lecture12 计算机的指令系统

指令功能:数据运算、数据传输、输入输出指令、控制指令、其他

指令格式:指令字(操作码+操作数地址)

THCO MIPS 指令系统:

16 字长, 按字编址

指令的寻址方式: 顺序寻址

操作数寻址方式: 立即寻址, 寄存器寻址, 变址寻址(8位偏移)

I/O: 与主存共享地址空间(统一地址空间), 双串口

总线: 双 16 位地址总线, 双 16 位数据总线, 独立的访问 FLASH 总线

共设计有 44 条指令: R型(21条)I型(14条)B型(5条)J型(4条)

思考:

指令系统的作用和地位?指令系统是硬、软件之间的接口部分,其优劣是一个计算机系统是否成功的关键因素。

为实现 THCO 指令系统,ALU 应该具备哪些功能?+->><<&||

lecture13 数据表示及检错纠错

变长字符编码,提高存储空间利用率

原码、反码和补码(正数一致,零的原码和反码均有2个编码,补码只1个码)

负数表示形式:

原码(Sign Magnitude): 符号位&&数的绝对值

反码(One's Complement): 符号位&&数值按位求反

补码(Two's Complement): 反码的最低位+1(不同位数补码相加减时,要符号扩展)

补码加法: [x+y]补=[x]补+[y]补

补码减法: [x-y]补= [x+(-y)]补= [x]补+[-y]补

 $[-x]_*$: $[x]_*$ 连同符号位在内,逐位求反,再在最低位加 1。

[x/2]*: [x]*算术右移1位

大端:数据的低位保存在内存的高地址字节中。

小端:数据的低位保存在内存的低地址字节中。

奇偶校验码:用于并行数据传送中,码距为2

汉明校验码:用于并行数据传送中 2^r ≥ m+r+1,码距为 4

循环冗余校验码:用于串行数据传送中

•汉明校验码每个校验位强迫包括自己在内的一些位的奇偶值为偶数(或奇数)。

p1(整个码字的第1位)的校验规则:从当前位数1起,校验1位,跳过1位,再校验1

位,再跳过1位,……。校验的所有位的1的数目应该为偶数(偶校验)。

p2(整个码字的第2位)的校验规则:从当前位数2起,校验2位,跳过2位,再校验2

位,再跳过2位,……。校验的所有位的1的数目应该为偶数(偶校验)。

p3(整个码字的第4位)的校验规则:从当前位数4起,校验4位,跳过4位,再校验4

位,再跳过4位,……。校验的所有位的1的数目应该为偶数(偶校验)。

lecture14 算术运算及电路实现

运算器:

由控制器产生的控制信号驱动,取得操作数,完成**算术、逻辑运算**,得到运算结果的状态,输出、存放运算结果,暂存运算的中间结果。

1 位 ALU 设计

布斯算法

恢复余数法、加减交替除法

lecture15 运算器部件组成

定点运算器和浮点运算器 位片结构运算器 Am2901:

- 4 位运算器
- 8 种运算功能
- 8种数据来源组合
- 8种数据输出方式

VHDL 语言简介

思考:

A、B口锁存器的作用?如果不设置该锁存器,需要如何调整时序? 锁存器,在时钟脉冲的高电平期间,其输入信号直接"穿"过线路送到其输出端,用脉冲下降沿把输入信号存储起来用于后续的输出。

lecture16 浮点数表示和运算

一个浮点数的组成分为三个部分:符号位+阶码域+尾数域

记符号位值为 s, 阶码域的整数值为 e, 尾数域的小数值为 f。

对于规格化数(阶码 e 不为 0), 阶码值 E=e-Bias, 尾数值 M=1+f; (隐藏位技术)

对于非规格化数 (阶码 $e \ge 0$), 阶码值 E=1-Bias, 尾数值 M=f;

V=(-1)s*M *2E (其中 Bias 为偏置,单精度为 127,双精度为 1023)

s00000000 跟全 0 尾数是浮点数 0,

s11111111 跟全 0 尾数表示无穷大,

s1111111 跟非全 0 尾数表示非法数值 NaN。

单精度: 2.0 x 10⁻³⁸ 至 2.0 x 10³⁸ 双精度: 2.0 x 10⁻³⁰⁸ 至 2.0 x 10³⁰⁸

思考:

IEEE754 浮点数尾数用原码,阶码用移码的原因?

