198

$$f(x,y) = (x^2 + y^2)^4$$

en el disco $x^2+y^2\leq 1.$ (No tiene que utilizarse cálculo.)

- **39.** Repetir el Ejercicio 38 para la función $f(x,y) = x^2 + xy + y^2$.
- **40.** Una curva C en el espacio está definida implícitamente en el cilindro $x^2 + y^2 = 1$ mediante la ecuación adicional $x^2 xy + y^2 z^2 = 1$. Hallar el punto o puntos de C más próximos al origen.
- **41.** Hallar los valores máximo y mínimo absolutos de la función $f(x,y) = \sin x + \cos y$ en el rectángulo R definido por $0 \le x \le 2\pi, 0 \le y \le 2\pi$.

En los Ejercicios 46 a 50, D denota el disco unidad.

- **46.** Sea u una función de clase C^2 en D "estrictamente subarmónica"; es decir, una función que cumple la siguiente desigualdad: $\nabla^2 u = (\partial^2 u/\partial x^2) + (\partial^2 u/\partial y^2) > 0$. Demostrar que u no puede tener un punto de máximo en $D \setminus \partial D$ (el conjunto de puntos que está en D, pero no en ∂D).
- **47.** Sea u una función armónica en D—es decir, $\nabla^2 u = 0$ on $D \setminus \partial D$ —y continua en D. Demostrar que si u alcanza su valor máximo en $D \setminus \partial D$, también lo alcanza en ∂D . Esto se denomina en ocasiones "principio del máximo débil" para funciones armónicas. [SUGERENCIA: considérese $\nabla^2(u+\varepsilon e^x), \varepsilon > 0$. Se puede utilizar el siguiente hecho (el cual suele demostrarse en textos más avanzados): dada una secuencia $\{\mathbf{p}_n\}, n=1,2,\ldots$, de puntos en un conjunto cerrado y acotado A en \mathbb{R}^2 o \mathbb{R}^3 , existe un punto \mathbf{q} tal que todo entorno de \mathbf{q} contiene muchos miembros de $\{\mathbf{p}_n\}$.]
- **48.** Definir el concepto de función superarmónica estricta u en D imitando a la definición dada en el Ejercicio 46. Demuestre que u no puede tener un mínimo en $D \backslash \partial D$.
- **49.** Sea u armónica en D como en el Ejercicio 47. Demostrar que si u alcanza su valor mínimo en $D\backslash\partial D$, también lo alcanza en ∂D . Esto se deno-

- **42.** Hallar los valores máximo y mínimo absolutos de la función f(x,y) = xy en el rectángulo R definido por $-1 \le x \le 1, -1 \le y \le 1$.
- **43.** Sea f(x,y) = 1 + xy 2x + y y sea D una región triangular en \mathbb{R}^2 con vértices en (-2, 1), (-2, 5) y (2, 1). Hallar los valores máximo y mínimo absolutos de f en D. Proporcionar todos los puntos en los que aparecen estos valores de extremo.
- **44.** Sea f(x,y) = 1 + xy + x 2y y sea D una región triangular en \mathbb{R}^2 con vértices en (1, -2), (5, -2) y (1, 2). Hallar los valores máximo y mínimo absolutos de f en D. Proporcionar todos los puntos en los que aparecen estos valores de extremo.
- **45.** Determinar la naturaleza de los puntos críticos de la función f(x, y) = xy + 1/x + 8/y.

mina en ocasiones "principio del mínimo débil" para funciones armónicas.

- **50.** Sea $\phi: \partial D \to \mathbb{R}$ continua y sea T una solución en D de $\nabla^2 T = 0$, continua en D y $T = \phi$ en ∂D .
 - (a) Utilizar los Ejercicios 46 to 49 para demostrar que una solución así, si existe, tiene que ser única.
 - (b) Supóngase que T(x,y) representa una función de temperatura independiente del tiempo, siendo ϕ la temperatura en la frontera de una placa circular. Proporcionar una interpretación física del principio enunciado en el apartado (a).
- **51.** (a) Sea f una función de clase C^1 en la recta real \mathbb{R} . Supóngase que f tiene exactamente un punto crítico x_0 que es un punto de mínimo local estricto de f. Demostrar que x_0 es también un punto de mínimo absoluto de f; es decir, $f(x) \geq f(x_0)$ para todo x.
 - (b) El siguiente ejemplo muestra que la conclusión del apartado (a) no se cumple para funciones de más de una variable. Sea $f\colon \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = -y^4 - e^{-x^2} + 2y^2 \sqrt{e^x + e^{-x^2}}.$$