

SMI (S5)

Bases de Données I

Pr. EL AZAMI

ikram.elazami@iut.ac.ma

Objectifs du Module

- 1. Maîtriser les fondamentaux des Bases de Données Relationnelles
- 2. Maîtriser les bases du langage SQL
- 3. Se familiariser avec le SGBD MySQL

A la fin de ce cours, l'étudiant devrait **être capable**:

- de concevoir et modéliser une base de données relationnelle,
- implémenter une base de données MySQL
- et enfin effectuer des **requêtes SQL** sur cette base de données.

Plan du cours

Partie 1:

- 1. Introduction aux Bases de données
- 2. La méthode MERISE
- 3. La conception: Modèle relationnel

Partie 2:

- 4. Algèbre relationnel.
- 5. Le langage SQL

Support de cours en ligne

Google Classroom:

2023-2024 Base De Données SMI S5

Utilisez votre émail institutionnel

Code d'accès:

Partie 1

- 1. Introduction aux Bases de données
- 2. La méthode MERISE
- 3. La conception: Modèle relationnel

1. Introduction aux Bases de données

Notion 1: Définition de l'information

1^{er} niveau : *la Donnée*

- Chaîne de caractère associé à des objets, des personnes ou des événements
- Représentée par un attribut et une valeur
- La donnée peut être brute ou calculée
- C'est la matière première de l'information

Exemples de données:

Nom: Mohamed,

Date de naissance: 14/10/2000,

<u>Taux de croissance de l'entreprise</u> : 7%,

Référence machine: F7235DX, etc.

Notion 1: Définition de l'information

2ème niveau : l'Information

- La signification (explication/description) des données interprétée par une personne ou par un système
- Proviennent de l'organisation des données, mettant en valeur les relations entre les différents éléments de ces données;
- Fournissent un contexte et un sens aux données.

Exemple 1: Un taux de croissance de 5% **associé** à un seuil de qualité de 2% est une information que le pilote d'entreprise ou décideur <u>interprétera</u> comme suit : ce taux de croissance est excellent en comparaison au seuil de qualité qui peut être considéré comme une norme.

<u>Exemple 2</u>: La donnée <u>Age de l'employé</u> est <u>interprétée par la DRH</u> devient une information qui sert à décider si une personne ouvre droit à la retraite ou pas.

Notion 1: Définition de l'information

3ème niveau : la Connaissance

Information apprise, découverte, comprise et partagée par une communauté (groupe de personnes ayant suivi le même type de formation, même spécialité, avec un langage commun)

<u>Exemple</u>: les maladies du corps humain peuvent être considérées comme des connaissances apprises, découvertes, comprises et partagées par <u>la</u> communauté des Médecins.

Notion 2: Le Système d'information

- Le système d'information d'une entreprise est
 - l'ensemble des informations qui y circulent
 - ainsi que l'ensemble des moyens mis en œuvre pour les gérer.
- L'objectif d'un système d'information est de
 - restituer l'information à la personne concernée,
 - sous la **forme** appropriée
 - et en **temps** opportun pour prendre une **décision** ou effectuer un travail.
- Les systèmes d'information préexistent à l'informatique. Avant d'utiliser les ordinateurs, les informations concernant les clients, les commandes, les stocks, etc, étaient mémorisées sur papier, sous forme de fiches, formulaires, regroupés dans des dossiers.

Notion 2: Le Système d'information

On peut distinguer 4 fonctions principales du système d'information :

- 1- Recueillir l'information (saisie)
- 2- Mémoriser l'information (stockage dans des fichiers ou bases de données)
- **3- Exploiter l'information (traitement)**
 - a. Consulter
 - b. Organiser
 - c. Mettre à jour
 - d. Produire de nouvelles informations par des calculs
- 4- Diffuser l'information (édition)

Notion 2: Le Système d'information

Système d'information dans le contexte d'une entreprise

Notion 3: Le Système informatique

Il représente l'ensemble des moyens matériels et humains mis en œuvre pour le traitement automatisé du système d'information, comme:

- Matériels :

- Ordinateurs (micro, mini, gros systèmes et périphériques associés)
- Réseaux de transmission de données (local, public..)

- Logiciels :

- Système d'exploitation
- Utilitaires
- Logiciels bureautiques
- Applications
- SGBD (système de gestion des bases de données)
- Aide logiciels (AGL)

- Humains

- Informaticiens
- Utilisateurs directement concernés par le système informatique

Notion 4: Bases de données

☐ Base de données:

• Un ensemble organisé d'informations avec un objectif commun

☐ Base de données informatisée:

- un ensemble structuré de données
- enregistrées sur des supports accessibles par l'ordinateur,
- représentant des informations du monde réel
- et pouvant être interrogées et mises à jour par une communauté d'utilisateurs.

