Integers

Problems about integers.

Problem 1 Describe the set of integers. Give some relevant and revealing examples/nonexamples.

Free Response: Hint: The integers are the counting numbers, 0, and the opposites of the counting numbers.

$$\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

Problem 2 Use the definition of divides to decide whether the following statements are true or false. In each case, an explanation must be given justifying your claim.

(a) 5|30 (*True* √/ *False*)

Hint: $30 = 5 \cdot 6$.

(b) 7|41 (*True* / *False* ✓)

Hint: There is no integer solution to 41 = 7k. But $41 = 7 \cdot 5 + 6$.

(c) 0|3 (True/False \checkmark)

Hint: There is no integer solution to 3 = 0k.

(d) 3|0 (True √/ False)

Hint: The solution to 0 = 3k is k = 0.

(e) $6|(2^2 \cdot 3^4 \cdot 5 \cdot 7)$. (True \checkmark / False)

Hint: $6 = 2 \cdot 3$, and $2 \cdot 3$ appears in factorization of the second number.

(f) $1000|(2^7 \cdot 3^9 \cdot 5^{11} \cdot 17^8)$ (True \checkmark / False)

Hint: $1000 = 2^3 \cdot 5^3$, and these primes appear enough times in factorization of the second number.

(g) $6000|(2^{21}\cdot 3^{17}\cdot 5^{89}\cdot 29^{20})$. (True $\checkmark/$ False)

Hint: $6000 = 2^4 \cdot 3 \cdot 5^3$, and these primes appear enough times in factorization of the second number.

Problem 3 Factor the following integers. If the integer is prime, type "prime."

- (a) $111 \ 3 \cdot 37$
- (b) $1234 \boxed{2 \cdot 617}$
- (c) $2345 \overline{5 \cdot 7 \cdot 67}$
- (d) $4567 \boxed{prime}$
- (e) $111111 \overline{3 \cdot 7 \cdot 11 \cdot 13 \cdot 37}$

Problem 4 Find the greatest common divisors below:

(a) $gcd(462, 1463) = \boxed{77}$

Hint: $462 = 2 \cdot 3 \cdot 7 \cdot 11$, and $1463 = 7 \cdot 11 \cdot 19$.

(b) $gcd(541, 4669) = \boxed{1}$.

Hint: 541 is prime. And $4669 = 7 \cdot 23 \cdot 29$.

(c) $gcd(10000, 2^5 \cdot 3^{19} \cdot 5^7 \cdot 11^{13}) = \boxed{10000}$

Hint: $10000 = 2^5 \cdot 5^5$.

(d) $\gcd(11111, 2^{14} \cdot 7^{21} \cdot 41^5 \cdot 101) = \boxed{41}$

Hint: $11111 = 41 \cdot 271$.

(e) $gcd(437^5, 8993^3) = 23^5$

Hint: $437 = 19 \cdot 23$, and $8993 = 17 \cdot 23^2$.

Problem 5 (Consider the following:
	$20 \div 8 = 2$ remainder 4, $28 \div 12 = 2$ remainder 4.
Is it correct to	say that $20 \div 8 = 28 \div 12$? (Yes/No \checkmark)
Explain your re	easoning.
rather a pair of In particular, the	se: Hint: The answer "2 remainder 4" is not a single number but numbers (a quotient and a remainder) that have different meanings. e 2 is about different things: groups of 8 versus groups of 12. Calling bers "equal" is questionable.
Problem 6	Give a formula for the n th even number: $2n$
Problem 7	Give a formula for the nth odd number: $2n-1$.
Problem 8	Give a formula for the <i>n</i> th multiple of 3: $3n$
Problem 9	Give a formula for the nth multiple of -7 . $\boxed{-7n}$
Problem 10	Give a formula for the nth number whose remainder when di-

vided by 5 is 1.

If the first such number is 1, the formula is 5n-4.

If the first such number is 6, the formula is 5n+1.