S3 in S4

From Groupprops

This article is about a particular subgroup in a group, up to equivalence of subgroups (i.e., an isomorphism of groups that induces the corresponding isomorphism of subgroups). The subgroup is (up to isomorphism) symmetric group:S3 and the group is (up to isomorphism) symmetric group:S4 (see subgroup structure of symmetric group:S4).

VIEW: Group-subgroup pairs with the same subgroup part | Group-subgroup pairs with the same group part | All pages on particular subgroups in groups

We consider the subgroup H in the group G defined as follows.

G is the symmetric group of degree four, which, for concreteness, we take as the symmetric group on the set $\{1, 2, 3, 4\}$.

H is the subgroup of G comprising those permutations that fix $\{4\}$. In particular, H is the symmetric group on $\{1,2,3\}$, embedded naturally in G. It is isomorphic to symmetric group:S3. H has order G.

There are three other conjugate subgroups to H in G (so the total conjugacy class size of subgroups is 4). The other subgroups are the subgroups fixing $\{1\}$, $\{2\}$, and $\{3\}$ respectively.

The four conjugates are:

$$H = H_4 = \{(), (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)\}$$

$$H_1 = \{(), (2, 3), (3, 4), (2, 4), (2, 3, 4), (2, 4, 3)\}$$

$$H_2 = \{(), (1, 3), (3, 4), (1, 4), (1, 3, 4), (1, 4, 3)\}$$

$$H_3 = \{(), (1, 2), (2, 4), (1, 4), (1, 2, 4), (1, 4, 2)\}$$

See also subgroup structure of symmetric group:\$4.

Contents

- 1 Cosets
- 2 Complements
 - 2.1 Properties related to complementation
- 3 Arithmetic functions

Cosets

There are four left cosets and four right cosets of each subgroup. Each left coset of a subgroup is a right coset of one of its conjugate subgroups. This gives a total of 16 subsets.

The cosets are parametrized by ordered pairs $(i,j) \in \{1,2,3,4\} \times \{1,2,3,4\}$. The coset parametrized by (i,j) is the set of all elements that send i to j. This is a left coset of H_i and a right coset of H_j .

Complements

There is a unique normal complement that is common to all the subgroups. This is the subgroup normal Klein four-subgroup of symmetric group:S4:

$$K := \{(), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\}$$

There is also a conjugacy class of subgroups each of which is a permutable complement to each of the H_i s. These are cyclic four-subgroups of symmetric group:S4, and these are:

$$\{(), (1,2,3,4), (1,3)(2,4), (1,4,3,2)\}, \{(), (1,3,2,4), (1,2)(3,4), (1,4,2,3)\}, \{(), (1,2,4,3), (1,4)(2,3), (1,3,4,2)\}\}$$

Note that the fact that these are permutable complements can be understood as a special case of Cayley's theorem. See also every group of given order is a permutable complement for symmetric groups, which says that any finite group of order n is, via the Cayley embedding, a permutable complement to S_{n-1} in S_n .

Apart from these, each of the H_i s has a number of lattice complements:

• Any subgroup generated by double transposition in S4 is a lattice complement to each H_i in the whole group. Thus, each H_i has three such lattice complements.

• For each H_i , a subgroup of order three *not* contained in that H_i is a lattice complement to it. Thus, each H_i has three such lattice complements, because one of the four subgroups of order three is contained in that H_i .

Properties related to complementation

Property	Meaning	Satisfied?	Explanation	Comment
retract	has a normal complement	Yes	subgroup K above is a normal complement	
permutably complemented subgroup	has a permutable complement	Yes	normal complement is permutable complement too	
lattice-complemented subgroup	has a lattice complement	Yes	normal complement is lattice complement too	
1	normal subgroup with permutable complement	No	not normal itself	

Arithmetic functions

Function	Value	Explanation
order of whole group	24	
order of subgroup	6	
index of subgroup	4	
size of conjugacy class of subgroup (=index of normalizer)	4	see above for list of conjugates
number of conjugacy classes in automorphism class of subgroup	1	the whole group is a complete group, so the conjugation actions are precisely the automorphisms.
size of automorphism class of subgroup	4	same as size of conjugacy class

Retrieved from "https://groupprops.subwiki.org/w/index.php?title=S3_in_S4&oldid=37920"

Category: Particular subgroups

- This page was last modified on 9 January 2012, at 01:22.
- This page has been accessed 7,333 times.
- Content is available under Attribution-Share Alike 3.0 Unported unless otherwise noted.