18-661: Introduction to ML for Engineers

MLE/MAP and Linear Algebra Review

Spring 2025

ECE - Carnegie Mellon University

Announcements

- No class on Monday Jan 20th, MLK day
- Self-assessment math quiz available on Gradescope until Friday.
 Recitations on Friday will go over the math quiz questions and solutions.
- Math review resources posted on Piazza
- HW1 will be released later this week

Registration

- If you're not registered, we encourage you to stay patient (waitlists are gradually clearing).
- You are welcome to keep attending the lectures until the waitlists are sorted out

Direct all waitlist-related questions to: ece-waitlists@andrew.cmu.edu

Outline

- 1. Recap: Probability Review
- 2. A Simple Learning Problem: MLE/MAP Estimation
- 3. Linear Algebra Review

Recap: Probability Review

Probability Terminology

Name	Туре	Symbol	Meaning
Sample Space	set	Ω, S	possible outcomes
Event Space	a set of subsets (of Ω)	F, E	the events that have probabilities
Probability Measure	measure	Ρ, π	assigns probabilities to events
Probability Space	a triple	(Ω, \mathcal{F}, P)	

- Rolling a fair die
 - Ω : {1, 2, 3, 4, 5, 6}
 - $\mathcal{F} = \{\{1\}, \{2\}, \dots, \{1,2\}, \dots, \{1,2,3\}, \dots, \{1,2,3,4,5,6\}, \{\}\}$
 - $P(\text{rolling an odd number}) = P(\{1,3,5\}) = \frac{1}{2}$
- Tossing a fair coin twice
 - Ω: {*HH*, *HT*, *TH*, *TT*}
 - $\mathcal{F} = \{\{HH\}, \{HT\}, \dots, \{HH, HT\}, \dots, \{HH, HT, TH, TT\}, \{\}\}$
 - $P(\text{first flip is heads}) = P(\{HH, HT\}) = \frac{1}{2}$

Axioms of Probability

The probability measure satisfies the following properties:

- $0 \le P(A) \le 1$
- $P(\Omega) = 1$, $P(\emptyset) = 0$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Consider two events $A, B \in \mathcal{F}$.

- The conditional probability of *A* given *B* is given by: $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$.
- Bayes rule: $P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$, which can be derived from

$$P(B \mid A)P(A) = P(A \cap B) = P(A \mid B)P(B)$$

Random Variables

Formally, a random variable is a function $X : \Omega \to \mathbb{R}$ that assigns a numerical value to each outcome s within a probability space (Ω, \mathcal{F}, P) .

Example: Rolling a fair die

- Ω : $\{1, 2, 3, 4, 5, 6\}$
- $\mathcal{F} = \{\{1\}, \{2\}, \dots, \{1, 2\}, \dots, \{1, 2, 3\}, \dots, \{1, 2, 3, 4, 5, 6\}, \{\}\}$
- X(S) = S for each $S \in \Omega$

The expectation of a random variable, $\mathbb{E}[X]$, is defined as $\sum_{s \in \Omega} X(s) P(s)$, i.e., the average value of X.

•
$$\mathbb{E}[X] = \sum_{s=1}^{6} sP(s) = \frac{1+2+3+4+5+6}{6} = \frac{7}{2}$$

The variance of a random variable is $Var(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2\right]$, which measures how much X can vary from its expected value $\mathbb{E}[X]$.

•
$$Var[X] = \sum_{s=1}^{6} \frac{1}{6} (s - \frac{7}{2})^2 = \frac{35}{12}$$

Some Other Concepts that You Should Know

- Discrete and continuous random variables
- PMF (probability mass function), PDF (probability density function),
 CDF (cumulative distribution function) of random variables
- Entropy of a random variable

Some of these will be covered in HW1

A Simple Learning Problem:

MLE/MAP Estimation

Dogecoin

• Scenario: You find a coin on the ground.

 You ask yourself: Is this a fair or biased coin? What is the probability that I will flip a heads?

