

การแข่งขันเคมีโอลิมปิกระดับชาติ ครั้งที่ 18

โรงเรียนมหิดลวิทยานุสรณ์

วันจันทร์ที่ 25 กรกฎาคม 2565 เวลา 09.00 - 14.00 น.

เฉลยข้อสอบภาคทฤษฎี

เลขประจำตัวสอบ

คำตอบข้อที่ 1 (10 คะแนน)

1.1 (1 คะแนน) การสลายตัวของกรดแอสคอร์บิกในน้ำส้มโอเป็นปฏิกิริยาอันดับ

0 (0.5)

(0.25)

(0.25)

เหตุผล

- ค่าการดูดกลืนแสง (4) มีความสัมพันธ์เป็นเส้นตรงกับความเข้มข้นของกรดแอสคอร์บิก
- เมื่อเปรียบเทียบค่า R^2 ที่ได้จากการพล็อตกราฟแบบต่าง ๆ พบว่า ค่า R^2 ที่ได้จากการพล็อต ระหว่างเวลากับ A มีค่าใกล้เคียง 1 มากที่สุด นั่นคือ มีความเป็นเส้นตรงมากที่สุด จึงเขียน ความสัมพับธ์ระหว่างความเข้มข้นกับเวลาได้เป็น

[กรดแอสคอร์บิก] = [กรดแอสคอร์บิก] $_0 - k$ t

ซึ่งเป็นความสัมพันธ์ของปฏิกิริยาอันดับ 0

1.2 (3 คะแนน)

k = 1.55

μg mL⁻¹ h⁻¹

(0.5+0.4)

(ระบุหน่วย)

4.94

ชั่วโมง

(0.5)

วิธีคำนวณ

จากการพล็อตกราฟระหว่างเวลากับ A พบว่า มีความชั้น (slope₁) เท่ากับ $-0.0881~\mathrm{h}^{-1}$ และจากกราฟความสัมพันธ์ระหว่างความเข้มข้นของกรดแอสคอร์บิกและค่าการดูดกลืนแสง (A)

พบว่า มีความชั้น (slope₂) เท่ากับ 0.0568 (μ g mL⁻¹)⁻¹

 $= -(-0.0881 \text{ h}^{-1})/(0.0568 \text{ }\mu\text{g}^{-1} \text{ mL})$

ดังนั้น $k = -(slope_1)/(slope_2)$

(0.2)

k คือ -slope

(0.4)

 $= 1.55 \mu g mL^{-1} h^{-1}$

วงเล็บละ 0.2

ความเข้มข้นเริ่มต้นของกรดแอสคอร์บิกเท่ากับ 61.29 mg/100 mL

$$\frac{61.29 \text{ mg}}{100 \text{ mL}} \cdot \frac{1}{40.00} \cdot \frac{1000 \text{ } \mu\text{g}}{1 \text{ mg}} = 15.32 \text{ } \mu\text{g/mL}$$

(0.6) เศษส่วนละ 0.2

จากปฏิกิริยาอันดับศูนย์

$$t_{1/2} = \frac{\left[\text{กรดแอสคอร์บิก}\right]_0}{2k} = \frac{(15.32 \ \mu\text{g mL}^{-1})}{2(1.55 \ \mu\text{g mL}^{-1} \ h^{-1})} = 4.94 \ h$$

1.3 (2 คะแนน) $E_a = 9.69$ kJ mol⁻¹ (0.5)

วิธีคำนวณ

จากสมการอ	าร์เรเนียส: $k=A\epsilon$	-Ea/F	นา และ $k = -(slope_1)/(slope_2)$	(0.5)
จะได้	k	=	$-(slope_1)/(slope_2) = Ae^{-Ea/RT}$	ใช้ –slope ₁ แทน k
	ln <i>k</i>	=	$ln (-slope_1) - ln (slope_2) = ln A - E_a/RT$	
ดังนั้น	ln (-slope ₁)	=	$C - E_{a}/RT$	
เปรียบเทียบ	ที่ 25 และ 50 °C			(0.1+0.1)
จะได้	ln (0.0881)	=	$C - E_a/[R(25 + 273.15 \text{ K})]$ (1)	แปลงอุณหภูมิเป็น K
และ	ln (0.1192)	=	$C - E_a/[R(50 + 273.15 \text{ K})]$ (2)	(0.2+0.2) ใช้ slope กับอุณหภูมิ
(1) - (2);				ถูกต้อง
ln ((0.0881/0.1192)	=	$-(E_a/R)[1/298.15 - 1/323.15 \text{ K}^{-1}]$	(0.2)
	-0.30 <u>2</u> 3	=	$-(E_a/R)(0.000259478 \text{ K}^{-1})$	นำ 2 สมการมาลบกัน
	E_a/R	=	$1.165 \times 10^3 \mathrm{K}$	
	E _a	=	$(8.314 \text{ J mol}^{-1} \text{ K}^{-1})(1.165 \times 10^3 \text{ K})$	(0.2)
		=	9.686×10^3 J mol ⁻¹ หรือ 9.69 kJ mol ⁻¹	ใช้ค่า R ถูกต้อง

1.4 (2 คะแนน) อันดับปฏิกิริยาเมื่อเทียบกับ [H $^+$] = -0.0290 (ตอบทศนิยม 4 ตำแหน่ง)

วิธีคำนวณ

สมมติให้ ในการสลายตัวของกรดแอสคอ	(0.2)		
	$rate = k[H^+]^n$		เขียน rate law ถูกต้อง
เนื่องจากการสลายตัวของกรดแอสคอร์บิ	เกเป็นปฏิกิริยาอัน	ดับศูนย์ (rate = <i>k</i>)	(0.5)
จึงพิจารณา slope ₁ แทน rate			ใช้ –slope ₁ แทน rate
ที่ pH 3.40 ([H ⁺] = 4.0×10^{-4} M);	slope _{1, pH 3.40}	$= k (4.0 \times 10^{-4} \text{ M})^n$	(0.2+0.2)
ที่ pH 5.40 ([H ⁺] = 4.0×10^{-6} M);	slope _{1, pH 5.40}	$= k (4.0 \times 10^{-6} \text{ M})^n$	ใช้ slope กับ pH ถูกต้อง
จะได้ (-0.0	0881)/(-0.1007)	$= (1.0 \times 10^2)^n$	(0.2)
	0.875	$= (1.0 \times 10^2)^n$	นำ 2 สมการมาหารกัน
	log (0.875)	$= n \log (1.0 \times 10^2)$	(0.2)
	n	= (-0.0580)/2.00	take log
	n	= -0.0290	

1.5	(1 คะแนน)	การเติมน้ำตาลฟร	รักโทสทำให้การสลาย	เต้วของ	กรดแอสคอร์บิก	(0.5)	
	🗹 เกิดช้าลง		🗌 ไม่เปลี่ยนแปลง		🗌 เกิดเร็วขึ้น		
กระบ	วนการที่ทำให้เกิ	าิดการเปลี่ยนแปลง	เช่นนั้น คือ				
					มการเกิดปฏิกิริยาออกซิเดชันกับ 	(0.5)	
สารอื่	นในระบบ ทำให้	์อัตราการสลายตัวจ	ของกรดแอสคอร์บิกโด	จยรวมส	กดลง (สลายตัวช้าลง)		
1.6	(1 คะแนน)	ควรเก็บน้ำส้มโอคั้น	เอย่างไรบ้าง				
- เก็บ	ไว้ให้ไม่ให้โดนแล	สง เช่น ใช้ขวดที่บ/	สีเข้ม			(0.25)	
- เก็บ	ไว้ในที่อุณหภูมิต่	่ำ เช่น ตู้เย็น				(0.25)	
- เติมน้ำตาลฟรักโทส (0.25)						(0.25)	
- ทำใ	ห้น้ำส้มโอคั้นเป็า	นกรด เช่น เติมกรด	บางชนิดลงไป			(0.25)	
	คำตอบที่ให้เหตุผลไม่ถูกต้อง หักคำตอบละ 0.25 คะแนน						

คำตอบข้อที่ 2 (10 คะแนน)

2.1 (0.5 คะแนน) b = a/x y = 2x/a (0.25 + 0.25)

2.2 (0.5 คะแนน) กราฟในแผนภาพมีลักษณะเป็นเส้นตรงเมื่อค่าต่อไปนี้คงที่

 \Box S° \Box H° \Box T Tick $\mathfrak{g}n + 0.25$ Tick $\mathfrak{A}n - 0.2$ \Box ΔS° \Box ΔH° \Box G° \Box max = 0.5; min = 0

2.3 (2 คะแนน)

สมการเคมีที่สอดคล้องกับ $\Delta_{\rm f} H^{\circ}$ ของ ${\sf Fe_2O_3}({\sf s})$ คือ

$$2 \text{ Fe(s)} + 3/2 \text{ } O_2(\text{g}) \longrightarrow \text{Fe}_2\text{O}_3(\text{s})$$
 ตอบ 4 Fe(s) + 3 $O_2(\text{g}) \longrightarrow$ 2 Fe₂ $O_3(\text{s})$ หรือ 4/3 Fe(s) + $O_2(\text{g}) \longrightarrow$ 2/3 Fe₂ $O_3(\text{s})$ ให้ (0.25)

วิธีคำนวณ

จากสมการ $\Delta G^\circ = \Delta H^\circ - T \Delta S^\circ$ จะเห็นได้ว่า $-\Delta S^\circ$ คือ ความชั้นของกราฟ และ ΔH° คือ จุดตัด แกน y เมื่อ T เป็นอุณหภูมิเคลวิน อย่างไรก็ตาม อุณหภูมิในแผนภาพเอลลิงแฮมข้างต้นมีหน่วย (0.2)°C ดังนั้น **ไม่สามารถนำค่าจุดตัดแกน y มาตอบได้ทันที** แต่จะต้องแทนข้อมูลที่จุดตัดแกน y (ใน หน่วย °C) ลงในสมการข้างต้น ซึ่งอ่านจากกราฟได้ว่า **ที่ 0 °C ค่า \Delta G° = -500 kJ mol**⁻¹ คำนวณความชั้นของกราฟ ($-\Delta S^{\circ}$) ได้เป็น $\frac{-300-(-500)}{1100-0} = \frac{200}{1100} = 0.182 \text{ K K}^{-1} \text{ mol}^{-1}$ (0.2)หน่วยผิด -0.1 นั่นคือ ΔS° = −0.182 kJ K⁻¹ mol⁻¹ เครื่องหมายผิด -0.1 แทนข้อมูลที่ 0 °C ได้เป็น (−500 kJ mol⁻¹) = ΔH° −(273 K)×(−0.182 kJ K⁻¹ mol⁻¹) (0.2)ดังนั้น $\Delta H^{\circ} = -500+273\times(-0.182) = -549.7 \approx -550 \text{ kJ mol}^{-1}$ หน่วย/เครื่องหมาย * ตัวอย่างเช่น เขียนว่า $\Delta S^\circ = -0.182$ J K^{-1} mol^{-1} (ซึ่งผิด) ถ้านำไปแทนค่า ก็ต้องมีการหารด้วย 1000 จึงจะ ΔS° ผิด แต่วิธี ได้ 0.2 คะแนน (แม้คำตอบจะผิดอยู่ดี) คำนวณถูก* ได้ 0.2 * กรณีที่เครื่องหมาย ΔS° ผิด จะคำนวณ ΔH° ได้เป็น –450 kJ mo l^{-1} ซึ่งผิด แต่ยังได้ 0.2 คะแนน ทว่า ค่า ΔH° ข้างต้นเป็นค่าที่สอดคล้องกับสมการ 4/3 Fe(s) + $O_{\circ}(g) \longrightarrow 2/3$ Fe $_{\circ}O_{\circ}(s)$ (0.2)ในขณะที่ $\Delta_t H^\circ$ ของ Fe₂O₃(s) สอดคล้องกับสมการ 2 Fe(s) + 3/2 O₂(g) \longrightarrow Fe₂O₃(s) ดังนั้น $\Delta_t H^\circ$ ของ Fe₂O₃(s) มีค่าเท่ากับ (-550 kJ mol⁻¹)×(3/2) = -825 kJ mol⁻¹ (0.2)

