Simple Example of State Estimation

- Suppose a robot obtains measurement z
- What is $P(open \mid z)$?

Causal vs. Diagnostic Reasoning

- $P(open \mid z)$ is diagnostic
- $P(z \mid open)$ is causal
- In some situations, causal knowledge is easier to obtain
 count frequencies!
- Bayes rule allows us to use causal knowledge:

$$P(open \mid z) = \frac{P(z \mid open)P(open)}{P(z)}$$

Example

•
$$P(z \mid open) = 0.6$$
 $P(z \mid \neg open) = 0.3$

■
$$P(open) = P(\neg open) = 0.5$$

$$P(open \mid z) = \frac{P(z|open)P(open)}{P(z)} = \frac{0.6*0.5}{0.6*0.5+0.3*0.5} = \frac{2}{3}$$

z raises the probability that the door is open

Combining Evidence

- Suppose our robot obtains another observation z_2
- How can we integrate this new information?
- More generally, how can we estimate $P(x \mid z_1, ..., z_n)$?

Recursive Bayesian Updating

$$P(x \mid z_1, ..., z_n) = \frac{P(z_n \mid x, z_1, ..., z_{n-1})P(x \mid z_1, ..., z_{n-1})}{P(z_n \mid z_1, ..., z_{n-1})}$$

Markov assumption:

 z_n is independent of z_1, \dots, z_{n-1} given we know x

$$P(x \mid z_{1}, ..., z_{n}) = \frac{P(z_{n} \mid x)P(x \mid z_{1}, ..., z_{n-1})}{P(z_{n} \mid z_{1}, ..., z_{n-1})}$$

$$= \alpha P(z_{n} \mid x)P(x \mid z_{1}, ..., z_{n-1})$$

$$= \alpha P(x) \prod_{i=1,...n} P(z_{i} \mid x)$$

Example: Second Measurement

•
$$P(z_2 \mid open) = 0.25$$

$$P(z_2 \mid \neg open) = 0.3$$

•
$$P(open \mid z_1) = \frac{2}{3}$$

$$P(open \mid z_2, z_1) = \frac{P(z_2 \mid open)P(open \mid z_1)}{P(z_2 \mid open)P(open \mid z_1) + P(z_2 \mid \neg open)P(\neg open \mid z_1)}$$

$$= \frac{\frac{1}{4} \cdot \frac{2}{3}}{\frac{1}{4} \cdot \frac{2}{3} + \frac{3}{10} \cdot \frac{1}{3}} = \frac{\frac{1}{6}}{\frac{1}{6} + \frac{1}{10}} = \frac{\frac{1}{6}}{\frac{4}{15}} = \frac{5}{8} = 0.625$$

z₂ lowers the probability that the door is open

Actions

- Often the world is dynamic since
 - actions carried out by the robot,
 - actions carried out by other agents,
 - or just the time passing by change the world
- How can we incorporate such actions?

Typical Actions

- The robot turns its wheels to move
- The robot uses its manipulator to grasp an object
- Plants grow over time ...
- Actions are never carried out with absolute certainty
- In contrast to measurements, actions generally increase the uncertainty

Modeling Actions

 To incorporate the outcome of an action u into the current "belief", we use the conditional pdf

$$P(x \mid u, x')$$

This term specifies the pdf that executing u changes the state from x' to x.

Example: Closing the door

State Transitions

 $P(x \mid u, x')$ for u = "close door":

If the door is open, the action "close door" succeeds in 90% of all cases

Integrating the Outcome of Actions

Continuous case:

$$P(x \mid u) = \int P(x \mid u, x') P(x' \mid u) dx'$$

Discrete case:

$$P(x \mid u) = \sum P(x \mid u, x') P(x' \mid u)$$

We will make an independence assumption to get rid of the u in the second factor in the sum.

Example: The Resulting Belief

$$P(\operatorname{closed} \mid u) = \sum P(\operatorname{closed} \mid u, x') P(x')$$

$$= P(\operatorname{closed} \mid u, \operatorname{open}) P(\operatorname{open}) + P(\operatorname{closed} \mid u, \operatorname{closed}) P(\operatorname{closed})$$

$$= \frac{9}{10} \cdot \frac{5}{8} + \frac{1}{1} \cdot \frac{3}{8} = \frac{15}{16}$$

$$P(\operatorname{open} \mid u) = \sum P(\operatorname{open} \mid u, x') P(x')$$

$$= P(\operatorname{open} \mid u, \operatorname{open}) P(\operatorname{open}) + P(\operatorname{open} \mid u, \operatorname{closed}) P(\operatorname{closed})$$

$$= \frac{1}{10} \cdot \frac{5}{8} + \frac{0}{1} \cdot \frac{3}{8} = \frac{1}{16}$$

$$= 1 - P(\operatorname{closed} \mid u)$$