Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas Licenciatura en Matemática Algorítmica

Lista de ejercicios

Autores: Omar Porfirio García Alejandra Sánchez Barajas

Determine si el conjunto dado es una base para el espacio vectorial a que se refiere: en P_3 :

$$\{1, 1+x, 1+x^2, 3+2x+x^3\}$$

Solución: Demostremos que $\gamma = \left\{\underbrace{1}_{v_1}, \underbrace{1+x}_{v_2}, \underbrace{1+x^2}_{v_3}, \underbrace{3+2x+x^3}_{v_4}\right\}$ es linealmente independiente.

Sea $\beta = \{1, x, x^2, x^3\}$ la base canónica de P_3 , entonces:

$$[1]_{\beta} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad [1+x]_{\beta} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \quad [1+x^2]_{\beta} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \quad [3+2x+x^3]_{\beta} = \begin{bmatrix} 3 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$

Entonces para demostrar que γ es L.I., debemos demostrar que la matriz $\begin{bmatrix} [v_1]_{\beta} & [v_2]_{\beta} & [v_4]_{\beta} \end{bmatrix}$ es invertible.

$$A = \left[\begin{array}{c|c} [v_1]_{\beta} & [v_2]_{\beta} & [v_3]_{\beta} & [v_4]_{\beta} \end{array} \right] = \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Dado que la matriz es triangular, entonces $\det{(A)} = 1 \cdot 1 \cdot 1 \cdot 1 = 1 \neq 0$. Por lo tanto, A es invertible y entonces γ es L.I.

Puesto que $\dim(P_3)=4$, entonces γ necesariamente genera P_3 y por consiguiente es base.

Ejercicio 2

Determine si el conjunto dado es una base para el espacio vectorial a que se refiere: en M_{22} :

$$\left\{ \begin{bmatrix} 3 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 5 & 1 \\ 1 & 6 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right\}$$

Solución: Notemos que $\begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} = 2 \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. Por lo tanto, el conjunto no es L.I. y entonces no es base de M_{22} .

Ejercicio 3

Encuentre una base para el espacio solución del sistema homogéneo dado:

$$2x + y = 0$$

$$x - 3y = 0$$

Solución: El sistema se puede representar como:

$$\underbrace{\begin{bmatrix} 2 & 1 \\ 1 & -3 \end{bmatrix}}_{A} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Se tiene que A es invertible, pues:

$$\det(A) = \begin{vmatrix} 2 & 1 \\ 1 & -3 \end{vmatrix} = (2)(-3) - (1)(1) = -6 - 1 = -7 \neq 0$$

Lo cual implica que el sistema tiene como solución única la trivial. Por lo tanto, el espacio solución es $\left\{\hat{0}\right\}$ y su

1

Encuentre bases para los 4 espacios fundamentales. Determine el rango y la nulidad de la matriz dada:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 1 & 0 \end{bmatrix}$$

Solución:

a) Espacio columna

Sabemos que:

$$C_A = \operatorname{gen}\left\{ \begin{bmatrix} 1\\3 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix}, \begin{bmatrix} 2\\0 \end{bmatrix} \right\}$$

Determinemos cuáles son los vectores linealmente independientes

$$\begin{bmatrix} 1 & -1 & 2 \\ 3 & 1 & 0 \end{bmatrix} \xrightarrow{R_2 - 3R_1} \begin{bmatrix} 1 & -1 & 2 \\ 0 & 4 & -6 \end{bmatrix} \xrightarrow{\frac{1}{2}R_2} \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \end{bmatrix} \xrightarrow{R_1 + \frac{1}{2}R_2} \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 2 & -3 \end{bmatrix} \xrightarrow{\frac{1}{2}R_2} \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 2 & -3 \end{bmatrix} \xrightarrow{\frac{1}{2}R_2} \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & -\frac{3}{2} \end{bmatrix}$$

Entonces $\{\begin{bmatrix} 1\\ 3 \end{bmatrix}, \begin{bmatrix} -1\\ 1 \end{bmatrix}\}$ es L.I. y por tanto $\{\begin{bmatrix} 1\\ 3 \end{bmatrix}, \begin{bmatrix} -1\\ 1 \end{bmatrix}\}$ es base de C_A . Además, se tiene que $\dim(C_A) = 2$.

