

"Data Mining with Rattle and R"

DIT Analytics Club 07 March, 2013 "Peadar Kearney's", Dame Street

Colman McMahon

colman@thedata.co

Linked in _o www.linkedin.com/in/colmanmcmahon

Agenda

- ► Intro
- Data mining
- ► Rattle installation
- ► Rattle workflow
- Appendix

Agenda

- ► Intro
- Data mining
- ► Rattle installation
- ► Rattle workflow
- Appendix

Bio

- Professional
 - » Background: Film, VFX, Digital Media
 - » Currently: PhD Fellow, UCD Dynamics Lab

- PhD:
 - » Policy network analysis
 - » Creative Industries

www.dl.ucd.ie

- Technologies:
 - » Social Network Analysis
 - » Agent Based Modelling
 - » Data/statistical analysis

www.ucd.ie/casl/

- Data Mining with Rattle and R
 - » The Art of Excavating Data for Knowledge Discovery
- Graham Williams
- Springer, 2011
- ► ISBN 978-1-4419-9889-7

Rattle

Rattle - "the R Analytical Tool To Learn Easily"

- Presents statistical & visual summaries of data
- Transforms data into forms that can be readily modelled
- Builds models (unsupervised and supervised) from the data
- Graphically presents the performance of models
- Scores new datasets

Rattle

- Built on the statistical language R
 - » an understanding of R is not required in order to use it
- Simple to use, quick to deploy, and allows us to rapidly work through the data processing, modelling, and evaluation phases of a data mining project
- Can migrate from Rattle to R when we need to fine-tune and further develop our data mining projects

Rattle GUI

Agenda

- ► Intro
- Data mining
- ► Rattle stack
- ► Rattle workflow
- Appendix

CRISP-DM

- Cross Industry Process for Data Mining (CRISP-DM, 1996)
 - » framework for delivering data mining projects.
 - 1) Problem Understanding
 - 2) Data Understanding
 - 3) Data Preparation
 - 4) Modelling
 - 5) Evaluation
 - 6) Deployment

Rattle GUI

Agenda

- ► Intro
- Data mining
- ► Rattle installation
- ► Rattle workflow
- Appendix

Rattle stack

Rattle

R

- R a sophisticated statistical software package
 - » easily installed, instructional, state-of-the-art, and it is free and open source
- ► The basic modus operandi write scripts using the R language
- Steeper learning curve than using GUI based systems, but once over the hurdle, becomes relatively easy

R Project (www.r-project.org)

Rattle (rattle.togware.com)

Installation


```
Install R
```

www.r-project.org

Start R

Install Rattle

> install.packages("rattle")

Load rattle into the R library

- > library(rattle)
- > rattle()

Agenda

- ► Intro
- Data mining
- ► Rattle installation
- ► Rattle workflow
- Appendix

Rattle workflow

- 1) Load a dataset
- 2) Select variables and entities for exploring and mining
- 3) Explore the data to understand how it is distributed or spread
- 4) Transform the data to suit our data mining purposes
- 5) Build our models
- 6) Evaluate the models on other datasets
- 7) Export the models for deployment

Workflow - tabs

O R Data Miner - [Rattle]
<u>P</u> roject <u>T</u> ools <u>S</u> ettings <u>H</u> elp
Execute New Open Save Report Export Stop Quit
Data Explore Test Transform Cluster Associate Model Evaluate Log
Source: ⊚ Spreadsheet ○ ARFF ○ ODBC ○ R Dataset ○ RData File ○ Librar
Filename: (None)
□ Partition 70/15/15 Seed: 42 🗘 View Edit
Input

Explore


```
> summary(weather[7:9])
                         WindGustSpeed
   Sunshine WindGustDir
                    : 73 Min. :13.0
Min. : 0.00
             NW
1st Qu.: 5.95 NNW : 44 1st Qu.:31.0
Median : 8.60
             E : 37 Median :39.0
Mean : 7.91
              WNW : 35 Mean :39.8
                   : 30
3rd Qu.:10.50 ENE
                         3rd Qu.:46.0
Max. :13.60 (Other):144 Max. :98.0
             NA's : 3 NA's : 2.0
NA's : 3.00
```

Provides a textual overview of the data

Explore - detailed


```
> library(fBasics)
> basicStats(weather$Sunshine)
            X. .weather.Sunshine
                        366,0000
nobs
NAs
                          3.0000
Minimum
                         0.0000
Maximum
                         13.6000
1. Quartile
                        5.9500
3. Quartile
                       10.5000
                          7.9094
Mean
Median
                          8.6000
Sum
                       2871.1000
SE Mean
                          0.1827
LCL Mean
                          7.5500
UCL Mean
                          8.2687
Variance
                         12.1210
St.dev
                         3.4815
Skewness
                         -0.7235
Kurtosis
                         -0.2706
```

Explore (graphically)

Explore (graphically)

Figure 6.3: The parallel coordinates plot from latticist

Figure 6.9: Colourful brushing of multiple scatterplots

Figure 6.10: GGobi's scatter plot matrix.

