МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ОДЕСЬКИЙ НАЦІОНАЛЬНИЙ ПОЛІТЕХНІЧНИЙ УНІВЕРСИТЕТ

Інститут комп'ютерних систем

Кафедра інформаційних систем

Лабораторна робота № 7

з дисципліни

«Операційні системи»

Тема: «Команди управління процесами в ОС Unix»

Виконав:

Студент групи АІ-202

Сідельніков М. В.

Перевірив:

Блажко О. А.

Мета роботи: отримання навичок в управлінні процесами в ОС Unix засобами командної оболонки.

Завдання:

Завдання 1. Моделювання багатозадачності.

Нехай оперативна пам'ять на комп'ютері-сервері становить N Гб. Системні процеси ОС займають до М Гбайт пам'яті, а кожна програма користувача може використовувати до К Гбайт пам'яті. Нехай в середньому процеси програм користувачів витрачають F% свого часу на очікування завершення вводу/виводу. Визначте середню завантаженість процесора, використовуючи значення з таблиці 3 варіантів.

Завдання 2. Перегляд таблиці процесів.

- 1. Отримайте ієрархію всіх процесів із зазначенням імен користувачів, їх запустили.
- 2. Отримайте ієрархію процесів, запущених від імені вашого профілю і з зазначенням PID цих процесів.
- 3. Отримайте список процесів, запущених в поточному терміналі, зі спрощеним набором колонок виведення таблиці процесів.
- 4. Отримайте список процесів, запущених від імені вашого користувача, з розширеним набором колонок таблиці процесів.
- 5. Отримайте список процесів, запущених від імені вашого користувача із зазначенням наступного набору колонок: PID, TTY, PPID, STAT, NI, CMD.
- 6. Отримайте список всіх сплячих процесів зі спрощеним набором колонок виведення таблиці процесів.
- 7. Отримайте список процесів, відсортованих по PID, і визначте:
 - а. загальна кількість запущених процесів;

- b. кількість процесів, які виконуються;
- с. кількість сплячих процесів.
- 8. Отримайте список процесів, відсортованих за % використання процесора.

Завдання 3. Керування станами процесів.

- 1. У поточному терміналі виконайте команду ping localhost, але не завершуйте її роботу.
- 2. Запустіть другий термінал доступу до Linux-сервера.
- 3. У другому терміналі для команди ping отримаєте таблицю її процесу (колонки PID, STAT, CMD).
- 4. У другому терміналі призупиніть виконання процесу команди ping.
- 5. У першому терміналі отримайте список фонових процесів
- 6. У другому терміналі відновіть виконання припиненого процесу
- 7. У другому терміналі зупиніть виконання процесу команди ping
- 8. У першому терміналі запустіть команду ping в фоновому режимі так, щоб він не був автоматично зупинений навіть після закриття терміналу, з якого був запущений.
- 9. Закрийте перший термінал.
- 10.У другому терміналі для команди ping отримаєте таблицю її процесу (колонки PID, STAT, CMD). Зробіть висновок про стан процесу.
- 11. Завершіть роботу процесу.

Завдання 4. Управління пріоритетами процесів.

1. Створіть bash-програму, що виконує операцію циклічного складання за формулою: x = x + n, де початкове значення x = кількість букв вашого прізвища, n - кількість букв у вашому імені. Ім'я програми збігається з

- транслітерацією вашого прізвища з розширенням .sh, наприклад, ivanov.sh
- 2. Запустіть bash-програму у фоновому режимі.
- 3. Перегляньте таблицю процесів для запущеного процесу, пов'язаного з bash-програмою, з урахуванням набором колонок: PID, PPID, STAT, NI,% CPU, CMD.
- 4. Виконайте команду призупинення запущеного процесу.
- 5. Ще раз перегляньте таблицю процесів для призупиненого процесу з урахуванням набором колонок: PID, PPID, STAT, NI, %CPU, CMD. Зробіть висновки про його стан.
- 6. Виконайте команду продовження виконання припиненого процесу.
- 7. Ще раз перегляньте таблицю процесів для процесу, який продовжив виконуватися, з урахуванням набором колонок: PID, PPID, STAT, NI, %CPU, CMD. Зробіть висновки про його стан.
- 8. Створіть два файли як символічні посилання на створену bashпрограму з іменами як ім'я поточного файлу з додаванням цифр 2 і 3, відповідно, наприклад: ivanov2.sh, ivanov3.sh.
- 9. Запустіть два файли у фоновому режимі.
- 10.Перегляньте таблицю процесів для трьох запущених процесів з урахуванням набором колонок: PID, PPID, STAT, NI, %CPU, CMD. Зробіть висновки за поточними значеннями NI та %CPU.
- 11.3меншить пріоритет виконання одного з трьох процесів.
- 12.Перегляньте таблицю процесів для трьох запущених файлів з урахуванням набором колонок: PID, PPID, STAT, NI, %CPU, CMD. Зробіть висновки щодо змін значень % CPU для кожного процесу: як вони змінилися?

