- 1. Sejam $a \in b$ números reais não-negativos. Calcule $\lim \sqrt[n]{a^n + b^n}$
- 2. Considere a sucessão cujos termos são $\sqrt{2}, \sqrt{2+\sqrt{2}}, \sqrt{2+\sqrt{2}+\sqrt{2}}, \dots$
 - (a) Mostre que é crescente
 - (b) Mostre que é limitada superiormente
 - (c) Mostre que é convergente e que tem por limite 2.
- 3. Seja c um real positivo. Calcule, caso exista, o limite da sucessão definida por $x_1 = 1$, $x_{n+1} = \frac{x_n}{c}$
- 4. Estude do ponto de vista da monotonia e convergência a sucessão:

$$x_1 = 1,$$
 $x_{n+1} = \frac{x_n}{3} + 1$

- 5. Seja x_n o número de primos distintos na decomposição de n em factores primos.
 - (a) Calcule x_{30} e x_{900} .
 - (b) (x_n) é limitada?
 - (c) $x_n \longrightarrow +\infty$?
 - (d) Mostre que $\frac{x_n}{n} \longrightarrow 0$.
- 6. Mostre que a existência de limite para as sucessões x_{2n} , x_{2n+1} e x_{3n} implica a convergência de x_n .
- 7. Calcule

(a)
$$\lim \left[\frac{1}{n}\left(\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \dots + \frac{n}{n+1}\right)\right]$$

(b)
$$\lim_{n \to \infty} \frac{1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}}{n}$$

(c)
$$\lim \frac{\log 1 + \log 2 + \log 3 + \dots + \log n}{n \log n}$$

(d)
$$\lim \frac{\sqrt[n]{n(n+1)(n+2)\cdots(n+n)}}{n}$$

(e)
$$\lim \frac{1^3 + 2^3 + 3^3 + \dots + n^3}{n^4}$$

8. Mostre que

- 9. Mostre que se $a_{n+1}-a_n \to \alpha$, então $\frac{a_n}{n} \to \alpha$
- 10. Seja (u_n) uma sucessão tal que $0 \le u_{m+n} \le \frac{m+n}{mn}$, para quaisquer $m, n \in \mathbb{N}$. Determine $\lim u_n$.
- 11. Seja $x_n > 0, \forall n \in \mathbb{N}$. Mostre que se $x_n \to 0$ então $\sqrt[n]{x_1 x_2 \cdots x_n} \to 0$.