Elisa Antuca Massimo Bertolotti

TITOLO TITOLOZZO **QUESTO TITOLO** È PROVVISORIOZZO E CI PIACE COSÌ

$$\beta(P_1, P_2, P_3, P_4) = \frac{\begin{vmatrix} \lambda_1 & \lambda_4 \\ \mu_1 & \mu_4 \end{vmatrix} \cdot \begin{vmatrix} \lambda_2 & \lambda_3 \\ \mu_2 & \mu_3 \end{vmatrix}}{\begin{vmatrix} \lambda_1 & \lambda_3 \\ \mu_1 & \mu_3 \end{vmatrix} \cdot \begin{vmatrix} \lambda_2 & \lambda_4 \\ \mu_2 & \mu_4 \end{vmatrix}}$$

$$\beta(P_1, P_2, P_3, P_4) = \frac{\begin{vmatrix} \lambda_1 & \lambda_4 \\ \mu_1 & \mu_4 \end{vmatrix} \cdot \begin{vmatrix} \lambda_2 & \lambda_3 \\ \mu_2 & \mu_3 \end{vmatrix}}{\begin{vmatrix} \lambda_1 & \lambda_3 \\ \mu_1 & \mu_3 \end{vmatrix} \cdot \begin{vmatrix} \lambda_2 & \lambda_4 \\ \mu_2 & \mu_4 \end{vmatrix}}$$

$$X \xrightarrow{f} Y$$

$$X/\sim \qquad \chi(S) = v - e + f$$

$$\pi_1(S^1) = \mathbb{Z}$$

$$e^A := \sum_{k=0}^{+\infty} \frac{A^k}{k!} = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \dots$$

Note per la lettura

"Un matematico è una macchina per trasformare caffè in teoremi."

Alfréd Rényi, studioso del teorema di Van Moka-mpen.

Senza troppe pretese di formalità, com'è intuibile dal termine dal termine tecnico manualozzo e dalle citazioni a inizio capitolo, queste note sono nate come appunti a quattro mani basati sul corso di Geometria 2 tenuto dai docenti Alberto Albano, Cinzia Casagrande ed Elena Martinengo nell'Anno Accademico 2020-2021 presso il Dipartimento di Matematica dell'Università degli Studi di Torino.

Il corso è diviso in *cinque* parti, pertanto abbiamo ritenuto opportuno dividere in altrettante parti il testo, seguendo l'ordine delle lezioni: Topologia generale, Omotopia, Classificazione delle superfici topologiche, Approfondimenti di Algebra Lineare e infine Geometria proiettiva. I prerequisiti necessari sono gli argomenti trattati nei corsi di *Geometria 1, Algebra 1 e Analisi 1*.

In aggiunta a ciò, potete trovare a fine libro delle utili *postille* con alcune digressioni interessanti, nonché tabelle ed elenchi riepilogativi dei teoremi, delle definizioni e delle proprietà affrontate.

Per quanto ci piacerebbe esserlo, non siamo *esseri infallibili*: ci saranno sicuramente sfuggiti degli errori (o degli *orrori*, la cui causa è solamente degli autori che non hanno studiato bene e non dei professori, chiaramente), per cui vi chiediamo gentilmente di segnalarceli su https://maxmaci.github.io per correggerli e migliorare le future edizioni del *manualozzo*.

I disegni sono stati realizzati da Massimo Bertolotti, l'addetto alla grafica e ai capricci di LATEX (ed è molto capriccioso, fidatevi). Chi volesse dilettarsi può cercare di distinguere chi fra i due autori ha scritto cosa, non dovrebbe essere troppo difficile.

Seconda edizione, compilato il 23 settembre 2021.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indice

Indice ii I Passaggio al limite sotto segno di integrale 1 1 Passaggio al limite sotto segno di integrale 3 1.1 Lunghezza di un'ellisse 3 1.1.1 La problematica dimostrazione della lunghezza dell'ellisse - La serie di Taylor 4 1.1.2 La problematica dimostrazione della lunghezza dell'ellisse - La serie di Taylor 6 Bibliografia 7 Indice analitico 9

Passaggio al limite sotto segno di integrale

CAPITOLO 1

Passaggio al limite sotto segno di integrale

"BEEP BOOP QUESTA È UNA CITAZIONE."

Marinobot, dopo aver finito le citazioni stupide.

Una circonferenza e un'ellisse a primo acchito possono sembrare molto simili: in fondo, una circonferenza non è altro che un'ellisse i cui punti focali coincidono e dunque si può vedere come una circonferenza "allungata" rispetto ad un asse. Il valore dell'area delimitata da una circonferenza (πr^2) e della lunghezza di una circonferenza $(2\pi r)$ sono ben noti già dall'antichità, con opportune formalizzazioni in epoca moderna; tuttavia, riguardo l'ellisse, ci accorgiamo di aver incontrato nel corso degli studi precedenti quasi esclusivamente il valore dell'area delimitata da essa (πab) , ma non la lunghezza dell'ellisse. Come mai?

