Multidimensional Scaling

- Have distances between individuals.
- Want to draw a picture (map) in 2 dimensions showing individuals so that distances (or order of distances) as close together as possible.
- If want to preserve actual distances, called *metric multidimensional scaling* (in SAS, level=absolute)
- If only want to preserve order of distances, called *non-metric* multidimensional scaling (in SAS, level=ordinal).
- Metric scaling has solution that can be worked out exactly.
- Non-metric only has iterative solution.
- Assess quality of fit via quantity "stress", whether use of resulting map is reasonable. (Try something obviously 3-dimensional and assess its failure.) Stress has min 0 and max 1.

Metric scaling: European cities

The file europe.dat contains road distances (in km) between 16 European cities. Can we reproduce a map of Europe from these distances?

First, reading in the data (as TYPE=DISTANCE):

```
data euro(type=distance);
  infile "europe.dat" delimiter=",";
  input city $ Amsterdam Athens Barcelona Berlin
    Cologne Copenhagen Edinburgh Geneva London
    Madrid Marseille Munich Paris Prague Rome Vienna
```

- Values in spreadsheet.
- Save as .csv.
- Take out quotes.
- Values separated by commas, suitable for reading by SAS.

The code, using PROC MDS

```
proc mds level=absolute out=y outres=z;
proc print data=y;
proc sort data=z;
  by residual;
proc print data=z;
  var _row_ _col_ residual;
proc plot data=y;
  plot dim1 * dim2 $ _label_;
```

- Run PROC MDS using level=absolute to reproduce the exact distances (to scale).
- Two output data sets: one containing the coordinates for our map, and one containing the observed and predicted (from map) distances and residuals.
- Print coordinates.
- Sort residuals and print them (with the cities they belong to).
- Plot coordinates, labelling each point by its city.

The coordinates

In Dim1 and Dim2:

			TYPE	_LABEL_	_NAME_	Dim1	Dim2
1	2		CRITERION			0.07	
2	2		CONFIG	Amsterdam	Amsterdam	-300.71	558.62
3	2		CONFIG	Athens	Athens	2599.74	-375.74
4	2		CONFIG	Barcelona	Barcelona	-704.34	-1012.29
5	2		CONFIG	Berlin	Berlin	402.29	619.72
6	2		CONFIG	Cologne	Cologne	-83.70	396.98
7	2	•	CONFIG	Copenhagen	Copenhagen	97.17	1241.96
8	2	•	CONFIG	Edinburgh	Edinburgh	-1232.60	906.77
9	2	•	CONFIG	Geneva	Geneva	-185.99	-342.22
10	2	•	CONFIG	London	London	-574.43	406.08
11	2	•	CONFIG	Madrid	Madrid	-1341.37	-1088.16
12	2		CONFIG	Marseille	Marseille	-319.76	-750.10
13	2	•	CONFIG	Munich	Munich	326.13	-25.17
14	2		CONFIG	Paris	Paris	-525.60	49.92
15	2	•	CONFIG	Prague	Prague	541.20	285.90
16	2		CONFIG	Rome	Rome	541.38	-1031.08
17	2		CONFIG	Vienna	Vienna	760.58	158.80

Stress 0.07 is small.

The sorted residuals (edited)

Obs	_ROW_	_COL_	RESIDUAL
1	Vienna	London	-445.723
2	Edinburgh	Athens	-273.247
3	Cologne	Athens	-230.477
4	London	Edinburgh	-170.966
5	Madrid	Cologne	-170.119
6	London	Athens	-170.038
• • •			
115	Rome	Madrid	215.393
116	Rome	Barcelona	225.139
117	Madrid	Edinburgh	374.108
118	Rome	Athens	390.827
119	Copenhagen	Athens	434.100
120	Edinburgh	Copenhagen	492.631

Edinburgh and Athens feature in a lot of the large residuals.

