

Ethernet - US Patent #4063220

# CSCE 560 Introduction to Computer Networking

Dr. Barry Mullins AFIT/ENG Bldg 642, Room 209 255-3636 x7979

## Link Layer

- □ 6.1 Introduction
- 6.2 Error Detection and Correction Techniques
- 6.3 Multiple Access Links and Protocols
- 6.4 Switched Local Area Networks
- □ 6.5 Link Virtualization

- □ 6.6 Data Center Networking
- 6.7 A Day in the Life of a Web Page Request

## Link Layer: Introduction

#### Some terminology:

- Communication channels that connect adjacent nodes along communication path are links
  - Wired links
  - Wireless links
  - \* LANs
- Layer-2 packet is a frame, encapsulates datagram

Data-link layer is responsible for transferring datagram from one node to physically adjacent node over a link



## Link Layer: Context

- Datagram transferred by different link protocols over different links:
  - Ethernet on first link
  - Frame relay on intermediate links
  - \* 802.11 on last link
- Each link protocol provides different services
  - May or may not provide reliable data transfer over link



## Link Layer Services

#### □ Framing, link access:

- Encapsulate datagram into frame, adding header, trailer
- \* Channel access if shared medium
- \* "MAC" addresses in frame headers to identify source, dest
  - Different from IP address!

#### Reliable delivery between adjacent nodes

- \* We learned how to do this already (Chapter 3)!
- Seldom used on low bit error link (fiber, some twisted pair)
- Wireless links have higher error rates

## Link Layer Services (more)

- ☐ Flow Control:
  - Pacing between adjacent sending and receiving nodes
- Error Detection:
  - Errors caused by signal attenuation, noise
  - Receiver detects presence of errors:
    - Signals sender for retransmission or drops frame
- □ Frror Correction:
  - Receiver identifies and corrects bit error(s) without retransmission
- Half-duplex and full-duplex
  - Half duplex: nodes at both ends of link can transmit, but not at same time
  - Full duplex: nodes at both ends of link can transmit at same time

## Adapters Communicating

- Link layer implemented in both
  - \* 05
  - "Adapter" (aka NIC)
- Adapter (Ethernet or 802.11 card) attaches to host's system bus
- Adapter is semi-autonomous
  - Can receive frame and discard without notifying CPU







## Link Layer

- □ 6.1 Introduction
- 6.2 Error Detection and Correction Techniques
- 6.3 Multiple Access Links and Protocols
- 6.4 Switched Local Area Networks
- □ 6.5 Link Virtualization

- □ 6.6 Data Center Networking
- 6.7 A Day in the Life of a Web Page Request

## Error Detection (A Subset of Coding Theory)

EDC = Error Detection and Correction bits (redundancy)

- D = Data protected by error checking, may include header fields
- □ Error detection not 100% reliable!
  - Protocol may miss some errors
  - Larger EDC field yields better detection and correction
    - · ... but increases # of overhead bits



## Single Parity Checks

- Single bit is added to a string of bits such that the string plus parity bit always has an even (or odd) number of 1's
  - Transmitted code has an even (odd) number of 1's
  - If odd (even) number of 1's received, then error
  - Does not indicate where error is, so cannot correct
- Can detect one or any odd number of bit errors
- Cannot detect two or any even number of bit errors
  - \* A burst error is just as likely to cause an even number of errors (undetectable) as an odd number of errors (detectable)
- Example assuming even parity:
  - ♦ Data = 0110100 → Even parity = 1
  - \* Xmited word = 01101001
  - \* Received word =  $11101001 \rightarrow Error b/c odd # of 1's$
  - \* Received word =  $11111001 \rightarrow \text{Even } \# \text{ of 1's so "OK"}$  (but has two bit errors)

## Two Dimensional Parity Checking

Detect and correct single bit errors



## Cyclic Redundancy Check - Transmit

- View data bits, D, as a binary number
- Choose r+1 bit pattern (generator polynomial), 6

  - \*  $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$
  - \* Ethernet CRC: r = 32 bits  $\rightarrow G$  is r+1 = 33 bits
- □ Goal: calculate r CRC bits, called R, such that
  - \* <D,R> is exactly divisible by G (using modulo 2 arithmetic)



D \* 2 T XOR R mathematical formula

## Cyclic Redundancy Check - Receive

- $\square$  Receiver knows G, divides  $\langle D,R \rangle$  by G (modulo 2 arithmetic)
  - \* If non-zero remainder: error detected!
- Can detect all burst errors less than r+1 bits and any odd number of bit errors



## CRC Example

We want  $D \cdot 2^r \times CR \cdot R$  to be exactly divisible by G, so we start with:

$$D.2^r XOR R = nG$$

Now find R.

