Indian Institute of Technology Madras

Module II

Nirav Bhatt Email: niravbhatt@iitm.ac.in

Statistical Data Analysis

Module I

- Descriptive statistics: Data analysis through
 - Numerical computation of sample statistics: Mean, variance, mode, range, ...
 - Graphical representation: Organize, summarize, and visualize in terms of different types of graphs, Box plots, scattered plots...

Statistical Data Analysis

Module II

- Module II- Inference or inductive statistics: Data analysis for decision making
 - Parameter estimation: Determine unknown parameters from sample data
 - Hypothesis testing: Verify or validate a postulate (or hypothesis) regarding population(s) or parameters using the data

Module II

Statistical Hypothesis testing and confidence intervals

- Topics:
 - Point estimation of parameters
 - Confidence interval computation
 - Statistical hypothesis testing
- Learning Outcomes: Students should be able to
 - estimate parameters from observations
 - compute confidence intervals
 - formulate statistical hypothesis and run tests using data

Data types, form and variables

- Format: Images, texts, numbers, videos...
- Types:
 - Numerical (or quantitative)
 - Interval: Ordering of scale and difference between two values in data is meaningful
 - GATE Scores, IQ Scores, credit score
 - Ratio: Interval with clear definition of absolute zero Height in meters, Weight in Kg, Concentrations...
 - Categorical (or qualitative)
 - Nominal: Categories with no order Patient's name or ID, color of t-shirt...
 - Ordinal: Categories with order but no different between values Grades, Weight in Healthy, overweight, obese

- Example: Lethal dose of a medicine
- Important to know for assessing the overall efficacy of the medicine
- Variability due to Gender, BMI, Age, Geography...
- FDA needs a representative value or a range for lethal dose of a medicine
- Use sample data to compute a reasonable value of lethal dose
 Point estimate of lethal dose

Hypothesis testing

- Example: Two medicines A and B for a disease
- Scientist conjectures that A is better medicine for the disease
- How can you prove or reject the conjecture?
- If the scientists can perform experiments on different sets of patients having the same disease with both medicines and shows that A is better
- Need to collect data and a procedure to show that A is better medicine than B Statistical hypothesis testing
- Emphasis on the better medicine

- Two problems of parameter estimation
 - Estimate parameters of a distribution from data \mathcal{U}_{1} Estimate parameters of models from data $y = \alpha_{1} \alpha_{2} + \alpha_{2} \alpha_{3}$
- Objectives of estimation: (i) Estimating parameters, and (ii) provide a goodness of estimated parameters
- Parameter estimation involves two steps:
 - Estimating parameters using methods for estimation
 - Assessing the "goodness" of the estimated parameters and provide bounds on variables

Elements

Definition: Estimator

It is the process of inferring unknown parameters in a model or distribution from a given set of data and other information using a *mathematical map* between the unknowns parameters and the known information and a decision criterion.

Types

- Point estimators: Produce single-valued estimates (more common)
 - Examples: kinetic parameter estimates from data, mean height of person in the classroom, expected life of a mobile device....
- Interval estimators: Produce an interval Examples: catalyst particle size, age of the students in BT5450
- Other types: Non-parametric, Parametric, and semi-parametric
 - Depends on the information available such as function and/or density distribution forms

Random Sample

Random Sample

Consider RVs $X_1, X_2, ..., X_n$. These RVs are random sample of size n if

- (i) the X_i 's are independent RVs
- (ii) item Each X_i is drawn from the same probability distribution

Statistics

Statistics

A statistic is any function of the observation in a random sample, $\hat{\Theta} = g(X_1, X_2, \dots, X_n)$

$$-\hat{\Theta} \text{ is a random Variable}$$

$$- \text{Example: } \text{means}$$

$$\text{Random } \{2 \times 1, \times 2, \dots, \times n\} \rightarrow \hat{U}_1 \} \text{ Different}$$

$$\text{Samples } \{x_1^2, x_2^2, \dots, x_n^2\} \rightarrow \hat{U}_2 \} \text{ values}$$

$$\{x_1^m, x_2^m, \dots, x_n^m\} \rightarrow \hat{U}_m \}$$

Sampling distribution

Sampling distribution

The probability density function of a statistic is called a sampling distribution

Point Estimator

- ▶ Random sample: $X_1 X_2, ..., X_n$ with $f(x, \theta)$: Density function
- \triangleright θ : Unknown parameters in column-vector form

Point Estimator

A point estimate of some population parameters θ is a single numerical vector-value $\hat{\theta}$ of a statistic. The statistic is called the point estimator.

