

Memória Virtual - Paginação

Sumário

10.1	Introdução
10.2	Memória virtual: conceitos básicos
10.3	Mapeamento de bloco
10.4	Paginação
10.4.1	Gerenciamento de memória - Endereço Virtual x Endereço Real
10.4.2	Modelo de paginação de memória lógica e física
10.5	Moldura de páginas
10.5.1	Estrutura de uma entrada da tabela de páginas
10.5.2	Componentes do Endereço
10.5.3	Componentes da Tabela
10.5.4	Onde Armazenar as tabelas?
10.6	Tabela RAM
10.6.1	TLB (Translation Lookaside Buffers) ou memória associative
10.6.2	Funcionamento da TLB
10.6.3	Dois Tipos de Falha de Página
10.7	Pesquisa sobre os algoritmos de substituição de páginas

Objetivos

Este capítulo apresenta:

O conceito de memória virtual.

Sistemas de memória virtual paginada.

Algoritmos de Páginação

10.1 Introdução

Memória virtual

Soluciona o problema de pouco espaço de memória.

Cria a ilusão de que existe mais memória do que a disponível no sistema.

Existem dois tipos de endereço nos sistemas de memória virtual:

Endereços virtuais

Referenciados por processos.

Endereços físicos

Indicam localizações físicas na memória principal.

Unidade de gerenciamento de memória (MMU)

Traduz os endereços virtuais para endereços físicos.

Figura :	10.1 Ev	olução de
organiza	icões de	e memória.

Real	Real			Virtual		
Sistemas monousuário dedicados	Sistemas de multiprogramação de memória real		mação de	Sistemas de multiprogramação de memória virtual		,
	Multipro de parti	ogramação ção fixa	Multiprogramação de partição variável	Paginação pura	Segmentação pura	Paginação e segmentação combinadas
	Absoluta	Realocável		,		'

10.2 Memória virtual: conceitos básicos

Espaço de endereço virtual, V

Gama de endereços virtuais que um processo pode referenciar.

Espaço de endereço real, R

Gama de endereços físicos disponíveis em um sistema de computador específico.

Mecanismo de tradução dinâmica de endereço (DAT)

Converte endereços virtuais em endereços físicos durante a execução de um programa.

 \blacksquare |V| em geral é bem maior que |R|.

O sistema operacional tem de armazenar partes de V para cada processo externo à memória principal.

Armazenamento de dois níveis:

O sistema operacional move porções de V entre a memória principal (e os caches) e o armazenamento secundário.

10.2 Memória virtual: conceitos básicos

Figura 10.3 Pedaços de espaços de de endereçamento existem na memória e no armazenamento secundário.

Armazenamento complementar Espaço de Espaço de Espaco de memória virtual memória virtual memória virtual do Processo 1 do Processo 2 do Processo n Δ_{Δ} $\triangle \triangle \triangle \triangle \triangle \triangle \triangle$ $\triangle \triangle \triangle \triangle \triangle$ $\triangle \triangle \triangle \triangle \triangle$ A memória virtual de um processo não precisa ser contígua nem mesmo no $^{\Delta}$ $^{\Delta}$ $^{\Delta}$ armazenamento secundário.

10.3 Mapeamento de bloco

Mapeamentos de tradução de endereço

Indicam que regiões do espaço de endereço virtual de um processo, V, estão na memória principal no momento e onde estão localizadas.

Figura 10.4 Mapeamento de endereços virtuais para endereços reais.

10.3 Mapeamento de bloco

Contiguidade artificial

Os endereços virtuais contíguos podem não corresponder aos endereços de memória real contíguos.

10.3 Mapeamento de bloco

Página

Os blocos têm tamanho fixo chamados de páginas. (Geralmente = 4KB);

O S.O Mantém uma fila de todas as páginas;

O espaço de endereçamento virtual é dividido em páginas virtuais. Essa técnica denomina-se paginação.

Segmentos

Os blocos podem ter diferentes tamanhos chamado de Frame;

Os blocos contém o mesmo tipo de informação. (Blocos de **texto,** Blocos de **código** e Blocos de **dados**);

Essa técnica denomina-se segmentação.

Arquitetura de Hardware tem que possibilitar os S.O. usam uma mistura das duas técnicas.

10.4 Paginação

- Páginas Unidade de tamanho fixo no dispositivo secundario (ex. Disco).
- Frames Unidade correspondents na memória física (ex. RAM).
- Page Fault É o evento quando uma página que não está na RAM é referenciada.
- Tabela de Páginas Estrutura para mapear uma página ao frame correspondente.
 - Cada Processo tem a sua tabela de páginas.

Exemplo:

- ☐ Páginas de 4Kb.
 - 4096 bytes/endereços (0-4095);
- ☐ 64Kb de espaço virtual;
- 32Kb de espaço real;

Temos:

- 16 páginas virtuais;
- 8 páginas reais;

10.4 Paginação

Problemas:

- Fragmentação interna;
- Definição do tamanho das páginas;
 - Geralmente a MMU que define e não o SO;
 - Páginas maiores: leitura mais eficiente, tabela menor, mas maior fragmentação interna;
 - Páginas menores: leitura menos eficiente, tabela maior, mas menor fragmentação interna;
 - □ Sugestão: 1k a 8k;

10.4.1 Gerenciamento de Memória Endereço Virtual x Endereço Real

Um Sistema que gera 64k de endereço virtuais (16 páginas e 8 frames).

