کدهای تصدیق صحت پیام و توابع درهم ساز

MAG codes and Hash functions

اصغراصل اصغربان-رانشكالا امروميم

فهرست مطالب

- 🗗 مفاهيم اوليه
- ط رمز گذاری پیام و کدهای تشخیص خطا
 - 🗗 کدهای تصدیق صحت پیام
 - 🗗 اصول توابع درهمساز
 - ط توابع درهمساز مهم
 - HMAC &

تصديق صحت پيام چيست؟

- (Data Integrity) اطمینان از صحت محتوای پیام
 - 🗗 یعنی پیام دریافتی دستکار ی نشده باشد
 - بدون تغییر
 - مدون درج -
 - بدون مذف
- (Origin Integrity) پیام از جانب فرستنده ادعا شده ارسال شده است

تصديق صحت پيام

🗗 در برخی از کاربردها:

- ط محرمانگی پیام اهمیت بالایی ندارد طفظ محرمانگی
- 🗗 ولى صحت آنها اهميت بالايي دارد (قابل اعتماد بودن پيام)
 - 🗗 مثال: تراكنشهاي بانكي

🗗 نیاز به دو عملکرد داریم:

- □ یک تابع برای تولید عامل تصدیق کننده
- □ یک تابع برای وارسی (یا چک کردن) عامل تصدیق کننده

فهرست مطالب

- 🗗 مفاهیم اولیه
- ط رمز گذاری پیام و کدهای تشخیص خطا
 - 🗗 کدهای تصدیق صحت پیام
 - 🗗 اصول توابع درهمساز
 - ط توابع درهمساز مهم
 - HMAC &

رمزگذاری پیام برای تصدیق صحت پیام

- 🗗 فرستنده پیام را رمز می کند
- 🗗 اگر متن رمز شده دستکاری شود
- ا با رمزگشا یی به متن آشکار نامفهوم (درهم و برهم) می رسیم
- 🗗 گیرنده، بعد از رمز گشایی چک می کند ک آیا پیام مفهوم است یا نه؟
- ط می توان از الگوریتمهای رمز متقارن و یا نامتقارن برای این منظور استفاده کرد

مشکلات استفاده از رمزنگاری

- 🗗 کارایی پایین
- ط بررسی مفهوم بودن محتوا همواره آسان نیست
- ط برای مثال باید پیام یک قالب استاندارد داشته باشد
 - 🗗 نیاز به افزونگی
 - △ دشواری خودکارسازی فرآیند های تولید و وارسی
 - - ط مثال ساده: استفاده از بیت Parity: ط
- یک بیت به انتهای پیام اضافه نماییم، به گونهای که تعداد بیتهای یک، زوج شود

كدهاي تشخيص خطا

- فرض کنید F یک تابع برای تولید کد تشخیص خطا باشد $\mathbf{\Phi}$
 - است: \mathbf{CRC} است کم مثال از تابع F کد
 - CRC: Cyclic Redundancy Check
 - ि مثال:

CRC-32("Hello") = 0xF7D18982

- کد تشخیص خطا یه عنوان برچسب پیام همراه پیام رمز شده ارسال میشود که کند تشخیص خطا یه عنوان برچسب کند کند کند کند کند کند کند کمی کند
- که آیا «کد تشخیص خطای» محاسبه شده با استفاده از F با برچسب پیام مطابقت دارد یا نه؟

انواع روشهاي إعمال كدهاي تشخيص خطا

کنترل خطای بیرونی (ن<mark>ا امن)</mark>

نااًمن بودن كدهاي تشخيص خطا

- کدهای تشخیص خطا (مانند CRC)
- طراحی شدهاند طراحی شدهاند طراحی شدهاند طراحی شدهاند طراحی شدهاند طراحی شدهاند
 - 🗈 تغییرات غیرهوشمندانه و غیرعمدی
 - 🗗 حمله دشمن:
 - 🗗 تغییرات هوشمندانه و عمدی
 - ط حملات موفقی به الگوریتم هایی که از کدهای تشخیص خطا برای کاربردهای امنیتی استفاده می کردند، صورت پذیرفته است:
 - ⊕ مثال: پروتال WEP

