Biodiveristy Capstone Project Investigating Protected Species

Ruolan Ji

1. Biodiversity Project

Simply loading the file to visualize the raw data

2. Inspected the DataFrame

```
scientific_name \
          script.py
category
                                                                   Clethrionomys gapperi gapperi
     import codecademylib
                                                                                        Bos bison
                                                          Mamma1
     import pandas as pd
                                                           Mammal
                                                                                       Bos taurus
     from matplotlib import pyplot as plt
                                                                                       Ovis aries
                                                           Mamma1
                                                                                   Cervus elaphus
                                                          Mamma1
     species = pd.read csv('species info.csv')
                                                                                                 common names conservation status
     print species.head()
                                                      0
                                                                                    Gapper's Red-Backed Vole
                                                                                                                                 NaN
     species count = species.scientific name.nunique()
                                                                                       American Bison, Bison
                                                                                                                                NaN
                                                         Aurochs, Aurochs, Domestic Cattle (Feral), Dom...
                                                                                                                                 NaN
     species type = species.category.unique()
11
                                                         Domestic Sheep, Mouflon, Red Sheep, Sheep (Feral)
                                                                                                                                 NaN
                                                      4
                                                                                                Wapiti Or Elk
                                                                                                                                 NaN
     conservation statuses =
     species.conservation status.unique()
```

how many species, how many different values of category and of conservation status.

3. Analyze Species Conservation Status

how many of each species fall into these conservation statuses

4. Analyze Conservation Status II

Clean up the data to be more organized

5. Plotting Conservation Status by Species

- conservation_counts_fixed indexed version protection_counts
- Visualize protection_counts to plot

5. Plotting Conservation Status by Species

```
plt.figure(figsize=(10, 4))

ax = plt.subplot()

plt.bar(range(len(protection_counts)),protection_counts.scientific_name.values)

ax.set_xticks(range(len(protection_counts)))

ax.set_xticklabels(protection_counts.conservation_status.values)

plt.ylabel('Number of Species')

plt.title('Conservation Status by Species')

plt.show()
```

Plotting a bar chart

5. Plotting Conservation Status by Species

6. Investigating Endangered Species

Are certain types of species more likely to be endangered?

```
is_protected scientific_name
                                                                                 category
     script.py
                                                                                Amphibian
                                                                                                    False
                                                                                                                          72
species['is protected'] = species.conservation status != 'No Intervention'
                                                                                Amphibian
                                                                                                     True
category counts = species.groupby(['category',
'is protected']).scientific name.nunique().reset index()
                                                                                     Bird
                                                                                                    False
                                                                                                                         413
print category counts.head()
                                                                                     Bird
                                                                                                     True
                                                                                                                          75
                                                                                     Fish
                                                                                                    False
                                                                                                                         115
```

Preparing the column is_protected for pivoting

6. Investigating Endangered Species

Are certain types of species more likely to be endangered?

```
is_protected
                                                                                    category
                                                                                                False
                                                                                                       True
                                                                                   Amphibian
                                                                                                   72
category pivot =
category counts.pivot(columns='is protected',
                                                                                         Bird
                                                          1
                                                                                                  413
                                                                                                          75
                     index='category',
                                                           2
                                                                                         Fish
                                                                                                  115
                                                                                                          11
                     values='scientific name')\
                                                                                      Mamma1
                                                           3
                                                                                                  146
                                                                                                          30
                     .reset index()
                                                          4
                                                                          Nonvascular Plant
                                                                                                  328
                                                                                                           5
print category pivot
                                                          5
                                                                                     Reptile
                                                                                                   73
                                                                             Vascular Plant
                                                                                                 4216
                                                                                                          46
```

Pivoting the table category_pivot

7. Investigating Endangered Species II

Are certain types of species more likely to be endangered?

```
not protected protected percent protected
category pivot.columns = ['category', 'not protected', 'protected']
                                                                    0
                                                                                Amphibian
                                                                                                                                  0.097222
                                                                                     Bird
                                                                                                                    75
                                                                                                       413
                                                                                                                                  0.181598
category pivot ['percent protected'] = category pivot['protected'] /
category pivot['not protected']
                                                                                     Fish
                                                                                                                                  0.095652
                                                                    2
                                                                                                       115
                                                                                   Mammal
                                                                                                       146
                                                                                                                                  0.205479
                                                                       Nonvascular Plant
                                                                                                       328
                                                                                                                                  0.015244
print category pivot
                                                                                  Reptile
                                                                                                                                  0.068493
                                                                           Vascular Plant
                                                                                                      4216
                                                                                                                    46
                                                                                                                                  0.010911
```

Also calculated the percentage of protected species among each category to be aware that Mammals occupies the highest percentage

8. Chi-Squared Test for Significance

- Hypothesis testing
- Is the data numerical or categorical?
- categorical
- How many pieces of data are you comparing?
- Two pieces
- 0.688, insignificant
- 0.038 significant

