STATE OBSERVER DESIGN

CASE STUDY: WAVE ENERGY CONVERTER

James A. Mynderse

MRE 5323 - State Observer Design

WAVE ENERGY CONVERTERS (WECS) CONVERT OCEAN WAVE ENERGY INTO USABLE ENERGY

Incident Wave Bury Buoy Submerged Body

James A. Mynderse MRE 5323 – State Observer Design 2

1

XIONG ET AL. MODELED THE WECS IN STATE SPACE

Force produced by PTO $\dot{x} = Ax + BF_{gen} + B_1F_{e1} + B_2F_{e2} \\ y = Cx$ Wave excitation force on buoy

Wave excitation force

on submerged body

States: buoy position and velocity, submerged body position and velocity

James A. Mynderse

MRE 5323 - State Observer Design

XIONG ET AL. MODELED THE WECS IN STATE SPACE

$$\dot{x} = Ax + BF_{gen} + B_1F_{e1} + B_2F_{e2}$$
$$y = Cx$$

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -\frac{k_1}{m_{e1}} & -\frac{b_1}{m_{e1}} & 0 & \frac{A_{12}b_2}{m_{e1}(m_2 + A_2)} \\ 0 & 0 & 0 & 1 \\ \frac{A_{21}k_1}{m_{e2}(m_1 + A_1)} & \frac{A_{21}b_1}{m_{e2}(m_1 + A_1)} & 0 & -\frac{b_2}{m_{e2}} \end{pmatrix}, B = \begin{pmatrix} 0 \\ \frac{1}{m_{e1}} + \frac{A_{12}}{m_{e1}(m_2 + A_2)} \\ 0 \\ -\frac{1}{m_{e2}} - \frac{A_{21}}{m_{e2}(m_1 + A_1)} \end{pmatrix}$$

$$B_1 = \begin{pmatrix} 0 \\ \frac{1}{m_{e1}} \\ 0 \\ -\frac{A_{21}}{m_{e2}(m_1 + A_1)} \end{pmatrix}, B_2 = \begin{pmatrix} 0 \\ -\frac{A_{12}}{m_{e1}(m_2 + A_2)} \\ 0 \\ \frac{1}{m_{e2}} \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix}$$

James A. Mynderse

MRE 5323 - State Observer Desig

PHYSICAL PARAMETERS ARE PROVIDED IN THE PAPER

TABLE 1. PARAMETERS	OF THE SYSTEM [10]
Parameters		

	Parameters	
m_1	Buoy mass [kg]	2625.3
	Submerged body mass [kg]	2650.4
A_1	Buoy added mass [kg]	8866.7
	Submerged body added mass [kg]	361.99
A_{12}	Buoy added mass due to submerged body [kg]	361.99
	Submerged body added mass due to buoy [kg]	361.99
b_1	Buoy radiation damping [Ns/m]	5000
1	Submerged body radiation damping [Ns/m]	50000
k_1	Buoy hydrostatic stiffness [N/m]	96743
	Sampling time [s]	0.1
	Prediction step	100
	Weight on power generation	10e6
	Control input weight	10e(-6)
	Prediction horizon [s]	10
	Maximum generator force [N]	50000
	Minimum generator force [N]	-50000
	Maximum PTO damping [Ns/m]	20000
	Minimum PTO damping [Ns/m]	0
	Maximum stroke length [m]	0.75
	Minimum stroke length [m]	-0.75
	Maximum relative velocity [m/s]	1
	Minimum relative velocity [m/s]	-1
	Passive model PTO damping [Ns/m]	10000

$$(m_1 + A_1 - \frac{A_{12}A_{21}}{m_2 + A_2})$$

$$(m_2 + A_2 - \frac{A_{21}A_{12}}{m_1 + A_1})$$

James A. Mynderse

MRE 5323 - State Observer Design

QUESTIONS

- 1. Is the system state observable?
- 2. Design a state observer
- 3. Implement the state observer in Simulink

James A. Mynderse

MRE 5323 – State Observer Design

)