Math 185 Theorems

- 1. **Prop.** Let $z_1, z_2 \in \mathbb{C}$. Then $|z_1 z_2| = |z_1| |z_2|$ and $\arg(z_1 z_2) = \arg(z_1) + \arg(z_2) \pmod{2\pi}$.
- 2. **Theorem.** \mathbb{C} is a field.
- 3. **De Moivre's Formula.** If $z = r(\cos \theta + i \sin \theta)$ and $n \in \mathbb{Z}_{>0}$, then $z^n = r^n(\cos n\theta + i \sin n\theta)$.
- 4. **Prop.** Let $z, w \in \mathbb{C}$. Then:
 - (a) $\overline{z+w} = \overline{z} + \overline{w}$.
 - (b) $\overline{zw} = \overline{z} \cdot \overline{w}$.
 - (c) $\overline{\left(\frac{z}{w}\right)} = \frac{\overline{z}}{\overline{w}}$ (with $w \neq 0$).
 - (d) $z\overline{z} = |z|^2$. If $z \neq 0$, then $z^{-1} = \frac{\overline{z}}{|z|^2}$.
 - (e) If $z = \overline{z}$, then $z \in \mathbb{R}$ and so z = Re(z).
 - (f) $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$ and $\operatorname{Im}(z) = \frac{z \overline{z}}{2i}$.
 - (g) $\bar{z} = z$.
- 5. **Prop.** Let $z, w \in \mathbb{C}$. Then:
 - (a) $|z| \ge 0$ and if |z| = 0, then z = 0.
 - (b) |zw| = |z||w|.
 - (c) If $w \neq 0$, then $\left| \frac{z}{w} \right| = \frac{|z|}{|w|}$.
 - (d) $|\text{Re}(z)| \le |z| \text{ and } |\text{Im}(z)| \le |z|.$
 - (e) $|\bar{z}| = |z|$.
 - (f) $|z+w| \le |z| + |w|$.
 - (g) $||z| |w|| \le |z w|$.
 - (h) $|z_1w_1 + \dots + z_nw_n| \le \sqrt{|z_1|^2 + \dots + |z_n|^2} \sqrt{|w_1|^2 + \dots + |w_n|^2}$.
- 6. **Prop.** Fix r > 0 and $z \in \mathbb{C}$. The open disk $D_{\varepsilon}(z_0)$ is an open set.
- 7. **Prop.** The following are true:
 - (a) \mathbb{C} is open.
 - (b) The empty set ϕ is open.
 - (c) The union of open sets is open.
 - (d) The intersection of finitely many open sets is open.
- 8. **Prop.** Limits are unique (if they exist).
- 9. **Prop.** If $\lim_{z\to z_0} f(z) = a$ and $\lim_{z\to z_0} g(z) = b$, then:
 - (a) $\lim_{z\to z_0} (f(z) + g(z)) = a + b$.
 - (b) $\lim_{z \to z_0} ((f(z)g(z))) = ab$.
 - (c) $\lim_{z\to z_0} \left(\frac{f(z)}{g(z)}\right) = \frac{a}{b}$ (with $b \neq 0$).
- 10. **Prop.** The following are true:
 - (a) If $\lim_{z\to z_0} f(z) = a$ and h is continuous at a, then $\lim_{z\to z_0} h(f(z)) = h(a)$.