运算器主要功能是什么? 都是怎样在电路上实现的?

运算器的功能如此简单,为什么程序能完成十分复杂的功能?

lecture31 层次存储器系统动态存储器

存储器作用: 存放程序和数据, 存储程序使计算机走向通用

几种常用的存储方式:磁颗粒、半导体(电平/电容)、光

主存储器:寄存器 Register,高速缓存 Cache,主存储器 Main Memory

辅助存储器:磁盘 Disk,磁带 Tape,光盘 Compact Disk

不同类型存储器比较(从左到右,速度、价格/位、可靠性、CPU 访问频度递减,容量递增):

Register, Cache, Main Memory, Magnetic Disk, Tape, Optical Disk

按访问方式分类: 随机访问存储器 RAM(半导体), 顺序访问存储器 SAM(磁带), 直接访问存储器 DAM(磁盘), 关联访问存储器 CAM(Cache+TLB)

存储器系统设计目标:大容量、高速度、低成本、高可靠性

存储器对性能的影响:

假定某台计算机的处理器主频= 1GHz (机器周期为 1ns), CPI = 1.1,50%算逻指令, 30% 存取指令, 20% 转移指令。其中 10%的存取指令会发生数据缺失,需要 50 个周期的延迟。 CPI=理想 CPI+每条指令的平均延迟= $1.1+(0.30\times0.10\times50)=1.1+1.5=2.6$ cycle 程序运行的局部性原理

时间局部性: 最近被访问过的程序和数据很可能再次被访问

空间局部性: CPU 很可能访问最近被访问过的地址单元附近的地址单元。

层次之间应满足的原则:

一致性原则:处在不同层次存储器中的同一个信息应保持相同的值。

包含性原则:处在内层的信息一定被包含在其外层的存储器中,反之则不成立。

层次存储器系统

■以最低廉的价格提供尽可能大的存储空间

■以最快速的技术实现高速存储访问 Processor Control Tertiary Secondary Storage Storage (Disk) Second Main (Disk) On-Chip Registers Level Memory Datapath Cache (DRAM) (SRAM) Speed (ns): 1ns 10ns 50-100ns Milliseconds Seconds MB-GB GB Terabytes Size (bytes): 100s KB-MB

并行技术: 主存的一体多字(一个读写体,每次多字)。单字多体(多个读写体,交叉编址)。 主存储器的作用和连接:

地址总线用于选择主存储器的一个存储单元(字或字节),其位数决定了能够访问的存储单元的最大数目,称为最大可寻址空间。

数据总线用于在计算机各功能部件之间传送数据,其位数(总线的宽度)与总线时钟频率的乘积,与该总线所支持的最高数据吞吐(输入/输出)能力成正比。

控制总线用于指明总线的工作周期类型和本次入/出完成的时刻。

动态存储器 DRAM: 用金属氧化物半导体(MOS)的单个 MOS 管存储一个二进制位(bit)信息。信息被存储在 MOS 管 T的源极的寄生电容 Cs中,有电荷表示 1,无电荷表示 0。集成度高、容量大、能耗低、速度慢。工作特点:破坏性读出,需定期刷新,快速分页组织。

DRAM 写访问开始于 RAS_L 信号有效。两种写方式: WE_L 信号早和晚于 CAS_L 信号有效。

DRAM 读访问开始于 RAS_L 信号有效。两种读方式: OE-L 信号早于或晚于 CAS_L 有效。 思考

程序的局部性原理指什么?为什么层次存储器系统能同时达到高性能/低成本/大容量的指标?

lecture32 静态存储器及高速缓冲存储器

静态存储器:速度快,存储密度低,数据入/出共用管脚,能耗高,价格高。

	存储信	读破坏	刷新	送行列	访问速度	集成度	发热量	存储成
	息	性		地址				本
SRA	触发器	否	否	同时	快	低	大	高
М								
DRA	电容	是	需要	分两次	慢	高	小	低
М								

