

# Text Mining & Word Embedding

22.08.30 / DSL 7기 최명헌

### 0. 목차

### 1. Text Mining

- What is Text Mining?
- Crawling
- Cleansing & Tokenization

### 2. Word Embedding

- word2vec
- CBoW
- Skip-Gram
- Hierarchical Softmax
- Negative Sampling
- Others...

### 3. Visualization

- PCA
- t-SNE



What is Text Mining?

Text + Mining = 글자를 채굴하는 것

글자를 가져오는 것? = Crawling?







What is Text Mining?

*Text mining* is the process of *deriving high-quality information* from text.

- Wikipedia





What is Text Mining?

### **High Quality Information 1: Sentiment Analysis**





What is Text Mining?

### **High Quality Information 2: Topic Analysis**





### What is Text Mining?

### **High Quality Informations...**







What is Text Mining?

텍스트 마이닝이란 어떤 글 속에서 중요한 정보를 뽑아내고 그 정보를 이용하여 다양한 목적으로 사용하는 것



Crawling





### Cleansing & Tokenization

Tokenization : 주어진 코퍼스(corpus)에서 토큰(token)이라 불리는 단위로 나눈 작업

Cleansing: 갖고 있는 코퍼스(corpus)로부터 노이즈 데이터(오타, 특수문자, stop words 등)를 제거하는 것

Normalization: 표현 방법이 다른 단어들을 통합시켜서 같은 단어로 만들어 주는 것

### Cleansing & Tokenization

ex) 데이터-사이언스-랩은 "텍스트 마이닝"에 대해서도 공부할 수 있는 좋은 학회입니다.

Tokenization : 주어진 코퍼스(corpus)에서 토큰(token)이라 불리는 단위로 나눈 작업

=> 형태소 tokenizer : 데이터 / 사이언스 / 랩 / 은 / 텍스트 / 마 / 이닝 / 에 / 대해 / 서도 / 공부 / 할 / 수 / 있는 / 좋은 / 학회 / 입니다 / .

=> 음절 단위 tokenizer: 데 / 이 / 터 / 사 / ··· / 학 / 회 / 입 / 니 / 다 / ..

Cleansing: 갖고 있는 코퍼스(corpus)로부터 노이즈 데이터(오타, 특수문자, stop words 등)를 제거하는 것

=> 데이터 사이언스 랩은 텍스트 마이닝에 대해서도 공부할 수 있는 좋은 학회입니다

Normalization : 표현 방법이 다른 단어들을 통합시켜서 같은 단어로 만들어 주는 것

=> 할, 하고, 하는, 함 - 하다 / 좋은, 좋다, 좋 - 좋다 / 입니다, 니다 - 이다 / ㅋㅋㅋㅋㅋㅋ, ㅋㅋㅋㅋㅋㅋㅋㅋ - ㅋㅋㅋ

### Korean Tokenizer -konlpy

1. Kkma

['데이터', '사이언스', '랩', '은', '텍스트', '마이닝', '에', '대하', '어서', '도', '공부', '하', 'ㄹ', '수', '있', '는', '좋', '은', '학회', '이', 'ㅂ니다', '.']

2. Komoran

['데이터', '사이언스', '랩', '은', '텍스트', '마', '이닝', '에', '대하', '아서', '도', '공부', '하', 'ㄹ', '수', '있', '는', '좋', '은', '학회', '이', 'ㅂ니다', '.']

3. Hannanum

['데이터', '사이언스', '랩', '은', '텍스트', <mark>'마이닝</mark>', '에', <mark>'대', '어', '하', '어서', '도', '공부', '하', 'ㄹ', '수', '있', '는', '좋', '은', '학회', '이', 'ㅂ니다', '.<sup>'</sup>]</mark>

4. 0kt

['데이터', '사이언스', '랩', '은', '텍스트', '마', '이닝', '에', '대해', '서도', '공부', '할', '수', '있는', '좋은', '학회', '입니다', '.' ]

5. Mecab

['데이터', '사이언스', '랩', '은', '텍스트', <mark>'마이닝</mark>', '에', <mark>'대해서', '도'</mark>, '공부', '<mark>할</mark>', '수', '있', '는', '좋', '은', '학회', <mark>'입니다</mark>', '.']

#### Korean Tokenizer

#### 형태소 분리 시 소요 시간



#### Okt 만의 특별한 기능 ex) 데싸랩 진짜 좋은 것 같앜ㅋㅋㅋㅋㅋㅋㅋ!

- 1. Stem: 단어의 어간을 추출해주는 기능
- 2. Norm: 문장을 정규화 해주는 기능
- Stem = False, Norm = False

('데', 'Noun'), ('쌔', 'Verb'), ('랩', 'Noun'), ('진짜', 'Noun'), ('좋은', 'Adjective'), ('것', 'Noun'), ('같앜', 'Noun'), ('ㅋㅋㅋㅋㅋㅋㅋ', 'KoreanParticle'), ('!', 'Punctuation')

- Stem = True, Norm = False

('데', 'Noun'), ('쌔다', 'Verb'), ('랩', 'Noun'), ('진짜', 'Noun'), ('좋다', 'Adjective'), ('것', 'Noun'), ('같앜', 'Noun'), ('ㅋㅋㅋㅋㅋㅋㅋ', 'KoreanParticle'), ('!', 'Punctuation')

- Stem = False, Norm = True

('데', 'Noun'), ('쌔', 'Verb'), ('랩', 'Noun'), ('진짜', 'Noun'), ('좋은', 'Adjective'), ('것', 'Noun'), ('같아', 'Adjective'), ('ㅋㅋㅋ', 'KoreanParticle'), ('!', 'Punctuation')

- Stem = True, Norm = True

('데', 'Noun'), ('쌔다', 'Verb'), ('랩', 'Noun'), ('진짜', 'Noun'), ('좋다', 'Adjective'), ('것', 'Noun'), ('같다', 'Adjective'), ('ㅋㅋㅋ', 'KoreanParticle'), ('!', 'Punctuation')

Cleansing: 갖고 있는 코퍼스(corpus)로부터 노이즈 데이터(오타, 특수문자, stop words 등)를 제거하는 것

오타 제거

특수문자 제거

의미 없는 단어 (stop words) 제거 ex. 은, 는, 이, 가, 다, 이다, ㅋㅋㅋㅋ …

! or ?: 특수문자네? 무조건 제거해야지!

ㅋㅋㅋㅋㅋ : 제거해야 할까?

## 하고자 하는 task에 맞게끔..!

**Tokenization & Cleansing** 

정답은 없습니다! 하고자 하는 task에 맞게끔..!

다양한 시도와 실험 속에서 유의미한 정보를 찾는 것이 중요합니다!

### word2vec: 단어 벡터 간 유의미한 유사도를 반영하도록 단어의 의미를 수치화하는 것



https://word2vec.kr/search/

word2vec: 단어 벡터 간 유의미한 유사도를 반영하도록 단어의 의미를 수치화하는 것



- 1. Input Data: One Hot Encoded Vector
- 2. Input -> Hidden: Embedding Matrix
- 3. Hidden → Output: Score Matrix
- 4. Output → Softmax function

**Embedding vector** 

### Corpus Tokenization & One Hot Encoding

**Tokenization** 

우리집 강아지는 복슬 강아지 -> 우리 / 집 / 강아지 / 는 / 복슬 / 강아지

One Hot Encoding

우리: [1, 0, 0, 0, 0] 집: [0, 1, 0, 0, 0]

강아지: [0, 0, 1, 0, 0] 는: [0, 0, 0, 1, 0]

복슬: [0, 0, 0, 0, 1]

### word2vec - CBoW vs SkipGram



Figure 2: Continuous bag-of-word model

우리 집 \_\_\_는 복슬 강아지



Figure 3: The skip-gram model.

