Лекция С7 Относительная вычислимость, I

Вычисли-

мость с оракулом

мые нумерации

Аппроксимации

Лекция С7 Относительная вычислимость, ${ m I}$

Вадим Пузаренко

1 июня 2020 г.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычисли мые

нумерации

Пусть $A\subseteq\omega$.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксимации Пусть $A \subseteq \omega$.

Определение.

Частичная функция ψ называется **частично вычислимой относительно** A или **частично** A-вычислимой (A-чвф), если существует последовательность $f_0, f_1, \ldots, f_n = \psi$ частичных функций такая, что каждая из них либо простейшая или χ_A , либо получена из предыдущих с помощью операторов S, R, M.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

мые нумерации

чумсрации Аппроксима Пусть $A \subseteq \omega$.

Определение.

Частичная функция ψ называется **частично вычислимой относительно** A или **частично** A-вычислимой (A-чвф), если существует последовательность $f_0, f_1, \ldots, f_n = \psi$ частичных функций такая, что каждая из них либо простейшая или χ_A , либо получена из предыдущих с помощью операторов S, R, M.

определение.

Функция ψ называется **вычислимой относительно** A или A-вычислимой (A-вф), если она является частично A-вычислимой и всюду определённой.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

мые нумерации

. Аппроксима

Примеры.

Следующие функции являются А-чвф:

- 🕛 любая чвф;
- € если A вм, то любая A-чвф будет чвф;

- $g(x) \leftrightharpoons \begin{cases} f_0(x), & \text{если } x \in A; \\ f_1(x), & \text{если } x \in \overline{A}; \end{cases}$ где $f_0(x)$ и $f_1(x)$ чвф.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксимации

Команды

INCI Как содержимое I-го регистра, так и счётчик команд увеличивает на единицу; содержимое остальных регистров остаётся неизменным.

DEC I, n Если содержимое I-го регистра больше нуля, то уменьшает содержимое I-го регистра на единицу и помещает в счётчик команд число n; если же содержимое I-го регистра равняется нулю, то содержимое I-го регистра не меняется, а счётчик команд увеличивается на единицу. Во всех случаях содержимое регистра $J \neq I$ остаётся неизменным.

SET I, n Если содержимое I-го регистра попадает в A, то помещаем в счётчик команд число n; в противном случае счётчик команд увеличивается на единицу. Содержимое всех регистров остаётся неизменным.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксимации

Программа

Программа имеет вид

 $0: P_0$

 $1: P_1$

 $n: P_n$

Здесь число k в записи k: означает значение счётчика команд, а P_k — одна из команд, описанных выше $(0 \le k \le n)$.

Лекция С7 Относительная вычислимость.

Вадим Пузаренко

Вычислиоракулом

Программа

Программа имеет вид

 $0: P_0$

 $1: P_1$

 $n: P_n$

Здесь число k в записи k: означает значение счётчика команд, а P_k одна из команд, описанных выше $(0 \leqslant k \leqslant n)$.

Машина Шёнфилда с оракулом A

Однозначно задаётся следующими атрибутами:

1) потенциально бесконечным множеством регистров. занумерованными натуральными числами. Каждый регистр — это ячейка памяти, способная содержать любое натуральное число.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима ции

Машина Шёнфилда с оракулом А

Содержимое регистров может меняться в процессе вычислений. Отметим, что каждая фиксированная машина Шёнфилда использует в своих вычислениях толь ко конечное число регистров. Основное назначение регистровой памяти — это хранение входных, промежуточных и выходных данных.

- 2) счётчиком команд, являющимся особой ячейкой памяти, которая в каждый момент времени содержит некоторое натуральное число. Счётчик команд указывает на номер команды, которая исполняется в данный момент. В начальный момент времени счётчик команд равняется нулю.
- 3) программой, содержащейся в выделенной ячейке памяти машины. Программа не меняется в процессе вычисления. Шаг машины состоит в выполнении команды, на которую указывает счётчик команд. Если команды с таким номером нет, то программа останавливается.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

д-вычислимые нумерации

Аппроксима-

Определение.

Частичная числовая функция $f(x_1, x_2, \ldots, x_k)$ называется вычислимой на машине Шёнфилда с оракулом A с программой P, если выполняются следующие условия (здесь $n_1, n_2, \ldots, n_k \in \omega$):

- если $f(n_1, n_2, \ldots, n_k) \downarrow$, то машина P, начиная работу с содержимым [i]-го регистра n_i $(1 \leqslant i \leqslant k)$ и остальными регистрами, содержащими 0, останавливается и $f(n_1, n_2, \ldots, n_k)$ находится в [0]-м регистре;
- ② если $f(n_1, n_2, \ldots, n_k) \uparrow$, то машина P, начиная работу с содержимым [i]-го регистра n_i $(1 \le i \le k)$ и остальными регистрами, содержащими 0, не останавливается и работает бесконечно.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

д-вычислимые нумерации

Аппроксимации

Определение.

Частичная числовая функция $f(x_1,x_2,\ldots,x_k)$ называется вычислимой на машине Шёнфилда с оракулом A с программой P, если выполняются следующие условия (здесь $n_1,n_2,\ldots,n_k\in\omega$):

- igoplus если $f(n_1,n_2,\ldots,n_k)\downarrow$, то машина P, начиная работу с содержимым [i]-го регистра n_i $(1\leqslant i\leqslant k)$ и остальными регистрами, содержащими 0, останавливается и $f(n_1,n_2,\ldots,n_k)$ находится в [0]-м регистре;
- ② если $f(n_1, n_2, \ldots, n_k) \uparrow$, то машина P, начиная работу с содержимым [i]-го регистра n_i $(1 \le i \le k)$ и остальными регистрами, содержащими 0, не останавливается и работает бесконечно

Пример С2.

Следующая программа вычисляет $\chi_A(x)$:

 $0: {\rm SET}\, 1, 5$ $1: {\rm DEC}\, 0, 1$ $2: {\rm INC}\, 0$ $3: {\rm INC}\, 0$ $4: {\rm DEC}\, 0, 6$ $5: {\rm DEC}\, 0, 5$

A-ЧВФ $\mapsto A$ -МШ

Лекция С7 Относительная вычислимость.

Вычислимость с оракулом

Теорема С40

Любая частично А-вычислимая функция вычислима на некоторой машине Шёнфилда с оракулом А.

A-ЧВФ $\mapsto A$ -МШ

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

нумерации Аппроксима

Теорема С40

Любая частично A-вычислимая функция вычислима на некоторой машине Шёнфилда с оракулом A.

Доказательство.

Следует повторить рассуждения из доказательства теоремы C2, а также использовать пример C2. $\hfill\Box$

A-ЧВФ $\mapsto A$ -МШ

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

нумерации Аппроксима

Теорема С40

Любая частично A-вычислимая функция вычислима на некоторой машине Шёнфилда с оракулом A.

Доказательство.

Следует повторить рассуждения из доказательства теоремы C2, а также использовать пример C2.

Коды операторов (команд)

$$cd(INC[i]) = code(\langle 0, i \rangle),$$

$$cd(DEC[i], j) = code(\langle 1, i, j \rangle),$$

$$cd(SET[i], j) = code(\langle 2, i, j \rangle).$$

Лекция С7 Относительная вычислимость.

> Вадим Пузаренко

Вычисли-

мость с оракулом

нумерации

Аппроксимации

Код программы

Пусть программа P имеет вид:

 $0: P_0$ $1: P_1$

1 : P

٠.

 $k-1:P_{k-1}$

Тогда положим $\operatorname{code}(P) = \operatorname{code}(\langle\operatorname{cd}(P_0),\operatorname{cd}(P_1),\ldots,\operatorname{cd}(P_{k-1})\rangle).$

Лекция С7 Относительная вычислимость,

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые

нумерации

Аппроксима-

Код программы

Пусть программа P имеет вид:

 $0: P_0$ $1: P_1$

1 : P

٠.

 $k-1:P_{k-1}$

Тогда положим $\operatorname{code}(P) = \operatorname{code}(\langle\operatorname{cd}(P_0),\operatorname{cd}(P_1),\ldots,\operatorname{cd}(P_{k-1})\rangle).$

Лемма С7'

Множество $\mathrm{Com}(x)$ кодов команд примитивно рекурсивно.

$A-M \coprod \rightarrow A-4B\Phi$

Лекция С7 Относительная вычислимость.

Вычислиоракулом

Код программы

Пусть программа P имеет вид:

 $0: P_0$ $1 : P_1$

 $k-1: P_{k-1}$

Тогда положим $\operatorname{code}(P) = \operatorname{code}(\langle \operatorname{cd}(P_0), \operatorname{cd}(P_1), \dots, \operatorname{cd}(P_{k-1}) \rangle).$

Лемма С7'

Множество Com(x) кодов команд примитивно рекурсивно.

Лемма С8'

Множество $\operatorname{Prog}(x)$ кодов программ примитивно рекурсивно.

Лекция С7 Относительная вычислимость.

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

нумерации Аппроксима

Код программы

Пусть программа P имеет вид:

 $0: P_0$

 $1 : P_1$

 $k-1: P_{k-1}$

Тогда положим $\operatorname{code}(P) = \operatorname{code}(\langle\operatorname{cd}(P_0),\operatorname{cd}(P_1),\ldots,\operatorname{cd}(P_{k-1})\rangle).$

Лемма С7

Множество $\mathrm{Com}(x)$ кодов команд примитивно рекурсивно.