جمع بندي

- **هدف رمز گذاری، محرمانگی است و نه صحت**
- - 🗗 راه حل: کدهای تصدیق صحت پیام

فهرست مطالب

- 🗗 مفاهیم اولیه
- ط رمز گذاری پیام و کدهای تشخیص خطا
 - 🗚 کدهای تصدیق صحت پیام
 - 🗗 اصول توابع درهمساز
 - ط توابع درهمساز مهم
 - HMAC &

کد های تصدیق صحت پیام

MAC: Message Authentication Code &

🗗 نام دیگر: Cryptographic Checksum

طهدف: تولید یک برچسب (Tag) با طول ثابت: ط

- 🗗 وابسته به پیام
- الزوماً برگشت پذیر نیست (بر خلاف توابع رمزنگاری)
 - □ نیازمند اشتراک یک کلید مخفی بین طرفین

کد های تصدیق صحت پیام (۲)

- ط فرستنده با استفاده از کلید یک برچسب برای هر پیام تولید می کند
- £ فرستنده برچسب تولید شده را به پیام الحاق می کند (همراه پیام ارسال می کند)
 - 🗗 گیرنده پیام، برچسب، و کلید را به الگوریتم تصدیق (Verification) میدهد
 - الگوریتم تصدیق، برچسب را دوباره با کلید مشترک محاسبه می کند و با برچسب ارسالی مقایسه می کند
 - ◘ در صورتی که خروجی الگوریتم TRUE باشد، از صحت پیام و هویت فرستنده طمینان حاصل می کند

نحوه عملکرد کد های تصدیق صحت پیام

T: Tag

V: Verification

mo

ىلى

سه روش برای ترکیب MACبا رمزنگاری

AtE (Authenticate then Encrypt) &

$$E_{K2}(M \parallel T_{K1}(M))$$

EtA (Encrypt then Authenticate) &

$$E_{K2}(M) \parallel T_{K1}(E_{K2}(M))$$

E&A (Encrypt & Authenticate) &

$$E_{K2}(M) \parallel T_{K1}(M)$$

کلید تصدیق صحت و $\frac{K2}{2}$ کلید رمزنگاری (محرمانگی)

توضیح در مورد سه روش

- امن است کلی، فقط روش $\mathbf{E} t \mathbf{A}$ امن است \mathbf{E}
- 🗗 در حالتهای خاص ممکن است روشهای دیگر هم امن باشند
 - iPSec ⊕ از این روش استفاده می کند
- ار حالت خاصی از AtE استفاده می کند که امن است SSL Δ SSH ار حالت خاصی از E&A استفاده می کند که امن است
- H. Krawczyk. The Order of Encryption and Authentication a for Protecting Communications (Or How Secure Is SSL), CRYPTO 2001.

ساختن MAC امن با استفاده از توابع رمزگذاری

€ تابع MAC:

- ط با استفاده از پیام و کلید (ورودیها) یک کد درست می کند 🗗
 - ☐ تفاوت با تابع رمزنگاری:
 - لزوما برگشت پذیر نیست (به همین علت امن تر است)
- ط با استفاده از توابع رمز گذاری امن و برخی از سبک های رمزنگاری می توان توابع MAC امن ساخت
 - d cBC و CFB و CBC و CFB ⊕
 - در ساختن MACاز این سبک ما باید دقت زیادی کرد
 - جزئیات بسیار مهم اند

CBC-MAC – تلاش ۱

- $M=(M_1,...,M_N)$ پیام: Ω
 - $T=(IV,C_N):$ برچسب Ω
- 🗗 پیام به همراه برچسب فرستاده میشود
- 🗗 برای تصدیق، برچسب از نو محاسبه و با برچسب دریافتی مقایسه میشود