Conservationist will need to put into consideration that Mammals are very likely more endangered than Reptiles

```
script.py
                                                            0.687594809666
                                                            0.0383555902297
import codecademylib
import pandas as pd
from matplotlib import pyplot as plt
from scipy.stats import chi2 contingency
contingency = [[30, 146],
              [75, 413]]
chi2, pval, dof, expected = chi2 contingency(contingency)
print(pval)
# pval > 0.05
contingency reptile mammal = [[30, 146],
                              [5, 73]]
chi2, pval reptile mammal, dof, expected =
chi2 contingency(contingency reptile mammal)
print(pval reptile mammal)
# pval reptile mammal < 0.05
```

10. Observations DataFrame

	scientific_name	park_name	observations	category	common_names	conservation_status	is_sheep
0	Ovis canadensis	Yellowstone National Park	219	Mammal	Bighorn Sheep, Bighorn Sheep	Species of Concern	True
1	Ovis canadensis	Bryce National Park	109	Mammal	Bighorn Sheep, Bighorn Sheep	Species of Concern	True
2	Ovis canadensis	Yosemite National Park	117	Mammal	Bighorn Sheep, Bighorn Sheep	Species of Concern	True
3	Ovis canadensis	Great Smoky Mountains National Park	48	Mammal	Bighorn Sheep, Bighorn Sheep	Species of Concern	True
4	Ovis canadensis sierrae	Yellowstone National Park	67	Mammal	Sierra Nevada Bighorn Sheep	Endangered	True
5	Ovis canadensis sierrae	Yosemite National Park	39	Mammal	Sierra Nevada Bighorn Sheep	Endangered	True

	park_name	observations
0	Bryce National Park	250
1	Great Smoky Mountains National Park	149
2	Yellowstone National Park	507
3	Yosemite National Park	282

Visualize new observations dataFrame

11. In Search of Sheep

```
species['is_sheep'] = species.common_names.apply(lambda x: 'Sheep' in x)
species_is_sheep = species[species.is_sheep]
print species_is_sheep
sheep_species = species[(species.is_sheep) & (species.category == 'Mammal')]
print sheep_species
```

Getting only sheep info we need from species

11. In Search of Sheep

	category	scientific_name	common_names	conservation_status	is_protected	is_sheep
3	Mammal	Ovis aries	Domestic Sheep, Mouflon, Red Sheep, Sheep (Feral)	No Intervention	False	True
1139	Vascular Plant	Rumex acetosella	Sheep Sorrel, Sheep Sorrell	No Intervention	False	True
2233	Vascular Plant	Festuca filiformis	Fineleaf Sheep Fescue	No Intervention	False	True
3014	Mammal	Ovis canadensis	Bighorn Sheep, Bighorn Sheep	Species of Concern	True	True
3758	Vascular Plant	Rumex acetosella	Common Sheep Sorrel, Field Sorrel, Red Sorrel, Sheep Sorrel	No Intervention	False	True
3761	Vascular Plant	Rumex paucifolius	Alpine Sheep Sorrel, Fewleaved Dock, Meadow Dock	No Intervention	False	True

	category	scientific_name	common_names	conservation_status	is_protected	is_sheep
3	Mammal	Ovis aries	Domestic Sheep, Mouflon, Red Sheep, Sheep (Feral)	No Intervention	False	True
3014	Mammal	Ovis canadensis	Bighorn Sheep, Bighorn Sheep	Species of Concern	True	True
4446	Mammal	Ovis canadensis sierrae	Sierra Nevada Bighorn Sheep	Endangered	True	True

• The second one is all the sheep is true and is mammal

12. Merging Sheep and Observation DataFrames

scientific_name	park_name	observations	category	common_names	conservation_status	is_protected	is_sheep
0 Ovis canadensis	Yellowstone National Park	219	Mammal	Bighorn Sheep, Bighorn Sheep	Species of Concern	True	True
1 Ovis canadensis	Bryce National Park	109	Mammal	Bighorn Sheep, Bighorn Sheep	Species of Concern	True	True
2 Ovis canadensis	Yosemite National Park	117	Mammal	Bighorn Sheep, Bighorn Sheep	Species of Concern	True	True
3 Ovis canadensis	Great Smoky Mountains National Park	48	Mammal	Bighorn Sheep, Bighorn Sheep	Species of Concern	True	True
4 Ovis canadensis sierrae	Yellowstone National Park	67	Mammal	Sierra Nevada Bighorn Sheep	Endangered	True	True

	park_name	observations
0	Bryce National Park	250
1	Great Smoky Mountains National Park	149
2	Yellowstone National Park	507
3	Yosemite National Park	282

Common column 'park_name' to merge

12. Merging Sheep and Observation DataFrames

```
sheep_observations = observations.merge(sheep_species)

print sheep_observations.head()

obs_by_park = sheep_observations.groupby('park_name').observations.sum().reset_index()

print obs_by_park
```

Sum up the total observations

13. Plotting Sheep Sightings

```
plt.figure(figsize=(16, 4))
ax = plt.subplot()
plt.bar(range(len(obs_by_park)),
        obs by park.observations.values)
ax.set xticks(range(len(obs by park)))
ax.set xticklabels(obs by park.park name.values)
plt.ylabel('Number of Observations')
plt.title('Observations of Sheep per Week')
plt.show()
```

Bar plotting obs_by_park

13. Plotting Sheep Sightings

Yellowstone has the most number of observations

14. Foot and Mouth Reduction Effort - Sample Size Determination

 Sample size determination helps to estimate how many we need to observe and how long it will take in order to reach our goal