Лемма С8'

Множество Prog(x) кодов программ примитивно рекурсивно.

Замечание.

Коды программ машин Шёнфилда с оракулом не зависят от оракула.

A-M \square \mapsto A- \Box B \Box

Лекция С7 Относительная вычислимость.

Пузаренко

Вычислиоракулом

- $oldsymbol{0}$ $\operatorname{ct}^A(e,x,n)$ выдаёт содержимое счётчика команд после n шагов вычисления с программой с кодом e и содержимых x_1, x_2, \ldots x_k регистров с 1-го по k-ый, если $x = \text{code}(\langle x_1, x_2, \dots, x_k \rangle)$.
- содержимых регистров после п шагов вычисления с программой с кодом e и содержимых x_1, x_2, \ldots, x_k регистров с 1-го по k-ый, если $x = \operatorname{code}(\langle x_1, x_2, \dots, x_k \rangle).$

Вычислимость с оракулом

А-вычислимые нумерации

нумерации

① $\operatorname{ct}^A(e,x,n)$ выдаёт содержимое счётчика команд после n шагов вычисления с программой с кодом e и содержимых x_1, x_2, \ldots, x_k регистров с 1-го по k-ый, если $x = \operatorname{code}(\langle x_1, x_2, \ldots, x_k \rangle)$.

② $\operatorname{rg}^A(e,x,n)$ выдаёт код последовательности $\langle r_0,r_1,\ldots,r_{e+k-1} \rangle$ содержимых регистров после n шагов вычисления с программой с кодом e и содержимых x_1, x_2, \ldots, x_k регистров с 1-го по k-ый, если $x = \operatorname{code}(\langle x_1, x_2, \ldots, x_k \rangle)$.

$$\mathrm{ct}^A(e,x,n) = \left\{ \begin{array}{l} y, & \text{если выполняется следующее:} \\ (\imath) \ e - \text{код программы } P, \\ (\imath\imath) \ x = \mathrm{code}(\langle x_1, x_2, \dots, x_k \rangle), \\ (\imath\imath\imath) \ y - \mathrm{содержимое} \ \mathrm{сч\"{e}} \mathrm{т}\,\mathrm{uka} \ \mathrm{команд} \ \mathrm{послe} \\ n \ \mathrm{шагов} \ \mathrm{выполнения} \ \mathrm{программы} \ P, \ \mathrm{начато\"{u}} \ \mathrm{c} \\ \mathrm{coдержимыми} \ \mathrm{регистров} \ 0, x_1, x_2, \dots, x_k, 0, \dots, 0; \end{array} \right.$$

в противном случае.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

мые нумерации

нумерации

Аппроксима-

 $\operatorname{code}(\langle r_0,\ldots,r_{e+k-1}\rangle),$ если выполняется следующее: (i) e — код программы P, $(ii) x = \operatorname{code}(\langle x_1, x_2, \dots, x_k \rangle),$ (iii) r_i — содержимое i-го регистра после п шагов $\operatorname{rg}^{A}(e, x, n) =$ выполнения программы P, начатой с содержимыми регистров $0, x_1, x_2, \ldots, x_k, 0, \ldots, 0;$ в противном случае.

A-MIII $\mapsto A$ -4B Φ

Лекция С7 Относительная вычислимость.

Вадим Пузаренко

Вычислиоракулом

$$\operatorname{rg}^A(e,x,n) = \begin{cases} \operatorname{code}(\langle r_0,\dots,r_{e+k-1}\rangle), & \operatorname{если } \operatorname{выполняется } \operatorname{следующее:} \\ (\imath) \ e - \operatorname{код } \operatorname{программы } P, \\ (\imath\imath) \ x = \operatorname{code}(\langle x_1,x_2,\dots,x_k\rangle), \\ (\imath\imath\imath) \ r_i - \operatorname{содержимое } i\text{-го} \\ \operatorname{регистра } \operatorname{после } n \operatorname{шагов} \\ \operatorname{выполнения} \\ \operatorname{программы } P, \operatorname{ начатой } \operatorname{c} \\ \operatorname{содержимыми } \operatorname{регистров} \\ 0, x_1, x_2,\dots,x_k,0,\dots,0; \\ 0 \\ \operatorname{в } \operatorname{противном } \operatorname{случае}. \end{cases}$$

Лемма С9

Функции $\operatorname{ct}^A(e,x,n)$ и $\operatorname{rg}^A(e,x,n)$ являются A-вычислимыми.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычисли мые

нумерации

Аппроксимации Упражнение.

Докажите леммы С7', С8' и С9'.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

нумерации Аппроксима

Упражнение.

Докажите леммы С7', С8' и С9'.

Определение.

Предикат $B\subseteq\omega^n$ называется вычислимым относительно A или A-вычислимым (и обозначается как $B\leqslant_T A$), если функция $\chi_B(x_1,x_2,\ldots,x_n)$ является A-вычислимой.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

лумсрации Аппроксима

Упражнение.

Докажите леммы С7', С8' и С9'.

Определение.

Предикат $B\subseteq \omega^n$ называется вычислимым относительно A или A-вычислимым (и обозначается как $B\leqslant_{\mathcal{T}} A$), если функция $\chi_B(x_1,x_2,\ldots,x_n)$ является A-вычислимой.

Определим предикат $\mathrm{Stop}^A(e,x,n)$ как отношение, удовлетворяющее следующим условиям в точности:

- (i) e код некоторой программы (скажем, P);
- (11) $x = \operatorname{code}(\langle x_1, x_2, \dots, x_k \rangle)$
- ($\imath\imath\imath$) программа P, начав работу с содержимым регистров 0, $x_1, x_2, \ldots, x_k, 0, 0, \ldots, 0$, останавливается к шагу n.

Лекция С7 Относительная вычислимость, І

Вадим Пузаренко

Вычислимость с оракулом

мые нумерации

нумерации

Аппроксима-

Лемма С10'

Отношение $\operatorname{Stop}^A(e,x,n)$ является A-вычислимым.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые

нумерации

Лемма С10'

Отношение $\operatorname{Stop}^A(e,x,n)$ является A-вычислимым.

Упражнение.

Докажите лемму С10'.

Лекция С7 Относительная вычислимость, I

Вычисли-

вычислимость с оракулом

мые нумерации

Аппроксимации

Лемма С10'

Отношение $\operatorname{Stop}^A(e,x,n)$ является A-вычислимым.

Упражнение.

Докажите лемму С10'.

Пусть натуральные числа e, x и n таковы, что $\operatorname{Stop}^A(e,x,n)$.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

нумерации Аппроксима

Лемма С10'

Отношение $\operatorname{Stop}^A(e,x,n)$ является A-вычислимым.

Упражнение.

Докажите лемму С10'.

Пусть натуральные числа e, x и n таковы, что $\operatorname{Stop}^A(e,x,n)$.

Определение.

Кодом вычисления на машине Шёнфилда с оракулом A с программой P, имеющей код e, и начальной конфигурацией содержимого регистров 0, $(x)_0$, $(x)_1$, ..., $(x)_{\mathrm{lh}(x)-1}$, 0, ..., 0, будем называть $\mathrm{code}(\langle \mathrm{rg}^A(e,x,0), \mathrm{rg}^A(e,x,1), \ldots, \mathrm{rg}^A(e,x,n) \rangle)$.

Лекция С7 Относительная вычислимость.

Вадим Пузаренко

Вычислимость с оракулом

А-вычисли мые

нумерации

Аппроксима-

<u>Оп</u>ределение.

Если y — код вычисления, то результат вычисления содержится в 0-м регистре и, следовательно, вычисляется с помощью прф

$$U(y) = ((y)_{\mathrm{lh}(y) \stackrel{\bullet}{-} 1})_0$$

Лекция С7 Относительная вычислимость.

Вычислиоракулом

Определение.

Если у — код вычисления, то результат вычисления содержится в 0-м регистре и, следовательно, вычисляется с помощью прф

$$U(y)=((y)_{\mathrm{lh}(y)\stackrel{\bullet}{-}1})_0.$$

Если $e, x \in \omega$ не удовлетворяют $\operatorname{Stop}^A(e, x, n)$ ни для какого $n \in \omega$, то считаем код вычисления не определённым.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

мые нумерации

Аппроксима-

Определение.

Если y — код вычисления, то результат вычисления содержится в 0-м регистре и, следовательно, вычисляется с помощью прф $U(y) = ((y)_{\mathrm{lb}(y)} \stackrel{\bullet}{=}_1)_0.$

Если $e,x\in\omega$ не удовлетворяют $\operatorname{Stop}^A(e,x,n)$ ни для какого $n\in\omega$, то считаем код вычисления не определённым.

Определение

Пусть $k\geqslant 1$; определим k+2-арный **предикат Клини** $T_k^A(e,x_1,x_2,\ldots,x_k,y)$ как отношение, удовлетворяющее в точности следующим условиям:

- ② y код вычисления программы P с начальной конфигурацией содержимого регистров $0, x_1, x_2, \ldots, x_k, 0, \ldots, 0$.

Лекция С7 Относительная вычислимость.

Вычислимость с оракулом

Лемма С11'

Для любого $k\geqslant 1$ предикат $T_k^A(e,x_1,\ldots,x_k,y)$ является A-вычислимым.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

мые нумерации

нумерации Аппроксима

Лемма С11'

Для любого $k\geqslant 1$ предикат $T_k^A(e,x_1,\ldots,x_k,y)$ является A-вычислимым.

