Solutions to Quiz Version 1

If your ID is an odd number, you should take Version 1 quiz (this one). If your ID is an even number, you should take Version 2 quiz.

Problem 1. (10 points) Determine whether the given subsets of the group $SL_2(\mathbb{R})$ is a subgroup (just answer "yes" or "no", no need to give reasons).

(1) The set of matrices in $SL_2(\mathbb{R})$ with all the entries in \mathbb{Z} .

(2) The set
$$\left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mid a, b \in \mathbb{R}, a^2 + b^2 = 1 \right\}$$

(3) The set of matrices in $SL_2(\mathbb{R})$ with all the entries non-negative

(4) The set
$$\left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \mid a > 0, b \in \mathbb{R} \right\}$$

(5) The set
$$\left\{ \begin{pmatrix} 1-t & t \\ -t & 1+t \end{pmatrix} \mid t \in \mathbb{R} \right\}$$

Answer: (1) Yes (2) Yes (3) No (4) Yes (5) Yes

Problem 2. (10 points) Find group homomorphisms satisfying the required conditions (no need to give reasons).

- (1). $\Phi: \mathbb{R}^{\times} \to \mathbb{Z}_2 = \{0, 1\}, \phi \text{ is surjective.}$
- (2). $\Phi: GL_{10}(\mathbb{R}) \to \mathbb{R}, \quad , \Phi(2I_{10}) = 3$
- (3). $\Phi: \mathbb{C}^{\times} \to \mathbb{C}^{\times}$, Φ is surjective and $|Ker(\Phi)| = 2022$.
- (4). $\Phi: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R} \times \mathbb{R}, \ \Phi(1,2,3) = (2,3,1).$
- (5). $\Phi: S_3 \to S_5$, Φ is injective.

Answer: The answers for some questions are not unique.

- (1) $\Phi(a) = 0$ for a > 0; $\Phi(a) = 1$ for a < 0.
- (2) $\Phi(A) = \frac{3}{10 \log 2} \log |\det A|$ (3) $\Phi(z) = z^{2022}$
- (4) $\Phi(x, y, z) = (y, z, x)$

(5) For
$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ x & y & z \end{pmatrix}$$
, $\Phi(\sigma) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ x & y & z & 4 & 5 \end{pmatrix}$.

Problem 3. (15 points) Determine each of following statements true or

false (no reasons needed)

- (1). Let C[1,7] be the ring of continuous functions on the interval [1,7], let $\alpha:[1,7]\to[1,7]$ be a continuous map, then the map $\Phi_\alpha:C[1,7]\to C[1,7]$ given by $\Phi_\alpha(f)=f\circ\alpha$ is a ring homomorphism.
- (2). Let C[1,7] be the ring of continuous functions on the interval [1,7], the set $I = \{ f \in C[1,7] \mid f(a) = 0 \text{ for all } a \in [2,3] \}$ is an ideal of C[1,7]
- (3). Let R be a commutative ring, the set of units in R is a group under the multiplication.
- (4). M be a module over a commutative ring R, let End(M) be the set of R-module homomorphisms from M to M itself, then End(M) is a ring with point-wise addition and with multiplication as the composition.
- (5). Every finitely generated module over a principal ideal domain is a free module.

Answer: (1) True (2) True (3) True (4) True (5) False

Theorem 4.(15 points) Let G and G' be finite groups with |G| and |G'| relatively prime, if $A \subset G \times G'$ is a subgroup. Prove that there are subgroups $H \subset G$ and $H' \subset G'$ such that $A = H \times H'$.

Remark: Any proof that does not use the condition |G| and |G'| are relatively prime is wrong.

Proof 1. Let $\pi:A\to G$ be the map defined as $\pi(a,a')=a,\,\pi':A\to G'$ be the map defined as $\pi'(a,a')=a'$. It is clear that π,π' are group homomorphisms. Let $H=Im\,\pi$ and $H'=Im\,\pi'$. They are subgroups of G and G' respectively. Obviously we have $A\subset H\times H'$. Because $H=\pi(A)$, by Homomorphism Theorem, |H| is a divisor of |A|, similarly, |H'| is a divisor of |A|. By Langrange Theorem, |H| is a divisor of |G| and |G'| is a divisor of |G'|. The condition that |G| and |G'| are relatively prime implies that |G| and |G'| is a divisor of |G|.

Proof 2. Let $\pi:A\to G$ be the map defined as $\pi(a,a')=a, \pi':A\to G'$ be the map defined as $\pi'(a,a')=a'$. It is clear that π,π' are group homomorphisms. Let $H=Im\,\pi$ and $H'=Im\,\pi'$. They are subgroups of G and G' respectively. Obviously we have $A\subset H\times H'$. We now prove the reverse inclusion $H\times H'\subset A$. For arbitrary $a\in H$, we have $(a,b)\in A$ for some $b\in G'$. Since |G| and |G'| are relatively prime, there are integers m,n such that m|G|+n|G'|=1. Using $a^{|G|}=1$, $b^{|G'|}=1'$, we have

$$(a,b)^{n|G'|} = (a^{n|G'|},b^{n|G'|}) = (a^{n|G'|},1') = (a^{1-m|G|},1') = (a,1')$$

Since $(a,b) \in A$, so $(a,1') \in A$. Similarly we can prove $a' \in H'$ implies $(1,a') \in A$. So for arbitrary $(a,a') \in H \times H'$, $(a,a') = (a,1')(1,a') \in A$.

