1. Follow the steps below to show $9.\overline{9} = 10$.

(a) (_/1 pts.) Write
$$9.\overline{9} = \frac{9}{10} + \frac{9}{10^2} + \frac{9}{10^3} + \dots$$
 as a geometric series.

$$q.\overline{q} = \sum_{k=0}^{\infty} q\left(\frac{1}{10}\right)^k$$

$$q.\bar{q} = \int_{k=0}^{\infty} q\left(\frac{1}{10}\right)^{k} = \lim_{N \to \infty} \sum_{k=0}^{N} q\left(\frac{1}{10}\right)^{k} = \lim_{N \to \infty} S_{N}$$

- 2. For the following infinite series,
 - Find a formula for the partial sum S_n

• Evaluate the infinite series
(a)
$$(-/3 \text{ pts.})$$
 $\frac{1}{16} + \frac{3}{64} + \frac{9}{256} + \dots = \underbrace{\frac{1}{16} \left(\frac{3}{4}\right)^{k}}_{k=0}$
(7eo metric

$$a = \frac{1}{16}$$
 $r = \frac{3}{4}$

$$\sum_{k=0}^{n} ar^{n} = S_{n} = a \frac{1-r^{n}}{1-r}$$

$$\sum_{k=0}^{\infty} a r^{k} = \frac{a}{1-r}, |r| < 1$$

(b)
$$(-/3 \text{ pts.})$$
 $\sum_{k=2}^{\infty} \frac{6}{k^2 + 2k}$ (Hint: Use PFD)
Telescoping $S_0 = \sum_{k=2}^{\infty} \frac{3}{k}$

$$S_{2} = \frac{6}{k^{2} + 2k} \text{ (Hint: Use PFD)}$$

$$S_{n} = \sum_{k=2}^{n} \frac{3}{k} - \frac{3}{k+2} = \begin{bmatrix} \frac{3}{4} - \frac{3}{4} \end{bmatrix} + \begin{bmatrix} \frac{3}{4} -$$

(c)
$$\left(\frac{1}{3}\right)$$
 pts.) $\sum_{k=1}^{\infty} \left(\frac{-4}{3}\right)^{-k} = \sum_{k=1}^{\infty} \left(-\frac{3}{4}\right)^{k}$ $a = -\frac{3}{4}$

$$a = -\frac{3}{4}$$
 $r = -\frac{3}{4}$

$$\sum_{k=1}^{n} \left(\frac{4}{\sqrt{k+5}} - \frac{4}{\sqrt{k+7}} \right) = \underbrace{\left(\frac{4}{\sqrt{6}} - \frac{4}{\sqrt{6}} \right)}_{k=1} + \underbrace{\left(\frac{4}{\sqrt{7}} - \frac{4}{\sqrt{7}} \right)}_{k=2} + \underbrace{\left(\frac{4}{\sqrt{7}} - \frac{4}{\sqrt{7}} \right)}_{k=3} + \underbrace{\left(\frac{4}{\sqrt{7}} - \frac{4}{\sqrt{7}}$$

$$\sum_{k=1}^{\infty} \left(\frac{4}{3^k} - \frac{4}{3^{k+1}} \right) \frac{(1\cos m \sin k)}{(1\cos m \sin k)} = \sum_{k=1}^{\infty} \frac{4}{3^k} - \sum_{k=1}^{\infty} \frac{4}{3^{k+1}}$$

$$3 \sum_{k=1}^{\infty} \frac{4}{3^k} = \frac{4}{3} + \frac{4}{9} + \frac{4}{27} + \dots = \frac{4/3}{3} = \frac{4}{3} + \frac{1}{2} = 2$$

$$\sum_{k=1}^{\infty} \frac{4}{3^k} = \sum_{k=0}^{\infty} \frac{4}{3^{k+1}} = \sum_{k=0}^{\infty} \frac{4}{3} \left(\frac{1}{3}\right)^k$$

10.4: The Divergence and Integral Tests Harmonic Scries

4 2 3K

Theorem 10.9: Divergence Test

If $\sum a_k$ converges, then $\lim_{k\to\infty} a_k = 0$. Equivalently, if $\lim_{k\to\infty} a_k \neq 0$, then the series diverges.

Example. If $\lim_{k\to\infty} a_k = 1$, what can we conclude about $\sum_{k=1}^{\infty} a_k$?

Example. If $\sum_{k=1}^{\infty} a_k = 42$, what can we conclude about $\lim_{k \to \infty} a_k$?

Example. If $\lim_{k\to\infty} a_k = 0$, what can we conclude about $\sum_{k=1}^{\infty} a_k$?

Example. Determine which of the following series diverge by the divergence test.