Figure 6.11: GGobi's parallel coordinates plot.

Test

🔞 🗎 🔹 R Data Miner - [Rattle]			
Execute New Open Save Report Export Stop Quit			
Data Explore Test Transform Cluster Associate Model Evaluate Log			
Two-Sample Tests: Kolmogorov-Smirnov			
Paired Two-Sample Tests: O Correlation O Wilcoxon Signed Rank			
Sample 1: \$\displays \text{ Sample 2:} \$\displays \text{ Group By Target: No Target}\$			
Statistical Tests			
These tests apply to two samples. The paired two sample tests assume that we have two samples or observations, and that we are testing for a change, usually from one time period to another.			
Distribution of the Data			
* Kolomogorov-Smirnov Non-parametric Are the distributions the same? * Wilcoxon Signed Rank Non-parametric Do paired samples have the same distribution?			
Location of the Average			
* T-test Parametric Are the means the same?			

various statistical tests, e.g. the T-test and F-test

Transform

- Normalising
- Filling in missing values
- Turning numeric variables into categoric variables (and vice versa)
- Dealing with outliers
- Removing variables or observations with missing values

Cluster

Associate

Model

Decision Trees

Boosting

R Data Miner - [Rattle (weather.csv)]	пх		
Project Tools Settings Help Rattle Version 2.6.7 togawar	e.com		
Execute New Open Save Report Export Stop Quit			
Data Explore Test Transform Cluster Associate Model Evaluate Log			
Type: ○ Tree ○ Forest ● Boost ○ SVM ○ Linear ○ Neural Net ○ Survival ○ All			
Target: RainTomorrow Model Builder: ada			
Number of Trees: 50 🗘 🗆 Stumps Defaults Importance Errors List Draw 1			
Max Depth: 30 🗘 Min Split: 20 🗘 Complexity: 0.0100 🗘 X Val: 10 🗘 Continue			
Summary of the Ada Boost model:			
<pre>Call: ada(RainTomorrow ~ ., data = crs\$dataset[crs\$train, c(crs\$input,</pre>	101		
Out-Of-Bag Error: 0.094 iteration= 41 Additional Estimates of number of iterations: train.err1 train.kap1			
The Ada Boost model has been built. Time taken: 1.62 secs)		
The Ada Boost model has been built. Time taken: 1.02 secs			

Boosting

Figure 13.3: The variable importance plot for a boosted model.

Evaluate

○ R Data Miner - [Rattle (weather.csv)]
Project Tools Settings Help Rattle Version 2.6.7 togaware.com
Execute New Open Save Report Export Stop Quit
Data Explore Test Transform Cluster Associate Model Evaluate Log
Type: Error Matrix O Risk O Cost Curve O Hand O Lift O ROC O Precision O Sensitivity O Prv Ob O Score
Model: ☑ Tree ☐ Boost ☐ Forest ☐ SVM ☐ Linear ☐ Neural Net ☐ Survival ☐ KMeans ☐ HClust
Data: O Training O Validation Testing O Full O Enter O CSV File Mm O R Dataset
Risk Variable: RISK_MM Report: © Class O Probability Include: © Identifiers O A
Error matrix for the Decision Tree model on weather.csv [test] (counts):
Predicted Actual No Yes No 35 6 Yes 5 10
Error matrix for the Decision Tree model on weather.csv [test] (%):
Predicted Actual No Yes No 62 11 Yes 9 18
Overall error: 0.1964
H D
Generated confusion matrix.

