PROBKB Large-Scale Probabilistic Knowledge Base

Yang Chen

yang@cise.ufl.edu

Computer and Information Science and Engineering University of Florida

Aug 29, 2012

Outline

Introduction

Introduction

Examples

The PROBKB System

PROBKB Architecture

Markov Logic

Parallel Processing Using GraphLab and Datapath

References

References

- A knowledge base [3] is a special kind of database for knowledge management. A knowledge base provides a means for information to be collected, organized, shared, searched and utilized.
- A knowledge base helps machines understand humans, languages, and the world.

Knowledge bases-Introduction

Database - Microsoft Research research microsoft com/en-us/groups/db/

Increasing the usefulness of database systems to both business users and individuals

Which US universities have the best faculty for studying databases ... www.quora.com/Which-US-universities-have-the-best-faculty

Answer 1 of 5: Below is an incomplete list of schools that have very strong database groups in the US. Please forgive me if I forgot to include your favorite school.

Search FishBase

Mirrors : fishbase.org | fishbase.us | fishbase.de | fishbase.fr | fishbase.se | fishbase.tw | fishbase.cn | fishbase.gr. English | Español | Português (Br., Pt) ...

The Database Group at Georgia Tech

The research theme of the Database Group emphasizes the needs of engineering and science applications as the driving forces behind the development of new ...

Gale - Home

www.gale.cengage.com/

Select Search Type, Product Catalog, Site (e.g. Customer Service), Cart Wish List Sign. in My ... United States | Change Your Region ... Outside U.S. and Canada ...

Influenza Research Database: an integrated bioinformatics resource ... www.ncbi.nlm.nih.gov/gubmed/22260278

by RB Squires - 2012 - Cited by 2 - Related articles Jan 20, 2012 - Influenza Research Database: an integrated bioinformatics ... Davis, CA. USA Southeast Poultry Research Lab. US Department of ... databases. computational algorithms, external research groups, and the scientific literature

South Asia - World Bank Database Shows Export Markets Are ... web worldbank.org > ... > News & Events > What's New

May 24, 2012 - Search, South Asia, All, Click here for search results ..., and international Integration team of the World Bank's Development Research Croup

Data & Research - New Database Reveals Pattern of Services ...

Jul 9, 2012 - New Database: Transportation and professional services are especially protected ... manager of trade research at the World Bank's Development Research Group The U.S. and FU account for more than 60 percent of world services ... from Europe to South East Asia, but with surprisingly little empirical ...

The home page of the Parallel Databases Group at the IBM T.J. Watson Research

Database Research Group - Research - IBM

www.research.ibm.com/scalabledbi

College

Clemson

University

Diliff / Wikimedia Commons Location: Decatur, Georgia Blue Sun Photography / Location: Clemson, South

Outline

Introduction

Introduction

Examples

The PROBKB System

PROBKB Architecture

Markov Logic

Parallel Processing Using GraphLab and Datapath

References

References

Google Knowledge Graph [2]

Demo

Nell

 $\mathrm{NELL}\ [1]$ is a research project that attempts to create a computer system that learns over time to read the web.

Note that NELL produces uncertain results. This is typical among automatic extraction systems and is our major motivation to the develop a large-scale probabilistic knowledge base.

SHERLOCK-HOLMES

The SHERLOCK-HOLMES [7] is an open information extraction system consisting of two components:

- SHERLOCK [9], which learns inference rules offline, and
- HOLMES [8], which uses inference rules to answer queries online.

TUFFY-FELIX

The TUFFY-FELIX [5, 4] system is an Markov logic network [6] implementation that does large-scale probabilistic inference using an RDBMS.

- A bottom-up approach to grounding using an RDBMS.
- A hybrid in-database grounding and in-memory inference architecture.
- Novel partitioning, loading, and parallel algorithms.
- Task decomposition to achieve web-scale.

Outline

Introduction

Introduction

The PROBKB System

PROBKB Architecture

Markov Logic

Parallel Processing Using GraphLab and Datapath

References

References

Architecture

- Extracted entities, facts, and rules stored as relational model.
- Efficient grounding via a few relational operators.
- Parallel MCMC inference implemented as GIST operations.
- Incremental inference: save computation by focusing on least convergent variables.

PROBabilistic Knowledge Base

Outline

The PROBKB System

Markov Logic

A *Markov logic network* (MLN) [6] is a set of formulae with weights. Together with a finite set of constants $C = \{c_1, \ldots, c_{|C|}\}$, it defines a Markov network.

Weight	First-Order Logic			
0.7	$Fr(x,y) \land Fr(y,z) \rightarrow Fr(x,z)$			
1.5	$Sm(x) \rightarrow Ca(x)$			
1.1	$\operatorname{Fr}(x,y) \wedge \operatorname{Sm}(x) \rightarrow \operatorname{Sm}(y)$			

A set of constants (entities, or objects)

Table: Example Markov logic network.

$$C = \{A, B\}.$$

Figure: Grounded Markov network.

Markov Logic Inference

Grounding

Grounding is the process of substituting constants into MLN clauses.

The result of grounding is a *factor graph* (or *Markov network*) from which we can infer marginal probabilities for individual facts.

Challenges

- Memory-inefficient.
- Large graphical models are hard to do inference.

Markov Logic Inference

Solutions to Large-Scale Grounding

- Using an RDBMS: leveraging mature query optimization techniques and possibly MPP frameworks (e.g. Greenplum).
- Lazy inference [10]: only ground active clauses.
- Ontology (typing): reducing the number of possible groundings.
- First-order Horn clauses: easy to learn and do inference.

