What is the Maximal Set of All Functions $\langle x|y\rangle$ That Satisfy The Properties of An Inner Product?

Mathematics Essay

Jeffrey Li

 $\mathrm{June}\ 1,\ 2021$

Contents

1	Introduction	3
2	Inner Product Validity	4
3	Inner Product Completeness	6
Re	eferences	8

1 Introduction

First, to define what is meant by a valid inner product:

Definition 1.1 (Inner Product). Given a vector space \mathbb{V} with a corresponding scalar field \mathbb{S} , it is said to posses an inner product if there exists a function $\langle \boldsymbol{x} | \boldsymbol{y} \rangle : \mathbb{V} \times \mathbb{V} \to \mathbb{S}$ defined over the entire vector space that satisfies the following conditions (Taylor and Mann (1983)):

- 1. Scalar Associative in Second Argument: $\langle \boldsymbol{x}|c\boldsymbol{y}\rangle = c\,\langle \boldsymbol{x}|\boldsymbol{y}\rangle\,\,\forall \boldsymbol{x},\boldsymbol{y}\in\mathbb{V},c\in\mathbb{S}$
- 2. Distributive In Second Argument: $\langle x|\ y+z\rangle = \langle x|y\rangle + \langle x|z\rangle\ \forall x,y,z\in\mathbb{V}$
- 3. Conjugate Symmetry: $\langle \boldsymbol{x} | \boldsymbol{y} \rangle = \overline{\langle \boldsymbol{y} | \boldsymbol{x} \rangle} \ \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{V}$
- 4. Positive Semi-Definite: $\langle \boldsymbol{x} | \boldsymbol{x} \rangle > 0 \leftrightarrow \boldsymbol{x} \neq \vec{0}, \langle \boldsymbol{x} | \boldsymbol{x} \rangle = 0 \leftrightarrow \boldsymbol{x} = \vec{0}$

In this essay, I will attempt to prove the following:

Theorem 1.1. Assume vector space \mathbb{V} has valid inner product $\langle | \rangle$. Let \mathcal{L}_{\circ} denote the set of Hermitian positive-definite linear operators on \mathbb{V} .

The set of valid inner products $\langle | \rangle'$ on \mathbb{V} is given by the set

$$\{\langle | \rangle' | \langle \boldsymbol{x} | \boldsymbol{y} \rangle' = \langle \boldsymbol{x} | H \boldsymbol{y} \rangle, H \in \mathcal{L}_{\circ} \}$$
 (1)

To prove this, I will first prove that every function $\langle | \rangle'$ generated in this way satisfies the properties of definition (1.1).

Then I will show that unique linear operator H generates a unique inner product $\left\langle | \right\rangle^H$.

Finally, I will prove that for any arbitrary function $f_i(\boldsymbol{x}, \boldsymbol{y})$ satisfying the properties of definition (1.1), we can always find an associated Hermitian operator $H_i \in \mathcal{L}_{\circ}$ such that

$$f_i(\boldsymbol{x}, \boldsymbol{y}) = \langle \boldsymbol{x} | H_i \boldsymbol{y} \rangle \ \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{V}$$
 (2)

2 Inner Product Validity

To begin, first I will define what is meant by a Hermitian positive-definite linear operator. For the rest of this essay, let \mathcal{L} denote the set of all linear operators on \mathbb{V} , with different subscripts denoting different subsets of \mathcal{L} .

Definition 2.1 (Adjoint). Let $A \in \mathcal{L}$ be a linear operator defined in the vector space. Define the adjoint of A, denoted A^* , such that for any two vectors $x, y \in \mathbb{V}$,

$$\langle \boldsymbol{x} | A \boldsymbol{y} \rangle = \langle A^* \boldsymbol{x} | \boldsymbol{y} \rangle \tag{3}$$

A linear operator H is then said to be Hermitian iff it is self-adjoint, or in other words:

$$\langle \boldsymbol{x}|H\boldsymbol{y}\rangle = \langle H\boldsymbol{x}|\boldsymbol{y}\rangle \tag{4}$$

Definition 2.2 (Positive Definite). Let $A \in \mathcal{L}$ be a linear operator in the vector space. A is defined to be positive definite iff, for any vector $\mathbf{x} \neq \vec{0} \in \mathbb{V}$,

$$\langle \boldsymbol{x} | A \boldsymbol{x} \rangle > 0 \tag{5}$$

Consequently, the set \mathcal{L}_{\circ} is defined to be the set of linear operators satisfying both conditions from equations (4) and (5).

