Math 110A Oxford College of Emory University Fall 2012

Instructors: Dr. Ricardo Conceição & Dr. Fang Chen
Office: Pierce Hall 121 & Pierce Hall 120A
Email: rconcei@emory.edu & fchen2@emory.edu

Phone: 4-4657 & 4-4639 Office Hours: To be announced

Course Content: Mathematics 110A provides students with an integrative approach to Calculus I that includes the necessary precalculus topics: Review of algebra; functions; trigonometric, inverse trigonometric, logarithmic and exponential functions. Calculus topics include limits, continuity, the definition of the derivative, differentiation, extrema, the Intermediate Value Theorem, antiderivatives and optimization problems.

Textbook: James Stewart, Single Variable Calculus: Early transcendentals, 7th Edition. Try to read the book before coming to class: believe us, this is a very useful habit.

Course Goals: Upon successful completion of Math 110A students will: 1. Be able to perform complex algebraic manipulations. 2. Be able to graph and compute with algebraic and transcendental functions. 3. Understand conceptually limits and their relationship to the graph of a function. 4. Understand conceptually the derivative and its relationship to the concept of "rate of change". 5. Be able to calculate derivatives and evaluate limits. 6. Be well-prepared for Math 111 and 119.

Classes: The student is expected to attend all classes since the student is responsible for work covered and any announcements made in class. An inordinate amount of absences will be handled in accordance with school policies. In addition to the regular class meetings, there will also be several tests scheduled on Tuesday or Thursday mornings.

Homework: Homework is assigned almost every day of class. These exercises usually will not be collected but are for the benefit of the student. Students may ask questions, and quizzes based on the homework may be given. The instructor may ask to see a student's homework.

Students will need to spend at least 2 productive hours of study for each class session, or about 6 to 8 hours per week. Students should not get behind or wait until the night before a test to study. Sleep is important prior to tests.

Quizzes: In-class quizzes will be given and most of them will be unannounced. The student must be present in class to take each quiz. There will be 12 quizzes of which the highest 10 will be counted.

Gateway Exams: In order to pass this course the student must pass an examination in algebra, graphs and transcendental (trigonometric, logarithmic and exponential) functions.

See the calendar for the schedule. The student will be allowed three opportunities to pass it. Each test will be different but very similar to the original test.

- 8:00 am Thursday, October 25
- 8:00 am Thursday, November 1
- 8:00 am Thursday, November 29

Projects: Two group projects will be assigned during the semester. Students will work in groups of two or three people.

Tests: Four major tests will be given. All of the tests will be comprehensive. Calculators will **not** be allowed on tests. Each student is expected to take tests at the scheduled times. Any conflicts or problems will be

handled on an individual basis. If the excuse is considered legitimate by your instructor, arrangements will be made to take a test on the afternoon **prior to** to the testing time. Emergencies will be handled on an individual basis. Documented special accommodations for test-taking must be cleared several days prior to the test date so that appropriate arrangements can be made.

The tests will be given on the following days:

- 8:00 am, Tuesday, September 25 Test 1
- 8:00 am, Thursday, October 18 Test 2
- 8:00 am, Thursday, November 15 Test 3
- 8:00 am, Thursday, December 6 Test 4

Final Exam: A cumulative final exam will be given at the time scheduled by the Registrar.

Grading: Evaluation will be based on the following written work:

Quizzes	100 points
Gateway Exams	100 points
Projects	100 points
Tests (4 @ 100 pts)	400 points
Final	200 points
Total	900 points

In general, letter grades will be determined as follows:

A: 91% and above; B: 81 - 90%; C: 71 - 80%; D: 61 - 70%; F: less than 60%

Grades of A-, B+, B-, C+, C-, D+ may be assigned for percentages near the above cut-offs.

Blackboard Website: There is a course website on the Blackboard: http://classes.emory.edu. Homework assignments, extra handouts, announcements, scheduled SI sessions, questions related to problems, and other material can be posted at any time. Students are responsible for checking the site every day and obtaining related information.

