

Lunch & Learn:

Modeling Aircraft Systems

Lockheed Martin Aeronautics ~ Palmdale, CA June 17, 2015

From MathWorks

Cole Stephens

- Lockheed Martin Account Manager
- Cole.Stephens@mathworks.com
- **-** 508-647-1203

Richard Ruff

- Application Engineer
- David Meissner
 - Application Engineer
- Chad Van Fleet
 - Pilot Engineer
- Pascal Gahinet
 - MathWorks Development: Controls

Please note...

 Today's slides & demos will be available (Follow-up Email)

- Feedback Forms...
 - Need Anything???
 - How can we help you???

Giveaways...

MathWorks Product Overview

Event-Based Modeling Physical Modeling Fixed-Point Modeling Applications Control Systems Rapid Prototyping and HIL Simulation Verification. Simulation Graphics Validation, and Test and Reporting Signal Processing SIMULINK[®] and Communications Simulation and Model-Based Design Image Processing and Computer Vision Parallel Computing Code Generation Test and MATLAB* Measurement Computational The Language of Technical Computing Finance Computational Application Math, Statistics, and Database Access and Biology Deployment Optimization Reporting

Corp License 339958 – MATLAB Based Products

	<u> orp License 339958 – MATL</u>	AD	based Products
352	MATLAB		
12	Parallel Computing Toolbox		LOCKHEED MARTIN
	Math, Statistics, and Optimization		Image Processing and Computer Vision
	Symbolic Math Toolbox	31	Image Processing Toolbox
	Partial Differential Equation Toolbox	2	Computer Vision System Toolbox
28	Statistics Toolbox	1	Image Acquisition Toolbox
	Curve Fitting Toolbox	18	Mapping Toolbox
15	Optimization Toolbox		Test & Measurement
2	Global Optimization Toolbox		
3	Neural Network Toolbox	4	Data Acquisition Toolbox
	Control Control Decimo O Analysis	8	Instrument Control Toolbox
	Control System Design & Analysis	1	Image Acquisition Toolbox
	Control System Toolbox		Code Generation
6	System Identification Toolbox	13	MATLAB Coder
5	Fuzzy Logic Toolbox		
5	Robust Control Toolbox	3	HDL Coder
1	Model Predictive Control Toolbox		HDL Verifier
16	Aerospace Toolbox	1	Filter Design HDL Coder
	Signal Processing & Communications		Application Deployment
44	Signal Processing Toolbox	2	Spreadsheet Link EX
	DSP System Toolbox		MATLAB Compiler
	Communications System Toolbox	1	MATLAB Builder JA
4	Wavelet Toolbox	1	MATLAB Builder NE
	Fixed-Point Toolbox		Database Access and Reporting
4	RF Toolbox	4	MATLAB Report Generator
2	Phased Array System Toolbox	12	Database Toolbox

Corp License 339958 – Simulink Based Products

76	Simulink		LOCKHEED MARTIN	
	Fixed-Point Modeling			
3	Simulink Fixed Point		Code Generation	
	Event-Based Modeling	7	Simulink Coder	
23	Stateflow	7	Embedded Coder	
6	SimEvents	1_	HDL Coder	
	Physical Modeling		Rapid Prototyping and HIL Simulation	
10	Simscape	2	xPC Target	
3	SimHydraulics	2	Real-Time Windows Target	
6	SimMechanics		Verification, Validation, and Test	
9	SimPowerSystems	6	Simulink Verification and Validation	
4	SimRF	0	Simulink Code Inspector	
	Control System Design and Analysis	1	Simulink Design Verifier	
6	Simulink Control Design	2	SystemTest	
3	Simulink Design Optimization	3	HDL Verifier	
16	Aerospace Blockset		Simulation Graphics and Reporting	
	Signal Processing and Communications	3	Gauges Blockset	
19		4	Simulink 3D Animation	
13	Communications System Toolbox	3	Simulink Report Generator	
4	SimRF			
2	Computer Vision System Toolbox	п	o see your license #,	

To see your license #, type "ver" in MATLAB

Key Messages

- Design and Analyze Electrical and Power Systems
- Develop and Implement Logic and Controls
- Perform Verification and Validation

Solar Impulse Develops Advanced Solar-Powered Airplane

The HB-SIA aircraft on a test flight over San Francisco Bay.
Photo © Solar Impulse | Revillard | Rezo.ch

Challenge

Develop a solar-powered aircraft capable of circumnavigating the globe

Solution

Use MATLAB and Simulink to create system models for trade studies and design tradeoff analysis, and aircraft dynamics models for high-fidelity simulations and pilot training

Results

- Key design decisions made early
- Vital pilot training enabled
- Models reused and shared throughout development

"Simulations with MATLAB and Simulink were essential to assessing feasibility and evaluating broad design tradeoffs as well as making detailed design decisions—like the size of control surfaces and the vertical tail—that directly affect aircraft dynamics and handling qualities."

Ralph Paul Solar Impulse

GasTOPS Develops and Tests Propulsion Control Algorithms for the USS Makin Island

The USS Makin Island.

Challenge

Develop the propulsion control algorithms for the USS Makin Island

Solution

Use Model-Based Design with MATLAB and Simulink to model the ship's main systems, develop and verify control algorithms, and generate code for onboard training and HIL test setups

Results

- Time-to-simulation cut by two-thirds
- Key design issues identified early
- Models reused multiple times

"We mitigate risk by simulating complex marine and aircraft systems before they are built. To reduce costs, we automate simulations with MATLAB and reuse models throughout development. Understanding multidomain systems through simulations in Simulink and SimPowerSystems is invaluable to our business."