Theorem 2.1 (Inner Product Validity). Define $H \in \mathcal{L}_{\circ}$ to be an arbitrary non-singular linear operator. Define the function $\langle \boldsymbol{x}|\boldsymbol{y}\rangle'$ from above, such that $\langle \boldsymbol{x}|\boldsymbol{y}\rangle' = \langle \boldsymbol{x}|H\boldsymbol{y}\rangle$. The function $\langle \boldsymbol{x}|\boldsymbol{y}\rangle'$ satisfies the properties of a valid inner product.

Proof. Going down each item in definition (1.1), let $x, y, z \in V$ be any arbitrary vectors and $c \in S$ be any arbitrary scalar.

1.
$$\langle \boldsymbol{x} | c \boldsymbol{y} \rangle' = \langle \boldsymbol{x} | H(c \boldsymbol{y}) \rangle = c \langle \boldsymbol{x} | H \boldsymbol{y} \rangle = c \langle \boldsymbol{x} | \boldsymbol{y} \rangle'$$

2.
$$\langle x| y + z \rangle' = \langle x| H(y+z) \rangle = \langle x|Hy \rangle + \langle x|Hz \rangle = \langle x|y \rangle' + \langle x|z \rangle'$$

3.
$$\langle \boldsymbol{x} | \boldsymbol{y} \rangle' = \langle \boldsymbol{x} | H \boldsymbol{y} \rangle = \overline{\langle H \boldsymbol{y} | \boldsymbol{x} \rangle} = \overline{\langle \boldsymbol{y} | H \boldsymbol{x} \rangle} = \overline{\langle \langle \boldsymbol{y} | \boldsymbol{x} \rangle')}$$

4.
$$(\langle \boldsymbol{x} | \boldsymbol{x} \rangle' > 0) \leftrightarrow (\langle \boldsymbol{x} | H \boldsymbol{x} \rangle > 0) \leftrightarrow (H \boldsymbol{x} \neq \vec{0}) \leftrightarrow (\boldsymbol{x} \neq \vec{0})$$
.

5.
$$\langle \vec{0}|\vec{0}\rangle' = \langle \vec{0}|H(\vec{0})\rangle = \langle \vec{0}|\vec{0}\rangle = 0$$

3 Inner Product Completeness

Next, I will prove that every inner product can be associated with a Hermitian positive-definite linear operator.

Theorem 3.1 (Inner Product Completeness). Take f(x, y) to be any function satisfying the definition of an inner product. We can always find an associated linear operator $H \in \mathcal{L}_{\circ}$ such that

$$f(\boldsymbol{x}, \boldsymbol{y}) = \langle \boldsymbol{x} | H \boldsymbol{y} \rangle \ \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{V}$$
 (6)

Proof. Given $\langle | \rangle'$, take the function $f_{\boldsymbol{y}}(\boldsymbol{x}) = \langle \boldsymbol{y} | \boldsymbol{x} \rangle'$. This function is a linear transformation from \mathbb{V} to \mathbb{S} :

1.
$$f_{\mathbf{y}}(c\mathbf{x}) = \langle \mathbf{y} | c\mathbf{x} \rangle' = c \langle \mathbf{y} | \mathbf{x} \rangle' = c f_{\mathbf{y}}(\mathbf{x})$$

2.
$$f_y(x+z) = \langle y| x+z \rangle' = \langle y|x \rangle' + \langle y|z \rangle' = f_y(x) + f_y(z)$$

Because V forms an inner product space, each vector element \boldsymbol{w} uniquely defines a linear transformation from $V \to S$ given by $\langle \boldsymbol{w} | \boldsymbol{x} \rangle = L(\boldsymbol{x})$. Moreover, the set of linear scalar maps over V is isomorphic to the set V itself, and any linear scalar transform $L_{\boldsymbol{w}}(\boldsymbol{x})$ can be uniquely assigned to a vector \boldsymbol{w} such that $L_{\boldsymbol{w}}(\boldsymbol{x}) = \langle \boldsymbol{w} | \boldsymbol{x} \rangle \ \forall \boldsymbol{x} \in V$ (Proved In Following Section).

