

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/003203

International filing date: 25 February 2005 (25.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP
Number: 2004-197877
Filing date: 05 July 2004 (05.07.2004)

Date of receipt at the International Bureau: 12 May 2005 (12.05.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日
Date of Application: 2004年 7月 5日

出願番号
Application Number: 特願 2004-197877

パリ条約による外国への出願
に用いる優先権の主張の基礎
となる出願の国コードと出願
番号
The country code and number
of your priority application,
to be used for filing abroad
under the Paris Convention, is

J P 2004-197877

出願人
Applicant(s): 独立行政法人科学技術振興機構

2005年 4月20日

特許長官
Commissioner,
Japan Patent Office

小川

【書類名】 特許願
【整理番号】 DKG04009
【提出日】 平成16年 7月 5日
【あて先】 特許庁長官 殿
【国際特許分類】 C01B 31/02
【発明者】
【住所又は居所】 川崎市多摩区宿河原3-5-24-302
【氏名】 岩村 栄治
【特許出願人】
【識別番号】 503360115
【氏名又は名称】 独立行政法人 科学技術振興機構
【代理人】
【識別番号】 100107641
【弁理士】
【氏名又は名称】 鎌田 耕一
【電話番号】 06-6316-8750
【連絡先】 担当
【選任した代理人】
【識別番号】 100115152
【弁理士】
【氏名又は名称】 黒田 茂
【先の出願に基づく優先権主張】
【出願番号】 特願2004-53123
【出願日】 平成16年 2月 27日
【手数料の表示】
【予納台帳番号】 226219
【納付金額】 16,000円
【提出物件の目録】
【物件名】 特許請求の範囲 1
【物件名】 明細書 1
【物件名】 図面 1
【物件名】 要約書 1

【書類名】特許請求の範囲

【請求項 1】

非晶質炭素を含み、膜厚方向に伸長する複数の第1相と、
グラファイト構造を含み、前記複数の第1相の間に介在する第2相と、
を含む炭素系薄膜。

【請求項 2】

前記第2相が、前記第1相よりも多くのグラファイト構造を含む請求項1に記載の炭素系薄膜。

【請求項 3】

前記第2相の密度が、前記第1相の密度よりも大きい請求項1または2に記載の炭素系薄膜。

【請求項 4】

前記第2相の電気抵抗率が、前記第1相の電気抵抗率よりも低い請求項1～3のいずれか1項に記載の炭素系薄膜。

【請求項 5】

前記第2相の弾性率が、前記第1相の弾性率以上である請求項1～4のいずれか1項に記載の炭素系薄膜。

【請求項 6】

膜の面内方向において、前記複数の第1相が300nm以下の平均径を有する請求項1～5のいずれか1項に記載の炭素系薄膜。

【請求項 7】

膜の面内方向において、前記複数の第1相から選ばれる隣接する一対の間隔の平均が50nm以下である請求項1～6のいずれか1項に記載の炭素系薄膜。

【請求項 8】

前記複数の第1相の間に前記第2相が網目状に介在する請求項1～7のいずれか1項に記載の炭素系薄膜。

【請求項 9】

前記第2相において、前記グラファイト構造の基底面が膜厚方向に沿って配向している請求項1～8のいずれかに記載の炭素系薄膜。

【請求項 10】

水素、窒素、ホウ素およびケイ素から選ばれる少なくとも1つをさらに含有する請求項1～9のいずれか1項に記載の炭素系薄膜。

【請求項 11】

膜厚方向に伸長する複数の第1相と、前記複数の第1相の間に介在する第2相とを含む非晶質炭素系薄膜を形成する工程と、

前記非晶質炭素系薄膜にエネルギーを付与することにより前記第2相にグラファイト構造を形成する工程と、を含む炭素系薄膜の製造方法。

【請求項 12】

気相合成法により前記非晶質炭素系薄膜を形成する請求項11に記載の炭素系薄膜の製造方法。

【請求項 13】

基板温度が773K以下という条件A、および雰囲気圧力が1.33Pa以上という条件Bから選ばれる少なくとも一方を満たす物理蒸着法により前記非晶質炭素系薄膜を形成する請求項12に記載の炭素系薄膜の製造方法。

【請求項 14】

水素原子含有ガスおよび窒素原子含有ガスから選ばれる少なくとも一方を含む雰囲気において前記非晶質炭素系薄膜を形成する請求項12または13に記載の炭素系薄膜の製造方法。

