Quantum Computing — Some Maths

Quantum Computing — Some Maths

February 11, 2019

- Complex Numbers
- Matrices
- Another Look at Circuits

Lesson Plan

Lesson Plan

- Week 17: Modelling classical circuits
 Some maths to prepare for quantum circuits
- Week 19: Quantum systems
 Modelling quantum properties (superposition, entanglement)
- ▶ Week 20: Quantum circuits

Complex Numbers

- 1: Complex Numbers
- 1.1: Imaginary and complex numbers
- 1.1.1: The square root of -1

The *imaginary number* \mathbf{i} (or sometimes \mathbf{j}) is defined to be the square root of -1. I.e. $\mathbf{i} \times \mathbf{i} = -1$.

1.1.2: Complex numbers

A complex number consists of a real part and an imaginary part. For example, $\mathbf{3} + \mathbf{4i}$ is a complex number.

Unary Operators

1.1.3: Complex conjugate

E.g.

$$\overline{-3+4i}=-3-4i$$
, and $\overline{2-6i}=2+6i$.

1.1.4: Magnitude

$$|\mathsf{a}+\mathsf{bi}|=\sqrt{\mathsf{a}^2+\mathsf{b}^2}$$

Arithmetic

- 1.2: Arithmetic
- 1.2.1: Addition and Subtraction

E.g.

$$(3+4i)+(2-6i) = 5-2i,$$

 $(3+4i)-(2-6i) = 1+10i.$

Arithmetic

1.2.2: Multiplication E.g.

$$(3+4i)(2-6i) = 3(2-6i) + 4i(2-6i)$$

$$= 6-18i + 8i - 24(i \times i)$$

$$= 6-10i - 24(-1)$$

$$= 6-10i + 24$$

$$= 30-10i.$$

Arithmetic

1.2.3: Division

Multiply both numerator and denominator by the conjugate of the denominator E.g.

$$\frac{3+4i}{2-6i} = \frac{3+2i}{2-6i} \times \frac{2+6i}{2+6i}$$

$$= \frac{(3+4i)(2+6i)}{(2-6i)(2+6i)}$$

$$= \frac{6+18i+8i+24i^2}{2^2+6^2}$$

$$= \frac{6+26i-24}{4+16}$$

$$= \frac{-18+24i}{20}$$

$$= -0\cdot 9+1\cdot 2i$$

Matrices

2: Matrices

A matrix (plural — matrices) is a two-dimensional array — e.g.:

$$\begin{bmatrix} 2 & 7 & -3 \\ -4 & 0 & 0 \end{bmatrix}$$

This is a 2×3 matrix

Addition and Subtraction

2.1: Addition and Subtraction

Matrix addition/subtraction is just piecewise addition/subtraction of the elements. E.g.

$$\begin{bmatrix} 3 & -5 & 7 \\ 0 & 2 & -1 \\ 12 & 0 & -4 \\ -1 & 2 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 4 & 2 \\ -3 & -2 & 5 \\ -6 & 0 & -8 \\ -5 & 6 & 12 \end{bmatrix} = \begin{bmatrix} 3 & -1 & 9 \\ -3 & 0 & 4 \\ 6 & 0 & -12 \\ -6 & 8 & 12 \end{bmatrix}$$
$$\begin{bmatrix} 3 & -5 & 7 \\ 0 & 2 & -1 \\ 12 & 0 & -4 \\ -1 & 2 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 4 & 2 \\ -3 & -2 & 5 \\ -6 & 0 & -8 \\ -5 & 6 & 12 \end{bmatrix} = \begin{bmatrix} 3 & -9 & 5 \\ 3 & 4 & -6 \\ 18 & 0 & 4 \\ 4 & -4 & -12 \end{bmatrix}$$

Scalar Multiplication

2.2: Multiplication

2.2.1: Scalar Multiplication

Each entry in the matrix is multiplied by a fixed number. E.g.:

$$3 \cdot \begin{bmatrix} 3 & -5 & 7 \\ 0 & 2 & -1 \\ 12 & 0 & -4 \\ -1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 9 & -15 & 21 \\ 0 & 6 & -3 \\ 36 & 0 & -12 \\ -3 & 6 & 0 \end{bmatrix}$$

Matrix Product

2.2.2: Matrix Product

If **A** and **B** are matrices the entry in the j^{th} column of the i^{th} row of **A** * **B** is the sum of pairwise products from **A**'s i^{th} row and **B**'s j^{th} column. E.g.:

$$\begin{bmatrix} \cdot & \cdot & \cdot \\ -2 & 6 & 5 \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} * \begin{bmatrix} \cdot & \cdot & 3 & \cdot \\ \cdot & \cdot & 7 & \cdot \\ \cdot & \cdot & 1 & \cdot \end{bmatrix} = \begin{bmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & 41 & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{bmatrix}$$

since
$$-2 \times 3 + 6 \times 7 + 5 \times 1 = 41$$

If **A** is a $\mathbf{k} \times \mathbf{m}$ matrix, then **B** must be a $\mathbf{m} \times \mathbf{n}$ matrix (and vice versa), and the result will be a $\mathbf{k} \times \mathbf{n}$ matrix

