Relaciones y Funciones Matemática Estructural y Lógica

Miguel De Ávila

22 de octubre de 2017

Producto cartesiano

Recordemos la definición del producto cartesiano de A y B:

$$A \times B = \{(a, b) | a \in A \land b \in B\}.$$

En lógica de predicados vimos cómo los símbolos de predicado definían relaciones entre términos de una realidad. Utilizando el producto cartesiano podemos formalizar la definición de una relación.

Relaciones

Definición

Una relación R entre los conjuntos A y B es cualquier subconjunto de $A \times B$:

$$R \subseteq A \times B$$
.

En este caso se escribe $R:A\leftrightarrow B$ y se dice que R es una relación entre A y B.

Relación entre elementos

Si $R: A \leftrightarrow B$ y a y b son elementos de A y B, respectivamente; entonces decimos que a está relacionado mediante R con b (o que a está R-relacionado con b) si:

$$(a,b) \in R$$
.

También se suele escribir aRb o R(a, b). Si $(a, b) \notin R$ entonces a no está relacionado con b mediante R

Más deficiones

Si $R: A \leftrightarrow B$ es una relación entonces:

- ► A se llama el dominio de R.
- B se llama el codominio de R.
- ▶ $dom(R) = \{a|(\exists b| : aRb)\}$ es el dominio de definición de R.
- ▶ $ran(R) = \{b \mid : (\exists a \mid : aRb)\}$ es el rango de R.

Ejemplo

Sean
$$A = \{1, 2, 3\}$$
, $B = \{4, 5, 6\}$ y $R : A \leftrightarrow B$ con $R = \{(1, 4), (2, 5)\}$. Entonces:

- ▶ 1 está R-relacionado con 4
- 2 está R-relacionado con 5
- ▶ 3 no está relacionado con ningún elemento de *B*.
- ▶ El dominio de R es $\{1,2,3\}$ y su codominio es $\{4,5,6\}$.
- $dom(R) = \{1, 2\}, ran(R) = \{4, 5\}.$

Relación transpuesta

Definición

Si $R: A \leftrightarrow B$ es una relación, entonces su relación transpuesta R^T se define así:

$$R^T = \{(b, a)|aRb\}.$$

Ejemplo

Si
$$R = \{(1,4), (2,3), (2,2)\}$$
 entonces $R^T = \{(4,1), (3,2), (2,2)\}.$

Algunas relaciones

Si *A* y *B* son conjuntos, podemos definir algunas relaciones estándar:

- ▶ Ø es la relación vacía. No relaciona ningún elemento con otro.
- L = A × B es la relación total, que relaciona todo elemento de A con todo elemento de B.
- ▶ Si A = B podemos definir $I = \{(a, a) | a \in A\}$ la relación identidad en el conjunto A.

Tipos de relaciones

Las siguientes propiedades pueden ser interesantes para una relación $R:A\leftrightarrow B$

- ► Total;
- Unívoca;
- Inyectiva;
- Sobreyectiva;
- Ser función;
- Ser biyección.

A continuación las definimos.

Relaciones totales y sobreyectivas

Sea $R: A \leftrightarrow B$ una relación.

Definición

R es total si todo elemento de A tiene imagen por R. Es decir:

$$(\forall a:A|:(\exists b:B|:aRb))$$

Definición

R es **sobreyectiva** o **sobre** si todo elemento de B tiene *preimagen* por R. Es decir:

$$(\forall b: B|: (\exists a: A|: aRb))$$

Ejemplos

Sean $A = \{a, b, c\}$ y $B = \{x, y, z\}$. Entonces:

- \blacktriangleright {(a,x),(b,z),(c,x)} es total, pero no sobreyectiva.
- \blacktriangleright {(a,x),(b,y),(a,z)} es sobreyectiva, pero no total
- $\{(a, z), (b, x), (c, y)\}$ es total y sobreyectiva.

Relaciones unívocas e inyectivas

Sea $R: A \leftrightarrow B$ una relación.

Definición

R es **unívoca** si todo elemento de A tiene a lo sumo una imagen por R. Es decir:

$$(\forall a: A, b_1, b_2: B|: aRb_1 \land aRb_2 \Rightarrow b_1 = b_2).$$

Definición

R es **inyectiva** o 1-1 si todo elemento de B tiene a lo sumo una preimagen por R; es decir, nunca dos elementos de A tienen la misma imagen. O sea:

$$(\forall a_1, a_2 : A, b : B \mid : a_1Rb \land a_2Rb \Rightarrow a_1 = a_2)$$

Ejemplos

Sean $A = \{a, b, c\}$ y $B = \{x, y, z\}$. Entonces:

- $\{(a,x),(b,z),(c,x)\}$ es unívoca, pero no inyectiva.
- $\{(a,x),(b,y),(a,z)\}$ es inyectiva, pero no unívoca
- $\{(a,z),(b,x),(c,y)\}$ es inyectiva y unívoca.

