Пошаговая дискриминация, кросс-валидация и бутстрап в задаче классификации пострадавших с сочетанной травмой груди.

Феофанов Василий

Санкт-Петербургский государственный университет, факультет прикладной математики - процессов управления, кафедра МТИСР

5 апреля, 2016

Оглавление

- Постановка задачи
- 2 Линейный дискриминатный анализ
- Пошаговая дискриминация
- Оценка вероятности ошибочной классификации
- \delta Классификация пострадавших с сочетанной травмой груди
- Выводы
- 🕡 Список литературы

Постановка задачи

В исследовании рассматриваются 52 пациента с сочетанной травмой грудной клетки, госпитализированные в экстренном порядке. База содержит общую информацию о пострадавших, результаты лабораторных и инструментальных исследований, проведенных в течение первых 12 часов с момента поступления в больницу пострадавшего, а также исход получения травмы. По имеющимся 160 признакам, описывающих каждого пациента, необходимо построить классификационное правило, которое позволит спрогнозировать летальность исхода для будущих пациентов с сочетанной травмой груди.

Фрагмент базы данных

Линейный дискриминатный анализ (ЛДА)

Один из классических методов классификации. Если μ_1, μ_2 — математические ожидания классов W_1 и W_2 соответственно, а Σ — общая ковариационная матрица, тогда для произвольного наблюдения x классификационное правило будет выглядеть следующим образом:

$$W_1: (\mu_1 - \mu_2)^T \Sigma^{-1} x \geqslant \frac{1}{2} (\mu_1 - \mu_2)^T \Sigma^{-1} (\mu_1 + \mu_2) + \ln\left(\frac{p_2}{p_1}\right)$$

$$W_2: (\mu_1 - \mu_2)^T \Sigma^{-1} x < \frac{1}{2} (\mu_1 - \mu_2)^T \Sigma^{-1} (\mu_1 + \mu_2) + \ln \left(\frac{p_2}{p_1}\right),$$

где p_1, p_2 — априорные вероятности принадлежности к классам W_1 и W_2 .

Проблемы применения ЛДА

- наблюдений меньше, чем оцениваемых параметров.
- риск получения плохо обусловленной ковариационной матрицы
- ошибка на обучении: $\overline{err} = \frac{1}{n} \sum_{i=1}^n |y_i m(x_i)|$ не является корректной оценкой вероятности ошибочной классификации

Пошаговая дискриминация

В основе пошагового дискриминатного анализа лежит тест на добавочную информацию, который определяет значимость вклада новых включенных переменных по отношению к старым при проверки гипотезы $H_0: \mu_1 = \mu_2$. Для этого вычисляется частная лямбда Уилкса:

$$\Lambda(x|t) = \frac{\Lambda(t,x)}{\Lambda(t)},$$

где t — изначальный набор признаков, x — набор добавленных переменных, а $\Lambda(z)$:

$$\Lambda = \frac{|W|}{|W+B|},$$

где B и W меж- и внутри- групповые ковариационные матрицы.

Алгоритм Forward Selection

- 1. Вначале из модели удаляются все рассматриваемые признаки, число которых p.
- 2. Задаемся значением Л-включения.
- 3. Для каждого x_j высчитывается $\Lambda(x_j)$ и затем включается в модель та переменная, значение соответствующей статистики которой наименьшее среди рассматриваемых. Включенный в модель признак обозначим за t_1 .

Алгоритм Forward Selection

4. Среди остальных p-1 переменных ищется признак с наименьшей частной лямбдой Вилкса:

$$\Lambda(x_j|t_1) = \frac{\Lambda(t_1, x_j)}{t_1},$$

Вместе с тем, статистика должна удовлетворять условию: $\Lambda \leqslant \Lambda$ -включения.

5. Процесс продолжается аналогичным образом до тех пор, пока ни одна из переменных не будет удовлетворять условию или все переменные не войдут в модель.

Оценка вероятности ошибочной классификации

1. Cross-validation leave-one-out:

$$\widehat{Err}^{(CV)} = \frac{1}{n} \sum_{i=1}^{n} |y^{(i)} - m^{-(i)}(x^{(i)})|$$

2. Bootstrap leave-one-out:

$$\widehat{Err}^{(LOOB)} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{|C^{-i}|} \sum_{b \in C^{-i}} |y^{(i)} - m^{(b)}(x^{(i)})|,$$

где C^{-i} — набор индексов, идентифицирущие те бустрап-выборки, которые не содержат объект i.

