Задания

Задача 1:

- 1. Загрузите данные из файла **VILLA.xls**
- 2. Определите тип данных, с которыми Вы работаете.
- 3. Рассчитайте и проинтерпретируйте описательные статистики по каждой переменной, включая фиктивную переменную.
- 4. Проанализируйте исходную выборку на наличие статистических выбросов, используя анализ ящичковых диаграмм. Сделайте выводы.
- 5. Проверьте однородность всех переменных с помощью коэффициента вариации по каждой переменной. Сделайте выводы.
- 6. Проверьте нормальность распределения переменной **Price** с помощью:
 - а. гистограммы
 - b. коэффициентов асимметрии и эксцесса
 - с. графика Q-Qplot
 - d. проверки гипотезы о нормально распределении (на уровне значимости 0,05)
 с помощью критериев: Колмогорова-Смирнова, Шапиро-Уилка,
 Лиллифорса, Крамера-фон Мизеса и Андерсона-Дарлинга, Шапиро-Франсиа, хи-квадрат Пирсона. Сделайте выводы

Работа программы:

1

	2 Y	Filter								Q,
•	N ÷	Price [‡]	Dist [‡]	house [‡]	area	Eco	Стоимость коттеджей по. Киевскому. направлению по прайсилисту Стройсервис.	NA.	NA1 [‡]	NA2
1	1	300.0	20.0	400	22.0	1	NA .	NA	NA	NA
2	2	60.0	18.0	170	6.0	0	N	номер по порядку	NA	NA
3	3	14.0	90.0	60	11.0	1	Price	цена в тыс. USD	NA	NA
4	4	38.0	18.0	65	6.0	1	Dist	расстояние от кольцевой автодороги в км.	NA	NA
5	5	85.0	25.0	320	20.0	0	House	площадь дома, кв.м.	NA	NA
6	6	85.0	19.0	210	20.0	0	Area	площадь участка, сотки	NA	NA
7	7	28.0	30.0	60	5.0	1	Eco	1, если рядом река, озеро	NA	NA
8	8	83.0	45.0	228	20.0	0	NA	NA	NA	NA
9	9	80.0	25.0	200	20.0	1	NA	NA	NA	NA
10	10	15.0	46.0	36	10.0	1	NA	NA	NA	NA
11	11	27.0	86.0	180	17.0	0	NA	NA	NA	NA
12	12	42.0	85.0	250	15.0	1	NA .	NA	NA	NA
13	13	5.5	85.0	36	12.0	0	NA .	NA	NA	NA
14	14	47.0	74.0	285	15.0	0	NA .	NA	NA	NA
15	15	5.0	95.0	36	10.0	0	NA .	NA	NA	NA
16	16	59.0	9.0	420	10.0	0	NA	NA	NA	NA
17	17	27.0	12.0	130	6.0	0	NA .	NA	NA	NA

2

4

Диаграмма размаха (Price)

Диаграмма размаха (house)

Диаграмма размаха (Dist)

Диаграмма размаха (Area)

5

Гистограмма

6b

6c

- 6C -----
- > df\$Price_new <- scale(df\$Price)</pre>
- > df\$Price_new <- as.numeric(df\$Price_new)
- > qnorm(0.1, mean = 0, sd = 1) [1] -1.281552
- -0.7964506
- > qqnorm(df\$Price_new)
- > qqline(df\$Price_new)

