

Experimental Characterization of Pu Separation by PUREX Process on a Low-Burnup, Pseudo-Fast-Neutron Irradiated DUO₂ for Product Decontamination Factors and Nuclear Forensics

A PhD. Prelims Defense by: Paul Mendoza

Chair: Dr. Sunil Chirayath

Committee Members: Dr. Sean McDeavitt

Dr. Craig Marianno

Dr. Cody Folden III.

Monday, February 27, 2017, 10:00 am

TEXAS A&M ENGINEERIN

AIEN 304 |

NUCLEAR SECURITY
SCIENCE & POLICY INSTITUTE

Outline

Introduction

Motivation

Contexts

Background

Objectives

Present Status of the Question

Procedure

Current and Expected Results

Experiment

Mass Spectrometry

Gamma Spectroscopy Results

Gamma Spectroscopy Results

Future Work

Motivation

- Current Events
 - Joint Comprehensive Plan of Action
 - Non-safeguarded reactors
 - Islamic State of Iraq and Syria
- Past Events
 - Septemer 11, 2001
- Limited scope of IAEA safeguards
- "the awful arithmetic of the atomic bomb" [1]
- Need for improved forensic capabilities^[2, 3, 4]

Definitions

- Special Nuclear Material (SNM)
 - ➤ Plutonium. ²³³U. or ²³⁵U
- Nuclear Forensics
 - The investiative activity that surrounds the search for attributes of undetermined radioactive specimens for the purpose of attribution.
- SNM origin attributes/indicators
 - Indicators or clues for SNM origin attribution. Examples include burnup, fluence rate, initial fuel enrichment, fuel age, and fast-to-thermal irradiation ratios
- Decontamination Factors (DF)
 - A measure of the effectiveness with which a product is decontaminated from a contaminant

$$DF_j = \frac{\frac{c_j}{c_{Pu}}|\text{initial}}{\frac{c_j}{c_{Pu}}|\text{final}}$$

National Context

"The United States has developed a nuclear forensics capability that has been demonstrated in real-world incidents of **interdicted materials** and in exercises of actions required after a nuclear detonation. The committee, however, has concerns about the program and finds that without strong leadership, careful planning, and additional funds, these capabilities will decline" [2]

Major areas of concern include:

- Organization
- Sustainability
- Workforce and Infrastructure
- Procedures and Tools

Forensic Context

- Nature of inverse problems
- Plutonium purification necessary for weapons production

$$^{238}U + n \rightarrow ^{239}U \xrightarrow{\beta^{-}} \xrightarrow{T_{1/2}=23 \text{ min}} ^{239}Np \xrightarrow{\beta^{-}} \xrightarrow{239} Pu$$

 Attribution for unpurified Pu has been previously studied [5, 6, 7]

Nuclear Context

- Weapons-grade Pu can be extracted from reactor discharged fuel with a burnup of about 1 (GWD/tU)
- Pu isotopes produced in irradiated fuel can vary
- Two examples of reactors which can intentionally discharge low burned fuel for extracting weapon-grade Pu are:
 - Fast Breeder Reactor, CANDU Reactor

Chemical Context

- Plutonium Uranium Redox EXtraction (PUREX)
 - Liquid-liquid solvent extraction
 - Many stages:
- Distribution Coefficient (D): The ratio between the organic and aqueous phases (aka: D-values)

$$D = \frac{c_o}{c_{aq}}$$

- Specific element to element
- Vary widely^[8]
- The fraction of mass, f_o deposited in the organic phase, assuming a volume ratio between the aqueous and organic phases, V_R , is:

$$f_o = (1 + D^{-1}V_R^{-1})^{-1}$$

Chemical Context

- Lack of literature on decontamination factors and distribution coefficients for useful forensic elements (Cs, Sb, Eu, Rb, Sr, Nd, Pm, and Sm)
- With a known process and D-values, DF values for individual elements can be determined

