浙江大学 2018 - 2019 学年春夏学期

求是数学班《高等代数 II》测验 II

2019.05.05

- 1. 设实对称阵 $\mathbf{A} \in M_3(\mathbb{R})$ 的全部特征值为 $\lambda_1 = \lambda_2 = -1, \lambda_3 = 2$, 且 $x_3 = (1, 1, 1)^T$ 是 \mathbf{A} 的属于特征值 2 的一个特征向量.
 - (1) 求 \mathbf{A} 的属于特征值 -1 的全体特征向量;
 - (2) 求正交阵 \mathbf{Q} , 使得 $\mathbf{Q}^T \mathbf{A} \mathbf{Q}$ 为对角阵;
 - (3) 求 **A**.
- 2. 若 $\alpha_1, \dots, \alpha_n$ 是 n 维欧式空间 V 的线性无关向量组, 证明: 存在一个向量 ξ , 使得 $\langle \alpha_i, \xi \rangle = 1 (i=1,\dots,n)$.
- 3. 设 T 是线性空间 V 上的正规变换,2,3,6 是 T 的三个特征值,证明: 存在向量 $v \in V$,使得 $||v|| = \sqrt{3}, ||Tv|| = 7.$
 - 4. 设 n 为正整数, $T \in L(\mathbb{F}^n)$ 定义如下: $T(z_1, \dots, z_n) = (0, z_1, \dots, z_{n-1})$, 求 $T^*(z_1, \dots, z_n)$.
- 5. 设 $T \in L(V)$ 是自伴随算子, $\lambda \in \mathbb{F}, \varepsilon > 0$, 证明: 若有 $v \in V$, 使得 ||v|| = 1, 且 $||Tv \lambda v|| < \varepsilon$, 则 T 有特征值 λ' , 使得 $|\lambda \lambda'| < \varepsilon$.
 - 6. 设 V 是复内积空间, $T \in L(V)$ 是正规算子, 使得 $T^9 = T^8$, 证明: T 是自伴随算子, 且 $T^2 = T$.
 - 7. 设 $T \in L(V)$ 是自伴随算子, 若 $a, b \in \mathbb{R}$, 满足 $a^2 < 4b$, 证明: $T^2 + aT + bI$ 可逆.

8. 设 V 是 n 维实内积空间, 给定 V 的一个非零向量 v, 定义 $H_v:V\to V$ 如下: 对 $x\in V$,

$$H_v(x) = x - 2 \frac{\langle x, v \rangle}{\langle v, v \rangle} v.$$

- (1) 验证: H_v 是正交变换;
- (2) 验证: $H_v(v) = -v$, 以及 $H_v(w) = w \Leftrightarrow v \perp w$;
- (3) 设 $n \ge 3, v_1, \dots, v_n$ 是 V 的正交基, 证明: 存在实数 k_1, \dots, k_n , 使得 $k_1 H_{v_1} + \dots + k_n H_{v_n}$ 是 V 上的恒等变换.
 - 9. 对线性相关的向量组应用 Gram-Schmidt 过程, 结果会怎样?