b) Espacio renglón

Sabemos que:

$$R_A = \operatorname{gen} \left\{ \begin{bmatrix} 1\\-1\\2 \end{bmatrix}, \begin{bmatrix} 3\\1\\0 \end{bmatrix} \right\}$$

Demostremos que $\beta = \left\{ \begin{bmatrix} 1\\-1\\2 \end{bmatrix}, \begin{bmatrix} 3\\1\\0 \end{bmatrix} \right\}$ es L.I. Supongamos que β no es L.I., entonces existiría $c \in \mathbb{R}$ tal que:

$$\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} = c \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3c \\ 1c \\ 0 \end{bmatrix}$$

de donde obtenemos que 2=0, lo cual es una contradicción. Por lo tanto, β es L.I. y por consiguiente base de R_A . Además, $\dim{(R_A)}=2$.

c) Imagen

Sabemos que $\operatorname{Im}(A) = C_A$, entonces $\left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$ es base de $\operatorname{Im}(A)$ y además $\rho(A) = 2$.

d) Núcleo

Sabemos que $N(A) = \{\hat{x} \in \mathbb{R}^3 : A\hat{x} = \hat{0}\}$. Si $\hat{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, entonces se tiene el sistema homogéneo:

$$\begin{bmatrix} 1 & -1 & 2 \\ 3 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

De la reducción del inciso (a) se tiene que:

$$\begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & -\frac{3}{2} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -\frac{1}{2}z \\ \frac{3}{2}z \\ z \end{bmatrix} = z \begin{bmatrix} -\frac{1}{2} \\ \frac{3}{2} \\ 1 \end{bmatrix}$$

 $\text{Por lo que N}\left(A\right) = \operatorname{gen}\left\{ \begin{bmatrix} -\frac{1}{2} \\ \frac{3}{2} \\ 1 \end{bmatrix} \right\} = \operatorname{gen}\left\{ \begin{bmatrix} -1 \\ \frac{3}{2} \end{bmatrix} \right\} \text{ y entonces } \left\{ \begin{bmatrix} -1 \\ \frac{3}{2} \end{bmatrix} \right\} \text{ es base de N}\left(T\right). \text{ Además, } \nu\left(A\right) = 2.$

2

Sea $T:M_{22}
ightarrow M_{22}$ la transformación lineal definida por:

$$T \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}$$

- a) ¿Cuáles, si hay alguna, de las siguientes matrices están en $N\left(T\right)$?
 - $\begin{array}{c|c}
 I) & \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} \end{array}$
 - II) $\begin{bmatrix} 0 & 4 \\ 2 & 0 \end{bmatrix}$
 - III) $\begin{bmatrix} 3 & 0 \\ 0 & -3 \end{bmatrix}$
- b) ¿Cuáles, si hay alguna, de las matrices del inciso (a) están en $\operatorname{Im}(T)$?
- c) Describa el núcleo e imagen de T.

Solución:

a) Resulta que:

$$T \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$$
$$T \begin{bmatrix} 0 & 4 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$T \begin{bmatrix} 3 & 0 \\ 0 & -3 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & -3 \end{bmatrix}$$

Por lo que la única matriz que está en N(T) es (aII).

- b) Del inciso anterior (a) se tiene que la única matriz que está en ${\rm Im}\,(T)$ es (aIII) pues es imagen de ella misma. Las demás no, pues sus componentes (1,2) y (2,1) no son cero.
- c) Obtenemos lo siguiente:

$$\begin{split} \mathbf{N}\left(T\right) &= \left\{ A \in M_{22} : T(A) = \hat{0} \right\} \\ &= \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{22} : T \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\} \\ &= \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{22} : \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\} \\ &= \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{22} : a = d = 0 \right\} = \left\{ \begin{bmatrix} 0 & b \\ c & 0 \end{bmatrix} \in M_{22} : b, c \in \mathbb{R} \right\} \\ &= \left\{ b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \in M_{22} : b, c \in \mathbb{R} \right\} = \operatorname{gen} \left\{ e_{12}, e_{21} \right\} \end{split}$$

3

Concluyendo que $\{e_{12}, e_{21}\}$ es base de N(T) y $\nu(T) = 2$.

