1NSI

A - REPRÉSENTATION DES DONNÉES - TYPES ET VALEURS DE BASE

R

Logique et Arithmétique Booléenne

En programmation informatique, un **booléen** est une variable qui ne peut avoir que deux états, notés **VRAI** et **FAUX** :

- Le booléen **VRAI** est associé à la valeur **1**.
- Le booléen FAUX est associé à la valeur 0.

Il est nommé ainsi en hommage à **George Boole**, mathématicien Anglais fondateur dans le milieu du XIXe siècle de l'algèbre éponyme.

OPÉRATION OU

L'opération OU est également appelée addition logique.

	OU		Symbole 1	Symbole logique	
a	b	S	IEC	ISO	
0	0				
0	1		a——1 c	ac	S = a + b
1	0		b- >	b → S	
1	1				

S est VRAI si a est VRAI ou b est VRAI, ou si a et b sont VRAIS.

TOPÉRATION ET

L'opération ET est également appelée multiplication logique.

			- 3]
	ET Symbole logique		Logique	Équation de vérité	
a	b	S	IEC	ISO	
0	0				
0	1		a Q s	a s	$S = a \cdot b$
1	0		b-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\mathbf{b}	
1	1				

S est VRAI si et seulement si a est VRAI et b est VRAI.

III. OPÉRATION NON

L'opération NON est également appelée complémentation logique.

NO	ON	Symbole logique		Équation de vérité
a	S	IEC	ISO	
0		a 1 o-S	as	$S = \overline{a}$
1		1	7~	

S est VRAI si et seulement si a est FAUX.

M OPÉRATION OUI

Ol	JI	Symbole 1	ogique	Équation de vérité
a	S	IEC	ISO	
0		aS	a_s	
1		1	7	S = a

S est VRAI si et seulement si a est VRAI.

V. OPÉRATION NON OU

N	NON-OU Symbole logique		Équation de vérité		
а	b	S	IEC	ISO	
0	0				
0	1		as	a S	$S = \overline{a + b}$
1	0		b_[≥]	b	S u · b
1	1				

S est VRAI si et seulement si a et b sont FAUX.

VI. OPÉRATION NON ET

N	ION-E	Т	Symbole	logique	Équation de vérité
a	b	S	IEC	ISO	
0	0				
0	1			-	$S = \overline{a \cdot b}$
1	0		_\\	1_0	
1	1				

S est VRAI si et seulement si a ou b (ou les 2) sont FAUX.

VII. OPÉRATION OU EXCLUSIF

(OUEX	C	Symbole :	logique	Équation de vérité
a	b	S	IEC	ISO	
0	0				
0	1			45	$S = a \oplus b = a.\overline{b} + \overline{a}.b$
1	0		_ = -		$S = u \oplus v = u.v + u.v$
1	1		'		

S est VRAI si et seulement si a ou b (mais pas les 2) sont VRAIS.

VIII. OPÉRATION NON OU EXCLUSIF

NO	N-OU	IEX	Symbole 1	Logique	Équation de vérité
a	b	S	IEC	ISO	
0	0				
0	1		–1 0-	AD-	$S = \overline{a \oplus b} = a.b + \overline{a}.\overline{b}$
1	0				
1	1		8		

S est VRAI si et seulement si a et b sont IDENTIQUES.

Pour la suite, les fichiers de simulation *logisim* sont fournis.

LOGIGRAMME ET TABLE DE VÉRITÉ

1. **Compléter** la table de vérité du logigramme suivant. **Charger** le dans *logisim* et le **simuler**. **Vérifier** vos résultats.

- Déduire l'opérateur logique correspondant vu précédemment.
- 2. **Compléter** la table de vérité du logigramme *demi additionneur 1 bit* suivant. **Charger** le dans *logisim* et le **simuler**. **Vérifier** vos résultats.

a	b	S	С
0	0		
0	1		
1	0		
1	1		

• **Déduire** l' équation de vérité de **S** et de **C**.

	•	
S =		
C =		

3. **Compléter** la table de vérité du logigramme *demi soustracteur 1 bit* suivant. **Charger** le dans *logisim* et le **simuler**. **Vérifier** vos résultats.

a	b	D	В
0	0		
0	1		
1	0		
1	1		

• **Déduire** l' équation de vérité de **D** et de **B**.

D =	
B =	

X. ARITHMÉTIQUE BINAIRE

Voir ressource arithmétique binaire

1. **Compléter** la table de vérité du logigramme de l'**additionneur 1 bit** suivant. **Charger** le dans *logisim* puis le **simuler**. **Vérifier** vos résultats.

		5 . 656		
a	b	Cin	S	Cout
Θ	0	0		
Θ	0	1		
0	1	0		
Θ	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

• Compléter les additions arithmétiques binaire suivantes :

а	Θ	0	1	1
+ b	+ 0	+ 1	+ 0	+ 1

2. **Charger** dans *logisim* le logigramme de l'additionneur 4 bits suivant. Le **simuler** et **vérifier** son bon fonctionnement.

• Quels sont les résultats des additions suivantes :

a	0010	0010	0011	0011	0111	0111	1000	1000
+ b	0011	0011	0011	0011	0111	0111	1000	1000
+ C _{in}	Θ	1	0	1	0	1	0	1
S								
Cout								

3. **Compléter** la table de vérité puis **simuler** le schéma. **Saisir** dans *logisim* le schéma du **comparateur 1 bit** suivant et vérifier vos résultats.

• Cocher la relation qui correspond à la sortie en question.

Sortie	a = b	a < b	a > b
S1			
S2			
S3			

4. **Simuler** le logigramme *multiplexeur 4 vers 1* suivant dans *logisim* puis **compléter** la table de vérité. N.B. : 'X' signifie quelque soit la valeur de...

EO	E1	E2	E 3	а	b	S
			Χ		0	
Χ	Χ	Χ	Х	0	1	
Χ	Χ	Χ	Χ	1	0	
Χ	Χ	Χ	Χ	1	1	