Python for Life Sciences

Kulwadee Somboonviwat

kulwadee.a [at] gmail.com

PyCon Thailand 2018-06-16

Slide available at: https://goo.gl/6fqDAL

Me

Current

• Software developer working on bioinformatics and dialog systems

Past

- Faculty member at KMUTNB, KMITL, KMUTT
- Specially Appointed Assoc.Prof. at University of Electro-Communications (UEC)
- Technical consultant (PEA)
- Part-time researcher at CoE for Molecular Biology and Genomic of Shrimp (CU)
- Ph.D. in Information and Communication Engineering (Univ. of Tokyo)

Today's Topics

- Why Python for Life Sciences?
- Important Concepts
 - The Central Dogma of Molecular Biology
 - Types of Biological Data
- Common Tasks in Bioinformatics
 - Python Libraries and Tools
 - Example: Gene Expression Analysis
- Key Issues in doing Biological Data Science (a computer scientist perspective)

Life Sciences is a Big Data Science.

Explosion of Genomic Data

With the advent of **NGS** in 2004...

- Cost-per-Genome → **US\$1000**
- **10x** yearly growth rate of Genomic Data

https://www.genome.gov/27565109/the-cost-of-sequencing-a-human-genome/

B., Bonnie, N. M. Daniels, and Y. W. Yu. "Computational Biology in the 21st Century: Scaling with Compressive Algorithms." *CACM* 59.8: 72-80.

Big Data: Astronomical or Genomical?

Zachary D. Stephens, Skylar Y. Lee, Faraz Faghri, Roy H. Campbell, Chengxiang Zhai, Miles J. Efron, Ravishankar Iyer, Michael C. Schatz , Saurabh Sinha , Gene E. Robinson

Published: July 7, 2015 • https://doi.org/10.1371/journal.pbio.1002195

"Genomics is either on par with or the most demanding of the domains analyzed (Astronomy, Twitter, YouTube) in terms of data acquisition, storage, distribution, and analysis."

Data Phase	Astronomy	Twitter	<u>YouTube</u>	<u>Genomics</u>
Acquisition	25 zetta-bytes/year	0.5–15 billion tweets/year	500–900 million hours/year	1 zetta-bases/year
Storage	1 EB/year	1–17 PB/year	1–2 EB/year	2–40 EB/year
Analysis	In situ data reduction	Topic and sentiment mining	Limited requirements	Heterogeneous data and analysis
	Real-time processing	Metadata analysis		Variant calling, ~2 trillion central processing unit (CPU) hours
	Massive volumes			All-pairs genome alignments, ~10,000 trillion CPU hours
Distribution	Dedicated lines from antennae to server (600 TB/s)	Small units of distribution	Major component of modern user's bandwidth (10 MB/s)	Many small (10 MB/s) and fewer massive (10 TB/s) data movement

Outbreak of shrimp diseases in 2012 to 2015 had caused Thai shrimp production plummeted as much as 40%

https://goo.al/3PvtXP

- **CU-Mir** is a miRNA target identification program, written in Python.
- Help scientists to be more productive by lowering time and costs of experiments

https://www.ncbi.nlm.nih.gov/pubmed/26945623

Other emerging applications ...

Business Impact

Oxford Nanopore's Hand-Held DNA Analyzer Has Traveled the World

A British company, number 32 on our list of the 50 Smartest Companies, bets a tiny analyzer will change how we look at DNA.

by Antonio Regalado June 27, 2017

https://aoo.al/oisL5o

Rewriting Life

This new company wants to sequence your genome and let you share it on a blockchain

People will be able to earn cryptocurrency in exchange for letting pharma companies use their data.

by Emily Mullin February 7, 2018

https://aoo.al/anVMuZ

Today's Topics

- Why Python for Life Sciences?
- Important Concepts
 - The Central Dogma of Molecular Biology
 - Types of Biological Data
- Common Tasks in Bioinformatics
 - Python Libraries and Tools
 - Example: Gene Expression Analysis
- Key Issues in doing Biological Data Science (a computer scientist perspective)

The Central Dogma of Molecular Biology

Types of Biological Data

- DNA, RNA, Protein Sequences
- Gene Expression
- Networks and Pathways
- Gene Ontology

Types Biological Data - DNA sequence

https://www.thoughtco.com/dna-vs-rna-1224518

Types Biological Data – RNA sequence

https://www.thoughtco.com/dna-vs-rna-1224518

Types Biological Data - Protein

RNA codon table								
1st position	U	С	Α	G	3rd position			
U	Phe Phe Leu Leu	Ser Ser Ser Ser	Tyr Tyr stop stop	Cys Cys stop Trp	UCAG			
С	Leu Leu Leu Leu	Pro Pro Pro	His His Gln Gln	Arg Arg Arg	U○∢G			
Α	lle lle lle Met	Thr Thr Thr Thr	Asn Asn Lys Lys	Ser Ser Arg Arg	U C A G			
G	Val Val Val Val	Ala Ala Ala Ala	Asp Asp Glu Glu	Gly Gly Gly Gly	UCAG			
Amino Acids								
Altri Allesine (Mr. Obstanline Levi Levilne Ser Serine								

