

COURS #9 - VIRTUEL

Protocoles L7, deuxième partie

Introduction aux réseaux 2023 (Bloc 2) Corentin Badot-Bertrand

Cours virtuel & Wireshark

Pour ce cours virtuel, Wireshark sera présenté en introduction

- Téléchargez Wireshark dès à présent
 - Site web pour Windows & MacOS
 - apt install wireshark ou équivalent pour Linux
- Pas besoin de redémarrer
- Analyse de paquets « pcap » durant ce cours
- ... une capture réseau enregistrée dans un fichier

PARTIE #1

Un rappel des concepts L7

Pour faire suite au dernier cours, un rappel de quelques concepts essentiels

	7. Application	Couche d'interaction machine-humain
Application	6. Presentation	Vérifie le format et le chiffrement
	5. Session	Garde une connexion avec la machine
Transport	4. Transport	Segmente les données et gère les flux
Internet	3. Network	Définition du parcours à travers le réseau
Network Access Layer	2. Data Link	Gestion d'erreurs, de vitesse,
	1. Physical	Encodage physique des données

•••••

Comment peut-on passer d'un réseau privé vers un réseau public ?

NAT overlay (Port Address Translation)

Utilise les ports (TCP/UDP) pour partager une même adresse IPv4

Du port forwarding sur votre réseau domestique. Y a-t-il des risques ?

Parental Control Firewall Remote Access **Portmapping** Port Map Rules External External Remote Internal host Description Enable Service Protocol Lan port start host end On Off **UPNP** UDP 192.168.1.3 0.0.0.0 57669 57669 57669 Teredo External External Internal Remote Enable Service Protocol Lan port Description start end host host • Create new portmap

Quelles sont les 4 phases du protocole DHCP?

DHCP, le déroulement

L'obtention d'une adresse IP se déroule en 4 phases

A quoi servent les ports 80 et 443?

Liste de ports TCP & UDP (bases)

Port	Protocole	ТСР	UDP	Description
21	FTP			Transfert de fichiers (non-sécurisé)
22	SSH			Secure Shell & transfert de fichiers (sécurisé)
23	Telnet			Communications textuelles (non-sécurisé)
25	SMTP			Protocole d'envoi email (non-sécurisé)
53	DNS			Domain Name System
67/68	DHCP			Configuration de réseau dynamique
80	HTTP			Hypertext Transfer Protocol (non-sécurisé)
110	POP3			Protocole de réception email (non-sécurisé)

Liste de ports TCP & UDP (bases)

Port	Protocole	ТСР	UDP	Description
123	NTP			Network Time Protocol, synchronisation du temps
143	IMAP			Protocole de réception email (non-sécurisé)
443	HTTPS			Hypertext Transfer Protocol (sécurisé, TLS/SSL)
465	SMTP (s)			Protocole d'envoi email (sécurisé, TLS/SSL)
993	IMAP (s)			Protocole de réception email (sécurisé, TLS/SSL)
995	POP3 (s)			Protocole de réception email (sécurisé, TLS/SSL)
3306	MySQL			Base de données MySQL
5432	PostgreSQL			Base de données PostgreSQL

Exercice Wireshark #1 (les bases)

- 1. Décrivez l'opération qui se déroule dans cette capture
- 2. Qui est l'émetteur des communications ?
- 3. Qui est le receveur des communications?
- 4. A quoi sert le flag PSH?
- 5. Trouvez le contenu de l'échange

PARTIE #2

HTTP, le protocole web

Hypertext Transfer Protocol, Indispensable pour Internet

Le protocole HTTP

Hypertext Transfert Protocol

- Développé par Tim Berners-Lee
- A servi aux fondations du World Wide Web avec HTML & URL
- Protocole de communication pour pages web
- Utilise le port 80 en TCP
- Protocole non-sécurisé
- Un client HTTP peut demander une page web (document)
- ... et recevoir une réponse d'un serveur HTTP

Le protocole HTTP : requête

Permet au client HTTP de demander une ressource (ou une action)

Le protocole HTTP : réponse

Fait suite à une requête et est envoyée par le serveur HTTP en réponse au client

Les URL, une structure pour les requêtes

Uniform Resource Locator – permet de demander une ressource (document) de façon structurée

Les composants d'une URL

http://john:secret123@www.google.be:80/index.html?lang=fr

- Utilise le protocole HTTP
- Utilisateur « john » & mot de passe pour s'authentifier sur le serveur
- Se connecter sur le serveur google.be avec résolution DNS
- Utiliser le port TCP 80
- Demander le document « index.html » à la racine du site web
- Utiliser le paramètre « lang » avec la valeur « fr »

Les composants d'une URL

http://john:secret123@www.google.be:80/index.html?lang=fr

- Protocole HTTP complété par la navigateur
- Utilisateur rarement utilisé sur les sites publics
- Serveur google.be le seul paramètre indispensable
- Port TCP 80- complété par la navigateur
- Document par défaut, « index.html » est demandé
- Query optionnel, souvent défini par les applications web

Les actions (méthodes) HTTP

Méthode	Signification
GET (<mark>défaut</mark>)	Récupérer une ressource (download)
POST	Envoyer une ressource (<mark>upload</mark>)
PUT	Remplacer intégralement une ressource
PATCH	Modifier partiellement une ressource
DELETE	Supprimer une ressource

Referer: https://www.vinci.be/fr

User-Agent: Mozilla/5.0

GET /fr/formations HTTP/1.1 Accept: text/html,application/xhtml+xml,application/xml Accept-Encoding: gzip, deflate, br Accept-Language: en-US, en; q=0.9, fr; q=0.8 Connection: keep-alive Cookie: ga=GA1.1. Host: www.vinci.be

Une requête HTTP est composé de texte – dont le premier composant est la méthode

(quelle actions voulons-nous effectuer?)

