Importing Pandas, Matplotlib, Numpy Libraries

Dataset is loaded by linking via Google Drive and check for Missing Values

1. Upload the Dataset to Google Drive 2. Mount the Drive and Read Dataset using Pandas

In [37]: import pandas as pd $import\ matplotlib$ import numpy as np

import matplotlib.pyplot as plt

In []: from google.colab import drive drive.mount('/content/drive')

Mounted at /content/drive

In []: df =pd.read_csv("drive/My Drive/IBM_Project/Dataset/Electricity.csv") missing_values = df.isnull() ${\tt missing_values}$

<ipython-input-3-4383926d33ab>:1: DtypeWarning: Columns (9,10,11,14,15,16,17) have mixed types. Specify dtype option on import or set low_memory=False.
df =pd.read_csv("drive/My Drive/IBM_Project/Dataset/Electricity.csv")

Out [3]

]:		Date Time	Holiday	HolidayFlag	DayOWeek	WeekOfYear	Day	Month	Year	Period01Day	ForecastWindProduction	SystemLoadEA	SMPEA	0RKTemperature	0RKWindspeed	CO2Int
	0	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	1	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	2	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	3	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	4	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	***			***		***				***		***		***		
	38009	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	38010	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	38011	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	38012	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	38013	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False

38014 rows × 18 columns

In []: for column in df.columns:

if df[column].dtype == 'object' and df[column].str.contains('\?').any(): print(f"Column '{column}' contains '?'")

Column 'ForecastWindProduction' contains '?'
Column 'SystemLoadEA' contains '?'
Column 'SMPEA' contains '?'
Column 'ORKTemperature' contains '?'
Column 'ORKWindspeed' contains '?'
Column 'CO2Intensity' contains '?'
Column 'ActualWindProduction' contains '?'
Column 'SystemLoadEP2' contains '?'
Column 'SMPEP2' contains '?'

Replace the Missing Values using NaN values by Pandas library

In []: df.replace('?', np.nan, inplace=True) df

Out [5]:		Date Time	Holiday	HolidayFlag	DayONWeek	WeekOfYear	Day	Month	Year	Period01Day	ForecastWindProduction	SystemLoadEA	SMPEA	ORKTemperature	ORKWindspeed	C02I.
	0	<i>01/11/2011</i> <i>00:00</i>	None	0	1	44	I	11	2011	0	315.31	3388.77	49.26	6.00	9.30	600.7
	1	01/11/2011 00:30	None	0	1	44	1	11	2011	1	321.80	3196.66	49.26	6.00	11.10	605.4
	2	01/11/2011 01:00	None	0	1	44	1	11	2011	2	328.57	3060.71	49.10	5.00	11.10	589.9
	3	01/11/2011 01:30	None	0	1	44	1	11	2011	3	335.60	2945.56	48.04	6.00	9.30	585.9
	4	01/11/2011 02:00	None	0	1	44	1	11	2011	4	342.90	2849.34	<i>33.7</i> 5	6.00	11.10	571.5.
										***	***			***		
	38009	31/12/2013 21:30	New Year's	1	1	1	31	12	2013	43	1179.14	393222	34.51	6.00	22.20	285.3

	Date Time	Holiday	HolidayFlag	DayONVeek	WeekOfYear	Day	Month	Year	Period01Day	ForecastWindProduction	SystemLoadEA	SMPEA	0RKTemperature	0RKWindspeed	C02I.
		Eve													
38010	<i>31/12/2013 22</i> :00	New Year's Eve	1	1	1	31	12	2013	44	1152.01	3821.44	33.83	5.00	24.10	278.3
38011	31/12/2013 22:30	New Year's Eve	1	1	1	31	12	2013	45	1123.67	3724.21	31.75	4.00	20.40	<i>280</i> .9
38012	<i>31/12/2013</i> <i>23</i> :00	New Year's Eve	1	1	1	31	12	2013	46	1094.24	3638.16	33.83	5.00	14.80	3024
38013	31/12/2013 23:30	New Year's Eve	1	1	1	31	12	2013	47	1064.0	3624.25	33.83	5.00	16.70	308.0

38014 rows × 18 columns

Convert the Datatype of the columns in the Dataset as per their Requirements

```
In [ ]:
        df["DateTime"] = df['DateTime'].astype('datetime64')
        df["ForecastWindProduction"] = df['ForecastWindProduction'].astype('float64')
        df["SystemLoadEA"] = df['SystemLoadEA'].astype('float64')
        df["SMPEA"] = df['SMPEA'].astype('float64')
        df["ORKTemperature"] = df['ORKTemperature'].astype('float64')
        df["ORKWindspeed"] = df['ORKWindspeed'].astype('float64')
        df["CO2Intensity"] = df['CO2Intensity'].astype('float64')
        df["ActualWindProduction"] = df['ActualWindProduction'].astype('float64')
        df["SystemLoadEP2"] = df['SystemLoadEP2'].astype('float64')
        df["SMPEP2"] = df['SMPEP2'].astype('float64')
        df.dtypes
Out [6]: DateTime
                            datetime64[ns]
                                   object
int64
       HolidayFlag
```

```
DayOfWeek
                                      int64
WeekOfYear
                                      int64
Day
Month
                                      int64
                                      int64
                                      int64
PeriodOfDay
                                      int64
ForecastWindProduction
                                    float64
SystemLoadEA
                                    float64
SMPEA
                                    float64
ORKTemperature
                                    float64
ORKWindspeed
CO2Intensity
                                    float64
ActualWindProduction
                                    float64
SystemLoadEP2
SMPEP2
                                    float64
                                    float64
dtype: object
```

In []: print ("\nMissing values : ", df.isnull().any())

```
Missing values : DateTime
                                                     False
Holiday
HolidayFlag
                              False
                               False
DayOfWeek
                               False
WeekOfYear
                              False
False
Day
Month
                               False
Year
                               False
PeriodOfDay
ForecastWindProduction
                               False
                                True
{\tt SystemLoadEA}
                                True
                                True
ORKTemperature
                                True
ORKWindspeed
                                True
C02Intensity
                                True
ActualWindProduction
                                True
SystemLoadEP2
SMPEP2
                                True
                                True
dtype: bool
```

Handle Missing Values using Itill method to replace NaN Values

```
In []: df['ForecastWindProduction']=df['ForecastWindProduction'].fillna(method='ffill')
    df['SystemLoadEA']=df['SystemLoadEA'].fillna(method='ffill')
    df['SMPEA']=df['SMPEA'].fillna(method='ffill')
    df['ORKTemperature']=df['ORKTemperature'].fillna(method='ffill')
    df['ORKWindspeed']=df['ORKWindspeed'].fillna(method='ffill')
    df['CO2Intensity']=df['CO2Intensity'].fillna(method='ffill')
    df['ActualWindProduction']=df['ActualWindProduction'].fillna(method='ffill')
    df['SystemLoadEP2']=df['SystemLoadEP2'].fillna(method='ffill')
```

```
In [ ]: print ("\nMissing values : ", df.isnull().any())
        Missing values : DateTime
                                                      False
                                   False
        Holiday
        HolidayFlag
DayOfWeek
WeekOfYear
                                   False
                                   False
        Day
Month
                                   False
                                   False
        Year
                                   False
        PeriodOfDay
ForecastWindProduction
                                   False
                                   False
        SystemLoadEA
SMPEA
                                   False
                                   False
        ORKTemperature
ORKWindspeed
                                   False
                                   False
        CO2Intensity
        ActualWindProduction
                                   False
        SystemLoadEP2
SMPEP2
                                   False
                                   False
        dtype: bool
       Import Plotly Library and Plot the Target Column
In [ ]: import plotly.express as px
In [ ]: fig = px.line(df, x='DateTime', y='SMPEP2', title='Electricity Price')
         fig.update_xaxes(
              rangeslider_visible=True,
              rangeselector=dict(
                   buttons=list([
                        dict(step="all")
                   ])
              )
         fig.show()
        Set Date Time column as Index and plot the Subplots
In [ ]: el_df=df.set_index('DateTime')
In [ ]: el_df.plot(subplots=True)
```

<Axes: xlabel='Datelime'>, <Axes: xlabel='Datelime'>,
<Axes: xlabel='Datelime'>, <Axes: xlabel='Datelime'>], dtype=object)

Resample the Dataset and Plot the New SubPlots

In []: el_df.resample('M').mean()

<ipython-input-14-421011436e0d>:1: FutureWarning:

The default value of numeric_only in DataFrameGroupBy.mean is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.

Out [14]:

: 2	ate Time	HolidayFlag	DayOfWeek	Week0fYear	Day	Month	Year	Period01Day	ForecastWindProduction	SystemLoadEA	SMPEA	0RKTemperature	ORKWindspeed	CO2Int
	011-01-	0.000000	2.000000	46.000000	1.000000	11.500000	2011.0	23.500000	567.916771	4433,788125	61.189167	6.520833	17.005208	530.58
	31	0.000000	2.000000	70.000000	1.000000	11.300000	2011.0	23.300000	307.320772	7755.786125	01.103107	0.320833	17.003208	330.36
	2011- 02-28	0.000000	3.000000	46.000000	2.000000	11.500000	2011.0	23.500000	1054.793229	4456.451979	<i>57.025104</i>	9.427083	32.725000	462.59.
	2011- 03-31	0.000000	4.000000	46.000000	3.000000	11.500000	2011.0	23.500000	723.956667	4259.082917	53.261458	9.895833	21.303125	460.77
	2011- 04-30	0.000000	5.000000	46.000000	4.000000	11.500000	2011.0	23.500000	474.091979	4156.697708	52.314063	6.885417	13.996875	529.718
	2011- 05-31	0.000000	2.500000	46.500000	5.000000	11.500000	2011.0	23.500000	621.892292	4302.408125	<i>57.051979</i>	4.916667	15.882292	515.88.
	2011- 06-30	0.000000	3.500000	46.500000	6.000000	11.500000	2011.0	23.500000	613.782917	4283.031042	53.654792	6.229167	12.566667	497.78
	2011- 07-31	0.000000	1.000000	47.000000	7.000000	11.500000	2011.0	23.500000	608.573958	4540.860104	60.758438	6.875000	17.119792	463.94
	2011- 08-31	0.000000	2.000000	47.000000	8.000000	11.500000	2011.0	23.500000	817.929271	4652.903854	57.753750	8.718750	26.794792	431.22.
	2011- 09-30	0.000000	3.000000	47.000000	9.000000	11.500000	2011.0	23.500000	691.819792	4587.447917	62.579792	6.927083	17.117708	476.58
20	011-10- 31	0.000000	4.000000	47.000000	10.000000	11.500000	2011.0	23.500000	698.289688	4367.038229	56.049062	7.718750	19.370833	491.56
2	011-11- 30	0.000000	3.050000	46.700000	20.450000	11 050000	2011.0	23.500000	850.949271	4263.230042	59.390302	9.831250	24.63.3854	451.29
20	011-12- 31	0.190476	2.952381	50.666667	21.047619	11 952381	2011.0	23.500000	929.351746	4433.362411	57.791230	6.905754	23.289385	429.59
	2012- 01-31	0.000000	3.258065	13.161290	13.870968	3.129032	2012.0	23.500000	622.410491	4239.651028	58.881573	8.049059	19.16.30.38	488.01.
	2012- 02-29	0.034483	2.724138	14.689655	13.137931	3.862069	2012.0	23.500000	579.290014	4193.543807	60.356042	8.714799	19.009267	515.134
	2012- 03-31	0.032301	2.866756	16.909825	14.631225	4.356662	2012.0	23.528264	448.149764	4053.695128	60.550249	8.679677	17.698250	517.132
	2012- 04-30	0.033333	3.133333	19.700000	14.500000	5.000000	2012.0	23.500000	555.787521	3923.846694	63.923.271	7.341667	21.949583	520.84
	2012- 05-31	0.000000	2.870968	22.354839	15.419355	5.580645	2012.0	23.500000	313.707782	3889.033226	62.993333	10.315860	17.036761	<i>524.22</i> .
	2012- 06-30	0.066667	2.966667	25.066667	15.300000	6.200000	2012.0	23.500000	386.359576	3838.298840	58.928333	11.109722	17.109653	528.99
	2012- 07-31	0.064516	3.096774	27.774194	16.193548	6.806452	2012.0	23.500000	387.225820	3735.246472	60.961633	12.519489	17.986290	542.28.
	2012- 08-31	0.032258	3.064516	30.548387	16.580645	7.419355	2012.0	23.500000	508.129772	3775.707446	62.362406	12.930780	18.959409	461.66.
	2012- 09-30	0.033333	3.133333	33.100000	16.500000	8.000000	2012.0	23.500000	488.393299	3869.488743	64.967847	10.982639	17.460833	483.24
	2012- 10-31	0.032258	2.838710	36.032258	17.354839	8.645161	2012.0	23.500000	358.515094	4046.332890	64.296216	9.354167	16.447043	528.25·

