羽题三

1. (2)解: Jacobi 迭代法:

用Jacobi 迭代法的计算对,有:

$$A = \begin{pmatrix} 10 & -2 & -1 \\ -2 & 10 & -1 \\ -1 & -2 & 5 \end{pmatrix}$$

$$B = \begin{pmatrix} 0 & 0.2 & 0.1 \\ 0.2 & 0 & 0.1 \\ 0.2 & 0.4 & 0 \end{pmatrix}$$

$$G = \begin{bmatrix} 0.3 \\ 1.5 \\ 2 \end{bmatrix}$$

$$\begin{cases} \chi_{1}^{(k+1)} = 0.2 \chi_{2}^{(k)} + 0.1 \chi_{3}^{(k)} + 0.3 \\ \chi_{2}^{(k+1)} = 0.2 \chi_{1}^{(k)} + 0.1 \chi_{3}^{(k)} + 1.5 \\ \chi_{3}^{(k+1)} = 0.2 \chi_{1}^{(k)} + 0.4 \chi_{2}^{(k)} + 2 \end{cases}$$

取2 (0,0,0),代7上半得:

k	· \(\gamma_1(k) \)	$\gamma_2^{(k)}$	·13(k)
0	0.000	0.000	0.000
1	0.300	1.500	2.000
2	0.800	1.760	2.660
3	0.918	1.926	2.864
4	0.972	1970	2,954
15	0.989	1.990	2,982
6	0.996	1.996	21994

送代6次,4导到16种3⁽⁶⁾=(0.996,1.996,2.994)^T

另验证为维组精确解析》=(1,2,3)下脸k馅加,结果树栽组(实际加与日本, x=(1,2,3)下)

Causs - Seidel 迭代法:

用Causs - Seidel 进代法计算红,有:

脂质次数增加,结果越接约(1,2,3)7.

实际 k=9时,便有 X=(1,2,3)T

k	Y1(k)	1/2(k)	13(k)
0	0.000	0.000	0.000
2	0.880	1.944	2,954
3	0.994	1.994	2.996

(1) 解: Jacobi 迭代法:

用Jacobi 迭代法的计算纠消:

$$A = \begin{pmatrix} 8 & -3 & 2 \\ 4 & 11 & -1 \\ 2 & 1 & 4 \end{pmatrix}$$

$$B = \begin{pmatrix} 0 & \frac{2}{8} & -\frac{1}{4} \\ \frac{1}{4} & 0 & -\frac{1}{1} \\ -\frac{1}{2} & -\frac{1}{4} & 0 \end{pmatrix} \qquad g = \begin{bmatrix} 202.5 \\ 203.3 \\ 3 \end{bmatrix}$$

$$\begin{cases} \chi^{(k+1)} = \frac{3}{4} \chi^{(k)} + \frac{-4}{44} \chi^{(k)} + 2.5 \\ \chi^{(k+1)} = -\frac{4}{11} \chi^{(k)} - \frac{1}{11} \chi^{(k)} + 3 \\ \chi^{(k+1)} = -\frac{1}{2} \chi^{(k)} - \frac{4}{4} \chi^{(k)} + 3 \end{cases}$$

取(0)=(0,0,0) 代入上才(9:

k	Y(k)	Y2(k)	73 (k)
0	0.000	0.000	0.000
1	2,500	3.000	3.000
2	2.875	2.364	1.000
3	3.1636	2.045	0972
4	3.024	1948	0.920
5	3.000	1.984	1.001
6	2.994	2,003	1.003
7	2.999	2,003	0.999
8	.3.000	2.000	@1.000
	/		-

/得近似解为/*=(3.000,2.000,1.000)

Causs -seidel Ettiz

$$\begin{cases} \chi_{1}^{(k+1)} = \frac{3}{8} \chi_{2}^{(k)} - \frac{1}{4} \chi_{3}^{(k)} + 2.5 \\ \chi_{2}^{(k+1)} = -\frac{4}{17} \chi_{1}^{(k+1)} - \frac{1}{17} \chi_{3}^{(k)} + 3 \\ \chi_{3}^{(k+1)} = -\frac{1}{2} \chi_{1}^{(k+1)} - \frac{1}{4} \chi_{2}^{(k+1)} + 3 \end{cases}$$