\_\_ \_ 강아지\_ \_\_ \_\_

### word2vec - CBoW vs SkipGram

**CBOW** 

| Input                      | Output |
|----------------------------|--------|
| boy, is, going             | the    |
| the, is, going, to         | boy    |
| the, boy, going, to school | is     |
| the, boy, is, to, school   | going  |
| boy, is, going, school     | to     |
| is, going, to              | school |

| the    | 1 |
|--------|---|
| boy    | 1 |
| is     | 1 |
| going  | 1 |
| to     | 1 |
| school | 1 |

Skip-Gram

| Input  | Output                     |
|--------|----------------------------|
| the    | boy, is, going             |
| boy    | the, is, going, to         |
| is     | the, boy, going, to school |
| going  | the, boy, is, to, school   |
| to     | boy, is, going, school     |
| school | is, going, to              |

| 3 |
|---|
| 4 |
| 5 |
| 5 |
| 5 |
| 3 |
|   |

SkipGram이 CBoW보다 같은 epoch으로 학습을 한다해도 각 단어들은 여러 번 여러 context에 걸쳐 빈번하게 학습됨.

성능: SkipGram > CBoW

### word2vec - SkipGram 학습과정 살펴보기

### Hyperparameter!

Hidden layer의 차원 (N): 몇 차원의 벡터로 단어를 표현할 것인가

Window Size (m): 주변 몇 개의 단어를 사용하여 context를 파악할 것인가

### Goal!

**Maximize**  $P(w_{c-m}, ..., w_{c+m}|w_c)$ 

=> Loss function =  $-\log P(w_{c-m}, ..., w_{c+m}|w_c)$ 

### **Example**

우리 집 강아지는 복슬 강아지 (\_\_ \_ 강아지\_ \_\_ \_\_



Figure 3: The skip-gram model.

#### YONSEI Data Science Lab | DSL

# 2. Word Embedding

### word2vec - SkipGram 학습과정 살펴보기 (Input Layer)

#### **Tokenization**

우리집 강아지는 복슬 강아지

=> 우리 / 집 / 강아지 / 는 / 복슬 / 강아지

### One Hot Encoding

우리:[1, 0, 0, 0, 0]

강아지:[0,0,1,0,0]

복슬: [0, 0, 0, 0, 1]

집:[0,1,0,0,0]

는:[0, 0, 0, 1, 0]



Figure 3: The skip-gram model.

#### **Example**

우리 집 강아지는 복슬 강아지 (\_\_ \_ 강아지\_ \_\_\_ \_\_)

### word2vec - SkipGram 학습과정 살펴보기 (Input Layer -> Hidden Layer)

One Hot Encoding 한 vector와 Embedding matrix를 곱해, N 차원의 embedding vector를 얻는다.

강아지: [0, 0, 1, 0, 0] @ Embedding matrix

=> 강아지의 embedding vector : [0.2, 0.8, 1.9, -0.5]



Figure 3: The skip-gram model.

#### **Example**

우리 집 강아지는 복슬 강아지 (\_\_ \_ 강아지\_ \_\_\_ \_\_)

### word2vec - SkipGram 학습과정 살펴보기 (Hidden Layer -> Output Layer)

N 차원의 embedding vector와 Score matrix를 곱해 C(=2m) 개 만큼 output vector (score vector)를 얻는다.

강아지: [0.2, 0.8, 1.9, -0.5] @ Score matrix

=> 강아지의 score vector : [0.5, 0.1, -0.8, -1.5, 0.9] X C



Figure 3: The skip-gram model.

#### **Example**

우리 집 강아지는 복슬 강아지 (\_\_ \_ 강아지\_ \_\_ \_\_)

### word2vec - SkipGram 학습과정 살펴보기 (Output Layer)

Score vector를 확률값으로 나타내기 위해 Softmax 함수를 취한다.

그 후 target vector와 차이를 이용하여 역전파 알고리즘 사용하여 Embedding Matrix, Score Matrix 를 update한다.

