

# Aspects of our project



## **Target**

Recommending a movie from the given dataset.

Predicting the rating of unwatched movies.



### Methods

Data Preprocessing

Content Based Recommendation

Collaborative Filtering

## Some Problems we faced....

- URLs' provided were not functioning.
- Sparsity of the Data.
- Movies were 20th Century classics.
   ( Didn't watch many of those ⊗⊗)



# Data Pre-processing

### **♦ Steps:**

- **1.** Cleaning and merging the dataset.
- 2. Creating Movie-Genre Matrix

### **OUTPUT:**

| movie_id | movie_title             | rel_date        | URL                                                   | unknown | Action | Adventure | Animation | Child | Comedy | ••• | Fantasy | Film-<br>Noir | Horror | Musical | Mystery | Romance | Sci-<br>Fi | Thriller | War | W |
|----------|-------------------------|-----------------|-------------------------------------------------------|---------|--------|-----------|-----------|-------|--------|-----|---------|---------------|--------|---------|---------|---------|------------|----------|-----|---|
| 1        | Toy Story<br>(1995)     | 01-Jan-<br>1995 | http://us.imdb.com/M/title-<br>exact?Toy%20Story%2    | 0       | 0      | 0         | 1         | 1     | 1      |     | 0       | 0             | 0      | 0       | 0       | 0       | 0          | 0        | 0   |   |
| 2        | GoldenEye<br>(1995)     | 01-Jan-<br>1995 | http://us.imdb.com/M/title-<br>exact?GoldenEye%20(    | 0       | 1      | 1         | 0         | 0     | 0      |     | 0       | 0             | 0      | 0       | 0       | 0       | 0          | 1        | 0   |   |
| 3        | Four<br>Rooms<br>(1995) | 01-Jan-<br>1995 | http://us.imdb.com/M/title-<br>exact?Four%20Rooms%    | 0       | 0      | 0         | 0         | 0     | 0      |     | 0       | 0             | 0      | 0       | 0       | 0       | 0          | 1        | 0   |   |
| 4        | Get Shorty<br>(1995)    | 01-Jan-<br>1995 | http://us.imdb.com/M/title-<br>exact?Get%20Shorty%    | 0       | 1      | 0         | 0         | 0     | 1      |     | 0       | 0             | 0      | 0       | 0       | 0       | 0          | 0        | 0   |   |
| 5        | Copycat<br>(1995)       | 01-Jan-<br>1995 | http://us.imdb.com/M/title-<br>exact?Copycat%20(1995) | 0       | 0      | 0         | 0         | 0     | 0      |     | 0       | 0             | 0      | 0       | 0       | 0       | 0          | 1        | 0   |   |

### Recommender System

Content Based

- > Genre based.
- Based on average Rating.
- Recommending the 'Genre'





### Target movie: The Lion King

Binary Feature matrix

Applies straight forward comparison between movies and genres

Bag Of Words

Creates a list of words from genres to apply similarity.

Tf - Idf technique

Assigns weights to important and frequently occurred terms

| 98    | Snow White and the Seven Dwarfs | (1937) |
|-------|---------------------------------|--------|
| 102   | All Dogs Go to Heaven 2         | (1996) |
| 94    | Aladdin                         | (1992) |
| 101   | Aristocats, The                 | (1970) |
| 90    | Nightmare Before Christmas, The | (1993) |
| 141   | Bedknobs and Broomsticks        | (1971) |
| 131   | Wizard of Oz, The               | (1939) |
| 417   | Cinderella                      | (1950) |
| 419   | Alice in Wonderland             | (1951) |
| 431   | Fantasia                        | (1940) |
| Name: | movie title, dtype: object      |        |

