Оглавление

U. I	Счетность множества рациональных чисел, несчетность	
	множества действительных (вещественных) чисел	2
0.2	Теорема о существовании точной верхней (нижней) гра-	
	ни множества	4
0.3	Теорема Кантора о вложенных отрезках	6
0.4	Единственность предела сходящейся последовательно-	
	сти. Ограниченность сходящейся последовательности	8
0.5	Бесконечно малые последовательности и их свойства	9
0.6	Арифметические операции со сходящимися последова-	
	тельностями	11
0.7	Свойства пределов, связанные с неравенствами	12
0.8	Теорема о пределе ограниченной монотонной последова-	
	тельности	14
0.9	Подпоследовательности и частичные пределы. Критерий	
	частичного предела	15
0.10	Теорема Больцано-Вейерштрасса	17
0.11	Теорема о единственном частичном пределе	18
0.12	Верхний и нижний пределы числовой последовательности	19
0.13	Критерий Коши сходимости числовой последовательности	20
0.14	Определение предела функции в точке по Коши и по	
	Гейне, их эквивалентность	22
0.15	Критерий Коши существования предела функции	24
0.16	Существование односторонних пределов у монотонных	
	функций	25
0.17	Непрерывность функции в точке. Непрерывность слож-	
	ной функции	26
0.18	Ограниченность функции, непрерывной на отрезке. До-	
	стижение точной верхней и точной нижней граней функ-	
	цией, непрерывной на отрезке	28
0.19	Теорема о промежуточных значениях непрерывной	
	функции	30
0.20	Теорема об обратной функции	30

0.1. Счетность множества рациональных чисел, несчетность множества действительных (вещественных) чисел

Определение 0.1. Множества X и Y называются равномощными, если существует взаимно однозначное соответствие $f: X \to Y$.

Определение 0.2. *Множество, равномощное множеству* \mathbb{N} , *называется счётным.*

Бесконечное множество, не являющееся счетным, называется несчётным.

Теорема 0.1. Множество рациональных чисел счётно.

Доказательство. Составим таблицу чисел (открытую снизу и справа), содержащую все рациональные числа:

n m	0	1	-1	2	-2	3	-3	
1	0/1	1/1	-1/1	2/1	-2/1	3/1	-3/1	
2	0/2	1/2	-1/2	2/2	-2/2	3/2	-3/2	
3	0/3	1/3	-1/3	2/3	-2/3	3/3	-3/3	
:	:	::	:	:	:	:	÷	:

Рис. 1 Таблица, содержащая все рациональные числа

Будем двигаться по клеткам этой таблицы из левого верхнего угла по следующему пути:

n^m	0		1		-1		2	
1	$\frac{0}{1}$	\rightarrow	$\frac{1}{1}$		$\frac{-1}{1}$	\rightarrow	$\frac{2}{1}$	
			\downarrow		\uparrow		\downarrow	
2	$\frac{0}{2}$	\leftarrow	$\frac{1}{2}$		$\frac{-1}{2}$		$\frac{2}{2}$	
	↓				\uparrow		\downarrow	
3	$\frac{0}{3}$	\rightarrow	$\frac{1}{3}$	\rightarrow	$\frac{-1}{3}$		$\frac{2}{3}$	
							\downarrow	
			• • •					

нумеруя встречающиеся в клетках рациональные числа и пропуская при этом те из них, которые ранее уже встречались (сократимые дроби).

эл. табл.
$$\begin{vmatrix} 0 \\ 1 \end{vmatrix} \begin{vmatrix} 1 \\ 1 \end{vmatrix} \begin{vmatrix} 1 \\ 2 \end{vmatrix} \begin{vmatrix} 0 \\ 2 \end{vmatrix} \begin{vmatrix} 0 \\ 3 \end{vmatrix} \begin{vmatrix} 1 \\ 3 \end{vmatrix} \begin{vmatrix} -1 \\ 3 \end{vmatrix} \begin{vmatrix} -1 \\ 2 \end{vmatrix} \begin{vmatrix} -1 \\ 1 \end{vmatrix} \begin{vmatrix} 2 \\ 1 \end{vmatrix} \begin{vmatrix} 2 \\ 2 \end{vmatrix} \begin{vmatrix} 2 \\ 2 \end{vmatrix} \cdots$$
 номер 1 2 3 - - 4 5 6 7 8 - \cdots

Тем самым мы установили взаимно однозначное соответствие между элементами таблицы (рациональными числами) и их номерами (натуральными числами), т. е. между множествами $\mathbb N$ и $\mathbb Q$. Следовательно, множество $\mathbb Q$ счётно. \square

ТЕОРЕМА 0.2. Кантор. Множество всех точек отрезка [0;1] несчётно.

Доказательство. Допустим противное. Тогда все точки отрезка [0;1] можно занумеровать: x_1,x_2,x_3,\ldots Поделим отрезок [0;1] на три равных отрезка и обозначим через $[a_1;b_1]$ один из них, свободный от точки x_1 . Поделим $[a_1;b_1]$ на три равных отрезка и обозначим через $[a_2;b_2]$ один из них, свободный от точки x_2 . Продолжая процесс, получим систему вложенных отрезков $\{[a_n;b_n]\}_{n=1}^\infty$. По теореме о вложенных отрезках существует точка c, принадлежащая всем отрезкам

системы. Эта точка не совпадает ни с одной из занумерованных точек x_1, x_2, x_3, \ldots , так как любая из них x_j не содержится в отрезке $[a_j; b_j]$, то время как c содержится в этом отрезке. Итак, при допущении, что все точки отрезка [0;1] занумерованы, мы пришли к противоречию, найдя точку $c \in [0;1]$, отличную от каждой из занумерованных. Это противоречие показывает, что наше допущение неверно. \square

Следствие 0.1. Множесство $\mathbb R$ действительных чисел несчётно.

Определение 0.3. Множество \mathbb{R} действительных чисел называют также числовым континуумом (continuum (лат.) — непрерывное, сплошное), а его мощность — мощностью континуума.

0.2. Теорема о существовании точной верхней (нижней) грани множества

Определение 0.4. Число M называется точной верхней гранью или супремумом множества $A \subset \mathbb{R}$ (пишут $M = \sup A$), если M является минимальной верхней гранью множества A, m.e.

- 1) М является верхней гранью множества А и
- 2) $\forall M' \in \mathbb{R}: (M'$ является верхней гранью множества $A) \hookrightarrow M \leqslant M'.$

Замечание 0.1. Для любых условий U_1 и U_2 условие $U_1 \Rightarrow U_2$ эквивалентно условию $\neg U_2 \Rightarrow \neg U_1$. Это проверяется по таблице истичности. На этом свойстве основан метод доказательства от противного.

Замечание 0.2. Условие (M' является верхней гранью множества A) $\hookrightarrow M \leqslant M'$ эквивалентно условию $M' < M \hookrightarrow (M'$ не является верхней гранью множества A). Следовательно,

$$\sup A = M \in \mathbb{R} \ \Leftrightarrow \ \left\{ \begin{array}{l} 1) \ \forall a \in A \ \hookrightarrow \ a \leqslant M \ u \\ 2) \ \forall M' < M \ \exists a \in A: \ M' < a. \end{array} \right.$$

Замечание 0.3. Точная верхняя грань множества может как принадлежать, так и не принадлежать этому множеству.

ТЕОРЕМА 0.3. Пусть множество $A \subset \mathbb{R}$ ограничено сверху. Тогда существует единственное число $M \in \mathbb{R}$, которое является точной верхней гранью множества A.

Доказательство. Рассмотрим B — множество всех (конечных) верхних граней множества A. Так как множество A ограничено сверху, то B не пусто. Поскольку $\forall a \in A \ \forall b \in B \hookrightarrow a \leqslant b$, то по аксиоме непрерывности $\exists c \in \mathbb{R} : \forall a \in A \ \forall b \in B \hookrightarrow a \leqslant c \leqslant b$.

Покажем, что c является точной верхней гранью A. Так как $\forall a \in A \hookrightarrow a \leqslant c$, то c является верхней гранью A, т.е. $c \in B$. Поскольку $\forall b \in B \hookrightarrow c \leqslant b$, то c — минимальный элемент B. Итак, c — точная верхняя грань A.

Предположим, что $c_1, c_2 \in \mathbb{R}$ — две различные точные верхние грани множества A. Тогда c_1, c_2 — два различных минимальных элемента множества B. Пусть для определенности $c_1 < c_2$. Тогда c_2 не является минимальным элементом множества B. Противоречие. \square

Определение 0.5. Pacширенным множеством действительных чисел \mathbb{R} называется множество

$$\bar{\mathbb{R}} = \mathbb{R} \cup \{-\infty\} \cup \{+\infty\},\,$$

так что элементами множества \mathbb{R} являются все действительные числа и ещё два элемента: $-\infty$, $+\infty$.

На множестве \mathbb{R} не введены сложение и умножение, но имеется отношение порядка. Для двух элементов $a,b\in\mathbb{R}$ в случае $a,b\in\mathbb{R}$ отношение порядка то же, что в \mathbb{R} . В других же случаях оно определено так: $-\infty < a, \ a < +\infty \ \forall a \in \mathbb{R}; \ -\infty < +\infty$.

Рассматривая множество $X \subset \mathbb{R}$ как подмножество расширенного множества действительных чисел $(X \subset \overline{\mathbb{R}})$, можно обобщить понятие $\sup X$. Это обобщающее определение будет отличаться от приведённого выше лишь тем, что в качестве M можно брать не только число, но и элемент $+\infty$.

Определение 0.6. Точной верхней гранью неограниченного сверху множества считается $+\infty$.

Teopema 0.4. $\Pi ycmb \ A \subset \mathbb{R} - henycmoe \ множество.$

- а) Существует единственная точная верхняя грань множества $A:\sup A\in \bar{\mathbb{R}}.$
- б) Если множество A ограничено сверху, то $\sup A \in \mathbb{R}$, иначе $\sup A = +\infty$.

$$e) \sup A = M \in \bar{\mathbb{R}} \iff \left\{ \begin{array}{l} (1) \ \forall a \in A \ \hookrightarrow \ a \leqslant M, \\ (2) \ \forall M' < M \ \exists a \in A: \ M' < a. \end{array} \right.$$

Доказательство. В случае, когда множество A ограничено сверху, доказываемые утверждения следуют из теоремы 0.3 и замечания перед этой теоремой.

