Fonctions de deux variables réelles, limite, continuité

Aperçu

- 1. Applications de deux variables réelles
- 2. Limite en un point, continuité
- 3. Champs de vecteurs
- 4. Propriétés
- 5. Aspects topologiques
- 6. Topologie de l'espace \mathbb{R}^2
- 7. Notion d'homéomorphisme

Fonctions de deux variables réelles, limite, continuité

- 1. Applications de deux variables réelles
- 1.1 Applications à valeurs dans $\mathbb R$
- 1.2 Applications partielles
- 1.3 Interprétation graphique
- 2. Limite en un point, continuité
- 3. Champs de vecteurs
- 4. Propriétés
- 5. Aspects topologiques
- 6. Topologie de l'espace \mathbb{R}^2
- 7. Notion d'homéomorphisme

- 1. Applications de deux variables réelles
- 1.1 Applications à valeurs dans $\mathbb R$
- 1.2 Applications partielles
- 1.3 Interprétation graphique
- 2. Limite en un point, continuité
- 3. Champs de vecteurs
- 4. Propriétés
- 5. Aspects topologiques
- 6. Topologie de l'espace ℝ²
- 7. Notion d'homéomorphisme

Soit A une partie de \mathbb{R}^2 . Rappelons que pour toutes applications f et g de $\mathcal{F}(A,\mathbb{R})$ et tout $\lambda \in \mathbb{R}$, nous avons les lois naturelles

- f + g est la fonction $(x, y) \mapsto f(x, y) + g(x, y)$,
- $f \times g = fg$ est la fonction $(x, y) \mapsto f(x, y)g(x, y)$,
- $\lambda \cdot f$ est la fonction $(x, y) \mapsto \lambda f(x, y)$,
- Si g ne s'annule pas sur A, f/g est la fonction $(x, y) \mapsto f(x, y)/g(x, y)$.

Muni de ces lois, nous connaissons déjà le résultat suivant

- P 1 1. L'ensemble $(\mathcal{F}(A,\mathbb{R}),+,\times)$ est un anneau commutatif. ^a
 - 2. L'ensemble $(\mathcal{F}(A,\mathbb{R}),+,\cdot)$ est un \mathbb{R} -espace vectoriel.

 $^{^{}a}1.\mathcal{F}(A,\mathbb{R})$ n'est pas un anneau intègre si card $A\geq 2$.

1. Les formes linéaires sur \mathbb{R}^2 , c'est-à-dire les applications de la forme

$$\mathbb{R}^2 \to \mathbb{R} , \quad a, b \in \mathbb{R}$$
$$(x, y) \mapsto ax + by$$

sont des fonctions réelles de deux variables réelles.

2. Les fonctions polynomiales de deux variables réelles, c'est-à-dire de la forme

$$\begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R} & , & \text{où} a_{p,q} \in \mathbb{R}. \\ (x,y) & \mapsto & \displaystyle \sum_{\substack{p=0...n \\ a=0 \ m}} a_{p,q} x^p y^q & . \end{array}$$

3. Les fonctions rationnelles de deux variables réelles, c'est-à-dire de la forme

$$\begin{array}{ccc}
A & \to & \mathbb{R} \\
(x,y) & \mapsto & \frac{P(x,y)}{Q(x,y)}
\end{array},$$

où P et Q sont des fonctions polynomiales de deux variables et $A = \{ (x, y) \in \mathbb{R}^2 \mid Q(x, y) \neq 0 \}.$

1. Applications de deux variables réelles

- 1.1 Applications à valeurs dans \mathbb{R}
- 1.2 Applications partielles
- 1.3 Interprétation graphique
- 2. Limite en un point, continuité
- 3. Champs de vecteurs
- 4. Propriétés
- 5. Aspects topologiques
- 6. Topologie de l'espace R²
- 7. Notion d'homéomorphisme

D 3 Soit $A \subset \mathbb{R}^2$, $f: A \to \mathbb{R}$, et $a = (x_0, y_0) \in A$. Les applications partielles de f en a sont les fonctions d'une seule variable réelle

$$f(*,y_0): \quad I \rightarrow \mathbb{R}$$
 où $I = \left\{ x \in \mathbb{R} \mid (x,y_0) \in A \right\},$
$$x \mapsto f(x,y_0)$$

et

$$f(x_0,*): J \to \mathbb{R}$$
 où $J = \{ y \in \mathbb{R} \mid (x_0,y) \in A \}$.

On a une définition analogue lorsque f est à valeurs dans \mathbb{R}^2 .

Lorsqu'il n'y a pas d'ambiguïté, notamment avec les valeurs numériques ou les applications coordonnées, on note ces applications simplement f_{y_0} et f_{x_0} .

