Introduction

MUMmer软件用于快速比对非大的DNA或者氨基酸序列。该软件使用suffix tree data structure进行有效地模式匹配。该软件包含5个最常用的包,mummer, nucmer, promer, run-mummer1, run-mummer3。

Program descriptions

1. Maximal exact matching

mummer流程均有3个主要部分组成,首次在两输入之间识别明确的最大程度的完整匹配,然后将这些匹配聚集成群构建优质的比对anchors,最后在这些聚集成群的比对之间延伸比对实现最终的gapped比对。These match lists have great versatility because they contain huge amounts of information and can be passed forward to other interpretation programs for clustering, analysis, searching, etc.

● mummer,用于另序列间查询最大的唯一匹配。最适合生成点图描述一系列精确匹配信息。使用至少包含一个ref文件和一个query文件,其都应为multi-Fasta格式,比对过程中区分大小写。

mummer [options] <reference file> <query file1> ... [query file32]

计算MUMs, Maximal Unique Matcher;默认为-mumreference,三选一

- -mum, 计算同时满足ref和query的唯一匹配序列
- -mumreference, 计算ref上唯一匹配, query无需唯一匹配序列
- -maxmatch, 不考虑ref和query唯一性的条件下, 计算匹配序列

当处理masking DNA序列时,使用-n选型可避免匹配到masking字符

- -b/-r/-c,-b表示针对正向和反向互补,-r仅反向互补互补序列匹配,-c为描述query反向互补位置时,使用相对于query序列正向的位置;默认仅输出正向的匹配
- -F, 第一列输出reference的ID
- -s, 输出匹配序列字符信息
- -L,输出匹配query长度

输出头为query名称后Reverse表反向互补匹配,接着为query序列长度;下一行四列分别为,ref ID,ref起点,query起点,延伸长度;再下一行表对应match序列,参数使用为 -s -F -b -L;

```
81 > NODE_38_length_34527_cov_46.438372 Len = 34527
82 > NODE_38_length_34527_cov_46.438372 Reverse Len = 34527
83 test_seq 1 4 124
84 caggcctcagcattttattatggtgatcccctgggcgaaatgcgcctggtaagcagagt
85 test_seq 1165 34402 125
86 ggcactgttgcaaatagtcggtggtgataaacttatcatcccttttgctgatggagct
```

repeat-match

用于查询单个输入序列中的最大准确重复序列,因此输入文件经针对第一个序列查询重复序列

- -f, 表仅针对正向序列, 默认报告正向和反向互补序列匹配情况
- -n, 指定最小的匹配长度, 默认为20

输出文件三列,分别为重复序列的第一,第二位置,以及长度;反向互补重复时,第二位置后加r,表相对于序列正向的位置

32874	33006	27	
4649	204531	20	
49982	75201r	27	
285375	285400r	26	

exact-tandems

类似repeat-match, 查询单条序列串联重复序列

exact-tandems <sequence file> <min length>

<pre>\$exact-tandems 168_combined_contigs.fasta 10 Finding matches Genome Length = 366384 Used 236128 internal nodes</pre>								
Genome Len Tandem rep)	o384 Usea	236128 inte	rnal noaes				
		UnitLen	Copies					
11910	14	3	4.7					
19860	20	9	2.2					
26301	13	3	4.3					

输出为tandem起点、重复延伸长度、重复单元长度、重复次数

2. Clustering

MUMmer的clustering算法用于将小的个体匹配聚集成大的匹配。可以绘制对应点图,来查看匹配情况。

 gaps,为run-mummer1主要的clustering算法,实际上更类似一个排序的过程。gaps使用 LIS(longest increasing subset)算法来从两序列的匹配中提取最大的连续匹配集合,从而生成单个 clustering "straight-line",不包含重排和颠倒匹配情况。因此run-mummer1适用不包含大量变异 的非常类似的两序列文件,仅适用与1对1的序列比对。如下图仅红色框包含在LIS中,空白框会被 丢弃,因此gaps最适合用于比较几乎相同的序列来查询SNPs和indels。

mgaps用于更好的处理包含大规模重排和重复的序列比对,不同于gaps,mgaps使用full clustering算法,能够输出多重一致性顺序的匹配集合。mgaps主要的优势在于能够识别保守的"islnads"序列,因此可帮助识别大规模重排,重复以及基因家族等,适用与1对多的序列比对。
 下图描述的每一独立的clustering使用独立的颜色表示,因此mgaps更使用于整体比对而不是局