Пусть теперь множество A неограничено сверху. Согласно определению не существует конечной верхней грани множества A. Поэтому никакое число не является точной верхней гранью A. В этом случае единственной точной верхней гранью A является $+\infty$.

Обоснуем пункт (в). \Rightarrow : Пусть $M = \sup A = +\infty$. Тогда пункт (1) следует из неравенства $a \leq +\infty$ для любого $a \in \mathbb{R}$, а пункт (2) следует из того, что множество A неограничено сверху.

 \Leftarrow : Из пункта (1) и неограниченности сверху множества A следует, что $M=+\infty.$ Поэтому $M=\sup A.$ \square

Аналогично сформулируем определение точной нижней грани.

Определение 0.7. Число m называется точной нижней гранью или инфимумом множества $A \subset \mathbb{R}$ (пишут $m = \inf A$), если m является максимальной нижней гранью множества A, m.e.

- 1) т является нижней гранью множества А и
- 2) $\forall m' \in \mathbb{R}: (m'$ является нижней гранью множества $A) \hookrightarrow m \geqslant m'$.

Точной нижней гранью неограниченного снизу множества считается $-\infty$.

ТЕОРЕМА 0.5. Пусть $A \subset \mathbb{R}$ — непустое множество.

- а) Существует единственная точная нижняя грань множества $A:\inf A\in \bar{\mathbb{R}}.$
- б) Если множество A ограничено снизу, то $\inf A \in \mathbb{R}$, иначе $\inf A = -\infty$.

$$e) \inf A = m \in \mathbb{R} \iff \begin{cases} (1) \ \forall a \in A \hookrightarrow a \geqslant m, \\ (2) \ \forall m' > m \ \exists a \in A : m' > a. \end{cases}$$

Доказательство теоремы 0.5 аналогично доказательству теоремы 0.4. \square

0.3. Теорема Кантора о вложенных отрезках

Определение 0.8. Множество отрезков

$$\{[a_n; b_n]\}_{n=1}^{\infty} = \{[a_1; b_1], [a_2; b_2], \dots\},$$

 $-\infty < a_n < b_n < +\infty \ \forall n \in \mathbb{N},$

называется системой вложенных отрезков, если $[a_n;b_n]\supset [a_{n+1};b_{n+1}] \ \forall n\in\mathbb{N}, m.e.$ каждый отрезок содержит следующий за ним.

В следующей теореме формулируется свойство, называемое непрерывностью множества действительных чисел по Кантору.

ТЕОРЕМА 0.6. (Kahmopa). Для всякой системы вложенных отрезков существует точка, принадлежащая всем отрезкам данной системы.

Доказательство. Для системы вложенных отрезков $\{[a_n;b_n]\}_{n=1}^{\infty}$ рассмотрим два непустых множества $A=\{a_n\}_{n=1}^{\infty}=\{a_1,a_2,\ldots\}$ и $B=\{b_n\}_{n=1}^{\infty}=\{b_1,b_2,\ldots\}$.

Очевидно, что $\forall n, m \in \mathbb{N}$

$$a_n \leqslant a_{n+m} < b_{n+m} \leqslant b_m.$$

В силу аксиомы непрерывности существует число c такое, что

$$a_n \leqslant c \leqslant b_m \ \forall n, m \in \mathbb{N}.$$

В частности, при m=n получаем, что

$$c \in [a_n, b_n] \ \forall n \in \mathbb{N}.$$

Определение 0.9. Система вложенных отрезков $\{[a_n;b_n]\}_{n=1}^{\infty}$ называется стягивающейся, если $\forall \varepsilon > 0 \ \exists n \in \mathbb{N} : b_n - a_n < \varepsilon$.

ТЕОРЕМА 0.7. Стягивающаяся система вложенных отрезков имеет ровно одну точку, принадлежащую всем отрезкам.

Доказательство. По крайней мере одна общая точка для отрезков рассматриваемой системы имеется в силу теоремы 0.6. Покажем, что общих точек не больше одной. Допустив противное, предположим, что каждая из двух различных точек c и c' является общей для всех отрезков системы. Пусть, для определённости, c' < c, т.е. $\varepsilon := c - c' > 0$. По определению стягивающейся системы $\exists n \in \mathbb{N}: b_n - a_n < \varepsilon$. Тогда $a_n \leqslant c' < c \leqslant b_n$. Отсюда $c - c' \leqslant c - a_n \leqslant b_n - a_n < \varepsilon$, что противоречит выбору ε . \square

0.4. Единственность предела сходящейся последовательности. Ограниченность сходящейся последовательности

ЛЕММА 0.1. Пусть $a,b\in \mathbb{R}$ и a< b. Тогда существует число $\varepsilon>0$ такое, что

$$\forall x \in U_{\varepsilon}(a) \ \forall y \in U_{\varepsilon}(b) \ \hookrightarrow \ x < y,$$

а значит, окрестности $U_{\varepsilon}(a)$ и $U_{\varepsilon}(b)$ не пересекаются.

Доказательство. Возможны четыре случая:

- $(1) -\infty < a < b < +\infty;$
- $(2) -\infty < a < b = +\infty;$
- $(3) -\infty = a < b < +\infty;$
- $(4) -\infty = a < b = +\infty.$

в случае (1) положим $\varepsilon=\frac{b-a}{2},$ в случае (2): $\varepsilon=\frac{1}{|a|+1},$ в случае

(3):
$$\varepsilon = \frac{1}{|b|+1}$$
, в случае (4): $\varepsilon = 1$.

Пусть $x \in U_{\varepsilon}(a), y \in U_{\varepsilon}(b)$. Покажем, что в каждом из четырёх случаев x < y. Отсюда будет следовать, что окрестности $U_{\varepsilon}(a)$ и $U_{\varepsilon}(b)$ не пересекаются.

(1)
$$x < a + \varepsilon = a + \frac{b-a}{2} = \frac{a+b}{2} = b - \varepsilon < y;$$

(2)
$$x \le a + 1 \le |a| + 1 = \frac{1}{\varepsilon} < y$$
.

Случаи (3) и (4) рассмотрите самостоятельно. \square

ТЕОРЕМА 0.8. (Единственность предела.) Числовая последовательность не может иметь более одного предела из $\bar{\mathbb{R}}$.

Доказательство. Предположим противное: последовательность $\{a_n\}$ имеет пределы $a,b\in\bar{\mathbb{R}},\ a\neq b.$ По лемме 0.1

$$\exists \varepsilon > 0 : U_{\varepsilon}(a) \cap U_{\varepsilon}(b) = .$$

По определению предела

$$\exists N_1: \forall n \geqslant N_1 \hookrightarrow a_n \in U_{\varepsilon}(a),$$

$$\exists N_2: \ \forall n \geqslant N_2 \ \hookrightarrow \ a_n \in U_{\varepsilon}(b).$$

При $n\geqslant \max\{n_1,N_2\}$ получаем $a_n\in U_{\varepsilon}(a)\cap U_{\varepsilon}(b)$ — противоречие. \square

Задача 0.1. Докажите, что последовательность $\{a_n\}$, $a_n = \frac{1-(-1)^n}{2}$, не имеет ни конечного ни бесконечного предела.

Определение 0.10. Последовательность $\{a_n\}$ называется ограниченной (сверху, снизу), если ограничено (соответственно сверху, снизу) множество значений её элементов.

В частности,

$$\left\{ a_n \right\} \text{ ограничена} \quad \Leftrightarrow$$

$$\Leftrightarrow \quad \exists M \in \mathbb{R}: \ \forall a \in \left\{ a_1, a_2, \ldots \right\} \ \hookrightarrow \ |a| \leqslant M \quad \Leftrightarrow$$

$$\Leftrightarrow \quad \exists M \in \mathbb{R}: \ \forall n \in \mathbb{N} \ \hookrightarrow \ |a| \leqslant M.$$

Теорема 0.9. Сходящаяся последовательность ограничена.

Доказательство. Пусть $\lim_{n\to\infty}a_n=a\in\mathbb{R}$. Возьмём $\varepsilon=1$. По определнию предела $\exists N\in\mathbb{N}: \forall n\in\mathbb{N}, \ n\geqslant N\hookrightarrow a_n\in(a-1;a+1)$. Следовательно, $\forall n\in\mathbb{N}, \ n\geqslant N$ справедливо неравенство

$$-|a| - 1 \le a - 1 < a_n < a + 1 \le |a| + 1,$$

а значит, $\forall n \in \mathbb{N}, \, n \geqslant N \hookrightarrow |a_n| < |a| + 1.$

Определим $M = \max\{|a_1|, \dots, |a_{N-1}, |a|+1\}$ (максимум существует, так как множество конечно). Тогда для $n \in \mathbb{N}, n < N$ по определению максимума $|a_n| \leq M$. При $n \in \mathbb{N}, n \geqslant N$ имеем $|a_n| < |a|+1 \leq M$. Итак $n \in \mathbb{N} \hookrightarrow |a_n| \leq M$, т.е. последовательность $\{a_n\}$ ограничена. \square

0.5. Бесконечно малые последовательности и их свойства

Определение 0.11. Последовательность $\{a_n\}$ называется бесконечно малой, если $\lim_{n\to\infty} a_n = 0$, т.е.

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N} : \ \forall n \in \mathbb{N}, \ n \geqslant N \ \hookrightarrow \ |a_n| < \varepsilon.$$

Непосредственно из определения предела последовательности следует, что $\lim_{n\to\infty} a_n = a \in \mathbb{R}$ тогда и только тогда, когда последовательность $\{a_n-a\}$ является бесконечно малой. Используя это обстоятельство, из свойств бесконечно малых последовательностей мы получим свойства пределов последовательностей, связанные с арифметическими действиями.

Задача 0.2. Докажите, что

- 1) $\forall a,b \in \mathbb{R} \hookrightarrow |a+b| \leqslant |a|+|b|$ (неравенство треугольника).
- 2) $\forall a, b \in \mathbb{R} \hookrightarrow ||a| |b|| \leqslant |a b|$.

ЛЕММА 0.2. Если $\{a_n\}$, $\{b_n\}$ — бесконечно малые последовательности, то $\{a_n+b_n\}$ и $\{a_n-b_n\}$ — бесконечно малые последовательности.

