1.2.5 Исследование вынужденной регулярной прецессии гироскопа

Анна Назарчук Б02-109

1 Теоретические сведения

Уравнение движения твердого тела:

$$\frac{\overrightarrow{dp}}{dt} = \overrightarrow{F} \tag{1}$$

$$\frac{\overrightarrow{dL}}{dt} = \overrightarrow{M} \tag{2}$$

Так как сила \overrightarrow{F} не зависит от угловой скорости, а момент сил \overrightarrow{M} - от скорости поступательного движения, то уравнения движения можно рассматривать отдельно.

$$\overrightarrow{L} = \overrightarrow{i} I_x \omega_x + \overrightarrow{j} I_y \omega_y + \overrightarrow{k} I_z \omega_z \tag{3}$$

Гироскоп - быстро вращающееся тело, для которого, например:

$$I_z \omega_z \gg I_x \omega_x, I_y \omega_y$$
 (4)

Уравношенный гироскоп - тот, у которого центр масс неподвижен. Если момент внешних сил действует в течение короткого промежутка времени, то:

$$|\Delta \overrightarrow{L}| = |\int \overrightarrow{M} dt| \ll |\overrightarrow{L}| \tag{5}$$

Рассмотрим маховик, вращающийся вокр
гу оси z (рис. 1). Будем считать, что:

$$\omega_x = \omega_0, \quad \omega_y = 0, \quad \omega_z = 0$$
 (6)

Пусть ось вращения повернулась на угол $d\varphi$ в плоскости zx:

$$d\varphi = \Omega dt$$

Рис. 1: Маховик

Будем считать, что $L_{\Omega} \ll \mathbf{L}_{\omega_0}$ Это означает, что момент импульса маховика изменится только по направлению:

$$|\overrightarrow{dL}| = Ld\varphi = L\Omega dt \tag{7}$$

Изменение направлено вдоль оси x, поэтому \overrightarrow{dL} можно представить:

$$\frac{\overrightarrow{dL}}{dt} = \overrightarrow{\Omega} \times \overrightarrow{L} \tag{8}$$

С учетом уравнения вращательного движения:

$$\overrightarrow{M} = \overrightarrow{\Omega} \times \overrightarrow{L} \tag{9}$$

Под действием момента \overrightarrow{M} ось гироскопа медленно вращается вокруг оси y с угловой скоростью Ω - регулярная прецессия гироскопа. Скорость в случае движения уравновешенного гироскопа под действием моментов сил подвешенных грузов:

$$\Omega = \frac{mgl}{I_z \omega_0},\tag{10}$$

где l - расстояние от центра карданова подвеса до точки крепления груза на оси гироскопа (рис. 2)

Силы трения не лежат в плоскости осей вращения, поэтому они могут изменять момент импульса и по направлению, и по величине. Для ротора действие сил трения скомпенсировано действием электромотора. В

Рис. 2: Схема экспериментальной установки

результате действия нескомпенсированных сил трения в осях карданова подвеса ось гироскопа будет опускаться в направлении груза.

Момент инерции ротора относительно оси симметрии I_0 измеряется по крутильным колебаниям на жесткой проволоке.

$$T_0 = 2\pi \sqrt{\frac{I_0}{f}},\tag{11}$$

где f - модуль кручения проволоки Чтобы исключить f можно подвесить цилиндр с известными размерами и массой:

$$I_0 = I_{\text{II}} \frac{T_0^2}{T_{\text{II}}^2} \tag{12}$$

2 Измерения и обработка данных

2.1 Исследование зависимости скорости прецессии от момента сил

Отклонив рычаг на 5-6 градусов вверх и подвесив к нему груз, найдем скорость регулярной прецессии и скорость опускания рычага. Результаты измерения с постоянным моментом сил (для измерения погрешности измерений) и разными представлеными в таблице 2.1

Из результатов таблицы 2.1 можно найти систематическую составлющую погрешности Ω , связанную с неточностью определения времени:

Таблица 1: Измерения с разными моментами сил

т, г	N оборотов	Т, с	Ω , 1/c	$\Delta \alpha$, 1/c
57	2	364	0.035	0.306
92	2	220	0.057	0.168
92	2	223	0.057	0.113
92	2	221	0.057	0.118
92	2	217	0.058	0.173
92	2	221	0.057	0.135
116	3	261	0.072	0.206
142	3	215	0.088	0.19
180	4	224	0.112	0.201
219	5	232	0.135	0.19
273	6	223	0.169	0.157
341	8	236	0.213	0.206
74	2	271	0.046	0.124

Таблица 2: Измерения момента инерции ротора

N оборотов цилиндра	N обор. ротора	Т вращения ротора, с	Т вращ. цилиндра,с
11	10	3	3.955
10	10	3	4
10	10	3.26	4
10	10	3	4
10	10	3	4

$$\frac{\sigma_{\Omega}}{\Omega} = 0.027 \tag{13}$$

Исходя из полученной случайной погрешности и результатов в таблице (2.1) построим график зависимости Ω от M (рис. 3)

2.2 Измерение момента инерии ротора

Характерные размеры цидиндра: $m=1617.8\ {\rm r}, d=78.1\ {\rm мм}$

Из таблицы ?? можно сказать, что $I_{\rm q}=0.00123349~{\rm kr\cdot m^2}$ Результаты измерений периода крутильных колебаний с ротором и цилиндром представлены в таблице 2

Из приведенных измерений можно сказать, что:

$$I_0 = (0.78 \pm 0.03) \cdot 10^{-3} \text{K} \cdot \text{M}^2$$
 (14)

Рис. 3: Зависимость Ω от M

2.3 Рассчет частоты вращения и момента сил трения

По формуле 10 можно понять, что ν_0 (частота вращения)- величина, обратно пропорциональная наклону графика на рис. 3. С помощью МНК найдем наклон графика a, а из него ν_0 :

$$\nu_0 = \frac{1}{2\pi \cdot aI_0} = 385.71 \pm 12.73 \ c^{-1}$$

Определим момент сил трения. Для каждого эксперимента будем измерять высоту опускания груза, тем самым измерив угол опускания за период измерения.

$$M_{\rm TP} = \frac{mgl\Delta\alpha}{2\pi N},\tag{15}$$

где $\Delta \alpha$ - угол опускания за N оборотов регулярной прецессии. Данные об измерения в таблице 2.1. Погрешность измерения $\Delta \alpha$ определим исходя из полученных значений при неизменной массе груза, а следовательно и момента силы тяжести. В связи с неточным определением смещения по высоте и времени, погрешность момента силы трения сравнительно остальных измерений высока:

$$M_{\rm TP} = 1.37 \pm 0.26 \text{ MH} \cdot \text{M}$$
 (16)

2.4 Определение частоты вращения ротора по фигурам Лиссажу

Если на один вход осциллографа подать ЭДС во второй обмотке статора гироскопа, а на второй - напряжение с генератора, то при совпадении частот можно увидеть эллипс. Для достижения более неподвижного эллипса, можно на короткое время выключить питание гироскопа, чтобы ток первой обмотки не мешал измерениям. Таким образом:

$$\nu = 395 \, \Gamma \mathrm{u} \tag{17}$$

Данное значение частоты лежит в пределах погрешности частоты, измеренной с помощью эксперимента с вращением гироскопа.

Проверим справедливость соотношения: $L_{\Omega} \ll \mathbf{L}_{\omega_0}$. Значения моментов инерции ротора по разным осям не отличаются по порядку, а угловые скорости:

$$\Omega \approx 0.06 \ 1/c \ll \omega_0 \approx 2400 \ 1/c$$

поэтому предположенное соотношение верно.

3 Вывод

Установлена зависимость скорости вынужденной прецессии от величины момента сил, действующих на ось гироскопа; определена скорость вращения ротора гироскопа и сравнить ее со скоростью, рассчитанной по скорости прецесии.