部位置突变检测。

3. Aliganment generators

实现以上两个步骤maximal exact matching和clustering后,就可以进行alignment过程了。以下程序均独立完成matching和clustering步骤,然后针对每个cluster生成pair-wise比对。每个cluster中的每一个match被用作alignment过程中的anchors,且仅match中的错配才使用Smith-Waterman动态矩阵处理。

NUCmer

用于比对两个多重近源核酸序列(multiple closely related nuclotiede sequences)。**nucmer常用于决定一套序列contigs相对于ref genome的位置和方向。**该程序首先使用mummer识别Maxima exact matching,然后使用mgaps对个体matches进行clustering,最后自clustering向外延伸增加整体比对覆盖度。

nucmer [options] <reference file> <query file>

- --mum,--mumreference,--maxmatch, 说明同mummer, 默认为--mumreference
- --mincluster, --minmatch,降低该值将会增加比对敏感性,从而产生一些可信度降低的比对
- --maxgap, 显著性增加该值(1000), 应用于差异较大的基因组比对
- --noextend, 会阻止cluster的延伸, 从而增加运行速度
- --nodelta, 将进一步提速, 阻止cluster间的比对
- --nosimplify,用于非准确性重复序列的检出

nucmer和promer输出同样格式文件,后缀delta

```
1 /Data_analysis/mummer_test/GCF_000240185.1_ASM24018v2_genomic.fna /Data_analysis/mummer_test/168_combined_contigs.fasta
2 NUCMER
3 >NC_016845.1 NODE_1_length_366384_cov_31.240309 5333942 366384
4 1388934 1360505 327341 325770 199 199 0
5 -648
6 5
7 -309
8 4
9 0
10 3578503 3578632 366255 366384 0 0 0
```

第1行为输入比对文件名

第2行为使用的比对程序nucmer/promer

第3行为参与比对的ref和query序列名称,及各自长度

第4行为ref起点终点,query起点终点,如果终点大于起点表示比对到了反向链,接着3列表示,错配数目(indels+snps),类似错配数目(non-positive match scores,该值针对promer有特殊意义),终止密码子数目(nucmer时均为0;针对promer输出,对应为起始密码子和终止密码子位置,满足(end-start+1)%3 =0。

接下来的几行描述了插入缺失的之间的距离,正值表示ref出现插入;负值表示ref出现缺失(即query出现插入)。例如promer: 1, -3, 4, 0,表示相互之间的距离

A = ABCDACBDCAC\$
B = BCCDACDCAC\$
Delta = (1, -3, 4, 0)
A = ABC.DACBDCAC\$
B = .BCCDAC.DCAC\$

表示ref在1位置出现插入, A; query在位置3出现插入, C; ref在位置7出现了插入, B。

PROmer

用于比对距离偏远的核酸序列(multiple somewhat diverget nucleotide sequences)。运行类似 nucmer,不同的是首先将输入核酸序列按照6种方式转录成氨基酸序列,敏感度高于nucmer。为保证 比对精确性,可能需要mask输入序列避免比对到不感兴趣的序列位置,或者改变uniqueness constraints减少重复带来的比对情况。

promer [options] <reference file> <query file>

参数选型类似nucmer, 输出格式为delta

--masklen,将位于终止密码子之间的指定数目的氨基酸mask,例如设为4,纳米将mask等于或大于4 的长度

....AAA*AAAA*AAA... 将mask为AAA*XXXX*AAA....

