NOM:

Prénom:

Note:

1. L'application f: $\left\{ \begin{array}{ccc} \mathbb{C} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & e^z \end{array} \right. \text{ est-elle injective? surjective? Justifier.}$

2. Quelle est l'image de l'application f: $\left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ x & \longmapsto & e^{\mathrm{i} x} \end{array} \right. ?$

- 3. Soit f: $\left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & x^2 \end{array} \right. \text{ Donner sans justification } f([-1,3[) \text{ et } f^{-1}(]-3,9]).$
- $\text{4. Montrer que f: } \left\{ \begin{array}{ccc} \mathbb{C} \setminus \{-1\} & \longrightarrow & \mathbb{C} \setminus \{1\} \\ z & \longmapsto & \frac{z-2}{z+1} \end{array} \right. \text{ est bijective et déterminer sa bijection réciproque. }$

				_			
5	Déterminer le sens	de variation	$def \cdot x \in$	$\mathbb{R} \mapsto \sqrt{1}$	$\perp e^{-\chi^3}$ sans	s calculer sa	dérivée

6. Soit E un ensemble. L'application f:
$$\left\{ \begin{array}{ccc} \mathcal{P}(\mathsf{E}) & \longrightarrow & \mathcal{P}(\mathsf{E}) \\ X & \longmapsto & \overline{X} \end{array} \right. \text{ est-elle injective ? surjective ? Justifier.}$$

7. Montrer que l'application $f: x \in \mathbb{R} \mapsto \ln(1+e^x)$ induit une bijection de \mathbb{R} sur un intervalle à déterminer.