Extraction

$$\begin{array}{l} UO_{2(aq)}^{2+} + 2NO_{3(aq)}^{-} + 2TBP_{(o)} \leftrightarrow UO_{2}(NO_{3})_{2} \cdot 2TBP_{(o)}^{[9]} \\ Pu_{(aq)}^{4+} + 4NO_{3(aq)}^{-} + 2TBP_{(o)} \leftrightarrow Pu(NO_{3})_{4} \cdot 2TBP_{(o)} \end{array}$$

Add clean immiscible organic solvent phase Shake or stir to allow molecules to partition Phases settle and separate with gravity

Extraction

$$UO_{2(aq)}^{2+} + 2NO_{3(aq)}^{-} + 2TBP_{(o)} \leftrightarrow UO_{2}(NO_{3})_{2} \cdot 2TBP_{(o)}^{[9]}$$

$$Pu_{(aq)}^{4+} + 4NO_{3(aq)}^{-} + 2TBP_{(o)} \leftrightarrow Pu(NO_{3})_{4} \cdot 2TBP_{(o)}$$

Add clean immiscible organic solvent phase

Final
$$(D = \frac{c_{o,f}}{c_{A,f}})$$
:

$$M_{tot} = c_{A,f} V_A + c_{o,f} V_o \label{eq:mtot}$$

 $M_{tot} = c_{A,i}V_A$

Solving for $c_{o,f}$ in terms of D:

$$c_{o,f} = \frac{M_{tot}}{\frac{V_A}{V_A} + V}$$

Solving for $\frac{c_{A,i}}{c_{o,f}}$:

$$\frac{c_{A,i}}{c_{o,f}} = \frac{\frac{V_A}{D} + V_o}{V_A} = \frac{1}{D} + \frac{V_o}{V_A} \label{eq:cases}$$

partition

Phases settle and separate with gravity

Extraction

$$UO_{2(aq)}^{2+} + 2NO_{3(aq)}^{-} + 2TBP_{(o)} \leftrightarrow UO_{2}(NO_{3})_{2} \cdot 2TBP_{(o)}^{[9]}$$

$$Pu_{(aq)}^{4+} + 4NO_{3(aq)}^{-} + 2TBP_{(o)} \leftrightarrow Pu(NO_{3})_{4} \cdot 2TBP_{(o)}$$

Add clean immiscible organic solvent phase

02/27/2017

Phases settle and separate with

$$Pu(NO_3)_4(TBP)_{2(o)} + Fe^{2+}_{(aq)} \leftrightarrow Pu^{3+}_{(aq)} + 4NO^-_{3(aq)} + 2TBP_{(o)}{}^{[10]}$$

$$Pu(NO_3)_4(TBP)_{2(o)} + Fe_{(aq)}^{2+} \leftrightarrow Pu_{(aq)}^{3+} + 4NO_{3(aq)}^{-} + 2TBP_{(o)}^{[10]}$$

Add clean immiscible aqueous solvent phase

Initial:

$$M_{org} = c_{o,f}V_o$$

Final
$$(D_2 = \frac{c_{o,f2}}{c_{A2,f}})$$
:

$$M_{org} = c_{A2,f}V_{A2} + c_{o,f2}V_o$$

Solving for $c_{A2,f}$ in terms of D_2 :

$$c_{A2,f} = \frac{M_{org}}{V_{A2} + D_2V_2}$$

Solving for $\frac{c_{A,i}}{c_{A2,f}}$ (note: $c_{A,i}$ is from the *initial* aqueous phase):

$$\frac{c_{A,i}}{c_{A2,f}} = \! \frac{1}{f_o} \frac{V_{A2} + D_2 V_o}{V_A}$$

partition

Phases settle and separate with gravity

$$Pu(NO_3)_4(TBP)_{2(o)} + Fe^{2+}_{(aq)} \leftrightarrow Pu^{3+}_{(aq)} + 4NO^{-}_{3(aq)} + 2TBP_{(o)}^{[10]}$$

aqueous solvent phase

partition

Phases settle and separate with gravity

Decontamination Factors and their use

- After several cycles of Pu extraction/scrubbing/back-extraction are completed, the effectiveness of a PUREX cycle is described by the decontamination factor (DF):
- DFs are characteristic of different process cycles
- Larger values (10⁷) for industrial scale PUREX (compared to benchtop)^[8, 9]