- You flip the coin 10 times ...
- It comes up as 'H' 8 times and 'T' 2 times
- Can we learn the bias of the coin from this data?

Recall: Machine Learning Pipeline

Two methods that we will discuss today:

- Maximum likelihood Estimation (MLE)
- Maximum a posteriori Estimation (MAP)

Maximum Likelihood Estimation (MLE)

- **Data**: Observed sequence D of n_H heads and n_T tails
- Model: Each flip follows a Bernoulli distribution

$$P(H) = \theta, P(T) = 1 - \theta, \theta \in [0, 1]$$

Thus, the likelihood of observing sequence D is

$$P(D \mid \theta) = \theta^{n_H} (1 - \theta)^{n_T}$$

- Question: Given this model and the data we've observed, can we calculate an estimate of θ ?
- MLE: Choose θ that maximizes the *likelihood* of the observed data

$$\hat{\theta}_{\textit{MLE}} = \argmax_{\theta} P(D \mid \theta)$$

How to Solve?

• log(x) is a monotone increasing function; will not affect the arg max

$$\begin{split} \hat{\theta}_{\textit{MLE}} &= \arg\max_{\theta} P(D \mid \theta) \\ &= \arg\max_{\theta} \log P(D \mid \theta) \\ &= \arg\max_{\theta} \log \left(\theta^{n_{H}} (1 - \theta)^{n_{T}}\right) \\ &= \arg\max_{\theta} \underbrace{n_{H} \log(\theta) + n_{T} log(1 - \theta)}_{\textit{concave}} \end{split}$$

• Take derivative $\frac{\partial}{\partial \theta} \log P(D \mid \theta)$ and set equal to zero

$$0 = \frac{\partial}{\partial \theta} \left(n_H \log(\theta) + n_T \log(1 - \theta) \right)$$
$$= \frac{n_H}{\theta} - \frac{n_T}{1 - \theta}$$
$$\implies \hat{\theta}_{MLE} = \frac{n_H}{n_H + n_T}$$

Going Back to Our Scenario

- You flip the coin 10 times . . .
- It comes up as 'H' 8 times and 'T' 2 times
- Can we learn the bias θ of the coin from this data?

$$\hat{\theta}_{MLE} = \frac{n_H}{n_H + n_T} = 0.8$$

Here, we are trusting the data completely. But there could be too little data or noisy data

What about Prior Knowledge?

- We believe the coin is *supposed* to be close to 50-50
- Rather than completely "trusting" the data as-is, we want to use the data to update our prior beliefs

Bayesian Learning

- How to incorporate prior knowledge?
- Use Bayes' Rule:

$$P(\theta \mid D) = \frac{P(D \mid \theta)P(\theta)}{P(D)}$$

• Or, equivalently:

$$P(\theta \mid D) \propto P(D \mid \theta)P(\theta)$$
posterior likelihood prior

MAP for Dogecoin

$$\hat{\theta}_{MAP} = rg \max_{\theta} P(D \mid \theta) P(\theta)$$

- Recall that $P(D \mid \theta) = \theta^{n_H} (1 \theta)^{n_T}$
- How should we set the prior, $P(\theta)$?
- Common choice is to use the Beta distribution, $\theta \sim Beta(\alpha, \beta)$:

$$P(\theta) = \frac{1}{B(\alpha, \beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}, \text{ where } B(\alpha, \beta) = \int_0^1 \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} d\theta$$

• Interpretation: $\alpha=$ number of expected heads, $\beta=$ number of expected tails. Larger value of $\alpha+\beta$ denotes more confidence (and smaller variance).