Supplemental Instruction/Help Sessions/Tutoring/Study groups: The supplemental instruction (SI) leaders will be announced. They schedule study sessions to review calculus concepts, to help students discover how best to study calculus. The SI is a student who has taken the course (or a similar course) before, has a good understanding of the material (but probably not as complete as the instructor), and knows how to be a successful student. Check the Blackboard for scheduled sessions.

Help sessions will be scheduled as there is demand for them. Attendance is optional.

Contact Mr. Paul Oser, Director of the Mathematics Center for tutoring hours, most likely Mondays through Thursdays, 3–6 pm.

Study groups, organized by students are highly recommended.

Written Style: Thoughts are expressed by sentences: just so in mathematics. Pay attention to your textbook: it is written in sentences. Your written work must be in complete sentences. Note "1+1=2" is a complete sentence (it has a subject "1+1", verb "=" and predicate "2"). Use mathematical symbols wherever appropriate. Your work also needs to be neat and orderly to be intelligible. See the "Calculus Style Guide" on Blackboard.

Tips for Success: Calculus is hard, but it can be made easier by intelligent and efficient study habits. Gauss said the purpose of calculation is insight. Insight is an understanding into why things work the way they do. This should be the goal of working out problems. Know **why** each step is correct and **why** each

step was the right step to take. This is more than knowing that each step is correct.

Although the homework exercises are not graded, it is important for the success of the student that they be completed as soon after covering the material as possible. Calculators may be used when appropriate, but the student should keep in mind that they are not permitted on the tests. While collaboration is encouraged, each student should be sure that he or she ultimately can *solve problems unaided by notes*, the textbook, a calculator, or other people.

Practice good style on homework. A clean style helps to clean up messy thinking.

In general the student will need to study at least six good hours per week exclusive of the time spent on projects and review for tests.

Tests are performances, similar to those by athletes, musicians, and dancers. Prepare for them in similar ways. Begin practicing for them weeks in advance.

The topics we will cover are very useful and fundamental in the sciences, business and engineering, among other fields, and we want you all to succeed. However, success in the course will require your diligence and hard work. Be sure to keep up with the assignments and to attend class. Talk to your instructors as soon as you are having problems - don't wait until the week of a test. In addition to learning quantitative skills, it is important that you develop learning skills and study habits that will help you in calculus, in other courses, and in life beyond Oxford College.

You may always ask the instructors any question about an assignment. They will answer at their discretion.

Good luck and we hope this will be an enjoyable experience for all of you!

Student work submitted as part of this course may be reviewed by Oxford College and Emory College faculty and staff for the purposes of improving instruction and enhancing Emory education.

HONOR CODE: THE HONOR CODE OF OXFORD COLLEGE APPLIES TO ALL WORK SUBMITTED FOR CREDIT IN THIS COURSE. TO RECEIVE CREDIT FOR WORK SUBMITTED YOU MUST PLACE YOUR NAME ON IT. BY PLACING YOUR NAME ON SUCH WORK, YOU PLEDGE THAT THE WORK HAS BEEN DONE IN ACCORDANCE WITH THE GIVEN INSTRUCTIONS AND THAT YOU HAVE WITNESSED NO HONOR CODE VIOLATIONS IN THE CONDUCT OF THE ASSIGNMENT.

Tentative Calendar:

Monday	Tuesday	Wednesday	Thursday	Friday
Aug 27th	Aug 28th	Aug 29th <u>1</u>	Aug 30th	Aug 31st <u>2</u>
		$\underline{\S{\mathbf{APC}}^1}$		§"Handout A" ²
		Introduction: Optimization and calculus		Algebra Review
Sep 3rd	Sep 4th	Sep 5th <u>3</u>	Sep 6th	Sep 7th <u>4</u>
No class Labor day holiday		§1.2 Quadratic, polynomial and rational functions		$rac{\S 1.1}{ ext{Piecewise}}$ defined functions
Sep 10th <u>5</u>	Sep 11th	Sep 12th <u>6</u>	Sep 13th	Sep 14th <u>7</u>
§1.3 Combining functions		§ NTF ³ A Trigonometric Functions: definition and basic graphs		§NTF B Trigonometric Functions: identities
Sep 17th <u>8</u>	Sep 18th	Sep 19th <u>9</u>	Sep 20th	Sep 21st <u>10</u>
§NTF C		$\S{\mathbf{NTF}}\ {\mathbf{D}}$		$\underline{\S{f Notes}}$
Trigonometric Functions: graphs		Trigonometric Functions: equations		Binomial Theorem
Sep 24th <u>11</u>	Sep 25th	Sep 26th <u>12</u>	Sep 27th	Sep 28th <u>13</u>
REVIEW	Test 1	$\frac{\S 2.2}{\text{The limit of a}}$ function		$rac{\S 2.3}{ ext{Calculating}}$ limits
Oct 1st <u>14</u>	Oct 2nd	Oct 3rd <u>15</u>	Oct 4th	Oct 5th <u>16</u>
<u>§2.2</u>		$\S 2.5$		$\S 2.5$
Infinite limits		Continuity		Continuity
Oct 8th <u>17</u>	Oct 9th	Oct 10th <u>18</u>	Oct 11th	Oct 12th <u>19</u>
§NTF F Exponential and logarithmic functions		§NTF G Exponential and logarithmic equations		Review of Trigonometry

 $^{^1\}mathrm{See}$ section "A preview of Calculus" in the textbook.

 $^{^2{\}rm See}$ Handout on Algebra on Blackboard

 $^{^3\}mathrm{See}$ "Notes on Transcendental functions" on Blackboard.

Monday	Tuesday	Wednesday	Thursday	Friday
Oct 15th	Oct 16th	Oct 17th <u>20</u>	Oct 18th	Oct 19th <u>21</u>
$Midsemester \ Break$	$Midsemester\ Break$	REVIEW	Test 2	Last day for dropping. $\frac{\S 2.6}{\text{Limits at}}$ infinity
Oct 22nd <u>22</u>	Oct 23rd	Oct 24th <u>23</u>	Oct 25th	Oct 26th <u>24</u>
§2.7 Derivative		§2.8 Derivative as a function	8:00 Gateway Exam First opportunity	§3.1 Derivative of polynomials and exponential Functions
Oct 29th <u>25</u>	Oct 30th	Oct 31st <u>26</u>	Nov 1st	Nov 2nd <u>27</u>
§3.2 The product and quotient rules		§3.3 Derivatives of trigonometric functions	8:00 Gateway Exam Second opportunity	§3.4 The chain Rule
Nov 5th <u>28</u>	Nov 6th	Nov 7th <u>29</u>	Nov 8th	Nov 9th <u>30</u>
§3.6 Derivative of logarithmic functions		Working with derivatives		§4.1 Maximum and minimum values
Nov 12th <u>31</u>	Nov 13th	Nov 14th <u>32</u>	Nov 15th	Nov 16th <u>33</u>
$\frac{\S 4.3}{\text{Increasing &}}$ Decreasing test		REVIEW	8:00 Test 3	§NTF E Inverse trigonometric functions
Nov 19th <u>34</u>	Nov 20th	Nov 21st	Nov 22nd	Nov 23rd
$\frac{\S 4.7}{\text{Optimization}}$ problems		$Thanks giving \ recess$	$Thanks giving \ recess$	$Thanks giving \\ recess$
Nov 26th <u>35</u>	Nov 27th	Nov 28th <u>36</u>	Nov 29th	Nov 30th <u>37</u>
§4.9 Antiderivatives		$\frac{\S 5.5 \; (1 \mathrm{st \; part})}{\mathrm{Antiderivatives}}$	8:00 Gateway Exam Last opportunity	§5.5 (1st part) Antiderivatives
Dec 3rd 38	Dec 4th	Dec 5th <u>39</u>	Dec 6th	Dec 7th <u>40</u>
$\frac{\S Notes}{Summation}$		REVIEW	8:00 Test 4	Review limits

Monday	Tuesday	Wednesday	Thursday	Friday
Dec 10th <u>41</u>	Dec 11th	Dec 12th	Dec 13th	Dec 14th
Review Differentiation	$Last\ day\ of \ classes$	Reading Day		