Enxeñaría Informática USC — Matemática Discreta

Transcrito por $\Delta\Psi$

Xaneiro 2019

- 1. (2,5 puntos) O teorema pequeno de Fermat enuncia que se p é un número primo e a é un número enteiro non divisible entre p, entón $a^{p-1} \equiv 1 \pmod{p}$
 - (a) Utilizar este teorema para calcular $3^{302} \mod 5,\, 3^{302} \mod 7$ e $3^{302} \mod 11$
 - (b) Usar os resultados do apartado anterior e o teorema chinés dos restos para calcular $3^{302} \mod 385$. Observar que $385 = 5 \cdot 7 \cdot 11$.
- 2. (2,5 puntos)
 - (a) Cantas cadeas hai de 8 bits?
 - (b) Cantas cadeas de 8 bits comezan ou rematan por 1?
 - (c) Cantas cadeas de 8 bits non conteñen un número par de ceros?
- 3. (2,5 puntos) Considerar a relación de recorrencia linear $a_n = 9a_{n-2} + 3^n$.
 - (a) Probar que $a_n = \frac{n}{2}3^n$ é unha solución desta relación de recorrencia.
 - (b) Determinar tódalas solucións desta relación de recorrencia.
 - (c) Determinar a solución que verifica $a_0 = 0$ e $a_1 = \frac{5}{2}$.
- 4. (2,5 puntos) Sendo $K_{3,4}$ o grafo bipartito completo, razoar a resposta a cada unha das seguintes preguntas.
 - (a) Cal é a sucesión de graos de $K_{3,4}$?
 - (b) Cal é o índice cromático de $K_{3,4}$?
 - (c) É $K_{3,4}$ hamiltoniano?
 - (d) É $K_{3,4}$ euleriano?
 - (e) É $K_{3,4}$ isomorfo ao grafo completo K_7 ?