Analysing Twitter for Ubisoft

Ryan Greenup

April 26, 2020

Contents

8.1 Analysing the Relationship Between Friends and Followers for Twitter Users	1
8.1.1 Retrieve the posts from Twitter	1
8.2.2 Count of Followers and Friends	1
8.1.3 Summary Statistics	1
8.1.4 Above Average Followers	2
8.1.5 Generate a bootsrap distribution of the Follower Counts	2
	_
References	2

8.1 Analysing the Relationship Between Friends and Followers for Twitter Users

8.1.1 Retrieve the posts from Twitter

relevant posts can be retrieved from twitter by utilising the rtweet package, packages can be loaded for use in R thusly:

The rtweet API will search for tweets that contain all the words of a query regardless of uppercase or lowercase usage [kearney2019].

In order to leverage the *Twitter* API it is necessary to use tokens provided through a *Twitter* developer account:

and hence all tweets containing a mention of *Ubisoft* can be returned and saved to disk as shown in listing 3:

8.2.2 Count of Followers and Friends

In order to identify the number of users that are contained in the *tweets* the unique() function can be used to return a vector of names which can then be passed as an index to the vector of counts as shown in listing 4, this provides that 81.7% of the tweets are by unique users.

```
# Load Packages
   setwd("~/Dropbox/Notes/DataSci/Social_Web_Analytics/SWA-Project/scripts_
   if (require("pacman")) {
     library(pacman)
   } else{
     install.packages("pacman")
     library(pacman)
   }
10
   pacman::p_load(xts, sp, gstat, ggplot2, rmarkdown, reshape2,
                  ggmap, parallel, dplyr, plotly, tidyverse,
12
                  reticulate, UsingR, Rmpfr, swirl, corrplot,
13
                  gridExtra, mise, latex2exp, tree, rpart,
14
                  lattice, coin, primes, epitools, maps, clipr,
15
                  ggmap, twitteR, ROAuth, tm, rtweet, base64enc,
16
                  httpuv, SnowballC, RColorBrewer, wordcloud,
17
                  ggwordcloud, tidyverse, boot)
```

Listing 1: Load the Packages for R

8.1.3 Summary Statistics

The average number of friends and followers from users who posted tweets mentioning *Ubisoft* can be returned using the mean() as shown in listing 5 this provides that on average each user has 586 friends and 63,620 followers.

8.1.4 Above Average Followers

Each user can be compared to the average number of followers, by using a logical operator on the vector (e.g. y > ybar), this will return an output of logical values. R will coerce logicals into 1/0 values meaning that the mean value will return the proportion of TRUE responses as shown in listing 6. This provides that 20.6% of the users identified have above average friend counts, while only 2.4% have an above average number of followers.

8.1.5 Generate a bootsrap distribution of the Follower Counts

A bootstrap assumes that the population is an infinitely large repetition of the sample, a bootstrap of the follower counts can be produced by resampling with replacement/repetition and plotted using the ggplot2 library as shown in listing 7 and figure 1.

```
# Set up Tokens
 options(RCurlOptions = list(
  verbose = FALSE,
  capath = system.file("CurlSSL", "cacert.pem", package = "RCurl"),
  ssl.verifypeer = FALSE
 ))
 setup_twitter_oauth(
  consumer_secret =
  12
  access secret = "*******************************
13
 )
14
15
 # rtweet
16
   ______
 tk <-
     rtweet::create_token(
  app = "SWA",
18
          = "*************************
  consumer_key
19
  consumer secret =
20
  access_token
^{21}
  access_secret
  set_renv
           = FALSE
23
```

Listing 2: Import the twitter tokens (redacted)

Listing 3: Save the Tweets to the HDD as an rdata file

```
1 (users <- unique(tweets.company$name)) %>% length()
2 x <- tweets.company$followers_count[duplicated(tweets.company$name)]
3 y <- tweets.company$friends_count[duplicated(tweets.company$name)]
4
5 ## > [1] 817
```

 ${\rm Listing}\ 4{\rm :}\ {\rm Return}\ {\rm follower}\ {\rm count}\ {\rm of}\ {\rm twitter}\ {\rm posts}$

```
1 x <- rnorm(090)
2 y <- rnorm(090)
3 (xbar <- mean(x))
4 (ybar <- mean(y))
5
6 ## > [1] 4295.195
7 ## > [1] 435.9449
```

Listing 5: Determine the average number of friends and followers

```
1  (px_hat <- mean(x>xbar))
2  (py_hat <- mean(y>ybar))
3
4  ## > [1] 0.0244798
5  ## > [1] 0.2729498
```

Listing 6: Calculate the proportion of users with above average follower counts

This shows that the population follower counts is a non-normal skew-right distribution, which is expected because the number of friends is an integer value bound by zero [nist2013].

Listing 7: Bootstrapping a population from the sample.

References

references

Figure 1: Histogram of the bootrapped population of follower counts