THE ASTROPHYSICAL JOURNAL, 196: 261–290, 1975 February 15 © 1975. The American Astronomical Society. All rights reserved. Printed in U.S.A.

WAVELENGTH DEPENDENCE OF INTERSTELLAR POLARIZATION AND RATIO OF TOTAL TO SELECTIVE EXTINCTION

K. Serkowski, D. S. Mathewson, and V. L. Ford

Mount Stromlo and Siding Spring Observatories, Research School of Physical Sciences, Australian National University

*Received 1974 July 30**

ABSTRACT

Wavelength dependence of interstellar linear polarization has been observed for about 180 stars, mostly southern, in the *UBVR* spectral regions. A multichannel polarimeter-photometer, in which spectral regions are separated by dichroic filters, was used. Normalized wavelength dependence of interstellar linear polarization p follows closely a single empirical curve $p(\lambda)/p_{\text{max}} = \exp{[-1.15 \ln^2(\lambda_{\text{max}}/\lambda)]}$, where the wavelength λ_{max} at which the maximum interstellar linear polarization p_{max} occurs takes values from 0.45 μ to 0.8 μ .

Wavelength λ_{\max} is well correlated with the ratios of color excesses E_{V-R}/E_{B-V} , E_{V-R}/E_{V-R} , and E_{V-I}/E_{V-R} . These correlations indicate that the ratio R of total to selective interstellar extinction can be found for any individual star from the relationship R=5.5 λ_{\max} . Polarimetry seems to be the most practical method of estimating R. A map of distribution of λ_{\max} on the sky, based on values for about 350 stars, indicates several well defined regions with λ_{\max} , and hence R, clearly larger (or smaller) than the median value $\lambda_{\max}=0.545~\mu$, corresponding to R=3.0.

The predominance of larger than average values of λ_{\max} among stars nearer than 0.4 kpc and the negative correlation between λ_{\max} and E_{B-V} are explained by selection effects. There is evidence of negative correlation between λ_{\max} and p_{\max}/E_{B-V} suggested by Kruszewski. The lower limits for color excess of Praesepe, M67, and several globular clusters are set by their linear polarization. The largest known values of interstellar circular polarization, $|q| \cong 0.06$ percent, were found in near-infrared for two stars with exceptionally small λ_{\max} : star No. 12 in association VI Cygni and HD 204827.

Subject headings: instruments — interstellar extinction — interstellar matter — open clusters — photometry — polarization

I. INTRODUCTION

Several regions of the sky with the wavelength of maximum interstellar linear polarization either predominantly higher or predominantly lower than average have been found by Serkowski and Robertson (1969). This suggested that the wavelength dependence of interstellar polarization may be a good indicator of the variations in size of interstellar dust grains within the Galaxy. To accelerate collection of data on wavelength dependence of polarization, a new multichannel polarimeter-photometer has been constructed at Mount Stromlo Observatory. Polarimetric and photometric measurements are made with this instrument in several spectral regions simultaneously; therefore, the observing times required for attaining the desired precision of results are much shorter than with previous instruments. An observing program with this polarimeter-photometer, extending over 1 year, has almost doubled the amount of data on the wavelength dependence of interstellar polarization.

II. MULTICHANNEL POLARIMETER-PHOTOMETER

Most of the new polarimetric observations presented in this paper were made with the polarimeter-photometer constructed in the workshops of Mount Stromlo Observatory during the year 1969. The mechanical parts were designed and made under the supervision of Mr. Bela Bodor, and the electronic parts were designed by Mr. Peter Rudge. The instrument was used with the 61-cm (24 inch) rotatable tube telescope of Siding Spring Observatory.

The stellar light, after passing through a focal plane diaphragm, is split into two beams by a calcite Wollaston prism (fig. 1). The observations are made alternately with and without the Lyot depolarizer, consisting of two quartz plates, 2 mm and 4 mm thick, in optical contact, inserted in front of the Wollaston prism. The two beams emerging from the Wollaston prism fall on two fused silica Fabry lenses of 12 cm focal length, one of which is cemented to a quartz half-wave plate which rotates the plane of polarization by about 90° in the blue spectral region, so that both beams are polarized at approximately the same plane. Each of the two beams goes subsequently, at 45° incidence, through four dichroic filters made by Optical Coating Laboratory in Santa Rosa, California. The first filter reflects over 85 percent of wavelengths 3100-3900 Å, transmitting over 85 percent of wavelengths 4100-10,000 Å. The second filter reflects the wavelengths longer than 8200 Å, transmitting over 90 percent of the wavelengths shorter than 7800 Å. The third filter reflects $\lambda > 6500$ Å, transmitting over 90 percent of light with 3900 Å < $\lambda < 6300$ Å. Finally, the last filter reflects $\lambda < 4900$ Å, transmitting $\lambda > 5000$ Å. The four filters split the light into the five spectral regions close to Johnson's (1965) UBVRI regions.

The cathodes of the photomultipliers are cooled by blowing a stream of cold nitrogen gas, evaporated

Fig. 1.—Schematic diagram of the polarimeter-photometer. Actually the axes of light beams incident on photomultipliers are in a plane perpendicular to this diagram.

from a bottle of liquid nitrogen, onto the front ends of the photomultipliers. The inside of the polarimeter is kept dry by continuous flushing with dry nitrogen. This cooling system, which is presently in operation, was not installed at the time when the observations for the present paper were made; therefore, the infrared spectral region was not used, and unrefrigerated photomultipliers were used for the remaining spectral regions: EMI 6256 (S11 cathode) for U, U, and U, EMI 9502 (S20 cathode) for U, U, and U spectral regions approximate the standard UBV

regions (Johnson 1965; Matthews and Sandage 1965) while the R region has an effective wavelength similar to Johnson's except that its half-width is only about 1000 Å (fig. 2). In an attempt to obtain better agreement with the standard photometric system and for reducing red leaks, Schott glass filters were cemented to the photomultiplier windows: 0.75 mm UG 1 for U photomultipliers, 0.5 mm GG 13 and 2.5 mm Corning 5-57 for B, 2 mm GG13 and 1 mm BG 38 for V, and 1 mm RG5 for R photomultipliers. The red leak in the U spectral regions, determined by observing

FIG. 2.—The wavelength dependence of the product of the photomultiplier quantum efficiency and the transmittance of the Earth atmosphere, telescope, and polarimeter (both channels) for the four spectral regions separated by the dichroic and glass filters. The dashed lines are the response curves for standard UBV spectral regions (Johnson 1965; Matthews and Sandage 1963), in arbitrary units.

carbon stars, has quantum efficiency not exceeding 10^{-3} percent. The dark current was negligibly small for EMI 6256 but was as large as the signal from a star of $R \approx 8$ mag in the R spectral region; therefore, the accuracy in the latter region for fainter stars is lower than in the other spectral regions.

The signal from each of the 10 photomultipliers is fed into a separate integrator. At the end of each integration the voltages at these integrators, designed by Mr. D. G. Thomas, are consecutively measured by a digital voltmeter and recorded on punched paper tape and by an electric typewriter. Usually 20-s integrations were used for stars with V < 8.0 mag, 40 s for the fainter stars. The measurements were made at four position angles of the tube of the rotatable telescope: 0°, 45°, 90°, and 135°. Only the nearby standard stars were observed at eight position angles, from 0° to 315°. At each position angle four integrations for a star were made (an integration without depolarizer, two integrations with depolarizer, and again without) and two for the sky background (with and without depolarizer). For bright stars the accuracy, independent of stellar magnitude, is limited by the residual atmospheric scintillation, by imperfect focusing of the Fabry lenses combined with imperfect guiding of the telescope, by a slightly wedge-shaped depolarizer, by photomultiplier fatigue, and by other instrumental errors. The atmospheric scintillation for the ratio of signals from two photomultipliers was found to amount to about 15 percent of the scintillation observed with a single photomultiplier. For the fainter stars the accuracy is limited by shot noise; for an observation consisting of sixteen 20-s integrations for a star, the mean error $\epsilon(p)$ of the degree of linear polarization $p[\gg \epsilon(p)]$ equals

$$\epsilon(p) = c \cdot 10^{m/5} \,, \tag{1}$$

where m is the stellar magnitude in the corresponding spectral region while c = 0.0025 percent for U >5 mag, $0.00\overline{16}$ percent for B > 6 mag, 0.0027 percent for V > 5 mag, and 0.0070 percent for 4 mag < R <7 mag. From these values of c and from spectrum scans with a monochromator the quantum efficiencies of the photomultiplier combined with the entire optical system, including the Earth's atmosphere, are derived (cf. Serkowski 1968) and are plotted in figure 2. Comparing these quantum efficiencies with the values supplied for the photomultipliers by the manufacturer, we find a joint transmittance of the telescope + polarimeter (both channels for each spectral region), including dichroic filters, close to 18 percent. The transmittance of all four dichroic filters for the B spectral region is about 60 percent.

The depolarizer correction factors were found by observing the stars with a Glan-Thompson prism placed at different position angles in front of the polarimeter. The adopted depolarizer correction factors D (as defined by Serkowski 1968) are listed in table 1.

There is provision for inserting a rotatable achromatic half-wave plate in front of the focal plane diaphragm of the polarimeter-photometer. With such a

TABLE 1

Depolarizer Correction Factors for Multichannel
Polarimeter

Spectral Type	Luminosity Class	$D^{\scriptscriptstyle U}$	$D^{\scriptscriptstyle B}$	D^{v}	D^{R}
O, B	III, IV, V	1.000	1.002	1.002	1.010
Bé		1.000	1.002	1.002	1.025
WR, WN		0.996	0.983	0.998	1.025
O, B		1.001	1.004	1.003	1.010
A		1.003	1.004	1.003	1.007
F, G, K		1.002	1.006	1.000	1.009
M		1.000	1.000	0.985	1.018
N			1.025	1.020	1.004

half-wave plate the depolarizer will no longer be necessary, and the observing time needed to achieve the desired polarimetric accuracy will be one-fourth as long (Serkowski 1974). The half-wave plate was not used in the present observing program because sufficiently achromatic plates were not known at the time when the observations were started. For circular polarization measurements an achromatic quarter-wave plate may be inserted instead of the half-wave plate.

The multichannel instrument can be used not only as a polarimeter but also as a star-sky photometer. For this application the Wollaston prism, together with the aluminized prism P (see fig. 1) and Fabry lenses, is removed as one unit. Another unit is substituted containing a right-angle aluminized prism and Fabry lenses cemented to quartz depolarizers. Such depolarizers are needed to avoid the effect of stellar polarization on transmittance of dichroic filters. Two focal-plane diaphragms with their centers separated by 19 mm are used. The star image is placed first in one diaphragm, then in the other; the sky background in another diaphragm is measured simultaneously. The fact that filters are in the same compartment as the photomultipliers and cooled with a stream of dry nitrogen is favorable for precise photometry, as the spectral properties of dichroic and glass filters may depend on temperature (Young 1967) and humidity (Schild, Steudel, and Walther 1967). The multichannel instrument here described was used for observing the wavelength dependence of extinction by terrestrial clouds (Serkowski 1970b). As this extinction was found to be nearly neutral, the measurements of color indices are not affected by presence of thin clouds.

III. OBSERVATIONS

The polarimetric observations of the nearby stars, which may be supposed to be unpolarized, are listed in table 2, where p is the percentage polarization and θ the position angle of the electric vector in the equatorial coordinate system. The mean values of p and θ obtained from the averages of the normalized Stokes parameters $p_x = p \cos 2\theta$ and $p_y = p \sin 2\theta$ in the blue and yellow spectral regions are also given; the observations in these two spectral regions are more accurate than those in the remaining ones. The

TABLE 2 POLARIZATION OF NEARBY STARS OBSERVED WITH 24-INCH TELESCOPE AT SIDING SPRING OBSERVATORY

				10 110 110	THE PERSON	200	77	+7 11114	1 15 11	24- INCH TELESCOPE AT STUTING SPRING UBSERVATURY	מזכ זע	TING OFF	ING OBSE	KVAIOKI				
Ð	*	° 1975	61975	MK	> ,	r pc	n _d %	B G %	Pd %	R 4%	пθ	9 В	Λθ	в в	n Instr.	Mean o	of V and B	0
2151	β Нуі	0 ^h 24.3	-77°24'	G1 IV	2.8	9	0.01	0.02	0.03	::	.02	160° 134	153° 151	::	3 T* 1 M	0.024*	€.009	152°
10476	107 Psc	1 41.2	+20 10	K1 V	5.2	7		.02	.02	0.05	166	0 %	179 153		4 T*	.016*	900.	175
20794	82 Eri	3 18.8	-43 11	CS V	4.3	9	.03	.03	. 04	.05	145	149	134	104	l M	.023*†	.014	144
23249	6 Eri	3 42.1	- 9 51	KO IVe	3.5	6	.03	.03	.03	.02	37	80	83	84	1 M	.03	.02	82
26965	o ² Eri	4 14.2	- 7 40	Kl Ve	4.4	2	.03	.05	.02	.08	159	152	16	21	I M	.03	.02	162
38393	Y Lep A	5 43.5	-22 27	F6 V	3.6	80	.01	.01	.01	90.	77	107	0	54	1 M	.005	. 008	130
39587	χ^1 ori	5 52.9	+20 16	Λ 09	7.4	10	.0.	.01	.03			162	13		2 T 3 M	.013	.007	20
43834	or Men	6 11.0	-74 45	G5 V	5.1	6	.10	.04	.02	.07	104	131	151	06	1 M	1*600.	.010	142
48915	α CMa	6 44.1	-16 40	Al V	-1.5	3	:	.02	.02	÷	:	76	141	:	3 T†	.014 +	.011	115
61421	α CMi	7 38.1	+ 5 19	F5 IV-V	0.3	4	÷	.01	.01	:	:	45	160	:	3 T†	.005	600.	145
100623	-32°8179	11 33.3	-32 43	KO V	0.9	10		.03	.00			88	38 150		3 T* 2 M	.016*	.012	57
102365	-39°7301	11 45.4	-40 22	G5 V	6.4	10	80.	90.	.07	.02	31	91	28	108	1 M	*90 .	.02	73
102870	ß Vir	11 49.4	+ 1 55	F8 V	3.6	10	:	.02	00.	:	:	171	62	:	3 T*	*410.	.014	162
114710	B Com	13 10.8	+28 00	Λ 09	4.3	æ	:	.02	.01	÷	:	123	6	· :	2 T	.018	.014	116
115617	61 Vir	13 17.2	-18 08	Λ 95	4.7	80		.02	.02			114 115	143 32		W 7	.010*+	900.	132
121370	J Boo	13 53.6	+18 46	VI OD	2.7	10	:	.01	.02	÷	÷	20	95	:	3 T	.014	.013	87
128620	α Cen AB	14 38.1	-60 45	G2V+KOV	0.0	-	:	.02	.02	- :	:	115	16	:	4 T	+ 700.	600.	135
154417	+0°3629	17 04.0	77 0 +	F8	0.9	21	:	.03	.03	:	:	116	78	:	3 T*	.03*	.04	116
156384	-34°11626	17 17.2	-34 57	K3V+K5V	5.9	7	:	.04	90.	:	:	168	139	:	2 T	· • • • • • • • • • • • • • • • • • • •	.03	150
197692	♦ Cap	20 44.6	-25 22	F5 V	4.1	12	:	00.	.01	:	- :	130	18	· · · · · · · · · · · · · · · · · · ·	3 T*	* 700.	.012	10
209100	e Ind	22 01.4	-56 53	K5 Ve	4.7	ю	90.	.01	.01	.02	11	117	77	170	W 7	+*900.	800.	88
218045	α Peg	23 03.5	+15 04	B9.5 III	2.5	30	90.	.02	.03	70.	19	141	101	116	2 M	.017*	.010	112
			-															

^{*} Average includes observations by Mathewson and Ford (1970a,b).

 $[\]dagger$ Average includes observations by Serkowski (1968). \dagger Polarization p = 0.009 \pm .014% (m.e.), θ =47° was found with the Yerkes rotatable telescope by Appenzeller (1968).

published observations of the nearby stars made with the same telescope (Serkowski 1968; Mathewson and Ford 1970a, b) are included in these averages and in the averages for individual filters. Similarly as in the earlier papers (Serkowski 1968, 1974), the values of p are followed by an average of the mean errors of the normalized Stokes parameters p_x and p_y for the blue and yellow spectral regions. The number n of observations with each filter is followed by letter M for the observations made with the multichannel polarimeter, by T for those with the two-channel polarimeter (Serkowski 1968). The results listed in table 2 indicate that the values of the normalized Stokes parameters averaged over all nearby stars are zero within the limits of error; the instrumental polarization, if any, was eliminated by rotation of the telescope tube.

The stars with large interstellar linear polarization have been chosen for the present study of its wavelength dependence from the catalogs by Hall (1958) and by Mathewson and Ford (1970a). Those stars have been selected for which a single observation with the multichannel polarimeter in the yellow spectral region could be expected to give a relative mean error of percentage polarization, $\epsilon(p)/p$, not exceeding ± 0.04 . As can be seen from equation (1), this happens for percentage polarization

$$p > 10^{V/5}/15$$
, (2)

where $V \ge 5$ is a visual magnitude. A large percentage of southern stars with known polarization fulfilling this criterion have been included in the present survey.

To find more stars suitable for study of wavelength dependence of interstellar polarization, the polarization in the yellow or blue spectral regions have been observed with a two-channel polarimeter for a number of stars with large interstellar reddening. Since for interstellar polarization $p^{v} \leq 9 E_{B-v}$ (Schmidt-Kaler 1958) and, on the average, $p^{v} \cong 4.5 E_{B-v}$, our criterion (2) becomes

$$E_{B-V} > 10^{V/5}/67.5;$$
 (3)

e.g., for V = 7.5 mag this gives $E_{B-V} > 0.47$ mag. In case of supergiants of absolute magnitude -7 and reddening $0.3 < E_{B-V} < 1.4$, limiting a survey to stars fulfilling condition (3) is equivalent to limiting it to stars with a distance modulus less than 13.0. The polarimetric measurements of some stars fulfilling condition (3) are listed in Table A1 in the Appendix.

Table 3 gives the individual observations of the wavelength dependence of the interstellar polarization, most of them made with the multichannel polarimeter. Some observations made by Serkowski with the two-channel polarimeter (described by Visvanathan 1966 and Serkowski 1968) before the multichannel instrument was completed are also included and marked with an asterisk following the Julian Day; the de-

polarizer corrections for these observations were calculated as described earlier (Serkowski 1970a). Individual observations for which the mean error of percentage polarization is more than twice as large as is usual for a star of given magnitude are indicated by colons.

It was noticed recently (Serkowski 1973) that observations of interstellar polarization for all the stars follow the same curve when the ratio of polarizations $p(\lambda)/p(\lambda_{\rm max})$ is plotted against the ratio of the wavelength $\lambda_{\rm max}$ of the maximum polarization for a given star to the wavelength λ at which polarization is measured. This curve is well approximated by an empirical formula

$$p/p_{\text{max}} = \exp\left[-K \ln^2\left(\lambda_{\text{max}}/\lambda\right)\right], \tag{4}$$

where the constant K is the same for all stars. By taking the natural logarithm of both sides of equation (4), we obtain

$$\ln p + K(\ln \lambda)^2 = X_1 + X_2 \ln \lambda, \qquad (5)$$

where

$$X_1 = \ln p_{\text{max}} - K(\ln \lambda_{\text{max}})^2, \qquad (6)$$

$$X_2 = 2K \ln \lambda_{\max}. (7)$$

Equations (5), with weights calculated from errors of individual observations, were solved for each star by least squares for the unknowns X_1 and X_2 , and then λ_{\max} and p_{\max} were found from equations (6) and (7). The solutions were repeated for different values of the constant K. The value K=1.15 was finally assumed, which fits both our observations and those made at the University of Arizona (Coyne, Gehrels, and Serkowski 1974). This value of K was used for calculating λ_{\max} listed in tables 3 and 5. All stars observed with our multichannel polarimeter, except those suspected of having an intrinsic component of polarization (marked with an asterisk in the first column of table 5) and except those with p_{\max} less than 1.0 percent, were used for calculating the normalized wavelength dependence of interstellar linear polarization plotted in figure 3.

All the observations of a star with a particular filter are averaged, and the averages for various stars are arranged in order of $\lambda_{\rm max}/\lambda$ in groups of 20. The mean value of $p/p_{\rm max}$ for each such group comprising 20 stars is denoted by an open circle in figure 3 while dots denote the averages for individual stars for which $\lambda_{\rm max}/\lambda > 1.70$. The curve shown in figure 3, calculated from equation (4), fits the observations well. Similar graphs, based on the observations made at the University of Arizona and covering a wider range of $\lambda_{\rm max}/\lambda$, were published by Coyne *et al.* (1974) and by Serkowski (1973, 1974).

The effective wavelengths λ entering equation (5) were calculated for the observations with the multichannel polarimeter from the response curves shown in figure 2. For calculating the inverse effective wavelengths, these response curves were multiplied,

 $^{^1}$ The distance modulus fulfills $V-M_V-3E_{B-V}< C-M_V,$ where, as results from inequality (3), $C=5\log{(67.5E_{B-V})}-3E_{B-V}\cong{6.0}\pm{0.3}$ for E_{B-V} in the interval quoted.

