Тема 5. Тригонометрические функции произвольного угла, их свойства и элементарные тригонометрические тождества.

Приведем основные тригонометрические формулы, известные вам из курса алгебры и начал математического анализа (5.1 – 5.36).

1. Соотношения между тригонометрическими функциями одного и того же аргумента (основные тригонометрические тождества (5.1 - 5.6))

$$\sin^2\alpha + \cos^2\alpha = 1 \tag{5.1}$$

$$tg \alpha = \frac{\sin \alpha}{\cos \alpha} \tag{5.2}$$

$$ctg \ \alpha = \frac{\cos \alpha}{\sin \alpha} \tag{5.3}$$

$$tg \alpha \cdot ctg \alpha = 1 \tag{5.4}$$

$$1 + ctg^2\alpha = \frac{1}{\sin^2\alpha} \tag{5.5}$$

$$1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha} \tag{5.6}$$

2. Формулы сложения:

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \tag{5.7}$$

$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \tag{5.8}$$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \tag{5.9}$$

$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \tag{5.10}$$

$$tg(\alpha + \beta) = \frac{tg\alpha + tg\beta}{1 - tg\alpha tg\beta}$$
 (5.11)

$$tg(\alpha - \beta) = \frac{tg \alpha - tg \beta}{1 + tg \alpha tg \beta}$$
 (5.12)

3. Формулы кратных аргументов:

$$\sin 2\alpha = 2\sin \alpha \cos \alpha \tag{5.13}$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha \tag{5.14}$$

$$tg \ 2\alpha = \frac{2 tg \ \alpha}{1 - tq^2 \alpha} \tag{5.15}$$

$$\sin 3a = 3\sin a - 4\sin^3 a \tag{5.16}$$

$$\cos 3a = 4\cos^3 a - 3\cos a \tag{5.17}$$

4. Формулы преобразования сумм или разностей в произведения:

$$\sin a + \sin \beta = 2\sin \frac{a+\beta}{2}\cos \frac{a-\beta}{2} \tag{5.18}$$

$$\sin a - \sin \beta = 2\sin \frac{a - \beta}{2}\cos \frac{a + \beta}{2} \tag{5.19}$$

$$\cos a + \cos \beta = 2\cos \frac{a+\beta}{2}\cos \frac{a-\beta}{2} \tag{5.20}$$

$$\cos a - \cos \beta = -2\sin \frac{a+\beta}{2}\sin \frac{a-\beta}{2} \tag{5.21}$$

$$tg \alpha + tg \beta = \frac{\sin(\alpha + \beta)}{\cos \alpha \cos \beta}$$
 (5.22)

$$tg \alpha - tg \beta = \frac{\sin(\alpha - \beta)}{\cos \alpha \cos \beta}$$
 (5.23)

5. Формулы преобразования произведений в суммы или разности:

$$\sin \alpha \sin \beta = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta)) \tag{5.24}$$

$$\cos \alpha \cos \beta = \frac{1}{2} (\cos(\alpha - \beta) + \cos(\alpha + \beta))$$
 (5.25)

$$\sin \alpha \cos \beta = \frac{1}{2} (\sin(\alpha - \beta) + \sin(\alpha + \beta))$$
 (5.26)

6. Формулы понижения степени:

$$\cos^2 a = \frac{1 + \cos 2a}{2} \tag{5.27}$$

$$\sin^2 a = \frac{1 - \cos 2a}{2} \tag{5.28}$$

$$\cos^3 a = \frac{3\cos\alpha + \cos 3a}{4} \tag{5.29}$$

$$\sin^3 a = \frac{3\sin\alpha - \sin 3a}{4} \tag{5.30}$$

7. Формулы половинного аргумента:

$$\sin\frac{\alpha}{2} = \mp \sqrt{\frac{1 - \cos\alpha}{2}} \tag{5.31}$$

$$\cos\frac{\alpha}{2} = \mp \sqrt{\frac{1 + \cos a}{2}} \tag{5.32}$$

$$tg \frac{\alpha}{2} = \mp \sqrt{\frac{1 - \cos a}{1 + \cos a}} \tag{5.33}$$

8. Формулы выражения тригонометрических функций через тангенс половинного аргумента:

$$\sin \alpha = \frac{2tg \frac{\alpha}{2}}{1 + tg^2 \frac{\alpha}{2}} \tag{5.34}$$

$$\cos \alpha = \frac{1 - tg^2 \frac{\alpha}{2}}{1 + tg^2 \frac{\alpha}{2}}$$

$$(5.35)$$

$$tg \alpha = \frac{2tg \frac{\alpha}{2}}{1 - tg^2 \frac{\alpha}{2}}$$
 (5.36)