- --matrix,设置BLOSUM矩阵用于错配打分,1假设量序列差异很大,3假设差异很小
 - run-mummer1

同nucmer/promer, matching/clustering/extension, 只是run-mummer1采用gaps用于clustering步骤,不允许重排。因此,**更适用于检出SNP和indel**。

```
run-mummer1 <reference file> <query file> <prefix> [-r]
```

-r, 仅比对guery反向互补序列, 默认为仅比对guery的正向序列, ref均为正向序列

ref和query文件需为**fasta格式同时仅含一条序列**,run-mummer1使用简化的打分函数无法识别 masking 字符,不推荐对输入文件masking。输出4个文件,分别为out, gaps, errorsgaps, align文件 out文件格式同mumer输出文件,只是不含头文件:

1	549775	46864	50
2	1507590	46862	42
3	3578503	366255	130
4	3579153	1	50
5	3579204	52	251
6	3579456	304	202
7	3579659	507	38

gaps文件:

1	> test_ref	f.fasta	Consist	ent mata	ches	
2	3579153	1	50	none		
3	3579204	52	251	none	1	1
4	3579456	304	202	none	1	1
5	3579659	507	38	none	1	1
6	4098791	2762	23310	none	519094	2217
7	4122102	26073	1195	none	1	1
8	4123298	27269	6267	none	1	1
9	4129565	33763	8834	-79	0	227

第一行为参考文件名

第二行前3列通mummer输出

第二行后3列为与上一个match之间的重合信息;当前ref的match起点和上一个match终点之间的gap距离;当前match的match起点和上一个match终点之间的gap距离

当gap大小为1时,表两序列之间出现了snp;an overlap like seen in the last line of the Consistent matchesindicates the existence of a tandem repeat,这里个人理解为存在"-79"的串联重复序列; "-"表示gap大小无法计算

36	> test_ref	.fasta	Other ma	ıtches			
37	1507590	46862	42	none			
38	549775	46864	50	none			
39	3578503	366255	130	none	3028678	319341	

Other matches显示了不包含在LIS中的匹配(like the white boxes in the above image)

errorsgaps文件:

该输出文件为gaps格式的注释版本,可能时run-mummer1用于识别SNPs的最有用文件,最后一列的1表示snp,"-"表示距离太大无法计算

1	> test_ref	.fasta	Consiste	ent mate	ches			
2	3579153	1	50	none				
3	3579204	52	251	none	1	1	1	
4	3579456	304	202	none	1	1	1	
5	3579659	507	38	none	1	1	1	
6	4098791	2762	23310	none	519094	2217		
7	4122102	26073	1195	none	1	1	1	
8	4123298	27269	6267	none	1	1	1	
9	4129565	33763	8834	-79	0	227	227	

align文件:

包含比对信息,可通过"^"字符识别错配,如果比对太大无法显示,则表示为 "*** Too long ***",每个错配前后均显示10bp序列。

```
3
   3579659
                 507
                          38
                                           1
                                                   1
                                none
4
      Errors = 1
      attttaatcaacgagtcagct
6 S:
      attttaatcagcgagtcagct
8
   4098791
                2762
                                none 519094
                      23310
                                                2217
9
     *** Too long ***
```

• run-mummer3

run-mummer3的matching和clustering过程同nucmer和promer,只是采用了不同的extension处理。run-mummer3仅能处理单个ref序列,但是query文件可包含多重序列,同时能够检出大大重排。输出格式同run-mummer1,只是align文件中使用"="表示MUM部分。

Utilities

delta-filter

用于出列nucmer和promer输出的delta编码的比对文件。

```
delta-filter [options] <delta file> < filtered delat file>
```

- -q Query alignment using length*identity weighted LIS. For each query, leave only the alignments which form the longest consistent set for the query
- -r Reference alignment using length*identity weighted LIS. For each reference, leave only the alignments which form the longest consistent set for the reference.

