DIFFERENTIAL GEOMETRY

Lecture Notes

Collapsar

July 30, 2024

Contents

1	1		3
2	2		4
3	hh		5
4	ff		6
5	微分	形式及其积分	7
	5.1	微分形式	7
		5.1.1 1 形式	7
		5.1.2 楔形积	8
		5.1.3 外微分算符	10
	5.2	流形上的积分	10
	5.3	Stokes 公式	12
	5.4	体元	15
	5.5	函数在流形上的积分,Gauss 定理	16
	5.6	对偶微分形式	19
6	狭义	相对论	21
	6.1	4 维表述基础	21
		6.1.1 预备知识	21
		6.1.2 Maxwell 方程的参考系问题	23
		6.1.3 几何语言重新表述 SR	24
		6.1.4 两种时空结构的对比	28
	6.2	典型效应分析	29
		6.2.1 尺缩效应	29
		6.2.2 钟慢效应	29
		6.2.3 李子佯谬	29

hh

ff

微分形式及其积分

5.1 微分形式

5.1.1 *l* 形式

如果 (0,l) 型张量 $\omega_{a_1\cdots a_l} \in \mathcal{T}_V(0,l)$ 满足

$$\omega_{a_1\cdots a_l} = \omega_{[a_1\cdots a_l]},\tag{5.1}$$

其中方括号表示"反对称"操作, 称 $\omega_{a_1\cdots a_l}$ 为 n 维矢量空间 V 上的 l 次形式 (简称 l 形式,l-form). 为 了书写方便, 印刷体可以略去下标后加粗, 将 l 形式记作 ω , 手写体可以写作 ω .

对于如上的一个 1 形式, 其在任意基底下的分量都满足类似的等式

$$\omega_{\mu_1\cdots\mu_l} = \omega_{[\mu_1\cdots\mu_l]},\tag{5.2}$$

反过来, 如果存在一个基底使得上式成立, 那么一定会得到矢量空间 V 上的该 l 次形式 ω .

Remark. 由 ω 的定义不难得到, $\omega_{[a_1\cdots a_l]}$ 中的偶排列项等于 $\omega_{a_1\cdots a_l}$, 奇排列项等于 $-\omega_{a_1\cdots a_l}$. 对于 "3 形式" 有

$$\omega_{abc} = -\omega_{bac} = \omega_{bca}.$$

同时在 l 形式的分量 $\omega_{u_1...u_l}$ 中, 凡是出现了重复指标者必为零, 如对于"3 形式"有 $\omega_{232}=0$.

V 上全体 l 形式的集合记作 $\Lambda(l)$. 由于 l 形式是 (0,l) 型张量,则 $\Lambda(l)$ 自然就是 V 上 (0,l) 型张量场 $\mathcal{I}_{V}(0,l)$ 的子集. 进一步可证明, $\Lambda(l)$ 是 $\mathcal{I}_{V}(0,l)$ 的线性子空间.

常见的两个 1 形式以及相应的 $\Lambda(l)$ 如下:

- 任一实数称为 V 上的 0 形式, 则 $\Lambda(0) = \mathbb{R}$;
- V 上的对偶矢量, 也就是 (0,1) 型张量是 1 形式, 则 $\Lambda(1) = V^*$.

Figure 5.1: $\Lambda(l)$ 是 V 上全体 l 形式的集合

5.1.2 楔形积

假设 ω 和 μ 分别是 l 形式和 m 形式, 定义它们的楔形积 (简称楔积,wedge product) 是如下定义的 l+m 形式:

$$\boldsymbol{\omega} \wedge \boldsymbol{\mu} = (\omega \wedge \mu)_{a_1 \cdots a_l b_1 \cdots b_m} = \omega_{a_1 \cdots a_l} \wedge \mu_{b_1 \cdots b_m} := \frac{(l+m)!}{l!m!} \omega_{[a_1 \cdots a_l} \mu_{b_1 \cdots b_m]}. \tag{5.3}$$

即映射 $\wedge : \Lambda(l) \times \Lambda(m) \to \Lambda(l+m)$.

楔形积满足如下性质:

$$\boldsymbol{\omega} \wedge \boldsymbol{\mu} = (-1)^{lm} \boldsymbol{\mu} \wedge \boldsymbol{\omega},\tag{5.4}$$

$$\dim \Lambda(l) = \begin{cases} \frac{n!}{l!(n-l)!}, l \leq n; \\ \Lambda(l) = \{0\}, l > n. \end{cases}$$

$$(5.5)$$

其中设 $n = \dim V$.

 \pmb{Remark} . 以 n=3, l=2 为例说明. 设 $\{(e_1)^a, (e_2)^a, (e_3)^a\}$ 是 V 的基底, $\{(e^1)_a, (e^2)_a, (e^3)_a\}$ 为其对偶基底,则

5.1. 微分形式

9

 ω_{ab} 可以展开为:

$$\omega_{ab} = \omega_{11}(e^{1})_{a}(e^{1})_{b} + \omega_{12}(e^{1})_{a}(e^{2})_{b} + \omega_{13}(e^{1})_{a}(e^{3})_{b}$$

$$+ \omega_{21}(e^{2})_{a}(e^{1})_{b} + \omega_{22}(e^{2})_{a}(e^{2})_{b} + \omega_{23}(e^{2})_{a}(e^{3})_{b}$$

$$+ \omega_{31}(e^{3})_{a}(e^{1})_{b} + \omega_{32}(e^{3})_{a}(e^{2})_{b} + \omega_{33}(e^{3})_{a}(e^{3})_{b}$$

$$\xrightarrow{\omega_{\mu\mu}=0} \omega_{12}(e^{1})_{a}(e^{2})_{b} + \omega_{13}(e^{1})_{a}(e^{3})_{b} + \omega_{21}(e^{2})_{a}(e^{1})_{b}$$

$$+ \omega_{23}(e^{2})_{a}(e^{3})_{b} + \omega_{31}(e^{3})_{a}(e^{1})_{b} + \omega_{32}(e^{3})_{a}(e^{2})_{b}$$

$$\xrightarrow{\omega_{\mu\nu}=-\omega_{\nu\mu}} \omega_{12}[\underbrace{(e^{1})_{a}(e^{2})_{b} - (e^{2})_{a}(e^{1})_{b}}_{(e^{1})_{a}\wedge(e^{2})_{b}}] + \omega_{13}[\underbrace{(e^{1})_{a}(e^{3})_{b} - (e^{3})_{a}(e^{1})_{b}}_{(e^{1})_{a}\wedge(e^{3})_{b}}] = \sum_{C} \omega_{\mu\nu}(e^{\mu})_{a} \wedge (e^{\nu})_{b}.$$

以上表明, 任一 $\omega_{ab} \in \Lambda(2)$ 可以用括号下面的三个 2 形式线性表出, 而且这三个 2 形式彼此线性独立. 因此 $\dim \Lambda(2) = 3$. 由此进一步推广到 $l, n \in \mathbb{N}^+, l \leq n$ 的情况:

$$\omega_{a_1\cdots a_l} = \sum_C \omega_{\mu_1\cdots \mu_l} (e^{\mu_1})_{a_1} \wedge \cdots \wedge (e^{\mu_l})_{a_l},$$

其中, $\{(e^1)_a,\cdots,(e^n)_a\}$ 为 V^* 的基底, $\sum\limits_C$ 表示对 n 个数 $1,2,\cdots,n$ 中取 l 个的各种组合求和,且

$$\omega_{\mu_1\cdots\mu_l} = \omega_{a_1\cdots a_l}(e_{\mu_1})^{a_1}\cdots(e_{\mu_l})^{a_l}$$

对流形 M 或者 $A \subset M$ 的任一点 p 都指定 V_p 上的一个 l 形式, 就得到了流形 M 或者 A 上的一个 l 形式场.M 上的光滑 l 形式场称为 l 次微分形式场(differential l-form), 简称 l 形式场或 l 形式.

