University of Toronto FACULTY OF APPLIED SCIENCE AND ENGINEERING

FINAL EXAMINATIONS, APRIL 1997 First Year - Program 5

MAT 195S Calculus II

Prof. S.H. Smith Prof. P. A. Sullivan $2\frac{1}{2}$ hours Examiners:

Duration --

MAME

STUDENT NO:

BLANK			THE RESIDENCE OF THE PROPERTY	APARAGAA AAAA SAAA SAAA SAAA SAAA AAAA AAA								
LEAVE	,	2	က	7	ro	9	7	8	6	10	11	TOTAL

METRUCTIONS

an answers should be written in the space rided on the question paper; if necessary, write on the back of the preceding page.

wer all questions.

Programmable calculators allowed.

nes for each question are shown in the left margin.

Page 1 of 15

$$\int_{-\pi}^{\pi/2} \left(\mathbf{c} \right) \quad \text{Integrate } \int \frac{\ln(1-x)}{x^4} dx$$

For what values of the constant
$$p$$
 does the improper integral

(b) Evaluate $\int_0^1 x^2 \ln(1+x^2) dx$

$$\int_0^1 \frac{\ln(1-x)}{x^p} dx \text{ exist?}$$

Sketch the graph of $r=a(1-\cos 2\theta)$ for constant a>0. Find the total area enclosed by this curve.

(b) Evaluate $\lim_{x\to 0} \frac{\tan x - \sin x}{x^3}$

(c) Evaluate $\lim_{x \to 1} (\frac{2}{x^2 - 1} - \frac{3}{x^3 - 1})$

For what values of x is the series $\sum_{k=1}^{\infty} \frac{x^k}{k^2+k^{-2}}$ convergent

<u>a</u> (d) Generalize part (c) to show that $\lim_{x\to 1} \left(\frac{m}{x^n-1} - \frac{n}{x^n-1}\right) = \frac{n-m}{2}$ for positive integers m and n.

For what values of x is the series $\sum_{k=0}^{\infty} 2^{\sqrt{k}} x^k$ convergent?

Give the Taylor series for $(1+x^4)^{-\frac{1}{2}}$, and hence calculate $\int_0^{\frac{1}{2}} \frac{dx}{(1+x^4)^{\frac{1}{2}}}$ so three decimal places.

(a)

Without completing the details, explain what strategy you would develop to approximate $\int_2^\infty \frac{dx}{(1+x^4)^{\frac{1}{2}}}$ (a)

Page 9 of 15

If F(x) is a continuous function for $a \le x \le b$, then the mean value theorem of integral calculus states that there is some value c between a and b such that $\int_a^b f(x)dx = (b-a)f(c)$.

(a) If p(x) is a positive continuous function for $a \le x \le b$ show that

$$\int_a^b f(x) p(x) dx = f(\xi) \int_a^b p(x) dx \text{ for some } a \le \xi \le b,$$

Hence or otherwise, prove that if F(x) and G(x) are continuous functions for $a \le x \le b$, with continuous first derivatives, and with G'(x) never zero, then $F(b) - F(a) = \frac{F'(\xi)}{G(b) - G(a)} = \frac{F'(\xi)}{G'(\xi)}$ for some $a \le \xi \le b$.

(P)

A particle starts at the origin at time t=0 and then slides down a curve whose radius vector $\underline{r}(t)$ is given by $\underline{r}=(t^2\sin t,t^2\cos t,-t)$.

Describe the curve geometrically.

What is the speed of the particle at time t?

At what angle does the path cut the circular cylinder $\,x^2+y^2=1\,?\,$

(2)

Page 11 of 15

Find the equation of the target plane to the ellipsoid
$$x^2 + y^2 + z^2 + z^2$$

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \text{ at the point } (x_0, y_0, z_0).$

(b) Hence show that the plane lx + my + nz = p is a tangent plane when

 $a^2l^2 + b^2m^2 + c^2n^2 = p^2.$

Page 12 of 15

$$f(x,y) = \begin{cases} \frac{xy^2}{(x^2 + y^2)^{3/2}} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

that both f_x and f_y exist at the origin, but that f is not continuous there.

Find the equation of the osculating plane at the point with parameter t of the circular belix given by $\underline{r}(t)=(a\cos t, a\sin t, \lambda t); a, \lambda$ are positive constants

(b) Hence show that the lines through the origin parallel to the binomials lie on the surface of the cone $a^2(x^2 + y^2) = \lambda^2 z^2$. (The binomial is the unit vector which is perpendicular to the osculating plane.)

Page 15 of 15