- (b) If f is continuous on an open set $\Omega \subseteq \mathbb{C}$, and h is continuous on $f(\Omega)$, then $h \circ f$ is continuous on Ω , with $(h \circ f)(z) = h(f(z))$.
- 11. **Prop.** The following are true:
 - (a) The empty set ϕ is closed.
 - (b) \mathbb{C} is closed.
 - (c) The intersection of a collection of closed sets is closed.
 - (d) The union of finitely many closed sets is closed.
- 12. **Prop.** A set *F* is closed iff whenever $z_1, z_2, z_3, ...$ is a sequence of points in *F* converging to $\lim_{k \to \infty} z_k = w$, then $w \in F$.
- 13. **Prop.** If $f: \mathbb{C} \to \mathbb{C}$, TFAE:
 - (a) f is continuous.
 - (b) If $F \subseteq \mathbb{C}$ is closed, then $f^{-1}(F)$ is closed.
 - (c) If Ω is open, then $f^{-1}(\Omega)$ is also open.
- 14. **Prop.** (Heine-Borel + Sequential Compactness). For $K \subseteq \mathbb{C}$, TFAE:
 - (a) K is compact.
 - (b) *K* is closed and bounded.
 - (c) Every sequence of points in K has a convergent subsequence converging in K (sequentially compact).
- 15. **Prop.** If *K* is compact and $f: K \to \mathbb{C}$ is continuous, then the image f(K) is compact.
- 16. **Theorem (Extreme Value Theorem).** If K is compact and $f: K \to \mathbb{R}$ is continuous, then f attains its minimum and maximum.
- 17. **Stereographic Projection / Riemann Sphere.** Identify the plane $\overline{\mathbb{C}} = S^2 = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$. If $f: \mathbb{C} \to S^2 \setminus \{N\}$, then we have $(u,v) \mapsto \frac{1}{1+u^2+v^2}(2u,2v,-1+u^2+v^2)$ is a homeomorphism (is continuous with continuous inverse) $f^{-1}: S^2 \setminus \{N\} \to \mathbb{C}$ with $(x,y,z) \mapsto \left(\frac{x}{1-z},\frac{y}{1-z}\right)$.
- 18. **Prop.** (Uniform Convergence). If $f_n \to f$ uniformly and each f_n is continuous, then f is continuous.
- 19. **Euler's Formula.** $e^{iz} = \cos z + i \sin z$ for all $z \in \mathbb{C}$.
- 20. **Theorem.** $\cos z = \frac{e^{iz} + e^{-iz}}{2}$ and $\sin z = \frac{e^{iz} e^{-iz}}{2i}$.
- 21. **Properties of** *e*. Let $x, y \in \mathbb{R}$ and $z, w \in \mathbb{C}$. Then:
 - (a) $e^{z+w} = e^z e^w$.
 - (b) $|e^{x+iy}| = |e^x e^{iy}| = |e^x||e^{iy}| = e^x$.
 - (c) $\arg(e^{x+iy}) = y \pmod{2\pi}$.
 - (d) $e^z \neq 0$ for all $z \in \mathbb{C}$.
 - (e) $e^z = 1$ iff $z = 2\pi in$ for some $n \in \mathbb{Z}$.
 - (f) $e^z = e^{z+2\pi ni}$.
- 22. **Prop.** (Chain Rule). Let $\Omega, A \subseteq \mathbb{C}$ be open sets, and let $f: \Omega \to A$, $g: A \to \mathbb{C}$ be holomorphic functions. Then, $g \circ f: \Omega \to \mathbb{C}$ is holomorphic and $\frac{d}{dz}(f \circ g)(z) = \frac{dg}{df}(f(z)) \cdot \frac{df}{dz}(z)$.
- 23. **Prop.** Let $f: \Omega \to \mathbb{C}$ be holomorphic. Then $f: \Omega \to \mathbb{R}^2$ is real differentiable at all $(x, y) \in \Omega$.
- 24. Cauchy-Riemann Equations. Let Ω be an open set in $\mathbb C$ and let $f:\Omega\to\mathbb C$ be given by f(x,y)=u(x,y)+iv(x,y). Then:
 - (a) f'(z) exists at $z \in \Omega$ iff f is real differentiable and $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ (these are the Cauchy-Riemann equations).
 - (b) f(z) is holomorphic on Ω iff partials are continuous and satisfy the CR equations.
 - (c) If $f'(z_0)$ exists, then $f'(z_0) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial u}{\partial y} i \frac{\partial v}{\partial y} = \frac{1}{i} \frac{\partial f}{\partial y}$.