"Add" (mod 2) XOR R to both sides:  $D \cdot 2^r = nG \times R$ 

If we divide D.2<sup>r</sup> by G, we get n with a remainder R
We ignore n; it is not needed

R = remainder 
$$\left[\frac{D.2^r}{G}\right]$$



## CRC Example Transmit

- □ Data (D) = 1010001101
- □ Given: Generator = 110101 (G has 6 bits so r = 6-1 = 5)



Transmitted message [x(D)] = 101000110101101011100

## CRC Example Receive

- Received data + R = 101000110101110
- Generator = 110101

#### Receive



## Link Layer

- □ 6.1 Introduction
- 6.2 Error Detection and Correction Techniques
- 6.3 Multiple Access Links and Protocols
- 6.4 Switched Local Area Networks
- □ 6.5 Link Virtualization

- □ 6.6 Data Center Networking
- 6.7 A Day in the Life of a Web Page Request

## Multiple Access Links

#### Two types of "links":

- □ Point-to-point
  - PPP like dial-up access
  - Point-to-point link between Ethernet switch and host (Cat5 cable)
- Broadcast (shared wire or medium)
  - ♦ Bus (coax) Ethernet → legacy Ethernet
  - \* 802.11 wireless LAN



shared wire (e.g., coax Ethernet)



shared RF (e.g., 802.11 WiFi)



shared RF (satellite)



switch

humans at a cocktail party (shared air, acoustical)

## Multiple Access Protocols

- Single shared broadcast channel
- $\square$  Two or more simultaneous transmissions by nodes  $\rightarrow$  interference
  - \* Collision if node receives two or more signals at the same time

#### Multiple access protocol

- Distributed algorithm that determines how nodes share channel
  - Determines when a node can transmit
- Communication about channel sharing must use the channel itself!
  - No out-of-band channel for coordination

## Medium Access Sublayer

- □ Medium access control (MAC) provides coordination among nodes
  - \* MAC is sublayer between data link layer and physical layer
  - Usually grouped with data link layer



## Ideal Multiple Access Protocol

What are the characteristics of an ideal MAC protocol?

#### Assume a broadcast channel of rate R bps

- 1. When one node wants to transmit, it can send at rate R
- 2. When N nodes want to transmit, each can send at average rate R/N
- 3. Fully decentralized:
  - No special node to coordinate transmissions
  - No synchronization of clocks or slots
- 4. Simple (cheap)

## MAC Protocols: A Taxonomy

#### Three broad classes:

- 1. Channel Partitioning
  - Divide channel into smaller "pieces"
    - time slots
    - frequency band
    - chipping code (discussed in wireless chapter)
  - Allocate a piece to a node for exclusive use
- 2. "Taking turns"
  - Nodes take turns, but nodes with more to send can take longer turns
- 3. Random Access ("Free-for-all" approach)
  - Nodes transmit new packets as they are available without concern for other traffic on the media
  - Channel not divided
    - Collisions possible
    - Need a technique to "recover" from collisions

## Channel Partitioning MAC Protocols: TDMA

#### TDMA: Time Division Multiple Access

- Access to channel in "rounds"
- Each station gets fixed length slot (length = pkt trans time) in each round
- Unused slots go idle
- Example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 idle



## Channel Partitioning MAC Protocols: FDMA

#### FDMA: Frequency Division Multiple Access

- Channel spectrum divided into frequency bands
- Each station assigned frequency band (bandwidth divided by N)
- Unused transmission time in frequency bands go idle
- Example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle



## "Taking Turns" MAC protocols

- □ Channel partitioning MAC protocols:
  - Share channel efficiently and fairly at high load
  - Inefficient at low load:
    - Delay in channel access
    - 1/N bandwidth allocated even if only 1 active node!
- "Taking turns" protocols
  - Polling
  - Token passing
    - Station only sends when it has the "token"
- Random access MAC protocols
  - Efficient at low load: single node can fully utilize channel
  - \* High load: collision overhead



#### Random Access Protocols

- When node has packet to send
  - Transmit at full channel data rate R
  - No a priori coordination among nodes
- Two or more transmitting nodes → "collision"
- Random access MAC protocol specifies how to:
  - Detect collisions
  - Recover from collisions
    - · e.g., via delayed retransmissions
- Examples of random access MAC protocols:
  - Slotted ALOHA
  - \* ALOHA
  - ❖ CSMA, CSMA/CD, CSMA/CA

#### **ALOHAnet**





- Developed at the U of Hawaii in early 1970's by Norm Abramson
  - Provided 9600 bps packet-switched communication between central computer and remote terminals
  - Used 2 frequencies in a hub/star configuration
    - · All nodes transmit to hub on one channel
    - · Hub broadcasts packet to all on other channel
- We'll discuss slotted ALOHA first followed by the original (unslotted) ALOHA

### Slotted ALOHA

#### **Assumptions**

- All frames same size
- □ Time is divided into equal slots
  - Time to transmit 1 frame
- Nodes start to transmit frames only at beginning of slots
- Nodes are synchronized
- □ If a node hears its packet being broadcast by the hub, no collision
- Checksum used to detect errors

#### **Operation**

- When node obtains new frame from network layer, it transmits in next slot
- ☐ If no collision,
  - Node has successfully transmitted frame
  - No retransmission
- ☐ If collision,
  - Node retransmits frame in each subsequent slot with probability p until success

