Selected topics of Probabilities in Deep Learning

A/Prof Richard Yi Da Xu

richardxu.com

University of Technology Sydney (UTS)

August 18, 2018

Advanced Module in Deep Learning

Noise Contrastive Estimation

probability and classification

firstly, probability models and classification are closely related:

$$\operatorname*{arg\;max}_{\theta} \left(p_{\theta}(\mathbf{Y}) \right) \implies \operatorname*{arg\;min}_{\theta} \left(- \log p_{\theta}(\mathbf{Y}) \right)$$

in following example, let's show classification models incorporating our favorite sigmoid function:

$$\sigma(\mathbf{x}_i^{\top}\theta) = \frac{1}{1 + \exp(-\mathbf{x}_i^{T}\theta)}$$

Example: Bernoulli & Logistic regression

Bernoulli distribution using Sigmoid function

$$p_{\boldsymbol{\theta}}(\mathbf{Y}|\mathbf{X}) = \prod_{i=1}^{n} \left[\frac{1}{1 + \exp(-\mathbf{x}_{i}^{T}\boldsymbol{\theta})} \right]^{y_{i}} \left[1 - \frac{1}{1 + \exp(-\mathbf{x}_{i}^{T}\boldsymbol{\theta})} \right]^{1 - y_{i}}$$

Logistic regression

$$\begin{aligned} \mathcal{C}(\boldsymbol{\theta}) &= -\log[p_{\boldsymbol{\theta}}(\mathbf{Y}|\mathbf{X})] \\ &= -\left(\sum_{i=1}^{n} y_{i} \log\left[\frac{1}{1 + \exp(-\mathbf{x}_{i}^{T}\boldsymbol{\theta})}\right] + (1 - y_{i}) \log\left[1 - \frac{1}{1 + \exp(-\mathbf{x}_{i}^{T}\boldsymbol{\theta})}\right]\right) \end{aligned}$$

Example: Multinomial Distribution & Cross Entropy Loss

Multinomial Distribution with softmax

$$p_{\theta}(\mathbf{Y}|\mathbf{X}) = \prod_{i=1}^{n} \prod_{k=1}^{K} \left[\left(\frac{\exp(\mathbf{X}_{i}^{T}\boldsymbol{\theta}_{k})}{\sum_{l=1}^{K} \exp(\mathbf{X}_{i}^{T}\boldsymbol{\theta}_{l})} \right) \right]^{\mathbf{y}_{i,k}}$$

cross entropy loss with Softmax

$$\mathcal{C}(\boldsymbol{\theta}) = -\log[p_{\boldsymbol{\theta}}(\mathbf{Y}|\mathbf{X})] = -\sum_{i=1}^{N} \sum_{k=1}^{K} y_{i,k} \left[\log\left(\frac{\exp(\mathbf{x}_{i}^{\mathsf{T}}\boldsymbol{\theta}_{k})}{\sum_{l=1}^{K} \exp(\mathbf{x}_{i}^{\mathsf{T}}\boldsymbol{\theta}_{l})}\right) \right]$$

Example: Gaussian Distribution & Sum of Square Loss

- ▶ this time, let's go from $C(\theta) \rightarrow p_{\theta}(\mathbf{Y})$
- Sum of Square Loss

$$C(\boldsymbol{\theta}) = \sum_{k=1}^{K} (\hat{y}_k(\boldsymbol{\theta}) - y_k)^2$$

Gaussian distribution

$$p_{\theta}(\mathbf{Y}|\mathbf{X}) \propto \exp\left[-\mathcal{C}(\theta)\right] = \exp\left[-\sum_{k=1}^{K} \left(\hat{y}_{k}(\theta) - y_{k}\right)^{2}\right]$$

question: what if we use *Square* loss instead of *Cross Entropy* loss in Softmax, where:

$$\hat{y}_k(\theta) = \frac{\exp(\mathbf{x}_i^T \theta_k)}{\sum_{l=1}^K \exp(\mathbf{x}_i^T \theta_l)}$$

Think about Classification's best friend, "Softmax" again!

- for example, in word embedding, we want to align a target word u_w with center word v_c:
- ightharpoonup for simplicity, for the rest of the article, we let $\mathbf{w} \equiv \mathbf{u}_w$ and $\mathbf{c} \equiv \mathbf{v}_c$

$$\Pr_{\theta}(\mathbf{w}|\mathbf{c}) = \frac{u_{\theta}(\mathbf{w}|\mathbf{c})}{\sum_{\mathbf{w}' \in \mathcal{V}} u_{\theta}(\mathbf{w}'|\mathbf{c})} = \frac{u_{\theta}(\mathbf{w}|\mathbf{c})}{Z_{c}} \equiv \frac{\exp(\mathbf{w}^{\top}\mathbf{c})}{\sum_{\mathbf{w}' \in \mathcal{V}} \exp(\mathbf{w}'^{\top}\mathbf{c})}$$

ightharpoonup the denominator, i.e., the $\sum_{\mathbf{w}' \in \mathcal{V}} u(\mathbf{w}' | \mathbf{c})$ can be too computational

Turn the problem around!

- ▶ data distribution: we sample $\mathbf{w} \sim \bar{p}(\mathbf{w}|\mathbf{c})$ from its empirical (data) distribution, and give a label $\mathcal{Y} = 1$
- Noise distribution: we can sample k w̄ ~ q(w), and give them labels y = 0 importantly, condition for q(.) is: it does not assign zero probability to any data.
- Can we build a binary classifier to classify its label, i.e., which distribution has generated it?

Noise Contrastive Estimation (NCE)

- training data generation: (w, c, y)
 - 1. sample (\mathbf{w}, \mathbf{c}) : using $\mathbf{c} \sim \tilde{p}(\mathbf{c}), \mathbf{w} \sim \tilde{p}(\mathbf{w}|\mathbf{c})$ and label them as $\mathcal{Y} = 1$
 - 2. k "noise" samples from q(.), and label them as $\mathcal{Y}=0$
- can we instead, try to maximize the joint posterior Bernoulli distribution:

$$\mathsf{Pr}_{\theta}(\mathcal{Y}|\boldsymbol{W},\boldsymbol{c}) = \prod_{i=1}^{k+1} \big(\, \mathsf{Pr}(\mathcal{Y}_i|\boldsymbol{w}_i,\boldsymbol{c}) \big)^{y_i} \big(1 - \mathsf{Pr}(\mathcal{Y}_i|\boldsymbol{w}_i,\boldsymbol{c}) \big)^{1-y_i}$$

or minimize the corresponding Logistic regression:

$$\begin{split} \mathcal{C} &= -\log[\Pr_{\theta}(\mathcal{Y}|\mathbf{W}, \mathbf{c})] \\ &= -\sum_{i=1}^{k+1} y_i \log\left[\Pr_{\theta}(\mathcal{Y}_i|\mathbf{w}_i, \mathbf{c})\right] + (1 - y_i) \log\left[1 - \Pr_{\theta}(\mathcal{Y}_i|\mathbf{w}_i, \mathbf{c})\right] \end{split}$$

Noise Contrastive Estimation (NCE)

we assume there are k negative samples per positive sample, so the prior density is:

$$P(\mathcal{Y} = y) = \begin{cases} \frac{1}{k+1} & y = 1\\ \frac{k}{k+1} & y = 0 \end{cases}$$

▶ then the posterior of $P(\mathcal{Y}|\mathbf{c},\mathbf{w})$:

$$\begin{split} P(\mathcal{Y} = 1 | \mathbf{c}, \mathbf{w}) &= \frac{\Pr(\mathcal{Y} = 1, \mathbf{w} | \mathbf{c})}{\Pr(\mathbf{w} | \mathbf{c})} = \frac{\Pr(\mathbf{w} | \mathcal{Y} = 1, \mathbf{c}) P(\mathcal{Y} = 1)}{\sum_{y \in \{0,1\}} p(\mathbf{w} | \mathcal{Y} = y, \mathbf{c}) P(\mathcal{Y} = y)} \\ &= \frac{\tilde{p}(\mathbf{w}) \times \frac{1}{1+k}}{\tilde{P}(\mathbf{w} | \mathbf{c}) \times \frac{1}{k+1} + q(\mathbf{w}) \times \frac{k}{1+k}} \\ &= \frac{\tilde{P}(\mathbf{w} | \mathbf{c})}{\tilde{P}(\mathbf{w} | \mathbf{c}) + kq(\mathbf{w})} \\ \Pr(\mathcal{Y} = 0 | \mathbf{c}, \mathbf{w}) = 1 - \Pr(\mathcal{Y} = 1 | \mathbf{c}, \mathbf{w}) \\ &= 1 - \frac{\tilde{P}(\mathbf{w} | \mathbf{c})}{\tilde{P}(\mathbf{w} | \mathbf{c}) + kq(\mathbf{w})} \\ &= \frac{kq(\mathbf{w})}{\tilde{P}(\mathbf{w} | \mathbf{c}) + kq(\mathbf{w})} \end{split}$$