 $[0.5, 0.1, -0.8, -1.5, 0.9] \Rightarrow Predict : [0.28, 0.19, 0.08, 0.04, 0.41]$ 

Target : 우리 : [1, 0, 0, 0, 0] 집 : [0, 1, 0, 0, 0]

는: [0, 0, 0, 1, 0] 복슬: [0, 0, 0, 0, 1]

강아지: [0, 0, 1, 0, 0]



Figure 3: The skip-gram model.

#### **Example**

우리 집 강아지는 복슬 강아지 (\_\_ \_ 강아지\_ \_\_ \_\_)

### word2vec: 단어 벡터 간 유의미한 유사도를 반영하도록 단어의 의미를 수치화하는 것



Figure 3: The skip-gram model.

### word2vec 단점 - Too Expensive Computation



```
\begin{aligned} & \text{for each } v_j \in W \text{ do (each word in context words)} \\ & \text{for each } u_k \in Context \ Words \ \text{do} \\ & EH \leftarrow 0 \\ & \text{for each } i = 1 \ to \ V \ \text{do} \\ & EI_i \leftarrow softmax(W'^T v_{W_j}) - t_i \\ & EH \leftarrow EH + W' \cdot EI_i \\ & v_{W'i}^{new} \leftarrow v_{W'i}^{old} - \alpha \cdot EI_i \cdot h \\ & \text{end for} \\ & v_{W_j}^{new} \leftarrow v_{W_j}^{old} - \alpha \cdot EH^T \\ & \text{end for} \end{aligned}
```

**→** Too expensive computation

#### word2vec - Hierarchical Softmax





Build Binary Tree : V leaves, V-1 inner units

$$p(w = w_0) = \prod_{j=1}^{L(w_0)-1} \sigma([n(w_0, j+1) = ch(n(w_0, j))] \cdot W'_{n(w, j)}^T \cdot h)$$

#### word2vec - Hierarchical Softmax



Build Binary Tree : V leaves, V-1 inner units

$$p(w = w_0) = \prod_{j=1}^{L(w_0)-1} \sigma([n(w_0, j+1) = ch(n(w_0, j))] \cdot W'_{n(w, j)}^T \cdot h)$$

#### word2vec - Hierarchical Softmax

#### **Build Binary Tree**



$$p(w = w_0) = \prod_{j=1}^{L(w_0)-1} \sigma(\llbracket n(w_0, j+1) = ch(n(w_0, j)) \rrbracket \cdot W'_{n(w, j)}^T \cdot h)$$

[x] = 1 if x is True [x] = -1 if x is False

ch(n): left child of unit n

 $n(w_0, j + 1) = ch(n(w_0, j))$ :  $w_0$ 까지 가는 경로에서 왼쪽으로 뻗어 나가면 True, 오른쪽으로 뻗어 나가면 False

Ex) w2까지 가는 경로에서 1, 1, -1 을 반환하게 됨.

#### word2vec - Hierarchical Softmax

#### **Build Binary Tree**



$$p(w = w_0) = \prod_{j=1}^{L(w_0)-1} \sigma([n(w_0, j+1) = ch(n(w_0, j))] \cdot W'_{n(w, j)}^T \cdot h)$$

$$p(w = w_2) = p(n(w_2, 1), left) \cdot p(n(w_2, 2), left) \cdot p(n(w_2, 3), right)$$

$$= \sigma(W'_{n(w_2, 1)}^T \cdot h) \cdot \sigma(W'_{n(w_2, 2)}^T \cdot h) \cdot \sigma(-W'_{n(w_2, 3)}^T \cdot h)$$
=> 연산량: 3

$$p(w = w_2) = \frac{\exp(w_2)}{\sum_{j=1}^{V} \exp(w_j)}$$

=> 연산량 : V

#### word2vec - Hierarchical Softmax

#### **Error Function**

#### Softmax

$$E = -\log \prod_{c=1}^{C} \frac{\exp(u_{c,j_c^*})}{\sum_{j'=1}^{V} \exp(u_{j'})} \ (u_j = W'_j^T \cdot h)$$

