置换群特征标规则

1 规则

- 1. 画出杨图
- 2. 对于给定类 $(1^{\nu_1}2^{\nu_2}...)$ 依次给出

$$1,2,3,...,
u_1,\underbrace{
u_1+1,
u_1+1,
u_1+2,
u_1+2},...$$
 u_2
対

比如 $(1^3,2),(1^2,3),(1,2^2),(1,4),(2,3),(5)$ 分别需要给出

 $(1^3, 2)$: 12344

 $(1^2,3)$: 12333

 $(1,2^2)$: 12233

(1,4): 12222

(2,3): 11222

(5): 11111

- 3. 接下来就需要按照一定规则在杨图上添上这些数字。
- [1] 数字从小到大填入杨图, 需要满足从左到右不减, 从上到下也不减。
- [2] 相同的数字必须连在一块。如下图所示,前两个是允许的,最后一个是不允许的。

2	2		2	2	2		
2						•	2

[3] 不允许在一个田字形出现完全相同的数字。

4. 接下来就需要根据填出来的杨图进行运算得到特征标。

如果在杨图的一种填法中,相同的数字占了偶数行则给出一个-1,没有就给出一个1,然后把各种填法结果相加就得到特征标。

比如:

左图 4 占了 2 行, 因此给出一个-1, 右图 2 占了 4 行, 因此也给出一个-1。对于

1	3
2	3
2	

给出了两个-1, 所以最终是给出一个1。

2 求 S5 特征标表^[2]

	$[1^{5}]$	$[2^{1},1^{3}]$	$[2^{2},1^{1}]$	$[3^1,1^2]$	$[3^1, 2^1]$	$[4^1,1^1]$	$[5^{1}]$
#	1	10	15	20	20	30	24
$s[5^{1}]$	1	1	1	1	1	1	1
$s[4^{1},1^{1}]$	4	2	0	1	-1	0	-1
$s[3^{1},2^{1}]$	5	1	1	-1	1	-1	0
$s[3^{1},1^{2}]$	6	0	-2	0	0	0	1
$s[2^{2},1^{1}]$	5	-1	1	-1	-1	1	0
$s[2^{1},1^{3}]$	4	-2	0	1	1	0	-1
$s[1^{5}]$	1	-1	1	1	-1	-1	1

特征标表第一行是恒等表示,只有一种填法。第一列是表示的维数,可以通过钩长图去求。 接下来按顺序求剩下的特征标。

(1) 先求表示[4,1]的特征标 $\chi^{[4,1]}$, 给出杨图

类(13,2)给出数字1,2,3,4,4,按规则填入杨图有两种填法。

1	3	4	4
2			

分别给出两个 1,因此特征标为 $\chi_{(\mathbf{l}^3,2)}^{[4,1]} = 1 + 1 = 2$ 。

类 $(1,2^2)$ 给出数字1,2,2,3,3,可以发现没有满足规则的填法,因此 $\chi^{[4,1]}_{(1,2^2)}=0$ 。

类(12,3)给出数字1,2,3,3,3,有一种填法。

1	3	3	3
2			

因此 $\chi_{(1^2,3)}^{[4,1]} = 1$ 。

类(2,3)给出数字1,1,2,2,2, 有一种填法。

1	2	2	2
1			

给出一个-1, $\chi_{(2,3)}^{[4,1]} = -1$ 。

类(1,4)给出数字1,2,2,2,2,没有满足规则的填法,因此 $\chi_{(1,4)}^{[4,1]}=0$ 。

类(5)给出数字1,1,1,1,1,给出一种填法。

1	1	1	1
1			

给出一个-1, $\chi_{(5)}^{[4,1]} = -1$ 。

这就给出了不可约表示[4,1]的全部特征标, 其他按同样方法可以给出。

参考

- [1] 物理学中的群论基础,徐建军
- [2] 特征标表 https://www.jgibson.id.au/articles/characters/