在流形 M 上选定坐标系 $\{O,\psi\}$, 将基底 $\{(e^{\mu})_a\}$ 具体选为对偶坐标基底 $\{(\mathrm{d}x^{\mu})_a\}$, 于是就有

$$\omega_{a_1\cdots a_l} = \sum_C \omega_{\mu_1\cdots\mu_l} (\mathrm{d}x^{\mu_1})_{a_1} \wedge \cdots \wedge (\mathrm{d}x^{\mu_l})_{a_l}, \tag{5.6}$$

其中, $\omega_{\mu_1\cdots\mu_l}=\omega_{a_1\cdots a_l}\left(\frac{\partial}{\partial x^{\mu_1}}\right)^{a_1}\cdots\left(\frac{\partial}{\partial x^{\mu_l}}\right)^{a_l}$ 是 O 上的函数.

Remark. 当 l=n 时, $\sum\limits_{C}$ 是对 n 个数 $1,2,\cdots,n$ 中取 n 个的各种组合求和, 只有唯一一项, 因此有

$$\omega_{a_1\cdots a_n} = \omega_{1\cdots n} (\mathrm{d} x^1)_{a_1} \wedge \cdots \wedge (\mathrm{d} x^n)_{a_n}.$$

$$\Rightarrow \boldsymbol{\omega} = \omega_{1\cdots n} (\mathrm{d} x^1) \wedge \cdots \wedge (\mathrm{d} x^n)$$

$$= \underbrace{\omega_{1\cdots n} (x^1, \cdots, x^n)}_{M \pm \mathrm{bh} \, \mathrm{fr} \, \mathrm{bh} \, \mathrm{bh}} (\mathrm{d} x^1) \wedge \cdots \wedge (\mathrm{d} x^n).$$

以上表明, 流形 M 上任一点 p 上的所有 n 形式的集合 $\Lambda_M(n)$ 是一维向量空间.

5.1.3 外微分算符

流形 M 上的外微分算符(exterior differentiation operator) 定义为

$$(\mathrm{d}\omega)_{ba_1\cdots a_l} := (l+1)\nabla_{[b}\omega_{a_1\cdots a_l]},\tag{5.7}$$

即 d 是一个映射: $\Lambda_M(l) \xrightarrow{\mathrm{d}} \Lambda_M(l+1)$.

对于 0 形式场的 f, 根据上述外微分的定义有有 $(\mathrm{d}f)_b = \nabla_b f$, 这与之前的定义是一致的.

Remark. 定义中 $∇_b$ 可为任一导数算符. 这是因为

$$\tilde{\nabla}_{[b}\omega_{a]} = \nabla_{[b}\omega_{a]} + C^{c}_{[ba]}\omega_{c} = \nabla_{[b}\omega_{a]} + C^{c}_{[(ba)]}\omega_{c} = \nabla_{[b}\omega_{a]}.$$

可见定义外微分算符并不要指定导数算符, 更无需对流形附加额外的结构.

外微分具有如下性质:

1. 当 ω 以对偶坐标基底展开时, 外微分 d 对它的作用表现为 d 直接作用于 ω 在该基底下的分量, 即

$$\omega_{a_1\cdots a_l} = \sum_C \omega_{\mu_1\cdots\mu_l} (\mathrm{d}x^{\mu_1})_{a_1} \wedge \cdots \wedge (\mathrm{d}x^{\mu_l})_{a_l}.$$

$$\Rightarrow (\mathrm{d}\omega)_{ba_1\cdots a_l} = \sum_C (\mathrm{d}\omega_{\mu_1\cdots\mu_l})_b (\mathrm{d}x^{\mu_1})_{a_1} \wedge \cdots \wedge (\mathrm{d}x^{\mu_l})_{a_l}.$$

2. $d \circ d = 0$.

Proof.
$$[d(d\omega)]_{cba_1...} = (l+2)(l+1)\nabla_{[c}\nabla_{[b}\omega_{a_1...}] = (l+2)(l+1)\partial_{[(c}\partial_{b)}\omega_{a_1...}] = 0.$$

3. 设 ω 为流形 M 的 l 形式场, 若 $d\omega = 0$, 称 ω 是闭的(closed); 若存在 l-1 形式场 μ , 使得 $\omega = \mathrm{d}\mu$, 称 ω 是恰当的(exact). 若 ω 是恰当的, 则一定是闭的, 但逆命题不一定成立.

Remark. 逆命题成立需对流形提出一些要求, 平凡流形 \mathbb{R}^n 符合这个要求, 而流形一定是局域平凡的, 因此任意流形上闭的 l 形式场至少是局域恰当的. 用数学语言表述就是:

设 ω 是流形 M 上的闭的 l 形式场, 则 $\forall p \in M$, 必有邻域 N, 在其上存在 l-1 形式场 μ , 使得 $\omega = \mathrm{d}\mu$. 在流形 M 上未必存在满足条件的 μ , 但在每点的邻域上却存在. 但是不能这样理解, 仅在某确定的 p 点附近存在相应的 μ , 其余位置不存在.

5.2 流形上的积分

计算任意流形上的积分, 首先必须对流形进行"定向".n 维流形上若存在一个 C^0 而且处处不为 0 的 n 形式场 ε , 就说该流形是可定向的(orientable). 确定了满足上述条件的 ε 后, 流形 M 则是已定向的.

Remark. 常见的 \mathbb{R}^3 是可以定向的, 因为其上存在 C^∞ 的 3 形式场 $\epsilon \equiv \mathrm{d}x \wedge \mathrm{d}y \wedge \mathrm{d}z$. 常见的不可定向流形如 莫比乌斯带.

5.2. 流形上的积分 11

设 ε' 与 ε 都是 C^0 而且处处非零的 n 形式场, 并且满足 $\varepsilon' = h\varepsilon$, 当函数 h > 0 时, 称 ε' 与 ε 为 等价的定向, 它们给出 M 的同一个定向.

Remark. 事实上, 对于连通的流形,h 在 M 上恒正或者恒负.

由于 n 维流形 M 上每点的全体 n 形式的集合是一个一维矢量空间, 则任意两个 n 形式场 $\varepsilon, \varepsilon'$ 必定线性相关, 即存在 h 使得 $\varepsilon' = h\varepsilon$. 当 $\varepsilon, \varepsilon'$ 为 C^0 时,h 自然也是 C^0 的. 由 $\varepsilon, \varepsilon'$ 处处非零可知,h 只能恒正或者恒负.

在流形 M 上选好以 ε 为代表的定向, 设开域 $O \subset M$, 且其上存在处处为正的函数 h 使得 $\varepsilon = h(e^1)_{a_1} \wedge \cdots \wedge (e^n)_{a_n}$, 其中 $\{(e^\mu)_a\}$ 是 O 上的基底场 $\{(e_\mu)^a\}$ 的对偶基, 则称 $\{(e_\mu)^a\}$ 是右手的(right handed), 该坐标系称为右手坐标系.

Remark. 反之, 若 h < 0,O 上的基地场 $\{(e_{\mu})^a\}$ 称为左手的, 该坐标系称为左手系.

