1. Study of Logic Gates-AND, OR, NOT, NAND, NOR, EX-OR

AIM: To investigate the logic behavior of AND, OR, NOT, NAND, NOR, EX-OR gates.

APPARATUS REQUIRED: Deeds-DCs simulation kit

Procedure:

- 1. Make the connections as per the circuit diagram.
- 2. Connect the inputs to input switches.
- 3. Connect the outputs to the output switches or Output LED's.
- 4. Apply various combinations of inputs according to the truth table and observe conditions of the outputs.

Conclusion: The logic behavior of AND, OR, NOT, NAND, NOR, EX-OR gates is verified.

OBSERVATIONS

AND Gate

Truth Table

A	В	Y=A.B
0	0	0
0	1	0
1	0	0
1	1	1

OR Gate

Truth Table

A	В	Y=A+B
0	0	0
0	1	1
1	0	1
1	1	1

NOT Gate

Truth Table

A	Y=Ā
0	1
1	0

NAND Gate

Truth Table

A	В	$Y = \overline{A.B}$
0	0	1
0	1	1
1	0	1
1	1	0

NOR Gate

Truth Table

A	В	$Y = \overline{A + B}$
0	0	1
0	1	0
1	0	0
1	1	0

XOR Gate

Truth Table

A	В	Y=A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

2. Realization of AND, OR and NOT gates using Universal Gates.

AIM: To Study and Verify NAND and NOR as a Universal Gate.

APPARATUS REQUIRED: Deeds-DCs simulation kit

Procedure:

- 1. Make the connections as per the circuit diagram.
- 2. Connect the inputs to input switches.
- 3. Connect the outputs to the output switches or Output LED's.
- 4. Apply various combinations of inputs according to the truth table and observe conditions of the outputs.
- 5. Note the outputs of NAND as a AND, OR, NOT and NOR as a AND, OR, NOT.

Conclusion: The universal behavior of NAND, NOR gates is verified.

OBSERVATION

Using NAND Gate

Truth Table

A	Y=Ā
0	1
1	0

Truth Table

A	В	Y=A.B
0	0	0
0	1	0
1	0	0
1	1	1

Truth Table

A	В	Y=A+B
0	0	0
0	1	1
1	0	1
1	1	1

Using NOR Gate

Truth Table

A	Y=Ā
0	1
1	0

Truth Table

A	В	Y=A+B
0	0	0
0	1	1
1	0	1
1	1	1

Truth Table

A	В	Y=A.B
0	0	0
0	1	0
1	0	0
1	1	1

3. Design and Realization of Half Adder using logic gates.

AIM: To design and Verify operation of half adder using logic gates.

APPARATUS REQUIRED: Deeds-DCs simulation kit

Procedure:

- 1. Make the connections as per the circuit diagram.
- 2. Connect the inputs to input switches.
- 3. Connect the outputs to the output switches or Output LED's.
- 4. Apply various combinations of inputs according to the truth table and observe conditions of the outputs.
- 5. Note the outputs of sum and carry

Conclusion: The operation of half adder using logic gates is verified.

OBSERVATION:

CIRCUIT DAIGRAM

Α	В	Sum	Сагту
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

4. Design and Realization of Full Adder using logic gates.

AIM: To design and Verify operation of full adder using logic gates.

APPARATUS REQUIRED: Deeds-DCs simulation kit

Procedure:

1. Make the connections as per the circuit diagram.

- 2. Connect the inputs to input switches.
- 3. Connect the outputs to the output switches or Output LED's.
- 4. Apply various combinations of inputs according to the truth table and observe conditions of the outputs.
- 5. Note the outputs of sum and carry

Conclusion: The operation of full adder using logic gates is verified.

OBSERVATION:

CIRCUIT DIAGRAM

TRUTH TABLE

	Input	t	Outp	out
Α	В	Cin	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

5. Design and Realization of BCD Adder.

AIM: To design and Verify operation of 4-bit BCD adder.

APPARATUS REQUIRED: Deeds-DCs simulation kit

Procedure:

- 1. Make the connections as per the circuit diagram.
- 2. Use Input DIP switches to the 4-bit A and B inputs.
- 3. Connect these inputs to the 4- bit adder.
- 4. Connect the output DIP switches RESULT to the output of 4-bit adder.
- 5. For addition always Ci input of BCD adder should be 0.
- 4. Apply various combinations of inputs according to the truth table and observe conditions of the outputs.
- 5. Note the outputs of sum and carry

Conclusion: The operation of 4-bit BCD adder is verified.

