Vektorový prostor

Začneme raději zlehka...

Vektory v \mathbb{R}^n

Zatím budeme pod pojmem vektor myslet uspořádanou n-tici reálných čísel. Prostor všech takových n-tic označíme např. $V_n(\mathbb{R})$ (ale lze použít i \mathbb{R}^n). Vektory budeme značit pruhem nahoře, např.

$$\overline{u} = [1, -2] \in V_2(\mathbb{R}), \overline{v} = [3, 0, 2] \in V_3(\mathbb{R}), \dots$$

S vektory se velmi často pracuje jako se sloupci, ale z úsporných důvodů je budeme zapisovat i jako řádky.

Násobení vektoru skalárem a součet vektorů

Pro $\overline{u}, \overline{v} \in V_n(\mathbb{R})$, $\overline{u} = [u_1, \dots, u_n], \overline{v} = [v_1, \dots, v_n]$ a $\alpha \in \mathbb{R}$ definujeme

$$\overline{u} + \overline{v} = [u_1 + v_1, u_2 + v_2, \dots, u_n + v_n],$$

$$\alpha \cdot \overline{u} = [\alpha \cdot u_1, \dots, \alpha \cdot u_n].$$

Lineární kombinace vektorů

Lineární kombinace

Řekneme, že vektor \overline{v} je lineární kombinací vektorů $\overline{u}_1, \overline{u}_2, \dots, \overline{u}_m$, jestliže existují skaláry $c_1, c_2, \dots, c_m \in \mathbb{R}$, pro které platí

$$\overline{v} = c_1 \overline{u}_1 + c_2 \overline{u}_2 + \cdots + c_m \overline{u}_m.$$

Příklad

Několik příkladů lineárních kombinací vektorů

$$\overline{u}_1 = [3, 1], \overline{u}_2 = [2, 4]$$
:

$$\overline{v}_1 = 2\overline{u}_1 + 1,5\overline{u}_2 = [9,8]$$

 $\overline{v}_2 = -\overline{u}_1 + \overline{u}_2 = [-1,3]$

$$\overline{v}_3 = \overline{u}_1 - 0.5\overline{u}_2 = [2, -1]$$

Příklad na lineární kombinace

Příklad

Pro jakou hodnotu $k \in \mathbb{R}$ je vektor \overline{v} lineární kombinací vektorů $\overline{u}_1, \overline{u}_2$?

$$\overline{v} = [1, 2, k], \qquad \overline{u}_1 = [1, 0, -2], \ \overline{u}_2 = [3, 1, 2]$$

Jaký je geometrický význam této úlohy?

Příklad na lineární kombinace

Příklad

Pro jakou hodnotu $k \in \mathbb{R}$ je vektor \overline{v} lineární kombinací vektorů $\overline{u}_1, \overline{u}_2$?

$$\overline{v} = [1, 2, k], \qquad \overline{u}_1 = [1, 0, -2], \ \overline{u}_2 = [3, 1, 2]$$

Jaký je geometrický význam této úlohy?

Snažíme se vyjádřit \overline{v} jako $c_1\overline{u}_1+c_2\overline{u}_2$:

$$c_1+3c_2=1$$
 z prvních dvou $c_1=-5$ $c_2=2$ rovnic plyne $c_2=2$ $-2c_1+2c_2=k$

Aby třetí rovnice nebyla v rozporu s prvními dvěma, musí být k = 14.

Geometricky: Pro tuto hodnotu k leží vektor \overline{v} v rovině, která prochází počátkem a je dána vektory $\overline{u}_1, \overline{u}_2$.

Lineární závislost a nezávislost

Lineární nezávislost a závislost

Řekneme, že vektory $\overline{u}_1,\overline{u}_2,\ldots,\overline{u}_m\in V_n(\mathbb{R})$ jsou lineárně nezávislé, jestliže z rovnosti

$$c_1\overline{u}_1 + c_2\overline{u}_2 + \cdots + c_m\overline{u}_m = \overline{o}$$

plyne
$$c_1 = c_2 = \cdots = c_m = 0$$
.

Jinými slovy: $\overline{u}_1, \overline{u}_2, \ldots, \overline{u}_m$ jsou lineárně nezávislé, jestliže jediná možnost, jak získat nulový vektor jako jejich lineární kombinaci, je vynásobit všechny nulou.

V opačném případě jsou vektory lineárně závislé. V tomto případě najdeme $c_1,\ldots,c_m\in\mathbb{R}$, z nichž některé není rovno nule, taková že

$$c_1\overline{u}_1+\cdots+c_m\overline{u}_m=\overline{o}.$$

Lineární závislost a nezávislost

Jak je to s nulovým vektorem?

