Please amend the above-identified patent application, without prejudice, as follows:

IN THE CLAIMS:

Amend claims 1 and 2 by replacement as follows:

(Amended) A compound of the formula A compound of the formula (la), (lb) or (lc)

$$Q = X_1$$
 $Q_1 = X_2 = Q_1$ $Q_1 = X_2 = Q_2$

(la)

(lb)

(lc)

in which

 Q_1 is a benzofuran-2-one of the formula (IIa), and

 Q_2 is a benzofuran-2-one of the formula (IIb)

R₃

$$R_2$$
 R_1
 R_2
 R_1
 R_2
 R_3
 R_2
 R_1
 R_2
 R_3
 R_2
 R_3
 R_3
 R_4
 R_4

in which

 R_1 , R_2 , R_3 , R_4 , R_{100} , R_{200} , R_{300} or R_{400} independently of one another are hydrogen, halogen, hydroxyl, cyano, ether, nitro, an amine, amide, imine, urethane, sulfonamide, ester, carboxylic acid or sulfonic acid radical or carboxylic salt, sulfonic salt or C1-C24alkyl, C1-C24alkoxy, C1-C24alkylthio, C5-C₁₂cycloalkyl, C₅-C₁₂cycloalkoxy, C₅-C₁₂cycloalkylthio, C₂-C₂₄alkenyl, C₆-C₂₄aryl, C₇-C₂₅aralkyl, C_6 - C_{24} aryloxy, C_6 - C_{24} arylthio, thienyl, benzo[b]thienyl, dibenzo[b,d]thienyl, thianthrenyl, furyl, furfuryl, 2H-pyranyl, benzofuranyl, isobenzofuranyl, benzomidazolyl, benzothiazolyl, dibenzofuranyl, phenoxythiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, bipyridyl, triazinyl, pyrimidinyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, quinolyl, isoquinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, carbolinyl, benzotriazolyl, benzoxazolyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl or pheroxazinyl, O-thienyl, O-benzo[b]thienyl, Odibenzo[b,d]thienyl, O-thianthrenyl, O-furyl, O-furfuryl, O-2H-pyranyl, O-benzofuranyl, O-isobenzofuranyl, O-benzimidazolyl, O-benzothiazolyl, O-dibenzofuranyl, O-phenoxythiinyl, O-pyrrolyl, Oimidazolyl, O-pyrazolyl, O-pyridyl, O-bipyridyl, O-triazinyl, O-pyridinyl, O-pyrazinyl, O-pyridazinyl, Oindolizinyl, O-isoindolyl, O-indolyl, O-indazolyl, O-purinyl, O-quinolyl, O-quinolyl, O-isoquinolyl, Ophthalazinyl, O-naphthyridinyl, O-quinoxalinyl, O-quinazolinyl, O-carbazolyl,

PL/2-21988/A

O-carbolinyl, O-benzotriazolyl, O-benzoxazolyl, O-phenanthridinyl, O-acridinyl, O-perimidinyl, Ophenanthrolinyl, O-phenazinyl, O-isothiazolyl, O-phenothiazinyl, O-isoxazolyl, O-furazanyl or Ophenoxazinyl, S-thienyl, S-benzo[b]thienyl, S-dibenzo[b,d]thienyl, S-thianthrenyl, S-furyl, S 2H-pyranyl, S-benzofuranyl, S-isobenzofuranyl, S-benzimidazolyl, S-benzothiazolyl, S-dibenzofuranyl, S-phenoxythiinyl, S-pyrrolyl, S-imidazolyl, S-pyrazolyl, S-pyridyl, S-bipyridyl, S-triazinyl, S-pyrimidinyl, S-pyrazinyl, S-pyridazinyl, S-indolizinyl, S-isoindolyl, S-indolyl, S-indazolyl, S-purinyl, S-quinolizinyl, Squinolyl, S-is quinolyl, S-phthalazinyl, S-naphthyridinyl, S-quinoxalinyl, S-quinazolinyl, S-cinnolinyl, Spteridinyl, S-carbazolyl, S-carbolinyl, S-benzotriazolyl, S-benzoxazolyl, S-phenanthridinyl, S-acridinyl, S-perimidinyl, S-phenanthrolinyl, S-phenazinyl, S-isothiazolyl, S-phenothiazinyl, S-isoxazolyl, Sfurazanyl or S-phenòxazinyl,

