Tentative schedule

Physics 215, 101 University of British Columbia, Okanagan

This is I would like to cover, roughly by date, and sections of the required and optional texts. You are expected to at least read the required Schroeder text chapters for this course.

Lecture #	Date	Topics	Suggested Reading
1 .	Jan. 9	Syllabus, phases, state variables, density, number density, pressure	K16.1, 16.2
2 .	Jan. 11	Pressure: atmospheric, hydrostatic, buoyancy, Temperature and thermal	K15.1, 15.2, 15.4, K16.2,
		equilibrium,	S 1.1
3 (videos)	Jan. 13	(Please complete online video quizzes in lieu of in-person lecture) Mass conversions,	K16.3-16.5,
		phase changes (phase diagrams of H ₂ 0 and CO ₂), ideal gases (potential energy,	S1.1,1.2 (p. 6-9)
		assumptions)	
4	Jan. 16	The exponential atmosphere (application of ideal gas)	S1.2
5	Jan. 18	pV diagrams-Ideal gas processes:isothermal (why hyperbola),	K16.6, S1.2 (p. 6-9)
		isochoric, isobaric, adiabatic, proportional reasoning, energy	K17.1-17.4,
		conservation: work done on a gas and relation to pV diagram	
6 .	Jan. 20	Energy conservation: work done on a gas and relation to pV diagram,	K17.1-17.5,
		expansion/contraction video, heat, the first law of thermodynamics,	S1.4-1.6
		heat capacities, specific heat	
7 .	Jan. 23	Calorimetry, latent heat, specific heat of	K17.5, 17.6,
		gases (C_p, C_v) , relation & derivation, partial derviatives,	S1.6 (p.28-29), K17.7
8 .	Jan. 25	$PV^{\gamma} = \text{const. proof (adiabatic), energy transfer mechanisms}$	K17.8, K18.2, 18.3,
		1 (),	S1.4,S1.2(p.10-12), S1.7
9 .	Jan. 27	Radiation, Micro/macro connection, molecular speeds, pressure in a gas,	K18.1-18.4,
		$p \propto (v^2)_{average}$, average translational energy, equipartition of energy,	S1.3, S1.6 (p.29-32)
		average velocity, rms speed	, (2
10	Jan. 30	Specific heat (C_p, C_v) from partial deriv., C_v : solid, diatomic	K18.5, 18.6,
		$C_{\rm v}$ is temperature dependent, thermal interactions and heat,	S1.6 (p.33-37)
		Enthalpy and relation to heats of transformation, work	(1 /
		done on atmosphere by a boiling gas	
11	Feb. 1	Irreversible processes & the 2nd law, degrees of freedom, order, disorder	S1.6 (p.29-32),2.1
		and entropy, irreversible processes and most probable	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
12	Feb. 3	Number of ways to make n choices from N possibles (poker), macrostates	S2.1, 2.2
		& multiplicity: e.g. 2-state paramagnets, Einstein solids (dot-line microstates)	,
13	Feb. 6	Two Einstein solids (interacting systems), fundamental assumption	S2.3, S2.4,
		of statistical mechanics, irreversible processes,	Appendices B2, B3
		Dealing with large numbers: Stirling's approximation and its origin	,
14	Feb. 8	Gaussian integration, multiplicity of two Einstein solids (high T limit)	S2.4, Appendix B1
15	Feb. 10	First midterm (material to end of Feb. 3 lecture)	, 11
16	Feb. 13	Two solids: energy distribution, width of peak,	S2.4-2.6
		1D waves on a string, de Broglie momentum, kinetic energy of particle	
		in a box, ideal gas state counting	
17		Entropy & relation to 2nd law	S2.5, S2.6
		(Maxwell's demon), entropy of an ideal gas (Sackur-Tetrode)	
18	Feb. 17		S2.6, S3.1, 3.2
	·		,,,
18	Feb. 17	Entropy of an ideal gas: expansion, entropy increase due to heat, free expansion Entropy of mixing, thermal equilibrium of two Einstein solids maximizes entropy, temperature/entropy relation, internal energy and heat capacity from multiplicity (Einstein solid), in reverse: measure $C_{\rm v}$ to find entropy change and infer $S(T)$, geometrically frustrated magnets: residual entropy,	S2.6, S3.1, 3

Lecture #	Date	Topics	Suggested Reading
No	Feb. 17-21	Family Day (University closed), midterm break (no classes this week)	
19	Feb. 27	Two-state paramagnet: entropy, internal energy,	S3.3
		magnetization, hyperbolic functions	
20	Mar. 1	Two-state paramagnet: heat capacity and Curie law,	S3.3, S3.4
		thermodynamic identity	
21 (video)	Mar. 3	(Please complete online video quiz) Pressure & chemical potential relation to entropy,	S3.4-3.6, 4.1
		chemical potential of an ideal gas, heat engines: $W_s = -W$ work done by and on a gas	
22	Mar. 6	Heat engines: conservation of energy & efficiency,	K19.1-19.2,
		power plant efficiency & evapouration, Carnot cycle	S4.1
23	Mar. 8	Refrigerators, coefficients of performance, power usage	K19.2-19.6,
		of heat pumps,	S4.1, 4.2
24	Mar. 10	Stirling engine, internal combustion engine (Otto cycle)	S4.3, S4.4
25	Mar. 13	Internal combustion engine (Otto cycle), real refrigerators	S4.3, S4.4
26	Mar. 15	Real refrigerators: throttling, magnetic cooling, laser cooling	S4.4
27	Mar. 17	Second midterm (material to end of Mar. 10 lecture)	
28	Mar. 20	Laser cooling, systems & reservoirs, free energy: Helmholtz, Gibbs,	S4.4, S5.1, S5.2
		electrolysis, fuel cells, Gibbs free energy: lead acid battery, thermodynamic	
		identities & Maxwell relations,	
29	Mar. 22	Phase diagrams, examples of phases: superfluidity, magnetic order,	S5.3
		superconductivity, nematic order, Gibbs free energy vs. pressure for diamond and	
		graphite, Clausius-Clapeyron relation: evolution of free energy on a phase	
		boundary and	
30	Mar. 24	Clausius-Clapeyron relation: application to melting of ice	5.3
		and application to the vapour pressure equation	
VWD	Mar. 24	Last day to voluntarily withdraw from class with a W	
31	Mar. 27	Extensive vs. intensive quantities, chemical potential relation	S5.3
		to Gibbs free energy and form for ideal gas	S5.3
32	Mar. 29	Phase transformations, vapour pressure, van der Waals model, volume	S5.3, S5.4
		changes, Maxwell construction, phase diagram/pV diagram relation	
		and definition of critical point	
33	Mar. 31	Entropy of mixing and limiting behaviours,	S5.4
		Gibbs free energy of unmixed and ideally mixed systems: role of	
		entropy of mixing, ΔU_{mixing} , solubility gap	
34	Apr. 3	Immiscible and miscible phases, eutectics & eutectic points	S5.4
35	Apr. 5	Dilute solutions, molality, osmotic pressure	S5.5
No	Apr. 7	University closed (Good Friday, no lecture)	
No	Apr. 10	University closed (Easter Monday no lecture)	
36	Apr. 12	Equilibrium conditions for chemical reactions: law of mass action, dissociation of water,	S5.6
		equilibrium conditions for chemical reactions: gases dissolving in water (Henry's law),	
		partial pressure, ionization reactions*	
TBA	TBA	Boltzmann statistics* (Boltzmann factor, partition function) and application to the	S6.1*
		excitation levels of hydrogen atoms on the sun*	