Суммы. Линейная Алгебра

Чепелин В.А.

Содержание

1	Вве	дение.
2	Фад	цеев Соминский.
	2.1	№ 150
	2.2	№ 151
	2.3	№ 152
	2.4	№ 153
	2.5	№ 154
	2.6	№ 155
	2.7	№ 156
	2.8	№ 157,158
	2.9	№ 159
	2.10	№ 160
	2.11	№ 161
	2.12	№ 162
	2.13	№ 163
	2.14	№ 164
	2.15	№ 165
	2.16	№ 166
3		бор задач с Кр. Объяснение основного принципа решения
	сум	
	3.1	Обычные суммы. Метод геом прогрессии
	3.2	Бином Ньютона. Суммы, связанные с ним
	3.3	Производные. Суммы с k внутри
	3.4	Комбинация и степени.
	2.5	Source 1p

1 Введение.

Здесь содержатся мои решения задач про суммы из сборника Фадеева Соминского. Можете передавать этот листик, кому хотите. Надеюсь, вам пригодится он. Всем успехов на кр и в жизни!

2 Фадеев Соминский.

2.1 N_{2} 150

Доказать:

a)
$$2^{2m}\cos^{2m}x = 2\sum_{k=0}^{m-1}C_{2m}^k\cos 2(m-k) + C_{2m}^m$$

Ну во-первых вспомним, что у нас за тема — комплексные числа. Давайте думать.

Пусть у нас есть какое-то комплексное число $a = \cos x + i \sin x$, посмотрим на его Re часть (Вещественная).

 $Re\ a=\cos x=rac{a+\overline{a}}{2}$. Давайте возведем второе и третье выражения в степень 2m.

$$\cos^2 mx = \left(\frac{a+\overline{a}}{2}\right)^{2m}$$
. А это что-то похожее на то, что нам дано.

Ну давайте подставим и посмотрим:

$$2^{2m}\cos^{2m}x = 2^{2m}\left(\frac{a+\overline{a}}{2}\right)^{2m} = (a+\overline{a})^{2m}.$$

Разложим по биному и получим:

$$(a+\overline{a})^{2m} = C_{2m}^0 a^{2m} + \ldots + C_{2m}^k a^{2m-k}(\overline{a}^k) + \ldots + C_{2m}^{2m}(\overline{a}^{2m}).$$

Давайте заметим, что $a \cdot \overline{a} = 1$ (потому что $\sin^2 x + \cos^2 x = 1$). Давайте поделим нашу сумму на две других и посокращаем везде $a \cdot \overline{a}$.

$$C_{2m}^{0}a^{2m} + \ldots + C_{2m}^{k}a^{2m-k}(\overline{a}^{k}) + \ldots + C_{2m}^{2m}(\overline{a}^{2m}) = C_{2m}^{0}a^{2m} + \ldots + C_{2m}^{m-1}a^{m+1}(\overline{a}^{m-1}) + C_{2m}^{m}a^{m}(\overline{a}^{m}) + C_{2m}^{m+1}a^{m-1}(\overline{a}^{m+1}) + \ldots + C_{2m}^{2m}(\overline{a}^{2m}) = \sum_{k=0}^{m-1} C_{2m}^{k}a^{2m-2k} + C_{2m}^{m} + \sum_{k=m+1}^{2m} C_{2m}^{k}(\overline{a}^{2k-2m})$$

Теперь вспомним, что а - комплексное число. $a^k = \cos kx + i \sin ky$. Подставим.

$$\begin{array}{l} \sum\limits_{k=0}^{m-1} C_{2m}^k (\cos(2m-2k)x + i\sin(2m-2k)y) + C_{2m}^m + \sum\limits_{k=m+1}^{2m} C_{2m}^k (\cos(2k-2m)x - i\sin(2k-2m)y). \end{array}$$

Заметим, что все синусы сократятся (хотя бы потому, что это изначально было $a + \overline{a}$ в степени, то есть рациональное) останется:

$$\sum_{k=0}^{m-1} C_{2m}^k \cos(2m-2k)x + C_{2m}^m + \sum_{k=m+1}^{2m} C_{2m}^k (\cos(2k-2m)x)$$

А методом пристального взгляда получаем, что это искомое.

b)
$$2^{2m} \cos^{2m+1} x = \sum_{k=0}^{m} C_{2m+1}^k \cos(2m-2k+1)x$$

Давайте заметим, что это почти то же самое, что и в пункте а. Умножим обе части на 2. Давайте повторим все то же самое, что мы делали в пункте а и получим нужный нам ответ. В угоду размера пдф и моего сна, полного решения **не будет**.

c)
$$2^{2m} \sin^{2m} x = 2 \sum_{k=0}^{m-1} (-1)^{m+k} C_{2m}^k \cos 2(m-k)x + C_{2m}^m$$

Начнем решать. Давайте делать, как в пункте а.

