LEARNING OUTCOME #1: "an ability to analyze and design CMOS logic gates."

Multiple Choice – select the <u>single</u> most appropriate response for each question.

Note that "none of the above" MAY be a VALID ANSWER.

- 1. The **unsigned hexadecimal** number **(537)**₁₆ is equivalent to the following **unsigned binary** number:
 - (A) $(101\ 11\ 111)_2$
 - (B) $(101\ 011\ 111)_2$
 - (C) (101 0011 0111)₂
 - (D) all of the above
 - (E) none of the above
- 2. The expression $(X+Y)\cdot(X+Z) = X + Y\cdot Z$ is an example of:
 - (A) distributivity
 - (B) commutitivity
 - (C) associativity
 - (D) consensus
 - (E) none of the above
- 3. A circuit consisting of a level of **NOR gates** followed by a level of **AND gates** is **logically equivalent** to:
 - (A) a multi-input OR gate
 - (B) a multi-input AND gate
 - (C) a multi-input NOR gate
 - (D) a multi-input NAND gate
 - (E) none of the above

- 4. The **high impedance state** of a **tri-state buffer** is created by:
 - (A) turning "off" the PMOS transistor and turning "on" the NMOS transistor at the output of the buffer
 - (B) turning "off" both the PMOS and the NMOS transistors at the output of the buffer
 - (C) turning "on" both the PMOS and the NMOS transistors at the output of the buffer
 - (D) turning "on" the PMOS transistor and turning "off" the NMOS transistor at the output of the buffer
 - (E) none of the above
- 5. The **direction that current flows** between the drain (D) and source (S) of N-channel and P-channel MOSFETS is as follows:
 - (A) N-channel: $D \rightarrow S$; P-channel: $S \rightarrow D$
 - (B) N-channel: $S \rightarrow D$; P-channel: $D \rightarrow S$
 - (C) N-channel: $D\rightarrow S$; P-channel: $D\rightarrow S$
 - (D) N-channel: $S \rightarrow D$; P-channel: $S \rightarrow D$
 - (E) none of the above

- 6. For most CMOS logic families, the **maximum acceptable V_{IL}** is:
 - (A) 10% of the power supply voltage
 - (B) 30% of the power supply voltage
 - (C) 50% of the power supply voltage
 - (D) 70% of the power supply voltage
 - (E) 90% of the power supply voltage
- 7. The **nominal (minimum) case** for the **outputs of logic family "A"** to be able to successfully drive **the inputs of logic family "B"** is:
 - (A) fanout_{A \to B} \leq 1 and DCNM_{A \to B} < 0
 - (B) fanout_{A \rightarrow B} \leq 0 and DCNM_{A \rightarrow B} < 1
 - (C) fanout_{A o B} \geq 1 and DCNM_{A o B} > 0
 - (D) fanout_{A \rightarrow B} \geq 0 and DCNM_{A \rightarrow B} > 1
 - (E) none of the above
- 8. If a CMOS gate input voltage is 50% of its V_{cc} (power supply) voltage, then:
 - (A) the logic gate will dissipate *less* power than it would if the input was 1% of its power supply voltage
 - (B) the logic gate will dissipate *less* power than it would if the input was 99% of its power supply voltage
 - (C) the logic gate will dissipate *more* power than it would if the input was *either* 1% *or* 99% of its power supply voltage
 - (D) the logic gate will dissipate *no* power
 - (E) none of the above
- 9. A microcontroller designed to operate over a power supply range of 2 V to 4 V and a clock frequency range of 0 to 60 MHz dissipates a maximum of 320 mW. If the supply voltage used is 3 V and the clock frequency is 40 MHz, the power dissipation of the microcontroller will be reduced to:
 - (A) 60 mW
 - (B) 120 mW
 - (C) 160 mW
 - (D) 180 mW
 - (E) none of the above
- 10. A microcontroller designed to operate over a power supply range of 2 V to 4 V and a clock frequency range of 0 to 60 MHz dissipates a maximum of 320 mW. If the supply voltage used is 4 V and the clock frequency is 1 Hz, the power dissipation of the microcontroller will be reduced to:
 - (A) 60 mW
 - (B) 120 mW
 - (C) 160 mW
 - (D) 180 mW
 - (E) none of the above

The following table applies to questions 11 through 14:

Table 1. DC Characteristics of a Hypothetical Logic Family.

$V_{\rm CC} = 5 \text{ V}$	$V_{OH} = 3.50 \text{ V}$	$V_{OL} = 0.50 \text{ V}$	$V_{IH}=2.50\;V$	$V_{IL} = 1.00 \text{ V}$
$V_{TH} = (V_{OH} - V_{OL})/2$	$I_{OH} = -5.0 \text{ mA}$	$I_{OL} = 10 \text{ mA}$	$I_{IH} = 500 \mu A$	$I_{IL} = -2.0 \text{ mA}$

- 11. The *DC noise margin* for this logic family is:
 - (A) 0.50 V
 - (B) 1.00 V
 - (C) 1.50 V
 - (D) 2.00 V
 - (E) none of the above
- 12. The *practical fanout* for this logic family is:
 - (A) 1
 - (B) 2
 - (C) 5
 - (D) 10
 - (E) none of the above
- 13. When interfacing an **LED** that has a **forward voltage of 1.5 V** to this logic family in a *current sourcing* configuration, **maximum brightness** will be achieved (within the rated specifications) using a current limiting resistor of the value:
 - (A) 200Ω
 - (B) 300Ω
 - (C) 400Ω
 - (D) 500Ω
 - (E) none of the above
- 14. When interfacing an **LED** that has a **forward voltage of 1.5 V** to this logic family in a **current sinking** configuration, **maximum brightness** will be achieved (within the rated specifications) using a current limiting resistor of the value:
 - (A) 200Ω
 - (B) 300Ω
 - (C) 400Ω
 - (D) 500Ω
 - (E) none of the above

