Package 'MOM'

August 19, 2025

Description A collection of functions to do some statistical inferences. On estimation, it has the func-

Type Package

Version 0.1.0

Title Estimation and Testing of Hypothesis

tion to get the method of moments estimates, the sampling interval. In terms of testing it has function of doing most powerful test.							
nports actuar, VGAM							
License MIT + file LICENSE							
Encoding UTF-8							
RoxygenNote 7.3.2							
VignetteBuilder knitr							
Suggests knitr, rmarkdown, testthat (>= 3.0.0)							
Config/testthat/edition 3							
NeedsCompilation no							
Author Produymna Ghose Majumdar [aut, cre], Sangbartta Banerjee [aut]							
Maintainer Produymna Ghose Majumdar <ghosemajumdarproduymna@gmail.com></ghosemajumdarproduymna@gmail.com>							
Repository CRAN							
Date/Publication 2025-08-19 15:20:08 UTC							
Contents							
beta_est							
binom_est	ŀ						
chisq_est	1						
exp_est	4						
gamma_est							
geom_est							
lnorm_est							
logarithmic_est							
nbinom_est							

beta_est

Index																							14
	sim_sam_in	t										•	•	•		 •	•				•		12
	sim_mp_tes	t		 																			10
	pois_est																						
	norm_est .																						

beta_est

Method of Moments Estimation of Beta distribution

Description

function to get the method of moment estimate(s) of beta distribution

Usage

```
beta_est(
  data,
  unknown = c("shape1", "shape2", "both"),
  shape1 = NULL,
  shape2 = NULL,
  plot = TRUE,
  curvecol = "red",
  ...
)
```

Arguments

data A numeric vector.

unknown A character string specifying which parameter is (are) unknown to the user.

shape1, shape2 Non-negative parameters of the Beta distribution.

plot logical which controls whether the histogram of the data along with the density

curve of the theoretical beta distribution with the estimated parameters.

curvecol color of the theoretical density curve

... additional plotting parameters

Value

the estimated parameters by the method of moments of the data assuming the underlying distribution is beta distribution

```
beta_est(rbeta(1000,shape1=2,shape2=1),unknown="shape2",shape1=2)#shape1 is known beta_est(rbeta(1000,shape1=2,shape2=1),unknown="shape1",shape2=1)#shape2 is known beta_est(rbeta(1000,shape1=2,shape2=1),unknown="both")#both will be estimated
```

binom_est 3

binom_est

Method of Moments Estimation of Binomial distribution

Description

function to get the method of moment estimate(s) of binomial distribution

Usage

```
binom_est(
  data,
  size.known = FALSE,
  size = NULL,
  plot = TRUE,
  curvecol = "red",
  ...
)
```

Arguments

data	A numeric vector.
size.known	logical indicating whether the size of the binomial distribution is known or not.
size	integer valued parameter of binomial distribution.
plot	logical which controls whether the barplot of the data along with the probability curve of the theoretical binomial distribution with the estimated parameters.
curvecol	color of the theoretical probability curve
	additional plotting parameters

Value

the estimated parameters by the method of moments of the data assuming the underlying distribution is binomial distribution

```
binom\_est(rbinom(1000, size=5, prob=0.2), size. known=TRUE, size=5) \# no \ of \ trials \ known binom\_est(rbinom(1000, size=10, prob=0.6))
```

4 exp_est

ch	7	CU	_e	c+
CII	_	SЧ		sι

Method of Moments Estimation of Chi-Square distribution

Description

function to get the method of moment estimate(s) of chi-square distribution

Usage

```
chisq_est(data, plot = TRUE, curvecol = "red", ...)
```

Arguments

data A numeric vector.

plot logical which controls whether the histogram of the data along with the density

curve of the theoretical chi square distribution with the estimated parameters.

curvecol color of the theoretical density curve

... additional plotting parameters

Value

the estimated degree of freedom by the method of moments of the data assuming the underlying distribution is chi square distribution

