Asie. 2016. Enseignement spécifique. Corrigé

EXERCICE 1

Partie A

Notons A l'évènement « la fleur provient de la serre A », B l'évènement « la fleur provient de la serre B » et F l'évènement « la fleur donne un fruit ». Représentons la situation par un arbre de probabilités.

La probabilité demandée est P(F). D'après la formule des probabilités totales,

$$P(F) = P(A) \times P_A(F) + P(B) \times P_B(F) = 0,55 \times 0,88 + 0,45 \times 0,84 = 0,484 + 0,378 = 0,862.$$

La proposition 1 est vraie.

La probabilité demandée est $P_F(A)$.

$$P_F(A) = \frac{P(A \cap F)}{P(F)} = \frac{0,55 \times 0,88}{0,862} = 0,561 \ \mathrm{arrondi} \ \text{à} \ 10^{-3}.$$

La proposition 2 est fausse.

Partie B

1) Puisque 237 = 250 - 13 et 263 = 250 + 13, les deux nombres 237 et 263 sont symétriques par rapport au nombre 250. Pour des raisons de symétrie,

$$P(237 \le X \le 263) = 1 - P(X \le 237) - P(X \ge 263) = 1 - 2P(X \le 237) = 1 - 2 \times 0, 14 = 0, 72.$$

- 2) a) On sait que Y suit la loi normale centrée réduite c'est-à-dire la loi normale de moyenne 0 et d'écart-type 1.
- b) $X \leqslant 237 \Leftrightarrow X 250 \leqslant -13 \Leftrightarrow \frac{X 250}{\sigma} \leqslant -\frac{13}{\sigma} \Leftrightarrow Y \leqslant -\frac{13}{\sigma}$. Les événements $X \leqslant 237$ et $Y \leqslant -\frac{13}{\sigma}$ sont les mêmes et donc

$$P\left(Y\leqslant -\frac{13}{\sigma}\right) = P(X\leqslant 237) = 0, 14.$$

c) La calculatrice fournit

$$P\left(Y\leqslant -\frac{13}{\sigma}\right)=0, 14\Leftrightarrow -\frac{13}{\sigma}=-1,080\ldots\Leftrightarrow \sigma=12,03\ldots$$

Donc, $\sigma = 12$ arrondi à l'unité.

3) a) La suite $(P(250 - n \le X \le 250 + n))_{n \in \mathbb{N}}$ est croissante. La calculatrice fournit

$$P(250-23\leqslant X\leqslant 250+23)=0,944\ldots<0,95 \ {\rm et} \ P(250-24\leqslant X\leqslant 250+24)=0,954\ldots\geqslant0,95.$$

La plus petite valeur de l'entier $\mathfrak n$ pour laquelle la probabilité qu'une barquette soit conforme, est supérieure ou égale à 0,95, est $\mathfrak n=24.$

b) La suite $(P(250 \leqslant X \leqslant m))_{m \geqslant 230}$ est croissante. La calculatrice fournit

$$P(230\leqslant X\leqslant 284)=0,949\ldots <0,95 \ {\rm et} \ P(230\leqslant X\leqslant 285)=0,950\ldots\geqslant 0,95.$$

La plus petite valeur de l'entier \mathfrak{m} pour laquelle $P(230 \leqslant X \leqslant \mathfrak{m}) \geqslant 0,95$ est $\mathfrak{m}=285.$

EXERCICE 2

- 1) Pour tout réel x, $f_0(x) = 0$. Donc I(0) = 0.
- 2) a) Représentation graphique.

I(1) est l'aire, exprimée en unités d'aire, du domaine coloré en bleu.

b)
$$I(1) = \int_0^1 (e^x + 1) dx = [e^x + x]_0^1 = (e^1 + 1) - e^0 = e.$$

I(1) = e = 2,7 arrondi au dixième.

3) Soit a un réel de [0, 1].

$$I(\alpha) = \int_0^1 (\alpha e^{\alpha x} + \alpha) \, dx = [e^{\alpha x} + \alpha x]_0^1 = (e^{\alpha} + \alpha) - e^0 = e^{\alpha} + \alpha - 1.$$

La fonction I est dérivable sur [0,1] et pour tout réel α de [0,1], $I'(\alpha)=e^{\alpha}+1$. La fonction I' est strictement positive sur [0,1] et donc la fonction I est strictement croissante sur [0,1].

La fonction I est continue et stristement croissante sur [0,1]. De plus, I(0)=0<2 et I(1)=e>2. D'après un corollaire du théorème des valeurs intermédiaires, il existe un réel \mathfrak{a}_0 de [0,1] et un seul tel que $I(\mathfrak{a}_0)=2$.

