1 Exercise 1.2.3

We want to show that

$$u(t, x, y) = e^{i(k_x x + k_y y - \omega t)} \tag{1}$$

satisfies the wave equation $u_{tt} = c^2(u_{xx} + u_{yy})$

We start by finding u_{tt} , u_{xx} and u_{yy} :

$$\begin{split} u_{tt} &= \frac{\partial^2 u}{\partial t^2} (e^{\imath (k_x x + k_y y - \omega t)}) = -\omega^2 e^{\imath (k_x x + k_y y - \omega t)} \\ u_{xx} &= \frac{\partial^2 u}{\partial x^2} (e^{\imath (k_x x + k_y y - \omega t)}) = -k_x^2 e^{\imath (k_x x + k_y y - \omega t)} \\ u_{yy} &= \frac{\partial^2 u}{\partial y^2} (e^{\imath (k_x x + k_y y - \omega t)}) = -k_y^2 e^{\imath (k_x x + k_y y - \omega t)} \end{split}$$

We can now substitute into the wave equation:

$$-\omega^2 u = -c^2 (k_x^2 + k_y^2) u.$$

Since u never is equal to 0, we can cancel out u and we get:

$$\omega^2 = c^2 (k_x^2 + k_y^2),$$

which is the dispersion relation, meaning that $u(t, x, y) = e^{i(k_x x + k_y y - \omega t)}$ satisfies the wave equation if and only if ω , k_x and k_y respect this relation.

2 Exercise 1.2.4

We now assume $m_x = m_y$ such that $k_x = k_y = k$. A discrete version of (1) is then given by

$$u_{i,j}^n = e^{i(kh(i+j) - \tilde{\omega}n\Delta t)}$$

where $\tilde{\omega}$ is a numerical dispersion coefficient, i.e., the numerical approximation of the exact ω . We want to insert this equation into the discretized equation

$$\frac{u_{i,j}^{n+1} - 2u_{i,j}^n + u_{i,j}^{n-1}}{\Delta t^2} = c^2 \left(\frac{u_{i+1,j}^n - 2u_{i,j}^n + u_{i-1,j}^n}{h^2} + \frac{u_{i,j+1}^n - 2u_{i,j}^n + u_{i,j-1}^n}{h^2} \right)$$

and show that for CFL number $C = \frac{1}{\sqrt{2}}$, we get $\tilde{\omega} = \omega$ By inserting the discrete $u_{i,j}^n$ into the scheme, we get

$$\begin{split} u_{i,j}^{n+1} &= e^{-\imath \tilde{\omega} \Delta t} u_{i,j}^n, \\ u_{i,j}^{n-1} &= e^{\imath \tilde{\omega} \Delta t} u_{i,j}^n, \\ u_{i+1,j}^n &= e^{\imath k h} u_{i,j}^n, \\ u_{i-1,j}^n &= e^{-\imath k h} u_{i,j}^n, \\ u_{i,j+1}^n &= e^{\imath k h} u_{i,j}^n, \\ u_{i,j-1}^n &= e^{-\imath k h} u_{i,j}^n, \end{split}$$

We will then use the identity $e^{i\theta} + e^{-i\theta} = 2\cos(\theta)$ to write the difference:

$$\frac{e^{-\imath \tilde{\omega} \Delta t} u_{i,j}^n - 2 u_{i,j}^n + e^{\imath \tilde{\omega} \Delta t} u_{i,j}^n}{\Delta t^2} = c^2 \left(\frac{e^{\imath kh} u_{i,j}^n - 2 u_{i,j}^n + e^{-\imath kh} u_{i,j}^n}{h^2} + \frac{e^{\imath kh} u_{i,j}^n - 2 u_{i,j}^n + e^{-\imath kh} u_{i,j}^n}{h^2} \right).$$

which yields

$$u^n_{i,j}\frac{e^{-\imath\tilde{\omega}\Delta t}+e^{\imath\tilde{\omega}\Delta t}-2}{\Delta t^2}=2c^2u^n_{i,j}(\frac{e^{\imath kh}+e^{-\imath kh}-2}{h^2}).$$

We then apply the identity. Since $u_{i,j}^n$ never is 0, we divide by $u_{i,j}^n$ on both sides, which yields:

$$\frac{2(\cos(\tilde{\omega}\Delta t) - 1)}{\Delta t^2} = 2c^2 \frac{(2\cos(kh) - 2)}{h^2}.$$

We now divide by a factor of 2 and multiply by a factor of Δt^2

$$\cos(\tilde{\omega}\Delta t) - 1 = \left(\frac{c\Delta t}{h}\right)^2 (2\cos(kh) - 2),$$

and we let $C = \frac{c\Delta t}{h}$ and factor out 2 in the RHS, which yields:

$$\cos(\tilde{\omega}\Delta t) - 1 = 2C^2(\cos(kh) - 1).$$

We can now choose $C = \frac{1}{\sqrt{2}} \Rightarrow C^2 = \frac{1}{2}$, which gives us:

$$\cos(\tilde{\omega}\Delta t) - 1 = \cos(kh) - 1,$$

which simplifies to

$$\cos(\tilde{\omega}\Delta t) = \cos(kh) \Rightarrow \tilde{\omega}\Delta t = kh$$

We know from the continuous case that

$$\omega = c\sqrt{k_x^2 + k_y^2}$$

and we know by assumption that $k_x = k_y = k$, which gives

$$\omega = c\sqrt{2k^2} = c\sqrt{2}k.$$

so we have

$$\omega \Delta t = c \sqrt{2} k \Delta t = \sqrt{2} (c \Delta t) k = \sqrt{2} C(kh),$$

and given that $C = \frac{1}{\sqrt{2}}$, we get

$$\omega \Delta t = kh$$
.

Hence $\tilde{\omega} = \omega$