DAFTAR ISI

DAFTAR ISIi	
BAB 1. PENDAHULUAN	
1.1 Latar Belakang1	
1.2 Target Luaran2	,
BAB 2. TINJAUAN PUSTAKA 2	
2.1 Nilai Keterbaharuan (State Of The Art)2	
BAB 3. TAHAP PELAKSANAAN4	
3.1 Perencanaan dan perancangan4	
3.2 Desain Alat	
3.3 Pemilihan Bahan dan Pengadaan Perlengkapan Penunjang4	
3.4 Pembuatan Alat4	
3.5 Pengujian dan Evaluasi6)
3.6 Publikasi Promosi7	,
BAB 4. BIAYA DAN JADWAL KEGIATAN7	,
4.1 Anggaran Biaya7	,
4.2 Jadwal Kegiatan8	,
DAFTAR PUSTAKA 9)
LAMPIRAN	
Lampiran 1. Biodata Ketua dan Anggota serta Dosen Pendamping	
Lampiran 2. Justifikasi Anggaran Kegiatan	
Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas	
Lampiran 4. Surat Pernyataan Ketua Pelaksana	
Lampiran 5. Gambaran Konsep Karya Inovatif yang akan Dihasilkan	

BAB 1. PENDAHULUAN

1.1 Latar Belakang

Perkembangan teknologi khususnya di bidang elektronika pada saat ini masih berkembang dengan sangat pesat dan berpengaruh dalam perakitan alat-alat yang berpresisi tinggi, sehingga pekerjaan yang biasa dilakukan oleh manusia dapat menjadi lebih praktis, hemat biaya dan tepat guna (Hayyatunufus, 2020). Kemajuan teknologi ini dalam perkembangan kehidupan manusia telah mendorong kehidupan manusia menuju otomatisasi. Otomatisasi di segala bidang mau tidak mau menyebabkan pekerjaan yang semula manual beralih ke otomatisasi. Hal ini juga berlaku pada budidaya ikan di tambak yang dapat menggunakan alat bantu sebagai pembantu kemudahan penggunaan yang bersifat rutin dan bekerja terus menerus (Nurkholis, 2020).

Meningkatnya permintaan akan ikan air tawar di pasar tradisional, membuat masyarakat berinisiatif untuk membudidayakan ikan air tawar sendiri di rumah. Faktor keberhasilan dalam membudidayakan ikan air tawar sebagai contoh ikan nila (Oreochromis niloticus) yaitu dengan memperhatikan kualitas air karena jika kondisi air kolam tidak memenuhi syarat akan berdampak menjadi penyebab utama muculnya penyakit yang sangat berbahaya pada budidaya ikan nila tersebut. Ada beberapa faktor yang menjadi dasar dalam menentukan baik atau tidaknya kualitas air untuk pertumbuhan ikan nila diantaranya suhu air yang optimum dalam pemeliharaan ikan secara intensif yakni 25–30°C, nilai pH air kolam 7–8, dan kekeruhan < 50 NTU. Pemberian pakan ikan juga harus terakomodir dengan tepat, baik dari segi pemberian banyak pakan dan penyebaran pakan yang merata sehingga diperlukan suatu teknologi untuk memonitoring sebuah kolam ikan nila secara real time yang berfungsi sebagai alat pemantau pergantian air dan pemberian pakan otomatis (Pulungan, 2020). Pada umumnya, pemberian pakan saat ini masih menggunakan cara manual yaitu secara mekanik dengan menggunakan tenaga manusia (hand feeding method). Hal ini berdampak tidak diketahuinya secara tepat seberapa banyak pakan yang diperlukan, pemberian pakan yang tidak merata, porsi pakan yang tidak diperhatikan, sehingga berdampak pada pembengkakan biaya dan jumlah produksi, terlebih dibutuhkan banyak tenaga kerja (Somantri, 2021). Pengukuran kualitas air kolam ikan yang saat ini masih menggunakan kertas lakmus dan termometer raksa pada pembudidayaan ikan air tawar juga kurang optimal.

Oleh karena itu, pada kegiatan program kreativitas mahasiswa di bidang karya inovatif ini dibuat sebuah sistem pergantian air dan pemberian pakan secara otomatis dan terukur yang dapat membantu para pembudidaya atau masyarakat umum yang masih dilakukan secara manual. Sistem pergantian air dilakukan dengan benar sesuai dengan kejernihan air yang ada di kolam tersebut serta terintegrasi dengan gelombang *Extreamly Low Frequency* (ELF) yang berfungsi untuk menekan pertumbuhan mikroorganisme pembentuk asam, penstimulus sistem pencernaan ikan nila, dan penstabil kadar oksigen (Qumairoh, 2021).

Selain itu, adanya pemberian pakan otomatis yang dilakukan dengan menyesuaikan waktu, berat, dan ukuran ikan yang ada di dalamnya. Pada teknologi ini akan menggunakan arduino nano, medan magnet ELF, sensor kekeruhan air, sensor ketinggian permukaan air, sensor pH (SEN0161), sensor suhu DSB18B20 yang berfungsi mengidentifikasi kualitas air pada kolam. Sedangkan *Real Time Clock* (RTC) DS 1307RTC berfungsi sebagai indikator waktu pemberian pakan otomatis pada ikan yang kemudian dirancang dengan menyesuaikan standar. Apabila hasil belum memenuhi standar maka indikator *buzzer* akan menyala.

