Exercice 1 (Questions de cours.)

Donner l'énoncé complet ainsi que la démonstration des résultats suivants.

- 1. Lien entre convergence normale et convergence uniforme.
- 2. Continuité en un point de la limite d'une suite de fonction.
- 3. Dérivabilité de la limite d'une suite de fonction.

EXERCICE 2 (Exercice préparé.)

Soit $f_n: \mathbb{R} \to \mathbb{R}$ définie par

$$f_n(x) = \frac{1}{(1+x^2)^n}.$$

Étudier la convergence simple puis uniforme de (f_n) sur \mathbb{R} puis sur

$$I_a =]-\infty, -a] \cup [a, +\infty[$$

avec a > 0.

EXERCICE 3 (Limite uniforme de polynômes sur \mathbb{R} .)

Soit (P_n) une suite de fonctions polynômes définies sur \mathbb{R} . On suppose que (P_n) converge uniformément vers une fonction $f: \mathbb{R} \to \mathbb{R}$.

1. Prouver qu'il existe $N \in \mathbb{N}$ tel que pour tout n > N, et pour $x \in \mathbb{R}$,

$$|P_n(x) - P_N(x)| \le 1$$

- 2. En déduire que, pour tout $n \in \mathbb{N}$, $\alpha_n = P_n P_N$ est une fonction constante.
- 3. En déduire que la fonction f est une fonction polynôme.

Ce résultat est à comparer au théorème de Weierstrass qui dit que n'importe quelle fonction continue *sur un segment* est limite uniforme d'une suite de polynômes.

Exercice 4

Soit $a \ge 0$. On définit la suite de fonctions (f_n) sur [0,1] par $f_n(x) = n^a x^n (1-x)$.

- 1. Montrer que la suite (f_n) converge simplement.
- 2. À quelle condition sur a a-t-on convergence uniforme?

Exercice 5

Soit (f_n) la suite de fonctions définies sur \mathbb{R} par $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$.

- 1. Démontrer que f_n est de classe \mathcal{C}^1 pour tout $n \in \mathbb{N}$.
- 2. Démontrer que la suite (f_n) converge uniformément vers une fonction qui n'est pas de classe \mathcal{C}^1 .
- 3. Que montre cet exercice ?

EXERCICE 6 (Fonction zeta)

On appelle fonction ζ de Riemann la fonction de la variable réelle $s\in\mathbb{R}$ définie par

$$\zeta(s) = \sum_{n=1}^{+\infty} \frac{1}{n^s}$$

- 1. Donner le domaine de définition de ζ , et démontrer qu'elle est strictement décroissante sur celui-ci.
- 2. Prouver que ζ est continue sur son domaine de définition.
- 3. Déterminer $\lim_{s\to+\infty} \zeta(s)$.
- 4. Montrer que pout entier $k \ge 1$ et tout s > 0, on a

$$\frac{1}{(k+1)^s} \le \int_k^{k+1} \frac{dx}{x^s} \le \frac{1}{k^s}.$$

En déduire que $\zeta(s) \sim \frac{1}{s-1}$ quand $s \to 1^+$.

5. Démontrer que ζ est convexe.

Exercice 7

On considère la série de fonction

$$S(x) = \sum_{n=1}^{+\infty} \frac{(-1)^n}{x+n}.$$

- 1. Prouver que S est définie sur $I =]-1, +\infty[$.
- 2. Prouver que S est continue sur I.
- 3. Prouver que S est dérivable sur I, calculer sa dérivée et en déduire que S est croissante sur I.
- 4. Calculer la limite de S en -1 et en $+\infty$.

Exercice 8

Étudier la convergence simple et la convergence normale de la série de fonction $\sum f_n$ dans les cas suivants

1.
$$f_n(x) = \frac{x^n}{1+x^n}$$
 2. $f_n(x) = \frac{x^2}{n^3+x^3}$ 3. $f_n(x) = \frac{x}{n^3+x^3}$

- 1. sur $[0, +\infty[$, puis [0, 1], puis [0, a] avec $a \in]0, 1[$.
- 2. sur $[0, +\infty[$, puis sur [0, a] avec a > 0.
- 3. sur $[0, +\infty[$.