### Slotted ALOHA



#### <u>Pros</u>

- Single active node can continuously transmit at full rate of channel
- Highly decentralized: each node detects collisions and independently retransmits
- Simple

#### Cons

- Collisions, which wastes slots
- Empty / idle slots
- Nodes may be able to detect collision in less time than to transmit packet
  - Would be nice if protocol allowed nodes to stop transmitting before the end of the slot
- Clock synchronization

## Slotted ALOHA Efficiency

- Efficiency is the long-run fraction of successful slots when there are many nodes, each with many frames to send
- $lue{}$  Suppose N nodes with many frames to send, each transmits in slot with probability p
- Prob that one node has success in a slot

```
= [prob just one transmits] x [all others (N-1) do not transmit]
= p \times (1-p)^{N-1}
```

Prob that any of the N nodes has a success  $= Np(1-p)^{N-1}$ 

## Slotted ALOHA Efficiency

- □ For max efficiency with N nodes, find  $p^*$  that maximizes  $Np(1-p)^{N-1}$
- □ For many nodes, take limit of  $Np*(1-p*)^{N-1}$  as N goes to infinity, gives: max efficiency = 1/e = 0.37
- At best: channel used for useful transmissions 37% of time!

## Pure (Unslotted) ALOHA

- Unslotted ALOHA: simpler, no synchronization
- When frame first arrives from network layer → Transmit immediately
- □ However, collision probability increases:
  - \* Frame sent at  $t_0$  collides with other frames sent in the time intervals of  $\begin{bmatrix} t_0-1 \end{bmatrix}$ ,  $t_0+1 \end{bmatrix}$



## Pure ALOHA Efficiency

```
P(success by a given node) =
    P(node transmits) ×
    P(no other node transmits in [t_0-1,t_0] ×
    P(no other node transmits in [t_0,t_0+1]
= p \cdot (1-p)^{N-1} \cdot (1-p)^{N-1} = p \cdot (1-p)^{2(N-1)}
```

P(success by any given node) =  $Np \cdot (1-p)^{2(N-1)}$ 

... choosing optimum p and then letting N -> infinity ...

$$= 1/(2e) = 0.18$$

Now channel used for useful transmissions only 18% of time!

Even worse!



G (transmission attempts per slot)

## CSMA (Carrier Sense Multiple Access)

#### CSMA: listen before transmit

- If channel sensed idle: transmit entire frame immediately
- If channel sensed busy, defer transmission
  - 1-persistent: transmit immediately when channel becomes available (selfish) - shown on next slide
  - Non-persistent CSMA: retry after random amount of time (less greedy)



## Tradeoff between 1- & Non-Persistent CSMA

- □ If 4 and 5 become ready in the middle of 3's transmission,
  - 1-Persistent: 4 and 5 will collide



- Non-Persistent: Probability is less that 4 and 5 will collide
- □ If only 4 becomes ready in the middle of 3's transmission,
  - 1-Persistent: 4 succeeds as soon as 3 ends
  - Non-Persistent: 4 may have to wait wasting time

## Optimally Greedy: P-persistent CSMA

- Good tradeoff between non-persistent and 1-persistent CSMA
- Channel is slotted with slot size = propagation delay
- 1. Protocol operation
  - □ If medium is idle,
    - transmit with probability p or
    - delay for one slot with probability (1-p), then go to Step 1
  - ☐ If medium is busy, continue to listen until medium becomes idle, then go to Step 1
- With high 'p', better low-load performance than non-persistent but worse at high load
- With low 'p', best performance (assuming N is large)

## Comparison of CSMA & ALOHA Protocols



### CSMA Collisions

#### Collisions can still occur:

 Propagation delay means two nodes may not hear each other's transmission in a timely manner

#### Collision:

Entire packet transmission time wasted



## CSMA/CD (Collision Detection)

- Maintains carrier sensing and deferral as in CSMA
  - \* Collisions detected within short time
  - Colliding transmissions aborted reducing channel waste
- Collision detection:
  - Easy in wired LANs: measure signal strengths, compare transmitted, received signals
  - \* Difficult in wireless LANs: receiver shut off while transmitting

# CSMA/CD (Collision Detection)



### CSMA/CD Versus Other Protocols



## Local Area Networks (LANs)

- Multiple access protocols used extensively in LANs
- □ LAN is a network that resides in a geographically-restricted area
  - Usually span a building or a campus
  - Short propagation delays
  - \* Small number of users
  - Inexpensive
- □ LANs governed by the IEEE 802 standards
  - Also responsible for metropolitan area networks
  - IEEE 802 standards are restricted to networks carrying variable-size packets
  - Why 802?
    - It was the next number available although...
       the first meeting was held on the 2nd month in 1980