La calculatrice fournit $I(0,792)=1,999\ldots<2$ et $I(0,793)=2,003\ldots>2$. Donc, $I(0,792)< I(\mathfrak{a}_0)< I(0,793)$. Puisque la fonction I est strictement croissante sur [0,1], on en déduit que

$$0,792 < a_0 < 0,793.$$

EXERCICE 3

Partie A: Premier modèle - avec une suite

1) a) Pour tout entier naturel $\mathfrak n$, notons $\mathfrak u_n$ la masse, exprimée en grammes, de bactéries dans la cuve le $\mathfrak n$ -ème jour. Puisqu'initialement, la cuve contient 1 kg ou encore 1000 g de bactéries, on a effectivement $\mathfrak u_0=1$ 000. Soit $\mathfrak n\geqslant 0$. La masse de bactéries l'année $\mathfrak n+1$ est obtenue en rajoutant à la masse de bactéries l'année $\mathfrak n$, c'est-à-dire $\mathfrak u_n$, 0,2 fois cette masse puis en soustrayant 100 g. Donc

$$u_{n+1} = u_n + 0, 2u_n - 100 = 1, 2u_n - 100.$$

b) 30 kg sont encore 30 000 g. La calculatrice fournit les valeurs suivantes :

n	$\mathfrak{u}_{\mathfrak{n}}$
0	1 000
1	1 100
2	1 220
3	1 364
4	1 536,8
5	1 744, 2
6	1 993, 0
7	2 291,6
8	2 649, 9
9	3 079, 9
10	3 595, 9
11	4 215, 0
12	4 958, 1
13	5 849,7
14	6 919, 6
15	8 203,5
16	9 744, 2
17	11 593,
18	13 812,
19	16 474,
20	19 669,
21	23 503,
22	28 103,
23	33 624,

Le jour n° 23 ou encore au bout de 23 jours, la masse de bactéries dépasse 30 kg.

c) Algorithme complété.

Variables	u et n sont des nombres
Traitement	u prend la valeur 1000 n prend la valeur 0 Tant que u < 30 000 faire u prend la valeur 1, 2u - 100 n prend la valeur n + 1 Fin Tant que
Sortie	Afficher n

2) a) Montrons par récurrence que pour tout entier naturel $n,\,u_n\geqslant 1000.$

- $u_0 = 1000$ et en particulier $u_0 \geqslant 1000$. L'inégalité est vraie quand n = 0.
- Soit $n \ge 0$. Supposons que $u_n \ge 1000$. Alors $1, 2u_n 100 \ge 1, 2 \times 1000 100$ ou encore $u_{n+1} \ge 1100$ et en particulier, $u_{n+1} \ge 1000$.

On a montré par récurrence que pour tout entier naturel $\mathfrak{n},\,\mathfrak{u}_\mathfrak{n}\geqslant 1000.$

b) Soit n un entier naturel.

$$u_{n+1} - u_n = 1, 2u_n - 100 - u_n = 0, 2u_n - 100.$$

Puisque $u_n \geqslant 1000$, on en déduit que $u_{n+1} - u_n \geqslant 0,22 \times 1000 - 100$ ou encore $u_{n+1} - u_n \geqslant 1900$ et en particulier $u_{n+1} - u_n \geqslant 0$.

On a montré que pour tout entier naturel n, $u_n \leq u_{n+1}$ et donc la suite $(u_n)_{n \in \mathbb{N}}$ est croissante.

3) a) Soit n un entier naturel.

$$v_{n+1} = u_{n+1} - 500 = 1, 2u_n - 100 - 500 = 1, 2u_n - 600 = 1, 2(u_n - 500) = 1, 2v_n.$$

Donc, la suite $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison q=1,2.

b) La suite $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison q=1,2 et de premier terme $v_0=u_0-500=1000-500=500$. On en déduit que pour tout entier naturel n,

$$v_n = v_0 \times q^n = 500 \times 1, 2^n$$

puis que

$$u_n = v_n + 500 = 500 \times 1, 2^n + 500.$$

Pour tout entier naturel n,
$$u_n = 500 \times 1, 2^n + 500$$
.

c) Puisque 1, 2 > 1, on sait que $\lim_{n \to +\infty} 1, 2^n = +\infty$ et on en déduit que

$$\lim_{n\to +\infty} \mathfrak{u}_n = +\infty.$$

Partie B: second modèle - avec une fonction

1) a)
$$f(0) = \frac{50}{1 + 49e^0} = \frac{50}{1 + 49} = 1.$$

b) Soit t un réel positif. Puisque la fonction expoentielle est strictement positive sur \mathbb{R} , $1+49e^{-0.2t}>1$ puis $\frac{1}{1+49e^{-0.2t}}<1$ puis $50\times\frac{1}{1+49e^{-0.2t}}<50\times1$ et donc $\frac{50}{1+49e^{-0.2t}}<50$.