【請求項 15】

電子線を照射することにより前記非晶質炭素系薄膜にエネルギーを付与する請求項11

～14のいずれか1項に記載の炭素系薄膜の製造方法。

【請求項16】

前記非晶質炭素系薄膜へのエネルギーの付与により前記第2相において前記第1相におけるよりも多くのグラファイト構造を形成する請求項11～15のいずれか1項に記載の炭素系薄膜の製造方法。

【請求項17】

前記第2相の密度が前記第1相の密度よりも相対的に低くなるように前記非晶質炭素系薄膜を形成し、当該非晶質炭素系薄膜へのエネルギーの付与による前記第2相の構造変化を前記第1相の構造変化よりも生じやすくする請求項16に記載の炭素系薄膜の製造方法。

【請求項18】

前記第2相の密度が前記第1相の密度よりも相対的に低くなるように前記非晶質炭素系薄膜を形成し、前記グラファイト構造の形成に伴って前記第2相の密度が前記第1相の密度よりも相対的に高くなるように前記非晶質炭素系薄膜にエネルギーを付与する請求項11～17のいずれか1項に記載の炭素系薄膜の製造方法。

【請求項19】

$1 \times 10^{19} / \text{cm}^2 \cdot \text{秒}$ 以下の強度で電子線を照射する請求項11～18のいずれか1項に記載の炭素系薄膜の製造方法。

【請求項20】

前記複数の第1相の間に前記第2相が網目状に介在するように前記非晶質炭素系薄膜を形成する請求項11～19のいずれか1項に記載の炭素系薄膜の製造方法。

【書類名】明細書

【発明の名称】炭素系薄膜およびその製造方法

【技術分野】

【0001】

本発明は、炭素系薄膜とその製造方法に関する。

【背景技術】

【0002】

炭素系材料には、炭素の結合様式の多様性に応じ、特性が大きく相違する多種多様な形態が存在する。これらの形態には、カーボンナノチューブ、フラー・レンに代表されるように、優れた特性が確認され、電子デバイス、水素吸蔵材料等の分野で今後の普及が期待される新しい材料も含まれる。これら新しい炭素系材料については、再現性よく簡易に製造する方法が提案されている（例えは特許文献1）。

【0003】

水素吸蔵の分野では、非晶質炭素を用いた炭素系材料も提案されている。例えは、特許文献2には、体積当たりの水素吸蔵量が大きい材料として、炭化水素の炭素結晶子を含む層状構造の非晶質炭素が開示されている。特許文献3には、室温付近の温度で容易に水素を吸蔵しうる材料として、非晶質炭素とアルカリ金属の反応物が開示されている。

【0004】

特許文献4には、平均径2nm以上のグラファイトクラスターを含む低硬度硬質炭素膜と平均径1nm以下のグラファイトクラスターを含む高硬度硬質炭素膜とを交互に積層した多層膜が開示されている。この多層膜は、耐摩耗性および摺動特性が改善された、各種部材のコーティング膜となる。

【0005】

【特許文献1】特開平9-309713号公報

【特許文献2】特開2001-106516号公報

【特許文献3】特開2002-28483号公報

【特許文献4】特開2001-261318号公報

【発明の開示】

【発明が解決しようとする課題】

【0006】

同じ炭素から構成されていても、非晶質炭素は結晶性の炭素材料とは大きく異なる諸特性を有する。グラファイトが導電性もしくは半絶縁性であるのに対し、非晶質炭素が絶縁性であるのはその一例である。従って、特性の異なる炭素をデバイスに適用しやすい形態で複合化した材料を製造する技術を確立すれば、新たな複合化材料を提供できる可能性がある。

【0007】

しかし、特許文献4が開示するように、異種の炭素系薄膜を交互に積層して得た膜を耐摩耗性のコーティング膜として用いると、耐摩耗性は改善されるものの、積層した層間ににおける剥離の問題は根本的に解決できていない。また、積層による複合化では、異なった特性（例えは電気的特性）を有する領域を膜面に配置することもできない。

【課題を解決するための手段】

【0008】

そこで、本発明は、非晶質炭素を含み、膜厚方向に伸長する複数の第1相と、グラファイト構造を含み、上記複数の第1相の間に介在する第2相と、を含む炭素系薄膜を提供する。

