Prof. Giulio GIUNTA Prof. Mariarosaria RIZZARDI (12 CFU)

annual Course

Part I: Data Science and Simulation first semester

 Part II: Geometrical Mappings and Transforms

second semester

• Single final Exam. Upon request, students can take a test on Part 1, at the end of the first semester, and then a test on Part 2, at the end of the second semester

Prof. Giulio GIUNTA giulio.giunta@uniparthenope.it Prof. Mariarosaria RIZZARDI rizzardi@uniparthenope.it

e-learning platform:

http://elearning.uniparthenope.it

Elearning UniParthenope

Categorie di corso

- ▶ Recupero Password per i servizi Microsoft e Verifica Contatti Alternativi (1)
- ▼Scuola Interdipartimentale delle Scienze dell'Ingegneria e della Salute
 - Dipartimento di Ingegneria
 - ▶ Dipartimento di Scienze e Tecnologie
 - Dipartimento di Scienze Motorie e del Benessere
 - Master | Livello
 - ▶ Dottorati

Prof. Giulio GIUNTA giulio.giunta@uniparthenope.it Prof. Mariarosaria RIZZARDI rizzardi@uniparthenope.it

e-learning platform:

http://elearning.uniparthenope.it

Prof. Giulio GIUNTA giulio.giunta@uniparthenope.it Prof. Mariarosaria RIZZARDI rizzardi@uniparthenope.it

e-learning platform:

http://elearning.uniparthenope.it

Prof. Giulio GIUNTA giulio.giunta@uniparthenope.it Prof. Mariarosaria RIZZARDI rizzardi@uniparthenope.it

e-learning platform:

http://elearning.uniparthenope.it

Prof. Giulio GIUNTA giulio.giunta@uniparthenope.it Prof. Mariarosaria RIZZARDI rizzardi@uniparthenope.it

Let's give a look to the teaching material on the Course page of the <u>e-learning platform</u>

Scientific Computing - Part 1

Teaching material on Microsoft Teams

All the lessons of the past academic year 2021/22 have been recorded (in English) and can be seen via Microsoft TEAMS - Team code of the lessons of prof. Giunta: **5612r12** (folder: File, Recordings)

On that Team you will also find the slides of the lessons and the Online tutorial as Matlab live scripts (folder: File, Course Material)

Finally, on that Team you will find all the Matlab function developed in the Course (folder: File, Course Material, Matlab files) and even information on how to install Matlab on your laptop (enrolled students can download Matlab for free)

Scientific Computing - Part 1

reference Books

Gilbert STRANG

Linear Algebra and Learning from Data

Wellesley-Cambridge Press 2019

Cleve MOLER

Numerical Computing with MATLAB

SIAM, 2004

http://www.mathworks.com/moler/

You can even download NCM book and software from the e-learning platform

Scientific Computing - Part 2

reference Book

Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong

Mathematics for Machine Learning

Wellesley-Cambridge Press 2019

Download from github

Mariarosaria RIZZARDI

Sperimentare la Matematica con MATLAB

Liguori Editore, 2007

Introduction to Matlab (in Italian)
Download from the e-learning platform

Topics - Part I

- Numerical linear algebra: norms, subspaces, projections, eigenvalues / eigenvectors
- QR, SVD factorizations
- Applications in Data Science: dimensionality reduction, data analysis and PCA, bioinformatics, semantic indexing of texts, image analysis

- Linear Algebra and Search Engines: Google's Page Rank Algorithm
- Markov Chains (CM) and random processes
- Probabilistic interpretation of the Page Rank algorithm with CM
- CM in Data Science

Topics - Part I

- Solving non-linear systems
- Newton and fixed point methods
- Calculation of maxima and minima of functions of several variables, with hints to problems with constraints
- Gradient descent methods, Newton like methods, and Simulated annealing
- Applications to data analysis and modeling

3D graphics in Matlab

Topics - Part I

- Finite differences
- Numerical resolution of ODE
- Initial value problems, explicit and implicit methods
- Boundary value problems
- Applications: COVID-19 epidemic model
- Numerical resolution of PDEs with finite difference methods
- Stationary equations (Laplace, Poisson)

