Alberi e Grafi

Sommario

- Definizione di Grafi e Alberi
- Implementazione di Grafi e Alberi

Grafi orientati

- Un grafo orientato (o diretto) G è una coppia (V,E) dove V è un insieme finito detto dei vertici e E è una relazione binaria su V che forma l'insieme degli archi.
- Gli archi sono delle coppie ordinate di vertici.

Grafi non orientati

- Un grafo non orientato è un grafo in cui gli archi sono coppie non ordinate di vertici, cioè un arco fra i vertici u,v è un insieme di due elementi {u,v} piuttosto che una coppia (u,v)
- Tuttavia si indica l'arco sempre con notazione (u,v)

Arco

- Sia (u,v) è un arco di un grafo orientato, si dice che:
 - l'arco esce dal vertice u
 - l'arco entra nel vertice v
- Un arco (u,v) di un un grafo non orientato si dice che è incidente sui vertici v e u
- Si dice che v è adiacente a u
 - in un grafo non orientato la relazione di adiacenza è simmetrica
 - in un grafo orientato v è adiacente a u, ma non è vero il viceversa, e si indica con la notazione u→v

Grado

- Il grado di un vertice in un grafo non orientato è il numero di archi incidenti sul vertice
- In un grafo orientato il grado uscente (entrante) di un vertice è il numero di archi uscenti (entranti) dal vertice

Grado di v=5

Grado entrante di v=3 Grado uscente di v=2

Cammino

- Un cammino da un vertice a ad un vertice b in un grafo G=(V,E) è una sequenza di vertici
 - $< v_0, v_1, \dots, v_k >$ tali che
 - > a= v₀
 - b= v_k
 - $(v_{i-1}, v_i) \in E \text{ per } i=1,...,k$

Ciclo

- La lunghezza di un cammino è il suo numero di archi
- ► Un cammino $\langle v_0, v_1, ..., v_k \rangle$ è un ciclo se $v_0 = v_k$
- Un grafo senza cicli si dice aciclico

Grafi connessi

Un grafo non orientato è connesso se ogni coppia di vertici è collegata con un cammino

Grafo non connesso: non esiste cammino da 3 a 2

Alberi

Un albero è:

un grafo non orientato, connesso e aciclico

- Un albero radicato è un albero in cui si distingue un vertice (chiamato radice) dagli altri vertici
- I vertici in un albero sono chiamati nodi

Antenati e discendenti

- Sia x un nodo di un albero con radice r: qualunque nodo x sull'unico cammino da r a y è chiamato antenato di y e y si dice discendente di x
- Il sottoalbero radicato in x è l'albero indotto dai discendenti di x, radicato in x (ovvero l'albero formato da tutti i nodi discendenti di x, x stesso e relativi archi)

Radice e orientamento

- Una radice induce un orientamento
- Si può cioè predicare l'attributo di predecessore e successore su ogni nodo
- Si rappresenta l'orientamento con frecce

Relazione fra nodi

- Se l'ultimo arco di un cammino dalla radice r ad un nodo x è l'arco (x,y) allora x è il padre di y e y è il figlio di x
- Il numero di figli di un nodo x è il grado di x
- Due nodi con lo stesso padre si dicono fratelli

Nodi particolari

- La radice è l'unico nodo che non ha padre
- Un nodo senza figli si dice nodo esterno o foglia
- Un nodo non foglia è un nodo interno

r=radice x=nodo interno y=foglia

Altezza

- La lunghezza di un cammino da r a x è la profondità di x
- La profondità massima di un qualunque nodo di un albero è l'altezza dell'albero

Alberi ordinati e posizionali

- Un albero ordinato è un albero radicato in cui i figli di ciascun nodo sono ordinati (cioè si distingue il primo figlio, il secondo, etc)
- Un alberi si dice posizionale se i figli dei nodi sono etichettati con interi positivi distinti (l'i-esimo figlio di un nodo è assente se nessun figlio è etichettato con l'intero i)

Alberi k-ari

- Un albero k-ario è un albero posizionale in cui per ogni nodo tutti i figli con etichetta più grande di k sono assenti
- Un albero k-ario completo è un albero k-ario in cui tutte le foglie hanno la stessa profondità e tutti i nodi interni hanno grado k

