Exercise Sheet 7

Due: Wednesday, 26. Oct.

Exercise 1. Let $M \subset \mathbb{R}^n$ be a k-submanifold, and $f: M \to \mathbb{R}$ a smooth function.

1. Show that, for $p \in M$, there is a unique vector $\operatorname{grad}(f)_p \in T_pM$ such that for every $v \in T_pM$,

$$\langle \operatorname{grad}(f)_p, v \rangle = df_p(v).$$

- 2. Let $\phi: U \to M$ be a chart containing p. Compute an expression for $\operatorname{grad}(f)_p$ with respect to the coordinate chart in terms of the first fundamental form, the derivatives of f, and the basis $\partial_i \phi$. Show that when $M = \mathbb{R}^n$, $\operatorname{grad}(f)$ is the usual gradient of a function.
- 3. Show that grad(f) defines a smooth tangent vector field on M.

Exercise 2. Consider a smooth function $f : \mathbb{R} \to \mathbb{R}$ with f(x) > 0 for all x, and $1 + f'(x)^2 > 0$ for all x. Take the parameterization

$$\phi(u, v) = (f(u)\cos(v), f(u)\sin(v), u)$$

of the surface of revolution R_f of the graph of f.

1. Show that, with respect to the coordinate basis defined by ϕ ,

$$L = \begin{pmatrix} \frac{f''(u)}{(f'(u)^2 + 1)^{3/2}} & 0\\ 0 & \frac{-1}{f(u)\sqrt{1 + f'(u)^2}} \end{pmatrix}.$$

Compute the Gaußian and mean curvatures.

- 2. A minimal surface is a hypersurface in \mathbb{R}^3 such that the mean curvature H is identically zero. Give a second order non-linear ordinary differential equation for f, whose solutions are the profile curves of minimal surfaces.
- 3. Show that the class of functions

$$f(u) = c \cosh\left(\frac{u}{c} + k\right)$$

satisfies your equation from part 1.

Exercise 3. Let $M \subset \mathbb{R}^{n+1}$ be a hypersurface, and let $f : \mathbb{R}^n \to \mathbb{R}$ be a smooth function. Let γ be a smooth regular curve in M.

1. Show that

$$\frac{d^2}{dt^2}f(\gamma(t)) = \left\langle \frac{d}{dt}(\operatorname{grad} f)_{\gamma(t)}, \gamma'(t) \right\rangle + \left\langle \operatorname{grad}(f)_{\gamma(t)}, \gamma''(t) \right\rangle.$$

2. Suppose f has a local maximum at a point $p = \gamma(0)$, and that df_p has maximum rank. Show that grad_p is normal to T_pM . (Hint: test against coordinate vector fields)

Exercise 4. Suppose that $M \subset \mathbb{R}^{n+1}$ is a hypersurface, and let

$$f: \mathbb{R}^{n+1} \longrightarrow \mathbb{R}$$
$$x \longmapsto \sum_{i=1}^{n+1} (x^i)^2$$

be the square of the radius. Suppose that $p \in M$ is a local maximum (on M) of f. Show that each principal curvature κ of M at p satisfies

$$\kappa > \frac{1}{|p|} = \frac{1}{\sqrt{f(p)}}.$$

(Hint: Let γ be a curve with $\gamma(0)=p$ whose tangent vector is a unit principal direction.)