Uniform error bounds of the ensemble transform Kalman filter for infinite-dimensional dynamics with multiplicative covariance inflation

Kota Takeda^{1,2}, Takashi Sakajo¹

Department of Mathematics, Kyoto University
 Data assimilation research team, R-CCS, RIKEN

AIMR Math Group Seminar, R-CCS, Apr. 19, 2024

Uniform error bounds of the ETKF for infinite-dimensional dynamics with multiplicative covariance inflation https://arxiv.org/abs/2402.03756

Kota Takeda

- Ph. D. student in Department of Mathematics at Kyoto Univ.
- (also) Junior Research Associate in DA team at RIKEN.
- Research interests:
 - Mathematics of Data Assimilation(DA)
 - Uncertainty Quantification (UQ) related to fluid dynamics
 - Numerical analysis (deterministic & stochastic)
 - Topological Data Analysis (TDA)

Website: https://kotatakeda.github.io/

Data Assimilation(DA)

Seamless integration of observation data into numerical models.

Mainly applied to numerical weather prediction.

Math of DA

Situation:

- Little mathematical explanation for nonlinear DA
 - \rightarrow Motivation
- Only few mathematicians working on in Japan
 - \rightarrow Need to expand
- DA provides many mathematical problems related to fields such as

PDE, dynamical system, inverse problem, optimization, probability, stochastic analysis, numerical analysis, computational science ...

Goal:

Not only explain but also contribute to applied fields of DA

Today's talk:

Basic explanation of a Nonlinear DA algorithm in an ideal setting.

- 1 Introduction
- 2 Background
 - Setup
 - EnKFs: PO & ETKF
- 3 Math of DA
 - Dissipative & Chaotic Dynamics
 - Error Analysis of EnKF
- 4 Results
 - Previous Result: PO + additive inflation
 - Our Result: ETKF + multiplicative inflation
- 5 Summary & Discussion
- 6 Appendix

Spaces

Only focus on a finite dimensional case in this talk.

- $\mathcal{X} = \mathbb{R}^{N_x}$: state space with a norm $\|\cdot\|$ and a inner product $\langle \cdot, \cdot \rangle$.
 - $\mathcal{Y} = \mathbb{R}^{N_y} \subset \mathcal{X}$: observation space. $(N_x, N_y \in \mathbb{N}, N_x \geq N_y)$
- In general, we can generalize \mathcal{X} to a separable Hilbert space and the some results still hold by the similar way. See the paper [1].

State space model

Dynamical model $(\mathcal{F} \leftrightarrow \mathcal{M})$

$$\mathcal{F}: \mathbb{R}^{N_x} \to \mathbb{R}^{N_x}$$

(Continuous)
$$\frac{d\mathbf{x}^{\dagger}}{dt} = \mathcal{F}(\mathbf{x}^{\dagger}), \quad \mathbf{x}^{\dagger}(0) = \mathbf{x}_{0}^{\dagger} \in \mathbb{R}^{N_{x}}.$$
 (1)

Equivalently, time step h > 0, $\mathcal{M} : \mathbb{R}^{N_x} \to \mathbb{R}^{N_x}$,

(Discrete)
$$\mathbf{x}_{i}^{\dagger} = \mathcal{M}(\mathbf{x}_{i-1}^{\dagger}), \quad j \in \mathbb{N}.$$
 (2)

Observation model

Observation period h,

$$y_j = H\mathbf{x}_j^{\dagger} + \xi_j, \quad \text{i.i.d. } \xi_j \sim N(0, R),$$
 (3)

where $H \in \mathbb{R}^{N_y \times N_x}$ and $R \in \mathbb{R}^{N_y \times N_y}$ positive definite.

State space model & Filtering problem

Uncertain initial state $\mathbf{x}_0^{\dagger} \sim \mu_0 \rightarrow \text{estimate } \mathbf{x}_j^{\dagger}$.

Filtering Problem

Estimate \mathbf{x}_{j}^{\dagger} by probability distribution $\mathbb{P}(d\mathbf{x}_{j}|Y_{j})$ provided observations $Y_{j} = \{y_{1}, \dots, y_{j}\}.$

Data assimilation process

2 steps in one cycle: (i) forecast & (ii) analysis.

issue

If $\mathcal M$ is nonlinear, it is difficult to compute propagation of uncertainty in (i) \to employ EnKF.

