PROBLEMAS PROPUESTOS. SISTEMA DE PARTÍCULAS

COMPRENSIÓN

Dadas las siguientes afirmaciones indique sí es verdadero o falso

1	El centro de masas de un sistema de partículas está localizado en la partícula más próxima al centro geométrico del sistema.							
2	El centro de masas de un sistema formado por dos partículas está situado sobre la línea que las une y en su punto medio.							
3	La cantidad de movimiento total de un sistema de partículas es igual a su masa total multiplicada por la velocidad del centro de masas.							
4	Las fuerzas internas de un sistema de partículas son las ejercidas por una partícula del sistema sobre otra.							
5	La acción de las fuerzas internas no modifica la cantidad de movimiento total de un sistema.							
6	La cantidad de movimiento total de un sistema se conserva sólo cuando las fuerzas internas son conservativas.							
7	Sí la cantidad de movimiento total de un sistema de partículas se conserva, su energía mecánica total también se conserva.							

Dadas las siguientes situaciones, seleccione la opción que usted considere correcta

considere correcta											
SP. 1	Un homb muchacha juntos en horizontal entre sí y de 0,3 i m	Un hombre de masa $m_1 = 100 \text{ Kg}$ y una muchacha de masa $m_2 = 50 \text{ Kg}$, están de pie juntos en reposo con patines sobre una superficie horizontal sin rozamiento. De repente se empujan entre sí y el hombre se aleja con una velocidad de $0,3$ i m/s respecto a la superficie.									
Con respecto a la velocidad del centro de masa antes del choque se puede afirmar que es:											
	(₀ B		0,3 i m/s		(C)	-0,6 i m/s		0	0.45 i m/s		
Sí se compara la cantidad de movimiento justo antes del empujón con respecto a justo después, se puede afirmar que:											
A	$\sum \vec{P}_{antes} = \sum \vec{P}$	o después ≠0	B	$\sum \vec{P}_{antes} < \sum \vec{P}_{a}$) después	0	$\sum \vec{P}_{antes} > \sum \vec{P}_{despu\acute{e}s}$	0	$\Sigma \vec{P}_{antes} = \Sigma \vec{P}_{després} = 0$		
Con respecto a la velocidad del centro de masa después del choque se puede afirmar que es:											
A	0	B		0,3 i m/s		-0,6 i m/s		(D)	0.45 i m/s		
Sí se compara la velocidad del centro de masa justo antes del empujón con respecto a justo después, se puede afirmar que:											
A		Es cero y se mantiene constante		B Es distinta de cero y se mantiene constante		0	Aumenta	0	Disminuye		
Sí se compara la energía cinética justo antes del empujón con respecto a justo después, se puede afirmar que:											
A	aumenta	aumenta		B disminuye		0	Se mantiene constante distinta de cero	0	Se mantiene constante e igual a cero		
Y la velocidad de la muchacha después del choque es:											
A	0	B	0,3 i r	n/s	(©)	-0,6 i	m/s	(D)	0.45 i m/s		

PROBLEMAS GENERALES

PROBLEMA Nº 1

Un sistema está formado por tres partículas ubicadas en un plano xy cuyas posiciones, velocidades y aceleraciones, en el instante t=0 son:

Las aceleraciones son constantes en el tiempo.

En el instante t=0, determinar

- 1. La posición, velocidad y aceleración del centro de masa
- 2. La fuerza externa que actúa sobre el sistema
- 3. La energía cinética del sistema
- 4. La cantidad de movimiento del sistema

Y para el instante t=5s, determinar:

- 5. La posición y velocidad del centro de masa
- 6. La fuerza externa que actúa sobre el sistema
- 7. La cantidad de movimiento del sistema

PROBLEMA Nº 2 Guaki la mascota de la copa América de masa $m_G=70\,kg$ realiza un espectáculo el día de la inauguración sobre una patineta de masa $m_P=18\,kg$ en una pista horizontal lisa (AB). Ambos se mueven inicialmente con una velocidad de $\vec{v}=2\,i\,m/_{_{\rm G}}$.

En uno de los actos Guaki salta de la patineta con una velocidad vista por los espectadores desde tierra de $\vec{v}=7\hat{i}$ m/s en la misma dirección en la que se estaba moviendo.

