MDV: cours 4

Programmation certifiée avancée

① L'envers du décors : preuve = λ -terme

① L'envers du décors : preuve = λ -terme

2 Spécification riche : un cas d'étude

- ① L'envers du décors : preuve = λ -terme
- 2 Spécification riche : un cas d'étude
- 3 Le système de modules de Coq

- ① L'envers du décors : preuve = λ -terme
- 2 Spécification riche : un cas d'étude
- 3 Le système de modules de Coq
- 4 Exercice: programmer une librairie d'ensembles finis

- 1 L'envers du décors : preuve = λ -terme
- Spécification riche : un cas d'étude
- 3 Le système de modules de Coq
- 4 Exercice: programmer une librairie d'ensembles finis

L'envers du décors

Coq est basé sur un λ -calcul richement typé (+ types inductifs)

CCI = Calcul des Construction Inductives

Les λ-termes servent

- à représenter des programmes
- à représenter des preuves

Les types servent

- ▶ à donner un type aux programmes
- ▶ à écrire des formules logiques (énoncés de théorème)

Où sont les programmes, où sont les preuves?

Pour garder un peu d'intuition, on peut se rattacher aux sortes Set et Prop.

```
Exemple : pour h : T
```

- ightharpoonup si T: Prop,
 - T est vue comme une propriété,
 - h comme une preuve,
- \triangleright si T: Set.
 - ► *T* est vue comme un type (une spécification),
 - h comme un programme.

Précision de vocabulaire

Dans une preuve interactive du genre :

```
P : Prop
H : P
```

Ici, H n'est pas vraiment le nom d'une hypothèse mais plutôt le nom d'une *preuve* de P, dont on suppose l'existence.

Lorsqu'on énonce et prouve un théorème :

```
Theorem toto : 0 + 0 = 0. Proof. auto. Oed.
```

Ici, toto n'est pas le nom que l'on donne à l'énoncé mais plutôt celui que l'on donne à la preuve (au λ -terme sous-jacent).

Extraction

Le mécanisme d'extraction transforme un λ -terme Coq en objet Caml (un type ou un terme).

Ce mécanisme d'extraction utilise la distinction Set/Prop:

- ▶ les objets de type Set sont conservés (contenu calculatoire)
- ► les objets de type Prop sont effacés (contenu logique)

...je simplifie un petit peu...

Quelques types inductifs de références

Nous allons maintenant énumérer plusieurs exemples de types inductifs (essentiellement des constructeurs de type) pour montrer

- que la plupart des constructeurs logiques ne sont pas des objets *primitifs*, mais forme une *sur-couche* sur le CCI,
- comment définir des spécifications de programmes riches.

Le type produit

```
Inductive prod (A : Set) (B : Set) : Set :=
    | pair : A → B → A * B

Remarque: prod A B est noté A * B.

Definition p : prod nat bool := pair 1 true.

Extraction: type ('a, 'b) prod = | Pair of 'a * 'b
```

Le et logique

```
Inductive and (A : Prop) (B : Prop) : Prop :=
   | conj : A → B → A ∧ B

Remarque : and A B est noté A ∧ B.

Section exemple.
   Variable h1 : 3 <= 6.
   Variable h2 : true<>false.

Definition P : 3 <= 6 ∧ true<>false := conj h1 h2.
End exemple.
```

Extraction : \emptyset (pas de contenu calculatoire)

Le type somme

```
Inductive sum (A : Set) (B : Set) : Set :=
   | inl : A → A + B
   | inr : B → A + B
```

Remarques:

- ▶ sum A B est noté A + B
- ▶ le 1er argument de inl est implicite
- ▶ la notation @ annule le mécanisme d'arguments implicites

```
Definition p : sum nat bool := @inl nat bool 1. 
Definition p : sum nat bool := inl bool 1.
```

Extraction:

Le or logique

Aucune extraction.

Les booléens logiques

Exercice : un vrai type booléen logique

Proposez un type richbool P équivalent à $\{P\}+\{\neg P\}$.