【0009】

本発明は、その別の側面から、膜厚方向に伸長する複数の第1相と、上記複数の第1相の間に介在する第2相とを含む非晶質炭素系薄膜を形成する工程と、上記非晶質炭素系薄膜にエネルギーを付与することにより上記第2相にグラファイト構造を形成する工程と、を含む炭素系薄膜の製造方法を提供する。

【発明の効果】

【0010】

本発明の炭素系薄膜では、非晶質炭素を含む第1相が薄膜の厚さ方向に伸長し、グラファイト構造を含む第2相が第1相の間に介在している。非晶質炭素とグラファイトとは、電気的、光学的、機械的、その他諸特性が大きく異なるため、この薄膜は、諸特性が異なる相が薄膜の厚さ方向に沿って配置された特徴的な構造を有する。この構造は、3次元的に特性が異なる部分を配置する必要がある各種のデバイス、例えは電子デバイス、光デバイス、に有用であり、形状が薄膜であるために既存の薄膜デバイスへの応用も容易である。後述するように、機械的特性が異なる相を組み合わせることより、硬くなくとも耐摩耗性に優れた膜も実現できる。また、本発明の製造方法によれば、高温、高真空など特殊な条件を適用することなく、上記炭素系薄膜を合理的かつ効率的に製造できる。

【発明を実施するための最良の形態】

【0011】

図1に、本発明の炭素系薄膜の一例を示す。この炭素系薄膜10では、複数の柱状の第1相1が膜の厚さ方向に伸長し、第2相2が第1相1の間に介在している。この薄膜10は、いわゆるカラムーカラム間組織を有し、非晶質炭素を含むカラム組織（第1相）とグラファイト構造を含むカラム間組織（第2相）とから構成されている。

【0012】

第1相1および第2相2は、ともに炭素系材料からなるが、互いに異なる相を構成し、異なる特性を有する。これら2つの相は、微視的には同じ構造を含んでいてもよく、例えは第1相1にグラファイト構造が含まれていてもよい。ただし、通常、第2相2は、第1相1よりも構造的な秩序性が高く、多くのグラファイト構造を含む。第1相1と第2相2とは諸特性において異なるが、この相違にはグラファイト構造の含有量の差異が少なからず影響している。第2相2にも非晶質炭素が含まれていてもよく、第1相1および第2相2は、異なる特性を有する異なる相として判別できる限り、ともに、全体として非晶質であってもよい。

【0013】

この薄膜10では、第2相2の密度が、第1相1の密度よりも大きくなることが多い。2つの相の密度差は特に限定されないが、例えは第2相2を、第1相1の密度を基準として20%程度まで高密度化することもできる。第2相2の弾性率は、第1相1の弾性率以上、さらには第1相1の弾性率を超えることが好ましい。

【0014】

また、グラファイトの導電性を利用して、第2相2の電気抵抗率を、第1相1の電気抵抗率よりも低くすることもできる。例えは第1相1を絶縁性に保持しながら、第2相2を半絶縁性または導電性とすることも可能である。

【0015】

薄膜10の表面には複数の第1相1が島状に露出し、第1相1の間に第2相2が網目状に介在している。このように、本発明を適用すれば、2つの相が微細に入り組んだ面を有する炭素系薄膜を提供できる。例えは、薄膜10の面内方向において、第1相1は、その平均径が300nm以下、さらには100nm以下、例えは1nm以上50nm以下である程度にまで微細であってもよい。

【0016】

第2相2は、図1に示したような連続した1つの相であってもよく、2以上に分断された相であってもよい。薄膜10の面内方向における第2相2の占める面積比率は、特に限定されないが、例えは1%以上50%以下、さらには5%以上30%以下とするとい。

【0017】

本発明を適用すれば、膜の面内方向において、複数の第1相1から選ばれる隣接する一対の間隔の平均が50nm以下である程度にまで、第1相1を密に配置することもできる。第1相1の間隔、即ち第2相2の幅、が制限されると、グラファイト構造の基底面（（001）面）が薄膜の面内方向ではなく厚み方向に沿って配列しやすくなる（即ち、<0

01>軸は薄膜の面内にある)。

【0018】

本発明の炭素系薄膜では、第2相において、グラファイト構造の基底面が膜厚方向に沿って配向していることが好ましい。この配列の形態は、薄膜の機械的性質を改善し、耐擦傷性や耐摩耗性を高めるのに有利である。非晶質炭素を含むカラム組織(第1相)と、グラファイト構造の基底面が膜厚方向に沿って配向した網目状のカラム間組織(第2相)とを含む構造とすることにより、弾性的であり、それによって耐摩耗性に優れた炭素系薄膜とすることが可能となる。この炭素系薄膜は、例えば、複数の第1相の間に第2相が網目状に介在するように非晶質炭素系薄膜を形成し、この薄膜に適切なエネルギーを有する電子線を照射することにより得ることができる。

