21W-COMSCIM51A-1 Homework 10

CHARLES ZHANG

TOTAL POINTS

90 / 90

QUESTION 1

140 pts

1.1 1a 10 / 10

√ - 0 pts Correct (OK to just combine them together)

![Screen_Shot_2021-03-

12_at_7.23.57_PM.png](/files/1478f790-65da-4689-

b95e-4f62905bad9d)

- 2 pts Minor error

- 4 pts Major error

- 10 pts Blank

1.2 1b 15 / 15

√ - 0 pts Correct

![Screen_Shot_2021-03-

 $20_at_2.34.46_PM.png] \hbox{(/files/67be1f7a-2b8a-49e1-1)} \\$

81df-106e48009103)

- 3 pts Minor error in S

- 5 pts Major error in S

- 7.5 pts Blank in S

- 3 pts Minor error in O

- 5 pts Major error in O

- 7.5 pts Blank in O

1.3 1C 15 / 15

√ - 0 pts Correct

![Screen_Shot_2021-03-

13_at_10.35.47_PM.png](/files/8b549c57-5d77-

4dd2-ab43-c0901bdc26f5)

- 2 pts Minor error in m2

- 3 pts Major error in m2

- 5 pts Blank in m2

- 2 pts Minor error in m1

- 3 pts Major error in m1

- 5 pts Blank in m1

- 2 pts Minor error in m0

- 3 pts Major error in m0

- 5 pts Blank in m0

QUESTION 2

2 2 10 / 10

√ - 0 pts Correct

![Screen_Shot_2021-03-

12_at_7.34.59_PM.png](/files/d7d53deb-f47e-4221-

8931-c94f7c7b98bc)

- 3 pts Missing the output ($x>y == G/z_G$, x<y ==

 S/z_S , $x = y == E/z_E$)

- 3 pts Other minor error

- 4 pts Major error

- 10 pts Blank

QUESTION 3

3 3 10 / 10

√ - 0 pts Correct

![Screen_Shot_2021-03-

12_at_7.37.07_PM.png](/files/65a7efa8-aa9a-4415-

b14f-fc781c38f9e4)

- 3 pts Wrong direction (i.e. NOT gate on the left-

most pin)

- **5 pts** Wrong decoding (other than the wrong

direction)

- 10 pts Blank

QUESTION 4

4 4 10 / 10

√ - 0 pts Correct

![4.PNG](/files/1cc3c429-5b25-4aad-85cd-

03782849cee3)

- 3 pts Detected pattern in opposite direction

- 5 pts Detected wrong pattern

- 10 pts Blank

QUESTION 5

5 5 10 / 10

√ - 0 pts Correct

![5.PNG](/files/4181ba80-bc7d-442e-891c-

5d8301df77cb)

S0' is not required as input to AND gate

- 0.5 pts X should also go into the AND gate
- 1 pts Minor error
- 2 pts Error
- 3 pts Wrong input into LD
- 3 pts Wrong input into I3-I1
- 10 pts Blank

QUESTION 6

6610/10

√ - 0 pts Correct

![6.PNG](/files/b5c7081e-159d-4089-aad3-

670ddcb156e0)

Only one of S2' or S3' is required.

- 0.5 pts X should also go into the AND gate
- 3 pts Missing either S2' or S3' (the counter goes

back to 14 when 15 (11 **1 1**) is reached)

- 3 pts Wrong input into LD
- 3 pts Wrong input into 13-10
- 10 pts Blank

CS M51A, Winter 2021, Assignment 10 (Total Mark: 90 points, 9%)

Due: Wed Mar 17rd, 10:00 AM Pacific Time Student Name: Charles Zhang Student ID: 305413659

Note: You must complete the assignments entirely on your own,

without discussing with others.

1. (a) (10 Points) Using only full adders, design an system that adds two 3-bit 2's complement numbers, $x = (x_2, x_1, x_0)$ and $y = (y_2, y_1, y_0)$, and outputs the sum $z = (z_2, z_1, z_0)$. Assume that the addition will not overflow and label the inputs and outputs of the system.

1.1 1a 10 / 10

 \checkmark - 0 pts Correct (OK to just combine them together)

 $! [Screen_Shot_2021-03-12_at_7.23.57_PM.png] (/files/1478f790-65da-4689-b95e-4f62905bad9d) \\$

- 2 pts Minor error
- 4 pts Major error
- 10 pts Blank

(b) (15 Points) Given 2's complement numbers $x = (x_2, x_1, x_0)$, $y = (y_2, y_1, y_0)$, and the sum $z = (z_2, z_1, z_0)$ from part (a), design a system that has two outputs, s and o. The output s = 1 when the sign of z is negative, and the output o = 1 if the addition from part (a) has overflown. You may use AND/OR/NOT gates in your design.

(c) (15 Points) Given a two's complement number $z = (z_2, z_1, z_0)$ from part (a), design a system that outputs $m = (m_2, m_1, m_0)$, where m is the magnitude of z. You may use AND/OR/NOT gates in your design.

₹2	21	20	, Nz	m,	~0	
6	0	0	10	0	0	
0	0	•	0	0	1	
0	1	0	0	t	0	
0	ı	t	0	L	1	
1	0	0	1	0	0	
1	0	1	0	(1	
t	1	0	0	1	0	
1	1	1	0	0	-1	
		•				

1.2 1b 15 / 15

√ - 0 pts Correct

 $! [Screen_Shot_2021-03-20_at_2.34.46_PM.png] (/files/67be1f7a-2b8a-49e1-81df-106e48009103) \\$

- 3 pts Minor error in S
- **5 pts** Major error in S
- 7.5 pts Blank in S
- 3 pts Minor error in O
- **5 pts** Major error in O
- 7.5 pts Blank in O

(b) (15 Points) Given 2's complement numbers $x = (x_2, x_1, x_0)$, $y = (y_2, y_1, y_0)$, and the sum $z = (z_2, z_1, z_0)$ from part (a), design a system that has two outputs, s and o. The output s = 1 when the sign of z is negative, and the output o = 1 if the addition from part (a) has overflown. You may use AND/OR/NOT gates in your design.