Objectives I

Characterize a 4 extraction 3 back-extraction PUREX process

Collect D-values for each step

$$^{147} {\rm Pm}^*, ^{151} {\rm Sm}^*, ^{154} {\rm Eu}^*, {\rm U}^*, {\rm Pu}^* \ ({\rm Mass \ Spec})$$

- Convert all mass spec data to D-values
- Collect DF-values for the process
 - Prepare alpha samples for each step (triplicate)
 - Analyze alpha samples for each step
 - □ Convert alpha spec + gamma spec data to DF values
 - Convert Mass spec data to DF values (published)
- Mathematically connect D-values to DFs
 - Derive equations with uncertainty propagation
 - Analyze connection with uncertainty

Objectives II

Determine attribution indicators:

 Mathematically derive equations for above indicators with respect to one of the isotopes determined above

- Fast-to-thermal ratios (requires iteration)
- Program a system to iteratively solve for these parameters given heavy metal concentration ratios
 - Make a program that can read ENDF files for x-sections
 Create/Use a bateman solver with automated x-section modifications
 Create program to calculate single group x-sections from ENDF data and an assumed fast-to-thermal ratio
 - Couple all programs together in a single program
- Use above information to determine indicators for three sets of data

Present Status of the Question

- Stable noble fission gases as burnup verification^[11]
- Determine burnup, enrichment, and fuel age from used fuel in a RDD^[12]
- Analysis of purified plutonium isotopics for reactor type^[13]
- PUREX co-processing DF values for U and Pu^[14]
- PUREX D-values and DF values under numerous circumstances^[9, 15, 16, 17, 18, 8]
 - DF values for ¹⁰⁶Ru and ⁹⁵Zr^[8]
 - Compilation of D-values for U, Th, and Pu^[19]
 - ightharpoonup D-values for rare earths, Pu, Th^[17, 20, 21, 22, 23, 24, 25, 26, 27, 28]
 - ➤ Ga D-values^[28]

Procedure

Analytical Procedure

♦ 12.9±0.1 mg of DUO₂ irradiated at HFIR

$$\begin{split} \frac{dn_i}{dt} &= -\lambda_i^{eff} \, n_i + \sum_{j=1}^N b_{j \to i}^{eff} n_j \\ \lambda_i^{eff} &= \lambda_i + \phi \sum_{j=1}^N \sigma_{i \to j} \\ b_{j \to i}^{eff} &= b_{j \to i} \lambda_j + \sigma_{j \to i} \phi + \gamma_{j \to i} \sigma_{j,f} \phi \\ \frac{d\vec{n}}{dt} &= \mathbf{A} \vec{n}(t) \to \vec{n} = e^{\mathbf{A}t} \vec{n}_0 \end{split}$$

Analytical Procedure - Burnup

- Operational Parameter
- Calculated:
 - Specific heat calculation on working fluid
 - Number and isotopes that fission in the system
 - burnup isotope indicator

$$BU = \frac{\text{Power}[\text{MW}] \cdot \text{days}}{m[\text{HM}]}$$
$$= \left[\frac{N^B}{N_0^{HM}}\right] \frac{N_A E_R}{\gamma_B} \cdot \frac{1}{M_0^{HM}}$$

$(n,\gamma)^{137}_{55}Cs$ $\beta^{-1} o {}^{136}_{56}Ba$	$(n,\gamma)^{138}_{55}Cs$ $\beta^{-1} \to {}^{147}_{56}Ba$	
136 Cs 55 Cs 13 days	¹³⁷ ₅₅ Cs	
0.025 eV: 11 Epi: 57	0.025 eV: 0.2 Epi: 0.3	///
	$(n,\gamma)^{137}_{54}Xe$ Stable 8.9%	$\beta^{-1} \rightarrow {}^{137}_{55}Cs$
	¹³⁶ ₅₄ Xe	¹³⁷ Xe ^{3.8} min
	0.025 eV: 0.2 Epi: 0.1	

