第六节 函数图形的描绘

函数图形的描绘综合运用函数性态的研究,是导数应用的综合考察.

例如,作函数
$$f(x) = \frac{4(x+1)}{x^2} - 2$$
 的图形.

定义域、单调性、凹凸性

其他形态?

1 渐近线

定义: 当曲线 y = f(x)上的一动点 P 沿着曲线移向无穷点时,如果点 P 到某定直线 L 的距离趋向于零,那么直线 L 就称为曲线 y = f(x) 的一条渐近线.

铅直渐近线 (垂直于 x 轴的渐近线)

如果
$$\lim_{x \to x_0^+} f(x) = \infty$$
 或 $\lim_{x \to x_0^-} f(x) = \infty$

那么 $x = x_0$ 就是y = f(x)的一条铅直渐近线.

例如
$$\lim_{x\to 1}\frac{1}{x-1}=\infty$$
.

再如
$$y = \frac{1}{(x+2)(x-3)}$$

有两条铅直渐近线: x = -2, x = 3.

水平渐近线 (平行于 x 轴的渐近线)

如果 $\lim_{x \to +\infty} f(x) = b$ 或 $\lim_{x \to -\infty} f(x) = b$ (b 为常数) 那么 y = b 就是 y = f(x)的一条水平渐近线.

例如 $y = \arctan x$,

有两条水平渐近线:
$$y = \frac{\pi}{2}$$
, $y = -\frac{\pi}{2}$.

2 图形描绘的步骤

利用函数特性描绘函数图形.

第一步 确定函数y = f(x)的定义域,利用函数奇偶性、周期性缩小范围;

第二步 确定特殊点: 使 f'(x)=0 和 f''(x)=0 及 导数不存在的点,没有定义的点.

第三步 用特殊点将函数的定义域划分成几个部分区间,列成表格. 确定在这些部分区间内f'(x)和f''(x)的符号,并由此确定函数的增减性、极值和函数的凹凸性和拐点。

第四步 确定函数图形的水平、铅直渐近线以及其 他变化趋势;

第五步 描出与方程 f'(x)=0 和 f''(x)=0 的根对应的曲线上的点,有时还需要补充一些点,再综合前四步讨论的结果画出函数的图形.

3 作图举例

例1 作函数
$$f(x) = \frac{4(x+1)}{x^2} - 2$$
 的图形.

 \mathbf{M} $D: x \neq 0$, 非奇非偶函数,且无对称性.

$$f'(x) = -\frac{4(x+2)}{x^3}, \qquad f''(x) = \frac{8(x+3)}{x^4}.$$

令
$$f'(x) = 0$$
, 得驻点 $x = -2$,

令
$$f''(x) = 0$$
, 得特殊点 $x = -3$.

得三个特殊点 x = -3, x = -2, x = 0.

作函数
$$f(x) = \frac{4(x+1)}{x^2} - 2$$
 的图形

$$f'(x) = -\frac{4(x+2)}{x^3},$$

$$f''(x) = \frac{8(x+3)}{x^4}.$$

列表确定函数升降区间,凹凸区间及极值点和拐点:

x	$(-\infty,-3)$	-3	(-3,-2)	-2	(-2,0)	0	$(0,+\infty)$
f'(x)	1			0	+	不存在	_
f''(x)		0	+		+		+
f(x)		拐点 -3,- ²⁶		极小值 一3)	间断点	

$$f(x) = \frac{4(x+1)}{x^2} - 2$$

$$x$$
 $(-\infty,-3)$ -3 $(-3,-2)$ -2 $(-2,0)$ 0 $(0,+\infty)$ $f'(x)$ 0 $+$ 不存在 $f''(x)$ 0 $+$ $+$ $+$ $f(x)$ \rightarrow $\frac{H}{5}$ $\frac{1}{5}$ $\frac{1}{5}$

$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \left[\frac{4(x+1)}{x^2} - 2 \right] = +\infty,$$

得铅直渐近线 x = 0.

$$f(x) = \frac{4(x+1)}{x^2} - 2$$

水平渐近线 y = -2; 铅直渐近线 x=0.

x	$(-\infty, -3)$	-3	(-3,-2)	-2	(-2,0)	0	(0,+∞)
f'(x)	_			0	+	不存在	_
f''(x)	_	0	+		+		+
f(x)	` (拐点 -3,- ²⁶ 9	<i>J</i>	极小值 一 3)	间断点	<u></u>

补充点:

A(-1,-2),

与y轴交点 $(1-\sqrt{3},0)$, $(1+\sqrt{3},0)$;

B(1,6),

C(2,1).

作图

作业

P167 1

-例2 作函数
$$\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$
 的图形.

P M M: $(-\infty, +\infty)$,

偶函数,图形关于y轴对称.

$$\varphi'(x) = -\frac{x}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}, \qquad \varphi''(x) = \frac{(x+1)(x-1)}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}.$$

$$\phi'(x) = 0$$
, 得驻点 $x = 0$,

列表确定函数升降区间,凹凸区间及极值点与拐点:

x	$(-\infty, -1)$	-1	(-1,0)	0	(0,1)	1	(1,+∞)
$\varphi'(x)$	+		+	0	1		
$\varphi''(x)$	+	0			_	0	+
$\varphi(x)$) (-	拐点 ·1, 1/2π	=)	极大值 $\frac{1}{\sqrt{2\pi}}$		拐点 (1, 1 √2π	=)

-例3 作函数 $f(x) = x^3 - x^2 - x + 1$ 的图形.

 \mathbf{M} $D:(-\infty,+\infty)$, 无奇偶性及周期性.

$$f'(x) = (3x+1)(x-1), \qquad f''(x) = 2(3x-1).$$

令
$$f'(x) = 0$$
, 得驻点 $x = -\frac{1}{3}$, $x = 1$.

令
$$f''(x) = 0$$
, 得特殊点 $x = \frac{1}{3}$.

列表确定函数升降区间, 凹凸区间及极值点与拐点:

x	$(-\infty,-\frac{1}{3})$	$-\frac{1}{3}$	$(-\frac{1}{3},\frac{1}{3})$	$\frac{1}{3}$	$(\frac{1}{3},1)$	1	(1,+∞)
f'(x)	+	0	1		_	0	+
f''(x)				0	+		+
f(x)		极大(32 27		拐点 (1,16) (3,27)		吸小值 0)

