Esercizio: Forza di Coulomb tra due cariche

Prof. Bernardis Pierluigi

September 2025

Consegna

Due cariche puntiformi sono poste a distanza d l'una dall'altra. La carica A è $q_A = +2.0 \ \mu\text{C}$. La carica B è $q_B = -3.0 \ \mu\text{C}$. La distanza tra le due cariche è $d = 0.10 \ \text{m}$.

Calcola la forza che la carica A esercita su B. Spiega il significato del segno della forza e ricorda la reciprocità dell'interazione.

Richiamo teorico

La legge di Coulomb afferma che la forza tra due cariche puntiformi è:

$$F_{B \leftarrow A} = k \, \frac{q_A q_B}{d^2},$$

dove:

- $F_{B \leftarrow A}$ è la forza esercitata da A su B;
- $k = 8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$;
- q_A e q_B sono le cariche in Coulomb;
- d è la distanza che le separa.

Il segno del prodotto q_Aq_B indica il tipo di interazione: negativo \to attrattiva, positivo \to repulsiva.

Svolgimento

$$q_A = +2.0 \times 10^{-6} \text{ C}, \qquad q_B = -3.0 \times 10^{-6} \text{ C}.$$

$$F_{B \leftarrow A} = 8.99 \times 10^9 \frac{(+2.0 \times 10^{-6})(-3.0 \times 10^{-6})}{(0.10)^2} = \boxed{-5.4 \text{ N} = F_{B \leftarrow A}}$$

Interpretazione

Il valore assoluto della forza è 5,4 N. Il segno negativo significa che la forza è diretta verso la carica A: le due cariche hanno segno opposto e quindi si attraggono.