Probabilidade e Estatística

Matheus Pimenta

Universidade Tecnológica Federal do Paraná Câmpus Cornélio Procópio

ADNP 2020

1/9

Podemos cometer um erro de decisão quando feito o teste de hipótese:

Podemos cometer um erro de decisão quando feito o teste de hipótese:

• Rejeitamos uma hipótese nula verdadeira: é o erro do tipo I;

Podemos cometer um erro de decisão quando feito o teste de hipótese:

- Rejeitamos uma hipótese nula verdadeira: é o erro do tipo I;
- 2 Não rejeitamos uma hipótese nula falsa: é o erro do tipo II.

Podemos cometer um erro de decisão quando feito o teste de hipótese:

- Rejeitamos uma hipótese nula verdadeira: é o erro do tipo I;
- 2 Não rejeitamos uma hipótese nula falsa: é o erro do tipo II.

Resumidamente, se:

Podemos cometer um erro de decisão quando feito o teste de hipótese:

- Rejeitamos uma hipótese nula verdadeira: é o erro do tipo I;
- ② Não rejeitamos uma hipótese nula falsa: é o erro do tipo II.

Resumidamente, se:

• H_0 é verdadeira, e rejeitamos, cometemos o erro do tipo I;

Podemos cometer um erro de decisão quando feito o teste de hipótese:

- Rejeitamos uma hipótese nula verdadeira: é o erro do tipo I;
- Não rejeitamos uma hipótese nula falsa: é o erro do tipo II.

Resumidamente, se:

- H_0 é verdadeira, e rejeitamos, cometemos o erro do tipo I;
- H_0 é falsa, e não rejeitamos, cometemos o erro do tipo II.

Considere apenas testes bilaterais para o parâmetro μ da população normal com variância conhecida, isto é:

Considere apenas testes bilaterais para o parâmetro μ da população normal com variância conhecida, isto é:

$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases}$$

Cometemos um erro do tipo I quando rejeitamos H_0 , ou seja, quando a amostra coletada possui uma média \bar{x} que esta fora da região crítica (RC) do teste, isto é:

$$\bar{x} \in (-\infty, \bar{x}_1] \cup [\bar{x}_2, +\infty)$$

Cometemos um erro do tipo I quando rejeitamos H_0 , ou seja, quando a amostra coletada possui uma média \bar{x} que esta fora da região crítica (RC) do teste, isto é:

$$\bar{x} \in (-\infty, \bar{x}_1] \cup [\bar{x}_2, +\infty)$$

Dessa maneira, se μ_0 é verdadeiro, então a probabilidade de cometer o erro do tipo I é dada por:

$$P(I) = P(\bar{x} \in RC) = \alpha$$

 $P(I) = \alpha$

Após ter feito o primeiro teste, não rejeita-se H_0 : $\mu=\mu_0$ como verdadeiro.

6/9

Após ter feito o primeiro teste, não rejeita-se H_0 : $\mu=\mu_0$ como verdadeiro. Posteriormente verifica-se que H_0 é falsa. Dessa maneira cometemos um erro do tipo II.

Após ter feito o primeiro teste, não rejeita-se $H_0: \mu=\mu_0$ como verdadeiro. Posteriormente verifica-se que H_0 é falsa. Dessa maneira cometemos um erro do tipo II. Para determinar a probabilidade precisamos inicialmente especificarmos como $H_1: \mu=\mu_1$.

6/9

Após ter feito o primeiro teste, não rejeita-se $H_0: \mu=\mu_0$ como verdadeiro. Posteriormente verifica-se que H_0 é falsa. Dessa maneira cometemos um erro do tipo II. Para determinar a probabilidade precisamos inicialmente especificarmos como $H_1: \mu=\mu_1$. A um nível α temos:

$$\begin{cases} H_0: \mu = \mu_0 \text{ (falso)} \\ H_1: \mu = \mu_1 \text{ (verdadeiro)} \end{cases}$$

Após ter feito o primeiro teste, não rejeita-se $H_0: \mu=\mu_0$ como verdadeiro. Posteriormente verifica-se que H_0 é falsa. Dessa maneira cometemos um erro do tipo II. Para determinar a probabilidade precisamos inicialmente especificarmos como $H_1: \mu=\mu_1$. A um nível α temos:

$$\begin{cases} H_0: \mu = \mu_0 \text{ (falso)} \\ H_1: \mu = \mu_1 \text{ (verdadeiro)} \end{cases}$$

Não rejeitaremos H_0 quando $\bar{x} \in (\bar{x}_1, \bar{x}_2)$.

Como H_0 é falsa e a verdadeira média é dada por H_1 , a distribuição dada por H_0 é falsa, então tem-se:

Dessa maneira a probabilidade de cometermos um erro do tipo II é a probabilidade de $\bar{x} \in (\bar{x}_1, \bar{x}_2)$, porém, com \bar{x} se distribuindo com a média μ_1 , verdadeira:

Dessa maneira a probabilidade de cometermos um erro do tipo II é a probabilidade de $\bar{x} \in (\bar{x}_1, \bar{x}_2)$, porém, com \bar{x} se distribuindo com a média μ_1 , verdadeira:

$$P(II) = \beta = P\{\mu_0 - Z_\alpha \cdot \sigma_{\bar{x}} \le \bar{x} \le \mu_0 + Z_\alpha \cdot \sigma_{\bar{x}} | \mu_{\bar{x}} = \mu_1\}$$

Função Poder de um Teste ou Potência de um Teste

A função poder de um teste fornece a probabilidade de se rejeitar uma hipótese nula falsa.

Função Poder de um Teste ou Potência de um Teste

A função poder de um teste fornece a probabilidade de se rejeitar uma hipótese nula falsa.

ATIVIDADE ASSÍNCRONA

