1. Докажите, что величины α , β , γ независимы в совокупности (вероятность события ($\alpha=\alpha_i,\beta=\beta_i,\gamma=\gamma_i$) равна произведению трех отдельных вероятностей) тогда и только тогда, когда

$$H(\alpha, \beta, \gamma) = H(\alpha) + H(\beta) + H(\gamma).$$

Определение 1

Взаимной информацией между случайными величинами α и β будем называть функцию $I(\alpha:\beta) = H(\alpha) - H(\alpha|\beta)$.

Также определим взаимную информацию в α и β при условии γ . $I(\alpha:\beta|\gamma)=H(\alpha|\gamma)-H(\alpha|\beta,\gamma).$

- 2. Докажите следующие свойства взаимной информации:
 - a) $I(\alpha : \beta) = I(\beta : \alpha)$
 - b) α и β независимы тогда и только тогда, когда $I(\alpha : \beta) = 0$.
 - c) $I(f(\alpha):\beta) \leq I(\alpha:\beta)$ для любой функции f.
- **3** (неравенство Шерера). Пусть T_1, \ldots, T_k произвольные кортежи, составленные из переменных $\alpha_1, \ldots, \alpha_n$, причем каждая переменная входит ровно в r кортежей. Докажите, что $rH(\alpha_1, \ldots, \alpha_n) \leq H(T_1) + \ldots + H(T_n)$.
- **4.** Докажите, что следующее неравенство выполнено *не для всех* троек случайных величин (α, β, γ) :

$$2H(\alpha, \beta, \gamma) \le H(\alpha, \beta) + H(\alpha, \gamma|\beta) + H(\beta, \gamma|\alpha).$$

- **5.** Пусть случайная величина α имеет распределение 1/3, 2/3, а случайная величина β имеет распределение 1/2, 1/2. В каких пределах может изменяться $H(\alpha, \beta)$?
- **6.** Пусть $\alpha=(\alpha_1,\dots,\alpha_n)$ случайная величина, задающая последовательность состояний Марковской цепи, изображенной на рисунке. Чему равен предел $\lim_{n\to\infty}\frac{H(\alpha)}{n}$, если $\alpha_0=0$?

- 7. Пусть α , α' две независимые одинаково распределенные величины. Докажите, что $\Pr[\alpha=\alpha'] \geq 2^{-H(\alpha)}$.
- **8.** Имеется набор из n камней. Сколько взвешиваний необходимо, чтобы найти самый тяжелый и самый легкий камни (на каждую чашу можно класть не более одного камня)?

