ÀLGEBRA COMMUTATIVA

Lliurament. Curs 2023-2024

Data límit del lliurament: divendres 17 de maig.

En tot el lliurament, R serà un DIP.

Exercici 1. Sigui M un R-mòdul M.

(i) Si $m \in M$, definim l'anul·lador de m com

$$\operatorname{ann}_{R}(m) = \{ r \in R \mid rm = 0 \}.$$

Proveu que $\operatorname{ann}_R(m)$ és un ideal de R.

(ii) Diem que m és de torsió si $\operatorname{ann}_R(m) \neq 0$ i definim el submòdul de torsió de M com

$$T(M) = \{ m \in M \mid \operatorname{ann}_R(m) \neq 0 \}.$$

Diem que M és lliure de torsió si T(M)=0. Proveu que T(M) és un submòdul de M i M/T(M) és lliure de torsió.

- (iii) Proveu que $T(M \oplus N) = T(M) \oplus T(N)$.
- (iv) Calculeu T(R) i T(R/(a)).

Exercici 2. Proveu que si M és un mòdul finitament generat i lliure de torsió és lliure. (Indicació: Agafeu un sistema mínim de generadors $\{m_1, \ldots, m_s\}$ i poseu M_i el submòdul generat pels i primers. Proveu que M_1 és lliure. Sigui $j \geq 1$ el més gran de manera que M_j és lliure. Si j < s, aleshores M_{j+1} no és lliure i existeix $x \in R$ no nul tal que la multiplicació per x defineix un isomorfisme de M_{j+1} en un lliure, la qual cosa és impossible).)

Exercici 3. Sigui M un R -mòdul finitament generat. Proveu que la sucessió exacta curta

$$0 \to T(M) \to M \to M/T(M) \to 0$$

és escindida. Deduïu que M és isomorf a la suma directa del seu submòdul de torsió i un mòdul lliure. Proveu que aquesta descomposició de M com a suma directa d'un mòdul de torsió i un mòdul lliure és única tret d'isomorfisme.

Exercici 4. Sigui M un R-mòdul de torsió, és a dir, T(M) = M. Per a cada ideal (r) de R (recordem que és DIP), definim el submòdul (r)-primari de M com

$$T_{(r)} := \{ m \in M \mid r^n m = 0 \text{ per algun } n \ge 0 \}.$$

- (i) Proveu que $T_{(r)}$ és independent del generador que triem per l'ideal.
- (ii) Proveu que si r, s són coprimers, llavors $T_{(rs)} \cong T_{(r)} \oplus T_{(s)}$ (feu servir Bézout quan calgui).
- (iii) Proveu que $M \cong \bigoplus_p T_p$, on p es mou en els primers de R.

Exercici 5 (opcional). Sigui p un primer i T_p un R -mòdul finitament generat, no nul, p-primari d'acord amb la definició de l'exercici anterior.

- (i) Sigui ann $(T_p) = \{r \in R \mid rt = 0 \text{ per a tot } t \in T_p\}$. Proveu que és un ideal propi de R, generat per p^N per algun N.
- (ii) Suposem que T_p està generat per $\{t_1, \ldots, t_s\}$. Proveu que hi ha un conjunt de generadors $\{y_1, \ldots, y_s\}$ de T_p tal que $\operatorname{ann}_R(y_1) = \operatorname{ann}(T_p) (=(p^N))$.
- (iii) Sigui $T_p' = T_p/\langle y_1 \rangle$. Proveu que T_p' és també finitament generat i p-primari. Si $y' \in T_p'$ satisfà $\operatorname{ann}_R(y')(p^m)$, llavors $m \leq N$ i existeix $y \in T_p$ tal que la seva classe mòdul $\langle y_1 \rangle$ és y_1' i $\operatorname{ann}_R(y) = (p^m)$.
- (iv) Proveu que existeixen enters positius $m_1 \leq m_2 \leq \cdots \leq m_s$ tals que ann $(T_p) = (p^{m_s})$ i un isomorfisme de mòduls

$$T_p \cong R/(p^{m_1}) \oplus \cdots \oplus R/(p^{m_s}).$$

(Indicació: Cal considerar sucessions exactes del tipus $0 \to \langle y_1 \rangle T_p \to T_p' \to 0$ i aplicar inducció).

Exercici 6. Sigui M un R-mòdul finitament generat. Aleshores

$$M\cong F\oplus T$$

on F és lliure i $T\cong\bigoplus_p T_p$. A més, per a cada p, tenim $T_p\cong R/(p^{m_1})\oplus R/(p^{m_s})$ per certs $m_1,\ldots m_s$.