线+线

约定

为了简化问题, 我们把 l_1, l_2 通过旋转和平移使 l_2 与 y 轴重合, 因为 l_1 与 l_2 不重合, l_1 斜率必存在.

$$l_1: y = kx, l_2: x = 0$$

设点 $P(x_0, y_0)$ 到 l_1 , l_2 的距离分别为 d_1 , d_2 .

首先转换直线 l_1 的形式

$$l_1: kx - y = 0$$

可以求出 d_1 , d_2

$$d_1 = rac{|kx_0 - y_0|}{\sqrt{k^2 + 1}}, d_2 = |x_0|$$

和

设点 $P(x_0, y_0)$ 到 l_1, l_2 的距离 d_1, d_2 之和

$$d_1 + d_2 = u(u > 0)$$

1.计算:

即为

$$\frac{|kx_0 - y_0|}{\sqrt{k^2 + 1}} + |x_0| = u$$
$$|kx_0 - y_0| + \sqrt{k^2 + 1}|x_0| = \sqrt{k^2 + 1}u$$

发现图像关于原点中心对称,不妨设 $x_0 > 0$,分类讨论:

当 $kx_0 - y_0 > 0$ (即 $P \in l_1$ 下方)时:

$$kx_0 - y_0 + \sqrt{k^2 + 1}x_0 = \sqrt{k^2 + 1}u$$

 $y_0 = (\sqrt{k^2 + 1} + k)x_0 - \sqrt{k^2 + 1}u$

当 $kx_0 - y_0 < 0$ (即 P 在 l_1 上方)时:

$$y_0 - kx_0 + \sqrt{k^2 + 1}x_0 = \sqrt{k^2 + 1}u$$

$$y_0 = -(\sqrt{k^2 + 1} - k)x_0 + \sqrt{k^2 + 1}u$$

2.图像:

曲线的图像为一个矩形, l_1 和 l_2 分别为其对角线。

差

设点 $P(x_0,y_0)$ 到 l_1,l_2 的距离 d_1,d_2 之差

$$d_1 - d_2 = u$$

1.计算:

即为

$$rac{|kx_0-y_0|}{\sqrt{k^2+1}}-|x_0|=u$$
 $|kx_0-y_0|-\sqrt{k^2+1}|x_0|=\sqrt{k^2+1}u$

发现图像关于原点中心对称,不妨设 $x_0 > 0$,分类讨论:

当 $kx_0-y_0>0$ (即 P 在 l_1 下方)时:

$$kx_0 - y_0 - \sqrt{k^2 + 1}x_0 = \sqrt{k^2 + 1}u$$

 $y_0 = -(\sqrt{k^2 + 1} - k)x_0 - \sqrt{k^2 + 1}u$

当 $kx_0-y_0<0$ (即 P 在 l_1 上方)时:

$$kx_0 - y_0 + \sqrt{k^2 + 1}x_0 = -\sqrt{k^2 + 1}u$$

 $y_0 = (\sqrt{k^2 + 1} + k)x_0 + \sqrt{k^2 + 1}u$

2.图像:

曲线的图像为两组平行射线,每组射线之间相互垂直。

积

设点 $P(x_0,y_0)$ 到 l_1,l_2 的距离 d_1,d_2 之积

$$d_1d_2=u(u\neq 0)$$

1.计算:

即为

$$rac{|kx_0-y_0|}{\sqrt{k^2+1}}|x_0|=u$$
 $|(kx_0-y_0)x_0|=u\sqrt{k^2+1}$

发现图像关于原点中心对称,不妨设 $x_0 > 0$,分类讨论:

当 $kx_0-y_0>0$ (即 P 在 l_1 下方)时:

$$k{x_0}^2 - x_0y_0 = u\sqrt{k^2+1} \ y_0 = kx_0 - u\sqrt{k^2+1} \cdot rac{1}{x_0}$$

当 $kx_0-y_0<0$ (即 P 在 l_1 上方)时:

$$k{x_0}^2 - {x_0}{y_0} = -u\sqrt{k^2+1} \ y_0 = k{x_0} + u\sqrt{k^2+1} \cdot rac{1}{{x_0}}$$

2.图像:

曲线的图像为一组形如 $ax+brac{1}{x}$ 和 $ax-brac{1}{x}$ 的曲线, l_1 和 l_2 均为其渐近线。

比

设点 $P(x_0,y_0)$ 到 l_1,l_2 的距离 d_1,d_2 之比

$$rac{d_1}{d_2}=u(u
eq 0)$$

1.计算:

即为

$$egin{aligned} rac{rac{|kx_0-y_0|}{\sqrt{k^2+1}}}{|x_0|} &= u \ |kx_0-y_0| &= u\sqrt{k^2+1}|x_0| \end{aligned}$$

发现该图像关于原点中心对称,不妨设 $x_0>0$,分类讨论可得:

当 $kx_0-y_0>0$ (即 P 在 l_1 下方)时:

$$y_0 - kx_0 = u\sqrt{k^2 + 1}x_0$$

 $y_0 = [k + u\sqrt{k^2 + 1}]x_0$

当 $kx_0-y_0<0$ (即 P 在 l_1 上方)时:

$$kx_0 - y_0 = u\sqrt{k^2 + 1}x_0$$

 $y_0 = [k - u\sqrt{k^2 + 1}]x_0$

2.图像:

曲线的图像为两条相交于原点的直线

• 图例:

- 。 点A(u,k):拖动来调整u,k参数
- \circ l_1, l_2 :蓝色直线两条
- \circ 所求曲线 l:红色直线
- \circ 点P:曲线上的点,可拖动