Networks II: Market Design—Lecture 19 Information and Networked Behavior

ARPITA GHOSH

Dept. Of Information Science, Cornell University

Where we are

Where we are: Previous class

- Properties of stable matchings:
 - Incentive properties: Proving that man-proposing DA is strategyproof for men
 - Unmatched agents across stable matchings
- The theory-practice connection: NRMP and stability

Where we are: What have we seen so far?

- One-sided markets: Binary preferences; rank-order preferences with and without initial endowments
- Two-sided markets: Marriage model (one-to-one matching); multi-unit demand (many-to-one)

What's next?

Stepping back: The big picture

- Markets (networked economies): Analysis and design
 - Analyzing outcomes: What happens?
 - Defining 'good' outcomes: What would you like to happen?
 - Design: How do you make it happen?
- Markets quite generally:
 - Markets: A very general term for any institution/setting with exchange between agents
 - (Not restricted to two-sided matching markets without money!)
 - Examples: Markets for consumer goods, personal services, collectibles, insurance, . . .

Market design: Allocation and information

Central question so far:

- Allocation in markets—'who gets what'?
- What are good outcomes, and how do we find them?
 - Specific setting: Matching markets "without money" (Non-transferable utilities)
 - Which matchings are good? (Pareto-efficiency, stability, ...)
 - Mechanisms: How do we find 'good' matchings?
 - Incentives: How do agents respond to the mechanisms used to choose matchings?

Now, on to another aspect:

- Information in markets—'who knows what'?
- How does information structure affect outcomes?
 - Specific setting: Matching markets with money

Markets and information structure: Sneak preview

- Spoiler alert: Information structure in market can change outcome
- Information asymmetry: Some subset of agents in market have more information about goods or services exchanged
 - Used goods: Sellers have more information
 - Insurance: Buyers have more information
 - Hiring: Candidates have more information than firm
 -
- What we'll see: Endogeneity in quality of what is brought to market!
 - Market design question so far: Who gets what, given market
 - Market design and information structure: Who comes to market?

Why study information asymmetry?

Information asymmetries arise in many important markets:

- Markets for lending and mortgages
 - Banks know less about creditworthiness than borrower
- Markets for insurance: Health, life, vehicle, property, fire, ...
 - Buyer has more information about self than insurer
 - Also has more control over actions post-insurance
- Labor markets: Traditional jobs; online labor markets (oDesk, crowdwork platforms, . . .)
 - Employers less informed about candidate's skills, productivity
 - Employee can also choose effort
- Charitable giving

Why study information asymmetry?

Strong information asymmetries in online markets as well:

- E-commerce: eBay, Amazon, ...,
 - Buyers cannot physically inspect good being sold
 - Sellers know more about specific product offered for sale
- Online markets for services: Craigslist, Thumbtack
- Social (peer-to-peer) lending: Prosper, Zopa, . . .
 - Borrowers know more about creditworthiness, repayment ability than lenders
- Crowdfunding: Kickstarter, Indiegogo, . . .
 - Fundraisers better informed than investors about project quality, success probability

Market design: Allocation and information

Central question so far:

- Allocation in markets—'who gets what'?
- What are good outcomes, and how do we find them?
 - Specific setting: Matching markets "without money" (non-transferable utilities)

Switching gears:

- Information in markets—'who knows what'?
- How does information structure affect outcomes?
 - Specific setting: Matching markets with money

Market structure

- Key features in our markets until now:
 - ullet Ordinal instead of cardinal valuations: Rank-order preferences instead of v_{ij}
 - New questions about what are good allocations (and how to implement them)
 - No transferable utilities: No currency (e.g. money) that can be traded amongst agents
 - Centralized authority making allocations
- Next: (Non-centralized) matching markets with money

Matching markets with money

Recap: Matching markets with money (Networks I)

- Market with n agents (buyers) and n items
- Buyer i has cardinal valuation v_{ij} for item j
- Two immediate questions:
 - What 'should' happen: What is a good allocation of items to buyers?
 - Market without central authority: How to resolve contention amongst buyers over items?

Markets with money: Market-clearing prices

First, Q2: How to resolve contention amongst buyers over items?

- Market-clearing prices: Let p_j denote price for item j
 - Suppose every buyer i points to (all) items that maximize $v_{ij} p_j$: Consider induced bipartite graph
 - \bullet (Informally:) p_j are market-clearing prices if induced graph has perfect matching
- Theorem: For any set of buyer valuations $v_{ij} \ge 0$, there exists a set of market-clearing prices. (!)
- Observe magic of money: Prices remove contention in buyers' preferences over items!

Markets with money: Market-clearing prices

- Market with 3 buyers and 3 items; buyers' values are:
 - ① Buyer 1: (5,7,1)
 - ② Buyer 2: (2, 3, 1)
 - Buyer 3: (5,4,4)
 [A] Yes [B] No

Is price vector p = (2, 2, 1) market-clearing? What about p' = (1, 3, 1)?

