PROF: ATMANI NAJIB 1BAC SM BIOF

ETUDE DES FONCTIONS

I) CONCAVITE; CONVEXITE; POINTS D'INFLEXION

- 1) Activité :Soit la fonction g définie sur \mathbb{R} par : $g(x) = 2x^3 3x^2$
- 1. Déterminer les dérivées première et seconde de la fonction *g*.
- 2. Dresser le tableau de signe de g''(x).

3. La courbe représentative de g est représentée ci-contre

Étudier graphiquement La position relative de la courbe cg par rapport à ses tangentes.

- 4. Que peut-on conclure?
- 2) Définition et propriétés.

2.1 Définitions :

Définition : Soit f une fonction dont la courbe représentative est C_f .

- 1) On dit que la courbe est convexe si elle se trouve au-dessus de toutes ses tangentes
- 2) On dit que la courbe est concave si elle se trouve au-dessous de toutes ses tangentes.
- 3) Un point d'inflexion est un point où s'opère un changement de concavité de la courbe C_f

3 -2 -1 0 1 2

Graphe d'une fonction convexe

Graphe d'une fonction concave

Point d'inflexion en A

Remarque: Si f est dérivable en a et C_f traverse sa tangente en A alors le point A est un point d'inflexion

2.2 Dérivée seconde et concavité.

Théorème : Soit *f* une fonction deux fois dérivable sur un intervalle *I*.

- 1) Si f'' est positive sur I alors C_f est convexe sur I.
- 2) Si f'' est négative sur I alors C_f est concave sur I.
- 3) Si f'' s'annule en a en changeant de signe alors C_f admet un point d'inflexion en A(a, f(a))

Remarque: Les conditions du théorème précèdent sont suffisantes; on peut avoir une courbe convexe, concave ou un point D'inflexion sans l'existence même de la dérivée seconde.

Exemple : Soit la fonction f définie sur \mathbb{R} par :

$$f(x) = \frac{1}{12}x^4 - 2x^2 + x + \frac{2}{3}$$

- 1. Déterminer les dérivées première et seconde de la fonction f.
- 2. Dresser le tableau de signe de f''(x). et étudier la concavité de la courbe de f et déterminer les points d'inflexions s'ils existent

Solution:1)

$$f'(x) = \left(\frac{1}{12}x^4 - 2x^2 + x + \frac{2}{3}\right)' = \frac{1}{12}4 \times x^3 - 4x + 1 = \frac{1}{3}x^3 - 4x + 1$$

$$f''(x) = \left(\frac{1}{3}x^3 - 4x + 1\right)' = x^2 - 4$$

2)
$$f''(x) = 0 \Leftrightarrow x^2 - 2^2 = 0 \Leftrightarrow (x-2)(x+2) = 0 \Leftrightarrow x = -2\alpha y x = 2$$

ĺ	x	$-\infty$	- 2		2	$+\infty$
	x2-4	+	ģ	_	ģ	+

 (C_f) est convexe sur $]-\infty;-2]\cup[2;+\infty[$

 (C_f) est concave sur [-2,2] et A(1,f(1)) et

B(-1, f(-1)) sont les points d'inflexions de (C_f)

Exercice1: Soit la fonction f définie sur $I = [0; \pi]$

par : $f(x) = \sin^2 x$ Étudier la concavité de la courbe de f et déterminer les points d'inflexions s'ils existent sur I

Solution: $\forall x \in [0; \pi]$

$$f'(x) = (\sin^2 x)' = 2(\sin x)' (\sin x)^{2-1} = 2\cos x \sin x$$
$$f'(x) = \sin 2x \Rightarrow f''(x) = 2\cos 2x \quad \forall x \in [0; \pi]$$
$$f''(x) = 0 \Leftrightarrow \cos 2x = 0 \Leftrightarrow 2x = \frac{\pi}{2} + k\pi \Leftrightarrow x = \frac{\pi}{4} + \frac{k\pi}{2}$$

Et $k \in \mathbb{Z}$ donc les solutions sont : $x = \frac{\pi}{4}$ et $x = \frac{3\pi}{4}$

$$x \in [0; \pi] \Rightarrow 2x \in [0; 2\pi]$$

2x	0	$\frac{\pi}{2}$		$\frac{3\pi}{2}$	2π
$\cos 2x$	+	þ	_	þ	+

On a donc:

x	0	$\frac{\pi}{4}$		$\frac{3\pi}{4}$	π
f''(x)	+	þ	_	þ	+

Donc : (C_f) est convexe sur $\left[0, \frac{\pi}{4}\right] \cup \left[\frac{3\pi}{4}; \pi\right]$

 (C_f) est concave sur $\left\lceil \frac{3\pi}{4}, \frac{3\pi}{4} \right\rceil$ et $A\left(\frac{\pi}{4}, \frac{1}{2}\right)$ et

 $B\left(\frac{3\pi}{4},\frac{1}{2}\right)$ sont les points d'inflexions de $\left(C_{f}\right)$

II) DEMI-TANGENTE VERTICALE

Introduction : Soit f la fonction définie sur \mathbb{R} +

 $par: (\forall x \in \mathbb{R}+) f(x) = \sqrt{x}$

On a: $\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to +\infty} \frac{\sqrt{x}}{x} = \lim_{x \to +\infty} \frac{1}{\sqrt{x}} = +\infty$

La fonction f n'est pas dérivable à droite de 0.

Soient $x \neq 0$ et M(x, f(x)) un point de la courbe C_f la droite(OM) à pour coefficient directeur $m = \sqrt{x} - \frac{1}{x}$ donc elle a pour vecteur directeur.

$$m = \frac{\sqrt{x}}{x} = \frac{1}{\sqrt{x}}$$
 donc elle a pour vecteur directeur

$$\vec{u}\left(1;\frac{1}{\sqrt{x}}\right)$$
 et le vecteur $\vec{v}\left(\sqrt{x};1\right)$) est aussi vecteur

directeur de la droite (OM) si on fait tendre x vers 0 (à droite) La droite (OM) "tend" pour une position limite vers une droite (T) de vecteur directeur $\vec{j}(0;1)$ Donc sera parallèle à l'axe (Oy).

Propriété: Soit f une fonction définie sur un intervalle de la forme [a, a + r[

Si f est continue à droite de a et

$$\lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a} = \pm \infty$$

Alors la courbe Cf admet une demi-tangente verticale à droite de a.

Interprétation géométriques

Exemple : Soit f la fonction définie par :

$$f(x) = x^2 \sqrt{1+x}$$

- 1. étudier la dérivabilité de f a droite en $x_0 = -1$.
- 2. donner une interprétation géométrique

Solution: $D_f = [-1, +\infty[$

1)
$$\lim_{x \to -1^+} \frac{f(x) - f(-1)}{x + 1} = \lim_{x \to -1^+} \frac{x^2 \sqrt{1 + x} - 0}{x + 1} = \lim_{x \to -1^+} \frac{x^2 \sqrt{1 + x}}{x + 1}$$

$$= \lim_{x \to -1^+} \frac{x^2 \left(\sqrt{1+x}\right)^2}{(x+1)\sqrt{1+x}} = \lim_{x \to -1^+} \frac{x^2 \left(1+x\right)}{(x+1)\sqrt{1+x}} = \lim_{x \to -1^+} \frac{x^2}{\sqrt{1+x}} = \frac{1}{0^+} = +\infty$$

Donc f n'est pas dérivable a droite en $x_0 = -1$.

2)Interprétation géométrique :

La courbe Cf admet une demi-tangente verticale à droite du point A(-1; f(-1)) dirigée vers le haut

Car: $\lim_{x \to -1^+} \frac{f(x) - f(-1)}{x+1} = +\infty \ (+x+=+)$

III)BRANCHES INFINIES.

II) BRANCHES INFINIES.