$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{k+1}} \qquad \qquad \lim_{k \to \infty} \frac{1}{\sqrt{k+1}} = 0$$

$$\lim_{k \to \infty} \frac{1}{\sqrt{k+1}} = 0$$

$$\lim_{k \to \infty} \frac{1}{\sqrt{k+1}} = 0$$

$$\sum_{k=1}^{\infty} \frac{k^3 + 100}{3k^3 + k + 1} \qquad \lim_{k \to \infty} \frac{|c|^3 + 100}{3k^3 + k + 1} \left(\frac{\frac{1}{3}k^3}{\frac{1}{3}k^3}\right) = \frac{1}{3} \neq 0$$

$$\implies \text{Series divergent}$$

$$\sum_{k=1}^{\infty} \frac{e^k}{k^2}$$

$$\lim_{k \to \infty} \frac{e^k}{k^2} = \infty$$

$$\lim_{k \to \infty} \frac{e^k}{k^2} = \infty$$
 diverges $\lim_{k \to \infty} \frac{e^k}{k^2} = \infty$

136

Fall 2021

Vi mp	ar 4	
ling ling	ρ	

Table 1 Series Convergence					
Scenario	Sequence of Terms {a ₁ , a ₂ , a ₃ ,}	Sequence of Partial Sums $\{s_1, s_2, s_3,\}$	Series $\sum_{n=1}^{\infty} a_n$	Possible or Impossible?	
A	* Converges	Diverges	Diverges	Possible	
В	Converges	Diverges	Converges	Impossible	
C	Converges	Converges	Diverges	Impossible	
⊁ D	Converges	Converges	Converges	Possible	
E	Diverges	Converges	Diverges	Impossible	
F	Diverges	Converges	Converges	Impossible	
G	Diverges	Diverges	Diverges	Possible	
н	Diverges	Diverges	Converges	Impossible	

Theorem 10.10: Harmonic Series
The harmonic series $\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ diverges—even though the terms of the series approach zero.

Theorem 10.11: Integral Test

Suppose f is a continuous, positive, decreasing function, for $x \ge 1$, and let $a_k = f(k)$, for k = 1, 2, 3, ... Then

$$\sum_{k=1}^{\infty} a_k \text{ and } \int_1^{\infty} f(x) \, dx$$

either both converge or both diverge. In the case of convergence, the value of the integral is *not* equal to the value of the series.

Example. Which of the following series below satisfy all the conditions to use the Integral

Test?

Test?
$$\sum_{k=1}^{\infty} \arctan(k)$$

$$C_{ont} \cdot c_{n} \left[1, \infty\right)$$

$$Pos \cdot c_{n} \left(0, \infty\right)$$

$$de^{2}$$

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k^2}$$

$$cont? \qquad (-1)^{\frac{3}{2}} DNE$$

$$\sum_{k=1}^{\infty} \frac{1}{e^k}$$

$$Con^{+} \quad 6n \quad [1, \infty)$$

$$f(x) = e^{-x} > 0$$

$$e^{-k} \quad dec \longrightarrow f'(x) = -e^{-x} < 0$$

$$f(x) = e^{-x} < 0$$

$$f(x) = e^{-x} < 0$$

$$f(x) = e^{-x} > 0$$

Example. Consider the series

$$\sum_{k=1}^{\infty} \frac{1}{k^p}$$

Use the integral test to show that the Harmonic Series diverges. For what values of p does this series converge? $f(x) = \frac{1}{x^p}$

$$\frac{1}{x^{p}} > 0, x > 0$$

$$| \leq x < \infty$$

$$f'(x) = -p x^{-p-1} = \frac{-p}{x^{p+1}} < 0 \quad \text{when } x > 0 \qquad \frac{1}{E / E^2 / E^3}$$

$$P = \left| \int_{-\pi}^{\infty} \frac{1}{x} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x} dx = \lim_{b \to \infty} \left| \frac{1}{n} \left| \frac{1}{x} \right| \right|^{b} = \lim_{b \to \infty} \left| \frac{1}{n} \left(\frac{1}{b} \right) - \frac{1}{n} \left(\frac{1}{b} \right) \right| = \infty$$

$$D_{ineges}$$

$$B_{\gamma} \text{ the integ-al test} \qquad \sum_{k=1}^{\infty} \frac{1}{k} \text{ also diveges}$$

$$P > 1 \qquad \int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x^{p}} dx = \lim_{b \to \infty} \frac{1}{x^{p+1}} = \lim_{b \to \infty} \frac{1}{(1-p) \cdot b^{-1}} - \frac{1}{(1-p) \cdot p^{-1}}$$

$$P - 1 > 0 \qquad I$$

O)
$$P \neq \text{the integral test, } \sum_{k=1}^{p} \frac{1}{kP} = -\frac{1}{1-P} = \frac{1}{P-1}$$
Converges when $p > 1$

$$\int \frac{1}{x^p} dx = \int x^{-p} dx = \frac{x^{-p+1}}{-p+1} + c$$

10.4: The Divergence and Integral Tests

Theorem 10.12: Convergence of the p-series

The *p*-series $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converges for p > 1 and diverges for $p \le 1$.