Пусть у нас есть какое-то комплексное число $a = \cos x + i \sin x$, посмотрим на его Im часть (Мнимая).

 $Im \, a = \sin x = \frac{a - \overline{a}}{2i}$. Давайте возведем второе и третье выражения в степень 2m. $\sin^2 mx = \left(\frac{a - \overline{a}}{2i}\right)^{2m}$. А это что-то похожее на то, что нам дано.

 $2^{2m} \sin^{2m} x = (-1)^m \cdot (-1)^m \cdot 2^{2m} \sin^{2m} x = (-1)^m \cdot (a - \overline{a})^{2m}$. Теперь давайте сделаем то же самое, что и в пункте а, при этом у нас останется вещественная часть, но она будет знакочередоваться. В самом конце домножим нашу сумму на вынесенную за скобочки $(-1)^m$ и получим итоговую, которую от нас просят. В угоду размера пдф и моего сна, полного решения **не будет**.

d)
$$2^{2m} \sin^{2m+1} x = \sum_{k=0}^{m} (-1)^{m+k} C_{2m+1}^k \sin(2m-2k+1)x$$

Давайте заметим, что это почти то же самое, что и в пункте с. Умножим обе части на 2. Давайте повторим все то же самое, что мы делали в пункте с, но заметим, что нам надо будет выносить мнимую часть, то есть синусы, также в самом начале у нас останется і за скобками, на которое мы умножим сумму. Так мы получим сумму, которую от нас просят. В угоду размера пдф и моего сна, полного решения **не будет**.

2.2 № 151

Доказать:
$$\frac{\sin mx}{\sin x} = (2\cos x)^{m-1} - C_{m-2}^1(2\cos x)^{m-3} + \dots$$

Докажем. Заметим $\sin(k+1)x + \sin(k-1)x = 2\cos x\sin kx$. (из обычной формулы суммы синусов)

Пусть
$$T_k = \frac{\sin kx}{\sin x}$$
. Заметим $T_k = 2\cos x \cdot T_{k-1} - T(k-2)$. (метод раскрытия скобочек)

Применим метод мат. индукции и докажем искомое выражение.

База: (проверьте сами для k=1, 2)

Переход: Пусть верно для n и меньше, тогда докажем, что верно для n+1. Запишем T_n и T_{n-1}

$$T_n = (2\cos x)^{n-1} - C_{n-2}^1 (2\cos x)^{n-3} + C_{n-3}^2 (2\cos x)^{n-5} + \dots$$

$$T_{n-1} = (2\cos x)^{n-2} - C_{n-3}^1 (2\cos x)^{n-4} + C_{n-4}^2 (2\cos x)^{n-6} + \dots$$

$$T_n \cdot 2\cos x = (2\cos x)^n - C_{n-2}^1 (2\cos x)^{n-2} + C_{n-3}^2 (2\cos x)^{n-4} + \dots$$

Теперь, если пристально посмотреть и вычесть из третьего равенства второе (специально подвинул второе, чтобы было видно, как красиво там получается $C_n^k + C_n^{k-1} = C_{n+1}^k$), то получится то, что должно получится по индукции. А по формуле получившийся ранее мы получаем, что это T_k . Q.E.D.

Собственно, где комплексные

$2.3 \quad N_{2} \quad 152$

 \mathbf{B} ыразить $\cos mx$ через $\cos x$

$$2\sin x \cos mx = (\sin(m+1)x - \sin(m-1)x).$$

Давайте сделаем примерно то же самое, что в 151 и получим искомое (если я нигде не накосячил). В угоду размера пдф и моего сна, полного решения **не будет**.

2.4 № 153

Найти:

a)
$$1 - C_n^2 + C_n^4 - \dots = ?$$

b)
$$C_n^1 - C_n^3 + \ldots = ?$$

Давайте разложим по Биному $(1+i)^n$. Заметим, что Re часть этой штуки как раз наш пункт a, a Im часть - наш пункт b.

С другой стороны
$$(1+i)^n = (\sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}))^n = (\sqrt{2})^n(\cos\frac{\pi n}{4} + i\sin\frac{\pi n}{4})$$

Ну тут уже видно чему равна наша рациональная часть, а чему мнимая.

2.5 № 154

Найти:

$$C_n^1 - \frac{1}{3}C_n^3 + \frac{1}{9}C_n^5 + \dots = ?$$

Так. Что-то похожее на № 153 b. У нас там было $Im(1+i)^n$, а теперь там появились тройки. Так давайте посмотрим на разложение $(1+\frac{i}{sqrt(3)})^n$. Проделаем аналогичные действия и получим счастье.