【0019】

以上のように、本発明を適用すれば、カラム組織とカラム間組織が微細に入り組んだ薄膜10を提供することも可能である。

【0020】

なお、炭素系薄膜の面内方向における第1相の平均径、第2相の面積比率および隣接する第1相の間隔は、後述するように、透過型電子顕微鏡(TEM)を用いて測定することができる。

【0021】

本明細書において、炭素系薄膜とは、その成分が炭素を主体とすることを意味し、より具体的には炭素(C)が50原子%以上を占めることをいう。

【0022】

薄膜10は、炭素以外の原子、例えば水素、窒素、ホウ素およびケイ素から選ばれる少なくとも1つをさらに含んでいてもよい。例えば、水素を添加すると、カラム組織(第1相)では絶縁性が向上し、光学的なバンドギャップも大きくなる。その結果、グラファイト構造を含むカラム間組織(第2相)との電気的、光学的特性の相違を拡大できる。薄膜10における水素等その他原子の含有率は、特に制限されないが、0.1原子%以上50原子%未満とするとよい。

【0023】

本明細書において、非晶質炭素とは、結晶のように周期的な長距離秩序を有しない炭素をいい、不定形炭素、ダイヤモンドライクカーボン、ガラス状炭素等と呼ばれるものを含む(これら用語は明確に区別されて使用されているわけではない)。

【0024】

薄膜10の厚さは、特に限定されないが、例えば1nm～5μm、特に10nm～1μmの範囲とするとよい。厚すぎると、後述する成膜工程(非晶質膜形成工程)において、薄膜10の第2相に孔等の欠陥が生じやすくなる。膜厚が増すにつれ、第1相の平均径(カラム径)、第1相の間隔(カラム間距離)は、ともに大きくなる傾向がある。

【0025】

本発明の製造方法では、上記のように、2つの相を含む非晶質炭素系薄膜を形成し(以下、「非晶質膜形成工程」ということがある)、この非晶質炭素系薄膜に適切なエネルギーの付与を行うことにより(以下、「エネルギー付与工程」ということがある)、炭素系薄膜10を得ることとした。この製造方法では、非晶質膜形成工程において予め2つの相を形成するため、エネルギー付与工程で薄膜全体にエネルギーを付与しても、エネルギーの付与により引き起こされる状態の変化が相によって異なることを利用できる。薄膜全体にエネルギーを付与してもよいため、エネルギー付与工程は簡便に実施できる。

【0026】

非晶質膜形成工程では、膜厚方向に柱状に伸長する複数の第1相と、複数の第1相の間に介在する第2相とを含むように非晶質炭素系薄膜を形成するとよい。この薄膜の形成には、気相から膜形成原料を供給する気相合成法が適している。カラムーカラム間組織は、気相合成法における不均一な固相形成により発達することが知られている。基板の表面の特定の部位に偏って固相形成が始まると、この部位で優先的に固相が形成されることにな

るため、カラム構造が発達しやすい。基板の表面における固相形成を不均一化するためには、この表面に付着する膜形成原料の原子の移動度を小さくするとよい。移動度が高いと原子が移動しやすくなり、均一な固相形成が促されるからである。

【0027】

原子の移動度を抑制する条件は、成膜法に応じて適宜選択するとよいが、少なくともスパッタリング法に代表される物理蒸着（PVD）法では、低い基板温度と高い雰囲気圧力が好ましい条件である。低い基板温度は原子の熱エネルギーを奪い、高い雰囲気圧力は基板へと向かう原子の運動エネルギーを減少させる。

【0028】

基板温度は773K（500°C）以下が好ましい。基板温度が773Kを超えると、カラム構造が発達しにくくなり、非晶質膜も得にくくなる。基板温度は、473K（200°C）以下、さらには室温以下、例えば0～10°C（273～283K）であってもよい。基板温度に特に下限はなく、例えば液体窒素温度（77K）程度にまで冷却してもよい。

