The Spectral Classes of Unicyclic Graphs

Axel Boldt* and Martha Takane

Abstract

We study the spectral classes of a finite, connected graph without loops and with exactly one "essential" cycle. A spectral class consists of all those orientations of the graph that don't contain oriented cycles and yield the same Coxeter polynomial. We show that, if the essential cycle has m vertices, then there are exactly [m/2] distinct spectral classes; the corresponding spectral radii are distinct in case the graph is wild. Furthermore, we give an explicit combinatorial expression for the entries of the powers of the Coxeter matrix of a finite quiver without oriented cycles.

1 Introduction

We consider an undirected graph Δ and we will assume throughout that Δ is connected and does not have any loops (multiple edges are allowed, though). An essential cycle of Δ is a full subgraph \mathcal{C} of Δ with vertex set $\{x_1, \ldots, x_m\}$ where the x_i are distinct and $m \geq 3$ such that there are edges between x_i and x_{i+1} for $i = 1, \ldots, m-1$ and also between x_m and x_1 . The graph Δ is called unicyclic in case it contains precisely one essential cycle. We are mainly interested in the collections of those orientations of the finite unicyclic graph Δ which yield the same Coxeter polynomial. These are called the spectral classes of Δ . It is well known and easy to show that trees admit only one spectral class; the unicyclic graphs considered here constitute the first non-trivial case.

The coefficients of the characteristic polynomial of a matrix are related to the traces of powers of that matrix. This fact induced us to search for

^{*}The first author is grateful for partial support provided by U.N.A.M. and through the NSF grant of B. Huisgen-Zimmermann.

an explicit formula for the entries of powers of Coxeter matrices of arbitrary quivers without oriented cycles; the result is given in section 3.

We then reduce the study of unicyclic graphs to the case where $\Delta = \mathcal{C}$ is itself an essential cycle. This case can be handled combinatorially. Returning to the general case, it turns out that a unicyclic graph whose essential cycle contains m vertices has precisely [m/2] spectral classes; all of these have distinct spectral radii provided Δ is wild. Here, we call a graph wild if it is neither a Dynkin nor an Euclidean diagram. The only non-wild unicyclic graphs are the Euclidean diagrams $\tilde{\mathbf{A}}_{m-1}$.

In order to be able to reduce to the essential cycle case, we need the following statement, proved in section 4 using covering techniques: If Δ is unicyclic and wild, and T is a proper (but not necessarily full) subgraph without essential cycles, then for every cycle free orientation of Δ , the spectral radius of Δ is strictly bigger than that of T.

We should also mention that the coefficients of the Coxeter polynomial of a quiver are closely related to the dimensions of the Hochschild cohomology groups of the associated path algebra, see [Lu].

2 Notation and Preliminaries

2.1. We denote the set of vertices of the graph Δ by Δ_0 and its edge set by Δ_1 . The *adjacency matrix* $A_{\Delta} = (a_{ij}) \in \mathbf{Z}^{\Delta_0 \times \Delta_0}$ of the graph Δ is the symmetric matrix whose ij-th entry is the number of edges in Δ between the vertices i and j.

For each $i \in \Delta_0$, we define a reflection

$$\sigma_i: \mathbf{R}^{\Delta_0} \longrightarrow \mathbf{R}^{\Delta_0}$$

by setting

$$e_j \sigma_i = e_j + a_{ji} e_i$$
 for $i \neq j$ and $e_i \sigma_i = -e_i$.

Here $\{e_j\}_{j\in\Delta_0}$ denotes the standard basis of \mathbf{R}^{Δ_0} (i. e. $e_j(i)=\delta_{ij}$). Observe that if x and y are vertices not connected by a single edge, then $\sigma_x\sigma_y=\sigma_y\sigma_x$.

If < is a total order of Δ_0 , and if we write $\Delta_0 = \{y_1 < y_2 < \cdots < y_n\}$, then we call

$$\phi_{(\Delta,<)} := \sigma_{y_1} \cdots \sigma_{y_n}$$

the Coxeter matrix and its characteristic polynomial

$$\mathcal{X}_{(\Delta,<)}(t) = \det(tI - \phi_{(\Delta,<)})$$

the Coxeter polynomial belonging to Δ and <. We associate to Δ and < the following quiver (= oriented graph) (Δ , <): The set of vertices of (Δ , <) is the set of vertices of Δ , and there are a_{ij} arrows from i to j if i>j and none otherwise. Note that (Δ , <), defined in this way, has no oriented cycles, and, furthermore, every quiver without oriented cycles having Δ as its underlying graph arises in this fashion from some ordering <. The Coxeter matrix $\phi_{(\Delta,<)}$ and hence also the Coxeter polynomial $\mathcal{X}_{(\Delta,<)}$ depend only on the quiver (Δ , <) and not on the specific choice of <. The spectral radius of $\phi_{(\Delta,<)}$ will be denoted by $\rho_{(\Delta,<)}$. Recall that $\rho_{(\Delta,<)} = \max\{|\lambda| \mid \lambda \in \mathbb{C} \text{ is an eigenvalue of } \phi_{(\Delta,<)}\}$.

