Билеты для подготовки к экзамену по математике Преподаватель: Норин Александр Владимирович Подготовил и оформил: Трофимов Владислав

Оглавление

Первообразная и неопределенный интеграл. Свойства неопределенных интегралов	2
Интегрирование методом замены переменной и по частям	3
Теорема Безу. Основная теорема алгебры. Разложение многочлена с действительными коэффициента множители	
Дробно-рациональные функции. Простейшие дроби. Интегрирование дробно-рациональных функций	4
Интегралы от иррациональных функций. Подстановки Эйлера	5
Интегрирование тригонометрических функций. Универсальная тригонометрическая подстановка	5
Интегральные суммы Дарбу и Римана. Необходимое и достаточное условие существование интеграла Рима	на б
Свойства интеграла Римана	6
Теорема о среднем	7
Производная интеграла по верхнему пределу. Формула Ньютона-Лейбница	8
Несобственные интегралы 1-го рода и их свойства	8
Абсолютная и условная сходимость	8
Несобственные интегралы второго рода и их свойства	9
Интеграл Эйлера	10
Вычисление площадей в декартовых и полярных координатах	10
Вычисление длины дуг	11
Вычисление объема тела через площади поперечных сечений. Объем тела вращения	11
Пространство \mathbb{R}^n . Сходимость в \mathbb{R}^n . Функции нескольких переменных. Предел, непрерывность. Св непрерывных функций	
Частные производные. Полный дифференциал	
Производные сложных функций и функции, заданной неявно	13
Частные производные высших порядков. Теорема о смешанных производных	13
Производная по направлению. Градиент и его свойства	
Касательная плоскость и нормаль к поверхности	14
Дифференциалы высших порядков. Формула Тейлора для функции n переменных	15
Необходимые и достаточные условия экстремума функции n переменных	15
Обыкновенные дифференциальные уравнения. Частное и общее решения. Задача Коши. Изоклины	
Дифференциальные уравнения с разделяющимися переменными и с однородной функцией	17
Линейные уравнения первого порядка и уравнения Бернулли	18
Уравнения в полных дифференциалах. Интегрирующий множитель	18
Уравнения высших порядков, допускающие понижение порядка	19
Линейные однородные дифференциальные уравнения высших порядков. Определитель Вронского и его св	
Неоднородные линейные уравнения высших порядков. Метод вариации произвольных постоянных	20
Линейные уравнения высших порядков с постоянными коэффициентами. Характеристическое уравнение. (решение	
Линейные неоднородное дифференциальные уравнения с постоянными коэффициентами и специальной г	правой 21

Первообразная и неопределенный интеграл. Свойства неопределенных интегралов

Основные определения

Пусть функция f(x) определена на отрезке [a;b]. Нам нужно найти такую функцию F(x), что F'(x) =f(x) на [a;b]. Функция F(x) будет называться первообразной от функции f(x) на [a;b] при условии что F'(x) = f(x) во всех точках этого отрезка.

Пример:
$$f(x) = x^3$$
; $F(x) = \frac{x^4}{4}$.

Теорема 1. Пусть $F_1(x)$ и $F_2(x)$ – две первообразные от функции f(x) на [a;b]. Тогда $F_1(x)$ – $F_2(x)$ равно некоторому константному значению.

Доказательство. Пусть $F_1(x)$ и $F_2(x)$ – две первообразные, и $F_1'(x) = f(x)$, $F_2'(x) = f(x)$. Тогда $F_1'(x)$ – $F_2'(x) = 0$. Пусть $\varphi(x) = F_1(x) - F_2(x)$. Тогда $\varphi'(x) = 0$. Покажем, что $\varphi(x)$ – константа на отрезке [a;b]. Рассмотрим отрезок [a;x]. По теореме Лагранжа существует такое ξ , принадлежащее промежутку (a;x), что $\varphi(x)-\varphi(a)=\varphi'(\xi)(x-a)$. Но $\varphi'(\xi)=0$. Следовательно, $\varphi(x)-\varphi(a)=0$, а значит $\varphi(x)=\varphi(a)$ и равно некоторому константному значению. Доказано.

Следствие. Если найдена первообразная, то все остальные отличаются от нее на константу. F(x) + c – семейство первообразных ($c \in R$) (сдвиг графика первообразной по оси ординат).

Если (F(x)+c)'=f(x), то $\int f(x)dx=F(x)+c$ – неопределенный интеграл, где f(x)dx – подынтегральное выражение, f(x) – подынтегральная функция. Действия от нахождения первообразной – неопределенное интегрирование. В отличие от производной, интеграл элементарной функции не является элементарной функцией. Первообразную можно найти не для всех функций.

Свойства неопределенных интегралов

- 1. $(\int f(x) dx)' = (F(x) + c)' = f(x)$.
- 2. $d(\int f(x)dx) = f(x)dx = dF$.
- 3. $\int dF(x) = F(x) + c$.
- 4. Линейность
 - a. $\int af(x)dx = a \int f(x)dx.$
 - b. $\int (f_1(x) + f_2(x)) dx = \int f_1(x) dx + \int f_2(x) dx$.

Доказательство b. $(\int (f_1(x) + f_2(x))dx)' = f_1(x) + f_2(x) = (\int f_1(x)dx)' + (\int f_2(x)dx)' = (\int f_1(x)dx + f_2(x))dx$ $\int f_2(x) dx$)'. По первому свойству равны подынтегральные функции, и, следовательно, сами интегралы.

5.
$$\int f(ax+b)dx = \frac{1}{a}F(ax+b) + c$$
.

Доказательство. $(\int f(ax+b)dx)' = f(ax+b)$. Тогда $\left(\frac{1}{a}F(ax+b)+c\right)' = \frac{1}{a}F_y'(y)(ax+b)' = \frac{1}{a}F'(ax+b)$ b)*a = f(ax + b).

<u>Следствие.</u> $\int f\left(\frac{x}{a}\right) dx = aF\left(\frac{x}{a}\right) + c.$

Таблица интегралов

1.
$$\int x^a dx = \frac{x^{a+1}}{a+1} + c$$
, $a! = -1$.

- 2. $\int \frac{dx}{x} = \ln|x| + c.$
3. $\int \sin x \, dx = -\cos x + c.$

- 4. $\int \cos x \, dx = \sin x + c.$ 5. $\int \frac{dx}{\cos^2 x} = \tan x + c.$ 6. $\int \frac{dx}{\sin^2 x} = -\cot x + c.$ 7. $\int e^x dx = e^x + c.$
- $8. \quad \int a^x dx = \frac{a^x}{\ln a} + c.$
- 9. $\int \frac{dx}{1+x^2} = \tan x + c.$ 10. $\int \frac{dx}{\sqrt{1-x^2}} = \sin x + c.$

Первые 10 интегралов являются следствиями из таблицы производных. Остальные выводятся.

11.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + c$$
.

11. $\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + c$. Доказательство. $\int \frac{dx}{a^2 + x^2} = \frac{1}{a^2} \int \frac{dx}{1 + \left(\frac{x}{a}\right)^2}$. По следствию пятого свойства и девятому интегралу это равно

$$\frac{a}{a^2} \operatorname{atan} \frac{x}{a} + c = \frac{1}{a} \operatorname{atan} \frac{x}{a} + c.$$

$$12. \int \frac{dx}{\sqrt{a^2 - x^2}} = \operatorname{asin} \frac{x}{a} + c.$$

$$12. \int \frac{dx}{\sqrt{a^2 - x^2}} = a\sin\frac{x}{a} + c$$

<u>Доказательство.</u> $\int \frac{dx}{\sqrt{a^2-x^2}} = \frac{1}{a} \int \frac{dx}{\sqrt{1-\left(\frac{x}{a}\right)^2}}$. По следствию пятого свойства и десятому интеграла это

равно
$$\frac{a}{a} a \sin \frac{x}{a} + c = a \sin \frac{x}{a} + c$$
.

13.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + c$$

 $\frac{a}{13}$. $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + c$. Доказательство. $\frac{1}{a^2 - x^2} = \frac{1}{(a - x)(a + x)} = \frac{1}{2a} \left(\frac{1}{a + x} + \frac{1}{a - x} \right)$. Следовательно, $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \left(\int \frac{dx}{x + a} - \int \frac{dx}{x - a} \right) = \frac{1}{2a} \left(\frac{1}{a + x} + \frac{1}{a - x} \right)$ $\frac{1}{2a}(\ln|x+a| - \ln|x-a|) + c = \frac{1}{2a}\ln\left|\frac{a+x}{a-x}\right| + c.$

Интегрирование методом замены переменной и по частям

Интегрирование методом замены переменной

Пусть нужно найти интеграл вида $\int f(x)dx$ и пусть этот интеграл существует. Тогда x=arphi(t);dx= $\varphi'(t)dt$; $\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt$. Это называется формулой замены переменной для неопределенного интеграла. Рассмотрим интеграл $\int f(\varphi)d\varphi = \int f(\varphi(t))\varphi'(t)dt$. Тогда $\int f(\varphi(t))\varphi'(t)dt = \int f(\varphi)d\varphi = \int f(\varphi)d\varphi$ $F(\varphi(t)) + c$.

Пример:
$$\int \sqrt{\sin x} \cos x \, dx = \int \sqrt{\sin x} \, d(\sin x) = \int u^{1/2} du = \frac{2u^{3/2}}{\frac{3}{2}} = \frac{2}{3} \sin^{3/2} x + c.$$

$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} dx = -\int \frac{d(-\cos x)}{-\cos x} = -\ln|\cos x| + c.$$

$$\int \cot x \, dx = \int \frac{\cos x}{\sin x} dx = \int \frac{d(\sin x)}{\sin x} = \ln|\sin x| + c.$$

$$\int \cot x \, dx = \int \frac{\cos x}{\sin x} dx = \int \frac{d(\sin x)}{\sin x} = \ln|\sin x| + c$$

Интегрирование по частям

d(u(x)v(x)) = u'(x)v(x)dx + u(x)v'(x)dx = v(x)du + u(x)dv. Проинтегрируем обе части: $\int u(x)dv = u'(x)v(x)dx + u(x)v'(x)dx = v(x)du + u(x)dv$. $\int d(uv) - \int v(x)du$. Отсюда $\int u(x)dv = uv - \int v(x)du$. Последнее называется формулой интегрирования по частям.

Пример: $\int x \sin x \, dx = \begin{bmatrix} u = x; \, du = dx \\ dv = \sin x \, dx; \, v = -\cos x \end{bmatrix} = -x \cos x + \int \cos x \, dx = -x \cos x + \sin x + c$. Общее правило: $\int P_n(x) \frac{\sin \alpha x}{(\cos \alpha x)} \, dx = \begin{bmatrix} u = P_n(x) \\ dv = \frac{\sin \alpha x}{(\cos \alpha x)} \, dx \end{bmatrix}$.

Пример: $\int x e^x \, dx = \begin{bmatrix} u = x; \, du = dx \\ dv = e^x \, dx; \, v = e^x \end{bmatrix} = x e^x - \int e^x \, dx = x e^x - e^x + c$. Общее правило: $\int P_n(x) e^{\alpha x} \, dx = \frac{1}{2} \int x e^x \, dx = \frac{1}{2} \int x \, dx = \frac{1}{2$

Пример: $\int x \ln x \, dx = \begin{bmatrix} u = \ln x; du = \frac{dx}{x} \\ dv = x dx; v = \frac{x^2}{2} \end{bmatrix} = \frac{x^2}{2} \ln x - \int \frac{x dx}{2} = \frac{x^2}{2} \ln x - \frac{x^2}{4} + c$. Общее правило: $\int P_n(x) \ln x \, dx = \int \frac{x}{2} \ln x \, dx = \int \frac{x}{2} \ln x \, dx$ $\begin{bmatrix} u = \ln x \\ dv = P_n(x) dx \end{bmatrix}.$

Задача на доли: $I = \int e^x \sin x \, dx = \begin{bmatrix} u = e^x; du = e^x dx \\ dv = \sin x dx; v = -\cos x \end{bmatrix} = -e^x \cos x + \int e^x \cos x \, dx = \begin{bmatrix} u = e^x; du = e^x dx \\ dv = \cos x dx; v = \sin x \end{bmatrix}$ $=-e^{x}\cos x+e^{x}\sin x-\int e^{x}\sin x\,dx=-e^{x}\cos x+e^{x}\sin x-I.$ Отсюда $I=\frac{e^{x}}{2}(\sin x-\cos x)+c.$

Теорема Безу. Основная теорема алгебры. Разложение многочлена с действительными коэффициентами на множители

Пусть дан многочлен $f(x) = A_0 x^n + A_1 x^{n-1} + \dots + A_{n-1} x + A_n$, где A_i принадлежит множеству комплексных чисел, то есть многочлен принадлежит множеству значений с комплексными коэффициентами $(f(x) \in C[x])$. Аналогично $f(x) \in R[x]$ – с действительными, $f(x) \in Z[x]$ – с целыми. Корнем f(x) называется такое значение $x = x_0$, при котором $f(x_0)$ обращается в ноль.

Пусть в C[x] или R[x] заданы многочлены Q(x) степени m и f(x) степени n. Пусть $m \geq n$. Тогда существует такие многочлены q(x) степени m-n и r(x) степени < n, что Q(x) = f(x)q(x) + r(x).

Теорема 2 (Безу). При делении многочлена Q(x) на двучлен x-a получается остаток, равный Q(a). **Доказательство.** Q(x) = (x-a)q(x) + r(x). При подстановке x=a имеем (a-a)q(a) = 0, следовательно, Q(a) = r(a).

Следствие: x = a является корнем Q(x), значит остаток от деления равен нулю.

Определение кратности и корня: Q(x) : f(x), если существует такой многочлен q(x), что Q(x) = f(x)q(x), то есть разделится без остатка. x=a называется корнем многочлена Q(x) тогда и только тогда, когда Q(x) : (x-a). x=a называется корнем кратности $\lambda \in N$ множества Q(x), если Q(x) : $(x-a)^{\lambda}$, но Q(x) не $\vdots (x-a)^{\lambda+1}$. Можно сказать, что условие r(x) = 0 – необходимое и достаточное условие того, что x = a – корень многочлена.

<u>Теорема 3 (Следствие из основной теоремы алгебры).</u> Многочлен степени n имеет ровно n комплексных корней. Пусть $Q(x)\in \mathcal{C}[x]$ и $x\in\mathcal{C}$, а степень Q(x) равна m, тогда $Q(x)=A_0(x-a_1)^{k_1}(x-a_1)^{k_2}$ $a_2)^{k_2}\dots(x-a_n)^{k_n}$, где a_1,a_2,\dots,a_n – корни Q(x) с учетом кратности, а k_1,k_2,\dots,k_n – кратности этих корней, $\sum_{i=1}^n k_i = m$. Для действительных коэффициентов: $Q(x) = A_0 x^m + A_1 x^{m-1} + \dots + A_{m-1} x + A_m$. Доказательство не требуется, но элементарно выводится применением m раз теоремы Безу.

Теорема 4. Пусть z=a+ib – корень многочлена $Q(x)\in R[x]$. Тогда $\bar{z}=a-ib$ – тоже корень Q(x).

<u>Доказательство.</u> $(\bar{z})^k = \overline{(z^k)}$, так как $\bar{z_1}*\bar{z_2} = \overline{z_1*z_2}$, следовательно, $A_{m-k}\bar{z}^k = \overline{A_{m-k}z^k}$, а так как $\bar{z_1}+\bar{z_2}=\bar{z_1}+\bar{z_2}$ $\overline{z_2}=\overline{z_1+z_2}$, то $Q(ar{z})=\overline{Q(z)}$. Пусть Q(z)=Q(a+ib)=M+iN=0 (z=ai+b – корень), тогда M=0; N=0. $Q(\bar{z})=Q(a-ib)=\overline{Q(a+ib)}=M-iN=0$, тогда M=0,N=0, а, значит, $\bar{z}=a-ib$ – тоже корень Q(x).