【0029】

雰囲気圧力は1.33Pa（10mTorr）以上、さらには2.00Pa（15mTorr）以上が好ましい。雰囲気圧力が1.33Paよりも低いと不均一な固相形成が生じにくくなる。また、雰囲気圧力が低すぎるとカラム構造の間隔が狭くなってしまい、グラファイト構造が形成されにくくなる場合もある。一方、雰囲気の圧力が過度に高いと成膜自体に支障を来すため、雰囲気の圧力は6.67Pa（50mTorr）以下とするといい。

【0030】

以上のとおり、非晶質膜形成工程は、基板温度が773K以下という条件A、および雰囲気圧力が1.33Pa以上という条件Bから選ばれる少なくとも一方を満たす物理蒸着法により行なうことが好ましい。

【0031】

原子の移動度の抑制が容易な物理蒸着法はカラム構造を有する非晶質炭素系薄膜の形成に適している。ここで、物理蒸着法は、スパッタリング法以外にも、イオンプレーティング法、イオンビーム蒸着法等が該当する。反応性スパッタリング法も、化学反応を伴うがPVD法の一種であり、本明細書では、反応性スパッタリング法を含む各種スパッタリング法を含む成膜法として「スパッタリング法」という用語を用いる。

【0032】

スパッタリング法は本発明における非晶質膜形成工程の実施に最も適した成膜法である。スパッタリング法によれば、発達したカラム構造を得ることが容易であり、かつカラム構造の形状も制御しやすい。ソーントンによるストラクチャーゾーンモデルに示されているように、スパッタリング法等では、基板温度と雰囲気圧力とによる膜の微細構造の制御が可能であり、この制御の方法は本発明におけるカラム構造の制御にも適用できる。スパッタリング法に使用するターゲットの一例としては、焼成グラファイトを挙げることができる。ケイ素、ホウ素等の原子を膜に添加する場合には、その原子を含むターゲットを用いてもよい。雰囲気はアルゴン等の不活性ガスとすればよいが、不活性ガスとともに、例えば、水素原子含有ガスおよび窒素原子含有ガスから選ばれる少なくとも一方を含む雰囲気として、水素原子および／または窒素原子を膜に混入してもよい。

【0033】

薄膜の形成に用いる基板の材料には、特に制限はなく、例えば、シリコン等の半導体基板、 Al_2O_3 、 MgO 等の酸化物基板、鉄、アルミ、これらを含む合金等の金属基板を適宜用いればよい。

【0034】

以上で説明した方法により成膜された非晶質炭素系薄膜では、通常、カラム構造（第1相）はその周縁（第2相）よりも高密度となる。第2相は、第1相よりも10～40%程度も低密度となることがある。

【0035】

エネルギー付与工程では、第1相が非晶質炭素を含む状態を維持しつつ第2相にグラフ

イト構造が形成されるように非晶質炭素系薄膜の一部または全部にエネルギーを付与するとよい。この工程により第2相にグラファイト構造が優先的に導入される。グラファイト構造の生成は、これに伴う特性の変化が第2相においてのみ現れる程度に選択的に行なうことが好ましい。

【0036】

第2相では第1相よりも容易かつ優先的に結晶化が進行する。これは、カラムーカラム間組織の形成機構上、第2相は準安定かつ第1相よりも不安定な原子間の結合を有する低密度の非晶質ネットワーク構造を形成するために、原子の再配置に要するエネルギーが相対的にも小さいためと推察される。これを利用すれば、外部から薄膜全体に対してエネルギーを付与しても、さらにはこのエネルギーの強度に空間分布を与えなくても、炭素の結晶化によるグラファイト構造の生成を第2相において選択的に行なうことができる。微細に入り組んだ構造に応じた微細な空間分布を付与するエネルギーに見えなくてもよいことは、本発明の方法の特長の一つである。

【0037】

エネルギーの付与は、特に限定されないが、電子線の照射により行なうことが好ましい。電子線の照射によれば、通常の熱処理のように装置や薄膜を形成した試料全体を加熱する必要がなく、さらに第1相における結晶化を抑制できる。電子線の照射は、炭素系薄膜を耐熱性の低い異種材料と複合化して用いるような場合には特に適している。

【0038】

ただし、電子線のエネルギーが高すぎると、電子誘起変位や電子線による加熱効果により第2相における選択的なグラファイト構造の生成が困難になる。このため、100 keV以下、さらには60 keV以下の電子線を用いるとよい。また、電子線の照射強度は $10^{19}/\text{cm}^2 \cdot \text{秒}$ 以下、さらには $10^{17}/\text{cm}^2 \cdot \text{秒}$ 以下、特に $10^{15}/\text{cm}^2 \cdot \text{秒}$ 以下、とすることが好ましい。

