

AD-A102 672 NEW JERSEY DEPT OF ENVIRONMENTAL PROTECTION TRENTON F/G 13/13
NATIONAL DAM SAFETY PROGRAM. KAMPFKE LAKE DAM (NJ00772), PASSAIC--ETC(U)
JUL 81 W A GUINAN DACW61-79-C-0011
UNCLASSIFIED DAEN/NAP-53842/NJ00772-81/ NL

UNCLASSIFIED

DAEN/NAP-53842/NJ80772-81/ NI

1
ADA102672

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

LEVEL 1

PASSAIC RIVER BASIN
TRIBUTARY TO PEQUANNOCK RIVER,
PASSAIC COUNTY
NEW JERSEY

KAMPFE LAKE DAM NJ 00772

PHASE 1 INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

THIS DOCUMENT IS NOT DRAFT OR PRACTICAL.
THE COPY FURNISHED TO DTIC CONTAINED A
SIGNIFICANT NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

DTIC
SELECTED
S D
AUG 11 1981

DEPARTMENT OF THE ARMY

Philadelphia District
Corps of Engineers
Philadelphia, Pennsylvania

REF. NO: DAEN(NAP- 53842 / NJ 00772 - 8/07)

JULY 1981

DTIC FILE COPY

818 10 100

NOTICE

**THIS DOCUMENT HAS BEEN REPRODUCED
FROM THE BEST COPY FURNISHED US BY
THE SPONSORING AGENCY. ALTHOUGH IT
IS RECOGNIZED THAT CERTAIN PORTIONS
ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE
AS MUCH INFORMATION AS POSSIBLE.**

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.**

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER DAEN/NAP-53842/NJ00772-81/07	2. GOVT ACCESSION NO. AD-A102 672	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) Phase I Inspection Report National Dam Safety Program Kampfe Lake Dam, NJ00772 Passaic County, NJ	5. TYPE OF REPORT & PERIOD COVERED FINAL	
7. AUTHOR Guinan, Warren, P.E. / Guinan	6. PERFORMING ORG. REPORT NUMBER DACPW61-79-C-0011	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Anderson-Nichols 150 Casueway St. Boston, Mass. 02114	National Dam Safety Program. Kampfe Lake Dam (NJ00772), Passaic River Basin, Tributary to Pequannock River, Passaic County, New Jersey. Phase 1 Inspection Report.	
11. CONTROLLING OFFICE NAME AND ADDRESS NJ Department of Environmental Protection Division of Water Resources P.O. Box CN029 Trenton, NJ 08625	12. REPORT DATE July 1981	13. NUMBER OF PAGES 50
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) U.S. Army Engineer District, Philadelphia Custom House, 2d & Chestnut Streets Philadelphia, PA 19106	15. SECURITY CLASS. (of this report) Unclassified	
	16a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES Copies are obtainable from National Technical Information Service, Springfield, Virginia 22151.		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Dams Embankments Visual Inspection Structural Analysis	National Dam Safety Program Kampfe Lake Dam, NJ Pequannock River, NJ Passaic River Basin, NJ	Spillways Seepage Outlet works
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report cites results of a technical investigation as to the dam's adequacy. The inspection and evaluation of the dam is as prescribed by the National Dam Inspection Act, Public Law 92-367. The technical investigation includes visual inspection, review of available design and construction records, and preliminary structural and hydraulic and hydrologic calculations, as applicable. An assessment of the dam's general condition is included in the report.	410871	

IN REPLY REFER TO
NAPEN-N

DEPARTMENT OF THE ARMY
PHILADELPHIA DISTRICT, CORPS OF ENGINEERS
CUSTOM HOUSE - 2 D & CHESTNUT STREETS
PHILADELPHIA, PENNSYLVANIA 19106

DTIC
FILED
S AUG 11 1981 D

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification _____	
By _____	
Distribution/ _____	
Availability Codes _____	
Dist	Avail and/or Special
A	R

31 JUL 1981

Honorable Brendan T. Byrne
Governor of New Jersey
Trenton, New Jersey 08621

Dear Governor Byrne:

Inclosed is the Phase I Inspection Report for Kampfe Lake Dam in Passaic County, New Jersey which has been prepared under authorization of the Dam Inspection Act, Public Law 92-367. A brief assessment of the dam's condition is given in the front of the report.

Based on visual inspection, available records, calculations and past operational performance, Kampfe Lake Dam, a high hazard potential structure, is judged to be in fair overall condition. The dam's spillway is considered inadequate because a flow equivalent to 23 percent of the Spillway Design Flood - SDF - would cause the dam to be overtopped. (The SDF, in this instance, is one half of the Probable Maximum Flood). The decision to consider the spillway "inadequate" instead of "seriously inadequate" is based on the determination that dam failure resulting from overtopping would not significantly increase the hazard to loss of life downstream from the dam from that which would exist just before overtopping failure. To ensure adequacy of the structure, the following actions, as a minimum, are recommended:

a. The spillway's adequacy should be determined by a qualified professional consultant engaged by the owner using more sophisticated methods, procedures and studies within six months from the date of approval of this report. Within three months of the consultant's findings remedial measures to ensure spillway adequacy should be initiated. In the interim, a detailed emergency operation plan and warning system should be promptly developed. Also, during periods of unusually heavy precipitation, around the clock surveillance should be provided.

b. Within three months from the date of approval of this report, the owner should engage a qualified professional consultant to perform the following:

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

NAPEN-N

Honorable Brendan T. Byrne

(1) Investigate the cause of the seepage adjacent to the right wingwall of the spillway and left drawdown pipe, and the soft, damp areas at the downstream toe of the dam.

(2) Investigate the cause of seepage through the mortared stone masonry spillway.

c. Within six months from the date of approval of this report, the owner should engage a qualified professional consultant to perform the following:

(1) Design the relocation of the gate valves in the 12-inch drawdown pipes to place them at or near the inlets on the upstream side of the dam.

(2) Design the installation of a 16 inch gate valve on the upstream side of the dam to control the low-level outlet.

(3) Design procedures for the removal of trees and brush and their roots from the downstream slope of the dam.

(4) Design or specify repairs for the erosion of the upstream slope of the dam and replacement of the displaced erosion protection on the upstream slope.

d. Within 30 days of the date of approval of this report the following remedial actions should be initiated.

(1) Start a program of periodic monitoring of the seepage and wet area along the toe of the downstream slope.

(2) Replace flange bolts on low level outlet pipe and paint all exposed steel.

e. Within six months from the date of approval of this report, the following remedial actions should be initiated:

(1) Remove trees and brush for a distance of 25 feet downstream from the toe of the dam or to the property line whichever is the lesser.

(2) Backfill animal burrows on the downstream slope of the embankment.

(3) Complete the replacement of the service bridge deck.

(4) Clear trees and brush from the discharge channel and on either side of the spillway discharge channel for a distance of 100 feet from the spillway or to the property line whichever is the lesser distance.

(5) Repair concrete apron at the end of left side drawdown pipe at outlet.

NAPEN-N

Honorable Brendan T. Byrne

f. The owner of the dam should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam within one year from the date of approval of this report.

g. An emergency action plan should be developed which outlines actions to be taken by the owner to minimize the downstream effects of an emergency at the dam within six months from the date of approval of this report.

A copy of the report is being furnished to Mr. Dirk C. Hofman, New Jersey Department of Environmental Protection, the designated State Office contact for this program. Within five days of the date of this letter, a copy will also be sent to Congressman Roe of the Eighth District. Under the provision of the Freedom of Information Act, the inspection report will be subject to release by this office, upon request, five days after the date of this letter.

Additional copies of this report may be obtained from the National Technical Information Services (NTIS), Springfield, Virginia 22161 at a reasonable cost. Please allow four to six weeks from the date of this letter for NTIS to have copies of the report available.

An important aspect of the Dam Inspection Program will be the implementation of the recommendations made as a result of the inspection. We accordingly request that we be advised of proposed actions taken by the State to implement our recommendations.

Sincerely,

ROGER L. BALDWIN
Lieutenant Colonel, Corps of Engineers
Commander and District Engineer

1 Incl
As stated

Copies furnished:

Mr. Dirk C. Hofman, P.E., Deputy Director
Division of Water Resources
N.J. Dept. of Environmental Protection
P.O. Box CN029
Trenton, NJ 08625

Mr. John O'Dowd, Acting Chief
Bureau of Flood Plain Regulation
Division of Water Resources
N.J. Dept. of Environmental Protection
P.O. Box CN029
Trenton, NJ 08625

KAMPFE LAKE DAM (NJ00772)

CORPS OF ENGINEERS ASSESSMENT OF GENERAL CONDITIONS

This dam was inspected on 23 April 1981 by Anderson-Nichols & Co., Inc., under contract to the State of New Jersey. The State, under agreement with the U.S. Army Engineer District, Philadelphia, had this inspection performed in accordance with the National Dam Inspection Act, Public Law 92-367.

Kampfe Lake Dam, a high hazard potential structure, is judged to be in fair overall condition. The dam's spillway is considered inadequate because a flow equivalent to 23 percent of the Spillway Design Flood - SDF - would cause the dam to be overtopped. (The SDF, in this instance, is one half of the Probable Maximum Flood). The decision to consider the spillway "inadequate" instead of "seriously inadequate" is based on the determination that dam failure resulting from overtopping would not significantly increase the hazard to loss of life downstream from the dam from that which would exist just before overtopping failure. To ensure adequacy of the structure, the following actions, as a minimum, are recommended:

a. The spillway's adequacy should be determined by a qualified professional consultant engaged by the owner using more sophisticated methods, procedures and studies within six months from the date of approval of this report. Within three months of the consultant's findings remedial measures to ensure spillway adequacy should be initiated. In the interim, a detailed emergency operation plan and warning system should be promptly developed. Also, during periods of unusually heavy precipitation, around the clock surveillance should be provided.

b. Within three months from the date of approval of this report, the owner should engage a qualified professional consultant to perform the following:

(1) Investigate the cause of the seepage adjacent to the right wingwall of the spillway and left drawdown pipe, and the soft, damp areas at the downstream toe of the dam.

(2) Investigate the cause of seepage through the mortared stone masonry spillway.

c. Within six months from the date of approval of this report, the owner should engage a qualified professional consultant to perform the following:

(1) Design the relocation of the gate valves in the 12-inch drawdown pipes to place them at or near the inlets on the upstream side of the dam.

(2) Design the installation of a 16 inch gate valve on the upstream side of the dam to control the low-level outlet.

(3) Design procedures for the removal of trees and brush and their roots from the downstream slope of the dam.

(4) Design or specify repairs for the erosion of the upstream slope of the dam and replacement of the displaced erosion protection on the upstream slope.

d. Within 30 days of the date of approval of this report the following remedial actions should be initiated.

(1) Start a program of periodic monitoring of the seepage and wet area along the toe of the downstream slope.

(2) Replace flange bolts on low level outlet pipe and paint all exposed steel.

e. Within six months from the date of approval of this report, the following remedial actions should be initiated:

(1) Remove trees and brush for a distance of 25 feet downstream from the toe of the dam or to the property line whichever is the lesser.

(2) Backfill animal burrows on the downstream slope of the embankment.

(3) Complete the replacement of the service bridge deck.

(4) Clear trees and brush from the discharge channel and on either side of the spillway discharge channel for a distance of 100 feet from the spillway or to the property line whichever is the lesser distance.

(5) Repair concrete apron at the end of left side drawdown pipe at outlet.

f. The owner of the dam should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam within one year from the date of approval of this report.

g. An emergency action plan should be developed which outlines actions to be taken by the owner to minimize the downstream effects of an emergency at the dam within six months from the date of approval of this report.

APPROVED:

ROGER L. BALDWIN

Lieutenant Colonel, Corps of Engineers
Commander and District Engineer

DATE:

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

Name of Dam: Kampfe Lake
Identification No.: Fed ID No. NJ00772
State Located: New Jersey
County Located: Passaic
Stream: Tributary to Pequannock River
River Basin: Passaic
Date of Inspection: April 23, 1981

ASSESSMENT OF GENERAL CONDITIONS

Kampfe Lake Dam is an 85-year old earth filled dam with a stone-masonry and concrete capped ungated spillway that is located near the center of the dam; the structure is in fair overall condition. The dam is small in size and should retain its high hazard classification. Several large trees are growing on the downstream slope in the left and right thirds of the dam. Considerable erosion and sloughing is noticeable near the crest on the downstream slope to the right of the spillway. The area at the downstream toe of the dam is damp and soft and some seepage water was discharging near the toe adjacent to the left drawdown pipe outlet. Two 12-inch cast iron pipes with high-level inlets serving as drawdowns, are located on each end 50 feet from the spillway retreat channel. A 16-inch cast iron pipe provides the low-level outlet located just left of the spillway. All three of these pipes have gate valves located on the downstream slope or toe of the dam. The spillway can pass 22% of the 1/2 PMF test flood without over-topping; therefore it is considered inadequate.

It is recommended that the owner retain the services of a professional engineer, qualified in the design and construction of dams, to accomplish the following in the time periods specified: Starting very soon: Investigate the cause of the seepage adjacent to the right wingwall of the spillway and investigate the cause of seepage through the mortared stone masonry spillway. In the near future: Remove the trees and brush and their roots from the downstream slope of the dam; design or specify repairs for the erosion of the upstream slope of the dam and replacement of displaced erosion protection on the upstream slope; relocate the gate valves in the 12-inch drawdown pipes to place them at or near the inlets on the upstream side of the dam; and install a 16-inch gate valve on the upstream side of the dam to control the low-level outlet; and perform a more detailed hydrologic/hydraulic evaluation of the inadequacy of the spillway and design and implement necessary corrective measures.

It is further recommended that the owner accomplish the following tasks of operation and maintenance procedures: Immediately: Start a program of periodic monitoring of the seepage and wet area along

the toe of the downstream slope; and replace flange bolts on the low-level outlet pipe and paint all exposed steel. Starting soon: develop an emergency action plan which outlines actions taken by the owner to minimize downstream effects of an emergency at the dam. In the near future: develop written operating procedures and develop a periodic maintenance plan to ensure the safety of the dam; establish a formal surveillance program for use during and immediately following periods of heavy rainfall and also a warning program to follow in case of emergency conditions; remove trees and brush for a distance of 25 feet downstream from the toe of the dam or to the property line, whichever is the lesser; and backfill animal burrows on the downstream slope of the embankment; and complete the replacement of the service bridge deck. In the future: clear trees and brush from the discharge channel and on either side of the spillway discharge channel for some distance from the spillway; and repair concrete apron at the end of left side drawdown pipe at outlet.

