2024.12.21 Homework

- 1. 设 $\varphi \in \mathcal{L}(V,U)$,若 U' 为 U 的子空间,定义 $\varphi^{-1}(U') = \{\alpha \in V \mid \varphi(\alpha) \in U'\}$,求证:
 - (i) 若对任意 U 的子空间 U_1, U_2 ,都有 $\varphi^{-1}(U_1 + U_2) = \varphi^{-1}(U_1) + \varphi^{-1}(U_2)$,则 φ 是满射;
 - (ii) 进一步,对满足 $U_1 + U_2 = U_1 \oplus U_2$ 的任意 U 的子空间 U_1, U_2 , $\varphi^{-1}(U_1 \oplus U_2) = \varphi^{-1}(U_1) \oplus \varphi^{-1}(U_2)$ 成立 的充分必要条件为 φ 是同构映射。

2. 设 $\dim V=n,\ \varphi,\theta\in \mathrm{End}_F(V)$ 满足 $\dim \mathrm{Im}\,\varphi+\dim \mathrm{Im}\,\theta\leq n.$ 证明:存在 V 的可逆线性变换 $\sigma,$ 使得 $\varphi\sigma\theta=\mathscr{O}.$

3. 设 φ 是 n 维线性空间 V 的线性变换,i 是任意正整数,证明:

$$\dim(\operatorname{Im}\varphi^{i-1}\cap\operatorname{Ker}\varphi)=\dim(\operatorname{Ker}\varphi^{i})-\dim(\operatorname{Ker}\varphi^{i-1}).$$