Normal distribution:
$$f(x,0) = \frac{1}{2\pi} e^{\frac{(x-u)^2}{26^2}} \text{ with } 0 = \begin{bmatrix} u \\ e^2 \end{bmatrix}$$
objective
$$\frac{1}{2\pi} e^{\frac{(x-u)^2}{26^2}} = \frac{1}{6} e^{\frac{(x-u)^2}{2$$

Estimator

- Statistical properties of the estimate
 - Accuracy: How accurate is the estimate on the average?
 - Precision: Variability of the estimates obtained from different random samples?
- The given estimator gives an estimate with the least variability?
- ▶ What about true value of θ (θ_t) and $\hat{\theta}$ obtained from the estimator?
- How does the sample size n affect the value of estimate?

Unbiased Estimators

- How accurate is the estimate on the average?
 Closeness of estimate to the true values
- ► How close values can be computed using an Estimator Ô?

$$E(\hat{\Theta}) = \theta_t$$

Unbiased estimator

A point estimator $\hat{\Theta}$ is an unbiased estimator for the parameter θ if

$$E(\hat{\Theta}) = \theta_t$$

Unbiased Estimators

Bias of an estimator

If the estimator is not unbiased estimator, the bias (b) can be computed as

$$b = E(\hat{\Theta}) - \theta_t$$

$$E(\hat{\theta}) = \theta_b$$
, Then

 $Bias$, $b = \theta_b - \theta_t$
 $If \quad \theta_b \cong \theta_t$, $\hat{\theta} \longrightarrow unbiased Estimator$
 $b = 0$ & $\hat{\theta} \longrightarrow unbiased Estimator$

Example: Show that sample mean and variance are unbiased

Random samples:
$$X_1, X_2, ..., X_n$$
 $X_i \sim P(M_i, G^2) P: Distribution$
 $i=1, ..., n$

sample mean, $X = \sum_{i=1}^{n} \frac{X_i}{n}$

$$E[X] = E[\sum_{i=1}^{n} \frac{X_i}{n}] = \frac{1}{n} E[\sum_{i=1}^{n} X_i]$$

$$= \frac{1}{n} [E[X_1 + X_2 + + X_n]$$

$$= \frac{1}{n} [A_1 + A_2 + + A_n] = A$$

Bias = $E[\bar{X}] - A = A - A = 0$

1977

Variance of a Point Estimator

▶ Two unbiased estimators $\hat{\Theta}_1$ and $\hat{\Theta}_2$

$$E(\hat{\Theta})_1 = \theta_t, \quad E(\hat{\Theta})_2 = \theta_t$$

Question: Which one to choose?

Var(O1) < Var(O2)

choose the estimator with nimum variance

Variance of a Point Estimator

Minimum variance unbiased estimator (MVUE)

Consider all the unbiased estimators (say total m) of θ ($\hat{\Theta}_1, \, \hat{\Theta}_2, \, \ldots, \, \hat{\Theta}_m, \,$), the one with the smallest variance is called MVUE.

$$Var(\hat{\Theta}_2) < Var(\hat{\Theta}_1) < \dots Var(\hat{\Theta}_m)$$

Θ₂ is MVUE

Standard Error

Precision and variability of an estimate? Standard error of the estimate

Standard Error of an Estimator

The standard error of of an estimator $\hat{\Theta}$ is its standard deviation given by

$$\hat{\sigma}_{\hat{\Theta}} = \sqrt{\mathsf{Var}(\hat{\Theta})}$$

Mean Squared error of an Estimator

- Only biased estimators are available How to select an estimator?
- ▶ Means squared error of an estimator $\hat{\Theta}$ of the parameter θ

Means squared error

$$MSE(\hat{\Theta}) = E[(\hat{\Theta} - \theta_t)^2]$$

or

$$MSE(\hat{\Theta}) = (E[\hat{\Theta} - E(\hat{\Theta})])^2 + (\theta_t - E(\hat{\Theta}))^2$$
$$= Var(\hat{\Theta}) + (Bias)^2$$

