Problema 6-E4 – Compresie imagine

Fotografia digitală este una dintre cele mai populare forme de reprezentare a informației vizuale. O fotografie este reprezentată ca o matrice de valori întregi și pozitive, din intervalul [0; 255], ce sunt distribuite pe linii și coloane. Datorită necesarului de memorie semnificativ, imaginile sunt de cele mai multe ori stocate comprimat, prin eliminarea informației redundante.

Cerință

Având la dispoziție o imagine, A[][], de dimensiune m (număr de linii) x n (număr de coloane), să se realizeze compresia acesteia după cum urmează. Imaginea este transformată în domeniul frecvență

astfel:
$$\mathbf{Af}[u][v] = coef 1(u) \cdot coef 2(v) \cdot \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \cos \left[\frac{\pi \cdot u}{2 \cdot m} (2 \cdot i + 1) \right] \cos \left[\frac{\pi \cdot v}{2 \cdot n} (2 \cdot j + 1) \right] \mathbf{A}[i][j],$$

unde
$$u=0,...,m-1$$
, $v=0,...,n-1$, $coef 1(u) = \begin{cases} \frac{1.0}{\sqrt{m}} & u=0\\ \sqrt{\frac{2.0}{m}} & u>0 \end{cases}$, $coef 2(v) = \begin{cases} \frac{1.0}{\sqrt{n}} & v=0\\ \sqrt{\frac{2.0}{n}} & v>0 \end{cases}$

cos() reprezintă funcția cosinus ce primește la intrare un unghi reprezentat în radiani, $\pi = 3.14$. **Af**[][] reprezintă imaginea **A**[][] transformată în frecvență. Toate valorile din **Af**[u][v], cu $u \neq 0$ și $v \neq 0$ sunt înlocuite cu 0. Imaginea **A**[][] este reconstituită în imaginea **Ar**[][] astfel:

$$\mathbf{Ar}[i][j] = \sum_{u=0}^{m-1} \sum_{v=0}^{n-1} coef 1(u) \cdot coef 2(v) \cdot \cos \left[\frac{\pi \cdot u}{2 \cdot m} (2 \cdot i + 1) \right] \cos \left[\frac{\pi \cdot v}{2 \cdot n} (2 \cdot j + 1) \right] \mathbf{Af}[u][v], i=0,...,m-1,$$

j=0,...,n-1. Valorile astfel obținute sunt convertite în valori întregi prin rotunjire la cel mai mic întreg. Să se afișeze pe ecran valorile matricei $\mathbf{Ar}[][]$ astfel obținute.

Date de intrare

Se vor citi de la tastatură (fluxul *stdin*) următoarele date:

- o valoare întreagă pentru numărul de linii m, urmată de caracterul newline (tasta Enter);
- o valoare întreagă pentru numărul de coloane *n*, urmată de caracterul *newline* (tasta *Enter*);
- valorile matricei **A**, introduse câte o valoare pe linie urmată de caracterul *newline* (tasta *Enter*), parcursă de la stânga la dreapta, și de sus în jos (parcurgere pe linii și coloane).

Date de iesire

Programul va afișa pe ecran la ieșire, valorile matricei **Ar**[][], câte o valoare pe linie urmată de caracterul *newline* (tasta *Enter*), parcurse de la stânga la dreapta, și de sus în jos (parcurgere pe linii și coloane).

ATENȚIE la respectarea cerinței problemei: afișarea rezultatelor trebuie făcută EXACT în modul in care a fost indicat! Cu alte cuvinte, pe stream-ul standard de ieșire nu se va afișa nimic în plus față de cerința problemei; ca urmare a evaluării automate, orice caracter suplimentar afișat, sau o afișare diferită de cea indicată, duc la un rezultat eronat și prin urmare la obținerea calificativului "Respins".

Restricții și precizări

- 1. Dimensiunile matricei **A** sunt numere întregi, pozitive, mai mari strict decât 2 și mai mici strict decât 20. Valorile matricei sunt valori întregi, pozitive, în intervalul [0; 255].
- 2. Atenție: În funcție de limbajul de programare ales, fișierul ce conține codul trebuie să aibă una din extensiile .c, .cpp, .java, sau .m. Editorul web **nu va adăuga automat** aceste extensii și lipsa lor duce la imposibilitatea de compilare a programului!

3. Atenție: Fișierul sursă trebuie numit de candidat sub forma: <nume>.<ext> unde nume este numele de familie al candidatului și extensia este cea aleasă conform punctului anterior. Atenție la restricțiile impuse de limbajul Java legate de numele clasei și numele fișierului!

Exemplu

Intrare	Ieşire
3	2
4	2
2	2
2	2
1	2
3	2
4	2
3	2
2	2
4	2
2	2
4	2
4	
4	

Explicație:
$$A = \begin{bmatrix} 2 & 2 & 1 & 3 \\ 4 & 3 & 2 & 4 \\ 2 & 4 & 4 & 4 \end{bmatrix}$$
;

$$\mathbf{Af} = \begin{bmatrix} 10.103630 & -0.811754 & 0.857168 & -1.209663 \\ -2.112864 & 0.650515 & 1.416999 & -0.270934 \\ -0.828137 & -0.908250 & -1.222640 & -0.066137 \end{bmatrix}$$

Observație: în urma aproximărilor realizate de compilatoare diferite, este posibil să obțineți mici diferențe la ultimele zecimale. Aceste diferențe nu afectează rezultatul final.

$$\mathbf{Ar} = \begin{bmatrix} 2.916667 & 2.916667 & 2.916667 \\ 2.916667 & 2.916667 & 2.916667 & 2.916667 \\ 2.916667 & 2.916667 & 2.916667 & 2.916667 \end{bmatrix};$$

Timp de lucru: 120 de minute