Ahora para la imagen obtenemos:

$$\operatorname{Im}(T) = \{ A \in M_{22} : \exists B \in M_{22}, T(B) = A \}$$

$$= \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{22} : \exists \begin{bmatrix} t & u \\ v & w \end{bmatrix} \in M_{22}, T \begin{bmatrix} t & u \\ v & w \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right\}$$

$$= \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{22} : \begin{bmatrix} t & 0 \\ 0 & w \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right\}$$

$$= \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{22} : a = t, d = w, b = c = 0 \right\} = \left\{ \begin{bmatrix} t & 0 \\ 0 & w \end{bmatrix} \in M_{22} : t, w \in \mathbb{R} \right\}$$

$$= \left\{ t \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + w \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \in M_{22} : t, w \in \mathbb{R} \right\} = \operatorname{gen}\{e_{11}, e_{22}\}$$

Concluyendo que $\{e_{11}, e_{22}\}$ es base de $\operatorname{Im}(T)$ y $\rho(T) = 2$.

Ejercicio 6

Encuentre la nulidad y rango de T de la transformación dada. Determinar si T es un isomorfismo, $T:M_{22}\to M_{22}$ definida por T(A)=AB donde $B=\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$.

Solución: Sea $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, entonces:

$$T(A) = T \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} a-b & b-a \\ c-d & d-c \end{bmatrix}$$

Obtenemos lo siguiente:

$$\begin{split} \mathbf{N}\left(T\right) &= \left\{A \in M_{22} : T(A) = \hat{0}\right\} \\ &= \left\{\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{22} : T\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\right\} \\ &= \left\{\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{22} : \begin{bmatrix} a - b & b - a \\ c - d & d - c \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\right\} \\ &= \left\{\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{22} : a - b = 0, b - a = 0, c - d = 0, d - c = 0\right\} = \left\{\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{22} : a = b, c = d\right\} \\ &= \left\{\begin{bmatrix} a & a \\ c & c \end{bmatrix} \in M_{22} : a, c \in \mathbb{R}\right\} = \left\{a\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + c\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \in M_{22} : a, c \in \mathbb{R}\right\} = \gcd\{e_{11} + e_{12}, e_{21} + e_{22}\} \end{split}$$

Por lo que $\{e_{11}+e_{12},e_{21}+e_{22}\}$ es base de $N\left(T\right)$ y $\nu\left(T\right)=2$. Por el teorema de la dimensión sabemos que $\rho\left(T\right)=\dim\left(M_{22}\right)-\nu\left(T\right)=4-2=2$. En conclusión, T no es isomorfismo.

Ejercicio 7

Verificar que el siguiente es un producto interno en \mathbb{R}^2 :

$$\langle u, v \rangle = \left\langle \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \right\rangle = x_1 y_1 - x_1 y_2 - x_2 y_1 + 3x_2 y_2$$

Solución: Comprobemos las cuatro características del producto interno. Sean $u = \begin{bmatrix} u_1 & u_2 \end{bmatrix}^\mathsf{T}, v = \begin{bmatrix} v_1 & v_2 \end{bmatrix}^\mathsf{T}, w = \begin{bmatrix} w_1 & w_2 \end{bmatrix}^\mathsf{T} \in \mathbb{R}^2$ y $\alpha \in \mathbb{R}$.

1.
$$\langle u, v \rangle = \langle v, u \rangle$$

$$\langle u, v \rangle = u_1 v_1 - u_1 v_2 - u_2 v_1 + 3u_2 v_2$$

= $v_1 u_1 - v_1 u_2 - v_2 u_1 + 3v_2 u_2 = \langle v, u \rangle$

2.
$$\langle u, \alpha v + w \rangle = \alpha \langle u, v \rangle + \langle u, w \rangle$$

$$\langle u, \alpha v + w \rangle = u_1 (\alpha v_1 + w_1) - u_1 (\alpha v_2 + w_2) - u_2 (\alpha v_1 + w_1) + 3u_2 (\alpha v_2 + w_2)$$

