1. What is the primary reason complex exponentials are used in the decomposition of signals for L
A) They are easy to compute.
B) They are eigenfunctions of LTI systems.
C) They have real-valued coefficients.
D) They minimize energy loss.

Answer: B) They are eigenfunctions of LTI systems.

2. For a discrete-time periodic signal with period \(N \), how many distinct complex exponentials as

Answer: A) \(N \)

- 3. What is the period of the Fourier series coefficients in the discrete-time Fourier series (DTFS)? (I
- A) Same as the signal's period \(N \)
- B) Twice the signal's period
- C) Half the signal's period
- D) Non-periodic

Answer: A) Same as the signal's period \(N \)

--

- 4. As the period \(N \) of a discrete-time signal increases, what happens to the spacing between the
- A) Spacing increases
- B) Spacing decreases
- C) Spacing remains constant
- D) Spacing becomes random

Answer: B) Spacing decreases

- 5. Which of the following is a key difference between the discrete-time Fourier transform (DTFT) an
- A) DTFT is aperiodic in frequency.
- B) CTFT is always periodic.
- C) DTFT is periodic in frequency.
- D) CTFT uses summation instead of integration.
- **Answer:** C) DTFT is periodic in frequency.

- 6. What is the relationship between the Fourier series coefficients of a periodic signal and the Fourier
- A) Coefficients are scaled samples of the Fourier transform.
- B) Coefficients are the integral of the Fourier transform.
- C) They are identical.
- D) There is no relationship.
- **Answer:** A) Coefficients are scaled samples of the Fourier transform.

7. When the period \(N \) of a discrete-time periodic signal approaches infinity, what does the Fou
A) Discrete-Time Fourier Series (DTFS)
B) Discrete-Time Fourier Transform (DTFT)
C) Continuous-Time Fourier Transform (CTFT)

D) Z-Transform

Answer: B) Discrete-Time Fourier Transform (DTFT)

- 8. In the context of DTFS, why are there only \(N \) distinct coefficients? (Medium)**
- A) Because complex exponentials repeat every \(N \) samples.
- B) Due to energy conservation.
- C) To simplify computation.
- D) Because signals are band-limited.
- **Answer:** A) Because complex exponentials repeat every \(N \) samples.

- 9. Which mathematical operation is used in the analysis equation of the Discrete-Time Fourier Tran
- A) Integration
- B) Differentiation
- C) Summation
- D) Convolution
- **Answer:** C) Summation

- 10. What is the fundamental frequency interval over which the Discrete-Time Fourier Transform (D
- A) (0) to (\inf)
- C) \(0 \) to \(2\pi \)
- D) \(-\pi \) to \(\pi \)
- **Answer:** D) \(-\pi \) to \(\pi \)