

Нейронные сети в обработке изображений. Вводный курс

Александр Хвостиков

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики Лаборатория математических методов обработки изображений

Осенний семестр 2024

Лекция №9.1

Практическое задание №2:

- формулировка задания;
- предоставляемые наборы данных;
- ▶ шаблон решения и советы;
- критерии оценки, правила сдачи;

Sports Tracking Systems

Системы трекинга для различных спортивных дисциплин (Sports Tracking Systems) сильно востребованы в командных видах спорта, таких как футбол, волейбол, теннис, хоккей, баскетбол и т.п.

Чаще всего от таких систем требуется:

- отслеживание и идентификация игроков;
- отслеживание положения мяча;
- анализ игры по предыдущим двум пунктам;
- сбор разнообразной статистики (ведение мяча, передачи, использование стандартных комбинаций, тактик и т.п.);

Фрагмент рекламного видео от разработчиков SportLOGiQ (https://sportlogiq.com/en/sports/football-soccer-overview)

При этом наиболее интересны и востребованы системы, не требующие специального оборудования (специальных камер, датчиков, сенсоров и т.п.), а способные анализировать обычные видео матчей.

Ваша цель - реализовать модель для трекинга мяча на серии видеофрагментов теннисного матча.

Для каждого кадра записи необходимо определить, есть ли мяч на кадре, и, в случае его наличия, определить координаты центра мяча на видео.

Предоставляемые данные для разработки моделей и алгоритмов трекинга мяча в теннисе представляют собор набор игр (game), состоящих из нескольких клипов (clip), каждый из которых состоит из набора кадров (frame).

Kaggle Notebooks vs. Google Colab

Kaggle Notebooks

- ▶ бесплатный облачный сервис на основе Jupyter Notebook;
- ▶ GPU Nvidia Tesla P100 (16Gb), Nvidia Tesla T4 x2(32Gb);
- > 30Gb RAM (12Gb при использовании ускорителей)
- ▶ 20Gb дискового пространства для хранения результатов;
- безлимитное хранилище для публичных датасетов (100Gb для хранения приватных датасетов);
- 30 часов в неделю, 9 часов на сессию;

Google Colab

- бесплатный облачный сервис на основе Jupyter Notebook;
- GPU Nvidia Tesla K80 (12Gb);
- может использовать Google Drive для хранения моделей и результатов обучения;
- 12 часов на сессию;
- выделенные ресурсы могут «отобрать»;

Предоставляемые данные

Все видео представлены в виде последовательности кадров в формате .jpg разрешения 1280×720 . Для удобства также все данные предоставлены в .npz архивах по клипам.

- Предоставляемые наборы:
 - train (6 игр, суммарно 62 клипа)
 - test (2 игры, суммарно 17 клипов)

 Стартовый ноутбук Kaggle с реализованной загрузкой данных, шаблоном решения и демонстрацией основных приемов работы с данными;

Предоставляемые данные

Все видео представлены в виде последовательности кадров в формате .jpg разрешения 1280×720 . Для удобства также все данные предоставлены в .npz архивах по клипам.

- Предоставляемые наборы:
 - train (6 игр, суммарно 62 клипа)
 - * test (2 игры, суммарно 17 клипов)

Дополнительный тестовый набор (не предоставляется):

* test2 (2 игры, суммарно 16 клипов)

 Стартовый ноутбук Kaggle с реализованной загрузкой данных, шаблоном решения и демонстрацией основных приемов работы с данными;

Оценка качества трекинга

Для оценки качества трекинга в данном задании предлагается использовать собственную метрику Simple Ball Tracking Accuracy (SiBaTrAcc):

code = 0 - мяча в кадре нет $code \ge 1$ - мяч присутствует в кадре

$$PE(code_{pr}, x_{pr}, y_{pr}, code_{gt}, x_{gt}, y_{gt}) = \begin{cases} e_1, & code_{gt} \neq 0, & code_{pr} = 0, \\ e_2, & code_{gt} = 0, & code_{pr} \neq 0, \end{cases}$$

$$\min \left(5, \left[\frac{\sqrt{\left(x_{gt} - x_{pr} \right)^2 + \left(y_{gt} - y_{pr} \right)^2}}{step} \right]^{\alpha} \right), & otherwise.$$

$$SiBaTrAcc(pr,gt) = 1 - \frac{1}{5N} \sum PE \left(code_{pr}[i], x_{pr}[i], y_{pr}[i], code_{gt}[i], x_{gt}[i], y_{gt}[i] \right),$$

