Lecture 11: Quantitative Option Strategies Volatility Statistical Arbitrage

Marco Avellaneda G63.2936.001

Spring Semester 2009

Long/Short Volatility

- Both long and short single stock option contracts
- Use a rich/cheap criterion for volatility which is reliable
- Manage the portfolio so as to be market-neutral and vol-neutral

The theory...

Factor analysis with ETFs and ``stock proxies"

$$I_1,....,I_M$$
 Optionable indexes and ETFs $(M \approx 15)$ $S_1, S_2,...,S_N$ Optionable stocks $(N \approx 500)$

$$\frac{dI_{j}}{I_{j}} = \sigma_{j}dW_{j} + v_{j}dt$$
 Risk-neutral measure for ETFs

$$\frac{dS_i}{S_i} = \sum_{j=1}^{M} \beta_{ij} \frac{dI_j}{I_i} + \varepsilon_i$$
 Historical regression of stocks against ETFs or factors

Risk-Neutral Dynamics for Stock Prices

Use regression weights and the implied volatilities of the factors

$$\frac{dI_j}{I_j} = \sigma_j^I dW_j + v_j dt, \qquad j = 1, ..., M$$

$$\frac{dS_i}{S_i} = \sum_{j=1}^{M} \beta_{ij} \sigma_j^I dW_j + \sigma_i^R dZ_i + \mu_i dt = \sigma_i d\overline{W}_i + \mu_i dt$$

$$\sigma_i^2 = \sum_{jk} \beta_{ij} \beta_{ik} \sigma_j^I \sigma_k^I \rho_{jk}^I + (\sigma_i^R)^2 \equiv (\sigma_i^E)^2 + (\sigma_i^R)^2$$

Explained Unexplained

Model the unexplained (residual) volatilities

$$\sigma_i^R = \varsigma \sigma_i$$

 $\sigma_i^R = \varsigma \sigma_i \quad \therefore \quad 0 < \varsigma < 1$

Unexplained vol is a random fraction of the total vol

$$\sigma_i^2 = \left(\sigma_i^E\right)^2 + \varsigma^2 \sigma_i^2$$

$$\sigma_i^2 = \frac{\left(\sigma_i^E\right)^2}{1-\varsigma^2} \quad \therefore \quad \sigma_i = \sigma_i^E \cdot e^{X_i} \quad \therefore \frac{\sigma_i}{\sigma_i^E} = e^{X_i}$$

$$\frac{d\sigma_i}{\sigma_i} = \frac{d\sigma_i^E}{\sigma_i^E} + dX_i$$

Percent changes in vol modeled as changes in explained vol (market) + idiosyncratic shocks

Ansatz for Implied Volatilities

 We postulate the same model at the level of the short-term implied volatilities (say 30 days)

$$\sigma_{\text{impl},i} = \sigma_{\text{impl},i}^{E} \cdot e^{X_i}$$

Hypothesis: X_i follows a mean-reverting process

1-Factor Model

$$\frac{dI}{I} = \sigma_I dW$$

$$\frac{dS_i}{S_i} = \beta_i \sigma_I dW + \sigma_i^R dZ_i$$

$$\sigma_i = \beta_i \sigma_I e^{X_i}$$

Test for mean-reversion of the ratio $\frac{\sigma_i}{\sigma_I}$

Implied Volatility Ratios: Strong mean reversion

Risk/return in hedged option trading

Unhedged call option

Hedged option

Profit-loss for a hedged single option position (Black –Scholes)

$$P/L \approx -\theta \cdot \left(n^2 - 1\right) + NV \cdot \frac{d\sigma}{\sigma}$$

$$\theta = \text{time-decay (dollars)}, \qquad n = \frac{\Delta S}{S\sigma\sqrt{\Delta t}}, \qquad NV = \text{normalized Vega} = \sigma \frac{\partial C}{\partial \sigma}$$

 $n \sim$ standardized move

NASDAQ-100 Component Stocks 2000-2002

Mean reversion time (in days) :2000-2002						
in donte.	N	Mean	Median	Minimum	Maximum	Std Dev
industry	IN	Ivican	Median	Minimum	Maximum	Std Dev
Basic Mater	1	22.5742	22.5742	22.5742	22.5742	
Health Care	14	25.398163	16.155747	7.4195302	73.968211	21.900874
Industry	1	23.792361	23.792361	23.792361	23.792361	
Services	19	43.724024	34.101249	12.667757	151.63753	33.397578
Technology	49	28.164794	19.326816	6.2123701	289.88511	41.847069
consumer goods	3	26.500397	25.592741	10.428893	43.479557	16.544016
technology	1	47.70815	47.70815	47.70815	47.70815	