OBSERVATION:

CIRCUIT DIAGRAM

TRUTH TABLE

INPUT A			INPUT B				Output Sum				C	
0	1	0	1	0	1	1	0					
1	0	1	1	1	1	0	0					
1	0	0	1	1	0	0	1					
1	0	0	0	1	0	0	0					
1	1	0	0	1	1	1	0					
0	1	1	0	0	0	1	0					
0	0	1	0	0	1	0	0					

6. Design and Realization of SR flip flop.

AIM: To design and Verify operation SR flip flop using NAND gates.

APPARATUS REQUIRED: Deeds-DCs simulation kit

Procedure:

- 1. Use NAND gates and CLOCK input from input switch from tool bar.
- 2. Use a CLOCK in between NAND Gates.
- 3. Join all the components through wires just like the given circuit diagram.
- 4. Now click on the Play button. Alter the Values of Input and observe all the outputs at each Logic Gate.
- 5. Apply various combinations of inputs according to the truth table and observe conditions of the outputs.

Conclusion: Design and Realization of SR flip flop is verified.

OBSERVATION

Circuit diagram

SR Flip Flop

CLOCK	S	R	Q	Q'
X	-	-	No change	No change
1	0	0	No change	No change
1	0	1	0	1
1	1	0	1	0
1	1	1	Invalid	Invalid

7. Design and Realization of JK flip flop.

AIM: To design and Verify operation JK flip flop using NAND gates.

APPARATUS REQUIRED: Deeds-DCs simulation kit

Procedure:

- 1. Use NAND gates and CLOCK input from input switch from tool bar.
- 2. Use a CLOCK in between NAND Gates.
- 3. the two initialization inputs \overline{preset} and \overline{clear} .
- 4. Join all the components through wires just like the given circuit diagram.
- 5. Now click on the Play button. Alter the Values of Input and observe all the outputs at each Logic Gate.
- 6. Apply various combinations of inputs according to the truth table and observe conditions of the outputs.

Conclusion: Design and Realization of JK flip flop is verified.

OBSERVATION

Circuit diagram

CLOCK	J	K	Q	Q'
X	-	-	No change	No change
1	0	0	No change	No change
1	0	1	0	1
1	1	0	1	0
1	1	1	Toggles	Toggles

8. Design and Implementation of PIPO shift registers.

AIM: To design and Verify operation of 4-bit PIPO shift registers.

APPARATUS REQUIRED: Deeds-DCs simulation kit

Procedure:

- 1. Use 4 number of D flip flops and CLOCK input from input switch from tool bar.
- 2. Use a CLOCK in between NAND Gates.
- 3. Join all the components through wires just like the given circuit diagram.
- 4. Now click on the Play button.
- 5. Apply the 4 data bits as input to D3, D2, D1, D0. 4.
- 6. Apply one clock pulse
- 7. Note that the 4-bit data at parallel inputs appears at the parallel output pins Q3, Q2, Q1, Q0 respectively.

Conclusion: Working 4-bit PIPO shift registers is verified.

OBSERVATION

Circuit diagram

		INP	UTS		OUTPUTS			
Clock	D_0	D_1	D_2	D_3	Q_0	Q_1	Q_2	Q_3
1	1	0	1	1	1	0	1	1
1	1	0	1	0	1	0	1	0
1	0	1	0	1	0	1	0	1
1	0	0	0	1	0	0	0	1
1	1	1	1	1	1	1	1	1

9. Realization of Boolean function Y = AB + BC + CA

AIM: Realization of Boolean function Y = AB + BC + CA

APPARATUS REQUIRED: Deeds-DCs simulation kit

Procedure:

- 1. Make the connections as per the circuit diagram.
- 2. Connect the inputs to input switches.
- 3. Connect the outputs to the output switches or Output LED's.
- 4. Apply various combinations of inputs according to the truth table and observe conditions of the outputs.
- 5. Note the output Y

Conclusion: The Boolean function Y = AB + BC + CA is verified.

OBSERVATION

Circuit diagram

A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

10. Realize Binary to Gray code converter.

AIM: Realize Binary to Gray code converter using basic gates

APPARATUS REQUIRED: Deeds-DCs simulation kit

Procedure:

- 1. Make the connections as per the circuit diagram.
- 2. Connect the inputs to input switches.
- 3. Connect the outputs to the output switches or Output LED's.
- 4. Apply various combinations of inputs according to the truth table and observe conditions of the outputs.
- 5. Note down the outputs.

Conclusion: The realization of binary to gray code is verified.

OBSERVATION

Circuit diagram

Decimal Number	B4	B3	B2	B1	G4	G3	G2	G1
1	0	0	0	1	0	0	0	1
2	0	0	1	0	0	0	1	1
3	0	0	1	1	0	0	1	0
4	0	1	0	0	0	1	1	0
5	0	1	0	1	0	1	1	1
6	0	1	1	0	0	1	0	1
7	0	1	1	1	0	1	0	0
8	1	0	0	0	1	1	0	0