geoffreyangus.github.io/CS106R/

CS106R

Logistics

Login

Class Information

Schools:

Curitiba, BR Colegio SESC São Jose Colegio Bom Jesus Centro Colegio Bom Jesus Lourdes

Dates:

7 Weeks July 30 to September 14

Teachers:

Sabri Eyuboglu eyuboglu@stanford.edu

Geoffrey Angus gangus@stanford.edu

About:

CS105R is a pioneer, introductory computer science course designed for high-schoolers with no prior computer science experience. Students will learn much of the same material as Stanford's Introductory computer science class, CS106A. However, we have tailored the notes, exercises and projects for those who speak English as a second language.

Week 4

Objects and Functions

Notes

Advanced Functions Part 2

Exercises

Calculator

Conversion

Bilheteria

Projects

Game of Nimm

This week we will begin writing even more powerful functions.

Important links:

- Mid-course Evaluation!
- Attendance (Week 4)
- Challenge: Fibonacci (Optional)

Learning Objectives

- 1.) Parameter Passing
- 2.) Returning Values

Slides

Week 4

CS106R

Sabri **Eyuboglu** & Geoffrey **Angus**

Last week on CS106R...

Slide 3

Last week on CS106R...

```
Objects
Variables
Operators +-*/>== and
```

```
5 "Hello, World!"
```

```
favorite singer
```

Objects

4 Basic Object Classes

string

Sequences of characters – text

Example

"Hello, World!"

int

Integers – whole numbers

Examples

5 3450 0 -17

float

Fractional numbers

Examples

-5.0 0.174 3.14

bool

True or false

Examples

True

False

Variables

Label Objects with Variables

```
favorite_singer = "Beyonce"

the property of t
```

Input Functions

```
favorite_singer = input_string("Who is your favorite singer?")
```


Input Functions

input string (message) Returns a string input by user.

input int(message)

Returns a int input by user.

input float (message)

Returns a float input by user.

input bool (message)

Returns a bool input by user.

```
number = 5 * 3
```

print (number)

```
Output
```

```
number = 15
```

print (number)

```
Output
```

```
•
15
```


Code

```
def main():
    num_1 = input_int("Enter first int:")
    num_2 = input_int("Enter second int:")
    sum = num_1 + num_2
    print(sum)
```

Memory

Code

```
def main():
    num_1 = input_int("Enter first int:")
    num_2 = input_int("Enter second int:")
    sum = num_1 + num_2
    print(sum)
```

Memory


```
Enter first int:
```

Code

```
def main():
    num_1 = input_int("Enter first int:")
    num_2 = input_int("Enter second int:")
    sum = num_1 + num_2
    print(sum)
```

Memory

TVICITIOT y	
Variables	Object

```
Enter first int: 4
```

Code

```
def main():
    num_1 = input_int("Enter first int:")
    num_2 = input_int("Enter second int:")
    sum = num_1 + num_2
    print(sum)
```

Memory


```
Enter first int: 4
```

Code

```
def main():
    num_1 = input_int("Enter first int:")
    num_2 = input_int("Enter second int:")
    sum = num_1 + num_2
    print(sum)
```

<u>Memory</u>


```
Enter first int: 4
```

Code

```
def main():
    num_1 = input_int("Enter first int:")
    num_2 = input_int("Enter second int:")
    sum = num_1 + num_2
    print(sum)
```

Memory


```
Enter first int: 4
Enter second int:
```

Code

```
def main():
    num_1 = input_int("Enter first int:")
    num_2 = input_int("Enter second int:")
    sum = num_1 + num_2
    print(sum)
```

Memory


```
Enter first int: 4
Enter second int: 5
```

Code

```
def main():
    num_1 = input_int("Enter first int:")
    num_2 = input_int("Enter second int:")
    sum = num_1 + num_2
    print(sum)
```

Memory

```
Num_1

Object

fint

fint
```

```
Enter first int: 4
Enter second int: 5
```

Code

```
def main():
    num_1 = input_int("Enter first int:")
    num_2 = input_int("Enter second int:")
    sum = num_1 + num_2
    print(sum)
```

<u>Memory</u>


```
Enter first int: 4
Enter second int: 5
```

Code

```
def main():
    num_1 = input_int("Enter first int:")
    num_2 = input_int("Enter second int:")
    sum = num_1 + num_2
    print(sum)
```

<u>Memory</u>


```
Enter first int: 4
Enter second int: 5
```

Code

```
def main():
    num_1 = input_int("Enter first int:")
    num_2 = input_int("Enter second int:")
    sum = num_1 + num_2
    print(sum)
```

Memory


```
Enter first int: 4
Enter second int: 5
```

Code

```
def main():
    num_1 = input_int("Enter first int:")
    num_2 = input_int("Enter second int:")
    sum = num_1 + num_2
    print(sum)
```

<u>Memory</u>


```
Enter first int: 4
Enter second int: 5
```

Code

```
def main():
    num_1 = input_int("Enter first int:")
    num_2 = input_int("Enter second int:")
    sum = num_1 + num_2
    print(sum)
```

