Name: Thiago Gesteira Student ID: 200431173

I certify that I individually did the design, simulation and synthesis that lead to these solutions, did not copy the answers to this homework and did not let anyone copy my answers (sign):

Clock Period Achieved (ps): 4

Verilog design File (not test fixture – put that on the next page):

```
/*module*********************
* NAME: counter
* DESCRIPTION:
* downcounter with zero flag and synchronous clear
* NOTES:
* REVISION HISTORY
  Date
       Programmer
                      Description
  9/17/24 Thiago Gesteira ece564-8-bit-down-counter
*/
/*====Declarations======*/
module counter (clock, in, latch, dec, divByTwo, zero);
/*----*/
       clock; /* clock */
input
input [7:0] in; /* input initial count */
      latch; /* `latch input' */
input
       dec; /* decrement */
input
       divByTwo; /* divide by two */
input
/*-----*/
       zero; /* zero flag */
output
/*-----*/
/*---(See input and output for unexplained variables)---*/
reg [7:0] value;
            /* current count value */
wire
      zero:
```

```
// Count Flip-flops with input multiplexor
always@(posedge clock)
 begin // begin-end not actually need here as there is only one statement
  casex ({latch, dec, zero, divByTwo})
   4'b1???: value <= in;
   4'b010?: value <= value - 1'b1;
   4'b0001: value <= value >> 1;
   default: value <= value;
  endcase
 end
// combinational logic for zero flag
assign zero = \sim|value;
endmodule /* counter */
Verilog test fixture:
module test fixture;
                       clock100 = 0;
       reg
                       latch = 0;
       reg
                       dec = 0;
       reg
                       [7:0] in = 8'b010101011;
       reg
                       divByTwo = 0;
       reg
       wire
               zero;
       initial //following block executed only once
        begin
               //$dumpfile("count.vcd"); // waveforms in this file..
               //$dumpvars; // saves all waveforms
               #16 latch = 1;
                                     // wait 16 ns
                                      // wait 10 ns
               #10 latch = 0:
               #10 dec = 1;
               #9 dec = 0;
               #11 divByTwo = 1;
               #10 \text{ divByTwo} = 0;
               #100 $finish;
                                      //finished with simulation
       end
                                             // 10ns clock
       always #5 clock 100 = \sim \operatorname{clock} 100;
       // instantiate modules -- call this counter u1
        counter u1( .clock(clock100), .in(in), .latch(latch), .dec(dec),
                                      .divByTwo(divByTwo), .zero(zero));
endmodule /*test fixture*/
```

Min and Max Timing Reports:

Report : timing

-path full
-delay max
-max_paths 1

Design : counter

Version: T-2022.03-SP4

Date : Wed Sep 18 18:57:58 2024

Operating Conditions: typical Library:

NangateOpenCellLibrary_PDKv1_2_v2008_10_typical_nldm

Wire Load Model Mode: top

Startpoint: latch (input port clocked by clock)

Endpoint: value_reg_7_

(rising edge-triggered flip-flop clocked by clock)

Path Group: clock Path Type: max

Point	Incr	Path
clock clock (rise edge)	0.0000	0.0000
clock network delay (ideal)		0.0000
input external delay	0.6580	0.6580 f
latch (in)	0.0976	0.7556 f
U179/ZN (NOR3 X2)	0.2119	
U167/ZN (INV X4)	0.0339	1.0014 f
U154/ZN (NAND3 X2)	0.0631	1.0645 r
U176/ZN (OAI21 X2)	0.0546	1.1191 f
U180/ZN (A0I21 X2)	0.0950	1.2141 r
U181/ZN (OAI21 X2)	0.0493	1.2634 f
U129/ZN (A0I22 X2)	0.0773	1.3407 r
$U161/ZN (INV X\overline{4})$	0.0099	1.3505 f
value reg 7 $\overline{/}$ D (DFF X2)	0.0000	1.3505 f
data arrival time		1.3505
clock clock (rise edge)	4.0000	4.0000
clock network delay (ideal)	0.0000	4.0000
clock uncertainty	-0.0500	3.9500
value_reg_7_/CK (DFF_X2)	0.0000	3.9500 r
library setup time	-0.0654	3.8846
data required time		3.8846
data required time		3.8846

data arrival	l time	-1.3505
slack (MET)		2.5341

1

Report : timing

-path full
-delay min
-max paths 1

Design : counter

Version: T-2022.03-SP4

Date : Wed Sep 18 18:57:59 2024

Operating Conditions: fast Library:

NangateOpenCellLibrary PDKv1 2 v2008 10 fast nldm

Wire Load Model Mode: top

Startpoint: value reg 7

(rising edge-triggered flip-flop clocked by clock)

Endpoint: value_reg_7_

(rising edge-triggered flip-flop clocked by clock)

Path Group: clock Path Type: min

Point	Incr	Path
clock clock (rise edge) clock network delay (ideal) value_reg_7_/CK (DFF_X2) value_reg_7_/Q (DFF_X2) U129/ZN (AOI22_X2) U161/ZN (INV_X4) value_reg_7_/D (DFF_X2) data arrival time	0.0000 0.0000 0.0000 0.0599 0.0154 0.0088 0.0000	0.0599 r 0.0753 f
<pre>clock clock (rise edge) clock network delay (ideal) clock uncertainty value_reg_7_/CK (DFF_X2) library hold time data required time</pre>	0.0000 0.0000 0.0500 0.0000 -0.0152	0.0000 0.0500 0.0500 r
data required time		0.0348

data arrival time	-0.0841
slack (MET)	0.0493

1

Report : timing

-path full
-delay max
-max paths 1

Design : counter

Version: T-2022.03-SP4

Date : Wed Sep 18 18:58:00 2024

Operating Conditions: slow Library:

NangateOpenCellLibrary PDKv1 2 v2008 10 slow nldm

Wire Load Model Mode: top

Startpoint: value reg 0

(rising edge-triggered flip-flop clocked by clock)

Endpoint: value reg 7

(rising edge-triggered flip-flop clocked by clock)

Path Group: clock Path Type: max

Point	Incr	Path
clock clock (rise edge)	0.0000	0.0000
clock network delay (ideal)	0.0000	0.0000
value reg 0 /CK (DFF X2)	0.0000	0.0000 r
value reg 0 /Q (DFF X2)	0.5725	0.5725 f
U160/ZN (NOR3_X2)	0.4109	0.9834 r
U159/ZN (AND3_X2)	0.3489	1.3323 r
$U158/ZN$ (NAND3_X2)	0.1155	1.4477 f
$U157/ZN (NOR2_X^2)$	0.6521	2.0998 r
U179/ZN (NOR3_X2)	0.3105	2.4103 f
$U167/ZN (INV_X4)$	0.1964	2.6067 r
U176/ZN (OAI21_X2)	0.1158	2.7224 f
U180/ZN (AOI21_X2)	0.3499	3.0723 r
U181/ZN (OAI21_X2)	0.1605	3.2328 f
U129/ZN (A0I22_X2)	0.2918	3.5246 r
$U161/ZN (INV_X^{\overline{4}})$	0.0419	3.5665 f
value_reg_7_/D (DFF_X2)	0.0000	3.5665 f
data arrival time		3.5665

clock clock (rise edge)	4.0000	4.0000
clock network delay (ideal)	0.0000	4.0000
clock uncertainty	-0.0500	3.9500
value reg 7 /CK (DFF X2)	0.0000	3.9500 r
library setup time	-0.3057	3.6443
data required time		3.6443
data required time		3.6443
data arrival time		-3.5665
slack (MET)		0.0778