PostGIS Workshop Einführung in Geodatenbanken mit PostGIS

05.04.2011, FOSSGIS 2011, Heidelberg

Beispieldaten

- Die im Workshop verwendeten Beispieldaten sind unter der folgenden URL zu beziehen:
- http://ftp.intevation.de/users/stephan/fo ssgis-2011/ws/postgis/postgisfossgis2011.tar.gz

Über die Referenten

Stephan Holl,

- Intevation GmbH
- stephan.holl@intevation.de
- http://www.intevation.de/geospatial

Harald Schwenk,

- agentur geoinfo
- harald.schwenk@agentur-geoinfo.de
- http://www.agentur-geoinfo.de

PostgreSQL

- Features
 - AKID (Atomar, Konsistent, Isoliert, Dauerhaft)
 - SQL 92, Query Optimizer
 - Volltext-Suche
 - Seperation, Replikation
 - Hot-Backup, Write-ahead Logs / PITR
 - Stored Procedures
 - Trigger / Rules
- Freie Software: BSD

PostGIS: Geschichte

- 2001:
 - SFSQL als Designgrundlage
 - Anbindung UMN MapServer
- 2002:
 - Verbesserte Basisfunktionen, Index
- 2003 2005:
 - GEOS-Anbindung
 - Lightweight Geometries
 - PostGIS 1.0.0
- 2006: OpenGIS SFSQL compliance
- 2007: CurveTypes

PostGIS: Geschichte

- 2009
 - Performance-Optimierungen
 - Stabilitätsoptimierungen
- 2010
 - PostGIS 1.5.2, Septermber 24
- 2011
 - PostGIS 2.0: Raster-Support
 - PostGIS 2.0: 3D
 - Idealer Release: Juni 2011

PostGIS Installation GNU/Linux

- Distributionen liefern Pakete für PostgreSQL
- Ab PostGIS 1.1.0 vereinfachte Installation:
 - Vorbedingungen:
 - PostgreSQL Laufzeitsystem
 - PostgreSQL Entwicklungspaket
 - PostGIS Quellen
 - Installieren:
 - ./configure [weitere Optionen]
 - make
 - make install
- Ab PostGIS 1.5.0 Geometry-Types

Einrichtung einer Datenbank

- createdb <datenbankname>
- createlang plpgsql <datenbankname>
- psql -f lwpostgis.sql <datenbankname>
- psql -f spatial_ref_sys.sql
 datenbankname>

Einfache Abfragen

Einfache Abfragen

PostGIS Geometrietypen

- 1. Punkte
- 2. Linien
- 3. Polygone
- 4. MultiPunkte
- 5. MultiLinien
- 6. MultiPolygone
- 7. Kollektionen
- 8. Kurventypen
- 9. 3D-Typen

PostGIS Geometrietypen I

• POINT(5 5) LINESTRING(0 5, 5 0); POLYGON((0 0, 2 0, 0 2, 0 0)) MULTIPOINT((5 3), (2 5)); MULTILINESTRING ... MULTIPOLYGON ... GEOMETRYCOLLECTION(POINT(...),LINESTRING(...), ...

PostGIS Geometrietypen II

- CIRCULARSTRING(0 0,1 1,1 0)
- COMPOUNDCURVE(CIRCULARSTRING(0 0,1 1,1 0),1 0,0 1))
- CURVEPOLYGON(CIRCULARSTRING(0 0,4 0,4 4,0 4,0 0),(1 1,3 3,3 1,1 1))
- MULTICURVE((0 0,5 5),CIRCULARSTRING(4 0,4 4,8 4))
- MULTISURFACE(CURVEPOLYGON(CIRCULA RSTRING()))

OGC Standards

Tabelle spatial_ref_sys:

```
Spalte | Typ | Attribute

srid | integer | not null

auth_name | character varying(256) |

auth_srid | integer |

srtext | character varying(2048) |

proj4text | character varying(2048) |
```

SRID=4326;POINT(52.8 8.4)

OGC Standards

Tabelle geometry_columns:

```
Spalte
                                               Attribute
                              Typ
f table catalog
                     character varying(256)
                                               not null
f_table_schema
                     character varying(256)
                                               not null
f table name
                     character varying(256)
                                               not null
f_geometry_column
                     character varying(256)
                                               not null
coord dimension
                                               not null
                     integer
srid
                     integer
                                               not null
                     character varying(30)
                                               not null
type
```

Funktion AddGeometryColumns:

• Ohne <schema_name> aktuelles Schema SELECT AddGeometryColumn('roads', 'geom', 423, 'LINESTRING', 2);

OGC Standards

- Validierung der Geometrien
 - Simple Feature beschränkt Varianten
 - PostGIS Funktion:
 - isvalid(<geom>)
 - liefert als NOTICE Hinweise bzgl. Invalidität
 - keine automatische Prüfung beim Einfügen
 - explizit anlegen:
 - ALTER TABLE roads
 ADD CONSTRAINT geometrie_valide_check
 CHECK (isvalid(geom));

Import von Geo-Daten

- Shp2pgsql <shapefile> <tabelle>
 - Optionen:
 - -s: SRID
 - -D: Postgresql COPY (Bulk load)
 - -I: GiST-Index
 - Ausgabe SQL-Skript
 - Möglichkeit einer Pipe: " psql ….."

