

First International Workshop on Biometrics-as-a-Service:

Cloud-based Technology, Systems and Applications (IW-BAAS2017)

A Smart Peephole on the Cloud

Maria De Marsico <u>Eugenio Nemmi</u> <u>Bardh Prenkaj</u> Gabriele Saturni

Overview

- Introduction
- Azure
- Biometric as a Service
- Detection Module
- Face Recognition Module
- Voice Verification Module
- Emotion Detection Module

Goals

- To design a new open-set identification system for a smart home authentication: Smart Peephole
- To provide the following functionalities:
 - To correctly recognize a family member and, basically, "allow them to pass";
 - "Member discovery"
 - To correctly refuse non-family members to enter the house;
 - "Intruders detection"
 - To notify the landlord that an intruder tried to enter his/her house

Abstract Idea for People Recognition

- Multibiometric System
- Enrollment:
 - User's face
 - User's voice
 - Password setup
- Operation:
 - Movement detection
 - Face detection
 - Face recognition (open set 1:n)
 - Voice verification (text-dependent key phrase-based 1:1)
 - Password validation (optional requires additional hardware and/or software)
 - Backup method if voice verification fails

Abstract Idea for People Recognition

Microsoft Azure

- Microsoft integrated cloud services
- Category:
 - laaS Infrastructure as a Service
 - PaaS Platform as a Service
 - SaaS Software as a Service

Services:

- Networking
- Storage
- Web + Mobile
- Containers
- Databases

- Developer Tools
- Data + Analytics
- AI + Cognitive Services
- Internet of Things
- Enterprise Integration

- Security + Identity
- Monitoring + Management
- Microsoft Azure Stack

MCS - AI + Cognitive Services

Microsoft Cognitive Services (MCS) let you build apps with powerful algorithms to see, hear, speak, understand
and interpret our needs using natural methods of communication.

Relevant services for Vision & Speech

- Vision:
 - <u>Face API</u> among others:
 - face detection
 - face verification
 - face identification
 - Emotion API
 - recognize emotions in images and videos
 - <u>Video</u> among others:
 - detect and track faces
 - detect motion
 - <u>Custom Vision Service</u> among others:
 - train on uploaded labeled images

- Speech:
 - Speaker recognition API
 - speaker verification
 - speaker identification

Biometrics As A Service

- Microsoft Cognitive Services include APIs for biometric recognition
 - At present, face and voice

 It is possible to delegate complex biometric processing to remotely designed and implemented algorithms

- Microsoft Cognitive Services
 - Usage of APIs to facilitate app building using few code lines...
 - ... and support cross-platform development (iOS, Android, Windows)

Biometrics As A Service but ...

• **Problem**: to prevent burst-rate of requests towards MCS servers

Solution: to devise a reasonable compromise between local and remote processing

Local vs. remote processing

- Detection: possibly continuous process possibly computation-intensive
 - Natural candidate for local processing
 - Movement detection + Face detection

- Recognition: sophisticated algorithms sporadic execution
 - Delegated to remote services
 - Face recognition + Speaker recognition + (Emotion recognition)

Movement Detection

- Movement Detection
 - o Problems:
 - **To detect movement** in front of the doorstep
 - To prevent to leave the system continuously active
 - Solutions:
 - **DOPTFlow** (Dense Optical Flow Algorithm) OpenCV implementation

DOPTFlow Algorithm

- Dense Optical Flow:
 - It computes the optical flow for all the points in the frame:
 - based on Gunner Farneback's algorithm
 - builds motion vectors between two consecutive frames

Face Detection

- Face detection implemented locally
 - faster if implemented locally that through API call
 - o based on haar-cascade classifiers OpenCV implementation

Adopted MCS APIs

- Our scenario APIs:
 - Face API
 - face identification
 - Speaker Recognition API
 - speaker verification
 - Emotion API
 - Not necessary for authentication (fancy addition)

