4,194,304-word × 4-bit Dynamic Random Access Memory

HITACHI

ADE-203-369A (Z) Rev. 1.0 Nov. 15, 1995

Description

The Hitachi HM5117400B is a CMOS dynamic RAM organized 4,194,304 word × 4 bit. It employs the most advanced CMOS technology for high performance and low power. The HM5117400B offers Fast Page Mode as a high speed access mode.

Features

- Single 5 V (±10%)
- · High speed
 - Access time: 60 ns/ 70 ns/ 80 ns (max)
- Low power dissipation
 - Active mode : 605 mW/550 mW/495 mW(max)
 - Standby mode: 11 mW (max)
 - : 0.83 mW (max) (L-version)
- Fast page mode capability
- Long refresh period
 - 2048 refresh cycles: 32 ms

: 128 ms (L-version)

- 3 variations of refresh
 - RAS-only refresh
 - $--\overline{CAS}$ -before- \overline{RAS} refresh
 - Hidden refresh
- Battery backup operation (L-version)
- Test function
 - 16-bit parallel test mode

Ordering Information

Type No.	Access Time	Package
HM5117400BS-6	60 ns	300-mil 26-pin plastic SOJ (CP-26/24DB)
HM5117400BS-7	70 ns	
HM5117400BS-8	80 ns	
HM5117400BLS-6	60 ns	
HM5117400BLS-7	70 ns	
HM5117400BLS-8	80 ns	
HM5117400BTS-6	60 ns	300-mil 26-pin plastic TSOP II (TTP-26/24DA)
HM5117400BTS-7	70 ns	
HM5117400BTS-8	80 ns	
HM5117400BLTS-6	60 ns	
HM5117400BLTS-7	70 ns	
HM5117400BLTS-8	80 ns	

Pin Arrangement

Pin Description

Pin Name	Function
A0 to A10	Address input
A0 to A10	Refresh address input
I/O1 to I/O4	Data input/data output
RAS	Row address strobe
CAS	Column address strobe
WE	Write enable
ŌĒ	Output enable
V _{cc}	Power supply (+5 V)
V _{SS}	Ground
NC	No connection

HITACHI

Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Voltage on any pin relative to $V_{\rm ss}$	$V_{\scriptscriptstyle T}$	-1.0 to +7.0	V
Supply voltage relative to V _{SS}	V _{cc}	-1.0 to +7.0	V
Short circuit output current	lout	50	mA
Power dissipation	P _T	1.0	W
Operating temperature	Topr	0 to +70	°C
Storage temperature	Tstg	-55 to +125	°C

Recommended DC Operating Conditions (Ta = $0 \text{ to } +70^{\circ}\text{C}$)

Parameter	Symbol	Min	Тур	Max	Unit	Note
Supply voltage	V _{cc}	4.5	5.0	5.5	V	1
Input high voltage	V_{IH}	2.4	_	6.5	V	1
Input low voltage	V_{IL}	-1.0	_	0.8	V	1

Note: 1. All voltage referred to V_{ss}

DC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V \pm 10%, V_{SS} = 0 V)

		НМ5	11740)B					
		-6		-7		-8		_	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Test Conditions
Operating current*1,*2	I _{CC1}	_	110	_	100	_	90	mA	t _{RC} = min
Standby current	I _{CC2}	_	2	_	2	_	2	mA	TTL interface \overline{RAS} , $\overline{CAS} = V_{IH}$ Dout = High-Z
		_	1	_	1	_	1	mA	CMOS interface \overline{RAS} , $\overline{CAS} \ge V_{cc} - 0.2V$ Dout = High-Z
Standby current (L-version)	I _{CC2}	_	150	_	150	_	150	μΑ	$\frac{\text{CMOS interface}}{\text{RAS, CAS}} \ge \text{V}_{\text{cc}} - 0.2\text{V}$ Dout = High-Z

HITACHI

DC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V \pm 10%, V_{SS} = 0 V)