2.2. A vertex $y \in \Delta_0$ is called a sink of $(\Delta, <)$ if there is no arrow in $(\Delta, <)$ leaving y; similarly, y is called a source if there is no arrow entering y. We say that $(\Delta, <)$ has sink-source orientation if every vertex is either a sink or a source.

Now let $y \in \Delta_0$ be a source of $(\Delta, <)$. We denote by $r_y(\Delta, <)$ the quiver which is obtained from $(\Delta, <)$ by reversing the orientation of all the arrows containing y. In this way y becomes a sink for $r_y(\Delta, <)$.

We say that $r = r_{y_{\ell}} \cdots r_{y_1}$ is an admissible change of orientation of $(\Delta, <)$ provided that y_1 is a source of $(\Delta, <)$, $\ell \geq 1$, and y_i is a source of $r_{y_{i-1}} \cdots r_{y_1}(\Delta, <)$ for $i = 2, \ldots, \ell$.

2.3. Let $(\Delta, <)^{\text{op}}$ be the quiver obtained from $(\Delta, <)$ by reversing the direction of all the arrows.

If Δ' is a subgraph of Δ (i. e. Δ' is a graph having a subset of Δ_0 as vertex set and a subset of Δ_1 as edge set), then < induces a total order on Δ'_0 , again denoted by <. The subgraph Δ' is said to be *full* if for any two vertices in Δ' the set of edges between them is the same in Δ' as in Δ . We say that Δ' is a *proper subgraph* of Δ if it is a subgraph with $\Delta' \neq \Delta$.

- **2.4.** The following is a collection of well known results. Let Δ be a finite graph and < a total order of its vertices.
- (i) If $M = M_{(\Delta,<)} \in \mathbf{Z}^{\Delta_0 \times \Delta_0}$ is the matrix whose ij-th entry is equal to the number of arrows from j to i in $(\Delta,<)$, we have $A_{\Delta} = M + M^T$ and

$$\phi_{(\Delta,<)} = -(I - M^T)(I - M)^{-1}.$$

It follows that $\phi_{(\Delta,<)^{\text{op}}} = \phi_{(\Delta,<)}^{-1}$ and also $\mathcal{X}_{(\Delta,<)} = \mathcal{X}_{(\Delta,<)^{\text{op}}}$ because of $\phi_{(\Delta,<)} = (I-M)\phi_{(\Delta,<)^{\text{op}}}^T (I-M)^{-1}$.

- (ii) [BGP]: $\mathcal{X}_{(\Delta,<)} = \mathcal{X}_{r(\Delta,<)}$ for every admissible change of orientation r of $(\Delta,<)$.
- (iii) [R]: If $x \in \Delta_0$, then there exists an admissible change of orientation r of $(\Delta, <)$ such that x is the unique source of $r(\Delta, <)$.
- (iv) Assume that Δ does not contain any essential cycles and let <' be another total order of Δ_0 . Then there exists an admissible change of orientation of $(\Delta, <)$, say r, such that the quivers $r(\Delta, <)$ and $(\Delta, <')$ are equal. In particular, $\mathcal{X}_{(\Delta, <)} = \mathcal{X}_{(\Delta, <')}$.
- (v) [Ca, PT1]: Let $(\Delta, <)$ be a quiver with n vertices, and assume that Δ does not contain essential cycles or that < is a sink-source orientation. Then the Coxeter polynomial of $(\Delta, <)$ and the characteristic polynomial of the adjacency matrix of Δ are related by the following formula:

$$\mathcal{X}_{(\Delta,<)}(t^2) = t^n \det((t+t^{-1})I - A_{\Delta}).$$

(vi) [Bo]: Suppose there exist two full subgraphs Δ' and Δ'' of Δ such that $\Delta'_0 \cup \Delta''_0 = \Delta_0$, $\Delta'_0 \cap \Delta''_0 = \{x\}$ and $\Delta'_1 \cup \Delta''_1 = \Delta_1$. Then

$$\mathcal{X}_{\Delta}(t) = \mathcal{X}_{\Delta'}(t)\mathcal{X}_{\Delta''\setminus\{x\}}(t) + \mathcal{X}_{\Delta'\setminus\{x\}}(t)\mathcal{X}_{\Delta''}(t) - (t+1)\mathcal{X}_{\Delta'\setminus\{x\}}(t)\mathcal{X}_{\Delta''\setminus\{x\}}(t)$$

where \mathcal{X}_F is an abbreviation for $\mathcal{X}_{(F,<)}$ and all subgraphs inherit their orientation from $(\Delta,<)$.