Figure 5.2: (a): 流形上积分的定义,(b):n=2 的情况

由于 ω 可以对偶坐标基矢的楔形积表示为:

$$\boldsymbol{\omega} = \underbrace{\omega_{1\cdots n}(x^1, \cdots, x^n)}_{M \perp \mathsf{h} \, \mathsf{h} \, \mathsf{f} \, \mathsf{d} \, \mathsf{x} \, \mathsf{d} \, \mathsf{n} \, \, \mathsf{\bar{L}} \, \mathsf{B} \, \mathsf{g}}_{\mathsf{d} \, \mathsf{x} \, \mathsf{n} \, \, \mathsf{\bar{L}} \, \mathsf{B} \, \mathsf{g}} \, (\mathrm{d} x^1) \wedge \cdots \wedge (\mathrm{d} x^n), \tag{5.8}$$

所以 ω 在流形 $G \subset M$ 上的积分自然可以定义为 ω 在该对偶坐标基矢下的分量 $\omega_{1\cdots n}$, 作为一个 n 元 函数, 在 $G \subset M$ 的像 $\psi[G] \subset \mathbb{R}^n$ 上的普通 Riemann 或者 Lebesgue 积分, 即 (如上图 (a) 所示)

$$\int_{G} \boldsymbol{\omega} := \int_{\psi[G]} \omega_{1\cdots n}(x^{1}, \cdots, x^{n}) dx^{1} dx^{2} \cdots dx^{n}, \tag{5.9}$$

其中 (O, ψ) 是 n 维定向流形 M 的右手坐标系.

Remark. 以 n=2 为例, 说明 ω 在 G 上的积分与所选的右手坐标系无关. 假设 $(O,\psi),(O',\psi')$ 为右手坐标系且 $G\subset O\cap O'$, 两系坐标记作 $x^1,x^2;x^{1\prime},x^{2\prime}$, 所以

$$\boldsymbol{\omega} = \omega_{12} \mathrm{d}x^1 \wedge \mathrm{d}x^2 = \omega'_{12} \mathrm{d}x^{1\prime} \wedge \mathrm{d}x^{2\prime}.$$

记

$$\int_G \boldsymbol{\omega} = \int_{\psi[G]} \omega_{12} \mathrm{d}x^1 \mathrm{d}x^2, \left(\int_G \boldsymbol{\omega}\right)' = \int_{\psi'[G]} \omega'_{12} \mathrm{d}x^{1\prime} \mathrm{d}x^{2\prime},$$

由于

$$\omega_{12}' = \frac{\partial x^{\mu}}{\partial x'^{1}} \frac{\partial x^{\nu}}{\partial x'^{2}} \omega_{\mu\nu} = \frac{\partial x^{1}}{\partial x'^{1}} \frac{\partial x^{2}}{\partial x'^{2}} \omega_{12} + \frac{\partial x^{2}}{\partial x'^{1}} \frac{\partial x^{1}}{\partial x'^{2}} \omega_{21}$$

$$= \omega_{12} \left(\frac{\partial x^{1}}{\partial x'^{1}} \frac{\partial x^{2}}{\partial x'^{2}} - \frac{\partial x^{2}}{\partial x'^{1}} \frac{\partial x^{1}}{\partial x'^{2}} \right)$$

$$= \omega_{12} \det \left(\frac{\partial x^{\mu}}{\partial x'^{\nu}} \right) = \omega_{12} J,$$

为确保上式对 $\{x\}$, $\{x'\}$ 分别是右、左手系的情况也成立, 应该进一步改写为 $\omega'_{12}=\omega_{12}|J|$, 根据二重积分的换元公式, 有

$$\int_{\psi[G]} \omega_{12} \mathrm{d} x^1 \mathrm{d} x^2 = \int_{\psi'[G]} \omega_{12} |J| \mathrm{d} x^{1\prime} \mathrm{d} x^{2\prime} = \int_{\psi'[G]} \omega'_{12} \mathrm{d} x^{1\prime} \mathrm{d} x^{2\prime}.$$

如图5.2(b) 所示, 设 S, M 分别是 l, n 维流形, 且 l < n, 则 $\phi : S \to M$ 是嵌入的. $\phi[S]$ 上的 l 形式 场 μ "切于" $\phi[S]$,若 $\mu|_q \in W_q$, $\forall q \in \phi[S]$,即 μ 是将 W_q 的任意 l 个元素变为一个实数的线性映射. 只有"切于" $\phi[S]$ 的 μ 的积分在上述定义下才有意义. 对于不"切于" $\phi[S]$ 的 μ ,只需要将其作用范围限制在 W_p ,并且记作 $\tilde{\mu}$. 具体定义如下:

设 $\mu_{a_1\cdots a_l}$ 是 l 维子流形 $\phi[S]\subset M$ 上的 l 形式场. 将 $\phi[S]$ 视为脱离 M 而独立存在的流形, 其上的 l 形式 $\tilde{\mu}_{a_1\cdots a_l}$ 称为 $\mu_{a_1\cdots a_l}$ 在 $\phi[S]$ 上的限制, 若 $\forall q\in\phi[S], (\omega_1)^a, \cdots, (\omega_l)^a\in W_q$ 有

$$\tilde{\boldsymbol{\mu}}_{a_1\cdots a_l}|_{q}(\omega_1)^{a_1}\cdots(\omega_l)^{a_l} = \boldsymbol{\mu}_{a_1\cdots a_l}|_{q}(\omega_1)^{a_1}\cdots(\omega_l)^{a_l}. \tag{5.10}$$

5.3 Stokes 公式

n 维带边流形(manifold with boundary) 类似于 n 维流形, 具体而言就是 N 的开覆盖 $\{O_{\alpha}\}$ 的每一元素 O_{α} 都应该同胚于 \mathbb{R}^{n-} 的一个开子集,N 中全体被映射到 $x^{1}=0$ 处的点组成 N 的边界, 记作 ∂N . ∂N 是 n-1 维流形, $i(N)\equiv N-\partial N$ 是 n 维流形 (如图5.3(a) 所示).

Remark. 最简单的带边流形的例子是

$$\mathbb{R}^{n-} := \{ (x^1, \cdots, x^n) \in \mathbb{R}^n | x^1 \leq 0 \},$$

 x^1, \cdots, x^n 是自然坐标, $x^1=0$ 的所有点组成的子集是 \mathbb{R}^{n-} 的边界, 而 \mathbb{R}^{n-} 自身则是 n-1 维流形.

5.3. STOKES 公式 13

Figure 5.3: (a): 带边流形 N 的示意图,p 为边界点,(b):Stokes 定理的示意图

如图5.3(b) 所示, 设 n 维定向流形 M 的紧致子集 N 是一个 n 维带边流形, ω 是 M 上的至少 c^1 可微的 n-1 形式场, 则有 Stokes 定理如下:

$$\int_{i(N)} d\boldsymbol{\omega} = \int_{\partial N} \boldsymbol{\omega}.$$
 (5.11)

Remark. 设 ε 是 M 上的定向限制在 N 上得到的定向, 它在 ∂N 上自然诱导出一个定向, 记作 $\overline{\varepsilon}$. Stokes 定理左边是 n 形式场 $d\omega$ 在 n 维流形 i(N) 上 (以 ε 为定向) 上的积分, 右边是 n-1 形式场 ω 在 n-1 维流形 ∂N (以 $\overline{\varepsilon}$ 为定向) 上的积分.

