IN THE SPECIFICATION:

Please amend the Title of the Invention to read as follows:

AUTOMATIC SPEECH RECOGNITION DEVICE SYSTEM

Please amend the first full paragraph on Page 21, beginning on line 4 to read as follows:

As for IID, $d(\theta)$ and $B_{IID}(\theta)$ are calculated in the similar method to that applied to IPD. More specifically speaking, in addition to replacing $\Delta \phi$ with $\Delta \rho$, $\Delta \phi_h(\theta, f_k)$ in the equation (4) is replaced with $\frac{IPD\Delta \rho_s(\theta, f_k)}{IID\Delta \rho_s(\theta, f_k)}$ in the equation (14). Then, a difference between $\Delta \rho_s(\theta, f_k)$ and $\Delta \rho(f_k)$ is calculated and a sum $d(\theta)$ for all peaks f_k is then calculated, which is incorporated into the probability density function shown in equation (6) so as to obtain a belief factor $B_{IID}(\theta)$.

Please amend the third full paragraph on Page 33, beginning on line 15 to read as follows:

FIG.17 exemplarily shows results of recognition. In the FIG.17, the result of recognition with the acoustic model $[[H(\theta_0)]] H(\theta_{HM_I})$, which is composed with the initial value $W_{mn\theta0}$, is shown in the first row, and results of recognition with the acoustic model $H(\theta_n)$ are shown in the second row or below. For example, it is shown that the recognition result with an acoustic model $H(\theta_{90})$ was a sequence of phonemes [/x//y//z/]

[m/y/m"] and the recognition result with an acoustic model [[$H(\theta_0)$]] $\underline{H(\theta_{-90})}$ was a sequence of phonemes [/x//y/m"].

Please amend the third full paragraph on Page 36, beginning on line 13, and ending on Page 37, line 2 to read as follows:

When a masking module, which adds an index ω indicating a belief factor to each sub-band of MFCC, is disposed inside or after the feature extractor 30, the speech recognition module 50 carries out recognition after applying a process shown by an equation (21) to a received feature.

$$x_r = 1 - x_n x_n(i) = x(i) \times \omega(i)$$
 [[(16)]] (21)

 x_r : feature to be used for speech recognition

x : MFCC

i : component of MFCC

 x_n : unreliable component of x

Please amend the first full Paragraph on Page 41, beginning on line 1 to read as follows:

(Correlation calculator 112)

The correlation calculator 112 calculates a correlation by an equation (22) for the acoustic signals of the right and left microphones M_R and M_L , which have been segmented by the frame segmentation module 111.

$$CC(T) = \int_{0}^{T} x_{L}(t)x_{R}(t+T)dt \qquad (22)$$

where:

CC(T): correlation between $x_L(t)$ and $x_R(t)$

T: frame length

 $x_L(t)$: input signal from the microphone L segmented by frame length T $x_L(t)$: input signal from the microphone M_L segmented by frame length T

 $x_R(t)$: input signal from the microphone R segmented by frame length-T $x_R(t)$: input signal from the microphone M_R segmented by frame length T