Symulacja krakowskiej sieci tramwajowej

Kamil Kulig, Łukasz Mróz, Aleksandra Pierzchała

1. Wstęp

Funkcjonowanie komunikacji miejskiej jest zależne od wielu parametrów, takich jak maksymalne prędkości pojazdów, ich pojemność, czas postoju na przystankach i pora dnia. Czynniki te są ze sobą mocno powiązane – w godzinach porannych środki transportu publicznego są zwykle zatłoczone, co wiąże się z dłuższą wymianą pasażerów na przystankach, ale też z większą częstotliwością odjazdów danych linii. Normalne kursowanie pojazdów może być zakłócone przez awarie, wypadki, remonty oraz inne niespodziewane zdarzenia.

Celem projektu jest symulacja ruchu tramwajowego w Krakowie. Godziny odjazdów i przyjazdów na poszczególnych przystankach dla każdej linii zostały pobrane ze strony Miejskiego Przedsiębiorstwa Komunikacyjnego [1], a rozmieszczenie przystanków i trasy pomiędzy nimi ze strony Open Street Map [2] (Fig. 1). Mapy udostępniane przez tę stronę posłużą również do wizualizacji symulacji. W predykcji napełnienia pojazdów pomogły dane zamieszczone przez Zarząd Infrastruktury Komunalnej i Transportu [3].

Fig. 1 Plan Krakowa z zaznaczonymi trasami tramwajów i przystankami [2]

Model będzie uwzględniał wszystkie tramwaje wszystkich linii poruszające się w danym momencie po Krakowie. Tramwaje będą miały różne kolory w zależności od przewidywanego napełnienia.

Jako dane wejściowe dla każdego z tramwajów przyjmujemy ich trasę – kolejne przystanki i godziny przyjazdu na każdy z nich. Współrzędne przystanków i trasy poszczególnych tramwajów są zapisane w pliku XML.

2. Przegląd literatury

Staines [4] sugeruje wykorzystanie kolorowanych sieci Petriego (CPN) i postępowanie według następującego schematu:

Fig. 2 Proponowane rozwiązanie – opracowanie własne na podstawie [4]

Połączone ze sobą przystanki tworzą graf nieskierowany, który jest bazą do skonstruowania CPN. Aby umożliwić działanie modelu i sprawić, by odzwierciedlał rzeczywiste poruszanie się tramwajów, autor sugeruje dodanie 3-elementowych krotek postaci: (n_1, n_2, n_3) , gdzie n_1 – numer linii, n_2 – kierunek jazdy, n_3 – identyfikator pojazdu [4].

[5] proponuje rozwiązanie uwzględniające następujące parametry wejściowe: zależną od pory dnia liczbę pasażerów pojawiających się na przystankach, macierz zawierającą początkowe i końcowe stacje, liczbę tramwajów na danej linii, pojemność pojazdów i zachowanie pasażerów. Tworzy model stochastyczny składający się z 3 elementów: zbioru pojazdów (M), zbioru przystanków (S) oraz zbioru pasażerów. Dwa pierwsze zbiory składają się z podzbiorów M_i i S_i , gdzie i to kolejne numery linii. Pasażerowie pojawiają się na stacji zgodnie ze złożonym modelem Poissona.

Fig. 3 Trasa jednej linii (rysunek z pracy [5])

Ważnym aspektem jest czas postoju tramwajów na przystankach. Podczas godzin szczytu większa liczba pasażerów korzysta z transportu miejskiego i w efekcie ten czas się zwiększa, równocześnie wydłużając całkowity czas przejazdu tramwaju. Na każdym kolejnym przystanku opóźnienie jest większe [6].

Fig. 4 Opóźnienie pojazdów na stacji Shibuya w godzinach 7:00-10:00 [6]

- 1. http://rozklady.mpk.krakow.pl
- 2. https://www.openstreetmap.org
- 3. http://zikit.krakow.pl/aktualnosci/5595-wyniki-pomiarow-w-pojazdach-komunikacji-miejskiej-w-krakowie
- 4. Staines A.S. A Colored Petri Net Model for the France Paris Metro System; Department of Computer Information Systems, University of Malta.
- 5. Grube P.; Núñez F.; Cipriano A. *An event-driven simulator for multi-line metro systems and its application to Santiago de Chile metropolitan rail network*, College of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile, 2010.
- 6. Keiji K.; Naohiko H.; Shigeru M. Simulation analysis of train operation to recover knock-on delay under high-frequency intervals, Japan Railway Construction, Transport and Technology Agency, Japan and National Graduate Institute for Policy Studies, Japan, 2014.