Теорема СЗ'

Любая частичная функция, вычислимая на машине Шёнфилда с оракулом A, частично A-вычислима.

Теорема С4'(Клини о нормальной форме)

Существует примитивно рекурсивная функция U такая, что для любого $k\geqslant 1$ найдётся A-вычислимое отношение $T_k^A(e,x_1,x_2,\ldots,x_k,y)$, для которого выполняется следующее: для любой k-местной частично A-вычислимой функции $\varphi(x_1,x_2,\ldots,x_k)$ найдётся e_0 , для которого имеет место $\varphi(x_1,x_2,\ldots,x_k)=U(\mu y.T_k^A(e_0,x_1,x_2,\ldots,x_k,y))$.

Универсальная A-чвф

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

мые нумерации

нумерации

Предложение С11'

Каковы бы ни были $k\geqslant 1$ и $A\subseteq \omega$, не существует частично A-вычислимой функции, универсальной для семейства всех k-местных A-вычислимых функций.

Универсальная *А*-чвф

Лекция С7 Относительная вычислимость.

Вадим Пузаренко

Вычислиоракулом

Предложение С11'

Каковы бы ни были $k \geqslant 1$ и $A \subseteq \omega$, не существует частично A-вычислимой функции, универсальной для семейства всех k-местных A-вычислимых функций.

Предложение С12'

Каковы бы ни были $k \geqslant 1$ и $A \subseteq \omega$, не существует частично A-вычислимой функции, универсальной для семейства всех k-местных вычислимых функций, принимающих значения $\subseteq \{0; 1\}.$

Универсальная A-чвф

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-

Предложение С11'

Каковы бы ни были $k\geqslant 1$ и $A\subseteq \omega$, не существует частично A-вычислимой функции, универсальной для семейства всех k-местных A-вычислимых функций.

Предложение С12'

Каковы бы ни были $k\geqslant 1$ и $A\subseteq \omega$, не существует частично A-вычислимой функции, универсальной для семейства всех k-местных вычислимых функций, принимающих значения $\subseteq \{0;1\}$.

Теорема С5'

Каковы бы ни были $k\geqslant 1$ и $A\subseteq \omega$, существует k+1-местная частично A-вычислимая функция, универсальная для семейства всех k-местных частично A-вычислимых функций.

Универсальная A-чвф

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые

нумерации

^{мость,} Каков

Теорема Сб'

Каковы бы ни были $k\geqslant 1$ и $A\subseteq \omega$, существует k+1-местная частично A-вычислимая функция, универсальная для семейства всех k-местных частично A-вычислимых функций, принимающих значения $\subseteq \{0;1\}$.

Универсальная A-чвф

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

мые нумерации

Аппроксимации

Теорема Сб'

Каковы бы ни были $k\geqslant 1$ и $A\subseteq \omega$, существует k+1-местная частично A-вычислимая функция, универсальная для семейства всех k-местных частично A-вычислимых функций, принимающих значения $\subseteq \{0;1\}$.

Следствие С2'

Каковы бы ни были $k\geqslant 1$ и $A\subseteq \omega$, существует всюду определённая k-местная функция, принимающая значения $\subseteq \{0;1\}$, не являющаяся A-вычислимой.

Универсальная *А*-чвф

Лекция С7 Относительная вычислимость.

Вадим Пузаренко

Вычислиоракулом

Теорема Сб'

Каковы бы ни были $k\geqslant 1$ и $A\subseteq \omega$, существует k+1-местная частично А-вычислимая функция, универсальная для семейства всех k-местных частично A-вычислимых функций, принимающих значения $\subseteq \{0; 1\}$.

Следствие С2'

Каковы бы ни были $k \geqslant 1$ и $A \subseteq \omega$, существует всюду определённая k-местная функция, принимающая значения $\subset \{0; 1\}$, не являющаяся *A*-вычислимой.

Упражнение.

Докажите лемму С11', предложения С11', С12', теоремы С3'-С6' и следствие С2'.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

мые нумерации

Аппроксимации

Лемма С14'

Пусть $A\subseteq \omega$, $\psi-k$ -местная функция, а $B\subseteq \omega^k-$ множество. Тогда

- looplus ψ частично A-вычислима, если и только если $\psi(c_{k,1}(x),c_{k,2}(x),\ldots,c_{k,k}(x))$ частично A-вычислима;
- ψ A-вычислимая функция, если и только если $\psi(c_{k,1}(x),c_{k,2}(x),\ldots,c_{k,k}(x))$ также A-вычислима;
- В А-вычислимое множество, если и только если $c^k(B)$ также А-вычислимо.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

мые нумерации

Аппроксима

Лемма С14'

Пусть $A\subseteq \omega,\ \psi-k$ -местная функция, а $B\subseteq \omega^k-$ множество. Тогда

- $m{\Psi}$ частично A-вычислима, если и только если $\psi(c_{k,1}(x),c_{k,2}(x),\ldots,c_{k,k}(x))$ частично A-вычислима;
- ψ A-вычислимая функция, если и только если $\psi(c_{k,1}(x), c_{k,2}(x), \dots, c_{k,k}(x))$ также A-вычислима;
- lacktriangledown B-A-вычислимое множество, если и только если $c^k(B)$ также A-вычислимо.

Лемма С15'

Пусть $A\subseteq \omega$, ψ — унарная функция, а $B\subseteq \omega$ — множество. Тогда

- $lack \psi$ частично A-вычислима, если и только если $\psi(c^k(x_1,x_2,\ldots,x_k))$ частично A-вычислима:
- ② ψ A-вычислимая функция, если и только если $\psi(c^k(x_1, x_2, \dots, x_k))$ также A-вычислима:
- ③ B A-вычислимое множество, если и только если $\{\langle c_{k,1}(x), c_{k,2}(x), \dots, c_{k,k}(x) \rangle | x \in B\}$ также A-вычислимо.

Лекция С7 Относительная вычислимость, Т

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые

нумерации

Аппроксимации

Лемма С16'

Пусть $A\subseteq \omega$, $\varphi(x_0,x_1)$ — частично A-вычислимая функция, а $k\geqslant 1$. Тогда $\varphi(x_0,x_1)$ универсальна для класса всех унарных частично A-вычислимых функций, если и только если $\varphi(x_0,c^k(x_1,x_2,\ldots,x_k))$ также универсальна для класса всех k-местных частично A-вычислимых функций.

Лекция С7 Относительная вычислимость,

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

нумерации

Аппроксима-

Лемма С16'

Пусть $A\subseteq \omega$, $\varphi(x_0,x_1)$ — частично A-вычислимая функция, а $k\geqslant 1$. Тогда $\varphi(x_0,x_1)$ универсальна для класса всех унарных частично A-вычислимых функций, если и только если $\varphi(x_0,c^k(x_1,x_2,\ldots,x_k))$ также универсальна для класса всех k-местных частично A-вычислимых функций.

Лемма С17'

Пусть $A\subseteq \omega$, $k\geqslant 1$, а $\varphi(x_0,x_1,x_2,\ldots,x_k)$ частично A-вычислима. Тогда $\varphi(x_0,x_1,\ldots,x_k)$ универсальна для класса всех k-местных частично A-вычислимых функций, если и только если $\varphi(x_0,c_{k,1}(x_1),c_{k,2}(x_1),\ldots,c_{k,k}(x_1))$ также универсальна для класса всех унарных частично A-вычислимых функций.

Лекция С7 Относительная вычислимость,

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксимации

Лемма С16'

Пусть $A\subseteq \omega$, $\varphi(x_0,x_1)$ — частично A-вычислимая функция, а $k\geqslant 1$. Тогда $\varphi(x_0,x_1)$ универсальна для класса всех унарных частично A-вычислимых функций, если и только если $\varphi(x_0,c^k(x_1,x_2,\ldots,x_k))$ также универсальна для класса всех k-местных частично A-вычислимых функций.

Лемма С17'

Пусть $A\subseteq \omega,\ k\geqslant 1$, а $\varphi(x_0,x_1,x_2,\ldots,x_k)$ частично A-вычислима. Тогда $\varphi(x_0,x_1,\ldots,x_k)$ универсальна для класса всех k-местных частично A-вычислимых функций, если и только если $\varphi(x_0,c_{k,1}(x_1),c_{k,2}(x_1),\ldots,c_{k,k}(x_1))$ также универсальна для класса всех унарных частично A-вычислимых функций.

Упражнение.

Докажите леммы С14'-С17'.

Лекция С7 Относительная вычислимость.

Вадим Пузаренко

Вычислимость с оракулом

мые нумерации

нумерации

Определение.

Предикат $B\subseteq\omega^n$ называется вычислимо перечислимым относительно A или A-вычислимо перечислимым (A-вп) и обозначается как $B\leqslant_{\mathrm{CE}}A$, если $B=\delta\varphi$ для некоторой частично A-вычислимой функции $\varphi(x_1,x_2,\ldots,x_n)$.

Лекция С7 Относительная вычислимость.

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксимации

Определение.

Предикат $B\subseteq\omega^n$ называется вычислимо перечислимым относительно A или A-вычислимо перечислимым (A-вп) и обозначается как $B\leqslant_{\mathrm{CE}}A$, если $B=\delta\varphi$ для некоторой частично A-вычислимой функции $\varphi(x_1,x_2,\ldots,x_n)$.

