Machine Learning for Graphs and Sequential Data Exercise Sheet 10 Graphs & Networks, Generative Models

Problem 1: An unweighted, undirected graph without self-loops represented by an adjacency matrix $A \in \{0,1\}^{N \times N}$ is given. Prove that the number of triangles in the graph is equal to $\frac{1}{6}$ trace (A^3) and that this term is in turn equal to $\frac{1}{6}\sum_i \lambda_i^3$ where λ_i are the eigenvalues of the adjacency matrix A. Hint: Show first that A_{ij}^k is the number of walks of length k from node i to node j.

Problem 2: Given is an Erdös-Renyi graph consisting of N nodes, with the edge probability $p \in [0, 1]$. Derive the probability p_k that a node in the graph has degree equal to exactly k.

Problem 3: Given is an Erdös-Renyi graph consisting of N nodes with edge probability $p \in [0, 1]$. What is the expected number of triangles in this graph?

Problem 4: Given are 6 graphs $\{G_1, \ldots, G_6\}$, which exhibit the properties listed in Table 1. Five of them have been synthetically generated, while one is a real graph. Assign the graphs $\{G_1, \ldots, G_6\}$ to the following models (one each) and briefly justify each answer!

- a) Erdös-Renyi model
- b) Stochastic block model with 5 clusters
- c) Stochastic block model with 10 clusters
- d) Stochastic block model with core-periphery structure
- e) Initial attractiveness model
- f) Real graph

Hint: for information about the "eigengap" see Sec. 8.3 in this tutorial

Problem 5: Compare the two following graph generation processes.

- Graph G_1 is generated by a stochastic block model. It consists of N nodes partitioned into K=2 communities. Both communities consist of exactly N/2 nodes, and $\boldsymbol{\eta} = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$.
- Graph G_2 is an Erdös-Renyi graph of N nodes and edge probability p.

Given the probabilities a and b, for which values of p will the expected number of triangles in G_2 be larger than the expected number of triangles in G_1 ?

Problem 1: An unweighted, undirected graph without self-loops represented by an adjacency matrix $A \in \{0,1\}^{N \times N}$ is given. Prove that the number of triangles in the graph is equal to $\frac{1}{6}\operatorname{trace}(A^3)$ and that this term is in turn equal to $\frac{1}{6}\sum_i \lambda_i^3$ where λ_i are the eigenvalues of the adjacency matrix A. Hint: Show first that A_{ij}^k is the number of walks of length k from node i to node j.

trace (A) =
$$\sum_{i=1}^{N} \lambda_i$$

 $A^3 V = A^2 A V = \lambda A^2 V = \lambda^3 V$

Problem 2: Given is an Erdös-Renyi graph consisting of N nodes, with the edge probability $p \in [0, 1]$. Derive the probability p_k that a node in the graph has degree equal to exactly k.

La Binomial(N-1,p)

Probability of vertex has degree k $P_{k} = {N-1 \choose k} \cdot p^{k} \cdot (1-p)^{N-1-k} \approx \frac{z^{k}e^{-z}}{k!}$, z = p(N-1)

Problem 3: Given is an Erdös-Renyi graph consisting of N nodes with edge probability $p \in [0, 1]$. What is the expected number of triangles in this graph?

 $\begin{pmatrix} N \\ 3 \end{pmatrix}$

Problem 4: Given are 6 graphs $\{G_1, \ldots, G_6\}$, which exhibit the properties listed in Table 1. Five of them have been synthetically generated, while one is a real graph. Assign the graphs $\{G_1, \ldots, G_6\}$ to the following models (one each) and briefly justify each answer!

- b) Stochastic block model with 5 clusters
- c) Stochastic block model with 10 clusters
- d) Stochastic block model with core-periphery structure
- e) Initial attractiveness model \sim ρ om l o \sim
- f) Real graph

Hint: for information about the "eigengap" see Sec. 8.3 in this tutorial

Table 1: Graphs $\{G_1, \ldots, G_6\}$

ID	Degree distribution	Hop plot	Smallest eigenvalues of Laplacian	Clustering coeff.
G_1	100 100 100	0.1 0.01 2.5 5.0	2 - 0 10	0.013
G_2	10 200	0.1	100 -	0.100
G_3	10 40 60 100	0.1	20 - 0 10	0.145
G_4	100	0.1 0.01 5 10 15	0.10 0.05 0.00 0 10	0.278
G_5	10 40 60 100	0.1	20 - 0 10	0.275
G_6	10 100	0.1	10 - 5 - 0 10	0.191

Problem 5: Compare the two following graph generation processes.

- Graph G_1 is generated by a stochastic block model. It consists of N nodes partitioned into K=2 communities. Both communities consist of exactly N/2 nodes, and $\eta = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$.
- Graph G_2 is an Erdös-Renyi graph of N nodes and edge probability p.

Given the probabilities a and b, for which values of p will the expected number of triangles in G_2 be larger than the expected number of triangles in G_1 ?

$$y\left(\begin{array}{c} a & b \\ b & a \end{array}\right) \quad \# \quad b = \left(\begin{array}{c} \frac{N}{2} \\ 2 \end{array}\right) \alpha^{3} \quad \text{fin}$$

$$+ \quad \times 2$$

$$\# \quad b = \left(\begin{array}{c} \frac{N}{2} \\ 2 \end{array}\right) \left(\begin{array}{c} \frac{1}{2} \\ 1 \end{array}\right) \quad b^{2} \cdot a \quad \text{fin}$$

$$2 \text{ in } (1 - 1 \text{ in } (2 - 1 \text{ i$$