取如=(0,0,0)*1十八上半得:

得近似解 2= (3.000, 2.000, 1.000)

k	Y(k)	Y2 (k)	73(k)
0	0.000	0.000	0.000
1	2,500	2.09/	1,227
2	3.010	1.997	0.996
3	3.010	1.999	1.000
4	23.000	11999	4000
5	253.000	2,000	1.000
			l

2. 解: Jacobi 迭代法,:

用Jacobi 选件法的公式,有:

$$\begin{cases} \chi_{1}^{(k+1)} = 0.5 \, \chi_{2}^{(k)} + 0.5 \\ \chi_{2}^{(k+1)} = 0.5 \, \chi_{1}^{(k)} + 0.5 \chi_{3}^{(k)} \\ \chi_{3}^{(k+1)} = 0.5 \, \chi_{2}^{(k)} - \chi_{3}^{(k)} + 0.5 \, \chi_{4}^{(k)} + 0.5 \\ \chi_{4}^{(k+1)} = 0.5 \, \chi_{3}^{(k)} - \chi_{4}^{(k)} \end{cases}$$

取如二(1,1,1,1)下,代入上述为程组,有

k	71(k)	1/2(k)	13 ^(k)	74k)
0	1.000	1.000	1.000	1.000/
1	0.500	055 0500	0.500	0.000
2	0.500	0500	0.500	6.250
3	0.750	0.813	0.878	0.438
4	0.750	0.813	Ø.875	0.438
5	0.906	1.0160813	11125	0.438
6	0.906	1.016	1.125	0.563
7	1.008	1.016	1.289	0645
8	.K008	1.148	1,396	0.6.44

		-61	75(k)	1 ×4(k)	TR
• 1	Y (k)	1/2(k)		<u> </u>	
	1.000	1,000	1.000	1.000	0
	0.500	0.000	0,500	0.000	11
	0,500	0,500	0.500	0.2500	2
改为	0.7500	0.500	0.815	0.250	3
	0.750	0.813	0.875	0.438	4
	0.906	0.813	1.125	0.563	15
	0.906	1016	1.125	0.56 3	6
	1.008	1.016	1.2.89	0.563	17
	11008	1.148	1289	0.644	8
	送代法,	有近似的	L: x*=(1,2.	, 1.4, 1.6,	0.8)T

用Gauss - Seidel 选州结有

$$\begin{cases} \gamma^{(k+1)} = 0.5 \, \lambda_2^{(k)} + 0.5 \\ \chi_2^{(k+1)} = 0.5 \, \lambda_1^{(k+1)} + 0.5 \, \lambda_3^{(k)} \\ \chi_3^{(k+1)} = 0.5 \, \lambda_2^{(k+1)} - \chi_3^{(k+1)} + 0.5 \, \lambda_4^{(k)} + 0.5 \\ \chi_4^{(k+1)} = 0.5 \, \chi_3^{(k+1)} - \chi_4^{(k+1)} \end{cases}$$

可又们=(1,1,1,1)T,代入土进为程组,有

k	1/6	~ (k)	∨ (b)	J (R)
<u> </u>	Y1(k)	12(k)	Y3 (k)	X4(R)
0	1,000	1.000	1.000	- 1.000
l	1.000	1.000	1.500	0.750
2	1.125	1.250	1.500	0.750
3	1.125	1312	1531	0.765
•	10/156	1.344	1.554	0.777
45	1.172	1.363	1.570	0.785
6	181/181	1.376	11581	0.790
1 7	1.187	1.384	1.587	0.794
8	1.921	1.389	1.591	0.795
9	1.194	1.393	1.594	0.797
1 16	1 1101	1 200	1.00/	0 200

