

Web Mining

Data Mining and Text Mining (UIC 583 @ Politecnico di Milano)

References

- □ Jiawei Han and Micheline Kamber, "Data Mining: Concepts and Techniques", The Morgan Kaufmann Series in Data Management Systems (Second Edition)
 - ▶ Chapter 10
- **Web Mining Course** by *Gregory-Platesky Shapiro* available at www.kdnuggets.com

☐ Federico Facca and Pier Luca Lanzi. Mining Interesting Knowledge from Weblogs: A Survey. Journal of Data and Knowledge Engineering, 53(3):225–241, 2005.

How big is the Web?

165,719,150 Web Sites @Apr 2008 (Netcraft Survey)

What is Web Mining?

Discovering interesting and useful information from Web content and usage

- Examples
 - Web search, e.g. Google, Yahoo, MSN, Ask, ...
 - Specialized search: e.g. Froogle (comparison shopping), job ads (Flipdog)
 - eCommerce
 - Recommendations (Netflix, Amazon, etc.)
 - Improving conversion rate: next best product to offer
 - Advertising, e.g. Google Adsense
 - Fraud detection: click fraud detection, ...
 - Improving Web site design and performance

Web Mining Challenges

- Huge amount of data
- Complexity of Web pages
 - Different styles
 - Different contents
- Highly dynamic and rapidly growing information
 - Number of sites is rapidly growing
 - Information is constantly updated
- Web serves many user communities
 - Users with different interests, background and purposes
 - "99% of the Web information is useless to 99% of Web users"

Web Mining Taxonomy

Web Mining Taxonomy

Web Mining Taxonomy

Mining Web Page Layout Structure

- Web page is more than plain text
- Web page structure is defined by the DOM (Document Object Model) tree, where nodes are the HTML tags
- Issues
 - ▶ Not all the pages follows the standards
 - ▶ DOM tree does not always reflect the page semantic

Mining Web Page Layout Structure

Web

Web

Issu

ent Object

Intic

Vision-based Page Segmentation

Example of Web Page Segmentation

(DOM Structure)

(VIPS Structure)

Mining Web's Link Structure

- How to identify authoritative page?
- ☐ The answer is in the **Web linkage structure**
- Issues in Web linkage
 - Links do not always represent endorsements (e.g., adv)
 - Important competitors do not usually link each other
 - Authoritative pages are generally not self-descriptive
- ☐ To discover authorities we should also look for hub pages
 - Hub are pages that provide collections of links to authorities
 - Hub pages are not necessary highly linked
 - ► Hub pages implicitly confer authorities on focused topics
- Hub and authoritative pages have a mutual reinforcement relationship
 - A good hub page points to many good authorities, a good authority is a page pointed by many good hub pages

Examples

Hyperlink-Induce Topic Search (1)

- Startup
 - ▶ Root set built from results from an index-based search engine
 - ▶ Base set built including pages linked by and linking to the root set pages
- □ Authority weight, a_p, and hub weight, h_p, are iteratively computed

$$a_p = \sum_{\forall q: q \to p} h_q \qquad h_p = \sum_{\forall q: q \leftarrow p} a_q$$

■ In matrix form

$$\left\{ \begin{array}{l} \vec{h} = \overrightarrow{A} \vec{a} = \cdots = (AA^T)^k \vec{h} \\ \vec{a} = A^T \, \vec{h} = \cdots = (A^TA)^k \vec{a} \end{array} \right. \ \, \text{Adiacency}$$

□ The authority weight vector and the hub weight vector if normalized converge to the eigenvectors of AA^T and A^TA

Hyperlink-Induce Topic Search (2)

- Underlying assumptions:
 - Links convey endorsement
 - Pages co-linked by a certain page are likely to be related to the same topic
- VIPS-based approach
 - Block-to-page relationship

$$Z_{ij} = \begin{cases} 1/s_i, & \text{if block } i \text{ point to page } j \\ 0, & \text{otherwise} \end{cases}$$

where s_i is the number of pages linked by block i

Page-to-block relationship

$$X_{ij} = \begin{cases} f_{p_i}(b_j), & \text{if } b_j \in p_i \\ 0, & \text{otherwise} \end{cases}$$

where $f_p(b)$ represents how b is important in page p

Adjacency matrix can be defined as

$$W_P = XZ$$

Hyperlink-Induce Topic Search (3)