Warren A. Guinan
Warren A. Guinan, P.E.
Project Manager
New Jersey No. 16848

17 February 1981

OVERVIEW PHOTO
KAMPF E LAKE DAM

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test Flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonable possible storm runoff), or fractions thereof. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

CONTENTS

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY REPORT

KAMPFE LAKE DAM FED ID NO. NJ00772 NJ NO. 22-180

SECTION 1	PROJECT INFORMATION	<u>Page</u>
	1.1 <u>General</u>	1
	1.2 <u>Project Description</u>	1
	1.3 <u>Pertinent Data</u>	3
SECTION 2	ENGINEERING DATA	
	2.1 <u>Design</u>	5
	2.2 <u>Construction</u>	5
	2.3 <u>Operation</u>	5
	2.4 <u>Evaluation</u>	5
SECTION 3	VISUAL INSPECTION	6
SECTION 4	OPERATIONAL PROCEDURES	
	4.1 <u>Procedures</u>	8
	4.2 <u>Maintenance of Dam</u>	8
	4.3 <u>Maintenance of Operating Facilities</u>	8
	4.4 <u>Warning System</u>	8
	4.5 <u>Evaluation of Operational Adequacy</u>	8
SECTION 5	HYDRAULIC/HYDROLOGIC	9
SECTION 6	STRUCTURAL STABILITY	10
SECTION 7	ASSESSMENT, RECOMMENDATIONS/REMEDIAL MEASURES	
	7.1 <u>Assessment</u>	11
	7.2 <u>Recommendations/Remedial Measures</u>	11
FIGURES	1. Regional Vicinity Map	
	2. Essential Project Features	
	3. Essential Project Features	
APPENDICES	1. Engineering and Experience Data	
	2. Check List Visual Inspection	
	3. Photographs	
	4. Hydrologic Computations	
	5. HEC-1 OUTPUT	
	6. References	

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY INSPECTION PROGRAM
KAMPFE LAKE DAM
FED ID NO. #NJ00772 NJ NO. 22-180

SECTION 1
PROJECT INFORMATION

1.1 General

a. Authority. Authority to perform the Phase I Safety Inspection of Kampfe Lake Dam was received from the State of New Jersey, Department of Environmental Protection, Division of Water Resources by letter dated 12 December 1980 under Basic Contract No. FPM-39 and Contract No. A01093 dated 10 October, 1979. This Authority was given pursuant to the National Dam Inspection Act, Public Law 92-367 and by agreement between the State and the U.S. Army Engineer District, Philadelphia. The inspection discussed herein was performed by Anderson-Nichols & Company, Inc.

b. Purpose: The purpose of the Phase I Investigation is to develop an assessment of the general conditions with respect to the safety of Kampfe Lake Dam and appurtenances. Conclusions are based upon available data and visual inspection. The results of this study are used to determine any need for emergency measures and conclude if additional studies, investigations, and analyses are necessary and warranted.

1.2 Project Description

a. Description of Dam and Appurtenances. Kampfe Lake Dam is a 180-foot long rock and earthfill dam with a concrete core. The hydraulic height is 9 feet and the structural height is 10.8 feet. The downstream slope is approximately 2H:1V and the upstream slope is approximately 6H:1V. A 31-foot long broad-crested concrete spillway is located near the center of the dam. The downstream face of the spillway is of stone masonry and has a vertical drop. An undecked bridge spans the spillway. The dam has a low-level 16-inch diameter cast-iron outlet pipe through the base of the dam. Two 12-inch diameter flanged cast-iron draw down pipes with trash racks are located approximately 50 feet on either side of the spillway discharge downstream of the toe.

b. Location. The dam is located in Bloomingdale Borough, Passaic County, New Jersey on a Tributary to the Pequannock River. It is located at north latitude 41° 2.1' and west longitude 74° 20.9' on the Wanque, N.J. Quadrangle. The dam can be reached by taking the N.J. Turnpike to Rt. 46 west in

Ridgefield Park; take Rt. 46 to Rt. 23 north in Paterson; take the Newark-Pompton Turnpike in Riverdale north to the Hamburg-Paterson Turnpike; turn left and proceed for about 2 miles and turn right onto Star Lake Road. Kampfe Lake Dam is about 1.5 miles north on Star Lake Road. A location map is given in Figure 1.

c. Size Classification. Kampfe Lake Dam is classified as being small in size on the basis of storage at the dam crest of 215 acre-feet, which is less than 1000 acre-feet but more than 12.5 acre-feet, and on the basis of its structural height of 12.5 feet, which is less than 40 feet, in accordance with criteria given in the Recommended Guidelines for Safety Inspection of Dams.

d. Hazard Classification. Kampfe Lake Dam is immediately upstream of Star Lake Upper Dam. The latter is classified as high hazard because failure would lead to overtopping of Star Lake Lower Dam. A camp ground is located downstream of Star Lake Lower Dam and the loss of more than a few lives is possible. The failure of Kampfe Lake Dam would also overtop both Star Lake upper and lower dams, thus it is also designated as high hazard.

e. Ownership. The dam is owned by the Kampfe Lake Association. Mr. Joseph Gara, Kampfe Lake Association, Inc., Box 10, Bloomingdale, New Jersey 07403 is the caretaker of the dam. He may be reached at the above address.

f. Purpose. Kampfe Lake Dam was built for recreational purposes.

g. Design and Construction History. No information regarding the original plan or design of the dam was available. However, the Kampfe Lake Association estimates that the dam was built between 1895 and 1900. In 1974, two twelve inch pipes and valves were installed for flood control and plans for this work were made available.

h. Normal Operational Procedure. Mr. Joseph Gara, caretaker, is required to check the dam daily. He lives at the lake year round and operates the gates as necessary during storms.

i. Site Geology. No site specific geologic information (such as borings) was available at the time the dam was inspected. Information derived from the Geologic Map of New Jersey (Kummel and Johnson, 1912) and Glacial Drift Map of New Jersey (Salisbury, Kummel, Peet and Whitson, 1902) indicates soils within the immediate site consist of till of glacial origin.

The depth to bedrock at the dam site is unknown. Bedrock was observed in general outcrops on the right abutment during inspection of this dam. The previously mentioned map indicates that bedrock in the area consists of granitoid gneiss of Precambrian age.

1.3 Pertinent Data

a. Drainage Area

0.85 square miles

b. Discharge at Damsite (cfs)

Maximum flood at damsite - unknown

Total ungated spillway capacity at maximum pool elevation - 201

c. Elevation (ft. above NGVD)

Top of dam - 536.8

Design surcharge (1/2 PMF) - 538.3

Recreation pool (at time of inspection) - 535.0

Spillway crest - 535.0

Streambed at centerline of spillway - 526.0

Maximum tailwater (estimated)-530.6

d. Reservoir (feet)

Length of maximum pool - 2700 (estimated)

Spillway crest - 2500

e. Storage (acre-feet)

Spillway crest - 154

Design surcharge (1/2 PMF) - 272

Top of dam - 215

f. Reservoir Surface (acres)

Top of dam - 40 (estimated)

Spillway crest - 25.6

g. Dam

Type - earthfill and rockfill

Length - 180 feet

Height - 10.8 feet (hydraulic)

- 12.5 feet (structural)

Top width - 12 feet

Side slopes - upstream 6H:1V, downstream 2H:1V

Zoning - unknown

Impervious core - concrete

Cutoff - unknown

Grout curtain - unknown

h. Spillway

Type - Broad-crested concrete drop spillway with a stone masonry vertical downstream face.

Length of weir - 31 feet

Crest elevation - 535' NGVD

Low level outlet - one 16-inch cast-iron pipe downstream invert elevation 526.5' NGVD; upstream invert elevation 528.0' NGVD (estimated)

U/S Channel - Kampfe Lake

D/S Channel - Tributary to Pequannock River

i. Regulating Outlets

Type - Two 12-inch cast-iron, drawdown pipes; upstream invert elevations 532.7 feet NGVD left and 532.9' NGVD right

Length - 70' feet each

Access - Along crest of dam; all valves are located on downstream face and toe of dam.

SECTION 2
ENGINEERING DATA

2.1 Design

No original plans, hydraulic or hydrologic data for Kampfe Lake Dam were found. However, plans and the dam application (No. 634) for the installation of the 12-inch drawdown pipes in 1974 were made available.

2.2 Construction

No data concerning the original construction of Kampfe Lake Dam were disclosed.

2.3 Operation

The gates are regulated by Mr. Joseph Gara, caretaker for the Kampfe Lake Association.

2.4 Evaluation

- a. Availability. A search of the New Jersey Department of Environmental Protection files and contact with a representative of the owner of the dam revealed adequate information. All available information was retrieved.
- b. Adequacy. Data obtained from visual observation and the 1974 plans were adequate to complete this Phase 1 Inspection Report.

SECTION 3
VISUAL INSPECTION

3.1 Findings

a. Dam. The crest of the dam is partially covered with grass with many areas worn bare because of pedestrian traffic. Some erosion and slumping has occurred on the upstream face which has caused displacement of portions of the riprap cover.

Considerable erosion and sloughing near the crest has occurred on the downstream slope to the right of the spillway. The surface is covered with grass and small brush. Several large trees are growing on the slope to the right of the right (west) drawdown pipe and to the left of the left (east) pipe. The area at the downstream toe of the dam is damp and soft and some seepage water was discharging near the toe adjacent to the left drawdown pipe.

Several small animal burrows were observed on the downstream slope.

b. Appurtenant Structures. The upstream concrete ungated spillway wingwalls show evidence of vertical displacement of up to 1.5 inches as noted on the left side of the spillway. Downstream from the spillway crest, the wingwalls are comprised of mortared masonry stone blocks. The masonry wall has collapsed near the toe on the righthand side. Seepage was noted flowing from between the blocks near the base of the wall. The flow varied in color from clear to slightly cloudy with no evidence of suspended fines. Several large stone blocks were observed on the bottom of the discharge channel near the toe of the vertical downstream face of the spillway which may be the remnant of a spillway apron. The wide crest of the concrete spillway is generally spalled and eroded exposing the coarse aggregate. Numerous leaks were observed in the downstream face of the spillway (mortared, masonry). The twin steel beam set in place for the service bridge are surface rusted.

The low level outlet valve located adjacent to the spillway is located on the downstream end of the outlet pipe. All flange bolts except four (4) are badly corroded. In addition, the valves for the 12-inch drawdown pipes are both located about halfway along the pipes on the downstream face of the dam.

c. Reservoir Area. The watershed above the lake is gently to moderately sloping and wooded. Slopes on the shore of the lake appear stable and some cottages are located near the waterline. No evidence of significant sedimentation was observed.

d. Downstream Channel. The channel meanders downstream from the spillway and erosion has occurred on the right and left sides of the channel for a distance of approximately 200 to 300 feet. Trees are growing within the confines of the channel as well as on the banks. The channel discharges into Upper Star Lake Reservoir.

SECTION 4
OPERATIONAL PROCEDURES

4.1 Procedures

No formal operating procedures were revealed. However, the caretaker is required to visit the dam daily. He operates the gate valves as necessary during storms.

4.2 Maintenance of Dam

No formal maintenance procedures for the dam were found.

4.3 Maintenance of Operating Facilities

No formal maintenance procedures for the operating facilities were discovered.

4.4 Warning System

No description of any warning system was found.

4.5 Evaluation of Operational Adequacy

Because of the lack of formal operation and maintenance procedures, the remedial measures described in Section 7.2 should be implemented as described.

SECTION 5
HYDROLOGIC/HYDRAULIC

5.1 Evaluation of Features

a. Design Data. Because no data were revealed, an evaluation could not be performed.

b. Experience Data. No experience data were found.

c. Visual Observation. The structural condition of the spillway is described in Section 3. An additional hydraulic observation is that the three gate valves of the drawdown and low-level pipes are located on the downstream side of the dam. Should one or more of these pipes rupture, the water under pressure within the dam could cause a breach or serious erosion of the embankment.

d. Kampfe Lake Dam Overtopping Potential. The hydraulic/hydrologic evaluation for the dam is based on a selected Spillway Design Flood (SDF) equal to one-half the Probable Maximum Flood (PMF) in accordance with the range of test floods given in the evaluation guidelines, for dams classified as high hazard and small in size. The PMF was determined by application of a 24-hour Probable Maximum Storm (PMS) of 27.0 inches to the SCS dimensionless unit hydrograph. Hydrologic computations are given in Appendix 4. The routed half-PMF peak discharge for the subject drainage area is 2279 cfs.

Water will rise to a depth of 1.8 foot above the spillway crest before overtopping the low point on the dam embankment crest. Under this head the spillway capacity is 201 cfs, which is less than the selected SDF.

Flood routing calculations indicate that Kampfe Lake Dam will be overtopped for 5.4 hours to a maximum depth of 1.5 feet under half-PMF conditions. It is estimated that the spillway can pass 22% of the half-PMF without overtopping the dam; thus, the spillway is considered inadequate.

Kampfe Lake Dam is upstream of and tandem to two dams, Star Lake Upper and Lower Dams. Star Lake Upper Dam was designated as high hazard based upon the fact that its failure would lead to the overtopping of Star Lake Lower Dam downstream. This could lead to severe damage of three structures just downstream of Star Lake Lower Dam and possible loss of more than a few lives (downstream area is a camp where the structures are used part of the year). Breach analysis of Kampfe Lake Dam results

in a stage on Star Lake Upper Dam reservoir of 533.1 feet NGVD. This is 0.1 foot higher than the 1/2 PMF stage used as test flood for Star Lake Upper Dam. The routed discharge at Star Lake Lower Dam is greater than that caused by failure of Star Lake Upper Dam. Four or five seasonally occupied cottages around Star Lake Upper Dam would have flooding up to their first floor elevations and the potential for additional property damage. Thus the flooding and damage caused by failure of Kampfe Lake Dam, being even more severe than Star Lake Upper Dam, cause it to also be classified as high hazard.

e. Drawdown Capacity. Assuming that the low-level outlet and drawdown pipes currently in place are in operable condition, it is estimated that the lake can be drained in approximately 8.7 days assuming no significant inflow. This time period is marginal, but adequate, considering the small drainage area for draining the reservoir in an emergency situation.

SECTION 6
STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability

a. Visual Observations. The soft and damp area at the downstream toe of the dam and seepage at the toe of the right wingwall of the spillway and to the left of the left gated spillway discharge pipe is indicative of seepage through and under the dam which, if not properly controlled, could lead to failure of the dam by piping or sloughing of the downstream slope. Erosion of the upstream slope of the dam which has caused displacement of the riprap at and above the waterline, which, if allowed to continue, could result in eventual breaching of the embankment. Parts of the crest of the dam which are bare of vegetation would be susceptible to erosion if the dam were overtopped. This might, in turn, lead to breaching of the dam.

Trees growing on the downstream slope and toe may cause seepage and erosion problems if a tree blows over and pulls out its roots, or if a tree dies or is cut and its roots rot. Small erosion sloughs and scarps, which are bare of vegetation, on the downstream slope near the crest are susceptible to erosion by rainfall or by overtopping of the dam; the erosion could, in turn, lead to breaching of the dam.

6.2 Design and Construction Data. No design or construction data pertinent to the structural stability of the dam are available.

6.3 Operating Records. No operating records pertinent to the structural stability of the dam were available.

6.4 Post-Construction Changes. The 1974 Dam Application #634 and accompanying plans were made available for the installation of two 12-inch drawdown pipes.

