The double-sided Dyck language is not a non-branching ℓ MCFL.

Paul Gallot¹ Sylvain Salvati² Makoto Kanazawa³

¹Université de Lille Inria Lille Agence Nationale pour la Recherche

²Université de Lille Inria Lille Agence Nationale pour la Recherche

³Hosei University

December 7, 2018

Summary

• Definitions

• Proof of the result

• Consequences

Double-sided Dyck language O₁

The double-sided Dyck language is the commutative closure of the Dyck language one one pair of parenthesis:

$$O_1 = \{u \in \{a,b\}^* \mid |u|_a = |u|_b\}$$

Double-sided Dyck language O₁

The double-sided Dyck language is the commutative closure of the Dyck language one one pair of parenthesis:

$$O_1 = \{u \in \{a,b\}^* \mid |u|_a = |u|_b\}$$

We can also define it as $O_1 = \text{Scramble}((ab)^*)$.

Double-sided Dyck language O₁

The double-sided Dyck language is the commutative closure of the Dyck language one one pair of parenthesis:

$$O_1 = \{u \in \{a,b\}^* \mid |u|_a = |u|_b\}$$

We can also define it as $O_1 = \text{Scramble}((ab)^*)$.

Also called the mix language.

A non-branching ℓ MCFG G is a tuple (N, Σ, P, S)

A non-branching ℓ MCFG G is a tuple (N, Σ, P, S)

For example $N = \{S^{(1)}, A^{(2)}\}, \ \Sigma = \{a, b\}$

A non-branching ℓ MCFG G is a tuple (N, Σ, P, S)

```
For example N = \{S^{(1)}, A^{(2)}\}, \Sigma = \{a, b\}
and P = \{
                                                S \rightarrow A_1 A_2
                                         A_1, A_2 \rightarrow aA_1, aA_2
                                         A_1, A_2 \rightarrow bA_1, bA_2
                                             A_1, A_2 \rightarrow \varepsilon, \varepsilon
```

A non-branching ℓ MCFG G is a tuple (N, Σ, P, S)

For example
$$N=\{S^{(1)},A^{(2)}\}$$
, $\Sigma=\{a,b\}$ and $P=\{$
$$S\to A_1A_2$$

$$A_1,A_2\to aA_1,aA_2$$

$$A_1,A_2\to bA_1,bA_2$$

$$A_1,A_2\to \varepsilon,\varepsilon$$
 $\}$

$$L = \{ w \ w \mid w \in \{a, b\}^* \}$$

We derive the word baba:

S

$$S \rightarrow A_1 A_2$$

$$S \rightarrow A_1 A_2 \rightarrow b A_1 b A_2$$

$$S \rightarrow A_1A_2 \rightarrow bA_1bA_2 \rightarrow baA_1baA_2$$

$$S
ightarrow A_1 A_2
ightarrow b A_1 b A_2
ightarrow b a A_1 b a A_2
ightarrow b a b a$$

A non-branching ℓ MCFG is a tuple (N, Σ, P, S) where:

A non-branching ℓ MCFG is a tuple (N, Σ, P, S) where:

Every non-terminal has a fixed multiplicity.

A non-branching ℓ MCFG is a tuple (N, Σ, P, S) where:

Every non-terminal has a fixed multiplicity.

Rules are of the form:

$$A_1,\ldots,A_n\to u_1,\ldots,u_n$$

where there is a non terminal $B^{(m)}$ such that $u_1 \dots u_n$ is a word over $\Sigma \cup \{B_1, \dots, B_m\}$

A non-branching ℓ MCFG is a tuple (N, Σ, P, S) where:

Every non-terminal has a fixed multiplicity.

Rules are of the form:

$$A_1,\ldots,A_n\to u_1,\ldots,u_n$$

where there is a non terminal $B^{(m)}$ such that $u_1 \dots u_n$ is a word over $\Sigma \cup \{B_1, \dots, B_m\}$

each B_i appears at most once in each rule (linearity)

A non-branching ℓ MCFG is a tuple (N, Σ, P, S) where:

Every non-terminal has a fixed multiplicity.

Rules are of the form:

$$A_1,\ldots,A_n\to u_1,\ldots,u_n$$

where there is a non terminal $B^{(m)}$ such that $u_1 \dots u_n$ is a word over $\Sigma \cup \{B_1, \dots, B_m\}$

each B_i appears at most once in each rule (linearity) and we can normalise grammars so that each B_i appears exactly once.