Apply NCE to NLP problem

in summary:

$$\Pr(\mathcal{Y} = y | \mathbf{c}, \mathbf{w}) = \begin{cases} \frac{\bar{P}(\mathbf{w} | \mathbf{c})}{\bar{P}(\mathbf{w} | \mathbf{c}) + kq(\mathbf{w})} & y = 1\\ \frac{\bar{P}(\mathbf{w} | \mathbf{c}) + kq(\mathbf{w})}{\bar{P}(\mathbf{w} | \mathbf{c}) + kq(\mathbf{w})} & y = 0 \end{cases}$$

it can be replaced by un-normalized function:

$$\Pr(\mathcal{Y} = y | \mathbf{c}, \mathbf{w}) = \begin{cases} \frac{u_{\theta}(\mathbf{w} | \mathbf{c})}{u_{\theta}(\mathbf{w} | \mathbf{c}) + kq(\mathbf{w})} & y = 1\\ \frac{kq(\mathbf{w})}{u_{\theta}(\mathbf{w} | \mathbf{c}) + kq(\mathbf{w})} & y = 0 \end{cases}$$

- formal proof can be found "Gutmann, 2012, Noise-Contrastive Estimation of Unnormalized Statistical Models, with Applications to Natural Image Statistics"
- let's see an intuition through softmax

Intuition through Softmax

think about Softmax in word embedding:

$$\Pr_{\theta}(\mathbf{w}|\mathbf{c}) = \frac{u_{\theta}(\mathbf{w}|\mathbf{c})}{\sum_{\mathbf{w}' \in \mathcal{V}} u_{\theta}(\mathbf{w}'|\mathbf{c})} = \frac{u_{\theta}(\mathbf{w}|\mathbf{c})}{Z_{c}} \equiv \frac{\exp(\mathbf{w}^{\top}\mathbf{c})}{\sum_{\mathbf{w}' \in \mathcal{V}} \exp(\mathbf{w}'^{\top}\mathbf{c})}$$

- ▶ say $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k\}$ are target words having high frequencies given **c**
- $\{\mathbf{r}_1, \mathbf{r}_2, \dots \mathbf{r}_n\}$ are words having low frequency given **c**
- ▶ say we pick $\mathbf{w}_i \in \{\mathbf{w}_1, \dots \mathbf{w}_k\}$ to optimize: at each round, we aim to increase $\mathbf{w}_i^{\top}\mathbf{c}$; at the same time, sum of rest of softmax weights: $\left\{\{\mathbf{w}_j^{\top}\mathbf{c}\}_{j\neq i} \cup \{\mathbf{r}_j^{\top}\mathbf{c}\}\right\}$ decrease
- in softmax, such decrease is guaranteed by the sum in denominator
- ightharpoonup each \mathbf{w}_i has a chance to increase $\mathbf{w}_i^{\top} \mathbf{c}$, but each $\mathbf{r}_i^{\top} \mathbf{c}$ will (hopefully) stay low
- ▶ **intuition**: in NCE, instead of using sum in the denominator, we "designed" a probability q(.), such that, while letting \mathbf{w}_i be a positive training sample, we also have chance to let $\mathbf{w}_{j\neq i}$ to be part of negative training sample, i.e., to reduce the value of $\mathbf{w}_j^{\top}\mathbf{c}$; it somewhat has a similar effect as **softmax**

NCE in a nutshell

NCE transforms:

- a problem of model estimation (computationally expensive) to:
- a problem of estimating parameters of probabilistic binary posterior classifier (computationally acceptable):
- main advantage: it allows us to fit models that are not explicitly normalized, making training time effectively independent of the vocabulary size

NCE objective function

let $u_{\theta}(\mathbf{w}|\mathbf{c}) = \exp[s_{\theta}(\mathbf{w}|\mathbf{c})]$:

$$\begin{split} \Pr(\mathcal{Y} = 1 | \mathbf{c}, \mathbf{w}) &= \frac{u_{\theta}(\mathbf{w} | \mathbf{c})}{u_{\theta}(\mathbf{w} | \mathbf{c}) + kq(\mathbf{w})} = \sigma\big(\triangle s_{\theta}(\mathbf{w} | \mathbf{c})\big) \\ \Pr(\mathcal{Y} = 0 | \mathbf{c}, \mathbf{w}) &= \frac{kq(\mathbf{w})}{u_{\theta}(\mathbf{w} | \mathbf{c}) + kq(\mathbf{w})} = 1 - \sigma\big(\triangle s_{\theta}(\mathbf{w} | \mathbf{c})\big) \\ &\qquad \qquad \text{where } \triangle s_{\theta}(\mathbf{w} | \mathbf{c}) \equiv s_{\theta}(\mathbf{w} | \mathbf{c}) - \log(kq(\mathbf{w})) \end{split} \quad \text{let's see why} \end{split}$$

$$\begin{split} \sigma\big(\triangle s_{\theta}(\mathbf{w}|\mathbf{c})\big) &= \frac{1}{1 + \exp\big[-s_{\theta}(\mathbf{w}|\mathbf{c}) + \log(kq(\mathbf{w}))\big]} \\ &= \frac{1}{1 + \exp\big(-s_{\theta}(\mathbf{w}|\mathbf{c})\big) \times kq(\mathbf{w})} \\ &= \frac{\exp\big[s_{\theta}(\mathbf{w}|\mathbf{c})\big]}{\exp\big[s_{\theta}(\mathbf{w}|\mathbf{c})\big] + kq(\mathbf{w})} = \frac{u_{\theta}(\mathbf{w}|\mathbf{c})}{u_{\theta}(\mathbf{w}|\mathbf{c}) + kq(\mathbf{w})} \end{split}$$

therefore the objective function is:

$$\theta^* = \arg\max_{\theta} \sum_{(\mathbf{w}, \mathbf{c}) \in \mathcal{D}} \sigma(\triangle S_{\theta}(\mathbf{w}|\mathbf{c})) + \sum_{(\bar{\mathbf{w}}, c) \in \tilde{\mathcal{D}}} \sigma(-\triangle S_{\theta}(\bar{\mathbf{w}}|\mathbf{c}))$$

NCE and Negative Sampling

- negative sampling is a special case of NCE
- we let $k = |\mathcal{V}|$ and q(.) is uniform:

$$\begin{split} P(\mathcal{Y} = 1 | \mathbf{c}, \mathbf{w}) &= \frac{u_{\theta}(\mathbf{w} | \mathbf{c})}{u_{\theta}(\mathbf{w} | \mathbf{c}) + |\mathcal{V}| \frac{1}{|\mathcal{V}|}} = \frac{u_{\theta}(\mathbf{w} | \mathbf{c})}{u_{\theta}(\mathbf{w} | \mathbf{c}) + 1} \\ P(\mathcal{Y} = 0 | \mathbf{c}, \mathbf{w}) &= \frac{|\mathcal{V}| \frac{1}{|\mathcal{V}|}}{u_{\theta}(\mathbf{w} | \mathbf{c}) + |\mathcal{V}| \frac{1}{|\mathcal{V}|}} = \frac{1}{u_{\theta}(\mathbf{w} | \mathbf{c}) + 1} \end{split}$$

correspondingly, we have:

$$\triangle s_{\theta}(\mathbf{w}|\mathbf{c}) \equiv s_{\theta}(\mathbf{w}|\mathbf{c}) - \log\left(|\mathcal{V}|\frac{1}{|\mathcal{V}|}\right) = s_{\theta}(\mathbf{w}|\mathbf{c}) = \mathbf{w}^{\top}\mathbf{c}$$

in Skip-gram:

$$\begin{split} \boldsymbol{\theta}^* &= \arg\max_{\boldsymbol{\theta}} \sum_{(\mathbf{w}, \mathbf{c}) \in D} \sigma(\mathbf{w}^\top \mathbf{c}) + \sum_{(\tilde{\mathbf{w}}, c) \in \tilde{D}} \sigma(-\tilde{\mathbf{w}}^\top \mathbf{c}) \\ &= \arg\min_{\boldsymbol{\theta}} \sum_{(\mathbf{w}, c) \in D} \sigma(-\mathbf{u}_{\mathbf{w}}^\top \mathbf{v}_c) + \sum_{(\tilde{\mathbf{w}}, c) \in \tilde{D}} \frac{1}{1 + \exp\left(-\tilde{\mathbf{w}}^\top \mathbf{c}\right)} \end{split}$$

why un-normalised $u_{\theta}(\mathbf{w}, \mathbf{c})$ still works?

