物質科学のための計算数理 II Numerical Analysis for Material Science II

13th: Density Functional Theory (6)

Jan. 11 (Fri)

Lecturer: Mitsuaki Kawamura (河村光晶)

Schedule (This semester W1, W2)

```
Sep. 28 (Fri)
                   Guidance Y
2.
   Oct. 5
           (Fri)
                   Monte Carlo method O
   Oct. 12 (Fri)
                   Monte Carlo method O
   Oct. 19 (Fri)
                   Monte Carlo method O
                   Exact diagonalization Y
5.
   Oct. 26 (Fri)
   Nov. 2 (Fri)
                   Exact diagonalization Y
6.
   Nov. 9 (Fri)
                   Molecular dynamics O (1st report problem will be announced.)
7.
   Nov. 30 (Fri)
                   Density functional theory K
8.
                   Density functional theory K
9.
   Dec. 7 (Fri)
10. Dec. 14 (Fri)
                   Density functional theory K
11. Dec. 21 (Fri)
                   Density functional theory K
12. Dec. 25 (Tue) Density functional theory K (遠隔講義室)
13. Jan. 11 (Fri) (2nd)Report problem K
```

* Lecturers: Y ··· Yamaji, K ··· Kawamura, O··· Ohgoe

Schedule in this section (DFT)

- 1. Nov. 30 (Fri) Standard DFT code
 - First-principles calculation and Density functional theory (Lecture)
 - One-body Schrödinger eq. for periodic system and Bloch theorem (L)
 - Numerical solution of Kohn-Sham (one-body Schrödinger) eq. (L)
 - Hands-on DFT code (Tutorial)
 - Version control system : Git (T)
- 2. Dec. 7 (Fri) Kohn-Sham eq.
 - Plane-wave basis and Pseudopotentials (L)
 - Iterative eigenvalue solution method (L & T)
- 3. Dec. 14 (Fri) Self-Consistent loop
 - Hartree potential (Poisson eq.), Atomic potential, XC potential
 - Update (Broyden's method)
 - Visualization of grid data (T)
- 4. Dec. 21 (Fri) Total Energy
 - Total energy
 - Brillouin-zone integral (Tetrahedron method)
 - Coulomb potential for periodic point charge (Ewald sum)
- 5. Dec. 25 (<u>Tue</u>) Advanced subjects for productive calculation (遠隔講義室)
 - Generalized gradient correction
 - Non-local pseudopotentials (Norm-conserving, ultrasoft, PAW)
 - Magnetics
- 6. Jan. 11 (Fri) Practice

Today's Schedule

Structure database
Crystallography Open Database
Crystallographic Information Format (CIF) file
Practice

How to obtain crystalline structure

- Get from someone (e.g. experimental researcher)
- Generate by ourselves (e.g. theoretical prediction)
- Crystalline structure databases
 - Inorganic Crystallographic Structure Database (ICSD)
 - Commercial
 - AtomWorks by NIMS
 - https://crystdb.nims.go.jp/
 - Needs sign-up (we have to create account)
 - Crystallographic Open Database (COD)
 - http://www.crystallography.net/cod/search.html

6/14

Get CIF file from COD

http://www.crystallography.net/cod/search.html

Search results

Result: there are 2 entries in the selection

Switch to the old layout of the page

Download all results as: list of COD numbers | list of CIF URLs | data in CSV format | archive of CIF files (ZIP)

Searching formula like 'B2 Mg'

\$ mkdir ~/MgB2
\$ cd ~/MgB2
\$ wget paste-url-here
\$ vesta 1000026.cif

Search

(For more information on search see the hints and tips)

Search by COD ID:	Search
OpenBabel FastSearch:	Enter SMILES: Search

Note: substructure search by SMILES is currently available in a subset of COD containing 162172 structures.

text (1 or 2 words)	
journal	
year	
volume	
issue	
DOI	
Z (min, max)	
Z' (min, max)	
cnemical formula (<u>in Hill now tion</u>)	B2 Mg
1 to 8 elements	
NOT these elements	
volume min and max	
number of distinct elements min and max	
filters	☐ has Fobs ☐ include duplicates ☐ include tructures with errors ☐ include theoretical structures
Reset	Send

"B2 Mg" into "chemical formula" Alphabetic order

7/14 Crystallographic Information Format (CIF)

Various kind of information of a material

- Chemical formula
- Lattice constants
- Space group (Symmetry)
- Symmetry operator
- Structure
- Fractional occupancy (e.g. solid boron, please check it with COD)
- Information of article in which that structure is reported.
- Etc.

```
$ cd ~/pwdft/
$ git checkout master
$ git pull
$ pip3.7 install spglib pymatgen seekpath pybtex --user
```

Python modules

- Spglib
 - https://atztogo.github.io/spglib/
 - Handling crstal symmetries
- pymatgen
 - http://pymatgen.org/
 - Library for Material Genomics
 - Parse CIF file
- SeeK-path
 - https://seekpath.readthedocs.io/en/latest/
 - Finding appropriate k-point path for band structure plot