- 25. **Inverse Function Theorem for** \mathbb{R}^2 . If $f: \Omega \to \mathbb{R}^2$ is continuously differentiable and the Jacobian $Df(z_0)$ has $\det(Df(z_0)) \neq 0$, then there are neighborhoods $U \ni z_0$ and $V \ni f(z_0)$ such that $f: U \to V$ is bijective with continuously differentiable $f^{-1}: V \to U$ such that $Df^{-1}(z_0) = [Df(z_0)]^{-1}$, which is the inverse matrix of $Df(z_0)$.
- 26. **Inverse Function Theorem for** \mathbb{C} . Let $f: \Omega \to \mathbb{C}$ be holomorphic (with continuous $f'(z_0)$), and $f'(z) \neq 0$ for some $z_0 \in \Omega$. Then there exists a neighborhood $U \ni z_0$ and $V \ni f(z_0)$ such that $f: U \to V$ is bijective with holomorphic inverse $f^{-1}: V \to U$ such that for all $z_0 \in U$, $\frac{d}{dw} f^{-1}(w) = \frac{1}{f'(w)}$ with w = f(z).
- 27. **Prop.** Pick a branch $[a, a+2\pi)$. Then $\log z : \mathbb{C} \setminus \{0\} \to \mathbb{R} \times i[a, a+2\pi)$ is the inverse of $\exp : \mathbb{R} \times i[a, a+2\pi) \to \mathbb{C}$.
- 28. **Prop.** $\log : \mathbb{C} \setminus \mathbb{R}_{\leq 0} \to \mathbb{R} \times i(-\pi, \pi)$ is holomorphic with $\frac{d}{dz} \log z = \frac{1}{z}$.
- 29. **Prop.** If $z_1, z_2 \in \mathbb{C} \setminus \mathbb{R}_{<0}$, then $\log(z_1 z_2) = \log z_1 + \log z_2 \pmod{2\pi i}$.
- 30. **Prop.** By choosing different branches of log, we have the following:
 - (a) a^b is independent of the branch iff $b \in \mathbb{Z}$.
 - (b) a^b takes on exactly q different values iff $b \in \mathbb{Q}$, so $b = \frac{p}{q}$ (with p, q coprime).
 - (c) a^b takes on infinitely many values iff b is irrational or $\text{Im}(b) \neq 0$.
- 31. **Cor.** Choose a branch of log. Then the *n*th root function is given by $z^{1/n} = e^{\log(z/n)}$, where the *n*th root function has *n* branches.
- 32. **Prop.** Let $a, b \in \mathbb{C}$. Then:
 - (a) For any choice of branch of log, the function $\mapsto a^z$ is holomorphic on \mathbb{C} , and $z \mapsto (\log a)a^z$.
 - (b) Choose a branch of log. Then the function $z \mapsto z^b$ is holomorphic on the domain of log with derivative $z \mapsto bz^{b-1}$.
- 33. **Prop.** (Re-parametrization). If $\tilde{\gamma}$ is a re-parametrization of γ , then $\int_{\gamma} f = \int_{\tilde{\gamma}} f$ for any continuous f on Ω .
- 34. **Fundamental Theorem of Line Integrals.** Let $F: \Omega \to \mathbb{C}$ be holomorphic on an open Ω and let $\gamma: [0,1] \to \Omega$ be piecewise smooth. Then, $\int_{\gamma} F'(z) dz = F(\gamma(1)) F(\gamma(0))$.
- 35. **Path-independence and Primitives Theorem.** Let $f: \Omega \to \mathbb{C}$ be continuous and Ω is open and connected. Then, TFAE:
 - (a) (path-independence) if $z_0, z_1 \in \Omega$, then any paths $\gamma, \tilde{\gamma}$ with shared endpoints $\gamma(0) = \tilde{\gamma}(0)$ and $\gamma(1) = \tilde{\gamma}(1)$ have $\int_{\gamma} f(z) dz = \int_{\tilde{\gamma}} f(z) dz$.
 - (b) (integral along loops is 0) if Γ is a loop, with $\Gamma(1) = \Gamma(0)$, then $\int_{\Gamma} f(z) dz = 0$.
 - (c) (f has a primitive) There is a primitive F for f on Ω .
- 36. Cauchy-Goursat Theorem. Let $f: \Omega \to \mathbb{C}$ be holomorphic on Ω , simply connected, and open. Then for any loop $\Gamma \subseteq \Omega$, $\int_{\Gamma} f(z) dz = 0$.
- 37. **Green's Theorem.** Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be a vector field and let γ be a loop, and A a region in the loop γ . Let f(x,y) = (P(x,y),Q(x,y)). Then, $\int_{\gamma} P(x,y) dx + Q(x,y) dy = \iint_{\mathbb{R}^2} \text{curl } F dA = \iint_{\mathbb{R}^2} \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y} \right) dx dy$.
- 38. **Prop.** If f(x+iy) = u(x,y) + iv(x,y), then $\int_{\gamma} f = \int_{\gamma} u dx v dy + i \int_{\gamma} u dx + v dy$.
- 39. Cauchy-Goursat Theorem (Weaker Version). Let $f: \Omega \to \mathbb{C}$ be holomorphic with f'(z) continuous and $\gamma: [0,1] \to \mathbb{C}$ a simple closed curve and Ω an open & simply connected set. Then, $\int_{\gamma} f = 0$.
- 40. Cauchy-Goursat Theorem (for rectangles). Let R be a rectangle with R and its interior are contained in an open set Ω . Let $f: \Omega \to \mathbb{C}$ be holomorphic. Then, $\int_R f = 0$.
- 41. Cauchy-Goursat Theorem (for disks). Suppose $f: D \to \mathbb{C}$ is holomorphic on an open disk $D:=D_{\rho}(z_0)$. Then:
 - (a) f has a primitive F on D.
 - (b) if Γ is any loop in D, then $\int_{\Gamma} = 0$.
- 42. **Deformation Theorem.** Suppose f is holomorphic on an open set Ω and γ_0, γ_1 are piecewise continuously differentiable. Then there are continuously differentiable curves in Ω . Then:
 - (a) If γ_0, γ_1 are paths from z_0 to z_1 , which are homotopic in Ω , then $\int_{\gamma_0} F = \int_{\gamma_1} F$.