| movie_title                                |     |
|--------------------------------------------|-----|
| Dumbo (1941)                               | 1.0 |
| Cinderella (1950)                          | 1.0 |
| Lion King, The (1994)                      | 1.0 |
| James and the Giant Peach (1996)           | 1.0 |
| Snow White and the Seven Dwarfs (1937)     | 1.0 |
| Three Caballeros, The (1945)               | 1.0 |
| Cats Don't Dance (1997)                    | 1.0 |
| All Dogs Go to Heaven 2 (1996)             | 1.0 |
| Beauty and the Beast (1991)                | 1.0 |
| Hunchback of Notre Dame, The (1996)        | 1.0 |
| Name: Lion King, The (1994), dtype: floate | 54  |

| movie_title                         |         |
|-------------------------------------|---------|
| James and the Giant Peach (1996)    | 1.0     |
| Cats Don't Dance (1997)             | 1.0     |
| Lion King, The (1994)               | 1.0     |
| Hunchback of Notre Dame, The (1996) | 1.0     |
| Beauty and the Beast (1991)         | 1.0     |
| Pete's Dragon (1977)                | 1.0     |
| Dumbo (1941)                        | 1.0     |
| Anastasia (1997)                    | 1.0     |
| Alice in Wonderland (1951)          | 1.0     |
| Fantasia (1940)                     | 1.0     |
| Name: Lion King, The (1994), dtype: | float64 |



The Little Mermaid



Tarzan

1000



Up



Snow White and the Seven Dwarfs

The Wizard of Oz 10.20



The Prince of Egypt



The Lion King III: Simba's Pride



Notre Dame



Toy Story

1995



Aladdin

1092

Special for the property of th



Beauty and the Beast



Mulan

1005 First soluting of the labitations distances disease from their of a process



Bambi

10112



Tangled

2901



Hercules

Pocahontas



Finding Nemo



Monsters, Inc.



Toy Story 3



How to Train Your Dragon

Long ago up Nooth on the behalf of Sock, Die people Tilling, Microsp. exists, to lose the bead to highly agostic line.



Ratatouille

A cut is second Names attended, of the committee of special Promote situations has been by the second promote and the planes.



The Jungle Book



WALL-E



**Brother Bear** 



The Emperor's New Groove

2000

to Bro. accounted commity from the balls, of Direct, Day cate and coulty Response Source (Day 10 Readed to a



Oliver & Company

1000



MOVIES Dumbo 1042



The Many Adventures of...

Plant, a bene of very little boars, and of his hamile is the Mandrad Acros Wood sing from any Brough.



The Fox and the Hound

1001

Where we untopoled has each a factor has long branch between temperature. Science as pupe, their branching gro



The Incredibles



MOSTER Robin Hood

1973



#### Alice in Wonderland 1951

















Simply recommending based on high average rating of the movie given by users.

> Suggesting Genres to the users based on past activity.

```
suggest(85)

✓ 0.0s

Python

['Comedy',

'Romance',

'Drama War',

'Child',

'Child Comedy',

'Comedy Musical Romance',

'Crime Drama Mystery',

'Drama',

'Drama Musical',

'Drama Romance War']
```

## User Based Collaborative filtering

- ☐ Created a normalized matrix to apply *Pearson Correlation*.
- ☐ Dropped movies that are already watched by user.
- □ Recommended movie to the user based on similarity score as *weight* of the user.
- □ Predicting the rating by the user.

|     | movie | movie_score | new_rating |
|-----|-------|-------------|------------|
| 155 | 875   | 1.952381    | 4.826667   |
| 176 | 955   | 1.952381    | 4.826667   |
| 115 | 511   | 1.773333    | 4.647619   |
| 19  | 133   | 1.773333    | 4.647619   |
| 129 | 607   | 1.773333    | 4.647619   |
| 18  | 132   | 1.773333    | 4.647619   |
| 117 | 513   | 1.773333    | 4.647619   |
| 9   | 56    | 1.773333    | 4.647619   |
| 25  | 187   | 1.773333    | 4.647619   |
| 112 | 475   | 1.476190    | 4.350476   |

