### **ARP Frame encapsulated in Ethernet Frame**



DST = link-layer broadcast address in a request. Unicast in a response.

## **ARP**



Sender = 1.2.3.4, f4:3e:33:12:45:5a Target = 10.11.12.13, ff:ff:ff:ff:ff



#### **ARP**



Sender = 10.11.12.13, ab:d3:f1:11:34:4e Target = 1.2.3.4, f4:3e:33:12:45:5a



Sender address in Ethernet header does not have to be the same as the "sender's HW address" in ARP response.

### Possible way to detect an eavesdropper

Destination IP address = eavesdropper

Destination Ethernet address ≠ eavesdropper

# IP forwarding

| Destination | Mask            | Next hop   | Interface  |
|-------------|-----------------|------------|------------|
| 0.0.0.0     | 0.0.0.0         | 10.0.0.1   | 10.0.0.100 |
| 10.0.0.0    | 255.255.255.128 | 10.0.0.100 | 10.0.0.100 |

### IP forwarding - algorithm

Let D be destination IP from packet header. Let  $d_j$  be destination in  $j^{th}$  entry of forwarding table. Let  $m_j$  be mask in  $j^{th}$  entry of forwarding table.

- Find all entries with: (D &  $m_i$ ) =  $d_i$
- From amongst those, pick entry with most 1's in m
- > 1 best match  $\Rightarrow$  use some tie-breaking rule
- 0 matches  $\Rightarrow$  "host unreachable."

### IP forwarding - examples

| Destination | Mask            | Next hop   | Interface  |
|-------------|-----------------|------------|------------|
| 0.0.0.0     | 0.0.0.0         | 10.0.0.1   | 10.0.0.100 |
| 10.0.0.0    | 255.255.255.128 | 10.0.0.100 | 10.0.0.100 |

- 10.0.0.19 matches both entries. 2<sup>nd</sup> entry is best-match.
- 178.162.3.4 matches 1<sup>st</sup> entry, not 2<sup>nd</sup>
- 10.0.0.131 matches 1<sup>st</sup> entry, not 2<sup>nd</sup>

#### IP forwarding - "direct" vs. "indirect" delivery



## IP packet format



### Fragmentation - the IP Header



All fragments of a datagram have the Same ID.



### Fragmentation - how it works via example









## Fragmentation - issues (1)

• Complexity of algorithms  $\Rightarrow$  lots of bugs

See <u>RFC 791</u>

### Fragmentation - issues (2)

• Higher layer protocol header is separated from data.



#### Fragmentation - issues (3)

- Identification field may not be long enough at 16 bits.
  - $\circ$  ID does not repeat for 120 seconds @ 1500 byte packets  $\Rightarrow$  6.5 Mbps throughput
  - Throughput 1 Gbps @ 1500 byte packets  $\Rightarrow$  ID space exhausted in < 1 second
  - Proposed solution <u>RFC 6864</u>: receiver relies on ID field for fragments only

#### **Header Checksum**

• "1's complement of 1's complement 16-bit sum."

```
Checksum ← 00 00

Perceive header as chunks of 16 bits = 2 bytes

Checksum ← Checksum + (each of those 2 bytes)

Add carry back into Checksum

Checksum ← bit-complement of Checksum
```

#### Header Checksum, example

• E3 4F 23 96 44 27 99 F3

| 00 00   |
|---------|
| + E3 4F |
| = E3 4F |









Checksum = 1AFF

### Checking the checksum

- Compute checksum of entire header (including checksum)
- Result should be 00 00
- E.g.,
  - $\circ$  (E3 4F) + (23 96) + (44 27) + (99 F3) + (1A FF) = 1 FF FE
  - $\circ$  1's complement: (FF FE) + (00 01) = FF FF
  - $\circ$  Complement =  $00\ 00$

#### TTL - Time To Live

- Use to limit datagram lifetime in the network
- Decremented by 1 @ each hop
- → header checksum must be recomputed @ every hop

### Traceroute - a nifty use of TTL

- Objective want to find path from here (source) to destination
- Method leverage TTL field





Source IP = Source
Destination IP = Destination
TTL = 1



Source IP = Hop 1

ICMP Time Exceeded
IP header + 8 bytes of data
from original datagram



Source IP = Source
Destination IP = Destination
TTL = 2



#### Question

It so happens that an IP packet sent by S to D incurs no errors in transit.

True or false:

The value of the header checksum that D sees is the value that S put in the checksum field.