Schedule

[Fundamentals]

- 1. 4/15 Basic chemical and biochemical concepts
- 2. 4/22 Basic biophysical concepts
- 3. 4/29 Basic bioelectrochemical concepts1
- 4. 5/13 Basic bioelectrochemical concepts2

[Applications]

- 5. 5/20 Cancel (Homework1 and 2)
- 6. 5/27 Biosensors and bioelectronics1
- 7. 6/03 Cancel (Homework3 and 4)
- 8. 6/10 Student seminar
- 9. 6/17 Biosensors and bioelectronics2
- 10. 6/24 From bioelectronics (electron) to iontronics (ion) 1
- 11. 7/01 From bioelectronics (electron) to iontronics (ion)2
- 12. 7/ 8 Wearable applications1
- 13. 7/15 Wearable applications2
- 14. 7/22 Student seminar

Biosensor

Biosensor publication

World Market for Biosensor (US\$ millions)

Biosensor

DNA (Deoxyribonucleic Acid)

DNA(Deoxyribonucleic Acid)

1953 Molecular structure is identified by James Watson, Francis Crick (USA) (UK) 1962

The Nobel Prize in Physiology or Medicine

1984-2003 The Human Genome Project

A human Genome for \$100 3.3 billion base-pairs

2000

Nature 409, 860-921 (15 February 2001)

Science 291, 1304-1351 (16 February 2001)

DNA sequencing

例 元の配列 GTCTGAAACATGATT

- ・アデニン(A)で切断した場合
 [06] GTCTGA <-> AACATGATT
 [07] GTCTGAA <-> ACATGATT
 [08] GTCTGAAA <-> CATGATT
 [10] GTCTGAAACA <-> TGATT
 [13] GTCTGAAACATGA <-> TT
- ・グアニン(G)で切断した場合 [01] G <-> TCTGAAACATGATT [05] GTCTG <-> AAACATGATT [12] GTCTGAAACATG <-> ATT
- シトシン(c)で切断した場合[03] GTC <-> TGAAACATGATT[09] GTCTGAAAC <-> ATGATT
- ・チミン(ナ)で切断した場合
 [02] GT <-> CTGAAACATGATT
 [04] GTCT <-> GAAACATGATT
 [11] GTCTGAAACAT <-> GATT
 [14] GTCTGAAACATGAT <-> T
 [15] GTCTGAAACATGATT

[01] **G**[02] **GT**[03] **GTC**[04] **GTCT**[05] **GTCTG**

[06] GTCTGA [07] GTCTGAA

[08] GTCTGAAAC

[10] GTCTGAAACA
[11] GTCTGAAACAT

[12] GTCTGAAACATG [13] GTCTGAAACATGA

[14] GTCTGAAACATGAT

[15] GTCTGAAACATGATT

DNA sequencer

Designer baby

Next generation sequencer

Oxford nanopore sequencing

Next generation sequencer

nature methods | VOL.10 NO.7 | JULY 2013 | 641

ISFET: Ion selective FET

DNA detection with ISFET

Diamond solution gate FET

Single-base mismatch detection

DNA Mismatch and Damage Repair

1 million individual molecular lesions per cell per day

Nobel Prize in Chemistry (2015) "DNA repair"

DNA Injection into the cell

iPS cells: induced pluripotent stem cells

DNA Injection into the cell

Tiny needle: Microcantilever Prof. Nicholas A. Melosh Stanford University

Miyake's group

Au-nanostraw membrane

Au-nanostraw stamping

Calcein delivery into the cells

With and without nanoneedles

Sustainable manufacturing with synthetic biology

Nature Biotechnology volume 40, pages304-307 (2022)

Electrogenetics

NATURE COMMUNICATIONS | 8:14030, 2017 | DOI: 10.1038/ncomms14030

Electrogenetics

NATURE COMMUNICATIONS | 8:14030, 2017 | DOI: 10.1038/ncomms14030

Electrogenetics

NATURE COMMUNICATIONS | 8:14030, 2017 | DOI: 10.1038/ncomms14030

Electrogenetics

NATURE COMMUNICATIONS | 8:14030, 2017 | DOI: 10.1038/ncomms14030