DIGITAL COMMUNICATION Through Simulations

G. V. V. Sharma

Copyright ©2022 by G. V. V. Sharma.

https://creative commons.org/licenses/by-sa/3.0/

 $\quad \text{and} \quad$

 $\rm https://www.gnu.org/licenses/fdl-1.3.en.html$

Contents

Introduction	ii
1 Two Dice	1
1.1 Sum of Independent Random Variables	1
2 Random Numbers	7
2.1 Uniform Random Numbers	7
2.2 Central Limit Theorem	6
2.3 From Uniform to Other	12
2.4 Triangular Distribution	12
3 Maximum Likelihood Detection: BPSK	13
3.1 Maximum Likelihood	13
4 Transformation of Random Variables	15
4.1 Gaussian to Other	15
4.2 Conditional Probability	16
5 Bivariate Random Variables: FSK	17
5.1 Two Dimensions	17

Introduction

This book introduces digital communication through probability.

Two Dice

1.1. Sum of Independent Random Variables

Two dice, one blue and one grey, are thrown at the same time. The event defined by the sum of the two numbers appearing on the top of the dice can have 11 possible outcomes 2, 3, 4, 5, 6, 6, 8, 9, 10, 11 and 12. A student argues that each of these outcomes has a probability $\frac{1}{11}$. Do you agree with this argument? Justify your answer.

1.1.1. The Uniform Distribution: Let $X_i \in \{1, 2, 3, 4, 5, 6\}$, i = 1, 2, be the random variables representing the outcome for each die. Assuming the dice to be fair, the probability mass function (pmf) is expressed as

$$p_{X_i}(n) = \Pr(X_i = n) = \begin{cases} \frac{1}{6} & 1 \le n \le 6\\ 0 & otherwise \end{cases}$$
 (1.1.1.1)

The desired outcome is

$$X = X_1 + X_2, (1.1.1.2)$$

$$\implies X \in \{1, 2, \dots, 12\}$$
 (1.1.1.3)

The objective is to show that

$$p_X(n) \neq \frac{1}{11} \tag{1.1.1.4}$$

1.1.2. Convolution: From (1.1.1.2),

$$p_X(n) = \Pr(X_1 + X_2 = n) = \Pr(X_1 = n - X_2)$$
 (1.1.2.1)

$$= \sum_{k} \Pr(X_1 = n - k | X_2 = k) p_{X_2}(k)$$
 (1.1.2.2)

after unconditioning. $\therefore X_1$ and X_2 are independent,

$$\Pr(X_1 = n - k | X_2 = k)$$

$$= \Pr(X_1 = n - k) = p_{X_1}(n - k) \quad (1.1.2.3)$$

From (1.1.2.2) and (1.1.2.3),

$$p_X(n) = \sum_{k} p_{X_1}(n-k)p_{X_2}(k) = p_{X_1}(n) * p_{X_2}(n)$$
 (1.1.2.4)

where * denotes the convolution operation. Substituting from (1.1.1.1) in (1.1.2.4),

$$p_X(n) = \frac{1}{6} \sum_{k=1}^{6} p_{X_1}(n-k) = \frac{1}{6} \sum_{k=n-6}^{n-1} p_{X_1}(k)$$
 (1.1.2.5)

$$p_{X_1}(k) = 0, \quad k \le 1, k \ge 6.$$
 (1.1.2.6)

From (1.1.2.5),

$$p_X(n) = \begin{cases} 0 & n < 1 \\ \frac{1}{6} \sum_{k=1}^{n-1} p_{X_1}(k) & 1 \le n-1 \le 6 \\ \frac{1}{6} \sum_{k=n-6}^{6} p_{X_1}(k) & 1 < n-6 \le 6 \\ 0 & n > 12 \end{cases}$$
 (1.1.2.7)

Substituting from (1.1.1.1) in (1.1.2.7),

$$p_X(n) = \begin{cases} 0 & n < 1 \\ \frac{n-1}{36} & 2 \le n \le 7 \\ \frac{13-n}{36} & 7 < n \le 12 \\ 0 & n > 12 \end{cases}$$
 (1.1.2.8)

satisfying (1.1.1.4).