> Bias-variance trade-off: MSE(8) is total of variance & Bias 2

Mean Squared error of an Estimator

- ▶ Two estimators of the parameter θ : MSE($\hat{\Theta}_1$) and MSE($\hat{\Theta}_2$)
- Relative efficiency of estimators

$$\frac{\mathsf{MSE}(\hat{\Theta}_1)}{\mathsf{MSE}(\hat{\Theta}_2)}$$

Relative efficiency < 1: Ô₁ is a more efficient Ô₂</p>

Methods of Point Estimation

Method of moments: Equate population moments to sample moments

Random Sample: $X_1, X_2, ..., X_n$ from a PMF or PDF with unknown p parameters θ . The moment estimators $\hat{\Theta}_1, ..., \hat{\Theta}_p$ can be found by equating the first p population moments to the first p sample moments and solving the set of nonlinear equations

Methods of Point Estimation

Method of moments: Equate population moments to sample moments

Random Sample: X_1, X_2, \ldots, X_n from a PMF or PDF with unknown p parameters θ . The moment estimators $\hat{\Theta}_1, \ldots, \hat{\Theta}_p$ can be found by equating the first p population moments to the first p sample moments and solving the set of nonlinear equations

$$\begin{array}{ll} & \begin{array}{ll} & \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \hspace{-1mm} \end{array} \overset{\text{Kth}}{\text{moment}} : & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \\ & \end{array} \end{array} \end{array} \overset{\text{Kth}}{\text{moment}} : & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \end{array} \end{array} \end{array} \end{array} \overset{\text{Kth}}{\text{moment}} : & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \end{array} \end{array} \end{array} \overset{\text{Kth}}{\text{moment}} : & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \end{array} \end{array} \end{array} \overset{\text{Kth}}{\text{moment}} : & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \end{array} \end{array} \end{array} \overset{\text{Kth}}{\text{moment}} : & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \end{array} \end{array} \end{array} \overset{\text{Kth}}{\text{moment}} : & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \end{array} \end{array} \overset{\text{Kth}}{\text{moment}} : & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \end{array} \end{array} \overset{\text{Kth}}{\text{moment}} : & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \end{array} \end{array} \overset{\text{Kth}}{\text{moment}} : & \begin{array}{ll} & \begin{array}{ll} & \end{array} \end{array} \overset{\text{Kth}}{\text{moment}} : & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \end{array} \end{array} \overset{\text{Kth}}{\text{moment}} : & \begin{array}{ll} & \begin{array}{ll} & \end{array} & \end{array} \overset{\text{Kth}}{\text{moment}} : & \begin{array}{ll} & \begin{array}{ll} & \end{array} & \end{array} \overset{\text{Kth}}{\text{moment}} : & \begin{array}{ll} & \begin{array}{ll} & \end{array} & \end{array} \overset{\text{Kth}}{\text{moment}} : & \begin{array}{ll} & \begin{array}{ll} & \end{array} & \end{array} \overset{\text{Kth}}{\text{moment}} : & \begin{array}{ll} & \begin{array}{ll} & \end{array} & \end{array} \overset{\text{Kth}}{\text{moment}} : & \begin{array}{ll} & \end{array} & \end{array} \overset{\text{Kth}}{\text{moment}} : & \begin{array}{ll} & \begin{array}{ll} & \end{array} & \end{array} \overset{\text{Kth}}{\text{moment}} : & \begin{array}{ll} & \end{array} & \end{array} \overset{\text{Kth}}{\text{moment}} : & \begin{array}{ll} & \end{array} & \end{array} \overset{\text{Kth}}{\text{moment}} : & \begin{array}{ll} & \end{array} \overset{\text{Kth}}{\text{moment}} : & \begin{array}{ll} & \end{array} & \overset{\text{Kth}}{\text{moment}} : & \end{array} \overset{\text{Kth}}{\text{moment}} : & \begin{array}{ll} & \end{array} & \end{array} \overset{\text{Kth}}{\text{moment}} : & \begin{array}{ll} & \end{array} & \end{array} \overset{\text{Kth}}{\text{moment}} : & \end{array} \overset{\text{Kth}}{\text{moment}} : & \begin{array}{ll} & \end{array} & \overset{\text{Kth}}{\text{moment}} : & \end{array} \overset{\text{Kth}}{\text{moment}} : & \end{array} \overset{\text{Kth}}{\text{moment}} : & \begin{array}{ll} & \end{array} & \overset{\text{Kth}}{\text{moment}} : & \end{array} \overset{\text{Kth}}{\text{moment}} : & \overset{\text{Kth}}{\text{mom$$

Method of moments: Example Data: 24,22... 2n; Drawn from Exp(x) 2: Unknown parameter. Estimate 2 using MOM E[x']= 1 2 Xi - = - Z.Xi $\Rightarrow \lambda = \frac{n}{5 \times i}$

Maximum Likelihood Estimation

- **PRV** $X \sim f(x, \theta), \theta$: Unknown parameters
- ▶ Observations $x_1, x_2, ..., x_n$
- The likelihood function of the sample is

$$L(\theta) = L(\theta/x_1, x_2, \dots, x_n) = f(x_1, \theta) \cdot f(x_2, \theta) \cdot f(x_3, \theta) \cdot \dots \cdot f(x_n, \theta)$$

MaxL(
$$\theta$$
): Maximum likelihood estimator

Max L CB) = Max $\iint_{i=1}^{\infty} f(\mathcal{H}, \mathcal{O})$

Maximum Likelihood Estimation Data: 29, ... 2n ~ Bernoulli R.V. $PMF: f(x_0) = p^{x}(1-p)^{1-x} x = 0.1$ l'arameter to be estimated: P 8 = [P] = P - Constanct LCO) L(0) = f(x1,p).f(x2,p)....f(xn, f) = p2 (1-p) | p2 (1-p) | p2n(1-p) = p = 22; (1-p) n - 22;

Maximum Likelihood Estimation

$$\sum_{p} \frac{\sum_{i=p}^{n-2} \sum_{i=0}^{n-2} \sum_{j=0}^{n-2} \sum_{i=0}^{n-2} \sum_{j=0}^{n-2} \sum_{i=0}^{n-2} \sum_{j=0}^{n-2} \sum_{i=0}^{n-2} \sum_{j=0}^{n-2} \sum_{i=0}^{n-2} \sum_{j=0}^{n-2} \sum_{i=0}^{n-2} \sum_{j=0}^{n-2} \sum_{j=0}^{n-2} \sum_{i=0}^{n-2} \sum_{j=0}^{n-2} \sum_{i=0}^{n-2} \sum_{j=0}^{n-2} \sum_{j=0$$

Maximum Likelihood Estimator: Properties

- ▶ Unbiased estimator: For Large n
- Variance of Ô is nearly as small as the one that could be obtained with any other estimator
- Θ : An approximate normal distribution

Bootstrapping Estimation

- Non-parametric approach of estimation Unlike MLE and MoM:
 - No need for assumption about underlying distribution
- Often used for computing standard error and confidence intervals for relatively small sample size
- Uses sampling with replacement strategies

Bootstrapping Estimation

- Samples: X₁, X₂,..., X_n drawn from independent and identical but unknown distribution
- Let $\hat{\Theta} = \hat{\Theta}(X_1, X_2, \dots, X_n)$ be statistic

Bootstrapping Estimation

Bootstrapping Estimation

Bootstrap means

$$ar{X}_1 = ext{mean}(X_1^{*,1}, \dots, X_n^{*,1})$$
 $ar{X}_2 = ext{mean}(X_1^{*,2}, \dots, X_n^{*,2})$
 \vdots
 $ar{X}_B = ext{mean}(X_1^{*,B}, \dots, X_n^{*,B})$

Bootstrap estimate of the variance

$$var(\bar{X}) = \frac{1}{B-1} \sum_{i=1}^{B} (\bar{X}_i - \bar{X}_B)^2$$
, with $\bar{X}_B = \frac{1}{B} \sum_{i=1}^{B} \bar{X}_i$

Confidence interval

Introduction

- Point estimate: How close to true value?
- Interested in knowing the variability of the population parameters
- Range of plausible values: Confidence interval
- An interval estimate for a population parameter is called a confidence interval
- Confidence: Specifies level of confidence 90%,95%, 99%
- Constructed so that it contains true unknown population parameter(s)

Confidence Interval

Introduction

- ▶ Random sample: X₁, X₂, ..., X_n
- Unknown Distribution, Unknown mean µ and Known variance σ^2
- ▶ Sample mean $\bar{X} \sim F(\mu, \sigma^2/n)$
- Standardize X, New R. V.