▶ talk a look at this again, let $u_{\theta}(\mathbf{w}|\mathbf{c}) = \exp[s_{\theta}(\mathbf{w}|\mathbf{c})]$:

$$\Pr(\mathcal{Y} = 1 | \mathbf{c}, \mathbf{w}) = \frac{u_{\theta}(\mathbf{w} | \mathbf{c})}{u_{\theta}(\mathbf{w} | \mathbf{c}) + kq(\mathbf{w})} = \sigma(\triangle s_{\theta}(\mathbf{w} | \mathbf{c}))$$

$$\text{where } \triangle s_{\theta}(\mathbf{w} | \mathbf{c}) \equiv s_{\theta}(\mathbf{w} | \mathbf{c}) - \log(kq(\mathbf{w}))$$

we already know:

$$= \sigma \big(\triangle s_{\theta}(\mathbf{w}|\mathbf{c}) \big) = \frac{1}{1 + \underbrace{\exp \big(- s_{\theta}(\mathbf{w}|\mathbf{c}) \big) \times kq(\mathbf{w})}_{G(\mathbf{w},\theta)}}$$

in this case,

$$\begin{aligned} G(\mathbf{w}, \theta) &= \exp\left(-s_{\theta}(\mathbf{w}|\mathbf{c})\right) \times kq(\mathbf{w}) \\ &= \frac{kq(\mathbf{w})}{\exp(s_{\theta}(\mathbf{w}|\mathbf{c}))} = \frac{kq(\mathbf{w})}{u_{\theta}(\mathbf{w}|\mathbf{c})} \end{aligned}$$

or more generically:

$$G(\mathbf{w},\theta) = \frac{m}{n} \frac{q(\mathbf{w})}{u_{\theta}(\mathbf{w}|\mathbf{c})}$$

what do we need to prove?

- look at $G(\mathbf{w}, \theta) = \frac{m}{n} \frac{q(\mathbf{w})}{u_{\theta}(\mathbf{w}|\mathbf{c})}$:
- \triangleright $G(\mathbf{w}, \theta)$ is a function of θ , so this ratio changes; However, the **real trick** is if let:

$$\theta^* = \arg\max_{\theta} \frac{1}{n} \left(\sum_{i=1}^{n} \mathcal{Y}_i \log \Pr(\mathcal{Y}_i = 1 | \mathbf{w}_i, \theta) + \sum_{i=1}^{m} (1 - \mathcal{Y}_i) \log[\Pr(\mathcal{Y}_i = 0 | \mathbf{w}_i, \theta)] \right)$$

and we prove the following: (under large sample size n and m):

$$G(\mathbf{w}, \frac{\theta^*}{n}) \to \frac{m}{n} \frac{q(\mathbf{w})}{p(\mathbf{w})} \implies u_{\theta^*}(\mathbf{w}|\mathbf{c}) \to p(\mathbf{w})$$
 as $\theta \to \theta^*$

so why does $G(\mathbf{w}, \mathbf{\theta^*}) ightarrow rac{m}{n} rac{q(\mathbf{w})}{ar{p}(\mathbf{w})}$?

let.

$$\begin{split} \mathcal{C}_n(\theta) &= \frac{1}{n} \left(\sum_{i=1}^n \mathcal{Y}_i \log \Pr(\mathcal{Y}_i = 1 | \mathbf{w}_i, \theta) + \sum_{i=1}^m (1 - \mathcal{Y}_i) \log [\Pr(\mathcal{Y}_i = 0 | \mathbf{w}_i, \theta)] \right) \\ &= \frac{1}{n} \sum_{i=1}^n \mathcal{Y}_i \log \Pr(\mathcal{Y}_i = 1 | \mathbf{w}_i, \theta) + \underbrace{\frac{m}{n} \frac{1}{m} \sum_{i=1}^m (1 - \mathcal{Y}_i) \log [\Pr(\mathcal{Y}_i = 0 | \mathbf{w}_i, \theta)]}_{\nu} \end{split}$$

▶ let $n \to \infty$ and $m \to \infty$: $C_n \to C$:

$$\begin{split} \mathcal{C} &= \mathbb{E}_{\mathbf{w} \sim p(\mathbf{w})}[\log \Pr(\mathcal{Y}_i = 1 | \mathbf{w}_i, \theta)] + \nu \mathbb{E}_{\mathbf{w} \sim q(\mathbf{w})}[\log [\Pr(\mathcal{Y}_i = 0 | \mathbf{w}_i, \theta)] \\ &= \mathbb{E}_{\mathbf{w} \sim p(\mathbf{w})} \bigg[\log \frac{1}{1 + G(\mathbf{w}, \theta)} \bigg] + \nu \mathbb{E}_{\mathbf{w} \sim q(\mathbf{w})} \bigg[\log \frac{G(\mathbf{w}, \theta)}{1 + G(\mathbf{w}, \theta)} \bigg] \\ &= - \mathbb{E}_{\mathbf{w} \sim p(\mathbf{w})} \bigg[\log (1 + G(\mathbf{w}, \theta)) \bigg] + \nu \mathbb{E}_{\mathbf{w} \sim q(\mathbf{w})} \bigg[\log G(\mathbf{w}, \theta) - \log (1 + G(\mathbf{w}, \theta)) \bigg] \\ &= - \int \log \big(1 + G(\mathbf{w}, \theta) \big) p(\mathbf{w}) d\mathbf{w} + \nu \int \big(\log G(\mathbf{w}, \theta) - \log (1 + G(\mathbf{w}, \theta)) \big) q(\mathbf{w}) d\mathbf{w} \bigg] \end{split}$$

using functional derivative

$$\mathcal{C} = -\int \log \left(1 + G(\mathbf{w}, \theta)\right) p(\mathbf{w}) d\mathbf{w} + \nu \int \left(\log G(\mathbf{w}, \theta) - \log(1 + G(\mathbf{w}, \theta))\right) q(\mathbf{w}) d\mathbf{w}$$

take functional derivative:

$$\begin{split} \frac{\delta \mathcal{C}(G)}{\delta G} &= -\frac{p(\mathbf{w})}{1 + G(\mathbf{w}, \theta)} + \nu q(\mathbf{w}) \left(\frac{1}{G(\mathbf{w})} - \frac{1}{1 + G(\mathbf{w})}\right) \\ &= -\frac{p(\mathbf{w})}{1 + G(\mathbf{w}, \theta)} + \frac{\nu q(\mathbf{w})}{G(\mathbf{w})(1 + G(\mathbf{w}))} = 0 \\ \implies \frac{\nu q(\mathbf{w})}{G(\mathbf{w})(1 + G(\mathbf{w}))} &= \frac{p(\mathbf{w})}{1 + G(\mathbf{w}, \theta)} \\ \implies \frac{\nu q(\mathbf{w})}{G(\mathbf{w})} &= p(\mathbf{w}) \\ \implies G(\mathbf{w}) &= \nu \frac{q(\mathbf{w})}{p(\mathbf{w})} \end{split}$$

let's take a break to discuss functional derivative

for normal function

for a normal function f:

- if x is a stationary point, then any slight perturbation of x must:
 - \triangleright either increase J(x) (if **x** is a minimizer) or
 - \blacktriangleright decrease J(x) (if **x** is a maximizer)
- let $g_{\varepsilon}(\mathbf{x}) = \mathbf{x} + \varepsilon$ be result of such a perturbation, where ε is small, then define:

$$\begin{aligned} \frac{\mathrm{d}J_{\varepsilon}}{\mathrm{d}\varepsilon} \bigg|_{\varepsilon=0} &= \left(\frac{\mathrm{d}J(g_{\varepsilon}(\mathbf{x}))}{\mathrm{d}\varepsilon} \bigg|_{\varepsilon=0} \right) = \left(\frac{\mathrm{d}J(g_{\varepsilon}(\mathbf{x}))}{\mathrm{d}g_{\varepsilon}(\mathbf{x})} \underbrace{\frac{\mathrm{d}g_{\varepsilon}(\mathbf{x})}{\mathrm{d}\varepsilon}}_{=1} \right)_{\varepsilon=0} = \frac{\mathrm{d}J(g_{\varepsilon}(\mathbf{x}))}{\mathrm{d}g_{\varepsilon}(\mathbf{x})} \bigg|_{\varepsilon=0} \\ &= \frac{\mathrm{d}J(\mathbf{x}+\varepsilon)}{\mathrm{d}(\mathbf{x}+\varepsilon)} \bigg|_{\varepsilon=0} = 0 \\ \implies J'(\mathbf{x}) &= 0 \end{aligned}$$

- ▶ showing $\frac{dJ_{\varepsilon}}{d\varepsilon}\Big|_{\varepsilon=0} = J'(\mathbf{x}) = 0$ above is obvious, and doesn't help anything;
- however, it does LOT for functional:

for functional

for a **functional** F:

to find stationary function f of functional F, satisfy boundary condition f(a) = A, f(b) = B:

$$J = \int_a^b F(x, \mathbf{f}(x), \mathbf{f}'(x)) dx$$

- slight perturbation of f that preserves boundary values must:
 - either increase J (if f is a minimizer) or
 - decrease *J* (if **f** is a maximizer)
- let $g_{\varepsilon}(x) = \mathbf{f}(x) + \varepsilon \eta(x)$ be result of such a perturbation $\varepsilon \eta(x)$ of \mathbf{f} , where ε is small and $\eta(x)$ is a differentiable function satisfying $\eta(a) = \eta(b) = 0$:

$$J_{\varepsilon} = \int_{a}^{b} \underbrace{F(x, g_{\varepsilon}(x), g'_{\varepsilon}(x))}_{F_{\varepsilon}} dx$$

compute $\frac{\mathrm{d}J_{\varepsilon}}{\mathrm{d}\varepsilon}\big|_{\varepsilon=0}$ (1)

• now calculate the total derivative of J_{ε} with respect to ε :

$$\begin{split} \frac{\mathrm{d}J_{\varepsilon}}{\mathrm{d}\varepsilon} &= \frac{\mathrm{d}}{\mathrm{d}\varepsilon} \int_{a}^{b} F_{\varepsilon} \, \mathrm{d}x = \int_{a}^{b} \frac{\mathrm{d}F_{\varepsilon}}{\mathrm{d}\varepsilon} \, \mathrm{d}x \\ &= \int_{a}^{b} \left[\frac{\partial F_{\varepsilon}}{\partial x} \, \frac{\mathrm{d}x}{\mathrm{d}\varepsilon} + \frac{\partial F_{\varepsilon}}{\partial g_{\varepsilon}} \, \frac{\mathrm{d}g_{\varepsilon}}{\mathrm{d}\varepsilon} + \frac{\partial F_{\varepsilon}}{\partial g_{\varepsilon}'} \, \frac{\mathrm{d}g_{\varepsilon}'}{\mathrm{d}\varepsilon} \right] \, \mathrm{d}x \\ &= \int_{a}^{b} \left[\frac{\partial F_{\varepsilon}}{\partial g_{\varepsilon}} \, \frac{\mathrm{d}g_{\varepsilon}}{\mathrm{d}\varepsilon} + \frac{\partial F_{\varepsilon}}{\partial g_{\varepsilon}'} \, \frac{\mathrm{d}g_{\varepsilon}'}{\mathrm{d}\varepsilon} \right] \, \mathrm{d}x \qquad x \text{ is independent of } \varepsilon \\ &= \int_{a}^{b} \left[\frac{\partial F_{\varepsilon}}{\partial g_{\varepsilon}} \, \eta(x) + \frac{\partial F_{\varepsilon}}{\partial g_{\varepsilon}'} \, \eta'(x) \right] \, \mathrm{d}x \end{split}$$

• when $\varepsilon = 0$:

1.
$$a_{\varepsilon} = \mathbf{f}$$

2.
$$F_{\varepsilon} = F(x, \mathbf{f}(x), \mathbf{f}'(x))$$
 and

3. J_{ε} has an extremum value

$$\left. \frac{\mathrm{d}J_{\varepsilon}}{\mathrm{d}\varepsilon} \right|_{\varepsilon=0} = \int_{a}^{b} \left[\frac{\partial F}{\partial \mathbf{f}} \eta(x) + \frac{\partial F}{\partial \mathbf{f}'} \eta'(x) \right] \, \mathrm{d}x = 0$$

compute $\frac{\mathrm{d}J_{\varepsilon}}{\mathrm{d}\varepsilon}\Big|_{\varepsilon=0}$ (2)

$$\left. \frac{\mathrm{d}J_{\varepsilon}}{\mathrm{d}\varepsilon} \right|_{\varepsilon=0} = \int_{a}^{b} \left[\eta(x) \frac{\partial F}{\partial \mathbf{f}} + \underbrace{\eta'(x)}_{v'} \underbrace{\frac{\partial F}{\partial \mathbf{f}'}}_{u} \right] \mathrm{d}x = 0$$

• use integration by parts: $\int u v' = uv - \int v u'$ on second term:

$$\begin{aligned} \frac{\mathrm{d}J_{\varepsilon}}{\mathrm{d}\varepsilon} \bigg|_{\varepsilon=0} &= \int_{a}^{b} \left[\eta(x) \frac{\partial F}{\partial \mathbf{f}} \right] + \underbrace{\int_{a}^{b} \left[\eta'(x) \frac{\partial F}{\partial \mathbf{f}'} \right] \, \mathrm{d}x}_{} \\ &= \int_{a}^{b} \left[\eta(x) \frac{\partial F}{\partial \mathbf{f}} \right] + \left[\eta(x) \frac{\partial F}{\partial \mathbf{f}'} \right]_{a}^{b} - \int_{a}^{b} \eta(x) \, \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial F}{\partial \mathbf{f}'} \mathrm{d}x \\ &= \int_{a}^{b} \left[\frac{\partial F}{\partial \mathbf{f}} - \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial F}{\partial \mathbf{f}'} \right] \eta(x) \, \mathrm{d}x + \left[\eta(x) \frac{\partial F}{\partial \mathbf{f}'} \right]_{a}^{b} = 0 \end{aligned}$$

• using the boundary conditions $\eta(a) = \eta(b) = 0$:

$$\int_{a}^{b} \left[\frac{\partial F}{\partial \mathbf{f}} - \frac{d}{dx} \frac{\partial F}{\partial \mathbf{f}'} \right] \eta(x) dx = 0$$

Euler-Lagrange Equation

Fundamental lemma of calculus of variations says: if a continuous function f on an open interval (a, b) satisfies equality:

$$\int_a^b f(x)h(x)\,\mathrm{d} x=0 \implies f(x)=0$$

then,

$$\int_{a}^{b} \left[\frac{\partial F}{\partial \mathbf{f}} - \frac{d}{dx} \frac{\partial F}{\partial \mathbf{f}'} \right] \eta(x) dx = 0$$

$$\implies \frac{\partial F}{\partial \mathbf{f}} - \frac{d}{dx} \frac{\partial F}{\partial \mathbf{f}'} = 0$$

back to our example, $\mathcal C$ contains no $G'(\mathbf w,\theta)$ terms, therefore, we only need to show: $\frac{\delta \mathcal C(G)}{\delta G} = 0$

Advanced Module in Deep Learning

Probability density re-parameterization

Score Function Estimator

we love to have integral in a form:

$$\mathcal{I} = \int_{z} f(z) \rho(z) dz \equiv \mathbb{E}_{z \sim \rho(z)}[f(z)]$$

as we can approximate the expectation with:

$$\mathcal{I} \approx \frac{1}{N} \sum_{i=1}^{N} f(z^{(i)})$$
 $z^{(i)} \sim p(z)$

- we do **not** love $\int_{Y} f(z) \nabla_{\theta} p(z|\theta) dz$,
- ▶ in general, $\nabla_{\theta} p(z|\theta)$ is **not** a probability, e.g., look at derivative of a Gaussian distribution:

$$\frac{\partial}{\partial \mu} \left(\frac{\exp^{-(z-\mu)^2/\sigma^2}}{\sqrt{2\pi}\sigma} \right) = \frac{2(z-\mu)}{\sigma^2} \frac{\exp^{-(z-\mu)^2/\sigma^2}}{\sqrt{2\pi}\sigma}$$

Score Function Estimator

however, in machine learning, we have to deal with:

$$\nabla_{\theta} \left[\int_{z} f(z) p(z|\theta) dz \right] = \int_{z} \nabla_{\theta} \left[f(z) p(z|\theta) \right] dz = \int_{z} f(z) \left[\nabla_{\theta} p(z|\theta) \right] dz$$

- \blacktriangleright i.e, θ is the parameter of the distribution
- e.g., in **Reinforcement Learning**: let $\Pi \equiv \{s_1, a_1, \dots, s_T, a_T\}$

$$p_{\theta}(\Pi) \equiv p_{\theta}(s_1, a_1, \dots s_T, a_T) = p(s_1) \prod_{t=1}^{T} \pi_{\theta}(a_t | s_t) p(s_{t+1} | s_t, a_t)$$

$$\implies \theta^* = \arg \max_{\theta} \left\{ \mathbb{E}_{\Pi \sim p_{\theta}(\Pi)} \left[\underbrace{\sum_{t=1}^{T} R(s_t, a_t)}_{f(z)} \right] \right\}$$