On a montré que pour tout réel $t \ge 0$, f(t) < 50.

c) La fonction f est dérivable sur $[0, +\infty[$ en tant qu'inverse d'une fonction dérivable sur $[0, +\infty[$ et ne s'annulant pas sur $[0, +\infty[$. De plus, pour $t \ge 0$,

$$f'(t) = 50 \times \frac{-\left(1 + 49e^{-0.2t}\right)'}{\left(1 + 49e^{-0.2t}\right)^2} = 50 \times \frac{-49 \times \left(-0.2e^{-0.2t}\right)}{\left(1 + 49e^{-0.2t}\right)^2} = \frac{490e^{-0.2t}}{\left(1 + 49e^{-0.2t}\right)^2}.$$

La fonction f' est strictement positive sur $\mathbb R$ et donc la fonction f est strictement croissante sur $\mathbb R$.

d)
$$\lim_{t \to +\infty} e^{-0.2t} = \lim_{X \to -\infty} e^X = 0$$
. Donc, $\lim_{t \to +\infty} f(t) = \frac{50}{1 + 49 \times 0} = 50$.

2) La masse de bactéries est initialement de 1kg. Cette masse croît avec le temps, reste strictement inférieure à 50 kg et vaut environ 50 kg au bout d'une longue durée.

3) Soit $t \ge 0$.

$$\begin{split} f(t) > 30 &\Leftrightarrow \frac{50}{1 + 49e^{-0,2t}} > 30 \\ &\Leftrightarrow \frac{1 + 49e^{-0,2t}}{50} < \frac{1}{30} \text{ (par stricte décroissance de la fonction } x \mapsto \frac{1}{x} \text{ sur }]0, +\infty[) \\ &\Leftrightarrow 1 + 49e^{-0,2t} < \frac{5}{3} \Leftrightarrow 49e^{-0,2t} < \frac{2}{3} \Leftrightarrow e^{-0,2t} < \frac{2}{147} \\ &\Leftrightarrow -0, 2t < \ln\left(\frac{2}{147}\right) \text{ (par stricte croissance de la fonction } x \mapsto \ln(x) \text{ sur }]0, +\infty[) \\ &\Leftrightarrow t > -\frac{1}{0,2} \ln\left(\frac{2}{147}\right) \Leftrightarrow t > 5 \ln\left(\frac{147}{2}\right) \\ &\Leftrightarrow t > 21, 4 \dots \end{split}$$

La masse de bactéries dépassera 30 kg au bout de 22 jours.

Partie C: un contrôle de qualité

Ici, n=200 et on suppose que p=0,8. On note que $n\geqslant 30$, np=160 et n(1-p)=40 et donc $np\geqslant 5$ et $n(1-p)\geqslant 5$. Un intervalle de fluctuation au seuil 95% est

$$\left[p-1,96\frac{\sqrt{p(1-p)}}{\sqrt{n}},p+1,96\frac{\sqrt{p(1-p)}}{\sqrt{n}}\right] = \left[0,8-1,96\frac{\sqrt{0,8\times0,2}}{\sqrt{200}};0,8+1,96\frac{\sqrt{0,8\times0,2}}{\sqrt{200}}\right]$$
$$= \left[0,744;0,856\right]$$

en arrondissant de manière à élargir un peu l'intervalle. La fréquence observée est $f = \frac{146}{200} = 0,73$. f n'appartient pas à l'intervalle de fluctuation et donc l'affirmation de l'entreprise doit être remise en cause au risque de se tromper de 5%.

EXERCICE 4

1) Propriétés des catadioptres.

On considère un rayon lumineux modélisé par une droite d_1 de vecteur directeur $\overrightarrow{v_1}(a,b,c)$. Le rayon se réfléchit sur le plan (OAB) en une droite d_2 de vecteur directeur $\overrightarrow{v_2}(a,b,-c)$. Ce nouveau rayon se réfléchit sur le plan (OBC) en une droite d_3 de vecteur directeur $\overrightarrow{v_3}(-a,b,-c)$. Ce dernier rayon se réfléchit sur le plan (OAC) en une droite d_4 de vecteur directeur $\overrightarrow{v_4}(-a,-b,-c)$.

 $\overrightarrow{v_4} = -\overrightarrow{v_1}$ et donc d_4 est parallèle à d_1 . On a montré que si un rayon se réfléchit successivement sur les plans (OAB), (OBC) puis (OAC), le rayon final est parallèle au rayon initial.

