<u>Help</u>

sandipan_dey >

<u>Course</u>

Progress

<u>Dates</u>

Discussion

MO Index

☆ Course / 14 Introduction to Probabilistic Thin... / 14.1 Introduction to probabilistic thin...

MO2.13

Next, let's consider what happens when multiple parameters vary simultaneously (instead of only one parameter varying). For example, suppose both $C_{D\,l}$ and $heta_e$ vary over the ranges given above. Figure <u>14.6</u> shows the contours of $oldsymbol{z_p}$ over these ranges. If we assume that all values of $C_{D\,l}$ and $heta_e$ are equally likely to occur, then the fraction of area in the contour plot for which $z_p < 9$ km will be the probability of $z_p < 9$ km occurring. From the contour plot, we see that $z_p < 9$ km is roughly a trapezoidal. On the left (at $C_{D\,l}=1.5$) , the trapezoid extends from $heta_e=80^\circ$ to approximately 83.4° (for a height of 3.4°). On the right (at

Discussions

All posts sorted by recent activity

© All Rights Reserved

 $H_e=1.9$) , the trapezoid extends from $heta_e=80^\circ$ 0.05 roximately 81.6° (for a height of 1.6°). The

base of the trapezoid is 0.4 (from 1.5 to 1.9 along the

eax axis). Thus, the area of the trapezoid is then approximately $0.4\left(3.4+1.6
ight)/2=1.0$. Since the About total area of the possible values of $(C_{Dl}, heta_e)$ is (6) = 2.4 then the probability of $z_p < 9$ km is $\frac{\text{edX for Business}}{\text{approximately }} 1.0/2.4 \approx 0.42.$

<u>Careers</u>

Figure 14.6: Contours of z_p showing impact of $C_{D\,l}$ Con peculiation on parachute deployment altitude.

Idea Hub

CoMideo Gonsidering two parameters varying for Hantian lander example

<u>Security</u>

Media Kit

<u>Start of</u> transcript. Skip to the end.

PROFESSOR: OK, now let's consider two

parameters

© 2023edX LC. All rights reserved > 深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>

drag coefficient