	w_1	w_2	w_3	w_4	w_5	z_1	z_2	z_3	z_4	z_5	RHS
w_1	1	0	0	0	0	0	0	1	3	-5	3
w_2	0	1	0	0	0	0	0	2	2	2	$-x_{[1]}-2$
w_3	0	0	1	0	0	-1	-2	$2x_{[1]} + \left(-x_{[2]} + 4\right)$	$x_{[1]} + \left(-2x_{[2]} + 3\right)$	$3x_{[1]} + (4x_{[2]} - 2)$	0
w_4	0	0	0	1	0	-3	-2	$x_{[1]} + \left(-2x_{[2]} + 3\right)$	$-x_{[1]} + (x_{[2]} + 4)$	$3x_{[1]} + (4x_{[2]} - 3)$	0
w_5	0	0	0	0	1	5	-2	$3x_{[1]} + (4x_{[2]} - 2)$	$3x_{[1]} + (4x_{[2]} - 3)$	$\left(-x_{[2]}+3\right)$	0

$ w_1 $		w_2 w_3 w_4 w_5	3 m	14	75	z ₁	22	23	24	22	RHS
w_1 1		2 1	0	0	0	0	0	0	-2	9	$\frac{1}{2}x_{[1]} + 4$
$\begin{vmatrix} z_2 \\ 0 \end{vmatrix}$	$) \qquad -\frac{1}{2}x_{[1]} + \left(\frac{1}{4}x_{[2]} - 1\right)$		$\frac{1}{2}$	0	0	2	П	0	$\frac{1}{2}x_{[1]} + \left(\frac{1}{2}x_{[2]} + \frac{1}{2}\right)$	$-\frac{1}{2}x_{[1]} + \left(-\frac{5}{2}x_{[2]} + 3\right)$	$\frac{1}{2}x_{[1]} + \left(\frac{1}{2}x_{[2]} + \frac{1}{2}\right) - \frac{1}{2}x_{[1]} + \left(-\frac{5}{2}x_{[2]} + 3\right) \begin{vmatrix} \frac{1}{2}x_{[1]}^2 + \left(-\frac{1}{4}x_{[2]} + 2\right)x_{[1]} + \left(-\frac{1}{2}x_{[2]} + 2\right)x_{[2]} + \left(-\frac{1}{2}x_{[2]} + $
$z_3 = 0$		2	0	0	0	0	0	П	1	1	$\frac{1}{2}x_{[1]}+1$
0	$\frac{1}{2}x_{[1]} + \left(\frac{1}{2}x_{[2]} + \frac{1}{2}\right)$		П	1	0	2	0	0	$x_{[1]} + (-4x_{[2]} - 2)$	$-x_{[1]} - x_{[2]}$	$-\frac{1}{2}x_{[1]}^2 + \left(-\frac{1}{2}x_{[2]} - \frac{3}{2}\right)x_{[1]} + \left(-x_{[2]} - 1\right)$
0	$ -\frac{1}{2}x_{[1]} + \left(-\frac{5}{2}x_{[2]} + 3\right) $		П	0	1 -	9-	0	0	$-x_{[1]} - x_{[2]}$	$-x_{[1]} - x_{[2]}$ $4x_{[1]} + (10x_{[2]} - 11)$	$rac{1}{2}x_{[1]}^2 + \left(rac{5}{2}x_{[2]} - 2 ight)x_{[1]} + \left(5x_{[2]} - 6 ight)$

