Notebook UNosnovatos

Contents

1	C+-	C++ plantilla				
	1.2	Librerias				
	1.3	Bitmask				
2	Estructuras de Datos 2.1 Disjoint Set Union					
	2.1	Fenwick Tree				
	2.3	Segment Tree				
	∠.3	Segment free				
3	Programacion dinamica 4					
	3.1	LIS				
	3.2	Knapsack				
	3.3	Cambio de monedas				
	3.4	Algoritmo de Kadane 2D				
4	Grafos 5					
	4.1	DFS				
	4.2	BFS				
	4.3	Puntos de articulación y puentes 6				
	4.4	Orden Topologico				
	4.5	Algoritmo de Khan				
	4.6	Floodfill				
	4.7	Algoritmo Kosajaru				
	4.8	Dijkstra				
	4.9	Bellman Ford				
		Floyd Warshall				
		MST Kruskal				
		MST Prim				
		Shortest Path Faster Algorithm				
	4.14	Camino mas corto de longitud fija				
5	Fluj 5.1	os 9 Edmonds-Karp				
6	Matematicas106.1 Criba de Eratostenes10					
	6.2	Descomposicion en primos (y mas cosas)				
	6.3	Prueba de primalidad				
	6.4	Criba Modificada				

	6.5	Funcion	n Totient de Euler	11		
	6.6	Expone	enciacion binaria	11		
6.7		Exponenciacion matricial				
	6.8	Fibonacci Matriz				
	6.9					
	6.10	Algoritmo Euclideo Extendido				
	6.11	Inverso	modular	12		
	6.12	Coefici	entes binomiales	12		
7	Geometria 13					
	7.1	Puntos		13		
	7.2	Lineas		13		
	7.3	Vectore	es	13		
	7.4	Poligor	nos	14		
	7.5	Convex	K Hull	14		
8	Teoría y miscelánea					
	8.1					
	8.2	Teoría	de Grafos	15		
		8.2.1	Teorema de Euler	15		
		8.2.2	Planaridad de Grafos	15		
	8.3	Teoría	de Números	15		
		8.3.1	Ecuaciones Diofánticas Lineales	15		
		8.3.2	Pequeño Teorema de Fermat	16		
		8.3.3	Teorema de Euler	16		
	8.4	Teorem	na de Pick	16		
	8.5	Combin	natoria	16		
		8.5.1	Permutaciones	16		
		8.5.2	Combinaciones	16		
		8.5.3	Permutaciones con Repetición	16		
		8.5.4	Combinaciones con Repetición	16		
		8.5.5	Números de Catalan	16		

1 C++

1.1 C++ plantilla

```
#include <bits/stdc++.h>
using namespace std;
#define sz(arr) ((int) arr.size())
#define all(v) v.begin(), v.end()
typedef long long ll;
typedef pair<int, int> ii;
typedef vector<ii> vii;
```

```
1.2 Librerias
```

```
typedef vector<int> vi;
typedef vector<long long> vl;
typedef pair<ll, ll> pll;
typedef vector<pll> vll;
const int INF = 1e9;
const ll INFL = 1e18;
const int MOD = 1e9+7;
const double EPS = 1e-9;
int dirx[4] = \{0, -1, 1, 0\};
int diry[4] = \{-1, 0, 0, 1\};
int dr[\bar{1}] = \{1, 1, 0, -1, -1, -1, 0, 1\};
int dc[] = \{0, 1, 1, 1, 0, -1, -1, -1\};
const string ABC = "abcdefghijklmnopqrstuvwxyz";
const char In = '\n';
int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout << setprecision(20) << fixed;</pre>
    // freopen("file.in", "r", stdin);
    // freopen("file.out", "w", stdout);
    return 0;
```

1.2 Librerias

 \sim

```
// En caso de que no sirva #include <bits/stdc++.h>
#include <algorithm>
#include <iostream>
#include <iterator>
#include <sst.ream>
#include <fstream>
#include <cassert>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <string>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <deque>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <iomanip>
#include <unordered_map>
////
#include <tuple>
#include <random>
#include <chrono>
```

1.3 Bitmask

```
// Todas son O(1)Representacion
int a = 5; // Representacion binaria: 0101
int b = 3; // Representacion binaria: 0011
// Operaciones Principales
int resultado_and = a & b; // 0001 (1 en decimal)
int resultado_or = a | b; // 0111 (7 en decimal)
int resultado xor = a ^ b; // 0110 (6 en decimal)
int num = 42; // Representacion binaria: 00101010
bitset<8> bits(num); // Crear un objeto bitset a partir
   del numero
cout << "Secuencia de bits: " << bits << "\n";</pre>
bits.count(); // Cantidad de bits activados
bits.set(3, true); // Establecer el cuarto bit en 1
bits.reset(6); // Establecer el septimo bit en 0
11 S,T;
// Operaciones con bits (/*) por 2 (redondea de forma
   automatica)
S=34; // == 100010
S = S << 1; // == S * 2 == 68 == 1000100
S = S >> 2; // == S/4 == 17 == 10001
S = S >> 1; // == S/2 == 8 == 1000
// Encender un bit
S = 34;
S = S | (1 << 3); // S = 42 (101010)
// Limpiar o apagar un bit
// ~: Not operacion
S = 42;
S \&= (1 << 1); // S = 40 (101000)
// Comprobar si un bit esta encendido
S = 42;
T = S&(1<<3); // (!= 0): el tercer bit esta encendido
// Invertir el estado de un bit
S = 40;
S = (1 << 2); // 44 (101100)
// LSB (Primero de la derecha)
S = 40;
T = ((S) & -(S)); // 8 (001000)
__builtin_ctz(T); // nos entrega el indice del LSB
// Encender todos los bits
11 n = 3; // el tamanio del set de bits
S = 0;
S = (1 << n) - 1; // 7 (111)
// Enumerar todos los posibles subsets de un bitmask
int mask = 18;
```

2 Estructuras de Datos

2.1 Disjoint Set Union

```
struct dsu{
    vi p, size;
    int num sets;
    int maxSize;
    dsu(int n) {
        p.assign(n, 0);
        size.assign(n, 1);
        num_sets = n;
        for (int i = 0; i<n; i++) p[i] = i;</pre>
    int find_set(int i) {return (p[i] == i) ? i : (p[i] =
        find set(p[i]));}
    bool is same set(int i, int j) {return find set(i) ==
         find_set(j);}
    void unionSet(int i, int j){
            if (!is_same_set(i, j)){
                 int a = find set(i), b = find set(j);
                 if (size[a] < size[b])</pre>
                     swap(a, b);
                p[b] = a;
                size[a] += size[b];
                maxSize = max(size[a], maxSize);
                num_sets--;
};
```

2.2 Fenwick Tree

```
#define LSOne(S) ((S) & -(S))
struct fenwick_tree{
    vl ft; int n;
    fenwick_tree(int n): n (n){ft.assign(n+1, 0);}
    ll rsq(int j){
        ll sum = 0;
        for(;j;j -= LSOne(j)) sum += ft[j];
        return sum;
}
ll rsq(int i, int j) {return rsq(j) - (i == 1 ? 0 :
        rsq(i-1));}
void upd(int i, ll v){
        for (; i <= n; i += LSOne(i)) ft[i] += v;
}
};</pre>
```

2.3 Segment Tree

```
int nullValue = 0;
struct nodeST{
    nodeST *left, *right;
    int 1, r; 11 value, lazy, lazy1;
    nodeST(vi &v, int 1, int r) : 1(1), r(r) {
        int m = (1+r) >> 1;
        lazv = 0;
        lazv1 = 0;
        if (l!=r) {
            left = new nodeST(v, 1, m);
            right = new nodeST(v, m+1, r);
            value = opt(left->value, right->value);
        else{
            value = v[1];
    ll opt(ll leftValue, ll rightValue) {
        return leftValue + rightValue;
    void propagate() {
        if(lazv1){
            value = lazy1 * (r-l+1);
            if (l != r) {
                left->lazy1 = lazy1, right->lazy1 = lazy1
                left->lazy = 0, right->lazy = 0;
            lazv1 = 0;
            lazv = 0;
        else{
            value += lazy * (r-l+1);
```

```
3 PROGRAMACION DINAMICA
```

```
if (l != r) {
            if(left->lazy1) left->lazy1 += lazy;
            else left->lazv += lazv;
            if(right->lazy1) right->lazy1 += lazy;
            else right->lazy += lazy;
        lazv = 0;
ll get(int i, int j){
    propagate();
    if (l>=i && r<=j) return value;</pre>
    if (l>i || r<i) return nullValue;</pre>
    return opt(left->get(i, j), right->get(i, j));
void upd(int i, int j, int nv) {
    propagate();
    if (1>j || r<i) return;
    if (1>=i && r<=j) {
        lazy += nv;
        propagate();
        // value = nv;
        return;
    left->upd(i, j, nv);
    right->upd(i, j, nv);
    value = opt(left->value, right->value);
void upd(int k, int nv) {
    if (1>k || r<k) return;
    if (1>=k && r<=k) {
        value = nv;
        return;
    left->upd(k, nv);
    right->upd(k, nv);
    value = opt(left->value, right->value);
void upd1(int i, int j, int nv) {
    propagate();
    if (l>j || r<i) return;</pre>
    if (1>=i && r<=j) {
        lazy = 0;
        lazv1 = nv;
        propagate();
        return;
    left->upd1(i, j, nv);
```

```
right->upd1(i, j, nv);
value = opt(left->value, right->value);
};
```

3 Programacion dinamica

3.1 LIS

```
int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    int n; cin >> n;
    vl vals(n);
    for (int i = 0; i < n; i++) cin >> vals[i];
    vl copia(vals);
    sort(copia.begin(),copia.end());
    map <11,11> dicc;
    for (int i=0;i<n;i++)if (!dicc.count(copia[i])) dicc[</pre>
       copia[i]]=i;
    vl baseSt(n,0);
    nodeSt st(baseSt, 0, n - 1);
    11 \text{ maxi} = 0;
    for (ll pVal:vals) {
        ll op = st.get(0,dicc[pVal]-1)+1;
        maxi = max(maxi, op);
        st.actl(dicc[pVal],op);
    cout << maxi << ln;
```

3.2 Knapsack

```
int main() {
    int n,w;cin>>n>>w;
    // w es la capacidad de la mochila
    // n es la cantidad de elementos
    vi pesos;
    vi valor;
    for (int i = 0; i < n; i++) {
        int p,v;cin >> p>>v;
        pesos.push_back(p);
        valor.push_back(v);
    }
    ll dp[n+1][w+1] ={0};
    for (int i =0;i<=n;i++) dp[i][0]=0;</pre>
```

```
for (int i =0;i<=w;i++) dp[0][i]=0;

for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= w; j++) {
        ll op1 = dp[i-1][j];
        ll op2;
        if (j<pesos[i-1])op2=0;
        else op2=valor[i-1]+dp[i-1][j-pesos[i-1]];
        dp[i][j] = max(op1,op2);
    }
}

ll res = dp[n][w];
cout<<res;</pre>
```

3.3 Cambio de monedas

```
int main() {
   int inf =9999999;

   int n,x;cin>>n>>x;

   // n: numero de monedas x: la cantidad buscada
   vi coins(n); // valor de cada moneda
   for (int i=0;i<n;i++) cin>>coins[i];
   vector<vi> dp(n+1,vi(x+1,0));

   for (int i=0;i<=x;i++) dp[0][i]=inf;
   for(int i=1;i<=n;i++) {
      for(int j=1;j<=x;j++) {
        if (j<coins[i-1]) dp[i][j] = dp[i-1][j];
        else dp[i][j] = min(1+dp[i][j-coins[i-1]],dp[i-1][j]);
      }
   }

   int res = dp[n][x];
   cout<<(res==inf?-1:res)<<ln;
}</pre>
```

3.4 Algoritmo de Kadane 2D

```
int main() {
    ll fil,col;cin>>fil>>col;
    vector<vl> grid(fil,vl(col,0));

// Algoritmo de Kadane/DP para suma maxima de una matriz
    2D en o(n^3)
    for(int i=0;i<fil;i++) {
        for(int e=0;e<col;e++) {
            ll num;cin>>num;
            if (e>0) grid[i][e]=num+grid[i][e-1];
            else grid[i][e]=num;
        }
}
```

4 Grafos

4.1 DFS

```
//o(V+E)
int vertices, aristas;

vector<int> dfs_num(vertices+1, -1); //Vector del estado
    de cada vertice (visitado o no visitado)

const int NO_VISITADO = -1;
const int VISITADO = 1;

vector<vector<int>> adj(vertices + 1); //Lista adjunta
    del grafo

// Complejidad O(V + E)
void dfs(int v){
    dfs_num[v] = VISITADO;
    //Se recorren los vecinos
    for (int i = 0; i < (int) adj[v].size(); i++){
        if (dfs_num[adj[v][i]] == NO_VISITADO) {
            dfs(adj[v][i]);
        }
    }
}</pre>
```

4.2 BFS

4.3 Puntos de articulación y puentes

```
//Puntos de articulacion: son vertices que desconectan el
    grafo
//Puentes: son aristas que desconectan el grafo
//Usar para grafos dirigidos
//O(V+E)
vi dfs_num, dfs_low, dfs_parent, articulation_vertex;
int dfsNumberCounter, dfsRoot, rootChildren;
vector<vii> adi;
void articulationPointAndBridge(int u) {
    dfs_num[u] = dfsNumberCounter++;
    dfs_low[u] = dfs_num[u]; // dfs_low[u] <= dfs_num[u]</pre>
    for (auto &[v, w] : adj[u]) {
        if (dfs_num[v] == -1) { // una arista de arbol
            dfs_parent[v] = u;
            if (u == dfsRoot) ++rootChildren; // vaso
               especial, raiz
            articulationPointAndBridge(v);
            if (dfs low[v] >= dfs num[u]) // para puntos
               de articulacion
                articulation vertex[u] = 1;
            if (dfs_low[v] > dfs_num[u]) // para puentes
                printf(" (%d, %d) is a bridge\n", u, v);
            dfs_low[u] = min(dfs_low[u], dfs_low[v]); //
        else if (v != dfs_parent[u]) // si es ciclo no
           trivial
            dfs_low[u] = min(dfs_low[u], dfs_num[v]); //
               entonces actualizar
int main(){
    dfs_num.assign(V, -1); dfs_low.assign(V, 0);
    dfs parent.assign(V, -1); articulation vertex.assign(
       \nabla, 0);
    dfsNumberCounter = 0;
    adi.resize(V);
    printf("Bridges:\n");
    for (int u = 0; u < V; ++u)
```

4.4 Orden Topologico

```
//Orden de un grafo estilo malla curricular de
    prerrequisitos
vector<vi> adj;
vi dfs_num;
vi ts;

void dfs(int v) {
    dfs_num[v] = 1;
    for (int i = 0; i < (int) adj[v].size(); i++) {

        if (dfs_num[adj[v][i]] != 1) {
            dfs(adj[v][i]);
        }
    }
    ts.push_back(v);
}
//Imprimir el vector ts al reves: reverse(ts.begin(), ts.end());</pre>
```

4.5 Algoritmo de Khan

```
//ALgoritmo de orden topologico
//DAG: Grafo aciclico dirigido
int n, m;
vector<vi> adj;
vi grado;
vi orden;

void khan() {
    queue<int> q;
    for (int i = 1; i<=n; i++) {
        if (!grado[i]) q.push(i);
    }
    int nodo;

while(!q.empty()) {
        nodo = q.front(); q.pop();</pre>
```

```
orden.push back(nodo);
        for (int v : adj[nodo]) {
            grado[v]--;
            if (qrado[v] == 0) q.push(v);
int main() {
    ios::sync with stdio(false);
    cin.tie(0);
    cin >> n >> m;
    adj.resize(n+1);
    grado.resize(n+1);
    for (int i = 0; i<m; i++) {
        int x, y; cin >> x >> y;
        adj[x].push_back(y);
        grado[y]++;
    khan();
    if (orden.size() == n) {
        for (int i : orden) cout << i;</pre>
    else{
        cout << "No DAG"; //No es un grafo aciclico</pre>
            dirigido (tiene un ciclo)
```

4.6 Floodfill

```
//Relleno por difusion-etiquetado/coloreado de
   componentes conexos
//Recorrer matrices como grafos implicitos
//Pueden usar los vectores dirx y diry en lugar de dr y
   dc si se requiere
vector<string> grid;
int R, C, ans;
int floodfill(int r, int c, char c1, char c2){
   //Devuelve tamano de CC
    if (r < 0 || r >= R || c< 0 || c >= C) return 0;
       //fuera de la rejilla
    if (grid[r][c] != c1) return 0;
       //No tiene color cl
    int ans = 1;
                                 //suma 1 a ans porque el
        vertice (r, c) tiene color c1
                                 //Colorea el vertice (r.
    grid[r][c] = c2;
        c) a c2 para evitar ciclos
    for (int d = 0; d < 8; d++) {
        ans += floodfill(r + dr[d], c + dc[d], c1, c2);
```

```
freturn ans;

int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    cin >> R; cin >> C;
    cout << floodfill(0, 0, 'W', '.');
}</pre>
```