Доказательство. Т.к. $\lim_{n\to\infty}a_n=0,\ \lim_{n\to\infty}b_n=0,\ \mathrm{to}$

$$\forall \varepsilon > 0 \ \exists N_1 = N_1(\varepsilon) \in \mathbb{N} : \ \forall n \in \mathbb{N}, \ n \geqslant N_1 \ \hookrightarrow \ |a_n| < \frac{\varepsilon}{2},$$

$$\forall \varepsilon > 0 \ \exists N_2 = N_2(\varepsilon) \in \mathbb{N} : \ \forall n \in \mathbb{N}, \ n \geqslant N_2 \ \hookrightarrow \ |b_n| < \frac{\varepsilon}{2}.$$

Отсюда, используя неравенство треугольника

$$|a_n \pm b_n| \leqslant |a_n| + |b_n|,$$

получаем, что

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) = \max\{N_1, N_2\} \in \mathbb{N}: \ \forall n \in \mathbb{N}, \ n \geqslant N \ \hookrightarrow \ |a_n \pm b_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

T.e.
$$\lim_{n\to\infty}(a_n\pm b_n)=0$$
. \square

ЛЕММА 0.3. Если $\{a_n\}$ — ограниченная последовательность, а $\{b_n\}$ — бесконечно малая последовательность, то $\{a_nb_n\}$ — бесконечно малая последовательность.

Доказательство. Поскольку последовательность $\{a_n\}$ ограничена, то

$$\exists M > 0 : \forall n \in \mathbb{N} \hookrightarrow |a_n| \leqslant M.$$

Так как последовательность $\{b_n\}$ является бесконечно малой, то

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N} : \ \forall n \in \mathbb{N}, \ n \geqslant N \ \hookrightarrow \ |b_n| < \varepsilon.$$

Следовательно,

$$\forall \varepsilon > 0 \ \exists \bar{N} = N\left(\frac{\varepsilon}{M}\right) \in \mathbb{N}: \ \forall n \in \mathbb{N}, \ n \geqslant \bar{N} \ \hookrightarrow \ |a_n b_n| < M\frac{\varepsilon}{M} = \varepsilon.$$

Поэтому последовательность $\{a_nb_n\}$ является бесконечно малой. \square

0.6. Арифметические операции со сходящимися последовательностями

TEOPEMA 0.10. Ecsi $\lim_{n\to\infty} a_n = a \in \mathbb{R}, \lim_{n\to\infty} b_n = b \in \mathbb{R}, mo$ cywiecmsymm $\lim_{n\to\infty} (a_n+b_n) = a+b$ $u\lim_{n\to\infty} (a_n-b_n) = a-b$.

Доказательство. Так как последовательности $\{a_n-a\}$ и $\{b_n-b\}$ являются бесконечно малыми, то в силу леммы 0.2 последовательности $\{a_n+b_n-(a+b)\}=\{(a_n-a)+(b_n-b)\}$ и $\{a_n-b_n-(a-b)\}=\{(a_n-a)-(b_n-b)\}$ являются бесконечно малыми, т.е. $\lim_{n\to\infty}(a_n+b_n)=a+b,$ $\lim_{n\to\infty}(a_n-b_n)=a-b.$ \square

TEOPEMA 0.11. Ecau $\lim_{n\to\infty}a_n=a\in\mathbb{R},$ mo cywechewem $\lim_{n\to\infty}|a_n|=|a|.$

Доказательство. Имеем $||a_n|-|a||\leqslant |a_n-a|$. Отсюда и из условия $\lim_{n\to\infty}a_n=a$ в силу определения предела получаем, что $\lim_{n\to\infty}|a_n|=|a|$. \square

TEOPEMA 0.12. Ecnu $\lim_{n\to\infty} a_n = a \in \mathbb{R}, \lim_{n\to\infty} b_n = b \in \mathbb{R}, mo$ cywecmbyom $\lim_{n\to\infty} (a_n b_n) = ab.$

Доказательство. Требуется доказать, что последовательность $\{a_nb_n-ab\}$ является бесконечно малой.

Заметим, что $a_nb_n - ab = a_n(b_n - b) + (a_n - a)b$. Так как последовательность $\{a_n\}$ сходится, то по теореме 0.9 она ограничена. В силу леммы 0.3 последовательности $\{a_n(b_n - b)\}$ и $\{(a_n - a)b\}$ бесконечно малые, следовательно, по лемме 0.2 последовательность $\{a_nb_n - ab\}$ также является бесконечно малой. \square

ЛЕММА 0.4. Если $\forall n \in \mathbb{N} \hookrightarrow a_n \neq 0$ и $\lim_{n \to \infty} a_n = a \in \mathbb{R} \setminus \{0\}$, то $\lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{a}$.

Доказательство. В силу теоремы 0.11 имеем $\lim_{n\to\infty}|a_n|=|a|>0$. Отсюда, положив в определении предела последовательности $\varepsilon=\frac{|a|}{2}$, получаем, что $\exists N\in\mathbb{N}$: $\forall n\in\mathbb{N},\ n\geqslant N\hookrightarrow |a_n|>|a|-\varepsilon=\frac{|a|}{2}$, т.е. $\exists N\in\mathbb{N}$: $\forall n\in\mathbb{N},\ n\geqslant N\hookrightarrow \left|\frac{1}{a_n}\right|<\frac{2}{|a|}$.

Определим число $M=\max\left\{\frac{1}{|a_1|},\dots,\frac{1}{|a_{N-1}|},\frac{2}{|a|}\right\}$. Тогда $\forall n\in\mathbb{N}$ $\hookrightarrow \left|\frac{1}{a_n}\right|\leqslant M$, т.е. последовательность $\left\{\frac{1}{a_n}\right\}$ ограничена. Следовательно, последовательность $\left\{\frac{1}{a_na}\right\}$ также ограничена. Отсюда и из леммы 0.3 следует, что последовательность $\left\{\frac{1}{a_na}\right\}=\left\{\frac{1}{a_n}(a-a_n)\right\}$ является бесконечно малой, т.е. $\lim_{n\to\infty}\frac{1}{a_n}=\frac{1}{a}$. \square

TEOPEMA 0.13. Ecau $\forall n \in \mathbb{N} \hookrightarrow a_n \neq 0$, $\lim_{n \to \infty} a_n = a \in \mathbb{R} \setminus \{0\}$ u $\lim_{n \to \infty} b_n = b \in \mathbb{R}$, $mo \lim_{n \to \infty} \frac{b_n}{a_n} = \frac{b}{a}$.

Доказательство. В силу леммы 0.4 имеем $\lim_{n\to\infty}\frac{1}{a_n}=\frac{1}{a}$. Поэтому, согласно, теореме 0.12, $\lim_{n\to\infty}\frac{b_n}{a_n}=\lim_{n\to\infty}b_n\frac{1}{a_n}=b\frac{1}{a}=\frac{b}{a}$. \square

0.7. Свойства пределов, связанные с неравенствами

TEOPEMA 0.14. $\Pi y cmb \lim_{n \to \infty} a_n = A$, $\lim_{n \to \infty} b_n = B$, $\epsilon \partial e A, B \in \mathbb{R}$, A < B. $To \epsilon \partial a \exists N \in \mathbb{N} \colon \forall n \in \mathbb{N}, n \geqslant N \hookrightarrow a_n < b_n$.

Доказательство. В силу леммы 0.1 существует число $\varepsilon > 0$ такое, что $\forall x \in U_{\varepsilon}(A) \ \forall y \in U_{\varepsilon}(B) \hookrightarrow x < y$.

По определению предела

$$\exists N_1 \in \mathbb{N} : \forall n \in \mathbb{N}, \ n \geqslant N_1 \hookrightarrow a_n \in U_{\varepsilon}(A),$$

$$\exists N_2 \in \mathbb{N} : \ \forall n \in \mathbb{N}, \ n \geqslant N_2 \ \hookrightarrow \ b_n \in U_{\varepsilon}(B).$$

Определив $N=\max\{N_1,N_2\}$ получаем требуемое утверждение. \square

ТЕОРЕМА 0.15. (О предельном переходе в неравенстве.) $Echu \lim_{n \to \infty} a_n = A, \lim_{n \to \infty} b_n = B, \ A, B \in \mathbb{R} \ u \ \exists N \in \mathbb{N} \colon \forall n \in \mathbb{N}, \ n \geqslant N \hookrightarrow a_n \leqslant b_n, \ mo \ A \leqslant B.$

Доказательство. Предположим противное: A > B. По теореме $0.14 \ \exists N_1 \in \mathbb{N}: \ \forall n \in \mathbb{N}, \ n \geqslant N_1 \hookrightarrow b_n < a_n$. При $n \geqslant \max\{N, N_1\}$ получаем противоречие с условием $a_n \leqslant b_n$. \square

Следствие 0.2. Если $\exists N \in \mathbb{N}: \forall n \in \mathbb{N}, n \geqslant N \hookrightarrow a_n < B$, $\lim a_n = A, A, B \in \mathbb{R}, mo A \leqslant B.$

Доказательство. Если $B \in \mathbb{R}$, то определим $\{b_n\} = \{B\}$ и, применяя теорему 0.15, получаем неравенство $A \leq B$.

Если $B = +\infty$, неравенство $A \leq B$ также выполнено.

Случай $B = -\infty$ не реализуется, т.к. $\forall n \in \mathbb{N}, n \geqslant N \hookrightarrow a_n < B$. \square

Замечание 0.4. Из условий $\forall n \in \mathbb{N} \hookrightarrow a_n < b_n, \lim_{n \to \infty} a_n = A,$ $\lim_{n \to \infty} b_n = B \text{ не следует, что } A < B.$

Например,
$$a_n = 0$$
, $b_n = \frac{1}{n}$, $A = B = 0$.