Funciones

Definición

Si $f: A \leftrightarrow B$ es una relación unívoca y total, entonces f es una **función** (de A en B) y generalmente se escribe $f: A \to B$. Además, cuando $(a,b) \in f$ escribimos f(a) = b

Definición

Si $f: A \leftrightarrow B$ es solo unívoca y no total, se dice que f es una función parcial de A en B.

Definición

Si f es una función y además es inyectiva y sobreyectiva, entonces decimos que f es una biyección o función biyectiva entre A y B

Ejemplos de funciones

- ▶ $sqrt : \mathbb{N} \to \mathbb{N}$ dada por $sqrt = \{(a, b) \in \mathbb{N} \times \mathbb{N} | a = b^2\}$ es una función parcial porque es unívoca pero no total.
- ▶ $f: \mathbb{N} \to \mathbb{Z}$ dada por $f = \{(a,b)|b=-a\}$ es una función porque es unívoca y es total. Además es una función inyectiva; sin embargo no es sobreyectiva porque $5 \in \mathbb{Z}$ no tiene preimagen por f, por tanto no es una biyección.
- ▶ $g : \mathbb{Z} \to \mathbb{Z}$ dada por $g = \{(a, b) | a = b 3\}$ (o sea g(x) = x + 3) es una biyección entre \mathbb{Z} y \mathbb{Z} .

Vale la pena mencionar la siguiente notación para funciones:

$$g: \mathbb{Z} \to \mathbb{Z}$$

 $x \mapsto x + 3$

Representaciones

Hay varias formas de representar gráficamente una relación. A continuación mostramos dos:

- Con matrices;
- Con grafos (dirigidos).

Representación matricial

Podemos representar una relación $R:A\leftrightarrow B$ finita con una matriz M, cuyas dimensiones estarán dadas por el tamaño de los conjuntos A y B, y donde la entrada M_{ij} vale 1 si a_iRb_j , con a_i el i-ésimo elemento de A y b_j el j-ésimo elemento de B.

Ejemplo

Si $A = \{a, b, c\}$ y $B = \{x, y, z\}$ y $R = \{(a, x), (b, y), (a, z)\}$, entonces la matriz que representa a R es:

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Composición relacional

Podemos pensar en componer relaciones de la siguiente forma:

Definición

Sean $R:A\leftrightarrow B$ y $S:B\leftrightarrow C$. La relación R compuesta S se escribe $R\circ S$ y está dada por

$$R \circ S = \{(a, c) | (\exists b | aRb \wedge bSc)\}$$

Intuitivamente, si a y c son elementos de A y C, respectivamente, entonces están $R \circ S$ -relacionados si existe un $b \in B$ que los conecta.

Potencias de una relación

Más aún, la composición relacional nos permite definir las potencias de una relación R, siempre que esté definida entre dos conjuntos iguales: $R: A \leftrightarrow A$.

$$R^0 = I$$
;
 $R^{n+1} = R^n \circ R$, para $n \ge 0$.

Por ejemplo, si $R \subseteq \mathbb{N} \times \mathbb{N}$ está dada por $aRb \equiv b = 2a$, entonces $a(R^n)b \equiv b = 2^na$.

Relaciones cuadradas

Diremos que una relación R es cuadrada si está definida entre un conjunto y él mismo, o sea $R:A\leftrightarrow A$. Las relaciones cuadradas tienen propiedades interesantes como:

- Reflexividad
- Irreflexividad
- Simetría
- Asimetría
- Antisimetría
- Transitividad

Propiedades de relaciones cuadradas

Sea $R: A \leftrightarrow A$ una relación.

Definición

R se dice **reflexiva** si todo elemento de *a* está relacionado con sí mismo. Es decir:

$$(\forall a: A|: aRa).$$

Definición

Por otro lado, se dice que *R* es **irreflexiva** si ningún elemento de *a* está relacionado con sí mismo:

$$(\forall a : A \mid : \neg aRa).$$

Propiedades de relaciones cuadradas

Definición

R es una relación **simétrica** si para todos $a, b \in A$, siempre que a esté relacionado con b entonces b debe estar relacionado con a. Es decir:

$$aRb \Rightarrow bRa$$

Definición

R se dice **asimétrica** si siempre que a esté relacionado con b, entonces b debe no estar relacionado con a, es decir para todo a, $b \in A$:

$$aRb \Rightarrow \neg bRa$$

Propiedades de relaciones cuadradas

Definición

R es una relación **antisimétrica** si para todos $a, b \in A$ se tiene lo siguiente:

$$aRb \wedge bRa \Rightarrow a = b$$
.