2.5. Let Δ be finite and let < be a total order of Δ_0 . It is well known that Δ is a Dynkin or Euclidean diagram if and only if $\rho_{(\Delta,<)} = 1$. We call both Δ and $(\Delta,<)$ wild in all other cases. The following theorem describes this situation.

Theorem. Let $(\Delta, <)$ be wild.

- (i) [Ca,R]: $\rho_{(\Delta,<)}$ is a simple root of $\mathcal{X}_{(\Delta,<)}$. Moreover, $|\lambda| < \rho_{(\Delta,<)}$ for all eigenvalues $\lambda \neq \rho_{(\Delta,<)}$ of $\phi_{(\Delta,<)}$. In particular by (2.4.i), if $\mu \geq 0$ and $\mathcal{X}_{(\Delta,<)}(\mu) < 0$, then $\mu < \rho_{(\Delta,<)}$.
- (ii) [PT1]: Let Δ' be a proper subgraph of Δ (not necessarily full or connected) and assume that $(\Delta, <)$ has a sink-source orientation or Δ has no essential cycle. Then $\rho_{(\Delta', <)} < \rho_{(\Delta, <)}$.

3 Iterated Coxeter Transformations

Let Δ be a finite graph and \langle a total order of Δ_0 . We are going to describe the entries of powers of the Coxeter matrix $\phi = \phi_{(\Delta, <)}$ in combinatorial terms.

Definition. A sequence $q = (p_{\ell}, \gamma_{\ell}, p_{\ell-1}, \gamma_{\ell-1}, ..., \gamma_1, p_0)$ with $\ell \geq 0$, oriented paths $p_0, ..., p_{\ell}$ in $(\Delta, <)$ and arrows $\gamma_1, ..., \gamma_{\ell}$ in $(\Delta, <)$ is called an ℓ -twisted path from start (p_0) to end (p_{ℓ}) if end $(p_{i-1}) = \text{end}(\gamma_i)$ and start $(p_i) = \text{start}(\gamma_i)$ for $i = 1, ..., \ell$.

The sequence q is called ℓ -endtwisted, if in addition $0 = \text{length}(p_{\ell}) := \#(\text{arrows belonging to } p_{\ell})$ holds. If q is as above, define

$$\operatorname{length}_{i}(q) := \operatorname{length}(p_{i-1}) \text{ for } i = 1, ..., \ell + 1 \text{ and } |q| := \ell + \sum_{i=0}^{\ell} \operatorname{length}(p_i).$$

The set of all ℓ -twisted paths in $(\Delta, <)$ from e to f is denoted by $T^{\ell}(e, f)$, and the subset of all ℓ -endtwisted paths from e to f is called $E^{\ell}(e, f)$.

3.1 Proposition. Let n be a natural number and $e, f \in \Delta_0$. Then

$$(\phi^n)_{f,e} = \sum_{\ell=1}^n (-1)^{n-\ell} \left(\sum_{q \in E^{\ell}(e,f)} {|q| + n - \ell - 1 \choose n - \ell} - \sum_{q \in T^{\ell-1}(e,f)} {|q| + n - \ell \choose n - \ell} \right)$$

Proof. If we set $M = (\# \text{arrows from } j \text{ to } i)_{i,j \in \Delta_0} \text{ and } C = (I - M)^{-1}$, then $\phi = M^T C - C$, and an easy induction shows

$$\phi^{n} = (M^{T}C - C)^{n} = (\sum_{\ell=1}^{n} (-1)^{n-\ell+1} \sum_{\substack{(n_{1}, \dots, n_{\ell}) \\ n_{i} \geq 1 \text{ with } n = \sum_{i=1}^{\ell} n_{i}}} (I - M^{T})(C^{n_{\ell}}(\prod_{i=1}^{\ell-1} M^{T}C^{n_{i}}))$$

Now remember that C counts oriented paths in $(\Delta, <)$ and, more generally,

$$(C^k)_{f,e} = \sum_{p \text{ path from } e \text{ to } f} \binom{\operatorname{length}(p) + k - 1}{k - 1}.$$

