#9 Modelling I & II: Regression Analysis

Iris E. Acquarone

POLI 102

Spring 2023, Rice University

Up-to-date

- ▶ WE'R DONE (after this anyways...)! The usual friendly reminder of all you've accomplished so far :) :
 - ► Fundamentals and R Data ✓
 - ▶ Data wrangling/cleansing √
 - ▶ Data visualization I, II, III & IV ✓
 - Data summarization and MCT&D \(\square\)
 - ► Hypothesis testing (Measures of Association I) ✓
 - ▶ Measures of Association II ✓
 - ► HW #1, #2, #3, #4, #5 & #6 ✓
- ► H #7 ~> Run a regression & visualize
- ► Final Project: Draft 4/14, Final 4/21

Canvas chat for attendance

From correlation to regression

What is it?	Inter-connection/association between two variables
Variable types?	There is no independent/dependent variable, just two variables that we want to see how they 'run' together
What for?	Find out a value representing the strength of the linear association of two variables
Coefficient interpretation?	Whether and how two variables change together

From correlation to regression

Regression analysis 101

- 1. Is your outcome variable continuous or categorical (most. binary?)
- Linear regression: predict value of continuous outcome
- ► Logistic regression: predict probability of an event occurring
- 2. Will you consider one or multiple independent variables when predicting your outcome?
- ▶ Bivariate regression: **One** predictor, $Y_i = \beta_0 + \beta_1 X_i + \epsilon$
- Multivariate regression: Multiple predictors (and/or controls), $Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i + \beta_n X_i + \epsilon$

Linear Regression in R

```
# lm() function for linear regression models lm(y \sim x, # regression formula: y (DV) \sim x (IV) data=data) # dataset lm(y \sim x + z + w, data=data)
```


Figure 1: Link

Linear Regression in R

Logistic Regression in R

```
# glm() function for generalize linear models
glm(y ~ x,# regression formula: y (DV) ~ x (IV)
family = "binomial", #family = binomial for logistic regression
data=data) # data set
glm(y ~ x + z + w,
family = "binomial",
data=data)
```


Figure 2: Link

Logistic Regression in R

> Model specification

- ► How many and which predictors?
- ► Transformations?
 - Polynomials, logs
 - Standardized
- Interactions?

HW #7 posted, deadline next week Next weeks, all about your project.

iea@rice.edu