2.4 (1.5 คะแนน) วาดกราฟของ CO₂(g) ลงในแผนภาพเอลลิงแฮม

วาดกราฟเส้นตรงที่มี**ความชันเข้าใกล้ 0** (แทบจะเป็นเส้นแนวนอน (horizontal line)) โดยมี**จุดตัดแกน** (0.5+0.5) y ที่ประมาณ -393.5 kJ mol⁻¹

อธิบายที่มาของกราฟ

เส้นกราฟของ CO_2 ในแผนภาพเอลลิงแฮมสอดคล้องกับสมการ $C(s) + O_2(g) \longrightarrow CO_2(g)$ โดยเป็นสมการ เดียวกันกับสมการเคมีที่สอดคล้องกับค่า $\Delta_t H^\circ$ ของ $CO_2(g)$ ดังนั้น $\Delta H^\circ = \Delta_t H^\circ = -393.5$ kJ mol $^{-1}$

และเนื่องจากจำนวนโมลของแก๊สทางฝั่งสารตั้งต้นและฝั่งผลิตภัณฑ์เท่ากัน ($\Delta \mathbf{v}_{\rm gas} = 0$) ดังนั้น $\Delta S^{\circ} \approx \mathbf{0}$ (เมื่อเทียบกับกรณีของสารประกอบอื่นที่มี $\Delta \mathbf{v}_{\rm gas} \neq 0$)

แทนข้อมูลข้างต้นในสมการ
$$\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ$$
 จะได้ $\Delta G^\circ \approx -393.5 \text{ kJ mol}^{-1} - T(0) = -393.5 \text{ kJ mol}^{-1}$ ดังนั้น กราฟของ CO₂ มีลักษณะเป็นเส้นตรงในแนวนอน โดยมี $\Delta G^\circ \approx -393.5 \text{ kJ mol}^{-1}$

<u>หมายเหตุ</u>: ถ้าพิจารณาความชั้นของเส้นกราฟแต่ละเส้นในแผนภาพเอลลิงแฮมจะพบว่า **แทบทั้งหมด**มีความชั้นเป็น บวกและมีค่าพอ ๆ กัน ทั้งนี้เป็นเพราะเส้นกราฟทั้งหลายเกี่ยวข้องกับปฏิกิริยาที่อยู่ในรูป

a M(s) +
$$O_2(g)$$
 \longrightarrow b $M_xO_y(s)$ ซึ่งมี $\Delta v_{\text{gas}} = -1$

ปฏิกิริยาเหล่านี้จึงมี $\Delta S^\circ < 0$ และมีความชั้น ($-\Delta S^\circ$) เป็นบวก การที่มีขนาดของความชั้นพอ ๆ กันหมดแสดงให้เห็น ว่า การเปลี่ยนแปลงจำนวนโมลของแก๊สในปฏิกิริยามีอิทธิพลกับค่า ΔS° เป็นอย่างมาก (เมื่อเทียบกับของแข็ง) อย่างไร ก็ตาม จะเห็นได้ว่าเส้นของ CO มีความชั้นตรงกันข้ามกับกรณีอื่น ๆ (แต่มีขนาดของความชั้นพอ ๆ กัน) สามารถ อธิบายได้ว่า เส้น ๆ นี้เกี่ยวข้องกับสมการ

$$2C(s) + O_2(g) \longrightarrow 2CO(g)$$
 ซึ่งมี $\Delta v_{gas} = +1$

ดังนั้นจึงไม่น่าแปลกใจที่เส้นของ ${\sf CO}_2$ ซึ่งสัมพันธ์กับปฏิกิริยาที่มี $\Delta {m v}_{\sf gas} = 0$ จะมีความชันเข้าใกล้ 0

เลขประจำตัวสอบ_____

2.5 (2 คะแนน)

ปฏิกิริยาที่เกิดขึ้นได้เองในทางอุณหพลศาสตร์ ได้แก่ 🛛 ปฏิกิริยาที่ 1 🔲 ปฏิกิริยาที่ 2

Tick ถูก +0.6 Tick แบบอื่นได้ 0

วิธีคำนวณ

การประเมินว่าปฏิกิริยาหนึ่ง ๆ จะเกิดขึ้นได้เองในทางอุณหพลศาสตร์หรือไม่ (ที่สภาวะความดันและ อุณหภูมิคงที่) สามารถพิจารณาได้จากค่า ΔG° ของปฏิกิริยา โดย**ปฏิกิริยาที่เกิดขึ้นได้เองในทาง** (0.2)อุณหพลศาสตร์จะมี $\Delta G^{\circ} < 0$ เราสามารถแยกปฏิกิริยาที่ 1 (3SiO₂(s) + 4Al(s) \longrightarrow 3Si(s) + 2Al₂O₃(s)) ออกเป็น 2 ปฏิกิริยาย่อย ได้แก่ (0.4) $3SiO_2(s) \longrightarrow 3Si(s) + 3O_2(g)$ และ $4Al(s) + 3O_2(g) \longrightarrow 2Al_2O_3(s)$ จากการ**อ่านค่า ΔG° จากแผนภาพเอลลิงแฮม**พบว่า ที่อุณหภูมิ 25 °C $\Delta G^{\circ} \approx -3 \times (-860 \text{ kJ mol}^{-1}) = 2580 \text{ kJ mol}^{-1}$ $3SiO_2(s) \longrightarrow 3Si(s) + 3O_2(g)$ (0.4)และ 4Al(s) + $3O_2(g) \longrightarrow 2Al_2O_3(s)$ $\Delta G^{\circ} \approx 3 \times (-1060 \text{ kJ mol}^{-1}) = -3180 \text{ kJ mol}^{-1}$ ดังนั้น 3SiO₂(s) + 4Al(s) → 3Si(s) + 2Al₂O₃(s) ΔG° = 2580-3180 = -600 kJ mol⁻¹ < 0 (0.2)เนื่องจากปฏิกิริยาที่ 1 มี $\Delta G^{\circ} < 0$ ที่อุณหภูมิ 25 $^{\circ}$ C ดังนั้น **ปฏิกิริยาที่ 1 จึงเป็นปฏิกิริยาที่เกิดขึ้นได้เอง** (0.2)ในทางอุณหพลศาสตร์

<u>หมายเหตุ</u>:

- 1. ในการคำนวณ ΔG° ของปฏิกิริยา $3 \mathrm{SiO}_2(s) \longrightarrow 3 \mathrm{Si}(s) + 3 \mathrm{O}_2(g)$ มีเครื่องหมาย เนื่องจากค่าที่อ่านจากกราฟ โดยตรงจะเป็น ΔG° ของปฏิกิริยา $\mathrm{Si}(s) + \mathrm{O}_2(g) \longrightarrow \mathrm{SiO}_2(s)$ ซึ่งเป็นปฏิกิริยาย้อนกลับของค่าที่ต้องการทราบ
- 2. ถ้าลองพิจารณาปฏิกิริยาอื่น ๆ เพิ่มเติม (เช่น ปฏิกิริยาที่ 2 หรือปฏิกิริยาอื่น ๆ ในทำนองเดียวกัน) จะพบว่า ณ อุณหภูมิที่กำหนด ถ้าเส้นของตัวรีดิวซ์ (ได้แก่ โลหะหรือคาร์บอน) อยู่**ต่ำกว่า**เส้นของตัวออกซิไดส์ (ออกไซด์ของ โลหะ) ปฏิกิริยาดังกล่าวจะเกิดขึ้นได้เองที่อุณหภูมินั้น ๆ ดังเช่นกรณีของปฏิกิริยาที่ 1 ซึ่ง**เส้นของ AVAl₂O₃ อยู่** ต่ำกว่าเส้นของ Si/SiO₂ ดังนั้น Al จึงสามารถรีดิวซ์ SiO₂ ได้ เป็นต้น นี่เป็นประโยชน์ข้อหนึ่งของแผนภาพ เอลลิงแฮมนั่นเอง!!!

2.6 (1.5 คะแนน)

การเปลี่ยนแปลงพลังงานภายใน $\Delta U = -226$ kJ (0.5) (ถ้าข้อ 2.3 ตอบว่า -750 kJ mol^{-1} หรือ -500 kJ mol^{-1} และข้อนี้ตอบว่า -213 kJ ให้ 0.5) (ถ้าตอบติดตัวแปรเป็น $\Delta H + 2.44$ kJ หรือ $n_{Si} \times \Delta_i H^0(SiO_2(s)) + 2.44$ kJ ให้ 0.25)