送代法,有近似解释=(1.196,1.395.1595.@98 ○.798)™

用SOR法:

k	7,(k)	1/2(k)	/3 ^(k)	1/4(k)
O	1.000	1.000	1.000	1,000
ľ	1.000	1.000	1730	01803
2	1.000	1.5343	1.6393	0.827
3	1.389	1.506	1.679	0.845
4	1.190	1,402	1,598	0.778
5	1.206	1.402	1.586	0.800
6	1.199	1.388	1598	0.798
1	1.191	1.398	1,598	0.799
8	1,202	1.401	1.601	0.801
9	1.199	1.400	1.600	0.800
10	1.200	1.400	1.600	0.800

3. 解: Jacobi 迭代选

$$\begin{cases} \chi_{1}^{(k+1)} = -2\chi_{2}^{(k)} + 2\chi_{3}^{(k)} + 1 \\ \chi_{2}^{(k+1)} = -\chi_{1}^{(k)} - \chi_{3}^{(k)} + 1 \\ 3\chi_{3}^{(k+1)} = -2\chi_{1}^{(k)} - 2\chi_{2}^{(k)} + 1 \end{cases}$$

Tk	y ₁ (k)	X2(k)	73 ^(k)
0	0.000	0000	0.000 .
1	1.000	1.000	1,000
2	1.000	4,000	-3.000
3	-3,000	3.000	1.000 .

$$\begin{cases} \chi_{1}^{(k+1)} = -2\chi_{2}^{(k)} + 2\chi_{3}^{(k)} + 1 \\ \chi_{1}^{(k+1)} = -\chi_{1}^{(k+1)} - \chi_{3}^{(k)} + 1 \\ \chi_{3}^{(k+1)} = -2\chi_{1}^{(k+1)} - 2\chi_{2}^{(k+1)} + 1 \end{cases}$$

_ Y ₁ (k)	12 ^(k)	13(k)
0.000	0.000	0.000
1.000	3,000	-3,000
-1:000	1	-3,000 -7,000
1		-15,000
	0.000	0.000 0.000 1.000 3.000 -1.000 -3.000 -11.000 -15.000

比较:显然Jacobi 迭代外海的. Causs - Serbel 迭代法不经用比图

4.解:
$$J(auss - Seidel 迭代法:$$

$$\chi_{(k+1)}^{(k+1)} = -\frac{3}{4}\chi_{2}^{(k)} + 6$$

$$\chi_{(k+1)}^{(k+1)} = -\frac{3}{4}\chi_{2}^{(k)} + 6$$

$$\chi_{(k+1)}^{(k+1)} = -\frac{3}{4}\chi_{2}^{(k)} + 75$$

$$\chi_{3}^{(k+1)} = -\chi_{3}^{(k+1)} + \frac{1}{4}\chi_{3}^{(k)} + 75$$

k	XI(k)	Y2(k)	73(k)	144
123456		3.813 3.883 3.927 3.954 3.971 3.982	-5.049 -5.029 -5.018 -5.011 -5.007 -5.004	794
1	3.013	·3.989	-5.003-	

SORit (w=1.25):

/	$\gamma_i^{(k+1)} = -c$	125 8/R).+0.3	125 (24-3 X2 ^(k)) 125 (30-3 X ^(kn) +X5 ^{(k}	
	$\chi_{\underline{L}}(kt) = -0$	125.72k+013	125 (30-371(MI)+1/3(A	")
. '	$\chi_3^{(k+1)} = -0$	25 x3 + 0.31	25 (-24 + X2 (kH)·)	

k	χ ₁ (b)	Y2(h)	13(k)
1	6.313	3.520	-6.650
2	2.622	3.959	-4.600
3	3.133	4.010	-5,097
4	2.957	4.008	-4974
5	3.004	4.003	-5.006
6	2.996	4.001	-4.998
7	3,000	4.000	-5.000

显然;50R1去进代7次已经非常接近准确接果了.

HYBE SOR it by Causs - Serdel X7!

SOR法选件S次结果与 Gauss-Serbel 选件7次相依

5.解:
$$A = \begin{pmatrix} a & -1 & -3 \\ -1 & a & -2 \\ 3 & -2 & a \end{pmatrix}$$
 $D = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$

Jacobi 迭代法的迭代矩阵为

$$B = I - D^{\dagger}A = \begin{bmatrix} 0 & \dot{\alpha} & \frac{3}{4} \\ \dot{\alpha} & 0 & \frac{3}{4} \\ -\frac{3}{4} & \frac{3}{4} & 0 \end{bmatrix}$$

其特征流程为:

不统金的数 则备-27a \$a>2.