Pmax	1.91 2.19 2.21 1.99	2.29	2.76 2.61 3.18 0.50	0.57	2.97	2.21 2.89 2.93 3.13	96°0 96°0	1.23	1111	1.25	0 0 0 0 0 0 0 0 0 0 0 0	1.022 1.022 1.023 0.042 0.039	0 0000
, max	0.69	0.81	0.60	00000	0.55	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.53	00000	0000	0.61 0.58 0.56 0.57	0000 4400 8400 8400 8400	000 000 000 000 000 000 000 000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
e V e	-8.2	-2.0	7		2.8	12.8	0.9	00	5	3.00	90800	1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13.7 2.4 3.1 11.7
θ V - θ B	00000	1.2	0111 H	0.00	4 40	0.6	0.8	4 8 1 1 1 6	1000	0000	01.00	11.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	2 20 10 1
η ο - ο ο	4.10.00	•		2400		-0-3 4-1 7-0-7						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2000
Δθ	120.3	118.8	116.8 117.9 116.8 37.1	36.3 41.1 38.7 169.8	170•1	170.3 170.3 169.4 168.8	120.4 121.0 119.3	174, 173, 173, 174, 174, 173, 173, 173, 173, 173, 173, 173, 173	154.2	w 4 4	139.7 138.3 140.0 137.0	20 T 190 T 1	87.1 9.4 10.2 10.5 10.5
а _С	2.22	2.24	3.46:	0.41	2.11	2.76	000	1.12	1.64	1000	0000	0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
> d	1.86	1.90	2.68 2.61 2.76 0.50	0.00	2.94	2.22 2.87 2.90 3.11	0.95	1.23	1111 1024 1037	1.17	0000 0000 0000 0000 0000 0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0000 1 0000 2 0000 3 0000 4 0000 5 0000 6 0000 6 0000 6 0000 7 0000 8 0000 8 0000 9 00000 9 0000 9 0000 9 0000 9 0000 9 0000 9 0000 9 0000 9 00000 9 0000 9 00000 9 0000 9 0000 9 0000 9 0000 9 0000 9 0000 9 0000 9 0
E GA	1	(000000000000000000000000000000000000000	N N N	2.84 2.85 3.04	000		1444			11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.	0 60000
POLARIZAT D p U	1.12	404 4	404 00	* * * * * * * * * * * * * * * * * * *	- 22	2.47 2.37 2.58	000	04444		0000	00000	* * * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0000
LINEAR PO V JD	40564 40599 40599	40920	402874 40624 40624 400994	400004 400598 40624 40635	1 11	40914 40564 40595 40692	40914 40920 40920	4 4 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	40201 40501 40503		3 3 3 3 3	39835 399074 39953 4050 4060 4091 40970	40920 40661 40623 40634
MK B		0.30	٠,	•	116	6.82 0.18 B5 II 6.75 0.44 B3 Iab	÷ .	٥٠٠	7.60	6.21 -0.14 B4 Vne	11	6.59 0.06 B2 Vne B2 Vne B3 V 4.62 -0.19 B3 V 4.67 -0.12	3.97 0.78 FB II
TH DEPENDENCE HD	37903 (cont.)	38087	38771	42087	42379	43384	69169	47240	t .	49336		52721 54893 57150	57623
wavelength x Pmax	0.45 0.40 0.34 0.21	0.35	1.23	0.53	0 • • • • • • • • • • • • • • • • • • •	11	1.58 1.58 1.57	2.10 2.16 2.13 2.14 2.17	2.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.659 1.558 1.51	000000 4 4444444 4 44444444	1.88
THE WA	1.04 1.01 0.94 0.61	0.53	0.53 0.51 0.52 0.51	0.53 0.67 0.59 0.59	0.52 0.54 0.56 0.56	0.52 0.56 0.56 0.50	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000 00000 00000 00000	0.00	0.41 0.36 0.42 0.52	0.65 0.76 0.78 0.62	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000
ONS OF	1 6 . 9	-1.2 2.2 5.9		0.07	0 8 9 0	-0.5 -1.6	00.0	• • • • • • • • • • • • • • • • • • •		11.9 12.8 8.2 12.4	• • • • • •	. 0010100	: :::
OBSERVATIONS	1.5 3.7 2.4 -3.6	10.48	8444			1000	0.5			0.00	0 - 4 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -		•
PΘ		-10.2 -6.7 -2.4					1000				-11.4 -11.4 -11.4 -11.4		1
Δθ	116.2 119.3 119.5 111.2	170.2 172.8 174.2 165.9	611.6	117.0 118.3 1117.3				176.8 175.5 179.1 177.5	-1			62.2 20.1 20.1 20.0 20.0 20.3 21.1	
M CA	0.28	0.00		40000	0.42	1.37	1.53 1.52 1.52 1.48	7000		0000		0000000	
> 04	0000	4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.32 1.40 1.35	1 1 5 3 1 5 3 3 1 5 3 3 1 5 3 3 1 5 3 3 3 1 5 3 3 3 3	22000	, ,,,,	0000		A 0000000	
m 04	5 0.19 2 0.18 5 0.15	0 0 932	11111	- 0000 4 4 4 4 w	0000	3 1.31 6 1.31 8 1.32 0 1.30	2 1.46 0 1.49 2 1.53			0000	11111	H 0000000	0 4444
ם מ	0000	0.00	; · · · · · · · · · · · · · · · · · · ·		+ 0 0 0	4 1.13 9 1.16 0 1.28 9 1.10	4 1.22 0 1.20 0 1.20 1.30				73 * 0 • 99 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25 0.07 32* 1.08 77* 1.10 139
v JD	4444	4091 4091 4091	40000 40000 400000 400000		4091 4091 4092 4092	8 40914 40918 40979 40979	40914 40920 40920 40983	5 39877 39911* 40256* 40565	4060 4060 3983 4028	4444	-	Ω	. 6
V B-V	5.34 -0.12 R6 IV	5.34 -0.12 B3 V	7.85 0.12 Bl Ibe	5.32 -0.08 B3 V	3.68 -0.17 B2 III	6.10 0.08 85 V	5,50 0,06 82 v	4.77 0.35 B5 lab	7.65 0.02 B2 V	2.57 0.21 F0 Ib	6.8v 0.27 B1 v var. p	3.7 v 0.8 F6-G2 Ial	8.7 A5 7.84 0.10 81.5 V
HD	17543	23466	24398	25558	30036	30870	32990	36371	36623	36673	37061	37350	37805

1	r.		v	9		•6	;	o ·	4	65	3	7.3	741	7,4	74	74	14
ПВ	8439		60325	61827		2150		400	760	228	69893	80 82	C	7.6572	4375	5.75	956
V B-V MK	6.27 A3 Ib		6.21 -0.04 92 IIIp	7.65 0.62	08 e	7.67 0.53 B3 Ia	,		4.23 -0.15 BC.5 Ib	4.20 0.72 FB II	7.15 0.39 91 III:k	7•19 0•40 08 V	3.85 0.71 F2 Ia	4.76 0.12 A5 II	4.32 -0.12 Bl.5 III	3.70 -0.18 Bl.5 III	1.94 0.04 A0 V
JD 24	. 40603 40605 40622 40622		4 39835* 399088* 40280* 40280*		40300* 40390* 40624	3 39907* 39910* 39949* 40282*	40570	40298 40603 40620 40626 40630	40605 40673 40635 40635	40569 40592 40635 40635 40635 40635	39908* 39913* 40395* 40563		40603 40673 40634	40718	40605 40673 40635 40636 40636	40540 40543 40635 40635 40636	45627
<u>α</u> ,	5 01.10		5 1 1 1 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		0* 1•36 0* 1•42 1 1•25	7* 1.96 7* 1.94 9* 1.78 1.75		10.034	00.34	00.03	* * 1.29 * 1.26 * 1.25 1.27	1.27	1.52	0.37	0.39 0.41 0.41 0.39	00000	O
า ก	0 1-18 19 1-18 19 1-16		5 1.21 0 1.21 6 1.19 6 1.18		6 1.56 2 1.64 5 1.57	6 2 14 4 2 30 8 2 02 5 2 20	~~	7 1.52 7 1.52 9 1.51	4 0 43 5 0 43 3 0 43 8 0 37	000000	10.49		1.55	0.50	00.50	00000	ċ
G. B.	8 1-19 6 1-19 3 1-21		11 10.27 11 10.24 10 10.24 10 10.24		6 1.62 4 1.73 7 1.77	4 2.33 0 2.20 2 2.17 0 2.20	00	0 1.41 2 1.64 1 1.61 2 1.60 1 1.60	3 0.47 3 0.46 3 0.46 7 0.41	6 0.38 6 0.37 7 0.37 7 0.38 8 0.39 7 0.40	9 1 5 1 1 6 5 2 1 5 5 1 1 5 5 1 1 5 5 1 1 5 6 8 1 5 6 8		1.50	45.0	00.03	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Д. >	19 1-11 19 1-28 16 1-00		20 27 44 6 1.22		3 7	mor0		1 1.40 4 1.66 1 1.81 0 1.92 4 2.08	7 0.44 6 0.37 9 0.41 1 0.37	8 0.28 0 0.37 7 0.37 8 0.37 9 0.35	12168	2222	1.34 1.35 1.35	0	00.52	00000 440000	0
æ		17				4444	15	322	4 63.3 7 61.3 1 60.6 7 58.7		466 473 473 473 473 473 473 473 473 473 473	4444	19.3 19.8 20.3		112.6 110.0 110.4 108.6	аанаа	-
ν θ	2.5 1.00.5 1.00.00.00.00.00.00.00.00.00.00.00.00.00		3.5		1.9 1. 2.4 –6. 3.5 2.	9.0	m 0	3 3.7 1 -3.2 7 -0.0 4 -0.9	3 5.0 3 -0.7 6 -0.9 7 -1.0		400000000000000000000000000000000000000		3 12.8	2 -7-	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	•	9
Λ _θ η _θ -	0110	7 6	0 8 7 8 9	6	7 -0.2	2 0.3		7 0.2 2 -3.0 8 1.1 0 1.6 9 2.6	0 2.7 7 -0.8 9 1.6 0 -2.3	-				-2.0	1011	41011	
- 6 B 6 -	1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1		10/86		2 -1:1	W 11 12 80		2 9.0 0 -1.9 1 -1.6 6 0.4 6 -6.2	7 11.4 8 -9.5 6 0.6 3 -7.5		25500	' '		•	22.50	,	7
α _θ ,	0000	000	00000	0	0.54	0000	00	00000	0000	000000	000000000000000000000000000000000000000	0 0000	000	0	0.52	00000	:
m d x m	4444	•	52 1 52 1 52 1 52 1 52 1 52 1 52 1 52 1	• ~		56 2.3	1010	.55 1.44 .68 1.77 .60 1.65 .65 1.72	59 0 47 54 0 44 60 0 47 61 0 41	51 0 36 44 0 45 65 0 39 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		1 2212		0.5	00000		:
ах НБ	.23 .23 715	20 787	30 27 24 24 24	80008	.62 .73 .87	.32 800 .29 .12	80. 7.	7083	7 814 1	E &	3002		8 C Q		851	4565 4	
	81 6. B	85 8•6(81	86 5•0 8•	7	57 6•0: A1	7. 7. 77 82	58 5.9(86	83 9.1	71 6•! A	.4 .8	4 6		61 8•7 82	i	23 2.9 A7	56 5•5 96	
V B-V	0.5 1 b	1 11	.00 0.22 85 Ia var. p	711	٠ 1	7 Tape	90 0.55 6 Iae	7 o 1b	.09 0.5' A7 lab	0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	F8-K0 1b			96 0.28 7 II	55 1•31 59 -	
JD 24	4039	4057	404981 40592 40624	. 4	4062	4057	4059	4059 4060 4062 4062	4059 4062 4063	1 399341	40596	* * * * * * * * * * * * * * * * * * *	4063	40620	40635 40635 40635 40635 40636	40604	77.04
ъ ф.	6* 3.15 3* 3.33 5* 3.32	3 3.08		0	3 1.34 3 1.21 7 1.28	0 2.97 5 3.51 2 3.72	9 2.32 3 2.48 5 2.31	4 4 4 4 4		* * * C Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	446	* * * * * * * * * * * * * * * * * * *	2.7	2.54	00000	0 0400	000
a d	3.64	3.67	2.57	0.02	1.50	3.75	3.06	t t t t u	1.55	: 10071 1008 1008 1008 1008	5.13		3.19	3.11	00000	0 4446	
> _{Q4}	3.68	4.01	2.63	0.03	1.54 1.54 1.54	4.45	3.26	5.21 5.21 5.12 5.24	1.71	11.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.00	111111111111111111111111111111111111111	3.32	3.00:	00000 00000 1444 1884 1884		11.19
۲ م	:::	3.99	2.46	0.07	1.62 1.60: 1.55	3.87 4.31 4.12	3.13	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.70 1.68 1.66	111111111111111111111111111111111111111	4.96 4.06 4.29	200000000000000000000000000000000000000	1.54	2.76	00000 44404 88088	0.49 1.22 1.18 1.15	1.12
> _@	82.5 83.1 83.8	0 0 0		134.8	59.5 57.5 59.8	143.5 143.8 142.3	162.2	148.1 149.4 148.2 146.6	155.4 153.8 153.1	119.1 119.8 1119.8 1119.6 120.3	148.5	100.2 99.6 99.6 100.2 100.3	155.1	153.6	53 53 50 50 50 50 50 50 50 50 50 50 50 50 50	0 0000	7.96 2.00 2.00 2.00 2.00 2.00 3.00 3.00 3.00
ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	0.0	000	00.0	77.4	-1.0 -3.8 1.1	-0.3 0.6 1.2	-2.6	0.4 0.4 0.4	11.	00111 .00	1000	000	0.3	-1.2	19997	4 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	, 1 v
о v в в	000	4 4 4	100	83.6	0.3	00.0	0.4	4 0 0 0	0-1-0-1	0000100	0000	000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10.3	00000	2.000	2000
0 V B	:::	000		53.5	0.9	10.1	0.2	100	2.6	4600	1.2		0.2	3.5	w 0 0 m w	7362	
, max	0.52 0.51 0.52	0.58	0.50	:	0.54	0.60	0.62	00000	0.62 0.61 0.61	7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.52	000000000000000000000000000000000000000	0.58	0.49	0.61	0.71	0.57
Pmax	9	4 6 9	2.6	:	1.5	4 4 4	200	5.2	1.7			200000	3.2	3.2	00000	1.26	333

	ртах	1.03	1.50	1.31	1.33	1.96 2.07 1.94 2.06	1.52	00000	3.80	6 • 4 3 6 • 4 7 6 • 8 0	3.12	2 • 4 5	2.60	000000000000000000000000000000000000000	0.92	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.20	0.62	1.42 1.42 1.40 1.39
	max	0.53	0.56	0.55	0.59	0.56	0.56	0.00 0.00 0.00 0.00 0.00	0.58	0.54	0.56	64.0	0.54	00.00	0.70	0.00	0.52	0000	0.56	0.60 0.62 0.60 0.60
> ×	0-0		1.2	0.3	3.9	2 5 5 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.1 3.5	22.0	4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.2	1.4	:	::	4 W W W W W W W W W W W W W W W W W W W	-2.3	20 m	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000	1.6	-2 • 4 -1 • 0 2 • 2 0 • 6 1 • 0
A P	8 - 8	10.9	2.2	-1.7	000	0000	00:7	0000	0.1	0.1	-0.3	6.0	-1.9	00000	-2.5	000	-1.4	0001	-1.3	0000
Λ	θ-	111	-1.8	3.2	00.0	7.00	-3.1 -0.2 -1.4	10.7	10.3	-1.8	0.8	2 • 8	3.0	101047	9.0	0.0	2.0	10.0	4.0-	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
>	Ф	98.5 93.6 95.3 94.3	118.9	76.0	76.7	103.7 104.1 103.2 103.9	87.9 89.3 87.5	112.0 111.1 114.2 113.8	83.0 82.7 82.9	101.7 101.8 102.5	81.5	82.5	83.5	6 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	60.2	73.8	76.6	99.7 100.5 100.2 99.7	50.0 49.9 50.1	50.7 69.7 72.3 70.6
æ	Ω	0.82	1.52	1.27	1.30	1.90 2.04 1.85 1.98	1.52 1.43: 1.49	0.98 0.87 0.85	3.41: 3.66: 3.33	6.39: 5.68: 6.93:	3.15	:	::	000000000000000000000000000000000000000	0.89	1.94	2 00 c 0 0 0 0 0 0 0 0 0 0	3.14 3.13 3.06	0.54	0.62 1.41 1.32 1.30
>	a,	1.21	1.46	1.29	1.31	1.93 2.02 1.91 2.04	1.53	0.007	3.65	6.29	3.15	2.46	2.51	000000	0.84	1.91	1.00	3.12 3.15 3.18 3.16	0.64 0.65 63	0.67 1.37 1.40 1.39
m	Ω,	0.98	1.46	1.27	1.24	1.87 1.82 1.83 1.93	1.47	0.87 0.91 0.84 0.77	3.59	6.22 6.42 6.23	3.02	2.37	2.52	000000	0.75	1.96	0.98 1.00 2.98	3000	0.58	0.60 1.28 1.25 1.25
D		000	1.50		0.98		1.22	0.67 0.73 0.70 0.69	2.82 2.91 2.84	5.34	2.53	2.19	7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0		0.89	2.63 2.88 2.42	0.50	0 0444
JD	24	39567 40409 40599 40623	40599	40744	40747	40904 40623 40653 40652	40600 40621 40636	40767 40770 40770 40770	40622 40624 40624	40604 40620 40625	40600	40634	40634 40636	40000 40000 40000 40000 40000 40000 40000	40770	40620	40769 40769 40770 40746	40761 40761 40761 40767	40718 40762 40765	40653 40653 40653 40742 40750
V B-V	MK	6.37 0.52 A3 Iae var. p	.76 1.41 cG5	•52 0•31 85 tab			73 0.10 Rl.5 Ia	•74 0•06 RI Ia	.96 0.22 AD	> 5 • ¤	74 0.38 A2 lab	19 0.24 nne #	a)	•42 0•04 09 Ibe	:	21.0 × 60	*10 P2*5 Ib *58 1*30	б О	37 -0.03 R9 IV	6
		oc o	39 4.	•		7.1 6	£ 3	67	r-	6				.0 .0	;		o o	5%	ur .	.59 65 B
	1	1001	1028	102997			1063	1098	111193	1115			NGC4755 IV-17	1127	-		11608		118978	1191
		8 0.85 8 0.87 2 0.86		3 3.69	7 2.62 5 2.64	11.94			2.07		2.02 8 2.00 5 1.99		2.32		3 5.09 7 5.10	5 1.54 2 1.62 3 1.57				2 2.18 7 2.27 2 2.06 3 2.08 1 1.93
as,		0000 0000 0000 0000		0.53	0.57	00000 40400 40400			70.00 70.00		0 0 0		0000		0.58	0.56	0.52		000	00.52
> m		200.8			-1.6	•••••			0000		10.6		2001		-2.8	3.3	0.0	• •		20000
A D		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	•		4 0 0 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0.2						9 11 9 3 3 11 0 0 6 6 0 6 6						0000
٥	۰ ا	.1 1.8 .0 2.7 .4 -1.0		•	•	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠.	3 -2.0			00.1				2 0.8 6 1.6	0 -1.9 4 0.9				
Δ	(D)	7 138. 0 138. 2 135.	4.	0 128. 5 125.	5 151. 6 150.	152.3 150.4 152.1 153.0 2 151.8	222	1 222	222	1911	5 107• 2 108• 107•	, ,	1 116.8 1 116.7 7 116.2	8 124. 8 123. 1 125. 9 123.	6 123• 1 121•	0 122. 1 121. 0 122.	123.7	===	111	0100101
Cr.	a.	0000	4.0	9. v	2.5		446		~ 1010.	8 1.98 8 2.10 8 1.98	11.9	,	2.3	22.5	5.2	1.6	3 0 47 1 0 45 1 0 45			6 1.99 4 2.24 7 1.95 8 1.90 8 1.73
7	מ	1 0.86 1 0.78 1 0.82 0 C.81	0	7 3.63	2.6	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		. w.t.w		2 1.93 8 1.98 9 2.06 1 1.98	200	, ,	2.32 7 2.32 5 2.31 9 2.36	2222	5 4.97	7 1.56 4 1.56 8 1.52	0000	2.2	000	2.16 5.2.24 8.2.07 2.2.08 6.1.95 2.1.88
c	۵	0000		w w w w	1 2.5	11.27			~ ~	1 1.68 1 1.68 2 1.79	1 1.85 8 1.87 4 1.90		2.17	2000	2 4.73	6 1.47 1 1.44 14 1.38	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			14 2 15 18 2 15 11 1 9 9 8 15 2 0 0 2 19 8 6 19 1 8 8 6
	۵,	50 0 50 50 0 50 50 0 50	ο α	3 3.30 5 3.10	35 2.0A	34 1 37 37 37 37 37 37 37 37 37 37 37 37 37				6.11.5	00 1.51 22 1.48 34 1.54		45.5	2272	72 4.0	99 1.16 22 1.11 37 1.04	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			00 10 10 10 10 10 10 10 10 10 10 10 10 1
F	24	5 40766 40767 40767 40777	8 4071	4060	4062	39934 40069 * 40381 * 40391 *	_	40624 40624 40626	oc:	40740 40742 40744 40746	40600		40744	7 4 4 4	40622	40599	40623 40625 40635 40635	1 0	4014 4004 4004	2 40599 40621 40746 40747 40749
		.48 -0.1 B1 IV	V-V	3.9 v	7.06 0.47 83 Ib	4.68 0.50 FO Ia	6.51 0.01 Bo Ib	8 7 7 8 9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	6.41 0.0E		5.42 0.27 82.5 Jae	0	L NA	6.3 v 0.12 09.7 Ib:n	7.3 B0 Ib	5.56 -0.06 82 v	3.94 1.22 GO la+	6.40 0.05 84 V		6.44 0.32 B2 Ia
	HD	85871 6		90177 8	7 90706	4 62206	9 69616	92060 8	95740 6		95064 5		10101	93206 6	00076	96706 5	96918 3	9 46986		9 65666