For any given \boldsymbol{y} , $f_{\boldsymbol{y}}(\boldsymbol{x})$ defines a linear scalar transform, and therefore there exists \boldsymbol{w} such that $f_{\boldsymbol{y}}(\boldsymbol{x}) = \langle \boldsymbol{w} | \boldsymbol{x} \rangle$. Therefore, for any $\boldsymbol{y} \in \mathbb{V}$, there exists unique $\boldsymbol{w} \in \mathbb{V}$ such that $\langle \boldsymbol{y} | \boldsymbol{x} \rangle' = \langle \boldsymbol{w} | \boldsymbol{x} \rangle \ \forall \boldsymbol{x} \in \mathbb{V}$. Define the function $H : \mathbb{V} \to \mathbb{V}$ by $\boldsymbol{w} = H(\boldsymbol{y})$, such that $\langle \boldsymbol{y} | \boldsymbol{x} \rangle' \triangleq \langle H(\boldsymbol{y}) | \boldsymbol{x} \rangle$. By the properties of linearity, $H(\boldsymbol{y})$ must be linear:

$$\langle H(c\boldsymbol{y})|\boldsymbol{x}\rangle = \langle c\boldsymbol{y}|\boldsymbol{x}\rangle' = \langle H(\boldsymbol{y})|\overline{c}\ \boldsymbol{x}\rangle = \langle cH(\boldsymbol{y})|\boldsymbol{x}\rangle\ \forall \boldsymbol{x},\boldsymbol{y}\ \therefore H(c\boldsymbol{y}) = cH(\boldsymbol{y})$$
$$\langle H(\boldsymbol{y}+\boldsymbol{z})|\boldsymbol{x}\rangle = \langle \boldsymbol{y}+\boldsymbol{z}|\boldsymbol{x}\rangle' = \langle H(\boldsymbol{y})+H(\boldsymbol{z})|\boldsymbol{x}\rangle\ \therefore H(\boldsymbol{y}+\boldsymbol{z}) = H(\boldsymbol{y})+H(\boldsymbol{z})$$
So that $f(\boldsymbol{y},\boldsymbol{x}) = \langle \boldsymbol{y}|\boldsymbol{x}\rangle' = \langle H\boldsymbol{y}|\boldsymbol{x}\rangle.$

By the property of symmetry,

$$\langle \boldsymbol{y}|\boldsymbol{x}\rangle' = \langle H(\boldsymbol{y})|(\boldsymbol{x})\rangle = \overline{\langle (\boldsymbol{x})|H(\boldsymbol{y})\rangle}, \text{ and}$$

$$\langle \boldsymbol{y}|\boldsymbol{x}\rangle' = \overline{\langle \boldsymbol{x}|\boldsymbol{y}\rangle'} = \overline{\langle H(\boldsymbol{x})|(\boldsymbol{y})\rangle}$$

$$\therefore \langle H(\boldsymbol{x})|(\boldsymbol{y})\rangle = \langle (\boldsymbol{x})|H(\boldsymbol{y})\rangle$$
(7)

Equation (7) is true generally for any $x, y \in V$, which is only possible if $H = H^*$, and consequently H must be Hermitian.

Finally, to show that H(y) must be positive-definite, we see from condition (4) of definition (1.1) that

$$x \neq \vec{0} \longleftrightarrow \langle x | x \rangle' > 0$$

and hence

$$x \neq \vec{0} \longleftrightarrow \langle x|Hx \rangle > 0$$
 (8)

Therefore, every valid inner product $\langle x|y\rangle'$ can be mapped to a Hermitian, positive definite linear operator such that

$$\langle \boldsymbol{x}|\boldsymbol{y}\rangle' = \langle \boldsymbol{x}|H\boldsymbol{y}\rangle$$
 (9)

References

Taylor, A. E. and Mann, W. R. (1983). Advanced Calculus. John Wiley and Sons, Inc., 3rd edition.