Домашнее задание №1

Александр Козлов

1 октября 2022 г.

Формулировка задания

Дан гамильтониан одномерной квантово-механической системы с потенциалом в виде гауссовой ямы

$$H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V_0 e^{-x^2},\tag{1}$$

где $V_0 < 0$. Требуется сделать следующее.

- 1. Найти константы связи V_0 , при которых в системе возникает одно, два и три связанных состояния.
- 2. Исследовать зависимость вычислительных затрат от размера сетки.
- 3. Исследовать зависимость погрешности энергий состояний от размера сетки и границ бокса.

1 Численное решение

Рассматриваемое уравнение Шрёдингера (УШ) имеет вид

$$-\frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2} + V_0 \, e^{-x^2} \, \psi = E \, \psi \tag{2}$$

или

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2} + (E - V_0 e^{-x^2}) \psi = 0. \tag{3}$$

Стоит заметить, что такое уравнение соответствует обычному одномерному УШ при $\hbar=1$ и m=1/2. Прежде всего зададим равномерную сетку

$$x_0 = -R, \ x_1 = x_0 + \delta, \ x_2 = x_0 + 2\delta, \ \dots, \ x_k = x_0 + k\delta, \ \dots, \ x_M = x_0 + M\delta = R$$
 (4)

с шагом $\delta=2R/M$, где M — целое положительное число, а R — положительное действительное число. Будем пользоваться численной аппроксимацией второй производной

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2} = \frac{\psi(x_{k+1}) - 2\psi(x_k) + \psi(x_{k-1})}{\delta^2} + O(\delta^2), \quad k = \overline{1, M - 1}$$
 (5)

и сводить уравнение (2) к задаче диагонализации трёхдиагональной матрицы.

Перед тем, как писать явный вид такой матрицы, необходимо поговорить о том, как будут задаваться граничные условия. Ясно, что волновые функции состояний дискретного спектра будут экспоненциально затухать при больших по абсолютному значению x. Это обстоятельство может быть численно учтено различными вариантами, однако, остановимся на варианте, при котором полагается $\psi(x_0) = \psi(x_M) = 0$. Тогда численное приближение УШ для k = 1 примет вид

$$-\frac{\psi(x_2) - 2\psi(x_1)}{\delta^2} + V(x_1)\psi(x_1) = E\psi(x_1).$$
 (6)

Для k = M - 1 получаем аналогичное уравнение

$$-\frac{-2\psi(x_{M-1}) + \psi(x_{M-2})}{\delta^2} + V(x_{M-1})\psi(x_{M-1}) = E\psi(x_{M-1}).$$
 (7)

А для всех остальных k имеем уравнение

$$-\frac{\psi(x_{k+1}) - 2\psi(x_k) + \psi(x_{k-1})}{\delta^2} + V(x_k)\psi(x_k) = E\psi(x_k).$$
 (8)

В матричном виде задача записывается так:

$$\begin{pmatrix}
2\delta^{-2} + V(x_1) & -\delta^{-2} \\
-\delta^{-2} & 2\delta^{-2} + V(x_2) & -\delta^{-2}
\end{pmatrix}
\begin{pmatrix}
\psi(x_1) \\
\psi(x_2) \\
\vdots \\
\psi(x_{M-2}) \\
-\delta^{-2} & 2\delta^{-2} + V(x_{M-2}) & -\delta^{-2} \\
-\delta^{-2} & 2\delta^{-2} + V(x_{M-1})
\end{pmatrix}
\begin{pmatrix}
\psi(x_1) \\
\psi(x_2) \\
\vdots \\
\psi(x_{M-2}) \\
\psi(x_{M-1})
\end{pmatrix}$$

$$= E \begin{pmatrix}
\psi(x_1) \\
\psi(x_2) \\
\vdots \\
\psi(x_{M-2}) \\
\psi(x_2) \\
\vdots \\
\psi(x_{M-1})
\end{pmatrix}$$

$$\vdots \\
\psi(x_{M-1})$$

$$\vdots \\
\psi(x_{M-1})$$

$$\vdots \\
\psi(x_{M-1})$$

Таким образом надо диагонализовать симметричную трёхдиагональную матрицу размера $(M-1) \times (M-1)$.

2 Количество связанных состояний в зависимости от константы связи

При размере сетки $M=10\,000$ и ширине бокса R=15 была получена зависимость числа связанных состояний от параметра связи, показанная на Рис. 1. Если сравнить такой результат с другими работами 1 ,

Рис. 1: Количество связанных состояний N в зависимости от константы связи V_0 при размере сетки $M=10\,000$ и ширине бокса R=15.

то видно, что полученный результат достаточно сильно расходится с результатами решения задачи вариационным методом.

¹https://aapt.scitation.org/doi/10.1119/1.3574505

3 Зависимость времени работы программы от размера сетки

Определим, как долго работает программа при различных значениях параметра M — размера сетки. Для определённости фиксируем прочие параметры задачи, например, положим их следующими: $V_0 = -1.0$ и R = 6. Результаты продемонстрированы на Рис. 2.

Рис. 2: Время работы программы N в секундах в зависимости от размера сетки M при $V_0=-1.0$ и R=6.