- 1 Introduction
- 2 Background
 - Setup
 - EnKFs: PO & ETKF
- 3 Math of DA
 - Dissipative & Chaotic Dynamics
 - Error Analysis of EnKF
- 4 Results
 - Previous Result: PO + additive inflation
 - Our Result: ETKF + multiplicative inflation
- 5 Summary & Discussion
- 6 Appendix

Notations: ensemble

Ensemble \rightarrow a set of particle.

Preparing for ensemble approximation of a probability distribution $\mathbb{P}(dx_j|Y_j)$ to estimate the true state.

- $X^f = [\mathbf{x}^{f(1)}, \dots, \mathbf{x}^{f(m)}] \in \mathcal{X}^m \in \mathbb{R}^{N_{\mathsf{X}} \times m}$: forecast ensemble, $X^a = [\mathbf{x}^{a(1)}, \dots, \mathbf{x}^{a(m)}] \in \mathcal{X}^m \in \mathbb{R}^{N_{\mathsf{X}} \times m}$: analysis ensemble $(m \in \mathbb{N})$.
- for X^f , mean: $\overline{\mathbf{x}}^f = \frac{1}{m} \sum_{n=1}^m \mathbf{x}^{f(n)} \in \mathbb{R}^{N_X}$, deviations: $dX^f = [\mathbf{x}^{f(n)} \overline{\mathbf{x}}^f]_{n=1}^m \in \mathbb{R}^{N_X \times m}$,

ensemble covariance matrix:

$$P^f = \operatorname{Cov}(X^f) := \frac{1}{m-1} dX^f dX^{f^\top} \in \mathbb{R}^{N_{\mathsf{X}} \times N_{\mathsf{X}}}.$$

(similarly for analysis ensemble X^a)

Ensemble Kalman filter (EnKF)

Ensemble approximation

$$\begin{aligned} X_j^a &= [\mathbf{x}_j^{a(n)}]_{n=1}^m, \left(X_j^f = [\mathbf{x}_j^{f(n)}]_{n=1}^m\right) \in \mathcal{X}^m, \\ \mathbb{P}(d\mathbf{x}_j|Y_j) &\approx \frac{1}{N} \sum_{n=1}^m \delta_{\mathbf{x}_j^{a(n)}}(dv_j), \quad \text{(similarly } \mathbb{P}(d\mathbf{x}_j|Y_{j-1})). \end{aligned}$$

Algorithm:

(i) $X_{j-1}^a \to X_j^f$: Evolve each member,

$$\mathbf{x}_{j}^{a(n)} = \mathcal{M}(\mathbf{x}_{j-1}^{f(n)}), \quad n = 1, \dots, m.$$

- (ii) $X_j^f, y_j \to X_j^a$: Incorporate y_j based on least square. 2 methods.
 - PO [2, 3]: Stochastic
 - ETKF [4, 6, 7]: Deterministic

Perturbed Observation (PO) methods

(ii) $X_j^f, y_j \to X_j^a$: Replicating observations by adding random perturbations.

$$y_j^{(n)} = y_j + \xi_j^{(n)}, \quad \xi_j^{(n)} \sim N(0, R), \quad n = 1, \dots, m.$$

Kalman update for each member:

$$\mathbf{x}_{j}^{a(n)} = (I_{N_{x}} - K_{j}H)\mathbf{x}_{j}^{f(n)} + K_{j}\mathbf{y}_{j}^{(n)}, \quad n = 1, \dots, m.$$
(Kalman gain) $K_{j} := P_{j}^{f}H^{\top}(HP_{j}^{f}H^{\top} + R)^{-1}, \ P_{j}^{f} := \text{Cov}(X_{j}^{f}).$

$$\rightarrow \text{Simple, but stochastic}$$

Note: The PO method requires many ensemble to reduce errors induced by random perturbations.

^[3] G. Burgers, P. Jan van Leeuwen, and G. Evensen, Analysis Scheme in the Ensemble Kalman Filter, Mon. Wea. Rev., 126, 1719-1724, 1998.

