ERRATUM TO: "APPROXIMATIONS OF STRONGLY CONTINUOUS FAMILIES OF UNBOUNDED SELF-ADJOINT OPERATORS"

JONATHAN BEN-ARTZI AND THOMAS HOLDING

ABSTRACT. A gap in the proof of the original article is fixed. As a result, the formulation of the main theorem is modified accordingly.

Acknowledgement: The authors are grateful to Nathanaël Berestycki and Martin Hairer for pointing out the gap in the original proof.

Date: May 8, 2017.

1. Introduction

The original article [BAH16] dealt with finite-dimensional symmetric approximations of families of self-adjoint operators of the form

$$\mathcal{M}^{\lambda} = \mathcal{A}^{\lambda} + \mathcal{K}^{\lambda} = \begin{bmatrix} -\Delta + \alpha(\lambda) & 0\\ 0 & \Delta - \alpha(\lambda) \end{bmatrix} + \begin{bmatrix} \mathcal{K}^{\lambda}_{++} & \mathcal{K}^{\lambda}_{+-}\\ \mathcal{K}^{\lambda}_{-+} & \mathcal{K}^{\lambda}_{--} \end{bmatrix}, \quad \lambda \in [0, 1]$$
 (1.1)

acting in an appropriate subspace of $L^2(\mathbb{R}^d) \oplus L^2(\mathbb{R}^d)$, where $\{\mathcal{K}^{\lambda}\}_{{\lambda} \in [0,1]}$ is a bounded, symmetric and strongly continuous family and $\alpha({\lambda}) > \alpha > 1$ is continuous. The spectrum of \mathcal{M}^{λ} was discretised by adding a potential, leading us to define

$$\mathcal{M}_{\varepsilon}^{\lambda} = \mathcal{A}^{\lambda} + \mathcal{K}^{\lambda} + \varepsilon \mathcal{W}^{\lambda} \tag{1.2}$$

which is assumed to have a compact resolvent for all $\varepsilon > 0$ (the precise details are omitted in this note). Finally, an $n \times n$ matrix $\widetilde{\mathcal{M}}_{\varepsilon,n}^{\lambda}$ was defined by restricting $\mathcal{M}_{\varepsilon}^{\lambda}$ to a subspace spanned by n eigenfunctions of $\mathcal{A}^{\lambda} + \varepsilon \mathcal{W}^{\lambda}$ (chosen in an appropriate way). The main result – Theorem 3 – asserted that $\widetilde{\mathcal{M}}_{\varepsilon,n}^{\lambda}$ recover the spectrum of \mathcal{M}^{λ} in (-1,1) and moreover that they converge uniformly in λ to the spectrum of \mathcal{M}^{λ} on compact subsets of (-1,1) as $\varepsilon \to 0$ and $n \to \infty$.

The purpose of this erratum is to correct this statement which may fail due to the possible appearance of eigenvalues entering (-1,1) at the boundary (in other words, we lack upper-semicontinuity).

The possible failure of the original statement stems from a gap in the proof: while the theorem treats the convergence of spectra in the *open* interval (-1,1), the crucial compactness result meant to show upper-semicontinuity (Proposition 18) deals with the *closed* interval [-1,1]. We solve this problem by considering (roughly speaking) a *coarser topology*. The approach of the original article was to think of the spectrum as a subset of the real line and measure distance according to the Hausdorff distance

$$d_H(X,Y) := \max \left(\sup_{y \in Y} \inf_{x \in X} |x - y|, \sup_{x \in X} \inf_{y \in Y} |x - y| \right), \qquad X, Y \subset \mathbb{R}.$$

Instead, we think of the spectrum as a measure (counting multiplicities) and we assess convergence in terms of weak convergence of measures. We recall that a sequence of finite Borel measures (on some measure space \mathcal{X}) μ_n is said to converge to a measure μ weakly