Analytical Procedure - Fluence Rate

- Burnup Indicator assumptions
 - Short lived precursors of same mass bin with small cross sections
 - > Small contributions from other mass bins
 - Stable

$$\phi \approx \frac{\lambda_7}{\sigma_7 \left(\frac{\gamma_7}{\gamma_8^* - \gamma_8} - 1\right)}$$

- Assumptions:
 - \triangleright Build in can be described by constant ϕ , single group x-sections
 - ightharpoonup Constant fissionable material, σ_a for 148 Nd ≈ 0
 - Cumulative yeild instantly arrives at ¹⁴⁷Nd
 - Utilizes a taylor series expansion

Analytical Procedure - Initial Enrichment and Fuel Age

Initial Enrichment

- Heavy metal converts to heavier metal and to Fission products
- Account for in Burnup, and mass in heavy metals
- Solution assumes all higher actinides are built into the system from capture in ²³⁸U

$$\epsilon_0 = \frac{N^{U238}(T)}{N_0^U} \left[\frac{N^{U235}(T)}{N^{U238}(T)} + \frac{N^{U236}(T)}{N^{U238}(T)} \right] + \frac{M_0^U}{N_A E_R} BU(T) - G^{238} - G^{240} - G^{241}$$

Fuel Age

$$t_d = -\frac{1}{\lambda} ln \left(\frac{N_{\text{measured}}}{N_{\text{FOI}}} \right)$$

Experimental Procedure - Mass Spectrometry

- NexION 300X quadrupole
- 7 different concoction standards (including Pu and U standards)
- Two point calibration curves
- Extrapolation for radioactive species

Experimental Procedure - Mass Spectrometry

- NexION 300X quadrupole
- 7 different concoction standards (including Pu and U standards)
- Two point calibration curves
- Extrapolation for radioactive species

Mass Spec

Experimental Procedure - Gamma Spectrometry

Experimental Procedure - Alpha Spectrometry

Current and Expected Results

Irradiation

- $12.9 \pm 0.1 \text{ mg of DUO}_2$ was irradiated
 - High Flux Isotope Reactor at Oak Ridge National Laboratory
- * Burnup was 4.43 ± 0.31 GWd/tHM^[29] from ¹³⁷Cs
- * $0.196 \pm \text{mg}$ of total Pu was produced as measured by ICP-MS

Dissolution of the spent fuel pellet

Glovebox

Experiments

- Single stage extraction and back-extraction
 - Purpose: quantify product recovery, D-values and DF values for single stage extraction and back extraction
 - Conditions:

Starting Solution Extraction Solution		Back extraction solution		
4 M nitric acid	30% vol.% TBP, 70 vol.% kerosene	0.024 M ferrous sulfamate in 0.75 M nitric acid		

- Multi-contact extraction and back-extraction
 - Purpose: Quantify DF for a process with 4 extractions, 3 back extractions
 - Conditions:

Starting Solution	Extraction Solution	Back extraction solution		
4 M nitric acid	30% vol.% TBP, 70 vol.% kerosene	0.024 M ferrous sulfamate in 4 M nitric acid		

Mass spectrometry Results

Recoveries of U and Pu						
		Pu Recovery	U Recovery			
	Single stage	(83.4±9.5)%	(11.2±1.3)%			
	Multi-contact Cycle 1	$(99.7\pm4.2)\%$	$(6.8\pm0.3)\%$			
	Multi-contact Cycle 2	$(93.0\pm4.6)\%$	$(6.6\pm0.3)\%$			
	Overall Experiment 2	$(92.7\pm6.0)\%$	$(0.45\pm0.03)\%$			

Mass Spectrometry Results

Decontamination Factors

Element (Z)	SS	Error	MC Cycle 1	Error	Isotopes Used
Rb(37)	39.0	5.9	11.8	0.8	⁸⁵ Rb
Sr(38)	283	43	84.6	5.9	⁹⁰ Sr
Mo(42)	5.7	0.8	1.9	0.2	^{97,98,100} Mo
Ru(44)	59.2	6.4	16.6	2.5	^{101,102,104} Ru
Pd(46)	65	14	8.9	1.2	¹¹⁰ Pd
Cd(48)	74	17	22.1	2.5	¹¹² Cd
Cs(55)	177	28	52.9	3.9	¹³³ Cs
Ce(58)	43	16	11.5	4.9	^{140,142} Ce
Nd(60)	19.2	2.1	5.9	0.4	¹⁴³ Nd
Pm(61)	12.8	1.9	3.9	0.3	¹⁴⁷ Pm
Sm(62)	11.5	1.5	3.6	0.3	¹⁵¹ Sm
Eu(63)	10.0	1.4	3.6	0.3	¹⁵⁴ Eu
U(92)	7.4	1.2	14.7	0.9	²³⁸ U