E 4 Soit

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$(x,y) \mapsto \frac{(y-4)\sin(x)}{x^2 + y^2 + 1}.$$

- 1. La première application partielle en $a=(\pi,1)$ est $\mathbb{R} \to \mathbb{R}$ $x \mapsto \frac{-3\sin(x)}{x^2+2}$

- 1. Applications de deux variables réelles
- 1.1 Applications à valeurs dans R
- 1.2 Applications partielles
- 1.3 Interprétation graphique
- 2. Limite en un point, continuité
- 3. Champs de vecteurs
- 4. Propriétés
- 5. Aspects topologiques
- 6. Topologie de l'espace ℝ²
- 7. Notion d'homéomorphisme

Une fonction définie sur une partie A de \mathbb{R}^2 admet une représentation graphique, qui est une surface représentative, à savoir

$$\left\{ (x, y, z) \in \mathbb{R}^3 \mid (x, y) \in A \text{ et } z = f(x, y) \right\}.$$

Figure: $z = 5xy\sin(2x)$.

Les courbes représentatives des fonctions partielles $t\mapsto f(t,y_0)$ s'interprètent comme l'intersection du plan $y=y_0$ et de la surface représentative de f. De même, les courbes représentatives des fonctions partielles $t\mapsto f(x_0,t)$ sont les intersections de la surface représentative de f avec le plan $x=x_0$.

$$C_{\lambda} = \{ (x, y) \in A \mid f(x, y) = \lambda \} \text{ où } \lambda \in \mathbb{R}.$$

C'est l'intersection de la surface représentative de f avec le plan $z = \lambda$. Dans une représentation graphique, pour une meilleure lisibilité, on colore souvent les zones entre les courbes de niveau dans différents tons. En physique, on parle de courbe équipotentielle.

- 1. Applications de deux variables réelles
- 2. Limite en un point, continuité
- 2.1 Fonctions à valeurs réelles
- 2.2 Domination et encadrement
- 2.3 Limite suivant une partie
- 2.4 Restriction et applications partielles
- 2.5 Limites infinies et limites à l'infini
- 3. Champs de vecteurs
- 4. Propriétés
- 5. Aspects topologiques
- 6. Topologie de l'espace \mathbb{R}^2
- 7. Notion d'homéomorphisme

R Définition générale de limite

Soient E et F deux espaces vectoriels normés (par exemple deux espaces vectoriels euclidiens). Soit A une partie de E, a un point adhérent à A et $b \in F$. On dit que f admet b pour **limite** en a si

$$\forall \varepsilon > 0, \exists \delta > 0, \forall z \in A, \|z - a\| \le \delta \implies \|f(z) - b\| \le \varepsilon.$$

Lorsque cette limite existe, elle est unique. On note cette propriété

$$\lim_{a} f = b \quad \text{ou} \quad \lim_{z \to a} f(z) = b.$$

- 1. Applications de deux variables réelles
- 2. Limite en un point, continuité
- 2.1 Fonctions à valeurs réelles
- 2.2 Domination et encadrement
- 2.3 Limite suivant une partie
- 2.4 Restriction et applications partielles
- 2.5 Limites infinies et limites à l'infini
- 3. Champs de vecteurs
- 4. Propriétés
- 5. Aspects topologiques
- 6. Topologie de l'espace R²
- 7. Notion d'homéomorphisme

D 6

Soient A une partie de \mathbb{R}^2 , $f:A\to\mathbb{R}$, a un point adhérent à A et $b\in\mathbb{R}$. On dit que f admet b pour **limite** en a si

$$\forall \varepsilon > 0, \exists \delta > 0, \forall z \in A, ||z - a|| \le \delta \implies |f(z) - b| \le \varepsilon.$$

Lorsque cette limite existe, elle est unique. On note cette propriété

$$\lim_{a} f = b$$
, $\lim_{z \to a} f(z) = b$, ou $\lim_{(x,y) \to (x_0,y_0)} f(x,y) = b$ si $a = (x_0,y_0)$.

Faire tendre z = (x, y) vers $a = (x_0, y_0)$ ne revient pas à faire tendre x vers x_0 puis y vers y_0 ou le contraire ou toute autre invention malsaine.

D 7 Soient A une partie de \mathbb{R}^2 , $f: A \to \mathbb{R}$ et $a \in A$.

- On dit que f est continue en a si $\lim_{z\to a} f(z) = f(a)$.
- Soit *X* une partie de *A*. On dit que *f* est **continue** sur *X* si *f* est continue en tout point de *X*.
- Lorsque f est continue sur son ensemble de définition A, on dit simplement que f est **continue**.

