CMP462: Natural Language Processing

Lecture 02: Language Modeling

Mohamed Alaa El-Dien Aly
Computer Engineering Department
Cairo University
Spring 2013

Agenda

- N-gram Language Model
- Estimation
- Smoothing
 - Laplace
 - Good-Turing
 - Kneser-Ney

Acknowledgment:

Most slides adapted from Chris Manning and Dan Jurafsky's NLP class on Coursera.

Probabilistic Language Models

- Today's goal: assign a probability to a sentence
 - Machine Translation:
 - P(high winds tonite) > P(large winds tonite)
 - Spell Correction
 - The office is about fifteen **minuets** from my house
 - P(about fifteen minutes from) > P(about fifteen minuets from)
 - Speech Recognition
 - P(I saw a van) >> P(eyes awe of an)
 - + Summarization, question-answering, etc., etc.!!

Why?

Probabilistic Language Modeling

Goal: compute the probability of a sentence or sequence of words:

```
P(W) = P(w1, w2, w3, w4, w5...wn)
```

- Related task: probability of an upcoming word:
 P(w5|w1,w2,w3,w4)
- A model that computes either of these:

```
P(W) or P(wn|w1,w2...wn-1) is called a language model.
```

Better: the grammar But language model or LM is standard

How to compute P(W)

- How to compute this joint probability:
 - P(its, water, is, so, transparent, that)

Intuition: let's rely on the Chain Rule of Probability

Reminder: The Chain Rule

Recall the definition of conditional probabilities

$$P(A, B) = P(A) P(B|A)$$

More variables:

$$P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)$$

The Chain Rule in General

$$P(x1,x2,x3,...,xn) = P(x1)P(x2|x1)P(x3|x1,x2)...P(xn|x1,...,xn-1)$$

The Chain Rule applied to compute joint probability of words in sentence

$$P(w_1 w_2 ... w_n) = \prod_i P(w_i | w_1 w_2 ... w_{i-1})$$

P("its water is so transparent") =

 $P(its) \times P(water|its) \times P(is|its water)$

× P(so | its water is) × P(transparent | its water is so)

How to estimate these probabilities

Could we just count and divide?

P(the | its water is so transparent that) =

Count(its water is so transparent that the)

Count(its water is so transparent that)

- No! Too many possible sentences!
- We'll never see enough data for estimating these

Markov Assumption

Simplifying assumption:

 $P(\text{the }|\text{ its water is so transparent that}) \approx P(\text{the }|\text{ that})$

Or maybe

 $P(\text{the }|\text{ its water is so transparent that}) \approx P(\text{the }|\text{ transparent that})$

Markov Assumption

$$P(w_1 w_2 ... w_n) \approx \prod_i P(w_i | w_{i-k} ... w_{i-1})$$

 In other words, we approximate each component in the product

$$P(w_i | w_1 w_2 ... w_{i-1}) \approx P(w_i | w_{i-k} ... w_{i-1})$$

Simplest case: Unigram model

$$P(w_1 w_2 \dots w_n) \approx \prod_i P(w_i)$$

Some automatically generated sentences from a unigram model

```
fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass thrift, did, eighty, said, hard, 'm, july, bullish that, or, limited, the
```


Bigram model

Condition on the previous word:

$$P(w_i | w_1 w_2 ... w_{i-1}) \approx P(w_i | w_{i-1})$$

texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred, fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached this, would, be, a, record, november

N-gram models

- We can extend to trigrams, 4-grams, 5-grams
- In general this is an insufficient model of language
 - because language has long-distance dependencies:

"The computer which I had just put into the machine room on the fifth floor crashed."

But we can often get away with N-gram models

Language Modeling

Estimating N-gram Probabilities

Estimating bigram probabilities

The Maximum Likelihood Estimate

$$P(w_i \mid w_{i-1}) = \frac{count(w_{i-1}, w_i)}{count(w_{i-1})}$$

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

Maximum Likelihood Estimate

Probability that w_i is W:

$$P(w_i = W) = p$$

We need to estimate p from data. Look at the binomial distribution:

What is the probability of having k instances of word W?