9/14

Generate input files

```
$ cd ~/
$ wget https://www.materialscloud.org/discover/data/discover/sssp/downloads/SSSP_efficiency_pseudos.tar.gz
$ tar xzvf SSSP_efficiency_pseudos.tar.gz
$ wget https://www.materialscloud.org/discover/data/discover/sssp/downloads/sssp_efficiency.json \times -P SSSP_efficiency_pseudos/
$ cd ~/MgB2/
$ python3.7 ~/pwdft/tool/cif2qe.py 1000026.cif ~/SSSP efficiency pseudos/
```

- Usage
- \$ python3.7 ~/pwdft/tool/cif2qe.py CIF-file Pseudo-dir
- Products
 - scf.in : Input file for SCF calculation (pw.x)
 - nonscf.in: Input file for band-structure calculation (pw.x)
 - bands.in : Input file for post-process for band-structure (bands.x)
 - band.gp : Gnuplot script to plot the band structure
 - pp.in : Input file for displaying Kohn-Sham orbitals (pp.x)
 - dense.in: Input file for the dense-k-grid calculation for PDOS (pw.x)
 - proj.in : Input file for PDOS calculation (projwfc.x)

Magnetism is not considered (Not spin-DFT) in these input.

Typical procedure

```
$ mpirun -np 2 ~/bin/pw.x -npool 2 -in scf.in | tee scf.out
$ mpirun -np 2 ~/bin/pw.x -npool 2 -in nonscf.in
$ mpirun -np 2 ~/bin/bands.x -npool 2 -in bands.in
$ grep Fermi scf.out
   the Fermi energy is 7.5595 ev
$ gnuplot -e "ef=7.5595;emin=-15;emax=15" band.gp
$ open -a Preview.app band.pdf
$ mpirun -np 1 ~/bin/pp.x -npool 1 -in pp.in
$ vesta tmp.pp K001 B00*.xsf
$ mpirun -np 2 ~/bin/pw.x -npool 2 -in dense.in
$ mpirun -np 1 ~/bin/fermi_velocity.x -in dense.in
$ fermisurfer vfermi.frmsf
$ mpirun -np 2 ~/bin/projwfc.x -npool 2 -in pdos.in > pdos.out
$ ~/bin/sumpdos.x pwscf.pdos *\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footnote{Mg\footno
$ ~/bin/sumpdos.x pwscf.pdos_*\( \text{B}\( \text{B}\( \text{Y} \) * > B
$ mv pwscf.pdos_tot Total
$ bash ~/pwdft/tool/pdos.sh 7.5595 Total Mg B
$ gnuplot pdos.gp
$ open -a Preview.app pdos.pdf
Modify pdos.in for fermi_proj.x
$ mpirun -np 1 ~/bin/fermi proj.x -in pdos.in
$ fermisurfer proj.frmsf
```

Input file format and usage

Input file format

- pw.x : https://www.quantum-espresso.org/Doc/INPUT_PW.html
- bands.x: https://www.quantum-espresso.org/Doc/INPUT_BANDS.html
- pp.x : https://www.quantum-espresso.org/Doc/INPUT_PP.html
- projwfc.x : https://www.quantum-espresso.org/Doc/INPUT_PROJWFC.html
- fermi_velocity.x : The same as that of pw.x
- fermi_proj.x :

```
http://fermisurfer.osdn.jp/en/_build/html/fermisf_qe_en.html#compute-and-display-projection-onto-the-atomic-orbital (English)
http://fermisurfer.osdn.jp/ja/_build/html/fermisf_qe_ja.html#id1 (日本語)
```

Usage

- VESTA: https://jp-minerals.org/vesta/archives/VESTA_Manual.pdf
- FermiSurfer:

```
http://fermisurfer.osdn.jp/en/_build/html/fermisf_ops_en.html (English) <a href="http://fermisurfer.osdn.jp/ja/_build/html/fermisf_ops_ja.html">http://fermisurfer.osdn.jp/ja/_build/html/fermisf_ops_ja.html</a> (日本語)
```

Report problem 4

Download arbitrary structure from COD, compute the electronic structure with the script cif2qe.py, and explain that electronic properties in a (very short) article format.

Do not need to compute large size system. One ~ few atoms per unit cell is OK.

Sample

```
$ cd ~/pwdft/sample/report/
$ pdflatex report.tex
$ bibtex report.aux
$ pdflatex report.tex
$ pdflatex report.tex
$ pdflatex report.tex
$ open -a Preview.app report.pdf
```

- Only "Numerical conditions" and "Result" section.
- Including figures (for VESTA and FermiSurfer, screenshot is useful).
- Explanation of results does not have to be long. (a few sentence)
- Numerical condition and citation are important.

Numerical condition and citation

- Used programs with citation
 - Quantum ESPRESSO, VESTA, FermiSurfer
- Exchange-correlation functional (GGA-PBE, LDA, •••)
- Plane-wave cutoff for wavefunction
- Pseudopotential (Kind and Library)
 - Kind: Ultrasoft (US), PAW, Norm-conserving (NC)
 - SG15 (NC), GBRV (US), Pslibrary (rrkjus=US, kjpaw=PAW),
 Pseudo Dojo(NC), Wentzcovitch(PAW)
 - Verification (SSSP)
- Brillouin-zone integration method (tetrahedron) and k-point grids.

For citation, see report.bib which already has citations necessary for each case.

Today's summary

- Structure database
 - Crystallography Open Database
- Crystallographic Information Format (CIF) file
- Practice of calculation and writing paper.