8 Пространство $L_{\infty}(E)$.

Опр. Пусть f – заданная на множестве E измеримая функция. Говорят, что функция f имеет на E конечный существенный максимум, если существует число c такое, что meas E[f>c]=0, то есть $f(x)\leqslant c$ почти всюду на E.

В этом случае существенным максимумом функции f называется число

ess
$$\sup_{x \in E} f(x) = \inf\{c : \text{meas } E[f > c] = 0\}.$$

Заметим, что

$$c_f = \text{ess sup } f(x) = \min\{c : \text{meas } E[f > c] = 0\}.$$

Действительно,

$$E[f > c_f] = \bigcup_{n=1}^{\infty} E[f > c_f + 1/n]$$

Как следствие,

meas
$$E[f > c_f] \le \sum_{n=1}^{\infty} \text{meas } E[f > c_f + 1/n] = 0.$$

Аналогичным образом вводится существенный минимум

$$\operatorname*{ess\ inf}_{x \in E} f(x) = \sup\{c : \, \max E[f < c] = 0\} = \max\{c : \, \max E[f < c] = 0\}.$$

Обозначим через $L_{\infty}(E)$ множество всех заданных на E измеримых функций f, для которых |f| имеет на E конечный существенный максимум.

Другими словами, $f \in L_{\infty}(E)$ тогда и только тогда, когда f измерима на E и существует постоянная c>0 такая, что $|f(x)|\leqslant c$ для почти всех $x\in E$.

Функции $f,g\in L_{\infty}(E)$ считаются равными тогда и только тогда, когда $f\sim g$ на E.

Теорема 8.1. $L_{\infty}(E)$ – линейное нормированное пространство с нормой

$$||f||_{L_{\infty}(E)} = \operatorname{ess sup}_{x \in E} |f(x)|.$$

Доказательство. Ясно, что $||f||_{L_{\infty}(E)} \geqslant 0$ и

$$\|f\|_{L_{\infty}(E)}=0 \Leftrightarrow f=0$$
 почти всюду на $E.$

Пусть $f \in L_{\infty}(E)$. Тогда

 $|f| \leqslant ||f||_{L_{\infty}(E)}$ почти всюду на $E \Rightarrow |\alpha f| \leqslant |\alpha| ||f||_{L_{\infty}(E)}$ почти всюду на E.

Значит $\alpha f \in L_{\infty}(E)$. Кроме того, при $\alpha \neq 0$

$$\begin{split} &\|\alpha f\|_{L_{\infty}(E)} = \min\{c: \, \operatorname{meas} E[|\alpha f| > c] = 0\} = \min\{c: \, \operatorname{meas} E[|f| > c/|\alpha|| = 0\} = \\ &= |\alpha| \min\{c/|\alpha|: \, \operatorname{meas} E[|f| > c/|\alpha|| = 0\} = |\alpha| \|f\|_{L_{\infty}(E)}. \end{split}$$

Пусть $f, g \in L_{\infty}(E)$. Тогда

$$|f+g| \leq |f| + |g| \leq ||f||_{L_{\infty}(E)} + ||g||_{L_{\infty}(E)}$$
 почти всюду на E .

Следовательно

$$f + g \in L_{\infty}(E)$$
 и $||f + g||_{L_{\infty}(E)} \le ||f||_{L_{\infty}(E)} + ||g||_{L_{\infty}(E)}$.

Теорема доказана.

Введение метрики

$$\rho(f,g) = ||f - g||_{L_{\infty}(E)}$$

делает $L_{\infty}(E)$ метрическим пространством.

Теорема 8.2. Пространство $L_{\infty}(E)$ – полное.

Доказательство. Пусть $\{f_n\}_{n=1}^{\infty}$ — фундаментальная в $L_{\infty}(E)$ последовательность. Для нее

$$\varepsilon_n = \sup_{m>n} \|f_m - f_n\|_{L_\infty(E)} \to 0 \quad \text{при} \quad n \to \infty.$$

Положим

$$A_{mk} = E[|f_m - f_n| > ||f_m - f_n||_{L_{\infty}(E)}], \quad A = \bigcup_{m,n} A_{mn}.$$

Ясно, что |A| = 0.

Обратим внимание на то, что

$$|f_m(x) - f_n(x)| \le \varepsilon_n \quad \forall m > n, \quad \forall x \in E \setminus A,$$
 (8.1)

где $\varepsilon_n \to 0$ при $n \to \infty$.

Поэтому для $x \in E \setminus A$ числовая последовательность $\{f_n(x)\}_{n=1}^{\infty}$ фундаментальна. Значит, существует предел

$$f(x) = \lim_{n \to \infty} f_n(x).$$

Положим f(x) = 0 для $x \in A$. Заметим, что функция f измерима как поточечный предел последовательности измеримых функций.

Переходя в (8.1) к пределу при $m \to \infty$, имеем

$$|f(x) - f_n(x)| \le \varepsilon_n \quad \forall x \in E \setminus A.$$

Как следствие, $f-f_n\in L_\infty(E)$ и

$$||f - f_n||_{L_{\infty}(E)} \le \varepsilon_n \to 0.$$

Теорема доказана.

Напомним теорему о неравенстве Гельдера.

Теорема. Пусть $p,q\in (1,\infty),\, 1/p+1/q=1.$ Если $f\in L_p(E),\, g\in L_q(E),\,$ то $fg\in L_1(E)$ и справедливо неравенство Гельдера

$$\left| \int_{E} f(x)g(x) \, dx \right| \le \|f\|_{L_{p}(E)} \|g\|_{L_{q}(E)}.$$

Замечание. Неравенство Гельдера справедливо и при $p=1, q=\infty$. Действительно, если $f\in L_1(E), g\in L_\infty(E)$, то функция fg измерима на E и

$$\int_{E} |f(x)g(x)| dx \leqslant \int_{E} |f(x)| dx \cdot \operatorname{ess sup}_{x \in E} |g(x)| = ||f||_{L_{1}(E)} ||g||_{L_{\infty}(E)}.$$

Таким образом, справедлива следующая теорема.

Теорема 8.3. Пусть $p, q \in [1, \infty]$, 1/p + 1/q = 1. Если $f \in L_p(E)$, $g \in L_q(E)$, то $fg \in L_1(E)$ и справедливо неравенство Гельдера

$$\left| \int_{E} f(x)g(x) \, dx \right| \le \|f\|_{L_{p}(E)} \|g\|_{L_{q}(E)}.$$