

Topic 7. Combinational Logic Circuit

Prepared by Nabila Husna Shabrina

Contact: nabila.husna@umn.ac.id

Subtopic

7.1 Combinational Circuits

7.2 Implementation Procedures

7.3 Adder

7.4 Subtractor

7.5 Code Conversion

7.1 Combinational Circuits

7.1 Combinational Circuits

Intro to Combinational Circuits

- A circuits which output is dependent upon combination of input variables
- The circuits does not use any memory
- It can have n number of inputs and m number of outputs

7.1 Combinational Circuits

Example of Combinational circuits

- Adders and subtractors
- Decoders
- MUX
- Code Inverters
- Comparators
- Read Only Memory, Programmable Logic Array, Programmable Array Logic

Procedures

- Observe the problem definition
- Determine the required input and output variables
- Assign letters symbols to the input variables
- Make truth table that defines required relationship
- Determine the simplified Boolean expression using K-MAP
- Draw Logic Diagram

Example.

Design a combinational circuits with two input which produce output as logic 0 when any one input is 1

Inputs A, B output Y

Α	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

Consider it as SOP form, then consider the '1' (if you choose POS form, consider '0')

Draw the logic diagram

Half Adder

- Half adder is a combinational logic circuit designed to add two single bit numbers
- It contains two inputs and two outputs

Inp	uts	Outputs			
Α	В	Sum Carry			
0	0	0	0		
0	1	1	0		
1	0	1	0		
1	1	0	1		

K-MAP for Sum

K-MAP for Carry

Half adder circuit

Full Adder

 Full adder is arithmetic logic circuit designed to add single bit numbers with a carry

	Inputs	Out	puts	
Α	В	C _{in}	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

K-MAP for Sum

A XOR B XOR C

K-MAP for Carry

$$AC + BC + AB$$

Full adder circuit

Half Subtractor

 Half subtractor is a combinational circuit used to get the difference between two single bit

Inp	uts	Outputs			
Α	В	Diff	Borrow		
0	0	0	0		
0	1	1	1		
1	0	1	0		
1	1	0	0		

K-MAP for Difference

K-MAP for Borrow

Half Subtractor circuit

Half-Subtractor Circuit

Full Subtractor

 Full subtractor is a combinational circuit used to perform subtraction among 3 bit

	Inputs	Out	puts	
Α	В	Borrowin	Diff	Borrow
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

K-MAP for Difference

A XOR B XOR Bin

K-MAP for Borrow out

Full Subtractor circuit

- Code converter is used to convert one type of binary code to another
- There are 3 different types of binary codes, like BCD code, gray code, and excess-3 code
- In this topic, we will learn 2 different converter
 - Binary to Gray Code Converter
 - Binary to BCD Code Converter

Binary to Gray **Code Converter**

Decimal	Binary	Gray Code
0	000	000
1	001	001
2	010	011
3	011	010
4	100	110
5	101	111
6	110	101
7	111	100

K-MAP for D

K-MAP for E

$$D = A$$

$$E = A'B + AB' = A XOR B$$

K-MAP for F

$$F = B'C + BC' = B XOR C$$

Binary to Gray Code Converter Circuit

Binary to BCD Converter

	Binary Code (Input)				BCD Code (Output)				
0	A	В	С	D	W	X	Y	Z	E
1	0	0	0	0	0	0	0	0	0
2	0	0	0	1	0	0	0	0	1
3	0	0	1	0	0	0	0	1	0
4	0	0	1	1	0	0	0	1	1
5	0	1	0	0	0	0	1	0	0
6	0	1	0	1	0	0	1	0	1
7	0	1	1	0	0	0	1	1	0

Cont..

	Binary Code (Input)					BCD Code (Output)			
	\boldsymbol{A}	В	C	D	W	X	Y	Z	E
8	1	0	0	0	0	1	0	0	0
9	1	0	0	1	0	1	0	0	1
10	1	0	1	0	1	0	0	0	0
11	1	0	1	1	1	0	0	0	1
12	1	1	0	0	1	0	0	1	0
13	1	1	0	1	1	0	0	1	1
14	1	1	1	0	1	0	1	0	0
15	1	1	1	1	1	0	1	0	1

K-MAP for WW = AB + AC

37

K-MAP for XX = AB'C'

K-MAP for Y Y = A'B + BC

K-MAP for Z Z = ABC' + A'C

40

K-MAP for E E=D

41

Binary to BCD Converter

References

M. Morris Mano, Digital Design, 5th ed, Prentice Hall, 2012, Chapter 4

Next Topic: Combinational Logic Circuit (2)