1.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B_1 for simplify B_1 for simplify M_1 multiplyig	5	$= \frac{4}{3} - \frac{7}{1}$ $= \frac{4 - 21}{3}$ $g(\frac{2}{3}) = \frac{17}{3}$ $y\alpha \frac{1}{x^{2}}$ $y = \frac{k}{x^{2}}, x = 2, y = 5$ $5 = \frac{k}{4}$ $k = 20$	A ₁ for c.a.o
2.	$=100x^{2}$	A ₁ c.a.o		$\therefore y = \frac{20}{x^2}$	
۷.	$PQ = Oq - Op$ $\binom{4}{8} = Oq - \binom{1}{4}$	M ₁ for substn		$80 = \frac{20}{x^2}$	
	$OQ = \begin{pmatrix} 5 \\ 12 \end{pmatrix}$	A ₁ c.a.o		$4 = \frac{1}{x^2}$	
		M_1 for substn		$x^2 = \frac{1}{4}$	
	=13units	$A_1 c.a.o$		$x = \pm \frac{1}{2} or \pm 0.5$	
3.	$(-3,5) \Rightarrow x-3y+2=0$			And,	
	$x+2=3y$ $y = \frac{1}{3}x + \frac{2}{3}$ $m = \frac{1}{3}$ Parallellineshavesame gradient	B ₁ for gradient		$y = \frac{20}{5^2}$ $y = \frac{20}{25}$ $y = \frac{4}{5} \text{ or } 0.8$	
	$u\sin g \\ y = mx + c$		6.	$U\sin g (R.F)^2 = \frac{Map Area}{Actual Area}$	
	$5 = \frac{1}{3}x - 3 + c$	M ₁ forsubstn		_	
	6= <i>c</i>	$A_1 c.a.o$		$(R.F)^2 = \frac{12cm^2}{0.48km^2}$	
	$\therefore equationy = \frac{1}{3}x + 6$	B_1 forequivaled		$\frac{0.48km^{2}}{change 0.48km^{2}} to cm^{2}$	
4	$g(x) = ax^2 - 7$			$(1km)^2 = (100000cm)^2$	
٦.	$g(2) = a(2)^2 - 7 = 5$	M_1 for substn			
	4a-7=5	11 100 500500		$1km^2 = 1 \times 10^{10} cm^2$	
	4a = 12			$0.48km^2 \Rightarrow 4.8 \times 10^9 cm^2$	
	$a = 3$ $g(x) = 3x^2 - 7$	A ₁ c.a.o		$(R.F)^2 = \frac{12cm^2}{4.8 \times 10^9 cm^2}$	
	$g(2/3) = 3x(2/3)^2 - 7$	M ₁ for substn		$(R.F)^2 = \frac{1}{4 \times 10^8} taking squar$	e root on bothside
	$g(\frac{2}{3}) = 3 \times \frac{4}{9} - 7$	1		$\therefore R.F = \frac{4 \times 10^6}{2 \times 10^4}$	
				The scale 1:20,000	A_1 c.a.o

$7. n(N \cap M') = 20$	B_1
$n(\varepsilon) = 50 + 20 + 5$	$\begin{vmatrix} B_1 B_1 \end{vmatrix}$
=75	$\begin{vmatrix} B_1 \\ B_1 B_1 \\ A_1 \end{vmatrix}$
	1
8. $A = P(1 + r/100)^n$	
7 100	M_1 for sub.
$396750 = P(1.15)^2 \qquad A_1 \ fo$	M_1 for sub. or $(1.15)^2$ seen M_1 A_1 c.a.o
$P = \frac{396750}{}$	M
$P = \frac{396750}{(1.15)^2}$	1 1
P = 300,000/=	A_1 c.a.o
Tom's first deposit = 300,000/=	
9. $\frac{1}{2}\log 25 + \log 60 - \frac{1}{3}\log 27$	
, _	
$\log 5^{2 \times \frac{1}{2}} + \log 60 - \log 3^{3 \times \frac{1}{3}}$	M_1 indices
$\log \frac{5 \times 60}{3}$	M_1 proper u B_1 for simp
$\log 100$	B_1 for simp
$\log 10^2$ $\sin ce \log_{10}^{10} = 1$	
2.	A_1 c.a.o
10. $V = l \times w \times h$	M_1 multiplying M_1 for sub. A_1 c.a.o
$3600 = 20 \times 12 \times h$	$\int_{A}^{M} 1^{for sub}$
h = 15cm	A_1 c.a.o
$T.S.A = 2(l \times w) + 2(l \times h) + 2(h \times w)$ $= 2(20 \times 12) + 2(20 \times 15) + $	
$=1440cm^2$ SECTION B	A_1 c.a.o
$11.(a) \left(\frac{1}{64}\right)^{1/3} \times \left(\frac{81}{16}\right)^{-3/4}$	ıs indices
$64 = 2^6, 81 = 3^4, 16 = 2^4$	
$\frac{4\times -3}{4}$	
$\frac{1}{2^{6 \times \frac{1}{3}}} \times \frac{3^{4 \times -\frac{3}{4}}}{2^{4 \times -\frac{3}{4}}}$; indices
$2^{-3} 2^{-4}$ $2^{-2} \times 3^{-3} \times 2^{3}$	
2 ×3 ×2	2 1