Exemples:

Exemple1 : Soit *f* la fonction définie par :

$$f(x) = \frac{2x-1}{3x-6}$$

déterminer les limites aux bornes de D_f et (Donner une interprétation géométrique des résultats)

Solution:
$$D_f = \mathbb{R} - \{2\} =]-\infty; 2[\cup]2; +\infty[$$

1)
$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} \frac{2x-1}{3x-6}$$

$$\lim_{x \to 2^{+}} 2x - 1 = 3 \quad \text{et} \quad \lim_{x \to 2^{+}} 3x - 6 = 0^{+} \text{ et} \quad \lim_{x \to 2^{-}} 3x - 6 = 0^{-}$$

x	$-\infty$	2	$+\infty$
3x-6		þ	+

Donc: $\lim_{x \to 2^{+}} f(x) = +\infty$ et $\lim_{x \to 2^{-}} f(x) = -\infty$

Interprétation géométrique des résultats : La droite (Δ): x=2 est une asymptote vertical a la courbe C_f

2)
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2x-1}{3x-6} = \lim_{x \to +\infty} \frac{2x}{3x} = \frac{2}{3}$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{2x - 1}{3x - 6} = \lim_{x \to -\infty} \frac{2x}{3x} = \frac{2}{3}$$

Interprétation géométrique des résultats :

La droite (Δ): $y = \frac{2}{3}$ est une asymptote

horizontal a la courbe C_f

Exemple2:

Soit f la fonction définie par : $f(x) = \frac{\sqrt{x^2 + 1}}{x}$

On a:
$$f(x) = \frac{\sqrt{x^2\left(1+\frac{1}{x^2}\right)}}{x} = \frac{|x|\sqrt{\left(1+\frac{1}{x^2}\right)}}{x} \quad \forall x \in \mathbb{R}^*$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x\sqrt{\left(1 + \frac{1}{x^2}\right)}}{x} = \lim_{x \to +\infty} \sqrt{\left(1 + \frac{1}{x^2}\right)} = 1$$

$$(|x| = x \text{ car } x \to +\infty)$$

La droite (Δ): y = 1 est une asymptote horizontal a la courbe C_f au voisinage de $+\infty$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{-x\sqrt{\left(1 + \frac{1}{x^2}\right)}}{x} = \lim_{x \to -\infty} -\sqrt{\left(1 + \frac{1}{x^2}\right)} = -1$$

La droite (Δ '): y = -1 est une asymptote horizontal a la courbe C_f au voisinage de $-\infty$

Exemple3 : : Soit f la fonction définie par :

$$\forall x \in \mathbb{R}^* : f(x) = 2 + \frac{x-1}{x^2}$$

On a: $\lim_{x \to +\infty} f(x) = 2$ et $\lim_{x \to +\infty} f(x) = 2$ car:

$$\lim_{x \to \infty} \frac{x-1}{x^2} = \lim_{x \to \infty} \frac{x}{x^2} = \lim_{x \to \infty} \frac{1}{x} = 0$$

Donc : La droite (Δ): y=2 est une asymptote horizontal a la courbe C_f au voisinage de $^{\infty}$ étudions la position de courbe $\left(C_f\right)$ et la droite $\left(\Delta\right)$?

$$f(x)-2=\frac{x-1}{x^2}$$
 le signe et celui de $x-1$

x	$-\infty$	0		1	$+\infty$
f(x)-2	-		_	þ	+

Donc la courbe C_f est au-dessous de (Δ): y=2 Sur l'intervalle $]-\infty;0[\,\cup\,]0;1[$ et la courbe C_f est au-dessus de (Δ): y=2 Sur l'intervalle $]1;+\infty[$ C_f coupe (Δ) au point I(1;2)

Exemple4: Soit f la fonction définie par :

$$\forall x \in \mathbb{R}^* - \{3\} : f(x) = 2x - 1 + \frac{1}{x - 3}$$

montrer que la courbe C_f que la fonction f admet une asymptote oblique au voisinage de $+\infty$ et au voisinage de $-\infty$ que l'on déterminera

Solution
$$f(x) = 2x - 1 + \frac{1}{x - 3} \Leftrightarrow f(x) - (2x - 1) = \frac{1}{x - 3}$$

Donc:
$$\lim_{x \to +\infty} f(x) - (2x-1) = \lim_{x \to +\infty} \frac{1}{x-3} = \frac{1}{+\infty} = 0$$

Donc : la droite (Δ): y = 2x - 1 est une asymptote oblique à la courbe C_f au voisinage de $+\infty$

Et on a :
$$\lim_{x \to -\infty} f(x) - (2x-1) = \lim_{x \to -\infty} \frac{1}{x-3} = 0$$

Donc : la droite (Δ): y = 2x - 1 est une asymptote oblique à la courbe C_f au voisinage de $-\infty$ **Exemple5 :**Soit la fonction définie par :

 $f(x) = \sqrt{x}$ étudier les branches paraboliques au voisinage de $+\infty$

Solution :On a : $Df = \mathbb{R} + \operatorname{et} \lim_{x \to +\infty} f(x) = +\infty$ et

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\sqrt{x}}{x} = \lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$$

Donc la courbe C_f admet une branche parabolique vers l'axe $(\mathbf{O}x)$ au voisinage de $+\infty$ **Exemple6**: Soit la fonction définie par :

 $f(x) = x^3$ étudier les branches paraboliques au voisinage de $+\infty$

Solution :On a : $Df = \mathbb{R} + \operatorname{et} \lim_{x \to +\infty} f(x) = +\infty$ et

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x^3}{x} = \lim_{x \to +\infty} x^2 = +\infty$$

Donc la courbe C_f admet une branche parabolique vers l'axe $(\mathbf{0}y)$ au voisinage de $+\infty$ **Exemple7:**Soit f la fonction définie sur \mathbb{R}^+ par : $f(x) = x + \sqrt{x}$

Solution : On a : $Df = \mathbb{R} + \operatorname{et} \lim_{x \to +\infty} f(x) = +\infty$

et
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x + \sqrt{x}}{x} = \lim_{x \to +\infty} 1 + \frac{1}{\sqrt{x}} = 1$$

Mais
$$\lim_{x \to +\infty} f(x) - 1x = \lim_{x \to +\infty} \sqrt{x} = +\infty$$

Donc la courbe de la fonction admet une branche parabolique vers la droite (Δ): y = x.

Propriété: Soit f une fonction définie au voisinage de $+\infty$. La droite (Δ): y = ax + b ($a \ne 0$) est une asymptote oblique

au voisinage de +∞ si et seulement si :

$$\lim_{x \to +\infty} \frac{f(x)}{x} = a \ (a \neq 0) \text{ et } \lim_{x \to +\infty} f(x) - ax = b$$

Preuve: D'après la propriété précédente : On peut écrire f(x) = ax + b + h(x) où $\lim_{x \to +\infty} h(x) = 0$

Donc:
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{ax + b + h(x)}{x}$$

$$\lim_{x \to +\infty} a + \frac{b}{x} + \frac{h(x)}{x} = a$$

D'autre part : $f(x) - ax = b + h(x) \lim_{x \to +\infty} h(x) = 0$

donc
$$\lim_{x\to +\infty} f(x) - ax = b$$

Exemple: Soit f la fonction définie par :

$$f(x) = \sqrt{x^2 + 1}$$

1)Déterminer D_f

2) montrer que la courbe C_f que la fonction f admet une asymptote oblique au voisinage de $+\infty$ et au voisinage de $-\infty$ que l'on déterminera

Solution :1)On a : $x^2+1 \succ 0 \ \forall x \in \mathbb{R}$

donc $D_{\scriptscriptstyle f} = \mathbb{R}$

2)a)
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \sqrt{x^2 + 1} = +\infty$$

Et
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\sqrt{x^2 + 1}}{x} = \lim_{x \to +\infty} \frac{\sqrt{x^2 \left(1 + \frac{1}{x^2}\right)}}{x}$$

$$= \lim_{x \to +\infty} \frac{\left|x\right|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to +\infty} \frac{x\sqrt{1 + \frac{1}{x^2}}}{x} \quad |x| = x \text{ car } x \to +\infty$$

$$= \lim_{x \to +\infty} \sqrt{1 + \frac{1}{x^2}} = 1 = a$$

Et on a : $\lim_{x \to +\infty} f(x) - 1x = \lim_{x \to +\infty} \sqrt{x^2 + 1} - x$

$$= \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + 1} - x\right)\left(\sqrt{x^2 + 1} + x\right)}{\sqrt{x^2 + 1} + x} = \lim_{x \to +\infty} \frac{1}{\sqrt{x^2 + 1} + x} = 0$$

Donc : la droite (Δ): y = 1x est une asymptote oblique à la courbe C_f au voisinage de $+\infty$ b)De même on a :

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \sqrt{x^2 + 1} = +\infty$$

Et
$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{\sqrt{x^2 + 1}}{x} = \lim_{x \to -\infty} \frac{\sqrt{x^2 \left(1 + \frac{1}{x^2}\right)}}{x}$$

$$= \lim_{x \to -\infty} \frac{\left|x\right|\sqrt{1 + \frac{1}{x^2}}}{x} = \lim_{x \to -\infty} \frac{-x\sqrt{1 + \frac{1}{x^2}}}{x} \quad |x| = -x \text{ car } x \to -\infty$$

$$= \lim_{x \to -\infty} -\sqrt{1 + \frac{1}{x^2}} = -1 = a$$

Et on a : $\lim_{x \to -\infty} f(x) + 1x = \lim_{x \to -\infty} \sqrt{x^2 + 1} + x$

$$= \lim_{x \to -\infty} \frac{\left(\sqrt{x^2 + 1} - x\right)\left(\sqrt{x^2 + 1} + x\right)}{\sqrt{x^2 + 1} - x} = \lim_{x \to -\infty} \frac{1}{\sqrt{x^2 + 1} - x} = 0$$

Donc : la droite (Δ): y = -x est une asymptote oblique à la courbe C_f au voisinage de $-\infty$

IV) LES ELEMENTS DE SYMETRIE D'UNE COURBE.

