Основные понятия теории вероятностей

Яцулевич Владимир Владимирович

1. В ящике имеется 50 одинаковых деталей, из них 5 окрашенных. Наудачу вынимают одну деталь. Найти вероятность того, что извлечённая деталь окажется окрашенной.

Решение. Кол-во всех исходов n = 50, кол-во благоприятных исходов m = 5. Тогда по формуле классической вероятности получаем:

$$P(A) = \frac{5}{50} = 0.1.$$

Ответ: 0.1.

2. Брошена игральная кость. Найти вероятность того, что выпадет чётное число очков.

Решение. При броске игральной кости возможны исходы 1, 2, 3, 4, 5, 6. То есть колво всех исходов n = 6. Чётным числам соответствуют исходы 2, 4, 6. То есть кол-во благоприятных исходов m = 3. Тогда по формуле классической вероятности получаем:

$$P(A) = \frac{3}{6} = 0.5.$$

Ответ: 0.5.

3. Участники жеребьёвки тянут из ящика жетоны с номерами от 1 до 100. Найти вероятность того, что номер первого наудачу извлечённого жетона не содержит цифры 5.

Решение. Кол-во всех исходов n=100. Посчитаем кол-во благоприятных исходов. Рассмотрим двухзначные числа. Они могут принимать значения от 0 до 99. Чтобы в этом числе не было цифры 5 на каждой позиции должна стоять одна из девяти цифр. Значит всего вариантов $9 \cdot 9 = 81$. Осталось сдвинуть числа на единицу вправо, чтобы они принимали значения от 1 до 100. Таким образом, кол-во благоприятных исходов равно m=81. Тогда по формуле классической вероятности получаем:

$$P(A) = \frac{81}{100} = 0.81.$$

Ответ: 0.81.

4. В мешочке имеется 5 одинаковых кубиков. На всех гранях каждого кубика написана одна из следующих букв: o, n, p, c, m. Найти вероятность того, что на вынутых по одному и расположенных «в одну линию» кубиков можно будет прочесть слово cnopm.

Решение. Кол-во благоприятных исходов равно m=1. Этот исход соответствует слову *спорт.* Посчитаем кол-во всех возможных слов. Для этого определим кол-во перестановок.

$$n = P_5 = 5! = 120.$$

Тогда по формуле классической вероятности получаем:

$$P(A) = \frac{1}{120}.$$

Otbet: $\frac{1}{120}$.

5. На каждой из шести одинаковых карточек напечатана одна из следующих букв: а, т, м, р, с, о. Карточки тщательно перемешаны. Найти вероятность того, что на четырёх, вынутых по одной и расположенных в «в одну линию» карточках, иожно будет прочесть слово «трос».

Решение. В задаче необходимо выбрать 4 буквы и 6 представленных. Все буквы различны, и при этом порядок извлечения букв важен. Поэтому кол-во всех исходов можно найти, используя размещения.

$$n = A_6^4 = 6 \cdot 5 \cdot 4 \cdot 3 = 360.$$

Благоприятный исход ровно один, то есть m=1. Тогда искомая вероятность равна

$$P(A) = \frac{1}{360}.$$

Ответ: $\frac{1}{360}$.

6. Куб, все грани которого окрашены, распилен на тысячу кубиков одинакового размера, которые затем тщательно перемешаны. Найти вероятность того, что наудачу извлечённый кубик будет иметь окрашенных граней: а) одну; б) две; в) три.

Решение. Для начала разрежем куб. На изображении ниже для удобства разные типы частей покрашены разными цветами.

а) Всего куб распилен на $n=10^3=1000$ кубиков. Из этих кубиков одну окрашенную грань имеют $m_A=8\cdot 8\cdot 6=384$. Тогда вероятность равна

$$P(A) = \frac{384}{1000} = 0.384.$$

б) Две окрашенные грани имеют $m_B = 8 \cdot 12 = 96$ кубиков. Тогда вероятность равна

$$P(B) = \frac{96}{1000} = 0.096.$$

в) Три окрашенные грани имеют $m_C = 8$ кубиков. Тогда вероятность равна

$$P(C) = \frac{8}{1000} = 0.008.$$

Ответ: а) 0.384; б) 0.096; в) 0.008.