	HolidayFlag	Day01Week	WeekOfYear	Day	Month	Year	Period01Day	ForecastWindProduction	SystemLoadEA	SMPEA	0RKTemperature	0RKWindspeed	CO2Int
Date Time													
2012-11- 30	0.000000	2.966667	38.466667	17.300000	9.200000	2012.0	23.500000	483.443924	4227.898431	64.853924	7.747222	18.307153	522.37
2012- 12-31	0.129032	3.064516	39.774194	18.1290.32	9.870968	2012.0	23.500000	636.899046	4198.231176	64.269603	8.289651	19.745699	474.50
2013- 01-31	0.064516	2.903226	11.774194	13.870968	3.129032	2013.0	23.500000	657.181277	43.32.598804	63.152151	6.613575	19.139852	459.27.
2013- 02-28	0.000000	2.892857	15.107143	12.571429	3.928571	2013.0	23.500000	594.745432	4223.081563	64.182232	7.135417	19.515402	464.62
2013- 03-31	0.161290	3.258065	17.000000	14.645161	4.354839	2013.0	23.500000	640.569395	4165.431680	76.235067	6.194892	20.978427	478.74.
2013- 04-30	0.000000	2.800000	19.900000	14.500000	5.000000	2013.0	23.500000	672.551028	3982.307542	65.969576	9.164583	21.460903	<i>455.19</i> (
2013- 05-31	0.032258	2.806452	22.516129	15.419355	5.580645	2013.0	23.500000	531.812681	3818.493199	65.162923	9.782930	21.887500	408.54
2013- 06-30	0.033333	3.333333	25.166667	15.300000	6.200000	2013.0	23.500000	438.145396	3726.758576	58.789444	12.061111	18.835208	465.72
2013- 07-31	0.000000	3.032258	27.935484	16.193548	6.806452	2013.0	23.500000	330.536169	3746.369745	60.184698	14.692204	16.550403	505.90
2013- 08-31	0.000000	3.000000	30.709677	16.580645	7.419355	2013.0	23.500000	417.096781	3771.842628	61.584362	13.627016	17.690726	467.59.
2013- 09-30	0.000000	3.033333	33.266667	16.500000	8.000000	2013.0	23.500000	488.688042	3853.882000	63.664826	12.334028	18.619375	464.82.
2013- 10-31	0.032258	3.000000	36.161290	17.354839	8.645161	2013.0	23.500000	615.541.324	3929.673038	61.264684	10.837366	19.771505	424.23
2013- 11-30	0.000000	2.866667	38.633333	17.300000	9.200000	2013.0	23.500000	513.089451	4204.551132	65.365604	7.708333	17.207292	442.72
2013- 12-31	0.129032	3.000000	38.258065	18.129032	9.870968	2013.0	23.500000	839.975887	4064.858831	61.603918	7.449597	22.673925	409.93

In []: | el_df.resample('M').mean().plot(subplots=True)

<ipython-input-15-052b9850bc35>:1: FutureWarning:

The default value of numeric_only in DataFrameGroupBy.mean is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.