Замечание. Пусть z=a+ib – корень кратности λ многочлена $Q(x)\in R[x]$. Тогда сопряженный ему корень тоже кратности λ .

Теорема 5. Пусть дан многочлен $Q(x) \in R[x]$. Тогда Q(x) можно выразить в виде Q(x) = $A_0(x-x_1)^{\lambda_1}(x-x_2)^{\lambda_2}\dots(x-x_n)^{\lambda_n}(x^2+p_1x+q_1)^{\mu_1}\dots\left(x^2+p_
ho x+q_
ho
ight)^{\mu_
ho}$, где x_1,\dots,x_n – действительные корни Q(x), а для каждого i выражение $x^2 + p_i x + q_i$ не имеет действительных корней и соответствует паре сопряженных корней Q(x).

Доказательство. Пусть x_1,\dots,x_n — действительные корни $Q(x),\ z_1=a_1+ib_1,\overline{z_1}=a_1-ib_i,\dots,z_{
ho}=a_1+ib_1$ $a_{\rho}+ib_{\rho}, \bar{z_{\rho}}=a_{\rho}-ib_{\rho}$ – комплексные корни кратностей $\mu_{1},...,\mu_{\rho}$. По теореме 3 $Q(x)=A_{0}(x-x_{1})^{\lambda_{1}}...(x-x_{1})^{\lambda_{1}}$ $(x_n)^{\lambda_n} * (x-z_1)^{\mu_1} (x-\overline{z_1})^{\mu_1} ... (x-z_{
ho})^{\mu_{
ho}} (x-\overline{z_{
ho}})^{\mu_{
ho}}.$ Выражение $(x-(a+ib))(x-(a-ib)) = x^2-2ax+1$ $a^2 + b^2 = x^2 + px + q$ не имеет действительных корней и соответствует паре сопряженных корней Q(x).

Дробно-рациональные функции. Простейшие дроби. Интегрирование дробно-рациональных функций

Дробно-рациональные функции. Простейшие дроби

Рассмотрим выражение $\frac{Q(x)}{f(x)}$, где Q(x) и f(x) – многочлены степеней m и n соответственно. Если $m \geq$ n, то такая дробь называется неправильной. Если же m < n, то правильной.

Пусть $\frac{q(x)}{f(x)}$ – неправильная дробь, тогда ее можно выразить в виде $\frac{q(x)f(x)+r(x)}{f(x)}=q(x)+\frac{r(x)}{f(x)}$, т.е. на многочлен и правильную дробь.

Теорема 6. Любую правильную дробь можно представить в виде суммы простейших дробей. Простейшие дроби:

- 1. $\frac{A}{x-a}$.
 2. $\frac{A}{(x-a)^k}$, $k \ge 2$.
 3. $\frac{Mx+N}{x^2+px+q}$, знаменатель не имеет действительных корней.
- 4. $\frac{m(k+1)}{(x^2+px+q)^k}$, $k \geq 2$, знаменатель не имеет действительных корней.

 $\frac{x^3 + 3x^2 + 5x + 9}{(x - 1)^2(x + 2)^3(x^2 + 4)^2(x^2 + x + 1)} = \frac{A_1}{x - 1} + \frac{A_2}{(x - 1)^2} + \frac{B_1}{x + 2} + \frac{B_2}{(x + 2)^2} + \frac{B_3}{(x + 2)^3} + \frac{M_1x + N_1}{x^2 + 4} + \frac{M_2x + N_2}{(x^2 + 4)^2} + \frac{P_1x + R_1}{x^2 + x + 1} + \frac{P_2x + R_2}{(x - 1)^2} + \frac{P_1x + R_2}{(x - 1)^2} + \frac{P_1x + R_2}{(x - 1)^2} + \frac{P_2x + R_2}{(x - 1)^2} + \frac{P_1x + R_2}{(x - 1)^2} + \frac{P_2x + R_2}{(x - 1)^2} + \frac{P_1x + R_2}{(x -$ Пример: $A_1 \dots R_1$ – неопределенные коэффициенты, зависящие от числителя дроби. Если привести к общему знаменателю, то получим многочлен, решение которого сводится к решению САУ.

Интегрирование простейших дробей

1.
$$\int \frac{A}{x-a} dx = A \ln|x-a|.$$
2.
$$\int \frac{A}{(x-a)^k} dx = \frac{A}{1-k} (x-a)^{1-k}, k \ge 2.$$
3.
$$\int \frac{Mx+N}{x^2+px+q} dx = \int \frac{Mx}{x^2+px+q} dx + \int \frac{N}{x^2+px+q} dx + \int \frac{2x}{x^2+px+q} dx + \int \frac{N}{x^2+px+q} dx = \frac{M}{2} * \int \frac{2x+p-p}{x^2+px+q} dx + \int \frac{N}{x^2+px+q} dx + \int \frac{N}{x^2+px+q} dx + \left(N - \frac{pM}{2}\right) * \int \frac{dx}{x^2+px+q} = \frac{M}{2} * \ln|x^2+px+q| + \left(N - \frac{pM}{2}\right) * \int \frac{dx}{x^2+px+q}.$$
4.
$$\int \frac{Mx+N}{(x^2+px+q)^k} dx = \int \frac{Mx}{(x^2+px+q)^k} dx + \int \frac{N}{(x^2+px+q)^k} dx = \frac{M}{2} * \int \frac{2x}{(x^2+px+q)^k} dx + \int \frac{N}{(x^2+px+q)^k} dx = \frac{M}{2} * \int \frac{dx}{(x^2+px+q)^k} dx + \left(N - \frac{pM}{2}\right) * \int \frac{dx}{(x^2+px+q)^k} = \frac{M}{2} * \int \frac{d(x^2+px+q)}{(x^2+px+q)^k} + \left(N - \frac{pM}{2}\right) * \int \frac{dx}{(x^2+px+q)^k} = \frac{M}{2} * \frac{d(x^2+px+q)^{1-k}}{1-k} + \left(N - \frac{pM}{2}\right) * I_k;$$

$$I_k = \int \frac{dx}{(x^2+px+q)^k} = \int \frac{dt}{(t^2+m^2)^k}, \quad \text{TALE } t = x + \frac{p}{2}; m^2 = q - \frac{p^2}{4}.$$

Вывод рекуррентной формулы: $\int \frac{dt}{(t^2+m^2)^k} = I_k = \begin{bmatrix} u = \frac{1}{(t^2+m^2)^k}; du = -k(t^2+m^2)^{-k-1} 2t dt \\ dv = dt; v = t \end{bmatrix} = \frac{t}{(t^2+m^2)^k} + 2k \int \frac{t^2 dt}{(t^2+m^2)^{k+1}}; \int \frac{t^2 dt}{(t^2+m^2)^{k+1}} = \int \frac{(t^2+m^2)dt}{(t^2+m^2)^{k+1}} = \int \frac{(t^2+m^2)dt}{(t^2+m^2)^{k+1}} - m^2 \int \frac{dt}{(t^2+m^2)^{k+1}} = I_k - m^2 I_{k+1}.$ Поставим в исходное выражение: $I_k = \frac{t}{(t^2+m^2)^k} + 2k \int \frac{t^2 dt}{(t^2+m^2)^{k+1}} = \frac{t}{(t^2+m^2)^k} + 2k (I_k - m^2 I_{k+1}).$ Отсюда $I_{k+1} = \frac{2k-3}{2m^2(k-1)} I_k + \frac{t}{2m^2(k-1)(t^2+m^2)^{k-1}}.$

Интегралы от иррациональных функций. Подстановки Эйлера

$$\int R\left(x, x^{\frac{m}{n}}, \dots, x^{\frac{r}{s}}\right) dx$$

Пусть k — общий знаменатель дробей $\frac{m}{n},...,\frac{r}{s}$, т.е. k = HOK (n,...,s). Выполним замену $x=t^k;R\left(t^k,t^{\frac{km}{n}},...,t^{\frac{rk}{s}}\right)$. Все показатели целые; $dx=kt^{k-1}dt$.

Пример.
$$I = \int \frac{\sqrt{x}}{x^{\frac{3}{4}+1}}; k = 4; \quad x = t^4; dx = 4t^3dt; \quad I = \int \frac{t^24t^3dt}{t^3+1} = 4\int \frac{t^5}{t^3+1} = 4\int \frac{t^5+t^2-t^2}{t^3+1} dt = 4\left(\int t^2dt - \int \frac{t^2}{t^3+1}\right) = \frac{4}{3}t^3 - \frac{4}{3}\int \frac{d(t^3+1)}{t^3+1} = \frac{4}{3}(t^3-\ln|t^3+1|) + c = \frac{4}{3}\left(x^{\frac{3}{4}}-\ln\left|x^{\frac{3}{4}}+1\right|\right) + c.$$

<u>Замечание.</u> Аналогичным образом берется интеграл вида $\int R\left(x;\left(\frac{ax+b}{cx+d}\right)^{\frac{n}{n}};...,\left(\frac{ax+b}{cx+d}\right)^{\frac{r}{s}}\right)dx$ с помощью подстановки $t^k=\frac{ax+b}{cx+d}$, k=HOK(n,...,s).

$$\int R(x, \sqrt{ax^2 + bx + c}) dx$$

Решаются одной из подстановок Эйлера:

- 1. $\sqrt{ax^2 + bx + c} = \pm t \pm \sqrt{ax}$. Используется при a > 0.
- 2. $\sqrt{ax^2 + bx + c} = \pm xt \pm \sqrt{c}$. Используется при c > 0.
- 3. $\sqrt{ax^2 + bx + c} = t(x \lambda)$. Используется когда подкоренное выражение имеет два действительных корня, один из которых λ .

Интегрирование дифференциальных биномов

Выражение вида $x^m(a+bx^n)^p dx$, где m,n,p – рациональные числа, a и b – постоянные, называется дифференциальным биномом. Не всегда интеграл дифференциального бинома можно свести к дифференциальной рациональной функции.

Теорема 7 (Чебышева). $\int x^m (a+bx^n)^p dx$ сводится к интегралу от рациональных функций, если:

- 1. p целое число (сводится к пункту 1).
- 2. $\frac{m+1}{n}$ целое число (сводится к пункту 1).
- 3. $\frac{m+1}{n} + p$ целое число.

Интегрирование тригонометрических функций. Универсальная тригонометрическая подстановка

$$\int R(\cos x, \sin x) dx$$

 $t = \tan\frac{x}{2} - \text{универсальная тригонометрическая подстановка.} \ \frac{x}{2} = \operatorname{atan} t \ ; x = 2 \operatorname{atan} t \ ; dx = \frac{2dt}{1+t} ; \cos x = \cos^2\frac{x}{2} - \sin^2\frac{x}{2} = \frac{\cos^2\frac{x}{2} - \sin^2\frac{x}{2}}{\cos^2\frac{x}{2} + \sin^2\frac{x}{2}} = \frac{1 - \tan^2\frac{x}{2}}{1 + \tan^2\frac{x}{2}} = \frac{1 - t^2}{1 + t^2}.$ Аналогично $\sin x = \frac{2t}{1 + t^2}$.

Пример.
$$\int \frac{dx}{\sin x} = \begin{bmatrix} t = \tan \frac{x}{2} \\ \sin x = \frac{2t}{1-t^2}; dx = \frac{2}{1+t^2} dt \end{bmatrix} = \int \frac{2dt(1+t^2)}{(1+t^2)2t} = \ln|t| + c = \ln\left|\tan \frac{x}{2}\right| + c.$$

$$\int R(\cos^2 x, \sin^2 x) dx$$

Интеграл рационализуется $t=\tan x$; $dx=\frac{dt}{1+t^2}$; $\cos^2 x=\frac{1}{\tan^2 x+1}=\frac{1}{t^2+1}$; $\sin^2 x=\frac{t^2}{1+t^2}$.

Замечание.
$$\int \frac{dx}{2-\sin^2 x} = \int \frac{dx}{2\cos^2 x + \sin^2 x} = \int \frac{dx}{\cos^2 x (2+\tan^2 x)} = \int \frac{d(\tan x)}{2+\tan^2 x}$$
.

$$\int R(\cos x)\sin x \ dx \ \& \ \int R(\sin x)\cos x \ dx$$

$$\int R(\cos x) \sin x \ dx = \int R(\cos x) \, d(\cos x)$$
$$\int R(\sin x) \cos x \ dx = \int R(\sin x) \, d(\sin x)$$

Пример. $\int \sin^m x \cos^{2p+1} x \, dx = \int \sin^m x (\cos^p x) d(\sin x) = \int \sin^m x (1 - \sin^2 x)^p \, d(\sin x)$.

$$\int tan^n x dx$$

 $I_n = \int \tan^n x \, dx = \int \tan^{n-2} x \tan^2 x \, dx = \int \tan^{n-2} x \left(\frac{1}{\cos^2 x} - 1 \right) dx = \int \tan^{n-2} x \, d(\tan x) - I_{n-2} = \int \tan^{n-2} x \, dx$ $\frac{1}{n-1} \tan^{n-1} x - I_{n-2}$.

$$I_1 = \int \tan x \, dx$$
; $I_2 = \int \tan^2 x \, dx = \int \left(\frac{1}{\cos^2 x} - 1\right) dx = \tan x - x + c$.

Интегрирование функций, не выражающихся через элементарные функции

- 1. $\int \frac{e^x}{x} dx = ei \ x + c$ интегральная экспонента. 2. $\int \frac{dx}{\ln x} = li \ x + c$ интегральный логарифм. 3. $\int \frac{\sin x}{x} dx = si \ x + c$ интегральный синус. 4. $\int \frac{\cos x}{x} dx = ci \ x + c$ интегральный косинус.

- 5. $\int e^{-x^2} dx = \frac{\sqrt{\pi}}{2} \operatorname{erf} x + c$ интеграл от функции Гаусса, интеграл Пуассона.

Интегральные суммы Дарбу и Римана.

Необходимое и достаточное условие существование интеграла Римана

Интегральные суммы Дарбу

Пусть на отрезке [a;b] задана некая непрерывная функция f(x). Разобьем отрезок на n частей таких, что $a=x_0 < x_1 < \dots < x_n = b$. Введем обозначения $m_i = \min f(x)$ на отрезке $[x_{i-1};x_i]$, $M_i = \max f(x)$ на от-

резке $[x_{i-1}; x_i]$ и $\Delta x_i = x_i - x_{i-1}$. Тогда можно ввести понятия верхней и нижней суммы Дарбу: $S(n) = \sum_{i=1}^n M_i \Delta x_i$ — верхняя сумма Дарбу (на рисунке изображена серым, равна площади описанной ступенчатой фигуры), $\rho(n) = \sum_{i=1}^{n} m_i \Delta x_i$ – нижняя сумма Дарбу (на рисунке изображена зеленым, равна площади вписанной ступенчатой фигуры). При этом всегда выполняется неравенство $\min_{[a:b]} f(x) \, (b-a) \le \rho_n \le S_n \le 1$

$$\max_{[a;b]} f(x) (b-a).$$

Интегральные суммы Римана. Определенный интеграл

Пусть на отрезке [a;b] задана некая функция f(x). Разобьем отрезок на n частей таких, что $a=x_0<$ $x_1 < \cdots < x_n = b$. Введем обозначение $\Delta x_i = x_i - x_{i-1}$. Выберем точки $\xi_i \in [x_{i-1}; x_i]$, тогда $f(\xi_i) \Delta x_i$ будет соответствовать площади i-го прямоугольника. А выражение $\sigma_n =$

 $\sum_{i=1}^n f(\xi_i) \Delta x_i$ будет называться интегральной суммой Римана для f(x) на отрезке [a;b] и равно площади ступенчатой фигуры на этом отрезке.