NASDAQ-100 Stocks 2003-2004

Mean reversion time (in days):2003-2004

Industry	N	Mean	Median	Minimum	Maximum	Std Dev
Basic Mater	1	43.33972	43.33972	43.33972	43.33972	
Health Care	14	39.105986	16.121285	9.3171668	327.13404	83.178987
Industry	1	15.723726	15.723726	15.723726	15.723726	-
Services	22	33.464655	29.415571	3.5622151	91.695575	23.043199
Technology	49	33.131346	20.585755	3.9163219	322.94961	47.039319
consumer goods	3	112.48146	149.39033	30.747626	157.30641	70.89415
technology	1	28.01174	28.01174	28.01174	28.01174	

OEX Components 2000-2002 Mean-reversion time in days

OEX Components: 2003-2004 Mean-reversion time in days

Weighted MC Approach

- Use a simple model for the dynamics of the single stock relative to its ETF
- Model the residual volatility as a fraction of the total implied (ATM) vol of the stock

$$\frac{dS_{it}}{S_{it}} = \beta_i \sigma_{I,atm} dW_t^{etf} + \gamma_i \sigma_{i,atm} dZ_t^{S}$$

$$\gamma_i = \sqrt{1 - R_i^2}$$
 in the sense of regression

 Calibrate this to all options on ETF and to the forward for the stock under consideration, using Weighted Monte Carlo

Model Value vs. Market Value

$$C_{eur}(S, K, T) = e^{-rT} E^{WMC} \left(\max(S_T - K, 0) \right)$$

Solve for IVOL

$$BSCall(S,T,K,r,d,\sigma_{imp}(K,T)) = C_{eur}(S,K,T)$$

$$C_{\text{model}}(S, K, T) = AmericanBSCall(S, T, K, r, d, \sigma_{imp}(K, T))$$

Compare:

$$C_{\text{model}}(S, K, T), \quad [C_{\text{bid}}(S, K, T), C_{\text{offer}}(S, K, T)]$$

Long/Short Options Portfolio

$$P/L = -\sum_{i} \theta_{i} (n_{i}^{2} - 1) + \sum_{i} NV_{i} \frac{d\sigma_{i}}{\sigma_{i}}$$

$$= -\sum_{i} \theta_{i} \left(n_{i}^{2} - 1\right) + \left(\sum_{i} NV_{i}\right) \frac{d\sigma_{I}}{\sigma_{I}} + \sum_{i} NV_{i} dX_{i}$$

$$= -\sum_{i} \theta_{i} \left(n_{i}^{2} - 1\right) + \sum_{i} NV_{i} dX_{i}$$

The last equation holds if we are ``NV neutral". In particular, this holds if net Theta=0 and all options have the same expiration.

Theta-neutral portfolio: expected return

$$\begin{split} \mathrm{P/L} = -\sum_{i} \theta_{i} \Big(n_{i}^{2} - 1 \Big) - 2 \cdot n_{\mathrm{days}} \sum_{i} \theta_{i} dX_{i} \\ dX_{i} = \kappa_{i} \Big(\overline{X_{i}} - X_{i} \Big) dt + \sigma_{X_{i}} dz_{i} & \text{O-U process} \\ E \Big\{ \mathrm{P/L} \mid X_{1}, \dots, X_{N} \Big\} = -2 \cdot n_{\mathrm{days}} \sum_{i} \theta_{i} \kappa_{i} \Big(\overline{X_{i}} - X_{i} \Big) dt \\ = -2 \cdot n_{\mathrm{days}} \sum_{i} \theta_{i} \frac{\Big(\overline{X_{i}} - X_{i} \Big) dt}{n_{i}^{MR} dt} \\ = -2 \sum_{i} \theta_{i} \Big(\frac{n_{\mathrm{days}}}{n_{i}^{MR}} \Big) \Big(\overline{X_{i}} - X_{i} \Big) & \text{Positive for the right choice of theta} \end{split}$$

If $X_i < equilibrium$, buy option or sell theta. If $X_i > equilibrium$, sell option.

Theta-neutral portfolio: variance

$$P/L = -\sum_{i} \theta_{i} (n_{i}^{2} - 1) - 2 \cdot n_{\text{days}} \sum_{i} \theta_{i} dX_{i}$$

$$\begin{split} Variance & \left\{ \text{P/L} \right\} = Var \left\{ \sum_{i} \theta_{i} \left(n_{i}^{2} - 1 \right) \right\} + 4n_{\text{days}}^{2} Var \left\{ \sum_{i} \theta_{i} dX_{i} \right\} \\ & = 2 \sum_{ij} \theta_{i} \theta_{j} \rho_{ij}^{2} + 4Tn_{\text{days}} \sum_{i} \theta_{i}^{2} \sigma_{X_{i}}^{2} \end{split}$$

 Suggests a method for constructing efficient Theta-neutral portfolios with positive conditional expected return

Practical Implementation Long-Short on 200 Stocks (NDX+OEX)

Pricing on Dec 2005

- Price short-dated options on 200 large-capitalization stocks
- 1200 option contracts priced, 178 considered
- 40 have significant rich/cheap signals

Simulation of P/L for \$10MM 1% daily stdev

Year	1996	1997	1998	1999
PL	\$2,783,545	\$2,231,029	\$4,803,604	\$763,487
return (%)	28	22	48	8
Year	2000	2001	2002	2003
PL	\$1,892,811	\$540,803	\$1,829,187	\$2,560,862
return (%)	19	5	18	26

- Constant-VaR portfolio (1% stdev per day)
- Transaction costs in options/stock trading included

Back-Testing of Long-Short Strategy Constant 1% Portfolio Standard Deviation

Portfolio Structure per 10MM invested in Long-Short Single Names

Year	2001	2002	2003
Av. # contracts/day	19,700	29,200	30,200
Decay collected /day	\$89,500	\$109,900	\$90,000
Decay paid/day	\$77,900	\$98,600	\$74,200
Net decay per day	\$11,600	\$11,300	\$15,800
Net Theta/ Gross Theta	6.93%	5.42%	9.62%

- 100 or more tickers
- Strategy is essentially Theta-neutral
- Excess Theta/Vega < 10%
- Per name, Theta < \$2000 dollars/day

A Brief History of Volatility 1990 – 2008: the CBOE VIX Index

Volatility decreases from 2003 to 2006-2007

S&P 500 Volatility 8/2006-4/2008

XLF (Financial S&P ETF) vs. VIX

Implementation of L/S Strategy in 2007

- Few ``buy" signals in early 2007
- Buying volatility gave poor results 2004-2006
- Theta-neutral portfolios gave poor results in 2004-2006
- Suggested selling volatility on strong signals in small amounts per name
- Hedging with ETFs (sector neutral)
- Hedging with SPY (``globally neutral")
- Synthetic insurance company: selling protection (Gamma) on many single names
- Hedging is the key to maintain market neutrality and get desired results (as we will see)
- In back-testing we use **variance swaps** instead of options for simplicity

Market-Neutrality matching different Greeks

Portfolio profile	Vega Ratio	Exposure	
Vega Neutral	$V_{\it etf} = V_{\it stock}$	collect time decay net long gamma	
Theta Neutral	$V_{ extit{etf}} = V_{ extit{stock}} \cdot rac{oldsymbol{\sigma}_{ extit{stock}}}{oldsymbol{\sigma}_{ extit{etf}}}$	net long vega net long gamma	
Gamma Neutral	$V_{etf} = V_{stock} \cdot rac{oldsymbol{\sigma}_{etf}}{oldsymbol{\sigma}_{stock}}$	collect time decay net long vega	

20 30 50 60 10 40 2007/01/03 2007/01/18 2007/02/01 2007/02/15 2007/03/02 2007/03/16 2007/03/30 2007/04/16 2007/04/30 2007/05/14 2007/05/29 +1 %, drawdown 4% 2007/06/12 2007/06/26 2007/07/11 2007/07/25 2007/08/08 2007/08/22 2007/09/06 2007/09/20 2007/10/04 2007/10/18 2007/11/01 2007/11/15 2007/11/30

Vega-Neutral Per Sector 2007

Capital ~ \$1000 (all sectors)

Bias: long etf gamma, collect decay ("etf light")

2007/12/14

Capital ~ \$1000 (all sectors) Vega-Neutral 2006-2007

Bias: long etf gamma, collect decay ("etf light")

Vega-Neutral With SPY hedge

Global vega hedging does not work: too much decay, imprecise

Gamma-Neutral/Sector 2007 Capital=1000

Bias: collect decay, long vega

Bias: collect decay, long vega

Gamma-Neutral 2006-2007

Capital=1000

Theta-Neutral/Sector 2007 Capital=1000

-4%, drawdown 6%

Bias: long gamma, long vega

Not enough collected decay and liquidity crunch