Theorem 5.(10 points) Let $\phi : \mathbb{C} \to \mathbb{C}$ be a ring homomorphism such that $\phi(r) = r$ for all $r \in \mathbb{R}$. Prove that ϕ is either the identity map or the complex conjugate map, that is, $\phi(z) = \bar{z}$.

Proof. First we note that $\phi(i)\phi(i) = \phi(i^2) = \phi(-1) = -1$. So $\phi(i) = i$ or $\phi(i) = -i$. If $\phi(i) = i$, $\phi(a+bi) = \phi(a) + \phi(b)\phi(i) = a+bi$, this proves ϕ is the identity map. If $\phi(i) = -i$, $\phi(a+bi) = \phi(a) + \phi(b)\phi(i) = a-bi$, this proves ϕ is the complex conjugate.

Theorem 6.(15 points) Let X_k be the set of all k-dimensional subspaces in \mathbb{R}^n ($1 \leq k < n$) Let $GL_n(\mathbb{R})$ act on X_k as follows, for $g \in GL_n(\mathbb{R})$, $V \in X_k$, since g is a linear isomorphism from \mathbb{R}^n to \mathbb{R}^n , g transforms the subspace V to a subspace which we denote by gV. (1) How many orbits does X_k have? (2) Let $GL_n(\mathbb{R})$ act on $X_k \times X_k$ by $g(V_1, V_2) = (gV_1, gV_2)$, how many orbits does $X_k \times X_k$ have?

Proof. (1) there is only one orbit. For any $V \in X_k$, so V is a k-dimensional subspace in \mathbb{R}^n . Take a basis of v_1, \ldots, v_k of V, we extend the basis to a basis $v_1, \ldots, v_k, v_{k+1}, \ldots, v_n$ of \mathbb{R}^n , let g be the linear map sends e_i to v_i , then $g\operatorname{Span}(e_1, \ldots, e_k) = V$. This proves every $V \in X_k$ is in the

orbit of $Span(e_1, \ldots, e_k)$.

(2). We note the following fact: for (V_1, V_2) , $(W_1, W_2) \in X_k \times X_k$, (V_1, V_2) and (W_1, W_2) are in the same orbit if and only if $\dim(V_1 \cap V_2) = \dim(W_1 \cap W_2)$.

Proof of the fact: If (V_1, V_2) and (W_1, W_2) are in the same orbit, so there is $g \in GL_n(\mathbb{R})$ such that $W_1 = gV_1, W_2 = gV_2, W_1 \cap W_2 = (gV_1) \cap (gV_2) = g(V_1 \cap V_2)$, so it has the same dimension as $V_1 \cap V_2$. Conversely, suppose $\dim(V_1 \cap V_2) = \dim(W_1 \cap W_2) = j \leq k$, take a basis v_1, \ldots, v_j of $V_1 \cap V_2$, we extend the basis to a basis of \mathbb{R}^n

$$v_1, \ldots, v_j, a_{j+1}, \ldots, a_k, b_{j+1}, \ldots, b_k, c_{2j-k+1}, \ldots, c_n$$

such that it satisfies the following conditions:

- (a) $v_1, ..., v_j, a_{j+1}, ..., a_k$ is a basis for V_1 ,
- (b) $v_1, \ldots, v_j, b_{j+1}, \ldots, b_k$ is a basis for V_2 . Similarly we take a basis w_1, \ldots, w_j of $W_1 \cap W_2$, we extend the basis to a basis of \mathbb{R}^n

$$v_1, \ldots, v_j, a'_{j+1}, \ldots, a'_k, b'_{j+1}, \ldots, b'_k, c'_{2j-k+1}, \ldots, c'_n$$

satisfying the similar conditions as (a) (b). Let g be the linear isomorphism on \mathbb{R}^n that maps v_i to w_i , a_i to a'_i , b_i to b'_i , c_i to c'_i . Then $g(V_1, V_2) = (W_1, W_2)$.

Final answer: If $2k \leq n$, $\dim(V_1 \cap V_2)$ can be $0, 1, \ldots, k$, so there are k+1 orbits. If 2k > n, $\dim(V_1 \cap V_2)$ can be $2k-n, 2k-n+1, \ldots, k$, there are n-k+1 orbits.

Theorem 7.(15 points) Let R be an integral domain. Let $I \subset R$ be an ideal, suppose I is NOT a principal ideal, prove that I is NOT a free R-module.

Proof. Assume I is a free module, so it has a basis $\{v_i\}_{i\in I}$. Since I is NOT principal, $|I| \geq 2$. let $i, j \in I$, $i \neq j$, then $v_j v_i + (-v_i)v_j = 0$, it contradicts to that v_i, v_j are R-linearly independent.

Theorem 8.(10 points) Let F be a field, $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \in F[x]$ be a monic polynomial of degree $n \geq 1$. We define a map $\Phi: F[x]/(f) \to F(x)/(f)$ by

$$\Phi(h(x) + (f)) = xh(x) + (f)$$

It is clear that Φ is a linear map over F. Prove that the characteristic polynomial of Φ , defined as $\det(\lambda I - \Phi)$ (where I is the identity map on F[x]/(f)), is

$$f(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0$$

Proof. We take the following basis $1 + (f), x + (f), \dots, x^{n-1} + (f)$ of F[x]/(f). With respect to this basis, the linear operator Φ has the following matrix

$$A = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & 0 & \dots & 0 & -a_2 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & -a_{n-1} \end{pmatrix}$$

One compute (use induction on n) $\det(\lambda I_n - A)$ to get $\lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_1\lambda + a_0$.