Diharapkan program kreativitas mahasiswa bidang karya inovatif ini dapat meningkatkan kualitas dan kuantitas produksi ikan nila yang dibudidayakan agar dapat mendukung kemajuan teknologi di bidang pertambakan.

1.2 Target Luaran

Target luaran atas program ini ialah berupa laporan kemajuan, laporan akhir, produk inovatif skala penuh yang fungsional berupa *smartpond* yaitu kolam otomatis yang menekan pertumbuhan mikroorganisme pembentuk asam, penstimulus sistem pencernaan ikan nila dan penstabil kadar oksigen, desain dan rangkaian alat ini dengan menggunakan aplikasi *Sketch Up* dan *Eagle*, serta publikasi ilmiah sebagai sumber referensi teknologi pemberi pakan otomatis yang menyesuaikan waktu, berat, dan ukuran ikan nila dan termonitoring kualitas air kolam sehingga dapat melakukan pergantian air secara *real time* serta terintegrasikan gelombang ELF, dan potensi paten atas konsep teknologi yang dihasilkan.

BAB 2. TINJAUAN PUSTAKA

2.1 Nilai Keterbaharuan (State Of The Art)

Ikan nila merupakan ikan air tawar yang secara morfologi memiliki bentuk pipih, postur tubuh memanjang dan ramping dengan jumlah 34 sisik besar pada gurat sisi (linea lateralis) dengan mata besar yang menonjol dan tepian mata berwarna putih (Fitriani, 2018). Lingkungan perairan yang cocok dalam mebudidayakan ikan nilai harus memiliki kondisi alkalinitas rendah ataupun netral. Dengan kondisi yang seperti itu, ikan nila mampu tumbuh dan berkembang dengan baik. Nilai pH ideal untuk tambak ikan nila adalah 6,5-7,5 (Athirah, 2013). Pertumbuhan ikan nilai akan mengalami penurunan di lingkungan perairan yang memiliki nilai pH rendah. Tingkat keasaman (pH) air menjadi tolok ukur yang sangat penting sebagai salah satu indikator dalam hal untuk mengetahui kualitas air. Dengan diketahui nilai pH maka akan mudah untuk mengetahui apakah air tersebut cocok atau tidak sebagai media hidup ikan nila. Dalam hasil proses metabolisme ikan nila dihasilkan asam yang dapat menurunkan pH, tambak yang penggantian airnya tidak teratur akan menyebabkan penurunan pH. Hal ini terjadi akibat peningkatan produksi asam sebab ikan nila yang

terakumulasi secara berulang kali di dalam tambak. Hal ini tentu tidak baik karena dapat menyebabkan toksisitas amonia dan nitrit pada proses pembudidayaan ikan nila kian meningkat jadi lebih tajam.

Kandungan amonia dan nitrit di kolam budidaya juga akan mempengaruhi suhu kolam. Suhu optimal untuk pertumbuhan ikan nila di kolam budidaya adalah antara 25–30°C. Kondisi suhu yang terbilang rendah yaitu suhu kurang dari 14°C atau suhu yang terbilang terlalu tinggi yaitu suhu di atas 30°C akan menghambat pertumbuhan ikan. Ikan nila memang dapat mentolerir nilai pH air antara 5-11, akan tetapi nilai pH yang optimal untuk pertumbuhan dan perkembangan reproduksi ikan nila ini adalah pada rentang 6,5-7,5 dan kekeruhan rongga kecil pada kontaminan dapat menyelubungi padatan dan membuatnya terangkat.

Medan magnet ELF merupakan bagian dari gelombang elektromagnetik. Medan magnet dapat dihasilkan tidak hanya oleh magnet alami, tetapi juga oleh listrik. Hal ini ternyata karena muatan yang bergerak akan menghasilkan medan magnet di sekitarnya (Sari, 2018). Medan magnet ELF adalah spektrum gelombang elektromagnetik yang memiliki frekuensi kurang dari 300 Hz serta dapat diklasifikasikan sebagai *radiasi non-pengion*. WHO menyatakan bahwasannya frekuensi pada interval 0 sampai 300 Hz adalah gelombang yang sangat panjang dalam perambatannya di udara (6.000 km pada 50 Hz dan 5000 km pada 60 Hz). Medan listrik dan magnet bekerja secara independen sehingga bisa dilakukan pengukuran secara terpisah. Selain itu, medan magnet tidak dapat terhalang oleh dinding bangunan. Medan magnet ELF telah digunakan dalam berbagai penelitian, terutama di bidang pangan. Contoh penelitian terkait pemanfaatan medan magnet di bidang pangan adalah pengaruh medan magnet ELF terhadap pH susu fermentasi, pH daging ayam, pH udang vaname, pH tape singkong dan masih banyak lagi. Berdasarkan hasil tersebut, ditemukan bahwa teknologi medan magnet dapat diterapkan untuk menonaktifkan mikroorganisme pembentuk asam. Pada penelitian ini, medan magnet ELF akan digunakan untuk mengontrol pH air di kolam ikan nila, agar pH air tetap terjaga. Selain itu, kegunaan lain untuk merangsang pencernaan ikan nila, dan menstabilkan kadar oksigen di dalam air. Metode penerapan medan magnet sendiri dapat dilakukan dengan cara memaparkan gelombang medan magnet pada air tambak tempat budidaya ikan nila (Bakhtiar, 2018).