Results

We can ground the whole SHERLOCK-HOLMES dataset the first two rounds in 10 minutes using PostgreSQL, while the state-of-the-art implementation MLN (TUFFY [5]) crashes during its grouding phase.

#relations	10,672		
#rules	31,000		
#constants	1.1M		
#evidence	250,000		
#queries	10,672		
Tuffy	Crash		
ProbKB	10 min ¹		

Table: Dataset statistics and performance.

¹First two rounds

Markov Logic Inference

Inference-Computing Probabilities

The Markov random field defines a probability distribution on all nodes in it:

$$P(\mathbf{X} = \mathbf{x}) = \frac{1}{Z} \exp\left(\sum_{i} w_{i} n_{i}(\mathbf{x})\right),$$

where n_i is the number of ground clauses that satisfy clause i in the MLN and w_i is the weight of that clause. Z is the normalization constant, also called the *partition function*.

Markov Logic Inference

Metropolis-Hastings (MH)

- Exact inference: intractable due to Z.
- MCMC-MH: efficient since Z cancels out.
- MCMC-MH: only changed factors need to be considered [11]:

$$\begin{split} \frac{\pi(\mathbf{x})}{\pi(\mathbf{x}')} &= \frac{\frac{1}{Z} \prod_i \phi_i(\mathbf{x}_i)}{\frac{1}{Z} \prod_i \phi_i(\mathbf{x}_i')} \\ &= \frac{\prod_i \mathsf{having} \ x_{(k)} \ \phi_i(x_{(k)}, \mathbf{x})}{\prod_i \mathsf{having} \ x_{(k)} \ \phi_i(x_{(k)}', \mathbf{x})}. \end{split}$$

MCMC-MH Efficiency

•00000000

Introduction

Introduction

The PROBKB System

PROBKB Architecture
Markov Logic

Parallel Processing Using GraphLab and Datapath

References

References

GraphLab

Graph-Parallel

Map Reduce

Feature Cross
Extraction Validation
Computing Sufficient

Statistics

Graphical Models
Gibbs Sampling
Belief Propagation
Variational Opt.

Semi-Supervised
Learning
Label Propagation
CoFM

Collaborative Data-Mining
Filtering PageRank
Tensor Factorization Triangle Counting

GIST on Datapath

GraphLab Preliminary Results

#samples	10	100	200	500	State-of-the-art
IE	0.2s	2s	4s	10.2s	25.216s
ER	90.8s	181.5s	373s	>600s	225s
RC	5.2s	52.7s	111.3s	297.8s	Crashed
Sherlock-600	1.2s	12.6s	28.3s	65.1s	55min

Table: GraphLab-based parallel inference vs the state-of-the-art.

Datapath Preliminary Results

Figure: Inference over simulated factor graphs

Incremental MCMC

Goal

- Evolve over time.
- Learn from past samples.
- Integrate new evidence.

Incremental MCMC

The incremental maintenance algorithm adopts the Query-aware MCMC [12] technique:

- Assumption: not much new information is added to the knowledge base each time.
- Newly extracted knowledge serves as the query node.
- Maintaining samples for both old and new nodes.

Incremental Maintenance of MCMC Samples

The incremental MCMC proposal function T employs the following steps:

- 1. Sample the variable index space according to some distribution p reflecting influence of new nodes and recent sample behaviors.
- 2. Sample the selected variable according to some distribution q over that variable's domain, leaving all other variables unchanged.

We adjust the distribution p so that it focuses on newly added variables.

MCMC Maintenance Results

Note: This algorithm is still under development.

Questions?

Thank you!

Outline

Introduction

Introduction

Examples

The PROBKB System

PROBKB Architecture

Markov Logic

Parallel Processing Using GraphLab and Datapath

References

References

References I

A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E.R. Hruschka Jr. and T.M. Mitchell. Toward an architecture for never-ending language learning. In Proceedings of the Conference on Artificial Intelligence (AAAI), pages 1306–1313, 2010.

Google.

Introducing the knowledge graph: things, not strings, 2012.

A. Nath and P. Domingos.

Efficient belief propagation for utility maximization and repeated inference.

In Proceedings of the 24th AAAI Conference on Artificial Intelligence, 2010.

References II

F. Niu, C. Zhang, C. Ré, and J. Shavlik.

Felix: Scaling Inference for Markov Logic with an Operator-based Approach.

ArXiv e-prints, August 2011.

Feng Niu, Christopher Ré, AnHai Doan, and Jude W. Shavlik. Tuffy: Scaling up statistical inference in markov logic networks using an rdbms.

PVLDB, 4(6):373–384, 2011.

M. Richardson and P. Domingos.

Markov logic networks.

Machine learning, 62(1):107-136, 2006.

References III

S. Schoenmackers. Inference Over the Web.

PhD thesis, University of Washington, 2011.

S. Schoenmackers, O. Etzioni, and D.S. Weld. Scaling textual inference to the web.

In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 79–88. Association for Computational Linguistics, 2008.

S. Schoenmackers, O. Etzioni, D.S. Weld, and J. Davis. Learning first-order horn clauses from web text.

In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 1088–1098. Association for Computational Linguistics, 2010.

References IV

P. Singla and P. Domingos.

Memory-efficient inference in relational domains.

In PROCEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, volume 21, page 488. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2006.

Michael I Wick and Andrew McCallum. Queryaware mcmc.

In proceedings of the 25th Conference on Neural Information Processing Systems (NIPS), pages 2564-2572, 2011