9. Формулы приведения:

	$\frac{\pi}{2}$	$\frac{\pi}{2} + \alpha$	$\pi - \alpha$	$\pi + \alpha$	$\frac{3\pi}{2} - \alpha$	$\frac{3\pi}{2} + \alpha$	$2\pi - \alpha$	$2\pi + \alpha$
	$-\alpha$							+ α
sinα	cosα	cosα	sin α	– sin α	$-\cos\alpha$	$-\cos\alpha$	– sin α	sin α
cosα	sin α	– sin α	$-\cos\alpha$	$-\cos\alpha$	– sin α	sin α	cosα	cosα
tgα	ctg α	– ctg α	$-tg \alpha$	tg α	ctg α	$-\operatorname{ct} g \alpha$	$-tg \alpha$	tg α
ctg \alpha	tg α	$-tg \alpha$	$-\operatorname{ct} g \alpha$	ctg α	tg α	$-tg \alpha$	$-\operatorname{ct} g \alpha$	ctg α

Четность и нечетность тригонометрических функций:

$$sin(-\alpha) = -sin \alpha, cos(-\alpha) = cos \alpha$$

 $tg(-\alpha) = -tg \alpha, ctg(-\alpha) = -ctg \alpha$

Рисунок 5.1 - Знаки тригонометрических функций

10. Значения тригонометрических функций основных углов:

α	0°	30°	45°	60°	90°	180°	270°	360°
	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	- 1	0
cosα	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	- 1	0	1
tg α	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	-	0	-	0
ctg α	-	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	-	0	-

Рисунок 5.2 - Числовая окружность на координатной плоскости

Напомним, что в ходе изучения тригонометрических функций в школьном курсе математики используется понятие *числовой окружности* (рисунок 5.2) – «единичной окружности с установленным соответствием (между действительными числами и точками окружности)» [16], представленной выше.

Пример 1. Вычислить: a)
$$\sin 75^{\circ} + \cos 75^{\circ}$$
; б) $\cos \frac{11\pi}{12} - \cos \frac{5\pi}{12}$.

Решение: а) применим формулу приведения (п. 9) и формулу (5.18): $\sin 75^{\circ} + \cos 75^{\circ} = \sin 75^{\circ} + \cos \left(90^{\circ} - 15^{\circ}\right) = \sin 75^{\circ} + \sin 15^{\circ} = 2\sin \frac{75^{\circ} + 15^{\circ}}{2}.$

$$\cdot \cos \frac{75^{\circ} - 15^{\circ}}{2} = 2 \sin \frac{75^{\circ} + 15^{\circ}}{2} \cos \frac{75^{\circ} - 15^{\circ}}{2} = 2 \sin 45^{\circ} \cos 30^{\circ} = 2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{6}}{2}.$$

б) воспользуемся формулой (5.21), получим: $\cos \frac{11\pi}{12} - \cos \frac{5\pi}{12} =$

$$= -2\sin\frac{\frac{11\pi}{12} + \frac{5\pi}{12}}{2}\sin\frac{\frac{11\pi}{12} - \frac{5\pi}{12}}{2} = -2\sin\frac{2\pi}{3}\sin\frac{\pi}{4} = -2\sin\left(\pi - \frac{\pi}{3}\right)\sin\frac{\pi}{4} =$$

$$= -2\cdot\frac{\sqrt{3}}{2}\cdot\frac{\sqrt{2}}{2} = -\frac{\sqrt{6}}{2}. \text{ Otbet: } \frac{\sqrt{6}}{2}; -\frac{\sqrt{6}}{2}.$$

Пример 2. Докажите тождество: a) $\frac{1-tg^2\alpha}{1+tg^2\alpha} = \cos^4\alpha - \sin^4\alpha;$

6)
$$\cos^2 \alpha = (1 - \sin \alpha)(1 + \sin \alpha)$$
; B) $\frac{\cos \alpha}{1 - \sin \alpha} = \frac{1 + \sin \alpha}{\cos \alpha}$.

