

فاز اول پروژه:

در این مرحله از پروژه میبایست در محیط شماتیک نرمافزار Quartus، پردازندهای با مشخصات زیر را پیاده سازی کنید.

• فرمت و مجموعه دستورالعملهای محاسباتی و منطقی:

Opcode Destination R	eg Source Reg	Source Reg 2	S/R Amount	Reserved
31 30 29 28 27 26 25 24 23 22	21 20 19 18 17		10 9 8 7 6	5 4 3 2 1 0
<u>Opcode</u>	Instruction	Desc	ription	
000001	ADD	$DST \leftarrow S$	RC1 + SRC2	
000010	SUB	$DST \leftarrow S$	RC1 – SRC2	
000011	MUL	$DST \leftarrow S$	RC1 × SRC2	
000100	DIV	$DST \leftarrow S$	RC1 ÷ SRC2	
000101	MOD	DST ← SI	RC1 % SRC2	
000110	MAX	DST ← MAX	X (SRC1, SRC2)	
000111	MIN	DST ← MIN	V (SRC1, SRC2)	
001000	NOT	DST ←	− ~SRC1	
001001	NAND	DST ← SF	RC1 ~& SRC2	
001010	XNOR	DST ← SI		
001011	SHL	$DST \leftarrow SRC1$	<< S/R AMOUNT	
001100	SHRL	$DST \leftarrow SRC1$	>> S/R AMOUNT	
001101	ROL	DST ← ROTATE LEF	T (SRC1, S/R AMO	DUNT)
001110	ROR	DST ← ROTATE RIGH	HT (SRC1, S/R AM	OUNT)
001111	SLT	SRC1 <sr0< th=""><th>C2: DST = 1</th><th></th></sr0<>	C2: DST = 1	

• فرمت و مجموعه **دستورالعملهای با عملوند صریح** (Immediate):

Opcode	Destination Reg	Source Reg	Immediate Data
31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	Opcode	Instruction	Description
	010000	LDI	$DST[15:0] \leftarrow IMM$
	010001	LUI	$DST[31:16] \leftarrow IMM$
	010010	ADDI	$DST \leftarrow SRC + SIGN EXTEND (IMM)$
	010011	SUBI	$DST \leftarrow SRC - SIGN EXTEND (IMM)$
	010100	MULI	$DST \leftarrow SRC \times SIGN EXTEND (IMM)$
	010101	DIVI	DST ← SRC ÷ SIGN EXTEND (IMM)
	010110	NANDI	DST ← SRC ~& SIGN EXTEND (IMM)
	010111	XNORI	DST ← SRC ~^ SIGN EXTEND (IMM)
		•	

• فرمت و مجموعه دستورالعملهای دسترسی به حافظه:

	Op	code			V	alue	Reg	g (VI	R)	Ad	dres	s Re	g (A	R)							Of	fset	-										
31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1 0				
				O_{I}	pcoc	de				Ins	truc	tion						\mathcal{L})esci	ripti	on												
				01	100	0					LW	r		VR ← MEM [\$AR+ SIGN EXTEND (Offset)]																			
	Opcode Value 29 28 27 26 25 24 Opcode 011000 011001 011010 011011									SW MEM [\$AR+ SIGN EXTEND (Offset)] ←										– v	/R												
				01	101	0					LB			VR[7:0] ← MEM [\$AR+ SIGN EXTEND (Offset)]																			
				01	101	1					SB			ME	M [\$	SAR-	- SIC	GN E	XTE	END	(Of	fset	t)] <	<u> </u>	VR[7:0]						

• فرمت و مجموعه دستورالعملهای پرش و توقف:

	Opcode						I	Reg	1 Reg				Reg 2	2 Address																															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	.7	16	15	14		13	12	1	11	10		9	8	7	6	5		4	3	2	1	0										
			(Op	ocode				Instruction Description													7 6 5 4 3 2 1																							
				01	1100					JN	ΛР						РС	+	(PC	31	:18	8] 4	Ad	ldre	ess "00"																			
		011101								J	R									PC ← \$Reg1																									
				01	1110					B	EQ		RE	G1	== F	REG	2: P(С	\leftarrow	– P(C +	SI	GN	Ε	eg1 EXTEND (Address "00")																				
				01	1111					BLT REG1 < R							REG1 < REG2: PC \leftarrow PC + SIGN EXTEND (Address "00")										,																		
				000	0000					Н	LT										ST	ГΟ	P P	C										,											