Normal Q-Q Plot

6d

```
> #Критерий Колмогорова-Смирнова
> ks.test(df$Price, "pnorm",
         mean = mean(df$Price, na.rm = T),
+
         sd = sd(df$price, na.rm = T))#He .... [TRUNCATED]
        One-sample Kolmogorov-Smirnov test
data: df$Price
D = 0.19718, p-value = 0.04429
alternative hypothesis: two-sided
> #Критерий Шапиро-Уилка
> shapiro.test(df$Price)
        Shapiro-Wilk normality test
data: df$Price
W = 0.76656, p-value = 1.992e-07
> #Критерий Лиллифорса
> lillie.test(df$Price) #не оттвергаем нулевую гипотезу о нормальности распределения
        Lilliefors (Kolmogorov-Smirnov) normality test
data: df$Price
D = 0.19718, p-value = 5.461e-05
> #Критерии Крамера-фон Мизеса и Андерсона-Дарлинга
> cvm.test(df$Price) #не оттвергаем нулевую гипотезу о нормальности распределения
        Cramer-von Mises normality test
data: df$Price
W = 0.62971, p-value = 1.895e-07
> ad.test(df$Price) #не оттвергаем нулевую гипотезу о нормальности распределения
        Anderson-Darling normality test
data: df$Price
A = 3.8825, p-value = 8.035e-10
> #Критерий Шапиро-Франсиа
> sf.test(df$Price) #не оттвергаем нулевую гипотезу о нормальности распределения
        Shapiro-Francia normality test
data: df$Price
W = 0.76979, p-value = 1.577e-06
> #Критерий хи-квадрат Пирсона
> pearson.test(df$Price) #не оттвергаем нулевую гипотезу о нормальности распределения
        Pearson chi-square normality test
data: df$Price
P = 63.857, p-value = 2.551e-11
    Листинг:
#install.packages(c("xlsx", "moments", "nortest"));
library(nortest);
```

```
library(moments);
library(xlsx);
cat("\n- 1 -----")
df <- read.xlsx("villa_new.xlsx", 1,encoding = "UTF-8");</pre>
View(df);
cat("\n----")
cat("\n- 2 -----")
cat("\n----")
cat("\n- 3 -----")
summary(df)
df <- subset(df, Eco >= 0 & Eco <= 1);</pre>
cat("\n----")
cat("\n- 4 -----")
boxplot(df$Price, data = df, xlab = "Цена", main = "Диаграмма размаха (Price)", col =
"blue", horizontal = TRUE);
# 6 выбросов
boxplot(df$Dist, data = df, xlab = "Расстояние от автодороги", main = "Диаграмма размаха
(Dist)", col = "blue", horizontal = TRUE);
# нет выбросов
boxplot(df$house, data = df, xlab = "Площадь дома", main = "Диаграмма размаха (House)",
col = "blue", horizontal = TRUE);
# нет выбросов
boxplot(df$area, data = df, xlab = "Площадь Участка", main = "Диаграмма размаха (Area)",
col = "blue", horizontal = TRUE);
# нет выбросов
cat("\n----")
cat("\n- 5 -----")
cat("\nKoэффициент вариации (Price): ", sd(df$Price) / mean(df$Price) * 100);
# >33%, совокупность неоднородная
cat("\nKoэффициент вариации (Dist): ",sd(df$Dist) / mean(df$Dist) * 100);
# >33%, совокупность неоднородная
cat("\nKoэффициент вариации (house): ",sd(df$house) / mean(df$house) * 100);
# >33%, совокупность неоднородная
cat("\nKоэффициент вариации (area): ",sd(df$area) / mean(df$area) * 100);
# >33%, совокупность неоднородная
cat("\nKoэффициент вариации (Eco): ",sd(df$Eco) / mean(df$Eco) * 100);
# >33%, совокупность неоднородная
cat("\n----")
cat("\n- 6a ----")
hist(df$Price)
K \leftarrow round(1 + 3.32 * log(nrow(df), 10), 0)
hist(df$Price, breaks = K, freq = FALSE, col = "green",
    xlab = "Цена",
    main = "Гистограмма")
curve(dnorm(x, mean(df$Price), sd = sd(df$Price)), add = TRUE)
cat("\n-----")
cat("\n- 6b -----")
```

```
cat("\nKoэффициент вариации (Price): ", kurtosis(df$Price, na.rm = TRUE)) #Эксцесс > 0,
распределение будет являться более высоким (островершинным)
cat("\nKoэффициент вариации (Price): ", skewness(df$Price, na.rm = TRUE)) #Коэффициент
асимметрии > 0, правый хвост распределения длиннее левого
cat("\n----")
cat("\n- 6c -----")
df$Price_new <- scale(df$Price)</pre>
df$Price_new <- as.numeric(df$Price_new)</pre>
qnorm(0.1, mean = 0, sd = 1)
quantile(df$Price new, 0.1)
qqnorm(df$Price new)
qqline(df$Price new)
cat("\n----")
cat("\n- 6d -----")
#Критерий Колмогорова-Смирнова
ks.test(df$Price, "pnorm",
       mean = mean(df$Price, na.rm = T),
       sd = sd(df\$Price, na.rm = T))#не оттвергаем нулевую гипотезу о нормальности
распределения
#Критерий Шапиро-Уилка
shapiro.test(df$Price)
#Критерий Лиллифорса
lillie.test(df$Price) #не оттвергаем нулевую гипотезу о нормальности распределения
#Критерии Крамера-фон Мизеса и Андерсона-Дарлинга
cvm.test(df$Price) #не оттвергаем нулевую гипотезу о нормальности распределения
ad.test(df$Price) #не оттвергаем нулевую гипотезу о нормальности распределения
#Критерий Шапиро-Франсиа
sf.test(df$Price) #не оттвергаем нулевую гипотезу о нормальности распределения
#Критерий хи-квадрат Пирсона
pearson.test(df$Price) #не оттвергаем нулевую гипотезу о нормальности распределения
cat("\n----")
```