Хід роботи

Завдання 1. Моделювання багатозадачності.

Нехай оперативна пам'ять на комп'ютері-сервері становить N Гб. Системні процеси ОС займають до М Гбайт пам'яті, а кожна програма користувача може використовувати до К Гбайт пам'яті. Нехай в середньому процеси програм користувачів витрачають F% свого часу на очікування завершення вводу/виводу. Визначте середню завантаженість процесора.

$$N = 7$$
; $M = 1.5$; $K = 0.7$; $F = 60$.

Обсяг пам'яті що залишається на сторонні програми: $N-M=5.5~(\Gamma 6);$ Тому максимальна к-сть процесів, що працюють одночасно дорівнює:

$$5.5 / K = 7.$$

Тоді середня завантаженість процесора дорівнює: $1 - 0.6^7 = 97.2\%$.

Завдання 2. Перегляд таблиці процесів.

1. Отримайте ієрархію всіх процесів із зазначенням імен користувачів, їх запустили.

```
sidelnikov_mikita@vpsj3leQ:~
login as: sidelnikov_mikita
sidelnikov_mikita@91.219.60.189's password:
Last login: Tue Apr 6 07:47:23 2021 from 31.31.105.118
[sidelnikov_mikita@vpsj3IeQ ~]$ clear
[sidelnikov mikita@vpsj3IeQ ~]$ pstree -u
systemd——NetworkManager——2*[{NetworkManager}]
          —agetty
          —auditd——{auditd}
          -belobrov.sh(belobrov artur)
          —belobrov2.sh(belobrov artur) — belobrov2.sh
          —belobrov3.sh(belobrov_artur)
          —chronyd (chrony)
          -crond
          -dbus-daemon(dbus)
          -exim(exim)
          gssproxy--5*[{gssproxy}]
          -httpd---10*[httpd(apache)]
          —irqbalance
          -mysqld(mysql)--30*[{mysqld}]
-named(named)--4*[{named}]
          -nano(bogachik egor)
          —nano(baranyuk_dmitro)
—nesterenko.sh(nesterenko_mikola)——nesterenko.sh
          —nesterenko2.sh(nesterenko_mikola)
          -nesterenko3.sh(nesterenko_mikola)
          -nginx---nginx(emps)
          -php-fpm-6*[php-fpm(soft)]
          -php-fpm 3*[php-fpm]
-3*[php-fpm(emps)]
-3*[php-fpm(soft)]
          —ping(oracle)
          —ping(malofeev_denis)
          —ping(stepanenko gleb)
          —ping(kovach dmitro)
          -6*[ping(markovskij_danilo)]
          —ping(sinyakov_igor)
          —2*[ping(evchev_denis)]
          —ping(kostetskij_bogdan)
—ping(maksimenko andrij)
          —ping(bojchuk oleksandr)
          -polkitd(polkitd)--6*[{polkitd}]
          —pure-ftpd
          -rpcbind(rpc)
           rsyslogd--2*[{rsyslogd}]
          -3*[sh(bodnar illya)]
```

2. Отримайте ієрархію процесів, запущених від імені вашого профілю і з зазначенням PID цих процесів.

```
sidelnikov_mikita@vpsj3leQ:~ - \( \sidelnikov_mikita@vpsj3leQ \cdot\) \( \space \) \( \spacee \) \( \sp
```

3. Отримайте список процесів, запущених в поточному терміналі, зі спрощеним набором колонок виведення таблиці процесів.

4. Отримайте список процесів, запущених від імені вашого користувача, з розширеним набором колонок таблиці процесів.

5. Отримайте список процесів, запущених від імені вашого користувача із зазначенням наступного набору колонок: PID, TTY, PPID, STAT, NI, CMD.

```
[sidelnikov_mikita@vpsj3IeQ ~]$ ps -u sidelnikov_mikita -o pid,tty,ppid,stat,ni,cmd
PID TT PPID STAT NI CMD
4588 ? 3483 S 0 sshd: sidelnikov_mikita@pts/10
4601 pts/10 4588 Ss 0 -bash
30889 pts/10 4601 R+ 0 ps -u sidelnikov_mikita -o pid,tty,ppid,stat,ni,cmd
[sidelnikov_mikita@vpsj3IeQ ~]$
```

6. Отримайте список всіх сплячих процесів зі спрощеним набором колонок виведення таблиці процесів.

