Université des Sciences et de la Technologie Houari Boumediène Faculté d'Electronique et d'Informatique Département d'Informatique LMD Master 1ère Année IL 2013/2014 Module "Algorithmique Avancée et Complexité"

Date: 16/12/2013 (par Mr Isli)

Corrigé de l'interrogation

Exercice 1 <5 points=2,5+2,5>:

Soit $f(n)=5n^2\log(n)+8n^2+5$ le nombre d'opérations élémentaires du pire cas d'un algorithme A.

- 1. Montrez que $f(n)=O(n^2\log(n))$.
- 2. A-t-on $f(n)=O(n.\log(n))$? Expliquez.

Solution:

1. Montrons que $f(n)=O(n^2\log(n))$. Il suffit de trouver c>0 et $n_0\ge 0$ tels que $\forall n\ge n_0$ $f(n)\le c.n^2\log(n)$: $5n^2\log(n) + 8n^2 + 5 \le c.n^2\log(n)$ on divise les deux membres par n²log(n)

$$5 + \frac{8}{\log(n)} + \frac{5}{n^2 \log(n)} \le c$$

Prendre c=14 et n_0 =10 (5+ $\frac{8}{\log(n)}$ + $\frac{5}{n^2\log(n)}$ décroissante à partir de n=10)

Conclusion: $f(n)=O(n^2\log(n))$.

Supposons que $f(n)=O(n.\log(n))$. Il existerait c>0 et $n_0\ge 0$ tels que $\forall n\ge n_0$ $f(n)\le c.n.\log(n)$:

$$5n^2\log(n) + 8n^2 + 5 \le c.n\log(n)$$
 on divise les deux membres par $n\log(n)$
 $5n + \frac{8n}{\log(n)} + \frac{5}{n.\log(n)} \le c$

La constante c est inexistante vu que la limite du premier membre quand n tend vers l'infini est l'infini : d'où contradiction

Conclusion : on n'a pas $f(n)=O(n.\log(n))$

Exercice 2 <4 points>:

Donnez un algorithme polynômial testant si une chaîne de caractères v est sous-chaîne d'une chaîne u ; c'està-dire s'il existe deux chaînes w et w' telles que u=wvw'. Calculez la complexité de l'algorithme.

Solution:

Sous-mot(v,u)

Début

- 1. n=longueur(u)
- 2. m=longueur(v)
- 3. borne= n-m+1
- 4. sousmot=faux
- 5. I=1
- 6. Tant que (non sousmot) et i≤borne faire

 - b. Tant que j≤m et u[i+j-1]=v[j] faire i. j=j+1

 - d. Si j=m+1 alors sousmot=vrai finsi
- 7. Fait
- 8. retourner sousmot

Fin

Le nombre f(n,m) d'opérations élémentaires du pire cas de l'algorithme est donné par le tableau ci-dessous :

Instruction	Nombre d'opérations du pire cas
1.+2.+3.+4.+5.	7
6.	2(n-m+2)
6.a.	n-m+1
6.b.	4(n-m+1)(m+1)
6.b.i.	2(n-m+1)m
6.d.	2(n-m+1)+1
8.	1

$$f(n,m) = 7 + 2(n-m+2) + n-m+1 + 4(n-m+1)(m+1) + 2(n-m+1)m + 2(n-m+1) + 1 + 1$$

$$= 7 + 2n - 2m + 4 + n - m + 1 + 4nm + 4 - 4m^2 - 4m + 4m + 4 + 2nm - 2m^2 + 2m + 2n - 2m + 2 + 2$$

$$= 24 + 5n - 3m + 6nm - 6m^2$$

Conclusion : $f(n,m)=O([max(n,m)]^2)$ (complexité quadratique)

Exercice 3 <5 points=3+2>:

On considère le graphe orienté suivant :

- 1. Donnez une forêt de recouvrement issue d'un parcours en profondeur d'abord du graphe
- 2. Donnez l'ordre dans lequel le parcours considéré a visité les sommets du graphe

Solution:

1. La forêt de recouvrement ci-dessous est issue d'un parcours en profondeur d'abord du graphe, et est constituée de trois arbres dont les racines sont E, H et J

2. Le parcours en profondeur d'abord dont est issue la forêt de recouvrement ci-dessus a visité les sommets dans l'ordre EADBGFHICJ

Remarque: d'autres solutions existent!

Exercice 4 < 6 points = 1+1+2+1+1>:

On considère le problème de décision P suivant :

- **Description**: deux entiers strictement positifs a et b
- **Question :** existe-t-il un entier x tel que x^2 =a mod b?

Le but de l'exercice est de trouver un algorithme polynômial de validation pour le problème P ci-dessus en procédant comme suit :

- 1. Donnez une structure de données permettant de représenter une instance du problème P. Expliquez
- 2. En quoi consiste un certificat d'une instance du problème P. Donnez une structure de données permettant la représentation d'un tel certificat. Expliquez
- 3. Donnez un algorithme de validation pour le problème P sous forme d'une fonction booléenne dont il est important que vous expliquiez les paramètres. L'algorithme, que vous appellerez validation_P, doit évidemment être polynômial, la preuve de la polynômialité faisant l'objet des questions 4 et 5.
- 4. Calculez le nombre d'opérations élémentaires du pire cas de l'algorithme validation_P.
- 5. Calculez la complexité de l'algorithme validation_P.

Solution:

- 1. Une instance I du problème de décision P consiste en deux entiers. Une structure de données permettant de coder (représenter) l'instance est un tableau de taille 2 d'entiers.
- 2. Un certificat c est tout simplement un entier pouvant être codé par une variable entière.
- 3. L'algorithme de validation validation_P est une fonction booléenne à deux paramètres : une instance I (tableau de taille deux d'entiers) ; et un certificat c (variable entière).

```
validation_P(I,c)

début
si c²=I[1] mod I[2] alors retourner VRAI sinon retourner FAUX finsi
fin
```

- 4. Le nombre d'opérations du pire cas de l'algorithme est clairement 4 (une multiplication, une opération mod, une affectation, et une opération 'retourner')
- 5. La complexité de l'algorithme de validation est donc $\Theta(1)$ (complexité constante, donc polynomial).