	Week 7: Revision
02.	ruhat is the Euclidean distance between the two
	what is the Euclidean distance between the two -1 and 11 -4
	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 \\ -4 \end{bmatrix}$
	your answer must be accurate to at least 3 docimal places.
	$Ed = \sqrt{(8-4)^2 + (-1-11)^2 + (1-1)^2 + (04)^2} = \sqrt{4^2 + (-12)^2 + 0^2 + 4^2}$
	= 16+144+0+16 = 17-6 = 4111 = 13.266
93	let $x_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $x_2 = \begin{bmatrix} -3 \\ -3 \end{bmatrix}$ and $x_3 = \begin{bmatrix} -3 \\ -2 \end{bmatrix}$
	Suppose the control of the cluster [x1,22,323] is [6]
	The controid of $\{x_1, x_2, x_3\} = \frac{1}{3} \begin{bmatrix} 2+7+(-3) \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 6 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \end{bmatrix}$
64.	let $w_1 = \{ \begin{bmatrix} -3 \\ 6 \end{bmatrix}, \begin{bmatrix} 1 \\ 9 \end{bmatrix} \}$ and $w_2 = \{ \begin{bmatrix} 5 \\ 5 \end{bmatrix}, \begin{bmatrix} 7 \\ 4 \end{bmatrix} \}$
	What is the accurage linkage behusen the him elusters? Your answer must be accurate to at coast 3 docimal places.
•	
	day (w1, w2) = 1 (w11 - w2 2 21-22
	rai [7]
	$\begin{bmatrix} 3 \\ 6 \end{bmatrix}$ $\frac{1}{8}$ $2\sqrt{2}6$. $\frac{1}{8}$ $\frac{1}{2}$ $$
	$\begin{bmatrix} \dot{q} \end{bmatrix} = 5 \sqrt{61}$ $d = (-3-5)^2 + (6-4)^2 = \sqrt{8}^2 = 8$
	$d = \sqrt{(-3-7)^2 + (6-4)^2} = \sqrt{40^2 + (2)^2} = \sqrt{100+4} = \sqrt{104} = 2.726$
	d= V(1-5)2+(9-6)2=(-4)2+(3)2=(16+9=125=5
	$d = \sqrt{(1-7)^2 + (9-4)^2} = \sqrt{(-6)^2 + (5)^2} = \sqrt{36+25} = \sqrt{61}$

Week 7: Quiz

TENED!

04. Let $\omega_1 = \begin{cases} [-3] & [1] \end{cases}$ and $\omega_2 = \begin{cases} [5] & [+] & [-3] \end{cases}$.

What is the controid linkage between the two elusters? Your annuer must be accurate to at least 3 documal places.

Controld of $\omega_1 = \begin{bmatrix} -3+1 \\ 2 \\ 6+10 \end{bmatrix} = \begin{bmatrix} -1 \\ 8 \end{bmatrix}$

Centroid of $w_2 = \begin{bmatrix} 5+7-3 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 5+4+3 \\ 3 \end{bmatrix} = \begin{bmatrix} 12 \\ 3 \end{bmatrix}$

 $=\sqrt{(-1-3)^2 + (8-4)^2} = \sqrt{(-4)^2 + 4^2} = \sqrt{(6+16)^2}$ $= 5.65 + \frac{1}{2}$

The controid linkage between the two clusters — Is the distance between their controids.

Q5. A dataset has 6 observations in 183 the observations are

$$\chi_{1} = \begin{bmatrix} 6 \\ 5 \\ 4 \end{bmatrix} \quad \chi_{2} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad \chi_{3} = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \end{bmatrix} \quad \chi_{4} = \begin{bmatrix} 3 \\ 3 \\ 2 \\ 2 \end{bmatrix} \quad \chi_{5} = \begin{bmatrix} 1 \\ 2 \\ 4 \\ 4 \end{bmatrix} \quad \chi_{6} = \begin{bmatrix} 4 \\ 4 \\ 4 \\ 4 \end{bmatrix}$$

Run Agglomerative Hierarchical Clustering on this dataset by using complete linkage. Draw the dondrogram.

- The neight of the root of the dendrogram w

- One of the children nodes corresponds to a elwiter that contains 21.

If the control of this cluster is (c), then a= , b= ac=

Q1 -	Unsupervised learning deals with unlabelled datasets.
	One technique for unsupervised learning is clustering.
	If we do not know how many clusters we desire at the
	beginning no should use agglomerative hierarchical
	-lustoring glappithm.
1	clustering algorithm.
02	For any hur clusters, when we compute their single linkage,
	For any hur clusters, when we compute their single linkage, complete linkage and average linkage, which of the pollowing inequality is true?"
	inequality is true!
	single linkage = avorage linkage = complete linkage
03	When 18-Moans algorithm & applied to a dataset with no observations, which of the pollowings are true?
00.	phopiations which of the potentings are true?
	owery ecters, which of the follows
	The Aug marget observations must belong to the same cluster
	The fun nearest observations must belong to the same cluster on the final outpute.
	er one may a pure.
1	
4 1 1 1 1 1 1	