ТЕОРЕМА 0.16. (О трех последовательностях.) Если $\exists N \in$ $\mathbb{N}: \forall n \in \mathbb{N}, \ n \geqslant N \hookrightarrow a_n \leqslant b_n \leqslant c_n, \ \lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = A \in \mathbb{R}, \ mo$ $\lim_{n \to \infty} b_n = A.$

Доказательство. По определению предела для любого $\varepsilon > 0$

$$\exists N_1 \in \mathbb{N} : \forall n \in \mathbb{N}, \ n \geqslant N_1 \hookrightarrow a_n \in U_{\varepsilon}(A),$$

$$\exists N_2 \in \mathbb{N} : \forall n \in \mathbb{N}, \ n \geqslant N_2 \hookrightarrow c_n \in U_{\varepsilon}(A).$$

Обозначим $\bar{N}=\max\{N,N_1,N_2\}$. Тогда при $n\geqslant \bar{N}$ имеем

$$A - \varepsilon < a_n \leqslant b_n \leqslant c_n < A + \varepsilon$$

следовательно, $b_n \in U_{\varepsilon}(A)$.

Итак,

$$\forall \varepsilon > 0 \ \exists \bar{N} \in \mathbb{N} : \ \forall n \in \mathbb{N}, \ n \geqslant \bar{N} \hookrightarrow b_n \in U_{\varepsilon}(A),$$

T.e. $\lim_{n\to\infty}b_n=A$. \square

TEOPEMA 0.17. $\Pi y cmb \exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N \hookrightarrow a_n \leqslant b_n$. Torda

- 1) $ecnu \lim_{n\to\infty} a_n = +\infty$, $mo \lim_{n\to\infty} b_n = +\infty$; 2) $ecnu \lim_{n\to\infty} b_n = -\infty$, $mo \lim_{n\to\infty} a_n = -\infty$.

Доказательство.

1) По определению предела

$$\forall \varepsilon > 0 \; \exists N_1 \in \mathbb{N} : \; \forall n \in \mathbb{N}, \; n \geqslant N_1 \; \hookrightarrow \; a_n \in U_{\varepsilon}(+\infty) = (\varepsilon, +\infty),$$

т.е. $a_n>\varepsilon$, но тогда $b_n\geqslant a_n>\varepsilon$ $\forall n\in\mathbb{N},\ n\geqslant \max\{N,N_1\}$. Следовательно,

$$\forall \varepsilon > 0 \ \exists N_2 = \max\{N, N_1\} \in \mathbb{N} : \ \forall n \in \mathbb{N}, \ n \geqslant N_2 \hookrightarrow b_n \in U_{\varepsilon}(+\infty),$$

а значит, $\lim_{n\to\infty} b_n = +\infty$.

Доказательство пункта 2) аналогично. \square

0.8. Теорема о пределе ограниченной монотонной последовательности

Определение 0.12. Последовательность $\{a_n\}$ называется нестрого возрастающей или неубывающей, если

$$\forall n \in \mathbb{N} \hookrightarrow a_n \leqslant a_{n+1};$$

нестрого убывающей или невозрастающей, если

$$\forall n \in \mathbb{N} \hookrightarrow a_n \geqslant a_{n+1};$$

если в этих определениях нестрогие неравенства заменить на строгие, то получим определения строго возрастающей и строго убывающей последовательностей.

Последовательность $\{a_n\}$ называется монотонной, если она является нестрого возрастающей или нестрого убывающей.

ТЕОРЕМА 0.18. (Теорема Вейерштрасса о монотонной последовательности.)

- 1) Если последовательность $\{a_n\}$ нестрого возрастает, то существует $\lim_{n\to\infty}a_n=\sup\{a_n\};$
- 2) если последовательность $\{a_n\}$ нестрого убывает, то существует $\lim_{n\to\infty} a_n = \inf\{a_n\}$.

Доказательство. Пусть последовательность $\{a_n\}$ нестрого возрастает. Рассмотрим сначала случай, когда эта последовательность ограничена сверху. В силу теоремы 0.3 существует $a = \sup\{a_n\} \in \mathbb{R}$. Покажем, что $\lim_{n \to \infty} a_n = a$. В силу второго пункта определения супремума $\forall \varepsilon > 0 \ \exists N \in \mathbb{N}$: $a_N > a - \varepsilon$. Отсюда в силу возрастания последовательности $\{a_n\}$ имеем $\forall \varepsilon > 0 \ \exists N \in \mathbb{N}$: $\forall n \in \mathbb{N}, \ n \geqslant N \hookrightarrow$

 $a_n\geqslant a_N>a-arepsilon$. В силу первого пункта определения супремума $\forall n\in\mathbb{N}$ $\hookrightarrow a_n\leqslant a$. Поэтому

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : \; \forall n \in \mathbb{N}, \; n \geqslant N \; \hookrightarrow \; a_n \in U_{\varepsilon}(a),$$

T.e. $\lim_{n\to\infty} a_n = a$.

Рассмотрим теперь случай, когда последовательность $\{a_n\}$ неограничена сверху. Тогда

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : \; a_N > \varepsilon.$$

Отсюда в силу возрастания последовательности $\{a_n\}$ имеем

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : \; \forall n \in \mathbb{N}, \; n \geqslant N \; \hookrightarrow \; a_n \geqslant a_N > \varepsilon,$$

т.е. $a_n \in U_{\varepsilon}(+\infty)$, а значит, $\lim_{n \to \infty} a_n = +\infty$.

Доказательство пункта 2) аналогично. \square

Следствие 0.3. Любая монотонная последовательность имеет конечный или бесконечный предел. Если $\{a_n\}$ — нестрого возрастающая и ограниченная сверху последовательность или нестрого убывающая и ограниченная снизу последовательность, то предел $\{a_n\}$ конечен.

0.9. Подпоследовательности и частичные пределы. Критерий частичного предела

Наличие предела у числовой последовательности является изысканным свойством. Однако, "смягчив" понятие предела, мы увидим, что так называемые частичные пределы всегда существуют. Это обстоятельство широко применяется в математическом анализе и других разделах математики.

Определение 0.13. Последовательность $\{b_k\}$ называется подпоследовательностью последовательности $\{a_n\}$, если существует строго возрастающая последовательность натуральных чисел $\{n_k\}$: $\forall k \in \mathbb{N} \hookrightarrow b_k = a_{n_k}$.

ПРИМЕР 0.1. Сама последовательность является своей подпоследовательностью.

ПРИМЕР 0.2. Пусть задана последовательность $\{a_n\}$. Последовательность $\{a_{2k}\}$, составленная из элементов $\{a_n\}$ с четными номерами, является подпоследовательностью последовательности $\{a_n\}$. Действительно, для любого $k \in \mathbb{N}$ определим $n_k = 2k$. Тогда $\{n_k\}$ — строго возрастающая последовательность натуральных чисел и $\forall k \in \mathbb{N} \hookrightarrow a_{2k} = a_{n_k}$.

Определение 0.14. Если последовательность $\{b_k\}$ является подпоследовательностью $\{a_n\}$ и существует $\lim_{k\to\infty}b_k=A\in\bar{\mathbb{R}},$ то A называется частичным пределом последовательности $\{a_n\}$.

ПРИМЕР 0.3. Рассмотрим последовательность $\{a_n\}$, где

$$a_n = \left\{ \begin{array}{c} 1, \ \textit{ecnu n четно}, \\ -1, \ \textit{ecnu n нечетно}. \end{array} \right.$$

Последовательности $\{b_k\} = \{a_{2k}\}\ u\ \{c_k\} = \{a_{2k-1}\}\$ являются под-последовательностями $\{a_n\}$. Так как $b_k=1,\ c_k=-1\ \forall k\in\mathbb{N},\ mo\lim_{k\to\infty}b_k=1,\ \lim_{k\to\infty}c_k=-1.$ Следовательно, числа $1\ u-1$ являются частичными пределами $\{a_n\}$.

ТЕОРЕМА 0.19. Критерий частичного предела.

Для любой последовательности $\{a_n\}$ и любого $A \in \mathbb{R}$ следующие условия эквивалентны:

- (1) A является частичным пределом последовательности $\{a_n\}$;
- (2) для любого $\varepsilon > 0$ в $U_{\varepsilon}(A)$ содержатся значения бесконечного набора элементов $\{a_n\}$;
 - (3) $\forall \varepsilon > 0 \ \forall N \in \mathbb{N} \ \exists n \in \mathbb{N}, \ n \geqslant N \colon a_n \in U_{\varepsilon}(A).$

Доказательство.

(1) \Rightarrow (2). Пусть A является частичным пределом последовательности $\{a_n\}$. Тогда существует подпоследовательность $\{a_{n_k}\}$ такая, что $A=\lim_{k\to\infty}a_{n_k}$, т.е.

$$\forall \varepsilon > 0 \; \exists K_{\varepsilon} \in \mathbb{N} : \; \forall k \in \mathbb{N}, \; k \geqslant K_{\varepsilon} \; \hookrightarrow \; a_{n_k} \in U_{\varepsilon}(A).$$

Поэтому для любого $\varepsilon > 0$ в $U_{\varepsilon}(A)$ содержатся значения бесконечного набора элементов $\{a_n\}$.

 $(2) \Rightarrow (3)$. Зафиксируем произвольные $\varepsilon > 0$, $N \in \mathbb{N}$. Так как выполнено условие (2), то в $U_{\varepsilon}(A)$ содержатся значения бесконечного набора элементов $\{a_n\}$, среди которых найдётся элемент с номером $n \geqslant N$. Иначе в $U_{\varepsilon}(A)$ будут содержаться лишь с номерами n < N, а таких элементов конечное число. Следовательно, выполнено условие (3).

 $(3) \Rightarrow (1)$. Пусть выполнено условие (3):

$$\forall \varepsilon > 0 \ \forall N \in \mathbb{N} \ \exists n = n(\varepsilon, N) \in \mathbb{N}, \ n \geqslant N : \ a_n \in U_{\varepsilon}(A).$$

Построим строго возрастающую последовательность $\{n_k\}$ натуральных чисел такую, что $A = \lim_{k \to \infty} a_{n_k}$. Определим $n_1 = n(1,1)$. Пусть на некотором шаге $k-1 \in \mathbb{N}$ определено значение $n_{k-1} \in \mathbb{N}$. Определим

$$n_k = n\left(\frac{1}{k}, 1 + n_{k-1}\right),\,$$

т.е. $n_k = n(\varepsilon, N)$, где $\varepsilon = \frac{1}{k}$, $N = 1 + n_{k-1}$. Тогда $n_k \geqslant 1 + n_{k-1} > n_{k-1}$ и $a_{n_k} \in U_{1/k}(A)$. По индукции получаем, что определена последовательность $\{n_k\}$ натуральных чисел такая, что $\forall k \geqslant 2 \hookrightarrow n_k > n_{k-1}$ и $\forall k \in \mathbb{N} \hookrightarrow a_{n_k} \in U_{1/k}(A)$. Поэтому последовательность $\{n_k\}$ строго возрастает и $A = \lim_{k \to \infty} a_{n_k}$. Следовательно, выполнено условие (1). \square

Замечание 0.5. Предел последовательности является ее частичным пределом, но в общем случае не наоборот.