Доказательство: а) преобразуем левую часть равенства, получим:

$$\frac{1-tg^2\alpha}{1+tg^2\alpha} = \frac{1-\frac{\sin^2\alpha}{\cos^2\alpha}}{1+\frac{\sin^2\alpha}{\cos^2\alpha}} = \frac{\cos^2\alpha-\sin^2\alpha}{\cos^2\alpha+\sin^2\alpha} = \cos^2\alpha-\sin^2\alpha.$$
 Воспользуемся основным

тригонометрическим тождеством, тогда: $\cos^2 \alpha - \sin^2 \alpha = (\cos^2 \alpha - \sin^2 \alpha) \cdot (\cos^2 \alpha + \sin^2 \alpha) = \cos^4 \alpha - \sin^4 \alpha;$

- б) преобразуем правую часть равенства: $(1-\sin\alpha)(1+\sin\alpha)=$ $=1-\sin^2\alpha=\cos^2\alpha;$
 - в) найдем разность левой и правой частей равенства, которая должна

быть равна нулю:
$$\frac{\cos\alpha}{1-\sin\alpha} - \frac{1+\sin\alpha}{\cos\alpha} = \frac{\cos^2\alpha - \left(1-\sin^2\alpha\right)}{\cos\alpha(1-\sin\alpha)} = \frac{\cos^2\alpha - \cos^2\alpha}{\cos\alpha(1-\sin\alpha)} = 0.$$

Пример 3. Упростите выражение: a) $\left(\frac{\cos\beta}{\sin\alpha} + \frac{\sin\beta}{\cos\alpha}\right) \cdot \frac{1-\cos4\alpha}{\cos(\pi-\beta+\alpha)};$

6)
$$\cos\left(\frac{\pi}{4} - \beta\right) - \cos\left(\frac{\pi}{4} + \beta\right)$$
; B) $\sin^2\left(\frac{\pi}{4} + \alpha\right) - \sin^2\left(\frac{\pi}{4} - \alpha\right)$.

Решение: a)
$$\left(\frac{\cos\beta}{\sin\alpha} + \frac{\sin\beta}{\cos\alpha}\right) \cdot \frac{1-\cos4\alpha}{\cos(\pi-\beta+\alpha)} = \frac{\cos\beta\cos\alpha + \sin\alpha\sin\beta}{\sin\alpha\cos\alpha}$$
.