Beta Distribution

 $\frac{\alpha}{\beta}$ controls left/right bias, $\alpha+\beta$ controls height of peak

MAP for Dogecoin

 A benefit of using the Beta distribution as a prior is that the posterior will also be a Beta distribution:

$$\begin{split} \hat{\theta}_{MAP} &= \arg\max_{\theta} P(D \mid \theta) P(\theta) \\ &= \arg\max_{\theta} \theta^{\alpha + n_H - 1} (1 - \theta)^{\beta + n_T - 1} \\ &= \frac{\alpha + n_H - 1}{\alpha + \beta + n_H + n_T - 2} \end{split}$$

• Note that as $n_H + n_T \to \infty$, the effect of the prior disappears and we recover the MLE estimate

Putting It All Together

$$\begin{split} \hat{\theta}_{MLE} &= \frac{n_H}{n_H + n_T} \\ \hat{\theta}_{MAP} &= \frac{\alpha + n_H - 1}{\alpha + \beta + n_H + n_T - 2} \end{split}$$

- Suppose $\theta^* := 0.5$ and we observe: $D = \{H, H, T, T, T, T\}$
- Scenario 1: We assume $\theta \sim Beta(4,4)$. Which is more accurate θ_{MLE} or θ_{MAP} ?
 - $\theta_{MAP} = 5/12$, $\theta_{MLE} = 1/3$
- Scenario 2: We assume $\theta \sim Beta(1,7)$. Which is more accurate θ_{MLE} or θ_{MAP} ?
 - $\theta_{MAP}=1/6,\ \theta_{MLE}=1/3$

Why Was This a ML Problem?

Machine learning is: the study of methods that

```
improve their performance (the accuracy of the predicted probability)
on some task (predicting the probability of 'heads')
with experience (the more coin flips we see, the better our guess)
```

Learning Involves ...

- Collect some data
 - e.g., coin flips
- Set up the problem: Choose a model / loss function
 - e.g., Bernoulli model, data likelihood, prior distribution
- Solve the problem: Choose an optimization procedure
 - e.g., set derivative of log to zero and solve to find MLE/MAP

Key idea: these are *choices*. It's important to understand the implications of these choices and evaluate their trade-offs for the problem at hand.

Linear Algebra Review

Recall: Task 1: Regression

How much should you sell your house for?

input: houses & features **learn**: $x \rightarrow y$ relationship **predict**: y (continuous)

Data Can be Compactly Represented by Matrices

• Learn parameters (w_1, w_0) of the orange line $y = w_1 x + w_0$ Sq.ft

House 1:
$$1000 \times w_1 + w_0 = 200,000$$

House 2: $2000 \times w_1 + w_0 = 350,000$

• Rewriting in vector form:

$$\begin{bmatrix} 1000 \\ 2000 \end{bmatrix} w_1 + \begin{bmatrix} 1 \\ 1 \end{bmatrix} w_0 = \begin{bmatrix} 200,000 \\ 350,000 \end{bmatrix}$$

Can represent compactly in matrix notation

$$\begin{bmatrix} 1000 & 1 \\ 2000 & 1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_0 \end{bmatrix} = \begin{bmatrix} 200,000 \\ 350,000 \end{bmatrix}$$

Some Concepts That You Should Know

- Determinants and Matrix Invertibility
- Vector Norms L1, L2; Inner Products
- Eigenvalues and Eigenvectors
- Singular Value Decomposition
- Covariance Matrices and Positive Semi-definite-ness

Excellent Resources:

- Essence of Linear Algebra YouTube Series by 3Blue1Brown
- Prof. Gilbert Strang's course at MIT
- Matrix Cookbook (link posted on the course website)

Matrix Multiplication

• For two matrices $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$, their product is:

$$AB = C \in R^{m \times p} \iff C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

- Multiplication is undefined with the number of columns in $A \neq$ the number of rows in B (except in case: cA where $c \in \mathbb{R}$ is a scalar)
- Special cases:
 - Inner product: $x, y \in \mathbb{R}^n$, $x^\top y \in \mathbb{R} = \sum_{i=1}^n x_i y_i$
 - Matrix-vector product: $A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^n \iff Ax \in \mathbb{R}^m$

$$A = \begin{bmatrix} | & | & | \\ a_1 & a_2 & \dots & a_n \\ | & | & | \end{bmatrix}, Ax \in \mathbb{R}^m = \sum_{i=1}^n a_i x_i$$

