D - 53 - 2013

과산화수소 저장설비의 안전에 관한 기술지침

2013. 11.

한 국 산 업 안 전 보 건 공 단

안전보건기술지침의 개요

- o 작성자 : 전 병 두
- o 제정경과
 - 2013년 10월 총괄 제정위원회 심의
- o 관련규격
 - 미국 FM Loss Prevention Data Sheets 7-84, "Hydrogen Peroxide", 2000
 - 미국 NFPA 430, "Code for the Storage of Liquid and Solid oxidizing Material", 2004
- o 관련법규
 - 산업안전보건기준에 관한 규칙 제225조(위험물질 등의 제조 등 작업시 의 안전조치)
- o 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2013년 11월 25일

제 정 자 : 한국산업안전보건공단 이사장

D - 53 - 2013

과산화수소 저장설비의 안전에 관한 기술지침

1. 목 적

이 지침은 산화성 액체인 과산화수소 수용액 저장설비와 그 부속설비 등의 설치 및 안전조치에 필요한 기술적 사항을 제시하는데 그 목적이 있다.

2. 적용범위

이 지침은 농도 27.5 % 를 초과하는 과산화수소 수용액(이하 "수용액"이라 한다) 저 장설비와 그 부속설비 등에 적용한다. 다만, 과산화수소 제조공정에는 이 지침을 적용하지 아니한다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
- (가) "저장설비"라 함은 수용액 저장탱크와 이송배관, 압력방출장치 및 제어기기 등을 포함한 일련의 설비를 말한다.
- (나) "저압탱크"라 함은 설계압력이 103 kPa 이하인 수용액 저장탱크를 말한다.
- (다) "압력탱크" 라 함은 설계압력이 103 kPa을 초과하는 수용액 저장탱크를 말한다.
- (라) "압력 방출구"라 함은 수용액 저장탱크 내부압력이 설정치 이상으로 상승 시 열리도록 설치된 플로팅맨홀커버(Floating manhole cover)를 말한다.
- (마) "하역장소"라 함은 저장탱크로 수용액을 이송하는 탱크로리의 정차 장소를 포함한 이송 배관 및 밸브 등 부속설비를 말한다.
- (바) "농도"라 함은 수용액 중 과산화수소의 중량 %를 말한다.

D - 53 - 2013

- (사) "희석"이라 함은 사용공정으로 이송하거나, 탱크로리 등에 로딩하기 위해 수용 액을 물과 혼합하여 농도를 낮추는 것을 말한다.
- (아) "용기저장" 이라 함은 희석한 수용액을 소분하여 담은 드럼 등을 옥외저장소 또는 취급 장소 내의 별도장소에 보관하는 것을 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 산업안전보건기준에 관한 규칙에서 정하는 바에 따른다.

4. 일반사항

4.1 특성

- (1) 상온에서 무색·무취의 액체로 강산화제이고 부식성이 있으며, 불연성이지만 연소를 촉진하며 물에 완전히 녹는다.
- (2) 일반적으로 농도 35 %에서 50 %의 수용액을 주로 사용하며, 고동도의 수용액은 화재·폭발을 예방하기 위해 특수한 조치가 필요하나, 저 농도에서는 심각한 화재·폭발 위험은 없다.

4.2 분해 위험성

- (1) 많은 종류의 유기물과 폭발성 혼합물을 형성할 수 있으나, 일반적으로 농도가 55 % 이상일 경우에만 그러한 위험이 있으며, 점화원은 주로 기계적 충격, 열 및 전기적 방전 등 이다.
- (2) 오염되거나, 가열하여 일정온도에 이르면 산소와 수증기로 분해되며 열을 방출한다. 이때, 기체로 변하며 부피가 크게 증가 하는데 농도 50 %의 수용액의 경우부피가 1,000 배로 증가 된다.