- (b) If γ_0, γ_1 are loops homotpic in Ω , then $\int_{\gamma_0} F = \int_{\gamma_1} F$.
- 43. Cauchy-Goursat Theorem (restated). Let $f: \Omega \to \mathbb{C}$ be holomorphic with Ω open and a loop (let γ) be homotopic to a point in Ω . Then, $\int_{\gamma} f dz = 0$.
- 44. **Cor.** If Ω is simply connected, then every loop γ has $\int_{\gamma} f dz = 0$.
- 45. **Cor.** Let $f: \Omega \to \mathbb{C}$ be holomorphic on a simply connected oen set Ω . Then, f has a primitive F on Ω (unique up to constants).
- 46. Winding number (as an index). Let $\gamma: [a,b] \to \mathbb{C}$ (a piecewise continuous) loop and $z \notin \gamma([a,b])$. Then, the winding number of γ around z_0 is an integer.
- 47. Cauchy's Integral Formula. Let f be holomorphic on Ω and γ a loop in Ω hommotopic to a point. Let $z_0 \in \Omega$ but $z_0 \notin \gamma$. Then,

$$f(z_0) \cdot I(\gamma, z_0) = \frac{1}{2\pi i} \cdot \int_{\gamma} \frac{f(z)}{z - z_0} dz.$$

48. Cauchy's Integral Formula for Derivatives. Let f be holomorphic on Ω . Then f is infinitely differentiable (complex) and if γ is a loop homotopic to a point (simple loop) $I(\gamma, z_0) = 1$, then:

$$f^{(n)}(z_0) = \frac{n}{2\pi i} \int_{\gamma} \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi.$$

- 49. **Cor. Cauchy-Type Integrals.** Let γ be a loop $\gamma:[a,b]\to\mathbb{C}$ and g a continuous function on γ . Set $\tilde{g}(z):=\int_{\gamma}\frac{g(\xi)}{\xi-z}d\xi$. Then, $\tilde{g}(z)$ is holomorphic inside γ and so $\tilde{g}(z)$ is infinitely differentiable.
- 50. **Prop.** (Cauchy Inequalities). Let f be holomorphic on Ω and let $\overline{D_R(z_0)} \subseteq \Omega$ with boundary γ . Suppose f(z) is bounded above $|f(z)| \leq M$ for all $z \in \gamma$. Then for all k = 1, 2, ..., the kth derivative is also upper bounded with $|f^{(k)}(z_0)| \leq \frac{k_i}{pk}M$.
- 51. **Louisville's Theorem.** If f is entire and bounded (i.e. there exists an $M \in \mathbb{R}_{>0}$ with $|f(z)| \leq M$ for all $z \in \mathbb{C}$), then f is constant.
- 52. **Fundamental Theorem of Algebra.** Let $a_0, \ldots, a_n \in \mathbb{C}$ with $a_i \neq 0$ for $n \geq 1$. Then the polynomial $p(z) = a_n z^n + \cdots + a_0$ has a zero (root) where $z_0 \in \mathbb{C}$ with $p(z_0) = 0$.
- 53. Cor. A degree n complex polynomial has exactly n roots, counting multiplicity.
- 54. Morera's Theorem. (partial converse to Cauchy-Goursat) Let f continuous on an open Ω and suppose that $\int_{\gamma} f = 0$ for every loop in Ω . Then, f is holomorphic on Ω and f has a primitive F on Ω .
- 55. Cor. to Morera's Theorem (Removable Singularities Theorem). Let f be continuous on an open Ω in \mathbb{C} and holomorphic on $\Omega \setminus \{z_0\}$, with $z_0 \in \mathbb{C}$. Then, f is holomorphic on Ω .
- 56. **Another Cor. to Morera's Theorem.** If f is holomorphic on $\Omega \setminus \{z_0\}$ and bounded on a neighborhood of z_0 , there is unique holomorphic extension \tilde{f} of f to γ defined by $\tilde{f}(z) = f(z)$ if $z \neq z_0$ and $\tilde{f}(z) = \lim_{z \to z_0} f(z)$ if $z = z_0$.
- 57. **Mean Value Property.** Let f be holomorphic on $\overline{D_R(z_0)}$. Then $f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta$.
- 58. **Maximum Principle, local version.** Let f be holomorphic on a neighborhood Ω of z_0 , and suppose that |f| has a relative max at z_0 . Then, f is constant on some neighborhood U of z_0 .
- 59. **Prop.** The following are true:
 - (a) $A \subseteq \overline{A}$.
 - (b) \overline{A} is closed.
 - (c) A is closed iff $A = \overline{A}$.
 - (d) If $A \subseteq C$ and C closed, then $\overline{A} \subseteq C$.
- 60. **Maximum Modulus Principle.** Let A be an open, connected, bounded set in \mathbb{C} and suppose $f : \overline{A} \to \mathbb{C}$ is holomorphic on A and continuous on \overline{A} . Then |f| has a finite maximum value on \overline{A} which is achieved on ∂A . IF |f| is attained in A, then f is constant.

