Cp Cpk - Graphing Quickly from Values

Amit Bhola

(Nov 2017)

Contents

- 1) Recap
- 2) Cp Relative Size Rule
- 3) Cpk $(1)\rightarrow(2)\rightarrow(3)$ Rule
- 4) Cp Cpk seen Together
- 5) One view Summary
- 6) Graphing Quickly from Values

Recap

Height adjusts as per σ to keep μ ± $z\sigma$ area constant

I have mean. I have sigma. I have area. I follow constant area under $\mu \pm z\sigma$ rule.

It makes no sense to speak of my Cp Cpk!

Only if someone looks at me through the glasses of "Dwg. Spec", Cp Cpk gain some meaning.

Cp - Relative Size Rule

Meaning of Cp = 1

Meaning of Cp < 1

Meaning of Cp > 1

Cpk $-(1)\rightarrow(2)\rightarrow(3)$ Rule

6σ

Population mean w.r.t.

population Extreme

Numerator: distance

Population mean w.r.t. (nearest)

Dwg. Extreme

w.r.t.

Denominator: distance

Population mean w.r.t.

population Extreme

In plain English,

Sitting @ actual population mean,

Which is more far away?

Dwg. Extreme?

Or

Population Extreme?

Cpk measures position of population wrt. dwg. band Numerator = Nearest Dwg. Limit to Actual mean Denominator = Actual mean to Actual Extreme **Survival Zone**

Dead

Numerator = Nearest Dwg. Limit to Actual mean Denominator = Actual mean to Actual Extreme

2

Dead

Numerator = Nearest Dwg. Limit to Actual mean Denominator = Actual mean to Actual Extreme

Dead

Meaning of Cpk < 0

$$Cpk = lesser of \frac{USL - \overline{X}}{3\sigma} \quad or \quad \frac{\overline{X} - LSL}{3\sigma}$$

Cpk < 0

Numerator < 0

e.g. USL < Mean

=>

Mean outside Dwg. spec

> 50%
Rejection on one side

Since practically, situation is rarely so bad, so to keep the discussion relevant, further it is assumed that Population Mean is within Dwg. Spec

i.e. Cpk > 0

Meaning of Cpk = 1

Cpk = 1

Population Extreme is SAME POSITION AS Dwg. Extreme

=>

Borderline OK

"Just In"

Meaning of Cpk < 1

Cpk < 1

Population Extreme is <u>AWAY & BEYOND</u> Dwg. Extreme

=>

Sure Rejection

Meaning of Cpk > 1

Cpk > 1

Population Extreme is WELL WITHIN INSIDE Dwg. Extreme

=>

Definite FOS

("Factor of Safety")

Meaning of Cpk = 0Survival Zone USL USL - LSL Dead Dead

Cpk = 0

Numerator = 0

Population Mean @ Dwg. Extreme

=>

50% Rejection on one side

On other side too, additional rejection is possible if Cp < 0.5

Cp Cpk seen Together

Meaning of Cp = Cpk

$$Cp = \frac{\text{USL} - \text{LSL}}{6\sigma}$$

$$Cpk = lesser of \frac{USL - \overline{X}}{3\sigma} \quad or \quad \frac{\overline{X} - LSL}{3\sigma}$$

$$USL - \overline{X}$$

$$\overline{X}$$
 – LSL

Meaning of Cp = Cpk

$$Cp = \frac{\text{USL} - \text{LSL}}{6\sigma}$$

Full / Full

Half 1 / Half

 $USL - \overline{\overline{X}}$ or Cpk = lesser of -

Half 2 / Half

 \overline{X} – LSL 3σ

Cp = Cpk **Possible** only if

Half 1 = Half 2

$$USL - \overline{X} = \overline{X} - LSL$$

$$\overline{X}$$
 – LSL

Cp = Cpk

=>

Population Mean is at Dwg. Mean

One view Summary

For: Cpk > (w.r.t. Pop ⁿ	Dwg	spread : g / Population	Cp < 1 Dwg spread < Population spread	Cp = 1 Dwg spread = Population spread	Cp > 1 Dwg spread > Population spread
Cpk = Extremes : Dwg / Population			"Sure Rejection"	"No FOS"	"FOS possible"
Cpk < 1	Dwg. Extreme < Population Extreme	"Sure Rejection"	More than or equal to Min. possible Rejection R1	Sure Rejection R2 Possibility of R2 < R1	Sure Rejection R3 Possibility of R3 < R2 < R1
Cpk = 1	Dwg. Extreme = Population Extreme	"Borderline OK"		Just OK each side	Just OK on one side. More than Best FOS on other.
Cpk > 1	Dwg. Extreme > Population Extreme	"Definite FOS"			FOS on one side < FOS on other side
If Cp = Cpk	Dwg. Mean = Population Mean	"Centering"	(Minimum Possible Rejection)	(Just OK each side)	(Equal & Best possible FOS each side)

Cp = spread : Dwg / Population For : Cpk > 0 (w.r.t. Pop ⁿ . Mean)			Cp < 1 Dwg spread < Population spread	Cp = 1 Dwg spread = Population spread	Cp > 1 Dwg spread > Population spread
Cpk = Extremes : Dwg / Population			"Sure Rejection"	"No FOS"	"FOS possible"
Cpk < 1	Dwg. Extreme < Population Extreme	"Sure Rejection"			Sure Rejecti R3 R3 < R2 < R
Cpk = 1	Dwg. Extreme = Population Extreme	"Borderline OK"			
Cpk > 1	Dwg. Extreme > Population Extreme	"Definite FOS"			
If Cp = Cpk	Dwg. Mean = Population Mean	"Centering"			

Rejections are shown at USL as example. It is possible at LSL too.