Examples

```
chisq_est(rchisq(1000,df=3))
```

exp_est

Method of Moments Estimation of Exponential Distribution

Description

function to get the method of moment estimate of exponential distribution

Usage

```
exp_est(data, plot = TRUE, curvecol = "red", ...)
```

Arguments

data An object of numeric vector.

plot logical which controls whether the histogram of the data along with the density

curve of the theoretical exponential distribution with the estimated parameters.

curvecol color of the theoretical density curve

. . . additional plotting parameters

gamma_est 5

Value

the estimated positive rate parameter by the method of moments of the data assuming the underlying distribution is exponential distribution

Examples

```
exp_est(rexp(1000,rate=0.1))
```

gamma_est

Method of Moments Estimation of Gamma distribution

Description

function to get the method of moment estimate(s) of gamma distribution

Usage

```
gamma_est(
  data,
  unknown = c("shape", "scale", "both"),
  shape = NULL,
  scale = NULL,
  plot = TRUE,
  curvecol = "red",
  ...
)
```

Arguments

data A numeric vector.

unknown A character string specifying which parameter is (are) unknown to the user.

shape, scale positive shape and scale parameters of the gamma distribution.

plot logical which controls whether the histogram of the data along with the density curve of the theoretical gamma distribution with the estimated parameters.

curvecol color of the theoretical density curve

additional plotting parameters

Value

the estimated parameters by the method of moments of the data assuming the underlying distribution is gamma distribution

```
gamma_est(rgamma(1000,shape=2,scale=1),unknown="scale",shape=2)#shape is known gamma_est(rgamma(1000,shape=2,scale=1),unknown="shape",scale=1)#scale is known gamma_est(rgamma(1000,shape=2,scale=1),unknown="both")#both will be estimated
```

6 lnorm_est

geom_est

Method of Moments Estimation of Negative Binomial distribution

Description

function to get the method of moment estimate(s) of negative binomial distribution

Usage

```
geom_est(data, plot = TRUE, curvecol = "red", ...)
```

Arguments

data A numeric vector.

plot logical which controls whether the barplot of the data along with the probability

curve of the theoretical negative binomial distribution with the estimated param-

eters.

curvecol color of the theoretical probability curve

... additional plotting parameters

Value

the estimated parameters by the method of moments of the data assuming the underlying distribution is geometric distribution

Examples

```
geom_est(rgeom(1000,prob=0.2))
```

lnorm_est

Method of Moments Estimation of Log-Normal distribution

Description

function to get the method of moment estimate(s) of log-normal distribution

Usage

```
lnorm_est(
  data,
  unknown = c("meanlog", "sdlog", "both"),
  meanlog = NULL,
  sdlog = NULL,
  plot = TRUE,
    curvecol = "red",
    ...
)
```

logarithmic_est 7

Arguments

data A numeric vector.

unknown A character string specifying which parameter is (are) unknown to the user.

meanlog, sdlog mean and standard deviation of the distribution on the log scale.

plot logical which controls whether the histogram of the data along with the density

curve of the theoretical log normal distribution with the estimated parameters.

curvecol color of the theoretical density curve

... additional plotting parameters

Value

the estimated parameters by the method of moments of the data assuming the underlying distribution is log normal distribution

Examples

```
lnorm_est(rlnorm(1000),unknown="meanlog",sdlog=1)#meanlog unknown, but sdlog known
lnorm_est(rlnorm(1000),unknown="sdlog",meanlog=0)#sdlog unknown, but meanlog known
lnorm_est(rlnorm(1000),unknown="both")#both will be estimated
```

logarithmic_est

Method of Moments Estimation of Logarithmic distribution

Description

function to get the method of moment estimate(s) of logarithmic distribution

Usage

```
logarithmic_est(data, plot = TRUE, curvecol = "red", ...)
```

Arguments

data A numeric vector.

plot logical which controls whether the barplot of the data along with the probability

curve of the theoretical poisson distribution with the estimated parameters.

