Una introducción a los límites inversos

Sergio Macías

Resumen. El objetivo del presente trabajo es el de dar las definiciones y teoremas básicos de la teoría de los límites inversos de continuos. Presentamos algunos ejemplos ilustrativos que nos permiten adquirir experiencia para manipular los límites inversos.

- **1.1 Notación.** Dados un espacio topológico Y y un subconjunto A de Y, \overline{A} denota la cerradura de A en Y. Los símbolos \mathbb{N} y \mathbb{Z} representan al conjunto de números naturales y números enteros, respectivamente.
- **1.2 Notación.** Dados un espacio métrico (X,d), un punto x en X y un número real positivo ε , denotaremos como $\mathcal{V}^d_{\varepsilon}(x)$ a la bola abierta de radio ε .

Empezaremos probando un Teorema el cual no siempre es cubierto en los cursos de Topología.

1.3 Teorema. Si $\{(X_n, d'_n)\}_{n=1}^{\infty}$ es una sucesión de espacios métricos entonces $\prod_{n=1}^{\infty} X_n$, con la topología producto, es metrizable.

Demostración: Como métricas equivalentes generan la misma topología, podemos cambiar d'_n por d_n , donde la función $d_n: X_n \times X_n \to [0, \infty)$ está definida como $d_n(x_n, x'_n) = \min\{d'_n(x_n, x'_n), 1\}$. Sea:

$$\rho: \prod_{n=1}^{\infty} X_n \times \prod_{n=1}^{\infty} X_n \to [0,1] \subset [0,\infty)$$

definida como:

$$\rho((x_n)_{n=1}^{\infty}, (y_n)_{n=1}^{\infty}) = \sum_{n=1}^{\infty} \frac{1}{2^n} d_n(x_n, y_n).$$

No probaremos que ρ es una métrica. Sólo mostraremos que la topología producto para $\prod_{n=1}^{\infty} X_n$ y la topología inducida por ρ coinciden. Sean \mathcal{T}' la topología producto y \mathcal{T} la topología inducida por ρ .

Veamos que $\mathcal{T}' \subset \mathcal{T}$. Sean $(x_n)_{n=1}^{\infty} \in \prod_{n=1}^{\infty} X_n \text{ y } U = \bigcap_{j=1}^{k} \pi_j^{-1} \left(\mathcal{V}_{\varepsilon_j}^{d_j}(x_j) \right)$ un elemento básico de \mathcal{T}' que contiene a $(x_n)_{n=1}^{\infty}$. Sea:

$$arepsilon = \min \left\{ rac{1}{2} arepsilon_1, \ldots, rac{1}{2^k} arepsilon_k
ight\}.$$

Mostraremos que $\mathcal{V}_{\varepsilon}^{\rho}((x_n)_{n=1}^{\infty}) \subset U$. Sea $(y_n)_{n=1}^{\infty} \in \mathcal{V}_{\varepsilon}^{\rho}((x_n)_{n=1}^{\infty})$. De aquí se tiene que $\rho((x_n)_{n=1}^{\infty}, (y_n)_{n=1}^{\infty}) < \varepsilon$, esto es, $\sum_{n=1}^{\infty} \frac{1}{2^n} d_n(x_n, y_n) < \varepsilon$, por lo que, para cada $j \in \{1, \ldots, k\}$, $\frac{1}{2^j} d_j(x_j, y_j) < \varepsilon \leq \frac{1}{2^j} \varepsilon_j$, lo que implica que si $j \in \{1, \ldots, k\}$ entonces $d_j(x_j, y_j) < \varepsilon_j$ y, por lo tanto, $\mathcal{V}_{\varepsilon}^{\rho}((x_n)_{n=1}^{\infty}) \subset U$.

Ahora probaremos que $\mathcal{T} \subset \mathcal{T}'$. Sea $U = \mathcal{V}_{\varepsilon}^{\rho}((x_n)_{n=1}^{\infty})$ un elemento básico de \mathcal{T} que contiene a $(x_n)_{n=1}^{\infty}$. Tomemos $N \in \mathbb{N}$ de tal forma que $\sum_{n=N+1}^{\infty} \frac{1}{2^n} < \frac{\varepsilon}{2}$. Afirmamos que $\bigcap_{j=1}^{N} \pi_j^{-1} \left(\mathcal{V}_{\frac{\varepsilon}{2^N}}^{d_j}(x_j) \right) \subset U$.

Para ver esto, sea $(y_n)_{n=1}^{\infty} \in \bigcap_{j=1}^{N} \pi_j^{-1} \left(\mathcal{V}_{\frac{\varepsilon}{2^N}}^{d_j}(x_j) \right)$. Queremos probar que $\rho((x_n)_{n=1}^{\infty}, (y_n)_{n=1}^{\infty}) < \varepsilon$. Observemos que:

$$\rho((x_n)_{n=1}^{\infty}, (y_n)_{n=1}^{\infty}) = \sum_{n=1}^{\infty} \frac{1}{2^n} d_n(x_n, y_n) =$$

$$= \sum_{n=1}^{N} \frac{1}{2^n} d_n(x_n, y_n) + \sum_{n=N+1}^{\infty} \frac{1}{2^n} d_n(x_n, y_n) <$$