1.1.3. The Z-transform: The Z-transform of $p_X(n)$ is defined as

$$P_X(z) = \sum_{n = -\infty}^{\infty} p_X(n)z^{-n}, \quad z \in \mathbb{C}$$
(1.1.3.1)

From (1.1.1.1) and (1.1.3.1),

$$P_{X_1}(z) = P_{X_2}(z) = \frac{1}{6} \sum_{n=1}^{6} z^{-n}$$
 (1.1.3.2)

$$= \frac{z^{-1} (1 - z^{-6})}{6 (1 - z^{-1})}, \quad |z| > 1$$
 (1.1.3.3)

upon summing up the geometric progression.

$$\therefore p_X(n) = p_{X_1}(n) * p_{X_2}(n), \tag{1.1.3.4}$$

$$P_X(z) = P_{X_1}(z)P_{X_2}(z) (1.1.3.5)$$

The above property follows from Fourier analysis and is fundamental to signal processing. From (1.1.3.3) and (1.1.3.5),

$$P_X(z) = \left\{ \frac{z^{-1} \left(1 - z^{-6} \right)}{6 \left(1 - z^{-1} \right)} \right\}^2$$
 (1.1.3.6)

$$= \frac{1}{36} \frac{z^{-2} \left(1 - 2z^{-6} + z^{-12}\right)}{\left(1 - z^{-1}\right)^2}$$
 (1.1.3.7)

Using the fact that

$$p_X(n-k) \stackrel{\mathcal{H}}{\longleftrightarrow} ZP_X(z)z^{-k},$$
 (1.1.3.8)

$$nu(n) \stackrel{\mathcal{H}}{\longleftrightarrow} Z \frac{z^{-1}}{(1-z^{-1})^2}$$
 (1.1.3.9)

after some algebra, it can be shown that

$$\frac{1}{36} [(n-1)u(n-1) - 2(n-7)u(n-7) + (n-13)u(n-13)]
\longleftrightarrow Z \frac{1}{36} \frac{z^{-2} (1 - 2z^{-6} + z^{-12})}{(1 - z^{-1})^2} (1.1.3.10)$$

where

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$
 (1.1.3.11)

From (1.1.3.1), (1.1.3.7) and (1.1.3.10)

$$p_X(n) = \frac{1}{36} \left[(n-1) u(n-1) -2 (n-7) u(n-7) + (n-13) u(n-13) \right]$$
(1.1.3.12)

which is the same as (1.1.2.8). Note that (1.1.2.8) can be obtained from (1.1.3.10) using contour integration as well.

- 1.1.4. The experiment of rolling the dice was simulated using Python for 10000 samples. These were generated using Python libraries for uniform distribution. The frequencies for each outcome were then used to compute the resulting pmf, which is plotted in Figure 1.1.4.1. The theoretical pmf obtained in (1.1.2.8) is plotted for comparison.
- 1.1.5. The python code is available in

/codes/sum/dice.py

Figure 1.1.4.1: Plot of $p_X(n)$. Simulations are close to the analysis.

Random Numbers

2.1. Uniform Random Numbers

Let U be a uniform random variable between 0 and 1.

 $2.1.1\,$ Generate 10^6 samples of U using a C program and save into a file called uni.dat .

Solution: Download the following files and execute the C program.

2.1.2 Load the uni.dat file into python and plot the empirical CDF of U using the samples in uni.dat. The CDF is defined as

$$F_U(x) = \Pr\left(U \le x\right) \tag{2.1.2.1}$$

Solution: The following code plots Fig. 2.1.2.1

2.1.3 Find a theoretical expression for $F_U(x)$.

Figure 2.1.2.1: The CDF of $\cal U$

2.1.4 The mean of U is defined as

$$E[U] = \frac{1}{N} \sum_{i=1}^{N} U_i$$
 (2.1.4.1)

and its variance as

$$var[U] = E[U - E[U]]^{2}$$
(2.1.4.2)

Write a C program to find the mean and variance of U.

2.1.5 Verify your result theoretically given that

$$E\left[U^{k}\right] = \int_{-\infty}^{\infty} x^{k} dF_{U}(x) \tag{2.1.5.1}$$

2.2. Central Limit Theorem

2.2.1 Generate 10^6 samples of the random variable

$$X = \sum_{i=1}^{12} U_i - 6 \tag{2.2.1.1}$$

using a C program, where U_i , i = 1, 2, ..., 12 are a set of independent uniform random variables between 0 and 1 and save in a file called gau.dat

 $2.2.2\,$ Load gau.dat in python and plot the empirical CDF of X using the samples in gau.dat.

What properties does a CDF have?

Solution: The CDF of X is plotted in Fig. 2.2.2.1

2.2.3 Load gau.dat in python and plot the empirical PDF of X using the samples in gau.dat.

Figure 2.2.2.1: The CDF of X

Figure 2.2.3.1: The PDF of X

The PDF of X is defined as

$$p_X(x) = \frac{d}{dx} F_X(x) \tag{2.2.3.1}$$

What properties does the PDF have?

Solution: The PDF of X is plotted in Fig. 2.2.3.1 using the code below $codes/pdf_plot.py$

 $2.2.4\,$ Find the mean and variance of X by writing a C program.

