Data analysis – Lab 4-5

Probability and Distributions

Requirements:

- Datasets: AutoSurvey.csv
- Programming language: R/Python/Java
- Provide solutions for the following questions
- Submit your solutions (report and code) in one file. Name your file with your full name and student ID. In the report, you should include the questions, explanations, and results.

Questions:

Given the first 20 records of the dataset,

// Random variables

Q1. Define the random variables of Gender, Type, Purchased, VehicleAge, Mileage, and MPG. **Find** their probability mass/density functions. **Program** to compute means, variances, and standard deviations of the random variables, and display the graphs of probability mass/density functions.

// Jointly distributed random variables

Q2. Assume the random variables of Gender, Type, Purchased, VehicleAge, Mileage, and MPG are jointly distributed. **Find** the marginal probability density function of MPG. **Program** to estimate the probability of MPG.

// Prediction

Q3. Predict the MPG of the last 3 records using the above program and compare the predicted results with the actual values.

Instruction of programming in Java

Do the following tasks

Question 1.

- 1. Create a new Java project in NetBeans or Eclipse, e.g., lab4_5
- 2. Create a class of a random variable, e.g., RandomVar. Implement methods of
- getting the values of the random variable, and computing the probability mass function
- computing mean, variance, standard deviation
- displaying the bar/line chart of the probability mass function.
- 3. Apply to the given dataset: create a main/controller class to read the input records and display results, e.g., RandomVarTest

Images of source code


```
package lab4 5;
import java.util.ArrayList;
import java.util.Arrays;
□ /**
   * @author Administrator
   */
  public class RandomVar {
      private String X name;
      private ArrayList X value = null;
      private ArrayList prob = null;
      private double Mean;
      private double Variance;
      private double StdDev;
_
      public RandomVar(String x_name, Object[] values) {
          X_name = x_name;
          X value = new ArrayList();
          prob = new ArrayList();
          Arrays.sort(values);
          assignX Prob(values);
```

```
/**
 * getting the values of the random variable, and computing the probability
 * mass function
 * @param values : input values
public void assignX Prob(Object[] values) {
    int count = 0;
    for (int i = 0; i < values.length; i++) {
        if (X value.contains(values[i])) {
            count++;
        } else {
            if (i == 0) {
               count = 1;
               X value.add(values[i]);
            }
            if (i != 0 && i != values.length - 1) {
               double d prob = ((double) count) / values.length;
               prob.add(d prob);
                count = 1;
               X value.add(values[i]);
        if (i == values.length - 1) {
            double d prob = ((double) count) / values.length;
            prob.add(d prob);
        }
 public ArrayList getXValue() {
     return X value;
 public ArrayList getprob() {
    return prob;
 }
```

```
/**
* computing mean
* @return Mean
*/
public double computeMean() {
   double Mean = 0;
  //TO DO:
   // Check if X is numeric
   this.Mean = Mean;
  return Mean;
* computing variance
* @return Variance
*/
public double computeVar() {
   double Var = 0;
   //TO DO:
   // Check if X is numeric
  this. Variance = Var;
   return Var;
```

```
* computing standard deviation
* @return StdDev
public double computeStdDev() {
   double StdDev = 0;
   //TO DO:
   // Check if X is numeric
   this.StdDev = StdDev;
   return StdDev;
}
* Display the bar chart of the probability mass function
public void displayBarChart() {
//TO DO:
}
* Display the line chart of the probability mass function
*/
public void displayLineChart() {
//TO DO:
}
```

References

[1] Line chart: https://www.tutorialspoint.com/jfreechart/jfreechart line chart.htm