ANALISI CONSUMI ENERGETICI TRAMITE POWERAPI

Martina Salvati

October 24, 2022

Contents

Abstract

This is a simple paragraph at the beginning of the document. A brief introduction about the main subject.

List of Figures

1	CONSUMI ENERGETICI GLOBALI	1
2	ENERGIA MEDIA CONSUMATA	2
3	CONSUMI ENERGETICI DATABASE	3
4	SEQUENTIAL-CPU-TEST	4
5	CPU-PERFORMANCE-N-RATE	5
6	CPU-PERFORMANCE-P-N (threads)	6
7	CPU-PERFORMANCE-P-N (cpu-max-prime)	7
8	CPU-PERFORMANCE-N-RATE	8
9	CPU-PERFORMANCE-CPUS-LIMIT	9
10	CPU-IO-RNDRD-S-N	10

Per la rappresentazione di questo grafico viene fatta la somma ogni secondo della potenza istantanea

Figure 2: ENERGIA MEDIA CONSUMATA

Energy Consumption filter by group

L'energia media

consumata rientra negli standard delle CPU moderne.

Vengono analizzati i consumi energetici dei database coinvolti nell'utilizzo di POWERAPI

Tre diverse run di sysbench cpu - rispettivamente con tre diverse tempistiche. Test base per verificare l'incremento dei consumi energetici all'incremento dei container docker in esecuzione.

Ogni container rappresenta una run sysbench variando il parametro rate.

N-rate: Tasso medio di transazioni.

Si vede come all'incrementare del tasso medio di transazioni (RATE) incrementano i consumi energetici.

Figure 6: CPU-PERFORMANCE-P-N (threads)

Il benchmark è configurato con il numero di thread simultanei e il numero massimo per verificare se è un numero primo.

- Ogni container rappresenta una run sysbench con questi parametri :
 - P : cpu-max-prime
 - N : number of threads

Si vede come all'incrementare del numero di threads coinvolti nel test, incrementano i consumi energetici.

Figure 7: CPU-PERFORMANCE-P-N (cpu-max-prime)

Ogni container rappresenta una run sysbench variando il parametro rate.

N-rate: Tasso medio di transazioni.

Si vede come all'incrementare del tasso medio di transazioni (RATE) incrementano i consumi energetici.

In questi test viene usato il comando '-cpu=x' che permette di limitare l'utilizzo della cpu. Si vede come all'incrementare della cpu assegnata incrementano i consumi energetici.

5ae2bbf848bd 68a8566061e6	cpu-05 cpu-075	49.98% 75.59%	MEM USAGE / LIMIT 2.559MiB / 7.655GiB 2.613MiB / 7.655GiB 2.199MiB / 7.655GiB	0.03% 0.03%	4.37kB / 0B 6.75kB / 0B	0B / 0B	PIDS 2 2 2
777dc14426d3	cpu-1	100.15%	2.199MiB / 7.655GiB	0.03%	5.92kB / 0B	0B / 0B	2
84bafcaba9c9	cpu-025	24.84%	2.574MiB / 7.655GiB	0.03%	5.27kB / 0B	0B / 0B	2

La schermata permette di vedere la percentuale di CPU assegnata ad ogni container

In queste run viene testato sysbench IO.

- S: –file-total-size (grandezza di 1 file)
- N: –file-num (numero di file)

Si vede come all'incrementare della dimensione dei file, incrementano i consumi energetici.