- 7. Отримайте список процесів, відсортованих по РІD, і визначте:
 - а. загальна кількість запущених процесів;
 - b. кількість процесів, які виконуються;
 - с. кількість сплячих процесів.

op - 00:18:41	-		-			loa		_			
Cpu(s): us, sy, KiB Mem: total,				sleeping, ni, id, free,		wa, used,		zombie			
		-	hi,					si, st			
									f/cache		
iB Swap:		total,		free,		used.		ava	ail Mem		
PID USER	PR		VIRT	RES			%CPU			COMMAND	
2336 root	20	0	165892	6632	5116		0.0	0.4	0:00.29		
1723 kolesni+		0	113416	1504	1184		0.0	0.1	61:52.31		
1225 markovs+		0	130680	1644	1268		0.0	0.1	0:01.87		
0973 markovs+		0	130680	1640	1264		0.0	0.1	0:01.82		
0769 baranyu+		0	115688	2156	1676		0.0	0.1	0:00.16		
0737 markovs+		0	130680	1644	1268		0.0	0.1	0:01.89		
0729 baranyu+		0	165888	2604	1092		0.0	0.1	0:00.42		
0463 root	20	0	165892	6632	5120		0.0	0.4	0:00.32		
0182 kovach_+		0	113284	1184	1008		0.0	0.1	0:10.52		
0137 baranyu+	20	0	113284	1188	1012	T	0.0	0.1	0:09.27	sh	
9760 apache	20	0	113480	3120	1592	S	0.0	0.2	0:00.13	httpd	
9494 root	20	0	165888	6648	5136	S	0.0	0.4	0:00.30	sshd	
3772 apache	20	0	113480	3096	1576		0.0	0.2	0:00.05	-	
3743 kovach_+	20	0	130680	1640	1264	S	0.0	0.1	0:00.51	ping	
3415 evchev_+	20	0	130680	1644	1264	S	0.0	0.1	0:15.79	ping	
8265 kovach_+	20	0	130680	1644	1268	T	0.0	0.1	0:00.01	ping	
7717 belobro+	20	0	113416	1496	1176	S	0.0	0.1	76:24.09	belobrov.sh	
7573 soft	30	10	279912	5080	828	S	0.0	0.3	0:00.00	php-fpm	
7572 soft	30	10	279912	5080	828	S	0.0	0.3	0:00.00	php-fpm	
7571 soft	30	10	279912	5080	828	S	0.0	0.3	0:00.00	php-fpm	
7570 emps	30	10	279912	5080	828	S	0.0	0.3	0:00.00	php-fpm	
7569 emps	30	10	279912	5080	828	S	0.0	0.3	0:00.00	php-fpm	
7568 emps	30	10	279912	5080	828	S	0.0	0.3	0:00.00	php-fpm	
7567 root	30	10	279912	4920	672	S	0.0	0.3	0:00.00	php-fpm	
7566 root	30	10	279912	4920	672	S	0.0	0.3	0:00.00	php-fpm	
7564 root	30	10	279936	5364	1112	S	0.0	0.3	0:10.73	php-fpm	
7549 emps	30	10	21488	2128	784	S	0.0	0.1	0:00.00	nginx	
7547 root	30	10	20972	1196	276	S	0.0	0.1	0:00.00	nginx	
7540 apache	20	0	113480	3124	1604	S	0.0	0.2	0:00.12	httpd	
7377 apache	20	0	113480	3112	1592	S	0.0	0.2	0:00.05	httpd	
5589 malofee+	20	0	130680	1640	1264	S	0.0	0.1	0:01.18	ping	
5319 barkar_+	20	0	115548	2120	1660	S	0.0	0.1	0:00.07	bash	
5295 barkar <u></u> +	20	0	165892	2588	1076	S	0.0	0.1	0:00.15	sshd	
5999 apache	20	0	113480	3108	1588	S	0.0	0.2	0:00.05	httpd	
4552 kolesni+	20	0	113416	1504	1184	S	0.3	0.1	63:02.16	sh	
4066 root	20	0	165892	6628	5116	S	0.0	0.4	0:00.32	sshd	
3418 root	20	0	0	0	0	S	0.0	0.0	0:00.00	kworker/0:0	
3286 root	30	10	279912	4920	668	S	0.0	0.3	0.00 00	php-fpm	