Di sisi ini, nilai kebaruan teknologi pemantauan kualitas air tambak yang terintegrasi dengan sistem feeding otomatis dan terukur dengan memanfaatkan perangkat sensor kekeruhan (*turbidity*), RTCDS1307, sensor ketinggian (ultrasonik HCSR04), sensor suhu DSB18B20, sensor pH (SEN0161) berbasis Arduino nano yang sederhana, praktis, efektif, efisien, ekonomis dan akurat (Kurniatuty, 2020). Teknologi ini memanfaatkan prinsip perambatan gelombang elektromagnetik yang diserap oleh sensor, menganalisis dan membaca panjang gelombang spektrum warna dan sinyal listrik dalam bentuk data digital melalui

chemisorption yang kemudian diarahkan pada transfer muatan dari partikel teradsorpsi kepada sensor permukaan sehingga lebih akurat.

Beberapa hasil survey lapangan berdasarkan wawancara dengan Pak Dwiki yang merupakan warga Desa Tanjungsari Kecamatan Batang Kuis Kabupaten Deli Serdang dan bekerja sebagai pegawai swasta sudah mulai menekuni usaha budidaya ikan. Pak Dwiki memiliki pekarangan yang cukup luas dan potensi air bersih, maka Pak Dwiki membangun kolam terpal di sekitar rumahnya. Namun dalam membudidayakan ikan, Pak Dwiki memiliki beberapa kendala yang sering ia hadapi. Dalam budidaya ikan, setiap pembudidaya harus disiplin dalam memberikan pakan pada waktu yang tepat dan teratur sehingga masalah ini cukup mengganggu bagi mereka yang juga bekerja di perusahaan swasta. Kemudian kualitas air harus dijaga dengan cara mengganti air di setiap kolam atau tambak jika air mulai kotor akibat menumpuknya sisa pakan dan kotoran. Karena kendala tersebut, banyak masyarakat yang masih mengurungkan niatnya untuk membudidayakan ikan dengan potensi lingkungan yang cukup mendukung.

BAB 3. TAHAP PELAKSANAAN

3.1 Perencanaan dan Perancangan

Dalam pembuatan alat ini hal pertama yang dilakukan adalah perencanaan dan perancangan alat. Alat ini dirancang dengan biaya seminimal mungkin agar dapat digunakan oleh semua masyarakat nantinya.

3.2 Desain Alat

Setelah selesai perencanaan dan perancangan alat maka dibuat diagram kerja alat. Desain alat dibuat dengan menggunakan aplikasi Google *Sketch Up* dan *Eagle*.

3.3 Pemilihan Bahan dan Pengadaan Perlengkapan Penunjang

Hal yang dilakukan setelah perencanaan dan desain alat ialah melakukan pembelian komponen-komponen yang dibutuhkan untuk membuat alat seperti arduino uno (sebagai kontrolisasi), sensor kekeruhan tipe *turbidity*, sensor suhu tipe DS18B20, sensor jarak tipe *proximity* HCSR04, sensor pH, regulator, RTC DS1307, medan magnet ELF, PSA, dan LCD dalam satu kesatuan kotak hitam yang mana telah terintegrasi oleh sistem selang, pakan ikan, dan pompa otomatis untuk mengetahui waktu penggantian air dan pemberian pakan ikan secara tepat untuk dilakukan oleh peternak ikan nila.

3.4 Pembuatan Alat

Pembuatan alat dilakukan bersama-sama oleh seluruh anggota tim sesuai dengan tugas yang telah dibagi dengan memperhatikan protokol kesehatan Covid-19. Pembuatan alat akan dikerjakan di Laboratorium Fisika Gelombang FMIPA

USU dan menggunakan program Arduino. Berikut ini Gambar 3.1 konstruksi teknologi:

Gambar 3.1. Rangkaian Sistem Keseluruhan dan Pemasangan Alat

Sistem kerja keseluruhan dari teknologi ini yaitu kotak hitam yang telah di dipasang komponen elektronik di letakan di dinding kolam yang telah dilengkapi mistar besi, wadah pakan, selang dan sumber arus listrik (PSA) sehingga peternak dapat memonitoring kualitas air kolam dan pemberian pakan secara otomatis dan terukur sehingga peternak tidak perlu lagi melakukan secara manual dalam mengganti air kolam dan memberi pakan ikan pada proses budidaya ikan nila. Gambar 3.1 merupakan sketsa perancangan sistem pergantian dan pemberi pakan otomatis yang akan dirangkai pada kolam ikan nila nantinya.

Pada kotak hitam terdapat susunan elektronika yang berisi arduino nano sebagai mikrokontroler. Pada susunan mekanika alat ini terdapat keran yang berperan sebagai tempat keluarnya air. Kemudian terdapat solenoid valve yang berperan sebagai klep. Pergerakan klep dihasilkan oleh daya listrik yang berasal dari susunan driver relay. Valve solenoid akan aktif apabila susunan driver relay menerima logika "HIGH" sedangkan jika menerima logika "LOW" maka valve solenoid akan nonaktif. Pengujian sensor dan aktivasi penggantian air kolam pada tahapan ini dilakukan 3 kali pengujian dengan tingkat kejernihan air yang berbeda. Berikut uji sensor dan aktivasi pergantian air yang ditampilkan pada Gambar 3.2. Pada Gambar 3.2 dijelaskan bahwa sistem mendapat tegangan dari adaptor sehingga sistem dapat terus bekerja. Kemudian selanjutnya pada layar LCD akan muncul "SMART-POND SYSTEM" dan setelah 3 detik nilai kejernihan air kolam serta nilai pH air kolam akan muncul dalam waktu yang bersamaan. Pendeteksian nilai kejernihan air kolam dan nilai pH air kolam akan berulang setiap 3 detik secara terus-menerus. Berdasarkan pendeteksian ini sistem akan membuat keputusan. Jika nilai kejernihan berada di bawah atau sama dengan NTU. sistem akan memerintahkan yang ditentukan menginstruksikan relay untuk menggerakkan klep sehingga air mengalir ke kolam melalui pipa. Pada saat yang bersamaan tampilan LCD adalah "PROSES GANTI

AIR OTOMATIS". Pada saat kejernihan menunjukkan < 50 NTU, maka *relay* akan menggerakkan solenoid *valve* ke posisi semula. Pada RTC telah diprogram untuk pembacaan dua waktu yaitu saat pukul 08.00 pagi dan pada saat pukul 16.00 sore. Pada jam tersebut servo yang merupakan katup dari tempat penampungan pakan ikan akan terbuka untuk menumpahkan pakan ikan dan terus berulang ketika sudah berkenaan dengan jam yang sudah diprogram pada RTC tersebut.

Gambar 3.2. (a) ilustrasi penempatan alat (b) ilustrasi tampilan tampak depan alat

3.5 Pengujian dan Evaluasi

Teknik pengujian dilakukan dengan menggunakan metode eksperimen berdasarkan Rancangan Acak Kelompok (RAK). RAK ini terdiri dari 3 perlakuan dan 10 perulangan. Perlakuan yang dilakukan ialah pengujian berbentuk hasil pengaruh sistem aerasi yang berbeda antara lain kontrol, pakan otomatis, dan aplikasi ELF terhadap laju pertumbuhan panjang dan penambahan bobot ikan guna kelangsungan produksi benih ikan nila. Sebagai tahapan awal penelitian, prosedur pertama yang perlu dilakukan adalah menyiapkan wadah berupa bak yang mampu menampung air sebanyak 200 liter dan pastikan memiliki sistem aerasi. Setiap wadah, akan ditebarkan sebanyak 200 ekor ikan nila. Waktu yang dibutuhkan untuk proses pemeliharaan ikan nilai ini adalah selama 40 hari. Selama proses pemeliharaan, ikan nila diberi pakan dalam interval 3 waktu, yaitu di pagi hari pada pukul 07.00, di siang hari pada pukul 13.00, dan yang terakhir di sore hari pada pukul 17.00. Pakan yang diberikan ke ikan nila tersebut merupakan pakan buatan yang berukuran 1 mm. Jumlah pakan yang akan diberikan adalah 3% dari total berat biomassa ikan nila. Jumlah pakan juga akan disesuaikan setiap 10 hari sekali berdasarkan bobot dan jumlah ikan nila di kolam. Parameter yang digunakan pada pengujian ini adalah laju pertumbuhan bobot harian ikan nila. Pengukuran laju bobot harian ikan nila dilaksanakan pada pemeliharaan per 10 hari dimulai dari hari ke-0 sampai hari ke-40 dengan mengukur bobot beberapa sampel ikan nila.

Produksi ikan nila diamati selama 40 hari dengan mencatat jumlah ikan yang mati. Ikan yang sudah mati akan dikeluarkan dari wadah. Pengamatan terhadap parameter kualitas air dengan memperhatikan kandungan oksigen pada air kolam, pH, suhu, dan amonia. Data parameter kualitas air ini akan dianalisis secara deskriptif. Nilai laju pertumbuhan dan kelangsungan hidup ikan nila dianalisis dengan menggunakan analisis keragaman uji F untuk melihat pengaruh masing-masing perlakuan, lalu melakukan pengujian jarak berganda Duncan berdasarkan tingkat kepercayaan 95% untuk mengetahui perbedaan antar perlakuan.

Setelah pembuatan alat selesai maka dilakukan uji coba untuk melihat tingkat keberhasilan dari perencanaan sebuah program yang telah dibuat yaitu dengan mencelupkan sensor ke media kolam budidaya ikan nila selama lima belas menit untuk sekali pengujian. Pengujian dalam penelitian ini dilakukan dalam 4 bagian pengujian yaitu pengujian kualitas air, pengujian waktu pemberian pakan, pengujian linearitas, dan pengujian pembacaan alat uji ikan nila. Variabel penelitian untuk performa teknologi monitoring kualitas air meliputi nilai pH, kekeruhan, tinggi kolam, suhu, serta waktu pemberian pakan. Sedangkan, analisis data dilakukan dengan ANAVA untuk melihat performansi sensor kualitas air yang ditembakkan ke medium kolam untuk mendeteksi pH, suhu, kekeruhan dan ketinggian kolam. Pengamatan dan perhitungan dari hasil uji yang didapat meliputi analisa waktu pemberian pakan dan persen pertumbuhan ikan nila yang dianalisis keefektivitasnya ke dalam rumus empiris, lalu data akan ditampilkan dengan bentuk tabulasi dan grafik.

3.6 Publikasi dan Promosi

Setelah alat selesai secara keseluruhan dan telah sempurna, maka langkah yang dilakukan yaitu memperkenalkan *smartpond*: inovasi teknologi kolam pintar yang terintegrasi gelombang ELF sebagai solusi peningkatan produksi budidaya ikan nila kepada masyarakat luas.

BAB 4. BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

Anggaran biaya yang diperlukan dalam kegiatan ini ditampilkan pada Tabel 4.1.

No	Jenis Pengeluaran	Sumber Dana	Besaran Dana (Rp)
	Belmawa	3.600.000	
1	Bahan habis pakai	Perguruan Tinggi	1.000.000
		Instansi Lain (jika ada)	-
2	Sewa dan jasa	Belmawa	900.000

Tabel 4.1 Rekapitulasi Rencana Anggaran Biaya

		Perguruan Tinggi	-
		Instansi Lain (jika ada)	-
		Belmawa	1.300.000
3	Transportasi lokal	Perguruan Tinggi	-
		Instansi Lain (jika ada)	-
		Belmawa	1.200.000
4	Lain-lain	Perguruan Tinggi	-
		Instansi Lain (jika ada)	-
	Jumlah	8.000.000	
		Belmawa	7.000.000
	Rekap Sumber Dana	Perguruan Tinggi	1.000.000
	Kekap Sumber Dana	Instansi Lain (jika ada)	-
		Jumlah	8.000.000

4.2 Jadwal Kegiatan

Rencana kegiatan yang akan dilaksanakan dapat dilihat pada Tabel 4.2.

Tabel 4.2 Jadwal Kegiatan

No	Jenis Kegiatan	Bulan			Dononggungiowoh	
110	Jenis Kegiatan	1	2	3	4	- Penanggungjawab
1	Studi Literatur					Semua Anggota
2	Pencarian					Semua Anggota
	Perlengkapan Alat,					
	dan Komponen					
	Elektronik					
3	Konstruksi Alat					Oki Gunawan Harahap,
	Smartpond					Disty Ratna Marisya
	Berbasis					
	Gelombang ELF					
4	Pemrograman					Oki Gunawan Harahap,
	Smartpond dan					Arnita Sari Siagian
	Pengujian Sensor					
5	Pengujian dan					Disty Ratna Marisya, Nur
	Performansi Alat					Azizah, Arnita Sari
	Smartpond					
	Terhadap					
	Pertumbuhan Ikan					
	Nila					
6	Analisis data					Disty Ratna Marisya, Arnita
	perbandingan					sari

	Smartpond dan			
	kolam			
	Konvensional			
7	Loporan Monev			Semua Anggota

DAFTAR PUSTAKA

- Athirah, A., Mustafa, A., Rimmer, M., A. 2013. Perubahan kualitas air pada budidaya ikan nila (*Oreochromis Niloticus*) di tambak Kabupaten Pangkep Provinsi Sulawesi Selatan. *Prosiding Forum Inovasi Teknologi Akuakultur*. 2013, The University of Sydney, Australia. 1065.
- Bakhtiar, M. I. 2018. Pengaruh Cahaya lampu dan gelombang bunyi terhadap respon ikan air tawar. *Skripsi*. Fakultas Sains dan Teknologi Universitas Islam Negeri Aluddin Makassar.
- Fitriani. 2018. Uji aktivitas antibakteri asap cair dan mikrokapsul asap cair tandan kosong kelapa sawit dan aplikasinya sebagai pengawet alami pada ikan nila. *Skripsi*. Fakultas Sains dan Teknologi UIN Alauddin, Makassar.
- Hayyatunufus. 2020. Sistem cerdas pemberi pakan ikan secara otomatis. JTST.01(01):11-16.
- Kurniatuty, S. A. 2020. Rancang bangun sistem kontrol pakan ikan dan kekeruhan air yang dilengkapi dengan monitoring kualitas air berbasis *Internet of Things* (IoT). *Skripsi*. Institut Teknologi Nasional Malang.
- Nurkholis. A. 2020. Optimalisasi model prediksi kesesuaian lahan kelapa sawit menggunakan algoritme pohon keputusan spasial. *Jurnal Teknologi dan Sistem Komputer*. 8(3):192-200.
- Pulungan, A. B., Putra, A. M., Hamdani, Hastuti. 2020. Sistem kendali kekeruhan dan pH air kolam budidaya ikan nila. *ELKHA*.12(2):99-104.
- Sari, L. D., Trapsilo, P., dan Sudarti. 2018. Pengaruh paparan medan magnet ELF (*Extremely Low Frequency*) 500 μT dan 700 μT terhadap derajat keasaman (pH) daging ayam. *Seminar Nasional Pendidikan Fisika 2018*. 11 Maret 2018, Jakarta. 195-199.
- Somantri. B, 2021. Pembuatan dan pengujian alat pemberi pakan ikan dengan sistem kendali jarak jauh menggunakan *bardi smart plug. Diseminasi FTI-3*.
- Qumairoh, U., Sudarti, Prihandono, T. 2021. pengaruh paparan medan magnet ELF (*Extremely Low Frequency*) terhadap derajat keasaman (pH) udang Vaname. *Jurnal Fisika Unand (JFU)*. 10(1):55-61