2000 = 1 MEKINT, BPASSET I AC SA

Jacobised 法收敛, 配套机 而-55055A1,不觉快感之.

则当-2-20年4,22时 Jacobi 迭代法收益分。 当 1/4 0 4 2 日十. 不收敛.

6. 记明:
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 $D = \begin{pmatrix} a_{11} & 0 \\ 0 & a_{22} \end{pmatrix}$

Jacobi迭代法的迭代矩阵为

$$\beta = I - D^{-1}A = \begin{bmatrix} 0 - \frac{a_{12}}{a_{22}} \\ -\frac{a_{21}}{a_{11}} & 0 \end{bmatrix}$$

其特征新经治:

$$\left| \lambda 1 - \beta \right| = \left| \begin{array}{c} \lambda & \frac{\alpha_{12}}{\alpha_{22}} \\ \frac{\alpha_{21}}{\alpha_{11}} & \lambda \end{array} \right| = \lambda^2 - \frac{\alpha_{12}\alpha_{24}}{\alpha_{22}\alpha_{11}} = 0$$

$$P(B)^{2} = \left| \frac{a_{12}a_{21}}{a_{11}a_{22}} \right| < 1$$

7.(1) Jacobi 迭代法

$$A = \begin{bmatrix} 10 & 4 & 4 \\ 4 & 10 & 8 \\ 4 & 8 & 10 \end{bmatrix}$$

$$D^{-1} = \begin{bmatrix} \frac{1}{10} & 0 & 0 \\ 0 & 0 & \frac{1}{10} \end{bmatrix}$$

$$b = \begin{bmatrix} 13 \\ 211 \end{bmatrix}$$

$$Q = \begin{bmatrix} 00|3 \\ 225 \end{bmatrix}$$

$$Q = \begin{bmatrix} 00|3 \\ 225 \end{bmatrix}$$

$$Q = \begin{bmatrix} 00|3 \\ 225 \end{bmatrix}$$

$$Q = \begin{bmatrix} 0 & -0.4 & -0.4 \\ -3 & 0 & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & 0 \end{bmatrix} = \begin{bmatrix} 0 & -0.4 & -0.4 \\ -0.4 & 0 & -0.8 \\ -0.4 & -0.8 \end{bmatrix}$$

$$X(k+1) = -0.4 X(k) - 0.8 X(k) + 0.03 Z(k)$$

$$X_3(k+1) = -0.4 X(k) - 0.8 X_2(k) + 0.03 Z(k)$$

$$X_3(k+1) = -0.4 X(k) - 0.8 X_2(k) + 0.03 Z(k)$$

Gauss-Serbel 送代法

田山
$$L = \begin{bmatrix} 0 & -40 \\ -4 & -8 & -80 \end{bmatrix}$$
 $U = \begin{bmatrix} 0 & -4 & -4 \\ 0 & 0 & -8 \\ -4 & -8 & -80 \end{bmatrix}$ $U = \begin{bmatrix} 0 & -4 & -4 \\ 0 & 0 & -8 \\ -4 & -8 & -80 \end{bmatrix}$ $U = \begin{bmatrix} 0 & -4 & -4 \\ -4 & -8 & -80 \end{bmatrix}$ $U = \begin{bmatrix} 0 & -4 & -4 \\ -4 & -8 & -80 \end{bmatrix}$ $U = \begin{bmatrix} 0 & -4 & -4 \\ -4 & -8 & -40 \end{bmatrix}$ $U = \begin{bmatrix} 0 & -4 & -4 \\ -4 & -8 & -4 & -4 \end{bmatrix}$ $U = \begin{bmatrix} 0 & -4 & -4 \\ 0 & -4 & -4 \\ 0 & -4 & -4 \end{bmatrix}$ $U = \begin{bmatrix} 0 & -4 & -4 \\ 0 & -4 & -4 \\ 0 & -4 & -4 \end{bmatrix}$ $U = \begin{bmatrix} 0 & -4 & -4 \\ 0 & -4 & -4 \\ 0 & -4 & -4 \end{bmatrix}$ $U = \begin{bmatrix} 0 & -4 & -4 \\ 0 & -4 & -4 \\ 0 & -4 & -4 \\ 0 & -4 & -4 \end{bmatrix}$ $U = \begin{bmatrix} 0 & -4 & -4 \\ 0$