$$< \sum_{n=1}^{N} \frac{1}{2^n} \frac{1}{2^N} \varepsilon + \frac{1}{2} \varepsilon =$$

$$= \left(1 - \frac{1}{2^N}\right) \frac{1}{2^N} \varepsilon + \frac{1}{2} \varepsilon \le$$

$$\leq \frac{1}{2} \varepsilon + \frac{1}{2} \varepsilon =$$

$$= \varepsilon.$$

El resultado que probamos a continuación es un caso particular del Teorema de Tychonoff, el cual dice que el producto arbitrario de espacios topológicos compactos es compacto. La demostración de este teorema utiliza el **Axioma de Elección**, de hecho, el Teorema de Tychonoff no puede ser probado sin el axioma de elección [4]. Sin embargo la prueba que presentamos del Teorema 1.4 está basada en el hecho de que la compacidad y la compacidad por sucesiones son equivalentes en los espacios métricos [2].

1.4 Teorema. El producto numerable de espacios métricos y compactos, con la topología producto, es compacto.

Demostración: Sea $\{(X_n, d_n)\}_{n=1}^{\infty}$ una sucesión de espacios métricos. Por el Teorema 1.3, $\prod_{n=1}^{\infty} X_n$ es metrizable, así que basta probar que $\prod_{n=1}^{\infty} X_n$ es compacto por sucesiones (esto es, toda sucesión de puntos de $\prod_{n=1}^{\infty} X_n$ tiene una subsucesión convergente).

Sea $\{p^k\}_{k=1}^{\infty}$ una sucesión de elementos de $\prod_{n=1}^{\infty} X_n$, donde $p^k = (p_n^k)_{n=1}^{\infty}$ para cada $k \in \mathbb{N}$. De esta forma, si mantenemos fijo el índice n, $\{p_n^k\}_{k=1}^{\infty}$ es una sucesión de puntos de X_n .

Como (X_1, d_1) es compacto por sucesiones, $\{p_1^k\}_{k=1}^{\infty}$ tiene una subsucesión convergente $\{p_1^{k_j}\}_{j=1}^{\infty}$, digamos que converge al punto q_1 de X_1 . Observemos que, implícitamente, hemos definido una subsucesión $\{p^{k_j}\}_{j=1}^{\infty}$.

Ahora supongamos, de manera inductiva, que para alguna m, hemos definido una subsucesión $\{p^{k_\ell}\}_{\ell=1}^\infty$ de $\{p^k\}_{k=1}^\infty$ de tal forma que $\{p^{k_\ell}_m\}_{\ell=1}^\infty$ converge a un punto q_m de X_m . Entonces, como (X_{m+1}, d_{m+1}) es compacto por sucesiones, $\{p^{k_\ell}_{m+1}\}_{\ell=1}^\infty$ tiene una subsucesión $\{p^{k_{\ell_i}}_{m+1}\}_{i=1}^\infty$ que converge a un punto q_{m+1} de X_{m+1} .

De esta forma, por el principio de inducción, hemos definido una subsucesión de $\{p^k\}_{k=1}^{\infty}$ (véase la "matriz" infinita que sigue):

Cada subsucesión (renglón) es una subsucesión de las subsucesiones anteriores (renglones), además, el j-ésimo término de la t-ésima subsucesión converge a q_j cuando j < t.

Ahora, consideremos la sucesión diagonal $\Sigma = \{p^1, p^{k_2}, p^{k_{j_3}}, p^{k_{j_{\ell_4}}}, \ldots\}$. Es claro que Σ es una subsucesión de $\{p^k\}_{k=1}^{\infty}$ y que Σ converge al punto $(q_n)_{n=1}^{\infty}$.

El resultado para los espacios conexos es bien conocido, esto es, el producto de espacios es conexo si y sólo si cada espacio factor es conexo [2].

- **1.5 Definición.** Un *continuo* es un espacio métrico, compacto, conexo y no vacío. Un *subcontinuo* es un suconjunto cerrado, conexo y no vacío de un continuo.
- 1.6 Notación. Cuando digamos función querremos decir una función continua y todos nuestros espacios serán continuos a menos de que se indique lo contrario, pero siempre serán espacios métricos.
- **1.7 Definición.** Sea $\{X_n\}_{n=1}^{\infty}$ una colección numerable de espacios métricos. Para cada $n \in \mathbb{N}$, sea $f_n^{n+1} \colon X_{n+1} \to X_n$ una función de X_{n+1} en X_n . La sucesión $\{X_n, f_n^{n+1}\}$ de espacios y funciones es llamada una sucesión inversa. Las funciones $f_n^{n+1} \colon X_{n+1} \to X_n$ son llamadas funciones de ligadura.

$$X_1 \stackrel{f_1^2}{\longleftarrow} X_2 \longleftarrow \cdots \longleftarrow X_{n-1} \stackrel{f_{n-1}^n}{\longleftarrow} X_n \stackrel{f_n^{n+1}}{\longleftarrow} X_{n+1} \longleftarrow \cdots$$