Ensemble $\underline{\text{Transform}}$ Kalman filter ($\underline{\text{E}}\underline{\text{T}}$ KF)

(ii)
$$X_j^f, y_j \rightarrow X_j^a$$
: $X_j^f = \overline{\mathbf{x}}_j^f + dX_j^f$.

mean
$$\overline{\mathbf{x}}_{j}^{a} = (I_{N_{x}} - K_{j}H)\overline{\mathbf{x}}_{j}^{f} + K_{j}y_{j},$$
 (4)
dev. $dX_{j}^{a} = dX_{j}^{f}T_{j},$

where the transform matrix $T_j \in \mathbb{R}^{N \times N}$ holds

$$Cov(dX_j^f T_j) = (I_{N_x} - K_j H) P_j^f.$$
 (5)

Finally, put $X^a = \overline{\mathbf{x}}^a + dX^a$.

→ Deterministic

^{[4] .} H. Bishop, B. J. Etherton, and S. J. Majumdar, Adaptive Sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical Aspects, Mon. Wea. Rev., 129, pp. 420–436, 2001.

ETKF: Illustration

ETKF: Motivation

In (5), we arrange T_j so that the analysis covariance $P_j^a = \text{Cov}(dX_j^a)$ corresponds to the desired one derived from the KF.

$$P_j^a = \text{Cov}(dX_j^f T_j) = (I_{N_x} - K_j H) P_j^f$$
.

analysis cov. desired cov.

 \rightarrow The ETKF is 'consistent' with the KF when applied to a linear and Gaussian system.

ETKF: How to get T_j

Remark 1

 T_j is given by

$$T_j = \left(I_m + \frac{1}{m-1} dX_j^{f^\top} H^\top R^{-1} H dX_j^f\right)^{-\frac{1}{2}} \in \mathbb{R}^{m \times m}. \quad (6)$$

See the detail derivation in the paper [1].

Covariance inflation numerical technique for EnKF

Underestimation of P_j^f through DA cycle causes a poor estimation. \rightarrow Stabilize estimation by inflating P_i^f before the analysis step.

Two basic methods

- lacksquare additive (lpha>0): $P_j^f o P_j^f+lpha^2I_{N_x}$ (EnKF)
- multiplicative $(\alpha>1)$: $P_j^f o lpha^2 P_j^f$ (EnKF) or $dX_j^f o lpha dX_j^f$ (ETKF)

Remark

Additive inflation technique is not applicable to the ETKF because P_j^f is not explicitly used in the computation of T_j :

$$T_j = (I_m + \frac{1}{m-1}(dX_j^f)^\top H^\top R^{-1} H dX_j^f)^{-\frac{1}{2}}$$

Numerical Example

OSSE: ETKF(m = 25) + Lorenz 96(N = 40) H = I, R = I, dt = 0.1, obs. per 5 steps.

multiplicative inflation $\alpha = 1.2$

Figure: RMSEs of ETKF, ETKF + inflation, &observation.

Basic information in DA

Lorenz 96 chaotic advection model on a periodic domain. $x \in \mathbb{R}^N$, F: external force.

$$\frac{dx^{i}}{dt} = (x^{i+1} - x^{i-2})x^{i-1} - x^{i} + F, \quad i = 1, \dots, N,$$

$$x^{-1} = x^{N-1}, x^{0} = x^{N}, x^{N+1} = x^{1}.$$

OSSE (Observing System Simulation Experiment)

- Compute a true trajectory $(\mathbf{x}_i^{\dagger})_{i=1}^J$ for $J \in \mathbb{N}$.
- 2 Generate observations $(y_j)_{j=1}^J$ from $(\mathbf{x}_j^{\dagger})_{j=1}^J$.
- Assimilate with $(y_j)_{j=1}^J$ and obtaining analysis values $(\overline{\mathbf{x}}_i^a)_{j=1}^J$.
- 4 Compute RMSE between x_i^{\dagger} and \overline{x}_i^a :

RMSE at time
$$j = \frac{1}{\sqrt{N_x}} \| \mathbf{x}_j^\dagger - \overline{\mathbf{x}}_j^a \|.$$

- 1 Introduction
- 2 Background
 - Setup
 - EnKFs: PO & ETKF
- 3 Math of DA
 - Dissipative & Chaotic Dynamics
 - Error Analysis of EnKF
- 4 Results
 - Previous Result: PO + additive inflation
 - Our Result: ETKF + multiplicative inflation
- 5 Summary & Discussion
- 6 Appendix

Target dynamics

Dissipative & Chaotic dynamics such as

Lorenz63, 96 equations, and incompressible 2D Navier-Stokes equations.

