1071 Final Theorem List

Ben Kruger

July 2, 2020

Contents

1	Squeeze Theorem	4
2	A Convergent Sequence is Bounded	5
3	A Bounded, Monotone Sequence Converges	5
4	Existence of a Monotone Subsequnce	6
5	Bolzano-Weiestrass Theorem	6
6	Limit Arithmetic	7
7	Differentiability implies Continuity	9
8	Derivative Arithmetic	10
9	Rolle's Theorem	12
10	The Mean Value Theorem	12
11	A Vanishing Derivative Implies a Constant Function	14
12	A Continuous Function on an interval is Uniformly Continuous	14
13	Integrability Condition	16
14	Finite Discontinuities implies Integrability	16
15	A Monotone Function is Integrable	20
16	The Mean Value Theorem For Integrals	20
17	Continuity of an Antiderivative	21
18	The Fundamental Theorem of Calculus	22
19	Substitution Formula	23
2 0	Integration by Parts	24
21	Integral Test	24
2 2	Limit Comparison Test	25
2 3	Ratio Test	26
2 4	The Leibniz Test	27
25	An Absolutely Convergent Series implies convergence	28

26 Maclaurin Series Examples	29
27 Inhomogenous Linear System Solutions	31
28 Invertibility of a Matrix and the Null Space	31
29 Linearity of the Determinant	32
30 Invertibility and the Determinant	34

1 Squeeze Theorem

Theorem: Squeeze Theorem For Sequences

Suppose $(a_n)_{n=1}^{\infty}$, $(b_n)_{n=1}^{\infty}$, $(c_n)_{n=1}^{\infty}$ are such that

1.

$$a_n \le b_n \le c_n \qquad \forall n \in \mathbb{N}$$

2.

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$$

Then,

$$\lim_{n \to \infty} b_n = L$$

Proof

Observe that,

$$|b_n - L| = |b_n - a_n + a_n - L|$$

$$|(b_n - a_n) + (a_n - L)| \le |b_n - a_n| + |a_n - L| = b_n - a_n + |a_n - L|$$

$$\le c_n - a_n + |a_n - L| = |c_n - L + L - a_n| + |a_n - L|$$

$$\le |c_n - L| + |L - a_n| + |a_n - L|$$

Fix $\varepsilon > 0$. There exists $N_1 \in \mathbb{N}$ such that if $n \geq N_1$ then

$$|a_n - L| = |L - a_n| < \frac{\varepsilon}{3}$$

Also, there is $N_2 \in \mathbb{N}$ such that if $n \geq N_2$ then

$$|c_n - L| < \frac{\varepsilon}{3}$$

Now, set $N = \max N_1, N_2$. If $n \ge N$ then,

$$|b_n - L| \le |c_n - L| + |L - a_n| + |a_n - L| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

Thus, $\lim_{n\to\infty} b_n = L$.

2 A Convergent Sequence is Bounded

Theorem: A Convergent Sequence is Bounded

Convergent sequences are bounded. More precicely, if $(a_n)_{n=1}^{\infty}$ converges, then there exists M > 0 such that $|a_n| \leq M$ for all $n \in \mathbb{N}$

Proof

Assume $\lim_{n\to\infty} a_n = L$.

For every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that if $n \geq N$, then $|a_n - L| < \varepsilon$.

This holds for instance if $\varepsilon = 1$.

Thus, there exists $N_1 \in \mathbb{N}$ such that if $n \geq N_1$, then

$$|a_n - L| < 1$$

By the second triangle inequality,

$$|a_n - L| \ge |a_n| - |L|$$

Thus, $|a_n| - |L| < 1$ and $|a_n| < 1 + |L|$

Now, $|a_n| \le M = \max\{|a_1|, |a_2|, |a_3|, \dots, |a_{n-1}|, |L|+1\}$ for all $n \in \mathbb{N}$.

3 A Bounded, Monotone Sequence Converges

Theorem: A Bounded, Monotone Sequence Converges

A monotone sequence converges if and only if it is bounded.

Proof

 (\Longrightarrow)

This is already proven, see 2

(⇐)

Without loss of generality, assume $(a_n)_{n=1}^{\infty}$ is increasing (If the sequence is monotone decreasing, a similar argument is used).

Define $\alpha = \sup\{a_1, a_2, a_3, \cdots, a_n\} \in \mathbb{R}$.

Since the sequence is bounded, this supremum exists in \mathbb{R} .

Let us prove

$$\alpha = \lim_{n \to \infty} a_n$$

Chose $\varepsilon > 0$.

By an earlier theorem, there exists $N \in \mathbb{N}$ such that $a_N \in (\alpha - \varepsilon, \alpha]$.

By monotonicity, if $n \geq N$ then $a_n \geq a_N > \alpha - \varepsilon$. Also, $a_n \leq \alpha$.

Thus, if $n \ge N$ then $\alpha - \varepsilon < a_n \le \alpha < \alpha + \varepsilon \implies |a_n - a| < \varepsilon$. Thus, $\lim_{n \to \infty} a_n = \alpha$, so $(a_n)_{n=1}^{\infty}$ converges.

4 Existence of a Monotone Subsequece

Theorem: Existence of a Monotone Subsequnce

Every sequence of real numbers has a monotone subsequence.

Proof

We call $k \in \mathbb{N}$ a peak point of $(a_n)_{n=1}^{\infty}$ if $a_k > a_n$ for all n > k.

<u>Case 1:</u> There are infinitely many peak points, $n_1 < n_2, n_3 < \cdots$. By definition, $a_{n_1} > a_{n_2} > a_{n_3} > \cdots$. Thus, $(a_{n_k})_{k=1}^{\infty}$ is monotone.

<u>Case 2:</u> There are finitely many peak points. $k_1, k_2, k_3, \dots, k_l$. Set

$$n_1 = \max\{k_1, \cdots, k_l\} + 1$$

Clearly, n_1 is not peak. Therefore, there is some $n_2 > n_1$ such that $a_{n_2} \ge a_{n_1}$. Now, n_2 is not peak. Therefore there is $n_3 > n_2$ such that $a_{n_3} \ge a_{n_2}$. Continue in this way to obtain a monotone subsequence $(a_{n_i})_{i=1}^{\infty}$.

5 Bolzano-Weiestrass Theorem

Theorem: Bolzano-Weiestrass Theorem

Every bounded sequence has a convergent subsequence.

Proof

Every sequence has a monotone subsequence. Every subsequence of a bounded sequence is bounded, thus, we have a bounded, monotone subsequence which must converge. \Box

6 Limit Arithmetic

Theorem: Limit Arithmetic

Assume $\lim_{x \to a} f(x) = L$ $\lim_{x \to a} g(x) = m$.

Then,

- 1. $\lim_{x \to a} (f(x) + g(x)) = L + m$
- 2. $\lim_{x \to a} (f(x) \cdot g(x)) = L \cdot m$
- $3. \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{m}$

Proof

1. Fix $\varepsilon > 0$. We need to find $\delta > 0$ such that if $0 < |x-a| < \delta$ then $|f(x)+g(x)-L+m| < \varepsilon$.

$$|f(x) + g(x) - (L+m)| = |f(x) + g(x) - (L+m)|$$

$$= |(f(x) - L) + (g(x) - m)|$$

$$\leq |f(x) - L| + |g(x) - m|$$

Since $\lim_{x\to a} f(x) = L$, $\lim_{x\to a} g(x) = m$, there exists $\delta_1, \delta_2 > 0$ such that if $0 < |x-a| < \delta_1, \delta_2$ then,

$$|f(x) - L| < \frac{\varepsilon}{2}$$

 $|g(x) - m| < \frac{\varepsilon}{2}$

Choosing $\delta = \min\{\delta_1, \delta_2\}$, we have that,

$$|f(x) - L| + |g(x) - m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

= ε

2. Fix $\varepsilon > 0$. We need to find $\delta > 0$ such that if $0 < |x - a| < \delta$ then $|f(x)g(x) - Lm| < \varepsilon$.

$$|f(x)g(x) - Lm| = |f(x)g(x) - f(x)m + f(x)m - Lm|$$

$$= |f(x)(g(x) - m) + m(f(x) - L)|$$

$$\leq |f(x)||g(x) - m| + |m||f(x) - L|$$

Since $\lim_{x\to a} f(x) = L$, there exists $\delta > 0$ such that if $0 < |x-a| < \delta$ then, |f(x)-L| < 1. In this case, $|f(x)| - |L| < 1 \Longrightarrow |f(x)| < 1 + |L|$. Thus, if $0 < |x-a| < \delta$, then $|f(x)g(x)-Lm| \le |1+|L|||g(x)-m|+|m||f(x)-L|$. There exists $\delta_2 > 0$ such that if $0 < |x-a| < \delta_2$ then, $|g(x)-m| < \frac{\varepsilon}{2(|m|+1)}$. Set $\delta = \min\{\delta_1, \delta_2, \delta_3\}$, If $0 < |x-a| < \delta$ then,

$$\begin{split} |f(x)g(x)-Lm| &\leq (1+|L|)|g(x)-m|+|m||f(x)-L| \\ &< \frac{\varepsilon}{2(|L|+1)} \cdot (|L|+1) + \frac{\varepsilon}{2(|m|+1)} \cdot 2(|m|+1) \qquad \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\ &= \varepsilon \end{split}$$

3. We need to show first that $\lim_{x\to a} \frac{1}{g(x)} = \frac{1}{m}$ Fix $\varepsilon > 0$. Since $\lim_{x\to a} g(x) = m$, there exists $\delta_1 > 0$ such that if $0 < |x-a| < \delta_1$ then, $|g(x)-m| < \frac{|m|}{2}$.

$$|m| = |m + g(x) - g(x)|$$

$$\leq |g(x) - m| + |g(x)|$$

$$< \frac{|m|}{2} + |g(x)|$$

$$\frac{|m|}{2} < |g(x)|$$

$$\frac{1}{g(x)} < \frac{2}{|m|}$$

Indeed, there exists some $\delta_2 > 0$ such that if $0 < |x - a| < \delta_2$ then $|g(x) - m| < \frac{|m|^2}{2} \varepsilon$. Choosing $\delta = \min\{\delta_1, \delta_2\}$, if $0 < |x - a| < \delta$ we have,

$$\left| \frac{1}{g(x) - \frac{1}{m}} \right| = \left| \frac{m - g(x)}{mg(x)} \right|$$

$$= \frac{1}{|mg(x)|} |g(x) - m|$$

$$< \frac{1}{|m|} \frac{2}{|m|} |g(x) - L|$$

$$< \frac{2}{|m|^2} \frac{|m|^2}{2} \varepsilon$$

$$= \varepsilon$$

Now we have proven that $\lim_{x\to a}\frac{1}{g(x)}=\frac{1}{m}$, the more general fact follows.

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} f(x) \frac{1}{g(x)}$$

$$= \lim_{x \to a} f(x) \lim_{x \to a} \frac{1}{g(x)}$$

$$= L \frac{1}{m}$$

$$= \frac{L}{m}$$

7 Differentiability implies Continuity

Proposition: Differentiability implies Continuity

Suppose f is differentiable at x_0 . Then f is continuous at x_0 .

Proof

Observe that:

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} \cdot (x - x_0) + f(x_0) \right)$$

$$= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \cdot \lim_{x \to x_0} (x - x_0) + f(x_0)$$

$$= f'(x_0) \cdot (x_0 - x_0) + f(x_0)$$

$$= 0 \cdot f'(x_0) + f(x_0) = f(x_0)$$

8 Derivative Arithmetic

Theorem: Derivative Arithmetic

Suppose $f,g:(a,b)\to\mathbb{R}$ are both differentiable at $x\in(a,b)$. Then, $f+g,fg,\frac{f}{g}$ are differentiable at x. We need $g(x)\neq 0$ for $\frac{f}{g}$.

1.
$$(f+g)'(x) = f'(x) + g'(x)$$

2.
$$(fg)'(x) = f'(x)g(x) + g'(x)f(x)$$

3.
$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - g'(x)f(x)}{g^2(x)}$$

1.

$$(f+g)'(x) = \lim_{h \to 0} \frac{f(x+h) + g(x+h) - f(x) - g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x) + g(x+h) - g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= f'(x) + g'(x)$$

2.

$$(fg)'(x) = \lim_{h \to 0} \frac{f(x+g)g(x+h) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x+h)g(x) + f(x+h)g(x) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} f(x+h) \frac{g(x+h) - g(x)}{h} + g(x) \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} f(x+h) \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} + g(x) \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= f(x)g'(x) + f'(x)g(x)$$

3.

$$\left(\frac{f'(x)}{g'(x)}\right) = \lim_{h \to 0} \frac{\frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{f(x+h)}{g(x+h)} \cdot \frac{g(x)}{g(x)} - \frac{f(x)}{g(x)} \cdot \frac{g(x+h)}{g(x+h)}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{g(x)f(x+h) - f(x)(g(x+h))}{hg(x)g(x+h)}$$

$$= \lim_{h \to 0} \frac{\frac{g(x)f(x+h) - f(x)g(x) + f(x)g(x) - f(x)(g(x+h))}{hg(x)g(x+h)}$$

$$= \lim_{h \to 0} \frac{\frac{g(x)(f(x+h) - f(x)) - f(x)(g(x) - g(x+h))}{hg(x)g(x+h)}$$

$$= \frac{g(x)\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} - f(x)\lim_{h \to 0} \frac{g(x+h) - g(x)}{h} }{\lim_{h \to 0} g(x)g(x+h)}$$

$$= \frac{g(x)f'(x) - f(x)g'(x)}{g^2(x)}$$

9 Rolle's Theorem

Theorem: Rolle's Theorem

Suppose $f:[a,b]\to\mathbb{R}$ is continuous on [a,b] and differentiable on (a,b). If f(a)=f(b), then there exists $c\in(a,b)$ such that f'(c)=0.

Proof

If f(x) = f(a) for all $x \in (a, b)$, then the theorem is obvious.

Assume f is not constant.

Without loss of generality, assume there exists $x_0 \in (a, b)$ such that $f(x_0) < f(a)$.

(If no such x_0 exists, then there exists $x_1 \in (a,b)$ such that $f(x_1) < f(a)$. In this case, a similar argument works.)

By the Extreme Value theorem, f has a global maximum on [a, b], call this c. Since,

$$f(c) \ge f(x_0) > f(a) = f(b)$$

we know $c \neq a, c \neq b$. Thus, c lies in (a, b), and f'(c) = 0

10 The Mean Value Theorem

Theorem: The Mean Value Theorem

Suppose $f:[a,b]\to\mathbb{R}$ is continuous on [a,b] and differentiable on (a,b). Then, there exists $c\in(a,b)$ such that $f'(c)=\frac{f(b)-f(a)}{b-a}$.

Proof

Consider the function $\phi(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a} \cdot (x - a)$. Observe that

$$\phi(a) = f(a) - f(a) - \frac{f(b) - f(a)}{b - a} \cdot (a - a) = 0$$

$$\phi(b) = f(b) - f(a) - \frac{f(b) - f(a)}{b - a} \cdot (b - a) = 0$$

Applying Rolle's theorem to $\phi(x)$, we obtain the existence of $c \in (a, b)$ such that,

$$\phi'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0$$

11 A Vanishing Derivative Implies a Constant Function

Proposition: Vanishing Derivative Implies a Constant Function

Suppose $f:[a,b] \Longrightarrow \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b). If f'(x)=0 for all $x\in(a,b)$, then f is constant on [a,b]

Proof

Take $x \in (a, b]$. Applying the Mean Value theorem on [a, x], we conclude that f(x) - f(a) = f'(c)(x - a) for some $c \in (a, x)$. Therefore, as f'(c) = 0,

$$f(x) - f(a) = 0(x - a)$$
$$f(x) = f(a)$$

Thus, f is constant in [a, b].

12 A Continuous Function on an interval is Uniformly Continuous

Theorem: A Continuous Function on an interval is Uniformly Continuous

Suppose f is continuous on a closed, bounded interval [a,b]. Then, f is uniformly continuous on [a,b].

Proof

By contradiction.

Assume f is not uniformly continuous.

There exists $\varepsilon_0 > 0$ such that for all $\delta > 0$, there exists $x, y \in [a, b]$ with $|x - y| < \delta$ but $|f(x) - f(y)| \ge \varepsilon_0$.

Take $\delta = 1$. There exists $x_1, y_1 \in [a, b]$ such that $|x_1 - y_1| < 1$ but $|f(x_1) - f(y_1)| \ge \varepsilon_0$.

Take $\delta = \frac{1}{2}$. There exists $x_2, y_2 \in [a, b]$ such that $|x_2 - y_2| < \frac{1}{2}$ but $|f(x_2) - f(y_2)| \ge \varepsilon_0$.

Continue in this way for $\delta = \frac{1}{n}$, $\forall n \in \mathbb{N}$.

Then, there exists $x_n, y_n \in [a, b]$ such that $|x_n - y_n| < \frac{1}{n}$ but $|f(x_n) - f(y_n)| \ge \varepsilon_0$.

We have thus constructed two sequences.

$$(X_n)_{n=1}^{\infty}$$

$$(Y_n)_{n=1}^{\infty}$$

inside [a, b].

Since [a, b] is closed and bounded, $(X_n)_{n=1}^{\infty}$ must have some subsequence $(X_{n_k})_{k=1}^{\infty}$ which converges to some point $x_0 \in [a, b]$.

$$\lim_{k \to \infty} (X_{n_k}) = x_0$$

Claim:

The subsequence $(Y_{n_k})_{k=1}^{\infty}$ converges to x_0 .

Proof of the claim:

Given $\varepsilon > 0$, we look for $N \in \mathbb{N}$ such that if $k \geq N$ then, $|Y_{n_k} - x_0| < \varepsilon$.

$$|Y_{n_k} - x_0| = |Y_{n_k} + X_{n_k} - X_{n_k} - x_0|$$

$$\leq |Y_{n_k} - X_{n_k}| + |X_{n_k} - x_0|$$

$$< \frac{1}{n_k} + |X_{n_k} - x_0|$$

Since $(X_n)_{n=1}^{\infty}$ converges to x_0 , for k large enough, we have $|X_{n_k} - x_0| < \frac{\varepsilon}{2}$. Then taking k large enough such that $\frac{1}{n_k} < \frac{\varepsilon}{2}$, we have,

$$|Y_{n_k} - x_0| < \frac{1}{n_k} + |X_{n_k} - x_0|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Let us prove that this contradicts the continuity of f. Since f is continuous and since

$$\lim_{k \to \infty} X_{n_k} = \lim_{n \to \infty} Y_{n_k} = x_0$$

we have that,

$$\lim_{k \to \infty} f(X_{n_k}) = \lim_{n \to \infty} f(Y_{n_k}) = f(x_0)$$

Then, for some $N \in \mathbb{N}$, if $k \geq N$ then $|f(X_{n_k}) - x_0| < \frac{\varepsilon}{4}$ and $|f(Y_{n_k}) - x_0| < \frac{\varepsilon}{4}$. On the other hand,

$$|f(X_{n_k}) - f(Y_{n_k})| = |f(X_{n_k}) - f(x_0) + f(x_0) - f(Y_{n_k})|$$

$$\leq |f(X_{n_k}) - f(x_0)| + |f(x_0) - f(Y_{n_k})|$$

$$< \frac{\varepsilon}{4} + \frac{\varepsilon}{4}$$

$$= \frac{\varepsilon}{2}$$

Also, we know by construction that

$$|f(X_{n_k}) - f(Y_{n_k})| \ge \varepsilon_0$$

Thus, we have a contradiction.

13 Integrability Condition

Theorem: Integrability Condition

The function $f:[a,b]\to\mathbb{R}$ is integrable if and only if for every $\varepsilon>0$, there exists a partition P such that

$$U(f,P) - L(f,P) < \varepsilon$$

Proof

 (\Longrightarrow)

Assume f is integrable. Fix $\varepsilon > 0$. There exists P_1 such that

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f dx < L(f, P_1) + \frac{\varepsilon}{2}$$

Also, there exists P_2 such that

$$\int_{a}^{b} f(x) dx = \int_{a}^{\overline{b}} f dx > U(f, P_{1}) - \frac{\varepsilon}{2}$$

Define $P = P_1 \cup P_2$. Then,

$$U(f, P) - L(f, P) \le U(f, P_2) - L(f, P_1)$$

$$< \int_a^b f(x) dx + \frac{\varepsilon}{2} - \int_a^b f(x) dx + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

 (\Longleftrightarrow)

Fix $\varepsilon > 0$. There exists P such that,

$$U(f,P) - L(f,P) < \varepsilon$$

Then,

$$\int_{a}^{\overline{b}} f(x) dx - \int_{\underline{a}}^{b} f(x) dx \le U(f, P) - L(f, P) < \varepsilon$$

This means, $\int_a^{\overline{b}} f(x) dx - \int_a^b f(x) dx = 0.$

Thus, f is integrable.

14 Finite Discontinuities implies Integrability

Theorem: Finite Discontinuities implies Integrability

If $f:[a,b]\to\mathbb{R}$ is continuous at all but finitely many points, then f is integrable.

Part 1:

Assume f is continuous on [a, b] then f is uniformly continuous on [a, b].

Fix $\varepsilon > 0$. We will find a partition P such that $U(f, P) - L(f, P) < \varepsilon$. This will imply integrability.

Uniform continuity implies that there exists $\delta > 0$ such that if $|x-y| < \delta$ then $|f(x)-f(y)| < \frac{\varepsilon}{|b-a|}$.

Choose P so that $|x_i - x_{i-1}| < \delta$ for all $i \in 1, 2, \dots, n$.

Here $P = \{x_0, x_1, x_2, \dots, x_{n-1}\}$. Then,

$$U(f,P) - L(f,P) = \sum_{i=1}^{n} \left(\sup_{[x_{i-1},x_i]} f(x) - \inf_{[x_{i-1},x_i]} f(x) \right) (x_i - x_{i-1})$$

Since f is continuous, by the extreme value theorem, there exists $x_i \in [x_{i-1}, x_i]$ such that,

$$f(x_i') = \sup_{[x_{i-1}, x_i]} f(x)$$

And there exists some $x_i'' \in [x_{i-1}, x_i]$ such that,

$$f(x_i'') = \inf_{[x_{i-1}, x_i]} f(x)$$

Then,

$$U(f,P) - L(f,P) = \sum_{i=1}^{n} (f(x_i') - f(x_i'')) (x_i - x_{i-1})$$

$$< \sum_{i=1}^{n} \frac{\varepsilon}{|b-a|} (x_i - x_{i-1})$$

$$= \frac{\varepsilon}{|b-a|} (x_1 - x_0 + x_2 - x_1 + \dots + x_n - x_{n-1})$$

$$= \frac{\varepsilon}{|b-a|} (x_n - x_0)$$

$$= \frac{\varepsilon}{|b-a|} |b-a|$$

$$= \varepsilon$$

Thus, f is integrable.

Part 2:

Assume f has exactly 1 discontinuity, assume it is at $C \in (a, b)$. The cases where it is at a or b are treated similarly.

Fix $\varepsilon > 0$. We will find a partition P such that $U(f, P) - L(f, P) < \varepsilon$.

Define $\delta = \min\{\frac{\varepsilon}{8M}, \frac{b-C}{2}, \frac{C-a}{2}\}.$ Where M is such that $|f(x)| \leq M \quad \forall x \in [a, b].$

By our choice of δ , $[C - \delta, C + \delta] \subset [a, b]$.

By part 1, f is integrable on $[a, C - \delta]$ and $[C + \delta, b]$.

Therefore, there exist partitions P_1 of $[a, C - \delta]$ and P_2 of $[C + \delta, b]$ such that,

$$U(f, P_1) - L(f, P_1) < \frac{\varepsilon}{4}$$
$$U(f, P_2) - L(f, P_2) < \frac{\varepsilon}{4}$$

Define $P = P_1 \cup P_2$, a partition of [a, b].

$$U(f,P) - L(f,P) = U(f,P_1) - L(f,P_1) + U(f,P_2) - L(f,P_2) + \sup_{[C-\delta,C+\delta]} f(x) - \inf_{[C+\delta,C-\delta]} f(x)(C+\delta - (C-\delta))$$

$$< \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + 2M \cdot 2\delta$$

$$\leq \frac{\varepsilon}{2} + \frac{4\varepsilon}{8M} \cdot M$$

$$= \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Part 3:

If f has more than 1 discontinuity, apply part 2 enough times.

15 A Monotone Function is Integrable

Theorem: A Monotone Function is Integrable

If $f:[a,b]\to\mathbb{R}$ is monotone, then f is integrable.

Proof

Assume without loss of generality that f is increasing.

Fix $\varepsilon > 0$. We will find a partition $P = \{x_0, x_1, x_2, \cdots, x_n\}$ such that $U(f, P) - L(f, P) < \varepsilon$. Let P be the partition that splits [a, b] into n equal parts.

Namely, set $x_k = a + k \cdot \frac{b-a}{n}$. Then,

$$U(f,P) - L(f,P) = \sum_{i=1}^{n} \left(\left(\sup_{[x_{i-1},x_i]} f(x) - \sup_{[x_{i-1},x_i]} f(x) \right) (x_i - x_{i-1}) \right)$$

$$= \sum_{i=1}^{n} \left(f(x_i) - f(x_{i-1}) \right) \left(\frac{b-a}{n} \right)$$

$$= \frac{b-a}{n} \cdot \left(f(x_1) - f(x_0) + f(x_2) - f(x_1) + \dots + f(x_n) - f(x_{n-1}) \right)$$

$$= \frac{b-a}{n} \cdot \left(f(x_n) - f(x_0) \right)$$

$$= \frac{b-a}{n} \cdot \left(f(b) - f(a) \right)$$

Chose $n > \frac{(b-a)(f(b)-f(a))}{\varepsilon}$. Then, $U(f,P) - \overset{\varepsilon}{L}(f,P) < \varepsilon$ and so f is integrable.

The Mean Value Theorem For Integrals 16

The Mean Value Theorem For Integrals

If f is continuous on [a, b], then, there exists some $C \in [a, b]$ such that $\int_{a}^{b} f(x) dx = f(c)(b-a)$.

If f is constant on [a, b], the result is obvious.

Assume f is not constant on [a, b].

Denote $m = \inf_{[a,b]} f(x), M = \sup_{[a,b]} f(x).$

Since f is continuous, by the extreme value theorem, there exists points $x_m \in [a, b]$ and $x_M \in [a, b]$ such that $m = f(x_m), M = f(x_M)$.

Without loss of generality, assume $x_m < x_M$. Observe that

$$m(a-b) \le \int_a^b f \, \mathrm{d}x \le M(b-a)$$

$$m \le \frac{\int_a^b f \, \mathrm{d}x}{(b-a)} \le M$$

Apply the intermediate value theorem on $[x_m, x_M]$. Since $f(x_m) = m$ and $f(x_M) = M$, there

exists some $C \in [x_m, x_M]$ such that $f(C) = \frac{\displaystyle\int_a^b f \, \mathrm{d}x}{(b-a)}$. Then,

$$\int_{a}^{b} f \, \mathrm{d}x = f(C) \cdot (b - a)$$

17 Continuity of an Antiderivative

Theorem: Continuity of an Antiderivative

If f is integrable on [a, b] then the function $F(x) = \int_a^b f(x) dx$ is continuous on [a, b].

Suppose $C \in [a, b]$. We will show F is continuous at C. Let M be such that $|F(x)| \leq M \quad \forall x \in \mathbb{R}$ [a,b].

We want to show that $\lim_{h\to 0} F(C+h) = F(C)$ or equivalently, $\lim_{h\to 0} (F(C+h) - F(C)) = 0$.

We begin by showing $\lim_{h\to 0^+} (F(C+h) - F(C)) = 0$.

Indeed, if h > 0 then,

$$F(C+h) - F(C) = \int_{a}^{C+h} f \, dx - \int_{a}^{C} f \, dx = \int_{C}^{C+h} f \, dx$$

Since $-M \le f \le M$ on [a, b],

$$\int_{C}^{C+h} f \, \mathrm{d}x \le M(\mathscr{C} + h - \mathscr{C}) = Mh$$

Also,
$$-Mh \le \int_C^{C+h} f \, \mathrm{d}x$$
.

Therefore.

$$|f(C+h) - f(C)| = \left| \int_C^{C+h} f \, \mathrm{d}x \right| \le Mh$$

This means $\lim_{h\to 0^+} (F(C+h) - F(C)) = 0$ and similarly, $\lim_{h\to 0^-} (F(C+h) - F(C)) = 0$.

18 The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus

Assume $f:[a,b]\to\mathbb{R}$ is continuous.

Define $F(x) = \int_{-\infty}^{x} f(t) dt$. Then, F is differentiable on (a, b), F'(x) = f(x).

Indeed, $\int_{a}^{b} f \, dx = F(b) - F(a)$.

Proof

Let us compute F'(x) for $x \in (a, b)$. We want to find $\lim_{h \to 0} \frac{F'(x+h) - F(x)}{h}$.

We begin by finding $\lim_{h\to 0^+} \frac{F(x+h) - F(x)}{h}$.

Given $h \in (0, b - x)$, we compute,

$$F(x+h) - F(x) = \int_{x}^{x+h} f(t) dx$$

By the mean value theorem for integrals,

$$\int_{x}^{x+h} f(t) dt = f(c)(x+h-x) = f(c)(h)$$

Where $c \in [x, x + h]$.

Note that f is uniformly continuous on [a, b]. Therefore, given $\varepsilon > 0$, there exists $\delta > 0$ such that if $|x - y| < \delta$ then $|f(x) - f(y)| < \varepsilon$.

If $h < \delta$ then $|c - x| < \delta$. Therefore,

$$\left| \frac{F(x+h) - F(x)}{h} - f(x) \right| = \left| \frac{f(c)h}{h} - f(x) \right| = |f(c) - f(x)| < \varepsilon$$

Thus,
$$\lim_{h \to 0^+} \frac{F(x+h) - F(x)}{h} = f(x)$$
.

Similarly,
$$\lim_{h \to 0^{-}} \frac{F(x+h) - F(x)}{h} = f(x)$$
.

So, F'(x) = f(x).

The Newton-Leibniz formula follows immediately.

19 Substitution Formula

Theorem: Substitution Formula

If f, g are continuous on [a, b] and g is differentiable on (a, b) with g' continuous, then,

$$\int_{g(a)}^{g(b)} f(u) du = \int_a^b f(g(x))g'(x) dx$$

Proof

Suppose F is an antiderivative of f.

By the fundamental theorem of calculus, the left hand side of the equation is equal to,

$$F(g(b)) - f(g(a))$$

Next, by the chain rule, we have,

$$(F \circ g)' = (F' \circ g) \cdot g' = (f \circ g)g'$$

This means $F \circ g$ is an anti-derivative of $(f \circ g)g'$.

Therefore, by the fundamental theorem of calculus,

$$\int_{a}^{b} (f \circ g)g' dx = (F \circ g)(b) - (F \circ g)(a)$$
$$= F(g(b)) - F(g(a))$$

Thus, $\int_{g(a)}^{g(b)} f(u) du = \int_a^b f(g(x))g'(x) dx$ holds.

20 Integration by Parts

Theorem: Integration by Parts

If $u, v : [a, b] \to \mathbb{R}$ are continuous on [a, b] and differentiable on (a, b),

$$\int uv' \, dx = uv - \int u'v \, dx$$
$$\int_a^b uv' \, dx = uv|_a^b - \int_a^b u'v \, dx$$

Where $uv|_a^b = u(b)v(b) - u(a)v(a)$.

Proof

We know that uv' = u'v + v'u. Integrating both sides, we obtain,

$$\int (uv)' dx = \int u'v dx + \int v'u dx$$
$$uv = \int u'v dx + \int uv' dx$$
$$\int u'v dx = uv - \int v'u dx$$

The formula for the definite integral follows from the fundamental theorem of calculus.

