华师一校内测试题

2022年8月12日

(请选手务必仔细阅读本页内容)

一、题目概况

中文题目名称	二战阻击手	打砖块	投资	仓库建设
英文题目名称	sniper	brike	money	storage
可执行文件名	sniper	brike	money	storage
输入文件名	sniper.in	brike.in	money.in	storage.in
输出文件名	sniper.out	brike.out	money.out	storage.out
每个测试点时限	1秒	1秒	1 秒	2 秒
测试点数目	20	20	20	20
每个测试点分值	5	5	5	5
内存限制	256M	256M	256M	256M
题目类型	传统	传统	传统	传统

二、提交源代码文件名

对于C语言	sniper.c	brike.c	money.c	storage.c
对于 C++语言	sniper.cpp	brike.cpp	money.cpp	storage.cpp

三、编译命令(不包含任何优化开关)

对于 C 语言	gcc -o sniper	gcc - o	gcc -o money	gcc - o
	sniper.c -lm	brike	money.c -1m	storage
		brike.c -lm		storage.c -lm
对于C++语言	g++ -o sniper	g++ -o brike	g++ -o money	g++ -o storage
	sniper.cpp -lm	brike.cpp	money.cpp -1m	storage.cpp
		-1m		-1m

四、注意事项

- 1、每位选手提交一个以自己编号命名的文件夹,其中包含4个子文件夹,名称分别为: sniper、brike、money、storage,每个题目需要上交1个相应的源程序到对应的子 文件夹中。多交1个文件夹或文件扣10分,直至考试成绩到0分为止。文件(夹)名称 错误不得分。
- 2、 文件夹名、文件名(程序名和输入输出文件名)必须使用英文小写。
- 3、 C/C++中函数main()的返回值类型必须是int,程序正常结束时的返回值必须是0。
- 4、 统一评测时采用的机器配置为:windows下lemon评测和全国评测系统下评测。
- 5、 最终测试时, 所有编译命令均不打开任何优化开关。
- 6、请尽力优化,会收获更多的部分得分。

二战狙击手 (sniper)

----ytj

问题描述:

Jackson 是一名美国神射手,他凭着一只从德军缴获的毛瑟 kar98 步枪把德军搅得鸡犬不宁。这天,他来到了一座塔楼,埋伏在这里进攻德军。

首先,目标点都被编了号,我们认为德军只会在目标点出现(所有编号相邻的目标点在物理上也是相邻的)。这样做起了保密的作用,因为即便德军截获这张表,但由于不知道编号,看不懂,只能作罢。

其次,德军可能出现的每种军衔的人都被他赋予了一定的价值。如下面这张表所示:

价值	军衔 / 编号
100	帝国元帅 1
100	元帅 2
97	上将 3
96	中将 4
95	少将 5
90	准将 6
85	上校 7
80	中校 8
82	少校 9
78	上尉 10
75	中尉 11
70	少尉 12
65	军士长 13
55	技术军士 14
50	狙击手 15
15	上士 16
12	中士 17
10	一级下士 18
8	下士 19
5	代理下士 20
2	二等兵 21

由于美国具有先进的密码破译手段,所以 Jackson 得到了一张德军出现时间的列表(宿命论?)。在这张列表上,每行有三个数字 W_i 、 U_i 、 T_i 。其中 W_i 表示这个人的军衔(如上表所示编号), U_i 表示这人出现位置的编号, T_i 则对应此人出现的时间(单位:分钟)。

同时,还有以下几个事实(呼呵?!):

- 1) 虽然 Jackson 的狙击枪一开始(即定义为 0 时刻)可以对准任何位置,但是其后每分钟只能移动到编号相差不超过 2 的位置上(移动幅度过大会被敌人发现)。
- 2) 当敌人出现在 Jackson 的狙击镜中 Jackson 就可以将他射杀。(废话······)
- 3) 每次开枪后都必须要一分钟的时间来拉枪栓,也就是说,在开枪后的一分钟内 Jackson 什么都不能干(包括不能移动狙击步枪的瞄准位置)。
- 4) 所有出现的狙击手都必须被射杀(否则会死得很惨,对方用的是 AWP,而且开了作弊器)。输入数据保证这一点能做到。
- 5) Jackson 每一枪都能且只能击中一个敌人。
- 6) 不会有两个人在同时同地出现。

求:在满足上述规则的前提下,Jackson 能获得的最大价值总和是多少?

输入说明

第一行:	一个整数 N 表示敌人人数。 (N≤8000)
第二行m+1 行:	每行有三个数字 W _i 、U _i 、T _i ,描述一个敌人。(U _i ≤20、T _i ≤25000)

Ps: 输入数据保证按照敌人出现的先后排好序了。

输出说明:

单独一行表示可以获得的最大价值。

输入样例:

5

9 1 1

8 1 2

15 3 4

2 2 4

21 6 8

输出:

134

样例说明:

射击第一个出现的少校,第一个狙击手,第一个二等兵。(也就是被红色标记的人)

数据范围:

对 20% 的数据, n<=100 对 100% 的数据, n<=8000 其余数据范围在题面中有提及。

打砖块 (brike)

问题描述:

