

Problema de regresión

Si un nuevo alumno estudió x = 20hs,

¿cuál será su nota?

Problema de regresión

Asumimos que hay una relación lineal entre x e y:

$$Modelo = y = mX + b$$

Sólo necesitaríamos calcular los parámetros *m y b*

Modelo de regresión lineal

Supongamos

$$m = 0.2$$

 $b = 2$
 $f(x) = 0.2 \times + 2$

¿Qué nota predice el modelo si x=20?

$$f(20) = m \times 20 + b$$

= 0,2 × 20 + 2
= 6
Predice y=6 (nota =6)

Modelo de regresión lineal

Valores de m y b definen la recta:

$$-$$
 m = 0.20, **b** = 2

$$-$$
 m = 0.26, b = 2

$$-$$
 m = -0.20, b = 8

Parámetros del modelo

- m indica la pendiente
- b la ordenada a la origen

Modelo lineal

- Es el modelo más simple (polinomio de grado 1)
- Una recta nunca va a poder pasar por todos los puntos. Cada punto (x, y) se aproxima con cierto error.
- ¿Cómo elegimos un modelo? Necesitamos una medida de error.

Error del modelo

Error de un dato:

- $E_i(m,b) = \text{Error del dato i para m y b}$
- Distancia cuadrática entre el valor esperado (y_i) y el predicho por el modelo ($f(x_i)$)
- $E_i(m, b) = (\mathbf{y}_i f(\mathbf{x}_i))^2$ = $(\mathbf{y}_i - m\mathbf{x}_i + \mathbf{b})^2$

Error del modelo

$$y_i - f(x_i) = -1.4$$

 $|y_i - f(x_i)| = 1.4$
 $(y_i - f(x_i))^2 = 1.96$
 $(y_i - f(x_i))^4 = 3.84$

- $E_i = (y_i f(x_i))^2$ ¿Por qué esta función de error?
- ¿Por qué no usar y_i-f(x_i)?
 Valores negativos
- ¿Por qué no usar |y_i-f(x_i)|?
 No es una función derivable
 Difícil de optimizar
- ¿Qué efecto tiene el ²?

 Penaliza más errores grandes

 0.5²=0.25, 1²=1, 5²=25
- ¿Por qué no usar (y_i-f(x_i))⁴? Posible, pero penalizaría demasiado

Error del modelo

Necesitamos ahora evaluar todos los errores generados por el modelo.

Función de costo del modelo

Error cuadrático medio

$$E = \frac{1}{n} \sum_{i}^{n} E_{i}$$

$$E = \frac{1}{n} \sum_{i}^{n} (y'_{i} - y_{i})^{2}$$

- y'_i = el valor predicho de mi modelo.
- y_i = el valor esperado (real) para x.

Error cuadrático medio - Ejemplo

m = 0.2 b = 2		f(x _i)	$f(x_i)-y_i$	E _i
<i>D</i> — 2		0.2 * 2 + 2 = 2.4	2.4 - 1 = 1.4	$(1.4)^2 = 1.96$
		0.2*10+2=4	4 - 4 = 0	$(0)^2 = 0$
estudio	nota	0.2*14+2=4.8	4.8 - 5 = -0.2	$(-0.2)^2 = 0.04$
2	1	0.2*30+2=8	8 - 9 = -1	$(-1)^2 = 1$
10	4	0.2 * 40 + 2 = 10	10 - 10 = 0	$(0)^2 = 0$
14	5			
30	9	Error cuadrático medio		
40	10	$E = \frac{1}{n} \sum_{i}^{n} E_{i} = \frac{1.96 + 0 + 0.04 + 1 + 0}{5} = \frac{3}{5} = 0.6$		

Error cuadrático medio

Asumiendo b=0

Probamos con m= 0.1 o 0.25 o 1

- Error en 1D.
- Parábola.

Error para m y b

- E(m,b) es un paraboloide.
- Siempre es convexa.
- Posee un solo mínimo local, que es el mínimo global.

Resumen

Regresión Lineal

- f(x)=m x + b
- Modelo más simple
- Asume relación lineal entre x e y (es aproximada)

Parámetros: m y b

Función de Error:

- Error cuadrático medio
- Promedio del Error de cada elemento.