$$= \alpha u_1 v_1 + u_1 w_1 - \alpha u_1 v_2 - u_1 w_2 - \alpha u_2 v_1 - u_2 w_1 + 3\alpha u_2 v_2 + 3u_2 w_2$$

$$= \alpha (u_1 v_1 - u_1 v_2 - u_2 v_1 + 3u_2 v_2) + u_1 w_1 - u_1 w_2 - u_2 w_1 + 3u_2 w_2$$

$$= \alpha \langle u, v \rangle + \langle u, w \rangle$$

3.
$$\langle u, u \rangle \geq 0$$

$$\langle u, u \rangle = u_1 u_1 - u_1 u_2 - u_2 u_1 + 3u_2 u_2$$

$$= u_1^2 - 2u_1 u_2 + 3u_2^2$$

$$= (u_1^2 - 2u_1 u_2 + u_2^2) + 2u_2^2$$

$$= (u_1 - u_2)^2 + 2u_2^2 > 0$$

4.
$$\langle u, u \rangle = 0 \iff u = \hat{0}$$

Del inciso anterior sabemos que $\langle u,u\rangle=(u_1-u_2)^2+2u_2^2$, por lo que si $u=\hat{0}$, entonces $\langle u,u\rangle=0$. Si $\langle u,u\rangle=0$, entonces $(u_1-u_2)^2+2u_2^2=0$ y dado que ambos términos son no negativos, necesariamente $u_1-u_2=0$ y $u_2=0$. En conclusión, $u_1=u_2=0$, o equivalentemente, $u=\hat{0}$.

Ejercicio 8

Considere el espacio vectorial V de los polinomios con producto interno definido por $\langle f,g\rangle=\int_0^1 f(t)g(t)\ dt$ y los polinomios $f(t)=t+2,\ g(t)=3t-2$ y $h(t)=t^2-2t-3$. Hallar:

- a) $\langle f, g \rangle$
- b) $\langle f, h \rangle$
- c) ||f||

Solución:

a) $\langle f, g \rangle$

$$\langle f, g \rangle = \int_0^1 f(t)g(t) \ dt = \int_0^1 (t+2) (3t-2) \ dt$$
$$= \int_0^1 (3t^2 + 4t - 4) \ dt$$
$$= \left[t^3 + 2t^2 - 4t \right]_0^1$$
$$= 1^2 + 2 \cdot 1^2 - 4 \cdot 1 = -1$$

b) $\langle f, h \rangle$

$$\begin{split} \langle f,h\rangle &= \int_0^1 f(t)h(t) \ dt = \int_0^1 \left(t+2\right) \left(t^2-2t-3\right) \ dt \\ &= \int_0^1 \left(t^3-7t-6\right) dt \\ &= \left[\frac{1}{4}t^4-\frac{7}{2}t^2-6t\right]_0^1 \\ &= \frac{1}{4} \cdot 1^3 - \frac{7}{2} \cdot 1^2 - 6 \cdot 1 = -\frac{37}{4} \end{split}$$

c) ||f||

$$||f||^2 = \int_0^1 f(t)^2 dt = \int_0^1 (t+2)^2 dt$$

$$= \int_2^3 u^2 du = \left[\frac{1}{3}u^3\right]_2^3 = \frac{1}{3}\left(3^3 - 2^3\right) = \frac{19}{3}$$

$$\implies ||f|| = \frac{\sqrt{57}}{3}$$

Ejercicio 9

 $\mathsf{Sea}\ S = \Big\{v_1 = \begin{bmatrix}1 & 1 & 1\end{bmatrix}^\mathsf{T}, v_2 = \begin{bmatrix}1 & 2 & -3\end{bmatrix}^\mathsf{T}, v_3 = \begin{bmatrix}5 & -4 & -1\end{bmatrix}^\mathsf{T}\Big\}\ \text{un subconjunto de }\mathbb{R}^3.$

- a) Probar que S es un conjunto ortogonal y que es una base de $\mathbb{R}^3.$
- b) Escribir $v = \begin{bmatrix} 1 & 5 & -7 \end{bmatrix}^\mathsf{T}$ como combinación de los vectores que pertenecen a S.

Solución:

a) Comprobemos que ${\cal S}$ es ortogonal.