层次存储器系统:根据程序的局部性原理,将最近被访问的信息项装入到 Cache 中,将最近被访问的信息项临近的信息一起装入到 Cache 中。

高速缓冲存储器 Cache: 主存和 CPU 之间的存储器,用高速的静态存储器实现,缓存了 CPU 频繁访问的信息。高速、透明。

要解决的问题

- 1. 地址之间的映射关系:如何根据主存地址得到 Cache 中的数据?
- 2. 数据之间一致性: Cache 中的内容是否已经是主存对应地址的内容?
- 3. 数据交换的粒度: Cache 中的内容与主存内容以多大的粒度交换?
- 4. Cache 内容装入和替换策略:如何提高 Cache 的命中率?

Cache 参数

块(Line):数据交换的最小单位

命中(Hit): 在较高层次中发现要访问的内容

命中率 (Hit Rate): 命中次数/访问次数 命中时间: 访问在较高层次中数据的时间

失效 (Miss): 需要在较低层次中访问块

失效率 (Miss Rate): 1-命中率

失效损失(Miss Penalty): 替换较高层次数据块的时间+将该块交付给处理器的时间平均访问时间=HR*命中时间+(1-HR)*失效损失

全相联方式的地址映射关系(cache: 有效位-标记-数据。主存: 块号-块内地址)

- 1. 主存的字块可以和 Cache 的任何字块对应,利用率高,方式灵活。
- 2. 标志位较长,比较电路的成本太高。如: n 位的主存地址,块内地址为 b 位, Cache 有 m 块,则需要 n-b 位标志位, m 个比较电路。

直接映射方式(cache: 有效位-标记-数据。主存: 标记-索引-块内地址)

1. 主存的字块只可以和固定 Cache 字块对应,方式直接,利用率低,命中率低,效率较低。

2. 标志位较短, 比较电路的成本低。如果主存空间有 2^n 块, Cache 有 2^m 块,则只要 n-m 位标志位,仅需要 1 次比较。

lecture33 高速缓冲存储器 Cache

多路组相联方式(cache: 有效位-标记-数据。主存: 标记-索引-块内地址)

- 1. 前两种方式的综合方案。先通过直接映射方法确定组, 再在组内通过全相联方式确定行。
- 2. 集中了两个方式的优点。成本也不太高。

一致性保证:

写直达(Write through)在 Cache 中命中,同时修改 Cache 和对应的主存内容;没有在 Cache 中命中,写分配(Write allocate),非写分配(not Write allocate)。强一致性保证,效率低。

拖后写(Write back)替换时再写主存(主动替换,被动替换),通过监听总线上的访问操作来实现。弱一致性保证,实现复杂,效率较高。

提高存储访问的性能: 平均访问时间=命中时间 x 命中率+失效损失 x 缺失率

提高命中率、缩短缺失时的访问时间、提高 Cache 本身的速度

Cache 缺失的四类原因:必然缺失 Compulsory Miss (开机或者是进程切换、首次访问数据块),容量缺失 Capacity Miss (活动数据集超出了 Cache 的大小) 冲突缺失 Conflict Miss (多个内存块映射到同一 Cache 块、某一 Cache 组块已满但空闲的 Cache 块在其他组),无效缺失(其他进程修改了主存数据)。

经验总结:容量为 N、采用直接映射方式 Cache 的缺失率和容量为 N/2、采用 2 路组相联映射方式 Cache 的缺失率相当

影响命中率的因素

Cache 容量:适当提高

Cache 块大小:适当块数,最佳块数

地址映射方式: 多路组相联

直接映射——主存中的一块只能映射到 Cache 中唯一的一个位置

全相联映射——主存中的一块可以映射到 Cache 中任何一个位置

N 路组相联映射——主存中的一块可以选择映射到 Cache 中 N 个位置

替换算法:最近最少使用的(LRU)、先进先出(FIFO)、随机替换(RAND)

