Variational inference

Quiz, 6 questions

1 point

1.

When $\mathcal{KL}(q||p)$ is equal to zero?

Never.

1 point

2.

Consider true ditribution p(x) which we want to approximate with some distribution q(x) minimizing either forward $(\mathcal{KL}(p||q))$ or reverse $(\mathcal{KL}(q||p))$ \mathcal{KL} -divergence. We call *zero-forcing* the effect when q(x) is forced to be 0 in some areas even if p(x)>0. We call *zero-avoiding* the effect when q(x)=0 is avoid whenever p(x)>0. Select true statements.

$$\mathcal{KL}(q||p)$$
 is zero-forcing.

$$\mathcal{KL}(q||p)$$
 is zero-avoiding.

$$\mathcal{KL}(p||q)$$
 is zero-forcing.

1 point

3.

Consider we learn true bimodal distribution p(x) (blue line) with Gaussian distribution q(x) (orange line) by minimizing reverse \mathcal{KL} -divergence $\mathcal{KL}(q||p)$. Which distribution will be fitted?

Quiz, 6 questions

(b)

Variational inference

Submit Quiz

Variational inference

Quiz, 6 questions

