Гасирање

Постоји аутопут од Београда до Лесковца, који је само у једном смеру (од Београда према Лесковцу), и такође тренутно ради само једна трака. Због немогућности лаког претицања, такозваног претицања без гасирања, назовимо га Гаспут. Гаспут је дугачак L километара.

За време Роштиљијаде у Лесковцу 2023, N+1 аутобуса пролазе овим путем. Аутобуси су означени од 0 to N. Аутобус i ($0 \le i < N$) је заказан да напусти Београд у T[i]-ој од почетка догађаја, и може д пређе 1 километар у W[i] секунди Аутобус N је резервни аутобус и може да пређе 1 километар у X секунди. Време Y када ће кренути из Београда није још одлучено.

Претицање је недозвољено на путу, али су аутобуси омогућени да се претичу у **гас станицама**. Постоји M>1 гас станица на гаспуту, које су нумерисане од 0 до M-1, на различитим позицијама на гаспуту. Гас станица j ($0\leq j< M$) се налази на S[j] километара од Београда, на гаспуту. Гас станице су сортиране растуће по растојању од Београда, то јест, S[j] < S[j+1] за свако $0\leq j\leq M-2$. Прва гас станица је Београд, и последња гас станица је Лесковац, то јест, S[0]=0 и S[M-1]=L.

Сваки аутобус путује максималном брзином, осим ако се сусретне са споријим аутобусом који иде путем испред њега, у ком случају се они групишу и морају да иду истом мањом брзином, док не дођу до следеће гас станице. Тамо, бржи аутобуси ће се изгасирати и престићи ће спорије.

Формално, за свако i и j тако да $0 \le i \le N$ и $0 \le j < M$, време $t_{i,j}$ (у секундама) када аутобус i **стиже у** гас станицу j је дефинисан као. Ако j=0, нека је онда $t_{i,0}=T[i]$ за свако i < N, и нека је $t_{N,0}=Y$. Иначе, за свако j такво да је 0 < j < M:

- Дефинишимо *очекивано време с\bar{w}изања* аутобуса i у гас станицу j као време када би аутобус i стигао у гас станицу j када би путовао пуном брзином од времена када је стигао у гас станицу j-1. Нека је
 - $\circ \ \ e_{i,j} = t_{i,j-1} + W[i] \cdot (S[j] S[j-1])$ за свако i < N, и
 - $\circ \ \ e_{N,j} = t_{N,j-1} + X \cdot (S[j] S[j-1]).$
- Аутобус i стиже у гас станицу j у максимуму очекиваних времена долазака аутобуса i и било ког другог утобуса који је стигао у станицу j-1 пре аутобуса i. Формално, нека је $t_{i,j}$ максимум $e_{i,j}$ и сваког $e_{k,j}$ за које $0 \le k \le N$ и $t_{k,j-1} < t_{i,j-1}$.

Организатори Роштиљијаде желе да закажу полазак резервног аутобуса. Ваш задатак је да одговорите на Q питања организатора, која су следећег облика: за дато време Y (у

секундама) када би аутобус N (резервни аутобус) напустио Београд, у које време би стигао у Лесковац?

Детаљи имплементације

Ваш задатак је да имплементирате следећу процедуру.

```
void init(int L, int N, int64[] T, int[] W, int X, int M, int[] S)
```

- L: дужина гаспута.
- N: број заказаних аутобуса.
- T: низ дужине N који представља времена у којима аутобуси $0,\dots,N-1$ крећу из Београда.
- W: низ дужине N који представља максималне брзине аутобуса $0,\ldots,N-1$.
- X: време које треба резервном аутобусу да пређе 1 километар.
- M: број гас станица.
- ullet S: низ дужине M који представља растојања гас станица од Београда.
- Ова процедура се позива тачно једном за сваки тест пример, пре било ког позива ка arrival_time.

```
int64 arrival_time(int64 Y)
```

- Y: време када је предвиђено да резервни аутобус (аутобус N) крене из Београда.
- Процедура треба да врати време у које би аутобус N стигао у Лесковац.
- Ова процедура ће бити позвана тачно Q пута.

Пример

Посматрајмо следеће позиве функција:

Игноришући аутобус 4 (који још није заказан), следећа табела приказује очекивана и права времена долазака аутобуса 0,1,2 и 3 у сваку од гас станица:

i	$t_{i,0}$	$e_{i,1}$	$t_{i,1}$	$e_{i,2}$	$t_{i,2}$	$e_{i,3}$	$t_{i,3}$
0	20	25	30	40	40	55	55
1	10	30	30	70	70	130	130
2	40	60	60	100	100	160	180
3	0	30	30	90	90	180	180

Времена долазака у гас станицз 0 су времена у којима су аутобуси заказани да напусте аеродром. То јест, $t_{i,0}=T[i]$ за i=0,1,2 и 3.