## Item based Collaborative filtering

- Sorting the dataset by movies that are NOT watched by the user.
- ☐Getting a similarity score between target movie and watched movies.
- □ Predicts the rating by calculating *weighted mean* of ratings of similar watched movies

the predicted rating for movie id 20 by user 90 is 0.54067

|          | 90        | similarity_scores |
|----------|-----------|-------------------|
| movie_id | 30        | Similarity_Scores |
| 1192     | 1.615385  | 1.000000          |
| 836      | 1.230769  | 1.000000          |
| 821      | -0.045455 | 1.000000          |
| 19       | -0.956522 | 1.000000          |
| 889      | -0.384615 | 0.878310          |
| 1097     | 0.500000  | 0.852803          |
| 903      | 0.888889  | 0.774597          |
| 18       | 0.200000  | 0.765532          |
| 1137     | -1.965517 | 0.755929          |
| 632      | 1.103448  | 0.740593          |
|          |           |                   |

# Model Based filtering using KNN

- ☐ Takes input movie name/id and gets its ratings vector to use as input.
- ☐ Defined a movie\_engine function which sorts the nearest neighbours by their distances from input movie,

```
#getting recommendations
  no recommen = 10
  movie engine('Lion King, The (1994)', matrix, no recommen)
✓ 0.0s
                                                Distance
9
                               Maverick (1994)
                                                0.633655
8
                             Young Guns (1988)
                                                0.648028
                           Billy Madison (1995)
                                                0.661017
6
                            Promesse, La (1996)
                                                0.661710
5
                                    Jack (1996)
                                                0.662719
   Adventures of Priscilla, Queen of the Desert, ...
                                                0.669608
3
                             Career Girls (1997)
                                                0.672660
                 Nikita (La Femme Nikita) (1990)
                                                0.672883
                              Mary Reilly (1996)
                                                0.673278
```

## **OUR IDEAS**

- Did some exploratory data Analysis on the given data set from movielens.
- Getting Genres by profession.
- Average ratings by profession.
- Number of ratings by age group.
- Number of ratings by profession.
- Number of ratings by Gender.

