

<u>Homework 2: Statistical Models,</u> <u>Estimation, and Confidence</u>

课程 > <u>Unit 2 Foundation of Inference</u> > <u>Intervals</u>

1. Confidence Intervals for Curved

> Gaussian Family

1. Confidence Intervals for Curved Gaussian Family

(a)

0/1 point (graded)

Let X_1,\ldots,X_n be i.i.d. random variables with distribution $\mathcal{N}\left(heta, heta
ight)$, for some unknown parameter heta>0 .

True or False: The sample average \overline{X}_n follows a normal distribution for any integer $n \geq 1$.

○ True ✔

False X

Solution:

As a sum of independent normal variables, \overline{X}_n again follows a normal distribution. This is a special property of normal variables.

提交

你已经尝试了1次(总共可以尝试1次)

1 Answers are displayed within the problem

(b)

2/2 points (graded)

What is the expectation and the variance of $\overline{m{X}}_{m{n}}$?

$$\mathbb{E}\left[\overline{X}_n
ight] = egin{bmatrix} au_{ ext{heta}} & m{ au}_{ ext{Answer: theta}} \ m{ heta} & m{ heta} &$$

STANDARD NOTATION

Solution:

As a sum of independent normal variables, \overline{X}_n again follows a normal distribution, that is in turn completely characterized by its expectation and variance,

$$\mathbb{E}\left[\overline{X}_n
ight] = heta, \quad \mathsf{Var}\left(\overline{X}_n
ight) = rac{1}{n^2} \sum_{i=1}^n \mathsf{Var}\left(X_i
ight) = rac{ heta}{n}.$$

Hence,

$$\sqrt{rac{n}{ heta}}\left(\overline{X}_{n}- heta
ight)\sim\mathcal{N}\left(0,1
ight).$$

提交

你已经尝试了1次(总共可以尝试2次)

Answers are displayed within the problem

(c)

0/2 points (graded) 只是interval不是confidence interval,被坑了

Find an interval $\mathcal{I}_{ heta}$ (that depends on heta) centered about \overline{X}_n such that

$$\mathbf{P}\left(\mathcal{I}_{ heta}
ightarrow heta
ight) = 0.9 \qquad ext{for all } n ext{(i.e, not only for large } n).$$

(Write <code>barX_n</code> for \overline{X}_n . Use the estimate $q_{0.05} pprox 1.6448$ for best results.)

$$\mathcal{I}_{ heta} = [A_{ heta}, B_{ heta}]$$
 for

$$A_{\theta} =$$
 barX_n - 1.6448*sqrt(barX_n)/n

X Answer: barX_n - 1.6448 * sqrt(theta)/sqrt(n)

$$B_{ heta}=oxed{f barX_n - 1.6448*sqrt(barX_n)/n}$$

X Answer: barX_n + 1.6448 * sqrt(theta)/sqrt(n)

STANDARD NOTATION

Solution:

By parts (a) and (b),

$$\sqrt{rac{n}{ heta}}\left(\overline{X}_{n}- heta
ight)\sim\mathcal{N}\left(0,1
ight),$$

so together with looking up the quantile value for a symmetric 90% confidence interval for a Gaussian random variable $Z\sim\mathcal{N}\left(0,1
ight)$,

$$P(|Z| \le 1.6448) \approx 0.9,$$

we obtain

$$\mathbf{P}\left(\left|\sqrt{rac{n}{ heta}}\left(\overline{X}_n- heta
ight)
ight|\leq 1.6448
ight)=0.9,$$

and hence can set

$$\mathcal{I}_1 = \left\lceil \overline{X}_n - rac{1.6448\sqrt{ heta}}{\sqrt{n}}, \overline{X}_n + rac{1.6448\sqrt{ heta}}{\sqrt{n}}
ight
ceil.$$

提交

你已经尝试了2次(总共可以尝试2次)

Answers are displayed within the problem

(d)

2/2 points (graded)

Again, use the estimate $q_{0.05} pprox 1.6448$ for best results.

Now, find a confidence interval $\mathcal{I}_{ ext{plug-in}}$ with **asymptotic** confidence level 90% by plugging in \overline{X}_n for all occurrences of heta in $\mathcal{I}_{ heta}$.

$$\mathcal{I}_{ ext{plug-in}} = [A_{ ext{plug-in}}, B_{ ext{plug-in}}]$$
 for

STANDARD NOTATION

提交

你已经尝试了2次(总共可以尝试2次)

(e)

2/2 points (graded)

Finally, find a confidence interval $\mathcal{I}_{\mathrm{solve}}$ for heta with **nonasymptotic** level 90% solving the bounds in $\mathcal{I}_{ heta}$ for heta .

$$\mathcal{I}_{ ext{solve}} = [A_{ ext{solve}}, B_{ ext{solve}}]$$
 for

$$A_{\text{solve}} =$$
 barX_n + (1.6448^2-1.6448*sqrt(4*n*barX_n + 1.6448^2))

Answer: barX_n + 1.6448^2/(2*n) - 1/2*sqrt(1.6448^4/n^2 + 4*1.6448^2*barX_n/n)

$$B_{\rm solve} = \left| \text{ barX_n + (1.6448^2 + 1.6448* sqrt(4*n*barX_n + 1.6448^2)} \right| \checkmark$$

Answer: barX_n + 1.6448^2/(2*n) + 1/2*sqrt(1.6448^4/n^2 + 4*1.6448^2*barX_n/n)

STANDARD NOTATION

Solution:

From part (c), we have

$$\mathbf{P}\left(\left|\sqrt{rac{n}{ heta}}\left(\overline{X}_n- heta
ight)
ight|\leq 1.65
ight)=90\%.$$

With t=1.6448 , the constraint on heta is equivalent to

$$\begin{split} \left| \sqrt{\frac{n}{\theta}} \left(\overline{X}_n - \theta \right) \right| & \leq t \\ \iff & \frac{n}{\theta} (\overline{X}_n - \theta)^2 & \leq t \\ \iff & \theta^2 - 2\theta \overline{X}_n + \overline{X}_n^2 & \leq \frac{t^2 \theta}{n} \\ \iff & \theta^2 - \left(2\overline{X}_n + \frac{t^2}{n} \right) \theta + \overline{X}_n^2 & \leq 0 \\ \iff & \theta \in \left[\overline{X}_n + \frac{t^2}{2n} - \sqrt{\Delta}, \, \overline{X}_n + \frac{t^2}{2n} + \sqrt{\Delta} \right], \qquad \text{where } \Delta = \frac{t^4}{4n^2} + \frac{t^2 \overline{X}_n}{n} \end{split}$$

by the quadratic formula. Substituting $t=1.65\,$ gives

$$\mathcal{I}_{ ext{solve}} = \left[\overline{X}_n + rac{1.6448^2}{2n} - \sqrt{rac{1.6448^4}{4n^2} + rac{1.6448^2 \overline{X}_n}{n}}, \overline{X}_n + rac{1.6448^2}{2n} + \sqrt{rac{1.6448^4}{4n^2} + rac{1.6448^2 \overline{X}_n}{n}}
ight].$$

提交

你已经尝试了2次(总共可以尝试3次)

• Answers are displayed within the problem

讨论

显示讨论

主题: Unit 2 Foundation of Inference:Homework 2: Statistical Models, Estimation, and Confidence Intervals / 1. Confidence Intervals for Curved Gaussian Family

认证证书是什么?

© 保留所有权利