curvecol color of the theoretical probability curve

... additional plotting parameters

Value

the estimated parameters by the method of moments of the data assuming the underlying distribution is logarithmic distribution

```
require(actuar)
logarithmic_est(rlogarithmic(1000,prob=0.6))
```

8 nbinom_est

nbinom_est

Method of Moments Estimation of Negative Binomial distribution

Description

function to get the method of moment estimate(s) of negative binomial distribution

Usage

```
nbinom_est(
  data,
  size.known = FALSE,
  size = NULL,
  plot = TRUE,
  curvecol = "red",
  ...
)
```

Arguments

data	A numeric vector.
size.known	logical indicating whether the size of the binomial distribution is known or not.
size	integer valued parameter of binomial distribution.
plot	logical which controls whether the barplot of the data along with the probability curve of the theoretical negative binomial distribution with the estimated parameters.
curvecol	color of the theoretical probability curve
	additional plotting parameters

Value

the estimated parameters by the method of moments of the data assuming the underlying distribution is negative binomial distribution

```
\label{lem:nbinom_est} $$ nbinom_est(rnbinom(1000,size=5,prob=0.2),size.known=TRUE,size=5)$ $$ no of successes known $$ nbinom_est(rnbinom(1000,size=10,prob=0.6))$ $$ $$
```

norm_est 9

norm_est

Method of Moments Estimation of Normal distribution

Description

function to get the method of moment estimate(s) of normal distribution

Usage

```
norm_est(
  data,
  unknown = c("mean", "sd", "both"),
  mean = NULL,
  sd = NULL,
  plot = TRUE,
  curvecol = "red",
  ...
)
```

Arguments

data	A numeric vector.
unknown	A character string specifying which parameter is (are) unknown to the user.
mean, sd	mean and standard deviation of the distribution of the normal distribution, sd must be strictly positive.
plot	logical which controls whether the histogram of the data along with the density curve of the theoretical normal distribution with the estimated parameters.
curvecol	color of the theoretical density curve
	additional plotting parameters

Value

the estimated parameters by the method of moments of the data assuming the underlying distribution is normal distribution

```
\label{lem:norm_est} norm_est(rnorm(1000),unknown="mean",sd=1)\#mean\ unknown,\ but\ sd\ known\\ norm_est(rnorm(1000),unknown="sd",mean=0)\#sd\ unknown,\ but\ mean\ known\\ norm_est(rnorm(1000),unknown="both")\#both\ will\ be\ estimated
```

sim_mp_test

DO1S	est

Method of Moments Estimation of Poisson distribution

Description

function to get the method of moment estimate(s) of poisson distribution

Usage

```
pois_est(data, plot = TRUE, curvecol = "red", ...)
```

Arguments

data	A numeric vector.
plot	logical which controls whether the barplot of the data along with the probability curve of the theoretical poisson distribution with the estimated parameters.
curvecol	color of the theoretical probability curve

... additional plotting parameters

Value

the estimated parameters by the method of moments of the data assuming the underlying distribution is poisson distribution

Examples

```
pois_est(data=rpois(1000,lambda=2),plot=TRUE)
pois_est(data=rpois(1000,lambda=0.2),plot=FALSE)#will not give the plot
```

 sim_mp_test

Most Powerful Test by Neyman-Pearson Lemma

Description

It can be used to check whether a data comes from null distribution or from the alternative distribution

sim_mp_test 11

Usage

```
sim_mp_test(
  data,
null.dist = c("uniform", "normal", "lognormal", "gamma", "cauchy", "pareto", "weibull",
        "rayleigh", "laplace", "beta", "binomial", "poisson", "negativebinomial",
        "geometric", "t", "f", "logarithmic"),
null.par,
  alter.dist = c("uniform", "normal", "lognormal", "gamma", "cauchy", "pareto",
        "weibull", "rayleigh", "laplace", "beta", "binomial", "poisson", "negativebinomial",
        "geometric", "t", "f", "logarithmic"),
        alter.par,
        test.level = 0.95,
        sim.size = 1,
        power = TRUE
)
```

Arguments

data	A numeric vector
null.dist	The family of null distribution
null.par	The parameter values of the null distribution
alter.dist	The family of alternative distribution
alter.par	The parameter values of the alternative distribution
test.level	The level of significance of the test
sim.size	simulation size, increasing it will gives more accuracy.
power	A loogical vector, whether power of the test will be calculated.