Если при любых разбиениях отрезка [a;b] таких, что максимальная длина разбитого отрезка стремится к нулю (при любом выборе ξ_i) и сумма σ_n стремится к одному и тому же пределу, то говорят, что функция интегрируема на этом отрезке, а предел называется определенным интегралом. $I=\lim_{\max\Delta x_i\to 0} \sum_{i=1}^n f(\xi_i)\Delta x_i=\int_a^b f(x)dx$. Если функция непрерывна на [a;b], то она интегрируема на [a;b].

<u>Замечание.</u> $\rho_n \le \sigma_n \le S_n$, т.к. для любого i выполняется $m_i \le f(\xi_i) \le$ M_i .

<u>Теорема 8.</u> Для существования интеграла функции f(x) на отрезке [a;b] необходимо и достаточно, чтобы предел $\lim_{n \to \infty} (S_n - \rho_n)$ существовал и был равен нулю.

<u>Замечание.</u> Определенный интеграл – площадь криволинейной трапеции под графиком функции f(x).

Свойства интеграла Римана

- 1. Линейность
- а. $\int_a^b cf(x)dx = c \int_a^b f(x)dx$. b. $\int_a^b (f_1(x) + f_2(x))dx = \int_a^b f_1(x)dx + \int_a^b f_2(x)dx$. 2. <u>Теорема 9 (о знаке интеграла).</u> Пусть некая функция $f(x) \ge 0$ на отрезке [a;b] и пусть существует интеграл $\int_a^b f(x)dx$. Тогда $\int_a^b f(x)dx \ge 0$.

Доказательство. $\int_a^b f(x)dx = \lim_{\max \Delta x_i \to 0} \sum_{i=1}^n f(\xi_i) \Delta x_i$. $\Delta x_i > 0$, так как b > a, $f(\xi_i) \ge 0$ так как $f(x) \ge 0$. Выходит, $\sum_{i=1}^n f(\xi_i) \Delta x_i \geq 0$, и, следовательно, $\int_a^b f(x) dx \geq 0$.

<u>Следствие.</u> Пусть $f(x) \ge \varphi(x)$ на отрезке [a;b] и существуют интегралы $\int_a^b f(x) dx$, $\int_a^b \varphi(x) dx$. Тогда $\int_a^b f(x)dx \geq \int_a^b \varphi(x)dx$. Для доказательства достаточно рассмотреть интеграл разности этих функций.

3. $\int_a^b f(x) dx = -\int_b^a f(x) dx$. (во втором случае $\Delta x_i < 0$).

Следствие. $\int_a^a f(x)dx = 0$.

4. **Теорема 10 (о разбиении промежутка интегрирования).** Пусть некий отрезок [a;b] разбит на отрезки [a;c] и [c;b]. Тогда $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$.

<u>Доказательство.</u> Такое разбиение подразумевает, что точка c является точкой деления. Тогда $\sum_{i=1}^n f(\xi_i) \Delta x_i = \sum_{i=1}^n f(\xi_i) \Delta x_i$ (до c) + $\sum_{i=1}^n f(\xi_i) \Delta x_i$ (после c). Таким образом, при $\max \Delta x_i \to 0$ выполняется $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx.$

5. Оценка определенного интеграла. Пусть на некотором отрезке [a;b] выполняется неравенство $m \le f(x) \le M$, где $M = \max f(x)$ на отрезке [a;b], $m = \min f(x)$ на отрезке [a;b]. Тогда $m(b-a) \le m$ $\int_{a}^{b} f(x)dx \le M(b-a).$

Доказательство. $\sum_{i=1}^{n} m \Delta x_i \leq \sum_{i=1}^{n} f(\xi_i) \Delta x_i \leq \sum_{i=1}^{n} M \Delta x_i$. Первая и последняя части соответственно равны m(b-a) и M(b-a). Средняя же часть равна определенному интегралу.

<u>Замечание.</u> $\int_a^b 1 dx = b - a$.

 $\underline{\underline{C}$ ледствие. Пусть некоторая функция f(x) на отрезке [a;b] по модулю не превосходит M. Тогда $\left| \int_{a}^{b} f(x) dx \right| \le M(b - a).$

6. Теорема 11 (неравенство Коши-Буняковского). Пусть некоторая функция f(x) на отрезке [a;b]является произведением двух других функций $f_1(x)$ и $f_2(x)$ и существуют интегралы $\int_a^b f_1^2(x) dx$; $\int_a^b f_2^2(x) dx$; $\int_a^b f_1(x) f_2(x) dx$. Тогда выполняется неравенство $\left|\int_a^b f_1(x) f_2(x) dx\right| \le$ $\int_{a}^{b} f_{1}^{2}(x) dx \int_{a}^{b} f_{2}^{2}(x) dx.$

Доказательство. Рассмотрим интеграл $\int_a^b \left(\lambda f_1(x) + f_2(x)\right)^2 dx = \lambda^2 \int_a^b f_1^2(x) dx + 2\lambda \int_a^b f_1(x) f_2(x) dx + 2\lambda \int_a^b f_1(x) dx + 2\lambda \int_a^b$ $\int_a^b f_2^2(x) dx \geq 0$. Представим его в виде $\lambda^2 I_{11} + 2\lambda I_{12} + I_{22} \geq 0$. Так как это выражение является квадратным трехчленом, то оно имеет не более одного корня, а значит $\frac{D}{4}=\lambda^2(I_{12}^2-I_{11}I_{22})\leq 0$, $\lambda^2>0$, ее можно опустить. Тогда получаем $\left(\int_a^b f_1(x)f_2(x)dx\right)^2 \leq \int_a^b f_1^2(x)dx \int_a^b f_2^2(x)dx$.

 $\underline{\textbf{Замечание.}}$ Рассмотрим непрерывное множество функций c на отрезке [a;b]. По определению, скалярное произведение двух кусочно-непрерывных на отрезке [a;b] функций (f_1f_2) равно интегралу $\int_a^b f_1(x) f_2(x) dx$. Величину ||f||, равную $\sqrt{(ff)}$ будем называть нормой функции f. Тогда для двух функций f_1 и f_2 из множества c будет выполняться равенство $(f_1f_2) \leq \big||f_1|\big|_c \big||f_2|\big|_c$. Это другая форма записи неравенства Коши-Буняковского.

Теорема о среднем

Теорема 12 (о среднем). Пусть некоторая функция f(x) непрерывна на отрезке [a;b]. Тогда существует такая точка $\xi \in (a;b)$, что $f(\xi) = \frac{\int_a^b f(x)dx}{b-a}$. Доказательство. f(x) принимает на отрезке [a;b] все значения между $M = \max_{[a;b]} f(x)$ и $m = \min_{[a;b]} f(x)$.

И $m(b-a) \leq \int_a^b f(x) dx \leq M(b-a)$. Следовательно, $m \leq \frac{\int_a^b f(x) dx}{b-a} \leq M$. А значит, найдется такая точка $\xi \in (a;b)$, что $f(\xi) = \frac{\int_a^b f(x) dx}{b-a}$. $y_{\rm cp} = \frac{\int_a^b f(x) dx}{b-a}$ $\frac{\int_a^b f(x) dx}{b-a}$ обобщает среднее значение последовательности $\frac{\sum_{k=1}^n a_k}{n} =$

Геометрический смысл теоремы о среднем: $f(\xi)(b-a) = \int_a^b f(x) dx$. В правой части выражения записана площадь криволинейной трапеции, которая равна площади прямоугольника, площадь которого записана в левой части выражения.

Производная интеграла по верхнему пределу. Формула Ньютона-Лейбница

Производная интеграла по верхнему пределу

Пусть некоторая функция f(x) непрерывна на отрезке [a;b]. Рассмотрим интеграл $\int_a^x f(t)dt$, где $a < \infty$ x < b, причем $\int_a^x f(t) dt$ будет функцией от x.

Теорема 13. $\left(\int_a^x f(t)dt\right)' = f(x)$.

Доказательство. Возьмем $\int_a^x f(t)dt$ за I(x). Тогда $I(x+\Delta x)-I(x)=\int_a^{x+\Delta x} f(t)dt-\int_a^x f(t)dt=$ $\int_x^{x+\Delta x} f(t)dt =$ (по теореме о среднем) $= f(\xi)\Delta x; \xi \in [x;x+\Delta x].$ Тогда $\lim_{\Delta x \to 0} \frac{\Delta I}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta I}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(\xi)\Delta x}{\Delta x} = \lim_{\Delta x \to 0} f(\xi) = f(x).$

<u>Следствие.</u> $d(\int_a^x f(t)dt) = f(x)dx$.

Формула Ньютона-Лейбница <u>Теорема 14.</u> Пусть некая функция f(x) непрерывна на отрезке [a;b] и пусть F(x) – первообразная от f(x). Тогда интеграл $\int_a^b f(x) = F(b) - F(a)$.

Доказательство. По теореме о производной интеграла по верхнему пределу $I(x) = \int_a^x f(t)dt$; I'(x) = f(x), I(x) — первообразная от f(x). I(a) = F(a) + c = 0; c = -F(a). Тогда $I(x) = \int_a^x f(t)dt = F(x) - F(a)$, а, следовательно, $\int_a^b f(t)dt = F(b) - F(a) = \int_a^b f(x)dx$.

Несобственные интегралы 1-го рода и их свойства

Пусть некая функция f(x) непрерывна на промежутке $[a; +\infty)$, где a – некоторое конечное число. Возьмем некоторое число b>a и рассмотрим интеграл $\int_a^b f(x)dx$, который обозначим I(b). Так как функция непрерывна, то этот интеграл существует, обычный интеграл Римана. А теперь узнаем, как ведет себя I(b) когда $b \to +\infty$. Оказывается, что если существует конечный предел $\lim_{b \to +\infty} I(b)$, то этот предел называется несобственным интегралом первого рода функции f, и обозначается следующим образом: $\int_a^{+\infty} f(x) dx = \lim_{b \to +\infty} \int_a^b f(x) dx$. Если этот предел существует, то говорят о существовании, или сходимости, несобственного интеграла. Если же не существует, то говорят о том, что несобственный интеграл не сходится, или не существует.

Геометрический смысл несобственного интеграла:

Площадь бесконечно длинной криволинейной трапеции.

Аналогичным образом определяется $\int_{-\infty}^a f(x) dx$. А в случае, когда оба предела интегрирования — бесконечности, можно взять некоторую точку c и рассмотреть два интеграла: $\int_{-\infty}^{c} f(x) dx$ и $\int_{c}^{+\infty} f(x) dx$. Тогда, если эти интегралы существуют, то интеграл $\int_{-\infty}^{+\infty} f(x) dx$ равен сумме этих интегралов: $\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{c} f(x) dx + \int_{c}^{+\infty} f(x) dx$. Пример: $\int_{b}^{+\infty} \frac{dx}{1+x^2} = \lim_{b \to +\infty} \int_{0}^{b} \frac{dx}{1+x^2} = \lim_{b \to +\infty} \arctan x \Big|_{0}^{b} = \lim_{b \to +\infty} \arctan b = \frac{\pi}{2}$.

Абсолютная и условная сходимость

Признаки сравнения

Теорема 15. Рассмотри интеграл $\int_a^{+\infty} \frac{Mdx}{x^{\alpha}}$, где M>0, $\alpha>0$. Этот интеграл сходится при $\alpha>1$ и расходится при $\alpha \le 1$.

<u>Доказательство.</u> Пусть $\alpha \neq 1$. Тогда $\int_a^{+\infty} \frac{M dx}{x^{\alpha}} = \frac{Mx^{1-\alpha}}{1-\alpha} \Big|_a^{+\infty} = \left[\frac{+\infty, \ \alpha < 1}{\frac{Ma^{1-\alpha}}{1-\alpha}, \ \alpha > 1} \right]$. Пусть $\alpha = 1$. Тогда $\int_a^{+\infty} \frac{M dx}{x} = \frac{Mx^{1-\alpha}}{1-\alpha} \Big|_a^{+\infty} =$ $M \ln x \Big|_{\alpha}^{+\infty} = +\infty.$

Теорема 16 (Сравнение несобственных интегралов 1 рода). Пусть на интервале $[a; +\infty)$ $0 \le \varphi(x) \le \varphi(x)$

- 1. Если $\int_a^{+\infty} f(x) dx$ сходится, то $\int_a^{+\infty} \varphi(x) dx$ сходится.
- 2. Если $\int_a^{+\infty} \varphi(x) dx$ расходится, то $\int_a^{+\infty} f(x) dx$ расходится.

Доказательство. Рассмотрим доказательства для обоих случаев:

- 1. Пусть существует предел $\lim_{b\to +\infty}\int_a^b f(x)dx=I$. Но по свойству определенных интегралов $\int_a^b \varphi(x) dx \leq \int_a^b f(x) dx \leq I$. Рассмотри функцию $\Phi(b) = \int_a^b \varphi(x) dx$. Эта функция возрастающая и ограничена сверху. Следовательно, существует ее предел $\lim_{b o +\infty} \int_a^b \varphi(x) dx$, т.е. интеграл сходится.
- 2. От противного: Пусть $\int_a^{+\infty} \varphi(x) dx$ расходится и $\int_a^{+\infty} f(x) dx$ сходится. Тогда, по первому пункту доказательства $\int_a^{+\infty} \varphi(x) dx$ сходится. Противоречие. Следовательно, $\int_a^{+\infty} f(x) dx$ расходится.

Геометрический смысл теоремы: площадь криволинейной трапеции, ограниченной меньшей функцией, имеющей предел на +∞, меньше площади криволинейной трапеции, ограниченной большей функцией, имеющей предел на +∞.

Теорема 17 (признак сходимости неопределенных интегралов первого рода). Пусть f(x) определена на интервале $[a; +\infty)$, где a>0 и $f(x)\geq$

- 1. Если существуют такие $M>0, \alpha>1$, что $f(x)\leq \frac{M}{x^{\alpha}}$, то интеграл $\int_{a}^{+\infty} f(x) dx$ сходится.
- 2. Если существуют такие M>0, $1\geq \alpha>0$, что $f(x)\geq \frac{M}{x^{\alpha}}$, то интеграл $\int_{a}^{+\infty}f(x)dx$ расходится.

<u>Доказательство.</u> Очевидно. Вытекает из теорем 15 и 16. <u>Пример:</u> Рассмотрим интеграл $\int_1^{+\infty} \frac{dx}{x^2(e^x+1)} \cdot \frac{1}{x^2(e^x+1)} < \frac{1}{2x^2}$. Но $\int_1^{+\infty} \frac{dx}{2x^2}$ сходится. Следовательно, и исходный интеграл сходится.

Абсолютная и исходная сходимости

<u>Теорема 18.</u> Пусть f(x) непрерывна на интервале [a; +∞). Тогда, если сходится интеграл $\int_a^{+\infty} |f(x)| dx$, то сходится и интеграл $\int_a^{+\infty} f(x) dx$.

<u>Доказательство.</u> Рассмотрим функции $f^+(x)$ и $f^-(x)$, где $f^+(x) = \frac{|f(x)| + f(x)}{2}$, $f^-(x) = \frac{|f(x)| - f(x)}{2}$. Следовательно, $f^+(x)$ и $f^-(x) \ge 0$. Если их сложить, получим: $|f(x)| = f^+(x) + f^-(x)$ и $f(x) = f^+(x) - f^-(x)$. Рассмотрим интеграл $\int_a^b |f(x)| dx = \int_a^b f^+(x) dx + \int_a^b f^-(x) dx$. Значит, так как существует предел $\lim_{b \to +\infty} \int_a^b |f(x)| dx$, то должны существовать и пределы $\lim_{b \to +\infty} \int_a^b f^+(x) dx$, $\lim_{b \to +\infty} \int_a^b f^-(x) dx$, так как в противном случае не существовал бы $\lim_{b \to +\infty} \int_a^b |f(x)| dx$. Теперь распишем интеграл $\int_a^b f(x) dx = \int_a^b f^+(x) dx - \int_a^b f^-(x) dx$. Аналогично, интеграл левой части существует, так как существуют оба интеграла из правой части. Следовательно, существует и $\lim_{b \to +\infty} \int_a^b f(x) dx$, то есть интеграл сходится.