Topics - Part II

- Spaces and Transformations
- In-depth study on eigenvalues and autobvectors
- Conformal transformations
- Applications to computational graphics
- Least squares approximation in the continuous case
- Non-linear least squares
- Applications to modeling
- Insights on the Fourier Transform
- Transform 1D and 2D
- FFT algorithms
- Application to the processing of sounds and images

Lab in Matlab

Teaching material downloadable from the e-learning platform (and also from Teams)

ONLINE Tutorial 0.0 Matlab Basic and LA Basic

Matlab programs from NCM book

Matlab programs developed during the course

ONLINE Tutorials (Matlab Live Scripts)

Recap of Linear Algebra

.... with review of basic Matlab

non è ammissibile non conoscere alla perfezione questi concetti di base.

scalar (or inner) product

Questo è una delle operazioni più importanti, due vettori, di base i vettori sono vettori colonna, i trasposti sono riga.

E' definito nell'espressione rosa, cioè la sommatoria dei corrispondenti elementi

$$x^T y (\equiv y^T x)$$

Questa immagine mostra appunto le dimensioni dei vettori in questione

il risultato è uno scalare, per questo si cgiamare prodotto scalare.

$$x^T y = \sum_{i=1}^n x_i y_i$$

Questa operazione presenta una proprietà molto importante:

La bilinearità, cioè la somma trasposta moltiplicato per Z (vettore colonna) è uguale alle somme dei singoli prodotti dei trasposti per Z

bilinearity

Questo è un modo alternativo, sempre bilinearità

$$(x+y)^T z = x^T z + y^T z$$

L'altra caratteristica è che se vogliamo fare l'inner / scalar product
$$(y+z)=x^Ty+x^Tz$$

tra due vettore x e y moltiplicati per due scalari alpha e beta possiamo fare prima l'inner product dei due vettori e poi moltipkicare il risultato

per i due scalari alpha e beta. Questa è la LINEARITA'

 $\alpha x^T \beta y = \alpha \beta x^T y$

outer (or external) product

Questo è diverso perché è l'inverso, cioè il primo elemento è un vettore colonna, mentre il secondo è un vettore riga.

Il risultato è una matrice.

La proprietà che ha questa operazione è detta RANK 1, è una matrice di rango 1.

E' ottenuto nel seguente modo:

ogni colonna è un multiplo di X cioè X rimane fissa e si moltiplica per tutti gli y, x1y1 x1y2 x1y3

mentre ogni riga è un multiplo di Y trasposto cioè y rimane fissa e x cambia

x1y1 x2y1 rank 1

- \diamond each column is a multiple of x
- \diamond each row is a multiple of y^T

Questo è il comando in MATLAB.

Queste sono operazioni che irguardano i vettori.

Comando in matlab

various interpretations (2)

A è MxN V è N dimensionale, quindi il risultatò sarà un vettore z di dimensione M

Esistono due interpretazioni: la prima è che la i-esima componente di Z.è ottenuta con il prodtto scalare tra l'ie-sima riga di A e V

1 – the i-th component of z is the **scalar product** of the i-th row of A and the column vector v

La seconda interpretazione è che il vettore Z è la combinazione lineare delle colonne di A (cioè la somma della prima colonna di A con la prima componente di V, La seonda colonna di A con la seconda componente di V etc.)

2 – the column vector z is the **linear combination** of the columns of the matrix A, i.e. the sum of the first column of A times the first component of v, and the second column of A times the second component of v,.....

matrix – matrix product

Prodotto matrice matrice. A è MxN, B deve essere per forza N x P Otteniamo C che è una matrice MxP

various interpretations (3)

Ci sono tre modi di interpretare, basta leggerli.

- 1 the i,j-th entry of C is the **scalar product** of the i-th row of A and the j-th column of B
- 2 the j-th column of ${\cal C}$ is the **matrix-vector product** of the matrix ${\cal A}$ and the j-th column of ${\cal B}$
- 3 the matrix C is the sum (over i) of the **outer products** of the i-th column of A and the i-th row of B

properties

Queste sono alcune proprietà delle matrici.