In []: final_df=el_df.resample('M').mean() final_df

<ipython-input-16-262a0f12b9cd>:1: FutureWarning:

The default value of numeric_only in DataFrameGroupBy.mean is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.

: DateTime	HolidayFlag	DayOlWeek	Week0fYear	Day	Month	Year	Period01Day	ForecastWindProduction	SystemLoadEA	SMPEA	ORKTemperature	0RKWindspeed	CO2Int
2011-01- 31	0.000000	2.000000	46.000000	1.000000	11.500000	2011.0	23.500000	567.916771	4433.788125	61.189167	6.520833	17.005208	530.58
2011- 02-28	0.000000	3.000000	46.000000	2.000000	11.500000	2011.0	23.500000	1054.793229	4456.451979	57.025104	9.427083	32.725000	462.59.
2011- 03-31	0.000000	4.000000	46.000000	3.000000	11.500000	2011.0	23.500000	723.956667	4259.082917	53.261458	9.895833	21.303125	460.77
2011- 04-30	0.000000	5.000000	46.000000	4.000000	11.500000	2011.0	23.500000	474.091979	4156.697708	52.314063	6.885417	13.996875	529.718
2011- 05-31	0.000000	2.500000	46.500000	5.000000	11.500000	2011.0	23.500000	621.892292	4302.408125	57.051979	4.916667	15.882292	515.88.
2011- 06-30	0.000000	3.500000	46.500000	6.000000	11.500000	2011.0	23.500000	613.782917	4283.03.1042	53.654792	6.229167	12.566667	497.78
2011- 07-31	0.000000	1.000000	47.000000	7.000000	11.500000	2011.0	23.500000	608.573958	4540.860104	60.758438	6.875000	17.119792	463.94
2011- 08-31	0.000000	2.000000	47.000000	8.000000	11.500000	2011.0	23.500000	817.929271	4652.903854	57.753750	8.718750	26.794792	431.22
2011- 09-30	0.000000	3.000000	47.000000	9.000000	11.500000	2011.0	23.500000	691.819792	4587.447917	62.579792	6.927083	17.117708	476.58
2011-10- 31	0.000000	4.000000	47.000000	10.000000	11.500000	2011.0	23.500000	698.289688	4367.038229	56.049062	7.718750	19.370833	491.56
<i>2011-11-</i> <i>30</i>	0.000000	3.050000	46.700000	20.450000	11.050000	2011.0	23.500000	850.949271	4263.230042	59.390302	9.831250	24.633854	451.29
2011-12- 31	0.190476	2.952381	50.666667	21.047619	11.952381	2011.0	23.500000	929.351746	4433.362411	57.791230	6.905754	23.289385	429.59
2012- 01-31	0.000000	3.258065	13.161290	13.870968	3.129032	2012.0	23.500000	622.410491	4239.651028	58.881573	8.049059	19.163038	488.01.
2012- 02-29	0.034483	2.724138	14.689655	13.137931	3.862069	2012.0	23.500000	579.290014	4193.543807	60.356042	8.714799	19.009267	515.134
2012- 03-31	0.032301	2.866756	16.909825	14.631225	4.356662	2012.0	23.528264	448.149764	4053.695128	60.550249	8.679677	17.698250	517.132
2012- 04-30	0.033333	3.133333	19.700000	14.500000	5.000000	2012.0	23.500000	555.787521	3923.846694	63.923271	7.341667	21.949583	520.84
2012- 05-31	0.000000	2.870968	22.354839	15.419355	5.580645	2012.0	23.500000	313.707782	3889.033226	62.993333	10.315860	17.036761	<i>524.22</i> .
2012- 06-30	0.066667	2.966667	25.066667	15.300000	6.200000	2012.0	23.500000	386.359576	3838.298840	58.928333	11.109722	17.109653	528.99
2012- 07-31	0.064516	3.096774	27.774194	16.193548	6.806452	2012.0	23.500000	387.225820	3735.246472	60.961633	12.519489	17.986290	<i>542.28</i> .
2012- 08-31	0.032258	3.064516	30.548387	16.580645	7.419355	2012.0	23.500000	508.129772	3775.707446	62.362406	12.930780	18.959409	461.66.
2012- 09-30	0.033333	3.133333	33.100000	16.500000	8.000000	2012.0	23.500000	488.393299	3869.488743	64.967847	10.982639	17.460833	483.24
2012- 10-31	0.032258	2.838710	36.032258	17.354839	8.645161	2012.0	23.500000	358.515094	4046.332890	64.296216	9.354167	16.447043	528.25·
2012-11- 30	0.000000	2.966667	38.466667	17.300000	9.200000	2012.0	23.500000	483.443924	4227.898431	64.853924	7.747222	18.307153	522.37
2012- 12-31	0.1290.32	3.064516	39.774194	18.1290.32	9.870968	2012.0	23.500000	636.899046	4198.231176	64.269603	8.289651	19.745699	474.50
2013- 01-31	0.064516	2.903226	11.774194	13.870968	3.129032	2013.0	23.500000	657.181277	43.32.598804	63.152151	6.613575	19.139852	459.27.
2013- 02-28	0.000000	2.892857	15.107143	12.571429	3.928571	2013.0	23.500000	594.745432	4223.081563	64.182232	7.135417	19.515402	464.62.
2013- 03-31	0.161290	3.258065	17.000000	14.645161	4.354839	2013.0	23.500000	640.569395	4165.431680	76.235067	6.194892	20.978427	478.74.
2013- 04-30	0.000000	2.800000	19.900000	14.500000	5.000000	2013.0	23.500000	672.551028	3982.307542	65.969576	9.164583	21.460903	455.19
2013- 05-31 2013-	0.032258	2.806452	22.516129	15.419355	5.580645	2013.0	23.500000	531.812681	3818.493199	65.162923	9.782930	21.887500	408.54
06-30	0.033333	3.333333	25.166667	15.300000	6.200000	2013.0	23.500000	438.145396	3726.758576	58.789444	12.061111	18.835208	465.72
2013- 07-31 2013-	0.000000	3.032258	27.935484	16.193548	6.806452	2013.0	23.500000	330.536169	3746.369745	60.184698	14.692204	16.55040.3	505.90
08-31	0.000000	3.000000	30.709677	16.580645	7.419.355	2013.0	23.500000	417.096781	3771.842628	61.584362	13.627016	17.690726	467.59.
2013- 09-30	0.000000	3.033333	33.266667	16.500000	8.000000	2013.0	23.500000	488.688042	3853.882000	63.664826	12.334028	18.619375	464.82.
2013- 10-31	0.032258	3.000000	36.161290	17.354839	8.645161	2013.0	23.500000	615.541324	3929.673038	61.264684	10.837366	19.771505	424.23
2013- 11-30	0.000000	2.866667	38.633333	17.300000	9.200000	2013.0	23.500000	513.089451	4204.551132	65.365604	7.708333	17.207292	442.72
2013- 12-31	0.129032	3.000000	38.258065	18.129032	9.870968	2013.0	23.500000	839.975887	4064.858831	61.603918	7.449597	22.673925	409.93

```
Il/25hRequirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.10/dist-packages (from pmdarima) (1.3.2) Requirement already satisfied: Cython!=0.29.18,!=0.29.31,>=0.29 in /usr/local/lib/python3.10/dist-packages (from pmdarima) (1.23.5) Requirement already satisfied: numpy>=1.21.2 in /usr/local/lib/python3.10/dist-packages (from pmdarima) (1.23.5) Requirement already satisfied: pandas>=0.19 in /usr/local/lib/python3.10/dist-packages (from pmdarima) (1.5.3) Requirement already satisfied: scikit-learn>=0.22 in /usr/local/lib/python3.10/dist-packages (from pmdarima) (1.2.2) Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.10/dist-packages (from pmdarima) (1.11.3) Requirement already satisfied: statsmodels>=0.13.2 in /usr/local/lib/python3.10/dist-packages (from pmdarima) (0.14.0)
                  Requirement already satisfied: statsmodels>=0.13.2 in /usr/local/lib/python3.10/dist-packages (from pmdarima) (0.14.0)

Requirement already satisfied: urllib3 in /usr/local/lib/python3.10/dist-packages (from pmdarima) (2.0.5)

Requirement already satisfied: setuptools!=50.0.0,>=38.6.0 in /usr/local/lib/python3.10/dist-packages (from pmdarima) (67.7.2)

Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.19->pmdarima) (2.8.2)

Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.19->pmdarima) (2023.3.post1)

Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.22->pmdarima) (3.2.0)

Requirement already satisfied: packaging>=21.3 in /usr/local/lib/python3.10/dist-packages (from statsmodels>=0.13.2->pmdarima) (0.5.3)

Requirement already satisfied: packaging>=21.3 in /usr/local/lib/python3.10/dist-packages (from statsmodels>=0.13.2->pmdarima) (2.8.1)
                  Requirement already satisfied: packaging>=21.3 in /usr/local/lib/python3.10/dist-packages (from statsmodels>=0.13.2->pmdarima) (23.1) Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from patsy>=0.5.2->statsmodels>=0.13.2->pmdarima) (1.16.0)
                  Installing collected packages: pmdarima Successfully installed pmdarima-2.0.3
    In [ ]:
                  import pmdarima as pm
                   model = pm.auto_arima(final_df['SMPEP2'],
                                                                         m=12, seasonal=True,
                                                                    start_p=0, start_q=0, max_order=4, test='adf',error_action='ignore',
                                                                                suppress warnings=True,
                                                                    stepwise=True, trace=True)
                  Performing stepwise search to minimize aid
                   ARIMA(0,1,0)(1,1,1)[12]
ARIMA(0,1,0)(0,1,0)[12]
                                                                                        AIC=155.224, Time=0.20 sec
                                                                                       AIC=155.274, Time=0.03 sec
AIC=152.621, Time=0.10 sec
                    ARIMA(1.1.0)(1.1.0)[12]
                                                                                        AIC=inf, Time=0.26 sec
                    ARIMA(0,1,1)(0,1,1)[12]
                    ARIMA(1,1,0)(0,1,0)[12]
ARIMA(1,1,0)(0,1,1)[12]
                                                                                        AIC=150.834, Time=0.04 sec
AIC=152.615, Time=0.09 sec
                    ARIMA(1,1,0)(1,1,1)[12]
                                                                                       AIC=inf, Time=0.54 sec
AIC=152.235, Time=0.07 sec
                    ARIMA(2,1,0)(0,1,0)[12]
                                                                                     : AIC=inf, Time=0.45 sec
: AIC=inf, Time=0.05 sec
                    ARIMA(1,1,1)(0,1,0)[12]
                    ARIMA(0,1,1)(0,1,0)[12]
                                                                                   : AIC=inf, Time=0.29 sec
: AIC=152.812, Time=0.06 sec
                    ARTMA(2 1 1)(0 1 0)[12]
                    ARIMA(1,1,0)(0,1,0)[12] intercept
                  Best model: ARIMA(1,1,0)(0,1,0)[12]
Total fit time: 2.243 seconds
                  Train and Test the Arima Model by Splitting the Time Series dataset
    In [ ]: train=final_df[(final_df.index.get_level_values(0) >= '2011-01-31') & (final_df.index.get_level_values(0) <=</pre>
    In [ ]:
                  test=final_df[(final_df.index.get_level_values(0) > '2013-08-31')]
   In [ ]: test
Out [221:
                                  HolidayFlag DayOWeek WeekOIYear
                                                                                                           Month
                                                                                                                       Year PeriodOlDay ForecastWindProduction SystemLoadEA
                                                                                                                                                                                                           SMPEA ORKTemperature ORKWindspeed
                                                                                                                                                                                                                                                                 CO2 Inter
                                                                                              Day
                    Date Time
                       2013-
                                 0.000000 3.033333 33.266667 16.500000 8.000000 2013.0 23.5
                                                                                                                                                   488 688042
                                                                                                                                                                                  3853.882000 63.664826 12.334028
                                                                                                                                                                                                                                              18.619375
                                                                                                                                                                                                                                                                  464 8217
                      09-30
                       201.3-
