:preprocessing.1

در مرحله اول باید تعداد سطر و ستون دیتاست را به دست آورد.

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 268850 entries, 0 to 268849
Data columns (total 49 columns):

Data	columns (total 49 columns):		
#	Column	Non-Null Count	Dtype
0	regio1	268850 non-null	object
1	serviceCharge	261941 non-null	float64
2	heatingType	223994 non-null	object
3	telekomTvOffer	236231 non-null	object
4	telekomHybridUploadSpeed	45020 non-null	float64
5	newlyConst	268850 non-null	bool
6	balcony	268850 non-null	bool
7	picturecount	268850 non-null	int64
8	pricetrend	267018 non-null	float64
9	telekomUploadSpeed	235492 non-null	float64
10	totalRent	228333 non-null	float64
11	yearConstructed	211805 non-null	float64
12	scoutId	268850 non-null	int64
13	noParkSpaces	93052 non-null	float64
14	firingTypes	211886 non-null	object
15	hasKitchen	268850 non-null	bool
16	geo_bln	268850 non-null	object
17	cellar	268850 non-null	bool
18	yearConstructedRange	211805 non-null	float64
19	baseRent	268850 non-null	float64
20	houseNumber	197832 non-null	object
21	livingSpace	268850 non-null	float64
22	geo_krs	268850 non-null	object
23	condition	200361 non-null	object
24	interiorQual	156185 non-null	object
25	petsAllowed	154277 non-null	object
26	street	268850 non-null	object
27	streetPlain	197837 non-null	object
28	lift	268850 non-null	bool
29	baseRentRange	268850 non-null	int64
30	typeOfFlat	232236 non-null	object
31	geo_plz	268850 non-null	int64
32	noRooms	268850 non-null	float64
33	thermalChar	162344 non-null	float64
34	floor	217541 non-null	float64
35	numberOfFloors	171118 non-null	float64

دیتاست شامل 268849 رکورد و 49 فیچر است که تعدادی از انها در بالا نمایش داده شده است.

با حذف ستون هایی که بیش از نصف داده های آنها نال است تعداد ستدن ها به 42 کاهش میابد.

مقدار totalrent در برخی رکورد ها برابر 0 است و این مقدار نادرست و رکوردهایی با این شرایط را دراپ میکنیم. ستون هایی که داده های کتگوریکال با تنوع بالا دارند را نیز دراپ میکنیم.

علاوه بر آن داده هایی که روی قیمت خانه تاثیر ندارد را هم دراپ میکنیم.

بعد از پاک کردن داده های رکورد های duplicate و outlier برای پر کردن مقادیر نال در ستون های عددی از میانگین و در ستون های کتگوریکال از مود استفاده میکنیم.

برخی از ستون های کتگوریکال دارای تنوع زیادی هستند و تبدیل مسقتیم انها به داده باینری ستون های زیادی را به دیتاست اضافه میکند، به همین دلیل موارد پر تکرار را نگه داشته و بقیه را به other تغییر نام می دهیم.

:visualization.2

<class 'pandas.core.frame.DataFrame'> Int64Index: 254790 entries, 0 to 268849 Data columns (total 23 columns):

Data	ta columns (total 23 columns):			
#	Column	Non-Null Count	Dtype	
0	serviceCharge	254790 non-null	float64	
1	newlyConst	254790 non-null	bool	
2	balcony	254790 non-null	bool	
3	totalRent	254790 non-null	float64	
4	yearConstructed	254790 non-null	float64	
5	hasKitchen	254790 non-null	bool	
6	cellar	254790 non-null	bool	
7	baseRent	254790 non-null	float64	
8	livingSpace	254790 non-null	float64	
9	interiorQual	254790 non-null	object	
10	petsAllowed	254790 non-null	object	
11	lift	254790 non-null	bool	
12	noRooms	254790 non-null	float64	
13	thermalChar	254790 non-null	float64	
14	floor	254790 non-null	float64	
15	numberOfFloors	254790 non-null	float64	
16	garden	254790 non-null	bool	
17	edited_regio1	254790 non-null	object	
18	edited_regio2	254790 non-null	object	
19	edited_regio3	254790 non-null	object	
20	edited_heatingType	254790 non-null	object	
21	edited_condition	254790 non-null	object	
22	edited_typeOfFlat	254790 non-null	object	
dtypes: bool(6), float64(9), object(8)				
memory usage: 36.4+ MB				

دیتا پس از preprocessing شامل 254790 رکورد و 23 ستون است.

نمودار بالا فراوانی آگهی در شهرهای مختلف از regio1 را نشان میدهد

نمودار بالا میانگین قیمت در شهر های مختلف از regio1 را نشان میدهد

نمودار بالا فراوانی آگهی در شهرهای مختلف از regio2 را نشان میدهد.

نمودار بالا میانگین قیمت در شهرهای مختلف از regio2 را نشان میدهد

نمودار بالا فراوانی آگهی در شهرهای مختلف از regio3 را نشان میدهد.

نمودار بالا میانگین قیمت در شهر های مختلف از regio3 را نشان میدهد

نمودار بالا فراواني وضعيت خانه ها را نشان ميدهد.

:model.3

در این بخش بعد از تبدیل داده های کتگوریکال به باینری، ستون totalrent را به عنوان تارگت از دیتاست حذف میکنیم. سپس با متون minmax مرحله اسکیل کردن داده هارا انجام میدهیم. و linear regression را با دیتای جدید فیت میکنیم.

:5 & 4

تابع fillna را به عنوان بخشى از preprocessing ، براى مقايسه ى سه حالت انتخاب كردم.

single processing: 0.02665996551513672 multiprocessing: 0.16583251953125 processing with Dask: 0.020489215850830078

نتيجه به صورت بالا بود.

در multiprocessing به دلیل اینکه تقسیم دیتا و یکپارچه کردن آن پس از محاسبات زمان گیر است، در این مورد به جای کاهش تایم شاهد افزایش ان هستیم. ولی در dask تایم کاهش یافته است. دلیل عدم استفاده از pyspark سخت افزار ضعیف بود.