 R_1 and R_2 , R_2 and R_3 , R_3 and R_4 or R_{100} and R_{200} , or R_{200} and R_{300} , R_{300} and R_{400} , independently of one another in each case together are divalent radicals, such as polycyclic radicals or 1,3-butadien-1,4-ylene on-CH=CH-NH-, the two last radicals forming an additional fused-on 5-

 X_1 is a hydrazone or imine radical with the proviso that, if R_1 , R_2 , R_3 and R_4 are hydrogen, or at least one R_1 , R_2 , R_3 or R_4 is methyl, the hydrazone radical is excluded, or, if R_1 , R_2 , R_3 or R_4 is hydrogen, X_1 is not phenylimine- or 4-dimethylamine-phenylimine, or X₁ is a methylene radical,

$$=c_{Q_4}^{Q_3}$$

Q $_3$ is a primary or secondary amine radical and \dot{Q}_4 is hydrogen or C1-C24alkyl, -CO-(C_1 - C_{24} alkyl), -CO-O-(C_1 - C_{24} alkyl), C_1 - C_{24} alkoxy, C_1 - C_{24} alkylthio,

 $C_5-C_{12} \\ cycloalkyl, C_5-C_{12} \\ cycloalkoxy, C_5-C_{12} \\ cycloalkylthio, C_2-C_{24} \\ alkenyl, C_6-C_{24} \\ aryl, -CO-O-(C_6-C_{12} \\ cycloalkylthio, C_{12} \\ cyc$ C₂₄aryl), -CO-(C₆-C₂₄aryl), C₆-C₂₄aryloxy, a primary or secondary amine radical, C₆-C₁₂arylthio, C₇-C₂₅aralkyl, thienyl, benzo[b]thienyl, dibenzo[b,d]thienyl, thianthrenyl, furyl, furfuryl, 2Hpyranyl, benzofuranyl, isobenzofuranyl, benzimidazolyl, benzothiazolyl, dibenzofuranyl, phenoxythiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, triazinyl, pyrimidinyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, quinolyl, isoquinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, preridinyl, carbazolyl, carbolinyl, benzotriazolyl, benzoxazolyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl or phenoxazinyl O-thienyl, O-

Subel

1 X

enzo[b]thienyl, O-dibenzo[b,d]thienyl, O-thianthrenyl, O-furyl, O-furfuryl, O-2H-pyranyl, Obenzofuranyl, O-isobenzofuranyl, O-benzimidazolyl, O-benzothiazolyl, O-dibenzofuranyl, Ophenoxythiinyl, O-pyrrolyl, O-imidazolyl, O-pyrazolyl, O-pyridyl, O-bipyridyl, O-triazinyl, Opyrimidinyl, O-pyrazinyl, O-pyridazinyl, O-indolizinyl, O-isoindolyl, O-indolyl, O-indazolyl, Opurinyl, &-quinolizinyl, O-quinolyl, O-isoquinolyl, O-phthalazinyl, O-naphthyridinyl, Oquinoxalinyl, O-quinazolinyl, O-cinnolinyl, O-pteridinyl, O-carbazolyl, O-carbolinyl, Obenzotriazol), O-benzoxazolyl, O-phenanthridinyl, O-acridinyl, O-perimidinyl, O-phenanthrolinyl, O-phenazinyl, &-isothiazolyl, O-phenothiazinyl, O-isoxazolyl, O-furazanyl or O-phenoxazinyl Sthienyl, S-benzo[b]thienyl, S-dibenzo[b,d]thienyl, S-thianthrenyl, S-furyl, S-furfuryl, S-2H-pyranyl, S-benzofuranyl, S-isobenzofuranyl, S-benzimidazolyl, S-benzothiazolyl, S-dibenzofuranyl, Sphenoxythiinyl, S-pyrrolyl, S-imidazolyl, S-pyrazolyl, S-pyridyl, S-bipyridyl, S-triazinyl, Spyrimidinyl, S-pyrazinyl, S-pyridazinyl, S-indolizinyl, S-isoindolyl, S-indolyl, S-indazolyl, S-purinyl, S-quinolizinyl, S-quinolyl, S-isoquinolyl, S-phthalazinyl, S-naphthyridinyl, S-quinoxalinyl, Squinazolinyl, S-cinnolinyl, S-pteridinyl, S-carbazolyl, S-carbolinyl, S-benzotriazolyl, S-benzoxazolyl, S-phenanthridinyl, S-acridinyl, S-perimidinyl, S-phenanthrolinyl, S-phenazinyl, S-isothiazolyl, S-phenothiazinyl, S-isoxazolyl, S-furazanyl or S-phenoxazinyl,