Using the definition of $T^{\ell-1}(e, f)$, it follows

$$(C^{n_{\ell}}(\prod_{i=1}^{\ell-1} M^{T}C^{n_{i}}))_{f,e} = \sum_{q \in T^{\ell-1}(e,f)} \prod_{i=1}^{\ell} \binom{\operatorname{length}_{i}(q) + n_{i} - 1}{n_{i} - 1}$$

The result is now a consequence of the following identity, valid for all non negative $u, r_1, ..., r_\ell$:

$$\sum_{\substack{(u_1,\dots,u_\ell)\\u_i\geq 0\text{ with }u=\sum_{i=1}^\ell u_i}}\prod_{i=1}^\ell \binom{r_i+u_i-1}{u_i} = \binom{\left(\sum\limits_{i=1}^\ell r_i\right)+u-1}{u}$$

(Choose u elements with repetition from a disjoint union of ℓ sets, the i-th of which having r_i elements).

4 Galois Coverings

4.1 Let Δ , $\bar{\Delta}$ be (not necessarily finite) graphs and let < and $\bar{<}$ be total orders of their respective vertex sets. Following [DS] and [G], we say that an epimorphism of quivers $\pi:(\bar{\Delta},\bar{<})\longrightarrow(\Delta,<)$ is a Galois covering defined by the group G, if the following conditions are satisfied:

1) $G \leq \operatorname{Aut}((\bar{\Delta}, \bar{<}))$ is a group of quiver automorphisms which acts freely (i. e. the identity is the unique element of G which leaves a vertex or an arrow of $(\bar{\Delta}, \bar{<})$ fixed);

2) $\pi^{-1}(\pi x) = Gx$, for every vertex or arrow x of $(\bar{\Delta}, \bar{<})$.

Example.

where π maps each vertex (j,x) to x and each arrow $(j,x) \longrightarrow (\ell,y)$ to $x \longrightarrow y$. This is a Galois covering defined by the group $G = \{\phi_n \mid n \in \mathbf{Z}\} \simeq \mathbf{Z}$

where ϕ_n acts by $\phi_n(j,x) = (j+n,x)$.

4.2 Let $\pi:(\bar{\Delta},\bar{<})\longrightarrow(\Delta,<)$ be a Galois covering defined by the group G of a finite, connected quiver $(\Delta,<)$. Assume that $\bar{\Delta}$ is connected and has no essential cycles.

If $(\Delta^{(j)}, <)_{j \in \mathbb{N}}$ is a sequence of full finite subquivers of the (not necessarily finite) quiver $(\bar{\Delta}, \bar{<})$, we say that $(\Delta^{(j)}, <)_j$ has limit $(\bar{\Delta}, \bar{<})$ and write

$$(\bar{\Delta}, \bar{<}) = \lim_{j \to \infty} (\Delta^{(j)}, <)$$

if for any arrow α in $(\bar{\Delta}, \bar{<})$, there exists $N \in \mathbb{N}$ such that α is an arrow in $(\Delta^{(j)}, <)$ for all $j \geq N$.

In this situation, the limit

$$ho_{(\bar{\Delta},\bar{<})} := \lim_{j o \infty}
ho_{(\Delta^{(j)},<)}$$

exists and does not depend on the choice of the sequence $(\Delta^{(j)}, <)$. This follows from the corresponding fact about characteristic polynomials of adjacency matrices ([PT2] Theorem 1.5) and the translation mechanism provided by (2.4.v) together with (2.5.i).

Obviously, this definition does not conflict with the previously defined $\rho_{(\bar{\Delta},\bar{<})}$ in case $\bar{\Delta}$ is itself finite. Furthermore, $\rho_{(\bar{\Delta},\bar{<})}$ does not depend on the orientation $\bar{<}$ since the same is true for the $\rho_{(\Delta^{(j)},<)}$ according to (2.4.iv).

