4.4 正交矩阵与施密特正交化方法

两个向量,除了线性相关、线性无关,还需要其它更多的信息,如向量长度,它们相关或无关的程度(接近相关还是远离相关).

从二维、三维向量的长度、夹角关系我们知道可以用向量的内积来表示向量的长度和两个向量之间的夹角. $\alpha=(a_1,a_2,a_3)$

右图两个向量内积为: $(\alpha,\beta)=a_1b_1+a_2b_2+a_3b_3$.

长度: $|\alpha| = \sqrt{(\alpha, \alpha)}$ 夹角: α, β 夹角= $\arccos((\alpha, \beta)/(|\alpha| \cdot |\beta|))$

 $\beta = (b_1, b_2, b_3)$

定义4.4.1 (向量内积) 设 α , β 为n维向量,用列向量表示为 α =(a_1 , a_2 ,..., a_n)^T, β =(b_1 , b_2 ,..., b_n)^T. 若 α , β 为实向量,则称 a_1b_1 + a_2b_2 +...+ a_nb_n 为 α , β 的实内积;若 α , β 为复向量,则称 $a_1\bar{b_1}$ + $a_2\bar{b_2}$ +····+ $a_n\bar{b_n}$ 为 α , β 的复内积;统称为向量的内积,记为(α , β),并称 $\|\alpha\| = \sqrt{(\alpha,\alpha)}$ 为向量的长度或模;称模为1的向量为单位向量.

显然,实向量 α , β 的内积(α , β)= $\alpha^{T}\beta$;复向量 α , β 的内积(α , β)= $\alpha^{T}\overline{\beta}$.

实内积的基本性质:

- (1) $(\alpha, \beta) = (\beta, \alpha)$;
- (2) $(k\alpha, \beta)=k(\alpha, \beta)$;
- (3) $(\alpha+\gamma,\beta)=(\alpha,\beta)+(\gamma,\beta)$;
- (4) $(\alpha,\alpha)\geq 0$; $(\alpha,\alpha)=0$ 当且仅当 $\alpha=\theta$.

定义4.4.2 (向量夹角、向量正交) 若 $(\alpha, \beta)=0$,则称 α 和 β 正交或垂直. 若 α, β 均为非零实向量,则称 $\arccos(\frac{(\alpha, \beta)}{\|\alpha\|\cdot\|\beta\|})$ 为向量 α 和 β 的夹角.

显然, θ 与任意向量正交. 另外定义向量夹角的依据为

$$0 \le \left\| \frac{1}{\|\alpha\|} \alpha \pm \frac{1}{\|\beta\|} \beta \right\|^2 = \left(\frac{1}{\|\alpha\|} \alpha \pm \frac{1}{\|\beta\|} \beta, \frac{1}{\|\alpha\|} \alpha \pm \frac{1}{\|\beta\|} \beta \right) = 2 \pm 2 \frac{(\alpha, \beta)}{\|\alpha\| \cdot \|\beta\|}, \exists \beta \mid \frac{(\alpha, \beta)}{\|\alpha\| \cdot \|\beta\|} \le 1$$

- 例4.4.1 若有两个不同的实向量 α_1 , α_2 满足 $||\alpha_1||=||\alpha_2||>0$. 试证明 $\alpha_1+\alpha_2$ 与 α_1 - α_2 正交.
- 证明 由 $\|\alpha_1\| = \|\alpha_2\| > 0$ 可知 $(\alpha_1, \alpha_1) = (\alpha_2, \alpha_2) > 0$. 故有 $(\alpha_1 + \alpha_2, \alpha_1 \alpha_2) = (\alpha_1, \alpha_1) + (\alpha_2, \alpha_1) (\alpha_1, \alpha_2) (\alpha_2, \alpha_2) = (\alpha_2, \alpha_1) (\alpha_1, \alpha_2) = 0,$ 即 $\alpha_1 + \alpha_2 = \alpha_1 \alpha_2$ 正交 .

例4.4.2 方程组 $Ax=\theta$ 的解集即为与A的所有行向量正交的向量的集合.

解 将A写成按行分块的形式,
$$A = \begin{pmatrix} \alpha_1^T \\ \vdots \\ \alpha_n^T \end{pmatrix}$$
,则 $Ax = \theta$ 即 $Ax = \begin{pmatrix} \alpha_1^T x \\ \vdots \\ \alpha_n^T x \end{pmatrix} = \begin{pmatrix} \alpha_1^T x \\ \vdots \\ \alpha_n^T x \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$,于是 $(\alpha_i, x) = \alpha_i^T x = 0$, $i = 1, 2, \ldots, n$.

