Brief Introduction to Deep Learning and TensorFlow

Deep Learning in Earth Science Lecture 1 By Xiao Zhuowei

For researchers interested in studying Earth science with deep learning.

All resources in lectures are available at https://github.com/MrXiaoXiao/DLiES

TensorFlow Basics

Classifying Stability of Mantle with Neural Networks: An Example

Discussions

Deep Learning is about automatically obtaining representation of input and mapping (from representation) to output with deep neural network architectures.

Obtain the *representation* of input.

What We See

(https://adeshpande3.github.io)

(Deep Learning, MIT Press, 2016)

Obtain *mapping* from representation to output.

(Deep Learning, MIT Press, 2016)

Complicated representations are built out of simpler ones.

The graph of deep learning architecture is deep, with many layers.

Considering deep learning as algorithm for non-linear function approximation

 $Ideal\ Output = Ideal\ Function(Input + Noise)$

Approximation of Ideal Output = DL Model(Input + Noise)

What can deep learning do in Earth science?

Classification

Denoising

Forward Modeling

Inversion

• • •

What can deep learning do in Earth science?

Classification

Predicting aftershocks following large earthquakes

(DeVries et al., 2018)

What can deep learning do in Earth science?

Classification

Processing remote sensing data

(Zhang et al., 2016)

What can deep learning do in Earth science? Denoising Trace number Trace number Noisy input DL output

(Beckouche and Ma, 2014)

What can deep learning do in Earth science?

Forward Modeling

Fast approximate simulation of seismic waves with deep learning

(Moseley et al., 2018)

What can deep learning do in Earth science?

Inversion

(Araya-Polo et al., 2018)

Model

Observation

Inversion by DL

(Adler and Öktem, 2017)

TensorFlow Basics

Classifying Stability of Mantle with Neural Networks: An Example

Discussions

TensorFlow™ is an open source software library for high performance numerical computation.

https://www.tensorflow.org/

or

https://tensorflow.google.cn/

Install TensorFlow via Anaconda

Anaconda Distribution is a free, easy-to-install package manager, environment manager and Python distribution with a collection of 1,000+ open source packages with free community support.

Anaconda Download (https://www.anaconda.com/download/)

Tensorflow-in-Anaconda (https://www.anaconda.com/blog/developer-blog/tensorflow-in-anaconda/)

Python is an interpreted high-level programming language for general-purpose programming.

(https://www.python.org/)

How The Python Interpreter Works

(http://opensourceforgeeks.blogspot.com/2015/10/how-python-works.html)

The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text.

https://jupyter.org/

Image Manipulation with skimage

This example builds a simple UI for performing basic image manipulation with scikit-image.

- In [21]: from ipywidgets import interact, interactive, fixed from IPython.display import display
- In [22]: import skimage
 from skimage import data, filter, io
- In [23]: i = data.coffee()
- In [24]: io.Image(i)

Out[24]:


```
In [25]: def edit_image(image, sigma=0.1, r=1.0, g=1.0, b=1.0):
    new_image = filter.gaussian_filter(image, sigma=sigma, multichannel=True)
    new_image[;;;,0] = r*new_image[;;,0]
    new_image[;;,1] = g*new_image[;;,1]
    new_image[;;,2] = b*new_image[;;,2]
    new_image = io.Image(new_image)
    display(new_image)
    return new_image
```

In [26]: lims = (0.0,1.0,0.01)
w = interactive(edit_image, image=fixed(i), sigma=(0.0,10.0,0.1), r=lims, g=lims, b=lims)
display(w)

TensorFlow Approximate curve with gradient decent

TensorFlow Basics

Classifying Stability of Mantle with Neural Networks: An Example

Discussions

- **TensorFlow Basics**
- Classifying Stability of Mantle with Neural Networks: An Example
- 4 Discussions

TensorFlow Installation via Anaconda

Step 1. Install Anaconda from (https://www.anaconda.com/download/)

Anaconda

Prompt

Step 2. Create a new conda environment containing TensorFlow.

Open Anaconda Prompt and run

'conda create -n tensorflow_env tensorflow python=3.6'

or

'conda create -n tensorflow_gpuenv tensorflow-gpu python=3.6'

for GPU version

Congratulations...

