Definicja 1 (torus przekształcenia). X skończony Δ-kompleks, $f: X \to X$ homeomorfizm symplicjalny, wtedy $T_f = X \times I/(x,0) \sim (f(x),1)$.

Uwaga 2. X skończony Δ -kompleks, to T_f także.

Co więcej, liczba i-sympleksów T_f zależy od liczby i-sympleksów oraz (i-1)-sympleksów w X.

Stwierdzenie 3. Ta liczba nie zależy od f.

Fakt 4. $0 \to G \xrightarrow{i} \Gamma \xrightarrow{q} H \to 0$, to istnieje $\varphi : H \to \operatorname{Aut}(G)$ takie, że $\Gamma \simeq G \rtimes_{\varphi} H$ wtedy i tylko wtedy, gdy istnieje $s : H \to \Gamma$ takie, że $q \circ s = \operatorname{Id}_{H}$.

Przykład 5. $\Gamma_A=\mathbb{Z}^2\rtimes_A\mathbb{Z}$, gdzie $A\in SL_2(\mathbb{Z}),$ |trA|>2, $\Gamma_A\simeq\pi_1(M_A),$ gdzie M_A to 3-wymiarowa Sol-rozmaitość.

Fakt 6. $\pi_1(T_f) = \pi_1(X) \rtimes_{f^*} \mathbb{Z}$ (z van Kampena).

Uwaga 7. T_f lokalnie trywialne rozwłóknienie nad okręgiem z włóknem X.

Twierdzenie 8 (Luck). X skończony kompleks, wówczas $\forall_i \beta_i(T_f) = 0$.

Lemat 9. $T_f^n \simeq_{htp} T_{f^n}$

Twierdzenie Lucka o aproksymacji

Definicja 10. G jest rezydualnie skończona, jeśli istnieje rodzina podgrup $H_i \leq G$, gdzie każda H_i jest skończonego indeksu w G, taka, że $\bigcap H_i = \{e\}$.

 $Przykład\ 11.\ H_n = n\mathbb{Z} \leqslant \mathbb{Z}$

Uwaga12. JeśliGskończenie generowana, to możemy założyć, że ${\cal H}_i$ są normalne.

Wniosek 13. Grupa G jest rezydualnie skończona, jesli $\forall_{g \in G}$ istnieje homomorfizm $\varphi : G \to F$, gdzie F jest grupą skończoną taką, że $\varphi(g) \neq e$.

Przykład 14. $GL_n(\mathbb{Z})$, podgrupy $\ker \varphi_p$, gdzie $\varphi_p : GL_n(\mathbb{Z}) \to GL_n(\mathbb{Z}_p)$.

Przykład 15. \mathbb{F}_n rezydualnie skończone: $\mathbb{F}_n \hookrightarrow \mathbb{F}_n \hookrightarrow SL_2(\mathbb{Z}) \hookrightarrow GL_n(\mathbb{Z})$

Twierdzenie 16 (Malcer). Skończenie generowana podgrupa $GL_n(R)$ dla R pierścienia przemiennego z 1 jest rezydualnie skończona.

Przykład 17. $BS(m,n) = \langle a,b : ab^m a^{-1} = b^n \rangle$ dla $m,n \in \mathbb{Z}$.

Hipoteza 18. Czy każda grupa hiperboliczna jest rezydualnie skończona?

Twierdzenie 19 (Lucka o aproksymacji). Niech X-skończony kompleks o grupie podstawowej $\pi_1(X)$ rezydualnie skończonej. Niech ... $\subset \Gamma_{m+1} \subset \Gamma_m \subset ... \subset \pi_1(X) = \pi$ będzie zstępującym ciągiem normalnych podgrup skończonego indeksu, $\bigcap \Gamma_m = \{e\}$. Niech $p_m : X_m \to X$ będzie skończonym nakryciem stowarzyszonym z Γ_m . Wówczas

$$\beta_i(X) = \lim_{m \to \infty} \frac{b_i(X_m)}{\lceil \pi : \Gamma_m \rceil}.$$

Dalej jest dowód.