6.5 Seismic Stability - This dam is in Seismic Zone 1. According to the Recommended Guidelines, dams located in Seismic Zone 1 "may be assumed to present no hazard from earthquake, provided static stability conditions are satisfactory and conventional safety margins exist." None of the visual observations made during the inspection are indicative of unstable slopes. However, because no data are available concerning the engineering properties of the embankment and foundation materials for this dam, it is not possible to make an engineering evaluation of the stability of the slopes or the factor of safety under static conditions.

SECTION 7
ASSESSMENT, RECOMMENDATIONS/REMEDIAL MEASURES

7.1 Dam Assessment

a. Condition. Kampfe Lake Dam is estimated to be 85 years old and is in fair condition.

b. Adequacy of Information. The information available is such that the assessment of the dam must be based entirely on the results of the visual inspection.

c. Urgency. The recommendations made in 7.2.a and 7.2.b should be implemented by the owner as prescribed.

d. Necessity for Additional Data/Evaluation. The information available from the visual inspection is adequate to identify the potential problems which are listed in 7.2.a. These problems require the attention of a professional engineer who will have to make additional engineering studies to design or specify remedial measures to rectify the problems. If left unattended, the problems could lead to failure of the dam.

7.2 Recommendation/Remedial Measures

a. Recommendations

The owner should engage a professional engineer qualified in the design and construction of dams to accomplish the following in the time periods specified.

Starting Very Soon:

- (1) Investigate the cause of the seepage adjacent to the right wingwall of the spillway and left drawdown pipe, and the soft, damp areas at the downstream toe of the dam.
- (2) Investigate the cause of seepage through the mortared stone masonry spillway.

In the Near Future:

- (1) Relocate the gate valves in the 12-inch draw-down pipes to place them at or near the inlets on the upstream side of the dam.
- (2) Install a 16-inch gate valve on the upstream side of the dam to control the low-level outlet.

- (3) Remove trees and brush and their roots from the downstream slope of the dam.
- (4) Design or specify repairs for the erosion of the upstream slope of the dam and replacement of the displaced erosion protection on the upstream slope.
- (5) Perform a more detailed hydrologic/hydraulic evaluation of the inadequacy of the spillway and design and implement necessary corrective measures.

b. Operating and Maintenance Procedures

Immediately:

- (1) Start a program of periodic monitoring of the seepage and wet area along the toe of the downstream slope.
- (2) Replace flange bolts on low level outlet pipe and paint all exposed steel.

Starting Soon:

Develop an emergency action plan which outlines actions taken by the owner to minimize downstream effects of an emergency at the dam.

In the Near Future:

- (1) Develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam.
- (2) Establish a formal surveillance program for use during and immediately following periods of heavy rainfall and also a warning program to follow in case of emergency conditions.
- (3) Remove trees and brush for a distance of 25 feet downstream from the toe of the dam or to the property line whichever is the lesser.
- (4) Backfill animal burrows on the downstream slope of the embankment.
- (5) Complete the replacement of the service bridge deck.

In the Future:

- (1) Clear trees and brush from the discharge channel and on either side of the spillway discharge channel for a distance of 100 feet from the spillway or to the property line whichever is the lesser distance.
- (2) Repair concrete apron at end of left side drawdown pipe at outlet.

Anderson-Nichols & Co., Inc.

U.S. ARMY ENGINEER DIST. PHILADELPHIA

CORPS OF ENGINEERS
PHILADELPHIA, PA.

NATIONAL PROGRAM OF INSPECTION OF NON-FED.DAMS

KAMPFE LAKE DAM LOCATION MAP

TRIB. TO PEQUANNOCK RIVER

NEW JERSEY

SCALE IN MILES

MAP BASED ON STATE OF NEW JERSEY
OFFICIAL MAP & GUIDE.

SCALE: 1" = 4 Miles Approx.

DATE: MAY 1981

FIGURE 1

PLAN

SPILLWAY
ELEVATION

Anderson-Nichols & Co, Inc		U.S. ARMY ENGINEER DIST PHILADELPHIA CORPS OF ENGINEERS PHILADELPHIA, PA	
BOSTON	MASSACHUSETTS		
NATIONAL PROGRAM OF INSPECTION OF NON-FED.DAMS			
KAMPFE LAKE DAM			
TRIB. TO PEQUANNOCK RIVER		NEW JERSEY	
		SCALE NOT TO SCALE	
		DATE MAY 1961	
FIGURE 2			

SECTION A-A

SECTION B-B

PIPE DETAIL

Anderson-Nichols & Co., Inc. BOSTON		U.S. ARMY ENGINEER DIST PHILADELPHIA CORPS OF ENGINEERS PHILADELPHIA, PA	
NATIONAL PROGRAM OF INSPECTION OF NON-FED.DAMS			
KAMPFE LAKE DAM X-SECTIONS			
TRIB TO PEQUANNOCK RIVER		NEW JERSEY	
		SCALE NOT TO SCALE	
		DATE MAY 1981	
FIGURE 3			

APPENDIX I
ENGINEERING AND EXPERIENCE DATA
KAMPFE LAKE DAM

Dam Application No. 614
Map No. 22-180State of New Jersey
Division of Water Policy and Supply

REPORT ON DAM APPLICATION

Application of Kampfe Lake

Filed November 13, 1973 for approval of plans and for a permit to
a dam for the impoundment of Kampfe Lake across an unnamed
tributary to Pequannock River in Borough of Bloomingdale

County, New Jersey, has been examined by William F. Rogers, Principal
Engineer

PRINCIPAL FEATURES

Purpose of dam	Recreation	Type of dam	Rock and earth fill with concrete core wall
Site Inspected		Foundation material	
Location:	22° 35' + 7° 2' + 5'	Maximum height	16 feet
Drainage area	0.45 sq. mi.	Length of dam	300 feet
Elevation of High line	535.0	Top width of dam	8 feet
Area of lake	32 acres	Downstream slope	1:6
Capacity of lake	52 million gallons	Upstream slope	1:2
Type of spillway	Broad Crest Drop		
Length of spillway	60		
Design Head Flow	850 cubic feet per second = 1000 sec. ft. per sq. mi.		
Head on spillway for design Head Flow	3.61 feet - will overtop embankment.		
Freeboard None	feet Top of dam 2.9 ft. above spillway elevation.		
Maximum spillway capacity (dam breach)	= 350 cubic feet per second = 411 sec. ft. per sq. mi.		

Outlet other than spillway None

Drawings filed by G. Saldo Rude & Associates, Inc.

DEPARTMENT OF ENVIRONMENTAL REGULATIONS
DIVISION OF WATER RESOURCES - OPERATIONS AND USES
BUREAU OF DAMS CONTROL
P.O. BOX 2500
TRENTON, NEW JERSEY 08640 1976 MAR 18 PM 12 15

INSPECTION REPORT - 1976

Dam Application No. 638 Date of Inspection 2/27/76
Name of Dam Kimble Lake
Owner's Name Kimble Lake Association, Inc.
Address Kimble Lake, Box 10, Bloomfield, New Jersey 07010

Comment on the following items in accordance with the instructions enclosed:

A. Earthfill and/or Filter Dams

1. Maintenance

Banking along and the crest of dam adequately maintained

2. Condition

No evidence of seepage or signs of deterioration. Lake elevation has been lowered as directed by U.S. Army Corps of Engineers

3. Other

Bottom has several weeds 1 to 2 inches tall

B. Masonry and Concrete Dams

1.

2.

3.

4.

5.

C. Channels, Shifting Pastures and Current Bed Status

1. No channel bed erosion or silting
2. No riprap areas
3. Moderate amount of undercutting in channel
4. No aggradation of stream bed
5. No abnormal subsidence of embankment area
6. No unusual operational behavior

D. Mechanical Equipment

1. Inlet and outlet works and valves functioning.
All valves were open.
2. No trash racks

E. Miscellaneous

1. No record of float valves overtopping dam
- 2.

November 14, 1975

Kempf Lake Associates, Inc.
P.O. Box 10
Bloomingdale, NJ 07403

Attention: George Moreo, Jr., Secretary

Re: Dam No. 634, Kempf Lake

Gentlemen:

This is with reference to the condition of Kempf Lake Dam across an unnamed tributary of the Passaic River located 3000 feet downstream or southerly of Glenwood Avenue in the Borough of Bloomingdale, Passaic County, New Jersey.

A recent investigation of the dam made by a member of my staff indicates that there are numerous erosion points through the earthen embankment. Since recent construction revealed that a concrete core wall as shown on the drawings in our file, in fact does not exist, the structure is potentially dangerous. Therefore, you must keep the water elevation of the lake at least one foot below the millway and have a N.J. Professional Engineer inspect the structure and prepare an Engineering Report in accordance with the enclosed.

The report along with recommended repairs should be submitted to this office within sixty (60) days.

Very truly yours,

Dick C. Irwin, P.E.
Chief, Bureau of Flood Plain
Management

REMARKS

At: Borough Engineer
Borough Clerk

DISCLOSURE

October 9, 1975

TO WHOM IT MAY CONCERN:

Pursuant to section 83:5-2) of the Revised Statutes,
permission is hereby granted to

George Monroe, Jr., Secretary
Kempf Lake Assoc
P.O. Box 10
Bloomingdale, NJ

to draw off the waters of Kempf Lake, located at Glenwild Ave.,
Bloomingdale, NJ, under the supervision of Conservation Officer Arthur
Wendell when provided measures are taken to prevent the destruction of
any fish.

This permit is issued by the Division of Fish, Game and
Shellfisheries for the purpose of salvaging and protecting fish life
and for no other purpose.

This permit expires May 15, 1976.

Moscell A. Conigliano, Director

RAC:mr
cc Fisheries Lab.
cc Wendell
Water Resources

Dam No. 634

Kampfe Lake

Inspection Report

October 7, 1975

At about 1030 hours an inspection of the spillway and embankment of the dam was made in company with Mr. Kitchell, Contractor, who installed the two new 12 in. drawdown lines.

The inspection was made at the request of Mr. Kitchell since some people of the Kampfe Lake Association were intimating that the seepage through the dam was due to the disturbance caused by Mr. Kitchell during his construction of the drawdown lines.

Mr. Kitchell noted that at neither end of the dam embankment during his cut through the embankment did he encounter the core wall shown on the approved drawings.

Also, a careful investigation of the upstream face of the embankment under the small riprap, indicated a multitude of small voids and slumps under the riprap. The major portion of the embankment appears to be sand and gravel and it is the opinion of the writer that the poor compaction and material of the original embankment has led to multitudinous seepage paths developing.

Recommendations Possible:

1. That a core wall be installed. (This is not feasible cost wise)
2. That pressure grouting of the entire structure be undertaken. (This also may not be logical conclusion)
3. That a clay blanket and heavy riprap be installed on the upper face of the entire embankment and spillway along with pressure grouting of the spillway section.

W. K. L. - 75

PHONE LOG

Dam 634

10/2/75 Per phone conversation with Mr. Warren Kitchell, Builder & Contractor for installation of pipe in Kampfe Lake Dam. He stated that he found that there was no core wall in the embankment as indicated on culminations drawings and that there was a leak along one of the pipes installed. He noted that there were various areas of subsidence on the upstream side of the dam and in some parts of the embankment indicating that there may be seepage further upstream.

10/3/75 At 12:30 hours in call to 201-728-3822 he advised that water level of lake was down about 1 foot to take head off embankment. Call was made to Mr. Joe Zurn from this office at 12:45 hours to 201-838-1666. Say of Kampfe Lake Area. To advise that lake should be kept lowered until positive repair could be made. Advised Mr. Kitchell that inspection will be made on Tuesday 10/1/75 at 10:45 AM.

Sum 51.34 142
(22-150) 112474

High & Lake Country Inc.

Est. 10

Bloomington, Ill. 61710

Illinoian August 16, 1973

The north side of the hill of
High & Lake since, one on each side of
the hill, is a series of knapsack lakes.
There is also an unnamed tributary of
the Kickapoo River located near the
spring house on the hillside of "High & Lake"
in the town of Bloomington, Illinois
County, State Illinois.

Location 22-35-7, R-15 E
(R-11, 22-35 E)

Alt. = 1000 ft. S. of the
R. - 22-35-7 E. - 5-7 W. 1/4

Dist. = 1.27 x 647 = 816.00 ft.
1.27 sec. ft.

January 31, 1974

Kampfe Lake Association
Kampfe Lake
Bloomingdale, NJ

Attention: George Monroe, Jr.
Gentlemen:

Re: Kampfe Lake Dam Application No. 634

This is with reference to the proposed replacement of an existing 16" drainage structure with twin 12" C.I. pipes, one on each side of the existing spillway of the Kampfe Lake Dam, across an unnamed tributary of the Pequannock River located 3,000 feet downstream or southerly of Glenwood Avenue in the Borough of Bloomingdale, Passaic County, New Jersey.

Preliminary review of the proposed work indicates that some revisions and/or additional information will be necessary as follows:

1. The minimum size C.I. flanged pipe and gate valves should be twenty-four inches.
2. Anti-seep collars should be provided at points about 10 feet downstream from the existing core wall on both proposed pipes. The collars should form watertight joints with the pipes and extend a minimum of 3 feet from the periphery of the pipes.
3. All elevations on the drawings should be referenced to the NJ USGS datum.
4. The outlets of both pipes should be at a 45 degree angle to the centerline of the channel and be provided with splash aprons and wingwalls.
5. The outlets should be placed so that they are no closer than 25 feet from the centerline of the downstream channel.
6. A sheet of specifications should be provided detailing the appurtenant works and materials to be used.

Upon receipt of revised, signed and sealed drawings in quadruplicate conforming to the cited criteria, your application will receive final review.

Very truly yours

Dirk C. Höfman, P.E.
Chief, Bureau of Water Control

MFR:imb

Values:
For - 12" - 12" - 12" - 12" -
and 12" - 12" - 12" - 12" -
Diameter 24" - 12" - 12" - 12" -
Length 12" - 12" - 12" - 12"

Block Office
7/18-202

G. WALDO RUDE
AND
ASSOCIATES, INC.
ENGINEERS-LAND SURVEYORS
38 COOPER AVENUE
POMPTON LAKE, N.J. 07442

Phone 1037
633-3188-9

November 29, 1974

Charles Mart
Charles L. Rogers
Wilson O. Douglas
William F. Rogers
Harry A. Rue

FCC-L

REC'D 11/29/74

DEPT OF ENVIRONMENTAL PROTECTION
DIVISION OF WATER POLLUTION

Mr. William F. Rogers
Department of Environmental Protection
P.O. Box 2039
Trenton, N.J. 08625

Re: Kampfe Like Associates Inc.,
Bloomingdale, N.J.
Dam Application Permit No. 634

Dear Mr. Rogers:

This is to certify that the above project has been constructed
in conformance with the drawings and specifications as approved.
The Contractor started construction on November 8, 1974, and
completed the installation on November 19, 1974. The work was
inspected on a daily basis by this office.

Very truly yours,

G. WALDO RUDE & ASSOCIATES, INC.

Harry A. Rue
Harry A. Rue

HAR/rf

cct: Mr. Joe Gara

Preliminary Calculations ^{Drawn 634 A.M.}
^{(22-130) 1/28/74}
For existing Dam and Spillway

$$Q_{100} = 850, L = 40 \text{ ft.}, C = 3.1$$

It should be noted that the maximum head on the spillway will be 2 feet due to proximity of steel bridge over spillway.

