

1- Persistent CSMA Protocol

- When a station has data to send:
 - It first listens to the channel to see if anyone else is transmitting at that moment.
 - If the channel is idle, the stations sends its data.
 - if the channel is busy, ... waits until it becomes idle. Then the station transmits a frame
 - $-\,$ if a $\underline{\text{collision}}\,\dots$ waits a random amount of time and starts all over again.
 - The protocol is called 1-persistent because the station transmits with a probability of 1 when it finds the channel idle

5 of 14

Carrier Sense Multiple Access Protocols

- Carrier Sense Multiple Access Protocols CSMA
- Protocols in which stations listen for a carrier (i.e., a transmission) and act accordingly are called carrier sense protocols
- Persistent and Nonpersistent CSMA
- Persistent নাছোড়বান্দাভাবে রত

1- Persistent CSMA Protocol

3 of 14

P-persistent CSMA

- It applies to slotted channels and works as follows.
 - When a station becomes ready to send, it senses the channel.
 - If it is idle, it transmits with a probability $\underline{\mathbf{p}}$.
 - With a probability $\mathbf{q} = \mathbf{1} \mathbf{p}$, it defers until the next slot.
 - If that slot is also idle, it either transmits or defers again, with probabilities p and q.
 - This process is repeated until either the frame has been transmitted or another station has begun transmitting.
 - if there had been a collision it waits a random time and starts again.
 - If the station initially senses that the channel is busy, it waits until the next slot and applies the above algorithm.

8 of 14

Collison Free Protocol • A Bit-Map Protocol • A Bit-Map Protocol • A Bit-Map Protocol • A Bit-Map Protocol • Trames • Contention slots • 0 1 2 3 4 5 6 7 1 1 1 1 1 5 1 5 1 5 2 Figure 4-6. The basic bit-map protocol.

