Dicas VIP: Aprendizado não supervisionado

Afshine Amidi e Shervine Amidi

13 de Outubro de 2018

Introdução ao aprendizado não supervisionado

□ Motivação – O objetivo do aprendizado não supervisionado (unsupervised learning) é encontrar padrões em dados sem rótulo $\{x^{(1)},...,x^{(m)}\}$.

 $\hfill \Box$ Desigualdade de Jensen – Seja fum função convexa e Xuma variável aleatória. Temos a seguinte desigualdade:

$$E[f(X)] \geqslant f(E[X])$$

Maximização de expectativa

 \square Variáveis latentes – Variáveis latentes são variáveis escondidas/não observadas que dificultam problemas de estimativa, e são geralmente indicadas por z. Aqui estão as mais comuns configurações onde há variáveis latentes:

Configuração	Variável latente z	x z	Comentários
Mistura de k gaussianos	$\operatorname{Multinomial}(\phi)$	$\mathcal{N}(\mu_j, \Sigma_j)$	$\mu_j \in \mathbb{R}^n, \phi \in \mathbb{R}^k$
Análise de fator	$\mathcal{N}(0,I)$	$\mathcal{N}(\mu + \Lambda z, \psi)$	$\mu_j \in \mathbb{R}^n$

 \square Algoritmo – O algoritmo de maximização de expectativa (EM - Expectation-Maximization) fornece um método eficiente para estimar o parâmetro θ através da probabilidade máxima estimada ao construir repetidamente uma fronteira inferior na probabilidade (E-step) e otimizar essa fronteira inferior (M-step) como a seguir:

• E-step: Avalia a probabilidade posterior $Q_i(z^{(i)})$ na qual cada ponto de dado $x^{(i)}$ veio de um grupo particular $z^{(i)}$ como a seguir:

$$Q_i(z^{(i)}) = P(z^{(i)}|x^{(i)};\theta)$$

• M-step: Usa as probabilidades posteriores $Q_i(z^{(i)})$ como grupo específico de pesos nos pontos de dado $x^{(i)}$ para separadamente estimar cada modelo do grupo como a seguir:

$$\theta_{i} = \underset{\theta}{\operatorname{argmax}} \sum_{i} \int_{z^{(i)}} Q_{i}(z^{(i)}) \log \left(\frac{P(x^{(i)}, z^{(i)}; \theta)}{Q_{i}(z^{(i)})} \right) dz^{(i)}$$

Agrupamento k-means

Nós indicamos $c^{(i)}$ o grupo de pontos de dados i e μ_i o centro do grupo j.

 \square Algoritmo – Após aleatoriamente inicializar os centróides do grupo $\mu_1, \mu_2, ..., \mu_k \in \mathbb{R}^n$, o algoritmo k-means repete os seguintes passos até a convergência:

 \square Função de distorção – A fim de ver se o algoritmo converge, nós olhamos para a função de distorção ($distortion\ function)$ definida como se segue:

$$J(c,\mu) = \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

Agrupamento hierárquico

1

□ Algoritmo – É um algoritmo de agrupamento com uma abordagem hierárquica aglometariva que constrói grupos aninhados de uma maneira sucessiva.

Ligação de vigia	Ligação média	Ligação completa
Minimizar distância	Minimizar a distância média	Minimizar a distância máxima
dentro do grupo	entre pares de grupos	entre pares de grupos

Métricas de atribuição de agrupamento

Em uma configuração de aprendizado não supervisionado, é geralmente difícil acessar o desempenho de um modelo desde que não temos rótulos de verdade como era o caso na configuração de aprendizado supervisionado.

 \Box Coeficiente de silhueta – Ao indicar a e b a distância média entre uma amostra e todos os outros pontos na mesma classe, e entre uma amostra e todos os outros pontos no grupo mais próximo, o coeficiente de silhueta s para uma única amostra é definida como se segue:

$$s = \frac{b - a}{\max(a, b)}$$

 $\hfill \Box$ Índice Calinski-Harabaz – Indicando por ko número de grupos, B_k e W_k as matrizes de disperção entre e dentro do agrupamento respectivamente definidos como:

$$B_k = \sum_{j=1}^k n_{c^{(i)}} (\mu_{c^{(i)}} - \mu) (\mu_{c^{(i)}} - \mu)^T, \qquad W_k = \sum_{i=1}^m (x^{(i)} - \mu_{c^{(i)}}) (x^{(i)} - \mu_{c^{(i)}})^T$$

o índice Calinski-Harabaz s(k) indica quão bem um modelo de agrupamento define o seu grupo, tal que maior a pontuação, mais denso e bem separado os grupos estão. Ele é definido como a seguir:

$$s(k) = \frac{\operatorname{Tr}(B_k)}{\operatorname{Tr}(W_k)} \times \frac{N-k}{k-1}$$

Análise de componente principal

 $\acute{\rm E}$ uma técnica de redução de dimensão que encontra direções de maximização de variância em que projetam os dados.