Maximum C over existing Spillway

$$C = 3.1 \times 1.0 \times 2^{\frac{1}{2}} (2.82)$$

$$Q = 350 \text{ sec. ft.}$$

Total freeboard above spillway elevation
is 2.3 feet.

This permit will be for work on drainage lines only and at such time that any work is performed on the spillway, further drawings and permit will be necessary.

SOUTH PLATTE RIVER
Division of Water Resources
P.O. Box 2000
Trenton, N.J. 08625

PERMIT NUMBER 12886 D-634

In virtue of the provisions of NJSA 53:6 of the Revised Statutes, this permit is issued for the project indicated, to the below-named applicant, subject to all the terms and conditions attached hereto.

Kappa Lake Associates Inc.
Box 20
Bloomingdale, N.J. 07010

PROJECT: The construction of two 12 inch iron-dam lines and valves, one on each side of the existing spillway of Kappa Lake Dam across an unnamed tributary of the Pequannock River located 3,000 feet downstream or southeasterly of Mendil Avenue in the Borough of Bloomingdale, Passaic County, New Jersey.

Approval:

July 10, 1974
Date

Dick C. O'Neil, Director
Division of Water Resources
State of New Jersey

Attest:

THE APPLICANT(S) AND ALL FOLLOWING NAMES, ASSUMES OR SUGGESTS MUST ADOPT AND FULFILL THE TERMS AND CONDITIONS OF THIS PERMIT AS HEREIN AND HEREBY AGREED BY THE DIVISION OF WATER RESOURCES. ALL property encompassed within this permit area to be owned by the applicant and/or proper owners, rights of way and other agreements shall have been obtained for the work outside of property owned by the applicant.

Applicant: William F. Rogers

Certified Mail No. 161-206

KAMPF LAKE
Dam Number 614
Passaic County
Inspection Report

On May 28, 1974 an inspection was made of Kampf Lake Dam across an unnamed tributary located 3000 feet downstream or southerly of Glenwild Avenue in the Borough of Bloomingdale, Passaic County.

Inspection was made to determine condition of structure in connection with the installation of 2-12 inch drawdown lines and valves, one on each side of the existing spillway.

The condition of the total embankment, spillway and wingwalls is good with no evidence of defects that might need repair.

The embankment is about ~~100~~ feet long with a top width of from 10 to 12 feet. Upstream side slope is about 1 on 2 and riprapped with no evidence of erosion from wave action. Downstream side slope is about 1 on 1 with no seepage or leaking evident. The general condition of the upstream and downstream wingwalls and the spillway is good. The downstream wingwalls and spillway are mortared stone with a concrete capped spillway section.

General topography in the area is fairly steep and warrants the use of North Jersey Curve for run-off calculations. The surface area of the lake is about 30 acres with no upstream bodies of water.

William F. Rogers

William F. Rogers
Principal Engineer
Dam Analysis Section

NFR:L:CS

cc: Mr. Dirk C. Hofman

DOWNSTREAM - 1 PEQUANNOCK RIVER
DAMS IN NEW JERSEY—REFERENCE DATA No. 22-52

Name of Owner Salvation Army Inc. Address 122 W. 14th St., N.Y.C.
Name of Dam Star Lake County Morris Location 22.35.7.2.B
CONSTRUCTION: Due About 1900 By whom Star Safety Razor Co.
Stream Nameless branch Tributary to Pequannock River
DRAINAGE BASIN: Area 0.6 sq. mi. Description Hilly, wooded.
Description of valley below dam Steep, uninhabited. 2nd. pond immediately below.
DAMAGE FROM FAILURE: Probable None

Previous (date) _____
Purpose Recreation Type Dry rubble wall and earth fill.
Foundation _____
Length 215 ft. Max. height 8.0 ft. Max. width of base Top 10 ft.
Upstream slope 1:2 Downstream slope Vertical Volume Cu. yds.
SPILLWAY: Type Concrete weir Length 49.5 ft.
Depth below top of Wall // 2.5 ft. Capacity 700 c.f.s. per sq. mi.
RESERVOIR: Capacity mill. gals. Area acres. Length ft.
Outlets One 18" concrete pipe with wood gate which cannot
Remarks be operated.

Sources of data Inspection and conf. Major Brinley. J.N.B. Date 7/14/27

DOWNSTREAM - 2 PEQUANNOCK RIVER
DAMS IN NEW JERSEY—REFERENCE DATA No. 22-53

Name of Owner Salvation Army Inc. Address 122 W. 14th St., N.Y.C.
Name of Dam Star Lake No. 2 County Morris Location 22.35.7.5.2
CONSTRUCTION: Due About 1900 By whom Star Safety Razor Co.
Stream Nameless Branch Tributary to Pequannock River
DRAINAGE BASIN: Area 0.6 sq. mi. Description Hilly, wooded.
Description of valley below dam Steep, uninhabited.
DAMAGE FROM FAILURE: Probable None

Previous (date) _____
Purpose Recreation Type Rubble masonry, gravity section.
Foundation _____
Length 175 ft. Max. height 15 ft. Max. width of base Top 4.5 ft.
Upstream slope Downstream slope Volume Cu. yds.
SPILLWAY: Type Two masonry notches Length 1-30 1-24 = 54 ft.
Depth below top of Wall 0.9 ft. Capacity 108 c.f.s. per sq. mi.
RESERVOIR: Capacity mill. gals. Area acres. Length ft.
Outlets 1-12" Cast iron pipe to water supply.

Sources of data Inspection J.N.B. Date 7/14/27

close
old
is
by

(VER
52-52 -

C.
Z.D. (1)
O.

slow.

1 fill.

6.
Cu. yds.
ft.
sq. mil.
ft.

4/127

R
2x53.

1.2

station.

6.
Cu. yds.
ft.
sq. mil.
ft.

4/127

DOWNSTREAM - 3

PEQUANNOCK RIVER

DAM IN NEW JERSEY-REFERENCE DATA NO. 22-10 ✓

Name of Owner: Cold Spring Lake Corp. Address: Pequannock, N.J.

Name of Dam: Cold Spring Lake. County: Passaic. Location: 22.35.7.0.2. 1'

CONSTRUCTION: Date About 1900. By whom: John F. Staco (Deceased).

Stream: A small stream. Tributary to: Pequannock River.

DRAINAGE: HAVING: Area: 1.4K sq. mi. Description:

Description of valley below dam: Highway 250 ft. below (box culvert 30" high 12" wide).

DAMAGE FROM FAILURE: Probable: Dam in good shape.

Previous (date) 1903 water went around right end (now replaced with 200' concrete wall).

Purpose: Recreation and for flood control. Type: Rock and concrete walls, earth fill.

Foundation:

Length: 300 ft. Max. height: 16 ft. Max. width of base: 6 ft.

Upstream slope: 2:1. Downstream slope: 1:10. 1 ft ver. Volume: Cu. yds.

SPILLWAY: Type: Concrete. Capacity: 1200 c.f.s. Length: 207 ft.

Depth below top of concrete core wall: 1.67 ft. Capacity: 2 G. c.f.s. per sq. mil.

RESERVOIR: Capacity: 1 mill. gals. Area: 13 acres. Length: 600 ft.

Outlets:

Remarks: Average depth: 9 feet.

Sources of data: S. C. White (Pequannock Valley Paper Co.), John S. AR. Entered Date: 11/8/23.

APPENDIX 2
CHECK LIST
VISUAL INSPECTION

KAMPFE LAKE DAM

Check List
Visual Inspection
Phase 1

Name	Dam	Kampfe Lake Dam (NJ00772)	County	Passaic	State	NJ	Coordinator	NJDEP
Date(s)	Inspection	2/17/81 4/23/81	Rain	Warm, ptly cloudy	Temperature	50° 55°		
Pool Elevation at Time of Inspection		533'	535'	NGVD	Tailwater at Time of Inspection	527'	None	NGVD

Inspection Personnel:

Stuart	Gilman
Deane	Guinan
Plaud	Murdock

Stuart, Gilman
Recorder

Mr. Joseph Gara, caretaker, was present
at both inspections

UNGATED SPILLWAY

VISUAL EXAMINATION OF

UNGATED SPILLWAY

REMARKS OR RECOMMENDATIONS

	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE WEIR	<ul style="list-style-type: none">- Wide crest is generally spalled and eroded exposing the coarse aggregate, Max. depth 1/2-in.- Downstream face (mortared masonry) is leaking in numerous places.- Recently repaired concrete in fair shape -- Spillway abutments recently repointed.	Repair eroded concrete
APPROACH CHANNEL	<p>Poured concrete blocks adjacent to u/s wing walls have settled and moved away from the wing walls.</p> <p>Clear - unobstructed</p>	
DISCHARGE CHANNEL	<p>Clear, rocky channel 6-in - 8-in trees 100 ft d/s</p>	
BRIDGE AND PIERS OVER SPILLWAY	<ul style="list-style-type: none">- Recently poured concrete abutments - good condition.- Twin "I" beams for bridge deck are rusted thru paint, bracing angles are surface rusted.- No deck- Cantilevered walkway on left of spillway is in good condition - Wood deck is surface weathered.	

BRIDGE AND PIERS

OVER SPILLWAY

REMARKS OR RECOMMENDATIONS

OUTLET WORKS

(Two 12-in drawdown pipes)

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CRACKING AND SPALLING OF CONCRETE SURFACES IN OUTLET CONDUIT	Not visible.	New outlet pipes and concrete wingwalls.
INTAKE STRUCTURE	Intake pipes, wingwalls and trash racks, new and in good condition.	
OUTLET PIPE	New - good condition	
OUTLET CHANNEL	Rocky, brushy channel. Concrete aprons; surface eroded 1/2-in deep. Left side apron is crumbling. Left side outlets approximately 30-ft d/s toe. Right side outlets approximately 50-ft d/s toe.	Repair concrete apron.
EMERGENCY GATE	Not applicable	

OUTLET WORKS
(16-in pipe)

VISUAL EXAMINATION OF

OBSERVATIONS

REMARKS OR RECOMMENDATIONS

CRACKING AND SPALLING OF
CONCRETE SURFACES IN OUTLET
CONDUIT

2-4
OUTLET PIPE

16-in valve on d/s end. All flange
bolts connecting valve are badly
corroded except for 4 bolts. Valve
leaking slightly. Pipe and valve
rusting.

OUTLET CHANNEL

See "UNGATED SPILLWAY DISCHARGE CHANNEL"

EMERGENCY GATE

Not applicable

DOWNSTREAM CHANNEL

VISUAL EXAMINATION OF CONDITION (OBSTRUCTIONS, DEBRIS, ETC.)	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CLEAR, rocky channel 6-in - 8-in trees.		
SLOPES	Gentle slopes, watershed steeply sloping.	
APPROXIMATE NO. OF HOMES AND POPULATION	3 camp buildings are downstream of Star Lake - population varies with season	High Hazard

Note: Caretaker required to check dam daily by Owners. Lives at the lake year-round.
Operates gate valves as necessary during storms.

VISUAL EXAMINATION OF		RESERVOIR	REMARKS OR RECOMMENDATIONS
	OBSERVATIONS		
SLOPES	On the shore of the lake, slopes appear stable and are gently to moderately sloping. 17 private homes.		
SEDIMENTATION	No evidence of significant sedimentation was observed.		

CHECK LIST
 ENGINEERING DATA
 DESIGN, CONSTRUCTION, OPERATION

ITEM	REMARKS
PLAN OF DAM	None found. Information available from plan #634 done for the installation of 2 - 12-in. drawdown lines. The plan is available from NJDEP files, filed 16 August 1973 for NJ dam #22-180, or Fed. ID No. NJ00772.
REGIONAL VICINITY NAP	Prepared for this report
CONSTRUCTION HISTORY	None found
TYPICAL SECTIONS OF DAM	Available from plan #634 in NJDEP files. See PLAN OF DAM above. Used for typical section figure in report.
HYDROLOGIC/HYDRAULIC DATA	None found
OUTLETS - PLAN	Plan #634 available in NJDEP files. See PLAN OF DAM above.
- DETAILS	Same as above
- CONSTRAINTS	None found
- DISCHARGE RATINGS	None found
RAINFALL/RESERVOIR RECORDS	None found

ITEM	REMARKS
DESIGN REPORTS	None found
GEOLOGY REPORTS	None found
DESIGN COMPUTATIONS HYDROLOGY & HYDRAULICS DAM STABILITY SEEPAGE STUDIES	None found
MATERIALS INVESTIGATIONS BORING RECORDS LABORATORY FIELD	None found
POST-CONSTRUCTION SURVEYS OF DAM	See PLAN OF DAM on previous page
BORROW SOURCES	Unknown

ITEM	REMARKS
MONITORING SYSTEMS	None
MODIFICATIONS	Two 12-inch drawdown lines were constructed through the existing dam in 1974. See PLAN OF DAM on page 2-7.
HIGH POOL RECORDS	None
POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS	Some information available in NJDEP files. Legible sheets are included in Appendix 1, ENGINEERING and EXPERIENCE DATA. 2-9
PRIOR ACCIDENTS OR FAILURE OF DAM DESCRIPTION REPORTS	Unknown
MAINTENANCE OPERATION RECORDS	None

ITEMS	REMARKS
SPILLWAY PLAN	Available on 1974 plan of installation of 2 12-inch drawdown lines. See PLAN OF DAM on page 2-7.
SECTIONS	Same as above
DETAILS	None available
OPERATING EQUIPMENT PLANS & DETAILS	Some information in 1974 plan mentioned above.

CHECK LIST
HYDROLOGIC AND HYDRAULIC DATA
ENGINEERING DATA

DRAINAGE AREA CHARACTERISTICS: 0.85 square miles, steep slope, woods, homes

ELEVATION TOP NORMAL POOL (STORAGE CAPACITY): 535' NGVD (154 acre-feet)

ELEVATION TOP FLOOD CONTROL POOL (STORAGE CAPACITY) Not applicable

ELEVATION MAXIMUM TEST FLOOD POOL: 538.3' NGVD (1/2 PMF)

ELEVATION TOP DAM: 536.8' NGVD

SPILLWAY CREST: Free overflow concrete spillway

- a. Elevation 535' NGVD
- b. Type Broad crested concrete spillway with vertical drop
- c. Width 7 feet
- d. Length 31 feet
- e. Location Spillover Center of dam
- f. Number and Type of Gates None

OUTLET WORKS: Two high-level draw-down pipes (with trash racks); one low-level outlet pipe

- a. Type Two 12-inch cast-iron and one 16-inch cast-iron flanged pipes.
- b. Location High level pipes are 50 feet on either side of spillway; low-level outlet is about 10 feet left (east of spillway)
- c. Entrance Inverts High-level: Left 532.7' NGVD; Right 532.9' NGVD low-level 528' NGVD (estimated)
- d. Exit Inverts High-level: Left 527.0' NGVD; Right 527.4' NGVD low-level 526.5' NGVD

HYDROMETEOROLOGICAL GAGES: • None

MAXIMUM NON-DAMAGING DISCHARGE: 201 cfs

APPENDIX 3
PHOTOGRAPHS

KAMPFE LAKE DAM

April 23, 1981

View looking u/s from below dam at overflow spillway

April 23, 1981

View looking west over spillway and bridge girders

February 17, 1981

Upstream face looking into high level outlet intake and bar screen for 12-in pipe on right (west) side of dam.

