Dr. Yajnaseni Dutta

Exercises, Algebraic Geometry II – Week 2

Exercise 6. Extension by zero (4 points)

Let (X, \mathcal{O}_X) be a ringed space and $j: U \hookrightarrow X$ an open subset considered as a ringed space with the sheaf of rings $\mathcal{O}_U := \mathcal{O}_X|_U$. For a sheaf of \mathcal{O}_U -modules \mathcal{F} , the extension by zero $j_!\mathcal{F}$ of \mathcal{F} is the sheafification of the presheaf $(j_!)^{\operatorname{pre}}(\mathcal{F})$ defined by

$$(j_!)^{\operatorname{pre}}(\mathcal{F})(V) = \begin{cases} \mathcal{F}(V) & \text{if } V \subseteq U \\ 0 & \text{else} \end{cases}$$

- (1) Show that $(j_!\mathcal{F})_x = \mathcal{F}_x$ if $x \in U$ and 0 else. Conclude that $j_!$ defines an exact functor $j_! : \operatorname{Mod}(U, \mathcal{O}_U) \to \operatorname{Mod}(X, \mathcal{O}_X)$.
- (2) Show that $j_!$ is left-adjoint to j^{-1} . Conclude that if \mathcal{I} is an injective \mathcal{O}_X -module, then so is $\mathcal{I}|_U$.
- (3) Give an example of X, U, and a quasi-coherent sheaf \mathcal{F} on U such that $j_!\mathcal{F}$ is not quasi-coherent.

Exercise 7. Cohomology with Supports (5 points)

Let X be a topological space, $Y \subseteq X$ a closed subset, $U = X \setminus Y$, and \mathcal{F} a sheaf of Abelian groups on X. Let $\Gamma_Y(X, \mathcal{F})$ be the group of sections of \mathcal{F} with support on Y. Recall from Exercise 8 of Algebraic Geometry 1 that $\Gamma_Y(X, -) : \operatorname{Sh}(X) \to \operatorname{Ab}$ is a left-exact functor. We let $H^i_Y(X, -)$ be its right-derived functors.

- (1) Show that if $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ is a short exact sequence of sheaves on X and and \mathcal{F}' is flasque, then $0 \to \Gamma_Y(X, \mathcal{F}') \to \Gamma_Y(X, \mathcal{F}) \to \Gamma_Y(X, \mathcal{F}'') \to 0$ is exact.
- (2) Show that flasque sheaves are $\Gamma_Y(X, -)$ -acyclic.
- (3) Show that if \mathcal{F} is flasque, then there is an exact sequence

$$0 \to \Gamma_Y(X, \mathcal{F}) \to \Gamma(X, \mathcal{F}) \to \Gamma(U, \mathcal{F}) \to 0.$$

(4) Show that, for every sheaf \mathcal{F} , there is a long exact sequence

$$0 \to H_Y^0(X,\mathcal{F}) \to H^0(X,\mathcal{F}) \to H^0(U,\mathcal{F}) \to \to H_Y^1(X,\mathcal{F}) \to H^1(X,\mathcal{F}) \to H^1(U,\mathcal{F}) \to \to H_Y^2(X,\mathcal{F}) \to \dots$$

(5) (Excision) Let V be an open subset of X containing Y. Show that there are natural isomorphisms for all i and \mathcal{F}

$$H_V^i(X,\mathcal{F}) \cong H_V^i(V,\mathcal{F}|_V)$$

Exercise 8. Cohomology of the circle (4 points)

Let S^1 be the circle considered as a topological space with the usual (analytic) topology.

- (1) Show that $H^1(S^1, \mathbb{Z}) \cong \mathbb{Z}$, where \mathbb{Z} is the constant sheaf associated to \mathbb{Z} .
- (2) Show that $H^1(S^1, \mathcal{C}^0) = 0$, where \mathcal{C}^0 is the sheaf of continuous (real-valued) functions on S^1 .

(Hint: Both sheaves are subsheaves of the flasque sheaf of (not necessarily continuous) real-valued functions on S^1)

Exercise 9. Mayer-Vietoris Sequence (3 points)

Let X be a topological space and let $Y_1, Y_2 \subseteq X$ be closed subsets. Show that, for every sheaf \mathcal{F} of Abelian groups on X, there exists a long exact sequence

$$\ldots \to H^i_{Y_1 \cap Y_2}(X, \mathcal{F}) \to H^i_{Y_1}(X, \mathcal{F}) \oplus H^i_{Y_2}(X, \mathcal{F}) \to H^i_{Y_1 \cup Y_2}(X, \mathcal{F}) \to H^{i+1}_{Y_1 \cap Y_2}(X, \mathcal{F}) \to \ldots$$

The next exercise is not necessary for the understanding of the lectures at this point.

Exercise 10. Enough injectives in Grothendieck categories (+ 4 extra points) An Abelian category C is called Grothendieck category, if it satisfies the following properties:

- (Ab3) Arbitrary coproducts in C exist.
- (Ab4) Taking coproducts is exact.
- (Ab5) For every object $A \in \mathcal{C}$, every subobject $A' \hookrightarrow A$, and every directed system of subobjects $\{A_i\}_{i \in I}$, we have ¹

$$\sum_{i \in I} (A_i \cap A') = (\sum_{i \in I} A_i) \cap A'.$$

- (Generator) \mathcal{C} has a generator, i.e., there exists an object $G \in \mathcal{C}$ such that for every object $A \in \mathcal{C}$ and every subobject $B \hookrightarrow A$ with $B \neq A$, there exists a morphism $G \to A$ that does not factor through B.
 - (1) Show that an object $A \in \mathcal{C}$ is injective if and only if for every subobject G' of the generator G, every morphism $G' \to A$ can be extended to a morphism $G \to A$.
 - (2) For $A \in \mathcal{C}$, let I be the set of all morphisms u_i from subobjects G_i of G to A. Consider the morphism

$$\varphi: \coprod_{i\in I} G_i \to A \times (\coprod_{i\in I} G),$$

- where the first factor is $u_i: G_i \to A$ and the second is induced by the monomorphisms $G_i \hookrightarrow G$. Let $M_1(A) = \operatorname{coker}(\varphi)$. Show that the map $A \to M_1(A)$ given by the natural map $A \to A \times (\coprod_{i \in I} G)$ composed with the quotient map to $M_1(A)$ is a monomorphism.
- (3) Set $M_i(A) = M_1(M_{i-1}(A))$ and use transfinite induction to define $M_{\alpha}(A)$ for all ordinals α . Show that if Ω is the smallest infinite ordinal that is larger than the set of subobjects of G, then $M_{\Omega}(A)$ is an injective object. Conclude that \mathcal{C} admits enough injectives.

One can show that the category of sheaves of Abelian groups on a small site, i.e. on a small category with a Grothendieck topology as defined in Exercise 6 in AG 1 is a Grothendieck category. In particular, there is a notion of sheaf cohomology on every such site.

¹Here, a subobject B of A is an object B together with a monomorphism $B \to A$, $\sum_{i \in I} A_i$ is the image of the natural map $\coprod_{i \in I} A_i \to A$, and, for subobjects B and C of A, $B \cap C$ is the kernel of $A \to A/B \times A/C$.