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix} = 1 + 2 - 3 = 0$$

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ -4 \\ -1 \end{bmatrix} = 5 - 4 - 1 = 0$$

$$\begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ -4 \\ -1 \end{bmatrix} = 5 - 8 + 3 = 0$$

Por lo tanto, S es ortogonal, por consiguiente L.I. y entonces S es base de \mathbb{R}^3 .

b) Sabemos que la descomposición ortogonal de v en S es la suma de sus proyecciones:

$$\operatorname{proj}_{v_{1}}(v) = \frac{\begin{bmatrix} 1 \\ 5 \\ -7 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}}{\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}}^{2} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \frac{1+5-7}{1+1+1} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = -\frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\operatorname{proj}_{v_{2}}(v) = \frac{\begin{bmatrix} 1 \\ 5 \\ -7 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}}{\begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}}^{2} \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix} = \frac{1+10+21}{1+4+9} \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix} = \frac{16}{7} \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$$

$$\operatorname{proj}_{v_{3}}(v) = \frac{\begin{bmatrix} 1 \\ 5 \\ -4 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ -4 \\ -1 \end{bmatrix}}{\begin{bmatrix} 5 \\ -4 \\ -1 \end{bmatrix}} \begin{bmatrix} 5 \\ -4 \\ -1 \end{bmatrix} = \frac{5-20+7}{25+16+1} \begin{bmatrix} 5 \\ -4 \\ -1 \end{bmatrix} = -\frac{4}{21} \begin{bmatrix} 5 \\ -4 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 5 \\ -7 \end{bmatrix} = -\frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \frac{16}{7} \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix} - \frac{4}{21} \begin{bmatrix} 5 \\ -4 \\ -1 \end{bmatrix}$$

Ejercicio 10

Encontrar una matriz ortogonal Q cuyo primer renglón sea $\begin{bmatrix} 1/3 & 2/3 & 2/3 \end{bmatrix}$.

Solución: Notemos que:

$$\begin{vmatrix} 1/3 & 1 & 0 \\ 2/3 & 0 & 0 \\ 2/3 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1/3 & 1 \\ 2/3 & 0 \end{vmatrix} = -\frac{2}{3} \neq 0$$

entonces $\left\{v_1=\frac{1}{3}{\begin{bmatrix}1\\2\\2\end{bmatrix}},v_2={\begin{bmatrix}1\\0\\0\end{bmatrix}},v_3={\begin{bmatrix}0\\0\\1\end{bmatrix}}\right\}$ es L.I. Ortogonalicemos:

$$\begin{aligned} u_1 &= v_1 = \frac{1}{3} \begin{bmatrix} 1\\2\\2 \end{bmatrix} \\ u_2 &= v_2 - \frac{\langle v_2, u_1 \rangle}{\|u_1\|^2} u_1 \\ &= \begin{bmatrix} 1\\0\\0 \end{bmatrix} - \frac{\begin{bmatrix} 1\\0\\0 \end{bmatrix} \cdot \begin{bmatrix} 1/3\\2/3\\2/3 \end{bmatrix}}{\|\begin{bmatrix} 1/3\\2/3\\2/3 \end{bmatrix}\|^2} \begin{bmatrix} 1/3\\2/3\\2/3 \end{bmatrix} = \begin{bmatrix} 1\\0\\0 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 1/3\\2/3\\2/3 \end{bmatrix} \\ &= \begin{bmatrix} 1\\0\\0 \end{bmatrix} - \frac{1}{9} \begin{bmatrix} 1\\2\\2 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 8\\-2\\-2 \end{bmatrix} \\ u_3 &= v_3 - \frac{\langle v_3, u_1 \rangle}{\|u_1\|^2} u_1 - \frac{\langle v_3, u_2 \rangle}{\|u_2\|^2} u_2 \\ &= \begin{bmatrix} 0\\0\\1 \end{bmatrix} - \frac{\begin{bmatrix} 0\\0\\1 \end{bmatrix} \cdot \begin{bmatrix} 1/3\\2/3\\2/3 \end{bmatrix}}{\|\begin{bmatrix} 1/3\\2/3\\2/3 \end{bmatrix}} \begin{bmatrix} 1/3\\2/3\\2/3 \end{bmatrix} - \frac{\begin{bmatrix} 0\\0\\1 \end{bmatrix} \cdot \begin{bmatrix} 8/9\\-2/9\\-2/9 \end{bmatrix}}{\|\begin{bmatrix} 8/9\\-2/9\\-2/9 \end{bmatrix}} \begin{bmatrix} 8/9\\-2/9\\-2/9 \end{bmatrix} \\ &= \begin{bmatrix} 0\\0\\1 \end{bmatrix} - \frac{2}{3} \begin{bmatrix} 1/3\\2/3\\2/3 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 8/9\\-2/9\\-2/9 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0\\-1\\1 \end{bmatrix} \end{aligned}$$

