R code for Data Science for Beginners Day 1: Individual Exercise

Univeristy of Essex

Author: Jack Jeffrey

Task 1. Modify the author name

Task 2. Perform the following calculations by writing R commands

2-1:

 $result1 < (4 * (30 + 6)) ^ 0.5 print(result1)$

should print 12

2-2:

 $result2 <- (4*30+6) \hat{\ } 0.5 \ print(result2) \ \# \ should \ print \ 11.22497$

Task 3. Working with objects

3-1:

X1 < -73 # created an object # 3-2: X2 < -(99+38) # created a second object # 3-3: X3 < -(X1*X2) # created a third object

3-4

(X3-1) ^ 0.25 print(result3) # should print 10

Task 4. Calculation using objects

4-1:

part.1 <- (30+6) # created an object equal to 36

4-2:

part.2 <- (part.1*4) # created a second object equal to 144

4-3:

part.2 ^ 0.5 # should print 12

Task 5. Detecting R data types

5-1

 $color_vector <- c("blue", "green", "red") \ is_character_vector <- \ is.character(color_vector) \ print(is_character_vector)$

5-2

 $factor_vector <- \ factor(c(2,4,6)) \ \# \ created \ a \ factor \ vector \ print(factor_vector)$

Task 6. Testing NA

6-1

numeric_vector_with_NA <- c(1,2,NA,4) # created a numeric vector with an NA

6-2

na_positions <- which(is.na(numeric_vector_with_NA)) print (na_positions) #should print 3

6-3

 $numeric_vector_with_NaN <- c(2,4,NaN,6) \# created a numeric vector with an NaN$

6-4

nan positions <- which(is.nan(numeric vector with NaN)) print(nan positions) #should print 3