7. Из тщательно перемешанного полного набора 28 костей домино наудачу извлечена кость. Найти вероятность того, что вторую наудачу извлечённую кость можно приставить к первой, если первая кость: а) оказалась дублем; б) не есть дубль.

Решение. Для удобства решения задания ниже представлены все кости домино.

а) Всего костей домино n=28. Пусть первая кость — дубль. То есть, это кость вида (n,n). Тогда в наборе остаётся 6 костей вида (x,n), где $x \neq n$. Тогда вероятность равна

$$P(A) = \frac{6}{28} = \frac{2}{9}.$$

б) Теперь пусть выпала кость (n_1, n_2) , которая не является дублем. Тогда нам подойдут кости вида (n_1, x) и (n_2, y) , каждой из которых осталось по 6 штук. То есть m = 6 + 6 = 12. Тогда вероятность равна

$$P(B) = \frac{12}{28} = \frac{4}{9}.$$

Ответ: a) $\frac{2}{9}$; б) $\frac{4}{9}$.

8. В замке на общей оси пять дисков, каждый из которых разделён на шесть секторов с различными написанными на них буквами. Замок открывается только в том случае, если каждый диск занимает одно определённое положение относительно корпуса замка. Найти вероятность того, что при произволной установке дисков замок можно будет открыть.

Решение. На каждом диске может быть написана одна из шести букв. Дисков всего пять. Тогда количество всех возможных комбинаций равно $n = 6^5$. Для открытия замка нужен один единственный правильный набор, то есть m = 1. Тогда вероятность равна

$$P(A) = \frac{1}{6^5}.$$

Otbet: $\frac{1}{6^5}$.

9. Восемь различных книг расставляют наудачу на одной полке. Найти вероятность того, что две определённые книги окажутся поставленными рядом.

Решение. Количество всех возможных вариантов можно найти, используя перестановки.

$$n = P_8 = 8!$$
.

Теперь зафиксируем две какие-нибудь книги (можно представить, что мы их связали нитью). Тогда останется 7 предметов. Количество перестановок семи предметов равна 7!. Но мы ещё не учли в каком порядке располагаются наши две зафиксированные книги. Здесь возможно всего два варианта. Количество благоприятных исходов найдём используя правило произведения. Тогда вероятность равна

$$P(A) = \frac{2 \cdot 7!}{8!} = \frac{2}{8} = \frac{1}{4}.$$

Otbet: $\frac{1}{4}$.

10. Библиотечка состоит из десяти различных книг, причём пять книг стоят по 4 рубля каждая, три книги — по одному рублю и две книги — по 3 рубля. Найти вероятность того, что взятые наудачу две книги стоят 5 рублей.

Решение. Для начала найдём количество всех исходов. Всего имеется 5+3+2=10 книг. Из них выберем две, причём порядок выбора не важен. Тогда $n=C_{10}^2$. Чтобы две книги стоили 5 рублей, нужно взять одну книгу стоимостью 4 рубля и одну книгу, стоимостью 1 рубль. Количество способов выбрать одну книгу стоимостью 4 рубля равно C_5^1 . Количество способов выбрать одну книгу стоимостью 1 рубль равно C_3^1 . Количество благоприятных исходов $m=C_5^2\cdot C_3^1$ найдено с использованием правила произведения. Тогда вероятность равна

$$P(A) = \frac{C_5^2 \cdot C_3^1}{C_{10}^2} = \frac{\frac{5!}{1! \cdot 4!} \cdot \frac{3!}{1! \cdot 2!}}{\frac{10!}{2! \cdot 8!}} = \frac{5 \cdot 3}{45} = \frac{1}{3}.$$

Otbet: $\frac{1}{3}$.

11. В партии из 100 деталей отдел технического контроля обнаружил 5 нестандартных деталей. Чему равна относительная частота появления нестандартных деталей?

Решение. Относительная частота равна

$$W(A) = \frac{5}{100} = 0.05.$$

Ответ: 0.05.

12. При стрельбе из винтовки относительная частота попадания в цель оказалась равной 0.85. Найти число попаданий, если всего было произведено 120 выстрелов.

