Decoding fMRI to classify images

By: Hrithik, JD, Tanishta, Yoyo BrainPhiles (Sly Kiwis)

Contents

- 1. Introduction
- 2. Method
- 3. Results
- 4. Conclusion

Introduction

Kay & Gallant dataset

1750 images & corresponding brain activities in BOLD signals.

Objectives

 Predicting the classification of images with fMRI BOLD signals.

Understanding the relationship between the class of stimuli & fMRI activation patterns.

2 classes: Animal / Artifact

Problems:

No true labels

model

Only predicted labels by DNN pretrained on Imagenet.

Overfitting
Small dataset might lead to overfitting during training.

Introduction / Yoyo Brainphiles

Build model with visual hierarchy Classification Classification units Dropout Concat PIT/AIT Linear V3 input V4/PIT Concat V1/V2 Θ Linear

V1 input

Method

Method / JD

Divide fMRI input according to ROI

-0.5 -0.0 --0.

V2 input

Results

Classification acc of our model

Conclusion

- BOLD response better representation for classifying image stimulus.
- DNN using BOLD response better learner in classification task- compared to ResNet.
- Hierarchical processing of information provided better accuracy than processing information from all ROIs together.

Limitations and Further Work-

- Non-availability of true labels.
- Can be further extended to understand similarity between BOLD representation when objects become similar.
- Check the validity of the model with other similar type of datasets to validate our conclusion.

Thank You!

