Math 334 Homework 4

Alexandre Lipson

October 24, 2024

Problem (1). Prove $f: \mathbb{R} \longrightarrow \mathbb{R}$, $\exists c \in \mathbb{R}$, $\forall x \in \mathbb{R}$, $|f'(x)| \leq c \implies f$ uniformly continuous.

Proof. Let $\epsilon = c\delta$. For $|x-y| < \delta$, we must also have $y \to x$. So, the limit definition of the derivative can be expressed as $\left| \frac{f(y) - f(x)}{y - x} \right| = |f'(x)| \le c$. Then,

$$c|x - y| < c\delta = \epsilon$$

$$\left| \frac{f(y) - f(x)}{y - x} \right| |x - y| < \epsilon$$

$$|f(x) - f(y)| < \epsilon$$

Thus, $|x - y| < \delta \implies |f(y) - f(x)| < \epsilon$, so f is uniformly continuous.

Problem (2). Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ continuous at (0,0),

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

- i) Show $\forall v \in \mathbb{S}, \ \exists \lim_{t \to 0} \frac{f(tv) f(0)}{t}.$
- ii) Prove f not differentiable at (0,0).

Proof of i. Let v = (x, y). Since f(0) = 0 and $x^2 + y^2 = |v|^2 = 1$,

$$\lim_{t \to 0} \frac{f(tv)}{t} = \lim_{t \to 0} \frac{t^3 x^2 y}{t|v|^2}$$
$$= \lim_{t \to 0} t^2 x^2 y$$
$$= 0.$$

Proof of ii.

Problem (3). Let $f: U \longrightarrow \mathbb{R}, U \subset \mathbb{R}^n$ open. Show $\forall i, \exists \frac{\partial f}{\partial x_i}: U \longrightarrow \mathbb{R}$ bounded $\Longrightarrow f$ continuous on U.

Alexandre Lipson October 24, 2024

Proof. Since $U \subset \mathbb{R}^n$ and $\left| \frac{\partial f}{\partial x_i} \right| \leq c$, then we can apply problem (1) to each partial of f. Since f is continuous in all component directions, it is also everywhere continuous.

Problem (4). Use the linear approximation of $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ to approximate the distance between p = (0.99, -0.97, 2.02) and q = (4.02, 0.98, 8.01).

Proof. The distance between p and q is given by f(q-p). So, we will approximate f near q-p for some nice integer-valued vector $r=(3,2,4)\approx q-p$.

Then, $f(r) = \sqrt{3^2 + 2^2 + 4^2} = \sqrt{9 + 4 + 16} = \sqrt{29}$. Note that our approximation of the distance between p and q should be close to this value.

Then,
$$\nabla f(x) = \frac{1}{f(x)}(x, y, z)$$
, so $\nabla f(r) = \frac{1}{\sqrt{29}(3.2.4)}$.

Our linear approximation L at r is given by,

$$L_r(x) = f(r) + \nabla f(r) \cdot (x - r).$$

So, at the point x = q - p = (3.03, 1.95, 5.99),

$$L_r(x) = \sqrt{29} + \frac{1}{\sqrt{29}}(3, 2, 4) \cdot (0.03, -0.05, -0.01)$$

$$= \sqrt{29} + \frac{1}{\sqrt{29}}(0.09 - 0.1 - 0.04)$$

$$= \sqrt{29} - \frac{0.05}{\sqrt{29}}$$

$$= \frac{20\sqrt{29} - \frac{1}{\sqrt{29}}}{20}$$

$$= \frac{29(20)\sqrt{29} - \sqrt{29}}{29(20)}$$

$$= \frac{29(20) - 1}{29(20)}\sqrt{29}$$

$$= \frac{579}{580}\sqrt{29}.$$

So, the approximate distance between p and q is $\frac{579}{580}\sqrt{29}$, which is indeed close to $\sqrt{29}$.

Problem (5). Let $S_1 = \{(x, y, z) \mid y + z^3 = 2\}$ and $S_2 = \{(x, y, z) \mid x^2 + xy + y^4 = 21\}$. Let $C = S_1 \cap S_2$, C smooth.

- (a) Sketch S_1, S_2 , and C on the same diagram.
- (b) Find a parametric equation for the tangent line to C at p = (4, 1, 1).

For (a), we note that S_1 is a cylinder in x, and S_2 is a cylinder in z. So, we can construct a level set diagram for S_1 ...

Proposition (b). The tangent line to C at p is given by $\ell(t) = (4 - 8t, 1 + 9t, 1 - 3t)$.

Alexandre Lipson October 24, 2024

Proof. First, we will consider the change in z of C at p. This is given solely by S_1 . So, with the we will use the \mathbb{R}^2 function for cylinder surface of S_1 , $y=2-z^3$, we will consider $\frac{dy}{dz}=-3z^2$ at the z-coordinate of p, z=1, y'(1)=-3. So the change in z is -3.

Second, we will consider the changes in x and y. We will form the function $f(x,y) = x^2 + xy + x^4 - 21$, which parametrizes the surface S_2 . Then, $\nabla f(x,y) = (2x+y,x+4y^3)$. At the x and y coordinates of p, (x,y) = (4,1), $\nabla f(4,1) = (9,8)$. But, recalling that $\nabla f \perp f$, we know that the tangent line will change in x and y by -8 and 9 respectively. So, the tangent line will have the direction vector of (-8,9,-3) at the point (4,1,1). Thus, the tangent line is parametrized by (4,1,1) + (-8,9,-3)t.