□ Autovalor, autovetor – Dada uma matriz $A \in \mathbb{R}^{n \times n}$, λ é dito ser um autovalor de A se existe um vetor $z \in \mathbb{R}^n \setminus \{0\}$, chamado autovetor, tal que temos:

$$Az = \lambda z$$

□ Teorema espectral – Seja $A \in \mathbb{R}^{n \times n}$. Se A é simétrica, então A é diagonizável por uma matriz ortogonal $U \in \mathbb{R}^{n \times n}$. Denotando $\Lambda = \operatorname{diag}(\lambda_1, ..., \lambda_n)$, temos:

$$\exists \Lambda \text{ diagonal}, \quad A = U \Lambda U^T$$

Observação: o autovetor associado com o maior autovalor é chamado de autorvetor principal da matriz A.

 \square Algoritmo – O processo de Análise de Componente Principal (PCA - Principal Componente Analysis) é uma técnica de redução de dimensção que projeta os dados em dimensções k ao maximizar a variância dos dados como se segue:

• Etapa 1: Normalizar os dados para ter uma média de 0 e um desvio padrão de 1.

$$\boxed{x_j^{(i)} \leftarrow \frac{x_j^{(i)} - \mu_j}{\sigma_j}} \quad \text{où} \quad \boxed{\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}} \quad \text{e} \quad \boxed{\sigma_j^2 = \frac{1}{m} \sum_{i=1}^m (x_j^{(i)} - \mu_j)^2}$$

- Etapa 2: Computar $\Sigma = \frac{1}{m} \sum_{i=1}^{m} x^{(i)} x^{(i)^T} \in \mathbb{R}^{n \times n}$, a qual é simétrica com autovalores reais.
- Etapa 3: Computar $u_1, ..., u_k \in \mathbb{R}^n$ os k principais autovetores ortogonais de Σ , i.e. os autovetores ortogonais dos k maiores autovalores.
- Etapa 4: Projetar os dados em $\operatorname{span}_{\mathbb{R}}(u_1,...,u_k)$. Esse processo maximiza a variância entre todos espaços dimensionais k.

Análise de componente independete

É uma técnica que pretende encontrar as fontes de geração subjacente.

□ Suposições – Nós assumimos que nosso dado x foi gerado por um vetor fonte dimensional n $s = (s_1,...,s_n)$, onde si são variáveis aleatórias independentes, através de uma matriz A misturada e não singular como se segue:

$$x = As$$

O objetivo é encontrar a matriz $W = A^{-1}$ não misturada.

 \Box Algoritmo Bell e Sejnowski ICA – Esse algoritmo encontra a matriz Wnão misturada pelas seguintes etapas abaixo:

• Escreva a probabilidade de $x = As = W^{-1}s$ como:

$$p(x) = \prod_{i=1}^{n} p_s(w_i^T x) \cdot |W|$$

• Escreva o logaritmo da probabilidade dado o nosso dado treinado $\{x^{(i)}, i \in [1, m]\}$ e indicando g a função sigmoide como:

$$l(W) = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \log \left(g'(w_{j}^{T} x^{(i)}) \right) + \log |W| \right)$$

Portanto, a regra de aprendizagem do gradiente ascendente estocástico é tal que para cada exemplo de treinamento $x^{(i)}$, nós atualizamos W como a seguir:

$$W \longleftarrow W + \alpha \begin{pmatrix} \begin{pmatrix} 1 - 2g(w_1^T x^{(i)}) \\ 1 - 2g(w_2^T x^{(i)}) \\ \vdots \\ 1 - 2g(w_n^T x^{(i)}) \end{pmatrix} x^{(i)^T} + (W^T)^{-1} \end{pmatrix}$$