- **4.3. Lemma.** (i) Let $\pi:(\bar{\Delta},\bar{<})\longrightarrow(\Delta,<)$ be a Galois covering defined by the group G of a finite, connected quiver $(\Delta,<)$.
 - i.1) If G is finite, then $\rho_{(\bar{\Delta},\bar{\leq})} = \rho_{(\Delta,<)}$.
- i.2) If Δ is unicyclic and Δ is connected and has no essential cycles, then $\rho_{(\bar{\Delta},\bar{<})} \leq \rho_{(\Delta,<)}$.
- i.3) If Δ is unicyclic and $\bar{\Delta}$ is connected and has no essential cycles, and \langle is a sink-source orientation, then $\rho_{(\bar{\Delta},\bar{\zeta})} = \rho_{(\Delta,\zeta)}$.
- (ii) Let $(\Delta, <)$ be a finite quiver whose underlying graph Δ is unicyclic. Then there exists a Galois covering $(\bar{\Delta}, \bar{<}) \longrightarrow (\Delta, <)$ defined by \mathbf{Z} such that $\bar{\Delta}$ is an infinite connected graph without essential cycles. Moreover, $\bar{\Delta}$ depends only on Δ and not on the orientation < of Δ_0 .
- (iii) Let Δ be a unicyclic graph with essential cycle \mathcal{C} such that $|\mathcal{C}_0|$ is even. Then Δ admits a sink-source orientation $<_0$. Moreover, whenever < is another orientation of Δ , we have $\rho_{(\Delta,<_0)} \leq \rho_{(\Delta,<)}$.

Proof. Part (i.1) is [PT3] Proposition 1.5. To prove (i.2), note that $G \simeq \mathbf{Z}$ in this case, and [PT3] Proposition 1.6 applies. For the proof of (i.3): again, we have $G \simeq \mathbf{Z}$ and this is an amenable group, hence [PT2] Theorem 3.1 applies.

(ii): Let $C = \{x_1, \ldots, x_m\}$ be the essential cycle of $(\Delta, <)$. We define a Galois covering $(\bar{\Delta}, \bar{<})$ of $(\Delta, <)$ as follows: $\bar{\Delta}_0 = \biguplus_{\ell \in \mathbb{Z}} \Delta_0 \times \{\ell\}$, and the set $\bar{\Delta}_1((y, \ell), (z, p))$ of edges between the vertices $(y, \ell), (z, p)$ is given by

$$\bar{\Delta}_{1}((y,\ell),(z,p)) = \begin{cases} \Delta_{1}(y,z) & \text{if } \ell = p \text{ and } \{y,z\} \neq \{x_{1},x_{m}\} \\ \Delta_{1}(x_{m},x_{1}) & \text{if } p = \ell - 1 \text{ and } \{y,z\} = \{x_{1},x_{m}\} \\ \emptyset & \text{otherwise} \end{cases}$$

and $\bar{\mathbf{z}}$ is the induced orientation of $\bar{\Delta}$. This yields a Galois covering defined by \mathbf{Z} similar to the one in example (4.1).

(iii): As in (ii), we can find a graph $\bar{\Delta}$ and Galois coverings $\pi:(\bar{\Delta},\bar{<}_0)\longrightarrow (\Delta,<_0)$ and $\pi':(\bar{\Delta},\bar{<})\longrightarrow (\Delta,<)$ defined by \mathbf{Z} . We pointed out already that $\rho_{(\bar{\Delta},\bar{<}_0)}=\rho_{(\bar{\Delta},\bar{<})}$ holds. Thus,

$$\rho_{(\Delta,<_0)} = \rho_{(\bar{\Delta},\bar{<}_0)} = \rho_{(\bar{\Delta},\bar{<})} \leq \rho_{(\Delta,<)}$$

4.4 Proposition. Let $(\Delta', <)$ be a proper (not necessarily full) subquiver of a wild unicyclic quiver $(\Delta, <)$. Assume Δ' has no essential cycle. Then

$$\rho_{(\Delta',<)} < \rho_{(\Delta,<)}$$
.

Proof. Let \mathcal{C} be the essential cycle of Δ , with $m = |\mathcal{C}_0|$. By (4.3.i.1), we can assume without loss of generality that m is even. Thus, let $(\Delta, <_0)$ be a quiver of Δ with sink-source orientation. Let $\pi : (\bar{\Delta}, \bar{<}) \to (\Delta, <)$ and $\pi_0 : (\bar{\Delta}, \bar{<}_0) \to (\Delta, <_0)$ be Galois coverings defined by \mathbf{Z} and $\bar{\Delta}$ connected and without essential cycles, as in (4.3.iii). Then we get

$$\rho_{(\Delta',<)} \underset{(2.4)}{=} \rho_{(\Delta',<_0)} \underset{(2.5)}{<} \rho_{(\Delta,<_0)} \underset{(4.3)}{=} \rho_{(\bar{\Delta},\bar{<}_0)} = \rho_{(\bar{\Delta},\bar{<})} \underset{(4.3)}{\leq} \rho_{(\Delta,<)}.$$

5 The Spectral Classes of Unicyclic Graphs

In this section, Δ will be a finite, unicyclic graph with essential cycle \mathcal{C} . We assume throughout that \mathcal{C} has m vertices x_1, \ldots, x_m and that there are edges between x_i and x_{i+1} for $i = 1, \ldots, m-1$ and also between x_m and x_1 .