HM5117400B

		-6		-7		-8			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Test Conditions
RAS-only refresh current*2	I _{CC3}	_	110	_	100	_	90	mA	t _{RC} = min
Standby current ^{*1}	I _{CC5}	_	5	_	5	_	5	mA	$\overline{RAS} = V_{IH}, \overline{CAS} = V_{IL}$ Dout = enable
CAS-before-RAS refresh current	I _{CC6}	_	110	_	100	_	90	mA	t _{RC} = min
Fast page mode current*1,*3	I _{CC7}	_	80	_	70	_	65	mΑ	$t_{PC} = min$
Battery backup current	I _{CC10}	_	350	_	350	_	350	μΑ	CMOS interface Dout = High-Z CBR refresh: t_{RC} = 62.5 μ s $t_{RAS} \le 0.3 \ \mu$ s
Input leakage current	I _{LI}	-10	10	-10	10	-10	10	μΑ	0 V ≤ Vin ≤ 7 V
Output leakage current	I _{LO}	-10	10	-10	10	-10	10	μΑ	0 V ≤ Vout ≤ 7 V Dout = disable
Output high voltage	V _{OH}	2.4	V_{cc}	2.4	V _{cc}	2.4	V_{cc}	V	High lout = –5 mA
Output low voltage	V _{OL}	0	0.4	0	0.4	0	0.4	V	Low lout = 4.2 mA

Notes: 1. I_{cc} depends on output load condition when the device is selected. I_{cc} max is specified at the output open condition.

- 2. Address can be changed once or less while $\overline{RAS} = V_{IL}$.
- 3. Address can be changed once or less while $\overline{CAS} = V_{IH}$.

Capacitance (Ta = 25°C, V_{CC} = 5 V ± 10%)

Parameter	Symbol	Тур	Max	Unit	Notes	
Input capacitance (Address)	C _{I1}	_	5	pF	1	
Input capacitance (Clocks)	C_{12}	_	7	pF	1	
Output capacitance (Data-in, Data-out)	$C_{\text{I/O}}$	_	7	pF	1, 2	

Notes: 1. Capacitance measured with Boonton Meter or effective capacitance measuring method.

2. $\overline{CAS} = V_{IH}$ to disable Dout.

AC Characteristics (Ta = 0 to +70 °C, V_{CC} = 5 V \pm 10%, V_{SS} = 0 V)*1, *2, *18, *19

Test Conditions

• Input rise and fall time: 5 ns

 $\overline{\text{CAS}}$ delay time from Din

Transition time (rise and fall)

• Input timing reference levels: 0.8 V, 2.4 V

• Output load: 2 TTL gate + C_L (100 pF) (Including scope and jig)

Read, Write, Read-Modify-Write and Refresh Cycles (Common parameters)

		-6		-7		-8		_	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	110	_	130	_	150		ns	
RAS precharge time	t _{RP}	40	_	50	_	60	_	ns	
CAS precharge time	t _{CP}	10	_	10	_	10	_	ns	
RAS pulse width	t _{RAS}	60	10000	70	10000	80	10000	ns	
CAS pulse width	t _{CAS}	15	10000	18	10000	20	10000	ns	
Row address setup time	t _{ASR}	0	_	0	_	0	_	ns	
Row address hold time	t _{RAH}	10	_	10	_	10	_	ns	
Column address setup time	t _{ASC}	0	_	0	_	0	_	ns	
Column address hold time	$t_{\sf CAH}$	10	_	15	_	15	_	ns	
RAS to CAS delay time	t _{RCD}	20	45	20	52	20	60	ns	3
RAS to column address delay time	t _{RAD}	15	30	15	35	15	40	ns	4
RAS hold time	t _{RSH}	15	_	18	_	20	_	ns	
CAS hold time	t _{CSH}	60	_	70	_	80	_	ns	
CAS to RAS precharge time	t _{CRP}	5	_	5	_	5	_	ns	
OE to Din delay time	t _{OED}	15	_	18	_	20	_	ns	5
OE delay time from Din	t _{DZO}	0	_	0	_	0	_	ns	6

0

3

50

 $t_{\scriptscriptstyle DZC}$

 \mathbf{t}_{T}

0

50

0

50

ns

6

7

HM5117400B

HITACHI

7

HM511<u>7400B</u> Series

Read Cycle

HM5117400B

		1111011114000							
		-6		-7		-8			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Access time from RAS	t _{RAC}	_	60	_	70	_	80	ns	8, 9, 20
Access time from CAS	t _{CAC}	_	15	_	18	_	20	ns	9, 10, 17, 20
Access time from address	t _{AA}	_	30	_	35	_	40	ns	9, 11, 17, 20
Access time from OE	t _{OEA}	_	15	_	18	_	20	ns	9, 20
Read command setup time	t _{RCS}	0	_	0	_	0	_	ns	
Read command hold time to CAS	t _{RCH}	0	_	0	_	0	_	ns	12
Read command hold time to RAS	t _{RRH}	0	_	0	_	0	_	ns	12
Column address to RAS lead time	t _{RAL}	30	_	35	_	40	_	ns	
Column address to CAS lead time	t _{CAL}	30	_	35	_	40	_	ns	
CAS to output in low-Z	t _{CLZ}	0	_	0	_	0	_	ns	
Output data hold time	t _{OH}	3	_	3	_	3	_	ns	
Output data hold time from OE	t _{oho}	3	_	3	_	3	_	ns	
Output buffer turn-off time	t _{OFF}	_	15	_	15	_	15	ns	13
Output buffer turn-off to OE	t _{OEZ}	_	15	_	15	_	15	ns	13
CAS to Din delay time	t _{CDD}	15		18		20		ns	5