Score Function Estimator

we use REINFORCE trick, with the follow property:

$$p(z|\theta)f(z)\nabla_{\theta}[\log p(z|\theta)] = p(z|\theta)f(z)\frac{\nabla_{\theta}p(z|\theta)}{p(z|\theta)} = f(z)\nabla_{\theta}p(z|\theta)$$

looking at the original integral:

$$\int_{z} f(z) \nabla_{\theta} \rho(z|\theta) dz = \int_{z} \rho(z|\theta) f(z) \nabla_{\theta} [\log \rho(z|\theta)] dz$$
$$= \mathbb{E}_{z \sim \rho(z|\theta)} \left[f(z) \nabla_{\theta} [\log \rho(z|\theta)] \right]$$

can approximated by:

$$\frac{1}{N} \sum_{i=1}^{N} f(z^{(i)}) \nabla_{\theta} [\log p(z^{(i)}|\theta)] \qquad z^{(i)} \sim p(z|\theta)$$

suffers from high variance and is slow to converge

Re-parameterization trick

• we let z = g(x):

$$\begin{split} \mathbb{E}_{x \sim p(x)}[g(x)] &= \mathbb{E}_{z \sim p(z)}[z] \\ \mathbb{E}_{x \sim p(x)}[g(x,\theta)] &= \mathbb{E}_{z \sim p_{\theta}(z)}[z] \quad \text{paramterize the distribution with } \theta \\ \mathbb{E}_{x \sim p(x)}[f(g(x,\theta))] &= \mathbb{E}_{z \sim p_{\theta}(z)}[f(z)] \quad \text{introduce function } f(.) \\ \int_{x \in \Omega_x} f(g(x,\theta))p(x) \mathrm{d}x &= \int_{z \in \Omega_z} f(z)p_{\theta}(z) \mathrm{d}z \end{split}$$

- only need to know deterministic function $z = g(x, \theta)$ and distribution p(x)
- does not need to explicitly know distribution of z
- e.g., Gaussian variable: $z \sim \mathcal{N}(z; \mu(\theta), \sigma(\theta))$ can be rewritten as a function of a standard Gaussian variable:

$$z = g(x, \theta) = \underbrace{\mu(\theta) + x\sigma(\theta)}_{g(x, \theta)} \qquad \text{can be re-parameterised into} \qquad x \sim \underbrace{\mathcal{N}(0, 1)}_{p(x)}$$

revision on change of variable

Let $y = T(x) \implies x = T^{-1}(y)$:

$$F_Y(y) = \Pr(T(X) \le y) = \Pr(X \le T^{-1}(y)) = F_X(T^{-1}(y)) = F_X(x)$$

$$f_Y(y) = \frac{dF_Y(y)}{dy} = \frac{dF_X(x)}{dy} = \frac{dF_X(x)}{dx} \frac{dx}{dy} = f_X(x) \frac{dx}{dy}$$

without change of limits

$$f_Y(y)|dy| = f_X(x)|dx|$$

with change of limits

$$f_Y(y)dy = f_X(x)dx$$

re-parameterization trick (2)

main motivation p(x) is **no longer** parameterized by θ :

$$\begin{split} \mathbb{E}_{x \sim p(x)}[f(g(x,\theta))] &= \int_{x} f(g(x,\theta))p(x)\mathrm{d}x \\ \Longrightarrow \frac{\partial}{\partial \theta} \mathbb{E}_{x \sim p(x)}[f(g(x,\theta))] &= \frac{\partial}{\partial \theta} \int_{x} f(g(x,\theta))p(x)\mathrm{d}x \\ &= \int_{x} \left[\frac{\partial}{\partial \theta} f(g(x,\theta)) \right] p(x)\mathrm{d}x \\ &\approx \frac{1}{N} \sum_{i=1}^{N} \frac{\partial}{\partial \theta} f(g(x^{(i)},\theta)) \qquad x \sim p(x) \\ &= \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} f(g(x^{(i)},\theta)) \qquad \text{use shorthand notation: } \nabla_{\theta}[\cdot] \equiv \frac{\partial}{\partial \theta}[\cdot] \end{split}$$

 \blacktriangleright during gradient decent, x are sampled independent of θ

Simple example

let $\mu(\theta) = a\theta + b$, and $\sigma(\theta) = 1$, and we would like to compute:

$$\begin{split} \theta^* &= \arg\max_{\theta}[F(\theta)] \\ &= \arg\min_{\theta} \mathbb{E}_{z \sim \mathcal{N}(\mu(\theta), \sigma(\theta))}[z^2] \\ &= \arg\min_{\theta} \left[\int_{z} \underbrace{z^2}_{f(z)} \mathcal{N} \bigg(\underbrace{a\theta + b}_{\mu(\theta)}, \underbrace{1}_{\sigma(\theta))} \bigg) \right] \end{split}$$

- we can solve it by imagine its diagram . . .
- in words, it says: find mean of Gaussian, so that the "expected square of samples" from this Gaussian are minimized:
- \blacktriangleright it's obvious that you want to move μ to close to **zero** as possible
- which implies $\theta = -\frac{b}{a} \implies \mu(\theta) = 0$
- without using any tricks, the gradient is computed by:

$$\nabla_{\theta} F(\theta) = \int_{z} \underbrace{z^{2}}_{f(z)} \times \underbrace{\frac{2(z-\mu)}{\sigma^{2}} \frac{\exp^{-(z-\mu)^{2}/\sigma^{2}}}{\sqrt{2\pi}\sigma}}_{\underbrace{\frac{\partial N(\mu,\sigma^{2})}{\partial \mu}} \times \underbrace{\frac{\partial \mu}{\partial \theta}}_{d\theta} dz$$

very hard!

solve it using REINFORCE trick

- let's solve it by gradient descend by **REINFORCE**:
- let $\mu(\theta) = a\theta + b$, and $\sigma(\theta) = 1$:

$$\begin{split} \int_{z} f(z) \nabla_{\theta} p(z|\theta) \mathrm{d}z &= \mathbb{E}_{z \sim p(z|\theta)} \big[f(z) \nabla_{\theta} [\log p(z|\theta)] \big] \\ &= \mathbb{E}_{z \sim p(z|\theta)} \bigg[z^{2} \nabla_{\theta} \log \bigg(\frac{1}{\sigma \sqrt{2\pi}} \exp^{-\frac{(z-\mu)^{2}}{2\sigma^{2}}} \bigg) \bigg] \\ &= \mathbb{E}_{z \sim p(z|\theta)} \bigg[z^{2} \nabla \mu \bigg[-\log(\sqrt{2\pi}\sigma) - \frac{(z-\mu)^{2}}{2\sigma^{2}} \bigg] \times \frac{\partial \mu(\theta)}{\theta} \bigg] \\ &= \mathbb{E}_{z \sim \mathcal{N} \big(z; a\theta + b, 1 \big)} \big[z^{2} (z - \mu(\theta)) \times a \big] \qquad \text{let } \sigma = 1 \\ &= \mathbb{E}_{z \sim \mathcal{N} \big(z; a\theta + b, 1 \big)} \big[z^{2} a(z - a\theta - b) \big] \end{split}$$

solve it using re-parameterization trick:

- $ightharpoonup z \sim \mathcal{N}(z; \mu(\theta), \sigma(\theta))$ can be **re-parameterised** into:
- ▶ if we need to compute: $f(z) = z^2$

$$x \sim \mathcal{N}(0, 1)$$

 $z \equiv g(x, \theta) = \mu(\theta) + x\sigma(\theta)$

the re-parameterised version is:

$$\begin{split} \nabla_{\theta} \mathbb{E}_{x \sim p(x)} [f(g(x, \theta))] &\equiv \mathbb{E}_{x \sim \mathcal{N} \left(x; 0, 1\right)} \left[\nabla_{\theta} \left(z^{2} \right) \right] \\ &= \mathbb{E}_{x \sim \mathcal{N} \left(x; 0, 1\right)} \left[\nabla_{\theta} \left(\mu(\theta) + x \sigma(\theta) \right)^{2} \right] \\ &= \mathbb{E}_{x \sim \mathcal{N} \left(x; 0, 1\right)} \left[\nabla_{\theta} \left(a\theta + b + x \right)^{2} \right] \\ &= \mathbb{E}_{x \sim \mathcal{N} \left(x; 0, 1\right)} \left[2a(a\theta + b + x) \right] \end{split}$$

- both REINFORCE and re-parameterization must achieve the same result!
- knowing p(X) and $g(x, \theta)$ is sufficient, we do **not** need to know explicitly p(Z)

results

ightharpoonup compare both methods using a = 2, b = 3:

other examples: Evidence Lower Bound (ELOB)

ELOB:

$$\begin{split} \mathcal{L}_{\phi,\theta} &= \int q(z) \ln(p(\mathbf{y},z)) \mathrm{d}Z - \int q(z) \ln(q(z)) \mathrm{d}z \\ &= \int q_{\phi}(z) \ln(p_{\theta}(\mathbf{y},z)) \mathrm{d}z - \int q_{\phi}(z) \ln(q_{\phi}(z)) \mathrm{d}z \quad \text{ parameterize} \\ &= \mathbb{E}_{q_{\phi}(z)} \big[\ln(p_{\theta}(\mathbf{y},z)) \big] - \mathbb{E}_{q_{\phi}(z)} \big[\ln(q_{\phi}(z)) \big] \end{split}$$

after re-parameterization, it appears to be:

$$\mathcal{L}_{\phi, heta} = \mathbb{E}_{ extit{x} \sim extit{p(x)}} ig[\log(extit{p}_{ heta}(extbf{y}, extit{g}(\phi, extit{x}))) - \log(extit{q}_{\phi}(extit{g}(\phi, extit{x}))) ig]$$