The map

```
Plot of Dim1*Dim2$_LABEL_. Symbol points to label.
  4000 +
D
                        > Athens
 2000 +
е
n
S
              > Rome
                       Vienna < > Prague
                              > Munich > Berlin Copenhagen
0
 0 +
                                   > Cologne
n
           Marseille < > Geneva > Amsterdam
             > Barcelona Paris < > London
1
             > Madrid
                                             > Edinburgh
 -2000 +
     -1500 -1000 -500 0
                                      500 1000
                                                    1500
```

Comments on map

- The map looks upside down!
- MDS doesn't know about directions, only distances, so map could come out reflected (vertically or horizontally) or rotated.
- Given all that, cities look in about right relative places.
- City pairs with largest positive residuals have large bodies of water between them (affecting road distance considerably):
 - Edinburgh—Copenhagen (North Sea)
 - Rome—Athens (Adriatic)
- As it happens, plotting Dim2*Dim1 produces almost reasonable map:

Map 2

```
Plot of Dim2*Dim1$_LABEL_. Symbol points to label.
  2000 +
                            > Copenhagen
D
  1000 +
           > Edinburgh
                Cologne Berlin
m
             London < v ^ Prague
е
                  Amsterdam ^ > Vienna
n
s 0 +
                    > Paris > Munich
                         > Geneva
                                              Athens <
0
                     > Marseille
n
-1000 + Madrid < > Barcelona > Rome
2
 -2000 +
     -2000 -1000
                                             2000
                           0 1000
                                                     3000
```

Non-metric scaling: languages

■ Recall language data (from cluster analysis): 1–10, measure dissimilarity between two languages by how many number names *differ* in first letter. Data:

```
en 0 2 2 7 6
                6 6 7 8 9
no 2 0 1 5 4
                5 5 6 8 9
dk 2 1 0 6 5
nl 7 5 6 0 5
                  9 10 8 9
                9
de 6 4 5 5 0 7 7 7 8 9 9
fr 6 6 6 9 7 0
                2 1 5 10 9
es 6 6 5 9 7 2
                0 1 3 10 9
                1 0 4 10 8
it 6 6 5 9 7 1
pl 7 7 6 10 8 5 3 4 0 10
hu 9 8 8 8 9
            10 10 10 10 0 8
sf 9 9 9 9 9
            9
                9
                 8
                    9 8 0
```

 Only want to reproduce order of dissimilarities; actual numbers don't matter. (Map only reproduces relative closeness of languages.)

Code

■ Read data as distances, use level=ordinal. Print coordinates and residuals, plot map (labelled by language): data lang(type=distance); infile "one-ten.dat"; input lang \$ en no dk nl de fr es it pl hu sf; proc mds level=ordinal out=coords outres=dist; id lang; proc print data=dist; var row col data distance residual; proc print data=coords; proc plot data=coords;

plot dim2 * dim1 = '*' \$ lang;

Output from PROC MDS

Multidimensional Scaling: Data=WORK.LANG.DATA Shape=TRIANGLE Condition=MATRIX Level=ORDINAL Coef=IDENTITY Dimension=2 Formula=1 Fit=1 Mconverge=0.01 Gconverge=0.01 Maxiter=100 Over=2 Ridge=0.0001 Badness-Convergence Measures of-Fit Change in -----Iteration Type Criterion Criterion Monotone Gradient Initial 0.2009 0 Monotone 0.1478 0.0531 0.1358 0.6781 Gau-New 0.1126 0.0352 . 3 Monotone 0.1020 0.0105 0.0483 0.3363 Gau-New 0.0997 0.002376 4 5 Monotone 0.0928 0.006869 0.0374 0.2226 Gau-New 0.0923 0.000483 Monotone 0.0915 0.000823 0.0138 0.2190 Gau-New 0.0914 0.0000983 8 Monotone 0.0910 0.000349 0.009497 0.2341 0.002191 10 Gau-New 0.0888 0.0533 11 Gau-New 0.0887 0.000106 0.0169 12 Gau-New 0.0887 0.0000126 0.006850

Iterative procedure converges (stress stops getting smaller at 0.0887, which is small).