วิธีคำนวณ

วิธีที่ 1:	
จากสมการ $\Delta U = q + w$	(0.1)
ที่สภาวะความดันคงที่ $q_{ m p}$ = ΔH = $n_{ m Si} imes \Delta_{ m f} H^{ m o}({ m SiO}_2({ m s}))$ และ w = $-p\Delta V$	(0.1)
ดังนั้น $\Delta U = \Delta H - p\Delta V = n_{Si} \times \Delta_f H^{\circ}(SiO_2(s)) - p(V_f - V_i)$	(0.1)

```
หา \Delta_t H^{\circ}(SiO_2(s)) จากแผนภาพเอลลิงแฮมดังนี้:
สมการเคมีที่สอดคล้องกับค่า \Delta_{\mathcal{H}} (SiO<sub>2</sub>(s)) เป็นสมการเดียวกับสมการเคมีที่สอดคล้องกับเส้นของ SiO<sub>2</sub>
                                                                                                                                                               (0.3)
                                                                                                                                                   ถ้าข้อ 2.3 ตอบ
นั่นคือ
                        Si(s) + O_2(g) \longrightarrow SiO_2(s)
                                                                                                                                                   -750 kJ mol<sup>-1</sup>
ที่ 0 °C จะได้ว่า \Delta G^{\circ} ≈ -860 kJ mol<sup>-1</sup>
                                                                                                                                               or -500 kJ mol<sup>-1</sup>
ความชั้นของเส้นของ SiO_2 \approx ((-700)-(-860))/(900-0) = 160/900 = 0.178 \ \text{kJ K}^{-1} \ \text{mol}^{-1}
                                                                                                                                                จดนี้จะได้ ∆⊬ =
                        \Delta S^{\circ} \approx -0.178 \text{ kJ K}^{-1} \text{ mol}^{-1}
นันคือ
                                                                                                                                                  -860 kJ mol<sup>-1</sup>
แทนค่าในสมการ \Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} จะได้ว่า
                                                                                                                                                              ให้ 0.2
       -860 \text{ kJ mol}^{-1} = \Delta H^{\circ} - (273 \text{ K}) \times (-0.178 \text{ kJ K}^{-1} \text{ mol}^{-1})
ดังนั้น \Delta H^{\circ} = \Delta_t H^{\circ}(SiO_2(s)) = (-860 \text{ kJ mol}^{-1}) + (273 \text{ K}) \times (-0.178 \text{ kJ K}^{-1} \text{ mol}^{-1})
                    = -908.6 \text{ kJ mol}^{-1} \approx -910 \text{ kJ mol}^{-1}
                                                                                                                                                               (0.1)
ดังนั้น \Delta U = (7.025 \text{ g}/28.1 \text{ g mol}^{-1}) \times (-910 \text{ kJ mol}^{-1}) - p(V_f - V_i)
                                                                                                                                                  ถ้าค่า \Delta H^{\circ} ก่อน
                    \approx (-228 \text{ kJ}) - p(V_f - V_i)
                                                                                                                                                     หน้าผิด แต่วิธี
                                                                                                                                                คำนวณถูกหมด *
                    * (7.025 \text{ g/}28.1 \text{ g mol}^{-1}) \times (-860 \text{ kJ mol}^{-1}) \approx -215 \text{ kJ}
                                                                                                                                                              ให้ 0.1
สำหรับปฏิกิริยา Si(s) + O_2(g) \longrightarrow SiO_2(s) เนื่องจาก Si และ SiO_2 เป็นของแข็ง จึงมีปริมาตรต่อ
                                                                                                                                                               (0.1)
โมลน้อยกว่าแก๊สออกซิเจนมาก จนถือได้ว่า V_{
m f} pprox 0 และ V_{
m i} pprox V_{
m i,oxygen} = nRT/p
                                                                                                                                                               (0.2)
ดังนั้น \Delta U = (-228 \text{ kJ}) - p(0 - nRT/p) = (-228 \text{ kJ}) + nRT
                                                                                                                                                          ใช้ R ผิด.
                    = (-228 \text{ kJ}) + (7.025/28.1 \text{ mol})(8.314 \times 10^{-3} \text{ kJ K}^{-1} \text{ mol}^{-1})(900+273 \text{ K})
                                                                                                                                                  ลืมเปลี่ยนหน่วย
                                                                                                                                                        อุณหภูมิผิด
                    = (-228 \text{ kJ}) + (2.44 \text{ kJ}) = -225.6 \text{ kJ} \approx -226 \text{ kJ}
                                                                                                                                                   หักอย่างละ 0.1
```

วิธีที่ 2:						
วิธีที่ 2:						
จากสมการ $\Delta H = \Delta U + \Delta (pV) = \Delta U + RT\Delta n_{gas}$						
ดังนั้น $\Delta U = \Delta H - RT \Delta n_{\rm gas}$	(0.1)					
นอกจากนั้น $\Delta H = n_{\rm Si} \times \Delta_{\rm f} H^{\rm o}({\rm SiO_2(s)})$	(0.1)					
ดังนั้น $\Delta U = n_{\rm Si} \times \Delta_{\rm f} H^{\circ}({\rm SiO_2(s)}) - RT\Delta n_{\rm gas}$	(0.1)					
หา $\Delta_{\!\scriptscriptstyle f}\!H^\circ({\sf SiO}_2({\sf s}))$ จากแผนภาพเอลลิงแฮมดังนี้:						
สมการเคมีที่สอดคล้องกับค่า $\Delta_t H^\circ(\mathrm{SiO}_2(\mathrm{s}))$ เป็นสมการเดียวกับสมการเคมีที่สอดคล้องกับเส้นของ SiO_2	(0.3)					
นั่นคือ $Si(s) + O_2(g) \longrightarrow SiO_2(s)$	ถ้าข้อ 5.3 ตอบ					
ที่ 0 °C จะได้ว่า $\Delta G^\circ \approx -860$ kJ mol $^{-1}$	$-750 \text{ kJ mol}^{-1} \text{ or}$					
ความชั้นของเส้นของ SiO ₂ ≈ ((−700)−(−860))/(900−0) = 160/900 = 0.178 kJ K ⁻¹ mol ⁻¹	-500 kJ mol ⁻¹ จุดนี้จะได้ ∆H° =					
นั่นคือ $\Delta S^{\circ} \approx -0.178 \text{ kJ K}^{-1} \text{ mol}^{-1}$	-860 kJ mol ⁻¹					
แทนค่าลงในสมการ $\Delta G^\circ = \Delta H^\circ - T \Delta S^\circ$ จะได้ว่า						
$-860 \text{ kJ mol}^{-1} = \Delta H^{\circ} - (273 \text{ K}) \times (-0.178 \text{ kJ K}^{-1} \text{ mol}^{-1})$						

```
ดังนั้น \Delta H^{\circ} = \Delta_{\mathbf{f}} H^{\circ}(\text{SiO}_{2}(\mathbf{s})) = (-860 \text{ kJ mol}^{-1}) + (273 \text{ K}) \times (-0.178 \text{ kJ K}^{-1} \text{ mol}^{-1})
                      = -908.6 \text{ kJ mol}^{-1} \approx -910 \text{ kJ mol}^{-1}
                                                                                                                                                                     (0.1)
ดังนั้น \Delta U = (7.025 \text{ g/}28.1 \text{ g mol}^{-1}) \times (-910 \text{ kJ mol}^{-1}) - RT\Delta n_{\text{gas}}
                                                                                                                                                       ถ้าค่า ∆H° ก่อน
                      \approx (-228 kJ) - RT\Delta n_{gas}
                                                                                                                                                          หน้าผิด แต่วิธี
                                                                                                                                                     คำนวณถูกหมด *
                      * (7.025 \text{ g/}28.1 \text{ g mol}^{-1}) \times (-860 \text{ kJ mol}^{-1}) \approx -215 \text{ kJ}
                                                                                                                                                                   ให้ 0.1
พิจารณาปฏิกิริยา
                                     Si(s) + O_2(g) \longrightarrow SiO_2(s)
เนื่องจากเราสนใจการทำปฏิกิริยาพอดีระหว่าง Si(s) และ O<sub>2</sub>(g)
                                                                                                                                                                    (0.1)
ดังนั้น \Delta n_{\rm gas} = \Delta n_{\rm Si} = -(7.025/28.1 \ {
m mol}) = -0.25 \ {
m mol}
                                                                                                                                                                     (0.2)
                                                                                                                                                                ใช้ R ผิด.
ดังนั้น \Delta U = (-228 \text{ kJ}) - RT\Delta n_{gas}
                                                                                                                                                       ลืมเปลี่ยนหน่วย
                      = (-228 \text{ kJ}) - (8.314 \times 10^{-3} \text{ kJ K}^{-1} \text{ mol}^{-1})(900+273 \text{ K})(-0.25 \text{ mol})
                                                                                                                                                                อุณหภูมิ,
                      = (-228 \text{ kJ}) + (2.44 \text{ kJ}) = -225.6 \text{ kJ} \approx -226 \text{ kJ}
                                                                                                                                                               \Delta n_{gas} ผิด
                                                                                                                                                        หักอย่างละ 0.1
                                                                                                                                                   (แต่คะแนนไม่ติดลบ)
```

วิธีที่ 3:	
จากสมการ $\Delta U = n_{Si} \times \Delta_f U^{\circ}(SiO_2(s))$	(0.1)
และจาก $\Delta_{\mathrm{f}} \mathcal{H}^{\circ} = \Delta_{\mathrm{f}} U^{\circ} + RT \Delta \mathcal{V}_{\mathrm{gas}}$	
ดังนั้น $\Delta_{\rm f} U^{\circ} = \Delta_{\rm f} H^{\circ} - RT \Delta \mathcal{V}_{\rm gas}$	(0.1)
ดังนั้น $\Delta U = n_{Si} \times (\Delta_f H^\circ(SiO_2(S)) - RT\Delta V_{gas})$	(0.1)
หา $\Delta_{\it f} H^{ m o}({ m SiO}_2({ m s}))$ จากแผนภาพเอลลิงแฮมดังนี้:	
สมการเคมีที่สอดคล้องกับค่า $\Delta_t H^{\circ}$ (SiO $_2$ (s)) เป็นสมการเดียวกับสมการเคมีที่สอดคล้องกับเส้นของ SiO $_2$	(0.3)
นั่นคือ Si(s) + $O_2(g) \longrightarrow SiO_2(s)$	ถ้าข้อ 5.3 ตอบ
ที่ 0 °C จะได้ว่า $\Delta G^{\circ} pprox$ –860 kJ mol $^{-1}$	-750 kJ mol ⁻¹
ความชั้นของเส้นของ SiO ₂ ≈ ((−700)–(−860))/(900–0) = 160/900 = 0.178 kJ K ⁻¹ mol ⁻¹	or -500 kJ mol^{-1}
นั่นคือ $\Delta S^{\circ} \approx -0.178 \; \text{kJ K}^{-1} \; \text{mol}^{-1}$	จุดนี้จะได้
แทนค่าลงในสมการ $\Delta G^\circ = \Delta H^\circ - T \Delta S^\circ$ จะได้	$\Delta_f H^0(SiO_2(s)) =$
-860 kJ mol ⁻¹ = ΔH° − (273 K) × (−0.178 kJ K ⁻¹ mol ⁻¹)	-860 kJ mol ⁻¹
ดังนั้น $\Delta H^{\circ} = \Delta_{\rm f} H^{\circ}({\rm SiO_2(s)}) = (-860 \text{ kJ mol}^{-1}) + (273 \text{ K}) \times (-0.178 \text{ kJ K}^{-1} \text{ mol}^{-1})$	ให้ 0.2
= −908.6 kJ mol ⁻¹ ≈ −910 kJ mol⁻¹	
ดังนั้น ΔU = (7.025 g/28.1 g mol ⁻¹) × ((−910 kJ mol ⁻¹) − R T ΔV_{gas})	(0.1)
สำหรับปฏิกิริยา Si(s) + O₂(g) \longrightarrow SiO₂(s) $\Delta \mathcal{V}_{gas}$ = −1	(0.1)