Log-likelihood and Evidence Lower Bound (ELOB)

lt is universally true that:

$$\ln (p(\mathbf{y})) = \ln (p(\mathbf{y}, z)) - \ln (p(z|\mathbf{y}))$$

It's also true (a bit silly) that:

$$\ln(p(\mathbf{y})) = \left[\ln(p(\mathbf{y}, z)) - \ln(q(z))\right] - \left[\ln(p(z|\mathbf{y})) - \ln(q(z))\right]$$

The above is so that we can insert an arbitrary pdf q(z) into, now we get:

$$\ln(p(\mathbf{y})) = \ln\left(\frac{p(\mathbf{y}, z)}{q(z)}\right) - \ln\left(\frac{p(z|\mathbf{y})}{q(z)}\right)$$

Taking the expectation on both sides, given q(z):

$$\begin{split} \ln\left(\rho(\mathbf{y})\right) &= \int q(z) \ln\left(\frac{\rho(\mathbf{y},z)}{q(z)}\right) \mathrm{d}z - \int q(z) \ln\left(\frac{\rho(z|\mathbf{y})}{q(z)}\right) \mathrm{d}z \\ &= \underbrace{\int q(z) \ln(\rho(\mathbf{y},z)) \mathrm{d}Z - \int q(z) \ln(q(z)) \mathrm{d}z}_{\mathcal{L}(q)} + \underbrace{\left(-\int q(z) \ln\left(\frac{\rho(z|\mathbf{y})}{q(z)}\right) \mathrm{d}z\right)}_{\mathsf{KL}(q||\rho)} \\ &= \mathcal{L}(q) + \mathsf{KL}(q||\rho) \end{split}$$

example on "example of re-parameterization": variational auto-encoder

firstly, what is an auto-encoder:

- ightharpoonup encoder $x \rightarrow z$
- **decoder** $z \to x'$, such you want x and x' to be as close as possible
- autoencoders generate things "as it is"

would be better, if we could feed z to decoder that were not encoded from the images in actual dataset

- then, we can synthesis new, reasonable data
- an idea: when feed database of images {x} to encoder, the corresponding {z} are "forced into" to form a distribution, so that a new sample z' randomly drawn from this distribution creates a reasonable data

variational auto-encoder

loss at a particular data point x_i:

$$\mathcal{L}_{i}(\theta, \phi) = \underbrace{-\mathbb{E}_{z \sim Q_{\theta}(z|x_{i})} \Big[\log P_{\phi}(x_{i}|z)\Big]}_{\text{reconstruction error}} + \underbrace{\mathsf{KL}(Q_{\theta}(z|x_{i})||p(z))}_{\text{regularizer}}$$

- we want $\mathbb{E}_{z \sim Q_{\theta}(z|x_i)} \left[\log P_{\phi}(x_i|z) \right]$ to be high, it needs for:
- $ightharpoonup Q_{\theta}(z|x_i) \uparrow \Longrightarrow P_{\phi}(x_i|z) \uparrow \text{ and } Q_{\theta}(z|x_i) \downarrow \Longrightarrow P_{\phi}(x_i|z) \downarrow$
- therefore, the optimal solution may be for Q_θ(z|x_i) and P_φ(x_i|z) to be just a single delta function in a x z plane
- \triangleright and all rest of $\{x, z\}$ are delta functions lies on a monotonic curve on the x-z plane
- regularizer $\mathsf{KL}(Q_{\theta}(z|x_i)||P(z))$ ensure $Q_{\theta}(z|x_i)$ doesn't behalf the above, i.e., $Q_{\theta}(z|x_i)$ are distributed as close to Gaussian distribution as possible
- \triangleright $P_{\phi}(x_i|z)$ is just supervised learning: pixel value x_i is its label/value

look at the ELBO again

we are not choosing our normal ELBO to maximize:

$$\begin{split} & \ln\left(\rho(\mathbf{y})\right) = \underbrace{\int q(z) \ln(\rho(\mathbf{y},z)) \mathrm{d}z - \int q(z) \ln(q(z)) \mathrm{d}z}_{\mathcal{L}(q)} + \underbrace{\left(-\int q(z) \ln\left(\frac{\rho(z|\mathbf{y})}{q(z)}\right) \mathrm{d}z\right)}_{\mathrm{KL}(q||\rho)} \\ & q(z) \to q(z|\mathbf{y}) \\ & = \int q(z|\mathbf{y}) \ln(\rho(z,\mathbf{y})) \mathrm{d}z - \int q(z|\mathbf{y}) \ln(q(z|\mathbf{y})) \mathrm{d}z + \left(-\int q(z|\mathbf{y}) \ln\left(\frac{\rho(z|\mathbf{y})}{q(z|\mathbf{y})}\right) \mathrm{d}z\right) \\ & = \int q(z|\mathbf{y}) \ln(\rho(\mathbf{y}|z)) \mathrm{d}z + \int q(z|\mathbf{y}) \ln(\rho(z)) \mathrm{d}z - \int q(z|\mathbf{y}) \ln(q(z|\mathbf{y})) \mathrm{d}z + \mathrm{KL}\left(q(z|\mathbf{y})||\rho(z|\mathbf{y})\right) \\ & = \int q(z|\mathbf{y}) \ln(\rho(\mathbf{y}|z)) \mathrm{d}z + \int q(z|\mathbf{y}) \ln(\rho(z)) \mathrm{d}z - \int q(z|\mathbf{y}) \ln(q(z|\mathbf{y})) \mathrm{d}z + \mathrm{KL}\left(q(z|\mathbf{y})||\rho(z|\mathbf{y})\right) \\ & = \int q(z|\mathbf{y}) \ln(\rho(\mathbf{y}|z)) \mathrm{d}z - \mathrm{KL}\left(q(z|\mathbf{y})||\rho(z)\right) + \mathrm{KL}\left(q(z|\mathbf{y})||\rho(z|\mathbf{y})\right) \end{split}$$

therefore,

$$\begin{split} \ln\left(\rho(\mathbf{y})\right) - \frac{\mathsf{KL}\left(q(z|\mathbf{y})\|\rho(z|\mathbf{y})\right)}{=} & \int q(z|\mathbf{y}) \ln(\rho(\mathbf{y}|z)) \mathrm{d}z - \mathsf{KL}\left(q(z|\mathbf{y})\|\rho(z)\right) \\ & = \underbrace{\mathbb{E}_{z \sim q(z|\mathbf{y})}\left[\ln(\rho(\mathbf{y}|z))\right] - \mathsf{KL}\left(q(z|\mathbf{y})\|\rho(z)\right)}_{1} \end{split}$$

by minimizing $(1)\mathcal{L} \implies q(z|\mathbf{y}) \rightarrow p(z|\mathbf{y}) \implies \ln(p(\mathbf{y}))$ is maximized

real example on variational auto-encoder

knowing

$$\ln\left(\rho(\mathbf{y})\right) - \mathsf{KL}\left(q(z|\mathbf{y})\|p(z|\mathbf{y})\right) = \underbrace{\mathbb{E}_{z \sim q(z|\mathbf{y})}\left[\ln(p(\mathbf{y}|z))\right] - \mathsf{KL}\left(q(z|\mathbf{y})\|p(z)\right)}_{\mathcal{L}(\cdot)}$$

our aim is if we do:

$$Z_i \sim q_{\theta}(z|\mathbf{y}_i)$$
 $\mathcal{Y}_i \sim p_{\phi}(\mathcal{Y}|Z_i)$

we want to \mathcal{Y}_i to resemble \mathbf{y}_i with high probability

in VAE, loss at each data point:

$$\mathcal{L}_i(\theta, \phi) = \underbrace{-\mathbb{E}_{z \sim q_{\theta}(z|\mathbf{y}_i)} \Big[\log p_{\phi}(\mathbf{y}_i|z)\Big]}_{\text{reconstruction loss}} + \underbrace{\text{KL}(q_{\theta}(z||\mathbf{y}_i)||p(z))}_{\text{regularizer}}$$

objective function illustration

new intepretation:

loss at loss function again:

$$\mathcal{L}_{i}(\theta,\phi) = \underbrace{-\mathbb{E}_{z \sim q_{\theta}(z|\mathbf{y}_{i})}\big[\log p_{\phi}(\mathbf{y}_{i}|z)\big]}_{\text{reconstruction loss}} + \underbrace{\mathsf{KL}(q_{\theta}(z||\mathbf{y}_{i})||p(z))}_{\text{regularizer}}$$

 without reconstruction loss, same numbers may not be close together, i.e., they spread across the entire multivariate normal distribution, when we perform:

$$Z_i \sim q_{\theta}(z|\mathbf{y}_i)$$
 $\mathcal{Y}_i \sim p_{\phi}(\mathcal{Y}|Z_i)$

i.e., \mathcal{Y}_i has low probability to look like \mathbf{y}_i

 without regularizer, you may recover digits back, but they don't form overall multivariate Gaussian distribution (so you can't sample)

https://towardsdatascience.com/ variational-auto-encoders-fc701b9fc569

KL between two Gaussian distributions

▶ compute $KL(\mathcal{N}(\mu_1, \Sigma_1) || \mathcal{N}(\mu_2, \Sigma_2))$

$$\begin{split} KL &= \int_{x} \left[\frac{1}{2} \log \frac{|\Sigma_{2}|}{|\Sigma_{1}|} - \frac{1}{2} (x - \mu_{1})^{T} \Sigma_{1}^{-1} (x - \mu_{1}) + \frac{1}{2} (x - \mu_{2})^{T} \Sigma_{2}^{-1} (x - \mu_{2}) \right] \times p(x) dx \\ &= \frac{1}{2} \log \frac{|\Sigma_{2}|}{|\Sigma_{1}|} - \frac{1}{2} tr \left\{ \mathbb{E}[(x - \mu_{1})(x - \mu_{1})^{T}] \Sigma_{1}^{-1} \right\} + \frac{1}{2} \mathbb{E}[(x - \mu_{2})^{T} \Sigma_{2}^{-1} (x - \mu_{2})] \\ &= \frac{1}{2} \log \frac{|\Sigma_{2}|}{|\Sigma_{1}|} - \frac{1}{2} tr \left\{ l_{d} \right\} + \frac{1}{2} (\mu_{1} - \mu_{2})^{T} \Sigma_{2}^{-1} (\mu_{1} - \mu_{2}) + \frac{1}{2} tr \left\{ \Sigma_{2}^{-1} \Sigma_{1} \right\} \\ &= \frac{1}{2} \left[\log \frac{|\Sigma_{2}|}{|\Sigma_{1}|} - d + tr \left\{ \Sigma_{2}^{-1} \Sigma_{1} \right\} + (\mu_{2} - \mu_{1})^{T} \Sigma_{2}^{-1} (\mu_{2} - \mu_{1}) \right] \end{split}$$

b substitute $\mu_2 = 1$ for each dimension, $\Sigma_2 = I$ is a Σ_2 is a diagonal matrix:

$$\begin{split} \mathsf{KL}[N(\mu(X), \Sigma(X)) || \, N(0, 1)] &= \frac{1}{2} \, \left(\mathrm{tr}(\Sigma(X)) + \mu(X)^T \mu(X) - k - \log \, \det(\Sigma(X)) \right) \\ &= \frac{1}{2} \, \left(\sum_k \sigma_k^2 + \sum_k \mu_k^2 - \sum_k 1 - \log \, \prod_k \sigma_k^2 \right) \\ &= \frac{1}{2} \, \sum_k \left(\sigma_k^2 + \mu_k^2 - 1 - \log \, \sigma_k^2 \right) \end{split}$$

there is an even simpler way to compute KL, when p(x,y) = p(x)p(y) and q(x,y) = q(x)q(y)

► le

$$\begin{aligned} \mathsf{KL}(p,q) &= -\left(\int p(x)\log q(x)\mathrm{d}x - \int p(x)\log p(x)\mathrm{d}x\right) \\ &\Rightarrow \mathsf{KL}(p(x)p(y), q(x)q(y)) \\ &= -\left(\int_{X} \int_{Y} p(x)p(y) \left[\log q(x) + \log q(y)\right]\mathrm{d}x - p(x)p(y) \left[\log p(x) + \log p(y)\right]\mathrm{d}x\right) \\ &= -\left(\int_{X} \int_{Y} \left[p(x)p(y)\log q(x) + p(x)p(y)\log q(y) - p(x)p(y)\log p(x) - p(x)p(y)\log p(y)\right]\mathrm{d}x\right) \\ &= -\left(\int_{X} \int_{Y} p(x)p(y)\log q(x) + \int_{X} \int_{Y} p(x)p(y)\log q(y) - \int_{X} \int_{Y} p(x)p(y)\log p(x) - \int_{X} \int_{Y} p(x)p(y)\log p(y)\mathrm{d}x\right) \\ &= -\left(\int_{X} p(x)\log q(x) \int_{Y} p(y) + \int_{X} p(x) \int_{Y} p(y)\log q(y) - \int_{X} p(x)\log p(x) \int_{Y} p(y) - \int_{X} p(x) \int_{Y} p(y)\log p(y)\right) \\ &= -\left(\int_{X} p(x)\log q(x) + \int_{Y} p(y)\log q(y) - \int_{X} p(x)\log p(x) - \int_{Y} p(y)\log p(y)\right) \\ &= -\left(\int_{X} p(x)\log q(x) - \int_{X} p(x)\log p(x)\right) - \left(\int_{Y} p(y)\log q(y) - \int_{Y} p(y)\log p(y)\right) \\ &= -\left(\int_{X} p(x)\log q(x) - \int_{X} p(x)\log p(x)\right) - \left(\int_{Y} p(y)\log q(y) - \int_{Y} p(y)\log p(y)\right) \\ &= -\left(\int_{X} p(x)\log q(x) - \int_{X} p(x)\log p(x)\right) - \left(\int_{Y} p(y)\log q(y) - \int_{Y} p(y)\log p(y)\right) \\ &= -\left(\int_{X} p(x)\log q(x) - \int_{X} p(x)\log p(x)\right) - \left(\int_{Y} p(y)\log q(y) - \int_{Y} p(y)\log p(y)\right) \\ &= -\left(\int_{X} p(x)\log q(x) - \int_{X} p(x)\log p(x)\right) - \left(\int_{Y} p(y)\log q(y) - \int_{Y} p(y)\log p(y)\right) \\ &= -\left(\int_{X} p(x)\log q(x) - \int_{X} p(x)\log p(x)\right) - \left(\int_{Y} p(y)\log q(y) - \int_{Y} p(y)\log p(y)\right) \\ &= -\left(\int_{X} p(x)\log q(x) - \int_{X} p(x)\log p(x)\right) - \left(\int_{Y} p(y)\log q(y) - \int_{Y} p(y)\log p(y)\right) \\ &= -\left(\int_{X} p(x)\log p(x)\right) + \mathsf{KL}(p(y)||q(y)) \end{aligned}$$

there is an even simpler way to compute KL, when p(x, y) = p(x)p(y) and q(x, y) = q(x)q(y)

let $p(x) = \mathcal{N}(\mu_p, \sigma_p)$ and $q(x) = \mathcal{N}(\mu_q, \sigma_q)$:

$$\begin{aligned} \textit{KL}(p,q) &= -\int p(x) \log q(x) dx + \int p(x) \log p(x) dx \\ &= \frac{1}{2} \log(2\pi\sigma_q^2) + \frac{\sigma_p^2 + (\mu_p - \mu_q)^2}{2\sigma_q^2} - \frac{1}{2} (1 + \log 2\pi\sigma_p^2) \\ &= \log \frac{\sigma_q}{\sigma_p} + \frac{\sigma_p^2 + (\mu_p - \mu_q)^2}{2\sigma_q^2} - \frac{1}{2} \\ &= \log \sigma_q - \log \sigma_p + \frac{\sigma_p^2}{2\sigma_q^2} + \frac{(\mu_p - \mu_q)^2}{2\sigma_q^2} - \frac{1}{2} \end{aligned}$$

▶ let $q(x) = \mathcal{N}(0, 1)$:

$$KL(p, q) = \frac{\sigma_p^2}{2} + \frac{\mu_p^2}{2} - \frac{1}{2} - \log \sigma_p$$
$$= \frac{1}{2} \left[\frac{\sigma_p^2}{2} + \frac{\mu_p^2}{2} - \frac{1}{2} - \log \sigma_p^2 \right]$$

 $ightharpoonup P(X) = \prod_k p(x_k)$ and $Q(X) = \prod_k q(x_k)$:

where does neural network come in to play?

to do Bayesian properly, we need:

$$P(z|x_i) \propto \underbrace{P_{\theta}(x_i|z)}_{\text{Encoder network } \mathcal{N}(0,I)} \underbrace{P(z)}_{\text{C}(0,I)}$$