Определение 1'

Последовательность $\{A_n\}_{n\in\omega}$ конечных множеств называется **сильно** A-вычислимой, если выполняются следующие условия:

- ullet $\{(m,n)|m\in A_n\}-A$ -вычислимый предикат;
- ullet $n\mapsto |A_n|-A$ -вычислимая функция.

Лекция С7 Относительная вычислимость.

Вадим Пузаренко

Вычислимость с оракулом

мые нумерации

нумерации Аппроксима

Определение.

Предикат $B\subseteq \omega^n$ называется вычислимо перечислимым относительно A или A-вычислимо перечислимым (A-вп) и обозначается как $B\leqslant_{\mathrm{CE}}A$, если $B=\delta\varphi$ для некоторой частично A-вычислимой функции $\varphi(x_1,x_2,\ldots,x_n)$.

Определение 1'

Последовательность $\{A_n\}_{n\in\omega}$ конечных множеств называется **сильно** A-вычислимой, если выполняются следующие условия:

- ullet $\{(m,n)|m\in A_n\}-A$ -вычислимый предикат;
- ullet $n\mapsto |A_n|-A$ -вычислимая функция.

Определение 4

Последовательность $\{A_n\}_{n\in\omega}$ конечных множеств называется **сильно** A-вычислимой, если существует A-вычислимая функция f такая, что $A_n=\gamma(f(n))$ для всех $n\in\omega$.

Лекция С7 Относительная вычислимость,

Вадим Пузаренко

Вычислимость с оракулом

мые нумерации

Аппроксимации

Определение 2'

Последовательность $\{A_n\}_{n\in\omega}$ конечных множеств называется **сильно** A-вычислимой, если выполняются следующие условия:

- $(m,n)|m \in A_n \} A$ -вычислимый предикат;
- ullet $n\mapsto \max(A_n\cup\{0\})-A$ -вычислимая функция.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-

Определение 2'

Последовательность $\{A_n\}_{n\in\omega}$ конечных множеств называется **сильно А-вычислимой**, если выполняются следующие условия:

- ullet $\{(m,n)|m\in A_n\}-A$ -вычислимый предикат;
- ullet $n\mapsto \max(A_n\cup\{0\})-A$ -вычислимая функция.

Определение 3'

Последовательность $\{A_n\}_{n\in\omega}$ конечных множеств называется сильно A-вычислимой, если выполняются следующие условия:

- $\{(m,n)|m\in A_n\}$ *A*-вычислимый предикат;
- существует A-вычислимая функция f(n) такая, что имеет место $(m \in A_n) \to (m \leqslant f(n))$, для всех $m, n \in \omega$.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксимации

Определение 2'

Последовательность $\{A_n\}_{n\in\omega}$ конечных множеств называется **сильно** A-вычислимой, если выполняются следующие условия:

- ullet $\{(m,n)|m\in A_n\}-A$ -вычислимый предикат;
- ullet $n\mapsto \max(A_n\cup\{0\})-A$ -вычислимая функция.

Определение 3'

Последовательность $\{A_n\}_{n\in\omega}$ конечных множеств называется сильно A-вычислимой, если выполняются следующие условия:

- $\{(m,n)|m \in A_n\} A$ -вычислимый предикат;
- существует A-вычислимая функция f(n) такая, что имеет место $(m \in A_n) \to (m \leqslant f(n))$, для всех $m, n \in \omega$.

Предложение С13'

$$(1') \Leftrightarrow (2') \Leftrightarrow (3') \Leftrightarrow (4')$$
.

Лекция С7 Относительная вычислимость.

Вычислимость с оракулом

Теорема С7'

Для $A, B \subseteq \omega$ следующие утверждения эквивалентны:

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

нумерации

мость, Для *А.* В

Для $A,B\subseteq\omega$ следующие утверждения эквивалентны:

- $oldsymbol{0}$ $B=\deltaarphi$, arphi A-ч.в.ф.;
- $2 \chi_B^* A$ -ч.в.ф.;

Теорема С7'

Лекция С7 Относительная вычислимость.

Вадим

Вычислимость с оракулом

Теорема С7'

Для $A, B \subseteq \omega$ следующие утверждения эквивалентны:

- $\bullet B = \delta \varphi, \ \varphi A \mathsf{4.B.\phi.};$

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

мые нумерации

нумерации ^---- Теорема С7'

Для $A,B\subseteq\omega$ следующие утверждения эквивалентны:

- $oldsymbol{0}$ $B=\delta arphi$, arphi A-ч.в.ф.;
- $\chi_B^* A$ -ч.в.ф.;
- $oldsymbol{\circ}$ B=
 hoarphi, arphi A-ч.в.ф.;
- $B = \emptyset$ или $B = \rho f$, f A-в.ф.;
- **9** B конечно или $B = \rho f$, f инъективная A-в.ф.;

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые

нумерации

Аппроксимации

Теорема С7'

Для $A,B\subseteq\omega$ следующие утверждения эквивалентны:

- \bullet $B = \delta \varphi, \varphi A$ -ч.в.ф.;
- $\chi_B^* A$ -ч.в.ф.;
- ullet B=
 hoarphi, arphi A-ч в ф ;
- $B = \emptyset$ или $B = \rho f$, f A-в.ф.;
- **9** B конечно или $B = \rho f$, f инъективная A-в.ф.;
- ullet ullet $B = \exists y Q(x,y), \ Q A$ -вычислимый предикат;

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

мые нумерации

Аппроксима

Теорема С7'

Для $A,B\subseteq\omega$ следующие утверждения эквивалентны:

- ullet $B=\delta arphi$, arphi-A-ч в.ф.;
- $\chi_B^* A$ -ч.в.ф.;
- $oldsymbol{\Theta} B =
 ho arphi$, arphi A-ч.в.ф.;
- $B = \emptyset$ или $B = \rho f$, f A-в.ф.;
- **⑤** B конечно или $B = \rho f$, f инъективная A-в.ф.;
- ullet $B = \exists y Q(x,y), \ Q A$ -вычислимый предикат;
- $m{O}$ существует сильно A-вычислимая последовательность $\{B_n\}_{n\in\omega}$ такая, что $m{\emptyset}=B_0\subseteq B_1\subseteq\ldots\subseteq B_s\subseteq B_{s+1}\subseteq\ldots\subseteq\bigcup_s B_s=B;$
- существует сильно A-вычислимая последовательность, удовлетворяющая условию (7) и дополнительно условию $|B_{s+1} B_s| \leq 1$, $s \in \omega$.

Лекция С7 Относительная вычислимость, Т

Вадим Пузаренко

Вычислимость с оракулом

А-вычисли мые

нумерации

Аппроксимации

Теорема С8'

Пусть $B\subseteq \omega^n$. Тогда B является A-вычислимым, если и только если B и $\overline{B}=\omega^n\setminus B$ являются A-вычислимо перечислимыми.

Лекция С7 Относительная вычислимость,

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима

Теорема С8'

Пусть $B\subseteq \omega^n$. Тогда B является A-вычислимым, если и только если B и $\overline{B}=\omega^n\setminus B$ являются A-вычислимо перечислимыми.

Теорема С11'

Пусть $\psi(x_1,x_2,\ldots,x_k)$ — частичная функция. Тогда ψ частично A-вычислима, если и только если её график $\Gamma_{\psi}=\{\langle x_1,x_2,\ldots,x_k,y\rangle|\psi(x_1,x_2,\ldots,x_k)=y\}$ — A-вычислимо перечислим.

Лекция С7 Относительная вычислимость, Т

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима

Теорема С8'

Пусть $B\subseteq \omega^n$. Тогда B является A-вычислимым, если и только если B и $\overline{B}=\omega^n\setminus B$ являются A-вычислимо перечислимыми.

Теорема С11'

Пусть $\psi(x_1,x_2,\ldots,x_k)$ — частичная функция. Тогда ψ частично A-вычислима, если и только если её график $\Gamma_{\psi}=\{\langle x_1,x_2,\ldots,x_k,y\rangle|\psi(x_1,x_2,\ldots,x_k)=y\}$ — A-вычислимо перечислим.

Следствие Сб'

Существует А-вычислимо перечислимое, но не А-вычислимое множество.

Лекция С7 Относительная вычислимость,

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

нумерации Аппрокания

Теорема С8'

Пусть $B\subseteq\omega^n$. Тогда B является A-вычислимым, если и только если B и $\overline{B}=\omega^n\setminus B$ являются A-вычислимо перечислимыми.

Теорема С11'

Пусть $\psi(x_1,x_2,\ldots,x_k)$ — частичная функция. Тогда ψ частично A-вычислима, если и только если её график $\Gamma_\psi=\{\langle x_1,x_2,\ldots,x_k,y\rangle|\psi(x_1,x_2,\ldots,x_k)=y\}$ — A-вычислимо перечислим.

Следствие С6'

Существует А-вычислимо перечислимое, но не А-вычислимое множество.

Упражнение.

Докажите предложение С13', теоремы С7', С8', С11' и следствие С6'.

Основные понятия

Лекция С7 Относительная вычислимость, I

Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксимации

Определение.

Нумерация ν называется A-вычислимой, если Γ^*_{ν} является A-в.п. Семейство $\mathcal S$ называется A-вычислимым, если оно имеет хотя бы одну A-вычислимую нумерацию.

