CSE 260 DIGITAL LOGIC DESIGN

Sequential Logic, RS Flip-Flop,
D Flip-Flop, JK Flip-Flop, T Flip-Flop
BRAC University

Introduction

A sequential circuit consists of a feedback path, and employs some memory elements.

Sequential circuit = Combinational logic + Memory Elements output= external input + present state of memory element

Introduction

- There are two types of sequential circuits:
 - synchronous: outputs change only at specific time (i.e. with clock input)
 - * asynchronous: outputs change at any time (i.e. without clock input)
- *Multivibrator*: a class of sequential circuits. They can be:
 - bistable (2 stable states)
 - monostable or one-shot (1 stable state)
 - * astable (no stable state)
- Bistable logic devices: flip-flops.
- Flip-flops differ in the method used for changing their state.

Memory Elements

Memory element: a device which can remember value indefinitely, or change value on command from its inputs.

Characteristic table:

Command (at time t)	Q(t)	Q(t+1)
Set	Х	1
Reset	Х	0
Memorise /	0	0
No Change	1	1

Q(t): current state

Q(t+1) or Q^+ : next state

Memory Elements

• Memory element with clock. Flip-flops are memory elements that change state on clock signals.

Clock is usually a square wave.

https://www.youtube.com/watch?v=kt8d3CYWGH4

Types of tables in sequential

circuit

Q(t)	S	R	Q(t+1)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	indeterminate
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	indeterminate

- Characteristic table
- Criteria Table
- State Table

		•	. 1	1
Exci	Itat	10n	tab	le

Present state				Next state		Flip-flop inputs			
A	8	X	A+	B°	JA	KA	JB	KB	
0	0	0	0	0	0	X	0	X	
0	0	1	0	1	0	X	1	X	
0	1	0	1	0	1	X	X	1	
0	1	1	0	1	0	X	X	0	
1	0	0	1	0	X	0	0	X	
1	0	1	1	1	X	0	1	X	
1	1	0	1	1	X	0	X	0	
1	1	1	0	0	X	1	X	1	

3	K	Q(t+1)	Comments
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q(t)	Toggle

Present State		Input		ext ate	Output
A	В	x	A^{+}	B⁺	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

S-R Flip-Flop

- Complementary outputs: Q and Q'.
- When *Q* is HIGH, the FF is in *SET* state.
- When *Q* is LOW, the FF is in *RESET* state.
- For active-HIGH input S-R FF (also known as NOR gate FF),

```
R=HIGH (and S=LOW) \square RESET state
```

$$S=HIGH (and R=LOW) \square SET state$$

both inputs LOW

no change

both inputs HIGH \square Q and Q' both LOW (invalid)!

S-R FF

■ For *active-LOW input* S'-R' FF (also known as NAND gate FF),

R'=LOW (and S'=HIGH) \square RESET state

S'=LOW (and R'=HIGH) \square SET state

both inputs HIGH \(\Bigcup \) no change

both inputs LOW \square Q and Q' both HIGH (invalid)!

 Drawback of S-R FF: invalid condition exists and must be avoided.

S-R FF

Characteristics table for active-high input S-R FF:

Use this mostly

(၁)	R	Q	ď	
0	0	NC	NC	No change. FF remained in present state.
1	0	1	0	FF SET.
0	1	0	1	FF RESET.
1	1	0	0	Invalid condition.

Characteristics table for active-low input S'-R' FF:

Notice the difference

<u>(S'</u>	R'	Q	Ġ	
1	1	NC	NC	No change. FF remained in present state.
0	1	1	0	FF SET.
1	0	0	1	FF RESET.
0	0	1	1	Invalid condition.

S-R FF: Active-HIGH input S-R FF

BIOD		
	twith	tohlo
NOR		Laure

A	В	Output
0	0	1
0	1	0
1	0	0
1	1	0

Presence of '1' in input, leads to '0' in output

S-R FF: Active-LOW input S'-R' FF

A	В	Output
0	0	1
0	1	1
1	0	1
1	1	0

Presence of '0' in input, leads to '1' in output

high!

S-R FF

R	S	Operation	Q(t)	Q(t+1)	Q'(t)	Q'(t+1)
0	0	No Chango	0	0	1	1
U	0	No Change	1	1	0	0
0	1	Set	X	1	X	0
1	0	Reset	X	0	X	1
1	1	Invalid	-	-	-	-

Clocked S-R FF

■ S-R FF + Clock Pulse (CP) and 2 NAND gates \rightarrow Clocked S-R FF.