Quantificateur existentiel

```
Inductive ex (A:Set) (P:A → Prop) : Prop :=
  | ex_intro : ∀ x:A, P x → ex A P.

Remarque: ex A (fun x ⇒ Q) est noté ∃ x, Q.

Variable h : 1=1.
Definition essai : ∃ x, x=1 := @ex_intro nat (fun x ⇒ x=1) 1 h.
```

Il s'agit d'un paire dont le deuxième élément a un type qui dépend du premier élément.

Sous-ensemble

```
Inductive sig (A : Set) (P : A \rightarrow Prop) : Set := exist : \forall x : A, P x \rightarrow sig P
```

Remarques:

- ▶ sig A (fun x \Rightarrow Q) est noté { x:A | Q }
- ▶ la notation sous-ensemble est un peu trompeuse : un objet de type { x:A | Q}, n'est pas de type A!

```
Variable h : 1=1. 
 Definition essai : { x:nat | x=1 } := exist (fun x \Rightarrow x=1) 1 h.
```

Extraction:

```
type 'a sig0 = 'a

let essai = S 0
```


Exercice

Pour illustrer la différence entre ex et sig

prouver le lemme Coq suivant :

```
Lemma pred_ex : \forall n:nat, n<>0 \rightarrow \exists p, n = S p. Proof. ... Qed.
```

puis utiliser le même script de preuve pour prouver le lemme

```
Lemma pred_sig : \forall n:nat, n<>0 \rightarrow { p:nat | n = S p }. Proof. ... Qed.
```

puis tester la commande Extraction pred_sig.

Exercice

Pour illustrer la différence entre ex et sig

prouver le lemme Coq suivant :

```
Lemma pred_ex : \forall n:nat, n<>0 \rightarrow \exists p, n = S p. Proof. ... Qed.
```

puis utiliser le même script de preuve pour prouver le lemme

```
Lemma pred_sig : \forall n:nat, n<>0 \rightarrow { p:nat | n = S p }. Proof. ... Qed.
```

puis tester la commande Extraction pred_sig.

```
let pred = function
   | 0 → assert false (* absurd case *)
   | S n0 → n0
```

Programmation par preuve

Le langage de tactiques (intros, auto, ...) est en fait un langage de construction interactive de λ -terme.

- ▶ intros : abstraction fun $x \Rightarrow \dots$
- destruct (ou case): filtrage match .. with ... end
- apply: application d'une fonction.

```
Variable A : Set. Variable a0 a1 : A. Variable f : nat \rightarrow A \rightarrow A.
```

```
Definition F': nat \rightarrow A.
```

```
Variable A : Set.
Variable a0 a1 : A.
Variable f : nat \rightarrow A \rightarrow A.
```

```
Definition F' : nat \rightarrow A.
```

```
Definition F : nat \rightarrow A :=

fun n \Rightarrow

match n with

| 0 \Rightarrow a0

| S p \Rightarrow f p a1
```

```
Variable a0 a1 : A.  \begin{tabular}{lll} Variable & f : nat $\to$ A $\to$ A. \\ \\ \hline \begin{tabular}{lll} Definition & F' : nat $\to$ A. \\ \\ \hline \begin{tabular}{lll} intros & n. \\ \\ \hline \end{tabular}
```

Variable A : Set.

```
Definition F : nat → A :=

fun n ⇒

match n with

| 0 \Rightarrow a0

| S p \Rightarrow f p a1
```

```
Variable A : Set.  
Variable a0 a1 : A.  
Variable f : nat \rightarrow A \rightarrow A.  

Definition F' : nat \rightarrow A.  

intros n.  
destruct n as [ \mid p ].  

Definition F : nat \rightarrow A := fun n \Rightarrow match n with | 0 \Rightarrow a0  | S p \Rightarrow f p a1 end.
```

```
Variable A : Set.
Variable a0 a1 : A.
Variable f : nat → A → A.

Definition F' : nat → A.

intros n.

destruct n as [ | p ].

apply a0.

Definition F : nat → A :=

fun n ⇒

apply a0.

match n with

| 0 ⇒ a0

| S p ⇒ f p a1

end.
```

```
Variable f : nat \rightarrow A \rightarrow A.
  Definition F': nat \rightarrow A.
        intros n.
                                                       Definition F : nat \rightarrow A :=
        destruct n as [ | p ].
                                                             fun n \Rightarrow
        apply a0.
                                                                    match n with
        apply f.
```

Variable A : Set. Variable a0 a1 : A.

