CS 4823: Homework #4

Due on February 16, 2018

Christopher Tse

Problem 1

Compute the subgroup generated by $2 + 17\mathbb{Z}$ in $(\mathbb{Z}/17\mathbb{Z})^*$.

Solution

```
2^{0} \mod 17 = 1
2^{1} \mod 17 = 2
2^{2} \mod 17 = 4
2^{3} \mod 17 = 8
2^{4} \mod 17 = 16
2^{5} \mod 17 = 15
2^{6} \mod 17 = 13
2^{7} \mod 17 = 9
2^{8} \mod 17 = 1
```

Therefore, the subgroup is $1 \rightarrow 2 \rightarrow 4 \rightarrow 8 \rightarrow 16 \rightarrow 15 \rightarrow 13 \rightarrow 9 \rightarrow 1$

Problem 2

Determine the order of all the elements in $(\mathbb{Z}/15\mathbb{Z})^*$.

Solution

```
Unit group of (\mathbb{Z}/15\mathbb{Z})^* is \{1, 2, 4, 7, 8, 11, 13, 14\}

1^1 = 1 \mod 15 = 1 \Rightarrow \text{ order } 1

2^4 = 16 \mod 15 = 1 \Rightarrow \text{ order } 4

4^2 = 16 \mod 15 = 1 \Rightarrow \text{ order } 2

7^4 = 2401 \mod 15 = 1 \Rightarrow \text{ order } 4

8^4 = 4096 \mod 15 = 1 \Rightarrow \text{ order } 4

11^2 = 121 \mod 15 = 1 \Rightarrow \text{ order } 2

13^4 = 28561 \mod 15 = 1 \Rightarrow \text{ order } 4

14^2 = 196 \mod 15 = 1 \Rightarrow \text{ order } 2
```

Problem 3

In Sage, after initiation:

sage: R = Integers(2387591645982364564382654564856487)

sage: a = 209734827465248974582964584
sage: b = 834574895748236582648752475485

If we run sage: R(a) we get the answer 2341670245383644195337830861352166. However, if we run sage: R(a) we get "RuntimeError". Explain why by estimating how much disk space (in GBytes) is needed to store the result of a^b in binary.

Solution

The number of bits required to store a^b in binary is $\log_2(a^b)$. While normally this logarithm is too large to compute, we can use the logarithm exponent rule.

$$\begin{split} \log_2(a^b) &= b \log_2(a) \\ &= 834574895748236582648752475485 \log_2(209734827465248974582964584) \\ &= 7.297 \times 10^{31} \end{split}$$

The number of bits required to store a^b is approximately 7.297×10^{31} bits, or approximately 9.122×10^{21} gigabytes.

Problem 4

Prove that RSA-1024 is a composite number using the Fermat Little Theorem with a = your id number.

Solution: Proof by contradiction

 $\begin{array}{l} {\rm Assume} \ p = {\rm RSA-1024} = 135066410865995223349603216278805969938881475 \\ 60566702752448514385152651060485953383394028715057190944179820728216 \\ 44715513736804197039641917430464965892742562393410208643832021103729 \\ 58725762358509643110564073501508187510676594629205563685529475213500 \\ 852879416377328533906109750544334999811150056977236890927563 \\ \end{array}$

According to Fermat's Little Theorem, if p is prime and $a \nmid p$, then $a^{p-1} \equiv 1 \pmod{p}$, or $a^p \equiv a \pmod{p}$.

Since $a^p \mod p$ is too large to compute, we can first take $a \mod p$ then raise it to the p-th power. In this case, $a \mod p = a$. According to Fermat's Little Theorem then,

$$(a \bmod p)^p = a$$
$$a^p \neq a$$

Since $a^p \neq a$, Fermat's Little Theorem does not hold true for p, therefore p is not a prime and is composite.