<u>Notes</u>

<u>Course</u>

<u>Dates</u>

<u>Help</u>

sandipan_dey >

Next >

★ Course/ Unit 1: Functions of two vari... / Lecture 3: Visualizing surfaces in three dime...

Discussion

()

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

<u>Calendar</u>

End My Exam

Previous

44:33:51

<u>Progress</u>

☐ Bookmark this page

Lecture due Aug 4, 2021 20:30 IST Completed

Explore

Recall that single variable functions are not necessarily defined for all input values. The input values for which the output values of a function exists are called its domain.

- The function 1/x is not defined for x=0. The domain of 1/x is the set of all x
 eq 0, that is all x except 0.
- The function $\ln{(x)}$ is not defined for $x \leq 0$. The domain of $\ln{(x)}$ is all x > 0.

Multivariable functions also may not be defined for all pairs of inputs $oldsymbol{x}$ and $oldsymbol{y}$.

Definition 8.1 The **domain** of a multivariable function z = f(x, y) is the set of points (x, y) for which the function f(x, y) exists (is finite and well-defined).

To determine the domain, you use algebra to determine where a function does not exist.

Examples 8.2

- 1. $z=x^2+y^2$ is defined for all values of x and y in the xy-plane. It's domain is all points (x,y).
- 2. $z=\sqrt{y}$ is only defined for points in the xy-plane where $y\geq 0$. (This domain is sometimes called the upper half-plane.)
- 3. $z=rac{1}{x+y}$ is only defined for points in the xy-plane where x+y
 eq 0.
- 4. $z=\frac{1}{xy}$ exists as long as the denominator is nonzero. Thus the domain is the set of points (x,y) so that $xy\neq 0$. That is it is the set of points (x,y) so that $x\neq 0$ and $y\neq 0$. Geometrically, this is the points (x,y) that are not on either the x- or y-axes.

Domain concept check

1/1 point (graded)

(Choose all options below that correctly complete the following sentence.)

igwedge the set of all ordered pairs of points (x,y) so that $f\left(x,y
ight)$ exists

The domain of a multivariable function $z=f\left(x,y\right)$ is

a subset of the real numbers
a union of two subsets of the real numbers
$lacksquare$ a subset of the $m{xy}$ -plane

the union of the set of all values x where $f\left(x,y
ight)$ exists with the set of all values y where $f\left(x,y
ight)$ exists

None of the above

Solution:

The domain of definition is the set of all ordered pairs (x,y) such that the function f(x,y) exists. In particular, this collection of points (x,y) is a subset of the the xy-plane. Let's go through each option to see why it is wrong or right.

- Note that a subset of the real numbers is a collection of points x, not a collection of ordered pairs (x,y). Thus is not correct.
- A union of two subsets of real numbers is not correct for the same reason as the above option.
- A subset of the xy-plane is some collection of points (x,y) which is what the domain is.
- The union of all x values such that f(x,y) exists with the union of the set of all points y such that f(x,y) exists is the union of two sets of real numbers, not a collection of points in the plane, thus is not correct.
- The set of all points (x,y) such that f(x,y) exists is exactly the definition of the domain of definition!

Submit

You have used 1 of 2 attempts

Answers are displayed within the problem

Find the domain 1

1/1 point (graded)

Find the domain of the function below.

$$z=\frac{1}{x^2+y^2}$$

) The	entire	$oldsymbol{x}oldsymbol{u}$ -	plane
\	,		~ .	

lacksquare The set of points (x,y)
eq (0,0).

 \bigcirc The upper half plane $y \geq 0$.

 \bigcirc All points (x,y) so that $x \neq 0$.

 \bigcirc All points (x,y) so that y
eq 0.

 \bigcirc A unit disk in the xy-plane about the origin.

The domain of this function is empty.

Solution:

This function is well-defined as long as the denominator is nonzero. That is as long as $x^2+y^2\neq 0$. But for all x and y, we have that

$$x^2+y^2\geq 0,$$

with equality only happening if both x=y=0.

Therefore all points (x,y) in the xy-plane except for the origin (0,0) are in the domain of this function.

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

Find the domain 2

1/1 point (graded)

Find the domain of the function below.

$$z=\frac{1}{x^2+y^2+1}$$

	All	points	(x,y)	in the	$m{xy}$ -plane
--	-----	--------	-------	--------	----------------

	The set of points	(x,y) eq	$\stackrel{\prime}{=} (0,0)$
--	-------------------	-----------	------------------------------

$$\bigcirc$$
 The upper half plane $y \geq 0$.

$$\bigcirc$$
 All points (x,y) so that $x \neq 0$.

$$\bigcirc$$
 All points (x,y) so that $y \neq 0$.

$$\bigcirc$$
 A unit disk in the $m{xy}$ -plane about the origin.

$$\bigcirc$$
 The unit square defined by (x,y) such that $0 \leq x,y \leq 1$.

Solution:

This function is well defined as long as the denominator is nonzero. That is as long as $x^2 + y^2 + 1 \neq 0$. But for all x and y, we have that

$$x^2+y^2+1\geq 1\neq 0.$$

Therefore all points (x,y) in the xy-plane are in the domain of this function.

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

Find the domain 3

4/7

1/ 1 POILLE (GLAGGA)

Find the domain of the function below.

$$z=\sqrt{1-(x^2+y^2)}$$

igcap All points (x,y) in the xy-plane.

 \bigcirc The set of points (x,y)
eq (0,0).

 \bigcirc The upper half plane $y \geq 0$.

 \bigcirc All points (x,y) so that $x \neq 0$.

 \bigcirc All points (x,y) so that $y \neq 0$.

lacksquare A unit disk in the $m{xy}$ -plane about the origin.

igcup The unit square defined by (x,y) such that $0\leq x,y\leq 1$.

The domain of this function is empty.

~

Solution:

The function is well defined as long as the term in the square root is nonnegative. That is if

$$1-(x^2+y^2)\geq 0 \qquad \longrightarrow \qquad x^2+y^2\leq 1.$$

This inequality defines a unit disk in the \boldsymbol{xy} -plane centered about the origin.

Submit

You have used 2 of 2 attempts

1 Answers are displayed within the problem

Find the domain 4

1/1 point (graded)

Find the domain of the function below.

$$z=\sqrt{-1-(x^2+y^2)}$$

igcap All points (x,y) in the xy-plane.

The set of points $(x, y) \neq (0, 0)$.

 \bigcirc The upper half plane $y \geq 0$.

 \bigcirc All points (x,y) so that $x \neq 0$.

■ Calculator

Hide Notes

Previous Next >

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>