Definición

Una relación R es **transitiva** si para todos $a, b, c \in A$ se tiene que

$$aRb \wedge bRc \Rightarrow aRc$$
.

Ejemplos de relaciones cuadradas

¿Cuáles de las 6 propiedades cumple cada una de las siguientes relaciones cuadradas? A es cualquier conjunto.

- ightharpoonup < : $\mathbb{N} \leftrightarrow \mathbb{N}$.
- $ightharpoonup < : \mathbb{Z} \leftrightarrow \mathbb{Z}$
- ightharpoonup \subseteq : $\mathbb{P}(A) \leftrightarrow \mathbb{P}(A)$
- ightharpoonup = : $A \leftrightarrow A$.

Órdenes

Definición

Una relación cuadrada $R: A \leftrightarrow A$ se dice un **orden parcial** si R es reflexiva, transitiva y antisimétrica.

Definición

Una relación cuadrada R se dice un **orden total** si es un orden parcial y además todo par de elementos de A son comparables por R, es decir:

 $(\forall a, b : A \mid : aRb \lor bRa).$

Ejemplos de órdenes

Los siguientes son ordenes parciales:

- ▶ | : $\mathbb{Z} \leftrightarrow \mathbb{Z}$ definido por $a|b \equiv (\exists d : \mathbb{Z}| : b = a * d)$.
- ▶ \subseteq : $\mathbb{P}(A) \leftrightarrow \mathbb{P}(A)$ definido en cualquier conjunto A.
- ightharpoonup < : $\mathbb{Z} \leftrightarrow \mathbb{Z}$.

Solo el último es un orden total además.

Relaciones de equivalencia

Definición

Una relación cuadrada R es una relación de equivalencia si R es reflexiva, simétrica y transitiva.

Las relaciones de equivalencia suelen parecerse a la relación identidad (a la igualdad =).

Relaciones de equivalencia

Las siguientes son relaciones de equivalencia:

- ▶ $I \subseteq A \times A$ para cualquier conjunto A.
- ▶ $R \subseteq \mathbb{Z} \times \mathbb{Z}$ dada por $aRb \equiv b a$ es par.
- ▶ $S \subseteq \mathbb{Z} \times \mathbb{Z}$ dada por $aSb \equiv (\exists k : \mathbb{Z} | : |b a| = 10k)$

Clausuras

Para una relación $R: A \leftrightarrow A$ usualmente no tendremos todas las propiedades que quisieramos para R. En este caso es posible calcular una *clausura* para R, que no es más que la relación más pequeña que contiene a R y cumple con cierta propiedad:

- ▶ Clausura reflexiva: $r(R) = R \cup I$.
- ▶ Clausura simétrica: $s(R) = R \cup R^T$.
- ► Clausura transitiva: $R^+ = (\cup i | i > 0 : R^i)$.

Expresando conjuntos y relaciones

A veces podemos expresar conjuntos o relaciones en funciones de relaciones ya existentes usando la lógica de predicados. Por ejemplo, si tenemos un conjunto de personas A y una relación $Hijo: A \leftrightarrow A$. Para un $a \in A$ podemos definir los conjuntos:

 $Padres(a) = \{x | Hijo(a, x)\}$

Expresando conjuntos y relaciones

A veces podemos expresar conjuntos o relaciones en funciones de relaciones ya existentes usando la lógica de predicados.

Por ejemplo, si tenemos un conjunto de personas A y una relación

Por ejemplo, si tenemos un conjunto de personas A y una relación $Hijo: A \leftrightarrow A$. Para un $a \in A$ podemos definir los conjuntos:

- $Padres(a) = \{x | Hijo(a, x)\}$
- ► $Hermanos(a) = \{x | x \neq a \land (\exists p | : Hijo(a, p) \land Hijo(x, p))\}$

Expresando conjuntos y relaciones

A veces podemos expresar conjuntos o relaciones en funciones de relaciones ya existentes usando la lógica de predicados.

Por ejemplo, si tenemos un conjunto de personas A y una relación $Hijo: A \leftrightarrow A$. Para un $a \in A$ podemos definir los conjuntos:

- $Padres(a) = \{x | Hijo(a, x)\}$
- ► $Hermanos(a) = \{x | x \neq a \land (\exists p | : Hijo(a, p) \land Hijo(x, p))\}$
- ► Tios(a)
- etc.