## IEEE 802 Standards Working Groups

| Number   | Topic                                                          |
|----------|----------------------------------------------------------------|
| 802.1    | Overview and architecture of LANs                              |
| 802.2 ↓  | Logical link control                                           |
| 802.3 *  | Ethernet CSMA/CD bus                                           |
| 802.4 ↓  | Token bus (was briefly used in manufacturing plants)           |
| 802.5    | Token ring (IBM's entry into the LAN world)                    |
| 802.6 ↓  | Dual queue dual bus (early metropolitan area network)          |
| 802.7 ↓  | Technical advisory group on broadband technologies             |
| 802.8 †  | Technical advisory group on fiber optic technologies           |
| 802.9 ↓  | Isochronous LANs (for real-time applications)                  |
| 802.10↓  | Virtual LANs and security                                      |
| 802.11 * | Wireless LANs                                                  |
| 802.12↓  | Demand priority (Hewlett-Packard's AnyLAN)                     |
| 802.13   | Unlucky number. Nobody wanted it                               |
| 802.14↓  | Cable modems (defunct: an industry consortium got there first) |
| 802.15 * | Personal area networks (Bluetooth) 802.15.4 ZigBee             |
| 802.16 * | Broadband wireless Wireless metropolitan area networks         |
| 802.17   | Resilient packet ring                                          |

The important ones are highlighted
The ones marked with ↓ are hibernating
The one marked with † gave up

### IEEE 802 Standards (cont'd)

- 802 standards define:
  - Physical layer protocol
  - Data link layer protocol
    - · Logical Link Control (LLC) Sublayer
    - Medium Access (MAC) Sublayer



## Link Layer

- □ 6.1 Introduction
- 6.2 Error Detection and Correction Techniques
- 6.3 Multiple Access Links and Protocols
- 6.4 Switched Local Area Networks
- □ 6.5 Link Virtualization

- □ 6.6 Data Center Networking
- 6.7 A Day in the Life of a Web Page Request

#### IP versus MAC Addresses

- □ 32-bit IP address:
  - Network layer address
    - Used to get datagram to destination IP subnet
  - IP hierarchical address NOT portable
    - IP subnet dictates the IP address of a node
- □ MAC (AKA LAN or physical or Ethernet) address:
  - Used locally to get frame from one interface to another physically-connected interface on the same network (typically a LAN)
  - MAC addresses are completely flat → Portability
    - Can move LAN card from one LAN to another
- Analogy:
  - MAC address: like Social Security Number
  - IP address: like postal address

#### MAC Addresses

- MAC address allocation administered by IEEE
  - 48-bit MAC address burned in the adapter ROM
    - 00-13-72-A4-96-BE
  - \* Manufacturer buys portion ( $2^{24}$  addresses) of MAC address space (to assure uniqueness)
    - First 24 bits identify the manufacturer
      - » Organizationally Unique Identifier (OUI)
      - » http://standards.ieee.org/regauth/oui/oui.txt
      - » 00-13-72 (hex)
      - » Dell Inc. One Dell Way, Round Rock Texas 78682
    - · Last 24 bits is device ID assigned by manufacturer
- Why have a separate MAC address?
  - Can use adapter on non-IP networks
  - Adapter can filter out frames without passing data up stack

## Addresses



### MAC Addresses

□ Each adapter (NIC) on LAN has a unique MAC address



### ARP: Address Resolution Protocol

Question: How to determine MAC address of B if we know B's IP address?



- ARP resolves IP addresses to MAC addresses within a subnet
- Each IP node (Host, Router) on LAN has an ARP table
- □ ARP Table: IP/MAC address mappings for some LAN nodes
  - < IP address; MAC address; TTL>
    - TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min)
- arp -a displays current arp table in Windows

## ARP Protocol: Same LAN (Network)

- A wants to send datagram to B, and B's MAC address not in A's ARP table.
- A broadcasts ARP query packet containing B's IP address
  - Dest MAC address = FF-FF-FF-FF
  - All nodes on LAN receive ARP query
- B receives ARP query packet
   & replies to A with its (B's)
   MAC address
  - Frame sent directly to A's MAC address (unicast)

- A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out)
- ARP is "plug-and-play":
  - Nodes create their ARP tables without intervention from an administrator



## Routing to Another LAN

Walkthrough: Send datagram from A to B via R

assume A knows B IP address via DNS

□ Three ARP tables in router R, one for each IP subnet (LAN)



## Routing to Another LAN

How does A know to send the frame to R?

- A creates datagram with source IP-A, destination IP-B
- A broadcast ARP request; R unicasts reply of MAC address for 111.111.111.110
- A creates link-layer frame with R's MAC address as dest, frame contains Ato-B IP datagram
- A's adapter sends frame, and R's adapter receives frame
- R removes IP datagram from Ethernet frame, sees dest IP address is B
- R determines the correct subnet interface based on the dest IP
- □ R uses ARP to get B's MAC address on appropriate interface
- R creates frame containing A-to-B IP datagram and sends to B



Subnet mask: 255.255.255.0

### Ethernet

- Ethernet refers to the family of LAN protocols covered by the IEEE 802.3 standard
- Developed by Bob Metcalfe in 1972 based on ALOHAnet
- □ First widely used and still dominant LAN technology
- □ Cheap \$5.13 for 1 Gbps card!
- □ Kept up with speed race: 10 Mbps 100 Gbps

Metcalfe's Ethernet sketch





## Ethernet Topologies

- Bus topology popular through mid 90s
  - \* All nodes in same collision domain (can collide with each other)
  - ❖ Channel is half-duplex → a node can either transmit or receive but not both at the same time
- Star topology now prevails
  - \* Active switch in center
  - Each "spoke" runs a (separate) Ethernet protocol (nodes do not collide with each other)
  - \* Each node can transmit and receive at the same time on a pair of dedicated twisted wires full duplex and no collisions!