                                 0.032258
                                                  3.000000
                                                                   36.161290
                                                                                     17.354839
                                                                                                    8.645161
                                                                                                                     2013.0 23.5
                                                                                                                                                  615.541.324
                                                                                                                                                                                  3929.6730.38
                                                                                                                                                                                                      61.264684 10.837366
                                                                                                                                                                                                                                              19.771505
                                                                                                                                                                                                                                                                  424.2392
                       10-31
                       201.3-
                                 0.000000
                                                  2.866667
                                                                   38.633333
                                                                                    17.300000
                                                                                                    9.200000
                                                                                                                     2013.0 23.5
                                                                                                                                                   513.089451
                                                                                                                                                                                  4204.5511.32
                                                                                                                                                                                                      65.365604 7.708.3.3.3
                                                                                                                                                                                                                                              17.207292
                                                                                                                                                                                                                                                                  442,720
                       2013-
                                                                                     18.129032
                                                                                                    9.870968
                                                                                                                                                  839.975887
                                                                                                                                                                                  4064.858831
                                                                                                                                                                                                      61.603918
                                                                                                                                                                                                                                              22.673925
                                                                                                                                                                                                                                                                  409.939
                                 0.129032
                                                  3.000000
                                                                  38.258065
                                                                                                                     2013.0 23.5
                                                                                                                                                                                                                      7.449597
                       12-31
                  Fit the Target Data into Auto ARIMA model and Predict the Future Values
    In [ ]:
                   model.fit(train['SMPEP2'])
Out [23]:
                                              ARTMA
                    ARIMA(1,1,0)(0,1,0)[12]
                  forecast=model.predict(n_periods=4, return_conf_int=True)
    In [ ]: forecast
                                             66.416461
67.124461
Out [25]: (2013-09-30
                    2013-10-31
                                            68.461771
64.248716
                    2013-11-30
                    2013-12-31
                   Treq: M, dtype: float64,
array([[54.02176249, 78.81115899],
[53.33136586, 80.91755651],
[51.82754598, 85.09599564],
                                 [45.94536605, 82.55206688]]))
```