MMU faz o mapeamento; MOV REG, 5

Ela esta mapeada ao terceiro frame, que começa em 8k=8192;

O endereço enviado ao barramento é 5+8197.

Figura 3.9 A relação entre endereços virtuais e endereços de memória física é dada pela tabela de páginas. Cada página começa com um múltiplo de 4096 e termina 4095 endereços acima; assim, 4K–8K na verdade significa 4096–8191 e 8K–12K significa 8192–12287.

10.4.2 Modelo de paginação da memória lógica e física

10.5 Moldura de páginas

Moldura de página (page frame)

Bloco de tamanho fixo na memória principal.

Começa em um endereço da memória principal que é um múltiplo inteiro do tamanho fixo de página (p_s) .

Figura 10.9 Memória principal dividida em molduras de páginas.

10.5.1 Estrutura de uma entrada da tabela de páginas

Outgoing physical address (24580)

- Operação interna de uma MMU com 16 páginas de 4Kb;
- Endereço virtual de 16
 bits: 4 bits para nº de páginas e 12 para deslocamento;
- Com 4 bits é possível ter
 16 páginas virtuais (2⁴);
- 12 bits para deslocamento é possível endereçar os 4096 bytes;

Incoming virtual address (8196)

10.5.1 Estrutura de uma entrada da tabela de páginas

Outgoing physical address (24580)

Incoming

virtual address

(8196)

- Número da página virtual é usado como índice;
- Se página está na memória RAM, então o nº da página real (110) é copiado para os três bits mais significativos do endereço de saída (real), juntamente com o deslocamento sem alteração;
- Endereço real com 15 bits é enviado à memória;

10.5.2 Componentes do Endereço

Esquema de tradução de endereço.

O endereço virtual no sistema de paginação é um par ordenado v=(p,d).

Número de página (p) – usado como um índice para uma tabela de página que contém endereço de base de cada página na memória física

Deslocamento de página (d) – combinado com endereço de base para definir o endereço de memória físico que é enviado à unidade de memória.

Endereço virtual referenciado por um processo em execução
Número da página Deslocamento
p d

10.5.3 Componentes da Tabela

Page Frame Number: Identifica (número) a página real.

Bit de residencia (presente/ausente): se 1, então página

correspondente é válida e esta na RAM; page faut?

Bits de proteção: 0(leitura/escrita), 1(leitura) e 2 (execução).

Bit de modificação: 1(página alterada) e 0(não alterada)

Bit de referência: 1(foi referenciada "recentemente")

Bit de cache: permite desabilitar o caching da página

FIGURA 3.11 Uma entrada típica de uma tabela de páginas.

10.5.4 Onde Armazenar as Tabelas?

Registradores, se a memória for pequena.

Mantidos no hardware.

Memória RAM(normalmente)

A MMU gerencia utilizando um ou dois registradores.

Memória cache na MMU chamada memória Associativa(TLB).

Usada para melhorar o desempenho da tabela na RAM.

10.6 Tabela RAM

A tabela de página é mantida na memória principal

- Registrador de base da tabela de página (PTBR) aponta para a tabela de página
- Registrador de tamanho da tabela de página (PRLR) indica tamanho da tabela de página
- Nesse esquema, cada acesso de dado/instrução exige dois acessos à memória: um para a tabela de página e um para o dado/instrução.
- O problema dos dois acessos à memória pode ser solucionado pelo uso de um cache de hardware especial para pesquisa rápida, chamado memória associativa ou translation look-aside buffers (TLBs).
- □ Alguns TLBs armazenam identificadores de espaço de endereço (ASIDs) em cada entrada de TLB – identifica exclusivamente cada processo para fornecer proteção do espaço de endereço para esse processo.

10.6.1 TLB (Translation Lookaside Buffers) ou memória associativa

Figura 3.12 - 8 Ocorrência que são mais ultilizadas na referencia de página

FIGURA 3.12 Uma TLB para acelerar a paginação.

Válida	Página virtual	Modificada	Proteção	Quadro de página
1	140	1	RW	31
1	20	0	RX	38
1	130	1	RW	29
1	129	1	RW	62
1	19	0	RX	50
1	21	0	RX	45
1	860	1	RW	14
1	861	1	RW	75

10.6.2 Funcionamento da TLB

- Pode ser implementada em **Hardware** e **Software**.
- Em hardware é mais **rápido**, mas **ocupa um espaço** que poderia ser usado para outras funções, como cache.

10.6.3 Dois Tipos de Falha de Página

Soft miss

- Quando a página referenciada não está na TLB, mas na RAM;
- Basta atualiar a TLB.

Hard miss

- A página não está na memória física(e nem na TLB);
- Trazer do disco à RAM(e então à TLB);
- Muito Lento.

10.7 Pesquisa sobre os algoritmos de substituição de páginas

Algoritmo	Comentário
Ótimo	Não implementável, mas útil como um padrão de desempenho
NRU (não usado recentemente)	Aproximação muito rudimentar do LRU
FIFO (primeiro a entrar, primeiro a sair)	Pode descartar páginas importantes
Segunda chance	Algoritmo FIFO bastante melhorado
Relógio	Realista
LRU (usada menos recentemente)	Excelente algoritmo, porém difícil de ser implementado de maneira exata
NFU (não frequentemente usado)	Aproximação bastante rudimentar do LRU
Envelhecimento (aging)	Algoritmo eficiente que aproxima bem o LRU
Conjunto de trabalho	Implementação um tanto cara
WSClock	Algoritmo bom e eficiente