Formellement, $f: A \to \mathbb{R}$ est continue en a si et seulement si

$$\forall \varepsilon > 0, \exists \delta > 0, \forall z \in A, ||z - a|| < \delta \implies |f(z) - f(a)| < \varepsilon.$$

On note $\mathscr{C}(A,\mathbb{R})$ l'ensemble des fonctions continues sur A à valeurs dans \mathbb{R} .

P 8

L'application ||*|| et les projections canoniques

$$\mathbb{R}^2 \to \mathbb{R}$$
 , $\mathbb{R}^2 \to \mathbb{R}$, $\mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto \|(x,y)\|$ $(x,y) \mapsto x$ $(x,y) \mapsto y$

sont continues en tout point de \mathbb{R}^2 .

- 1. Applications de deux variables réelles
- 2. Limite en un point, continuité
- 2.1 Fonctions à valeurs réelles
- 2.2 Domination et encadrement
- 2.3 Limite suivant une partie
- 2.4 Restriction et applications partielles
- 2.5 Limites infinies et limites à l'infini
- 3. Champs de vecteurs
- 4. Propriétés
- 5. Aspects topologiques
- 6. Topologie de l'espace ℝ²
- 7. Notion d'homéomorphisme

T 9 Soient A une partie de \mathbb{R}^2 , a un point adhérent à A et f une application de A dans \mathbb{R} et $b \in \mathbb{R}$. On suppose qu'il existe une fonction $g : A \to \mathbb{R}$ telle que,

- ightharpoonup pour $z \in A$ au voisinage de a, $|f(z) b| \le g(z)$,
- $\lim_{z \to a} g(z) = 0$

Alors $\lim_{z \to a} f(z) = b$.

On pourrait également énoncer un théorème de convergence par encadrement.

x³

E 10 On considère l'application $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = \frac{x^3}{x^2 + y^2}$ si $(x,y) \neq (0,0)$ et f(0,0) = 0. Pour $(x,y) \neq (0,0)$, on a

$$|f(x,y) - f(0,0)| = \frac{x^2}{x^2 + y^2} |x| \le |x| \xrightarrow{(x,y) \to (0,0)} 0.$$

L'application f est donc continue en (0,0).

- 1. Applications de deux variables réelles
- 2. Limite en un point, continuité
- 2.1 Fonctions à valeurs réelles
- 2.2 Domination et encadrement
- 2.3 Limite suivant une partie
- 2.4 Restriction et applications partielles
- 2.5 Limites infinies et limites à l'infini
- 3. Champs de vecteurs
- 4. Propriétés
- 5. Aspects topologiques
- 6. Topologie de l'espace R²
- 7. Notion d'homéomorphisme

D 11 Soient A une partie de \mathbb{R}^2 , $f:A\to\mathbb{R}$, une partie $X\subset A$, a un point adhérent à X et $b\in\mathbb{R}$. On dit que f admet b pour **limite** en a suivant X si la fonction $f|_X$ admet b pour limite en a, c'est-à-dire

$$\forall \varepsilon > 0, \exists \delta > 0, \forall z \in X, \|z - a\| < \delta \implies |f(z) - b| < \varepsilon.$$

On a une définition analogue pour $f: A \to \mathbb{R}^2$.

On note cette propriété $\lim_{\substack{z \to a \\ z \in X}} f(z) = b$.

P 12 Avec les notations de la définition. Si $\lim_{z \to a} f(z) = b$, alors $\lim_{\substack{z \to a \\ z \in Y}} f(z) = b$.

La réciproque est bien sûr totalement fausse.

E 13 Considérons l'application $f: A = \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ définie par

$$f(x, y) = \frac{3x^2 + xy}{\sqrt{x^2 + y^2}}.$$

Pour $y \neq 0$, on a f(0,y) = 0. Autrement dit, la restriction de f à la partie de \mathbb{R}^2 constituée par la droite Δ d'équation x = 0 est identiquement nulle ; sa limite au point (0,0) est 0. La seule limite possible pour f en (0,0) est donc 0. Montrons que c'est bien le cas !

Pour tout $(x, y) \in A$, on a

$$|f(x,y) - 0| \le \frac{3x^2}{\|(x,y)\|} + \frac{|xy|}{\|(x,y)\|} \le \frac{3\|(x,y)\|^2}{\|(x,y)\|} + \frac{\|(x,y)\|^2}{\|(x,y)\|} \le 4\|(x,y)\|.$$

Or
$$\lim_{(x,y)\to(0,0)} 4\|(x,y)\| = 0$$
, d'où $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

On peut également utiliser les coordonnées polaires ^a En effet, pour tout $(x, y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ de coordonnées polaires (r,θ) où $r = \sqrt{x^2 + y^2} = \|(x,y)\|$, on a

$$f(x, y) = f(r\cos\theta, r\sin\theta) = r(\cos^2\theta + \cos\theta\sin\theta) \xrightarrow[r\to 0]{} 0,$$

 $\operatorname{car} \lim_{(x,y)\to(0,0)} \|(x,y)\| = 0.$

On retrouve néanmoins le caractère *local* des notions de limite et de continuité.

