Circuits Lab 11 4/8/2020 Chase Mulder

1. Make this circuit

* C:\Users\ickysaladtosser\Desktop\Circuits\Itpamp.asc

Operating Point		
V(a):	1.81929	voltage
V(input):	1	voltage
V (-vcc) :	15	voltage
V(+vcc):	15	voltage
V(outp):	10.0095	voltage
I(R3):	0.00100095	device_current
I(R2):	8.19022e-05	device_current
I(R1):	8.19285e-05	device_current
I(V4):	8.19285e-05	device_current
I(V2):	-0.000331286	device_current
I(V3):	0.000751673	device_current
Ix (u2:1):	-3e-08	subckt_current
Ix (u2:2):	-2.63614e-08	subckt_current
Ix (u2:3):	0.000331286	subckt_current
Ix (u2:4):	0.000751673	subckt_current
Ix (u2:5):	-0.00108285	subckt_current

- 5. To explain the above graph
 - a. Red line is the gain and the gain is Voutput/Vinput
 - b. Green in Vinput
 - c. Blue is Voutput

6.

8. R3 does not affect the gain of the op amp circuit because it's not RF or RS, R2 and R1 affect the gain.

* C:\Users\ickysaladtosser\Desktop\Circuits\Itpamp.asc X --- Operating Point ---^ V(r4+): 0.136443 voltage V(input): -1 voltage V (-vcc) : 15 voltage V(+vcc): 15 voltage V(outp): 11.4979 voltage V(r4-): 0.136443 voltage V(p001): 3e-10 voltage device_current device_current I(R5): 3e-08 2.97271e-08 I(R4): I(R3): 0.00114979 device_current I (R2): 0.000113615 device_current 0.000113644 I(R1): device_current I(V1): I(V2): device_current device_current 0.000113644 -0.00115757 I (V3): 0.000105927 device_current subckt_current subckt_current Ix (u2:1): -3e-08 Ix (u2:2): -2.97271e-08 R2 100k V2 R1 R4 U2 10k LO/ PULSE(-1 1 0 .5m .5m 1p 1m) 10k .op

For a non-inverting amp, the gain is:

$$Gain = 1 + (R2/R1)$$

12.

- 15. This circuit should have a gain of 11
- 16. Gain 11 means a one volt in equals 11 volts out
- 17. Technically we'd need another inverting op amp because the vout will be -11
- 18. Conclusion
 - a. Op amp doesn't violate kcl. The saturation in the op amp is what is creating the current.
 - b. Part 1 step 8 we found there's almost no current flowing into the op amp. V=IR, so having almost no current would result in very little voltage. If this current was 0 then we'd have a virtual short.
 - c. How well did the 11V/V non inverting op amp do?

d. The non inverting op amp with gain of 11 is not simulating in LTSpice properly, but the hand calculation on paper checks out with a non inverting op amp circuit found on the internet. In the circuit R2/R1 + 1 will give the gain of the circuit. The values chosen for R2 is 10 ohms and R1 is 10hm because 10/1 = 10 then +1 equals 11 gain voltage. I'm a little confused as to why the LT simulation is failing, but I have a suspicion it's to do with the rails +vcc and -vcc. In a non inverting op amp circuit the rail will be the output, so if a 1v comes in then the positive rail will be the output.