1) Axe de symétrie :

Activité : Soit la fonction

$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto \sqrt{2x^2 - 4x - 6}$

- 1. Déterminer D_f ensemble de définition de la fonction f.
- 2. Montrer que $(\forall x \in D_f)$ $(2 x \in D_f)$
- 3. Montrer que $(\forall x \in D_f)$ (f(2-x) = f(x))

Propriété : Soit f une fonction numérique dont l'ensemble de définition est D_f .

La droite (Δ): x = a est un axe de symétrie de la courbe C_f si et seulement si :

$$a)(\forall x \in D_f)(2a - x \in D_f)$$

$$b)(\forall x \in D_f)(f(2a - x) = f(x))$$

Preuve : Soit x un élément de D_f et A(x, 0), si A'(x', 0) est le symétrique

de A par rapport à $(\Delta) x = a$ alors

$$\frac{x+x'}{2} = a$$
 (a est le centre de l'intervalle de

bornes x et x')

d'où : x' = 2a - x et puisque $(\Delta) \perp (AA')$ alors f(x) = f(x') ce que signifie : f(2a - x) = f(x)

Exemple: Soit f la fonction définie par :

$$f(x) = \sqrt{x - x^2}$$

- 1)Déterminer D_f
- 2) montrer que la La droite (Δ): $x = \frac{1}{2}$ est un axe de symétrie de la courbe C_f

Solution :1)On a :
$$f(x) = \sqrt{x - x^2}$$

$$D_f = \left\{ x \in \mathbb{R} / x - x^2 \ge 0 \right\}$$
$$x - x^2 = 0 \Leftrightarrow x(1 - x) = 0 \Leftrightarrow x = 1oux = 0$$

Tableau de signe :

$$\begin{array}{c|ccccc} x & -\infty & 0 & 1 & +\infty \\ \hline x-x^2 & - & 0 & + & 0 & - \end{array}$$

donc: $D_f = [0,1]$

2)a) montrons que : si
$$x \in D_f = [0,1]$$
 alors

$$1-x \in D_f$$
?

$$x \in D_f = \begin{bmatrix} 0,1 \end{bmatrix} \Longrightarrow 0 \le x \le 1 \Longrightarrow -1 \le -x \le 0 \Longrightarrow 1-1 \le 1-x \le 1$$

Donc:
$$x \in D_f \Rightarrow 0 \le 1 - x \le 1 \Rightarrow 1 - x \in D_f$$

b) montrons que :
$$f(1-x) = f(x)$$
 ????

$$f(1-x) = \sqrt{(1-x) - (1-x)^2} = \sqrt{1 - x - (1 - 2x + x^2)}$$
$$= \sqrt{1 - x - 1 + 2x - x^2} = \sqrt{x - x^2} = f(x)$$

Donc : La droite (Δ): $x = \frac{1}{2}$ est un axe de

symétrie de la courbe C_f

Exercice2: Soit f la fonction définie par :

$$f\left(x\right) = 3x^2 - 2x + 5$$

montrer que la La droite (Δ): $x = \frac{1}{3}$ est un axe de

symétrie de la courbe C_f Solution : On a : $D_f = \mathbb{R}$

a) si
$$x \in D_f = \mathbb{R}$$
 alors $\frac{2}{3} - x \in \mathbb{R}$

b) montrons que :
$$f\left(\frac{2}{3}-x\right)=f(x)$$
????

$$f\left(\frac{2}{3} - x\right) = 3\left(\frac{2}{3} - x\right)^2 - 2\left(\frac{2}{3} - x\right) + 5$$
$$= 3x^2 - 2x + 5 = f(x)$$

Donc : La droite (Δ): $x = \frac{1}{3}$ est un axe de

symétrie de la courbe C_f

Exercice3: Soit f la fonction définie par :

$$f\left(x\right) = \frac{1}{x-1} - \frac{1}{x-3}$$

montrer que la La droite (Δ): x = 2 est un axe de symétrie de la courbe C_f

Solution: On a: $D_f = \mathbb{R} - \{1;3\}$

a) si
$$x \in \mathbb{R} - \{1;3\}$$
 alors $4 - x \in \mathbb{R} - \{1;3\}$ en effet : $x \in \mathbb{R} - \{1;3\} \Rightarrow x \neq 1$ et $x \neq 3$

$$\Rightarrow -x \neq -1$$
 et $-x \neq -3 \Rightarrow 4 - x \neq 4 - 1$ et $4 - x \neq 4 - 3$
 $\Rightarrow 4 - x \neq 3$ et $4 - x \neq 1$ alors $4 - x \in \mathbb{R} - \{1; 3\}$

b) montrons que :
$$f(4-x) = f(x) \ \forall x \in \mathbb{R} - \{1,3\}$$
 ????

$$f(4-x) = \frac{1}{4-x-1} - \frac{1}{4-x-3} = \frac{1}{3-x} - \frac{1}{1-x} = \frac{1}{x-1} - \frac{1}{x-3}$$

$$\operatorname{donc} f(4-x) = f(x) \ \forall x \in \mathbb{R} - \{1,3\}$$

donc la droite (Δ): x = 2 est un axe de symétrie de la courbe C_f

Exercice4: Soit f la fonction définie par :

$$f(x) = \cos x$$

montrer que la La droite (Δ): $x = k\pi$; $k \in \mathbb{Z}$ est un axe de symétrie de la courbe C_f

Solution : On a : $D_f = \mathbb{R}$

a) si $x \in \mathbb{R}$ alors $2k\pi - x \in \mathbb{R}$

b) montrons que : $f(2k\pi - x) = f(x) \forall x \in \mathbb{R}$????

$$f(2k\pi - x) = \cos(2k\pi - x) = \cos(-x) = \cos x$$

$$\mathsf{donc}\,f\left(2k\pi-x\right)=f\left(x\right)\,\forall x\in\mathbb{R}$$

donc la droite (Δ): $x=k\pi$; $k\in\mathbb{Z}$ est un axe de symétrie de la courbe C_f

2) Centre de symétrie.

Propriété : Soit f une fonction numérique dont l'ensemble de définition est D_f .

Le point $\Omega(a, b)$ est un centre de symétrie de la courbe Cf si et seulement si :

a)
$$(\forall x \in D_f)(2a - x \in D_f)$$

b)
$$(\forall x \in D_f)(f(2a - x) = 2b - f(x))$$

Preuve : $\Omega(a, b)$ étant centre de symétrie de la courbe C_f , si M(x, f(x)) est un point de C_f alors sont symétrique M' par rapport à Ω est un point

de
$$C_f$$
. soit $M'(x', f'(x))$ on a : $\frac{x + x'}{2} = a$

et
$$\frac{f(x) + f(x')}{2} = 2b$$

car a est le centre de l'intervalles de bornes x et x' et b est le centre de L'intervalles de bornes f(x) et f(x') Par suite : x' = 2a - x et f(x') = 2b - f(x)

et finalement : f(2a - x) = 2b - f(x)

Exemple: Soit f la fonction définie par :

$$f\left(x\right) = \frac{x^2 - x}{x + 1}$$

1) montrer que :
$$\forall \in D_f$$
 : $f(x) = x - 2 + \frac{2}{x+1}$

2)montrer que le point $\Omega(-1;-3)$ est un centre de symétrie $de(C_f)$

Solution : 1) On a : $D_f = \mathbb{R} - \{-1\}$

$$x-2+\frac{2}{x+1}=\frac{(x-2)(x+1)+2}{x+1}=\frac{x^2-x}{x+1}=f(x)$$

2)a) montrons que si $x \in \mathbb{R} - \{-1\}$ alors

 $-2-x \in \mathbb{R} - \{-1\}$ en effet :

$$x \in \mathbb{R} - \left\{-1\right\} \Longleftrightarrow x \neq -1 \Longleftrightarrow -x \neq 1 \Longleftrightarrow -2 - x \neq -2 + 1$$

$$\Leftrightarrow$$
 $-2 - x \neq -1 \Leftrightarrow -2 - x \in \mathbb{R} - \{-1\}$

b) montrons que : f(-2-x)+f(x)=-6=2b ??