- **P 14** Soient A une partie de \mathbb{R}^2 , $f:A\to\mathbb{R}$, a un point adhérent à A et V un voisinage de a. Alors
 - 1. $\lim_{z \to a} f(z) = \ell \iff \lim_{\substack{z \to a \ z \in V \cap A}} f(z) = \ell$.
 - 2. f est continue en a si et seulement si la restriction de f à $V \cap A$ est continue en a.

Le plus souvent, on utilise pour V une boule centrée en a et de rayon r > 0.

T 15 Soient A et A' deux parties de \mathbb{R}^2 , a un point adhérent à A et à A', f une fonction de définie sur $A \cup A'$.

Montrer que pour que $\ell = \lim_{z \to a} f(z)$ il faut et il suffit que l'on ait simultanément $z \in A \cup A'$

$$\ell = \lim_{\substack{z \to a \\ z \in A}} f(z)$$
 et $\ell = \lim_{\substack{z \to a \\ z \in A'}} f(z)$

- 1. Applications de deux variables réelles
- 2. Limite en un point, continuité
- 2.1 Fonctions à valeurs réelles
- 2.2 Domination et encadrement
- 2.3 Limite suivant une partie
- 2.4 Restriction et applications partielles
- 2.5 Limites infinies et limites à l'infini
- 3. Champs de vecteurs
- 4. Propriétés
- 5. Aspects topologiques
- 6. Topologie de l'espace ℝ²
- 7. Notion d'homéomorphisme

P 16 La restriction d'une application continue reste continue.

P 17 Soit $A \subset \mathbb{R}^2$ et $f: A \to \mathbb{R}$. Si f est continue en $a = (x_0, y_0) \in A$ alors $f(*, y_0)$ est continue en x_0 et $f(x_0, *)$ est continue en y_0 . Autrement dit, la continuité de f entraı̂ne la continuité des applications partielles.

La réciproque est fausse ! On considère l'application f définie sur \mathbb{R}^2 par

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0). \end{cases}$$

Soit $y_0 \neq 0$. La première application partielle en (x_0, y_0) est la fonction $x \mapsto \frac{xy_0}{x^2+y^2}$. Si maintenant $y_0 = 0$, la première application partielle est $x \mapsto 0$. En particulier, les premières applications partielles sont continues. De même, les deuxièmes applications partielles sont aussi continues.

Mais, considérons maintenant la restriction g de la fonction f à la partie de \mathbb{R}^2 constituée par la droite Δ d'équation $y = \lambda x$, $\lambda \neq 0$. Pour tout point $(x, y) \in \Delta$ on a

$$g(x, y) = f(x, y) = \frac{\lambda}{1 + \lambda^2}.$$

La fonction g est constante sur Δ , sa limite au point (0,0) est le nombre $\frac{\lambda}{1+\lambda^2}$, différent de 0, donc différent de g(0,0). La fonction g, et par suite la fonction f n'est pas continue au point (0,0).

La réciproque est fausse!

On considère l'application f définie sur \mathbb{R}^2 par

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0). \end{cases}$$

Ce résultat se visualise assez bien en utilisant les coordonnées polaires. Soit $a=(x,y)\in\mathbb{R}^2$, $(x,y)\neq(0,0)$ de coordonnées polaires (r,θ) , r>0 et $\theta\in\mathbb{R}$. Alors

$$f(x,y) = f(r\cos\theta, r\sin\theta) = \frac{r^2\cos\theta\sin\theta}{r^2} = \frac{1}{2}\sin(2\theta).$$

D'où il résulte que sur tout cercle ayant pour centre (0,0), la fonction prend toutes les valeurs comprises entre $-\frac{1}{2}$ et $\frac{1}{2}$; elle n'admet pas 0 pour limite au point (0,0). La valeur de f(a) ne dépend donc que de θ et non de r. On peut donc construire le graphe de f comme un faisceau de demi-droites passant par l'axe (Oz).