где N – количество кадров в клипе, а дополнительные параметры выбраны как: $e_1=5,\ e_2=5,\ step=8,\ \alpha=1.5$

Обсуждение предоставляемого шаблона с кодом

Критерии оценивания. Основная часть

Успешно сданное решение должно попадать под критерии хотя бы одного пункта (в случае выполнения нескольких выбирается максимальный):

Nº	Основная часть	Баллы
1	Реализация модели трекинга с минимальной точностью SiBaTrAcc = 0.8 на предоставленном тестовом наборе данных	30
2	Реализация модели трекинга с минимальной точностью SiBaTrAcc = 0.75 на предоставленном тестовом наборе данных	20
3	Реализация модели трекинга с минимальной точностью SiBaTrAcc = 0.7 на предоставленном тестовом наборе данных	15
4	Реализация модели трекинга с минимальной точностью SiBaTrAcc = 0.6 на предоставленном тестовом наборе данных	10
	Итоговый максимальный балл за основную часть	30

Критерии оценивания. Дополнения

Nº	Дополнения	Баллы
1	Валидация модели на части обучающей выборки	1
2	Автоматическая кросс-валидация	1
3	Автоматическое сохранение модели при обучении	1
4	Загрузка модели с какой-то конкретной итерации обучения (если используется итеративное обучение)	1
5	Вывод различных показателей в процессе обучения (например, значение функции потерь на каждой эпохе)	1
6	Построение графиков, визуализирующих процесс обучения (график зависимости функции потерь от номера эпохи обучения, и т.п.)	1-2
7	Автоматическое тестирование на тестовом наборе/наборах данных после каждой или после некоторых эпох обучения (при использовании итеративного обучения)	1
9	Автоматический выбор гиперпараметров модели во время обучения	1-3
11	Использование аугментации и других способов синтетического расширения набора данных (дополнительным плюсом будет обоснование необходимости и обоснование выбора конкретных типов аугментации)	1-3
13	Любое дополнительное улучшение не из списка, улучшающее результаты классификации или улучшающее опыт взаимодействия с моделью (не более 3 улучшений)	1-2
	Итоговый максимальный балл за дополнения	20

Критерии оценивания. Результаты

Максимальный балл за задание: 50

Условная шкала пересчёта:

- ▶ [35, 50] отлично
- ▶ [25, 34] хорошо
- ▶ [15-24] удовлетворительно
- ▶ [0, 14] неудовлетворительно

Дополнительное тестирование

Независимо от полученной оценки за задание, Ваше решение также будет протестировано на наборе данных test2, на основе чего будет вычисляться рейтинговая оценка модели:

score = SiBaTrAcc(test2).

На основе чего будет формироваться рейтинговая таблица моделей.

Авторы 3 моделей с лучшим рейтингом получают «автомат» на экзамене (при условии сдачи первого практического задания).

Правила сдачи задания

Для сдачи задания необходимо отправить <u>через форму</u> ссылку на публичный github репозиторий в котором должны находиться:

- Kaggle ноутбук с решением;
- pdf распечатка ноутбука с выполненными ячейками, результатами, графиками и т.п.;
- README.md с кратким описанием результатов и списком выполненных пунктов;
- (!) Все реализованные опции должны быть помечены в коде метками #LBL1, #LBL2, и т.д. с текстовой расшифровкой в README.md;

Любые дополнительные используемые файлы и директории (например, директория с изображениями, полученными в результате тестирования) должны быть также упомянуты в README.md;

форма для отправки решения

Реализованная модель должна иметь работающую **реализацию метода load(), автоматически загружающую веса обученной модели** из облачного хранилища;

Правила сдачи задания

- ▶ Все необходимые для выполнения задания файлы находятся на <u>странице сообщества</u>.
- ▶ Вопросы по заданию можно задавать в нашем <u>telegram-чате</u>.
- Совместное выполнение данного задания не допускается.

Крайний срок сдачи задания:

9 декабря 2024 (включительно)

Далее в курсе

Лекция №10:

- ▶ обучение с частичным привлечением учителя
- обучение на «слабо-размеченных» данных
- «гибридные» методы обработки изображений;

Лекция №11:

- введение в трансформеры
- трансформеры для анализа изображений

0 курсе

Информация

Чат данного курса:

https://t.me/+GfzGhEXPUIxiZmQy

По вопросам можете обращаться:

email: khvostikov@cs.msu.ru

telegram: https://t.me/xubiker

Вопросы?