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

Three types of intervals

1. Confidence Interval

2. Tolevence Interval

3. Prediction Interval

Introduction

Confidence interval: lower and upper bounds,

$$1 \leq \mu \leq u$$
 $L, u: Unknown$

- I and u: End points computed from the data
- I and u: Values of random variable L and U
- Question: How do we determine values of I and u

Introduction

- L and U: RVs
- Determine values of these RVs such that

$$P\{L \le \mu \le U\} = \gamma = 1 - \alpha, \quad 0 \le \gamma, \alpha \le 1$$

From samples x_1, x_2, \dots, x_n , I and u can be computed to determine CI with $(1-\alpha)$ probability

$$I \leq \mu \leq u$$

I and u: Lower and upper-confidence bounds

Introduction

Normal distribution
$$X \sim N(M, 6^2)$$

Data: X_1, X_2, \dots, X_n
 M is unknown and 6^2 : Known objective: Find interval for unknown M .

Standard Normal $R.V., Z = \overline{X-M}$

compute \overline{X} from data

 $\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$

Introduction

z- distribution :

For
$$Z \in [-1,1]$$
, $d = 0.32$
 $Z \subseteq [-2,2]$, $d = 0.04$

Given &, Zd, can be computed from Z-tubles

CI and Precision

- ▶ 90% or 95% or 99%?
- $ightharpoonup z_{\alpha/2}$ for $\alpha = 0.05$ and $\alpha = 0.01$

$$z_{0.025} = 1.96$$

$$z_{0.005} = 2.58$$

Length of confidence intervals

95%, Length =
$$2(1.96\sigma/\sqrt{n}) = 3.92\sigma/\sqrt{n}$$

99%, Length =
$$2(2.58\sigma/\sqrt{n}) = 5.16\sigma/\sqrt{n}$$

Introduction

One-sided CI on the mean, known or 100(1-0)%. upper-confidence bound

$$u \leq X + Z_d \leq J_n$$

Lower-confidence bound

 $u \geq X - Z_d \leq J_n$

Introduction

- Typically, in procetice, m > 40

Introduction

- ▶ Error= $\|\bar{x} \mu\|$
- For given σ, specify E, and α, then n: number of samples required

$$n = \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2$$

For example, E=0.5, σ = 2, α = 0.05, Then n

$$n = \left(\frac{(1.96)(2)}{0.5}\right)^2 = 61.5$$

- ► For E = 0.25, n = ? G = Z, A = 0.05, A = 246
- $\sigma = 1, n = ?$ E = 0.5, 0 = 0.05, n = 16
- ► For $\alpha = 0.01$, n = ?, $z_{0.005} = 2.58$, $\Omega = 0.7$

One-sided Confidence Bounds

- ▶ One-sided Confidence Bounds for a given α : Provides
 - ▶ Lower bound $I \le \mu$
 - ▶ Upper bound $u \ge \mu$
- For a given alpha Computed by
 - ▶ Lower bound $\bar{x} z_{\alpha} \sigma / \sqrt{n} \le \mu \le \infty$
 - ▶ Upper bound $\bar{x} + z_{\alpha} \sigma / \sqrt{n} \ge \mu \ge -\infty$

Unknown Population variance

- So far
 - ▶ *n* random samples, unknown μ , and known σ^2
- ▶ *n* random samples, unknown μ , and σ^2 ?
- Confidence interval for μ
- Sample variance, S² can be computed from n observations
- A statistic can be computed (on same line as z-statistic,

$$Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

$$T = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}}$$

► T is RV from t-distribution with n – 1 degrees of freedom.