- 1. Applications de deux variables réelles
- 2. Limite en un point, continuité
- 2.1 Fonctions à valeurs réelles
- 2.2 Domination et encadrement
- 2.3 Limite suivant une partie
- 2.4 Restriction et applications partielles
- 2.5 Limites infinies et limites à l'infini
- 3. Champs de vecteurs
- 4. Propriétés
- 5. Aspects topologiques
- 6. Topologie de l'espace R²
- 7. Notion d'homéomorphisme

- 1. Applications de deux variables réelles
- 2. Limite en un point, continuité
- 3. Champs de vecteurs
- 3.1 Définition, applications coordonnées
- 3.2 Limite en un point, continuité
- 4. Propriétés
- 5. Aspects topologiques
- 6. Topologie de l'espace \mathbb{R}^2
- 7. Notion d'homéomorphisme

- 1. Applications de deux variables réelles
- 2. Limite en un point, continuité
- 3. Champs de vecteurs
- 3.1 Définition, applications coordonnées
- 3.2 Limite en un point, continuité
- 4. Propriétés
- 5. Aspects topologiques
- 6. Topologie de l'espace \mathbb{R}^2
- 7. Notion d'homéomorphisme

La donnée d'une application de \mathbb{R}^2 dans \mathbb{R}^2 est équivalente à la donnée de 2 applications de \mathbb{R}^2 dans \mathbb{R} .

D 19 Soit A une partie de \mathbb{R}^2 et $f: A \to \mathbb{R}^2$. On peut écrire

$$\begin{array}{cccc} f: & A & \to & \mathbb{R}^2 \\ & (x,y) & \mapsto & f_1(x,y) \cdot e_1 + f_2(x,y) \cdot e_2 = \big(f_1(x,y), f_2(x,y) \big) \end{array}$$

Les applications f_1 et f_2 (définie sur A) sont les **applications coordonnées** de f. On note $f=(f_1,f_2)$.

- E 20
- 1. Les endomorphismes de \mathbb{R}^2 : $(x, y) \mapsto (ax + cy, bx + dy)$.
- 2. Le passage en coordonnées polaires : $(\varrho, \theta) \mapsto (\varrho \cos \theta, \varrho \sin \theta)$.

En identifiant \mathbb{R}^2 et \mathbb{C} , l'application $f=(f_1,f_2)$ s'identifie à l'application

R

$$x+iy\mapsto f_1(x,y)+if_2(x,y).$$

Par exemple l'application $\begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 & \text{s'identifie à l'application} \\ (x,y) & \mapsto & (x^2-y^2,2xy) \end{array}$

$$\begin{array}{ccc}
\mathbb{C} & \to & \mathbb{C} \\
z & \mapsto & z^2
\end{array}$$

Soit A une partie de \mathbb{R}^2 . Pour toutes applications f et g de $\mathcal{F}(A, \mathbb{R}^2)$ et tout $\lambda \in \mathbb{R}$, nous avons les lois naturelles

- f + g est la fonction $(x, y) \mapsto f(x, y) + g(x, y)$,
- $\lambda \cdot f$ est la fonction $(x, y) \mapsto \lambda f(x, y)$,
- Il n'y a pas produit naturel sur \mathbb{R}^2 et donc sur $\mathcal{F}(A,\mathbb{R}^2)$. On peut toutefois considérer le produit scalaire de deux telles applications défini par

$$(f \cdot g)(x) = \langle f(x), g(x) \rangle.$$

ightharpoonup Si $\alpha:A\to\mathbb{R}$, on définit

$$\alpha f : A \rightarrow \mathbb{R}^2$$
.
 $a \mapsto \alpha(a)f(a)$

P 23 L'ensemble $(\mathcal{F}(A,\mathbb{R}^2),+,\cdot)$ est un \mathbb{R} -espace vectoriel.

- 1. Applications de deux variables réelles
- 2. Limite en un point, continuité
- 3. Champs de vecteurs
- 3.1 Définition, applications coordonnées
- 3.2 Limite en un point, continuité
- 4. Propriétés
- 5. Aspects topologiques
- 6. Topologie de l'espace \mathbb{R}^2
- 7. Notion d'homéomorphisme

D 24 Soient A une partie de \mathbb{R}^2 , $f:A\to\mathbb{R}^2$, a un point adhérent à A et $b\in\mathbb{R}^2$. On dit que f admet b pour **limite** en a si

$$\forall \varepsilon > 0, \exists \delta > 0, \forall z \in A, \|z - a\| < \delta \implies \|f(z) - b\| < \varepsilon.$$

Cette limite est alors unique et on note cette propriété

$$\lim_a f = b, \quad \lim_{z \to a} f(z) = b, \quad \text{ ou } \quad \lim_{(x,y) \to (x_0,y_0)} f(x,y) = b \text{ si } a = (x_0,y_0).$$

P 25 Soient A une partie de \mathbb{R}^2 , $f: A \to \mathbb{R}^2$ de fonctions coordonnées (f_1, f_2) , a un point adhérent à A et $b = (b_1, b_2) \in \mathbb{R}^2$. Alors

$$\lim_{z \to a} f(z) = b \iff \lim_{z \to a} \|f(z) - b\| = 0 \iff \begin{cases} \lim_{z \to a} f_1(z) = b_1 \\ \lim_{z \to a} f_2(z) = b_2. \end{cases}$$

On retrouve à partir de ce résultat les théorèmes de domination et de restriction.