Otbet:
$$\frac{2^n}{3(\frac{n-1}{2})}\sin\frac{n\pi}{6}$$

Доказать, что $(x+a)^m+(x+aw)^m+(x+aw^2)^m=3x^m+3C_m^3x^{(m-3)}a^3+\ldots+3C_m^nx^{(m-n)}a^n$, где n - ближайшее кратное трем не превосходящее m число. $w=\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}$.

Выглядит страшно, но нам придется это делать. Заметим, что $w^3=1$. Давайте представим каждую как сумму:

$$\sum_{k=0}^{m} C_n^k x^k a^{m-k} + \sum_{k=0}^{m} C_n^k x^k a^{m-k} w^{m-k} + \sum_{k=0}^{m} C_n^k x^k a^{m-k} w^{2m-2k}$$

Теперь загоним каждую такую под один знак суммы:

$$\sum_{k=0}^{m} C_{n}^{k} x^{k} a^{m-k} + C_{n}^{k} x^{k} a^{m-k} w^{m-k} + C_{n}^{k} x^{k} a^{m-k} w^{2m-2k} =$$

$$= \sum_{k=0}^{m} C_n^k x^k a^{m-k} \cdot (1 + w^{m-k} + w^{2m-2k})$$

Для дальнейшнего удобства поменяем чуть-чуть сумму:

$$\sum_{k=0}^{m} C_n^k x^k a^{m-k} \cdot (1 + w^{m-k} + w^{2m-2k}) = \sum_{k=0}^{m} C_n^{m-k} x^{m-k} a^k \cdot (1 + w^k + w^{2k})$$

Теперь посмотрим чему равна $(1 + w^k + w^{2k})$ в зависимости от k.

1. k дает остаток 1 по модулю 3. Пусть k = 3t + 1, тогда подставим:

$$(1+w^k+w^{2k})=(1+w^{3t+1}+w^{6t+2})=(1+w+w^2)$$
. Исходя из того, что $w^3=1$. Заметим, что $w+w^2+1=0$, поэтому таких k в итоговой сумме не будет

2. k дает остаток 2 по модулю 3. Пусть k = 3t + 2, тогда подставим:

$$(1+w^k+w^{2k})=(1+w^{3t+2}+w^{6t+4})=(1+w^2+w^1)$$
. Исходя из того, что $w^3=1$. Заметим, что $w+w^2+1=0$, поэтому таких k в итоговой сумме не будет

3. k дает остаток 0 по модулю 3. Пусть k=3t+3, тогда подставим:

$$(1 + w^k + w^{2k}) = (1 + w^{3t+3} + w^{6t+6}) = 3.$$

А теперь заметим, что получившиеся сумма с выброшенными k будет как раз той, которая нам нужна.

2.7 № 156

Доказать:

a)
$$1 + C_n^3 + C_n^6 + \dots = \frac{1}{3}(2^n + 2\cos\frac{n\pi}{3})$$

b)
$$C_n^1 + C_n^4 + C_n^7 + \dots = \frac{1}{3}(2^n + 2\cos\frac{(n-2)\pi}{3})$$

c)
$$C_n^2 + C_n^5 + C_n^8 + \dots = \frac{1}{3} (2^n + 2\cos\frac{(n-4)\pi}{3})$$

(Эта задача заняла у меня много времени на втыкание)

Давайте начнем с пункта а. Заметим тут отголоски прошлой задачи, если поставить туда $a=1,\,x=1.$

 $(1+1)^n + (1+1w)^n + (1+1w^2)^n = 3 + 3C_n^3 + 3C_n^6 \dots$, заметим, что если домножить искомое на 3, то правая часть этого уравнения, совпадет с левой частью изначального.

Значит надо доказать, что $(1+1)^n+(1+1w)^n+(1+1w^2)^n=2^n+2\cos\frac{n\pi}{3}$ или $(1+w)^n+(1+w^2)^n=2\cos\frac{n\pi}{3}$.

$$w = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}, \ w^2 = \cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}.$$

Подставим и шок, удивление, получим, что нам надо.

Как получить b,c — нам лишь надо модифицировать формулу из прошлого задания, сделав $w=\cos\frac{4\pi}{3}+i\sin\frac{4\pi}{3}$ например. Тогда в прошлом номере при сокращении у нас останется или модуль 1, или модуль 2.

Либо рассмотрев немного другую сумму $(x+a)^m+w^{-1}(x+aw)^m+w^{-2}(x+aw^2)^m$ или такую $(x+a)^m+w^1(x+aw)^m+w^2(x+aw^2)^m$

В угоду размера пдф и моего сна, полного решения не будет.

