

Outro exemplo...

Prioridades.

Suponha que existam três processos que podem ocorrer. Deve ocorrer primeiro (e somente este) oque tiver maior prioridade.

Adjacências

Função de 2 variáveis								
Α	В	Mint.	Adjac.		Α			
0	0	0	1,2		0			
0	1	1	0,3		0			
1	0	2	0,3		0			
1	1	3	1,2		0			
		-			1			

	Função de 3 variáveis							
Α	В	С	Mint.	Adjac.				
0	0	0	0	1,2,4				
0	0	1	1	0,3,5				
0	1	0	2	0,3,6				
0	1	1	3	1,2,7				
1	0	0	4	0,5,6				
1	0	1	5	1,4,7				
1	1	0	6	2,4,7				
1	1	1	7	3,5,6				

Função de 4 variáveis								
Α	В	С	D	Mint.	Adjac.			
0	0	0	0	0	1,2,4,8			
0	0	0	1	1	0,3,5,9			
0	0	1	0	2	0,3,6,10			
0	0	1	1	3	1,2,7,11			
0	1	0	0	4	0,5,6,12			
0	1	0	1	5	1,4,7,13			
0	1	1	0	6	2,4,7,14			
0	1	1	1	7	3,5,6,15			
1	0	0	0	8	0,9,10,12			
1	0	0	1	9	1,8,11,13			
1	0	1	0	10	2,8,11,14			
_1	0	1	1	11	3,9,10,15			
1	1	0	. 0	12	4,8,13,14			
1	1	0	1	13	5,9,12,15			
1	1	1	0	14	6,10,12,15			
1	1	1	1	15	7,11,13,14			

Mapa de Karnaugh

Passo 1: Construa o mapa de Karnaugh e coloque os 1s nas células que correspondem aos 1s na tabela verdade;

Passo 2: Efetue agrupamentos dos 1s adjacentes com o maior número de elementos possíveis (sempre em ordem 2ⁿ) mesmo que ele contenha outros 1s que já tenham sido agrupados. Certifique de utilizar o menor número de agrupamentos.

Passo 3: Analise o mapa quanto aos 1s adjacentes e agrupe os 1s que não sejam adjacentes a qualquer outros 1s. Esses são denominados 1s isolados.

Passo 4: Forme a soma OR de todos os termos gerados por cada grupo.

Nota: Se 1s em todas as células então S = 1; Se não houver nenhum 1 então S = 0.