- 61. **Prop.** Let $u: \Omega \to \mathbb{R}$ be an twice-continuous harmonic function on an open set $\Omega \subseteq \mathbb{C}$. Then u is infinitely differentiable, so u is C^{∞} , and in the neighborhood U of $z_0 \in \Omega$, there exists a holomorphic function $f: U \to \mathbb{C}$ such that u = Re(f).
- 62. **Dirichlet Problem.** $\Delta u = 0$, $u \mid_{\partial \Omega} (\theta) = g(\theta)$.
- 63. **Prop.** Let u, \tilde{u} solve the Dirichlet Problem. Then, $u = \tilde{u}$, so the solution to the Dirichlet Problem is unique.
- 64. Solution to the Dirichlet Problem. This is given by:

$$u(re^{i\phi}) = \frac{1}{2\pi} \int_0^{2\pi} u(Re^{i\theta}) \cdot \frac{R^2 - r^2}{|Re^{i\theta} - re^{i\theta}|} d\theta.$$

- 65. **Analytic Convergence Theorem.** Let $f_n : \Omega \to \mathbb{C}$ be a sequence of holomorphic functions. If $f_n \to f$ uniformly on every closed disk in Ω , then:
 - (a) f is holomorphic on Ω .
 - (b) f'_n converges to f' uniformly on every closed disk, and pointwise on Ω .
- 66. **Prop.** Let $\gamma: [a,b] \to \Omega$ be a contour and $f_n: \gamma([a,b]) \to \mathbb{C}$ be a sequence of continuous functions. If $f_n \to f$ uniformly on $\gamma([a,b])$, then $\int_{\gamma} f_n \to \int_{\gamma} f$.
- 67. **Power Series Convergence Theorem.** Let $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ be a power series. Then there is a unique $R \ge 0$, possibly $R = \infty$, such that:
 - (a) If $|z z_0| < R$, the series converges pointwise.
 - (b) If $|z-z_0| \le R \varepsilon$, the series converges uniformly.
 - (c) If $|z-z_0| > R$, the series diverges.
 - (d) If $|z z_0| = R$, need to check.
- 68. Cor. A power series is analytic on its disk of convergence and so, holomorphic by the analytic convergence theorem.
- 69. Cor 2. We can apply term-by-term differentiation to the power series of an analytic function.
- 70. Cor 3. Power series expansions around some center z_0 are unique.
- 71. **Taylor Series Theorem.** Let f be holomorphic on a region Ω , and let $D_r(z_0) \subseteq \Omega$ with r > 0. Then for every $z \in D_r(z_0)$, the power series $f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z z_0)^n$ converges on $D_r(z_0)$ and equal to f(z). We call this the Taylor series of f(z) centered at f(z).
- 72. **Theorem.** f is analytic iff f is holomorphic.
- 73. **Prop.** If f is holomorphic on an open, connected set Ω and the zero set $\{z \in \Omega \mid f(z) = 0\}$ contains a limit point, then f = 0 on Ω .
- 74. **Cor.** (**Identity Theorem**). Let f, g be holomorphic on an open, connected Ω and f(z) = g(z) for a set of z with a limit point in Ω . Then, f = g on Ω .
- 75. **Cor.** (**Zeros are Isolated**). If f is holomorphic on Ω , and not identically zero on Ω , then for any zero z_0 of f, there is a deleted neighborhood $U \setminus \{z_0\}$ on which $f(z) \neq 0$ for all $z \in U \setminus \{z_0\}$.
- 76. **Cor.** (Analytic Continuation). If f is holomorphic on an open, connected set Ω and f_+ is holomorphic on an open connected $\Omega_+ \supseteq \Omega$ with $f_+ = f$ on Ω , then f_+ is the unique such extension, i.e. if there exists another such extension, \tilde{f}_+ , then $\tilde{f}_+ = f_+$.
- 77. **Lemma.** Let $f: \Omega \to \mathbb{C}$ be holomorphic, not identically 0, with a zero z_0 . Then in a neighborhood U of z_0 , we may write $f(z) = (z z_0)^m g(z)$ for all $z \in U$, where $g(z) \neq 0$ and m is unique.
- 78. **Lemma.** A function f has a pole of order m at z_0 iff there is a neighborhood U of z_0 on which $f(z) = (z z_0)^{-m} g(z)$ for all $z \in U \setminus \{z_0\}$ with a nonzero g(z) and g holomorphic on U.
- 79. **Theorem.** If f has a pole of order m at z_0 , then it can be represented uniquely as:

$$f(z) = \frac{a_{-m}}{(z - z_0)^m} + \frac{a_{-m+1}}{(z - z_0)^{m-1}} + \dots + \frac{a_{-1}}{z - z_0} + G(z)$$

where G(z) is holomorphic on a neighborhood U of z_0 and $a_{-m}, \ldots, a_{-1} \in \mathbb{C}$ with $a_{-m} \neq 0$.

- 80. **Residue Theorem, Simple Version.** Let f be holomorphic on a set $\Omega \supseteq \overline{D_R(z_0)}$, $\gamma = \partial \overline{D_R(z_0)}$ except at z_0 . Then $\int_{\gamma} f(z) dz = 2\pi i \operatorname{Res}_{z_0}(f)$.
- 81. **Residue Theorem, Simple Closed Loops.** Let Ω be open, connected and γ a simple loop homotopic to a point in Ω . Let f be a function $f: \Omega \to \mathbb{C}$ be holomorphic except at a finite set of points z_1, \ldots, z_N inside γ . Then, $\int_{\gamma} f(z) dz = 2\pi i \sum_{k=1}^{N} \text{Res}_{z_k}(f)$.
- 82. **Laurent Series Theorem.** Let C_1, C_2 be two circles centered at z_0 (it is fine if $C_1 = \{z_0\}$ and C_2 "encloses" \mathbb{C}). Call R the region the annulus between C_1 and C_2 . Let f be holomorphic on R. Then f can be expanded uniquely as a (absolutely) convergent power series in R by:

$$f(z) = \sum_{n=1}^{\infty} \frac{a_{-n}}{(z - z_0)^n} + \sum_{n=0}^{\infty} a_n (z - z_0)^n.$$

where the first infinite series is called the principal part and second one is called the Taylor series / holomorphic part.

- 83. **Casorati-Weierstrauss Theorem.** If f is holomorphic in a deleted $D_r(z_0) \setminus \{z_0\}$ and has an essential singularity at z_0 , then the image of $f(D_r(z_0) \setminus \{z_0\})$ is dense in \mathbb{C} .
- 84. **Prop.** (Fourier Transform). Let $f: \mathbb{R} \to \mathbb{R}$ be a real function. The Fourier Transform of f is the function $\hat{f}: \mathbb{R} \to \mathbb{R}$ given by $\hat{f}(k) = \int_{-\infty}^{\infty} f(x) \cdot e^{-ikx} dx$.
- 85. **Jordan's Lemma.** $\int_0^{\pi} e^{-R\sin\theta} d\theta \leq \frac{\pi}{R}$.
- 86. **Cauchy Principal Value.** Take the real integral symmetrically, so we can find an indefinite integral (with discontinuity in the interval) by approaching "the same way" from both sides of the discontinuity.
- 87. **Argument Principle.** Let $f : \Omega \to \mathbb{C}$ be meromorphic and γ a simple loop in Ω bounding a simply connected region R_{γ} , with $\overline{R_{\gamma}} \subseteq \Omega$. Let f have no zeros or poles on γ . Then:

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = N - P$$

where N is the number of zeros of f inside R_{γ} (counting multiplicity) and P is the number of poles of f inside R_{γ} (counting multiplicity).

