Sławomir Kulesza

Technika cyfrowa

Minimalizacja form boolowskich

Wykład dla studentów III roku Informatyki

Minimalizacja form boolowskich

Minimalizacja – proces przekształcania form boolowskich w celu otrzymania możliwie najprostszych form równoważnych.

Kryterium minimalizacji – obniżenie kosztu układu cyfrowego, skrócenie ścieżek propagacji sygnałów, ograniczenie liczby sygnałów w układzie.

Drogi minimalizacji – (1) zmniejszanie liczby bramek, (2) zmniejszanie liczby wejść bramek.

Sens minimalizacji

Wskaźnik złożoności

Zwykle nie wiadomo, czy dana forma boolowska jest poszukiwaną formą minimalną.

W celu oszacowania złożoności form boolowskich stosuje się tzw. wskaźnik złożoności (kosztu):

1010010107=LT+LL010101011

LT – liczba termów formy boolowskiej LL – liczba literałów w formie boolowskiej

Wskaźnik Z powinien przyjmować wartość możliwie małą.

Przykład oszacowania wskaźnika Z

X ₁	X ₂	$f(x_1,x_2)$
0	0	0
0	1	1
1	0	0
1	1	1

Kanoniczna forma iloczynowa:

$$f(X) = (x_1+x_2) \cdot (x_1'+x_2) \Rightarrow Z = 2 + 3 = 5$$

Kanoniczna forma sumacyjna:

$$f(X) = x_1' \cdot x_2 + x_1 \cdot x_2 \Rightarrow Z = 2 + 3 = 5$$

Forma minimalna:

$$f(X) = x_2 \Rightarrow Z = 1 + 1 = 2$$

Metody minimalizacji

(1) M. algebraiczne: bazują na tożsamościach i prawach algebry Boole'a.

Wady: podejście niesystematyczne (brak algorytmu), trudno określić moment osiągnięcia formy minimalnej, tylko do form o niewielkiej złożoności.

- (2) M. graficzne: siatki Karnaugha.
 Wady: ograniczona liczba zmiennych wejściowych (do 5).
- (3) M. numeryczne: metoda Quine'a-McCluskeya, metoda Espresso.

Wady: minimalizowane formy zwykle muszą posiadać określoną postać, problemy NP-trudne (Q-MC).

Zalety: pozwalają w systematyczny sposób dojść do formy minimalnej, dostępne oprogramowanie niekomercyjne.

Implikanty funkcji logicznej

Funkcja logiczna g jest implikantem funkcji f wtedy i tylko wtedy, gdy zachodzi implikacja:

$$\forall x_1 x_2 ... x_k \in X [g(x_1 x_2 ... x_k) = 1] \Rightarrow [f(x_1 x_2 ... x_k) = 1]$$

Każda kombinacja liniowa termów w formie boolowskiej jest więc implikantem funkcji opisywanej tą formą.

Implikant prosty w formie sumacyjnej n-zmiennych jest takim iloczynem m-literałów (m ≤ n), że po odrzuceniu choćby jednego literału przestaje być implikantem tej funkcji

Nieredukowalne formy boolowskie

Twierdzenie 1:

Każdą formę boolowską można przekształcić do postaci sumy zawierającej wyłącznie implikanty proste.

Twierdzenie 2:

Suma implikantów prostych formy boolowskiej, która po odrzuceniu któregokolwiek z nich nie opisuje funkcji logicznej f jest nieredukowalną formą boolowską.

W trakcie minimalizacji można otrzymać jedną lub więcej nieredukowalnych form boolowskich. Wybiera się wówczas formę o najmniejszej złożoności Z.

Istotne implikanty proste i jądro formy

Niech dana jest forma: f(a,b,c) = a'b'c + a'bc + a'bc' + abc' + ab'c'

Wówczas można pokazać, że:

$$f(a,b,c) = a'c + a'b + ac'$$

 $f(a,b,c) = a'c + bc' + ac'$

Otrzymaliśmy 2 nieredukowalne formy boolowskie o Z = 8.

