

Agents Intelligents (Licence 3 IA)

Andrea G. B. Tettamanzi Laboratoire I3S – Équipe SPARKS

andrea.tettamanzi@univ-cotedazur.fr

univ-cotedazur.fr

Agent

Fonction agent

- Séquence de perceptions (sert pour enrichir sa connaissance du monde): histoire complète de tous ce qu'a été perçu par l'agent.
- Le comportement de l'agent est donné de façon abstraite par la fonction de l'agent :

$$[f: P^* \rightarrow A]$$

avec P* représentant une séquence de perceptions et A une action.

- Le **programme de l'agent** tourne autour d'une architecture physique afin de produire *f*.
- Agent = architecture + programme.

Exemple : Le monde de l'aspirateur

- Perceptions : localisation et contenu
 - Exemple: [A, sale]
- Actions : Gauche, Droite, Aspirer, Ne_rien_faire

Une fonction pour l'agent aspirateur

Séquence de Perceptions	Action
[A, Propre]	Droit
[A, Sale]	Aspirer
[B, Propre]	Gauche
[B, Sale]	Aspirer
[A, Propre], [A, Propre]	Droit
[A, Propre], [A, Sale]	Aspirer
•••	
[A, Propre], [A, Propre], [A, Propre]	Droit
[A, Propre], [A, Propre], [A, Sale]	Aspirer
•••	

Programme: si la case actuelle est sale, alors aspirer, sinon se déplacer de l'autre côté.

Agents rationnels

- Comment remplir ``correctement'' la table d'actions de l'agent adaptée à chaque situation ?
- Pour avoir du succès, l'agent doit opter pour l'action "correcte" en se baseant sur ce qu'il perçoit.
 - Le concept de succès de l'agent dépend d'une mesure de performance objective.
 - Exemples : quantité de saleté aspirée, dépense d'énergie, perte de temps, quantité de bruit genérée, etc.
 - La mesure de la performance doit représenter le résultat vraiment souhaité.

Agents rationnels : choix de la mesure de performance

• Fixée par le concepteur

• Propre à la tâche considérée

Mesure le succès de l'action accomplie par l'agent

Agents rationnels

Un agent rationnel doit sélectioner une action qui maximise sa mesure de performance en fonction de sa perception du monde et de ses connaissances.

PEAS

- Lorsqu'on projette un agent, la première étape doit toujours comporter la spécification de l'environement de travail.
 - Performance = Mesure de performance
 - Environment = Environnement
 - Actuators = Actionneurs
 - Sensors = Capteurs

Exemple de PEAS: Chauffeur de Taxi Automatisé

- Mesure de performance : voyage sécurisé, rapide, sans violation du code de la route, confortable pour les passagers, maximiser les gains.
- Environnement : rues, routes, autres véhicules, piétons, clients.
- Actionneurs : accélérateur, frein, embrayage, etc.
- Capteurs : caméra, sonar, indicateur de vitesse, GPS, odomètre (distance parcourue), etc.

Exemple de PEAS: Système de Diagnostique Médicale

- Mesure de performance : patient en bonne santé, minimiser les coûts.
- Environnement : état du patient, hôpital, équipe.
- Actionneurs: poser des questions au patient, tests, diagnostiques, traitements.
- Capteurs : prise en compte des symptômes, découvertes, réponses du patient.

Exemple de PEAS: Instructeur Intéractif d'anglais

- Mesure de performance : maximiser les notes des élèves dans les tests.
- Environnement : ensemble des élèves.
- Actionneurs : présenter des exercices, suggestions, corrections.
- Capteurs : entrées au clavier.

