3/13/2021 Course guide

Course guide

1. Introduction to Remote Sensing and Earth Observation Course guide

Learning Objectives

At the end of this course, the students should be able to:

- 1. Understand and apply knowledge about electromagnetic (EM) radiation processes in the atmosphere (absorption, transmission and scattering) and Earth's surface (reflection, absorption, transmission and emission) to extract land cover information.
- 2. Translate geospatial questions into image characteristics and select the most suitable sensor data to extract information on the Earth's surface.
- 3. Apply techniques for optimum visualisation of remotely sensed imagery.
- 4. Choose and apply the appropriate geometric transformations of Earth Observation images to address specific spatial questions.
- 5. Apply appropriate radiometric image correction and enhancement operations to improve image analysis.
- 6. Apply pixel-based digital image classification to extract information on the Earth's surface.
- 7. Work independently in solving a problem, by integrating knowledge on the topics previously covered in the course.

Course outline

The learning process is built around a series of topics linked to clearly described exercises. To achieve the learning objectives, the course is divided into seven (6) learning units:

- 1. Electromagnetic radiation
- 2. Sensors and image characteristics
- 3. Open-source software tutorial
- 4. Visualisation and radiometric operations
- 5. Geometric operations: Georeferencing and Geocoding
- 7. Digital image classification

Table 1 presents the link between the learning outcomes and learning units. A topic to familiarise students with open-source software is included. It aims to support the learning process, but it does not constitute a learning objective. (In principle, students can choose other software to process and analyse remotely sensed imagery).

Table 1. Learning outcomes in relation to the topics of the RS-EO course.

	Topics						
	1	2	3	4	5	6	
Learning outcome 1					-		
Understand and apply knowledge about EM radiation processes to extract	Х			Y			
land cover information							
Learning outcome 2							
Translate geospatial questions into image characteristics and select the			X				
most suitable sensor data to extract information on the Earth's surface.							
Learning outcome 3				V	1		
Apply techniques for optimum visualisation of remotely sensed imagery.				X			

3/13/2021 Course guide

	Topics						
	1	2	3	4	5	6	
Learning outcome 4							
Choose and apply the appropriate geometric transformations of Earth Observation images to address specific spatial questions					Х		
Learning outcome 5							
Apply appropriate radiometric image correction and enhancement operations to improve image analysis				х			
Learning outcome 6							
Apply pixel-based digital image classification to extract information on the Earth's surface						Х	
Learning outcome 7							
Work independently in solving a problem, by integrating knowledge on the topics previously covered in the course	Х		Х	X	X	X	Х

Students' time to complete the course (based on the proposal) is 6 hour per week for 26 weeks. It corresponds to the workload of approximately two weeks for full-time students, equivalent to 3 ECTS credits. Table 2 shows the time allocation per topic.

Table 2 Overview of the topics and the time needed for studying including the exercises and assessment

Topic	Content	Approximate time (days)		
		for full-time students		
1	EM radiation	1		
2	Sensor and image characteristics	0.5		
3	Open-source software <u>tutorial</u>	1		
4	Visualisation and radiometric operations	1.5		
5	Geometric operations: Georeferencing and Geocoding	2		
6	Digital image classification	3		
	Exam	1		
	Total	10		

Each topic includes exercises for which we will provide model answers. A final assessment is based on the closed book exam. Exam questions will be in the form of multiple-choice answers. A minimum of 5.5/10 is considered as a passing mark in the course.

Table 3. Assessment matrix of the course

Test/ assignment	Formative/ summative assessment	Learning objective(s)	Required minimum mark	Weighting in the total mark (in %)
Exercise in EM radiation	Summative	1		
Exercise in Sensors and IC	Summative	2		

3/13/2021 Course guide

Exercise in visualisation	Summative	3,5		
Exercise in georeferencing	Summative	4		
Assignment in DIC	Summative	6		
Exam	Formative	1,2,3,4,5,6	5.5	100%