Assume there exists a non-branching ℓMCFG G,

Assume there exists a non-branching ℓMCFG G,

we normalise G so that:

Assume there exists a non-branching ℓ MCFG G,

we normalise G so that:

▶ the non-terminals are $S^{(1)}$ and $A^{(n)}$ where n is the maximum multiplicity of a non-terminal of G,

Assume there exists a non-branching ℓ MCFG G,

we normalise G so that:

- ▶ the non-terminals are $S^{(1)}$ and $A^{(n)}$ where n is the maximum multiplicity of a non-terminal of G,
- each rule writes exactly one a and one b

Assume there exists a non-branching ℓ MCFG G,

we normalise G so that:

- ▶ the non-terminals are $S^{(1)}$ and $A^{(n)}$ where n is the maximum multiplicity of a non-terminal of G,
- each rule writes exactly one a and one b (except for $S \to \varepsilon$).

Case n=1

$$S
ightarrow abS$$
 $S
ightarrow baS$ $S
ightarrow aSb$ $S
ightarrow bSa$ $S
ightarrow Sab$ $S
ightarrow Sba$ $S
ightarrow \varepsilon$

Counter-example word for n = 1

$$w_1 = aabbbbaa$$

Counter-example word for n = 1

$$w_1 = aabbbbaa$$

No rule for S can apply.

S

 $S \to A_1 ab A_2$

 $S \rightarrow A_1 ab A_2 \rightarrow A_1 aabb A_2$

$$S
ightarrow A_1 abA_2
ightarrow A_1 aabbA_2
ightarrow A_1 aabbbA_2 a$$

$$S
ightarrow A_1 ab A_2
ightarrow A_1 aabbb A_2
ightarrow A_1 aabbb A_2 a$$

 $\rightarrow \textit{A}_{1}\textit{aabbbbA}_{2}\textit{aa}$

$$S
ightarrow A_1 abA_2
ightarrow A_1 aabbbA_2
ightarrow A_1 aabbbA_2 a$$

ightarrow A_1 aabbbbb A_2 aa ightarrow aabbbbaa

$$S o A_1abA_2 o A_1aabbA_2 o A_1aabbbA_2a$$
 $o A_1aabbbbA_2aa o aabbbbbaa$

$$S o A_1abA_2 o A_1aabbA_2 o A_1aabbbA_2a$$
 $o A_1aabbbbA_2aa o aabbbbaa$

$$S o A_1abA_2 o A_1aabbA_2 o A_1aabbbA_2a$$
 $o A_1aabbbbA_2aa o aabbbbbaa$

$$S o A_1abA_2 o A_1aabbA_2 o A_1aabbbA_2a$$
 $o A_1aabbbbA_2aa o aabbbbbaa$

$$S o A_1abA_2 o A_1aabbA_2 o A_1aabbbA_2a$$
 $o A_1aabbbbA_2aa o aabbbbbaa$

$$S o A_1abA_2 o A_1aabbA_2 o A_1aabbbA_2a$$
 $o A_1aabbbbA_2aa o aabbbbbaa$

$$S o A_1abA_2 o A_1aabbA_2 o A_1aabbbA_2a$$
 $o A_1aabbbbA_2aa o aabbbbbaa$

The main result

Theorem

The language O_1 is not derived by any non-branching ℓ MCFG.

The language $L = \{ww \mid w \in \{a, b\}\}$

The language
$$L = \{ww \mid w \in \{a, b\}\}$$

is recognised by the EDT0L (N, Σ, J, P, S) with: set of non-terminals: $N = \{S, A\}$ set of table symbols: $J = \{0, 1\}$ set of rules P:

$$P(0)$$
 $P(1)$ $S o AA$ $S o AA$ $A o bA$

An EDT0L system is a tuple (N, Σ, J, P, S) ,

An EDT0L system is a tuple (N, Σ, J, P, S) ,

J is a finite set of table symbols and

EDT0L

An EDT0L system is a tuple (N, Σ, J, P, S) ,

 ${\cal J}$ is a finite set of table symbols and ${\cal P}$ associates, to every table symbol, a substitution of the non-terminals.

O_1 is not an EDT0L language

Theorem

The language O_1 is not derived by any EDT0L.

O_3 is not an IO language

 O_3 is the commutative closure of the language $(abcd)^*$:

$$O_3 = \{u \mid |u|_a = |u|_b = |u|_c = |u|_d\}$$

O_3 is not an IO language

 O_3 is the commutative closure of the language $(abcd)^*$:

$$O_3 = \{u \mid |u|_a = |u|_b = |u|_c = |u|_d\}$$

Theorem

The language O_3 is not IO.

Summing up

Theorem

The language O_1 is not derived by any non-branching ℓ MCFG nor any EDT0L.

Theorem

The language O_3 is not IO.

Thank you for your attention