Following a consistent programming style often helps readability. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). The following properties are among the most important: In computer programming, readability refers to the ease with which a human reader can comprehend the purpose, control flow, and operation of source code. It is very difficult to determine what are the most popular modern programming languages. A similar technique used for database design is Entity-Relationship Modeling (ER Modeling). It affects the aspects of quality above, including portability, usability and most importantly maintainability. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. The first compiler related tool, the A-0 System, was developed in 1952 by Grace Hopper, who also coined the term 'compiler'. Machine code was the language of early programs, written in the instruction set of the particular machine, often in binary notation. Computer programmers are those who write computer software. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. As early as the 9th century, a programmable music sequencer was invented by the Persian Banu Musa brothers, who described an automated mechanical flute player in the Book of Ingenious Devices. Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. The first compiler related tool, the A-0 System, was developed in 1952 by Grace Hopper, who also coined the term 'compiler'. The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. Debugging is often done with IDEs. Standalone debuggers like GDB are also used, and these often provide less of a visual environment, usually using a command line. Some of these factors include: The presentation aspects of this (such as indents, line breaks, color highlighting, and so on) are often handled by the source code editor, but the content aspects reflect the programmer's talent and skills. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. Compilers harnessed the power of computers to make programming easier by allowing programmers to specify calculations by entering a formula using infix notation. Ideally, the programming language best suited for the task at hand will be selected. When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear.