Concavidad y Optimización

Abelardo Jordán Liza

Maestría en Matemáticas Aplicadas PUCP

Lima Agosto 31, 2023

Descomposición de un conjunto convexo

Ejemplos

- (a) $C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1\}$ es tal que $lin(C) = \{(0, 0, z) : z \in \mathbb{R}\}.$
- (b) $C = \{(x,y) \in \mathbb{R}^2 : y \le 1\}$, entonces $lin(C) = \dots$

Teorema

Sea C un conjunto convexo cerrado no vacío y sea S=lin(C), entonces

$$C = S \oplus (C \cap S^{\perp})$$

y el conjunto convexo $C \cap S^{\perp}$ no contiene rectas.

Descomposición de un conjunto convexo

Ejemplos

- (a) $C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1\}$ es tal que $lin(C) = \{(0, 0, z) : z \in \mathbb{R}\}.$
- (b) $C = \{(x,y) \in \mathbb{R}^2 : y \le 1\}$, entonces $lin(C) = \dots$

Teorema

Sea C un conjunto convexo cerrado no vacío y sea S=lin(C), entonces

$$C = S \oplus (C \cap S^{\perp})$$

y el conjunto convexo $C \cap S^{\perp}$ no contiene rectas.

Prueba:

Sea $a\in C$, entonces como $\mathbb{R}^n=S\oplus S^\perp$, se sigue que existen $b\in S$ y $c\in S^\perp$ tales que a=b+c (en forma única), de esto se sigue que $c=a-b=a+(-b)\in C+S=C$, por tanto $c\in C\cap S^\perp$ y en consecuencia $C\subset S\oplus (C\cap S^\perp)$.

Definición

Dado un conjunto finto de vectores $\{a^1, \cdots, a^m\}$, el cono

$$cone(\{a^1,\cdots,a^m\}):=\{\sum_{i=1}^m \lambda_i a^i: \lambda_1 \geq 0,\cdots,\lambda_m \geq 0\}$$

se denomina un cono finitamente generado por $\{a^1,\cdots,a^m\}$ (también denominado cono poliedral).

Proposición

Un cono convexo, es finitamente generado, si y solo si, es poliedral.

Dem: (\rightarrow) Suponga que C es un cono convexo finitamente generado, por decir $C=cone(\{a^1,\cdots,a^m\})$, entonces el politopo $co(\{0,a^1,\cdots,a^m\})$ puede escribirse como intersección de una colección finita de semiespacios cerrados S_1,\cdots,S_k .

Sea
$$A := \bigcap_{i,0 \in Fr(S_i)} S_i$$
. Se prueba que $C = A$.

Teorema

Un conjunto de \mathbb{R}^n es poliedral si, y solo si, puede expresarse como una suma Minkowski de un politopo y un cono convexo finitamente generado.

Esto signfica que si P es un conjunto poliedral, entonces existen conjuntos finitos de vectores A y B tales que

$$P = co(A) + cone(B).$$

(A es el conjunto de puntos extremos de P y B es un subconjunto de P_{∞} .).

Teorema

Un conjunto de \mathbb{R}^n es poliedral si, y solo si, puede expresarse como una suma Minkowski de un politopo y un cono convexo finitamente generado.

Esto signfica que si P es un conjunto poliedral, entonces existen conjuntos finitos de vectores A y B tales que

$$P = co(A) + cone(B).$$

(A es el conjunto de puntos extremos de P y B es un subconjunto de P_{∞} .). Si $A=\{a^1,\cdots,a^m\}$ y $B=\{d^1,\cdots,d^k\}$, entonces

$$P = \{ \sum_{i=1}^{m} \lambda_i a^i + \sum_{j=1}^{k} \delta_j d^j : \lambda_i \ge 0, \delta_j \ge 0, \lambda_1 + \dots + \lambda_m = 1 \}$$

Sea P un conjunto poliedral no vacío y sin rectas, y $f:P\to\mathbb{R}$ una función lineal que es acotada superiormente en P, entonces el problema

$$\begin{array}{ll}
\text{máx} & f(x) \\
x \in P
\end{array}$$

se resuelve en un punto extremo de ${\cal P}.$

Sea P un conjunto poliedral no vacío y sin rectas, y $f:P\to\mathbb{R}$ una función lineal que es acotada superiormente en P, entonces el problema

$$\begin{array}{ll}
\text{máx} & f(x) \\
x \in P
\end{array}$$

se resuelve en un punto extremo de P. Dem:

La función proyección

Dado un espacio métrico (X,d) y un subconjunto cerrado y no vacío C de X, se define la distancia de un punto $x\in X$ al conjunto C por

$$d(x,C) := \min\{d(x,y) : y \in C\}$$

$$\tag{1}$$

Esto genera una función $d_C: X \to [0, +\infty)$ mediante $d_C(x):=d(x,C)$. Esta función se denomina "función distancia al conjunto C"

La función proyección

Dado un espacio métrico (X,d) y un subconjunto cerrado y no vacío C de X, se define la distancia de un punto $x\in X$ al conjunto C por

$$d(x,C) := \min\{d(x,y) : y \in C\}$$
 (1)

Esto genera una función $d_C:X\to [0\ ,\ +\infty)$ mediante $d_C(x):=d(x,C).$ Esta función se denomina "función distancia al conjunto C"

El conjunto de puntos de C donde se alcanza el mínimo de (1), se denomina "Proyección de x en C".

La función proyección

Dado un espacio métrico (X,d) y un subconjunto cerrado y no vacío C de X, se define la distancia de un punto $x\in X$ al conjunto C por

$$d(x,C) := \min\{d(x,y) : y \in C\}$$
 (1)

Esto genera una función $d_C:X\to [0\ ,\ +\infty)$ mediante $d_C(x):=d(x,C).$ Esta función se denomina "función distancia al conjunto C"

El conjunto de puntos de C donde se alcanza el mínimo de (1), se denomina "Proyección de x en C".

Se ha visto en el curso de Fundamentos de Análisis, que en un Espacio de Hilbert X (como es el caso de \mathbb{R}^n con la norma euclidiana), dado un conjunto convexo cerrado no vacío C, el conjunto $P_C(x)$ es unitario y esto da lugar a la función Proyección en C.

Recuerde que :

- (i) $d(x,C) = 0 \Leftrightarrow x \in \overline{C}$.
- (ii) Si C es cerrado no vacío y $x \notin C$ entonces d(x,C) > 0.

Sea A una matriz de orden $m \times n$ y $b \in \mathbb{R}^m$. Suponga que el $C \subset \mathbb{R}^n$ conjunto solución del sistema $Ax \leq b$ es no vacío, entonces $C_{\infty} = \{d \in \mathbb{R}^n : Ad \leq 0\}$.

Separación de conjuntos

Nota

La idea geométrica de separación (separación lineal de conjuntos) de dos conjuntos C_1 y C_2 en \mathbb{R}^n es que podamos trazar un hiperplano H de modo que C_1 esté incluída en un semiespacio cerrado determinado por H, y C_2 en el otro semiespacio cerrado. Note que si esto es posible con C_1 y C_2 , también es posible con $co(C_1)$ y $co(C_2)$. Presentaremos tres conceptos fundamentales de separación para conjuntos convexos.

¹Cuando mencionemos simplemente semiespacios, nos estamos refiriendo a semiespacios cerrados.

(a) separa C_1 y C_2 si C_1 está contenido en uno de los semiespacios determinados por H y C_2 en el otro semiespacio. Es decir, si

$$\langle a, x \rangle \le \alpha \le \langle a, y \rangle, \quad \forall x \in C_1, y \in C_2.$$

ó

$$\langle a, x \rangle \ge \alpha \ge \langle a, y \rangle, \quad \forall x \in C_1, y \in C_2.$$

¹Cuando mencionemos simplemente semiespacios, nos estamos refiriendo a semiespacios cerrados.

(a) separa C_1 y C_2 si C_1 está contenido en uno de los semiespacios determinados por H y C_2 en el otro semiespacio. Es decir, si

$$\langle a, x \rangle \le \alpha \le \langle a, y \rangle, \quad \forall x \in C_1, y \in C_2.$$

ó

$$\langle a, x \rangle \ge \alpha \ge \langle a, y \rangle, \quad \forall x \in C_1, y \in C_2.$$

(b) separa propiamente C_1 y C_2 si H separa C_1 y C_2 y al menos uno de los C_i no está contenido en H.