Shaun Horning GasTOPS

NASA Interns Develop Guidance, Navigation, and Control Software for Quadcopter with Model-Based Design

Challenge

Give engineering interns hands-on work experience in the aerospace field

Solution

Create a program in which interns use Model-Based Design to model, simulate, implement, and fly GNC algorithms for multirotor aircraft

Results

- GNC algorithms developed and implemented in 10 weeks
- Hardware integration streamlined
- Practical engineering experience acquired

NASA intern working with the quadcopter vehicle and ArduPilot Mega 2.5 hardware.

Model-Based Design makes both working engineers and interns at NASA MSFC more productive. The students have more fun because they can run the GNC algorithms they create in Simulink on a real processor and quickly get things done.

Aircraft Power Network

- Half-aircraft model
 - One generator
 - AC bus with loads
 - TRU (Transformer-Rectifier Unit)
 - DC bus with loads and battery
- Breakers open and close during flight cycle

Agenda

- Intro / Overview
- Aircraft Power Network
- Physical Modeling
- Modeling Electronics and Power Systems
- Summary / Additional Resources

What is the Most Expensive Project Stage to Find Errors In?

Traditional Development Process

Systems Engineering Categories

- Mission / Purpose Definition (MD)
- 2. Requirements Engineering (RE)
- System Architecting (SA)
- System Integration (SI)
- Verification and Validation (VV)
- Technical Analysis (TA)
- Scope Management (SM)
- Technical Leadership / Management (TM)

Model-Based Design

Systems Engineering and MBD

- 1. Mission
- / Purpose Definition
- 2. Requirements Engineering
- System Architecting
- 4. System Integration
- Verification and Validation
- Technical Analysis
- Scope Management
- 8. Technical Leadership/ Management

Model-Based Design

System and Component Level Design

Agenda

- Intro / Overview
- Aircraft Power Network
- Physical Modeling
- Modeling Electronics and Power Systems
- Summary / Additional Resources

Aircraft Power Network

- Half-aircraft model
 - One generator
 - AC bus with loads
 - TRU (Transformer-Rectifier Unit)
 - DC bus with loads and battery
- Breakers open and close during flight cycle

Physical Modeling

Electrical power systems

Multi-domain physical systems

Fluid power and control

Mechanical dynamics (3-D)

Drivetrain systems (1-D)

Electromechanical and electronic systems

Modeling Electronics and Power Systems

SimElectronics

Simultaneous nonlinear equations solution
SPICE level switching device models
Include switching losses
Include parasitic current effects
Include temperature effects
Higher fidelity simulation

SimPowerSystems

Piecewise linear systems solution

Multiphase bridges and pulse generators

Detailed and average voltage models

Transient and harmonic analysis

Faster simulation

>> se_dcdcbuckconverter

>> sps_dcdcbuckconverter

SimElectronics or SimPowerSystems?

SimElectronics or SimPowerSystems?

>> edit compare_powersupply

Logic and Controls

- Implement and Debug Logic Graphically
- Develop and Test Controls
- Code Generation
- Examples:
 - Synchronizing Breaker
 - Voltage Regulator

Verification and Validation

- Requirements Traceability
- Design Validation and Analysis
- Test and Verification
- Examples:
 - Aircraft Power Network
 - Managing Requirements for Fault-Tolerant Fuel Control System
 - Code Generation Verification Workflow with Simulink Test

Verification and Validation

- Model and Code Coverage
- Design Error and Bug Detection
- Certification, Standards and Code Proving
- Examples:
 - Top-Level Model Coverage Report
 - Find Defects from the Polyspace Environment
 - Workflow for Tool Qualification

Summary

- Design and Analyze Electrical and Power Systems
- Develop and Implement Logic and Controls
- Perform Verification and Validation

Additional Resources

- Videos and Webinars
 - Aircraft Power Network (4:58)
 - Automatic Report Generation for Aircraft Power Network (2:30)
 - Running Parallel Simulations of Aircraft Flight Cycles (5:00)
 - Aircraft Power Network Development with MBD (46:41)

Example: <u>Aircraft Power Network on MATLAB Central</u>

Documentation: (<u>SimElectronics</u>) (<u>SimPowerSystems</u>)

Tutorials: <u>Build and Simulate a Simple Circuit</u>

Training: <u>Physical Modeling: Electrical Power Systems</u>

Consulting: <u>Proven Solutions from MathWorks Consulting</u>

Support

Thank You for Attending Today!

- Point of Contact
 - Cole Stephens, Lockheed Martin Account Manager
 - Cole.Stephens@mathworks.com
 - **-** 508-647-1203
- Products, Webinars, Events, Training:
 - www.mathworks.com
 - On-Demand, Recorded Webinars
 - http://www.mathworks.com/company/events/webinars/index.html
 - On-Demand Training (self-paced, online)
 - MATLAB Academy (complimentary)
 - MATLAB Fundamentals
 - MATLAB Programming Techniques
 - MATLAB for Data Processing and Visualization

Remember: Turn in your feedback form & pick up a give-away

Contact Us

MathWorks:

Monday - Friday

(508) 647-7000 Sales / Customer Support 08:30-17:30 ET

Technical Support 08:30-20:00 ET

