# PHYS 2411 Homework 1

### Duncan Wilkie

### 10 September 2021

# Problem 1

The analytical formula for the Doppler effect is  $f_o = f_s(1+v_{rel}/c) \Leftrightarrow v_{rel} = c(f_o/f_s-1)$ . Evaluating this at the values given in the problem yields  $v_{rel} = (3\times10^8)\left(\frac{103.3\times10^6+9.44}{103.3\times10^6}-1\right) = 27.415295256$ . The program in the attached script file computes this in two ways. The first algorithm results in  $v_{rel} = 20.788805008$  while the second results in  $v_{rel} = 27.4152946472168$ . Comparing this to the analytic solution found via the above method, the second clearly has much higher precision, since it agrees with the analytic solution to 5 digits.

## Problem 2

Refactoring the above program to use double instead of single precision, we get agreement to 13 digits of both algorithms with the analytical solution.

### Problem 3

The plot of the output data appears below.



From the output data, the ball appears to hit the ground after about 3.1 seconds.

# Problem 4

The plot for m=20 is



For m = 40, we have



Evidently, the greater resolution makes the plots more accurate. In the first plot, the curve misses the bounding line by a noticeable margin at its highest point, whereas in the second it touches it. It is, of course, expected that it will touch the bounding line.

# Script Files

## 0.1

Script started on Fri 10 Sep 2021 03:46:59 PM CDT tput: unknown terminal "st-256color"

```
tcsh: No entry for terminal type "st-256color"
tcsh: using dumb terminal settings.
[dwilk14@tigers ~/HW1]$ cat p1.cpp
#include <iostream>
#include <iomanip>
using namespace std;
int main (){
  const float c=3.e8; // speed of light, m/s
  float fs,fo,deltaf,vrel; // fs, source frequency, Hz
// fo, frequency detected by object, Hz
       // deltaf, frequency shift, Hz
       // vrel, object velocity, m/s
  fs=103.3e6;
  deltaf=9.44;
  cout << "Algorithm (i):" << endl;</pre>
  fo=fs+deltaf;
  vrel=fo*c-fs*c;
  vrel=vrel/fs;
  cout << "v=" << setprecision (15) << vrel << " m/s" << endl;
  cout << "Algorithm (ii):" << endl;</pre>
  vrel=deltaf*c/fs;
  cout << "v=" << setprecision (15) << vrel << " m/s" << endl;
  cout << "Just a check:" << endl;</pre>
  cout << "v=" << setprecision (15)</pre>
     << 9.44*(3.e8)/( (double) fs) << " m/s" << endl;
 return 0;
}
[dwilk14@tigers ~/HW1]$ g++ p1.cpp -o p1
[dwilk14@tigers ~/HW1]$ ./p1
Algorithm (i):
v=20.7888050079346 m/s
Algorithm (ii):
v=27.4152946472168 m/s
Just a check:
v=27.4152952565344 m/s
[dwilk14@tigers ~/HW1]$ cp dwilk14_hw1p1.txt /home3/kristina/phys2411/.
[dwilk140tigers ~/HW1]$ exit
exit
```