- a. 239
- b. 196
- c. 7
- 8. Отримайте список процесів, відсортованих за % використання процесора.

```
sidelnikov_mikita@vpsj3leQ:~

top - 00:28:10 up 56 days, 7:31, 17 users, load average: 33.69, 33.53, 31.72
         total,
                  running,
Tasks:
                                  sleeping,
                                               stopped,
                                                              zombie
                               ni, id, free,
%Cpu(s):
                      sy,
                                                  wa,
                   total,
                                                                 buff/cache
KiB Swap:
                   total,
                                   free,
                                                  used.
                                                                 avail Mem
PID USER PR NI
                        VIRT RES
                                       SHR S %CPU %MEM TIME+ COMMAND
29017 root
               20 0 161532 5844 4476 S 0.7 0.3 0:00.02 sshd
11578 nestere+ 25
                   5 113416
                                1496
                                        1176 S
                                                0.3 0.1 68:07.25 nesterenko2.sh
                                1496
11579 nestere+ 20 0 113416
13532 belobro+ 20 0 113416
                                        1176 S
                                                0.3 0.1 73:27.20 nesterenko3.sh
                               1496
1496
24
                                        1176 S
                                                0.3 0.1 76:01.48 belobrov2.sh
                                        1176 S
                   0 113416
0 162276
14520 nestere+ 20
                                                0.3 0.1 73:17.22 nesterenko.sh
14756 barkar + 20
                                                            0:03.28 top
                                        1600 S
                                                0.3 0.1
24552 kolesni+ 20 0 113416
27717 belobro+ 20 0 113416
                                1504
1496
                                        1184 S 0.3 0.1 63:03.45 sh
1176 S 0.3 0.1 76:25.36 belobrov.sh
30737 markovs+ 20
                    0 130680
                                1644
                                        1268 S
                                                0.3 0.1
                                                            0:01.94 ping
   1 root
2 root
4 root
               20 0 191304
20 0 0
                                               0.0 0.2 41:37.41 systemd
                        0
                                0
                                        0 S 0.0 0.0
0 S 0.0 0.0
                                                            0:01.37 kthreadd
                0 -20
                                                            0:00.00 kworker/0:0H
    6 root
               20 0
                                                 0.0
                                                     0.0
                                                            0:55.16 ksoftirad/0
```

Завдання 3. Керування станами процесів.

1. У поточному терміналі виконайте команду ping localhost, але не завершуйте її роботу.

- 2. Запустіть другий термінал доступу до Linux-сервера.
- 3. У другому терміналі для команди ping отримаєте таблицю її процесу (колонки PID, STAT, CMD).

```
[sidelnikov_mikita@vpsj3leQ ~]$ ps -u sidelnikov_mikita -F
UID PID PPID C SZ RSS PSR STIME TTY TIME CMD
sidelni+ 7388 23329 0 32670 1640 1 00:49 pts/17 00:00:00 ping localhost
sidelni+ 12313 23339 0 38869 1876 1 00:50 pts/21 00:00:00 ps -u sidelnikov
sidelni+ 23307 21093 0 41473 2480 1 00:33 ? 00:00:00 sshd: sidelnikov
sidelni+ 23320 21889 0 41473 2484 1 00:46 ? 00:00:00 sshd: sidelnikov
sidelni+ 23329 23307 0 28920 2156 1 00:33 pts/17 00:00:00 -bash
sidelni+ 23339 23320 0 28920 2156 1 00:46 pts/21 00:00:00 -bash
sidelni+ 26312 23329 0 32670 1640 0 00:46 pts/17 00:00:00 ping localhost
[sidelnikov_mikita@vpsj3IeQ ~]$ ps -p 26312 -o pid, stat, cmd
PID STAT CMD
26312 T ping localhost
[sidelnikov_mikita@vpsj3IeQ ~]$
```

4. У другому терміналі призупиніть виконання процесу команди ping.

```
[sidelnikov_mikita@vpsj3IeQ ~]$ kill -19 26312
```

5. У першому терміналі отримайте список фонових процесів

6. У другому терміналі відновіть виконання припиненого процесу

```
[sidelnikov_mikita@vpsj3IeQ ~]$ kill -18 26312
```

7. У другому терміналі зупиніть виконання процесу команди ping

```
[sidelnikov_mikita@vpsj3IeQ ~]$ kill -2 26312
```

