Numerieke Modellering en Benadering: Practicum 1

Ellen Anthonissen Marte Biesmans

vrijdag 21 april 2016

Opgave 1

De Householder transformatiematrix

$$F = I - 2\frac{vv^*}{v^*v}$$

heeft als eigenwaarden -1 en 1 en als eigenvectoren respectievelijk v en w met $w\perp v$. Deze resultaten zijn als volgt bekomen: De Householder transformatiematrix F is symmetrisch

$$F^* = (I - 2\frac{vv^*}{v^*v})^* = I - 2\frac{vv^*}{v^*v} = F$$

en unitair

$$F^*F = FF^* = (I - 2\frac{vv^*}{v^*v})(I - 2\frac{vv^*}{v^*v}) = I - 4\frac{vv^*}{v^*v} + 4\frac{v(v^*v)v^*}{(v^*v)^2} = I.$$

Omdat F unitair is, moeten de eigenwaarden van F op de complexe eenheidscirkel gelegen zijn. Omdat F reëel en symmetrisch is, zijn de eigenwaarden reële getallen. Hieruit volgt dat de eigenwaarden enkel ± 1 kunnen zijn.

Als we nu Fv uitrekenen, bekomen we

$$Fv = v - 2\frac{vv^*}{v^*v}v = -v.$$

Hieruit volgt dat v en eigenvector is bijhorende bij de eigenwaarde -1. Neem nu w met $w \perp v$ en we rekenen Fw uit, dan bekomen we

$$Fw = w - 2\frac{vv^*}{v^*v}w = w,$$

want $v^*w=0$. Hieruit volgt das w een eigenvector is bijhorende bij de eigenwaarde 1.

Geometrisch gezien komt dit overeen met een spiegeling over de w-as. Neem een vector a en ontbind die in een compontent volgens de v-as en een component volgens de w-as. De component volgens de v-as zal vermenigvuldigt worden met -1 en die volgens de w-as met 1. Zo bekomen we een spiegeling rond de w-as.

Opgave 2

Opgave 3

Opgave 4

Neme een vector $x \in \mathbb{R}^n$. Schrijf x als lineaire combinatie van de eigenvectoren $q_1, q_2 \dots q_n$ met bijhorende eigenwaarden $\lambda_1, \lambda_2 \dots \lambda_n$ van A:

$$x = \sum_{j=1}^{n} a_j q_j,$$

dan is het Rayleigh quotiënt van x:

$$r(x) = \frac{\sum_{j=1}^{n} a_j^2 q_j \lambda_j}{\sum_{j=1}^{n} a_j^2}.$$

Het Rayleigh quotiënt is onafhankelijk van de schaal van x, dus stel $\|x\|=1$, dan is $\sum_{j=1}^n a_j^2=1$.

Opgave 5

Opgave 6

Opgave 7

Opgave 8

Opgave 9

Opgave 10