

1

Electric Charges and Fields

Coulomb's Law

Force between two charges $\vec{F} = \frac{1}{4\pi \in_{0} \in_{r}} \frac{q_{1}q_{2}}{r^{2}} \hat{r}$, $\in_{r} = \text{dielectric}$ constant

Principle of Superposition

Force on a point charge due to many charges is given by

$$\vec{F} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 + \dots$$

Notes: The force due to one charge is not affected by the presence of other charges.

Electric Field or Electric Field Intensity (Vector Quantity)

$$\vec{E} = \frac{\vec{F}}{q}$$
, unit is N/C or V/m.

Electric Field Due to Charge Q

$$\vec{E} = \lim_{q_0 \to 0} \frac{\vec{F}}{q_0} = \frac{1}{4\pi \in_0} \frac{Q}{r^2} \hat{r}$$

Null Point for Two Charges

 \Rightarrow Null point near Q₂

$$x = \frac{\sqrt{Q_1}r}{\sqrt{Q_1} \pm \sqrt{Q_2}}$$
; $x \to distance of null point from Q_1 charge$

- (+) for like charges
- (-) for unlike charges

Equilibrium of Three Point Charges

- (i) Two charges must be of like nature.
- (ii) Third charge should be of unlike nature.

$$x = \frac{\sqrt{Q_1}}{\sqrt{Q_1} + \sqrt{Q_2}} r$$
 and $q = \frac{-Q_1 Q_2}{\left(\sqrt{Q_1} + \sqrt{Q_2}\right)^2}$

Equilibrium of Suspended Point Charge System

For equilibrium position

 $T\cos\theta = mg \& T\sin\theta = F_e$

$$\Rightarrow \tan \theta = \frac{F_e}{mg} = \frac{kQ^2}{x^2 mg}$$

$$T = \sqrt{(F_e)^2 + (mg)^2}$$

If whole set up is taken into an artificial satellite $(g_{eff} \simeq 0)$

$$\Rightarrow T = F_e = \frac{kq^2}{4\ell^2}$$

Electric Dipole

- ❖ Electric dipole moment p = qd
- Torque on dipole placed in uniform electric field $\vec{\tau} = \vec{p} \times \vec{E}$
- At a point which is at a distance r from dipole midpoint and making angle θ with dipole axis.

Electric field
$$E = \frac{1}{4\pi \in_0} \frac{p\sqrt{1 + 3\cos^2 \theta}}{r^3}$$

 $Direction \qquad \tan\alpha = \frac{E_\theta}{E_r} = \frac{1}{2}\tan\theta$

- * Electric field at axial point (or End-on) $\vec{E} = \frac{1}{4\pi \in_0} \frac{2\vec{p}}{r^3}$ of dipole
- ❖ Electric field at equatorial position (Broad-on) of dipole $\vec{E} = \frac{1}{4\pi \in 0} \frac{(-\vec{p})}{r^3}$

Electric flux: $\phi = \int \vec{E}.d\vec{s}$

Gauss's Law: $\oint \vec{E} \cdot d\vec{s} = \frac{\sum}{\epsilon}$ (Applicable only on closed surface)

Net flux emerging out of a closed surface is $\,\frac{q_{\mbox{\tiny en}}}{\epsilon_0}\,$

 $\varphi=\oint \vec{E}.d\vec{A}=\frac{q_{en}}{\epsilon_0}$ where q_{en} = net charge enclosed by the

closed surface.

φ does not depend on the

- (i) Shape and size of the closed surface
- (ii) The charges located outside the closed surface.

For a Conducting Sphere

For
$$r \ge R : E = \frac{1}{4\pi \in_0} \frac{q}{r^2}$$
 and For $r \le R : E = 0$

For a Non-conducting Sphere

For
$$r \ge R : E = \frac{1}{4\pi \in_{0}} \frac{q}{r^{2}}$$

For
$$r < R : E = \frac{1}{4\pi \in_{0}} \frac{qr}{R^{3}}$$

For a Conducting/Non-conducting Spherical Shell

For
$$r \ge R : E = \frac{1}{4\pi \in_0} \frac{q}{r^2}$$

For
$$r < R : E = 0$$

For a Charged Circular Ring

$$E_{p} = \frac{1}{4\pi \in_{0}} \frac{qx}{(x^{2} + R^{2})^{3/2}}$$

Electric field will be maximum at $x = \pm \frac{R}{\sqrt{2}}$

For a Charged Long Conducting Cylinder

$$\text{ For } r \ge R : E = \frac{q}{2\pi \in_0 r}$$

• For
$$r < R : E = 0$$

Electric Field Intensity at a Point near a Charged Conductor

$$E = \frac{\sigma}{\in_0}$$

Mechanical Pressure on a Charged Conductor

$$P = \frac{\sigma^2}{2 \in_0}$$

Electric Field for Non-conducting Infinite Sheet of Surface

Charged Density σ

$$E = \frac{\sigma}{2 \in_{0}}$$

Electric Field for Conducting Infinite Sheet of Surface Charge Density $\boldsymbol{\sigma}$

$$E = \frac{\sigma}{\in_0}$$