Wydział Mechaniczny Energetyki i Lotnictwa Konwekcja swobodna w OpenFOAM

Marta Krauze

2czerwca $2022\,$

Wykonano w OpenFOAM-v1806.

Na podstawie William A. Hay "A low-Mach number solver for variable density flows".

Spis treści

1	$\mathbf{W}\mathbf{step}$	3
2	Opis modelu	3
3	Wyniki	4
	3.1 Konwekcja swobodna $\Delta T = 15[K]$	4
	3.2 Konwekcja swobodna $\Delta T = 5[K]$	6
	3.3 Konwekcja swobodna na księżycu	8
4	Podsumowanie	10
5	Tutorial	10

1 Wstęp

Konwekcja swobodna jest to rodzaj wymiany ciepła spowodowany samoistnym ruchem płynu. W powietrzu ruch ten występuje, ponieważ zimniejsze cząteczki o większej gęstości opadają pod wpływem grawitacji, a cieplejsze o mniejszej gęstości unoszą się do góry.

2 Opis modelu

Rozważane zagadnienie jest dwuwymiarowe. Powietrze o liczbie Prandtla Pr = 0.71 jest umieszczone pomiędzy dolną gorącą ścianką, a górną zimną. Boczne ścianki są adiabatyczne, co oznacza, że gradnient temperatury na nich wynosi 0. Do symulacji użyto solvera lowMachBouyantPimpleFoam zapropowanego przez Williama A. Hay.

Rysunek 1: Rozpatrywane zagadnienie

Założenia:

- Powietrze jest traktowane jak gaz doskonały
- Ruch płynu jest nieturbulentny, prędkość konwekcji swobodnej jest mała, więc założenie adekwatne
- Mała liczba Macha
- Zerowy gradient temperatury przez ścianki boczne

Rozważono trzy przypadki:

$$1. \ \, T_{cold} = 32.5^{\circ}C = 305.65K, \, T_{hot} = 47.5^{\circ}C = 320.65K, \, g = 9.81[m/s^2], \, Ra = 1.4 \cdot 10^5$$

2.
$$T_{cold} = 37.5^{\circ}C = 310.65K$$
, $T_{hot} = 42.5^{\circ}C = 315.65K$, $g = 9.81[m/s^2]$, $Ra = 4.8 \cdot 10^4$

3. $T_{cold}=32.5^{\circ}C=305.65K,\,T_{hot}=47.5^{\circ}C=320.65K,\,g=1.622[m/s^2]$ - przyspieszenie grawitacjne na księżycu, $Ra=2.4\cdot 10^4$

Liczbę Rayleigha liczono ze wzoru 1, przyjmując $\nu=17\cdot 10^{-6}[m^2/s],~\alpha=2.4\cdot 10^{-5}[m^2/s],~\beta=3.2\cdot 10^{-3}[1/K],~L=0.05[m].$

$$Ra = \frac{g\beta\Delta TL^3}{\nu\alpha} \tag{1}$$

3 Wyniki

3.1 Konwekcja swobodna $\Delta T = 15[K]$

Rysunek 2: Kontur temperatury

Rysunek 3: Kontur gęstości

Rysunek 4: Wektory prędkości

Rysunek 5: Wykres temperatury wzdłuż środka obszaru

3.2 Konwekcja swobodna $\Delta T = 5[K]$

Rysunek 6: Kontur temperatury

Rysunek 7: Kontur gęstości

Rysunek 8: Wektory prędkości

Rysunek 9: Wykres temperatury wzdłuż środka obszaru

3.3 Konwekcja swobodna na księżycu

Rysunek 10: Kontur temperatury

Rysunek 11: Kontur gęstości

Rysunek 12: Wektory prędkości

Rysunek 13: Wykres temperatury wzdłuż środka obszaru

4 Podsumowanie

Wizualizacje ukazują, że pod wpływem konwekcji swobodnej dochodzi do cyrkulacji powietrza między cieplejszą a zimniejszą ścianką. Przy większej różnicy temperatur powietrze uzyskuje większą prędkość. Na księżycu, gdzie przyspieszenie grawitacyjne jest mniejsze, efekt konwekcji swobodnej jest słabszy, powietrze krąży z mniejszą prędkością.

5 Tutorial

Aby wykonać pierwszą z symulacji wystarczy postępować zgodnie z tutorialem Williama A. Hay - link: Tutorial. Należy pamiętać, że tutorial może nie działać przy użyciu innej wersji OpenFOAMa.

Aby zmienić różnicę temperatur ΔT pomiędzy ściankami górną i dolną należy:

• Skopiować katalog zagadnienia i zmienić jego nazwę

```
cp -r rayleighBenard2DTestCase rayleighBenard2DTestCase_dt5
```

 \bullet Wejść do katalogu θ i zedytować plik T, zmieniając temperaturę górnej i dolnej ścianki

```
cd rayleighBenard2DTestCase_dt5/0
vim T
```

```
floor
{
    type     fixedValue;
    value     uniform 315.65;
}
ceiling
{
    type     fixedValue;
    value     uniform 310.65;
}
```

• Zmienić wartości referencyjne w katalogu constant w pliku flowProperties

```
cd ..
cd constant
vim flowProperties
```

```
// Reference temperature
deltaTRef 5;

// Reference density
rhoRef 1.1272;

// Reference freefall velocity (beta*deltaT*g*H)^0.5
URef 0.088589;

// Reference Rayleigh
RaRef 4.8e4;
```

• Zmeszować i uruchomić solver

```
cd ..
blockMesh
lowMachBouyantPimpleFoam
```

• Wyświetlić wyniki w Paraview

```
touch case.foam
```

```
paraview case.foam
```

Aby zmienić przyśpieszenie grawitacyjne należy:

• Skopiować katalog zagadnienia i zmienić jego nazwę

```
cp -r rayleighBenard2DTestCase rayleighBenard2DTestCase_mo
```

 \bullet Wejść do katalogu constanti zedytować plikg,zmieniając wartość przyśpieszenia grawitacyjnego

```
cd rayleighBenard2DTestCase_mo/constant
vim g
```

```
value (0 -1.622 0);
```

• Zmienić wartości referencyjne w katalogu constant w pliku flowProperties

```
vim flowProperties
```

• Zmeszować i uruchomić solver

```
cd ..
blockMesh
lowMachBouyantPimpleFoam
```

• Wyświetlić wyniki w Paraview

```
touch case.foam

paraview case.foam
```