Основные понятия

Лекция С7 Относительная вычислимость.

Вадим Пузаренко

А-вычисли-

нумерации

Определение.

Нумерация u называется A-вычислимой, если $\Gamma^*_
u$ является A-в.п. Семейство S называется A-вычислимым, если оно имеет хотя бы одну A-вычислимую нумерацию.

Определение.

Пусть S — семейство n-арных частичных функций. Тогда нумерация ν называется A-вычислимой, если нумерация $(\Gamma \nu)(x) \leftrightharpoons \Gamma \nu(x)$ является A-вычислимой.

Основные понятия

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

А-вычислимые

нумерации

Аппроксимации

Определение.

Нумерация ν называется A-вычислимой, если Γ^*_{ν} является A-в.п. Семейство $\mathcal S$ называется A-вычислимым, если оно имеет хотя бы одну A-вычислимую нумерацию.

Определение.

Пусть \mathcal{S} — семейство n-арных частичных функций. Тогда нумерация ν называется A-вычислимой, если нумерация $(\Gamma \nu)(x) \leftrightharpoons \Gamma \nu(x)$ является A-вычислимой.

Предложение С23'

Пусть \mathcal{S} — семейство n-арных частичных функций. Нумерация ν является A-вычислимой, если и только если функция $F_{\nu}(x_0,x_1,\ldots,x_n) \leftrightharpoons \nu(x_0)(x_1,\ldots,x_n)$ частично A-вычислима.

Лекция С7 Относительная вычислимость, Т

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксимации

Примеры.

lacktriangle Любое вычислимое семейство A-вычислимо, для любого $A\subseteq \omega$.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксимации

- lacktriangle Любое вычислимое семейство A-вычислимо, для любого $A\subseteq \omega$.
- ② Семейство всех k-местных частично A-вычислимых функций A-вычислимо ($A\subseteq\omega,\ k\geqslant1$).

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

мость с оракулом

А-вычислимые нумерации

Аппроксимации

- lacktriangle Любое вычислимое семейство A-вычислимо, для любого $A\subseteq\omega$.
- ② Семейство всех k-местных частично A-вычислимых функций A-вычислимо ($A\subseteq\omega,\ k\geqslant1$).
- **②** Семейство всех k-местных частично A-вычислимых функций, принимающих значения $\subseteq \{0;1\}$, A-вычислимо $(A\subseteq\omega,\ k\geqslant1)$.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

мость с оракулом

А-вычислимые нумерации

Аппроксимации

- lacktriangle Любое вычислимое семейство A-вычислимо, для любого $A\subseteq\omega$.
- ② Семейство всех k-местных частично A-вычислимых функций A-вычислимо ($A\subseteq\omega,\ k\geqslant1$).
- **③** Семейство всех k-местных частично A-вычислимых функций, принимающих значения $\subseteq \{0;1\}$, A-вычислимо $(A\subseteq\omega,\ k\geqslant1)$.
- **③** Семейство всех k-местных A-вычислимо перечислимых множеств A-вычислимо ($A \subseteq \omega, \ k \geqslant 1$).

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксимации

- lacktriangle Любое вычислимое семейство A-вычислимо, для любого $A\subseteq\omega$.
- ② Семейство всех k-местных частично A-вычислимых функций A-вычислимо ($A\subseteq\omega,\ k\geqslant1$).
- **③** Семейство всех k-местных частично A-вычислимых функций, принимающих значения $\subseteq \{0;1\}$, A-вычислимо $(A\subseteq \omega,\ k\geqslant 1)$.
- ① Семейство всех k-местных A-вычислимо перечислимых множеств A-вычислимо ($A\subseteq\omega,\ k\geqslant 1$).
- lacktriangled Семейство всех k-местных A-вычислимых множеств A-вычислимо $(A\subseteq\omega,\ k\geqslant1).$

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксимации

- lacktriangle Любое вычислимое семейство A-вычислимо, для любого $A\subseteq \omega$.
- ② Семейство всех k-местных частично A-вычислимых функций A-вычислимо ($A\subseteq\omega,\ k\geqslant1$).
- **③** Семейство всех k-местных частично A-вычислимых функций, принимающих значения $\subseteq \{0;1\}$, A-вычислимо $(A\subseteq \omega,\ k\geqslant 1)$.
- ① Семейство всех k-местных A-вычислимо перечислимых множеств A-вычислимо ($A\subseteq\omega,\ k\geqslant 1$).
- lacktriangledown Семейство всех k-местных A-вычислимых множеств A-вычислимо $(A\subseteq\omega,\ k\geqslant1).$
- ullet Семейство всех k-местных A-вычислимых функций не A-вычислимо $(A\subseteq\omega,\ k\geqslant 1).$

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

мость с оракулом

А-вычислимые нумерации

Аппроксимации

- lacktriangle Любое вычислимое семейство A-вычислимо, для любого $A\subseteq\omega$.
- ② Семейство всех k-местных частично A-вычислимых функций A-вычислимо ($A\subseteq\omega,\ k\geqslant1$).
- **③** Семейство всех k-местных частично A-вычислимых функций, принимающих значения $\subseteq \{0;1\}$, A-вычислимо $(A\subseteq \omega,\ k\geqslant 1)$.
- ① Семейство всех k-местных A-вычислимо перечислимых множеств A-вычислимо ($A\subseteq\omega,\ k\geqslant 1$).
- lacktriangledown Семейство всех k-местных A-вычислимых множеств A-вычислимо $(A\subseteq\omega,\ k\geqslant1).$
- ullet Семейство всех k-местных A-вычислимых функций не A-вычислимо $(A\subseteq\omega,\ k\geqslant 1).$
- ② Семейство всех (ко)бесконечных k-местных A-вычислимо перечислимых предикатов не A-вычислимо ($A\subseteq\omega,\ k\geqslant 1$).

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

мость с оракулом

А-вычислимые нумерации

Аппроксимации

- $oldsymbol{0}$ Любое вычислимое семейство A-вычислимо, для любого $A\subseteq \omega$.
- ② Семейство всех k-местных частично A-вычислимых функций A-вычислимо ($A\subseteq\omega,\ k\geqslant1$).
- **③** Семейство всех k-местных частично A-вычислимых функций, принимающих значения $\subseteq \{0;1\}$, A-вычислимо $(A\subseteq\omega,\,k\geqslant1)$.
- ① Семейство всех k-местных A-вычислимо перечислимых множеств A-вычислимо ($A\subseteq\omega,\ k\geqslant 1$).
- lacktriangledown Семейство всех k-местных A-вычислимых множеств A-вычислимо $(A\subseteq\omega,\ k\geqslant1).$
- lacktriangledown Семейство всех k-местных A-вычислимых функций не A-вычислимо $(A\subseteq\omega,\ k\geqslant1).$
- Семейство всех (ко)бесконечных k-местных A-вычислимо перечислимых предикатов не A-вычислимо (A ⊆ ω, k ≥ 1).
- $oldsymbol{\circ}$ Семейство всех (ко)бесконечных k-местных A-вычислимых предикатов не A-вычислимо ($A\subseteq\omega,\ k\geqslant1$).

Лекция С7 Относительная вычислимость.

> Вадим Пузаренк

Вычисли-

мость с оракулом

А-вычислимые нумерации

Аппроксима

Пусть $A\subseteq\omega$.

Лекция С7 Относительная вычислимость,

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксимации Пусть $A\subseteq \omega$.

Предложение С24'

- lacktriangle Если u_0 и $u_1 A$ -вычислимые нумерации, то $u_0 \oplus
 u_1$ также A-вычислима;
- ② если νA -вычислимая нумерация и $\nu' \leqslant \nu$, то ν' будет также A-вычислимой нумерацией.

Лекция С7 Относительная вычислимость,

Вадим Пузаренко

мость с оракулом

А-вычислимые нумерации

Аппроксима. ции Пусть $A \subseteq \omega$.

Предложение С24'

- lacktriangle Если u_0 и $u_1 A$ -вычислимые нумерации, то $u_0 \oplus
 u_1$ также A-вычислима;
- ullet если u-A-вычислимая нумерация и $u'\leqslant
 u$, то u' будет также A-вычислимой нумерацией.

Определение.

Пусть $k\geqslant 1$ и пусть $\mathcal{S}\subseteq \mathcal{P}(\omega^k)$. Тогда A-вычислимая нумерация ν_0 семейства \mathcal{S} называется **главной**, если $\nu\leqslant\nu_0$ для любой A-вычислимой нумерации ν семейства \mathcal{S} .

Лекция С7 Относительная вычислимость.

Вадим Пузаренко

Вычисли-

А-вычислимые нумерации

Аппроксима

Пусть $A \subseteq \omega$.

Предложение С24'

- lacktriangledown Если u_0 и $u_1 A$ -вычислимые нумерации, то $u_0 \oplus
 u_1$ также A-вычислима;
- ullet если u-A-вычислимая нумерация и $u'\leqslant
 u$, то u' будет также A-вычислимой нумерацией.

Определение.

Пусть $k\geqslant 1$ и пусть $\mathcal{S}\subseteq \mathcal{P}(\omega^k)$. Тогда A-вычислимая нумерация ν_0 семейства \mathcal{S} называется **главной**, если $\nu\leqslant\nu_0$ для любой A-вычислимой нумерации ν семейства \mathcal{S} .

