代数学2,第7回の内容の理解度チェックの解答

2025/6/16 担当:那須

以下dは素因数分解に平方因子を含まない整数とする. 環 $\mathbb{Z}[\sqrt{d}]$ を

$$\mathbb{Z}[\sqrt{d}] = \left\{ a + b\sqrt{d} \mid a, b \in \mathbb{Z} \right\}$$

と定義する. $Z[\sqrt{d}]$ の元 $\alpha=a+b\sqrt{d}$ に対し, $\bar{\alpha}=a-b\sqrt{d}$ を α の共役元という. $Z[\sqrt{d}]$ において α のノルム $N(\alpha)$ は,

$$N(\alpha) = \alpha \bar{\alpha} = a^2 - db^2$$

と定義される.

- $\boxed{1} \alpha, \beta \in \mathbb{Z}[\sqrt{d}]$ とする. 次を示せ.
 - (1) $N(\alpha\beta) = N(\alpha)N(\beta)$
 - (2) α が単元 $\iff N(\alpha) = \pm 1$
 - (3) $N(\alpha)$ が \mathbb{Z} の既約元ならば, α は $\mathbb{Z}[\sqrt{d}]$ の既約元である

(解答)

(1) $\alpha = a_1 + b_1 \sqrt{d}, \ \beta = a_2 + b_2 \sqrt{d} \ \xi \ \xi \ \delta$.

$$\alpha\beta = (a_1 + b_1\sqrt{d})(a_2 + b_2\sqrt{d}) = (a_1a_2 + b_1b_2d) + (a_1b_2 + a_2b_1)\sqrt{d}$$

より

$$N(\alpha\beta) = (a_1a_2 + b_1b_2d)^2 - d(a_1b_2 + a_2b_1)^2$$

$$= (a_1^2a_2^2 + 2a_1a_2b_1b_2d + b_1^2b_2^2d^2) - d(a_1^2b_2^2 + 2a_1a_2b_1b_2 + a_2^2b_1^2)$$

$$= (a_1^2a_2^2 + b_1^2b_2^2d^2) - d(a_1^2b_2^2 + a_2^2b_1^2)$$

$$= (a_1^2 - db_1^2)(a_2^2 - db_2^2)$$

$$= N(\alpha)N(\beta).$$

(2) α を単元とすると, $\beta \in \mathbb{Z}[\sqrt{d}]$ が存在し, $\alpha\beta = 1$ を満たす. 両辺のノルムをとれば,

$$N(\alpha\beta) = N(\alpha)N(\beta) = 1$$

が成り立ち, $N(\alpha) \in \mathbb{Z}$ より $N(\alpha) = \pm 1$ を得る. 逆に $N(\alpha) = \pm 1$ ならば, $\alpha \bar{\alpha} = \pm 1$ を満たす. $\alpha^{-1} = \pm \bar{\alpha}$ が成り立つため, α は単元となる.

(3) 対偶を示す. α が可約元, すなわち既約元でないとする. このとき, 単元でない $\beta,\gamma\in\mathbb{Z}[\sqrt{d}]$ が存在し, $\alpha=\beta\gamma$ を満たす. 両辺のノルムを取ると

$$N(\alpha) = N(\beta)N(\gamma)$$

が成り立つ. β, γ は単元でないので, (2) より

$$N(\beta) \neq \pm 1$$
 かつ $N(\gamma) \neq \pm 1$

となる. したがって $N(\alpha)$ は可約元である.

- $\boxed{2}$ 環 $\mathbb{Z}[\sqrt{5}]$ において、次の元が既約元かどうか判定せよ.

 - (1) 2 (2) $2-\sqrt{5}$ (3) $4+\sqrt{5}$

(解答)

(1) 非単元 $\alpha, \beta \in \mathbb{Z}[\sqrt{5}]$ が存在し $2 = \alpha\beta$ を満たすとする. 両辺のノルムを取ると

$$4 = N(2) = N(\alpha)N(\beta), \qquad N(\alpha) \neq \pm 1, \qquad N(\beta) = \pm 1$$

を満たす. したがって $N(\alpha) = \pm 2$ であることがわかる. $\alpha = a + b\sqrt{5}$ とおくと. 方程式

$$a^2 - 5b^2 = 2 \sharp \hbar \sharp a^2 - 5b^2 = -2$$

に整数解 (a,b) が存在するが、そのような整数解は存在しない. 任意の整数 x に対し法 4 の下 で $x^2 \equiv 0$ または $x^2 \equiv 1$ であり、両辺の $\mod 4$ をとると、 $a^2 - 5b^2 \equiv a^2 - b^2$ のため、

$$a^2 - 5b^2 \equiv 0 \pmod{4}$$
 $\sharp \not \sim l \sharp a^2 - 5b^2 \equiv \pm 1 \pmod{4}$

であることがわかる. 両者は矛盾するため 2 は $\mathbb{Z}[\sqrt{5}]$ において既約元である.

- (2) $N(2-\sqrt{5})=2^2-5=-1$. したがって $2-\sqrt{5}$ は $\mathbb{Z}[\sqrt{5}]$ の単元である. 単元は既約元でない ため、 $2-\sqrt{5}$ は既約元でない.
- (3) $N(4+\sqrt{5}) = 16-5=11$ が素数になるので, $4+\sqrt{5}$ は既約元である.
- $\boxed{3}$ 次の環 R において、指定された R の元 α が R の素元かどうか判定せよ.
 - (1) $R=\mathbb{Z}, \alpha=7$
 - (2) $R = \mathbb{Z}[i]$ (R はガウス整数環, $i = \sqrt{-1}$), $\alpha = 2$
 - (3) $R = \mathbb{Z}[\sqrt{-5}], \alpha = 3$
 - (4) $R = \mathbb{Z}[\sqrt{5}], \ \alpha = 2 \sqrt{5}$

(解答)

(1) 素数 $p \in \mathbb{Z}$ と整数 $a, b \in \mathbb{Z}$ に対し,

$$p \mid ab \Longrightarrow p \mid a \sharp t \not t \not t p \mid b$$

が成り立ち、7は素数であるため、ℤにおいて素元である.

(2) $\mathbb{Z}[i]$ において,

$$2 = (1+i)(1-i)$$

かつ、1+iと1-iは単元でないため、2は $\mathbb{Z}[i]$ において既約元でない。整域Rにおいて

$$\alpha \in R$$
 が素元 $\Longrightarrow \alpha \in R$ は既約元

である 2 ため、 2 は $\mathbb{Z}[i]$ の素元でない。 3

(3) $\mathbb{Z}[\sqrt{-5}]$ $\mathbb{Z}[\sqrt{-5}]$

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

がなりたち.

$$\frac{1+\sqrt{-5}}{3} \not\in \mathbb{Z}[\sqrt{-5}]$$
 לימ $\frac{1-\sqrt{-5}}{3} \not\in \mathbb{Z}[\sqrt{-5}]$

より3は素元でない.

(4) $\mathbb{Z}[\sqrt{5}]$ において, $\alpha = 2 - \sqrt{5}$ は単元である ($\boxed{2}$ の(2)参照). 単元は素元でないため, $\alpha = 2 - \sqrt{5}$ は素元でない.

 $^{^2}R$ が一意分解整域のときは逆も正しい.ガウス整数環 $\mathbb{Z}[i]$ は単項イデアル整域であり、とくに一意分解整域であること が知られている.

³⁽³⁾ と同様に (1±i)/2 ∉ ℤ[i] からも 2 が素元でないことが従う.

^{3※}この講義に関する情報はホームページを参照. https://fuji.ss.u-tokai.ac.jp/nasu/2025/alg2.html