Tecniche di animazione 3D nella realizzazione di un cortometraggio

Leonardo Marini

10 Dicembre 2019

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

Indice

- 1. Introduzione
- 2. Concetti di animazione

- 3. Progettazione
- 4. Produzione

Intro

<u>Analisi</u>

Cortometraggio animato in 3D

Analisi

- · Cortometraggio animato in 3D
- · Uso di diverse tecniche di animazione

Analisi

- · Cortometraggio animato in 3D
- · Uso di diverse tecniche di animazione
- · Breve durata

Analisi

- · Cortometraggio animato in 3D
- · Uso di diverse tecniche di animazione
- · Breve durata
- · Nessun requisito sulla storia

La storia

Figure 1: Capitano

Figure 2: Ragazzo

Figure 3: Capitana

Concetti di animazione

Angoli di Eulero Quaternioni

Matrici

 Concettualmente semplice

Angoli di Eulero Quaternioni

- · Concettualmente semplice
- · Complessa e confusa in pratica

Angoli di Eulero Quaternioni

- Concettualmente semplice
- · Complessa e confusa in pratica
- · L'ordine delle rotazioni è importante

Angoli di Eulero

Quaternioni

- Concettualmente semplice
- Complessa e confusa in pratica
- L'ordine delle rotazioni è importante
- Gimbal lock e interpolazioni spezzate

Angoli di Eulero Quaternioni

- Concettualmente
 No gimbal lock semplice
- · Complessa e confusa in pratica
- · L'ordine delle rotazioni è importante
- · Gimbal lock e interpolazioni spezzate

Angoli di Eulero

- Concettualmente semplice
- Complessa e confusa in pratica
- L'ordine delle rotazioni è importante
- Gimbal lock e interpolazioni spezzate

Quaternioni

- · No gimbal lock
- Concettualmente complessa

Angoli di Eulero

- Concettualmente semplice
- Complessa e confusa in pratica
- L'ordine delle rotazioni è importante
- Gimbal lock e interpolazioni spezzate

Quaternioni

- No gimbal lock
- Concettualmente complessa
- Semplifica i calcoli

Angoli di Eulero

- Concettualmente semplice
- Complessa e confusa in pratica
- L'ordine delle rotazioni è importante
- Gimbal lock e interpolazioni spezzate

Quaternioni

- No gimbal lock
- Concettualmente complessa
- Semplifica i calcoli
- Interpolazioni consistenti e dirette

Angoli di Eulero

- Concettualmente semplice
- Complessa e confusa in pratica
- L'ordine delle rotazioni è importante
- Gimbal lock e interpolazioni spezzate

Quaternioni

- · No gimbal lock
- Concettualmente complessa
- Semplifica i calcoli
- Interpolazioni consistenti e dirette

Matrici

 Qualsiasi tipo di trasformazione

Angoli di Eulero

- Concettualmente semplice
- Complessa e confusa in pratica
- L'ordine delle rotazioni è importante
- Gimbal lock e interpolazioni spezzate

Quaternioni

- · No gimbal lock
- Concettualmente complessa
- Semplifica i calcoli
- Interpolazioni consistenti e dirette

- Qualsiasi tipo di trasformazione
- Parenting

Angoli di Eulero

- Concettualmente semplice
- Complessa e confusa in pratica
- L'ordine delle rotazioni è importante
- Gimbal lock e interpolazioni spezzate

Quaternioni

- · No gimbal lock
- Concettualmente complessa
- Semplifica i calcoli
- Interpolazioni consistenti e dirette

- Qualsiasi tipo di trasformazione
- Parenting
- Constraints

Angoli di Eulero

- Concettualmente semplice
- Complessa e confusa in pratica
- L'ordine delle rotazioni è importante
- Gimbal lock e interpolazioni spezzate

Quaternioni

- · No gimbal lock
- Concettualmente complessa
- Semplifica i calcoli
- Interpolazioni consistenti e dirette

- Qualsiasi tipo di trasformazione
- Parenting
- Constraints
- · Armature deform

• Figure complesse come quella umana

- · Figure complesse come quella umana
- Approccio naive

- · Figure complesse come quella umana
- · Approccio naive
- · Precisione del posizionamento

- · Figure complesse come quella umana
- · Approccio naive
- · Precisione del posizionamento
- · Difficile animare azioni comuni

Approccio inverso

- · Approccio inverso
- Figure complesse come quella umana

- · Approccio inverso
- · Figure complesse come quella umana
- · Semplifica le animazioni

- · Approccio inverso
- · Figure complesse come quella umana
- · Semplifica le animazioni
- · Complessa da calcolare

$\frac{\partial p_x}{\partial \theta_1}$	$\frac{\partial p_x}{\partial \theta_2}$		$\frac{\partial p_x}{\partial \theta_n}$
$\frac{\partial p_y}{\partial \theta_1}$	$\frac{\partial p_y}{\partial \theta_2}$		$\frac{\partial p_y}{\partial \theta_n}$
÷	÷	·	:
$\frac{\partial \alpha_{z}}{\partial \theta_{1}}$	$\frac{\partial \alpha_{\rm z}}{\partial \theta_{\rm 2}}$		$\frac{\partial \alpha_{z}}{\partial \theta_{n}}$

Matrice di derivate parziali corrispondenti alla differenza della posizione attuale dell'end-effector rispetto alla posizione obiettivo.

