

Introducción a los Sensores

Mauricio Fernández-Montoya, MSc Product Design Management –Universidad EAFIT Mechatronics Engineer - Escuela de Ingeniería de Antioquia

Diseño y Gestión del Producto 2019-2

[1] http://paolaguimerans.com/openeart/?p=1372

[2] https://thumbs.dreamstime.com/b/human-senses-five-picture-you-can-see-very-high-hand-drawing-illustration-you-can-use-picture-all-your-needs-72142112.jpg

QUE ES UN SENSOR?

El término sensor se refiere a un elemento de medición que detecta la magnitud de un parámetro físico y lo cambia por una señal que puede procesar el sistema.

CONVERSIÓN ANÁLOGO- DIGITAL

Es recomendable conocer nuestras variables que queremos medir, así como las especificaciones de nuestros sensores, para aplicaciones especificas deben considerarse varios factores:

- 1. Tipo de medición que se requiere.
- 2. Tipo de salida que se requiere del sensor.
- 3.Se hace una selección de sensores posibles, considerando intervalo, exactitud, linealidad, velocidad de respuesta, confiabilidad, factibilidad de mantenimiento, disponibilidad y costo.

ENTRADAS ANÁLOGAS ARDUINO

- Pin 14 = Analog in 0
- Pin 15 = Analog in 1
- Pin 16 = Analog in 2
- Pin 17 = Analog in 3
- Pin 18 = Analog in 4
- Pin 19 = Analog in 5
- analogRead(0);
- analogRead(A0);
- analogRead(14);
- digitalWrite(A1);
- digitalWrite(15);

CONVERSIÓN ANÁLOGO- DIGITAL

El microcontrolador de Arduino UNO contiene internamente un conversor analógico a digital de 6 canales. El conversor tiene una resolución de 10 bits, devolviendo enteros entre 0 y 1023.

$$Volt = \frac{5}{1024} * lectura$$

CODIFICACIÓN (código binario)

[1] https://aprendiendoarduino.wordpress.com/tag/adc/

CONVERSIÓN ANÁLOGO- DIGITAL

También se puede cambiar la tensión máxima (siempre por debajo de VCC) que utiliza el ADC como referencia, es la llamada tensión de referencia y es la tensión contra la que todas las entradas analógicas hacen las conversiones.

Esta tensión de referencia se toma del pin AREF. (TIENE UN VALOR NORMAL DE 5V)

CODIFICACIÓN (código binario)

TEMPERATURA

Permite monitorear los cambios de la temperatura mediante la expansión o contracción de sólidos, líquidos o gases, el cambio en la resistencia eléctrica de semiconductores y conductores

- Termopar.
- Termómetro.
- •RTD.
 - •PT100.
 - Termistor.
- Semiconductor
 - •LM35.

^[1] https://www.mecatronicalatam.com/tutorial/es/sensores/sensor-de-temperatura

^[3] https://www.makerlab-electronics.com/my_uploads/2016/08/waterproof-temperature-sensor-ds18b20-1.jpg

^[2] https://cdn1-shop.mikroe.com/img/product/lm35-sensor/lm35-sensor-thickbox_default-12x.jpg

MOVIMIENTO

Dispositivos electrónicos que registran el movimiento en un área determinada mediante emisores y receptores de señales, dependiendo de las características del transductor es la señal obtenida

•PIR

- [1] https://www.mecatronicalatam.com/tutorial/es/sensores/sensor-de-movimiento
- [2] https://5.imimg.com/data5/IW/FO/MY-45609829/pir-sensor-500x500.png
- [3] https://upload.wikimedia.org/wikipedia/commons/thumb/6/6f/PIR_Motion_Sensor-Sensinova_%28SN-PR11%29.png/220px-PIR_Motion_Sensor-Sensinova_%28SN-PR11%29.png

DISTANCIA

Permite realizar la medida de distancia lineal, dependiendo de su configuración electrónica o por medio de programación estos normalmente pueden adaptarse para medir la distancia o ser utilizados como sensores de presencia (movimiento).

- •INFRARROJO
- •ULTRASÓNICO

- [1] https://www.mecatronicalatam.com/tutorial/es/sensores/sensor-de-distancia
- [2] https://www.makerlab-electronics.com/my_uploads/2016/05/ultrasonic-sensor-HCSR04-1.jpg
- [3] https://www.trossenrobotics.com/shared/images/PImages/S-10-GP2D12.jpg

LUZ

Responde al cambio en la intensidad de la luz, permite detectar la presencia de luz. Los sensores de luz detectan la luz visible (La que el ser humano puede percibir) y tiene una respuesta de acuerdo a la intensidad.

