Machine Learning (521289S) Quick Probability Math Recap

M.Sc. Antti Isosalo

Physiological Signal Analysis Team Center for Machine Vision and Signal Analysis (CMVS) University of Oulu

Probability Space

- Sample space / Probability space Ω
- Single event ω
 - An element of prob. space $\omega \in \Omega$
- Event A
 - Any subset of prob. space, $A \subseteq \Omega$
- Example: Coin toss
 - $-\omega_1$ = "heads"
 - $-\omega_2$ = "tails"
 - $-\Omega = \{\omega_1, \omega_2\}$
- All events = the power set of Ω
 - $P(\Omega) = \{\emptyset, \{\omega_1\}, \{\omega_2\}, \{\omega_1, \omega_2\}\}$

Probability of an Event

- Probability of an event A, denoted as $\mathbf{Pr}(A)$
- Classical geometric interpretation
 - The measure (area/count) of A divided by that of Ω
- Example: Rolling dice

$$-\omega_1$$
 = "dice gives 1", ..., ω_6 = "dice gives 6"

$$-\Omega = \{\omega_1, \dots, \omega_6\}$$

$$-\Pr(A) = \frac{\#A}{\#\Omega} = \frac{3}{6} = \frac{1}{2}$$

Properties of Probability

- $\text{ Let } A, B \subseteq \Omega$
- $-0 \le \Pr(A) \le 1$
- $-\Pr(\emptyset) = 0$
- $-\Pr(\Omega)=1$
- $\Pr(A \cup B) = \Pr(A) + \Pr(B)$ $-\Pr(A \cap B)$
 - If $A \cap B = \emptyset$, A and B are disjoint - $Pr(A \cup B) = Pr(A) + Pr(B)$
 - Shorthand: $Pr(A, B) = Pr(A \cap B)$
- Complement events
 - $\Pr(A^c) = \Pr(\Omega \backslash A) = 1 \Pr(A)$ - $(\Omega \backslash A$, all elements of Ω that are **not** in A.)
 - $Pr(A) + Pr(A^c) = 1$
 - Sometimes: A' or \bar{A} instead of A^c

Independence and Conditional Probability

- Definition 1:
 - A and B are independent IF AND ONLY IF

$$Pr(A, B) = Pr(A) Pr(B)$$

- Otherwise A and B are dependent
- Definition 2: (Important!)
 - Probability of A given the occurrence of event B is

$$Pr(A|B) = \frac{Pr(A,B)}{Pr(B)}$$
, when $Pr(B) > 0$

- If Pr(B) = 0, $Pr(A \mid B)$ is undefined

Random Variable

- A random variable is a **function** from sample space to the real line
 - $X: \Omega \to \mathbb{R}$
- Example: Dice rolling
 - $X(\omega) = 1$ when $\omega = 2, 4, 6$
 - $X(\omega) = 0$ when $\omega = 1, 3, 5$
 - 1 now represents even, and 0 odd
- Note: Nothing random about it!
 - Randomness comes from the "selection" of ω in Ω
- Probability: we can assign a probability to this random variable function using the preimage (inverse image) of the set in the codomain:

•
$$\Pr(X(\omega) = 1) = \Pr(X^{-1}(\{1\}))$$

= $\Pr(\{\omega \in \Omega | X(\omega) = 1\})$
= $\Pr(\{2,4,6\}) = \frac{3}{6} = \frac{1}{2}$

Notation:

- Random variable in capital letters
- It's values in small letters
- Often ω is omitted:

$$X(\omega) = X = x$$

Probability Distributions

Discrete case

- The range of $X, X(\Omega)$, is *finite* or at most countably infinite
- Probability mass function (PMF) P
 - Notation: P(x) or P(X = x) or $P_X(x)$
- As before

$$- P(x) = \Pr(X(\omega) = x)$$

= $\Pr(X^{-1}(\{x\})) = \Pr(\{\omega \in \Omega | X(\omega) = x\})$

Continuous case

- The range of $X, X(\Omega)$, is uncountable
- Simple events have zero probability

$$- Pr(X(\omega) = x) = 0$$

• Makes better sense to consider intervals on the real line (subsets of \mathbb{R})

-
$$\Pr(X(\omega) \le c) = \Pr(X^{-1}(]-\infty, c])$$

= $\Pr(\{\omega \in \Omega | X(\omega) \le c\})$

- We consider only the case where there exists a continuous function $p \colon \mathbb{R} \to \mathbb{R}$ such that
 - $\Pr(X(\omega) \le c) = \int_{-\infty}^{c} p(x) \, dx$, where the function p is called **probability density** function (PDF)
- $P(x) = \Pr(X(\omega) \le c)$ is called **cumulative** (probability) density function (CDF)
- Now $Pr(a \le X(\omega) \le b) = P(b) P(a)$

Multiple Random Variables

• Given two **discrete** random variables X_1 and X_2 we may consider the probability of the joint event, i.e.

$$\Pr(\{X_1 = x_1 \text{ and } X_2 = x_2\})$$

- We denote this with the **joint PMF** $P(x_1, x_2)$
- We could also use notation $P(X_1=x_1,X_2=x_2)$ or $P_{X_1,X_2}(x_1,x_2)$ if otherwise unclear
 - E.g. $P(X_1 = 3, X_2 = 2)$ or $P_{X_1, X_2}(3, 2)$ instead of P(3, 2)
- We can also combine random variables into a **random vector** $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
 - Define its PMF as $P(\mathbf{x}) = P(x_1, x_2)$

Marginalization

- Consider two random variables X_1 and X_2 .
- Their joint distribution is known, and is $P(x_1, x_2)$.
- Now, the marginal distribution of X_1 is

$$P(x_1) = \sum_{x_2} P(x_1, x_2)$$

- We get the PMF of X_1 without reference to the values of the other variable X_2
 - The variable X_2 has been marginalized out

Marginalization (cont.)

