Devoir Libre Analyse 2

Zarkti ZAKARIA

P110134380

A rendre le 22-07-2020

Problème 1

Soit
$$f_n(x) = \frac{\sin(nx)}{n^x}$$
, $n \ge 1$, $x \in [0, +\infty[$

 $+\infty$

1. Montrer que $\sum_{n=1}^{\infty} f_n(x)$ converge simplement dans $[0, +\infty[$

Solution:

En appliquant le critère d'Abel:

On pose $a_n = \frac{1}{n^x}$ et $b_n = sin(nx)$

- On a a_n est une fonction positive décroissante et converge vers 0. $(\lim_{n \to \infty} \frac{1}{e^{\ln(n)x}} \to 0)$
- Et on a:

$$B_n = \sum_{n=1}^{+\infty} b_n = \sum_{n=1}^{+\infty} \sin(nx) = Im(\sum_{n=1}^{+\infty} e^{inx})$$

• Si $x \neq 2k\pi$:

$$\sum_{i=1}^{+\infty} \sin(nx) = Im(\sum_{i=1}^{+\infty} e^{inx}) = Im(\frac{1 - e^{i(n+1)}}{1 - e^{ix}}) = Im(\frac{1}{1 - \cos(x) - i \cdot \sin(x)}) = Im(\frac{1 \cdot (1 - \cos(x) + i \cdot \sin(x))}{(1 - \cos(x))^2 - (i \cdot \sin(x))^2})$$

$$= Im(\frac{(1-\cos(x))}{2-2\cos(x)} + i.\frac{\sin(x)}{2-2\cos(x)}) = \frac{\sin(x)}{2-2\cos(x)} \text{ et } \left| \frac{\sin(x)}{2-2\cos(x)} \right| \le 1$$

• Si $x = 2k\pi$:

$$\sum_{n=0}^{+\infty} sin(nx) = 0 \le 1$$

n=1

$$\Longrightarrow \left[\sum_{n=1}^{+\infty} a_n.b_n \text{ converge sur } [0,+\infty[$$

2. Posons
$$f(x) = \sum_{n=1}^{+\infty} \frac{\sin(nx)}{n^x}$$
 pour tout $x \in [0, +\infty[$

- a). Etudier la convergence uniforme de $\sum_{n} f_n(x)$ dans $[\pi, +\infty[$
- b). Soit $a \in]0, \pi[$, montrer que $\sum\limits_{n=1}^{\infty} f_n(x)$ converge uniformément dans $[a,\pi]$

Solution:

• En appliquant le critère d'Abel mais cette fois-ci pour la convergence uniforme.

On pose
$$a_n = \frac{1}{n^x}$$
 et $b_n = sin(nx)$

• On a a_n est une fonction positive décroissante et converge uniformément vers 0.

$$(\lim \sup \left| \frac{1}{n^x} - 0 \right| \rightarrow 0)$$
 avec $x \le a$ et $0 < a$

• Et on a $\sum |b_n|$ est majorée par 1. (d'aprés la dernière question).

$$\implies \sum_{n=1}^{+\infty} a_n.b_n \text{ converge uniformément sur }]0,+\infty[$$

3. Montrer que f est continue dans $]0, +\infty[$

Solution:

On a $\sum_{n=1}^{+\infty} f_n(x)$ converge uniformément sur $]0, +\infty[$ 1

On a $f_n(x) = \frac{\sin(nx)}{n^x}$ avec $n \ge 1$ est continue sur $]0, +\infty[2]$

($\sin(nx)$ est continue sur R, esp. sur R_*^+ ; $\frac{1}{n^x}$ est continue sur R_* , esp. sur R_*^+ $\Longrightarrow f_n(x) = \sin(nx) \cdot \frac{1}{n^x}$ est continue sur R_*^+ comme produit des fonc. continues.)

→ De $\boxed{1}$ et $\boxed{2}$ on déduit que f(x) (la somme vers laquelle notre série converge) est continue sur $]0, +\infty[$

4.

a). Montrer que
$$\sum_{n=1}^{+\infty} \frac{\cos(nx)}{n^{x-1}}$$
 converge uniformément dans $[b, +\infty[$ pour yout b > 1.