Alberi

- Il numero di foglie di un albero k-ario è:
 - la radice ha k figli a profondità 1
 - ognuno dei figli ha k figli a profondità 2 per un totale di k.k foglie
 - a profondità h si hanno kh foglie
- Il numero di nodi interni di un albero k-ario completo di altezza h è:

$$1+k+k^2+...+k^{h-1}=\sum_{i=0}^{k}k^i=(k^h-1)/(k-1)$$

Alberi binari

- Un albero binario è una struttura definita su un insieme finito di nodi che:
 - non contiene nessun nodo, oppure
 - è composto da tre insiemi disgiunti di nodi: un nodo radice, un albero binario chiamato sottoalbero sinistro e un albero binario chiamato sottoalbero destro
- Un albero binario che non contiene nessun nodo è detto albero vuoto o albero nullo (denotato con NIL)
- Se il sottoalbero sinistro (destro) non è vuoto allora la sua radice è detta figlio sinistro (destro)
- Se un sottoalbero è l'albero nullo si dice che il figlio è assente o mancante

Alberi binari

- Un albero binario
 - non è un albero ordinato con nodi con grado al più due
 - ma è un albero posizionale con nodi con grado al più due
- In un albero ordinato non si distingue fra figlio destro o sinistro (ma si considera solo il numero di figli)
- ..mentre in albero posizionale sì
- Un albero binario completo ha 2^h -1 nodi interni

Implementazione alberi binari

- Gli alberi si rappresentano ricorrendo agli stessi metodi usati per rappresentare le liste
- In genere si usano strutture dati con puntatori
- Per gli alberi binari si usano strutture dati per rappresentare i nodi che hanno un campo key e 2 o 3 puntatori ad altri nodi (si può anche non utilizzare il puntatore a padre se non e' necessario)

```
struct Node{
   int key;
   Node* p;
   Node * left, * right;
};
```

Implementazione alberi binari

- Se x è un nodo allora
 - se p[x]=NIL il nodo è la radice dell'albero
 - se left[x]=NIL (right[x]=NIL) allora il nodo non ha figlio sinistro (destro)
- Si mantiene il puntatore alla radice dell'albero T memorizzandola nell'attributo root[T]
 - se root[T]=NIL l'albero è vuoto

```
class Tree{
    struct Node{
        int key;
        Node* p;
        Node * left, * right;
    };

    Node * root;
};
```

Visualizzazione alberi binari

Implementazione alberi

Se vogliamo rappresentare alberi con un numero illimitato di figli potremmo pensare di riservare un numero max di link ai figli come:

- Ma in questo modo dobbiamo porre un limite sul massimo grado di un nodo
- Inoltre viene sprecata molta memoria per rappresentare i puntatori NIL

Implementazione alberi

- Per rappresentare alberi con un numero illimitato di figli conviene usare la rappresentazione figlio-sinistro fratello-destro
- Ogni nodo conserva il campo key e puntatore a padre
- Invece di avere un puntatore per ogni figlio i nodi hanno solo due puntatori:
 - puntatore al figlio più a sinistra
 - puntatore al fratello immediatamente a destra

Visualizzazione

fratello destro figlio sinistro

Visualizzazione

Grafi

- I grafi sono strutture dati molto diffuse in informatica
- Vengono utilizzati per rappresentare reti e organizzazioni dati complesse e articolate
- Per elaborare i grafi in genere è necessario visitarne in modo ordinato i vertici
- Vedremo a questo proposito due modi fondamentali di visita: per ampiezza e per profondità

Nota sulla notazione asintotica

- Il tempo di esecuzione di un algoritmo su un grafo G=(V,E) viene dato in funzione del numero di vertici |V| e del numero di archi |E|
- Utilizzando la notazione asintotica adotteremo la convenzione di rappresentare |V| con il simbolo V e |E| con E: quando diremo che il tempo di calcolo è O(E+V) vorremo significare O(|E|+|V|)