 ${\color{red} 3}$ амечание. Утверждение, обратное теореме, неверно. Если сходится интеграл $\int_a^{+\infty} |f(x)| dx$, то говорят, что этот интеграл сходится абсолютно. Если же интеграл $\int_a^{+\infty} |f(x)| dx$ не сходится, а $\int_a^{+\infty} f(x) dx$ сходится, то говорят, что этот интеграл сходится условно.

Пример: $\int_1^{+\infty} \frac{\sin x dx}{x\sqrt{1+x^2}}$ сходится абсолютно. Рассмотрим интеграл $\int_1^{+\infty} \left| \frac{\sin x dx}{x\sqrt{1+x^2}} \right|$. $\left| \frac{\sin x dx}{x\sqrt{1+x^2}} \right| \le \frac{1}{x\sqrt{x^2+1}} \le \frac{1}{x^2}$, а интеграл $\int_{1}^{+\infty} \frac{dx}{x^2}$ сходится.

Несобственные интегралы второго рода и их свойства

Пусть функция f(x) задана на некотором интервале [a;b). Пусть в точке b функция имеет бесконечный разрыв, т.е. $\begin{cases} f(x) \to \infty \\ x \to b - 0 \end{cases}$. Рассмотрим интеграл $\int_a^{b-\varepsilon} f(x) dx$. Этот интеграл существует, так как функция непрерывна. Тогда рассмотрим предел $\lim_{\varepsilon \to +0} \int_a^{b-\varepsilon} f(x) dx$. Если этот предел существует, то говорят, что не-

собственный интеграл второго рода существует и сходится: $\int_a^b f(x) dx \equiv \lim_{\varepsilon \to +0} \int_a^{b-\varepsilon} f(x) dx$. Если этот предел не существует, то говорят, что несобственный интеграл не существует или расходится. Точку b называют особой точкой функции f(x).

Замечание. Аналогичным образом определяется несобственный интеграл второго рода, где специальной точкой является точка a.

Пусть точка c является внутренней точкой интервала (a;b) и пусть эта точка является особой точкой функции f(x), т.е. $\lim_{x \to c-\varepsilon} f(x) = \infty$ и $\lim_{x \to c+\varepsilon} f(x) = \infty$.

Если существуют пределы $\lim_{\varepsilon_1 \to +0} \int_a^{c-\varepsilon_1} f(x) dx$ и $\lim_{\varepsilon_2 \to +0} \int_{c+\varepsilon_2}^b f(x) dx$, то говорят, что несобственный интеграл с особой точкой c сходится: $\int_a^b f(x) dx = \lim_{\varepsilon_1 \to +0} \int_a^{c-\varepsilon_1} f(x) dx + \lim_{\varepsilon_2 \to +0} \int_{c+\varepsilon_2}^b f(x) dx$. Иначе же говорят о расходимости, или несуществовании несобственного интеграла второго рода с особой точкой c. Если же в пределах ε_1 и ε_2 будут равны, то говорят о существовании несобственного интеграла в смысле главного значения (V.P.): $\int_a^b f(x) dx = \lim_{\varepsilon \to +0} \left(\int_a^{c-\varepsilon} f(x) dx + \int_{c+\varepsilon}^b f(x) dx \right)$. Примеры: $\int_0^1 \frac{dx}{\sqrt{1-x^2}} = \lim_{\varepsilon \to +0} \int_0^{1-\varepsilon} \frac{dx}{\sqrt{1-x^2}} = \lim_{\varepsilon \to +0} \sinh x \, \Big|_0^{1-\varepsilon} = \frac{\pi}{2}$. $(V.P.) \int_{-1}^2 \frac{dx}{x} = \lim_{\varepsilon \to +0} \left(\int_{-1}^{-\varepsilon} \frac{dx}{x} + \int_{\varepsilon}^2 \frac{dx}{x} \right) = \lim_{\varepsilon \to +0} \left(\ln|x| \Big|_{-1}^{-\varepsilon} + \ln|x| \Big|_{\varepsilon}^2 \right) = \ln 2$. Теорема 19 (признак сходимости и расходимости интегралов 2 рода). Пусть f(x) непрерывна на

Примеры:
$$\int_0^1 \frac{dx}{\sqrt{1-x^2}} = \lim_{\varepsilon \to +0} \int_0^{1-\varepsilon} \frac{dx}{\sqrt{1-x^2}} = \lim_{\varepsilon \to +0} \arcsin x \Big|_0^{1-\varepsilon} = \frac{\pi}{2}.$$

$$(V.P.) \int_{-1}^2 \frac{dx}{x} = \lim_{\varepsilon \to +0} \left(\int_{-1}^{-\varepsilon} \frac{dx}{x} + \int_{\varepsilon}^2 \frac{dx}{x} \right) = \lim_{\varepsilon \to +0} \left(\ln|x| \Big|_{-1}^{-\varepsilon} + \ln|x| \Big|_{\varepsilon}^2 \right) = \ln 2.$$

интервале [a;b) и b – особая точка f(x). Тогда:

- 1. Если существуют такие M>0 и 0< m<1, что для любого x из исходного интервала выполняется неравенство $0< f(x) \leq \frac{M}{(b-x)^m}$, то интеграл $\int_a^b f(x) dx$ сходится.
- 2. Если существуют такие M>0 и $m\geq 1$, что для любого x из исходного интервала выполняется неравенство $f(x)>\frac{M}{(b-x)^m}$, то интеграл $\int_a^b f(x)dx$ расходится.

Доказательство. Можно произвести замену переменной и свести к несобственному интегралу первого рода, для которого признак доказан.

Замечание. Заменой переменной несобственный интеграл второго рода можно свести к интегралу первого рода и наоборот. В силу этого для интегралов второго рода выполняются признаки сравнения.

Интеграл Эйлера

Некоторые часто встречающиеся несобственные интегралы

- 1. Интеграл Эйлера $\int_0^{\pi/2} \ln \sin x \, dx$. Особая точка x=0. Выполним замену x=2t. Получаем $\int_0^{\pi/2} \ln \sin x \, dx = 2 \int_0^{\pi/4} \ln \sin 2t \, dt = 2 \int_0^{\pi/4} (\ln 2 + \ln \sin t + \ln \cos t) dt = \frac{\pi}{2} \ln 2 + 2 \int_0^{\pi/4} \ln \sin t \, dt + 2 \int_0^{\pi/4} \ln \cos t \, dt = \left[\frac{t = \frac{\pi}{2} u; \, dt = -du}{\ln \cos t = \ln \cos \left(\frac{\pi}{2} u \right) = \ln \sin u} \right] = \frac{\pi}{2} \ln 2 + 2 \int_0^{\pi/4} \ln \sin t \, dt + 2 \int_{\pi/4}^{\pi/2} \ln \sin u \, du = \frac{\pi}{2} \ln 2 + 2 \int_0^{\pi/4} \ln \sin t \, dt + 2 \int_{\pi/4}^{\pi/2} \ln \sin u \, du = \frac{\pi}{2} \ln 2 + 2 \int_0^{\pi/4} \ln \sin t \, dt + 2 \int_0^{\pi/4} \ln t \, dt + 2 \int_0$ $2\int_0^{\pi/2} \ln \sin t \ dt$. Следовательно, $\int_0^{\pi/2} \ln \sin x \ dx = -\frac{\pi}{2} \ln 2$.
- 2. Интеграл Пуассона $\int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$.
- 3. Интеграл Дирихле $\int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$.

Вычисление площадей в декартовых и полярных координатах

- Вычисление площадей в декартовых координатах 1. $f(x) \geq 0$ непрерывна на [a;b]. Тогда $\int_a^b f(x) dx$ равен площади криволинейной трапеции.
- 2. f(x) принимает как положительные, так и отрицательные значения и непрерывна на [a;b]. Тогда $\int_a^b f(x) dx = S_2 - S_1$.
- 3. $f(x) \ge g(x)$ на [a;b]. Тогда $S = \int_a^b (f(x) g(x)) dx$.
- 4. Кривая задана параметрически $\begin{cases} x = x(t) \\ y = y(t) \end{cases}; t \in [\alpha; \beta]; x'(t) \neq 0$ $0; x(\alpha) = a; x(\beta) = b; \alpha < b$. Тогда $S = \int_{\alpha}^{\beta} y(t)x'(t)dt$.

Вычисление площадей в полярных координатах

Пусть $\rho = \rho(\varphi), \varphi \in [\alpha; \beta]$ задает границу криволинейного сектора. Разобьем промежуток $[\alpha;\beta]$ на n частей: $\varphi_0=\alpha<\varphi_1<\dots<\varphi_n=\beta$, и в каждом промежутке выберем точку $\xi_i \in [\varphi_{i-1}; \varphi_i]$. Тогда $\rho(\xi_i)$ – радиус кругового сектора, $\Delta \varphi_i = \varphi_i - \varphi_{i-1}$ – размер угла сектора. Площадь фигуры, составленной из получившихся круговых секторов, вычисляется как $\frac{1}{2}\sum_{i=1}^n \rho^2(\xi_i) \Delta \varphi_i$. При max $\Delta \varphi_i \to 0$ формула сводится к интегральному виду $\frac{1}{2}\int_{lpha}^{eta}
ho^2(\phi)d\phi$. А площадь отдельно взятого i – го кругового сектора будет находиться как $\frac{1}{2}\rho^2(\xi_i)\Delta\varphi_i$.

Вычисление длины дуг

Пусть y=f(x) непрерывна и дифференцируема на [a;b] и требуется найти длину дуги графика функции. Разобьем [a;b] на n частей: точки $M_i\big(x_i;y(x_i)\big)$ будут являться концами соответствующих хорд. В итоге вся дуга разобьется на n звеньев. Длина каждого звена будет вычисляться как $\Delta l_i = \sqrt{\Delta x_i^2 + \Delta y_i^2} = \sqrt{1 + \frac{\Delta y_i^2}{\Delta x_i^2}} * \Delta x_i$. Тогда длина всей дуги будет равна сумме длин всех ломаных $\sum_{i=1}^n \sqrt{1 + \left(\frac{\Delta y_i}{\Delta x_i}\right)^2} * \Delta x_i$. При $\max_i \Delta l_i \to 0$ формула сводится к интегральному виду $\int_a^b \sqrt{1 + \left(f'(x)\right)^2} dx$.

<u>Замечание.</u> Длина графика функции существует, если функция непрерывна и дифференцируема. Такие кривые называются спрямляемыми. Если функция только непрерывна, то может возникнуть ситуация неспрямляемой кривой.

Если кривая задана параметрически $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$; $t \in [\alpha; \beta]$, то длина дуги вычисляется по формуле $L = \int_{\alpha}^{\beta} \sqrt{\left(x'(t)\right)^2 + \left(y'(t)\right)^2} dt$.

Если кривая задана в полярных координатах, то для вывода формулы выразим декартовы координаты x,y через полярные $\rho,\varphi\colon x=\rho(\varphi)\cos\varphi$, $y=\rho(\varphi)\sin\varphi$. Подставив получившиеся выражения в формулу длины дуги для параметрически заданной функции, получим $L=\int_{\alpha}^{\beta}\sqrt{\rho^2(\varphi)+\left(\rho'(\varphi)\right)^2}d\varphi$.

Вычисление объема тела через площади поперечных сечений. Объем тела вращения

Объем тела через площади поперечного сечения

Пусть есть некоторое тело, которое можно спроектировать на ось Ox [a;b]. Введем непрерывную функцию S(x), отображающую площадь поперечного сечения в каждой точке [a;b]. Тогда объем тела можно вычислять как $V=\int_a^b S(x)dx$. Разобьем [a;b] на n частей таких, что $a=x_0< x_1<\dots< x_n=b$. На каждом разбиении выберем точку $\xi_i\in [x_{i-1};x_i]$. Тогда $S(\xi_i)$ – площадь поперечного сечения, $S(\xi_i)\Delta x_i$ – объем цилиндрического тела. Складывая эти объемы, получаем $\sum_{i=1}^n \Delta V_i = \sum_{i=1}^n S(\xi_i)\Delta x_i \xrightarrow{m_{i} \times \Delta x_i \to 0} \int_a^b S(x) dx$.

Объем тела вращения

Пусть есть непрерывная кривая y=f(x), заданная на [a;b]. Тогда радиус отдельно взятого поперечного сечения будет равен r=f(x), а площадь поперечного сечения равна $S(x)=\pi r^2=\pi f^2(x)$. Тогда объем тела вращения можно вычислять как $V=\pi\int_a^b f^2(x)dx$. Вывод аналогичный.

Пространство \mathbb{R}^n . Сходимость в \mathbb{R}^n . Функции нескольких переменных. Предел, непрерывность. Свойства непрерывных функций

Рассмотрим линейное пространство \mathbb{R}^n размерности n. Любой элемент $x \in \mathbb{R}^n$ может быть представлен как вектор $x(x_1, x_2, ..., x_n)$. Их можно складывать, вычитать, умножать на число. Также говорят о расстоянии в линейном пространстве $||x-y|| = \sqrt{(y_1-x_1)^2+(y_2-x_2)^2+\cdots+(y_n-x_n)^2}$. Введем понятие n — мерного шара с центром в точке x_0 и радиусом r: $S_r(x_0) = \{x \in \mathbb{R}^n | \sqrt{(x_1-x_{01})^2+(x_2-x_{02})^2+\cdots+(x_n-x_{0n})^2} < r\}$.

С помощью этих шаром можно ввести понятие внутренней точки области. Пусть D – подмножество \mathbb{R}^n . Точка $x_0 \in D$ называется внутренней точкой множества D, если существует такое r, что n – мерный шар с центром в точке x_0 полностью лежит в D ($S_r(x_0) \in D$). Точка x_0 (уже не обязательно лежащей в D) называется граничной точкой множества D, если для любого r в $S_r(x_0)$ существуют точки, отличные от x_0 , принадлежащие D и не принадлежащие в D.

Множество $D \in \mathbb{R}^n$ называют открытым, если все его точки внутренние.

Множество $D \in \mathbb{R}^n$ называют замкнутым, если оно содержит и внутренние, и граничные точки.

Пусть заданы
$$\begin{cases} x_1 = x_1(t) \\ x_2 = x_2(t) \\ ... \\ x_n = x_n(t) \end{cases}$$
 — непрерывные дифференцируемые функции, $t \in [\alpha, \beta]$. Тогда говорят, что

эти функции задают в \mathbb{R}^n кривую. Кривые задаются неоднозначно.

Множество называется связным, если любые две его точки можно соединить кривой, лежащей в D. Областью в \mathbb{R}^n называется открытое связное множество в \mathbb{R}^n . Пусть дана точка $x_0 \in \mathbb{R}^n$. Тогда любое открытое множество, содержащее x_0 , называется окрестностью этой точки. Шар с центром в точке x_0 и радиусом r называется r – окрестностью точки x_0 .

Пусть $D \in \mathbb{R}^n$ – область и пусть в D задана функция $f(x_1, x_2, ..., x_n)$. Эту функцию будет называть функцией нескольких переменный.

