Physik-Lernzettel

Lars Funke et al.

Stand: 23. Januar 2013

Inhaltsverzeichnis

1	Schwingungen		2
	1.1	Erzwungene Schwingungen	2
2	Wellen		2
	2.1	Eigenschaften von Wellen	2
	2.2	Wellengleichung	2
	2.3	Schallwellen	2
	2.4	Dopplereffekt	3
		2.4.1 Feststehender Beobachter, bewegliche Schallquelle	3
		2.4.2 Beweglicher Beobachter, feststehende Schallquelle	3
	2.5	Huygensches Prinzip	3
	2.6	Interferenz	3
	2.7	Berechnung konstruktive/destruktive Interferenz	3
3	Elektrisches Feld		
	3.1	Allgemein	4
	3.2	Ladung	4
	3.3	Feldlinien	4
	3.4	Elektrische Feldstärke	4
	3.5	Coulomb-Kraft	4
	3.6	Flächenladungsdichte	4
	3.7	Energie und Spannung	5
		3.7.1 Allgemein	5
		3.7.2 Potentielle Energie	5
		3.7.3 Elektrisches Potential	5
		3.7.4 Elektrische Spannung	5
		3.7.5 Elektrische Energie	5

1 Schwingungen

1.1 Erzwungene Schwingungen

- Amplitude zeigt Schwingungsenergie
- Entsteht unter Einfluss einer äußeren, zeitlich periodischen Kraft
- Periodische Energiezufuhr
- Wenn $f_E \ll f_O$: $\hat{s}_{\text{Oszillator}} = \hat{s}_{\text{Erreger}}$, Keine Phasenverschiebung
- Wenn $f_E >> f_O$: Oszillator und Erreger schwingen im Gegentakt, Phasenverschiebung von π , \hat{s} ist klein
- Wenn $f_E = f_O$:Phasenverschiebung von $\frac{\pi}{2}$, \hat{s} wächst endlos(Wenn Oszillator ungedämpft), **Resonanz**

2 Wellen

2.1 Eigenschaften von Wellen

- Ausbreitung einer Störung
- Viele gekoppelte Oszillatoren
- Zeitliche (T) und räumliche (λ) Periodizität
- Punkte gleicher Phase bilden eine Wellenfront
- Wellennormale gibt Ausbreitungsrichtung an

2.2 Wellengleichung

An der Stelle x = 0 gilt:

$$y(0,t) = \hat{y} \cdot \sin(\omega t)$$

Für eine beliebige Stelle x gilt: Deine

$$y(x,t) = \hat{y} \cdot \sin\left(2\pi\left(\frac{t}{T} - \frac{x}{\lambda}\right)\right)$$

2.3 Schallwellen

- Ausbreitungsgeschwindigkeit c vom Medium und der Temperatur abhängig
- Longitudinalwellen
- breiten sich dreidimensional aus

$$c_{\rm Luft} \approx 340 \frac{m}{s} ({\rm bei} \ T = 20 {\rm ^{\circ}C})$$
 $c_{\rm Luft} \approx 332 \frac{m}{s} ({\rm bei} \ T = 0 {\rm ^{\circ}C})$
 $c_{\rm Wasser} \approx 1485 \frac{m}{s} ({\rm bei} \ T = 20 {\rm ^{\circ}C})$
 $c_{\rm Wasser} \approx 1404 \frac{m}{s} ({\rm bei} \ T = 0 {\rm ^{\circ}C})$

2.4 Dopplereffekt

2.4.1 Feststehender Beobachter, bewegliche Schallquelle

Annäherung:

$$f' = \frac{c}{c - v} \cdot f$$

Entfernung:

$$f'' = \frac{c}{c+v} \cdot f$$

2.4.2 Beweglicher Beobachter, feststehende Schallquelle

Annäherung:

$$f' = \frac{c+v}{c} \cdot f$$

Entfernung:

$$f'' = \frac{c - v}{c} \cdot f$$

2.5 Huygensches Prinzip

Jeder Punkt einer Wellenfront kann als Ausgangspunkt einer Elementarwelle (Kreis- bzw. Kugelwelle) angesehen werden, die sich mit gleicher Phasengeschwindigkeit und Frequenz wie die ursprüngliche Welle ausbreitet.

2.6 Interferenz

- Überlagerung (gleichfrequenter) Wellen
- Auslenkung entsprecht vektorieller Summe der Einzelwellen

2.7 Berechnung konstruktive/destruktive Interferenz

s: Abstand des betrachteten Punktes zum Erregerzentrum

 $\Delta s = |s_1 - s_2|$ (Gangunterschied)

Wenn $\Delta s = n\lambda, n \in \mathbb{N}$: konstruktive Interferenz

Wenn $\Delta s = n\lambda + \frac{\lambda}{2} = (n + \frac{1}{2})\lambda, n \in \mathbb{N}$: destruktive Interferenz

Phasenunterschied zweier Wellen mit Gangunterschied Δs :

$$\phi = \frac{\Delta s}{\lambda} \cdot 2\pi$$

3

3 Elektrisches Feld

3.1 Allgemein

"Im Raum um einen ruhenden elektrisch geladenen Körper wirken auf andere (geladene) Körper Kräfte. Diesen Raum nennt man elektrisches Feld."

3.2 Ladung

$$Q = I \cdot t \quad (I = const.)$$

$$Q = \int_{t0}^{t} I(t) dt$$

3.3 Feldlinien

- Linien zwischen geladenen Körpern
- Beschreiben den potentiellen Weg eines Probekörpers
- Stehen senkrecht auf Leiteroberflächen
- Schneiden sich nicht, da Felder sich (vektoriell) addieren

3.4 Elektrische Feldstärke

Die im Feld wirkende Kraft ist proportional zur Ladung des Probekörpers: $F \sim q$ Die Feldstärke wird also als

$$\vec{E} = \frac{1}{q} \cdot \vec{F} \qquad [E] = 1 \frac{N}{C}$$

definiert.

Im homogenen Feld gilt:

$$E = \frac{U}{d}$$

3.5 Coulomb-Kraft

Im radialsymmetrischen Feld gilt:

$$F = \frac{1}{4\pi\epsilon_0} \cdot \frac{q_1 \cdot q_2}{r^2}$$

3.6 Flächenladungsdichte

$$\sigma = \frac{Q}{A} \qquad [\sigma] = 1 \frac{E}{m^2}$$

$$\sigma = \varepsilon_0 \cdot E$$

$$\varepsilon_0 \approx 8,85419 \cdot 10^{-12} \frac{C^2}{Nm^2}$$

3.7 Energie und Spannung

3.7.1 Allgemein

- Auf Flächen senkrecht zu den Feldlinien ändert sich das elektrische Potential nicht (Äquipotentialflächen)
- Jeder geladene Körper in einem elektrischen Feld hat eine potentielle Energie

3.7.2 Potentielle Energie

Homogenes Feld:

$$E_{pot} = F \cdot \Delta s = Q \cdot E \cdot \Delta s$$

Radialsymmetrisches Feld:

$$F = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1 \cdot q_2}{r^2}$$
$$|\Delta E_{AB}| = \left| \frac{q_1 \cdot q_2}{4\pi\varepsilon_0} \cdot \left(\frac{1}{r_A} - \frac{1}{r_B} \right) \right|$$

3.7.3 Elektrisches Potential

$$\varphi_P = \frac{E_{pot}}{Q}$$

3.7.4 Elektrische Spannung

$$U = \frac{\Delta E_{AB}}{Q} \qquad [U] = V$$

Für ein homogenes Feld gilt dementsprechend:

$$U = \frac{Q \cdot E \cdot d}{Q} = E \cdot d$$

Spannung entspricht der Potentialdifferenz:

$$U = \varphi_B - \varphi_A$$

3.7.5 Elektrische Energie

$$\Delta E_{el.} = U \cdot Q$$