多级 Cache:

采用两级或更多级 cache 来提高命中率(增加 Cache 层次,增加了用户的选择);

将 Cache 分解为指令 Cache 和数据 Cache (指令流水的现实要求,根据具体情况选用不同的组织方式和容量)。

Cache 接入系统的体系结构

- 1. 侧接法:像入出设备似的连接到总线上,优点是结构简单,成本低,缺点是不利于降低总线占用率。
- 2. 隔断法: 把原来的总线打断为两段, 使 CACHE 处在两段之间, 优点是有利于提高总线利用率, 支持总线并发操作, 缺点是结构复杂, 成本较高。

一致性保证策略(MESI)

思考

Cache 命中率和哪些因素有关?如何提高 Cache 的命中率?

Cache 写有许多策略, 试进行比较。

lecture34 虚拟存储器

虚拟地址:程序员编程使用的地址虚拟地址空间:虚拟地址的集合逻辑地址:程序员使用的地址

存储器地址:物理存储器的地址,也称物理地址(Physical Address)或实地址(Real Address)

每个进程有独立的逻辑地址空间,实现内存共享,实现内存保护,通过页表将虚地址转换为实地址。

虚拟存储器目的

提供大容量: 获得运行比物理存储器更大空间程序的能力

简化存储管理:内存的分配以及虚实地址转换

保护:操作系统可以对虚拟存储空间进行特定的保护

灵活:程序的某部分可以装入主存的任意位置

提高存储效率: 只在主存储器中保留最重要的部分

提高并行度: 在进行段页替换的同时可以执行其它进程

可扩展: 为对象提供了扩展空间的能力.页表中存放有访问权限。

虚存	Cache
主要目的是实现存储管理,帮助解决存储容量的	主要目的是解决存储速度问题,使存储器访问速度不
问题。	太影响 CPU 的运行速度。
单位时间内数据交换次数少,每次交换数据量大	单位时间内数据交换的次数多,每次交换数据量小
由操作系统管理	由硬件实现

虚拟存储器管理:

段式存储管理:以段作为存储管理的对象,段长动态可变,段起点、终点不定。易于编译、 管理、修改、保护和共享,空间分配困难,容易产生碎片。

段(Segment)程序模块化设计的结果(过程、函数、数组、···),逻辑上相对独立,是共享和保护的最小单元。

实现:设置段表进行管理,段表基地址,段起始地址,段长,装入位,保护、共享等标志。

页式存储管理

将主存和虚存划分为固定大小的页,以页为单位进行管理和数据交换。

虚地址=虚页号+页内地址;实地址=实页号+页内地址。

实现:通过页表进行管理,页表基地址寄存器,实页号,控制位。

页式虚拟存储器的访问过程

- 1. 得到程序给出的虚地址;
- 2. 由虚地址得到虚页号;
- 3. 访问页表,得到对应的实页号;
- 4. 若该页已在内存中,则根据实页号得到实地址,访问内存;
- 5. 否则, 启动输入输出系统, 读出对应页装入主存, 再进行访问。

转换旁路缓冲(TLB)

为页表设置的专用 Cache, 高效实现虚页号到实页号的转换, 容量较小, 128~256 个表项。

TLB 缺失:流水线停,通知操作系统,读页表,将表项写入 TLB,返回用户程序,重新访问。

页面大小:缩小页面大小可减少内部碎片,但需更大的页表。

页面替换算法:最近最少使用(LRU)

段页式虚拟存储管理

先把程序按逻辑单位分为段,再把每段分成固定大小的页。

操作系统对主存的调入调出按页面进行,但又可按段实现共享和保护,兼取页式和段式系统的优点。地址映射通过一个段表和一组页表来进行,需要多次查表。

Pentium 的虚存管理

不分段也不分页模式,虚拟存储的地址空间和物理存储空间大小相同。

页式管理模式,将主存分成固定长度的页,通过页进行存储保护和管理。

段式管理模式,按程序本身的逻辑段来划分主存空间,段的长度可变,段表存放在内部寄存器,存储访问时间是可以预知的。

段页式管理模式,按程序的逻辑结构将主存分段,对段进行访问控制,在段内分页,按页进 行数据交换。

思考

是否还有继续使用虚拟存储器的必要?

lecture35 磁表面存储设备

磁芯存储器:存储原理简单,工艺复杂,可靠性低,大容量,成本低廉,断电后保存数据。 **磁表面存储设备**:容量大,成本低,断电保存,脱机保存,串行访问,数据交换频率低,数据交换量大。一般为磁盘、光盘等。如何保存?如何表示?如何组织?如何管理?