$$P(\#W=k) = {N \choose k} p^k (1-p)^{N-k}$$

Likelihood:

$$L(p) = C p^{k} (1-p)^{N-k}$$

Maximize Likelihood:

$$\begin{aligned} p* &= argmax_p L(p) \\ &= argmax_p \log L(P) \\ &= argmax_p k \log p + (N-k) \log (1-p) \end{aligned}$$

$$\frac{\partial L}{\partial p} = \frac{k}{p} - \frac{(N-k)}{1-p}$$

Maximum Likelihood Estimate

$$\frac{\partial L}{\partial p} = \frac{k}{p} - \frac{(N-k)}{1-p} = 0$$

$$\frac{k}{p} = \frac{(N-k)}{1-p}$$

$$p(N-k) = (1-p)k$$

$$pN = k$$

$$p = \frac{k}{N}$$

$$P(w_i = W) = p = \frac{k}{N} = \frac{count(W)}{N}$$

An example

$$P(w_i | w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

$$P(I | ~~) = \frac{2}{3} = .67~~$$
 $P(Sam | ~~) = \frac{1}{3} = .33~~$ $P(am | I) = \frac{2}{3} = .67$ $P(| Sam) = \frac{1}{2} = 0.5$ $P(Sam | am) = \frac{1}{2} = .5$ $P(do | I) = \frac{1}{3} = .33$

More examples: Berkeley Restaurant Project sentences

- can you tell me about any good cantonese restaurants close by
- mid priced thai food is what i'm looking for
- tell me about chez panisse
- can you give me a listing of the kinds of food that are available
- i'm looking for a good place to eat breakfast
- when is caffe venezia open during the day

Raw bigram counts

Out of 9222 sentences

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Raw bigram probabilities

Normalize by unigrams:

• Result:

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Bigram estimates of sentence probabilities

```
P(<s> | want english food </s>) =
P(|<s>)

× P(want||)

× P(english||want)

× P(food||english|)

× P(</s>||food|)

= .000031
```


What kinds of knowledge?

- P(english|want) = .0011
- P(chinese | want) = .0065
- P(to|want) = .66
- P(eat | to) = .28
- P(food | to) = 0
- P(want | spend) = 0
- P(i | <s>) = .25

Practical Issues

- We do everything in log space
 - Avoid underflow
 - (also adding is faster than multiplying)

$$\log(p_1 \times p_2 \times p_3 \times p_4) = \log p_1 + \log p_2 + \log p_3 + \log p_4$$

Language Modeling Toolkits

- SRILM
 - http://www.speech.sri.com/projects/srilm/

Google N-Gram Release, August 2006

All Our N-gram are Belong to You

Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

Here at Google Research we have been using word n-gram models for a variety of R&D projects,

. . .

That's why we decided to share this enormous dataset with everyone. We processed 1,024,908,267,229 words of running text and are publishing the counts for all 1,176,470,663 five-word sequences that appear at least 40 times. There are 13,588,391 unique words, after discarding words that appear less than 200 times.

Google N-Gram Release

- serve as the incoming 92
- serve as the incubator 99
- serve as the independent 794
- serve as the index 223
- serve as the indication 72
- serve as the indicator 120
- serve as the indicators 45
- serve as the indispensable 111
- serve as the indispensible 40
- serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

Google Book N-grams

http://ngrams.googlelabs.com/

Language Modeling

Evaluation and Perplexity

Evaluation: How good is our model?

- Does our language model prefer good sentences to bad ones?
 - Assign higher probability to "real" or "frequently observed" sentences
 - Than "ungrammatical" or "rarely observed" sentences?
- We train parameters of our model on a training set.
- We test the model's performance on data we haven't seen.
 - A test set is an unseen dataset that is different from our training set, totally unused.
 - An evaluation metric tells us how well our model does on the test set.

Extrinsic evaluation of N-gram models

- Best evaluation for comparing models A and B
 - Put each model in a task
 - spelling corrector, speech recognizer, MT system
 - Run the task, get an accuracy for A and for B
 - How many misspelled words corrected properly
 - How many words translated correctly
 - Compare accuracy for A and B

Difficulty of extrinsic (in-vivo) evaluation of N-gram models

- Extrinsic evaluation
 - Time-consuming; can take days or weeks
- So
 - Sometimes use intrinsic evaluation: perplexity
 - Bad approximation
 - unless the test data looks just like the training data
 - So generally only useful in pilot experiments
 - But is helpful to think about.

Intuition of Perplexity

- The Shannon Game:
 - How well can we predict the next word?

