Ciência da Computação

Prof. Tiago J. Arruda

Exercícios Propostos¹

↑ Base ortonormal e norma

1. Seja $\mathcal{E}=(\vec{i},\vec{j},\vec{k})$ uma base ortonormal. Calcule a norma de \vec{u} , isto é, $||\vec{u}||$, nos casos:

(a) $\vec{u} = (1, 1, 1)_{\mathcal{E}}$ (b) $\vec{u} = 3\vec{i} + 4\vec{k}$ (c) $\vec{u} = -\vec{i} + \vec{j}$ (d) $\vec{u} = 4\vec{i} + 3\vec{j} - \vec{k}$

- 2. Na figura abaixo, temos um cubo de aresta unitária. Considere os vetores $\vec{e}_1 = \overrightarrow{DH}$, $\vec{e}_2 = \overrightarrow{DC}$, $\vec{e}_3 = \overrightarrow{DA}$, $\vec{u} = \overrightarrow{CD} + \overrightarrow{CB}$, $\vec{v} = \overrightarrow{DC} + \overrightarrow{CB}$ e $\vec{w} = \overrightarrow{GC}$.
 - (a) Explique porque $E = (\vec{e}_1, \vec{e}_2, \vec{e}_3)$ é uma base ortonormal.
 - (b) Calcule as coordenadas de \vec{u} , \vec{v} e \vec{w} na base E.

- (c) Mostre que $F=(\vec{f_1},\vec{f_2},\vec{f_3})$ é uma base ortonormal, sendo $\vec{f_1}=\frac{\vec{u}}{||\vec{u}||},$ $\vec{f_2}=\frac{\vec{v}}{||\vec{v}||}$ e $\vec{f_3}=\vec{w}$. Os vetores $\vec{f_1}$ e \vec{f}_2 são chamados de *versores* de \vec{u} e \vec{v} , respectivamente.
- (d) Obtenha a matriz M de mudança de base de E para F, bem como a matriz de mudança de F para E. A matriz M é ortogonal? Justifique.
- (e) Calcule as coordenadas do vetor \overrightarrow{HB} na base E e na
- **3.** Dados os pontos A = (2, 4, 3), B = (5, 1, -3) e C = (0, -3, 1) na base canônica, desenhe o triângulo ABC no espaço cartesiano \mathbb{R}^3 e determine:
 - (a) Os vetores \overrightarrow{AB} , \overrightarrow{BC} e \overrightarrow{CA} .
 - (b) O comprimento dos três lados do triângulo, dados por $||\overrightarrow{AB}||$, $||\overrightarrow{BC}||$ e $||\overrightarrow{CA}||$. O triângulo é isósceles? Justifique.
 - (c) Os pontos médios dos três lados do triângulo. Mostre que a mediana relativa ao lado AB coincide com a sua mediatriz.
 - (d) A soma $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}$. Por que essa soma deve ser zero?

↑ Produto escalar e ângulo entre vetores

- 4. Demonstre as expressões abaixo.
 - (a) Prove que $|\vec{u} \cdot \vec{v}| \leq ||\vec{u}|| ||\vec{v}||$ (Desigualdade de Schwarz) e que $|\vec{u} \cdot \vec{v}| = ||\vec{u}|| ||\vec{v}||$ se, e somente se, \vec{u} é paralelo a \vec{v} .
 - (b) Use o item (a) para provar que $||\vec{u} + \vec{v}|| \le ||\vec{u}|| + ||\vec{v}||$ (Desigualdade triangular).
 - (c) Prove que $4\vec{u} \cdot \vec{v} = ||\vec{u} + \vec{v}||^2 ||\vec{u} \vec{v}||^2$.
- 5. São dadas as coordenadas de \vec{u} e \vec{v} em relação a uma base ortonormal fixada. Calcule, em radianos, o ângulo entre \vec{u} e \vec{v} .

¹Resolva os exercícios sem omitir nenhuma passagem em seus cálculos. Respostas sem resolução e/ou justificativa não serão consideradas. Data máxima de entrega: 13/05/2024 até 14:00 horas

Ciência da Computação

Prof. Tiago J. Arruda

(a) $\vec{u} = (1, 0, 1), \vec{v} = (-2, 10, 2)$

(c) $\vec{u} = (3, 3, 0), \vec{v} = (2, 1, -2)$

(b) $\vec{u} = (-1, 1, 1), \vec{v} = (1, 1, 1)$

(d) $\vec{u} = (\sqrt{3}, 1, 0), \vec{v} = (\sqrt{3}, 1, 2\sqrt{3})$

6. Considerando uma base ortonormal fixada, determine x de modo que \vec{u} e \vec{v} sejam ortogonais, isto é, $\vec{u} \cdot \vec{v} = 0$.

(a) $\vec{u} = (x+1,1,2), \vec{v} = (x-1,-1,-2)$ (b) $\vec{u} = (x,x,4), \vec{v} = (4,x,1)$

7. (a) Obtenha \vec{u} ortogonal a $\vec{v} = (4, -1, 5)$ e $\vec{w} = (1, -2, 3)$ tal que $\vec{u} \cdot (1, 1, 1) = -1$.

(b) Ache \vec{u} tal que $||\vec{u}|| = 3\sqrt{3}$ e \vec{u} é ortogonal a $\vec{v} = (2, 3, -1)$ e $\vec{w} = (2, -4, 6)$. Dos vetores \vec{u} encontrados, qual forma ângulo agudo com o vetor $\vec{i} = (1, 0, 0)$?

(c) O ângulo em radianos entre \vec{u} e \vec{v} é $\frac{\pi}{4}$. Sabendo que $||\vec{u}|| = \sqrt{5}$ e $||\vec{v}|| = 1$, calcule o ângulo entre $\vec{u} + \vec{v}$ e $\vec{u} - \vec{v}$.

