Name: Richard

R. Hammack

Directions No calculators. Please put all phones, etc., away.

1. (4 points) Complete the following truth tables.

2. (12 points) Complete the truth table to decide if $P \Rightarrow (Q \land R)$ and $(\sim P) \lor (Q \Leftrightarrow R)$ are logically equivalent.

P	Q	R	QAR	P ⇒(QAR)	~P	$(Q \Leftrightarrow R)$	(~P) V(Q⇔R)
T	Т	T	T	17)	F	T	(T)
T	T	F	F	F	F	F	E
\mathbf{T}	\mathbf{F}	Т	F	F	F	F	F
\mathbf{T}	F	F	F	FL	F	+	T
F	\mathbf{T}	Т	T	1	T	T	T
F	T	F	F	T	T	F	
F	F	T	F 300	T	T	F	T
F	F	F	F	T	T	T	T

Are they logically equivalent? Why or why not? The columns for $P \Rightarrow (Q \land R)$ and $(\sim P) \vee (Q \Leftrightarrow R)$ almost match, but not guite. Therefore they are NOT logically equivalent.

3. (6 points) Suppose the statement $(P \vee \sim P) \Leftrightarrow (P \wedge Q \wedge \sim R)$ is true.

Find the truth values of $P \cap Q \cap P$ (This result)

Find the truth values of P, Q and R. (This can be done without a truth table.)

Note that $(P \vee P)$ is TRVE so $(P \vee P) \Leftrightarrow (P \wedge Q \wedge P)$ being true means that $P \wedge Q \wedge R$ is true. But $P \wedge Q \wedge R$ being true means that P, Q and PR are all true. Therefore P = T, Q = T, R = F

$$P=T$$
, $Q=T$, $R=F$

4. (12 points) This problem concerns the following statement.

P: For each $n \in \mathbb{Z}$, there exists a number $m \in \mathbb{Z}$ for which n + m = 0.

(a) Is the statement P true or false? Explain.

This is true, because for any $n \in \mathbb{Z}$ let $m \in \mathbb{Z}$ be the number m = -n. Then n+m=-n-n=0

(b) Write the statement P in symbolic form.

 $\forall n \in \mathbb{Z}, \exists m \in \mathbb{Z}, m+n = 0$

(c) Form the negation $\sim P$ of your answer from (b), and simplify.

 $\sim (\forall n \in \mathbb{Z}, \exists m \in \mathbb{Z}, m+n=0)$ $= \exists n \in \mathbb{Z} \sim (\exists m \in \mathbb{Z}, m+n=0)$ $= \exists n \in \mathbb{Z}, \forall m \in \mathbb{Z} \sim (m+n=0)$ $= \exists n \in \mathbb{Z}, \forall m \in \mathbb{Z}, m+n\neq 0$

(d) Write the negation $\sim P$ as an English sentence. – (The sentence may use mathematical symbols.)

There exists an integer in for which m+n \ = 0

for every integer in

5. (6 points) Complete the first and last lines of each of the following proof outlines.

Proposition: If P, then Q.
Proof: (Direct)
Suppose ______
:
Therefore _____.

Proposition: If P, then Q.

Proof: (Contradiction)

Suppose $P \land \sim Q$:
Therefore $P \land \sim Q$

6. (15 points) Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$. Prove: If $a \equiv b \pmod{n}$, then $a^2 \equiv b^2 \pmod{n}$.

[Use direct proof.]

Proof (Direct) Suppose $a = b \pmod{n}$ This means $n \mid (a-b)$ and consequently a-b=nk for some $k \in \mathbb{Z}$.

Now multiply both sides by a+b: a-b=nk a-b=nk a-b=nkTherefore $a^2-b^2=nk(a+b)$.

Therefore $a^2-b^2=nc$ for $c=k(a+b) \in \mathbb{Z}$.

Consequently $n \mid a^2-b^2$.

Therefore $a^2=b^2 \pmod{n}$.

7. (15 points) Suppose $a \in \mathbb{Z}$. Prove: If $100 \nmid a^2$, then a is odd or $5 \nmid a$. [Use contrapositive.]

Proof (Contrapositive).

Suppose it is not true that a is odd or 5+a.

Then a is even and 5/a.

Therefore a = ac for some $c \in \mathbb{Z}$, and a = 5d for some $d \in \mathbb{Z}$. This means ac = 5d, so 5d is even. But then d must be even because if it were odd, then 5d would be odd not even. Because d is even we get d = 2e for some $e \in \mathbb{Z}$. Thus $a = 5d = 5 \cdot 2e = 10e$. Consequently $a^2 = (10e)^2 = 100e^2$. As $a^2 = 100k$ for $k = e^2$, we obtain $100|a^2$.

Hence it is not true that 100+ 12

ASS

8. (15 points) **Prove:** If $a \in \mathbb{Z}$, then $4 \nmid (a^2 - 3)$.

[Contradiction may be easiest.]

Proof Suppose for the sake of contradiction that 4/(a2-3). This means \[a^2-3=4k \] for some REI. From This, $a^2 = 4k + 3 = 4k + 2 + 1 = 2(2k+1) + 1$ and therefore a is odd. Hence a is also odd, so a = 2l+1 for some lEZ. Now we have a -3 = 4k $(2l+1)^2-3 = 4k$ $4l^2 + 4l + 1 - 3 = 4k$ $4l^{2}+4l-2=4k$ (divide by 2 then $4l^{2}+4l-4k=2$) (factor out a 2 cm left) $2(l^{2}+l-k)=1$.

Consequently | is even, which is a contradiction \mathbb{S} 9. (15 points) Prove: If $n \in \mathbb{N}$, then $1 + (-1)^n(2n-1)$ is a multiple of 4. [Try cases.]

Proof (Direct) Suppose nEIN.

CASE I If n is even then n=2c and (-1)=1. Then $1+(-1)^n(2n-1)=1+1\cdot(2(2c)-1)=1+4c-1$ = AC, and this is a multiple of A.

CASEII If n is odd, then n=2c+1 and (-1)=-1. Then $1+(-1)^n(2n-1)=1+(-1)(2(2c+1)-1)=$ 1-(4C+2-1) = 1-4C-2+1 = 4C, and This 15 a multiple of 4.

So in either case, 1+ (-1) (2N-1) is a multiple of 4