Export von Geo-Daten

- Pgsql2shp <opts> <db> <tabelle>
 - Optionen:
 - -f <Ausgabefile>
 - -h, -p ...

•

 Beschränkungen im Zielformat beachten!

Räumliche Indizes

Räumliche Indizes

- Erstellen eines Index:
 CREATE INDEX bc_roads_gidx
 ON bc_roads
 USING GIST (the geom);
- Sammeln von Statistiken VACUUM ANALYSE;
- Seit PostGIS 1.3 wird der Index automatisch beim BBOX-Vergleich genutzt, explizites Anfragen ist nicht mehr nötig.

Spatial Analysis

 Gesamtlänge aller Straßen in BC in Kilometern?

```
SELECT sum(st_length(the_geom))/1000
FROM bc_roads;
```

Spatial Analysis

 Welches ist die größte Stadt, nach Fläche?

```
SELECT name
  FROM bc_municipality
WHERE st_area(the_geom) =
    (SELECT max(st_area(the_geom))
        FROM bc_municipality);
```

Alternative:
 SELECT name, st_area(the_geom) AS area FROM bc_municipality
 ORDER by area DESC LIMIT 1;

Spatial Analyis - Entfernungen

 Wieviele Wähler der Grünen Partei leben in einem höchstens
 2 Kilometer vom Pub 'TABOR ARMS' entfernten Wahlbezirk?

Spatial Analyis - Entfernungen

 Optimierung: Einschränkung der zu prüfenden Wahlbezirke.

Spatial Joins

- Verknüpfung zweier Tabellen anhand Beziehung zwischen Geometrien
- Alle Pubs, die näher als 250 m an einem Krankenhaus liegen:

Spatial Joins

- Zusammenführung von Datenbeständen:
 - Alle Wahlkreise in 'PRINCE GEORGE':

Räumliche Prädikate

- Verschiedene Prädikate, um Beziehung zwischen Geometrien zu untersuchen:
 - st_equals(geometry, geometry)*
 - Linie(0 0, 10 10), Linie(0 0, 5 5, 10 10)
 - st_disjoint(geometry, geometry)*
 - st_intersects(geometry, geometry)*
 - st_touches(geometry, geometry)*
 - Polygon((0 0, 1 0, 1 1, 0 0)) und
 - Polygon((1 1, 1 0, 2 0, 1 1))
 - st_Crosses()*
 - st_Within()*

Räumliche Prädikate

- st_Overlaps(geometry, geometry)*
- st_Contains(geometry, geometry)*
- st_Covers(geometry, geometry)*
- st_CoveredBy(geometry, geometry)*
- st_Relate(geometry, geometry, intersectionPatternMatrix)*
- st_Relate(geometry, geometry)*
 - Dimensionally Extended 9 Intersection Model (DE-9IM)

Verschneidungen

- Methoden zur Analyse / Erzeugung neuer Geometrien
- Prozentuale Anteile der Gemeinde Hudson's Hope an Wahlkreisen: SELECT v.id, v.region, st Area(st Intersection(v.the geom, m.the geom))/ st Area(v.the geom)*100 as anteil FROM bc voting areas v, bc municipality m WHERE v.the geom && m.the geom AND m.name = 'HUDSON''S HOPE';

Verschneidungen

- st_Intersection(geometry, geometry)*
- st_Difference(geometry A, geometry B)*
- st_SymDifference(geometry, geometry)*
- st_Union(geometry, geometry)*
- Auch als Aggregat:
 - st_Union(geometry set)
 - st_MemUnion(geometry set)

Projektionen

- Konsistenz der Daten
 - SELECT st_srid(the_geom)FROM bc_roads LIMIT 1;
- Umprojektion (Transformation):
 - SELECT st_astext(the_geom)FROM bc_roads LIMIT 1;

Schulungstermine

- PostGIS-Schulungen 2011
 - Einführung (2 Tage)
 - 31.05 01.06.2011
 - 27. 28.09.2011
 - 01. 02.11.2011
 - PostGIS für Fortgeschrittene (2 Tage)
 - 02. 03.06.2011
 - 29. 30.09.2011
 - 03. 04.11.2011
- Weitere Termine bieten wir auch gerne bei Ihnen Inhouse an! Fragen Sie nach! http://www.intevation.de/geospatial

- www.postgis.org
- www.postgresql.org
- Stephan Holl <stephan.holl@intevation.de>
- www.intevation.de/geospatial

- Harald Schwenk < harald.schwenk@agentur-geoinfo.de>
- www.agentur-geoinfo.de

