chimeras

Chimera detection

Datasets: UNITE, Silva?

Silva nemá ITS asi - ale mžeme použít to eukaryome databasene

List of all UCHIME reference datasets

Version no	Release date	No of sequences	Release status	Link	Notes
9.0	2022-10-16	161 335	Current	https:// doi.org/10.15156/ BIO/2483933	When using this resource, please cite it as follows: Abarenkov, Kessy; Zirk, Allan; Piirmann, Timo; Pöhönen, Raivo; Ivanov, Filipp; Nilsson, R. Henrik; Köljalg, Urmas (2022): UNITE UCHIME reference dataset. Version 16.10.2022. UNITE Community. https://doi.org/10.15156/BIO/2483933
7.2	2017-06-28	30 555		Download	
7.1	2016-12-01	29 342		Download	
7.0	2016-01-01	22 774		Download	
7.0	2015-03-11	22 219		Download	
6.0	2014-07-26	21 059		Download	

List of all USEARCH/UTAX/SINTAX reference datasets

Version no	Release date	Taxon group	No of sequences	Release status	Link	Notes
10.0	2025-02-19	Fungi	168 030	Current	https:// doi.org/10.15156/ BIO/3301245	When using this resource, please cite it as follows: Abarenkov, Kessy; Zirk, Allan; Piirmann, Timo; Pohonen, Raivo; Ivanov, Filipp; Nilsson, R. Henrik; Köljalg, Urmas (2025): UNITE USEARCH/UTAX release for Fungi. Version 19.02.2025. UNITE Community. https://doi.org/10.15156/BIO/3301245
10.0	2025-02-19	All eukaryotes	266 589	Current	https:// doi.org/10.15156/ BIO/3301246	When using this resource, please cite it as follows: Abarenkov, Kessy; Zirk, Allan; Piirmann, Timo; Pöhönen, Raivo; Ivanov, Filipp; Nilsson, R. Henrik; Köljalg, Urmas (2025): UNITE USEARCH/UTAX release for eukaryotes. Version 19.02.2025. UNITE Community. https://doi.org/10.15156/BIO/3301246
10.0	2024-04-04	Fungi	159 195		https:// doi.org/10.15156/ BIO/2959340	When using this resource, please cite it as follows: Abarenkov, Kessy; Zirk, Allan; Piirmann, Timo; Pohönen, Raivo; Ivanov, Filipp; Nilsson, R. Henrik, Köljalg, Urmas (2024): UNITE USEARCH/UTAX release for Fungi. Version 04.04.2024. UNITE Community. https://doi.org/10.15156/BIO/2959340
10.0	2024-04-04	All eukaryotes	252 239		https:// doi.org/10.15156/ BIO/2959341	When using this resource, please cite it as follows: Abarenkov, Kessy; Zirk, Allan; Piirmann, Timo; Pöhönen, Raivo; Ivanov, Filipp; Nilsson, R. Henrik; Köljalg, Urmas (2024): UNITE USEARCH/UTAX release for eukaryotes. Version 04.04.2024. UNITE Community. https://doi.org/10.15156/BIO/2959341
9.0	2023-07-18	Fungi	206 494		https:// doi.org/10.15156/ BIO/2938083	When using this resource, please cite it as follows: Abarenkov, Kessy; Zirk, Allan; Piirmann, Timo; Pohonen, Raivo; Ivanov, Filipp; Nilsson, R. Henrik; Köljalg, Urmas (2023): UNITE USEARCH/UTAX release for Fungi. Version 18.07.2023. UNITE Community. https://doi.org/10.15156/BIO/2938083

unite vs uchime

Reference dataset = celý UNITEto na em generuju chiméry = ást UCHIME datasetu (UCHIN

```
intersection = uchime_ids_set & unite_ids_set
print(len(intersection))
diff = uchime_ids_set - unite_ids_set
print(len(diff))
```

60609

100726

Creation of reads for Simera:

Hyperex je napsanej v Rustu a hází chyby, kdyžnajo

Takže pokud to nkdo chce spustit, tak potebujehy

build https://github.com/badges/shields/issues/8671

deploy https://github.com/badges/shields/issues/8671 crates.io v0.1.1

codecov 60% license MIT

Možná je lepší použít nco jinýho nebo zto

About

HyperEx (pronounced "Hyper Ex" for Hypervariable region Extractor) is a tool that extracts 16S ribosomal RNA (rRNA) hypervariable region based on a set of primers. By default when no option is specified, hyperex extracts all hypervariable region from the supplied sequences assuming 16S rRNA sequences. To do this it has a set of built-in primer sequences which are universal 16S primers sequences. Nevertheless, the user can choose to specify the wanted region by specifying the --region option or by providing the primer sequences using --forward-primer and --reverse-primer . The --region option takes only the region names like "v1v2" or "v4v5" while the --forwardprimer and --reverse-primer takes only the sequences which can contains IUPAC ambiguities. For more than one needed region, one can use multiple time the --region, --forward-primer, reverse-primer options to specify the wanted region. Theses option takes only one argument, but can be repeat multiple time (see Examples below).