Oroperties
$$(AB)^{T} = B^{T}A^{T}$$
Questa è chiara, il trasposto del prodotto è = a faje il prodotto tra i trasposti.

exercise: verify with Matlab

Questa è un altra proprietà è la stessa cosa di scrivere...

$$Av = z$$

$$\Leftrightarrow$$

$$\Leftrightarrow v^T A^T = z^T$$

L'inverso del prodotto è uguale ap prodotto tra le inverse

$$\left(AB\right)^{-1}=B^{-1}A^{-1}$$

inverso di 3 è 1/3 etc. L'inverso della matrice A è la matrice che moltiplicata per A da la matrice di identità.

inv(A)

Comando di inversione

Anche questa è facile, l'inversa della trasposta
$$T$$
 $=$ A^{-1} T

Il calcolo dell'inversa è comp<mark>lessa, costa molto se A è grande</mark>

Non etra nel dettaglio di questa formula.

$$\left(A + xy^{T}\right)^{-1} = A^{-1} - \frac{A^{-1}xy^{T}A^{-1}}{1 + y^{T}A^{-1}x}$$

Sherman – Morrison Formula

properties

Data una matrice A mxn il RANGE di A R(A), è l'insieme dei vettori de lonne di A con una combinazione lienare delle colonne di A con un qualsiasi vettore X di n componenti.

$$R(A) = \left\{ y \in \mathfrak{R}^m : y = Ax \ x \in \mathfrak{R}^n \right\}$$

Range, column space

null space di A è l'insieme dei vettori x di n dimensioni per cui la combinazione lienare tra A e x da un vettore zero.

$$N(A) = \left\{ x \in \Re^n : Ax = 0 \right\}$$

Null Space

$$rank(A) = dim[R(A)]$$

il rank di A è = alla diesnione del Range di A

Rank of a matrix

$$rank(A) + dim[N(A)] = n$$
 $m \ge n$

$$m \ge n$$

$$A \in \mathfrak{R}^{m \times n}, B \in \mathfrak{R}^{m_B \times n_B}$$

Il prodotto di kronecker server per costruire par<mark>ticolari</mark>

matrici ed è definito in questo modo:

$$A \otimes B = S$$

$$S = \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{pmatrix}$$

il prodotto di Kronecker definisce una matrice a blocchi di dimensione

the Kronecker product defines a block matrix of size

$$(m \times m_B) \times (n \times n_B)$$

where A determines the structure of the block matrix and B is the repeated basic block

dove A determina la struttura della matrice a blocchi e B è il blocco di base ripetuto

$$A \in \mathfrak{R}^{m \times n}, B \in \mathfrak{R}^{m_B \times n_B}$$

$$A \otimes B = S \mid_{S = S}$$

Questo è un esempio in matlab.

$$S = \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{pmatrix}$$

kron(eye(3,3),2*ones(2,2))ans

Si applica anche ai vettori questa operazione.

```
kron([1 0 1],[10 20 30 40 50])
ans =
10 20 30 40 50 0 0 0 0 10 20 30 40 50

kron([1 0 1; 0 1 0],[10 20 30 40 50])
ans =
10 20 30 40 50 0 0 0 0 10 20 30 40 50
0 0 0 0 10 20 30 40 50 0 0
```

exercise: verify with Matlab that:

$$u^T A v = (v \otimes u)^T A^{(S)}$$

$A^{(s)}$ (A stacked) is the vector formed by collecting the columns of A

Prendi la matrice e da questa generi un vettore colonna composto da tutte le colonne messe insieme

```
tipo 1 2 3
4 5 6
Diventa:
1
4
2
5
```

```
A_stacked = A(:)
```

Concetto di norma cioè di grandezza di un vettore, che poi estendiamo anche alle matrici. Quindi una norma è il modo di associare al vettore un numero che ne indica la grandezza. Esistono infinite norme ma tutte devono soddisfare le tre condizioni prensenti nella slide.