2.8 № 157,158

Найти и доказать:

$$\sin x + \sin 2x + \ldots + \sin nx = \frac{\sin \frac{n+1}{2} \cdot \sin \frac{nx}{2}}{\sin \frac{n}{2}}$$

 $\cos x + \cos 2x + \ldots + \cos nx = ?$

Пусть $a = \cos \frac{x}{2} + i \sin \frac{x}{2}$.

Заметим, что $\sum_{k=1}^{n} \cos kx + i \sum_{k=1}^{n} \sin kx = a^2 + a^4 + \dots + a^{2n}$.

 $a^2 + a^4 + \ldots + a^{2n} = a^2 \cdot \frac{a^{2n} - 1}{a^2 - 1}$. Давайте домножим и поделим на -ia.

Тогда знаменатель $(1-\frac{1}{a^2})\cdot (-ia)=-i(a-\frac{1}{a})$. Интересный факт: $a\cdot \overline{a}=1$, поэтому:

 $-i(a-\frac{1}{a})=-i(a-\overline{a})=2\sin\frac{x}{2}$. Оставим пока так, вернемся к числителю:

$$-ia(a^{2n}-1) = -i(a^{2n+1}-a) = i(\cos\frac{x}{2} - \cos(n+\frac{1}{2})x) + \sin\frac{2n+1}{2}x - \sin\frac{x}{2}.$$

Используя формулу разности косинусов и синусов могу получит искомые формулы взяв Re или Im от:

$$\frac{\sin\frac{nx}{2}\cdot\cos\frac{(n+1)x}{2} + i\sin\frac{nx}{2}\cdot\sin\frac{(n+1)x}{2}}{\sin\frac{x}{2}}$$

P.S. $\frac{1}{2} + \cos x + \cos 2x + \ldots + \cos nx = ?$, чтобы получить эту формулу подставьте в нашу формулу без разности косинусов и синусов и получите $\frac{\sin \frac{2n+1}{2}x}{2\sin \frac{x}{2}}$

2.9 № 159

Найти: $1 + b \cos x + b^2 \cos 2x + \ldots + b^n \cos nx = ?$

Возьмем прошлую задачу и модифицируем (это что prog intro?)

Пусть $a = \cos x + i \sin x$.

Заметим, что $1+\sum\limits_{k=1}^n b^k\cos kx+i\sum\limits_{k=0}^n b^k\sin kx=1+ba+(ab)^2+\ldots+b^n\cdot a^n$. Соберу геом. прогрессию:

$$\frac{b^{n+1}a^{n+1}-1}{ab-1} = \frac{b^{n+1}a^{n+1}-1}{ab-1} \cdot \frac{b\overline{a}-1}{b\overline{a}-1} = \frac{b^{n+2}a^k-b^{n+1}a^{n+1}-b\overline{a}+1}{b^2-b(a+\overline{a})+1}$$

Откуда уже можно получить ответ взяв Re часть.

$$S = \frac{b^{n+2}\cos x - b^{n+1}\cos(n+1)x - b\cos x + 1}{b^2 - 2b\cos x + 1}$$

2.10 $N_{\underline{0}}$ 160

Найти: $\lim_{n\to\infty} (1+\frac{1}{2}\cos x+\frac{1}{4}\cos 2x+\ldots+(\frac{1}{2})^n\cos nx)=?$

В угоду размера пдф и моего сна, полного решения **не будет**. Но будут рукомахания и ответ. Давайте возьмем получившийся в прошлом задании ответ, подставим

и найдем предел. Ответ: $\frac{2(2-\cos x)}{(5-4\cos x)}$

2.11**№** 161

Дано:
$$\sin \frac{\theta}{2} = \frac{1}{2n}$$

Доказать:
$$\cos \frac{\theta}{2} + \cos \frac{3\theta}{2} + \ldots + \cos \frac{(2n-1)\theta}{2} = n \sin n\theta$$

Пусть
$$a = \cos \frac{\theta}{2} + i \sin \frac{\theta}{2}$$
.

Тогда посмотрим на $a+a^3+\ldots+a^{2n-1}$, воспользуюсь задачей 159 и временно заменю $a^2 = t$

$$a + a^3 + \ldots + a^{2n-1} = \overline{a} \cdot (t + \ldots + t^n)$$

Воспользуюсь выкладками из задачи 157:

$$\overline{a} \cdot (t + \dots + t^n) = \overline{a} \cdot \left(\frac{\sin \frac{n\theta}{2} \cdot \cos \frac{(n+1)\theta}{2} + i \sin \frac{n\theta}{2} \cdot \sin \frac{(n+1)\theta}{2}}{\sin \frac{\theta}{2}} \right)$$