SOR法·(W=135).

$$(D-WL)^{-1} = \begin{bmatrix} 0.1 & 0 & 0 \\ -0.054 & 0.1 & 0 \\ 0.0043 & -0.008 & 0.1 \end{bmatrix} f(+W)D+WU = \begin{bmatrix} -3.1500:-5.4 & -5.4 \\ 0 & -3.5 & -10.8 \\ 0 & 0 & -3.5 \end{bmatrix}$$

$$\sqrt{15} \text{ (P-WL)}^{-1} \left[(1-W)D+WU \right] = \begin{bmatrix} -0.35 \cdot -0.54 & -0.54 \\ 0.189 & -0.0584 & -0.7884 \\ -0.0151 & 0.3547 & 0.7931 \end{bmatrix}$$

$$\sqrt{15} \text{ (AH)} = \chi_1^{(k)} + \frac{1.35}{10} \left(13 - 10\chi_1^{(k)} - 4\chi_2^{(k)} - 4\chi_3^{(k)} - 4\chi_3^{(k)} \right)$$

$$\chi_2^{(k+1)} = \chi_2^{(k)} + \frac{1.35}{10} \left(-11 - 4\chi_1^{(k+1)} - 8\chi_2^{(k)} - 8\chi_3^{(k)} \right)$$

$$\chi_3^{(k+1)} = \chi_3^{(k)} + \frac{1.35}{10} \left(2s - 4\chi_1^{(k+1)} - 8\chi_2^{(k+1)} - 10\chi_3^{(k)} \right) .$$

(2) /解: 易得A为对称正定矩阵.

由判别条1年3. Gauss-Seibel 迭代法和SOR法(O<w<2)均位。

而·Jacobí 迭代选中

可求得:1=0.8 12=0.29 13=-1.09

RJ i普半径 P(B)=1.09>1.因而Jacobi 选代法发散.

8·解·若用Jacobi 选代法:

$$A = \begin{bmatrix} 1.2 - 3.6 & -12 \\ -10 & 9 & 0.5 \\ 1 & -4 & 2 \end{bmatrix}$$
 $D = \begin{bmatrix} 1.2 & 0 & 0 \\ 0 & 9 & 0.5 \\ 0 & 0 & 2 \end{bmatrix}$ $b = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$
 $D = \begin{bmatrix} 1.2 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ $b = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$
 $D = \begin{bmatrix} 1.2 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ $b = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$
 $D = \begin{bmatrix} 1.2 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ $b = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$
 $D = \begin{bmatrix} 1.2 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ $b = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$
 $D = \begin{bmatrix} 1.2 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ $b = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$
 $D = \begin{bmatrix} 1.2 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ $b = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$
 $D = \begin{bmatrix} 1.2 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ $b = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$
 $D = \begin{bmatrix} 1.2 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ $b = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$
 $D = \begin{bmatrix} 1.2 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ $b = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$
 $D = \begin{bmatrix} 1.2 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ $b = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$
 $D = \begin{bmatrix} 1.2 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ $b = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$
 $D = \begin{bmatrix} 1.2 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ $b = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ $b = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$
 $D = \begin{bmatrix} 1.2 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ $b = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ $b = \begin{bmatrix} 2 \\ 3$

切了Jacob 自然代告不收定义。

若用 Gauss - Seidel 迭代法:

$$L = \begin{bmatrix} 0 & 0 & 0 \\ 10 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad U = \begin{bmatrix} 0 & 3.6 & 12 \\ 0 & 0 & -0.5 \\ 0 & 0 & 0 \end{bmatrix}$$

则迭代关至194
$$M = (D-L)^{-1}U = \begin{bmatrix} 0 & 3 & 10 \\ 0 & \frac{19}{3} & \frac{199}{18} \\ 0 & \frac{31}{6} & \frac{154}{159} \end{bmatrix}$$

显然谱半径(M)>1

RJ Gauss-Serdel 3K代法不收益 .