用磁颗粒的不同磁化偏转方向来区分不同的状态,主存中存放 CPU 要立即访问的程序和数据,辅助存储器中存放 CPU 不立即使用的信息,在需要时再调入主存中。

随机访问:随机访问任何单元,访问时间与存放位置无关,每一位都有各自的读写设备。

串行访问:顺序按位进行,访问时间与存储位的物理位置有关,共用一个读写设备。

主要指标:存储密度,存储容量,寻址时间,数据传输率,误码率,价格。

磁记录方式:一种编码方法,即如何将一串二进制信息,通过读写电路变换成磁层介质中的磁化翻转序列。(编码效率,自同步能力,读写可靠性)

归零制 (RZ), 不归零制 (NRZ), 见 1 翻转的不归零制 (NRZ1), 调相制 (PM), 调频制 (FM), 改进的调频制 (MFM)

磁盘

长期存储,断电后存储,容量大,价格低廉,但速度慢,可用在层次存储器的最底层。 使用旋转托盘上的表面磁颗粒来存储数据,可移动的读/写头来访问磁盘。

硬盘比软盘:硬质托盘,面积大;密度高;转速快,传输率高;可以多个盘片组合。 扇区是磁盘访问的最小单位,每面多少磁道,每个磁道多少扇区。

访问过程: 寻道(将磁头移动到正确磁道), 寻找扇区(等待磁盘上扇区旋转到磁头下), 传

输数据(读写数据)。平均旋转延迟应为磁盘旋转半周的时间。

磁盘访问时间= 寻道时间+ 平均旋转延迟+ 传输时间+ 磁盘控制器延迟

例:平均寻道时间= 12ms, 旋转速度= 5400rpm, 磁盘控制器延迟=2ms, 传输速度= 5MB, 扇区大小= 512 bytes, 页大小 8KB。

旋转 1 周: 1/5400 minutes = 11.1ms => 1/2 周: 5.6 ms

读 1 个扇区: 12ms + 5.6ms + .5K/5MB s+ 2ms = 12 + 5.6 + .1ms + 2ms = 19.7 ms

读 1 页的时间: 12 ms + 5.6ms + 8K/5MB s + 2ms = 12ms + 5.6ms + 1.6ms + 2ms = 21.2 ms

思考

页容量大扇区却如此小:可靠性(损坏时丢弃扇区,检错快);灵活性(支持不同操作系统)。 采用流水方式和大容量传输方式(每次读取多个扇区)克服磁盘控制器延迟。

额外开销在总开销中比例较大 => 一次传输大量数据比较有效。

将页面存放在相邻扇区中可以避免额外的寻道开销。

RAID 技术

廉价磁盘的冗余阵列(Redundant Arrays of Inexpensive Disks)

目标: N 个磁盘的容量, 1/N 的访问时间, 更高的性价比, 用冗余技术提高存储信息可用性。 提高磁盘的可用性和性能

RAID0~ RAID7

思考

磁表面存储设备的原理和特点,它在层次存储器系统中的地位和作用。 如何将文件分布在扇区使访问速度加快?

lecture36 光盘的存储原理

CD-ROM

CD-R

CD-RW

DVD

存储技术的发展

优点:容量适宜,价格低,可靠性,便于携带,ROM,用于计算机间交换数据和分发程序。

光盘的存储原理

光电转换: 入射光和反射光叠加

物理变化:在涂有玻璃表层的主盘上,用高能红外激光束烧出 0.8 毫米直径的小孔制成。往模子上注入熔化的多种碳酸盐脂。在碳酸盐脂上沉淀上一薄层的反射铝,再覆盖上一层起保护作用的表层。

