Regular languages and nfa's

Theorem: [Linz, Theorem 3.1]

Every **regular language**, L, is **accepted** by some **nfa**.

I.e., For every Σ -regular expression, r, there is a Σ -nfa M, s.t.

$$L(r) = L(M)$$
.

Proof. By structural induction on $r \in RegExp(\Sigma)$,

i.e. according to the **inductive definition** of $RegExp(\Sigma)$ (p. 3-1). \square

(*Note*: By note (2) on p. 3-6, we can assume that every **nfa** we construct in the course of the proof has exactly one **final state**.)

We proceed with the **inductive proof**:

Base cases:

• $r = a \ (\in \Sigma)$. Then $L(r) = \{a\}$ is accepted by:

• $r = \lambda$. Then $L(r) = \{\lambda\}$ is accepted by:

• $r = \emptyset$. Then $L(r) = \emptyset$ is accepted by:

Recursive steps:

• $r = r_1 + r_2$. Suppose (induction hypothesis) we have nfa's M_1 and M_2 which accept $L(r_1)$, $L(r_2)$ respectively. Then $L(r) = L(r_1) \cup L(r_2)$ is accepted by:

• $r = r_1 \cdot r_2$. Suppose (induction hypothesis) we have nfa's M_1 and M_2 which accept $L(r_1)$, $L(r_2)$ respectively. Then $L(r) = L(r_1) \cdot L(r_2)$ is accepted by:

• $r = r^*$. Suppose (induction hypothesis) we have an **nfa** M_1 which accepts $L(r_1)$. Then, $L(r) = L(r_1)^*$ is accepted by:

M

Q. Is the following true?

 $\forall r \in RegExp(\Sigma), \exists \Sigma \text{-dfa} \text{ which accepts } L(r)$

Q. Is the **converse** true?

$$\forall \ \Sigma$$
-nfa $M, \ \exists \ r \in \textit{RegExp}(\Sigma): \ L(r) = L(M)$

Theorem: [Linz, Theorem 3.2]

For every nfa, M, L(M) is **regular**.

I.e.
$$\forall \Sigma$$
-nfa $M, \exists r \in RegExp(\Sigma) : L(r) = L(M)$

Proof: (outline)

The proof uses the concept of **generalized transition graphs**, i.e. graphs where the edges are labeled not just by **elements** of Σ , but by Σ -regular expressions.

The graph for M is **transformed** into an equivalent graph with **fewer nodes**, and edges with **more complex** Σ -expressions.

This is repeated until we arrive at a graph of the form:

Then L(M) = L(r), i.e. L(M) is **regular**.

Combining Theorems 3.1 and 3.2, we have proven:

Theorem: For any Σ -language $L \subseteq \Sigma^*$,

L is **regular** \iff L is accepted by some **nfa**.

Note:

We have already seen:

For every Σ -nfa, N, we can find an equivalent Σ -dfa, M.

i.e. with L(M) = L(N)

So we can **rewrite** the above theorem:

Theorem: For any Σ -language $L \subseteq \Sigma^*$,

L is **regular** \iff L is accepted by some **dfa**

Note: Linz **defines** a language to be "regular" if it is accepted by some **dfa** [Linz, Def. 2.3]. We have not done that here – but it comes to the same thing by the theorems above.

Example: "Reversing" an nfa

Show if L is **regular**, so is L^{R} .

Use theorem on p. 3-11

Suppose L is regular.

Then, L, is accepted by some **nfa**:

$$M = (Q, \Sigma, \delta, q_0, F)$$

Define $M^{\rm R}=(Q,\Sigma,\delta^{\rm R},q_0^{\rm R},F^{\rm R})$ as follows:

1) Reverse all arrows

i.e.
$$q_1 \in \delta^{\mathsf{R}}(q_2, a) \Longleftrightarrow q_2 \in \delta^{\mathsf{R}}(q_1, a)$$

2) Interchange starting and final states

i.e.
$$F^{R} = \{q_0\}$$

Let q_0^R = new start state, joined to all old final states by λ - transitions. (see p. 2-17)

Then,
$$L(M^{\mathsf{R}}) = (L(M))^{\mathsf{R}}$$
.