- 1.8 Notación. Si n > m entonces $f_m^n = f_m^{m+1} \circ \cdots \circ f_{n-1}^n$ y $f_n^n = 1_{X_n}$.
- 1.9 Definición. El *límite inverso* de la sucesión inversa $\{X_n, f_n^{n+1}\}$ es el subespacio del espacio producto $\prod_{n=1}^{\infty} X_n$ definido como:

$$\varprojlim \{X_n, f_n^{n+1}\} = \left\{ (x_n)_{n=1}^{\infty} \in \prod_{n=1}^{\infty} X_n \mid f_n^{n+1}(x_{n+1}) = x_n \right\}.$$

- **1.10 Observación.** Por el Teorema 1.3 se tiene que $\varprojlim \{X_n, f_n^{n+1}\}$ es un espacio métrico.
- **1.11 Definición.** Sea $\pi_m: \prod_{n=1}^{\infty} X_n \to X_m$ la función proyección. Definimos $f_m = \pi_m |_{\underset{\longleftarrow}{\underline{\lim}} \{X_n, f_n^{n+1}\}} y$, también, la llamaremos función proyección.
- **1.12 Observación.** Si cada función de ligadura f_n^{n+1} es suprayectiva, entonces las proyecciones f_n son suprayectivas y viceversa. Además $f_n^{n+1} \circ f_{n+1} = f_n$.

1.13 Ejemplo. Supongamos que para cada $n \in \mathbb{N}$, $X_n = \mathbb{N}$ y $f_n^{n+1}: X_{n+1} \to X_n$ está definida como $f_n^{n+1}(z) = z+1$. Supongamos $(z_n)_{n=1}^\infty$ pertence a $\lim \{X_n, f_n^{n+1}\}$. Notemos que $z_2 = z_1 - 1$, $z_3 = z_2 - 1 = z_1 - 2$, etc. Sea $n = z_1 + 2$. Observemos que $z_n = z_1 - (n-1) = z_1 - (z_1 + 2 - 1) = -1$, lo cual es una contradicción. Por tanto, $\lim_{n \to \infty} \{X_n, f_n^{n+1}\} = \emptyset$.

I

14

1.14 Ejemplo. Supongamos que para cada $n \in \mathbb{N}$, $X_n = \mathbb{Z}$ y $f_n^{n+1}: X_{n+1} \to X_n$ está definida como $f_n^{n+1}(z) = z+1$. Afirmamos que $\lim_{n \to \infty} \{X_n, f_n^{n+1}\}$ es un espacio totalmente disconexo. Para ver esto, sean $(z_n)_{n=1}^{\infty}$ y $(x_n)_{n=1}^{\infty}$ dos puntos distintos de $\lim_{n \to \infty} \{X_n, f_n^{n+1}\}$. Como $(z_n)_{n=1}^{\infty} \neq (x_n)_{n=1}^{\infty}$, existe una $m \in \mathbb{N}$ tal que $z_m \neq x_m$. Sea $V = f_m^{-1}(\{z_m\})$. Entonces V es un subconjunto tanto abierto como cerrado de $\lim_{n \to \infty} \{X_n, f_n^{n+1}\}$ tal que $(z_n)_{n=1}^{\infty} \in V$ y $(x_n)_{n=1}^{\infty} \notin V$. Por tanto, $\lim_{n \to \infty} \{X_n, f_n^{n+1}\}$ es totalmente disconexo. Observemos que, en este caso, como las funciones de ligadura son biyectivas, se tiene que $V = \{(z_n)_{n=1}^{\infty}\}$, lo que implica que $\lim_{n \to \infty} \{X_n, f_n^{n+1}\}$ es, además, discreto. De lo anterior obtenemos que la función $g: \mathbb{Z} \to \lim_{n \to \infty} \{X_n, f_n^{n+1}\}$ definida como $g(z) = (z-n)_{n=0}^{\infty}$ es un homeomorfismo. Por tanto, $\lim_{n \to \infty} \{X_n, f_n^{n+1}\}$ es homeomorfo a \mathbb{Z} .

El argumento dado en el ejemplo anterior muestra el siguiente resultado:

1.15 Lema. Si $\{X_n, f_n^{n+1}\}$ es una sucesión inversa de espacios discretos entonces $\varprojlim \{X_n, f_n^{n+1}\}$ es un espacio totalmente disconexo.

El Lema siguiente nos muestra que, lo que es una subbase para el producto topológico, restringida al límite inverso, resulta ser una base para éste.

1.16 Lema. Sea $\{X_n, f_n^{n+1}\}$ una sucesión inversa de espacios métricos. Para cada $n \in \mathbb{N}$, sea $\mathcal{B}_n = \{f_n^{-1}(U_n) \mid U_n \text{ es un abierto de } X_n\}$. Si $\mathcal{B} = \bigcup_{n=1}^{\infty} \mathcal{B}_n$ entonces \mathcal{B} forma una base de $\varprojlim \{X_n, f_n^{n+1}\}$.