8. Si se comparan los instantes justo antes y justo después de que Guaki salte de la patineta se puede firmar que:

$$\text{a.} \quad \begin{array}{c} E_0 = E_f \\ \vec{p}_{total_0} = \vec{p}_{total_f} \end{array} \quad \begin{array}{c} E_0 = E_f \\ \vec{p}_{total_0} \langle \vec{p}_{total_f} \end{array} \quad \begin{array}{c} E_0 \langle E_f \\ \vec{p}_{total_0} \langle \vec{p}_{total_f} \end{array} \quad \begin{array}{c} E_0 \langle E_f \\ \vec{p}_{total_0} \langle \vec{p}_{total_f} \end{array} \quad \begin{array}{c} E_0 \langle E_f \\ \vec{p}_{total_0} \langle \vec{p}_{total_f} \end{array} \quad \begin{array}{c} E_0 \langle E_f \\ \vec{p}_{total_0} \langle \vec{p}_{total_0} \end{array} \quad \begin{array}{c} E_0 \langle E_f \\ \vec{p}_{total_0} \langle \vec{p}_{total_0} \rangle \end{array} \quad \begin{array}{c} E_0 \langle E_f \\ \vec{p}_{total_0} \langle \vec{p}_{total_0} \rangle \end{array} \quad \begin{array}{c} E_0 \langle E_f \\ \vec{p}_{total_0} \langle \vec{p}_{total_0} \rangle \end{array} \quad \begin{array}{c} E_0 \langle E_f \rangle \\ \begin{array}{c} E_0 \langle E_f \rangle \\ \end{array} \quad \begin{array}{c} E_0 \langle E_f$$

- 9. Y la velocidad de la patineta justo después de que Guaki salte es:
- 10. Y mientras Guaki resbala por la pista de hielo, se puede afirmar que para el sistema formado por Guaki y la patineta:0
 - a. Guaki y la patineta aceleran pero el centro de masa (CM) queda en reposo.
 - b. Guaki acelera hacia la derecha, la patineta y el CM aceleran hacia la izquierda.
 - Guaki y la patineta se mueven con velocidad constante y la aceleración del centro de masa es cero.
 - d. Guaki y la patineta aceleran y el centro de masa se mueve con velocidad constante.

Si ahora al final de la pista Guaki llega a la grama (superficie BC) que tiene un coeficiente de roce cinetico μ_k ,

11. Entonces se puede afirmar que mientras que la aceleración del CM es:

$$\text{a.} \quad -\mu_k g \qquad \text{b.} \quad -\frac{\mu_k (m_G + m_P) g}{m_G + m_P} \qquad \text{c.} \quad \frac{\mu_k (m_G + m_P) g}{m_G + m_P} \qquad \text{d.} \quad -\frac{\mu_k m_G g}{m_G + m_P}$$

Pág. 3 de 4

PROBLEMA Nº 3

Juanito de masa 80 Kg y Marisabel de masa 50 Kg montados en una tabla de esquiar de 20 Kg comienzan a subir por una colina de hielo con una rapidez de 8 m/s, llegan a la parte superior de una colina de 2 m de altura (Pto B) y continúan deslizándose por el plano horizontal BC. Asuma que todas las superficies son lisas.

1. En relación con la Energía Mecánica Total (E) y la Cantidad de Movimiento del Sistema (P) formado por la tabla, Juanito y Marisabel entre los puntos A y B se puede afirma que:

- a)
- b) $\vec{p}_A \langle \vec{p}_B \ E_A = E_B$ c) $\vec{p}_A = \vec{p}_B$ $\vec{p}_{\scriptscriptstyle A} = \vec{p}_{\scriptscriptstyle B}$

 $\vec{p}_A \rangle \vec{p}_B$ $E_A = E_R$

2. Y el módulo de la velocidad del centro de masas cuando lleguen al plano BC será:

3. Si mucho después de llegar al plano BC, Juanito salta hacia atrás con una rapidez de 1 m/s, entonces se puede afirmar que la velocidad de Marisabel y la tabla será de:

AHORA ASUMA QUE AL FINAL DEL PLANO BC HAY UNA SUPERFICIE RUGOSA. Entonces se puede afirmar que a partir del momento en que Marisabel y la patineta entren a la superficie rugosa:

- Juanito acelera y Centro de Masas, la patineta y Marisabel a) frenan.
- Todos frenan.
- Juanito y Centro de Masas continúan con velocidad constante y c) Marisabel y la patineta frenan.
- El Centro de Masas acelera hacia Juanito.
- El Centro de Masas comienza a moverse en la dirección de Juanito. e)

PROBLEMA Nº 4 Un hombre de masa m 1 = 100 Kg y una muchacha de masa $m_2 = 50$ Kg, están de pie juntos en reposo con patines sobre una superficie horizontal sin rozamiento. De repente se empujan entre sí y el hombre se aleja con una velocidad de 0,3 i m/s respecto a la superficie.