Оценка вероятности ошибочной классификации

3. Bootstrap 0.632:

$$\widehat{Err}^{(0.632)} = 0.368 \cdot \overline{err} + 0.632 \cdot \widehat{Err}^{(LOOB)}$$

4. Bootstrap 0.632+:

$$\widehat{Err}^{(0.632+)} = (1 - \alpha) \cdot \overline{err} + \alpha \cdot \widehat{Err}^{(LOOB)},$$

где $\alpha = \frac{0.632}{1-0.368\widehat{R}}$, а \widehat{R} — относительная частота переобучения.

Классификация пострадавших с сочетанной травмой груди. Этап I.

Все 160 признаков были разбиты на следующие группы:

Группа 1: Общие данные

Группа 2: Объективный статус при поступлении + шкалы

Группа 3: Шкалы

Группа 4: Структура повреждений внутренних органов

Группа 5: Параметры ИВ Π

 Γ руппа 6: BCP + BCAД + BДАД

Группа 7: ВД + общие данные спироартериокардиоритмографа (САКР)

Группа 8: Электрокардиография (ЭКГ)

Группа 9: Общий анализ крови (ОАК)

Группа 10: Биохимия

Группа 11: Маркеры повреждения сердца + газы крови

Результаты пошагового дискриминантного анализа

Группа	Признак 1	Λ	Признак 2	Λ	Признак 3	Λ	Признак 4	Λ	Признак 5	Λ
Группа 1	Возраст	0.6	Сроки госпитализации	0.73						
Группа 2	ВПХ - П (МТ)	0.59	Речевой контакт	0.55	Величина кровопотери	0.51	САД при поступлении	0.44	Частота пульса При поступлении	0.4
Группа 3	ВПХ - голова	0.76	ВПХ - грудь	0.63	ВПХ - таз	0.53	AIS - грудь	0.45	AIS - таз	0.41
Группа 4	Повреждение ЦНС САК	0.85								
Группа 5	ивл адд	0.92								
Группа 6	BCP LF (n. u.)	0.8	Вар. САД ТР	0.65	Вар. САД НЕ	0.57	Bap. САД LF (n. u.)	0.5	Bap. САД VLF	0.43
Группа 7	CAKP PQ	0.84	CAKP 4CCcp	0.73	САКР АДСмакс	0.57	САКР АДДср	0.46	САКР Вар. Дых. НF n.	0.36
Группа 8	ЭКГ RR	0.92				'				
Группа 9	ОАК Гемоглобин	0.77								
Группа 10	Биохимия Натрий	0.63								
Группа 11	Газы крови FiO2	0.79	Газы крови RI	0.67						

Оценка вероятности ошибочной классификации.

Группа	Ошибка	Cross-	Bootstrap	Bootstrap	Bootstrap 0.632+	
	на обучении	validation Leave-one-out	Leave-one-out	0.632		
Группа 1	0.289	0.333	0.399	0.358	0.367	
Группа 2	0.118	0.157	0.177	0.155	0.157	
Группа 3	0.178	0.222	0.242	0.219	0.221	
Группа 4	0.28	0.28	0.305	0.296	0.296	
Группа 5	0.306	0.347	0.345	0.331	0.332	
Группа 6	0.114	0.114	0.164	0.146	0.147	
Группа 7	0.074	0.185	0.222	0.168	0.179	
Группа 8	0.304	0.326	0.375	0.349	0.353	
Группа 9	0.362	0.426	0.385	0.376	0.377	
Группа 10	0.267	0.267	0.291	0.282	0.282	
Группа 11	0.25	0.296	0.309	0.287	0.289	

Классификация пострадавших с сочетанной травмой груди. Этап II.