Entonces el conjunto $\{u_1,u_2,u_3\}$ es un conjunto ortogonal. Normalicemos:

$$||u_1|| = \left\| \frac{1}{3} \begin{bmatrix} 1\\2\\2 \end{bmatrix} \right\| = \frac{1}{3} \left\| \begin{bmatrix} 1\\2\\2 \end{bmatrix} \right\| = \frac{1}{3}\sqrt{1+4+4} = 1 \implies u_1' = \begin{bmatrix} 1/3\\2/3\\2/3 \end{bmatrix}$$

$$||u_2|| = \left\| \frac{1}{9} \begin{bmatrix} 8\\-2\\-2 \end{bmatrix} \right\| = \frac{1}{9} \left\| \begin{bmatrix} 8\\-2\\-2 \end{bmatrix} \right\| = \frac{1}{9}\sqrt{64+4+4} = \frac{2\sqrt{2}}{3} \implies u_2' = \begin{bmatrix} 2\sqrt{2}/3\\-\sqrt{2}/6\\-\sqrt{2}/6 \end{bmatrix}$$

$$||u_3|| = \left\| \frac{1}{2} \begin{bmatrix} 0\\-1\\1 \end{bmatrix} \right\| = \frac{1}{2} \left\| \begin{bmatrix} 0\\-1\\1 \end{bmatrix} \right\| = \frac{1}{2}\sqrt{1+1} = \frac{\sqrt{2}}{2} \implies u_3' = \begin{bmatrix} 0\\-\sqrt{2}/2\\\sqrt{2}/2 \end{bmatrix}$$

Por lo tanto, el conjunto $\{u'_1, u'_2, u'_3\}$ es ortonormal y entonces la matriz:

$$\begin{bmatrix} 1/3 & 2/3 & 2/3 \\ 2\sqrt{2}/3 & -\sqrt{2}/6 & -\sqrt{2}/6 \\ 0 & -\sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix}$$

es ortogonal.

Ejercicio 11

Sea $A=\begin{bmatrix}1&1&-1\\1&3&4\\7&-5&2\end{bmatrix}$. Determine si A es una matriz ortogonal. Si no lo es, ¿cómo podría convertir a A en una matriz ortogonal?

Encuentre una base ortogonal empleando Gram-Schmidt para el subespacio W de \mathbb{R}^3 dado por:

$$W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x - y + 2z = 0 \right\}$$

Solución: Obtenemos lo siguiente:

$$\begin{split} W &= \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x - y + 2z = 0 \right\} = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x + 2z = y \right\} = \left\{ \begin{bmatrix} x \\ x + 2z \\ z \end{bmatrix} : x, z \in \mathbb{R} \right\} \\ &= \left\{ \begin{bmatrix} x \\ x \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 2z \\ z \end{bmatrix} : x, z \in \mathbb{R} \right\} = \left\{ x \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} : x, z \in \mathbb{R} \right\} = \operatorname{gen} \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} \right\} \end{split}$$

Dado que $\left\{v_1=\left[\begin{smallmatrix}1\\1\\0\end{smallmatrix}\right],v_2=\left[\begin{smallmatrix}0\\2\\1\end{smallmatrix}\right]\right\}$ es L.I., entonces es base de W. Ortogonalicemos:

$$u_{1} = v_{1} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$u_{2} = v_{2} - \frac{\langle v_{2}, u_{2} \rangle}{\|u_{2}\|^{2}} u_{2} = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} - \frac{\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}}{\|\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}\|^{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

Por lo que $\{u_1, u_2\}$ es una base ortogonal de W.