	Pmax		0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .		aada (0000	0070	0.78 0.78 0.81 0.79	1211	0000)	4444	1.25	1 4 4 6 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 4 4 6 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	3.30	2.73
	, max	0.58	0.61 0.55 0.59		0000 0000 0000 0000	0000	C C C C C C C C C C C C C C C C C C C	0.00	0.57 0.58 0.58 0.56	0.62	0.60	00000	0.70	0.00	0.63	0.80	69•0
	B O - OR	100.7	-5.3 8.2 1.3	01101	01116	33.50	1 4 7 E	1.2	01111	20.0	9810	0.10	0.7	112	100	1.3	4.0-
	ο - ο D	0.00	0.0	0000	0100	•		1-	0000 0000 0000	0.0	0000	0000		00 000 000 000	0000	1:18	0.2
	η θ - η θ	0.6	20.0			•			1.2			1111	-2.4	0.7.	10.00	1.7	0.0
	Þθ	63.9 62.9 63.9 64.4	50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	511.4 511.4 500.8	7108 7104 7303 7105 7105 7105 7105 7105 7105 7105 7105	1577	88 89 89 89 89 89 89 89 89 89 89 89 89 8	26.7 27.0 29.3 29.3	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	93.00	117.5	103.1	140.4	93 7 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	32.3 32.3 31.5	176.7	48.8
	r d	1.44	0000	11.10	1.02	0000	00.96	0.76 0.77 0.71 0.78	1.82 1.87 1.81 1.78	0.82	1.06	1.09	1.21	1.91	4 4 5 1 1	3.90	2.69
	>0,	1.55	0000 888 999 44	1.25	1.05	0000		0.77 0.75 0.83 0.78	1.96 2.01 2.00 1.98	0.82	1.12	1.21	1.21	1.81	3.97; 4.11 4.05	3.51	2.58
	m Ci	1.443 1.39 1.43	0000	4444	0000	,,,,,,	0000	0000	1.86 1.86 1.86	0.70	1002	1.09	1.81	3 .51	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2.86	2.17
	Det	1014	0.68 0.72 0.63 0.71		00-10 (0000	0000	0.60 0.61 0.59 0.59	1.50	0.01	0000	0040	o	11 66	2.78	r 1.93	1.66
	JD 24	40739 40751 40752 40760	40769 40770 40772 40805	40723 40723 40739 40739	40769 40770 40772	40752	40769 40769 40770 40802	40739 40744 40752 40770	40739 40752 40765 40765	40762 40762 40762	40762 40763 40763 40765	40722 40745 40745 40762	41510	40765 40765 403311 403511	40498 40637 40637 40681	41510	41510°
3)	V B-V	5.43 -0.09 07.5 III£	6.27 -0.10 R3 V		• •)		4.65 -0.06 Bl.5 Vn	6.10 0.00 R5 IV	2.63 -0.08 R1 V	3.96 -0.04 R1 V	5.36 1.45 K4 III	4.01 0.03 B2 IVP 6.4V 0.9	4.54 0.84 A5 II		7.89 0.86 B2 V 7.27 0.32 B5 V	4.61 0.23 B2 IV + B2
(continued)	ФН	135591	135737	137709	91	091661	140873	141637	142919	144217	144470	145206	145502	147084		147889	147933
BLE 3	P max	40.0 44.0 00.0 80.0	1.21 1.18 1.14 1.18	111111111111111111111111111111111111111	1.90 2.02 1.92 1.88	1.09	11.00	2.29 2.36 2.30 2.30	0.71	1.57	1.41	1.20	1.34 1.28 1.28 1.28	0.80 0.80 0.80 0.76 0.81	1.24	1.58	1.54
T	, max	0.66	0.67 0.57 0.60	00.000000000000000000000000000000000000	0.00 0.00 0.00 0.00	0000	000000000000000000000000000000000000000	0.00	000000000000000000000000000000000000000	0.56	0.66 0.66 0.56	0.63 0.60 0.57 0.57	0.60	0.54 0.56 0.54 0.58	0.60	0.58	0.55
	8 0 - 8 R	00.0	120.0	0.5	0.5	1001	33.0	0000	1 1 4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.8	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00100	-1-1 -0-1 -0-8	13.9	\$ 0 0 0	-2.0
	0 A D	11.9	00.1	110011	1.5	0.110	0000			•		0100	10.7	1.4 -1.6 -0.9	00.0	1.7	0
	о Р - Ө	-9.2 -10.7 -11.9	0.3 12.0 11.3	7.00 7.00 7.00 7.00 7.00	•	11.5	0000				0.11.0			' '	2000		0
	δθ	34.1 34.2 34.2 33.8	108.5 108.8 107.4 108.5	79.8 79.9 80.7 81.5	67 72.5 68.4 69.4	72.5 71.6 71.1 69.8	7.7.0 7.8.7.0 8.4.0	71.6771.171.171.171.18	110.2	69.2	81.8 82.6 81.3 82.3	68.5 70.1 69.4 68.4	69.0 71.7 69.6 68.3	69.2 68.6 70.3 68.2	55.2 55.5 55.1 56.3	48.5 47.5 47.3	46.7
	α α	2000 440 400 400	1.20 1.16 1.15 1.21	1.399 1.399 1.399 1.399	1.88 2.03 1.98 1.81	1.08 1.05 1.10	1.28	2222	0000	1.4	1.90 1.61 1.35	1.18 1.02 1.09 1.05	1.16: 1.24 1.16 1.21	0.75	1.29		1.48
	> _{Q4}	5.38 5.20 5.33 5.49	1.16 1.14 1.09 1.15	1 • 49 1 • 49 1 • 50 1 • 50	1.86 1.98 1.90 1.84	1.06 1.05 1.04 1.09	0.000 0.000 0.000		0000			1.18	1.35 1.26 1.28 1.28	0.76 0.86 0.75 0.81	1.25 1.35 1.31		
	щ Q,	. 4.85 4.87 4.97	1.04 1.04 1.06 1.06	1.44 1.44 1.44 1.44 1.44	1.74 1.90 1.72 1.81	1,02	1.25				1.27	1.05	1.22 1.20 1.17 1.21	0.78 0.70 0.74 0.77	1.23 1.17 1.16 1.20	1.44	-
,	D d	3.92	0000	1.05	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.80	1.01		0000			0.87	0.96	0.77	1.00	1.23	÷
	JD 24	40744 40745 40751 40752	40653 40720 40739 40750	40749 40761 40761 40761 40773	40678 40744 40745 40751	40772 40773 40774 40801	40720 40744 40745 40745	40679 40744 40745 40745	40679 40751 40752 40750	40654	40681 40722 40744 40751	40681 40739 40745 40751	40682 40739 40751 40752	40682 40751 40752 40760	40739 40745 40751 40767	40744 40745 40761	40767
	B-V MK	1.84 p	0.02	1.49	0.12 Ia	3 0.04 1V	0.05	0.21 k	35 -0•11 4 V	0.12 1b	111	_0.07 5 Ve	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	111	-0.08 5 Ve	-0.06 5 III £	
	>	6.2 cG5 var	• α ∞ π	5.70 gK1	6.41 0a	• • • • •	6.23 A9	6.64 08n	n • m	4.32	6.0	5.90 R2.	6 • 08 8 8 8 8	7. 4. 4.	5.73 PO.	5.08	
	НВ	119796	120908	120913	122879	123335	124195	124314	124771	125788	129557	129954	131058	131918	135160	135240	
								2	69								

p max	1.63 1.63 1.65 1.68	3.70 3.56 3.62	2 4 4 2 2 4 4 8 4 9 3 3 3	2.71 2.77 2.81	0.81	0 8 8 9	2.30	000 8 8 8 9 7 6 4 4	06.0	1.40	1.37	1.07	1.81	0.87	1.71	4.04 3.82	200	1.54	1.78	2.18	1.17
, max	0.61	0.57	0.56 0.56 0.56	0.5 40.0 0.5 80.0	0.55	0.58	0000	000	0.55	0.55	0.00	0.58 0.50 0.63 0.61	0.52	0.55	0.56	0.58	0.59	0.61	0.57 0.56 0.57	0.55	0.57 0.58 0.62 0.61
0 - 0 H	10.1	:::	11.5	10.3	-1.3	3.1	1000	0.00	: :	6.0-	000	97.00	-0.7	11.8	: .	10.5	1.0	1.0	0.00	-0.8	2000
θ-θ	0.10	0000	0.2	1.7	-1.3	0 0 0	0000	0.00	4 8	0.5	0.0	1001 1001 1001	0.1	1.2	8	101	0.0	9.6 0 7.6 4	0.0	4.0-	0 0 0 1
0 e - 0 e	22.0	:::	1.3	1.2 9.1 3.1	1.9	3.0	0.00 0.00 1.00	3.7	-2.6	0 0	001	-5.1 -2.1 -0.1 -3.3	2.7	3.8	7.7	0.8	1.2		10.0	-0.7	2.9
۰ ۵	56.1 58.4 57.6	90.4 90.8 90.2	92.9 93.5 91.9	149.2 149.0 148.4	151.2	152.4	155.4	20.1	22.6	14.0	15.6	88 5	167.0	85.8	163.8	67.0 67.0	177.5	178.9	164.3 164.7 165.2	4.6	77.8 76.7 78.6 79.3
K Di	1.72 1.49 1.61 1.70	:::	2.13: 2.38 2.25	2.56 2.59 2.60	0.80	0.93	2.21	0000	6 .	1.43	1.29	0.98 1.04 0.99 1.02	1.58	C • 8 7	1	3.68	1.43	1.64	1.68	5.06	1.17
> ₀₄	1.66 1.64 1.63 1.64	3.56	2.43 2.48 2.31	2.69 2.74 2.82	0.87	0 9 8 3	2.32	0.00	0.93	1.35	1.37	1.08 1.11 1.09 1.06	1.83	0.82	1.68	3.80	1.50	1.40:	1.79 1.76 1.79:	2.17	1.18
201	1.51 1.551 1.57 1.551	888 988 484 488	2.32 2.32 2.22	2.66 2.70 2.74	0.74	0.81	2.05	00 00 00 00 00 00 00 00 00 00 00 00 00	0.86	1.23	1.30	0000 0000 0000	1.78	0.81	1.65	3.67	1.45	1.41	1.66 1.71 1.66	2.10	1.05
	2.00 2.00 2.00 2.00 2.00 2.00 2.00	* * *	1.86 2.00 1.89	2.30 2.13 2.30		00	1.68	97.9		1.1	1.13	0.81 1.03 0.73 0.78	+ 1.50	+ 0.76	- '	3.12	1.16		1.40	7	0.97 0.86 0.86
24	40742 40744 40745 40751	403894 404094 404524	40807 40807 40807	40752 40763 40774	40765	40775	40774	40796 40801 40805	40805	40722	40743 40751 40752	40777 40774 40775 40803	41510	41510	40443	70804 70804	40765	40804	40723 40763 40803	40722	40775 40777 40780 40780
WK WK	6.17 0.05 R6 IV	5.63 0.16 R1 V	7.90	6.55 2.20 G5 Ia	5.53 -0.01 08 Ve		6.38 0.14 A5 Vne	2.84 1.46 K3 Ib		Bl Ibe 6.19 -0.03	r 1	4,34 1,50 K3 II	5.7v 0.03	, >	7•4 B8	80 Ve	4.2v 0.7 F5-G9 Ib	4.82 -0.04	> 60	0.2	6.18 0.15 89.5 V
НД	154204	154445	155195	155603	155806		156325	157244	157246	157599		157999	159176	159975	160335	161306	161592	161840		161912	161941
nax	1.01	1.53	11000	1.26	1.36	1.59	1.58	1.01 0.98 0.96 1.00	1.99	1.94	2.14	0001	1.07	1.10	1.16	1.12	1.30	46.00	0.88	1.4.0	1.83
, max	0.57	0.56	0000	00 00	0.52	0.53	0.55	00.53	0.60	0.64	0.56	40.00	0.53	0.57	0.59	0.56	0.62	0 0 0 0 4 4 4 4 4 0 0 0 0	0.47	0.54 0.61 0.64	09.00
9 A B B	-1.3 -1.3 -4.4	::::	7100	12.3	-2.5	-1.4 -2.7 0.3	0.0	10.1	000	-0.1	0.0	600 600	4 6	1.5	2.3	-1.2	:::	10.4	7.7	2.7	000
θ _ θ	1000	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4444	1.6	3.2	0.0	1.0	0000	0.0	40	000	9010	0.1	1.6	1.5	-0-1	1.5	0 9 0	3.3	22.8	1000
η θ- χ θ	0.2	W 4 4 4	4 9 8 0 1	6.0		10.6		1001	-1.4	2.0	400		-	-		0.0	::	-5.3		11.3	0 4 7 6 7
Λθ	38. 40.6 39.0 38.8	24.6	23.3	20.7	16.6	171.8 171.1 172.0	172.4	35.2 36.6 36.3	53.4	53.5 53.4	26.1 25.9 27.1		17.0	23.7	23.4	22.4 22.4 22.1	46.3	110.4	110.7	17.2 20.4 20.6	22.0
P.R	1.03	:::	11.00	1.24	1.18	1.52	1.53	0.87 0.96 0.98 0.98	1.94	1.92	2.06	1.02	1.11	1.08	1.05	1.10	::	0.00	0.71	1.30	1.90
D _G	1.11	and.	10.40.00			1.58		1.02 0.98 0.94 1.01		1.93	2.13		⊣ (, ,		1.08	1.27	0.94	0 4	1.38	444-
en Ct	1.03 0.99 1.01 0.99		26.11			1.54		0.98 0.92 0.91 0.94		1.80	2.09					1.06	1.13	0.92		1.26	
Da	00 00 00 00 00 00 00 00 00 00 00 00 00		1.02			1.34		0.48	1.4		1.75	4 000	0 0			000	**	0.00		1.00	1.33
JD 24	40722 40744 40745 40751		40045 40046 40046 400463	40772	4076	40742	40803 41510 †	40773 40774 40775 40775	40722	40805	40765	40766 40777 40773				40780 40780	40395*	40766		40775 40777 40802	40751
V B-V	5.67 0.00 B8 IV:	5.38 0.56 Bl.5 lape var. p		5.32 C.33 Bl Ia+e	var. p?	6•14 B2•5 IV	2.57 0.02	5.64 -0.03 Bl Ia	4.94 1.11 G8 II		6.23 0.85 F2 Ib	5.94 BI IV=V		K3 III 5.56 -0.09	R0.5 Ia		5.22 0.08 08 laf	6.30 0.55 Bl lae	m	B3 Vnep	6.10 -0.03 B2 IVne
ПЪ	11614	46379		48688		49711	49757	50168	50416		50421	50745		00 / 93 90 / 93			51804	152235	52478		53261

1	×1	1 8 1 2 4 	7 5 6 4 6	ဆောင်းက သော	. 0	7 7 4 6 6	0 6 6 7	0 4 81	2 62 6	0 W 2	20.00	45.55	982.4	17.0	8 10 25 6	999	(1963).
	C. X	8 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 7777	v	4 4444	,		5 1 2 2 4 5 1 6 2 2 4 5 1 6 5 1 6 5 1 6 5 1 6 5 1 6 5 1 6 5 1 6 5 1 6 6 6 6	- 000			3 0.54 0 0.55 0 0.63 7 0.57	8 0.86 9 0.888 3 0.82	1 1.33 6 1.36 7 1.37 0 1.41	300.60		ast (19
	, ma.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000	0000	00 00 00 00 00 00 00 00 00 00 00 00 00	000	0 0 0 0	000	0.59	0.63 0.70 0.70 0.62	0.59 0.59 0.53	0.51	000000000000000000000000000000000000000	0.49	by Fe
V.	0 - 0	. 818	010	9 9 9 9 9	0000	9 6 4 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.10	2.9	2.5.5	13.0	3.2	1.8	12.3	6.11 7.11	-3.0 -1.9 -1.1	types
V. B.	Φ	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	000	0 000	7.00	100	00100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1.1.	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.5 4.1 0.7	10.1	0000	1226	-0.1 -1.3	ctral
n° n°	9- 9	4 0110	11.9	0000	1000	0 1 1 0 0 0	6 9 11 1	0046	-12.4 -2.8	0 1 0 4	44.1	5.7 5.8 1.7	10.11	0111	7.6 8.5 -17.5	10.4	eds '(
D 0	θ	25.9 179.9 179.0	11.3	171.4	. ພາບທຸກ ພາບທຸກ ທຸກຄຸດຄຸດ	24.5	93 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	28.0 27.8 26.9	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	85.2	12.1	89.1 90.2 85.0 89.1	78.5 78.6 79.1	127.6 126.8 126.2 127.2	41.4 40.2 41.8 41.5	138.7 138.6 140.3	t(1958
α	Ω	55.48	2000	1.32	2002	1.00:	1.70	1.18	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.76 0.74 0.76	0.52 0.48 0.59:	0000 88888 6074	11.31	0000 0000 0044 0074 7	1.01	2441511 van San
>	Ωι	0.52 6.10 6.23:	2.78	11.32	22.30	1012	1.81 1.78 1.78 1.85	1.18	1.08 0.84 0.81	. 683	0.77	0.50 0.55 0.62:	0.88 0.86 0.87 0.71:	11.34	0000 0000 0000 0000 0000 0000 0000 0000 0000	1.10	and and
m	a.	0 . 4 . 9 . 7 . 4 . 9 . 7 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.72 1.29 1.28			1.70 1.73 1.71	1.12	1.11 0.72 0.78	0.75		0.51 0.42 0.45 0.47	0.78 0.86 0.70	1.26 1.28 1.28 1.23	0000 0000 0000 0000 0000 0000	1.15 1.14 1.14	polarir 441510 om Arp
D	Ωι	0.30 9.88 5.01	2.27	2 • 4 3 1 • 0 6 1 • 0 4 1 • 0 1	222	7 66 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	11. 4.7 11. 4.3 11. 4.2	0666				0000	0.83	1.07	000000000000000000000000000000000000000	1.11	annel n JD 2. are fr
a b	4	0428*	0762	40746 40746 40767 40769				40762 40765 40774				40779 40780 40802 40803	40769 40770 40772 40796	40762 40772 40773 40775	40802 40804 40804 40804	0802 0803 0804	two-ch tions o
B-V	,	. 22	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	101 11 n	• 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	000	o : e u u 4444	0.01 4 I af 4	4 44	444	04.	0. 0. 1. 1. 1. 1. 1. 1.		4 4 4 4 4 4		IVe 5 -0.02 4 1V	ith a serva in NG
A	Ä	94v B0.5 I	6.5v 1 F5-G3	4.95 -0. R0.5 II	3.49 0 30.5 I	0 09.6 B6 IV	3.9 v 0 F6-G2	07.5 1	5.67 1 gK4		5,28 1 K3 II	68 111	5.61 1 gK5	83 IV	68 II:	B7 IVe 5•36 =0 B5 IV	vation w ge of ob numbers
concluded)	i i	3143 6	83344 6	84915 4	85859 (185915	187929	188001	190299		193150	194953 (200644	203532 (207089		Observa Average Star nu
3 (201	lax	903	53 18	1444	5.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00	.89 .77 .84 .80	.10 .09 .28		0000	•05	010	0.99 0.99 0.99	40° 40° 96°				* + +
TABLE	ax P	58 60 11 58 10 60 10	8084	0.68 1. 0.70 1. 0.68 1. 0.68 1.	0.48 1. 0.49 1. 0.50 1.	0.61 1. 0.59 1. 0.61 1. 0.60 1.		(-	2222		0	00 446	10 0000	0000	900
M.	, E	00000	0 0 1						0.00	1 0.57	0.00	0.60 0.64 0.58 7	7.00 E			0000	
B B V		44.00	20.7	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		00.1	0 10 1		1000		00.3	1000	0.1				-
P O D O	0	0.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12.0	8	6.01	1000		0 1 7 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0010	0000	-2.3		•	200	• •
2		22.00	9846	100.2	4 9 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	0000	10.0		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.1	10000	0 0 0 0	12.0	40 40	20 00 00 00 00 00 00 00 00 00 00 00 00 0	13.7	12.0
> @	0	1444	200-11	179.6 179.6 178.1	177.0 180.3 176.5 176.5	75.4	18.1 93.5 92.7 93.0	9341	136.0	4 • 4	46.0 46.0 46.1 45.1	105.5 107.5 108.7	173.8	109.8 110.2 79.5 78.7		116.6	116.8
er ex	4	1.02 0.95 0.93 0.92 1.02	1.33	1.37	1.36 1.30 1.24 1.56	1.88 1.78 1.80	1.53 0.95 0.97 1.03	1.00	0.89	96.0	1.93 2.15: 2.04 1.91	0.92 1.01 0.98 0.87:	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.96 0.95 1.99 2.10	1.98 : 1.92 2.01 : 1.97	0.83	000
> 0	2,	1.07	1.43 1.48 1.51 1.48:	1.34 1.37 1.36 1.41:	1.58 1.35 1.29 1.55	1.83 1.71 1.81 1.78	1.67 1.08 1.09 1.12	1.02	0000	1.02	2.12 2.11 2.14 2.14	0.98 0.94 0.97 0.96	1.07	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.07 2.04 2.19 2.19	0.88 0.91 0.91	0.91
m _o	24	1.02 0.99 0.93 1.00	1.45 1.46 1.46	1.14 1.18 1.22 1.22:	1.59	1.71 1.65 1.66 1.61	1.51	0.98	0000	16.0	1.91 2.07 1.92 1.91	0.88	0.92	0 • 82 0 • 79 1 • 97 2 • 04		4 2 8 8 8	0 60
٥	2.	0.83: 0.72 0.58 0.74 1.00	1.93 1.93 1.94	0.87 0.87 0.80 0.91:	1.37	1.94 1.93 1.93 1.93		0.82	0.72	0.79	1.55	0.72 0.67 0.76 0.76	1.01: 0.57 0.65:	1.69	1.68 1.83 2.00; 1.71	0.63	999
d b	24	40750 40774 40775 40777 40780	40775 40777 40780 40804	40774 40775 40777 40802	40739 40742 40743 40751	40774 40775 40777 40803	41510 + 40775 40775	40352*	40780 40780 40780	40722	40739 40745 40750 40751	40744 40761 40763 40802	40761 40801 40804	40807 40807 40763 40763 40770	40767 40767 40767 40770	40772 40780 40780	
V B-V	MK	•12 K1 III	.2v 1.3 F8-63 Ib	.20 0.04 07.5 IIE	•5v nl lab var: p	600	7.02 0.30 07 III£ 4.68 -0.04 R2 Ve	.67 =0.08 B2 Ib) C C C C C C C C C	-0.06 IIep	6.6: 0.29 RO Ib	5.73 0.01 87 Ve	5.49 gk5 4.81 1.31 K2 II-III	.91 0.27 82 IV-V	6.7v 1.1 F5-G1.5 Ib	5•36 B5 IV	
dH		162496 6	162714 6	162978 6	163181 6	163472 5	163800 7	165024 3,		167128 5	168021 6.	169033 5.	169110 5	170740 5	170764 6	176162 5.	. **