4.7 Algoritmo Kosajaru

```
//Encontrar las componentes fuertemente conexas en un
   grafo dirigido
//Componente fuertemente conexa: es un grupo de nodos en
   el que hav
//un camino dirigido desde cualquier nodo hasta cualquier
    otro nodo dentro del grupo.
void Kosaraju(int u, int pass) {
    dfs_num[u] = 1;
    vii &neighbor = (pass == 1) ? AL[u] : AL T[u];
    for (auto &[v, w] : neighbor)
        if (dfs num[v] == UNVISITED)
            Kosaraju(v, pass);
    S.push_back(u);
int main(){
    S.clear();
    dfs_num.assign(N, UNVISITED);
    for (int u = 0; u < N; ++u)
        if (dfs num[u] == UNVISITED)
            Kosaraju(u, 1);
    numSCC = 0;
    dfs_num.assign(N, UNVISITED);
    for (int i = N-1; i >= 0; --i)
        if (dfs num[S[i]] == UNVISITED)
            ++numSCC, Kosaraju(S[i], 2);
    printf("There are %d SCCs\n", numSCC);
```

4.8 Dijkstra

```
ii front = pq.top(); pq.pop();
    int d = front.first, u = front.second;
    if (d > dist[u]) continue;
    for (int j = 0; j < (int)adj[u].size(); j++) {</pre>
        ii v = adj[u][j];
        if (dist[u] + v.second < dist[v.first]) {</pre>
            dist[v.first] = dist[u] + v.second;
            pq.push(ii(dist[v.first], v.first));
return dist;
```

4.9 Bellman Ford

```
vi bellman_ford(vector<vii> &adj, int s, int n) {
    vi dist(n, INF); dist[s] = 0;
    for (int i = 0; i<n-1; i++) {
        bool modified = false;
        for (int u = 0; u < n; u + +)
            if (dist[u] != INF)
                for (auto &[v, w] : adj[u]) {
                     if (dist[v] <= dist[u] + w) continue;</pre>
                     dist[v] = dist[u] + w;
                     modified = true;
        if (!modified) break;
    bool negativeCicle = false;
    for (int u = 0; u < n; u + +)
        if (dist[u] != INF)
            for (auto &[v, w] : adj[u]) {
                if (dist[v] > dist[u] + w) negativeCicle
                    = true:
    return dist;
```

4.10 Floyd Warshall

```
//Camino minimo entre todos los pares de vertices
int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    int V; cin >> V;
    vector<vi> adjMat(V+1, vi(V+1));
    //Condicion previa: adjMat[i][j] contiene peso de la
       arista (i, j)
```

```
//o INF si no existe esa arista
for (int k = 0; k < V; k++)
    for (int i = 0; i<V; i++)</pre>
        for (int j = 0; j < V; j + +)
            adjMat[i][j] = min(adjMat[i][j], adjMat[i
                |[k] + adjMat[k][j]);
```

4.11 MST Kruskal

```
//Arbol de minima expansion
//O(E*log V)
int main() {
    int n, m;
    cin >> n >> m;
    vector<pair<int, ii>> adj; //Los pares son: {peso, {
       vertice, vecino}}
    for (int i = 0; i<m; i++) {
        int x, y, w; cin >> x >> y >> w;
        adj.push back (make pair (w, ii(x, y)));
    sort(adj.begin(), adj.end());
    int mst costo = 0, tomados = 0;
    dsu UF(n);
    for (int i = 0; i<m && tomados < n-1; i++) {</pre>
        pair<int, ii> front = adj[i];
        if (!UF.is_same_set(front.second.first, front.
            second.second)){
            tomados++;
            mst_costo += front.first;
            UF.unionSet(front.second.first, front.second.
                second);
    cout << mst costo;
```

4.12 MST Prim

```
vector<vii> adi;
vi tomado;
priority_queue<ii>> pq;
void process(int u) {
    tomado[u] = 1;
    for (auto &[v, w] : adj[u]) {
        if (!tomado[v]) pq.emplace(-w, -v);
int prim(int v, int n){
```

```
tomado.assign(n, 0);
process(0);
int mst_costo = 0, tomados = 0;
while (!pq.empty()) {
    auto [w, u] = pq.top(); pq.pop();
    w = -w; u = -u;
    if (tomado[u]) continue;
    mst_costo += w;
    process(u);
    tomados++;
    if (tomados == n-1) break;
}
return mst_costo;
```

4.13 Shortest Path Faster Algorithm

```
//Algoritmo mas rapido de ruta minima
//O(\tilde{V}*E) peor caso, O(E) en promedio.
bool spfa(vector<vii> &adj, vector<int> &d, int s, int n)
    d.assign(n, INF);
    vector<int> cnt(n, 0);
    vector<bool> inqueue(n, false);
    queue<int> q;
    d[s] = 0;
    q.push(s);
    inqueue[s] = true;
    while (!q.empty())
        int v = q.front();
        q.pop();
        inqueue[v] = false;
        for (auto edge : adj[v]) {
            int to = edge.first;
            int len = edge.second;
            if (d[v] + len < d[to]) {
                d[to] = d[v] + len;
                if (!inqueue[to]) {
                    q.push(to);
                     inqueue[to] = true;
                     cnt[to]++;
                    if (cnt[to] > n)
                        return false; //ciclo negativo
    return true;
```

4.14 Camino mas corto de longitud fija

```
Modificar operacion * de matrix de esta forma:
En la exponenciacion binaria inicializar matrix ans = b
matrix operator * (const matrix &b) {
    matrix ans(this->r, b.c, vector<vl>(this->r, vl(b.c,
       INFL)));
    for (int i = 0; i<this->r; i++) {
        for (int k = 0; k<b.r; k++) {
            for (int j = 0; j<b.c; j++) {
                ans.m[i][j] = min(ans.m[i][j], m[i][k] +
                   b.m[k][j]);
    return ans;
int main() {
    int n, m, k; cin >> n >> m >> k;
    vector<vl> adj(n, vl(n, INFL));
    for (int i = 0; i<m; i++) {
        ll a, b, c; cin >> a >> b >> c; a--; b--;
        adj[a][b] = min(adj[a][b], c);
    matrix graph(n, n, adj);
    graph = pow(graph, k-1);
    cout << (graph.m[0][n-1] == INFL ? -1 : graph.m[0][n
       -11) << "\n";
    return 0;
```