Différents modèles de Bases de Données

- Le modèle hiérarchique (années 60) : Premier modèle de BD, les données sont classées hiérarchiquement. Ce modèle utilise des pointeurs entre les différents enregistrements, organisés dans une structure arborescente.
- Le modèle réseau (années 70) : lève de nombreuses limites du modèle hiérarchique grâce à la possibilité d'établir des liaisons de type n-n, les liens entre objets pouvant exister sans restriction.
 - →Pour retrouver une donnée dans ce modèle, il faut connaître le chemin d'accès (les liens), ce qui rend les programmes dépendants de la structure de données.

Différents modèles de Bases de Données (suite)

- Le modèle Relationnel (Codd, fin des années 60). Les données sont représentées dans des tables, sous forme de n-uplets.
 - → Modèle le plus utilisé : celui que nous considèrerons dans la suite.
 - →A donné lieu au langage SQL, extension de l'algèbre relationnelle, standardisation en 1987. Près de 80% des utilisations en entreprise.
- Le modèle Orienté Objet, les données sont des objets.
- Le modèle Multidimensionnel. Les données sont représentées sous la forme d'un cube.
- Le modèle Semi-structuré (fichiers XML). Les données sont représentées sous la forme d'arbre.

Notion 5: SGBD

- ☐ La gestion et l'accès à une base de données sont assurés par un ensemble de programmes qui constituent le Système de gestion de base de données (SGBD).
- ☐ Un **SGBD** doit permettre
 - ➤ l'ajout,
 - > la modification
 - > et la recherche de données.

- ☐ Un système de gestion de bases de données héberge généralement plusieurs bases de données, qui sont destinées à des logiciels ou des thématiques différents.
- □ PostgreSQL, MySQL, Oracle, IBM DB2, Microsoft SQL, Sybase, Informix ...

Notion 5: SGBD

Exemple d'utilisation d'un SGBD: E-commerce

Source: Microsoft (Doc SQL Server, SGBD de Microsoft)

Notion 6: La méthode de conception d'un SI

Qu'est ce qu'une méthode?

Une méthode comporte trois axes indispensables pour obtenir ce label « méthode » :

- □ une démarche, ensemble coordonné d'étapes, de phases et de tâches indiquant le chemin à suivre pour conduire un projet, ici, la conception d'un SI,
- des raisonnements et des techniques nécessaires à la construction de l'objet projeté, traduits ici par des modélisations,
- □ des moyens de mise en œuvre, en l'occurrence une organisation de projet et des outils.

Notion 6: La méthode de conception d'un SI

Exemple de démarche:

- · Analyse données existantes
- . (Textes, Formulaire, Factures, Document...)
- Extraire les informations (liste des mots)
 - Structurer ces informations dans un MCD
 - Traduire/Transformer le MCD en un modèle relationnel (MLD par ex.)
 - Traduire le modèle relationnel en code SQL permettant de créer les tables dans la base de données (CREATE TABLE...)
 - Exploiter les données avec des requêtes (SELECT...)

Notion 6: La méthode de conception d'un SI

Exemple de méthodes de conception des SI:

- MERISE, diffusée en 1978, est certainement la plus connue et la plus utilisée.
- □ Processus unifié (UP) utilisant la méthode de notation UML (Unified Modeling Language)
- □ REMORA, méthode conçue par une équipe d'universitaires en 1982.
- SADT (Structured Analysis and Design Technique), crée en 1976 par Ross de la société Softech.
- AXIAL, développée par IBM en 1984.
- ☐ IEM (Information Engineering Méthodology), crée par J. Martin en 1984.
- **...**

M éthode d' E tude et de R éalisation **Informatique pour les** S ystèmes d' **E** ntreprise

MERISE est le langage de spécification le plus répandu dans la communauté de l'informatique des systèmes d'information, et plus particulièrement dans le domaine des bases de données.

Niveau conceptuel:

- le modèle conceptuel des données (**MCD**) décrit les entités du monde réel, en terme d'objets, de propriétés et de relations, indépendamment de toute technique d'organisation et d'implantation des données.
- Ce modèle se concrétise par un schéma **entités-associations** représentant la structure du système d'information, du point de vue des données.

