ТМП ДЗ №1

Максим Щемилкин А-05-19

30 марта 2022

1 Построить конечный автомат, распознающий язык

1. $L = \{w \in \{a, b, c\}^* \mid |w|_c = 1\}$

 $2. \ L = \{w \in \{a,b\}^* \quad |w|_a \leq 2, |w|_b \geq 2\}$

Это решение получается через перебор первых 4 символов. Такой же результат можно получить через произведение двух грамматик:

$$L_1 = \{ w \in \{a, b\}^* \mid w|_a \le 2 \}, \quad L_2 = \{ w \in \{a, b\}^* \mid w|_b \ge 2 \}$$

Сочетания точек	По А	По В
11	21	12
12	22	13
13	23	13
21	31	22
22	32	23
23	33	23
31		32
32		33
33		33

3.
$$L = \{w \in \{a, b\}^* \mid |w|_a \neq |w|_b\}$$

Нет такого конечного автомата

$$4.\ L=\{w\in\{a,b\}^*\quad ww=www\}$$

Это возможно только для языка, состоящего из пустого слова, так как при $|w|>0ww\neq www$. Можем построить недерминированный KA:

2 Построить KA, используя прямое произведение

1.
$$L_1 = \{ w \in \{a, b\}^* \mid |w|_a \ge 2 \land |w|_b \ge 2 \}$$

Разобьем на 2 автомата:

$$L_1 1 = \{ w \in \{a, b\}^* \mid w|_a \ge 2 \}, \quad L_1 2 = \{ w \in \{a, b\}^* \mid w|_b \ge 2 \}$$

Значит, $L=L_11\wedge L_12$. Имеем $\Sigma=a,b,s=11,T=33$. Зафиксируем переходы между новыми вершинами:

Сочетания точек	По А	По В
11	21	12
12	22	13
13	23	13
21	31	22
22	32	23
23	33	23
31	31	32
32	32	33
33	33	33

 $2. \ L_2 = \{w \in \{a,b\}^* \quad |w| \geq 3 \wedge |w| \quad odd\}$ Разобьем на 2 автомата:

$$L_2 1 = \{ w \in \{a, b\}^* \mid |w| \ge 3 \}, \quad L_2 2 = \{ w \in \{a, b\}^* \mid |w| \quad odd \}$$

Значит, $L=L_21 \wedge L_22$. Имеем $\Sigma=a,b,s=11,T=42$. Зафиксируем переходы между новыми вершинами:

Сочетания точек	По А	По В
11	22	22
12	21	21
21	32	32
22	31	31
31	42	42
32	41	41
41	42	42
42	41	41

Так как в вершину 12 попасть нельзя, можно автомат немного упростить:

 $3.\ L_3 = \{w \in \{a,b\}^* \ |w|_a \ \vdots \ 2 \wedge |w|_b \ \vdots \ 3\}$ Разобьем на 2 автомата:

$$L_31 = \{ w \in \{a,b\}^* \quad |w|_a \ \vdots \ 2\}, \quad L_32 = \{ w \in \{a,b\}^* \quad |w|_b \ \vdots \ 3\}$$

Значит, $L=L_31\wedge L_32$. Имеем $\Sigma=a,b,s=11,T=11$. Зафиксируем переходы между новыми вершинами:

Сочетания точек	По А	По В
11	21	12
12	22	13
13	23	11
21	11	22
22	12	23
23	13	21

Получим:

4. $L_4 = \overline{L_3}$ Чтобы построить отрицание, нужно обратить конечные вершины, то есть получим:

5. $L_5 = L_2 \setminus L_3 = L_2 \wedge L_4$

Найдём пересечение двух языков:

 $L_5 = L_2 \wedge L_4$. Имеем $\Sigma = \{a,b\}, s = 11, T = 42$. Зафиксируем переходы между новыми вершинами:

Сочетания точек	По А	По В
11	25	22
12	26	23
13	24	21
14	23	25
15	21	26
16	22	24
21	35	32
22	36	33
23	34	31
24	33	35
25	31	36
26	32	34
31	45	42
32	46	43
33	44	41
34	43	45
35	41	46
36	42	44
41	55	52
42	56	53
43	54	51
44	53	55
45	51	56
46	52	54
51	45	62
52	46	43
53	44	41
54	43	45
55	41	46
56	42	44

3 Построить минимальный ДКА по регулярному выражению

1. (ab + aba)*a

Недетерминированный КА по данному выражению:

Сочетания точек	По А	По В
1	3 6 10	
3 6 10		47
4 7	8 3 6 10	
8 3 6 10	3 6 10	4 7

Теперь можем нарисовать ДКА:

