Capítulo 1

Mecánica lagrangiana

1.1 Principio de los trabajos virtuales

Escribimos las ecuaciones de Newton para un sistema de partículas,

$$m_i \boldsymbol{a}_i = \boldsymbol{F}_i = \boldsymbol{F}_i^a + \boldsymbol{F}_i^v$$

pero sabiendo que el momento viene de las fuerzas aplicadas,

$$m_i \mathbf{a}_i = \dot{\mathbf{P}}_i$$

de manera que

$$\dot{\mathbf{F}}_i - \mathbf{F}_i^a - \mathbf{F}_i^v = 0,$$

y entonces, sumando en las N partículas del sistema

$$\sum_{i}^{N}\left(\dot{\boldsymbol{P}}_{i}-\boldsymbol{F}_{i}^{a}-\boldsymbol{F}_{i}^{v}\right)\cdot\delta\boldsymbol{r}_{i}=0$$

donde δr_i son desplazamientos virtuales. Si hacemos estos desplazamientos compatibles con los vínculos

$$\sum_{i}^{N}\left(\dot{\boldsymbol{P}}_{i}-\boldsymbol{F}_{i}^{a}\right)\cdot\delta\boldsymbol{r}_{i}-\sum_{i}^{N}\boldsymbol{F}_{i}^{v}\cdot\delta\boldsymbol{r}_{i}=0$$

donde el último término es nulo debido a que la fuerza de vínculos son perpendiculares a los desplazamientos virtuales, es decir

$$m{F}_i^v \perp \delta m{r}_i$$

Esto es sumamente sketchi, debemos leer la carpeta de la cursada y luego la teoría. si es que, por supuesto, los δr_i son compatibles con los vínculos.

Esto nos deja entonces, el Principio de los Trabajos Virtuales,

$$\sum_{i}^{N}\left(\dot{\boldsymbol{P}}_{i}-\boldsymbol{F}_{i}^{a}\right)\cdot\delta\boldsymbol{r}_{i}=0$$

donde como son independientes entonces se sigue que

$$\dot{\mathbf{P}}_i - \mathbf{F}_i^a = 0 \quad \forall i$$

Relación vínculos y desplazamientos: El hecho de que la fuerza de vínculo sea perpendicular a los desplazamientos puede verse a partir de que la ecuación de vínculo en un sistema toma la forma

$$f(\mathbf{r}_{i}) - K = 0$$

luego, derivando implícitamante cada ecuación y sumando (si se nos permite un pequeño abuso de notación)

$$\sum_{i}^{N} \frac{\partial f}{\partial \mathbf{r}_{i}} d\mathbf{r}_{i} = 0$$

pero esto no es otra cosa que

$$\nabla f \cdot \delta r = 0$$

donde debemos entender al gradiente y al vector $\boldsymbol{\delta r}$ como N dimensionales.

1.2 Construcción del lagrangiano

Consideremos un sistema de N partículas, k ecuaciones de vínculo y por ende 3N-k grados de libertad (estamos en 3 dimensiones).

Tenemos N relaciones

$$\mathbf{r}_i = \mathbf{r}_i(q_1, q_2, ..., q_{3N-k}, t)$$

entonces una variación serán

$$\delta oldsymbol{r}_i = \sum_{j=1}^{3N-k} \left(rac{\partial oldsymbol{r}_i}{\partial q_j}
ight) \delta q_j + rac{\partial oldsymbol{r}_i}{\partial t} \delta t$$

donde el último δt es nulo por ser un desplazamiento virtual de manera que

$$\delta \boldsymbol{r}_i = \sum_{j=1}^{3N-k} \left(\frac{\partial \boldsymbol{r}_i}{\partial q_j} \right) \delta q_j.$$

Por otro lado

$$\sum_{i}^{N} \dot{\boldsymbol{P}}_{i} \cdot \delta \boldsymbol{r}_{i} - \sum_{i}^{N} \boldsymbol{F}_{i}^{a} \cdot \delta \boldsymbol{r}_{i} = 0$$

¿Y esta magia? Hay que aclarar realmente que sea así como se dice que es.

y se puede reescribir el primer término como

$$\dot{\boldsymbol{P}}_{i}\cdot\delta\boldsymbol{r}_{i}=m_{i}\frac{d\boldsymbol{v}_{i}}{dt}\sum_{j=1}^{3N-k}\left(\frac{\partial\boldsymbol{r}_{i}}{\partial\boldsymbol{q}_{j}}\right)\delta\boldsymbol{q}_{j}$$

resultando

$$\sum_{i}^{N}m_{i}\frac{d\boldsymbol{v}_{i}}{dt}\cdot\sum_{j=1}^{3N-k}\left(\frac{\partial\boldsymbol{r}_{i}}{\partial\boldsymbol{q}_{j}}\right)\delta\boldsymbol{q}_{j}-\sum_{i}^{N}\boldsymbol{F}_{i}^{a}\cdot\delta\boldsymbol{r}_{i}=0$$

La idea ahora es reescribir todo en términos más convenientes, para que aparezca un término multiplicado a una variación arbitraria. De esta manera quedará una sumatoria de un sumando multiplicado por una variación igualada a cero. No cabe otra posibilidad que el sumando sea nulo para cada índice de la suma.

Escrito muy mal este texto. La idea es clara, no obstante: hay que purificarla

Consideremos la derivada total de

$$\frac{d}{dt}\left(m_i \mathbf{v}_i \frac{\partial \mathbf{r}_i}{\partial q_j}\right) = m_i \frac{d\mathbf{v}_i}{dt} \frac{\partial \mathbf{r}_i}{\partial q_j} + m_i \mathbf{v}_i \frac{d}{dt} \left(\frac{\partial \mathbf{r}_i}{\partial q_j}\right).$$

Pero la diferencial del vector r_i es (notemos que no es una variación)

$$dm{r}_i = \sum_{j=1}^{3N-k} \left(rac{\partial m{r}_i}{\partial q_j}
ight) dq_j + rac{\partial m{r}_i}{\partial t} dt$$

y entonces

$$\dot{m{r}}_i = m{v}_i = \sum_{j=1}^{3N-k} \left(rac{\partial m{r}_i}{\partial q_j}
ight) \dot{q}_j + rac{\partial m{r}_i}{\partial t}.$$

La derivada de la velocidad de la partícula i-ésima respecto a la coordenada l-ésima es

$$\frac{\partial \boldsymbol{v}_i}{\partial \dot{q}_l} = \frac{\partial \boldsymbol{r}_i}{\partial q_l} = \frac{\partial \boldsymbol{r}_i/\partial t}{\partial q_l/\partial t}.$$

Si derivamos nuevamente

$$\frac{\partial}{\partial q_l} \left(\frac{d \boldsymbol{r}_i}{dt} \right) = \frac{\partial \boldsymbol{v}_i}{\partial q_l} = \sum_{j=1}^{3N-k} \frac{\partial^2 \boldsymbol{r}_i}{\partial q_l \partial q_j} \dot{q}_j + \frac{\partial^2 \boldsymbol{r}_i}{\partial q_l \partial t}.$$

$$\frac{d}{dt}\left(\frac{\partial \boldsymbol{r}_i}{\partial q_l}\right) = \frac{d}{dt}\left(\sum_{j=1}^{3N-k}\frac{\partial^2\boldsymbol{r}_i}{\partial q_l\partial q_j}dq_j + \frac{\partial^2\boldsymbol{r}_i}{\partial q_l\partial t}dt\right)$$

de tal manera que

$$\frac{d}{dt} \left(\frac{\partial \mathbf{r}_i}{\partial q_i} \right) = \frac{\partial \mathbf{v}_i}{\partial q_i}$$

Volvemos ahora a la eq III y

$$\sum_{i}^{N}\sum_{i=1}^{3N-k}\left[\frac{d}{dt}\left(m_{i}\boldsymbol{v}_{i}\frac{\partial\boldsymbol{r}_{i}}{\partial\boldsymbol{q}_{j}}\right)-m_{i}\boldsymbol{v}_{i}\frac{d}{dt}\left(\frac{\partial\boldsymbol{v}_{i}}{\partial\boldsymbol{q}_{j}}\right)\right]\delta\boldsymbol{q}_{j}$$

y este corchete lo reescribimos como

$$\sum_{i}^{N}\sum_{j=1}^{3N-k}\left[\frac{d}{dt}\left(m_{i}\boldsymbol{v}_{i}\frac{\partial\boldsymbol{v}_{i}}{\partial\dot{q}_{j}}\right)-m_{i}\boldsymbol{v}_{i}\frac{\partial\boldsymbol{v}_{i}}{\partial\boldsymbol{q}_{j}}\right]\delta\boldsymbol{q}_{j}$$

$$\sum_{i}^{N}\sum_{j=1}^{3N-k}\left\{\frac{d}{dt}\left[\frac{\partial}{\partial \dot{q}_{j}}\left(\frac{m_{i}}{2}\textbf{\textit{v}}_{i}^{2}\right)\right]-\frac{\partial}{\partial q_{j}}\left(\frac{m_{i}}{2}\textbf{\textit{v}}_{i}^{2}\right)\right\}\delta q_{j}$$

Ahora introducimos la sumatoria en *i* hacia adentro de ambos términos,

$$\sum_{j=1}^{3N-k} \left\{ \frac{d}{dt} \left[\frac{\partial}{\partial \dot{q}_j} \left(\sum_i^N \frac{m_i}{2} \boldsymbol{v}_i^2 \right) \right] - \frac{\partial}{\partial q_j} \left(\sum_i^N \frac{m_i}{2} \boldsymbol{v}_i^2 \right) \right\} \delta q_j$$

de modo que dentro de los paréntesis resulta T, luego

$$\sum_{i}^{N}\dot{\boldsymbol{P}}_{i}\cdot\delta\boldsymbol{r}_{i}=\sum_{j=1}^{3N-k}\left\{\frac{d}{dt}\left[\frac{\partial}{\partial\dot{q}_{j}}\left(T\right)\right]-\frac{\partial}{\partial\boldsymbol{q}_{j}}\left(T\right)\right\}\delta\boldsymbol{q}_{j}$$

$$\sum_{i}^{N}\dot{\boldsymbol{P}}_{i}\cdot\delta\boldsymbol{r}_{i}=\sum_{j=1}^{3N-k}\sum_{i}^{N}\boldsymbol{F}_{i}^{a}\cdot\frac{\partial\boldsymbol{r}_{i}}{\partial\boldsymbol{q}_{j}}\delta\boldsymbol{q}_{j}=\sum_{j=1}^{3N-k}\sum_{i}^{N}\boldsymbol{Q}_{j}\delta\boldsymbol{q}_{j}$$

siendo Q_j la fuerza generalizada. Entonces

$$\sum_{i=1}^{3N-k} \left\{ \frac{d}{dt} \left[\frac{\partial}{\partial \dot{q}_j} \left(T \right) \right] - \frac{\partial}{\partial q_j} \left(T \right) - Q_j \right\} \delta q_j = 0.$$

Si suponemos que las fuerzas son conservativas entonces

$$Q_{j}\delta q_{j}=-\frac{\partial V}{\partial q_{j}}\delta q_{j}$$

y como $V = V(\boldsymbol{r}_1,...,\boldsymbol{r}_n)$ se tiene

$$V = \sum_{i}^{N} \frac{\partial V}{\partial r_{i}} \delta \boldsymbol{r}_{i} = \frac{\partial V}{\partial \boldsymbol{r}_{i}} \cdot \frac{\partial \boldsymbol{r}_{i}}{\partial q_{j}} \delta q_{j} =$$

pero

$$Q_j = -\frac{\partial V}{\partial q_i}$$

y entonces

$$\sum_{j=1}^{3N-k} \left\{ \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial}{\partial q_j} \left(T - V \right) \right\} \delta q_j = 0.$$

Definimos como

$$\mathcal{L} \equiv T - V$$

y entonces podemos escribir

$$\sum_{j=1}^{3N-k} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}}{\partial q_j} \right] \delta q_j = 0.$$

Si existieran fuerzas que no provienen de un potencial entonces

$$Q_j + Q_j^{NC} = -\frac{\partial V}{\partial q_j} + Q_j^{NC}$$

y finalmente

$$\sum_{j=1}^{3N-k} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}}{\partial q_j} \right] \delta q_j = \sum_{j=1}^{3N-k} Q_j^{NC} \delta q_j$$

Como esto vale para todo grado de libertad l llegamos a

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}}{\partial q_j} = Q_j^{NC}$$

que son las ecuaciones de Euler-Lagrange. Este es el resultado más importante del capítulo.