Lampiran 1. Biodata Ketua, Anggota serta Dosen Pendamping Biodata Ketua

A. Identitas Diri

1	Nama Lengkap	Disty Ratna Marisya
2	Jenis Kelamin	Perempuan
3	Program Studi	S-1 Matematika
4	NIM	190803053
5	Tempat dan Tanggal Lahir	Pekanbaru, 17 Desember 2001
6	Alamat E-mail	distymarisya@gmail.com
7	Nomor Telepon/HP	082167405617

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	IM ³ (Ikatan Mahasiswa Muslim Matematika)	Anggota	2020-Sekarang, USU
2	MSC (Muslim Scientist Community)	Anggota	2020-2021, USU
3	Schneider Team USU	Anggota	2020-Sekarang, USU

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Juara II KTI HPHF 5	Universitas Sumatera Utara	2022
2	Juara I Pemodelan Matematika	Universitas Andalas	2021
3	Juara II KTI The 7 th UTU Awards	Universitas Teuku Umar	2021
4	Juara II Lomba Poster	Universitas Negeri Medan	2021

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KI.

Medan, 11-3-2022

Ketua Tim

(Disty Ratna Marisya)

A. Identitas Diri

1	Nama Lengkap	Oki Gunawan Harahap
2	Jenis Kelamin	Laki-laki
3	Program Studi	D3-Fisika
4	NIM	192408041
5	Tempat dan Tanggal Lahir	Medan, 28 Oktober 1999
6	E-mail	okigunawan31@gmail.com
7	Nomor Telepon/HP	082274058191

B. Kegiatan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Schneider Team USU	Anggota	2019-Sekarang di USU
2	Ikatan Mahasiswa Instrumentasi	Ketua Bidang 1	2022-Sekarang di USU

C. Penghargaan dalam 10 tahun terakhir

No	Jenis Penghargaan	Instituti Pemberi Penghargaan	Tahun
1	Juara 1 LKTI MTQ USU	USU	2020
2	Juara 2 Lomba Poster USU Games	USU	2020
3	Juara 3 LKTI USU Games	USU	2020
4	Juara 2 LKTI IASC	Universitas Brawijaya	2021
5	Juara 1 LKTI RxPO	USU	2021
6	Juara 3 UTU Awards	Universitas Teuku Umar	2021
7	Juara 2 LKTI Unimed	Universitas Negeri Medan	2021

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KI.

Medan, 11-3-2022

Anggota tim

(Oki Gunawan Harahap)

A. Identitas Diri

1	Nama Lengkap	Arnita Sari Siagian
2	Jenis Kelamin	Perempuan
3	Program Studi	Manajemen Sumberdaya Perairan
4	NIM	180302094
5	Tempat dan Tanggal Lahir	Lubuk Pakam, 19 Juni 2000
6	Alamat E-mail	arnitasiagian123@gmail.com
7	Nomor Telepon/HP	085664056083

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Himpunan Mahasiswa Jurusan Ikatan Mahasiswa Manajemen Sumberdaya Perairan	Staff Bidang Kominfo	2019-2020, Medan
2	Lembaga Pers Mahasiswa Garda Media Universitas Sumatera Utara	Ketua Divisi Redaksi	2021-2022, Medan

C. Penghargaan yang Pernah Diterima

No	Jenis Peng	hargaan		(September 2019)	Pemberi hargaan	Tahun
1	Juara 3 Lomba Karya 7 (LKTIN) MISIP HIMA			Univers Lambur Mangki	ng	2020
2	Juara 3 Lomba Karya 7 (LKTIN) Short Entrepr			Univers		2021
3	Penerima Beasiswa 2021/2022	Tahun	Akademik	Karya Empat	Salemba	2021

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KI.

Medan, 11-3-2022

Anggota Tim

(Arnita Sari Siagian)

A. Identitas Diri

1	Nama Lengkap	Nur Azizah
2	Jenis Kelamin	Perempuan
3	Program Studi	S1-Agroteknologi
4	NIM	180301130
5	Tempat dan Tanggal Lahir	Tebing Tinggi, 20 Februari 2001
6	Alamat E-mail	nurazizahh358@gmail.com
7	Nomor Telepon/HP	0812-6992-9990

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	PKKMB FP USU	Anggota Divisi Acara	2019, Medan
2	Pengabdian Masyarakat dari Pemerintahan Mahasiswa FP USU	Volunteer	2019, Dusun Negri Suah, Desa Negeri Gunung, Kec. Sibolangit, Kab. Karo
5	GenBI Bersih Sungai	Ketua Divisi Acara	2022, Medan
6	Mengajar di Desa dari Smart Generation Community (SGC) USU	Volunteer	Februari 2022-sekarang, Desa Ndeskati, Kec. Naman Teran, Kab. Karo

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Juara 1 Formiltan Essay Competition	Formiltan USU	2019
2	Juara 3 LKTEK YSE Toba	Komunitas RumahKita	2021
3	Juara 3 Business Plan Competition Agriexpo UNHAS	Misekta Universitas Hasanuddin	2021
4	Juara 1 LKTI RxPO Fakultas Farmasi USU	Fakultas Farmasi Universitas Sumatera Utara	2021

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila dikemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KI.