indices

В

$$BD = \frac{2}{5}(a-2b)$$

 A_1 c.a.o

$$(b)$$
 $U \sin g$,

$$BD = \frac{2}{5}(a-2b)$$

$$DE = DO + OE$$

But
$$DO \Rightarrow \frac{-3}{5} \cdot \frac{1}{3}(b+2a)$$

$$DO \Rightarrow \frac{-1}{5}(b+2a)$$

$$OE \Rightarrow \frac{1}{2}OA = \frac{1}{2}a$$

Then

$$DE = \frac{-1}{5}(b+2a) + \frac{1}{2}$$
$$= \frac{-2b - 4a + 5a}{5}$$

$$=\frac{1}{5(a-2b)}$$

 $\sin ce DE = kBD$

$$\frac{1}{5}(a-2b) = \frac{2}{5}k(a-2b)$$

$$k = \frac{1}{2}$$

Meaning 2DE = BD

BD:DE

$$\frac{2}{5}(a-2b):\frac{1}{5}(a-2b)$$

$$\frac{2}{5}:\frac{1}{5}$$
, 2:1.

$$n(C)$$
 only=18-(3+2+4)

$$n(B) only=17-(4+2+5)$$

P)
$$only = 24 - (3 + 2 + 5)$$

$$n(P)$$
 only=24-(3+2+5)
=14

 B_1 DO seen correct

 A_1 c.a.o

$$B_1$$
 DE and BD compare

 B_1 corrrect ratio got $\frac{1}{100} = 17$ $B_1 | for 6 - 2 = 4$

$$B_1 | for 5-2=3$$

$$B_1 | for 7-2=5$$

 B_1 for 2 in centr

$$B_1$$
 for 9 got

$$B_1$$
 for 6 got

$$B_1$$
 for 14 got

7 farmers don't grow any of these

$$(iii) \quad \frac{9+6+14}{50}$$

$$\Rightarrow \frac{29}{50}$$

15.

$$AC = \sqrt{12^2 + 5^2}$$
$$= \sqrt{169}$$

AC=13cm

 $U \sin g \tan 60 = \frac{OV}{6.5}$ $OV = 6.5 \tan 60$

V = 11.26cm(2d.p)

$$\tan \alpha = \frac{6}{11.26}$$

$$\alpha = 28.05^{\circ}$$

$$\theta = 2\alpha = 56.1^{\circ}$$

$$volume = \frac{1}{3}(12 \times 5) \times 11.26$$

$$= 225.2cm^3$$

M₁ for adding up

 $(9^{1}+6+14)$ seen

 A_1 c.a.o

M₁ for correct su B_1 for simplifying

 A_1 c.a.o

 B_1 for OC correct

M₁ correct substn

 B_1 for simplifying

 A_1 for c.a.o

$$= \frac{\frac{1}{6 \text{cm}}}{\frac{6}{11.26}} Q$$

$$= \frac{6}{11.26} \qquad M_1 \text{ for } \tan \alpha = \frac{1}{11.26}$$

 B_1 angle correc

 A_1 c.a.o

M₁ correct sub

16.
$$A \alpha K_1 + R$$
.
 $A = K_1 + K_2 R$.
 $240,000 = K_1 + 7K_2$(1)
 $180,000 = K_1 + 4K_2$(2)
 $Eqn_2 - Eqn_1$
 $60,000 = 3K_2$