¹Cuando mencionemos simplemente semiespacios, nos estamos refiriendo a semiespacios cerrados.

(a) separa C_1 y C_2 si C_1 está contenido en uno de los semiespacios determinados por H y C_2 en el otro semiespacio. Es decir, si

$$\langle a, x \rangle \le \alpha \le \langle a, y \rangle, \quad \forall x \in C_1, y \in C_2.$$

ó

$$\langle a, x \rangle \ge \alpha \ge \langle a, y \rangle, \quad \forall x \in C_1, y \in C_2.$$

- (b) separa propiamente C_1 y C_2 si H separa C_1 y C_2 y al menos uno de los C_i no está contenido en H.
- (c) separa estrictamente C_1 y C_2 si H separa C_1 y C_2 y existe $\epsilon>0$ tal que $\langle a,x\rangle+\epsilon\leq\alpha\leq\langle a,y\rangle-\epsilon, \quad \forall x\in C_1,y\in C_2$

¹Cuando mencionemos simplemente semiespacios, nos estamos refiriendo a semiespacios cerrados.

(a) separa C_1 y C_2 si C_1 está contenido en uno de los semiespacios determinados por H y C_2 en el otro semiespacio. Es decir, si

$$\langle a, x \rangle \le \alpha \le \langle a, y \rangle, \quad \forall x \in C_1, y \in C_2.$$

ó

$$\langle a, x \rangle \ge \alpha \ge \langle a, y \rangle, \quad \forall x \in C_1, y \in C_2.$$

- (b) separa propiamente C_1 y C_2 si H separa C_1 y C_2 y al menos uno de los C_i no está contenido en H.
- (c) separa estrictamente C_1 y C_2 si H separa C_1 y C_2 y existe $\epsilon > 0$ tal que $\langle a, x \rangle + \epsilon < \alpha < \langle a, y \rangle \epsilon, \quad \forall x \in C_1, y \in C_2$

Ejemplo

3 Sean C_1 la bola unitaria cerrada de \mathbb{R}^n y $C_2 = \{p\}$ donde p es un punto de \mathbb{S}^{n-1} . Entonces el hiperplano tangente a C_1 en p, separa C_1 y C_2 .

¹Cuando mencionemos simplemente semiespacios, nos estamos refiriendo a semiespacios cerrados.

(a) separa C_1 y C_2 si C_1 está contenido en uno de los semiespacios determinados por H y C_2 en el otro semiespacio. Es decir, si

$$\langle a, x \rangle \le \alpha \le \langle a, y \rangle, \quad \forall x \in C_1, y \in C_2.$$

ó

$$\langle a, x \rangle \ge \alpha \ge \langle a, y \rangle, \quad \forall x \in C_1, y \in C_2.$$

- (b) separa propiamente C_1 y C_2 si H separa C_1 y C_2 y al menos uno de los C_i no está contenido en H.
- (c) separa estrictamente C_1 y C_2 si H separa C_1 y C_2 y existe $\epsilon > 0$ tal que $\langle a, x \rangle + \epsilon < \alpha < \langle a, y \rangle \epsilon, \quad \forall x \in C_1, y \in C_2$

Ejemplo

- **3** Sean C_1 la bola unitaria cerrada de \mathbb{R}^n y $C_2 = \{p\}$ donde p es un punto de \mathbb{S}^{n-1} . Entonces el hiperplano tangente a C_1 en p, separa C_1 y C_2 .
- ② Sean $C_1=\{(x,y)\in\mathbb{R}^2_{++}: xy\geq 1\}$ y $C_2=\{(x,y)\in\mathbb{R}^2: y=0\}$, entonces el hiperplano $H=\{(x,y): y=0\}$ separa propiamente a estos conjuntos, mas no los separa estrictamente.

¹Cuando mencionemos simplemente semiespacios, nos estamos refiriendo a semiespacios cerrados.