在一个凹槽中放置了 n 层砖块,最上面的一层有 n 块砖,第二层有 n-1 块,……,最下面一层仅有一块砖。第 i 层的砖块从左至右编号为 1 ,2,……,i ,第 i 层的第 j 块砖有一个价值 a[i,j] (a[i,j] <=50)。下面是一个有 5 层砖块的例子:

如果要敲掉第 i 层的第 j 块砖的话,若 i=1,可以直接敲掉它,若 i>1,则必须先敲掉第 i-1 层的第 j 和第 j+1 块砖。

你的任务是从一个有 n (n <= 50) 层的砖块堆中,敲掉(m <= 500)块砖,使得被敲掉的这些砖块的价值总和最大。

【输入格式】

从文件 brike.in 中读入数据,数据的第一行为两个正整数,分别表示 n,m,接来的第 i 每行有 n-i+1 个数据,分别表示 $a[i,1],a[i,2],\dots,a[i,n-i+1]$ 。

【输出格式】

输出文件 brike.out 中仅有一个正整数,表示被敲掉砖块的最大价值总和。

【输入输出样例】

输入:

45

2234

827

23

4

输出:

19

解释:

敲掉第一行全部和第二行的 8.

数据范围:

对 10% 的数据, n<=5;

对 30% 的数据, n<=10;

对 50% 的数据, n<=15;

对 70% 的数据, n<=30;

对 100% 的数据, n<=50: 其余数据范围在题面提及。

投资

----ghy

题目描述:

现在商品社会发展得真快,连一向不懂经济的 Dragon 博士最近也决定下海了。他决定去做现下最流行的金融生意,于是他开了一家投资公司。但 Dragon 博士毕竟不懂经济呀,最近他已经连亏损了 3 个月了。但是正所谓吃一堑长一智,Dragon 博士发现: 市场上美元和人民币之间的汇率总是上下波动,就是说: 第 i 天时,一人民币可以兑换 c[i]美元,而一美元可以兑换 d[i]元人民币,但是美国人怕中国人的外汇储备太多,因此每次把美元兑换成人民币都要收取额外的 Cost 元人民币作为费用,当然把人民币在 兑换成美元是没人反对的,也就是说不须附加费用。于是 Dragon 博士就想呀,是否可以从中捞点油水呢? Dragon的客户每天会向他提供 w[i]元人民币运转资金。每天剩余的资金(包括美元和人民币)都可以保存到第二天而无须附加费用。

输入文件:

第一行是两个整数 n, cost, 分别指天数和额外费用。 后是 n+1 行, 第 i+1 行是三个用空格格开的数: w[i], c[i], d[i]。

输出文件:

只有一行: 第 n 天结束可以获得的人民币最大值(保留 4 位小数)。

数据范围:

N<=2000

0<=cost<=maxlongint;(int)

0 <= w[i] <= 30

0 < c[i], d[i] < 10e5; (real)

0 < c[i]*d[i] < 1

所有输出均控制在 long int 之内。

输入样例:

3 1

10 0.1 9

10 0.01 20

10 0.1 9

输出:

39.0000

解释:

第一天, 全部人民币转美元;

第二天, 全部美元转人民币。

数据范围:

对 10% 的数据, n<=5

对 30% 的数据, n<=20

对 50% 的数据, n<=100

对 100% 的数据, n<=2000

其余数据范围在题面中有提及。

仓库建设

【问题描述】

L 公司有 N 个工厂,由高到底分布在一座山上。如图所示,工厂 1 在山顶,工厂 N 在山脚。

由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用。突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏。

由于地形的不同,在不同工厂建立仓库的费用可能是不同的。第i个工厂目前已有成品 P_i 件,在第i个工厂位置建立仓库的费用是 C_i 。对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏,而由于 L 公司产品的对外销售处设置在山脚的工厂 N,故产品只能往山下运(即只能运往编号更大的工厂的仓库),当然运送产品也是需要费用的,假设一件产品运送 1 个单位距离的费用是 1。假设建立的仓库容量都都是足够大的,可以容下所有的产品。

你将得到以下数据:

- 工厂i 距离工厂1 的距离 X_i (其中 $X_1=0$);
- $\bot \Box i$ 目前已有成品数量 P_i ;
- 在工厂i建立仓库的费用 C_i ;

请你帮助 L 公司寻找一个仓库建设的方案, 使得总的费用(建造费用+运输费用)最小。

【输入文件】

输入文件 storage.in 第一行包含一个整数 N,表示工厂的个数。接下来 N 行每行包含两个整数 X_i, P_i, C_i ,意义如题中所述。

【输出文件】

输出文件 storage.out 仅包含一个整数,为可以找到最优方案的费用。

【样例输入】

3

0 5 10

5 3 100

9610

【样例输出】

32

【样例说明】

在工厂 1 和工厂 3 建立仓库,建立费用为 10+10=20,运输费用为(9-5)*3 = 12,总费用 32。

如果仅在工厂 3 建立仓库,建立费用为 10,运输费用为(9-0)*5+(9-5)*3=57,总费用 67,不如前者优。

【数据规模】

对于 20%的数据, $N \leq 500$;

对于 40%的数据, $N \leq 10000$;

对于 100%的数据, $N \leq 1000000$ 。

所有的 X_i , P_i , C_i 均在32位带符号整数以内,保证中间计算结果不超过64位带符号整数。