数字逻辑设计

高翠芸 School of Computer Science gaocuiyun@hit.edu.cn

Unit 10 时序逻辑电路分析

■ 同步时序电路

■ 异步时序电路

Unit 10 时序逻辑电路分析

时序逻辑电路的分析方法

确定系统变量(输入变量、输出变量、状态变量)

- ① 列驱动方程(控制函数/输入方程)
- ② 列输出方程(输出函数)
- ③ 列状态方程(次态方程)
- ④ 列写状态转换表
- ⑤ 画出状态图
- ⑥ 画出波形图(如必要)

- ■同步时序电路
- 异步时序电路

时序逻辑电路分析

③ 输出方程
$$Z = \overline{XCPQ_2^nQ_1^n} \cdot \overline{XCPQ_2^nQ_1^n}$$

= $XCP\overline{Q_2^nQ_1^n} + \overline{XCPQ_2^nQ_1^n}$

次态方程:

$$Q_{2}^{n+1} = J_{2}\overline{Q}_{2} + \overline{K}_{2}Q_{2}$$

$$= (X \oplus Q_{1})\overline{Q}_{2} + (\overline{X \oplus Q_{1}})Q_{2}$$

$$= X \oplus Q_{1} \oplus Q_{2}$$

$$\mathbf{Q}_{1}^{\mathbf{n+1}} = \mathbf{J}_{1} \overline{\mathbf{Q}}_{1} + \mathbf{K}_{1} \overline{\mathbf{Q}}_{1}$$
$$= \overline{\mathbf{Q}}_{1}$$

输入方程

$$J_1 = K_1 = 1$$

$$J_2=K_2=X\oplus Q_1^n$$

② 次态方程

$$Q_2^{n+1} = X \oplus Q_1^n \oplus Q_2^n$$

$$Q_1^{n+1} = \overline{Q_1}^n$$

状态转换表

输入 现态			次	输出	
X	$\mathbf{Q_2}^{n}$	Q_1^n	Q_2^{n+1}	Q_1^{n+1}	Z
0	0	0	0	1	0
0	0	1	1	0	0
0	1	0	1	1	0
0	1	1	0	0	1
1	0	0	1	1	1
1	0	1	0	0	0
1	1	0	0	1	0
1	1	1	1	0	0

同步时序逻辑电路分析——示例1

④ 状态转换表

现态		Q ₂ ⁿ⁺¹ Q ₁ ⁿ⁺¹ / Z					
Q ₂ n	Q ₁ ⁿ	X=0	X=1				
0	0	01/0	11/1				
0	1	10/0	00/0				
1	0	11/0	01/0				
1	1	00/1	10/0				

⑤ 状态图

结论: 模4可逆计数器

■ X=0: 加计数

■ X=1: 减计数

Z: 进位和借位输出标志

同步时序逻辑电路分析

① 输入方程

② 次态方程

$$D_4 = Y_3^n$$

$$D_3 = Y_2^n$$

$$D_2 = Y_1^n$$

$$D_{1} = \overline{Y_{3}^{n} \overline{Y_{1}}^{n}} \overline{Y_{4}^{n}}$$
$$= Y_{1}^{n} \overline{Y_{4}^{n}} + \overline{Y_{3}^{n}} \overline{Y_{4}^{n}}$$

$\mathbf{Y_4}^{\mathsf{n+1}} = \mathbf{Y_3}^{\mathsf{n}}$

$$Y_3^{n+1} = Y_2^n$$

$$Y_2^{n+1} = Y_1^n$$

$$Y_1^{n+1} = Y_1^n \overline{Y_4^n} + \overline{Y_3^n} \overline{Y_4^n}$$

③ 状态转换表

- K									
3	见态			序号					
Y ₄ n Y ₅	n Y ₂ n	Y ₁ n	Y ₄ n+1	Y ₃ n+1	Y ₂ n+1	Y ₁ n+1			
0 0	0	0	0	0	0	1	1		
0 0	0	1	0	0	1	1	2		
0 0	1	0	0	1	0	1			
0 0	1	1	0	1	1	1	3		
0 1	0	0	1	0	0	0			
0 1	0	1	1	0	1	1			
0 1	1	0	1	1	0	0			
0 1	1	1	1	1	1	1	4		
1 0	0	0	0	0	0	0	8		
1 0	0	1	0	0	1	0			
1 0	1	0	0	1	0	0			
1 0	1	1	0	1	1	0			
1 1	0	0	1	0	0	0	7		
1 1	0	1	1	0	1	0			
1 1	1	0	1	1	0	0	6		
1 1	1	1	1	1	1	0	5		

同步时序逻辑电路分析

③ 状态转换表

现态									
	现	态			序号				
Y ₄ n	Y ₃ n	Y ₂ n	Y ₁ ⁿ	Y ₄ n+1	Y ₃ n+1	Y ₂ n+1	Y ₁ n+1		
0	0	0	0	0	0	0	1	1	
0	0	0	1	0	0	1	1	2	
0	0	1	0	0	1	0	1		
0	0	1	1	0	1	1	1	3	
0	1	0	0	1	0	0	0		
0	1	0	1	1	0	1	1		
0	1	1	0	1	1	0	0		
0	1	1	1	1	1	1	1	4	
1	0	0	0	0	0	0	0	4 8	
1	0	0	1	0	0	1	0		
1	0	1	0	0	1	0	0		
1	0	1	1	0	1	1	0		
1	1	0	0	1	0	0	0	7	
1	1	0	1	1	0	1	0		
1	1	1	0	1	1	0	0	6	
1	1	1	1	1	1	1	0	5	