ดังนั้น
$$\Delta U = (7.025 \text{ g/}28.1 \text{ g mol}^{-1}) \times ((-910 \text{ kJ mol}^{-1}) - RT\Delta V_{\text{gas}})$$

$$= (7.025 \text{ g/}28.1 \text{ g mol}^{-1}) \times ((-910 \text{ kJ mol}^{-1}) - RT\Delta V_{\text{gas}})$$

$$= (8.314 \times 10^{-3} \text{ kJ K}^{-1} \text{ mol}^{-1})(900 + 273 \text{ K})(-1))$$

$$\approx -225 \text{ kJ}$$

$$\text{ถ้าใช้ } \Delta_{\text{J}}H^{\text{c}}(SiO_{2}(s)) = -860 \text{ kJ mol}^{-1} (\text{ซึ่งผิด}) \text{ จะได้ว่า}$$

$$\Delta U = (7.025 \text{ g/}28.1 \text{ g mol}^{-1}) \times ((-860 \text{ kJ mol}^{-1}) - (8.314 \times 10^{-3} \text{ kJ K}^{-1} \text{ mol}^{-1})(1173 \text{ K})(-1)) \approx -213 \text{ kJ}$$

$$\text{au}$$

2.7 (2 คะแนน)

สมการเคมีที่สอดคล้องกับ กระบวนการที่เกิดขึ้นที่จุด X คือ

$$Pb(l) \longrightarrow Pb(g)$$
 หรือ $Pb(s) \longrightarrow Pb(g)$ (0.5)

(ตอบ 2Pb(l) \longrightarrow 2Pb(g) หรือ 2Pb(s) \longrightarrow 2Pb(g) ก็ให้ 0.5) (ถ้าสมการกลับข้าง ให้ 0.25)

$$\Delta S^{\circ}$$
 ของกระบวนการนั้น =

(0.5)

(ถ้าเครื่องหมายตรงกันข้ามหัก 0.25 ยกเว้นว่าคำตอบก่อนหน้าเขียนเป็นสมการกลับข้าง ไม่ต้องหัก)

(ถ้าสมการเคมีตอบ 2Pb(l) \longrightarrow 2Pb(g) หรือ 2Pb(s) \longrightarrow 2Pb(g) และตอบว่า $\Delta S^{\circ}=180$ J K^{-1} mol $^{-1}$ ให้ 0.5)

(ถ้าสมการเคมีตอบ $Pb(l) \longrightarrow Pb(g)$ หรือ $Pb(s) \longrightarrow Pb(g)$ และตอบว่า $\Delta S^{\circ} = 180$ J K^{-1} mol $^{-1}$ ให้ 0.25)

วิธีคิด

เส้นของ PbO ในแผนภาพเอลลิงแฮมมีการหักลงและหักขึ้นที่อุณหภูมิ 1477 °C และ 1749 °C ตามลำดับ การที่เส้นกราฟมีความชันเปลี่ยนไปอย่างเห็นได้ชัดน่าจะ**เกี่ยวข้องกับการเปลี่ยนแปลง** (0.2) ของ $\Delta \mathcal{V}_{\rm eas}$ ในสมการเคมี

ที่อุณหภูมิต่ำกว่า 1477 °C เล็กน้อย

เส้นกราฟมีความชั้นเป็นบวกตามปกติ (ค่อนข้างขนานกับเส้นของสารอื่น ๆ) จึงสัมพันธ์กับปฏิกิริยา

$$2Pb(s) + O_2(g) \longrightarrow 2PbO(s)$$
 หรือ $2Pb(l) + O_2(g) \longrightarrow 2PbO(s)$ หรือ (0.1)

$$2Pb(s) + O_2(g) \longrightarrow 2PbO(l)$$
 หรือ $2Pb(l) + O_2(g) \longrightarrow 2PbO(l)$ ซึ่งมี $\Delta \mathcal{V}_{gas} = -1$

ดังนั้น $\Delta S^{\circ} < 0$ ทำให้ความชัน ($-\Delta S^{\circ}$) > 0

ที่อุณหภูมิช่วง 1477 – 1749 °C

กราฟมีลักษณะหักลง นั่นคือ ความชัน ($-\Delta S^\circ$) < 0 แสดงว่า ΔS° > 0 ซึ่งจะเป็นได้ก็ต่อเมื่อ $\Delta \mathcal{V}_{\rm gas}$ > 0 ดังนั้น ในช่วงนี้น่าจะสอดคล้องกับสมการ

$$2Pb(s) + O_2(g) \longrightarrow 2PbO(g)$$
 หรือ $2Pb(l) + O_2(g) \longrightarrow 2PbO(g)$ ซึ่งมี $\Delta V_{gas} = +1$ (0.2)

ดังนั้น ที่อุณหภูมิ 1477 °C น่าจะ**เกิดการเดือดหรือการระเหิดของ PbO** นั่นคือ

$$2PbO(l) \longrightarrow 2PbO(g)$$
 หรือ $2PbO(s) \longrightarrow 2PbO(g)$ หรือ

 $PbO(l) \longrightarrow PbO(g)$ หรือ $PbO(s) \longrightarrow PbO(g)$

(0.3)

คิดออกมาได้ถึง

 $180 \text{ J K}^{-1} \text{ mol}^{-1}$

ก็ให้ 0.3 ได้แล้ว

อ่านอุณหภูมิที่จุด **X** เป็น 1750 °C

ก็ไม่มีปัญหา

ที่อุณหภูมิสูงกว่า 1749 °C

กราฟมีลักษณะหักขึ้นอีกครั้งหนึ่ง นั่นคือ ความชัน ($-\Delta S^\circ$) > 0 แสดงว่า ΔS° < 0 ซึ่งจะเป็นได้ก็ ต่อเมื่อ $\Delta \mathcal{V}_{\rm eas}$ < 0 ดังนั้น ในช่วงนี้น่าจะสอดคล้องกับสมการ

$$2Pb(g) + O_2(g) \longrightarrow 2PbO(g)$$
 ซึ่งมี $\Delta V_{eas} = -1$ (0.2)

ดังนั้นที่อุณหภูมิ 1749 °C (ที่จุด X) น่าจะ**เกิดการเดือดหรือการระเหิดของ Pb** นั่นคือ

$$2Pb(l) \longrightarrow 2Pb(g)$$
 หรือ $2Pb(s) \longrightarrow 2Pb(g)$ หรือ

$$Pb(l) \longrightarrow Pb(g)$$
 หรือ $Pb(s) \longrightarrow Pb(g)$

การคำนวณ ΔS° ของกระบวนการที่เกิดขึ้นที่จุด f X หาได้จาก**ผลต่างของความชั้น**ที่อุณหภูมิ 1749 °C

สำหรับปฏิกิริยา 2Pb(s) +
$$O_2(g) \longrightarrow 2$$
PbO(g) หรือ 2Pb(l) + $O_2(g) \longrightarrow 2$ PbO(g)

ความชั้น₁ =
$$-\Delta S_1^{\circ}$$
 = (-110-(-90))/(1749-1600) = -0.134 kJ K⁻¹ mol⁻¹

ดังนั้น
$$\Delta S_1^{\circ} = 0.134 \text{ kJ K}^{-1} \text{ mol}^{-1}$$

สำหรับปฏิกิริยา $2Pb(g) + O_2(g) \longrightarrow 2PbO(g)$

ความขั้น₂ = $-\Delta S_2^{\circ}$ = (-105-(-110))/(1850-1749) = 0.05 kJ K⁻¹ mol⁻¹

ดังนั้น ΔS_2° = −0.05 kJ K⁻¹ mol⁻¹

เพราะฉะนั้น ΔS° ของกระบวนการที่เกิดขึ้นที่จุด $\mathbf{X} = \Delta S_{1}^{\circ} - \Delta S_{2}^{\circ} = 0.134 - (-0.05)$

= 0.184 kJ K $^{-1}$ mol $^{-1}$ pprox 0.18 kJ K $^{-1}$ mol $^{-1}$ = 180 J K $^{-1}$ mol $^{-1}$

โดยค่า ΔS° นี้สอดคล้องกับสมการ

 $2Pb(l) \longrightarrow 2Pb(g)$ หรือ $2Pb(s) \longrightarrow 2Pb(g)$

ในกรณีที่เขียนสมการใหม่ให้มีสัมประสิทธิ์เป็นจำนวนเต็มที่น้อยที่สุด คือ

 $Pb(l) \longrightarrow Pb(g)$

หรือ $Pb(s) \longrightarrow Pb(g)$

จะได้ว่า ΔS° ของกระบวนการที่เกิดขึ้นที่จุด X = 180/2 J K $^{-1}$ mol $^{-1}$ = 90 J K $^{-1}$ mol $^{-1}$

หมายเหตุ: ΔS° ของกระบวนการที่เกิดขึ้นที่จุด f X มีค่าใกล้เคียงกับค่าจากกฎของ Trouton

 $(\Delta_{\text{vap}}S^{\circ}\approx 88\ \text{J K}^{-1}\ \text{mol}^{-1})$ ดังนั้น กระบวนการที่เกิดขึ้นที่จุด old X น่าจะเป็นการเดือดของ Pb!!!

คำตอบข้อที่ 3 (10 คะแนน)

- 3.1 (2 คะแนน) สปีชีส์ที่เหมาะสม ได้แก่
- (ตัวละ 0.5 คะแนน ... ตอบถูกได้คะแนน ตอบผิดติดลบ)

- อะตอมอิสระ
 - X H
- ☐ Be ☐ Ne 🔀 Na
- ☐ Si

- โลหะแทรนซิชัน
- ☐ Sc^{III}

<u>แนวคิด</u> เขียน electron configuration แล้วมองหา 1 อิเล็กตรอนใน outermost subshell

₁ H	1s ¹	₄ Be	[He] 2s ²	₁₀ Ne	[He] 2s ² 2p ⁶	₁₁ Na	[Ne] <mark>3s¹</mark>	₁₄ Si	[Ne] 3s ² 3p ²
₂₁ Sc ^{III}	[Ar]	23VIV	[Ar] <mark>3d¹</mark>	₂₄ Cr ^V	[Ar] <mark>3d¹</mark>	₂₆ Fe ^{III}	[Ar] 3d ⁵	₃₀ Zn ^{II}	[Ar] 3d ¹⁰

- 3.2 (2 คะแนน) ความยาวคลื่นของแสงที่ใช้กระตุ้นอะตอม ⁷Li คือ
- X 1
- (0.5 คะแนน)

- เทคโนโลยี 1 µm 🔲 เหมาะสม

(0.25 คะแนน)

0.373

X eV \square 10 ☐ meV

m

- (0.25 คะแนน)
- 🗵 ไม่เหมาะสม ... energy gap ควรมีค่าใกล้เคียงกับ
- \square 100 □ µeV