母 Course - Setde SOR法讨论太复杂.不做讨论· by 题若进行行变换使:

$$\begin{bmatrix} -10 & 9 & 0.5 \\ 1 & -4 & 2 \\ 1.2 & -3.6 & -12 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$

显然,UrutA、星平格对角占优件。 则Jacobi与 Causs-Seidel 进代出40位。

9.解:则aiobi 迭代法:

$$A = \begin{bmatrix} 1 & a & a \\ 4a & 1 & 0 \\ a & 0 & 1 \end{bmatrix} \quad D^{+} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \ L = \begin{bmatrix} -4a & 0 & 0 \\ -4a & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & a & a \\ 4a & 1 & 0 \\ -a & 0 & 0 \end{bmatrix} \quad D^{+} = \begin{bmatrix} 0 & -a & -a \\ -4a & 0 & 0 \\ -a & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & a & a \\ -4a & 0 & 0 \\ -a & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & -a & -a \\ -4a & 0 & 0 \\ -a & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & -a & -a \\ -4a & 0 & 0 \\ -a & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & -a & -a \\ -4a & 0 & 0 \\ -a & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & -a & -a \\ -4a & 0 & 0 \\ -a & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & -a & -a \\ -4a & 0 & 0 \\ -a & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & -a & -a \\ -4a & 0 & 0 \\ -a & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & -a & -a \\ -4a & 0 & 0 \\ -a & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & -a & -a \\ -4a & 0 & 0 \\ -a & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & -a & -a \\ -4a & 0 & 0 \\ -a & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & -a & -a \\ -4a & 0 & 0 \\ -a & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & -a & -a \\ -4a & 0 & 0 \\ -a & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & -a & -a \\ -4a & 0 & 0 \\ -a & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & -a & -a \\ -4a & 0 & 0 \\ -a & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & -a & -a \\ -4a & 0 & 0 \\ -a & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & -a & -a \\ -4a & 0 & 0 \\ -a & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & -a & -a \\ -4a & 0 & 0 \\ -a & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & -a & -a \\ -4a & 0 & 0 \\ -a & 0 & 0 \end{bmatrix}$$

Guss-Seidel 姓代法:

计算公式为
$$\begin{cases} \chi_1^{(kH)} = -a\chi_2^{(k)} - a\chi_3^{(k)} + b_1 \\ \chi_2^{(kH)} = -4a\chi_1^{(kH)} + b_2 \\ \chi_3^{(kH)} = -a\chi_1^{(kH)} + b_3 \end{cases}$$

此时迭代矩阵为

$$M = (D-L)^{-1}U = \begin{bmatrix} .1 & 0 & 0 \\ -4a & 1 & 0 \end{bmatrix} \begin{bmatrix} 0-a-a \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -a & -a \\ 0 & 4a^{2} & 4a^{2} \\ 0 & a^{2} & a^{2} \end{bmatrix}$$

约上:要便两种迭代法者附缀. 见了一篑<a<号.

$$10.$$
解: $A = \begin{bmatrix} 20 \cdot 2 & 3 \\ 1 & 8 & 1 \\ 2 & -3 & 15 \end{bmatrix}$

显然A是严格对角占优阵

见Jacobi 选什.生与 Gauss-Seidel 选什生均收效.

由Jacobi迭代法产生的迭代矩阵

$$B = \begin{bmatrix} 0 & -0.1 & -0.15 \\ -0.125 & 0 & -0.125 \\ -0.1333 & 0.2 & 0 \end{bmatrix}, \ \gamma^{(0)} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \ \gamma^{(1)} = \begin{bmatrix} 1.2 \\ 1.5 \\ 2 \end{bmatrix}$$

有11811=当,117(1)-17(1)11/10=2.

$$\exists k \ge \frac{\ln \frac{\mathcal{E}(1-1|\mathbf{g}|1)}{1|x^{(1)}-x^{(0)}|1}}{\ln |\mathbf{g}|1} = 13.5754.$$

