

Course Assignment Master of Applied Computer Science Department of Technology

Assignment title	Exploring Bitcoin
Course code	MA120
Course name	Big Data
Course name	Dig Data
Due date	18 Oktober

Declaration:

Through the submission of this assignment, we hereby declare that this report is the result of our own work, and that all sources have been properly cited to throughout the text.

Names of students	Theodore Midtbø Alstad; Howie Chen
Student ID numbers	865317; 866354

Exploring Bitcoin

ABSTRACT

In this assignment we parsed a dataset, in the form of XMLs, through a Hadoop- and Pig apache. We learned how to write MapReduce jobs and Pig scripts, and how effective it is on our dataset based on XML files from Bitcoin stack exchange.

Introduction

We choose to work together because both of us have python background, therefor we choose python as main programming language. We explored Bitcoin as given dataset from archive.org/download/stackexchange/bitcoin.stackexchange.com.7z through Apaches: Hadoop and Pig.

Main functions

Task 1 Warmup

1a) WordCount

Assumption: Count the words in body of questions PostTypeID="1" in the *Posts.xml* file. The result should be how many times a word occur in the body of questions.

ImplementationHello hello

Notes/Reflection bye bye

1b) Unique words

Assumption: Write a MapReduce job where the result should be unique words in the titles PostTypeID="1" in the Posts.xml File.

Implementation

Notes/Reflection

1c) MoreThan10

Assumption: Write a simple python code to check how many words there is in the title in the *Posts.xml*. The result should output how many titles are longer than 10 words.

Implementation

Notes/Reflection

1d) Stopwords

Assumption: Write a simple python code based on task 1a to exclude <u>stopwords</u> from body of questions PostTypeID="1" in the *Posts.xml*. The output should be text file without any stopwords.

Implementation

Notes/Reflection

1e) Pig top 10

Assumption: Write a pig script to select top 10 listed words after removing the stopwords from *Posts.xml*. The output should print out top 10 listed words and the corresponding occurrence rate.

Implementation

Notes/Reflection

1f) Tags

Assumption: Write a MapReduce job to create a dictionary over unique tags in *Posts.xml*.

Implementation

Notes/Reflection

Task 2 Discover

2a Counting)

Assumption: Write a simple python code to count the total unique users there are in *Users.xml*. The output will print out how many unique users there are.

Implementation

Notes/Reflection

2b Unique users)

Assumption: Write a MapReduce job based on task 2a) to create a mapper and a reducer functions in *Users.xml*. The output should contain unique users in the dataset.

Implementation

Notes/Reflection

2c Top miners)

Assumption:Write a MapReduce job to find top 10 users based on attribute Reputation="x" in *Users.xml*. The output will print out top 10 users based on their reputation.

Implementation

Notes/Reflection

2d Top questions)

Assumption: Write a MapReduce job to find top 10 title questions PostTypeID="1" based on attribute Score="x" in *Posts.xml*. The result lists top 10 questions using id, question and the score.

Implementation

Notes/Reflection

2e Favorite questions)

Assumption: Write a MapReduce job to find top 10 title questions PostTypeID="1" based on attribute FavoriteCount="x" in *Posts.xml*. The result lists top 10 questions like id, question and the score.

Implementation

Notes/Reflection

2f Average answers) Assumption:	
Implementation	
Notes/Reflection	
2g Countries) Assumption: We choose to write a MapReduce job to discover users by countries in <i>Users.xml</i> . The result lists different countries and corresponding users.	
Implementation	
Notes/Reflection	
2h Names) Assumption We choose to write a MapReduce job to find the most popular names in <i>Users.xml</i> . The result lists top 10 common names and how many.	
Implementation	
Notes/Reflection	
2i) Answers Assumption: Write a simple python code to find how many titles of questions PostTypeId="x" have at least one answers based on attribute AnswerCount in <i>Users.xml</i> . The result prints out how many questions have been answered.	
Implementation	
Notes/Reflection	
Task 3 Numbers	
3a) Bigram Assumption : We choose to write a MapReduce job to find the most common pair of adjacent words in <i>Posts.xml</i> . For instance "big data" or "Fast car" are examples of bigram. The result print the most common bigram	
Implementation	
Notes/Reflection	
3b) Trigram Assumption:	
Implementation	
Notes/Reflection	
3c) Combiner Assumption:	
Implementation	

Notes/Reflection

3d)	Useless
Assumption:	

Implementation

Notes/Reflection

Task 4 Search engine

4a) Title index Assumption:

Implementation

Notes/Reflection

Conclusion