【0039】

このように高エネルギーの電子線照射はむしろ好ましくないため、電子線は高真空状態で照射する必要はなく、例えば常圧下で照射してもかまわない。高度に減圧せずに薄膜を処理できることは量産を考慮すると大きな利点となる。

【0040】

電子線の照射は、大気等の酸素含有雰囲気で行ってもよいが、この場合はオゾンが発生する。これを避けたければ、酸素を含まない非酸化雰囲気中、例えば、アルゴンに代表される不活性ガスまたは窒素ガスからなる雰囲気中、で行なうとよい。

【0041】

上記のように適切に条件を選択することにより、本発明では、非晶質炭素系薄膜へのエネルギーの付与により第2相において第1相におけるよりも多くのグラファイト構造を形成することができる。第2相におけるグラファイトの優先的な形成のためには、第2相の密度が第1相の密度よりも相対的に低くなるように非晶質炭素系薄膜を形成し、この非晶質炭素系薄膜へのエネルギーの付与による第2相の構造変化を第1相の構造変化よりも生じやすくすることが好ましい。

【0042】

また、本発明では、上記のように適切に条件を選択することにより、第2相の密度が第1相の密度よりも相対的に低くなるように非晶質炭素系薄膜を形成し、グラファイト構造の生成に伴って第2相の密度が第1相の密度よりも相対的に高くなるように（即ち密度の大小関係が逆転するように）非晶質炭素系薄膜にエネルギーを付与することができる。また、グラファイト構造の量についても、第2相における量が相対的に低くなるように非晶質炭素系薄膜を形成し、エネルギーを付与することにより第2相における量を第1相における量よりも相対的に多くすることができる。

【0043】

以下、実施例により本発明をさらに詳細に説明するが、本欄における上記説明と同様、以下も本発明の実施形態の例示に過ぎず、本発明を限定するものではない。

【0044】

マグнетロンスパッタリング法を用い、シリコン基板上に膜厚約 $0.5\text{ }\mu\text{m}$ の非晶質炭素系薄膜を形成した。ターゲットとしては焼成グラファイトを用いた。基板温度は室温、雰囲気圧力は 2 Pa (15 mTorr)とした。成膜雰囲気はアルゴンとメタンの混合雰囲気とした。アルゴンとメタンの流量比は $8:2$ に調整した。

【0045】

こうして得た非晶質炭素系薄膜に電子線を照射した。電子線の照射は $1.3 \times 10^{-3}\text{ Pa}$ に減圧した雰囲気中で $60\text{ kV} - 0.3\text{ mA}$ で加速した電子線を用い、 $1 \times 10^{14}/\text{cm}^2\cdot\text{秒}$ の照射強度で行った。電子線の照射に用いた装置は電子線照射管（ウシオ電機製「Min-EB」）である。電子線は、Si窓を通過させることにより、電子線のエネルギーを $10\sim20\%$ 程度減少させ、かつ散乱させた状態で、非晶質炭素系薄膜を一括露光した。Si窓と非晶質炭素系薄膜との間隔は 15 mm とした。照射時間は1分から5時間30分とした。なお、電子線の照射に伴う薄膜の昇温は、熱電対を用いた測定によると 453 K で飽和し、この飽和には30分を要した。

【0046】

電子線照射の前後において、薄膜をTEMにより観察した状態を図2(a), (b)に示す。これらの写真は、エネルギーフィルタを用い、弹性散乱波のみで結像させたいわゆるゼロロス像である。電子線の照射前には、島状に分布した領域（第1相）が相対的に暗く、第1相の間に分布する島状間領域（第2相）は相対的に明るい（図2(a)）。これは、第2相が第1相に比べて低密度であることを示唆している。弹性散乱波の強度の相違によると、第2相は第1相に対して 10% 程度低密度となっている。

【0047】

一方、電子線の照射後には、第1相と第2相とのコントラストは逆転した（図2(b)）。これは、第2相におけるグラファイト構造の生成が第2相を高密度化させたことを示唆している。弹性散乱波の強度に基づくと、第2相は第1相に対して 5% 程度密度が高いことになる。図2(b)によると、第1相の平均径は概ね 50 nm 程度であり、第2相の面積比率は 20% 程度であり、互いに隣接する第1相の間隔は 10 nm 程度である。