Details

This function mainly test whether data comes from the null distribution or alternative distribution. It uses the theory of the Most Powerful (MP) test. It basically uses simulation to get the p value and make the decision. Increasing sim.size give more accuracy as well as test can be failed if you increase it heavily.

Value

A list of class "momtest" will be returned having the following components:

Method The Method's Name

Data The first 6 elements of input data

Null.Distrbution The family of null distribution

Null.Parameter The parameter values of the null distribution

Alternative.Distrbution The family of alternative distribution

Alternative.Parameter The parameter values of the alternative distribution

Sample.Size The sample size

sim_sam_int

Significance.level The level of the significance of the test

Decision The Test Result, wheter the null hypotheis is rejected or not

Power Power of the Test

Examples

```
sim_mp_test(rnorm(100), null.dist="normal", null.par=c(0,1), alter.dist="cauchy", alter.par=c(0,1))
sim_mp_test(rnorm(100), null.dist="nor", null.par=c(2,1), alter.dist="nor", alter.par=c(0,1))
```

sim_sam_int

Simulated confidence interval of a statistic

Description

A function that returns a sampling interval for a statistic formed from random sample of certain probability distributions. The function generates the confidence interval using Monte Carlo simulations. The results might be unreliable if the resulting statistic has fat tailed distribution.

Usage

```
sim_sam_int(
  dist = c("normal", "lognormal", "gamma", "chisquare", "cauchy", "pareto", "weibull",
        "rayleigh", "laplace", "beta", "binomial", "poisson", "negativebinomial",
        "geometric", "t", "f", "uniform"),
    pop.par,
    FUN,
    side = c("lower", "upper", "both"),
    conf.coeff = 0.95,
    range = 1,
    n = 100,
    sim.size = 1000
)
```

Arguments

dist	The parent population distribution
pop.par	The value of the population parameters
FUN	The statistic as a function of random data
side	The type of the confidence interval (both sided, only lower bound or only upper bound)
conf.coeff	The confidence coefficient of the sampling interval
range	It controls the length of the interval in which the boundary points are searched for. One may increase the range in case the distribution of statistic is suspected to be fat tailed.
n	sample size
sim.size	simulation size, increasing it will gives more accuracy.

sim_sam_int 13

Details

The function asks the user to specify a distribution from which random sample is drawn and to specify a function of the random variables for which an approximate sampling Interval is to be provided. The function then uses Monte Carlo simulation technique to provide an approximate sampling interval of the statistic. This function might be useful when the sampling distribution for a particular statistic is unknown, but that statistic might be useful in drawing meaningful inference. Although this function is inferior to other sophisticated techniques to deal with this problem, it might come handy for a beginner.

Value

A list of class "momint" will be returned having the following components:

Method The Method's Name

Population. Distribution The family of population distribution

Parameter The parameter values of the population distribution

Statistic The function of which the interval will be provided

Sample.Size The sample size

Confidence.Coefficient The confidence coefficient of the sampling interval

Sampling.Interval The estimated sampling interval

```
sim_sam_int(dist="normal",pop.par=c(0,1),FUN=mean,side="both")
sim_sam_int(dist="binomial",pop.par=c(5,0.5),FUN=sum,side="lower")
```

Index

```
beta_est, 2
binom_est, 3
chisq_est, 4
exp_est, 4
gamma_est, 5
geom_est, 6
lnorm_est, 6
logarithmic_est, 7
nbinom_est, 8
norm_est, 9
pois_est, 10
sim_mp_test, 10
sim_sam_int, 12
```