April 23, 1981

Head wall and 12-in CIP on west (right) side looking up along cover over pipe to dam crest. Valve box located on d/s side just below crest.

April 23, 1981

View of cracked concrete anchorage for cantilevered walk used to raise and lower screen over blow-off pipe inlet.

April 23, 1981

View of 16-in pipe and valve (blow-off) near d/s toe of dam.

April 23, 1981

View of downstream channel

APPENDIX 4
HYDROLOGIC COMPUTATIONS

KAMPFE LAKE DAM

**NATIONAL PROGRAM OF INSPECTION OF
NON-FED. DAMS**

**LAKE KAMPFE DAM
BLOOMINGDALE BORO, NEW JERSEY
REGIONAL VICINITY MAP**

MAY 1981

**DEPARTMENT OF THE ARMY
PHILADELPHIA DISTRICT, CORPS OF ENGINEERS
PHILADELPHIA, PENNSYLVANIA**

Anderson-McNeil & Company, Inc.

BOSTON, MA.

SCALE IN MILES

**MAP BASED ON U.S.G.S. 7.5 MINUTE QUADRANGLE
SHEET WANAQUE, N.J. 1954, REVISED 1971.**

Anderson-Nichols & Company, Inc.

Subject: Sammamish Lake Dam

Sheet No. 1 of 14
 Date 7/20/81
 Computed C.R.P.
 Checked -114

JOB NO.

SQUARES 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 1/4 IN. SCALE

1

2

3

4

5. 1. Texas Highway Method

6

7. reach length 2200'

overland

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Time of Concentration

reach length 2200'

$$\text{slope } \frac{1130 - 740}{2200} = .17 = 17\%$$

ave vel. 3.5 ft/sec

overland

reach length 3000'

$$\text{slope } \frac{740 - 520}{3000} = .07 = 7\%$$

ave vel. 5 ft/sec

channel

$$\frac{2200 \text{ ft}}{3.5 \text{ ft/sec}} + \frac{3000 \text{ ft}}{5 \text{ ft/sec}} = \underline{\underline{20 \text{ min.}}}$$

2. Soil & Water Conservation

$$L = 0.6 T_c \quad L = \frac{l^{0.8} (s+1)^{1.67}}{9000 y^{0.5}}$$

$$s = \frac{1000}{CN} - 10$$

Take CN = 70 for woods

$$s = \frac{1000}{70} - 10 = 4.3$$

$$l = 2200 + 3000 = 5200$$

$$y = \frac{1130 - 520}{5200} = .12 = 12\%$$

$$L = \frac{(5200)^{0.8} (43+1)^{1.67}}{9000 (.12)^{1/2}} = 0.49 \text{ hrs.}$$

$$T_c = \frac{0.49}{0.6} = .81 \text{ hrs} = \underline{\underline{49 \text{ min}}}$$

JOB NO.

SQUARES
1.4 IN. SCALE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1

2 3. SCS TR = 55

3

overland

4

$$5 \quad l = 2200 \quad \text{slope} = 17\% \\ 6$$

$$7 \quad \text{from fig. 3-1 page 3-2} \quad V = 1.047/\text{sec}$$

$$8 \quad T_c = \frac{2200 \text{ ft}}{1 \text{ ft/sec}} = 37 \text{ min} \\ 9$$

10

channel

$$12 \quad l = 3000 \quad h = 220 \\ 13$$

$$14 \quad s = .07 \quad n = .04 \quad V = \frac{1.49}{h} 12^{2/3} S^{1/2}$$

$$15 \quad (\text{Assume a } 10' \times 1' \text{ rectangular channel}) \\ 16 \quad \text{to calculate } R \\ 17$$

$$18 \quad R = \frac{A}{wP} = \frac{10}{2(0) + (10)} = 0.83 \text{ ft}^2 \\ 19$$

$$20 \quad V = \frac{1.49}{.04} (.83)^{2/3} (.07)^{1/2} = 8.7 \text{ ft./sec} \\ 21$$

$$22 \quad T_c = \frac{3000 \text{ ft}}{8.7 \text{ ft/sec}} = 5.7 \text{ min} \\ 23$$

24

$$25 \quad \text{TOTAL } T_c = 37 + 5.7 \quad \underline{\underline{42.7 \text{ min}}} \\ 26$$

27

28 4. Kirby Methodoverland

$$31 \quad T_c = 0.83 \left(\frac{Nl}{V^2} \right)^{0.467} \\ 32$$

$$33 \quad N = 0.6 \quad s = .17 \quad l = 2200 \\ 34$$

$$35 \quad T_c = 0.83 \left[\frac{(0.6)(2200)}{\sqrt{17}} \right]^{0.467} \\ 36 \quad = 36 \text{ min.} \\ 37$$

38

39

40

Anderson-Nichols & Company, Inc.

Subject Kampfe Lake Dam

Sheet No. 3 of 14

Date 7/20/81

Computed SP

Checked TC

JOB NO.

SQUARES 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1/4 IN. SCALE

1

2

3 for channel use markings, as Method 3

4

5 $V = 8.7 \text{ ft/sec}$ $T_c = \frac{3000 \text{ ft}}{8.7 \text{ ft/sec}} = 5.7 \text{ min.}$

6

7

8 Total $T_c = 36 + 5.7 = \underline{\underline{41.7 \text{ min.}}}$

9

10

11 Average T_c

12

13 $\frac{20 + 49 + 40.7 + 41.7}{4} = 38.4 \text{ min}$

14

15

16

17

18

$T_L = 0.6 \times 38.4 = 23 \text{ min} = \boxed{.38 \text{ hrs}}$

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

Anderson-Nichols & Company, Inc.

Subject: Kangra Stake Dam

Sheet No. 4 of 14
 Date 4/16/81
 Computed CRP
 Checked KBS

JOB NO.

SQUARES 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 1/4 IN. SCALE

1

2

STAGE - STORAGE DETERMINATION

3

4 * Average Depth of Lake is 6'

5

Elevation ft	Surface Area Acres	Av S.A Acres	Incremental Storage	Cumulative Storage
535	25.6	25.6	153.6	153.6
540	44.8	35.2	176.0	329.6
560	70.4	57.6	1152.0	1481.6

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Input from HEC-I (from curve)

Stage	Storage
529.5	0
535	153.6
536.8	215.0
540	329.6
545	560.0
550	840.0
555	1150.0
560	1482.0

* Dam repair application gives capacity at spillway of 52 million gallons; surface area = ~26 acres

$$3.259 \times 10^5 \times 1 \text{ gal} = 1 \text{ acre-ft}$$

$$\frac{52 \times 10^6}{3.259 \times 10^5} = 159.6 \text{ acre-ft}$$

$$\frac{159.6 \text{ acre-ft}}{26 \text{ acres}} = \sim 6'$$

K-E 10 X 10 TO THE INCH • 7 X 10 INCHES
KEUFFEL & ESSER CO. MADE IN U.S.A.

46 0782

Anderson-Nichols & Company, Inc.

Subject: Kampfe Lake Dam

Sheet No. 6 of 14

Date 4/16/81

Computed CRC

Checked KPS

JOB NO.

SQUARES 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1/4 IN. SCALE

1

2

DEVELOPMENT OF RATING CURVE

$$Q = CL H^{3/2}$$

3

4

① Spillway Curve

5

6

$$C = 2.68 \quad L = 31' \quad \text{width} = 7'$$

7

8

② Top of Dam Curve

9

10

$$C = 2.64 \quad L = 180' \quad \text{width} = 10'-12'$$

11

(including spillway)

12

13

	Elevation	Spillway head	$Q - \text{cfs}$	Top of Dam head	length	cfs	Combined Δcfs
SPWAY	535.0	0	0				0
	535.5	0.5	29.1				29.1
	536.0	1.0	83.1				83.1
	536.5	1.5	152.7				152.7
TOP DAM	536.8	1.8	200.7	0	100	0	200.7
	537.0	2.0	235.0	0.2	100	23.6	258.6
	537.5	2.5	328.5	0.7	130	201.0	529.5
	538.0	3.0	431.8	1.2	160	555.3	987.1
	538.5	3.5	544.1	1.7	185	1082.6	1626.7
	539.0	4.0	664.8	2.2	220	1895.2	2560.0
	540.0	5.0	929.1	3.2	270	4080.3	5009.4
	542.0	7.0	1540.0	5.2	290	9078.3	10618.3

28

29

30

31

32

33

34

35

36

37

38

39

40

K-E 10 X 10 TO THE INCH - KUEFFEL & ESSER CO. NEW YORK

46 0782

KoE 10 X 10 TO THE INCHES 7 X INCHES
KLEFFEL & FISHER CO. Waukesha, WI

46 0782

ELEVATION (FEET MSL)

310

300

290

280

270

TOP OF GATE

CONSTANT

320

310

300

290

280

3000

6000

9000

Discharge (cfs)

B OF 14

KAMPFEL LAKE DAM

RATING CURVE

LKP

ANCO

4/16/81

KAMPFE
LAKE DAM

OVERTOPPING

CRP ANCS #125181

9 of 14

10 ft PM

20% of base + 1000 ($\frac{1}{2}$ PMF)
22% of base + 1000 ($\frac{1}{2}$ PMF)

Discharge (cfs)

JOB NO.

QUARES
IN. SCALE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1

2

3

Downstream Hazard

Star Lake Upper Dam (NJ00221) was designated as High Hazard in the Phase 1 Inspection Report of February 1980, because failure of this dam would overtop Star Lake Lower Dam.

Downstream of Star Lake Lower Dam is a camp ground with buildings that are inhabited on a seasonal basis, and therefore loss of more than a few lives is possible.

Failure of Kampfe Lake Dam just before overtopping (at 536.8ft NGVD) resulted in a maximum outflow of 2886 cfs at Star Lake Upper Dam.

Because the storage behind Star Lake Lower Dam is minimal, this discharge (2886 cfs) was assumed to be about the same at the lower dam.

Referring to the stage/discharge calculations from the Star Lake Upper Phase 1 Report, this discharge would cause a stage about 2 feet above the crest of Star Lake Lower Dam and the discharge would exceed that caused by failure of Star Lake Upper Dam.

Therefore, Kampfe Lake Dam should also be designated as High Hazard.

Anderson-Nichols & Company, Inc.

Subject: Humpfe Lake
DamSheet No. 11 of 14
Date 6.12.81
Computed CAD
Checked KBS

JOB NO.

SQUARES 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1/4 IN. SCALE

1

2 Determination of "C" for
3 high level and low level outlets
45 Each 12-in ϕ high level pipe:

6 $D = \text{Diameter} = 12\text{-in}$

7 $n = .013 \text{ cast iron} \quad (\text{King + Brater 6-15})$

8 $A_p = \text{area of pipe opening} = 0.79 \text{ ft}^2$

9 $L_p = \text{length of pipe}$

10 $K_f = \text{friction loss through pipe}$

11
$$K_f = \frac{5087 n^2}{D^{4/3}} = \frac{5087 (.013)^2}{12^{4/3}} = \frac{0.86}{27.5} = .031$$

12 $K_L = \text{entrance loss to pipe} = 0.8 \text{ (K+B 6-19)}$

13
$$C_p = A_p \sqrt{\frac{zg}{1+K_L+K_f} L_p} = 0.79 \sqrt{\frac{64.4}{1+0.8+.031(70)}} = 3.2$$

14
$$C = C_p / A_p / \sqrt{2g} = 0.5$$

15 16-in ϕ low level pipe

16 $D = 16\text{ in} \quad n = .013 \quad A_p = 1.40 \text{ ft}^2$

17 $L_p = 35$

18
$$K_f = \frac{5087 (.013)^2}{(16)^{4/3}} = .021$$

19 $K_L = 0.8$

20
$$C_p = 1.4 \sqrt{\frac{zg}{1+0.8+.021(35)}} = 7.1$$

21
$$C = 7.1 / 1.4 / \sqrt{2g} = 0.63$$

JOB NO.

 SQUARES 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 1/4 IN. SCALE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Drainage Calculations for Two
 High Level outlets and one
 Low Level outlet

- Assume
 - ① no significant outflow
 - ② Two 12-in ϕ high level pipes
 entrance invert 532.7 + 532.9
 take h above mid-pt.
 $532.8 \text{ (ave)} + 6'' = 533.3$
 $C_p = 3.2$ for each
 - ③ one 16-in ϕ low level pipe
 entrance invert 528.0
 take h above mid-pt.
 $528 + 8'' = 528.7 \quad C_p = 7.1$
 - ④ $Q_p = C_p H^{1/2}$
 - ⑤ $A_{ct} \text{ /day} = 1.9835 \times Q_{ave}$
 - ⑥ Days = A storage / Acre ft/day

ELEV	STORAGE (Acre ft)	A S	H (ft)		Q		Ave Q	Acre ft/day	days
			12"	16"	12"	16"			
535	154	29	1.7	6.3	8.3	17.8	23.9	47.4	0.61
534	125	25	0.7	5.3	5.4	16.3	18.5	36.7	0.68
533.3	100	23	0	4.6	0	15.2	14.1	28.0	0.82
532	77	20	0	3.3	0	12.9	10.5	20.8	1.92
530	37	37	0	1.3	0	8.1	4.0	7.9	4.68
528.7	0	0	0	0	0	0			

 8.7
 days

Anderson-Nichols & Company, Inc.