Demostración: Como $\varprojlim\{X_n, f_n^{n+1}\}$ es un subespacio de un producto, un abierto básico típico de $\varprojlim\{X_n, f_n^{n+1}\}$ es de la forma:

$$\bigcap_{j=1}^k f_{n_j}^{-1}(U_{n_j})$$

en donde U_{n_j} es un abierto de X_{n_j} . Podemos suponer que $n_k = \max\{n_1, \ldots, n_k\}$. Sea:

$$U = \bigcap_{j=1}^{k} \left(f_{n_j}^{n_k} \right)^{-1} (U_{n_j}),$$

entonces U es un abierto de X_{n_k} y:

$$f_{n_k}^{-1}(U) = f_{n_k}^{-1} \left(\bigcap_{j=1}^k (f_{n_j}^{n_k})^{-1} (U_{n_j}) \right) =$$

$$= \bigcap_{j=1}^k \left(f_{n_j}^{n_k} \circ f_{n_k} \right)^{-1} (U_{n_j}) =$$

$$= \bigcap_{j=1}^k f_{n_j}^{-1} (U_{n_j}).$$

Por tanto, hemos probado que \mathcal{B} contiene a las intersecciones finitas de sus elementos. Esto nos dice que \mathcal{B} es una base para la topología de $\lim \{X_n, f_n^{n+1}\}.$

1.17 Ejemplo. Sea $X_n = \{0, 1, \dots, 2^n - 1\}$ con la topología discreta. Definamos $f_n^{n+1} \colon X_{n+1} \to X_n$ como $f_n^{n+1}(x) = \left[\frac{x}{2}\right]$, donde [z] es el mayor entero menor o igual que z. Notemos que, por el Lema 1.15, $\lim\{X_n, f_n^{n+1}\}$ es un espacio totalmente disconexo. Mostraremos que $\lim\{X_n, f_n^{n+1}\}$ es homeomorfo al conjunto de Cantor \mathcal{C} . Para cada $n \in \mathbb{N}$, sea $h_n \colon \mathcal{C} \to X_n$ definida como $h_n(x) = \text{número del intervalo al que pertenece } x$ en el paso n-ésimo de la construcción de \mathcal{C} (empezando a numerar desde cero).

Es claro que cada h_n es suprayectiva y que se cumple que $f_n^{n+1} \circ h_{n+1} = h_n$. Esto nos permite definir la función

$$h_{\infty}: \mathcal{C} \to \underline{\lim} \{X_n, f_n^{n+1}\}$$

como $h_{\infty}(x) = (h_n(x))_{n=1}^{\infty}$. Notemos que h_{∞} está bien definida y que para cada $n \in \mathbb{N}$, $f_n \circ h_{\infty} = h_n$, la cual es una función continua. Por tanto, h_{∞} es continua. Sea $f_n^{-1}(U_n)$ un abierto básico de $\lim\{X_n, f_n^{n+1}\}$, donde U_n es un subconjunto abierto de X_n (véase Lema $\overline{1.16}$). Como h_n es una función suprayectiva, existe $x \in \mathcal{C}$ tal que $h_n(x) \in U_n$, por lo que $h_{\infty}(x) \in f_n^{-1}(U_n)$. Por tanto $h_{\infty}(\mathcal{C})$ es denso en $\lim\{X_n, f_n^{n+1}\}$. Como \mathcal{C} es compacto y $\lim\{X_n, f_n^{n+1}\}$ es métrico (véase Teorema 1.3), se tiene que h_{∞} es suprayectiva. Así que sólo nos falta probar que h_{∞} es inyectiva. Para esto, sean $y \in \mathbb{N}$ tal que, en el n-ésimo paso de la construcción de \mathcal{C} , $y \in \mathbb{N}$ tal que, en el n-ésimo paso de la construcción de \mathcal{C} , $y \in \mathbb{N}$ tal que, en el n-ésimo paso de la construcción de \mathcal{C} , $y \in \mathbb{N}$ tal que, en el n-ésimo paso de la construcción de \mathcal{C} , $y \in \mathbb{N}$ tal que, en el n-ésimo paso de la construcción de \mathcal{C} , $y \in \mathbb{N}$ tal que, en el n-ésimo paso de la construcción de \mathcal{C} , $y \in \mathbb{N}$ tal que, en el n-ésimo paso de la construcción de \mathcal{C} , $y \in \mathbb{N}$ es tiene que h_{∞} es inyectiva. Por tanto h_{∞} es un homeomorfismo.

Ahora mostraremos que el límite inverso de continuos es un continuo. Para esto necesitamos la siguiente:

1.18 Definición. Sea $\{X_n, f_n^{n+1}\}$ una sucesión inversa. Para cada $m \in \mathbb{N}$, definimos S_m como:

$$S_m = \left\{ (x_n)_{n=1}^{\infty} \in \prod_{n=1}^{\infty} X_n \mid f_k^{k+1}(x_{k+1}) = x_k, \quad 1 \le k < m \right\}.$$

- **1.19 Teorema.** Si $\{X_n, f_n^{n+1}\}$ es una sucesión inversa de espacio métricos entonces:
 - (1) Para cada $m \in \mathbb{N}$, S_m es homeomorfo a $\prod_{n=m}^{\infty} X_n$.
 - (2) Si para cada $n \in \mathbb{N}$, X_n es compacto, entonces la familia $\{S_m\}_{m=1}^{\infty}$ es una sucesión decreciente de conjuntos compactos y $\lim_{m \to \infty} \{X_n, f_n^{n+1}\} = \bigcap_{m=1}^{\infty} S_m$.

(3) Si para cada $n \in \mathbb{N}$, X_n es un continuo, entonces $\varprojlim \{X_n, f_n^{n+1}\}$ es un continuo.