$$\cdot \frac{1 - \left(\cos^2 2\alpha - \sin^2 2\alpha\right)}{\cos(\pi - (\beta - \alpha))} = \frac{\cos(\alpha - \beta)}{\sin \alpha \cos \alpha} \cdot \frac{1 - \left(1 - \sin^2 2\alpha - \sin^2 2\alpha\right)}{-\cos(\beta - \alpha)} = \frac{1}{\sin \alpha \cos \alpha} \cdot \frac{2\sin^2 2\alpha}{-1} = \frac{1}{\sin \alpha \cos \alpha} \cdot \frac{1 - \left(1 - \sin^2 2\alpha - \sin^2 2\alpha\right)}{-\cos(\beta - \alpha)} = \frac{1}{\sin \alpha \cos \alpha} \cdot \frac{1 - \left(1 - \sin^2 2\alpha - \sin^2 2\alpha\right)}{-\cos(\beta - \alpha)} = \frac{1}{\sin \alpha \cos \alpha} \cdot \frac{1 - \left(1 - \sin^2 2\alpha - \sin^2 2\alpha\right)}{-\cos(\beta - \alpha)} = \frac{1}{\sin \alpha \cos \alpha} \cdot \frac{1 - \left(1 - \sin^2 2\alpha - \sin^2 2\alpha\right)}{-\cos(\beta - \alpha)} = \frac{1}{\sin \alpha \cos \alpha} \cdot \frac{1 - \left(1 - \sin^2 2\alpha - \sin^2 2\alpha\right)}{-\cos(\beta - \alpha)} = \frac{1}{\sin \alpha \cos \alpha} \cdot \frac{1 - \left(1 - \sin^2 2\alpha - \sin^2 2\alpha\right)}{-\cos(\beta - \alpha)} = \frac{1}{\sin \alpha \cos \alpha} \cdot \frac{1 - \left(1 - \sin^2 2\alpha - \sin^2 2\alpha\right)}{-\cos(\beta - \alpha)} = \frac{1}{\sin \alpha \cos \alpha} \cdot \frac{1 - \left(1 - \sin^2 2\alpha - \sin^2 2\alpha\right)}{-\cos(\beta - \alpha)} = \frac{1}{\sin \alpha \cos \alpha} \cdot \frac{1 - \left(1 - \sin^2 2\alpha - \sin^2 2\alpha\right)}{-\cos(\beta - \alpha)} = \frac{1}{\sin \alpha \cos \alpha} \cdot \frac{1 - \cos(\alpha - \beta)}{-\cos(\alpha - \alpha)} = \frac{1}{\sin \alpha \cos \alpha} \cdot \frac{1 - \cos(\alpha - \beta)}{-\cos(\alpha - \alpha)} = \frac{1}{\sin \alpha \cos \alpha} \cdot \frac{1 - \cos(\alpha - \beta)}{-\cos(\alpha - \alpha)} = \frac{1}{\sin \alpha \cos \alpha} \cdot \frac{1 - \cos(\alpha - \beta)}{-\cos(\alpha - \alpha)} = \frac{1}{\sin \alpha \cos \alpha} \cdot \frac{1 - \cos(\alpha - \beta)}{-\cos(\alpha - \alpha)} = \frac{1}{\sin \alpha \cos \alpha} \cdot \frac{1 - \cos(\alpha - \beta)}{-\cos(\alpha - \alpha)} = \frac{1}{\sin \alpha \cos \alpha} \cdot \frac{1 - \cos(\alpha - \beta)}{-\cos(\alpha - \alpha)} = \frac{1}{\sin \alpha \cos \alpha} \cdot \frac{1 - \cos(\alpha - \beta)}{-\cos(\alpha - \alpha)} = \frac{1}{\sin \alpha \cos \alpha} \cdot \frac{1 - \cos(\alpha - \beta)}{-\cos(\alpha - \alpha)} = \frac{1}{\sin \alpha \cos \alpha} \cdot \frac{1 - \cos(\alpha - \beta)}{-\cos(\alpha - \alpha)} = \frac{1}{\sin \alpha \cos \alpha} \cdot \frac{1 - \cos(\alpha - \beta)}{-\cos(\alpha - \alpha)} = \frac{1}{\sin \alpha \cos \alpha} \cdot \frac{1 - \cos(\alpha - \beta)}{-\cos(\alpha - \alpha)} = \frac{1}{\sin \alpha \cos \alpha} \cdot \frac{1 - \cos(\alpha - \beta)}{-\cos(\alpha - \alpha)} = \frac{1}{\sin \alpha \cos \alpha} \cdot \frac{1 - \cos(\alpha - \beta)}{-\cos(\alpha - \alpha)} = \frac{1}{\sin \alpha \cos \alpha} \cdot \frac{1 - \cos(\alpha - \beta)}{-\cos(\alpha - \alpha)} = \frac{1}{\sin \alpha \cos \alpha} \cdot \frac{1 - \cos(\alpha - \beta)}{-\cos(\alpha - \alpha)} = \frac{1}{\sin \alpha \cos \alpha} \cdot \frac{1 - \cos(\alpha - \beta)}{-\cos(\alpha - \alpha)} = \frac{1}{\sin \alpha} \cdot \frac{1 - \cos(\alpha - \beta)}{-\cos(\alpha - \alpha)} = \frac{1}{\sin \alpha} \cdot \frac{1 - \cos(\alpha - \beta)}{-\cos(\alpha - \alpha)} = \frac{1}{\sin \alpha} \cdot \frac{1 - \cos(\alpha - \beta)}{-\cos(\alpha - \alpha)} = \frac{1}{\sin \alpha} \cdot \frac{1 - \cos(\alpha - \beta)}{-\cos(\alpha - \alpha)} = \frac{1}{\sin \alpha} \cdot \frac{1 - \cos(\alpha - \beta)}{-\cos(\alpha - \alpha)} = \frac{1}{\sin \alpha} \cdot \frac{1 - \cos(\alpha - \beta)}{-\cos(\alpha - \alpha)} = \frac{1}{\sin \alpha} \cdot \frac{1 - \cos(\alpha - \alpha)}{-\cos(\alpha - \alpha)} = \frac{1}{\sin \alpha} \cdot \frac{1 - \cos(\alpha - \alpha)}{-\cos(\alpha - \alpha)} = \frac{1}{\sin \alpha} \cdot \frac{1 - \cos(\alpha - \alpha)}{-\cos(\alpha - \alpha)} = \frac{1}{\sin \alpha} \cdot \frac{1 - \cos(\alpha - \alpha)}{-\cos(\alpha - \alpha)} = \frac{1}{\sin \alpha} \cdot \frac{1 - \cos(\alpha - \alpha)}{-\cos(\alpha - \alpha)} = \frac{1}{\cos(\alpha - \alpha)} = \frac{1}{$$

$$=\frac{2\sin^2 2\alpha}{-\frac{1}{2}\cdot 2\cdot \sin \alpha \cos \alpha} = \frac{2\sin^2 2\alpha}{-\frac{1}{2}\sin 2\alpha} = -4\sin 2\alpha;$$

6)
$$\cos\left(\frac{\pi}{4} - \beta\right) - \cos\left(\frac{\pi}{4} + \beta\right) = -2\sin\frac{\frac{\pi}{4} - \beta + \frac{\pi}{4} + \beta}{2}\sin\frac{\frac{\pi}{4} - \beta - \frac{\pi}{4} - \beta}{2} =$$

$$=2\sin\frac{\pi}{4}\sin\beta=\sqrt{2}\sin\beta;$$

B)
$$\sin^2\left(\frac{\pi}{4} + \alpha\right) - \sin^2\left(\frac{\pi}{4} - \alpha\right) = \left(\sin\left(\frac{\pi}{4} + \alpha\right) - \sin\left(\frac{\pi}{4} - \alpha\right)\right)$$

$$\cdot \left(\sin \left(\frac{\pi}{4} + \alpha \right) + \sin \left(\frac{\pi}{4} - \alpha \right) \right) = \left(2 \sin \frac{\frac{\pi}{4} + \alpha - \frac{\pi}{4} + \alpha}{2} \cos \frac{\frac{\pi}{4} + \alpha + \frac{\pi}{4} - \alpha}{2} \right).$$

$$\cdot \left(2\sin\frac{\frac{\pi}{4} + \alpha + \frac{\pi}{4} - \alpha}{2}\cos\frac{\frac{\pi}{4} + \alpha - \frac{\pi}{4} + \alpha}{2}\right) = 2\sin\alpha\cos\frac{\pi}{4} \cdot 2\sin\frac{\pi}{4}\cos\alpha = 2\sin\alpha \cdot \frac{\sqrt{2}}{2} \cdot 2$$

$$\cdot \frac{\sqrt{2}}{2} \cdot \cos \alpha = 2\sin \alpha \cos \alpha = \sin 2\alpha.$$

Ответ: a) $-4\sin 2\alpha$; б) $\sqrt{2}\sin \beta$; в) $\sin 2\alpha$.

Пример 4. Разложить выражение на множители:

a)
$$1-2\sin\alpha$$
; 6) $1+\sin\alpha$; B) $2\sin\alpha+\sqrt{3}$; C) $1-\cos\alpha+\sin\alpha$.

Решение: a) применим формулу (5.19): $1-2\sin\alpha=2\left(\frac{1}{2}-\sin\alpha\right)=$

$$= 2(\sin 30^{0} - \sin \alpha) = 2 \cdot 2 \cdot \sin \frac{30^{0} - \alpha}{2} \cos \frac{30^{0} + \alpha}{2} = 4 \sin \frac{30^{0} - \alpha}{2} \cos \frac{30^{0} + \alpha}{2}.$$

