NOME:

Guilherme Siqueira Brandão - 16/0007763

Maria Luiza Ferreira Assumpção Almeida - 16/0014433

Matheus Roberto Alves da Silva- 13/0126721

Mateus de Oliveira Barbosa - 14/0154817

Vitor Leal dos Santos - 16/0148375

O que é recuperar falhas?

- Recuperar falhas significa que o banco de dados deve retornar a estado consistente mais recente antes de uma falha.
- Preservar as propriedades ACID:
 - Atomicidade: Todas as operações da transação acontecem ou nenhuma acontece
 - Consistência: A execução completa de uma transação faz o BD passar de um estado consistente para outro
 - Isolamento: Uma transação deve ser executada como se estivesse isolada das demais
 - o **D**urabilidade: Se uma transação é efetivada, seu efeito persiste

Quais as principais técnicas usadas para recuperação no Banco de Dados?

Falhas não-catastróficas

- 1. Atualização adiada (algoritmo NO-UNDO / REDO)
- 2. Atualização imediata (algoritmo UNDO / NO-REDO)
- 3. Shadow Pages
- 4. Técnica UNDO/REDO com Checkpoint
- 5. Interação com Controle de Concorrência
- 6. Reversão de Transação

Falhas catastróficas

- 1. Execução de backup do banco
- 2. Backup de log

Como elas funcionam?

Recuperação de falhas não-catastróficas

Falhas não catastróficas são, em geral, falhas na execução de transações e operações que podem interferir na integridade de um banco de dados. Nestes casos, o SGBD mantém recursos para permitir a recuperação de falhas.

- 1. Atualização adiada -
 - Conhecido como write-ahead logging (WAL)

- Posterga a atualização em disco até que o sucesso da transação seja realizada.
- Registra a operação no disco de log (log é uma sequência de registros de log que mantém um arquivo atualizado sobre as atividades realizadas com os dados de um banco de dados) antes que a modificação seja gravada em disco, ocorre quando uma transação é confirmada. (Atomicidade)
- Todas as operações de uma transação são gravadas no disco de log antes do commit. (Durabilidade)
- Garante a atomicidade e a durabilidade
- Tem como desvantagem o uso de muito espaço de buffer, para manter os dados antes de gravar em disco.
- Para refazer (REDO), uma entrada no log para gravação deve incluir o novo valor do item gravado.

T_0	T ₁	Log
		<t<sub>0, start></t<sub>
Read(A);	Read(C);	<t<sub>0, A, 950></t<sub>
A := A - 50;	C := C - 100;	<t<sub>0, B, 2050></t<sub>
Write(A);	Write(C);	<t<sub>0, commit></t<sub>
Read(B);	(-),	•
		<t<sub>1, start></t<sub>
B := B + 50;	Valores iniciais:	<t<sub>1, C, 600></t<sub>
Write(B)	A = 1.000	<t<sub>1, commit></t<sub>
	B = 2.000	in 17 hereast south
	C = 700	

2. Atualização imediata -

- Uma técnica de atualização imediata permite a atualização física do banco de dados por operações de uma transação antes que a mesma atinja seu ponto de confirmação.
- São gravadas em log e depois armazenadas em disco, assim é necessário reverter as operações confirmadas utilizando o log do sistema.

Log	Log	Log
<t<sub>0 start></t<sub>	$< T_0$ start>	<t<sub>0 start></t<sub>
$< T_0 \text{ start}> $ $< T_0$, A , 950> $< T_0$, B , 2050>	< <i>T</i> ₀ , <i>A</i> , 950> < <i>T</i> ₀ , <i>B</i> , 2050>	< <i>T</i> ₀ , <i>A</i> , 950> < <i>T</i> ₀ , <i>B</i> , 2050>
• ,	<t<sub>0 commit></t<sub>	$< T_0$ commit>
	$< T_1 \text{ start}>$ $< T_1, C, 600>$	$< T_1 \text{ start}>$ $< T_1, C, 600>$
	2002	$< T_1$ commit>
(a)	(b)	(c)

3. Shadow Pages -

Shadow Paging é uma alternativa à recuperação baseada em log

- Manter duas tabelas de páginas durante o tempo de vida de uma transaçãoa Tabela de Páginas Corrente (TPC), e a Tabela de Páginas Shadow (TPS)
- Armazena a Tabela de Páginas Shadow em meio não-volátil, tal que o estado do BD anterior à execução da transação possa ser recuperado
- Ao iniciar, ambas as tabelas de páginas são idênticas. Somente a tabela de páginas correntes é usada para cada item de dados acessados durante a execução da transação

4. Técnica UNDO/REDO com Checkpoint -

- Uma técnica utilizada que analisa apenas as transações que ocorreram após o último checkpoint
- Cada transação analisada é refeita se tiver sido efetivada e desfeita caso contrário

5. Interação com Controle de Concorrência -

- Suponha que uma transação T0 tenha que ser desfeita e um item de dado Q, atualizado por T0, tenha que recuperar seu valor antigo. Para isso, utiliza-se as informações registradas no log e a operação undo
- Suponha ainda que uma segunda transação T1 também tenha realizado uma atualização sobre Q antes de T0 ser desfeita. Esta atualização, processada por T1, será perdida quando T0 for revertida
- Para evitar esta situação, usa-se o bloqueio em duas fases que mantém os bloqueios de escrita até o final da transação.

6. Reversão de Transação

- O log é percorrido do fim para o início, pelo fato de que uma transação pode ter atualizado um item de dados mais de uma vez.
- O log é percorrido de trás para frente porque uma transação pode ter atualizado um dado mais de uma vez, e com isso, consegue-se obter o valor correto ao final desse processo.

Recuperação de falhas catastróficas

As falhas catastróficas são falhas em disco ou corrupção do arquivo de log, onde causa uma corrupção no sistema em que não é possível realizar correções por meios normais e não podem ser previstas diretamente. Por isso, os DBAs devem estruturar os bancos de dados de forma a minimizar os efeitos de uma possível falha deste tipo. Em geral, evita-se manter um conjunto de dados específicos em um único servidor, uma boa política de construção de banco de dados demanda a utilização de sistemas como RAID e o

uso de servidores em paralelo. Além disso, os servidores devem permanecer em locais seguros, de difícil acesso e que forneça proteção contra danos ambientais e humanos.

- 1. Execução de backup do banco -
- Execução de backup do banco de dados, sendo necessário fazer backup do banco banco de dados e do seu log periodicamente. É possível recuperar o estado mais recente do banco de dados quando este é armazenado em fita, sendo assim, não se perde toda a estrutura do banco de dados. Outra opção seria pegar o último backup do banco realizado e partir dele realizar as mudanças com base no log, sendo assim, apenas as alterações em log ficarão armazenadas, e não o banco inteiro.

2. Backup de Log -

- Ele deve ser executado pelo SGBD quando a transação que estiver sendo executada for cancelada
- Para a recuperação, os efeitos em questão devem ser desfeitos, portanto, o arquivo de log deve-se varrer o arquivo de log para identificar as operações já realizadas pela transação.

Quais as principais técnicas de gerência de buffer no Banco de Dados?

- 1. <u>NOT-STEAL:</u> Um bloco na cache utilizado por uma transação não pode ser gravado antes do commit desta transação
- STEAL: Um bloco na cache utilizado por uma transação pode ser gravado antes do commit desta transação
- 3. <u>FORCE:</u> Forçar gravação dos itens alterados no disco quando alterados antes do commit
- 4. <u>NOT-FORCE:</u> Não forçar gravação dos itens alterados no disco quando alterados antes do commit