1.3 Invariancia del lagrangiano ante adición de una derivada total

Sea una función de las coordenadas y del tiempo $F=F(q_i,t)$ que sumamos al lagrangiano \mathcal{L} , de modo que

$$\mathcal{L}' = \mathcal{L} + \frac{dF}{dt}$$

y las ecuaciones de Euler-Lagrange para este nuevo lagrangiano son

$$\begin{split} \frac{d}{dt} \left(\frac{\partial \mathcal{L}'}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}'}{\partial q_j} &= 0 \\ \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} + \frac{\partial}{\partial \dot{q}_j} \left(\frac{dF}{dt} \right) \right) - \frac{\partial \mathcal{L}}{\partial q_j} - \frac{\partial}{\partial q_j} \left(\frac{dF}{dt} \right) &= 0 \\ \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}}{\partial q_j} + \frac{d}{dt} \left(\frac{\partial}{\partial \dot{q}_j} \left(\frac{dF}{dt} \right) \right) - \frac{\partial}{\partial q_j} \left(\frac{dF}{dt} \right) &= 0 \end{split}$$

Ahora es necesario escribir la derivada total de F,

$$\frac{dF}{dt} = \sum_{i}^{3N-k} \frac{\partial F}{\partial q_{i}} \frac{dq_{j}}{dt} + \frac{\partial F}{\partial t} = \sum_{i}^{3N-k} \frac{\partial F}{\partial q_{j}} \dot{q}_{j} + \frac{\partial F}{\partial t}$$

y ver que

$$\frac{\partial}{\partial \dot{q}_i} \left(\frac{dF}{dt} \right) = \frac{\partial F}{\partial q_i} \qquad \qquad \frac{\partial}{\partial q_i} \left(\frac{dF}{dt} \right) = \frac{\partial^2 F}{\partial q_i^2} \dot{q}_i + \frac{\partial^2 F}{\partial q_i \partial t}$$

Luego, usando esta información, resulta que los términos que surgen de la adición de la derivada total de F resultan ser

$$\frac{d}{dt} \left(\frac{\partial}{\partial \dot{q}_{j}} \left(\frac{dF}{dt} \right) \right) - \frac{\partial}{\partial q_{j}} \left(\frac{dF}{dt} \right) = \frac{d}{dt} \left(\frac{\partial F}{\partial q_{j}} \right) - \frac{\partial}{\partial q_{j}} \left(\frac{dF}{dt} \right)$$

$$\frac{d}{dt} \left(\frac{\partial F}{\partial q_{i}} \right) - \frac{\partial}{\partial q_{i}} \left(\frac{dF}{dt} \right) = \frac{\partial^{2} F}{\partial q_{i}^{2}} \dot{q}_{j} + \frac{\partial^{2} F}{\partial t \partial q_{i}} - \frac{\partial}{\partial q_{i}} \left(\frac{dF}{dt} \right)$$

y si aceptamos que F es de clase \mathbb{C}^2 se tiene

$$\frac{\partial^2 F}{\partial {q_i}^2} \dot{q}_j + \frac{\partial^2 F}{\partial t \partial q_i} - \frac{\partial}{\partial q_i} \left(\frac{dF}{dt}\right) = 0$$

de modo que las ecuaciones de Euler Lagrange no se modifican si añadimos una derivada total respecto del tiempo de una función de q_j,t .

1.4 Momentos conjugados y coordenadas cíclicas

Dado un lagrangiano $\mathcal{L}=\mathcal{L}(q_i,\dot{q}_i,t)$ se define el momento canónicamente conjugado a q_i como

$$p_j \equiv \frac{\partial \mathcal{L}}{\partial \dot{q}_j},\tag{4.1}$$

y entonces

$$\dot{p}_j = \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) \equiv Q_j,$$

que es la fuerza generalizada en el grado de libertad j.

Sea ahora un lagrangiano que no depende explícitamente de la coordenada k, es decir

$$\mathcal{L} = \mathcal{L}(q_1, ..., q_{k-1}, q_{k+1}, ..., q_n, \dot{q}_1, ... \dot{q}_n, t),$$

entonces será

$$\frac{\partial \mathcal{L}}{\partial q_k} = 0$$

y como consecuencia las ecuaciones de Euler-Lagrange en la coordenada k-ésima resultan

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_k} \right) = \dot{p}_k = Q_k = 0$$

de manera que no existe fuerza generalizada en el grado de libertad k y como es $\dot{p}_k=0$, se conserva el momento p_k canónicamente conjugado a q_k . En estos casos se dice que la coordenada q_k que no aparece en el lagrangiano, es una coordenada cíclica.

EJEMPLO 4.1 Potencial central en un plano

Sea un potencial central V(r) en el plano. El lagrangiano de una partícula de masa m sometida al mismo, y en las convenientes coordenadas polares (r,φ) es

$$\mathcal{L} = \frac{1}{2} m (\, \dot{r}^2 + r^2 \dot{\varphi}^2) - V(r). \label{eq:loss}$$

Luego, las ecuaciones de Euler-Lagrange serán, en r,

$$\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{r}}\right) - \frac{\partial \mathcal{L}}{\partial r} = m\ddot{r} - m\dot{\varphi}^2 r + \frac{dV}{dr} = 0$$

y en φ

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\varphi}} \right) = mr^2 \ddot{\varphi} = 0.$$

En esta última debemos notar que $\partial \mathcal{L}/\partial \varphi=0$ y esto significa que φ es cíclica. Entonces se conserva el momento canónicamente conjugado a φ puesto que verifica

$$\dot{p}_\varphi=mr^2\ddot\varphi=0$$

lo cual lleva a que $mr^2\dot{\varphi}$ es una constante para este sistema. La moraleja es que la existencia de una coordenada cíclica permite ahorrarnos una integración. Esto, por supuesto, para este problema no es otra cosa que la conservación del momento angular [?].

1.5 Energía cinética de un sistema

Resulta útil disponer de la energía cinética de un sistema en función de coordenadas generalizadas. Para un sistema de N partículas, es

$$T = \frac{1}{2} \sum_i^N m_i |\boldsymbol{v}_i|^2$$

donde las posiciones de cada una de ellas se pueden expresar en términos de k coordenadas generalizadas

$$\boldsymbol{x}_i = \boldsymbol{x}_i(q_1, q_2, ..., q_k, t)$$

y sus respectivas velocidades serán

$$\mathbf{v}_i = \sum_{j}^{k} \frac{\partial \mathbf{x}_i}{\partial q_j} \, \dot{q}_j + \frac{\partial \mathbf{x}_i}{\partial t}.$$

Luego, utilizando el hecho de que $|oldsymbol{v}_i|^2 = oldsymbol{v}_i \cdot oldsymbol{v}_i$, se tiene

 $T = \frac{1}{2} \sum_{i}^{N} m_{i} \left(\sum_{j}^{k} \frac{\partial \boldsymbol{x}_{i}}{\partial q_{j}} \dot{q}_{j} + \frac{\partial \boldsymbol{x}_{i}}{\partial t} \right) \cdot \left(\sum_{s}^{k} \frac{\partial \boldsymbol{x}_{i}}{\partial q_{s}} \dot{q}_{s} + \frac{\partial \boldsymbol{x}_{i}}{\partial t} \right) \tag{5.1}$

Usando $\boldsymbol{r}_i = \boldsymbol{r}_i(q_1,...,q_n,t)$ desarrollamos un desplazamiento real como

$$d\boldsymbol{r}_i = \sum_{j=1}^{3N-k} \left(\frac{\partial \boldsymbol{r}_i}{\partial q_j}\right) dq_j + \frac{\partial \boldsymbol{r}_i}{\partial t} dt$$

y podemos incorporar esta información en (5.1) para obtener

$$T = \frac{1}{2} \sum_{i}^{N} m_{i} \left(\sum_{j}^{3n-k} \sum_{s}^{3n-k} \frac{\partial \boldsymbol{r}_{i}}{\partial q_{j}} \frac{\partial \boldsymbol{r}_{i}}{\partial q_{s}} \dot{q}_{s} \dot{q}_{j} + \left(\frac{\partial \boldsymbol{r}_{i}}{\partial t} \right) \right)^{2} + 2 \left(\sum_{j}^{3n-k} \frac{\partial \boldsymbol{r}_{i}}{\partial q_{j}} \dot{q}_{j} \frac{\partial \boldsymbol{r}_{i}}{\partial t} \right)$$

$$T = \frac{1}{2} \sum_{i}^{N} m_{i} \left(\sum_{j}^{3n-k} \sum_{s}^{3n-k} \frac{\partial \boldsymbol{r}_{i}}{\partial q_{j}} \frac{\partial \boldsymbol{r}_{i}}{\partial q_{s}} \dot{q}_{s} \dot{q}_{j} \right) + \frac{1}{2} \sum_{i}^{N} m_{i} \left(\frac{\partial \boldsymbol{r}_{i}}{\partial t} \right)^{2} + \sum_{i}^{N} m_{i} \left(\sum_{j}^{3n-k} \frac{\partial \boldsymbol{r}_{i}}{\partial q_{j}} \dot{q}_{j} \frac{\partial \boldsymbol{r}_{i}}{\partial t} \right)$$

Esto se puede reescribir más cómodamente definiendo

$$T_0 \equiv \frac{1}{2} \sum_{i}^{N} m_i \left(\frac{\partial \boldsymbol{r}_i}{\partial t} \right)^2$$

Este chapter es básicamente un desarrollo formal, habría que bajar con alguna aplicación práctica.

$$\begin{split} a_{js}(q_1,...,q_{3N-k},t) &\equiv \sum_i^N m_i \frac{\partial \boldsymbol{r}_i}{\partial q_j} \frac{\partial \boldsymbol{r}_i}{\partial q_s} \\ b_j(q_1,...,q_{3N-k},t) &\equiv \sum_i^N m_i \frac{\partial \boldsymbol{r}_i}{\partial q_s} \frac{\partial \boldsymbol{r}_i}{\partial t} \end{split}$$

y entonces, juntando todo,

Hay un factor de 1/2 de diferencia. Revisar la carpeta.

$$T = T_0 + \frac{1}{2} \sum_{j}^{3n-k} \sum_{s}^{3n-k} a_{js}(q_1,...,q_{3N-k},t) \dot{q}_s \dot{q}_j + \sum_{j}^{3n-k} b_{j}(q_1,...,q_{3N-k},t) \dot{q}_j$$

Para una particula libre será

$$T = T_2$$

y para una partícula con vínculos en general tendrá las tres clases de cinética.

1.6 Energía cinética de un sistema de partículas

La energía de un sistema de partículas es

$$\begin{split} T &= \frac{1}{2} \sum_{i}^{N} m_{i} \boldsymbol{v}_{i}^{2} = \frac{1}{2} \sum_{i}^{N} m_{i} \left(\dot{\boldsymbol{R}} + \dot{\boldsymbol{r}}_{i}^{\prime} \right)^{2} = \\ &\frac{1}{2} \sum_{i}^{N} m_{i} \boldsymbol{V}_{cm}^{2} + \frac{1}{2} \sum_{i}^{N} m_{i} \boldsymbol{V}_{i}^{\prime 2} + \frac{1}{2} \sum_{i}^{N} 2 m_{i} \boldsymbol{V}_{cm} \cdot \boldsymbol{r}_{i}^{\prime} \end{split}$$

y veremos ahora que el último término es nulo ya que son vectores perpendiculares. Para ello notemos que

$$\begin{split} M \boldsymbol{R}_{cm} &= \sum_{i}^{N} m_{i} \boldsymbol{r}_{i} = \sum_{i}^{N} m_{i} (\boldsymbol{R}_{i} + \boldsymbol{r}_{i}') \\ 0 &= \sum_{i}^{N} m_{i} \boldsymbol{r}_{i}' \end{split}$$

y también

$$0 = \sum_{i}^{N} m_i \boldsymbol{v}_i'$$

de modo que

$$0 = \sum_{i}^{N} m_i \mathbf{V}_{cm} \cdot \mathbf{r}_i'.$$

Figura 6.1 Sistema de partículas

Finalmente

$$T^{tot} = T^{cm} + T^{tot}_{cm}$$

Esto hay que revisarlo, derivo ambos miembros? Vincular con la figura.

1.7 Trabajo en un sistema de partículas

Empezamos desde

$$W = W^{ext} + W^{int}$$

donde el trabajo externo puede escribirse

Quiero un ℓ en bold, no me gusta el s.

$$W^{ext} = \sum_{i=1}^{N} \int_{1}^{2} \boldsymbol{F}_{i}^{e} \cdot d\boldsymbol{s} \tag{7.1}$$

La no dependencia del camino para la integral que da (7.1) requiere que

$$\mathbf{F}_{i}^{e} = \mathbf{F}_{i}^{e}(\mathbf{r}_{i}) \qquad \nabla_{r} \times \mathbf{F}_{i}^{e} = 0$$

y entonces puedo inducir la existencia de una función potencial para las fuerzas externas,

barra resizeable ya.

$$W^{ext} = -\sum_{i}^{N} \Delta V_{i} \big]_{1}^{2}$$

Por otro lado,

$$W_c^{int} = \int_1^2 \sum_{\substack{j \ i \neq i}}^N oldsymbol{F}_{ij}^e \cdot doldsymbol{s}_i$$

$$\sum_{i}^{N}W_{i}^{int} = W^{int} = \sum_{\substack{j\\i\neq j}}^{N}\int_{1}^{2}\sum_{\substack{j\\j\neq i}}^{N}\boldsymbol{F}_{ij}^{e}\cdot d\boldsymbol{s}_{i}$$

1.8 Lagrangiano cíclico en el tiempo

Empecemos desde la derivada total con respecto al tiempo del lagrangiano,

$$\frac{d}{dt}\left(\mathcal{L}(q,\dot{q},t)\right) = \frac{\partial\mathcal{L}}{\partial q}\dot{q} + \frac{\partial\mathcal{L}}{\partial \dot{q}}\ddot{q} + \frac{\partial\mathcal{L}}{\partial t}$$

y usando la derivada total del término

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}} \dot{q} \right) = \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}} \right) \dot{q} + \frac{\partial \mathcal{L}}{\partial \dot{q}} \ddot{q}.$$

Reemplazando una en otra resulta que

$$\frac{d}{dt}\left(\mathcal{L}(q,\dot{q},t)\right) = \frac{\partial\mathcal{L}}{\partial q}\dot{q} + \frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial \dot{q}}\dot{q}\right) - \frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial \dot{q}}\right)\dot{q} + \frac{\partial\mathcal{L}}{\partial t}$$

y acomodando un poco

$$\begin{split} \frac{d}{dt}\left(\mathcal{L}(q,\dot{q},t)\right) &= \left[\frac{\partial \mathcal{L}}{\partial q} - \frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}}\right)\right]\dot{q} + \frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}}\dot{q}\right) + \frac{\partial \mathcal{L}}{\partial t} \\ \frac{d}{dt}\left(\mathcal{L}(q,\dot{q},t)\right) &= \frac{d}{dt}\left(p\dot{q}\right) + \frac{\partial \mathcal{L}}{\partial t} \end{split}$$

y entonces previo pase mágico de términos,

$$\frac{d}{dt}\left(p\dot{q} - \mathcal{L}\right) = -\frac{\partial \mathcal{L}}{\partial t}$$

y si definimos

$$\mathcal{H} \equiv p\dot{q} - \mathcal{L}$$

resulta que

$$\frac{d\mathcal{H}}{dt} = -\frac{\partial \mathcal{L}}{\partial t}.$$

Entonces si el lagrangiano no depende explícitamente del tiempo se tiene que $\mathcal{H}=cte.$. Además, si se cumplen

$$T = T_2$$
 $V \neq V(\dot{q})$

y además los vínculos no dependen del tiempo se tiene que $\mathcal{H}=E$, es decir, el Hamiltoniano es la energía. La condicion de que los vínculos no dependan del tiempo genera en realidad que $T=T_2$.

Por otro lado E = cte. si $W^{nc} = 0$.

1.9 Energía cinética y el hamiltoniano

Dado que la energía cinética tiene la forma general

$$T = \underbrace{\frac{1}{2} \sum_{i}^{N} m_{i} \left(\frac{\partial \pmb{r}_{i}}{\partial t} \right)^{2}}_{T_{0}} + \underbrace{\sum_{j}^{3n-k} b_{j}(q_{1}, ..., q_{3N-k}, t) \dot{q}_{j}}_{T_{1}} + \underbrace{\frac{1}{2} \sum_{j}^{3n-k} \sum_{s}^{3n-k} a_{js}(q_{1}, ..., q_{3N-k}, t) \dot{q}_{s} \dot{q}_{j}}_{T_{2}}$$

entonces se sigue que

$$E = T_0 + T_1 + T_2 + V (9.1)$$

y como

$$p_i = \frac{\partial \mathcal{L}}{\partial \dot{q}_i} = T_1 + 2T_2$$

es

$$\mathcal{H} = \sum_{i}^{N} p_{i} \dot{q}_{i} - (T_{0} + T_{1} + T_{2} - V) = 2T_{2} + T_{1} - T_{0} - T_{1} - T_{2} + V = T_{2} - T_{0} + V$$

pero como E es (9.1) se tendrá

$$E = H \iff 2T_0 + T1 = 0$$

y un solución de este sistema es, por supuesto, $T_0=T_1=0\,$

1.10 Principio de acción mínima

También Principio variacional de Hamilton. Partimos de una acción,

$$S = \int_{t_{-}}^{t_{f}} \mathcal{L}(q_{i}, \dot{q}_{i}, t) dt \qquad \mathcal{L} = T - V$$

La trayectoria real de un sistema con lagrangiano $\mathcal L$ es tal que S es mínimo para cualquier trayectoria posible entre $q(t=t_i)$ y $q(t=t_f)$. Consideramos una variación con extremos fijos, es decir

$$\delta q(t=t_i)=0 \qquad \delta q(t=t_f)=0$$

y a tiempo fijo $\delta t=0.$ Esto último signfica que todas las trayectorias emplearán el mismo tiempo (no se variará).

Consideramos una variación de la integral,

$$\delta I = \int_{t_i}^{t_f} \sum_{i}^{N} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta \dot{q}_i + \frac{\partial \mathcal{L}}{\partial q_i} \delta q_i \right) dt,$$

Cuán sketchi es todo esto!! Mucho para aclarar. Tal vez se justifique un minicurso de variacional como apéndice.

Figura 10.2 El principio de acción mínima

y notamos que será beneficioso utilizar integración por partes para expresar todo en función de las variaciones de las coordenadas (las δq_i), de manera que como

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta q_i \right) = \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \right) \delta q_i + \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta \dot{q}_i,$$

resulta

$$\delta I = \int_{t_{-}}^{t_{f}} \sum_{i}^{N} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \delta q_{i} \right) - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \right) \delta q_{i} + \frac{\partial \mathcal{L}}{\partial q_{i}} \delta q_{i} \right] dt,$$

separamos los dos términos,

$$\delta I = \int_{t_i}^{t_f} \sum_{i}^{N} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta q_i \right) \right] dt - \int_{t_i}^{t_f} \sum_{i}^{N} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \right) - \frac{\partial \mathcal{L}}{\partial q_i} \right] \delta q_i dt,$$

y resulta que el primero por el teorema fundamental del cálculo es

$$\int_{t_{i}}^{t_{f}} \sum_{i}^{N} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \delta q_{i} \right) \right] dt = \left. \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \delta q_{i} \right|_{t_{i}}^{t_{f}}$$
(10.1)

y es nulo porque $\delta q_i=0$ en los extremos (recordemos que las variaciones son nulas en los extremos de integración). Decimos que este es un término de superficie. Entonces

$$\delta I = -\int_{t_i}^{t_f} \sum_{i}^{N} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \right) - \frac{\partial \mathcal{L}}{\partial q_i} \right] \delta q_i dt = 0$$

se verificará por el cumplimiento de las ecuaciones de Euler-Lagrange

$$\sum_{i}^{N} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \right) - \frac{\partial \mathcal{L}}{\partial q_{i}} \right] = 0.$$

Luego, si se hace $\mathcal{L}' = \mathcal{L} + df/dt$ (ambos lagrangianos difieren en una derivada total con respecto al tiempo) la trayectoria que minimiza \mathcal{L}' es la que misma que minimiza \mathcal{L} por la condición dada por (10.1). Entonces

$$\delta S = 0 \iff \sum_{i}^{N} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \right) - \frac{\partial \mathcal{L}}{\partial q_{i}} \right] = 0.$$

La moraleja es que si los lagrangianos difieren en una derivada total del tiempo obtenemos la misma física.

1.11 Aplicaciones del principio de acción mínima

$$S = \int (T - V_0)dt$$

donde el lagrangiano es con $V=V_0$ constante (un lagrangiano sujeto a potencial constante). La integral de acción da una medida de la longitud de la órbita (el espacio recorrido). Para una partícula sujeta a V=0

$$S = \frac{1}{2} \int m v_0^2 dt = \frac{1}{2} m v_0^2 (t - t_0)$$

de manera que $v_0(t-t_0)$ representa la distancia d recorrida, y es

$$S = \frac{1}{2}mv_0d$$

Comentario sobre el cálculo de las variaciones

$$I = \int f\left(x, \frac{dx}{dt}, t\right) dt$$

entonces I es extremo si

$$\frac{d}{dt}\left(\frac{\partial f}{\partial [dx/dt]}\right) - \frac{\partial f}{\partial x} = 0$$

También podemos encontrar esta notación, dependiendo del tipo de problema,

$$I = \int f\left(y, \frac{dy}{dx}, x\right) dx$$

Esta idea debe estar en el suplemento matemático que le dedicaremos a variacional

1.12 Multiplicadores de Lagrange

Partimos de la acción

$$S = \int_{t_i}^{t_f} \mathcal{L}\left(q_i[t], \dot{q}_i[t], t\right) dt$$

entonces

$$\delta S = 0 \quad \Leftrightarrow \quad \int \sum_{j=1}^{N} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \right) - \frac{\partial \mathcal{L}}{\partial q_{j}} \right] \delta q_{j} dt$$

donde δq_j son desplazamientos independientes. Si no se pued despejar alguna δq_j (con vínculos no-holónomos, por ejemplo) entonces algún δq_j es independiente de modo que para que valga $\delta S=0$ necesitaré

$$\sum_{\ell}^N a_\ell^k(q_i,t)\dot{q}_\ell + b^k(q_i,t) = 0$$

que son los vínculos (k=1,...,s); son s ecuaciones de vínculo. Multiplicamos por δt y vemos que no son independientes

$$\sum_{\ell}^{N}a_{\ell}^{k}(q_{i},t)\delta q_{\ell}+b^{k}(q_{i},t)\delta t=0$$

Sean δq_{ℓ} variación a t fijo, entonces

$$\sum_{\ell}^N a_{\ell}^k(q_i,t) \delta q_{\ell}$$

$$\int_{t_i}^{t_f} \lambda^k \sum_{\ell}^N a_\ell^k(q_i,t) \delta q_\ell dt = 0$$

recordando que ℓ suma en los grados de libertad. Podemos sacar la suma fuera,

$$\sum_k^s \int_{t_i}^{t_f} \lambda^k \sum_\ell^N a_\ell^k(q_i,t) \delta q_\ell dt = 0$$

Absorbo la otra sumatoria en el segundo término y paso de $\ell \to j$.

$$\int \sum_{j=1}^N \left\{ \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}}{\partial q_j} - \sum_k^s \lambda^k a_\ell^k(q_i,t) \right\} \delta q_\ell dt = 0$$

entonces

$$\sum_{j=1}^N \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}}{\partial q_j} = \sum_{j=1}^N \sum_k^s \lambda^k a_\ell^k(q_i,t) = \sum_{j=1}^N \sum_k^s \lambda^k \nabla_j f^k \cdot \frac{\delta r_j}{\delta q_j}$$

siendo $\nabla_j f^k$ el gradiente de la ecuación de víngulo respeco de j y donde λ^k es la fuerza de vínculo asociada al vínculo no despejado pues como la fuerza generalizada (que no proviene de potencial)

$$Q_j = \sum_{i}^{N} \boldsymbol{F}_i^a \cdot \frac{\partial \boldsymbol{r}_i}{\partial q_j}$$

y comparando vemos que

$$Q_j = \sum \lambda^k a_j^k(q_j,t) \quad \text{vínculos no holónomos}$$

$$Q_j = \sum \lambda^k \nabla_j f^k \cdot \delta {m r}_j \quad {
m vinculos\ holonomos}$$

En el caso de vínculos holónomos

$$g(\boldsymbol{r}_1,...,\boldsymbol{r}_n,t)=0$$

donde no quise despejar en función de $q_q, ..., q_n$ resulta que

El supraíndice con δq_j va sobre el igual en realidad.

$$Q_j^{\delta q_j} = \sum_i^N \lambda(\nabla_i f^k \cdot \delta \boldsymbol{r}_i)$$

donde $\delta \boldsymbol{r}_i$ es un desplazamiento virtual de la partícula. Vamos a reescribir este término,

$$\sum_{i}^{N} \frac{\partial g^{k}}{\partial r_{i}} \delta r_{i} = 0$$

$$abla_i f^k \cdot \delta m{r}_i = \sum_i rac{\partial g^k}{\partial m{r}_i} rac{\partial m{r}_i}{\partial q_j} \delta q_j$$

$$Q_{j}^{\delta q_{j}} = \lambda \sum_{k} \frac{\partial g^{k}}{\partial r_{i}} \sum_{i} \frac{\partial r_{i}}{\partial q_{j}} \delta q_{j}$$

luego como

$$a_j^k \equiv \frac{\partial g^k}{\partial \boldsymbol{r}_i}$$

se sigue que los λ^k son las fuerzas de vínculo.

En el caso de vínculos no holónomos λ^k son las fuerzas de vínculo asociadas a los vínculos no retirados.

$$\begin{split} Q_{j}\delta q_{j} &= \sum \lambda^{k}(\nabla_{i}g^{k}\cdot\delta\boldsymbol{r}_{i})\\ Q_{j} &= \sum_{k}\lambda^{k}\frac{\partial g^{k}}{\partial\boldsymbol{r}_{i}}\frac{\partial\boldsymbol{r}_{i}}{\partial q_{j}}\\ Q_{j} &= \sum_{k}\lambda^{k}\frac{\partial g^{k}}{\partial q_{j}} \end{split}$$

entonces $\lambda^k = F^v$.

Como extra escribamos que para cada grado de libertad j

$$\frac{\partial \mathcal{L}}{\partial q_j} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \sum_k^s \lambda^k a_j^k \equiv 0$$

donde δq_i son ahora independientes.

$$Q_j = \sum_{i}^{N} F_i^a \frac{\partial \boldsymbol{r}_i}{\partial q_j}.$$

EJEMPLO 12.1 Moneda rodando por un plano

Consideramos una moneda que rueda libremente por un plano (no sujeta a potencial). Situraemos un sistema de ejes sobre la moneda, que etiquetaremos 123 y otro fijo fuera de la misma xyz.

$$egin{aligned} oldsymbol{V}_{cm} &= -oldsymbol{\Omega} imes oldsymbol{r} &= -(\dot{\phi}\hat{2} + \dot{\psi}\hat{3}) imes (-a\hat{2}) \\ & \dot{x}\hat{x} + \dot{y}\hat{y} &= -a\dot{\psi}\hat{1} \end{aligned}$$

siendo los vínculos

$$z_{cm}-a=0$$
 $\theta=\pi/2$ $|{m V}_{cm}|=a\dot{\psi}$

de tal modo que son dos grados de libertad. El lagrangiano puede escribirse como

$$\mathcal{L} = T = \frac{1}{2} m a^2 \dot{\psi}^2 + \frac{1}{2} I_2^2 \dot{\phi}^2 + \frac{1}{2} I_3^2 \dot{\psi}^2.$$