21 Integral Test

Theorem: Integral Test

Assume f is a non negative, non increasing continuous function on the interval $[1, \infty)$.

Then, $\int_{1}^{\infty} f dx$ and $\sum_{n=1}^{\infty} f(n)$ converge or diverge together.

Consider the interval [1, n+1]. The set $P = \{1, 2, 3, 4, \dots, n+1\}$ is a partition of [1, n+1]. Since f is non increasing,

$$\inf_{[x_{i-1},x_i]} f = f(x_i), \sup_{[x_{i-1},x_i]} f = f(x_{i-1})$$

Consequently,

$$U(f, P) = \sum_{i=1}^{n} \sup_{[x_{i-1}, x_i]} f(x_i - x_{i-1})$$

$$= \sum_{i=1}^{n} f(x_{i-1})(i+1-i)$$

$$= \sum_{i=1}^{n} f(x_{i-1})$$

$$= \sum_{i=1}^{n} f(i)$$

Also,
$$L(f, P) = \sum_{i=1}^{n} f(i+1)$$
.

If
$$\int_{1}^{\infty} f \, dx$$
 converges, then, $L(f, P) = \sum_{i=1}^{n} f(i+1) = \sum_{i=2}^{n+1} f(i)$ converges as $n \to \infty$.

Thus, $\sum_{i=1}^{\infty} f(i)$ converges.

If
$$\int_{1}^{\infty} f \, dx$$
 diverges then $U(f, P) = \sum_{i=1}^{n} f(i)$ diverges as $n \to \infty$

Which means, $\sum_{i=1}^{\infty} f(i)$ diverges.

22 Limit Comparison Test

Theorem: Limit Comparison Test

Suppose
$$a_n, b_n > 0$$
 for all $n \in \mathbb{N}$.
If $\lim_{n \to \infty} \frac{a_n}{b_n} = c > 0$ (not ∞)

then, $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converge and diverge simultaneously.

Assume $\sum_{n=1}^{\infty} b_n$ converges. Since $\lim_{n\to\infty} \frac{a_n}{b_n} = c$, there exists some $N\in\mathbb{N}$ such that if $n\geq N\frac{a_n}{b_n}<2c$ and $a_n<2cb_n$.

Now,
$$\sum_{n=1}^{\infty} 2cb_n = 2c\sum_{n=1}^{\infty} b_n$$
 converges.

By comparison, since $\sum_{n=N}^{\infty} a_n \leq 2c \sum_{n=N}^{\infty} b_n \leq 2c \sum_{n=1}^{\infty} b_n$, the series $\sum_{n=N}^{\infty} a_n$. Hence, $\sum_{n=1}^{\infty} a_n$ converges.

Next, suppose $\sum_{n=1}^{\infty} a_n$ converges. Then, $\lim_{n\to\infty} \frac{b_n}{c_n} = \frac{1}{c} > 0$ and $\sum_{n=1}^{\infty} b_n$ converges by the previous argument.

Ratio Test 23

Theorem: Ratio Test

Assume $a_n > 0$ for all $n \in \mathbb{N}$. Then,

1. If
$$\limsup_{n \to \infty} \frac{a_{n+1}}{a_n} = r < 1$$

Then, $\sum_{n=1}^{\infty} a_n$ converges.

2. If
$$\liminf_{n\to\infty} \frac{a_{n+1}}{a_n} > 1$$

Then, $\sum_{n=1}^{\infty} a_n$ diverges.

Proof

We assume that $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = r \in \mathbb{R}$.

1. Fixing S such that r < S < 1. Because $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=r< S$, there exists some $N\in\mathbb{N}$ such that if $n\geq N$ then $\frac{a_{n+1}}{a_n}< S$. Then, $\frac{a_{N+1}}{a_N}< S$ and $a_{N+1}< S\cdot a_N$. Also, $\frac{a_{N+2}}{a_{N+1}}< S$ then $a_{N+2}< S\cdot a_{N+1}< S^2a_N$. Next, $\frac{a_{N+3}}{a_{N+2}}< S$ then $a_{N+3}< S\cdot a_{N+2}< S^3a_N$.

Next,
$$\frac{a_{N+1}}{a_{N+2}} < S$$
 then $a_{N+2} < S \cdot a_{N+1} < S \cdot a_N$.
Next, $\frac{a_{N+3}}{a_{N+2}} < S$ then $a_{N+3} < S \cdot a_{N+2} < S^3 a_N$.

Continuing like this, we find $a_{N+k} < S^k \cdot a_N$. Thus,

$$\sum_{k=N}^{\infty} a_n \le \sum_{k=0}^{\infty} S^k \cdot a_N = a_N \sum_{k=0}^{\infty} S^k = a_N \frac{1}{1 - S}$$

Thus, $\sum_{n=N}^{\infty} a_N$ converges. Hence, $\sum_{n=1}^{\infty} a_n$ converges.

2. Assuming $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = r > 1$ then there exists some $N \in \mathbb{N}$ such that if $n \geq N$ then $\frac{a_{n+1}}{a_n} > 1$ then $\frac{a_{N+1}}{a_N} > 1$ so, $a_{N+1} > a_N$. Also, $\frac{a_{N+2}}{a_N+1} > 1$ so $a_{N+2} > a_{N+1} > a_N$ and so

Thus, $a_{N+k} > a_N$ for all $k \in \mathbb{N}$ which means a_n cannot go to 0 as $n \to \infty$.

24 The Leibniz Test

Theorem: The Leibniz Test

Assume $(a_n)_{n=1}^{\infty}$ is a sequence such that $a_n \geq 0$, $a_n \geq a_{n+1}$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} a_n = 0$,

Then, the series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges.

Proof

Let
$$S_n = \sum_{k=1}^n (-1)^{k+1} a_k$$
.

Observe that $S_1 > S_3 > S_5 > \cdots$ Indeed,

$$S_{2n+3} = S_{2n+1} - a_{2n+2} + a_{2n+3}$$

= $S_{2n+1} + (a_2n + 3 - a_2n + 2)$
 $\leq S_{2n+1}$

Also,

$$S_{2n+2} = S_{2n} + (a_{2n+1} - a_{2n+2}) \ge S_{2n}$$

And,

$$S_2 \le S_4 \le S_6 \le \cdots$$

Moreover, $S_{2n} \leq S_{2n+1}$ since $S_{2n+1} = S_{2n} + a_{2n+1} \geq S_{2n}$.

We conclude $S_{2n} \leq S_{2n+1} \leq S_1$ and $S-2n+1 \geq S_{2n} \geq S_2$. Thus, the sequences $(S_{2n})_{n=1}^{\infty}$ and $(S_{2n+1})_{n=1}^{\infty}$ are bounded.

Hence, they must converge. Thus, we can say,

$$\lim_{n \to \infty} S_{2n} = \alpha, \quad \lim_{n \to \infty} S_{2n+1} = \beta$$

Now,

$$\beta - \alpha = \lim_{n \to \infty} S_{2n+1} - \lim_{n \to \infty} S_{2n}$$

$$= \lim_{n \to \infty} (S_{2n+1} - S_{2n})$$

$$= \lim_{n \to \infty} a_{2n+1}$$

$$= 0$$

Thus, $\beta = \alpha$ and $\lim_{n \to \infty} S_n = \alpha = \beta$ and $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges.

25 An Absolutely Convergent Series implies convergence

Theorem: An Absolutely Convergent Series implies convergence

If $\sum_{n=1}^{\infty} a_n$ converges absolutely, then it converges.

Proof

Use the cauchy criterion.

Fixing $\varepsilon > 0$. We must show that there exists some $N \in \mathbb{N}$ such that if $p > q \ge N$ then

$$\left| \sum_{n=q}^{p} a_n \right| < \varepsilon$$

Since $\sum_{n=1}^{\infty} |a_n|$ converges, there exists some $N \in \mathbb{N}$ such that $\left|\sum_{n=q}^p |a_n|\right| < \varepsilon$

By the triangle inequality,

$$\left| \sum_{n=q}^{p} a_n \right| \le \sum_{n=1}^{\infty} |a_n| = \left| \sum_{n=q}^{p} |a_n| \right| < \varepsilon$$

Maclaurin Series Examples 26

Theorem: Maclaurin Series Examples

The formulas and derivations for the functions,

- 1. $f(x) = e^x$
- 2. $f(x) = \sin(x)$
- 3. $f(x) = \cos(x)$
- 4. $f(x) = \frac{1}{1-x}$

Proof

1. Let $f(x) = e^x$.

Let us write down the Maclaurin Series.

Clearly,
$$f^{(n)}(0) = \frac{d^n}{dx^n} e^x \Big|_{x=0} = e^0 = 1$$

Therefore, the series is $\sum_{n=0}^{\infty} \frac{x^n}{n!}$.

This converges absolutely for all $x \in \mathbb{R}$ by the ratio test.

2. Let $f(x) = \sin(x)$.

$$f(x) = \sin(x)$$

$$f'(x) = \cos(x)$$

$$f''(x) = -\sin(x)$$

$$f'''(x) = -\cos(x)$$

$$f''''(x) = \sin(x)$$

$$f^{4k}(x) = \sin(x)$$
 $f^{4k+1}(x) = \cos(x)$

For all $k \in \mathbb{N}$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \cdot x^n = \frac{\sin(0)}{0!} \cdot x^0 + \frac{\cos(0)}{1!} \cdot x^1 + \frac{-\sin(0)}{2!} \cdot x^2 + \frac{-\cos(0)}{3!} \cdot x^3 + \dots$$

$$= x - \frac{1}{3!} \cdot x^3 + \frac{1}{5!} \cdot x^5$$

$$= \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n+1}}{(2n+1)!}$$

Note: the series converges absolutely by the ratio test for all $x \in \mathbb{R}$

$$\limsup_{n \to \infty} \frac{(-1)^{n+1} \cdot \left(\frac{x^{2n+2}}{(2n+2)!}\right)}{(-1)^n \cdot \left(\frac{x^{2n+1}}{(2n+1)!}\right)} = \limsup_{n \to \infty} \frac{-x}{2n+2} = 0 < 1$$

3. Let $f(x) = \cos(x)$.

$$f(x) = \cos(x)$$

$$f'(x) = -\sin(x)$$

$$f''(x) = -\cos(x)$$

$$f'''(x) = \sin(x)$$

$$f''''(x) = \cos(x)$$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \cdot x^n = \frac{\cos(0)}{0!} \cdot x^0 + \frac{-\sin(0)}{1!} \cdot x^1 + \frac{-\cos(0)}{2!} \cdot x^2 + \frac{\sin(0)}{3!} \cdot x^3 + \dots$$

$$= 1 - \frac{1}{2!} \cdot x^2 + \frac{1}{4!} \cdot x^4 - \frac{1}{6!} \cdot x^6 + \dots$$

$$= \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n}}{2n!}$$

For all $x \in \mathbb{R}$

$$f(x) = \frac{1}{1 - x}$$

$$f'(x) = \frac{1}{(1 - x)^2}$$

$$f''(x) = \frac{2}{(1 - x)^3}$$

$$f'''(x) = \frac{6}{(1 - x)^4}$$

$$f''''(x) = \frac{24}{(1 - x)^5}$$

$$\begin{split} \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \cdot x^n &= \frac{1}{(1-0)(0!)} \cdot x^0 + \frac{1}{(1-0)^2(1!)} \cdot x^1 + \frac{2}{(1-0)^3(2!)} \cdot x^2 \\ &+ \frac{6}{(1-0)^4(3!)} \cdot x^3 + \frac{24}{(1-0)^5(4!)} \cdot x^4 \\ &= \sum_{n=0}^{\infty} \frac{n!}{n!} \cdot x^n \\ &= \sum_{n=0}^{\infty} x^n \end{split}$$

This is a geometric series. It converges if $x \in (-1,1)$ and diverges otherwise.

27 Inhomogenous Linear System Solutions

Proposition: Inhomogenous Linear System Solutions

If p is a vector such that Ap = b, then,

$$\{x \in \mathbb{R}^n | Ax = b\} = \{y + p | y \in \mathrm{NS}(A)\}\$$

Proof

Observe that A(x+y) = Ax + Ay and $A(\lambda x) = \lambda Ax$ for all $x, y \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$.

Assume $y \in NS(A)$. Let us prove that A(y + p) = b.

Indeed, A(y + p) = Ay + Ap = 0 + b = b.

Thus,

$${x \in \mathbb{R}^n | Ax = b} \supset {y + p | y \in NS(A)}$$

Now, assume Ax = b. Clearly, x = p + (x - p).

The vector y = x - p is in NS(A) because

$$A(x-p) = Ax - Ap = b - b = 0$$

Thus,

$${x \in \mathbb{R}^n | Ax = b} \subset {y + p | y \in NS(A)}$$

28 Invertibility of a Matrix and the Null Space

Theorem: Invertibility of a Matrix and the Null Space

The matrix A is invertible if and only if $NS(A) = \{0\}$.

