A	Layer 1 19-4
Abbreviated notation 2-8	Layer 2 19-10
ADALINE network 10-2	learning law
decision boundary 10-4	L1 - L2 19-17
mean square error 10-4	L2 - L1 19-20
Adaptive filtering 10-13	orienting subsystem 19-13
Adaptive noise cancellation 10-15	resonance 19-17
Adaptive resonance theory (ART) 19-2	subset/superset dilemma 19-17
Amacrine cells 18-4	summary 19-21
Amari, S. 18-2	vigilance 19-15
AND gate 4-7	ART2 19-23
Anderson, J.A. 1-2, 1-3, 15-2, 18-2	ART3 19-23
Angle 5-7	ARTMAP 19-23
Apple and Orange Example 3-2	Associative learning
Hamming network solution 3-8	Hebb rule 7-4
Hopfield solution 3-12	instar rule 15-11
perceptron 3-3	Kohonen rule 15-15
perceptron solution 3-5	outstar rule 15-17
problem statement 3-2	pseudoinverse rule 7-7
Applications of neural networks 1-5	unsupervised Hebb rule 15-5
aerospace 1-5	Associative memory 7-3
automotive 1-5	autoassociative memory 7-10
banking 1-5	Hopfield network 21-5
defense 1-6	linear associator 7-3
electronics 1-6	Associative networks 15-3
entertainment 1-6	instar 15-9
financial 1-6	outstar 15-16
insurance 1-6	Attractors 21-11
manufacturing 1-6	Autoassociative memory 7-10
medical 1-6	Autocorrelation function 22-24
oil and gas 1-6	D
robotics 1-7	В
securities 1-7	Backpropagation 11-7
speech 1-7	batching 12-7
telecommunications 1-7	CGBP 12-15
transportation 1-7	choice of network architecture 11-18
ART1	conjugate gradient 12-14
fast learning 19-19	convergence 11-20

delta-bar-delta 12-13	\mathbf{C}
drawbacks 12-3, 14-3	Carpenter, G. 19-2
example 11-14	Center 17-6
generalization 11-22	CGBP 12-15
initial weights 12-6	Chain rule 11-9
Jacobian matrix 12-23	Change of basis 6-6
Levenberg-Marquardt 12-19, 12-21	similarity transformation 6-8
Jacobian calculation 12-22	Chemical vapor deposition 24-2
Marquardt sensitivity 12-24	Choice of network architecture 11-18
LMBP 12-25	Circular hollow 8-16
MOBP 12-11	Clustering 22-9
performance index 11-8	Coding the targets 22-7
performance surface 12-3	Committee of networks 22-18, 25-10
Quickprop 12-14	Competitive learning 16-7
SDBP 12-2	adaptive resonance theory 19-2
sensitivity 11-10	ART1 19-4
summary 11-13	ART2 19-23
SuperSAB 12-14	ART3 19-23
VLBP 12-12	ARTMAP 19-23
Backpropagation order 14-4	Fuzzy ARTMAP 19-23
Backpropagation-through-time (BPTT) 14-2, 14-	instar rule 16-7
11, 14-22	Kohonen rule 16-7
Backward elimination 17-18	learning rate 16-9
Basis set 5-5	LVQ2 16-21
Batch SOFM learning algorithm 26-6	problems 16-9
Batch training 11-17	Competitive networks 16-5
Batching 12-7	ART1 19-4
Bayes' rule 13-10	Grossberg 18-13
Bayes' Theorem 13-10	Hamming network 16-3
Bayesian analysis 13-12	Lateral inhibition 16-5
effective number of parameters 13-16	learning vector quantization 16-16
evidence 13-13	self-organizing feature map 16-12
Gauss-Newton approximation to Bayesian	winner-take-all 16-5
regularization 13-17	Conditioned stimulus 15-3
likelihood function 13-13	Cones 18-3
posterior density 13-13	Confusion matrix 22-21, 25-7
prior density 13-13	Conjugate directions 9-16
Bayesian regularization 13-12, 23-6	Conjugate gradient 9-15, 12-14
effective number of parameters 23-6	golden section search 12-17
Baysian analysis	interval location 12-16
most probable 13-14	interval reduction 12-16
Biological inspiration of neural networks 1-8	Content-addressable memory 21-16
Bipolar cells 18-3	Contour plot 8-8
Brightness constancy 18-8	Contrast enhance 18-18

control	Featural filling-in 18-6
electromagnet 27-2	Feature extraction 22-6, 25-3
Correlation matrix 10-6	Finite impulse response 14-6
Cross-correlation function 22-25	Fitting 22-8
Cross-entropy 22-17	Forest cover 26-2
Cross-validation 13-6	Forward selection 17-18
Curse of dimensionality 17-11	Fovea 18-5
	Fukushima, K. 18-2
D	Function approximation 11-4, 22-8
Decay rate 15-7	Fuzzy ARTMAP 19-23
Decision boundary 4-5, 10-4, 11-4	
Delay 2-13	G
Delta rule 7-13, 10-7	Ganglion cells 18-4
Delta-bar-delta 12-13	Gauss-Newton algorithm 12-21
Descent direction 9-3	Jacobian matrix 12-20
Diagonalization 6-13	Gauss-Newton approximation to Bayesian regu-
Directional derivative 8-5	larization 13-17
Distortion measure 22-23	Generalization 11-22, 13-2
Domain 6-2	Golden Section search 12-17
Dynamic networks 14-2	Gradient 8-5
T.	Gradient descent 9-2
E	Gram-Schmidt orthogonalization 5-8
Early stopping 13-7, 13-19, 25-7	Grossberg competitive network 18-13
Echo cancellation 10-21	choice of transfer function 18-20
EEG 10-15	Layer 1 18-13
Effective number of parameters 13-16, 13-23, 23-	Layer 2 18-17
6	learning law 18-22
Eigenvalues 6-10	relation to Kohonen law 18-24
Eigenvectors 6-10	Grossberg, S. 1-3, 15-2, 18-2, 19-2
Electrocardiagram 25-2	**
electromagnet 27-2	H
Elliptical hollow 8-17	Hamming network 3-8, 16-3
Emergent segmentation 18-6	feedforward layer 3-8, 16-3
Equilibrium point 20-4	recurrent layer 3-9, 16-4
Euclidean space 5-3	Hebb rule 7-4, 21-18
evidence 13-13	decay rate 15-7
Excitatory 18-10	performance analysis 7-5
Extended Kalman filter algorithm 22-14	supervised 7-4
Extrapolation 13-3, 22-21, 22-27	unsupervised 7-4, 15-5
F	with decay 7-12
	Hebb, D.O. 1-3, 7-2
Fahlman, A.E. 12-14	Hebb's postulate 7-2
False negative 22-21	Hebbian learning 7-2
False positive 22-22	variations 7-12

Hessian 8-5	K
eigensystem 8-13	Kohonen rule 15-15, 16-7
Hidden layer 2-11	graphical representation 16-7
High-gain Lyapunov function 21-13	Kohonen, T. 1-3, 15-2, 18-2
Hinton, G.E. 11-2	, , ,
Histogram of errors 22-21	${f L}$
History of neural networks 1-2	LaSalle's corollary 20-14
Hoff, M.E. 1-3, 10-2, 11-2	LaSalle's invariance theorem 20-13
Hopfield model 21-3	invariant set 20-13
Hopfield network 3-12, 6-2, 21-5	Set
attractors 21-11	m L~20-13
design 21-16	m Z~20-12
content-addressable memory 21-16	Lateral inhibition 16-5
effect of gain 21-12	Layer 2-9
example 21-7	competitive 16-5
Hebb rule 21-18	problems 16-9
high-gain Lyapunov function 21-13	hidden 2-11
Lasalle's invariance theorem 21-7	output layer 2-11
Lyapunov function 21-5	superscript 2-11
Lyapunov surface 21-22	Layer weight 14-3
spurious patterns 21-20	Layered Digital Dynamic Network (LDDN) 14-3
Hopfield, J.J. 1-4	Le Cun, Y. 11-2
Horizontal cells 18-4	Leaky integrator 18-9
Hubel, D.H. 16-2, 18-12	Learning rate 9-3, 10-8
,	competitive learning 16-9
I	stable 9-6, 10-10
Illusions 18-4	Learning rules 4-2
Incremental training 11-17	ART1 19-21
Infinite impulse response 14-7	backpropagation 11-7
Inhibitory 18-10	competitive learning 16-7
Inner product 5-6	delta rule 7-13
Input selection 22-12	Grossberg competitive network 18-22
Input weight 14-3	Hebb rule 7-4
Instar 15-9	Hebbian learning 7-2
Instar rule 15-11, 16-7	learning vector quantization 16-16
Integrator 2-13	LMS algorithm 10-7
Interpolation 13-3	local learning 15-5
Interval location 12-16	perceptron 4-8, 4-13
Interval reduction 12-16	proof of convergence 4-15
Invariant set 20-13	performance learning 8-2
_	pseudoinverse rule 7-7
J	reinforcement learning 4-3
Jacobian matrix 12-20	supervised learning 4-3
Jacobs, R.A. 12-13	unsupervised learning 4-3
	amapar inca icariiii 1 0

Widrow-Hoff 7-13 Learning vector quantization (LVQ) 16-16	Mean squared error 22-16 Memory
subclass 16-17	associative 7-3
Levenberg-Marquardt algorithm 12-19, 12-21,	autoassociative 7-10
22-14, 24-7	Mexican-hat function 16-11
Jacobian calculation 12-22	Minima 8-7
Jacobian matrix 12-20	first-order conditions 8-10
Likelihood function 13-13	global minimum 8-7
Linear associator 7-3	necessary conditions 8-9
Linear independence 5-4	second-order conditions 8-11
Linear initialization 26-6	strong minimum 8-7
Linear least squares 17-11	sufficient condition 8-11
Linear separability 4-19	weak minimum 8-7
Linear transformation 6-2	Minkowski error 22-17
change of basis 6-6	Minsky, M. 1-3, 4-2
domain 6-2	Missing data 22-8
matrix representation 6-3	MOBP 12-11
change of basis 6-6	Molecular dynamics 24-3
range 6-2	Momentum 12-9, 15-7
Linear vector spaces 5-2	Monte Carlo simulation 25-9
LMBP 12-25	Most probable 13-14
LMS algorithm 10-2, 10-7	Multilayer perceptron 11-2
adaptive filtering 10-13	Myocardial infarction 25-2
adaptive noise cancellation 10-15	N T
analysis of convergence 10-9	N NAPY - 1 00 10
learning rate 10-8	NARX network 22-10
stable learning rate 10-10	Negative definite matrix 8-11
Local learning 15-5	Negative semidefinite 8-11
Long term memory (LTM) 18-12, 18-22	Neighborhood 16-12
LVQ2 16-21	Network architectures 2-9
Lyapunov function 20-12	layer 2-9
Lyapunov stability theorem 20-6	multiple layers 2-10
N.T.	Neural Network Toolbox for MATLAB 1-5
M	Neuron model 2-2
Mach, E. 1-2	multiple input neuron 2-7
magnet 27-2	single input neuron 2-2
Marquardt algorithm 12-19	transfer functions 2-3
Marquardt sensitivity 12-24	Newton's method 9-10
Matrix representation 6-3	Nguyen-Widrow weight initialization 22-13, 24-9
change of basis 6-6	Nilsson, N. 16-2
diagonalization 6-13	Noise cancellation
McClelland, J.L. 1-4, 11-2	adaptive 10-15
McCulloch, W.S. 1-3, 4-2	echo cancellation 10-21
Mean square error 10-4, 11-8	Norm 5-7

Normalization 22-5, 25-6, 26-4	single-neuron 4-5
Novelty detection 22-28	test problem 4-9
0	training multiple-neuron perceptrons 4-13 two-input case 3-4
Ockham's razor 13-2	unified learning rule 4-12
On-center/off-surround 16-11, 18-14	Performance Index 11-8
Optic disk 18-5	Performance index 8-2, 22-16
Optimality	cross-entropy 22-17
first-order conditions 8-10	mean squared error 22-16
necessary conditions 8-9	Minkowski error 22-17
second-order conditions 8-11	quadratic function 8-12
sufficient condition 8-11	Performance learning 8-2
Optimization	Pitts, W.H. 1-3, 4-2
conjugate gradient 9-15, 12-14	Positive definite 20-5
descent direction 9-3	Positive definite matrix 8-11
Gauss-Newton 12-21	Positive semidefinite 8-11, 20-5
Levenberg-Marquardt 12-19, 12-21	posterior density 13-13
Newton's method 9-10	Post-training analysis 22-18
quadratic termination 9-15	Prediction 22-10, 22-24
steepest descent 9-2	Preprocessing 22-5
stable learning rates 9-6	coding the targets 22-7
Oriented receptive field 18-20	feature extraction 22-6
Orienting subsystem 19-13	normalization 22-5, 25-6, 26-4
Orthogonal least squares 17-18	principal component analysis 22-6
Orthogonality 5-7	Principal component analysis 22-6
Orthonormal 5-9	Prior density 13-13
Outliers 22-19	Probability estimation 24-2
Outstar 15-16	Projection 5-8
Outstar rule 15-17	Prototype patterns 21-16
Overfitting 13-3, 22-27	Pseudoinverse rule 7-7
P	Q
Papert, S. 1-3, 4-2	Quadratic function 8-12
Parker, D.B. 11-2	circular hollow 8-16
Pattern classification 11-3, 22-9, 25-2	elliptical hollow 8-17
Pavlov, I. 1-2	Hessian
Perceptron 3-3	eigensystem 8-13
architecture 4-3	saddle point 8-18
constructing learning rules 4-10	stationary valley 8-19
decision boundary 4-5	Quadratic termination 9-15
learning rule 4-8, 4-13	Quantization error 22-23
proof of convergence 4-15	Quickprop 12-14
multilayer 11-2	
multiple-neuron 4-8	

R	Short term memory (STM) 18-12, 18-17
R value 22-20	Shunting model 18-10
Radial basis network 17-2	Similarity transform 6-8
backpropagation 17-25	Simulation order 14-4
center 17-6	Smart sensor 23-2
pattern classification 17-6	Softmax 22-7, 24-6
Range 6-2	Spanning a space 5-5
RBF 17-2	Spurious patterns 21-20
Real-time recurrent learning (RTRL) 14-2, 14-11,	Stability
14-12	asymptotically stable 20-3, 20-5
Receiver operating characteristic (ROC) curve	concepts 20-3
22-22, 25-8	equilibrium point 20-4
Reciprocal basis vectors 5-10	in the sense of Lyapunov 20-3, 20-4
Recurrent 14-2	LaSalle's corollary 20-14
Recurrent network 2-13, 2-14, 20-2	LaSalle's invariance theorem 20-13
regression 22-8	Lyapunov function 20-12
Regression/scatter plot 22-20	Lyapunov stability theorem 20-6
Regularization 13-8, 13-19, 13-21	pendulum example 20-6
Reinforcement learning 4-3	Stability-plasticity dilemma 19-2
Resonance 19-17	Stationary point 8-10
Retina 18-3	minima 8-7
Rods 18-3	saddle point 8-8
Rosenblatt, F. 1-3, 4-2, 10-2, 11-2, 16-2	Stationary valley 8-19
Rosenfeld, E. 1-2	Steepest descent 9-2
Rumelhart, D.E. 1-4, 11-2	learning rate 9-3
,	minimizing along a line 9-8
\mathbf{S}	stable learning rates 9-6
Saddle point 8-8, 8-18	Stimulus-response 15-2
Scaled conjugate gradient algorithm 22-14	conditioned stimulus 15-3
SDBP 12-2	unconditioned stimulus 15-3
Segmentation 22-9	Stopping criteria 22-15
Self-organizing feature map (SOFM) 16-12, 22-	Subclass 16-17
16, 26-2	Subset selection 17-18
distortion measure 22-23	Subset/superset dilemma 19-17
neighborhood 16-12	SuperSAB 12-14
quantization error 22-23	Supervised learning 4-3
topographic error 22-23	Hebb rule 7-4
Sensitivity 11-10	performance learning 8-2
backpropagation 11-11	target 4-3
Sensitivity analysis 22-28	training set 4-3
Set	TD.
L 20-13	T
Z 20-12	Tapped delay line 10-13
Shakespeare, W. 1-5	Target 4-3

Taylor series expansion 8-2 vector case 8-4 Test set 13-6 Thomas Bayes 13-10 Tikhonov 13-8 Time constant 18-9 Tollenaere, T. 12-14 Topographic error 22-23 Training process 22-2 Training set 4-3 sequence 15-5 Transfer functions 2-3, 2-6 competitive 2-6 global vs local 17-9 hard limit 2-3, 2-6 hyperbolic tangent sigmoid 2-6 linear 2-4, 2-6 log-sigmoid 2-4, 2-6 positive linear 2-6	Vision normalization 18-8 Visual cortex 18-4 VLBP 12-12 von der Malsburg, C. 16-2, 18-12 W Weight indices 2-7 Weight initialization 22-13, 24-9 Weight matrix 2-7 Werbos, P.J. 11-2 White noise 22-24 Widrow, B. 1-3, 10-2, 11-2 Widrow-Hoff algorithm 7-13, 10-7 adaptive filtering 10-13 Wiesel, T. 16-2, 18-12 Williams, R.J. 11-2 Winner-take-all 16-5
saturating linear 2-6 softmax 22-7, 24-6 symmetric saturating linear 2-6 symmetrical hard limit 2-6	
table 2-6 Type I error 22-22	
U Unconditioned stimulus 15-3 Unsupervised learning 4-3 Hebb rule 7-4, 15-5	
V Validation set 13-7 Vector expansion 5-9 reciprocal basis vectors 5-10 Vector space 5-2 angle 5-7 basis set 5-5 orthonormal 5-9 projection 5-8 spanning 5-5 vector expansion 5-9 Vigilance 19-15 Vision 18-3	