# Introduction to Classification

Presented by Deepanshi Seth
Lead Data Scientist
Games24x7 Pvt Ltd

# Today's Agenda

- What is Classification?
- Key metrics for Classification
  - Confusion Matrix
  - Accuracy
  - Precision Recall
  - ROC Curve (discussed after Logistic Regression)
- Algorithms for Classification
  - o k-NN
  - Logistic Regression
  - Decision Trees
  - Random Forest
  - SVM
- Hands-on Exercise

### What is Classification?

- Type of Supervised Learning (for each input in training data, output is known)
- Objective Predict the category labels (discrete or nominal outputs)



$$f(\blacksquare, \bigcirc) = CAR/BIKE$$

Given a dataset D =  $\{x1, x2,...xn\}$  and a set of Class labels C =  $\{c1, c2,...ck\}$ , the task of classification is devise a mapping function f : D -> C

### What is Classification?

- Binary vs Multi-Class Classification
- Typical applications -
  - Credit/Loan approval
  - Medical diagnosis if a tumor is cancerous or benign
  - Fraud detection
  - Customer churn
  - Sentiment Category Analysis (Email categorisation)

# **Key Evaluation Metrics**

### **Confusion Matrix**

| Actual / Predicted Class | Class 0 (Negative)  | Class 1 (Positive)  |
|--------------------------|---------------------|---------------------|
| Class 0                  | True Negative (TN)  | False Positive (FP) |
| Class 1                  | False Negative (FN) | True Positive (TP)  |

Accuracy : Percentage of rows correctly classified

(TP + TN) / AII

> Error Rate: 1- Accuracy

(FP + FN) / AII

Sensitivity: True Positive recognition rate

TP/P

> Specificity: True Negative recognition rate

TN/N

# **Key Evaluation Metrics**

| Actual / Predicted Class | Class 0 (Negative) | Class 1 (Positive) | Total |
|--------------------------|--------------------|--------------------|-------|
| Class 0                  | 2588 (TN)          | 412 (FP)           | 3000  |
| Class 1                  | 46 (FN)            | 6954 (TP)          | 7000  |
| Total                    | 2634               | 7366               | 10000 |

= 5%

(6954+2588)/10000 = 95%Accuracy : (TP + TN) / AIIError Rate: (FP + FN) / All (412+46)/10000 Sensitivity: TP/P 6954/7000 = 99%

Specificity: TN/N 2588/3000 = 86%

| Actual / Predicted Class | Class 0 (Negative) | Class 1 (Positive) | Total |
|--------------------------|--------------------|--------------------|-------|
| Class 0 - non fraud      | 9900 (TN)          | 0 (FP)             | 9900  |
| Class 1 - fraud          | 100 (FN)           | 0 (TP)             | 100   |
| Total                    | 10000              | 0                  | 10000 |

| Actual / Predicted<br>Class | Class 0<br>(Negative) | Class 1<br>(Positive) | Class 2 | Total |
|-----------------------------|-----------------------|-----------------------|---------|-------|
| Class 0 - non fraud         | 9900 (TN)             | 0 (FP)                |         | 9900  |
| Class 1 - fraud             | 100 (FN)              | 0 (TP)                |         | 100   |
| Class 2                     |                       |                       |         |       |
| Total                       | 10000                 | 0                     |         | 10000 |

# Accuracy can be misleading!

#### **Detect Fraudulent Transactions**

- ➤ Total Transactions = 10000
- Fraudulent Transaction = 100
- Fraud occurs only in 1% of the data (High Class Imbalance)

#### **Model Performance**

- Predicted Fraud = 0
- ➤ Predicted Non Fraud = 10000

Accuracy = Correct Predictions / Total Predictions = 9900/10000 = 99% (WOW!!)

But the model never detected fraud

So despite high accuracy, the model is useless!

# **Key Evaluation Metrics**

### **Confusion Matrix**

| Actual / Predicted Class | Class 0 (Negative) Class 1 (Pos |                     |
|--------------------------|---------------------------------|---------------------|
| Class 0                  | True Negative (TN)              | False Positive (FP) |
| Class 1                  | False Negative (FN)             | True Positive (TP)  |

- Precision: What % of data that classifier predicted as Positive is actually Positive TP/(TP+FP)
- Recall: What % of Positive data did the classifier label as Positive TP/(TP+FN)
- F1 Score : Harmonic mean of Precision and Recall 2\*Precision\*Recall/(Precision+Recall)
- $\triangleright$  Weighted F Score: Assign  $\beta$  times more weight to Recall as to Precision

$$F_{eta} = \left(1 + eta^2
ight) \cdot rac{ ext{Precision} \cdot ext{Recall}}{\left(eta^2 \cdot ext{Precision} + ext{Recall}
ight)}$$

- β>1 : Recall is more important
- β=1 : Balanced Precision and Recall
- $\beta$ <1 : Precision is more important