 $10 \Rightarrow a0$ $| Sp \Rightarrow fp a1$

end.

```
Variable a0 a1 : A.
Variable f : nat → A → A.

Definition F' : nat → A.
   intros n.
   destruct n as [ | p ].
   apply a0.
   apply f.
   apply p.
```

Variable A : Set.

```
\begin{array}{cccc} \textbf{Definition} \ F \ : \ \mathsf{nat} \ \to \ \mathsf{A} \ := \\ & \textbf{fun} \ \mathsf{n} \ \Rightarrow \\ & \textbf{match} \ \mathsf{n} \ \textbf{with} \\ & \mid \ \mathsf{0} \ \Rightarrow \ \mathsf{a0} \\ & \mid \ \mathsf{S} \ \mathsf{p} \ \Rightarrow \ \mathsf{f} \ \mathsf{p} \ \mathsf{a1} \\ & \textbf{end.} \end{array}
```

```
Variable A : Set.
Variable a0 a1 : A.
Variable f : nat \rightarrow A \rightarrow A.
  Definition F' : nat \rightarrow A.
        intros n.
                                                     Definition F : nat \rightarrow A :=
        destruct n as [ | p ].
                                                           fun n \Rightarrow
        apply a0.
                                                                 match n with
        apply f.
                                                                        10 \Rightarrow a0
        apply p.
                                                                       | Sp \Rightarrow fpa1
        apply a1.
                                                                  end.
  Qed.
```

La commande Print F' affiche le même terme que F.

Remarques

- la programmation par preuve est parfois utile pour programmer des fonctions ayant des types très riches,
- la programmation standard étant dans ces cas, assez technique,
- attention à l'automatisation!
 - mieux vaut ne pas laisser l'automatisation contrôler la définition (et l'efficacité) du programme

```
Definition f : nat → nat.
  auto. (* qu'est ce qui est programmé ? *)
Oed.
```

- ► Le mot clé Defined est plus approprié que Qed.
 - Qed rend *opaque* la fonction.

- ① L'envers du décors : preuve = λ -terme
- 2 Spécification riche : un cas d'étude
- 3 Le système de modules de Coq
- 4 Exercice: programmer une librairie d'ensembles finis

Quelques lemmes utiles

```
Require Export Arith.
Lemma le_n_plus_n_0 : \forall n, n \le 0 \rightarrow n + 0 = 0.
Proof
  intros n H; inversion H; auto.
Oed.
Lemma n eq Sm plus n 0 : \forall m n. n = S m \rightarrow n + 0 = S m.
Proof.
  intros n m H: rewrite H: auto.
Qed.
Definition nat_dec : \forall n m:nat, \{n=m\}+\{n<>m\} := eq_nat_dec.
Lemma le_nSm_diff : \forall m n, n \ll S m \rightarrow n \ll S m \rightarrow n \ll m.
Proof
  intros n m H Heq; inversion H; intuition.
Oed.
Lemma plus n Sm : \forall m n. n + S m = S (n + m).
Proof.
  induction n: simpl: auto.
Oed.
Lemma plus Sp Sm : \forall m p n. n + p = m \rightarrow n + S p = S m.
Proof.
  intros n m p H: rewrite <- H: apply plus n Sm.
Qed.
```

Hint Resolve le_n_plus_n_O n_eq_Sm_plus_n_O le_n_Sm_diff plus_n_Sm plus_Sp_Sm.

