1. Закон Кулона. Напряжённость электрического поля. Принцип суперпозиции. Поток электрического поля. Теорема Гаусса.

Закон Кулона

Это — экспериментально установленный закон силового взаимодействия двух точечных заряженных тел, неподвижных относительно рассматриваемой системы отсчета, согласно которому:

$$\vec{F_k} = \frac{q_1 q_2}{r_{12}^2} \frac{\vec{r_{12}}}{r_{12}}$$

Введем понятие напряженности:

$$\vec{E}_1(\vec{r}_2) = \frac{q_1}{r_{12}^2} \frac{\vec{r}_{12}}{r_{12}}$$

тогда силу Кулона можно перезаписать в виде:

$$\vec{F}_{12} = q_2 \vec{E}_1(\vec{r}_2)$$

Напряжённость электрического поля

В общем виде напряженность имеет вид:

$$\vec{E}(\vec{r}) = \frac{q}{|\vec{r} - \vec{r_0}|^2} \frac{\vec{r} - \vec{r_0}}{|\vec{r} - \vec{r_0}|}$$

Принцип суперпозиции

Электрическое поле от системы зарядов равно сумме электрических полей от её составляющих:

$$\vec{E}(\vec{r}) = \sum_{i} \vec{E}_{i}(\vec{r}) = \sum_{i} \frac{q_{i}}{|\vec{r} - \vec{r}_{i}|^{2}} \frac{\vec{r} - \vec{r}_{i}}{|\vec{r} - \vec{r}_{i}|}$$

Поток электрического поля

Если у нас имеется некоторая конечная поверхность S, то поток через эту поверхность вычисляется как поверхностный интеграл

$$\Phi = E_n dS$$

Теорема Гаусса

 $Teopema\ \Gamma aycca:$ Поток вектора \vec{E} через любую замкнутую поверхность определяется суммарным зарядом Q, находящимся внутри этой поверхности, и равняется $4\pi Q$:

$$\oint_{S} E_n ds = 4\pi Q$$