Como los vínculos dependen de la velocidad, resulta

$$\begin{split} \dot{y} &= a\dot{\psi}\cos(\psi)\sin(\phi) = a\sin(\phi)\dot{\psi} \\ \dot{x} &= a\dot{\psi}\cos(\psi)\cos(\phi) = a\cos(\phi)\dot{\psi} \end{split}$$

de tal manera que

$$\dot{y} - a\sin(\phi)\dot{\psi} = 0 \qquad \dot{x} - a\cos(\phi)\dot{\psi} = 0$$

y luego esto equivale a

$$\lambda_1(dy - a\sin(\phi)d\psi) = 0$$
 $\lambda_2(dx - a\cos(\phi)d\psi) = 0$

v finalmente

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \right) - \frac{\partial \mathcal{L}}{\partial q_i} = \lambda_i \nabla_i f \cdot \delta \boldsymbol{r}_i$$

No entiendo/recuerdo lo que quise decir con la expresión bajar los ejes. Calculo que se relaciona con la proyección de los ejes 123 en xyz. Confirmarlo.

Figura 12.3 Moneda que rueda libremente por un plano.

Podemos escribir

$$\begin{split} m\ddot{x} &= \lambda_1 \qquad m\ddot{x} = ma\frac{d}{dt}(\cos(\phi)\dot{\psi}) \\ m\ddot{x} &= ma(-\sin(\phi)\dot{\phi}\dot{\psi} + \cos(\phi)\ddot{\psi}) \\ m\ddot{y} &= \lambda_2 \\ I_2\ddot{\phi} &= 0 \qquad I_3\ddot{\psi} = -\lambda_2 a\sin(\phi) - \lambda_1 a\cos(\phi) \\ \hat{1} &= \cos(\psi)[\sin(\phi)\hat{y} + \cos(\phi)\hat{x}] \end{split}$$

1.13 Potenciales dependientes de la velocidad

Hasta el momento se consideró que el potencial V dependía únicamente de la posición y resultaba eso en una fuerza generalizada [la llamé así?]

$$Q_j = -\frac{\partial V}{\partial q_j}$$

para la cual el $\mathcal{L} \equiv T - V$ cumplía las ecuaciones de Euler Lagrange

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}}{\partial q_j} = 0.$$
 (13.1)

Si en cambio se tiene un potencial dependiente, además, de la velocidad,

$$U = U(q_1,...,q_2,\dot{q}_1,...,\dot{q}_n,t)$$

y se requiere que sigan valiendo las ecuaciones (13.1) para $\mathcal{L}\equiv T-U,$ necesitaremos evidentemente

$$Q_{j} = \frac{d}{dt} \left(\frac{\partial U}{\partial \dot{q}_{j}} \right) - \frac{\partial U}{\partial q_{j}},$$

una fuerza generalizada que depende de posiciones y velocidades.

El ejemplo canónico de una tal fuerza es la fuerza de Lorentz, que es la que sufre una partícula de carga q en presencia de un campo electromagnético dado por campos E, B y cuya forma es

$$\mathbf{F} = q\mathbf{E} + \frac{q}{c}(\mathbf{v} \times \mathbf{B}) \tag{13.2}$$

Esta fuerza (13.2) puede expresarse en términos de dos potenciales. Para ello es necesario recurrir a las relaciones que verifican los campos E, B y que están dadas por las ecuaciones de Maxwell, cuyo esquema se presenta en la siguiente tabla.

$$\nabla \cdot \mathbf{E} = 4\pi\rho \qquad \nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} \qquad \nabla \times \mathbf{B} = \frac{4\pi}{c} \mathbf{J} + \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}$$

Dado que la divergencia de \boldsymbol{B} es nula, entonces existe un potencial vector \boldsymbol{A} tal que

$$\nabla \times \boldsymbol{A} = \boldsymbol{B}.$$

Entonces, la ley de Faraday resulta

$$\nabla \times \boldsymbol{E} = -\frac{1}{c} \frac{\partial}{\partial t} \left(\nabla \times \boldsymbol{A} \right)$$

o bien

$$\nabla \times \left(\boldsymbol{E} + \frac{1}{c} \frac{\partial \boldsymbol{A}}{\partial t} \right) = 0$$

La cantidad entre paréntesis es de rotor nulo y entonces se puede escribir

$$\boldsymbol{E} + \frac{1}{c} \frac{\partial \boldsymbol{A}}{\partial t} = -\nabla \varphi(\boldsymbol{x}, t)$$

de manera que los campos B, E pueden expresarse en términos de una función escalar φ y un campo vectorial A como

$$\boldsymbol{B} = \nabla \times \boldsymbol{A}$$
 $\boldsymbol{E} = -\nabla \varphi - \frac{1}{c} \frac{\partial \boldsymbol{A}}{\partial t}.$

Entonces, en términos de estos potenciales (13.2) resulta

$$\boldsymbol{F} = -q\nabla\varphi - \frac{q}{c}\frac{\partial\boldsymbol{A}}{\partial t} + \frac{q}{c}\boldsymbol{v}\times\nabla\times\boldsymbol{A}.$$

Supongamos, para simplificar el razonamiento, que es ${\pmb F}=F_x\hat x$ y veamos que

$$F_x = -q \frac{\partial \varphi}{\partial x} - \frac{q}{c} \frac{\partial A_x}{\partial t} + \frac{q}{c} \left(v_y [\nabla \times \mathbf{A}]_z - v_z [\nabla \times \mathbf{A}]_y \right)$$

se puede escribir

$$F_x = \frac{d}{dt} \left(\frac{\partial U}{\partial v_x} \right) - \frac{\partial U}{\partial x}.$$

Desarrollando explícitamente el rotor se tiene

$$\left(v_y[\nabla\times \boldsymbol{A}]_z - v_z[\nabla\times \boldsymbol{A}]_y\right) = v_y\frac{\partial A_y}{\partial x} - v_y\frac{\partial A_x}{\partial y} - v_z\frac{\partial A_x}{\partial z} + v_z\frac{\partial A_z}{\partial x} + v_x\frac{\partial A_x}{\partial x} - v_x\frac{\partial A_x}{\partial x}\right)$$

donde se ha sumado y restado la conveniente combinación $v_x\partial_x A_x$. Dado que las velocidades y las posiciones son variables independientes (se verifica $\partial_a v_b = 0$ para cualquier combinación a,b=x,y,z) se puede $\mathit{filtrar}$ la velocidad dentro de las derivadas para reescribir

$$v_x\frac{\partial A_x}{\partial x} + v_y\frac{\partial A_y}{\partial x} + v_z\frac{\partial A_z}{\partial x} = \frac{\partial}{\partial x}(v_xA_x + v_yA_y + v_zA_z) = \frac{\partial}{\partial x}(\boldsymbol{v}\cdot\boldsymbol{A})$$