Теперь представим $\overline{a}=\cos\frac{\theta}{2}-i\sin\frac{\theta}{2}$ и возьму Re часть, так как изначально нам нужна была сумма косиносов. Получу (пропущены некоторые выкладки, тк я устану их печатать в latex):

$$\frac{\sin\frac{n\theta}{2}\cdot\cos\frac{n\theta}{2}}{\sin\frac{\theta}{2}},$$
 что уже и есть то, что нам надо доказать (подставим то, что дано и соберем удвоенный угол)

и соберем удвоенный угол)

2.12 No. 162

Доказать, что если b < 1, то ряды сходятся:

- a) $\cos a + b \cos(a + x) + b^2 \cos(a + 2x) + \dots$
- b) $\sin a + b \sin(a + x) + b^2 \sin(a + 2x) + \dots$

В угоду размера пдф и моего сна, полного решения не будет. Но зато будет рукомахание. ЗАМЕТИМ, что это по факту то, что и было в номере 159, но добавилось а. А давайте мы теперь будем смотреть комплексную сумму из решения номер 159, но умноженное на какое-то комплексное число с углом а. Но, заметим, что так мы не посчитаем лишнее из-за прикольных свойст умножения комплексных чисел (если я не ошибаюсь). Поэтому нам надо будет просто взять Re или Im часть получившегося числа. (такая же идея будет рассмотрена в следующей задаче)

2.13 № 163

Найти:

a)
$$\cos x + C_n^1 \cos 2x + C_n^2 + \ldots + C_n^n \cos(n+1)x$$

b)
$$\sin x + C_n^1 \sin 2x + C_n^2 + \ldots + C_n^n \sin(n+1)x$$

Давайте возьмем комплексное числа $a = \cos x + i \sin x$

Разложим по Биному $(1+a)^n$:

$$(1+a)^n = \sum_{k=0}^n C_n^k a^k$$
. Давайте домножим обе части на а. Получу:

$$(1+a)^n = \sum_{k=0}^n C_n^k a^{k+1} = \sum_{k=0}^n C_n^k \cos(k+1) + i \sum_{k=0}^n C_n^k \sin(k+1)$$

Заметим. что Re часть от правой части уравнения - искомое под пунктом a, а Im - искомое под пунктом b. Так что посмотрим, чему равно $(1+a)^n \cdot a$.

$$1 + \cos x = 2 \cdot \cos^2(\frac{x}{2})$$
 - по косинусу двойного угла

$$sinx = 2 \cdot \cos(\frac{x}{2}) \cdot \sin(\frac{x}{2})$$
 - по синусу двойного угла

Получу:

$$1 + \cos x + \sin x = 2\cos\frac{x}{2} \cdot \left(\cos\frac{x}{2} + i\sin\frac{x}{2}\right)$$

Возведу в степень п и получу:

$$2^n \cdot \cos^n(\frac{x}{2}) \cdot (\cos \frac{nx}{2} + i \sin \frac{nx}{2})$$

Осталось только умножить это на а и получу то, что ищу:

$$\cos x + C_n^1 \cos 2x + C_n^2 + \ldots + C_n^n \cos(n+1)x = 2^n \cdot \cos^n \frac{x}{2} \cdot \cos \frac{(n+2)x}{2}$$

$$\sin x + C_n^1 \sin 2x + C_n^2 + \ldots + C_n^n \sin(n+1)x = 2^n \cdot \cos^n \frac{x}{2} \cdot \sin \frac{(n+2)x}{2}$$

2.14 № 164

Найти: $\sin^2 x + \sin^2 3x + \dots \sin^2 (2n-1)x$

В угоду размера пдф и моего сна, полного решения **не будет**. Но зато будет рукомахание. $sin^2x=\frac{1}{2}-\frac{cos2x}{2}$. Воспользуемся этим и останется задача, похожая на 161. Сделаем то же самое, что и там, и получим искомое.

Otbet:
$$\frac{n}{2} - \frac{\sin 4nx}{4\sin 2x}$$

$2.15 \quad N_{\overline{2}} \ 165$

Доказать:

a)
$$\sin^2 x + \sin^2 2x + \dots + \sin^2 nx = \frac{n}{2} - \frac{\cos(n+1)x\sin nx}{2\sin x}$$

b)
$$\cos^2 x + \cos^2 2x + \dots \cos^2 nx = \frac{n}{2} + \frac{\cos(n+1)x\sin nx}{2\sin x}$$

Пункт а решается аналогично задаче 164. Чтобы решить пункт b, заметим, что сумма двух левых частей должны дать n. Значит и сумма правых даст n.все

2.16 № 166

Найти:

a) $\cos x + 2\cos 2x + 3\cos 3x + \dots n\cos nx = ?$

b) $\sin x + 2\sin 2x + 3\sin 3x + \dots n\sin nx = ?$

Давайте делать все как обычно:

Пусть a = cosx + isinx

Заметим, что Re $\sum_{k=1}^n ke^{ixk}$ это ответ из пункта a, a Im $\sum_{k=1}^n ke^{ixk}$ это ответ для пункта b.