Evaluation Using the Training Dataset:

idation C	51116 61	110	8	Davas	500.			
Count		Pre	dict		Percentage		Pre	dict
		No	Yes				No	Yes
Actual	No	205	10		Actual	No	80	4
	Yes	15	26			Yes	6	10

Evaluation Using the Validation Dataset:

Count		Predict			Percentage		Predict		
		No	Yes					No	Yes
Actual	No	39	5	_		Actual	No	72	9
	Yes	5	5				Yes	9	9

Evaluation Using the Testing Dataset:

Count		Predict			Percentage		Pre	dict
		No	Yes				No	Yes
Actual	No	35	6		Actual	No	62	11
	Yes	5	10			Yes	9	18

Evaluation Using the Full Dataset:

Count		Predict		Percentage	9	Predict	
		No	Yes			No	Yes
Actual N	О	279	21	Actua	l No	76	6
Y_{i}	es	25	41		Yes	7	11

Figure 15.5: Four risk charts displayed to compare performances of multiple model builders on the audit dataset.

First Model (example)

First model

Once we have processed our data, we can build a model

- 1) Click on the Execute button
 - Rattle will notice that no dataset has been identified
- 2) The sample "weather" dataset will be offered
 - Click "Yes"
- 3) Click on the Model tab
 - This is where we tell Rattle what kind of model we want to build
- 4) Click on the Execute button.

Building a Model

R Data Miner - [Rattle (weather.csv)]	×
Project Tools Settings Help	Rattle Version 2.6.7 <u>togaware.com</u>
Execute New Open Save Report Export Stop Quit	
Data Explore Test Transform Cluster Associate Model Evaluate Log	
Type: Tree O Forest O Boost O SVM O Linear O Neural Net O Survival O All	
Target: RainTomorrow Algorithm: ● Traditional ○ Conditional	Model Builder: rpart
Min Split: 20 Amax Depth: 30 Priors:	☐ Include Missing
Min Bucket: 7 © Complexity: 0.0100 © Loss Matric:	Rules Draw
Summary of the Decision Tree model for Classification (built using 'rpart'):	^
n= 256	
node), split, n, loss, yval, (yprob) * denotes terminal node	
1) root 256 41 No (0.83984 0.16016) 2) Pressure3pm>=1012 204 16 No (0.92157 0.07843) 4) Cloud3pm< 7.5 195 10 No (0.94872 0.05128) * 5) Cloud3pm>=7.5 9 3 Yes (0.33333 0.66667) * 3) Pressure3pm< 1012 52 25 No (0.51923 0.48077) 6) Sunshine>=8.85 25 5 No (0.80000 0.20000) * 7) Sunshine< 8.85 27 7 Yes (0.25926 0.74074) *	
Classification tree:	
The Decision Tree model has been built. Time taken: 0.03 secs	

Figure 2.5

Figure 2.6: The target variable, RainTomorrow, is skewed, with Yes being quite under-represented

Appendix

Installation


```
Install R
```

```
www.r-project.org
```

Start R

Install Rattle

> install.packages("rattle")

Load rattle into the R library

- > library(rattle)
- > rattle()

Articles on Rattle

- Rattle: A Data Mining GUI for R
- http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Williams.pdf
- Getting started with data mining in R using Rattle
- http://techpad.co.uk/content.php?sid=240

R Resources (sample)

Data Manipulation with R (Spector, 2008) - covers basic data structures, reading and writing data, subscripting, manipulating, aggregating, and reshaping data

- Introductory Statistics with R (Dalgaard, 2008) good introduction to statistics using R.
- ► Modern Applied Statistics with S (Venables and Ripley, 2002 an extensive introduction to statistics using R.
- Data Analysis and Graphics Using R (Maindonald and Braun, 2007) excellent practical coverage of many aspects of exploring and modelling data using R
- ➤ The Elements of Statistical Learning (Hastie et al., 2009) is a more mathematical treatise, covering all of the machine learning techniques discussed in this book in quite some mathematical depth.
- R for SAS and SPSS Users (Muenchen, 2008) is an excellent choice
- Lattice: Multivariate Data Visualization with R (Sarkar, 2008) covers
- the extensive capabilities of one of the graphics/plotting packages available for R.
- ggplot2: Elegant Graphics for Data Analysis (Wickham, 2009) newer graphics framework is detailed
- ▶ Bivand et al. (2008) cover applied spatial data analysis,
- ► Kleiber and Zeileis (2008) cover applied econometrics
- Cowpertwait and Metcalfe (2009) cover time series

Agenda

- ► Intro
- Data mining
- ► Rattle installation
- ► Rattle workflow
- Appendix

"Data Mining with Rattle and R"

DIT Analytics Club 07 March, 2013 "Peadar Kearney's", Dame Street

Colman McMahon

colman@thedata.co

Linked in _o www.linkedin.com/in/colmanmcmahon