วิธีคำนวณ

ความยาวคลื่นสำหรับ 7 Li atom:

$$c = \nu \lambda$$

(0.5 คะแนน)

$$\lambda = \frac{c}{v} = \frac{3.00 \times 10^8 \text{ m s}^{-1}}{803.5 \times 10^6 \text{ s}^{-1}} = 0.373 \text{ m}$$

$$(E = 5.32 \times 10^{-25} \text{ J} = 3.32 \text{ meV})$$

1-µm technology:

$$E = \frac{\hbar c}{\lambda}$$

$$S(3.00 \times 10^8 \text{ m/s})$$

$$(10^{-6} \text{ m})$$

$$E = \frac{hc}{\lambda}$$

$$E = \frac{(6.626 \times 10^{-34} \text{ J s})(3.00 \times 10^8 \text{ m s}^{-1})}{(10^{-6} \text{ m})}$$

$$E = 1.99 \times 10^{-19} \text{ J} \times \frac{1 \text{ eV}}{1.602 \times 10^{-19} \text{ J}} = 1.24 \text{ eV}$$

3.3 (1 คะแนน) สารโลหอินทรีย์ของ Tb^{III} สามารถใช้เป็นคิวบิตได้ เพราะ

โครงสร้างอิเล็กตรอนของ ₆₅Tb คือ [₅₄Xe] 6s² 4f⁹ **5d⁰**

(0.25 คะแนน)

(0.25 คะแนน)

ดังนั้น Tb^{III} = [Xe] $4f^8$ น่าจะพยายาม maximise spin ตาม Hund's rule ด้วยการกระตุ้นอิเล็กตรอน 1 ตัวไปยังออร์บิทัลที่มีพลังงานใกล้เคียง

(0.25 คะแนน)

(0.25 คะแนน)

เกิดเป็น [Xe] $4f^7$ $5d^1$ ทำให้มีอิเล็กตรอนเดี่ยว 1 ตัวใน outermost subshell

- [**He**] 1s²
- [Ne] $2s^2$ $2p^6$
- 3p⁶ [Ar] 3s² $3d^{10}$
- 4p⁶ $4s^2$ 4d¹⁰ [Kr] $4f^9$ $5p^6$ [**Xe**] 5s² 5d 5f
 - $6s^2$ 6d 6р 6f

(1 คะแนน) สัมประสิทธิ์หน้าฟังก์ชันคลื่น

(b)

0

1

แนวคิด

- (0.25 คะแนน)
- (0.25 คะแนน)
- (0.5 คะแนน)
- pure state มีองค์ประกอบเดียว ดังนั้น สัมประสิทธิ์หน้าฟังก์ชันคลื่นของตัวมันเองต้องเป็น 1 (probability = 1^2 = 100%) และสัมประสิทธิ์อีกตัวจะเป็นศูนย์ (ไม่มี contribution)
- equally mixed state แสดงว่า มี contribution เท่ากันที่ 50% ดังนั้น $c_{
 m up}^2=c_{
 m down}^2=rac{1}{2}$

(3 คะแนน) สัมประสิทธิ์ในรูปฟังก์ชันตรีโกณมิติ 3.5

(2×0.5 คะแนน)

ส้มประสิทธิ์ของ mixed state นี้

(2×0.5 คะแนน)

ลูกศรแทนสถานะที่เหมาะสม คือ (ระบุค่าของมุม heta ให้ชัดเจน)

(2×0.5 คะแนน)

<u>แนวคิด</u>

- จากคำตอบในข้อ 3.4 เลข 0 \longleftrightarrow $\frac{1}{\sqrt{2}}$ \longleftrightarrow 1 แต่มุม heta จากภาพ: $\sin 0^{\circ} \longleftrightarrow \sin 45^{\circ} \longleftrightarrow \sin 90^{\circ}$ (a) $0^{\circ} \to$ (c) $90^{\circ} \to$ (b) 180° ควรนึกถึง หรือ $\cos 90^\circ \longleftrightarrow \cos 45^\circ \longleftrightarrow \cos 0^\circ$ จึงเลือกใช้ \cos หรือ \sin ของมุม $\frac{\theta}{2}$
- Mixed state 3 : 1 ดังนั้น probability = $\cos^2\frac{\theta}{2}$: $\sin^2\frac{\theta}{2} = \frac{3}{3+1}$: $\frac{1}{3+1}$
- $\cos\frac{\theta}{2}=\frac{\sqrt{3}}{2}$ และ $\sin\frac{\theta}{2}=\frac{1}{2}$ นั่นคือ $\frac{\theta}{2}=30^\circ$ แสดงว่า $\theta=60^\circ$ บนแผนภาพ
- (1 คะแนน) สามารถระบุค่าพลังงานได้แม่นยำถึงระดับ 3.6

I	0.001 meV	0.01 meV	\boxtimes	0.1 meV	1 meV	10 me\
วิธีคำนวณ						

เขียนสมการ Uncertainty: $\Delta E \cdot \Delta t \geq \frac{\hbar}{2}$ $\hbar = \frac{h}{2\pi}$

$$\Delta E \cdot \Delta t \geq \frac{\hbar}{2}$$

$$\Delta E \cdot \Delta t \ge \frac{\hbar}{2}$$

$$\hbar = \frac{h}{2\pi}$$

$$\Delta E \ge \frac{(6.626 \times 10^{-34} \text{ J s})}{2(2\pi)(3 \times 10^{-12} \text{ s})} \times \frac{1 \text{ eV}}{1.602 \times 10^{-19} \text{ J}}$$

$$\Delta E \ge 1 \times 10^{-4} \text{ eV}$$

Answer to Problem 4 (10 points)

4.1 (0.5 point) Number of stereogenic centers in twistane:

4

4.2 (1 point) Use an arrow to identify each stereogenic center and assign its absolute configuration.

(0.25 pt for each correct answer; -0.25 pt for each extra stereogenic center)

4.3 (1 point) Number of possible stereoisomers:

2

4.4 (4 points) Structures of compound A-D:

Compound A	Compound B
1	1
OMs	соон
0.5 pt for reduction	0.75 pt for carboxylate
Compound C	Compound D
1	
0	
MsO	Ŭ L
0.5 pt for aldehyde/OMs	0.5 pt for other possible isomers of $C_{10}H_{14}O$

4.5 (1 point) Reagent **Y** for the conversion of **D** to twistane:

N₂H₄/OH⁻

4.6 (0.5 point) Draw the structure of compound **D** and mark the position of the labeled carbon (●).

4.7 (2 points) A mechanism for the conversion of **B** to **X**:

NaHCO₃

COOH

NaHCO₃

NaHCO₃

X

- 1 pt for iodination step (-0.5 pt for endo-like iodination)
- 1 pt for anti-periplanar S_N 2 reaction (-0.5 pt if carboxylate attacks at the endo iodonium ion)
- -0.5 pt if there's no deprotonation step.
- If a student gets all wrong, +0.25 pt will be given for the deprotonation of B.

Answer to Problem 5 (11.5 points)

5.1 (1.5 point) Use an arrow to identify only ONE proton that is most likely to be deprotonated.

Reasoning of your answer

(0.75 คะแนน) หากไม่แสดงด้วยการวาด resonance form ได้ 0 คะแนนทันที โดยการตรวจจะ normalize คำตอบ แบบต่าง ๆ อีกครั้ง

คำตอบทุกกรณีที่แสดง เป็นกรณีที่แสดง delocalization ในแบบที่ทำให้ประจุทั้งบวกลบหายไปได้ด้วยการ ไหล electron ไปถึง oxygen ที่มีประจุบวกอยู่ จึงมีน้ำหนักมากกว่ากรณีอื่นซึ่งการเคลื่อน electron ไปจะยังคง ประจุลบอยู่

ในกรณีที่ได้คะแนนสูงสุดนั้น เนื่องจากเป็นการไหล electron ผ่านวง aromatic ได้ถึงสองวง ในขณะที่กรณี ที่ได้คะแนนน้อยกว่า จะ delocalize ได้เพียงวงเดียว

5.2 (1 point) Draw the structure of compound **X**.

5.3 (2 points) Identify the type of reactions. Please mark \checkmark to all correct answers.

	Overall	Overall	Overall	Substitution	Elimination	Addition
	reduction	oxidation	non-redox	Substitution	EUITIIIIaUOII	Addition
Step I		✓		✓		
Step II			✓			
Step III			✓			✓
Step IV			✓		✓	

^{*}แต่ละ step มีคะแนน 0.5 คะแนน โดยต้องตอบเหมือนเฉลยทั้งหมด จึงจะได้คะแนนเต็ม

5.4 (1 point) Identify the maximum number of stereoisomers.

	Maximum number of stereoisomers
Compound A	4
Compound B	8

5.5 (1 point) Draw the structure of (*2R,3S*)-catechin.

5.6 (5 points)

5.6.1 Propose the mechanism for step I that explains the fact that only one stereoisomer is formed.

- นักเรียนอาจแทน anthocyanin ด้วย R-OH แต่ต้องมีการนิยามให้ชัดเจนว่า R คือส่วนใดของโมเลกุล หากไม่ นิยามให้ชัดเจนจะถูกหัก 0.5 คะแนนจาก mechanism แบบใด ๆ ก็ตามที่เขียนมาโดยไม่ติดลบไปข้ออื่น
- แบบที่ 1-2 จะได้คะแนนเต็มทั้งสองแบบ หากไม่ขาดรายละเอียดเฉพาะบางประการดังอธิบายด้านล่าง
- แบบที่ 1 เป็นการมองว่าเข้าชนแบบ $S_{\it N}2$ ซึ่งจะทำให้ได้ stereoisomer ของผลิตภัณฑ์ตามที่โจทย์กำหนด
- แบบที่ 1 อาจเริ่มโดยการใช้ resonance form ของสารตั้งต้นอีกแบบที่ได้จากการไหลอิเล็คตรอนแบบลูกศร เส้นประ (ซึ่งใช้แสดงเป็นขั้นตอนแรกของแบบที่ 2 ด้วย)
- การเข้าชนแบบ $S_{N}2$ โดยไม่มีการ activate ด้วย BF_{3} ก่อน ได้ 0.25 คะแนน
- แบบที่ 2 เป็นแบบที่ถูกต้องกว่าจากผลการทดลอง แต่หากจะให้ได้ stereoisomer ตามต้องการ (และได้คะแนน เต็ม) จะต้องใช้ neighboring group participation (NGP) ซึ่งเป็นเนื้อหาเกินหลักสูตร
- ดังนั้น หากนักเรียนเขียนการหลุดออกก่อนของ leaving group โดยไม่เกิด NGP จะถูกหัก 1 คะแนน เนื่องจากจะ ขัดแย้งกับความรู้พื้นฐานที่ว่า การชนด้วยนิวคลีโอไฟล์บน sp² carbon ย่อมจะทำให้เกิดการชนได้ทั้งสองด้าน และทำให้ไม่สามารถควบคุมให้เกิดเพียง stereoisomer เดียวได้
- หากเขียนแบบที่ 1-2 แต่ลืมขั้นตอนสุดท้ายที่เอา H⁺ ออก จะหัก 0.5 คะแนน โดยอาจแสดงเพียง -H⁺ ก็ถือว่า ยอมรับได้ หรือจะเขียนโมเลกุลที่มารับ H⁺ ให้ชัดเจนก็ยิ่งดี
- กรณีนอกเหนือจากนี้จะ normalize ในการตรวจจริง

(1 คะแนน)

5.6.2 Suggest suitable reagents for *steps II* and *III*.

Step IIIStep III1) H2/Pd(MsCl หรือ TsCl) + amine base เช่น i-Pr2NEt2) TBSCl, base- ถ้าใช้ base แก่ พวก hydroxide ได้ 0.5 คะแนนReagent ที่ใกล้เคียงและใช้ทดแทนได้จะพิจารณา- หากใช้สภาวะกรด ให้ 0.25 คะแนนเป็นกรณีไป

5.6.3 Identify the structure of compound **IV**.

(1 คะแนน)

Answer to Problem 6 (8.5 points)

6.1 (5.5 points) Draw the structures of Compounds A – F.