Demostración: Para ver (1), definimos la función $h: S_m \to \prod_{n=m}^{\infty} X_n$ como $h((x_n)_{n=1}^{\infty}) = (x_n)_{n=m}^{\infty}$. Como la composición $\pi_n \circ h$ es continua, para cada $n \geq m$, se tiene que h es continua.

Ahora definimos la función $g: \prod_{n=m}^{\infty} X_n \to S_m$ como $g((x_n)_{n=m}^{\infty}) = (y_n)_{n=1}^{\infty}$, donde $y_n = x_n$ si $n \ge m$ y $y_n = f_n^m(x_m)$ si n < m. Como la composición $\pi_n \circ g$ continua, para cada $n \in \mathbb{N}$, se tiene que g es continua. Es fácil ver que $g \circ h = 1_{S_m}$ y $h \circ g = 1$ $\underset{n=m}{\overset{\infty}{\prod}} X_n$. Por lo tanto, h es un homeomorfismo. Las demostraciones de (2) y (3) son inmediatas.

El siguente Lema nos permite identificar la imagen del límite inverso bajo las funciones proyección.

1.20 Lema. Si $\{X_n, f_n^{n+1}\}$ es una sucesión inversa de espacios métricos y compactos y $\varprojlim \{X_n, f_n^{n+1}\}$ es su límite inverso, entonces, para cada $n \in \mathbb{N}$, se tiene que $f_n(\varprojlim \{X_n, f_n^{n+1}\}) = \bigcap_{m=n+1}^{\infty} f_n^m(X_m)$.

Demostración: Sea $n \in \mathbb{N}$. Sabemos que si m > n entonces $f_n = f_n^m \circ f_m$, por lo que $f_n(\varprojlim\{X_n, f_n^{n+1}\}) = (f_n^m \circ f_m)(\varprojlim\{X_n, f_n^{n+1}\}) \subset f_n^m(X_m)$. Por tanto $f_n(\varprojlim\{X_n, f_n^{n+1}\}) \subset \bigcap_{m=n+1}^{\infty} f_n^m(X_m)$.

Ahora sea $x_n \in \bigcap_{m=n+1}^{\infty} f_n^m(X_m)$. Queremos encontrar un elemento de $\lim_{m \to \infty} \{X_n, f_n^{n+1}\}$ cuya n-ésima coordenada sea x_n . Sea

$$K = \prod_{k=1}^{n-1} X_k \times \{x_n\} \times \prod_{k=n+1}^{\infty} X_k.$$

Recordemos que, por el Teorema 1.19 parte (2), $\lim_{\longleftarrow} \{X_n, f_n^{n+1}\} = \bigcap_{m=1}^{\infty} S_m$ y que la sucesión $\{S_m\}_{m=1}^{\infty}$ es decreciente. Sea $m_0 \in \mathbb{N}$. Veremos que $K \cap S_{m_0} \neq \emptyset$. Sea $m_1 > \max\{n, m_0\}$. Como $x_n \in \bigcap_{m=n+1}^{\infty} f_n^m(X_m)$, se tiene que $(f_n^{m_1})^{-1}(x_n) \neq \emptyset$. Sean $x_{m_1} \in (f_n^{m_1})^{-1}(x_n)$ y $x_{m_0} = f_{m_0}^{m_1}(x_{m_1})$. Tomemos un elemento $(y_k)_{k=1}^{\infty}$ de $\prod_{k=1}^{\infty} X_k$ tal que $y_{m_1} = x_{m_1}$ y para cada $k \in \{1, \ldots, m_1 - 1\}$, $y_k = f_k^{m_1}(x_{m_1})$. Observemos que $(y_k)_{k=1}^{\infty} \in K \cap S_{m_0}$, por lo que la familia $\{K\} \cup \{S_m\}_{m=1}^{\infty}$ tiene la propiedad de la intersección finita. Como $\lim_{k \to \infty} \{X_n, f_n^{n+1}\}$ es compacto (véase Teorema 1.19 parte (3)), se tiene que $K \cap \lim_{k \to \infty} \{X_n, f_n^{n+1}\} \neq \emptyset$. Por tanto existe un elemento de $\lim_{k \to \infty} \{X_n, f_n^{n+1}\}$ cuya n-ésima coordenada es x_n .

- **1.21 Definición.** Un continuo X es descomponible si se puede expresar como la unión de dos subcontinuos propios. X es indescomponible si no es descomponible.
- **1.22 Definición.** Una sucesión inversa $\{X_n, f_n^{n+1}\}$, donde cada X_n es un continuo, es llamada una sucesión inversa indescomponible si para cada $n \in \mathbb{N}$, se tiene que cada vez que A_{n+1} y B_{n+1} sean subcontinuos de X_{n+1} tales que $X_{n+1} = A_{n+1} \cup B_{n+1}$ entonces $f_n^{n+1}(A_{n+1}) = X_n$ o $f_n^{n+1}(B_{n+1}) = X_n$.

La justificación para darle el nombre de sucesión inversa indescomponible a dicho tipo de sucesiones está dada por el Teorema 1.24. Para su prueba necesitaremos el siguiente Lema:

1.23 Lema. Sean $\{X_n, f_n^{n+1}\}$ una sucesión inversa $y \varprojlim \{X_n, f_n^{n+1}\}$ su límite inverso. Si Y es un subconjunto propio y cerrado de $\varprojlim \{X_n, f_n^{n+1}\}$ entonces existe $N \in \mathbb{N}$ tal que si $n \geq N$ entonces $f_n(Y) \neq X_n$.