 $(\mu_n \rightharpoonup \mu)$ if $\int_{\mathcal{X}} f \, d\mu_n \to \int_{\mathcal{X}} f \, d\mu$ for any f that is bounded and continuous. The space of finite positive Borel measures equipped with the topology of weak convergence is metrisable, for example with the bounded Lipschitz distance

$$d_{BL}(\mu,\nu) := \sup_{\|\varphi\|_{\mathrm{Lip}} \le 1, |\varphi| \le 1} \int \varphi \,\mathrm{d}(\mu - \nu).$$

2. Reformulating the main theorem

In the original article we studied continuity properties (in the sense of the Hausdorff distance) of the two set-valued maps

$$\Sigma : [0,1] \times [0,\varepsilon^*] \to (\text{closed subsets of } (-1,1), d_H)$$
$$\Sigma(\lambda,\varepsilon) = (-1,1) \cap \operatorname{sp}(\mathcal{M}_{\varepsilon}^{\lambda})$$

and

$$\Sigma_{\varepsilon} : [0,1] \times \mathbb{N} \to (\text{closed subsets of } (-1,1), d_H)$$

$$\Sigma_{\varepsilon}(\lambda, n) = (-1,1) \cap \operatorname{sp}(\widetilde{\mathcal{M}}_{\varepsilon,n}^{\lambda}).$$

Instead, for $\lambda \in [0,1]$, $\varepsilon \geq 0$ and $n \in \mathbb{N}$ we define the measures (where we always take multiplicities into account!)

$$\nu_{\lambda,\varepsilon} = \sum_{x \in \operatorname{sp}_{\operatorname{DD}}(\mathcal{M}_{\varepsilon}^{\lambda}) \setminus \operatorname{sp}_{\operatorname{ess}}(\mathcal{M}_{\varepsilon}^{\lambda})} \delta_{x}$$

and for any $\varepsilon > 0$ the measures

$$\widetilde{\nu}_{\lambda,\varepsilon,n} = \sum_{x \in \operatorname{sp}(\widetilde{\mathcal{M}}_{\varepsilon,n}^{\lambda})} \delta_x,$$

where δ_x is the standard Dirac delta function centred at x. Consider a cutoff function φ_{η} satisfying

$$\varphi_{\eta}(x) = \begin{cases} 1 & x \in [-1, 1] \\ 0 & x \in \mathbb{R} \setminus (-1 - \eta, 1 + \eta) \end{cases}, \quad \varphi_{\eta} \in C(\mathbb{R}, [0, 1]), \quad \eta \in (0, \alpha).$$
 (*)

Finally, define the measures

$$\mu_{\lambda,\varepsilon}^{\eta} = \varphi_{\eta} \nu_{\lambda,\varepsilon}$$

and

$$\widetilde{\mu}_{\lambda,\varepsilon,n}^{\eta} = \varphi_{\eta} \widetilde{\nu}_{\lambda,\varepsilon,n}.$$

The main theorem may now be restated as:

Theorem 2.1. The mappings $[0,1] \times [0,\infty) \ni (\lambda,\varepsilon) \mapsto \mu_{\lambda,\varepsilon}^{\eta}$ and $[0,1] \ni \lambda \mapsto \widetilde{\mu}_{\lambda,\varepsilon,n}^{\eta}$ (here $\varepsilon > 0$) are weakly continuous and as $n \to \infty$, $d_{BL}(\widetilde{\mu}_{\lambda,\varepsilon,n}^{\eta}, \mu_{\lambda,\varepsilon}^{\eta}) \to 0$ uniformly in $\lambda \in [0,1]$.

Remark 2.2. Note that the above statement does not depend on the particular choice of cutoff function φ_n , as long as the requirements in (*) are satisfied.

Remark 2.3. From the results of the original paper we know that the following hold:

• Upper-semicontinuity: If $(\lambda_m, \varepsilon_m) \to (\lambda_\infty, \varepsilon_\infty)$, $[-1 - \alpha, 1 + \alpha] \ni \sigma_m \to \sigma_\infty$ and $\mathcal{M}_{\varepsilon_m}^{\lambda_m} u_m = \sigma_m u_m$ where $||u_m|| = 1$ then u_m has a subsequence converging strongly to some $u_\infty \neq 0$ and $\mathcal{M}_{\varepsilon_\infty}^{\lambda_\infty} u_\infty = \sigma_\infty u_\infty$. That is, we have upper-semicontinuity of the spectrum on the closed interval $[-1 - \alpha, 1 + \alpha]$: eigenvalues of $\mathcal{M}_{\varepsilon_m}^{\lambda_m}$ converge to eigenvalues of $\mathcal{M}_{\varepsilon_\infty}^{\lambda_\infty}$.

