

Solution Review: Find All Words Stored in Trie

This review provides a detailed analysis of the solution to the Find All Words Stored in Trie Challenge.

- Solution: Recursion
 - Time Complexity

Solution: Recursion

```
main.py
Trie.py
TrieNode.py
    from Trie import Trie
    from TrieNode import TrieNode
  3
    # Create Trie => trie = Trie()
   # TrieNode => {children, is_end_word, char}
    # Insert a Word => trie.insert(key)
    # Search a Word => trie.search(key) return true or false
    # Delete a Word => trie.delete(key)
 10 # Recursive Function to generate all words
    def get_words(root, result, level, word):
 12
 13
         # Leaf denotes end of a word
```

```
if root.is_end_word:
            # current word is stored till the 'level' in
15
            temp = ""
16
17
            for x in range(level):
18
                temp += word[x]
19
            result.append(str(temp))
20
        for i in range(26):
21
22
            if root.children[i]:
23
                # Non-None child, so add that index to the character arra
                word[level] = chr(i + ord('a')) # Add character for the
24
                get_words(root.children[i], result, level + 1, word)
25
26
27
28
    def find_words(root):
                                                                          []
```

The find_words(root) function contains a result list which will contain all the words in the trie. word is a character array in which node characters are added one by one to keep track of all the letters in the same recursive call.

get_words() is our recursive function which begins from the root and
traverses every node. Whenever a node is the end of a word,
temp (containing the character array) is converted into a string and inserted
into result.

Since word cannot be reset before recording every new word, we simply update the values at each index using level.

Time Complexity

As the algorithm traverses all the nodes, its run time is O(n) where **n** is the number of nodes in the trie.

Interviewing soon? We've partnered with Hired so that companies apply to you instead of you applying to them. See how ①

← Back

Next →

Challenge 2: Find All Words Stored in ...

Challenge 3: List Sort Using Trie

✓ Completed

Report an Issue

