

Departamento de Matemática da Universidade de Aveiro

Álgebra Linear e Geometria Analítica

Exame de Recurso

6 de Julho de 2007 Duração: 3 horas

Nome: Nº mecanográfico:	Curso:
Caso pretenda desistir assine a seguinte decl Declaro que desisto.	

Questão	1a	1b	1c	2a	2b	2c	3a	3b	4a	4b	total
Cotação	05	10	10	10	10	10	10	10	10	15	100
Classificação											
Questão	5a	5b	5c	6a	6b	6c	6d	7a	7b	7b	total
Questão Cotação	5a 10	5b 10	5c 10	6a 10	6b 10	6c 10	6d 10	7a 10	7b 10	7b 10	total 100

IMPORTANTE: Justifique resumidamente todas as suas afirmações e indique os cálculos que efectuou.

1. Considere

$$A = \begin{bmatrix} a & 0 & a & 0 \\ a & -1 & a & -1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$
 e
$$B = \begin{bmatrix} a \\ 1 \\ -a \end{bmatrix},$$

onde $a \in \mathbb{R}$.

(a) Determine os valores de a para os quais o sistema homogéneo AX=0 é determinado.

(b) Determine os valores de a para os quais o sistema AX = B é possível.

(c) Seja $C=\begin{bmatrix}a&0&a\\a&-1&1\\0&1&-a\end{bmatrix}$ a matriz formada pela premeira e segunda coluna de A e por B.

Determine os valores de a para os quais o sistema $CX = (1,1,1)^T$ é de Cramer e, para os valores obtidos, calcule a segunda componente de X, utilizando a regra de Cramer.

- 2. Seja A uma matriz quadrada do tipo $n \times n$ tal que $A^T A = I$.
 - (a) Mostre que det(A) = 1 ou det(A) = -1.

(b) Diga, justificando, se A é invertível.

(c) Supondo que $A^2=I,$ mostre que A é simétrica.

- 3. Sejam X=(1,1,2) e Y=(-1,2,3) dois vectores de $\mathbb{R}^3.$
 - (a) Determine um vector $Z \in \mathbb{R}^3, \ Z \neq 0$, que seja ortogonal a X e a Y.

(b) Calcule a área do paralelogramo com arestas correspondentes a X e a Y.

- 4. Considere $S = \{(x, y, z) \in \mathbb{R}^3 \mid x + 3y = z\}.$
 - (a) Mostre que S é um subespaço vectorial de $\mathbb{R}^3.$

(b) Determine uma base ${\cal B}$ para ${\cal S}$ e indique a dimensão deste subespaço.

4/8

5. Considere a transformação linear

$$L: \mathbb{R}^3 \to \mathbb{R}^3.$$

$$(x, y, z) \mapsto (x + y, y - z, x + 2y - z)$$

(a) Determine a dimensão do núcleo de L. Diga justificando se L é injectiva.

(b) Sem calcular a imagem de L, diga, justificando, qual é a dimensão deste subespaço. Diga justificando se L é sobrejectiva.

(c) Escreva a matriz $[L]_{A,B}$ de L relativamente às bases

$$A = ((1, 1, 1), (1, 1, 0), (1, 0, 0))$$
 e $B = ((1, 0, 0), (1, 1, 0), (1, 1, 1)).$

5/8

6. Seja $f: \mathbb{R}^3 \to \mathbb{R}^3$ a aplicação linear definida por f(v) = Av, onde

$$A = \begin{bmatrix} 1 & 4 & 6 \\ 2 - a & 4 & a \\ 0 & a - 7 & 0 \end{bmatrix}.$$

(a) Determine os valores de $a \in \mathbb{R}$ para os quais f é invertível.

(b) Determine a matriz de mudança de base, da base canónica para a base G=((-1,0,0),(0,3,0),(0,0,2)) de \mathbb{R}^3 .

(c) Supondo que a matriz da aplicação linear $g: \mathbb{R}^3 \to \mathbb{R}^3$, relativamente à base G = ((-1,0,0), (0,3,0), (0,0,2)) de \mathbb{R}^3 , é $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & -1 & -1 \end{bmatrix}$, calcule a matriz de g relativamente à base canónica de \mathbb{R}^3 .

(d) Considere a=0. Calcule a matriz de $g\circ f$ relativamente à base canónica de \mathbb{R}^3 .

- 7. Considere a matriz $A = \begin{bmatrix} 1 & 0 & -1 \\ -1 & -3 & 0 \\ 0 & 3 & 1 \end{bmatrix}$.
 - (a) Encontre uma base para o espaço nulo de A (isto é: o espaço de soluções do sistema homogéneo AX = 0) e uma base para o espaço gerado pelas colunas de A.

(b) Diga, justificando, se A é diagonalizável.
(c) Indique uma matriz $C \neq A$ que seja semelhante a A .