Remark. 如图5.4, 设 A 是二维欧氏空间的矢量场,L 是 \mathbb{R}^2 中的光滑闭合曲线,S 是由 L 包围的开子集, x^1,x^2 为笛卡尔坐标,则有二维欧氏空间的 Stokes 公式,即 Green 公式如下:

$$\iint_{S} \left(\frac{\partial A_2}{x^1} - \frac{A_1}{x^2} \right) dx^1 dx^2 = \oint_{L} A_l dl.$$

此时,i(N) = S, $\partial N = L$, $N = S \cup L$, $M = \mathbb{R}^2$. 由于

$$\omega_a \equiv A_a \equiv \delta_{ab} A^b = A_\mu (\mathrm{d} x^\mu)_a,$$

Figure 5.4: 二维欧氏空间的 Stokes 公式——Green 公式

所以有

$$d\boldsymbol{\omega} = dA_{\mu} \wedge dx^{\mu} = \frac{\partial A_{\mu}}{\partial x^{\nu}} dx^{\nu} \wedge dx^{\mu}$$

$$= \frac{\partial A_{1}}{\partial x^{2}} dx^{2} \wedge dx^{1} + \frac{\partial A_{2}}{\partial x^{1}} dx^{1} \wedge dx^{2}$$

$$= \left(\frac{\partial A_{2}}{\partial x^{1}} - \frac{\partial A_{1}}{\partial x^{2}}\right) dx^{1} \wedge dx^{2}.$$

从而 Green 公式的左边就可以写成 $\int_{i(N)} \mathrm{d}\omega$.

设 $\tilde{\omega}$ 是对 ω 进行的限制. 选取线长 l 为 L 的局部坐标系, 将 $\tilde{\omega}$ 以坐标基矢进行展开, 则有

$$\tilde{\boldsymbol{\omega}}_a = \tilde{\boldsymbol{\omega}}_1(l)(\mathrm{d}l)_a$$
.

上式两边同时和 $\left(\frac{\partial}{\partial l}\right)^a$ 进行缩并, 有

$$\tilde{\omega}_1(l) = \tilde{\omega}_a \left(\frac{\partial}{\partial l}\right)^a = \omega_a \left(\frac{\partial}{\partial l}\right)^a = A_a \left(\frac{\partial}{\partial l}\right)^a = A_l,$$

从而有 $\tilde{\omega} = A_l dl$, 于是

$$\int_{\partial N} \boldsymbol{\omega} = \int_{\partial N} \tilde{\boldsymbol{\omega}} = \oint_L A_l \mathrm{d}l.$$

由此可知,Green 公式是 Stokes 公式在二维情况下的特例.

5.4. 体元 15

5.4 体元

n 维可定向流形 M 上的任一个 C^0 而且处处非零的 n 形式场 ϵ , 称为一个体元.

Remark. 设 ϵ_1, ϵ_2 是两个 C^0 且处处不为零的 n 形式场, 且有处处为正的函数 h 使得 $\epsilon_1 = h\epsilon_2$, 那么 ϵ_1, ϵ_2 是两个不同的体元, 但却代表同一个定向. 对于连通流形, 体元有无数个, 定向却只有两个.

定向流形上的积分和体元无需要求流形上附加度规结构. 但是若流形上给定了度规场, 就存在一个特定的体元. 设 $\varepsilon_{a_1\cdots a_n}$ 是任一体元, 则 $\varepsilon^{a_1\cdots a_n} = g^{a_1b_1}g^{a_2b_2}\cdots g^{a_nb_n}\varepsilon_{b_1\cdots b_n}$, 定义

$$\boldsymbol{\varepsilon}^{a_1\cdots a_n}\boldsymbol{\varepsilon}_{a_1\cdots a_n} = (-1)^s n! (\varepsilon_{1\dots n})^2, \tag{5.12}$$

其中 $\varepsilon_{1...n}$ 是 $\varepsilon_{a_1...a_n}$ 在正交归一基底的分量,s 是 g_{ab} 在正交归一基底的分量中-1 的个数."度规选定一个特定的体元", 就是说规定体元 $\varepsilon_{a_1...a_n}$ 在正交归一基 $\{(e^\mu)_a\}$ 的分量满足

$$\boldsymbol{\varepsilon}_{a_1\cdots a_n} = \pm (e^1)_{a_1} \wedge \cdots \wedge (e^n)_{a_n} \Rightarrow \varepsilon_{1\cdots n} = \pm 1, \tag{5.13}$$

于是就有

$$\boldsymbol{\varepsilon}^{a_1\cdots a_n}\boldsymbol{\varepsilon}_{a_1\cdots a_n} = (-1)^s n!,\tag{5.14}$$

满足上式的 $\varepsilon_{a_1\cdots a_n}$ 称为与度规 g_{ab} 相适配 (相容) 的体元."+""-"分别表示右手和左手正交归一基.

Remark. 度规和体元只能将体元确定到相差一个负号的程度, 若要唯一确定一个体元, 还需加上"体元与定向相容"的条件, 即代表体元的 ε 与代表定向的 ε 之间的乘子为正.

设 ε 是适配体元, $\{(e_{\mu})^a\}$, $\{(e^{\mu})_a\}$ 为基底及其对偶基底,g 为 g_{ab} 在此基底的分量组成的行列式,|g| 为 g 的绝对值,则有

$$\boldsymbol{\varepsilon}_{a_1 \dots a_n} = \pm \sqrt{|q|} (e^1)_{a_1} \wedge \dots \wedge (e^n)_{a_n}. \tag{5.15}$$

Remark. 对于正交归一基底有 g=1.

设 ∇_a, ε 分别是与度规适配的导数算符和体元, 则有

$$\nabla_b \varepsilon_{a_1 \cdots a_n} = 0. \tag{5.16}$$

关于体元, 有如下恒等式

$$\delta^{[a_1}{}_{a_1} \cdots \delta^{a_j}{}_{a_j} \delta^{a_{j+1}}{}_{b_{j+1}} \cdots \delta^{a_n]}{}_{b_n} = \frac{(n-j)!j!}{n!} \delta^{[a_{j+1}}{}_{b_{j+1}} \cdots \delta^{a_n]}{}_{b_n}. \tag{5.17}$$

$$\boldsymbol{\varepsilon}^{a_1 \cdots a_n} \boldsymbol{\varepsilon}_{b_1 \cdots b_n} = (-1)^s n! \delta^{[a_1}{}_{b_1} \cdots \delta^{a_n]}{}_{b_n}. \tag{5.18}$$

$$\boldsymbol{\varepsilon}^{a_1 \cdots a_j a_{j+1} \cdots a_n} \boldsymbol{\varepsilon}_{a_1 \cdots a_j b_{j+1} \cdots b_n = (-1)^s (n-j)! j! \delta^{[a_1}{}_{b_{j+1}}} \cdots \delta^{a_n]}{}_{b_n}. \tag{5.19}$$

5.5 函数在流形上的积分, Gauss 定理

设 ε 是流形 M 上的任一体元, f 为 M 上的 C^0 函数, 则 f 在 M 上的积分 $\int_M f$ 定义为 n 形式场 $f\varepsilon$ 在 M 上的积分, 即

$$\int_{M} f := \int_{M} f \varepsilon. \tag{5.20}$$

Figure 5.5: (a): 三维欧氏空间的例子 (b): 式的示意图

Remark. 如图5.5(a) 所示, 以三维欧氏空间 $(\mathbb{R}^3,\delta_{ab})$ 为例说明上面定义的合理性. 设 $\{x,y,z\}$ 为右手笛卡尔坐标系, 则相应的适配体元为 $\varepsilon=\mathrm{d}x\wedge\mathrm{d}y\wedge\mathrm{d}z$, 于是 $(\mathbb{R}^3,\delta_{ab})$ 上的函数 $f:\mathbb{R}^3\to\mathbb{R}$ 的积分按照上面的定义就是

$$\int_{\mathbb{R}^3} f = \int_{\mathbb{R}^3} f \boldsymbol{\varepsilon} = \int_{\mathbb{R}^3} \boldsymbol{\omega} = \iiint F(x, y, z) dx dy dz,$$

其中 F(x,y,z) 是 f 与笛卡尔坐标系 $\{x,y,z\}$ 结合而得到的三元函数. 若采用球坐标系, 则线元可以表示为

$$\mathrm{d}s^2 = \mathrm{d}r^2 + r^2(\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\varphi^2),$$

于是就有度规 g_{ab} 的在球坐标系基底下的分量的行列式 g 为

$$g = \begin{vmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & r^2 \sin \theta \end{vmatrix} = r^4 \sin^2 \theta > 0,$$

于是就有

$$\boldsymbol{\omega} = r^2 \sin \theta dr \wedge d\theta \wedge d\varphi,$$

从而

$$\int f = \int f \boldsymbol{\varepsilon} = \int \boldsymbol{\omega} = \iiint \hat{F}(r, \theta, \varphi) r^2 \sin \theta dr d\theta d\varphi,$$

其中 $\hat{F}(r,\theta,\varphi)$ 是 f 与球坐标系 $\{r,\theta,\varphi\}$ 结合而得到的三元函数.

