Suites Réelles Généralités

MPSI 2

Droite numrique acheve $\overline{\mathbb{R}}$ 1

Définition 1.0.1

On note $\overline{\mathbb{R}}$ la runion de \mathbb{R} et de deux lments distincts: $-\infty$ et $+\infty$ $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$

- On peut prolonger partiellement les lois internes + et \times à $\overline{\mathbb{R}}$, mais il existe des opration indfinies.
- On peut prolonger la relation d'ordre naturelle de $\mathbb R$ à $\overline{\mathbb R}$: $\overline{\mathbb R}$ est ordonn.

Utilisation: une suite tend vers un lment de $\overline{\mathbb{R}}$

Dfinitions 2

Définition 2.0.2

On appelle suite réelle toute application $\phi \colon \mathbb{N} \longrightarrow \mathbb{R}$

$$n \longmapsto \phi(n)$$

Une suite réelle est une famille d'éléments indexée par $\mathbb N$

Notations:
$$u_n = \phi(n)$$

 $u = (u_n)_{n \in \mathbb{N}} = \phi$

Définition 2.0.3

On appelle ensemble des valeurs de $(u_n)_{n\in\mathbb{N}}$ le sous ensemble de \mathbb{R} :

$$A = \{ x \in \mathbb{R}, \ \exists n \in \mathbb{N}, \ x = u_n \}$$

Définition 2.0.4

On dit que u est une suite monotone si ϕ est monotone.

De même avec croissante et décroissante.

Définition 2.0.5

On dit que u est majorée si A est majoré dans \mathbb{R} De même avec minorée et bornée.

3 Notations et limites

3.1 Limites réelles

Définition 3.1.1

Soit $u = (u_n)_{n \in \mathbb{R}}$ une suite réelle, et l un réel.

On dit que <u>u</u> converge vers <u>l</u> si pour tout intervalle I centré en <u>l</u>, il existe un rang n_0 à partir duque <u>l</u> tous les u_n sont dans I:

$$\forall \varepsilon \in \mathbb{R}^{+*}, \ \exists n_0 \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow |u_n - l| < \varepsilon$$

Propriété 3.1.1

Si u converge vers un l réel, alors l est unique.

Utiliser les définitions, raisonner par l'absurde avec $\varepsilon = \frac{l_2 - l_1}{2}$

Notation: Si u converge vers l, on note: $\lim_{n\to +\infty}u_n=l$ $u_n \underset{n\to +\infty}{\longrightarrow} l$

Propriété 3.1.2

Toute suite convergente est bornée.

Montrer que toute suite convergente est bornée.

Soit A l'ensemble des valeurs de u, suite convergeant vers l.

Donc montrons que $\exists (a,b) \in \mathbb{N}, A \in [a,b]$

• u converge vers l donc pour $\varepsilon = 1$: $\exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow l-1 < u_n < l+1$ Soit $n_0 \in \mathbb{N}^*$, un tel entier.

• Soit $B = \{x \in \mathbb{R}, \exists n \in [0, n-1], x = u_n\}$

B est un sous-ensemble fini de \mathbb{R} donc B est borné.

Posons $a = \min(\{l-1\} \cup B)$

$$b = \min(\{l+1\} \cup B)$$

Alors $\forall n \in \mathbb{N}, \ a \leqslant u_n \leqslant b$

Propriété 3.1.3

Soit u une suite réelle convergeant vers l, telle qu'a partir d'un certain rang, tous ses termes appartiennent à un intervalle borné par a et b.

Alors $l \in [a, b]$

En sachant que u converge et que ses termes appartiennent a un intervalle borné, faire l'hypothèse que $\notin [a,b]$

Conclure.

Propriété 3.1.4

Soit u une suite convergeant vers l. Alors:

 $\exists n_0 \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow |u_n| < |l| + 1$

 $\exists n_1 \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \ n \geqslant n_1 \Rightarrow l-1 < u_n < l+1$

 $\exists n_2 \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \ n \geqslant n_2 \Rightarrow \frac{|l|}{2} < u_n < \frac{3|l|}{2}$

- $\varepsilon = 1$ et d'après la 2^{ine} inégalité triangulaire: $||u_n| |l|| \le |u_n l| < 1$ Donc $|u_n| \in]|l| - 1, |l| + 1[$
- $\varepsilon = \frac{|l|}{2}$, en utilisant le cas 1 et la 2ème inégalité triangulaire.

Propriété 3.1.5

Si u converge vers l, alors la suite de terme général $|u_n|$ converge vers |l|.

Propriété 3.1.6

Soit u une suite à termes positifs.

- Si u admet une limite l, alors $l \geqslant 0$
- Si de plus $l \neq 0$, alors $u_n > \frac{l}{2}$

3.2 Limites infinies

Définition 3.2.1

Soit u une suite réelle

- Si u n'admet pas de limites dans \mathbb{R} , on dit que u diverge.
- On dit que u diverge vers $-\infty$ si: $\forall K \in \mathbb{R}, \ \exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow u_n < K$
- On dit que u diverge vers $+\infty$ si: $\forall K \in \mathbb{R}, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant n_0 \Rightarrow u_n > K$

Notation: Si u diverge vers l'infini, on note: $\lim_{n\to +\infty} u_n = \pm \infty$