Important Properties

- Associative: A(BC) = (AB)C
- Distributive: A(B+C) = AB + AC
- *Not* Commutative: $AB \neq BA$ (except in special cases)
- Transpose: $(AB)^{\top} = B^{\top}A^{\top}$

Matrix Inverse

• The inverse of a matrix $A \in \mathbb{R}^{n \times n}$ is a matrix $A^{-1} \in \mathbb{R}^{n \times n}$ such that:

$$AA^{-1} = A^{-1}A = I_n$$

- If A^{-1} exists, then A is called invertible or non-singular
- Matrix A is invertible iff $det(A) \neq 0$.
- If A^{-1} exists, then it is unique.
- Let us solve the house-price prediction problem

$$\begin{bmatrix} 1000 & 1 \\ 2000 & 1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_0 \end{bmatrix} = \begin{bmatrix} 200,000 \\ 350,000 \end{bmatrix}$$

Matrix Inverse

Let us solve the house-price prediction problem

$$\begin{bmatrix} 1000 & 1 \\ 2000 & 1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_0 \end{bmatrix} = \begin{bmatrix} 200,000 \\ 350,000 \end{bmatrix}$$
 (1)

$$\begin{bmatrix} w_1 \\ w_0 \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1000 & 1 \\ 2000 & 1 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 200,000 \\ 350,000 \end{bmatrix}$$
 (2)

$$= \frac{1}{-1000} \begin{bmatrix} 1 & -1 \\ -2000 & 1000 \end{bmatrix} \begin{bmatrix} 200,000 \\ 350,000 \end{bmatrix}$$
 (3)

$$= \frac{1}{-1000} \begin{bmatrix} -150,000\\ -5 \times 10^7 \end{bmatrix} \tag{4}$$

$$\begin{bmatrix} w_1 \\ w_0 \end{bmatrix} = \begin{bmatrix} 150 \\ 50,000 \end{bmatrix} \tag{5}$$

Norms and Loss Functions

You could have data from many houses

```
\begin{bmatrix} 1000 & 1 \\ 2000 & 1 \\ 1500 & 1 \\ \vdots & \vdots \\ 2500 & 1 \end{bmatrix} = \begin{bmatrix} w_1 \\ w_0 \end{bmatrix} = \begin{bmatrix} 200,000 \\ 350,000 \\ 300,000 \\ \vdots \\ 450,000 \end{bmatrix}
A \qquad \times \qquad w = \begin{bmatrix} w_1 \\ w_0 \end{bmatrix} = \begin{bmatrix} 200,000 \\ 300,000 \\ \vdots \\ 450,000 \end{bmatrix}
```

- There isn't a $w = [w_1, w_0]^T$ that will satisfy all equations
- Want to find w that minimizes the difference between Aw, y
- But since this a vector, we need an operator that can map the vector y - Aw to a scalar

Norms and Loss Functions

- A vector norm is any function $f: \mathbb{R}^n \to \mathbb{R}$ with
 - $f(x) \ge 0$ and $f(x) = 0 \iff x = 0$
 - f(ax) = |a|f(x) for $a \in \mathbb{R}$
 - $f(x+y) \leq f(x) + f(y)$
- e.g., ℓ_2 norm: $||x||_2 = \sqrt{x^\top x} = \sqrt{\sum_{i=1}^n x_i^2}$
- e.g., ℓ_1 norm: $||x||_1 = \sum_{i=1}^n |x_i|$
- Question: What is the ℓ_1 norm of y Aw for the following problem?

$$\begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 1.5 & 1 \\ 2.5 & 1 \end{bmatrix} = \begin{bmatrix} 1.5 \\ 0.5 \end{bmatrix} = \begin{bmatrix} 2 \\ 3.5 \\ 3 \\ 4.5 \end{bmatrix}$$

$$A \qquad \times \qquad w = \qquad y$$

• Answer: $||y - Aw||_1 = 0.5$

Eigenvalues and Eigenvectors: Matrix as Linear Transformation (see 3Blue1Brown)