如图5.5(b) 所示, 设 M 是 n 维定向流形,N 是其中的 n 维紧致带边嵌入子流形, g_{ab} 为 M 上的度规, ε , ∇_a 分别是适配体元和适配导数算符, v^a 是 M 上的 C^1 矢量场, 则

$$\int_{i(N)} (\nabla_b v^b) \varepsilon = \int_{\partial N} \underbrace{v^b \varepsilon_{ba_1 \cdots a_{n-1}}}_{\omega}.$$
 (5.21)

 $Proof. \ n-1$ 形式场 $\omega = v^b \varepsilon_{ba_1 \cdots a_{n-1}}$ 的外微分 $\mathrm{d}\omega = n \nabla_{[c} (v^b \varepsilon_{|b|a_1 \cdots a_{n-1}})$ 是一个 n 形式. 由于 N 中任一点的 n 形式的集合是一维矢量空间, 所以该点的两个 n 形式 ω 与 ε 只差一个因子, 设为 h, 即

$$d\boldsymbol{\omega} = n\nabla_{[c}(v^b\boldsymbol{\varepsilon}_{|b|a_1\cdots a_{n-1}]}) = h\boldsymbol{\varepsilon}_{ca_1\cdots a_n}.$$

两边同时和 $\varepsilon^{ca_1\cdots a_{n-1}}$ 进行缩并, 右边可以写成 $h(-1)^s n!$. 而左边为

$$d\omega \otimes \varepsilon^{ca_1 \cdots a_{n-1}} = n\varepsilon^{[ca_1 \cdots a_{n-1}]} \nabla_c (v^b \varepsilon_{ba_1 \cdots a_{n-1}})$$

$$= n\varepsilon^{ca_1 \cdots a_{n-1}} \nabla_c (v^b \varepsilon_{ba_1 \cdots a_{n-1}})$$

$$= n\varepsilon^{ca_1 \cdots a_{n-1}} \varepsilon_{ba_1 \cdots a_{n-1}} \nabla_c v^b$$

$$= n(-1)^s (n-1)! \delta^c_b \nabla_c v^b$$

$$= n! (-1)^s \nabla_b v^b.$$

从而有 $h = \nabla_b v^b, d\omega = \nabla_b v^b \varepsilon$. 于是就有

$$\int_{i(N)} (\nabla_b v^b) \varepsilon = \int_{i(N)} d\omega \xrightarrow{\underline{Stokes \hat{\mathbb{Z}} \mathbb{Z}}} \int_{\partial N} \omega = \int_{\partial N} v^b \varepsilon_{ba_1 \cdots a_{n-1}}.$$

如图5.6所示, ∂N 非类光超曲面, n^a 是其归一化法矢, 满足 $n^a n_a = \pm 1.N$ 上的度规 g_{ab} 在 ∂N 上的诱导度规为 $h_{ab} = g_{ab} \mp n_a n_b$. 将 ∂N 视为带度规 h_{ab} 的 n-1 维流形, 其体元 $\hat{\varepsilon}_{a_1\cdots a_n}$ 满足:

- 与 ∂N 的诱导定向 $\overline{\varepsilon}_{a_1\cdots a_{n-1}}$ 相容;
- 与度规相容,即

$$\hat{\varepsilon}^{a_1 \cdots a_{n-1}} \hat{\varepsilon}_{a_1 \cdots a_{n-1}} = (-1)^{\hat{s}} (n-1)!,$$

其中 $\hat{\varepsilon}^{a_1\cdots a_{n-1}}$ 是 h^{ab} 对 $\hat{\varepsilon}_{a_1\cdots a_{n-1}}$ 升指标的结果, \hat{s} 为 h_{ab} 中负数对角元的个数. ∂N 上满足如上两个条件的体元 $\hat{\varepsilon}_{a_1\cdots a_{n-1}}$ 称为诱导体元.

Figure 5.6: 诱导体元, 其中 ∂N 非类光超曲面, n^a 是其归一化法矢

设 M 是 n 维定向流形,N 是 M 中的 n 维紧致带边嵌入子流形, g_{ab} 是 M 上的度规, ε , ∇_a 分别是适配体元和适配导数算符, $\hat{\varepsilon}$ 是 ∂N 上的诱导体元, ∂N 的外法矢 n^a 满足 $n^a n_a = \pm 1, v^a$ 是 M 上的 C^1 矢量场,则有

$$\int_{\mathrm{i}(N)} (\nabla_a v^a) \varepsilon = \pm \int_{\partial N} v^a n_a \hat{\varepsilon}.$$
 (5.22)

Proof. 由于

$$\int_{\mathrm{i}(N)} (\nabla_b v^b) \varepsilon = \int_{\partial N} v^b \varepsilon_{ba_1 \cdots a_{n-1}} = \int_{\partial N} \tilde{\omega},$$

只要证

$$\tilde{\omega}_{a_1\cdots a_{n-1}} = \pm v^b n_b \hat{\boldsymbol{\varepsilon}},$$

上式两边都是 n-1 形式, 故必存在 K 使得

$$\tilde{\omega}_{a_1\cdots a_{n-1}} = K v^b n_b \hat{\varepsilon}_{a_1\cdots a_{n-1}}.$$

只要证明 $K = \pm 1$.

设 $\{(e_0)^a=n^a,(e_1)^a,\cdots,(e_{n-1})^a\}$ 是 V_q 的一个右手正交归一基底, 对上式左右两边作用 $(e_1)^a\cdots(e_{n-1})^a,$

右边 =
$$Kv^b n_b \hat{\varepsilon}_{12\cdots(n-1)} = \pm Kv^b (e^0)_b = \pm Kv^0$$
;

左边 =
$$\omega_{a_1 \cdots a_{n-1}}(e_1)^{a_1} \cdots (e_{n-1})^{a_{n-1}} = v^b \varepsilon_{ba_1 \cdots a_{n-1}}(e_1)^{a_1} \cdots (e_{n-1})^{a_{n-1}}$$

= $v^\mu \varepsilon_{\mu 1 \cdots (n-1)} = v^0 \varepsilon_{01 \cdots (n-1)} = v^0$.

所以 $K = \pm 1$.

