LABORATORIUM 3.

ZMIENNE LOSOWE TYPU CIĄGŁEGO

WYBRANE ROZKŁADY TYPU CIĄGŁEGO W R: norm, t, chisq, f

PREFIKSY: d – funkcja gęstości, p – wartość dystrybuanty, q – wartość kwantyla, r – generator liczb losowych (np. $\mathbf{pnorm}(x, m, \sigma)$ – wartość dystrybuanty rozkładu normalnego z parametrami m i σ w punkcie x)

ZAD.1. Obliczyć kwantyle:

a) u(0.98);

c) $\chi^2(0.975, 23)$;

b) *t*(0.95, 18);

d) F(0.99, 5, 24).

ZAD.2. Zmienna losowa X ma rozkład normalny N(3,6). Obliczyć prawdopodobieństwo:

a) P(X < 5),

e) P(|3X-8|<1),

b) P(X > 4),

f) $P(|X+1| \ge 7)$,

c) $P(-1 < X \le 1)$,

g) P(|2X-3|>4).

- d) $P(|X-4| \le 0.5)$,
- **ZAD.3.** Czas świecenia żarówek pochodzących z masowej produkcji jest zmienną losową X o rozkładzie normalnym N(200 h, 10 h). Oblicz, ile przeciętnie żarówek spośród 10000 świeci krócej niż 175 h.
- **ZAD.4.** Przy założeniu, że wyniki w skoku wzwyż mężczyzn mają rozkład normalny z parametrami 2.25 m oraz 0.2 m, obliczyć:
 - a) ilu zawodników na 40 osiągnie w skoku wzwyż co najmniej 2.3 m,
 - b) jaki jest wynik uzyskany przez zawodników, poniżej którego jest 20% najsłabszych rezultatów?
- **ZAD.5.** Przyjmując, że opóźnienie pociągu do Poznania jest zmienną losową o rozkładzie normalnym *N*(13 min, 18 min), obliczyć prawdopodobieństwo, że pociąg, który miał przyjechać o 14.25 przyjedzie:
 - c) między 14.40 a 14.45,
 - d) po 14.50.
- **ZAD.6.** Zmienna losowa ma rozkład N(25, 8). Wyznaczyć nieznane wartości całkowite k_1, k_2, k_3, k_4 , jeżeli wiadomo, że zmienna ta przyjmuje wartość:
 - a) mniejszą niż k_1 z prawdopodobieństwem 0.5987,
 - b) większą od k_2 z prawdopodobieństwem 0.734,
 - c) odchylającą się od średniej nie więcej niż o k_3 z prawdopodobieństwem 0.468,
 - d) odchylającą się od średniej nie mniej niż o k_4 z prawdopodobieństwem 0.617.