- 88. **Rouche's Theorem.** Let $f,g:\Omega\to\mathbb{C}$ be holomorphic and let γ be a simple loop bounding a simply connected open U, with $\overline{U}\subseteq\Omega$. If |f(z)|>|g(z)| on γ , then f and f+g have the same number of zeros inside U.
- 89. **Open-Mapping Theorem.** Any nonconstant holomorphic function is an open map, meaning it maps open sets to open sets.
- 90. **Lemma.** (Local Injectivity). Let $f: \Omega \to \mathbb{C}$ be holomorphic and $z_0 \in \Omega$. If $f'(z_0) \neq 0$, then f is locally injective near z.
- 91. **Theorem.** If $g: \Omega \to \mathbb{C}$ is holomorphic and Ω is simply connected, and $g \neq 0$, there exists a holomorphic function $F: \Omega \to \mathbb{C}$ satisfying $e^{F(z)} = g(z)$, where F(z) is unique up to $2\pi i k$, with $k \in \mathbb{Z}$.
- 92. **Theorem (Local description of holomorphic).** Let $f: \Omega \to \mathbb{C}$ be holomorphic, Ω open. Let $z_0 \in \Omega$ and let $k \ge 1$ denote the order of the zero $f(z) f(z_0)$ at z_0 . Then, there exists an open neighborhood U of z_0 (and r > 0) and a function $\phi: U \to D_r(z_0)$ such that:
 - (a) ϕ is holomorphic with a holomorphic inverse.
 - (b) $\phi(z_0) = 0$.
 - (c) We have $f(z) = f(z_0) + (\phi(z))^k$ with $z \in U$.
- 93. **Prop.** Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of complex numbers. If $\sum_{n=1}^{\infty} |a_n| < \infty$, then $\prod_{n=1}^{\infty} (1+a_n)$ converges and its value is 0 iff one of the $1+a_n$ factors is zero.
- 94. **Prop.** Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of holomorphic functions on Ω . If $\sum_{n=1}^{\infty} |f_n|$ converges uniformly on compact subsets of Ω , then so does $\prod_{n=1}^{\infty} (1+f_n(z))$. Moreover, the limiting function is holomorphic and nonzero everywhere except at points z such that $1+f_n(z)=0$ (for some n).

95. **Prop.** (**Partial fractions expansion for log derivatives**). Same assumptions as the above proposition. Then, the log derivative of product = sum of log derivatives. i.e.

$$\frac{(\prod_{n=1}^{\infty} (1+f_n))'}{\prod_{n=1}^{\infty} (1+f_n)} = \sum_{n=1}^{\infty} \frac{f_n'}{1+f_n}.$$