碳酸盐脂底基的凹陷部分叫作凹区、凹区两边未经过烧制的部分叫作凸区。

读出原理:用低能量激光二极管照射,从凹区反射的激光的强度为从凸区反射光的强度的一半,感知反射光的强弱,可区分凸区和凹区,编码方式为见1就翻转的不归0制。

只读光盘(CD-ROM)

数字化存储,只读,便于携带。

将每个字节编码成 14 位的符号,可以对字节进行汉明编码。连续的 42 个符号一组,构成了 588 位的帧,包含 192 位数据位(24 个字节),其它的 396 位用于纠错和控制位。将 98 帧作为一个 CD-ROM 扇区,每个扇区由 16 个字节的引导区开始,其中前 12 个字节为引导区起始标志,然后 3 个字节是扇区号,最后的一个字节是光盘的数据存放格式。

CD-R 存储原理、CD-RW 存储原理、DVD

存储技术的新发展

不同层次的存储器作用:存储器组成(数字逻辑层,存放一位二进制数 0 或 1);存储器(指令系统层,存放可单独访问的最小单元(字节、字、扇区));存储器(操作系统层,段、页管理);存储器(用户层,文件)。

存储器设计目标:高速度,大容量,高可靠性,低价格。 思考

计算机存储器系统是如何为数据库系统服务的?

lecture41 输入/输出系统概述和输入/输出方式

输入输出系统的作用、功能

与计算机外部交换信息的通道

输入/输出系统组成

设备:键盘、鼠标;显示器、网卡、打印机、喇叭多(种类繁多);繁(功能繁杂);异(速度不一)。

要解决的问题

控制方式: CPU 如何控制输入/输出? (输入/输出方式)

传输方式:传输通道、方式、速率等(总线、接口)

数据识别和转换:数/模转换、语音识别等,转为字符、数据等计算机能识别的格式(设备)。

输入/输出方式

程序直接控制: CPU 直接使用输入/输出指令来控制外部设备。

CPU 方查询接口状态(循环等待),直到外设已经接收到该字符,读字符;外设方往接口数据缓冲中送字符,处理完后,置状态寄存器,等待下一个字符。

程序中断:外部设备请求,CPU 暂停正在执行的程序并响应,CPU 与外设并行工作,完成后继续执行原来的程序。有中断优先级。

中断源:外中断(I/O 设备等),异常(内中断:处理器硬件故障、程序"出错", Trap),中断触发器,中断状态寄存器。

完整过程:中断请求(中断源设备设置中断触发器),中断响应(响应条件:允许中断、当前指令结束、优先级,响应实现:硬件实现的中断隐指令,保存断点),中断处理(保存现场信息,运行中断服务程序,中断返回)。

关中断;保存断点;判中断源,转中断服务;开中断;执行中断服务程序;关中断;恢复断点;开中断;返回断点。

直接存储访问(DMA)I/O 设备和主存储器之间的直接数据通路,为专设的硬件,用于高速 I/O 设备和主存储器之间成组传送数据。

数据传送开始前和结束后通过程序或中断方式对 DMA 进行预处理和后处理。

DMA 工作方式:独占总线方式,周期窃取方式。

Cache 一致性: 主存中的数据可能不是最新的,采用直接写会带来性能的降低, DMA 查询 Cache 会降低性能,直接设计硬件控制。

通道 I/O 通道是系统中代替 CPU 管理控制外设的独立部件,能执行有限 I/O 指令集合。

根据 CPU 要求选择某一指定外设与系统相连,向该外设发出操作命令,进行初始化。

指出外设读/写信息的位置以及与外设交换信息的主存缓冲区地址。

控制外设与主存之间的数据交换。

指定数据传送结束时的操作内容, 检查外设的状态

通道类型:字节多路通道(简单的共享通道,分时处理,面向低、中速字符设备);选择通道(选择一台外设独占整个通道,以成组传送方式传送数据块,效率高,适合快速设备);数组多路通道(上两种方式的结合,效率高,控制复杂)。