- 1. En esta situación, la velocidad de la muchacha después del empujón es (en m/s):
- 2. La distancia que los separa a los 6 s después del empujón es (en m):
- Si al cabo de cierto tiempo, ambos se están moviendo, entonces con respecto a la velocidad del centro de masas se puede afirmar que:
 - Tiene el mismo b) Tiene el mismo sentido de la sentido de la velocidad de m2 velocidad m₁
- c) Permanecerá en reposo
- d) Disminuirá constantemente

PROBLEMA Nº 5 Pedro de masa y Carmen de masa , se encuentran parados en reposo sobre una superficie en la que se derramó aceite (por ello asuma que la superficie es completamente lisa) para hacer algunos experimentos. Ambos sostienen una cuerda y están separados por una distancia

aceleran

- Para esta situación se puede afirmar que la posición del centro de masas es:
- Si Pedro hala la cuerda recogiéndola de manera constante con una fuerza constante de 1 N para acercarse a Carmen entonces se puede afirmar que para el sistema formado por Pedro y Carmen mientras Pedro hale de la cuerda:
- a) Pedro Carmen aceleran pero el CM se queda en reposo
- y b) Los tres c) Pedro y Carmen d) aceleran; y el CM de masa se mueve con velocidad constante
 - Pedro y Carmen se mueven con velocidad constante; y el CM permanece en reposo.
- e) Pedro acelera hacia la derecha; Carmen y el CM de masa aceleran hacia la izquierda

CONSIDERE AHORA QUE Pedro y Carmen inicialmente en reposo se amarran la cuerda a la cintura y Pedro logra enganchar otra cuerda T2 a un poste y comienza a halar de ella con una fuerza constante de manera que puedan ambos salir de la superficie aceitosa

Carmen aceleran hacia el poste

El CM se mueve con v = constante y Pedro y

Los tres se mueven con velocidad constante

3. Entonces se puede afirmar que mientras Pedro recoja la cuerda T2 con una fuerza constante:

b)

d)

- Pedro y Carmen aceleran hacia el poste y el a) CM permanece en reposo.
- 7 Ow permanece en repece.
- c) Los tres aceleran hacia el poste.
 - Pedro y Carmen se mueven con v =constante
- e) y el CM acelera hacia el poste
- 4. Y la aceleración del centro de masas será:

PROBLEMA Nº 6 Dos estudiantes de Física, Juan y Pedro, ubicados inicialmente como se indica en la figura, realizan experimentos sobre una pista de hielo completamente lisa. La cuerda C_1 une a Juan con el árbol. Juan se ata a la cintura otra cuerda C_2 y el otro extremo se lo arroja a Pedro para ayudarlo a salir de la pista. Pedro agarra la cuerda C_2 y comienza a recogerla aplicando una fuerza constante de magnitud 5 N para acercarse hacia Juan.

$$m_P = 60 \, kg \; ; \; m_J = 80 \, kg$$

Analice el sistema formado por Pedro y Juan

- 1. Bajo estas condiciones se puede afirmar que la posición inicial del Centro de Masas es (en m),
- Mientras Pedro recoge la cuerda halando con una fuerza constante se puede afirmar que para el sistema formado por Pedro y Juan:
- a) Todos aceleran hacia la derecha
- b) Sólo acelera Pedro y el CM permanece en reposo.
- c) Aceleran Pedro y el centro de masas.
- d) Todos se mueven con velocidad constante.

Si ahora a los 3 s. de estar halando Pedro, **se rompe la cuerda (C₁) que sujetaba a Juan del árbol**, y Pedro sin saberlo sigue halando con la misma fuerza

- 3. Entonces se puede afirmar que a partir de ese momento el centro de masas:
 - a) Se queda en reposo

- b) Continúa hacia la derecha acelerando
- c) Continúa hacia la derecha con velocidad constante.

b)

- d) Acelera hacia la izquierda
- **4.** Y bajo las mismas condiciones de la pregunta anterior se puede afirmar que a partir del momento que se rompe la cuerda la aceleración de Juan será:

c)

$$a_J = -a_P$$

$$a_J = -\frac{m_P a}{m_L}$$

$$a_J = -\frac{m_J a_P}{m_P}$$

d) cero