(c) (15 Points) Given a two's complement number $z = (z_2, z_1, z_0)$ from part (a), design a system that outputs $m = (m_2, m_1, m_0)$, where m is the magnitude of z. You may use AND/OR/NOT gates in your design.

₹2	21	20	, Nz	m,	~0	
6	0	0	10	0	0	
0	0	•	0	0	1	
0	1	0	0	t	0	
0	ı	t	0	L	1	
1	0	0	1	0	0	
1	0	1	0	(1	
t	1	0	0	1	0	
1	1	1	0	0	-1	
		•				

1.3 1C 15 / 15

√ - 0 pts Correct

 $! [Screen_Shot_2021-03-13_at_10.35.47_PM.png] (/files/8b549c57-5d77-4dd2-ab43-c0901bdc26f5) \\$

- 2 pts Minor error in m2
- 3 pts Major error in m2
- 5 pts Blank in m2
- 2 pts Minor error in m1
- 3 pts Major error in m1
- 5 pts Blank in m1
- 2 pts Minor error in m0
- 3 pts Major error in m0
- 5 pts Blank in m0

2. (10 Points) Design a 16-bit comparator using 4-bit comparators only.

3. (10 Points) Design a pattern recognizer that outputs 1 if pattern 0111 is detected. You may use serial-in/parallel-out shift register and AND/OR/NOT gates in your design. The shifting direction should be to the right.

4. (10 Points) Design a pattern recognizer that outputs 1 if pattern 001011 is detected. You may use serial-in/parallel-out shift register and AND/OR/NOT gates in your design. The shifting direction should be to the left.

2 2 10 / 10

√ - 0 pts Correct

![Screen_Shot_2021-03-12_at_7.34.59_PM.png](/files/d7d53deb-f47e-4221-8931-c94f7c7b98bc)

- 3 pts Missing the output (x>y == G/z_G , x<y == S/z_S , x = y == E/z_E)
- 3 pts Other minor error
- 4 pts Major error
- 10 pts Blank

2. (10 Points) Design a 16-bit comparator using 4-bit comparators only.

3. (10 Points) Design a pattern recognizer that outputs 1 if pattern 0111 is detected. You may use serial-in/parallel-out shift register and AND/OR/NOT gates in your design. The shifting direction should be to the right.

4. (10 Points) Design a pattern recognizer that outputs 1 if pattern 001011 is detected. You may use serial-in/parallel-out shift register and AND/OR/NOT gates in your design. The shifting direction should be to the left.

3 3 10 / 10

√ - 0 pts Correct

![Screen_Shot_2021-03-12_at_7.37.07_PM.png](/files/65a7efa8-aa9a-4415-b14f-fc781c38f9e4)

- 3 pts Wrong direction (i.e. NOT gate on the left-most pin)
- **5 pts** Wrong decoding (other than the wrong direction)
- 10 pts Blank

2. (10 Points) Design a 16-bit comparator using 4-bit comparators only.

3. (10 Points) Design a pattern recognizer that outputs 1 if pattern 0111 is detected. You may use serial-in/parallel-out shift register and AND/OR/NOT gates in your design. The shifting direction should be to the right.

4. (10 Points) Design a pattern recognizer that outputs 1 if pattern 001011 is detected. You may use serial-in/parallel-out shift register and AND/OR/NOT gates in your design. The shifting direction should be to the left.

4 4 10 / 10

√ - 0 pts Correct

![4.PNG](/files/1cc3c429-5b25-4aad-85cd-03782849cee3)

- 3 pts Detected pattern in opposite direction
- **5 pts** Detected wrong pattern
- 10 pts Blank

5. (10 Points) Using a modulo-16 counter and AND/OR/NOT gates, design a counter that counts from 3 to 14. -> || 10

6. (10 Points) Using a modulo-16 counter and AND/OR/NOT gates, design a counter that outputs the following count: 14, 15, 0, 1, 2, 3, 14, 15, 0, 1, 2, 3, 14, 15, 0 ...

5 5 10 / 10

√ - 0 pts Correct

![5.PNG](/files/4181ba80-bc7d-442e-891c-5d8301df77cb)

S0' is not required as input to AND gate

- 0.5 pts X should also go into the AND gate
- 1 pts Minor error
- 2 pts Error
- 3 pts Wrong input into LD
- 3 pts Wrong input into I3-I1
- 10 pts Blank

5. (10 Points) Using a modulo-16 counter and AND/OR/NOT gates, design a counter that counts from 3 to 14. -> || 10

6. (10 Points) Using a modulo-16 counter and AND/OR/NOT gates, design a counter that outputs the following count: 14, 15, 0, 1, 2, 3, 14, 15, 0, 1, 2, 3, 14, 15, 0 ...

6610/10

√ - 0 pts Correct

![6.PNG](/files/b5c7081e-159d-4089-aad3-670ddcb156e0)

Only one of S2' or S3' is required.

- 0.5 pts X should also go into the AND gate
- 3 pts Missing either S2' or S3' (the counter goes back to 14 when 15 (11 **1 1**) is reached)
- 3 pts Wrong input into LD
- 3 pts Wrong input into 13-10
- 10 pts Blank