Jakákoli množina vektorů obsahující nulový vektor je lineárně závislá.

Jiná možnost, jak popsat závislost

Vektory $\overline{u}_1, \dots, \overline{u}_m$ jsou lineárně závislé právě tehdy, je-li některý z nich lineární kombinací ostatních.

Tj., existuje-li $k \in \{1, \ldots, m\}$, pro které je

$$\overline{u}_k = \alpha_1 \overline{u}_1 + \dots + \alpha_{k-1} \overline{u}_{k-1} + \alpha_{k+1} \overline{u}_{k+1} + \dots + \alpha_m \overline{u}_m$$

pro nějaké skaláry $\alpha_i \in \mathbb{R}$, $i \in \{1, \dots, m\} \setminus \{k\}$.

Příklad na lineární závislost a nezávislost v \mathbb{R}^2

Příklad

Rozhodněte, zda jsou zadané vektory lineárně závislé nebo nezávislé.

- a) $\overline{u}_1 = [2, 3], \overline{u}_2 = [6, 9]$
- b) $\overline{u}_1 = [2, 3], \overline{u}_2 = [3, 2]$

Příklad na lineární závislost a nezávislost v \mathbb{R}^2

Příklad

Rozhodněte, zda jsou zadané vektory lineárně závislé nebo nezávislé.

- a) $\overline{u}_1 = [2, 3], \overline{u}_2 = [6, 9]$
- b) $\overline{u}_1 = [2, 3], \overline{u}_2 = [3, 2]$
- a) Vidíme, že $\overline{u}_2=3\overline{u}_1$, a tedy jsou vektory lineárně závislé. Nebo též pomocí definice závislosti: $3\overline{u}_1-\overline{u}_2=\overline{o}$
- b) Předvedeme pomocí definice hledáme c_1, c_2 tak, aby $c_1 \overline{u}_1 + c_2 \overline{u}_2 = \overline{o}$:

$$\begin{pmatrix} 2 & 3 & 0 \\ 3 & 2 & 0 \end{pmatrix} \sim \begin{pmatrix} 2 & 3 & 0 \\ 0 & -5 & 0 \end{pmatrix} \qquad \begin{array}{c} 2c_1 + 3c_2 = 0 \\ -5c_2 = 0 \end{array}$$

Jediné řešení je $c_1=c_2=0$, vektory jsou tedy lineárně nezávislé.

Příklad – pokračování

Příklad

c)
$$\overline{u}_1 = [2, 3], \overline{u}_2 = [3, 2], \overline{u}_3 = [4, 5]$$

Příklad – pokračování

Příklad

c)
$$\overline{u}_1 = [2, 3], \overline{u}_2 = [3, 2], \overline{u}_3 = [4, 5]$$

c) Opět pomocí definice – hledáme c_1, c_2, c_3 tak, aby $c_1 \overline{u}_1 + c_2 \overline{u}_2 + c_3 \overline{u}_3 = \overline{o}$:

$$\begin{pmatrix} 2 & 3 & 4 & | & 0 \\ 3 & 2 & 5 & | & 0 \end{pmatrix} \sim \begin{pmatrix} 2 & 3 & 4 & | & 0 \\ 0 & -5 & -2 & | & 0 \end{pmatrix} \qquad \begin{array}{c} 2c_1 + 3c_2 + 4c_3 = 0 \\ -5c_2 - 2c_3 = 0 \end{array}$$

Soustava má nekonečně mnoho řešení, jedno z nich dostaneme např. volbou $c_3=-5$, pak $c_2=2$ a $c_1=7$. Tedy

$$7\overline{u}_1 + 2\overline{u}_2 - 5\overline{u}_3 = \overline{o}$$

nebo též

$$\overline{u}_3 = \frac{7}{5}\overline{u}_1 + \frac{2}{5}\overline{u}_2$$

Vektory $\overline{u}_1, \overline{u}_2, \overline{u}_3$ jsou lineárně závislé.

Závěry z předchozího příkladu

Kdy jsou dva vektory závislé?

Dva vektory jsou lineárně závislé právě tehdy, když je jeden z nich násobkem druhého.

Jak velkou skupinu nezávislých vektorů jsme schopni najít v \mathbb{R}^2 ?

Máme-li více než dva vektory z \mathbb{R}^2 , jsou určitě lineárně závislé.

Jak je to ve vícerozměrných prostorech?

Máme-li více než dva vektory v \mathbb{R}^n , n > 2, je situace složitější a závislost či nezávislost obvykle na první pohled rozeznat nelze.

Avšak je-li vektorů z \mathbb{R}^n více než n, nemohou být lineárně nezávislé.

Příklad na lineární závislost a nezávislost v \mathbb{R}^3

Příklad

Rozhodněte, zda jsou vektory $\overline{u}_1, \ldots, \overline{u}_6$ lineárně závislé nebo nezávislé. Pokud jsou závislé, vyberte z nich co největší skupinu vektorů lineárně nezávislých.

$$\overline{u}_1 = [1, -1, 0], \quad \overline{u}_2 = [0, 1, 2], \quad \overline{u}_3 = [1, 0, 2], \quad \overline{u}_4 = [1, 2, 6], \quad \overline{u}_5 = [1, 0, -1], \quad \overline{u}_6 = [3, 1, 2]$$

Příklad na lineární závislost a nezávislost v \mathbb{R}^3

Příklad

Rozhodněte, zda jsou vektory $\overline{u}_1, \ldots, \overline{u}_6$ lineárně závislé nebo nezávislé. Pokud jsou závislé, vyberte z nich co největší skupinu vektorů lineárně nezávislých.

$$\overline{u}_1 = [1, -1, 0], \quad \overline{u}_2 = [0, 1, 2], \quad \overline{u}_3 = [1, 0, 2], \quad \overline{u}_4 = [1, 2, 6], \quad \overline{u}_5 = [1, 0, -1], \quad \overline{u}_6 = [3, 1, 2]$$

Možná si něčeho všimneme na první pohled. Pokud ne, budeme postupovat algoritmicky a řešit, kdy je $c_1 \bar{u}_1 + \cdots + c_6 \bar{u}_6 = \bar{o}$. Protože na pravé straně jsou stále nuly, nebudeme už je zapisovat.

$$\begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 3 \\ -1 & 1 & 0 & 2 & 0 & 1 \\ 0 & 2 & 2 & 6 & -1 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 3 \\ 0 & 1 & 1 & 3 & 1 & 4 \\ 0 & 2 & 2 & 6 & -1 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 3 \\ 0 & 1 & 1 & 3 & 1 & 4 \\ 0 & 0 & 0 & 0 & -3 & -6 \end{pmatrix}$$

Soustava má nekonečně mnoho řešení, např. $[c_1,\ldots,c_6]=[-1,-1,1,0,0,0]$ nebo [-1,-3,0,1,0,0], atd. Vektory $\overline{u}_1,\ldots,\overline{u}_6$ jsou tedy lineárně závislé.

Lineárně nezávislá je např. trojice vektorů \overline{u}_1 , \overline{u}_2 , \overline{u}_5 , protože v prvním, druhém a pátém sloupci vyšly pivoty – podrobněji bylo na přednášce.

Poznámka – redukovaný schodovitý tvar

V předchozím příkladu bychom matici mohli upravovat dále až na tzv. redukovaný schodovitý tvar.

Redukovaný schodovitý tvar (rref)

Matice je v redukovaném schodovitém tvaru (angl. reduced row echelon form), jestliže je ve schodovitém tvaru a navíc

- všechny pivoty jsou rovny 1,
- ve sloupcích nad pivoty jsou nuly.

$$\begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 3 \\ -1 & 1 & 0 & 2 & 0 & 1 \\ 0 & 2 & 2 & 6 & -1 & 2 \end{pmatrix} \sim \cdots \sim \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 3 \\ 0 & 1 & 1 & 3 & 1 & 4 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 3 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{pmatrix}$$

Z původních vektorů $\overline{u}_1,\ldots,\overline{u}_6$ jsou lineárně nezávislé ty, které jsou dány pozicemi pivotů, tj. zde první, druhý a pátý (na to nebylo potřeba schodovitý tvar redukovat). Navíc snadno vyčteme (podrobněji na přednášce), jakým způsobem jsou ostatní vektory závislé. Zde:

$$\overline{u}_3 = \overline{u}_1 + \overline{u}_2$$
, $\overline{u}_4 = \overline{u}_1 + 3\overline{u}_2$, $\overline{u}_6 = \overline{u}_1 + 2\overline{u}_2 + 2\overline{u}_5$

Výběr lineárně nezávislých vektorů

Jak vybrat lineárně nezávislé vektory z větší skupiny

Vektory zapíšeme do matice <u>jako sloupce</u>, matici upravíme na schodovitý tvar. Z <u>původních</u> vektorů jsou lineárně nezávislé ty, které jsou na pozicích sloupců, kde vyšly pivoty.

Alternativní postup

V malém, "ručně" řešeném příkladu si můžeme různých závislostí všimnout na první pohled.

Nebo: Vektory zapíšeme do matice <u>jako řádky</u> a matici upravíme na schodovitý tvar. Z původních vektorů jsou nezávislé ty, které jsou na pozicích nenulových řádků v upraveném tvaru. Nevýhodou je, že si musíme pamatovat případné výměny řádků.

Řádková a sloupcová hodnost matice

Řádková hodnost matice

Řádková hodnost matice A udává maximální počet lineárně nezávislých vektorů, které lze vybrat z řádků matice A.

Sloupcová hodnost matice

Sloupcová hodnost matice A je maximální počet lineárně nezávislých vektorů, které lze vybrat ze sloupců matice A.

Příklad na výpočet řádkové a sloupcové hodnosti

Příklad

Určete řádkovou a sloupcovou hodnost matice A.

$$A = \begin{pmatrix} 1 & 0 & -1 & 2 \\ 2 & 1 & 0 & -2 \\ 1 & -1 & -3 & 8 \end{pmatrix}$$

Příklad na výpočet řádkové a sloupcové hodnosti

Příklad

Určete řádkovou a sloupcovou hodnost matice A.

$$A = \begin{pmatrix} 1 & 0 & -1 & 2 \\ 2 & 1 & 0 & -2 \\ 1 & -1 & -3 & 8 \end{pmatrix}$$

Hodnosti poznáme úpravou matice na schodovitý tvar:

$$\begin{pmatrix} 1 & 0 & -1 & 2 \\ 2 & 1 & 0 & -2 \\ 1 & -1 & -3 & 8 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 2 & -6 \\ 0 & -1 & -2 & 6 \end{pmatrix} \begin{matrix} II-2I \\ III-I \end{matrix} \sim \begin{pmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 2 & -6 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{matrix} III+II \end{matrix}$$

Třetí řádek se vynuloval, tzn. byl lineární kombinací prvních dvou, zde konkrétně rekapitulací úprav:

$$(\overline{r}_3 - \overline{r}_1) + (\overline{r}_2 - 2\overline{r}_1) = \overline{o}, \quad \text{tj.} \quad \overline{r}_3 = 3\overline{r}_1 - \overline{r}_2.$$

Zbývající řádky jsou lineárně nezávislé. Řádková hodnost je proto 2.

První dva sloupce jsou nezávislé, zatímco třetí a čtvrtý jsou jejich lineárními kombinacemi:

$$\overline{s}_3 = -\overline{s}_1 + 2\overline{s}_2, \quad \overline{s}_4 = 2\overline{s}_1 - 6\overline{s}_2$$

Sloupcová hodnost je proto také 2.

Obě hodnosti vyšly steiné. Je to náhoda, nebo zákonitost?

Hodnost matice

Řádková a sloupcová hodnost je stejná

Řádková a sloupcová hodnost matice A se sobě rovnají, a proto už dále mezi nimi nebudeme rozlišovat.

Hodnost matice – označení

Hodnost matice A označíme h(A) nebo též rank(A).

Jak hodnost určit

Hodnost matice A je počet nenulových řádků po úpravě A na schodovitý tvar.

Návrat k soustavám lineárních rovnic – Frobeniova věta

Frobeniova věta

Soustava lineárních rovnic $A\overline{x}=\overline{b}$ má alespoň jedno řešení právě tehdy, když je hodnost matice soustavy rovna hodnosti rozšířené matice soustavy,

$$h(A|b) = h(A).$$

Řádkový pohled na věc

• . . . nenulové číslo, * . . . jakékoli číslo

právě jedno řešení						více řešení (v $\mathbb{R} \infty$ řešení)								žádné řešení							
-	•	*	*	*/	\	- /	•	*	*	*	*	*		<i>-</i>	•	*	*	*	*	*	١
- 1	0	•	*	*	1		0	•	*	*	*	*	1		0	•	*	*	*	*	1
- 1	0	0	•	*	1		0	0	0	•	*	*	1		0	0	0	•	*	*	
1	0	0	0	0,	/		0	0	0	0	0	0)			0	0	0	0	0	• /	/

Sloupcový pohled na věc

Soustava má řešení právě tehdy, je-li vektor \overline{b} na pravé straně soustavy lineární kombinací sloupců matice A. $T_{1..}$ pokud se jeho přidáním ke sloupcům nezvýší hodnost matice.

Příklad – počet řešení, $\mathbb R$ versus konečné pole

Příklad

Najděte všechna řešení zadané soustavy rovnic, a to a) v \mathbb{R} , b) v \mathbb{Z}_2 .

$$x_1 + x_2 + x_4 = 1$$

 $x_3 - x_4 = 0$

Příklad – počet řešení, $\mathbb R$ versus konečné pole

Příklad

Najděte všechna řešení zadané soustavy rovnic, a to $\ \ a)$ v $\mathbb{R}, \ \ b)$ v $\mathbb{Z}_2.$

$$x_1 + x_2 + x_4 = 1$$

 $x_3 - x_4 = 0$

a) Soustava má nekonečně mnoho řešení: $x_4=t, t\in \mathbb{R}, x_3=t, x_2=s, s\in \mathbb{R}, x_1=1-s-t.$ Množina všech řešení je

$$\{[1-s-t, s, t, t]; t, s \in \mathbb{R}\}$$

b) V \mathbb{Z}_2 máme jen dvě možné volby pro parametr t a dvě volby pro parametr s: 0 a 1. Množina všech řešení je proto

$$\{[1,0,0,0],[0,0,1,1],[0,1,0,0],[1,1,1,1]\}.$$

Čtvercové matice – přehled souvislostí

A... reálná čtvercová matice $n \times n$.

Regulární matice

- |A| ≠ 0
- A^{-1} existuje
- h(A) = n
- řádky A jsou lineárně nezávislé
- sloupce A jsou lineárně nezávislé
- soustava $A\overline{x} = \overline{b}$ má právě jedno řešení pro každou pravou stranu \overline{b}
- soustava $A\overline{x} = \overline{o}$ má pouze nulové řešení

Singulární matice

- |A| = 0
- A^{−1} neexistuje
- h(A) < n
- řádky A jsou lineárně závislé
- sloupce A jsou lineárně závislé
- soustava $A\overline{x} = \overline{b}$ má buď nekonečně mnoho řešení, nebo žádné; záleží na \overline{b}
- soustava $A\overline{x} = \overline{o}$ má i nenulová řešení

Vektorový podprostor prostoru $V_n(\mathbb{R})$

$\overline{\mathsf{Vektorový}}$ podprostor prostoru $V_n(\mathbb{R})$

Buď $W\subseteq\mathbb{R}^n$ neprázdná množina. $W(\mathbb{R})$ je vektorový podprostor $V_n(\mathbb{R})$ právě tehdy, když

- $\overline{u} + \overline{v} \in W$ pro každé $\overline{u}, \overline{v} \in W$,
- $\alpha \cdot \overline{u} \in W$ pro každé $\alpha \in \mathbb{R}$, $\overline{u} \in W$.

Každý vektorový podprostor musí obsahovat nulový vektor!

Každý vektorový podprostor je sám o sobě vektorovým prostorem. (Bude vysvětleno podrobněji, až bude definován vektorový prostor obecně.)

Vektorové podprostory – příklady

Příklad

Rozhodněte, zda dané množiny tvoří vektorové podprostory daného prostoru V nad polem reálných čísel.

- a) $V = \mathbb{R}^2$, $W = \{[x, y]; x \in \mathbb{R}, y \ge 0\}$
- b) $V = \mathbb{R}^3$, $W = \{[x, y, 0]; x, y \in \mathbb{R}\}$
- c) $V = \mathbb{R}^3$, $W = \{[1, y, z]; y, z \in \mathbb{R}\}$

Vektorové podprostory – příklady

Příklad

Rozhodněte, zda dané množiny tvoří vektorové podprostory daného prostoru V nad polem reálných čísel.

- a) $V = \mathbb{R}^2$, $W = \{[x, y]; x \in \mathbb{R}, y > 0\}$
- b) $V = \mathbb{R}^3$, $W = \{[x, y, 0]; x, y \in \mathbb{R}\}$
- c) $V = \mathbb{R}^3$, $W = \{[1, y, z]; y, z \in \mathbb{R}\}$
- a) Ne: např. $-1 \cdot [1, 1] = [-1, -1] \notin W$
- Ano: Součet dvou vektorů typu [x, y, 0] má opět třetí složku 0, tj. náleží do W. Stejně tak libovolný reálný násobek takového vektoru.
- c) Ne: např. $[1,2,3]+[1,4,5]=[2,6,8]\notin W$. Množina W také neobsahuje nulový vektor, takže vektorovým podprostorem být nemůže.

Vektorové podprostory – příklady

Příklad

Rozhodněte, zda dané množiny tvoří vektorové podprostory daného prostoru V nad polem reálných čísel.

- a) $V = \mathbb{R}^2$, $W = \{[x, y]; x \in \mathbb{R}, y > 0\}$
- b) $V = \mathbb{R}^3$, $W = \{[x, y, 0]; x, y \in \mathbb{R}\}$
- c) $V = \mathbb{R}^3$, $W = \{[1, y, z]; y, z \in \mathbb{R}\}$
- a) Ne: např. $-1 \cdot [1, 1] = [-1, -1] \notin W$
- Ano: Součet dvou vektorů typu [x, y, 0] má opět třetí složku 0, tj. náleží do W. Stejně tak libovolný reálný násobek takového vektoru.
- c) Ne: např. $[1,2,3]+[1,4,5]=[2,6,8]\notin W$. Množina W také neobsahuje nulový vektor, takže vektorovým podprostorem být nemůže.

Triviální podprostor

Každý vektorový prostor má triviální podprostor: jednoprvkovou množinu {ō}.

Také ie každý prostor podprostorem sama sebe.

Množina generující prostor

Generátory vektorového prostoru

Buď V vektorový prostor a $M\subseteq V$ jeho podmnožina. Řekneme, že množina M generuje prostor V, jestliže každý vektor $\overline{v}\in V$ lze vyjádřit jako lineární kombinaci prvků množiny M, tj. existují skaláry $c_1,\ldots,c_m\in\mathbb{R}$ a vektory $\overline{u}_1,\ldots,\overline{u}_m\in V$, pro které platí

$$\overline{v} = c_1 \overline{u}_1 + \cdots + c_m \overline{u}_m.$$

Množinu M pak nazveme systémem generátorů vektorového prostoru V a píšeme

$$V = \langle M \rangle$$
.

V se také nazývá lineární obal množiny M a píšeme

$$V = \operatorname{span}(M)$$
.

Příklad

Jaké vektorové prostory nad $\mathbb R$ jsou generovány danými množinami?

- a) $M \subset \mathbb{R}^2$, $M = \{[1, 2]\}$
- b) $M \subset \mathbb{R}^2$, $M = \{[1, 2], [-2, -4]\}$
- c) $M \subset \mathbb{R}^2$, $M = \{[1, 2], [-2, 4]\}$
- d) $M \subset \mathbb{R}^3$, $M = \{[1, 0, 0], [0, 1, 0]\}$

Příklad

Jaké vektorové prostory nad $\mathbb R$ jsou generovány danými množinami?

- a) $M \subset \mathbb{R}^2$, $M = \{[1, 2]\}$
- b) $M \subset \mathbb{R}^2$, $M = \{[1, 2], [-2, -4]\}$
- c) $M \subset \mathbb{R}^2$, $M = \{[1, 2], [-2, 4]\}$
- d) $M \subset \mathbb{R}^3$, $M = \{[1, 0, 0], [0, 1, 0]\}$
- a) $\langle M \rangle = \{ c[1,2]; c \in \mathbb{R} \}$, tj. přímka v rovině
- b) Prvky M jsou tvaru $\overline{v}=c_1[1,2]+c_2[-2,-4]=(c_1-2c_2)[1,2],\ c_1,c_2\in\mathbb{R}.$ Jedná se o tutéž přímku jako v a).
- c) Prvky M jsou tvaru $\overline{v}=c_1[1,2]+c_2[-2,4]=[c_1-2c_2,2c_1+4c_2]$. Tímto způsobem se podaří vyjádřit jakýkoli vektor z \mathbb{R}^2 (podrobněji na přednášce), proto $\langle M \rangle = \mathbb{R}^2$
- d) $\langle M \rangle = \{[c_1, c_2, 0]; c_1, c_2 \in \mathbb{R}\}$, jedná se o rovinu $xy \vee \mathbb{R}^3$

Příklad

Rozhodněte, zda je vektor \overline{v} prvkem $\langle \{\overline{u}_1, \overline{u}_2, \overline{u}_3\} \rangle$.

$$\overline{v} = [1, 2, 3], \qquad \overline{u}_1 = [1, 0, -2], \overline{u}_2 = [3, 1, 2], \overline{u}_3 = [1, 1, 6]$$

Příklad

Rozhodněte, zda je vektor \overline{v} prvkem $\langle \{\overline{u}_1, \overline{u}_2, \overline{u}_3\} \rangle$.

$$\overline{v} = [1, 2, 3], \quad \overline{u}_1 = [1, 0, -2], \overline{u}_2 = [3, 1, 2], \overline{u}_3 = [1, 1, 6]$$

Mělo by platit $\overline{v} = c_1 \overline{u}_1 + c_2 \overline{u}_2 + c_3 \overline{u}_3$:

$$[c_1 + 3c_2 + c_3, c_2 + c_3, -2c_1 + 2c_2 + 6c_3] = [1, 2, 3]$$

$$\begin{pmatrix} 1 & 3 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ -2 & 2 & 6 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 8 & 8 & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & -13 \end{pmatrix}$$

Soustava nemá řešení, a proto $\overline{v} \notin \langle \{\overline{u}_1, \overline{u}_2, \overline{u}_3\} \rangle$.

Co kdyby měl vektor \overline{u}_3 poslední složku 7, a ne 6?

Co kdyby měl vektor \overline{v} poslední složku 14, a ne 3?

Báze vektorového prostoru

Báze vektorového prostoru

Vektory $\overline{u}_1, \dots, \overline{u}_n$ tvoří bázi vektorového prostoru V, jestliže

- $\overline{u}_1, \ldots, \overline{u}_n$ jsou lineárně nezávislé,
- $\overline{u}_1, \ldots, \overline{u}_n$ generují celý prostor V, tj. $V = \langle \{\overline{u}_1, \ldots, \overline{u}_n\} \rangle$.

Báze vektorového prostoru

Báze vektorového prostoru

Vektory $\overline{u}_1, \dots, \overline{u}_n$ tvoří bázi vektorového prostoru V, jestliže

- $\overline{u}_1, \ldots, \overline{u}_n$ jsou lineárně nezávislé,
- $\overline{u}_1, \ldots, \overline{u}_n$ generují celý prostor V, tj. $V = \langle \{\overline{u}_1, \ldots, \overline{u}_n\} \rangle$.

Příklad

Rozhodněte, zda zadané vektory tvoří bázi zadaného prostoru V. Pokud ne, lze je na bázi doplnit?

- a) $V = \mathbb{R}^2$, $\overline{u}_1 = [1, 0]$, $\overline{u}_2 = [0, 1]$
- b) $V = \mathbb{R}^3$, $\overline{u}_1 = [1, 2, 0]$, $\overline{u}_2 = [1, 0, 1]$, $\overline{u}_3 = [2, 2, 1]$
- c) $V = \mathbb{R}^3$, $\overline{u}_1 = [1, 2, 0]$, $\overline{u}_2 = [1, 0, 1]$
- d) $V = \mathbb{R}^3$, $\overline{u}_1 = [1, 2, 3]$, $\overline{u}_2 = [0, 4, 5]$, $\overline{u}_3 = [0, 0, 6]$

Báze vektorového prostoru

Báze vektorového prostoru

Vektory $\overline{u}_1, \dots, \overline{u}_n$ tvoří bázi vektorového prostoru V, jestliže

- $\overline{u}_1, \ldots, \overline{u}_n$ jsou lineárně nezávislé,
- $\overline{u}_1, \ldots, \overline{u}_n$ generují celý prostor V, tj. $V = \langle \{\overline{u}_1, \ldots, \overline{u}_n\} \rangle$.

Příklad

Rozhodněte, zda zadané vektory tvoří bázi zadaného prostoru V. Pokud ne, lze je na bázi doplnit?

a)
$$V = \mathbb{R}^2$$
, $\overline{u}_1 = [1, 0]$, $\overline{u}_2 = [0, 1]$

b)
$$V = \mathbb{R}^3$$
, $\overline{u}_1 = [1, 2, 0]$, $\overline{u}_2 = [1, 0, 1]$, $\overline{u}_3 = [2, 2, 1]$

c)
$$V = \mathbb{R}^3$$
, $\overline{u}_1 = [1, 2, 0]$, $\overline{u}_2 = [1, 0, 1]$

d)
$$V = \mathbb{R}^3$$
, $\overline{u}_1 = [1, 2, 3]$, $\overline{u}_2 = [0, 4, 5]$, $\overline{u}_3 = [0, 0, 6]$

- a) Ano, je to tzv. standardní báze \mathbb{R}^2 .
- b) Ne, vektory jsou lineárně závislé, $\overline{u}_3 = \overline{u}_1 + \overline{u}_2$.
- c) Ne, vektory jsou sice nezávislé, ale negenerují celý prostor \mathbb{R}^3 , pouze jeho podprostor rovinu. Přidáním např. vektoru [0,0,1] dostaneme bázi \mathbb{R}^3 .
- d) Ano (podrobněji na přednášce).

Standardní báze, souřadnice vektoru v bázi

Standardní báze \mathbb{R}^n

Standardní báze prostoru \mathbb{R}^n je tvořena vektory $\overline{e}_i,\ i=1,\ldots,n$, které mají na i-té pozici jedničku a jinak samé nuly. Např. pro \mathbb{R}^3 :

$$\overline{e}_1 = [1, 0, 0], \quad \overline{e}_2 = [0, 1, 0], \quad \overline{e}_3 = [0, 0, 1].$$

Každý vektor je kombinací bázových vektorů

Má-li vektorový prostor V bázi tvořenou vektory $\overline{u}_1, \ldots, \overline{u}_m$, pak libovolný vektor $\overline{v} \in V$ lze jednoznačně vyjádřit jako lineární kombinaci bázových vektorů:

$$\overline{v} = v_1 \overline{u}_1 + \cdots + v_m \overline{u}_m.$$

Souřadnice vektoru v bázi

Uspořádanou m-tici čísel $[v_1,\ldots,v_m]$ z výše uvedeného vyjádření vektoru \overline{v} v bázi $\overline{u}_1,\ldots,\overline{u}_m$ nazveme souřadnicemi vektoru \overline{v} v bázi $\overline{u}_1,\ldots,\overline{u}_m$.