5.1 If < is a total order of Δ_0 , we set

$$a := a_{(\Delta,<)} := \# \{ (u,v) \in \{ (x_i, x_{i+1}) \mid 1 \le i \le m-1 \} \cup \{ (x_m, x_1) \} \mid u > v \}$$

$$b := b_{(\Delta,<)} := \# \{ (u,v) \in \{ (x_i, x_{i+1}) \mid 1 \le i \le m-1 \} \cup \{ (x_m, x_1) \} \mid v > u \},$$

and define

$$v_{(\Delta,<)} := |a - b|.$$

Since $(\Delta, <)$ has no oriented cycles, both $a_{(\Delta, <)}$ and $b_{(\Delta, <)}$ are positive; furthermore, $v_{(\Delta, <)}$ does not depend on the numbering of the vertices of \mathcal{C} . All three numbers depend only on the quiver $(\Delta, <)$ and not on the particular total order chosen. Loosely speaking, $b_{(\Delta, <)}$ counts the number of multiarrows in \mathcal{C} pointing in clockwise direction, and $a_{(\Delta, <)}$ counts the others. If Δ is equal to the Euclidean diagram $\tilde{\mathbf{A}}_{m-1}$ and $a := a_{(\tilde{\mathbf{A}}_{m-1}, <)}$, $b := b_{(\tilde{\mathbf{A}}_{m-1}, <)}$, we have

$$\mathcal{X}_{(\tilde{\mathbf{A}}_{m-1},<)}(t) = (t^a - 1)(t^b - 1).$$

5.2. The following theorem is the main result of the paper. The proof will follow in section (5.5).

Theorem. Let Δ be a unicyclic graph whose essential cycle \mathcal{C} has m vertices. (i) There exist integer polynomials $f, g \in \mathbf{Z}[t]$ (depending only on Δ), such that for every total order < on Δ_0 :

$$\mathcal{X}_{(\Delta,<)} = f + g\mathcal{X}_{(\mathcal{C},<)}.$$

Moreover, f and g are products of Coxeter polynomials of certain full subgraphs of Δ having no essential cycles.

- (ii) The number of different spectral classes of Δ is equal to $\left[\frac{m}{2}\right]$ (=biggest integer less than or equal to $\frac{m}{2}$).
- (iii) Let $<_1$ and $<_2$ be two total orders of Δ_0 . The following statements are equivalent:

(a)
$$\mathcal{X}_{(\Delta, \leq_1)} = \mathcal{X}_{(\Delta, \leq_2)}$$

- (b) $v_{(\Delta,<_1)} = v_{(\Delta,<_2)}$
- (c) there exists an admissible change of orientation r of $(\Delta, <_1)$ such that $r(\Delta, <_1) = (\Delta, <_2)$ or $r(\Delta, <_1) = (\Delta, <_2)^{\text{op}}$.

Moreover, if Δ is wild, we have

$$\rho_{(\Delta,<_1)} < \rho_{(\Delta,<_2)} \Longleftrightarrow v_{(\Delta,<_1)} < v_{(\Delta,<_2)}.$$

Part (ii) of this theorem was proved by Coleman in [C] in case $\Delta = \mathcal{C}$ is itself an essential cycle.

- **5.3.** Lemma: (i) $a_{(\Delta,<)^{\circ p}} = m a_{(\Delta,<)}$ and therefore $v_{(\Delta,<)} = v_{(\Delta,<)^{\circ p}}$.
- (ii) Let $(\Delta, <_1)$ and $(\Delta, <_2)$ be quivers of Δ . We have $v_{(\Delta, <_1)} = v_{(\Delta, <_2)}$ if and only if there exists an admissible change of orientation r of $(\Delta, <_1)$ such that $r(\Delta, <_1) = (\Delta, <_2)$ or $r(\Delta, <_1) = (\Delta, <_2)^{\text{op}}$. In this case, we have $\mathcal{X}_{(\Delta, <_1)} = \mathcal{X}_{(\Delta, <_2)}$.

Proof. (i) is clear.

