$C(A^T) \oplus N(A) = IR^{n}$ Vinner product space Orthogonal Complements and Minimization Problems 1 · U subset of V U= {veV: <v.u>=0 for every u=u3 subspace of Pur 4=axtb inner product_ecture 18 (Wı,+Xı)X+ bu,=0 Dept. of Math., SUSTech

Inner Product Spaces

- Orthogonal Complements
- Orthogonal Projection
- Minimization Problems
- 4 Homework Assignment 18

Orthogonal Complements

We begin with the definition of Orthogonal Complements:

6.45 **Definition** orthogonal complement, U^{\perp}

If U is a subset of V, then the *orthogonal complement* of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U:

$$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for every } u \in U \}.$$

For example, if U is a line containing the origin in \mathbb{R}^3 , then U^{\perp} is the plane containing the origin that is perpendicular to U.

Orthogonal Complements

6.46 Basic properties of orthogonal complement

- If U is a subset of V, then U^{\perp} is a subspace of V. (a)
- (b) $\{0\}^{\perp} = V$.
- (c) $V^{\perp} = \{0\}.$
- If U is a subset of V, then $U \cap U^{\perp} \subset \{0\}$. U is a subspace (d)
- If U and W are subsets of V and $U \subset W$, then $W^{\perp} \subset U^{\perp}$. (e)

Orthogonal Complements

Vinner product space

U finite-dimensional subspace

Pu(v)=U v=U+W. V=U+U+

Direct sum of a subspace and its orthogonal complement

Suppose \overline{U} is a finite-dimensional subspace of V. Then $\overline{U} < \infty$

$$V = U \oplus U^{\perp}.$$

Proof. First we will show that $V = U + U^{\perp}$. To do this, suppose $v \in V$. Let e_1, e_2, \cdots, e_m be an orthonormal basis of U. Obviously

$$v = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_m \rangle e_m + v - \langle v, e_1 \rangle e_1 - \dots - \langle v, e_m \rangle e_m.$$

Let $u = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_m \rangle e_m$ and $w = v - \langle v, e_1 \rangle e_1 - \dots - \langle v, e_m \rangle e_m$ It can be verified that $u \in U$, $w \in U^{\perp}$, and $U \cap U^{\perp} = \{0\}$. Thus

$$V = U \oplus U^{\perp}$$
.

Orthogonal Complements

6.50 Dimension of the orthogonal complement

Suppose V is finite-dimensional and U is a subspace of V. Then

$$\dim U^{\perp} = \dim V - \dim U.$$

Proof. The formula for dim U^{\perp} follows immediately from 6.47 and 3.78.

6.51 The orthogonal complement of the orthogonal complement

Suppose U is a finite-dimensional subspace of V. Then

$$U = (U^{\perp})^{\perp}.$$

Orthogonal Projection

We now define an operator P_U for each finite-dimensional subspace of

6.53 **Definition** orthogonal projection, P_U

Suppose U is a finite-dimensional subspace of V. The <u>orthogonal projection</u> of V onto U is the operator $P_U \in \mathcal{L}(V)$ defined as follows: For $v \in V$, write v = u + w, where $u \in U$ and $w \in U^{\perp}$. Then $P_U v = u$.

6.54 **Example** Suppose $x \in V$ with $x \neq 0$ and $U = \operatorname{span}(x)$. Show that

$$P_{U}v = \frac{\langle v, x \rangle}{\|x\|^2}x \quad \begin{array}{c} \mathcal{V} = \mathcal{U} + \mathcal{W} \\ \mathcal{C} \times \mathcal{V} - \mathcal{C} \times \\ \mathcal{V} - \mathcal{C} \times \mathcal{V} \times \\ \mathcal{V} \times \mathcal{V} \times \mathcal{V} \times \mathcal{V} \times \\ \mathcal{V} \times \mathcal{V} \times$$