Rappresentazione di un grafo

- Vi sono due modi per rappresentare un grafo:
 - collezione (array) di liste di adiacenza
 - matrice di adiacenza
- Si preferisce la rappresentazione tramite liste di adiacenza quando il grafo è sparso, cioè con |E| molto minore di |V|²
- Si preferisce la rappresentazione tramite matrice di adiacenza quando, al contrario, il grafo è denso o quando occorre alta efficienza nel rilevare se vi è un arco fra due vertici dati

Liste di adiacenza

- Si rappresenta un grafo G=(V,E) con un vettore Adj di liste, una lista per ogni vertice del grafo
- Per ogni vertice u, Adj[u] contiene tutti i vertici v adiacenti a u, ovvero quei vertici v tali per cui esiste un arco (u,v)∈ E
- In particolare questo insieme di vertici è memorizzato come una lista
- L'ordine dei vertici nella lista è arbitrario

Grafo non orientato con liste di adiacenza

Grafo orientato con liste di adiacenza

Proprietà liste di adiacenza

- Se un grafo è orientato allora la somma delle lunghezze di tutte le liste di adiacenza è |E|
 - infatti per ogni arco (u,v) c'è un vertice v nella lista di posizione u
- Se un grafo non è orientato allora la somma delle lunghezze di tutte le liste di adiacenza è 2|E|
 - infatti per ogni arco (u,v) c'è un vertice v nella lista di posizione u e un vertice u nella lista di posizione v
- La quantità di memoria necessaria per memorizzare un grafo (orientato o non) è O(max(V,E)) = O(V+E)

Grafi pesati

- In alcuni problemi si vuole poter associare una informazione (chiamata peso) ad ogni arco
- Un grafo con archi con peso si dice grafo pesato
- Si dice che esiste una funzione peso che associa ad un arco un valore

$$w: E \rightarrow R$$

Ovvero un arco (u,v) ha peso w(u,v)

Grafi pesati con liste di adiacenza

Si memorizza il peso w(u,v) insieme al vertice v nella lista per il vertice u

Grafo orientato pesato con liste di adiacenza

Svantaggi liste di adiacenza

- Per sapere se un arco (u,v) è presente nel grafo si deve scandire la lista degli archi di u
- Se si deve accedere spesso a tutti i vertici adiacenti di un dato vertice e' il metodo piu' conveniente

Matrici di adiacenza

- Per la rappresentazione con matrici di adiacenza si assume che i vertici siano numerati in sequenza da 1 a |V|
- Si rappresenta un grafo G=(V,E) con una matrice A=(a_{ii}) di dimensione |V|x|V| tale che:

```
a_{ij}=1 se (i,j) \in E a_{ii}=0 altrimenti
```

Grafo non orientato con matrice di adiacenza

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	01101	0
4	0	1	1	0	1
5	1	1 0 1 1	10	1	1 1 0 1 0

Grafo orientato

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0 0 0 0 0 0	0	0	0	0	1

Proprietà matrice di adiacenza

- La rappresentazione di un grafo G=(V,E) con matrice di adiacenza richiede memoria Θ(V²) indipendentemente dal numero di archi
- La matrice di adiacenza di un grafo non orientato è simmetrica ovvero a_{ii}= a_{ii}
- Per un grafo non orientato si può allora memorizzare solo i dati sopra la diagonale (diagonale inclusa), riducendo della metà lo spazio per memorizzare la matrice

Grafo non orientato con matrice di adiacenza

	1	2	3	4	5
1	0	1 ∣0	0	0	1 1
12345			1 0	1	Ö
4				0	1
5					0

Grafi pesati con matrici di adiacenza

- Si memorizza il peso nell'elemento a_{ii} invece di 1
- Se l'arco non esiste si indica con 0 o ∞ o NIL a secondo del problema

Grafo orientato pesato con matrice di adiacenza

Vantaggi della matrice di adiacenza

- La rappresentazione con matrice di adiacenza è semplice
- Se il grafo è piccolo non vi è sostanziale differenza di efficienza con la rappresentazione con liste di adiacenza
- Per grafi non pesati si può rappresentare ogni singolo elemento della matrice non con una parola ma con un singolo bit