【0048】

電子線照射の前後において、低エネルギー電子エネルギー損失分光法（LEELS）により第2相を評価した。得られたスペクトルを図3に示す。電子線の照射により、グラファイトのπ結合励起に由来する 5 eV 付近のブロードなピークがわずかに増大した。これは、電子線の照射により第2相がグラファイト化したことを示している。

【0049】

電子線照射の前後において、ラマン分光法により薄膜を評価した。得られたスペクトルを図4(a), (b)に示す。電子線の照射に伴い、 1360 cm^{-1} 付近のDピークおよび 1600 cm^{-1} 付近のGピークの強度が増加した。これは、電子線照射により、膜中でグラファイト構造が増加したことを示している。

【0050】

電子線照射後において、テスターと走査型プローブ顕微鏡（島津製作所製「SPM-9500J3」）を用い、薄膜表面のプロファイルを測定した。なお、走査型プローブ顕微鏡による測定は、コンタクトモードにて $n^+ - Si/PtIr_5$ のプローブ（POINTPROBE社製）を用いて行った。また、電流像の測定に際しては、プローブに $+1\sim3\text{ V}$ のバイアス電圧を印加した。結果を図5に示す。表面粗さプロファイルにおける凸部が第1相、凹部が第2相に相当する。電流プロファイルによると、第1相では電流が流れず絶縁性であるのに対し、第2相は導電性を有することが確認できる。これは第2相においてグラファイト構造が生成したことに対応している。

【0051】

また、上記で成膜した炭素系薄膜についてのラザフォード後方散乱測定装置を用いたERDA（Elastic Recoil Detection Analysis）法および二次イオン質量分析法（SIMS）による分析の結果、この薄膜の組成は、炭素 60 原子%、水素 40 原子%であることが

確認できた。

【0052】

さらに、成膜雰囲気をアルゴンのみとし、雰囲気圧力を1.33Pa(10mTorr)とした以外は、上記と同様にして、非晶質炭素薄膜を形成し、さらに電子線を照射した。この炭素薄膜からも、上記と同様の各測定結果が得られた。ラマン分光法により得られたスペクトルを図6に示す。

【0053】

またさらに、マグネットロンスパッタリング法を用い、シリコン基板上に膜厚約 $0.5\mu m$ の非晶質炭素系薄膜を形成した。ターゲットとしては焼成グラファイトを用いた。基板温度は室温、雰囲気圧力は4Paとした。成膜雰囲気はアルゴンとメタンの混合雰囲気とした。アルゴンとメタンの流量比は2:1に調整した。

【0054】

こうして得た非晶質炭素系薄膜に上記と同様の条件で電子線を照射した。電子線の照射前後において、自動インデンテーションシステム(Hysitron Incorporated製「トライボインデンター」)を用いた走査摩耗試験(scanning wear test)およびナノインデンーション試験を行った。走査摩耗試験では、 $2\mu m$ 四方の領域をシリコンプローブを用い、 $10\mu N$ にて10回スキャニングした。その後、走査型プローブ顕微鏡(島津製作所製「SPM-9500J3」)を用い、薄膜表面の凹凸像とcos像(弹性像)とを調べた。結果を図7に示す。

【0055】

電子線照射後(a)と同照射前(b)とを比較することにより、電子線の照射により薄膜の耐摩耗性が向上したことが確認できる。比較のため、非晶質炭素薄膜(a-C膜)についての走査摩耗試験の結果を図7(c)に示す。なお、このa-C膜は、雰囲気圧力は 0.27 Pa (2 mTorr)、成膜雰囲気をアルゴンのみとした以外は、上記と同様にして成膜した。

【0056】

図8に、電子線照射後(a)、同照射前(b)、a-C膜(c)についてのナノインデンーション試験の結果を示す。電子線の照射により薄膜の硬さはやや向上しているが、標準的な非晶質炭素薄膜(a-C膜)の硬さ((c)参照)を参照すると、電子線照射後も薄膜の硬度は極めて小さいが、弹性回復率が非常に高いことがわかる。耐摩耗性の改善(図7)は、膜の高硬度化によるものではなく、膜の弹性的な性質によるものである。この性質は、電子線の照射によるグラファイト構造の形成、より具体的には基底面が膜厚方向に配向した形成、に起因すると考えられる。なぜなら、グラファイトが自己潤滑剤として一般的に使用されていることからわかるように、グラファイトが形成されても、その基底面が膜面内にあると、基底面間の弱い結合により、そのグラファイトは容易に変形して、本発明で示されるような高い摩耗性は決して示さないからである。