- How exactly does square matrix multiplication transform vectors?
- Its columns correspond to re-scaled and rotated unit vectors

$$\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}, \quad \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

 Now we can express any vector as a linear combination of the above matrix-unit-vector products

$$\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \left(2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$$
$$\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 4 \end{bmatrix} + 1 \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
$$= \begin{bmatrix} 4 \\ 11 \end{bmatrix}$$

Eigenvalues and Eigenvectors

- For $A \in \mathbb{R}^{n \times n}$, λ is an eigenvalue and $x \neq 0$ is an eigenvector if $Ax = \lambda x$.
- Eigenvalues are the roots of $det(A \lambda I_n) = 0$
- Eigenvectors are non-zero solutions of $Ax = \lambda x$
- Viewing A as a linear transformation
 - The vectors that remain unchanged and only get re-scaled are the eigenvectors.
 - Their scaling factors are the eigenvalues!
- Question: Find the eigenvalues and eigenvectors of

$$\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$

Eigenvalues and Eigenvectors

Question: Find the eigenvalues and eigenvectors of

$$\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$

Eigenvalues:

$$\det \left(\begin{bmatrix} 1 - \lambda & 2 \\ 4 & 3 - \lambda \end{bmatrix} \right) = 0$$
$$(1 - \lambda)(3 - \lambda) - 8 = 0$$
$$\lambda^2 - 4\lambda - 5 = 0$$
$$(\lambda - 5)(\lambda + 1) = 0$$
$$\lambda = 5, \lambda = -1$$

Eigenvalues and Eigenvectors

• Question: Find the eigenvalues and eigenvectors of

$$\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$

- Eigenvalues: $\lambda = 5, \lambda = -1$
- Eigenvectors:

$$\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 5 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \implies \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = -1 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \implies \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Eigenvalue Decomposition

Group the eigenvectors and eigenvalues into the following matrices.

$$P = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}$$
$$\Lambda = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}$$

• If the eigenvectors are linearly independent, we can express A as

$$A = P \Lambda P^{-1}$$

$$= \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}^{-1}$$

EigenValue Decomposition

- Why is this useful?
- Suppose we want to find powers of A, eg. A^4
- One option, that is quite tedious is:

$$A^4 = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$

Instead we could use the eigenvalue decomposition

$$A^{4} = P \wedge P^{-1} P \wedge P^{-1} P \wedge P^{-1} P \wedge P^{-1}$$

$$= P \wedge^{4} P^{-1}$$

$$= \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 5^{4} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}^{-1}$$

Singular value decomposition (SVD)

- EVD only works for square, diagonalizable matrices
- SVD works for matrices of any size! It decomposes $A \in \mathbb{R}^{m \times n}$ as follows.

$$A = U\Sigma V^{\top}$$
,

- $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices (i.e. $U^{\top} = U^{-1}$)
- $\Sigma \in \mathbb{R}^{m \times n}$ is a diagonal matrix with *singular values* of A denoted by σ_i appearing by non-increasing order: $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_{\min(m,n)} \geq 0$.
- The squared singular values of A are the eigenvalues of the matrix AA^{\top} or $A^{\top}A$, i.e., $\sigma_i(A) = \sqrt{\lambda_i(AA^{\top})} = \sqrt{\lambda_i(A^{\top}A)}$
- V is the matrix of eigenvectors of A^TA
- U is the matrix of eigenvectors of AA^T

What You Should Know

Probability Concepts

- Axioms of probability
- Bayes' Rule
- MLE and MAP procedures
- Expectation and variance of random variables

Linear Algebra Concepts

- Determinants and matrix invertibility
- Vector Norms $\ell 1$, $\ell 2$; Inner products
- Eigenvalues and eigenvectors
- Singular Value Decomposition
- Covariance matrices and positive semi-definite-ness