La norma è sempre maggiore di 0, è 0 solo quando il vettore è nullo

$$x \neq 0 \Leftrightarrow ||x|| > 0 \quad ; \quad ||0|| = 0$$

la norma di un multiplo di un vettore è = al multiplo per la norma del vettore
$$|CX| = |C| \cdot |X|$$

vale la proprietà triangolare, la norma della somma è minore = delle singole norme sommate.

$$||x + y|| \le ||x|| + ||y||$$

$$\|x\|_{0.5}, \|x\|_{1}, \|x\|_{2}, \|x\|_{p}, \dots, \|x\|_{\infty}$$

norm(x,1)

norm(x)

$$\|x\|_p = \left(\sum_{i=1}^n x_i^p\right)^{1/p}$$

$$\left\|x\right\|_p = \left(\sum_{i=1}^n x_i^p\right)^{1/p}$$

norm(x,p)

$$\|x\|_{\infty} = \max_{i} (|x_{i}|)$$

norm(x,inf)

il quadrato è il luogo dei vettori i quali hanno nomrla inifinito = 1

unit spheres

the set of vectors whose norm is less or equal to 1

exercise: visualize in Matlab the unit spheres for these 4 norms (use the file Draw unit circles for norms)

$$||x||_1 = \sum_{i=1}^n |x_i|$$

$$\|x\|_2 = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$$

$$\|x\|_p = \left(\sum_{i=1}^n x_i^p\right)^{1/p}$$

$$\|x\|_{\infty} = \max_{i} (|x_{i}|)$$

Questa è un altra proprietà che vale solo quando per qualunque coppia conoiugata p e q vale questa condizione

$$\left| x^T y \right| \le \left\| x \right\|_p \left\| y \right\|_q$$

$$\frac{1}{p} + \frac{1}{q} = 1$$

Holder inequality

Questa diseguaglianza viene chiamata cauchy schawrtz e dice quindi : il prodotto scalare di due vettore il primo trasposto, è <= del prod scalare delle norme.

$$\left|x^{T} y\right| \leq \left\|x\right\|_{2} \left\|y\right\|_{2}$$

Cauchy – Schwartz inequality

exercise: verify with Matlab that

$$\left\| x \right\|_{\infty} \le \left\| x \right\|_{2} \le \sqrt{n} \left\| x \right\|_{\infty}$$

$$\left\| x \right\|_{\infty} \le \left\| x \right\|_{1} \le n \left\| x \right\|_{\infty}$$

$$||x||_2 \le ||x||_1 \le \sqrt{n} ||x||_2$$

$$c_1 \|x\|_{\alpha} \le \|x\|_{\beta} \le c_2 \|x\|_{\alpha}$$

equivalence of vector norms

esercizio in matlab.

exercise: in Matlab plot the value of a norm of a vector as a function of the order of the norm

$$(p, ||x||_p)$$

x fixed vector, p in [0.5,10]


```
% script DrawNorms. Graph of the p-norm of the
% vector x = [1..10] vs p (pvals)
n = 10; m = 100;
x = 1:n:
y = zeros(m,1);
pvals = linspace(0.5,10,m);
for i = 1:m
    y(i) = norm(x, pvals(i));
end
plot(pvals, y, 'LineWidth', 2)
ylim([0 100])
hold on
plot([1 2 3], [norm(x,1) norm(x,2) norm(x,3)], '.r', 'MarkerSize',
16)
hold off
options={'Interpreter','latex','FontSize',14};
ylabel('$\|x\| p$',options{:},'Rotation',0)
s = |\$||x||_p = \frac{(\sum_{i=1}^n|x_i|^p \frac{1}p}$;
text(options{:},'String',s,'Position',[3 40])
```

matrix norms

Le norme matriciali sono un po complicate da calcolare ma l'idea è definirle in termini di norma di vettori, si parla di norme indotte. La norma più famosa è la Frobenius norm

Questa è la definizione di norma indotta.

induced norms, i.e. defined in terms of a vector norm

$$||A|| = \max_{\|x\|=1} ||Ax||$$

Frobenius norm

$$\|A\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n \left|a_{ij}\right|^2}$$

norm(A,1)

norm(A,2)

norm (A)

norm(A,inf)

norm(A,'fro')

Questo è il modo in cui si calcolano le varie norme delle matrici.

exercise: verify with Matlab that

norma 1, masismo tra le somme degli elementi su ogni colonna

$$||A||_1 = \max_j \sum_{i=1}^m |a_{ij}|$$

stessa cosa di 1 ma sulle righe
$$\|A\|_{\infty} = \max_i \sum_{j=1}^n \left|a_{ij}\right|$$

$$||A||_2 = \max_{\|x\|_2=1} ||Ax||_2$$

$$\|A\|_F = \|A^{(s)}\|_{\text{la roma 2}}$$
 di frobenius è la norma 2 della slakced indotta.