Příklad na určení souřadnic

Příklad

Určete souřadnice vektoru $\overline{v} = [3, -1]$

- ve standardní bázi \mathbb{R}^2 ,
- v bázi tvořené vektory $\overline{u}_1 = [1,1], \overline{u}_2 = [0,1].$

Příklad na určení souřadnic

Příklad

Určete souřadnice vektoru $\overline{v} = [3, -1]$

- ve standardní bázi \mathbb{R}^2 ,
- v bázi tvořené vektory $\overline{u}_1 = [1, 1], \overline{u}_2 = [0, 1].$

Souřadnice ve standardní bázi $\overline{e}_1=[1,0], \overline{e}_2=[0,1]$ jsou zřejmě $[v_1,v_2]=[3,-1]$, protože

$$\overline{v} = 3[1,0] + (-1)[0,1].$$

Označme souřadnice v bázi $\overline{u}_1, \overline{u}_2$ jako $[v_1', v_2']$. Má platit

$$\overline{v} = v_1' \overline{u}_1 + v_2' \overline{u}_2,$$

rozepsáno

$$v_1' = 3$$

 $v_1' + v_2' = -1$

Tedy \overline{v} má v bázi $\overline{u}_1, \overline{u}_2$ souřadnice [3, -4].

Poučení z předchozího příkladu

Jeden a týž vektor z \mathbb{R}^2 (obecně \mathbb{R}^n) může být popsán různými dvojicemi (obecně n-ticemi) čísel!

Záleží na tom, s jakou bází pracujeme.

Podrobněji se k tomu ještě vrátíme později.

Dimenze vektorového prostoru

Konečněrozměrný prostor

Vektorový prostor se nazývá konečněrozměrný (případně konečně generovaný) jestliže existuje konečná množina vektorů $\overline{u}_1, \ldots, \overline{u}_n$, která tento prostor generuje.

V opačném případě je nekonečněrozměrný.

Mohou existovat báze o různých počtech prvků?

Je-li *V* konečněrozměrný prostor, pak všechny jeho báze mají stejný počet prvků.

Dimenze vektorového prostoru

Počet prvků báze konečněrozměrného prostoru V se nazývá dimenze tohoto prostoru, značíme dim V.

Pro nekonečněrozměrný prostor V je dim $V=\infty$.

Příklady na dimenzi a bázi

Dimenze a příklad báze \mathbb{R}^n

Prostor \mathbb{R}^n má dimenzi n. Příkladem báze je báze standardní $\overline{e}_1, \ldots, \overline{e}_n$, ale rozhodně to není jediná možná báze tohoto prostoru.

Příklad

Určete dimenzi a uveď te příklad báze podprostoru \mathbb{R}^4 generovaného vektory

$$\overline{u}_1 = [1, 2, -2, -1], \overline{u}_2 = [1, 1, -1, -1], \overline{u}_3 = [2, 3, -3, -2], \overline{u}_4 = [-1, 0, 0, 1].$$

$$\begin{pmatrix} 1 & 2 & -2 & -1 \\ 1 & 1 & -1 & -1 \\ 2 & 3 & -3 & -2 \\ -1 & 0 & 0 & 1 \end{pmatrix} \sim \cdots \sim \begin{pmatrix} 1 & 2 & -2 & -1 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Z vektorů $\overline{u}_1, \ldots, \overline{u}_4$ lze vybrat 2 lineárně nezávislé, např. $\overline{u}_1, \overline{u}_2$ – tyto vektory tvoří bázi prostoru $\{\{\overline{u}_1, \ldots, \overline{u}_4\}\}$. Existují ale i jiné báze tohoto prostoru, např. $\overline{u}_1, \overline{u}_3$ nebo $\overline{u}_2, \overline{u}_4$, atd.

Dimenze je tedy 2.

Součet a průnik vektorových prostorů

Součet a průnik vektorových prostorů

Jsou-li $V_1,\,V_2$ dva podprostory stejného vektorového prostoru, pak jejich součtem rozumíme množinu

$$V_1 + V_2 = \{\overline{w}; \overline{w} = \overline{v}_1 + \overline{v}_2, \overline{v}_1 \in V_1, \overline{v}_2 \in V_2\}.$$

a jejich průnikem je množina

$$V_1 \cap V_2 = \{\overline{w}; \overline{w} \in V_1 \wedge \overline{w} \in V_2\}.$$

Vztah mezi dimenzemi

Součet a průnik dvou vektorových prostorů jsou opět vektorové prostory. Mezi dimenzemi platí vztah

$$\dim(V_1 + V_2) + \dim(V_1 \cap V_2) = \dim V_1 + \dim V_2.$$