Propriétés de l'environnement de travail

- Complètement observable (versus partiellement observable)
 - Les capteurs de l'agent donnent accès à l'état complet du monde à chaque instant.
 - Tous les aspects pertinents du monde sont accessibles.
- Déterministe (versus stochastique)
 - Le prochain état du monde est complétement déterminé par l'état courant et l'action executée par l'agent.
 - Absence d'incertitude

Propriétés de l'environnement de travail

- Épisodique (versus séquentiel) : Un épisode est une séquence perceptionaction
 - L'expérience de l'agent peut se diviser en épisodes (perception et exécution d'une action unique)
 - L'épisode suivant ne dépend pas des actions effectuées dans les épisodes précédents
 - Pas besoin d'envisager la suite
 - Le choix de l'action à chaque épisode dépend seulement de l'épisode.
 - Ex. ép.: Agent qui doit détecter pièces défectueuses
 - Ex. séq : conduite automobile, échecs
- Statique (versus dynamique)
 - L'environnement ne change pas pendant que l'agent est en train de délibérer (penser). (Ex. (St) : mots croisés).
 - L'environnement est dit semi-statique s'il ne change pas avec le temps, mais, le score de l'agent change.
 - Ex. (SSt): échéc avec chronomètre; Ex. (Dy): conduite taxi

Propriétés de l'environnement de travail

- Discret (versus continu)
 - Un nombre limité et clairement défini de perceptions et d'actions.
 - Ex. (Co) : conduite taxi ; ex. (Di) : entrées fournies par caméras numériques
- Agent unique (versus multi-agent)
 - Un seul agent qui agit seul dans l'environnement.
 - Dans le cas multi-agent on peut considérer :
 - Multi-agent coopératif
 - Multi-agent compétitif

Exemple

	Échec avec montre	Échec sans montre	Conduire un taxi
Compltm. observable	Oui	Oui	Non
Déterministe	Oui	Oui	Non
Épisodique	Non	Non	Non
Statique	Semi	Oui	Non
Discret	Oui	Oui	Non
Agente unique	Non	Non	Non

- Le type d'environnement de travail détermine en grande partie le projet de l'agent.
- **Remarque** : le monde réel est partiellement observable, stochastique, séquentiel, dynamique, continu et multi-agent.

Types fondamentaux d'agents

Quatre types fondamentaux, du plus simple au plus général :

- Agents réflexes simples
- Agents réflexes fondés sur des modèles (ou avec état interne) - ce sont des agents qui conservent une trace du monde
- Agents fondés sur des buts
- Agents fondés sur l'utilité

Types fondamentaux d'agents

Quatre types fondamentaux, du plus simple au plus général :

- Agents réflexes simples
- Agents réflexes fondés sur des modèles (ou avec état interne)
- Agents fondés sur des buts
- Agents fondés sur l'utilité

Remarque : ces 4 types d'agents peuvent être adaptés pour devenir des

Agents apprenants

Agent réflexe Simple

- Sélectionnent des actions en fonction de la perception courante et ignorent le reste de l'historique.
- Ex. Aspirateur : sa décision ne tient compte que de l'emplacement courant et de la présence éventuelle de poussière à cet emplacement.

Agent réflexe simple

Agent réflexe Simple

Il faut faire attention aux choix effectués:

- Ex: Quantité de saleté ramassé en 4 heures
- L'agent pourrait ramasser la saleté, la redéposer et ainsi de suite.

Une meilleure option: récompenser l'agent pour un plancher propre

 Ex: un bonus pour chaque carré propre à chaque intervalle de temps (Peut-être avec une pénalité pour l'électricité consommé)

Agent réflexe Simple

- Aspirateur
- Si la zone A est sale, il la nettoie
- Mais si un autre agent la salit systématiquement alors il passera son temps à la nettoyer --> boucle infinie!
- Solutions possibles : actions aléatoires
 (nettoyer/non nettoyer) , fixer nombre de fois
 à nettoyer, changer de salle, donner une
 récompense si la zone est propre, etc.

Exemple : Agent réflexe simple

```
Fonction AGENT-ASPIRATEUR-RÉFLEXE([emplacement,état])
retourne une action
si état = Sale alors retourner aspirer
sinon si emplacement = A alors retourne Droite
    sinon si emplacement = B alors retourne Gauche
```

- Règles condiction-action (règles si-alors) constituent un lien entre la perception et l'action.
- L'agent fonctionne seulement si l'environnement est complètement observable et la bonne décision peut être prise avec seulement la perception courante.