外围处理机

通道型处理机: 共享内存

程序直接控制	成本低,效率低,严重占用 CPU 资源,适用早期计算机中高速设备。			
程序中断方式	提高 CPU 的效率,对 CPU 干扰较大,可管理多个外部设备,适用传输速度			
	不高或传输量不大。			
直接存储访问	数据传输过程由 DMA 自行控制,主存储器需支持成组传送,与设备一对一服			
(DMA)	务,对 CPU 打扰适中(初始化、周期挪用),无法适用大量高速设备管理。			
通道控制方式	一对多的连接关系,适应不同速度、不同种类的外部设备,可并行工作			
外围处理机	通用计算机,独立完成输入/输出功能,通过通道方式与主机进行交互。			

思考

输入/输出方式解决了什么问题?

它们各自有哪些特点?

lecture42 总线

计算机总线

共享的信息通道,用于连接计算机多个子系统(部件),线也是连接复杂巨系统的一种基本工具。处理器和其他组成部件的接口。

优点:解决外部设备"繁"的问题(容易增添新的设备,使用相同总线标准的外部设备可在不同计算机间兼容),降低成本(总线可供多个设备共享),简化设计。

不足: 容易成为信息通道的瓶颈(总线故障,总线带宽限制了整条总线的吞吐量)。

总线的最高速度主要由下列因素决定: 总线长度, 总线负载的设备数, 负载设备的特性。

1、单总线计算机(主板总线):使用一条总线完成处理器和主存储器之间通信,主存储器和输入/输出设备之间通信。

优点:简单、成本低

缺点:速度慢,总线将成为系统瓶颈应用:PDP-1、IBM PC -ISA EISA

2、双总线系统:输入/输出总线通过适配器和处理器-主存总线相连,处理器-主存总线用于处理器和主存储器之间的通信,输入/输出总线为输入/输出设备提供信息。

应用举例: Apple Macintosh II、NuBus、SCSI 总线。

3、三总线系统: 主板总线连接到处理器-主存总线, 处理器-主存总线用于处理器和主存之间数据交换, I/O 总线连接到主板总线。

优点:大大减少处理器-主存总线负载

例:现代 PC 采用的结构

总线分类

处理器-主存总线	传输距离短、速度高,主存储器专用,保证主存储器-处理器之间的
(专用)	高带宽,直接和处理器连接,优化处理使之适应 Cache 块传送。
输入/输出总线	通常距离较长,速度较慢,需要适应多种输入/输出设备,和处理器-
(行业标准)	主存总线通过桥连接(或通过主板总线)
主板总线(行业标	主板:连接各部件器件的底盘,应允许处理器、主存储器和输入/输
准或专门设计)	出设备互连,应有价格优势:所有组件连接在一条总线上。

总线组成

控制线:标记总线事务的开始和结束,指明数据线上传输信息的类型。

数据线: 在源设备和目标设备间传送信息。

相关概念:

总线主设备:有能力控制总线,发起总线事务

总线从设备:响应主设备请求

总线通信协议: 定义总线传输中的事件顺序和时序要求

异步总线传输:控制信号(请求,应答)作为总控信号

同步总线传输:使用共同的时钟信号

总线事务:发起命令(和地址),传输数据。

总线仲裁

问题:如何为需要使用总线的设备安排总线?

可通过主一从设备的安排来避免冲突: 只允许主设备发起总线事务, 控制所有总线请求, 从设备响应主设备的读写请求。

最简单的设计:处理器作为唯一的总线主设备,所有总线请求均由处理器控制,主要缺点是处理器被卷入到每一个总线事务中。

总线仲裁的基本要求:某总线主设备使用总线前应发出总线请求,只有得到授权后,主设备才能使用总线,使用完毕后,主设备应通知仲裁器。

优先权:优先级高的设备应得到优先服务。公平性:低优先级的设备应有得到服务的机会。 总线仲裁方式:

1、集中仲裁

1) 菊链仲裁(所有设备共用一个总线请求信号)

