ISyE 6739-The Analysis of Variance (ANOVA) Single Factor (Chapter 13)

Instructor: Kamran Paynabar
H. Milton Stewart School of
Industrial and Systems Engineering
Georgia Tech

Kamran.paynabar@isye.gatech.edu
Office: Groseclose 436

ISyE 6739, ANOVA - Single Factor

1

Hypothesis Test on Means of Multiple Normal Distributions

Example:

A manufacturer of paper used for making grocery bags is interested in improving the tensile strength of the product. Product engineering thinks that tensile strength is a function of the hardwood concentration in the pulp and that the range of hardwood concentrations of practical interest is between 5 and 20%. A team of engineers responsible for the study decides to investigate four levels of hardwood concentration: 5%, 10%, 15%, and 20%.

Question of interest: Is hardwood concentration an important factor in improving tensile strength?

$$\begin{cases} H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 \end{cases}$$

 H_a : at least one mean differs from others

Hypothesis Test on Means of Multiple Normal Distributions

Table 13-1 Tensile Strength of Paper (psi)

Hardwood		Observations						
Concentration (%)	1	2	3	4	5	6	Totals	Averages
5	7	8	15	11	9	10	60	10.00
10	12	17	13	18	19	15	94	15.67
15	14	18	19	17	16	18	102	17.00
20	19	25	22	23	18	20	127	21.17
							383	15.96

$$\begin{cases} H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 \end{cases}$$

 H_a : at least one mean differs from others

- The levels of the factor are sometimes called treatments.
- Each treatment has six observations or replicates.
- The runs are run in random order.
- This setting is known as Completely Randomized Single-Factor Experiment.

ISyE 6739, ANOVA - Single Factor

3

Hypothesis Test on Means of Multiple Normal Distributions

Table 13-2 Typical Data for a Single-Factor Experiment

Treatment		Obser	vations	Totals	Averages	
1	<i>y</i> 11	<i>y</i> ₁₂		y_{1n}	y_1 .	\overline{y}_1 .
2	y_{21}	y_{22}		y_{2n}	y_2 .	\overline{y}_2 .
	:	:	:::	:		:
a	y_{a1}	y_{a2}		y_{an}	y_a .	\overline{y}_a .
					у	<u>y</u>

$$i=1,2,\cdots,a$$
 \longrightarrow Number of populations $j=1,2,\cdots,n$ Sample size

$$y_{ij}$$
 Observation $_{i}$ from population $_{i}$

Population
$$i$$
 Total $y_{i\cdot} = \sum_{j=1}^{n} y_{ij}$ $\overline{y}_{i\cdot} = y_{i\cdot}/n$ $i = 1, 2, \dots, a$ Grand Total $y_{\cdot\cdot} = \sum_{i=1}^{a} \sum_{j=1}^{n} y_{ij}$ $\overline{y}_{\cdot\cdot} = y_{\cdot\cdot}/N$ Grand Average

Grand Total
$$y_{\cdot \cdot \cdot} = \sum_{i=1}^{a} \sum_{j=1}^{n} y_{ij}$$
 $\overline{y}_{\cdot \cdot \cdot} = y_{\cdot \cdot \cdot}/N$ Grand Average

Hypothesis Test on Means of Multiple Normal Distributions

Linear Statistical Model:

$$Y_{ij} = \mu_i + \epsilon_{ij} \begin{cases} i = 1, 2, ..., a \\ j = 1, 2, ..., n \end{cases}$$

$$Y_{ij} = \mu + \tau_i + \epsilon_{ij} \begin{cases} i = 1, 2, \dots, a \\ j = 1, 2, \dots, n \end{cases}$$

Assumptions:

1.
$$\varepsilon_{ij} \sim NID(0, \sigma^2)$$

2.
$$\sum_{i=1}^{a} \tau_i = 0$$

3. Populations (factors) have equal variances

ISyE 6739, ANOVA - Single Factor

5

Hypothesis Test on Means of Multiple Normal Distributions

We wish to test the hypotheses:

$$\int H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$$

 H_a : at least one mean differs from others

We know that $\mu_i = \mu + \tau_i$

Therefore, the hypothesis test can be written as

$$H_0: \tau_1 = \tau_2 = \cdots = \tau_a = 0$$

 H_1 : $\tau_i \neq 0$ for at least one i

Analysis of Variance (ANOVA)

