6.1	Introduction. Nested Intervals.
	- If the sequence itself is really new, unrelated to other sequences whose limits we already know, the only
	tool we have for showing it has a limit is the Completeness Property
	"A bounded monotone sequence converges to a limit"
	Definition: Suppose we have a sequence of closed intervals $I_n = [a_n, b_n]$, $n = 0, 1, 2, \ldots$, having the
	property that each interval lies inside the previous one an $\leq a_{n+1} \leq b_{n+1} \leq b_n$,
	Such a sequence of intervals is said to be nested
	Theorem: The Nested Intervals Theorem
	- Suppose [an, bn] is an infinite sequence of nested intervals, whose lengths tend to 0, $\begin{pmatrix} \ddots & b_n - a_n = 0 \end{pmatrix}$
	Then there is one and only one number L in all the intervals
6.2	Cluster Points of Sequences
	- numbers that the sequence gets arbitrarily close to , infinitely often
	- a sequence can have many cluster points
	Definition: Cluster Points (or point of accumulation, or limit point)
	- K is a cluster point of the sequence $\{a_n\}$ if, given $\epsilon>0$, $a_n \underset{\epsilon}{\approx} K$ for infinitely many n
	- For both a limit L and a cluster point K of a sequence {an}, the an must get arbitrarily close. But
	the an must stay close to a limit L, whereas they need only visit the vicinity of a cluster point
	K infinitely often. Every limit L is automatically a cluster point
	Theorem: Cluster Point Theorem
	- K is a cluster point of {an} (=> K is the limit of some subsequence {an}
/ -	
6.3	The Bolzano - Weiestrass Theorem
	Theorem: Bolzano - Weierstrass
	- A bounded sequence (Xn) has a convergent subsequence
1 1	
6,4	Cauchy Sequence
	- given $\varepsilon > 0$, $a_m \approx a_n$ for $m, n \gg 1$

	Theorem: The Cauchy Criterion for Convergence
	- If {qn} is a Cauchy sequence, then {an} converges
	i) {an} is bounded
	ii) {an} has a convergent subsequence {an}
	iii) Let $L = \lim_{n \to \infty} \{a_n\}$, then $\{a_n\} \to L$
6.5	The Completeness Property for sets
	Definitions
	- An upper bound for S is a number b such that $z \leq b$ for all $z \in S$
	- S is said to be bounded above if S has an upper bound
	- A number m is the maximum of S if m is an upper bound for S and $m \in S$
	Definition: Supremum
	- Let $S \subseteq R$. The supremum of S is a number \overline{m} satisfying;
	$Sup-1: \overline{m}$ is an upper bound for $S: X \leq \overline{m}$ for all $X \in S$
	$sup-2$; m is the least upper bound for S , that is $X \leq b$ for all $X \in S \Rightarrow m \leq b$
	Proposition:
	- If max S exists, then sup S exists, and sup S = max S . The numbers sup S and max S
	are unique, if they exist.
	Theorem: Completeness Property for Sets
	- If S is non-empty and bounded above, sup S exists
	Definitions
	- A lower bound for S is a number b such that $z \ge b$ for all $z \in S$
	- S is said to be bounded below if S has a lower bound
	- A number m is the minimum of S if m is a lower bound for S and meS
	Definition: Infimum
	- Let $S \subseteq R$. The infimum of S is a number \overline{m} satisfying;
	inf-1: m is a lower bound for S: X ≥ m for all X ∈ S
	inf-2; \overline{m} is the greatest lower bound for S, that is $\times \geq b$ for all $\times \in S \Rightarrow \overline{m} \geq b$

Proposition:
- If minS exists, then infS exists, and infS = infS. The numbers infS and infS
are unique, if they exist.
Theorem: Completeness Property for Sets
- If S is non-empty and bounded below, inf S exists