$$f(u) = \frac{\left[\left[\frac{n}{2} \right]}{\sqrt{\pi(n-1)} \left(\frac{n}{2} \right)} \frac{1}{\left[\left(\frac{u^2}{n-1} \right) + 1 \right]} \frac{-\sqrt{46/77}}{\sqrt{46/77}}$$

t-distribution

Confidence Interval

Unknown Population variance

$$5 - t$$
 $5 / n \le 10$
 $\leq 5 / t$ $5 / r$ $= 6/2, n-1$

CI for σ^2 of a Normal Distribution

- $\sim \chi^2$ -distribution for n samples from $\mathcal{N}(\mu, \sigma^2)$
- X²-statistic (or RV)

$$X^2 = \frac{(n-1)S^2}{\sigma^2}$$

confidence Interval on the variance Two-sidel 100 (1-d)/ with n observationy $\frac{(n-1)s^2}{x^2a_2^2n^{-1}} \le 6^2 \le (n-1)s^2$, s: sample variance

Interportation of CI:

- L& V: Random Variables
- CI: Random interval
- Interpretation: If large number of random samples are collected then 100(1-d)/.

 of these CI will contain the tone value of statistic (mean, variance)

 49/77

Parameter of interest	Symbol	Other Parameter	Confidence Interval
Mean: Normal distribution	le	62: Known	2-2/2/m < M < 2+7 5
Mean Arbi. distribution large size	u	62: Not known compute 52 from data	2- = 5 < U < 2+ = 3 12/M
Mean: Normal distribution	M	5? Not known compute s² from data	$\bar{z} - t_{\alpha_{1}, n-1} \leq \leq u \leq \bar{x} + t_{\alpha_{2}, n-1} \leq \bar{x}$
Variance: Normal distribution	62	Mean le unknow and estimate us s²	$\frac{(n-1)s^2}{\chi^2_{d/2},n-1} \leq 6^2 \leq (n-1)s^2$

Summary: 100(1- 4) -/.

Parameter of-interest	Lower-bound	Upper-6ound
M, both 62 Known & 62 Wh nows will large n	2-20 EN	12 12 12 12 12 12 12
M & conknown	x - ta,n-150 ≤ 4	えナセガハーラーショル
62 & Um Known	$\frac{(n-1)s^2}{\chi^2_{\alpha}, n-1} \leq \epsilon^2$	$6^{2} \leq (N-1)s^{2}$ $\chi^{2}_{1-d, N-1}$

Example

- Treatments for a disease: T-A and T-B
- Claim: T-A is better than T-B
- Practitioners question: Does T-A better than T-B?
- Approach to answer practitioners question: Hypothesis testing: Decision making process

Introduction

- Claim: T-A is better than T-B
- Claim(s) or statement(s): Statistical Hypothesis (es)
 Statement about the parameters of one or more populations
- Claim: T-A is better than T-B: Claim to population's parameter
- Practitioners' interest: mean number of days to recuperate from the appearance of clinical symptoms

Introduction

- Practitioners' interest: mean number of days to recuperate from the appearance of clinical symptoms
 - Population mean
- μ_{T-A} and μ_{T-B} : mean days to recuperate for treatment T-A and T-B
- $\mu_{T-A} > \mu_{T-B}$
- Formal re-casting of statement as two hypotheses:

$$H_0: \mu_{T-A} = \mu_{T-B}$$

$$H_1: \mu_{T-A} > \mu_{T-B}$$

- H₀: Null hypothesis: Both treatments are same
- H₁: Alternative hypothesis: T-A is better than T-B

Introduction

One-sided alternative hypothesis

$$H_0: \mu_{T-A} = \mu_{T-B} \quad H_1: \mu_{T-A} > \mu_{T-B}$$

or

$$H_0: \mu_{T-A} = \mu_{T-B}$$
 $H_1: \mu_{T-A} < \mu_{T-B}$

- ► Claim: Mean number of days to recuperate for T-A is 8 days or $\mu_{T-A} = 8$
- Two-sided alternative hypothesis

$$H_0: \mu_{T-A} = 8$$
 days $H_1: \mu_{T-A} \neq 8$ days

By convention: Null hypothesis is an equality claim

Elements

Hypothesis: A statement about the population or model or distribution not about the sample

Truth or falsity of a claim (or hypothesis) is never known in practical situation

 Hypothesis testing: Probabilistic approach to reach a conclusion based on population parameter(s)

Elements

Two-sided alternative hypothesis

$$H_0: \mu_{T-A} = 8$$
 days $H_1: \mu_{T-A} \neq 8$ days

- Samples are available for T-A different patients
- Sample mean: Take on many different values
- Let us define range (recall CI): $7.8 \le \bar{x} \le 8.3$
- Acceptance region: any value in the range
- Critical regions: outside the acceptance region

