2018 PL Midterm

Statistics, Machine Learning

2018 PL Midterm 2018-08-07

Statistics

1. Hand-Writing

1. Prove that

$$V[x] = E[x^2] - E[x]^2$$
 where pdf of x is continuous

2. Prove that

$$Cov(x,y) = E[xy] - E[x]E[y]$$
 where pdf of x,y are continuous

3. Find ACC, TPR, TNR, PPV of next table:

Actual \ Predicted	Cat	Dog	Rabbit
Cat	5	3	0
Dog	2	3	1
Rabbit	0	2	11

- 4. Denote F-measure, and explain meaning of F-measure.
- 5. Write full name of each objects:
 - *ROC*
 - *AUC*
 - \bullet MCC
 - MAP
- 6. Denote Mahalanobis distance and pdf of higher dimension Gaussian distribution.

2018 PL Midterm 2018-08-07

2. Programming

You have data for five people about weight, score and age.

Weight	Score	Age
64.0	580.0	29.0
66.0	570.0	33.0
68.0	590.0	37.0
69.0	660.0	46.0
73.0	600.0	55.0

- 1. Find covariance matrix
- 2. Find correlation coefficient between weight and score.

$$\rho(x,y) = \frac{\sum_{i} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i} (x_i - \bar{x})^2} \sqrt{\sum_{i} (y_i - \bar{y})^2}}$$

3. Now you have another person data:

Weight	Score	Age
66.0	640.0	44.0

Calculate Mahalnobis distance of this person from above data set.

2018 PL Midterm 2018-08-07

Machine Learning

1. Hand-Writing

1. Prove that β minimize RSS. (X is input, t is answer)

$$\beta = (\mathbf{X}^{\mathbf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathbf{T}}\mathbf{t}$$

- 2. Why we use sigmoid or tanh as activation function?
- 3. Denote forward process of Multi Layer Perceptron.
- 4. Denote whole Error Back-Propagation process of Multi Layer Perceptron.
- 5. Find derivatives of below functions (represent derivative as original function).

•
$$\sigma_{\beta}(x) = \frac{1}{1 + e^{-\beta x}}$$

•
$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

•
$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

• $softmax(x_k) = \frac{e^{x_k}}{\sum_k e^{x_k}}$

6. Rewrite Error Back-Propagation as vectorized form.

2018 PL Midterm 2018-08-07

2. Programming

Let's see data.csv

1. Can we use SLP or linear regression to this data? If not, explain why.

- 2. Implement MLP code using \tanh as activation function from input to hidden and sigmoid as activation function from hidden to output.
- 3. Predict Z when $X = \sqrt{0.5}$, Y = 0.5.
- 4. Predict Z when $X = \sqrt{0.5}$, $Y = \sqrt{0.5}$.