5 Flujos

5.1 Edmonds-Karp

```
//o(V * E^2)
11 bfs(vector<vi> &adj, vector<vl> &capacity, int s, int
t, vi& parent) {
  fill(parent.begin(), parent.end(), -1);
  parent[s] = -2;
  queue<pll> q;
  q.push({s, INFL});
  while (!q.empty()) {
    int cur = q.front().first;
}
```

```
11 flow = q.front().second;
        q.pop();
        for (int next : adj[cur]) {
            if (parent[next] == -1LL && capacity[cur][
               next])
                parent[next] = cur;
                ll new_flow = min(flow, capacity[cur][
                    next]);
                if (next == t)
                    return new flow;
                q.push({next, new flow});
    return 0;
11 maxflow(vector<vi> &adj, vector<vl> &capacity, int s,
   int t, int n) {
   11 \text{ flow} = 0;
    vi parent(n);
    ll new flow;
    while ((new_flow = bfs(adj, capacity, s, t, parent)))
        flow += new flow;
        int cur = t;
        while (cur != s) {
            int prev = parent[cur];
            capacity[prev][cur] -= new_flow;
            capacity[cur][prev] += new flow;
            cur = prev;
    return flow;
```

6 Matematicas

6.1 Criba de Eratostenes

```
// O(N \log \log N)
ll sieve size;
bitset<10000010> bs;
                         //10^7 es el limite aprox
                         //Lista compacta de primos
void sieve(ll upperbound) {
                                     //Rango = [0..limite]
    _sieve_size = upperbound+1;
                                     //Para incluir al
       limite
    bs.set();
                                     //Todo unos
    bs[0] = bs[1] = 0;
                                     //0 y 1 (no son
       primos)
    for (ll i = 2; i < _sieve_size; ++i) if (bs[i]) {</pre>
```

6.2 Descomposicion en primos (y mas cosas)

```
ll _sieve_size;
bitset<10000010> bs;
void sieve(ll upperbound) {
    _sieve_size = upperbound+1;
    bs.set();
    bs[0] = bs[1] = 0;
    for (ll i = 2; i < _sieve_size; ++i) if (bs[i]) {</pre>
        for (ll j = i*i; j < sieve size; j += i) bs[j] =
        p.push_back(i);
// O( sqrt(N) / log(sqrt(N)) )
vl primeFactors(ll N) {
    vl factors;
    for (int i = 0; (i < (int)p.size()) && (p[i]*p[i] <=</pre>
       N); ++i)
        while (N%p[i] == 0) {
                                    //Hallado un primo
           para N
           N /= p[i];
                                     //Eliminarlo de N
           factors.push_back(p[i]);
    if (N != 1) factors.push back(N); //El N restante es
       primo
    return factors;
int main(){
    sieve(10000000);
//Variantes del algoritmo
//Contar el numero de divisores de N
int numDiv(ll N) {
    int ans = 1;  //Empezar con ans = 1
    for (int i = 0; (i < (int)p.size()) && (p[i]*p[i] <=</pre>
       N); ++i) {
        int power = 0; //Contar la potencia
        while (N%p[i] == 0) { N /= p[i]; ++power; }
        ans *= power+1; //Sequir la formula
    return (N != 1) ? 2*ans : ans; //Ultimo factor = N^1
```

```
//Suma de los divisores de N
//N = a^i * b^i * ... * c^k => N = (a^i + 1) - 1) / (a-1)
ll sumDiv(ll N) {
    ll ans = 1;
                        // empezar con ans = 1
    for (int i = 0; (i < (int)p.size()) && (p[i]*p[i] <=</pre>
       N); ++i) {
        ll multiplier = p[i], total = 1;
        while (N p[i] == 0) {
            N /= p[i];
            total += multiplier;
            multiplier *= p[i];
                                              // total para
        ans *= total;
                                              // este
           factor primo
    if (N != 1) ans \star= (N+1); // N^2-1/N-1 = N+1
    return ans;
```

6.3 Prueba de primalidad

```
ll sieve size;
bitset<10000010> bs;
vl p;
void sieve(ll upperbound) {
    sieve size = upperbound+1;
    bs.set();
    bs[0] = bs[1] = 0;
    for (ll i = 2; i < _sieve_size; ++i) if (bs[i]) {</pre>
        for (ll j = i*i; j < _sieve_size; j += i) bs[j] =
        p.push_back(i);
bool isPrime(ll N) {
    if (N < _sieve_size) return bs[N]; // O(1) primos</pre>
       pequenos
    for (int i = 0; i < (int)p.size() && p[i]*p[i] <= N;</pre>
       ++i)
        if (N%p[i] == 0)
            return false;
                        // 0 ( sqrt(N) / log(sqrt(N)) )
    return true;
       para N > 10^7
   //Nata: solo se garantiza para N <= (ultimo primo de
   p)^2 = 9.99 * 10^13
```

6.4 Criba Modificada

```
//Criba modificada
/*
```

```
Si hay que determinar el numero de factores primos para
   muchos (o un rango) de enteros.
La mejor solucion es el algoritmo de criba modificada O(N
    loa loa N)
int numDiffPFarr[MAX N+10] = \{0\}; // e.g., MAX N = 10^7
for (int i = 2; i \le MAX N; ++i)
    if (numDiffPFarr[i] == 0) // i is a prime number
        for (int j = i; j <= MAX N; j += i)</pre>
            ++numDiffPFarr[j]; // j is a multiple of i
//Similar para EulerPhi
int EulerPhi[MAX N+10];
for (int i = 1; i <= MAX N; ++i) EulerPhi[i] = i;</pre>
for (int i = 2; i <= MAX_N; ++i)</pre>
    if (EulerPhi[i] == i) // i is a prime number
        for (int j = i; j <= MAX N; j += i)
            EulerPhi[\dot{j}] = (EulerPhi[\dot{j}]/i) * (i-1);
```

