计算机体系结构 HW1

EX1

某台计算机执行标准测试程序,程序中指令类型,出现频率,需要时钟周期如下:

指令类型	指令出现频率	需要时钟周期数
R	30%	2
1	25%	3
S	20%	2
U	15%	4
В	5%	4
J	4%	2

1.1

计算CPI.

CPI=30%*2+25%*3+20%*2+15%*4+5%*4+5%*2=2.65

1.2

比较两种方案:

A. 整体时钟周期缩短到原本的 0.9

B. B 类型和 U 类型指令需要的时钟周期减少 1

对于 A 方案, 耗时为 $T_A = 2.65 * 0.9 * CLK_CYCLE = 2.385 * CLK_CYCLE$;

对于 B 方案, $T_B = (30\%*2 + 25\%*3 + 20\%*2 + 15\%*3 + 5\%*3 + 5\%*2)*$ CLK CYCLE = 2.45*CLK CYCLE

因此就 总时间 而言, 方案 A 更好.

EX2

我们通过添加高性能硬件模块来提升机器的性能, 当运算通过高性能模块进行加速时, 其速度是正常

运行的 20 倍, 将通过高性能模块进行加速的运算花费的时间百分比记为 α (加速后所测得执行时间百分比).

2.1

 α 达到多少时, 运算整体加速比达到 3?

设加速前后计算时间为
$$t_0,t_1$$
, 则 $t_0=20\alpha t_1+(1-\alpha)t_1$ 所以整体运算加速比是 $\frac{t_0}{t_1}=\frac{20\alpha t_1+(1-\alpha)t_1}{t_1}=20\alpha+(1-\alpha)=19\alpha+1=3$ 因此 α 达到 $\frac{2}{19}=0.105$ 的时候, 运算整体加速比达到 3.

2.2

在运算整体加速比为 3 的情况下, 被加速的运算在原执行时间中的比例为多少?

显然, 占比为
$$\frac{20\alpha t_1}{t_0}=\frac{20\alpha t_1}{20\alpha t_1+(1-\alpha)t_1}=\frac{20\alpha}{19\alpha+1}pprox 0.702$$
 (代入 $lpha=\frac{2}{19}$)

2.3

 α 达到多少时, 运算整体加速比能达到此加速方式最大加速比的一半.

加速比为 $19\alpha+1$, 而 $\alpha\in[0,1]$, 故最大加速比为 20, 其一半是 10, 进而, 若 $10=19\alpha+1$, 则 $\alpha=9/19\approx0.4737$

EX3

我们为一种实时应用设计系统,这种应用要求必须在指定期限之前完成,提前完成计算没有收益.我们发现,在最糟糕的情况下,这一系统执行必须代码的速度是最低要求速度的两倍.

3.1

如果以当前速度执行计算,并在完成任务后关闭系统,可节省多少能量?

即相当于有一半的时间系统是关闭的, 因此可以节省 50% 的能量

3.2

如果将电压和频率设置为现在的一半, 可以节省多少能量?

$$rac{Energy_{new}}{Energy_{old}} = rac{Voltage_{new}^2}{Voltage_{old}^2} = rac{1}{4}$$
,故可以节省 75% 的能量