0.10. Теорема Больцано-Вейерштрасса

ТЕОРЕМА 0.20. (Теорема Больцано-Вейерштрасса) Ограниченная последовательность имеет хотя бы один конечный частичный предел.

Доказательство. Пусть последовательность $\{x_n\}$ ограничена, т.е.

$$\exists a_0, b_0 : \forall n \in \mathbb{N} \hookrightarrow x_n \in [a_0, b_0].$$

Определим $c_0=(a_0+b_0)/2$. Если в отрезке $[a_0,_0]$ содержатся значения бесконечного набора членов $\{x_n\}$, то определим $[a_1,b_1]=[a_0,_0]$. В противном случае в отрезке $[c_0,b_0]$ содержатся значения бесконечного набора членов $\{x_n\}$, тогда определим $[a_1,b_1]=[c_0,b_0]$.

Пусть определён отрезок $[a_k,b_k]$, в котором содержатся значения бесконечного набора членов последовательности $\{x_n\}$. Обозначим $c_k=(a_k+b_k)/2$. Если в отрезке $[a_k,_k]$ содержатся значения бесконечного набора членов $\{x_n\}$, то определим $[a_{k+1},b_{k+1}]=[a_k,_k]$. В противном случае определим $[a_{k+1},b_{k+1}]=[c_k,b_k]$. Так как этот процесс не может оборваться, мы получаем последовательность вложенных отрезков, которые по теореме Кантора имеют общую точку $x\in\bigcap[a_k,b_k]$.

Заметим, что $b_k - a_k = \frac{b_0 - a_0}{2^k}$. Индукцией по k получаем, что $2^k > k \ \forall k \in \mathbb{N}$. Поэтому $b_k - a_k = \frac{b_0 - a_0}{2^k} \to 0$ при $k \to \infty$. Следовательно, для любого $\varepsilon > 0$ найдётся $k \in \mathbb{N}$: $b_k - a_k < \varepsilon/2$. Отсюда и из включения $x \in [a_k, b_k]$, получаем, что $[a_k, b_k] \subset U_{\varepsilon}(x)$. Итак,

$$\forall \varepsilon > 0 \; \exists k \in \mathbb{N} : \; [a_k, b_k] \subset U_{\varepsilon}(x).$$

Таким образом, для любого $\varepsilon > 0$ в $U_{\varepsilon}(x)$ содержатся значения бесконечного набора элементов $\{x_n\}$. В силу критерия частичного предела число x является частичным пределом $\{x_n\}$. \square

ЛЕММА 0.5. Если $\{x_n\}$ неограничена снизу, то $-\infty$ является её частичным пределом, если $\{x_n\}$ неограничена сверху, то $+\infty$ является её частичным пределом (при этом могут быть и другие частичные пределы).

Доказательство. Пусть последовательность $\{x_n\}$ неограничена сверху. Тогда для любого $N \in \mathbb{N}$ множество $\{x_n | n \in \mathbb{N}, n \geqslant N\}$ неограничено сверху. Поэтому

$$\forall \varepsilon > 0 \ \forall N \in \mathbb{N} \ \exists n \in \mathbb{N}, \ n \geqslant N: \ x_n > \frac{1}{\varepsilon},$$

т.е. $x_n \in U_{\varepsilon}(+\infty)$. Применяя критерий частичного предела, получаем, что $+\infty$ является частичным пределом $\{x_n\}$.

Случай, когда $\{x_n\}$ неограничена снизу, рассматривается аналогично. \square

ТЕОРЕМА 0.21. (Обобщённая теорема Больцано-Вейерштрасса) Любая числовая последовательность имеет конечный или бесконечный частичный предел.

Доказательство состоит в применении теоремы Больцано-Вейерштрасса и леммы 0.5.

0.11. Теорема о единственном частичном пределе

ТЕОРЕМА 0.22. Для любой последовательности $\{a_n\}$ и любого $A \in \mathbb{R}$ следующие условия эквивалентны:

- $(1) \lim_{n \to \infty} a_n = A;$
- (2) A является единственным частичным пределом $\{a_n\}$.

Доказательство.

 $(1){\Rightarrow}(2).$ Пусть $\{a_{n_k}\}$ — произвольная подпоследовательность $\{a_n\}.$ Условие (1) означает,что

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : \; \forall n \in \mathbb{N}, \; n \geqslant N \; \hookrightarrow \; a_n \in U_{\varepsilon}(A).$$

Так как $\{n_k\}$ — строго возрастающая последовательность натуральных чисел, то по индукции получаем, что $\forall k \in \mathbb{N} \hookrightarrow n_k \geqslant k$. Следовательно, при $k \geqslant N$ справедливы неравенства $n_k \geqslant k \geqslant N$. Поэтому

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : \; \forall k \in \mathbb{N}, \; k \geqslant N \; \hookrightarrow \; a_{n_k} \in U_{\varepsilon}(A).$$

Итак из условия (1) следует, что для любой последовательности $\{a_{n_k}\}$ справедливо соотношение $A=\lim_{n\to\infty}a_{n_k}$. Поэтому A является единственным частичным пределом $\{a_n\}$.

 $(2) \Rightarrow (1)$. Предположим противоположное: условие (2) выполнено, а условие (1) не выполнено, т.е.

$$\exists \varepsilon > 0 : \forall N \in \mathbb{N} \ \exists n \in \mathbb{N}, \ n \geqslant N : \ a_n \notin U_{\varepsilon}(A).$$
 (1)

Построим подпоследовательность $\{a_{n_k}\}$ такую, что

$$\forall k \in \mathbb{N} \hookrightarrow a_{n_k} \notin U_{\varepsilon}(A). \tag{2}$$

Из 1 следует существование числа $n_1 \in \mathbb{N}$ такого, что $a_{n_1} \not\in U_{\varepsilon}(A)$. Пусть на некотором шаге $k-1 \in \mathbb{N}$ определено значение $n_{k-1} \in \mathbb{N}$. Тогда в силу 1 существует натуральное число $n_k \geqslant 1+n_{k-1}$ такое, что $a_{n_k} \not\in U_{\varepsilon}(A)$. Таким образом, построена подпоследовательность $\{a_{n_k}\}$, удовлетворяющая 2. В силу обобщённой теоремы Больцано-Вейерштрасса последовательность $\{a_{n_k}\}$ имеет частичный предел $B \in \mathbb{R}$. При этом в силу 2 $B \neq A$. Поскольку подпоследовательность последовательности $\{a_{n_k}\}$ является подпоследовательностью последовательности $\{a_n\}$, то B является частичным пределом $\{a_n\}$, отличным от A, что противоречит условию (2). \square

0.12. Верхний и нижний пределы числовой последовательности

Определим точные грани подмножества расширенной числовой прямой $\bar{\mathbb{R}}.$

Определение 0.15. Пусть заданы множество $L\subseteq \bar{\mathbb{R}}$ и элементы $m\in \bar{\mathbb{R}},\,M\in \bar{\mathbb{R}}.$ Тогда

$$\begin{split} m &= \inf L \quad \stackrel{onp.}{\Leftrightarrow} \quad \left\{ \begin{array}{l} \forall x \in L \, \hookrightarrow \, x \geqslant m, \\ \forall m' \in \bar{\mathbb{R}} : m' > m \; \exists x \in L : \; m' > x. \end{array} \right. \\ M &= \sup L \quad \stackrel{onp.}{\Leftrightarrow} \quad \left\{ \begin{array}{l} \forall x \in L \, \hookrightarrow \, x \leqslant M, \\ \forall M' \in \bar{\mathbb{R}} : M' < M \; \exists x \in L : \; M' < x. \end{array} \right. \end{split}$$

Определение 0.16. Пусть $L \subseteq \mathbb{R}$ — множество всех конечных и бесконечных (со знаком) частичных пределов последовательности $\{x_n\}$. Тогда нижним (верхним) пределом последовательности $\{x_n\}$ называется

$$\underline{\lim_{n \to \infty}} x_n = \inf L \left(\overline{\lim_{n \to \infty}} x_n = \sup L \right).$$

ЛЕММА 0.6. Верхний и нижний пределы последовательности являются ее частичными пределами.

Доказательство. Пусть $L\subseteq \mathbb{R}$ — множество всех частичных пределов последовательности $\{x_n\}$. Обозначим $M=\varinjlim_{n\to\infty}x_n$. Зафиксируем произвольное число $\varepsilon>0$. по определению супремума существует $x\in L,\ x\in U_\varepsilon(M)$. Выберем число $\varepsilon'>0$ так, что $U_{\varepsilon'}\subseteq U_\varepsilon(M)$. в случае $M\in \mathbb{R}$ можно взять $\varepsilon'=\varepsilon-|M-x|$. в случае $M=+\infty,\ x\in \mathbb{R}$ можно взять $\varepsilon'=\varepsilon$. В случае $x=M=+\infty$ можно взять x=00 так как $x\in L$ 0 то по критерию частичного предела x=01 содержит значения бесконечного набора элементов x=02. Отсюда и из включения x=03 и из включения x=04 получаем, что x=05 содержит значения бесконечного набора элементов x=04. Снова применяя критерий частичного предела, получаем, что x=04 частичный предел x=05. Аналогично x=06 набора x=06 набора x=07 настичный предел x=08. Получаем, что x=09 настичный предел x=09. Получаем настичный предел x=09 настичный предел x

0.13. Критерий Коши сходимости числовой последовательности

Определение 0.17. Будем говорить, что последовательность $\{x_n\}$ фундаментальна или удовлетворяет условию Коши, если

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N}: \ \forall n, m \in \mathbb{N}, \ n \geqslant N, \ m \geqslant N \ \hookrightarrow \ |x_n - x_m| < \varepsilon.$$

ЛЕММА 0.7. Сходящаяся последовательность фундаментальна.