б) с помощью формулы (5.18) получим:
$$1 + \sin \alpha = \sin \frac{\pi}{2} + \sin \alpha =$$

$$=2\sin\frac{\frac{\pi}{2}+\alpha}{2}\cos\frac{\frac{\pi}{2}-\alpha}{2}=2\sin\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)\cos\left(\frac{\pi}{4}-\frac{\alpha}{2}\right);$$

в) применим формулу (5.18):
$$2\sin\alpha + \sqrt{3} = 2\left(\sin\alpha + \frac{\sqrt{3}}{2}\right) =$$

$$= 2\left(\sin\alpha + \sin\frac{\pi}{3}\right) = 2 \cdot 2\sin\frac{\alpha + \frac{\pi}{3}}{2}\cos\frac{\alpha - \frac{\pi}{3}}{2} = 4\sin\left(\frac{\alpha}{2} + \frac{\pi}{6}\right)\cos\left(\frac{\alpha}{2} - \frac{\pi}{6}\right).$$

$$\Gamma) 1 - \cos \alpha + \sin \alpha = \cos 0^{0} - \cos \alpha + \sin \alpha = -2\sin \frac{0 + \alpha}{2}\sin \frac{0 - \alpha}{2} + \sin \alpha = -2\sin \frac{0 + \alpha}{2}\sin \frac{0 - \alpha}{2} + \sin \alpha = -2\sin \frac{0 + \alpha}{2}\sin \frac{0 - \alpha}{2} + \sin \alpha = -2\sin \frac{0 + \alpha}{2}\sin \frac{0 - \alpha}{2} + \sin \alpha = -2\sin \frac{0 + \alpha}{2}\sin \frac{0 - \alpha}{2} + \sin \alpha = -2\sin \frac{0 + \alpha}{2}\sin \frac{0 - \alpha}{2} + \sin \alpha = -2\sin \frac{0 + \alpha}{2}\sin \frac{0 - \alpha}{2} + \sin \alpha = -2\sin \frac{0 + \alpha}{2}\sin \frac{0 - \alpha}{2} + \sin \alpha = -2\sin \frac{0 + \alpha}{2}\sin \frac{0 - \alpha}{2} + \sin \alpha = -2\sin \frac{0 + \alpha}{2}\sin \frac{0 - \alpha}{2} + \sin \alpha = -2\sin \frac{0 + \alpha}{2}\sin \frac{0 - \alpha}{2} + \sin \alpha = -2\sin \frac{0 + \alpha}{2}\sin \frac{0 - \alpha}{2} + \sin \alpha = -2\sin \frac{0 + \alpha}{2}\sin \frac{0 - \alpha}{2} + \sin \alpha = -2\sin \frac{0 + \alpha}{2}\sin \frac{0 - \alpha}{2} + \sin \alpha = -2\sin \frac{0 + \alpha}{2}\sin \frac{0 - \alpha}{2} + \sin \alpha = -2\sin \frac{0 + \alpha}{2}\sin \frac{0 - \alpha}{2} + \sin \alpha = -2\sin \frac{0 - \alpha}{2}\sin \frac{0 - \alpha}{2} + \sin \alpha = -2\sin \frac{0 - \alpha}{2}\sin \frac{0 - \alpha}{2} + \sin \alpha = -2\sin \frac{0 - \alpha}{2}\sin \frac{0 - \alpha}{2}\sin \frac{0 - \alpha}{2} + \sin \alpha = -2\sin \frac{0 - \alpha}{2}\sin \frac{0 - \alpha}{$$

$$= -2\sin\frac{\alpha}{2}\sin\left(-\frac{\alpha}{2}\right) + 2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2} = 2\sin^2\frac{\alpha}{2} + 2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2} = 2\sin\frac{\alpha}{2}\left(\sin\frac{\alpha}{2} + \cos\frac{\alpha}{2}\right).$$

OTBET: a)
$$4\sin\frac{30^{0}-\alpha}{2}\cos\frac{30^{0}+\alpha}{2}$$
; 6) $2\sin\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)\cos\left(\frac{\pi}{4}-\frac{\alpha}{2}\right)$;

B)
$$4\sin\left(\frac{\alpha}{2} + \frac{\pi}{6}\right)\cos\left(\frac{\alpha}{2} - \frac{\pi}{6}\right);$$
 Γ) $2\sin\frac{\alpha}{2}\left(\sin\frac{\alpha}{2} + \cos\frac{\alpha}{2}\right).$

Пример 5. Вычислить:
$$\left(\sin\left(\alpha+\frac{\pi}{12}\right)+\sin\left(\alpha-\frac{\pi}{12}\right)\right)\cdot\sin\frac{\pi}{12}$$
.