Gamma Spectroscopy Results

Initial vs Final solutions

Subsection 5

Future Work

Objectives I

Characterize a 4 extraction 3 back-extraction PUREX process

Collect D-values for each step

Collect DF-values for the process

- Prepare alpha samples for each step (triplicate)
 - Analyze alpha samples for each step
- □ Convert alpha spec + gamma spec data to DF values
- Convert Mass spec data to DF values (published)
- Mathematically connect D-values to DFs
 - Derive equations with uncertainty propagation
 - Analyze connection with uncertainty

Objectives II

Determine attribution indicators:

 Mathematically derive equations for above indicators with respect to one of the isotopes determined above

- Fast-to-thermal ratios (requires iteration)
- Program a system to iteratively solve for these parameters given heavy metal concentration ratios
 - Make a program that can read ENDF files for x-sections
 Create/Use a bateman solver with automated x-section modifications
 Create program to calculate single group x-sections from ENDF data and an assumed fast-to-thermal ratio
 - Couple all programs together in a single program
- Use above information to determine indicators for three sets of data

Questions?

Previous Experiment Results

Decontamination Factors for multi-contact extraction.

References I

- [1] Dwight D Eisenhower. Atoms for peace speech. Voices of Democracy, 1953.
- [2] Nuclear Forensics: A Capability at Risk (Abbreviated Version). The National Academies Press, Washington, DC, 2010.
- [3] AAAS/APS. Nuclear forensics: Role, state of the art and program needs. Report, AAAS/APS, 2008.
- [4] Kenton J Moody, Ian D Hutcheon, and Patrick M Grant. Nuclear forensic analysis. CRC Press, 2014.
- [5] Sunil S Chirayath, Jeremy M Osborn, and Taylor M Coles. Trace fission product ratios for nuclear forensics attribution of weapons-grade plutonium from fast and thermal reactors. Science and Global Security, 23(1):48–67, 2015.
- [6] Mark Robert Scott. *Nuclear forensics: attributing the source of spent fuel used in an RDD event.* PhD thesis, Texas A and M University, 2005.
- [7] Alexander Glaser. Isotopic signatures of weapon-grade plutonium from dedicated natural uranium-fueled production reactors and their relevance for nuclear forensic analysis. *Nuclear Science and Engineering*, 163(1):26–33, 2009.

References II

- [8] Sidney M Stoller, Walter Henry Zinn, Stuart MacLain, and Atomic Energy Commission USA. Reactor handbook. 2. Fuel reprocessing. Interscience Publ., 1961.
- [9] M Benedict, H Levi, and T Pigford. Nuclear chemical engineering. Nucl. Sci. Eng.; (United States), 82(4), 1982.
- [10] RJM Konings, LR Morss, J Fuger, LR Morss, NM Edelstein, and J Fuger. The chemistry of the actinide and transactinide elements. *Springer, Dordrecht*, 4:2113–224, 2006.
- [11] William S Charlton, Bryan L Fearey, Charles W Nakhleh, Theodore A Parish, Robert T Perry, Jane Poths, John R Quagliano, William D Stanbro, and William B Wilson. Operator declaration verification technique for spent fuel at reprocessing facilities. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 168(1):98–108, 2000.
- [12] Mark Robert Scott. Nuclear forensics: attributing the source of spent fuel used in an RDD event. Thesis, 2005.