Доказательство. Пусть $\{x_n\}$ сходится к числу x. Тогда

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N}: \ \forall n \in \mathbb{N}, \ n \geqslant N \ \hookrightarrow \ |x_n - x| < \varepsilon/2$$

и, следовательно,

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N} : \ \forall n, m \in \mathbb{N}, \ n \geqslant N, \ m \geqslant N \ \hookrightarrow$$

$$\Rightarrow |x_n - x_m| \leq |x_n - x| + |x_m - x| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

ЛЕММА 0.8. Фундаментальная последовательность ограничена.

Доказательство. Пусть $\{x_n\}$ фундаментальна. Возьмём $\varepsilon=1$, тогда $\exists N=N(\varepsilon)\in\mathbb{N}: \ \forall n,m\in\mathbb{N},\ n\geqslant N,\ m\geqslant N \ \hookrightarrow \ |x_n-x_m|<\varepsilon$, следовательно, $\forall n\in\mathbb{N},\ n\geqslant N \ \hookrightarrow \ |x_N-x_n|<1$. Определим $M=\max\{|x_1|,\ldots,|x_{N-1}|,|x_N|+1\}$. Тогда $\forall n\in\mathbb{N} \ \hookrightarrow \ |x_n|\leqslant M$. \square

ТЕОРЕМА 0.23. (Критерий Коши) $\{x_n\}$ сходится \Leftrightarrow $\{x_n\}$ фундаментальна.

Доказательство. Если $\{x_n\}$ сходится, то по лемме 0.7 она фундаментальна. Пусть $\{x_n\}$ фундаментальна. По лемме 0.8 $\{x_n\}$ ограничена, следовательно, по теореме Больцано-Вейерштрасса существует $x \in \mathbb{R}$ — частичный предел $\{x_n\}$. Докажем, что $\lim_{n \to \infty} x_n = x$.

Пусть задано любое $\varepsilon > 0$. Из фундаментальности $\{x_n\}$ следует существование номера N такого, что

$$\forall n, m \in \mathbb{N}, \ n \geqslant N, \ m \geqslant N \ \hookrightarrow \ |x_n - x_m| < \varepsilon/2.$$

В силу критерия частичного предела найдётся номер $m\geqslant N$ такой, что $|x-x_m|<\varepsilon/2$. Следовательно,

$$\forall n \in \mathbb{N}, n \geqslant N \hookrightarrow |x_n - x| \leqslant |x_n - x_m| + |x_m - x| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Итак,

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \ \forall n \in \mathbb{N}, \ n \geqslant N \ \hookrightarrow \ |x_n - x| < \varepsilon.$$

Поэтому последовательность $\{x_n\}$ сходится к x. \square

0.14. Определение предела функции в точке по Коши и по Гейне, их эквивалентность

Определение 0.18. Пусть задано число $\delta>0$. Проколотой δ -окрестностью элемента $x_0\in\overline{\mathbb{R}}\cup\{\infty\}$ называется множество

$$\overset{\circ}{U}_{\delta}(x_0) = U_{\delta}(x_0) \setminus \{x_0\}.$$

В частности, $\overset{o}{U}_{\delta}(x_0)=U_{\delta}(x_0)$ при $x_0\in\{-\infty,+\infty,\infty\}$, и для любого $x_0\in\mathbb{R}$ справедливы равенства

$$\overset{o}{U}_{\delta}(x_0) = (x_0 - \delta, x_0) \bigcup (x_0, x_0 + \delta) = \{x \in \mathbb{R} : 0 < |x - x_0| < \delta\}.$$

Определение 0.19. (Определение предела по Коши.) Пусть задана функция $f:X\to\mathbb{R}$ и заданы $A\in\overline{\mathbb{R}}\cup\{\infty\},\,x_0\in\overline{\mathbb{R}}\cup\{\infty\},$ причём $\exists \delta_0>0\colon \stackrel{\circ}{U}_{\delta_0}(x_0)\subseteq X.$ Тогда пишут

$$A = \lim_{x \to x_0} f(x) \text{ unu } f(x) \to A \text{ npu } x \to x_0,$$

ecnu

$$\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) \in (0; \delta_0] : \; \forall x \in \overset{\circ}{U_{\delta}}(x_0) \; \hookrightarrow \; f(x) \in U_{\varepsilon}(A). \tag{3}$$

Замечание 0.6. Условие $\delta(\varepsilon) \in (0; \delta_0]$ в формуле (3) обеспечивает то, что для любого $x \in \overset{\circ}{U}_{\delta}(x_0)$ значение f(x) определено. Если $D(f) = \mathbb{R}$, то вместо $\delta(\varepsilon) \in (0; \delta_0]$ в формуле (3) можно писать $\delta > 0$.

Замечание 0.7. То, как определена (и определена ли вообще) функция f в точке x_0 , не влияет на $\lim_{x\to x_0} f(x)$.

В частности, если $A \in \mathbb{R}$, $x_0 \in \mathbb{R}$, а функция f определена на всей числовой прямой, то

- 1) $\lim_{x \to x_0} f(x) = A \Leftrightarrow$
- $\Leftrightarrow \forall \varepsilon > 0 \; \exists \delta > 0 : \; \forall x : \; 0 < |x x_0| < \delta \; \hookrightarrow \; |f(x) A| < \varepsilon;$
- 2) $\lim_{x \to x_0} f(x) = +\infty \Leftrightarrow$
- $\Leftrightarrow \forall \varepsilon > 0 \; \exists \delta > 0: \; \forall x: \; 0 < |x x_0| < \delta \; \hookrightarrow \; f(x) > \frac{1}{\varepsilon};$
- 3) $\lim_{x \to -\infty} f(x) = +\infty \Leftrightarrow$
- $\Leftrightarrow \forall \varepsilon > 0 \; \exists \delta > 0: \; \forall x: \; x < -\frac{1}{\delta} \; \hookrightarrow \; f(x) > \frac{1}{\varepsilon}.$

Определение 0.20. Последовательность $\{x_n\}$ называется последовательностью Гейне в точке $x_0 \in \overline{\mathbb{R}}$, если

- $1) \lim_{n \to \infty} x_n = x_0 \ u$
- 2) $x_n \neq x_0 \ \forall n \in \mathbb{N}$.

Определение 0.21. (Определение предела по Гейне.) Π усть задана функция $f: X \to \mathbb{R}$ и заданы элементы $A \in \overline{\mathbb{R}} \cup \{\infty\}$, $x_0 \in \overline{\mathbb{R}} \cup \{\infty\}$. Тогда пишут $A = \lim_{x \to x_0} f(x)$, если для любой $\{x_n\}$ последовательности Гейне в точке x_0 такой, что $x_n \in X$ при всех $n \in \mathbb{N}$, предел последовательности $\{f(x_n)\}$ существует и равен A.

ТЕОРЕМА 0.24. Пусть задана функция $f: X \to \mathbb{R}$, пусть $x_0, A \in$ $\overline{\mathbb{R}} \cup \{\infty\}$ и $U_{\delta_0}(x_0) \subseteq X$, $\delta_0 > 0$. Следующие условия эквивалентны:

- (1) $A = \lim_{x \to x_0} f(x)$ no Kowu; (2) $A = \lim_{x \to x_0} f(x)$ no Feüne.

Доказательство.

(1) \Rightarrow (2). Пусть $A = \lim_{x \to x_0} f(x)$ по Коши, т.е.

$$\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) \in (0; \delta_0] : \; \forall x \in \overset{\circ}{U}_{\delta}(x_0) \; \hookrightarrow \; f(x) \in U_{\varepsilon}(A). \tag{4}$$

Пусть $\{x_n\}$ — произвольная последовательность Гейне в точке x_0 . Тогда по определению предела последовательности и в силу условия $x_n \neq x_0$ имеем

$$\forall \delta > 0 \; \exists N = N(\delta) \in \mathbb{N} : \; \forall n \in \mathbb{N}, \; n \geqslant N \; \hookrightarrow \; x_n \in \overset{\circ}{U_{\delta}} (x_0). \tag{5}$$

Применим (5) к δ из (4), тогда

$$\forall \varepsilon > 0 \ \exists N = N(\delta) \in \mathbb{N} : \ \forall n \in \mathbb{N}, \ n \geqslant N \ \hookrightarrow \ f(x_n) \in U_{\varepsilon}(A),$$

т.е. $\lim_{n\to\infty}f(x_n)=A$. Значит, $A=\lim_{x\to x_0}f(x)$ по Гейне.

(2) \Rightarrow (1). Предположим противное: $A = \lim_{x \to x_0} f(x)$ по Гейне, но не по Коши.

Тогда

$$\exists \varepsilon > 0 : \forall \delta \in (0; \delta_0] \ \exists x \in \overset{\circ}{U_\delta} (x_0) : f(x) \notin U_{\varepsilon}(A).$$

Следовательно,

$$\exists \varepsilon > 0 : \forall n \in \mathbb{N} \ \exists x_n \in \overset{\circ}{U}_{\delta_0/n} (x_0) : \ f(x_n) \notin U_{\varepsilon}(A).$$

Из условия $\forall n \in \mathbb{N} \hookrightarrow \exists x_n \in \overset{o}{U}_{\delta_0/n} (x_0)$ следует, что $\lim_{n \to \infty} = x_0$ и $x_n \neq x_0 \ \forall n \in \mathbb{N}$. Таким образом, мы получили последовательность Гейне $\{x_n\}$ в точке x_0 такую, что $f(x_n) \nrightarrow A$ при $n \to \infty$ — противоречие. \square

0.15. Критерий Коши существования предела функции

ЛЕММА 0.9. Пусть функция f определена в некоторой $\overset{\circ}{U}_{\delta_0}(x_0)$, $x_0 \in \overline{\mathbb{R}}$, u пусть для любой последовательности Гейне $\{x_n\}$ в точке x_0 существует $\lim_{n \to \infty} f(x_n) = A \in \mathbb{R}$.

Тогда этот предел не зависит от последовательности Гейне: $\exists A \in \mathbb{R}$: для любой последовательности Гейне $\{x_n\}$ в точке $x_0 \hookrightarrow A = \lim_{n \to \infty} f(x_n)$.