Los tres términos restantes en derivadas respecto de A_x no son otra cosa que una derivada total,

$$-\frac{q}{c}\left(\frac{\partial A_x}{\partial t}-v_x\frac{\partial A_x}{\partial x}-v_y\frac{\partial A_x}{\partial y}-v_z\frac{\partial A_x}{\partial z}\right)=-\frac{q}{c}\left(\frac{\partial A_x}{\partial t}-\boldsymbol{v}\cdot\nabla(A_x)\right)=-\frac{q}{c}\frac{dA_x}{dt}$$

Luego, se fuerza la aparición de una derivada con respecto a la velocidad (para obtener una expresión en consonancia con la buscada) del siguiente modo

$$A_x = \frac{\partial}{\partial v_x}(v_x A_x + v_y A_y + v_z A_z) = \frac{\partial}{\partial v_x}(\boldsymbol{v} \cdot \boldsymbol{A}),$$

y juntando todo resulta

$$F_x = -\frac{\partial}{\partial x} \left(q \boldsymbol{\varphi} - \frac{q}{c} \boldsymbol{v} \cdot \boldsymbol{A} \right) + \frac{d}{dt} \left(\frac{\partial}{\partial v_x} \left(-\frac{q}{c} \boldsymbol{v} \cdot \boldsymbol{A} \right) \right).$$

Como $\varphi=\varphi(\boldsymbol{x},t)$, se la puede incluir dentro de la derivada con respecto a la velocidad obteniendo finalmente el resultado buscado

$$F_x = -\frac{\partial U}{\partial x} + \frac{d}{dt} \left(\frac{\partial U}{\partial v_x} \right),$$

donde

$$U = q\varphi - \frac{q}{c}\boldsymbol{v} \cdot \boldsymbol{A}.$$

Se puede demostrar directamente la fórmula anterior desde la expresión vectorial de F utilizando su equivalente indicial, es decir a partir de

$$F_i = -q \partial_i \varphi - \frac{q}{c} \; \partial_t A_i + \frac{q}{c} \; \epsilon_{ilm} v_l \epsilon_{mjk} \partial_j A_k$$

que es la coordenada i-ésima de la fuerza F. Utilizando las propiedades del símbolo de Levi-Civita se tiene

$$F_i = -q \partial_i \varphi + \frac{q}{c} \left[-\partial_t A_i + (\delta_{ij} \delta_{lk} - \delta_{ik} \delta_{lj}) v_l \partial_j A_k \right]$$

y, tras colapsar las deltas, y reordenar términos

$$F_i = -q \partial_i \varphi + \frac{q}{c} \left[-\partial_t A_i - v_j \partial_j A_i + v_k \partial_i A_k \right].$$

Como el campo de velocidad v no depende explícitamente de x se puede introducir v_k a través de la derivada ∂_i . Además los dos primeros términos del corchete representan la derivada total de A_i de manera que tenemos

$$F_{i}=-q\partial_{i}\varphi+\frac{q}{c}\left[-\frac{d}{dt}\left(A_{i}\right)+\partial_{i}(v_{k}A_{k})\right],\label{eq:Fi}$$

o bien

$$F_i = -\partial_i \left[q\varphi - \frac{q}{c} (v_k A_k) \right] - \frac{d}{dt} \left(\frac{q}{c} A_i \right).$$

Se puede hacer aparecer explícitamente lo faltante dentro de la derivada total notando que se puede escribir de manera absolutamente general

$$\frac{q}{c}A_i = \frac{\partial}{\partial v_i}(-q\varphi + \frac{q}{c}v_kA_k)$$

dado que φ y \boldsymbol{A} son funciones de la posición y el tiempo solamente. Luego,

$$F_i = -\partial_i \left[q\varphi - \frac{q}{c} (v_k A_k) \right] + \frac{d}{dt} \left[\frac{\partial}{\partial v_i} (q\varphi - \frac{q}{c} v_k A_k) \right]$$

y esto significa que el potencial completo es

$$U(\boldsymbol{x},\boldsymbol{v},t) = q \: \varphi(\boldsymbol{x},t) - \frac{q}{c} \: \boldsymbol{v} \cdot \boldsymbol{A}(\boldsymbol{x},t).$$

En el ejemplo de la fuerza de Lorentz se desprecia el campo generado por la misma partícula que se mueve. Es decir, que el campo externo no es afectado por el movimiento de la partícula. Una formulación lagrangiana que lo tuviera en cuenta debería considerar un \mathcal{L}_p para la partícula.

Mucho para tener en cuenta: resumen previo de notación indicial, resumen de classical field theory. Aclarar que posición y velocidad son independientes.

1.14 Cambio de gauge en potenciales

Según se vio en la sección anterior, en el caso del electromagnetismo tenemos un potencial U que depende de la posición y la velocidad de una manera muy especial. Además el potencial escalar φ usual en la electrostática fue necesario definir un potencial vector \boldsymbol{A} que estaba vinculado con el campo magnético \boldsymbol{B} a través de : $\nabla \times \boldsymbol{A} = \boldsymbol{B}$.

Solamente se le pide al campo A que su rotor sea B y esto no lo determina por completo. En particular si se define

$$\mathbf{A}' = \mathbf{A} + \nabla f$$

un nuevo potencial ${m A}'$ que difiere del original por el añadido del gradiente de una función escalar, las ecuaciones de movimiento no se ven alteradas. En efecto, la divergencia del campo magnético ${m B}$ es

$$\nabla \cdot \mathbf{B} = \nabla \cdot (\nabla \times \mathbf{A}') = \nabla \cdot (\nabla \times \mathbf{A}) + \nabla \cdot (\nabla \times \nabla f) = 0$$

donde el cero se logra porque cada uno de los dos miembros es cero por separado. Asimismo, como el rotor de un gradiente es nulo, el rotor de \boldsymbol{B} no se ve alterado:

$$\nabla \times \mathbf{B} = \nabla \times (\nabla \times \mathbf{A}') = \nabla \times (\nabla \times \mathbf{A}) + \nabla \times (\nabla \times \nabla f) = \nabla \times (\nabla \times \mathbf{A}).$$

Luego, hay un grado de libertad extra en la determinación del A que es esta función escalar f, y que se suele expresar dando la divergencia de A. En efecto,

$$\nabla \cdot \mathbf{A}' = \nabla \cdot \mathbf{A} + \nabla^2 f.$$

La divergencia de A se puede elegir entonces arbitrariamente y esto es lo que se conoce como la *libertad de gauge*[?] o el cambio de *gauge* del potencial. Descansa en el hecho de que las ecuaciones de movimiento son, por supuesto, independientes del gauge elegido.

Chequear esta mini subsección.