### Average ratings given by the user to a Genre of a movie.

| genres   |          | Animation | Animation<br>Child | Animation<br>Child<br>Comedy | Animation<br>Child<br>Comedy<br>Fantasy | Animation<br>Child<br>Comedy<br>Musical | Animation<br>Child<br>Comedy<br>Romance | Animation<br>Child<br>Fantasy | Animation<br>Child<br>Musical | Animation<br>Child<br>Musical<br>Romance | Romance<br>Thriller | Romance<br>War | Sci-<br>Fi | Sci-Fi<br>Thriller | Sci-Fi<br>Thriller<br>War | Sci-<br>Fi<br>War | Thriller | Thriller<br>War |
|----------|----------|-----------|--------------------|------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------|-------------------------------|------------------------------------------|---------------------|----------------|------------|--------------------|---------------------------|-------------------|----------|-----------------|
| user     |          |           |                    |                              |                                         |                                         |                                         |                               |                               |                                          |                     |                |            |                    |                           |                   |          |                 |
|          | 2.625    | 5.0       | 2.0                | 5.0                          | 0.0                                     | 4.0                                     | 0.0                                     | 0.0                           | 2.333333                      | 0.0                                      | 4.0                 | 4.0            | 4.100      | 3.142857           | 5.0                       | 3.0               | 3.538462 | 0.0             |
| 2        | 0.000    | 0.0       | 0.0                | 4.0                          | 0.0                                     | 0.0                                     | 0.0                                     | 0.0                           | 0.000000                      | 0.0                                      | 0.0                 | 0.0            | 0.000      | 3.000000           | 0.0                       | 0.0               | 3.666667 | 0.0             |
| 3        | 0.000    | 0.0       | 0.0                | 0.0                          | 0.0                                     | 0.0                                     | 0.0                                     | 0.0                           | 0.000000                      | 0.0                                      | 0.0                 | 0.0            | 0.000      | 2.500000           | 0.0                       | 3.0               | 2.750000 | 0.0             |
| 4        | 3.000    | 0.0       | 0.0                | 0.0                          | 0.0                                     | 0.0                                     | 0.0                                     | 0.0                           | 0.000000                      | 0.0                                      | 0.0                 | 0.0            | 0.000      | 2.500000           | 0.0                       | 4.0               | 5.000000 | 0.0             |
| 5        | 3.500    | 0.0       | 2.5                | 4.0                          | 0.0                                     | 4.0                                     | 0.0                                     | 0.0                           | 3.250000                      | 0.0                                      | 0.0                 | 1.0            | 3.250      | 1.000000           | 3.0                       | 4.0               | 3.000000 | 0.0             |
|          |          |           |                    |                              |                                         |                                         |                                         |                               |                               |                                          |                     |                |            |                    |                           |                   |          |                 |
| 939      | 2.000    | 0.0       | 0.0                | 0.0                          | 0.0                                     | 4.0                                     | 0.0                                     | 0.0                           | 0.000000                      | 0.0                                      | 0.0                 | 0.0            | 5.000      | 3.333333           | 0.0                       | 5.0               | 4.400000 | 0.0             |
| 940      | 4.000    | 0.0       | 0.0                | 0.0                          | 0.0                                     | 5.0                                     | 0.0                                     | 0.0                           | 4.000000                      | 0.0                                      | 3.0                 | 0.0            | 4.000      | 2.000000           | 4.0                       | 2.5               | 4.500000 | 3.0             |
| 941      | 4.000    | 0.0       | 0.0                | 5.0                          | 0.0                                     | 4.0                                     | 0.0                                     | 0.0                           | 0.000000                      | 0.0                                      | 0.0                 | 0.0            | 3.500      | 3.500000           | 0.0                       | 0.0               | 4.333333 | 0.0             |
| 942      | 4.500    | 0.0       | 4.0                | 0.0                          | 0.0                                     | 5.0                                     | 0.0                                     | 0.0                           | 5.000000                      | 0.0                                      | 5.0                 | 5.0            | 0.000      | 0.000000           | 0.0                       | 0.0               | 4.000000 | 4.0             |
|          | 4.000    | 0.0       | 3.0                | 0.0                          | 0.0                                     | 0.0                                     | 0.0                                     | 0.0                           | 0.000000                      | 0.0                                      | 3.5                 | 0.0            | 1.875      | 3.200000           | 0.0                       | 3.0               | 4.000000 | 0.0             |
| 943 rows | X 143 () | olumns    |                    |                              |                                         |                                         |                                         |                               |                               |                                          |                     |                |            |                    |                           |                   |          |                 |

```
top_genres_dict = {}
for index, row in fin.iterrows():

    profession = row['profession']
    genres = row['genre_5']

    genre_counts = pd.Series(genres).value_counts()

    top_genres = genre_counts.index[:3].tolist()
    top_genres_dict[profession] = top_genres

result_df = pd.DataFrame(list(top_genres_dict.items()), columns=['profession', 'top_5_genres'])
```

- From Genre recommendation data, we got the top\_5 genre liked by the user.
- Mapped the users with their profession and got the overall most liked genres by that profession.