توضيحات:

- طول کلمه در این معماری ۳۲ بیت است.
 - تعداد ثباتهای عمومی ۳۲ است.
- کوچکترین واحد دسترسی به حافظه بایت بوده و فضای آدرس دهی از صفر تا ۱-۲۳۲ است. اما می توانید برای تست و سنتز
 مدار خود در Quartus، سایز حافظه را کوچکتر در نظر بگیرید.
 - دستورالعملها به صورت **خط لوله** اجرا می شوند.
 - نمایش اعداد در این معماری به صورت مکمل ۲ است.
 - برای طراحی هر یک از اجزاء مورد نیاز می توانید در صورت نیاز از بلوکهای اساسی در قسمت Wizard استفاده کنید.
- تمام ثباتها (اعم از IR ،PC و ...) میبایست یک درگاه ریست ناهمگام ۲ داشته باشند که به سیگنال ریست پردازنده متصل باشند (با یک شدن این سیگنال محتوای این ثباتها صفر می شود).
 - در دستورالعملهای BLT و SLT مقایسه مقدار دو ثبات به صورت بی علامت 7 انجام می شود.
- انواع مخاطراتی^۴ که ممکن است در پردازنده ی طراحی شده رخ دهد را گزارش کرده و برای رفع آنها در صورت نیاز ساختار پردازنده را تغییر دهید.
 - پردازنده ی خود را توسط برنامه ای که تمام دستورالعملهای نام برده در آن وجود داشته باشد، بیازمایید.
- پس از اطمینان از صحت اجرای تمامی دستورالعملها، کد ماشین محاسبه جمله ام دنباله فیبوناچی را داخل حافظه قرار
 دهید و نتیجه اجرای برنامه روی پردازنده و زمان اجرا بر اساس تعداد سیکل را گزارش کنید.

فاز دوم پروژه:

در این مرحله، میبایست از بین پروژههای الف تا د یکی را به دلخواه انتخاب کرده و کمک پردازنده ی متناظر با آن را در محیط شماتیک نرمافزار Quartus پیاده سازی کنید. سپس، باید پردازنده ی کمکی خود را به پردازنده ی اصلی که در فاز قبل طراحی کردهاید، متصل کنید تا پردازنده ی اصلی بتواند از این واحد برای اجرای دستورالعملهای کمکی استفاده کند. جزئیات طراحی کمک پردازنده، نحوه ی اتصال پردازنده ها و طراحی ساختار دستورالعملها برای کمک پردازنده بر عهده دانشجویان است. توجه

¹ Pipeline

² Asynchronous

³ Unsigned

⁴ Hazard

داشته باشید که ساختار دستورالعملهای کمک پردازنده باید مطابق با فرمت ساختار دستورالعملهای پردازندهی اصلی باشد. همچنین، برای مدیریت ارتباط بین پردازندهی اصلی و پردازندهی کمکی میتوانید به تعداد مورد نیاز، دستور به مجموعه دستورالعملهای پردازنده ی اصلی اضافه کنید. درنهایت، باید مشخص گردد که هر یک از عملیات خواسته شده در چند سیکل انجام می شود.

الف) کمک پردازنده برای محاسبات برداری: این کمک پردازنده باید قادر به انجام دستورالعملهای جمع، تفریق، ضرب نقطهای، ضرب عدد در بردار، تقسیم بردار بر عدد، نرمال کردن و محاسبهی اندازه روی بردارها به صورت predicate باشد (یعنی عملیات برداری روی زیرمجموعهای از عناصر بردار که توسط ماسک مشخص می شود انجام شود). همچنین، می توانید در صورت نیاز دستورالعملهای دسترسی به حافظه، کنترلی و پرشی برای کمک پردازنده در نظر بگیرید. کمک پردازنده باید بتواند یک بردار را از حافظه خوانده و آن را در حافظه ذخیره نماید. پس از اتمام مراحل طراحی، کمک پردازندهی خود را توسط برنامهای که تمام دستورالعملهای نام برده در آن وجود داشته باشد، بیازمایید. پس از اطمینان از صحت اجرای تمامی دستورالعملها، با استفاده از تابع predicate و با استفاده از تابع عناصر صفر آنها را تبدیل به یک کرده و سپس دو ماتریس $n \times n$ را از ورودی گرفته و با استفاده از تابع عناصر صفر آنها را تبدیل به یک کرده و سپس دو ماتریس را در هم ضرب کند.