Demostración: Sea $(z_n)_{n=1}^{\infty} \in \lim \{X_n, f_n^{n+1}\} \setminus Y$. Por el Lema 1.16, existen $N \in \mathbb{N}$ y U_N un subconjunto abierto de X_N tales que:

$$(z_n)_{n=1}^{\infty} \in f_N^{-1}(U_N) \subset \lim_{\longleftarrow} \{X_n, f_n^{n+1}\} \setminus Y.$$

De aquí que $f_N(Y) \subset X_N \setminus U_N$. Además, si n > N entonces $f_n(Y) \subset X_n \setminus (f_N^n)^{-1}(U_N)$. Para ver esto, tomemos $x_n \in f_n(Y)$. Existe $y \in Y$ tal que $f_n(y) = x_n$. Como $y \in Y \subset \lim\{X_n, f_n^{n+1}\}$, se tiene que $f_N^n(x_n) = f_N(y)$, esto implica que $x_n \in (f_N^n)^{-1}(f_N(y)) \subset (f_N^n)^{-1}(f_N(Y))$. Como $f_N(Y) \subset X_N \setminus U_N$, resulta que:

$$f_n(Y) \subset (f_N^n)^{-1} (f_N(Y)) \subset (f_N^n)^{-1} (X_N \setminus U_N) \subset X_n \setminus (f_N^n)^{-1} (U_N),$$
 por lo que $f_n(Y) \neq X_n$.

1.24 Teorema. Si $\{X_n, f_n^{n+1}\}$ es una sucesión inversa indescomponible, entonces $\varprojlim \{X_n, f_n^{n+1}\}$ es un continuo indescomponible.

Demostración: Por el Teorema 1.19 parte (3), se tiene que $\lim\{X_n, f_n^{n+1}\}$ es un continuo, por lo que basta probar que $\lim\{X_n, f_n^{n+1}\}$ es indescomponible. Supongamos que $\lim\{X_n, f_n^{n+1}\}$ es descomponible. Sean A y B subcontinuos propios de $\lim\{X_n, f_n^{n+1}\}$ tales que $\lim\{X_n, f_n^{n+1}\} = A \cup B$. Por el Lema 1.23, existe $n \in \mathbb{N}$ tal que si $m \geq n$ entonces $f_m(A) \neq X_m$ y $f_m(B) \neq X_m$. Como las funciones de ligadura son suprayectivas, las funciones proyección también lo son. De lo anterior tenemos que:

$$X_{n+2} = f_{n+2}(\lim\{X_n, f_n^{n+1}\}) = f_{n+2}(A) \cup f_{n+2}(B).$$

De donde:

$$X_{n+1} = f_{n+1}^{n+2}(X_{n+2}) = (f_{n+1}^{n+2} \circ f_{n+2})(A) \cup (f_{n+1}^{n+2} \circ f_{n+2})(B).$$

Por hipótesis $(f_{n+1}^{n+2} \circ f_{n+2})(A) = X_{n+1} \circ (f_{n+1}^{n+2} \circ f_{n+2})(B) = X_{n+1}$, de lo cual obtenemos que $f_{n+1}(A) = X_{n+1} \circ f_{n+1}(B) = X_{n+1}$, lo que contradice la elección de n. Por lo tanto, $\varprojlim \{X_n, f_n^{n+1}\}$ es indescomponible.

El siguiente Lema nos muestra que la familia de cerrados del límite inverso está estrechamente relacionada con los límites inversos de los subconjuntos cerrados de los espacios factores. **1.25 Lema.** Sea $\{X_n, f_n^{n+1}\}$ una sucesión inversa de espacios métricos. Si A es un subconjunto compacto de $\varprojlim\{X_n, f_n^{n+1}\}$, entonces $\{f_n(A), f_n^{n+1}|_{f_{n+1}(A)}\}$ es una sucesión inversa con funciones de ligadura suprayectivas y:

$$\lim_{\longleftarrow} \left\{ f_n(A), f_n^{n+1}|_{f_{n+1}(A)} \right\} = A = \left[\prod_{n=1}^{\infty} f_n(A) \right] \cap \lim_{\longleftarrow} \left\{ X_n, f_n^{n+1} \right\}. \quad (*)$$

Demostración: Es evidente que para cada $n \in \mathbb{N}$, $f_n^{n+1} \circ f_{n+1} = f_n$. De aquí que $\{f_n(A), f_n^{n+1}|_{f_{n+1}(A)}\}$ es una sucesión inversa con funciones de ligadura suprayectivas. Así que probaremos (*). Es claro que $\varprojlim \{f_n(A), f_n^{n+1}|_{f_{n+1}(A)}\} = \left[\prod_{n=1}^{\infty} f_n(A)\right] \cap \varprojlim \{X_n, f_n^{n+1}\}$ y que $A \subset \left[\prod_{n=1}^{\infty} f_n(A)\right] \cap \varprojlim \{X_n, f_n^{n+1}\}$, por lo que sólo falta probar que $\left[\prod_{n=1}^{\infty} f_n(A)\right] \cap \varprojlim \{X_n, f_n^{n+1}\} \subset A$.