Script done on Fri 10 Sep 2021 03:47:46 PM CDT

### 0.2

```
Script started on Fri 10 Sep 2021 03:47:54 PM CDT
tput: unknown terminal "st-256color"
tcsh: No entry for terminal type "st-256color"
tcsh: using dumb terminal settings.
[dwilk14@tigers ~/HW1]$ cat p2.cpp
#include <iostream>
#include <iomanip>
using namespace std;
int main (){
  const float c=3.e8; // speed of light, m/s
  double fs,fo,deltaf,vrel; // fs, source frequency, Hz
// fo, frequency detected by object, Hz
       // deltaf, frequency shift, Hz
       // vrel, object velocity, m/s
  fs=103.3e6;
  deltaf=9.44;
  cout << "Algorithm (i):" << endl;</pre>
  fo=fs+deltaf;
  vrel=fo*c-fs*c;
  vrel=vrel/fs;
  cout << "v=" << setprecision (15) << vrel << " m/s" << endl;</pre>
  cout << "Algorithm (ii):" << endl;</pre>
  vrel=deltaf*c/fs;
  cout << "v=" << setprecision (15) << vrel << " m/s" << endl;
  cout << "Just a check:" << endl;</pre>
  cout << "v=" << setprecision (15)</pre>
     << 9.44*(3.e8)/( (double) fs) << " m/s" << endl;
  return 0;
}
[dwilk14@tigers ~/HW1]$ g++ p2.cpp -o p2
[dwilk14@tigers ~/HW1]$ ./p2
Algorithm (i):
v=27.4152952565344 m/s
Algorithm (ii):
v=27.4152952565344 m/s
Just a check:
v=27.4152952565344 m/s
[dwilk14@tigers ~/HW1]$ cp dwilk14_hw1p2.txt /home3/kristina/phys2411/.
[dwilk14@tigers ~/HW1]$ exit
exit
```

#### 0.3

```
Script started on Fri 10 Sep 2021 03:48:36 PM CDT
tput: unknown terminal "st-256color"
tcsh: No entry for terminal type "st-256color"
tcsh: using dumb terminal settings.
[dwilk14@tigers ~/HW1]$ cat p3.cpp
#define _USE_MATH_DEFINES
#include <fstream>
#include <cmath>
#include <iostream>
using namespace std;
int main() {
  float x0 = 1.4;
  float y0 = 2.0;
  float v0 = 25.6;
  float theta = 35.0 * M_PI / 180.0;
  float g = 9.81;
  float x = x0;
  float y = y0;
  ofstream outfile("p3_out.txt");
  outfile << "t x y" << endl;</pre>
  float t = 0.0;
  while (y > 0.0) {
    x = x0 + v0 * cos(theta) * t;
    y = y0 + v0 * sin(theta) * t - g * pow(t, 2) / 2;
   outfile << t << "\t" << x << "\t" << y << endl;
   t += 0.1;
  }
  return 0;
}
[dwilk14@tigers ~/HW1]$ g++ p3.cpp -o p3
[dwilk14@tigers ~/HW1]$ ./p3
[dwilk14@tigers ~/HW1]$ cp dwilk14_hw1p3.txt /home3/kristina/phys2411/.
[dwilk14@tigers ~/HW1]$ exit
exit
```

#### 0.4

```
Script started on Fri 10 Sep 2021 03:49:23 PM CDT
tput: unknown terminal "st-256color"
tcsh: No entry for terminal type "st-256color"
tcsh: using dumb terminal settings.
[dwilk14@tigers ~/HW1]$ cat p4.cpp
#include <fstream>
#include <iostream>
#include <cmath>
using namespace std;
int main() {
 ofstream outfile("p4_out.txt");
  double pi = 3.141592653589793;
  int m1 = 20;
  int m2 = 40;
  double step1 = 12 * pi / m1;
  double step2 = 12 * pi / m2;
  outfile << "m = 20:" << endl;
  outfile << "x" << "\t" << "x'" << "\t" << "x'" << "\t" << "0.5xsin(x)" << endl;
  for (int i = 0; i < m1; i++) {
   double x = -6 * pi + step1 * i;
   outfile << x << "\t" << x/2 << "\t" << 0.5 * x * sin(x) << endl;
  }
  outfile << endl << "m = 40:" << endl;
  outfile << "x" << "\t" << "x/2" << "\t" << "x/2" << "\t" << "0.5xsin(x)" << endl;
  for (int i = 0; i < m2; i++) {
   double x = -6 * pi + step2 * i;
   outfile << x << "\t" << x/2 << "\t" << 0.5 * x * sin(x) << endl;
 return 0;
[dwilk14@tigers ~/HW1]$ g++ p4.cpp -o p4
[dwilk14@tigers ~/HW1]$ ./p4
[dwilk14@tigers ~/HW1]$ cp dwilk14_hw1p4.txt /home3/kristina/phys2411/.
```

[dwilk140tigers ~/HW1]\$ exit exit

Script done on Fri 10 Sep 2021 03:50:21 PM CDT