- •FOTOCELDA (LDR)
- •FOTOTRANSISTOR
- •CELULA FOTOELECTRICA

^[1] https://www.mecatronicalatam.com/tutorial/es/sensores/sensor-de-luz

^[2] https://www.pcboard.ca/image/cache/catalog/products/resistors/gl5528-ldr-02-500x500.jpg

^[3] https://i.ebayimg.com/images/g/RB4AAOSwHDJcQIlt/s-I300.jpg

PROXIMIDAD

Transductor que detecta la presencia de objetos u obstáculos sin la necesidad de contacto, existen diferentes tipos de sensores de proximidad según el principio físico, también es posible configurar para la medición de la distancia.

- INDUCTIVO
- CAPACITIVO
- OPTICO
- MECÁNICO

[2] https://media.rs-online.com/t large/F7396604-01.jpg

31 https://d1xahwiwo4b49p.cloudfront.net/4615-large_default/cny70-reflective-optical-sensor-with-

PRESION

transductor que transforma la magnitud física de presión por unidad de superficie en una señal normalizada (normalmente 4 a 20mA) que corresponde a una señal eléctrica.

- MEMBRANAS
- PIEZOELÉCTRICO
- MANOMÉTRICO

[2] https://moderndevice.com/wp-content/uploads/2010/06/MPVX_pressure_sens.jpg

[3] https://images-na.ssl-images-amazon.com/images/I/61JuDtQHsOL. SX425 .jpg

POSICION

posición lineal y posición angular y permiten determinar la ubicación de un objeto. Estos sensores es común que se le adapte una electrónica especial para determinar con exactitud la ubicación

- POTENCIÓMETRO
- ENCODER
- LINEAL
- ANGULAR

- [1] https://www.mecatronicalatam.com/tutorial/es/sensores/sensor-de-posicion
- [2] https://images-na.ssl-images-amazon.com/images/I/61gC5-byQCL. SX425_jpg
- [3] https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTEYt01HQttbh2a--SU3RAgd0F4e-cwtPr2fQB6hRF52sQxRuRIAQ

COLOR

convierte de luz a frecuencia, permiten la detección de colores a partir de la radiación reflejada y los compara con el valor de referencia almacenado. Estos sensores emiten luz (roja, verde y azul) sobre los objetos que deben analizar,

- TCS3200
- TCS34725
- CÁMARAS

^[3] https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTEYt01HQttbh2a--SU3RAgd0F4e-cwtPr2fQB6hRF52sQxRuRIAQ

^[1] https://www.mecatronicalatam.com/tutorial/es/sensores/sensor-de-color

^[2] https://imgaz2.staticbg.com/thumb/large/2014/xiemeijuan/02/SKU204244/SKU204244-1.jpg

HUMEDAD

Miden el nivel de líquido o la humedad relativa en un área dada, permiten controlar la humedad del aire y la temperatura. Las magnitudes medidas por el sensor de humedad se transforman en una señal eléctrica

- SHT11
- DHT11
- CAPACITIVO

- [1] https://www.mecatronicalatam.com/tutorial/es/sensores/sensor-de-humedad
- [2] https://5.imimg.com/data5/HI/OB/MY-9380557/soil-moisture-sensor-500x500.jpg
- [3] https://images-na.ssl-images-amazon.com/images/I/71km3yXmifL_SL1500_.jpg

MAGNÉTICOS

son sensores que detectan los campos magnéticos provocados por los imanes o las corrientes eléctricas.

- COMPÁS MAGNÉTICO
- EFECTO HALL
- REED SWITCH

- [1] https://www.mecatronicalatam.com/tutorial/es/sensores/sensor-magnetico
- [2] https://www.luisllamas.es/wp-content/uploads/2016/09/arduino-brujula-HMC5883-GY273-esquema.png
- [3] https://3.imimg.com/data3/KC/UE/MY-3067533/glass-reed-switch-250x250.jpg

MECÁNICOS

son utilizados para medir el esfuerzo o la deformación, esto permite verificar si el componente está sujeto o no a niveles de carga segura

- GALGA EXTENSIOMÉTRICA
- CÉLULA DE CARGA

^[2] https://c.76.my/Malaysia/weight-sensor-load-cell-0-1kg-arduino-littlecraft-1706-07-littlecraft@1.jpg

^[3] https://makerselectronics.com/wp-content/uploads/2018/07/flex-sensor-2-2-bend-sensor-for-hand-gesture-recognitio-500x500.jpg

Gracias

Mauricio Fernández-Montoya, MSc

Email: mfernandez@udem.edu.co