$$f(-2-x)+f(x) = -2-x-2+\frac{2}{-2-x+1}+x-2+\frac{2}{x+1}$$

$$=-6+\frac{2}{-x-1}+\frac{2}{x+1}=-6-\frac{2}{x+1}+\frac{2}{x+1}=-6$$

donc
$$f(-2-x)+f(x)=-6=2b \ \forall x \in \mathbb{R}-\{-1\}$$

donc le point $\Omega(-1;-3)$ est un centre de symétrie $\operatorname{de}(C_{\scriptscriptstyle f})$

Exercice5: Soit f la fonction définie par :

$$f(x) = \sin x - \cos x$$

montrer que le point $\Omega\left(\frac{\pi}{4};0\right)$ est un centre de

symétrie $de(C_f)$

Solution:

- a) on a si $x \in \mathbb{R}$ alors $2\frac{\pi}{4} x = \frac{\pi}{2} x \in \mathbb{R}$
- b) montrons que : $f\left(\frac{\pi}{2} x\right) = 2 \times 0 f(x)$??

$$f\left(\frac{\pi}{2} - x\right) = \sin\left(\frac{\pi}{2} - x\right) - \cos\left(\frac{\pi}{2} - x\right) = \cos x - \sin x$$

donc
$$f\left(\frac{\pi}{2} - x\right) = 2 \times 0 - f(x) \ \forall x \in \mathbb{R}$$

donc le point $\Omega\!\left(\frac{\pi}{4};0\right)$ est un centre de symétrie

 $de(C_f)$

Exercice6 : Soit f la fonction définie par :

$$f(x) = \sqrt{4x^2 + 2x - 2}$$

- 1)Déterminer D_f
- 2) Déterminer le domaine de dérivabilité de f et calculer f'(x)

- 3) calculer $\lim_{x \to \infty} f(x)$
- 4) montrer que la courbe C_f que la fonction f admet une asymptote oblique au voisinage de $-\infty$ que l'on déterminera

Solution : 1)
$$D_f = \left\{ x \in \mathbb{R} / 4x^2 + 2x - 2 \ge 0 \right\}$$

 $4x^2 + 2x - 2 = 0 \Leftrightarrow 2x^2 + x - 1 = 0$
 $\Delta = b^2 - 4ac = (1)^2 - 4 \times 2 \times (-1) = 1 + 8 = 9 = (3)^2 > 0$
 $x_1 = \frac{-1+3}{2\times 2} = \frac{2}{4} = \frac{1}{2}$ **et** $x_2 = \frac{-4}{4} = -1$

Donc:
$$D_f =]-\infty; -1] \cup \left[\frac{1}{2}; +\infty\right[$$

$$4x^2 + 2x - 2 \succ 0 \Leftrightarrow \forall x \in]-\infty; -1[\cup \left[\frac{1}{2}; +\infty\right[$$

Donc:

$$f'(x) = \left(\sqrt{4x^2 + 2x - 2}\right)' = \frac{\left(4x^2 + 2x - 2\right)'}{2\sqrt{4x^2 + 2x - 2}} = \frac{8x + 2}{2\sqrt{4x^2 + 2x - 2}}$$
$$f'(x) = \frac{4x + 1}{\sqrt{4x^2 + 2x - 2}} \ \forall x \in]-\infty; -1[\ \cup \]\frac{1}{2}; +\infty[$$

3) calculons: $\lim_{x \to -\infty} f(x)$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \sqrt{4x^2 + 2x - 2}$$

On a:
$$\lim_{x \to -\infty} 4x^2 + 2x - 2 = \lim_{x \to -\infty} 4x^2 = +\infty$$

Donc: $\lim_{x \to \infty} f(x) = +\infty$

4)
$$\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{\sqrt{4x^2 + 2x - 2}}{x} = \lim_{x \to \infty} \frac{\sqrt{x^2 \left(4 + \frac{2x}{x^2} - \frac{2}{x^2}\right)}}{x}$$

$$= \lim_{x \to -\infty} \frac{|x| \sqrt{4 + \frac{2}{x} - \frac{2}{x^2}}}{x} \xrightarrow{x \to -\infty} \text{donc } |x| = -x$$

$$= \lim_{x \to -\infty} \frac{-x \sqrt{4 + \frac{2}{x} - \frac{2}{x^2}}}{x} = \lim_{x \to -\infty} -\sqrt{4 + \frac{2}{x} - \frac{2}{x^2}} = -\sqrt{4} = -2 = a$$

$$\lim_{x \to -\infty} f(x) + 2x = \lim_{x \to -\infty} \sqrt{4x^2 + 2x - 2} + 2x = \lim_{x \to -\infty} \frac{\sqrt{4x^2 + 2x - 2} + 2x}{\sqrt{4x^2 + 2x - 2} - 2x}$$

$$= \lim_{x \to -\infty} \frac{4x^2 + 2x - 2 - 4x^2}{|x| \sqrt{4 + \frac{2}{x} - \frac{2}{x^2}} - 2x} = \lim_{x \to -\infty} \frac{2x - 2}{-x \sqrt{4 + \frac{2}{x} - \frac{2}{x^2}} - 2x}$$

$$= \lim_{x \to -\infty} \frac{x\left(2 - \frac{2}{x}\right)}{-x\left(\sqrt{4 + \frac{2}{x} - \frac{2}{x^2}} + 2\right)} = \lim_{x \to -\infty} \frac{2 - \frac{2}{x}}{-\left(\sqrt{4 + \frac{2}{x} - \frac{2}{x^2}} + 2\right)} = -\frac{2}{4} = -\frac{1}{2} = b$$

Donc : donc la droite $y = -2x - \frac{1}{2}$ est une asymptote oblique au voisinage de $-\infty$ a la courbe C_f

Exercice7: Soit f la fonction définie sur \mathbb{R} par : $f(x) = x^3 - 3x + 3$

- 1) Déterminer les limites de f aux bornes de D_f
- 2) étudier les branches infinies de la courbe (C_f)
- 3) dresser le tableaux de variation de f
- 4) Étudier la concavité de la courbe de $\left(C_f\right)$ et déterminer les points d'inflexions s'ils existent sur $\mathbb R$
- 5)montrer que le point I(0;3) est un centre de symétrie $\operatorname{de}(C_f)$ et déterminer l'équation de la tangente (T) a la courbe (C_f) en I(0;3)
- 6) on utilisant le tableaux de variation de f monter que l'équation : f(x) = 0 admet une solution unique α tel que : $\alpha \prec -1$ et vérifier que $-2.2 \prec \alpha \prec -2.1$ et déterminer le signe de f(x)
- 7) Tracer la courbe Cf et discuter suivant les valeurs du paramètre m le nombre de solutions de l'équation : $x^3 3x + 3 = m$

Solution : 1) On a : $D_f = \mathbb{R} =]-\infty; +\infty[$ car f est une fonction polynôme

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^3 - 3x + 3 = \lim_{x \to +\infty} x^3 = +\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^3 - 3x + 3 = \lim_{x \to +\infty} x^3 = -\infty$$

2) étude des branches infinies de la courbe (C_f) :

$$\frac{f(x)}{x} = \frac{x^3 - 3x + 3}{x} = x^2 - 3 + \frac{3}{x} \quad \forall \in \mathbb{R}^*$$

Donc:
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} x^2 - 3 + \frac{3}{x} = +\infty$$

Et
$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} x^2 - 3 + \frac{3}{x} = +\infty$$

Donc la courbe C_f admet une branche parabolique vers l'axe $(\mathbf{0}y)$ au voisinage de $+\infty$ et $-\infty$

3) le tableaux de variation de f ?