Compound A	Compound B
AcO OAc OAc OAc O	OH OMe O CI - ไม่ให้คะแนน หากเขียนโครงสร้างที่เกิด methylation ที่ทั้ง 2 ตำแหน่งของ OH
	- ให้ 0.5 หาก methylate ที่อีกตำแหน่งหนึ่ง
(1 point)	(1 point)
Compound C OBn OMe OCI ได้ 1 คะแนนเต็ม หากทำ benzylation แต่ Bn กับ Me สลับตำแหน่งกันเพราะทำ methylation ผิดตำแหน่งมา ตั้งแต่ข้อก่อนหน้า	Compound D OBn OMe
(1 point)	(0.5 point)
Compound E OBn OAc OAC OAC OAC	Compound F OBn OAC OAC OAC OAC OAC OAC
(1 point)	(1 point)

6.2 (1.5 points) An arrow-pushing mechanism for the formation of Compound F is

0.50 **คะแนน - การเกิด protonation** - เนื่องจากปฏิกิริยาเกิดในตัวกลางที่มีสภาวะเป็นกรด ดังนั้นจึงขอแบ่งการ ให้คะแนน ในส่วนที่เกี่ยวข้องกับการเกิด protonation ดังนี้

<u>กรณีที่ 1</u> ได้คะแนน**เต็ม 0.5 คะแนน** หากนักเรียนเขียนการเกิด protonation และใช้โมเลกุลใน protonated form นั้นทำปฏิกิริยาต่อ<u>ในทุกขั้นตอน</u>ที่ต้องใช้ H⁺ เป็นตัวเร่งปฏิกิริยา

<u>กรณีที่ 2</u> ได้คะแนน**เพียง 0.25 คะแนน** หากแสดง protonation ไม่ครบถ้วนทุกขั้นตอน

0.25 คะแนน - แสดงกลไกการเกิด keto-enol tautomerization

0.50 คะแนน - แสดงขั้นตอนการเกิด aldol product จาก addition ของ enol เข้าที่ protonated C=O

0.25 คะแนน - ขั้นตอนการเกิด dehydration ไม่ว่าจะเกิด elimination แบบ E1 หรือ E2 ก็ให้คะแนน

6.3 (1.5 points) When reacting the specified compounds with the following reagents, the expected observations are

	6			
compound	2,4,6-trihydroxy benzaldehyde	А	cyanidin	คะแนน
2,4-dinitrophenyl hydrazine	ตะกอน สีเหลือง/ส้ม/แดง	ตะกอน สีเหลือง/ส้ม/แดง	ตะกอน สีเหลือง/ส้ม/แดง	0.5 คะแนน สำหรับผลกับ 2,4-DNP
Tollens' reagent	ตะกอนเทา/ดำ/ โลหะเงินมันวาว	ตะกอนเทา/ดำ/ โลหะเงินมันวาว	ไม่เกิดตะกอน/ ไม่เกิดโลหะเคลือบหลอด	0.5 คะแนน สำหรับผลกับ Tollens'
FeCl₃	สีเข้มมากขึ้น	ไม่เห็น การเปลี่ยนแปลง	สีเข้มมากขึ้น	0.5 คะแนน สำหรับผลกับ FeCl ₋₃

- ให้คะแนนตามแถว แถวละ 0.5 คะแนน สำหรับผลที่คาดว่าจะสังเกตได้เมื่อให้ทำปฏิกิริยากับรีเอเจนต์นั้น
- สำหรับแต่ละแถว จะให้คะแนนดังนี้
 - ได้เต็ม 0.5 คะแนน หากตอบถูกหมดทั้ง 3 ช่อง
 - ได้ 0.3 คะแนน หากตอบถูก 2 ช่อง
 - ได้ 0.1 คะแนน หากตอบถูก 1 ช่อง

คำตอบข้อที่ 7 (12 คะแนน)

$$K_{a1}$$
 ของ MH $_2$ =

$$4.0 \times 10^{-3}$$

วิธีคำนวณ

พิจารณาปฏิกิริยาระหว่าง MH_2 กับ NaOH (OHT)

$$MH_2$$
 +

$$MH_2$$
 + $OH^ \rightarrow$ MH^- + H_2O

50.00 + 20.00 mL 50.00 + 20.00 mL

$$= 7.14 \times 10^{-3}$$

$$= 5.71 \times 10^{-3}$$

เกิดปฏิกิริยา (M)
$$-5.71 \times 10^{-3}$$
 -5.71×10^{-3}

$$-5.71 \times 10^{-3}$$

$$+5.71 \times 10^{-3}$$

คงเหลือ (M)
$$1.43 \times 10^{-3}$$

$$5.71 \times 10^{-3}$$

หลังจากนั้นเกิดการแตกตัวตามสมดุลการแตกตัวของ MH₂

$$MH_2$$

$$+ H_2O \rightleftharpoons MH^- + H_3O^+$$

เริ่มต้น (M)
$$1.43 \times 10^{-3}$$

$$1.43 \times 10^{-3}$$

$$5.71 \times 10^{-3}$$

นั่นคือ
$$x=[\mathrm{H_3O^+}]=10^{-3.25}=5.6\times10^{-4}~\mathrm{M}$$

(0.5)

(1)

(0.75)

จาก

$$K_{a1} = \frac{[MH^-][H_3O^+]}{[MH_2]}$$

$$K_{a1} = \frac{[5.71 \times 10^{-3} + 5.6 \times 10^{-4}][5.6 \times 10^{-4}]}{[1.43 \times 10^{-3} - 5.6 \times 10^{-4}]}$$

$$K_{a1} = 4.0 \times 10^{-3}$$

หมายเหตุ กรดแตกตัว = $(5.6 \times 10^{-4}/1.43 \times 10^{-3}) \times 100 = 39\%$ จึงประมาณไม่ได้เนื่องจากแตกตัวมากกว่า 5%

7.3 (2 คะแนน) ค่าคงที่สมดุลของ
$$MH_2 + I_2 \rightleftharpoons M + 2H^+ + 2I^- = 2.7 \times 10^7$$
 (1) ค่าคงที่สมดุลของ $LH_3 + I_2 \rightleftharpoons LH + 2H^+ + 2I^- = 1.4 \times 10^{-13}$ ตอบในรูป a.b \times 10ⁿ

วิธีคำนวณ

จากตอน A และค่าคงที่สมดุลที่คำนวณในข้อ 7.3 จะเห็นว่า มีเพียง MH_2 เท่านั้นที่เกิดปฏิกิริยากับ I_2 จะได้ว่า

 $MH_2(g/L) =$

$$\frac{12.70 \text{ mL KIO}_3}{25.00 \text{ mL sample}} \times \frac{0.00175 \text{ mol KIO}_3}{1000 \text{ mL KIO}_3} \times \frac{3 \text{ mol I}_2}{1 \text{ mol KIO}_3} \times \frac{1 \text{ mol MH}_2}{1 \text{ mol I}_2} \times \frac{150.0 \text{ g MH}_2}{1 \text{ mol MH}_2} \times \frac{1000 \text{ mL}}{1 \text{ L}}$$

$$\frac{(0.25)}{1 \text{ mol KIO}_3} \times \frac{1 \text{ mol MH}_2}{1 \text{ mol MH}_2} \times \frac{150.0 \text{ g MH}_2}{1 \text{ mol MH}_2} \times \frac{1000 \text{ mL}}{1 \text{ L}}$$

= 0.400 g/L

(ตอน A รวม 1.5 คะแนน หากคำนวณโดยคิดว่า LH_3 เกิดปฏิกิริยาด้วยจะไม่ได้คะแนน ${\color{red}0.75}$ ที่ชีดเส้นใต้)

จากตอน B และค่า $K_{\!\scriptscriptstyle a}$ จะเห็นว่า ที่จุดยุติ ${
m MH}_2$ ทำปฏิกิริยากับ ${
m NaOH}$ แบบ 1:1

และ LH_3 ทำปฏิกิริยากับ NaOH แบบ 3:1

จะได้ว่า (mol/L) NaOH reacted =

$$\frac{10.16 \text{ mL NaOH}}{10.00 \text{ mL dil sample}} \times \frac{0.0800 \text{ mol NaOH}}{1000 \text{ mL NaOH}} \times \frac{100.00 \text{ mL dil sample}}{25.00 \text{ mL sample}} \times \frac{1000 \text{ mL}}{1 \text{ L}}$$

$$\frac{(0.25)}{1000 \text{ mL NaOH}} \times \frac{1000 \text{ mL of mL naoH}}{1000 \text{ mL of mL naoH}} \times \frac{1000 \text{ mL of mL naoH}}{1 \text{ L}} \times \frac{1000 \text{ mL of mL naoH}}{1 \text{ L}} \times \frac{1000 \text{ mL of mL naoH}}{1 \text{ L}} \times \frac{1000 \text{ mL of mL naoH}}{1 \text{ L}} \times \frac{1000 \text{ mL of mL naoH}}{1 \text{ L}} \times \frac{1000 \text{ mL of mL naoH}}{1 \text{ L}} \times \frac{1000 \text{ mL of mL naoH}}{1 \text{ L}} \times \frac{1000 \text{ mL of mL naoH}}{1 \text{ L}} \times \frac{1000 \text{ mL of mL naoH}}{1 \text{ L}} \times \frac{1000 \text{ mL of mL naoH}}{1 \text{ L}} \times \frac{1000 \text{ mL of mL of mL naoH}}{1 \text{ L}} \times \frac{1000 \text{ mL of mL$$

= 0.3251 mol/L

และจาก (mol/L) NaOH reacted = (mol/L) MH₂ + 3 (mol/L) LH₃

<u>(0.75)</u>

$$LH_3 \text{ (mol/L)} = \frac{1}{3} \text{ (mol/L) NaOH reacted - (mol/L) MH}_2$$

= 21.5 g/L

(ตอน B รวม 1.5 คะแนน หากคำนวณโดยสัดส่วนโมลผิดจะไม่ได้คะแนน <u>0.75</u> ที่ขีดเส้นใต้)