- (ii) " \Leftarrow " By (i) and induction, it is enough to take $r = r_x$, where $x \in \Delta_0$ is a source of $(\Delta, <_1)$, and show that $v_{r(\Delta, <_1)} = v_{(\Delta, <_1)}$. This is clear if $x \notin \mathcal{C}_0$ because the edges in \mathcal{C} are not affected by the application of r. If, on the other hand, x is a vertex of \mathcal{C} , then the orientation of those edges of \mathcal{C} that contain x will change, but the numbers $a_{(\Delta, <_1)}$, $b_{(\Delta, <_1)}$ and hence $v_{(\Delta, <_1)}$ remain the same.
- " \Rightarrow " In the first case, we consider the situation when $a_{(\Delta,<_1)} = a_{(\Delta,<_2)}$. Pick $x \in \mathcal{C}_0$ arbitrary. We can find admissible changes of orientation s,t of $(\Delta,<_1)$ and $(\Delta,<_2)$ so that x is the unique source of both $s(\Delta,<_1)$ and $t(\Delta,<_2)$, and therefore of \mathcal{C} , according to (2.4.iii). We have $a_{s(\Delta,<_1)} = a_{t(\Delta,<_2)}$ and it is then clear that $s(\Delta,<_1)$ and $t(\Delta,<_2)$ must be the same quivers, which provides us with an admissible change of orientation r of $(\Delta,<_1)$ such that $r(\Delta,<_1) = (\Delta,<_2)$.

In the case $a_{(\Delta,<_1)} = b_{(\Delta,<_2)} = a_{(\Delta,<_2)^{op}}$, using the same arguments, we can exhibit an admissible change of orientation r of $(\Delta,<_1)$ such that $r(\Delta,<_1) = (\Delta,<_2)^{op}$.

5.4 Proposition. For $i = 1, ..., [\frac{m}{2}]$, let $(\mathcal{C}, <_i)$ be the orientation of \mathcal{C} with unique source x_1 and $a_{(\mathcal{C}, <_i)} = i$. We write $a_{ij} := a_{x_i x_j}$ for the number of edges between the vertices x_i and x_j and set $d := a_{12}a_{23} \ldots a_{(m-1)m}a_{m1}$. Set

 $\mathcal{X}_i := \mathcal{X}_{(\mathcal{C}, <_i)}$. Then

$$\mathcal{X}_{i}(t) - \mathcal{X}_{j}(t) = d(t^{j} + t^{m-j} - t^{i} - t^{m-i}),$$

and, in particular, the \mathcal{X}_i are pairwise distinct for $1 \leq i \leq \left[\frac{m}{2}\right]$.

Proof: Write $M_i := M_{(\Delta, <_i)}$. We then have

$$\mathcal{X}_i(t) = \det(t(I - M_i) + I - M_i^T),$$

since $\det(I - M_i) = 1$. Observe that $(t(I - M_i) + I - M_i^T)_{uv} = t + 1$ if u = v, and $-[t(\#\operatorname{arrows}(v \to u)) + (\#\operatorname{arrows}(u \to v))]$ if $u \neq v$.

Then, by the Leibniz formula for the determinant, it follows

$$\mathcal{X}_{i}(t) = \left(\sum_{\sigma \in S_{m} \setminus \{(1,2,\dots,m),(m,m-1,\dots,1)\}} \operatorname{sgn}(\sigma)(t+1)^{m-2\ell_{\sigma}} t^{\ell_{\sigma}} a_{i_{1}^{(\sigma)} j_{1}^{(\sigma)}}^{2} \cdots a_{i_{\ell_{\sigma}}^{(\sigma)} j_{\ell_{\sigma}}^{(\sigma)}}^{2} \right) \\
-d(t^{i} + t^{m-i})$$

where $\sigma = (i_1^{(\sigma)} j_1^{(\sigma)}) \cdots (i_{\ell_{\sigma}}^{(\sigma)} j_{\ell_{\sigma}}^{(\sigma)})$ is a minimal expression of σ as a product of transpositions and S_m denotes the group of permutations of the set $\{1, \ldots, m\}$.

5.5. Proof of Theorem (5.2): (i) Since Δ is a unicyclic graph, it has the following shape:

where all T_i are trees and $x_i \in C_0 \cap (T_i)_0$, $i = 1, ..., \ell$. Then the result follows by induction on ℓ and (2.4.vi), taking into account that the Coxeter polynomial of a graph without essential cycles does not depend on its orientation.