4 🗗 ▶

La soustraction entière

```
Fixpoint minus (m n:nat) {struct m} : nat :=
  match m with
    1 0 \Rightarrow 0
    | S p \Rightarrow
       match nat_dec n (S p) with
         | left \_ \Rightarrow 0
         | right \_ \Rightarrow S (minus p n)
       end
   end.
Theorem minus_OK : \forall m n, n <= m \rightarrow n + (minus m n) = m.
Proof.
  induction m; intros; simpl; auto.
  destruct nat dec: auto.
Oed.
```

Une spécification plus riche : fonction partielle

```
\label{eq:minus1} \mbox{minus1}: \ \forall \ (\mbox{m n:nat}), \ n <= \mbox{m} \to \mbox{nat} \mbox{n}: \mbox{nat} \mbox{m}: \mbox{nat} \mbox{h}: \mbox{n} <= \mbox{m} \mbox{h}: \mbox{n} <= \mbox{m} \mbox{minus1} \mbox{n} \mbox{m} \mbox{h} \mbox{...}
```

minus1 prend trois arguments: deux entiers et une preuve

Nous restreignons ainsi le domaine de définition : fonction partielle.

Une spécification plus riche: fonction partielle

```
Fixpoint minus1 (m n:nat) {struct m} : n <= m \rightarrow nat :=
   match m return n<=m → nat with
        0 \Rightarrow \mathbf{fun} \ \mathrm{H} \colon \ \mathrm{n} \iff 0 \Rightarrow 0
      | S p \Rightarrow fun H: n <= S p \Rightarrow
         match nat_dec n (S p) with
            | left \Rightarrow 0
            | right heg \Rightarrow
               S (minus1 p n
         end
    end.
Contexte:
```

```
le n Sm diff : \forall m n. n <= S m \rightarrow n <> S m \rightarrow n <= m
p: nat
n: nat
H : n \leq S p
heq:n <> Sp
```

Nous cherchons une preuve de n <= p.

Une spécification plus riche: fonction partielle

```
Fixpoint minus1 (m n:nat) {struct m} : n <= m \rightarrow nat :=
   match m return n<=m → nat with
        0 \Rightarrow \mathbf{fun} \ \mathrm{H} \colon \ \mathrm{n} \iff 0 \Rightarrow 0
     | S p \Rightarrow fun H: n <= S p \Rightarrow
        match nat_dec n (S p) with
           | left \Rightarrow 0
           | right heg \Rightarrow
              S (minus1 p n
        end
    end.
Contexte:
le n Sm diff : \forall m n. n <= S m \rightarrow n <> S m \rightarrow n <= m
p: nat
n: nat
H : n \le S p
heq: n <> Sp
```

Nous cherchons une preuve de $n \ll p$.

```
le_n\_Sm\_diff p n : n \le S p \rightarrow n \le S p \rightarrow n \le p
```

Une spécification plus riche : fonction partielle

```
Fixpoint minus1 (m n:nat) {struct m} : n <= m \rightarrow nat :=
   match m return n<=m → nat with
        0 \Rightarrow \mathbf{fun} \ \mathrm{H} \colon \ \mathrm{n} \iff 0 \Rightarrow 0
      | S p \Rightarrow fun H: n <= S p \Rightarrow
         match nat_dec n (S p) with
            | left \Rightarrow 0
            | right heg \Rightarrow
               S (minus1 p n
         end
    end.
Contexte:
```

```
le n Sm diff : \forall m n. n <= S m \rightarrow n <> S m \rightarrow n <= m
p: nat
n: nat
H : n \le S p
heq: n <> Sp
```

Nous cherchons une preuve de $n \le p$.

```
le n Sm diff p n : n <= S p \rightarrow n <> S p \rightarrow n <= p
le_n\_Sm\_diff p n H : n <> S p \rightarrow n <= p
```