6.5 Funcion Totient de Euler

```
//EulerPhi(N): contar el numero de enteros positivos < N
   que son primos relativos a N.
//El vector p es el que genera la criba de eratostenes
//Phi(N) = N * productoria(1 - (1/pi))
ll EulerPhi(ll N) {
   ll ans = N; // Empezar con ans = N
   for (int i = 0; (i < (int)p.size()) && (p[i]*p[i] <=
        N); ++i) {
      if (N%p[i] == 0) ans -= ans/p[i]; //contar
        factores
   while (N%p[i] == 0) N /= p[i]; //primos unicos
}
if (N != 1) ans -= ans/N; // ultimo factor
return ans;
}</pre>
```

6.6 Exponenciacion binaria

```
ll binpow(ll b, ll n, ll m) {
    b %= m;
    ll res = 1;
    while (n > 0) {
        if (n & 1)
            res = res * b % m;
        b = b * b % m;
        n >>= 1;
    }
    return res % m;
}
```

6.7 Exponenciacion matricial

```
struct matrix {
    int r, c; vector<vl> m;
    matrix(int r, int c, const vector<vl> &m) : r(r), c(c
        ), m(m) {}
    matrix operator * (const matrix &b) {
        matrix ans(this->r, b.c, vector<vl>(this->r, vl(b
            .c, 0)));
        for (int i = 0; i<this->r; i++) {
             for (int k = 0; k<b.r; k++) {</pre>
                 if (m[i][k] == 0) continue;
                 for (int j = 0; j<b.c; j++) {</pre>
                     ans.m[i][j] += mod(m[i][k], MOD) *
                         mod(b.m[k][j], MOD);
                     ans.m[i][\dot{j}] = mod(ans.m[i][\dot{j}], MOD);
        return ans:
} ;
matrix pow(matrix &b, ll p) {
    matrix ans(b.r, b.c, vector<vl>(b.r, vl(b.c, 0)));
    for (int i = 0; i < b.r; i++) ans.m[i][i] = 1;</pre>
    while (p) {
        if (p&1) {
             ans = ans*b;
        b = b*b;
        p >>= 1;
    return ans;
```

6.8 Fibonacci Matriz

```
/*
[1 1] p  [fib(p+1) fib(p)]
[1 0] = [fib(p) fib(p-1)]
*/
vector<vl> matriz = {{1, 1}, {1, 0}};
matrix m(2, 2, matriz);

ll n; cin >> n;
cout << pow(m, n).m[0][1] << "\n";</pre>
```

6.9 GCD y LCM

```
//O(log10 n) n == max(a, b)
int gcd(int a, int b) { return b == 0 ? a : gcd(b, a%b);
      }
int lcm(int a, int b) { return a / gcd(a, b) * b; }
//gcd(a, b, c) = gcd(a, gcd(b, c))
```

6.10 Algoritmo Euclideo Extendido

```
// O(log(min(a, b)))
ll extEuclid(ll a, ll b, ll &x, ll &y) {
    ll xx = y = 0;
    ll yy = x = 1;
    while (b) {
        ll q = a/b;
        ll t = b; b = a%b; a = t;
        t = xx; xx = x-q*xx; x = t;
        t = yy; yy = y-q*yy; y = t;
    }
    return a;    //Devuelve gcd(a, b)
}
```

6.11 Inverso modular

```
ll mod(ll a, ll m) {
    return ((a%m) + m) % m;
}

ll modInverse(ll b, ll m) {
    ll x, y;
    ll d = extEuclid(b, m, x, y); //obtiene b*x + m*y ==
        d
    if (d != 1) return -1; //indica error
        // b*x + m*y == 1, ahora aplicamos (mod m) para
        obtener b*x == 1 (mod m)
    return mod(x, m);
}

// Otra forma
// O(log MOD)
ll inv (ll a) {
    return binpow(a, MOD-2, MOD);
}
```

6.12 Coeficientes binomiales

```
const int MAX_N = 100010;  // MOD > MAX_N
// O (log MOD)
ll inv (ll a) {
    return binpow(a, MOD-2, MOD);
}
ll fact[MAX_N];
```

```
// O(log MOD)
11 C(int n, int k) {
    if (n < k) return 0;
    return (((fact[n] * inv(fact[k])) % MOD) * inv(fact[n -k])) % MOD;
}
int main() {
    fact[0] = 1;
    for (int i = 1; i < MAX_N; i++) {
        fact[i] = (fact[i-1]*i) % MOD;
    }
    cout << C(100000, 50000) << "\n";
    return 0;
}</pre>
```

7 Geometria

7.1 Puntos

```
// Punto entero
struct point{
                 11 x,y;
                  point (ll x, ll y): x(x), y(y) \{ \}
};
// Punto flotante
struct point{
                  double x, v;
                   point (double x, double y): x(x), y(y) {}
                  bool operator == (point other) const{
                                    return (fabs(x-other.x) < EPS) && (fabs(y-other.y) <
                                                   EPS);
                  };
};
// Distancia entre dos puntos
double dist(point p1, point p2) {
                  return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p1.y-p2.y)*(p
                                 -p2.y));
// Rotacion de un punto
point rotate(point p, double theta) {
                   // rotar por theta grados respecto al origen (0,0
                   double rad = theta*(M_PI/180);
                  return point (p.x*cos(rad)-p.y*sin(rad),p.x*sin(rad)+p
                                  .y*cos(rad));
```

