Improved Single and Multiple Approximate String Matching

Kimmo Fredriksson

Department of Computer Science, University of Joensuu, Finland

Gonzalo Navarro

Department of Computer Science, University of Chile

The Problem Setting & Complexity

- Given $text T_{1..n}$ and $pattern P_{1..m}$ over some finite alphabet Σ of size σ , find the approximate occurrences of P from T, allowing at most k differences (edit operations).
- Exact matching (single pattern) lower bound: $\Omega(n \log_{\sigma} m/m)$ character comparisons (Yao, 79).
- Approximate matcing lower bound: $\Omega(n(k + \log_{\sigma} m)/m)$ (Chang & Marr, 94).
- We will search simultaneously a *set* $\mathcal{P} = \{P_1, P_2, ..., P_r\}$ of r patterns.
- $\Omega(n(k + \log_{\sigma} rm)/m)$ lower bound for r patterns (Fredriksson & Navarro, 2003)

Previous work

- Only a few algorithms exist for multipattern approximate searching under the k differences model.
- Naïve approach: search the r patterns separately, using any of the single pattern search algorithms.
- (Muth & Manber, 1996): O(m(r+n)) average time algorithm using $\Omega(m^2r)$ space. The algorithm is based on hashing, and works only for k=1.
- (Baeza-Yates & Navarro, 1997):
 - Partitioning into exact search: O(n) on average (O(rm) preprocessing), but can be improved to $O(k\log_{\sigma}(rm)n/m)$. Works for $k/m < 1/\log_{\sigma}(rm)$.
 - Other less interesting ones.

Previous work

- (Fredriksson & Navarro, 2003): The first average-optimal algorithm.
 - average-optimal $O(n(k + \log_{\sigma} rm)/m)$ up to error level k/m < 1/3.
 - linear O(n) on average up to error level k/m < 1/2.
- (Hyyrö, Fredriksson & Navarro, 2004): $O(n\lceil r/\lfloor w/m \rfloor \rceil)$ worst case for short patterns, where w is the number of bits in machine word.

This work

- We have improved the (optimal) algorithm of (Fredriksson & Navarro, 2003)
 - Faster in practice, and...
 - ...allows error levels up to k/m < 1/2.
- Our algorithm runs in $O(n(k + \log rm)/m)$ average time, which is optimal.
- Preprocessing time is $O(rm\sigma^{\ell}/w)$, and the algorithm needs $O(r\sigma^{\ell})$ space, where $\ell = \Omega(\log_{\sigma}(rm))$.
- The fastest algorithm in practice for intermediate k/m and small σ .

The method in brief:

- The algorithm is based on the preprocessing/filtering/verification paradigm.
- The preprocessing phase generates all σ^{ℓ} strings of lenght ℓ , and computes their minimum distance over the set of patterns.
- The filtering phase searches (approximately) text ℓ-grams from the patterns, using the precomputed distance table, accumulating the differences.
- The verification phase uses dynamic programming algorithm, and is applied to each pattern separately.

Preprocessing

- Build a table D as follows:
 - 1. Choose a number ℓ in the range $1 < \ell \le m k$
 - 2. For every string S of length ℓ (ℓ -gram), search for S in $\forall P \in \mathcal{P}$
 - 3. Store in D[S] the smallest number of differences needed to match S inside \mathcal{P} (a number between 0 and ℓ).
- D requires space for σ^{ℓ} entries and can be computed in $O(rm\sigma^{\ell}/w)$ time.

Filtering

- Any occurrence is at least m-k characters long \Rightarrow use a sliding window of m-k characters over T
- Invariant: all occurreces starting before the window are already reported.
- Read ℓ -grams $S^1, S^2, ..., S^u$ from the text window, from right to left:

 Any occurrence starting at the beginning of the window must contain all the ℓ-grams read.

Filtering

• Accumulate a sum of necessary differences: $M_u = \sum_{1 \le t \le u} D[S^t]$.

• If M_u becomes > k for some (i.e. the smallest) u, then no occurrence can contain the ℓ -grams

$$S^u:\ldots:S^2:S^1$$

 \Rightarrow

slide the window past the first character of S^u .

E.g.
$$D[S^1] + D[S^2] > k$$
:

$$T:$$
 S^3 S^2 S^1

text window m-k characters

$$T$$
:

Verification

• If $M_u \leq k$, then the window might contain an occurrence

 \Rightarrow

the occurrence can be m+k characters long, so verify the area $T_{i..i+m+k-1}$, where i is the starting position of the window

verification area m+k characters

text window m-k characters

 The verification is done for each of the r patterns, using standard dynamic programming algorithm.

