Homework for Advanced Quantum Mechanics 9

Yuechi Ma

December 7, 2016

- 1. Deadline :December 15th.
- 2. Please send your homework to my email: 910493179@qq.com.
- 3. Contact me or discuss in QQ group if you have any question.
- 4. Homework written by TEX has 5 extra points as bonus.
- 1. Re-derive the familiar wave equation (263) in the lecture note

$$i\hbar \frac{\partial}{\partial t}\phi(\vec{x},t) = -\frac{\hbar^2}{2m} \nabla^2 \phi(\vec{x},t) + V(\vec{x})\phi(\vec{x},t) \tag{1}$$

with all details included.

2. Suppose the typist made an error and wrote a Hamiltonian as

$$H = H_{11} |1\rangle \langle 1| + H_{22} |2\rangle \langle 2| + H_{12} |1\rangle \langle 2|$$
 (2)

What principle is now violated? (Both H_{11} and H_{22} are real numbers.) Illustrate your point explicitly by attempting to solve the most general time-dependent problem using an illegal Hamiltonian of this kind. (You may assume $H_{11} = H_{22} = 0$ for simplicity.)

- 3. A spin- $\frac{1}{2}$ system is known to be in an eigenstate of $\mathbf{S} \cdot \vec{\mathbf{n}}$ with eigenvalue $\hbar/2$ where $\vec{\mathbf{n}}$ is a unit vector lying in the xz-plane that makes an angle γ with the positive z-axis.
 - (a) Suppose S_x is measured. What is the probability of getting $\hbar/2$?
 - (b) Evaluate the dispersion in S_x -that is,

$$\langle (S_x - \langle S_x \rangle)^2 \rangle \tag{3}$$

(For your own peace of mind, check your answers for the special cases $\gamma = 0, \pi/2$, and π .)