CSC236 Worksheet 9 Solution

Hyungmo Gu

May 16, 2020

Question 1

a. I need to evalulate the reg. expressions for

 $L = \{x \in \Sigma \mid x \text{has even number of 1s or an odd number of 0s}\}$

I will do so in parts.

Part 1 (Finding reg. expressions for even number of 1s):

In this part, I will find the reg. expressions for even number of 1's.

I will do so by finding patterns in series of small examples.

Starting with $L = \{x \in \Sigma \mid x \text{ has } 0 \text{ number of 1s} \}$, it's reg. expressions is

$$0^* \tag{1}$$

Now for $L = \{x \in \Sigma \mid x \text{ has 2 number of 1s}\}$, it's reg. expressions is

$$0*10*10*$$
 (2)

Now for $L = \{x \in \Sigma \mid x \text{ has 4 number of 1s}\}$, it's reg. expressions is

$$0^*10^*10^*10^*10^* \tag{3}$$

From above, I see a pattern that

$$(0^*10^*1)(0^*10^*1)0^* \tag{4}$$

Using the pattern, I can conclude that the regular expression for even number of 1s is

$$(0^*10^*1)^*0^* \tag{5}$$

Part 2 (Finding reg. expressions for odd number of 0s):

In this part, I will find the reg. expressions for odd number of 0's.

I will do so by finding patterns in series of small examples.

Starting with $L = \{x \in \Sigma \mid x \text{ has 1 number of 0s}\}$, it's reg. expressions is

$$1*01*$$
 (6)

Now for $L = \{x \in \Sigma \mid x \text{ has 3 number of 0s}\}$, it's reg. expressions is

$$1*01*01*01* (7)$$

Now for $L = \{x \in \Sigma \mid x \text{ has 5 number of 0s}\}$, it's reg. expressions is

$$1*01*01*01*01*01* (8)$$

From above, I see a pattern that

$$1^*(01^*)(01^*)(01^*)(01^*) \tag{9}$$

Using the pattern, I can conclude that the regular expression for odd number of 0s is

$$1^*(01^*)^*$$
 (10)

Thus, by combining the two parts with union, we have

$$(0^*10^*1)^*0^* + 1^*(01^*)^* \tag{11}$$

Notes:

- Regular Expression
 - Quick Guide

$$(0+1)((01)^*0) (12)$$

The expression implies that

- 1. Starts with 0 or 1
 - * indicated by (0 + 1)
- 2. Are then followed by **one or more repeatitions** of 01
 - * indicated by $(01)^*$
- 3. Ends with 0
 - * indicated by the final 0
- Examples
 - 1. $L = \{w \in \{a, b\}^* \mid w \text{ has an } a\}$

Answer:

$$(a+b)^*a(a+b)^*$$
 (13)

- Means there is one or more repeatitions of a or b at front
- Means there is a in the middle

- Means there is zero or more repeatitions of a or b at end
- 2. $L = \{w \in \{a, b\}^* \mid w \text{ has at lest two } as\}$

Answer:

$$(a+b)^*a(a+b)^*a(a+b)^* (14)$$

3. $L = \{w \in \{a, b\}^* \mid |w| \ge 2\}$

Answer:

$$(0+1)(0+1)(0+1)^* (15)$$

In this example,

- Two characters are created (indicated by (0+1)(0+1))
- And more :D!! (indicated by $(0+1)^*$)
- b. I need to find the reg. expressions for $L = \{x \in \Sigma \mid x \text{ has at least one 1 and at least one 0}\}$. That is, regex expressions for $\{x \in \Sigma \mid x \text{ has at least one 1 followed by at least one 0}\}$ plus $\{x \in \Sigma \mid x \text{ has at least one 0 followed by at least one 1}\}$.

