# **Mini-Control 1**

CC5213 – Recuperación de Información Multimedia Profesor: Juan Manuel Barrios Fecha entrega: 21 de septiembre de 2023

Debe resolver los siguientes ejercicios en un documento o en papel. No es necesario programar ni debe entregar código fuente.

## Pregunta 1

Considere la siguiente imagen de 7 x 7 en escala de gris 8 bits:

|   |   |   | 1   | 2   | 3   | 4   | 5   | 6   | 7   |
|---|---|---|-----|-----|-----|-----|-----|-----|-----|
|   |   | 1 | 100 | 0   | 0   | 0   | 100 | 0   | 0   |
|   |   | 2 | 0   | 100 | 0   | 100 | 0   | 100 | 0   |
| Α | = | 3 | 0   | 0   | 100 | 0   | 0   | 0   | 100 |
|   |   | 4 | 0   | 100 | 0   | 100 | 0   | 100 | 0   |
|   |   | 5 | 100 | 0   | 0   | 0   | 100 | 0   | 0   |
|   |   | 6 | 0   | 100 | 0   | 100 | 0   | 100 | 0   |
|   |   | 7 | 0   | 0   | 100 | 0   | 0   | 0   | 100 |

a) (0.5 puntos) Escriba la imagen resultante de aplicar un filtro de mediana de 3x3 sobre la imagen **A**.

Considere el siguiente kernel **K** de 3 x 3:

$$\mathbf{K} = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$$

b) (0.25 puntos) Escriba la imagen resultante de hacer convolución entre la imagen **A** y el kernel **K**.

Considere la función umbral  $U_t$  que asigna blanco (255) cuando el valor de un pixel es igual o mayor que un umbral t y negro (0) si no:

$$U_t(x) = \begin{cases} 255 & \text{si } x \ge t \\ 0 & \text{si no} \end{cases}$$

c) (0.25 puntos) Escriba la imagen resultante de hacer convolución entre la imagen **A** y el kernel **K** y luego aplicar un umbral con *t*=500.

### Pregunta 2

Considere la siguiente imagen de 16 x 16 pixeles en escala de gris 8 bits:



- a) (0.5 puntos) Dibuje el histograma de grises normalizado usando una división de 2x2 zonas. Sea preciso en las alturas de los bins y el valor que representa cada bin.
- b) (1 punto) Dibuje el histograma de orientaciones de gradiente (HOG) normalizado usando una división de 2x2 zonas. Calcule el gradiente en cada píxel mediante las fórmulas:

$$\frac{\partial I}{\partial x}(x,y) = I(x+1,y) - I(x,y) \qquad \qquad \frac{\partial I}{\partial y}(x,y) = I(x,y+1) - I(x,y)$$

Sea preciso en las alturas de los bins y el valor que representa cada bin.

c) (1 punto) Dibuje el histograma de bordes (EHD) usando una división de 2x2 zonas. Considere los siguientes cinco filtros de orientación:

|   |   |    |    |    |   |             | 0           |   |   |    |   |
|---|---|----|----|----|---|-------------|-------------|---|---|----|---|
|   | 1 | -1 | -1 | -1 | 0 | $-\sqrt{2}$ | $-\sqrt{2}$ | 0 |   | -2 | 2 |
| 1 |   | 2  | 2  | 3  |   | 4           |             |   | 5 |    |   |

#### Pregunta 3

Se tienen las siguientes dos imágenes y sus histogramas de colores:



Histograma  $1 = \{ (0.8 - ), (0.2 - ) \}$ 

- -Bin 1 representa colores cercanos a R=250 G=200 B=0
- -Bin 2 representa colores cercanos a R=100 G=150 B=150



Histograma  $2 = \{ (0.3 \square), (0.6 \square), (0.1 \square) \}$ 

- -Bin 1 representa colores cercanos a R=50 G=50 B=250
- -Bin 2 representa colores cercanos a R=200 G=200 B=250
- -Bin 3 representa colores cercanos a R=250 G=0 B=0

Calcule la **Earth Mover's Distance (EMD)** entre los histogramas de ambas imágenes siguiendo los siguientes pasos:

- a) (1 punto) Calcule la **Matriz de Costos**. Para facilitar los cálculos, asuma que la ground-distance entre colores es la distancia L1 en el espacio RGB.
- b) (1 punto) Señale una posible Matriz de Flujos. No necesariamente debe ser la matriz óptima pero debe ser una matriz válida.
- c) (0.5 puntos) Usando ambas matrices calcule la EMD entre ambos histogramas.

#### **Entrega:**

- Puede desarrollarlo en papel y enviar una foto, o puede desarrollarlo en formato digital (planilla, documento u otro) y exportarlo a .pdf.
- El plazo máximo de entrega es el **jueves 21 de septiembre de 2023** hasta las 23:59 por U-Cursos.
- Será posible volver a enviarlo una vez más durante el semestre (en fecha por definir).

El mini-control es \*individual\* y debe ser de su autoría. En caso de detectar copia o plagio se asignará nota 1.0 a los involucrados.