Dynamic routing with OSPF

Lecture 8

SoftUni Team Technical Trainers

Software University

Questions

sli.do #CNF

Table of Contents

- 1. Introduction to dynamic routing
- 2. OSPF introduction
- 3. Single area OSPF configuration

Introduction to dynamic routing

Static vs dynamic routing

Static routing:

- Routes to destination networks configured manually
- Routing tables not updated if there is better route or lost network
- Big administrative overhead, hard to manage

Dynamic routing:

- Routers dynamically exchange the networks they know about
- Routing tables are created with the best routes to destinations
- Routing tables dynamically create or remove entries

Distance-vector vs link-state protocols

Distance-vector protocols

- Designed for small networks
- Not scalable
- Examples: RIP, IGRP, BGP

Link-state protocols

- Designed for small, medium and large networks
- Can scale
- Examples: OSPF, IS-IS

Distance-vector vs link-state protocols (2)

Distance-vector protocols

Link-state protocols

RIP vs OSPF

- RIP: Routing Information Protocol
 - Not efficient in the communication (uses broadcast, sends only periodic updates in v1)
 - Classful protocol (by default)
 - Uses hop count as a metric
- OSPF: Open Shortest Path First
 - Very efficient (uses multicast, sends triggered updates)
 - Classless protocol (but can summarize)
 - Uses cost as a metric

RIP Metric: hop count

OSPF Metric: cost

Multiple protocols in the same network

Administrative distance

Default Distance	Routing Table Entry
0	С
0	S
1	S
5	D
20	В
90	D
100	I
110	0
115	i
120	R
140	E
160	0
170	D EX
200	В
255	
	0 0 1 5 20 90 100 110 115 120 140 160 170 200

OSPF advantages

- Fast convergence with triggered updates
- Hierarchical structure (areas)
- VLSM support (classless protocol)
- Efficient communication with neighbors
- Uses intelligent metric (cost)
- Open standard

OSPF disadvantages

- Requires more RAM and CPU on the devices maintains different tables (neighbor, topology, routing)
- Requires good and careful design when multiple areas are needed
- More complex to configure and troubleshoot

OSPF terms

- LSA Link State Advertisement
- Router ID
- Area
- ABR Area Border Router
- Autonomous system
- ASBR Autonomous System Boundary Router

OSPF terms: router ID

OSPF terms (2)

Area 0 = the backbone area

Wildcard masks

- In the subnet masks, 1 means "do care" and 0 means "don't care"
- Examples:
 - 192.168.1.0 <u>255.255.255</u>.0 -> refers to 192.168.1.0 network
 - Loopback address: 10.1.1.1 <u>255.255.255.255</u> -> exact IP address
- In the wildcard masks, 0 means "do care" and 1 means "don't care"
- Examples:
 - 192.168.1.0 0.0.0.255 -> refers to 192.168.1.0 network
 - Loopback address: 10.1.1.1 <u>0.0.0.0</u> -> exact IP address

Process ID

- router ospf process-id
- Has a local significance only the numbers does not have to match between the routers
- Separates processes as they are different routing protocols
- It is rarely necessary to have more than 1 process on a router

The "network" command

- The network A.B.C.D Wildcard_Mask command makes two things:
 - > It enables the interface (sends OSPF "Hello" messages)
 - ➤ It advertises the network ("I know about network A.B.C.D")

to all OSPF enabled interfaces

The "network" command (2)

<u>R1</u>:

network 10.0.0.0 0.0.0.255

<u>R2</u>:

network 10.0.0.0 0.0.0.255 network 20.0.0.0 0.0.0.255

→ ①
Hello!
I have network 10 and 20!

Single area OSPF configuration

Single area OSPF configuration

- Minimum configuration:
 - router ospf process_id
 - router-id number (optional)
 - network A.B.C.D wildcard_mask area number
- Example:
 - router ospf 1
 - router-id 1.1.1.1 (optional)
 - network 192.168.1.0 0.0.0.255 area 0
 - network 10.0.0.0 0.0.0.255 area 0

OSPF passive interface

- The "network" command advertises the network AND sends hello messages out of the interface
- What if there is non-OSPF device on the other end of the link?
 - The Hello packets will be useless
 - Represents security issues
- One solution: use passive interfaces

OSPF passive interface (2)

<u>R1</u>:

network 10.0.0.0 0.0.0.255

<u>R2</u>:

network 10.0.0.0 0.0.0.255 network 20.0.0.0 0.0.0.255

passive-interface G0/1

I have network 10 and 20

Useful OSPF commands

- show ip ospf interface
- show ip ospf neighbor
- show run | begin ospf
- show ip route [ospf]

Tracing a route for a packet

- Some tips to check which path a packet will take in a multi-path L3 network:
 - show ip route to check a router's routing table
 - tracert A.B.C.D (from Windows)
 - traceroute A.B.C.D (from Cisco, Linux, etc.)
 - *Use the Packet Tracer simulation mode

^{*} not applicable in real networks

Summary

- 1. Introduction to dynamic routing
- 2. OSPF introduction
- 3. Single area OSPF configuration

Educational Partners

SoftUni Diamond Partners

SUPER HOSTING .BG

Решения за твоето утре

Questions?

Trainings @ Software University (SoftUni)

- Software University High-Quality Education, Pr ofession and Job for Software Developers
 - softuni.bg, about.softuni.bg
- Software University Foundation
 - softuni.foundation
- Software University @ Facebook
 - facebook.com/SoftwareUniversity
- Software University Forums
 - forum.softuni.bg

License

- This course (slides, examples, demos, exercises, homework, doc uments, videos and other assets) is copyrighted content
- Unauthorized copy, reproduction or use is illegal
- © SoftUni https://about.softuni.bg
- © Software University https://softuni.bg