 $\forall x \in \mathbb{R}$

$$f'(x) = (x^3 - 3x + 3)' = 3x^2 - 3 = 3(x^2 - 1) = 3(x - 1)(x + 1)$$

Le signe de $f'(x)$ est celui de $(x - 1)(x + 1)$

x	$-\infty$	-1		1	$+\infty$
f'(x)	+	þ	_	þ	+
f(x)	$\stackrel{\scriptstyle \wedge}{\approx}$	→ ⁵ ~	\	~ 1/	$+\infty$

4) Étude de la concavité de la courbe de (C_f) ? $\forall x \in \mathbb{R}$; $f'(x) = 3(x^2 - 1)$ donc : f''(x) = 6x le tableaux de signe de f''(x) est :

x	$-\infty$	0	$+\infty$
f" (x)	_	þ	+

Donc $:(C_f)$ est convexe sur \mathbb{R}_+^*

- (C_f) est concave sur \mathbb{R}_{-}^* et f''(x) s'annule en changeant de signe 0 donc I(0,3) est un point d'inflexion de (C_f)
- 5)montrons que le point I(0;3) est un centre de symétrie $de(C_f)$?
- a) on a si $x \in \mathbb{R}$ alors $2 \times 0 x = -x \in \mathbb{R}$
- b) montrons que : $f(-x) = 2 \times 3 f(x) \quad \forall x \in \mathbb{R}$?

$$f(-x) = (-x)^3 - 3(-x) + 3 = -x^3 + 3x + 3$$

$$2 \times 3 - f(x) = 6 - f(x) = 6 - (x^3 - 3x + 3) = -x^3 + 3x + 3$$

donc $f(-x) = 2 \times 3 - f(x)$ $\forall x \in \mathbb{R}$ donc le

point I(0,3) est un centre de symétrie $de(C_f)$

l'équation de la tangente $\left(T\right)$ a la courbe $\left(C_{\scriptscriptstyle f}\right)$ en

$$I(0;3)$$
 est: (T) : $y = f'(0)x + f(0) = -3x + 3$

6) du tableaux de variation de f

On deduit que f admet une valeur minimal en 1 sur l'intervalle $[-1;+\infty[$ et c'est : f(1)=1

Donc: $f(x) \ge f(1) = 1$ $\forall x \in [-1; +\infty[$

Et l'image de l'intervalle $]-\infty;-1]$ par f est l'intervalle $]-\infty;5]$ et $0\in]-\infty;5]$ donc il existe un α de $]-\infty;-1]$ tel que $f(\alpha)=0$ et puisque f est

strictement croissante sur $]-\infty;-1]$ alors quelque soit $x \neq \alpha$ on a $x \prec \alpha$ ou $\alpha \prec x \prec -1$ donc $f(x) \prec f(\alpha)$ ou $f(\alpha) \prec f(x) \prec f(-1)$

Donc: f(x) < 0 ou $0 < f(x) \le 5$

Donc: $\forall x \in]-\infty;-1]-\{\alpha\}$ on a $f(x) \neq 0$ donc α est unique et on utilisant la calculatrice en vérifie

que: $f(-2.2) \approx -1.04$ et $f(-2.1) \approx 0.03$

Donc d'après l'étude précèdent on a alors : $-2.2 \prec \alpha \prec -2.1$

On deduit que : $f(x) \succ 0 \ \forall x \in]\alpha; +\infty]$ et $f(x) \prec 0 \ \forall x \in]-\infty; \alpha]$

7) Tracer le sourbe Cf

7) Tracer la courbe Cf

Remarque : le signe de f(x) partir de (C_f) ? a)sur $]-\infty;\alpha]$ $f(x) \le 0$ car (C_f) est au-dessous

b)sur $]\alpha;+\infty]$ $f(x) \ge 0$ car (C_f) est au-dessus de l'axe des abscisses

7)
$$x^3 - 3x + 3 = m \Leftrightarrow f(x) = m$$

de l'axe des abscisses

Les solutions de l'équation : f(x) = m sont les abscisses des points d'intersections de (C_f) avec la droite d'équation : y = m

m $m \in]5; +\infty[\cup]-\infty; 1[$ m=1 ou $m \in]1; 5[$ nombre de solutions $m \in]0; +\infty[\cup]-\infty; 1[$ m=1 ou $m \in]1; 5[$ $m \in]0; +\infty[\cup]-\infty; 1[$ $m \in [0, \infty]$ $m \in [0, \infty]$

Exercice8: soit f une fonction définie par :

$$f(x) = 2 + \frac{1}{x} - \frac{1}{x-1}$$

1) déterminer D_f ensemble de définition de f

- 2) étudier les branches infinies de la courbe $\left(C_{_f}
 ight)$
- 3) étudier la position de courbe $\left(C_f\right)$ avec son asymptote horizontal
- 4) étudier les variations de f et dresser le tableaux de variation de f
- 5) déterminer les points d'intersections $\operatorname{de}\left(C_{f}\right)$ avec l'axe des abscisses f
- 6) montrer que la droite d'équation $x = \frac{1}{2}$ est un axe de symétrie $de(C_f)$
- 7) tracer la courbe $\left(C_{f}\right)$

Solution: 1) $x \in D_f \iff x \neq 0$ et $x \neq 1$

 $\mathsf{donc}:\ D_{\scriptscriptstyle f} = \left] \!\!-\!\! \infty; 0 \right[\, \cup \, \left] 0; 1 \right[\, \cup \, \right] \!\! 1; + \infty \! \left[$

2) étude des branches infinies de la courbe (C_f)

a)
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 2 + \frac{1}{x} - \frac{1}{x-1} = 2$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} 2 + \frac{1}{x} - \frac{1}{x - 1} = 2$$

Car: $\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{1}{x} - \frac{1}{x-1} = 0$

Donc: $\lim_{x \to -\infty} f(x) = 2$ et $\lim_{x \to -\infty} f(x) = 2$

La droite (Δ): y = 2 est une asymptote horizontal a la courbe C_f au voisinage de $\pm \infty$

b) on a
$$\lim_{x\to 0^+} \frac{1}{x} = +\infty$$
 et $\lim_{x\to 0^-} \frac{1}{x} = -\infty$ et

$$\lim_{x \to 0} 2 - \frac{1}{x - 1} = 3$$

donc $\lim_{x\to 0^+} f(x) = +\infty$ et $\lim_{x\to 0^-} f(x) = -\infty$

donc La droite (Δ '): x=0 est une asymptote a la courbe C_f

c) on a
$$\lim_{x \to 1^+} \frac{-1}{x-1} = -\infty$$
 et $\lim_{x \to 1^-} \frac{-1}{x-1} = +\infty$

et
$$\lim_{x \to 1} 2 + \frac{1}{x} = 3$$

donc $\lim_{x \to 1^+} f(x) = -\infty$ et $\lim_{x \to 1^-} f(x) = +\infty$

donc La droite (Δ "): x=1 est une asymptote a la courbe C_f

3) étude de la position de courbe (C_f) avec son asymptote horizontal $: (\forall x \in D_f)$

$$f(x)-2=\frac{1}{x}-\frac{1}{x-1}=\frac{x-1-x}{x(x-1)}=\frac{-1}{x(x-1)}$$

si $x \in [0,1]$ alors f(x)-2 > 0

Donc la courbe C_f est au- dessus de (Δ): y = 2

si
$$x \in]-\infty; 0[\cup]1; +\infty[$$
 alors $f(x)-2 < 0$

Donc la courbe C_f est au-dessous de (Δ): y = 2

5) déterminons les points d'intersections $\operatorname{de} \left(C_{\scriptscriptstyle f} \right)$

avec l'axe des abscisses : $\left(\forall x \in D_{\scriptscriptstyle f}\right)$

$$f(x) = 0 \Leftrightarrow 2 + \frac{1}{x} - \frac{1}{x-1} = 0 \Leftrightarrow \frac{2x^2 - x - 1}{x(x-1)} = 0$$

$$2x^2 - x - 1 = 0 \Leftrightarrow x = \frac{1 + \sqrt{3}}{2}$$
 ou $x = \frac{1 - \sqrt{3}}{2}$

Donc les points d'intersections $\operatorname{de} \left(C_{_f} \right)$ avec

l'axe des abscisses sont : $A\left(\frac{1+\sqrt{3}}{2};0\right)$ et $B\left(\frac{1-\sqrt{3}}{2};0\right)$

6) montrons que la droite d'équation $x = \frac{1}{2}$ est un axe de symétrie $de(C_f)$:

On a: $D_f =]-\infty; 0[\cup]0; 1[\cup]1; +\infty[$

a) si $x \in D_f$ alors $1 - x \in D_f$ en effet :

$$x \in \mathbb{R} - \{0;1\} \Rightarrow x \neq 0 \text{ et } x \neq 1$$

$$\Rightarrow -x \neq 0$$
 et $-x \neq -1 \Rightarrow 1-x \neq 1$ et $1-x \neq 0$