Elements

- Pitfall I:
 - $\mu_{T-A} = 8$: Truth
 - ▶ Random sample selected: $\bar{x} = 8.7$
 - ▶ Outside acceptance region $(7.8 \le \bar{x} \le 8.3)$
 - Reject H₀ in favor of H₁
 Wrong conclusion → Type I error

Type I Error

Rejecting H_0 when it is true is defined as a type I error

Type II Error

Failing to reject H_0 when it is false is defined as a type II error

Elements

Decision	H_0 is true	H_0 is false
Fail to reject H_0	No error	Type II error
Reject H ₀	Type I error	No error

- Quantifying Type I and II errors
- ▶ Type I error: Probability of rejecting H_0 when H_0 is true

Elements

Decision	H_0 is true	H_0 is false
Fail to reject H_0	No error	Type II error
Reject H ₀	Type I error	No error

- Quantifying Type I and II errors
- ▶ Type I error: Probability of rejecting H_0 when H_0 is true

Elements

Type I error

Rejecting the H_0 when it is true is defined as a type I error.

Probability of Type I error

 α = P(type I error)=P(reject H_0 when H_0 is true)

P(Type I error) = P(Reject Ho When Ho is true) Reject 78 8.3 Reject P(Type I error) = P($\overline{X} \le 7.8$ When $\overline{X}_{t}=8$) +P($\overline{X} \ge 8.3$ When $\overline{X}_{t}=8$) $= P(Z_1 \leq \frac{7.8 - 8}{\sqrt{70}}) + P(Z_2 \geq \frac{8.3 - 8}{\sqrt{10}})$

Elements

Type II error

 β =P(Probability of Type II error)=P(fail to reject H_0 when H_0 is false)

claim: Average weight of students: 50 kg
Ho
$$\mu = 50$$
, Hi $\mu \neq 50$
True mean, $\mu = 52$
Acceptance region: $48.5 \leq X \leq 51.5$
 $\beta = P(48.5 \leq X \leq 51.5)$ when $\mu = 52$

Elements

$$\beta = P(48.5 \le x \le 51.5, L = 50.5)$$

= 0.8

Type II error is higher when
$$u = 50.5$$
.

Elements Important Points

- 1. The size of the critical region can be reduced by type I error, of.
- 2. For given sample size, n, decrease in the probability of one type error results in an increase in the other type.
- 3. For given of, increase on reduces B
- 4. Value of B decreases as the diff. between the time mean and the hypothesized value increases

Elements

- β: Not constant, depends on true value of parameter and sample size
- Extent of falsity of null hypothesis
- Accept H₀: Weak conclusion
- Failing to reject H₀: Strong conclusion

Power

- Power: Power of statistical test: Probability of rejecting null Hypothesis H₀ when H₁ is true
- ▶ Power = 1β
- Power: Probability of correctly rejecting a false H₀
- -> Power is used to compare two statistical test

Elements one-sided hypothesis:

claim involving phrases a greener than" less than or at least ...

"one-sided by pothesis testing"

- Appropriate alternative hypothesis test has to be chosen.
- one-sided Hi, Rejecting Ho is a strong conclusion

Elements

- α: Fixed significance level
- α: Doesn't provide any idea location of parameters in critical region

P-value

The P-value is the smallest level of significance that would lead to rejection of H_0 with the given data.

P-value Observed significance level
- Provides how significant the data area

Elements Two-sided hypothesis test

Ho: ll = 50, H, ll + 50, n=16,
6=2.5

- Observed Sample mean, $\bar{x} = 57.3$

It indicates 21=57.3 is a rome event. when \$= 0.038

General Procedure for Hypothesis tests

- Parameter of interest: Identify the parameter of interest for a context
- 2. Null hypothesis, H_0 : State the null hypothesis
- Alternative hypothesis, H₁: Specify an appropriate alternative hypothesis
- 4. Test statistic: Determine an appropriate test statistic
- 5. Reject H_0 if: State the rejection criteria for the null hypothesis
- Computations: Compute any necessary sample quantities and value of test statistic
- Draw conclusions: Decide whether or not H₀ should be rejected and report that in the problem context