Analysis - PMA 2 -

KYB

Thrn, it's a Fact mathrnfact@gmail.com

January 13, 2021

Overview

Number Systems

Natural Numbers

Integers

Rationals

Reals

Complex Numbers

Natural Numbers

Remark

We can construct the set of all natural numbers using empty set \varnothing and basic set theory : put $0 = \varnothing$, $S(0) = \{\varnothing\}$, $SS(0) = S(0) \cup \{S(0)\} = \{\varnothing, \{\varnothing\}\}, \cdots$,

$$\underbrace{S \cdots S}_{k+1 \text{ times}}(0) = \underbrace{S \cdots S}_{k \text{ times}}(0) \cup \underbrace{S \cdots S}_{k \text{ times}}(0) \}.$$

For convenient, write

$$n = \underbrace{S \cdots S}_{n \text{ times}}(0)$$

and

$$S(n) = n + 1.$$

Then the set \mathbb{N} of all such n satisfies the natural number axioms.

Relations

To construct integers from natural numbers, we need some tools.

Definition

Let X be a nonempty set. A relation R is a subset of $X \times X$. If $(x, y) \in R$, write xRy.

Example

An order relation is a relation

Definition

A relation \sim on X is called an equivalence relation if

- (i) $x \sim x$ for all $x \in X$.
- (ii) For $x, y \in X$, if $x \sim y$, then $y \sim x$.
- (iii) For $x, y, z \in X$, if $x \sim y$ and $y \sim z$, then $x \sim z$.

Given $x \in X$, the set $\{y \in X : y \sim x\}$ is called the *equivalence class of* x, and denoted by $[x]_{\sim}$, or simply [x].

Remark

Suppose \sim is an equivalent relation on X. Then

- (a) $X = \bigcup_{x \in X} [x]$.
- (b) For $x, y \in X$, if $[x] \cap [y] \neq \emptyset$, [x] = [y].

In this case, we say the set $\{[x]: x \in X\}$ is a partition of X, or the quotient set of X by \sim , and denoted by X/\sim .

Integers

Remark

Let $X = \mathbb{N} \times \mathbb{N}$ and define \sim by

$$(m,n) \sim (p,q) \iff m+q=n+p.$$

(this relation comes from m-n=p-q). Then \sim is an equivalence relation. Let $\mathbb{Z}=X/\sim$. We have a injective function $\iota:\mathbb{N}\to\mathbb{Z}$ by $\iota(n)=[(n,0)]$. So we can identify [(n,0)] with n. More general, write [(m,n)]=m-n and [(0,n)]=-n.

Remark

Let
$$m = [(m_1, m_2)], n = [(n_1, n_2)] \in \mathbb{Z}$$
. Define

$$m + n = [(m_1 + n_1, m_1 + n_2)], \quad mn = [(m_1n_1 + m_2n_2, m_1n_2 + m_2n_1)]$$

Then the addition and multiplication are well defined, i.e., if $[(m_1,m_2)]=[(p_1,p_2)]$ and $[(n_1,n_2)]=[(q_1,q_2)]$, then

$$[(m_1, m_2)] + [(n_1, n_2)] = [(p_1, p_2)] + [(q_1, q_2)],$$

$$[(m_1, m_2)] \cdot [(n_1, n_2)] = [(p_1, p_2)] \cdot [(q_1, q_2)].$$

In particular, for $m, n \in \mathbb{N}$, [(m, 0)] + [(n, 0)] and $[(m, 0)] \cdot [(n, 0)]$ are usual m + n and mn.

Complex Numbers

Remark

Let $m = [(m_1, m_2)], n = [(n_1, n_2)] \in \mathbb{Z}$. Define

$$m \le n \iff m_1 + n_2 \le n_1 + m_2$$

This relation is well defined and for $m, n \in \mathbb{N}$, $[(m, 0)] \leq [(n, 0)]$ is usual $m \leq n$. Moreover, this relation is still ordered relation.

Rationals

Remark

Similarly, we can construct a rational m/n as follows: Let $X=\mathbb{Z}\times(\mathbb{Z}\setminus\{0\})$ and define \sim by

$$(m,n) \sim (p,q) \iff mq = np$$

(this relation comes from m/n=p/q.) Then \sim is an equivalence relation. Let $\mathbb{Q}=X/\sim$. \mathbb{Q} has addition, multiplication and order:

$$\frac{m}{n} + \frac{p}{q} = \frac{mq + np}{nq}, \quad \frac{m}{n} \cdot \frac{p}{q} = \frac{mp}{nq}$$

$$\frac{m}{n} \le \frac{p}{q} \iff \begin{cases} mq \le np & \text{if } nq > 0\\ mq \ge np & \text{if } nq < 0 \end{cases}$$

Reals

Remark

Let $p, q \in \mathbb{Q}$ with p < q. Then we have p < (p+q)/2 < q. Thus for given $q \in \mathbb{Q}$, the set

$$A = \{ p \in \mathbb{Q} : p < q \}$$

satisfies

- (i) A is nonempty and $A \neq \mathbb{Q}$.
- (ii) If $p \in A$, $r \in \mathbb{Q}$ and r < p, then $r \in A$.
- (iii) If $p \in A$, then p < r for some $r \in A$.