Доказательство. Пусть имеются две произвольные последовательности Гейне в точке x_0 : $\{x_n\}$ и $\{y_n\}$, т.е. $\lim_{n\to\infty} x_n = x_0$, $\lim_{n\to\infty} y_n = x_0$ и $\forall n\in\mathbb{N}\hookrightarrow x_n\neq x_0,\ y_n\neq y_0$. Составим из них последовательность $\{z_k\}$:

$$z_k = \begin{cases} x_n, & k = 2n - 1, \\ y_n, & k = 2n. \end{cases}$$

Последовательность $\{z_k\}$ также является последовательностью Гейне, так как $\lim_{k\to\infty}z_k=x_0,\,\forall k\in\mathbb{N}\hookrightarrow z_k\neq x_0.$ Поэтому в силу условия леммы, $\exists\lim_{k\to\infty}f(z_k).$ Так как последовательности $\{f(x_n\}\text{ и }\{f(y_n\}\text{ являются подпоследовательностями сходящейся последовательности }\{f(z_k\},\text{ то }\lim_{n\to\infty}f(x_n)=\lim_{n\to\infty}f(y_n).$

Определение 0.22. Пусть функция f определена в некоторой $\stackrel{o}{U}_{\delta_0}(x_0)$. Условие Коши существования предела функции в точке x_0 состоит в том, что

$$\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) \in (0; \delta_0] : \; \forall x_1, x_2 \in \overset{\circ}{U}_{\delta} (x_0) \; \hookrightarrow \; |f(x_1) - f(x_2)| < \varepsilon. \tag{6}$$

ТЕОРЕМА 0.25. (Критерий Коши.)

 $\exists \lim_{x \to x_0} f(x) \in \mathbb{R} \Leftrightarrow$ выполнено условие Коши существования предела функции f в точке x_0 .

Доказательство.

$$(\Rightarrow)$$
 Пусть $\exists \lim_{x \to x_0} f(x) = A \in \mathbb{R}$. Тогда

$$\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) \in (0; \delta_0] : \; \forall x \in \overset{\circ}{U_{\delta}}(x_0) \; \hookrightarrow \; |f(x) - A| < \varepsilon/2.$$

Следовательно,

$$\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) \in (0; \delta_0] : \; \forall x_1, x_2 \in \stackrel{o}{U}_{\delta}(x_0) \; \hookrightarrow \;$$

$$\Rightarrow |f(x_1) - f(x_2)| \leq |f(x_1) - A| + |f(x_2) - A| < \varepsilon/2 + \varepsilon/2 < \varepsilon,$$

т.е. выполнено условие Коши.

 (\Leftarrow) Пусть выполнено условие Коши. Возьмём произвольную последовательность Гейне в точке x_0 : $x_n \to x_0$, $x_n \ne x_0$. Тогда

$$\forall \delta \in (0; \delta_0] \ \exists N \in \mathbb{N}: \ \forall n \geqslant N \ \hookrightarrow \ x_n \in \overset{\circ}{U}_{\delta} (x_0). \tag{7}$$

Используя условие (7) для δ из (6), получаем

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n, k \in \mathbb{N}, n \geqslant N, k \geqslant N \ \hookrightarrow \ |f(x_n) - f(x_k)| < \varepsilon,$$

т.е. выполнено условие Коши существования предела последовательности $\{f(x_n)\}$. В силу критерия Коши для последовательностей существует $\lim_{n\to\infty} f(x_n) = A \in \mathbb{R}$.

Итак, для любой последовательности Гейне $\{x_n\}$ в точке x_0 существует $A=\lim_{n\to\infty}f(x_n)\in\mathbb{R},$ тогда по лемме 0.9

$$\exists A \in \mathbb{R}: \ \forall \ \text{посл.}$$
 Гейне $\{x_n\}$ в точке $x_0 \hookrightarrow A = \lim_{n \to \infty} f(x_n)$.

Пользуясь определением предела функции по Гейне, получаем $\exists \lim_{x \to x_0} f(x) = A \in \mathbb{R}.$ \Box

0.16. Существование односторонних пределов у монотонных функций

ТЕОРЕМА 0.26. (Об одностороннем пределе монотонной функции.)

1. Если функция f нестрого возрастает на $(a,x_0),$ то $\exists f(x_0-0)=\sup_{x\in(a,x_0)}f(x).$

- 2. Если функция f нестрого убывает на (a,x_0) , то $\exists f(x_0-0)=\inf_{x\in(a,x_0)}f(x).$
- 3. Если функция f нестрого возрастает на $(x_0,b),$ то $\exists f(x_0+0)=\inf_{x\in(x_0,b)}f(x).$
- 4. Если функция f нестрого убывает на $(x_0,b),\ mo\ \exists f(x_0+0)=\sup_{x\in(x_0,b)}f(x).$

Доказательство. Пусть функция f нестрого возрастает на (a,x_0) . Так как конечный или бесконечный супремум любого множества существует, то существует $\sup_{x\in(a,x_0)}f(x)=M\in\mathbb{R}\bigcup\{+\infty\}.$

Из определения супремума следует, что $\forall x \in (a, x_0) \hookrightarrow f(x) \leqslant M$ и, кроме того, $\forall M_1 < M \ \exists x_1 \in (a, x_0) : M_1 < f(x_1)$. Отсюда и из возрастания функции f следует, что $\forall x \in x_1, x_0 \hookrightarrow M_1 < f(x_1) \leqslant f(x)$.

Итак, $\forall M_1 < M \ \exists x_1 \in (a,x_0) : \forall x \in x_1, x_0 \hookrightarrow M_1 < f(x_1) \leqslant f(x)$. Следовательно, $\forall \varepsilon > 0 \ \exists x_1 \in (a,x_0) : \forall x \in x_1, x_0 \hookrightarrow f(x) \in U_\varepsilon(M)$, т.е. $\forall \varepsilon > 0 \ \exists \delta = x_0 - x_1 > 0 : \forall x \in x_0 - \delta, x_0 \hookrightarrow f(x) \in U_\varepsilon(M)$, а значит, $M = f(x_0 - 0)$. Другие случаи рассматриваются аналогично. \square

0.17. Непрерывность функции в точке. Непрерывность сложной функции

Определение 0.23. Пусть функция f определена в некоторой δ -окрестности точки x_0 . Тогда f называется непрерывной в точке x_0 , если $\lim_{x \to x_0} = f(x_0)$.

Определение 0.24. Пусть функция f определена на $(a, x_0]$. Тогда f называется непрерывной слева в точке x_0 , если $f(x_0-0)=f(x_0)$.

Пусть функция f определена на $[x_0,b)$. Тогда f называется непрерывной справа в точке x_0 , если $f(x_0+0)=f(x_0)$.

ЛЕММА 0.10. Пусть f определена в $U_{\delta_0}(x_0)$. Следующие условия эквивалентны:

- (1) f непрерывна в x_0 ;
- (2) $\forall \varepsilon > 0 \ \exists \delta \in (0, \delta_0] : \ \forall x \in U_\delta(x_0) \ \hookrightarrow \ |f(x) f(x_0)| < \varepsilon;$
- (3) $\forall \{x_n\} \subset U_{\delta_0}(x_0) : \lim_{n \to \infty} x_n = x_0 \hookrightarrow \lim_{n \to \infty} f(x_n) = f(x_0).$

Доказательство.

- (1) \Leftrightarrow (2) следует из определения $\lim_{x\to x_0} f(x) = f(x_0)$ по Коши. В данном случае условие $x\neq x_0$ можно не писать, так как при $x=x_0$ выполняется $|f(x)-f(x_0)|=0<\varepsilon$.
- (1) \Leftrightarrow (3) следует из определения $\lim_{x\to x_0}f(x)=f(x_0)$ по Гейне. В данном случае условие $x\neq x_0$ можно не писать, так как при $x=x_0$ выполняется $f(x_n)=f(x_0)$. \square

ТЕОРЕМА 0.27. (О пределе сложной функции)

Пусть заданы функции $y: \overset{\circ}{U}_{\delta_0}(x_0) \to \mathbb{R}$ и $f:\overset{\circ}{U}_{\beta_0}(y_0) \to \mathbb{R}$, пусть $\lim_{x \to x_0} y(x) = y_0 \in \overline{\mathbb{R}}$, $\lim_{y \to y_0} f(y) = A \in \overline{\mathbb{R}}$ и пусть выполнено хотя бы одно из следующих дополнительных условий:

- (a) $\exists \delta_0 > 0$: $\forall x \in \overset{\circ}{U}_{\delta_0}(x_0) \hookrightarrow y(x) \neq y_0 \text{ unu}$
- (б) $f(y_0) = A$ (т.е. функция f непрерывна в точке y_0).

Тогда сложная функция $\varphi(x)=f(y(x))$ определена в некоторой $\overset{\circ}{U}_{\delta}(x_0)$ и $\exists \lim_{x\to x_0} f(y(x))=\lim_{y\to y_0} f(y)=A.$

Доказательство. Зафиксируем произвольное число $\varepsilon>0$. Так как $\lim_{y\to y_0}f(y)=A$, то

$$\exists \beta \in (0, \beta_0) : \forall y \in \overset{\circ}{U}_{\beta} (y_0) \hookrightarrow f(y) \in U_{\varepsilon}(A). \tag{8}$$

По определению предела $\lim_{x \to x_0} y(x) = y_0$

$$\exists \delta \in (0, \delta_0) : \forall x \in \overset{\circ}{U}_{\delta}(x_0) \hookrightarrow y(x) \in U_{\beta}(y_0). \tag{9}$$

Покажем, что сложная функция $\varphi(x)=f(y(x))$ определена в $\overset{\circ}{U}_{\delta}(x_0)$ и

$$\forall x \in \overset{\circ}{U}_{\delta}(x_0) \hookrightarrow f(y(x)) \in U_{\varepsilon}(A). \tag{10}$$

Зафиксируем произвольную точку $x\in \overset{\circ}{U_{\delta}}(x_0)$. В силу условия (9) получаем $y(x)\in U_{\beta}(y_0)$. В случае $y(x)\neq y_0$ имеем $y(x)\in \overset{\circ}{U_{\beta}}(y_0)$, и согласно (8) включение $f(y)\in U_{\varepsilon}(A)$ выполнено. Рассмотрим случай $y(x)=y_0$. В этом случае дополнительное условие (а) реализоваться не может. Следовательно, реализуется дополнительное условие (б), а значит, $f(y(x))=f(y_0)=A\in U_{\varepsilon}(A)$. Таким образом, доказано соотношение (10). Итак,

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \; \forall x \in \overset{\circ}{U}_{\delta} (x_0) \; \hookrightarrow \; f(y(x)) \in U_{\varepsilon}(A).$$

Следовательно, $\lim_{x \to x_0} f(y(x)) = A$. \square

ТЕОРЕМА 0.28. (О непрерывности сложной функции в точке)

Пусть функция у определена в некоторой $U_{\delta_0}(x_0)$ и непрерывна в точке x_0 . Пусть функция f определена в некоторой $U_{\beta_0}(y_0)$ и непрерывна в точке $y_0=y(x_0)$. Тогда сложная функция $\varphi(x)=f(y(x))$ определена в некоторой $U_{\delta_1}(x_0)$ и непрерывна в точке x_0 .