Clocked S-R FF

- Outputs change (if necessary) only when CP is HIGH.
- Under what condition does the invalid state occur?
- Characteristic table:

CP=1

0(4)	_		0(4:4)	
Q(t)	S	R	Q(t+1)	
0	0	0	0	
0	0	1	0	
0	1	0	1	
0	1	1	indeterminate	
1	0	0	1	
1	0	1	0	
1	1	0	1	
1	1	1	indeterminate	

Characteristic Eqⁿ:

$$Q(t+1) = S + R'.Q$$

$$S.R = 0$$

S	R	Q(t+1)	
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
_1	1	indeterminate	

Clocked D Flip-Flop

- Make *R* input equal to $S' \rightarrow D$ *FF*.
- D FF eliminates the undesirable condition of invalid state in the S-R FF.

D Flip-flop Characteristic table

Q(t)	D	Q(t+1)
0	0	0
0	1	1
1	0	0
1	1	1

Clocked D Flip-Flop

- When CLK is HIGH,
 - \bullet D=HIGH \rightarrow FF is SET
 - \bullet D=LOW \rightarrow FF is RESET
- Hence when CLK is HIGH, Q 'follows' the D (data) input.
- Characteristic table:

0	$\frac{D}{1}$
0	
Q $\left\{1\right[$	1
Q(t)	+1)=D

•	CLK	D	Q(t+1)	
-	1	0	0	Reset
	1	1	1	Set
\leq	0	X	Q(t)	No change

When CLK=1, Q(t+1) = D

D Flip-flop

• Application: Parallel data transfer.

To transfer logic-circuit outputs X, Y, Z to flip-flops Q_1 , Q_2

and Q_3 for storage.

Try it yourself

• Design a D FF using RS FF

J-K Flip-flop

- J-K flip-flop: Q and Q' are fed back to the NAND gates.
- No invalid state.
- Include a *toggle* state.
 - \clubsuit *J*=HIGH (and *K*=LOW) \Box SET state
 - \star K=HIGH (and J=LOW) \square RESET state
 - ♦ both inputs LOW □ no change
 - ♦ both inputs HIGH □ toggle

SET RESET J-K FF

Clock	J	K	Operation	Q(t)	Q(t+1)	Q'(t)	Q'(t+1)
A	0	0	No Chango	0	0	1	1
Т	U	0	No Change	1	1	0	0
^	1	0	Set	X	1	X	0
^	0	1	Reset	X	0	X	1
^	1	1	Toggle	1	0	0	1

J-K Flip-flop

■ J-K flip-flop.

Characteristic table.

Q	J	Κ	Q(t+1)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$$Q(t+1) = J.Q' + K'.Q$$

T Flip-flop

T	Operation	Q(t)	Q(t+1)
0	No ahansa	0	0
U	No change	1	1
1	Toggle	0	1
		1	0

T Flip-flop

■ T flip-flop: single-input version of the J-K flip flop, formed by tying both inputs together.

• Characteristic table.

T	CLK	Q(t+1)	Comments
0	↑	Q(t)	No change
1	\uparrow	Q(t)'	Toggle

Q	T	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

$$Q(t+1) = T.Q' + T'.Q$$

T Flip-flop

• Application: *Frequency division*.

Divide clock frequency by 2 Application: Counter

Divide clock frequency by 4.

Try it yourself

- Design a T FF using JK FF
- Design a D FF using JK FF

J	K	CLK	Q(t+1)	Comments
0	0	↑	Q(t)	No change
0	1	\uparrow	0	Reset
1	0	\uparrow	1	Set
1	1	\uparrow	Q(t)'	Toggle

How to build excitation table: Example: JK Flip-Flop

Q	Q+	Actually what happens		Final Combined Result	
		J	K	J	K
0	0	0	1	0	X
0	0	0	0	0	
0	1	1	0	1	X
0	1	1	1		
1	0	0	1		1
1	0	1	1	X	1
1	1	0	0		0
	1	1	0	X	U

Flip-flop Excitation Tables

• Excitation tables: it give transition characteristic between current condition and next condition to determine flip-flop input

