V21

Optisches Pumpen

Fritz Agildere fritz.agildere@udo.edu Amelie Strathmann amelie.strathmann@udo.edu

Durchführung: 6. Mai 2024 Abgabe:

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	2
2	Theorie 2.1 Atomare Drehimpulse 2.1.1 Hülle 2.1.2 Kern 2.2 Optisches Pumpen 2.3 Zeeman Aufspaltung 2.4 Transiente Effekte	3 4 5 6
3	Aufbau	8
4	Durchführung	8
5	Auswertung 5.1 Magnetfeld der Erde	9 9 9
6	Diskussion	9
Lit	ratur	9
Ar	Anhang	

1 Zielsetzung

Durch das nachfolgend beschriebenen Verfahrens sollen Kernspin und Niveauaufspaltung einer Mischung der Rubidiumisotope 85 Rb und 87 Rb untersucht werden.

2 Theorie [1]

Spätestens seit Einführung des Atommodells nach Bohr ist allgemein bekannt, dass sich Elektronenhüllen von Atomen aus scharf definierten Energieniveaus zusammensetzen, deren Besetzung durch das Ausschließungsprinzip nach Pauli beschrieben wird. Äußere Schalen sind nur teilweise oder gar nicht gefüllt und unterliegen dadurch zusätzlich der temperaturbedingten Verteilung nach Boltzmann. Für Zustände mit $E_1 < E_2$ folgt

$$\frac{N_2}{N_1} = \frac{g_2}{g_1} e^{-\frac{E_2 - E_1}{k_B T}} \tag{1}$$

als das erwartete Verhältnis der Besetzungszahlen mit k_B als Boltzmannkonstante und T als absolute Temperatur. Die Faktoren g_1 und g_2 geben als statistische Gewichte die Multiplizität oder Entartung der jeweiligen Energien E_1 und E_2 an.

Im thermischen Gleichgewicht gilt bei $g_1=g_2$ also typischerweise $N_1>N_2$ für äußere Niveaus. Die Beschreibung von Rubidium fällt in diesem Kontext besonders leicht, da nur ein Elektron in einer nicht vollständig gefüllten Schale liegt [2]. Unter Energieaufwand und bei passender Niveaustruktur lässt sich diese Relation zu $N_1< N_2$ umkehren. Beim optischen Pumpen geschieht dies unter Einstrahlung von Lichtquanten, wobei die Photonenergie genau

$$E_{\gamma} = h\nu = E_2 - E_1 \tag{2}$$

betragen muss, um ein Elektron in die nächsthöhere Schale zu heben. Hierbei geben h die Planckkonstante und ν die Frequenz an. Dieses Vorgehen erlaubt eine sehr präzise Messung niederenergetisches Strukturen innerhalb der Niveaus. Einige der so zugänglichen Größen sollen für das stabile 85 Rb und den langlebigen Betastrahler 87 Rb [2] bestimmt werden. Dazu müssen gewisse Zusammenhänge zwischen Drehimpulsen und magnetischen Momenten im atomaren System bekannt sein.

2.1 Atomare Drehimpulse

Zur Untersuchung des Rubidiums müssen die relevanten Drehimpulsbeiträge verstanden werden. Abbildung 1 skizziert deren Verknüpfungen in geometrischer Form.

Abbildung 1: Vektordiagramm sämtlicher Drehimpulse eines Atoms. [1]

Es lassen sich verschiedene Regionen unterscheiden, namentlich die Atomhülle und der Atomkern. Diese werden im folgenden genauer betrachtet.

2.1.1 Hülle

Aus den Eigenwerten der Drehimpulsoperatoren folgen betragsweise

$$\mu_J = g_J \mu_B \sqrt{J(J+1)}$$

$$\mu_S = g_S \mu_B \sqrt{S(S+S)}$$

$$\mu_L = \mu_B \sqrt{L(L+1)}$$

als zugehöroge magnetische Momente mit dem Bohr Magneton μ_B und den Quantenzahlen J für den Gesamtdrehimpuls, S für den Spin und L für den Bahndrehimpuls. Mit μ_J wird der Landé Faktor bezeichnet, der die Kombination aus μ_S und μ_L berücksichtigt. Im weiteren Verlauf werden Korrekturen aus der Quantenelektrodynamik vernachlässigt und der gyromagnetische Faktor des Elektrons $g_S=2$ gesetzt. Zudem schränkt $|S-L| \leq J \leq |S+L|$ den erlaubten Wertebereich ein.

Solange äußere Magnetfelder klein genug sind um als Störung behandelt zu werden, wird das Gesamtmoment nach Russel und Saunders über

$$\mu_J = \mu_S + \mu_L$$

als vereinfachte Kopplung ausgedrückt. Trigonometrische Überlegungen führen schließlich

$$g_J = \frac{3J(J+1) + S(S+1) - L(L+1)}{2J(J+1)} \tag{3}$$

für die geltende Beziehung ein. An dieser Stelle sei angemerkt, dass Alkalimetalle wie Rubidium ihren gesamten Hüllendrehimpuls im einen äußeren Elektron [2] tragen. Daher kann in diesem Fall immer $S=\frac{1}{2}$ eingesetzt werden.