Пределом во внутренней точке $x_0 \in D$ функции f называется $A = \lim_{\substack{x_1 \to x_{01} \\ x_2 \to x_{02}}} f(x_1, x_2, \dots, x_n)$, если для лю-

бого $\varepsilon>0$ существует такая δ – окрестность $S_{\delta}(x_0)$, что если $x\in \dot{S}_{\delta}(x_0)$, то $f(x_1,x_2,...,x_n)<\varepsilon$. Функция переводит точку из пространства \mathbb{R}^n в пространство \mathbb{R}^1 .

Замечание. Можно показать, что покоординатное стремление $\begin{cases} x_1 \to x_{01} \\ x_2 \to x_{02} \\ \dots \end{cases}$ равносильно стремлению по метрике $||x-x_0||$. Поэтому можно писать предел в виде $A=\lim_{||x-x_0||\to 0} f(x)$. Если $\lim_{||x-x_0||\to 0} f(x)$ равен значению функции в точке, то f(x) непрерывна в этой точке. Есть две формы записи: $\lim_{\substack{\Delta x_1\to 0 \\ \Delta x_2\to 0 \\ \Delta x_n\to 0}} (f(x_1+\Delta x_1,x_2+\Delta x_2,\dots,x_n+\Delta x_n)-f(x_1,x_2,\dots,x_n))=0$ и $\lim_{||\Delta x||\to 0} \Delta f=0$.

Есть две формы записи:
$$\lim_{\substack{\Delta x_1 \to 0 \\ \Delta x_2 \to 0 \\ \Delta x_n \to 0}} \left(f(x_1 + \Delta x_1, x_2 + \Delta x_2, \dots, x_n + \Delta x_n) - f(x_1, x_2, \dots, x_n) \right) = 0$$
 и $\lim_{|\Delta x| \to 0} \Delta f = 0$

При выполнении условия в любой из двух форм записи функция будет являться непрерывной. Δf называется приращением функции. Частным приращением функции f по x_1 называется $\Delta x_1 f = f(x_1 + x_2)$ $\Delta x_1, x_2, ..., x_n) - f(x_1, x_2, ..., x_n).$

Функция называется непрерывной на множестве $M \in \mathbb{R}^n$, если она непрерывна в каждой точке этого множества.

Пусть есть некоторая область $G \in \mathbb{R}^n$. Определим множество $\bar{G} = G \lor \partial G \ (\partial G - \text{граница } G)$, включающее в себя область и ее границу. Такое множество называется замкнутой областью. Если функция непрерывна в замкнутой области, то она достигает на ней своих наибольших и наименьших значений и принимает на этом множестве все промежуточные значения.

Частные производные. Полный дифференциал

Частные производные

Пусть $f(x_1,x_2,...,x_n)$ определена в окрестности точки $x_0(x_{01},x_{02},...,x_{0n})$. Частной производной функции в точке x_0 называется $\frac{\partial f}{\partial x_1}(x_0) = \lim_{\Delta x_1 \to 0} \frac{\Delta_{x_1} f(x_0)}{\Delta x_1} = \lim_{\Delta x_1 \to 0} \frac{f(x_{01} + \Delta x_1, x_{02},...,x_{0n}) - f(x_{01}, x_{02},...,x_{0n})}{\Delta x_1}$. Обозначается как $f_x'(x_0)$. Аналогично определяются частные производные по другим параметрам. $\boxed{ \text{Пример: } z = x^2 \sin y \text{ ; } \frac{\partial z}{\partial x} = 2x \sin y \text{ ; } \frac{\partial z}{\partial y} = x^2 \cos y. }$

Пример:
$$z = x^2 \sin y$$
; $\frac{\partial z}{\partial x} = 2x \sin y$; $\frac{\partial z}{\partial y} = x^2 \cos y$.

Полный дифференциал

Пусть z = f(x,y) имеет частные производные по x и y в точке (x,y) и в ее окрестности. Пусть эти частные производные непрерывны. Рассмотрим полное приращение функции $\Delta f = f(x + \Delta x, y + \Delta y)$ $f(x,y) = f(x + \Delta x, y + \Delta y) - f(x + \Delta x, y) + f(x + \Delta x, y) - f(x,y)$. По теореме Лагранжа это равно $\frac{\partial f}{\partial y}(x + \Delta x, y) + \frac{\partial f}{\partial y}(x +$ $\Delta x, \bar{y})\Delta y + \frac{\partial f}{\partial x}(\bar{x},y)\Delta x$, где \bar{x} – значение между x и $x+\Delta x, \bar{y}$ – значение между y и $y+\Delta y$. Раз производные существуют и непрерывны в окрестности точки (x,y), то можно записать, что $\Delta f = \left(\frac{\partial f}{\partial y}(x,y) + \frac{\partial f}{\partial y}(x,y)\right)$ $\gamma_2(\Delta x, \Delta y) \Delta y + \left(\frac{\partial f}{\partial x}(x,y) + \gamma_1(\Delta x, \Delta y)\right) \Delta x$, где γ_1, γ_2 — бесконечно малые величины при $\Delta x \to 0$ и $\Delta y \to 0$. Получаем, что $\Delta f = \frac{\partial f}{\partial x}(x,y)\Delta x + \frac{\partial f}{\partial y}(x,y)\Delta y + \gamma_1\Delta x + \gamma_2\Delta y$. Тогда величина $df = \frac{\partial f}{\partial x}\Delta x + \frac{\partial f}{\partial y}\Delta y$ называется полным дифференциалом, а $\gamma_1 \Delta x + \gamma_2 \Delta y = O\left(\sqrt{\Delta x^2 + \Delta y^2}\right) = O(\Delta \rho)$ — бесконечно малая более высокого порядка малости, чем расстояние между точками (x,y) и $(x + \Delta x, y + \Delta y)$. $f(x + \Delta x, y + \Delta y) \approx f(x,y) + df$.

Билеты для подготовки к экзамену по математике. Трофимов Владислав Производные сложных функций и функции, заданной неявно

Производная сложной функции

Пусть $z=f(u,v), u=\varphi(x,y), v=\psi(x,y)$ и пусть φ и ψ определены в области G. Тогда z определена в D – образе G при отображении arphi и ψ . Пусть Δx – приращение x, тогда $\Delta_x u$, $\Delta_x v$ – приращение u и v. $\Delta_x z =$ $rac{\partial f}{\partial u}\Delta_x u+rac{\partial f}{\partial v}\Delta_x v+\gamma_1\Delta_x u+\gamma_2\Delta_x v.$ При $\Delta x o 0$ $\gamma_1,\gamma_2 o 0.$ Частная производная по x сложной функции $z(\varphi(x,y),\psi(x,y)): \frac{\partial z}{\partial x} = \lim_{\Delta x \to 0} \frac{\Delta_x z}{\Delta x} = \lim_{\Delta x \to 0} \frac{\partial f}{\partial u} * \frac{\Delta_x u}{\Delta x} + \lim_{\Delta x \to 0} \frac{\partial f}{\partial v} * \frac{\Delta_x v}{\Delta x} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial x}.$ Аналогичным образом $\frac{\partial z}{\partial y} = \frac{\partial f}{\partial x} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial v}{\partial x}$ $\frac{\partial f}{\partial u}\frac{\partial u}{\partial y} + \frac{\partial f}{\partial v}\frac{\partial v}{\partial y}.$

Замечание. Пусть $z=f(u,v,x), u=\varphi(x), v=\psi(x)$. Тогда $z=f(\varphi(x),\psi(x),x)$. Отсюда $\frac{\partial z}{\partial x}=\frac{\partial f}{\partial u}\frac{d\varphi}{dx}+$ $\frac{\partial f}{\partial v}\frac{d\psi}{dx} + \frac{\partial f}{\partial x}$

Производная функции, заданной неявно

F(x,y) = 0 – неявное задание y(x).

<u>Теорема 20.</u> Пусть $F(x,y), \frac{\partial F}{\partial x}(x,y), \frac{\partial F}{\partial y}(x,y)$ определены и непрерывны в области G, содержащей

точку (x,y),удовлетворяющую уравнению: F(x,y)=0. Пусть в этой точке $\frac{\partial F}{\partial y}(x,y)\neq 0$, тогда $y_x'=\frac{-\frac{\partial F}{\partial x}(x,y)}{\frac{\partial F}{\partial y}(x,y)}$.

<u>Доказательство.</u> Зададим приращения $x + \Delta x, y + \Delta y$ так, чтобы они лежали в области G и $F(x + \Delta x, y + \Delta y) = 0$, тогда $F(x + \Delta x, y + \Delta y) - F(x, y) = 0$. $\frac{\partial F}{\partial x}(x, y)\Delta x + \frac{\partial F}{\partial y}(x, y)\Delta y + \gamma_1 \Delta x + \gamma_2 \Delta y, \gamma_1, \gamma_2 \to 0$

при
$$\Delta \rho \to 0$$
. Разделим на Δx . $\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} \frac{\Delta y}{\Delta x} + \gamma_1 + \gamma_2 \frac{\Delta y}{\Delta x}$. При $\Delta x \to 0$ получим $\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} y' = 0$, откуда $y_x' = \frac{-\frac{\partial F}{\partial x}(x,y)}{\frac{\partial F}{\partial y}(x,y)}$.

<u>Замечание.</u> Теорему можно обобщить на случай функции n переменных. $F(z,x_1,x_2,...,x_n)$ – неявное задание $z(x_1,x_2,...,x_n)$. Тогда $\frac{\partial z}{\partial x_1} = \frac{-\frac{\partial F}{\partial x_1}}{\frac{\partial F}{\partial x_n}}$, ..., $\frac{\partial z}{\partial x_n} = \frac{-\frac{\partial F}{\partial x_n}}{\frac{\partial F}{\partial x_n}}$ (при условии, что $\frac{\partial F}{\partial z} \neq 0$).

Частные производные высших порядков. Теорема о смешанных производных

Частная производная n – порядка есть частная производная от производной n-1 порядка. Пусть дана z=f(x,y). Тогда ее производные второго порядка: $\frac{\partial^2 f}{\partial x^2}=\frac{\partial}{\partial x}\Big(\frac{\partial f}{\partial x}\Big); \frac{\partial^2 f}{\partial y^2}=\frac{\partial}{\partial y}\Big(\frac{\partial f}{\partial y}\Big); \frac{\partial^2 f}{\partial x\partial y}=\frac{\partial}{\partial x}\Big(\frac{\partial f}{\partial y}\Big); \frac{\partial^2 f}{\partial y\partial x}=\frac{\partial}{\partial x}\Big(\frac{\partial f}{\partial y}\Big); \frac{\partial^2 f}{\partial y}=\frac{\partial}{\partial x}\Big(\frac{\partial f}{\partial y}\Big)$ $\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)$. Последние две производные называются смешанными производными.

Теорема 21. Пусть $z = f(x,y), f_x'(x,y), f_y'(x,y), f_{xy}''(x,y), f_{yx}''(x,y)$ определены и непрерывны в точке (x,y) и ее окрестности. Тогда $f_{xy}^{\prime\prime}(x,y)=f_{yx}^{\prime\prime}(x,y)$.

<u>Доказательство.</u> Рассмотрим $A = [f(x + \Delta x, y + \Delta y) - f(x + \Delta x, y)] - [f(x, y + \Delta y) - f(x, y)]$ и $\varphi(x)=f(x,y+\Delta y)-f(x,y)$. Тогда $A=\varphi(x+\Delta x)-\varphi(x)$. Так как f_x' определена в окрестности точки (x,y)то $\varphi(x)$ дифференцируема на $[x,x+\Delta x],\Delta x>0$. Следовательно, по теореме Лагранжа, $A=\varphi'(\bar x)\Delta x$. $\varphi'(\bar{x})=f_x'(\bar{x},y+\Delta y)-f_x'(\bar{x},y)$. По теореме Лагранжа $\varphi'(\bar{x})=f_{xy}''(\bar{x},\bar{y})\Delta y$. f_x' существует в окрестности точки (x,y) и $A=f''_{xy}(\bar x,\bar y)\Delta x\Delta y$. Теперь рассмотрим $A=[f(x+\Delta x,y+\Delta y)-f(x,y+\Delta y)]-[f(x+\Delta x,y)-f(x,y+\Delta y)]$ f(x,y)] и $\psi(x)=f(x+\Delta x,y)-f(x,y)$. Аналогичный образом получим $A=f''_{yx}(ar x,ar y)\Delta x\Delta y$. Приравняем полученные выражения $f_{xy}^{\prime\prime}(\bar{x},\bar{y})\Delta x\Delta y=f_{yx}^{\prime\prime}(\bar{\bar{x}},\bar{\bar{y}})\Delta x\Delta y$. При $\Delta x,\Delta y\to 0$ точки $(\bar{x},\bar{y}),(\bar{\bar{x}},\bar{\bar{y}})\to (x,y)$. Получаем $f_{xy}^{\prime\prime}(x,y) = f_{yx}^{\prime\prime}(x,y).$

<u>Замечание.</u> Теорему можно обобщить на случай функции n переменных.

Производная по направлению. Градиент и его свойства

Поверхности уровня. Линии уровня

Пусть в $D \in \mathbb{R}^3$ задана f(x, y, z). Множество точек из D таких, что f(x, y, z) = c называется поверхностями уровня.

Пример: $f(x,y,z)=\frac{x^2}{4}+\frac{y^2}{9}+\frac{z^2}{16}; \frac{x^2}{4}+\frac{y^2}{9}+\frac{z^2}{16}=c.$ Аналогично определяются линии уровня f(x,y)=c.

Производная по направлению

Пусть есть функция u = f(x, y, z), определенная в области $D \in \mathbb{R}^3$ и пусть есть точка $M(x, y, z) \in D$. Из точки M проведем вектор $\tilde{l}(\Delta x, \Delta y, \Delta z)$ $(\Delta x, \Delta y, \Delta z$ — приращения относительно точки M) с направляющими

 $\cos lpha$, $\cos eta$, $\cos eta$. Тогда длина вектора будет определяться как $\Delta l = \sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}$, а направляющие косинусы $\cos lpha = \frac{\Delta x}{\Delta l}$; $\cos eta = \frac{\Delta z}{\Delta l}$; $\cos eta = \frac{\Delta z}{\Delta l}$; $\cos \gamma = \frac{\Delta z}{\Delta l}$. Тогда $\Delta u = \frac{\partial u}{\partial x} \Delta x + \frac{\partial u}{\partial y} \Delta y + \frac{\partial u}{\partial z} \Delta z + \gamma_1 \Delta x + \gamma_2 \Delta y + \gamma_3 \Delta z$. Производной по направлению называется $\frac{\partial u}{\partial l} = \lim_{\Delta l \to 0} \frac{\Delta u}{\Delta l} = \frac{\partial u}{\partial x} \lim_{\Delta l \to 0} \frac{\Delta x}{\Delta l} + \frac{\partial u}{\partial y} \lim_{\Delta l \to 0} \frac{\Delta z}{\Delta l} + 0 = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \lim_{\Delta l \to 0} \frac{\Delta z}{\Delta l} + 0 = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \lim_{\Delta l \to 0} \frac{\Delta z}{\Delta l} + 0 = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \lim_{\Delta l \to 0} \frac{\Delta z}{\Delta l} + 0 = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \lim_{\Delta l \to 0} \frac{\Delta z}{\Delta l} + 0 = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \lim_{\Delta l \to 0} \frac{\Delta z}{\Delta l} + 0 = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \lim_{\Delta l \to 0} \frac{\Delta z}{\Delta l} + 0 = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \lim_{\Delta l \to 0} \frac{\Delta z}{\Delta l} + 0 = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \lim_{\Delta l \to 0} \frac{\Delta z}{\Delta l} + 0 = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \lim_{\Delta l \to 0} \frac{\Delta z}{\Delta l} + 0 = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \lim_{\Delta l \to 0} \frac{\partial u}{\partial z} + 0 = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \lim_{\Delta l \to 0} \frac{\partial u}{\partial z} + 0 = \frac{\partial u}{\partial z} \cos \alpha + \frac{\partial u}{\partial z} \cos \alpha +$

<u>Замечание.</u> Частные производные по x,y,z тоже являются производными по направлению.