The residuals (selected)

Shown: pair of languages, dissimilarity, distance on map, residual (based on ordered data). Large residual means data and distance on map don't match.

Obs	_ROW_	_COL_	DATA	DISTANCE	RESIDUAL
7	de	en	6	0.81928	0.49528
55	sf	hu	8	2.00452	0.35904
49	sf	nl	9	3.15422	-0.34249
40	hu	nl	8	2.02361	0.33995
48	sf	dk	9	2.48611	0.32562
31	pl	dk	6	1.62422	-0.30966
6	nl	dk	6	1.61869	-0.30413
50	sf	de	9	3.10815	-0.29643
5	nl	no	5	1.31502	-0.27280
32	pl	nl	10	3.23354	0.24178
54	sf	pl	9	2.54350	0.26823

- Positive residual: actual dissimilarity greater than expected (compared to map)
- Negative residual: actual dissimilarity less than expected from map.

The coordinates

0bs	_DIMENS_	_MATRIX_	_TYPE_	lang	_NAME_	Dim1	Dim2
1	2	•	CRITERION			0.08872	•
2	2		CONFIG	en	en	0.30099	0.65225
3	2		CONFIG	no	no	-0.11417	0.58068
4	2	•	CONFIG	dk	dk	0.08220	0.30450
5	2	•	CONFIG	nl	nl	-1.30472	1.13912
6	2	•	CONFIG	de	de	-0.39587	1.08307
7	2	•	CONFIG	fr	fr	1.22529	0.07596
8	2	•	CONFIG	es	es	1.12900	-0.15541
9	2	•	CONFIG	it	it	0.96244	-0.35587
10	2	•	CONFIG	pl	pl	1.33098	-0.73409
11	2	•	CONFIG	hu	hu	-2.33345	-0.60349
12	2	•	CONFIG	sf	sf	-0.88268	-1.98673

- 1st row: stress value (max 1, min 0).
- CONFIG lines: Dim1 and Dim2 have coordinates.

The map

Comments on map

- See how distant Hungarian and Finnish are from each other, and the rest.
- See tight grouping of Italian, French and Spanish (Polish nearby).
- See looser grouping of Germanic languages at top (English, German, Dutch, Norwegian, Danish).

Guidelines for stress values

Smaller is better: Stress value	Interpretation
Less than 0.05	Excellent: no prospect of misinterpretation (rarely achieved)
0.05–0.10	Good: most distances reproduced well, small prospect of false inferences
0.10-0.20	Fair: usable, but some distances misleading.
More than 0.20	Poor: may be dangerous to interpret

■ Cities and languages examples both had stress in "good" range.

A cube

Cube has side length 1, so distance across diagonal on same face is $\sqrt{2} \simeq 1.4$ and "long" diagonal of cube is $\sqrt{3} \simeq 1.7$.

Try MDS on this obviously 3-dimensional data.

Converges OK

		Badness-		
		of-Fit	Change in	Convergence
Iteration	Type	Criterion	Criterion	Measure
0	Initial	0.2987	•	0.6106
1	Lev-Mar	0.2275	0.0711	0.1308
2	Gau-New	0.2251	0.002446	0.0409
3	Gau-New	0.2248	0.000263	0.0164
4	Gau-New	0.2248	0.0000426	0.006667

but stress, at 0.2248, in "poor" range. Map probably won't reproduce cube very well.

"Map" of cube

Comments

- Map doesn't resemble cube.
- Some of the residuals are large: eg. g and f: actual distance is 1.4, map distance 0.7.
- Might have guessed this with stress in "poor" range.
- SAS lets you choose dimension of map. Use this PROC MDS line:
 - proc mds dim=3 level=absolute outres=res2;
 (no point saving coordinates since we cannot plot them.)
- Resulting stress is 0.0342, "excellent".
- Largest residual (in size) is -0.1, most much smaller.
- Can't "squeeze" 3-D data into 2 dimensions!