Очекивана и права времена долазака у гас станицу 1 су израчуната на следећи начин:

- Очекивана времена доласка у гас станицу 1:
 - \circ Аутобус 0: $e_{0,1} = t_{0,0} + W[0] \cdot (S[1] S[0]) = 20 + 5 \cdot 1 = 25$.
 - Antolyc 1: $e_{1,1} = t_{1,0} + W[1] \cdot (S[1] S[0]) = 10 + 20 \cdot 1 = 30$.
 - \circ Аутобус 2: $e_{2,1} = t_{2,0} + W[2] \cdot (S[1] S[0]) = 40 + 20 \cdot 1 = 60$.
 - \circ Аутобус 3: $e_{3,1}=t_{3,0}+W[3]\cdot (S[1]-S[0])=0+30\cdot 1=30.$
- Времена долазака у гас станицу 1:
 - о Аутобуси 1 и 3 стиже у гас станицу 0 раније од аутобуса 0, па је $t_{0,1}=\max(e_{0,1},e_{1,1},e_{3,1})=30.$
 - ° Аутобус 3 стиже у гас станицу 0 раније од аутобуса 1, па је $t_{1,1}=\max(e_{1,1},e_{3,1})=30.$
 - о Аутобуси 0, 1 и 3 стижу у гас станицу 0 раније од аутобуса 2, па је $t_{2,1}=\max(e_{0,1},e_{1,1},e_{2,1},e_{3,1})=60.$
 - $\circ~$ Ниједан аутобус не стиже у гас станицу 0 пре аутобуса 3, те је $t_{3,1} = \max(e_{3,1}) = 30$

Аутобусу 4 треба 10 секунди да отпутује 1 километар и сада је заказан да напусти Београд у 0ој секунди У овом случају, следећа табела приказује времена долазака сваког аутобуса.
Разлике у односу на иницијалну табелу су подвучене.

i	$t_{i,0}$	$e_{i,1}$	$t_{i,1}$	$e_{i,2}$	$t_{i,2}$	$e_{i,3}$	$t_{i,3}$
0	20	25	30	40	40	55	<u>60</u>
1	10	30	30	70	70	130	130
2	40	60	60	100	100	160	180
3	0	30	30	90	90	180	180
4	0	10	10	30	30	60	60

Видимо да аутобус 4 стиже у Лесковац у 60-ој секунди. Дакле, процедура треба да врати 60.

Аутобус 4 је сада заказан да крене из Београда у 50-ој секунди. У овом случају, нема промена долазака аутобуса $0,\,1,\,2$ и 3. Времена долазака су приказана у следећој табели.

i	$t_{i,0}$	$e_{i,1}$	$t_{i,1}$	$e_{i,2}$	$t_{i,2}$	$e_{i,3}$	$t_{i,3}$
0	20	25	30	40	40	55	55
1	10	30	30	70	70	130	130
2	40	60	60	100	100	160	180
3	0	30	30	90	90	180	180
4	50	60	60	80	90	120	130

Аутобус 4 претиче спорији аутобус 2 у гас станици 1 јер стижу у исто време. Следеће, аутобус 4 бива груписан са аутобусом 3 између гас станица 1 и 2, што повлачи да аутобус 4 стиже у гас станицу 2 у 90-ој секунди уместо у 80-ој. Након одласка из гас станице 2, аутобус 4 се групише са аутобусом 1 док не стигну у Лесковац. Аутобус 4 стиже у Лесковац у 130-ој секунди. Дакле, процедура треба да врати 130.

На следећинм графицима, приказујемо растојања аутобуса од Београда кроз време. Тачкаста црна линиј представља резервни аутобус.

Ограничења

- $\bullet \quad 1 \leq L \leq 10^9$
- $1 \le N \le 1000$
- ullet $0 \leq T[i] \leq 10^{18}$ (за свако i тако да је $0 \leq i < N$)

- ullet $1 \leq W[i] \leq 10^9$ (за свако i тако да је $0 \leq i < N$)
- $1 \le X \le 10^9$
- $2 \le M \le 1000$
- $0 = S[0] < S[1] < \cdots < S[M-1] = L$
- $1 \le Q \le 10^6$
- $0 < Y < 10^{18}$

Подзадаци

- 1. (9 поена) $N=1, Q \leq 1\,000$
- 2. (10 поена) $M=2, Q \leq 1\,000$
- 3. (20 поена) $N, M, Q \leq 100$
- 4. (26 поена) $Q \leq 5\,000$
- 5. (35 поена) Без додатних ограничења.

Пример оцењивача (sample grader)

Оцењивач учитава улаз у следећем формату:

- ullet линија 1: $L\;N\;X\;M\;Q$
- ullet линија $2:T[0]\ T[1]\ \dots\ T[N-1]$
- ullet линија $3:W[0]\;W[1]\;\dots\;W[N-1]$
- ullet линија $4 \colon S[0] \: S[1] \: \dots \: S[M-1]$
- ullet линија 5+k ($0 \leq k < Q$): Y за питање k

Оцењивач исписује ваше одговоре у следећем формату:

ullet линија 1+k ($0 \leq k < Q$): повратна вредност процедуре arrival_time за питање k