Fair Resource Allocation in Federated Learning

Tian Li et. CMU ICLR2020

Power by 丸一口

Part 01

Fairness definition

Two reasonable definition of fairness.

More Average: Emphasize that everyone has equal opportunities and care about poor clients;

均衡公平性[1]:强调 人人平等有机会,关心表现差的客户;

Contribution: emphasizing distribution according to work, where those who work more receive more.

贡献公平性[1]: 强调 按劳分配, 多劳多得, 优胜劣汰。

Definition 1 (Fairness of performance distribution). For trained models w and \tilde{w} , we informally say that model w provides a more fair solution to the federated learning objective (1) than model \tilde{w} if the performance of model w on the m devices, $\{a_1, \ldots a_m\}$, is more uniform than the performance of model \tilde{w} on the m devices.

Uniformity: In this work, we mainly use the <u>variance</u> of the <u>performance</u> distribution as a measure of uniformity

Performance: In this work, we take 'performance', a_k , to be the <u>testing accuracy</u> of applying the trained model w on the test data for device k.

Part 02

Algorithm

How to improve the fairness of Federated Learning?

Objection function

FedAvg
$$\min_{w} f(w) = \sum_{k=1}^{m} p_k F_k(w)$$

m is the total number of devices, $p_k \ge 0$, and $\sum_k p_k = 1$

q-Fair Federated Learning (q-FFL)

$$\min_{w} f_q(w) = \sum_{k=1}^{m} \frac{p_k}{q+1} F_k^{q+1}(w)$$

$$q = 0 \rightarrow FedAvg$$

 $q increase... \rightarrow Focus on the big one of F_k (performace bad)$

$$q = \infty$$
 \rightarrow Agnostic Federated Learning (AFL)^[2]

Extra parameter: q

$$\min_{w} f_q(w) = \sum_{k=1}^{m} \frac{p_k}{q+1} F_k^{q+1}(w)$$

Effectiveness of q: larger q inducing more fairness

How to get a proper q: grid search

Reduce the parameter search: auto choice learning rate

Auto choice learning rate

LV9 管理员 丸一口-M-DPFL

3. The executive Problem STALE of the Transmitted Learning in principal State Ordering a (Internal open for the Internal State Ordering as a consist of the Internal State Ordering as a consistent conduction and consistent and the Internal State Ordering as a consistent conduction and consistent and consistent and consistent and consistent of the Internal State Ordering as a consistent of principal State Ordering as a consistent of the Internal State Ordering as a consistent of Internal State Ordering as a consistent of the Internal Stat

佬们,TianLi这篇ICLR2020《FAIR RESOURCE ALLOCATION IN FEDERATEDLEARNING》里说,"在基于梯度的方法中,步长成反比取决于函数梯度的Lipschitz常数",这有啥依据吗,没看到她引文献呢

LV5 Zed-D-联邦优化-异构计算 (Author of FedLab)

分析里有学习率的地方一般会乘上 L 这时候取反比可以缓解L的影响

这个操作在优化分析里是基操 都 是这么做的 One concern with solving such a family of objectives is that it requires step-size tuning for every value of q. In particular, in gradient-based methods, the step-size inversely depends on the Lipschitz constant of the function's gradient, which will change as we change q. This can quickly cause the

$$q \to L(q) \to \eta \propto 1/L(q)$$

实际上是二阶导的上界作为L

$$egin{align*} \mathbf{w}_{t+1} &= \mathbf{w}_t - \eta
abla F(\mathbf{w}_t) \ &
ightarrow \eta
abla F(\mathbf{w}_t) &= \mathbf{w}_t - \mathbf{w}_{t+1} \ &
ightarrow rac{1}{\eta} &= rac{
abla F(\mathbf{w}_t)}{\mathbf{w}_t - \mathbf{w}_{t+1}} \ &
ightarrow rac{
abla F(\mathbf{w}_{t+1}) -
abla F(\mathbf{w}_t)}{\mathbf{w}_{t+1} - \mathbf{w}_t} &= rac{
abla F(\mathbf{w}_t) -
abla F(\mathbf{w}_{t+1})}{\mathbf{w}_t - \mathbf{w}_{t+1}} &\leq rac{
abla F(\mathbf{w}_t)}{\mathbf{w}_t - \mathbf{w}_{t+1}} &= rac{1}{\eta} &= L \ &
ightarrow 1 \ &$$

$$q \to L(q) \to \eta \propto 1/L(q)$$

所以 Lipschitz continuous gradient意味着: [3]

$$||f'(x) - f'(y)|| \le L||x - y||$$

$$\min_{w} f_q(w) = \sum_{k=1}^{m} \frac{p_k}{q+1} F_k^{q+1}(w)$$

Lemma 3. If the non-negative function $f(\cdot)$ has a Lipschitz gradient with constant L, then for any $q \ge 0$ and at any point w,

$$L_q(w) = Lf(w)^q + qf(w)^{q-1} \|\nabla f(w)\|^2$$
(3)

is an upper-bound for the local Lipschitz constant of the gradient of $\frac{1}{q+1}f^{q+1}(\cdot)$ at point w.

