Sprawozdanie Laboratorium Mikroelektronika Podstawowe symulacje wybranych układów CMOS – tranzystor nMOS

Stanisław Fiedler 160250 L1

LAB 2, 22 października 2024

Spis treści

1	Zadanie 1	2
	1.1 Na otrzymanych wynikach symulacji zaznaczyć obszary liniowy oraz nasycenia tranzystora nMOS	2
	1.2 W oparciu o wiedzę z podstaw elektroniki podać i omówić stosowne wzory wyjaśniające zasadę działania tranzystora nMOS	. 2
2	Co zawiera plik cmos.txt ? Jaką funkcję pełni ten plik pod czas symulacji?	- 3
3	Co oznacza ostatnia liczba w zapisie:	3
4	Co oznaczają w pliku bibliotecznym BSIM cmos.txt para metry VT0 oraz TOX ?	- 3

1 Zadanie 1

1.1 Na otrzymanych wynikach symulacji zaznaczyć obszary liniowy oraz nasycenia tranzystora nMOS.

1.2 W oparciu o wiedzę z podstaw elektroniki podać i omówić stosowne wzory wyjaśniające zasadę działania tranzystora nMOS.

Wzory opisujące działanie tranzystora nMOS:

1. w zakresie odcięcia:

$$I_D = 0$$

2. w zakresie linowym:

$$I_D = \mu C_{OX} \frac{W}{L} \left[(V_{GS} - V_T) - \frac{V_{DS}^2}{2} \right]$$

3. w zakresie nasycenia:

$$I_D = \mu C_{OX} \frac{W}{L} \frac{\left(V_{GS} - V_T\right)^2}{2}$$

Kiedy $V_{DS} < V_{GS} - V_T$ tranzystor znajduje się w obszarze liniowym, prąd drenu zależy wtedy od napięcia V_{DS} . W zakresie tym napięcie dren-źródło nie ma większego wpływu na kanał przewodzący.

W zakresie nasycenia ($V_{DS} > V_{GS} - V_T$) z powodu działania pola elektrycznego między źródłem, a drenem, kanał przewodzący zwęża się co powoduje że I_D przestaje być zależne od napięcia dren-źródło. Aby zwiększyć prąd drenu w zakresie nasycenia należy poszerzyć kanał zwiększając napięcie bramki.

2 Co zawiera plik cmos.txt? Jaką funkcję pełni ten plik podczas symulacji?

Plik cmos.txt zawiera wartości wszystkich stałych opisujących właściwości tranzystora. Pozwala on na przeprowadzenie symulacji zgodnej z rzeczywistym zachowaniem tranzystora.

3 Co oznacza ostatnia liczba w zapisie:

.model N_50n nmos level = 54 oraz .MODEL P_1u PMOS LEVEL = 3

Ostatnia liczba oznacza poziom złożoności i dokładności z jaką jest opisany tranzystor.

4 Co oznaczają w pliku bibliotecznym BSIM cmos.txt parametry VT0 oraz TOX ?

VT0 opisuje napięcie progowe tranzystora.

 \mathbf{TOX} jest grubością warstwy dwutlenku krzemu SiO_2 .