 $\mathsf{alors}\,1 - x \in \mathbb{R} - \big\{0;1\big\}$

b) montrons que : $f(1-x) = f(x) \forall x \in \mathbb{R} - \{0,1\}$?????

$$f(1-x) = 2 + \frac{1}{1-x} - \frac{1}{1-x-1} = 2 + \frac{1}{1-x} + \frac{1}{x} = 2 - \frac{1}{x-1} + \frac{1}{x}$$

donc $f(1-x) = f(x) \forall x \in \mathbb{R} - \{0,1\}$

donc la droite $x = \frac{1}{2}$ est un axe de symétrie de la courbe C_f

Exercice9 : soit f une fonction définie par :

$$f\left(x\right) = \frac{x^2 - 2x + 1}{x - 3}$$

- 1) déterminer les limites aux bornes de D_f
- 2) déterminer les réels a et b tel que :

$$f(x) = ax + b + \frac{c}{x-3} \quad \forall x \in D_f$$

- 3) étudier les branches infinies de la courbe (C_f)
- 4) étudier les variations de f et dresser le tableau de variation de f
- 5) montrer que le point $\Omega(3;4)$ est un centre de symétrie $\operatorname{de}(C_f)$
- 6) calculer $f''(x) \quad \forall x \in D_f$ et étudier la concavité de la courbe de f
- 7) étudier la position de courbe $\left(C_{f}\right)$ et son asymptote oblique $\left(\Delta\right)$
- 8) Déterminer les points d'intersection de la courbe (C_f) avec les axes du repére
- 9) déterminer l'équation de la tangente (T) a la courbe (C_f) en $x_0 = 2$
- 9) tracer la courbe (C_f)

Solution : 1) $x \in D_f \iff x \neq 3$

donc: $D_f = \mathbb{R} - \{3\} =]-\infty; 3[\ \cup\]3; +\infty[$

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} \frac{x^{2} - 2x + 1}{x - 3} = \frac{4}{0^{-}} = -\infty$$

$$\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} \frac{x^2 - 2x + 1}{x - 3} = \frac{4}{0^+} = +\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^2}{x} = \lim_{x \to -\infty} x = -\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2}{x} = \lim_{x \to +\infty} x = +\infty$$

2)on fait la division euclidienne de x^2-3x+6 par x-3 on trouve : $x^2-2x+1=(x-3)(x+1)+4$

$$f(x) = \frac{x^2 - 2x + 1}{x - 3} = \frac{(x - 3)(x + 1) + 4}{x - 3} = x + 1 + \frac{4}{x - 3}$$

Donc: a=1 et b=1 et c=4

3)Les branches infinies de la courbe (C_f)

a)
$$\lim_{x \to 3^{+}} f(x) = +\infty$$
 et $\lim_{x \to 3^{-}} f(x) = -\infty$

donc La droite x=3 est une asymptote a la courbe C_f

b)
$$\lim_{x \to -\infty} f(x) = -\infty$$
 et $\lim_{x \to +\infty} f(x) = +\infty$

on a:
$$f(x) = x+1+\frac{4}{x-3} \Leftrightarrow f(x)-(x+1) = \frac{4}{x-3}$$

c)
$$\lim_{x \to +\infty} f(x) - (x+1) = \lim_{x \to +\infty} \frac{4}{x-3} = \frac{4}{+\infty} = 0$$

Donc : la droite y = x + 1 est une asymptote oblique à la courbe C_f au voisinage de $+\infty$

d)
$$\lim_{x \to -\infty} f(x) - (x+1) = \lim_{x \to -\infty} \frac{4}{x-3} = \frac{4}{-\infty} = 0$$

Donc : la droite y = x + 1 est une asymptote oblique à la courbe C_f au voisinage de $-\infty$

4) les variations de f et le tableau de variation ?

$$\forall x \in \mathbb{R} - \{3\} : f'(x) = \left(x + 1 + \frac{4}{x - 3}\right)' = 1 - \frac{4}{\left(x - 3\right)^2} = \frac{\left(x - 3\right)^2 - 4}{\left(x - 3\right)^2}$$

$$f'(x) = \frac{(x-3)^2 - 2^2}{(x-3)^2} = \frac{(x-3-2)(x-3+2)}{(x-3)^2} = \frac{(x-5)(x-1)}{(x-3)^2}$$

Le signe de f'(x) est celui de (x-5)(x-1)

$$(x-5)(x-1) = 0 \Leftrightarrow x-5=0 \text{ ou } x-1=0 \Leftrightarrow x=5 \text{ ou } x=1$$

Le tableau de signe :

x	$-\infty$	1	3		5	$+\infty$
f'(x)	+	þ	_	_	þ	+

Le tableau de variation

x	$-\infty$	1	;	3	5	$+\infty$
f'(x)	+	þ	_	_	þ	+
f(x)	$-\infty$	× ⁰ ~	$-\infty$	$+\infty$	× ₈ /	≠ +∞

5) Montrons que le point $\Omega(3;4)$ est un centre de symétrie $de(C_f)$??

a) Montrons que si $x \in \mathbb{R} - \{3\}$ alors

$$6 - x \in \mathbb{R} - \{3\}$$
 ?

$$x \in \mathbb{R} - \{3\} \iff x \neq 3 \iff -x \neq -3 \iff 6 - x \neq 3 \iff$$

$$\Leftrightarrow$$
 6 – $x \in \mathbb{R}$ – {3}

b) Montrons que : f(6-x)+f(x)=8=2b ?

$$f(6-x)+f(x)=6-x+1+\frac{1}{6-x-3}+x+1+\frac{1}{x-3}$$

$$=8+\frac{1}{-x+3}+\frac{1}{x-3}=8-\frac{1}{x-3}+\frac{1}{x-3}=8$$

Donc : $\Omega(3;4)$ est un centre de symétrie $de(C_f)$

6) étudie la concavité de la courbe de f?

$$\forall x \in D_f : f'(x) = 1 - \frac{4}{(x-3)^2}$$

Donc:
$$f''(x) = \frac{2(x-3)4}{(x-3)^4} = \frac{8(x-3)}{(x-3)^4}$$

Le signe de f''(x) est celui de x-3

Si
$$x \succ 3$$
 (C_f) est convexe

Si
$$x \prec 3(C_f)$$
 est concave

7)
$$f(x)-(x+1)=\frac{4}{x-3}$$

Si
$$x \succ 3$$
 alors $f(x) - (x+1) \succ 0$

Donc la courbe C_f est au- dessus de (Δ

Si
$$x > 3$$
 alors $f(x) - (x+1) < 0$

Donc la courbe C_f est au-dessous de (Δ

8) a) intersections avec l'axe des abscisses

$$f(x) = 0 \Leftrightarrow \frac{x^2 - 2x + 1}{x - 3} = 0 \quad \forall x \in \mathbb{R} - \{3\}:$$

$$\Leftrightarrow x^2 - 2x + 1 = 0$$
 $\Delta = b^2 - 4ac = 4 - 4 \times 1 \times 1 = 0$

$$x = \frac{-b}{2a} = 1$$
 donc le point d'intersection de la

courbe (C_f) avec l'axe des abscisses est A(1;0)

a) intersections avec l'axe des ordonnées

$$f(0) = -\frac{1}{3}$$
 donc le point d'intersection de la

courbe (C_f) avec l'axe des ordonnées est $C\left[0; -\frac{1}{2}\right]$

9) l'équation de la tangente (T) a la courbe (C_f)

en
$$x_0 = 2$$
 est $y = f(x_0) + f'(x_0)(x - x_0)$

$$f'(2) = \frac{(2-5)(2-1)}{(2-3)^2} = \frac{-3}{1} = -3 \text{ et } f(2) = \frac{2^2 - 2 \times 2 + 1}{2 - 3} = -1$$
 Et puisque : $\lim_{x \to \infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x} + \frac{2}{x}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x} + \frac{2}{x}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}{x}} = 1 \text{ et } \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} + \frac{2}$

$$y = f(2) + f'(2)(x-2) \Leftrightarrow y = -1 - 3(x-2) \Leftrightarrow y = -3x + 5$$
 Alors: $\lim_{x \to -\infty} f(x) = +\infty$ et $\lim_{x \to +\infty} f(x) = +\infty$

9)La courbe (C_f) :

Exercice 10: Soit *f* la fonction définie par :

$$f(x) = \sqrt{x^2 - x - 2}$$

- 1)Déterminer D_f
- 2) Déterminer les limites aux bornes de D_f
- 3) étudier les branches infinies de la courbe $(C_{\scriptscriptstyle f})$
- 4) étudier la dérivabilité de f adroite de 2 et à gauche de -1
- 5) étudier les variations de f et dresser le tableaux de variation de f
- 6) tracer la courbe (C_f)