④ 状态图

模8计数器(格雷码输出),能够自启动

同步时序逻辑电路分析方法总结

确定系统变量(输入变量、输出变量、状态变量)

- ① 列写三组方程:
 - ■驱动方程(控制函数)
 - ■状态方程(次态方程)
 - ■输出方程(输出函数)
- ② 列写状态转换表:
 - ■写出所有输入及现态的取值组合;
 - ■将每一种取值组合带入次态方程和输出方程,计算后的得出次态值和输出值:
 - ■从表中第一行开始,寻找状态转换规律;
- ③ 画出完整的状态图;
- ④ 得出电路功能,并说明能否自启动

Unit 10 时序逻辑电路分析

■同步时序电路

■ 异步时序电路

异步时序逻辑电路分析——示例

① 输入方程

$$\begin{cases}
J_4 = Y_3^n Y_2^n \\
K_4 = 1 \\
J_3 = K_3 = 1 \\
J_2 = \overline{Y_4}^n, K_2 = 1 \\
J_1 = K_1 = 1
\end{cases}$$

② 次态方程

$$\begin{cases} Y_4^{n+1} = J_4 \overline{Y_4}^n + \overline{K_4} Y_4^n = \overline{Y_4}^n Y_3^n Y_2^n & CP_4 = Y_1 \downarrow \\ Y_3^{n+1} = J_3 \overline{Y_3}^n + \overline{K_3} Y_3^n = \overline{Y_3}^n & CP_3 = Y_2 \downarrow \\ Y_2^{n+1} = J_2 \overline{Y_2}^n + \overline{K_2} Y_2^n = \overline{Y_4}^n \overline{Y_2}^n & CP_2 = Y_1 \downarrow \\ Y_1^{n+1} = J_1 \overline{Y_1}^n + \overline{K_1} Y_1^n = \overline{Y_1}^n & CP_1 \downarrow \end{cases}$$

异步时序逻辑电路分析——示例

② 次态方程

$$\begin{cases} Y_{4}^{n+1} = J_{4}\overline{Y_{4}}^{n} + \overline{K}_{4}Y_{4}^{n} = \overline{Y_{4}}^{n}Y_{3}^{n}Y_{2}^{n} & CP_{4} = Y_{1} \downarrow \\ Y_{3}^{n+1} = J_{3}\overline{Y_{3}}^{n} + \overline{K}_{3}Y_{3}^{n} = \overline{Y_{3}}^{n} & CP_{3} = Y_{2} \downarrow \\ Y_{2}^{n+1} = J_{2}\overline{Y_{2}}^{n} + \overline{K}_{2}Y_{2}^{n} = \overline{Y_{4}}^{n}\overline{Y_{2}}^{n} & CP_{2} = Y_{1} \downarrow \\ Y_{1}^{n+1} = J_{1}\overline{Y_{1}}^{n} + \overline{K}_{1}Y_{1}^{n} = \overline{Y_{1}}^{n} & CP_{1} \downarrow \end{cases}$$

④ 状态图

8421 BCD 码异步加法计数器

③ 状态转换表

				次态				时钟			
Y ₄ n	Y ₃ n	Y ₂ n	Y ₁ n	Y ₄ n+1	Υ ₃ n+1	Y ₂ n+1	Υ ₁ n+1	cp ₄	cp ₃	cp ₂	cp₁
0	0	0	0	0	0	0	1	无	无	无	\downarrow
0	0	0	1	0	0	1	0	\downarrow	无	\downarrow	\downarrow
0	0	1	0	0	0	1	1	无	无	无	\downarrow
0	0	1	1	0	1	0	0	\downarrow	\downarrow	\downarrow	\downarrow
0	1	0	0	0	1	0	1	无	无	无	\downarrow
0	1	0	1	0	1	1	0	\downarrow	无	\downarrow	\downarrow
0	1	1	0	0	1	1	1	无	无	无	\downarrow
0	1	1	1	1	0	0	0	\downarrow	\downarrow	\downarrow	\downarrow
1	0	0	0	1	0	0	1	无	无	无	\downarrow
1	0	0	1	0	0	0	0	\downarrow	无	\downarrow	\downarrow
1	0	1	0	1	0	1	1	无	无	无	\downarrow
1	0	1	1	0	1	0	0	\downarrow	\downarrow	\downarrow	\downarrow
1	1	0	0	1	1	0	1	无	无	无	\downarrow
1	1	0	1	0	1	0	0	\downarrow	无	\downarrow	↓
1	1	1	0	1	1	1	1	无	无	无	↓
1	1	1	1	0	0	0	0	\downarrow	\downarrow	\downarrow	\downarrow

异步时序逻辑电路分析方法总结

确定系统变量(输入变量、输出变量、状态变量)

- 1 确定每个触发器的时钟由谁供给?
- 2 列写三组方程:
- 驱动方程(控制函数)、状态方程(次态方程)、输出方程(输出 函数)

3 列写状态转换表:

- 首先,从假定(或给定)的某一个初始状态开始,每来一个外输入及外接时钟脉冲,确定与之对应的触发器次态及输出;
- 其次,确定该触发器的状态改变能否给其它触发器提供需要的时钟 边沿。若能,则与之相应的其它触发器动作。否则,与之相应的其 它触发器保持;重复该步骤,直到所有触发器的次态都确定为止。
- 接着,该次态成为新的现态,来一个外输入及外接时钟脉冲,重复上述操作,直到所有的2ⁿ个现态到次态的转换都已计算完毕;从表中第一行开始,寻找状态转换规律;
- 4 画出完整的状态图;
- 5 得出电路功能,并说明能否自启动