Graphing Quickly from Values

Before Graphing

See Cp Value

- Cp ≤ 1
- Cp > 1

See Cpk Value

- Cpk ≤ 1
- Cpk > 1

Just Recall

Cp: Relative Size Rule

DWG BAND Vs. Population Spread

Just Recall

Cpk: $(1) \rightarrow (2) \rightarrow (3)$ Rule

USL (or LSL) → Pop. Mean → Pop. Extreme

See if Cp≈Cpk Just Recall

If Cp = Cpk

Pop. Mean = Dwg. Mean

Before Graphing

See Cp Value

- Cp ≤ 1
- Cp > 1

See Cpk Value

- Cpk ≤ 1Cpk > 1

See if Cp≈Cpk

Dead

Start Graphing

Make a random N-dist curve

(2): Pop. Mean

(3): Pop. Extreme

Representing USL

Or representing LSL

Representing LSL

Or representing USL

Deciding Starting Line: USL or LSL?

Make a random N-dist curve

(2) : Pop. Mean

(3): Pop. Extreme

Representing USL

Or representing LSL

As per Cp Value: make 2nd vertical Line (4) wrt (1)

Representing LSL

Or representing USL

Decide by comparing Dwg. Mean vs. Actual Mean

Practice

Survival Zone

(we will assume we know that :
Actual Mean > Dwg Mean

=> Start Point = USL)

Dead

Practice: Cp = 1.7, Cpk = 0.9

Make a random N-dist curve

(2) : Pop. Mean

(3): Pop. Extreme

As per Cpk Value: Make a vertical Line = (1)

Representing USL Or representing LSL

As per Cp Value: make 2nd vertical Line (4) wrt (1)

Representing LSL

Practice: Cp = 1.7, Cpk = 0.9

Make a random N-dist curve

(2) : Pop. Mean

(3): Pop. Extreme

As per Cpk Value: Make a vertical Line = (1)

Representing USL

Or representing LSL

As per Cp Value: make 2nd vertical Line (4) wrt (1)

Representing LSL

Practice: Cp = 1.7, Cpk = 0.9

Make a random N-dist curve

(2) : Pop. Mean

(3): Pop. Extreme

Representing USL

Or representing LSL

Representing LSL

Practice: Cp = 1.2, Cpk = 0.9

Make a random N-dist curve

(2) : Pop. Mean

(3): Pop. Extreme

Representing USL

Or representing LSL

As per Cp Value: make 2nd vertical Line (4) wrt (1)

Representing LSL

Practice: Cp = 0.8, Cpk = 0.6

Make a random N-dist curve

(2) : Pop. Mean

(3): Pop. Extreme

As per Cpk Value: Make a vertical Line = (1)

Representing USL Or representing LSL

As per Cp Value: make 2nd vertical Line (4) wrt (1)

Representing LSL

Practice: Cp = 0.8, Cpk = 0.6

Make a random N-dist curve

(2) : Pop. Mean

(3): Pop. Extreme

As per Cpk Value: Make a vertical Line = (1)

Representing USL

Or representing LSL

As per Cp Value: make 2nd vertical Line (4) wrt (1)

Representing LSL

Practice: Cp = 0.8, Cpk = 0.6

Make a random N-dist curve

(2) : Pop. Mean

(3): Pop. Extreme

Representing USL

Or representing LSL

Representing LSL

Practice: Cp = 1.1, Cpk = 0.6

Make a random N-dist curve

(2) : Pop. Mean

(3): Pop. Extreme

Representing USL

Or representing LSL

Representing LSL

: Cp = 0.6 λ Cpk = 0.6 Practice Make a random N-dist curve (2) : Pop. Mean (3): Pop. Extreme As per Cpk Value: Make a vertical Line = (1) Or representing LSL Representing USL .6 Cp=Cpk, Centering As per Cp Value: make 2nd vertical Line (4) wrt (1) Cp < 1 Or representing USL Representing LSL Rejection 0.6 **Both sides**

Cp = spread : Dwg / Population For: Cpk > 0 (w.r.t. Pop ⁿ . Mean)		Cp < 1 Dwg spread < Population spread	Cp = 1 Dwg spread = Population spread	Cp > 1 Dwg spread > Population spread	
Cpk = Extremes : Dwg / Population			"Sure Rejection"	"No FOS"	"FOS possible"
Cpk < 1	Dwg. Extreme < Population Extreme	"Sure Rejection"			Sure Rejecti R3 R3 < R2 < R
Cpk = 1	Dwg. Extreme = Population Extreme	"Borderline OK"			
Cpk > 1	Dwg. Extreme > Population Extreme	"Definite FOS"			
If Cp = Cpk	Dwg. Mean = Population Mean	"Centering"			

Rejections are shown at USL as example. It is possible at LSL too.

With great powers come great responsibility

When mean shift happens to good Cp...

When a **good** Cp population shifts mean, it remains unrejected for a **longer** amount of shift.

But when it starts becoming NG, it becomes NG very **fast**

When mean shift happens to poor Cp...

FINISH