Research Summary

(Independent Research)

Nathaniel Goenawan and Siddhant Pagariya

November 10, 2017

1 Background

The main topic that surrounds our research project is the use of CsPb-halide nanocomposites with organic passivating groups to make flexible LEDs. These CsPb-halide perovskites are a part of all halide perovskites, which are a subcategory of perovskites, which in the modern-day worldtodayhave become extremely viable and successful candidates in the generation and potential printability of different efficient light-emitting (screens) or absorbing (solar panels) displays.

While Light Emitting Displays and perovskites have existed for some years now, their efficiency is poor and

2 About the Research

2.1 Research Questions

- 1. What is the effect of size and shape of perovskite nanocomposites on LED efficiency?
- 2. What developments in the appropriate combination of perovskites will help mprove the white light generation capabilities of the perovskite nanocomposites?

2.2 Goal

Our overall research goal is to develop highly efficient white light generating light emitting displays that can be flexible.

3 Research Methodology

3.1 Procedures

A few steps we will be carrying out during this research project, are:

- 1. Synthesize perovskite nanocomposites of different sizes.
- 2. Make Light-Emitting Displays from these perovskite nanocomposites.

4 References

- 1. Demchyshyn, S., Roemer, J. M., Groi, H., Heilbrunner, H., Ulbricht, C., Apaydin, D., ... & Scharber, M. C. (2017). Confining metal-halide perovskites in nanoporous thin films. *Science Advances*, 3(8), e1700738.
- 2. Li, J., Yu, Q., Gan, L., Chen, D., Lu, B., Ye, Z., & He, H. (2017). Perovskite light-emitting devices with a metalinsulatorsemiconductor structure and carrier tunnelling. *Journal of Materials Chemistry C*, 5(31), 7715-7719.
- 3. Zhang, L., Yang, X., Jiang, Q., Wang, P., Yin, Z., Zhang, X., ... & Sargent, E. H. (2017). Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. *Nature Communications*, 8, 15640.

- 4. Huang, H., Bodnarchuk, M. I., Kershaw, S. V., Kovalenko, M. V., & Rogach, A. L. (2017). Lead Halide Perovskite Nanocrystals in the Research Spotlight: Stability and Defect Tolerance. *ACS Energy Letters*, 2(9), 2071-2083.
- 5. Kim, Y. H., Cho, H., & Lee, T. W. (2016). Metal halide perovskite light emitters. *Proceedings of the National Academy of Sciences*, 113(42), 11694-11702.