

MITx: 14.310x Data Analysis for Social Scientists

Help

- Module 1: The Basics of R and Introduction to the Course
- ▶ Entrance Survey
- Module 2:

 Fundamentals of
 Probability, Random

 Variables,
 Distributions, and Joint
 Distributions
- Module 3: Gathering and Collecting Data, Ethics, and Kernel Density Estimates

Gathering and Collecting Data

Finger Exercises due Oct 17, 2016 05:00 IST

B

Module 3: Gathering and Collecting Data, Ethics, and Kernel Density Estimates > Summarizing and Describing Data > Kernel Density Estimation, Part II - Quiz

Kernel Density Estimation, Part II - Quiz

☐ Bookmark this page

Question 1

1 point possible (graded)

Let K(x) be a non-negative, symmetric kernel weighting function, centered at zero and integrating to 1. Often, K(x) is chosen to be standard normal density, and the kernel density estimator is given by:

$$\hat{f}_h(x) = \frac{1}{n} \sum_{i=1}^n K_h(x - x_i) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right)$$

What is the distribution of $K_h(x-x_i)$?

- a. A standard normal distribution
- b. A normal distribution with mean h and standard deviation 1

Summarizing and Describing Data

Finger Exercises due Oct 17, 2016 05:00 IST

B

Module 3: Homework

<u>Homework due Oct 10, 2016</u> 05:00 IST

B

- Module 4: Joint,
 Marginal, and
 Conditional
 Distributions &
 Functions of Random
 Variable
- Module 5: Moments of a Random Variable,
 Applications to
 Auctions, & Intro to
 Regression
- Module 6: Special
 Distributions, the
 Sample Mean, the
 Central Limit Theorem,
 and Estimation

- c. A normal distribution with mean 0 and standard deviation h
- d. A normal distribution with mean 0 and standard devation nh
- e. A normal distribution with mean equal to the sample mean and standard deviation h.

Explanation

Given that K(x) is the standard normal density function, then by definition given in the equation above represents a normal density with standard deviation h.

Submit

You have used 0 of 2 attempts

Question 2

1 point possible (graded)

Which of these lines illustrates the bandwidth of the kernel density estimator shown in figure below?

- Module 8: Causality,
 Analyzing Randomized
 Experiments, &
 Nonparametric
 Regression
- Module 9: Single and Multivariate Linear
 Models
- Module 10: Practical
 Issues in Running
 Regressions, and
 Omitted Variable Bias
- Module 11: Intro to
 Machine Learning and
 Data Visualization
- Module 12: Endogeneity,

Instrumental Variables, and Experimental Design

- Exit Survey
- Final Exam

- a. The distance between the two points at which a given blue dashed line intersects the x-axis
- b. The distance between the two points at which the leftmost blue dashed line first intersects the x-axis and at which the rightmost blue dashed line last intersects the x-axis.
- c. The maximum height of a given blue dashed line
- d. The maximum height of the red line

Explanation

As Professor Duflo explained in lecture, the bandwidth of the kernel density estimator is the width of the interval at which the kernel function is estimated.

Submit

You have used 0 of 2 attempts

Discussion

Topic: Module 3 / Kernel Density Estimation, Part I - Quiz

Show Discussion

© All Rights Reserved

© 2016 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