حمله به تلاش ۱

- 🗗 مهاجم می تواند با انتخاب IV، قطعه اول پیغام را به دلخواه تغییردهد
 - $T=(IV,\,C_N)$ و برچسب $M=(M_1,\!M_2,\!\ldots,\!M_N)$ و با داشتن پیام
 - △ میتوان پیام و برچسب جدیدی را بدون داشتن کلید جعل کرد:
 - مهاجم قطعه اول پیام را به دلخواه عوض میکند

$$M' = (M_1', M_2, ..., M_N)$$

• و می تواند 'IV را به روش زیر مساب کند

$$IV' \oplus M_1' = IV \oplus M_1 \quad \Rightarrow \quad IV' = IV \oplus M_1 \oplus M_1'$$

• برچسب ماصل:

$$T'=(IV',C_N)$$

CBC-MAC – تلاش ۲

🗗 راهکار حمله به تلاش ۱: استفاده از یک مقدار ثابت برای IV، مثلاً بردار صفر

است C_N است Ω

حمله به تلاش ۲ – افزایش طول (Length Extension)

با داشتن پیام تک قالبی $M=(M_1)$ و برچسب $T=C_1$ می توان پیام و برچسب طب با داشتن کلید جعل کرد:

$$M'=M_1,M_2$$

$$T'=T=C_1$$

$$M_2 = M_1 \oplus C_1$$

ط به همین ترتیب می توان جعل را ادامه داد و به پیام هایی با طول بیشتر رسید

حمله به تلاش ۲ - برچسب جدید از دو برچسب موجود

$$C_L$$
 پیام $P=(P_1,\ldots,P_L)$ با برچسب

$$D_N$$
 با برچسب $M=(M_1,\ldots,M_N)$ پیام M

$$M'=(M_1,\ldots,M_N,D_N\bigoplus P_1,P_2,\ldots,P_L)$$

$$T'=T=C_L$$

راهكارها

- اشند N داشته باشند Ω داشته باشند Ω
 - 🗗 جلوگیری از حمل افزایش طول
 - 🗗 مناسب برای بسیاری از پروتالها
- € راهکار ۲: همیشه طول پیام را به عنوان قطعه اول به تابع CBC-MAC بدهیم
 - را یک مرتبه مجددا رمز کنیم (C_N) را یک مرتبه مجددا رمز کنیم Φ
 - ₫ اثبات شده است که هر سه راهکار امن هستند

سوالات متداول در مورد MAC

- آیا MAC همانند امضا غیر قابل انکار است؟
 - € خير
- 🗗 چون گیرنده نیز می تواند برچسب را تولید کند
- 🗗 امضا با یک زوج کلید عمومی/خصوصی فراهم میشود
- طرف قادر به ایجاد MAC هستند طرف قادر به ایجاد

معایب تولید MAC با رمزنگاری

- 🗗 ایراد اصلی: کارایی پایین
- الگوریتم های بسیار سریعتری برای تولید \mathbf{MAC} وجود دارد \mathbf{G}
 - مثال: بکارگیری توابع درههساز

فهرست مطالب

- 🗗 مفاهيم اوليه
- ط رمز گذاری پیام و کدهای تشخیص خطا
 - 🗗 کدهای تصدیق صحت پیام
 - 🗗 اصول توابع درهمساز
 - ط توابع درهمساز مهم
 - HMAC &

توابع درهمساز (Hash)

- 🗗 تابع یک طرفه
- طول ورودی دلخواه
- طول خروجی ثابت (نگاشت از فضای بزرگتر به فضای کوچکتر)
 - 🗗 در حالت کلی، کلیدی در کار نیست!
 - ⊕ بر خلاف MAC و رمزنگاری

امنیت توابع درهم ساز: ایده کلی

- 🗗 یافتن پیامهای متفاوتی که به یک رشته یکسان نگاشته میشوند دشوار باشد
 - ط به این رشته، عصاره یا چکیده پیام (Message Digest) می گوییم ط