Reals

Step1

A subset α is called a *cut* if

- (i) α is nonempty and $\alpha \neq \mathbb{Q}$.
- (ii) If $p \in \alpha$, $q \in \mathbb{Q}$ and q < p, then $q \in \alpha$.
- (iii) If $p \in \alpha$, then p < r for some $r \in \alpha$.

Let \mathbb{R} be the set of all cuts. Due to the above remark, \mathbb{R} is nonempty.

Step 2

Now the letter p,q,r,\cdots will be always rationals and $\alpha,\beta,\gamma,\cdots$ will denote cuts. Define $\alpha<\beta$ if α is a proper subset of β . Then this relation is an order.

Natural Numbers Integers Rationals **Reals** Complex Numbers

Step 3

 $\ensuremath{\mathbb{R}}$ has the least-upper-bound property.

Step 4

Define

$$\alpha + \beta = \{r + s : r \in \alpha, s \in \beta\},\$$

and $0^* = \{q \in \mathbb{Q} : q < 0\}$. Then \mathbb{R} satisfies the axiom (A) with zero element 0^* .

Natural Numbers Integers Rationals Reals Complex Numbers

Step 5

If $\beta < \gamma$, then $\alpha + \beta < \alpha + \gamma$.

Step 6

Define $\mathbb{R}^+ = \{\alpha > 0^*\}$. If $\alpha, \beta \in \mathbb{R}^+$, define $\alpha\beta$ to be the set of all $p \leq rs$ for some $r \in \alpha, s \in \beta, r > 0, s > 0$. Define $1^* = \{q < 1\}$. Then the axioms (M) and (D) hold with \mathbb{R}^* in place of F, and with 1^* in the role of 1. If $\alpha > 0^*$ and $\beta > 0^*$, then $\alpha\beta > 0^*$.

Step 7

We complete the definition of multiplication by setting $\alpha 0^* = 0^* \alpha = 0^*$, and by setting

$$\alpha\beta = \begin{cases} (-\alpha)(-\beta) & \text{if } \alpha < 0^*, \beta < 0^*, \\ -[(-\alpha)\beta] & \text{if } \alpha < 0^*, \beta > 0^*, \\ -[\alpha(-\beta)] & \text{if } \alpha > 0^*, \beta < 0^*. \end{cases}$$

Natural Numbers

Step 8

For each $r \in \mathbb{Q}$, let $r^* = \{ p \in \mathbb{Q} : p < r \}$. Then

- (a) $r^* + s^* = (r+s)^*$,
- (b) $r^*s^* = (rs)^*$,
- (c) $r^* < s^*$ if and only if r < s.

Step 9

By step 8, $\mathbb{Q}^* = \{r^* : r \in \mathbb{Q}\}$ is isomorphic to \mathbb{Q} (preserves sums, product, and order). Thus we can identify r with r^* . In this sense, $\mathbb{Q} \subset \mathbb{R}$.

Complex Numbers

Definition

A complex number is an ordered pair (a,b) of real numbers. Let x=(a,b) and y=(c,d) be two complex numbers. We write x=y if and only if a=c and b=d. Define

$$x + y = (a + c, b + d), \quad xy = (ac - bd, ad + bc).$$

Theorem

These definition of addition and multiplication turn the set of all complex numbers into a field, with (0,0) and (1,0) in the role of 0 and 1.

Theorem

For any real numbers a and b,

$$(a,0) + (b,0) = (a+b,0)$$
 $(a,0)(b,0) = (ab,0).$

Now we can identify (a, 0) with a.

Definition

Define i = (0, 1).

Theorem

$$i^2 = -1$$
.

Theorem

If a and b are real, then (a,b) = a + bi.

Definition

If a,b are real and z=a+bi, then the complex number $\bar{z}=a-bi$ is called the *conjugate* of z. The number a and b are the *real part* and the *imaginary part* of z, respectively. And write $a=\mathrm{Re}(z)$, $b=\mathrm{Im}(z)$.

Theorem

If z and w are complex, then

- (a) $\overline{z+w} = \overline{z} + \overline{w}$.
- (b) $\overline{zw} = \bar{z}\bar{w}$.
- (c) $z + \overline{z} = 2 \operatorname{Re}(z)$ and $z \overline{z} = 2i \operatorname{Im}(z)$.
- (d) $z\overline{z}$ is real and positive except when z=0.

Definition

If z is a complex number, its absolute value |z| is the nonnegative square root of $z\overline{z}$.

Remark

If x is real, $\overline{x} = x$. So $|x| = \sqrt{x^2}$.

Theorem

- (a) |z| > 0 unless z = 0, and |0| = 0.
- (b) $|\overline{z}| = |z|$.
- (c) |zw| = |z||w|.
- (d) $|\operatorname{Re}(z)| \le |z|$.
- (e) $|z+w| \le |z| + |w|$.

Reals
Complex Numbers

Theorem

If a_1, \dots, a_n and b_1, \dots, b_n are complex numbers, then

$$\left| \sum_{j=1}^{n} a_j \overline{b}_j \right|^2 \le \sum_{j=1}^{n} |a_j|^2 \sum_{j=1}^{n} |b_j|^n.$$

Complex Numbers

Ex1.8

Prove that no order can be defined in the complex field that turns it into an ordered field.

The End