<u>Dashboard</u> / My courses / <u>Numerical Analysis (CEN), 23s</u> / <u>Apr 3 - Apr 9 (Week 7)</u> / <u>HW #3 (due Apr 14, 18:00)</u>

Question **3**Incomplete answer
Marked out of 30

(Bisection Method). Prior to entering in the corresponding input fields, all numerical answers should be rounded to 6-digit floating-point numbers. Given a real number z, the symbol \tilde{z} denotes the result of rounding of z to a 6-digit floating-point number.

(i) Use the Bisection method to find an approximation p_N of the unique solution p the equation

$$3.64x(1-x^2+x)\ln(x) = x^2 - 1$$

in $\left[a,b\right]=\left[0.05,0.5\right]$ such that

$$ext{RE}(ilde{p}_Npprox ilde{p}_{N-1})<10^{-3}.$$

(iii) Show then your work by filling in the table that follows. In each input field in the column labelled by

$$f(a_n)f(p_n),$$

please enter either a plus sign + (if $f(a_n)f(p_n) > 0$), or a minus sign – (if $f(a_n)f(p_n) < 0$). If a particular row of the table is not necessary, enter an asterisk * in each input field in the row. In order to calculate the relative error

$$\mathrm{RE}(ilde{p}_1pprox ilde{p}_0)$$

in the first row, assume formally that $p_0=0.05.$

n	a_n	p_n	b_n	$f(a_n)f(p_n)$	$\mathrm{RE}(ilde{p}_n$
1	0.05	0.275	0.5	-	*
2	0.05	0.1625	0.275	-	0.692308
3	0.05	0.10625	0.1625	+	0.529412
4	0.10625	0.134375	0.1625	-	0.209302
5	0.10625	0.120313	0.134375	-	0.116878
6	0.10625	0.113282	0.120313	-	0.0620663
7	0.10625	0.109766	0.113282	+	0.0320318
8	0.109766	0.111524	0.113282	+	0.0157634
9	0.111524	0.112403	0.113282	+	0.0078200
10	0.112403	0.112843	0.113282	+	0.0038992
11	0.112843	0.113063	0.113282	+	0.0019458
12	0.113063	0.113172	0.113282	-	0.000963
13	*	*	*	*	*

As suggested in the previous problem, users of scientific calculators may first create a copy of the above table in an OpenOffice (or Excel) worksheet, and then copy-paste their answers.

(ii) According to your results in (i) and (ii),

$$p_N \doteq \boxed{ ext{ 0.113172} }$$

Please answer all parts of the question.

Check

The submission was invalid, and has been disregarded without penalty.

Previous Activity

Jump to...

Next Activity