- 96. Infinite products formula for sine. $\sin(\pi z) = \pi z \cdot \prod_{n=1}^{\infty} (1 \frac{z}{n})(1 + \frac{z}{n})$, for $z \in \mathbb{C}$.
- 97. **Prop.** Fix $z \in \mathbb{C} \setminus \mathbb{Z}$ and a large positive $N \in \mathbb{Z}$. By the residue theorem, the integral $I_N(z) := \int_{\gamma_N} \frac{\pi \cot(\pi z)}{(w+z)^2} dw$.
- 98. **Cor.** $\cos(\pi z) = \prod_{n=1}^{\infty} \left(1 \frac{z^2}{\left(n \frac{1}{2}\right)^2}\right)$, $e^z 1 = ze^{z/2} \cdot \prod_{n=1}^{\infty} \left(1 + \frac{z^2}{4\pi^2 n^2}\right)$, and $\pi \cot(\pi z) = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 n^2}$ (for the contangent expression, $z \in \mathbb{C} \setminus \mathbb{Z}$).
- 99. **Theorem (Schwarz Reflection Principle).** Let A be a region in the upper-half plane with $\partial A \cap \mathbb{R}$ nonempty and containing $[a,b] \subseteq \mathbb{R}$. Let f be holomorphic on A and continuous on $\partial A \cap [a,b]$ and real on [a,b]. Then \underline{f} can be uniquely extended to a holomorphic function on $A \cup (a,b) \cup A_{\text{ref}}$, where $A_{\text{ref}} = \{\overline{z} \mid z \in A\}$ with $f(z) = \overline{f(\overline{z})}$ for all $z \in A_{\text{ref}}$.
- 100. **Theorem (Gamma Function).** There is a unique $\Gamma(s)$ with the following:
 - (a) $\Gamma(s)$ is meromorphic.
 - (b) (Factorial). $\Gamma(n+1) = n!$ for n = 0, 1, 2, ...
 - (c) (Special Value). $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.
 - (d) (Integral Representation). $\Gamma(s) = \int_0^\infty e^{-x} x^{s-1} dx$ (for Re(s) > 0).
 - (e) (Infinite Product Representation). $\Gamma(s) = s^{-1}e^{\gamma s}\prod_{n=1}^{\infty}\left(1+\frac{s}{s}\right)^{-1}e^{s/n}$ where $\gamma = \lim_{n\to\infty}\left(\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{n}-\log n\right)\approx 0.58...$ (Euler-Mascheroni constant) (for $s\in\mathbb{C}$, except poles).
 - (f) (Limit of finite products). $\Gamma(s) = \lim_{n \to \infty} \frac{n! n^s}{s(s+1) \dots (s+n)}$ (for $s \in \mathbb{C}$, except poles).
 - (g) (Zeros). $\Gamma(s)$ has no zeros.
 - (h) (Poles). $\Gamma(s)$ has poles at nonpositive integers $s=0,-1,-2,\ldots$ and is holomorphic everywhere else. At s=-n, the pole is simple and $\operatorname{Res}_{-n}(\Gamma)=-\frac{1}{n!}$.
 - (i) (Functional Equation). $\Gamma(s+1) = s\Gamma(s)$ (for $s \in \mathbb{C}$, except at poles).
 - (j) (Reflection Formula). $\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin(\pi s)}$ (for $s \in \mathbb{C}$, except at poles).
- 101. **Theorem.** The conformal equivalence, which is a relation, is an equivalence relation.
- 102. **Cor.** Holomorphic f is locally injective iff $f'(z_0) \neq 0$.
- 103. **Conformal Equivalence Classes.** These are the following:
 - (a) Complex plane, \mathbb{C} .
 - (b) Punctured plane, $\mathbb{C} \setminus \{0\}$.
 - (c) Unit disk, $D_1(0)$.
 - (d) Upper-half plane, $\mathbb{H} = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}.$
 - (e) Riemann sphere*, $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ (not a subset of \mathbb{C} but we can still talk about holomorphic/meromorphic functions on it).
 - (f) The slit plane, $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$.
 - (g) Strip (similar to critical region from Riemann hypothesis).
 - (h) Rectangle.
 - (i) Annulus.
 - (j) Blob
- 104. **Lemma.** If $\Omega \sim \Omega'$, then Ω and Ω' are homeomorphic (a.k.a. there is a continuous map $g: \Omega \to \Omega'$ such that g^{-1} is defined and also continuous).
- 105. **Lemma.** If $\Omega \sim \Omega'$, then they are homeomorphic.

- 106. **Prop.** If $g: \Omega \to \Omega'$ is holomorphic and invertible, then g^{-1} is holomorphic (i.e. g is conformal).
- 107. **Lemma.** Aut(Ω) is a group, with function composition. In other words, let $f, g, h \in \text{Aut}(\Omega)$. Then:
 - (a) $(g \circ f) \circ h = g \circ (f \circ h)$.
 - (b) If $g \in Aut(\Omega)$, then $g^{-1} \in Aut(\Omega)$.
 - (c) There is an identity map $id \in Aut(\Omega)$ such that $id \circ g(z) = g(z) = g \circ id(z) = g(z)$.
- 108. **Theorem.** Let $g: \mathbb{C} \to \Omega$ be a conformal map between \mathbb{C} and a region Ω . Then, $\Omega = \mathbb{C}$ and g(z) is a conformal automorphism of the form g(z) = az + b, with $a \neq 0$ and $b \in \mathbb{C}$.
- 109. **Theorem (Riemann Sphere).** Let $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$. If $g : \hat{\mathbb{C}} \to \Omega$ is a conformal map, then $\Omega = \hat{\mathbb{C}}$ and g is a conformal automorphism, with $g(z) = \frac{az+b}{cz+d}$ with $a,b,c,d \in \mathbb{C}$ (i.e. g is a Möbius transformation).
- 110. ADD THEOREMS FROM DECEMBER 2 LECTURE