Ejercicio 13

Encuentre una base ortogonal empleando Gram-Schmidt para \mathbb{R}^3 que contenga al vector:

$$\begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix}$$

Solución: Notemos que:

$$\begin{vmatrix} 3 & 1 & 0 \\ -1 & 0 & 1 \\ 5 & 0 & 0 \end{vmatrix} = - \begin{vmatrix} 3 & 1 \\ 5 & 0 \end{vmatrix} = 5 \neq 0$$

9

entonces $\left\{v_1=\left[\begin{smallmatrix}3\\-1\\5\end{smallmatrix}\right],v_2=\left[\begin{smallmatrix}1\\0\\0\\5\end{smallmatrix}\right],v_3=\left[\begin{smallmatrix}0\\1\\0\\0\end{smallmatrix}\right]\right\}$ es L.I. y entonces base de \mathbb{R}^3 . Ortogonalicemos:

$$u_1 = v_1 = \begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix}$$

$$u_{2} = v_{2} - \frac{\langle v_{2}, u_{1} \rangle}{\|u_{1}\|^{2}} u_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - \frac{\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix}}{\|\begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix}\|^{2}} \begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - \frac{3}{35} \begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix} = \frac{1}{35} \begin{bmatrix} 26 \\ 3 \\ -15 \end{bmatrix}$$

$$u_{3} = v_{3} - \frac{\langle v_{3}, u_{1} \rangle}{\|u_{1}\|^{2}} u_{1} - \frac{\langle v_{3}, u_{2} \rangle}{\|u_{2}\|^{2}} u_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} - \frac{\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix}}{\|\begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix}\|^{2}} \begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix} - \frac{\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 26/35 \\ 3/35 \\ -3/7 \end{bmatrix}}{\|\begin{bmatrix} 26/35 \\ 3/35 \\ -3/7 \end{bmatrix}} \begin{bmatrix} 26/35 \\ 3/35 \\ -3/7 \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \frac{1}{35} \begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix} - \frac{3}{26} \begin{bmatrix} 26/35 \\ 3/35 \\ -3/7 \end{bmatrix} = \frac{1}{26} \begin{bmatrix} 0 \\ 25 \\ 5 \end{bmatrix}$$

Por lo tanto, $\left\{\begin{bmatrix}3\\-1\\5\end{bmatrix}, \frac{1}{35}\begin{bmatrix}26\\3\\-1\\5\end{bmatrix}, \frac{1}{26}\begin{bmatrix}0\\25\\5\end{bmatrix}\right\}$ es una base ortogonal de \mathbb{R}^3 .

Ejercicio 14

Calcule una base para el subespacio H y para H^{\perp} :

$$H = \left\{ \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \in \mathbb{R}^4 : 2x - y + 3z - w = 0 \right\}$$

Solución: Obtenemos lo siguiente:

$$\begin{split} H &= \left\{ \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \in \mathbb{R}^4 : 2x - y + 3z - w = 0 \right\} = \left\{ \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \in \mathbb{R}^4 : 2x - y + 3z = w \right\} \\ &= \left\{ \begin{bmatrix} x \\ y \\ z \\ 2x - y + 3z \end{bmatrix} \in \mathbb{R}^4 : x, y, z \in \mathbb{R} \right\} = \left\{ \begin{bmatrix} x \\ 0 \\ 0 \\ 2x \end{bmatrix} + \begin{bmatrix} 0 \\ y \\ 0 \\ -y \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ z \\ 3z \end{bmatrix} \in \mathbb{R}^4 : x, y, z \in \mathbb{R} \right\} \\ &= \left\{ x \begin{bmatrix} 1 \\ 0 \\ 0 \\ 2 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix} + z \begin{bmatrix} 0 \\ 0 \\ 1 \\ 3 \end{bmatrix} \in \mathbb{R}^4 : x, y, z \in \mathbb{R} \right\} = \operatorname{gen} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 3 \end{bmatrix} \right\} \end{split}$$