D - 53 - 2013

- (3) 저장탱크 내부에서 분해 시 발생하는 열이 대기로 방출되는 열보다 많을 경우수용액의 온도가 물의 비점 이상으로 올라갈 수 있다. 특히, 농도 64.7 % 이상에서는 분해 시 발생하는 열이 수용액을 전부 증발시킬 수 있다.
- (4) 농도 64.7 % 미만에서는 수용액 중의 과산화수소가 전부 분해되어도 물의 비점까지 온도가 올라가지는 않는다. 그러나, 농도 64.7 % 이상에서는 농도 증가에따라 온도는 물의 비점에서 982 ℃(농도 100 %시)까지 급속히 증가한다. 다만, 위의 온도는 외부로 방출되는 열은 없는 것으로 가정한 경우이다.
- (5) 농도 64.7 % 미만의 수용액을 저장하는 탱크에서 과산화수소 분해속도가 압력 방출장치를 통한 배출속도보다 크면 저장탱크는 파열될 것이다. 이때, 농도가 높 을 수록 저장탱크 파열의 위험은 커지며, 저장탱크의 강도가 강할수록 파열시 피해는 커진다.
- (6) 대기압 상태에서는 수용액에서 증발한 증기 중 과산화수소의 증기농도가 26 % 미만인 경우에는 분해위험이 높지 않으나, 증기농도가 26 % 이상이면 약한 점화원에 의해서도 급속히 분해된다.
- (7) 대기압 상태에서는 농도 74 % 수용액에서 증발한 증기 중 과산화수소의 증기 농도가 26 %가 되는 온도는 수용액의 비점이다. 이때, 수용액 농도가 높아 지거나, 압력이 낮아지면 과산화수소 증기농도가 26 %가 되는 온도는 낮아진다. 농도 74 % 미만에서는 증기 중 과산화수소 증기농도가 26 % 이상이 되기 위해서는 압력이 대기압보다 높고, 온도는 대기압 하에서 수용액의 비점보다 높아야한다.
- (8) 정상적인 분해속도는 년 1 % 정도이지만 오염되면 분해속도가 증가하며, 특히 과망간산염(Permanganate) 또는 차아염소산염(Hypochlorite) 등에 심하게 오염된 경우 급속하게 분해된다. 이때, 수용액의 온도가 17 ℃ 또는 최근의 최고 대기온도 이상이 되거나, 시간 당 2 ℃ 이상 상승하는 것은 심각한 분해의 징후이므로 즉시 조치하여야 한다.

D - 53 - 2013

(9) 철, 망간, 동, 크롬, 수은 또는 먼지와 같은 불순물이 촉매로 작용하여 분해를 촉진할 수 있다. 이때, 파이로인산염(Pyrophosphates), 플로오르화물(Fluorides), 시안화물(Cyanides), 산화안티몬수화물(Hydrated antimony xide) 또는 산화주석수화물(Hydrated stannic oxide)과 같은 안정제를 사용하여 분해를 지연 시킬 수 있으나, 안정제의 효과는 여러 가지의 물리·화학적 요인에 영향을 받으므로 상황에 따라 선정하여야 한다.

5. 저장설비 안전조치

5.1 저장탱크

- (1) 저압탱크 및 압력탱크를 사용할 수 있으나, 압력 방출구를 부착한 저압탱크의 설치를 권장한다.
- (2) 수용액과 직접 접촉되는 부분은 과산화수소에 대한 안정성이 입증된 알루미늄 합금(Aluminum alloy 1060, 1360, 5254 및 5652) 재질을 사용하여야 한다. 특히, 납, 철, 동 및 이들의 합금과 일부 알루미늄 합금은 과산화수소의 분해를 촉진하므로 사용하지 않아야 한다.
- (3) 가스켓과 팩킹은 4-불화에틸렌수지(Polytetra-fluoroethylene) 등 과산화수소에 대한 안정성이 있는 재질을 사용하여야 한다.
- (4) 알루미늄 재질의 저장탱크는 콘크리트 받침대 위에 직접 설치하거나, 콘크리트 기초위에 볼트로 고정된 철재 받침대 위에 설치하여야 하고, 받침대와 접촉되는 탱크표면은 아스팔트 펠트 패드 등 알루미늄의 전기적 부식을 방지할 수 있는 재질의 패드로 보호하여야 한다.
- (5) 저장탱크에는 필터가 부착된 통기설비를 설치하여야 하며, 통기설비의 용량은 펌프 최대용량 이상으로 하여야 한다.

D - 53 - 2013

(6) 저장탱크 주위에는 누출 시 확산을 방지하기 위하여 저장탱크 용량 이상의 방유 제를 설치하여야 한다. 또한, 다른 물질과 접촉 및 오염의 위험이 있기 때문에 배수로를 통한 드레인은 하지 않아야 한다.

5.2 압력 방출장치

- (1) 저장탱크에는 압력 방출구 또는 파열판을 부착하여야 한다.
- (2) 압력 방출구는 6.9 ㎏, 파열판은 103 ㎏에서 작동되어야 한다.
- (3) 압력 방출구와 파열판은 <그림 1>에 따라 방출면적을 결정한다.
- (4) 압력방출장치의 토출배관 및 설비의 배기관은 옥외의 안전한 장소까지 유도하여 배출 하여야 한다.
- (5) 배출된 수용액은 저장탱크에 다시 투입하지 않아야 한다.