Wspólne implikanty proste a'c oraz ac' są tzw. istotnymi implikantami prostymi, które tworzą jądro formy boolow-skiej.

Wszystkie nieredukowalne formy boolowskie danej funkcji logicznej zawierają to samo jądro.

Ogólny schemat minimalizacji

Określ wszystkie implikanty proste formy boolowskiej

Wyznacz jądro formy (istotne implikanty proste)

Wyznacz nieredukowalne formy boolowskie

Wybór formy nieredukowalnej w oparciu o wskaźnik złożoności

Narzędzia minimalizacji

Minimalizacja ilości literałów w formie boolowskiej korzysta z praw i tożsamości algebry Boole'a:

$$F(a,b) = ab + ab' = a(b + b') = a$$

10100101001101

$$G(a,b) = a'b' + ab' = (a' + a)b' = b'$$

Α	В	F
0	0	0
0	1	0
1	0	1
1	1	1

Α	В	G
0	0	1
0	1	0
1	0	1
1	1	0

n-kostki boolowskie

Funkcję boolowską n zmiennych można przedstawić w postaci n-wymiarowej kostki (n-kostki).

Każdy wierzchołek (0-kostka) reprezentuje jeden z możliwych mintermów. Dwa wierzchołki są sąsiednimi, jeżeli opisujące je liczby dwójkowe różnią się na jednej pozycji.

Każda krawędź łącząca dwa sąsiednie wierzchołki stanowi 1-kostkę opisaną (n-1)-zmiennymi (1-kostka pokrywa dwie 0-kostki).

n-kostki boolowskie

Ex.: Przeniesienie pełnego sumatora

Mapowanie funkcji logicznej:

	l <u>-</u> .	
A B Cin	Cout	(A' + A) B <u>Cin</u>
0 0 0	0	011
0 0 1	0	011 111
0 1 0	0	A P (Cin! + Cin)
0 1 1	1	A B (Cin' + Cin)
1 0 0	0	010 🗸
1 0 1	1	f 110
1 1 0	1	
1 1 1	1	_ 001 A (B + B) Cin
	•	B A (B + B') Cin
		Cin
		000 100
		A

Zbiór wszystkich 1-mintermów jest pokrywany przez sumę 1-kostek:

$$C_{out} = BC_{in} + AB + AC_{in}$$

Ex.: Minimalizacja formy niezupełnej

Niech dana jest forma niezupełna: $f(x,y,z) = \sum (0,4,6,7(3,5))$

Mapowanie funkcji logicznej: • - 1, ○ - 0, x - stany d

Forma nieredukowalna: f(x,y,z) = x + y'z'

Siatki Karnaugha

Siatka Karnaugh dla funkcji n-zmiennych składa się z 2ⁿ-pól, w które wpisuje się wartości funkcji dla wszystkich termów.

Współrzędne kratek opisuje się w kodzie Graya, stąd termy z sąsiednich kratek różnią się stanem jednej zmiennej.

Sklejanie sąsiednich kratek pozwala na eliminację zmiennej występującej w stanie 1 oraz 0: (a+a')b = b.

a bo	00	01	11	10
0	0	1	3	2
	a'b'c'	a′b′c	a'bc	a'bc'
1	4	5	7	6
	ab'c'	ab′c	abc	abc'

ab	00	01	11	10
00	0	1	3	2
	a'b'c'd'	a'b'c'd	a'b'cd	a'b'cd'
01	4	5	7	6
	a'bc'd'	a'bc'd	a'bcd	a'bcd'
11	12	13	15	14
	abc'd'	abc'd	abcd	abcd'
10	8	9	11	10
	ab'c'd'	ab'c'd	ab'cd	ab'cd'

Siatki Karnaugha

Siatki Karnaugha można konstruować dla dowolnej ilości literałów, aczkolwiek możliwości ich analizy kończą się w przypadku form o więcej niż 6 zmiennych (niezanegowanych). Wypełnianie oczek jest łatwiejsze po opisaniu ich kodem NKB.