Subject STAR LAKE UPPER DAM

Sheet No. _____ of _____
Date 12-4-71
Computed SCN/CD
Checked FDD

JOB NO. 3409-09

22-E

ELEV. (FT)	LEFT SIDE		RIGHT SIDE		TOP HEAD (FT)	OF LENGTH (FT)	COMBINED Q (CFS)
	L = 20 FT	Q (CFS)	L = 26 FT	Q (CFS)			
524.1	0	0	0	0	0	0	0
524.2	0.1	-2	0	0	0	0	0
525.3	1.2	76	1.1	87	0	0	0
526	1.9	152	1.8	182	0.7	50	0
526.2	2.1	140	2	169	0.3	386	2.7
527	2.9	227	2.8	280	0.8	450	1.70
527.5	3.4	288	3.3	358	0.9	450	2.070
							2.749
							2.749

a) UP TO THE LOW CHORD OF THE BRIDGE USE WEIR EQUATION ($C = 2.9$)
 b) FROM LOW CHORD UP USE WEIR EQUATION WITH ($C = 2.3$) TO ACCOUNT FOR LOSSES DUE TO THE BRIDGE
 c) $C = 2.6$ FOR DIRT ROAD
 * "C" VALUES WERE TAKEN FROM BRATER F KING "HANDBOOK OF HYDRAULICS"

14 OF 14

APPENDIX 5

HEC-1 OUTPUT

KAMPFE LAKE DAM

P 1

HFC-1 H: 1

10.....1.....2.....3.....4.....5.....6.....7.....8.....9.....10
 Line 10 KAMPF LAKE JAHN HYDROGRAPH ANALYSIS THROUGH KAMPF LAKE A-NOCO INC.
 11 NEW JERSEY DAY RUNOFF PASSAGE CAPACITY THROUGH KAMPF LAKE 24-HOUR PMP
 12 0.10.25.0.5 MULTIPLIES OF PPT IN MM 24-HOUR PMP
 13 0 306
 14 1
 15 2
 16 1
 17 0
 18 0.25
 19 0.5
 20 1
 21 0
 22 0.25
 23 0.5
 24 0.5

25 KK AL KAMPF LAKE COMPUTATION-EXPONENTIAL LOSS RATE
 KM SCS UNIT GRAPH
 26 0.05 0
 27 0.25 2.5
 28 0.5 5
 29 1.0 10
 30 2.0 20
 31 4.0 40
 32 8.0 80
 33 16.0 160
 34 32.0 320
 35 64.0 640
 36 128.0 1280
 37 256.0 2560
 38 512.0 5120
 39 1024.0 10240
 40 2048.0 20480
 41 4096.0 40960
 42 8192.0 81920
 43 16384.0 163840
 44 32768.0 327680
 45 65536.0 655360
 46 131072.0 1310720
 47 262144.0 2621440
 48 524288.0 5242880
 49 1048576.0 10485760
 50 2097152.0 20971520
 51 4194304.0 41943040
 52 8388608.0 83886080
 53 16777216.0 167772160
 54 33554432.0 335544320
 55 67108864.0 671088640
 56 134217728.0 1342177280
 57 268435456.0 2684354560
 58 536870912.0 5368709120
 59 1073741824.0 10737418240
 60 2147483648.0 21474836480
 61 4294967296.0 42949672960
 62 8589934592.0 85899345920
 63 17179869184.0 171798691840
 64 34359738368.0 343597383680
 65 68719476736.0 687194767360
 66 137438953472.0 1374389534720
 67 274877906944.0 2748779069440
 68 549755813888.0 5497558138880
 69 1099511627776.0 10995116277760
 70 2199023255552.0 21990232555520
 71 4398046511104.0 43980465111040
 72 8796093022208.0 87960930222080
 73 17592186044416.0 175921860444160
 74 35184372088832.0 351843720888320
 75 70368744177664.0 703687441776640
 76 140737488355328.0 1407374883553280
 77 281474976710656.0 2814749767106560
 78 562949953421312.0 5629499534213120
 79 1125899906842624.0 11258999068426240
 80 2251799813685248.0 22517998136852480
 81 4503599627370496.0 45035996273704960
 82 9007199254740992.0 90071992547409920
 83 18014398509481984.0 180143985094819840
 84 36028797018963968.0 360287970189639680
 85 72057594037927936.0 720575940379279360
 86 14411518807585872.0 144115188075858720
 87 28823037615171744.0 288230376151717440
 88 57646075230343488.0 576460752303434880
 89 11529215046068816.0 115292150460688160
 90 23058430092137632.0 230584300921376320
 91 46116860184275264.0 461168601842752640
 92 92233720368550528.0 922337203685505280
 93 184467440737101056.0 1844674407371010560
 94 368934881474202112.0 3689348814742021120
 95 737869762948404224.0 7378697629484042240
 96 1475739525896808448.0 14757395258968084480
 97 2951479051793616896.0 29514790517936168960
 98 5902958103587233792.0 59029581035872337920
 99 11805916207174467584.0 118059162071744675840
 100 23611832414348935168.0 236118324143489351680
 101 47223664828697870336.0 472236648286978703360
 102 94447329657395740672.0 944473296573957406720
 103 188894659314791481344.0 1888946593147914813440
 104 377789318629582962688.0 3777893186295829626880
 105 755578637259165925376.0 7555786372591659253760
 106 151115727451831985072.0 1511157274518319850720
 107 302231454903663970144.0 3022314549036639701440
 108 604462909807327940288.0 6044629098073279402880
 109 1208925819614655880576.0 12089258196146558805760
 110 2417851639229311761152.0 24178516392293117611520
 111 4835703278458623522304.0 48357032784586235223040
 112 9671406556917247044608.0 96714065569172470446080
 113 19342813113834494089216.0 193428131138344940892160
 114 38685626227668988178432.0 386856262276689881784320
 115 77371252455337976356864.0 773712524553379763568640
 116 15474250491067955271376.0 154742504910679552713760
 117 30948500982135910542752.0 309485009821359105427520
 118 61897001964271821085504.0 618970019642718210855040
 119 123794003928543642171008.0 1237940039285436421710080
 120 247588007857087284342016.0 2475880078570872843420160
 121 495176015714174568684032.0 4951760157141745686840320
 122 990352031428349137368064.0 9903520314283491373680640
 123 1980704062856698274736128.0 19807040628566982747361280
 124 3961408125713396549472256.0 39614081257133965494722560
 125 7922816251426793098944512.0 79228162514267930989445120
 126 1584563252845358619788904.0 15845632528453586197889040
 127 3169126505690717239577808.0 31691265056907172395778080
 128 6338253011381434479155616.0 63382530113814344791556160
 129 12676506026762868958311232.0 126765060267628689583112320
 130 25353012053525737916622464.0 253530120535257379166224640
 131 50706024107051475833244928.0 507060241070514758332449280
 132 10141204821410295166649856.0 101412048214102951666498560
 133 20282409642820590333299712.0 202824096428205903332997120
 134 40564819285641180666599424.0 405648192856411806665994240
 135 81129638571282361333198848.0 811296385712823613331988480
 136 16225927714256472666397696.0 162259277142564726663976960
 137 32451855428512945332795392.0 324518554285129453327953920
 138 64903710857025890665590784.0 649037108570258906655907840
 139 129807421714051781331181568.0 1298074217140517813311815680
 140 259614843428103562662363136.0 2596148434281035626623631360
 141 519229686856207125324726272.0 5192296868562071253247262720
 142 1038459373712414250649453544.0 10384593737124142506494535440
 143 2076918747424828501298867088.0 20769187474248285012988670880
 144 4153837494849657002587734176.0 41538374948496570025877341760
 145 8307674989699314005175468352.0 83076749896993140051754683520
 146 1661534979939862800785343664.0 16615349799398628007853436640
 147 3323069959879725601570687328.0 33230699598797256015706873280
 148 6646139919759451203141374656.0 66461399197594512031413746560
 149 1329227983951890240628274912.0 13292279839518902406282749120
 150 2658455967903780481256549824.0 26584559679037804812565498240
 151 5316911935807560962513099648.0 53169119358075609625130996480
 152 10633823871615121925261993216.0 106338238716151219252619932160
 153 21267647743230243850523986432.0 212676477432302438505239864320
 154 42535295486460487701047972864.0 425352954864604877010479728640
 155 85070590972920875402095945728.0 850705909729208754020959457280
 156 17014118194584175080419189156.0 170141181945841750804191891560
 157 34028236389168350160838378312.0 340282363891683501608383783120
 158 68056472778336700321676756624.0 680564727783367003216767566240
 159 136112945556673400643355113248.0 1361129455566734006433551132480
 160 272225891113346801286710226496.0 2722258911133468012867102264960
 161 544451782226693602573420452992.0 5444517822266936025734204529920
 162 1088903564453387205467408905884.0 10889035644533872054674089058840
 163 2177807128906774410934817811768.0 21778071289067744109348178117680
 164 4355614257813548821869635623536.0 43556142578135488218696356235360
 165 8711228515627097643739271247072.0 87112285156270976437392712470720
 166 17422457031254195287478542494144.0 174224570312541952874785424941440
 167 34844914062508390574957084988288.0 348449140625083905749570849882880
 168 69689828125016781149854169976576.0 696898281250167811498541699765760
 169 13937965625033576229910833995352.0 139379656250335762299108339953520
 170 27875931250667152459821666790704.0 278759312506671524598216667907040
 171 55751862501334304919643333581408.0 557518625013343049196433335814080
 172 11150372502666860983926666762816.0 111503725026668609839266667628160
 173 22300745005333721967853333525632.0 223007450053337219678533335256320
 174 44601490010667443935706666751264.0 446014900106674439357066667512640
 175 89202980021334887871413333502528.0 892029800213348878714133335025280
 176 17840596004266975574826666705056.0 178405960042669755748266667050560
 177 35681192008533951149653333500112.0 356811920085339511496533335001120
 178 71362384017067902299306666700224.0 713623840170679022993066667002240
 179 14272476803533904588603333500048.0 142724768035339045886033335000480
 180 28544953607067809177206666700096.0 285449536070678091772066667000960
 181 57089907214135618354413333500096.0 570899072141356183544133335000960
 182 11417981442827123678826666700096.0 114179814428271236788266667000960
 183 22835962885654247357653333500096.0 228359628856542473576533335000960
 184 45671925771308494715306666700096.0 456719257713084947153066667000960
 185 91343851542616989430613333500096.0 913438515426169894306133335000960
 186 18268770308523397887226666700096.0 182687703085233978872266667000960
 187 36537540617046795774453333500096.0 365375406170467957744533335000960
 188 73075081234093591548906666700096.0 730750812340935915489066667000960
 189 14615016266818718307813333500096.0 146150162668187183078133335000960
 190 29230032533637436615626666700096.0 292300325336374366156266667000960
 191 58460065067274873231253333500096.0 584600650672748732312533335000960
 192 11692013013454974646506666700096.0 116920130134549746465066667000960
 193 23384026026909949293013333500096.0 233840260269099492930133335000960
 194 46768052053819898586026666700096.0 467680520538198985860266667000960
 195 93536104107639797172053333500096.0 935361041076397971720533335000960
 196 187072208215279594344106666700096.0 1870722082152795943441066667000960
 197 374144416430559188688213333500096.0 3741444164305591886882133335000960
 198 748288832861118377376426666700096.0 7482888328611183773764266667000960
 199 1496577665722236754752413333500096.0 14965776657222367547524133335000960
 200 2993155331444473509504826666700096.0 29931553314444735095048266667000960
 201 5986310662888947019009653333500096.0 59863106628889470190096533335000960
 202 11972621325777894038019306666700096.0 119726213257778940380193066667000960
 203 23945242651555788076038606666700096.0 239452426515557880760386066667000960
 204 47890485303111576152077213333500096.0 478904853031115761520772133335000960
 205 95780970606223152304154426666700096.0 957809706062231523041544266667000960
 206 191561941212446304608308853333500096.0 1915619412124463046083088533335000960
 207 383123882424892609216617770666700096.0 3831238824248926092166177706667000960
 208 766247764849785218433235541333500096.0 7662477648497852184332355413335000960
 209 153249532969957043686671082666700096.0 1532495329699570436866710826667000960
 210 306498665939914087373342165333500096.0 3064986659399140873733421653335000960
 211 612997331879828174746684330666700096.0 6129973318798281747466843306667000960
 212 1225994663759656349493368865333500096.0 12259946637596563494933688653335000960
 213 2451989327519312698986737730666700096.0 24519893275193126989867377306667000960
 214 4903978655038625397973475541333500096.0 49039786550386253979734755413335000960
 215 9807957310077250795946951082666700096.0 98079573100772507959469510826667000960
 216 1961591462015450159189902175333500096.0 19615914620154501591899021753335000960
 217 3923182924030900318379804350666700096.0 39231829240309003183798043506667000960
 218 7846365848061800636759608701333500096.0 78463658480618006367596087013335000960
 219 1569273168013600127411921742666700096.0 15692731680136001274119217426667000960
 220 3138546336027200254823843485333500096.0 3138546336027200254823843

UNIT (1)
 NLW JERSLY DAM NO. 772 PASSAIC COUNTY BLOOMINGDALE
 0.1.0.25.0.5 MULTIPLES OF PMP FROM 24-HOUR PMP
 TIME 15.33.50

KAMPFEE LAKE DAM OVERTOPPING ANALYSIS
 THE HYDROLOGIC PREDICTION CENTER
 609 SOUTHERN STREET
 (916) DAVIS CALIFORNIA 95616
 (442-3215) (FAX) 442-3215

OUTPUT CONTROL VARIABLES
 IFRKT PRINT CONTROL
 JELUT FLCT CONTROL
 OSCL HYDROGRAPH PLOT SCALE
 ORSG YFS PRINT DIAGNOSTIC MESSAGE S

HYDROGRAPH TIME DATA
 NMIN 5 MINUTES IN COMPUTATION INTERVAL
 IDATE 1 000 STARTING TIME
 ITIME 1 000 NUMBER OF HYDROGRAPH ORDINALS
 NC 300
 NDATE 2 000 ENDING DATE
 NTIME 0055
 COMPUTATION INTERVAL 0.08 HOURS
 TOTAL TIME 24.92 HOURS

ENGLISH UNITS
 DRAINAGE AREA SQUARE FEET
 PRECIPITATION DEPTH INCHES
 LENGTH, ELEVATION FEET
 FLOW CUBIC FEET PER SECOND
 STORAGE VOLUME ACRE-FEET
 SURFACE AREA ACRES
 TEMPERATURE DEGREES FAHRENHEIT

MULTI-PLAN OPTION
 IFLAN 1 NUMBER OF PLANS

JR MULTI-RATIO OPTION
 RATIOS OF RUNOFF 0.10 0.25 0.50

KK SUBBASIN RUNOFF DATA
 AREA 0.05 SUBBASIN AREA

SCS UNIT GRAPH COMPUTATION-EXPONENTIAL LOSS RATE

10. BA SUBBASIN CHARACTERISTICS
 AREA 0.05

11. SF BASE FLOW CHARACTERISTICS
 STATE 2.00 INITIAL FLOW
 ORCSN 2.50 BEGIN BASE FLOW RECESSSION
 VCTOR 1.00000 RECESSSION CONSTANT

PRECIPITATION DATA

12 PM PRECIPITABLE MAXIMUM SIGNIFICANT
FHS 22.00 INHULX PRECIPITATION,
TFSPC 0.60 TRANSPOSITION COEFFICIENT,
TFSPC 0.95 TRANSPOSITION AREA,
TFSPC NO USE SWD DISTRIBUTION AREA

PERCENT OF TOTAL PRECIPITATION OCCURRING IN GIVEN TIME
6-HR 12-HR 24-HR 48-HR 72-HR 96-HR
113.0 123.0 132.0 0.0 0.0 0.0

13 LU UNIFORM LOSS RATE
STATION - 1.00 INITIAL LOSS
CNSL - 0.10 UNIFORM LOSS RATE
RTMP 5.00 PERCENT IMPERVIOUS AREA

SCS DIMENSIONLESS UNITGRAPH
0.36 LAG

44.0

25 UNIT HYDROGRAPH
973. 915. 73. 30.
29. 152. 116. 60. 57. 42. 31.

***** HYDROGRAPH AT STATION A1 *****

29
27
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

163	174	185	136	137	138	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247
164	175	186	137	138	139	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	
165	176	187	139	140	141	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247			
166	177	188	140	141	142	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247				

151955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030

.....