Доказательство состоит в применении пункта (б) теоремы о пределе сложной функции для случая $y_0 = y(x_0)$.

0.18. Ограниченность функции, непрерывной на отрезке. Достижение точной верхней и точной нижней граней функцией, непрерывной на отрезке

Определение 0.25. Функция, определённая на отрезке [a,b] и непрерывная в каждой его точке, называется непрерывной на этом отрезке. При этом под непрерывностью в точках a,b понимается непрерывность справа и слева соответственно. Аналогично определяется непрерывность на интервале, на полуинтервале.

Определение 0.26. Будем говорить, что функция f, определённая на множестве X, достигает на X своей верхней (нижней) грани, если

$$\exists x_0 \in X : f(x_0) = \sup_{x \in X} f(x) \left(f(x_0) = \inf_{x \in X} f(x) \right).$$

ТЕОРЕМА 0.29. (Теорема Вейерштрасса)

Функция, непрерывная на отрезке, ограничена и достигает на нём своих верхней и нижней граней.

Доказательство. Пусть функция f непрерывна на отрезке [a,b], и пусть $B:=\sup_{x\in [a,b]}f(x)\leqslant +\infty.$ В силу определения верхней грани

$$\forall n \in \mathbb{N} \ \exists x_n \in [a, b] : \ f(x_n) \in U_{1/n}(B).$$

Следовательно, $f(x_n) \to B$ при $n \to \infty$.

Последовательность $\{x_n\}$ ограничена, так как $a \leqslant x_n \leqslant b \ \forall n \in \mathbb{N}$. По теореме Больцано-Вейерштрасса из неё можно выделить схдящуюся подпоследовательность $\{x_{n_k}\}$, $x_{n_k} \to x_0$ при $k \to \infty$.

Переходя к пределу в неравенстве $a \leqslant x_{n_k} \leqslant b$, получаем, что $x_0 \in [a,b]$. В силу непрерывности в точке x_0 функции f имеем

$$f(x_{n_k}) \to f(x_0)$$
 при $k \to \infty$.

С другой стороны, $\{f(x_{n_k})\}$ — подпоследовательность сходящейся к B последовательности. Поэтому

$$f(x_{n_k}) \to B$$
 при $k \to \infty$.

Из последних двух соотношений получаем, что

$$\sup_{x \in [a,b]} f(x) = B = f(x_0).$$

Отсюда следует, во-первых, что $\sup_{x\in[a,b]}f(x)<+\infty$, т.е. что функция f ограничена сверху, и, во-вторых, что функция f достигает своей верхней грани в точке x_0 .

Аналогично можно доказать, что функция f ограничена снизу и достигает своей нижней грани. \square

Задача 0.3. Сохранится ли доказательство теоремы Вейерштрасса, если в её условиях отрезок [a,b] заменить на интервал (a,b)? Останется ли верным её утверждение?

Следствие 0.4. Пусть функции f непрерывна на отрезке [a,b], и пусть $f(x) > 0 \ \forall x \in [a,b]$. Тогда $\exists d > 0 : f(x) \geqslant d \ \forall x \in [a,b]$.

Определение 0.27. Пусть функция f задана на X и для некоторой точки $x_0 \in X$ справедливо неравенство

$$f(x) \leqslant f(x_0) \ \forall x \in X.$$

Тогда точка x_0 называется точкой максимума функции f на X. Значение $f(x_0)$ называется максимумом функции f на X и обозначается $\max_X f$.

Аналогично определяются точка минимума функции f на X и минимум f на X, обозначаемый $\min_X f$.

Теорема Вейерштрасса утверждает, в частности, что непрерывная на отрезке функция имеет на этом отрезке максимум и минимум.

0.19. Теорема о промежуточных значениях непрерывной функции

ТЕОРЕМА 0.30. (Теорема Коши о промежуточном значении функции)

Пусть функция f непрерывна на отрезке [a,b], f(a)=A, f(b)=B. Пусть C находится между A и B: $A\leqslant C\leqslant B$ или $B\leqslant C\leqslant A$. Тогда

$$\exists \xi \in [a, b] : f(\xi) = C.$$

Доказательство. Пусть, для определённости, $A=f(a)\leqslant C\leqslant f(b)=B$. Поделим отрезок [a,b] пополам и через $[a_1,b_1]$ обозначим такую его половину, для которой $f(a_1)\leqslant C\leqslant f(b_1)$. Затем поделим отрезок $[a_1,b_1]$ пополам и через $[a_2,b_2]$ обозначим такую его половину, для которой $f(a_2)\leqslant C\leqslant f(b_2)$. Продолжая процесс, получим стягивающуюся систему вложенных отрезков $\{[a_n,b_n]\}$, для которых

$$f(a_n) \leqslant C \leqslant f(b_n).$$

Пусть $\xi \in [a_n,b_n] \ \forall n \in \mathbb{N}$. Тогда $a_n \to \xi,\ b_n \to \xi$ при $n \to \infty$ и (в силу непрерывности функции f в точке ξ)

$$f(a_n) \to f(\xi), \ f(b_n) \to f(\xi)$$
 при $n \to \infty$.

Переходя к пределу в последнем неравенстве, получаем

$$f(\xi) \leqslant C \leqslant f(\xi) \Rightarrow f(\xi) = C.$$

Следствие 0.5. Пусть функция f непрерывна на [a,b], причём f(a) и f(b) имеют разные знаки. Тогда

$$\exists \xi \in (a,b): \ f(\xi) = 0.$$

Следствие 0.6. Пусть функция f непрерывна на [a,b], $m=\min_{[a,b]}f$, $M=\max_{[a,b]}f$. Тогда функция f принимает все значения из [m,M] и только эти значения.

0.20. Теорема об обратной функции

ЛЕММА 0.11. Пусть функция $f: X \to f(X)$ строго монотонна на множестве X. Тогда обратная функция $f^{-1}: f(X) \to X$ строго монотонная на множестве f(X).

Доказательство см. лекции.

ТЕОРЕМА 0.31. Пусть функция $f:[a,b] \to \mathbb{R}$ строго возрастает и непрерывна.

Тогда обратная функция задана на отрезке [A,B] = [f(a),f(b)], строго возрастает и непрерывная на нём.

Доказательство.

Найдем область значений Y_f функции f. Поскольку $A \leq f(x) \leq B$ для всех $x \in [a,b]$, то $Y_f \subseteq [A,B]$. С другой стороны, по теореме Коши для любого $C \in [A,B]$ существует $c \in [a,b]$: f(c) = C, так что $[A,B] \subseteq Y_f$. Следовательно, $Y_f = [A,B]$.

Строгое возрастание f^{-1} следует из леммы.

Установим непрерывность f^{-1} . Пусть сначала $y_0 \in (A, B)$, так что $x_0 = f^{-1}(y_0) \in (a, b)$. Пусть $\varepsilon > 0$ столь мало, что

$$[x_0 - \varepsilon, x_0 + \varepsilon] \subseteq [a, b].$$

Положим $y_1 := f(x_0 - \varepsilon)$ и $y_2 := f(x_0 + \varepsilon)$.

Функция f устанавливает взаимно однозначное соответствие отрезка $[x_0-\varepsilon,x_0+\varepsilon]$ и отрезка $[y_1,y_2]\subseteq [A,B]$ (рис. 1). При этом $y_1< y_0< y_2$. Возьмем $\delta>0$ столь малым, что $(y_0-\delta,y_0+\delta)\subseteq (y_1,y_2)$. Тогда

$$f^{-1}(U_{\delta}(y_0)) \subseteq f^{-1}((y_1, y_2)) = U_{\varepsilon}(x_0).$$

Следовательно, функция f^{-1} непрерывна в точке y_0 .

Пусть теперь $y_0 = A$ или $y_0 = B$. Тогда (односторонняя) непрерывность f^{-1} в точке y_0 доказывается аналогично (с использованием односторонних окрестностей).

Г

ТЕОРЕМА 0.32. Пусть функция $f:(a,b)\to\mathbb{R}$ задана на интервале (a,b), строго возрастает и непрерывна на нем. Тогда обратная функция задана, строго возрастает и непрерывна на интервале (A,B), где

$$A = \inf_{(a,b)} f, \quad B = \sup_{(a,b)} f.$$

Доказательство.

Найдем область значений Y_f функции f. Покажем, что

$$A < f(x) < B \quad \forall x \in (a, b). \tag{11}$$

В самом деле, допущение, например, того, что $f(x_0) \ge B$ при некотором $x_0 \in (a,b)$, означало бы в силу строгого возрастания f, что f(x) > B для всех $x \in (x_0,b)$, что противоречит условию $B = \sup_{\{a,b\}} f$.

Покажем теперь, что

$$\forall y_0 \in (A, B) \ \exists x_0 \in (a, b) : f(x_0) = y_0.$$
 (12)

Из определений inf и sup следует, что

$$\exists x_1, x_2 \in (a, b) : f(x_1) < y_0, f(x_2) > y_0.$$

Применяя к сужению функции f на отрезок $[x_1, x_2]$ теорему Коши о промежуточном значении непрерывной функции, получаем, что

$$\exists x_0 \in [x_1, x_2] : f(x_0) = y_0.$$

Таким образом, утверждение (12) установлено.

Из (11), (12) следует, что
$$f((a,b)) = (A,B)$$
.

Остается показать, что обратная функция f^{-1} непрерывна в каждой точке $y_0 \in (A, B)$. Это делается так же, как и в теореме 3. \square

Аналогично формулируются вариант теоремы 4 для функции, строго убывающей на интервале, а также варианты теоремы об обратной функции для полуинтервалов.