#### **Hierarchical Softmax**

$$E = -\log \prod_{j=1}^{L(w_O)-1} \sigma([n(w_O, j+1) = ch(n(w_O, j))] \cdot W'_{n(w, j)}^T \cdot h)$$

#### **Update** *W* Matrix

#### **Softmax**

$$W_{w_I}^{new} = W_{w_I}^{old} - \alpha \cdot EH^T$$
,  $(EH_i = \sum_{j=1}^V EI_j W'_{ij})$ 

#### **Hierarchical Softmax**

$$W_{w_I}^{new} = W_{w_I}^{old} - \alpha \cdot EH^T$$
,  $(EH = \sum_{j=1}^{L(w)-1} (\sigma(W_{n(w,j)}^T \cdot h) - t_j) \cdot W_{n(w,j)})$ 

### word2vec - Negative Sampling

Only the weights corresponding to the target word might get a significant update.

The calculation of the final probabilities using the softmax is quite an expensive operation.



The idea of negative sampling is more straightforward than hierarchical softmax: in order to deal with the difficulty of having too many output vectors that need to be updated per iteration, we only update a sample of them.

Apparently the output word (i.e., the ground truth, or positive sample) should be kept in our sample and gets updated, and we need to sample a few words as negative samples (hence "negative sampling"). A probabilistic distribution is needed for the sampling process, and it can be arbitrarily chosen. We call this distribution the noise distribution, and denote it as  $P_n(w)$ . One can determine a good distribution empirically. [6]

### word2vec - Negative Sampling

The idea of negative sampling is more straightforward than hierarchical softmax: in order to deal with the difficulty of having too many output vectors that need to be updated per iteration, we only update a sample of them.

Apparently the output word (i.e., the ground truth, or positive sample) should be kept in our sample and gets updated, and we need to sample a few words as negative samples (hence "negative sampling"). A probabilistic distribution is needed for the sampling process, and it can be arbitrarily chosen. We call this distribution the noise distribution, and denote it as  $P_n(w)$ . One can determine a good distribution empirically. 6

$$E = -\log \sigma(\mathbf{v}'_{w_O}^T \mathbf{h}) - \sum_{w_j \in \mathcal{W}_{\text{neg}}} \log \sigma(-\mathbf{v}'_{w_j}^T \mathbf{h})$$

$$W_{neg} = \left\{ w_j \middle| j = 1, 2, 3, \dots, k \right\} \sim P_n(w) : noise \ dist'n$$

$$P_n(w_i) = \frac{f(w_i)}{\sum_{j=0}^n f(w_j)}, \ f(w_i): frequency \ of \ w_i, \ for \ better \ result, \ P_n(w_i) = \frac{f(w_i)^{\frac{3}{4}}}{\sum_{j=0}^n f(w_j)^{\frac{3}{4}}}$$

$$0.9^{\frac{3}{4}} = 0.9240, \qquad 0.2^{\frac{3}{4}} = 0.2990$$

### word2vec - Negative Sampling

$$\begin{split} \theta &= \underset{\theta}{\operatorname{argmax}} \prod_{(w,c) \in D} P(D=1|w,c,\theta) \prod_{(w,c) \in \tilde{D}} P(D=0|w,c,\theta) \\ &= \underset{\theta}{\operatorname{argmax}} \prod_{(w,c) \in D} P(D=1|w,c,\theta) \prod_{(w,c) \in \tilde{D}} (1-P(D=1|w,c,\theta)) \\ &= \underset{\theta}{\operatorname{argmax}} \sum_{(w,c) \in D} \log P(D=1|w,c,\theta) + \sum_{(w,c) \in \tilde{D}} \log (1-P(D=1|w,c,\theta)) \\ &= \underset{\theta}{\operatorname{argmax}} \sum_{(w,c) \in D} \log \frac{1}{1+\exp(-u_w^T v_c)} + \sum_{(w,c) \in \tilde{D}} \log (1-\frac{1}{1+\exp(-u_w^T v_c)}) \\ &= \underset{\theta}{\operatorname{argmax}} \sum_{(w,c) \in D} \log \frac{1}{1+\exp(-u_w^T v_c)} + \sum_{(w,c) \in \tilde{D}} \log (1-\frac{1}{1+\exp(-u_w^T v_c)}) \end{split}$$

Maximize the probability of co-occurrence for actual words that lie in the context Minimize the probability of co-occurrence for some random words that don't lie in the context

$$O = \frac{\log \sigma(\mathbf{v}_{w_O}^{\prime T} \mathbf{h})}{\log \sigma(\mathbf{v}_{w_O}^{\prime T} \mathbf{h})} + \sum_{w_j \in \mathcal{W}_{\text{neg}}} \log \sigma(-\mathbf{v}_{w_j}^{\prime T} \mathbf{h}) \qquad E = -\frac{\log \sigma(\mathbf{v}_{w_O}^{\prime T} \mathbf{h})}{\log \sigma(\mathbf{v}_{w_O}^{\prime T} \mathbf{h})} - \sum_{w_j \in \mathcal{W}_{\text{neg}}} \log \sigma(-\mathbf{v}_{w_j}^{\prime T} \mathbf{h})$$

### word2vec - Negative Sampling

### Ex. 우리 집 강아지는 복슬 강아지





| Input | Target |
|-------|--------|
| 강아지   | 집      |
| 강아지   | 는      |
| 는     | 강아지    |
| 는     | 복슬     |
| 복슬    | 는      |
| 복슬    | 강아지    |

| Inputl | Input2 | Output |
|--------|--------|--------|
| 강아지    | 집      | 1      |
| 강아지    | 는      | 1      |
| 는      | 강아지    | 1      |
| 는      | 복슬     | 1      |
| 복슬     | 는      | 1      |
| 복슬     | 강아지    | 1      |

# word2vec - Negative Sampling

#### Ex. 우리 집 강아지는 복슬 강아지



Randomly choose from  $P_n(w)$ 

Randomly choose from  $P_n(w)$ 

Randomly choose from  $P_n(w)$ 

| Inputl | Input2 | Output |
|--------|--------|--------|
| 강아지    | 집      | 1      |
| 강아지    | 는      | 1      |
| 는      | 강아지    | 1      |
| 는      | 복슬     | 1      |
| 복슬     | 는      | 1      |
| 복슬     | 강아지    | 1      |

| Inputl | Input2 | Output |
|--------|--------|--------|
|        |        | _      |
| 강아지    | 집      | 1      |
| 강아지    | 는      | 1      |
| 강아지    | 우리     | 0      |
| 는      | 강아지    | 1      |
| 는      | 복슬     | 1      |
| 는      | 우리     | 0      |
| 복슬     | 는      | 1      |
| 복슬     | 강아지    | 1      |
| 복슬     | 집      | 0      |

### word2vec - Negative Sampling

#### Ex. 우리 집 강아지는 복슬 강아지



minimize 
$$E = -\log \sigma(\mathbf{v}'_{w_O}^T \mathbf{h}) - \sum_{w_j \in \mathcal{W}_{\text{neg}}} \log \sigma(-\mathbf{v}'_{w_j}^T \mathbf{h})$$

$$1 - \sigma(\mathbf{v}'_{w_j}^T h)$$

| Inputl | Input2 | Output |
|--------|--------|--------|
| 강아지    | 집      | 1      |
| 강아지    | 는      | 1      |
| 강아지    | 우리     | 0      |
| 는      | 강아지    | 1      |
| 는      | 복슬     | 1      |
| 는      | 우리     | 0      |
| 복슬     | 는      | 1      |
| 복슬     | 강아지    | 1      |
| 복슬     | 집      | 0      |

### word2vec - Negative Sampling

#### **Error Function**

#### **Softmax**

$$E = -\log \prod_{c=1}^{C} \frac{\exp(u_{c,j_c^*})}{\sum_{j'=1}^{V} \exp(u_{j'})} (u_j = v'_{w_j}^T \cdot h)$$

#### **Negative Sampling**

$$E = -\log \sigma(v'_{W_o}^T h) - \sum_{w_i \in W_{neg}} \log \sigma(-v'_{w_i}^T h)$$

### **Backpropagation**

#### **Softmax**

$$v_{W_I}^{new} = v_{W_I}^{old} - \alpha \cdot EH^T$$
,  $(EH_i = \sum_{j=1}^{V} EI_j v'_{ij})$ 

#### **Negative Sampling**

$$v_{W_{I}}^{new} = v_{W_{I}}^{old} - \alpha \cdot EH^{T}$$
,  $(EH = \sum_{w_{j} \in \{w_{O}\} \cup W_{neg}} (\sigma(v'_{w_{j}}^{T} \cdot h) - t_{j}) \cdot v'_{w_{j}})$ 

#### Other Methods

FastText: word2vec의 확장판.

1. 내부단어(subword)의 학습

- 2. 모르는 단어(Out Of Vocabulary, OOV)에 대한 대응
- 3. 단어 집합 내 빈도 수가 적었던 단어(Rare Word)에 대한 반응

GloVe: word2vec의 예측 기반 방법론과 카운트 기반 방법론을 모두 사용함.

**PCA** 

Dimension Reduction : N차원으로 나타낸 embedding vector를 눈으로 보고 싶다!

설명력이 높은 2~3개의 주성분을 이용하여 차원 축소 후 plot!

옛날에 배웠으니까 넘어갈게요~!

#### **PCA**



PCA의 단점

선형 분석 방식으로 값을 mapping 하기 때문에 차원이 감소하면서 군집화 되어 있는 데이터들이 뭉개져서 제대로 구별할 수 없는 문제가 발생할 수 있음.

# t-SNE (t-distributed Stochastic Neighbor Embedding)

$$p_{j|i} = \frac{e^{-\frac{||\mathbf{x}_i - \mathbf{x}_j||^2}{2\sigma_i^2}}}{\sum_{k \neq i} e^{-\frac{||\mathbf{x}_i - \mathbf{x}_k||^2}{2\sigma_i^2}}}$$

$$q_{j|i} = \frac{e^{-||\mathbf{y}_i - \mathbf{y}_j||^2}}{\sum_{k \neq i} e^{-||\mathbf{y}_i - \mathbf{y}_k||^2}}$$

원래 차원에서 i가 j를 이웃으로 선택할 확률

축소한 차원에서 i가 j를 이웃으로 선택할 확률

y를 구할 수 있는가? 지금 당장은 못 구한다...

# t-SNE (t-distributed Stochastic Neighbor Embedding)

$$p_{j|i} = \frac{e^{-\frac{||\mathbf{x}_i - \mathbf{x}_j||^2}{2\sigma_i^2}}}{\sum_{k \neq i} e^{-\frac{||\mathbf{x}_i - \mathbf{x}_k||^2}{2\sigma_i^2}}}$$

$$q_{j|i} = \frac{e^{-||\mathbf{y}_i - \mathbf{y}_j||^2}}{\sum_{k \neq i} e^{-||\mathbf{y}_i - \mathbf{y}_k||^2}}$$

원래 차원에서 i가 j를 이웃으로 선택할 확률

축소한 차원에서 i가 i를 이웃으로 선택할 확률

i와 j가 서로를 이웃으로 선택할 확률 (pairwise probability)

$$Cost = \sum_{i} KL(P_i||Q_i) = \sum_{i} \sum_{j} p_{j|i} log \frac{p_{j|i}}{q_{j|i}}$$

$$\frac{\partial C}{\partial \mathbf{y}_i} = 2\sum_j (\mathbf{y}_j - \mathbf{y}_i)(p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j})$$

$$Cost = \sum_{i} KL(P_i||Q_i) = \sum_{i} \sum_{j} p_{ij} log \frac{p_{ij}}{q_{ij}}$$

$$\frac{\partial C}{\partial \mathbf{y_i}} = 4\sum_{j} (\mathbf{y_j} - \mathbf{y_i})(p_{ij} - q_{ij})$$

Perplexity: SNE는 거리에 반비례하게 영향력을 정의하여 embedding 하는데 사용한다.