Collecting pmdarima

```
In [ ]: forecast_df = pd.DataFrame(forecast[0],index = test.index,columns=['Prediction'])
  In [ ]: forecast_df
Out [27]:
            Date Time
          2013-09-30 66.416461
          2013-10-31 67.124461
          2013-11-30 68.461771
          2013-12-31 64.248716
         Using Matplotlib library, Plot the Predicted Target Data
  In [ ]: import matplotlib.pyplot as plt
  In [ ]: pd.concat([final_df['SMPEP2'],forecast_df],axis=1).plot()
Out [29]: <Axes: xlabel='DateTime'>
                     SMPEP2
          80
                     Prediction
          75
          70
          65
          60
          55
                                                                      Jul
             Jan
                        Jul
                                   Jan
                                                          Jan
            2011
                                  2012
                                                         2013
                                           DateTime
         Plot the Predicted Target Data for the Future Unseen Values
  In [ ]: forecast1=model.predict(n_periods=8, return_conf_int=True)
          forecast_range=pd.date_range(start='2013-09-30', periods=8,freq='M')
  In [ ]: forecast1_df = pd.DataFrame(forecast1[0],index =forecast_range,columns=['Prediction'])
          pd.concat([final_df['SMPEP2'],forecast1_df],axis=1).plot()
```

Out [36]: <Axes: >