♠ Projeção ortogonal

8. Calcule a projeção ortogonal de \vec{v} sobre \vec{u} em cada caso, onde se considerou uma base ortonormal fixada.

(a) $\vec{v} = (1, -1, 2), \ \vec{u} = (3, -1, 1)$

(c) $\vec{v} = (-1, 1, 1), \vec{u} = (-2, 1, 2)$

(b) $\vec{v} = (1, 3, 5), \vec{u} = (-3, 1, 0)$ (d) $\vec{v} = (1, 2, 4), \vec{u} = (-2, -4, -8)$

9. Dada a base ortonormal $\mathcal{E} = (\vec{i}, \vec{j}, \vec{k})$, sejam $\vec{u} = 2\vec{i} - 2\vec{j} + \vec{k}$ e $\vec{v} = 3\vec{i} - 6\vec{j}$.

(a) Obtenha a projeção ortogonal de \vec{v} sobre \vec{u} , e de \vec{u} sobre \vec{v} .

(b) Determine \vec{p} e \vec{q} tais que $\vec{v} = \vec{p} + \vec{q}$, sendo \vec{p} paralelo e \vec{q} ortogonal a \vec{u} .

(c) Use o resultado anterior para calcular a área do paralelogramo gerado por \vec{u} e \vec{v} .

↑ Produto vetorial

10. Fixada uma base ortonormal positiva, calcule $\vec{u} \times \vec{v}$ e determine $||\vec{u} \times \vec{v}||$.

(a) $\vec{u} = 3\vec{i} + 3\vec{j} \text{ e } \vec{v} = 5\vec{i} + 4\vec{j}$ (c) $\vec{u} = (1, -3, 1), \ \vec{v} = (1, 1, 4)$

(b) $\vec{u} = (7, 0, -5), \vec{v} = (1, 2, -1)$

(d) $\vec{u} = (2, 1, 2), \vec{v} = (4, 2, 4)$

11. (a) Mostre que $||\vec{u} \times \vec{v}||^2 = ||\vec{u}||^2 ||\vec{v}||^2 - (\vec{u} \cdot \vec{v})^2$.

(b) Calcule a norma de $\vec{u} \times \vec{v}$, sabendo que $\vec{u} \cdot \vec{v} = 3$, $||\vec{u}|| = 1$ e $||\vec{v}|| = 5$.

(c) O lado do triângulo equilátero ABC mede ℓ . Calcule $||\overrightarrow{AB} \times \overrightarrow{AC}||$ em função de ℓ .

12. Fixada a base canônica $\mathcal{E} = (\vec{i}, \vec{j}, \vec{k})$, determine o vetor $\vec{x} = a\vec{i} + b\vec{j} + c\vec{k}$.

(a) $\begin{cases} \vec{x} \cdot (2\vec{i} + 3\vec{j} + 4\vec{k}) = 9 \\ \vec{x} \times (-\vec{i} + \vec{j} - \vec{k}) = -2\vec{i} + 2\vec{k} \end{cases}$ (b) $\begin{cases} \vec{x} \times (1, 0, 1) = 2(1, 1, -1) \\ ||\vec{x}|| = \sqrt{6} \end{cases}$

(c) \vec{x} tem norma $\sqrt{3}$, é ortogonal a $\vec{u} = (-3,0,3)$ e a $\vec{v} = (2,-2,0)$, e forma ângulo obtuso com \vec{i} .

Ciência da Computação

Prof. Tiago J. Arruda

↑ Cálculo de áreas e volumes

- 13. Calcule as seguintes áreas e comprimentos:
 - (a) Área do paralelogramo ABCD, sendo $\overrightarrow{AB}=(1,1,-1),\ A=(3,2,-1)$ e D=(5,3,3).
 - (b) Área do triângulo \overrightarrow{ABC} , sendo $\overrightarrow{AB} = (-1,1,0)$ e $\overrightarrow{AC} = (0,1,3)$, bem como a altura do triângulo relativa ao vértice A e ao lado BC.
- **14.** (a) Prove que $\vec{u} \cdot (\vec{v} \times \vec{w}) = (\vec{u} \times \vec{v}) \cdot \vec{w} = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$, onde $\vec{u} = (x_1, y_1, z_1)$, $\vec{v} = (x_2, y_2, z_2)$ e $\vec{w} = (x_3, y_3, z_3)$ estão escritos na base canônica. Tal determinante é indicado por $[\vec{u}, \vec{v}, \vec{w}]$ e é chamado de *produto misto*.
 - (b) Calcule o produto misto $[\vec{u}, \vec{v}, \vec{w}]$ para $\vec{u} = (1, 3, 2), \vec{v} = (0, 1, -2)$ e $\vec{w} = (-1, 2, 0),$ e use as *propriedades do determinante* para obter diretamente os valores de $[\vec{u}, \vec{w}, \vec{v}],$ $[\vec{v}, 2\vec{w}, \vec{u}]$ e $[\vec{u}, 3\vec{v} 2\vec{u}, \vec{w} + 3\vec{u}].$
- **15.** Considere o paralelepípedo $\overrightarrow{ABCDEFGH}$ da figura abaixo. Em relação a uma base ortonormal positiva, $\overrightarrow{AB} = (1,0,1)$, $\overrightarrow{BE} = (2,2,2)$ e $\overrightarrow{AF} = (3,5,6)$. Calcule:

- (a) A área do paralelogramo ABCD.
- (b) O volume do paralelepípedo ABCDEFGH.
- (c) A altura do paralelepípedo em relação à face ABCD.
- (d) O volume do tetraedro EABD.
- (e) A altura do tetraedro EABD em relação à face DEB.