- **D 26** Soient A une partie de \mathbb{R}^2 , $f: A \to \mathbb{R}^2$ et $a \in A$.
 - On dit que f est continue en a si $\lim_{z\to a} f(z) = f(a)$.
 - Soit *X* une partie de *A*. On dit que *f* est **continue sur** *X* si *f* est continue en tout point de *X*.
 - Lorsque f est continue sur son ensemble de définition A, on dit simplement que f est continue.

Formellement, $f:A\to\mathbb{R}$ est continue en a si et seulement si

$$\forall \varepsilon > 0, \exists \delta > 0, \forall z \in A, \|z - a\| < \delta \implies \|f(z) - f(a)\| < \varepsilon.$$

On note $\mathscr{C}(A,\mathbb{R}^2)$ l'ensemble des fonctions continues sur A à valeurs dans \mathbb{R}^2 .

- **P 27** Soient A une partie de \mathbb{R}^2 , $f:A\to\mathbb{R}^2$ de fonctions coordonnées (f_1,f_2) et $a\in A$. ^a Alors
 - 1. f est continue en a si et seulement si f_1 et f_2 sont continues en a.
 - 2. f est continue si et seulement si f_1 et f_2 sont continues.
 - ^aNe pas confondre fonctions coordonnées et application partielles

- 1. Applications de deux variables réelles
- 2. Limite en un point, continuité
- 3. Champs de vecteurs
- 4. Propriétés
- 4.1 Composition de limites
- 4.2 Opérations algébriques sur les limites
- 4.3 Composition d'applications continues
- 4.4 Opérations algébriques sur les fonctions continues
- 5. Aspects topologiques
- 6. Topologie de l'espace \mathbb{R}^2
- 7. Notion d'homéomorphisme

Dans cette section, n, p et q appartiennent à $\{1,2\}$.

- 1. Applications de deux variables réelles
- 2. Limite en un point, continuité
- 3. Champs de vecteurs
- 4. Propriétés
- 4.1 Composition de limites
- 4.2 Opérations algébriques sur les limites
- 4.3 Composition d'applications continues
- 4.4 Opérations algébriques sur les fonctions continues
- 5. Aspects topologiques
- 6. Topologie de l'espace ℝ²
- 7. Notion d'homéomorphisme

- 1. Si $f(z) \xrightarrow[z \to a]{} b$, alors b est un point adhérent à B.
- 2. Si $f(z) \xrightarrow{z \to a} b$ et si $g(w) \xrightarrow{w \to b} \ell$,

$$g \circ f(z) \xrightarrow[z \to a]{} \ell$$
.

- 1. Applications de deux variables réelles
- 2. Limite en un point, continuité
- 3. Champs de vecteurs
- 4. Propriétés
- 4.1 Composition de limites
- 4.2 Opérations algébriques sur les limites
- 4.3 Composition d'applications continues
- 4.4 Opérations algébriques sur les fonctions continues
- 5. Aspects topologiques
- 6. Topologie de l'espace R²
- 7. Notion d'homéomorphisme

T 29 Soit A une partie de \mathbb{R}^2 , a un point adhérent à A et f et g des applications de A dans \mathbb{R} . On suppose

$$f(z) \xrightarrow[z \to a]{} \ell \in \mathbb{R} \ \ \text{et} \ \ g(z) \xrightarrow[z \to a]{} m \in \mathbb{R}.$$

Alors

- 1. $\lambda f(z) \xrightarrow{z \to a} \lambda \ell$ pour tout $\lambda \in \mathbb{R}$.
- 2. $f(z) + g(z) \xrightarrow{z \to a} \ell + m$.
- 3. $f(z)g(z) \xrightarrow[z \to a]{} \ell m$.
- 4. Si $\ell \neq 0$, alors f est non nulle au voisinage de a et $\frac{1}{f(z)} \xrightarrow[z \to a]{} \frac{1}{\ell}$.

Les deux premières propriétés se généralisent aux fonctions à valeurs dans \mathbb{R}^2 .

- 1. Applications de deux variables réelles
- 2. Limite en un point, continuité
- 3. Champs de vecteurs
- 4. Propriétés
- 4.1 Composition de limites
- 4.2 Opérations algébriques sur les limites
- 4.3 Composition d'applications continues
- 4.4 Opérations algébriques sur les fonctions continues
- 5. Aspects topologiques
- 6. Topologie de l'espace \mathbb{R}^2
- 7. Notion d'homéomorphisme

«La composée de deux applications continues est une application continue».