Une spécification plus riche: fonction partielle

```
Fixpoint minus1 (m n:nat) {struct m} : n \leftarrow nat :=
   match m return n<=m → nat with
        0 \Rightarrow \mathbf{fun} \ \mathrm{H} \colon \ \mathrm{n} \iff 0 \Rightarrow 0
      | S p \Rightarrow fun H: n <= S p \Rightarrow
         match nat_dec n (S p) with
            | left \Rightarrow 0
            | right heg \Rightarrow
              S (minus1 p n
         end
    end.
Contexte:
le n Sm diff : \forall m n. n <= S m \rightarrow n <> S m \rightarrow n <= m
p: nat
n: nat
H : n \leq S p
heq: n <> Sp
Nous cherchons une preuve de n \le p.
le_n_Sm_diff p n : n \Leftarrow S p \rightarrow n \Leftrightarrow S p \rightarrow n \Leftarrow p
le_n\_Sm\_diff p n H : n <> S p \rightarrow n <= p
```

le n Sm diff p n H hea : n <= p

Une spécification plus riche : fonction partielle

```
Fixpoint minus1 (m n:nat) {struct m} : n \leftarrow nat :=
   match m return n<=m → nat with
        0 \Rightarrow \mathbf{fun} \ \mathrm{H} \colon \ \mathrm{n} \iff 0 \Rightarrow 0
     | S p \Rightarrow fun H: n <= S p \Rightarrow
        match nat_dec n (S p) with
              left \Rightarrow 0
           | right heq \Rightarrow
              S (minus1 p n (le_n_Sm_diff p n H heq))
        end
    end.
Contexte:
```

```
le n Sm diff : \forall m n. n <= S m \rightarrow n <> S m \rightarrow n <= m
p: nat
n: nat
H : n \leq S p
heq: n <> Sp
```

Nous cherchons une preuve de $n \le p$.

```
le_n_Sm_diff p n : n \Leftarrow S p \rightarrow n \Leftrightarrow S p \rightarrow n \Leftarrow p
le_n\_Sm\_diff p n H : n <> S p \rightarrow n <= p
le n Sm diff p n H hea : n <= p
```

Une spécification plus riche: fonction partielle

même preuve de correction que précédemment

```
Theorem minus1_OK : ∀ m n (H:n<=m), n + (minus1 m n H) = m.
Proof.
  induction m; intros; simpl; auto.
  destruct nat_dec; auto.
Qed.</pre>
```

Une spécification très riche

```
minus2 : \forall m n, n <= m \rightarrow { p:nat | n + p = m}
```

minus2 prend trois arguments (deux entiers et une preuve) et renvoie un entier et une preuve.

Il y a plusieurs façons de programmer ce type de fonctions.

Programmation par preuve

```
Definition minus2 : ∀ m n, n <= m → { p:nat | n + p = m}.
Proof.
  induction m; intros.
  exists 0; auto.
  destruct (nat_dec n (S m)).
  exists 0; auto.
  destruct (IHm n) as [p Hp].
  auto.
  exists (S p); auto.
Defined.</pre>
```

Programmation par preuve et terme

```
Definition type_minus m n := n <= m \rightarrow { p:nat | n + p = m }.
Definition minus3 : ∀ m n, type_minus m n.
Proof.
  refine (
  fix f (m n:nat) {struct m} : type_minus m n :=
     match m return type minus m n with
        \mid 0 \Rightarrow \mathbf{fun} \mid \mathsf{H} \Rightarrow \mathsf{exist} \mid 0 \mid
        \mid S p \Rightarrow fun H \Rightarrow
          match nat_dec n (S p) with
               left Heg \Rightarrow exist _ 0 _
               right Heq \Rightarrow let (x,Hx) := (f p n _) in exist _ (S x) _
          end
     end
  ).
  auto.
  auto.
  auto.
  auto.
Oed.
```