Beim Anlegen eines äußeren lokal homogenen Magnetfeldes \boldsymbol{B} wird die zuvor arbiträre Basiswahl durch eine natürliche Symmetrie ersetzt. Entlang der Feldrichtung präzidiert nun μ_J und führt über Richtungsquantelung die Wechselwirkungsenergie

$$E_Z = M_J g_J \mu_B B \tag{4a}$$

ein. Die Orientierungsquantenzahl M_J gibt die Projektion von J auf die Feldachse an und läuft von -J bis J in ganzzahligen Schritten. Auf diese Weise werden die Energieniveaus in 2J+1 Unterniveaus gespalten, der sogenannte Zeeman Effekt tritt hier in linearer Form zum Vorschein.

2.1.2 Kern

Die beiden zu untersuchenden Isotope 85 Rb und 87 Rb besitzen mit den Quantenzahlen $I=\frac{5}{2}$ und $I=\frac{3}{2}$ [2] zusätzlich einen jeweils von Null verschiedenen Kernspin, dessen Einfluss wie in Abbildung 1 aufgezeigt per $\boldsymbol{F}=\boldsymbol{J}+\boldsymbol{I}$ im Drehimpuls des gesamten Atoms inkludiert werden muss. Dabei liegt F ganzzahlig zwischen |J-F| und |J+F| mit einer zu J analogen Zeeman Aufspaltung. Statt (4a) gilt nun

$$E_Z = M_F g_F \mu_B B \tag{4b}$$

mit $-F \leq M_F \leq F$ und dementsprechend 2F+1 Unterniveaus.

Abbildung 2: Exemplarisches Termschema von 87 Rb unter Einwirkung eines Magnetfeldes. Energiedifferenzen sind nicht maßstabsgetreu und liegen im Bereich von $1,5\,\mathrm{eV}$ für die Feinstruktur und $30\,\mathrm{\mu eV}$ für die Hyperfeinstruktur. [1]

In Abbildung 2 wird beispielhaft eine resultierende Niveauaufspaltung dargestellt. Durch einen Ansatz der Form

$$\mu_F = g_F \mu_B \sqrt{F(F+1)}$$

ergibt sich nach ähnlicher Rechnung zu (3) schließlich

$$g_F = g_J \frac{F(F+1) + J(J+1) - I(I+1)}{2F(F+1)} \tag{5}$$

für den Landé Faktor des atomaren Gesamtdrehimpulses.

2.2 Optisches Pumpen

Abbildung 3: Entstehung der Dublettstruktur in Alkalispektren. [1]

Abbildung 4: Zeeman Aufspaltung eines Alkaliatoms ohne Kernspin. [1]

Abbildung 5: Mögliche Übergänge bei Einfall rechtzirkular polarisiertem Lichts. [1]

Abbildung 6: Zeitabhängige Transparenz einer Alkalidampfzelle. [1]

2.3 Zeeman Aufspaltung

$$\Delta E_{Z} = g_{F} \mu_{B} B + g_{F}^{2} \mu_{B}^{2} B^{2} \frac{1 - 2M_{F}}{\Delta E_{HF}}$$
 (6)

Abbildung 7: Übergangsmöglichkeiten eines Elektrons zwischen Energieniveaus. [1]

Abbildung 8: Transparenz einer Alkalidampfzelle unter Wirkung eines hochfrequenten Magnetfeldes in Anbhängigkeit zur Feldstärke. [1]

2.4 Transiente Effekte

Abbildung 9: Drehimpulspräzession um die Magnetfeldachse. [1]

3 Aufbau

Abbildung 10: Schematische Aufsicht der gesamten Messapparatur. [1]

4 Durchführung

5 Auswertung

Im Folgenden werden die aufgenommenen Messdaten ausgewertet, um den Kernspin der Isotope zu bestimmen. Dafür müssen zunächst die Landé-Faktoren der Isotope bestimmt werden und die vertikale Komponente des Erdmagnetfeldes. Anschließend wird das Isotopenverhältnis der Rubidium-Isotope bestimmt und der quadratische Zeeman-Effekt untersucht.

5.1 Magnetfeld der Erde

Die Vertikalkomponente des Erdmagnetfeldes hat aufgrund des horizontal verlaufenden Lichtstrahls einen Einfluss auf die Messung. Daher wird diese durch ein vertikal verlaufendes Magnetfeld kompensiert und der Aufbau wird um die vertikale Achse in Nord-Süd Richtung gedreht, sodass die horizontale Komponente parallel oder antiparallel zu dem horizontalen Magnetfeld verläuft. Zur Bestimmung der Magnetfeldstärke des vertikal verlaufenden Magnetfeldes, welches aus einer Horizontalen- und einer Sweep-Spule besteht, werden die Feldstärken beider berechnet und addiert. Für die Magnetfeldstärken der Spulen im Zentrum gilt

$$B(0) = \frac{8\mu_0 NI}{\sqrt{125}A} \,. \tag{7}$$

Die Stromstärke ergibt sich dabei aus der gemessenen Spannung des Sweepanteils und der des Horizontalanteils. Anhand des Ohmschen Gesetzes $U=R\cdot I$ können die Ströme errechnet werden.

- 5.2 Bestimmung Lande-Faktor
- 5.3 Kernspin der Rubidium-Isotope
- 5.4 Isotopenverhältnis
- 5.5 Quadratischer Zeeman-Effekt

6 Diskussion

Literatur

- [1] Anleitung zu Versuch 21, Optisches Pumpen. TU Dortmund, Fakultät Physik. 2024.
- [2] Rubidium. Spektrum. 2024. URL: https://www.spektrum.de/lexikon/physik/rubidium/12616.

Anhang