Niveau logique:

- le modèle logique des données (**MLD**) précise le modèle conceptuel par des choix organisationnels.
- Il s'agit d'une transcription du **MCD** dans un formalisme adapté à une implémentation ultérieure, au niveau physique, sous forme de base de données relationnelle

Niveau physique:

le modèle physique des données (**MPD**) permet d'établir la manière concrète dont le système sera mis en place (SGBD retenu).

Composantes de Merise

Comme toute méthode d'analyse et de conception des SI, Merise regroupe :

- ✓ **Des modèles** (concepts, règles de représentation)
- ✓ **Un langage** (vocabulaire, règles de syntaxe)
- **✓** Une démarche
- ✓ **Des outils** (des logiciels tels que **PowerAMC** ou Win Design)

Elle permet de représenter les composantes d'un SIG:

- ✓ Les acteurs
- ✓ Les données
- ✓ Les traitements
- ✓ Les procédures
- ✓ Les postes de travail, etc.

Les principes de la méthode Merise

Cette méthode propose la construction du futur système d'information par approches successives. Elle comprend :

- La démarche par étapes,
 - au cours desquelles est construit progressivement le futur projet (étude préalable, étude détaillée, réalisation, mise en œuvre).
- La démarche par niveaux, régie par des règles de construction des différents modèles relatifs aux données et aux traitements.

La démarche par étapes

SYNOPTIQUE DE LA MÉTHODE MERISE

La démarche par niveaux

Gestion:

- données manipulées
- règles de gestion
- enchaînement de traitement

Organisation:

- Partage de taches
- Mode de traitement
- Répartition géographique des traitements
- organisation des données.

Technique:

- Programmes
- Logiciels
- matériels

Chaque modèle de **Merise** concerne soit **les données**, soit **les traitements**, à un niveau d'abstraction donné.

Les modèles de représentation

niveau de	CONCEPTS MANIPULES	
descrip tion	DONNEES	TRAITEMENTS
CONCERTDEL	MODELE CONCEPTUEL DE DONNEES M.C.D.	MODELE CONCEPTUEL DE TRAITEMENTS M.C.T.
HOGHODE	MODELE LOGIQUE DE DONNEES M.L.D.	MODELE ORGANISATIONNEL DE TRAITEMENTS M.O.T.
PHYSIQUE	MODELE PHYSIQUE DE DONNEES M.P.D. elazami © 20	MODELE PHYSIQUE OU OPERATIONNEL DE TRAITEMENTS M.P.T.

Enchainement des travaux

- il convient d'analyser et de critiquer le système existant afin de créer un nouveau système adapté à l'organisation.
- Pour cela, la démarche consiste à suivre la « courbe du soleil »:

Enchainement des travaux

L'analyse du système existant conduit à construire :

- Au niveau logico-physique :
 - Le modèle conceptuel des communications (MCC) qui représente les échanges de flux d'informations entre les différents acteurs du SI et les acteurs extérieurs.
 - Le schéma de circulation des documents (SCD) qui représente les échanges d'informations entre les acteurs du SI ainsi que les tâches qui produisent les documents.
- Au niveau organisationnel:
 - Le modèle organisationnel des traitements (MOT) qui permet de préciser par rapport à l'étape précédente si les tâches sont automatisées ou manuelles, les événements déclencheurs et les conditions d'émission des objets externes.
- Au niveau conceptuel
 - Le MCD (modèle conceptuel des données) et le MCT (modèle conceptuel des traitements)

Enchainement des travaux

L'analyse du système futur conduit à construire :

- Au niveau conceptuel:
 - Le MCD et le MCT découlant de la critique de l'existant
- Au niveau organisationnel:
 - Le **MOT** du système futur mettant en valeur la nouvelle organisation (y compris en terme de ressources humaines et de nouveaux postes de travail)
- Au niveau logico-physique
 - Le MLD modèle logique des données et le MPD modèle physique des données obtenus à partir du MCD adapté aux choix effectués dans le MOT et aux besoins d'informations complémentaires
 - Le **MPT** modèle physique des traitements (algorithmes, structure des programmes...)

Etapes de conception

1

Monde réel

Analyse des besoins

7

Abstraction du monde réel

Création du modèle conceptuel

)

Normalisation

Création du modèle logique conforme au SGBD

4

• Implémentation effective dans l'SGBD

Modèle physique

5

• Alimentation de la base de données

Accès et utilisation

Principe

- à partir d'un énoncé,
 - ... construire un schéma Entité-association représentant les concepts et les faits exprimés, explicitement ou implicitement, dans cet énoncé,
 - ... concepts et faits au sujet desquels on désire enregistrer des informations.

Exemple: MCD pour la gestion des commandes