a partir del segundo es el doble del término anterior sumado con 1.

Esta sucesión es $y_1 = 2$, $y_2 = 5$, $y_3 = 11$, $y_4 = 23$, $y_5 = 47$, etc.

La sucesión de Fibonacci.

Consideremos la sucesión F_1, F_2, F_3, \ldots definida por $F_1 = 1, F_2 = 1$ y $F_{n+2} = F_{n+1} + F_n$, para todo $n \ge 1$. Es decir, cada término a partir del tercero es igual a la suma de los dos términos anteriores.

La sucesión de Fibonacci.

Consideremos la sucesión F_1, F_2, F_3, \ldots definida por $F_1 = 1$, $F_2 = 1$ y $F_{n+2} = F_{n+1} + F_n$, para todo $n \ge 1$. Es decir, cada término a partir del tercero es igual a la suma de los dos términos anteriores.

De esta forma tenemos $F_1=1$, $F_2=1$, $F_3=2$, $F_4=3$, $F_5=5$, $F_6=8$, $F_7=13$, etc.

Ejercicio

Considere la sucesión $(x_n)_{n\geq 1}$ definida por $x_1=1$, $x_{n+1}=2x_n+1$, para todo $n\geq 1$. Demuestre (usando inducción simple) que $x_n=2^n-1$, para todo entero positivo n.

Plantearemos algunos esquemas de inducción que serán útiles para tratar sucesiones recurrentes y otro tipo de problemas

Inducción a partir de los dos anteriores

Para cada entero positivo n, sea P(n) una proposición. Si se cumplen las condiciones:

- \blacksquare P(1) y P(2) son verdaderas.
- Si P(k) y P(k+1) son verdaderas entonces P(k+2) es verdadera.

concluimos que P(n) es verdadera, para todo entero positivo n.

Plantearemos algunos esquemas de inducción que serán útiles para tratar sucesiones recurrentes y otro tipo de problemas

Inducción a partir de los dos anteriores

Para cada entero positivo n, sea P(n) una proposición. Si se cumplen las condiciones:

- \blacksquare P(1) y P(2) son verdaderas.
- Si P(k) y P(k+1) son verdaderas entonces P(k+2) es verdadera.

concluimos que P(n) es verdadera, para todo entero positivo n.

14 Note que el caso base requiere de dos condiciones.

Considere la sucesión $(x_n)_{n\geq 1}$ definida por $x_1=5$, $x_2=9$ y $x_{n+2}=3x_{n+1}-2x_n$, para todo $n\geq 1$. Demuestre que $x_n=2^{n+1}+1$, para todo entero positivo n.

Considere la sucesión $(x_n)_{n\geq 1}$ definida por $x_1=5$, $x_2=9$ y $x_{n+2}=3x_{n+1}-2x_n$, para todo $n\geq 1$. Demuestre que $x_n=2^{n+1}+1$, para todo entero positivo n.

Solución.

Comprobamos los dos primeros:

$$x_1 = 5 = 2^{1+1} + 1$$
 y $x_2 = 9 = 2^{2+1} + 1$.

Considere la sucesión $(x_n)_{n\geq 1}$ definida por $x_1=5, x_2=9$ y $x_{n+2} = 3x_{n+1} - 2x_n$, para todo $n \ge 1$. Demuestre que $x_n = 2^{n+1} + 1$. para todo entero positivo n.

Solución.

Comprobamos los dos primeros:

$$x_1 = 5 = 2^{1+1} + 1$$
 y $x_2 = 9 = 2^{2+1} + 1$.

Suponemos que se cumplen las condiciones $x_k = 2^{k+1} + 1$ v

$$x_{k+1} = 2^{k+2} + 1$$
. Entonces

$$x_{k+2} = 3x_{k+1} - 2x_k$$

= $3(2^{k+2} + 1) - 2(2^{k+1} + 1)$
= $12 \cdot 2^k + 3 - 4 \cdot 2^k - 2$

Por lo tanto, $x_{k+2} = 2^{k+3} + 1$ que es lo que necesitamos demostrar. Esto completa la inducción.

Sea F_n la sucesión de Fibonacci definida antes. Demuestre que $F_n < 2^n$, para todo entero positivo n.

Inducción de dos en dos

Para cada entero positivo n, sea P(n) una proposición. Si se cumplen las condiciones:

- \blacksquare P(1) y P(2) son verdaderas.
- Si P(k) es verdadera entonces P(k+2) es verdadera. concluimos que P(n) es verdadera, para todo entero positivo n.

Inducción de dos en dos

Para cada entero positivo n, sea P(n) una proposición. Si se cumplen las condiciones:

- \blacksquare P(1) y P(2) son verdaderas.
- Si P(k) es verdadera entonces P(k+2) es verdadera. concluimos que P(n) es verdadera, para todo entero positivo n.

Note que el caso base requiere de dos condiciones.

Podemos plantear algunas variantes al esquema anterior, por ejemplo:

Inducción de tres en tres

Para cada entero positivo n, sea P(n) una proposición. Si se cumplen las condiciones:

- P(1), P(2) y P(3) son verdaderas.
- Si P(k) es verdadera entonces P(k+3) es verdadera.

concluimos que P(n) es verdadera, para todo entero positivo n.

También podemos cambiar los casos iniciales, con lo cual cambia la conclusión. Por ejemplo:

Inducción de 3 en 3

Para cada entero positivo n, sea P(n) una proposición. Si se cumplen las condiciones:

- P(5), P(6) y P(7) son verdaderas.
- Si P(k) es verdadera entonces P(k+3) es verdadera.

concluimos que P(n) es verdadera, para todo entero $n \ge 5$.

En un país solo hay billetes de 3 y 7 pesos. Demuestre que para todo entero $n \ge 12$ es posible pagar exactamente n pesos.

Demuestre que para todo $n \ge 6$ es posible dividir un cuadrado en n_{UTEC} cuadrados (no necesariamente del mismo tamaño).