6斤以需要进代14次才能保证各分量误差绝对值小于1006、

由 Caruss - Serdel 选代法产生的迭代至降.

$$M = (D-L)^{T}U = \begin{bmatrix} 0 & -\alpha & 1 & -\alpha & 15 \\ 0 & \alpha & 0 & 125 & -\alpha & 1063 \\ 0 & \alpha & 0 & 158 & -\alpha & 00013 \end{bmatrix}, \quad \chi^{(0)} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

$$\boxed{A \mid |M|} = 0.25 \quad ||\chi^{(1)} - \chi^{(0)}||_{\infty} = 2.11$$

所以需要选代11次指定保证各分量误差绝对循小于10-6、

11. 江明: 记户=(aij·)nxn为严格又摘占优矩阵,已户 |aii|>蒜 |aii|, 行,…n.

则要证 A非奇异. 即证 detA+0.

用反证法:

假设detA=0、则线拌片维AX=0有非零解了 X=(X1····Xn)T. 设[M]····[Xn]中最大的个是[版]· 则[Xn]>0. 由假设是 QN:疗=0.

钳们得到:

| 三一個的的| = | - 個的| = | and | and | = | and |

12.证明:要使A为正定矩阵则:

1911-立 caclyt,A为正定文色19年。 「Co -a -a-

有
$$B=I-D^{-1}A=\begin{bmatrix}0&-a&-a\\-a&o&-a\end{bmatrix}$$

 $|\lambda I-A|=\begin{bmatrix}\lambda&a&a\\a&\lambda&\lambda\end{bmatrix}=(\lambda-a)^2(\lambda+2a)$

·11=12=a, 13=-2a.

要使Jacobi 选什法收敛,则 f2a < 1 i a == 1 - 1 < a < 1

证学,

13.0利用共轭梯法,取入100=(0,0,0)T. 精度要求10~8.

$$A = \begin{bmatrix} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & 1 & 4 \end{bmatrix}, b = \begin{bmatrix} 24 \\ 3 \\ -24 \end{bmatrix}$$

条项迭代如7:

$$d^{(0)} = (.24, 30, -24)^{T}$$
 $\Lambda^{(0)} = 0.1469$
 $\chi^{(1)} = [3.5 : 258, 4.4072, -3.5258]^{T}$
 $d^{(1)} = (-2.8079, -1.0859, -6.0065)^{T}$
 $\Lambda^{(1)} = 0.2378$
 $\chi^{(2)} = (2.8580, 4.1490, -4.9542)^{T}$
 $d^{(2)} = (0.1191, -0.1249, -0.0384)^{T}$
 $\Lambda^{(2)} = 1.1926$
 $\chi^{(3)} = [3.000, 4.000, -5.000)^{T}$
 $\mu V H Y^{(3)} = b - A X^{(3)} = 6 - A X^{(3)}$

(3利用最速下降法:

最级下阵法:
$$y(x) = \frac{1}{2} (4x^2 + 3x_1x_2 + 3x_2x_1 + 4x_2x_2 - 2x_3x_2 + 4x_3^2) - 24x_1 - 3x_2x_1 + 4x_2x_2 - 2x_1x_1 - 3x_2x_2 + 2x_3^2 + 2x_3^2 + 2x_3^2 + 2x_3^2 - 2x_1x_1 - 3x_2 + 2x_3^2 - 2x_1x_2 - 2x_2x_3 - 2x_1x_1 - 3x_2 + 2x_3^2 - 2x_1x_2 - 2x_2x_3 - 2x_1x_1 - 3x_2 + 2x_3^2 - 2x_1x_2 - 2x_2x_3 - 2x_1x_1 - 3x_2 + 2x_3^2 - 2x_1x_2 - 2x_2x_3 - 2x_1x_1 - 3x_2 + 2x_3^2 - 2x_1x_1 - 3x_2 + 2x_1x_2 - 2x_1x_1 - 2x_1x_1 - 2x_1x_2 - 2x_1x_1 - 2x_1x_1 - 2x_1x_2 - 2x_1x_1 - 2x$$

此场法不做要起……

详请参考《最优化为法》一解引新编.