Insper

Aula 22/T11 - 20/May/2020

Raul Ikeda - rauligs@insper.edu.br

Objetivos

1. Provas de Teoremas

Transformando Texto em Premissas

No exemplo abaixo realizamos a conversão de um texto na forma de afirmações lógicas, que serão úteis para realizar as provas formais das proposições.

Exemplo - Conjectura de Goldbach: Todo inteiro par maior que 2 é a soma de dois primos.

Note o uso dos quantificadores \forall e \exists , que não estão definidos na Lógica Proposicional, mas sim na Lógica de Primeira Ordem.

Abaixo estão algumas definições alguns termos e em seguida algumas técnicas de provas.

Definição: "Definição é uma explicação exata e não-ambígua de uma expressão."

Definição: "Teorema é uma afirmação que é verdadeira e foi provada ser verdadeira."

Definição: "Lorra é uma transportation de firmação que é verdadeira e foi provada ser verdadeira."

Definição: "Lema é um teorema cujo propósito é ajudar a provar outro teorema."

Definição: "Corolário é um resultado que é um resultado imediato de um teorema ou proposição."

Definição: "Proposição é uma afirmação verdadeira mas não tão significante como um teorema."

Definição: "Prova é uma verificação escrita que demonstra que um teorema é definitivamente e

inequivocamente verdadeiro."

Prova Direta ou Prova por Construção

É o resultado de aplicações sucessivas de regras matemáticas ou de derivações lógicas. É útil para realizar provas do formato Se/Então.

Exemplo 1 - Proposição: Se x é impar, então x^2 também é impar.

Prova Direta:

1. Se a é um inteiro ímpar, então $a^2 + 3a + 5$ é ímpar.

- Suponha a, b, c, d ∈ Z. Se a divide b e c divide d, então ac divide bd.
 Se n ∈ Z, então n² + 3n + 4 é par.
 Se n ∈ N, então (²n) é par.

Prova Direta via Contraposição:

- 1. Se n é ímpar, então 8 divide $n^2 1$.
- 2. Seja $a, b \in \mathbb{Z}$ e $n \in \mathbb{N}$. Se o resto da divisão de a por n é igual ao resto da divisão de b por n, então o resto de divisão de a^3 e b^3 por n também são iguais.
- 3. Se $n \in \mathbb{N}$ e $2^n 1$ é primo, então n é primo.

Prova por Contradição:

- 1. Prove que $\sqrt{3}$ é irracional.
- 2. Suponha $a, b, c \in \mathbb{Z}$. Se $a^2 + b^2 = c^2$, então a ou b é par.
- 3. Para qualquer $x \in [\pi/2, \pi]$, $sinx cosx \ge 1$.
- 4. O produto de quaisquer 5 números inteiros consecutivos é divisível por 120. Use qualquer um dos três métodos anteriores.

Prova por Indução:

- 1. Se $n \in \mathbb{N}$, então $\sum_{i=1}^{n} 2^i = 2^{n+1} 2$.
- 2. Mostre que a Série Harmônica $(\sum\limits_{i=1}^n\frac{1}{i})$ diverge. Dica: mostrar que $\sum\limits_{i=1}^n\frac{1}{2^i}\geq 1+\frac{n}{2}$
- 3. Basel Problem Mostre que $\sum\limits_{i=1}^{n}\frac{1}{i^{2}}\leq 2-\frac{1}{n}.$

Próxima aula:

• Introdução à Lógica Proposiciona

Referências:

• Corrêa da Silva et al. Cap. 1.