Relaciones de equivalencia

 $R: A \leftrightarrow A$ es una relación de equivalencia si R es reflexiva, simétrica y transitiva. Algunas relaciones de equivalencia son:

- =, o sea la relación identidad, I (definida en cualquier conjunto), es el ejemplo por excelencia.
- ▶ $R : \mathbb{Z} \leftrightarrow \mathbb{Z}$ dada por $aRb \equiv |a| = |b|$.
- ▶ $S : \mathbb{Z} \leftrightarrow \mathbb{Z}$ dada por $aSb \equiv (a b)$ es par.

De alguna manera una relación de equivalencia busca capturar la idea de que un a sea "equivalente" a un b sin que necesariamente sean iguales.

Clases de equivalencia

Si $R: A \leftrightarrow A$ es una relación de equivalencia y a es un elemento de A, entonces podemos definir la (R-)clase de equivalencia de a:

$$[a]_R = \{x \in A | aRx\}.$$

Si es claro cuál es el R, por lo general se omite el subíndice. La clase $[a]_R$ es el conjunto de los elementos de A relacionados con A. Este conjunto claramente es no vacío, pues incluye por lo menos a a.

Clases de equivalencia

Las clases de equivalencia cumplen el siguiente teorema:

Teorema

Sea $R: A \leftrightarrow A$ de equivalencia, $a, b \in A$. Las siguientes afirmaciones son equivalentes:

- 1. aRb.
- 2. $[a] \cap [b] \neq \emptyset$.
- 3. [a] = [b].

Esto de hecho significa que el conjunto de clases de equivalencia de R forman una partición de A.

Particiones y clases de equivalencia

Definición

Sea A un conjunto y $P \subseteq \mathbb{P}(A)$. Decimos que P es una partición de A si y solo si se cumple:

- 1. $(\cup B : P|B) = A$
- 2. $(\forall B_1, B_2 : P | : B_1 \neq B_2 \Rightarrow B_1 \cap B_2 = \emptyset)$.

Particiones y clases de equivalencia

Teorema

Sea $R: A \leftrightarrow A$ de equivalencia. Entonces el conjunto de clases de equivalencia $\{[a]_R | a \in A\}$ es una partición de A.

Teorema

Sea P una partición del conjunto A. Entonces podemos definir una relación $E:A\leftrightarrow A$ dada por

$$aEb \equiv (\exists B : P | a \in B \land b \in B)$$

y E es de equivalencia.

Órdenes

Recordemos que una relación \leqslant : $A \leftrightarrow A$ es un orden parcial si \leqslant es reflexiva, antisimétrica y transitiva.

Definición

Una relación $<: A \leftrightarrow A$ es un orden estricto si < es irreflexiva, asimétrica y transitiva.

Un orden estricto es muy parecido a un orden parcial, con la diferencia que un orden estricto nunca relaciona un elemento con sí mismo.

Órdenes correspondientes

 $Si \leqslant es$ un orden parcial en A entonces podemos definir

$$<=\leqslant \cap \neq$$

su orden estricto correspondiente (la relación \neq es igual a $A \times A \setminus I$).

Además, si \prec es un orden estricto, podemos encontrar un orden parcial correspondiente:

$$\leq = \prec \cup I$$
.

Nociones más fuertes de orden

Definición

Una relación \preceq : $A \leftrightarrow A$ se dice un orden total si es un orden parcial y además se cumple que

$$(\forall a, b : A \mid : aRb \lor bRa).$$

Definición

Una relación \preceq : $A \leftrightarrow A$ se dice un buen orden si R es un orden total, y además se cumple que

$$(\forall B|B\subseteq A \land B \neq \emptyset: (\exists b|: b \in B \land (\forall c: B|b \leq c)))$$

Composición funcional

Como las funciones son relaciones, entonces podemos componer dos funciones. Es fácil ver que la composición de dos funciones es una función.

- ▶ Si $f: A \rightarrow B$ y $g: B \rightarrow C$ son funciones, entonces $f \circ g: A \rightarrow C$ es una función.
- ▶ Si f(a) = b (o sea $(a, b) \in f$) y g(b) = c entonces escribimos $f \circ g(a) = g(f(a)) = c$.

Ejercicios

Demuestre los siguientes dos teoremas:

Teorema

La composición de dos funciones inyectivas es una función inyectiva.

Teorema

La composición de dos funciones sobreyectivas es sobreyectiva.