Medan, 11-3-2022

Angota Tim

(Nur Azizah)

A. Identitas Diri

1	Nama Lengkap	Ahmad Widad
2	Jenis Kelamin	Laki-Laki
3	Program Studi	Sastra Arab
4	NIM	190704012
5	Tempat dan Tanggal Lahir	Lubuk Tukko, 19 April 2002
6	Alamat E-mail	ahmad.widad2018@gmail.com
7	Nomor Telepon/HP	081265079206

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	IMBA (Ikatan Mahasiswa Bahasa Arab)	Anggota	2019-Sekarang, USU
2	UKMI Al-Ilmi FIB	Anggota	2020-Sekarang, USU
3	Schneider Team USU	Anggota	2020-Sekarang, USU

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Juara III Vocal Grup Al-Ilmi Show Season III	UKMI Al-Ilmi FIB USU	2019
2	Juara I Lomba Karya Tulis Ilmiah USU GAMES	Universitas Sumatera Utara	2021

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KI.

Medan, 11-3-2022 Anggota Tim

(Ahmad Widad)

Biodata Dosen Pendamping

A. Identitas Diri

1	Nama Lengkap (dengan	Muhammad Romi Syahputra S.Si., M.Si.
	gelar)	
2	Jenis Kelamin	Laki-laki
3	Program Studi	S-1 Matematika
4	NIP/NIDN	198911152018031001/0115118903
5	Tempat dan Tanggal Lahir	Medan, 15 November 1989
6	Alamat E-mail	m.romi@usu.ac.id
7	Nomor Telepon/HP	08192045171

B. Riwayat Pendidikan

No	Jenjang	Bidang Ilmu	Institusi	Tahun Lulus
	Sarjana (S1)	Matematika	Universitas	2012
1			Sumatera	
			Utara	
	Magister (S2)	Matematika	Universitas	2014
2			Sumatera	
			Utara	
3	Doktor (S3)	-	-	-

C. Rekam Jejak Tri Dharma PT

Pendidikan/Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	sks
1	Matematika	Wajib	3 SKS
2	Komputasi Numerik	Wajib	2 SKS
3	Matematika – II	Wajib	3 SKS
4	Pengantar Komputer	Wajib	2 SKS
5	Praktikum Pengantar Komputer	Wajib	1 SKS
6	Matematika I	Wajib	3 SKS
7	Pengantar Teori Ekonomi	Wajib	3 SKS
8	Praktikum Enterpreunership	Wajib	1 SKS
9	Enterpreunership	Wajib	2 SKS
10	Ekonomi Teknik	Wajib	2 SKS
11	Persamaan Differensial Biasa I	Wajib	3 SKS
12	Sistem Dinamik	Pilihan	2 SKS
13	Operasi Riset	Wajib	2 SKS
14	Probabilitas dan Statistika	Wajib	2 SKS
15	Analisis Numerik	Wajib	2 SKS
16	Prakt. Analisis Numerik	Wajib	1 SKS
17	Teori Keputusan	Wajib	2 SKS
18	Pengantar Teknologi Informasi	Wajib	2 SKS

19	Prak. Pengantar Teknologi	Wajib	1 SKS
	Informasi		
20	Aljabar Linier I	Wajib	3 SKS
21	Kalkulus I	Wajib	4 SKS
22	Komputerisasi Akuntansi	Wajib	2 SKS
23	Matematika untuk Sosial Humaniora	Wajib	3 SKS
24	Matematika – III	Wajib	3 SKS
25	Matematika Dasar	Wajib	3 SKS
26	Kombinatorika II	Wajib	3 SKS
27	Pers. Differensial Parsial	Wajib	3 SKS
28	PEMODELAN MATEMATIKA	Wajib	2 SKS
29	Matematika Teknik II	Wajib	3 SKS

Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
1	Analisis Dinamika Fluida Pada	Universitas Sumatera	2019
	Pembangkit Listrik Tenaga Air	Utara	
	Sebagai Pengganti Energi Listrik		
	Alternatif		
2	Evaluasi Tingkat Efisiensi	Universitas Sumatera	2020
	Produktifitas Program Studi	Utara	
	Menggunakan Data Envelopment		
	Analysis		
3	Aproksimasi Goal Programming	Universitas Sumatera	2021
	Dalam Menyelesaikan Persoalan	Utara	
	Fuzzy Transportasi		

Pengabdian kepada Masyarakat

No	Judul Pengabdian Kepada Masyarakat	Penyandang Dana	Tahun
1	Pemanfaatan Teknologi Informasi	Universitas Sumatera	2019
	Dalam Pelaksanaan Pembelajaran	Utara	
	Aktif Di Sekolah SMP Swasta PTPN4		
	Dolok Ilir Dalam Menghadapi Era		
	Revolusi Industri 4.0		
2	Pemanfaatan Media Belajar Berbasis	Universitas Sumatera	2020
	Teknologi Informasi Untuk	Utara	
	Mendukung Kegiatan Pembelajaran		
	Aktif Di Sekolah Menengah Pertama		
	(Smp) Negeri 2 Pantai Labu		
3	Olimpiade Lawan Covid-19 SMPN 1	Universitas Sumatera	2021
	Tebing Tinggi	Utara	
4	Pemanfaatan Teknologi Informasi	Universitas Sumatera	2021
	Dalam Pelaksanaan Pembelajaran	Utara	

Aktif Di Sekolah SMP Swasta PTPN4	
Dolok Ilir Dalam Menghadapi Era	1
Revolusi Industri 4.0	1

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KI.

