MAT 137 Tutorial #12– Volumes January 30–31, 2017

1. Consider the region bounded by the curve $y = 2x - x^2$ and the x-axis. We rotate the region around the x-axis. Calculate the volume of the solid of revolution we obtain this way.

Answer: $16\pi/15$.

- 2. Let R be the region bounded by the curves $y = x^2 + 4$ and $y = 6x x^2$. Calculate the volume of the solid of revolution obtained when we rotate the region R...
 - (a) around the x-axis,
 - (b) around the y-axis.

Answers: $13\pi/3$, π .

- 3. Consider the region in the first quadrant bounded between the x-axis, the y-axis, and the curve $\sqrt{x} + \sqrt{y} = 1$. Calculate the volume of the solid of revolution obtained by rotating this region around the line x = 3. Do this in two different ways:
 - (a) Do the calculation by integrating with respect to x.
 - (b) Do the calculation by integrating with respect to y

Answer: $14\pi/15$.

Harder questions

Do not try these problems unless you have finished the previous ones.

- 4. A hemispherical salad bowl has radius R. We place an iron ball with radius r inside the bowl. Assume that $2r \le R$. Then we pour water into the bowl until the height of the water is h.
 - Assume $0 \le h \le 2r$. Calculate the total volume of water.
 - Assume $2r \leq h \leq R$. Calculate the total volume of water.

Suggestions: You can check your solution! Your two answers should agree when h = 2r, and you know what the answer should be when h = R.

5. Two cylinders have the same radius r and their axes meet at a right angle. Find the volume of their intersection.

Answer: $16r^3/3$.