COMPGV17 GLM Practical 2

Gary Hui Zhang, PhD

Task 1: Simple Bivariate Regression Example Revisited

Consider again the following small set of bivariate data:

1. Write down the definitions of the inner and outer products between two vectors; look them up

	10									
Υ	2	4	4	2	4	5	4	5	6	4

online if you don't know or remember. What are the synonyms for the inner product? Explain when these products exist and when they don't. Give a simple example for each case. When the products exist, compute them first by hand and then verify your results with Matlab.

- 2. After centering the data and with the definitions in 1.1, compute the inner and outer products of X with itself.
- 3. Determine the <u>perpendicular projection</u> operator P_X corresponding to X, with the results from 1.2. Show that P_X is <u>symmetric</u>, i.e., P_X is equal to its transpose P_X , and that P_X $P_X = P_X$. This second property is known as being <u>idempotent</u> (What do you think the word means?).
- 4. Compute P_XY and $(I P_X)Y$; I denotes the <u>identity matrix</u>. Show that the two vectors are <u>orthogonal</u>. Show further that one of the two vectors is parallel to X while the other is perpendicular to X. *Hint:* Compute the inner products between them and X.
- 5. Explain the relationship of P_XY and $(I P_X)Y$ to the <u>least square</u> solution to the linear regression model $Y = \beta X + e$. Hint: Let $\underline{\beta}$ represent the estimate of β and \underline{e} the estimate of e. What are the key conditions that $\underline{\beta}X$ and \underline{e} should satisfy? Do P_XY and $(I P_X)Y$ meet these conditions?
- 6. This part prepares you for the upcoming materials: Recall that if a matrix M satisfies the equation MV = λV with λ being a number and V being a <u>column vector</u>, λ is known as an <u>eigenvalue</u> of M and V the corresponding <u>eigenvector</u>. For example, if M is the identity matrix I, its eigenvalue $\lambda = 1$. Although most matrices may not have any eigenvalues, symmetric matrices, like P_X , always do. What are the eigenvalues of P_X ? *Hint:* If λ is an eigenvalue of a matrix M and V the corresponding eigenvector, show that V is an eigenvector of M^2 (= MM). What is the corresponding eigenvalue? Now if M is idempotent, what should be the relationship between the eigenvalues of M and M^2 ?

Task 2: Simple Trivariate Regression Example

Consider the set of trivariate data in the lecture slides.

- 1. After centering the data, determine the design matrix X corresponding to the two predictor variables X_1 and X_2 .
- 2. Determine the perpendicular projection operator P_X corresponding to the design matrix.
- 3. Compute P_XY and $(I P_X)Y$. Again, check that they are orthogonal to one another.
- 4. Explain how the two vectors in 2.3 relate to the least square solution to the model $Y = X\beta + e$. Explain what is β and why it is now placed after X.
- 5. Following 1.5, determine the eigenvalues of the projection matrix.