-g选项输出最长的一致性比对(determine the longest mutually cosistent set of matches); -r和-q仅要求匹配和ref或query一致即可,主要不同为,-g不允许inversions和translocations,然而-r和-q允许,但是该3个选项均不允许多重重复拷贝。-g参数保证整体一致性;-r保证ref到query的最佳比对(1对多);-q保证query到ref的最佳比对(3对1),-r和-q同时使用保证了ref到query1对1的比对。

• show-aligns

show-aligns解析nucmer和promer的delta输出,展示成对比对情况,适合识别准确错配位置,查找两序列间的snps。

```
show-aligns [options] <delta file> <IdR> <IdQ>
```

IdR为目的ref序列的头标签,IdQ为目的query序列的的头标签

show-aligns ref_168.delta NC_016845.1 NODE_1_length_366384_cov_31.240309

```
136

137 1360500 gtaatc

138 325775 ataatc

139 ^

140

141

142 -- END alignment [ +1 1358934 - 1360505 | -1 327341 - 325770 ]

143 -- BEGIN alignment [ +1 3578503 - 3578632 | +1 366255 - 366384 ]

144
```

promer输出类似nucmer输出,空白表错配,"+"表相似(positive alignment scores),"*"表示插入删除。

show-coords

常用于分析delta输出,用于展示位置,一致性等信息。

```
show-coords [options] <delta file>
```

- -c选项显示覆盖度,-l选项显示线序列长度,在比对两组装contigs时可帮助查看是否比对跨越整个 contig
- -b选项可帮助识别另基因组间的syntenic区域, biologists usually refer to synteny as the conservation of blocks of order within two sets of chromosomes that are being compared with each other
- -g选项仅显示包含在longest ascending subset中的比对信息,推荐和-r或-q一起使用,当在完整的序列上比对代表性reads时有用。(-g option comes in handy when comparing sequences that share a linear alignment relationship, that is there are no rearrangements)

```
lysis/mummer_test/GCF_000240185.1_ASM24018v2_genomic.fna /Data_analysis/mummer_test/168_combined_contigs.fasta
NUCMER
                                        [E2] | [LEN 1] [LEN 2] | [TAGS]
                             [S2]
   17991
              18120
                           100500
                                      100629
                                                                                               NODE_21_length_100629_cov_30.374948
                                                                                               NODE_223_length_253_cov_39.904762
NODE_55_length_9060_cov_38.296429
   26489
              26616
                                                                           NC 016838.1
                                                                          NC_016838.1
   26490
                             8934
                                        9060
   26490
                                                                           NC_016838.1
                                                                                               NODE_84_length_1787_cov_88.657229
                                                                                               NODE_74_length_3283_cov_49.370089
NODE_104_length_1199_cov_50.34608
              27909
                                        3100
                                                                           NC_016838.1
```

show-snps

用于展示promer/nucmer输出delta文件中包含的snp信息,它将delta文件中的所有snp和indel进行分类。

```
show-snps [options] <delta file>
```

- -c选项将限制输出信息,避免输出重复区域的snps信息,该区域展示的snp是有问题的,可能由于 simple repeats,tandem repeats导致,大多数情况应使用-c
- -H,-T选项适用于进一步分析
- -x用于打印指定ref和query位置位置两侧的序列信息数目,"."表示删除,"-"表示序列末端

[p1]为ref上snp位置,若为indel,位置描述为indel前的一个位置,例如,开始位置描述为0;若处在反向互补链,位置描述为反向互补链上indel前一个位置在正向链的位置,例如,反向互补链末端的indel,将描述为1;[P2]对应为query位置