Many dynamical models related to geoscience also exhibit this behaviors.

Example: Lorenz 96, $\mathbf{x} \in \mathbb{R}^{40}$.

$$\frac{dx_i}{dt} = (x_{i+1} - x_{i-2})x_{i-1} - x_i + F .$$

nonlinear conserving linear dissipating forcing

We can generalize the dynamics by PDE like formulation:

$$\frac{du}{dt} + Au + B(u, u) = f, \quad u(0) = u_0.$$

A: linear dissipating, B: nonlinear conserving, f: external force.

Demonstration: Lorenz 63

```
See the typical behaviors $\displays \text{Lorenz simulator on a web browser:} \https://kotatakeda.github.io/lorenz-webgl/
```

Mathematical description: dissipative

Energy dissipation \rightarrow the trajectory is bounded on the state space.

Bounded by
$$\rho > 0$$

 $\exists \rho > 0$, s.t. $\forall x \in B(\rho) := \{x \in \mathcal{X} \mid ||x|| \le \rho\}$, $\mathcal{M}(x) \in B(\rho)$.

The bounded trajectory of Lorenz'63 model \rightarrow

Mathematical description: Chaotic

Error growth rate
$$\beta > 0$$

 $\exists \beta > 0$ s.t. $\forall x \in B(\rho), \forall z \in \mathcal{X},$
 $|\mathcal{M}(x) - \mathcal{M}(z)| \le e^{\beta h} |x - z|.$ (7)

 β provides the maximum of the exponential error growth rate.

Exponential error growth of Lorenz'63 model \rightarrow

^[2] D. Kelly et al., Well-Posedness and Accuracy of the Ensemble Kalman Filter in Discrete and Continuous Time, Nonlinearity, 27, 2579–2603, 2014.

How can we calculate the constants?

The bound radius ρ and the exponential error growth rate β have been estimated for Lorenz'63, '96 models and 2D Navier-Stokes equations [9, 10, 11].

However, for the complex models used in ocean and weather simulations, it is impossible to compute their constants analytically. → required to estimate them numerically.

^[9] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, 1997. [10] K. Hayden, E. Olson, and E. S. Titi, Discrete Data Assimilation in the Lorenz and 2D Navier-Stokes Equations, Physica D: Nonlinear Phenomena, 240, 1416–1425, 2011. [11] K. J. H. Law, et al., Filter accuracy for the lorenz 96 model: Fixed versus adaptive observation operators., PHYSICA D-NONLINEAR PHENOMENA, 325, 1–13, JUN 15 2016

Assumption to dynamics

Assume these conditions for models dynamics ${\mathcal M}$ in the following analysis.

Bounded by
$$\rho > 0$$

 $\exists \rho > 0$, s.t. $\forall x \in B(\rho) := \{x \in \mathcal{X} \mid ||x|| \le \rho\}$, $\mathcal{M}(x) \in B(\rho)$.

Error growth rate
$$\beta > 0$$

 $\exists \beta > 0$ s.t. $\forall x \in B(\rho), \forall z \in \mathcal{X},$
 $|\mathcal{M}(x) - \mathcal{M}(z)| \le e^{\beta h} |x - z|.$ (8)

- 1 Introduction
- 2 Background
 - Setup
 - EnKFs: PO & ETKF
- 3 Math of DA
 - Dissipative & Chaotic Dynamics
 - Error Analysis of EnKF
- 4 Results
 - Previous Result: PO + additive inflation
 - Our Result: ETKF + multiplicative inflation
- 5 Summary & Discussion
- 6 Appendix

Mean Square Error (MSE)

Here, we evaluate the error between a variable $z \in \mathbb{R}^{N_x}$ and the true state $x^{\dagger} \in \mathbb{R}^{N_x}$ by the Mean Square Error (MSE).