- 8. У першому терміналі запустіть команду ping в фоновому режимі так, щоб він не був автоматично зупинений навіть після закриття терміналу, з якого був запущений.
- 9. Закрийте перший термінал.

```
[sidelnikov_mikita@vpsj3IeQ ~]$ nohup ping localhost &
[1] 27204
[sidelnikov_mikita@vpsj3IeQ ~]$ nohup: ignoring input and appending output to 'nohup.out',
[sidelnikov_mikita@vpsj3IeQ ~]$ \
```

10.У другому терміналі для команди ping отримаєте таблицю її процесу (колонки PID, STAT, CMD). Зробіть висновок про стан процесу.

```
sidelnikov_mikita@vpsj3leQ:~ - \( \times\) \( \times\)
```

Процес має статус S (sleep), тобто спить.

11. Завершіть роботу процесу.

```
sidelnikov_mikita@vpsj3IeQ:~ - \ X

[sidelnikov_mikita@vpsj3IeQ ~]$ kill -9 27204

[sidelnikov_mikita@vpsj3IeQ ~]$ .
```

Завдання 4. Управління пріоритетами процесів.

1. Створіть bash-програму, що виконує операцію циклічного складання за формулою: x = x + n, де початкове значення x = кількість букв вашого прізвища, n - кількість букв у вашому імені. Ім'я програми збігається з транслітерацією вашого прізвища з розширенням .sh, наприклад, ivanov.sh

2. Запустіть bash-програму у фоновому режимі.

```
[sidelnikov_mikita@vpsj3IeQ lab6_files]$ nano sidelnykov.sh
[sidelnikov_mikita@vpsj3IeQ lab6_files]$ bash sidelnykov.sh &
[1] 4140
[sidelnikov_mikita@vpsj3IeQ lab6_files]$
```

3. Перегляньте таблицю процесів для запущеного процесу, пов'язаного з bash-програмою, з урахуванням набором колонок: PID, PPID, STAT, NI,% CPU, CMD.

```
[sidelnikov_mikita@vpsj3IeQ lab6_files]$ ps -p 4140 -o pid,ppid,stat,ni,%cpu,cmd
PID PPID STAT NI %CPU CMD
4140 23329 R 0 10.7 bash sidelnykov.sh
```

4. Виконайте команду призупинення запущеного процесу.

5. Ще раз перегляньте таблицю процесів для призупиненого процесу з урахуванням набором колонок: PID, PPID, STAT, NI, %CPU, CMD. Зробіть висновки про його стан.

```
[sidelnikov_mikita@vpsj3IeQ lab6_files]$ ps -p 4140 -o pid,ppid,stat,ni,%cpu,cmd
PID PPID STAT NI %CPU CMD
4140 23329 T 0 10.3 bash sidelnykov.sh

[1]+ Stopped bash sidelnykov.sh
```

Програма зупинена.

- 6. Виконайте команду продовження виконання припиненого процесу.
- 7. Ще раз перегляньте таблицю процесів для процесу, який продовжив виконуватися, з урахуванням набором колонок: PID, PPID, STAT, NI, %CPU, CMD. Зробіть висновки про його стан.

```
[sidelnikov_mikita@vpsj3IeQ lab6_files]$ kill -18 4140
[sidelnikov_mikita@vpsj3IeQ lab6_files]$ ps -p 4140 -o pid,ppid,stat,ni,%cpu,cmd
PID PPID STAT NI %CPU CMD
4140 23329 R 0 9.9 bash sidelnykov.sh
```

Процес має статус R (running), тобто виконується.

8. Створіть два файли як символічні посилання на створену bashпрограму з іменами як ім'я поточного файлу з додаванням цифр 2 і 3, відповідно, наприклад: ivanov2.sh, ivanov3.sh.

9. Запустіть два файли у фоновому режимі.

10.Перегляньте таблицю процесів для трьох запущених процесів з урахуванням набором колонок: PID, PPID, STAT, NI, %CPU, CMD. Зробіть висновки за поточними значеннями NI та %CPU.

Пріоритет однаковий, % ЦП трохи більше у першого процесу, але вони на приблизно однаковому рівні.

11.3меншить пріоритет виконання одного з трьох процесів.

12.Перегляньте таблицю процесів для трьох запущених файлів з урахуванням набором колонок: PID, PPID, STAT, NI, %CPU, CMD. Зробіть висновки щодо змін значень % CPU для кожного процесу: як вони змінилися?

Для процесу з меншим пріоритетом стало відводитися менше ресурсів процесора.

Висновки: під час виконання лабораторної роботи було придбано навичок в управлінні процесами в ОС Unix засобами командної оболонки.