Niveau: Première année de PCSI

COLLE 10 = POLYNÔMES

Connaître son cours:

- 1. Montrer qu'un complexe a est une racine de $P \in \mathbb{K}[X]$ si, et seulement si, X a divise P.
- 2. Rappeler le Théorème de d'Alembert-Gauss et montrer qu'un polynôme $P \in \mathbb{C}[X]$ non constant est surjectif de \mathbb{C} dans \mathbb{C} . Est-ce vrai de \mathbb{R} dans \mathbb{R} ?
- 3. Soit $P, Q \in \mathbb{K}[X]$, rappeler la définition du produit de P et Q le polynôme noté P.Q. Montrer que $\deg(P.Q) = \deg(P) + \deg(Q)$.

Exercices:

Exercice 1. (*)

Soient a_1, \ldots, a_n des réels deux à deux distincts. Pour tout $i = 1, \ldots, n$, on pose

$$L_i(X) = \prod_{\substack{1 \le j \le n \\ j \ne i}} \frac{X - a_j}{a_i - a_j}$$

- 1. Calculer $L_i(a_j)$ pour $j = 1, \ldots, n$.
- 2. Soient b_1, \ldots, b_n des réels fixés. Montrer que $P(X) = \sum_{i=0}^n b_i L_i(X)$ est l'unique polynôme de degré inférieur ou égal à n-1 qui vérifie :

$$P(a_j) = b_j$$
 pour tout $j = 1, ..., n$.

3. Trouver le polynôme P de degré inférieur ou égal à 3 tel que P(0) = 1, P(1) = 0, P(-1) = -2 et P(2) = 4.

Exercice 2. (**)

Soit $a, b \in \mathbb{R}$, déterminer la dérivée d'ordre n de la fonction polynomiale f définie par $f(x) = (x-a)^n (x-b)^n$. En étudiant le cas a = b, trouver la valeur de $\sum_{k=0}^{n} {n \choose k}^2$.

Exercice 3. (*)

Soit P un polynôme différent de X.

Montrer que P(X) - X divise P(P(X)) - X.

Exercice 4. (**)

Trouver un polynôme de degré 5 tel que P(X) + 10 soit divisible par $(X + 2)^3$ et P(X) - 10 soit divisible par $(X - 2)^3$.

Niveau: Première année de PCSI

Exercice 5. (*)

- 1. Décomposer en éléments simples la fraction rationnelle $\frac{1}{X(X+1)(X+2)}$.
- 2. En déduire la limite de la suite (S_n) suivante : $S_n = \sum_{k=1}^n \frac{1}{k(k+1)(k+2)}$.

Exercice 6. (**)

Montrer que l'ensemble des polynômes unitaires, de degré n > 0, à coefficients entiers et à racines complexes dans \mathbb{U} est fini.