Заметим, что $\sum_{k=1}^{n} ke^{ixk}$ это производная $\sum_{k=1}^{n} e^{ixk}$. Формулу для $\sum_{k=1}^{n} e^{ixk}$ мы считать умеем(см номер 157). Вроде как производные учат считать на матане, и поэтому в угоду размера пдф и моего сна, полного решения **не будет**.

3 Разбор задач с Кр. Объяснение основного принципа решения сумм.

3.1 Обычные суммы. Метод геом прогрессии

Начнем с самых простых сумм.

 $\sum_{k=1}^{n} \sin kx$. Нам нужно посчитать чему это равно.

Давайте возьмем $a = \cos x + i \sin x$. Тогда Посмотрим на сумму

$$\sum_{k=1}^{n} a^{k} = \sum_{k=1}^{n} \cos kx + i \sin kx = \sum_{k=1}^{n} \cos kx + i \sum_{k=1}^{n} \sin kx$$

То есть сумма которая от нас требуется это всего лишь Im часть от этой суммы. Основной концепт задач, когда мы не видем в сумме C-шек или k-шек — разложить в сумму комплексных чисел. Давайте посмотрим, чему равна наша сумма:

$$\sum_{k=1}^{n} a^k = a + a^2 + a^3 + \ldots + a^k$$
 — геом прогресссия!!!

А такие мы умеем собирать по формуле геом прогрессии. Например так:

$$a + a^2 + a^3 + \dots + a^k = a(1 + a + a^2 + \dots + a^{k-1}) = a \cdot \frac{a^k - 1}{a - 1}$$

Когда мы встречаем комплексное число -1 — выносим корень.

 $a-1=a^{\frac{1}{2}}(a^{\frac{1}{2}}-a^{-\frac{1}{2}})$. Если представить наше в другой форме, то заметно, что $a^{\frac{1}{2}}-a^{-\frac{1}{2}}=e^{\frac{1}{2}ix}-e^{-\frac{1}{2}ix}=2i\sin\frac{1}{2}x$. Заменим

$$a^{\frac{1}{2}} \cdot \frac{a^k - 1}{2i\sin{\frac{1}{2}x}}$$
. Сделаем знаменатель рациональным.

$$a^{\frac{1}{2}} \cdot \frac{ia^k - i}{-2\sin\frac{1}{2}x} = \frac{(\cos\frac{1}{2}x + \sin\frac{1}{2}i)(i(\cos kx + i\sin kx) - i)}{-2\sin\frac{1}{2}x} =$$

$$= \frac{(\cos \frac{1}{2}x + \sin \frac{1}{2}i)(i\cos kx - i\sin kx - i)}{-2\sin \frac{1}{2}x}.$$

Дальше, тк знаменатель рациональный, то, Im часть от дроби - Im часть от произведения в числителе(перемножьте 2 скобки и возьмите Im) и поделить на знаменатель. Так мы и находим ответ. Теперь понятно как считать сумму косинусов такую:

$$\sum_{k=1}^{n} \cos kx$$
 — Re часть от того, что насчитано сверху

При этом не пугайтесь других чисел в такой сумме:

$$\sum\limits_{k=1}^n\cos 2kx.$$
 — Делается аналогично, просто шаг геом. прогрессии будет больше.

Также мы можем домножать на b^k . Например:

$$\sum_{k=1}^{n} b^k \cos kx$$
 — все что меняется - шаг геом. прогрессии

И это все может комбинироваться:

$$\sum\limits_{k=1}^n 10^k \cos(k+1)x$$
 — решается геом. прогрессией

Ну очевидно мы можем их домножать на числа и т.п.

3.2 Бином Ньютона. Суммы, связанные с ним.

Посчитать сумму:

$$\sum_{k=0}^{n} C_n^k \cos kx$$

Пусть $a = \cos x + i \sin x$

Тогда заметим:

$$\sum_{k=0}^{n} C_n^k a^k = \sum_{k=0}^{n} C_n^k (\cos kx + i \sin kx) = \sum_{k=0}^{n} C_n^k \cos kx + i \sum_{k=0}^{n} C_n^k \sin kx$$

Получем, что наш ответ - Re часть от этой суммы. Посчитаем чему она равна:

$$\sum_{k=0}^{n} C_n^k a^k$$

Когда мы видим С-шки - 100 проц надо разложить в бином Ньютона. Краткое напоминание

