SEMAINE DU 22/03 AU 26/03

1 Cours

Polynômes

Polynômes à une indéterminée à coefficients dans \mathbb{K} Définitions : polynôme à coefficients dans \mathbb{K} , ensemble $\mathbb{K}[X]$. Deux polynômes sont égaux si et seulement si leurs coefficients sont égaux. Polynômes pairs, impairs. ($\mathbb{K}[X], +, \times$) est un anneau intègre commutatif. ($\mathbb{K}[X], +, \cdot$) est un \mathbb{K} -espace vectoriel. Base canonique de $\mathbb{K}[X]$. Degré d'un polynôme. Degré d'une combinaison linéaire, d'un produit. Définition de $\mathbb{K}_n[X]$. $\mathbb{K}_n[X]$ est un sous-espace vectoriel de $\mathbb{K}[X]$. Base canonique de $\mathbb{K}_n[X]$. Famille de polynômes à degrés échelonnés. Fonction polynomiale associée à un polynôme. Racine d'un polynôme. Cas des polynômes pairs/impairs et des polynômes à coefficients réels. Polynôme dérivé. La dérivation est linéaire. Formule de Leibniz. Formule de Taylor.

Arithmétique de $\mathbb{K}[X]$ Relation de divisibilité. Division euclidienne. Algorithme de division euclidienne. Un polynôme P admet a pour racine si et seulement si il est divisible par X - a. Existence et unicité d'un PGCD unitaire ou nul. Algorithme d'Euclide pour les polynômes. Théorème de Bézout. Polynômes premiers entre eux. Lemme de Gauss. Un polynôme de degré n admet au plus n racines. Polynômes interpolateurs de Lagrange. Existence et unicité d'un PPCM unitaire ou nul.

Racines multiples Définition. Un polynôme de degré *n* admet au plus *n* racines comptées avec multiplicité. Caractérisation de la multiplicité d'une racine par les dérivées successives.

Factorisation Polynômes irréductibles. Définition et décomposition en facteurs irréductibles. Théorème de d'Alembert-Gauss. Polynômes irréductibles de $\mathbb{C}[X]$ et $\mathbb{R}[X]$. Polynôme scindé. Un polynôme est scindé si et seulement si il possède autant de racines comptées avec multiplicité que son degré. Lien coefficients/racines.

Fractions rationnelles

Corps des fractions rationnelles Définition. Opérations. Degré. Dérivation. $\mathbb{K}(X)$ est un \mathbb{K} -espace vectoriel et un corps.

Fonctions rationnelles, zéros et pôles Fonction rationnelle associée à une fraction rationnelle. Zéros et pôles d'une fraction rationnelle. Multiplicité d'un zéro ou d'un pôle.

Décomposition en éléments simples Partie entière. Décomposition en éléments simples sur $\mathbb C$ et sur $\mathbb R$. Décomposition en éléments simples de $\frac{P'}{P}$ où P est scindé.

Sous-espaces affines

Sous-espaces affines Définition. Intersection de sous-espaces affines. Translation.

Équations linéaires Description de l'ensemble des solutions de f(x) = b d'inconnue $x \in E$ où $f \in \mathcal{L}(E, F)$ et $b \in F$.

2 Méthodes à maîtriser

- Pour résoudre des équations d'inconnue polynomiale, chercher dans un premier temps à déterminer le degré du polynôme inconnu.
- Déterminer le reste d'une division euclidienne (utiliser les racines du diviseur).
- Montrer qu'un polynôme est nul en montrant qu'il admet une infinité de racines.
- Caractériser la multiplicité d'une racine via les dérivées successives.
- Passer de la décomposition en facteurs irréductibles sur $\mathbb{C}[X]$ à celle sur $\mathbb{R}[X]$ (regrouper les racines conjuguées).
- Utiliser la parité et le fait qu'un polynôme est à coefficients réels pour obtenir de nouvelles racines à partir d'une racine donnée.
- Savoir résoudre des équations polynomiales de degré 2 à coefficients complexes.
- Savoir déterminer des racines $n^{\text{èmes}}$ d'un nombre complexe.
- Résoudre des systèmes polynomiaux symétriques en les inconnues.
- Exprimer une somme et un produit de racines à l'aide des coefficients du polynôme.
- Décomposition en éléments simples d'une fraction rationnelle irréductible F = P/Q:
 - Calculer la partie entière.
 - Factoriser le dénominateur en produit de facteurs irréductibles.
 - Écrire la décomposition en éléments simples à l'aide de coefficients inconnus.
 - Déterminer des coefficients ou des relations entre ceux-ci :

- * Le coefficient associé à un pôle simple a est P(a)/Q'(a);
- * Évaluer $(X a)^p$ F en un pôle a (DES dans \mathbb{C}) ou $(X^2 + aX + b)^p$ F en un racine de $X^2 + aX + b$ (DES dans \mathbb{R});
- * Utiliser le fait que $F \in \mathbb{R}(X)$: les coefficients de la DES dans \mathbb{C} sont conjugués;
- * Utiliser la parité éventuelle de la fraction rationnelle;
- * Utiliser la limite de xF(x) quand x tend vers $+\infty$;
- * Évaluer en des valeurs particulières.
- Simplifier par télescopage une somme du type $\sum F(k)$ où F est une fraction rationnelle via une DES.
- Calculer une intégrale du type $\int F(t) dt$ où F est un fraction rationnelle via une DES.
- Structure de l'ensemble des solutions d'une équation linéaire f(x) = b: solution particulière + solutions de l'équation homogène.

3 Questions de cours

Décomposition en éléments simples

Décomposer en éléments simples sur $\mathbb R$ ou sur $\mathbb C$ une fraction rationnelle au choix de l'interrogateur.

Lien coefficients/racines

Déterminer les racines du polynômes $P_n = (X + i)^n - (X - i)^n$. En déduire les valeurs de $A_n = \sum_{k=1}^{n-1} \cot \left(\frac{k\pi}{n}\right)$ et $B_n = \prod_{k=1}^{n-1} \cot \left(\frac{k\pi}{n}\right)$.

Polynômes «périodiques»

Déterminer les polynômes $P \in \mathbb{K}[X]$ tels que P(X + 1) = P(X).

Retour sur \mathbb{U}_n

Factoriser $X^n - 1$ en produits de polynômes irréductibles de $\mathbb{C}[X]$. En déduire la décomposition en éléments simples de $\frac{1}{X^n - 1}$.