

## МЕТОД ШТРАФОВ

#### Постановка задачи

Даны дважды непрерывно дифференцируемые целевая функция  $f(x) = f\left(x_1, ..., x_n\right)$  и функции ограничений  $g_j(x) = 0$ , j = 1, ..., m;  $g_j(x) \leq 0$ , j = m+1, ..., p, определяющие множество допустимых решений X.

Требуется найти локальный минимум целевой функции на множестве X, т.е. такую точку  $x^* \in X$  , что

$$f(x^*) = \min_{x \in X} f(x),$$

где 
$$X = \left\{ x \mid g_j(x) = 0, \quad j = 1, ..., m; \quad m < n \\ g_j(x) \le 0, \quad j = m + 1, ..., p \right\}.$$

# Стратегия поиска

Идея метода заключается в сведении задачи на условный минимум к решению последовательности задач поиска безусловного минимума вспомогательной функции:

$$F(x,r^k) = f(x) + P(x,r^k) \to \min_{x \in \mathbb{R}^n},$$

где  $P(x,r^k)$  –  $umpa\phi$ ная функция,  $r^k$  – параметр штрафа, задаваемый на каждой k-й итерации.

Штрафные функции конструируются, исходя из условий:

$$P(x,r^k) = \begin{cases} 0, & \text{при выполнении ограничений,} \\ > 0, & \text{при невыполнении ограничений,} \end{cases}$$

причем при невыполнении ограничений и  $r^k \to \infty$ ,  $k \to \infty$  справедливо  $P(x, r^k) \to \infty$ .

Как правило, для ограничений типа равенств используется квадратичный штраф, а для ограничений типа неравенств — квадрат срезки:

$$P(x,r^{k}) = \frac{r^{k}}{2} \left\{ \sum_{j=1}^{m} [g_{j}(x)]^{2} + \sum_{j=m+1}^{p} [g_{j}^{+}(x)]^{2} \right\},\,$$

где  $g_i^+(x)$  – срезка функции:

$$g_{j}^{+}(x) = \max \left\{ 0, g_{j}(x) \right\} = \begin{cases} g_{j}(x), & g_{j}(x) > 0, \\ 0, & g_{j}(x) \leq 0. \end{cases}$$

## Алгоритм

*Шаг* 1. Задать начальную точку  $x^0$ , начальное значение параметра штрафа  $r^0 > 0$ , число C > 1 для увеличения параметра, малое число  $\varepsilon > 0$  для остановки алгоритма. Положить k = 0.

Шаг 2. Составить вспомогательную функцию

$$F(x,r^{k}) = f(x) + \frac{r^{k}}{2} \left\{ \sum_{j=1}^{m} [g_{j}(x)]^{2} + \sum_{j=m+1}^{p} [g_{j}^{+}(x)]^{2} \right\}.$$

*Шаг* 3. Найти точку  $x^*(r^k)$  безусловного минимума функции  $F(x,r^k)$  по x с помощью какого-либо метода (нулевого, первого или второго порядка):

$$F(x^*(r^k), r^k) = \min_{x \in \mathbb{R}^n} F(x, r^k).$$

При этом задать все требуемые выбранным методом параметры. В качестве начальной точки взять  $x^k$ . Вычислить  $P(x^*(r^k), r^k)$ .

# Шаг 4. Проверить условие окончания:

а) если  $P(x^*(r^k), r^k) \le \varepsilon$ , процесс поиска закончить:

$$x^* = x^*(r^k), \quad f(x^*) = f(x^*(r^k));$$

б)если  $P(x^*(r^k), r^k) > \varepsilon$ , положить:  $r^{k+1} = Cr^k$ ,  $x^{k+1} = x^*(r^k)$ , k = k+1 и перейти к шагу 2.

# МЕТОД БАРЬЕРНЫХ ФУНКЦИЙ

#### Постановка задачи

Даны дважды непрерывно дифференцируемые целевая функция  $f(x) = f\left(x_1, \dots, x_n\right)$  и функции ограничений-неравенств  $g_j(x) \leq 0$ ,  $j = 1, \dots, m$ , определяющие множество допустимых решений X.

Требуется найти локальный минимум целевой функции на множестве X , т.е. такую точку  $x^* \in X$  , что

$$f(x^*) = \min_{x \in X} f(x),$$

где 
$$X = \{ x \mid g_j(x) \le 0, j = 1,...,m \}.$$

## Стратегия поиска

Идея метода заключается в сведении задачи на условный минимум к решению последовательности задач поиска безусловного минимума вспомогательной функции  $F\left(x,r^k\right) = f\left(x\right) + P\left(x,r^k\right)$ , где  $P\left(x,r^k\right)$  — штрафная функция,  $r^k \ge 0$  — параметр штрафа.

Как правило, используются:

а) обратная штрафная функция 
$$P(x,r^k) = -r^k \sum_{j=1}^m \frac{1}{g_j(x)};$$

б) логарифмическая штрафная функция 
$$P(x,r^k) = -r^k \sum_{j=1}^m \ln \left[ -g_j(x) \right]$$

## Алгоритм

*Шаг* 1. Задать начальную точку  $x^0$  внутри области X, начальное значение параметра штрафа  $r^k \ge 0$ , число C > 1 для уменьшения параметра штрафа, малое число  $\varepsilon > 0$  для остановки алгоритма. Положить k = 0.

