The greating / mpo Atv from skream. neighbors import kneighorschassifier]. Vallaes. J. Values. 3114 (X. SHape X. ZRape) KMEich PorClassifies (V-Veichsporz=12) Knn. 41+(x,y) I redictions = Iran = predict (x-new) Plint (Dudiction: 2 4' - format (Predictions)) + 14 ining se + Split data Hesting Host LP from striegn. model - selection import +1ain-test-split X-+1010 = X-test/y-+1010/y-test= +1010-test-split (xx 1+est-size = 93, (andom-state=21, strotifx=x) K nn = KNeigRbols Classifier (n-neigRbols) = 6) KNA. Lit (X-train 1)x - train) Ilin+ (Kon . Score (X - 403+1 X - 403+) Ls accisiacy

· Underfiting
Lo Rappead WRAnmar Bine learning lark completed

· Orectetival

test-acculacion = 2 9
test-acculacion = 2 9
neighbors = np.anonge(1,26)
for neighbor in neighbors:

KAN = KNeig RDOIR(Passifier (n-neig RDOIS=neighbor)

+rain - acrucarius Ineighbor 1 = KAN, 21012 (X-train / + train

+rest - accurarius [neighbor] KM. 51012 (X-test / x-test)

Closs validation metrode

CA (V = 5.) tost training

SPIH2 Folded

Splite &

C> K fold

(2)

from sklean, mode - selection import Tross-val - scoe,) (Fold Kf = XFold (n-spii+= 6, stabfle=Tine, landom-state=42 rey = Linear Regussion! (1 - LOSD + Gross - Nay - Scole (red , X/X, CA = K+) @ Regularized regression Co a way to escape overfeting C> Regulazation: Penalize la le coefficient 1) Ridge regression 20 SS JUNCHIONE OLZIUSS JUNCHION XX Bruslige Colliciente HADOCONCMETEC balameter trat noin to obtimit si made (loss validation X=0=ULC from sisteaux . linear_model import Ridge scolus = [] alpRa in [0,1/1,0,10,00,00,0]: (idge Ridge (alpRa = alpRa) (idge. fit (x-train, x=train) > pred = 13 dde - Siegict (x - gest)

Scores append (ridge. score (x-treat /x-trest)) Print (scolus) Lusso regression Loss fine = 02\$ loss fine + 0 1/2 (ui) SRUNK the coldicinted of less important Leature to Ecro Notro => selected by lusco Logistis regicession > (o, 1) reacification アンツァーハ Co from skleain. Linec-model import Logistic Regression Logra = Logstics Regression() X_+(ain)X_+(st) x_+(an) x_+(st=+(ain-+est-spli (X1) 1+15+_ size = 9/3, landom-stute=42) Logice = fi+(x-+iain, y-+iain) >- And = lodind . Dic quet(x-tist) Predicting Protorbilities x-pred_probs = logged. predict_proba (x-+

Frint(x-pred-probs 60)

Scanned with
CS CamScanner

+ Input layer X + Hiden layer X= Lxn - xn]-stapus + vectory W= Lms, __weng > Weigh rector 2 -> weakted sun -> action tion function sigmoid - s (o) - (lassification f(2) = 1/10-2 La wood do (Plobubilitie Cs for Riden luxers (ReLu) MILIN +(5) = max (0/2) cs contielize as softmar -> multy (luss => conver) -> 20000 fizi)= ezi

olward Plopagation Z(0) = w(0) A(0-1)+ b(1) $A^{(l)} = f(z^{(l)})$ x = f(m12) A(1-1) P(6)] cs floss function (E1101) 2) closs - Entropy 1= - [x- log(4) Cs Gadint Calculation each (wij - weight (SGD) -> Stockatic Fladint Decent W:= W- a Sh a: learning for Al

1. Supervised Learning (Labeled Data)

Used when we have input-output pairs and want to train a model to map inputs to outputs.

Use Case	Machine Learning Algorithm	Deep Learning Model
Spam Detection (Email)	Logistic Regression, Naïve Bayes	Recurrent Neural Network (RNN)
Fraud Detection (Banking)	Decision Trees, Random Forest	Deep Neural Network (DNN)
Image Classification	SVM, Random Forest	Convolutional Neural Network (CNN)
Sentiment Analysis	Naïve Bayes, SVM	Long Short-Term Memory (LSTM)
Stock Price Prediction	Linear Regression	LSTM, Transformer Networks

2. Unsupervised Learning (No Labeled Data)

Used when we want to find patterns and structures in data without predefined labels.

Use Case	Machine Learning Algorithm	Deep Learning Model
Customer Segmentation	K-Means, DBSCAN	Autoencoders
Anomaly Detection	Isolation Forest, One-Class SVM	Variational Autoencoder (VAE)
Topic Modeling (Text)	Latent Dirichlet Allocation	Transformer-based Models (BERT)
Image Clustering	K-Means, PCA	CNN-based Feature Extraction

3. Reinforcement Learning (Agent-Based Learning)

Used in decision-making scenarios where an agent learns by interacting with an environment.

Use Case	Algorithm	
Game AI (Chess, Go)	Deep Q-Learning (DQN), AlphaGo	
Robotics (Path Planning)	Policy Gradient, PPO, A3C	
Self-Driving Cars	Deep Deterministic Policy Gradient (DDPG)	

Choosing the Right Algorithm for ML & DL

- Small data? Use Machine Learning (Decision Trees, SVM, Logistic Regression).
- Big data? Use Deep Learning (CNNs, RNNs, Transformers).
- Text-related? Use NLP models (LSTMs, BERT, GPT).
- Real-time decision-making? Use Reinforcement Learning.