 (\Longrightarrow)

Assume A is invertible. We know $0 \in NS(A)$. We want to prove that if Ax = 0, x = 0 then,

$$x = (A^{-1}A)x$$

= $A^{-1}(Ax) = A^{-1}0 = 0$

 (\Leftarrow)

We claim that if NS(A) = 0 then A has a right inverse.

Proof of the claim

If NS(A = 0 then the system Ax = 0 has a unique solution.

By an earlier proposition, the system Ax = b has a unique solution for every $b \in \mathbb{R}^n$. Take,

$$b^{1} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \qquad b^{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \qquad \cdots$$

Solving $Ax = b^i$ for $i = 1, 2, \dots, n$, we obtain an array of vectors,

$$x^{i} = \begin{pmatrix} x_{1i} \\ x_{2i} \\ \vdots \\ x_{ni} \end{pmatrix}$$

We construct a matrix,

$$C = \begin{pmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nn} \end{pmatrix}$$

Clearly, $AC = I_n$.

Thus, C is the right inverse of A.

This proves the claim.

Now, let us show that A has a left inverse. Note that C has a left inverse, namely, A.

By the same argument as in (\Longrightarrow) .

This implies $NS(C) = \{0\}$. By the claim, C has a right inverse.

This inverse is equal to A (proven earlier).

Thus, $AC = CA = I_n$.

Thus, C is the inverse of A.

29 Linearity of the Determinant

Theorem: Linearity of the Determinant

Suppose u, v, a_1, \dots, a_n are vectors in \mathbb{R}^n . Consider the matrices,

$$A = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_{r-1} \\ u + \lambda v \\ a_{r+1} \\ \vdots \\ a_n \end{pmatrix} \qquad B = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_{r-1} \\ u \\ a_{r+1} \\ \vdots \\ a_n \end{pmatrix} \qquad C = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_{r-1} \\ v \\ a_{r+1} \\ \vdots \\ a_n \end{pmatrix}$$

Then, $\det A = \det B + \lambda \det C$

Proof

We will argue with induction.

The result is obvious if n = 1. Then, $A = (u + \lambda v), B = u, C = v$ for some $u, v \in \mathbb{R}$. Then,

$$\det A = u + \lambda v = \det B + \lambda \det C$$

Assume the result holds for $(n-1) \times (n-1)$ matrices. Let us prove the result for A, B, C being $n \times n$ matrices.

Case 1:

Assume r = 1.

In this case,

$$\det A = \sum_{j=1}^{n} (-1)^{1+j} (u_j + \lambda v_j) \det \tilde{A}_{1j}$$

$$= \sum_{j=1}^{n} (-1)^{1+j} u_j \det \tilde{A}_{1j} + \lambda \sum_{j=1}^{n} (-1)^{1+j} v_j \det \tilde{A}_{1j}$$

Where $u=(u_1,u_2,\cdots u_n)$ $v=(v_1,v_2,\cdots,v_n)$. Now, since $r=1,\ \tilde{A_{1j}}=\tilde{B_{1j}}=\tilde{C_{1j}}$. Therefore,

$$\det A = \sum_{j=1}^{n} (-1)^{1+j} u_j \det \tilde{B}_{1j} + \lambda \sum_{j=1}^{n} (-1)^{1+j} v_j \det \tilde{C}_{1j}$$

$$= \det B + \lambda \det C$$

Case 2:

Assume r > 1.

In this case, the first rows of A, B and C are the same. In fact, they are a_1 . Now,

$$\det A = \sum_{j=1}^{n} (-1)^{1+j} A_{1j} \det \tilde{A}_{1j}$$

The matrix \tilde{A}_{ij} is $(n-1) \times (n-1)$. By the induction hypothesis,

$$\det \tilde{A}_{1j} = \det \tilde{B}_{1j} + \lambda \det \tilde{C}_{1j}$$

Therefore,

$$\det A = \sum_{j=1}^{n} (-1)^{j+1} A_{1j} \det \left(\tilde{B}_{1j} + \tilde{C}_{1j} \right)$$

$$= \sum_{j=1}^{n} (-1)^{j+1} A_{1j} \det \tilde{B}_{1j} + \lambda \sum_{j=1}^{n} (-1)^{j+1} A_{1j} \det \tilde{C}_{1j}$$

$$= \sum_{j=1}^{n} (-1)^{j+1} B_{1j} \det \tilde{B}_{1j} + \lambda \sum_{j=1}^{n} (-1)^{j+1} C_{1j} \det \tilde{C}_{1j}$$

$$= \det B + \lambda \det C$$

30 Invertibility and the Determinant

Theorem: Invertibility and the Determinant

A matrix A is invertible if and only if $\det A \neq 0$

Proof

Suppose A is some square matrix. (\Longrightarrow) Since $AA^{-1} = I_n$, taking the determinant of this,

$$\det A \det A^{-1} = 1$$

This clearly shows $\det A \neq 0$.

 (\longleftarrow)

Cosider the matrix

$$G = \frac{1}{\det A} \left(\left(C_{ij} \right)_{i,j=1}^{n} \right)^{T}$$

Where $C_{ij} = (-1)^{i+j} \det \tilde{A}_{ij}$.

We claim that

$$GA = AG = I_n$$

Indeed, given $k = 1, \dots, n$, we find,

$$(AG)_{KK} = \sum_{i=1}^{n} A_{ki} G_{ki}$$

$$= \sum_{i=1}^{n} A_{ki} (-1)^{i+k} \det \tilde{A}_{ki}$$

$$= \frac{1}{\det A} \sum_{i=1}^{n} A_{ki} (-1)^{i+k} \det \tilde{A}_{ki}$$

$$= \frac{1}{\det A} \det A = 1$$

Thus, AG has a diagonal of 1s. If $K \neq L$ then,

$$(AG)_{KL} = \sum_{i=1}^{n} A_{Ki}G_{iL}$$

$$= \frac{1}{\det A} \sum_{i=1}^{n} A_{Ki}(-1)^{i+L} \det \tilde{A}_{Li}$$

The sum is the determinant of the matrix

$$\begin{pmatrix} A_{11} & \cdots & A_{1N} \\ \vdots & & \vdots \\ A_{K1} & \cdots & A_{KN} \\ \vdots & \ddots & \vdots \\ A_{K1} & \cdots & A_{KN} \\ \vdots & \ddots & \vdots \\ A_{N1} & \cdots & A_{NN} \end{pmatrix}$$

However, this matrix has two identical rows so its determinant is equal to 0. This means that AG has zeroes off the diagonal.

$$AG = GA = I_n$$

Thus, A is invertible.