# COMP547A Homework set #4 <u>Due Thursday December 1st</u>, 2022, 23:59

#### **Exercises (from Katz and Lindell's book)**

| [5%] | 4.7 Let $F$ be a pseudorandom function. Show that the following MAC for messages of length $2n$ is insecure: Gen outputs a uniform $k \in \{0,1\}^n$ . To authenticate a message $m_1    m_2$ with $ m_1  =  m_2  = n$ , compute the tag $F_k(m_1)    F_k(F_k(m_2))$ . |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                                                                                                                                                        |
| [5%] |                                                                                                                                                                                                                                                                        |
|      | Assignment Project Exam Help                                                                                                                                                                                                                                           |
| [5%] | https://eduassistpro.github.io/                                                                                                                                                                                                                                        |
|      |                                                                                                                                                                                                                                                                        |
|      | Add WeChat edu assist pro                                                                                                                                                                                                                                              |
| [5%] |                                                                                                                                                                                                                                                                        |
|      |                                                                                                                                                                                                                                                                        |
| [5%] | 4.27 Define an appropriate notion of a $\varepsilon$ -secure $two$ -time MAC, and give a construction that meets your definition.                                                                                                                                      |

#### **HOMEMADE** Question: Achieving Rivest's private-key encryption from a Mac

Provide a security definition of a **Mac** that makes the (bit-by-bit) private-key encryption scheme that Rivest described secure in the sense of indistinguishability in the presence of an eavesdropper.



**Hint:** Prove that if "not CPA-secure" then "DDH problem is efficiently solved".

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu\_assist\_pro

[5%]

[5%]

[5%]

[5%]

13.1 Show that Construction 4.7 for constructing a variable-length MAC from any fixed-length MAC can also be used (with appropriate modifications) to construct a signature scheme for arbitrary-length messages from any signature scheme for messages of fixed length  $\ell(n) > n$ .

[5%<sup>°</sup>

[5%]

[5%]

[5%]

[5%]

## Assignment Project Exam Help

### **HOMEMADE** https://eduassistpro.github.io/

Alice and Bob are a bit confused. They are ignature scheme as a way Levil e Ghatge U\_assigning finish for ital signature scheme (such as hashed RSA f  $Gen(1^n)$  to obtain  $(p_k, s_k)$  but only share and use  $s_k$  as the private-key of a Mac.

- [5%]
- (A) Let  $\Pi' = (\operatorname{Gen}', \operatorname{Mac}', \operatorname{Vrfy}')$  be the **Mac** resulting from this idea. Used as a **Mac** they simply set  $t := \operatorname{Mac}'_{sk}(m) := \operatorname{Sign}_{sk}(m)$ . However, since they only use  $s_k$ , how will the receiver verify the message-tag pair (m,t)? In other words, what is  $\operatorname{Vrfy}'_{sk}(m,t)$ ? Why did I underlined the word "deterministic" above?
- (B) Show that if  $\Pi$  is a digital signature scheme existentially unforgeable under an adaptive chosen-message attack then  $\Pi'$  is a Mac existentially unforgeable under an adaptive chosen-message attack (whether  $p_k$  is made public or not).
- [5%] (C) Image that Alice and Bob use  $\Pi'$  as above, and that  $p_k$  is disclosed publicly. Explain how this defeats Rivest's argument seen in class that private-key authentication implies private-key encryption.