Fig. 3.—The normalized wavelength dependence of interstellar linear polarization derived from the observations with the Siding Spring multichannel polarimeter-photometer. The solid line is calculated from eq. (4) for K = 1.15. Every open circle is based on 20 stars, while each dot represents the observations of an individual star with a particular filter.

before plotting as a function of inverse wavelength, by the number of photons of stellar light per unit frequency interval per cm², $n_{\nu} = \text{const.} \cdot \lambda^3 F_{\lambda}$. The flux F_{λ} was calculated for several representative stars of different reddening and spectral type from the results of the intermediate-band photometry by Mitchell and Johnson (1969), making use of the absolute calibration given in their table 2. An assumption was made that $p(\lambda)$ is a linear function of λ^{-1} over each of the spectral regions. We have found that the dependence of inverse effective wavelength on stellar color index can be approximated by a linear expression

$$\lambda_{\text{eff}}^{-1} = \lambda_0^{-1} - (B - V) k_B,$$
 (8)

for the B, V, and R spectral regions, and by

$$\lambda_{\text{eff}}^{-1} = \lambda_0^{-1} - (U - B) k_U,$$
 (9)

for the U spectral region. The assumed coefficients λ_0^{-1} , k_B , and k_U for the polarimeters which were used for observing the wavelength dependence of interstellar polarization are given in table 4; the values for the UBV system are based on response curves by Johnson (1965) and by Matthews and Sandage (1963).

For each star the effective wavelengths have been calculated using these coefficients and the color indices for that particular star.

IV. SUMMARY OF DATA ON WAVELENGTH OF MAXIMUM INTERSTELLAR POLARIZATION

All the available data on the wavelength $\lambda_{\rm max}$ at which interstellar linear polarization takes the maximum value $p_{\rm max}$ are listed in table 5. The only stars with mean error of $\lambda_{\rm max}$ not exceeding $\pm 0.03~\mu$ which are omitted are those 104 stars for which $\lambda_{\rm max}$ is given by Coyne et al. (1974) in their table 2 and which were observed only at the University of Arizona.

The stars are listed in table 5 in order of increasing right ascension. The MK spectral types are taken from Hiltner, Garrison, and Schild (1969), Lesh (1968), or Walborn (1972), if available; otherwise the MK type is taken from the compilations by Jaschek, Conde, and de Sierra (1964) or by Kennedy (1971). Photometry is taken from compilations by Blanco et al. (1968) or by Jaschek et al. (1972). The color excesses E_{B-V} and distance moduli m-M are calculated using the intrinsic colors and luminosity calibration by Schmidt-Kaler (1965) and assuming that visual extinction equals $A_V = 3E_{B-V}$. For Cepheids

TABLE 4

THE INVERSE EFFECTIVE WAVELENGTHS FOR VARIOUS POLARIMETERS

		U			В		V		R	1	
Instrument	λ ₀ -1	$(U - \overset{k_U}{B} <$	$0) \left(U - \overset{k_U}{B} > 0 \right)$	λ ₀ -1	k_B	λ ₀ -1	$k_{\scriptscriptstyle B}$	λ ₀ -1	k_B	λ ₀ -1	k_B
Siding Spring multichannel.	2.760	0.060	0.015	2.235	0.060	1.865	0.025	1.446	0.012		
Siding Spring two-channel	2.720	0.060	0.015	2.310	0.060	1.825	0.025				
Visvanathan 1966	2.644	0.060	0.015	2.240	0.060	1.860	0.025	1.434	0.020	1.148	0.020
Lowell Observatory 1968	2.700	0.060	0.015	2.240	0.060	1.790	0.015				
UBV Polaroid polarimetry	2.740	0.060	0.015	2.295	0.060	1.835	0.025	• • •	••••	•••	•••
(S11 cathode)				2.260	0.035	1.835	0.025				

TABLE 5

np	Name							OF INTERSTEL			ν.	
HD	Name	1	ь	. V	MK	E _{B-V}	m-M	λ _{max} m.e.	p _{max} m.e. %	Source of polarimetry	Me max	en P _{mex}
2083†	+71°16	121°	+ 9°	6.89	B1 V	0.31	9.5	0.52 ± .04::	1-35 ±.04	Kruszewski 1962	0.52	
3940	+63°81	122	+ 1	7.26	Al Ia			0.50:± .02::	4.88 ±.08	Kruszewski 1962	0.48	
								0.48 = .01:	5.02 ±.15	Serkowski 1968, 1-ch.		
4841	+62°160	123	+ 1	6.86	B5 Ia	0.65	11.9	0.55 ± .02:: 0.53 = .01		Kruszewski 1962 Coyne et al. 1974	0.53	4.48
								0.53 = .01	4.40 1.17	Coyne et al. 1974		
5776†	+62°181	124	0	8.05	AO Ib			0.51 ± .04:: 0.48 ± .06::		Serkowski 1965b Serkowski 1965b	0.51 0.50	
7252	+60°188	126	- 2	7.14	B1 V	0.37	9.0	0.48 ± .00:		Coyne et al. 1974	0.50	3.7
7902	+57°257.	127	- 4	6,93	B6 Ibe	0.51	11 1	0.59 + 03	3 18 + 11	Kruszewski 1962	0.53	3 33
7502	in NGC 457	127	-	0.75	50 100	0,51		0.51 ± .01		Coyne et al. 1974		5,5
7927	φ Cas,	127	- 4	4.95	FO Ia	0.51:	11.9	0.51 ± .03::	3.43 ±.07	Kruszewski 1962	0.51	3.40
	in NGC 457							0.52 ± .04::	3.23 ±.08	Serkowski 1965a		
								0.51 ± .02:: 0.52 ± .02:				
								0.51 ± .01		Coyne et al. 1974		
8965	+59°260	128	- 2	7.27	BO.5 V	0.31	10.2	0.51 ± .07:	2.91 ±.13	Serkowski 1965b	0.51	3.0
								$0.51 \pm .01$	3.04 ±.11	Coyne et al. 1974		
11606*	+58°331	131	- 3	7.03	B2 Vne	0.33	8,5			Kruszewski 1962	0.54	3.19
								0.52 ± .01	3.20 ±.19	Coyne et al. 1974		
12301	53 Cas, in cl. Stock 5	131	+ 3	5,58	B8 Ib	0.44	9.9	0.57 ± .02:: 0.54 ± .01	2.92 ±.06 2.88 ±.16	Kruszewski 1962 Coyne et al. 1974	0.55	2.8
			_							•		
12953	BS 618	133	- 3	5.71	Al Iae	0.65	11.1	0.51 ± .02: 0.50 ± .01		Kruszewski 1962 Coyne et al. 1974	0.50	3.5
13267	5 Per	133	- 4	6.39	B5 Ia	0 41	12 2	0.53 ± .03:		·	0.50	
1320,	*	133	•	0,37	23 24	0,41	12.2	$0.53 \pm .01$	4.01 ±.10	Kruszewski 1962 Coyne et al. 1974	0.53	4.0
	cl. Stock 2	133	- 2	•••		0.38	7.5	0.59 ± .04:	: 2.32	Krzemiński et al.1967	0.59	2.3
13402+	(10 stars) +58°396	133	- 2	8.08	во.5 Іь	0.82	11 4	0 53.+ 05.	. 5 21 + 10	Krzemiński et al.1967	0 52	E 1
236954	+58°400	133	- 2	9.40	B3 1b-11	0.82	12.0	0.52 ± .03:	: 6.55 ±.14	Krzemiński et al.1967	0.53	6.
:*	+59°451	133	- 2	9.29	B1 II	0.95	11.4	0.54:± .07:	: 4.45 ±.22	Krzemiński et al.1967	0.54	4.
13476	BS 641	134	- 3	6.46	A3 Iab	0.58	11.5	0.53:± .04: 0.53 ± .01	4.25 ±.12 4.15 ±.13		0.53	4.
13854	BS 654,	134	- 4	6.49	Bl Iabe	0.47	11.3	0.51:± .05:	: 3.72 ±.13	Serkowski 1965b	0.54	3.8
	in NGC 869							0.54 ± .01		Coyne et al. 1974		
14010	+63°315	132	+ 3	7.11	B9 Ia	0.60	12.3	0.43:± .07:			0.50	4.5
								0.53:± .02:		•		
14134	+56°522, in NGC 869	135	- 4	6.55	B3 Iae	0.59	11.6	0.56:± .05: 0.54 ± .01	: 3.75 ±.16 3.76 ±.08	Serkowski 1965b Coyne et al. 1974	0.54	3.7
14143	+56°530,	135	- 4	6.66	B2 Ia	0.65	11.5			Serkowski 1965b	0.50	2 (
14143	in NGC 869	133		0.00	DL 14	0.03	11.5			Serkowski 1968, 1-ch.		3.0
14322	+55°588	135	- 5	6.79	B8 Ib	0.38	11.3	0.49 ± .03:	3.04 ±.32	Serkowski 1968, 1-ch.	0.50	3.0
								0.51 ± .01	3.09 ±.20	Coyne et al. 1974		•
14433	+56°568,	1 3 5	- 4	6.38	Al Ia	0.61	11.9			Serkowski 1968, 1-ch.	0.51	3.8
	in NGC 884									Coyne et al. 1974		
14818	10 Per	136	- 4	6.30	B2 Iae	0.45	11.8	0.53 ± .02: 0.53 ± .01		Serkowski 1968, 1-ch Coyne et al. 1974	. 0.53	3.
	_											
15316	+57°576	136	- 3	7.24	A3 Iab	0.76	11.8			Serkowski 1965b Coyne et al. 1974	0.52	4.
15497	+57°582,	136	- 3	7.03	B6 I a	0 84	11 5			Serkowski 1965b	0 ለወ	4.
1 749 /	in NGC 957	130	- 3	7.03	DO 10	0.04				Coyne et al. 1974	0.47	4.4
15558	+60°502,	135	+ 1	7.81	05 IIIf	0.91	10.9	0.52 ± .03•	4.98 ±.28	Serkowski 1968, 1-ch	. 0.53	5.
1000	in IC 1805	233		. • • •				$0.53 \pm .01$		Coyne et al. 1974		

					TAB	LE 5 (contin	ued)				
HD	Name	1	ь	v	MK	E _{B-V}	m-M	λ m.e. max μ	p _{max} m.e. %	Source of polarimetry	Me λ max	an P _{max}
17088 [†] 17378	+57 ⁵ 632 BS 825	138 138	- 2 - 2	7.50 6.26	B9 Ia A5 Ia		12.0 11.5	0.51 ± .04: 0.55 ± .02:: 0.57:= .04:: 0.54 ± .01:	3.95 ±.09 4.56 ±.07 4.55 ±.10	Serkowski 1968, 1-ch. Kruszewski 1962 Serkowski et al. 1967 Coyne et al. 1974		3.95 4.55
21291	BS 1035	141	+ 3	4.21	B9 Iae	0.42	10.0	0.51 ± .02:: 0.50 ± .02:: 0.51 ± .02: 0.54 ± .01	3.51 ±.05 3.39 ±.05 3.47 ±.17 3.54 ±.07	Kruszewski 1962 Serkowski 1965a Serkowski 1968, 1-ch. Coyne et al. 1974	0.52	3.50
21389	BS 1040	142	+ 2	4.55	AO Iae	0.56	10.0	0.57 ± .02:: 0.50:± .05:: 0.51 ± .01	3.60 ±.07 3.77 ±.06	Kruszewski 1962 Serkowski et al. 1967 Coyne et al. 1974	0.52	3.74
	29 Tau +23°524 n Pleiades, rtzsprung 371	181 167	-36 -24	5.34 8.11	B3 V AO V	0.10 0.38	6.7 6.0	0.54 ± .02 0.61 ± .03: 0.62 ± .03: 0.58 ± .03	0.35 ±.01 2.30 ±.23 2.36 ±.14 2.31 ±.20	Table 3, Mul-ch. Serkowski 1968, 1-ch. Serkowski 1968, 2-ch. Coyne et al. 1974		0.35 2.32
24398	ζ Per	162	-17	2.85	Bl Ibe	0.32	7.6	0.59 ± .02 0.52 ± .01:: 0.51 ± .01	1.20 ±.08 1.21 ±.02 1.26 ±.02	Coyne et al. 1974 Table 3, Two-ch. Table 3, Mul-ch.	0.54	1.23
24431	+52°726	149	- 1	6.72	09 IV-V	0.68	9.6	0.48 ± .02: 0.50 ± .03	2.12 ±.18 2.16 ±.32	Serkowski 1968, 1-ch. Coyne et al. 1974	0.49	2.15
25330 25443	BS 1243 +61°669, in NGC 1502	181 144	-31 + 7	5.66 6.74	B8 BO.5 III	0.2: 0.61	5; 9.6	0.55 ± .02: 0.49:± .02:: 0.48:± .03:: 0.49 ± .02: 0.50 ± .01	1.68 ±.03 5.31 ±.10 5.24 ±.11 5.24 ±.19	Serkowski et al. 1969 Kruszewski 1962 Serkowski et al. 1967 Serkowski 1968, 1-ch. Coyne et al. 1974		1.68 5.25
25558 25914	40 Tau +56°884	185 147	-33 + 4	5.32 7.99	B3 V B6 Ia	0.14 0.66	6.6 13.0	0.58 ± .03 0.50 ± .02: 0.54 ± .01	0.52 ±.02 4.71 ±.39 4.71 ±.19	Table 3, Mul-ch. Serkowski 1968, 1-ch. Coyne et al. 1974		0.52 4.71
30836 30870 32990	π ⁴ Ori BS 1553 103 Tau	193 189 179	-24 -21 -10	3.68 6.10 5.50	B2 III B5 V B2 V	0.08 0.26 0.32	7.0 6.3 7.0	0.55 ± .03 0.54 ± .02 0.51 ± .01 0.56 ± .01	0.44 ±.01 1.38 ±.02 1.67 ±.07 1.58 ±.02	Table 3, Mul-ch. Table 3, Mul-ch. Coyne et al. 1974 Table 3, Mul-ch.	0.55 0.54 0.54	0.44 1.38 1.62
34921*	+37°1160 var. p?	170	+ 1	7.43	BO IVpe	0.44	10.9	0.58 ± .11: 0.58 ± .02	3.54 ±1.46 3.13 ±.23	Serkowski 1968, 1-ch. Coyne et al. 1974	0.58	3.27
• • •	NGC 1893 (19 stars)	174	- 2	• • •		0.64	12.9	0.52 ± .04::	2.58	Serkowski 1965a	0.52	2.58
36371	X Aur	176	- 1	4.77	B5 Iab	0.45	9.7	0.57 ± .03:: 0.53 ± .01 0.56 ± .01: 0.58 ± .01	2.16 ±.07 2.18 ±.10 2.13 ±.02 2.17 ±.01	Kruszewski 1962 Coyne et al. 1974 Table 3, Two-ch. Table 3, Mul-ch.	0.56	2.17
36629	-4°1164	208	-20	7.66	B2 V (weak He)	0.28	9.3	0.45:± .03: 0.50 ± .02: 0.50 ± .01 0.53 ± .01:	2.09 ±.05 1.90 ±.10 2.19 ±.13 2.00 ±.02	Appenzeller 1966 Serkowski 1968, 1-ch. Coyne et al. 1974 Table 3, Two-ch.	0.50	2.07
36673† 37061	α Lep NU Ori, var. p	221 209	-25 -19	2.57 6.8v	FO Ib B1 V	0.01: 0.55	7.3 8.8	0.43 ± .04 0.63:± .12: 0.66 ± .02: 0.63 ± .04	0.38 ±.02 1.24 ±.47 1.50 ±.19 1.63 ±.19	Table 3, Mul-ch. Appenzeller 1966 Serkowski 1968, 2-ch. Coyne et al. 1974		0.38 1.54
37350	ß Dor,	272	-33	3.7v	F6-G2 Iab	0.19	7.1	0.54 ± .02	0.44 ±.01	Table 3, Mul-ch.	0.54	0.44
37356	cepheid BS 1923	209	-19	6.20	B2 IV-V	0.22	8.3	0.61 ± .05:: 0.56 ± .02: 0.55 ± .01: 0.52 ± .01	1.39 ±.13 1.42 ±.02 1.56 ±.10	Serkowski et al. 1967 Serkowski 1968, 1-ch. Serkowski et al. 1969 Coyne et al. 1974		1.48
37903	-2°1345, in NGC 2024, var. p?	207	-17	7.84	B1.5 V	0.37	9.7	0.69 ± .02 0.68 ± .05: 0.75 ± .02	1.99 ±.11 1.94 ±.08 2.13 ±.06	Coyne et al. 1974 Table 3, Two-ch. Table 3, Mul-ch.	0.71	2.04
•••	No. 1 in NGC 2024	206	-17	12.17	BO.5 Vp	1.69	10.9	0.75:: 0.68:± .03: 0.68	11.42 10.37 ±.99 10.77	Hæll et æl.1964 Serkowski 1968, 1-ch. Carrasco et æl. 1973		10.81
38087	-2°1350, in NGC 2024	207	-16	8.30	В3	0.3	•••	0.57 ± .02: 0.72:± .05	2.68 ±.04 3.18 ±.41	Table 3, Two-ch. Table 3, Mul-ch.	0.64	2.93