Sean $\varepsilon > 0$, $(y_n)_{n=1}^{\infty} \in \left[\prod_{n=1}^{\infty} f_n(A)\right] \cap \varprojlim\{X_n, f_n^{n+1}\}$, y $N \in \mathbb{N}$ tal que $\sum_{n=N+1}^{\infty} \frac{1}{2^n} < \varepsilon$. Como para cada $n \in \mathbb{N}$, $y_n \in f_n(A)$, existe $a^{(n)} = (a_n)_{n=1}^{\infty} \in A$ tal que $f_n(a^{(n)}) = y_n$. Ahora, observemos que:

$$\rho(a^{(N)}, (y_n)_{n=1}^{\infty}) = \sum_{n=1}^{\infty} \frac{1}{2^n} d_n(a_n, y_n)
= \sum_{n=N+1}^{\infty} \frac{1}{2^n} d_n(a_n, y_n)
< \varepsilon$$

De donde $y \in \overline{A} = A$.

- **1.26 Observación.** Notemos que en la demostración del Lema anterior sólo se utilizó el hecho que A era un subconjunto cerrado de $\lim \{X_n, f_n^{n+1}\}.$
- **1.27 Teorema.** Sea $\{X_n, f_n^{n+1}\}$ una sucesión inversa de continuos. Si A y B son subconjuntos compactos de $\varprojlim\{X_n, f_n^{n+1}\}$, $C = A \cap B$ y para cada $n \in \mathbb{N}$, $C_n = f_n(A) \cap f_n(B)$, entonces $C = \varprojlim\{C_n, f_n^{n+1}|_{C_{n+1}}\}$.

Demostración: Sea $(x_n)_{n=1}^{\infty} \in \lim \{C_n, f_n^{n+1}|_{C_{n+1}}\}$. Por definición se tiene que para cada $n \in \mathbb{N}$, $x_n \in \overline{C_n} = f_n(A) \cap f_n(B)$, por lo que $x_n \in \{f_n(A), f_n^{n+1}|_{f_{n+1}(A)}\} = A$ y $x_n \in \{f_n(B), f_n^{n+1}|_{f_{n+1}(B)}\} = B$ (por (*) del Lema 1.25). De donde $(x_n)_{n=1}^{\infty} \in C$.

Ahora tomemos $(y_n)_{n=1}^{\infty} \in C = A \cap B$. De aquí se obtiene que para cada $n \in \mathbb{N}$, $y_n \in f_n(A)$ y $y_n \in f_n(B)$, por lo que $y_n \in C_n$. De donde $(y_n)_{n=1}^{\infty} \in \varprojlim \{C_n, f_n^{n+1}|_{C_{n+1}}\}$.

1.28 Definición. Un arco es un espacio homeomorfo a [0,1]. Diremos que $\{X_n, f_n^{n+1}\}$ es una sucesión inversa de arcos si cada X_n es un arco. En este caso, si cada función f_n^{n+1} es suprayectiva entonces $\lim \{X_n, f_n^{n+1}\}$ es llamado un continuo tipo arco.

Como consecuencia del Lema $1.25~\mathrm{y}$ el Teorema $1.27~\mathrm{tenemos}$ los siguientes Corolarios:

- **1.29 Corolario.** Si X es un continuo tipo arco, entonces todo subcontinuo de X es tipo arco.
- **1.30 Definición.** Un continuo X es unicoherente si cada vez que se tenga que $X = A \cup B$, donde A y B son subcontinuos de X, resulta que $A \cap B$ es conexa. X es hereditariamente unicoherente si todos sus subcontinuos son unicoherentes.
- **1.31 Corolario.** Si $\{X_n, f_n^{n+1}\}$ es una sucesión inversa de continuos unicoherentes, donde las funciones de ligadura son suprayectivas, entonces $\varprojlim \{X_n, f_n^{n+1}\}$ es un continuo unicoherente.
- **1.32 Corolario.** Si $\{X_n, f_n^{n+1}\}$ es una sucesión inversa de continuos hereditariamente unicoherentes, entonces $\varprojlim \{X_n, f_n^{n+1}\}$ es un continuo hereditariamente unicoherente.
- 1.33 Observación. Notemos que en el Corolario 1.32 no se requiere que las funciones de ligadura sean suprayectivas.
- **1.34 Corolario.** Todo continuo tipo arco es hereditariamente unicoherente.

1.35 Corolario. Ningún continuo tipo arco contiene curvas cerradas simples.

Terminaremos el presente trabajo examinando un ejemplo muy importante dentro de la Teoría de los Continuos.