La norma 2 al momento la lascia sotto forma di norma indotta.

exercise: verify with Matlab that

$$\left\| AB \right\|_p \le \left\| A \right\|_p \cdot \left\| B \right\|_p$$

$$\left\| Ax \right\|_p \le \left\| A \right\|_p \cdot \left\| x \right\|_p$$

$$p = 1, 2, \inf$$

$$||A||_2 \le ||A||_F \le \sqrt{n} ||A||_2$$

un altra definizione di prodotto scalare è questa qui: cioè prod delle norme * cos dell'angolo compreso tra l'angolo di due vettori. E da qui deriva la desguaglianza di swartz. Cos alpha è un numero in val ass minore di 1 quindi la sequence del prod scalare.

and angles

$$x^T y = ||x||_2 \cdot ||y||_2 \cdot \cos(\alpha)$$

α is the angle between the two vectors x and y

più che altro questa equazione ci serve per calcolare il coseno dell'angolo tra i due vettori perché dividiamo il prod

scalare per il prod delle norme.

$$\cos(\alpha) = \frac{x^T y}{\|x\|_2 \cdot \|y\|_2}$$

$$x^{T} y \leq ||x||_{2} \cdot ||y||_{2}$$

il prod scalare = a 0 quando l'angolo è 0 (cioè pi_greco/2, 90°) cioè quando sono

$$x^{\prime}y=0\Longleftrightarrow x\perp y$$

inner product and projections

$$x^T y = ||x||_2 \cdot ||y||_2 \cdot \cos(\alpha)$$

il prodotto scalare ha anche a che fare con le proiezioni ortogonali di un vettore su un altro. Per fare la proiezione calcolo la lunghezza del segmento oa in quel modo. Il vettore A è = alla lungjezza di oa * il versore y (il versore di y è y/ norma 2 di y)

orthogonal projection of the vector x onto y

$$\overline{oa} = \|x\|_2 \cdot \cos(\alpha) = \frac{x^T y}{\|y\|_2}$$

vector a = length oa times the versor of <math>y

$$a = \overline{oa} \frac{y}{\|y\|_2} = \frac{x^T y}{\|y\|_2^2} y$$

alla fine a è la proiezione di x su y.

la stessa cosa di prima vale se vogliamo proiettare y su x

inner product and projections

$$x^T y = \|x\|_2 \cdot \|y\|_2 \cdot \cos(\alpha)$$

orthogonal projection of the vector y onto x

$$\overline{o}\overline{b} = \|y\|_2 \cdot \cos(\alpha) = \frac{x^T y}{\|x\|_2}$$

vector b = length ob times the versor of x

$$b = \overline{o}\overline{b} \frac{x}{\|x\|_2} = \frac{x^T y}{\|x\|_2^2} x$$

linear systems of equations

 $A \in \mathfrak{R}^{n \times n}$

L'operazione inversa rispetto al prod matrice vettore è la risoluzione di un sistema lineare.

Qui conosciamo a e b e voglia determinare x invece con il prod ho A e x ottengo b.