定义4.4.3 (正交向量组、法正交组) 若一个不含零向量的向量组中的向量两两正交,则称该向量组为正交向量组; 若一个正交向量组中的 向量均为单位向量,则该向量组称为标准正交向量组,简称法正交组.

例4.4.3 易验证 \mathbf{R}^n 中的基本向量组 e_1,e_2,\ldots,e_n 是法正交组.

定理4.4.1 正交向量组必线性无关.

说明 设
$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_m\alpha_m = \theta$$
. 则 $(k_1\alpha_1 + \dots + k_m\alpha_m, \alpha_i) = (\theta, \alpha_i) = 0$, 又 $(k_1\alpha_1 + \dots + k_m\alpha_m, \alpha_i) = k_1(\alpha_1, \alpha_i) + \dots + k_m(\alpha_m, \alpha_i) = k_i(\alpha_i, \alpha_i) = k_i ||\alpha_i||^2 => k_i = 0$

正交组的用途: 快速求出 β 表示成 $\alpha_1,\alpha_2,\ldots,\alpha_n$ 的线性组合.

例 将 β 表示成 $\alpha_1,\alpha_2,\alpha_3$ 的线性组合,其中

$$\beta = (-5,5,-2)^{\mathrm{T}}$$
, $\alpha_1 = (1,2,-2)^{\mathrm{T}}$, $\alpha_2 = (2,-2,-1)^{\mathrm{T}}$, $\alpha_3 = (2,1,2)^{\mathrm{T}}$.

常规解法: $x_1\alpha_1+x_2\alpha_2+x_3\alpha_3=\beta$,解一个方程组.

利用正交组解法($\alpha_1,\alpha_2,\alpha_3$ 正交): $x_i(\alpha_i,\alpha_i)=(x_1\alpha_1+x_2\alpha_2+x_3\alpha_3,\alpha_i)=(\beta,\alpha_i)$, 易求(α_i,α_i)=9,9,9,(β,α_i)=9,-18,-9,于是 x_i =1,-2,-1.

无关组组合出正交组 —施密特正交化

定理4.4.2 (施密特(Schmidt)正交化) 由线性无关向量组 $\alpha_1, \alpha_2, ..., \alpha_n$ 可构造出与之等价的正交向量组 $\xi_1, \xi_2, ..., \xi_n$. 并且 ξ_i 可以表示成 $\alpha_1, \alpha_2, ..., \alpha_i$, i=1,2,...,n的线性组合.

说明:

$$\alpha_1 \qquad \xi_1 = \alpha_1 \neq \theta \qquad \longrightarrow \xi_1 = \alpha_1$$

$$\alpha_2$$
 $\xi_2 = \alpha_2 - \frac{(\alpha_2, \xi_1)}{(\xi_1, \xi_1)} \xi_1$ ξ_2 ξ_2 ξ_1 ξ_2 ξ_1

$$(\xi_2, \xi_1) = (\alpha_2, \xi_1) - \frac{(\alpha_2, \xi_1)}{(\xi_1, \xi_1)} (\xi_1, \xi_1) = (\alpha_2, \xi_1) - (\alpha_2, \xi_1) = 0$$

$$\xi_{2} = \alpha_{2} - \frac{(\alpha_{2}, \xi_{1})}{(\xi_{1}, \xi_{1})} \xi_{1} = \alpha_{2} - \frac{(\alpha_{2}, \xi_{1})}{(\xi_{1}, \xi_{1})} \alpha_{1} = \theta$$
相关矛盾

$$\alpha_3$$
 $\xi_3 = \alpha_3 - \frac{(\alpha_3, \xi_1)}{(\xi_1, \xi_1)} \xi_1 - \frac{(\alpha_3, \xi_2)}{(\xi_2, \xi_2)} \xi_2$

••• ••• ••• ••• ••• ••• •••

$$\boldsymbol{\alpha_{i}} \qquad \boldsymbol{\xi_{i}} = \alpha_{i} - \frac{(\alpha_{i}, \xi_{1})}{(\xi_{1}, \xi_{1})} \xi_{1} - \dots - \frac{(\alpha_{i}, \xi_{k})}{(\xi_{k}, \xi_{k})} \boldsymbol{\xi_{k}} - \dots - \frac{(\alpha_{i}, \xi_{i-1})}{(\xi_{i-1}, \xi_{i-1})} \xi_{i-1}$$

$$(\xi_{i}, \xi_{k}) = (\alpha_{i}, \xi_{k}) - \frac{(\alpha_{i}, \xi_{1})}{(\xi_{1}, \xi_{1})} (\xi_{1}, \xi_{k}) - \frac{(\alpha_{i}, \xi_{2})}{(\xi_{2}, \xi_{2})} (\xi_{2}, \xi_{k})$$

$$- \cdots - \frac{(\alpha_{i}, \xi_{k})}{(\xi_{k}, \xi_{k})} (\xi_{k}, \xi_{k}) - \cdots - \frac{(\alpha_{i}, \xi_{i-1})}{(\xi_{i-1}, \xi_{i-1})} (\xi_{i-1}, \xi_{k})$$

$$= (\alpha_{i}, \xi_{k}) - 0 - 0 - \cdots - \frac{(\xi_{i}, \xi_{k})}{(\xi_{k}, \xi_{k})} (\xi_{k}, \xi_{k}) - \cdots - 0 = 0$$

$$\xi_{i} = \alpha_{i} - k_{i1}\xi_{1} - \dots - k_{ik}\xi_{k} - \dots - k_{i,i-1}\xi_{i-1}$$

$$= \alpha_{i} - t_{i1}\alpha_{1} - \dots - t_{ik}\alpha_{k} - \dots - t_{i,i-1}\alpha_{i-1}$$

$$= -t_{i1}\alpha_{1} - \dots - t_{ik}\alpha_{k} - \dots - t_{i,i-1}\alpha_{i-1} + \alpha_{i} = \theta$$
相关矛盾

施密特(Schmidt)正交化说明 用构造法.

第一步,取 $\xi_1 = \alpha_1 \neq \theta$.

第二步,取 $\xi_2=\alpha_2-k_{21}\xi_1=\alpha_2-k_{21}\alpha_1$,要满足 ξ_1,ξ_2 构成正交组,即满足: $\xi_2\neq\theta$; $(\xi_2,\xi_1)=0$

- (1) 若 ξ_2 = θ ,则 ξ_2 = α_2 - k_{21} α_1 = θ ,即 α_1 , α_2 线性相关,矛盾.
- (2) $(\xi_2, \xi_1) = (\alpha_2, \xi_1) k_{21}(\xi_1, \xi_1) = 0$,只要取 $k_{21} = (\alpha_2, \xi_1) / (\xi_1, \xi_1)$. 依次下去到第 i 步之前,则我们已经由 $\alpha_1, \ldots, \alpha_{i-1}$ 构造出等价正交组 ξ_1, \ldots, ξ_{i-1} 且 ξ_k 可表示成 $\alpha_1, \ldots, \alpha_k, k=1,2,\ldots, i-1$ 的线性组合.

第*i*步,取 $\xi_i = \alpha_i - k_{i1}\xi_1 - k_{i2}\xi_2 - \dots - k_{i,i-1}\xi_{i-1}$,要求满足 $\xi_1, \dots, \xi_{i-1}, \xi_i$ 构成正交组,需 $\xi_i \neq \theta$; $(\xi_i, \xi_k) = 0, k = 1, \dots, i-1$ (1) 若 $\xi_i = \theta$,因为 ξ_k 可以表示成 $\alpha_1, \dots, \alpha_k$ 的线性组合,则

- $\xi_i = \alpha_i k_{i1} \xi_1 \dots k_{i,i-1} \xi_{i-1} = \alpha_i t_{i1} \alpha_1 \dots t_{i,i-1} \alpha_{i-1} = \theta$, 即 $\alpha_1, \dots, \alpha_i$ 线性相关,矛盾.
- (2) $(\xi_i, \xi_k) = (\alpha_i, \xi_k) k_{i1}(\xi_1, \xi_k) \dots k_{i,i-1}(\xi_{i-1}, \xi_k) = (\alpha_i, \xi_k) k_{ik}(\xi_k, \xi_k) = 0,$ $\Box \neq \exists \forall k = -(\alpha_i, \xi_i)/(\xi_i, \xi_i) \quad k=1, 2, \dots, k=1, 2, \dots$
- 只要取 $k_{ik} = (\alpha_i, \xi_k)/(\xi_k, \xi_k), k=1,2,...,i-1$.
- 一直下去,最后构成正交组 ξ_1,\ldots,ξ_n .等价性由 $\alpha_i = k_{i1}\xi_1 + \ldots + k_{i,i-1}\xi_{i-1} + \xi_i$ 可知.

注 由无关组 $\alpha_1,...,\alpha_n$ 可构造出等价法正交组 $\beta_1,...,\beta_n$,且 β_i 可由 $\alpha_1,...,\alpha_i$ 表示.

例4.4.4 将3个线性无关4维向量组 $\{\alpha_1, \alpha_2, \alpha_3\}$ 标准正交化,其中

$$\alpha_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}.$$

解 先正交化,令
$$\xi_1 = \alpha_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \qquad \xi_2 = \alpha_2 - \frac{(\alpha_2, \xi_1)}{\|\xi_1\|^2} \xi_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix} - \frac{2}{2} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix},$$

$$\xi_{3} = \alpha_{3} - \frac{(\alpha_{3}, \xi_{1})}{\|\xi_{1}\|^{2}} \xi_{1} - \frac{(\alpha_{3}, \xi_{2})}{\|\xi_{2}\|^{2}} \xi_{2} = \begin{pmatrix} 1\\1\\1\\0 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} - \frac{1}{1} \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} = \begin{pmatrix} 1/2\\0\\1\\-1/2 \end{pmatrix}.$$

再单位化,

$$\beta_{1} = \frac{1}{\|\xi_{1}\|} \xi_{1} = \frac{1}{\sqrt{2}} \xi_{1} = \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ 0 \\ 1/\sqrt{2} \end{pmatrix}, \qquad \beta_{2} = \frac{1}{\|\xi_{2}\|} \xi_{2} = \xi_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \qquad \beta_{3} = \frac{1}{\|\xi_{3}\|} \xi_{3} = \sqrt{\frac{2}{3}} \xi_{3} = \begin{pmatrix} 1/\sqrt{6} \\ 0 \\ 2/\sqrt{6} \\ -1/\sqrt{6} \end{pmatrix}.$$

得标准正交向量组为 $\{\beta_1,\beta_2,\beta_3\}$.

定义4.4.4(正交矩阵) 若实方阵A满足ATA=E,则称A为正交矩阵.

注 若A,B是同阶的正交矩阵,则AB也是正交矩阵.

下面的矩阵都是正交矩阵:

$$E = \begin{pmatrix} 1 & & \\ & 1 & \\ & & \ddots & \\ & & & 1 \end{pmatrix}, \quad \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}, \quad \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & -\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \end{pmatrix}.$$

例4.4.5 设 $A=E-2vv^T \in \mathbb{R}^{n \times n}$,其中 $v \in \mathbb{R}^n$, $v^Tv=1$. 验证A是对称矩阵和 正交矩阵. 且当 ||p||=||q||, $p\neq q$, $p,q\in \mathbb{R}^n$, v=(1/||p-q||)(p-q)时,有 Ap=q, Aq=p.

解 因为 $A^{T}=(E-2vv^{T})^{T}=E-2(vv^{T})^{T}=E-2vv^{T}=A$, $A^{T}A = (E-2vv^{T})^{T}(E-2vv^{T}) = E-2vv^{T}-2vv^{T}+4v(v^{T}v)v^{T}=E$, 所以A为对称和正交矩阵.

当 v=(1/||p-q||)(p-q) 时,有

正交矩阵的性质

定理4.4.3 对于方阵A,下列条件互为等价:

- (1) *A*为正交矩阵(*A*^T*A*=*E*);
- (2) $A^{T}=A^{-1}$;
- (3) $AA^{\mathrm{T}}=E$;
- (4) A的列向量构成标准正交列向量组;
- (5) A的行向量构成标准正交行向量组.

说明:

$$A^{T}A = E \iff A^{-1} = A^{T} \iff AA^{T} = E$$

$$A^{\mathsf{T}}A = \begin{pmatrix} \alpha_1^{\mathsf{T}} \\ \alpha_2^{\mathsf{T}} \\ \vdots \\ \alpha_n^{\mathsf{T}} \end{pmatrix} (\alpha_1, \alpha_2, \dots, \alpha_n) = \begin{pmatrix} \alpha_1^{\mathsf{T}} \alpha_1 & \alpha_1^{\mathsf{T}} \alpha_2 & \cdots & \alpha_1^{\mathsf{T}} \alpha_n \\ \alpha_2^{\mathsf{T}} \alpha_1 & \alpha_2^{\mathsf{T}} \alpha_2 & \cdots & \alpha_2^{\mathsf{T}} \alpha_n \\ \vdots & \vdots & & \vdots \\ \alpha_n^{\mathsf{T}} \alpha_1 & \alpha_n^{\mathsf{T}} \alpha_2 & \cdots & \alpha_n^{\mathsf{T}} \alpha_n \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

$$\left\langle \begin{array}{c} \alpha_{i} \\ \alpha_{i} \end{array} \right\rangle = 1, \quad \text{单位向量}$$

$$\left\langle \begin{array}{c} \alpha_{i}^{T} \alpha_{i} = 1, \quad \text{单位向量} \\ \alpha_{i}^{T} \alpha_{j} = 0, \quad \text{向量正交} \end{array} \right.$$

$$\left\langle \begin{array}{c} AA^{T} = E \Leftrightarrow A^{T} \text{列法正交} \end{array} \right.$$

定理4.4.4 设A为n阶正交矩阵, λ 为A的特征值, α 为n维列向量,则有

(1) $|A|^2=1$;

(2) $(A\alpha)^{\mathrm{T}}(\overline{A\alpha}) = \alpha^{\mathrm{T}}\overline{\alpha};$

(3) $|\lambda|=1$.

说明:

$$A^{\mathrm{T}}A = E$$

$$|A|^2 = |A||A| = |A^T||A| = |A^TA| = |E| = 1$$
.

$$(A\alpha)^{\mathrm{T}}\overline{(A\alpha)} = \alpha^{\mathrm{T}}A^{\mathrm{T}}(\overline{A\alpha}) = \alpha^{\mathrm{T}}(A^{\mathrm{T}}A)\overline{\alpha} = \alpha^{\mathrm{T}}E\overline{\alpha} = \alpha^{\mathrm{T}}\overline{\alpha}.$$

$$(A\xi)^{\mathrm{T}}\overline{(A\xi)} = (\lambda\xi)^{\mathrm{T}}\overline{(\lambda\xi)} == \lambda\xi^{\mathrm{T}}(\overline{\lambda\xi}) = |\lambda|^{2} \xi^{\mathrm{T}}\overline{\xi}$$

$$(A\xi)^{\mathrm{T}}\overline{(A\xi)} = \xi^{\mathrm{T}}\overline{\xi} \neq 0$$

$$|\lambda|^{2} = 1$$

4.5 实对称矩阵的对角化

实对称矩阵: $A^{T}=A$, $A \in \mathbb{R}^{n \times n}$

- •实对称矩阵一定可以对角化
- •与实对称矩阵相似的对角矩阵是实对角矩阵(对角元为实数)
- •存在正交的相似变换矩阵,使得实对称矩阵对角化

后两条隐含了如下含义:

- •实对称矩阵的特征值都是实数
- •实对称矩阵属于不同特征值的特征向量正交第一条表示的是:
- •对任意特征值 λ ,有 $r(\lambda E-A)+\lambda$ 的重数=n (矩阵阶数)

实对称矩阵特征值与特征向量

定理4.5.1 实对称矩阵的特征值均为实数.

证明思路 $A\xi=\lambda\xi$,

考虑 $A\xi$,凑成对称形式 $\overline{\xi}^{T}A\xi$,于是

$$\overline{\xi}^{\mathrm{T}} A \xi = \lambda \overline{\xi}^{\mathrm{T}} \xi = \lambda ||\xi||^{2} , \quad \overline{\xi}^{\mathrm{T}} A \xi = (A^{\mathrm{T}} \overline{\xi}^{\mathrm{T}})^{\mathrm{T}} \xi = \overline{\lambda} \overline{\xi}^{\mathrm{T}} \xi = \overline{\lambda} \overline{\xi}^{\mathrm{T}} \xi = \overline{\lambda} \overline{\xi}^{\mathrm{T}} \xi = \overline{\lambda} \overline{\xi}^{\mathrm{T}} \xi = \overline{\lambda} ||\xi||^{2}$$

$$\iiint \lambda ||\xi||^{2} = \overline{\lambda} ||\xi||^{2} , \quad \oiint \lambda = \overline{\lambda} .$$

注意 当矩阵为实矩阵,特征值也是实数时,我们只考虑实的特征向量.

定理4.5.2 实对称矩阵的属于不同特征值的特征向量相互正交.

证明思路 $A\xi_1=\lambda_1\xi_1$, $A\xi_2=\lambda_2\xi_2$,

将 $A\xi_1$, $A\xi_2$ 凑成对称形式 $\xi_1^T A\xi_2 = \xi_2^T A\xi_1$ (:: $\xi_1^T A\xi_2 = (\xi_1^T A\xi_2)^T = \xi_2^T A^T \xi_1$) 于是 $\lambda_1 \xi_1^T \xi_2 = \lambda_1 \xi_2^T \xi_1 = \lambda_1 \xi_1^T \xi_2$,则 $(\lambda_2 - \lambda_1) \xi_1^T \xi_2 = 0$,即 $\xi_1^T \xi_2 = 0$.

实对称矩阵可对角化

引理4.5.3 设有实n维单位列向量 β ,则必能找到n-1个向量与 β 一起构成由n个向量组成的标准正交向量组.

证明思路 用 β , e_1 , e_2 , ..., e_n 构成n个无关向量 β , α_2 , α_3 , ..., α_n , 利用施密特正交化方法标准正交化: β_1 , β_2 , β_3 , ..., β_n , (β_1 = β).

定理4.5.4 若A是实对称矩阵,则存在同阶的正交矩阵P使得P^TAP是实对角矩阵,从而实对称矩阵可对角化.

证明思路 数学归纳法: m+1阶矩阵A, $Aq_1=\lambda_1q_1$, $Q_1=(q_1,q_2,...,q_{m+1})$ 正交阵

$$Q_{1}^{\mathsf{T}}AQ_{1} = \begin{pmatrix} q_{1}^{\mathsf{T}} \\ q_{2}^{\mathsf{T}} \\ \vdots \\ q_{m+1}^{\mathsf{T}} \end{pmatrix} A(q_{1}, q_{2}, \dots, q_{m+1}) = \begin{pmatrix} q_{1}^{\mathsf{T}} \\ q_{2}^{\mathsf{T}} \\ \vdots \\ q_{m+1}^{\mathsf{T}} \end{pmatrix} (\lambda_{1}q_{1}, Aq_{2}, \dots, Aq_{m+1}) = \begin{pmatrix} \lambda_{1} & * & \dots & * \\ 0 & * & \dots & * \\ \vdots & \vdots & & \vdots \\ 0 & * & \dots & * \end{pmatrix} = \begin{pmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & * & \dots & * \\ \vdots & \vdots & & \vdots \\ 0 & * & \dots & * \end{pmatrix}$$

进一步利用归纳假设: $Q_2^{\mathsf{T}}BQ_2=\Lambda$,B为上述右下块,则

$$P^{\mathsf{T}}AP = \begin{pmatrix} 1 & 0 \\ 0 & Q_2 \end{pmatrix}^{\mathsf{T}} Q_1^{\mathsf{T}}AQ_1 \begin{pmatrix} 1 & 0 \\ 0 & Q_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & Q_2^{\mathsf{T}} \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 \\ 0 & B \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & Q_2 \end{pmatrix} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \Lambda \end{pmatrix}, \not\exists \Phi P^{\mathsf{T}}P = E$$

例4.5.1 设 $A = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 3 & 1 \end{pmatrix}$, 求正交矩阵 P, 使 $P^{T}AP$ 为对角矩阵.

A
$$|\lambda E - A| = \begin{vmatrix} \lambda - 2 & -1 & -2 \\ -1 & \lambda - 3 & -1 \\ -2 & -1 & \lambda - 2 \end{vmatrix} = \begin{vmatrix} \lambda & 0 & -\lambda \\ -1 & \lambda - 3 & -1 \\ -2 & -1 & \lambda - 2 \end{vmatrix} = \lambda(\lambda - 2)(\lambda - 5),$$

解得特征值为 $\lambda=5,2,0$.

解待特征恒万
$$\lambda = 5, 2, 0$$
.

対 $\lambda = 5$,由 $\begin{pmatrix} 3 & -1 & -2 \\ -1 & 2 & -1 \\ -2 & -1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$ 得特征向量 $\xi_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

对 $\lambda = 2$,由 $\begin{pmatrix} 0 & -1 & -2 \\ -1 & -1 & -1 \\ -2 & -1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ 得特征向量 $\xi_2 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$.

对 $\lambda = 0$,由 $\begin{pmatrix} -2 & -1 & -2 \\ -1 & -3 & -1 \\ -2 & -1 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 得特征向量 $\xi_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$.

由定理**4.5.2**知,
$$\xi_1, \xi_2, \xi_3$$
 已两两正交,因此,只要将他们单位化. 取
$$\eta_1 = \frac{1}{\sqrt{\xi_1^T \xi_1}} \xi_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \eta_2 = \frac{1}{\sqrt{\xi_2^T \xi_2}} \xi_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \quad \eta_3 = \frac{1}{\sqrt{\xi_3^T \xi_3}} \xi_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.$$

再令
$$P = (\eta_1, \eta_2, \eta_3) = \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{6} & -1/\sqrt{2} \\ 1/\sqrt{3} & -2/\sqrt{6} & 0 \\ 1/\sqrt{3} & 1/\sqrt{6} & 1/\sqrt{2} \end{pmatrix}$$
, 则有 $P^TP = E$, $P^TAP = P^{-1}AP = \text{diag}(5,2,0)$.

例4.5.2 设
$$A = \begin{pmatrix} 1 & -2 & 2 \\ -2 & -2 & 4 \\ 2 & 4 & -2 \end{pmatrix}$$
, 求正交矩阵 P , 使 $P^{T}AP$ 为对角矩阵.

解由
$$|\lambda E - A| = \begin{vmatrix} \lambda - 1 & 2 & -2 \\ 2 & \lambda + 2 & -4 \\ -2 & -4 & \lambda + 2 \end{vmatrix} = \begin{vmatrix} \lambda - 1 & 2 & -2 \\ 2 & \lambda + 2 & -4 \\ 0 & \lambda - 2 & \lambda - 2 \end{vmatrix} = (\lambda - 2)^2 (\lambda + 7),$$

解得特征值为 $\lambda=2$ (二重),-7。

对
$$\lambda$$
=2, 由 $\begin{pmatrix} 1 & 2 & -2 \\ 2 & 4 & -4 \\ -2 & -4 & 4 \end{pmatrix}$ → $\begin{pmatrix} 1 & 2 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 得线性无关特征向量 $\xi_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$, $\xi_2 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$.

标准正交化得
$$\eta_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} -2\\1\\0 \end{pmatrix}, \eta_2 = \frac{1}{3\sqrt{5}} \begin{pmatrix} 2\\4\\5 \end{pmatrix}.$$

对
$$\lambda$$
=-7,由 $\begin{pmatrix} -8 & 2 & -2 \\ 2 & -5 & -4 \\ -2 & -4 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1/2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ 得单位特征向量 $\eta_3 = \frac{1}{3} \begin{pmatrix} -1 \\ -2 \\ 2 \end{pmatrix}$.

再令
$$P = (\eta_1, \eta_2, \eta_3) = \frac{1}{3\sqrt{5}} \begin{pmatrix} -6 & 2 & -\sqrt{5} \\ 3 & 4 & -2\sqrt{5} \\ 0 & 5 & 2\sqrt{5} \end{pmatrix},$$

则有 $P^{T}P=E$, $P^{T}AP=P^{-1}AP=diag(2,2,-7)$.

例4.5.3 设3阶实对称矩阵 A的秩为2, $\lambda=6$ 为A的二重特征值,若 $\alpha_1=(1,0,1)^T$, $\alpha_2=(1,3,-2)^T$ 都是A的属于 $\lambda=6$ 的特征向量,求矩阵A.

解 因为 r(A)=2,所以 |A|=0,故 $\lambda=0$ 为A的特征值.

设 α_3 是属于特征值0的特征向量,则由A为实对称矩阵的性质可知: α_3 与属于特征值6的特征向量 α_1 , α_2 正交.