For more praticability, the user can also provide a supplied file containing primer sequences to extract the wanted region using the --region option. The primer sequences file should be a no header comma separated value file like:

Primery z GlobalFungi: --- Simera potebuje amplikony ohraniený primerem, nic jinýho- to

	homogenized primer names	primers sequences
0	18S-F/5.8S-R	GTAAAAGTCGTAACAAGGTTTC/GTTCAAAGAYTCGATGATT(
1	5.8S_Fun/ITS4_Fun	AACTTTYRRCAAYGGATCWCT/AGCCTCCGCTTATTGATATG(
2	58A2F/ITS4	ATCGATGAAGAACGCAG/TCCTCCGCTTATTGATATGC
3	fITS7/ITS4	GTGARTCATCGAATCTTTG/TCCTCCGCTTATTGATATGC
4	fITS9/ITS4	GAACGCAGCRAAIIGYGA/TCCTCCGCTTATTGATATGC
5	FSeq/RSeq	ATGCCTGTTTGAGCGTC/CCTACCTGATTTGAGGTC
6	gITS7/ITS4	GTGARTCATCGARTCTTTG/TCCTCCGCTTATTGATATGC
10	gITS7/ITS4ngs	GTGARTCATCGARTCTTTG/TCCTSCGCTTATTGATATGC
11	gITS7ngs/ITS4ngsUni	GTGARTCATCRARTYTTTG/CCTSCSCTTANTDATATGC
12	ITS1/ITS2	TCCGTAGGTGAACCTGCGG/GCTGCGTTCTTCATCGATGC

	homogenized primer names	primers sequences
13	ITS1/ITS4	TCCGTAGGTGAACCTGCGG/TCCTCCGCTTATTGATATGC
14	ITS1/qITS2*	CTCCGTAGGTGAACCTGCGG/TTYGCTGYGTTCTTCATCG
15	ITS1-30F/ITS1-217R	GTCCCTGCCCTTTGTACACA/TTTCGCTGCGTTCTTCATCG
16	ITS1F/58A2R	CTTGGTCATTTAGAGGAAGTAA/CTGCGTTCTTCATCGAT
17	ITS1F/ITS2	CTTGGTCATTTAGAGGAAGTAA/GCTGCGTTCTTCATCGATG
18	ITS1F/ITS3	CTTGGTCATTTAGAGGAAGTAA/GCATCGATGAAGAACGCAG
19	ITS1F/ITS4	CTTGGTCATTTAGAGGAAGTAA/TCCTCCGCTTATTGATATGC
20	ITS1F/LR6	CTTGGTCATTTAGAGGAAGTAA/CGCCAGTTCTGCTTACC
21	ITS1F_KYO1/ITS2_KYO1	CTHGGTCATTTAGAGGAASTAA/CTRYGTTCTTCATCGDT
22	ITS1F_KYO1/ITS2_KYO2	CTHGGTCATTTAGAGGAASTAA/TTYRCTRCGTTCTTCATC
23	ITS1F_KYO2/ITS2_KYO2	TAGAGGAAGTAAAAGTCGTAA/TTYRCTRCGTTCTTCATC
25	ITS1FI2/5.8S	GAACCWGCGGARGGATCA/CGCTGCGTTCTTCATCG
26	ITS1FI2/ITS2	GAACCWGCGGARGGATCA/GCTGCGTTCTTCATCGATGC
27	ITS1Fngs/ITS2	GGTCATTTAGAGGAAGTAA/GCTGCGTTCTTCATCGATGC
28	ITS1ngs/ITS2	TCCGTAGGTGAACCTGC/GCTGCGTTCTTCATCGATGC
31	ITS2F/ITS2R	GCATCGATGAAGAACGC/CCTCCGCTTATTGATATGC
32	ITS3/ITS4	GCATCGATGAAGAACGCAGC/TCCTCCGCTTATTGATATGC
35	ITS3_KYO2/ITS4	GATGAAGAACGYAGYRAA/TCCTCCGCTTATTGATATGC
36	ITS3_KYO2/ITS4_KYO3	GATGAAGAACGYAGYRAA/CTBTTVCCKCTTCACTCG
47	ITS5/5.8S_fungi	GGAAGTAAAAGTCGTAACAAGG/CAAGAGATCCGTTGTTGA/
48	ITS5/ITS2	GGAAGTAAAAGTCGTAACAAGG/GCTGCGTTCTTCATCGATC
49	ITS5/ITS2_KYO2	GGAAGTAAAAGTCGTAACAAGG/TTYRCTRCGTTCTTCATC
50	ITS5/ITS4	GGAAGTAAAAGTCGTAACAAGG/TCCTCCGCTTATTGATATG(
51	ITS7o/ITS4	GTGAATCATCRAATYTTTG/TCCTCCGCTTATTGATATGC
52	ITS86F/ITS4	GTGAATCATCGAATCTTTGAA/TCCTCCGCTTATTGATATGC
53	ITS86F/ITS4-Tul	GTGAATCATCGAATCTTTGAA/CCGCCAGATTCACACATTGA
54	ITS9/ITS4	GCATTAGAAACTGCTCGTAATG/TCCTCCGCTTATTGATATGC
55	ITS9MUNngs/ITS4ngsUni	TACACACCGCCCGTCG/CCTSCSCTTANTDATATGC