2.2.5 Given that

$$p_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), -\infty < x < \infty,$$
 (2.2.5.1)

repeat the above exercise theoretically.

2.3. From Uniform to Other

2.3.1 Generate samples of

$$V = -2\ln(1 - U) \tag{2.3.1.1}$$

and plot its CDF.

2.3.2 Find a theoretical expression for $F_V(x)$.

2.4. Triangular Distribution

2.4.1 Generate

$$T = U_1 + U_2 \tag{2.4.1.1}$$

- 2.4.2 Find the CDF of T.
- 2.4.3 Find the PDF of T.
- 2.4.4 Find the theoretical expressions for the PDF and CDF of T.
- 2.4.5 Verify your results through a plot.

Maximum Likelihood Detection:

BPSK

3.1. Maximum Likelihood

- 3.1.1 Generate equiprobable $X \in \{1, -1\}$.
- 3.1.2 Generate

$$Y = AX + N, (3.1.2.1)$$

where A = 5 dB, and $N \sim \mathcal{N}(0, 1)$.

- 3.1.3 Plot Y using a scatter plot.
- 3.1.4 Guess how to estimate X from Y.
- 3.1.5 Find

$$P_{e|0} = \Pr\left(\hat{X} = -1|X = 1\right)$$
 (3.1.5.1)

and

$$P_{e|1} = \Pr\left(\hat{X} = 1|X = -1\right)$$
 (3.1.5.2)

3.1.6 Find P_e assuming that X has equiprobable symbols.

- $3.1.7\,$ Verify by plotting the theoretical P_e with respect to A from 0 to 10 dB.
- 3.1.8 Now, consider a threshold δ while estimating X from Y. Find the value of δ that maximizes the theoretical P_e .
- 3.1.9 Repeat the above exercise when

$$p_X(0) = p (3.1.9.1)$$

3.1.10 Repeat the above exercise using the MAP criterion.

Transformation of Random

Variables

4.1. Gaussian to Other

4.1.1 Let $X_1 \sim \mathcal{N}\left(0,1\right)$ and $X_2 \sim \mathcal{N}\left(0,1\right)$. Plot the CDF and PDF of

$$V = X_1^2 + X_2^2 (4.1.1.1)$$

 $4.1.2 ext{ If}$

$$F_V(x) = \begin{cases} 1 - e^{-\alpha x} & x \ge 0\\ 0 & x < 0, \end{cases}$$
 (4.1.2.1)

find α .

4.1.3 Plot the CDF and PDf of

$$A = \sqrt{V} \tag{4.1.3.1}$$

4.2. Conditional Probability

4.2.1 Plot

$$P_e = \Pr\left(\hat{X} = -1|X = 1\right)$$
 (4.2.1.1)

for

$$Y = AX + N, (4.2.1.2)$$

where A is Raleigh with $E\left[A^{2}\right]=\gamma,N\sim\mathcal{N}\left(0,1\right),X\in\left(-1,1\right)$ for $0\leq\gamma\leq10$ dB.

- 4.2.2 Assuming that N is a constant, find an expression for P_e . Call this $P_e(N)$
- 4.2.3 For a function g,

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)p_X(x) dx$$
 (4.2.3.1)

Find $P_e = E[P_e(N)]$.

4.2.4 Plot P_e in problems 4.2.1 and 4.2.3 on the same graph w.r.t γ . Comment.

Bivariate Random Variables: FSK

5.1. Two Dimensions

Let

$$\mathbf{y} = A\mathbf{x} + \mathbf{n},\tag{4.1}$$

where

$$x \in (\mathbf{s}_0, \mathbf{s}_1), \mathbf{s}_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \mathbf{s}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 (4.2)

$$\mathbf{n} = \begin{pmatrix} n_1 \\ n_2 \end{pmatrix}, n_1, n_2 \sim \mathcal{N}(0, 1). \tag{4.3}$$

5.1.1 Plot

$$\mathbf{y}|\mathbf{s}_0 \text{ and } \mathbf{y}|\mathbf{s}_1 \tag{5.1.1.1}$$

on the same graph using a scatter plot.

5.1.2 For the above problem, find a decision rule for detecting the symbols s_0 and s_1 .

5.1.3 Plot

$$P_e = \Pr\left(\hat{\mathbf{x}} = \mathbf{s}_1 | \mathbf{x} = \mathbf{s}_0\right) \tag{5.1.3.1}$$

with respect to the SNR from 0 to 10 dB.

5.1.4 Obtain an expression for P_e . Verify this by comparing the theory and simulation plots on the same graph.