MSE
$$= \frac{1}{N_x} ||x^{\dagger} - z||^2 = \frac{1}{N_x} \sum_{i=1}^{N_x} |x_i^{\dagger} - z_i|^2.$$

The analysis MSE E_j is given by

$$E_j = \frac{1}{N_x} || \mathbf{x}_j^{\dagger} - \overline{\mathbf{x}}_j^{a} ||^2.$$

The analysis MSE of each member $E_j^{(n)}$ is given by

$$E_j^{(n)} = \frac{1}{N_x} || \mathbf{x}_j^{\dagger} - \mathbf{x}_j^{a(n)} ||^2,$$

for n = 1, ..., m. We consider expectations of these values.

Strategy of the error analysis

Let E_j^a and E_j^f be the analysis and forecast MSE at time j. Strategy: estimating the change of the MSE in one DA cycle.

$$E_{j-1}^{\mathsf{a}} \overset{(i) forecast}{\underset{\times \theta_{j}^{i}}{\rightarrow}} E_{j}^{f} \overset{(ii) \mathit{analysis}}{\underset{\times \theta_{j}^{a}}{\rightarrow}} E_{j}^{\mathsf{a}}$$

The upper bound of MSE is

- lacksquare (i) expanded by $\mathcal{M}
 ightarrow$ rate $heta_j^f$
- (ii) contracted by assimilating the observation \rightarrow rate θ_j^a (& increased with observation noise).

Key

To obtain the bounded MSE, it is necessary to show

total rate
$$\theta_j = \theta_j^f \times \theta_j^a < 1$$
.

- 1 Introduction
- 2 Background
 - Setup
 - EnKFs: PO & ETKF
- 3 Math of DA
 - Dissipative & Chaotic Dynamics
 - Error Analysis of EnKF
- 4 Results
 - Previous Result: PO + additive inflation
 - Our Result: ETKF + multiplicative inflation
- 5 Summary & Discussion
- 6 Appendix

PO + additive inflation (previous result)

Consider dissipative & chaotic dynamics \mathcal{M} . Let an inflation parameter $\alpha > 0$. Assume that $H = I_{N_x}$, $R = r^2 I_{N_x}$ for r > 0. Let $E_j^{(n)}$ be MSE of each member $n = 1, \ldots, m$.

For analysis for the PO + additive inflation [2]

For any
$$n = 1, ..., m$$
 and $j \in \mathbb{N}$,
$$E_j^{(n)} \le \theta^j E_0^{(n)} + \frac{2\min\{m, N_x\}}{N_x} r^2 \frac{1 - \theta^j}{1 - \theta}. \tag{9}$$

where θ is

$$\theta = \left(\frac{r^2}{r^2 + \alpha^2}\right)^2 \times e^{2\beta h}$$
contraction at (ii) expansion at (i)

Note: $\theta \to 0 \quad (\alpha \to \infty)$.

Cor: PO + additive inflation (previous result)

Error bound for the PO + additive inflation [2]

Take $\alpha \gg 1$, then we have $\theta < 1$ and for any $n = 1, \dots, m$,

$$\limsup_{j} E_{j}^{(n)} \leq \frac{2m}{N_{x}(1-\theta)} r^{2} = O(r^{2}).$$
 (10)

order of observation noise

Essence of proof

flow

Deriving the inequality between before and after a DA cycle.

- (i) error is expanded $(\theta_i^f = e^{2\beta h})$ by \mathcal{M} .
- (ii) error contracts $(\theta_j^a = \left(\frac{r^2}{r^2 + \alpha^2}\right)^2) \to \text{detail}$ in next slide & observation noise is added twice $\frac{a}{N_c} \left(\frac{2m}{N_c} r^2\right)$.

$$\begin{split} E_j^{(n)} &\leq \quad \theta_j^a \qquad \theta_j^f \quad E_{j-1}^{(n)} + \frac{2m}{N_x} r^2 \\ &\leq \quad \theta_j^a \qquad \theta_j^f \quad \left(\quad \theta_j^a \qquad \theta_j^f \quad E_{j-2}^{(n)} + \frac{2m}{N_x} r^2 \right) + \frac{2m}{N_x} r^2 \\ &\leq \dots \text{ repeat up to } j = 0. \end{split}$$

asince an extra noise is added when perturbing observation.

