Unit 7: Topics in inference

2. χ^2 test

Stat 140 - 02

Mount Holyoke College

Outline

1. χ^2 Test: Association between Two Categorical Variables

The data in StudentSurvey includes two categorical variables:

- Award = Academy, Nobel, or Olympic
- ▶ HigherSAT = Math or Verbal

Do you think there is a relationship between the award preference and which SAT is higher? If so, in what way?

HigherSAT	Academy	Nobel Olympic		Total
Math	21	68	116	205
Verbal	10	79	61	150
Total	31	147	177	355

Data are summarized with a 2×3 table for a sample of size n=355.

H₀: Award preference is not associated with which SAT is higher

H_a: Award preference is associated with which SAT is higher

If H_0 is true \Longrightarrow The award distribution is expected to be the same in each row.

Expected Count =
$$\frac{\text{row total} \times \text{column total}}{n}$$

HigherSAT	Academy	Nobel	Olympic	Total
Math				205
Verbal				150
Total	31	147	177	355

Note: The expected counts maintain row and column totals, but redistribute the counts as if there were no association.

HigherSAT	Academy	Nobel Olympic		Total
Math	21 (17.9)	68 (84.9)	116 (102.2)	205
Verbal	10 (13.1)	79 (62.1)	61 (74.8)	150
Total	31	147	177	355

HigherSAT	Academy	Nobel	Olympic
Math			
Verbal			

$$\chi^2 = \sum \frac{\text{(observed - expected)}^2}{\text{expected}}$$

The χ^2 distribution has just one parameter, degrees of freedom (df), which influences the shape, center, and spread of the distribution.

- ▶ Independence: In addition to what we previously discussed for independence, each case that contributes a count to the table must be independent of all the other cases in the table.
- ➤ Sample size / distribution: Each cell must have at least 5 expected cases.

Under the null hypothesis, the $\chi^2\text{-statistic}$ follows a χ^2 distribution with the following df

df = (number of rows - 1)(number of columns - 1)

p-value = tail area under the chi-square distribution (as usual) We can compute this using the pchisq() function in R.

- 1. H_0 : The two variables are not associated H_a : The two variables are associated
- 2. Calculate the expected counts for each cell:

Expected Count =
$$\frac{\text{row total} \times \text{column total}}{n}$$

- 3. Calculate the χ^2 statistic: $\chi^2 = \sum \frac{\text{(observed expected)}^2}{\text{expected}}$
- 4. Compute the p-value as the area in the tail above the χ^2 statistic using either a randomization distribution, or a χ^2 distribution with df = (r-1) (c-1) if all expected counts > 5
- 5. Interpret the p-value in context.