1.36 Ejemplo. Sea $g: [0,1] \rightarrow [0,1]$ definida como:

$$g(x) = \left\{ egin{array}{ll} 2x, & ext{si } x \in \left[0, rac{1}{2}
ight], \\ 2(1-x), & ext{si } x \in \left[rac{1}{2}, 1
ight]. \end{array}
ight.$$

Para cada $n \in \mathbb{N}$, sea $X_n = [0,1]$ y $f_n^{n+1} = g$. Al límite inverso $\lim\{X_n, f_n^{n+1}\}$ se le conoce como el continuo de Knaster. Por el Teorema 1.24, se tiene que $\lim\{X_n, f_n^{n+1}\}$ es un continuo indescomponible. Observemos que podemos definir una función $h: \lim\{X_n, f_n^{n+1}\} \to \lim\{X_n, f_n^{n+1}\}$ como $h((x_n)_{n=1}^{\infty}) = (g(x_n))_{n=1}^{\infty}$. Es fácil ver que h es un homeomorfismo, cuyo inverso está dado por $h^{-1}((x_n)_{n=1}^{\infty}) = (x_n)_{n=2}^{\infty}$. A h se le conoce como un homeomorfismo de corrimiento. Veremos que para cualquier número positivo $\delta > 0$, existen dos puntos $(x_n)_{n=1}^{\infty}$ y $(y_n)_{n=1}^{\infty}$ de $\lim\{X_n, f_n^{n+1}\}$ tales que para cualquier $k \in \mathbb{Z}$, se tiene que $\rho(h^k((x_n)_{n=1}^{\infty}), h^k((y_n)_{n=1}^{\infty}) \leq \delta$.

Sean $\delta > 0$ y $m \in \mathbb{N}$ tales que $\frac{1}{2^m} < \frac{3}{4}\delta$. Definimos $(x_n)_{n=1}^{\infty}$ y $(y_n)_{n=1}^{\infty}$ de la siguiente manera:

$$x_1 = \frac{2^{m-1} - 1}{2^{m-1}} = y_1$$

Para $n \geq 2$, sean:

$$x_n = \frac{2^{m-1} + 1}{2^{n+m-2}}$$
 y $y_n = \frac{2^{m-1} - 1}{2^{n+m-2}}$

Observemos que:

(1) Tanto $(x_n)_{n=1}^{\infty}$ como $(y_n)_{n=1}^{\infty}$ pertenecen a $\lim_{n \to \infty} \{X_n, f_n^{n+1}\}.$

(2)
$$\rho((x_n)_{n=1}^{\infty}, (y_n)_{n=1}^{\infty}) = \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} |x_n - y_n| = \sum_{n=2}^{\infty} \frac{1}{2^{n-1}} \frac{1}{2^{n+m-1}} = \frac{1}{2^m} \frac{1}{3} < \frac{1}{4} \delta.$$

(3) Como $x_1 = y_1$, se tiene que para cada $k \ge 0$,

$$\rho(h^k((x_n)_{n=1}^{\infty}), h^k((y_n)_{n=1}^{\infty})) = \frac{1}{2^k} \rho((x_n)_{n=1}^{\infty}, (y_n)_{n=1}^{\infty}) < \delta.$$

(4) Ahora, para $k \in \mathbb{N}$, tenemos que $\rho(h^{-k}((x_n)_{n=1}^{\infty}), h^{-k}((y_n)_{n=1}^{\infty})) = \rho((x_{k+n})_{n=1}^{\infty}, (y_{k+n})_{n=1}^{\infty}) = \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} \frac{1}{2^{k+m+n-1}} = \frac{1}{2^{k+m}} \frac{4}{3} < \frac{1}{2^m} \frac{4}{3} < \delta.$

Por tanto, los puntos $(x_n)_{n=1}^{\infty}$ y $(y_n)_{n=1}^{\infty}$ satisfacen lo requerido.

1.37 Observación. La propiedad que acabamos de probar para el homeomorfismo de corrimiento del continuo de Knaster (compárese con [8]) la satisfacen todos los homeomorfismos de todos los continuos tipo arco. De hecho, los homeomorfismos de una clase más grande que la de los continuos tipo arco, a saber, la clase de los continuos tipo árbol también tienen dicha propiedad [6]. Esto es muy importante para la Teoría de los Sistemas Dinámicos Discretos.

El lector interesado en saber más sobre límites inversos puede consultar el artículo expositorio de Ingram [3].

REFERENCIAS

- [1] C. E. Capel, *Inverse limit spaces*, Duke Math. J. 21 (1954), 233–245.
- [2] C. Christenson and W. Voxman, Aspects of Topology, Monographs and Textbooks in Pure and Applied Math., Vol. 39, Marcel Dekker, New York, Basel 1977.
- [3] W. T. Ingram, *Inverse limits*, Aportaciones Matemáticas, Investigación # 15, Sociedad Matemática Mexicana, 2000.
- [4] J. L. Kelley, The Tychonoff product theorem implies the axiom of choice, Fund. Math. 37 (1950), 75-76.
- [5] S. Macías, On symmetric products of continua, Topology Appl. 92 (1999), 173–182.

- [6] C. Mouron, Tree-like continua do not admit expansive homeomorphisms, manuscrito.
- [7] S. B. Nadler, Jr., Continuum theory: an introduction, Monographs and Textbooks in Pure and Applied Math., Vol. 158, Marcel Dekker, New York, Basel, Hong Kong, 1992.
- [8] R. F. Williams, A note on unstable homeomorphisms, Proc. Amer. Math. Soc. 6 (1955), 308–309.

Instituto de Matemáticas, UNAM., Circuito Exterior, Ciudad Universitaria, México D. F., C. P. 04510. México. correo electrónico: macias@servidor.unam.mx