第02次實習課

學生:林培瑋

2024 Advanced Mixed-Operation System (AMOS) Lab.

Tamkang University
Department of Electrical and Computer Engineering
No.151, Yingzhuan Rd., Tamsui Dist., New Taipei City 25137, Taiwan (R.O.C.)

簡介

P345 FIGURE 16.3

B-bit regis	sters		高							低		初如
	Uorbr (DLAB=0)	U0 Receiver buffer register	8-bit data							RO	un- define	
0xE000C000	U0THR (DLAB=0)	U0 Transmit holding register	8-bit data							WO	NA	
	UoDLL (DLAB=1)	U0 Divisor latch LSB				8-bi	t data				R/W	0x01
0xE000C004	U0IER (DLAB=0)	U0 Interrupt enable register	0	0	0	0	0	En. Rx Line Status Int.	Enable THRE Int.	En. Rx Data Av.Int.	R/W	0
	U0DLM (DLAB=1)	U0 Divisor latch LSB				8 bit	data				R/W	0
	UoIIR	U0 Interrupt ID register	FIFOs Enabled		0	0	IIR3	IIR2	IIR1	IIR0	RO	0x01
0xE000C008	U0FCR	U0 FIFO control register	Rx T	rigger	-	ı	-	U0 Tx FIFO Reset	U0 Rx FIFO Reset	U0 FIFO Enable	WO	0
0xE000C00C	UoLCR	U0 Line control register	DLAB	Set break	Stick parity	Even parity select	Parity enable	Nm. of stop bits		length ect	R/W	0
0xE000C014	UoLSR	U0 Line status register	Rx FIFO Error	TEMT	THRE	BI	FE	PE	OE	DR	RO	0x60
0xE000C01C	Uolsr	U0 Scratch pad register				8-bi	t data				R/W	0

FIGURE 16.3 Memory map of UART0 on the LPC2104. (From LPC2106/2105/2104 User Manual NXP Semiconductors, September 2003. With permission.)

P343 TABLE 16.1

Memor	y-Mapped Peripher	als Buffer (Line)	343	
TABLE	16.1Line formet	CPU initialize UART(initialization)	ROM BIOS(Basic I/O ser	
UART (Configuration Bits i Contorl Register Function	n the Control Register	Deced Veloc	
U0LCR	Function	Description	Reset Value	
1:0	Word Length Select	00:5-bit character length	0	
		01:6-bit character length		
		10:7-bit character length		
		11:8-bit character length		
2	Stop Bit Select	0:1 stop bit	0	
		1:2 stop bits $(1.5 \text{ if } UOLCR[1:0] = 00)$		
3	Parity Enable	0: Disable parity generation and checking	0	
		1: Enable parity generation and checking		
5:4	Parity select	00: Odd parity	0	
		01: Even parity		
		10: Forced "I" stick parity		
		11: Forced "0" stick parity		
6	Break Control	0: Disable break transmission	0	
		1: Enable break transmission. Output pin		
		UART0 TxD is forced to logic 0 when		
		U0LCR6 is actively high		
7	Divisor Latch	0: Disable access to divisor latches	0	
	Access Bit	1: Enable access to divisor latches		

P346 程式

The next step to configuring the UART is to set the number of data bits, the parity, and the number of stop bits. Again, the starting address of the UARTO configuration register, 0xE000C000, is loaded into a general register to be used as a base address. The LCR and LSR registers can be accessed using a pre-indexed addressing scheme, where the offsets are equated to known values at the beginning of the final routine. Here, LCR0 would be equated to 0xC, and for our write routine, LSR0 would be equated to 0x14. Since these are 8-bit registers, they must be accessed using STRB and LDRB instructions. The rest of the configuration code is below.

Initialize UART to have 8-bit character length, no-parity, 1-stop-bit formet of line.

```
組合語言:
             LDR
                     r5, =U0START
Write 0x83 into a byte
             MOV
                     r6, #0x83; set 8 bits, no parity, 1 stop bit
at memory address
                     r6, [r5, #LCR0] ; write control byte to LCR
            STRB
0xE000C00C
             VOM
                     r6, #0x61 ; 9600 baud @15 MHz VPB clock
LDR r5, =0xE000C00C
             STRB
                     r6, [r5]
                                        ; store control byte
MOV r6, #0x83
STRB r6, [r5]
```


Q&A

Thanks for your attention !!