First, I need to find reg. expressions for

$$\{x \in \Sigma \mid x \text{ has at least one 1 followed by at least one 0}\}$$
 (1)

Since the reg expressions for x with at least one 1 is $(0+1)^*1(0+1)^*$ and the reg expressions for x with at least one 0 is $(0+1)^*0(0+1)^*$, we have

$$(0+1)^*1(0+1)^*0(0+1)^* (2)$$

Second, I need to find reg. expressions for

$$\{x \in \Sigma \mid x \text{ has at least one 0 followed by at least one 1}\}$$
 (3)

Using the facts provided above, we have

$$(0+1)^*0(0+1)^*1(0+1)^* \tag{4}$$

Thus, by combining the two, we can conclude

$$(0+1)^*1(0+1)^*0(0+1)^* + (0+1)^*0(0+1)^*1(0+1)^*$$
(5)

c. I need to find reg. expressions for

 $\{x\in\Sigma\mid \text{every 1 in }x\text{ is immediately preceded and followed by a }0\}$

An example expresion of the above is

$$0*0100*0100*0100* (1)$$

From above, we can see the following pattern

$$(0*010)(0*010)(0*010)0^* (2)$$

Thus, we have

$$(0^*010)^*0^* \tag{3}$$

Question 2

a. Negation: $\exists r_1, r_2, r_3 \in \mathcal{R}\varepsilon, (r_1r_2 \equiv r_2r_1) \land (r_1 \not\equiv \varepsilon \not\equiv r_2) \land (r_1 \not\equiv \emptyset \not\equiv r_2) \land (r_1 \not\equiv r_2)$

Let
$$r_1 = 1$$
 and $r_2 = 1^*$.

Then, $r_1r_2 \equiv r_2r_1$ and $r_1 \not\equiv \varepsilon \not\equiv r_2$ and $r_1 \not\equiv \emptyset \not\equiv r_2$, but $r_1 \not\equiv r_2$.

So, by counter-example, the statement is false.

Notes:

- Equivalence (≡) in Regular Expressions
 - Two regular expressions \mathcal{R} and \mathcal{S} are equivalent, written $R \equiv S$, if they denote the same language, i.e. $\mathcal{L}(\mathcal{R}) \equiv \mathcal{L}(\mathcal{S})$
 - * Example, $(0^*1^*) \equiv (0+1)^*$
 - For all regular expressions \mathcal{R} , \mathcal{S} , \mathcal{T} , the following euivalences hold.
 - * Commutativity of union: $(R + S) \equiv (S + R)$
 - * Associativity of union: $((\mathcal{R} + \mathcal{S}) + \mathcal{T}) \equiv (\mathcal{R}) + (\mathcal{S} + \mathcal{T})$
 - * Associativity of concatenation: $((\mathcal{RS})\mathcal{T}) \equiv (\mathcal{R}(\mathcal{ST}))$
 - * Left distributivity: $(\mathcal{R}(\mathcal{S} + \mathcal{T})) \equiv ((\mathcal{RS})(\mathcal{RT}))$
 - * Right distributivity: $((S + T)R) \equiv ((SR)(TR))$
 - * Identity for union: $(\mathcal{R}+\emptyset)\equiv\mathcal{R}$
 - * Identity for concatenation: $(\mathcal{R}\epsilon) \equiv R$ and $(\epsilon \mathcal{R}) \equiv \mathcal{R}$
 - * Annihilator for concatenation: $(\emptyset \mathcal{R}) \equiv \emptyset$ and $(\mathcal{R}\emptyset) \equiv \emptyset$
 - * Idempotence of Kleene star: $R^{**} \equiv R^*$
- b. Negation: $(r_1r_2 \equiv r_1r_3) \wedge (r_1 \not\equiv \emptyset) \wedge (r_2 \not\equiv r_3)$

Let
$$r_1 = 1^*$$
, $r_2 = \varepsilon$, $r_3 = 1^*$.

Then, $r_1r_2 \equiv r_1r_3$ and $r_1 \not\equiv \emptyset$, but $r_2 \not\equiv r_3$.

So, by counter-example, the statement is false.

Notes:

 \bullet Learned I forgot to consider ε when exploring counter-examples :(

 $r_1 = 0$

	0	0*	1	1*	$(1+\varepsilon)$	$(1+\varepsilon)^*$	$(0+\varepsilon)$	$(0+\varepsilon)^*$	ε
0	X	X	X	X	X	X			
0*	X	X	X	X	X	X			
1	X	X	X	X	X	X			
1*	X	X	X	X	X	X			
$(1+\varepsilon)$	X	X	X	X	X	X			
$(1+\varepsilon)^*$	X	X	X	X	X	X			
$(0+\varepsilon)$							X		
$(0+\varepsilon)^*$								X	
arepsilon									X