

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>Фундаментальные науки</u> КАФЕДРА Прикладная математика

Лабораторная работа №4

по дисциплине «Разработка программных комплексов»

Построение сетки конечных элементов

Выполнил студент группы ФН2-71Б

Пиневич В.Г.

Название предприятия: Научно-учебный комплекс «Фундаментальные науки» МГТУ им. Н.Э. Баумана

Москва - 2023 г.

Постановка задачи

Создать программы построения и отображения сетки конечных элементов.

Программа построения считывает данные из входного файла и записывает сетку в выходной файл. Обход элементов и контуров — против часовой стрелки. Нумерация узлов и элементов — произвольная. Программа — консольное приложение на языке C/C++.

Программа отображения считывает сетку и отображает ее в трехмерном пространстве. Контур выделять отдельным цветом. Использовать Wolfram Mathematica.

Формат входного файла

Поле	Описание	
NP	количество точек (2 или 4)	
X ₁ Y ₁ Z ₁ X _{NP} Y _{NP} Z _{NP}	координаты точек (всего NP наборов)	
NE ₁ NE ₂	количество элементов на линии (1 значение для 2 точек и 2 значения для 4 точек)	
type	тип элемента	
	для 2 точек	
	1 – линейный элемент	
	2 – квадратичный элемент	
	для 4 точек 1 — разбиение (4 узла) 2 — разбиение (3 узла) 3 — разбиение (3 узла) 4 — разбиение (3 узла)	

Формат выходного файла

Поле	Описание
	NE – кол-во элементов
NE NP NC	NP — кол-во узлов
	NC – кол-во контуров
EN ₁ ENP ₁ EP ₁ EP _{ENP1}	EN _i – номер элемента
LIN1 LINF1 LF1 LFENP1	ENP _i – кол-во узлов в элементе
ENNE ENPNE EPNE EPENPNE	EP_{j} — номер узла (всего ENP_{i} узлов)
EINNE EINPNE EPNE EPENPNE	всего NE наборов
PN ₁ x ₁ y ₁ z ₁	PN _i – номер узла
	$x_i y_i z_i$ — координаты узла
PN _{NP} x _{NP} y _{NP} z _{NP}	всего NP наборов
CPN ₁ CPN _{NC}	CPN_i — кол-во узлов на i контуре (всего NC чисел)
CP ₁	
	CP_1CP_{CPNi} — номера узлов в CPN_i контуре (всего CPN_i узлов)
CP _{CPN1}	
CP ₁	всего NC наборов
CP _{CPNNC}	

Результаты расчетов

Пример 1 (Входной файл 1 – отрезок, элементы – линейные).

2

0.0 0.0 0.0

10.0 2.0 0.0

4

1

Пример 2 (Входной файл 2 – четырехугольник, разбиение -1).

4 0.0

 $0.0\ 0.0\ 0.0$

10.0 0.0 0.0

10.0 8.0 0.0

0.0 8.0 0.0

2 2

1

Заключение

В результате работы был реализован алгоритм построения сетки для конечных элементов и построены изображения этих сеток.