5.3 안전거리

- (1) 압력 방출구가 부착 되었고, 농도 64.7 % 미만인 수용액을 저장하는 저장탱크는 건물 벽 등으로 부터 7.5 m 이상의 안전거리를 두어야 한다. 다만, 건물 벽 등 이 불연성 재질인 경우에는 안전거리를 두지 않아도 된다.
- (2) 압력 방출구가 부착 되었고, 농도 64.7 % 이상인 수용액을 저장하는 저장탱크 와 파열판 만 설치된 저장탱크는 건물 벽 등으로부터 <그림 2>에 따라 안전거 리를 두어야 한다.
- (3) 압력탱크와 <그림2>에서 요구한 방출 면적 미만의 압력방출장치가 부착된 저압 탱크는 건물 벽 등으로부터 <그림 3>에 따라 안전거리를 두어야 한다. 다만, 다수의 저장탱크를 인접하여 설치할 경우에는 가장 큰 저장탱크의 용량을 기준 으로 <그림 3>에 따라 안전거리를 두어야 한다.

D - 53 - 2013

5.4 설치

- (1) 수용액 이송배관이 다른 물질을 포함하는 배관 또는 설비와 연결될 경우에는 체크밸브 등을 적절하게 설치하여 역류를 방지하여야 한다.
- (2) 저장설비 및 사용 공정에서 수용액 누출 등의 문제가 발생할 경우 수용액 공급을 차단할 수 있도록 원격 조작이 가능한 차단밸브를 설치하여야 한다.
- (3) 모든 장치와 배관은 드레인이 가능하고, 역류를 방지할 수 있도록 설치하여야 하며, 밸브 사이와 배관 끝단 등에 수용액이 체류하지 않도록 설치하여야 한다. 다만, 불가피하게 체류장소가 존재할 경우에는 해당부위에 적절한 압력 방출장치를 설치하여야 한다.

5.5 기타 안전조치

최선의 안전조치는 충분한 배기와 저장설비를 격리하는 것이다. 다만, 현실적으로 불가능할 경우 다음과 같은 안전조치를 실시할 것을 권고한다.

(1) 자동배출시스템 설치

- (가) 저장탱크의 내부온도를 항상 모니터링 하고, 일정한 온도까지 상승 시 경보를 울리고, 저유조로 자동 배출하도록 제어시스템을 구축한다. 이때, 자동배출시 스템의 온도는 5 ℃ 이하로 설정하여야 하며. 가능한 경우 더 낮게 설정한다.
- (나) 자동배출시스템의 성능은 30 분 내에 저장탱크 내 수용액이 중력에 의해 모 두 배출되도록 한다.
- (다) 저장탱크에서 수용액이 자동 배출되는 것과 동시에 저장탱크 내부를 물로 희석하여야 한다. 이때, 희석용 물 유량은 수용액 배출유량의 90 % 이하가 되도록 한다.
- (라) 배출되는 수용액을 저장하는 저유조는 안전한 장소에 설치한다.

D - 53 - 2013

(2) 추가적 안전조치

- (가) 압력 방출구를 기준보다 크게 설치하거나, 이중으로 설치한다.
- (나) 수용액의 농도를 27.5 % 이하로 저장한다.

6. 하역 시 안전조치

6.1 하역장소

- (1) 하역장소는 탱크로리에 의한 손상을 방지하기 위하여 저장탱크로부터 7.5 m 이 상의 안전거리를 두거나, 가드레일 등을 설치하여 보호하여야 한다.
- (2) 탱크로리 정차 장소는 건물 및 설비에서 30 m 이상의 안전거리를 두어야 한다.
- (3) 다른 물질의 하역장소와 분리하여 설치하여야 한다.
- (4) 다른 물질의 혼입을 방지하기 위하여 이송배관은 수용액 전용으로 설치하여 야 한다.
- (5) 하역 시 이외에는 이송배관의 밸브를 잠그고, 끝단에는 캡을 씌운 상태에서 잠그고, 담당자를 지정하여 열쇠를 관리하여야 한다.
- (6) 누출 시 물로 희석할 수 있도록 하역장소 주위에 물 호스를 설치하여야 한다.

6.2 하역방법

(1) 탱크로리에는 자급식 원심펌프를 설치하여 수용액을 저장탱크로 이송하는 방법을 권장하나, 질소 등 불활성 기체를 사용하여 압송하여도 된다.