 $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$

 H_a : at least one mean differs from others ANOVA partitions the total variability into two parts

Total Variations = Between-group Variations + Within-group Variations

$$\sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{..})^{2} = n \sum_{i=1}^{a} (\bar{y}_{i}. - \bar{y}_{..})^{2} + \sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{i}.)^{2}$$
 (13-5)

ISyE 6739, ANOVA - Single Factor

Analysis of Variance (ANOVA)

 $\int H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$

 $H_a: \text{ANOVA partitions the total variability into two parts} H_a: \text{ANOVA partitions the total variability into two parts}$

Total Variations = Between-group Variations + Within-group Variations

$$SST = SSB + SSW$$
 or $(SST = SS_{treatments} + SS_{Error})$

$$\sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \overline{y}_{..})^{2} = n \sum_{i=1}^{a} (\overline{y}_{i.} - \overline{y}_{..})^{2} + \sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \overline{y}_{i.})^{2}$$
 (13-5)

ISyE 6739, ANOVA - Single Factor

Analysis of Variance (ANOVA)

 $\int H_0: \mu_1 = \mu_2 = \dots = \mu_a$

 H_a : at least one mean differs from others

ANOVA partitions the total variability into two parts

$$SST = SS_{treatments} + SS_{Frror}$$

The appropriate test statistic is

$$F_0 = \frac{SS_{\text{Treatments}}/(a-1)}{SS_E/[a(n-1)]} = \frac{MS_{\text{Treatments}}}{MS_E}$$
(13-7)

We would reject H₀ if

$$F_0 > F_{\alpha,a-1,a(n-1)}$$
 or $F_0 > F_{\alpha,a-1,N-a}$

ISyE 6739, ANOVA - Single Factor

9

Analysis of Variance (ANOVA)

 $H_0: \mu_1 = \mu_2 = \dots = \mu_a$

 H_a : at least one mean differs from others

$$SST = SS_{treatments} + SS_{Error}$$

The sums of squares computing formulas for the ANOVA with equal sample sizes in each treatment are

$$SS_T = \sum_{i=1}^{a} \sum_{i=1}^{n} y_{ij}^2 - \frac{y_{..}^2}{N}$$
 (13-8)

and

$$SS_{Treatments} = \sum_{i=1}^{a} \frac{y_i^2}{n} - \frac{y_i^2}{N}$$
 (13-9)

The error sum of squares is obtained by subtraction as

$$SS_E = SS_T - SS_{\text{Treatments}}$$
 (13-10)

ISyE 6739, ANOVA - Single Factor

ANOVA Table

$$\int H_0: \mu_1 = \mu_2 = \dots = \mu_a$$

 H_a : at least one mean differs from others

Table 13-3 The Analysis of Variance for a Single-Factor Experiment, Fixed-Effects Model

Source of		Degrees of		
Variation	Sum of Squares	Freedom	Mean Square	F_0
Treatments	$SS_{Treatments}$	a-1	$MS_{Treatments}$	$\frac{MS_{\text{Treatments}}}{MS_E}$
Error	SS_E	a(n-1)	MS_E	
Total	SS_T	an-1		

We would reject H₀ if

$$F_0 > F_{\alpha,a-1,a(n-1)}$$
 or $F_0 > F_{\alpha,a-1,N-a}$

ISyE 6739, ANOVA - Single Factor

11

ANOVA

Example:

A manufacturer of paper used for making grocery bags is interested in improving the tensile strength of the product. Product engineering thinks that tensile strength is a function of the hardwood concentration in the pulp and that the range of hardwood concentrations of practical interest is between 5 and 20%. A team of engineers responsible for the study decides to investigate four levels of hardwood concentration: 5%, 10%, 15%, and 20%.