Dado que $\left\{\begin{bmatrix}1\\0\\0\\0\end{bmatrix},\begin{bmatrix}0\\1\\-1\end{bmatrix},\begin{bmatrix}0\\0\\1\\3\end{bmatrix}\right\}$ es L.I., entonces es base de H.

$$\begin{split} H^{\perp} &= \left\{ \hat{x} \in \mathbb{R}^4 : \forall \hat{y} \in H, \langle \hat{x}, \hat{y} \rangle = 0 \right\} \\ &= \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \in \mathbb{R}^4 : \forall \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \in H, \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 2x - y + 3z \end{bmatrix} = 0 \right\} \\ &= \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \in \mathbb{R}^4 : \forall x, y, z \in \mathbb{R}, \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 2x - y + 3z \end{bmatrix} = 0 \right\} \\ &= \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \in \mathbb{R}^4 : \forall x, y, z \in \mathbb{R}, ax + by + cz + d(2x - y + 3z) = 0 \right\} \\ &= \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \in \mathbb{R}^4 : \forall x, y, z \in \mathbb{R}, (a + 2d)x + (b - d)y + (c + 3d)z = 0 \right\} \end{split}$$

En particular, si x, y = 0, c = -3d; si y, z = 0, a = -2d y si x, z = 0, b = d.

$$H^{\perp} = \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \in \mathbb{R}^4 : a = -2d, b = d, c = -3d \right\}$$

$$= \left\{ \begin{bmatrix} -2d \\ d \\ -3d \\ d \end{bmatrix} \in \mathbb{R}^4 : d \in \mathbb{R} \right\} = \left\{ d \begin{bmatrix} -2 \\ 1 \\ -3 \\ 1 \end{bmatrix} \in \mathbb{R}^4 : d \in \mathbb{R} \right\} = \operatorname{gen} \left\{ \begin{bmatrix} -2 \\ 1 \\ -3 \\ 1 \end{bmatrix} \right\}$$

Por lo tanto, $\left\{ \begin{bmatrix} -2\\1\\-3\\1 \end{bmatrix} \right\}$ es base de H^{\perp} .

Ejercicio 15

Calcule una base para el subespacio H y para H^{\perp} :

$$H = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 : x = y = z \right\}$$

Solución: Obtenemos lo siguiente:

$$H = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 : x = y = z \right\} = \left\{ \begin{bmatrix} x \\ x \\ x \end{bmatrix} \in \mathbb{R}^3 : x \in \mathbb{R} \right\} = \left\{ x \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \in \mathbb{R}^3 : x \in \mathbb{R} \right\} = \operatorname{gen} \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$$

Por lo que
$$\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$
 es base de H .

$$H^{\perp} = \left\{ \hat{x} \in \mathbb{R}^3 : \forall \hat{y} \in H, \langle \hat{x}, \hat{y} \rangle = 0 \right\}$$

$$= \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3 : \forall \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in H, \begin{bmatrix} a \\ b \\ c \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0 \right\} = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3 : \forall x \in \mathbb{R}, \begin{bmatrix} a \\ b \\ c \end{bmatrix} \cdot \begin{bmatrix} x \\ x \\ x \end{bmatrix} = 0 \right\}$$

$$= \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3 : \forall x \in \mathbb{R}, ax + bx + cx = 0 \right\} = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3 : \forall x \in \mathbb{R}, (a + b + c)x = 0 \right\}$$

$$= \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3 : a + b + c = 0 \right\} = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3 : a = -b - c \right\} = \left\{ \begin{bmatrix} -b - c \\ b \\ c \end{bmatrix} \in \mathbb{R}^3 : b, c \in \mathbb{R} \right\}$$

$$= \left\{ \begin{bmatrix} -b \\ b \\ 0 \end{bmatrix} + \begin{bmatrix} -c \\ 0 \\ c \end{bmatrix} \in \mathbb{R}^3 : b, c \in \mathbb{R} \right\} = \left\{ b \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \in \mathbb{R}^3 : b, c \in \mathbb{R} \right\} = \operatorname{gen} \left\{ \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\}$$

Por lo tanto,
$$\left\{ \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\}$$
 es base de $H^{\perp}.$