Proprietà

- · Soluzione iterativa
- · Simile al simplesso

$$\begin{bmatrix} \frac{\partial p_x}{\partial \theta_1} & \frac{\partial p_x}{\partial \theta_2} & \cdots & \frac{\partial p_x}{\partial \theta_n} \\ \frac{\partial p_y}{\partial \theta_1} & \frac{\partial p_y}{\partial \theta_2} & \cdots & \frac{\partial p_y}{\partial \theta_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \alpha_z}{\partial \theta_1} & \frac{\partial \alpha_z}{\partial \theta_2} & \cdots & \frac{\partial \alpha_z}{\partial \theta_n} \end{bmatrix}$$

$$\cdot Y = \begin{bmatrix} p_x & p_y & p_z & \alpha_x & \alpha_y & \alpha_z \end{bmatrix}^T$$

7

$$\begin{bmatrix} \frac{\partial p_x}{\partial \theta_1} & \frac{\partial p_x}{\partial \theta_2} & \cdots & \frac{\partial p_x}{\partial \theta_n} \\ \frac{\partial p_y}{\partial \theta_1} & \frac{\partial p_y}{\partial \theta_2} & \cdots & \frac{\partial p_y}{\partial \theta_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \alpha_z}{\partial \theta_1} & \frac{\partial \alpha_z}{\partial \theta_2} & \cdots & \frac{\partial \alpha_z}{\partial \theta_n} \end{bmatrix}$$

$$\cdot Y = \begin{bmatrix} p_x & p_y & p_z & \alpha_x & \alpha_y & \alpha_z \end{bmatrix}^T$$

$$\cdot \dot{\theta} = \begin{bmatrix} \dot{\theta}_1 & \dot{\theta}_2 & \dots & \dot{\theta}_n \end{bmatrix}^T$$

7

$$\begin{bmatrix} \frac{\partial p_{x}}{\partial \theta_{1}} & \frac{\partial p_{x}}{\partial \theta_{2}} & \cdots & \frac{\partial p_{x}}{\partial \theta_{n}} \\ \frac{\partial p_{y}}{\partial \theta_{1}} & \frac{\partial p_{y}}{\partial \theta_{2}} & \cdots & \frac{\partial p_{y}}{\partial \theta_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \alpha_{z}}{\partial \theta_{1}} & \frac{\partial \alpha_{z}}{\partial \theta_{2}} & \cdots & \frac{\partial \alpha_{z}}{\partial \theta_{n}} \end{bmatrix} \qquad \cdot \ Y = \begin{bmatrix} p_{x} & p_{y} & p_{z} & \alpha_{x} & \alpha_{y} & \alpha_{z} \end{bmatrix}^{\mathsf{T}} \\ \cdot \ \dot{\theta} = \begin{bmatrix} \dot{\theta}_{1} & \dot{\theta}_{2} & \cdots & \dot{\theta}_{n} \end{bmatrix}^{\mathsf{T}} \\ \cdot \ \dot{V} = \dot{Y} = J(\theta)\dot{\theta} \end{bmatrix}$$

$$Y = \begin{bmatrix} p_x & p_y & p_z & \alpha_x & \alpha_y & \alpha_z \end{bmatrix}^T$$

$$\dot{\theta} = \begin{bmatrix} \dot{\theta}_1 & \dot{\theta}_2 & \dots & \dot{\theta}_n \end{bmatrix}^T$$

$$V = \dot{Y} = J(\theta)\dot{\theta}$$

$$\begin{bmatrix} \frac{\partial p_{x}}{\partial \theta_{1}} & \frac{\partial p_{x}}{\partial \theta_{2}} & \cdots & \frac{\partial p_{x}}{\partial \theta_{n}} \\ \frac{\partial p_{y}}{\partial \theta_{1}} & \frac{\partial p_{y}}{\partial \theta_{2}} & \cdots & \frac{\partial p_{y}}{\partial \theta_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \alpha_{z}}{\partial \theta_{1}} & \frac{\partial \alpha_{z}}{\partial \theta_{2}} & \cdots & \frac{\partial \alpha_{z}}{\partial \theta_{n}} \end{bmatrix} \qquad \cdot V = \begin{bmatrix} v_{x} & v_{y} & v_{z} & \omega_{x} & \omega_{y} & \omega_{z} \end{bmatrix}^{\mathsf{T}} \\ \cdot \dot{v} = \begin{bmatrix} \dot{\theta}_{1} & \dot{\theta}_{2} & \cdots & \dot{\theta}_{n} \end{bmatrix}^{\mathsf{T}} \\ \cdot \dot{v} = \dot{Y} = J(\theta)\dot{\theta} \end{cases}$$

•
$$V = Z \times (E - J_i)$$

7

Figure 4: Velocità angolare, ω

- $V = Z \times (E J_i)$
 - $\omega = \omega_i$

$$V = J\dot{\theta}$$
$$J^{-1}V = \dot{\theta}$$

Progettazione

Rigging

Table 1: Diversi tipi di rig necessari un una figura umana in base ai compiti che deve eseguire

Porzione del rig	Compito	Soluzione
Braccia	raggiungere e gesticolare	IK e FK
Mani	afferrare	FK
Gambe	correre e camminare	IK

Produzione

Animazioni

IK

camminata corsa raggiungere

FK

raggiungere afferrare

Curve

camminata corsa inseguimento spaziale

Cicli

camminata corsa sparatorie