HD	Name	1	b	v	MK	E _{B-V}	m-M	λ _{max} m.e.	p _{max} .m.e.	Source of	Me	
	- 110							μ	%	polarimetry		Pmax
38771	K Ori	215	-18	2.06	BO.5 Iae	0.02	8.4	0.52 ± .01: 0.51 ± .03	0.54 ±.02 0.51 ±.04	Table 3, Two-ch. Table 3, Mul-ch.	0.51	0.52
250290	in NGC 2129	187	0	7.38	B3 Ib	0.76	10.8	0.60 ± .01: 0.57 ± .01	3.34 ±.08 3.27 ±.15	Serkowski 1968, 1-ch. Coyne et al. 1974	0.58	3.29
41117	χ ² Ori, var. p	190	- 1	4.63	B2 Iae	0.42	10.2	0.59:± .05:: 0.56 ± .02: 0.52 ± .01	2.69 ±.10 2.92 ±.09	Serkowski et al. 1967 Serkowski 1968, 1-ch. Coyne et al. 1974	0.54	2.84
42087 42379	3 Gem +21°1143	188 189	+ 2 + 1	5.74 7.40	B2.5 Ibe B1 IIe		10.3	0.55 ± .01 0.48 ± .01 0.51 ± .01	2.10 ±.10 3.14 ±.20 2.96 ±.19	Table 3, Mul-ch. Coyne et al. 1974 Table 3, Mul-ch.	0.55 0.50	
42400 43384	+20°1302 9 Gem, in cluster Cr 89	190 188	+ 1 + 4	6.82 6.25	B5 II B3 Iab		10.2 10.8	0.52:± .01 0.54:± .05:: 0.58 ± .02:: 0.56:± .02: 0.52 ± .03:: 0.53 ± .02: 0.53 ± .02	2.21 ±.08 2.76 ±.10 2.96 ±.06 2.88 ±.17 2.99 ±.18 2.98 ±.23 2.98 ±.07	Table 3, Mu1-ch. Kruszewski 1962 Serkowski 1965a Appenzeller 1966 Serkowski et al. 1967 Serkowski 1968, 1-ch. Coyne et al. 1974 Table 3, Mu1-ch.		
46769 47240	BS 2409 BS 2432, in cluster Cr 107	210 207	- 3 · - 1	5.79 6.15	B8 Ib B1 II	0.06 0.40		0.51 ± .02 0.59 ± .03 0.52 ± .02: 0.51 ± .02	0.96 ±.01 1.02 ±.08 1.22 ±.01 1.24 ±.05	Table 3, Mul-ch. Coyne et al. 1974 Table 3, Two-ch. Table 3, Mul-ch.	0.51 0.54	
47432	BS 2442	210	- 2	6.20	09.7 Ib	0.44	10.7	0.53 ± .01: 0.59:± .05	1.46 ±.05 1.50 ±.25	Table 3, Two-ch. Table 3, Mul-ch.	0.56	1.4
49336* 51309 52721* 57623 58439 60325	BS 2510 L CMa -11°1747 δ Vol BS 2831 BS 2897	247 229 224 279 234 230	-17 - 7 - 3 -23 - 2 + 3	6.21 4.38 6.59 3.97 6.27 6.21	B4 Vne B3 II B2 Vne F8 II A3 Ib B2 IIIp	0.06: 0.13 0.30 0.20: 	8.6 8.2 5.6 10:	0.58 ± .01 0.51 ± .02 0.50 ± .05: 0.50 ± .02 0.53 ± .01 0.54 ± .02: 0.51:± .03	1.21 ±.02 0.52 ±.01 1.20 ±.20 0.34 ±.01 1.20 ±.01 1.26 ±.01 1.20 ±.18	Table 3, Mul-ch. Table 3, Mul-ch. Table 3, Two-ch. Table 3, Mul-ch. Table 3, Mul-ch. Table 3, Two-ch. Table 3, Mul-ch.	0.58 0.51 0.50 0.50 0.53 0.53	0.5 1.2
61827	-32°4266	247	- 5	7.65	08e	0.94	10.5	0.57 ± .03: 0.67:± .02	1.78 ±.10 1.87 ±.12	Table 3, Two-ch. Table 3, Mul-ch.	0.62	1.8
62150	-32°4287	247	- 5	7.67	B3 Ia	0.65	12.4	0.54 ± .02: 0.54 ± .02	2.24 ±.04 2.17 ±.14	Table 3, Two-ch. Table 3, Mul-ch.	0.54	2.1
63804* 64760 65228 69882	-33°4186AB BS 3090 11 Pup -42°4090	249 262 241 260	- 4 -10 + 3 - 4	7.6 4.23 4.20 7.15	Be BO.5 Ib F8 II B1 III:k	0.07 0.14: 0.66		0.62 ± .02 0.58 ± .02 0.52 ± .03 0.53 ± .02: 0.56 ± .02	1.67 ±.06 0.45 ±.02 0.40 ±.01 1.55 ±.03 1.60 ±.04	Table 3, Mul-ch. Table 3, Mul-ch. Table 3, Mul-ch. Table 3. Two-ch. Table 3, Mul-ch.	0.62 0.58 0.52 0.55	0.4
73882 74180	-39°4631 BS 3445	260 265	+ 1	7.19 3.85	08 V F2 Ia	0.72 0.46:	10.0 10.8	0.75 ± .02 0.47 ± .01: 0.46 ± .01	2.15 ±.07 1.51 ±.03 1.56 ±.04	Table 3, Mul-ch. Serkowski 1968, 2-ch. Table 3, Mul-ch.		2.1 1.5
74272† 74375 74575 75149 77581	BS 3452 BS 3457 α Pyx -45°4526 Vela XR-1	266 276 255 265 263	- 3 -11 + 6 - 2 + 4	4.76 4.32 3.70 5.48 6.88	A5 II B1.5 III B1.5 III B4 Ia B0.5 Ib		7.9 7.5 11.5	0.64:± .03 0.57 ± .01 0.52 ± .01 0.51 ± .01: 0.55 ± .02 0.52 ± .01:	0.56 ±.05 0.54 ±.01 0.57 ±.01 1.96 ±.03 3.92 ±.24 3.78 ±.03	Table 3, Mul-ch. Table 3, Mul-ch. Table 3, Mul-ch. Serkowski 1968, 2-ch. Visvanathan 1966 Table 3, Two-ch.	0.57 0.52	
78785	-45°4889	268	+ 1	8,60	B1 II	0.78	11.3	$0.56 \pm .02$ $0.59 \pm .01$	4.00 ±.27 4.05 ±.04	Visvanathan 1966 Table 3, Mul-ch.	0.58	4.0
79186	BS 3654, var. p	267	+ 2	5.00	B5 Ia	0.30	11.1	0.51 ± .01: 0.50 ± .01	2.62 ±.03 2.62 ±.01	Serkowski 1970a‡ Table 3, Mul-ch.	0.50	2.6
80057 80077	BS 3688 -49°4264	268 272	+ 3 - 1	6.03 7.7	Al Ib B2 Iape	0.32	10.2 10:	0.56 ± .01 0.53 ± .01 0.57 ± .02	1.58 ±.01 4.21 ±.17 4.31 ±.15	Table 3, Mul-ch. Visvanathan 1966 Table 3, Mul-ch.	0.56 0.55	
80558	BS 3708	273	- 1	5,90	B6 Iae	0.61	11.1	0.61 ± .01: 0.61 ± .01	3.33 ±.07 3.32 ±.02	Serkowski et al. 1969 Table 3, Mul-ch.		
98383	÷ ,	274	- 2	9.7	AO Ib		12:	0.61 ± .01 0.57 ± .02	5.14 ±.20 5.13 ±.08	Visvanathan 1966 Table 3, Mul-ch.	0.59	5.
81471 83183	BS 3739 BS 3825	274 280	- 1 - 5	6.09 4.08	A7 Iab B5 II	0.45 0.17	11.5 7.9	0.62 ± .01 0.55 ± .02: 0.57 ± .01	1.74 ±.01 1.17 ±.01 1.17 ±.02	Table 3, Mul-ch. Table 3, Two-ch. Table 3, Mul-ch.	0.62 0.56	1.
300214	•••	278	- 1	8.6	c B9	•••	12:	$0.55 \pm .05$ $0.50 \pm .01$	5.34 ±1.01 5.19 ± .06	Table 3, Mul-ch.	0.53	
84810	l Car, cepheid	283	- 7	3.7v	F8-KO Ib	0.34	8.5	0.58 ± .02: 0.57 ± .01	1.61 ± .04 1.62 ± .01	Serkowski 1968, 2-ch Table 3, Mul-ch.	‡ 0.57	1.

TABLE 5 (continued) HD $^{\rm E}$ B - V m-M λ_{max} m.e. p_{max} m.e. Mean Source of -53°2865 $0.51 \pm .01$ 3.18 Table 3, Mul-ch. 0.51 84861 3.18 85123-4 υ Car 285 2.96 A7 II 0.10 5.3 $0.66 \pm .02$ $0.47 \pm .01$ Table 3, Mul-ch. 0.66 0.47 0.59 1.19 $0.59 \pm 0.51 \pm$ gG9 Bl IV .02 1.19 ± .02 0.84 ± .01 85656 BS 3914 284 5.55 Table Mul-ch. ıö.i 0.13 85871 BS 3920 279 6.48 .01 0.51 -54°3356 $0.60 \pm .09$ 89104 282 + 1 6.16 B2 IV-V 0.08 8.7 0.49:± .03 Table 3. Mul-ch. 0.49 0.60 285 B2eq 0.54 ± .02 0.56 ± .01 $3.74 \pm .15$ 90177* HR Car 2 8.9v Table 3, Mul-ch. 0.54 3.74 90706 -56°3343 0 7.06 вз ів 0.62 10.9 $2.63 \pm .03$ Table 3, Mul-ch. 0.56 0.51 2.63 BS 4110 90772 285 0 4.68 FO Ia 0.33: 12.2 $0.50 \pm$.02: $1.40 \pm .03$ Table 3, Two-ch. $0.52:\pm.03$ $1.38 \pm .20$ Table 3. Mul-ch. 2.96 ± .07 0.40 $0.55 \pm .01$: 91619 BS 4147 286 0 6.15 B7 Ia 12.0 Serkowski et al. 1969 0.55 2.96 $1.64 \pm .03$ in NGC 3293 286 0 6.51 во Іь 0.24 $0.51 \pm .01$ Table 3, Mul-ch. 91969 11.7 0.51 1.64 .47 -57°3545A 8.7 вз 10: $0.60 \pm .04$ $3.72 \pm$ Visvanathan 1966 92060 286 $0.60 \pm .01$ 3.94 ± .09 Table 3, Mul-ch. BS 4169, in $0.50 \pm .02$ $0.52 \pm .01$: $3.58 \pm .29$ $3.49 \pm .01$ 92207 286 0 5.46 AO Iae 0.50 11.0 Visyanathan 1966 0.51 3.55 NGC 3324 Serkowski 1968, 2-ch. 92740* BS 4188 $0.57 \pm .01$ $1.99 \pm .02$ 287 6.41 WN7 0.38 7.8 Table 3, Mul-ch. 0.57 0.58 1.99 92964 BS 4198. 287 5.42 B2.5 Iae 0.40 10.9 $0.58 \pm .03$: 1.92 ± .04 Serkowski et al. 1969 cl. Cr 228 $0.58 \pm .01$ 2.00 ± .04 Table 3, Mul-ch. -59°2548 $0.52 \pm .01$ $2.21 \pm .03$ 2.25 93131* 288 6.48 WN7 0.25 Visvanathan 1966 0.54 $0.56 \pm .01$ $2.30 \pm .02$ Table 3, Mul-ch. -59°2572 288 6.3v 09.7 Ib:n 0.37 11.1 $0.56 \pm .01$ $2.76 \pm .12$ Visvanathan 1966 0.57 2.72 93206 - 1 $2.68 \pm .04$ ecl. binary $0.57 \pm .01$ Table 3, Mul-ch. BS 4250, 94367 t 287 + 2 5.26 B9 Ia 0.16 11.9 0.52 ± .04:: $1.45 \pm .02$ Serkowski 1970a 0.52 1.45 var. p -56°4016 0.59 : .01 5,01 94909 288 + 2 7.3 во Іь 11: $4.92 \pm .21$ Visvanathan 1966 $0.57 \pm .02$ $5.10 \pm .17$ Table 3, Mul-ch. 96706 BS 4329 295 B2 V 0.20 $0.61 \pm .02$ $1.58 \pm .02$ Table 3, Mul-ch. -10 5.56 0.61 0.55: 11.3 96918 97534 BS 4337 BS 4352 290 291 + 1 3.94 4.60 GO Ta+ $0.53 \pm .02$ $0.53 \pm .03$: $0.52 \pm .01$ $1.21 \pm .06$ Table 3. Mul-ch. 0,53 0.52 0 FO Iae 0.36: 12.0 Serkowski et al. 1969 1.21 0.53 B4 V 98695 BS 4389 296 6.40 0.25 7.0 2.20 ± .02 -10 $0.60 \pm .01$ 0,60 2.20 99264 BS 4406 296 -11 5.58 B2 IV-V 0.32 7.4 7.3 $0.55 \pm .01$: 2.60 ± .04 Serkowski et al. 1969 BS 4425 AB 297 99872 -11 6.08 B3 V 0.38 $0.56 \pm .01$: $3.20 \pm .05$ Serkowski et al. 1969 0.56 3.20 0.53 ± .01 2.07 ± .06 99953 -62°2039 294 - | 2 6.44 B2 Ia 0.46 11.9 Table 3, Mul-ch. 0.53 2.07 100198 BS 4438, 293 0 A3 Iae 12.4 0.53: ...: 1.03 Table 3, Two-ch. 1.08 1,10 ± ,13 var, p $0.52 \pm .02$ Table 3, Mul-ch. o¹ Cen o Cen 0.57 ± .05: 1.94 ± .10 1002611 293 + 2 5.11 GO Ta 0.45: 11.8 Serkowski et al. 1969 0.57 + 2 293 A3 Ia $1.68 \pm .06$ Serkowski et al. 1969 100262 5.15 0.49 $0.56 \pm .01$: 1.68 11.3 0.56 102839† BS 4538 4.96 cG5 $0.50 \pm .05$ 1.51 ± .09 Table 3, Mul-ch. 0.50 102997 -61°2691 296 0 6.52 B5 Iab 0.41 11.6 $0.57 \pm .01$ 1.36 ± .03 Table 3, Mul-ch. 105071 BS 4611 298 - 3 6.32 **B8** $0.58 \pm .01$ $2.01 \pm .03$ Table 3, Mul-ch. 0.58 2.01 6.23 B1.5 Ia 0.26 12.2 1.52 ± .01 Table 3, Mul-ch. 106343 BS 4653 299 $0.55 \pm .01$ 0.55 1.52 Table 3, Mul-ch. 109867 BS 4806 302 - 4 6.24 Bl Ia 0.24 12.1 $0.56 \pm .01$ 0.90 ± .02 0.56 0.90 110432* BS 4830 in 302 O 5.39 B2pe 0.50 7: $0.59 \pm .02$: $2.02 \pm .09$ Serkowski 1968, 2-ch. 2.02 Coalsack -60°4285 110984 302 + 2 8.5 7.96 BO IV 11: $0.58 \pm .02$ 5.65 ± .50 Visvanathan 1966 0.58 5.65 . . . во 3.75 ± .02 6.41 ± .15 111193 303 + 3 $0.58 \pm .01$ Table 3, Mul-ch. 0.58 3.75 . . . -60°4320 B6 V + 2 $0.52 \pm .01$ 111579 303 9.2 8: Visvanathan 1966 $0.55 \pm .02$ $6.56 \pm .12$ Table 3, Mul-ch. 0.55: ...: Serkowski 1968, 2-ch. 111613 BS 4876. in 303 + 3 5.74 A2 Iab 0.40 11.2 $3.12 \pm$ 0.56 3,14 0.56 ± .01 3.15 ± .06 NGC 4755 Table 3, Mul-ch. BS 4887, in B9 Ia 0.34 11.7 0.59 ± .02: $3.12 \pm .08$ Serkowski 1968, 2-ch. 0.59 3.12 111904 303 + 3 5.76 NGC 4755 Serkowski 1968, 2-ch. 0.58 2.84 111973 303 + 2 5.94 B5 Ia 0.32 12.0 $0.58 \pm .01$: $2.84 \pm .10$ NGC 4755 111990 in NGC 4755 303 6.78 вз Іь 0.41 11.3 $0.58 \pm .02$: 3.16 ± .07 Serkowski 1968, 2-ch. 0.58 3.16 5.42 112244 BS 4908 304 09 Ibe 0.31 10.7 $0.69 \pm .02$ $0.91 \pm .02$ Table 3, Mul-ch. 0.91 -61°3421 -61°3439 113034 304 + 1 9.3 8.2 B1 I: 11: $0.65 \pm .01$ 5.46 ± .08 Visvanathan 1966 0.65 5.46 ... 305 $0.57 \pm .01$ 6.15 ± .14 Visvanathan 1966 113422 Bl Ia 12: 0.57 6.15 -59°4740 AB B9 I: 0.75 0.56 ± .02: 2.40 ± .08 113823 305 5.98 10: Serkowski et al. 0.56 113904 θ Mus, 305 - 2 5.50 BO Ia+WC5 0.20 11.3 $0.55 \pm .01$: $1.48 \pm$.03 Serkowski 1970a var. p -59°4804 0.69 114340 305 + 3 8.09 Bl Ia+ 14.2 $0.55 \pm .01$ $5.48 \pm .21$ Visvanathan 1966 0.55 5.48 114886 -62°3096 AB 09 V 0.43 10.4 $0.56 \pm .01$ $2.03 \pm .02$ Table 3. Mul-ch. 306 6.87 - 1 0.56 2.03 Bl Ia+ 0.58 ± .02 3.11 ± .17 Visvanathan 1966 -63°2684 306 13: 0.58 115363 7.8 . . . 3.11 116084 BS 5036 308 B2.5 Ib $0.52 \pm .02$ $0.96 \pm .03$ Table 3, Mul-ch. +10 6.10 11: 0.96 118522 BS 5125 BS 5140 307 - 8 6.58 gK0 $0.57 \pm .02$ $3.19 \pm .01$ Table 3, Mul-ch. 0.57 3.19 5.4 B9 IV 0.05 $0.58 \pm .01$ ± .01 Table 3, Mul-ch. 118978 309 + 3 0.65 5.37 0.58 0.65 $0.60 \pm .01$ 1.40 ± .01 Table 3, Mul-ch. 119159 BS 5151 310 6.30 BO.5 III 0.60 119796 BS 5171 0 cG5p 0.80: 10: $0.51 \pm$.02:: 4.42 ± .08 Serkowski et al. 1969 5.74 ± .13 $0.70 \pm .03$ Table 3. Mul-ch. var. p?

TABLE 5 (continued)

					TA	BLE 5	(conti	nued)				
HD	Name	1	Ъ	V	MK	E _{B-V}	m-M	λ m.e. max	p _{max} m.e. %	Source of polarimetry	Me λ max	an P _{max}
120678 120908	-62°3703 BS 5217	310 312	- 1 + 8	7.89 5.89	Ope B5 III	0.41	12: 7.5	0.53 ± .02: 0.60 ± .01	1.90 ± .04 1.18 ± .01	Serkowski 1968, 2-ch. Table 3, Mul-ch.		1.90
120913	BS 5218	309	- 6	5.70	gK1			$0.60 \pm .01$	$1.53 \pm .01$	Table 3, Mul-ch.	0.60	1.53
122879	BS 5281	312	+ 2	6.41	BO Ia	0.34	11.6	$0.58 \pm .01$	$1.93 \pm .03$	Table 3, Mul-ch.		1.93
123335	BS 5292	313	+ 2	6.33	B5 IV	0.22	7.5	$0.57 \pm .01$	1.09 ± .01	Table 3, Mul-ch.	0.57	1.09
124195	BS 5311	315	+ 6	6.23	A9	0.2:	10.0	0.61 ± .01	1.42 ± .01	Table 3, Mul-ch.		1.42
124314	-61°4431	313	0	6.64	08nk	0.53	10.0	0.54 ± .01	2.32 ± .02	Table 3, Mul-ch.	0.54	2.32
124771	€ Aps	307	-18 + 4	5.05	B4 V	0.09	6.1	0.56 ± .01	70.68 ± .01	Table 3, Mul-ch.	0.56	0.68
125288	BS 5358	315	т 4	4.32	B6 Ib	0.21	9.4	0.57 ± .01: 0.54 ± .02	1.64 ± .03 1.59 ± .02	Serkowski et al. 1969 Table 3, Mul-ch.	0.33	1.61
125835	BS 5379	311	- 7	5.60	A3 Ib	0.47		$0.55 \pm .01$:	2.91 ± .08	Serkowski et al. 1969		
129557	BS 5488	319	+ 4	6.09	B2 III	0.18	9.2	0.60 ± .02	1.43 ± .02	Table 3, Mul-ch.		1.43
129954* 131058	BS 5500 Ccir	314 315	- 6 - 6	5.90 6.08	B2.5 Ve B3 Vn	0.17 0.16	7.5 7.3	$0.59 \pm .01$ $0.58 \pm .01$	1.15 ± .02 1.29 ± .01	Table 3, Mul-ch. Table 3, Mul-ch.		1.15
131918	ξ ² Lib	345	+41	5.46	K4 III	0.09:		0.53 ± .02	0.79 ± .01	Table 3, Mul-ch.	0.53	
134959	in cl. Pis 20		- 1	8.1	B2 Ia	1.25		$0.52 \pm .01$	$6.26 \pm .33$	Visvanathan 1966	0.52	
135160*	BS 5661	320	- 3	5.73	BO.5 Ve	0.16	9.2	0.58 ± .01	1.31 ± .02	Table 3, Mul-ch.	0.58	1.31
135240	δ Cir	320	- 3	5.08	07.5 IIIf	0.26	10.4	$0.55 \pm .01$:	$1.52 \pm .02$	Serkowski 1968, 2-ch.		1.54
								0.56 ± .01	1.55 ± .01	Table 3, Mul-ch.		
135591	BS 5680	320	- 3	5.43	07.5 IIIf		10.8	0.59 ± .01	1.54 ± .01	Table 3, Mul-ch.		1.54
135737	BS 5684AB -55°6509	317 322	- 9 + 1	6.27 6.8	B3 V B2 III	0.12	7.7 8:	$0.59 \pm .01$ $0.57 \pm .01$:	$0.93 \pm .02$ $3.28 \pm .02$	Table 3, Mul-ch. Serkowski et al. 1969	0.59	0.93 3.28
136003 136239	-58°5897	321	+ 1 - 2	8.0	B2 III B2 Ia+		12:	0.52 ± .01:	4.83 ± .33	Visvanathan 1966	0.52	
137709	BS 5742	329	+ 8	5.23				$0.52 \pm .02$	1.27 ± .01	Table 3, Mul-ch.	0.53	
139137	14 Ser	5	+42	6.50	dF5	0.30	3:	$0.55 \pm .01$	1.10 ± .01	Table 3, Mul-ch.	0.55	
139160	BS 5801	343	+23	6.19	B7 IV	0.13	7.0	$0.55 \pm .02$	$0.88 \pm .02$	Table 3, Mul-ch.	0.55	
140873	25 Ser	6	+39	5.40	B8	0.08:	6:	0.59 ± .02	$0.98 \pm .03$	Table 3, Mul-ch.	0.59	0.98
141318	BS 5873	327	- 1	5.72	B2 II	0.29	9.7	0.57 ± .01:	$2.42 \pm .08$	Serkowski 1968, 2-ch.		2.42
141637	1 Sco	346	+22	4.65	B1.5 Vn	0.21	6.9	$0.51 \pm .03$ $0.57 \pm .01$	$0.82 \pm .11$ $0.79 \pm .01$	Coyne et al. 1974 Table 3, Mul-ch.	0.54	0.81
142919	BS 5937	328	- 1	6.10	B5 IV	0.18	7.4	0.57 ± .01	1.98 ± .01	Table 3, Mul-ch.	0.57	1.98
144217	gl Sco	353	+24	2.63	BO.5 V	0.21	5.9	0.59 ± .01 0.63 ± .01	$0.84 \pm .04$ $0.83 \pm .01$	Coyne et al. 1974 Table 3, Mul-ch.	0.61	0.84
	1.					0.04				,		
144470	w ^l Sco	353	+23	3.96	B1 V	0.24	6.8	0.59 ± .01	1.14 ± .01	Table 3, Mul-ch.	0.59	1.14
144969	-48°10587 BS 6016	333 8	+ 2	8.28 5.36	BO.5 Ia: K4 III	1.14 0.05:	11.3 5.0	$0.55 \pm .02$ $0.59 \pm .02$	3.42 ± .19 1.20 ± .01	Visvanathan 1966 Table 3, Mul-ch.	0.55	3.42 1.20
145206 145502	v ¹ Sco AB	355	+23		B2 IVp	0.30	6.3		1.26 ± .06	Serkowski et al. 1969	0.59	
143302	V 000 112	333		7.01	22 2.p	0.30	•••	0.70 ± .02 0.70 ± .04	1.21 ± .06 1.25 ± .13	Coyne et al. 1974 Table 3, Mul-ch.		
145664	-52°9393	331	- 1	8.3	В5			0.59 ± .02	3.76 ± .26	Visvanathan 1966	0.59	3.76
146143	y Nor	333	ō	4.98	F8 Iab		10.7	0.58 ± .03:	$1.45 \pm .04$	Serkowski et al. 1969		1.45
146323	S Nor, cepheid	328	- 5	6.4v	F8-G2 Ib	0.23	9.8	0.50 ± .05:	: 1.87 ± .03	Serkowski et al. 1969	0.56	1.89
	in NGC 6087					0.70		0.58 ± .01	1.89 ± .01	Table 3, Mul-ch.	. 0 67	4 20
147084	o Sco	352	+18	4.54	A5 II	0.72	5.1	0.66 ± .01: 0.68 ± .02	$4.17 \pm .03$ $4.37 \pm .12$	Serkowski 1968, 2-ch Table 3, Mul-ch.	0.07	4.30
147165	σ Sco, β CMa	351	+17	2.89	B1 III	0.41	6.1	0.57:± .02 0.57 ± .01:	1.46 ± .14 1.49 ± .06	Treanor 1963 Serkowski 1968, 2-ch.		1.55
	type							0.54 ± .01	1.63 ± .09	Coyne et al. 1974		
147550	BS 6096	12	+31	6.23	B9 V	0.16	5.2	0.56 ± .03:	1.16 ± .01	Serkowski et al. 1969		
147888	p Oph D	354	+18	6.75	B5 V	0.49	6.3	0.73 ± .03:	3.71 ± .07 4.50 ± .36	Serkowski et al. 1969 Serkowski 1968, 1-ch.		3.71 4.06
147889	-24°12684	353	+17	7.89	B2 V	1.12	7.0	0.84 ± .08: 0.75 ± .02:	3.73 ± .14	Serkowski 1968, 2-ch.		4.00
								0.73 ± .02. 0.81 ± .01	4.07 ± .04	Coyne et al. 1974		
								$0.80 \pm .01$	$4.00 \pm .10$	Table 3, Mul-ch.		
	SR 3	353	+17	12.0	AO	1.35	7:	0.80	5.3	Carrasco et al. 1973	0.80	5.3
147932	o Oph C	354	+18	7.27	B5 V	0.50	6.8	$0.67 \pm .02$	$3.07 \pm .14$	Coyne et al. 1974		3.18
								$0.76 \pm .04$	$3.30 \pm .30$	Table 3, Mul-ch.		
147933-4	o Oph AB	354	+18	4.61	B2 IV +	0.49	6.6	0.65:± .05 0.70 ± .01:	2.44 ± .36 2.68 ± .06	Treanor 1963 Serkowski 1968, 2-ch		2.65
					B2 V			0.68 ± .01	2.66 ± .10	Coyne et al. 1974		
								$0.69 \pm .02$	$2.73 \pm .11$	Table 3, Mul-ch.		
147977	BS 6114	328	- 7	5.67	B8 IV:	0.12	5.9	$0.56 \pm .01$	1.08 ± .02	Table 3, Mul-ch.		1.08
148379	BS 6131,	337	+ 2	5.38	Bl.5 Iape			0.60 ± .01:	$1.61 \pm .03$	Serkowski 1970a‡	0.60	1.62
	var. p.							0.60 ± .01	1.63 ± .06	Table 3, Mul-ch.		
148688	BS 6142	341	+ 4	5.32				$0.53 \pm .01$	1.28 ± .03	Table 3, Mul-ch.		1.28
148937	in I Ara	336	0	6.71			10.9			Serkowski et al. 196 Serkowski et al. 196		
149019	in NGC 6167	335	- 1		Al Ia		12.0			Serkowski 1968, 2-ch		
149038	u Nor, in	339	+ 3	4.91	09.7 Iab	0.30	10.2	0.59 ± .02:	1.19 ± .06	Jerkowski 1700, 2*CII	. 0.39	1.17
149404	NGC 6169 BS 6164	341	+ 3	5.46	09 Ia	0.65	9.6	0.55 ± .01:	3.18 ± .06	Serkowski 1968, 2-ch	. 0.55	3.18
149404 149711	BS 6174	341	+ 2		B2.5 IV	•••	8:	0.54 ± .01	1.59 ± .01	Table 3, Mul-ch.		1.59
14//11	22 3217	5.0										

					TA	BLE 5	conti	nued)				
HD	Name	1	Ъ	V	MK	E _{B-V}	m-M	λ m.e. max	p _{max} m.e. %	Source of polarimetry	Mea λ max	an P _{max}
149757	ζ Oph	6	+24	2.57	09.5 Vnn	0.33	6.1	0.57:± .04 0.58 ± .01: 0.60 ± .01 0.59 ± .01	1.28 ± .17 1.41 ± .04 1.50 ± .05 1.44 ± .06	Treanor 1963 Serkowski et al. 1969 Coyne et al. 1974 Table 3, Mul-ch.	0.59	
150135-6†	BS 6187, in NGC 6193	337	- 2	5.34	06.5 Vf + 05 III:nf	0.50	9.7	0.56 ± .04:	1.16 ± .03	Serkowski et al. 1969	0.56	1.16
150168 150416 150421	BS 6188 BS 6196 BS 6197, in I Ara	336 1 339	- 2 +18 0	5.64 4.94 6.23	Bl Ia G8 II F2 Ib		6.5	0.55 ± .01 0.62 ± .01 0.58 ± .03:: 0.56 ± .01	0.99 ± .01 1.98 ± .01 2.19 ± .03 2.19 ± .02	Table 3, Mul-ch. Table 3, Mul-ch. Serkowski et al. 1969 Table 3, Mul-ch.		1.98
150745 150898 151804 152235 152236	BS 6215 BS 6219 in NGC 6231 in NGC 6231 C ¹ Sco, in NGC 6231	330 330 344 343 343	- 9 - 8 + 2 + 1 + 1	5.94 5.56 5.22 6.30 4.74	B2 IV-V B0.5 Ia 08 Iaf B1 Iae B1.5 Ia+pe	0.11 0.38 0.73 0.65	8: 11.6 10.3 10.7 11.0	0.55 ± .01 0.57 ± .01 0.60 ± .02: 0.46 ± .01 0.58 ± .01:	1.06 ± .01 1.12 ± .01 1.20 ± .04 0.91 ± .03 2.44 ± .03	Table 3, Mul-ch. Table 3, Mul-ch. Serkowski et al. 1969 Table 3, Mul-ch. Serkowski et al. 1969	0.46	1.06 1.12 1.20 0.91 2.44
152478* 153261* 154204	BS 6274 BS 6304 BS 6340	337 331 2	- 5 -10 +12	6.32 6.10 6.17	B3 Vnep B2 IVne B6 IV	0.20 0.21 0.21	8.6	0.59 ± .02 0.59 ± .01 0.55 ± .02 0.57 ± .02	1.40 ± .01 1.87 ± .03 1.58 ± .15 1.66 ± .02	Table 3, Mul-ch. Table 3, Mul-ch. Coyne et al. 1974 Table 3, Mul-ch.	0.59 0.59 0.56	1.40 1.87 1.62
154445	BS 6353	19	+23	5.63	B1 V	0.44	7.9	0.71 ± .02:: 0.65 ± .02:: 0.56 ± .02:: 0.55 ± .01 0.54:: 0.55 ± .01 0.56 ± .02:	4.15 ± .17 4.11 ± .13 3.69 ± .11 3.82 3.63 ± .12 3.76 ± .05	Serkowski 1965a Serkowski 1965b Serkowski et al. 1967 Visvanathan 1966 Serkowski 1968, 1-ch. Coyne et al. 1974 Table 3, Two-ch.		3.74
155195 155603	-0°3234 BS 6392	20 347	+22 - 1	7.90 6.55	A0 G5 Ia	1.12:	11.2	0.56 ± .01 0.50 ± .02:: 0.55 ± .01	2.41 ± .04 2.94 ± .06 2.76 ± .03	Table 3, Mul-ch. Serkowski et al. 1969 Table 3, Mul-ch.		2.41 2.80
155806 156247	BS 6397 U Oph, ecl. binary	353 23	+ 3 +22	5.53 5.7v	08 Ve B4 V+B5V	0.31 0.26	9.6 6.9	0.56 ± .01 0.54 ± .02: 0.55 = .01	0.84 ± .01 2.05 ± .03 2.02 ± .09	Table 3, Mul-ch. Serkowski 1970a Coyne et al. 1974	0.56 0.55	0.84 2.03
156325* 157038 157244 157246† 157599 157999 159176	BS 6422 BS 6450 B Ara Y Ara BS 6475 G Oph BS 6535, in NGC 6383	354 350 335 335 339 27 356	+ 3 - 1 -11 -11 - 9 +21	6.38 6.40 2.84 3.33 6.19 4.34 5.7v	B5 Vne B3 Ia K3 Ib B1 Ibe B8 K3 II O7 V +	0.32 0.87 -0.04: 0.07 0.10: 0.36	10.6 6.9 8.8 6.2	0.58 ± .01 0.54 ± .03: 0.58 ± .01 0.55:: 0.56 ± .01 0.58 ± .03 0.54 ± .01: 0.52 ± .02 0.52 ± .02	2.25 ± .04 2.64 ± .10 0.88 ± .01 0.90 1.37 ± .01 1.09 ± .01 1.74 ± .04 1.87 ± .13 1.81 ± .16	Table 3, Mul-ch. Serkowski 1968, 2-ch. Table 3, Mul-ch. Table 3, Two-ch. Table 3, Mul-ch. Table 3, Mul-ch. Serkowski et al. 1969 Coyne et al. 1974 Table 3, Mul-ch.	0.58 0.55 0.56 0.58	2.64 0.88 0.90 1.37 1.09
159975†	μ Oph	17	+12	4.62	B8 V	0.24	3.9	0.45 ± .04 0.55 ± .04	1.04 ± .24 0.87 ± .15	Coyne et al. 1974 Table 3, Mul-ch.	0.50	0.96
160335† 160529	in NGC 6405 -33°12361	357 356	- 1 - 2	7.4 6.22	B8 A2.5 Ia+e	1.29	9: 10.8	0.56:: 0.58:± .04 0.54 ± .02:: 0.50 ± .01 0.55 ± .01::	1.71 6.98 ± .60 7.47 ± .10 7.26 ± .33 7.17 ± .36	Table 3, Two-ch. Treanor, 1963 Serkowski 1965a Visvanathan 1966 Serkowski 1968, 2-ch.		1.71 7.20
161056	BS 6601	19	+12	6.28	B1.5 V	0.65	7.3	0.64 ± .05:: 0.55 ± .03:: 0.61 ± .03:: 0.60 ± .03 0.59 ± .02: 0.57 ± .01	4.08 ± .31 4.00 ± .10 4.08 ± .49 4.28 ± .24 4.00 ± .10	Serkowski 1965a Serkowski 1965b Serkowski et al. 196 Visvanathan 1966 Serkowski 1968, 1-ch Coyne et al. 1974	7	4.08
161291 161306* 161471 161592 161840 161912	-27°11899 -9°4598 t ¹ Sco X Sgr, ceph. BS 6628 t ² Sco	1 16 351 1 358 351	+ 1 +10 - 6 0 - 2 - 7	8.89 8.3 3.02 4.2v 4.82 4.80	B8 V	0.27:	11: 10.6 6.4 4.6	$0.58 \pm .01$	6.77 ± .12 3.96 ± .07 2.28 ± .03 1.53 ± .01 1.78 ± .01 2.13 ± .04 2.18 ± .05	Visvanathan 1966 Table 3, Mul-ch. Serkowski et al. 1969 Table 3, Mul-ch. Table 3, Mul-ch. Serkowski et al. 1969 Table 3, Mul-ch.	0.58 9 0.56 0.58 0.57	1.53 1.78
161941 162496 162714 162978 163181	BS 6633 BS 6651 Y Oph, ceph. BS 6672 V453 Sco, ecl. bin.,var	29 356 21 5 358	+16 - 4 +10 0 - 4	6.18 6.12 6.2v 6.20 6.5v		0.20 0.62 0.36	4.9 5: 9.1 10.8 11:		1.16 ± .02 1.02 ± .02 1.50 ± .01 1.46 ± .02 1.52 ± .09 1.52 ± .07	Table 3, Mul-ch. Table 3, Mul-ch. Table 3, Mul-ch. Table 3, Mul-ch. Serkowski 1970a Table 3, Mul-ch.	0.57 0.49 0.68	1.16 1.02 1.50 1.46 1.52
163472	BS 6684	27	+13	5.81	B2 IV-V	0.35	7.6	$0.58 \pm .02$ $0.60 \pm .01$	1.72 ± .10 1.82 ± .02	Coyne et al. 1974 Table 3, Mul-ch.	0.59	1.77

TABLE 5 (continued) HD Name $^{\rm E}$ B-V p_{max} m.e. m-M λ m.e. polarimetry λ_{max} p_{max} Serkowski 1968, 1-ch. 0.66 1.69 11.2 0.76 ± .03: 1.88 ± .15 163800 -22°4474 7 + 1 7.02 07 IIIf 0.62 $0.70 \pm .04$: $1.82 \pm .07$ Serkowski 1968, 2-ch. $1.59 \pm .06$ $1.64 \pm .13$ $0.65 \pm .02$ Coyne et al. 1974 $0.60 \pm .02$ Table 3, Mul-ch. 0.58 ± .02 $1.16 \pm .04$ Table 3. Mul-ch. 0.58 164284* +13 4.68 B2 Ve 0.20 6.6 66 Oph 31 in NGC 6530. 11: Carrasco et al. 1973 0.67 0.90 0.67 7.35 164740 6 - 1 10.30 07 . . . Herschel 36 -14 R2 Th 0.10 9.1 0.57 ± .01: 0.53 ± .01: $1.02 \pm .01$ Serkowski et al. 1969‡ 165024 343 3.67 $1.60 \pm .03$ Serkowski et al. 1969 0.53 165174 V986 Oph. 29 +11 6.14 BO IIIn 0.28 10.3 β CMa type BS 6788 $0.57 \pm .01$ $0.94 \pm .01$ Table 3, Mul-ch. 0.57 0.94 166197 B1 V 0.12 $3.38 \pm .46$ Serkowski 1968.1-ch. 0.50 166734 -10°4625 19 + 4 8.42 08 f 1.38 10.4 $0.48 \pm .03$: 3.36 $3.34 \pm .02$ Serkowski 1968, 2-ch. $0.53 \pm .03$: $0.55 \pm .01$: $1.03 \pm .05$ Serkowski et al. 1969 0.56 1.02 167128* BS 6819 338 -18 5.34 B3 IIIep 0.15 8.0 0.57:± .01 $1.02 \pm .04$ Table 3, Mul-ch. $0.59 \pm .01$ 2.13 ± .03 Table 3, Mul-ch. 0 59 2.13 во Іь 0.52 11.2 168021 BS 6848AB 13 - 1 6.6: 19 + 1 $0.98 \pm .01$ Table 3, Mul-ch. 0.60 0.98 BS 6881 5.73 B7 Ve 0.15 5.7 $0.60 \pm .02$ 169033* gK5 K2 II-III 1.04 ± .12 0.97 ± .02 Table 3, Mul-ch. Table 3, Mul-ch. 0.57 1.04 169110+ BS 6882 51 +16 5.49 0.57:± .04 0.08: $0.69 \pm .02$ 0.69 0.97 21 Sgr AB -14°5039 169420 12 - 4 4.81 i 0.56 ± .02: 18 Serkowski et al. 0.55 1.93 169454 $0.55 \pm .02$ $1.90 \pm .14$ Coyne et s1. 1974 0.55 2.09 $0.55 \pm .01$ $2.09 \pm .03$ Table 3, Mul-ch. 170740 BS 6946 21 - 1 5.91 B2 IV-V 0.53 0.52 2.49 0.52 ± .02:: 0.47 ± .06:: 2.49 ... 2.03 ± .09 - 4 0.48 9.4 Serkowski 1965a M25 (77 stars) Serkowski 1965a - 4 6.7v F5-G1.5 Ib 170764 U Sgr, ceph. 14 0.55 9.8 0.53 2.09 $0.54 \pm .02$ $2.10 \pm .02$ Table 3, Mul-ch in M25 Serkowski 1965a 0.54 2.96 9.4 0.54 ± .04:: 2.96 ± .09 B6 III 0.47 in M25 - 4 8.95 1708361 14 0.58 ± .01 BS 7166 22 - 8 5.36 B5 IV $0.91 \pm .01$ Table 3, Mul-ch. 0.58 0.91 176162 Serkowski 1968, 2-ch.§ Coyne et al. 1974 0.51 ± .02: 0.51 ± .01 $1.22 \pm .12$ $1.36 \pm .09$ 28 - 8 5.34 B3 V 0.36 6.0 0.51 1.32 20 Aq1 0.78:± .08 0.61 ± .12 Table 3, Two-ch. 0.78 0.61 1809681 ES Vul, B CMa 56 + 5 5.4v BO.5 IV 8: type ∨ Aq1 1.14 ± 0.33: 0.67 ± .03: Serkowski et al. 1969 Kruszewski 1962 0.67 1.14 182835 F2 Ib .10 0.53 ± .02:: $5.72 \pm .08$ 183143 +18°4085 53 + 1 6.87 B7 Iae 1.26 10.2 0.56 6.07 0.60:± .02 5.92 ± .28 Treanor 1963 Serkowski 1965a 0.57 ± .02:: $6.27 \pm .11$ 0.57 ± .02:: $6.31 \pm .11$ Serkowski 1965b Appenzeller 1966 0.55:± .03: $6.16 \pm .68$ 0.59 ± .02:: $0.56 \pm .01$: $6.32 \pm .12$ Serkowski 1968, 1-ch. $0.57 \pm .02$: $0.54 \pm .01$ $6.04 \pm .14$ Serkowski 1968, 2-ch. $5.94 \pm .14$ Coyne et al. 1974 $6.14 \pm .03$ Table 3, Mul-ch. $0.56 \pm .01$ 0.50 ± .03:: $2.72 \pm .04$ Serkowski et al. 1969 0.53 2.75 6.5v F5-G3 Ib 0.42 9.4 183344 U Aql 31 -12 $0.54 \pm .01$ 2.76 ± .01 Table 3, Mul-ch. cepheid Coyne et al. 1974 BO.5 III 0.27 $0.54 \pm .02$ 1.42 ± .09 0.56 1.39 32 -13 4.95 8.8 184915 K Aql $0.57 \pm .01$ $1.36 \pm .01$ Table 3, Mul-ch. 0.51 2.35 0.56 ± .04:: 2.26 ± .08 Serkowski 1965b 5.49 11.1 185859 BS 7482 57 - 1 BO.5 Iae 0.59 Coyne et al. 1974 $0.50 \pm .01$ $2.38 \pm .11$ $0.50 \pm .01$ $2.35 \pm .01$ Table 3, Mul-ch. 0.53 1.17 1.17 ± .01 Table 3, Mul-ch. $0.53 \pm .02$ BS 7485 59 6.60 B6 IV 0.16 185915 Serkowski 1968, 1-ch. 0.62 6.61 +23°3745, in 59 0 8.73 BO.5 Ib 0.88 11.9 0.62: ...: 6.61 NGC 6823 Serkowski 1965a 0.58 5.38 59 0 0.82 12.0 0.58 ± .02:: 5.38 NGC 6823 (16 stars) 2.76 ± .07 Kruszewski 1962 BS 7551 + 4 6.46 BO.5 II 0.47 10.2 0.55 ± .03:: 1.77 ± .02 Serkowski et al. 1969 $0.53 \pm .01::$ 0.56 1.75 187929 η Aql, 41 -13 3.9v F6.5-G2 0.18 7.5 $0.56 \pm .03$ $1.70 \pm .18$ Coyne et al. 1974 Ιb cepheid Table 3, Mul-ch. $0.56 \pm .01$ $1.80 \pm .02$ 0.57 Serkowski 1968, 1-ch. 4.64 +30°3980 B9 Ib-II 0.82 10.3 0.57: 4.64 70 - 3 8.28 0.56 1.19 $1.19 \pm .03$ Table 3, Mul-ch. $0.56 \pm .01$ 188001 9 Sge 56 - 4 6.22 07.5 Iaf 0.31 11.4 41 -16 $0.56 \pm .03$ $0.84 \pm .01$ Table 3, Mul-ch. 0.56 0.84 5.67 5.28 gK4 K3 II 190299 62 Aq1 7.3 0.81 24 0.00: $0.60 \pm .01$ $0.81 \pm .02$ Table 3, Mul-ch. 0.60 σ Cap -28 193150 Serkowski et al. 1967 1.45 ... 0.46 P Cyg 4.8v 193237 76 + 1 B2pe 0.66 6.8 0.42 ± .05:: Serkowski 1968, 1.31 0.44: ...: $0.47 \pm .01$ 1.48 ± .07 Coyne et al. 1974 3.66 ± .29 Serkowski 1965b 0.54 3.68 0.62 ± .06:: +44°3439 82 + 5 7.51 B1 Ib 1.06 10.0 194057† 0.51 ± .04:: Serkowski et al. 1967 • • • 3.72 Serkowski 1968, 1-ch. 0.44: ...: 0.58 2.77 $3.01 \pm .25$ Serkowski 1965b 0.61:± .06:: + 2 7.02 Bl.5 Iae 1.18 10.1 194279 +40°4150, in 79 Serkowski et al. 1967 0.54 ± .03:: 2.71 ± .20 NGC 6910 Serkowski 1968, 1-ch.