# Ethernet: MAC Layer

- Data encapsulation
  - Frame Format
  - Addressing
  - Error Detection
- Link Management
  - ❖ CSMA/CD
  - Backoff Algorithm

### Ethernet Frame Structure



Sending adapter encapsulates IP datagram in Ethernet frame

Preamble: Alternating 1's and 0's for synchronization

Start frame delimiter (SFD): 10101011 to start frame

Destination address: Unique 48-bit MAC address of destination

Source address: Unique 48-bit MAC address of source station

### Ethernet Frame Structure



- Length / Type:
  - ◆ 0:1500 (0x0000 0x05DC)  $\rightarrow$  length of data (802.3 frame)
  - $\star$  > 1535 (0x0600)  $\rightarrow$  type of higher layer protocol (Ethernet II)
    - Typically 0x0800 for IP; Length determined using framing
- Data: Min = 46 (pad with 0's); Max = 1500 data bytes (MTU = 1500 B)
  - To ensure that no node can completely receive a frame before the transmitting node has finished sending it, Ethernet defines a minimum frame size
- CRC: CRC over address, length, and data fields
- Minimum frame length = 72 bytes  $\rightarrow$  64 bytes (512 bits) for header/data + 8 bytes for preamble/SFD
- Interframe gap (IFG) of at least 96 bits

### IEEE 802.3 CSMA/CD LAN

- □ IEEE 802.3 and Ethernet are nearly identical
- "Ethernet" (Ethernet II, DIX)
  - Ethernet developed during the mid-1970's at Xerox Palo Alto Research Center with the objective to share resources such as printers
  - Later refined by Digital Equipment Corporation, Intel, and Xerox (DIX standard)
  - An industry standard from 1982 that is based on the first implementation of CSMA/CD by Xerox
  - Predominant version of CSMA/CD in the US
- □ 802.3:
  - ❖ IEEE's version of CSMA/CD from 1983
  - Interoperates with 802.2 (LLC) as higher layer



□ Difference for our purposes: Ethernet and 802.3 use different methods to encapsulate an IP datagram

## Limitations on Ethernet Length

- Prop delay plays a large role in determining the physical length of link
  - Suppose A sends a packet at time t
  - \* and B sees an idle line at a time just before  $t + \tau$  (i.e.,  $t + \tau 1$  bit time)
  - $\bullet$  ... so B happily starts transmitting a packet at t +  $\tau$  1 bit time
- B detects a collision and sends jamming signal at t + τ
  - but A doesn't
     see collision until
     t + 2τ 1 bit time



# Limitations on Ethernet Length

 $\square$  A must transmit at least  $2\tau$  in order to guarantee to see a collision



## Limitations on Ethernet Length

- Imposes restrictions on Ethernet
  - \* Maximum length between nodes: 2500 meters
  - Minimum length of the frame: 512 bits (64 bytes) for header/data
    - · 512 bits is also known as the slot time
    - See "B.1.3 Minimum frame length determination" in IEEE 802.3-2008 for description and calculation



## Manchester Encoding



- Used in 10BaseT
- Each bit has a transition
- Allows clocks in sending and receiving nodes to synchronize to each other
  - No need for a centralized, global clock among nodes!

### Ethernet - Unreliable, Connectionless Service

- Unreliable: receiving adapter doesn't send acks or nacks to sending adapter
  - If NIC transmits the entire frame without hearing a collision, it assumes success and moves on to the next frame
  - \* Frame is discarded if CRC fails
  - Stream of datagrams passed to network layer can have gaps due to CRC failure
  - \* Gaps will be filled if application at receiver is using TCP
    - Otherwise, application will see the gaps
- Connectionless: No handshaking between sending and receiving adapter

### Ethernet Uses CSMA/CD

- Transmit at any time
  - No "slots"
- Carrier sense
  - Adapter doesn't transmit if it senses that some other adapter is transmitting

- Collision detection
  - Transmitting adapter aborts when it senses that another adapter is transmitting
- Before attempting a retransmission, adapter waits a random time
  - Random access

## Ethernet CSMA/CD Algorithm

- 1. NIC receives datagram from net layer & creates frame
- 2. a. If NIC senses channel idle for 96 bit times (called the interframe gap), it starts to transmit frame (1persistent)
  - b. If it senses channel busy, waits until channel idle and then transmits
- 3. If NIC transmits entire frame without detecting another transmission, the NIC is done with frame!