Simera

Pro Simeru jsem použil ty amplikony z hypererx s pilepenýma primerama

The Simera software was written as part of my Ph.D. project at the University of Glasgow. This version executes the Simera 2 algorithm which simulates PCR and has been shown to produce more realistic chimeras than other PCR simulation software (http://theses.gla.ac.uk/6801/). The algorithm is described in the accompanying file simera_2_algorithm.pdf.

```
*** OUTPUT FILES ***
```

Simera nešla spustit s moderním gcc - musel jsem to opravit - info v README na githubu

info.txt Input information.

all_seqs.fa
 All output sequences in FASTA format: full set.

- samp_all_seqs.fa
 All output sequences in FASTA format: sampled set.

good.fa
 All good sequences in FASTA format: full set.

- samp_good.fa
 All good sequences in FASTA format: sampled set.

chimeras.fa
 All chimeras in FASTA format: full set.

samp_chimeras.fa
 All chimeras in FASTA format: sampled set.

- abund.txt Output sequence abundances: full set.

samp abund.txt Output sequence abundances: sampled set.

breaks.txt Chimera break points: full set.

- parents.fa Chimera parents in FASTA format: full set.

- samp_parents.txt Chimera parents in FASTA format: sampled set.

summary.txt
 Summary of output: full set.

samp summary.txt
 Summary of output: sampled set.

info.txt:

Simera akceptuje pouze FASTA co mají MAX 10000 sekvencí-

Version: Simera_v2.1 RNG seed: 1744458363

Input file:

../datasets/uchime reference dataset 16 10 2022/2022 10 26 chimera reference release/amplicon

s from primers hyperex/gITS7 ITS4 abund.fasta

Simulated rounds: 25 Lambda: 5.000000e-05 Sampled reads: 10000

Forward primer: GTGARTCATCGARTCTTTG
Reverse primer: TCCTCCGCTTATTGATATGC

summary.txt:

Sequences = 1882

Chimeras = 1655

Max length = 694

Total abundance = 4064940

Chimera abundance = 124954

samp_summary.txt:

Sequences = 391

Chimeras = 169

Max length = 633

Total abundance = 10000

Chimera abundance = 295

Making reference kmers

get_kmers_para_pickles_abund.py

ukládám kmery z reference database na disk v podob: píklad:ge

• groups genus, family ... perm_clust??

ML

Mžu zkusi udlat kmer-clustery z permanent_cluster nebo místo Genus použít Family

Reference kmers

· discard kmers with low abund

Number of all kmers in genera:

Vyhazoval jsem kmery který tvoili spodních x (teba 10) % abundance kmer pro genus

To znamená, že:mám g__Russula.npz - to je vytvoený teba z 10 sekvencí s genus == Russula

thresholds for discard_kmers_with_low_abund()

Tady to popíšu co se dje s rostoucí threshold:

maximal index (position) of kmers of taxa:

averages of of index of kmers of taxa:

Loading Simera output

lengths of all reads from Simera:

- discard all sequences with length < 250 and > 350

Generation of features for ML

Algorithm 1)

tady v tom algoritmu koukám mám sekvenci a tu rozdlim na 5 ástí a každé piadím nejlepší match

- 1. split sequence into parts (5,7...)
- 2. for each part find best match in reference kmers (Jaccard similarity)
- 3. compute score for the best match group (depends on number of kmers in ref kmer group (Taxa group))
- 4. compute similarities (Jaccard) between the best-match kmer groups (Taxa group) of all query sequence parts e.g. 1st part best match taxa kmers with 5th part best match taxa kmers

Score modifying functions and division values:

tu podobnost ^^^ zmnim na skóre, kde penalizujuto že teba genus Russula má 10 sekvo

a pak srovnám genus match pro 1.ást a genus match 5.ásta s

output snippet:

```
\{(7, 'a'): \{(1, 2): 0.0,
  (1, 3): 0.0,
  (1, 4): 0.0,
  (1, 5): 0.0,
  (1, 6): 0.0,
  (1, 7): 0.0019267822736030828,
  (2, 3): 0.0345821325648415,
  (2, 4): 0.020338983050847456,
  (2, 5): 0.010282776349614395,
  (2, 6): 0.010282776349614395,
  (2, 7): 0.0,
  (3, 4): 0.024793388429752067,
  (3, 5): 0.024008350730688934,
  (3, 6): 0.024008350730688934,
  (3, 7): 0.003745318352059925,
  (4, 5): 0.019889502762430938,
  (4, 6): 0.019889502762430938,
  (4, 7): 0.0020964360587002098,
  (5, 6): 1.0,
  (5, 7): 0.0010395010395010396,
  (6, 7): 0.0010395010395010396,
 (7, 'b'): \{(1, 2): 0.0,
```

```
(1, 3): 0.0,
(1, 4): 0.0,
(1, 5): 0.0,
```

feature importance:

	feat	ture		importance
57	(7,	'c')_(4,	5)	0.028783
40	(7,	'b')_(5,	7)	0.027118
45	(7,	'c')_(1,	5)	0.020988
82	(7,	'd')_(5,	7)	0.019766
124	(7,	'f')_(5,	7)	0.019689
103	(7,	'e')_(5,	7)	0.019568
19	(7,	'a')_(5,	7)	0.018832
42	(7,	'c')_(1,	2)	0.017360
137	(7,	'g')_(3,	4)	0.016106
36	(7,	'b')_(4,	5)	0.015154
133	(7,	'g')_(2,	4)	0.014728
53	(7,	'c')_(3,	4)	0.013619
155	(7,	'h')_(2,	5)	0.012894
15	(7,	'a')_(4,	5)	0.012290
93	(7,	'e')_(2,	6)	0.012179

TEST accuracy ~ 0.7 - same as Uchime and Vsearch

Algorithm 2) Algoritmus 2:

- 1. find best match for the query sequence among ref kmer dataset (taxa kmers)
- 2. get index (positions) of the matching kmers from the query sequence
- 3. from the matching positions compute average value and standard deviation and scale it by the length of the query sequence
- 4. find next 99 (or more) best matches and repeat steps 2) and 3) on them

Difference in variance in mean avg_position and stddev_position between Chims and non-chims

Takže ty grafy dole:ty boxploty:První graf s boxploty ukazuje prmrný hodnoty index matching kmer všech NeChime

Analysis of Position Statistics for Different Top N Values tohle je p-hodnota, která íká, žestední hodno

feature importance

	feature	importance
1	stddev_pos_1	0.020924
71	stddev_pos_100	0.018174
18	avg_pos_10	0.018159
57	stddev_pos_65	0.017941
0	avg_pos_1	0.017924
3	stddev_pos_2	0.017795
59	stddev_pos_70	0.017753
63	stddev_pos_80	0.017688
10	avg_pos_6	0.017394
61	stddev_pos_75	0.017323
7	stddev_pos_4	0.017302
6	avg_pos_4	0.017111
16	avg_pos_9	0.016948
67	stddev_pos_90	0.016561
69	stddev_pos_95	0.016252
47	stddev_pos_40	0.015617
11	stddev_pos_6	0.015482

5 stddev_pos_3 0.015318 45 stddev_pos_35 0.015293 8 avg_pos_5 0.015196

TEST accuracy on 20-fold CV:

Best parameters: {'max_depth': 25, 'min_samples_split': 2, 'n_estimators': 100}

Best CV accuracy: 0.9557

Best model test accuracy: 0.9587