Sklejanie oczek siatki

Dopuszczalne jest sklejanie sąsiednich oczek jedynie w prostokątne grupy liczące 2ⁿ-pól, przy czym można sklejać pola na brzegach siatki.

Ex. 1. Minimalizacja na siatce Karnaugh

$$f(A,B,C) = A^{l}B^{l}C^{l} + A^{l}B^{l}C + A^{l}BC + ABC$$
 $Z = 4 + 12 = 16$

Po minimalizacji:

$$f(A,B,C) = A^{\prime}B^{\prime} + BC$$

$$Z = 2 + 4 = 6$$

Ex. 2. Minimalizacja na siatce Karnaugh

	v	v	v	f
-	<i>X</i> ₁	X ₂	χ ₃	1
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
2 3 4 5 6	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

- 1) Wpisanie funkcji do tablicy
- 2) Zakreślanie pętelek

Z pętelkami kojarzymy iloczyn zmiennych (prostych lub zanegowanych)

$$f = x_1 x_2 + x_3$$

Ex. 3. Minimalizacja na siatce Karnaugh

Ex. 4. Minimalizacja na siatce Karnaugh

y = ab'c'd' + a'b'cd + a'bc'd + ab'cd' + a'b'c'd + a'bcd + abc'd' + abc'd

$$Z = 8 + 8.4 = 40$$

Opis na siatce Karnaugh ▶

Różne pola mogą się pokrywać, gdyż x + x = x

Dwie sąsiednie kratki jedynkowe (1-kostka) ► eliminacja jednej zmiennej:

Np.
$$ab'c'd' + ab'cd' = ab'd'(c'+c) = ab'd'$$

Cztery sąsiednie kratki (2-kostka) ► eliminacja dwu zmiennych:

Np.
$$a'b'cd + a'bc'd + a'b'c'd + a'bcd = a'd$$

Ex. 4. Minimalizacja na siatce Karnaugh

Wszystkie możliwe sklejenia ► forma o pięciu termach:

$$y = ab'd' + a'd + abc' + bc'd + ac'd'$$

Jeśli przynajmniej jedna kratka w polu danego implikanta prostego nie jest również objęta polem innego implikanta prostego, to taki implikant prosty jest ISTOTNY. Zbiór tych implikantów tworzy JĄDRO.

Jądro formy stanowią zatem implikanty ab'd' i a'd.

Należy wybrać minimalną liczbę pozostałych implikantów prostych, które pokrywają wszystkie pola nieobjęte przez jądro.

Wystarczy jeden implikant abc'.

Trzy sklejenia ► forma minimalna o trzech termach:

$$y = ab'd' + a'd + abc'$$
 $Z = 3 + 2.3 + 2 = 11$

Implikanty proste na siatce Karnaugha

W interpretacji tablic Karnaugha implikant prosty odpowiada grupie jedynek (i kresek), której nie można powiększyć.

Realizacja AND-OR

Realizacja NAND

Sklejanie zer

Na siatce Karnaugha można także sklejać zera. Pamiętać należy jedynie, iż w ten sposób otrzymamy kanoniczną postać iloczynową funkcji logicznej.

Realizacja OR-AND

Realizacja NOR

Układy wielowyjściowe

W przypadku układów o wielu wyjściach dobrze jest poszukiwać implikantów wspólnych dla form wyjściowych, a nie poszukiwać implikantów prostych dla każdej formy z osobna.

Układy wielowyjściowe

$$y_1 = bc + \overline{a}bd + abd + ab\overline{c}$$

$$y_2 = bc + abd + bc$$

$$y_3 = abd + ab\bar{c} + bc$$

5 bramek AND

... a poprzednio było 7 bramek AND!!!