[SUB]对应描述ref和query该位置信息

[BUFF]描述同一比对上该位置到最近错配距离

[DIST]描述该snp到最近序列末端距离

[R]多少个重复比对包含该ref位置; [Q]多少重复比对包含该query位置

[LEN R]ref序列长度;[LEN Q]query序列长度

[FRM]序列或者reading frame方向

以上所有位置均为相对于DNA输入序列正链的位置。

show-tiling

构建query contigs比对到ref序列的tiling路径,将决定每个query contig的最佳比对位置。由于每个contig将被tiled一次,因此重复区域将给该分析过程带来困难。

show-tiling [options] <delta file>

- -c假设参考序列为环状,同时允许tiled contigs跨越参考序列起点
- -i指定最小一致性, nucmer默认90%, promer默认55%
- -l指定最小contig长度,默认1
- -v设定最小的contig比对覆盖度,nucmer默认90%,promer默认55%;-V设定判断contig一个map优于另一个map的差异值,nucmer默认10%,promer默认30%;为包含最可能的contigs,设置-V为0,同时降低-i和-v值
- -u指定输出文件包含为使用的contigs比对信息,格式略!

1 >NC_016	838.1 12		es				
2 26490	28276	94523	1787	100.00	100.00		NODE_84_length_1787_cov_88.657229
3 >NC_016	839.1 10	5974 bas	es				
4 28627	28754	14573	128	100.00	100.00		NODE_261_length_128_cov_186.000000
5 43328	43455	-127	128	99.22	100.00		NODE_263_length_128_cov_77.000000
6 43329	43456	62518	128	100.00	100.00	+	NODE_259_length_128_cov_262.000000
7 >NC_016	845.1 53	33942 ba	ses				
8 21078	120603	4677	99526	100.00	99.99	+	NODE_22_length_99526_cov_31.218543
9 125281	125513	-124	233	100.00	99.57		NODE_231_length_233_cov_34.660377
0 125390	125542	41	153	100.00	98.69		NODE_244_length_153_cov_66.730769
1 125584	212475	5020	86892	100.00	100.00		NODE_25_length_86892_cov_31.338708
.2 217496	222197	282	4702	100.00	100.00		NODE_70_length_4702_cov_30.554973
3 222480	257471	5088	34992	100.00	100.00	+	NODE_36_length_34992_cov_31.226502
1 >NC_016	939 1 12	2700 bas	٥٥				
2 26490	28276	121012	1787	100.00	100.00		NODE_84_length_1787_cov_88.657229
3 >NC_016				TOO.OO	100.00	_	Nobe_84_tength_1787_cov_88.037229
				100 00	100 00		NODE 361 1-1-15 130 196 000000
4 28627	28754	14573	128	100.00	100.00		NODE_261_length_128_cov_186.000000
5 43328	43455	-127	128	99.22	100.00		NODE_263_length_128_cov_77.000000
6 43329	43456	91144	128	100.00	100.00	+	NODE_259_length_128_cov_262.000000
7 >NC_016	845.1 53	33942 ba	ses				
8 -47034	15975	5102	63010	99.80	99.98		NODE_29_length_63010_cov_31.420320
9 21078	120603	4677	99526	100.00	99.99	+	NODE_22_length_99526_cov_31.218543
0 125281	125513	-124	233	100.00	99.57		NODE_231_length_233_cov_34.660377
.1 125390	125542	41	153	100.00	98.69	-	NODE_244_length_153_cov_66.730769

第1/2列为ref起始终止位置

第3列,该contig和下一contig之间第gap长度

第4/5/6列为该conitg的长度、覆盖度及一致性百分比

第7/8列为contig方向(-表示反向互补序列)和ID

起点位置为负值表示该contig包围了该ref序列起点位置

Usage

• 比对两连续序列,然后使用mummerplot查看整体比对情况

mummer -num -b -c ref.fasta qry.fasta > ref_qry.nums
mummerplot --postscript --prefix=ref_qry ref_qry.mums
gnuplot ref_qry.gp

• 比对高度相似无重排序列,用于检测snp和小的indel,同时ref和query仅包含1条序列

run-mummer1 ref.fasta qry.fasta ref_qry
run-mummer1 ref.fasta qry.fasta ref_qry -r