Mining Multimedia Data on the Web

- Is different from general-purpose multimedia data mining
 - Multimedia data is embedded in Web pages
 - Links and surrounding text might help the data mining process
- VIPS algorithm is the basis to extract knowledge
 - ► A **bock-to-image** relationship can be built
 - The block-to-image relationship can be integrated with a block-level link analysis
 - ► The resulting **image graph** reflect the semantic relationship between the images
- The image graph can be used for classification and clustering purposes

Web Usage Mining

Web usage mining is the extraction of interesting knowledge from server log files

- Applications
 - Mining logs of a single user
 - Web content personalization
 - Mining logs of groups of users
 - Supporting Web design
- Issues
 - ▶ Where is the data?
 - How to preprocess the data?
 - Which mining techniques?

Data sources

- ☐ Logs can be collected at different levels
 - ▶ Server side
 - ► Proxy side
 - ► Client side

Data sources: server side

- Web server log
 - Standard format (e.g., LogML)
 - Large amount of information (IP, request info, etc.)
 - User session can be difficult to identify
 - Special buttons (e.g., Back, Stop) cannot be tracked
- TCP/IP packet sniffer
 - Data collected in real-time
 - Data from different web servers can be merged easily
 - Some special buttons can be tracked (e.g. Stop)
 - Does not scale very well
- Exploiting the server application layer
 - Very effective
 - Not always possible
 - Requires ad-hoc solutions for each web server

Data sources: proxy side

- Almost the same information available on server side
- □ Data of groups of users accessing to huge groups of web servers
- Sessions can be anyway identified

Data sources: client side

- Collecting data with JavaScript or Java applets
- Exploiting a modified Web browser
- Perfect identification of the user session
- Requires user collaboration

Preprocessing: data cleaning

- □ Data cleaning consists of removing from Web logs useless data for mining purposes
- Content requests (e.g. images) are usually easily removed
- □ Robots and Web spiders should be removed on the basis of
 - Remote hostname
 - Access to robots.txt
 - Navigation pattern

Preprocessing: session identification and reconstruction

- Goals
 - ▶ Identifying the session of different users
 - Reconstruction the navigation path in identified session
- Challenges
 - Proxy
 - Browser caching and special buttons
- Solutions
 - Cookies
 - ▶ URL rewriting
 - JavaScript (e.g. SurfAid)
 - Consistency of navigation path
 - Timeout heuristic for session termination

Applications

- Personalization of Web content
 - Behavior anticipation
 - Recommendation of interesting links
 - Content reorganizations
- Pre-fetching and caching
 - Caching and pre-fetching of content to reduce the server response time
- Support to Web design
 - Analysis of frequent patterns to improve the usability of Web sites
- E-commerce
 - Analysis of customer behaviors (attrition, fidelity, etc.)

Preprocessing: content retrieving

- ☐ Generally URLs are the only information available on pages
- A richer information about visited pages may help the discovering of interesting Web usage patterns
- Main approaches
 - Pages categorization
 - Pre-defined
 - Automatically discovered with Web mining techniques
 - Semantic Web for Web Usage Mining
 - Ontology mapping
 - Learning of ontology from data
 - Extraction of concept-based navigation paths

Mining Techniques

- The main techniques used for the analysis of collected data are
 - Association rules

- Sequential patterns extraction
 - General purpose algorithm (e.g., AprioriAll)
 - Ad hoc solution for Web logs (WAP-mine)
- Clustering of sessions
 - Based on sequence alignment
 - Association rule hypergraph partitioning
 - build a graph representing frequent patterns
 - Edges weighting based on pattern relevance
 - Partitioning of graph to extract users' behaviors