References III

- [13] Alexander Glaser. Isotopic signatures of weapon-grade plutonium from dedicated natural uranium-fueled production reactors and their relevance for nuclear forensic analysis. *Nuclear Science and Engineering*, 163(1):26–33, 2009.
- [14] Okan H Zabunoglu and Levent Ozdemir. Purex co-processing of spent lwr fuels: flow sheet. *Annals of Nuclear Energy*, 32(2):151–162, 2005.
- [15] W. B. Lanham and A. T. Gresky. Purex process laboratory development. Oak Ridge National Laboratory, USAEC Report ORNL-717, 1950.
- [16] A. J. Arker. Terminal report on purex program in kapl separations pilot plant. Knolls Atomic Power Laboratory, 1954.
- [17] D. O. Darby and J. M. Chandler. Terminal report for the ornl pilot plant investigation of the purex process. *Oak Ridge National Laboratory*, USAEC Report ORNL -1519, 1954.
- [18] E.R. Irish and Reas W.H. The purex process-a solvent extraction reprocessing method for irradiated uranium. 1957.

References IV

- [19] Thomas H. Siddall, W. E. Prout, Sidney G. Parker, U. S. Atomic Energy Commission, Laboratory Savannah River, E. I. du Pont de Nemours, and Company. *Equilibrium distribution data for purex and similar extraction* processes. DP; 53. E.I. du Pont de Nemours and Co., Explosives Dept., Atomic Energy Division, Technical Division, Savannah River Laboratory, 1957.
- [20] K Alcock, FC Bedford, WH Hardwick, and HAC McKay. Tri-n-butyl phosphate as an extracting solvent for inorganic nitrates-i: Zirconium nitrate. *Journal of Inorganic and Nuclear Chemistry*, 4(2):100–105, 1957.
- [21] K Alcock, FC Bedford, WH Hardwick, and HAC McKay. Tri-n-butyl phosphate as an extracting solvent for inorganic nitrates-i: Zirconium nitrate. *Journal of Inorganic and Nuclear Chemistry*, 4(2):100–105, 1957.
- [22] K Alcock, GF Best, E Hesford, and HAC McKay. Tri-n-butyl phosphate as an extracting solvent for inorganic nitrates-v: Further results for the tetra-and hexavalent actinide nitrates. *Journal of Inorganic and Nuclear Chemistry*, 6(4):328–333, 1958.

References V

- [23] GF Best, E Hesford, and HAC McKay. Tri-n-butyl phosphate as an extracting agent for inorganic nitrates-vii: The trivalent actinide nitrates. *Journal of Inorganic and Nuclear Chemistry*, 12(1):136–140, 1959.
- [24] GF Best, HAC McKay, and PR Woodgate. Tri-n-butyl phosphate as an extracting solvent for inorganic nitrates—iii the plutonium nitrates. *Journal of Inorganic and Nuclear Chemistry*, 4(5):315–320, 1957.
- [25] E Hesford, EE Jackson, and HAC McKay. Tri-n-butyl phosphate as an extracting agent for inorganic nitrates—vi further results for the rare earth nitrates. *Journal* of *Inorganic and Nuclear Chemistry*, 9(3-4):279–289, 1959.
- [26] E Hesford, HAC McKay, and D Scargill. Tri-n-butyl phosphate as an extracting solvent for inorganic nitrates—iv thorium nitrate. *Journal of Inorganic and Nuclear Chemistry*, 4(5):321–325, 1957.
- [27] D Scargill, K Alcock, JM Fletcher, E Hesford, and HAC McKay. Tri-n-butyl phosphate as an extracting solvent for inorganic nitrates-ii yttrium and the lower lanthanide nitrates. *Journal of Inorganic and Nuclear Chemistry*, 4(5):304–314, 1957.

References VI

- [28] ED Collins, DO Campbell, and LK Felker. Measurement of achievable plutonium decontamination from gallium by means of purex solvent extraction. ORNL/TM-1999/312, Oak Ridge National Laboratory, 2000.
- [29] Mathew Wayne Swinney. Experimental and Computational Assessment of Trace Nuclide Ratios in Weapons Grade Plutonium for Nuclear Forensics Analysis. PhD thesis, 2015.
- [30] Kenneth D Kok. Nuclear engineering handbook, volume 60. CRC Press, 2009.