Ax = b

può essere visto come un cambio di base per rappresentare il vettore vettore b : dalla rappresentazione nella base standard, alla rappresentazione nella base delle colonne di

may be seen as a change of basis to represent the vector \boldsymbol{b} :

- ✓ from the representation in the standard basis
- \checkmark to the representation in the basis of the columns of A

Si risolve con la fattorizzazione lu con pivoting paraziale. E' un operazione cubica in n dove n è il numero di righe e colonne. E' il miglior modo per risolverlo perché produce un residuo piccolo.

$$PA = LU$$

LU factorization
(Gaussian
elimination)
with partial
pivoting

$$LUx = Pb$$

$$Lp = Pb$$

$$Ux = p$$

linear systems of equations in Matlab

Si risolve in matlab così.

$$x = A/b$$

La fattorizzazione LU la si fa così.

$$[L,U] = lu(A)$$

Questo ci fa ottenere la matrice degli scambi data dal pivoting

$$[L,U,P] = lu(A)$$

ci permette di scegliere il meotod di pivotign e ci mostra passo passo cosa accade.

Questo risolve più sistemi con la stessa matrice, e i vettori di termini noti sono le colonne di B

$$X = A \setminus B$$

solves several systems: same matrix, vectors of known terms given by the columns of B

Se abbiamo due sistemi lineare dove il secondo è molto simile al pirmo infatti possiamo scriverlo anche in quel modo con i delta, allora la domanda principale è se due sistemi sono vicini, possiamo aspettarci che le loro soluzioni siano vicini Conditioning of linear systems

two systems:

Diciamo che z e q sono due perturbazioni di vetotri x e b. La risposta alla nostra domanda non è affermativa e quanto è grande ce lo dice un teorema che ora esponiamo.

$$Ax = b$$

$$Az = q$$

$$A(x+\Delta x) = (b+\Delta b)$$

relevant question:

if the two systems are "close together", can we expect that even their two solutions are "close together"?

question: if

 Δb

is small

then

 Δx

is small?

Definiamo prima di tutto l'errore assoluto e relativo. Abbiamo x cappello che è un apporssimazione di X. Si dice che x cappello è un approssimazione di C con un certo errore assoluto delta x dove l'err assoluto è quella formula li dovrò dire la norma di x capp - x (norma non precisata.)

absolute error and relative error

Definiamo poi l'errore relativo che è l'errore assoluto diviso la norma del vettore x

suppose

be an approximation of

$$\mathcal{E}_a = \|\hat{x} - x\| = \|\Delta x\|$$

absolute error

$$\varepsilon_r = \frac{\|\hat{x} - x\|}{\|x\|} = \frac{\|\Delta x\|}{\|x\|}$$

relative error

E' importare ricordare una proprietà dell'errore relativo. Supponiamo che l'errore relativo sia dell'oridne di 10 alla meno d allora la più grande componente di x cappello ha d cifre signicative corrette.

$$\frac{\|\hat{x} - x\|_{\infty}}{\|x\|_{\infty}} \cong 10^{-d}$$

the maximum entry of \hat{x} has at most d correct significative digits

example:
$$x = (1.234, 0.05674)^T$$
, $\hat{x} = (1.235, 0.05128)^T$
 $\varepsilon_r \cong 0.0043 \cong 10^{-3}$

Il teorema di cui parlava prima dice che l'errore relativo della soluzione è minore = dell'errore relativo sui dati * un indice di condizionamento che può essere molto grande. Quindi b può essere molto piccolo ma x dovrà essere molto grande conditioning of linear systems

two systems:

$$Ax = b$$

$$Az = q$$

$$A(x+\Delta x)=(b+\Delta b)$$

Theorem

$$\frac{\left\|\Delta x\right\|}{\left\|x\right\|} \le \kappa \left(A\right) \frac{\left\|\Delta b\right\|}{\left\|b\right\|}$$

l'indice di condizionamento dipende solo da a la ed è il prod della norma di A per la norma della sua inversa

condition number

$$\kappa(A) = ||A|| ||A^{-1}||$$

Questo indice è sempre >= 1, = 1 in casi particolari x esempio se abbiamo la matrice identità. Se la moltiplichiamo per una qualunque costante non cambiamo l'indice.

conditioning of linear systems

$$\kappa(A) = ||A|| ||A^{-1}||$$

$$\kappa(A) \ge 1$$
 $\kappa(I) = 1$ $\kappa(P) = 1$

$$\kappa(I)=1$$

$$\kappa(P) = 1$$

$$\kappa(cA) = \kappa(A)$$

se la martrice è diagonale l'indice è il rapporto tra il più grande e più piccolo degli elementi nella diagonale.