Теорема С24'

Семейство PCF_n^A всех *п*-арных частично *A*-вычислимых функций имеет главную *A*-вычислимую нумерацию.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

оракулом А-вычисли-

А-вычислимые нумерации

Аппроксимации

Обозначение.

Как и при доказательстве оригинальной теоремы С24, любая A-вычислимая нумерация семейства PCF_n^A сводится к главной нумерации посредством инъективной вычислимой функции. Через $\varkappa^{A,n}(m)$ будем обозначать главную A-вычислимую нумерацию семейства всех n-арных частично A-вычислимых функций. Если n=1, то верхний символ клиниевской нумерации будем опускать и использовать обозначение \varkappa^A вместо $\varkappa^{A,1}$. Зачастую через $\{e\}^A(x)$ будем обозначать $\varkappa^a(x)$.

Кроме того, часто вместо $\varkappa^{A,n}(m)$ будем писать $\varkappa^{A,n}_m$.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

мость с оракулом

А-вычислимые нумерации

Аппроксима-

Обозначение.

Как и при доказательстве оригинальной теоремы С24, любая A-вычислимая нумерация семейства PCF_n^A сводится к главной нумерации посредством инъективной вычислимой функции. Через $\varkappa^{A,n}(m)$ будем обозначать главную A-вычислимую нумерацию семейства всех n-арных частично A-вычислимых функций. Если n=1, то верхний символ клиниевской нумерации будем опускать и использовать обозначение \varkappa^A вместо $\varkappa^{A,1}$. Зачастую через $\{e\}^A(x)$ будем обозначать $\varkappa^a(x)$.

Кроме того, часто вместо $\varkappa^{A,n}(m)$ будем писать $\varkappa^{A,n}_m$.

s-m-n-Теорема С25'

Для любых $n,m\geqslant 1$ существует m+1-местная инъективная вычислимая функция s_n^m такая, что $\varkappa_e^{A,m+n}(y_1,y_2,\ldots,y_m,x_1,x_2,\ldots,x_n)=\varkappa_{s_n^m(e,y_1,y_2,\ldots,y_m)}^{A,n}(x_1,x_2,\ldots,x_n)$ для всех $e, x_1, x_2,\ldots,x_n, y_1, y_2,\ldots,y_m\in\omega$.

Теорема Клини о неподвижной точке

Лекция С7 Относительная вычислимость,

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксимации

Теорема С26'

Для каждой m+1-местной частично A-вычислимой функции h найдётся m-местная инъективная вычислимая функция g такая, что $\varkappa_{h(y_1,y_2,\ldots,y_m,g(y_1,y_2,\ldots,y_m))}^{A,n}(x_1,x_2,\ldots,x_n)=\varkappa_{g(y_1,y_2,\ldots,y_m)}^{A,n}(x_1,x_2,\ldots,x_n)$ для всех $x_1, x_2,\ldots,x_n, y_1, y_2,\ldots,y_m\in\omega$.

Теорема Клини о неподвижной точке

Лекция С7 Относительная вычислимость.

Вадим Пузаренко

А-вычислинумерации

Теорема С26'

Для каждой m+1-местной частично A-вычислимой функции hнайдётся *m*-местная инъективная вычислимая функция *g* такая, что $arkappa^{A,n}_{h(y_1,y_2,\ldots,y_m,g(y_1,y_2,\ldots,y_m))}(x_1,x_2,\ldots,x_n)=arkappa^{A,n}_{g(y_1,y_2,\ldots,y_m)}(x_1,x_2,\ldots,x_n)$ для BCEX $X_1, X_2, \ldots, X_n, V_1, V_2, \ldots, V_m \in \omega$.

Следствие С25

Для любой унарной частично A-вычислимой функции h найдётся число a такое, что $\varkappa_a^{A,n}(x_1,x_2,\ldots,x_n)=\varkappa_{h(a)}^{A,n}(x_1,x_2,\ldots,x_n)$ для всех $x_1, x_2, \ldots, x_n \in \omega$.

Теорема Клини о неподвижной точке

Лекция С7 Относительная вычислимость, Т

Вадим Пузаренко

Вычисли-

А-вычислимые нумерации

Аппроксимации

Теорема С26'

Для каждой m+1-местной частично A-вычислимой функции h найдётся m-местная инъективная вычислимая функция g такая, что $\varkappa_{h(y_1,y_2,\ldots,y_m,g(y_1,y_2,\ldots,y_m))}^{A,n}(x_1,x_2,\ldots,x_n)=\varkappa_{g(y_1,y_2,\ldots,y_m)}^{A,n}(x_1,x_2,\ldots,x_n)$ для всех $x_1, x_2,\ldots,x_n, y_1, y_2,\ldots,y_m\in\omega$.

Следствие С25

Для любой унарной частично A-вычислимой функции h найдётся число a такое, что $\varkappa_a^{A,n}(x_1,x_2,\ldots,x_n)=\varkappa_{h(a)}^{A,n}(x_1,x_2,\ldots,x_n)$ для всех $x_1,x_2,\ldots,x_n\in\omega$.

Замечание.

Индекс функции g или число a не зависят от оракула A, а только от индекса функции h.

Лекция С7 Относительная вычислимость, Т

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима

Теорема С27'

Семейство ${\rm CEP}_n^A$ всех \emph{n} -арных \emph{A} -вычислимо перечислимых предикатов обладает главной \emph{A} -вычислимой нумерацией для любого $\emph{n}\geqslant 1.$

Лекция С7 Относительная вычислимость,

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-

Теорема С27'

Семейство ${\rm CEP}_n^A$ всех n-арных A-вычислимо перечислимых предикатов обладает главной A-вычислимой нумерацией для любого $n\geqslant 1$.

Обозначение.

Как и при доказательстве оригинальной теоремы С27, любая A-вычислимая нумерация семейства CEP_n^A сводится к главной нумерации посредством инъективной вычислимой функции. Через $\pi^{A,n}(m) \leftrightarrows \delta \varkappa^{A,n}(m)$ будем обозначать главную A-вычислимую нумерацию семейства всех n-арных A-вычислимо перечислимых предикатов. Если n=1, то верхний символ постовской нумерации будем опускать и использовать обозначение π^A вместо $\pi^{A,1}$. Кроме того, часто вместо $\pi^{A,n}(m)$ будем писать $\pi^{A,n}_a$.

Лекция С7 Относительная вычислимость,

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-

Теорема С27'

Семейство ${\rm CEP}_n^A$ всех n-арных A-вычислимо перечислимых предикатов обладает главной A-вычислимой нумерацией для любого $n\geqslant 1.$

Обозначение.

Как и при доказательстве оригинальной теоремы С27, любая A-вычислимая нумерация семейства CEP_n^A сводится к главной нумерации посредством инъективной вычислимой функции. Через $\pi^{A,n}(m) \leftrightharpoons \delta \varkappa^{A,n}(m)$ будем обозначать главную A-вычислимую нумерацию семейства всех n-арных A-вычислимо перечислимых предикатов. Если n=1, то верхний символ постовской нумерации будем опускать и использовать обозначение π^A вместо $\pi^{A,1}$. Кроме того, часто вместо $\pi^{A,n}(m)$ будем писать $\pi^{A,n}_a$.

Упражнение.

Докажите предложения С23', С24' и теоремы С24'-С27'.

Неподвижные точки и А-ВПМ

Лекция С7 Относительная вычислимость,

Вадим Пузаренко

Вычислимость с

мость с оракулом

А-вычислимые нумерации

Аппроксимации

Теорема С31'

Для каждого A-вычислимо перечислимого предиката $P\subseteq \omega^{m+1}$ найдётся m-арная инъективная вычислимая функция h такая, что $P(x,y_1,y_2,\ldots,y_m)\Leftrightarrow x\in \pi^A(h(y_1,y_2,\ldots,y_m)).$

Неподвижные точки и А-ВПМ

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-

Теорема С31'

Для каждого A-вычислимо перечислимого предиката $P \subseteq \omega^{m+1}$ найдётся m-арная инъективная вычислимая функция h такая, что $P(x, y_1, y_2, \ldots, y_m) \Leftrightarrow x \in \pi^A(h(y_1, y_2, \ldots, y_m)).$

Теорема С32'

Для каждого A-вычислимо перечислимого предиката $P\subseteq \omega^{m+2}$ найдётся m-арная инъективная вычислимая функция g такая, что $P(x,y_1,y_2,\ldots,y_m,g(y_1,y_2,\ldots,y_m))\Leftrightarrow x\in \pi^A(g(y_1,y_2,\ldots,y_m)).$

Неподвижные точки и А-ВПМ

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

оракулом А-вычисли-

А-вычислимые нумерации

Аппроксимации

Теорема С31'

Для каждого A-вычислимо перечислимого предиката $P \subseteq \omega^{m+1}$ найдётся m-арная инъективная вычислимая функция h такая, что $P(x,y_1,y_2,\ldots,y_m) \Leftrightarrow x \in \pi^A(h(y_1,y_2,\ldots,y_m)).$

Теорема С32'

Для каждого A-вычислимо перечислимого предиката $P\subseteq \omega^{m+2}$ найдётся m-арная инъективная вычислимая функция g такая, что $P(x,y_1,y_2,\ldots,y_m,g(y_1,y_2,\ldots,y_m))\Leftrightarrow x\in \pi^A(g(y_1,y_2,\ldots,y_m)).$

Теорема С33'

Для любой m+1-арной частично A-вычислимой функции h найдётся m-арная инъективная вычислимая функция g такая, что $\pi^A(h(y_1,y_2,\ldots,y_m,g(y_1,y_2,\ldots,y_m)))=\pi^A(g(y_1,y_2,\ldots,y_m)).$ В частности, при m=0 имеем следующее: для любой унарной частично

A-вычислимой функции h найдётся число n_0 такое, что $\pi^A_{n_0}=\pi^A_{h(n_0)}$

Снова полные множества

Лекция С7 Относительная вычислимость,

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-

Обозначение.

