

Linear algebra

Exercise sheet 5 / Model solutions

- 1. (a) Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix. Show that λ is an eigenvalue of A if and only if λ^{-1} is an eigenvalue of $A^{-1} \in \mathbb{R}^{n \times n}$. *Hint*: Show that each eigenvector of A is also an eigenvector of A^{-1} and vice versa.
 - (b) Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix. Show that the matrices AA^T and A^TA have the same eigenvalues. *Hint*: Show that $\det(AA^T \lambda I) = \det(A^TA \lambda I)$.
 - (c) Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix. Show that

$$||A^{-1}||_2^2 = \frac{1}{\lambda_{\min}(A^T A)},$$

where $\lambda_{\min}(A^TA)$ is the smallest eigenvalue of matrix A^TA . Hint: Use (a) and (b). Solution.

(a) Note first that $\lambda \neq 0$ as otherwise A would not be invertible. Suppose $A\mathbf{v} = \lambda \mathbf{v}$ for a nonzero \mathbf{v} . Multiplying this equation on the left by $\lambda^{-1}A^{-1}$ we get

$$\lambda^{-1} \boldsymbol{v} = A^{-1} \boldsymbol{v}.$$

Conversely, suppose $A^{-1}w = \lambda^{-1}w$, and multiply on the left by λA to conclude that $\lambda w = Aw$.

(b) Method 1: Follow the hint which was provided. By direct calculation, we have

$$\begin{aligned} \det(AA^T - \lambda I) &= \det(AA^T - \lambda I) \det(A^{-1}A) \\ &= \det(A^{-1}) \det(AA^T - \lambda I) \det(A) \\ &= \det\left(A^{-1}(AA^T - \lambda I)A\right) \\ &= \det(A^TA - \lambda I). \end{aligned}$$

The eigenvalues are the roots of the characteristic polynomial, and this completes the proof. Notice that this proof can be generalized: we can consider any other square matrix B in place of A^T . We only needed A to be invertible for this argument to work. *Method 2:* Suppose that for a nonzero \boldsymbol{v} we have $A^TA\boldsymbol{v}=\lambda\boldsymbol{v}$; let also $\boldsymbol{w}=A\boldsymbol{v}$ and note that \boldsymbol{w} is nonzero (else, $\boldsymbol{v}\in N(A)$, which contradicts the assumption that A is invertible). Then, multiplying by A on the left, we have that $\lambda\boldsymbol{w}=AA^T\boldsymbol{w}$. Therefore, if λ is an eigenvalue of A^TA with eigenvector \boldsymbol{v} , then it is an eigenvalue of AA^T with eigenvector \boldsymbol{w} then it is eigenvalue of A^TA with eigenvector \boldsymbol{w} then it is eigenvalue of A^TA with eigenvector \boldsymbol{w} then it is eigenvalue of A^TA with eigenvector \boldsymbol{w} then it is eigenvalue of A^TA with eigenvector \boldsymbol{w} .

IMPORTANT: This proof is not valid when either A or A^T has a nontrivial null space (for example if A is square but not invertible, or rectangular), because a crucial step fails!

(c) From results in the lecture notes,

$$||A^{-1}||_2^2 = \lambda_{\max}((A^{-1})^T A^{-1}).$$

Using item (a) the right hand side is equal to $1/\lambda_{\min}(AA^T)$, which using item (b) is in turn equal to $1/\lambda_{\min}(A^TA)$.

- 2. (a) Let λ be an eigenvalue of $A \in \mathbb{R}^{n \times n}$. Show that λ^2 is an eigenvalue of the matrix A^2 .
 - (b) Let λ be an eigenvalue of the matrix A^2 , with $A \in \mathbb{R}^{n \times n}$. Show that $\sqrt{\lambda}$ or $-\sqrt{\lambda}$ is an eigenvalue of A. (For a complex number λ the notation $\sqrt{\lambda}$ stands for the main branch of the square root.) *Hint*: $\det(A^2 \lambda I) = \det((A \sqrt{\lambda}I)(A + \sqrt{\lambda}I)) = \det(A \sqrt{\lambda}I) \det(A + \sqrt{\lambda}I)$.
 - (c) Let $A \in \mathbb{R}^{n \times n}$ be symmetric. Show that

$$||A||_2 = |\lambda_{\text{amax}}(A)|,$$

where $\lambda_{\text{amax}}(A) \in \mathbb{R}$ is an eigenvalue of A with largest absolute value. *Hint*: Use Lemma 2.5 from the lecture notes and parts (a), (b).