5~50 사이의 값에서 robust함.

이때 Perplexity란 어느 범위까지 영향력을 강하게 할 것인가를 결정하는 hyperparameter

# t-SNE (t-distributed Stochastic Neighbor Embedding)

왜 "t"-SNE일까??

Crowding problem:  $q_{j|i} = \frac{e^{-||\mathbf{y}_i - \mathbf{y}_j||^2}}{\sum_{k \neq i} e^{-||\mathbf{y}_i - \mathbf{y}_k||^2}}$ 

무슨 분포가 생각나시나요?

# t-SNE (t-distributed Stochastic Neighbor Embedding)

왜 "t"-SNE일까??

Crowding problem : 정규분포는 중심에서부터 멀어지면 급격히 값이 감소함. 어느 정도 멀리 있는 데이터들은 서로 간의 위치 정보를 담을 수 없음.



$$q_{j|i} = \frac{e^{-||\mathbf{y}_i - \mathbf{y}_j||^2}}{\sum_{k \neq i} e^{-||\mathbf{y}_i - \mathbf{y}_k||^2}} \longrightarrow q_{ji} = \frac{(1 + ||\mathbf{y}_i - \mathbf{y}_j||^2)^{-1}}{\sum_{k \neq l} (1 + ||\mathbf{y}_k - \mathbf{y}_l||^2)^{-1}}$$
$$\frac{\partial C}{\partial \mathbf{y}_i} = 4 \sum_{j} (\mathbf{y}_j - \mathbf{y}_i)(p_{ij} - q_{ij})(1 + ||\mathbf{y}_i - \mathbf{y}_j||^2)^{-1}$$

# t-SNE (t-distributed Stochastic Neighbor Embedding)





t-SNE를 사용 했을 때 PCA보다 더 군집이 잘 떨어져 있는 모습을 확인할 수 있음.

https://distill.pub/2016/misread-tsne/

# **Summary**

### 1. Tokenization & Cleansing

- 1. 한국어의 경우 형태소 단위, 음절 단위 등으로 분석 가능함
- 2. KoNLPy + Huggingface 의 Tokenizer 사용 가능함
- 3. Tokenization이든 Cleansing에든 정해진 방법은 없음

### 2. Word Embedding - word2vec

- word2vec은 좋은 word embedding 방법임
- 2. Heavy computation을 방지하기 위해 HS, NS가 고안됨
- 3. 그 외에도 FastText, GloVe 같은 embedding 방법이 있음

### 3. Visualization - PCA, t-SNE

- 1. PCA, t-SNE 모두 좋은 저차원 embedding 방법임
- 2. 여러 가지 시도해보고 좋은 것으로 visualization 하는 것이 좋음

# Reference

#### Reference

https://en.wikipedia.org/wiki/Text\_mining

딥 러닝을 이용한 자연어 처리 입문 https://wikidocs.net/book/2155

Rong, Xin. "word2vec parameter learning explained." (2014).

Mikolov, Tomas, et al. "Efficient estimation of word representations in vector space." (2013).

https://www.youtube.com/watch?v=INHwh8k4XhM

#### **Image Reference**

https://www.tibco.com/ko/reference-center/what-is-text-mining

https://www.expressanalytics.com/blog/social-media-sentiment-analysis/

https://www.samyzaf.com/ML/nlp/nlp.html



# Thank you!!!

22.08.30 / DSL 7기 최명헌