Пусть u=f(x,y,z) определена в $D\in\mathbb{R}^3$ и пусть точка $M(x,y,z)\in D$. Пусть существуют $(M); \frac{\partial u}{\partial z}(M); \frac{\partial u}{\partial z}(M)$. Тогда градиентом функции u в точке M называют вектор $\operatorname{grad} u(M) = \frac{\partial u}{\partial x}(M)\vec{\imath} +$ $\frac{\partial u}{\partial v}(M)\vec{j}+\frac{\partial u}{\partial z}(M)\vec{k}$. Если определить градиент в каждой точке поля, то говорят о поле градиентов.

Пусть у u(x,y,z) существуют в D частные производные. Тогда функции u в каждой точке можно со-

Теорема 22. $\frac{\partial u}{\partial l}$ – проекция $grad\ u$ на \vec{l} в каждой точке.

<u>Доказательство.</u> проекция $grad\ u$ на \vec{l} равна $\frac{grad\ u*\vec{l}}{|\vec{l}|} = \frac{\partial u}{\partial x}\cos\alpha + \frac{\partial u}{\partial y}\cos\beta + \frac{\partial u}{\partial z}\cos\gamma = \frac{\partial u}{\partial t}$

Свойства градиента:

1. $\frac{\partial u}{\partial l}$ принимает наибольшее значение в точке, если \vec{l} сонаправлен $grad\ u$ и $\max\frac{\partial u}{\partial l}=|grad\ u|$. Доказательство. $\frac{\partial u}{\partial l}$ — проекция $grad\ u$ на \vec{l} . $\frac{\partial u}{\partial l}=|grad\ u|*\cos(\vec{l};grad\ u)$ принимает максимум, если

- 2. $du = \frac{\partial u}{\partial x} \Delta x + \frac{\partial u}{\partial y} \Delta y + \frac{\partial u}{\partial z} \Delta z = grad \ u * d\vec{r}, \ d\vec{r} = (\Delta x, \Delta y, \Delta z) = (dx, dy, dz).$
- 3. **Теорема 23.** Пусть задана u(x,y,z) в $D \in \mathbb{R}^3$ и пусть M(x,y,z) точка, лежащая на поверхности уровня, и пусть существует частная производная, и пусть в точке $M \mid grad \mid u \mid \neq 0$. Тогда градиент перпендикулярен поверхности уровня, проходящей через точку M.

Доказательство. Пусть $M(x + \Delta x, y + \Delta y, z + \Delta z)$ лежит на той же поверхности уровня, что и $\gamma_1 \Delta x + \gamma_2 \Delta y + \gamma_3 \Delta z = grad \ u * \Delta \vec{r} + \gamma_1 \Delta x + \gamma_2 \Delta y + \gamma_3 \Delta z = 0$. Разделим на $|\Delta \vec{r}|$: $grad \ u * \frac{\Delta \vec{r}}{|\Delta \vec{r}|} + \gamma_1 \frac{\Delta x}{|\Delta \vec{r}|} + \gamma_2 \frac{\Delta y}{|\Delta \vec{r}|} + \gamma_3 \Delta z = 0$. $\gamma_3 rac{\Delta z}{|\Delta ec{r}|} = 0$. Очевидно, что $rac{\Delta ec{r}}{|\Delta ec{r}|} = ec{l}$ — единичный вектор, выходящий из точки M на поверхности уровня. $\min_{t o 0} rac{\Delta ec{r}}{|\Delta ec{r}|}$ – единичный вектор, касательный к поверхности в точке M. $grad~u*\lim_{|\Delta ec{r}| o 0} rac{\Delta ec{r}}{|\Delta ec{r}|} = 0$, откуда следует, что градиент перпендикулярен поверхности уровня, проходящей через точку M.

Касательная плоскость и нормаль к поверхности

Пусть u(x,y,z)=0 определена в $D\in\mathbb{R}^3$ и точка M(x,y,z), лежащая на поверхности. Пусть существуют частные производные u в точке M и градиент u в этой точке ненулевой. Пусть L – некоторая кривая на поверхности, проходящая через точку $\mathit{M}.\ \mathit{L}$ задается параметрически задается параметрически $\left\{ egin{aligned} y &= y(t)$, $t \in [lpha; eta]$, $t_0 \in (lpha; eta)$, $Mig(x(t_0), y(t_0), z(t_0)ig)$. Пусть существуют x'(t), y'(t), z'(t) . Тогда вектор r'(t) = z(t)

x'(t),y'(t),z'(t) будет являться касательным к L в точке M. $\frac{du}{dt}=\frac{\partial u}{\partial x}x'(t)+\frac{\partial u}{\partial y}y'(t)+\frac{\partial u}{\partial z}z'(t).$ Рассмотрим точку $M'ig(x(t_0+\Delta t),y(t_0+\Delta t),z(t_0+\Delta t)ig)$, которая тоже будет лежать на поверхности уровня. Тогда $\Delta u=u(M')-u(M)=0$. Значит, $\lim_{\Delta t\to 0}\frac{\Delta u}{\Delta t}=\frac{\partial u}{\partial t}x'(t)+\frac{\partial u}{\partial y}y'(t)+\frac{\partial u}{\partial z}z'(t)=0$. Следовательно, градиент перпендикулярен произвольному вектору касательной в точке t_0 . Следовательно, все касательные вектора ле-

жат в одной плоскости и градиент в этой точке перпендикулярен касательной плоскости в этой же точке. Уравнение касательной плоскости: $\frac{\partial u}{\partial x}(M)(x-x_0)+\frac{\partial u}{\partial y}(M)(y-y_0)+\frac{\partial z}{\partial z}(M)(z-z_0)=0$, или же $grad\ u(M)*(\vec{r}-\overrightarrow{r_0})=0.$

Нормаль к поверхности — нормаль к касательной плоскости. Уравнение нормали к поверхности: $\frac{x-x_0}{\frac{\partial u}{\partial x}(M)} = \frac{y-y_0}{\frac{\partial u}{\partial y}(M)} = \frac{z-z_0}{\frac{\partial u}{\partial z}(M)}.$

Дифференциалы высших порядков. Формула Тейлора для функции $m{n}$ переменных

Производная второго порядка функции f двух переменных есть $\frac{\partial^2 f(x,y)}{\partial x \partial y} = \frac{\partial}{\partial y} \frac{\partial f}{\partial x}(x,y) = \frac{\partial}{\partial x} \frac{\partial f}{\partial y}(x,y)$. Аналогично определяется производная n – го порядка $\frac{\partial^k f(x_1,x_2,...,x_n)}{\partial_{x_1}^{k_1} \partial_{x_2}^{k_2} \dots \partial_{x_n}^{k_n}} = \frac{\partial}{\partial x_1} \frac{\partial^{k-1} f}{\partial_{x_1}^{k_1-1} \partial_{x_2}^{k_2} \dots \partial_{x_n}^{k_n}}, k_1 + k_2 + \dots + k_n = k$. Точно таким же образом определяется дифференциал n – го порядка функции f. По определению это есть $d^n f \equiv d(d^{n-1}f)$, где $d^2 f = d(df)$. Пусть есть некая функция от двух переменных f(x,y). Тогда $df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$. Дифференциал зависит от четырех переменных – точки f(x,y), f(x,y), от последних двух зависит. Линейно f(x,y) последних двух зависит. висит линейно. Тогда дифференциал второго порядка есть $d^2f = d\left(\frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy\right) = \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy\right)$ $\frac{\partial f}{\partial y}dy\Big)dx + \frac{\partial}{\partial y}\Big(\frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy\Big)dy = \frac{\partial^2 f}{(\partial x)^2}(dx)^2 + 2\frac{\partial^2 f}{\partial x\partial y}dxdy + \frac{\partial^2 f}{(\partial y)^2}(dy)^2.$ Таким образом, дифференциал второго порядка есть $d(...)=\frac{\partial}{\partial x}(...)dx+\frac{\partial}{\partial y}(...)dy$, а дифференциал n – го порядка есть $d^n(...)=$ $\left(\frac{\partial}{\partial x}(...)dx + \frac{\partial}{\partial y}(...)dy\right)^n$. Рассмотрим функцию f(x,y), у которой существуют частные производные n – го порядка в окрестности точки в окрестности точки (x_0,y_0) . Тогда имеет место выражение f(x,y)= $f(x_0,y_0)+rac{1}{1!}df(x_0,y_0)+rac{1}{2!}d^2f(x_0,y_0)+\cdots+rac{1}{n!}d^nf(x_0,y_0)+o\left(\left(\sqrt{(\Delta x)^2+(\Delta y)^2}
ight)^n
ight)$, где $dx=x-x_0,dy=y-x_0$ y_0 , которое и называется формулой Тейлора. Пояснение: $\left(\sqrt{(\Delta x)^2 + (\Delta y)^2}\right)^n$ — бесконечно малая функция, а $o\left(\left(\sqrt{(\Delta x)^2+(\Delta y)^2}\right)^n\right)$ – бесконечно большая более высокого порядка, остаточный член формулы Тейлора. Аналогичная формула для одной переменной была в первом семестре.

Необходимые и достаточные условия экстремума функции $m{n}$ переменных

Пусть некая функция f(x,y) определена в окрестности точки (x_0,y_0) и имеет частные производные 1-го порядка. Говорят, что функция f имеет локальный максимум в точке (x_0,y_0) , если существует такая окрестность точки (x_0, y_0) , что для любого x и $y \in$ этой окрестности выполняется неравенство $f(x, y) \le$ $f(x_0, y_0)$. Аналогичным образом определяется локальный минимум. Точки локального минимума и максимума называются точками экстремума.

Теорема 24. Пусть точка (x_0, y_0) – точка экстремума. Тогда частные производные (если они существуют) $\frac{\partial f}{\partial x}(x_0,y_0)$ и $\frac{\partial f}{\partial y}(x_0,y_0)$ равны нулю.

Доказательство. Пусть точка (x_0, y_0) – точка максимума (аналогичные рассуждения можно вести для точки минимума) функции f. Тогда по определению существует такая окрестность точки (x_0, y_0) , что $f(x_0,y_0) \ge f(x_0 + \Delta x,y_0) = f(x,y_0)$. Так как y_0 фиксировано, то это функция одной переменной, и, следовательно, частная производная по x обращается в ноль $\frac{\partial f}{\partial x}(x_0,y_0)=0$. Это является необходимым условием существования экстремума для функции одной переменной (также существование производной в этой точке). Аналогичным образом частная производная по y обращается в ноль $\frac{\partial f}{\partial y}(x_0,y_0)=0$. Точки, в которых производная обращается в ноль, называются стационарными точками.

<u>Замечание.</u> Обращение частных производных в ноль является необходимым, но не достаточным условием существования точки экстремума. Пример: $f(x,y) = x^2 - y^2$. Точка (0;0) не принимает экстермальное значение, хотя частные производные в этой точке равны нулю $\frac{\partial f}{\partial x}(0;0) = \frac{\partial f}{\partial v}(0;0) = 0.$

Теорема 25. Достаточные условия экстремума. Пусть некая функция f(x,y) имеет частные производные до второго порядка включительно в окрестности точки (x_0,y_0) . Пусть $A=\frac{\partial^2 f}{(\partial x)^2}(x_0,y_0)$, B= $\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0); \mathcal{C} = \frac{\partial^2 f}{(\partial y)^2}(x_0, y_0).$ Если:

- 1. $A*C-B^2>0$ и A>0, то точка (x_0,y_0) точка минимума.
- 2. $A*C-B^2>0$ и A<0, то точка (x_0,y_0) точка максимума.
- 3. $A*C-B^2<0$, то точка (x_0,y_0) не является точкой экстремума.
- 4. $A * C B^2 = 0$, то требуется дополнительное исследование.

<u>Доказательство.</u> Воспользуемся формулой Тейлора. Пусть есть функция двух переменных f(x,y) = $f(x_0,y_0)+rac{df(x_0,y_0)}{1!}+rac{d^2f(x_0,y_0)}{2!}+o((\Delta
ho)^2)$, где $\Delta
ho=\sqrt{(\Delta x)^2+(\Delta y)^2}$. Так как в точке (x_0,y_0) производная обращается в ноль $df(x_0,y_0)=0$, то приращение функции $\Delta f=f(x,y)-f(x_0,y_0)$ есть второй дифференциал, деленный на 2!: $\Delta f=rac{1}{2!}\Big(rac{\partial^2f(x_0,y_0)}{\partial x^2}(\Delta x)^2+2rac{\partial^2f(x_0,y_0)}{\partial x\partial y}\Delta x\Delta y+rac{\partial^2f(x_0,y_0)}{\partial y^2}(\Delta y)^2\Big)+o((\Delta
ho)^2)$. Перепишем в

виде $\Delta f = \frac{1}{2} \left(A(\Delta x)^2 + 2B\Delta x \Delta y + C(\Delta y)^2 + 2o((\Delta \rho)^2) \right)$. Теперь перейдем к полярным координатам $\begin{cases} \Delta x = \Delta \rho * \cos \varphi \\ \Delta y = \Delta \rho * \sin \varphi \end{cases}$ и выражение $\frac{2o((\Delta \rho)^2)}{(\Delta q)^2}$ заменим на $\varepsilon(\Delta \rho)$, которое будет малой величиной, так как $\lim_{\Delta q \to 0} \frac{2o((\Delta \rho)^2)}{(\Delta q)^2} = 0$. Тогда наше выражение примет вид $\Delta f = \frac{1}{2} (\Delta \rho)^2 (A\cos^2 \varphi + 2B\cos \varphi \sin \varphi + C\sin^2 \varphi + \varepsilon(\Delta \varphi))$. Теперь выражение в скобках домножим и разделим на A, а также в числителе прибавим и вычтем $B^2 \sin^2 \varphi$ для выделения полного квадрата: $\Delta f = \frac{1}{2} (\Delta \rho)^2 * \left(\frac{A^2 * \cos^2 \varphi + 2*A*B* \cos \varphi * \sin \varphi + B^2 * \sin^2 \varphi - B^2 * \sin^2 \varphi + A*C* \sin^2 \varphi + \varepsilon_1(\Delta \rho)}{A} \right) = \frac{1}{2} (\Delta \rho)^2 \left(\frac{(A\cos \varphi + B\sin \varphi)^2}{A} + \frac{(AC-B^2)\sin^2 \varphi + \varepsilon_1(\Delta \rho)}{A} \right)$, где $\varepsilon_1(\Delta \rho) = \varepsilon(\Delta \rho) * A$, что все равно является малой величиной. Теперь рассмотрим четыре возможных случая:

- 1. $AC-B^2>0$ и A>0. В этом случае весь числитель нашего выражение будет положителен. (В некоторой окрестности точки (x_0,y_0) будет выполняться неравенство $(A\cos\varphi+B\sin\varphi)^2+(AC-B^2)\sin^2\varphi>|\varepsilon_1(\Delta\rho)|$, так как последнее является бесконечно малой величиной). Знаменатель также положителен. Отсюда следует, что $\Delta f>0$, а значит, точка (x_0,y_0) является точкой минимума.
- 2. $AC-B^2>0$ и A<0. Числитель так же положителен, но вот знаменатель отрицателен. (В некоторой окрестности точки (x_0,y_0) будет выполняться неравенство $(A\cos\varphi+B\sin\varphi)^2+(AC-B^2)\sin^2\varphi>|\varepsilon_1(\Delta\rho)|$, так как последнее является бесконечно малой величиной). Отсюда следует, что $\Delta f<0$, а значит, точка (x_0,y_0) является точкой максимума.
- 3. $AC-B^2<0$ и A>0. Если мы возьмем $\sin \varphi=0$, т.е. $\varphi=0$ (приравняем к нулю второе слагаемое числителя), то, рассуждая аналогично предыдущим пунктам, получим что $\Delta f>0$ в некоторой окрестности точки (x_0,y_0) . А если теперь мы приравняем к нулю первое слагаемое числителя, $\tan \varphi=-\frac{A}{B}$, то $\Delta f<0$. Как видим, у нас есть направление угла, по которому функция возрастает, и направление угла, по которому функция убывает. Следовательно, экстремума нет, точка (x_0,y_0) является седловой точкой.
- 4. $AC B^2 = 0$. Тогда для $\tan \varphi = -\frac{A}{B}$ (первое слагаемое обращается в ноль) выражение примет вид $\Delta f = \frac{1}{2} (\Delta \rho)^2 \varepsilon(\Delta \rho)$. В этом случае все будет определяться знаком $\varepsilon(\Delta \rho)$, а для выяснения этого требуется дополнительно исследование.