The following circuit applies to questions 15 through 17:

- 15. If the *minimum* value of pull-up resistor **R** used for this circuit is **1000** Ω , the I_{OLmax} of each 7403 open-drain NAND gate is specified to be **+5 mA**, and the I_{IL} required by the 7404 inverter is **-0.5 mA**, then the V_{IL} provided to the 7404 input is guaranteed to be *no higher than:*
 - (A) 0.1 V
 - (B) 0.5 V
 - (C) 4.5 V
 - (D) 5.0 V
 - (E) none of the above
- 16. If the *maximum* value of pull-up resistor **R** used for this circuit is **10,000** Ω , the off-state leakage current of each of the 7403 open-drain NAND gate outputs is **+10** μ **A**, and the I_{IH} required by the 7404 inverter is **+20** μ **A**, then the V_{IH} provided to the 7404 input is guaranteed to be *no lower than:*
 - (A) 0.1 V
 - (B) 0.5 V
 - (C) 4.5 V
 - (D) 5.0 V
 - (E) none of the above
- 17. A valid reason for choosing the *minimum value* of R (provided above) is:
 - (A) to minimize the fall time (t_{THL}) of the circuit
 - (B) to minimize the rise time (t_{TLH}) of the circuit
 - (C) to minimize the power dissipation of the circuit
 - (D) to minimize the DC noise margin of the circuit
 - (E) none of the above

The following circuit applies to questions 18 through 20:

- 18. This circuit implements the following type of logic gate:
 - (A) two-input OR
 - (B) two-input AND
 - (C) two-input NOR
 - $(D) \ \ two\text{-input NAND}$
 - (E) none of the above
- 19. If A = 5V and B = 5V, the output F will be:
 - (A) disconnected ("floating" or high impedance)
 - (B) 0 V
 - (C) 2.5 V
 - (D) 5.0 V
 - (E) none of the above
- 20. If the "on" resistance of both the P-channel and N-channel MOSFETs is **50** Ω , the amount of power this circuit will dissipate when input **A = 5V** and input **B = GND** is:
 - (A) 25 mW
 - (B) 50 mW
 - (C) 250 mW
 - (D) 500 mW
 - (E) none of the above

The following circuit applies to questions 21 through 23:

- 21. This circuit implements the following type of logic gate:
 - (A) two-input OR
 - (B) two-input AND
 - (C) two-input NOR
 - (D) two-input NAND
 - (E) none of the above
- 22. If the "on" resistance of the MOSFET labeled " $\mathbf{Q_P}$ " is **200** Ω and the "on" resistance of the MOSFET labeled " $\mathbf{Q_N}$ " is **100** Ω , then if **10 mA** of current is **sourced** in the high state, $\mathbf{V_{OH}}$ will be:
 - (A) 1 V
 - (B) 2 V
 - (C) 3 V
 - (D) 4 V
 - (E) none of the above
- 23. If the "on" resistance of the MOSFET labeled " $\mathbf{Q_P}$ " is **200** Ω and the "on" resistance of the MOSFET labeled " $\mathbf{Q_N}$ " is **100** Ω , then if **10 mA** of current is **sunk** in the low state, $\mathbf{V_{OL}}$ will be:
 - (A) 1 V
 - (B) 2 V
 - (C) 3 V
 - (D) 4 V
 - (E) none of the above

The following figure applies to questions 24 through 25 (assume each horizontal division is **1 nanosecond**):

- 24. Based on the definition provided in the course text, the **fall time** (t_{THL}) for the inverter is approximately:
 - (A) 1.0 ns
 - (B) 1.5 ns
 - (C) 2.0 ns
 - (D) 3.0 ns
 - (E) none of the above
- 25. The **rise propagation delay** (t_{PLH}) for the inverter is approximately:
 - (A) 1.0 ns
 - (B) 1.5 ns
 - (C) 2.0 ns
 - (D) 3.0 ns
 - (E) none of the above

- 26. A "floating" (unconnected) gate input will most likely cause the gate's output to:
 - (A) always be high
 - (B) always be low
 - (C) be one-half (50%) of the supply voltage
 - (D) be unpredictable
 - (E) none of the above
- 27. A CMOS circuit only consumes a **significant** amount of power:
 - (A) when warming up
 - (B) when cooling off
 - (C) during output transitions
 - (D) during input transitions
 - (E) none of the above
- 28. The **primary purpose** of decoupling capacitors is to:
 - (A) provide an instantaneous source of current during output transitions
 - (B) increase the output current sourcing/sinking capability
 - (C) prevent V_{OH} from falling below V_{OHmin}
 - (D) prevent V_{OL} from rising above V_{OLmax}
 - (E) none of the above
- 29. When a gate's **rated loL** specification is **exceeded**, the following is likely to happen:
 - (A) the V_{OH} of the gate will increase and the t_{TLH} of the gate will decrease
 - (B) the V_{OL} of the gate will decrease and the t_{THL} of the gate will increase
 - (C) the V_{OH} of the gate will decrease and the t_{TLH} of the gate will increase
 - (D) the V_{OL} of the gate will increase and the t_{THL} of the gate will increase
 - (E) none of the above
- 30. If a CMOS inverter drives a **capacitive load of 100 pF** and the "on" resistance of its P-channel MOSFET is **20** Ω , then the gate's output rise time (t_{TLH}) is approximately:
 - (A) 0.2 ns
 - (B) 2 ns
 - (C) 20 ns
 - (D) 2000 ns
 - (E) none of the above