Nom: N° Etudiant:

vendredi 18 mai 2018

EXAMEN: Fondements en électronique analogique 2

Il y a 8 exercices à faire. Les documents sont interdits (sauf dictionnaire). Durée : 90min

Exercice 1 (1,5 points)

Quelles relations décrivent un système linéaire ? Entourez les bonnes réponses.

- a) y=5x
- b) y=sin(x)
- c) $y = 4\frac{dx}{dt} + 3x$
- d) $y = e^x$

Bonnes réponses : a et c

Exercice 2 (1 point)

On applique un échelon de 1V (E(t)=0 si t<0, E(t)=1V si t \geq 0) à l'entrée d'un amplificateur avec un gain de 10 et un slew rate de 12V/ μ sec. Quelle est la tension de sortie à t=250ns ? Entourez la bonne réponse.

- a) 10V
- b) 12V
- c) 5V
- d) 3V

Bonne réponse : d

 $12V/\mu sec * 0,25\mu s = 3V$

Exercice 3 (2 points)

- a) Si un gain G en dB est négatif, le gain linéaire est (entourer la bonne réponse): (1 point)
 - 1) négatif
 - -> non, le gain est toujours positif, le signe moins correspond à un déphasage de π
 - 2) Inférieur à 1 et supérieur ou égal à 0,
 - -> oui, bonne réponse
 - 3) purement imaginaire
 - -> non, le gain est toujours réel et supérieur ou égal à 0
- b) Une fonction de transfert est multipliée par –1. Quel est l'impact sur le diagramme de Bode (module et phase) ? Entourez les bonnes réponses. (1 point)
 - 1) La gain en dB est multiplié par -1
 - 2) Le gain en dB reste inchangé
 - 3) La phase est multipliée par -1
 - 4) La phase augmente de π
 - 5) La phase reste inchangée

$$-1 = e^{j\pi}, |e^{j\pi}| = 1, arg(e^{j\pi}) = \pi$$

- → Gain inchangé
- \rightarrow La phase augmente de π

Exercice 4 (1,5 points)

On applique v_1 =-100mV et v_2 = 300mV à l'entrée d'un amplificateur différentiel.

Le gain différentiel est 10 et le taux de réjection du mode commun 60dB.

- a) Quelle est la tension du mode commun ? (0,5 points)
- b) Quelle est la contribution du mode commun au signal de sortie ? (1 point)

Solution:

- a) Vmc=(-100mV+300mV)/2=100mV
- b) 60dB -> 1000 en linéaire Gmc=Gd/TRMC=10/1000=0,01 Contribution Vmc à Vs= Vmc*Gmc = 100mV*0,01 = 1mV

Exercice 5 (3 points)

Ci-dessous la courbe de gain d'un montage à amplificateur opérationnel.

- a) Quelle est la fréquence de coupure ? (1 point)
- $\rightarrow \omega_c$ =20krad/s, f_c= ω_c /(2 π)= 3183 Hz
- b) Quel est le produit gain x bande passante ? (1 point)

60dB -> 1000 en linéaire, Gain x Bande passante = 1000 * 3183 Hz = 3,183 MHz

c) La pulsation de coupure en boucle ouverte est de 100 rad/s. Quel est le gain en boucle ouverte ? (1 point) $f_{bo}{=}100/(2\pi)~Hz~=15,9~Hz$

Gain_{bo}=3,183MHz/15,9Hz=200000

Exercice 6 (2 points)

a) A quoi sert le montage ci-dessous ? (0,5 points)

Filtre passe bas passif

R=1k

b) Donnez la fonction de transfert en fonction de R et C. (1 point)

R_{total}= 0,5R, C_{total}=2C

$$H(j\omega) = \frac{1}{1 + j\omega * 0.5R * 2C} = \frac{1}{1 + j\frac{\omega}{\omega_c}}$$
$$\omega_c = \frac{1}{RC}$$

c) Dimensionnez C pour que la fréquence de coupure f_c=5 kHz. (0,5 points)

$$C = \frac{1}{2 * \pi * 1000 \Omega * 5000 Hz} = 31,8nF$$

Exercice 7 (3 points)

Ci-dessous le spectre d'un signal.

- V(1)
 - a) S'agit-il d'un signal périodique ou non-périodique ? Justifiez votre réponse, sinon pas de points ! (0,5 points)
 - → Périodique, car fondamentale à 100Hz et composante à des fréquences multiples de 100 Hz
 - b) Si le signal est périodique, quelle est la période ? (0,5 points)
 - → 100Hz (fréquence fondamentale)
 - c) Est-ce que le signal est centré autour de 0V ? Justifiez votre réponse, sinon pas de points ! (1 point)
 - → Pas centré autour de 0, car composante continue à 0Hz
 - d) On souhaite obtenir un signal centré autour de 0V en filtrant le signal représenté par le spectre. Est-ce qu'il faut utiliser un filtre passe bas ou passe haut ? Justifier votre réponse, sinon pas de points ! (1 point)
 - → Pour centrer autour de 0, il faut enlever la composante continue, il faut un passe-haut

Exercice 8 (6 points)

Ci-dessous les réponses temporelles d'un filtre RC pour différentes fréquences.

- a) S'agit-il d'un filtre passe-bas ou passe-haut ? Justifiez votre réponse. (0,5 points)
- → Passe bas car les figures montrent que l'amplitude à la sortie diminue si la fréquence augmente
- b) Quelle est la fréquence de coupure ? Justifiez votre réponse. (0,5 points)
- Fig. en haut à droite : Période du signal= 100 μ s, f=10kHz et le gain est de $\frac{1}{\sqrt{2}}$ On est donc à la fréquence de coupure
- c) Quelle est la constante de temps ? (0,5 points)
- d) Tracez le diagramme de Bode (gain et phase). (4 points)

- e) Quel est l'intérêt de tracer le gain en dB ? (0,5 point)
- -> On dilate l'échelle pour des valeurs faibles et on la comprime pour des valeurs élevées -> meilleure représentation sur plusieurs décades

En échelle log, multiplication -> addition, division -> soustraction ce qui facilite les calculs