نیازمندیهای امنیتی توابع درهم ساز

- (Preimage Resistance) دشواری یافتن پیش نگاره
 - (One-wayness) نام دیگر: یک طرفه بودن ⊕
- (2nd Preimage Resistance) دشواری یافتن پیش نگاره دوم
- Weak Collision Resistance)نام دیگر: مقاومت ضعیف در برابر تصادم ⊕
 - (Collision Resistance) مقاومت در برابر تصادم
- 🗗 نام دیگر: مقاومت قوی در برابر تصادم (Strong Collision Resistance)

A

تعریف نیازمندیهای امنیتی توابع درهمساز

🗗 دشواری یافتن پیشنگاره:

فقط با داشتن H(x) (برای یک x تصادفی)، یافتن y به طوری که H(x)=H(y) از لحاظ محاسباتی ناممکن باشد

🗗 دشواری یافتن پیشنگاره دوم:

y
eq x و در نتیجه H(x))، یافتن y به طوری که H(y) = H(y) و H(x) = H(y) و از لحاظ محاسباتی ناممکن باشد

🗗 مقاومت در برابر تصادم:

یافتن $y\neq x$ به طوری که H(x)=H(y) از لحاظ محاسباتی ناممکن باشد \oplus

نمودار وِن انواع توابع درهم ساز

CR نتیجه می دهد CR

ط اثبات با برهان خلف:

- فرض کنیم تابع H خاصیت CR دارد ولی خاصیت CR ندارد (فرض خلف) \Box
 - ط یک X تصادفی تولید کنید 🗗
- 2PR یافتن $y\neq x$ به طوری که H(x)=H(y) از لماظ مماسباتی ممکن است (چون $y\neq x$ نداریه)
 - یک زوج x و y با مقدار درهمسازی یکسان پیدا کردیم \Box
 - ا پس خاصیت CR وجود ندارد 🗗
 - 🗗 تناقض!

CR الزاماً نتيجه نمى دهد OW

H(x)=x مثال نقض: تابع

- ط این تابع CR (و 2PR) است چون هیچ تصادمی ندارد ط
- این تابع \mathbf{OW} نیست چون پیشنگاره هر مقداری را می توان یافت \mathbf{OW}

ئتيجه:

PR الزاما OW را نتيجه نمي دهد 🗗

🗗 توابع فشرده ساز:

- اگر برد H نسبت به دامنه آن خیلی کوچک باشد: $oldsymbol{\square}$
 - OW نتيجه مىدهد CR •
 - همه توابع درهمساز در عمل چنین هستند

OW الزاماً نتيجه نمى دهد OW

- 🗗 مثال نقض:
- فرض کنید n=pq حاصلضرب دو عدد اول باشد $oldsymbol{\Box}$
- میتوان ثابت کرد که $f(x)=x^2 mod n$ تابعی یک طرفه است m a
 - n با فرض دشواری تجزیه $oldsymbol{\square}$
 - ط با این حال خاصیت 2PR (و در نتیجه CR) را ندارد
 - هر x با مقدار -x تصادم دارد \Box
 - ا حو مقدار متفاوت با مقدار درهمسازی یکسان ط

حمله آزمون جامع به توابع درهمساز

🗗 تابع درهمساز زیر را در نظر بگیرید:

n ورودی به طول دلخواه و خروجی به طول $oldsymbol{\square}$

 $H: \{0,1\}^* \to \{0,1\}^n$

🗗 پیچیدگی یافتن تصادم:

به طور متوسط پس از امتحان حدودا $2^{n/2} \times 2^{n/2}$ ورودی با احتمال $3 \cdot 2$ یک تصادم پیدا می شود

€ علت:

🗗 تناقض روز تولد

تناقض روز تولد

🗗 در میان ۲۳ نفر،

احتمال یافتن دو نفر که در یک روز از سال متولد شدهاند بیش از ۵۰٪
 است

نمونه ای از حمله روز تولد

- Tom £ و Bob دو کاندیدای استخدام هیئت علمی هستند
- Tom £ میداند که رئیس دانشکده نسبت به وی نظر مثبتی دارد
- از وی میخواهد که برایش توصیه نامهای بنویسد، و پس از امضا به دفتر رئیس دانشگاه بفرستد
 - ط فرض کنیم برای امضا، چکیده ۶۴ بیتی متن نامه تهیه شده و این چکیده امضا میشود
- 🗗 منشی رئیس دانشکده که با Tom خصومت دارد، دو نامه جداگانه تهیه می کند...
 - ۩ یک نامه با نظر مثبت
 - ⊕ و یک نامه با نظر منفی
 - 🗗 هر كدام با ۳۲ انتخاب

نامه اول (شامل ۲۲ انتخاب دو تایی)

Dear Dean Smith,

This [letter | message] is to give my [honest | frank] opinion of Prof. Tom Wilson, who is [a candidate | up] for tenure [now | this year]. I have [known | worked with] Prof. Wilson for [about | almost] six years. He is an [outstanding | excellent] researcher of great [talent | ability] known [worldwide | internationally] for his [brilliant | creative] insights into [many | a wide variety of] [difficult | challenging] problems.

He is also a [highly | greatly] [respected | admired] [teacher | educator]. His students give his [classes | courses] [rave | spectacular] reviews. He is [our | the Department's] [most popular | best-loved] [teacher | instructor].

[In addition | Additionally] Prof. Wilson is a [gifted | effective] fund raiser. His [grants | contracts] have brought a [large | substantial] amount of money into [the | our] Department. [This money has | These funds have] [enabled | permitted] us to [pursue | carry out] many [special | important] programs, [such as | for example] your State 2016 program. Without these funds we would [be unable | not be able] to continue this program, which is so [important | essential] to both of us. I strongly urge you to grant him tenure و كامپيونو و كامپرونو و كامپرونو و كامپرونو و كامپر

نامه دوم (شامل ۲۲ انتخاب دو تایی)

Dear Dean Smith,

This [letter | message] is to give my [honest | frank] opinion of Prof. Tom Wilson, who is [a candidate | up] for tenure [now | this year]. I have [known | worked with] Tom for [about | almost] six years. He is a [poor | weak] researcher not well known in his [field | area]. His research [hardly ever | rarely] shows [insight in | understanding of] the [key | major] problems of [the | our] day.

Furthermore, he is not a [respected | admired] [teacher | educator]. His students give his [classes | courses] [poor | bad] reviews. He is [our | the Department's] least popular [teacher | instructor], known [mostly | primarily] within [the | our] Department for his [tendency | propensity] to [ridicule | embarrass] students [foolish | imprudent] enough to ask questions in his classes.

[In addition | Additionally] Tom is a [poor | marginal] fund raiser. His [grants | contracts] have brought only a [meager | insignificant] amount of money into [the | our] Department. Unless new [money is | funds are] quickly located, we may have to cancel some essential programs, such as your State 2016 program. Unfortunately, under these [conditions | circumstances] I cannot in good [conscience | faith] recommend him to you for [tenure | a permanent position].

چگونگی جعل...

🗗 حال منشی به کمک کامپیوتر:

- جدولی از هر یک از 2^{32} انتخاب ممکن برای نامه اول، به همراه چکیده متناظر به عنوان کلید جدول تشکیل می دهد
 - \Box چکیده هر یک از 2^{32} انتخاب ممکن برای نامه دوم را در جدول جستجو میکند، تا به اولین تساوی برسد
 - ور تی که چکیده L1 (یکی از انتخابها برای نامه اول) و L2 (یکی از انتخابها برای نامه دوم) مساوی شوند..
 - منشی L1 را به امضای رئیس دانشکده میرساند؛ \Box
 - ط ولى L2 را به همراه امضا ارسال مى كند

ساختار مرکل - دُمگارد (MD)

- ط مورد استفاده در بسیاری از توابع درهمساز معروف
- ط اِعمال مکرر یک تابع فشردهساز به یک رشته با طول ثابت
- 🗗 اگر تابع فشردهساز CR باشد، تابع درهمساز نیز CR خواهد بود