Write Cycle

HM5117400B

		-6		-7		-8			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Write command setup time	t _{wcs}	0	_	0	_	0	_	ns	14
Write command hold time	t_{WCH}	10	_	15	_	15	_	ns	
Write command pulse width	t_{WP}	10	_	10	_	10	_	ns	
Write command to $\overline{\rm RAS}$ lead time	t_{RWL}	15	_	18	_	20	_	ns	
Write command to $\overline{\text{CAS}}$ lead time	$t_{\scriptscriptstyle \text{CWL}}$	15	_	18	_	20	_	ns	
Data-in setup time	t _{DS}	0	_	0	_	0	_	ns	15
Data-in hold time	\mathbf{t}_{DH}	10	_	15	_	15	_	ns	15

Read-Modify-Write Cycle

HM5117400B

		-6		-7		-8			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Read-modify-write cycle time	t _{RWC}	155	_	181	_	205	_	ns	
RAS to WE delay time	t _{RWD}	85	_	98	_	110	_	ns	14
CAS to WE delay time	t _{CWD}	40	_	46	_	50	_	ns	14
Column address to WE delay time	t _{AWD}	55	_	63	_	70	_	ns	14
OE hold time from WE	t _{OEH}	15	_	18	_	20	_	ns	

Refresh Cycle

HM5117400B

		-6		-7		-8			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
CAS setup time (CBR refresh cycle)	t _{CSR}	5	_	5	_	5	_	ns	
CAS hold time (CBR refresh cycle)	t _{CHR}	10	_	10	_	10	_	ns	
WE setup time (CBR refresh cycle)	t _{WRP}	0	_	0	_	0	_	ns	
WE hold time (CBR refresh cycle)	t _{WRH}	10	_	10	_	10	_	ns	
RAS precharge to CAS hold time	t _{RPC}	0	_	0	_	0	_	ns	

Fast Page Mode Cycle

HM5117400B

		-6		-7		-8			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Fast page mode cycle time	t _{PC}	40	_	45	_	50	_	ns	
Fast page mode RAS pulse width	t _{RASP}	_	10000	0 —	100000) —	100000) ns	16
Access time from CAS precharge	t _{CPA}	_	35	_	40	_	45	ns	9, 17, 20
RAS hold time from CAS precharge	e t _{CPRH}	35	_	40	_	45	_	ns	

Fast Page Mode Read-Modify-Write Cycle

HM5117400B

		-6		-7		-8			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Fast page mode read-modify-write cycle time	t _{PRWC}	85	_	96	_	105	_	ns	
WE delay time from CAS precharge	t _{CPW}	60	_	68	_	75	_	ns	14

Test Mode Cycle*19

HM5117400B

		-6		-7		-8		_
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit Notes
Test mode WE setup time	t _{wts}	0	_	0	_	0	_	ns
Test mode WE hold time	t _{wth}	10	_	10	_	10		ns

Refresh

Parameter	Symbol	Max	Unit	Note
Refresh period	t _{REF}	32	ms	2048 cycles
Refresh period (L-version)	t _{REF}	128	ms	2048 cycles

Notes: 1. AC measurements assume $t_T = 5$ ns.

- 2. An initial pause of 200 µs is required after power up followed by a minimum of eight initialization cycles (any combination of cycles containing RAS-only refresh or CAS-before-RAS refresh). If the internal refresh counter is used, a minimum of eight CAS-before-RAS refresh cycles are required.
- 3. Operation with the t_{RCD} (max) limit insures that t_{RAC} (max) can be met, t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC} .
- 4. Operation with the t_{RAD} (max) limit insures that t_{RAC} (max) can be met, t_{RAD} (max) is specified as a reference point only; if t_{RAD} is greater than the specified t_{RAD} (max) limit, then access time is controlled exclusively by t_{AA} .
- 5. Either t_{OED} or t_{CDD} must be satisfied.
- 6. Either $t_{\mbox{\tiny DZO}}$ or $t_{\mbox{\tiny DZC}}$ must be satisfied.
- 7. V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IH} (min) and V_{IL} (max).
- 8. Assumes that $t_{RCD} \le t_{RCD}$ (max) and $t_{RAD} \le t_{RAD}$ (max). If t_{RCD} or t_{RAD} is greater than the maximum recommended value shown in this table, t_{RAC} exceeds the value shown.
- 9. Measured with a load circuit equivalent to 2 TTL loads and 100 pF.

