OPRF Lower Bound

Jake Januzelli, Naman Kumar, Mike Rosulek October 9, 2024

1 Definitions

Let PRF: $\{0,1\}^{\lambda} \times \{0,1\}^{m(\lambda)} \to \{0,1\}^{n(\lambda)}$ be a pseudorandom function with stretch $n \in \mathsf{poly}(\lambda)$. We define the OPRF Functionality $\mathcal{F}_{\mathsf{OPRF}}$ as follows.

OPRF Functionality $\mathcal{F}_{\mathsf{OPRF}}$

Inputs. S has input OPRF key $k \in \{0,1\}^{\lambda}$, \mathcal{R} has input some $x \in \{0,1\}^{m(\lambda)}$ in the domain of the PRF.

Outputs. \mathcal{R} gets $\mathsf{PRF}_k(x)$.

We further define the OT functionality as below.

OT Functionality $\mathcal{F}_{\mathsf{OT}}$

Inputs. S has input two strings $(m_0, m_1) \in \{0, 1\}^{\mathsf{poly}(\lambda)}$ while receiver has a bit b. **Outputs.** \mathcal{R} gets m_b .

2 Proof of Insecurity of 'Trivial' PRF

We define $\mathsf{PRF}_k(x) = H(k||x)$ where $H : \{0,1\}^* \to \{0,1\}^{n(\lambda)}$ is a random oracle. Clearly this is a PRF; as the output of a random oracle, it is indistinguishable from a random function. Let \mathcal{S} be an unbounded oracle TM and \mathcal{R} be an oracle PPTM where both have access to the random oracle H.

We will prove the following theorem.

Theorem 2.1 (Communication complexity of OPRF, Perfect Completeness and Perfect Privacy). Let PRF be a pseudorandom function as defined above, and S and R have inputs as defined in $\mathcal{F}_{\mathsf{OPRF}}$ respectively. Then any protocol Π_{OPRF} which realizes $\mathcal{F}_{\mathsf{OPRF}}$ with perfect correctness and perfect privacy in the $\mathcal{F}_{\mathsf{OT}}$ -hybrid model must have total communication complexity proportional to $2^{m(\lambda)}$.

Brief Sketch. Our argument proceeds as follows. Note that in order to evaluate the PRF at any point x, the oracle call H(k||x) must be made. Clearly this oracle call cannot be made by the PPT receiver, since otherwise the receiver's view will consist of a polynomial-sized list of oracle queries to H which contains k||x – this violates sender privacy as receiver learns k. Thus, this oracle call must be made by the sender.

Thus, the sender must make the oracle call H(k||x). Note that by perfect correctness, the receiver must obtain this value regardless of the private randomness of the sender. Furthermore, this call