Ralph Merkle (1952 –)

Ivan Bjerre Damgård (1956 –)

ساختار دروني توابع درهمساز

- f: تابع فشرده ساز
- این تابع باید CR باشد
 - £ IV: مقداری ثابت

ضعف MD در برابر حملات افزایش طول

- ا ساختار MD در برابر حملات افزایش طول آسیبپذیر است H(x) می توان مقدار H(x) برای H(x) نامعلوم به طول $H(x \parallel \operatorname{pad}(x) \parallel L \parallel y)$
 - را برای y دلخواه به دست آورد
 - ط حمله به Flickr در سال ۲۰۰۹ با این روش ⊡

🗗 راه حل:

- طول پیام را به عنوان قطعه نخست به ساختار MD داد 🗗
- ا برای قطعه آخر از یک تابع فشردهساز متفاوت استفاده کرد

فهرست مطالب

- 🗗 مفاهیم اولیه
- ط رمز گذاری پیام و کدهای تشخیص خطا
 - 🗗 کدهای تصدیق صحت پیام
 - 🗗 اصول توابع درهمساز
 - 🗗 توابع درهمساز مهم
 - HMAC &

تابع MD5

MD5: Message Digest 5 &

- A طراحی در ۱۹۹۲ توسط رایوست، یکی از سه طراح RSA
 - 🗗 استفاده گسترده در گذشت
 - امروزه SHA-2 و SHA-1 جایگزین آن شدهاند \Box
 - 🗗 ویژگیها:
 - اختار مرکل-دمگارد 🗗
 - 🗗 ییام به قطعات ۵۱۲ بیتی تقسیم میشود
 - 🗗 خروجی ۱۲۸ بیتی

Ronald Linn Rivest (1947 –)

امنیت MD5

- 🗗 مقاومت در برابر حمله روز تولد: ۲۶۴ گام
 - 🗈 امروزه امن محسوب نمی شود
- 🗗 حملات کاراتری نیز به این الگوریتم پیدا شده است:
 - 🗗 بهترین حمله تصادم: سال ۲۰۱۳
 - 🗗 حمله در ۲۱۸ گام
 - 🗗 کمتر از ۱ ثانیه
- ط در سال ۲۰۱۲ ویروس Flame با سوء استفاده از این حمله به MD5 امضای دیجیتال مایکروسافت را جعل کرد

تابع SHA-1

SHA-1: Secure Hash Algorithm – 1 &

- 🗗 استاندارد NIST، سال ۱۹۹۵
 - ₫ ساختار مرکل-دمگارد
- طول ورودی کوچتر از ۲۶۴ بیت
 - 🗗 طول خروجی ۱۶۰ بیت

SHA-1 امنیت

- 🗗 مقاوم در برابر تصادم با حمله روز تولد : ۲۸۰ گام
- A بهترین حمله: در سال ۲۰۱۱ توسط Marc Stevens
 - ۲۶۵/۳ و ۲۶۰/۳ و ۲۶۵/۳
 - 🗗 جایگزینی با گونههای امن تر
 - H خانواده SHA-2 خانواده
 - ◘ در حال استفاده گسترده در حال حاضر

توابع درهم ساز مهم: SHA-2

ط نسخههای زیر نیز علاوه بر SHA-1 استاندارد شدهاند:

SHA-512 , .SHA-38 .SHA-256 .SHA-224 🗎

طعروف به خانواده SHA-2 هستند طعروف على المعروف على المعروف على المعروف على المعروف ا

☐ از لحاظ ساختار و جزئیات مشابه SHA-1 هستند

Algorithm	Digest size	Block size	Message size	CR Security
SHA-1	160	512	< 2 ⁶⁴	80 bits
SHA-224	224	512	< 264	112 bits
SHA-256	256	512	< 2 ⁶⁴	128 bits
SHA-384	384	1024	< 2 ¹²⁸	192 bits
SHA-512	512	1024	< 2128	256 bits

