YOLOv12 Nesne Tespiti Eğitim Raporu

1. Kullanılan Model ve Parametre Seçimi

Bu çalışmada nesne tespiti amacıyla **Ultralytics YOLOv12n** modeli tercih edilmiştir. YOLOv12, özellikle gerçek zamanlı nesne tespiti görevleri için optimize edilmiş, son nesil derin öğrenme algoritmalarından biridir. n (nano) versiyonu seçilerek, sınırlı donanım kaynakları ile hızlı ve verimli bir model elde edilmiştir.

• Model Dosyası: yolo12n.pt

• Toplam Parametre Sayısı: 2,602,288

• **FLOPs:** 6.7 GFLOPs

• Önceden Eğitilmiş Ağırlıklar: Kullanıldı

• Optimizer: AdamW (Otomatik seçildi)

• Learning Rate Başlangıcı: Ir0=0.01, ancak optimizer ayarı nedeniyle optimize edildi

• **Momentum:** 0.9

Tercih Gerekçesi:

Nano versiyon, özellikle sınırlı GPU belleği (Tesla T4 - 15GB) üzerinde düşük gecikme ve hızlı eğitim süresi sağlamaktadır. Ayrıca, eğitim süresi kısıtlı olan bu projede overfitting riskini azaltmak için küçük ölçekli model tercih edilmiştir.

2. Eğitim Parametreleri

• Epoch Sayısı: 10

• Batch Size: 16

• Girdi Görüntü Boyutu: 640x640

• DataSet: coco128.yaml (Küçük ölçekli hızlı test amaçlı COCO alt kümesi)

Augmentasyonlar:

RandAugment,

Gaussian Blur,

Median Blur,

- o Grayscale Dönüşümü,
- CLAHE (Kontrast Sınırlı Histogram Eşitleme)

Epoch ve Batch Size Gerekçesi:

Eğitim sürecinde toplam **10 epoch** seçilmiştir. Bu sayede, kısa sürede modelin temel öğrenme eğilimi gözlemlenmiş, overfitting eğilimi minimize edilmiştir. Batch size **16** seçilerek, GPU belleği limitleri aşılmadan istikrarlı eğitim sağlanmıştır.

3. Eğitim Süreci Analizi

Epoch Box Loss Class Loss DFL Loss mAP50 mAP50-95

1	1.09	1.124	1.156	0.305	0.216	
2	1.087	1.089	1.164	0.479	0.347	
3	1.098	1.037	1.151	0.59	0.443	
4	1.079	1.038	1.156	0.666	0.514	
5	1.059	0.9924	1.16	0.703	0.544	
6	1.035	0.942	1.12	0.72	0.56	
7	1.045	0.9209	1.144	0.73	0.574	
8	1.012	0.8838	1.116	0.738	0.583	
9	1.029	0.9053	1.121	0.741	0.588	
10	1.02	0.8614	1.112	0.743	0.589	

Yorum:

Görüldüğü üzere epoch sayısı ilerledikçe hem box_loss hem de cls_loss istikrarlı şekilde azalmış, aynı zamanda tespit doğruluğu (mAP50) anlamlı şekilde artmıştır. Bu durum, modelin eğitim sürecinde öğrenme başarısını gösterirken overfitting riski gözlemlenmemiştir.

4. Sonuçlar ve Doğruluk

Test Seti Performansı (En iyi model best.pt kullanılarak):

• Toplam Görsel: 128

• Toplam Tespit Edilen Nesne: 929

• Genel Başarı:

o **mAP50:** 0.743

o **mAP50-95:** 0.589

Öne Çıkan Sınıf Bazlı Sonuçlar:

Sınıf	Precision	Recall	mAP50	mAP50-95
Person	0.955	0.581	0.800	0.582
Dog	0.944	0.889	0.961	0.814
Airplane	0.923	1.000	0.995	0.934
Motorcycle	0.818	0.800	0.962	0.761
Elephant	0.968	0.941	0.947	0.797

Yorum:

"Person" sınıfı hedef sınıf olarak belirlenmiş ve burada %95 doğruluk oranı ile yüksek başarı elde edilmiştir. Diğer sınıflarda da tatmin edici sonuçlar elde edilmiştir. Model özellikle belirgin nesnelerde oldukça kararlı çalışmaktadır.

5. Sonuç

YOLOv12n modeli, sınırlı kaynaklar ve kısa süreli eğitim ile beklentilere uygun şekilde nesne tespiti görevini gerçekleştirmiştir. mAP50 değeri %74,3 seviyesine ulaşmış, hedef nesne olan "person" sınıfında yüksek doğruluk sağlanmıştır.

Ek Grafik ve Görseller

Eğitim Loss Grafikleri

Modelin Sınıf Tahmin Performansı

Test Çıktıları

Raporu hazırlayan: Nesli Zişan Özçelik