La teoria matematica che introdurremo in questo capitolo nasce proprio da tutta una serie di problemi apparsi nell'insidiosa ricerca di una formula della lunghezza dell'ellisse. [COMPLETARE]

1.1 LUNGHEZZA DI UN'ELLISSE

Partiamo col seguente *quiz*: quale delle seguenti tre espressioni è il valore, o una sua approssimazione, della lunghezza di un'ellisse di semiassi di lunghezza *a* e *b*?

- a) $L(a,b) = \pi ab$
- b) $L(a,b) \approx \pi(a+b) + 3\pi \frac{(a-b)^2}{10(a+b) + \sqrt{a^2 + 14ab + b^2}}$
- c) $L(a,b) \approx 2\pi a$.

Chiaramente, come abbiamo detto nell'introduzione del capitolo la lunghezza dell'ellisse *non* è una formula nota dagli studi passati e possiamo (per ora) solamente escludere la *prima risposta*, in quanto essa è la formula dell'area delimitata dell'ellisse.

OSSERVAZIONE. Possiamo escludere la prima risposta anche per motivi puramente dimensionali: a e b sono, dimensionalmente parlando, due lunghezze, quindi πab deve essere una lunghezza al quadrato, cioè un'area e non può essere una lunghezza!

In realtà, la domanda del quiz è mal posta: le risposte b) e c) sono entrambe corrette. Il matematico indiano Srinivasa Aiyangar Ramanujan fornì come nota a margine non commentata in un suo articolo del 1914 (Ramanujan, «Modular equations and approximations to π ») l'approssimazione b):

$$L(a,b) \approx \pi \left((a+b) + 3 \frac{(a-b)^2}{10(a+b) + \sqrt{a^2 + 14ab + b^2}} \right)$$

Vedremo fra poco che anche l'approssimazione data dalla *a*) è anch'essa lecita. Il motivo per cui diamo approssimazioni ma non formule esatte per la lunghezza dell'ellisse è dovuto al fatto che *non esiste* una formula esplicita in termini di *funzioni elementari*, bensì possiamo esprimerla soltanto come **somma di una serie**.

TEOREMA 1.1.1. - Lunghezza dell'ellisse di semiassi di lunghezza a e b Siano $a \ge b$ le lunghezze dei semiassi dell'ellisse e $e = e(a,b) = \frac{\sqrt{a^2 - b^2}}{a} \in [0,1)$ l'eccentricità; allora si ha

$$L(a,b) = 2\pi a \sum_{j=0}^{+\infty} \frac{1}{1-2j} \left(\frac{(2j-1)!!}{(2j)!!} e^j \right)^2$$
 (1.1)

dove!! indica il doppio fattoriale:

-(-1)!! = 0!! = 1

$$\forall n \in \mathbb{N} \quad n!! = \begin{cases} n \cdot (n-2) \cdot \dots \cdot 6 \cdot 4 \cdot 4 \cdot 2 \text{ se } n > 0 \text{ è pari} \\ n \cdot (n-2) \cdot \dots \cdot 5 \cdot 3 \cdot 2 \cdot 1 \text{ se } n > 0 \text{ è dipari} \end{cases}$$

Il primo termine della serie fornisce l'approssimazione espressa nella risposta a):

$$L(a,b) \approx 2\pi a$$

1.1.1 La problematica dimostrazione della lunghezza dell'ellisse - La serie di Taylor

Dimostriamo finalmente la lunghezza dell'ellisse. Come è noto dal corso di Analisi 2, per una curva *regolare* come l'ellisse è possibile calcolarne la lunghezza usando un'opportuna parametrizzazione.

[INSERIRE DISEGNO ELLISSE]

Poniamo $a \ge b$ le lunghezze dei semiassi ed $e = \frac{\sqrt{a^2 - b^2}}{a} \in [0, 1)$ l'eccentricità. Una parametrizzazione è

$$\vec{r}(t) = (a \sin t, b \cos t)$$
 $t \in [0, 2\pi]$

Allora

$$L = \int_0^{2\pi} \|\vec{r}''(t)\| dt = \int_0^{2\pi} \|(a\cos t, -b\sin t)\| dt = \int_0^{2\pi} \sqrt{a^2\cos^2 t + b^2\sin^2 t} dt =$$

$$= \int_0^{2\pi} \sqrt{a^2 - (a^2 + b^2)\sin^2 t} dt = a \int_0^{2\pi} \sqrt{1 - e^2\sin^2 t}$$

Incontriamo il primo, grosso problema: la funzione $f(t) = \sqrt{1 - e^2 \sin^2 t}$ non è **elementarmente integrabile**, cioè non ammette primitive in termini di funzioni elementari.

ATTENZIONE! Non essere elementarmente integrabile *non* significa che non sia integrabile! La funzione integranda f(t) è continua su $[0, 2\pi]$, dunque per il *teorema fondamentale del calcolo integrale* ammette primitive su $[0, 2\pi]$. Una di esse è

$$F(t) = \int_0^t \sqrt{1 - e^2 \sin^2 y} dy \quad \forall y \in [0, 2\pi]$$

Il problema è che non possiamo riscrivere F in modo esplicito usando solo funzioni elementari.

