GATE - 2019 - CE

EE1030: Matrix Theory Indian Institute of Technology Hyderabad

Satyanarayana Gajjarapu AI24BTECH11009

1 14 - 26

1) For a small value of h, the Taylor series expansion for f(x+h) is

a)
$$f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f'''(x) + \dots + \infty$$

a)
$$f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f'''(x) + \dots + \infty$$

b) $f(x) - hf'(x) + \frac{h^2}{2!}f''(x) - \frac{h^3}{3!}f'''(x) + \dots + \infty$
c) $f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{3}f'''(x) + \dots + \infty$
d) $f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{3}f'''(x) + \dots + \infty$

c)
$$f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{3}f'''(x) + \dots + \infty$$

d)
$$f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{3}f'''(x) + \dots + \infty$$

2) A plane truss is shown in the figure (not drawn to scale).

Which one of the options contains ONLY zero force members in the truss?

- a) FG, FI, HI, RS
- b) FG, FH, HI, RS
- c) FI, HI, PR, RS
- d) FI, FG, RS, PR
- 3) An element is subjected to biaxial normal tensile strains of 0.0030 and 0.0020. The normal strain in the plane of maximum shear strain is
 - a) Zero

- b) 0.0010
- c) 0.0025
- d) 0.0050
- 4) Consider the pin-jointed plane truss shown in the figure (not drawn to scale). Let R_P , R_Q , and R_R denote the vertical reactions (upward positive) applied by the supports at P, Q, and R, respectively, on the truss. The correct combination of (R_P, R_Q, R_R) is represented by

- a) (30, -30, 30)kN
- b) (20, 0, 10)kN
- c) (10, 30, -10)kN
- d) (0,60,-30)kN
- 5) Assuming that there is no possibility of shear buckling in the web, the maximum reduction permitted by IS 800-2007 in the (low-shear) design bending strength of a semi-compact steel section due to high shear is
 - a) zero
 - b) 25%
 - c) 50%
 - d) governed by the area of the flange
- 6) In the reinforced beam section shown in the figure (*not drawn to scale*), the nominal cover provided at the bottom of the beam as per IS 456-2000, is

All dimensions are in mm

- a) 30 mm
- b) 36 mm
- c) 42 mm
- d) 50 mm
- 7) The interior angles of four triangles are given below:

Triangle	Interior Angles
P	85°, 50°, 45°
Q	100°, 55°, 25°
R	100°, 45°, 35°
S	130°, 30°, 20°

Which of the triangles are ill-conditioned and should be avoided in Triangulation surveys ?

- a) Both P and R
- b) Both Q and R
- c) Both P and S
- d) Both Q and S
- 8) The coefficient of average rolling friction of a road is f_r and its grade is +G%. If the grade of this road is doubled, what will be the percentage change in the braking distance (for the design vehicle to come to a stop) measured along the horizontal (assume all other parameters are kept unchanged)?
 - a) $\frac{0.01G}{f_r + 0.02G} \times 100$
 - b) $\frac{f_r}{f_r + 0.02G} \times 100$

- c) $\frac{0.02G}{f_r + 0.01G} \times 100$ d) $\frac{2f_r}{f_r + 0.01G} \times 100$
- 9) An isolated concrete pavement slab of length L is resting on a frictionless base. The temperature of the top and bottom fibre of the slab are T_t and T_b , respectively. Given: the coefficient of thermal expansion = α and the elastic modulus = E. Assuming $T_t > T_b$ and the unit weight of concrete as zero, the maximum thermal stress is calculated as
 - a) $L\alpha (T_t T_b)$
 - b) $E\alpha (T_t T_b)$ c) $\frac{E\alpha (T_t T_b)}{2}$

 - d) zero
- 10) In a rectangular channel, the ratio of the velocity head to the flow depth for critical flow condition, is

 - a) $\frac{1}{2}$ b) $\frac{2}{3}$ c) $\frac{3}{2}$ d) 2
- 11) If the path of an irrigation canal is below the bed level of a natural stream, the type of cross-drainage structure provided is
 - a) Aqueduct
 - b) Level crossing
 - c) Sluice gate
 - d) Super passage
- 12) A catchment may be idealised as a rectangle. There are three rain gauges located inside the catchment at arbitrary locations. The average precipitation over the catchment is estimated by two methods: (i) Arithmetic mean (P_A) , and (ii) Thiessen polygon (P_T) . Which one of the following statements is correct?
 - a) P_A is always smaller than P_T
 - b) P_A is always greater than P_T
 - c) P_A is always equal to P_T
 - d) There is no definite relationship between P_A and P_T
- 13) A retaining wall of height H with smooth vertical backface supports a backfill inclined at an angle β with the horizontal. The backfill consists of cohesionless soil having angle of internal friction ϕ . If the active lateral thrust acting on the wall is P_a , which one of the following statements is TRUE?
 - a) P_a acts at a height $\frac{H}{2}$ from the base of the wall and at an angle β with the horizontal
 - b) P_a acts at a height $\frac{H}{2}$ from the base of the wall and at an angle ϕ with the horizontal
 - c) P_a acts at a height $\frac{H}{3}$ from the base of the wall and at an angle β with the horizontal

d) P_a acts at a height $\frac{H}{3}$ from the base of the wall and at an angle ϕ with the horizontal