Práctica 1: Representación de números enteros

Gabriel Budiño

Organización del computador I DC - UBA

1er. cuatrimestre 2018

Imaginen que le piden a una persona que escriba el número dos en un papel. ¿Qué esperan ver?

Imaginen que le piden a una persona que escriba el número dos en un papel. ¿Qué esperan ver?

Dependiendo de a quién se lo pidan, pueden obtener distintos resultados:

a un japonés	a mí	a un romano hace mucho tiempo
=	2	II

Imaginen que le piden a una persona que escriba el número dos en un papel. ¿Qué esperan ver?

Dependiendo de a quién se lo pidan, pueden obtener distintos resultados:

a un japonés	a mí	a un romano hace mucho tiempo
=	2	II

Cada uno escribe algo distinto, pero piensa en lo mismo. Con lo que podemos decir que un **concepto** se puede representar de **varias** maneras.

- Número: Abstracción que representa una cantidad o una magnitud.
- ► Cifra: Símbolo que representa un número.
- ▶ **Numeral:** Cadena de cifras que representa un número.

Sistema decimal

- Usa un conjunto de diez símbolos.
- Se dice un sistema posicional, pues cada posición en el numeral está asociada a una potencia de diez.
 Por ejemplo, 123 = 1 x 10² + 2 x 10¹ + 3 x 10⁰

Sistema decimal alternativo

▶ ¿Podemos representar lo mismo si cambiamos los símbolos? Por ejemplo, a los siguientes:

Sistema decimal alternativo

▶ ¿Podemos representar lo mismo si cambiamos los símbolos? Por ejemplo, a los siguientes:

Sí, solo hay que asignarle a cada uno un número entre cero y nueve.

!	&	*	0	{	\$	#	%	<	?
0	1	2	3	4	5	6	7	8	9

Base

- Como vimos, el sistema decimal usa un conjunto de diez símbolos para representar números.
- Cada posición del numeral está asociada a una potencia de diez.

¿Y si en lugar de diez símbolos usamos otra cantidad?

A esa cantidad la llamamos base.

Bases

- ▶ en base 2 usamos los símbolos 0 y 1 y escribimos los naturales: 0, 1, 10, 11, 100, 101 ...
- ▶ en base 3 usamos los símbolos 0, 1 y 2 y escribimos los naturales: 0, 1, 2, 10, 11, 12, 20 ...
- ... y así ...

Bases más comunes

Base	Símbolos usados
2 (binario)	0, 1
8 (octal)	0, 1, 2, 3, 4, 5, 6, 7
10 (decimal)	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
16 (hexadecimal)	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Ejercitemos

► Cambiando de base: Escribir en base 2, 8 y 16 los números diez y quinientos doce

▶ **Sumando:** Sumar en base 3, 212 y 101

▶ Multiplicando: Multiplicar en base 3, 12 y 21

Tiras de símbolos

Si sólo pudiésemos escribir numerales de longitud fija:

- ¿Cuántos números podemos representar?
- ▶ ¿De qué depende?

Tiras de símbolos

Si sólo pudiésemos escribir numerales de longitud fija:

- ¿Cuántos números podemos representar?
- ▶ ¿De qué depende?

- A esto se lo llama precisión fija.
- Cuando operamos con precisión fija puede haber overflow. Esto ocurre cuando necesitamos una tira de mayor longitud para representar al resultado.

Recordando

Hasta ahora vimos como:

- Leer naturales
- Escribir naturales
- Operar con naturales

¿Y los enteros?

- Sin signo
 - como venimos usando
 - solo sirve para enteros positivos
- Exceso a m
 - ▶ se representa a n como m + n
 - desplaza m lugares las representaciones sin signo
- ▶ Signo + Magnitud
 - el primer bit representa el signo $(1 \equiv -, 0 \equiv +)$
 - los bits restantes representan la magnitud del número
- Complemento a 2
 - el primer bit indica el signo $(1 \equiv -, 0 \equiv +)$
 - ▶ los positivos se representan igual que antes
 - ▶ los negativos n se representan como $2^k + n$, siendo k = #bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3			
-2			
-8			

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0011	0011	Overflow
-2			
-8			

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0011	0011	Overflow
-2	1010	1110	1101
-8			

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0011	0011	Overflow
-2	1010	1110	1101
-8	Overflow	1000	0111

	Signo + Magnitud	Complemento a 2	Exceso a 15
3			
-2			
-8			

	Signo + Magnitud	Complemento a 2	Exceso a 15
3			0001 0010
-2			
-8	1000 1000		

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0000 0011	0000 0011	0001 0010
-2	1000 1010	1111 1110	0000 1101
-8	1000 1000	1111 1000	0000 0111

Similitudes entre 4 y 8 bits

	Signo + Magnitud	Complemento a 2	Exceso a 15
3	0000 0011	0000 0011	0001 0010
-2	1000 0010	1111 1110	0000 1101
-8	1000 1000	1111 1000	0000 0111

- ► Signo + Magnitud: Se extiende con 0's, pero el bit más significativo se mantiene indicando el signo.
- Complemento a 2: Se extiende con el valor del bit más significativo.
- Exceso a m: Se extiende siempre con 0's.

