Distributed Transparent Key Infrastructure

Jiangshan Yu, Vincent Cheval, and Mark Ryan

School of Computer Science University of Birmingham

Dec. 2013

Secure communication

Certificate

A certificate is a digital signed statement that binds a public key to a subject's identity detail. (*Example*)

Certificate

A certificate is a digital signed statement that binds a public key to a subject's identity detail. (Example)

CA/B trust model

- browser defines a set of CAs:
- browser accepts all certificates issued by any one of them.

Mozilla Firefox browser initially trusts 57 root CAs.

The EFF SSL Observatory : \sim 1500 of CAs in total.

Issues

Problems

- Any CA can certify public keys for any domain.
- CA/B cannot detect mis-issued certificate.

Problems

- Any CA can certify public keys for any domain.
- CA/B cannot detect mis-issued certificate.

Example of Attacks:

- Comodo was attacked and fake certificates were issued for popular domains (e.g. Google, Yahoo, Skype, etc.). (2011)
- DigiNotar issued 531 fake certificates for more than three hundred domains, including most of major Internet communications (2011)companies.

Issues

Another concern

Monopoly.

- CAs are American dominated; and
- it is hard to become a browser-accepted CA because of the strong trust assumption that it implies.

Existing Proposals

Table: Taxonomy of existing solutions

Taxonomy	Existing Proposals	
PGP adoption	MonkeySphere;	
DNS extension	DANE	
Difference observation	SSL Observatory; Certificate Patrol; Perspectives;	
	DoubleCheck; CertLock; Covergence;	
	TACK.	
Public log adoption	Sovereign Keys; Certificate Transparency;	
	AKI; DTKI	

Existing Proposals

Table: Taxonomy of existing solutions

Taxonomy	Existing Proposals	
PGP adoption	MonkeySphere;	
DNS extension	DANE	
	SSL Observatory; Certificate Patrol; Perspectives;	
Difference observation	DoubleCheck; CertLock; Covergence;	
	TACK.	
Public log adoption	Sovereign Keys; Certificate Transparency;	
	AKI; DTKI	

Public log adoption protocol

Basic idea:

- All certificates issued by a CA should be recorded in a public log.
- Browsers only accept certificates which are included in the log.
- Domain owners can detect mis-issued certificates by checking the log.

Public Log

Desired proofs:

- Proof of presence proves that a certificate is included in a public log.
- **Proof of extension** proves that the current public log is an extension of previous versions.
- Proof of currency proves that the public key of a subject is the latest one in the public log.
- proof of absence proves that no certificate in the log is issued for the given subject.

Certificate transparency [Laurie, Kasper, Langley]

Append-only public log – Merkle tree.

IETF RFC6962 (June 2013)

4□ > 4□ > 4 = > 4 = > = 90

J.Yu, V.Cheval and M.Ryan (Birmingham) Distributed Transparent Key Infrastructure

Certificate transparency [Laurie, Kasper, Langley]

Append-only public log – Merkle tree.

Proof of	Complexity
presence	$O(\log n)$
extension	$O(\log n)$
currency	O(n)
absence	O(n)

IETF RFC6962 (June 2013)

An improvement

Certificate Issuance and Revocation Transparency [Ryan 2013]

ChronTree

LexTree

Proof of		
presence	O(logn)	$O(\log n)$
extension	O(logn)	O(n)
currency	O(n)	O(log n)
absence	O(n)	O(log n)
consistency		O(n)

Consistency Proof

- Monitors.
- Random checking by clients.

Problems

Informal description

- Formalisation.
- Formal verification.

Difficulty with multiple public logs

- Efficiency
- Security.

Distributed Transparent Key Infrastructure

- Formalisation of data structure
- Proofs of data structure properties
- Minimisation of monopoly
- Reduction of trusted parties

Certificate log (Clog)

Mapping log (Mlog)

Mapping log (Mlog)

Map = (Log(ID), RegX).

$$Map = (Log(ID), RegX).$$

Example:

$$(add, Log(ID_1), www \. * \. org)$$

 $(add, Log(ID_1), www \. * \. uk)$
 $(rev, Log(ID_1), www \. * \. uk)$
 $(add, Log(ID_{127}), www \. * \. uk)$

Thank You!