Группа А: Отобранные признаки из групп 1-3 Группа В: Отобранные признаки из групп 4-6 Группа С: Отобранные признаки из групп 7-11 Группа F: Отобранные признаки из групп А-С

Группа	Признак 1	Λ	Признак 2	Λ	Признак 3	Λ	Признак 4	Λ	Признак 5	Λ	Признак 6	Λ	Признак 7	Λ
Группа А	ВПХ - П (MT)	0.61	Речевой контакт	0.53	Возраст	0.45	Величина кровопотери	0.39	САД при поступлении	0.33	Сроки госпитализации	0.3		
Группа В	BCPLF (n. u.)	0.83	Вар. САД ТР	0.67	Вар. САД НЕ	0.58	Bap. САД LF (n. u.)	0.51	ИВЛАДД	0.42	Bap. CAД VLF	0.38		
Группа С	Газы крови FiO2	0.85	Газы крови RI	0.77										
Группа F	ВПХ - П (MT)	0.63	Возраст	0.53	Bap. САД LF (n. u.)	0.44	Речевой контакт	0.4	Величина кровопотери	0.34	Сроки госпитализации	0.3	САД при поступлении	0.26

Группа	Ошибка	Cross-	Bootstrap	Bootstrap	Bootstrap 0.632+	
	на обучении	validation	Leave-one-out	0.632		
		Leave-one-out				
Группа А	0.044	0.044	0.099	0.079	0.08	
Группа В	0.116	0.163	0.161	0.144	0.145	
Группа С	0.25	0.296	0.312	0.289	0.291	
Группа F	0.075	0.1	0.124	0.106	0.107	

Выводы

В задаче прогнозирования летальности исхода постравдшего с сочетанной травмой груди стоит принимать во внимание такие параметры, как:

- Шкала военной-полевой хирургии $\Pi(MT)$ (Π -повреждение, MT-механическая травма)
- Систолическое артериальное давление при поступлении в больницу
- Величина кровопотери и сроки госпитализации
- Вариабельность сердечного ритма (мощность низкочастотного компонента)
- Вариабельность систолического артериального давления
- Диастолическое артериальное давление
- Речевой контакт

Выводы

- Наилучшая точность была достигнута на группе признаков А, но не на группе F. Это подтверждает, что пошаговый дискриминантный анализ не выдает гарантированно оптимальный набор признаков
- Несмотря на наличие большого числа признаков, превышающее количество наблюдений, удалось добиться высокой точности классификации (90.1–95.6%)
- Ошибка на обучении в среднем давала оптимистически заниженную оценку в сравнении с методами кросс-валидации и бутстрап
- 0.632 и 0.632+ показали примерно одинаковые результаты, что может говорить о том, что в исследовании наблюдался незначимый эффект переобучения

Список литературы

- [1] Буре В. М., Парилина Е. М., Рубша А. И., Свиркина Л. А. Анализ выживаемости по медицинской базе данных больных раком предстательной железы // Вестн. С.-Петерб. ун-та. Сер. 10: Прикладная математика, информатика и процессы управления. 2014. N. 2. C. 27–35.
- [2] Буре В. М., Щербакова А. А. Применение дискриминантного анализа и метода деревьев принятия решений для диагностики офтальмологических заболеваний // Вестн. С.-Петерб. ун-та. Сер. 10: Прикладная математика, информатика и процессы управления. 2013. N. 1. С. 70–76.

- [3] Rencher A. C. Methods of Multivariate Analysis. 2nd Ed. New York: John Wiley & Sons, Inc. 2002. P. 738.
- [4] Рао С. Р. Линейные статистические методы и их применения. / науч ред. Линник Ю. В.; пер. с англ. Калинина В. М. и др. М.: Наука, 1968. 548 с.
- [5] Fu W. J., Carroll R. J., Wang S. Estimating misclassification error with small samples via bootstrap cross-validation. // Bioinformatics. 2005. Vol. 21(9). P. 1979–1986.
- [6] Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd Ed. New York: Springer-Verlag. 2009. P. 745.

- [7] Molinaro A. M., Simon R., Pfeiffer R. M. Prediction error estimation: a comparison of resampling methods. // Bioinformatics. 2005. Vol. 21(15). P. 3301–3307.
- [8] Zavorka S., Perrett J. J. Minimum sample size considerations for two-group linear and quadratic discriminant analysis with rare populations // Communications in Statistics - Simulation and Computation. 2014. Vol. 43(7). P. 1726–1739.