- Our basic algorithm: text ℓ-grams can match anywhere inside the patterns.
 - If $M_u > k$, then we know that no occurrence can contain the ℓ -grams $S^u : ... : S^1$ in any position.
- The matching area can be made smaller without losing this property.

- Consider an approximate occurrence of $S^2:S^1$ inside the pattern.
 - S^2 cannot be closer than ℓ positions from the end of the pattern.

 \Rightarrow

For S^2 precompute a table D_2 , which considers its best match in the area $P_{1...m-\ell}$ rather than $P_{1...m}$.

- In general, for S^t preprocess a table D_t , using the area $P_{1...m-(t-1)\ell}$
- Compute M_u as $\sum_{t=1}^{u} D_t[S^t]$

P:

T: S^3 S^2 S^1

text window

Area for $D_{l}[S^{l}]$

Area for $D_2[S^2]$

Area for $D_3[S^3]$

• $D_t[S] \ge D[S]$ for any t and S

 \Rightarrow

the smallest *u* that permits shifting the window is never smaller than for the basic method.

 \Rightarrow

this variant never examines more ℓ-grams, verifies more windows, nor shifts less.

Drawback: needs more space and preprocessing effort

 \Rightarrow

Can be slower in practice.

- The matching condition can be made even stricter
 - Work less per window…
 - ...but the shift can be smaller.

Analysis

• It can be shown that the basic algorithm has optimal average case complexity $O(n(k + \log_{\sigma} rm)/m)$.

This holds for $k/m < 1/2 - O(1/\sqrt{\sigma})$.

- The worst case complexity can be made O(n + rkn) (filtering + verification).
- The preprocessing cost is $O(m^5r^3\sigma^{O(1)})$, and it requires $O(m^4r^2\sigma^{O(1)})$ space.
- Since the algorithm with the stricter matching condition is never worse than the basic version, it is also optimal.

Analysis

- For a single pattern our complexity is the same as the algorithm of Chang & Marr, i.e. $O(n(k + \log_{\sigma} m)/m)...$
- ...but our filter works up to $k/m < 1/2 O(1/\sqrt{\sigma})$, whereas the filter of Chang & Marr works only up to $k/m < 1/3 O(1/\sqrt{\sigma})$.

- Implementation in C, compiled using icc 7.1 with full optimizations, run in a 2GHz Pentium 4, with 512MB RAM, running Linux 2.4.18.
- Experiments for alphabet sizes $\sigma = 4$ (DNA) and $\sigma = 20$ (proteins), both random and real texts.
- Text lengths were 64Mb, and patterns 64 characters.
- In the implementation we used several practical improvements described in (Fredriksson & Navarro, 2003)
 - Bit-parallel counters
 - Hierarchical / bit-parallel verification

- We used $\ell = 8$ for DNA, and $\ell = 3$ for proteins.
 - the maximum values we can use in practice, otherwise the preprocessing cost becomes too high.
- Analytical results:
 - $\ell = 12...20$ for DNA, and $\ell = 6...10$ for proteins (depending on r).

 \Rightarrow

Althought our algorithms are fast, in practice they cannot cope with as high difference ratios as predicted by the analysis.

Comparison against:

CM: Our previous optimal filtering algorithm

LT: Our previous linear time filter

EXP: Partitioning into exact search

MM: Muth & Manber algorithm, works only for k = 1

ABNDM: Approximate BNDM algorithm, a single pattern approximate search algorithm extending classical BDM.

BPM: Bit-parallel Myers, currently the best non-filtering algorithm for single patterns.

• Comparison against Muth and Manber (k = 1):

	r=1	r = 16	r = 64	r = 256
Alg.	DNA			
MM	1.30	3.97	12.86	42.52
Ours	0.08	0.12	0.21	0.54
Alg.	proteins			
MM	1.17	1.19	1.26	2.33
Ours	0.08	0.11	0.18	0.59

Experimental results r = 1, random DNA

Experimental results r = 64, random DNA

Experimental results r = 1, random proteins

Experimental results r = 64, random proteins

• Areas where each algorithm performs best. From left to right, DNA (m=64), and proteins (m=64). Top row: random data. bottom row: real data.

Conclusions

- Our new algorithm becomes the fastest for low k.
- The larger r, the smaller k values are tolerated.
- When applied to just one pattern, our algorithm becomes the fastest for low difference ratios.
- Our basic algorithm usually beats the extensions.
 - True only if we use the same parameter ℓ for both algorithms.
 - For limited memory we can use the stricter matching condition with smaller ℓ, and beat the basic algorithm
- Our algorithm would be favored on even longer texts (relative preprocessing cost decreases).