<u>Замечание.</u> Теорему можно обобщить на n переменных. Знак приращения определяется прежде всего вторым дифференциалом, а все частные производные содержатся в матрице Гессе, именуемой квадратичной формой. Если она определена и положительна, тогда максимум, отрицательная — минимум, если ноль, то нет экстремума, а если положительна и отрицательна по различным направлениям, то это седловая точка и требуется дополнительно исследование.

Обыкновенные дифференциальные уравнения. Частное и общее решения. Задача Коши. Изоклины.

Уравнение вида $F(x,y,y',...,y^{(n)})=0$ называется дифференциальным. Причем порядок старшей производной этого уравнения будет называться порядком этого уравнения. Пример: $(y'')^3+y'x+yx^2=0$ – дифференциальное уравнение второго порядка.

Частным решением дифференциального уравнения называется любая функция y(x), подстановка которой обращает выражение $F(x,y,y',\dots,y^{(n)})=0$ в верное тождество. Пример: $y''+y=0.y=\sin x$, $y=c_1\sin x$, $y=c_1\cos x$, $y=c_1\sin x+c_2\cos x$ —частные решения этого уравнения. Таких решений может быть несколько.

Общим решением дифференциального уравнения $F(x,y,y',...,y^{(n)})=0$ называется такое $y=\varphi(c_1,c_2,...,c_n,x)$, если оно является частным решением уравнения при всех допустимых значениях констант $c_1,c_2,...,c_n$, а также если для любого частного решения существуют такие константы $c_1=c_{10},c_2=c_{20},...,c_n=c_{n0}$, что $\varphi(x)=\varphi(c_{10},c_{20},...,c_{n0},x)$, то есть если всегда можно подобрать константы для получения решения.

Билеты для подготовки к экзамену по математике. Трофимов Владислав Уравнения первого порядка, разрешенные относительно производной

Уравнение вида $y^{(n)} = f(x, y, y', ..., y^{(n-1)})$ называется разрешенным относительно старшей производной. Пример: y' = f(x, y). К такому виду дифференциальное уравнение можно привести не всегда.

Геометрический смысл: если функция задана в подобном виде, то в каждой точке некоторой области, на которой определена эта функция, мы можем вычислить ее производную, то есть тангенс угла наклона касательной. Если есть частное решение $y = \varphi(x)$, то его график называется интегральной кривой. Пусть f(x,y) определена в некоторой области $D \in \mathbb{R}^2$. Она задает значение в каждой точке. Тогда в каждой точке области будет задан вектор, касательный к интегральной кривой. Тогда, построив эти вектора, можно будет нарисовать интегральную кривую. f(x,y) задает в D касательные векторы к интегральным кривым. Линии уровня вида f(x,y)=c называются изоклинами. Пример: y'= $-\frac{x}{y}$. $-\frac{x}{y}=c$ — изоклины. $y=-\frac{1}{c}x$. Пусть $-\frac{1}{c}=k$. Тогда y=kx, то есть линии уровня представляют собой прямые. Если k=1, то y=x,y'=-1. Если k=-1, то y = -x, y' = 1. Если k = 0, то y = 0, y' = ∞. Если соединить все получившиеся касательные к интегральным кривым, то получатся окружности. Интегральные кривые представляют собой множество окружностей.

Задача Коши: пусть есть уравнение y'=f(x,y) и точка (x_0,y_0) , принадлежащая D, а также значение функции в точке x_0 : $y(x_0) = y_0$. Последнее условие называется начальным условием. Задача состоит в следующем: требуется найти решение $y = \varphi(x)$ дифференциального уравнения y' = f(x, y), которое удовлетворяло бы начальному условию (поиск такой интегральной кривой, которая бы проходила через точку (x_0, y_0)).

Оказывается, если функция f(x,y) непрерывна в D и частная производная $\frac{\partial f}{\partial y}$ непрерывна в D, то для любой точки (x_0, y_0) существует единственная функция $y = \varphi(x)$, являющаяся решением y' = f(x, y), которая удовлетворяет начальному условию, т.е. решает задачу Коши, и для которой в некоторой окрестности точки x_0 значения $(x, \varphi(x))$ лежат в области D. (При выполнении условий через некоторую точку области D проходит единственная интегральная кривая, которая хотя бы в окрестности этой точки будет лежать в области D).

Дифференциальные уравнения с разделяющимися переменными и с однородной функцией

Уравнения с разделяющимися переменными Так как $y'=\frac{dy}{dx}$, то dy=f(x,y)dx. Пусть есть функция f(x,y). Ее можно расписать как $f_1(x)f_2(y)$. Уравнение вида $dy=f_1(x)f_2(y)dx$ называется уравнением с разделяющимися переменными (их можно разделить), а уравнение вида $\frac{dy}{f_2(y)}=f_1(x)dx$ называется уравнением с разделенными переменными $(dG(y) = dF(x) \to G(y) = F(x) + c)$, где F и G – первообразные от $f_1(x)$ и $\frac{1}{f_2(y)}$. Получится, что можно проинтегрировать: $\int \frac{dy}{f_2(y)} = \int f_1(x) dx$. Почти все решения дифференциальных уравнений сводятся к подобному разделению.

В частности, $M_1(x)M_2(y)dy=N_1(x)N_2(y)dx$ — обычный вид уравнения с разделяющимися переменными. Можно привести к уравнению с разделенными: $\frac{M_2}{N_2}(y)dy=\frac{N_1}{M_1}(x)dx$.

Уравнения с однородной функцией

Функция F(x,y) называется однородной функцией n – го измерения, если $F(tx,ty)=t^nF(x,y)$.

Пример: $F(x,y) = x^2 + 2xy + 3y^2 = t^2x^2 + 2t^2xy + 3t^2y^2 = t^2(x^2 + 2xy + 3y^2)$ — однородная функция второго измерения.

В частности, если F(tx,ty) = F(x,y), то F(x,y) – однородная функция нулевого измерения.

<u>Замечание.</u> Если F и G – однородные функции n – го измерения, то $\frac{F}{G}$ – однородная функция нулевого измерения.

Если y' = f(x, y), где f(x, y) – однородная функция нулевого измерения, то y' = f(x, y) называется дифференциальным уравнением первого порядка с однородной функцией.

<u> $\mathbf{3amevahue.}$ </u> Если G(x,y)dy=F(x,y)dx, где F,G – однородные функции n – го измерения, то такое уравнение будет называться дифференциальным уравнением с однородной функцией.

Принцип решения: делается замена y=xu(x); y'=u(x)+xu'(x); f(x,u*x)=f(1,u). Получаем $u+xu'=f(1,u); xu'=f(1,u)-u; \frac{du}{f(1,u)-u}=\frac{dx}{x}.$

<u>Пример:</u> $y' = \frac{x}{y} + \frac{y}{x}$; y = xu; $u'x + u = \frac{1}{u} + u$; $udu = \frac{dx}{x}$; $\frac{u^2}{2} = \ln|x| + \ln|c|$; $e^{\frac{y^2}{2x^2}} = cx$. Последнее называется общим интегралом.

Линейные уравнения первого порядка и уравнения Бернулли

Линейные дифференциальные уравнения первого порядка

Уравнение вида y'+p(x)y=q(x) называется линейным дифференциальным уравнением. Если q(x)=0, то уравнение будет однородным. Если $q(x)\neq 0$, то будет неоднородным. Оказывается, что однородное линейное дифференциальное уравнение y'+p(x)y=0 является уравнением с разделяющимися переменными: разделим и проинтегрируем $\frac{dy}{y}=-p(x)dx$, $\ln|y|=-\int p(x)dx+c_1; y=e^{c_1}e^{-\int p(x)dx}=ce^{-\int p(x)dx}$. Последнее является общим решением линейного дифференциального уравнения.

Решение уравнений вида y' + p(x)y = q(x).

- 1. Решение однородного уравнения y'+p(x)y=0. $\frac{dy}{dx}=-p(x)y; \frac{dy}{y}=-p(x)dx; y=ce^{-\int p(x)dx}$. Последнее является общим решением однородного уравнения. Тогда частным решением при c=1 будет являться $y_0=e^{-\int p(x)dx}$.
- 2. Решение неоднородного уравнения будем искать в виде $y=c(x)y_0(x)$, где y_0 частное решение однородного уравнения. Подставим в уравнение: $c'(x)y_0+c(x)y_0'+p(x)c(x)y_0=q(x)$. Второе и третье слагаемые в сумме равны нулю, т.к. y_0 частное решение однородного уравнения. Отсюда получаем $c'(x)y_0=q(x)$; $c'(x)=\frac{q(x)}{y_0}$; $c=\int \frac{q(x)}{y_0}dx+c_1$. Получается, что общее решение неоднородного уравнения будет иметь вид $y(x)=\left(\int \frac{q(x)}{y_0}dx+c_1\right)y_0$.

<u>Пример:</u> $y'+2xy=xe^{-x^2}$. Однородное: $y'+2xy=0; \frac{dy}{y}=-2xdx; \ln|y|=\ln|c|-x^2; y=ce^{-x^2}-$ общее решение. Тогда $y_0=e^{-x^2}-$ частное решение. Неоднородное: $y=c(x)e^{-x^2}$. Подставим $y'=c'(x)e^{-x^2}-c(x)*2xe^{-x^2}+c(x)*2xe^{-x^2}=xe^{-x^2}$. При решении данным методом обязательно должны сократиться слагаемые, содержащие c(x). В противном случае было неверно найдено общее решение однородного уравнения. $c'(x)=x; c(x)=\frac{x^2}{2}+c_1; y=\left(\frac{x^2}{2}+c_1\right)e^{-x^2}-$ общее решение неоднородного уравнения.

Уравнения Бернулли

Уравнением Бернулли называется уравнение вида $y'+p(x)y=q(x)y^{\alpha}$, где $\alpha\neq 1,0$ (потому что в противном случае получим линейное однородное уравнение). Будем решать это уравнение методом Бернулли. Искать решение будем в виде y=u(x)v(x). Подставим в исходное уравнение. $u'v+uv'+puv=q(x)u^{\alpha}v^{\alpha}; v(u'+pu)+uv'=q(x)u^{\alpha}v^{\alpha}$. Потребуем v(u'+pu)=0. Тогда u_0 — частное решение. $u_0v'=q(x)u_0^{\alpha}v^{\alpha}; \frac{dv}{v^{\alpha}}=q(x)u_0^{\alpha-1}dx$.

Уравнения в полных дифференциалах. Интегрирующий множитель

Уравнение вида M(x,y)dx+N(x,y)dy=0, если $d\Phi=M(x,y)dx+N(x,y)dy$, называется уравнением в полных дифференциалах, т.е. если $M(x,y)=\frac{\partial\Phi}{\partial x}$; $N(x,y)=\frac{\partial\Phi}{\partial y}$. Если $d\Phi=0$, то $\Phi(x,y)=c$. Последнее называется общим интегралом.

<u>Теорема 26.</u> M(x,y)dx+N(x,y)dy=0 является уравнением в полных дифференциалах тогда и только тогда, когда $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$.

<u>Доказательство.</u> Пусть есть уравнение в полных дифференциалах, т.е. существует такая функция $\Phi(x,y)$, что $M(x,y)=\frac{\partial \Phi}{\partial x}; N(x,y)=\frac{\partial \Phi}{\partial y}.$ Тогда $\frac{\partial^2 \Phi}{\partial y\partial x}=\frac{\partial M}{\partial y}=\frac{\partial^2 \Phi}{\partial x\partial y}=\frac{\partial N}{\partial x}.$

Замечание. Пусть функции M и N дважды дифференцируемые функции. M(x,y)dx + N(x,y)dy = 0 не всегда является уравнением в полных дифференциалах, но всегда существует интегрирующий множитель $\mu(x,y)$ такой, что $\mu M(x,y) + \mu N(x,y)dy = 0$ будет являться уравнением в полных дифференциалах.

Билеты для подготовки к экзамену по математике. Трофимов Владислав Уравнения высших порядков, допускающие понижение порядка

$$F(x, y', y'') = 0$$

Замена y'=z(x); y''=z'(x). Уравнение приводится к уравнению первого порядка F(x,z,z')=0.

Пример: $xy'' = y' \ln \frac{y'}{x}; z(x) = y'(x); xz' = z \ln \frac{z}{x}; z' = \frac{z}{x} \ln \frac{z}{x}; u = \frac{z}{x}; z = ux; u'x + u = u \ln u; \frac{du}{u(\ln u - 1)} = \frac{dx}{x}; \ln |\ln u - 1| = \ln |x| + \ln c; \ln u - 1 = cx; u = e^{cx+1}; \frac{z}{x} = e^{cx+1}; z = xe^{cx+1}; y' = xe^{cx+1}; y = \int xe^{cx+1} dx$. Не забывайте про вторую константу.

$$F(y,y',y'')=0$$

F(y,y',y'')=0Замена $y'=p(y); y_{xx}''=p'(y)y_x'=p_y'p.$ Уравнение приводится к уравнению первого порядка F(y, p, p' * p) = 0.

Линейные однородные дифференциальные уравнения высших порядков. Определитель Вронского и его свойства

Уравнение вида $a_0(x)y^{(n)}+a_1(x)y^{(y-1)}+\cdots+a_{n-1}(x)y'+a_n(x)y=f(x)$, где $a_0\neq 0$, называется линейным дифференциальным уравнением n – го порядка. Если f(x)=0, то оно будет являться линейным однородным дифференциальным уравнением.

Не умоляя общности, будем рассматривать уравнения второго порядка $y'' + a_1(x)y' + a_2(x)y =$ 0 (*).

Теорема 27. Пусть $y_1(x)$ и $y_2(x)$ являются частными решениями (*), тогда $c_1y_1(x) + c_2y_2(x)$ тоже будет являться частным решением (*).

Доказательство. Подстановкой.

Замечание. Теорема обобщается на уравнения n – го порядка.

Пусть функции $f_1(x), ..., f_n(x)$ определены на отрезке [a;b]. Их комбинация будет являться линейнонезависимой, если из равенства $c_1f_1(x)+c_2f_2(x)+\cdots+c_nf_n(x)=0$ следует $c_1=c_2=\cdots=c_n=0$.

Функции f_1, f_2 линейно-зависимы, если существует нулевая линейная комбинация с константами,

висимы.

Пусть функции $f_1(x), f_2(x), \dots f_n(x)$ определены на отрезке [a;b] и дифференцируемы n-1 раз. Тогда

Вронского, или вронскианом. Если он равен нулю, то функции, на которых он построен, линейно-зависимы.

Теорема 28. Пусть функции $y=\varphi_1(x), y=\varphi_2(x)$ линейно зависимы и дифференцируемы на отрезке [a;b]. Тогда $W(\varphi_1,\varphi_2)=0$ на этом отрезке.