Programmation par terme

```
Definition type_minus m n := n <= m → { p:nat | n + p = m }.

Fixpoint minus4 (m n:nat) {struct m} : type_minus m n :=
  match m return type_minus m n with
  | 0 ⇒ fun H ⇒ exist (fun p ⇒ n + p = 0) 0 (le_n_plus_n_0 n H)
  | S p ⇒ fun H ⇒
    match nat_dec n (S p) with
  | left Heq ⇒
        exist (fun x ⇒ n + x = S p) 0 (n_eq_Sm_plus_n_0 p n Heq)
  | right Heq ⇒
        let (x,Hx) := minus4 p n (le_n_Sm_diff p n H Heq) in
              exist (fun x ⇒ n + x = S p) (S x) (plus_Sp_Sm p x n Hx)
    end
end.</pre>
```

Plan

- 1 L'envers du décors : preuve = λ -terme
- Spécification riche : un cas d'étude
- 3 Le système de modules de Coq
- 4 Exercice: programmer une librairie d'ensembles finis

Le système de modules de Coq

Le système de module de Coq est similaire à celui de Caml. Trois grandes notions :

- ▶ les modules
- les signatures (interfaces)
- les foncteurs (modules paramétrés)

Modules

Module TestZero.

Un module regroupe une collection d'objets Coq.

```
Definition t := nat.
Definition P (n:nat) := n<>0.
Definition test (n:nat) :=
   match n with
   | 0 ⇒ false
   | _ ⇒ true
   end.

Lemma test_computes_P : ∀ n, P n ↔ test n = true.
   Proof. ...(* preuve *)... Qed.
End TestZero.
```

Signatures

Chaque module admet un type : *une signature*. Une signature (parmi d'autres) du module TestZero est

```
Module Type DECPROP.
  Parameter t : Set.
  Parameter P : t → Prop.
  Parameter test : t → bool.
  Parameter test_computes_P : ∀ n, P n ↔ test n = true.
End DECPROP.
```

Signatures

Une autre possibilité

```
Module Type DECPROP'.
  Parameter t : Set.
End DECPROP.
```

Tout module déclaré avec cette signature pourra uniquement accédé à son élément t. Les autres éléments sont cachés.

Une autre possibilité: signature spécialisée

▶ DECPROP with Definition t:=nat est une signature correcte pour tous les modules de type DECPROP pour lesquels t est égal à nat.

Foncteurs

Un foncteur est une fonction qui prend des modules en argument et produit un module en résultat.

```
Module ListDec (T:DECPROP) <: DECPROP.
Definition t := list T.t.
Definition P (l:t):= ∀ x, In x l → T.P x.
Fixpoint test (l:t) : bool :=
   match l with [] ⇒ true | x::q ⇒ (T.test x)&&(test q) end.

Lemma test_computes_P : ∀ l, P l ↔ test l = true.
Proof. ...(* proof script omitted *)... Qed.
End ListDec.</pre>
End ListDec.
```

Ce foncteur prend en argument un module respectant la signature DECPROP et retourne un module de signature DECPROP opérant sur les listes.

Foncteurs

Les dépendances entre le module produit et les modules arguments peuvent être spécifiés avec le mot-clé with.

```
Module ListDec (T:DECPROP) <: DECPROP 
 with Definition t := list T.t 
 with Definition P (1:t):= \forall x, In x 1 \rightarrow T.P x.
```

donne la nature exact du module construit.

On peut alors construire de nouveaux modules

```
Module ListListTestZero := ListDec(ListDec(TestZero)).
```

Plan

- 1 L'envers du décors : preuve = λ -terme
- 2 Spécification riche : un cas d'étude
- 3 Le système de modules de Coq
- 4 Exercice: programmer une librairie d'ensembles finis

Une première interface

```
Inductive comp : Set :=
  | Lt : comp
  | Eq : comp
  | Gt : comp.
Module Type OrderedType.
  Parameter t : Set.
  Parameter compare : t \rightarrow t \rightarrow comp.
  Parameter compare_eq_prop1 : \forall x y, compare x y = Eq \rightarrow x = y.
  Parameter compare_eq_prop2 : \forall x y, x = y \rightarrow compare x y = Eq.
  Definition lt (x y:t) : Prop := compare x y = Lt.
  Parameter lt_trans : \forall x y z, lt x y \rightarrow lt y z \rightarrow lt x z.
  Parameter lt\_not\_eq : \forall x y, lt x y \rightarrow x<>y.
  Hint Resolve lt_trans lt_not_eq compare_eq_prop1 compare_eq_prop2.
```

End OrderedType.