Определим A-вычислимо перечислимые множества так:

$$K^A = \{x \mid x \in \pi^A(x)\}, K_0^A = \{c(x, y) \mid y \in \pi^A(x)\}, K_1^A = \{x \mid \pi^A(x) \neq \varnothing\}.$$

Снова полные множества

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

оракулом А-вычисли-

А-вычислимые нумерации

Аппроксимации

Обозначение.

Определим А-вычислимо перечислимые множества так:

$$K^A := \{x \mid x \in \pi^A(x)\}, K_0^A := \{c(x,y) \mid y \in \pi^A(x)\}, K_1^A := \{x \mid \pi^A(x) \neq \varnothing\}.$$

Определение.

A-вычислимо перечислимое множество M называется A-полным, если $B \leqslant_1 M$ для любого A-вычислимо перечислимого множества B.

Аппроксима-

Обозначение.

Определим А-вычислимо перечислимые множества так:

$$K^A = \{x \mid x \in \pi^A(x)\}, K_0^A = \{c(x, y) \mid y \in \pi^A(x)\}, K_1^A = \{x \mid \pi^A(x) \neq \varnothing\}.$$

Определение.

A-вычислимо перечислимое множество M называется A-полным, если $B\leqslant_1 M$ для любого A-вычислимо перечислимого множества B.

Теорема С36

Множества K^A , K_0^A и K_1^A являются A-полными.

Снова полные множества

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

оракулом А-вычисли-

А-вычислимые нумерации

Аппроксимации

Обозначение.

Определим А-вычислимо перечислимые множества так:

$$K^A := \{x \mid x \in \pi^A(x)\}, K_0^A := \{c(x, y) \mid y \in \pi^A(x)\}, K_1^A := \{x \mid \pi^A(x) \neq \emptyset\}.$$

Определение.

А-вычислимо перечислимое множество M называется A-полным, если $B\leqslant_1 M$ для любого A-вычислимо перечислимого множества B.

Теорема СЗ6

Множества K^A , K_0^A и K_1^A являются A-полными.

Упражнение.

Докажите теоремы С31'-С33', С36'.

Лекция С7 Относительная вычислимость, Т

Вадим Пузаренко

Вычислимость с оракулом

мые нумерации

Аппроксимации

Основная информация

Отметим, что строки $\sigma\in 2^{<\omega}$ могут рассматриваться как конечные начальные сегменты характеристических функций. Будем отождествлять A с его характеристической функцией и пишем $\sigma \sqsubset A$, если $\sigma(x)=\chi_A(x)$ для всех $x\in \delta\sigma$. **Длиной** строки σ (записывается как $\mathrm{Lh}(\sigma)$) называется число $|\delta\sigma|$, т.е. $n_0\in\omega$ таково, что $\sigma\in 2^{n_0}$. Заметим, что $\mathrm{Lh}(\sigma)=\mu x[\sigma(x)\uparrow]$. Зафиксируем каноническую нумерацию строк $\sigma\in 2^{<\omega}$ и в дальнейшем будем отождествлять σ с его номером. Положим $A\upharpoonright x \leftrightharpoons \chi_A \upharpoonright \{y\in\omega\mid y< x\}$ и $\sigma\upharpoonright x$ — строка длины x, являющаяся начальной подстрокой строки σ . Заметим, что $\sigma=\sigma\upharpoonright \mathrm{Lh}(\sigma)$.

Лекция С7 Относительная вычислимость, Т

Вадим Пузаренко

Вычислимость с оракулом

мые нумерации

Аппроксимации

Основная информация

Отметим, что строки $\sigma\in 2^{<\omega}$ могут рассматриваться как конечные начальные сегменты характеристических функций. Будем отождествлять A с его характеристической функцией и пишем $\sigma \sqsubset A$, если $\sigma(x)=\chi_A(x)$ для всех $x\in \delta\sigma$. **Длиной** строки σ (записывается как $\mathrm{Lh}(\sigma)$) называется число $|\delta\sigma|$, т.е. $n_0\in\omega$ таково, что $\sigma\in 2^{n_0}$. Заметим, что $\mathrm{Lh}(\sigma)=\mu x[\sigma(x)\uparrow]$. Зафиксируем каноническую нумерацию строк $\sigma\in 2^{<\omega}$ и в дальнейшем будем отождествлять σ с его номером. Положим $A\upharpoonright x \leftrightharpoons \chi_A \upharpoonright \{y\in\omega\mid y< x\}$ и $\sigma\upharpoonright x$ — строка длины x, являющаяся начальной подстрокой строки σ . Заметим, что $\sigma=\sigma\upharpoonright \mathrm{Lh}(\sigma)$.

Зафиксируем машину Шёнфилда P с оракулом A, на которой вычисляется функция $\{e\}^A(x)$. Отметим, что программа P не зависит от выбора оракула.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

мые нумерации

Аппроксимации

Основная информация

Отметим, что строки $\sigma\in 2^{<\omega}$ могут рассматриваться как конечные начальные сегменты характеристических функций. Будем отождествлять A с его характеристической функцией и пишем $\sigma \sqsubset A$, если $\sigma(x)=\chi_A(x)$ для всех $x\in \delta\sigma$. **Длиной** строки σ (записывается как $\mathrm{Lh}(\sigma)$) называется число $|\delta\sigma|$, т.е. $n_0\in\omega$ таково, что $\sigma\in 2^{n_0}$. Заметим, что $\mathrm{Lh}(\sigma)=\mu x[\sigma(x)\uparrow]$. Зафиксируем каноническую нумерацию строк $\sigma\in 2^{<\omega}$ и в дальнейшем будем отождествлять σ с его номером. Положим $A\upharpoonright x \leftrightharpoons \chi_A \upharpoonright \{y\in\omega\mid y< x\}$ и $\sigma\upharpoonright x$ — строка длины x, являющаяся начальной подстрокой строки σ . Заметим, что $\sigma=\sigma\upharpoonright \mathrm{Lh}(\sigma)$.

Зафиксируем машину Шёнфилда P с оракулом A, на которой вычисляется функция $\{e\}^A(x)$. Отметим, что программа P не зависит от выбора оракула.

Определение.

Определяем $\{e\}_s^A(x) = y$, если x,y,e < s, s > 0, и $\{e\}^A(x) = y$ вычисляется за < s шагов программой P, причём в процессе вычисления используются только числа z < s.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

мость с оракулом

мые нумерации

Аппроксима-

шии

Определение.

Определим функция использования u(A;e,x,s) как 1+ наибольшее число, использованное в вычислении $\{e\}_s^A(x)$, если $\{e\}_s^A(x)\downarrow$; и u(A;e,x,s)=0 в противном случае. Определим также функцию использования

$$u(A; e, x) = \begin{cases} u(A; e, x, s), & \text{если } \{e\}_s^A(x) \downarrow; \\ \uparrow, & \text{если } \{e\}^A(x) \uparrow. \end{cases}$$

Определение.

Определим функция использования u(A;e,x,s) как 1+ наибольшее число, использованное в вычислении $\{e\}_s^A(x)$, если $\{e\}_s^A(x)\downarrow$; и u(A;e,x,s)=0 в противном случае. Определим также функцию использования

$$u(A; e, x) = \begin{cases} u(A; e, x, s), & \text{если } \{e\}_s^A(x) \downarrow; \\ \uparrow, & \text{если } \{e\}^A(x) \uparrow. \end{cases}$$

Определение.

Будем писать $\{e\}_s^\sigma(x)=y$, если $\{e\}_s^A(x)=y$ для некоторого $A \sqsupset \sigma$, причём в процессе вычисления используются только числа $z<\mathrm{lh}(\sigma)$. Запись $\{e\}_s^\sigma(x)=y$ означает, что $\exists s[\{e\}_s^\sigma(x)=y]$.

Определение.

Определим функция использования u(A;e,x,s) как 1+ наибольшее число, использованное в вычислении $\{e\}_s^A(x)$, если $\{e\}_s^A(x)\downarrow$; и u(A;e,x,s)=0 в противном случае. Определим также функцию использования

$$u(A; e, x) = \begin{cases} u(A; e, x, s), & \text{если } \{e\}_s^A(x) \downarrow; \\ \uparrow, & \text{если } \{e\}^A(x) \uparrow. \end{cases}$$

Определение.

Будем писать $\{e\}_s^\sigma(x) = y$, если $\{e\}_s^A(x) = y$ для некоторого $A \sqsupset \sigma$, причём в процессе вычисления используются только числа $z < \mathrm{lh}(\sigma)$. Запись $\{e\}^\sigma(x) = y$ означает, что $\exists s [\{e\}_s^\sigma(x) = y]$.