(a) separa C₁ y C₂ si C₁ está contenido en uno de los semiespacios¹ determinados por H y C₂ en el otro semiespacio. Es decir, si

$$\langle a, x \rangle \le \alpha \le \langle a, y \rangle, \quad \forall x \in C_1, y \in C_2.$$

ó

$$\langle a, x \rangle \ge \alpha \ge \langle a, y \rangle, \quad \forall x \in C_1, y \in C_2.$$

- (b) separa propiamente C_1 y C_2 si H separa C_1 y C_2 y al menos uno de los C_i no está contenido en H.
- (c) separa estrictamente C_1 y C_2 si H separa C_1 y C_2 y existe $\epsilon > 0$ tal que $\langle a, x \rangle + \epsilon \le \alpha \le \langle a, y \rangle \epsilon$, $\forall x \in C_1, y \in C_2$

Ejemplo

- **3** Sean C_1 la bola unitaria cerrada de \mathbb{R}^n y $C_2 = \{p\}$ donde p es un punto de \mathbb{S}^{n-1} . Entonces el hiperplano tangente a C_1 en p, separa C_1 y C_2 .
- ② Sean $C_1=\{(x,y)\in\mathbb{R}^2_{++}: xy\geq 1\}$ y $C_2=\{(x,y)\in\mathbb{R}^2: y=0\}$, entonces el hiperplano $H=\{(x,y): y=0\}$ separa propiamente a estos conjuntos, mas no los separa estrictamente.
- **3** Si en el ejemplo, previo modificamos C_1 por el conjunto $\{(x,y) \in \mathbb{R}^2_{++} : x \leq 1, xy \geq 1\}$, se garantiza la separación estricta de C_1 y C_2 .

¹Cuando mencionemos simplemente semiespacios, nos estamos refiriendo a semiespacios cerrados.

Proposición

Sean $C\subset\mathbb{R}^n$ un conjunto no vacío, convexo y cerrado, y $\overline{x}\notin C$. Entonces, existe $a\in\mathbb{R}^n$, $a\neq 0$ tal que

$$\max_{x \in C} \langle a, x \rangle < \langle a, \overline{x} \rangle \tag{2}$$

Proposición

Sean $C \subset \mathbb{R}^n$ un conjunto no vacío, convexo y cerrado, y $\overline{x} \notin C$. Entonces, existe $a \in \mathbb{R}^n$, $a \neq 0$ tal que

$$\max_{x \in C} \langle a, x \rangle < \langle a, \overline{x} \rangle \tag{2}$$

Si en (2) se hubiera presentado la desigualdad

$$\min_{x \in C} \langle a, x \rangle > \langle a, \overline{x} \rangle$$

la construcción de a cambia (cambio de signo).

Proposición

Sean $C \subset \mathbb{R}^n$ un conjunto no vacío, convexo y cerrado, y $\overline{x} \notin C$. Entonces, existe $a \in \mathbb{R}^n$, $a \neq 0$ tal que

$$\max_{x \in C} \langle a, x \rangle < \langle a, \overline{x} \rangle \tag{2}$$

Si en (2) se hubiera presentado la desigualdad

$$\min_{x \in C} \langle a, x \rangle > \langle a, \overline{x} \rangle$$

la construcción de a cambia (cambio de signo).

Corolario

Sean $C \subset \mathbb{R}^n$ un conjunto no vacío, convexo y cerrado, y $\overline{x} \notin C$. Entonces, existe un hiperplano que los separa estrictamente.

Proposición

Sean $C \subset \mathbb{R}^n$ un conjunto no vacío, convexo y cerrado, y $\overline{x} \notin C$. Entonces, existe $a \in \mathbb{R}^n$, $a \neq 0$ tal que

$$\max_{x \in C} \langle a, x \rangle < \langle a, \overline{x} \rangle \tag{2}$$

Si en (2) se hubiera presentado la desigualdad

$$\min_{x \in C} \langle a, x \rangle > \langle a, \overline{x} \rangle$$

la construcción de a cambia (cambio de signo).

Corolario

Sean $C \subset \mathbb{R}^n$ un conjunto no vacío, convexo y cerrado, y $\overline{x} \notin C$. Entonces, existe un hiperplano que los separa estrictamente.