Referer: https://www.vinci.be/fr

Host: www.vinci.be

User-Agent: Mozilla/5.0

GET /fr/formations HTTP/1.1 Accept: text/html,application/xhtml+xml,application/xml Accept-Encoding: gzip, deflate, br Accept-Language: en-US,en;q=0.9,fr;q=0.8 Connection: keep-alive Cookie: ga=GA1.1. Nous demandons ensuite language

Nous demandons ensuite la ressource HTTP (URL, à partir du chemin) avec laquelle nous souhaitons interagir

Je veux voir la ressource /fr/formations

GET /fr/formations HTTP/1.1 Accept: text/html,application/xhtml+xml,application/xml Accept-Encoding: gzip, deflate, br Accept-Language: en-US,en;q=0.9,fr;q=0.8 Connection: keep-alive Cookie: ga=GA1.1.

Host: www.vinci.be
Referer: https://www.vinci.be/fr

Nous spécifions la version du protocole
HTTP(1.1)

User-Agent: Mozilla/5.0

```
GET /fr/formations HTTP/1.1
Accept: text/html,application/xhtml+xml,application/xml
Accept-Encoding: gzip, deflate, br
Accept-Language: en-US, en; q=0.9, fr; q=0.8
Connection: keep-alive
Cookie: ga=GA1.1.
Host: www.vinci.be
                                         Nous passons des headers (options
Referer: https://www.vinci.be/fr
User-Agent: Mozilla/5.0
```

supplémentaires) dans la requête HTTP

Contenu d'une réponse HTTP

```
HTTP/1.1 200 OK
                                               Le serveur renvoie la ressource précédée
                                              d'un code de réponse HTTP et de headers
   Server: nginx/1.14.2
   Date: Tue, 02 May 2023 15:52:01 GMT
   Content-Type: text/html; charset=UTF-8
   Transfer-Encoding: chunked
   Connection: keep-alive
   Vary: Accept-Encoding
   Expires: Thu, 19 Nov 1981 08:52:00 GMT
   Cache-Control: no-store, no-cache, must-revalidate
::. Pragma: no-cache
   Content-Encoding: gzip
```

Les codes de réponse HTTP (status codes)

Code	Signification
200	OK, tout s'est bien déroulé
201	La ressource a été créé
301	URL changée de façon permanente
400	Bad request, requête malformée par le client
401	Unauthorized, vous n'êtes pas authentifié
403	Forbidden, vous n'avez pas les droits nécessaires
404	Not found, ressource introuvable
500	Erreur côté serveur (crash système,)

La console navigateur (DevTools - demo)

L'outil curl (terminal - demo)

Le protocole HTTP - clôture

Quelques spécificités techniques

- Le protocole utilise TCP
- La requête HTTP est envoyée après l'établissement d'une connexion
- Les navigateurs modernes réutilisent des connexions TCP
- HTTP est stateless : il ne garde aucun état ni historique

Exercice Wireshark #2 (analyse HTTP)

- 1. Combien de requêtes HTTP sont émises?
- 2. Qui est la source, qui est la destination ? (IPv4)
- 3. Quel est le port et nom de domaine du serveur?
- 4. Quels sont les autres protocoles connus?
- 5. Quelle est l'URL demandée ?
- 6. Quelle est la <mark>réponse</mark> du serveur ?
- 7. Trouvez les identifiants. Que se passe t-il selon vous?

Un protocole spécialisé dans le transfert des fichiers

Le protocole FTP

File Transfer Protocol

- Permet le partage de fichiers
- Utilise une connexion de « contrôle » (TCP, port 21)
- Utilise une connexion de « données » (TCP, port 20)
- Protocole non-sécurisé préférez le FTPS
- Fonctionne avec un système de
 - Commandes (HELP, STATUS, ...)
 - Réponses numériques

FTP, connexion en mode « active »

Le client détermine un port de son côté pour échanger les données, le serveur FTP s'y connecte pour le transfert

FTP, connexion en mode « passive »

Le serveur FTP détermine un port de son côté pour échanger les données, le client s'y connecte pour le transfert

Commandes FTP

Commande	Signification
HELP	Affiche les commandes disponibles
STATUS	Donne l'état de la connexion
USER	Spécifie l'utilisateur pour une connexion
PASS	Spécifie le mot de passe
STOR	Envoyer des données vers le serveur
PORT	Spécifie une adresse & port de connexion
QUIT	Fermeture de connexion

Exercice Wireshark #3 (analyse FTP)

- 1. Qui est la source, qui est la destination? (IPv4)
- 2. Trouvez le nom d'utilisateur
- 3. Trouvez le mot de passe
- 4. Combien de fichiers ont été envoyés?
- 5. Récupérez une des images envoyées

