Apsystems Umrichter auslesen und beschreiben.

Wir benutzen das Sunspec Modbus Protokoll.

Die Modbusadressen sind in der Exeltabelle zu finden.

Wir laden uns den Modbusdoctor herunter.

https://www.kscada.com/modbusdoctor.html

Beim Sunspec Modbus Protokoll gibt es verschiedene Modelle.

APSytems benutzt die Modelle

- 1
- 101
- 111
- 123

Hier eine kurze Erklärung zu den Modellen.

101 Model

Bei dem 101 Model werden 16bit signed Integer (Ganzzahlen -32768 to +32767)

Es sind sogenannte Holding Registers

Sie können nicht beschrieben werden

Verschiedene Register geben Scale Faktor heraus xxx_SF

```
-3 = :1000
```

-2 = :100

-1 =:10

0 = 1

1 = x10

2 = x100

3 = x1000

Um die richtigen Werte (, Werte) zu erhalten muss die Ausgabe mit dem Scalefactor multipliziert oder geteilt werden.

111 Model

Bei dem 111 Model werden signed floats (Fließkommazahlen) herausgegeben.

Es sind sogenannte Holding Registers

Es gibt keine Faktoren.

Auch diese können nicht beschrieben werden.

123 Model

Diese werden auch noch Immediate Controls Model genannt.

Es sind sogenannte Holding Registers

Diese Register können gelesen und Beschrieben werden!

Allgemeines

Mit den Immediate Controls können folgende Einstellungen am Wechselrichter vorgenommen werden:

- Unterbrechung des Einspeisebetriebs des Wechselrichters (Standby)
- Konstante Reduktion der Ausgangsleistung
- Vorgabe eines konstanten Power Faktors (Zur Zeit nicht Implementiert)
- Vorgabe einer konstanten relativen Blindleistung (Zur Zeit nicht Implementiert)

Hier die Aufzählung der Register welche implementiert sind.

Umrichter Ein- und Ausschalten

Adresse 40188 Conn

Register Conn zeigt an, ob der Wechselrichter aktuell einspeist

(0 = Standby, 1 = Einspeisebetrieb).

Um den Wechselrichter in den Standby zu schalten schreibt man in dieses Register den Wert $\mathbf{0}$

Um den Wechselrichter wieder zu aktivieren schreibt man in dieses Register den Wert 1

Leistungsreduktion

WMaxLimPct Adresse 40189

MaxLim Ena Adresse 40193

Über diese Register kann beim Wechselrichter eine Reduktion der Ausgangsleistung eingestellt werden.

In Register WmaxLimPct Adresse 40189 können Werte zwischen 0% und 100% eingetragen werden.

Wichtig ist hier besteht ein Scale Faktor von -1 (Zehntel) Adresse 40207 WMaxLimPct SF

für 30 % = 300 Zehntel %, muss man 300 eingeben.

WMaxLim_Ena Adresse 40193

Zum Starten und Beenden diese Betriebsart

Wert 1 in das Register WmaxLim_Ena schreiben = Betriebsart starten

Wert 0 in das Register WmaxLim_Ena schreiben = Betriebsart beenden

Um eine Leistungsänderung am Wechselrichter vorzunehmen sind 2 Schritte notwendig. Beispiel ich will den Umrichter auf 80 % Leistung einstellen.

- 1. Ich schreibe 800 in das Register 40189
- 2. ich schließe diesen Schritt ab indem ich eine 1 in das Register 40193 schreibe

Ich kann aber auch 5 Register in einem Satz beschrieben

```
40189 → 800 (% Wert in Zehntel %)
```

 $40190 \rightarrow 0$ (nicht implementiert)

 $40191 \rightarrow 0$ (nicht implementiert)

 $40192 \rightarrow 0$ (nicht implementiert)

 $40193 \rightarrow 1$ (Aktivieren)

Als Anhang noch fertige Node-red Auslese nodes. Und Phythonscripts zum Auslesen der Modbusregister.

Wenn ich nur 1 Umrichter habe reicht es den Node APS1 in Node-red zu installieren.

Die Auslese Zeit kann auf eine Intervall Schleife von 10 Sekunden eingestellt werden.

Für eine 3 Phaseneinspeisung (3 Umrichter) brauche ich die Nodes APS1, APS2, APS3 und Voltaik) Auslesezeit 10 Sekunden pro Wechselrichter.