The 33rd President of the US was JFK
I saw a

mushrooms 0.1
pepperoni 0.1
anchovies 0.01
....
fried rice 0.0001
....
and 1e-100

- Unigrams are terrible at this game. (Why?)
- A better model of a text
 - is one which assigns a higher probability to the word that actually occurs

Perplexity

The best language model is one that best predicts an unseen test set

Gives the highest P(sentence)

Perplexity is the inverse probability of the test set, $PP(W) = P(w_1w_2...w_N)^{-\frac{1}{N}}$ normalized by the number of words:

$$PP(W) = P(w_1 w_2 ... w_N)^{-\frac{1}{N}}$$

$$= \sqrt[N]{\frac{1}{P(w_1 w_2 \dots w_N)}}$$

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1...w_{i-1})}}$$

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_{i-1})}}$$

Minimizing perplexity is the same as maximizing probability

The Shannon Game intuition for perplexity

- From Josh Goodman
- How hard is the task of recognizing digits '0,1,2,3,4,5,6,7,8,9'
 - Perplexity 10
- How hard is recognizing (30,000) names at Microsoft.
 - Perplexity = 30,000
- If a system has to recognize
 - Operator (1 in 4)
 - Sales (1 in 4)
 - Technical Support (1 in 4)
 - 30,000 names (1 in 120,000 each)
 - Perplexity is 53
- Perplexity is weighted equivalent branching factor

Perplexity as branching factor

- Let's suppose a sentence consisting of random digits
- What is the perplexity of this sentence according to a model that assign P=1/10 to each digit?

$$PP(W) = P(w_1 w_2 ... w_N)^{-\frac{1}{N}}$$

$$= (\frac{1}{10}^N)^{-\frac{1}{N}}$$

$$= \frac{1}{10}^{-1}$$

$$= 10$$

Lower perplexity = better model

Training 38 million words, test 1.5 million words,
 WSJ

N-gram Order	Unigram	Bigram	Trigram
Perplexity	962	170	109

Language Modeling

Generalization and zeros

The Shannon Visualization Method

- Choose a random bigram (<s>, w) according to its probability
- Now choose a random bigram (w, x) according to its probability
- And so on until we choose </s>
- Then string the words together

```
<s> I
    I want
    want to
    to eat
    eat Chinese
    Chinese food
    food </s>
I want to eat Chinese food
```


Approximating Shakespeare

Unigram

To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have

Every enter now severally so, let

Hill he late speaks; or! a more to leg less first you enter

Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near; vile like

Bigram

What means, sir. I confess she? then all sorts, he is trim, captain.

Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow.

What we, hath got so she that I rest and sent to scold and nature bankrupt, nor the first gentleman?

Trigram

Sweet prince, Falstaff shall die. Harry of Monmouth's grave.

This shall forbid it should be branded, if renown made it empty.

Indeed the duke; and had a very good friend.

Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done.

Quadrigram

King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in;

Will you not tell me who I am?

It cannot be but so.

Indeed the short and the long. Marry, 'tis a noble Lepidus.

Shakespeare as corpus

- N=884,647 tokens, V=29,066
- Shakespeare produced 300,000 bigram types out of V2= 844 million possible bigrams.
 - So 99.96% of the possible bigrams were never seen (have zero entries in the table)
- Quadrigrams worse: What's coming out looks like Shakespeare because it is Shakespeare

The wall street journal is not shakespeare (no offense)

Unigram

Months the my and issue of year foreign new exchange's september were recession exchange new endorsed a acquire to six executives

Bigram

Last December through the way to preserve the Hudson corporation N. B. E. C. Taylor would seem to complete the major central planners one point five percent of U. S. E. has already old M. X. corporation of living on information such as more frequently fishing to keep her

Trigram

They also point to ninety nine point six billion dollars from two hundred four oh six three percent of the rates of interest stores as Mexico and Brazil on market conditions

The perils of overfitting

- N-grams only work well for word prediction if the test corpus looks like the training corpus
 - In real life, it often doesn't
 - We need to train robust models that generalize!
 - One kind of generalization: Zeros!
 - Things that don't ever occur in the training set
 - But occur in the test set

Zeros

- Training set:
 - ... denied the allegations
 - ... denied the reports
 - ... denied the claims
 - ... denied the request

P("offer" | denied the) = 0

- Test set
 - ... denied the offer
 - ... denied the loan

Zero probability bigrams

- Bigrams with zero probability
 - mean that we will assign 0 probability to the test set!
- And hence we cannot compute perplexity (can't divide by 0)!