Memory


```
Enter first int: 4
Enter second int: 5
```

Code

```
def main():
    num_1 = input_int("Enter first int:")
    num_2 = input_int("Enter second int:")
    sum = num_1 + num_2
    print(sum)
```

<u>Memory</u>


```
Enter first int: 4
Enter second int: 5
9
```


Code

```
def main():
    favorite_food = input_string("Favorite food?")
    if favorite_food == "Pão de Queijo":
        print("Me too!")
    else:
        print("Have you tried Pão de Queijo though?")
```

Output

/ariables	Objects

Code

```
def main():
    favorite_food = input_string("Favorite food?")
    if favorite_food == "Pão de Queijo":
        print("Me too!")
    else:
        print("Have you tried Pão de Queijo though?")
```

Output

```
Favorite food?
```

'ariables	Objects
	"Favorite food?" string

Code

```
def main():
    favorite_food = input_string("Favorite food?")
    if favorite_food == "Pão de Queijo":
        print("Me too!")
    else:
        print("Have you tried Pão de Queijo though?")
```

Output

: Favorite food? Pão de Queijo

/ariables	Objects
	"Favorite food?"

Code

```
def main():
    favorite_food = input_string("Favorite food?")
    if favorite_food == "Pão de Queijo":
        print("Me too!")
    else:
        print("Have you tried Pão de Queijo though?")
```

Output

```
:
Favorite food? Pão de Queijo
```

/ariables	Objects
	"Favorite food?" string

Code

```
def main():
    favorite_food = input_string("Favorite food?")
    if favorite_food == "Pão de Queijo":
        print("Me too!")
    else:
        print("Have you tried Pão de Queijo though?")
```

Output

```
:
Favorite food? Pão de Queijo
```


Code

```
def main():
    favorite_food = input_string("Favorite food?")
    if favorite_food == "Pão de Queijo":
        print("Me too!")
    else:
        print("Have you tried Pão de Queijo though?")
```

Output

```
Favorite food? Pão de Queijo
```

/ariables	Objects
	"Favorite food?"
favorite_food	"Pão de Queijo" String

Code

```
def main():
    favorite_food = input_string("Favorite food?")
    if favorite_food == "Pão de Queijo":
        print("Me too!")
    else:
        print("Have you tried Pão de Queijo though?")
```

Output

: Favorite food? Pão de Queijo

Code

```
def main():
    favorite_food = input_string("Favorite food?")
    if favorite_food == "Pão de Queijo":
        print("Me too!")
    else:
        print("Have you tried Pão de Queijo though?")
```

Output

Favorite food? Pão de Queijo

Code

```
def main():
    favorite_food = input_string("Favorite food?")
    if favorite_food == "Pão de Queijo":
        print("Me too!")
    else:
        print("Have you tried Pão de Queijo though?")
```

Output

```
:
Favorite food? Pão de Queijo
```


Code

```
def main():
    favorite_food = input_string("Favorite food?")
    if favorite_food == "Pão de Queijo":
        print("Me too!")
    else:
        print("Have you tried Pão de Queijo though?")
```

Output

```
:
Favorite food? Pão de Queijo
```


Code

```
def main():
    favorite_food = input_string("Favorite food?")
    if favorite_food == "Pão de Queijo":
        print("Me too!")
    else:
        print("Have you tried Pão de Queijo though?")
```

Output

```
Favorite food? Pão de Queijo
Me too!
```


Code

```
def main():
  age = input_int("How old are you?")
  if age \rightarrow= 18:
    print("You can vote!")
  else:
    wait_time = 18 - age
    print("You can't vote!")
    print(wait_time)
```

Output

Memory

Variables **Objects**

CS106R

Code

```
def main():
    age = input_int("How old are you?")
    if age >= 18:
        print("You can vote!")
    else:
        wait_time = 18 - age
        print("You can't vote!")
        print(wait_time)
```

Output

```
How old are you?
```

/ariables	Objects

Code

```
def main():
    age = input_int("How old are you?")
    if age >= 18:
        print("You can vote!")
    else:
        wait_time = 18 - age
        print("You can't vote!")
        print(wait_time)
```

Output

```
How old are you? 16
```

/ariables	Objects
	16 int

Code

```
def main():
    age = input_int("How old are you?")
    if age >= 18:
        print("You can vote!")
    else:
        wait_time = 18 - age
        print("You can't vote!")
        print(wait_time)
```

Output

```
How old are you? 16
```

/ariables	Objects
age	16 int

Code

```
def main():
    age = input_int("How old are you?")
    if age >= 18:
        print("You can vote!")
    else:
        wait_time = 18 - age
        print("You can't vote!")
        print(wait_time)
```

Output

```
How old are you? 16
```

/ariables	Objects
age	16 int

Code

```
def main():
    age = input_int("How old are you?")
    if age >= 18:
        print("You can vote!")
    else:
        wait_time = 18 - age
        print("You can't vote!")
        print(wait_time)
```