- 2) Réflexion de d_2 sur le plan (OBC).
- a) La droite d_2 est la droite passant par $I_1(2,3,0)$ et de vecteur directeur $\overrightarrow{v_2}(-2,-1,1)$. Une représentation paramétrique de d_2 est

$$\left\{ \begin{array}{l} x=2-2t \\ y=3-t \\ z=t \end{array} \right. , \ t \in \mathbb{R}.$$

b) Un vecteur normal au plan (OBC) est le vecteur \overrightarrow{OA} de coordonnées (1,0,0). Une équation cartésienne du plan (OBC) est x=0.

$$\mathbf{c}) \left\{ \begin{array}{l} x_{\mathrm{I}_2} = 0 = 2 - 2 \times 1 \\ y_{\mathrm{I}_2} = 2 = 3 - 1 \\ z_{\mathrm{I}_2} = 1 \end{array} \right. \text{ Donc, le point } \mathrm{I}_2 \text{ appartient à la droite } d_2. \text{ D'autre part, } x_{\mathrm{I}_2} = 0 \text{ et donc le point } \mathrm{I}_2 \end{array}$$

appartient au plan (OBC). Enfin, le vecteur $\overrightarrow{v_2}$ n'est pas orthogonal au vectuer normal \overrightarrow{OA} car $x_{\overrightarrow{v_2}} \neq 0$ et donc la droite d_2 n'est pas parallèle au plan (OBC). Finalement, la droite d_2 et le plan (OBC) sont sécants en I_2 .

3) Réflexion de d₃ sur le plan (OAC).

 $d_3 \text{ est la droite passant par } I_2(0,2,1) \text{ et de vecteur directeur } \overrightarrow{v_3}(2,-1,1). \text{ Une représentation paramétrique de la droite passant par } I_2(0,2,1) \text{ et de vecteur directeur } \overrightarrow{v_3}(2,-1,1).$

$$d_3$$
 est $\left\{\begin{array}{l} x=2t\\ y=2-t\\ z=1+t \end{array}\right.$, $t\in\mathbb{R}.$ Une équation cartésienne du plan (OAC) est $y=0.$

Soit M(2t, 2-t, 1+t), $t \in \mathbb{R}$, un point de d_3 . $M \in (OAC) \Leftrightarrow 2-t=0 \Leftrightarrow t=2$. Quand t=2, on obtient le point de coordonnées (4,0,3). Les coordonnées du point I_3 sont donc (4,0,3).

Finalement, d_4 est la droite passant par $I_3(4,0,3)$ et de vecteur directeur $\overrightarrow{v_4}(2,1,1)$.

- 4) Étude du trajet de la lumière.
- a) d_1 est dirigée par $\overrightarrow{v_1}(-2,-1,-1)$ et d_2 est dirigée par $\overrightarrow{v_2}(-2,-1,1)$. $\overrightarrow{v_1}$ et $\overrightarrow{v_2}$ sont deux vecteurs non colinéaires du plan \mathscr{P} .

$$\overrightarrow{u}.\overrightarrow{v_1} = 1 \times (-2) + (-2) \times (-1) + 0 \times (-1) = -2 + 2 = 0$$

et

$$\overrightarrow{u}.\overrightarrow{v_2} = 1 \times (-2) + (-2) \times (-1) + 0 \times 1 = -2 + 2 = 0.$$

Le vecteur \overrightarrow{u} est orthogonal à deux vecteurs non colinéaires du plan \mathscr{P} et donc le vecteur \overrightarrow{u} est un vecteur normal au plan \mathscr{P} .

b) Les droites d_1 et d_2 définissent un unique plan à savoir le plan \mathscr{P} . Si les droites d_1 , d_2 et d_3 sont contenues dans un même plan, alors la droite d_3 est contenue dans le plan \mathscr{P} .

La droite d_3 est dirigée par $\overrightarrow{v_3}(2,-1,1)$.

$$\overrightarrow{u}.\overrightarrow{v_3} = 1 \times 2 + (-2) \times (-1) + 0 \times 1 = 2 + 2 = 4 \neq 0.$$

Le vecteur $\overrightarrow{v_3}$ n'est pas orthogonal à \overrightarrow{u} et donc la droite d_3 n'est pas parallèle au \mathscr{P} . En particulier, la droite d_3 n'est pas contenue dans \mathscr{P} et donc les droites d_1 , d_2 et d_3 ne sont pas situées dans un même plan.

c) La droite d_4 est parallèle à la droite d_1 et donc au plan \mathscr{P} . Par suite, la droite d_4 est contenue dans le plan \mathscr{P} si et seulement si le point $I_3(4,0,3)$ appartient au plan \mathscr{P} . Le plan \mathscr{P} est le plan passant par $I_1(2,3,0)$ et de vecteur normal $\overrightarrow{u}(1,-2,0)$. Une équation cartésienne du plan \mathscr{P} est (x-2)-2(y-3)=0 ou encore x-2y+4=0.

$$x_{I_4} - 2y_{I_4} + 4 = 4 - 0 + 4 = 8 \neq 0.$$

Le point I_4 n'appartient pas au plan \mathscr{P} et donc les droites d_1 , d_2 et d_4 ne sont pas situées dans un même plan.