 $0.60 \pm .02$:

194953 	Name BS 7824 VI Cyg (27 stars) No. 12, in VI Cyg	47 80	-20	v 	MK	E _{B-V}	m-M	λ m.e.	p _{max} m.e.	Source of	Me.	
	VI Cyg (27 stars) No. 12, in							μ	%%	polarimetry	^max	P _{max}
•••	(27 stars) No. 12, in	80		6.20	G8 III	-0.01:	4.6	0.66 ± .02	0.57 ± .02	Table 3, Mul-ch.	0.66	
			+ 1	• • • •	• • •	1.98	10.5	0.42 ± .02::	4.38	Serkowski 1965a	0.42	4.38
•••		80	+ 1	11.5	B8 Ia+	3.20	10.2	0.49::: 0.45 ± .02	8.44 9.61 ± .58	Serkowski 1968, 1-ch. Coyne et al. 1974	0.45	9.48
	+40°4220= V729 Cyg, in VI Cyg	80	+ 1	9.2v	07f	1.98	9.4	0.43:± .07:: 0.42 ± .02:	4.58 ± .23 3.91 ± .34	Serkowski 1965a Serkowski 1968, 1-ch.	0.42	4.04
197770	BS 7940	94	+ 9	6.32	B2 III	0.57	8.2	0.52 ± .04:: 0.50 ± .03:: 0.51 ± .01	3.57 ± .10 3.90 ± .16	Kruszewski 1962 Serkowski et al. 1967 Coyne et al. 1974	0.51	3.83
198478	55 Cyg	86	+ 1	4.83	B3 Iae	0.53	10.0	0.57 ± .04:: 0.46:± .02 0.49 ± .04:: 0.57 ± .02:: 0.51 ± .03:: 0.53 ± .01: 0.53 ± .01	2.73 ± .11 2.56 ± .19 2.75 ± .08 2.91 ± .06 2.87 ± .08 2.74 ± .14	Kruszewski 1962 Treanor 1963 Serkowski 1965a Serkowski 1965b Serkowski et al. 1967 Serkowski 1968, 1-ch. Coyne et al. 1974	0.53	2.75
199478† 200644 203532 204710 204827	BS 8020 3 Equ BS 8176 +44°3832 +58°2272	88 55 309 90 99	+ 1 -26 -32 - 4 + 6	5.69 5.61 6.37 6.95 7.95	B8 Iae gK5 B3 IV B8 Ib BO V	0.48 0.35 0.32 1.11	11.4 7.8 11.6 8.8	0.51 ± .04:: 0.53 ± .02 0.56 ± .02 0.48 ± .02:: 0.43:± .05:: 0.46 ± .02:: 0.44 ± .01: 0.48 ± .01	$0.82 \pm .04$ $1.37 \pm .02$	Serkowski 1965b Table 3, Mul-ch. Table 3, Mul-ch. Serkowski 1968, 1-ch. Serkowski 1965b Serkowski et al. 1967 Serkowski 1968, 1-ch. Coyne et al. 1974	0.53 0.56 0.48	1.62 0.82 1.37 2.09 5.62
·205196 207089 207260	+56°2589 12 Peg ∨ Cep	99 77 102	+ 4 -23 + 6	7.45 5.29 4.29	BO Ib G8 II: A2 Ia	0.80 0.4: 0.54	6:	0.57 ± .03:: 0.51 ± .04 0.52 ± .04:: 0.45 ± .04:: 0.52 ± .01	2.82 ± .08 0.58 ± .02 1.65 ± .04 1.58 ± .08	Kruszewski 1962 Table 3, Mul-ch. Serkowski 1965b Serkowski et al. 1967 Coyne et al. 1974		2.82 0.58 1.59
208501	13 Cep	100	+ 2	5.80	В8 ІЬ	0.80	9.0	0.53 ± .04:: 0.56 ± .01	1.84 ± .05 1.81 ± .06	Serkowski 1965b Coyne et al. 1974	0.55	1.82
209481	14 Cep	102	+ 2	5.53	09 Vn	0.38	9.1	0.46 ± .04:: 0.49 ± .01	1.70 ± .04 1.90 ± .13	Serkowski 1965b Coyne et al. 1974	0.48	1.86
211924	30 Peg	69	-41	5.36	B5 IV	0.16	6.7	0.48 ± .02 0.44 ± .01	1.14 ± .02 1.16 ± .01	Serkowski 1968, 2-ch. Table 3, Mul-ch.	0.46	1.15
213470	+56°2794	105	- 1	6.65	A3 Ia	0.56	12.6	0.59 ± .02:: 0.52 ± .04:: 0.50 ± .01	3.18 ± .07 3.49 ± .19	Kruszewski 1962 Serkowski et al. 1967 Coyne et al. 1974	0.52	3.43
216411	+58°2492	108	0	7.20	Bl Iae	0.78	11.5	0.50 ± .06:: 0.52 ± .01	$2.69 \pm .11$ $2.73 \pm .16$	Serkowski 1965b Coyne et al. 1974	0.52	2.72
217476	BS 8752	108	- 3	5.13	GO Ia	0.74:	10.9	0.49 ± .02:: 0.48 ± .02 0.50 ± .02:: 0.50 ± .03	2.86 ± .04 2.82 ± .30 2.80 ± .13 2.70 ± .36	Kruszewski 1962 Treanor 1963 Serkowski 1968, 1-ch. Coyne et al. 1974	0.49	2,77
223960	+60°2636	116	- 1	6.91	AO Ia+e	0.71	13.2	0.64 ± .03:: 0.57:± .01:	3.55 ± .16 3.35 ± .04	Kruszewski 1962 Coyne et al. 1974	0.60	3.45
224014	o Cas	115	- 5	4.4v	F8 Iap	0.54:	10.8	0.60 ± .06:: 0.54 ± .01	1.41 ± .06 1.47 ± .04	Serkowski 1965a Coyne et al. 1974	0.55	1.46
224055	+61°2562	116	0	7.17	B3 Iae	0.83	11.5	0.59 ± .02:: 0.54::	4.09 ± .09 3.89	Kruszewski 1962 Serkowski 1968, 1-ch.	0.57	3.99
225094	BS 9097	118	+ 1	6.24	B3 Iab	0.46	11.2	0.49 ± .05:: 0.53 ± .02	2.65 ± .10 2.60 ± .23	Serkowski 1965b Coyne et al. 1974	0.52	2.61

^{*} Intrinsic polarization possible, star not used in discussion of interstellar polarization.

 $[\]ensuremath{^{\uparrow}}$ Wavelength dependence of polarization inaccurate, not used in discussion.

^{*} Also in Table 3.

[§] Θ^{V} in Serkowski (1968) on J.D. 2439773 should read 5.5 instead of 4.1.

the period-luminosity relation of Sandage and Tammann (1968) was used.

The values of λ_{max} and p_{max} listed for each instrument in table 5 are the straight averages of the values of these quantities calculated for each observing night separately whenever such data are available. They are followed by the mean errors derived from the scatter of values obtained on various nights. In cases when a star was observed with a particular instrument on one or two nights only, the mean errors are derived from the fit of the measurements at different spectral regions to the curve described by equation (4). The mean errors of λ_{max} referring to values derived from polarimetry at three or two spectral regions only are followed by a colon or a double colon, respectively, to indicate that these errors are determined less accurately and may be underestimated. A colon following λ_{max} denotes a value based on observations from a single night. When calculating the weighted mean values of λ_{max} and p_{max} , listed in table 5, the values without colons are given full weight; those with a colon following λ_{max} or its error, half weight; those with two colons, quarter weight. The mean errors listed do not influence these weights. The daggers in the first column of table 5 denote the stars for which the mean error of λ_{max} exceeds $\pm 0.03 \,\mu$; they are not used in the further discussion of interstellar polarization. The depolarization corrections described by Serkowski (1968) were applied to the observations made with the Belgrade refractor (Kruszewski 1962; Serkowski 1965b).

If a star was observed in B and V spectral regions only, the values of λ_{max} were found from the following formula, resulting from equation (4),

$$\lambda_{\max} = (\lambda^{\nu} \lambda^{B})^{1/2} \exp \left\{ \frac{\ln (p^{\nu}/p^{B})}{2K \ln (\lambda^{\nu}/\lambda^{B})} \right\} \cdot \tag{10}$$

Substituting K=1.15 and the effective wavelengths $\lambda^B=0.44~\mu$ and $\lambda^V=0.55~\mu$, we get

$$\lambda_{\text{max}} = 0.49(p^{V}/p^{B})^{1.95}$$
. (11)

This relationship between λ_{\max} and p^{V}/p^{B} is shown in figure 4 while comparison between the values of λ_{\max} obtained for the same stars with different instruments is shown in figure 5. No systematic differences in λ_{\max} between various instruments were found.

The stars for which the observed wavelength dependence of polarization may be a superposition of the effects of interstellar and intrinsic polarization have an asterisk in the first column of table 5 and are not included in the further discussion of interstellar polarization. They include the Wolf-Rayet stars and those B and A-type stars of luminosity class III, IV, or V which have emission lines in their spectra according to Bertiau and McCarthy (1969), Jaschek, Ferrer, and Jaschek (1971), or Wackerling (1970); among such stars only those for which variability of polarization with time has not been proven and polarization is not smaller than 1 percent are listed in table 5. On the

Fig. 4.—The relationships between the ratios of polarizations $p^{\rm V}/p^{\rm B}$ in V and B spectral regions (solid curve and left scale) or $p_{\rm max}/p^{\rm V}$ (dashed curve and right scale) and the wavelength $\lambda_{\rm max}$ of maximum interstellar polarization, calculated for $\lambda^{\rm V}=0.55~\mu$ and $\lambda^{\rm B}=0.44~\mu$.

other hand, the Of stars and the early-type supergiants with emission lines in their spectra are not marked with an asterisk in table 5. Among the latter stars, many show evidence of variable intrinsic polarization (Serkowski 1970a, Coyne 1971) which in all known cases is small compared with interstellar polarization and has rather flat wavelength dependence. Therefore, distortion of the wavelength dependence of interstellar polarization by this intrinsic component seems to be small. Evidence of small variations in polarization with time has been found also among some early-type supergiants without emission lines. For these reasons separating the early-type supergiants without any intrinsic component of polarization is not, at this time, possible. We decided to include all the observed early-type supergiants and Of stars in our discussion of interstellar polarization.

V. DISCUSSION

There are 364 stars listed either in table 5 of the present paper or in table 2 of Coyne *et al.* (1974) which are not marked with an asterisk in the first column of these tables and for which the mean error of λ_{max} does not exceed $\pm 0.03 \, \mu$. Distribution of the stars for which galactic latitude is $|b| \leq 25^{\circ}$ is shown in figure 6. Filled symbols represent the stars with wavelength λ_{max} of maximum polarization less than the median value of $0.545 \, \mu$, open symbols represent those with $\lambda_{\text{max}} > 0.545 \, \mu$. The obvious conclusion from inspecting this figure is that there are some well-defined regions on the sky within which λ_{max} is smaller than the median value and other regions with λ_{max} larger than the median value. In figure 6 these two types of regions are surrounded by dashed and solid lines, respectively. The largest and best defined region of low λ_{max} lies along the galactic

Fig. 5.—The comparison between values of the wavelength of maximum interstellar linear polarization, λ_{mass}, determined with the Siding Spring two-channel (a) and multichannel (b) polarimeters with those obtained for the same stars with other instruments on the basis of polarimetry at three or more spectral regions. Vertical lines join the observations of the same star.

Fig. 6.—The wavelength of maximum interstellar polarization, λ_{\max} , which is proportional to ratio R of total to selective extinction, plotted in galactic coordinates. Filled symbols denote the stars with λ_{\max} (and R) smaller than the median value $\lambda_{\max} = 0.545 \, \mu$ (corresponding to R = 3.0); open symbols, those with λ_{\max} (and R) larger than the median value. The regions in which the stars of any of these groups predominate are surrounded by dashed or solid lines, respectively. Symbols for stars nearer than 0.4 kpc ($m - M \le 8.0$) are crossed with a horizontal bar.

Fig. 7.—The correlation between the wavelength λ_{\max} of maximum interstellar polarization and the color excess ratio E_{V-I}/E_{V-R} . Large symbols denote observations from references 1, 2, 3, 6, and 7 in table 6. Small symbols denote less accurate photometry from other sources.

equator at longitudes 120°–145°; that of high $\lambda_{\rm max}$ lies at longitudes 295°–340°.

Symbols for stars nearer than 0.4 kpc ($m-M \le 8.0$) are crossed in figure 6 with a horizontal bar. We can see clearly that high values of $\lambda_{\rm max}$ predominate for nearby stars. The median value of $\lambda_{\rm max}$ for stars nearer than 0.4 kpc is 0.570 μ as compared with 0.536 μ for more distant stars. For each of these distance intervals a histogram of $\lambda_{\rm max}^{-1}$ is well approximated by a Gaussian probability function with rms deviation $\pm 0.14 \, \mu^{-1}$; a small deviation

from the Gaussian function is caused by too many stars with $\lambda_{\rm max}>0.66~\mu$, particularly among nearby stars.

Larger $\lambda_{\rm max}$ for nearby stars may be explained by a selection effect: nearby stars for which polarization is so large that $\lambda_{\rm max}$ can be determined are often seen through a relatively dense dust cloud. As shown by Carrasco, Strom, and Strom (1973), the size of dust grains and $\lambda_{\rm max}$ seem to be larger in denser dust clouds. There is no correlation between $\lambda_{\rm max}$ and distance for stars more distant than 0.4 kpc.

It is likely that the wavelength λ_{\max} of maximum polarization is proportional to the average size of interstellar dust grains producing both extinction and polarization. This is indicated by the correlations between λ_{\max} and various ratios of color excesses (cf. Serkowski 1968, 1973). The correlation is particularly pronounced for the ratio E_{V-I}/E_{V-R} shown in figure 7 and the ratios E_{V-K}/E_{B-V} and E_{V-K}/E_{V-R} shown in figure 8. Only the stars with E_{V-R} or E_{B-V} no smaller than 0.30 mag are plotted in these figures; we believe that inaccurate photometry and intrinsic colors are mainly responsible for large scatter seen in figures 7 and 8. There seems to be no correlation between λ_{\max} and E_{V-R}/E_{B-V} and very little between λ_{\max} and E_{V-K}/E_{V-J} .

Since the ratio of total to selective extinction, $R = A_v/E_{B-v}$, equals approximately 1.1 E_{v-K}/E_{B-v} (Carrasco *et al.* 1973), the straight line $E_{v-K}/E_{B-v} = 5.0 \lambda_{\text{max}}$ in figure 8*a* indicates that

$$R = 5.5 \lambda_{\text{max}} ; \qquad (12)$$

the median value $\lambda_{\rm max}=0.545\,\mu$ corresponds to R=3.0. Measuring $\lambda_{\rm max}$ may be the best method for finding the local values of the ratio of total to selective extinction.

The observational data for figures 7 and 8 are listed in table 6. New *VRI* photometry listed in this table was obtained by Serkowski with the Mount Stromlo 127-cm (50 inch) telescope in 1969 June and

Fig. 8.—The correlation between λ_{max} and the color excess ratios E_{V-K}/E_{B-V} (graph a), and E_{V-K}/E_{V-R} (graph b). The two stars falling far below the straight line in graph a are HD 164740 and 215835 (Johnson 1967).

 $\label{eq:table 7} \text{Dependence of } \lambda_{\max} \text{ on } p_{\max}/E_{B-V}, \text{ for } m-M \geq 8.0$

	-1-			
$p_{\max}(\%)/E_{B-V}$. Mean p_{\max}/E_{B-V} . Number of stars.	< 3.0 2.32 33	3.0 to 4.9 3.97 71	5.0 to 6.9 5.82 70	≥7.0 8.23 30
Median λ_{\max} (μ) Mean λ_{\max} (μ) rms deviation of λ_{\max} (μ)	$0.544 \\ 0.542 \\ \pm 0.060$	$0.548 \\ 0.546 \\ \pm 0.047$	0.527 0.534 ± 0.042	$0.526 \\ 0.537 \\ \pm 0.040$
Mean E_{B-V} rms deviation of E_{B-V}	0.84 ± 0.41	0.67 ± 0.32	0.65 ± 0.27	0.52 ± 0.18
Median $(\lambda_{\max} + 0.03 E_{B-V}) (\mu)$ Mean $(\lambda_{\max} + 0.03 E_{B-V}) (\mu)$ rms deviation of $(\lambda_{\max} + 0.03 E_{B-V}) (\mu)$	$0.567 \\ 0.568 \\ \pm 0.054$	$0.569 \\ 0.565 \\ \pm 0.044$	$0.547 \\ 0.553 \\ \pm 0.044$	$0.542 \\ 0.552 \\ \pm 0.042$

July using equipment similar to that described in an earlier paper (Serkowski 1968); each star was observed on two or three nights. The mean errors of average V-R and V-I are about ± 0.01 and ± 0.03 mag, respectively. The photometry in the K spectral region for the stars HD 194279 and 204827 was obtained in 1972 by Serkowski using the Steward Observatory infrared photometer (Johnson and Mitchell 1962) and 229-cm (90 inch) telescope. The V-R, V-I, and V-K intrinsic colors by Johnson (1966) are used.

There seems to be some correlation of λ_{max} with E_{B-V} and with the ratio of polarization to interstellar

reddening, $p_{\rm max}/E_{B-V}$. To avoid the dependence on distance, the correlations were studied only for stars more distant than 0.4 kpc. The median values of $\lambda_{\rm max}$ for intervals of E_{B-V} follow the relationship

$$\lambda_{\text{max}} = 0.555 \,\mu - 0.03 \,E_{B-V} \,, \tag{13}$$

where the correlation coefficient is -0.19 ± 0.07 (m.e.). This correlation may be caused by selection effects, similar to those explaining larger $\lambda_{\rm max}$ for nearby stars: a large proportion of strongly reddened stars are distant stars with small ratio of E_{B-V} to distance. The light of such stars passes predominantly

Fig. 9.—The relationship between the maximum interstellar polarization p_{max} (%) and color excess E_{B-V} . A straight line corresponds to $p_{\text{max}}/E_{B-V}=9.0$. The symbols are the same as in fig. 6.

Fig. 10.—The wavelength dependence of the polarization position angle θ observed with the multichannel polarimeter-photometer for some early-type main-sequence stars (a) and for supergiants and giants (b). The mean errors are indicated. The zero points θ_0 of the position angle scale are arbitrary.

through low-density dust clouds, characterized by small λ_{max} (Carrasco *et al.* 1973).