Codificando enteros con numerales binarios Sin signo

Solo sirve para enteros no negativos. numeral \rightarrow número que representa 1111 \rightarrow 15_{10} 0111 $1110 \rightarrow$ 0110 \rightarrow 6₁₀ 14_{10} $0101 \rightarrow 5_{10}$ 1101 \rightarrow 13₁₀ $1100 \rightarrow 12_{10}$ 0100 \rightarrow 4₁₀ $1011 \rightarrow$ 11_{10} 0011 \rightarrow 3₁₀ $1010 \rightarrow 10_{10}$ $0010 \rightarrow 2_{10}$ 0001 \rightarrow 1₁₀ $1001 \rightarrow$ 9_{10} 1000 8₁₀ 0000 0_{10}

Codificando enteros con numerales binarios Sin signo

Solo sirve para enteros no negativos. numeral \rightarrow número que representa 1111 \rightarrow 15₁₀ $0111 \rightarrow 7_{10}$ 0110 \rightarrow 6₁₀ $1110 \rightarrow 14_{10}$ $1101 \rightarrow 13_{10}$ $0101 \rightarrow 5_{10}$ $1100 \rightarrow 12_{10}$ $0100 \rightarrow 4_{10}$ $1011 \rightarrow 11_{10}$ $0011 \rightarrow 3_{10}$ $1010 \rightarrow 10_{10}$ $0010 \rightarrow 2_{10}$ $1001 \rightarrow 9_{10}$ 0001 \rightarrow 1₁₀ $0000 \rightarrow 0_{10}$ $1000 \rightarrow$ 8₁₀

Rango: $[0, 2^k - 1]$

Exceso a m

El número n se representa como m + n (m = 5 en el ejemplo) cuentas \rightarrow numeral \rightarrow número que representa

Exceso a m

El número n se representa como m + n (m = 5 en el ejemplo) cuentas \rightarrow numeral \rightarrow número que representa

Rango: $[-m, 2^k - 1 - m]$

Signo + Magnitud

Se usa el primer bit para el signo y los restantes para el módulo.

Signo + Magnitud

Se usa el primer bit para el signo y los restantes para el módulo.

Rango:
$$[-(2^{k-1}-1), 2^{k-1}-1]$$

Complemento a 2

Los numerales que representan positivos son iguales a los anteriores Dado un n negativo, se lo representa escribiendo $2^k + n$ en notación sin signo.

```
cuentas \rightarrow numeral \rightarrow número que representa
2^4 + (-1) = 15 \rightarrow 1111 \rightarrow -1_{10}
                                                                    0111 \rightarrow
                                                                                     7_{10}
2^4 + (-2) = 14 \rightarrow 1110 \rightarrow -2_{10}
                                                                    0110 \rightarrow 6_{10}
2^4 + (-3) = 13 \rightarrow 1101 \rightarrow -3_{10}
                                                                    0101 \rightarrow 5_{10}
2^4 + (-4) = 12 \quad \rightarrow \quad \textbf{1100} \quad \rightarrow \quad -\textbf{4}_{\textbf{10}} \qquad \qquad \textbf{0100} \quad \rightarrow \quad \textbf{4}_{\textbf{10}}
2^4 + (-5) = 11 \rightarrow 1011 \rightarrow -5_{10} \qquad 0011 \rightarrow 3_{10}
2^4 + (-6) = 10 \rightarrow 1010 \rightarrow -6_{10}
                                                                    0010 \rightarrow 2_{10}
2^4 + (-7) = 9 \rightarrow 1001 \rightarrow -7_{10}
                                                                    0001 \rightarrow 1_{10}
2^4 + (-8) = 8 \rightarrow 1000 \rightarrow -8_{10}
                                                                    0000 →
                                                                                     010
```

Complemento a 2

Los numerales que representan positivos son iguales a los anteriores Dado un n negativo, se lo representa escribiendo $2^k + n$ en notación sin signo.

$$\begin{array}{c} \text{cuentas} \to \text{numeral} \to \text{número que representa} \\ 2^4 + (-1) = 15 & \to & 1111 & \to & -1_{10} & 0111 & \to & 7_{10} \\ 2^4 + (-2) = 14 & \to & 1110 & \to & -2_{10} & 0110 & \to & 6_{10} \\ 2^4 + (-3) = 13 & \to & 1101 & \to & -3_{10} & 0101 & \to & 5_{10} \\ 2^4 + (-4) = 12 & \to & 1100 & \to & -4_{10} & 0100 & \to & 4_{10} \\ 2^4 + (-5) = 11 & \to & 1011 & \to & -5_{10} & 0011 & \to & 3_{10} \\ 2^4 + (-6) = 10 & \to & 1010 & \to & -6_{10} & 0010 & \to & 2_{10} \\ 2^4 + (-7) = 9 & \to & 1001 & \to & -7_{10} & 0001 & \to & 1_{10} \\ 2^4 + (-8) = 8 & \to & 1000 & \to & -8_{10} & 0000 & \to & 0_{10} \end{array}$$

Rango:
$$[-2^{k-1}, 2^{k-1} - 1]$$

¿Qué vimos hoy?

- Diferencia entre número y numeral.
- Cómo interpretar números en distintas bases.
- Cómo expresar un número en distintas bases.
- Precisión fija y overflow.
- Distintas formas de representación de enteros.

¿Qué sigue?

Bibliografía:

- William Stallings: Computer Organization and Architecture, capítulos 9 y 10
- Linda Null & Julia Lobur: The Essentials of Computer Organization and Architecture, capítulo 2

La práctica:

Con lo visto hoy pueden realizar toda la guía 1 de ejercicios.

La próxima clase:

En instantes... clase de Lógica Digital.