Face Identification - Enrollment

- The users that have to be recognized correctly (genuine users) must be registered
 - The system creates a new person associated to a group, which is defined by the administrator
- Different photos with possible PIE variations per user
 - o multiple-template-based enrollment
- The image quality plays a crucial role
- Enrollment needs to be supervised

Face Identification - Operation

- After face detection, the photo is sent to the API
- The API's response is associated to a confidence value
 - if the confidence is greater than or equal to a threshold, the person is accepted; otherwise he/she is rejected

Voice Verification - Enrollment

- The API provides the user with the list of all possible acceptable recognition phrases
- Recording is completed successfully if the audio is at least 1s long and shorter than 15s
- The enrollment requires the user to record his/her voice three times with good quality (otherwise the API calls for repetition)
 - multiple-template-based enrollment

Voice Verification - Operation

- The user is required to speak up the phrase chosen during enrollment
- The user is either accepted or rejected
 - Levels confidence for speaker recognition: Low, Normal, High
- Spoken phrase attached to the response
 - Useful for debugging and logging purposes

Voice Verification - Limitations

- Noise reduction used by the API might be insufficient
 - Misleading rejection of genuine user
 - Repeating voice enrollment for many times

Emotion Detection

- Feature to catch the user's mood
- The input is the first picture taken during face detection
- The module takes some action accordingly with the emotion recognized, for example playing a song
- The actions that the module takes have as an objective to improve or favor the mood

Emotion Detection

- The emotions that the module is able to **detect** are:
 - o happiness, surprise, fear, disgust, neutral, sadness, anger and contempt
- Limitations:
 - Users could express their emotions in an ambiguous way
 - Facial expressions have to be emphasized to get recognized correctly

```
"faceRectangle": {
 "left": 68,
  "top": 97,
  "width": 64,
  "height": 97
"scores": {
  "anger": 0.00300731952,
  "contempt": 5.14648448E-08,
  "disgust": 9.180124E-06,
  "fear": 0.0001912825,
  "happiness": 0.9875571,
  "neutral": 0.0009861537,
  "sadness": 1.889955E-05,
  "surprise": 0.008229999
```

Experiments - Face Recognition

- Two experiments with two different datasets:
 - HD-Master of Computer Science (HD-MCS), an **in-house manually** constructed dataset
 - Labeled Faces in the Wild (LFW) subset of ~1500 images
- Response Time (RT) analysis

Experiments - HD-MCS Dataset

- 15 students from the Master's CS
 Degree at "La Sapienza" University
 - 3 different position for each individual (Straight, Half-Left, Half-Right)
- EER = 0 which implies optimal discriminative power
- The threshold adopted is, thus, equal to 0.5
- Approximation with sigmoid curves

Experiments - LFW (subset)

- Subset of the LFW dataset
 - ~1500 face images
 - 200 persons 50 genuine & 150 impostors
- EER = 0.02
 - The dataset consists of the Olsen twins that generate false alarms
- Threshold setted to 0.7 in order to minimize these false alarms
- Approximation with sigmoid curves

Experiments - Face Identification RT

- 3 trained set
 - o 1 person : 6 samples
 - o 1 person: 12 samples
 - 2 person: 12 + 12 samples
- Same mean RT almost
- Most important aspect is the network bandwidth
- Red peak is a network problem

Experiments - Emotion Detection

- Tests conducted using **KDEF** [1] emotion dataset:
 - Three kinds of positions (half-right, half-left, straight)
 - o 7 emotion taken into account (contempt was excluded because it doesn't belong to the basic emotions, however some images are recognized as contempt by the MCS API)
 - 140 images per emotion
 - Results are represented in a confusion matrix
 - rows are the genuine emotion
 - columns the API result

Experiments - Emotion Detection (straight)