Language Modeling

Smoothing: Add-one (Laplace) smoothing

The intuition of smoothing (from Dan Klein)

When we have sparse statistics:

P(w | denied the)

3 allegations

2 reports

1 claims

1 request

7 total

Steal probability mass to generalize better

P(w | denied the)

2.5 allegations

1.5 reports

0.5 claims

0.5 request

2 other

7 total

Add-one estimation

- Also called Laplace smoothing
- Pretend we saw each word one more time than we did
- Just add one to all the counts!
- MLE estimate:

$$P_{MLE}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

Add-1 estimate:

$$P_{Add-1}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + 1}{c(w_{i-1}) + V}$$

Maximum Likelihood Estimates

- The maximum likelihood estimate
 - of some parameter of a model M from a training set T
 - maximizes the likelihood of the training set T given the model M
- Suppose the word "bagel" occurs 400 times in a corpus of a million words
- What is the probability that a random word from some other text will be "bagel"?
- MLE estimate is 400/1,000,000 = .0004
- This may be a bad estimate for some other corpus
 - But it is the **estimate** that makes it **most likely** that "bagel" will occur 400 times in a million word corpus.

Berkeley Restaurant Corpus: Laplace smoothed bigram counts

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

Laplace-smoothed bigrams

$$P^*(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n) + 1}{C(w_{n-1}) + V}$$

	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

Reconstituted counts

What would the counts have been (without smoothing) given those probabilities?

$$c^*(w_{n-1}w_n) = \frac{[C(w_{n-1}w_n) + 1] \times C(w_{n-1})}{C(w_{n-1}) + V}$$

	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

Compare with raw bigram counts

Sometimes leads to big changes!

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	<u>\delta</u>	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

	i	want	to	∉at	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

Add-1 estimation is a blunt instrument

- So add-1 isn't used for N-grams:
 - We'll see better methods
- But add-1 is used to smooth other NLP models
 - For text classification
 - In domains where the number of zeros isn't so huge.

Language Modeling

Interpolation, Backoff, and Web-Scale LMs

Backoff and Interpolation

- Sometimes it helps to use less context
 - Condition on less context for contexts you haven't learned much about
- Backoff:
 - use trigram if you have good evidence,
 - otherwise bigram, otherwise unigram
- Interpolation:
 - mix unigram, bigram, trigram

Interpolation works better

Linear Interpolation

Simple interpolation

$$\hat{P}(w_n|w_{n-1}w_{n-2}) = \lambda_1 P(w_n|w_{n-1}w_{n-2})
+ \lambda_2 P(w_n|w_{n-1})
+ \lambda_3 P(w_n)$$

$$\sum_{i} \lambda_i = 1$$

Lambdas conditional on context:

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1(w_{n-2}^{n-1})P(w_n|w_{n-2}w_{n-1})
+ \lambda_2(w_{n-2}^{n-1})P(w_n|w_{n-1})
+ \lambda_3(w_{n-2}^{n-1})P(w_n)$$

How to set the lambdas?

Use a held-out corpus

Training Data

Held-Out Data Test Data

- Choose λs to maximize the probability of held-out data:
 - Fix the N-gram probabilities (on the training data)
 - Then search for λs that give largest probability to held-out set:

$$\log P(w_1...w_n \mid M(\lambda_1...\lambda_k)) = \sum_{i} \log P_{M(\lambda_1...\lambda_k)}(w_i \mid w_{i-1})$$

Unknown words: Open versus closed vocabulary tasks

- If we know all the words in advanced
 - Vocabulary V is fixed
 - Closed vocabulary task
- Often we don't know this
 - Out Of Vocabulary = OOV words
 - Open vocabulary task
- Instead: create an unknown word token <UNK>
 - Training of <UNK> probabilities
 - Create a fixed lexicon L of size V (may be by removing less probable words)
 - At text normalization phase, any training word not in L changed to <UNK>
 - Now we train its probabilities like a normal word
 - At decoding time
 - If text input: Use UNK probabilities for any word not in training

Huge web-scale n-grams

- How to deal with, e.g., Google N-gram corpus
- Pruning
 - Only store N-grams with count > threshold.
 - Remove singletons of higher-order n-grams
 - Entropy-based pruning
- Efficiency
 - Efficient data structures like tries (prefix trees)
 - Bloom filters: approximate language models (false positives allowed)
 - Store words as indexes, not strings
 - Use Huffman coding to fit large numbers of words into two bytes
 - Quantize probabilities (4-8 bits instead of 8-byte float)