5.6. 对偶微分形式 19

5.6 对偶微分形式

设 $\Lambda_p(l)$ 代表 $p \in M$ 的全部 l 形式的集合 $(l \le n)$, 则有

$$\dim \Lambda_p(l) = \frac{n!}{l!(n-l)!} = \dim \Lambda_p(n-l). \tag{5.23}$$

 $\forall \omega \in \Lambda_M(l)$, 定义 ω 的对偶微分形式(dual form)* $\omega \in \Lambda_M(n-l)$ 为

$$*\omega_{a_1\cdots a_{n-l}} := \frac{1}{l!}\omega^{b_1\cdots b_l}\varepsilon_{b_1\cdots b_l a_1\cdots a_{n-l}},$$
(5.24)

其中 *: $\Lambda_M(l) \to \Lambda_M(n-l)$ 为同构映射.

f 作为 0 形式场, 其对偶微分形式为

$$(^*f)_{a_1\cdots a_n} = \frac{1}{0!} f \varepsilon_{a_1\cdots a_n} = f \varepsilon_{a_1\cdots a_n}, \tag{5.25}$$

所以从这一角度出发, 可以将函数 f 的积分和 f 的对偶形式场的积分等同. 而

$$*(*f) = \frac{1}{n!} (f\varepsilon^{b_1\cdots b_n})\varepsilon_{b_1\cdots b_n} = \frac{1}{n!} f(\underbrace{\varepsilon^{b_1\cdots b_n}\varepsilon_{b_1\cdots b_n}}_{(-1)^s n!}) = (-1)^s f.$$
 (5.26)

为什么在三维欧氏空间中无需使用微分形式和对偶微分形式?

- 在三维欧氏空间中, 利用欧式度规 δ_{ab} 可以将对偶矢量场 ω_a 变为矢量场 $\omega^a = \delta^{ab}\omega_b$, 从而无需使用 1 形式场.
- 由于维度为 3, 同构映射 * : $\Lambda_M(2) \to \Lambda_M(1)$ 使得 $\omega \in \Lambda_M(2)$ 和 * $\omega \in \Lambda_M(1)$ 等同, 从而无需使用 2 形式场.
- 同构映射 *: $\Lambda_M(3) \to \Lambda_M(0)$ 使得 $\omega \in \Lambda_M(3)$ 和 * $\omega \in \Lambda_M(0)$ 等同, 从而无需使用 3 形式场.

所以三维欧氏空间的微分形式场都可以用函数和矢量场代替.

对于三维空间中的矢量 A, B, 其标量积用微分几何的语言可以表述为

$$\mathbf{A} \cdot \mathbf{B} = \delta_{ab} A^a B^b, \tag{5.27}$$

由于

$$\omega_{ab} \equiv A_a \wedge B_b = 2A_{[a}B_{b]} \Rightarrow \omega^{ab} = 2A^{[a}B^{b]},$$

$$(*\omega)_c \equiv \frac{1}{2}\omega^{ab}\varepsilon_{abc} = \varepsilon_{abc}A^aB^b,$$

所以有

$$(^*\omega)_k = \varepsilon_{ijk} A^i B^j = (\boldsymbol{A} \times \boldsymbol{B})_k,$$

所以矢量积 $A \times B$ 可以视为先求其楔形积 $A \wedge B$, 再求其对偶形式, 即 $\times = * \circ \land$,

$$(\mathbf{A} \times \mathbf{B})_k = \varepsilon_{ijk} A^i B^j, \tag{5.28}$$

其中, ε_{ijk} 是与欧式度规 δ_{ab} 适配体元 ε_{abc} 的分量, 而且在笛卡尔系下正交归一, 这就是所谓的 Levi-Civita 记号.

使用微分几何的语言改写三维欧氏空间中矢量场论的若干结论如下:

- 1. $\nabla f = \partial_a f$;
- 2. $\nabla \cdot \mathbf{A} = \partial_a A^a$;
- 3. $\nabla \times \mathbf{A} = \varepsilon^{abc} \partial_a A_b$;
- 4. $\operatorname{grad} f = \operatorname{d} f$;
- 5. $\operatorname{div} \mathbf{A} =^* (\operatorname{d}^* \mathbf{A});$
- 6. $\operatorname{curl} \boldsymbol{A} =^* (d\boldsymbol{A});$

7.
$$\oint \mathbf{E} \cdot d\mathbf{l} = 0 \Leftrightarrow \text{curl} \mathbf{E} = 0 \Rightarrow \exists \phi \ s.t. \mathbf{E} = \nabla \phi;$$

8.
$$\iint \mathbf{B} \cdot d\mathbf{s} = 0 \Leftrightarrow \text{div}\mathbf{B} = 0 \Rightarrow \exists \mathbf{A} \ s.t.\mathbf{B} = \text{curl}\mathbf{A}.$$

Proof. 结论 7 和 8 的证明如下:

$$\operatorname{curl} \boldsymbol{E} = 0 \Leftrightarrow^* (d\boldsymbol{E}) = 0 \Rightarrow d\boldsymbol{E} = 0 \stackrel{\mathbb{R}^3}{\Longrightarrow} \exists \phi \ s.t. \boldsymbol{E} = \nabla \phi;$$
$$\operatorname{div} \boldsymbol{B} = 0 \Leftrightarrow d^* \boldsymbol{B} = 0 \Rightarrow \exists \boldsymbol{A} \ s.t. ^* \boldsymbol{B} = d\boldsymbol{A} \Rightarrow \boldsymbol{B} =^* (d\boldsymbol{A}) = \operatorname{curl} \boldsymbol{A}.$$

狭义相对论

6.1 4 维表述基础

6.1.1 预备知识

不论是否发生了什么, 空间的一点和时间的一瞬的结合就叫一个事件(event). 全部事件的集合叫时空(spacetime). 狭义相对论中谈及的粒子(particle) 是模型化语言, 是完全没有大小的点, 分为有静质量的粒子 (质点) 和无静质量的粒子 (光子,photon) 两类. 一个粒子的全部历史由一系列事件组成, 因此对应于时空中的一条曲线, 称为该粒子的世界线(world line), 如图6.1所示.

Figure 6.1: 世界线

进行物理观测的人叫观察者,将之模型化看成质点,简称观者.为了观测,观者手中应有一个走时准确的钟,叫标准钟(standard clock),该钟的读数称为该观者的固有时(proper time).固有时 τ 无非是质点世界线的一个特殊参数.无数观者的集合 $\mathcal R$ 叫一个参考系(reference frame),满足时空或其一个开子集中的任一点有且仅有 $\mathcal R$ 内的一个观者的世界线经过.参考系即世界线的线汇,即对于参考系

- 过任意事件均有一条世界线.
- 世界线不相交.

Figure 6.2: (a): 地面系和火车系示意图;(b): 地面系 (实线) 和火车系 (虚线) 的世界线;(c):Galileo 变换

如上图6.2所示,(a) 代表火车系和地面系, 而 (b) 中以许多竖直实线代表地面系观者们的世界线, 火车系观者们的世界线则是许多互相平行的斜直虚线.(c) 表示 Galileo 变换, 与 Galileo 相对性原理 (任两个惯性系都是平权的) 构成 Galileo 的两大理论贡献. 如 (c) 所示,Galileo 变换的坐标变换公式为:

$$\begin{cases} x' = x - vt \\ y' = y \\ z' = z \\ t' = t \end{cases}$$

$$(6.1)$$

坐标变换公式中最后一式蕴含了同时性的绝对性. 速度合成公式为:

$$u' = u - v. ag{6.2}$$

6.1. 4 维表述基础 23

6.1.2 Maxwell 方程的参考系问题

Maxwell 方程组表明 Galileo 相对性原理对于电磁理论并不成立. 于是存在以下两种非此即彼的选择:

- 认为相对性原理并不总是成立的,即惯性系不平权. 存在一个特殊的惯性系 (以太,ether), 其中光速为 c, 而其他惯性系则不然.
- 坚持相对性原理总是成立的.