7.2 Lineas

```
// Linea de flotantes de la forma ax+by+c=0
struct line{double a,b,c;};
// Creacion de linea con dos puntos
// b=1 para lineas no verticales y b =0 para verticales
void pointsToLine(point p1, point p2, line& 1) {
    if (fabs(p1.x-p2.x) < EPS) {
        l.a=1.0; l.b=0.0; l.c=-p1.x;
        1.a= -double(p1.y-p2.y)/(p1.x-p2.x);
        1.b = 1.0;
        1.c= -double(1.a*p1.x)-p1.y;
// Comprobacion de lineas paralelas
bool areParallel(line 11, line 12) {
    return (fabs(11.a-12.a) < EPS) && (fabs(11.b-12.b) < EPS)
// Comprobacion de lineas iquales
bool areSame(line 11, line 12) {
    return areParallel(11,12) && (fabs(11.c-12.c) <EPS);</pre>
// Disntacia de un punto a una linea
double distPointToLineaEq(line 1, point p) {
    return fabs(l.a*p.x + l.b*p.y + l.c)/sqrt(l.a*l.a+l.b
       *1.b);
bool areIntersect(line 11, line 12, point& p) {
    if (areParallel(11,12)) return false;
    // resolver sistema 2x2
    p.x = (12.b*11.c - 11.b*12.c)/(12.a*11.b - 11.a*12.b)
    // CS: comprobar linea vertical -> div por cero
    if (fabs(11.b) > EPS) p.y = -(11.a*p.x + 11.c);
    else p.y = -(12.a*p.x + 12.c);
    return true;
```

7.3 Vectores

```
// Creacion de un vector
struct vec{
    double x,y;
    vec(double x,double y): x(x),y(y){}
};

// Puntos a vector
vec toVec(point a,point b){
    return vec(b.x-a.x , b.y-a.y);
}
```

```
// Escalar un vector
vec scale(vec v, double s) {
    // s no negatico:
    // <1 mas corto
    // 1 igual
    // >1 mas largo
    return vec(v.x*s,v.v*s);
// Trasladar p segun v
point traslate(point p, vec v) {
    return point(p.x+v.x , p.y+v.y);
// Producto Punto
double dot(vec a, vec b) {
    return (a.x*b.x + a.y*b.y);
// Cuadrado de la norma
double norm sq(vec v) {
    return v.x*v.x + v.y*v.y;
// Angulo formado por aob
double angle (point a, point o, point b) {
    vec oa = toVec(o,a);
    vec ob = toVec(o,b);
    return acos(dot(oa,ob)/sqrt(norm_sq(oa)*norm_sq(ob)))
// Producto cruz
double cross(vec a, vec b) {
    return (a.x*b.v) - (a.v*b.x);
// Lado respecto una linea pg
bool ccw(point p, point q, point r) {
    // Devuelve verdadero si el punto r esta a la
       izquierda de la linea pq
    return cross(toVec(p,q),toVec(p,r))>0;
// Colinear
bool collinear(point p, point q, point r) {
    return fabs(cross(toVec(p,q), toVec(p,r))) < EPS;
```

7.4 Poligonos

```
// Crear un poligono
// la idea es crearlo con algun orden ya sea horario o
    anti-horario
// y debe cerrarse
vector<point> Poligono;
```

```
// Perimetro de un poligono
double perimeter(const vector<point>& P) {
    double result =0.0;
    for (int i =0;i<(int)P.size()-1;i++)result+= dist(P[i</pre>
       ],P[i+1]);
    return result:
// Area de un poligono
double area(const vector<point>& P) {
    // la mitad del determinante
    double result = 0.0, x1, y1, x2, y2;
    for (int i =0;i<(int)P.size()-1;i++){</pre>
        x1 = P[i].x;
        x2 = P[i+1].x;
        v1 = P[i].v;
        y2 = P[i+1].y;
        result += (x\bar{1}*y2 - x2*y1);
    return fabs (result/2.0);
// Comprobacion de si es Convexto un poligono
bool isConvex(const vector<point>& P) {
    int sz = (int)P.size();
    if (sz<=3) return false;</pre>
    bool isLeft = ccw(P[0], P[1], P[2]);
    for (int i =1; i < s z - 1; i + +)</pre>
        if (ccw(P[i],P[i+1],P[(i+2)==sz ? 1:i+2])!=isLeft
            return false;
    return true;
// Comprobar si un punto esta dentro de un poligono
bool inPoligono(point pt, const vector<point>& P) {
    // P puede ser concavo/convexo
    if ((int)P.size()==0) return false;
    double sum =0;
    for (int i =0;i<(int)P.size()-1;i++){</pre>
        if (ccw(pt,P[i],P[i+1]))
            sum += angle(P[i],pt,P[i+1]); // izquierda/
                anti-horario
        else sum -= angle(P[i],pt,P[i+1]);// derecha/
            horario
    return fabs(fabs(sum)-2*M_PI)<EPS;
```

7.5 Convex Hull

```
struct pt{
    double x,y;
    pt(double x,double y): x(x),y(y){}
};
```

```
int orientation(pt a, pt b, pt c) {
    double v = a.x*(b.y-c.y)+b.x*(c.y-a.y)+c.x*(a.y-b.y);
    if (v < 0) return -1; // horario
    if (v > 0) return +1; // anti-horario
    return 0;
bool cw(pt a, pt b, pt c, bool include_collinear) {
    int o = orientation(a, b, c);
    return o < 0 || (include collinear && o == 0);
bool collinear(pt a, pt b, pt c) { return orientation(a,
   b, c) == 0;
void convex hull(vector<pt>& a, bool include collinear =
    pt p0 = *min element(a.begin(), a.end(), [](pt a, pt
        return make_pair(a.y, a.x) < make_pair(b.y, b.x);</pre>
    sort(a.begin(), a.end(), [&p0](const pt& a, const pt&
        int o = orientation(p0, a, b);
        if (0 == 0)
             return (p0.x-a.x) * (p0.x-a.x) + (p0.y-a.y) * (p0
                 \bar{\langle} (p0.x-b.x) * (p0.x-b.x) + (p0.y-b.v) * (p0.
                    y-b.y);
        return \circ < \bar{0}:
    if (include_collinear) {
        int i = (int)a.size()-1;
        while (i \geq= 0 && collinear(p0, a[i], a.back())) i
```