- 4. If NIC detects another transmission while transmitting, aborts and transmits a 32-bit jam signal → typically all 1's
  - Ensures all other xmits are aware of collision
  - Destroys CRC → stations receiving frame drop it
- 5. After aborting, NIC enters

  exponential backoff:

  After the n<sup>th</sup> collision, NIC

  chooses a K at random from
  {0,1,2,3,4,...,2<sup>m</sup>-1} where

  m = min(n,10)
  - NIC waits K·512 bit times and returns to Step 2

## Ethernet's CSMA/CD (more)

#### Bit time:

transmission time for 1 bit

1 bit/10 Mbps = 0.1 microsec for 10 Mbps Ethernet

If K = 1023, wait time is  $= (1023 * 512) / 10 \times 10^6$  = 52 msec

#### Exponential Backoff:

- Goal: adapt retransmission attempts to current load
  - Heavy load: random wait will be longer
- □ 1<sup>st</sup> collision: choose K from {0,1};

  delay is K· 512 bit times
- □ After 2<sup>nd</sup> collision: choose K from {0,1,2,3}
- After  $3^{rd}$  collision: choose K from  $\{0,1,2,3,4,5,6,7\}$
- After 10-15 collisions, choose K from {0,1,2,3,4,...,1023}

# IEEE 802.3 Operation



### 10BaseT / 100BaseT / 1000BaseT

- □ 100BaseT  $\rightarrow$  100 Mbps, "Fast Ethernet", 2 pairs of wires in Cat5
- □ 1000BaseT  $\rightarrow$  1Gbps, uses all four pairs of wires in Cat 5/6
- Nodes connect to a hub: "star topology"; 100 m max distance between nodes and hub



Woot! High Speed! ...wait what?



## Hubs / Repeaters

- Hubs are essentially physical-layer repeaters
  - Provides a limited "extension cord" for Ethernet
  - Hardware device that copies electrical signals from one link to all other links at the same rate
    - · ONE collision domain
  - No frame buffering
  - No CSMA/CD at hub → host NICs detect collisions



## Hubs / Repeaters

- Does not change the functionality of the network
- Operates only at the physical layer
  - Regenerates the signal to abate attenuation



## Interconnecting With Hubs

- Individual segment collision domains become 1 large collision domain
  - ❖ Without Backbone hub → max aggregate throughput = 30 Mbps
  - $\bullet$  With Backbone hub  $\rightarrow$  max aggregate throughput = 10 Mbps
- Can't interconnect 10BaseT and 100BaseT with a hub



## Switch / Bridge

- Link layer device
- Divides a large network into smaller segments
- Keeps traffic for each segment separate
  - Multiple collision domains reduces collisions
- Store and forward complete packets discards packets with errors
- Examines frame header and selectively forwards frame based on dest
   MAC address



# Why Ethernet Switching?

- LANs may grow very large
  - Switch has a very fast backplane
  - It can forward frames very quickly to the appropriate collision domain
- Cheaper than upgrading all host interfaces to create a faster network
  - Combinations of shared/dedicated, 10/100/1000 Mbps interfaces possible
- No limit on the number of switches between hosts

#### Switch Characteristics

- When frame is to be forwarded on segment, uses CSMA/CD to access segment
- Uses exponential backoff if collision occurs
- Transparent
  - Hosts are unaware of presence of switches
- Plug-and-play, self-learning
  - Switches do not need to be configured
- Not considered an interface / adapter
  - They do not have MAC addresses
- □ Cut-through switching possible: frame forwarded from input to output port without first collecting entire frame
  - Error detection not possible since entire frame not in buffer
  - Slight reduction in latency

# Forwarding



- How does the switch determine onto which LAN segment to forward frame?
- Looks like a routing problem...

### Self Learning

- A switch has a switching table
- Entry in switching table:
  - (MAC Address, Interface, Time Stamp)
  - Stale entries in table dropped (TTL can be 60 min)



- ♦ When frame received, switch "learns" location of sender's MAC address → incoming LAN segment
- \* Records sender MAC / location pair in switch table



# Filtering/Forwarding

#### When switch receives a frame:

Record link associated with sending host's MAC address

Index switch table using dest MAC address

```
if entry found for destination
    then
{
    if dest is on segment from which frame arrived
        then drop the frame
        else forward the frame on interface listed in table
    }
    else flood
```

Forward on all but the interface on which the frame arrived

Switching

Frame out

# Switch Example

Suppose C sends frame to D



| $\sim$ · · · | •        |       |      |          |
|--------------|----------|-------|------|----------|
| Switch       | receives | trame | trom | <b>C</b> |

- Notes in switch table that C is on interface 1
- Because D is not in table, switch forwards frame to interfaces 2 and 3
- Frame received by D

| Before           |                  |  |  |  |
|------------------|------------------|--|--|--|
| address          | interface        |  |  |  |
| A<br>B<br>E<br>G | 1<br>1<br>2<br>3 |  |  |  |
|                  |                  |  |  |  |

| After     |  |  |  |  |
|-----------|--|--|--|--|
| interface |  |  |  |  |
| 1         |  |  |  |  |
| 1<br>2    |  |  |  |  |
| 3         |  |  |  |  |
| 1         |  |  |  |  |
|           |  |  |  |  |