- this is certainly not Gaussian! therefore, we need to use variational approach, and to define $Q_{\theta}(z|x_i) \equiv \mathcal{N}(\mu(x_i, \theta), \Sigma(x_i, \theta))$
- we can choose any distribution, but having Normal distribution making KL computation a lot easier in objective function
- b how do we obtain the parameter value of this Gaussian?
- of course a linear, or a kernel won't do its trick, we need a Neural Network for both $\mu(x_i, \theta), \Sigma(x_i, \theta)$

apply re-parameterization trick to softmax

when we have the following

$$\begin{split} \mathbb{E}_{K \sim \text{softmax}(\mu_1(\theta), \dots, \mu_L(\theta))}[f(\mathbf{v}(K))] &= \sum_{k=1}^L f(\mathbf{v}(k)) \Pr(k|\theta) \\ &\equiv \sum_{k=1}^L f(\mathbf{v}(k)) \big(\text{softmax}(\mu_1(\theta), \dots, \mu_L(\theta)) \big)_k \end{split}$$

can we find their corresponding:

$$\mathcal{K} = g(\mathcal{G}, \theta)$$
 $\mathcal{G} \sim p(\mathcal{G})$

Re-parameterization using Gumbel-max trick

Gumbel-max trick also means:

$$\begin{aligned} U &\sim \underbrace{\mathcal{U}(0,1)}_{p(\mathcal{G})} & \mathcal{G} = -\log(-\log(U)) \\ k &= \underset{i \in \{1,\dots,K\}}{\arg\max} \left\{ \mu_1(\theta) + \mathcal{G}, \dots, \mu_K(\theta) + \mathcal{G} \right\} \end{aligned} \qquad \mathbf{v} = \mathsf{one}\text{-hot}(k)$$

- ▶ this is a form of re-paramterization: instead of sample $\mathcal{K} \sim \operatorname{softmax}(\mu_1(\theta), \dots, \mu_K(\theta))$, we i.i.d. sample \mathcal{G} instead
- well, there is two problems, firstly why is such true?

Gumbel-max trick and Softmax (1)

p pdf of Gumbel with **unit scale** and location parameter μ :

gumbel(
$$Z = z; \mu$$
) = exp $\left[-(z - \mu) - \exp\{-(z - \mu)\} \right]$

CDF of Gumbel:

Gumbel(
$$Z \le Z$$
; μ) = exp $\left[-\exp\{-(Z - \mu)\} \right]$

Gumbel-max trick and Softmax (1)

• given a set of Gumbel random variables $\{Z_i\}$, each having own location parameters $\{\mu_i\}$, probability of all other $Z_{i\neq k}$ are less than a particular value of z_k :

$$p\left(\max\{Z_{i\neq k}\} = \mathbf{Z}_{\mathbf{k}}\right) = \prod_{i\neq k} \exp\left[-\exp\{-(\mathbf{Z}_{\mathbf{k}} - \mu_i)\}\right]$$

▶ obviously, $Z_k \sim \text{gumbel}(Z_k = z_k; \mu_k)$:

$$\begin{aligned} &\Pr(k \text{ is largest } | \ \{\mu_i\}) \\ &= \int \exp\left\{-(Z_k - \mu_k) - \exp\{-(Z_k - \mu_k)\}\right\} \prod_{i \neq k} \exp\left\{-\exp\{-(Z_k - \mu_i)\}\right\} \ \mathrm{d}Z_k \\ &= \int \exp\left[-Z_k + \mu_k - \exp\{-(Z_k - \mu_k)\}\right] \exp\left[-\sum_{i \neq k} \exp\{-(Z_k - \mu_i)\}\right] \mathrm{d}Z_k \\ &= \int \exp\left[-Z_k + \mu_k - \exp\{-(Z_k - \mu_k)\} - \sum_{i \neq k} \exp\{-(Z_k - \mu_i)\}\right] \mathrm{d}Z_k \\ &= \int \exp\left[-Z_k + \mu_k - \sum_i \exp\{-(Z_k - \mu_i)\}\right] \mathrm{d}Z_k \\ &= \int \exp\left[-Z_k + \mu_k - \sum_i \exp\{-Z_k + \mu_i)\}\right] \mathrm{d}Z_k \\ &= \int \exp\left[-Z_k + \mu_k - \exp\{-Z_k\} \sum_i \exp\{\mu_i)\}\right] \mathrm{d}Z_k \end{aligned}$$

Gumbel-max trick and Softmax (2)

keep on going:

$$\begin{aligned} \Pr(k \text{ is largest} \mid \{\mu_i\}) &= \int \exp\left[-Z_k + \mu_k - \exp\{-Z_k\} \sum_i \exp\{\mu_i\}\right] dZ_k \\ &= \exp^{\mu_k} \int \exp\left[-Z_k - \exp\{-Z_k\} C\right] dZ_k \\ &= \exp^{\mu_k} \left[\frac{\exp(-C \exp(-Z_k))}{C}\Big|_{Z_k = -\infty}^{\infty}\right] \\ &= \exp^{\mu_k} \left[\frac{1}{C} - 0\right] = \frac{\exp^{\mu_k}}{\sum_i \exp\{\mu_i\}} \end{aligned}$$

Gumbel-max trick and Softmax (2)

moral of the story is, if one is to sample the largest element from softmax:

$$\begin{split} \mathcal{K} \sim \left\{ \frac{\exp(\mu_1)}{\sum_i \exp(\mu_i)}, \dots, \frac{\exp(\mu_L)}{\sum_i \exp(\mu_i)} \right\} \\ \implies \mathcal{K} = \underset{i \in \{1, \dots, L\}}{\arg \max} \left\{ G_1, \dots, G_L \right\} \\ \text{where } G_i \sim \text{gumbel}(z \, ; \, \mu_i) \equiv \exp\left[- (z - \mu_i) - \exp\{-(z - \mu_i)\} \right] \\ \implies \mathcal{K} = \underset{i \in \{1, \dots, L\}}{\arg \max} \left\{ \mu_1 + \mathcal{G}, \dots, \mu_L + \mathcal{G} \right\} \\ \text{where } \mathcal{G} \stackrel{\text{iid}}{\sim} \text{gumbel}(z \, ; \, 0) \equiv \exp\left[- (z) - \exp\{-(z)\} \right] \end{split}$$

- what is μ_i? for example.
 - $\mu_i \equiv \mathbf{x}^{\top} \theta_i$ in classification $\mu_i \equiv \mathbf{u}_i^{\top} \mathbf{v}_c$ for word vectors
- some literature writes it as :

$$\equiv \underset{i \in \{1, \dots, L\}}{\operatorname{arg\,max}} \left\{ \log(\mu_1) + \mathcal{G}, \dots, \log(\mu_L) + \mathcal{G} \right\}$$

meaning, they let $\mu_i \equiv \exp(\mathbf{x}^{\top} \theta_i)$

how to sample a Gumbel?

CDF of a Gumbel:

$$u = \exp^{-\exp^{-(x-\mu)/\beta}}$$

$$\Rightarrow \log(u) = -\exp^{-(x-\mu)/\beta}$$

$$\Rightarrow \log(-\log(u)) = -(x-\mu)/\beta$$

$$\Rightarrow -\beta\log(-\log(u)) = x-\mu$$

$$\Rightarrow x = \text{CDF}^{-1}(u) \equiv \mu - \beta\log(-\log(u))$$

▶ for standard Gumbel, i.e., $\mu = 0, \beta = 1$:

$$x = \mathsf{CDF}^{-1}(u) \equiv -\log(-\log(u))$$

therefore, sampling strategy:

$$\begin{split} & \mathcal{U} \sim \mathcal{U}(0,1) \\ & \mathcal{G} = -\log(-\log(\mathcal{U})) \\ & \mathcal{K} = \underset{i \in \{1,\dots,K\}}{\text{arg max}} \left\{ \mu_1 + \mathcal{G}, \dots, \mu_L + \mathcal{G} \right\} \\ & \mathbf{v} = \text{one-hot}(\mathcal{K}) \end{split}$$

Second problem with Softmax re-parameterisation

- the other remaining problem: sample v also has an arg max operation, it's a discrete distribution!
- one can relax the softmax distribution, for example softmax map
- several solutions proposed, for example: "Maddison, Mnih, and Teh (2017), The Concrete Distribution: a Continuous Relaxation of Discrete Random Variables"

Relax the Softmax

softmax map

$$\begin{split} f_{\tau}(x)_k &= \frac{\exp(\mu_k/\tau)}{\sum_{k=1}^K \exp(\mu_k/\tau)} \qquad \mu_k \equiv \mu_k(X_k) \\ \text{as } \tau &\to 0 \implies f_{\tau}(x) = \max\left(\left\{\frac{\exp(\mu_k)}{\sum_{k=1}^K \exp(\mu_k)}\right\}_{k=1}^K\right) \end{split}$$

- questions can you also think about the relationship between Gaussian Mixture Model and K-means?
- one can say $\tau = 1$ is softmax, and $\tau = 0$ is hard-max!
- then we can apply the same softmax map with added Gumbel variables:

$$(X_k^{\tau})_k = f_{\tau}(\mu + G)_k = \left(\frac{\exp(\mu_k + G_k)/ au}{\sum_{i=1}^K \exp(\mu_i + G_i)/ au}\right)_k$$