Essence of proof: where θ_i^a comes from?

Important relation in the EnKF algorithms:

$$\mathbf{x}_{j}^{a(n)} = (I_{N_{x}} - K_{j}H)\mathbf{x}_{j}^{f(n)} + K_{j}y_{j}$$
 (11)

Apparently,

$$\mathbf{x}_{j}^{\dagger} = (I_{N_{x}} - K_{j}H)\mathbf{x}_{j}^{\dagger} + K_{j}H\mathbf{x}_{j}^{\dagger}$$

By subtracting both sides, we have

$$e_j^{\textit{a(n)}} = (\textit{I}_{\textit{N}_x} - \textit{K}_j \textit{H}) e_j^{\textit{f(n)}} + \text{ \{obs. noise term\}}.$$

Hence,

$$E_j^{a(n)} \le \|(I_{N_x} - K_j H)\|_{op}^2 E_j^{f(n)} + \text{ {obs. noise term}}\},$$

where the operator norm $\|A\|_{op} = \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|}$.

Essence of proof: where θ_i^a comes from?

$$E_j^{a(n)} \le \|(I_{N_x} - K_j H)\|_{op}^2 E_j^{f(n)} + \text{ {obs. noise term}}\},$$

then,

$$\theta_j^{\mathsf{a}} = \|I_{N_{\mathsf{x}}} - K_j H\|_{op}^2$$

By using Woodbly's matrix Lemma, it is transformed:

$$I_{N_x} - K_j H = (I_{N_x} + P_j^f H^\top R^{-1} H)^{-1}.$$

Therefore,

- Key relation

For
$$G_j = P_j^f H^\top R^{-1} H$$
,

$$\theta_j^a = \|(I_{N_x} + G_j)^{-1}\|_{op}^2.$$

Essence of proof: where θ_i^a comes from?

$$\theta_j^a = \|(I_{N_x} + G_j)^{-1}\|_{op}^2.$$

In the situation of [2], $G_j = r^{-2}(P_i^f + \alpha^2 I_{N_x})$ and this is symmetric. Hence, by using a formula to calculate the operator norm of a symmetric matrix

$$\|(I_{N_x}+G_j)^{-1}\|_{op}^2=\left(\frac{1}{1+\lambda_{min}(G_j)}\right)^2=\left(\frac{1}{1+\alpha^2/r^2}\right)^2.$$

Therefore.

$$\theta_j^a = \left(\frac{1}{1 + \alpha^2/r^2}\right)^2 = \left(\frac{r^2}{r^2 + \alpha^2}\right)^2.$$

Effect of additive inflation

Shifting eigenvalues

The minimum eigenvalue $\lambda_{min}(P_i^f)$ can be 0 in general.

$$\rightarrow$$
 additive inflation $\lambda_{min}(P_j^f + \alpha^2 I_{N_x}) > \alpha^2$ (positive!)

The information of P_j^f is ignored in the analysis above!

Increasing the estimated uncertainty of forecast

By increasing $\alpha>0$, we can increase uncertainty of forecast X_j^f compared with observation y_j .

- ightarrow weight of $\pmb{x}_j^{f(n)}$ is reduced when averaged into $\pmb{x}_j^{a(n)}$.
- \rightarrow contraction of the error $\left(\frac{r^2}{r^2+\alpha^2}\right)^2<1$.

- 1 Introduction
- 2 Background
 - Setup
 - EnKFs: PO & ETKF
- 3 Math of DA
 - Dissipative & Chaotic Dynamics
 - Error Analysis of EnKF
- 4 Results
 - Previous Result: PO + additive inflation
 - Our Result: ETKF + multiplicative inflation
- 5 Summary & Discussion
- 6 Appendix

ETKF + multiplicative inflation

Consider dissipative & chaotic dynamics \mathcal{M} . Let $\epsilon > 0$. Assume that $H = I_{N_x}$, $R = r^2 I_{N_x}$ for r > 0 and $m \gg N_x$ so that $\lambda_{min}(P_0^a) > 0$. Let E_i be the analysis MSE.