or

 Q_3 and Q_4 together are a lactam, quinomethylene, hydantoin, acenaphthenequinone, azlactone, pyrazolonyl, barbituric acid, isoindolinone or isoindoline radical, with the proviso that

 Q_4 is not hydrogen and Q_3 is not a primary or secondary amine radical if R_3 is hydrogen, methoxy or hydroxyl and R_1 , R_2 and R_4 are hydrogen, and

X₂ is thienyl, furyl, 2H-pyranyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, triazinyl, pyrazinyl, pyridazinyl, morpholin, piperidyl, piperazinyl, or is

 X_3 is a single bond, C_6 - C_{24} arylene, thienylene, benzo[b]thienylene, dibenzo[b,d]thienylene, thianthrenylene, furfurylene, 2H-pyranylene, benzofuranylene, isobenzofuranylene, dibenzofuranylene, phenoxythinylene, pyrrolylene, imidazolylene, pyrazolylene, pyridylene, benzothiazolylene, triazinylene, pyrimidinylene, pyrazinylene, pyridazinylene, benzothiazolylene, triazinylene, pyrimidinylene, pyrazinylene, pyridazinylene,

Subci

indolizinylene, isoindolylene, indolylene, indazolylene, purinylene, quinolizinylene, quinolylene, indolizinylene, naphthyridinylene, quinoxalinylene, quinazolinylene, cinnolinylene, pteridinylene, carbazolylene, carbolinylene, benzotriazolylene, benzoxazolylene, phenanthridinylene, acridinylene, perimidinylene, phenanthrolinylene, phenazinylene, isothiazolylene, phenothiazinylene, acridinylene, perimidinylene, phenanthrolinylene, phenazinylene, isothiazolylene, phenothiazinylene, isoxazolylene, furazanylene or phenoxazinylene 1,2-phenylene, 1,3-phenylene, 1,4-phenylene or isoxazolylene, or a tetravalent polyether, polyimine, polyamine radical, or bi(C₆-C₂₄)arylene, naphthylene, ipiyrrolylen, piperazinedionylen, quinodimethylene, imidazolonylen, isoindolinylen, and bipyridylene, bipyrrolylen, anthraquinoylfuranoylen, C₂-C₂₄alkenylene, imidazolonylen, isoindolinylen, and anthraquinoylfuranoylen or piperazinedionylen, quinodimethylene, imidazolonylen, isoindolinylen, and anthraquinoylfuranoylen or C₂-C₂₄alkenylene are optionally interrupted by one or more intermediate units selected from the group C₂-C₂₄alkenylene are optionally interrupted by one or more intermediate units selected from the group consisting of -CH=CH-, -CH=N-, -N=N-, -CR ₄₄R ₄₂-, -CO-, -COO-, -OCO-, -NR₄₂CO-, -CONR ₄₂-, -O-, -S-, -SO-, -SO₂- or -NR₄₂-,