ساختار SHA-512

- و تمامی توابع خانواده SHA-2 در برابر حملات افزایش طول SHA-1 و تمامی توابع خانواده SHA-1 و تمامی توابع خانواده SHA-1 و تمامی توابع خانواده و تمامی توابع تواب
 - اگر بخواهیم پیام m را با H(K||m) تصدیق هویت کنیم، oxdots
 - مهاجم برای مقدار دلخواه m' مهاجم برای مقدار دلخواه H(K||m/|pad/|L/|m') مهاجم برای مقدار دلخواه H(K||m/|pad/|L/|m')
 - ط ضعف در برابر حمله تصادم جزئی از پیام برای همه توابع تکراری
 - ط با یافتن تصادم در تابع فشردهساز 🗗

راهكار: استاندارد SHA-3

- 🗗 ساختار غیر مرکل-دمگارد
- 🗗 دارای ساختار توابع اسفنجی
- 🗗 مقاوم در برابر حمله افزایش طول
 - 🗗 استاندارد شده در ۲۰۱۵
- SHA-2 (نه جایگزین) \Box
- £ پشتیبانی از طول خروجیهای ۲۲۴، ۲۵۶، ۳۸۴، ۵۱۲

فهرست مطالب

- 🗗 مفاهیم اولیه
- ط رمز گذاری پیام و کدهای تشخیص خطا
 - 🗗 کدهای تصدیق صحت پیام
 - 🗗 اصول توابع درهمساز
 - ط توابع درهمساز مهم
 - **HMAC**

كد تصديق اصالت HMAC

- HMAC وش است برای ترکیب کلید مخفی با الگوریتمهای درهمساز فعلی
 - با توجه به اینکه H(K||m) یا H(m||K) برای توابع درهمساز فعلی امن نیستند

🗗 راهکار:

- H دو مرحله استفاده از
- $H(K_2||H(K_1||m))$ يعنى oxedot
- ⊕ بهتر است کلیدهای درونی و بیرونی متفاوت باشند
 - € امروزه HMAC به طور گسترده استفاده میشود
 - B به طور مثال در SSL و IPSec

اهداف طراحی HMAC

- ط استفاده از توابع درهمساز بدون تغییر آنها
 - ط پشتیبانی از توابع درهمساز متنوع
- طانند RIPEMD-160، SHA-2 SHA-1 هانند 60-RIPEMD المانند 60-SHA-2 هانند
 - 🗗 حفظ کارایی و سرعت تابع درهمساز به کار گرفته شده
 - ط لایه دوم Hash معادل ۱ یا ۲ تابع فشردهسازی ط
 - 🗗 استفاده ساده از کلید

نماد گذاری الگوریتم HMAC

- (با خروجی n بیتی) ابع درهم سازی به کار گرفته شده H Δ
 - (با قطعههای b بیتی) بیام ورودی b بیتیM بیتی
 - K 🗗 کلید مخفی
 - طول آن باید بیشتر از n باشد \Box
- اگر طول کلید بیشتر از b بود H(k) به جای آن استفاده می شود oxdot
- ارسد pad شده است تا به طول b برسد \mathbf{K}^+ کلید مخفی که از سمت چپ با صفر \mathbf{K}^+ شده است تا به طول
 - (b/8 رشته b بیتی حاصل از تکرار بایت 0x36 (به تعداد b
 - (b/8)رشته b بیتی حاصل از تکرار بایت 0x5c رشته b

نحوه محاسبه HMAC

امنیت HMAC

ط ارتباط دقیق بین امنیت HMAC با امنیت تابع درهم ساز اثبات شده است

HMAC حمله به

- 🗗 حمله آزمون جامع بر روی کلید (میزان مقاومت بسته به طول کلید)
- ط حمله روز تولد: با توجه به نداشتن کلید، نیازمند مشاهده تعداد زیادی پیام و HMAC آنها با کلید یکسان

مقاومت \mathbf{HMAC} در برابر حمله روز تولد از تابع درهم ساز به کار گرفته شده، بیشتر است