କେବଳ ଏହାର ପରିମା ଅଧିକ ହେଉଥିଲା ନାହିଁ ।

PEAK FLOW (CFS)	TIME (HR)	MAXIMUM FLOW 24-HR	AVERAGE FLOW 72-HR	24-92-HR
5433.	15.92	(CFS) 16.92	(INCHES) 17.32	(INCHES) 18.95

107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

PEAK FLOW (CFS)	TIME (HR)	MAXIMUM AVERAGE FLOW 6-HR	MAXIMUM AVERAGE FLOW 24-HR
2717.	15.92	{ CFS } 869 9475 9430.	{ CFS } 238 10395 10471.
		{ INCHES }	{ INCHES }
		{ AC-FT }	{ AC-FT }

CUMULATIVE AREA = 0.65 50 MI

THE HIGH KAMPEE LAKE

HYDROGRAPH-ROUTING DATA

16 RS.	STORAGE ROUTING	NUMBER OF SURFACES
17 STPS	TYPE	TYPE OF INITIAL CONDITION
RSVRCX	154.00 0.0	INITIAL CONDITION WALKING R AND D COEFFICIENT
- 17-SV	STORAGE	0.0
18 SE	ELEVATION	526.50
- 19-SQ	DISCHARGE	0.0
20 SE	ELEVATION	535.00
- 21-SS	SPILLWAY	SPILLWAY CRITICAL SPILLWAY WIDTH
	CREL	SPILLWAY COEFFICIENT
	SPNLD	SPILLWAY EXPONENT OF HEAD
	COEF	
	EXPN	

222 S.F. TOP OF DAME 536.80 ELEVATION AT TOP OF DAM
DAH 16 - 149.00 DAM WIDTH
COEF. EXP. 2.64 WEIR COEFFICIENT
EXPO. 1.50 EXPOSURE COEFFICIENT OF HEAD

HYDROGRAPH AT STATION 0 = 0.50 A2

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791

792 793 794 795 796 797 798 799 799 799 799 799 799 799 799 799 799 799

800 801 802 803 804 805 806 807 808 809 809 809 809 809 809 809 809 809

810 811 812 813 814 815 816 817 818 819 819 819 819 819 819 819 819 819

820 821 822 823 824 825 826 827 828 829 829 829 829 829 829 829 829 829

830 831 832 833 834 835 836 837 838 839 839 839 839 839 839 839 839 839

840 841 842 843 844 845 846 847 848 849 849 849 849 849 849 849 849 849

850 851 852 853 854 855 856 857 858 859 859 859 859 859 859 859 859 859

860 861 862 863 864 865 866 867 868 869 869 869 869 869 869 869 869 869

870 871 872 873 874 875 876 877 878 879 879 879 879 879 879 879 879 879

880 881 882 883 884 885 886 887 888 889 889 889 889 889 889 889 889 889

CB35	79	2.0	154.7	155.0	179
CB45	80	2.0	154.7	155.0	179
CB45	81	—	154.7	155.0	179
CB45	82	2.0	154.7	155.0	179
CB55	83	2.0	154.7	155.0	179
CB55	84	—	154.7	155.0	179
CB55	85	—	154.7	155.0	179
CB75	86	2.0	154.8	155.0	179
CB75	87	2.0	154.8	155.0	179
CB75	88	—	154.8	155.0	179
CB75	89	2.0	154.8	155.0	179
CB75	90	—	154.8	155.0	179
CB75	91	2.0	154.9	155.0	179
CB75	92	—	154.9	155.0	179
CB75	93	3.0	155.0	155.0	179
CB75	94	3.0	155.0	155.0	179
CB75	95	4.0	155.0	155.0	179
CB75	96	4.0	155.0	155.0	179
CB75	97	5.0	155.0	155.0	179
CB85	98	6.0	156.0	156.0	179
CB85	99	7.0	156.0	156.0	179
CB15	100	7.0	157.0	157.0	179

AK OUTFLOW IS 2279. AT TIME 16.08 HOURS

EARL FLOW (CFS)	TIME (HR)	MAXIMUM AVERAGE FLOW		STORAGE
		(CFS)	(INCHES)	
2279.	16.08	6-HR	786.	72-HR
		24-HR	216.	216.
		24-HR	9.695.	9.695.
		24-HR	449.	449.
AN STORAGE---TIME (AC-FT)	TIME (HR)	MAXIMUM AVERAGE FLOW	STORAGE	
272.	16.08	6-HR	236.	186.
		24-HR	186.	186.
EARL STAGE---TIME (FEET)	TIME (HR)	MAXIMUM AVERAGE FLOW	STAGE	
526.34	16.08	6-HR	537.34	535.90
		24-HR	535.86	535.86
CUMULATIVE AREA--		0.65 SG HI-		

PEAK FLOW AND STAGE (STRUCTURE-OPEN) SUMMARY FOR JUN 1947 PULASKI CANTONMENT COMPUTATIONS
TIME TO PEAK 13 HOURS

OPERATION	STATION	AREA	PLAT.	RATIO 0.1	RATIO 0.2	RATIO 0.3
- HYDROGRAPH AT	A1	0.05	1	FLUX TIME	543. 15.92	2717. 15.92
- ROUTED TC	A2	0.05	1	FLUX TIME	152. 17.06	2279. 16.08
** PEAK STAGES IN FEET	1	STAGE	536.45	** TIME	537.55 17.06	538.34 16.08

A7

SUMMARY OF DATA OBTAINED FOR ANALYSIS FOR STATION

PLAN	ELEVATION STORAGE OUTFLUX	INITIAL VALUE	SPILLWAY CFS	TOP OF TANK		
1	1,350.00	1,320.00	1,350.00	215.		
RATIO	MAXIMUM RESERVOIR W.S.ELEV.	MAXIMUM DEPTH OVER DAM AC-FT	MAXIMUM STORAGE CFS	DURATION OVER TOP HOURS	MAX OUTFLOW CFS	TIME OF FAULKE HOURS
0.10	536.99	0.0	204.	155.	0.0	17.06
0.50	537.35	0.75	243.	249.	3.42	6.17
0.50	538.34	1.54	272.	279.	5.42	6.06

-NORMAL-END-OF-JOB-

10 KARPFEL, LANA DEM NC 772 MILE HIGH AND 100' WIDE
10 NEW JERSEY DEM NC 772 PASSAIC COUNTY THROUGH THE TUNNEL HIGHWAY

LINE	10	KARPFF LAKE NEW JERSEY DATA NO. 772	WATER ANALYSIS PASSEIC COUNTRY	FOR PURCHASE OF ELIMINATING LAKE	A-RACE INCL#
10000	10	KARPFF LAKE NEW JERSEY DATA NO. 772	WATER ANALYSIS PASSEIC COUNTRY	FOR PURCHASE OF ELIMINATING LAKE	A-RACE INCL#
10000	01	200 KARPFF LAKE 200	200	200	200
10000	02	A2 KURT INFLOW HYDROGRAPH THROUGH KAMPF LAKE			
10000	03	KUR			
10000	04	KUR			
10000	05	KUR			
10000	06	KUR			
10000	07	KUR			
10000	08	KUR			
10000	09	KUR			
10000	10	KUR			
10000	11	KUR			
10000	12	KUR			
10000	13	KUR			
10000	14	KUR			
10000	15	KUR			
10000	16	KUR			
10000	17	KUR			
10000	18	KUR			
10000	19	KUR			
10000	20	KUR			
10000	21	KUR			
10000	22	KUR			
10000	23	KUR			
10000	24	KUR			
10000	25	KUR			
10000	26	KUR			
10000	27	KUR			
10000	28	KUR			
10000	29	KUR			
10000	30	KUR			
10000	31	KUR			
10000	32	KUR			
10000	33	KUR			
10000	34	KUR			
10000	35	KUR			
10000	36	KUR			
10000	37	KUR			
10000	38	KUR			
10000	39	KUR			
10000	40	KUR			
10000	41	KUR			
10000	42	KUR			
10000	43	KUR			
10000	44	KUR			
10000	45	KUR			
10000	46	KUR			
10000	47	KUR			
10000	48	KUR			
10000	49	KUR			
10000	50	KUR			
10000	51	KUR			
10000	52	KUR			
10000	53	KUR			
10000	54	KUR			
10000	55	KUR			
10000	56	KUR			
10000	57	KUR			
10000	58	KUR			
10000	59	KUR			
10000	60	KUR			
10000	61	KUR			
10000	62	KUR			
10000	63	KUR			
10000	64	KUR			
10000	65	KUR			
10000	66	KUR			
10000	67	KUR			
10000	68	KUR			
10000	69	KUR			
10000	70	KUR			
10000	71	KUR			
10000	72	KUR			
10000	73	KUR			
10000	74	KUR			
10000	75	KUR			
10000	76	KUR			
10000	77	KUR			
10000	78	KUR			
10000	79	KUR			
10000	80	KUR			
10000	81	KUR			
10000	82	KUR			
10000	83	KUR			
10000	84	KUR			
10000	85	KUR			
10000	86	KUR			
10000	87	KUR			
10000	88	KUR			
10000	89	KUR			
10000	90	KUR			
10000	91	KUR			
10000	92	KUR			
10000	93	KUR			
10000	94	KUR			
10000	95	KUR			
10000	96	KUR			
10000	97	KUR			
10000	98	KUR			
10000	99	KUR			
10000	100	KUR			
10000	101	KUR			
10000	102	KUR			
10000	103	KUR			
10000	104	KUR			
10000	105	KUR			
10000	106	KUR			
10000	107	KUR			
10000	108	KUR			
10000	109	KUR			
10000	110	KUR			
10000	111	KUR			
10000	112	KUR			
10000	113	KUR			
10000	114	KUR			
10000	115	KUR			
10000	116	KUR			
10000	117	KUR			
10000	118	KUR			
10000	119	KUR			
10000	120	KUR			
10000	121	KUR			
10000	122	KUR			
10000	123	KUR			
10000	124	KUR			
10000	125	KUR			
10000	126	KUR			
10000	127	KUR			
10000	128	KUR			
10000	129	KUR			
10000	130	KUR			
10000	131	KUR			
10000	132	KUR			
10000	133	KUR			
10000	134	KUR			
10000	135	KUR			
10000	136	KUR			
10000	137	KUR			
10000	138	KUR			
10000	139	KUR			
10000	140	KUR			
10000	141	KUR			
10000	142	KUR			
10000	143	KUR			
10000	144	KUR			
10000	145	KUR			
10000	146	KUR			
10000	147	KUR			
10000	148	KUR			
10000	149	KUR			
10000	150	KUR			
10000	151	KUR			
10000	152	KUR			
10000	153	KUR			
10000	154	KUR			
10000	155	KUR			
10000	156	KUR			
10000	157	KUR			
10000	158	KUR			
10000	159	KUR			
10000	160	KUR			
10000	161	KUR			
10000	162	KUR			
10000	163	KUR			
10000	164	KUR			
10000	165	KUR			
10000	166	KUR			
10000	167	KUR			
10000	168	KUR			
10000	169	KUR			
10000	170	KUR			
10000	171	KUR			
10000	172	KUR			
10000	173	KUR			
10000	174	KUR			
10000	175	KUR			
10000	176	KUR			
10000	177	KUR			
10000	178	KUR			
10000	179	KUR			
10000	180	KUR			
10000	181	KUR			
10000	182	KUR			
10000	183	KUR			
10000	184	KUR			
10000	185	KUR			
10000	186	KUR			
10000	187	KUR			
10000	188	KUR			
10000	189	KUR			
10000	190	KUR			
10000	191	KUR			
10000	192	KUR			
10000	193	KUR			
10000	194	KUR			
10000	195	KUR			
10000	196	KUR			
10000	197	KUR			
10000	198	KUR			
10000	199	KUR			
10000	200	KUR			

(916) 440-3285, 14 (FTS) 440-1205
U.S. AIRPORT AUTHORITY
THE HILL FIELD AIRPORT AUTHORITY

KAMPFF LAKE DAM PRACHT ANALYSIS
IN DOCKYARD COUNTY, IDAHO

4 10 OUTPUT CONTROL VARIABLES PRINT CONTROL
 IPRINT 1 PLT CONTROL
 IFLOUT 1 HYDROGRAPH PLT SCALE
 OSCAL 0 PRINT DIAGNOSTIC MESSAGES
 IDNSC 1 Y₁

HYDROGRAPH TIME DATA		MINUTES IN COMPUTATION INTERVAL		HOURS	
INTERVAL	TIME	STARTING DATE	ENDING DATE	NUMBER OF HYDROGRAPH ORDINATES	HOURS
1	1	0	0	5	0.08
1	1	0000	0000	1	0.00
1	1	200	200	1	0.00
1	1	1635	1635	1	0.00
COMPUTATION INTERVAL		TOTAL TIME		TOTAL HOURS	
		15		15	

ENGLISH UNITS	SQUARE MILES
DRY AVERAGE AREA	ACRES
PRECIPITATION DEPTH	INCHES
LENGTH, ELEVATION	FEET
FLOW	CUBIC FEET PER SECOND
STORAGE VOLUME	ACRE-FEET
SURFACE AREA	ACRES
TEMPERATURE	DEGREES FAHRENHEIT

卷之三

SUBBASIN CHARACTERISTICS SUBBASIN AREA

HYDROGRAPH AT STATION A1

	FLU
FLU	200
FLU	300
FLU	400
FLU	500
FLU	600
FLU	700
FLU	800
FLU	900
FLU	1000
FLU	1100
FLU	1200
FLU	1300
FLU	1400
FLU	1500
FLU	1600
FLU	1700
FLU	1800
FLU	1900
FLU	2000
FLU	2100
FLU	2200
FLU	2300
FLU	2400
FLU	2500
FLU	2600
FLU	2700
FLU	2800
FLU	2900
FLU	3000
FLU	3100
FLU	3200
FLU	3300
FLU	3400
FLU	3500
FLU	3600
FLU	3700
FLU	3800
FLU	3900
FLU	4000
FLU	4100
FLU	4200
FLU	4300
FLU	4400
FLU	4500
FLU	4600
FLU	4700
FLU	4800
FLU	4900
FLU	5000
FLU	5100
FLU	5200
FLU	5300
FLU	5400
FLU	5500
FLU	5600
FLU	5700
FLU	5800
FLU	5900
FLU	6000
FLU	6100
FLU	6200
FLU	6300
FLU	6400
FLU	6500
FLU	6600
FLU	6700
FLU	6800
FLU	6900
FLU	7000
FLU	7100
FLU	7200
FLU	7300
FLU	7400
FLU	7500
FLU	7600
FLU	7700
FLU	7800
FLU	7900
FLU	8000
FLU	8100
FLU	8200
FLU	8300
FLU	8400
FLU	8500
FLU	8600
FLU	8700
FLU	8800
FLU	8900
FLU	9000
FLU	9100
FLU	9200
FLU	9300
FLU	9400
FLU	9500
FLU	9600
FLU	9700
FLU	9800
FLU	9900
FLU	10000
ORG	101
ORG	102
ORG	103
ORG	104
ORG	105
ORG	106
ORG	107
ORG	108
ORG	109
ORG	110
ORG	111
ORG	112
ORG	113
ORG	114
ORG	115
ORG	

PEAK FLOW - (CF _S)	TIME - (HR)	(CF _S)	MAXIMUM FLOW 24-HR	AVERAGE FLOW 72-HR	16.58-HR
300.	0.33	(1CF _S) (AC-T)	300. 0.003 149.	29.9 0.000 6.09.	29.8 0.000 4.09.
.