_	w_1	w ₂	w ₃	w ₄	w_5	z_1	22	23	24	20 %	
		$\frac{x_{[1]} + (6x_{[2]} + 4)}{2x_{[1]} + (-8x_{[2]} - 4)}$	$\frac{-2}{x_{[1]} + \left(-4x_{[2]} - 2\right)}$	$\frac{x_{[1]} + \left(-4x_{[2]} - 2\right)}{}$	0	$\frac{4}{x_{[1]} + \left(-4x_{[2]} - 2\right)}$	0	0	0	$\frac{4x_{[1]} + \left(-26x_{[2]} - 12\right)}{x_{[1]} + \left(-4x_{[2]} - 2\right)}$	
z_2	0	$\frac{-3x_{[1]}^2 + \left(7x_{[2]} - 2\right)x_{[1]} + \left(-5x_{[2]}^2 + 12x_{[2]} + 7\right)}{4x_{[1]} + \left(-16x_{[2]} - 8\right)}$	$\frac{2x_{[1]} + \left(-3x_{[2]} - 1\right)}{2x_{[1]} + \left(-8x_{[2]} - 4\right)}$	$\frac{-x_{[1]} + \left(-x_{[2]} - 1\right)}{2x_{[1]} + \left(-8x_{[2]} - 4\right)}$	0	$\frac{-x_{[1]} + \left(-6x_{[2]} - 4\right)}{2x_{[1]} + \left(-8x_{[2]} - 4\right)}$	н	0	0	$\frac{\left(x_{[2]}+9\right)x_{[1]}+\left(21x_{[2]}^2-13x_{[2]}-12\right)}{2x_{[1]}+\left(-8x_{[2]}-4\right)}$	$\frac{3x_{[1]}^3 + \left(-7x_{[2]} + 8\right)x_{[1]}^2 + \left(5x_{[2]}^2 - 26x_{[2]}^2 + 3x_{[1]}^2 + \left(-16x_{[2]}^2 - 3x_{[2]}^2 + 3x_{$
	0	$\frac{-2x_{[1]} + (3x_{[2]} + 1)}{2x_{[1]} + (-8x_{[2]} - 4)}$	$\frac{1}{x_{[1]} + \left(-4x_{[2]} - 2\right)}$	$\frac{-1}{x_{[1]} + \left(-4x_{[2]} - 2\right)}$	0	$\frac{-2}{x_{[1]} + \left(-4x_{[2]} - 2\right)}$	0	1	0	$\frac{2x_{[1]} + (-3x_{[2]} - 2)}{x_{[1]} + (-4x_{[2]} - 2)}$	2.w.c.
z4	0	$\frac{x_{[1]} + \left(x_{[2]} + 1\right)}{2x_{[1]} + \left(-8x_{[2]} - 4\right)}$	$\overline{\frac{-1}{x_{[1]}\!+\!\left(-4x_{[2]}\!-\!2\right)}}$	$\frac{1}{x_{[1]} + \left(-4x_{[2]} - 2\right)}$	0	$\frac{x_{[1]}+\left(-4x_{[2]}-2\right)}$	0	0	1	$\frac{-x_{[1]}-x_{[2]}}{x_{[1]}+\left(-4x_{[2]}-2\right)}$	
w_5	0	$\frac{\left(x_{[2]}+9\right)x_{[1]}+\left(21x_{[2]}^2-13x_{[2]}-12\right)}{2x_{[1]}+\left(-8x_{[2]}-4\right)}$	$\frac{-2x_{[1]} + \left(3x_{[2]} + 2\right)}{x_{[1]} + \left(-4x_{[2]} - 2\right)}$	$\frac{x_{[1]} + x_{[2]}}{x_{[1]} + \left(-4x_{[2]} - 2\right)}$	1	$\frac{-4x_{[1]} + \left(26x_{[2]} + 12\right)}{x_{[1]} + \left(-4x_{[2]} - 2\right)}$	0	0	$0 \frac{3x_{[1]}^2}{}$	$\frac{3x_{[1]}^2 + \left(-8x_{[2]} - 19\right)x_{[1]} + \left(-41x_{[2]}^2 + 24x_{[2]} + 22\right)}{x_{[1]} + \left(-4x_{[2]} - 2\right)}$	$\frac{\left(-x_{[2]} - 9\right)x_{[1]}^2 + \left(-21x_{[2]}^2 + 11x_{[2]}\right)}{2x_{[1]} + \left(-\frac{2}{3}\right)}$

$$\frac{-x_{[1]}^2 - 6x_{[2]}x_{[1]} + \left(-36x_{[2]} - 20\right)}{2x_{[1]} + \left(-8x_{[2]} - 4\right)}$$

$$\frac{3x_{[1]}^3 + \left(-7x_{[2]} + 8\right)x_{[1]}^2 + \left(5x_{[2]}^2 - 26x_{[2]} - 3\right)x_{[1]} + \left(10x_{[2]}^2 - 24x_{[2]} - 14\right)}{4x_{[1]} + \left(-16x_{[2]} - 8\right)}$$

$$\frac{2x_{[1]}^2 + \left(-3x_{[2]} + 3\right)x_{[1]} + \left(-6x_{[2]} - 2\right)}{2x_{[1]} + \left(-8x_{[2]} - 4\right)}$$

$$\frac{-x_{[1]}^2 + \left(-x_{[2]} - 3\right)x_{[1]} + \left(-2x_{[2]} - 2\right)}{2x_{[1]} + \left(-8x_{[2]} - 4\right)}$$

$$\frac{\left(-x_{[2]} - 9\right)x_{[1]}^2 + \left(-21x_{[2]}^2 + 11x_{[2]} - 6\right)x_{[1]} + \left(-42x_{[2]}^2 + 26x_{[2]} + 24\right)}{2x_{[1]} + \left(-8x_{[2]} - 4\right)}$$