$$K_2 = 20,000$$

from eqn 2,

$$180,000 = K_1 + 4 \times 20,000$$

$$K_1 = 180,000 - 80,000$$

$$K_1 = 100,000 / =$$

They both earn constant of 20,000/and 100,000/-

(ii) Equation connecting A and R

$$A = 100,000 + 20,000R$$

 B_1 equatn 1

 $\begin{vmatrix} M_1 & correct \\ A_1 & c.a.o \end{vmatrix}$

$$A_1$$
 c.a.o

$$B_1 \ y = 50^0 \ seen$$

1. (a)
$$3m_{00unt}0$$
 Arged by the same $\sqrt[3]{5}$ genent)
$$\int_{0}^{\infty} A = 100,000 \pm 20,000 \times 5$$

 M_1 for multiplyin g

$$A = 100,000 \pm 20,000 \times 5$$

A = shs.200 000 gle at the centre is twice the Agic.a.o

at the circumference)

$$(b)$$
 Area of semi – circle = $\frac{1}{2}\pi r^2$

$$A = \frac{1}{2}\pi r^2$$

$$308 = \frac{1}{2} \times \frac{22}{7} r^2$$

$$4312 = 22r^2$$

$$196 = r^2$$

r = 14cm

Perimeter of a circle = πD

$$=\frac{22}{7}\times28$$

=88cm

(c)
$$fg(x) = \frac{1}{2(x-3)}$$

$$fg(1) = \frac{1}{2(1-3)}$$

$$fg(1) = \frac{1}{-4}$$

 M_1 for correct substn

 A_1 c.a.o

 M_1 for correct substn

 A_1 c.a.o

 M_1 for correct substn

 A_1 c.a.o

$$OC = \frac{1}{2} \times 13$$
$$= 6.5$$

$$B_1$$
 for OC correct

$$U \sin g \tan 60 = \frac{OV}{6.5}$$

$$OV = 6.5 \tan 60$$

$$V = 11.26cm(2d.p)$$

$$M_1$$
 correct substine B_1 for simplifying A_1 for c.a.o

$$PQ = AB = 12cm$$

Needed the angle PVQ

$$M_1$$
 for $\tan \alpha = \frac{6}{11.26}$ seen

 B_1 angle correct

 A_1 c.a.o

 M_1 correct substn

 A_1 c.a.o

$$60,000 = 3K_{2}$$

$$K_{2} = 20,000$$
from eqn 2,
$$180,000 = K_{1} + 4 \times 20,000$$

$$K_{1} = 180,000 - 80,000$$

$$K_{1} = 100,000 / =$$

They both earn cons $\tan t$ of 20,000/- and 100,000/-

(ii) Equation connecting A and R

$$A = 100,000 + 20,000R$$

Amount earned by Tr. of $R = 5$,
 $A = 100,000 + 20,000 \times 5$
 $A = shs.200,000$

17.(a)
$$y = 50^{\circ}$$
 (Angle an the same segment)
 $x = 2y = 2 \times 50$
= 100° (angle at the centre is twice the angle at the circumference)

(b) Area of semi-circle =
$$\frac{1}{2}\pi r^2$$

 $A = \frac{1}{2}\pi r^2$
 $308 = \frac{1}{2} \times \frac{22}{7} r^2$
 $4312 = 22r^2$
 $196 = r^2$
 $r = 14cm$

Perimeter of a circle = πD $=\frac{22}{7} \times 28$

$$=88cn$$

(c)
$$fg(x) = \frac{1}{2(x-3)}$$

 $fg(1) = \frac{1}{2(1-3)}$
 $fg(1) = \frac{1}{-4}$

$$B_1$$
 simplifyin g
 A_1 c.a.o
 M_1 correct substn

 B_1 equatn written correct

$$M_1$$
 correct substine A_1 c.a.o

 A_1 c.a.o

$$B_1 y = 50^0 seen$$
 $M_1 for multiplying$

$$A_1$$
 c.a.o

$$M_1$$
 for correct substn

$$A_1$$
 c.a.o

$$A_1$$
 c.a.o

 M_1 for correct substite

 A_1 c.a.o

 M_1 for correct substite

$$A_1$$
 c.a.