Error formula:
$$n$$
-point rule $(2n-1 \text{ digree})$

interpolation = $\frac{f^{(2n)}(\frac{1}{2}(x))}{(2n)!} \frac{n}{k-1} (x-x_k)^2$

quadrature = $\frac{f^{(2n)}(\frac{1}{2}(x))}{(2n)!} (p_n(x), p_n(x))$ \otimes

Where does that square come from?

We assume that the derivatives of f ore continuous therefore Hermite interpolation is the natural choice.

A x on the roots of $p_n(x)$, so the product is $[p_n(x)]^2$

Quadrature error: $[f_{n-1}(x) - Q(f)] = \frac{f^{(2n)}(\frac{1}{2}(x))}{(2n)!} [p_n(x) p_n(x) dx]$

Example Gause rule: $[x-1,1] = 1$

Notice: Since use only want the roots there is no read to normalise.

GS: $q_0 = 1$
 $q_1 = x-1 - \frac{(x,1)}{(1,1)} - 1$
 $q_1 = x-1 - \frac{(x,1)}{(1,1)} - 1$