Real-Time Data Streaming & Batch ETL Pipeline with AWS

Hybrid Architecture for Scalable Analytics

Team 01 Section 2

Team Members

STUTI BIMALIPRIYANKA SINGHLAKSHMAN RAJITHTeam LeaderData ScientistData ModelingSection 1Section 2Section 2

Team GitHub Account: https://github.com/orgs/Team01DE/

Challenges

Data That We Will Need

1. Real-Time Streaming Data

- Examples: E-commerce transactions (order ID, amount, timestamp), IoT sensor data (device ID, temperature, timestamp), or financial logs (transaction ID, user ID, amount).
- o Format: JSON or CSV, reflecting high-velocity event streams.

2. Metadata for Enrichment

• Examples: Customer profiles (e.g., preferences for recommendations), fraud rules (e.g., transaction thresholds), or geolocation data.

3. Historical Batch Data

 Aggregated data for trend analysis (e.g., daily sales totals, average sensor readings by hour).

Where You Will Get the Data

1. Real-Time Streaming Data

 Simulated using a Python script or API as a producer sending data to AWS Kinesis Data Streams. For realism, mimic e-commerce checkouts, IoT sensor pings, or financial transactions.

2. Metadata for Enrichment

 Generated within AWS Lambda (e.g., timestamps) or sourced from a predefined lookup table in Amazon S3 or DynamoDB (e.g., customer profiles or fraud rules).

3. Historical Batch Data

 Derived from real-time data stored in S3 after Lambda processing, then transformed by AWS Glue into a structured format for analytics.

Overview of the Pipeline (Using CRISP-DM Methodology)

1. Business Understanding

 Objective: Enable real-time decision-making (e.g., personalized offers, fraud alerts) and historical trend analysis (e.g., sales patterns) for e-commerce, IoT, or financial organizations.

Business Problems Addressed:

- Delayed Insights: Provide sub-second insights from streaming data.
- Data Volume & Velocity: Handle large, high-speed data efficiently.
- Inefficient ETL & Storage: Optimize processing with a hybrid pipeline.
- Poor Integration & Scalability: Unify real-time and batch analytics.
- Success Criteria: Real-time latency <1 second, accurate batch reports available daily, scalable to 10x data volume.

2. Data Understanding

- Analyze incoming data characteristics:
 - Volume: E.g., 100 transactions/second.
 - Velocity: Continuous event streams.
 - Variety: JSON logs with fields like order ID, amount, timestamp.
- o Investigate metadata needs (e.g., customer IDs for personalization) and output requirements (e.g., Parquet tables for querying).

3. Data Preparation

o Real-Time:

- Use Lambda to filter invalid data (e.g., missing transaction IDs) and enrich with metadata (e.g., customer preferences or fraud flags).
- Store processed data in S3 in near real-time.

o Batch:

 Use Glue to aggregate data (e.g., daily sales totals) and convert to Parquet for efficient storage and querying.

4. Modeling

- Real-Time: Lambda functions to:
 - Filter incomplete records.
 - Enrich data (e.g., flag transactions >\$1,000 as potential fraud).
- Batch: Glue ETL scripts to:
 - Aggregate data (e.g., sum transactions by customer).
 - Transform JSON to structured Parquet.
- o Tools: Python for Lambda/Glue, SQL for transformations.

5. Evaluation

- Real-Time: Test latency (e.g., <1 second processing) and accuracy (e.g., 99% of fraud flags correct).
- Batch: Validate aggregates (e.g., daily totals match raw data) and query performance (e.g., <5 seconds for a report).
- Simulate data spikes to ensure scalability.

6. **Deployment**

- Deploy Kinesis Streams, Lambda functions, S3 buckets, and Glue jobs on AWS.
- Schedule Glue jobs (e.g., daily at 1 AM) for batch processing.
- o Integrate with a data warehouse (e.g., Redshift) for reporting.
- Monitor with AWS CloudWatch for errors or bottlenecks.