# Switch Example

Suppose D replies back with frame to C



| Befo    | Before address interface |  |  |  |
|---------|--------------------------|--|--|--|
| address | interface                |  |  |  |
| Α       | 1                        |  |  |  |
| В       | 1                        |  |  |  |
| Е       | 2                        |  |  |  |
| G       | 3                        |  |  |  |
| С       | 1                        |  |  |  |
|         |                          |  |  |  |

| Afte    | A 1       |  |  |  |
|---------|-----------|--|--|--|
| address | interface |  |  |  |
| Α       | 1         |  |  |  |
| В       | 1         |  |  |  |
| Е       | 2         |  |  |  |
| G       | 3         |  |  |  |
| С       | 1         |  |  |  |
| →D      | 2         |  |  |  |

- Switch receives frame from D
  - Notes in switch table that D is on interface 2
  - \* Because C is in table, switch forwards frame only to interface 1
- Frame received by C

#### Switch: Traffic Isolation

- Switch breaks subnet into LAN segments
- Switch filters packets:
  - SAME-LAN-SEGMENT frames not usually forwarded onto other LAN segments
  - \* Segments become separate collision domains



#### Switches: Dedicated Access

- Hosts have dedicated direct connection to switch
- Switch can buffer frames
- Each host is its own collision domain
- □ No collisions; full duplex
- Effectively have a point-to-point connection between all hosts
- Switching: A-to-A' and B-to-B' simultaneously, no collisions
  - Aggregate throughput is 20 Mbps
- Use a MAC control frame for flow control
  - PAUSE frames
  - Overwhelmed receiver sends frame to special MAC address (01:80:C2:00:00:01) specifying how long the sender should pause transmission



## The Linksys SD205 Switch

□ This newly-redesigned Linksys 5-Port 10/100 Switch can significantly increase your network traffic's speed.



- □ A switch serves the same function as a hub in a network design -tying your network equipment together. But unlike a simple-minded hub which divides the network's bandwidth among all the attached devices, a switch delivers full network speeds at each port.
- □ Installing this cost-effective 5-Port 10/100 Switch can potentially increase your network speed by five times!
- □ It's the perfect way of integrating 10Mbps Ethernet and 100Mbps Fast Ethernet devices, too. All five ports are auto speed negotiating, and have automatic MDI/MDI-X crossover detection, so you don't have to worry about the cable type.
- Each port independently negotiates for best speed and half- or full-duplex mode, for up to 200Mbps of bandwidth per port.
- □ Fast store-and-forward switching prevents damaged packets from being passed on into the network.

## Network Hardware Terminology

- □ Router a layer-3 packet device
  - Special purpose, dedicated computer that attaches to two or more networks and routes packets from one to another
  - Uses network layer (IP) addresses



#### Switches vs. Routers

- Both store-and-forward devices
  - Routers: network layer devices (examine IP address)
  - Switches: link layer devices (examine MAC address)
- Routers maintain forwarding tables
  - Implement routing algorithms
- Switches maintain switching tables
  - Implement filtering, learning algorithms



# Institutional Network



#### Point to Point Data Link Control (DLC)

- Commonly used in establishing a direct connection between 2 nodes
- $\square$  One sender, one receiver, one link  $\rightarrow$  easier than broadcast link
  - No Media Access Control
  - No need for explicit MAC addressing
  - e.g., dialup link, ISDN line, fiber optic lines (SONET)
- Popular point-to-point DLC protocols:
  - PPP Point-to-Point Protocol
  - HDLC High-level Data Link Control

### PPP Design Requirements [RFC 1547]

- Packet framing:
  - Encapsulation of network-layer datagram in data link frame
  - Receiver must be able to demultiplex upwards
- Bit transparency: must carry any bit pattern in the data field
- □ Error detection (no correction)
- □ No error correction/recovery
- No flow control
- Out of order delivery OK

Error recovery, flow control, data re-ordering all relegated to higher layers!



- Flag: delimiter (used for framing)
- Address: does nothing (only one option → 11111111)
- Control: does nothing; in the future possible multiple control fields
- Protocol: upper layer protocol to which frame delivered
  - IP, DECnet, AppleTalk, PPP-Link Control Protocol (PPP-LCP)
- Info: upper layer data being carried (e.g., IP datagram)
- Check: cyclic redundancy check for error detection

## PPP Byte Stuffing

- □ "Data transparency" requirement: data field must be allowed to include the flag pattern <01111110>
  - ❖ Q: Is received <01111110> data or flag?
- Sender: adds ("stuffs") extra control escape byte 0x7D (01111101) before each 0x7E or 0x7D data or CRC byte
  - The next (data/CRC) byte has its sixth bit complemented:
    - Data/CRC byte 0x7E (01111110) becomes 0x5E (01011110) and transmitted as two bytes 0x7D, 0x5E
    - Data/CRC byte 0x7D (01111101) becomes 0x5D (01011101) and transmitted as two bytes 0x7D, 0x5D
- $\square$  Receiver: removes control escape bytes (0x7D) and complements the sixth bit in the next byte
  - ❖ 0×7D, 0×5E becomes 0x7E
  - $\star$  0×7D, 0×5D becomes 0×7D