(d) Let $A \in \mathbb{R}^{n \times n}$ be symmetric and invertible. Show that

$$||A^{-1}||_2 = \frac{1}{|\lambda_{\text{amin}}(A)|},$$

where $\lambda_{\text{amin}}(A) \in \mathbb{R}$ is an eigenvalue of A with smallest absolute value. *Hint*: Use Problem 1(a) and (c).

Solution.

- (a) Assume that $A\mathbf{v} = \lambda \mathbf{v}$ for some nonzero \mathbf{v} . Then, $A^2\mathbf{v} = A(A\mathbf{v}) = \lambda A\mathbf{v} = \lambda^2\mathbf{v}$.
- (b) By the hint, if λ is an eigenvalue of A^2 then we have

$$det(A - \sqrt{\lambda}I) = 0$$
 or $det(A + \sqrt{\lambda}I) = 0$

(or both).

(c) If A is symmetric then $A^T A = A^2$. Hence, by item (a),

$$||A||_2^2 = \lambda_{\max}(A^T A) = \lambda_{\max}(A)^2.$$

Taking square roots the statement follows.

- (d) This follows immediately by the hint.
- 3. Let $A, B \in \mathbb{R}^{n \times n}$ be symmetric. In addition, assume that

$$|\lambda_{\text{amin}}(A)| \ge 2$$
 and $|\lambda_{\text{amax}}(B)| \le 1$,

where $\lambda_{\text{amin}}(A)$ is an eigenvalue of A with smallest absolute value and $\lambda_{\text{amax}}(B)$ is an eigenvalue of B with largest absolute value. Show that:

- (a) $||A^{-1}||_2 \le \frac{1}{2}$,
- (b) The matrix A + B is invertible.
- (c) Taking for granted the formula

$$\|(A+B)^{-1}\|_2 \le \frac{\|A^{-1}\|_2}{1-\|B\|_2\|A^{-1}\|_2},$$

a solution x to the equation (A + B)x = b satisfies $||x||_2 \le ||b||_2$.

Hints: For (a), use Problem 2(d). For (b), use Theorem 3.1 and Problem 2. For (c), use Problem 2.

Solution.

(a) By Problem 2(b) and by assumption,

$$||A^{-1}||_2 = \frac{1}{|\lambda_{\text{amin}}(A)|} \le \frac{1}{2}.$$

(b) Since A is invertible, A + B is also invertible if

$$||B||_2 < \underbrace{1/||A^{-1}||_2}_{>2}$$

(see the proof of Theorem 3.1). On the other hand, by Problem 2(a), $||B||_2 \le |\lambda_{\text{amax}}(B)| \le 1$, so that A + B is invertible.

(c) By the given formula, by Problem 2 and by the assumptions, we get

$$||(A+B)^{-1}||_{2} \le \frac{||A^{-1}||_{2}}{1 - ||B||_{2}||A^{-1}||_{2}}$$
$$\le \frac{1/2}{1 - ||B||_{2}||A^{-1}||_{2}} \le \frac{1/2}{1/2} = 1,$$

since $||B||_2||A^{-1}||_2 \le 1/2$. If we have $(A+B)\boldsymbol{x} = \boldsymbol{b}$, which is equivalent to $\boldsymbol{x} = (A+B)^{-1}\boldsymbol{b}$, then we get

$$\|\boldsymbol{x}\|_{2} = \|(A+B)^{-1}\boldsymbol{b}\|_{2} \leq \underbrace{\|(A+B)^{-1}\|_{2}}_{\leq 1} \|\boldsymbol{b}\|_{2} \leq \|\boldsymbol{b}\|_{2}.$$

4. Let

$$A = egin{bmatrix} 1 + \epsilon^2 & 1 \ 1 & 1 + \epsilon^2 \end{bmatrix} \qquad ext{and} \qquad m{b} = egin{bmatrix} 2 \ 2 - \delta \end{bmatrix},$$

where $\epsilon, \delta \in \mathbb{R}$ are free parameters.