Ala: Alanine Arg: Arginine Aan: Asparagine Asp:Aspartic acid Cvs:Cvsteine Gln: Glutamine Gln: Glutamic acid Gly: Glycine His: Histidine Leu: Leucine Lys: Lysine Met: Methionine Pho: Phorytalanine the: Parties

Ser: Serine Thr: Threonine Trp: Tryptophane Tyr: Tyrosiane Vat: Valine

Types Biological Data - Gene Expression

- Gene. A stretch of DNA that codes for a type of protein that has a function in an organism
- Gene Expression Data. Expression level of genes in an individual that is measured through *Microarray*

Types Biological Data – Networks and Pathways

Co-Expression Network

Protein-Protein Interaction Network

Types Biological Data - Gene Ontology

Gene Ontology defines the universe of concepts relating to gene functions ('GO terms'), and how these functions are related to each other ('relations').

http://geneontologv.org/page/ontologv-documentation

Today's Topics

- Why Python for Life Sciences?
- Important Concepts
 - The Central Dogma of Molecular Biology
 - Types of Biological Data
- Common Tasks in Bioinformatics
 - Python Libraries and Tools
 - Example: Gene Expression Analysis
- Key Issues in doing Biological Data Science (a computer scientist perspective)

Python Libraries and Tools

- Jupyter Notebook
- scipy, numpy, matplotlib, pandas
- scikit-learn, scikit-image
- rpy2
- biopython, scikit-bio

Differential Expression Analysis with Python and Bioconductor

Credits: https://goo.gl/XPV6Ji

- Use numpy to store expression data
- Interface with Bioconductor (an R package) via rpy2

Read Expression Data and Store it in numpy array

```
import csv
import collections
def read_count_file(in_file):
   """Read count information from a simple CSV file into a dictionary.
   counts = collections.defaultdict(dict)
   with open(in_file) as in_handle:
       reader = csv.reader(in handle)
       header = reader.next()
       conditions = header[1:]
       for parts in reader:
           region name = parts[0]
           region counts = [float(x) for x in parts[1:]]
           for ci, condition in enumerate(conditions):
              counts(condition)(region name) = region counts(ci)
   return dict(counts)
                                           import numpy
                                           def get conditions and genes(work counts):
                                               conditions = work_counts.keys()
                                               conditions.sort()
                                               all_genes = []
                                               for c in conditions:
                                                   all genes.extend(work counts[c].keys())
                                               all genes = list(set(all genes))
                                               all genes.sort()
                                               sizes = [work counts[c]["Total"] for c in conditions]
                                               all genes.remove("Total")
                                               return conditions, all_genes, sizes
                                          def edger_matrices(work_counts):
                                               conditions, all_genes, sizes = get_conditions_and_genes(work_counts)
                                               assert len(sizes) == 2
                                               groups = [1, 2]
                                               data = []
                                               final genes = []
                                               for g in all genes:
                                                   cur_row = [int(work_counts[c][g]) for c in conditions]
                                                   if sum(cur row) > 0:
                                                       data.append(cur row)
                                                       final genes.append(g)
                                               return (numpy.array(data), numpy.array(groups), numpy.array(sizes),
                                                       conditions, final_genes)
```

Use rpy2 to access a DGEList and call topTags function in R

```
import rpy2.robjects as robjects
import rpy2.robjects.numpy2ri
def run edger(data, groups, sizes, genes):
    robjects.r('''
        library (edgeR)
    1111
    params = {'group' : groups, 'lib.size' : sizes}
    dgelist = robjects.r.DGEList(data, **params)
    ms = robjects.r.deDGE(dgelist, doPoisson=True)
    tags = robjects.r.topTags(ms, pair=groups, n=len(genes))
    indexes = [int(t) - 1 for t in tags.rownames()]
    pvals = list(tags.r['adj.P.Val'][0])
    assert len(indexes) == len(pvals)
    pvals w index = zip(indexes, pvals)
    pvals w index.sort()
    assert len(pvals w index) == len(indexes)
    return [p for i,p in pvals w index]
```

Write output to a csv file

Today's Topics

- Why Python for Life Sciences?
- Important Concepts
 - The Central Dogma of Molecular Biology
 - Types of Biological Data
- Common Tasks in Bioinformatics
 - Python Libraries and Tools
 - Example: Gene Expression Analysis
- Key Issues in doing Biological Data Science (a computer scientist perspective)

Key Issues in doing Biological Data Sciences

- Domain knowledge refer to Getting Started Resources on next slide
- Interoperability between languages (R⇔Python)
- Heterogenous data types and formats
 data types. DNA/RNA/Protein sequences, gene expression, network, ...
 DB formats. e.g. GenBank, EMBL, SWISSPROT/TrEMBL
 sequence analysis formats. e.g. FASTA, MSA, ClustalW, GFF2
 Ref: http://rice.plantbiology.msu.edu/training/Childs_Data_Formats.pdf
- Large proportion of time spent in data preprocessing and wrangling
- Customized software solutions are needed

Resources for Getting Started

