

Вычислительные модели с использованием научных библиотек Python Линейная алгебра

Базовые типы, dense matrix

```
#1
           >>> import numpy as np
           >>> from scipy import linalg
           \rightarrow > A = np.array([[1,2],[3,4]])
           >>> A array([[1, 2], [3, 4]])
           >>> linalg.inv(A)
           array([[-2., 1.], [1.5, -0.5]])
           >>> b = np.array([[5,6]]) #2D array
           >>> b
           array([[5, 6]])
           >>> b.T
           array([[5], [6]])
           >>> A*b #not matrix multiplication!
           array([[ 5, 12], [15, 24]])
           >>> A.dot(b.T) #matrix multiplication
           array([[17], [39]])
```

```
#2

>>> import numpy as np

>>> A = np.mat('[1 2;3 4]')

>>> A

matrix([[1, 2], [3, 4]])

>>> A.I

matrix([[-2., 1.], [1.5, -0.5]])

>>> b = np.mat('[5 6]')

>>> b

matrix([[5, 6]])

>>> b.T

matrix([[5], [6]])

>>> A*b.T

matrix([[17], [39]])
```


Базовые типы, sparse matrix

Способы хранения

1.csc_matrix: Compressed Sparse Column format

2.csr_matrix: Compressed Sparse Row format

3. bsr_matrix: Block Sparse Row format

4. lil_matrix: List of Lists format

5. dok_matrix: Dictionary of Keys format

6. coo_matrix: COOrdinate format (aka IJV, triplet format)

7. dia_matrix: DIAgonal format

>>> import numpy as np
>>> import scipy.sparse as sps

СЛАУ

Постановка задачи

$$\mathbf{A}\mathbf{u} = \mathbf{f}$$

Число обусловленности матрицы А

$$\mu(\mathbf{A}) = \left\| \mathbf{A}^{-1} \right\| \|\mathbf{A}\|$$

$$\mu \approx 1 \div 10$$

-хорошо обусловленная СЛАУ

$$\mu >> 10^2 \div 10^3$$

-плохо обусловленная СЛАУ

СЛАУ, точные методы

LU-разложение

```
\mathbf{A} = \mathbf{L}\mathbf{U}\mathbf{L}\mathbf{v} = \mathbf{f}, \mathbf{U}\mathbf{u} = \mathbf{v}
```

```
>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1, 2], [3, 4]])
>>> A = np.array([[1, 2], [3, 4]])
>>> b = np.array([[5], [6]])
>>> b
array([[5], [6]])
>>> linalg.inv(A).dot(b) # slow
array([[-4. ], [ 4.5]])
>>> np.linalg.solve(A, b) # fast
array([[-4. ], [ 4.5]])
```

```
>>> import numpy as np
>>> from scipy.sparse import linalg
>>> mtx = sparse.spdiags([[1, 2, 3, 4, 5], [6, 5, 8, 9, 10]], [0, 1], 5, 5)
>>> mtx.todense()
matrix([[ 1, 5, 0, 0, 0], [ 0, 2, 8, 0, 0], [ 0, 0, 3, 9, 0], [ 0, 0, 0, 4, 10], [ 0, 0, 0, 0, 5]])
>>> rhs = np.array([1, 2, 3, 4, 5], dtype=np.float32)
>>>x= dsolve.spsolve(mtx1, rhs, use_umfpack=False)
```


СЛАУ, точные методы

Метод Холецкого

$$\mathbf{A} = \mathbf{L}\mathbf{L}^T$$

$$\mathbf{L} = \begin{pmatrix} l_{11} & 0 & \cdots & 0 \\ l_{12} & l_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{1n} & l_{2n} & \cdots & l_{nn} \end{pmatrix}$$

$$\mathbf{L}\mathbf{v} = \mathbf{f}, \, \mathbf{L}^{\mathrm{T}}\mathbf{u} = \mathbf{v}.$$

Метод QR

$$A=Q\cdot R$$
,

Q – ортогональная

R - верхняя треугольная

$$Q^{T}\cdot Q\cdot R\cdot x=Q^{T}\cdot b$$
,

$$\mathbf{R} \cdot \mathbf{x} = \mathbf{Q}^{\mathrm{T}} \cdot \mathbf{b}$$
.

СЛАУ, итерационные методы

Список методов

- BIConjugate Gradient
- BIConjugate Gradient STABilized
- Conjugate Gradient
- Conjugate Gradient Squared
- Generalized Minimal RESidual(GMRES)
- LGMRES
- MINimum RESidual
- Quasi-Minimal Residual

```
>>> import numpy as np
>>> import scipy.sparse.linalg as linalg
```


СЛАУ, предобусловливание

Общая идея

 $M^{-1}Ax=M^{-1}b$,

М должна быть по возможности близка к матрице А;

М должна быть легко вычислима;

М должна быть легко обратима.

ILU разложение

M=LU+R≈ LU

Функция spilu()

Задание

Рекомендовать пользователям новые фильмы

			i
userid	movield	rating	timestamp
1	1	5	847117005
1	2	3	847642142
1	10	3	847641896
1	32	4	847642008
1	34	4	847641956
1	47	3	847641956
1	50	4	847642073
1	62	4	847642105
1	150	4	847116751
1	153	3	847116787
1	160	3	847642008
1	161	4	847641896
1	165	4	847116787
1	185	3	847641919

movield	title	genres
1	Toy Story (1995)	Adventure Animation Children
2	Jumanji (1995)	Adventure Children Fantasy
3	Grumpier Old Men (1995)	Comedy Romance
4	Waiting to Exhale (1995)	Comedy Drama Romance
5	Father of the Bride Part II (1995)	Comedy
6	Heat (1995)	Action Crime Thriller
7	Sabrina (1995)	Comedy Romance
8	Tom and Huck (1995)	Adventure Children
9	Sudden Death (1995)	Action
10	GoldenEye (1995)	Action Adventure Thriller
11	American President, The (1995)	Comedy Drama Romance
12	Dracula: Dead and Loving It (1995)	Comedy Horror
13	Balto (1995)	Adventure Animation Children
14	Nixon (1995)	Drama

 Movies (features)

 Movie 1
 Movie 2
 Movie 3
 Movie 4

 User 1
 1
 3
 2
 1

 User 2
 2
 - - 5

 User 3
 5
 1
 5
 3

 User 4
 4
 - 1
 4

8913 - фильмов

718 - пользователей

Задание

Подход на основе SVD разложения

$$X = U \times S \times V^T$$