Solution :1)
$$D_f = \{ x \in \mathbb{R} / x^2 - x - 2 \ge 1 \}$$

$$\Delta = b^2 - 4ac = (1)^2 - 4 \times 2 \times (-1) = 1 + 8 = 9 = (3)^2 > 0$$

 $x_1 = -1$ et $x_2 = 2$

x	$-\infty$	-1		2	$+\infty$
$x^2 - x - 2$	+	þ	_	þ	+

Donc: $D_f =]-\infty; -1] \cup [2; +\infty[$

2) on a : $\forall x \in D_f - \{0\}$

$$f(x) = \sqrt{x^2 - x - 2} = |x| \sqrt{1 - \frac{1}{x} + \frac{2}{x^2}}$$

3) étude des branches infinies de la courbe $\left(C_f\right)$ au voisinage de $-\infty$ et $+\infty$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{|x| \sqrt{1 - \frac{1}{x} - \frac{2}{x^2}}}{x} = \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x} - \frac{2}{x^2}} = 1$$

$$\lim_{x \to +\infty} f(x) - x = \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 - x - 2} + x\right) \left(\sqrt{x^2 - x - 2} - x\right)}{\sqrt{x^2 - x - 2} + x}$$

$$\lim_{x \to +\infty} f(x) - x = \lim_{x \to +\infty} \frac{-x - 2}{\sqrt{x^2 - x - 2} + x} = \lim_{x \to +\infty} \frac{-1 - \frac{2}{x}}{\sqrt{1 - \frac{1}{x} - \frac{2}{x}} + 1} = -\frac{1}{2}$$

Donc : la droite $y = x - \frac{1}{2}$ est une asymptote

oblique à la courbe C_f au voisinage de $+\infty$

$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} -\sqrt{1 - \frac{1}{x} - \frac{2}{x^2}} = -1$$

$$\lim_{x \to -\infty} f(x) + x = \lim_{x \to -\infty} \frac{\left(\sqrt{x^2 - x - 2} + x\right)\left(\sqrt{x^2 - x - 2} - x\right)}{\sqrt{x^2 - x - 2} - x}$$

$$\lim_{x \to -\infty} f(x) - x = \lim_{x \to -\infty} \frac{-x - 2}{\sqrt{x^2 - x - 2} - x} = \lim_{x \to -\infty} \frac{-1 - \frac{2}{x}}{-\sqrt{1 - \frac{1}{x} - \frac{2}{x^2}} - 1} = \frac{1}{2}$$

Donc : la droite $y = -x + \frac{1}{2}$ est une asymptote

oblique à la courbe C_f au voisinage de $-\infty$ 4) étudie de la dérivabilité de f adroite de 2 et à gauche de -1

$$\lim_{x \to -1^{-}} \frac{f(x) - f(-1)}{x + 1} = \lim_{x \to -1^{-}} \frac{\sqrt{x^{2} - x - 2}}{x + 1} = \lim_{x \to -1^{-}} \frac{x - 2}{\sqrt{x^{2} - x - 2}} = -\infty$$

$$\lim_{x \to 2^{+}} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to -1^{-}} \frac{\sqrt{x^{2} - x - 2}}{x - 2} = \lim_{x \to -1^{-}} \frac{x + 1}{\sqrt{x^{2} - x - 2}} = +\infty$$

Donc f n'est pas dérivable à droite de 2 et à gauche de -1

Alors la courbe Cf admet une demi-tangente verticale aux points A(-1.0) et B(2.0)

5) étude des variations de f et le tableaux de variation de f ?

$$x^2 - x - 2 \succ 0 \iff \forall x \in]-\infty; -1[\cup]2; +\infty[$$

Donc:

$$f'(x) = \left(\sqrt{x^2 - x - 2}\right)' = \frac{\left(x^2 - x - 2\right)'}{2\sqrt{x^2 - x - 2}} = \frac{2x - 1}{2\sqrt{x^2 - x - 2}}$$
$$f'(x) = \frac{2x - 1}{2\sqrt{x^2 - x - 2}} \ \forall x \in]-\infty; -1[\ \cup \]\frac{1}{2}; +\infty[$$

Le signe de f'(x) est celui de : 2x-1

6) tracer la courbe (C_f)

Exercice11: soit f une fonction définie par :

$$f(x) = 2\cos\left(2x + \frac{\pi}{4}\right)$$

- 1) déterminer D_f ensemble de définition de f
- 2) montrer que f est périodique de période
- $T = \pi$ et en déduire le domaine d'étude de f
- 3) déterminer f'(x) et dresser le tableaux de variation de f
- 4) tracer la courbe $\left(C_{_f}
 ight)$ sur l'intervalle $\left[-\pi;\pi
 ight]$

Solution:

- 1) $D_f = \mathbb{R}$
- 2)a)si $x \in \mathbb{R}$ alors $\pi + x \in \mathbb{R}$

h)

$$f(\pi + x) = 2\cos\left(2(\pi + x) + \frac{\pi}{4}\right) = 2\cos\left(2x + 2\pi + \frac{\pi}{4}\right)$$
$$f(\pi + x) = 2\cos\left(2x + \frac{\pi}{4}\right) = f(x)$$

Donc : f est périodique de période $T = \pi$ Remarque : la fonction : $x \rightarrow \cos(ax+b)$ est périodique de période $T = \frac{2\pi}{|a|}$ si $a \ne 0$

Un domaine d'étude de f

il suffit d'étudier f sur un $\overline{\text{int}}$ ervalle de longueur $T=\pi$

donc par exemple : $D_E = [0; \pi]$

3) f'(x) et le tableaux de variation de f ? f est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$ on a :

$$f'(x) = 2 \times -2\sin\left(2x + \frac{\pi}{4}\right) = -4\sin\left(2x + \frac{\pi}{4}\right)$$

Etude du signe de f'(x) sur $D_E = [0; \pi]$

$$x \in [0; \pi] \Leftrightarrow 0 \le x \le \pi \Leftrightarrow \frac{\pi}{4} \le 2x + \frac{\pi}{4} \le \frac{9\pi}{4}$$

On utilisant le cercle trigo en deduit le signe de $\sin\left(2x + \frac{\pi}{4}\right)$

Le tableau de signe de $\sin\left(2x + \frac{\pi}{4}\right)$ est :

$2x+\frac{\pi}{4}$	$\frac{\pi}{4}$		π		2π		$\frac{9\pi}{4}$
$\sin(2x + \frac{\pi}{4})$		+	þ	_	þ	+	

le tableau de variation de f:

x	0	$\frac{3\pi}{4}$		$\frac{7\pi}{8}$	π
f'(x)		\downarrow	+	ϕ	_
f(x)	$\sqrt{2}$	_2		1 2\	$\sqrt{2}$

4) du tableau de variation de f: on deduit que Que f change de signe en sur les intervalles $\left[0;\frac{3\pi}{8}\right]$ et $\left[\frac{3\pi}{8};\frac{7\pi}{8}\right]$ cad $\left(C_f\right)$ coupe l'axe des abscisses

On va résoudre dans $I = \left[0; \frac{7\pi}{8}\right]$ l'équation :

$$f(x) = 0$$

On a:
$$\begin{cases} f(x) = 0 \\ x \in I \end{cases} \Leftrightarrow \begin{cases} \cos\left(2x + \frac{\pi}{4}\right) = 0 \\ \frac{\pi}{4} \le 2x + \frac{\pi}{4} \le \frac{9\pi}{4} \end{cases}$$

$$\begin{cases} 2x + \frac{\pi}{4} = \frac{\pi}{2}ou2x + \frac{\pi}{4} = \frac{3\pi}{2} \Leftrightarrow x = \frac{\pi}{8}ou.x = \frac{5\pi}{8} \\ x \in I \end{cases}$$

On trace la courbe $\left(C_{f}\right)$ sur l'intervalle

$$D_E = [0; \pi]$$

Et on deduit le reste par les translations de vecteurs $k\pi \vec{i}$ $k \in \mathbb{Z}$

Exercice12: soit f une fonction définie par :

$$f(x) = 4\sin x + \cos 2x$$

- 1) déterminer D_f ensemble de définition de f
- 2) montrer que f est périodique de période