- 10. Assumes that $t_{RCD} \ge t_{RCD}$ (max) and $t_{RCD} + t_{CAC}$ (max) $\ge t_{RAD} + t_{AA}$ (max).
- 11. Assumes that $t_{RAD} \ge t_{RAD}$ (max) and $t_{RCD} + t_{CAC}$ (max) $\le t_{RAD} + t_{AA}$ (max).
- 12. Either t_{RCH} or t_{RRH} must be satisfied for a read cycles.
- 13. t_{OFF} (max) and t_{OEZ} (max) define the time at which the outputs achieve the open circuit condition and are not referred to output voltage levels.
- 14. t_{WCS} , t_{RWD} , t_{CWD} , t_{AWD} and t_{CPW} are not restrictive operationg parameters. They are included in the data sheet as electrical characteristics only; if $t_{\text{WCS}} \geq t_{\text{WCS}}$ (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if $t_{\text{RWD}} \geq t_{\text{RWD}}$ (min), $t_{\text{CWD}} \geq t_{\text{CWD}}$ (min), and $t_{\text{AWD}} \geq t_{\text{AWD}}$ (min), or $t_{\text{CWD}} \geq t_{\text{CWD}}$ (min), $t_{\text{AWD}} \geq t_{\text{AWD}}$ (min) and $t_{\text{CPW}} \geq t_{\text{CPW}}$ (min), the cycle is a read-modify-write and the data output will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
- 15. These parameters are referred to \overline{CAS} leading edge in early write cycles and to \overline{WE} leading edge in delayed write or read-modify-write cycles.
- 16. t_{rasp} defines RAS pulse width in fast page mode cycles.
- 17. Access time is determined by the longest among $t_{\text{AA}},\,t_{\text{CAC}}$ and $t_{\text{CPA}}.$
- 18. In delayed write or read-modify-write cycles, \overline{OE} must disable output buffer prior to applying data to the device. After \overline{RAS} is reset, if $t_{OEH} \ge t_{CWL}$, the I/O pin will remain open circuit (high impedance); if $t_{OEH} < t_{CWL}$, invalid data will be out at each I/O.
- 19. The 16M DRAM offers a 16-bit time saving parallel test mode. Address CA0 and CA1 for the 4M × 4 are don't care during test mode. Test mode is set by performing WE-and-CAS-before-RAS (WCBR) cycle. In 16-bit parallel test mode, data is written into 4 bits in parallel at each I/O (I/O1 to I/O4) and read out from each I/O.
 - If 4 bits of each I/O are equal (all 1s or 0s), data output pin is a high state during test mode read cycle, then the device has passed. If they are not equal, data output pin is a low state, then the device has failed.
 - Refresh during test mode operation can be performed by normal read cycles or by WCBR refresh cycles.
 - To get out of test mode and enter a normal operation mode, perform either a regular \overline{CAS} -before- \overline{RAS} refresh cycle or \overline{RAS} -only refresh cycle.
- 20. In a test mode read cycle, the value of t_{RAC} , t_{AA} , t_{CAC} and t_{CPA} is delayed by 2 ns to 5 ns for the specified value. These parameters should be specified in test mode cycles by adding the above value to the specified value in this data sheet.
- 21 XXX: H or L (H: V_{IH} (min) $\leq V_{IN} \leq V_{IH}$ (max), L: V_{IL} (min) $\leq V_{IN} \leq V_{IL}$ (max)) //////: Invalid Dout

Timing Waveforms*21

Read Cycle

Early Write Cycle

HITACHI

13

Delayed Write Cycle*18

Read-Modify-Write Cycle*18

RAS-Only Refresh Cycle

$\overline{\text{CAS}}\text{-Before-}\overline{\text{RAS}}$ Refresh Cycle

HITACHI

17

Hidden Refresh Cycle

Fast Page Mode Read Cycle

Fast Page Mode Early Write Cycle

Fast Page Mode Delayed Write Cycle *18

HITACHI

21

Fast Page Mode Read-Modify-Write Cycle *18

Test Mode Cycle*19

Test Mode Set Cycle

Package Dimensions

HM5117400BS/BLS Series (CP-26/24DB)

Unit: mm

HM5117400BTS/BLTS Series (TTP-26/24DA)

Unit: mm

HITACHI