Nonparametric Methods

Outline

- Types of data
- Nonparametric tests
- Sign test
- Sign rank test
- Sign sum test
- Sample size calculation

Types of data

- The type of data collected in a study determine the type of statistical analysis used.
- Data can be broadly classified into three main types:
 - Cardinal data
 - Interval scale
 - Ratio scale
 - Ordinal data
 - Nominal data Categorical Data

Cardinal Data

 on a scale where it is meaningful to measure the distance between possible data values.

- Examples
 - Height
 - Age
 - Exam marks
 - Size of bicycle frame
 - Time to complete a statistics test
 - Number of cigarettes smoked

Ordinal Data

 data can be ordered but do not have specific numeric values.

- Examples
 - Degree of illness
 - none, mild, moderate, acute, chronic.
 - Opinion of students about stats classes
 - Very unhappy, unhappy, neutral, happy, ecstatic!
 - Attitudes towards the death penalty
 - Strongly disagree, disagree, neutral, agree, strongly agree.

Nominal Data

 different data values can be classified into categories but the categories have no specific ordering.

Examples

- Type of Bicycle
 - Mountain bike, road bike, chopper, folding, BMX.
- Newspapers:
 - The Sun, The Mail, The Times, The Guardian, the Telegraph.
- Smoking status
 - smoker, non-smoker

Nonparametric tests

- "Distribution free" methods require fewer assumptions than parametric methods
- Focus on testing rather than estimation
- Not sensitive to outlying observations
- Especially useful for cruder data (like ranks)
- "Throws away" some of the information in the data
- May be less powerful than parametric counterparts, when the parametric assumptions are true
- For large samples, are equally efficient to parametric counterparts

Example Dermatology

- Suppose we want to compare the effectiveness of two ointments (A, B) in reducing excessive redness in people who cannot otherwise be exposed to sunlight.
- Ointment A is randomly applied to either the left or right arm, and ointment B is applied to the corresponding area on the other arm.
- The person is then exposed to 1 hour of sunlight, and the two arms are compared for degrees of redness.

Which test can you use?

 Denote by A/B the redness score of arm being given ointment A/B,

```
Sample 1, (A1,B1)
Sample 2, (A2, B2)
...
```

- What if
 - The exact value of A/B is not available, but we only know which one is better than the other
 - The exact value of A/B is available
 - The experiment is done in two independent populations

pair	A>B
1	+
2	+
3	<u>.</u>
	-
4 5	/
	+
6	-
7	-
8	-
9	+
10	+
•••	•••

• Case 1:

- Does the number of
 - + equal to the number of -?
- -P(+|not/)=0.5

Sign Test

- Let d_i = difference (A-B)
- Let $C = \sum_i I(d_i > 0)$ be the number of whom $d_i > 0$ out of the total of n people with nonzero d_i
 - C is then binomial(n, p)
- The sign test tests whether H_0 : p = .5 using C and n
- Let Δ be the population median of the d_i
- Notice that $\Delta = 0$ iff $p = P(d > 0 | d \neq 0) = .5$
- $H_0: \Delta = 0$ versus $H_1: \Delta \neq 0$ (or > or <)

Normal-Theory Method

- Since E(C) = np = n/2 and Var(C) = npq = n/4 $\frac{C n/2}{\sqrt{n/4}} \xrightarrow{D} N(0,1)$
- Using a continuity correction,

$$\frac{C - \frac{n}{2} - \frac{1}{2}}{\sqrt{n/4}} \xrightarrow{D} N(0,1)$$

- we have (for $n \ge 20$):
- To test H_0 : $\Delta = 0$ versus H_1 : $\Delta \neq 0$, if

$$C > c_2 = \frac{n}{2} + \frac{1}{2} + z_{1-\alpha/2} \sqrt{\frac{n}{4}} \text{ or } C < c_2 = \frac{n}{2} - \frac{1}{2} - z_{1-\alpha/2} \sqrt{\frac{n}{4}}$$

then H_0 is rejected. Otherwise, H_0 is accepted.

Exact Method

• If n < 20, use the exact binomial probabilities instead.

Computation of the p-Value for the Sign Test (Exact Test)

If
$$C > n/2$$
, $p = 2 \times \sum_{k=0}^{n} {n \choose k} \left(\frac{1}{2}\right)^n$

If
$$C < n/2$$
, $p = 2 \times \sum_{k=0}^{C} {n \choose k} \left(\frac{1}{2}\right)^n$

If
$$C = n/2$$
, $p = 1.0$

pair	A>B	A-B
1	+	5
2	+	10
3	-	-1
4	/	0
5	+	7
6	-	-1
7	-	-2
8	-	-1
9	+	8
10	+	6
•••	•••	

- Case 2
 - Do you agreethat A has thesame effect as B?
- Wilcoxon signedrank test

Signed rank procedure

- 1 Take the paired differences
- Take the absolute values of the differences
- 3 Rank these absolute values, throwing out the 0s
- Multiply the ranks by the sign of the difference (+1 for a positive difference and -1 for a negative difference)
- \bigcirc Calculate the rank sum W_+ of the positive ranks

Signed-rank test

The statistic:

$$W_{+} = \sum_{i=1}^{n} R_{i} \varphi_{i}$$

where R_i is the rank of $|d_i|$, and φ_i is the indicator variable of d_i , $\varphi_i = I(d_i > 0)$

• H_0 ?

distribution of W_+

• Under H_0 and if there are no ties

$$E(W_{+}) = \frac{n(n+1)/4}{Var(W_{+})} = \frac{n(n+1)(2n+1)}{24}$$

There is a correction term necessary for ties

$$Var(W_{+}) = \frac{n(n+1)(2n+1)}{24} - \sum_{i=1}^{g} \frac{t_{i}^{3} - t_{i}}{48}$$

where t_i refers to the number of differences with the same absolute value in the ith tied group and g is the number of tied groups

• For large sample size n, W_+ follows a normal distribution

The Wilcoxon Rank-Sum Test

Also known as the Mann-Whitney test

Example

Health Services Administration

- Suppose we want to compare the length of hospital stay for patients with the same diagnosis at two different hospitals.
- The results are shown in Table 9.8.