Шаг 2. Составить вспомогательную функцию:

$$F(x,r^k) = f(x) - r^k \sum_{j=1}^m \frac{1}{g_j(x)} \quad \text{или} \quad F(x,r^k) = f(x) - r^k \sum_{j=1}^m \ln \left[ -g_j(x) \right].$$

*Шаг* 3. Найти точку  $x^*(r^k)$  минимума функции  $F(x,r^k)$  с помощью какого-либо метода (нулевого, первого или второго порядка) поиска безусловного минимума с проверкой принадлежности текущей точки внутренности множества X. При этом задать все требуемые выбранным методом параметры. В качестве начальной точки взять  $x^k$ . Вычислить:

$$P(x^*(r^k), r^k) = -r^k \sum_{j=1}^m \frac{1}{g_j(x^*(r^k))} \quad \text{или} \quad P(x^*(r^k), r^k) = -r^k \sum_{j=1}^m \ln \left[ -g_j(x^*(r^k)) \right].$$

Шаг 4. Проверить выполнение условия окончания:

а) если  $|P(x^*(r^k), r^k)| \le \varepsilon$ , процесс поиска закончить:

$$x^* = x^*(r^k), \quad f(x^*) = f(x^*(r^k));$$

б) если  $\left| P(x^*(r^k), r^k) \right| > \varepsilon$ , положить  $r^{k+1} = \frac{r^k}{C}$ ;  $x^{k+1} = x^*(r^k)$ , k = k+1 и перейти к шагу 2.

# КОМБИНИРОВАННЫЙ МЕТОД ШТРАФНЫХ ФУНКЦИЙ

#### Постановка задачи

Даны дважды непрерывно дифференцируемые целевая функция  $f(x) = f\left(x_1, \dots, x_n\right) \quad \text{и} \quad \text{функции ограничений } g_j(x) = 0, \quad j = 1, \dots, m; \quad g_j(x) \leq 0,$   $j = m+1, \dots, p, \text{ определяющие множество допустимых решений } X.$ 

Требуется найти локальный минимум целевой функции на множестве X , т.е. такую точку  $x^* \in X$  , что

$$f(x^*) = \min_{x \in X} f(x),$$

где 
$$X = \left\{ x \mid g_j(x) = 0, \quad j = 1, ..., m; \quad m < n \\ g_j(x) \le 0, \quad j = m+1, ..., p \right\}.$$

### Стратегия поиска

Для ограничений типа равенств применяется метод штрафов (внешних штрафов), а для ограничений-неравенств — метод барьерных функций (внутренних штрафов).

Задача на условный минимум сводится к решению последовательности задач поиска минимума смешанной вспомогательной функции:

$$F(x,r^{k}) = f(x) + \frac{1}{2r^{k}} \sum_{j=1}^{m} [g_{j}(x)]^{2} - r^{k} \sum_{j=m+1}^{p} \frac{1}{g_{j}(x)}$$

ИЛИ

$$F(x,r^{k}) = f(x) + \frac{1}{2r^{k}} \sum_{j=1}^{m} [g_{j}(x)]^{2} - r^{k} \sum_{j=m+1}^{p} \ln[-g_{j}(x)],$$

где  $r^k \ge 0$  — параметр штрафа.

Начальная точка задается так, чтобы ограничения-неравенства строго выполнялись:  $g_j(x) < 0$ , j = m+1,...,p. На каждой k-й итерации ищется точка  $x^*(r^k)$  минимума смешанной вспомогательной функции при заданном параметре  $r^k$  с помощью одного из методов безусловной минимизации. Полученная точка  $x^*(r^k)$  используется в качестве начальной на следующей итерации, выполняемой при уменьшающемся значении параметра штрафа. При  $r^k \to +0$  последовательность точек  $x^*(r^k)$  стремится к точке условного минимума  $x^*$ .

### Алгоритм

*Шаг* 1. Задать начальную точку  $x^0$  так, чтобы  $g_j(x) < 0$ , j = m+1,...,p; начальное значение параметра штрафа  $r^0 > 0$ ; число C > 1 для уменьшения параметра штрафа; малое число  $\varepsilon$  для остановки алгоритма. Положить k = 0.

Шаг 2. Составить смешанную вспомогательную функцию:

$$F(x,r^{k}) = f(x) + \frac{1}{2r^{k}} \sum_{j=1}^{m} [g_{j}(x)]^{2} - r^{k} \sum_{j=m+1}^{p} \frac{1}{g_{j}(x)} = f(x) + P(x,r^{k})$$

ИЛИ

$$F(x,r^{k}) = f(x) + \frac{1}{2r^{k}} \sum_{j=1}^{m} [g_{j}(x)]^{2} - r^{k} \sum_{j=m+1}^{p} \ln[-g_{j}(x)] = f(x) + P(x,r^{k}).$$

*Шаг* 3. Найти точку  $x^*(r^k)$  минимума функции  $F(x,r^k)$  с помощью какого-либо метода поиска безусловного минимума с проверкой выполнения справедливости неравенств:  $g_j(x) < 0, \ j = m+1, \dots, p$ . При этом задать все требуемые выбранным методом параметры. В качестве начальной точки взять  $x^k$ .

*Шаг* 4. Вычислить  $P(x^*(r^k), r^k)$  и проверить условие окончания:

а) если  $|P(x^*(r^k), r^k)| \le \varepsilon$ , процесс поиска закончить:

$$x^* = x^*(r^k), \quad f(x^*) = f(x^*(r^k));$$

б) если  $\left| P(x^*(r^k), r^k) \right| > \varepsilon$ , то положить  $r^{k+1} = \frac{r^k}{C}$ ,  $x^{k+1} = x^*(r^k)$ , k = k+1 и перейти к шагу 2.