	Anger	Disgust	Contempt	Fear	Sadness	Happiness	Surprise	Neutral	Error
Anger	55	2.1429	2.8571	0.7143	2.8571	0	0.7143	35.7143	0
Disgust	7.8571	71.4286	0	0	14.2857	2.1429	0	4.2857	0
Fear	1.4286	0.7143	2.1429	17.142	20.7143	4.2857	42.8571	10.7143	0
Sadness	0	0	0	0	86.4286	0.7143	0.7143	12.1429	0
Happiness	0	0	0	0	0	100	0	0	0
Surprise	0	0	0	0	0	0.7143	95.7143	3.5714	0
Neutral	0	0	0	0	0	0	0	100	0

Experiments - Emotion Detection Notes

- The best results were reported by the straight position
- There's some **confusion** with anger and fear
- Happiness is the emotion that outperforms the others
- As expected, when half-left and half-right position are taken into account Neutral emotion gains, in most cases, a high (either true or wrong) recognition rate

Conclusions

- The aim of the system is to provide a cheap and easy-to implement solution for biometric control of accesses exploited "at home"
- In order to test the feasibility of adopting MCS in a challenging context, experiments on face recognition have been carried out on both a in-house collected dataset, and on LFW (at present one of the most adopted in literature)
- The results show that the system has a good capability to distinguish the faces of people registered in the system from intruders

Future work

- Speech tests are planned for the future because of the nature of the API
 - Speaker and speech recognition at the same time
- A field test will evaluate the performance in a real context
- Implementation of Telegram chatBot could be added for:
 - o remote operation by the housekeeper, e.g., remote door opening and check of refused people
 - o capability to extend the gallery with incorrectly rejected images
- Addition of (local) anti-spoofing algorithms could improve system security

THANK YOU!

QUESTIONS?

Citations

[1] M. De Marsico - "Face Recognition 2D", Biometric System Lectures, University "La Sapienza" (a.y. 2016/2017)

[2] M. Cahoui, A. Elkefi, W. Bellil, C. Ben Amor - "A Survey of 2D Face Recognition Techniques", REGIM: Research Groups on Intelligent Machines, University of Sfax, National School of Engineers (ENIS), Sfax, Tunisia (2016)

[3] L. Muda, M. Begam, I. Elamvazuthi - "Voice Recognition Algorithms using Mel Frequency Cepstral Coefficient (MFCC) and Dynamic Time Warping (DTW) Techniques", Journal of Computing, Volume 2, Issue 3 (2010)

Face Detection Module - Another approach

- Algorithm by Hsu, Mottaleb and Jain (2002)
 - Two principal steps:
 - Face candidates detection
 - Face candidates verification through facial features detection

Face Detection Module - Hsu et al. Face candidates detection

- Illumination compensation
 - Normalize the lighting because the skin tone depends on the scene overall illumination
- Colour space transformation
 - Transform RGB to YCbCr because two near colours in the RGB space doesn't mean they have to be similar
- Localization based on skin model

Face Detection Module - Hsu et al.

Face candidates verification through facial feature detection

Eye localization

- Relies on the observation that the region around eyes is characterized by high values of Cb and low values of Cr
- Mouth localization
- Face contour

Face Detection Module - Hsu et al.

Face candidates verification through facial feature detection

- Eye localization
- Mouth localization
 - The Cr component is higher than Cb
 - The response to Cr /Cb is low, while the response to Cr^2 is high
- Face contour

Face Detection Module - Hsu et al.

Face candidates verification through facial feature detection

- Eye localization
- Mouth localization
- Face contour
 - Analyze all triangles composed by two eyes and a mouth
 - For each triangles assign a specific score and return the highest scored triangle as a face contour

Experiments - HD-MCS Dataset

- 15 students from the Master's CS
 Degree at "La Sapienza" University
 - 3 different position for each individual (Straight, Half-Left, Half-Right)
- EER = 0 which implies optimal discriminative power
- The threshold adopted is, thus, equal to 0.5

Experiments - Labeled Faces in the Wild

- EER = 0.02
 - The dataset consists of the Olsen twins that generate false alarms
- Threshold setted to 0.7 in order to
 minimize these false alarms

Smart Peephole as a Multibiometric System

- Sort of a Multibiometric Decision Level Fusion System
- The user is accepted if:
 - Face recognition has a positive outcome

AND

Speak recognition has a positive outcome

OR

- Recovery password inserted correctly
- The face and speaker modules work in serial and not in parallel

Movement Detection - DOPFlow Algorithm

The image represents the motion vectors between frames **f** and **f-1**.