8 Teoría y miscelánea

8.1 Sumatorias

•
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

•
$$\sum_{i=1}^{n} i^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$

•
$$\sum_{i=1}^{n} i^5 = \frac{(n(n+1))^2 (2n^2 + 2n - 1)}{12}$$

$$\bullet \ \sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$

•
$$\sum_{i=0}^{n} x^i = \frac{x^{n+1}-1}{x-1}$$
 para $x \neq 1$

8.2 Teoría de Grafos

8.2.1 Teorema de Euler

En un grafo conectado planar, se cumple que V - E + F = 2, donde V es el número de vértices, E es el número de aristas y F es el número de caras.

```
reverse(a.begin()+i+1, a.end());
    vector<pt> st;
    for (int i = 0; i < (int)a.size(); i++) {</pre>
        while (st.size() > 1 && !cw(st[st.size()-2], st.
            back(), a[i], include collinear))
             st.pop_back();
        st.push back(a[i]);
    a = st:
int main() {
    ios::sync with stdio(false);
    cin.tie(0);
    ll n; cin>>n;
    vector<pt> Puntos;
    for (int i =0;i<n;i++) {</pre>
        double x,y;cin>>x>>y;
        pt punto (x,y);
        Puntos.push_back(punto);
    convex_hull(Puntos, true);
    cout << Puntos.size() << ln;</pre>
    for (pt punto:Puntos) {
        cout << (11) punto.x<<" "<< (11) punto.v<<1n;
```

8.2.2 Planaridad de Grafos

Un grafo es planar si y solo si no contiene un subgrafo homeomorfo a K_5 (grafo completo con 5 vértices) ni a $K_{3,3}$ (grafo bipartito completo con 3 vértices en cada conjunto).

8.3 Teoría de Números

8.3.1 Ecuaciones Diofánticas Lineales

Una ecuación diofántica lineal es una ecuación en la que se buscan soluciones enteras x e y que satisfagan la relación lineal ax+by=c, donde a, b y c son constantes dadas.

Para encontrar soluciones enteras positivas en una ecuación diofántica lineal, podemos seguir el siguiente proceso:

1. Encontrar una solución particular: Encuentra una solución particular (x_0, y_0)

de la ecuación. Esto puede hacerse utilizando el algoritmo de Euclides extendido.

2. Encontrar la solución general: Una vez que tengas una solución particular, puedes obtener la solución general utilizando la fórmula:

$$x = x_0 + \frac{b}{\operatorname{mcd}(a, b)} \cdot t$$

$$y = y_0 - \frac{a}{\operatorname{mcd}(a, b)} \cdot t$$

donde t es un parámetro entero.

3. Restringir a soluciones positivas: Si deseas soluciones positivas, asegúrate de que las soluciones generales satisfagan $x \ge 0$ y $y \ge 0$. Puedes ajustar el valor de t para cumplir con estas restricciones.

8.3.2 Pequeño Teorema de Fermat

Si p es un número primo y a es un entero no divisible por p, entonces $a^{p-1} \equiv 1 \pmod{p}$.

8.3.3 Teorema de Euler

Para cualquier número entero positivo n y un entero a coprimo con n, se cumple que $a^{\phi(n)} \equiv 1 \pmod{n}$, donde $\phi(n)$ es la función phi de Euler, que representa la cantidad de enteros positivos menores que n y coprimos con n.

8.4 Teorema de Pick

Sea un poligono simple cuyos vertices tienen coordenadas enteras. Si B es el numero de puntos enteros en el borde, I el numero de puntos enteros en el interior del poligono, entonces el area A del poligono se puede calcular con la formula:

$$A = I + \frac{B}{2} - 1$$

8.5 Combinatoria

8.5.1 Permutaciones

El número de permutaciones de n objetos distintos tomados de a r a la vez (sin repetición) se denota como P(n,r) y se calcula mediante:

$$P(n,r) = \frac{n!}{(n-r)!}$$

8.5.2 Combinaciones

El número de combinaciones de n objetos distintos tomados de a r a la vez (sin repetición) se denota como C(n,r) o $\binom{n}{r}$ y se calcula mediante:

$$C(n,r) = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

8.5.3 Permutaciones con Repetición

El número de permutaciones de n objetos tomando en cuenta repeticiones se denota como $P_{\text{rep}}(n; n_1, n_2, \dots, n_k)$ y se calcula mediante:

$$P_{\text{rep}}(n; n_1, n_2, \dots, n_k) = \frac{n!}{n_1! n_2! \cdots n_k!}$$

8.5.4 Combinaciones con Repetición

El número de combinaciones de n objetos tomando en cuenta repeticiones se denota como $C_{\text{rep}}(n; n_1, n_2, \dots, n_k)$ y se calcula mediante:

$$C_{\text{rep}}(n; n_1, n_2, \dots, n_k) = \binom{n+k-1}{n} = \binom{n+k-1}{k-1}$$

8.5.5 Números de Catalan

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

Los números de Catalan también pueden calcularse utilizando la siguiente fórmula recursiva:

$$C_0 = 1$$

$$C_{n+1} = \frac{4n+2}{n+2}C_n$$

Usos:

- Cat(n) cuenta el número de árboles binarios distintos con n vértices.
- Cat(n) cuenta el número de expresiones que contienen n pares de paréntesis correctamente emparejados.
- Cat(n) cuenta el número de formas diferentes en que se pueden colocar n+1 factores entre paréntesis, por ejemplo, para n=3 y 3+1=4 factores: a,b,c,d, tenemos: (ab)(cd),a(b(cd)),((ab)c)d y a((bc)d).
- Los números de Catalan cuentan la cantidad de caminos no cruzados en una rejilla $n \times n$ que se pueden trazar desde una esquina de un cuadrado o rectángulo a la esquina opuesta, moviéndose solo hacia arriba y hacia la derecha.

- \bullet Los números de Catalan representan el número de árboles binarios completos con n+1 hojas.
- \bullet $\operatorname{Cat}(n)$ cuenta el número de formas en que se puede triangular un poligono

convexo de n+2 lados. Otra forma de decirlo es como la cantidad de formas de dividir un polígono convexo en triángulos utilizando diagonales no cruzadas.