Smoothing for Web-scale N-grams

- "Stupid backoff" (Brants et al. 2007)
- No discounting, just use relative frequencies

$$S(w_{i} | w_{i-k+1}^{i-1}) = \begin{cases} \frac{\text{count}(w_{i-k+1}^{i})}{\text{count}(w_{i-k+1}^{i-1})} & \text{if } \text{count}(w_{i-k+1}^{i}) > 0 \\ 0.4S(w_{i} | w_{i-k+2}^{i-1}) & \text{otherwise} \end{cases}$$

$$S(w_i) = \frac{\text{count}(w_i)}{N}$$

N-gram Smoothing Summary

- Add-1 smoothing:
 - OK for text categorization, not for language modeling
- The most commonly used method:
 - Extended Interpolated Kneser-Ney
- For very large N-grams like the Web:
 - Stupid backoff

Language Modeling

Advanced: Good Turing Smoothing

Reminder: Add-1 (Laplace) Smoothing

$$P_{Add-1}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + 1}{c(w_{i-1}) + V}$$

More general formulations: Add-k

$$P_{Add-k}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + k}{c(w_{i-1}) + kV}$$

$$P_{Add-k}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + m(\frac{1}{V})}{c(w_{i-1}) + m}$$

Unigram prior smoothing

$$P_{Add-k}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + m(\frac{1}{V})}{c(w_{i-1}) + m}$$

$$P_{\text{UnigramPrior}}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + mP(w_i)}{c(w_{i-1}) + m}$$

Advanced smoothing algorithms

- Intuition used by many smoothing algorithms
 - Good-Turing
 - Kneser-Ney
 - Witten-Bell
- Use the count of things we've seen once
 - to help estimate the count of things we've never seen

Notation: Nc = Frequency of frequency c

- Nc = the count of things we've seen c times
- Sam I am I am Sam I do not eat

```
I 3
```

sam 2

am 2

do 1

not 1

eat 1

$$N1 = 3$$

$$N2 = 2$$

$$N3 = 1$$

Good-Turing smoothing intuition

- You are fishing (a scenario from Josh Goodman), and caught:
 - 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish
- How likely is it that next species is trout?
 - 1/18
- How likely is it that next species is new (i.e. catfish or bass)
 - Let's use our estimate of things-we-saw-once to estimate the new things.
 - 3/18 (because N1=3)
- Assuming so, how likely is it that next species is trout?
 - Must be less than 1/18
 - How to estimate?

Good Turing calculations

$$P_{GT}^*$$
 (things with zero frequency) = $\frac{N_1}{N}$ $c^* = \frac{(c+1)N_{c+1}}{N_c}$

- Unseen (bass or catfish)
 - c = 0:
 - MLE p = 0/18 = 0
 - P*GT (unseen) = N1/N = 3/18

- Seen once (trout)
 - c = 1
 - MLE p = 1/18

•
$$P*GT(trout) = 2/3 / 18 = 1/27$$

Ney et al.'s Good Turing Intuition

H. Ney, U. Essen, and R. Kneser, 1995. On the estimation of 'small' probabilities by leaving-one-out. IEEE Trans. PAMI. 17:12,1202-1212

Held-out words:

Ney et al. Good Turing Intuition

(slide from Dan Klein)

- Intuition from leave-one-out validation
 - Take each of the c training words out in turn
 - c training sets of size c-1, held-out of size 1
 - What fraction of held-out words are unseen in training?
 - N1/c
 - What fraction of held-out words are seen *k* times in training?
 - $(k+1)N_{k+1}/c$
 - So in the future we expect $(k+1)N_{k+1}/c$ of the words to be those with training count *k*
 - There are N_k words with training count k
 - Each should occur with probability:
 - $(k+1)N_{k+1}/C/N_{k}$
 - ...or expected count:

$$k^* = \frac{(k+1)N_{k+1}}{N_k}$$

Held out

N2

N351

N1

N₂

Good-Turing complications

(slide from Dan Klein)

- Problem: what about "the"? (say c=4417)
 - For small k, Nk > Nk+1
 - For large k, too jumpy, zeros wreck estimates

 Simple Good-Turing [Gale and Sampson]: replace empirical Nk with a best-fit power law once counts get unreliable

