# PySpark Optimization Techniques for Data Engineers









#### **Use Broadcast Variables**

When joining smaller DataFrames with larger ones, consider using broadcast variables. This technique helps in distributing smaller DataFrames to all worker nodes, reducing data shuffling during the join operation.

```
from pyspark.sql import SparkSession
from pyspark.sql.functions import broadcast

spark = SparkSession.builder.appName("example").getOrCreate()

small_df = spark.createDataFrame([...])
large_df = spark.createDataFrame([...])

result_df = large_df.join(broadcast(small_df), "common_column")
```

#### **Partitioning**

Ensure that your DataFrames are properly partitioned to optimize data distribution across worker nodes. Choose appropriate partitioning columns to minimize data shuffling during transformations.

```
df = df.repartition("column_name")
```

#### **Persist Intermediate Results**

If you have multiple operations on the same DataFrame, consider persisting the intermediate results in memory or disk. This prevents recomputation and improves performance.

```
df.persist(StorageLevel.MEMORY_AND_DISK)
```

#### **Adjust Memory Configurations**

Tune the memory configurations for your PySpark application based on the available resources. This includes configuring executor memory, driver memory, and other related parameters in the SparkConf

```
conf = SparkConf().set("spark.executor.memory", "4g").set("spark.driver.memory",
```

#### **Use DataFrames API Instead of RDDs**

The DataFrame API in PySpark is optimized and performs better than the RDD API. Whenever possible, prefer using DataFrames for transformations and actions.

# **Avoid Using UDFs (User-Defined Functions) When Not Necessary**

User-Defined Functions in PySpark can be less performant than built-in functions. If there's an equivalent built-in function, use it instead of a UDF.

#### **Use Spark SQL Caching**

Leverage Spark SQL's caching mechanism to cache tables or DataFrames in memory, especially for frequently accessed data.

spark.sql("CACHE TABLE your\_table")

#### **Use Catalyst Optimizer and Tungsten Execution Engine**

PySpark utilizes the Catalyst optimizer and Tungsten execution engine to optimize query plans. Keep your PySpark version updated to benefit from the latest optimizations.

#### **Increase Parallelism**

Adjust the level of parallelism by configuring the number of partitions in transformations like repartition or coalesce. This can enhance the parallel execution of tasks.

#### Minimize Data Shuffling

Data shuffling is an expensive operation. Minimize unnecessary shuffling by carefully choosing join keys and optimizing your data layout.

#### **Optimize Serialization Formats**

Choose the appropriate serialization format based on your data and processing needs. Consider using more efficient serialization formats like Parquet.

#### **Leverage Cluster Resources Efficiently**

Take advantage of the cluster resources by understanding the available hardware and configuring Spark accordingly. Distribute the load evenly across nodes.

Applying these optimization techniques can significantly enhance the performance of your PySpark applications, especially when dealing with large datasets and complex transformations. Keep in mind that the effectiveness of these techniques may vary based on your specific use case and data characteristics. Experimentation and profiling are essential to identify the most impactful optimizations for your scenario.



#### Written by Rahul Sounder







#### More from Rahul Sounder







#### **Top 25 Databricks Interview Questions and Answers for a Data...**

What is Databricks? Answer: Databricks is a unified analytics platform that accelerates...

Jul 10 👋 21





#### Python—Data Engineers Coding Interview Ouestions — Part 1

Q1: Create a Python function to Identify only the unique values inside the list and create a...

Dec 20, 2023 W 72









Rahul Sounder

#### **Top 50 Data Modelling Interview Questions for Data Engineers**

Explain the difference between logical and physical data models.

Jul 15









Rahul Sounder

#### **Important Redshift Interview Questions for Data Engineer**

What is Amazon Redshift, and how does it differ from traditional RDBMS?

Jun 11



Image: Control of the con

See all from Rahul Sounder

#### **Recommended from Medium**

#### 11/8/24, 10:08 AM

| <br>dname | name  | salary |
|-----------|-------|--------|
| +         | +     |        |
| IT        | Max   | 90000  |
| IT        | Joe   | 85000  |
| IT        | Randy | 85000  |
| IT        | Will  | 70000  |
| Sales     | Henry | 80000  |
| Sales     | Sam   | 60000  |
| +         | +     |        |

| RDD                                             | DataFrame                   |
|-------------------------------------------------|-----------------------------|
| Low-level (distributed collection of objects)   | High-level (structured data |
| No built-in optimization (manual effort needed) | Catalyst optimizer for quer |
| Requires functional programming (map, reduce)   | SQL-like operations for eas |
| No schema information                           | Schema defines columns a    |



B V Sarath Chandra

#### JingOu in Dev Genius

## Pyspark Interview Question by Michaels

Problem Statement: Write a solution to find the top 3 employees who are high earners in...



A 5-Min Beginner's Guide.



Jun 14



Oct





**Spark SQL Clearly Explained** 

 $\Box$ 

#### Lists



#### **Staff Picks**

759 stories • 1423 saves



### Stories to Help You Level-Up at Work

19 stories - 856 saves



#### Self-Improvement 101

20 stories - 2971 saves



#### **Productivity 101**

20 stories - 2523 saves

| MEMORY_ONLY                            | Store RDD as deserialized Java objects in the JVM. If the RDD does not fit in memory,<br>some partitions will not be cached and will be recomputed on the fly each time they're<br>needed. This is the default level. |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MEMORY_AND_DISK                        | Store RDD as deserialized Java objects in the JVM. If the RDD does not fit in memory, store the partitions that don't fit on disk, and read them from there when they're needed.                                      |
| MEMORY_ONLY_SER<br>(Java and Scala)    | Store RDD as serialized Java objects (one byte array per partition). This is generally more space-efficient than deserialized objects, especially when using a fast serializer, but more CPU-intensive to read.       |
| MEMORY_AND_DISK_SER (Java and Scala)   | Similar to MEMORY_ONLY_SER, but spill partitions that don't fit in memory to disk instead of recomputing them on the fly each time they're needed.                                                                    |
| DISK_ONLY                              | Store the RDD partitions only on disk.                                                                                                                                                                                |
| MEMORY_ONLY_2, MEMORY_AND_DISK_2, etc. | Same as the levels above, but replicate each partition on two cluster nodes.                                                                                                                                          |
| OFF HEAP                               | Similar to MEMORY ONLY SER, but store the data in off-heap memory. This requires off-                                                                                                                                 |







Christopher Chung in Polymath Data Lab

# Optimizing your Apache Spark workloads

Src: Dall E

→ Sep 27

**32** 

**Q** 1

۲+

#### Repartition vs Coalesce in PySpark: Key Differences and Performance...

Two commonly used methods for adjusting the number of partitions are repartition() and...

+

Aug 14

11/1





Mukovhe Mukwevho

# Data Engineer PySpark Coding Interview Questions (Part-II)

9

Kamireddy Mahendra in Towards Data Engineering

#### Optimizing PySpark: Cutting Run-Times from 30 Minutes to Under ...

Recently, I encountered a challenge with a PySpark job that was taking over 30 minutes...

+

Oct 7

**3** 224

**Q** 3

# Data Engineer PySpark Coding Interview Questions (Part —II)

Practice These Problems before it's too late

+

Sep 30

1 29

See more recommendations