Заметим, что если
$$\{e\}_s^A(x) = y$$
, то $\{e\}_s^\sigma(x) = y$, где $\sigma = A \upharpoonright u(A; e, x, s)$.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые

нумерации Аппроксима-

шии

1

Определения выше гаранируют, что

$$\{e\}_s^A(x) = y \implies x, y, e < s; \ u(A; e, x, s) \leqslant s,$$
 (1)

$$\{e\}_{s}^{A}(x) = y \implies \forall t \geqslant s[\{e\}_{t}^{A}(x) = y \land u(A; e, x, t) = u(A; e, x, s)],$$
 (2)

так что определение u(A; e, x) не зависит от выбора s.

Если A вычислимо, то u(A;e,x,s) является вычислимой функцией, и её индекс может быть найден равномерно по Δ_0 -индексу множества A.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

мые нумерации

Аппроксима-

шии

Определения выше гаранируют, что

$$\{e\}_s^A(x) = y \implies x, y, e < s; \ u(A; e, x, s) \leqslant s,$$
 (1)

$$\{e\}_{s}^{A}(x) = y \implies \forall t \geqslant s[\{e\}_{t}^{A}(x) = y \land u(A; e, x, t) = u(A; e, x, s)],$$
 (2)

так что определение u(A; e, x) не зависит от выбора s.

Если A вычислимо, то u(A;e,x,s) является вычислимой функцией, и её индекс может быть найден равномерно по Δ_0 -индексу множества A.

Главная теорема С41 о перечислении

- **1** Множество $\{\langle e, \sigma, x, s \rangle : \{e\}_s^{\sigma}(x) \downarrow \}$ вычислимо.
- **3** Множество $L = \{\langle e, \sigma, x \rangle : \{e\}^{\sigma}(x) \downarrow \}$ вычислимо перечислимо.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

мые нумерации

Аппроксима-

шии

Определения выше гаранируют, что

$$\{e\}_s^A(x) = y \implies x, y, e < s; \ u(A; e, x, s) \leqslant s,$$
 (1)

$$\{e\}_{s}^{A}(x) = y \implies \forall t \geqslant s[\{e\}_{t}^{A}(x) = y \land u(A; e, x, t) = u(A; e, x, s)],$$
 (2)

так что определение u(A; e, x) не зависит от выбора s.

Если A вычислимо, то u(A;e,x,s) является вычислимой функцией, и её индекс может быть найден равномерно по Δ_0 -индексу множества A.

Главная теорема С41 о перечислении

- **①** Множество $\{\langle e,\sigma,x,s\rangle:\{e\}_s^\sigma(x)\downarrow\}$ вычислимо.
- ullet Множество $L = \{\langle e, \sigma, x \rangle : \{e\}^{\sigma}(x) \downarrow \}$ вычислимо перечислимо.

Доказательство.

2) $\langle e,\sigma,x\rangle\in L\Leftrightarrow \{e\}^\sigma(x)\downarrow\Leftrightarrow \exists s[\{e\}_s^\sigma(x)\downarrow]$ и, следовательно, L в.п.

Аппроксимации

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом А-вычисли

мые нумерации

Аппроксима-

шии

Доказательство (продолжение)

- 1) Сначала отметим, что $\{e\}_s^\sigma(x)\downarrow \Leftrightarrow \exists y < s[\{e\}_s^\sigma(x) = y]$, поэтому достаточно доказать, что отношение $\{e\}_s^\sigma(x) = y$ вычислимо (отметим, что оно даже примитивно рекурсивно). Пусть $e_0 = \operatorname{code}(P)$ и $z = \operatorname{code}(\langle e, x \rangle)$; тогда $\{e\}_s^\sigma(x) = y$, если и только если выполняются одновременно следующие условия:
 - **1** e, x, y < s;
 - **2** $lh(e_0) < s$;
 - $oldsymbol{\circ}$ $(\operatorname{rg}^{\sigma}(e_0,z,t))_i < s$ для всех t < s и $i < \operatorname{lh}(\operatorname{rg}^{\sigma}(e_0,z,t))_i$
 - если $((e_0)_{\operatorname{ct}^{\sigma}(e_0,z,t)})_0 = 2$, то $(\operatorname{rg}^{\sigma}(e_0,z,t))_{((e_0)_{\operatorname{ct}^{\sigma}(e_0,z,t)})_1} < \operatorname{Lh}(\sigma);$
 - $\exists t < s[\operatorname{ct}^{\sigma}(e_0, z, t) \geqslant \operatorname{lh}(e_0) \wedge (\operatorname{rg}^{\sigma}(e_0, z, t))_0 = y].$

Лекция С7 Относительная вычислимость.

Вадим

Вычисли-

мость с оракулом

А-вычисли мые

Аппроксима-

шии

Теорема С42

Лекция С7 Относительная вычислимость,

Вадим Пузаренко

Вычислимость с

А-вычислимые

нумерации Аппроксима-

шии

мость, І

Теорема С42

Доказательство.

Пусть всюду рассматривается машина P с кодом e_0 и входными данными $z=\operatorname{code}(\langle e,x\rangle).$

1) Достаточно положить $s = \max\{s_0, s_1\} + 1$, где $\operatorname{Stop}^A(e_0, z, s_0)$ и $s_1 = \max\{(\operatorname{rg}^A(e_0, z, t))_i \mid i < \operatorname{lh}(\operatorname{rg}^A(e_0, z, t)), \ t \leq s_0\}$; тогда имеем $\{e\}_s^\sigma(x) = y$ для $\sigma = A \upharpoonright u(A; e, x, s)$.

Условия 2) и 3) следуют непосредственно из определения.

Лекция С7 Относительная

вычи слимость, І

Вадим Пузаренко

мость с оракулом

А-вычислимые нумерации

Аппроксимации

Теорема С42

Доказательство.

Пусть всюду рассматривается машина P с кодом e_0 и входными данными $z = \operatorname{code}(\langle e, x \rangle)$.

1) Достаточно положить $s \leftrightharpoons \max\{s_0, s_1\} + 1$, где $\operatorname{Stop}^A(e_0, z, s_0)$ и $s_1 \leftrightharpoons \max\{(\operatorname{rg}^A(e_0, z, t))_i \mid i < \operatorname{lh}(\operatorname{rg}^A(e_0, z, t)), \ t \leqslant s_0\}$; тогда имеем $\{e\}_s^\sigma(x) = y$ для $\sigma = A \upharpoonright u(A; e, x, s)$.

Условия 2) и 3) следуют непосредственно из определения.

Принцип использования оказывается весьма полезным, поскольку 1 утверждает, что если $\{e\}^A(x)=y$, то $\{e\}^\sigma(x)=y$ для некоторого $\sigma \sqsubset A$, причём можно считать, что $\sigma=A \upharpoonright u(A;e,x)$.

Относительная вычислимость, I

Лекция С7

Вадим Пузаренко

Вычислимость с оракулом

мые нумерации

Аппроксимации Более того, 3 утверждает, что $\{e\}^B(x)=y$ для любого $B \sqsupset \sigma$. Из соотношения (1) и теоремы C42 вытекает

$$[\{e\}_s^A(x) = y \land A \upharpoonright u = B \upharpoonright u] \Rightarrow \{e\}_s^B(x) = y, \tag{3}$$

где u=u(A;e,x,s), поскольку соотношение (1) утверждает, что в процессе вычисления используются только числа z< u.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

мость с оракулом А-вычисли

мые нумерации

Аппроксимации Более того, 3 утверждает, что $\{e\}^B(x)=y$ для любого $B \supset \sigma$. Из соотношения (1) и теоремы C42 вытекает

$$[\{e\}_s^A(x) = y \land A \upharpoonright u = B \upharpoonright u] \Rightarrow \{e\}_s^B(x) = y, \tag{3}$$

где u=u(A;e,x,s), поскольку соотношение (1) утверждает, что в процессе вычисления используются только числа z< u.

Теорема С43

Для любых множеств $A, B \subseteq \omega$ выполняется следующее: $B \leqslant_{\mathcal{T}} A$, если и только если существуют вычислимые функции f и g такие, что $x \in B \iff \exists \sigma [\sigma \in \pi(f(x)) \land \sigma \sqsubset A],$ $x \in \overline{B} \iff \exists \sigma [\sigma \in \pi(g(x)) \land \sigma \sqsubset A].$

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

мость с оракулом А-вычисли-

мые нумерации

Аппроксимации Более того, 3 утверждает, что $\{e\}^B(x)=y$ для любого $B \sqsupset \sigma$. Из соотношения (1) и теоремы C42 вытекает

$$[\{e\}_{s}^{A}(x) = y \land A \upharpoonright u = B \upharpoonright u] \Rightarrow \{e\}_{s}^{B}(x) = y, \tag{3}$$

где u=u(A;e,x,s), поскольку соотношение (1) утверждает, что в процессе вычисления используются только числа z< u.

Теорема С43

Для любых множеств $A, B \subseteq \omega$ выполняется следующее: $B \leqslant_T A$, если и только если существуют вычислимые функции f и g такие, что $x \in B \iff \exists \sigma [\sigma \in \pi(f(x)) \land \sigma \sqsubseteq A],$ $x \in \overline{B} \iff \exists \sigma [\sigma \in \pi(g(x)) \land \sigma \sqsubseteq A].$

Упражнение.

Докажите теорему С43.

Лекция С7 Относительная вычислимость, I

Зычисли-

Вычислимость с оракулом

А-вычисли мые нумерации

нумерации Аппроксима-

шии

Спасибо за внимание.