```
# Install yfinance and matplotlib package
!pip install yfinance
!pip install matplotlib

# Import yfinance and matplotlib
import yfinance as yf
import matplotlib.pyplot as plt
import seaborn as sb
# Load Packages
import numpy as np
import pandas as pd
from pandas_datareader import data
```

Step 1: Choose seven (7) assets (preferably something with significant historical data)

```
# Read Data
test = data.DataReader(['SPY', 'AAPL','MSFT','TSLA','JNJ','UNH','NVDA'], 'yahoo', start='2
test.head()
```

8	Attributes	Adj Close							
	Symbols	SPY	AAPL	MSFT	TSLA	כאכ	UNH	NVDA	
	Date								
	2020-06-30	299.575195	90.074974	199.925888	215.962006	133.604034	286.754120	94.80	
	2020-07-01	301.673615	89.904610	201.094925	223.925995	133.366531	289.456940	95.12	
	2020-07-02	303.334930	89.904610	202.627457	241.731995	133.927048	289.972198	95.94	
	2020-07-06	308.017609	92.309570	206.989273	274.316010	135.836639	294.395782	98.2	
	2020-07-07	304.840698	92.023155	204.582428	277.971985	135.713104	288.406891	98.5	
	5 rows × 42 co	lumns	_						

Step 2: Retrieve daily open or close data on your assets for the previous 2 years

```
data_open=test['Open']
data_open.head()
```

Symbols	SPY	AAPL	MSFT	TSLA	CNC	UNH
Date						
2020- 06-30	303.989990	90.019997	197.880005	201.300003	139.399994	288.570007
2020- 07-01	309.570007	91.279999	203.139999	216.600006	140.690002	295.829987
2020- 07-02	314.239990	91.962502	205.679993	244.296005	141.250000	300.500000

data_open.plot()
plt.show()

data_close=test['Close']
data_close.head()

Sym	bols	SPY	AAPL	MSFT	TSLA	CNC	UNH
	Date						
)20- 6-30	308.359985	91.199997	203.509995	215.962006	140.630005	294.950012
_)20- '-01	310.519989	91.027496	204.699997	223.925995	140.380005	297.730011
)20- 7-02	312.230011	91.027496	206.259995	241.731995	140.970001	298.260010

data_close.plot()
plt.show()

Closing price
test = test['Adj Close']
test.head()

Symbols		SPY	AAPL	MSFT	TSLA	CNC	UNH
	Date						
	20- 5-30	299.575134	90.074982	199.925919	215.962006	133.604034	286.754150
	20- '-01	301.673615	89.904594	201.094910	223.925995	133.366531	289.456879
_	20- -n2	303.334961	89.904594	202.627457	241.731995	133.927063	289.972198

Step 3: Calculate the mean, variance, and correlation matrix for all assets

Log of percentage change
tesla = test.pct_change().apply(lambda x: np.log(1+x))
tesla.head()

	Symbols	SPY	AAPL	MSFT	TSLA	JNJ	UNH	NVD
	Date							
	2020- 06-30	NaN	NaN	NaN	NaN	NaN	NaN	Nal
	2020- 07-01	0.006980	-0.001893	0.005830	0.036213	-0.001779	0.009381	0.00339
	2020- 07-02	0.005492	0.000000	0.007592	0.076514	0.004194	0.001779	0.00859

var_tesla = tesla.var()
var_tesla

```
Symbols SPY
```

SPY 0.000124 AAPL 0.000410

MSFT 0.000304

TSLA 0.001762

JNJ 0.000105 UNH 0.000204

NVDA 0.001033

dtype: float64

Volatility

tesla_vol = np.sqrt(var_tesla * 250)

tesla_vol

Symbols

SPY 0.176232
AAPL 0.320006
MSFT 0.275544
TSLA 0.663637
JNJ 0.162112
UNH 0.225650
NVDA 0.508132

dtype: float64

test.pct_change().apply(lambda x: np.log(1+x)).std().apply(lambda x: x*np.sqrt(250)).plot(

<AxesSubplot:xlabel='Symbols'>


```
# Log of Percentage change
test1 = test.pct_change().apply(lambda x: np.log(1+x))
test1.head()
```

Symbols	SPY	AAPL	MSFT	TSLA	CNC	UNH	NVD
Date							
2020- 06-30	NaN	NaN	NaN	NaN	NaN	NaN	Nai

```
dataplot = sb.heatmap(test1.corr(), cmap="YlGnBu", annot=True)
# displaying heatmap
plt.show()
```


Step 4: Calculate efficient frontier and optimal weights for your portfolio (Don't forget the output!)

[] L, 3 cells hidden

- Step 5: Use MatPlotLib or Seaborn libraries to graph the results (matrix and frontier)Step 6: Output the calculated
- optimal weighting (identify portfolio weightings for optimum Sharpe Ratio)along with the efficient frontier and correlation matrix charts. Output to a saved file.

```
[ ] Ļ15 cells hidden
```

×