Exercícios de Projeto e Análise de Algoritmos Ciência da Computação

campus Foz do Iguaçu

Data: Abril/2016 Prof. Rômulo Silva

Tópico: Indução Matemática, Somatórios e Notações Assintóticas

- 1. Demonstre as proposições a seguir utilizando indução matemática:
 - (a) $n^2 > 5n + 10 \quad \forall n > 6$
 - (b) $n! < n^n \quad \forall n \ge 2$
 - (c) 5^n-1 representa um número múltiplo de 4 para $\forall n\in\mathbb{N}$
 - (d) $\sum_{k=1}^{n} k \times k! = (n+1)! 1 \quad \forall n \in \mathbb{N}$
 - (e) 4 + 10 + 16 + ... + (6n 2) = n(3n + 1)
 - (f) $1.2^1 + 2.2^2 + 3.2^3 + \dots + n.2^n = (n-1)2^{n+1} + 2$
- 2. Resolva os seguintes somatórios
 - (a) $\sum_{5}^{11} 3$

 - (b) $\sum_{k=1}^{7} 2k$ (c) $\sum_{k=3}^{10} 2k + k^2$
 - (d) $\sum_{i=2}^{n} \sum_{j=1}^{n-1} 3i + 2j$
 - (e) $\sum_{i=1}^{n} \sum_{j=0}^{n} i + j + n$
 - (f) $\sum_{i=1}^{n} \sum_{j=i}^{n} 3 + n$
- 3. Compare as funções abaixo usando as notações assintóticas $O, \Omega \in \Theta$:
 - (a) f(n) = 5n + 1 $g(n) = 3n^2 + 2$
 - (b) $f(n) = 2n^3 n$ g(n) = n!
 - (c) f(n) = n + 5 $g(n) = \log n + 20$
 - (d) $f(n) = n^2 1$ q(n) = 5nlog n - 3
 - (e) f(n) = 3n $g(n) = \sqrt{n}$ (f) f(n) = 5 g(n) = 2n

 - (g) $f(n) = n^3$ $g(n) = 2^n$
- 4. Prove as seguintes asserções utilizando as definições das notações assintóticas:
 - (a) $2^{n+1} \in O(2^n)$
 - (b) $3n + 7 \in \Theta(n)$
 - (c) $3n^2 + 2 \in \Omega(n)$
 - (d) $7log n \in O(n)$
- 5. Para cada função f a seguir, dê exemplo de funções g e h tal que $f \in O(g)$ e $f \in \Omega(h)$, e $f \neq g \neq h$:
 - (a) $f(n) = 3n + 7n^2 \log n$
 - (b) f(n) = lqlq n + 5
 - (c) f(n) = nlog n + 2n
 - (d) $f(n) = 2^n + n$