Proof. At any point w, we can compute the Hessian $\nabla^2 \left(\frac{1}{q+1} f^{q+1}(w) \right)$ as: $\nabla \left(\frac{1}{q+1} f^{q+1}(w) \right) = f^q(w) \cdot \nabla f(w)$

$$\nabla^2 \left(\frac{1}{q+1} f^{q+1}(w) \right) = q f^{q-1}(w) \underbrace{\nabla f(w) \nabla^T f(w)}_{\leq \|\nabla f(w)\|^2 \times I} + f^q(w) \underbrace{\nabla^2 f(w)}_{\leq L \times I}. \tag{4}$$

As a result, $\|\nabla^2 \frac{1}{q+1} f^{q+1}(w)\|_2 \le L_q(w) = Lf(w)^q + qf(w)^{q-1} \|\nabla f(w)\|^2$.

q-FedSGD
$$\min_{w} f_{q}(w) = \sum_{k=1}^{m} \frac{p_{k}}{q+1} F_{k}^{q+1}(w), \qquad (2)$$

$$L_q(w) = Lf(w)^q + qf(w)^{q-1} \|\nabla f(w)\|^2$$
(3)

Algorithm 1 *q*-FedSGD

1: **Input:** $K, T, q, 1/L, w^0, p_k, k = 1, \dots, m$

2: **for** $t = 0, \dots, T - 1$ **do**

Server selects a subset S_t of K devices at random (each device k is chosen with prob. p_k)

Server sends w^t to all selected devices

5: Each selected device k computes:

$$\Delta_k^t = F_k^q(w^t) \nabla F_k(w^t)$$
 grad of (2)
$$h_k^t = q F_k^{q-1}(w^t) \|\nabla F_k(w^t)\|^2 + L F_k^q(w^t)$$
 compute (3)

Each selected device k sends Δ_k^t and h_k^t back to the server 6:

Server updates w^{t+1} as:

$$w^{t+1} = w^t - \frac{\sum_{k \in S_t} \Delta_k^t}{\sum_{k \in S_t} h_k^t} \quad \text{use 1/L as } \eta$$

8: end for

$$\min_{w} f_q(w) = \sum_{k=1}^{m} \frac{p_k}{q+1} F_k^{q+1}(w) , \qquad (2)$$

$$L_q(w) = Lf(w)^q + qf(w)^{q-1} \|\nabla f(w)\|^2$$
(3)

E次梯度变化值, L是当做1/η在用 ←

Algorithm 2 q-FedAvg

- 1: **Input:** $K, E, T, q, 1/L, \eta, w^0, p_k, k = 1, \dots, m$
- 2: **for** $t = 0, \dots, T 1$ **do**
- 3: Server selects a subset S_t of K devices at random (each device k is chosen with prob. p_k)
- 4: Server sends w^t to all selected devices
- 5: Each selected device k updates w^t for E epochs of SGD on F_k with step-size η to obtain \bar{w}_k^{t+1}
- 6: Each selected device k computes:

$$\begin{split} \Delta_k^t &= F_k^q(w^t) \nabla F_k(w^t) \quad \text{FedSGD} \\ h_k^t &= q F_k^{q-1}(w^t) \|\nabla F_k(w^t)\|^2 + L F_k^q(w^t) \end{split}$$

- 7: Each selected device k sends Δ_k^t and h_k^t back to the server
- 8: Server updates w^{t+1} as:

$$w^{t+1} = w^t - \frac{\sum_{k \in S_t} \Delta_k^t}{\sum_{k \in S_t} h_k^t} \quad \text{use 1/L as } \eta$$

9: end for

Part 03

Experiment

How to construct a wonderful paper

Extra parameter: q

Dataset	Objective	Average (%)	Worst 10% (%)	Best 10% (%)	Variance
Synthetic	q = 0	$80.8 \pm .9$	18.8 ± 5.0	100.0 ± 0.0	724 ± 72
	q=1	79.0 ± 1.2	31.1 ± 1.8	100.0 ± 0.0	472 ± 14
Vehicle	q = 0	$87.3 \pm .5$	43.0 ± 1.0	95.7 ± 1.0	291 ± 18
	q=5	$87.7 \pm .7$	$69.9 \pm .6$	$94.0 \pm .9$	48 ± 5
Sent140	q = 0	65.1 ± 4.8	15.9 ± 4.9	100.0 ± 0.0	697 ± 132
	q=1	$66.5 \pm .2$	23.0 ± 1.4	100.0 ± 0.0	509 ± 30
Shakespeare	q = 0	$51.1 \pm .3$	39.7 ± 2.8	72.9 ± 6.7	82 ± 41
	q = .001	$52.1 \pm .3$	42.1 ± 2.1	69.0 ± 4.4	54 ± 27

Thanks