# PPP Byte Stuffing



- By default, ASCII control codes (0x00 - 0x1F) are also escaped
  - For example, byte 0x03 is transmitted as two bytes 0x7D, 0x23
  - $00000011 \rightarrow 00100011$

|   | 0   | 1           | 2     | 3 | 4   | 5 | 6   | 7   |
|---|-----|-------------|-------|---|-----|---|-----|-----|
| 0 | NUL | DLE         | space | 0 | @   | Р | `   | р   |
| 1 | SOH | DC1<br>XON  | ļ     | 1 | Α   | Q | а   | q   |
| 2 | STX | DC2         | ш     | 2 | В   | R | b   | r   |
| 3 | ETX | DC3<br>XOFF | #     | 3 | С   | S | С   | S   |
| 4 | EOT | DC4         | \$    | 4 | D   | Т | d   | t   |
| 5 | ENQ | NAK         | %     | 5 | Е   | U | е   | u   |
| 6 | ACK | SYN         | &     | 6 | F   | ٧ | f   | ٧   |
| 7 | BEL | ETB         | 1     | 7 | G   | W | g   | W   |
| 8 | BS  | CAN         | (     | 8 | Н   | Х | h   | ×   |
| 9 | HT  | EM          | )     | 9 | - 1 | Υ | i   | У   |
| Α | LF  | SUB         | *     | : | J   | Ζ | j   | Z   |
| В | VT  | ESC         | +     | ÷ | K   | [ | k   | {   |
| С | FF  | FS          |       | < | L   | 1 | - 1 |     |
| D | CR  | GS          | -     | = | M   | ] | m   | }   |
| E | so  | RS          |       | > | N   | ۸ | n   | ~   |
| F | SI  | US          | 1     | ? | 0   | _ | 0   | del |

#### PPP Data Control Protocol

Before exchanging network-layer data, data link peers must

- Configure PPP link using PPP-Link Control Protocol (LCP)
  - Bringing up, testing, bringing down lines; negotiating options
    - Max. frame length
    - Skip use of address and control fields
    - Authentication: key capability in ISP access
  - \* Behaves very much like TCP connection establishment
- Learn/Configure network layer information via a family of Network Control Protocols specific to different network layer protocols
  - For IP: carry IP Control Protocol (IPCP) msgs (protocol field: 8021) to configure/learn IP address

## Link Layer

- □ 6.1 Introduction
- 6.2 Error Detection and Correction Techniques
- 6.3 Multiple Access Links and Protocols
- 6.4 Switched Local Area Networks
- □ 6.5 Link Virtualization

- □ 6.6 Data Center Networking
- 6.7 A Day in the Life of a Web Page Request

#### Synthesis: A Day in the Life of a Web Request

- Journey down protocol stack complete!
  - application, transport, network, link
- Putting-it-all-together: Synthesis!
  - Goal: identify, review, understand protocols (at all layers) involved in seemingly simple scenario:
    - Requesting www page
  - Scenario: student attaches laptop to campus network, requests/receives www.google.com



#### A Day in the Life... Connecting to the Internet



- Connecting laptop needs to get its own IP address, addr of 1<sup>st</sup>-hop router, addr of DNS server: use DHCP
- □ DHCP packets encapsulated in UDP, encapsulated in IP with broadcast address 255.255.255.255, encapsulated in Ethernet
- Ethernet frame broadcast (dest: FF:FF:FF:FF:FF) on LAN, received at router running DHCP server
- Ethernet demux'ed to IP demux'ed to DHCP

#### A Day in the Life... Connecting to the Internet



- □ After DHCP Offer and Request, DHCP server formulates DHCP ACK containing client's IP address, IP address of 1<sup>st</sup>hop router for client, name & IP address of DNS server
- Encapsulation at DHCP server, frame forwarded (switch learning) through LAN, demultiplexing at client
- DHCP client receives DHCP ACK reply

Client now has IP address, knows name & addr of DNS server, IP address of its 1st-hop router

# A Day in the Life... ARP (Before DNS, Before HTTP)



- Before sending HTTP request, need IP address of www.google.com: DNS
- DNS query created, encapsulated in UDP / IP / Eth. In order to send frame to router, need MAC address of router interface: ARP
- ARP query broadcast, received by router, which replies unicast with ARP reply giving MAC address of router interface
- Client now knows MAC address of 1<sup>st</sup>-hop router, so can now send frame containing DNS query

A Day in the Life... Using DNS



campus network into Comcast network, routed (tables created by RIP, OSPF and/or BGP routing protocols) to DNS server

DNS UDP

**IP** 

Eth

Phy

Comcast network

68.80.0.0/13

**DNS** server

- Demux'ed at DNS server
- DNS server replies to client with IP address of www.google.com

□ IP datagram forwarded from

- IP datagram containing DNS query forwarded via LAN switch from client to 1st-hop router
- \*Note\* This does not show the root and TLD DNS servers

# A Day in the Life... TCP Connection Carrying HTTP



#### A Day in the Life... HTTP Request/Reply