ب) کمک پردازنده برای اعداد مختلط: این کمک پردازنده باید قادر به انجام دستورات جمع، تفریق، ضرب، تقسیم، مقایسه، معکوس، مزدوج و تبدیل نمایش قطبی به نمایی و یا بالعکس روی اعداد مختلط باشد. همچنین، می توانید در صورت نیاز دستورالعملهای دسترسی به حافظه، کنترلی و پرشی برای کمک پردازنده در نظر بگیرید. کمک پردازنده باید بتواند یک عدد مختلط را به هر یک از دو فرمت قطبی و یا نمایی از حافظه خوانده و آن را در حافظه ذخیره نماید. پس از اتمام مراحل طراحی، کمک پردازندهی خود را توسط برنامهای که تمام دستورالعملهای نام برده در آن وجود داشته باشد، بیازمایید. پس از اطمینان از صحت اجرای تمامی دستورالعملها، با استفاده از دستورات اسمبلی برنامهای بنویسید که در آن دو عدد مختلط به فرمت قطبی را از ورودی گرفته و مزدوج حاصل تقسیم را به فرمت نمایی ذخیره کند.

ج) کمک پردازنده برای اعداد ممیز شناور: این کمک پردازنده باید قادر به انجام دستورات جمع، تفریق، ضرب، تقسیم، مقایسه، معکوس و گرد کردن (به نزدیکترین عدد صحیح) روی اعداد ممیز شناور با دقت ساده ۶ براساس استاندارد 754-IEEE باشد. همچنین، می توانید در صورت نیاز دستورالعملهای دسترسی به حافظه، کنترلی و پرشی برای کمک پردازنده در نظر

_

⁵ Mask

⁶ Single Precision

بگیرید. همانند موارد استثناء در نظر گرفته شده در استاندارد IEEE ٬ برای هر یک از موارد زیر باید در خروجی سیگنالی وجود داشته باشد که آن ها را گزارش کند. این موارد عبارتند از:

- Division by zero •
- QNaN (quiet not a number) •
- SNaN (signaling not a number)
 - Inexact •
 - Underflow •
 - Overflow •

پردازنده باید بتواند یک عدد ممیز شناور را از حافظه خوانده و آن را در حافظه ذخیره نماید. پس از اتمام مراحل طراحی، کمک پردازنده ی خود را توسط برنامهای که تمام دستورالعملهای نام برده در آن وجود داشته باشد، بیازمایید. پس از اطمینان از صحت اجرای تمامی دستورالعملها، با استفاده از دستورات اسمبلی برنامهای بنویسید که در آن دو عدد ممیز شناور را از ورودی گرفته، عدد بزرگتر را بر عدد کوچکتر تقسیم کرده و نتیجهی گرد شده را ذخیره کند.

د) کمک پردازنده برای چند جملهای ها: این کمک پردازنده باید قادر به انجام دستورات جمع، تفریق، ضرب، تقسیم، مشتق و محاسبه ی مقدار در یک نقطه روی چند جملهای ها باشد. همچنین، می توانید در صورت نیاز دستورالعمل های دسترسی به حافظه، کنترلی و پرشی برای کمک پردازنده در نظر بگیرید. پردازنده باید بتواند یک چند جملهای را از حافظه خوانده و آن را در حافظه ذخیره نماید. پس از اتمام مراحل طراحی، کمک پردازنده ی خود را توسط برنامهای که تمام دستورالعمل های نام برده در آن وجود داشته باشد، بیازمایید. پس از اتمام مراحل طراحی، با استفاده از دستورات اسمبلی برنامهای بنویسید که در آن یک چند جملهای از ورودی گرفته و ریشه ی آن را با استفاده از روش نیوتن-رافسون محاسبه و ذخیره کند.

در صورت تشخیص تقلب، نمره صفر برای تقلب دهنده و گیرنده لحاظ خواهد شد. این پروژه را در قالب گروههای ۴ نفره می توانید انجام دهید.

⁷ IEEE Standard for Floating-Point Arithmetic," in *IEEE Std 754-2008*, vol., no., pp.1-70, 29 Aug. 2008, doi: 10.1109/IEEESTD.2008.4610935.