 R_{42} and R_{44} independently of one another are hydrogen, C_1 - C_{24} alkyl, C_5 - C_{12} cycloalkyl, C_2 - C_{24} alkenyl, C_6 - C_{24} aryl, C_7 - C_{25} aralkyl or thienyl, benzo[b]thienyl, dibenzo[b,d]thienyl, thianthrenyl, furyl, furfuryl, 2H-pyranyl, benzofuranyl, isobenzofuranyl, benzimidazolyl, benzothiazolyl, dibenzofuranyl, phenoxythiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, bipyridyl, triazinyl, pyrimidinyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, quinolyl, isoquinolyl, phenzotriazolyl, benzoxazolyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, carbolinyl, benzotriazolyl, benzoxazolyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl or phenoxazinyl,

with the proviso that if R_1 , R_2 , R_3 , R_4 , R_{100} , R_{200} , R_{300} , R_{400} are all tert-butyl or all hydrogen, Q_5 and Q_6 are hydrogen, X_3 is not 1,4-phenylene, and

Q₅ and Q₆ independently of one another are hydrogen, C₆-C₂₄aryl, C₆-C₂₄aryloxy, C₁-C₂₄alkyl, C₁-C₂₄ alkoxy, C₁-C₂₄alkylthio, C₅-C₁₂cycloalkyl, C₅-C₁₂cycloalkoxy, C₅-C₁₂cycloalkylthio, C₂-C₂₄alkenyl, C₆-C₂₄aryl, C₆-C₂₄aryloxy, C₆-C₂₄arylthio, thienyl, benzo[b]thienyl, dibenzo[b,d]thienyl, thianthrenyl, furyl, C₂₄aryl, C₆-C₂₄aryloxy, C₆-C₂₄arylthio, thienyl, benzo[b]thienyl, dibenzo[b,d]thienyl, dibenzofuranyl, furfuryl, 2H-pyranyl, benzofuranyl, isobenzofuranyl, benzimidazolyl, benzothiazolyl, dibenzofuranyl, phenoxythiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, bipyridyl, triazinyl, pyhimidinyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, quinolyl, isoquinolyl, pyridazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, carbolinyl, benzotriazolyl, benzoxazolyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, benzotriazolyl, benzoxazolyl, furazanyl or phenoxazinyl O-thienyl, O-benzo[b]thienyl, O-diisothiazolyl, O-thianthrenyl, O-furyl, O-furfuryl, O-2H-pyranyl, O-benzofuranyl, O-benzofuranyl, isobenzofuranyl, O-benzimidazolyl, O-benzothiazolyl, O-dibenzofuranyl, O-phenoxythiinyl, O-pyrrolyl, isobenzofuranyl, O-benzimidazolyl, O-benzothiazolyl, O-dibenzofuranyl, O-phenoxythiinyl, O-pyrrolyl, isobenzofuranyl, O-benzimidazolyl, O-benzothiazolyl, O-dibenzofuranyl, O-phenoxythiinyl, O-pyrrolyl,

PL/2-21988/A - 5 -

Q-imidazolyl, O-pyrazolyl, O-pyridyl, O-bipyridyl, O-triazinyl, O-pyrimidinyl, O-pyrazinyl, O-pyridazinyl, 70-indolizinyl, O-isoindolyl, O-indolyl, O-indazolyl, O-purinyl, O-quinolizinyl, O-quinolyl, O-isoquinolyl, O-phthalazinyl, O-naphthyridinyl, O-quinoxalinyl, O-quinazolinyl, O-cinnolinyl, O-pteridinyl, Ocarbazolyl, O-carbolinyl, O-benzotriazolyl, O-benzoxazolyl, O-phenanthridinyl, O-acridinyl, Operimidinyl, O-phenanthrolinyl, O-phenazinyl, O-isothiazolyl, O-phenothiazinyl, O-isoxazolyl, Ofurazanyl or O-phenoxazinyl S-thienyl, S-benzo[b]thienyl, S-dibenzo[b,d]thienyl, S-thianthrenyl, S-furyl, S-furfuryl, S-2H-pyranyl, S-benzofuranyl, S-isobenzofuranyl, S-benzimidazolyl, S-benzothiazolyl, Sdibenzofuranyl, S-phenoxythiinyl, S-pyrrolyl, S-imidazolyl, S-pyrazolyl, S-pyridyl, S-bipyridyl, Striazinyl, S-pyrimidinyl, S-pyrazinyl, S-pyridazinyl, S-indolizinyl, S-isoindolyl, S-indolyl, S-indazolyl, Spurinyl, S-quinolizinyl, S-quinolyl, S-isoquinolyl, S-phthalazinyl, S-naphthyridinyl, S-quinoxalinyl, Squinazolinyl, S-cinnolinyl, S-pteridinyl, S-carbazolyl, S-carbolinyl, S-benzotriazolyl, S-benzoxazolyl, Sphenanthridinyl, S-acridinyl, S-perimidinyl, S-phenanthrolinyl, S-phenazinyl, S-isothiazolyl, Sphenothiazinyl, S-isoxazolyl, S-furazanyl or S-phenoxazinyl,