Решение. Используя формулу нахождения относительной частоты найдём число появления событий.

$$W(A) = \frac{m}{n} \Rightarrow m = W(A) \cdot n = 0.85 \cdot 120 = 102.$$

Ответ: 102.

13. На отрезок OA длины L числовой оси Ox наудачу поставлена точка B(x). Найти вероятность того, что меньший из отрезков OB и BA имеет длину, меньшую, чем L/3. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения на числовой оси.

Решение. Нарисуем числовую прямую и отметим все необходимые точки. Из рисун-

$$O$$
 L

ка становится видно, что если точка B попадает либо в первую, либо третью области, то

$$\min(OB, BA) < \frac{L}{3}.$$

Значит нужно определить вероятность попадания точки B в эту область. Используя определение геометрической вероятности, получим

$$P(A) = \frac{\frac{L}{3} + \frac{L}{3}}{L} = \frac{2}{3}.$$

Otbet: $\frac{2}{3}$.

14. Внутрь круга радиуса R наудачу брошена точка. Найти вероятность того, что точка окажется внутри вписанного в круг квадрата. Предполагается, что вероятность попадания точки в квадрат пропорциональна площади квадрата и не зависит от его расположения относительно круга.

Решение. Для начала нарисуем круг радиуса R и впишем в него квадрат. Для нахождения вероятности попадания точки в квадрат необходимо найти площади всех фигур. Начнём с площади круга.

$$S_{\text{окр.}} = \pi R^2.$$

Для нахождения площади квадрата нужно найти его сторону. Для этого воспользуемся теоремой Пифагора.

$$a = \sqrt{R^2 + R^2} = \sqrt{2}R.$$

Тогда площадь квадрата равна

$$S_{\text{\tiny KB.}} = (\sqrt{2}R)^2 = 2R^2.$$

Используя определение геометрической вероятности, получим

$$P(A) = \frac{S_{\text{\tiny KB.}}}{S_{\text{\tiny OKD.}}} = \frac{2R^2}{\pi R^2} = \frac{2}{\pi}.$$

Other: $\frac{2}{\pi}$.

15. Задача о встрече. Два студента условились встретиться в определённом месте между 12 и 13 часами дня. Пришедший первым ждёт второго в течение 1/4 часа, после чего уходит. Найти вероятность того, что встреча состоится, если каждый студент наудачу выбирает момент своего прихода (в промежутке от 12 до 13 часов).

Указание. Ввести в рассмотрение прямоугольную систему координат xOy и принять для простоты, что встреча состоится между 0 и 1 часами.

Решение. Введём прямоугольную систему координат xOy. Для упрощения решения задачи рассмотрим промежуток не от 12 до 13 часов, а промежуток от 0 до 1 часа. В принципе, промежуток можно выбрать любой, ответ от этого не изменится. Теперь опишем условие задачи в терминах алгебры. Пара (x,y) представляет из себя время появления первого и второго студента соответственно. Нам нужно, чтобы разница между их приходом не превосходила четверть часа. Это можно записать следующим образом

$$|x - y| \leqslant \frac{1}{4}.$$

Преобразуем данное неравенство по правилу раскрытия модуля.

$$|x - y| \leqslant \frac{1}{4} \Leftrightarrow \begin{cases} x - y \leqslant \frac{1}{4} \\ y - x \leqslant \frac{1}{4} \end{cases} \Leftrightarrow \begin{cases} y \leqslant x + \frac{1}{4} \\ y \geqslant x - \frac{1}{4} \end{cases}$$

Теперь в системе координат нарисуем квадрат со стороной 1. А также изобразим решение полученной системы неравенств. Площадь квадрата со стороной 1 равна $S_{\text{кв.}} = 1$. Тогда искомая вероятность будет равна площади закрашенной фигуры. Для определения площади сначала найдём площадь треугольника.

$$S_{\text{\tiny TP.}} = \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{9}{32}.$$

После чего мы можем вычесть из площади квадрата удвоенную площадь треугольника.

$$P(A) = 1 - 2 \cdot \frac{9}{32} = 1 - \frac{9}{16} = \frac{7}{16}.$$

7

Otbet: $\frac{7}{16}$.