

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC148058

1 of 63 Page:

FCC Radio Test Report FCC ID: 2AIIJ-U9

Original Grant

Report No. TB-FCC148058

Shenzhen SAME SONG Electronics Co.,Ltd. **Applicant**

Equipment Under Test (EUT)

EUT Name Second-generation Smart Watch

Model No. U9

U8 Series No.

: N/A **Brand Name**

Receipt Date 2016-05-10

2016-05-11 to 2016-05-25 **Test Date**

Issue Date 2016-05-26 **Standards** FCC Part 2

FCC Part 22 Subpart H, FCC Part 24 Subpart E, 2015

ANSI C63.26: 2015

Conclusions PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

Test/Witness Engineer

Approved& Authorized

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Fax: +86 75526509195 Tel: +86 75526509301

Page: 2 of 63

Contents

ITENIS	2
GENERAL INFORMATION ABOUT EUT	4
1.5 Description of Test Mode	5
1.6 Measurement Uncertainty	6
1.7 Test Facility	7
TEST SUMMARY	8
TEST EQUIPMENT	9
5.4 EUT Operating Condition	14
6.5 Test Data	18
RADIATED OUTPUT POWER	20
7.1 Test Standard and Limit	20
7.4 EUT Operating Condition	21
	GENERAL INFORMATION ABOUT EUT 1.1 Client Information. 1.2 General Description of EUT (Equipment Under Test) 1.3 Block Diagram Showing the Configuration of System Tested. 1.4 Description of Support Units 1.5 Description of Test Mode 1.6 Measurement Uncertainty 1.7 Test Facility. TEST SUMMARY TEST EQUIPMENT FREQUENCY STABILITY 4.1 Test Standard and Requirement 4.2 Test Setup 4.3 Test Procedure. 4.4 EUT Operating Condition. CONDUCTED RF OUTPUT POWER. 5.1 Test Standard and Limit. 5.2 Test Setup 5.3 Test Procedure 5.4 EUT Operating Condition. 5.5 EUT Operating Condition. PEAK-AVERAGE RATIO. 6.1 Test Standard and Limit. 6.2 Test Setup. 6.3 Test Procedure 6.4 EUT Operating Condition. PEAK-OVERAGE RATIO. 6.1 Test Standard and Limit. 6.2 Test Setup. 7.3 Test Procedure 7.4 EUT Operating Condition. 7.5 Test Data. RADIATED OUTPUT POWER. 7.1 Test Standard and Limit. 7.2 Test Setup. 7.3 Test Procedure 7.4 EUT Operating Condition. 7.5 Test Data. OCCUPIED BANDWIDTH. 8.1 Test Standard and Limit. 8.2 Test Setup.

Page: 3 of 63

	8.3 Test Procedure	
	8.4 EUT Operating Condition	25
	8.5 Test Data	25
9.	CONDUCTED OUT OF BAND EMISSIONS	39
	9.1 Test Standard and Limit	39
	9.2 Test Setup	39
	9.3 Test Procedure	
	9.4 EUT Operating Condition	39
	9.5 Test Data	
	Please refer following plots:	40
10.	BAND EDGE TEST	52
	10.1 Test Standard and Limit	
	10.2 Test Setup	52
	10.3 Test Procedure	52
	10.4 EUT Operating Condition	52
	10.5 Test Data	53
11.	RADIATED OUT BAND OF EMISSIONS	
	11.1 Test Standard and Limit	59
	11.2 Test Setup	
	11.3 Test Procedure	
	11.4 EUT Operating Condition	60
	11.5 Test Data	60

Page: 4 of 63

1. General Information about EUT

1.1 Client Information

Applicant: Shenzhen SAME SONG Electronics Co.,Ltd.

Address : 13F, Nantongbang High-Tech Industrial Park Building B, Dabutou

Road, Guanlan Street, Longhua New District, Shenzhen, China

Manufacturer : Shenzhen SAME SONG Electronics Co.,Ltd.

Address: 13F, Nantongbang High-Tech Industrial Park Building B, Dabutou

Road, Guanlan Street, Longhua New District, Shenzhen, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Second-generation Smart Watch					
Models No.	1:	U9 ,U8					
Model Difference		All these models are identical in the same PCB, layout and electrical circuit, the only difference is model name for commercial.					
TODAS	5	Frequency Bands: GSM850; PCS1900	MODE TO SE				
		GSM 850 Power:	Cond:33.08 dBm ERP:30.85 dBm				
Product		PCS 1900 Power:	Cond:29.21 dBm EIRP:28.95 dBm				
Description		Antenna Gain:	GSM 850:2.03 dBi PCS 1900: 2.57 dBi				
	\	Modulation Type:	GSM/GPRS:GMSK EDGE: 8PSK				
FCC Operating		GSM 850: 824.20MHz-848.80MHz					
Frequency	6	PCS1900: 1850.20MHz-1	909.80MHz				
Emission	:\	GSM 850: 248KGXW, PC	CS 1900: 245KGXW				
Designator		GPRS 850: 248KG7W, G	PRS 1900: 245KG7W				
	W	EGPRS 850: 250KG7W, EGPRS 1900: 247KG7W					
Power Supply	:	DC Voltage supplied from	Host System by USB cable.				
	DC power by Li-ion Battery.						
Power Rating	:	: DC 5.0V by USB cable.					
0		DC 3.7V by 230mAh Li-io	n Battery.				
Connecting I/O Port(S)		Please refer to the User's Manual					

Note:

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual. The EUT has also been tested and complied the FCC 15C for Bluetooth function, and recorded in the separate test report.
- (2) This test report only product for PCS Licensed Transmitter (PCB).

Page: 5 of 63

1.3 Block Diagram Showing the Configuration of System Tested

The above block diagram of setup is the normal mode. And more detail please refer to the test setup of each test item of bellow.

1.4 Description of Support Units

TOBY

The EUT has been tested as an independent unit.

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

During all testing, EUT is link mode with base station at maximum power level. The spurious emission measurements were carried out in semi-anechoic chamber with 3-meter test range. Frequency range investigated for radiated emission as below:

- 1. 9kHz~10GHz for GSM850.
- 2. 9kHz~20GHz for PCS1900.

Test Channel					
Mode	Frequency(MHz)				
	128	824.20			
GSM 850	190	836.60			
THE PARTY OF THE P	251	848.80			

Page: 6 of 63

THE PARTY OF THE P	512		1850.20	
PCS 1900	661	3 /	1880.00	
	810	-	1909.80	
Pre-scanning tes	st Mode		Description	
GSM 850		highest , middle, lowest channels		
GPRS 850	GPRS 850 highest, middle, lowest channels		est , middle, lowest channels	
GSM 1900	GSM 1900		est , middle, lowest channels	
GPRS 1900		highest, middle, lowest channels		
Final test Mode		Description		
GSM 850	A V	high	est , middle, lowest channels	
GSM 1900	Marie Control	highest , middle, lowest channels		

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) During the testing procedure, the EUT is in link mode with base station emulator at maximum power level in each test mode.
- (3) The EUT has GSM, GPRS, EDGE functions, and after pre-testing, GSM function is the worst case for all the emission tests.
- (4) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on Z-plane as the normal use. Therefore only the test data of this Z-plane was used for radiated emission measurement test.

1.6 Measurement Uncertainty

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
	Level Accuracy:	III DO NOTE OF THE PARTY OF THE
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Dedicted Emission	Level Accuracy:	14 60 dD
Radiated Emission	9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy:	±4.40 dB
Radiated Ellission	30MHz to 1000 MHz	±4.40 db
Radiated Emission	Level Accuracy:	±4.20 dB
Radiated Ellission	Above 1000MHz	±4.20 db

Page: 7 of 63

1.7 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at: 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

FCC List No.: (811562)

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 8 of 63

2. Test Summary

	Test Standards and Test R	esults					
Standard Document Title							
FCC Part 2 (10-1-05 Edition)	Frequency Allocations and Rac	lio Treaty Matters; gulations	General Rules				
FCC Part 22 (10-1-05 Edition)	Public Mol	oile Services	3 10				
FCC Part 24 (10-1-05 Edition)	Personal Commu	unications Services					
Standard Section	Test Item	Judgment	Remark				
2.1046	Conducted RF Output Power	PASS	N/A				
24.232(d)	Peak-Average Ratio	PASS	N/A				
2.1049; 22.917; 24.238	99% & -26 dB Occupied Bandwidth	PASS	N/A				
2.1055; 22.355; 24.235	Frequency Stability	PASS	N/A				
2.1051; 2.1057; 22.917; 24.238	Conducted Out of Band Emissions	PASS	N/A				
2.1051; 2.1057; 22.917; 24.238	Band Edge	PASS	N/A				
22.913; 24.238	Transmitter Radiated Power (EIRP/ERP)	PASS	N/A				
2.1053; 2.1057; 22.917; 24.238	Radiated Out of Band Emissions PASS N/A						

Page: 9 of 63

3. Test Equipment

AC Main Cor	ducted Emission	1			
Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
EMI Test Receiver	ROHDE& SCHWARZ	ESCI	100321	Aug. 07, 2015	Aug. 06, 2016
50ΩCoaxial Switch	Anritsu	MP59B	X10321	Aug. 07, 2015	Aug. 06, 2016
L.I.S.N	Rohde & Schwarz	ENV216	101131	Aug. 07, 2015	Aug. 06, 2016
L.I.S.N	SCHWARZBECK	NNBL 8226-2	8226-2/164	Aug. 08, 2015	Aug. 07, 2016
Radiation Sp	urious Emission				
Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Aug. 29, 2015	Aug. 28, 2016
EMI Test Receiver	Rohde & Schwarz	ESCI	100010/007	Aug. 07, 2015	Aug. 06, 2016
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 26, 2016	Mar. 25, 2017
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar. 26, 2016	Mar. 25, 2017
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 26, 2016	Mar. 25, 2017
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar. 26, 2016	Mar. 25, 2017
Pre-amplifier	Sonoma	310N	185903	Mar. 26, 2016	Mar. 25, 2017
Pre-amplifier	HP	8447B	3008A00849	Mar. 26, 2016	Mar. 25, 2017
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar. 26, 2016	Mar. 25, 2017
Signal Generator	Rohde & Schwarz	SML03	IKW682-054	Mar. 26, 2016	Mar. 25, 2017
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Universal Radio	5.1		CHIT?		
Communication	Rohde&Schwarz	CMU200	103903	Jun.24, 2015	Jun.23, 2016
Tester	Callion 1				
Antenna Cor	nducted Emissior	1			
Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Aug. 29, 2015	Aug. 28, 2016
EMI Test Receiver	Rohde & Schwarz	ESCI	100010/007	Aug. 07, 2015	Aug. 06, 2016
Universal Radio Communication Tester	Rohde&Schwarz	CMU200	103903	Jun.24, 2015	Jun.23, 2016

Page: 10 of 63

4. Frequency Stability

4.1 Test Standard and Requirement

4.1.1 Test Standard

FCC Part 2.1055

FCC Part 22.355

FCC Part 24.235

4.1.2 Requirement

According to FCC section 22.355 and FCC section 24.235, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. According to FCC section 2.1055, the test conditions are:

(1) Temperature:

The temperature is varied from -30° C to $+50^{\circ}$ C at intervals of not more than 10° C.

(2) Primary Supply Voltage:

For hand carried battery powered equipment, the primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacture. The supply voltage shall be measured at input to the cable normally provide with the equipment, or at the power supply terminals if cables are not normally provided.

4.2 Test Setup

For Temperature Test:

For Voltage Test:

Page: 11 of 63

4.3 Test Procedure

Test Procedures for Temperature Variation:

- (1) The EUT was set up in the thermal chamber and connected with the base station.
- (2) With power off, the temperature was decreased to -30 °C and the EUT was stabilized for three hours. Power was applied and the maximum change in frequency was recorded within one minute.
- (3) With power off, the temperature was raised in 10 °C set up to 50 °C and the EUT was stabilized for three hours. Power was applied and the maximum change in frequency was recorded within one minute.
- (4) If the EUT cannot be turned on at -30°C, the testing lowest temperature will be raised in 10°C step until the EUT can be turned on.

Test Procedures for Voltage Variation:

- (1) The EUT was placed in a temperature chamber at $25\pm5^{\circ}$ C and connected with the base station.
- (2) Reduce the input voltage to specify extreme voltage variation (+/- 15%) and endpoint, record the maximum frequency change.
- (3) The variation in frequency was measured for the worst case.

4.4 EUT Operating Condition

The Equipment Under Test was set to Communication with the Base Station.

3.5 Test Data

Please refer the following pages.

Page: 12 of 63

Temperature Variation

	Temperature Variation GSM 850 (CH190)						
	(3SM	GP	RS	ED	GE	
Temperature (°C)	Freq. Dev. (Hz)	Deviation (ppm)	Freq. Dev. (Hz)	Deviation (ppm)	Freq. Dev. (Hz)	Deviation (ppm)	
-30	-9	-0.011	-14	-0.017	-18	-0.022	
-20	-8	-0.010	-12	-0.014	-16	-0.019	
-10	-10	-0.012	-9	-0.011	-19	-0.023	
0	-9	-0.011	-11	-0.013	-13	-0.016	
10	-12	-0.014	-16	-0.019	-20	-0.024	
20	-11	-0.013	-13	-0.016	-17	-0.020	
30	-9	-0.011	-14	-0.017	-19	-0.023	
40	-13	-0.016	-15	-0.018	-20	-0.024	
50	-12	-0.014	-9	-0.011	-17	-0.020	
60	-11	-0.013	-11	-0.013	-21	-0.025	
Limit	imit 2.5 (ppm)					The same of	
Result	PASS						

	Temperature Variation GSM 1900 (CH661)							
		GSM	GP	RS	ED	GE		
Temperature (°C)	Freq. Dev. (Hz)	Deviation (ppm)	Freq. Dev. (Hz)	Deviation (ppm)	Freq. Dev. (Hz)	Deviation (ppm)		
-30	-25	-0.038	-20	-0.030	-31	-0.047		
-20	-26	-0.039	-22	-0.033	-34	-0.051		
-10	-21	-0.032	-19	-0.029	-29	-0.044		
0	-28	-0.042	-25	-0.038	-32	-0.048		
10	-30	-0.045	-18	-0.027	-28	-0.042		
20	-27	-0.041	-21	-0.032	-31	-0.047		
30	-24	-0.036	-27	-0.041	-26	-0.039		
40	-25	-0.038	-25	-0.038	-33	-0.050		
50	-29	-0.044	-23	-0.035	-30	-0.045		
60	-23	-0.035	-20	-0.030	-29	-0.044		
Limit	2.5 (ppm)							
Result	PASS							

Page: 13 of 63

Voltage Variation

Voltage Variation GSM 850 (CH190)								
Valtage	GS	M	GPRS		EDGE			
Voltage	Freq. Dev.	Deviation	Freq. Dev.	Deviation	Freq. Dev.	Deviation		
(V)	(Hz)	(ppm)	(Hz)	(ppm)	(Hz)	(ppm)		
3.15	-13	-0.016	-16	-0.019	-13	-0.016		
3.70	-10	-0.012	-13	-0.016	-17	-0.020		
4.26	-12	-0.014	-18	-0.022	-15	-0.018		
Limit	2.5 (ppm)							
Result		1 Side	PAS	SS	NA .	- CHILL		

Voltage Variation GSM 1900 (CH661)							
Valtaga	GS	М	GPRS		ED	EDGE	
Voltage (V) Freq. Dev.		Deviation	Freq. Dev.	Deviation	Freq. Dev.	Deviation	
	(Hz)	(ppm)	(Hz)	(ppm)	(Hz)	(ppm)	
3.15	-22	-0.033	-23	-0.035	-32	-0.048	
3.70	-20	-0.030	-20	-0.030	-29	-0.044	
4.26	-19	-0.029	-19	-0.029	-34	-0.051	
Limit	2.5 (ppm)						
Result	PASS						

Page: 14 of 63

5. Conducted RF Output Power

5.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 2: 2.1046

FCC Part 22H: 22.913 (a) FCC Part 24E: 24.232 (c)

5.1.2 Test Limit

GSM850	PCS 1900
38.5 dBm (ERP)	33 dBm (EIRP)

5.2 Test Setup

5.3 Test Procedure

- (1) The EUT is coupled to the Base Station with the suitable Attenuator, the path loss is calibrated to correct the reading.
- (2) A call is set up by the Base Station to the generic call set up procedure.
- (3) Set EUT at maximum power level through base station by power level command.
- (4) Then read record the power value from the Base Station in dBm.

5.4 EUT Operating Condition

The EUT was continuously connected with the Base station and transmitting in the max power during the test.

5.5 EUT Operating Condition

TOBY

Page: 15 of 63

GSM 850							
Mode	Channel	Frequency (MHz)	Conducted Power (dBm)	Conducted Powe (W)			
	128	824.2	31.84	1.528			
GSM 850	190	836.6	32.57	1.807			
	251	848.8	33.08	2.032			
ODDC 050	128	824.2	31.01	1.262			
GPRS 850	190	836.6	31.73	1.489			
(1 Slot)	251	848.8	32.24	1.675			
0000 050	128	824.2	30.85	1.216			
GPRS 850	190	836.6	31.63	1.455			
(2 Slot)	251	848.8	32.17	1.648			
0000 050	128	824.2	30.98	1.253			
GPRS 850	190	836.6	31.05	1.274			
(3 Slot)	251	848.8	32.13	1.633			
0000 050	128	824.2	31.04	1.271			
GPRS 850	190	836.6	30.89	1.227			
(4 Slot)	251	848.8	32.11	1.626			
ED 0 E 0 E 0	128	824.2	31.07	1.279			
EDGE 850	190	836.6	31.81	1.517			
(1 Slot)	251	848.8	32.26	1.683			
ED 0 E 0 E 0	128	824.2	31.32	1.355			
EDGE 850	190	836.6	31.14	1.300			
(2 Slot)	251	848.8	32.41	1.742			
EDOE 252	128	824.2	30.78	1.197			
EDGE 850	190	836.6	31.08	1.282			
(3 Slot)	251	848.8	32.23	1.671			
	128	824.2	30.34	1.081			
EDGE 850	190	836.6	31.32	1.355			
(4 Slot)	251	848.8	31.97	1.574			

Page: 16 of 63

PCS 1900							
Mode	Channel	Frequency (MHz)	Conducted Power (dBm)	Conducted Powe (W)			
	512	1850.2	29.21	0.834			
GSM 1900	661	1880.0	29.06	0.805			
	810	1909.8	29.07	0.807			
GPRS 1900	512	1850.2	29.18	0.828			
	661	1880.0	29.05	0.804			
(1 Slot)	810	1909.8	29.07	0.807			
ODDC 4000	512	1850.2	29.12	0.817			
GPRS 1900 (2 Slot)	661	1880.0	29.03	0.800			
	810	1909.8	29.06	0.805			
GPRS 1900 (3 Slot)	512	1850.2	29.12	0.817			
	661	1880.0	29.08	0.809			
	810	1909.8	29.14	0.820			
ODDO 4000	512	1850.2	29.05	0.804			
GPRS 1900	661	1880.0	29.02	0.798			
(4 Slot)	810	1909.8	29.18	0.828			
EDOE 4000	512	1850.2	29.19	0.830			
EDGE 1900	661	1880.0	29.05	0.804			
(1 Slot)	810	1909.8	29.07	0.807			
EDOE 4000	512	1850.2	29.13	0.818			
EDGE 1900	661	1880.0	29.04	0.802			
(2 Slot)	810	1909.8	29.11	0.815			
EDOE 4000	512	1850.2	29.06	0.805			
EDGE 1900	661	1880.0	29.18	0.828			
(3 Slot)	810	1909.8	29.09	0.811			
EDOE 4000	512	1850.2	29.16	0.824			
EDGE 1900	661	1880.0	29.11	0.815			
(4 Slot)	810	1909.8	29.07	0.807			

Page: 17 of 63

6. Peak-Average Ratio

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 24E: 24.232 (d)

6.1.2 Test Limit

PCS 1900

The peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

6.2 Test Setup

6.3 Test Procedure

According with KDB 971168

- (1) The signal analyzer's CCDF measurement profile is enabled.
- (2) Frequency = carrier center frequency.
- (3) Measurement BW>Emission bandwidth of signal.
- (4) The signal analyzer was set to collect one million samples to generate the CCDF curve.
- (5) The measurement interval was set depending on the type of signal analyzed. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms. For burst transmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in which of the transmitter is operating at maximum power.
- (6) Measured and recorded the 0.1% as PAPR level.

6.4 EUT Operating Condition

The EUT was continuously connected with the Base station and transmitting in the max power

Page: 18 of 63

during the test.

6.5 Test Data

		PCS 1	900		
Mode	Channel	ted Power Bm)	Peak-Average		
IVIOUE	Onamici	(MHz)	Peak	Average	Ratio (PAR)
The same	512	1850.2	28.10	27.91	0.2
PCS 1900	661	1880.0	27.96	27.76	0.2
	810	1909.8	28.03	27.79	0.2

Page: 19 of 63

Page: 20 of 63

7. Radiated Output Power

7.1 Test Standard and Limit

7.1.1 Test Standard

FCC Part 22H : 22.913 (a) FCC Part 24E: 24.232 (c)

7.1.2 Test Limit

According to FCC Part 22.913 (a), the ERP of Cellular mobile transmitters must not exceed 7 Watts(38.5 dBm).

According to FCC Part 24.232 (c), the Mobile/portable stations are limited to 2 Watts(33 dBm) EIRP peak power.

Cellular Band	PCS Band		
GSM850	PCS 1900		
38.5 dBm (ERP)	33 dBm (EIRP)		

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was placed on an non-conductive rotating platform with 0.8 meter height in an anechoic chamber. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and a spectrum analyzer with RBW=3 MHz, VBW=3 MHz and peak detector settings.
- (2) During the measurement, the EUT was enforced in maximum power and linked with the Base

Page: 21 of 63

Station. The highest was recorded from analyzer power level (LVT) from the 360 degrees rotation of the turntable and the test antenna raised and lowered over a range from 1 to 4 meters in both horizontally and vertically polarized orientations.

(3) Effective Isotropic Radiated Power (EIRP) was measured by substitution method according to TIA/EIA-603-D. The EUT was replaced by dipole antenna (for frequency below 1 GHz) or Horn antenna (for frequency above 1 GHz) at same location with same polarize of receiver antenna and then a known power of each measure frequency from S.G. was applied into the dipole antenna or Horn antenna through a TX cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna.

Then the EUT's EIRP and ERP was calculated with the correction factor:

ERP=S.G.Level +Antenna Gain Cord.(dBd)-Cable Loss(dB)

EIRP=S.G.Level+Antenna Gain Cord.(dBi)-Cable Loss(dB)

7.4 EUT Operating Condition

The EUT was continuously connected with the Base station and transmitting in the max power during the test.

7.5 Test Data

Measurement Data (worst case)

TOBY Page:

GSM 850								
Mode	Channel	Frequency (MHz)	Antenna (H&V)	SG Level	Antenna Gain (dBd)	Cable Loss (dB)	ERP Power (dBm)	ERP Power (W)
	128	824.2	Н	28.04	3.46	1.26	30.24	1.057
	120	024.2	V	28.58	3.46	1.26	30.78	1.197
GSM	190	836.6	Н	28.29	3.82	1.26	30.85	1.216
850	130	030.0	V	27.59	3.82	1.26	30.15	1.035
	251	848.8	Н	25.46	4.16	1.26	28.36	0.685
	231		V	27.42	4.16	1.26	30.32	1.076
	128	824.2	Н	27.27	3.46	1.26	29.47	0.885
0000	120		V	25.93	3.46	1.26	28.13	0.650
GPRS 850 (1	100	190 836.6	Н	26.89	3.82	1.26	29.45	0.881
Slot)	190		V	25.78	3.82	1.26	28.34	0.682
0.01)	251	1 848.8	Н	27.11	4.16	1.26	30.01	1.002
	251		V	26.06	4.16	1.26	28.96	0.787
	128	824.2	Н	27.14	3.46	1.26	29.34	0.859
-D.O.F	120	024.2	V	25.76	3.46	1.26	27.96	0.625
EDGE 850 (1	190	836.6	Н	26.60	3.82	1.26	29.16	0.824
Slot)	190	030.0	V	25.88	3.82	1.26	28.44	0.698
0.0.,	251	848.8	Н	26.97	4.16	1.26	29.87	0.971
	201	040.0	V	24.79	4.16	1.26	27.69	0.587
	Limit 38.5 7							

Page: 23 of 63

PCS 1900								
Mode	Channel	Frequency (MHz)	Antenna (H&V)	SG Level (dBm)	Antenna Gain (dBi)	Cable Loss (dB)	EIRP Power (dBm)	EIRP Power (W)
	512	1850.2	Н	26.25	5.01	2.59	28.67	0.736
	0.12	1000.2	V	26.53	5.01	2.59	28.95	0.785
GSM	661	1880.0	Н	26.53	4.82	2.59	28.76	0.752
1900	001	1000.0	V	26.12	4.82	2.59	28.35	0.684
	040	1909.8	Н	25.46	4.45	2.59	27.32	0.540
	810		٧	24.12	4.45	2.59	25.98	0.396
		1850.2	Н	25.83	5.01	2.59	28.25	0.668
GPRS	512		V	24.16	5.01	2.59	26.58	0.455
1900	004	1880.0	Н	25.12	4.82	2.59	27.35	0.543
(1	661		V	23.73	4.82	2.59	25.96	0.394
Slot)	040	810 1909.8	Н	25.50	4.45	2.59	27.36	0.545
	810		V	24.56	4.45	2.59	26.42	0.439
	512	1850.2	Н	24.56	5.01	2.59	26.98	0.499
EDGE	512	1050.2	V	25.92	5.01	2.59	28.34	0.682
1900	661	1990.0	Н	25.46	4.82	2.59	27.69	0.587
(1	661	1880.0	V	24.22	4.82	2.59	26.45	0.442
Slot)	940	1000.0	Н	25.49	4.45	2.59	27.35	0.543
	810	1909.8	V	23.82	4.45	2.59	25.68	0.370
		Lin	nit			33		2

Page: 24 of 63

8. Occupied Bandwidth

8.1 Test Standard and Limit

8.1.1 Test Standard

FCC Part 2: 2.1049

FCC Part 22H: 22.913 (a) FCC Part 24E: 24.232 (c)

8.1.2 Test Requirement

According to FCC section 2.1049, the occupied bandwidth is the frequency bandwidth such that below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.

Occupied bandwidth is also known as 99% power and -26dBC occupied bandwidths.

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and Base station via power splitter as show in the block diagram above.
- (2) The resolution bandwidth of the Spectrum Analyzer is set to at least 1% of the occupied bandwidth.
- (3) The low, middle and the high channels are selected to perform tests respectively.
- (4) Set the frequency range of the Spectrum Analyzer suitably to capture the waveform; search peak; make a line whose value is 26dB lower than the peak; mark two points which the line intersected the waveform at; finally record the delta of the two points as the occupied bandwidth and the plot.
- (5) Set the Spectrum Analyzer Occupied bandwidth function to measure the 99% occupied bandwidth.

Page: 25 of 63

8.4 EUT Operating Condition

The EUT was continuously connected with the Base station and transmitting in the max power during the test.

8.5 Test Data

Please refer following pages.

Page: 26 of 63

GSM 850						
Mode	Channel	Frequency (MHz)	99% OBW (KHz)	-26dB Bandwidth (kHz)		
	128	824.2	243.5846	315.394		
GSM 850	190	836.6	246.2122	320.228		
	251	848.8	248.3301	317.934		
ODDC 050	128	824.2	248.2198	320.196		
GPRS 850	190	836.6	242.0534	315.364		
(1 Slot)	251	848.8	246.3215	317.573		
EDOE 050	128	824.2	243.5846	315.394		
EDGE 850 (1 Slot)	190	836.6	249.7256	322.329		
	251	848.8	241.9258	319.160		

PCS 1900

Mode	Channel	Frequency (MHz)	99% OBW (KHz)	-26dB Bandwidth (kHz)
	512	1850.2	239.4147	308.899
GSM 1900	661	1880.0	241.9741	317.744
133	810	1909.8	245.3190	319.700
GPRS 1900	512	1850.2	241.1472	312.180
W. J. M. T. Saint	661	1880.0	245.5805	325.049
(1 Slot)	810	1909.8	243.7115	319.906
EDGE 1900 (1 Slot)	512	1850.2	245.5392	317.025
	661	1880.0	246.7041	319.324
	810	1909.8	243.2940	319.036

Page: 27 of 63

Page: 28 of 63

Page: 29 of 63

Page: 30 of 63

Page: 31 of 63

Page: 32 of 63

Page: 33 of 63

Page: 34 of 63

Page: 35 of 63

Page: 36 of 63

Page: 37 of 63

Page: 38 of 63

Page: 39 of 63

9. Conducted Out of Band Emissions

9.1 Test Standard and Limit

9.1.1 Test Standard

FCC Part 2: 2.1051, 2.1057 FCC Part 22H: 22.917(a) FCC Part 24E: 24.238(a)

9.1.2 Test Limit

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power(P) by a factor of at least 43+10log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

9.2 Test Setup

9.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and Base station via power splitter as show in the block diagram above.
- (2) Spectrum Setting:

Frequency bellow 1 GHz: RBW=100 kHz, VBW=300 kHz. Frequency above 1 GHz: RBW=1 MHz, VBW=3 MHz.

(3) The low, middle and high channels of each band and mode's spurious emissions for 30 MHz to 10th Harmonic were measured by Spectrum analyzer.

9.4 EUT Operating Condition

The EUT was continuously connected with the Base station and transmitting in the max power during the test.

Page: 40 of 63

9.5 Test Data

Please refer following plots:

Page: 41 of 63

Page: 42 of 63

Page: 43 of 63

Page: 44 of 63

Page: 45 of 63

age: 46 of 63

Page: 47 of 63

age: 48 of 63

Page: 49 of 63

age: 50 of 63

Page: 51 of 63

Page: 52 of 63

10. Band Edge Test

10.1 Test Standard and Limit

10.1.1 Test Standard

FCC Part 2: 2.1051, 2.1057 FCC Part 22H: 22.917(a) FCC Part 24E: 24.238(a)

10.1.2 Test Limit

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power(P) by a factor of at least 43+10log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

10.2 Test Setup

10.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and Base station via power splitter as show in the block diagram above.
- (2) Spectrum Setting:

GSM and PCS: RBW=3 kHz, VBW=10 kHz, Span 1 MHz, Detector: Peak Mode.

WCDMA: RBW=100 kHz, VBW=300 kHz, Span 5 MHz, Detector: Peak Mode.

(3) The band edges of low and high channels for the highest RF powers were measured.

10.4 EUT Operating Condition

The EUT was continuously connected with the Base station and transmitting in the max power during the test.

Page: 53 of 63

10.5 Test Data

Please refer the following plots:

Band edge emission:

Lowest channel

Highest channel

54 of 63 Page:

Lowest channel

Highest channel

Page: 55 of 63

Lowest channel

Highest channel

Page: 56 of 63

Lowest channel

Highest channel

Page: 57 of 63

Lowest channel

Highest channel

Page: 58 of 63

Test Mode: EGPRS1900

Lowest channel

Highest channel

Page: 59 of 63

11. Radiated Out Band of Emissions

11.1 Test Standard and Limit

11.1.1 Test Standard

FCC Part 2: 2.1053, 2.1057 FCC Part 22H: 22.917 FCC Part 24E: 24.238

11.1.2 Test Limit

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power(P) by a factor of at least 43+10log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

11.2 Test Setup

11.3 Test Procedure

- (1) The test system setup as show in the block diagram above.
- (2) The EUT was placed on an non-conductive rotating platform in an anechoic chamber. The radiated spurious emissions from 30MHz to 10th harmonious of fundamental frequency were measured at 3 m with a test antenna and a spectrum analyzer with RBW=1 MHz, VBW=1 MHz, peak detector settings.
- (3) During the measurement, the EUT was enforced in maximum power and linked with a base station. All the spurious emissions at 3m were measured by rotation of the turntable and the test antenna raised and lowered over a range from 1 to 4 meters in both horizontally and vertically polarized orientations.
- (4) When found the maximum level of emissions from the EUT. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Page: 60 of 63

Spurious emissions in dB=10 log(TX power in Watts/0.001)-the absolute level Spurious attenuation limit in dB=43+10 log(power out in Watts)

11.4 EUT Operating Condition

The EUT was continuously connected with the Base station and transmitting in the max power during the test.

11.5 Test Data

Please refer the following pages.

Page: 61 of 63

Measurement Data (worst case)

Test mode:	GSM850		Test channel:	Middle
Frequency (MHz)	Spurious Emission		Limit (dDm)	Dooult
	Polarization	Level (dBm)	Limit (dBm)	Result
1673.20	Vertical	-32.47	-13.00	Pass
2509.80	V	-36.24		
3346.40	V	-40.21		
4183.00	V	1 Min		
5019.60	V	9 (1)		
5856.20	V			
1673.20	Horizontal	-37.75	-13.00	Pass
2509.80	Н	-42.24		
3346.40	H	-47.68		
4183.00	H	411055		
5019.60	Н			
5856.20	H	11/1/1		

Remark:

- 1. The testing has been conformed to 10*836.6MHz=8,366MHz
- 2. All other emissions more than 30 dB below the limit.

Test mode:	GPRS 850		Test channel:	Middle
Frequency (MHz)	Spurious Emission		Lineit (dDne)	Result
	Polarization	Level (dBm)	Limit (dBm)	Result
1673.20	Vertical	-34.61	311	Pass
2509.80	V	-39.21	The same of the	
3346.40	V	-42.05	12.00	
4183.00	V	THU	-13.00	
5019.60	V	CONTRACTOR -	3 2 6/1	
5856.20	V			
1673.20	Horizontal	-37.52	N. C.	Pass
2509.80	Н	-44.63		
3346.40	Н	-46.30	-13.00	
4183.00	Н	10 - (
5019.60	Н			
5856.20	H	CHIT I		

Remark:

- 1. The testing has been conformed to 10*836.6MHz=8,366MHz.
- 2. All other emissions more than 30 dB below the limit.

TOBY

Page: 62 of 63

Test mode:	EGPRS 850		Test channel:	Middle
Frequency (MHz)	Spurious Emission		Limit (dDm)	Decult
	Polarization	Level (dBm)	Limit (dBm)	Result
1673.20	Vertical	-35.85	NU.	Pass
2509.80	V	-40.69		
3346.40	V	-44.21	12.00	
4183.00	V	(C)	-13.00	
5019.60	V	1 10-		
5856.20	V	2 01		
1673.20	Horizontal	-38.62		Pass
2509.80	Н	-46.56	3 100	
3346.40	Н	-48.32	42.00	
4183.00	H		-13.00	
5019.60	H	111055	THUE	
5856.20	Н			

Remark:

- 1. The testing has been conformed to 10*836.6MHz=8,366MHz.
- 2. All other emissions more than 30 dB below the limit.

Test mode:	PCS1900		Test channel:	Middle
Frequency (MHz)	Spurious Emission		Limit (dDm)	Decult
	Polarization	Level (dBm)	Limit (dBm)	Result
3760.00	Vertical	-30.77	CHO.	Pass
5640.00	V	-35.67	11	
7520.00	V	-41.52	12.00	
9400.00	V	- CO.	-13.00	
11280.00	V			
13160.00	V	- TIME	3 6111	
3760.00	Horizontal	-28.34		Pass
5640.00	H	-30.35		
7520.00	Н	-35.41	-13.00	
9400.00	H			
11280.00	Н	- C		
13160.00	Н			

Remark:

- 1. The testing has been conformed to 10*1880.0MHz=18,800MHz.
- 2. All other emissions more than 30 dB below the limit.

Page: 63 of 63

Test mode:	GPRS1900		Test channel:	Middle
Frequency (MHz)	Spurious Emission		Limit (dDms)	Result
	Polarization	Level (dBm)	Limit (dBm)	Result
3760.00	Vertical	-32.60	1000	Pass
5640.00	V	-37.22		
7520.00	V	-43.05		
9400.00	V	J William	-13.00	
11280.00	V	3 - 01		
13160.00	V		CONTRACT OF THE PARTY OF THE PA	
3760.00	Horizontal	-30.35	9 10	Pass
5640.00	Н	-32.41	-13.00	
7520.00	Н	-37.16		
9400.00	Н	411055		
11280.00	Н			
13160.00	H	410		

Remark:

- 1. The testing has been conformed to 10*1880.0MHz=18,800MHz.
- 2. All other emissions more than 30 dB below the limit.

Test mode:	EGPRS1900		Test channel:	Highest
Frequency (MHz)	Spurious Emission		Limit (dDm)	Result
	Polarization	Level (dBm)	Limit (dBm)	Result
3760.00	Vertical	-32.95	-13.00	Pass
5640.00	V	-38.06		
7520.00	V	-44.15		
9400.00	V	THU -		
11280.00	V	- Talling		
13160.00	V			
3760.00	Horizontal	-31.06	-13.00	Pass
5640.00	Н	-33.20		
7520.00	H	-37.98		
9400.00	Н	33 = (
11280.00	H			
13160.00	Н	C. H. T. See		

Remark:

- 1. The testing has been conformed to 10*1880.0MHz=18,800MHz.
- 2. All other emissions more than 30 dB below the limit.

-----End of Report-----