Resulting Good-Turing numbers

- Numbers from Church and Gale (1991)
- 22 million words of AP Newswire

$$c^* = \frac{(c+1)N_{c+1}}{N_c}$$

Count c	Good Turing c*
0	.0000270
1	0.446
2	1.26
3	2.24
4	3.24
5	4.22
6	5.19
7	6.21
8	7.24
9	8.25

Language Modeling

Kneser-Ney Smoothing

Resulting Good-Turing numbers

- Numbers from Church and Gale (1991)
- 22 million words of AP Newswire

$$c^* = \frac{(c+1)N_{c+1}}{N_c}$$

Count c	Good Turing c*
0	.0000270
1	0.446
2	1.26
3	2.24
4	3.24
5	4.22
6	5.19
7	6.21
8	7.24
9	8.25

Absolute Discounting Interpolation

Save ourselves some time and just subtract 0.75 (or some d)!

discounted bigram

Interpolation weight

$$P_{\text{AbsoluteDiscounting}}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) - d}{c(w_{i-1})} + \lambda (w_{i-1}) P(w)$$
unigram

- (Maybe keeping a couple extra values of d for counts 1 and 2)
- But should we really just use the regular unigram P(w)?

Kneser-Ney Smoothing I

- Better estimate for probabilities of lower-order unigrams!
 - Shannon game: I can't see without my reading Fgtaxsisso
 - "Francisco" is more common than "glasses"
 - ... but "Francisco" always follows "San"
- The unigram is useful exactly when we haven't seen this bigram!
- Instead of P(w): "How likely is w"
- P_{continuation}(w): "How likely is w to appear as a novel continuation?
 - For each word, count the number of bigram types it completes
 - Every bigram type was a novel continuation the first time it was seen

$$P_{CONTINUATION}(w) \mu \quad |\{w_{i-1} : c(w_{i-1}, w) > 0\}|$$

Kneser-Ney Smoothing II

How many times does w appear as a novel continuation:

$$P_{CONTINUATION}(w) \mu \quad |\{w_{i-1} : c(w_{i-1}, w) > 0\}|$$

Normalized by the total number of word bigram types

$$|\{(w_{j-1}, w_j) : c(w_{j-1}, w_j) > 0\}|$$

$$P_{CONTINUATION}(w) = \frac{\left| \left\{ w_{i-1} : c(w_{i-1}, w) > 0 \right\} \right|}{\left| \left\{ (w_{j-1}, w_j) : c(w_{j-1}, w_j) > 0 \right\} \right|}$$

Kneser-Ney Smoothing III

Alternative metaphor: The number of word types seen to precede w

$$|\{w_{i-1}: c(w_{i-1}, w) > 0\}|$$

normalized by the # of words preceding all words:

$$P_{CONTINUATION}(w) = \frac{\left| \left\{ w_{i-1} : c(w_{i-1}, w) > 0 \right\} \right|}{\sum \left| \left\{ w'_{i-1} : c(w'_{i-1}, w') > 0 \right\} \right|}$$

• A frequent word (Francisco) occurring in only one context (San) will have a low continuation probability

Kneser-Ney Smoothing IV

$$P_{KN}(w_i \mid w_{i-1}) = \frac{\max(c(w_{i-1}, w_i) - d, 0)}{c(w_{i-1})} + \lambda (w_{i-1}) P_{CONTINUATION}(w_i)$$

λ is a normalizing constant; the probability mass we've discounted

$$\lambda(w_{i-1}) = \frac{d}{c(w_{i-1})} |\{w : c(w_{i-1}, w) > 0\}|$$

the normalized discount

The number of word types that can follow w...

- = # of word types we discounted
- = # of times we applied normalized discount

Kneser-Ney Smoothing: Recursive formulation

$$P_{KN}(w_i \mid w_{i-n+1}^{i-1}) = \frac{\max(c_{KN}(w_{i-n+1}^i) - d, 0)}{c_{KN}(w_{i-n+1}^{i-1})} + \lambda (w_{i-n+1}^{i-1}) P_{KN}(w_i \mid w_{i-n+2}^{i-1})$$

$$c_{KN}(\bullet) = \begin{cases} count(\bullet) & \text{for the highest order} \\ continuation count(\bullet) & \text{for lower order} \end{cases}$$

Continuation count = Number of unique single word contexts for •

Recap

- N-gram Language Model
- Estimation
- Smoothing
 - Laplace
 - Good-Turing
 - Kneser-Ney