Output

```
How old are you? 16
```

/ariables	Objects
age	16 int
	18 int

Code

```
def main():
    age = input_int("How old are you?")
    if age >= 18:
        print("You can vote!")
    else:
        wait_time = 18 - age
        print("You can't vote!")
        print(wait_time)
```

Output

```
How old are you? 16
```

Variables	Objects
age	16 int
	18 int
	False

Code

```
def main():
    age = input_int("How old are you?")
    if age >= 18:
        print("You can vote!")
    else:
        wait_time = 18 - age
        print("You can't vote!")
        print(wait_time)
```

Output

```
How old are you? 16
```


Code

```
def main():
    age = input_int("How old are you?")
    if age >= 18:
        print("You can vote!")
    else:
        wait_time = 18 - age
        print("You can't vote!")
        print(wait_time)
```

Output

```
How old are you? 16
```

<u> </u>	
/ariables	Objects
age	16 int
	18 int
	False

Code

```
def main():
    age = input_int("How old are you?")
    if age >= 18:
        print("You can vote!")
    else:
        wait_time = 18 - age
        print("You can't vote!")
        print(wait_time)
```

Output

```
How old are you? 16
```

<u> </u>	
/ariables	Objects
age	16 int
	18 int
	False
	2 int

Code

```
def main():
    age = input_int("How old are you?")
    if age >= 18:
        print("You can vote!")
    else:
        wait_time = 18 - age
        print("You can't vote!")
        print(wait_time)
```

Output

```
How old are you? 16
```

ricilioi y	
Variables	Objects
age	16 int
	18 int
	False
wait_time	2 int

Code

```
def main():
    age = input_int("How old are you?")
    if age >= 18:
        print("You can vote!")
    else:
        wait_time = 18 - age
        print("You can't vote!")
        print(wait_time)
```

Output

```
How old are you? 16
You can't vote!
```

Variables	Objects
age	16 int
	18 int
	False
wait_time	2 int

Code

```
def main():
    age = input_int("How old are you?")
    if age >= 18:
        print("You can vote!")
    else:
        wait_time = 18 - age
        print("You can't vote!")
    print(wait_time)
```

Output

```
How old are you? 16
You can't vote!
2
```

/ariables	Objects
age	16 int
	18 int
	False
wait_time	2 int

Today's **Exercises**

Calculator

Conversion

Bilheteria

Input Functions

Example: Calculator 2.0

Conversion Functions

```
Example
str(object)
                                                "5"
                       str(5)
                               returns a string
                      Example
int(object)
                       int("5")
                                 returns an int
                                                 5
                       Example
float(object)
                       float("5.3")
                                      returns an float 5.3
                      Example
bool (object)
                      float ("True") returns an bool
                                                      True
```

This week on CS106R...

This week on CS106R...

Writing Functions with Objects

So far you've written functions like this:

```
def turn_left():
   turn_right()
   turn_right()
   turn_right()
```

Functions receive objects

age = input_int("How old are you?")

Functions return objects

Functions receive objects

cap = capitalize_string("hello")

Functions return objects

How do we write functions that: receive objects and return objects

How do we write functions that:

receive objects and return objects

Example: Pythagoras 2.0

IMPORTANT IDEA

Every function has its own variables

Variables cannot exist across functions

Scope

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

Variables	Objects

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one:
```

/ariables	Objects

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
```

/ariables	Objects
	3.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
```


Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two:
```


Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```


Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

ricilioi y	
Variables	Objects
side_1	3.0 float
side_2	4.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```


Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

vicilioi	
Variables	Objects
side_1 a	3.0 float
side_2 b	4.0 float
	25.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + L*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Entex side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

Variables	Objects
side_1 a	3.0 float
side_2 b	4.0 float
	25.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

Variables	Objects
side_1 a	3.0 float
side_2 b	4.0
	25.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

vicilioi	
Variables	Objects
side_1 a	3.0 float
side_2 b	4.0 float
c_squared	25.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```


Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

Variables	Objects
side_1 a	3.0 float
side_2 b	4.0 float
c_squared	25.0 float
C	5.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

Variables	Objects
side_1 a	3.0 float
side_2 b	4.0 float
c_squared	25.0 float
C	5.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

Variables	Objects
side_1 a	3.0 float
side_2 b	4.0 float
c_squared	25.0 float
C	5.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```


Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

Variables	Objects
side_1 a	3.0 float
side_2 b	4.0 float
c_squared	25.0 float
hypotenuse	5.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```


Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
5.0
```



```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c
```

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c
```

Parameters

These are just variables

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c
```

```
hyp = compute pythag(side 1, side 2)
           is like...
         a = side 1
         b = side 2
def compute pythag(a, b):
  c squared = a*a + b*b
  c = square root(c squared)
  return c
```

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c
```

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c
```

Return

The object the function

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c
```

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c
    Return
```

The object the function gives

back

Today's Exercises

Calculator

Conversion

Bilheteria

Today's Exercises

Calculator

Conversion

Bilheteria

Today's Exercises

WORK ON PROJECTS!!