Table 9.8 Comparison of length of stay in 2 hospitals		
First hospital	21, 10, 32, 60, 8, 44, 29, 5, 13, 26, 33	
Second hospital	86, 27, 10, 68, 87, 76, 125, 60, 35, 73, 96, 44, 238	

The Wilcoxon Rank-Sum Procedure

- 1 Discard the treatment labels
- 2 Rank the observations
- \bigcirc Calculate the sum of the ranks in the first treatment, denoted by W
- 4 Judgment
 - calculate the asymptotic normal distribution of this statistic
 - compare with the exact distribution under the null hypothesis($\min(n_1, n_2) < 10$)

Wilcoxon Rank-sum test

- $X_1, X_2, ..., X_{n_1} \sim F, Y_1, Y_2, ..., Y_{n_2} \sim G$
- The statistic

$$W = \sum_{i=1}^{n_1} rank(X_i)$$

$$= \sum_{i=1}^{n_1} \left(\sum_{j=1}^{n_1} I(X_j \le X_i) + \sum_{j=1}^{n_2} I(Y_j \le X_i) \right)$$

$$= \sum_{i=1}^{n_1} \sum_{j=1}^{n_1} I(X_j \le X_i) + \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} I(Y_j \le X_i)$$

$$= \frac{n_1(n_1 + 1)}{2} + \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} I(Y_j \le X_i)$$
Mann-Whitney Statistic U

Distribution of W

- $H_0: F = G$
- Under H_0 , Whas an exact distribution. If there are no ties

$$-E(W) = (n_1 (n_1 + n_2 + 1))/2$$

$$-Var(W) = n_1n_2(n_1 + n_2 + 1)/12$$

There is a correction term necessary for ties

$$-Var(W_{+}) = \frac{n_1 n_2 (n_1 + n_2 + 1)}{12} - \sum_{i=1}^{g} \frac{n_1 n_2 (t_i^3 - t_i)}{12 (n_1 + n_2)(n_1 + n_2 + 1)}$$

where t_i refers to the number of differences with the same absolute value in the ith tied group and g is the number of tied groups

- > ?dwilcox
- For large sample size n, W follows a normal distribution

Hypotheses

Wilcoxon Signed rank

$$f(\cdot)$$
 is symmetric around Δ
 H_0 : Δ =0 vs. H_1 : $\Delta \neq 0$

Wilcoxon Rank sum

Location shift model:
$$G(x) = F(x - \Delta)$$
 or $Y = X + \Delta$
 H_0 : Δ =0 vs. H_1 : $\Delta \neq$ 0

Sample-size Calculation

Sign test

- One-sample case: Z_1 , Z_2 , ..., $Z_n \sim f$
 - Let θ be the population median of the f(x)
 - $-H_0$: $\theta = 0$ versus H_1 : $\theta \neq 0$
 - $\Leftrightarrow H_0: p = P(Z > 0 | Z \neq 0) = 0.5 \text{ vs. } p \neq 0.5$
 - $-C = \sum_{i=1}^{n} I(Z_i > 0)$, the test statistic $T = \frac{C n/2}{\sqrt{n/4}}$
 - Under the alternative, $C \sim B(n, p_1)$ $1 - \beta = P(T > z_{1-\alpha/2} | p = p_1)$

Wilcoxon signed rank test

- One-sample case: $Z_1, Z_2, ..., Z_n \sim f, f(\cdot)$ is symmetric around θ
 - $-H_0$: $\theta = 0$ vs. H_1 : $\theta \neq 0$
 - The working model:

$$Z_{\rm i} = \theta + e_{\rm i}$$

- Test statistic: $T_{+} = \sum_{i=1}^{n} R_{i} \varphi_{i}$ wilcox sample size.pdf
- Two-sample Wilcoxon rank-sum test: also refer to the linked paper

AUC & M-W U

For two independent samples

$$X_1, X_2, ..., X_{n_1}$$
; and $Y_1, Y_2, ..., Y_{n_2}$

 Y_{n_2}) for predicting Z

$$AUC = \frac{U}{n_1 n_2}$$

Where *U* is the Mann-Whitney Statistic.

https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test#Relation_to_other_tests

C-index

• For random variables $\xi = (X_1, ..., X_{n_1}, Y_1, ..., Y_{n_2})$ and Z,

c-index=
$$P(\xi_1 < \xi_2 | Z_1 < Z_2)$$

 $\Leftrightarrow P(\xi_1 < \xi_2 | Z_1 = 0, Z_2 = 1)$
 $\Leftrightarrow P(X_1 < Y_1)$

- More on AUC, M-W U & C-index
 - They are equivalent for classification problems
 - How about regression? i.e., Z is continuous?
 - Only C-index works
 - One still can make a new variable Z'=I(Z>C), and take Z' as Z, but the equivalence between AUC (M-W U) and C-index disappear
 - Extension to survival analysis