Properties of the orthogonal projection P_U

Suppose U is a finite-dimensional subspace of V and $v \in V$. Then $V = U \oplus U^{\perp}$ (b.47)

- (a) $P_U \in \mathcal{L}(V)$;
- (b) $P_U u = u$ for every $u \in U$;
- (c) $P_{U}w = 0$ for every $w \in U^{\perp}$;
- (d) range $P_U = U$;
- (e) null $P_U = U^{\perp}$;
- (f) $v P_U v \in U^{\perp}$;
- $(g) P_U^2 = P_U;$
- (h) $||P_Uv|| \le ||v||$;

V₁,..., V_n bosis

U=CCA)

 $P_U v = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_m \rangle e_m$

P(IV)

Puch)

= <b.e/>

-

Ax=b inconsistent

Minimization Problems

The following problem often arises: given a subspace U of V and a point $v \in V$, find a point $u \in U$ such that ||v-u|| is as small as possible. The next proposition shows that this minimization problem is solved by taking $u = P_U v$.

6.56 Minimizing the distance to a subspace

Suppose U is a finite-dimensional subspace of $V, v \in V$, and $u \in U$. Then

$$||v - P_U v|| \le ||v - u||.$$

Furthermore, the inequality above is an equality if and only if $u = P_U v$.

6.5511) U finite dimensional subspace
$$e_1, \dots, e_m$$
 orthonormal basis $P_u(v) = \langle v, e_1 \rangle e_1 + \langle v, e_2 \rangle e_2 + \dots + \langle v, e_n \rangle e_n$

Minimizing the distance to a subspace

 $P_{U}v$ is the closest point in U to v.

Example

The last result is often combined with the formula 6.55(i) to compute explicit solutions to minimization problems.

6.58 **Example** Find a polynomial u with real coefficients and degree at $\frac{1}{1}$ most $\frac{1}{2}$ that approximates $\sin x$ as well as possible on the interval $[-\pi, \pi]$, in the sense that $= \langle \sin x - u(x) | \sin x - u(x) \rangle$ is as small as possible. Compare this result to the Taylor series approximation. Pu $(\sin x) = \frac{1}{2} (\sin x) \cdot \frac{1}{2} (\cos x) \cdot \frac{$

Solution.

(a) Let $C_R[-\pi,\pi]$ denote the real inner product space of continuous real-valued functions on $[-\pi,\pi]$ with inner product

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x)dx.$$

(b) Let $v \in C_R[-\pi, \pi]$ be the function defined by $v(x) = \sin x$. Let U denote the subspace of $C_R[-\pi, \pi]$ consisting of the polynomials with real coefficients and degree at most 5. Our problem can now be reformulated as follows:

Find $u \in U$ such that ||v - u|| is as small as possible.

(c) u(x) is given as follows (using 6.55(i)):

$$u(x) = 0.987862x - 0.155271x^3 + 0.00564312x^5$$
.

Solution.

- (d) The polynomial u above is the best approximation to $\sin x$ on $[-\pi, \pi]$ using polynomials of degree at most 5.
- (e) Here "best approximation" means in the sense of minimizing

$$\int_{-\pi}^{\pi} |\sin x - u(x)|^2 dx.$$

(f) To see how good this approximation is, the next figure shows the graphs of both $\sin x$ and our approximation u(x) given by 6.60 over the interval $[-\pi,\pi]$.

Graphs on $[-\pi, \pi]$ of $\sin x$ (blue) and its approximation u(x) (red) given by 6.60.

Example

(g) Another well-known approximation to $\sin x$ by a polynomial of degree 5 is given by the Taylor polynomial

$$x - \frac{x^3}{3!} + \frac{x^5}{5!}$$
.

Graphs on $[-\pi, \pi]$ *of* $\sin x$ *(blue) and the Taylor polynomial 6.61 (red).*

Homework Assignment 18

6.C: 4, 5, 7, 8, 9, 11, 12, 14.