In this case, there is a head movement **from left to right**.

- Viola Jones intuition in 2001
- Uses classifiers trained with positive and negative examples
 - Extracts features
 - Selects discriminative ones
 - o 2 classes: face, non face
- Boosting

- Haar-like feature considers adjacent rectangular regions at a specific location in a detection window
- Sums up the pixel intensities in each region
- Calculates the difference between these sums

Haar-like feature examples:

Haar-cascade Detection - Applied

- Uses series of weak classifiers to build a strong one (Boosting)
- Why cascade?
 - The result from the previous group of weak classifiers is sent to the followers group of more complex classifiers
 - o if a sub-windows is rejected, it's not sent to the followers ones.

Smart Peephole as a Multibiometric System

Face Recognition - example

- 1. A photo is given as input using a REST call
- 2. API response
- Check the confidence and output Accept/Reject

Speech Verification Module - Example

• Example of a successful call

Emotion detection

- The actions that the module takes have as an objective to:
 - Improve the mood if the emotion recognized is negative (i.e.: fear, anger, sadness, contempt)
 - **Favor** the mood (i.e.: happiness, surprise, neutral)

Emotion detection

Example of successful call

```
"faceRectangle": {
 "left": 68,
  "top": 97,
 "width": 64,
  "height": 97
"scores": {
  "anger": 0.00300731952,
  "contempt": 5.14648448E-08,
  "disgust": 9.180124E-06,
  "fear": 0.0001912825,
  "happiness": 0.9875571,
  "neutral": 0.0009861537,
  "sadness": 1.889955E-05,
  "surprise": 0.008229999
```

- There are different scores for each emotion type
- The emotion recognized is the one that has the **maximum** value
 - happiness

Emotion detection

Limitations:

- Users could express their emotions in an ambiguous way
- Facial expressions have to be emphasized to get recognized correctly

Experiments - Emotion detection Half-Left Results

	Anger	Disgust	Fear	Sadness	Happiness	Surprise	Neutral	Error
Anger	10.7143	4.2857	0	3.5714	0	0	81.4286	0
Disgust	7.1426	57.8571	0	16.4286	2.8571	0	14.2857	1.4286
Fear	1.4287	2.1429 (3.5714	15	7.1429	36.4286	34.2857	0
Sadness	0	0	0	63.5714	1.4286	0	34.2857	0
Happiness	0	0	0	0	100	0	0	0
Surprise	0	0	0	0	0.7143	85	14.2857	0
Neutral	0	0	0	0	0	0	99.2857	0.7143

Experiments - Emotion detection Half-Right Results

	Anger	Disgust	Fear	Sadness	Happiness	Surprise	Neutral	Error
Anger	17.1429	2.1429	0	0.7143	0.7143	0.7143	78.5714	0
Disgust	13.5714	53.5714	0	13.5714	2.1429	0	17.1429	0
Fear	1.4286	2.1429	2.8571	13.5714	4.2857	36.4286	39.2857	0
Sadness	0	0	0	72	1	0	67	0
Happiness	0	0	0	0	99.2857	0	0.7143	0
Surprise	0	0	0	0	0.7143	78.5714	20	0
Neutral	0	0	0	0	0	0	99.2857	0.71423

Experiments - Further Considerations (abbiamo preso 200 foto di LFW)

- The measurements taken into account aren't sufficient for a complete evaluation
- We must consider:
 - Image size and quality
 - Number of images inside the dataset
 - Number of PIE variation
- It's better to use standard datasets, but authorization for usage is required as in the following case:
 - Simulations for the FRVT 2002 experiments resulted impossible

Experiments - Voice verification RT