Example. Determine if the following p-series converge or diverge.

$$\sum_{k=1}^{\infty} \frac{1}{k^2} \qquad p = 2$$

$$\Rightarrow \text{ Convegos}$$

$$\sum_{k=1}^{\infty} k^{-1/3} = \underbrace{\int_{k=1}^{\infty} \frac{1}{k^{1/3}}}_{\text{kinges}} p = \frac{1}{3} < 1$$
diveges

$$\sum_{k=1}^{\infty} \frac{k^2}{k^{\pi}} = \sum_{k=1}^{\infty} \frac{1}{k^{\pi-2}} \qquad P = \pi - 2 > 1 \qquad \sum_{k=1}^{\infty} \frac{2}{k} = 2 \sum_{k=1}^{\infty} \frac{1}{k^{\ell}}$$
Conveges

$$\sum_{k=1}^{\infty} \frac{2}{k} = 2 \sum_{k=1}^{\infty} \frac{1}{k!} \qquad P = 1$$

$$\sum_{k=1}^{\infty} \frac{-3}{\sqrt[3]{k^4}} = -3 \sum_{k=1}^{\infty} \frac{1}{\sqrt[k]{3}} \qquad \rho = \frac{\sqrt[4]{3}}{\sqrt[4]{3}} \qquad \sum_{k=1}^{\infty} \frac{k^3 + 1}{k^5} = \sum_{k=1}^{\infty} \frac{\frac{k^3}{4}}{\sqrt[4]{5}} + \sum_{k=1}^{\infty} \frac{1}{\sqrt[4]{5}}$$

$$Converges$$

Example. Apply the Integral Test to determine if the series $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k+1}}$ converges or

$$f(x) = \frac{1}{\sqrt{x+1}} \qquad x \neq -1$$

$$(\chi+1)^{-1/2} = \frac{1}{\sqrt{\chi+1}} > 0, \chi > -1 \qquad 1 \leq \chi < \infty$$

$$f'(x) = -\frac{1}{2}(x+1)^{-\frac{3}{2}} = \frac{-1}{2\sqrt{(x+1)^3}} < 0 \longrightarrow f(x) dec$$

$$\int_{b\to\infty}^{b} \int_{X+1}^{b} dx$$

$$\lim_{b \to \infty} \int_{1}^{b} \frac{1}{\sqrt{x+1}} dx = \lim_{b \to \infty} \int_{2}^{b+1} u^{-1/2} du = \lim_{b \to \infty} 2u^{1/2} \Big|_{2}^{b+1}$$

$$du = dx$$

$$\chi = 1, u = 2$$

$$\chi = b, u = b + 1$$

$$=\lim_{b\to\infty} 2\left(\sqrt{b+1} - \sqrt{2}\right)$$

10.4: The Divergence and Integral Tests

Theorem 10.13: Estimating Series with Positive Terms

Let f be a continuous, positive, decreasing function, for $x \ge 1$, and let $a_k = f(k)$, for $k = 1, 2, 3, \ldots$ Let $S = \sum_{k=1}^{\infty} a_k$ be a convergent series and let $S_n = \sum_{k=1}^{n} a_k$ be the sum of the first n terms of the series. The remainder $R_n = S - S_n$ satisfies

$$R_n < \int_n^\infty f(x) \, dx.$$

Furthermore, the exact value of the series is bounded as follows:

$$L_n = S_n + \int_{n+1}^{\infty} f(x) \, dx < \sum_{k=1}^{\infty} a_k < S_n + \int_{n}^{\infty} f(x) \, dx = U_n.$$

Example. How many terms of the convergent p-series $\sum_{k=1}^{\infty} \frac{1}{k^2}$ must be summed to obtain an approximation that is within 10^{-3} of the exact value of the series?

$$R_{n} \leftarrow \lim_{b \to \infty} \int_{n}^{b} \frac{1}{x^{2}} dx$$

$$= \lim_{b \to \infty} \left[-x^{-1} \right]_{n}^{b}$$

$$= \lim_{b \to \infty} \left[-\frac{1}{n} \right]_{n}^{b} = \frac{1}{n} = 10^{-3}$$

$$= \lim_{b \to \infty} \left[-\frac{1}{n} \right]_{n}^{b} = \frac{1}{n} = 10^{-3}$$

$$= \lim_{b \to \infty} \left[-\frac{1}{n} \right]_{n}^{b} = \frac{1}{n} = 10^{-3}$$