ERRATUM 3

• Lower-semicontinuity: The spectrum is lower-semicontinuous under strong resolvent perturbations. This implies that near each eigenvalue of $\mathcal{M}_{\varepsilon_{\infty}}^{\lambda_{\infty}}$ there is an eigenvalue of $\mathcal{M}_{\varepsilon_m}^{\lambda_m}$.

Proof. We split the proof into three parts, denoted **I**, **II**, **III**.

I. Claim: along any sequence $(\lambda_m, \varepsilon_m) \to (\lambda_\infty, \varepsilon_\infty)$ it holds that $\mu^{\eta}_{\lambda_m, \varepsilon_m} \rightharpoonup \mu^{\eta}_{\lambda_\infty, \varepsilon_\infty}$ as $m \to \infty$. Indeed, we have to show that for any bounded continuous function f it holds that, as $m \to \infty$,

$$\int f \, \mathrm{d}\mu_{\lambda_m,\varepsilon_m}^{\eta} = \sum_{y \in \mathrm{sp}(\mathcal{M}_{\varepsilon_m}^{\lambda_m})} \varphi_{\eta}(y) f(y) \to \sum_{y \in \mathrm{sp}(\mathcal{M}_{\varepsilon_\infty}^{\lambda_\infty})} \varphi_{\eta}(y) f(y) = \int f \, \mathrm{d}\mu_{\lambda_\infty,\varepsilon_\infty}^{\eta} \quad (2.1)$$

where (as before) multiplicity is taken into account in the summations. Without loss of generality we assume that $f \geq 0$. We know that the spectrum of $\mathcal{M}_{\varepsilon_{\infty}}^{\lambda_{\infty}}$ inside the support of φ_{η} is discrete, consisting of a finite number of eigenvalues, each of finite multiplicity. Let them be $\sigma_1, \ldots, \sigma_M$ of respective multiplicities N_1, \ldots, N_M . We split the proof of (2.1) into two steps.

I1. Claim: $\liminf_{m} \sum_{y \in \operatorname{sp}(\mathcal{M}_{\varepsilon_m}^{\lambda_m})} \varphi_{\eta}(y) f(y) \geq \sum_{y \in \operatorname{sp}(\mathcal{M}_{\varepsilon_{\infty}}^{\lambda_{\infty}})} \varphi_{\eta}(y) f(y)$. By the strong resolvent convergence of $\mathcal{M}_{\varepsilon_m}^{\lambda_m}$ to $\mathcal{M}_{\varepsilon_{\infty}}^{\lambda_{\infty}}$ we know that for any $\delta > 0$ small enough there are only finitely many ms for which $\mathcal{M}_{\varepsilon_m}^{\lambda_m}$ does not have, for each $i=1,\ldots,M$, at least N_i eigenvalues (counting multiplicity!) within δ of σ_i . Thus, by the continuity and non-negativity of $\varphi_{\eta}f$, for any $\varepsilon' > 0$, we may choose δ small enough so that

$$\sum_{y \in \operatorname{sp}(\mathcal{M}_{\varepsilon_m}^{\lambda_m})} \varphi_{\eta}(y) f(y) \ge \sum_{y \in \operatorname{sp}(\mathcal{M}_{\varepsilon_{\infty}}^{\lambda_{\infty}})} \varphi_{\eta}(y) f(y) - \varepsilon'$$

for all but finitely many ms, which completes I1.