令
$$\alpha_3$$
= $(x_1, x_2, x_3)^{\mathrm{T}}$,则由正交性得方程组
$$\begin{cases} (\alpha_1, \alpha_3) = x_1 & +x_3 = 0, \\ (\alpha_2, \alpha_3) = x_1 + 3x_2 - 2x_3 = 0. \end{cases}$$

解此方程组可得基础解系: $\alpha_3 = (-1,1,1)^T$. 现在我们有

$$A(\alpha_{1}, \alpha_{2}, \alpha_{3}) = (6\alpha_{1}, 6\alpha_{2}, \theta), \quad \mathbb{P} A \begin{pmatrix} 1 & 1 & -1 \\ 0 & 3 & 1 \\ 1 & -2 & 1 \end{pmatrix} = \begin{pmatrix} 6 & 6 & 0 \\ 0 & 18 & 0 \\ 6 & -12 & 0 \end{pmatrix}.$$

$$A = \begin{pmatrix} 6 & 6 & 0 \\ 0 & 18 & 0 \\ 6 & -12 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 \\ 0 & 3 & 1 \\ 1 & -2 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 6 & 6 & 0 \\ 0 & 18 & 0 \\ 6 & -12 & 0 \end{pmatrix} \frac{1}{9} \begin{pmatrix} 5 & 1 & 4 \\ 1 & 2 & -1 \\ -3 & 3 & 3 \end{pmatrix} = \begin{pmatrix} 4 & 2 & 2 \\ 2 & 4 & -2 \\ 2 & -2 & 4 \end{pmatrix}.$$

补充例4M (习题四29*)设n阶实对称矩阵A满足 $A^2=A$,并设 $\mathbf{r}(A)=\mathbf{r}<\mathbf{n}$, 证明A可以表示为 $A=UU^{T}$,其中 $U \in \mathbb{R}^{n \times r}$, $U^{T}U=E_{r}$.

证 因为 $A^2=AA=A$,此即 $A(\alpha_1,\ldots,\alpha_n)=(\alpha_1,\ldots,\alpha_n)$,其中 $A=(\alpha_1,\ldots,\alpha_n)$, 又 $\mathbf{r}(A)=\mathbf{r}(\alpha_1,\ldots,\alpha_n)=r$, 故A有r个属于特征值1的无关特征向量, 标准正交化得 ξ_1, \ldots, ξ_r ,并令 $U=(\xi_1, \ldots, \xi_r)$, 易知 $U^TU=E_r$; 另外由 r(A)=r < n 可得n-r个属于特征值0的标准正交特征向量 $\eta_1, \ldots, \eta_{n-r}$, 并令 $V=(\eta_1,\ldots,\eta_{n-r})$, 由A实对称可知 ξ_i 与 η_j 正交,故 $Q=(U,V)=(\xi_1,\ldots,\xi_r,\eta_1,\ldots,\eta_{n-r})$ 为正交阵. 于是 AQ=A(U,V)=(U,O),于是 $A=(U,O)Q^T=(U,O)(U,V)^T=UU^T$,且 $U^TU=E_r$.

补充例4N 设A是n阶实对称矩阵,一定存在n阶实对称矩阵B使得 $B^3=A$.

证 因为A是n阶实对称矩阵,故存在n阶正交矩阵Q使得 $Q^{T}AQ = \begin{bmatrix} \lambda_1 & \lambda_2 & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$.
令 $B = Q \begin{bmatrix} \sqrt[3]{\lambda_1} & & & \\ & \sqrt[3]{\lambda_2} & & & \\ & & \ddots & \\ & & & \sqrt[3]{\lambda_n} \end{bmatrix} Q^{T} = QDQ^{T}$,则有 $B^{T} = B$,且 $Q^{T}AQ = D^{3}$.

$$\Leftrightarrow B = Q$$
 $\begin{pmatrix} \sqrt[3]{\lambda_1} \\ \sqrt[3]{\lambda_2} \\ \ddots \\ \sqrt[3]{\lambda_n} \end{pmatrix} Q^{\mathsf{T}} = QDQ^{\mathsf{T}}, \ \mathsf{D} \mathbf{A} \mathbf{B}^{\mathsf{T}} = \mathbf{B}, \ \mathsf{E} \ \mathbf{Q}^{\mathsf{T}} \mathbf{A} \mathbf{Q} = \mathbf{D}^{\mathsf{3}}.$

于是有 $B^3=QD(Q^TQ)D(Q^TQ)DQ^T=QD^3Q^T=Q(Q^TAQ)Q^T=A$.