【0057】

図9に、電子線照射後の薄膜表面の凹凸(a)とそれに対応した部分で検出したcos像(b)とを示す。また、比較のため、図10に、電子線照射前の薄膜表面の凹凸(a)とそれに対応した部分で検出したcos像(b)とを示す。凸部がカラム領域(第1相)に、凹部がカラム間領域(第2相)にそれぞれ対応する。電子線照射前後のcos像を対比すると、電子線の照射により、2つの相のcos像における強度の相違が解消されつつあることが確認できる。表面の凹凸の影響を考慮すると、これらのcos像は、電子線の照射により、カラム間領域(第2相)における弹性率がカラム領域(第1相)における弹性率を上回っていることを示している。

【産業上の利用可能性】

【0058】

本発明によれば、電気的、光学的、機械的諸特性が異なる相が厚さ方向に沿って伸長した特徴的な微細構造を有する炭素系薄膜を提供できる。この薄膜は、例えば導体が厚さ方向に貫通した層間絶縁膜等として、各種デバイスに適用が可能な特性を備えている。また

、本発明の炭素系薄膜は、弹性的でかつ優れた耐摩耗性を兼ね備えているため、特に荷重の小さいマイクロ摩耗に対して優れた耐性が必要なアプリケーションにおいて、コーティング（保護）膜としても有用である。

【図面の簡単な説明】

【0059】

【図1】本発明の炭素系薄膜の一例を示す部分切り取り斜視図である。

【図2】電子線照射前の炭素系薄膜（a）と同照射後の炭素系薄膜（b）についての膜面のTEM写真である。

【図3】電子線照射の前後における低エネルギー電子エネルギー損失分光法による測定結果を示すスペクトルである。

【図4】電子線照射の前（a）、照射2分後および5時間30分後（b）におけるラマン分光法による炭素系薄膜の測定結果を示すスペクトルである。

【図5】本発明の炭素系薄膜の一例における表面粗さプロファイルと電流プロファイルである。

【図6】電子線照射の前後におけるラマン分光法による炭素系薄膜の測定結果を示すスペクトルである。

【図7】電子線照射後の炭素系薄膜（a）、同照射前の炭素系薄膜（b）および通常の非晶質炭素膜（a-C膜）（c）における走査摩耗プロファイル（摩耗深さを示すプロファイル）を示す図である。

【図8】電子線照射後の炭素系薄膜（a）、同照射前の炭素系薄膜（b）および通常の非晶質炭素膜（a-C膜）（c）のナノインデンテーションテストの結果を示すグラフである。

【図9】電子線照射後の炭素系薄膜の凹凸（a）とそれに対応した部分で検出した \cos 像（b）とを示す図である。

【図10】電子線照射前の炭素系薄膜の凹凸（a）とそれに対応した部分で検出した \cos 像（b）とを示す図である。

【符号の説明】

【0060】

- 1 第1相
- 2 第2相
- 10 炭素系薄膜

【書類名】 図面

【図 1】

【図 3】

【図4】

Ar+メタン混合ガス15mtorr中で成膜した非晶質炭素膜

【図 5】

【図 6】

Arガス10mtorr中で成膜した非晶質炭素膜

(a)電子線照射後

(b)電子線照射前

(c)スパッタ成膜したa-C膜

【図8】

【図 9】

(a)表面凹凸

(b)cos像

【図 10】

(a)表面凹凸

(b)cos像

【書類名】要約書

【要約】

【課題】特性の異なる炭素をデバイスに適用しやすい形態で複合化した新たな炭素系材料を提供する。

【解決手段】非晶質炭素を含み、膜厚方向に伸長する複数の第1相1と、グラファイト構造を含み、上記複数の第1相1の間に介在する第2相2と、を含む炭素系薄膜10とする。この薄膜10は、第1相1および第2相2を含む非晶質炭素系薄膜を形成する工程と、非晶質炭素系薄膜にエネルギーを付与することにより第2相2にグラファイト構造を形成する工程とを含む製造方法により得ることができる。第2相2は、第1相1よりも密度が高く、電気抵抗率が低い相となる。

【選択図】図1

出願人履歴

5 0 3 3 6 0 1 1 5

20040401

名称変更

埼玉県川口市本町4丁目1番8号

独立行政法人科学技術振興機構