(a) Compute $\kappa_2(A) = ||A||_2 ||A^{-1}||_2$. What happens to the condition number $\kappa_2(A)$ when $\epsilon \to 0$?

- (b) Compute R(A) and N(A), when $\epsilon \neq 0$. What about $\epsilon = 0$?
- (c) For $\epsilon \neq 0$, solve Ax = b using the formula (Cramer's rule)

$$A^{-1} = \frac{1}{\det A} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}.$$

How does \boldsymbol{x} behave, when $\delta = 0$ and $\epsilon \to 0$? What about $\delta \neq 0$ and $\epsilon \to 0$?

Hint: For (a), use Problem 2.

Solution.

(a) By definition, $\kappa_2(A) = ||A||_2 ||A^{-1}||_2$. Problem 2 gives easy expressions for $||A||_2$ and $||A^{-1}||_2$, so our goal is to use those instead of the definition. The eigenvalues of A are quick to compute: we set equal to zero the determinant

$$\begin{vmatrix} 1 + \epsilon^2 - \lambda & 1 \\ 1 & 1 + \epsilon^2 - \lambda \end{vmatrix} = (1 + \epsilon^2 - \lambda)^2 - 1,$$

so that we get $(1+\epsilon^2-\lambda)^2=1$, meaning that $1+\epsilon^2-\lambda=\pm 1$. So the two eigenvalues are $\lambda=\epsilon^2$ and $\lambda=\epsilon^2+2$. Using the same notation as Problem 2, we then get

$$\kappa_2(A) = \frac{|\lambda_{\text{amax}}(A)|}{|\lambda_{\text{amin}}(A)|} = \frac{\epsilon^2 + 2}{\epsilon^2}.$$

This goes to $+\infty$ for $\epsilon \to 0$.

- (b) When $\epsilon \neq 0$, we have $\det(A) = 2\epsilon^2 + \epsilon^4 > 0$, hence A is invertible (it follows also from part (a)). So then $R(A) = \mathbb{R}^2$ and $N(A) = \{0\}$. When $\epsilon = 0$, then we easily see that $R(A) = \operatorname{span}\{[1 \ 1]^T\}$ and also $N(A) = \operatorname{span}\{[1 \ -1]^T\}$.
- (c) By Cramer's rule, we get

$$A^{-1} = \frac{1}{2\epsilon^2 + \epsilon^4} \begin{bmatrix} 1 + \epsilon^2 & -1 \\ -1 & 1 + \epsilon^2 \end{bmatrix}.$$

Mutiplying Ax = b by A^{-1} on the left, we get

$$x = \frac{1}{2\epsilon^2 + \epsilon^4} \begin{bmatrix} 2\epsilon^2 + \delta \\ \epsilon^2(2 - \delta) - \delta \end{bmatrix}.$$

For $\delta = 0$ and $\epsilon \to 0$, this is

$$x = \begin{bmatrix} \frac{2}{2+\epsilon^2} \\ \frac{2}{2+\epsilon^2} \end{bmatrix} \rightarrow \begin{bmatrix} 1 \\ 1 \end{bmatrix},$$

whereas for $\delta \neq 0$ we get

$$m{x} = egin{bmatrix} rac{2\epsilon^2 + \delta}{2\epsilon^2 + \epsilon^4} \ rac{\epsilon^2 (2 - \delta) - \delta}{2\epsilon^2 + \epsilon^4} \end{bmatrix}
ightarrow egin{bmatrix} \pm \infty \ \mp \infty \end{bmatrix},$$

where the sign depends on the sign of δ .