I2. Claim: $\limsup_m \sum_{y \in \operatorname{sp}(\mathcal{M}_{\varepsilon_m}^{\lambda_m})} \varphi_{\eta}(y) f(y) \leq \sum_{y \in \operatorname{sp}(\mathcal{M}_{\varepsilon_\infty}^{\lambda_\infty})} \varphi_{\eta}(y) f(y)$. We first claim that for all but finitely many ms we have

$$\#\left(\operatorname{sp}(\mathcal{M}_{\varepsilon_m}^{\lambda_m})\cap[-\eta-1,1+\eta]\right)\leq\#\left(\operatorname{sp}(\mathcal{M}_{\varepsilon_\infty}^{\lambda_\infty})\cap[-\eta-1,1+\eta]\right)=:M',$$

counting multiplicities. Indeed, suppose not. Then there would exist a subsequence (for which we abuse notation and still denote by m) for which $\mathcal{M}_{\varepsilon_m}^{\lambda_m}$ has (at least) M'+1 distinct eigenvalues (counting multiplicity). Say $\sigma_{m,1}, \ldots, \sigma_{m,M'+1}$ with normalised eigenfunctions $u_{m,1},\ldots,u_{m,M'+1}$. By compactness of $[-\eta-1,1+\eta]^{M'+1}$ we may pass to a subsequence (again we retain the index m) on which $\sigma_{m,i} \to \sigma_{\infty,i}$ for each $i = 1, \ldots, M' + 1$ and some $\sigma_{\infty,i}$ s. By the upper-semicontinuity result we may pass to successive subsequences to obtain a final subsequence (still denoted m) for which additionally $u_{m,i} \to u_{\infty,i}$ strongly for each i where $u_{\infty,i}$ is a normalised eigenfunction of $\mathcal{M}_{\varepsilon_{\infty}}^{\lambda_{\infty}}$ with eigenvalue $\sigma_{\infty,i}$. Moreover, as all the operators involved are self-adjoint, for each m the eigenfunctions $\{u_{m,i}\}_{i=1}^{M'+1}$ form an orthonormal system, and as orthonormality is preserved by strong limits, this holds also for $\{u_{\infty,i}\}_{i=1}^{M'+1}$. But this implies that $\mathcal{M}_{\varepsilon_{\infty}}^{\lambda_{\infty}}$ has at least M'+1 eigenvalues in $[-\eta-1,1+\eta]$, a contradiction, proving the claim.

We can now complete the proof of I2. Suppose that the claimed bound fails, then there would exist $\varepsilon' > 0$ and a subsequence (still denoted m) for which

$$\sum_{y \in \operatorname{sp}(\mathcal{M}_{\varepsilon_m}^{\lambda_m})} \varphi_{\eta}(y) f(y) \ge \sum_{y \in \operatorname{sp}(\mathcal{M}_{\varepsilon_\infty}^{\lambda_\infty})} \varphi_{\eta}(y) f(y) + \varepsilon'$$

for each m. Let $M_m = \# \left(\operatorname{sp}(\mathcal{M}_{\varepsilon_m}^{\lambda_m}) \cap [-\eta - 1, 1 + \eta] \right)$. Then by the previous claim we know that for all but finitely many ms we have $M_m \leq M'$. Thus some number $M'' \in \{1, \ldots, M'\}$ is equal to infinitely many of the M_m s. We pass to this subsequence (still denoted m) so

that $M_m = M''$ for every m. Let these eigenvalues be $\{\sigma_{m,i}\}_{i=1}^{M''}$. As in the proof of the claim above, after passing to another subsequence we have $\sigma_{m,i} \to \sigma_{\infty,i}$ for each i where $\{\sigma_{\infty,i}\}_{i=1}^{M''}$ are distinct (counting multiplicity) eigenvalues of $\mathcal{M}_{\varepsilon_{\infty}}^{\lambda_{\infty}}$. Hence, by continuity and non-negativity of $f\varphi_{\eta}$, we have

$$\sum_{y \in \operatorname{sp}(\mathcal{M}_{\epsilon_{\infty}}^{\lambda_{\infty}})} \varphi_{\eta}(y) f(y) \ge \sum_{i=1}^{M''} \varphi_{\eta}(\sigma_{\infty,i}) f(\sigma_{\infty,i})$$