		υ ι h	.वं व व	, ਰੂਸ ।	ע ע	,
7.5	(2 คะแนน)	ขอความตอโ	ปน่ถูกหรือผิด	(คาตอบทโมย	ถูกต้องจะถูกหัก	เคะแนน)

(ถูก 0.5 ผิด -0.5 ไม่ตอบ 0)

□ ถูก
 ☑ ผิด กราฟการไทเทรตสารละลาย LH₃ ด้วยสารละลาย NaOH จะเห็นจุดสมมูล 3 จุด
 อย่างชัดเจน

ี ญุก □ ผิด cresol red (ช่วงการเปลี่ยนสี pH 7.2–8.8 เหลือง–แดง) เป็นอินดิเคเตอร์ที่ดี สำหรับปฏิกิริยาการไทเทรต LH₃ + 3NaOH → LNa₃ + 3H₂O

 \square ถูก \square ผิด $_{
m LH_3}$ เป็นตัวออกซิไดส์ที่ดีกว่า $_{
m MH_2}$ ที่ภาวะมาตรฐาน

คำตอบข้อที่ 8 (6 คะแนน)

8.1 (1 คะแนน) ความเข้มข้นของไฮโดรเจนเปอร์ออกไซด์ = 0.0180 M (1)

8.2 (1 คะแนน) สมการที่ดุลของครึ่งปฏิกิริยาที่แอโนด พร้อมระบุสถานะ

$$H_2O_2(aq) \rightarrow O_2(g) + 2H^+(aq) + 2e^-$$
 (1)

8.3 (0.5 คะแนน) สถานะออกซิเดชันของออกซิเจน = -

8.4 (3.5 คะแนน) กระแสไฟฟ้าคงที่น้อยที่สุดที่ต้องใช้ =

วิธีคำนวณ

จากสมการ
$$H_2O_2(aq) \rightarrow O_2(g) + 2H^+(aq) + 2e^-$$
 เริ่มต้น (M) 0.0180 0 1.00 เปลี่ยนแปลง (M) $-x$ $+x$ $-$ สิ้นสุด (M) $0.0180 - x$ x 1.00 (0.25)

เนื่องจากต้องหาความดันย่อยของแก๊สออกซิเจนในสารละลาย

$$p = \frac{nRT}{V} = MRT = x(0.0821)(298.15) = 24.5x \tag{0.5}$$

เขียนสมการเนินสต์ของครึ่งปฏิกิริยานี้ได้ว่า

$$E = E_{0_2/H_2O_2}^{\circ} - \frac{0.0592}{2} \log \frac{[H_2O_2]}{p_{0_2}[H^+]^2}$$
 (0.5 unun')

$$0.660 = 0.680 - \frac{0.0592}{2} \log \frac{0.0180 - x}{24.5x(1.00)^2}$$
 (0.5)

$$\frac{0.0180 - x}{24.5x(1.00)^2} = 4.739$$

$$x = 1.54 \times 10^{-4} \,\mathrm{M} \tag{0.5}$$

ใช้ความสัมพันธ์ระหว่างจำนวนโมลของสารเกิดปฏิกิริยาและกระแสไฟฟ้า

คำตอบข้อที่ 9 (11 คะแนน)

9.1 (5 คะแนน)

9.1.1 pH ต่ำสุดที่สามารถตกตะกอน Cr(OH)₃ = **4.31** (1)

9.1.2 ขั้นตอนการเตรียมสารละลาย Cr^{3+} เข้มข้น 0.075 M ปริมาตร 250 mL จาก $Cr(NO_3)_3 \cdot 9H_2O$

ละลาย Cr(NO₃)₃ 7.5 g ในน้ำ/กรด (0.25)

<u>เติมกรด</u>เพื่อปรับ pH ให้ต่ำกว่า 4.31 / เติมกรดจนของแข็งละลายหมด (0.5)

เติมน้ำจนมีปริมาตร 250 mL (0.25)

9.1.3 มวลสูงสุดของ Cr(OH)₃ ที่ละลายได้ =

 5.2×10^{-4} g (0.5)

วิธีคำนวณ

 $Cr(OH)_3(s) \rightleftharpoons Cr^{3+}(aq) + 3OH^{-}(aq)$ $K_{sp} = 6.3 \times 10^{-31}$ $Cr^{3+}(aq) + 4OH^{-}(aq) \rightleftharpoons Cr(OH)_4^{-}(aq)$ $K_f = 8.0 \times 10^{29}$

 $Cr(OH)_3(s) + OH^-(aq) \rightleftharpoons Cr(OH)_4^-(aq)$ $K = K_{sp} \times K_f = 6.3 \times 10^{-31} \times 8.0 \times 10^{29} = 0.504$ (0.5)

$$K = \frac{[Cr(OH)_4^-]}{[OH^-]} = 0.504$$
 (0.5)

สารละลายมี pH = 9.00; pOH = 14.00 – 9.00 = 5.00; [OH $^-$] = 1.0 \times 10 $^{-5}$ mol/L สมมุติให้ Cr(OH) $_3$ ละลายได้ s mol/L

 $Cr(OH)_3(s)$ + $OH^-(aq)$ \rightleftharpoons $Cr(OH)_4^-(aq)$ เริ่มต้น (mol/L) 1.0×10^{-5} 0 เปลี่ยนแปลง (mol/L) ไม่เปลี่ยนแปลง +s สมคุล (mol/L) 1.0×10^{-5} s (0.5)

$$K = \frac{s}{1.0 \times 10^{-5}} = 0.504$$

$$s = 5.04 \times 10^{-6} \text{ moVL}$$
(0.5)

มวลสูงสุดของ
$$Cr(OH)_3$$
 ที่ละลายได้ = $1.00 L \times \frac{5.04 \times 10^{-6} \text{ mol } Cr(OH)_3}{1 L} \times \frac{103.0 \text{ g } Cr(OH)_3}{1 \text{ mol } Cr(OH)_3}$ (0.5)
$$= 5.2 \times 10^{-4} \text{ g}$$

9.2 (4	คะแนน)
--------	--------

สารประกอบเชิงซ้อน A มี

ชื่อ IUPAC เป็นภาษาอังกฤษ

pentaamminechloridochromium(III) chloride

(or pentaamminechlorochromium(III) chloride)

9.3 (2 คะแนน)

9.3.1 ชื่อเกลือ nitrate ของ Osⁿ⁺ เป็นภาษาอังกฤษ

osmium(IV) nitrate (1)

9.3.2 ธาตุ X คือ Ag (1)

คำตอบข้อที่ 10 (10 คะแนน)

10.1 (2 คะแนน)

หน่วยเซลล์ของ
$$\alpha$$
-Fe มีมวล = 1.85×10^{-22} g (0.25)

วิธีคำนวณ

$$\alpha$$
-Fe มีโครงสร้างผลึกแบบลูกบาศก์กลางตัว (body-centered cubic, bcc) จำนวนอะตอมใน 1 หน่วยเซลล์ = (1/8 × 8) + 1 = 2 Fe atoms หน่วยเซลล์ของ α -Fe มีมวล = (2 Fe atoms) × $\left(\frac{1 \text{ mol Fe}}{6.02 \times 10^{23} \text{ Fe atoms}}\right)$ × $\left(\frac{55.8 \text{ g}}{1 \text{ mol Fe}}\right)$ (0.25) = $1.85 \times 10^{-22} \text{ g}$

หน่วยเซลล์ของ
$$\alpha$$
-Fe มีความยาวด้าน = 2.86×10^2 pm (0.25)

วิธีคำนวณ

$$\alpha$$
-Fe มีความหนาแน่น (α) = 7.874 g cm^{-3} หน่วยเซลล์ของ α -Fe มีมวล (m) = $1.85 \times 10^{-22} \text{ g}$ ปริมาตรของหน่วยเซลล์ (V) = a^3 = m/d หน่วยเซลล์ของ α -Fe มีความยาวด้าน (a) = $\sqrt[3]{\left(\frac{1.85 \times 10^{-22} \text{ g}}{7.874 \text{ g cm}^{-3}}\right) \left(\frac{10^{30} \text{ pm}^3}{1 \text{ cm}^3}\right)}$ (0.5) (0.25) = $2.86 \times 10^2 \text{ pm}$

10.2 (1.5 คะแนน)

วิธีคำนวณ

ความยาวด้านหน่วยเซลล์แบบ bcc (a) ของ lpha-Fe เท่ากับ 2.86 imes 10^2 pm ดังนั้น

รัศมีอะตอมของเหล็ก (r) =
$$\left(\frac{\sqrt{3}}{4}\right)a = \left(\frac{\sqrt{3}}{4}\right)$$
 (2.86 × 10² pm) = 1.24 × 10² pm (0.25)

 γ -Fe มีโครงสร้างผลึกแบบลูกบาศก์กึ่งกลางหน้า (face-centered cubic, fcc)

มีจำนวนอะตอมใน 1 หน่วยเซลล์ = $(1/8 \times 8) + (1/2 \times 6) = 4$ Fe atoms

ปริมาตรของอะตอม Fe ใน 1 หน่วยเซลล์ของ γ -Fe

$$= \left(\frac{4 \text{ Fe atoms}}{1 \text{ unit cell}}\right) \left(\frac{4}{3}\pi \left(1.24 \times 10^2 \text{ pm}\right)^3\right) \left(\frac{1 \text{ cm}^3}{10^{30} \text{ pm}^3}\right) \left(\frac{1}{1 \text{ Fe atom}}\right)$$
(0.25) (0.25)

=
$$3.19 \times 10^{-23}$$
 cm³ / 3.20×10^{-23} cm³

10.3 (1.25 คะแนน)

$$\gamma$$
-Fe มีความหนาแน่น = 1.09 เท่าของ α -Fe (0.25)

วิธีคำนวณ

สมมติให้ รัศมีอะตอมของเหล็ก = r มวลอะตอมของเหล็ก = Fe

 γ -Fe มีโครงสร้างผลึกแบบ fcc หน่วยเซลล์ของ γ -Fe มีความยาวด้าน $a=rac{4r}{\sqrt{2}}$

ความหนาแน่นของ
$$\gamma$$
-Fe $(d\gamma) = (4\text{Fe}) \left(\frac{1}{\frac{4r}{\sqrt{2}}}\right)^3$ (0.5) วงเล็บละ 0.25

lpha-Fe มีโครงสร้างผลึกแบบ bcc หน่วยเซลล์ของ γ -Fe มีความยาวด้าน $a=rac{4r}{\sqrt{3}}$

$$\frac{d_{\gamma}}{d_{\alpha}} = \left(4\text{Fe}\right) \left(\frac{\sqrt{2}}{4r}\right)^{3} \left(\frac{1}{2\text{Fe}}\right) \left(\frac{4r}{\sqrt{3}}\right)^{3} = 2\left(\sqrt{\frac{2}{3}}\right)^{3}$$

$$= 1.09$$

10.4 (0.5 คะแนน) หน่วยเซลล์ของเหล็กที่อุณหภูมิ 1394 °C มีโครงสร้างผลึกแบบ

simple cubic

✓ bcc

fcc

(0.5)