KUHN, Julian, naturalist, through Kappa Lake

OUTPUT CONTROL VARIABLE

HYDROGRAPHIC SURVEYING DATA

ST 155 TOP OF CAIL
-CAIRN
COGD
EXPD
ELEVATION AT TOP OF DAM
149.00
2.04
1.50
WATER COEFFICIENT
HEAD

BREACH	DATA	ELEVATION AT ACTION OF BREACH
CLUM		526.50 ELEVATION AT ACTION OF BREACH
LURKIN		55.00 WIDTH OF BREACH BOTTOM
Z		1.00 BREACH SIDE SLOPE
-		1.00 TIME FOR BREACH TO DEVELOP
FAIL		536.80 ELEVATION AT TRIGGER FAILURE
FAIL		536.80 ELEVATION AT TRIGGER FAILURE

STORAGE	154.00	107.39	215.00	CMPD 260.G0	SILICATE 295.00	LIQUID 300.00
CONTAINER	2.0	22.26	201.00	382.00	2160.00	5000.00

SACRIFICIAL DEATH FAILURE AT 3.52 HUNDRED

HYDROGRAPH AT STATION 42						STAGE	DA MUN HIN DOD	OUTFLOW	STORAGE	ST.
DA MUN	HIN	DOD	OUTFLOW	STORAGE	STAGE	DA MUN	HIN DOD	OUTFLOW	STORAGE	ST.
0005	12	0	154.0	525.0	0	0535	68	811.	50.2	300.
0005	3	0	155.4	535.0	0	0540	69	732.	46.9	329.1
C019	7	0	156.7	535.1	0	0545	70	676.	44.2	326.9
C015	10	0	158.3	535.1	0	0550	71	616.	41.1	326.9
—	—	—	159.7	535.1	0	0555	72	569.	39.4	321.7
C040	—	—	160.0	535.1	0	0600	73	532.	38.1	326.6
C045	9	0	161.5	535.3	0	0605	74	500.	36.6	326.5
C033	8	0	163.5	535.3	0	0610	75	474.	35.3	326.4
C040	9	0	165.4	535.4	0	0615	76	441.	34.7	328.4
—	—	—	167.3	535.4	0	0620	77	411.	33.2	327.3

AD-A102 672 NEW JERSEY DEPT OF ENVIRONMENTAL PROTECTION TRENTON F/G 13/13
NATIONAL DAM SAFETY PROGRAM, KAMPFKE LAKE DAM (NJ00772), PASSAIC--ETC(U)
JUL 81 W A GUINAN DACW61-79-C-0011

UNCLASSIFIED

DAEN/NAP-53842/NJ00772-81/ NL

2 16 2

END
DATE
FILED
9 81
DTIC

16. 50-HR
391.0
0.00

MAXIMUM AVERAGE FLOW
24-HR
371.0
0.00
36.0

EARL FLOW TIME
(CFS) (HR)
317.0 4.92
317.0 (INCHES) 0.000
317.0 (AC-FT) 33.0

.AK GUTFLOW IS 3170. AT TIME 4.92 HOURS

PEAK STAGE (AC-HR)	TIME (HR)	TIME 24-HR	MAX 24-HR AVERAGE	STAGE 72-HR	STAGE 7D-14D
216.	4.08	10.7	7.2-HR	7.0.	14.58-14D
PEAK STAGE (EFFECT)	TIME (HR)				
536.63	4.08				

CUMULATIVE ACT₄ = 0.0 SC MI

PEAK STAGE (AC-HR)	TIME (HR)	TIME 24-HR	MAX 24-HR AVERAGE	STAGE 72-HR	STAGE 7D-14D
216.	4.08	10.7	7.2-HR	7.0.	14.58-14D
PEAK STAGE (EFFECT)	TIME (HR)				
536.63	4.08				

17 KK AS E ROUTE BREACHED OUTFLOW THROUGH STAR LAKE

HYDROGRAPH ROUTING DATA

RS	STORAGE	ROUTING	NUMBER OF SUBREACHES
	OUTFLOWS	TYPE OF INITIAL CONDITION	INITIAL CONDITION
	RSVRIC	200.00	0.0 WORKING AND COEFFICIENT
19 SV	STORAGE	0.0	115.0 136.0 150.0 165.0 177.0 197.0 225.0
20 SE	ELEVATION	521.60	529.90 531.00 531.60 532.10 532.60 533.70 535.00
21 SG	DISCHARGE	0.	0. 174. 334. 629. 1413. 3245. 7366.
22 SE	ELEVATION	521.60	529.90 531.00 531.60 532.10 532.60 533.70 535.00
23 SS	SPILLWAY	529.90 52.00 2.90 1.50	SPILLWAY GREATEST ELEVATION SPILLWAY WIDTH RELK COEFFICIENT EXPW EXPONENT OF HEAD
24 ST	TOP OF DAM	531.60 149.60 CCSD EXPD	ELEVATION AT TOP OF DAM DAM WIDTH RELK COEFFICIENT EXPW EXPONENT OF HEAD
	STORAGE	0.0	115.00 136.00 150.00 165.00 172.00 197.00 225.00
	OUTFLOW	0.0	0.0 174.00 334.00 629.00 1413.00 3245.00 7360.00

DA	MGN	HRRN	GRD	OUTFLW	STORAGE	STAGE	DA	MIN HRRN	MAX HRRN	OUTFLW	STORAGE	STAGE	DA	MIN HRRN	MAX HRRN	OUTFLW	STORAGE
1	COCO	1	200.	139.3	531.1	1	0.535	68	926.	166.1	532.2	1	1110	136	302.	147.2	521.
1	COC5	2	165.	137.0	531.0	1	0.540	69	823.	165.4	532.1	1	1115	137	302.	147.2	521.
1	COC3	3	155.0	155.0	531.0	1	0.565	70	761.	164.7	532.1	1	1120	137	302.	147.2	521.
1	COC15	4	163.	136.7	530.9	1	0.550	71	736.	164.0	532.1	1	1125	137	302.	147.2	521.
1	COC20	5	154.	133.6	530.9	1	0.555	72	706.	163.1	532.0	1	1130	139	301.	147.2	521.
1	COC25	6	147.	132.7	530.9	1	0.600	73	675.	162.1	532.0	1	1135	140	301.	147.2	521.
1	COC30	7	149.	131.9	530.9	1	0.695	74	643.	161.1	532.0	1	1140	141	301.	147.2	521.
1	COC35	8	143.	131.1	530.7	1	0.610	75	612.	160.2	531.9	1	1145	142	301.	147.2	521.
1	COC40	9	128.	130.4	530.7	1	0.615	76	583.	159.2	531.9	1	1150	143	301.	147.2	521.
1	COC45	10	122.	129.1	530.7	1	0.620	77	556.	158.3	531.9	1	1155	144	301.	147.2	521.
1	COC50	11	114.	129.2	530.6	1	0.625	78	531.	157.5	531.8	1	1160	145	301.	147.2	521.
1	COC55	12	114.	129.3	530.6	1	0.630	79	509.	156.7	531.8	1	1165	145	301.	147.2	521.
1	COC60	13	110.	129.3	530.6	1	0.635	80	488.	156.0	531.8	1	1170	146	301.	147.2	521.
1	COC65	14	104.	127.6	530.6	1	0.640	81	469.	154.7	531.7	1	1175	146	301.	147.2	521.
1	COC70	15	102.	127.3	530.6	1	0.645	82	452.	154.2	531.7	1	1180	147	301.	147.2	521.
1	COC75	16	100.	127.0	530.6	1	0.650	83	436.	153.7	531.7	1	1185	147	301.	147.2	521.

HYDROGRAPH AT STATION AS

DA	MGN	HRRN	GRD	OUTFLW	STORAGE	STAGE	DA	MIN HRRN	MAX HRRN	OUTFLW	STORAGE	STAGE	DA	MIN HRRN	MAX HRRN	OUTFLW	STORAGE
1	COCO	1	200.	139.3	531.1	1	0.535	68	926.	166.1	532.2	1	1110	136	302.	147.2	521.
1	COC5	2	165.	137.0	531.0	1	0.540	69	823.	165.4	532.1	1	1115	137	302.	147.2	521.
1	COC3	3	155.0	155.0	531.0	1	0.565	70	761.	164.7	532.1	1	1120	137	302.	147.2	521.
1	COC15	4	163.	136.7	530.9	1	0.550	71	736.	164.0	532.0	1	1125	137	302.	147.2	521.
1	COC20	5	154.	133.6	530.9	1	0.555	72	706.	163.1	532.0	1	1130	139	301.	147.2	521.
1	COC25	6	147.	132.7	530.7	1	0.600	73	675.	162.1	532.0	1	1135	140	301.	147.2	521.
1	COC30	7	149.	131.9	530.7	1	0.695	74	643.	161.1	532.0	1	1140	141	301.	147.2	521.
1	COC35	8	143.	131.1	530.7	1	0.610	75	612.	160.2	531.9	1	1145	142	301.	147.2	521.
1	COC40	9	128.	130.4	530.7	1	0.615	76	583.	159.2	531.9	1	1150	143	301.	147.2	521.
1	COC45	10	122.	129.1	530.7	1	0.620	77	556.	158.3	531.9	1	1155	144	301.	147.2	521.
1	COC50	11	114.	129.2	530.6	1	0.625	78	531.	157.5	531.8	1	1160	145	301.	147.2	521.
1	COC55	12	114.	129.3	530.6	1	0.630	79	509.	156.7	531.8	1	1165	145	301.	147.2	521.
1	COC60	13	110.	129.3	530.6	1	0.635	80	488.	156.0	531.8	1	1170	146	301.	147.2	521.
1	COC65	14	104.	127.6	530.6	1	0.640	81	469.	154.7	531.7	1	1175	146	301.	147.2	521.
1	COC70	15	102.	127.3	530.6	1	0.645	82	452.	154.2	531.7	1	1180	147	301.	147.2	521.
1	COC75	16	100.	127.0	530.6	1	0.650	83	436.	153.7	531.7	1	1185	147	301.	147.2	521.

PEAK FLOW (CFS) 288c.	TIME (HR) 4.92	FLOW (CFS) (INCHES) (AC-Ft)	MAXIMUM AVERAGE FLOW 24-HR 661. 0.000 326. 0.000 156. 0.000	16.53-HR 72-HR 305. 0.000 527.
PEAK STAGE (AC-Ft) 182.	TIME (HR) 4.92	STAGE (INCHES) (AC-Ft)	MAXIMUM AVERAGE STAGE 24-HR 146. 146.	16.58-HR 72-HR 146.
PEAK STAGE (AC-Ft) 533.06	TIME (HR) 4.92	STAGE (INCHES) (AC-Ft)	CUMULATIVE AREA = 0.0 SQ MI	16.53-HR 72-HR 531.38

PEAK GROUT FLOW IS 2886. AT TIME 4.92 HOURS

HIGH WATER STATION
TIME IN HOURS, AND A 1/2 DRAFT TUES

OPERATION	STATION	PEAK FLOW	TIME OF PEAK	AVERAGE FLOW FOR MAXIMUM 6-HOUR PERIOD	FLOW FOR MAXIMUM 72-HOUR PERIOD	RASIN AREA	MAX UP-STAGE	TIME OF MAX STAGE
HYDROGRAPH AT	A1	300.	C.33	300.	278.	296.	0.0	4.08
ROUTED TO	A2	3178.	4.92	633.	391.	391.	0.0	536.63
ROUTED TO	A5	2666.	4.92	661.	385.	365.	0.0	533.00

A?

Summary of Dam Overbank Flow, Analysis for Station

PLAN	ELEVATION STAND. OUTLET	INITIAL VALVE	SPLIT DAY CFS	TOP OF DAM W.M.	TIP OF FALLING WALLS
1.....	MAXIMUM RESERVOIR W.S.ELEV	535.00	32,60	540.00	42.12.
	RATIO OF PWF	1.00	0.03	536.83	3.62

	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	DISCHARGE AVG CFS HOURS	MAX GATEFLOW MINUTES	TIP OF FALLING WALLS
	0.03	216.	3176.	0.37	4.92

STUDY OF THE DYNAMIC BEHAVIOR AND ANALYSIS FOR STATION

A5

PLAN 1	INITIAL VALUE MATERIAL TESTED	SPILLAGE CFS	TOP OF DAM ft.
-----	1.00 KICKYUK W.S.ULEV TESTED	1.00 1.00 1.00	531.00 1.00 531.00
-----	RATIO PFF 1.00	MAXIMUM RADIUS OF EARTH OVERLAIN 533.00	MAXIMUM STUCK-UP ACFT 1.46

*** NORMAL END OF JOB ***

APPENDIX 6
REFERENCES

KAMPFE LAKE DAM

APPENDIX 6
REFERENCES

KAMPFE LAKE DAM

Anderson-Nichols & Co., Inc., Star Lake Phase I Report,
National Dam Inspection Program, February 1980.

Chow, Ven Te, Open Channel Hydraulics, McGraw Hill Book
Company, New York, 1959.

King, H.W. and E.F. Brater, Handbook of Hydraulics, McGraw Hill
Book Company, New York, Fifth Edition 1963.

Lewis, J.V. and H.B. Kummel (1910-1912) Geologic Map of New
Jersey, revised by H.B. Kummel, 1931, and by M.E. Johnson,
1950. New Jersey Department of Conservation of Economic
Development Atlas.

Salisbury, Kummel, H.B., Peet and Whitson, Glacial Drift Map of
New Jersey, 1902.

Schway, G.O., R.K. Frevert, T.W. Edmister, and K.K. Barnes,
Soil and Water Conservation Engineering, The Ferguson
Foundation Agricultural Engineering Series, John Wiley and
Sons, Inc., New York, 1966, 683 pp.

U.S. Army Corps of Engineers, Hydrologic Engineering Center,
Flood Hydrograph Package (HEC-1) Users Manual Preliminary,
Davis, California, March 1981.

U.S. Department of Agriculture, Soil Conservation Service,
Urban Hydrology for Small Watersheds, Technical Release No. 55,
Washington, 1975.

U.S. Department of Commerce, Weather Bureau, "Seasonal
Variation of the Probable Maximum Precipitation East of the
105th Meridian for Areas from 10 to 1000 Square Miles and
Durations of 6, 12, 24, and 48 Hours", Hydrometeorological
Report No. 33, Washington, 1977, 816 pp.

United States Department of Interior, Bureau of Reclamation,
Design of Small Dams, U.S. Government Printing Office,
Washington, 1977, 816 pp.

U.S. Department of Interior, Geological Survey, 7.5-Minute
Series (topographic) maps, scale 1:24000, Contour Interval 10
feet: Wanaque, New Jersey, (1954).

Viessman, Warren, Jr., J.W. Knapp, G.L. Lewis, T.E. Harbaugh,
Introduction to Hydrology, Harper and Row, Publishers, New
York, Second Edition 1977, 704 pp.

END
DATE
FILMED
9-81
DTIC