Nous spécifions ainsi les type sur lesquels nous savons faire des test d'égalité et de comparaison. **4** 🗇 ▶

Une deuxième interface

Module Type FSet.

Parameter elt : Set. Parameter t : Set. Parameter empty: t. **Parameter** mem : elt \rightarrow t \rightarrow bool. Parameter elements : $t \rightarrow list elt$. Parameter add : elt \rightarrow t \rightarrow t. **Parameter** remove : elt \rightarrow t \rightarrow t. **Parameter** union : $t \rightarrow t \rightarrow t$. Parameter inter : $t \rightarrow t \rightarrow t$. **Definition** In_set : elt \rightarrow t \rightarrow **Prop** := **fun** x s \Rightarrow In x (elements s). **Parameter** empty_prop : \forall x, \neg In_set x empty. **Parameter** mem_prop : \forall x s, In_set x s \leftrightarrow mem x s = true. **Parameter** add_prop : \forall a s x, In_set x (add a s) \leftrightarrow (x=a \vee In_set x s). **Parameter** remove prop : \forall a s x. In_set x (remove a s) \leftrightarrow (x<>a \land In_set x s). Parameter union_prop : ∀ s1 s2 x, In_set x (union s1 s2) \leftrightarrow (In_set x s1 \lor In_set x s2). Parameter inter_prop : ∀ s1 s2 x, In set x (inter s1 s2) \leftrightarrow (In set x s1 \land In set x s2).

End FSet.

Objectif

Programmer un foncteur de type

```
Module Make (0:OrderedType) : FSet with Definition elt := 0.t.
...
End Make.
```

en utilisant des listes triés.

Les listes triés

```
Definition Inf x l : Prop := ∀ y, In y l → 0.lt x y.

Inductive sorted : list elt → Prop :=
| sorted_nil : sorted nil
| sorted_cons : ∀ a l, Inf a l → sorted l → sorted (a::l).

Record sorted_list : Set := sl {
    content :> list elt;
    content_sorted : sorted content
}.

Definition t := sorted list.
```

Remarques:

- les objets de type sorted_list sont des couples contenant une liste et une preuve,
- ▶ la notation content :> list elt permet d'omettre content quand le contexte est suffisamment clair

```
Exemple:
```

```
\forall (x:elt) (1:t), In x 1 au lieu de \forall (x:elt) (1:t), In x 1.(content)
```

Un exemple avant de se lancer

```
Definition elements (1:t) : list elt := 1.(content).
Definition In_set : elt \rightarrow t \rightarrow Prop := fun x s \Rightarrow In x (elements s).
Fixpoint mem_aux (x:elt) (1:list elt) {struct 1} : bool :=
  match 1 with
     l nil ⇒ false
    | y :: q \Rightarrow
       match O.compare y x with
        | Eq ⇒ true
        | ⇒ mem aux x q
       end
  end.
Lemma mem_aux_prop1 : \forall x 1, mem_aux x 1 = true <math>\rightarrow In x 1.
Proof. ... Oed.
Lemma mem aux prop2 : \forall x l.sorted 1 \rightarrow In x 1 \rightarrow mem aux x 1 = true.
Proof. ... Oed.
Definition mem (x:elt) (l:t) : bool := mem aux x l.
Lemma mem prop : \forall x s. In set x s \leftrightarrow mem x s = true.
Proof.
  intros; unfold mem, In_set, elements.
  destruct s as [l l_sorted]; simpl; split.
  apply mem_aux_prop2; auto.
  apply mem aux prop1.
0ed.
```