Hardwood			Obser					
Concentration (%)	1	2	3	4	5	6	Totals	Averages
5	7	8	15	11	9	10	60	10.00
10	12	17	13	18	19	15	94	15.67
15	14	18	19	17	16	18	102	17.00
20	19	25	22	23	18	20	127	21.17
							383	15.96

$$SS_T = \sum_{i=1}^{a} \sum_{j=1}^{n} y_{ij}^2 - \frac{y_{..}^2}{N}$$

$$SS_{\text{Treatments}} = \sum_{i=1}^{a} \frac{y_i^2}{n} - \frac{y_i^2}{N}$$

$$SS_E = SS_T - SS_{\text{Treatments}}$$

ISyE 6739, ANOVA - Single Factor

ANOVA for Unbalanced Experiments

The sums of squares computing formulas for the ANOVA with unequal sample sizes n_t in each treatment are

$$SS_T = \sum_{i=1}^{a} \sum_{j=1}^{n_i} y_{ij}^2 - \frac{y_{..}^2}{N}$$
 (13-13)

$$SS_{\text{Treatments}} = \sum_{i=1}^{a} \frac{y_i^2}{n_i} - \frac{y_i^2}{N}$$
 (13-14)

and

$$SS_E = SS_T - SS_{\text{Treatments}}$$
 (13-15)

ISyE 6739, ANOVA - Single Factor

13

Confidence Intervals on Means in ANOVA

A $100(1-\alpha)$ percent confidence interval on the mean of the *i*th treatment μ_i is

$$\bar{y}_{i.} - t_{\alpha/2,a(n-1)} \sqrt{\frac{MS_E}{n}} \le \mu_i \le \bar{y}_{i.} + t_{\alpha/2,a(n-1)} \sqrt{\frac{MS_E}{n}}$$
 (13-11)

Example: For 20% hardwood, the resulting confidence interval on the mean is?

Confidence Intervals on Mean Differences in ANOVA

A $100(1-\alpha)$ percent confidence interval on the difference in two treatment means $\mu_t-\mu_f$ is

$$\overline{y}_{i\cdot} - \overline{y}_{j\cdot} - t_{\alpha/2, a(n-1)} \sqrt{\frac{2MS_E}{n}} \le \mu_i - \mu_j \le \overline{y}_{i\cdot} - \overline{y}_{j\cdot} + t_{\alpha/2, a(n-1)} \sqrt{\frac{2MS_E}{n}}$$
(13-12)

Example: For 15% and 10% hardwood, the resulting confidence interval on the mean difference is?

ISyE 6739, ANOVA - Single Factor

15

Multiple Comparisons Following ANOVA

The least significant difference (LSD) is

LSD =
$$t_{\alpha/2, a(n-1)} \sqrt{\frac{2MS_E}{n}}$$
 (13-16)

If the sample sizes are different in each treatment:

LSD =
$$t_{\alpha/2,N-a} \sqrt{MS_E \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

If $\bar{y}_{i\bullet} - \bar{y}_{j\bullet} > LSD$, then, mean treatment *i* differs from mean treatment *j*

Example

EXAMPLE 13-2

We will apply the Fisher LSD method to the hardwood concentration experiment. There are a = 4 means, n = 6, $MS_E =$ 6.51, and $t_{0.025,20} = 2.086$. The treatment means are

$$\overline{y}_1$$
. = 10.00 psi
 \overline{y}_2 . = 15.67 psi
 \overline{y}_3 . = 17.00 psi
 \overline{y}_4 . = 21.17 psi

Use LSD to find which pairs of treatments have different means.

ISyE 6739, ANOVA - Single Factor

17

Model Adequacy Checking

Validity of assumptions is checked by residual analysis

$$Y_{ij} = \mu_i + \epsilon_{ij} \begin{cases} i = 1, 2, \dots, a \\ j = 1, 2, \dots, n \end{cases} \qquad \qquad \hat{y}_{ij} = \overline{y}_{ij} \quad \Longrightarrow \quad e_{ij} = y_{ij} - \hat{y}_{ij} \quad \text{residuals}$$

$$\hat{y}_{ij} = \overline{y}_{ij} \implies e_{ij} = y_{ij} - \hat{y}_{ij}$$
 residuals

Table 13-6 Residuals for the Tensile Strength Experiment

Hardwood Concentration (%)			Resid	uals		
5	-3.00	-2.00	5.00	1.00	-1.00	0.00
10	-3.67	1.33	-2.67	2.33	3.33	-0.67
15	-3.00	1.00	2.00	0.00	-1.00	1.00
20	-2.17	3.83	0.83	1.83	-3.17	-1.17

Assumptions:

1.
$$\varepsilon_{ij} \sim NID(0, \sigma^2)$$

2.
$$\sum_{i=1}^{a} \tau_i = 0$$

3. Populations (factors) have equal variances

ISyE 6739, ANOVA - Single Factor