$$\kappa(D) = \frac{\max |d_{ii}|}{\min |d_{ii}|} D \text{ diagonal matrix}$$

Fino ad ora pero nel problema del condizionamento abbiamo visto che A è la stessa. Ma cosa accade se perturbiamo anche A (perturbiano = la cambiamo di poco)

In questo caso C è vicino ad A q è vicino a b e z vicino a x. In questo caso il teorema è in quella forma.

conditioning of linear systems

two systems:

$$Ax = b$$

$$Cz = q \left((A + \Delta A)(x + \Delta x) = (b + \Delta b) \right)$$

L'unica cosa è che si sommano gli errori su B e A. Il registra di tutto è sempre l'indice di condizionamento,

Theorem

$$\frac{\left\|\Delta x\right\|}{\left\|x\right\|} \le \kappa \left(A\right) \left(\frac{\left\|\Delta A\right\|}{\left\|A\right\|} + \frac{\left\|\Delta b\right\|}{\left\|b\right\|}\right)$$

Ricordare che se l'indice è circa = 1 allora il sistema è ben consizionato, se è molto maggiore di 1 è mal

condizionato.

conditioning of linear systems

A lui INTERESSA QUESTA REGOLA APPLICATIVA IN

if

$$\kappa(A) \approx 1$$

the linear system is well-conditioned

if

$$\kappa(A) >> 1$$

the linear system is ill-conditioned

La regola applicativa, che è la cosa più importante è se l'indice è dell'ordine 10 alla q allora vuol dire che la soluzione sarà nota con q cifre significative in meno rispetto alle cifre significative note di A e b

thumb rule:

$$\kappa(A) = 10^q$$

the solution can be known with q significative digits less than the number of significative digits of the data (A,b)

x ES. Se abbiamo un sistema dove i dati hanno 16 cifre decimali e l'indice è alla 10 perdiamo 10 cifre quindi la solu non può avere più di 6 cifre accurate. E' una prorpietà del problema e non degli algoritmi risolutori.

Se A è mal condizionata allora vuol dire che è quasi singolare. L'inverso dell'indice è la minima distanza tra A è la più vicina matrice singolare. La formula prevede il rapporto. In pratica se l'indice di A è grande allora la quantità è piccola quindi A è VICINO ALLA MTRICE SINGOLARE. Questa è l'interpretazione della formula.

CONDITIONI O INPERIO SYSTEMS

A ill-condizioned

A near singular

$$\frac{1}{\kappa(A)} = \min\left(\frac{\|A - B\|}{\|A\|} : B \text{ is singular }\right)$$

Ricorda anche un altra cosa, se x* è la soluzione calcolata con Gauss con pivoting allora il resido relativo è piccolo.

conditioning of linear systems

if

is the soluzione computed by Gaussian elimination with pivoting

the the relative residue is small

Il residue relativo è definito come la norma del residuo fratto il prodotto tra norma di A * norma di x*. Questa quantità è vicina all'epsilon macchina (10^-16)

$$r_{rel} \equiv \frac{\left\|b - Ax^*\right\|}{\|A\| \|x^*\|} \le \rho \varepsilon_{\text{machine}}$$

Quindi gauss è un algoritmo ottimo perché garantisce che il residuo è piccolo, Ma anche l'errore è piccolo?

ρ is a *small number*

Il teorema risponde a questa domanda, ovviamente NO. l'errore non è piccolo per forza.

conditioning of linear systems

question: if the **residue** is small, then is the **errore** small?

Il teorema di che quando l'indice aumenta il residue ci da meno informazioni relativamente all'errore.

$$r_{rel} \cdot \frac{1}{\kappa(A)} \le \varepsilon_r \le r_{rel} \cdot \kappa(A)$$

questa è una conseguenza del fatto che a è mal posta.

when the condition number increases, the residue gives less information about the error

conditioning of linear systems

estimate of the condition number of a matrix in Matlab

```
cond(A,...),
condest(A) 1-norm
rcond(A) 1-norm (inverse of cond. numb.)
```