

Fotonik för C och D

MARTIN HANSSON Atomfysik, LTH

Dagens föreläsning

- Introduktion
 - Kursinformation
 - Vad är fotonik?
- Introduktion till optiken
- Geometrisk optik
 - Reflektion och brytning
- Information om projekten i FAFF25
 - kl 14.40
 - Endast för årskurs 3

- Två kurskoder
 - FAFF25 Delkurs f\u00f6r \u00e4rskurs 3
 - FAFA60 Självständig kurs för årskurs 1
- Kursens hemsida på:
 - http://www.atomic.physics.lu.se/education/mandatory-courses/faff25/
- Tre obligatoriska moment
 - Laboration i Geometrisk optik
 - Laboration i Ljusets böjning och interferens
 - Tentamen den 17 mars 2017 kl 14-19 i Victoriastadion

Schema

Hitta rätt

Lärarlag

Föreläsningar

Martin Hansson

Övningar

Olle Lundh

Henrik Ekerfelt

Marcus Isinger

Kurssekreterare

Kerstin Nilsson

Laborationer

9 doktorander och forskare från 4 olika avdelningar vid Fysiska institutionen.

Schema

- 1. Geometrisk optik
 - Brytning
 - Reflektion
 - Avbildning
- 2. Våglära
 - Interferens
 - Böjning
- 3. Fotonik
 - Fiberoptik
 - Lasern
 - Detektorer

Plan för föreläsningar

Föreläsningar hålls på kursmaterialet enligt följande schema. Observera att de två första föreläsningarna ges i kårhusets aula.

Måndag	16/1	Kårhusets aula	VO12	Reflektion och brytning	
Onsdag	18/1	Kårhusets aula	VO13, VO14	Avbildning med linser samt plana och buktiga speglar.	
Måndag	23/1	E:A	VO15	Optiska instrument	
Onsdag	25/1	E:A	VO3, VO4, VO11	Vågrörelsen och elektromagnetiska vågor. Interferens.	
Måndag	30/1	E:A	VO16	Böjning och upplösning	
Onsdag	1/2	E:A	VO17	Interferens och upplösning	
Måndag	6/2	E:A	VO18	Interferens i tunna skikt	
Onsdag	8/2	E:A	VO20	Ljusets polarisation	
Måndag	13/2	E:A	FO	Introduktion till fiberoptik	
Onsdag	15/2	E:A	FO	Moder, dämpning och dispersion	
Måndag	20/2	E:A	TA5, TA11	Lasern och optiska detektorer	
Onsdag	22/2	E:A	FO	Fiberoptiska system	
Måndag	27/2	E:A		Repetition (reserv)	
Måndag	6/3	E:A		Repetition och räkning av extentamen	

Litteratur

• Tre kursavsnitt – tre böcker

- E-bok
- Länk på kurshemsidan

Utdrag distribueras under kursens gång

Laborationer

- Geometrisk optik
- Ljusets böjning och interferens
 - Vågoptik
- Laborationerna utföres parvis
- 8 studenter per laborationsgrupp
 - Totalt 280 studenter ⇒ 36 grupper
- Anmälan till grupperna online:
 - http://www.signupgenius.com/go/409
 044da4ab2da0ff2-laborationsgrupper

Frivillig datoruppgift

- Övning i praktisk problemlösning
 - Numeriska lösning
 - MATLAB, C, FORTRAN, etc...
- Tre deluppgifter
 - Ger upp till 3 extrapoäng på ordinarie tentamen
- Uppgiften publiceras den 13 februari
- Utförs parvis
- Inlämning av skriven rapport
 - Senast den 6 mars
 - Via urkund

Fotonik i tillverkningsindustrin

Fotonik i vardagen

Fotonik i vardagen

Fotonik för C och D

Civilingenjörsutbildningen och arbetsmarknaden

- FlatFrog
- Axis
- SpectraCure
- Gasporox
- Cellavision
- Flir
- Sony Mobiles

Fotonik för C och D

Civilingenjörsutbildningen och arbetsmarknaden

- FlatFrog
- Axis
- SpectraCure
- Gasporox
- Cellavision
- Flir
- Sony Mobiles

MAX IV-laboratoriet

F1 Introduktion till optik

REFLEXION OCH BRYTNING

Vad är ljus?

Stråle, partikel eller våg?

- Vågor Huygens (1629 1695)
- Partiklar Newton (1642 1727)
- Vågor Young (1773 1829)
- Partiklar Planck (1858 1947)
- Vågor Maxwell (1831 1879)
- Partiklar Einstein (1879 1955)
- Både våg och partikel?
- Varken våg eller partikel?

SELF-IDENTITY

PROBLEMS

Ljus som en vågrörelse

Ljusets frekvens: f [Hz] Ljusets hastighet i vakuum: c = 299792458 m/sLjusets våglängd: $\lambda = c/f$ Elektriskt fält Utbredningsriktning Magnetiskt fält

Det elektromagnetiska spektrumet

Brytningsindex

Definition

Ljusets frekvens är en utbredningskonstant

$$f = \frac{c}{\lambda_{vak}} = \frac{v}{\lambda_{mat}}$$

Definitionen av brytningsindex: $n \equiv \frac{c}{v}$ $n = \frac{\lambda_{vak}}{\lambda}$

Brytningsindex Exempel

Definitionen av brytningsindex:
$$n \equiv \frac{c}{v}$$
 $n = \frac{\lambda_{vak}}{\lambda_{mat}}$

Brytningsindex uppmätt med λ = 589 nm vid 20°C

Vatten	1,333	Kronglas (FK5)	1,487
Dietyleter	1,353	Kronglas (BK7)	1,517
Etanol	1,361	Kanadabalsam	1,542
Glycerin	1,455	Flintglas (F2)	1,620
Bensen	1,501	Flintglas (SF10)	1,728
Kolsvavla	1,628	Flintglas (SFS1)	1,922
Is (0°C)	1,31	Kvarts	1,458
NaCl	1,544	Plexiglas	1,49-1,52
Polystyren	1,59	Diamant	2,417

Brytningslagen

Brytningslagen

Brytningslagen

Totalreflektion

Gränsvinkel för totalreflektion: $\alpha_{g} = \arcsin \frac{n_{t}}{n_{i}}$

Sammanfattning

Reflexion och brytning

Brytningsindex:
$$n = \frac{\lambda_{vak}}{\lambda_{mat}} = \frac{c}{v}$$

Brytningslagen: $n_i \sin \alpha_i = n_t \sin \alpha_t$

Reflektionslagen: $\alpha_r = \alpha_i$

Totalreflektion, gränsvinkel: $\alpha_g = \arcsin \frac{n_t}{n_i}$