

IDENTIFICAREA SISTEMELOR ARX NELINIAR

Coordonator:

Prof. Dr. Ing. Buşoniu Lucian

Studenții: Isărescu Mihai

Marteniuc Giorgiana Simona

Vlassa Alexandra Anamaria

Grupa: 30135

CONŢINUT

- SCOP
- CONSIDERAȚII TEORETICE
- ANALIZĂ ȘI IMPLEMENTARE
- DATE EXPERIMENTALE
- CONSECINŢE

SCOP

Actuala prezentare își propune să ilustreze etapele necesare pentru a modela un sistem dinamic folosind o structură ARX neliniară de tip polinomial.

CONSIDERAȚII TEORETICE

Pornind de la structura ARX standard

$$y(k) = -a_1 y(k-1) - \dots - a_{na} y(k-na) + b_1 u(k-1) + \dots + b_{nb} u(k-nb) + e(k),$$

subordonată de intrările și ieșirile anterioare, și generalizând obținem:

$$y(k) = p(y(k-1), ..., y(k-na), u(k-1), ..., u(k-nb)) + e(k) =: p(d(k)) + e(k),$$

unde p este un polinom de grad m și

$$d(k) = [y(k-1), ..., y(k-na), u(k-1), ..., u(k-nb)]^T$$
 este vectorul format din semnalele anterioare.

Pentru simularea modelului folosim ordinele *na*, *nb* și întârzierea *nk*, iar stuctura va fi de forma:

$$\hat{y}(k) = p(y(k-1), ..., y(k-na), u(k-nk), u(k-nk-1), ..., u(k-nk-nb+1))$$

$$= p(d(k))$$

unde

$$d(k) = [y(k-1), ..., y(k-na), u(k-nk), u(k-nk-1), ..., u(k-nk-nb+1)]^{T}$$

este vectorul format din intrările și ieșirile întârziate.

ANALIZĂ ȘI IMPLEMENTARE

- Crearea matricei Φ cu ajutorul altor două matrici: N linii, M coloane
- ► N numărul de eșantioane
- ► M lungimea polinomului *p*
- Fiecare regresor al matricei Φ este coeficient al polinomului p
- Fiecare linie din Φ este p(d(k)), unde k este numărul liniei
- Rezolvând ΦY obținem parametrii θ într-o anumită ordine
- Provocare: folosirea parametrilor respectivi pentru combinația potrivită de u*y
- Simulare: folosim \hat{y} și u = > vector de aceeași structură cu liniile din Φ , astfel prin înmulțire obținem rezultatul corect

DATE EXPERIMENTALE

Alegând na=4, nb=1, nk=1 și gradul m=3 obținem cea mai mică eroare pe datele de validare.

1x1100 struct with 6 fields

Fields	H n	a	⊞ nb	⊞ nk	⊞ m	mse_id	
1		4	1	1	3	8.0545e-04	0.0086
2		5	1	1	3	8.4062e-04	0.0090
3		4	2	1	3	0.0026	0.0115
4		6	1	1	3	0.0011	0.0117
5		3	1	1	3	0.0016	0.0151
6		7	1	1	3	0.0015	0.0159
7		8	1	1	3	0.0021	0.0208
8		3	2	1	3	0.0038	0.0252
9		9	1	1	3	0.0027	0.0262
10		4	1	1	2	0.0012	0.0270
11		5	1	1	2	0.0014	0.0274
12		5	2	1	3	0.6290	0.0299
13		6	1	1	2	0.0017	0.0305
14		3	1	1	2	0.0020	0.0319
15		10	1	1	3	0.0034	0.0321
		_			_		

Tabelul cu valorile sortate crescător în funcție de MSE pe datele de validare

```
y_4^3
                                                                       3*y 3*y 4^2
                                                        3*y 2*y 4^2 + 3*y 3^2*y 4
                                              3*y_1*y_4^2 + 6*y_2*y_3*y_4 + y_3^3
                         6*y_1*y_3*y_4 + 3*y_2^2*y_4 + 3*y_2*y_3^2 + 3*u_1*y_4^2
            6*y_1*y_2*y_4 + 3*y_1*y_3^2 + 3*y_2^2*y_3 + 6*u_1*y_3*y_4 + 3*y_4^2
  3*y_1^2*y_4 + 6*y_1*y_2*y_3 + y_2^3 + 6*u_1*y_2*y_4 + 3*u_1*y_3^2 + 6*y_3*y_4
3*y 1^2*y 3 + 3*y 1*y 2^2 + 6*u 1*y 1*y 4 + 6*u 1*y 2*y 3 + 6*y 2*y 4 + 3*y 3^2
3*y\_1^2*y\_2 \ + \ 6*u\_1*y\_1*y\_3 \ + \ 6*y\_1*y\_4 \ + \ 3*u\_1*y\_2^2 \ + \ 6*y\_2*y\_3 \ + \ 3*u\_1^2*y\_4
          y 1^3 + 6*u 1*y 1*y 2 + 6*y 1*y 3 + 3*y 2^2 + 3*u 1^2*y 3 + 6*u 1*y 4
                       3*u_1*y_1^2 + 6*y_1*y_2 + 3*u_1^2*y_2 + 6*u_1*y_3 + 3*y_4
                                       3*y_1^2 + 3*u_1^2*y_1 + 6*u_1*y_2 + 3*y_3
                                                        6*u_1*y_1 + 3*y_2 + u_1^3
                                                                   3*y_1 + 3*u_1^2
```

Vectorul cu regresorii modelului

CONSECINȚE

În urma testării repetate a soluției implementate am ajuns la urmatoarele concluzii:

- Gradul maxim acceptat al polinomului poate fi cel mult 4, $m=\overline{1,4}$
- Valorile na, nb şi nk au fost alese pe baza sortării ascendente în funcție de
 MSE pe datele de validare
- Din vectorul cu regresorii modelului, prezentat anterior, deducem că sistemul are ecuații complicate care pot fi mai greu de programat pe un controller

Vă mulțumim pentru atenție!

Doamne ajută!