Recitation 7

John Chilton

July 26, 2007

Problem 7.12

$$a^b \equiv c(modp)$$
 $\Downarrow \Downarrow \Downarrow$

$$a^b \mod p == c \mod p$$

Problem 7.12: Using $s*t \mod q = (s \mod q)(t \mod q) \mod q$ $a^b \mod p = (a \mod p)*(a^{b-1} \mod p) \mod p$ Why isn't this polynomial time?

Problem 7.14

$$w_1 w_2 w_3 w_4 w_5 w_6 w_7 w_8 \dots w_{n-2} w_{n-1} w_n$$

$$(w_1w_2w_3)(w_4w_5w_6w_7w_8)...(w_{n-2}w_{n-1}w_n)$$

$$w_{1...3}, w_{4...8}, \ldots, w_{n-2...n} \in A$$

 2^n possible decompositions of w, exponential in the size of w. Use "dynamic programming" to store the answer to recurring subproblems.

Problem 7.14: A_i indicates whether $w_{1...i}$ be decomposed so that $w_{1...i} \in A^*$.

i	w ₁	W ₂	W3	W4	W ₅	W ₆	W ₇	<i>W</i> 8	 W_{n-1}	Wn
A_i	0	1	1	0	1	0	?			

- 1. Figure out how to determine A_i from $A_1, A_2, \dots A_{i-1}$ and w in polynomial time.
- 2. Loop from i = 1, 2, ..., n.
- 3. Use A_n to determine if $w \in A^*$

(Also take care of the special case)

Problem 7.16: You can use another somewhat similar DP algorithm to decide UNARYSSUM in polynomial time.

Problem 7.17: $A \neq \{\}$ and $A \neq \Sigma^*$. So for any such A there exists strings x, y such that $x \in A$ and $y \notin A$.

Problem 7.23

Show $CNF_2 \in P$. Don't need try possibilities, describe how to simplify such a formula.

Problem 7.24 ($\neq SAT$)

Part b gives you a polynomial time mapping, you MUST argue why it works. Should probably have two directions.

$$\label{eq:mostlysat} \begin{split} \textit{MOSTLYSAT} &= \{ <\phi> \mid \phi \text{ is a cnf-formula where at least all} \\ \text{but one of the clauses are simultaneously satisifable } \end{split}$$

Show MOSTLYSAT is NP-Complete.

- S = On input $< \phi >$
 - 1. Let y be a variable not already in ϕ
 - 2. Output $\phi \wedge y \wedge \overline{y}$

S is clearly runs in polynomial time, and ϕ is satisifable iff $\phi \wedge y \wedge \overline{y}$ is mostly satisifiable. Hence $3SAT \leq_P MOSTLYSAT$.

 $MOSTLYSAT \in NP$ (show) and $3SAT \leq_P MOSTLYSAT$, hence MOSTLYSAT is NP-Complete.

http://en.wikipedia.org/wiki/Graph_isomorphism

 $SUBGRAPHISO = \{ \langle G, H \rangle \mid G \text{ is isomorphoric to a subgraph of } H \}$ Show that SUBGRAPHISO is NP-Complete.

A complete graph is one where every node is connected by an edge to every other. A graph with a k-CLIQUE, has such a subgraph. So the following show $CLIQUE \leq_p SUBGRAPHISO$.

- S = On input < G, k >
 - 1. Create a complete graph with k nodes, H_k .
 - 2. Output $\langle H_k, G \rangle$

Problem 7.28.

$$SETSPLITTING = \{(S, C = \{C_i\}) \mid C_i \subseteq S \& (S, C) \text{ colorable}\}$$

S can be colored if each element can be chosen to be *red* or *blue* such that no C_i 's elements are all the same color.

Coloring Examples

$$S = \{1, 2, 3, 4, 5\}$$

- ▶ $C = \{\{1,2\}, \{3,5\}\} \in SETSPLITTING$
- ▶ $C = \{\{1,2,3\}, \{3,4,5\}\} \in SETSPLITTING$
- ▶ $C = \{\{1,2\}, \{1,3\}, \{1,4\}, \{2,4\}\} \notin SETSPLITTING$
- ▶ $C = \{\{1,2,3\}, \{2,3\}, \{1\}\} \notin SETSPLITTING$

Show *SET SPLITTING* is NP-complete, i.e. give a polynomial time reduction of some NP-complete problem to *SET SPLITTING*.

Some NP-complete problems *SAT*, *3SAT*, *HAMPATH*, *UHAMPATH*, *CLIQUE*, *VERTEX COVER*, *SUBSET SUM*.

Variables =
$$\{x_1, x_2, x_3\}$$

 $\phi = \{x_1 \lor x_2 \lor x_3\} \land \{\bar{x_2} \lor x_2 \lor x_3\} \land \{\bar{x_1} \lor x_3 \lor \bar{x_3}\}$

$$\downarrow\downarrow\downarrow\downarrow\downarrow$$

$$S = \{x_1, \bar{x_1}, x_2, \bar{x_2}, x_3, \bar{x_3}\}$$

$$C = \{\{x_1, x_2, x_3\}, \{\bar{x_2}, \bar{x_2}, \bar{x_3}\}, \{\bar{x_1}, x_3, \bar{x_3}\}\}$$

$$\downarrow\downarrow\downarrow\downarrow\downarrow$$

$$S = \{x_1, \bar{x}_1, x_2, \bar{x}_2, x_3, \bar{x}_3\}$$

$$C = \{\{x_1, x_2, x_3\}, \{\bar{x}_2, \bar{x}_2, \bar{x}_3\}, \{\bar{x}_1, x_3, \bar{x}_3\}\}$$

A subset of nodes of a graph is a *dominating set* if every other node is adjacent to some node in the subset.

 $DOMINATE = \{ \langle G, k \rangle \mid G \text{ has a dominating set with } k \text{ nodes } \}$

Show that *DOMINATE* is NP-complete by a giving a reduction from 3SET or VERTEXCOVER.