The relationship between λ_{\max} and p_{\max}/E_{B-V} is illustrated in table 7. Only stars with $E_{B-V} \geq 0.30$ mag (≥ 0.40 mag if E_{B-V} is followed by a colon in table 5) were used. The coefficient of correlation between p_{\max}/E_{B-V} and E_{B-V} is -0.29 while that between p_{\max}/E_{B-V} and λ_{\max} is -0.05. Therefore, the coefficient of partial correlation between p_{\max}/E_{B-V} and λ_{\max} relative to E_{B-V} is -0.12 ± 0.07 . The reality of this correlation is indicated more convincingly by the dependence of median values of $\lambda_{\max} + 0.03 E_{B-V}$ (cf. eq. [13]) on p_{\max}/E_{B-V} shown in table 7: for $p_{\max}/E_{B-V} < 5.0$ the median value of $\lambda_{\max} + 0.03 E_{B-V}$ is larger by $0.023 \, \mu$ than for $p_{\max}/E_{B-V} > 5.0$. The negative correlation between p^V/p^B and p^V/E_{B-V} was discovered by Kruszewski (1962) as a result of the earliest systematic search for variations in wavelength dependence of interstellar polarization, which were first noticed by Behr (1959).

The ratio p/E_{B-V} is a measure of alignment of interstellar dust grains by galactic magnetic field. If alignment is not complete, λ_{\max} is expected to be larger in a stronger magnetic field, capable of aligning larger grains (Davis 1959). This is contrary to the present observations which indicate a very poor negative correlation between λ_{\max} and p_{\max}/E_{B-V} . We may therefore conclude that magnetic field has negligible influence on λ_{\max} which, like R, is determined mainly by the average size of dust grains. How little influence the magnetic alignment has on wavelength dependence of light scattering by dust grains is also indicated by lack of correlation between the ratio of color excesses E_{U-B}/E_{B-V} and the ratio p/E_{B-V} (Serkowski 1963).

The relationship between the maximum percentage polarization p_{\max} and the color excess E_{B-V} is shown in figure 9. The stars with uncertain E_{B-V} , followed by a colon in table 5 or having spectral type F or later, are not plotted. The ratio p_{\max}/E_{B-V}

SERKOWSKI, MATHEWSON, AND FORD

TABLE 8
MEASUREMENTS OF CIRCULAR POLARIZATION*

HD or DM	*	10^4q^I	10^4q^B	10^4q^{v}
145502	ν ₁ Sco AB	-0.4 ± 0.5		
147084	o Sco	$+1.5 \pm 0.4$		
147889		-1.9 ± 1.1	$+2.2 \pm 0.6$	
183143		$+1.0 \pm 0.8$		
193237	P Cyg	0.0 ± 1.2		
+40°4220	VI Cyg No. 5	-1.9 ± 1.2		
	VI Cyg No. 12	-6.5 ± 1.0		
204827		-5.6 ± 1.2	-0.8 ± 0.9	$+3.4 \pm 1.2$

^{*} Our circular polarization q is equivalent to V/I of Martin 1974.

rarely exceeds 9.0, which value is represented as a straight line in figure 9. The stars lying slightly to the left of this line suggest that the intrinsic colors by Schmidt-Kaler (1965), used for calculating E_{B-V} , should be diminished for B-type stars by at least 0.02 mag. The intrinsic colors of B-type supergiants would thus become close to those derived by Serkowski (1963). To clarify this point, repeating the MK classification and photometry of the most strongly deviating stars, HD 7252, 8965, 13267, 38771, 46769, 142919, and 161840, would be desirable.

The position angles of polarization show a pronounced wavelength dependence for a number of stars observed with a multichannel polarimeter. Such wavelength dependence is expected when the light traverses regions with various values of λ_{max} and with various orientation of dust grains (cf. Coyne 1974). In many cases, however, wavelength dependence of position angle is caused by superposition of intrinsic and interstellar polarization (Serkowski 1970a). We may see in figure 10, showing some examples of this wavelength dependence, that early-type main-sequence stars have often an extreme value of position angle around the blue spectral region where the intrinsic polarization of Be stars has its maximum. On the other hand, supergiants usually show monotonic change in position angle, as wavelength dependence of their intrinsic polarization does not have a sharp peak.

The wavelength λ_{max} seems to coincide with the

wavelength at which the wavelength dependence of interstellar circular polarization changes sign (Martin 1974). This is supported by the observations of circular polarization, listed with their mean errors in table 8, made by Serkowski during 1973 July with the 152-cm telescope on Mount Palomar. The near-infrared spectral region ($\lambda_{\rm eff} \approx 0.845\,\mu$) was defined by a Schott RG 8 filter 1.5 mm thick and S1 photomultiplier. The quarter-wave plate was manually rotated by 90° in front of a rapidly rotating achromatic halfwave plate in a polarimeter described by Serkowski (1974).

The largest known values of the interstellar circular polarization were found in the near-infrared for two stars with exceptionally low values of λ_{max} : star No. 12 in the VI Cygni association ($\lambda_{\text{max}} = 0.45 \, \mu$), and HD 204827 ($\lambda_{\text{max}} = 0.46 \, \mu$). The observations of circular polarization for the latter star in the B and U spectral regions of the UBV system suggest that circular polarization changes its sign around 0.43 μ .

We are grateful to the National Science Foundation for financing the computations made for this paper at the University of Arizona. Jonathan Gradie and Thomas Kunkle made most of the calculations. One of the authors (K. S.) is grateful to Dr. H. W. Babcock, Director of Hale Observatories, for providing the telescope time, and to Dr. S. E. Strom for helpful discussions.

APPENDIX

ADDITIONAL POLARIMETRIC OBSERVATIONS

Polarimetric observations of a number of southern stars, many of them in open clusters, are listed in table A1. They were made with a two-channel polarimeter in a search for stars suitable for a study of wavelength dependence of interstellar polarization. Table A1 contains also polarimetry of Sco X-1 and the open clusters Praesepe and M67. Assuming the maximum ratio of degree of polarization to color excess given by Schmidt-Kaler (1958), we find the lower limits of reddening:

 $E_{B-V} \ge 0.009$ mag for Praesepe,

 $E_{B-V} \ge 0.019 \text{ mag for M67}$.

Similar estimates for several globular clusters are given in table A2. All the observations in table A2 were made with a two-channel polarimeter without filter, using an aperture 80" in diameter for globular clusters, and about 20" for galaxies which were observed in 1969 July. A small but significant linear polarization was found for some galaxies, in particular for NGC 7041. (See note added in proof.)

TABLE A1 POLARIMETRY OF SOUTHERN STARS AND OPEN CLUSTERS.

					POLARI	MEIKI OF	SOUTHERN STARS AND OPEN	CLUSIE	къ.				
HD or other name	_ v	- Sp	JD 24	Filter	P (%)	θeq	HD or other name	V	Sp	JD 24	Filter	p (%)	θ_{eq}
50877, o ¹ CMa	3.8	K3 Iab	39538	V	0.05	65°	No. T64 in NGC 3766†	8.6	ОВ	39600	V	1.51	82°.3
58131	7.4	B2	39834	V	0.87	26	No. 19 in NGC 3766	8.5	OB	39600	V	1.21	91.3
59890, BS 2881	4.6	Gl Ib	40303	v	0.06	84	101205 in IC 2948 §	6.5	08	39541	V	1.54	93
CPD-44°2920	8.5		39953	v	0.66	66	103516, BS 4563	5.9	A2 I	40390	V	0.76	88
CPD-45°3218	8.9		39953	V	2.32	179.1	No. 5 in NGC 4103 \$	9.7		39598	v	0.65	79
63302, BS 3026	6.3	G8 Iab	39537	v	0.47	174	No. 6 in NGC 4103			39598	v	0.42	88
63323, BS 3027	6.3	M2 II-III		v	0.23	152	106111, ceph. S Mus	6v	F8p	40390	v	2.54	104.5
66194, in NGC 2516	5.8	B3 Ve	39910	v	0.65	138	No. 4 in NGC 4609 ‡		-	39541	v	0.32	86
66342, in NGC 2516	5.2	MO II	39911	v	0.37	148	112374, BS 4912	6.6	cF6	40390	v	0.27	48
68860, ceph. RS Pup	7v	F8-K5	39539	v	0.18	136	119699 in NGC 5281	8.3	AO	39594	v	1.81	70.2
68808, ceph. AH Vel	5 v	F8p	39599	v	0.10	66	134959 in cl.Pis.20	8.1	B2 Ia	39700	v	6.36	62.7
71129, ε Car	1.8	KO II:+B	39940	v	0.10	158	135345, BS 5667	5.2	G5 Ia+B	40391	v	0.29	51
Praesepe, average					0.11	57	136415, y Cir	4.5	B5+F8	39953	٧	0.56	83
of 4 stars*	• • •	• • • •	• • •	none			14066 2	9.2	AO I	40086	В	1.89	48.6
74194	7 5	09 k	20702		±.015	±6	CoD-38°10980	9.8	DA I		none	0.15	68
	7.5		39602	V	0.81	12				40440			
75211	7.5	B5	39832	V	1.55	114.9	Sco X-1	12.6	Pec	39531	В	0.81	119
75222	7.4	BO Ik	39832	V	1.51	122.6	0			39533	В	0.67	109
75387, in cl.Tr.10	6.4	В8	39911	v	0.12	41	11			39536	В	0.72	121
No. 81 in M67 †	10.0	B8-9 V		none	0.25	39	**			39542	В	0.76	118
No. 108 in M67	9.7	K4 III		none	0.30	41	"			39570	В	0.56	121
No. 170 in M67	9.7	K3 III		none	0.15	90	11			39571	В	0.47	127
No. 223 in M67	10.6			none	0.18	81	146646= -15°4293	9.8	A 5	39590	В	0.78	56
No. 244 in M67	10.8			none	0.07	61	" , near Sco X-1			39600	В	0.85	52
No. 266 in M67	10.6			none	0.29	69	146795= -16°4265	8.8	A 2	39590	В	0.37	66
M67, average of 6				none	0.17	60	" ,near Sco X-1			39600	В	0.36	59
stars*					±.05	±8	146935= -15°4300	8.5	AO	39531	В	0.68	106
91943, in NGC 3293	6.7	BO.5 Ib	39541	- V	1,11	106.8	" ,near Sco X-1			39532	V	0.72	109
-57°3502 in NGC 3293	7.2	MO Iab	39911	v	1.22	115.6	u '			39570	В	0.60	107
92449, BS 4180	4.3	G2 II	40013	В	0.20	143	146950= -15°4301	9.9	AO	39600	В	0.31	124
93163, BS 4204	5.8	B3:V	39545	v	0.51	111	147295,near Sco X-1	9.3	AO	39590	В	0.81	106
93737, BS 4228	6.0	AO Ia	39604	v	1.12	122.1	147889B	10		39699	V	0.28	173
95018	9.0	В8	39528	В	0.67	116	147930, near Sco X-1	9.0	Α0	39590	В	1.93	142.9
"			39594	В	0.98	122	star in NGC 6134	10.6	•••	40439	v	1.29	50.0
95109, ceph. U Car	6v	G0	39597	v -	0.56	128	150958 in I Ara	7.3	06ek	39600	v	1.78	46.4
No. 174 in NGC 3532 †	7.4	В9	39911	V	0.34	99	151932	6.5	WN7	46320	v	1.04	36.5
2'W of No. 150 "	7.6		39911	V	0.14	75	328856 in NGC 6204	8.5		39912	v	2.32	40.6
		• • •					152234 in NGC 6231	5.5	BO.5 I	39951	V	0.70	148
No. 129 in NGC 3532	7.4	• • • •	39950	В	0.18	100		6.1	08f		V		
No. 156 in NGC 3532			39950	В	0.30	104	152248 in NGC 6231			20051	V	0.66	112
97253 in NGC 3572 97950 in NGC 3603	7.3 9.1	06 WN5+0	39546	v v	1.10 1.51	99.9 126	152408 in NGC 6231 152677 in clus, H12	5.8 6.5	07-8fp KO	39951 40320	V	0.83	42 53
7,750 III 1100 5005	9.1		• • •	٧	1.31	120	1520// 111 0145. 1112	0.5		40320	•	0.50	,,
No. 20 in NGC 3680 †	10.2	• • • •	40352	В	0.18	98	160202 in NGC 6405	6.8	В8	39593	V	1.35	160.3
No. 34 in NGC 3680	10.7		40352	В	0.48	78	160221 in NGC 6405	7.3	В8	39592	V	1.44	162
No. 56 in NGC 3680	10.9		40352	В	0.22	155	No. 37 in NGC 6405†	8.8	В6	39707	V	1.37	166.6
98430, δ Crt	3.6	G8 III-IV	39602	V	0.01	34	No. 130 in NGC 6405	10.9	A 5	39707	V	1.13	151
100930 in NGC 3766†	7.2	cM0	39541	V	1.28	86.2	175156, BS 7119	5.1	B4 III	40017	V	0.62	40

 $[\]star$ Calculated from an average of Stokes parameters.

TABLE A2 POLARIMETRY OF GLOBULAR CLUSTERS AND GALAXIES

NGC	<i>p</i> (%)	m.e.	$ heta_{ ext{eq}}$	E_{B-V} (mag)	NGC	<i>p</i> (%)	m.e.	$ heta_{ ext{eq}}$	E_{B-V} (mag)
Globular clusters:	0.26	. 0.00	1000		Galaxies contd.:				
104=47 Tuc*	0.36	± 0.09	123°	≥ 0.04	5236	0.38	0.15	48	
362*	0.30	0.16	126	≥ 0.03	5898	0.61	0.46	42	
5024 = M53	0.17	0.08	53	≥ 0.02	6861	0.48	0.22	176	
$5139 = \omega$ Cen	0.79	0.06	67	≥0.09	7041	0.68	0.12	140	,
5272 = M3	0.14	0.06	56	≥ 0.016	7049	0.26	0.16	139	
5904 = M5	0.42	0.06	74	≥ 0.05	7144	0.42	0.17	9	
6121 = M4	2.83	0.15	3	≥0.31	7196	0.25	0.31	97	
Galaxies:					7619	0.44	0.25	96	
4696	0.30	0.25	90		7626	0.34	0.27	121	
5044	0.43	0.22	96		7629	0.34	0.21	167	
5077	0.16	0.29	132		IC 4296	0.24	0.26	143	

^{*} See also Mathewson and Ford 1970b.

[†]Star numbers according to Johnson and Sandage (1955) for M67, Koelbloed (1959) for NGC 3532, Eggen (1969) for NGC 3680, Sher (1965) for NGC 3766 (HD 100930 is No. 34), and Rohlfs, Schriek, and Stock (1959) for NGC 6405 (=M6).

 $[\]S$ No. 2 on Hogg (1965) chart.

 $[\]parallel$ Observations of Sco X-1 by Hiltner et al. (1967) on JD 2439538 and following nights without filter gave p = 0.67%, θ = 115°.

REFERENCES

Krzemiński, W., and Serkowski, K. 1967, Ap. J., 147, Allen, D. A. 1973, M.N.R.A.S., 161, 145. Allen, D. A. 1973, M.N.R.A.S., 161, 145.

Appenzeller, I. 1966, Zs. f. Ap., 64, 269.

——. 1968, Ap. J., 151, 907.

Arp, H. C., and Van Sant, C. T. 1958, A.J., 63, 341.

Behr, A. 1959, Zs. f. Ap., 47, 54.

Bertiau, F. C., and McCarthy, M. F. 1969, Ric. Astr. Specola Vaticana, 7, 523.

Blanco, V. M., Demers, S., Douglass, G. G., and Fitzgerald M. P. 1968, Pub. U.S. Naval. Obs., Vol. 21.

Carrasco, L., Strom, S. E., and Strom, K. M. 1973, Ap. J., 182, 95. Martin, P. 1974, Ap. J., **187**, 461.
Matthews, T. A., and Sandage, A. R. 1963, Ap. J., **138**, 49.
Mathewson, D. S., and Ford, V. L. 1970a, Mem. R.A.S., **74**, ——. 1970b, A.J., 75, 778. Mendoza, E. E. 1967, Bol. Obs. Tonanzintla y Tacubaya, 4, 57 and 106. Mitchell, R. I., and Johnson, H. L. 1969, Comm. Lunar Planet. Lab., 8, 1 (No. 132).
Rohlfs, K., Schrick, K. W., and Stock, J., 1959, Zs. f. Ap., Coyne, G. V. 1971, Trieste Colloquium on Supergiant Stars, ed. M. Hack (Trieste), p. 93. ——. 1974, A.J., 79, 565. Coyne, G. V., Gehrels, T., and Serkowski, K. 1974, A.J., Sandage, A., and Tammann, G. A. 1968, Ap. J., 151, 531. Schild, J., Steudel, A., and Walther, H. 1967, J. d. Phys., 28, C2-276. **79**, 581. 79, 381.

Davis, L., Jr. 1959, Zs. f. Ap., 47, 59.

Eggen, O. J. 1969, Ap. J., 155, 439.

Feast, M. W. 1963, M.N.R.A.S., 126, 11.

Feinstein, A. 1969, Zs. f. Ap., 68, 29.

Hall, J. S. 1958, Pub. U.S. Naval Obs., 17/VI.

Hall, J. S. and Iriarte, B. 1964, Bol. Obs. Tonanzintla y

Transpage 3, 236 Schmidt-Kaler, Th. 1958, Zs. f. Ap., 46, 145. . 1965, in Landolt-Börnstein Zahlenwerte und Funktionen (Berlin: Springer), VI/1, 297. Serkowski, K. 1963, Ap. J., 138, 1035. ——. 1965a, Ap. J., 141, 1340. Hall, J. S. and Iriarte, B. 1964, Bot. Obs. Tonanzinia y Tacubaya, 3, 336.
Hiltner, W. A., Garrison, R. F., and Schild, R. E. 1969, Ap. J., 157, 313.
Hiltner, W. A., Mook, D. E., Ludden, D. J., and Graham, D. 1967, Ap. J. (Letters), 148, L47.
Hogg, A. R. 1965, Mem. Mt. Stromlo Obs., Vol. 4, No. 17.
Jaschek, C., Conde, H., and de Sierra, A. C. 1964, Observ. La Plata, Ser. Astr., Vol. 28 (2).
Jaschek, C., Ferrer, L., and Jaschek, M. 1971, Observ. La 1965b, Acta Astr., 15, 79.
1968, Ap. J., 154, 115.
1970a, ibid., 160, 1083.
1970b, Pub. A.S.P., 82, 908.
1973, in Proc. IAU Symposium No. 52: Interstellar Dust and Related Topics, ed. J. M. Greenberg and H. C. van de Hulst (Dordrecht: Reidel), p. 145.
1974, in Planets, Stars and Nebulae Studied with Photopolarimetry, ed. T. Gehrels (Tucson: University of Arizona Press), p. 115.
Serkowski, K., Chojnacki, W., and Ruciński, S. 1967, in Interstellar Grains, ed. J. M. Greenberg and T. P. Roark (Washington: NASA), p. 51.
Serkowski, K., Gehrels, T., and Wiśniewski, W. 1969, A.J., 74, 85. -. 1965b, Acta Astr., **15**, 79 La Piata, Ser. Astr., Vol. 28 (2).

Jaschek, C., Ferrer, L., and Jaschek, M. 1971, Observ. La Plata, Ser. Astr., Vol. 37.

Jaschek, C., Hernandez, E., Sierra, A., and Gerhardt, A. 1972, Observ. La Plata, Ser. Astr., Vol. 38.

Johnson, H. L. 1965, Ap. J., 141, 923.

———. 1966, Ann. Rev. Astr. and Ap., 4, 193.

———. 1967, Ap. J., 147, 912.

Johnson, H. L., and Mitchell, R. I. 1962, Comm. Lunar and Planet. Lab., 1, 73. 74, 85. 74, 85.

Serkowski, K., and Robertson, J. W. 1969, Ap. J., 158, 441 (referred to in Table 5 as Serkowski et al.).

Sher, D. 1965, M.N.R.A.S., 129, 237.

Treanor, P. J. 1963, A.J., 68, 185.

Visvanathan, N. 1966, Ph.D. thesis, Australian National University (also Ap. J., 148, 655).

Wackerling, L. R. 1970, Mem. R.A.S., 73, 153.

Walborn, N. R. 1972, A.J., 77, 312.

Voung A. T. 1967, M.N.R. 4.S. 135, 175 Planet. Lab., 1, 73 Johnson, H. L., Mitchell, R. I., Iriarte, B., and Wiśniewski, W. 1966, Comm. Lunar and Planet. Lab., 4, 99 (No. 63). Johnson, H. L., and Sandage, A. R. 1955, Ap. J., 121, Kennedy, P. M. 1971, card file at Mount Stromlo Observatory. Koelbloed, D. 1959, B.A.N., 14, 265. Kruszewski, A. 1962, Acta Astr., 12, 234 (also Pub. A.S.P., 74, 519). Young, A. T. 1967, M.N.R.A.S., 135, 175.

Note added in proof.—Our results for Praesepe agree with those of T. Markkanen (Astr. and Ap., 35, 297 [1974]), who obtained $p = 0.13 \pm 0.04\%$, $\theta = 55^{\circ}$ as an average for 17 stars.

- D. S. Mathewson and V. L. Ford: Mount Stromlo and Siding Spring Observatories, Research School of Physical Sciences, Australian National University, Canberra, A.C.T. 2600, Australia
- K. Serkowski: Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721