<u>Доказательство.</u> Если эти функции линейно зависимы, то выполняется равенство $\varphi_2(x)=\lambda \varphi_1(x)$, $\lambda \neq 0$. Тогда $W(\varphi_1,\varphi_2)=\begin{vmatrix} \varphi_1 & \varphi_2 \\ \varphi_1' & \varphi_2' \end{vmatrix}=\begin{vmatrix} \varphi_1 & \lambda \varphi_1 \\ \varphi_1' & \lambda \varphi_1' \end{vmatrix}=0$.

<u> $\bf 3$ амечание.</u> Теорема распространяется на случай n функций.

Теорема 29. Рассмотрим однородное линейное уравнение $y'' + a_1(x)y' + a_2(x)y = 0$. Пусть y_1, y_2 – решения этого уравнения на отрезке [a;b]. Пусть $x_0 \in (a;b)$ и $W(y_1,y_2)(x_0) \neq 0$. Тогда для любого x на отрезке $[a; b] W(y_1, y_2) \neq 0.$

Доказательство. Так как y_1, y_2 — решения, то подставим их и составим систему $\begin{cases} y_1'' + a_1y_1' + a_2y_1 = 0 | *y_2 \\ y_2'' + a_1y_2' + a_2y_2 = 0 | *y_1 \end{cases}$. Вычитаем второе из первого и получаем $y_1''y_2 - y_2''y_1 + a_1(y_1'y_2 - y_1y_2') = 0$. Но $(y_1'y_2-y_1y_2')'=y_1''y_2+y_1'y_2'-y_1'y_2'-y_1y_2''=y_1''y_2-y_1y_2'' \quad \text{и} \quad W(y_1,y_2)=\left|\begin{matrix} y_1 & y_2 \\ y_1' & y_2' \end{matrix}\right|=y_1y_2'-y_1'y_2. \quad \text{Тогда}$ $-W'(y_1,y_2)-a_1W(y_1,y_2)=0.$ $\frac{w'}{w}=-a_1(x).$ Проинтегрировав, получаем $\ln |W|=-\int_{x_0}^x a_1 dx$. $W=W(x_0)*$ $e^{-\int_{x_0}^x a_1 dx}$. По условию $W(x_0) \neq 0$. А значит и все выражение не обращается в ноль.

Замечание. Пусть y_1, y_2 – решения линейного однородного дифференциального уравнения на отрезке [a;b] такие, что в какой-то точке этого отрезка $W(y_1,y_0)(x_0)=0$. Тогда $W(y_1,y_2)(x)=0$ на всем отрезке [a;b].

Теорема 30. Пусть y_1, y_2 – линейно-независимые решения однородного линейного уравнения $y'' + a_1(x)y' + a_2y = 0$. Тогда $W(y_1, y_2) \neq 0$ на отрезке [a;b]. Без доказательства.

Теорема 31. Общее решение $y'' + a_1(x)y' + a_2(x)y = 0$ представимо в виде $y = c_1y_1(x) + c_2y_2(x)$, где $y_1(x), y_2(x)$ – линейно-независимые частные решения линейного однородного дифференциального уравнения.

Доказательство. Так как y_1 и y_2 – решения, то $y=c_1y_1+c_2y_2$ – тоже решение. Пусть есть некоторая задача Коши. $y(x_0)=y_0, y'(x_0)=y_0'$. Покажем, что существуют такие c_1, c_2 , что $y=c_1y_1+c_2y_2$ решают задачу Коши. $\begin{cases} y(x_0)=c_1y_1(x_0)+c_2y_2(x_0)=y_0\\ y'(x_0)=c_1y_1'(x_0)+c_2y_2'(x_0)=y_0' \end{cases}$. Следовательно, $W(y_1,y_2)(x_0)\neq 0$ – определитель системы. Следовательно, система имеет единственное решение c_1,c_2 .

Замечание. Теорема распространяется на случай линейного однородного уравнения n-го порядка. Пусть $y_1(x), ..., y_n(x)$ – линейно-независимые частные решения уравнения $y^{(n)}(x) + a_1(x)y^{(n-1)} + ... + a_{n-1}(x)y' + a_n(x)y = 0$. Тогда $y = c_1y_1(x) + ... + c_ny_n(x)$ является общим решением.

Неоднородные линейные уравнения высших порядков. Метод вариации произвольных постоянных

Не ограничивая общности, рассмотрим неоднородное уравнение второго порядка $y'' + a_1(x)y' + a_2(x)y = f(x)$ (далее - (*)).

Теорема 32. Общее решение (*) представляется как сумма общего решения однородного уравнения и частного решения неоднородного уравнения: $y(x) = c_1 y_1(x) + c_2 y_2(x) + y_4(x)$, где $c_1 y_1(x) + c_2 y_2(x) = \bar{y}$ – общее решение однородного уравнения, $y_4(x)$ – частное решение (*).

Доказательство. Просто возьмем и подставим y(x) в уравнение: $c_1y_1''+c_2y_2''+y_4''+a_1(x)(c_1y_1'+c_2y_2'+y_4')+a_2(x)(c_1y_1+c_2y_2+y_4)=c_1(y_1''+a_1(x)y_1'+a_2(x)y_1)+c_2(y_2''+a_1(x)y_2'+a_2(x)y_2)+y_4''+a_1(x)y_1'+a_2(x)y_2'+a_2(x)y_2'+a_2(x)y_2)+y_4''+a_1(x)y_4'+a_2(x)y_4'$

<u>Замечание.</u> Теорема распространяется на случай линейного неоднородного уравнения порядка n. Метод вариации произвольных постоянных

Не ограничивая общности, рассмотрим неоднородное уравнение второго порядка $y''+a_1(x)y'+a_2(x)y=f(x)$. Пусть $\bar{y}=c_1y_1+c_2y_2$ – общее решение однородного уравнения. Частное решение неоднородного уравнения можно искать в виде $y=c_1(x)y_1+c_2(x)y_2$ (y_1,y_2 – линейно-независимые решения однородного уравнения). $y'=c_1'y_1+c_1y_1'+c_2'y_2+c_2y_2'$. Потребуем $c_1'y_1+c_2'y_2=0$. Тогда получим $y'=c_1y_1'+c_2y_2'$. $y''=c_1'y_1'+c_1y_1''+c_2'y_2'+c_2y_2''$. Подставим y'',y' в уравнение. Получаем $c_1'y_1'+c_1y_1''+c_2'y_2'+c_2y_2''+a_1(x)(c_1y_1'+c_2y_2')+a_2(x)(c_1y_1+c_2y_2)=f(x)$. Выражаем в виде $c_1(y_1''+a_1(x)y_1'+a_2(x)y_1)+c_2(y_2''+a_1(x)y_2'+a_2(x)y_2)+c_1'y_1'+c_2'y_2'=f(x)$. Первое и второе слагаемые равны нулю, так что получаем $c_1'y_1'+c_2'y_2'=f(x)$. Составим систему $\begin{cases} c_1'y_1+c_2'y_2=0\\ c_1'y_1'+c_2'y_2'=f(x) \end{cases}$ определитель которой $W(y_1,y_2)$ в каждой точке x отличен от нуля. Значит, система имеет единственное решение $c_1'(x),c_2'(x)$. После этого интегрируем и получаем $c_1(x),c_2(x)$.

Линейные уравнения высших порядков с постоянными коэффициентами. Характеристическое уравнение. Общее решение

Рассмотрим неоднородное уравнение $y^{(n)}+a_1y^{(n-1)}+\cdots+a_{n-1}y'+a_ny=f(x)$, где a_1,\ldots,a_n – константы. Если f(x)=0, то уравнение однородное.

Однородные уравнения второго порядка

Рассмотрим однородное уравнение y''+py'+qy=0, где p,q – константы. Будем решение уравнения в виде $y=e^{kx}$, где k – константа. Тогда $y'=ke^{kx}$, $y''=k^2e^{kx}$. После подстановки в уравнение получим

 $k^2e^{kx}+pke^{kx}+qe^{kx}=0$. Сократив, получим $k^2+p+q=0$ – характеристическое уравнение дифференциального уравнения. Если k – корень этого уравнения, тогда $y=e^{kx}$ – решение дифференциального. Отдельные случаи:

- 1. $k_1 \neq k_2$ различные действительные корни. Пусть $y_1 = e^{k_1 x}$, $y_2 = e^{k_2 x}$. Тогда, если они линейно-зависимы, то $y_2 = \lambda y_1$, $\lambda = \frac{y_2}{y_1} = \frac{e^{k_2 x}}{e^{k_1 x}} = e^{x(k_2 k_1)}$, чего не может быть в силе того, что $k_1 \neq k_2$. Следовательно y_1, y_2 линейно-независимы. Тогда общее решение будет выглядеть в виде $y = c_1 e^{k_1 x} + c_2 e^{k_2 x}$.
- 2. $k_1 = k_2$ действительные корни второй кратности. Пусть $y_1 = e^{k_1 x}$, $y_2 = e^{k_2 x}$. Они линейно-зависимы. Покажем, что $y_2 = xe^{k_1 x}$. Будем искать второе линейно-независимое решение в виде $y_2 = U(x)e^{k_1 x}$. $y_2' = U'(x)e^{k_1 x} + k_1 U(x)e^{k_1 x}$, $y_2'' = U''(x)e^{k_1 x} + U'(x)k_1e^{k_1 x} + k_1^2 U(x)e^{k_1 x}$. Подставим эти два выражения в уравнение: $U''(x)e^{k_1 x} + 2k_1 U'(x)e^{k_1 x} + k_1^2 U(x)e^{k_1 x} + pU'(x)e^{k_1 x} + pU'(x)e^{k_1 x} + pU'(x)e^{k_1 x} + qU(x)e^{k_1 x} = 0$. После сокращения получим $U''(x) + (2k_1 + p)U'(x) + (k_1^2 + pk_1 + q)U(x) = 0$. Второе и третье слагаемые равны нулю, так как k_1 корень второй кратности. Значит, D = 0, $k_1 = \frac{-p \pm \sqrt{D}}{2} = -\frac{p}{2}$. Выходит, уравнение преобразуется к виду U''(x) = 0. Следовательно, После двойного интегрирования, U(x) = A(x) + B. Так как нам нужно любое частное решение, то можно положить B = 0, A = 1, U(x) = x. Тогда $y_2 = xe^{k_1 x}$ линейно-независимое решение с $e^{k_1 x}$. Общее решение: $y = c_1 e^{k_1 x} + c_2 xe^{k_1 x}$.
- 3. k_1, k_2 комплексные сопряженные корни. Тогда, воспользовавшись формулой Эйлера, получим, что $y_1 = e^{\alpha x}e^{i\beta x} = e^{\alpha x}(\cos\beta x + i\sin\beta x) = e^{\alpha x}\cos\beta x + ie^{\alpha x}\sin\beta x$. Аналогично $y_2 = e^{\alpha x}(\cos\beta x i\sin\beta x) = e^{\alpha x}\cos\beta x ie^{\alpha x}\sin\beta x$.

<u>Теорема 33.</u> Если y=u(x)+iv(x) – решение уравнения y''+py'+qy=0, то u(x) и v(x) также являются решениями этого уравнения.

Доказательство. Просто подставим: u'' + iv'' + p(u' + iv') + q(u + iv) = 0. Разделим действительную и мнимую части: u'' + pu' + qu + i(v'' + pv' + q) = 0. Получаем систему $\begin{cases} u'' + pu' + qu = 0 \\ v'' + pv' + qv = 0 \end{cases}$. Следовательно, u(x) и v(x) также являются решениями этого уравнения.

В качестве u(x) возьмем $y_1 = e^{\alpha x}\cos\beta x$, а в качестве v(x) возьмем $y_2 = e^{\alpha x}\sin\beta x$. Так как $\frac{y_1}{y_2} = \cot\beta x \not\equiv 0$, то y_1 и y_2 линейно-независимы. Тогда общее решение такого уравнения будет находиться в виде $y = c_1 e^{\alpha x}\cos\beta x + c_2 e^{\alpha x}\sin\beta x$.

Замечание. Обобщается на уравнение с постоянными коэффициентами n-го порядка. $y^{(n)}+a_{n-1}y^{(n-1)}+\cdots+a_1y'+a_0y=0$. Характеристическое уравнение $k^n+a_{n-1}k^{n-1}+\cdots+a_1k+a_0=0$ имеет ровно n корней. Кратному действительному корню k_1 кратности r отвечают r линейно-независимых функций (решений уравнений). $y_1=e^{k_1x},y_2=xe^{k_1x},\dots,y_r=x^{r-1}e^{k_1x}$. Комплексным корням $a\pm i\beta$ характеристического уравнения кратности r отвечают 2r линейно-независимых функций (решений уравнений). $y_1e^{ax}\cos\beta x$, $y_2=e^{ax}\sin\beta x$, $y_3=xe^{ax}\cos\beta x$, $y_4=xe^{ax}\sin\beta x$, ..., $y_{2n-1}=x^{n-1}e^{ax}\cos\beta x$, $y_{2n}=x^{n-1}e^{ax}\sin\beta x$.

Общее решение дифференциального уравнения n-го порядка составляется из линейной комбинации его частных линейно-независимых решений.

Линейные неоднородное дифференциальные уравнения с постоянными коэффициентами и специальной правой частью

 $y^{(n)}+a_{n-1}y^{(n-1)}+\cdots+a_1y'+a_0y=f(x)$ (*), где a_0,\ldots,a_{n-1} – константы. Общее решение такого уравнение определяется как сумма общего решения однородного линейного уравнения и любого частного решения неоднородного линейного уравнения: $y=\bar{y}+y^*$.

Не умоляя общности, рассмотрим уравнение второго порядка. y'' + py' + qy = f(x) (**). Тогда $\bar{y} = c_1y_1 + c_2y_2$, где y_1, y_2 – линейно-независимые частные решения однородного уравнения. Как ищется y^* :

- 1. Если $f(x)=e^{\lambda x}P_n(x)$, где $P_n(x)$ конкретный многочлен n-й степени.
 - а. Если λ не является корнем характеристического уравнения, то $y^* = e^{\lambda x}Q_n(x)$, где $Q_n(x)$ многочлен n-й степени с неопределенными коэффициентами. Сокращаем обе части уравнения (**) на $e^{\lambda x}$, после чего получаем линейную систему из n+1 уравнений, решая которую мы находим все коэффициенты Q_n .

Пример. $y'' + 3y' - 4y = e^{2x}(x^3 + 1)$. Характеристическое уравнение: $\lambda^2 + 3\lambda - 4 = 0$. Корни $\lambda = -4$; 1. 2 не является корнем характеристического уравнения. Следовательно, $y^* = e^{2x}(ax^3 + bx^2 + cx + d)$.

b. Если λ является корнем характеристического уравнения r-й кратности, то $y^* = x^r e^{\lambda x} Q_n(x)$.

- 2. Если $f(x) = e^{\alpha x} \cos \beta x \, M_m(x) + e^{\alpha x} \sin \beta x \, N_p(x)$, где M_m многочлен степени m, $N_p(x)$ многочлен степени p.
 - а. Если $\alpha+i\beta$ не является корнем характеристического уравнения, то $y^*=e^{\alpha x}\cos\beta x\,P_n(x)+e^{\alpha x}\sin\beta x\,Q_n(x)$, где n=greater(m,p), а $P_n(x)$ и $Q_n(x)$ многочлены с неопределенными коэффициентами.
 - b. Если $\alpha+i\beta$ является корнем характеристического уравнения r-й кратности, то $y^*=x^r(e^{\alpha x}\cos\beta x\,P_n(x)+e^{\alpha x}\sin\beta x\,Q_n(x)).$

Замечание. Все эти решения обобщаются и на уравнения n-го порядка.