Proves d'Accés a la Universitat. Curs 2012-2013

Electrotècnia

Sèrie 1

La prova consta de dues parts de dos exercicis cadascuna. La primera part és comuna i la segona té dues opcions (A i B), de les quals cal triar-ne UNA.

PRIMERA PART

Exercici 1

[2,5 punts]

[En cada qüestió només es pot triar UNA resposta. Qüestió ben contestada: 0,5 punts; qüestió mal contestada: -0,16 punts; qüestió no contestada: 0 punts.]

Qüestió 1

La unitat en què s'expressa la intensitat del corrent elèctric d'una capacitat, una resistència i una inductància associades en sèrie, en aplicar-hi una tensió alterna sinusoïdal, és

- *a*) l'ohm.
- **b**) l'ampere.
- *c*) el volt.
- d) adimensional.

Qüestió 2

Quina és la funció lògica de la figura següent?

$$a) O = a + b$$

b)
$$O = a + b$$

c)
$$O = a \cdot \overline{b} + \overline{a} \cdot b$$

d)
$$O = \overline{a \cdot \overline{b} + \overline{a} \cdot b}$$

Qüestió 3

Connectem en parallel una resistència de $10\,\Omega$ i una inductància de reactància de $10\,\Omega$. El conjunt s'alimenta des d'una xarxa de $100\,V$ de tensió. Quina és la potència activa consumida pel conjunt?

- *a*) 500 W
- **b**) 1 000 W
- c) 1414 W
- **d)** 2 000 W

Qüestió 4

Un consum trifàsic està format per tres impedàncies iguals connectades en estrella. Cada impedància està formada per una resistència de $9\,\Omega$ i una inductància de $12\,\Omega$ connectades en sèrie. Si el consum es connecta a una xarxa de $400\,\mathrm{V}$ (de tensió composta), quina és la potència activa consumida?

- a) 2,13 kW
- **b**) 3,7 kW
- c) 6,4 kW
- **d**) 11,09 kW

Qüestió 5

A quina velocitat gira un alternador de dos parells de pols connectat a una xarxa de 60 Hz?

- a) 3 600 min⁻¹
- **b**) 3 000 min⁻¹
- c) 1 800 min⁻¹
- d) 1500 min⁻¹

Exercici 2

[2,5 punts]

 $V_1 = 100 \text{ V}$ $R = 50 \Omega$ L = 200 mH $C = 13 \mu\text{F}$

Si la frequència de la tensió d'alimentació del circuit de la figura és de 50 Hz, determineu:

a) La mesura de l'amperímetre A_1 .

[1 punt]

b) La mesura del voltímetre V_2 .

[0,5 punts]

c) La mesura del voltímetre V_3 .

[0,5 punts]

Si la tensió d'alimentació continua essent de 100 V i els elements continuen essent els mateixos, calculeu:

d) La frequència a què s'hauria d'alimentar el circuit perquè l'amperímetre A_1 indiqués 2 A. [0,5 punts]

SEGONA PART

OPCIÓ A

Exercici 3

[2,5 punts]

 U_{ab} = 400 V X_{L} = 20 Ω X_{C} = 40 Ω

Per al circuit trifàsic de la figura, determineu:

a) La mesura de l'amperímetre A_1 .

[1 punt]

b) La mesura de l'amperímetre A_2 .

[0,5 punts]

c) Les potències activa P, reactiva Q i aparent S consumides.

[1 punt]

Exercici 4

[2,5 punts]

Per al circuit de la figura, en el qual els díodes es poden considerar ideals, determineu:

a) La mesura de l'amperímetre A_1 quan $U_1 = 10 \text{ V}$ i $U_2 = 0 \text{ V}$.

[0,5 punts]

[0,5 punts]

b) La mesura de l'amperímetre A_1 quan $U_1 = 5 \text{ V}$ i $U_2 = 10 \text{ V}$. **c)** La mesura de l'amperímetre A_1 quan $U_1 = 20 \text{ V}$ i $U_2 = 10 \text{ V}$.

[0,5 punts]

d) La potència subministrada per les fonts en les condicions de l'apartat b.

[1 punt]

OPCIÓ B

Exercici 3

[2,5 punts]

Un motor d'inducció té les dades següents en la placa de característiques:

P = 45 kW	U = 400/230 V	I = 78,8/137 A
$\cos \varphi = 0.88$	f = 50 Hz	$n = 2.961 \mathrm{min^{-1}}$

Si el motor treballa en condicions nominals, determineu:

- a) El rendiment η .[1 punt]b) El nombre p de parells de pols.[0,5 punts]
- c) El parell Γ desenvolupat. [0,5 punts]
- d) La potència aparent consumida de la xarxa d'alimentació. [0,5 punts]

Exercici 4

[2,5 punts]

$U_1 = 36 \text{ V}$	
$R_1 = 12 \Omega$	<u>)</u>
$R_2 = 12 \Omega$	2
$R_3 = 12 \Omega$	2

Per al circuit de la figura, determineu:

- Amb l'interruptor *SW* obert,
 - a) el corrent que subministra la font. [0,5 punts]
 - ${\it b}$) la tensió que indica el voltímetre V_1 . [0,5 punts]
- Amb l'interruptor *SW* tancat,
 - c) el corrent que subministra la font. [0,5 punts]
 - d) la tensió que indica el voltímetre V_1 . [0,5 punts]
 - e) la potència dissipada en conjunt per totes les resistències. [0,5 punts]