Solution:

Une autre fois le critère d'Abel 😃

On pose
$$a_n = \frac{1}{n^{x-1}}$$
 et $b_n = \cos(nx)$

• On a a_n est une fonction positive décroissante et converge uniformément vers 0. ($\limsup \left| \frac{1}{n^{x-1}} - 0 \right| = \rightarrow 0$) pour $x \le betb > 0$

• Et on a
$$\sum |b_n| = \sum_{n=1}^{+\infty} \cos(nx) = Re(\sum_{n=1}^{+\infty} e^{inx})$$

• Si $x \neq 2k\pi$:

$$\sum_{i=1}^{+\infty} cos(nx) = Re(\sum_{i=1}^{+\infty} e^{inx}) = Re(\frac{1 - e^{i(n+1)}}{1 - e^{ix}}) = Re(\frac{1}{1 - cos(x) - i.sin(x)}) = Re(\frac{1.(1 - cos(x) + i.sin(x))}{(1 - cos(x))^2 - (i.sin(x))^2})$$

$$= Re(\frac{(1 - cos(x))}{2 - 2cos(x)} + \frac{n-1}{i} \frac{sin(x)}{2 - 2cos(x)}) = \frac{(1 - cos(x))}{2 - 2cos(x)} \text{ et } |\frac{(1 - cos(x))}{2 - 2cos(x)}| \le 1$$

• Si $x = 2k\pi$:

$$\Big|\sum_{n=1}^{+\infty}\cos(nx)\Big|=1\leq 1$$

Alors
$$\sum_{n=1}^{+\infty} \frac{\cos(nx)}{n^{x-1}}$$
 converge uniformément dans $[b, +\infty[$ pour tout $b > 1$.

b). Montrer que $\sum\limits_{n=1}^{\infty}f^{'}_{n}$ converge uniformément dans $[b,+\infty[$ pour tout b > 1.

Solution:

On a:
$$f_n(x) = \frac{\sin(nx)}{n^x} \rightarrow f'_n(x) = (\frac{\sin(nx)}{e^{x.\ln(n)}})' = \frac{n^{x+1}.\cos(nx)-\ln(n).n^x.\sin(nx)}{n^{2x}} = \frac{\cos(nx)}{n^{x-1}} - \ln(n)\frac{\sin(nx)}{n^x}$$

Alors
$$\sum_{n=1}^{+\infty} f'_n = \sum_{n=1}^{+\infty} \frac{\cos(nx)}{n^{x-1}} - \ln(n) \frac{\sin(nx)}{n^x} = \sum_{n=1}^{+\infty} \frac{\cos(nx)}{n^{x-1}} - \ln(n) \sum_{n=1}^{+\infty} \frac{\sin(nx)}{n^x}$$

$$=\sum_{n=1}^{+\infty}\frac{\cos(nx)}{n^{x-1}}-ln(n)f_n(x)$$

•
$$f_n(x)$$
 cv unifomément sur $[1, +\infty[$, et $\sum_{n=1}^{+\infty} \frac{\cos(nx)}{n^{x-1}}$ cv unifomément alors due à la linéarité $\sum_{n=1}^{+\infty} \frac{\cos(nx)}{n^{x-1}}$ - $ln(n)f_n(x) = \sum_{n=1}^{+\infty} f'(x)$ converge uniformément sur $[1, +\infty[$

c). En déduire que f est dérivable dans $]1, +\infty[$

Solution:

- On a $\frac{\sin(nx)}{n^x}$ est de classe C^1 sur $]1, +\infty[$.
- On a $f_n(x)$ est convergente sur]1, + ∞ [.
- On a $\sum_{n=1}^{\infty} f'(x)$ converge uniformément sur $[1, +\infty[$
- \implies Donc selon la théorème de dérivation la somme f(x) est de classe C^1 sur $[1, +\infty[$