Induction

CSE2315, Chapter 2-2

Principles of mathematical induction

First Principle:

```
P(1) is true

(\forall k)P(k) true \rightarrow P(k+1) true

P(n) is true for all positive integers n
```

- P(1) is true
 - "1" has the property of P
- For any positive integer k, $P(k) \rightarrow P(k+1)$
 - If any number has the property P, so does the next number
- An example of an implication
 - 2 hypotheses and 1 conclusion
- Basis (Basis step); establishing the truth of P(1)
- Inductive step; establishing the truth of $P(k) \rightarrow P(k+1)$
- When we assume P(k) to be true to prove the inductive step, P(k) is called inductive assumption (inductive hypothesis).

Example 1

• Prove that $1+3+5+...+(2n-1) = n^2$ for any $n \ge 1$ (*n*, integer)

Example 1 (contd.)

- Prove that $1+3+5+...+(2n-1)=n^2$ for any $n \ge 1$ (*n*, integer)
- What is P(n)?
- Basis step; P(1) is the equation $1 = 1^2$, which is true.
- Inductive hypothesis; P(k): $1+3+5...+(2k-1)=k^2$ (assumed true)
- Inductive step; P(k+1): $1+3+5...+[2(k+1)-1]=(k+1)^2$
- Again, rewriting the sum on the left side of P(k+1) reveals how the inductive assumption can be used:

$$1+3+5...+[2(k+1)-1] = 1+3+5...+(2k-1) + [2(k+1)-1]$$
$$= k^2 + [2(k+1)-1]$$
$$= k^2 + 2k + 1$$
$$= (k+1)^2$$

· Therefore,

$$1+3+5...+[2(k+1)-1]=(k+1)^2$$

and verifies P(k+1) and completes the proof.

Example 2

- Prove that $1+2+2^2...+2^n = 2^{n+1}-1$ for any $n \ge 1$.
- What is P(n)?
- Basis; P(1) is the equation $1+2=2^{1+1}-1$ or $3=2^2-1$, which is true.
- We take P(k): $1+2+2^2...+2^k=2^{k+1}-1$ as the inductive hypothesis and try to establish P(k+1): $1+2+2^2...+2^{k+1}=2^{k+1+1}-1$
- Again, rewriting the sum on the left side of P(k+1) reveals how the inductive assumption can be used:

$$1+2+2^{2}...+2^{k+1} = 1+2+2^{2}...+2^{k}+2^{k+1}$$

$$= 2^{k+1}-1+2^{k+1} \text{ (by inductive hypothesis)}$$

$$= 2(2^{k+1})-1$$

$$= 2^{k+1+1}-1$$

Therefore,

$$1+2+2^2...+2^{k+1}=2^{k+1+1}-1$$

and verifies P(k+1) and completes the proof.

Example 3

- Prove that for any positive integer n, the number $2^{2n}-1$ is divisible by 3.
- The basis step is to show P(1), that $2^{2(1)}-1=4-1=3$ is divisible by 3. Clearly this is true.
- P(k): We assume that 2^{2k} -1 is divisible by 3,which means that 2^{2k} -1 = 3m for some integer m, or 2^{2k} = 3m+1.

 P(k+1): We want to show that $2^{2(k+1)}$ -1 is divisible by 3. $2^{2(k+1)}$ -1 = 2^{2k+2} -1

 = $2^{2} \cdot 2^{2k}$ -1

 = $2^{2} \cdot (3m+1)$ -1 (by the inductive hypothesis)

 = 12m+4 -1

 = 12m+3= 3(4m+1) where 4m+1 is an integer
- Thus $2^{2(k+1)}$ -1 is divisible by 3.

Principles of mathematical induction

First Principle:

```
P(1) is true (\forall k) P(k) \text{ true} \rightarrow P(k+1) \text{ true} P(n) is true for all positive integers n
```

Second Principle:

```
P(1) is true
P(r) true for all r, 1 \le r \le k \to P(k+1) true
P(n) is true for all positive integers n
```

- Major difference is in the second statement.
 - Use the second principle when assuming P(k) is not enough to prove P(k+1).
 - Assuming P(r) for any r where $1 \le r \le k$ gives more ammunition to prove the relation.
 - Use second principle when the case k+1 depends on results further back than k.

Example: Second Principle of Induction

- Prove that the amount of postage greater than or equal to 8 cents can be built using only 3-cent and 5-cent stamps.
- Proof using the second principle of Induction
- Hence, we have to prove that P(n) is true for $n \ge 8$ where P(n) is the sum of 3 and 5 cent stamps used to make the n cents worth of postage.
 - Basis step: P(8) = 3 + 5 = 8 which is true.
 - In this case we will have to establish additional cases to prove this. Hence, establish two cases P(9) and P(10)
 - P(9) = 3 + 3 + 3 = 9 and P(10) = 5 + 5
 - Assume P(r) is true for any $r, 8 \le r \le k$ and consider P(k+1)
 - We have proved P(r) is true for r = 8,9,10
 - So, let's assume $k+1 \ge 11$
 - If $k+1 \ge 11$ then $(k+1)-3=k-2 \ge 8$, hence, by inductive hypothesis, P(k-2) is true.
 - Hence, k-2 can be written as a sum of 3s and 5s. Adding an additional 3 results in k+1 as a sum of 3s and 5s.
 - This verifies P(k+1) is true and hence verifies the proof.