(1c2018)

- 2. Determinar una rama de $g(z) = \sqrt[3]{2z+1}$ tal que sea holomorfa sobre la curva $C = \{z \in C : |z| = 1, Im(z) \ge 0\}$, y que $g(0) = e^{i\frac{2}{3}\pi}$.
- 3. Hallar la imagen de $D = \{z \in \mathbb{C} : 0 < Arg(z) < \pi/4; |z| > 1\}$ por la transformación

$$T(z) = \left(\frac{1}{2} - \frac{1}{z^4 + 1}\right)^2$$

(1c2017)

b. Obtener la imagen de la región $D=\{z\in\mathbb{C}:Re(z)>1;0< Im(z)<\pi/2\}$ por la transformación $f(z)=ie^{(1-z)}$. ¿Dónde es conforme esta transformación?

(2c 2020)

3. Determinar una rama de la raíz cúbica tal que la función $g(z)=((1+i)z-1)^{1/3}$ sea holomorfa en los puntos del conjunto $D=\{z\in\mathbb{C}: Im(z)>Re(z)+1\}$, y obtener g(D). ¿En qué puntos no es holomorfa g?