## 实验报告

#### 【实验内容】

- 1、用 74LS197 的 CP0 接 10kHz 连续脉冲,输出端 Q3、Q2、Q1、Q0 依次与 74LS138 的输入端 G1、C、B、A 相连,74LS138 使能端 G2A 和 G2B 置低。使用 示波器数字通道观测并记录 G1、C、B、A 和 Y0、Y1、Y2、Y3、Y4、Y5、Y6、Y7 波形,分析波形之间的相位关系。
- 2、设计一个带控制端的半加半减器,输入为 S、A、B,其中 S 为功能选择口。 当 S=0 时,输出 Y 为 A+B 及进位 Cn;当 S=1 时,输出 Y 为 A-B 及借位 Cn。

### 【实验原理】

译码器, 能将输入的二进制代码译成对应的高低电平信号或者另一种代码。 3-8 译码器将输入的 3 位二进制代码译成对应 8 线制电平状态。由此可用 3-8 译码器设计全加器或者半加半减器。

#### 【实验设计与结果】

用 74LS197 的 CPO 接 10kHz 连续脉冲,输出端 Q3、Q2、Q1、Q0 依次与74LS138 的输入端 G1、C、B、A 相连,74LS138 使能端 G2A 和 G2B 置低。



以下是 Q3、Q2、Q1、Q0(由下至上)波形:



以下是 Y0、Y1、Y2、Y3(由上至下)波形:



以下是 Y4、Y5、Y6、Y7(由上至下)波形:



我们可以观察到,示波器上 74LS138 的 8 个输出都是每 8 个单位时间经历一个低电平,这是因为 3-8 译码器可将 3 位二进制代码译成对应 8 线制电平状态。每个 3 位二进制码就是一个对应输出的低电平。具体可由下图验证:

| INPUTS |     |        |   | CUTBUTS |         |    |    |           |    |    |    |    |
|--------|-----|--------|---|---------|---------|----|----|-----------|----|----|----|----|
| ENABLE |     | SELECT |   |         | OUTPUTS |    |    |           |    |    |    |    |
| G1     | Ğ2* | С      | В | Α       | YO      | Y1 | Y2 | <b>Y3</b> | Y4 | Y5 | Y6 | Y7 |
| ×      | н   | ×      | × | ×       | Н       | Н  | н  | н         | н  | н  | н  | н  |
| L      | x   | ×      | × | ×       | н       | н  | н  | н         | н  | н  | н  | н  |
| н      | L   | L      | L | L       | L       | н  | н  | н         | н  | н  | н  | н  |
| н      | L   | L      | L | н       | н       | L  | н  | н         | н  | н  | н  | н  |
| н      | Ł   | L      | н | L       | н       | н  | L  | н         | н  | н  | н  | н  |
| н      | L   | L.     | н | н       | н       | н  | H  | L         | н  | Н  | H  | н  |
| н      | L   | н      | L | L       | н       | н  | н  | н         | L  | н  | н  | н  |
| н      | L   | н      | L | н       | н       | н  | н  | н         | н  | L. | н  | н  |
| н      | L   | н      | н | L       | н       | н  | н  | Н         | н  | н  | L  | Н  |
| н      | L   | н      | Н | н       | н       | Н  | н  | н         | н  | H  | H  | L  |

## 接下来我们设计一个带控制端的半加半减器

表 3-6 带控制端的半加半减器功能表

| S | 输入1 | 输入2 | 输出 Y | 进/借位 Cn |
|---|-----|-----|------|---------|
| 0 | A   | В   | A+B  | 进位      |
| 1 | A   | В   | A-B  | 借位      |

## 首先由功能表可得真值表:

| S | A      | B     | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cn          |
|---|--------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 0 | 0      | 0     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           |
| 0 | 0      | 1     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           |
| 0 | 1      | 0     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           |
| 0 | 1      | 1     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 Ass       |
| 1 | 0      | 0     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 90 (19)     |
| 1 | 0= 1   | 9-1-4 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A (PA) = P3 |
| 1 | 1      | 0     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 4         |
| 1 | 1 = 10 | 914   | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0=(9) 7     |
|   | 19=17  | 4,00  | THE STATE OF THE S | + (94) = 92 |

## 然后利用卡诺图可得Y和Cn的表达式:



$$C_{n} = \overline{S}AB + S\overline{A}B$$

$$= B(\overline{S}A + S\overline{A})$$

然后我们可以设计相应门电路。其中 Q0 代表 A, Q1 代表 B, S 用一个开关控制。 用两个与门、两个非门、一个或门可转化成 Y 的相应输出,连接在右上角示波器的 A 接口。用三个与门、两个非门、一个或门可转化成 Cn 的相应输出,连接在右上角示波器的 B 接口。经实验发现 B 的波形产生冒险现象,所以并上一个 0.1 uF 的小电容。我们将 Q0、Q1、S 分别接到右下角示波器的 A、B、C 端口,观察相应波形。



以下是 S=0 时 Q0、Q1、S 波形:



## 此时 Y 与 Cn 波形如下图:



可以观察到 Y 经历 0110 循环, Cn 经历 0001 循环。

# 以下是 S=1 时 Q0、Q1、S 波形:



## 此时 Y 与 Cn 波形如下图:



可以观察到 Y 经历 0110 循环, Cn 经历 0100 循环。

接下来,我们用 74LS138 芯片 (3-8 译码器) 设计一个半加半减器。



首先由真值表我们可以得到 Y 和 Cn 通过 3-8 译码器的相应表达式

$$Y = \overline{S}\overline{A}B + \overline{S}\overline{A}B + S\overline{A}B + S\overline{A}B + S\overline{A}B = \overline{m_1}\overline{m_2}\overline{m_3}\overline{m_5}$$

$$Cn = \overline{S}\overline{A}B + S\overline{A}B = \overline{m_3}\overline{m_5}$$

然后我们可以设计相应门电路。我们将 74LS197 的 Q2 连在 74LS138 的 A 接口, 并与右下角示波器的 B 接口相连, 将 74LS197 的 Q1 连在 74LS138 的 B 接口, 并与右下角示波器的 A 接口相连, 然后用一个开关作为 S, 连在 74LS138 的 C 接口, 并与右下角示波器的 C 接口相连。对 Y1、Y2、Y5、Y6 用一个四输入与非门连到右上角示波器的 A 接口, 对 Y3、Y5 用一个与非门连到右上角示波器的 B 接口。观察并分析波形。



## 以下是 S=0 时 A、B、S 波形:



### 此时 Y 与 Cn 波形如下图:



可以观察到 Y 经历 0110 循环, Cn 经历 0001 循环。

在 S=0 时可以实现加法器。

## 以下是 S=1 时 A、B、S 波形:



### 此时 Y 与 Cn 波形如下图:



可以观察到 Y 经历 0110 循环, Cn 经历 0100 循环。

在 S=1 时可以实现减法器。

## 【实验心得】

本次实验我学会了用 3-8 译码器或是单纯的门电路实现一个半加半减器。对于实验中产生的冒险现象,我也知道了如何解决。在实验过程中,我不小心把74LS138 芯片的 A 和 C 接口搞反了, 所以在实验一开始并没有得到正确的波形。但通过查阅芯片手册后我发现了问题, 并及时解决。这次实验也十分有趣, 完成时有强烈的满足感。