$$= \lim_{m \to \infty} \sum_{i=1}^{M''} \varphi_{\eta}(\sigma_{m,i}) f(\sigma_{m,i}) \ge \sum_{y \in \operatorname{sp}(\mathcal{M}_{\epsilon_{\infty}}^{\lambda_{\infty}})} \varphi_{\eta}(y) f(y) + \varepsilon'$$

where the limit is on the subsequence we obtained. This is a contradiction which completes I2, and the weak convergence $\mu_{\lambda_m,\varepsilon_m}^{\eta} \rightharpoonup \mu_{\lambda_\infty,\varepsilon_\infty}^{\eta}$ follows.

II. Claim: for any $\varepsilon > 0$ and $n \in \mathbb{N}$ fixed and along any sequence $\lambda_m \to \lambda_\infty$ it holds that $\widetilde{\eta}_{\lambda_m,\varepsilon,n} \rightharpoonup \widetilde{\eta}_{\lambda_\infty,\varepsilon,n}$. This may be shown either by the same proof as in I, or we may simply note that the operators involved are finite dimensional matrices whose coefficients vary continuously in λ .

III. Claim: for any fixed $\varepsilon > 0$ we have $d_{BL}(\widetilde{\mu}^{\eta}_{\lambda,\varepsilon,n}, \mu^{\eta}_{\lambda,\varepsilon}) \to 0$ uniformly in $\lambda \in [0,1]$ as $n \to \infty$. The convergence $\widetilde{\mu}^{\eta}_{\lambda_n,\varepsilon,n} \rightharpoonup \mu^{\eta}_{\lambda_\infty,\varepsilon}$ along any sequence $\lambda_n \to \lambda_\infty$ follows from the same proof as in I. Uniform convergence follows from the compactness of [0,1]. Indeed, suppose that this uniform convergence does not hold. Then there would exist $\delta > 0$ such that, for infinitely many ns it holds that $d_{BL}(\widetilde{\mu}^{\eta}_{\lambda_n,\varepsilon,n},\mu^{\eta}_{\lambda_n,\varepsilon}) > \delta$ for some $\lambda_n \in [0,1]$. Extract a subsequence (we abuse notation and retain the index n) for which $\lambda_n \to \lambda_\infty \in [0,1]$. From I we know that for all but finitely many ns we must have $d_{BL}(\mu^{\eta}_{\lambda_n,\varepsilon},\mu^{\eta}_{\lambda_\infty,\varepsilon}) < \delta/2$. Therefore, by the triangle inequality

$$d_{BL}(\widetilde{\mu}_{\lambda_n,\varepsilon,n}^{\eta},\mu_{\lambda_\infty,\varepsilon}^{\eta}) \ge \left| d_{BL}(\widetilde{\mu}_{\lambda_n,\varepsilon,n}^{\eta},\mu_{\lambda_n,\varepsilon}^{\eta}) - d_{BL}(\mu_{\lambda_n,\varepsilon}^{\eta},\mu_{\lambda_\infty,\varepsilon}^{\eta}) \right| > \delta/2$$

for infinitely many ns, a contradiction to the weak convergence $\widetilde{\mu}_{\lambda_n,\varepsilon,n}^{\eta} \rightharpoonup \mu_{\lambda_n,\varepsilon}^{\eta}$.

References

[BAH16] Jonathan Ben-Artzi and Thomas Holding. Approximations of Strongly Continuous Families of Unbounded Self-Adjoint Operators. *Commun. Math. Phys.*, 345(2):615–630, 2016.

School of Mathematics, Cardiff University, Cardiff CF24 4AG, Wales, United Kingdom. E-mail address: Ben-ArtziJ@cardiff.ac.uk

MATHEMATICS INSTITUTE, UNIVERSITY OF WARWICK, GIBBET HILL RD, COVENTRY CV4 7AL, UNITED KINGDOM.

 $E\text{-}mail\ address{:}\ \texttt{T.Holding@warwick.ac.uk}$