|     | user | genre_5                                        |
|-----|------|------------------------------------------------|
| 0   | 1    | [Horror Sci-Fi Thriller, Drama Romance Sci-Fi  |
| 1   | 2    | [Crime Film-Noir Mystery Thriller, Comedy Dram |
| 2   | 3    | [Mystery Romance Thriller, Documentary, Crime  |
| 3   | 4    | [Crime Drama Thriller, Mystery, Crime Drama My |
| 4   | 5    | [Animation Comedy, Animation Comedy Thriller,  |
|     |      |                                                |
| 938 | 939  | [Drama War, Sci-Fi War, Sci-Fi, Comedy Romance |
| 939 | 940  | [Animation Child Comedy Musical, Comedy Crime, |
| 940 | 941  | [Animation Comedy Thriller, Animation Child Co |
| 941 | 942  | [Drama War, Drama Romance Sci-Fi War, Drama Th |
| 942 | 943  | [Crime Drama Thriller, Comedy Horror Sci-Fi, C |

```
for index, row in result_df.iterrows():
   print(f"{row['profession']}: {row['top_5_genres']}")
```

```
technician: ['Drama Horror', 'Romance Sci-Fi War', 'Animation Child Comedy Musical', 'Sci-Fi War', 'Crime Drama Thriller']
other: ['Drama Mystery Romance', 'Drama Musical', 'Sci-Fi', 'Drama Romance War', 'Comedy Drama']
writer: ['Drama Mystery', 'Comedy Musical', 'Child Comedy Musical', 'Sci-Fi War', 'Comedy Western']
executive: ['Romance', 'Musical Romance', 'Comedy Western', 'Comedy Crime', 'Crime Thriller']
administrator: ['Animation Child Comedy Musical', 'Comedy Crime', 'Child Comedy Drama', 'Drama Mystery Romance Thriller', 'Crime Drama']
student: ['Crime Drama Thriller', 'Comedy Horror Sci-Fi', 'Comedy Musical', 'Comedy Romance War', 'Crime Drama Romance Thriller']
lawyer: ['Child Drama Musical', 'Film-Noir Mystery Thriller', 'Film-Noir Sci-Fi', 'Comedy Crime Horror', 'Documentary']
educator: ['Animation Comedy Thriller', 'Romance Sci-Fi War', 'Drama Mystery', 'Crime Drama', 'Documentary Drama']
scientist: ['Drama Thriller', 'Sci-Fi War', 'Drama', 'Drama Romance', 'Thriller']
entertainment: ['Drama Sci-Fi', 'Crime Film-Noir Mystery Thriller', 'Drama Romance War', 'Comedy', 'Drama']
programmer: ['Drama', 'Sci-Fi War', 'Crime Thriller', 'Animation Child Comedy Musical', 'Horror Thriller']
librarian: ['Drama War', 'Drama Romance Sci-Fi War', 'Drama Thriller War', 'Drama Western', 'Film-Noir Mystery']
homemaker: ['Crime', 'Comedy Musical Romance', 'Crime Drama Mystery', 'Drama Thriller', 'Drama Sci-Fi Thriller']
artist: ['Romance', 'Comedy Drama', 'Drama Romance', 'Crime Drama', 'Crime Film-Noir Mystery Thriller']
engineer: ['Comedy Horror', 'Film-Noir Sci-Fi', 'Comedy Romance War', 'Drama Mystery', 'Drama Romance Sci-Fi War']
marketing: ['Child Comedy Musical', 'War', 'Horror Romance Thriller', 'Drama Mystery', 'Musical']
none: ['Musical', 'Crime Drama Romance Thriller', 'Crime Drama Thriller', 'Mystery Thriller', 'Drama Musical']
healthcare: ['', 'Comedy Drama', 'Horror Sci-Fi Thriller', 'Drama War', 'Mystery']
retired: ['Western', 'Crime Drama Thriller', 'Comedy Thriller', 'Drama Mystery', 'Drama Romance War']
salesman: ['Crime Drama Thriller', 'Horror Mystery Thriller', 'Horror Romance Thriller', 'Horror Thriller', 'Mystery']
doctor: ['Drama Romance War', 'Drama Thriller', 'Comedy', 'Drama Romance', 'Thriller']
```





|   | gender | average_rating |
|---|--------|----------------|
| 0 | F      | 3.587179       |
| 1 | М      | 3.588604       |

|   | gender | ratings |
|---|--------|---------|
| 0 | F      | 273     |
| 1 | М      | 670     |

## Pizza powered Prowess:)

- First and foremost, we are glad the data was of movies! Didn't lose interest at any point of project timeline.
- ➤ Having watched less movies from the dataset, it was challenging to compare the correctness of output with respect to the input, unlike Topic-based modelling.
- > High fives to Kritnandan's team (MK) for collaborating with us and helping us out.
- ➤ Lastly, We wonder how true Tarnoff's Axiom is:

Monkey with a Typewriter + Infinite time = Works of Shakespeare

Humans with a computer + Infinite time = PowerPoint Slides

# THANK YOU!