Error bound for the ETKF [1, T.-Sakajo]

Take $\alpha\gg 1$, then $\lambda_{\mathit{min}}(P_j^f)>\lambda_*$ for any $j\in\mathbb{N}$ and $\theta<1$,

$$\limsup_{j} E_{j} \leq \frac{r^{2}}{1-\theta} + O(r^{4}) = O(r^{2}). \tag{12}$$

order of observation noise

where θ is

$$\theta = \left(\frac{r^2}{r^2 + \alpha^2 \lambda_*}\right)^2 \times e^{2(\beta + \epsilon)h}$$

contraction at (ii)

Essence of proof

Goal: to apply the same strategy with the previous work, we need to check that $\lambda_{min}(P_i^f)$ is always positive.

```
Using assumption m > N_x However, multiplicative inflation does not ensure this. Instead, assumption m > N_x avoids \lambda_{min}(P_0^f) = 0.
```

Then, an appropriate choice of α sustains the positivity: $\lambda_{min}(P_j^f) \geq \lambda_*$ for some $\lambda_* > 0$. Proved by considering the time evolution of the minimum eigenvalue.

→ original point of our analysis (in the next slide)

The rest is similar with the previous work.

The time evolution of the minimum eigenvalue

Set $\lambda_j^f = \lambda_{min}(P_j^f)$ and $\lambda_j^a = \lambda_{min}(P_j^a)$. Let us estimate the change

$$\lambda_{j-1}^f o \lambda_{j-1}^a o \lambda_j^f.$$

 $\lambda_{i-1}^f o \lambda_{i-1}^a$: inflation and analysis

$$\lambda_{j-1}^{a} = \frac{\alpha^2 \lambda_{j-1}^{f}}{1 + \frac{\alpha^2}{\gamma^2} \widehat{\lambda}_{j-1}^{f}}$$

 $\lambda_{j-1}^{\it a}
ightarrow \lambda_j^{\it f}$: forecast

$$\lambda_j^f \ge e^{-ch} \lambda_{j-1}^a.$$

where $c = 8 \frac{m}{m-1} \beta \rho^2$. Finally, we have

$$\lambda_j^f \ge \frac{e^{-ch}\alpha^2 \lambda_{j-1}^f}{1 + \frac{\alpha^2}{\gamma^2} \lambda_{j-1}^f}.$$

The time evolution of the minimum eigenvalue

By considering an asymptotic behavior of the right hand side

$$\lambda_j^f \ge \frac{e^{-ch}\alpha^2 \lambda_{j-1}^f}{1 + \frac{\alpha^2}{\gamma^2} \lambda_{j-1}^f},$$

we have

$$\liminf_{j\to\infty}\lambda_j^f\geq \frac{\gamma^2}{\alpha^2}(e^{-ch}\alpha^2-1)>0,$$

if and only if $e^{-ch}\alpha^2 > 1$.

The uniform-in-time positivity of $\lambda_{min}(P_j^f)$ is ensured by a sufficiently large inflation parameter α .

Effect of multiplicative inflation

Not improving eigenvalue

If
$$\lambda_{min}(P_j^f) = 0$$
, $\underset{\text{multiplicative inflation}}{\longrightarrow} \lambda_{min}(\alpha^2 P_j^f) = 0$.

Sustaining positivity (against contraction of P^f)

If $\lambda_{min}(P_0^f)>0$, we have $\lambda_{min}(P_j^f)>0$ with sufficiently large $\alpha>1$.

Increasing the estimated uncertainty of forecast

By increasing $\alpha > 1$,

we obtain contraction of the error $\left(\frac{r^2}{r^2+\alpha^2\lambda_*}\right)^2<1.$

Summary

EnKFs: PO(stochastic) & ETKF(deterministic) Error Analysis of EnKF:

- $\qquad \text{Key: } \textit{G}_{j} = \textit{P}_{j}^{\textit{f}} \textit{H}^{\top} \textit{R}^{-1} \textit{H}, \quad \theta_{j}^{\textit{a}} = \| (\textit{I}_{\textit{N}_{\textit{x}}} + \textit{G}_{j})^{-1} \|_{\textit{op}}^{2}.$
- Desired: $\theta_j^a < 1$.