简单。但无法保证公平性,低优先级设备可能得不到总线使用权;总线授权信号的逐级传递 限制了申请总线的速度。

2)集中平行仲裁(通过集中的仲裁器进行)

用于几乎所有处理器-主存总线和一些高速输入/输出总线。

2、分布仲裁 1)通过自我选择进行分布式仲裁(每个要使用总线的设备将自己的标识放在总线上)。2)碰撞检测(以太网)。

通信方式

同步总线:控制线中包含有一根时钟信号线,传输协议根据时钟信号制定。

例如:主设备提出总线请求后5个时钟周期,可以获得能否使用总线的信号。

优点:逻辑简单、高速。缺点:总线上设备须按时钟频率工作,为防止时钟信号扭曲,高速工作时总线距离须够短。

异步总线: 不使用统一的时钟, 可适应设备的不同速度, 不用担心时钟信号扭曲, 距离可较长, 使用握手协议。

增加总线带宽——

增加总线的宽度:可增加每个周期传送数据的量,提高了成本。

分别设置数据总线和地址总线: 可同时传送数据和地址, 提高了成本。

采用成组传送方式:一个总线事务传送多个数据,每次只需要在开始的时候传送一个地址,直到数据传送完毕才释放总线,复杂度提高,延长后续总线请求的等待时间。

多主设备总线提高事务数量——

仲裁重叠: 在当前事务时, 为下一总线事务进行仲裁。

总线占用:没有其他主设备请求总线的情况下,某主设备一直占用总线,完成多个总线事务。 地址、数据传送重叠。

总线举例 PCI 总线

参数选择	提高性能	降低成本
总线宽度	将地址和数据线分开	互用地址和数据线
数据宽度	越宽越快(32位)	越窄越廉价(8位)传送
大小	多字可减少总线开销	单字传送简单
主设备	多主设备(仲裁)	单主设备
时钟	同步	异步
协议	并行	串行

思考

计算机总线作用? 总线仲裁应考虑哪些方面?

总线数据传输模式有哪些?各有什么特点?

lecture43 接口电路和外部设备

接口的基本功能

提供主机识别(指定、找到)使用的 I/O 设备的支持:为每个设备规定几个地址码或编号。 建立主机和设备之间的控制与通信机制:接收处理器(主设备)的命令,并提交给外部设备, 同时,为主设备提供外部设备的状态。

提供主机和设备之间信息交换过程中的数据缓冲机构。

提供主机和设备之间信息交换过程中的其他特别需求支持: 屏蔽外部设备的差异。

接口内部组成

设备识别电路

数据缓冲寄存器(输入/输出)

控制寄存器

状态寄存器

中断电路

其他电路

串行通信

同步传送:采用同步信号(内同步:同步字符。外同步:硬件同步信号)

异步传送(起始位、停止位;波特率)

全双工(通信双方有各自的接收和发送部件,两条数据线)

串行传送中的有关概念

串行、异步、同步、单工、半双工、全双工。

停止位、数据位、起始位。

奇偶校验、传送的波特率、波特率因子、数据采样。

USB 接口

用户不必再设置卡上、设备上的开关或跳线 不必打开机箱来安装新的输入输出设备 应该只需要一根电缆线就可以将所有设备连接起来 输入/输出设备应可以从电缆上得到电源 单台计算机最多可以连接 127 个设备 系统应能支持实时设备(声卡、电话) 可在计算机运行时安装设备 不必重新启动计算机 成本低

接口

连接外部设备:设备识别,数据缓冲,协议实现,屏蔽差异。通过总线与主机进行通信。

外部设备功能

完成数据的输入和/或输出:信号转换,数据采样

与接口进行连接:接口信号,电平标准等

与主机进行通信:通过总线进行,速度,控制方式

指令流水执行性能比较

k 个阶段,每段的时间都为 T,则 n 条指令所用的时间为

顺序执行: t = nkT

一次重叠执行: t = nkT - (n-1)T两次重叠执行: t = nkT - (n-2)Tm 次重叠执行: t = nkT - (n-m)T