Бином: $(x+y)^n = \sum_{k=0}^n C_n^k x^k y^{n-k}$. Давайте разложим нашу сумму по биному:

$$\sum_{k=0}^{n} C_n^k a^k = (1+a)^n.$$

 $(1+a)=a^{\frac{1}{2}}(a^{-\frac{1}{2}}+a^{\frac{1}{2}})$. Если представить это в другом виде, то сразу станет очевидно, что это $2\cos\frac{1}{2}x$.

$$(1+a)^n = (a^{\frac{1}{2}}(2\cos\frac{1}{2}x))^n = a^{\frac{n}{2}}2^n\cos^n\frac{1}{2}x = (\cos\frac{n}{2}x + i\sin\frac{n}{2}x)2^n\cos^n\frac{1}{2}x$$

Наш ответ — Re часть от этого, то есть $\cos \frac{n}{2}x2^n \cos^n \frac{1}{2}x$

Аналогично можем посчитать сумму синусов: $\sum_{k=0}^{n} C_n^k \sin kx$ — Іт часть от ответа.

Также можем считать домноженное на b^k :

$$\sum\limits_{k=0}^{n}C_{n}^{k}\cos kx\cdot b^{k}$$
. Бином будет такой: $(1+ba)^{n}$

Также можем считать такое:

 $\sum_{k=0}^{n} C_{n}^{k} \cos(k+1)x$ — перед разложением в бином вынести за скобки одну из анцек

Также можем считать домноженное на b^{n-k} :

$$\sum\limits_{k=0}^n C_n^k \cos kx \cdot b^{n-k}.$$
 Бином будет такой: $(b+a)^n$

И очевидно комбинация всего вышесказанного.

3.3 Производные. Суммы с к внутри.

$$\sum_{k=1}^{n} k \sin kx$$
. Вообще непонятно, что тут делать.

Но заметим, что $\sum_{k=1}^{n} k \sin kx$, это производная:

$$-\sum\limits_{k=1}^{n}\cos kx.$$
 Мы уже умеем считать такую сумму(см. выше)

И получив ответ для той суммы, просто возьмем производную от ответа и победим.

Аналогично делаются все с умножением на b^k и например C_k^n . То есть при появлении внутри k, я смотрю для какой функции эта является производной, решаю для нее и беру производную.

Комбинация и степени.

$$\sum_{k=1}^{n} \sin^4 kx$$
. — степень

В таком случае мы должны воспользоваться формулой:

$$\sin^4 kx = (\frac{e^{kxi} - e^{-kxi}}{2i})^4 = \frac{(e^{kxi} - e^{-kxi})^4}{16} = \frac{e^{4kxi} - 4 \cdot e^{2kxi} + 6 - 4 \cdot e^{-2ki} + e^{-4kxi}}{16}.$$

Приведя е-шки в нормальный вид, получим:

$$\sin^4 kx = \frac{(2\cos 4kx - 8\cos 2kx + 6)}{16}$$

И дальше подставим это в нашу сумму:

$$\sum_{k=1}^{n} \sin^4 kx = \frac{1}{16} \left(2 \sum_{k=1}^{n} \cos 4kx - 8 \sum_{k=1}^{n} \cos 2kx + \sum_{k=1}^{n} 6 \right)$$

И решать уже три суммы. Очевидно, что каждая из них может модифицироваться всяикими домножениями и т.п

Задачи с кр - комбинация 4-ех вышесказанных методов. Всем удачи в подготовке :)

3.5 Задача 1в

$$\sum_{k=0}^{n} (-1)^k \cos^4(k+1)x$$

Давайте разложим
$$\cos^4x(k+1)=(\frac{e^{(k+1)ix}+e^{-(k+1)ix}}{2})^4=\frac{(e^{(k+1)ix}+e^{-(k+1)ix})^4}{16}=\frac{1}{16}(e^{4(k+1)ix}+4e^{2(k+1)ix}+6+4e^{-2(k+1)ix}+e^{-4(k+1)ix})=$$

$$=\frac{1}{16}(\cos 4(k+1)x+4\cos 2(k+1)x+6+4\cos 2(k+1)x+\cos 4(k+1)x)=$$

$$=\frac{1}{16}(2\cos 4(k+1)x+8\cos 2(k+1)x+6)$$

То есть нашу искомую сумму можно переписать как:

$$\sum_{k=0}^{n} (-1)^k \cos^4(k+1)x = \frac{1}{16} \left(2 \sum_{k=0}^{n} (-1)^k \cos 4(k+1)x + 8 \sum_{k=0}^{n} (-1)^k \cos 2(k+1)x + \sum_{k=0}^{n} (-1)^k 6\right)$$

Начнем решать по очереди, посчитаем:

$$\sum_{k=0}^{n} (-1)^k \cos 4(k+1)x$$

Пусть $a = i \sin x + \cos x$. Тогда

$$\sum_{k=0}^{n} (-1)^k a^{4(k+1)} = \sum_{k=0}^{n} (-1)^k \cos 4(k+1)x + i \sum_{k=0}^{n} (-1)^k \sin 4(k+1)x.$$