# **Key Evaluation Metrics**

| Actual / Predicted Class | Class 0 (Negative) | Class 1 (Positive) | Total |
|--------------------------|--------------------|--------------------|-------|
| Class 0                  | 2588 (TN)          | 412 (FP)           | 3000  |
| Class 1                  | 46 (FN)            | 6954 (TP)          | 7000  |
| Total                    | 2634               | 7366               | 10000 |

ightharpoonup Precision: TP/(TP+FP) 6954/(6954+412) = 94%

ightharpoonup Recall : TP/(TP+FN) 6954/(6954+46) = 99%

> **F1 Score** : 2\*Precision\*Recall/(Precision+Recall) 2\*0.94\*0.99/(0.94+0.99) = 96%

# **Choosing between Precision and Recall**

Depends on the specific application

In a Medical Diagnosis System - High Recall could be crucial

Catching as many positive cases (diseases) as possible, even if it leads to some false positives (unnecessary tests)

In a Financial Fraud Detection System - High Precision could be crucial

Minimizing false positives (wrongly declined transactions) to avoid inconvenience to the customers

# k-NN (k Nearest Neighbours)

- Lazy learner algorithm
  - Compute distance from test point to all training points
  - Select k closest (nearest) neighbours
  - Use majority vote for classification
- Key Hyperparameter k
- Small k -> noisy, Large k -> stable (can miss patterns)
- ➤ Common Distance metrics Euclidean (default), Cosine
- Advantages -
  - Simple to use
  - No training
  - Few parameters
- Disadvantages -
  - Slow with large data
  - Struggles with many features
  - Can overfit



# **Logistic Regression**

- Used for Binary classification (label = 0 or 1)
- > Special case of Linear Regression where target variable is categorical in nature
- > Predicts the probability of occurrence of a binary event using logit function



### **Logistic Regression**

$$y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_n$$

Sigmoid Function -

$$p = \frac{1}{1 + e^{-y}}$$

- Sigmoid Function (also called as Logistic function), gives an 'S' shaped curve that can take any real number and map it to a value between 0 and 1
- If the curve goes to positive infinity, y will be predicted 1
- ➤ If the curve goes to negative infinity, y will be predicted 0
- Usually 0.5 is considered as the threshold



### **Logistic Regression**

#### Pros -

- Does not require high computation power
- Highly interpretable
- Easy to implement

#### Cons -

- Not able to handle large number of categorical features
- Cannot handle collinear features
- Cannot handle non-linear separations

### **AUC - ROC Score**



**ROC Curve** - TPR vs FPR at various thresholds

#### AUC - Area under the curve

- Measures the model's ability to distinguish between classes
- Ranges from 0(worst) to 1(perfect)
- Higher AUC better model performance
- AUC = 0.5 implies random guessing

Top Left point is the optimal threshold - Maximise TPR and Minimise FPR

### **Decision Tree**

- Constructs a flowchart like structure where -
  - Internal nodes represent feature based decision rules
  - Leaf nodes represent outcome labels
- Recursive Partitioning
  - Repeats splits until a stopping criterion is met (eg max depth, min samples)
- > Prediction
  - Traverse from root to a leaf based on the feature values



# **Decision Tree - Splitting Criteria**

### Gini Impurity

$$Gini = 1 - \sum_{i=1}^{C} p_i^2$$

- Lower Gini = purer node
- Example, Class A = 6, Class B = 4 -> Gini = 1 (0.6\*0.6 + 0.4\*0.4) = 0.48

### > Entropy and Information Gain

$$Entropy = -\sum p_i \log_2(p_i) \ IG = Entropy_{parent} - \sum_k rac{n_k}{n} Entropy_k$$

- Parent Node: 6A, 4B -> Entropy = 0.971
- o Split:
  - Left Child: 4A, 0B -> Entropy = 0
  - Right Child: 2A, 4B -> Entropy = 0.918
- Weighted Child Entropy = (4/10 × 0) + (6/10 × 0.918) = 0.5
- $\circ$  Information Gain = 0.971 0.550 = 0.421



https://mlu-explain.github.io/decision-tree/

### **Random Forest**

Ensemble method that combines predictions from multiple decision trees

from multiple decision trees

- Each tree is trained on random sample + random feature subset
- Prediction Majority vote for classification
- > Pros -
  - More robust than single trees
  - Reduces variance (overfitting)
  - Can handle large feature sets
- Cons -
  - Slower to predict compared to a single tree
  - Less interpretable



Will be covered in detail in one of the future sessions

# **SVM** (Support Vector Machine)

- Constructs a maximum margin hyperplane to separate classes
  - Hyperplane A boundary that separates classes
  - Margins Distance between the support vectors and hyperplanes
  - Support Vectors Critical points that influence the boundary
- Linear SVM works when data is linearly separable
- Kernel SVM maps data to higher dimensions using kernels
- Objective Function Maximise margin while minimising classification
- Pros -
  - Powerful in high-dimensional spaces
  - Works well for clear margin separation
- Cons -
  - Not suited for large datasets (slow training)
  - Requires tuning of kernel and regularisation





## **Model Performance vs Interpretability**



# **Summary**

- Logistic Regression: Simple, interpretable
- > **Decision Tree**: Interpretable, may overfit
- Random Forest: Accurate, less interpretable
- > **SVM**: Powerful, needs tuning
- **KNN**: Intuitive, sensitive to data scale and choice of *k*

# Thankyou!