Questo tipo di integrale è detto integrale ellittico.

DIGRESSIONE. Gli *integrali ellittici* si incontrano in molti ambiti matematici. Ad esempio, appaiono nella risoluzione dell'equazione differenziale del moto di un pendolo semplice:

theta =
$$-\frac{g}{1}\sin\theta$$

Sono il motivo per cui tale equazione si studia spesso per piccole oscillazioni, in modo da poter operare una linearizzazione $\sin\theta \sim \theta$ e calcolare il moto senza passare per tali integrali non calcolabili.

Un altro esempio della loro importanza è noto agli appassionati di Geometria: infatti, la branca della Geometria Algebrica nasce anche dagli studi su tali integrali.

Potremmo limitarci a considerare l'intero integrale ellittico come una nuova funzione, ma al più potremmo calcolarne il valore tramite metodi dell'Analisi Numerica. Invece, proviamo a riscrivere l'integrale utilizzando uno **sviluppo in serie** della funzione integranda.

Poniamo $x = -e^2 \sin^2 t$ e osserviamo che

$$\sqrt{1 - e^2 \sin^2 t} = \sqrt{1 + x} = (1 + x)^{1/2} = (1 + x)^{\alpha}$$
 dove $\alpha = \frac{1}{2}$

Poichè $(1+x)^{\alpha}$ è una funzione di classe \mathscr{C}^{∞} in un intorno di x=0, si può approssimare localmente col **polinomio di Taylor** di ordine n centrato in x=0, $\forall n \geq 0$. Se il polinomio in questione è

$$P_{n,0}(x) = \sum_{j=0}^{n} {\alpha \choose j} x^j \quad \forall n \ge 0$$

 $con \binom{\alpha}{j}$ il **coefficiente binomiale generalizzato**¹, allora l'approssimazione dell'integranda data dal polinomio di Taylor è proprio

$$(1+x)^{1/2} \approx \sum_{j=0}^{n} {1/2 \choose j} x^j \quad \forall n \ge 0$$

Risostituendo $x = -e^2 \sin^2 t$ abbiamo un'approssimazione dell'integranda. Tuttavia, noi vorremmo un *risultato esatto*.

Sappiamo intuitivamente che più termini si hanno nello sviluppo di Taylor, più accurata

¹Nelle "Note aggiuntive", a pagina XXX è possibile trovare la definizione e le proprietà del binomiale generalizzato.

è l'approssimazione; cosa succede per $n \to \infty$? Dobbiamo studiare la somma di serie

$$\sum_{j=0}^{+\infty} \binom{1/2}{j} x^j$$

Già ci dobbiamo porre nuove domande: la serie *converge* e per quali valori di x? Supponendo che la serie converga per opportuni valori di x, la serie converge proprio a $(1+x)^{1/2}$? *In generale*, per $f \in \mathcal{C}^{\infty}$ qualsiasi **NO**, la serie di Taylor non converge proprio e se converge non converge ad f! Tuttavia, in questo caso siamo particolarmente fortunati: $\forall x \in (-1,1)$ la serie converge² e vale

$$(1+x)^{\frac{1}{2}} = \sum_{j=0}^{+\infty} {1/2 \choose j} x^j \quad \forall n \ge 0 \quad \forall x \in (-1,1)$$

Il problema espresso in questa prima parte della dimostrazione è dunque determinare quando è possibile passare dalla semplice *approssimazione* di una funzione con il *polinomio di Taylor* a definire una funzione come una **serie di Taylor**.

1.1.2 La problematica dimostrazione della lunghezza dell'ellisse - Passaggio al limite sotto segno di integrale

Torniamo al problema originale. Ricordando che $x = -e^2 \sin^2 t$, poiché $t \in [0, 2\pi]$ si ha che $x \in [-e^2, 0] \subseteq (-1, 1)$ dato che $e^2 < 1$. Possiamo riscrivere l'integranda come il suo sviluppo in *serie di Taylor*:

$$\left(1 - e^2 \sin^2 t\right)^{1/2} = \sum_{j=0}^{+\infty} {1/2 \choose j} \left(-e^2 \sin^2 t\right)^j = \sum_{j=0}^{+\infty} {1/2 \choose j} (-1)^j e^{2j} \sin^{2j} t \quad \forall t \in [0, 2\pi]$$

²Nelle "Note aggiuntive", a pagina XXX è possibile trovare la dimostrazione di tale convergenza.

BIBLIOGRAFIA

[Ram14] S. A. Ramanujan. «Modular equations and approximations to π ». In: *Quarter-ly Journal of Mathematics* XLV (1914), pp. 350–372.

Indice analitico

```
coefficiente binomiale
generalizzato, 5
doppio fattoriale, 4
eccentricità, 4
integrale
ellittico, 5
polinomio di Taylor, 5
serie di Taylor, 6
```