D - 53 - 2013

- (2) 불가피하게 공기로 압송할 경우에는 오염물질에 의한 과산화수소 분해를 방지하기 위하여 왕복형 또는 로타리형 공기압축기 중 윤활유를 사용하지 않는 공기 압축기를 사용하는 것을 권장한다.
- (3) 탱크로리로 연결되는 압송용 기체배관에는 필터, 감압밸브, 안전밸브 및 압력계를 설치하여야 하며, 탱크로리로 오염물질이 유입되는 것을 방지하기 위하여 이송 작업 전에 충분히 퍼지 하여야 한다.
- (4) 탱크로리에는 103 kPa 이상의 압력을 가하지 않으며, 하역 후 탱크로리는 즉시 안전한 장소로 이동하여야 한다.

7. 희석 시 안전조치

- (1) 희석용 물은 철, 동, 납과 같이 과산화수소의 분해를 촉진하는 불순물이 없는 탈이온수(Deionized water)를 사용하는 것을 권장한다.
- (2) 적절한 물이 없는 경우 복합 탈이온수기(Mixed anion-cation deionizer)를 설치하여 탈이온수를 제조하여 사용하여야 한다.
- (3) 물과 수용액이 섞이는 혼합기 전단에 저항측정기(Ohmmeter)를 설치하여 물의 순도를 모니터링 하여야 한다. 저항이 2 № 아래로 떨어지면 물과 수용액 공급을 자동으로 차단하도록 제어 시스템을 구성하여야 한다.
- (4) 물 공급배관에 필터를 설치하여 수용액에 불순물이 유입되지 않도록 하여야 한다.
- (5) 희석공정을 운전하기 전에 충분한 물로 배관 내부를 청소하여 불순물을 제거 하여야 한다.
- (6) 회분식 또는 연속식 공정으로 물과 수용액이 균일하게 혼합되도록 완전히 교반 하여야 한다.

D - 53 - 2013

- (가) 회분식 공정은 펌프로 순환시키는 방법(순환배관은 가능한 한 짧아야 한다), 물의 아래쪽에서 수용액을 살포하는 방법 및 물 아래쪽에 압축질소를 분사 하 여 교반하는 방법이 있다. 이때, 불순물이 완전 제거되지 않은 압축공기를 사 용하여 교반하는 것은 적절하지 않다.
- (나) 연속식 공정은 물과 수용액의 혼합비율 정확히 조절할 수 있도록 제어시스템 구성하여야 하고, 체크밸브 등을 적절히 설치하여 역류를 방지 하여야 한다.
- (7) 희석 후 농도를 측정하여야 하고, 필요한 경우 물 또는 수용액 추가하여 농도를 조절한다.

8. 용기저장 시 안전조치

- (1) 수용액은 제조자가 제시한 규격의 용기에 보관하여야 하며, 일반적으로 알루미늄 합금이 적합하다. 이때, 부적절한 용기에 보관할 경우 과산화수소 분해에 따른 내 부 압력 상승으로 용기가 파열될 위험이 있다.
- (2) 충전한 용기는 불연성 재질의 실내 또는 불연성 재질의 지붕이 설치된 옥외 저장소에 보관하여야 한다.
- (3) 옥외 저장소와 건물 및 설비사이에는 다음과 같이 안전거리를 두도록 권장한다.
 - (가) 농도 64.7 % 이하의 수용액을 충전한 용기의 저장소는 15 m 이상
 - (나) 농도 64.7 % 초과하는 수용액을 충전한 용기의 저장소는 30 m 이상
- (4) 옥내 작업장에는 농도 64.7 % 이하의 수용액을 3.8 m³ 까지 보관할 수 있다. 다만, 다음과 같은 안전조치를 하여야 한다.
 - (가) 보관 장소의 바닥은 불연성 재질이어야 하며, 1시간 내화성능이 있는 벽으로 구획하여 작업자와 격리하여야 한다.

D - 53 - 2013

- (나) 안전한 장소에 저유조를 설치하여야 하며, 누출된 과산화수소를 씻어낼 수 있는 충분한 양의 물을 비치하여야 한다.
- (다) 보관 장소의 상부에는 통풍구를 설치하여야 하며, 공기흐름을 방해하는 장애물 이 없어야 한다.
- (라) 용기는 다른 물질과 같이 보관하면 않아야 하고, 열원으로부터 1 m 이상의 안 전거리를 두어야 한다.

KOSHA GUIDE D - 53 - 2013

<그림 1> 저장탱크의 압력방출장치(압력방출구 또는 파열판) 면적 (압력방출장치가 다수일 경우 전체 면적의 합계로 산정)

KOSHA GUIDE D - 53 - 2013

<그림 2> 적정한 압력방출장치가 부착된 저압탱크의 안전거리 (35%, 50%, 70%, 90%, 100% : 수용액 농도)

KOSHA GUIDE D - 53 - 2013

<그림 3> 압력탱크의 안전거리 (35%, 50%, 70%, 90%, 100% : 수용액 농도)