위스콘신 유방암 데이터의 하이퍼 파라미터 튜닝

학습 목표

- 배깅 방식의 알고리즘인 랜덤 포레스트를 이용하여 모델을 만들어봅니다.
- GridSearchCV를 이용하여 하이퍼 파리미터 튜닝을 수행해 봅니다.

학습 내용

- 위스콘신 유방암 데이터 세트에 대한 랜덤포레스트 모델 생성 및 학습
- 하이퍼 파라미터 튜닝해 보기

데이터 로드 및 전처리

```
In [25]: ▶
```

```
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib

from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_breast_cancer
```

```
In [26]: ▶
```

```
cancer = load_breast_cancer()
cancer_df = pd.DataFrame(cancer.data, columns=cancer.feature_names)
cancer_df.head()
```

Out[26]:

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mear symmetry
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809

5 rows × 30 columns

In [27]:

cancer_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 30 columns):

#	Column	Non-Null Count	Dtype
0	mean radius	569 non-null	float64
1	mean texture	569 non-null	float64
2	mean perimeter	569 non-null	float64
3	mean area	569 non-null	float64
4	mean smoothness	569 non-null	float64
5	mean compactness	569 non-null	float64
6	mean concavity	569 non-null	float64
7	mean concave points	569 non-null	float64
8	mean symmetry	569 non-null	float64
9	mean fractal dimension	569 non-null	float64
10	radius error	569 non-null	float64
11	texture error	569 non-null	float64
12	perimeter error	569 non-null	float64
13	area error	569 non-null	float64
14	smoothness error	569 non-null	float64
15	compactness error	569 non-null	float64
16	concavity error	569 non-null	float64
17	concave points error	569 non-null	float64
18	symmetry error	569 non-null	float64
19	fractal dimension error	569 non-null	float64
20	worst radius	569 non-null	float64
21	worst texture	569 non-null	float64
22	worst perimeter	569 non-null	float64
23	worst area	569 non-null	float64
24	worst smoothness	569 non-null	float64
25	worst compactness	569 non-null	float64
26	worst concavity	569 non-null	float64
27	worst concave points	569 non-null	float64
28	worst symmetry	569 non-null	float64
29	worst fractal dimension	569 non-null	float64

dtypes: float64(30) memory usage: 133.5 KB

In [28]: ▶

print(cancer_df.shape)

(569, 30)

데이터 설명

- 위스콘신 유방암 데이터 세트는 유방암의 악성 종양, 양성 종양 여부를 결정하는 이진 분류
- 종양의 크기, 모양 등의 형태와 관련한 많은 피처를 가지고 있음.
- 569개의 행과, 30개의 피처로 이루어진 데이터
- null 값이 없음. 값들은 실수로 되어 있음.

데이터 나누기

```
In [41]:
                                                                                           H
# 피처와 레이블를 지정.
X = cancer_df[:]
y = cancer.target
X.shape, y.shape
Out [41]:
((569, 30), (569,))
In [45]:
                                                                                           M
from sklearn.model_selection import train_test_split
X_train , X_test, y_train, y_test = train_test_split(X, y,
                                                 test_size=0.2, random_state=0)
X_train.shape, X_test.shape, y_train.shape, y_test.shape
Out [45]:
((455, 30), (114, 30), (455,), (114,))
GridSearchCV를 이용한 랜덤 포레스트의 하이퍼 파라미터 튜닝
In [46]:
                                                                                           M
### 기본 RandomForest 모델
In [47]:
                                                                                           H
# 모델 선택
model = RandomForestClassifier()
# 학습
model.fit(X_train, y_train)
# 예측
pred = model.predict(X_test)
print("예측 정확도 : {0:.4f}".format(accuracy_score(y_test, pred) ))
예측 정확도 : 0.9561
In [48]:
                                                                                           H
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score
```

In [49]: params = { "n_estimators" : [100],

```
"max_depth": [6,8,10,12],
    "min_samples_leaf":[8,12,18],
    "min_samples_split":[8,16,20]
}
```

In [50]:

```
# RandomForestClassifier 모델 객체 생성 후, GridSearch 수행
model_rf = RandomForestClassifier(random_state=0, n_jobs=-1)
grid_cv = GridSearchCV(model_rf, param_grid=params, cv=2, n_jobs=-1)
grid_cv.fit(X_train, y_train)
print("최적의 하이퍼 파리미터 : ₩n", grid_cv.best_params_)
print("최고의 정확도 : {0:.4f}".format(grid_cv.best_score_ ))
```

```
최적의 하이퍼 파리미터 :
{'max_depth': 6, 'min_samples_leaf': 8, 'min_samples_split': 8, 'n_estimators': 10
0}
최고의 정확도: 0.9451
```

• 위의 내용을 이용하여 최종 모델 만들기

In [51]: M

```
# 모델 선택
model_Irf = RandomForestClassifier(n_estimators= 100, max_depth= 6,
                                  min_samples_leaf= 8, min_samples_split= 8, random_state=0)
model_Irf.fit(X_train, y_train)
pred = model_Irf.predict(X_test)
print("예측 정확도 : {0:.4f}".format(accuracy_score(y_test, pred) ))
```

예측 정확도 : 0.9649

02. 모델 수행 후, feature(피처)의 중요도 확인해보기

In [55]: H

```
import seaborn as sns
import matplotlib.pyplot as plt
f_imp_values = model_Irf.feature_importances_
f_importances = pd.Series(f_imp_values, index=X_train.columns)
                                                              # 10위까지의 중요도 확인
f_top10 = f_importances.sort_values(ascending=False)[:10]
```

In [57]:

```
plt.figure(figsize=(8, 6))
plt.title("Feature importances Top 20")
sns.barplot(x=f_top10, y=f_top10.index)
plt.show()
```


정리

• GridSearchCV를 활용하여 하이퍼 파리미터 튜닝이 가능하다.