 $T = 2\pi$ et en déduire le domaine d'étude de f

- 3) déterminer f'(x) et dresser le tableaux de variation de f
- 4)donner l'équation de la tangente (T)a la courbe de f en en $x_0 = 0$
- 5) calculer f''(x) en fonction de $\sin x$
- 6) déterminer les points d'inflexions de la courbe $(C_{\scriptscriptstyle f})$
- 7) tracer la courbe $\left(C_{\scriptscriptstyle f}\right)$ sur l'intervalle $\left[-2\pi;4\pi\right]$

Solution :1)
$$D_f = \mathbb{R}$$

2)a)si
$$x \in \mathbb{R}$$
 alors $2\pi + x \in \mathbb{R}$

b)
$$f(2\pi + x) = 4\sin(x + 2\pi) + \cos(2(x + 2\pi))$$

$$f(2\pi + x) = 4\sin x + \cos(2x) = f(x)$$

Donc: f est périodique de période $T = 2\pi$

<u>Un domaine d'étude de</u> f

il suffit d'étudier f sur un intervalle de longueur $T=2\pi$

donc par exemple : $D_{\scriptscriptstyle E}$ = $\left[0;2\pi\right]$

f est dérivable sur $D_E = [0; 2\pi]$ et $\forall x \in D_E$

on a :

$$f'(x) = 4\cos x - 2\sin(2x) = 4\cos x - 4\cos x\sin x$$

 $f'(x) = 4\cos x(1-\sin x)$

Etude du signe de f'(x) sur $D_E = [0; 2\pi]$

On a: $1-\sin x \ge 0$

$$f'(x) = 0 \Leftrightarrow \cos x(1 - \sin x) = 0 \Leftrightarrow \cos x = 0.0u.1 - \sin x = 0$$

 $1 - \sin x = 0 \Leftrightarrow \sin x = 1 \Leftrightarrow x = \frac{\pi}{2}$ Donc:

x	0		$\frac{\pi}{2}$		$\frac{3\pi}{2}$	2π
f'(x)		+	þ	_	þ	+
f(x)	1-	/	, 3,	\	_5	- 1

4) l'équation de la tangente (T)a la courbe de f en en $x_0 = 0$ est : y = f(0) + f'(0)(x-0)

Avec: f'(0) = 4 et f(0) = 1 donc: y = 4x + 1

5) calcule de f''(x) en fonction de $\sin x$:

On a $f'(x) = 4\cos x - 2\sin(2x)$

Donc: $\forall x \in \mathbb{R}$

$$f''(x) = -4\sin x - 4\cos(2x) = -4\sin x - 4(1 - 2\sin^2 x)$$

$$f''(x) = 8\sin^2 x - 4\sin x - 4 = 4(\sin^2 x - \sin x - 1)$$

Etude du signe de f''(x) sur $D_E = [0; 2\pi]$

On pose : $X = \sin x$ donc : $X \in [-1,1]$ et l'équation

 $\sin^2 x - \sin x - 1 = 0$ devient : $X^2 - X - 1 = 0$

 $\Delta = 9$ les solutions sont : $X_1 = -\frac{1}{2}$ et $X_2 = 1$

Donc:
$$f''(x) = 8(\sin x - 1)(\sin x + \frac{1}{2})$$

On a: $\sin x - 1 \le 0 \quad \forall x \in \mathbb{R}$

En utilisant le cercle trigo en deduit que :

$$\sin x + \frac{1}{2} \le 0 \Leftrightarrow \sin x \le -\frac{1}{2} \Leftrightarrow x \in \left[\frac{7\pi}{6}; \frac{11\pi}{6}\right]$$

x	0	$\frac{7\pi}{6}$	$\frac{117}{6}$	$\frac{\pi}{2\pi}$
f"(x)	_	þ	+ þ	_

- Donc : (C_f) est convexe sur $\left[\frac{7\pi}{6}; \frac{11\pi}{6}\right]$
- (C_f) est concave sur $\left[0,\frac{7\pi}{6}\right] \cup \left[\frac{11\pi}{6};2\pi\right]$ et $A\left(\frac{7\pi}{6},-\frac{3}{2}\right)$
- et $B\left(\frac{11\pi}{6}, -\frac{3}{2}\right)$ sont les points d'inflexions de $\left(C_f\right)$
- 7) La courbe $\left(C_{_f}
 ight)$ sur l'intervalle $\left[-2\pi;4\pi
 ight]$

Exercice13: soit f une fonction définie par :

$$f(x) = \frac{\sin x}{2 + \cos x}$$

- 1) déterminer D_f ensemble de définition de f
- 2) montrer qu'il suffit d'étudier f sur $[0;\pi]$
- 3) déterminer f'(x) et dresser le tableaux de variation de f
- 4) tracer la courbe $\left(C_{\scriptscriptstyle f}\right)$ sur l'intervalle $\left[-2\pi;2\pi\right]$

Solution :1) $D_f = \mathbb{R} \text{ car } 2 + \cos x \neq 0 \quad \forall x \in \mathbb{R}$

2) <u>Un domaine d'étude de</u> *f*

a)si $x \in \mathbb{R}$ alors $2\pi + x \in \mathbb{R}$

$$\int f(2\pi + x) = \frac{\sin(2\pi + x)}{2 + \cos(2\pi + x)} = \frac{\sin x}{2 + \cos x} = f(x)$$

Donc : f est périodique de période $T=2\pi$ il suffit d'étudier f sur un intervalle de longueur $T=2\pi$ donc par exemple : $D=\left[-\pi;\pi\right]$

Etudions la parité de f ?

$$f\left(-x\right) = \frac{\sin\left(-x\right)}{2 + \cos\left(-x\right)} = -\frac{\sin x}{2 + \cos x} = -f\left(x\right)$$

Donc f est impair

Donc il suffit d'étudier f sur $D_E = [0; \pi]$

3) f est dérivable sur $D_E = [0; \pi]$ et $\forall x \in D_E$ on a :

$$f'(x) = \frac{\cos x (2 + \cos x) + \sin x \times \sin x}{(2 + \cos x)^2} = \frac{2\cos x + 1}{(2 + \cos x)^2}$$

Etude du signe de f'(x) sur $D_E = [0; \pi]$

Le signe de f'(x) est celui de : $2\cos x + 1$

 $2\cos x + 1 \ge 0 \Leftrightarrow \cos x \ge -\frac{1}{2}$ Et $x \in [0; \pi]$ Donc:

$$2\cos x + 1 \ge 0 \Leftrightarrow x \in \left[0; \frac{2\pi}{3}\right]$$

x	$0 \qquad \frac{2\pi}{3}$	π
f'(x)	+ 0	_
f(x)	0 $\frac{\sqrt{3}}{3}$	\ _0

- 1. Déterminer le domaine de définition de h et étudier sa parité.
- 2. Etudier les limites en +∞ et -∞
- 3. Déterminer la fonction dérivée de la fonction h et dresser le T.V
- 4. Déterminer l'équation de la tangente en O(0,0)
- 5. Etudier les positions relatives de T et la courbe
- 6. Tracer la courbe Cf

Exercice4: Soit f la fonction définie sur $\mathbb R$ par :

$$f(x) = x - E(x)$$

- 1. Tracer la courbe de la fonction f sur [0,2[.
- 2. Etudier la limite $\lim_{x\to 1^-} \frac{f(x)-f(1)}{x-1}$
- 3. Que remarquer vous ?

Autre exercices

Exercice1: Soit *f* la fonction définie par :

$$f(x) = 2x^2 + 2x - 1$$

- 1. Déterminer l'ensemble de définition de f.
- 2. Déterminer les limites de f aux bornes de D_f .
- 3. Interpréter géométriquement les résultats obtenus.

Exercice2: Soit *g* la fonction définie par :

$$g\left(x\right) = \frac{2x^2 - x}{x - 1}$$

- 1. Déterminer l'ensemble de définition D_g .
- 2. Déterminer les limites aux bornes de D_g
- 3. Effectuer la division de

$$P(x) = 2x^2 - x \text{ sur } (x - 1)$$

puis en déduire que $(\forall x \in Dg)$ $g(x) = 2x + 1 + \frac{1}{x-1}$

4. Déterminer $\lim_{x\to +\infty} g(x) - (2x+1)$

On dit que la droite (Δ): y = 2x + 1 est une asymptote oblique à la courbe C_f au voisinage de $+\infty$

Exercice3: Soit la fonction h définie sur $\mathbb R$ par :

$$h(x) = \frac{x}{\sqrt{x^2 + 1}}.$$

C'est en forgeant que l'on devient forgeron »

Dit un proverbe.

C'est en s'entraînant régulièrement aux

calculs et exercices

Que l'on devient un mathématicien

