	Cat	Dog
Men	207	282
Women	231	242

	Cat	Dog
Men	207	282
Women	231	242

With totals

	Cats	Dogs	Total
Men	207	282	489
Women	231	242	473
Total	438	524	962

	Cat	Dog
Men	207	282
Women	231	242

With totals

	Cats	Dogs	Total
Men	207	282	489
Women	231	242	473
Total	438	524	962

Expected values

	Cats	Dogs	
Men	489 <i>x</i> 438 962 473 <i>x</i> 438	489 <i>x</i> 524 962 437 <i>x</i> 524	489
Women	473x438 962	$\frac{437\bar{x}524}{962}$	473
	438	524	962

	Cat	Dog
Men	207	282
Women	231	242

With totals

	Cats	Dogs	Total
Men	207	282	489
Women	231	242	473
Total	438	524	962

Expected values

	Cats	Dogs	
Men	489 <i>x</i> 438 962 473 <i>x</i> 438	489 <i>x</i> 524 962 437 <i>x</i> 524	489
Women	473x438 962	$\frac{437\bar{x}524}{962}$	473
	438	524	962

Expected values - computed

	Cats	Dogs	
Men	222.64	266.36	489
Women	215.36	257.64	473
	438	524	962

	Cat	Dog
Men	207	282
Women	231	242

With totals

	Cats	Dogs	Total
Men	207	282	489
Women	231	242	473
Total	438	524	962

Expected values

	Cats	Dogs	
Men	489 <i>x</i> 438 962 473 <i>x</i> 438	489 <i>x</i> 524 962	489
Women	473 <i>x</i> 438 962	$\frac{437 \times 524}{962}$	473
	438	524	962

Expected values - computed

	Cats	Dogs	
Men	222.64	266.36	489
Women	215.36	257.64	473
	438	524	962

	Cats	Dogs	
Men	$\frac{(207-226.4)^2}{226.4}$	$\frac{(282-266.36)^2}{266.36}$	489
Women	$\frac{(231-215.36)^2}{215.36}$	$\frac{(242-257.64)^2}{257.64}$	473
	438	524	962

	Cats	Dogs	
Men	$\frac{(207-226.4)^2}{226.4}$	$\frac{(282-266.36)^2}{266.36}$	489
Women	$\frac{(231-215.36)^2}{215.36}$	$\frac{(242-257.64)^2}{257.64}$	473
	438	524	962

	Cat	Dog
Men	1.099	0.918
Women	1.136	0.949

Add them up and that is the X^2 (Chi-squared or Chi-square) score:

$$X^2 = 1.099 + 0.918 + 1.136 + 0.949$$

$$X^2 = 4.102$$

Now we take it to the table or to the chi-square distribution function in R, but first we have to know a new number:

Degrees of Freedom

Degrees of freedom is a lot like what it sounds like. It's that maximum number of logically independent variables. It's essentially the "wiggle room" - how much do the variables allow for a good measurement?

In Chi Square, the degrees of freedom is:

$$df = (rows - 1)x(columns - 1)$$

In this case, $(2-1) \times (2-1) = 1$

Second Example

UC Berkley Graduate Admissions, 1973, 6 largest programs

H0: Admissions are independent of gender. H1: Admissions are dependent on gender.

(The "totals" are also referred to as Marginal Frequency.)

Table 1: Values

	Male	Female	Marginal Freq.
Admit	1198	597	1755
Reject	1493	1278	2771
Marginal Freq.	2691	1835	4526

Table 2: Expected values

	Male	Female	Marginal Freq.
Admit			1755
Reject			2771
Marginal Freq.	2691	1835	4526

Table 3: Observed – Expected

	Male	Female	Marginal Freq.
Admit			1755
Reject			2771
Marginal Freq.	2691	1835	4526

Table 4: $\frac{(Observed-Expected)^2}{Expected}$

	Male	Female	Marginal Freq.
Admit			1755
Reject			2771
Marginal Freq.	2691	1835	4526

Add it up:

Degrees of freedom: (2x1)-(2x1) = 1

p-value: