Singular value decomposition(SVD)

Matrix decompositions

- 1. Lower-upper(LU)
- 2. Cholesky
- 3. QR
- 4. eigen decomposition(Schur) $\mathbf{A} = \mathbf{Q}^{-1} \Lambda \mathbf{Q}$
- 5. Singular value decomposition(SVD)

Eigendecomposition

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ \leftarrow real square and symmetric.

$$\mathbf{A} = \mathbf{Q}^{-1} \Lambda \mathbf{Q}$$

- 1. $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$: eigenvalues
- 2. \mathbf{Q} is orthogonal: $\mathbf{Q}^T\mathbf{Q} = \widehat{\mathbf{1}}$
- 3. Columns of Q are eigenvectors

$$\mathbf{A}\vec{q}_k = \lambda_k \, \vec{q}_k, \qquad k = 1, \dots, n$$

Singular value decomposition

Let $\mathbf{A} \in \mathbb{R}^{n \times m}$. Let $m \leqslant n$ (for clarity, not required)

$$\mathbf{A}_{n \times m} = \mathbf{U}_{n \times n} \cdot \mathbf{\Sigma}_{n \times m} \cdot \mathbf{V}^T$$

- 1. $\Sigma = \operatorname{diag}(\sigma_1, \sigma_2, \cdots, \sigma_m)$: singular values
- 2. $\mathbf{U}^T \mathbf{U} = \widehat{\mathbf{1}} \leftarrow n \times n; \qquad \mathbf{V}^T \mathbf{V} = \widehat{\mathbf{1}} \leftarrow m \times m$
- 3. Factorization exists for any square/rectangular matrix ${\bf A}$ (proof: GvL§2.4)

SVD

Let $\mathbf{A} \in \mathbb{R}^{n \times m}$. Let $m \leqslant n$ (for clarity, not required)

$$\mathbf{A}_{n \times m} = \mathbf{U}_{n \times n} \cdot \mathbf{\Sigma}_{n \times m} \cdot \mathbf{V}^T$$

1. $\Sigma = \operatorname{diag}(\sigma_1, \sigma_2, \cdots, \sigma_m)$

$$\sigma_1 \geqslant \sigma_2 \geqslant \cdots \geqslant \sigma_m$$

- 2. $\mathbf{U}^T\mathbf{U} = \widehat{\mathbf{1}} \leftarrow n \times n; \qquad \mathbf{V}^T\mathbf{V} = \widehat{\mathbf{1}} \leftarrow m \times m$
- 3. Columns of U&V:

$$\mathbf{U} = [\vec{u}_1 \mid \vec{u}_2 \mid \cdots \mid \vec{u}_n], \quad \vec{u}_k \in \mathbb{R}^n : \text{left singular vectors}$$

$$\mathbf{V} = [\vec{v}_1 \mid \vec{v}_2 \mid \cdots \mid \vec{v}_m], \quad \vec{v}_k \in \mathbb{R}^m : \text{right singular vectors}$$

5/16

Singular values and singular vectors

Right-multiply the factorization, $\mathbf{A} = \mathbf{U} \cdot \mathbf{\Sigma} \cdot \mathbf{V}^T$, by \mathbf{V} :

$$AV = U\Sigma$$

Take the k-th column:

$$\mathbf{A}\vec{v}_k = \sigma_k \vec{u}_k \,, \qquad k = 1, \dots, \underset{\min(m,n)}{m} \tag{1}$$

Transpose and right-multiply by U:

$$\mathbf{A}^T \vec{u}_k = \sigma_k \vec{v}_k \,, \qquad k = 1, \dots, m \tag{2}$$

Singular values and singular vectors

Combine (1) and (2):

$$\mathbf{A} \left(\frac{1}{\sigma_k} \mathbf{A}^T \vec{u}_k \right) = \sigma_k \vec{u}_k \quad \Rightarrow \quad \mathbf{A} \mathbf{A}^T \vec{u}_k = \sigma_k^2 \vec{u}_k$$

$$\mathbf{A}^T \left(\frac{1}{\sigma_k} \mathbf{A} \vec{v}_k \right) = \sigma_k \vec{v}_k \quad \Rightarrow \quad \mathbf{A}^T \mathbf{A} \vec{v}_k = \sigma_k^2 \vec{v}_k$$

- $ightharpoonup \sigma_k^2$ are eigenvalues of $\mathbf{A}^T \mathbf{A}$
- $ightharpoonup ec{v}_k$ are eigenvectors of $\mathbf{A}^T\mathbf{A}$
- Note that $\dim \mathbf{A}\mathbf{A}^T=n$, so only m eigenvalues are σ_k^2 .

Rank, range and nullspace

Consider (1):
$$\mathbf{A}\vec{v}_k = \sigma_k \vec{u}_k$$
.

Suppose that r values of σ_k are non-zero:

$$\sigma_1 \geqslant \sigma_2 \geqslant \cdots \geqslant \sigma_r > \underbrace{\sigma_{r+1} \geqslant \cdots \geqslant \sigma_m}_{=0}$$

- $ightharpoonup \operatorname{rank} \mathbf{\Sigma} = r \quad \Rightarrow \quad \operatorname{rank} \mathbf{A} = r$
- ightharpoonup null $(\mathbf{A}) = \mathrm{span}(\vec{v}_{r+1}, \cdots, \vec{v}_m)$ ядро \mathbf{A} : подпространство \vec{x} : $\mathbf{A}\vec{x} = 0$
- $ightharpoonup \operatorname{ran}(\mathbf{A}) = \operatorname{span}(\vec{u}_1,\cdots,\vec{u}_r)$ образ \mathbf{A} : линейная комбинация столбцов: $orall \vec{x} \cdot \mathbf{A} \vec{x} \in \operatorname{range}$

Numerically, define a cutoff for small singular values.

Subspaces and projections

Let $\vec{x} \in \mathbb{R}^n$. \hat{P} is a *projector* onto a subspace $S \subset \mathbb{R}^n$ if

$$\widehat{P}\vec{x} \in S \quad \text{and} \quad (1-\widehat{P})\vec{x} \in S^{\perp}$$

Let rank $\mathbf{A} = r$. Partition \mathbf{U} and \mathbf{V} matrices:

$$\mathbf{U} = \left[\begin{array}{cc} \mathbf{U}_r \mid \widetilde{\mathbf{U}}_r \right], & \quad \mathbf{V} = \left[\begin{array}{cc} \mathbf{V}_r \mid \widetilde{\mathbf{V}}_r \right] \\ \stackrel{\leftrightarrow}{}_r & \stackrel{\leftrightarrow}{}_{m-r} \end{array}$$

SVD generates projectors onto characteristic subspaces of ${f A}$

Subspaces and projections

Projectors via SVD:

- $\mathbf{V}_r \mathbf{V}_r^T$: projection onto $\mathrm{null}(\mathbf{A})^{\perp} = \mathrm{ran}(\mathbf{A}^T)$
- $ightharpoonup \widetilde{\mathbf{V}}_r\widetilde{\mathbf{V}}_r^T$: projection onto $\mathrm{null}(\mathbf{A})$
- $ightharpoonup \mathbf{U}_r \mathbf{U}_r^T$: projection onto $\operatorname{ran}(\mathbf{A}^T)$
- $ightharpoonup \widetilde{\mathbf{U}}_r\widetilde{\mathbf{U}}_r^T$: projection onto $\mathrm{ran}(\mathbf{A})^\perp = \mathrm{null}(\mathbf{A}^T)$

Thin SVD (a.k.a. economic SVD)

Note that Σ has a block structure:

$$oldsymbol{\Sigma} = egin{bmatrix} oldsymbol{\Sigma}_1 \ oldsymbol{0} \end{bmatrix}$$

where $\Sigma_1 = \operatorname{diag}(\sigma_1, \cdots, \sigma_m)$.

Decompose
$$\mathbf{U} = \left[\begin{array}{c|c} \mathbf{U}_1 & \mathbf{U}_2 \end{array} \right] \updownarrow_{\mathbf{n}}$$

Then,

$$\mathbf{A} = \left[\left. \mathbf{U}_1 \left| \mathbf{U}_2 \right. \right] \cdot \begin{bmatrix} \mathbf{\Sigma}_1 \\ 0 \end{bmatrix} \cdot \mathbf{V}^T = \mathbf{U}_1 \cdot \mathbf{\Sigma}_1 \cdot \mathbf{V}^T$$

 \mathbf{U}_1 has orthogonal columns.

SVD expansion

Write A as a sum of rank-1 matrices:

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \equiv \sum_{k=1}^m \sigma_k \vec{u}_k \vec{v}_k^T$$

This is exact. Can use it for approximations: approximate a given matrix with a matrix of smaller rank.

Eckart-Young theorem

Let $rank(\mathbf{A}) = r$. Consider

$$\mathbf{A}_p = \sum_{k=1}^p \sigma_k ec{u}_k ec{v}_k^T$$
 note: $p < r$ terms

Consider a set of rank-p matrices \mathbf{B} : rank(\mathbf{B}) = p. Then,

$$\min_{\mathbf{B}: \operatorname{rank} \mathbf{B} = p} \|\mathbf{A} - \mathbf{B}\|_2 = \|\mathbf{A} - \mathbf{A}_p\|_2$$
$$= \sigma_{p+1}$$

proof: GvL §2.4

Interpretations

SVD decomposes a linear mapping $x \longrightarrow \mathbf{A}x$:

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_{k=1}^r \sigma_k u_k v_k^T$$

$$\xrightarrow{x}$$
 \mathbf{V}^T $\xrightarrow{\mathbf{V}^T x}$ Σ $\xrightarrow{\Sigma \mathbf{V}^T x}$ \mathbf{U} \longrightarrow $\mathbf{A}x$

- 1. rotate the basis into input directions $\vec{v}_1, \dots, \vec{v}_r$
- 2. scale the coefficients in the input basis by σ_k
- 3. rotate to the output basis $\vec{u}_1,\cdots,\vec{u}_r$

NB: input/output directions are different.

Interpretations

SVD decomposes a linear mapping $x \longrightarrow \mathbf{A}x$:

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_{k=1}^r \sigma_k u_k v_k^T$$

$$\xrightarrow{x}$$
 \mathbf{V}^T $\xrightarrow{\mathbf{V}^T x}$ Σ $\xrightarrow{\Sigma \mathbf{V}^T x}$ \mathbf{U} \longrightarrow $\mathbf{A}x$

- $ightharpoonup v_1$ is the most sensitive input direction
- $ightharpoonup u_1$ is the highest gain output direction

Can \approx neglect components which correspond to the smallest singular values.

Properties of SVD

Geometrically:

 $\vec{u_k}$: principal axes σ_k : lengths of principal semiaxes

Geometric interpretation