- **T 30** Soit A est une partie de \mathbb{R}^n , B une partie de \mathbb{R}^p , $f:A\to\mathbb{R}^p$, $g:B\to\mathbb{R}^q$. On suppose $f(A)\subset B$, de sorte que la composée $g\circ f$ a un sens. Si f est continue en a_0 et g est continue en $b_0=f(a_0)$, alors $g\circ f$ est continue en a_0 .
- **C 31** Soit $f \in \mathcal{C}(A, \mathbb{R}^p)$ et $g : B \to \mathbb{R}^q$. On suppose $f(A) \subset B$, de sorte que la composée $g \circ f$ a un sens. Alors $g \circ f$ est continue sur A.
- **C 32** Soit $I \subset \mathbb{R}$ et $\varphi : I \to \mathbb{R}$ une application continue. Soit

$$f: I \times \mathbb{R} \to \mathbb{R}$$
$$(x, y) \mapsto \varphi(x)$$

Alors f est continue sur $I \times \mathbb{R}$. On a un résultat similaire avec $g : (x, y) \mapsto \varphi(y)$.

Pour montrer qu'une fonction n'est pas continue en (x_0, y_0) , on utilise souvent une limite de la forme $\lim_{t\to 0} f(x_0 + \alpha t^p, y_0 + \beta t^q)$ (les applications partielles en sont un exemple). Si deux telles limites sont différentes, la fonction n'est pas continue.

E 34 On reprend l'exemple de l'application définie par

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0). \end{cases}$$

Pour $t \neq 0$,

М

$$f(t,t) = \frac{t^2}{2t^2} = \frac{1}{2} \xrightarrow[t \to 0]{} \frac{1}{2} \neq f(0,0).$$

alors que $(t,t) \xrightarrow[t \to 0]{} (0,0)$. L'application f n'est donc pas continue en (0,0).

- 1. Applications de deux variables réelles
- 2. Limite en un point, continuité
- 3. Champs de vecteurs
- 4. Propriétés
- 4.1 Composition de limites
- 4.2 Opérations algébriques sur les limites
- 4.3 Composition d'applications continues
- 4.4 Opérations algébriques sur les fonctions continues
- 5. Aspects topologiques
- 6. Topologie de l'espace R²
- 7. Notion d'homéomorphisme

P 36 Soient A une partie de \mathbb{R}^2 , f et g des fonctions de A vers \mathbb{R} et a un point de A où f et g sont continues. Alors les fonctions

$$f + g : x \mapsto f(x) + g(x)$$
 et $fg : x \mapsto f(x)g(x)$

sont continues en a. Si $g(a) \neq 0$, on a $g(z) \neq 0$ pour z au voisinage de a et la fonction

$$f/g: x \mapsto f(x)/g(x),$$

définie pour $g(x) \neq 0$, est continue en a.

- **C 37** Soit A une partie de \mathbb{R}^2 .
 - 1. $\mathscr{C}(A, \mathbb{R}^p)$ est un sous-espace vectoriel de $\mathscr{F}(A, \mathbb{R}^p)$.
 - 2. $\mathscr{C}(A, \mathbb{R}^p)$ est un sous-anneau de $\mathscr{F}(A, \mathbb{R}^p)$.
 - 3. Si $f: A \to \mathbb{R}$ est continue et ne s'annule pas, alors 1/f est continue.
- C 38 Les fonctions polynomiales et rationnelles de deux variables sont continues sur leur domaine de définition.

- 1. Applications de deux variables réelles
- 2. Limite en un point, continuité
- 3. Champs de vecteurs
- 4. Propriétés
- 5. Aspects topologiques
- 5.1 Caractérisation globale de la continuité
- 5.2 Fonctions continues sur un fermé borné
- 6. Topologie de l'espace \mathbb{R}^2
- 7. Notion d'homéomorphisme

- 1. Applications de deux variables réelles
- 2. Limite en un point, continuité
- 3. Champs de vecteurs
- 4. Propriétés
- 5. Aspects topologiques
- 5.1 Caractérisation globale de la continuité
- 5.2 Fonctions continues sur un fermé borné
- 6. Topologie de l'espace \mathbb{R}^2
- 7. Notion d'homéomorphisme

T 39 Soit $f: \mathbb{R}^p \to \mathbb{R}^q$, $p, q \in \{1, 2\}$. Les assertions suivantes sont équivalentes.

- 1. f est continue.
- 2. Pour tout ouvert Y de \mathbb{R}^q , $f^{-1}(Y)$ est ouvert dans \mathbb{R}^p .
- 3. Pour tout fermé Y de \mathbb{R}^q , $f^{-1}(Y)$ est fermé dans \mathbb{R}^p .