То есть та сумма, которую мы ищем - Re часть от суммы $\sum_{k=0}^{n} (-1)^k a^{4(k+1)}$

Посмотрим на эту сумму:

$$\sum_{k=0}^{n} (-1)^k a^{4(k+1)} = a^4 - a^8 + \dots + (-1)^n a^{4(n+1)} = a^4 (1 - a^4 + a^8 - \dots + (-1)^n a^{4n}) =$$

$$= a^4 \frac{(-a^4)^{n+1} - 1}{-a^4 - 1} = a^4 \frac{(-a^4)^{n+1} - 1}{-a^2 (a^2 + a^{-2})} = a^4 \frac{(-a^4)^{n+1} - 1}{-a^2 (a^2 + \overline{a}^2)} = a^4 \frac{(-a^4)^{n+1} - 1}{-a^2 (2\cos 2x)} =$$

$$\frac{((-a^4)^{n+1} - 1) \cdot (a^2)}{-(2\cos 2x)} = \frac{((-1)^{n+1} (\cos 4(n+1)x + i\sin 4(n+1)x) - 1) \cdot (\cos 2x + i\sin 2x)}{-(2\cos 2x)}$$

Мне нужна Re часть от этого. Тк знаменатель рациональный, то я могу взять Re от числителя и поделить на знаменатель.

Re часть =
$$\frac{(-1)^{n+1}\cos 4(n+1)x\cos 2x - \cos 2x - (-1)^{n+1}\sin 4(n+1)x\sin 2x}{-2\cos 2x} = \frac{(-1)^{n+1}\cos 4(n+1)x\sin 2x}{-2\cos 2x}$$

$$= \frac{(-1)^{n+1}\cos(4(n+1)x + 2x) - \cos 2x}{-2\cos 2x}$$

(Тут можно еще разность косинусов написать ну и так хорошо выглядит)

To ect
$$\sum_{k=0}^{n} (-1)^k \cos 4(k+1)x = \frac{(-1)^{n+1} \cos(4(n+1)x + 2x) - \cos 2x}{-2\cos 2x}$$

Аналогичным образом решается и вторая. Посчитаем:

$$\sum_{k=0}^{n} (-1)^k \cos 2(k+1)x$$

Пусть $a = i \sin x + \cos x$. Тогда

$$\sum_{k=0}^{n} (-1)^k a^{2(k+1)} = \sum_{k=0}^{n} (-1)^k \cos 2(k+1)x + i \sum_{k=0}^{n} (-1)^k \sin 2(k+1)x.$$

То есть та сумма, которую мы ищем - Re часть от суммы $\sum_{k=0}^{n} (-1)^k a^{2(k+1)}$

Посмотрим на эту сумму:

$$\sum_{k=0}^{n} (-1)^k a^{2(k+1)} = a^2 - a^4 + \dots + (-1)^n a^{2(n+1)} = a^2 (1 - a^2 + a^4 - \dots + (-1)^n a^{2n}) =$$

$$= a^2 \frac{(-a^2)^{n+1} - 1}{-a^2 - 1} = a^2 \frac{(-a^2)^{n+1} - 1}{-a(a+a^{-1})} = a^2 \frac{(-a^2)^{n+1} - 1}{-a(2\cos x)} =$$

$$\frac{((-a^2)^{n+1} - 1) \cdot (a)}{-(2\cos x)} = \frac{((-1)^{n+1}(\cos 2(n+1)x + i\sin 2(n+1)x) - 1) \cdot (\cos x + i\sin x)}{-(2\cos x)}$$

Мне нужна Re часть от этого. Тк знаменатель рациональный, то я могу взять Re от числителя и поделить на знаменатель.

Re часть =
$$\frac{(-1)^{n+1}\cos 2(n+1)x\cos x - \cos x - (-1)^{n+1}\sin 2(n+1)x\sin x}{-2\cos x} = \frac{(-1)^{n+1}\cos(2(n+1)x + x) - \cos x}{-2\cos x}$$

То есть наша искомая сумма:

$$\frac{1}{16} \left(2 \sum_{k=0}^{n} (-1)^k \cos 4(k+1)x + 8 \sum_{k=0}^{n} (-1)^k \cos 2(k+1)x + \sum_{k=0}^{n} (-1)^k 6\right) =$$

$$\frac{1}{16} \left(2 \frac{(-1)^{n+1} \cos(4(n+1)x+2x) - \cos 2x}{-2\cos 2x} + 8 \frac{(-1)^{n+1} \cos(2(n+1)x+x) - \cos x}{-2\cos x} + \sum_{k=0}^{n} (-1)^k 6\right)$$