Figure 6.3: (a): 闪电击中车头和车尾;(b): 利用世界线进行分析

如图6.3(a), 闪电分别击中火车车头 A 和车尾 B, 地面系 M 认为 A 和 B 同时遭受雷击, 而火车系 M' 认为并不同时, 车头 A 首先遭受雷击. 这表明了"同时的相对性". 以四维语言的时空图分析, 地面系 M 的世界线为 P_2P_1 的中垂线, 从 P_2 , P_1 处发的光自然同时到达 M. 而火车系 M' 的世界线却首先和 P_1 发出的光相遇 (时间记为 T_1), 其次再和 P_2 相遇 (时间记为 T_2), 显然 $T_1 < T_2$.

狭义相对论的两条假设为:

- 狭义相对性原理
- 光速不变性

并假设空间是均匀的, 各向同性的.

狭义相对性原理包含两个层次的内容:

- 在所有观者 (质点) 中存在一类特殊观者, 称为惯性观者(inertial observer), 与其他观者有绝对区别. 在所有观者组成的集合中可以选出一个特殊的子集, 其中每个元素都是惯性观者.
- 各惯性观者平权,不存在特殊的惯性观者,在由惯性观者组成的子集中不能选出与众不同的元素.

洛伦兹变换 (v < c, c 取为 1) 为:

$$x' = \gamma(x - vt), \gamma = \frac{1}{\sqrt{1 - v^2}}$$

$$t' = \gamma(t - vx)$$

$$\Rightarrow \begin{cases} u'_x = \frac{u_x - v}{1 - u_x v} \\ u'_y = \frac{u_y}{\gamma(1 - u_x v)} \\ u'_z = \frac{u_z}{\gamma(1 - u_x v)} \end{cases}$$

$$(6.3)$$

另一个效果是间隔不变性:

$$dI^{2} \equiv -dt^{2} + dx^{2} + dy^{2} + dz^{2}$$

$$dI'^{2} \equiv -dt'^{2} + dx'^{2} + dy'^{2} + dz'^{2}$$

$$dI^{2} = dI'^{2}$$
(6.4)

6.1.3 几何语言重新表述 SR

牛顿引力论
$$\rightarrow (\mathbb{R}^4,?)$$

$$\begin{array}{c} \mathrm{SR} \rightarrow (\mathbb{R}^4,\eta_{ab}) \\ \mathrm{GR} \rightarrow (M,g_{ab}) \\ \downarrow^{\mathrm{main}} \end{array} \Longrightarrow \begin{cases} \begin{array}{c} \mathrm{w}_{\mathbb{Z}} & \mathrm{w}_{\mathbb{Z}} \\ \mathrm{them} & \mathrm{them} \\ \mathrm{them}$$

Figure 6.4: (a): 狭义相对论的 4 维语言表述;(b): 任意惯性观者的世界线都是类时测地线

如图6.4所示, 设 L 为粒子的世界线,p,q 为其上两个邻近的点, 粒子在 p 时相对于某惯性系 \mathscr{R} 的

6.1. 4 维表述基础 25

速率定义为:

$$ds^{2} = -dt^{2} + dx^{2} + dy^{2} + dz^{2}$$

$$u := \frac{\sqrt{dx^{2} + dy^{2} + dz^{2}}}{dt} \Longrightarrow = -dt^{2} \left[-\left(\frac{dx^{2}}{dt^{2}} + \frac{dy^{2}}{dt^{2}} + \frac{dz^{2}}{dt^{2}}\right) \right]$$

$$= -(1 - u^{2})dt^{2}$$

$$(6.5)$$

从而

$$ds^2 = 0 \iff u = 1 \iff null$$

 $ds^2 < 0 \iff u < 1 \iff timelike$

这表明狭义相对论的两个基本信条: "光子相对于任何惯性系的速率 u=1" 和 " 质点相对于任何惯性系的速率 u<1" 采用 4 维语言可以改写如下:

- 光子世界线是闵氏时空的类光曲线.
- 质点世界线是闵氏时空的类时曲线.

根据 3 维语言的狭义相对论, 惯性观者相对于所在的惯性坐标系 $\{t, x, y, z\}$ 的速率 u = 0, 因而其世界线重合于一条 t 坐标线 (如图6.4(b) 所示). 设 ∂_t 是该系的普通导数算符, 则有

$$\partial_b \left(\frac{\partial}{\partial t}\right)^a = 0 \Rightarrow \left(\frac{\partial}{\partial t}\right)^b \partial_b \left(\frac{\partial}{\partial t}\right)^a = 0.$$
 (6.6)

由于物理上的惯性坐标系就是数学上的洛伦兹坐标系,则 ∂_b 就是与闵氏度规 η_{ab} 相适配的导数算符,即 $\partial_a\eta_{bc}=0$,所以式6.6是闵氏时空的测地线方程,可见任意惯性观者的世界线都是类时测地线.反之可证,给定任一类时测地线 G,总可以找到一个洛伦兹坐标系使得 G 是该系的一条 t 坐标线,因而代表一个惯性观者.从而物理上的惯性观者就对应于数学上的类时测地线,或者说惯性观者的世界线就是类时测地线.

$$\begin{array}{c} \textit{Phys.} & \textit{Math.} \\ \textit{inertial corrdinates} \longleftrightarrow \textit{Lorentizian coordinates} \\ & \textit{interval} \longleftrightarrow \textit{Minkowski line element} \\ & \textit{ling} \\ \textit{background spacetime} \longleftrightarrow 4-\textit{dim Minkowski space} \\ & \textit{observer(pointmass)} \longleftrightarrow \textit{timelike curve} \\ & \textit{inertial observer} \longleftrightarrow \textit{timelike geodesic} \\ & \text{微性观者} \end{array}$$

洛伦兹坐标系的每一 t 坐标线都对应于一个惯性观者, 该系的全体 t 坐标线组成的参考系称为惯性参考系, 而该坐标系则称为该惯性参考系内的一个惯性坐标系, 不认真区分时, 将惯性参考系和惯性坐标系统称为惯性系, 其定义域为全时空 (整个 \mathbb{R}^4), 亦称为整体惯性系. 属于同一惯性参考系的所有惯性观者的世界线是平行测地线. 反之, 若两个惯性观者分属不同惯性参考系, 则它们的世界线为不平行测地线. 一个质点叫做"自由的"或者"做惯性运动的", 若其世界线为测地线.

4 维闵氏时空 $(\mathbb{R}^4, \eta_{ab})$ 中洛伦兹系之间的坐标变换对应于 $(\mathbb{R}^4, \eta_{ab})$ 的等度规映射. 任一等度规

映射可以由若干基本的等度规映射复合而成,后者分为"连续"和"分立"两种."分立"包括反射和反演, "连续"包括以下三种:

1. 平移, 由 4 个独立的 Killing 矢量场 $\left(\frac{\partial}{\partial t}\right)^a$, $\left(\frac{\partial}{\partial x}\right)^a$, $\left(\frac{\partial}{\partial y}\right)^a$, $\left(\frac{\partial}{\partial z}\right)^a$ 表征. 时间平移:

$$\begin{cases} t' = t + a \\ x' = x \\ y' = y \\ z' = z \end{cases}$$

$$(6.7)$$

物理上对应于把惯性系 \mathcal{R} 内所有观者的标准钟的初始设定值增加数值 a.

2. 空间转动, 由 3 个独立的 Killing 矢量场 $-y\left(\frac{\partial}{\partial x}\right)^a + x\left(\frac{\partial}{\partial y}\right)^a, -z\left(\frac{\partial}{\partial y}\right)^a + y\left(\frac{\partial}{\partial z}\right)^a, -x\left(\frac{\partial}{\partial z}\right)^a + z\left(\frac{\partial}{\partial x}\right)^a$ 表征.

x-y 面内的转动:

$$\begin{cases} t' = t \\ z' = z \\ x' = x \cos \alpha - y \sin \alpha \\ y' = x \sin \alpha + y \cos \alpha \end{cases}$$
(6.8)

物理上对应于惯性参考系内部的一个空间坐标变换.