Proposición

Sean $C\subset\mathbb{R}^n$ un conjunto no vacío, convexo y cerrado, y $\overline{x}\notin C$. Entonces, existe $a\in\mathbb{R}^n$, $a\neq 0$ tal que

$$\max_{x \in C} \langle a, x \rangle < \langle a, \overline{x} \rangle \tag{2}$$

Si en (2) se hubiera presentado la desigualdad

$$\min_{x \in C} \langle a, x \rangle > \langle a, \overline{x} \rangle$$

la construcción de a cambia (cambio de signo).

Corolario

Sean $C \subset \mathbb{R}^n$ un conjunto no vacío, convexo y cerrado, y $\overline{x} \notin C$. Entonces, existe un hiperplano que los separa estrictamente.

Problema: ¿Si en la proposición, respecto a C solamente se hubiera dicho que es convexo no vacío, qué conclusión sobre separación se garantiza?

Sean C_1 y C_2 conjuntos convexos, disjuntos y no vacíos, tales que C_1 es cerrado y C_2 es compacto, entonces existe un hiperplano que los separa estrictamente.

Sean C_1 y C_2 conjuntos convexos, disjuntos y no vacíos, tales que C_1 es cerrado y C_2 es compacto, entonces existe un hiperplano que los separa estrictamente.

Prueba: La función $d_{C_1}:\mathbb{R}^n o \mathbb{R}$ es continua, y por tanto el problema

$$\begin{array}{ll}
\text{min} & d_{C_1}(x) \\
s.a. & x \in C_2
\end{array}$$

tiene solución,

Sean C_1 y C_2 conjuntos convexos, disjuntos y no vacíos, tales que C_1 es cerrado y C_2 es compacto, entonces existe un hiperplano que los separa estrictamente.

Prueba: La función $d_{C_1}:\mathbb{R}^n o \mathbb{R}$ es continua, y por tanto el problema

$$\begin{array}{ll}
\text{min} & d_{C_1}(x) \\
s.a. & x \in C_2
\end{array}$$

tiene solución, es decir existe $a \in C_2$ tal que $d(a, C_1) \le d(x, C_1), \ \forall x \in C_2$

Sean C_1 y C_2 conjuntos convexos, disjuntos y no vacíos, tales que C_1 es cerrado y C_2 es compacto, entonces existe un hiperplano que los separa estrictamente.

Prueba: La función $d_{C_1}:\mathbb{R}^n o \mathbb{R}$ es continua, y por tanto el problema

$$\begin{array}{ll}
\text{min} & d_{C_1}(x) \\
s.a. & x \in C_2
\end{array}$$

tiene solución,es decir existe $a \in C_2$ tal que $d(a,C_1) \le d(x,C_1)$, $\forall x \in C_2$ y por la cerradura de C_1 , existe $b \in C_1$ tal que es el elemento más próximo de C_1 a a.

Sean C_1 y C_2 conjuntos convexos, disjuntos y no vacíos, tales que C_1 es cerrado y C_2 es compacto, entonces existe un hiperplano que los separa estrictamente.

Prueba: La función $d_{C_1}: \mathbb{R}^n \to \mathbb{R}$ es continua, y por tanto el problema

$$\begin{array}{ll}
\text{min} & d_{C_1}(x) \\
s.a. & x \in C_2
\end{array}$$

tiene solución,es decir existe $a \in C_2$ tal que $d(a,C_1) \le d(x,C_1)$, $\forall x \in C_2$ y por la cerradura de C_1 , existe $b \in C_1$ tal que es el elemento más próximo de C_1 a a.

Por la convexidad de los conjuntos, se cumplen:

$$\langle a-b, x-b \rangle \le 0, \ \forall x \in C_1 \quad \text{y} \quad \langle b-a, y-a \rangle \le 0, \ \forall y \in C_2$$

De la primera desigualdad, se tiene:

$$\begin{array}{ll} \langle b-a,x\rangle & \geq \langle b-a,b\rangle \\ & = \frac{1}{2}(\|b\|^2 - \|a\|^2 + \|b-a\|^2) \\ & = \frac{1}{2}(\|b\|^2 - \|a\|^2 - \|b-a\|^2) + \|b-a\|^2 \\ & = \langle b-a,a\rangle + \|b-a\|^2 \\ & \geq \langle b-a,y\rangle + \|b-a\|^2 \end{array}$$

A, Jordán Liza

La última desigualdad es válida $\forall y \in C_2$.