- Again, there are 3 buyers and 3 items; now buyer values are:
 - Buyer 1: (12, 4, 2)
 - ② Buyer 2: (12, 4, 2)
 - Buyer 3: (12, 4, 2)

Is price vector (12,4,2) market-clearing? What about (11,4,1)? What is the set of all possible market-clearing prices?

Markets with money: Market-clearing prices

On to Q1 next: What 'should' happen?

- Good outcomes: Choose allocation that maximizes total value $\sum_i v_{ij(i)}$
 - "Welfare maximization": Same as maximizing total value $\sum_i v_{ij(i)}$
 - Allocation: Buyer i gets item j(i)
- How to 'implement' good allocations (without central authority)?
- Theorem (Optimality of Market-Clearing Prices): For any set of market-clearing prices, a perfect matching in the induced graph achieves the maximum total value.
 - Welfare maximization: Decentralized implementation via prices!

Information structure in markets

- Market-clearing prices, welfare maximization address allocation
- But we want to study information: How to proceed?
 - 1. Subtract a feature (simplify): Make buyers identical
 - 2. Add a feature: Consider sellers instead of items
 - Sellers are agents making choices
 - Seller (of item) j values his item at sj
 - Seller's choice: Whether or not to part with item
- Questions to ask:
 - What should happen?
 - Can information structure affect what does happen?

But before that, an aside...

Markets with and without money: Are they at all related?

- Does cardinal valuations (v_{ij}) model relate at all to ordinal preferences?
- One connection: Recall house allocation model (A, H, \succ)
 - Agent a_i has rank-order preferences \succ_i over houses h_i
- Valuations v_{ij} in markets with money relate to rank-order preferences ≻_i
 - $h_j \succeq_i h_{j'}$ iff $v_{ij} \geq v_{ij'}$
 - (Let's just think about strict preferences, for simplicity: Assume $v_{ij} \neq v_{ij'}$ for all i)

An aside: Markets with and without money

- Does Pareto-efficiency in (A, H, \succ) have any relation to welfare maximization with cardinal preferences v_{ij} ?
- Yes! Consider any market (A, H, \succ) ':
 - **Proposition 1**: No matching which is Pareto-dominated in (A, H, \succ) can be welfare-maximizing for *any* valuation profile v_{ij} that induces preferences \succ .
 - **Proposition 2**: For every Pareto-efficient matching M in (A, H, \succ) , there is a valuation profile $v_{ij}(M)$ (agreeing with ordinal preferences \succ) such that M is a welfare-maximizing allocation for v_{ij} .

(Proofs omitted)

Back to information structure in markets

- Market-clearing prices, welfare maximization: Allocation
- But we want to study information: How to proceed?
 - 1. Simplify: Make buyers identical
 - 2. *Modify*: Consider *sellers* instead of items
 - Sellers are agents making choices
 - Seller (of item) j values his item at s_j
 - Seller's choice: Whether or not to part with item
- Questions to ask:
 - What should happen?
 - Can information structure affect what does happen?

The basics of trade

'What should happen': Understanding the basics of trade

- First consider just one seller and one buyer: When is trade a good idea?
- Suppose seller values her item at v_s , buyer values at v_b
- Basics: What does 'value' mean?
 - Buyer value v_b :
 - Prefer to get item, paying p, to not buying if $p < v_b$
 - ullet Prefer not getting item and keeping money for all $p>v_b$
 - Indifferent at $p = v_b$
 - Seller value v_s :
 - Prefer keeping item to getting money for all $p < v_s$
 - Prefer to sell item and receive p over keeping item if $p>v_s$
 - Indifferent at $p = v_s$

The basics of trade

- Seller with value v_s for her item; buyer with value v_b
- When is trade efficient?
 - No trade: Seller's utility is v_s $(+W_s)$, buyer's is 0 $(+W_b)$
 - After trade at price p: Seller's utility is p ($+W_s$), buyer's utility is $v_b p$ ($+W_b$)
- Outcome $(p, v_b p)$ Pareto-dominates $(v_s, 0)$ if
 - $p \ge v_s$; $v_b p \ge 0$; and at least one inequality is strict
 - This happens if price p satisfies $v_s \le p$ and $p \le v_b$ (with one strict inequality)
- ullet Trade is efficient (*Pareto-dominates* no-trade) if $v_s < v_b$
 - Pareto-dominance is everywhere: Very general concept!
 - 'Gains from trade': $v_b v_s$

'What should happen', more generally

Moving on beyond one buyer and one seller:

- Choose allocation to maximize total gains from trade $\sum_{i} v_{ij(i)} s_{j(i)}$
 - 'Core of assignment game' (Shapley-Shubik 1972): Not in syllabus!
- For our purpose: A very special case of general model will suffice

Coming up next:

 Understanding information asymmetry: The Market for Lemons model (Akerlof)