- (ii) follows from (iii), below.
- (iii) The equivalence of (b) and (c) was proved in Lemma (5.3.ii), while $(c)\Rightarrow(a)$ follows from (2.4). To see $(a)\Rightarrow(b)$, assume $v_{(\Delta,<_1)}\neq v_{(\Delta,<_2)}$. Using (2.4.iii), we find admissible changes of orientation r and s so that both $r(\mathcal{C},<_1)$ and $s(\mathcal{C},<_2)$ have unique source x_0 . Because of $v_{r(\mathcal{C},<_1)}\neq v_{s(\mathcal{C},<_2)}$, Proposition (5.4) together with (i) shows that $\mathcal{X}_{(\Delta,<_1)}\neq\mathcal{X}_{(\Delta,<_2)}$.

Now assume Δ is wild, and $v_{(\Delta,<_1)} < v_{(\Delta,<_2)}$. Without loss of generality, we can assume that $a_{(\Delta,<_2)} \leq b_{(\Delta,<_2)}$. Since $v_{(\Delta,<_1)} < v_{(\Delta,<_2)}$, there exist numbers $\alpha, \beta > 0$ such that $a_{(\Delta,<_1)} = a_{(\Delta,<_2)} + \alpha$, $b_{(\Delta,<_1)} = a_{(\Delta,<_2)} + \beta$, thus $b_{(\Delta,<_2)} = a_{(\Delta,<_2)} + \alpha + \beta$. Write $\rho := \rho_{(\Delta,<_1)}$. We then get

$$\mathcal{X}_{(\mathcal{C}, <_{2})}(\rho) - \mathcal{X}_{(\mathcal{C}, <_{1})}(\rho) = d(\rho^{a_{(\Delta, <_{1})}} + \rho^{b_{(\Delta, <_{1})}} - \rho^{a_{(\Delta, <_{2})}} - \rho^{b_{(\Delta, <_{2})}})$$

$$= -d\rho^{a_{(\Delta, <_{2})}}(\rho^{\alpha} - 1)(\rho^{\beta} - 1) < 0$$

since $\rho > 1$ (2.5). Note that $g(\rho) > 0$, where g is the polynomial from (i); this follows from (4.4) and (2.5.i). We get:

$$\mathcal{X}_{(\Delta,<_2)}(\rho) = \mathcal{X}_{(\Delta,<_2)}(\rho) - \mathcal{X}_{(\Delta,<_1)}(\rho) = g(\rho)(\mathcal{X}_{(\mathcal{C},<_2)}(\rho) - \mathcal{X}_{(\mathcal{C},<_1)}(\rho)) < 0$$
 which, by (2.5.i), implies $\rho < \rho_{(\Delta,<_2)}$.

References.

- [BGP] Bernstein, I. N., Gelfand, I. M. and Ponomarev, V. A.: Coxeter functors and Gabriel's Theorem. Uspechi Mat. Nauk. **28** (1973), Russian Math. Surveys **28**, 17-32 (1973).
- [Bo] Boldt, A.: Methods to determine Coxeter polynomials. Linear Algebra Appl. **230**, 151-164 (1995).
- [Ca] A'Campo, N.: Sur les valeurs propres de la transformation de Coxeter. Invent. Math. **33**, 61-67 (1976).
- [C] Coleman, A. J.: Killing and the Coxeter transformation of Kac-Moody algebras. Invent. Math. 95, 447-477 (1989).
- [DS] Dowbor, P. and Skowronski, A.: Galois coverings of representation-infinite algebras. Comment. Math. Helvitici **62**, 311-337 (1987).
- [G] Gabriel, P.: The Universal cover of a representation-finite algebra. Proc. Puebla 1980, Springer Lect. Notes 903, 68-105.

- [Lu] Lukas, F.: Elementare Moduln über wilden erblichen Algebren. Dissertation, Düsseldorf 1992.
- [PT1] de la Peña, J. A. and Takane, M.: Spectral properties of Coxeter transformations and Applications. Arch. Math. Vol. **55**, 120-134 (1990).
- [PT2] de la Peña, J. A. and Takane, M.: The spectral radius of the Galois covering of a finite graph. Linear Algebra Appl. **160** 175-188 (1992).
- [PT3] de la Peña, J. A. and Takane, M.: Some bounds for the spectral radius of a Coxeter transformation. Tsukuba J. Math. 17 193-200 (1993).
- [R] Ringel, C. M.: The spectral radius of the Coxeter transformations for a generalized Cartan matrix. Math. Ann. **300**, 331-339 (1994).

Axel Boldt

University of California at Santa Barbara, Department of Mathematics, Santa Barbara CA 93111, U.S.A.

E-mail address: boldt@math.ucsb.edu

Martha Takane

Instituto de Matemáticas, U.N.A.M., Area de la Investigación Científica, C.U. México, 04510 D.F.

E-mail address: takane@matem.unam.mx