Tensor Product

2.2.3: Tensor Product

The tensor product is the scalar product of the second matrix with each of the entries of the first matrix E.g.:

$$\begin{bmatrix} 2 & 0 \\ -1 & -2 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 2 & -1 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 2 \cdot \begin{bmatrix} 2 & -1 \\ 3 & 0 \end{bmatrix} & 0 \cdot \begin{bmatrix} 2 & -1 \\ 3 & 0 \end{bmatrix} \\ -1 \cdot \begin{bmatrix} 2 & -1 \\ 3 & 0 \end{bmatrix} & -2 \cdot \begin{bmatrix} 2 & -1 \\ 3 & 0 \end{bmatrix} \\ 0 \cdot \begin{bmatrix} 2 & -1 \\ 3 & 0 \end{bmatrix} & 1 \cdot \begin{bmatrix} 2 & -1 \\ 3 & 0 \end{bmatrix} \end{bmatrix}$$
$$= \begin{bmatrix} 4 & -2 & 0 & 0 \\ 6 & 0 & 0 & 0 \\ -2 & 1 & -4 & 2 \\ -3 & 0 & -6 & 0 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 3 & 0 \end{bmatrix}$$

Transpose

2.3: Unary Operators

2.3.1: Transpose

"Flip" rows and columns E.g.

$$\begin{bmatrix} 3 & 8 & -2 & 0 \\ 6 & -5 & 0 & 7 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 3 & 6 \\ 8 & -5 \\ -2 & 0 \\ 0 & 7 \end{bmatrix}$$

Conjugate

2.3.2: Conjugate

The piecewise conjugate of the elements E.g.

$$\overline{\begin{bmatrix}2+i & -3+2i & 4\\0 & 2-3i & i\end{bmatrix}} = \begin{bmatrix}2-i & -3-2i & 4\\0 & 2+3i & -i\end{bmatrix}$$

Adjoint

2.3.3: Adjoint

The transpose of the conjugate (or vice versa)

$$\mathbf{A}^\dagger = \overline{\mathbf{A}^\mathsf{T}} = \overline{\mathbf{A}}^\mathsf{T}$$

E.g.

$$\begin{bmatrix} 2+i & -3+2i & 4 \\ 0 & 2-3i & i \end{bmatrix}^{\dagger} = \begin{bmatrix} 2-i & 0 \\ -3-2i & 2+3i \\ 4 & -i \end{bmatrix}$$

Bits

3: Another Look at Circuits

3.1: Bits

We can represent bits as matrices:

$$\mathsf{false} \equiv \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathsf{true} \equiv \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

A ' $|\mathbf{b}\rangle$ ' notation is often used to represent these bits:

false
$$\equiv |0\rangle \equiv \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 , true $\equiv |1\rangle \equiv \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Bit Sequences

Bit sequences are calculated as the tensor product of bit matrices:

$$|01\rangle \equiv |0\rangle \otimes |1\rangle \equiv \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \end{bmatrix} \otimes \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix} \\ \mathbf{0} & \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

Note: a byte (e.g. $|0110 \ 1001\rangle$) would have 256 rows.

Not

3.2: Gates

Gates are also defined as matrices.

3.2.1: Not

$$\mathsf{not} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

and application of a gate to a boolean value is modelled by matrix multiplication. So

not true
$$\equiv$$
 not $|1\rangle$ \equiv $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ * $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $=$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ \equiv $|0\rangle$ \equiv false

And

3.2.2: And

$$\mathsf{and} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

with

and
$$|01\rangle \equiv \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \equiv |0\rangle$$

Truth Table

Note: can derive matrix from truth table

x	0	0	1	1	input
у	0	1	0	1	input
x ∧ y	0	0	0	1	output
	IN\	0>	0>	11\	output as matrix
$ \mathbf{x} \wedge \mathbf{y}\rangle$	U/	υ/	υ/	- 1	output as matrix
x /\ y }	1	1	1	0	matrix expanded

Sequential Circuits

3.3: Circuits

3.3.1: Sequential circuits

Sequential circuits use the matrix product. For example a **nand** gate

$$\mathsf{nand} = \mathsf{not} * \mathsf{and} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} * \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

Parallel Circuits

3.3.2: Parallel Circuits

Parallel circuits use the tensor product. For example a half-adder

So we take **xor** \otimes **and**.

Note: Identify the "most significant bit" — here top to bottom.

Parallel Circuits