10.5 (1.25 คะแนน)

10.5.1
 เส้นผ่านศูนย์กลางของช่องว่างออกตะฮีดรัล
 =

$$1.03 \times 10^2$$
 pm
 (0.25)

 ตอบในรูป a.bc $\times 10^n$

วิธีคำนวณ

γ-Fe มีโครงสร้างผลึกแบบ fcc

เส้นผ่านศูนย์กลางของช่องออกตะฮีดรัลในหน่วยเซลล์แบบ fcc = $a-2r=\frac{4r}{\sqrt{2}}-2r$

จากข้อ 10.2 รัศมีอะตอมของเหล็ก (r) = 1.24 imes 10 2 pm

เส้นผ่านศูนย์กลางของช่องออกตะฮีดรัลยาว =
$$\left(\frac{4}{\sqrt{2}} - 2\right)r = \left(\frac{4}{\sqrt{2}} - 2\right)$$
 (124 pm) = 1.03×10^2 pm

10.5.2 ปริมาตรของหน่วยเซลล์ใหม่ =
$$\frac{6.50 \times 10^{-23}}{\text{mavlugt a.bc} \times 10^{\text{n}}}$$
 cm³ (0.25)

วิธีคำนวณ

เส้นผ่านศูนย์กลางของอะตอมคาร์บอน = $2 \times 77 \; \text{pm}$ = $154 \; \text{pm}$ อะตอมคาร์บอนเข้าไปอยู่ในช่องว่างนี้จะทำ ให้**หน่วยเซลล์มีขนาดใหญ่ขึ้น** โดย

ความยาวด้านของหน่วยเซลล์เพิ่มขึ้นเป็น =
$$2(124) + 154 = 402 \text{ pm}$$
 (0.25)

ปริมาตรของหน่วยเชลล์ใหม่ =
$$(402 \times 10^{-10} \text{ cm})^3$$
 (0.25)
= $6.50 \times 10^{-23} \text{ cm}^3$

10.6 (3.5 คะแนน)

10.6.1 ตำแหน่งไอออนของเหล็กและออกซิเจนที่ระยะต่าง ๆ ตามแกน z (O = ไอออนบวก × = ไอออนลบ)

10.6.2 สูตรอย่างง่ายของสารประกอบออกไซด์ชนิดนี้ คือ

FeO (1)

10.6.3 เลขโคออร์ดิเนชันของไอออนลบ =

6 (0.5)

คำตอบข้อที่ 11 (11 คะแนน) ตอบคำถามโดยใช้สัญลักษณ์ตามตารางธาตุ เขียนชื่อสารด้วยตัวอักษรอังกฤษ

11.1 (1 คะแนน)

โลหะแทรนซิชันที่ตรงตามเงื่อนไข คือ

Sc, Ti (ตัวละ 0.5 ตอบเกิน ตัวละ -0.5)

11.2 (1 คะแนน) โครงสร้างของสารประกอบ dimer ของ YZ ที่เห็นมุมและรูปร่างที่ชัดเจน

11.3 (2 คะแนน) สูตรและชื่อของกรดออกโซของ X และมุมรอบอะตอมกลาง

11.4 (1 คะแนน) การจัดอิเล็กตรอนแบบย่อ (noble gas core notation) ของ Z

11.5 (1 คะแนน)

เมื่อวาง Z ไว้บนมือนาน ๆ จะมีสถานะเป็น
$$\square$$
 ของแข็ง $oldsymbol{
oldsymbol{\su}}$ ของเหลว $oldsymbol{
oldsymbol{\su}}$ แก๊ส (0.5)

เฟสไดอะแกรมบอกว่า ความหนาแน่นของ $Z_{\text{solid}} < Z_{\text{liq}}$ (หรือ $Z_{\text{liq}} > Z_{\text{solid}}$) ดังนั้นปริมาตรของ Z_{liq} ลดลง 3.4% // 5.9 g/cm³ = $\frac{125 \text{ g}}{v_{\text{solid}} \text{ mL}}$; $v_{\text{solid}} = \frac{125}{5.9} = 21.19 \text{ mL}$; $v_{\text{liq}} = 21.19 - (21.19 \times 0.034) = 20.47 \text{ mL}$

- 11.6 (5 คะแนน) เติมตัวเลือก a-s เพื่อเขียนแผนภาพออร์บิทัลเชิงโมเลกุลของสารประกอบออกไซด์ XO (ในแต่ละช่องตอบได้เพียง 1 ตัวเลือกเท่านั้น)
 - a) b)
- 11 f) g)
- j) k)
- 0) p)

- c) d)
- h) i) 11
- l) 11 1 m)
- q) r) 11 11

- e)
- 11 n)
 - 11
- s) 11 11 11

 $\sigma_{2s}^{-2} \; \sigma^{*}_{2s}^{-2} \; \pi_{2p}^{-4} \; \sigma_{2p}^{-2} \; \text{or} \; 1 \\ \sigma^{2} \; 2 \\ \sigma^{*2} \; 1 \\ \pi^{4} \; 3 \\ \sigma^{2} \; \text{or} \; 3 \\ \sigma^{2} \; 4 \\ \sigma^{*2} \; 1 \\ \pi^{4} \; 5 \\ \sigma^{2} \; \textit{(0.5)}$ การจัดเรียงอิเล็กตรอนตาม MO

XO มีอันดับพันธะ = 3 (0.5) และมีความยาวพันธะ \square มากกว่า \square เท่ากับ $oldsymbol{
oldsymbol{1}}$ น้อยกว่า $oldsymbol{X}_2$ (0.5)

แนวคิด: Ve สูงสุด 4, n+l เป็นเลขคี่ ≤ 5 มีทั้งมากกว่า เท่ากับ และน้อยกว่า Ve

n+l	> Ve	= Ve	< Ve	
1	impossible	1-H	2-He	Y dimer with Z (not He)
3	1-Na 2-Mg	3-B	4-C	X common oxo cpd- gas CO, CO ₂
5	1-Rb 2-Sr 3-Ga 4-Ge 3-Sc 4-Ti	not applicable	n.a.	Z max Ve = 4

ในตัวเลือก carbon เกิดสารประกอบออกไซด์ที่เป็นแก๊สที่ RT เฟสไดอะแกรม: Z เป็นของเหลวที่ RT ไม่ใช่ IA IIA txn M, X Y Z อยู่ต่างหมู่ จึงไม่ใช่ Ge (mp 938 °C)

คำตอบข้อที่ 12 (10 คะแนน)

12.1 (3 คะแนน)

12.1.1 สูตรเคมีของไอออนเชิงซ้อนในสาร A และ B

ต้องถูกทั้งหมด (ทั้งจำนวนลิแกนด์และประจุ) จึงจะได้คะแนน

12.1.2 แผนภาพพลังงานของ d ออร์บิทัลของไอออนเชิงซ้อนในสาร A และ B ที่ระบุชนิดของ d ออร์บิทัล และเติม อิเล็กตรอนให้สมบูรณ์

เขียนแผนภาพและระบุชนิด d-orbital ถูกต้อง (แผนภาพละ 0.5) เติมอิเล็กตรอนถูกต้อง (แผนภาพละ 0.5)

12.2 (2 คะแนน)

12.3 (5 คะแนน)

12.3.1	สารเชิงซ้อนที่มีโครงสร้างแบบทรงแปดหน้า	ที่เกิดปรากฏการณ์	SCO ได้ มีจำนวนอิเล็ก	าตรอนใน d ออร์บิทัล
	แบบ			

\square d ¹	\square d^2	\square d ³	\mathbf{V} d ⁴	\mathbf{V} d ⁵	\mathbf{V} d ⁶	\mathbf{V} d ⁷	\square d ⁸	\square d ⁹	\square d ¹⁰
		(0.5	์ ต้องตอบถู <i>เ</i>	าทั้ง 4 ตัวเลีย	อกเท่านั้น	ถ้าผิดตัวใดตั	ทัวหนึ่งได้ 0)		

12.3.2

(ตอบ d ออร์บิทัลที่เลือกในข้อ 12.3.1 เพียง 2 แบบ 3 คะแนน)

จำนวน d อิเล็กตรอน	4 (ไม่มีคะแนน)	5 (ไม่มีคะแนน)	<mark>6</mark> (ไม่มีคะแนน)	7 (ไม่มีคะแนน)
HS เขียนแผนภาพ d ออร์บิทัล และเติมอิเล็กตรอน	(0.5)	(0.5)	↑ ↑ ↑ ↑ ↑ (0.5)	<u>↑</u> <u>↑</u> <u>↑</u> (0.5)
	(0.5)	(0.5)	(0.5)	(0.5)
LS				<u>+</u>
เขียนแผนภาพ d ออร์บิทัล และเติมอิเล็กตรอน	<u>↑</u> ↑ ↑	<u>↑</u> ↓ <u>↑</u> ↓ <u>↑</u>	<u>↑↓ ↑↓ ↑↓</u>	<u>↑↓</u> <u>↑↓</u> <u>↑↓</u>
	(0.5)	(0.5)	(0.5)	(0.5)
ผลต่างของแมกเนติก โมเมนต์ (BM)	2.07	4.19	4.90	2.14
(ทศนิยม 2 ตำแหน่ง)	(0.5)	(0.5)	(0.5)	(0.5)

(1)

12.3.3

- ชารประกอบเชิงซ้อน $Fe(phen)_2(NCS)_2$ ที่ phen ถูกแทนที่ด้วย NCS^- ทำให้ค่า Δ ลดลง มีผล ทำให้พลังงานในการเข้าคู่ (pairing energy) มีค่ามากกว่า ทำให้เกิดสารประกอบเชิงซ้อนที่มีการ จัดอิเล็กตรอนในออร์บิทัลแบบสปินสูง (HS)
- สารประกอบเชิงซ้อน $\operatorname{Fe}(\operatorname{phen})_2(\operatorname{NCS})_2$ ที่ phen ถูกแทนที่ด้วย NCS^- ทำให้ค่า Δ เพิ่มขึ้น มีผล ทำให้พลังงานในการเข้าคู่ (pairing energy) มีค่าน้อยกว่า ทำให้เกิดสารประกอบเชิงซ้อนที่มีการ จัดอิเล็กตรอนในออร์บิทัลแบบสปินสูง (HS)

12.3.3.2 Mössbauer spectrum ของ Fe(phen)₂(NCS)₂ ที่อุณหภูมิ 180 K

เส้น spectrum จะมีลักษณะผสมระหว่าง HS กับ LS complex ที่อุณหภูมิ 180 K เนื่องจากค่า magnetic moment ประมาณ 3 BM ซึ่งเป็นค่าที่อยู่ระหว่าง magnetic moment ของ HS (4.9 BM) กับ LS (0 BM) complex

เลขประจำตัวสอบ