Medan, 11-3-2022

Dosen Rendamping

(Muhammad Romi Syahputra)

Lampiran 2. Justifikasi Anggaran Kegiatan

No	Jenis Pengeluaran	Volume	Harga Satuan (Rp)	Total (Rp)
1	Belanja Bahan (maks. 60%)			
	Arduino nano	2	200.000	400.000
	LCD 16x2 dan komponen lainnya	2 paket	250.000	500.000
	Solder dan timah	2 paket	150.000	300.000
	Glue gun	2 paket	150.000	300.000
	Pompa DC dan Selang	2 paket	200.000	400.000
	Akrilik	1 x 1 meter	300.000	300.000
	Baterai 9 Volt	5	30.000	150.000
	Gunting	2	30.000	60.000
	Packaging arduino	1	250.000	250.000
	Kabel dan penjepit buaya	10	35.000	350.000
	PCB	2	50.000	100.000
	Penyedot timah	2	50.000	100.000
	Sensor turbidity	2	150.000	300.000
	Sensor suhu DS18B20	2	130.000	260.000
	Sensor jarak HCSR04	2	80.000	160.000
	Sensor pH	1	200.000	200.000
	Regulator	1	95.000	95.000
	RTC DS1307	1	50.000	50.000
	Current Transformer (CT)	1	75.000	75.000
	Power Supply	1	250.000	250.000
	SUB TOTAL			4.600.000
2	Belanja Sewa (maks. 15%)			
	Sewa Laboratorium Fisika Gelombang	3 bulan	150.000	450.000
	Sewa Laboratorium Fisika Dasar	3 bulan	150.000	450.000
	SUB TOTAL			900.000
3	Perjalanan lokal (maks. 30%)			
	Biaya pengiriman dari pembeli (on-line)	1 kali	300.000	300.000
	Akomodasi perjalanan pengujian sampel	3 orang	200.000	600.000
	Akomodasi Konstruksi alat	2 orang	200.000	400.000
	SUB TOTAL			1.300.000
4	Lain-lain (maks. 15%)			
	Masker	1 kotak	150.000	150.000
	Uji Validasi sensor Suhu	20 kali	10.000	200.000
	Uji Validasi sensor Jarak	20 kali	10.000	200.000
	Uji Validasi sensor pH	20 kali	10.000	200.000
	Uji Validasi sensor turbidity	20 kali	10.000	200.000

Pemrograman alat	1 kali	250.000	250.000
SUB TOTAL			1.200.000
GRAND TOTAL			8.000.000
GRAND TOTAL (Delapan Juta Ru	piah)		

Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas

No	Nama/NIM	Program Studi	Bidang Ilmu	Alokasi Waktu (jam/minggu)	Uraian Tugas
1	Disty Ratna Marisya/ 190803053	S-1	Matemat	8	Melakukan persiapan alat dan bahan serta komponen lain untuk mendukung penelitian, melakukan konstruksi alat, melakukan pengujian dan performansi alat, dan menganalisis data.
2	Oki Gunawan Harahap/ 192408041	D-3	Fisika	6	Melakukan konstruksi alat, pemrograman alat serta pengujian sensor.
3	Arnita Sari Siagian/ 180302094	S-1	Manaje men Sumberd aya Perairan	6	Melakukan pemrograman dan pengujian sensor.
4	Nur Azizah/ 180301130	S-1	Agrotek nologi	6	Melakukan persiapan alat dan bahan, pengujian dan performansi alat.
5	Ahmad Widad/ 190704012	S-1	Sastra Arab	6	Melakukan persiapan alat dan bahan,

		dan
		menganalisis
		data.

Lampiran 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA TIM PELAKSANA

Yang bertanda tangan di bawah ini:

1:	Disty Ratna Marisya
:	190803053
1:	S-1 Matematika
1:	Muhammad Romi Syahputra S.Si., M.Si.
1:	Universitas Sumatera Utara
	: :

Dengan ini menyatakan bahwa proposal PKM-KI saya dengan judul Smartpond: Inovasi Teknologi Kolam Pintar yang Terintegrasi Gelombang ELF (Extremely Low Frequency) sebagai Solusi Peningkatan Produksi Budidaya Ikan Nila yang diusulkan untuk tahun anggaran 2022 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

JX042871800

Medan, 11-3-2022

ng menyatakan,

(Disty Ratna Marisya) NIM. 190803053

Lampiran 5. Gambaran Teknologi yang akan Dikembangkan

Gambaran Teknologi Smartpond