C 40 Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction continue, et soit $\lambda \in \mathbb{R}$, alors l'ensemble

$$\{(x, y) \in \mathbb{R}^2 \mid f(x, y) > \lambda \}$$

est un ouvert de \mathbb{R}^2 . Les ensembles

$$\{(x, y) \in \mathbb{R}^2 \mid f(x, y) = \lambda \} \text{ et } \{(x, y) \in \mathbb{R}^2 \mid f(x, y) \ge \lambda \}$$

sont des fermés de \mathbb{R}^2 .

- 1. Applications de deux variables réelles
- 2. Limite en un point, continuité
- 3. Champs de vecteurs
- 4. Propriétés
- 5. Aspects topologiques
- 5.1 Caractérisation globale de la continuité
- 5.2 Fonctions continues sur un fermé borné
- 6. Topologie de l'espace \mathbb{R}^2
- 7. Notion d'homéomorphisme

T 41 Soient A une partie de \mathbb{R}^2 , $f:A\to\mathbb{R}$ une application continue et $X\subset A$ une partie fermée bornée. Alors f est bornée sur X et atteint sa borne supérieure et sa borne inférieure.

Une partie fermée et bornée de \mathbb{R}^2 est une **partie compacte** (la réciproque est fausse en dimension infinie).

Démonstration. Admis, c'est un théorème de seconde année.

- 1. Applications de deux variables réelles
- 2. Limite en un point, continuité
- 3. Champs de vecteurs
- 4. Propriétés
- 5. Aspects topologiques
- 6. Topologie de l'espace \mathbb{R}^2
- 6.1 Norme euclidienne sur \mathbb{R}^2
- 6.2 Boule ouverte, boule fermée
- 6.3 Partie ouvertes, voisinages
- 6.4 Sous-ensembles remarquables
- 6.5 Caractérisation séquentielle
- 7. Notion d'homéomorphisme

- 1. Applications de deux variables réelles
- 2. Limite en un point, continuité
- 3. Champs de vecteurs
- 4. Propriétés
- 5. Aspects topologiques
- 6. Topologie de l'espace \mathbb{R}^2
- 6.1 Norme euclidienne sur \mathbb{R}^2
- 6.2 Boule ouverte, boule fermée
- 6.3 Partie ouvertes, voisinages
- 6.4 Sous-ensembles remarquables
- 6.5 Caractérisation séquentielle
- 7. Notion d'homéomorphisme

- 1. Applications de deux variables réelles
- 2. Limite en un point, continuité
- 3. Champs de vecteurs
- 4. Propriétés
- 5. Aspects topologiques
- 6. Topologie de l'espace \mathbb{R}^2
- 6.1 Norme euclidienne sur \mathbb{R}^2
- 6.2 Boule ouverte, boule fermée
- 6.3 Partie ouvertes, voisinages
- 6.4 Sous-ensembles remarquables
- 6.5 Caractérisation séquentielle
- 7. Notion d'homéomorphisme

- 1. Applications de deux variables réelles
- 2. Limite en un point, continuité
- 3. Champs de vecteurs
- 4. Propriétés
- 5. Aspects topologiques
- 6. Topologie de l'espace \mathbb{R}^2
- 6.1 Norme euclidienne sur \mathbb{R}^2
- 6.2 Boule ouverte, boule fermée
- 6.3 Partie ouvertes, voisinages
- 6.4 Sous-ensembles remarquables
- 6.5 Caractérisation séquentielle
- 7. Notion d'homéomorphisme

- 1. Applications de deux variables réelles
- 2. Limite en un point, continuité
- 3. Champs de vecteurs
- 4. Propriétés
- 5. Aspects topologiques
- 6. Topologie de l'espace \mathbb{R}^2
- 6.1 Norme euclidienne sur \mathbb{R}^2
- 6.2 Boule ouverte, boule fermée
- 6.3 Partie ouvertes, voisinages
- 6.4 Sous-ensembles remarquables
- 6.5 Caractérisation séquentielle
- 7. Notion d'homéomorphisme

- 1. Applications de deux variables réelles
- 2. Limite en un point, continuité
- 3. Champs de vecteurs
- 4. Propriétés
- 5. Aspects topologiques
- 6. Topologie de l'espace \mathbb{R}^2
- 6.1 Norme euclidienne sur \mathbb{R}^2
- 6.2 Boule ouverte, boule fermée
- 6.3 Partie ouvertes, voisinages
- 6.4 Sous-ensembles remarquables
- 6.5 Caractérisation séquentielle
- 7. Notion d'homéomorphisme

- 1. Applications de deux variables réelles
- 2. Limite en un point, continuité
- 3. Champs de vecteurs
- 4. Propriétés
- 5. Aspects topologiques
- 6. Topologie de l'espace \mathbb{R}^2
- 7. Notion d'homéomorphisme