Ex. Komparator 2-bitowy

Schemat blokowy i tablica prawdy

4-wejściowe mapy Karnaugha dla każdej z 3 funkcji wyjściowych

Α	В	C	D	F ₁	F_2	F ₃ 0 0
0	0	0	0	1	0	0
		0	1	1	1	0
		1	0 1 0 1	0	1	0
82		0 0 1 1	1	0	1	0
0	1		0	0	0	1
		0	1	1	0	0
		0 0 1 1	0	1 0	1	0
		1	1 0 1	0	1	0
1	0	0	0	0	0	
		0	1	0	0	1
		0 1 1	1 0	1	0	0
		1	1	0	1	0
1	1	0	0	0	0	1
		0 0 1 1	1	0	0	1
		1	1 0	0	0	1
		1	1	1	0	0

Ex. Komparator 2-bitowy

= (A xnor C) (B xnor D) ← forma prostsza, ale nie w postaci kanonicznej 1 na przekątnych map Karnaugha odpowiadają funkcjom XOR/XNOR

Algorytm minimalizacji na siatce K.

Krok 1:

Wybierz element na mapie Karnaugh nie powiązany z żadnym implikantem.

Krok 2:

Znajdź wszystkie sąsiedzkie pokrycia danego pola o maksymalnej powierzchni (2ⁿ), czyli implikanty proste.

Powtórz krok 1 i 2 aż znajdziesz wszystkie implikanty proste.

Krok 3:

Wyszukaj wszystkie istotne implikanty proste (pola pokrywane tylko przez 1 implikant prosty).

Krok 4:

Pola niepokryte przez istotne implikanty proste pokryj najmniejszą możliwą ilością implikantów prostych.

Ex. Budowanie minimalnego pokrycia

Narzędzia komputerowe minimalizacji

http://www-ihs.theoinf.tu-ilmenau.de/~sane/projekte/karnaugh/

🗂 Karnaugh Minimizer

Metoda Quine'a-McCluskeya

Metoda Q-McC jest metodą algorytmiczną, dającą się zaimplementować numerycznie. Przebieg minimalizacji:

Selekcja prostych implikantów na grupy w zależności od ilości '1'

Wyszukanie wszystkich możliwych par różniących się zawartością tylko 1 bitu

Wybór optymalnego pokrycia minimalnego

Ex. 1. Minimalizacja Q-McC

Zminimalizujmy funkcję 4 zmiennych: $f(x_1,x_2,x_3,x_4) = \sum (3,7,10,11,15)$

Selekcja prostych implikantów na grupy w zależności od liczby 1

Wyszukanie wszystkich możliwych par różniących się zawartością na 1 pozycji

Poszukiwane rozwiązanie:

$$f(x_1, x_2, x_3, x_4) = x_1 x_2' x_3 + x_3 x_4$$

Ex. 2. Minimalizacja Q-McC

Zminimalizujmy funkcję 4 zmiennych: $f(x_1, x_2, x_3, x_4) = \sum (1,3,4,6,7,12,14,15)$

Selekcja prostych implikantów na grupy w zależności od liczby 1

0001 0100	(1) (4)
0011	(3)
-0110 -	(6)
1100	(12)
0111	(7)
1110	(14)
1111	(15)

Wyszukanie wszystkich możliwych par różniących się zawartością na 1 pozycji

00x1	(1,3)
01x0	(4,6)
x100	(4,12)
0x11	(3,7)
011x	(6,7)
x110	(6,14)
11x0	(12,14)
x111	(7,15)
111x	(14,15)

Następny krok – selekcja najlepszego minimalnego pokrycia:

Ex. 2. Minimalizacja Q-McC

Generacja tablicy Quine'a

	x1	x0	x1	1x	00x1	0x11
0001	_	_	_	_	(V)	
0100	— (i) —			$ \stackrel{\checkmark}{+}$ $-$	
0011				_		v
0110	١	,	\	,		
1100	-() —		_		
0111				,		
1110	١	,				
1111			<u>(</u>)		

Poszukiwane pokrycie minimalne:

101001010011

$$f(x_1, x_2, x_3, x_4) = x_2 x_4' + x_2 x_3 + x_1' x_2' x_4$$