Ordinations

Length of the legs

Length of the legs

Length of the legs

Length of the legs

Length of the legs

PCA

The black box

Elhaik, E. Principal Component Analyses (PCA)-based findings in population genetic studies are highly biased and must be reevaluated. Sci Rep 12, 14683 (2022). https://doi.org/10.1038/s 41598-022-14395-4

Step 1: **centre** the matrix Step 2: measure the variance covariance of the centred matrix

Keep this in a corner of your head, we'll get back to this!

Step 1: **centre** the matrix

Step 2: measure the variance covariance of the

centred matrix

Step 3: do a eigen decomposition. Basically satisfy the equation:

VCV matrix * eigenvector = eigenvector * eigenvalue.

Step 3: do a eigen decomposition. Basically satisfy the equation:

VCV matrix * eigenvector = eigenvector * eigenvalue.

The variancecovariance between traits The vector (direction) of change

The vector (direction) of change

The strength (length) of change

Step 3: do a eigen decomposition. Basically satisfy the equation:

VCV matrix * eigenvector = eigenvector * eigenvalue.

This method is the core of the PCA. I think it's OK to treat it as a black box since it varies between algorithms. R default's is LAPACK but EISPACK or other algorithms can also be used. Also, these algorithms are explicitly approximations: "All you can hope for is a solution to a problem suitably close to x." (base::eigen). This can explain differences between ordinations of the same data.

Step 4: multiply the centred matrix by the eigenvector

Step 4: multiply the centred matrix by the eigenvector Step 5: that's it.

PCA: what it's good at?

- Ordinating your data (i.e. ranking all your variables and making them independent and orthogonal).

PCA: what it's good at?

- Ordinating your data (i.e. ranking all your variables and making them independent and orthogonal).
 - Reducing dimensionality (to some extend e.g. going from 200D to 10D).

PCA: what it's good at?

- Ordinating your data (i.e. ranking all your variables and making them independent and orthogonal).
 - Reducing dimensionality (to some extend e.g. going from 200D to 10D).
 - Creating a "true" mathematical space (that contains all the possible trait combinations).

PCA: what it's bad at (in my opinion)?

- Being interpreted by humans in 2D.

PCA: what it's bad at (in my opinion)?

- Being interpreted by humans in 2D.
- Spreading data (the centre of your space is the average data value, not anything biological).

PCA: what it's bad at (in my opinion)?

- Being interpreted by humans in 2D.
- Spreading data (the centre of your space is the average data value, not anything biological).
- Creating dimensions that are easy to interpret (e.g. PC1 = correlation between n-variables decided by the algorithm these can sometimes map to biological things, sometimes not!).

PC2 5.93%

PC1 89.19%

