Examen Session d'Automne : Analyse Réelle, 2 heures

N.B. : Il sera tenu compte de la rédaction, la justification de réponses et la clarté de l'écriture.

Exercice 1 (5 points)

On considère les fonctions données par $ch(x) = \frac{e^x + e^{-x}}{2}$ et $sh(x) = \frac{e^x - e^{-x}}{2}$.

- 1. Qu'appelle-t-on les deux fonctions ch et sh?
- 2. Montrer que $\operatorname{ch}(x) + \operatorname{sh}(x) = e^x$, $\operatorname{ch}^2(x) \operatorname{sh}^2(x) = 1$ et $\operatorname{ch}(x) \ge 1$ pour tout $x \in \mathbb{R}$.
- 3. Étudier la fonction ch; puis déduire la monotonie de la fonction ch.
- 4. Soit $f = \operatorname{ch}[]_{-\infty,0]}:] \infty;0] \to [1; +\infty[$ et $g = \operatorname{ch}[]_{[0,+\infty[}:[0,+\infty[] \to [1; +\infty[$ les restrictions de ch à $]-\infty;0]$ et à $[0; +\infty[$, respectivement.
 - (a) Montrer que f et g sont bijectives. f et g sont-elle des homeomorphismes? Justifier
 - (b) Montrer que $\operatorname{sh}(x) = -\sqrt{\operatorname{ch}(x) 1}$, $\forall x \leq 0$ et que $\operatorname{sh}(x) = \sqrt{\operatorname{ch}(x) 1}$, $\forall x \geq 0$.
 - (c) Déduire que

$$e^x = \operatorname{ch}(x) - \sqrt{\operatorname{ch}(x) - 1}, \quad \forall x \leq 0 \quad \text{et} \quad e^x = \operatorname{ch}(x) + \sqrt{\operatorname{ch}(x) - 1}, \quad \forall x \geq 0.$$

- (d) Déterminer les expressions de f^{-1} et de g^{-1} . Laquelle des deux fonctions soit appelée argch?
- 5. Résoudre l'équation $f^{-1}(x) = g^{-1}(x)$.

Exercice 2 (5 points)

Pour α un réel positif fixé, on considère l'intégrale : $I_{\alpha} = \int_{0}^{\frac{\pi}{2}} \sin^{\alpha}(x) dx$

- 1. (a) Établir une relation entre I_{α} et $I_{\alpha+2}$.
 - (b) Montrer que la fonction f définie pour $\alpha \geq 0$ par : $f(\alpha) = (\alpha + 1)I_{\alpha}I_{\alpha+2}$ est périodique et que 1 est une période.
 - (c) Calculer f(0).
- 2. On considère la fonction g définie par $g: \alpha \longmapsto g(\alpha) = I_{\alpha}$
 - (a) Montrer que la fonction g est décroissante.
 - (b) Déduire que : $p \le \alpha < p+1 \Rightarrow \frac{p+1}{p+2}f(0) < f(\alpha) < \frac{p+2}{p+1}f(0)$
 - (c) Déterminer la limite de la suite de terme général $f(\alpha+n)$ et montrer que la fonction f est constante.
 - (d) Montrer que $\lim_{\alpha \to +\infty} \frac{I_{\alpha+1}}{I_{\alpha}} = 1$, et déterminer un équivalent simple de I_{α} .

Exercice 3 (5 points)

- 1. Soit f la fonction numérique définie par $f(x)=\left\{\begin{array}{ll} \frac{3-x^2}{2}, & \text{si} \quad x<1,\\ \frac{1}{x}, & \text{si} \quad x\geq 1. \end{array}\right.$
 - (a) Montrer que $f'_d(1)$ et $f'_g(1)$ existent; et que f est dérivable sur son domaine de définition \mathcal{D}_f qu'il faut préciser.
 - (b) Montrer que f satisfait aux hypothèses du théorème des accroissements finis sur [0; 2].
 - (c) Déterminer toutes les valeurs c telles que f(2) f(0) = 2f'(c).
- 2. Soit G la fonction de $\mathbb R$ à valeurs dans $\mathbb R$ définie par

$$G(x) = \int_{x}^{2x} \frac{dt}{t^4 + t^2 + 1} = \int_{0}^{2x} \frac{dt}{t^4 + t^2 + 1} - \int_{0}^{x} \frac{dt}{t^4 + t^2 + 1}$$

- (a) Montrer que G est dérivable sur \mathbb{R} ; puis calculer G'(x) pour tout $x \in \mathbb{R}$. (Indication : si $F(y) = \int_0^y f(t)dt$, alors F'(y) = f(y)).
- (b) Déterminer un développement limité d'ordre 5 de G au voisinage de 0. Déduire l'équation de la tangente $\mathcal T$ à la courbe $\mathcal C_G$ en 0.

Exercice 4 (5 points)

On considère les suites de fonctions f_n et g_n de [0,1] dans $\mathbb R$ définies par :

$$f_n(x) = x^n$$
 et $g_n(x) = f_n(x) - x f_n(x)$

- 1. Exprimer $g_n(x)$ en fonction de x; puis étudier, pour tout réel $x \in [0, 1]$, les limites des suites numériques $f_n(x)$ et $g_n(x)$.
- 2. Montrer que la suites $(f_n)_{n\geq 0}$ converge uniformément dans tout intervalle [0,a] tel que 0 < a < 1.
- 3. Étudier la convergence uniforme des suites $(f_n)_{n\geq 0}$ et $(g_n)_{n\geq 0}$ dans l'intervalle [0,1].