or X_2 is Q_7 $NH-X_4-HN$

in which

 Q_7 and Q_8 independently of one another are Q_5 or $Q_6,$ and

 X_4 is C_6 - C_{24} arylene, A_5 - A_{18} heteroarylene, a polymethylidene or divalent polyether, polyimine, polyamine radical, or $bi(C_6-C_{24})$ arylene, bip vridylene, bipyrrolylen, piperazinedionylen, quinodimethylene, imidazolonylen, isoindolinylen, and anthraquinoylfuranoylen C_2 - C_{24} alkenylene, in which bi(C_6 - C_{24})arylene, bipyridylene, bipyrrolylen, piperazinedionylen, quinodimethylene, imidazolonylen, isoindolinylen, and anthraquinoylfura oylen or C2-C24alkenylene are optionally interrupted by one or more intermediate units selected from the group consisting of -CH=CH-, -CH=N-, -N=N-, -CR₄₄R₄₂-, -CO-, -COO-, -ÒCO-, -NR₄₂CO-, -CONR₄₂-, -O-, -S-, -SO-, -SO₂- or -NR₄₂-,

or X_2 is $N-NH-X_4-HN-N$ or N-N=1 . (Amended) A compound according to claim 1 of the formula (XVI)

$$\begin{bmatrix} R_{113} & R_{113} & X \\ R_{112} & R_{12} & 0 \end{bmatrix}$$
 (XVI)

in which

n is 1 or 2, and

if n is 1

X is X_1 as defined in claim 1, and

if n is 2

X is X_2 as defined in claim 1, and

R₁₂, R₁₁₂, R₁₃ and R₁₁₃ independently of one another are hydrogen, halogen, OH, NO₂, R₁₄, OR₁₄, OC_9 - C_{18} alkyl or SC_9 - C_{18} alkyl, in which

 R_{14} is C_1 - C_{24} alkyl which is unsubstituted or substituted one or more times by oxo or by COO $^-$ X $_5$ $^+$ and which is uninterrupted or interrupted one or more times by O, N and/or S, or is C₇-C₁₈aralkyl or C_6 - C_{12} aryl unsubstituted or substituted one or more times by halogen, OR_{16} , $NR_{16}R_{17}$, $COOR_{16}$, $CONR_{16}R_{17},\,NR_{18}COR_{16}\,or\,NR_{18}COOR_{16},$

 X_5^+ is a cation H^+ , Na^+ , K^+ , $Mg^{++}_{1/2}$, $Ca^{++}_{1/2}$, $Zn^{++}_{1/2}$, $Al^{+++}_{1/2}$, or $(NR_{16} R_{17} R_{18} R_{19})^+$, and

 R_{16} and R_{17} independently of one another are hydrogen, C_6 - C_{12} are C_7 - C_{10} aralkyl, or C_1 - C_8 alkyl which is unsubstituted or substituted one or more times by halogen, hydroxyl or C₁-C₄alkoxy, or

 R_{16} and R_{17} in $NR_{16}R_{17}$ or $CONR_{16}R_{17}$, together with the nitrogen atom connecting them, are pyrrolidine, piperidine, piperazine or morpholine each of which is unsubstituted or substituted from one to four times by C1-C4alkyl,

 R_{18} and R_{19} independently of one another are hydrogen, C_1 - C_8 alkyl, C_6 - c_{10} aryl or C_6 - C_{12} aralkyl, or R_{12} and R_{112} , R_{112} and R_{13} , R_{13} and R_{113} independently of one another are each together divalent radicals.