3. 伪转动,由 3 个独立的 Killing 矢量场 $t\left(\frac{\partial}{\partial x}\right)^a + x\left(\frac{\partial}{\partial t}\right)^a, t\left(\frac{\partial}{\partial y}\right)^a + y\left(\frac{\partial}{\partial t}\right)^a, t\left(\frac{\partial}{\partial z}\right)^a + z\left(\frac{\partial}{\partial t}\right)^a$ 表征.

t-x 面内的伪转动:

$$\begin{cases} t' = \gamma(t - vx) \\ x' = \gamma(x - vt) \\ y' = y \\ z' = z \end{cases}$$
(6.9)

物理上对应于两个惯性系 $\mathcal{R}, \mathcal{R}'$ 之间的坐标变换——洛伦兹变换.

平移和空间转动都是同一惯性参考系内的坐标变换, 而伪转动相联系的两个惯性坐标系必然分属两个不同的惯性参考系.

6.1. 4 维表述基础 27

一个钟称为标准钟或者理想钟(ideal clock), 若它在自己世界线上任两点 p_1, p_2 的读数差 τ_1, τ_2 之 差等于该线在 p_1, p_2 之间的线长, 即

$$\tau_2 - \tau_1 = \int_{p_1}^{p_2} \sqrt{-\mathrm{d}s^2}.$$
 (6.10)

若光速 c 不为 1, 则上式右边要乘上 $\frac{1}{c}$. 今后谈及世界线时默认以固有时 τ 为参数, 而固有时间等于线长, 因此切矢 $\left(\frac{\partial}{\partial \tau}\right)^a$ 的长度为 1. 由于类光曲线线长恒为零, 所以光子没有固有时概念, 不能充当观者.

标准钟只对走时率提出要求, 世界线上任意两点的读数差等于线长, 而参考系内的钟同步问题则只涉及初始零点设定(setting). 惯性参考系必须对齐零点, 称为钟同步(clock synchronization), 图6.5(b) 是用以钟同步的雷达法.

Figure 6.5: (a): 标准钟;(b): 钟同步

设 x^0 是坐标系的类时坐标, $\eta_{ab}\left(\frac{\partial}{\partial x^0}\right)^a\left(\frac{\partial}{\partial x^0}\right)^b<0, x^1, x^2, x^3$ 为类空坐标, $\eta_{ab}\left(\frac{\partial}{\partial x^0}\right)^a\left(\frac{\partial}{\partial x^0}\right)^b>0, i=1,2,3$,则坐标域中任一点 p 的 x^0 值称为事件 p 在该系的坐标时(coordinate time). 惯性系的坐标时叫做惯性坐标时, 其定义域为全 \mathbb{R}^4 . 坐标时与固有时的区别在于:

- 固有时只对世界线上的点而言, 脱离世界线就没有固有时概念. 坐标时与世界线无关, 坐标域中的 任一点都可谈及它在该系的坐标时.
- 同一时空点在不同坐标系中可有不同的坐标时, 而固有时与坐标系无关.

设 $L(\tau)$ 是某质点的世界线, τ 为固有时,t 为惯性系 \mathscr{R} 的坐标时,则

$$\frac{dt}{d\tau} = \frac{dt}{\sqrt{-ds^2}} = \frac{dt}{\sqrt{1 - u^2}dt} = \frac{1}{\sqrt{1 - u^2}} = \gamma_u,$$
(6.11)

其中 u 是质点相对于 \mathcal{R} 的速率.

Figure 6.6: (a): 以 $\mathcal R$ 为基准的时空图,x' 与 t' 分居 45° 线两侧;(b): 以 $\mathcal R'$ 为基准的时空图,与 (a) 等价;(c): 校准曲线

如图6.6(a) 所示, 以惯性系 \mathcal{R} 为基准, 将 t'=0, x'=0 分别代入洛伦兹变换,

$$0 = t' = \gamma(t - vx) \Rightarrow t = vx,$$

$$0 = x' = \gamma(x - vt) \Rightarrow t = \frac{x}{v}.$$
(6.12)

可见,t',x' 是过原点,且斜率分别为 $\frac{1}{v}$,v 的直线.这两条直线分居虚线两侧且与该线夹角相等. 若以以惯性系 \mathscr{R}' 为基准,则时空图如6.6(b) 所示,注意此时 $\left(\frac{\partial}{\partial t'}\right)^a$, $\left(\frac{\partial}{\partial x'}\right)^b$ 以闵氏度规 η_{ab} 衡量依旧正交. 设 p=(t.x) 为任一时空点,其与坐标原点之间的直线段的线长按照闵氏度规为 $l=\sqrt{|-t^2+x^2|}$.可见双曲线 $-t^2+x^2=K$ (常数) 上面各个点与坐标原点所连接的直线段等长,如图6.6(c) 所示,称为校准曲线.

6.1.4 两种时空结构的对比

相对论中时空是第一手概念,时间与空间则是派生的概念,只有借助参考系把时空进行"3+1"分解才得到时间和空间的概念,同一时空存在着许多不同的 3+1 分解方案. 非相对论物理学默认时空流形是 \mathbb{R}^4 ,且具有某些内禀的附加结构,其一就是存在一个称为绝对时间(absolute time) 的光滑函数 $t:\mathbb{R}^4\to\mathbb{R}$,使得 \mathbb{R}^4 被分为无限多层,每层是一个等 t 面 \sum_t ,称为绝对同时面(absolute simultaneity surface),它有 3 维欧式度规,代表 t 时刻的整个三维空间.

给定事件 $p \in \mathbb{R}^4$, 总有 $\mathbb{R}^4 - \{p\} = M_1 \cup M_2 \cup M_3$, 其中,

 $M_1 \equiv \{q \in M |$ 存在先经历q后经历p的观者 $\};$

 $M_2 \equiv \{ g \in M |$ 存在先经历p后经历g的观者 $\};$

 $M_3 \equiv \{q \in M | \text{不存在既经历} q \text{又经历} p \text{的观者} \}.$

6.2. 典型效应分析 29

Figure 6.7: (a): 非相对论物理学的绝对同时面 \sum_t (b): 狭义相对论的光锥

如图6.7(a) 所示,非相对论物理学默认子集 M_3 就是过 p 点 (不合) 的绝对同时面 \sum_t ,而 M_2 , M_1 分别居于 \sum_t 两侧的"上半个 \mathbb{R}^4 "和"下半个 \mathbb{R}^4 ",物理意义是: 若 $q \in M_2$,称事件 q 发生于 p 的未来;若 $q \in M_1$,称事件 q 发生于 p 的过去. 在狭义相对论中, M_2 , M_1 分别是 p 点的未来光锥面和过去光锥面围成的子集 (不含光锥面上的点).

6.2 典型效应分析

6.2.1 尺缩效应

如图6.8, 显然有 $l_{ob} < l_{oa}$, 进一步有

$$l_{oa} = \sqrt{x_a^2 - 0} = x_a$$

$$l_{ob} = \sqrt{x_b^2 - t_b^2} = \sqrt{x_b^2 - v^2 x_b^2} = \sqrt{1 - v^2} x_b = \gamma^{-1} x_a$$
(6.13)

- 6.2.2 钟慢效应
- 6.2.3 孪子佯谬

Figure 6.8: 尺缩效应的时空图

6.2. 典型效应分析 31

Figure 6.9: 钟慢效应的时空图

Figure 6.10: 李子佯谬

Bibliography

[1] 韩其智 and 孙洪洲, 群论. 北京大学出版社, 1987.

[1]