Решение: Первый способ. Воспользуемся формулой сложения (5.7),

получим:
$$\left(\sin\left(\alpha + \frac{\pi}{12}\right) + \sin\left(\alpha - \frac{\pi}{12}\right)\right) \cdot \sin\frac{\pi}{12} =$$

$$= \left(\sin\alpha\cos\frac{\pi}{12} + \cos\alpha\sin\frac{\pi}{12} + \sin\alpha\cos\frac{\pi}{12} - \cos\alpha\sin\frac{\pi}{12}\right) \cdot \sin\frac{\pi}{12} =$$

$$= 2\sin\alpha\cos\frac{\pi}{12}\sin\frac{\pi}{12} = \sin\alpha\sin\frac{\pi}{6} = \frac{1}{2}\sin\alpha.$$

Второй способ. Применим формулу (5.18):
$$\left(\sin\left(\alpha+\frac{\pi}{12}\right)+\sin\left(\alpha-\frac{\pi}{12}\right)\right)\cdot\sin\frac{\pi}{12}=$$

$$= 2\sin\frac{\alpha + \frac{\pi}{12} + \alpha - \frac{\pi}{12}}{2}\cos\frac{\alpha + \frac{\pi}{12} - \alpha + \frac{\pi}{12}}{2} \cdot \sin\frac{\pi}{12} = 2\sin\alpha\cos\frac{\pi}{12}\sin\frac{\pi}{12} = \frac{1}{2}\sin\alpha.$$

Ответ: $\frac{1}{2}\sin \alpha$.

Пример 6. Доказать тождество: $\frac{\sin \alpha + \sin 3\alpha}{\cos \alpha + \cos 3\alpha} = tg 2\alpha$.

Доказательство: преобразуем левую часть равенства, получим:

$$\frac{2\sin\frac{\alpha+3\alpha}{2}\cos\frac{\alpha-3\alpha}{2}}{2\cos\frac{\alpha+3\alpha}{2}\cos\frac{\alpha-3\alpha}{2}} = \frac{2\sin2\alpha\cos(-\alpha)}{2\cos2\alpha\cos(-\alpha)} = \frac{\sin2\alpha}{\cos2\alpha} = tg\,2\alpha.$$

Пример 7. Доказать тождество: $tg\alpha + tg\beta = \frac{\sin(\alpha + \beta)}{\cos\alpha\cos\beta}$ и на основе его вычислить $tg267^{\circ} + tg93^{\circ}$.

Доказательство: преобразуем левую часть равенства: $tg\alpha+tg\beta=$ $=\frac{\sin\alpha}{\cos\alpha}+\frac{\sin\beta}{\cos\beta}=\frac{\sin\alpha\cos\beta+\sin\beta\cos\alpha}{\cos\alpha\cos\beta}=\frac{\sin(\alpha+\beta)}{\cos\alpha\cos\beta}.$ Так как $tg\alpha+tg\beta=\frac{\sin(\alpha+\beta)}{\cos\alpha\cos\beta},$ то $tg267^0+tg93^0=\frac{\sin360^0}{\cos^267^0\cos^23^0}=0.$ Ответ: 0.

Пример 8. Вычислить $tg \ \alpha$, если $sin \ \alpha = (-0.6)$ и $\alpha \in (\pi; \frac{3\pi}{2})$.

Решение. С помощью основного тригонометрического тождества $\sin^2\alpha+\cos^2\alpha=1$ найдем $\cos\alpha$: $\cos\alpha=-\sqrt{1-\sin^2\alpha}=-\sqrt{1-(-0.6)^2}=$ $=-\sqrt{1-0.36}=-0.8$, так как $\alpha\in(\pi;\frac{3\pi}{2})$ – 3 четверти и $\cos\alpha<0$. Тогда: $tg\;\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{-0.6}{-0.8}=\frac{3}{4}=0.75$. Ответ: $tg\;\alpha=0.75$.