

Handout01:

JMP Software

SAS Software

Introduction to JMP

Introduction to JMP

- Open the existing data
- Change the data types
- Data organization (stack, split,....)
- Type the data
- Some of the basic procedures
 - Analyze-Distribution
 - Analyze-Fit Y by x
 - Analyze-Fit model
 - DOE-sample size and power
 - DOE-custom design
 - DOE-full factorial design

SAS

http://www.tutorialspoint.com/sas/

http://support.sas.com/documentation/cdl/en/basess/68381/PDF/default/basess.pdf

http://support.sas.com/kb/33/486.html

If there are other sites that you like, do not hesitate to post for your classmates.

Introduction to SAS

- Port-wine stains are congenital vascular malformations that occur in an estimated 3 children per 1,000 births. One hundred patients, 31 years of age or younger, with a previously untreated port-wine stain were selected for inclusion in the study.
- During the first consultation, the extent and location of the port-wine stain were recorded. Four age groups of 25 patients each were determined for evaluating whether the laser treatment was more effective for younger patients.

Variable	n	Mean	Standard deviation		
0-5 years	21	4.999	3.916		
6-11 years	24	7.224	3.564		
12-17 years	21	7.76	5.46		
18-31 years	23	5.682	4.147		

Introduction to SAS

The SAS System

Obs	mean	std	n	pop_id
1	4.999	3.916	21	1
2	7.224	3.564	24	2
3	7.760	5.460	21	3
4	5.682	4.147	23	4

The SAS System

O	bs	mean	std	n	pop_id	i	у
	1	4.999	3.916	21	1	1	-3.8569
	2	4.999	3.916	21	1	2	11.1073
	3	4.999	3.916	21	1	3	-1.1045
	4	4.999	3.916	21	1	4	-2.5783
	5	4.999	3.916	21	1	5	2.4840
	6	4.999	3.916	21	1	6	6.5042
	7	4.999	3.916	21	1	7	6.3635
	8	4.999	3.916	21	1	8	2.4604
	9	4.999	3.916	21	1	9	3.5472
	10	4.999	3.916	21	1	10	3.4006
	11	4.999	3.916	21	1	11	1.4007
	12	4.999	3.916	21	1	12	3.2970

data simulationpopn; input mean std n; pop id= n; datalines; 4.999 3.916 21 7.224 3.564 24 7.760 5.460 21 5.682 4.147 23 run; proc print; run; data simulationpopn; set simulationpopn; do i=1 to n; y=mean+rannor(0)*std; output; end; run; proc print; run;

***This will create 89

observations for y

Introduction to SAS

```
data twowayfactorial;
input drug disease$ mean std n;
datalines;
1 A 120 0.84 10
1 B 160 1.47 8
1 C 125 1.12 11
2 A 135 0.84 11
2 B 150 0.85 10
2 C 125 1.02 9
3 A 140 0.63 10
3 B 140 0.54 10
3 C 125 0.77 10
4 A 150 1.07 8
4 B 130 0.77 10
4 C 125 0.88 10
run;
data simulatetwoway;
set twowayfactorial;
do k=1 to n;
y=mean+std*rannor(0);
output;
end;
run;
```

***This will create 117
observations for y

The SAS System

Obs	drug	disease	mean	std	n	k	у
1	1	Α	120	0.84	10	1	120.519
2	1	Α	120	0.84	10	2	118.854
3	1	Α	120	0.84	10	3	119.923
4	1	Α	120	0.84	10	4	120.227
5	1	Α	120	0.84	10	5	119.843
6	1	Α	120	0.84	10	6	119.171
7	1	Α	120	0.84	10	7	120.471
8	1	Α	120	0.84	10	8	119.820
9	1	Α	120	0.84	10	9	118.110
10	1	Α	120	0.84	10	10	120.713
11	1	В	160	1.47	8	1	161.909
12	1	В	160	1.47	8	2	163.492
13	1	В	160	1.47	8	3	159.717
14	1	В	160	1.47	8	4	160.050
15	1	В	160	1.47	8	5	159.767
16	1	В	160	1.47	8	6	158.932
17	1	В	160	1.47	8	7	157.671
18	1	В	160	1.47	8	8	163.089
19	1	С	125	1.12	11	1	123.475
20	- 1	C	125	1 12	11	າ	10/ /35