同样可以使用nucmer进行snp检出

● 含重排的高度相似序列比对,两序列可能含有大段序列重排,颠倒或插入等,ref仅含1条序列,query可含多条序列

run-mummer3 ref.fasta qry.fasta ref_qry

● 相当相似的序列比较,run-mummer*着重于差异,而nucmer着重于相似;同时重排,倒置,重复都会被nucmer识别,ref和query可包含多重序列

nucmer --maxgap=500 --mincluster=100 --prefix=ref_qry ref.fasta qry.fasta
show-coords -r ref_qry.delta > ref_qry.coords

show-aligns ref qry.delta refname qryname > ref qry.aligns

refname和qryname为fasta序列IDs,同时可使用mummerplot查看,delta-filter过滤输出,例如选择 1对1的比对

delta-filter -q -r ref_qry.delta > ref_qry.filter

mummerplot ref_qry.filter -R ref.fasta -Q qry.fasta

● 相当不相似的序列,promer将转录DNA,然后用于比对,ref和query可包含多重序列

promer --prefix=ref qry ref.fasta qry.fasta

show-coords -r ref_qry.delta > ref_qry.coords

show-aligns -r ref_qry.delta refname qryname > ref_qry.aligns

以上使用-k选项将输出多重比对的最佳情形;同样可使用mummerplot查看,deleta-filter过滤输出,例如选择1对1的比对

```
delta-filter -q -r ref_qry.delta > ref_qry.filter
```

mummerplot ref_qry.filter -R ref.fasta -Q qry.fasta

• 比对两基因组组装序列,可使用nucmer或promer,分别针对相似或不相似的两fasta文件

nucmer --prefix=ref_qry ref.fasta qry.fasta

show-coords -rcl ref_qry.delta > ref_qry.coords

show-aligns ref_qry.delta refname qryname > ref_qry.aligns

由于多重fasta文件比对输出信息很多,使用delat-filter过滤输出,-r比对位置以ref为准,-q比对位置以 query序列为准,-q -r指定输出1对1的比对,同时可使用mummerplot查看比对情况

mummerplot ref_qry.delta -R ref.fasta -Q qry.fasta --filter -layout

● 比对组装的scaffolds文件到参考基因组,可用于根据ref基因组判断query contig的位置和方向,帮助完成draft序列组装

nucmer --prefix=ref qry ref.fasta qry.fasta

show-coords -rcl ref_qry.delta > ref_qry.coords

show-aligns ref_qry.delta refname qryname > ref_qry.aligns

show-tiling -c ref qry.delta > ref qry.tiling

当ref和query包含多重序列时,show-aligns步骤可重复运行展示比对情况。假如不想比对draft序列到重复的位置,使用delta-filter选择每个draft序列在ref上的最佳位置

delta-filter -q ref_qry.delta > ref_qry.filter

● 检出SNPs,比对序列,选择1对1的比对情况,检出SNP位置;nucmer可在存在多个重排的两基因组之间检出SNPs

nucmer --prefix=ref qry ref.fasta qry.fasta

show-snps -Clr ref_qry.delta > ref_qry.snps

-C选项指定唯一比对的序列用于检出SNPs,排除了重复序列内的SNPs;或者首先排除重复序列位置;-1,表示1对1允许重排比对,适用于SNP查询

nucmer --prefix=ref qry ref.fasta qry.fasta

delta-filter -1 -r -q ref_qry.delta > ref_qry.filter

show-snps -Clr ref_qry.filter > ref_qry.snps

● 非精确识别重复序列,尽管mummer并不是设计用于检测重复序列,但是可通过一些参数选择检 出重复序列和串联重复序列;可以将序列与自身进行比较,同时设置参数--maxmatch/-nosimplify并且排除两输入序列相同位置的hits,进而得到重复序列输出

nucmer --maxmatch --nosimplify --prefix=seq_seq seq.fasta seq.fasta

show-coords -r -b seq_seq.delta > seq_seq.coords

查询准确重复长度不低于50的序列

repeat-match -n 50 seq.fasta > seq.repeats

查询准确串联重复长度不低于50的序列

exact-tandems seq.fasta 50 > seq.tandems