Definición

Dado $\emptyset \neq C$ un subconjunto de \mathbb{R}^n . Se dice que el hiperplano H soporta a C en $\overline{x} \in \overline{C}$, si H separa C y $\{\overline{x}\}$.

La existencia de un hiperplano soporte a C en $\overline{x}\in \overline{C}$, equivale a garantizar la existencia de un vector $a\neq 0$ tal que

$$\langle a, \overline{x} \rangle \le \langle a, x \rangle, \quad \forall x \in C.$$
 (3)

o lo que es lo mismo

$$\langle a, \overline{x} \rangle = \inf_{x \in C} \langle a, x \rangle.$$

Teorema

Sean $C \subset \mathbb{R}^n$ un conjunto convexo no vacío, y $\overline{x} \notin int(C)$. Entonces, existe un hiperplano que pasa por \overline{x} que separa C y \overline{x} , es decir, existe un vector $a \neq 0$ tal que

$$\langle a, \overline{x} \rangle \le \langle a, x \rangle, \quad \forall x \in C$$
 (4)

Funciones cóncavas/ convexas

Definición

Sea $\emptyset \neq C \subset E$ un conjunto convexo y $f:C \to \mathbb{R}$ una función. Se dice que:

(a) f es cóncava en C, si $\forall x,y\in C,\ \forall t\in [0,1]$, se cumple

$$f(tx + (1-t)y) \ge tf(x) + (1-t)f(y) \tag{5}$$

(b) f es estrictamente cóncava en C, si $\forall x,y \in C$,con $x \neq y$, $\forall t \in]0,1[$, se cumple

$$f(tx + (1-t)y) > tf(x) + (1-t)f(y)$$
(6)

(c) f es convexa en C, si $\forall x,y \in C, \ \forall t \in [0,1]$, se cumple

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) \tag{7}$$

(d) f es estrictamente convexa en C, si $\forall x,y \in C$,con $x \neq y$, $\forall t \in]0,1[$, se cumple

$$f(tx + (1-t)y) < tf(x) + (1-t)f(y)$$
(8)

Casi-concavidad / Casi-convexidad

Las definiciones que siguen, se dan para funciones definidas en C un subconjunto convexo no vacío, en particular en $\mathbb{R}.$

Definición

Una función $f:C \to \mathbb{R}$, se llama:

(a) casicóncava, si

$$x, y \in C, t \in [0, 1] \Rightarrow f(tx + (1 - t)y) \ge \min\{f(x), f(y)\}$$
 (9)

(b) casiconvexa, si

$$x,y\in C,t\in [0,1]\Rightarrow f(tx+(1-t)y)\leq \max\{f(x),f(y)\} \tag{10}$$

(c) estrictamente casicóncava, si

$$x, y \in C, x \neq y, t \in]0, 1[\Rightarrow f(tx + (1 - t)y) > \min\{f(x), f(y)\}$$
 (11)

(d) estrictamente casiconvexa, si

$$x, y \in C, x \neq y, t \in]0, 1[\Rightarrow f(tx + (1 - t)y) < \max\{f(x), f(y)\}$$
 (12)

Particularmente, las funciones de $\mathbb R$ en $\mathbb R$ que son monótonas, son ejemplos de funciones que son tanto casicóncavas como casiconvexas. Es fácil probar que toda función cóncava es casicóncava y que toda función convexa es casiconvexa, mas lo recíproco en general no es cierto. Además, , si f es casicóncava, entonces -f es casiconvexa, y viceversa.

Conjuntos de nivel

Dados un subconjunto no vacío C de \mathbb{R}^n y una función $f:C\to\mathbb{R}$, y un número real λ . se definen los conjuntos:

Definición

$$L_{\lambda}(f) := \{ x \in C : f(x) = \lambda \} \tag{13}$$

"conjunto de nivel λ de f".

$$S_{\lambda}(f) := \{ x \in C : f(x) \le \lambda \} \tag{14}$$

"conjunto de nivel inferior λ de f".

$$S^{\lambda}(f) := \{ x \in C : f(x) \ge \lambda \}$$
 (15)

"conjunto de nivel superior λ de f".