Results:

- (previous) PO + additive inflation: $\alpha \gg 1 \rightarrow$ bounded MSE
- (our) ETKF + multiplicative inflation: $\alpha \gg 1$, $m > N_x \rightarrow$ bounded MSE

Non-degeneracy of G_j is important! (in the current analysis)

Discussion

Next direction: analysis in realistic settings

- partial observation: $rank(H) < N_x$
- small ensemble size: $m < N_x$

Show MSE $\leq Cr^2$ for some 0 < C < 1.

In these situations, G_j is degenerated.

Ideas:

- Dimension reduction by Lyapunov Analysis
- Localization & others

Idea1: Dimension reduction by Lyapunov Analysis

dimension reduction by introducing splitting of state space into stable/unstable space with respect to \mathcal{M} , i.e. there exists $\lambda_+>1>\lambda_-$ such that for any point ${\bf x}$ in the attractor,

$$\mathbb{R}^{N_x} = E_x^u \oplus E_x^s,$$

$$\|J_x v\| \ge \lambda_+ \|v\|, \forall v \in E_x^u, \quad \|J_x v\| \le \lambda_- \|v\|, \forall v \in E_x^s,$$

where J_x is the Jacobian of \mathcal{M} .

reducing to analysis in low dimension

Only focus on the error contraction in E_x^u .

ightarrow Show $\|(P_x^u(I_{N_x}+G_j)P_x^u)^{-1}\|_{op}<1$ for the projection P_x^u onto E_x^u .

Idea2: Localization & others

- **p**artial observation: $rank(H) < N_x \rightarrow delay embedding.$
- small ensemble size: $m < N_x \rightarrow$ covariance localization.
- improve bound: $C < 1 \rightarrow$ observation localization.

We need to use information of spatial correlations/interactions of model dynamics.

For example, Lorenz'96 only affected by neighbor grid points.

$$\frac{dx_i}{dt} = (x_{i+1} - x_{i-2})x_{i-1} - x_i + F.$$

References

- K. Takeda and T. Sakajo, Uniform error bounds of the ETKF for infinite-dimensional dynamics with multiplicative covariance inflation, arxiv preprint https://arxiv.org/abs/2402.03756.
- [2] D. Kelly et al., Well-Posedness and Accuracy of the Ensemble Kalman Filter in Discrete and Continuous Time, Nonlinearity, 27, 2579–2603, 2014.
- [3] G. Burgers, P. Jan van Leeuwen, and G. Evensen, Analysis Scheme in the Ensemble Kalman Filter, Mon. Weather Rev., 126, 1719-1724, 1998.
- [4] C. H. Bishop, B. J. Etherton, and S. J. Majumdar, Adaptive Sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical Aspects, Mon. Weather Rev., 129, pp. 420–436, 2001.
- [5] J. S. Whitaker and T. M. Hamill, Ensemble Data Assimilation without Perturbed Observations, Mon. Weather Rev., 130, 1913–1924, 2002.
- [6] A. J. Majda and J. Harlim, Filtering Complex Turbulent Systems, Cambridge University Press, 2012.
- [7] E. Kwiatkowski and J. Mandel, Convergence of the Square Root Ensemble Kalman Filter in the Large Ensemble Limit, Siam-Asa J. Uncertain. Quantif., 3, 1–17, 2015.
- [8] J. Mandel, L. Cobb, and J. D. Beezley, On the Convergence of the Ensemble Kalman Filter, Appl. Math., 56, 533–541, 2011.
- [9] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, 1997.
- [10] K. Hayden, E. Olson, and E. S. Titi, Discrete Data Assimilation in the Lorenz and 2D Navier–Stokes Equations, Physica D: Nonlinear Phenomena, 240, 1416–1425, 2011.
- [11] K. J. H. Law, et al., Filter accuracy for the lorenz 96 model: Fixed versus adaptive observation operators., PHYSICA D-NONLINEAR PHENOMENA, 325, 1–13, JUN 15 2016.
- [12] G. Evensen, Data Assimilation: The Ensemble Kalman Filter, Springer, 2009.