Topology

DHVANIL GHEEWALA

June 2023

Contents

L	What have I learnt? Summary			
2				
	2.1	What	is a Topology?	
		2.1.1	Definition: Topology	
		2.1.2	Definition: discrete space	
		2.1.3	Definition: indiscrete topology	
		2.1.4		
		2.1.5	Proposition:	
		2.1.6	Definition: Closed sets	
		2.1.7	Definition: Clopen	
		2.1.8	Definition: Cofinite topology	
	2.2	The E	Euclidean Topology	
		2.2.1	Definition: The Euclidean topology on \mathbb{R}	
		2.2.2	Definition: Basis	
	2.3	Limit	points:	
		2.3.1	Definition: Limit point	
		2.3.2	Definition: Closure of A	
			Definition: dense in X	
3	Rev		Plan of action	

1 What have I learnt?

Topology is one of the topics which have piqued my interest. I am always inclined towards learning new mathematical topics, especially wanted to study one of the topics of abstract algebra. I am currently using "Topology without tears" as a base reference for studying Topology.

I have completed 3 chapters from that book, namely

- 1. topological spaces
- 2. The Euclidean Topology
- 3. Limit points

and I am enjoying learning topology, of course there are portions where i get stuck, but then I reattempt it to improve my understanding. I will sumarise my learning below with some examples.

2 Summary

2.1 What is a Topology?

2.1.1 Definition: Topology

Let X be a non-empty set. A set T of subsets of X is said to be a **topology** on X if

- (i) X and the empty set, ϕ , belong to T
- (ii) the union of any finite or infinite number of sets in T belongs to T, and
- (iii) the intersection of any two sets in T belongs to T.

The pair (X,T) is called a topological space.

Example: Let
$$X = \{a, b, c, d, e, f\}$$
 and $T_1 = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e, f\}\}.$

As T_1 satisfies all conditions of Definition 2.1.1, it is a topology on X

Example: Let
$$X = \{a, b, c, d, e\}$$
 and $T_2 = \{X, \phi, \{a\}, \{c, d\}, \{a, c, e\}, \{b, c, d\}\}.$

Then T_2 is not a topology on X as the union

$$\{c,d\} \cup \{a,c,e\} = \{a,c,d,e\}$$

doesn't belong to T_2

2.1.2 Definition: discrete space

Let X be any non empty set and let T be the collection of all subsets of X. Then T is called the **discrete topology** on the set X. The topological space (X,T) is called a **discrete space**.

2.1.3 Definition: indiscrete topology

Let X be any non empty set and $T = \{X, \phi\}$. Then T is called **indiscrete** topology and (X, T) is said to be an **indiscrete space**.

Propositon: If (X,T) is a topological space such that, for every $x \in X$, the singleton set $\{x\}$ is in T, then T is the discrete topology.

Proof:

every set is the union of all its singleton subsets; that is , if S be any subset of X, then

$$S = \bigcup_{x \in S} \{x\}$$

Since we are given that each $\{x\}$ is in T, and the above equation imply that $S \in T$. As S is an arbitrary subset of X, we have that T is the discrete topology.

2.1.4 Definition: Open sets

Let (X,T) be any Topological space. Then the members of T are said to be **open sets**.

2.1.5 Proposition:

If (X,T) is any topological space, then

- (i) X and ϕ are open sets,
- (ii) the union of any (finite or infinite) number of open sets is an open set and
- (iii) the intersection of any finite number of open sets is an open set.

2.1.6 Definition: Closed sets

Let (X,T) be a topological space. A subset S of X is said to be a **closed set** in (X,T) if its complement in X, namely $X \setminus S$, is open in (X,T).

2.1.7 Definition: Clopen

A subset S of a topological space (X,T) is said to be **clopen** of ot os both open and closed in (X,T).

Some points to remember:

- (i) In every topological space (X,T) both X and ϕ are clopen.
- (ii) In a discrete space all subsets of X are clopen.
- (iii) In an indiscrete space the only clopen subsets are X and ϕ

2.1.8 Definition: Cofinite topology

Let X be any non-empty set. A topology T on X is called the **finite-closed topology** or the **cofinite topology** if the closed subsets of X are X and all finite subsets of X; that is, the open sets are ϕ and all subsets of X which have finite complements.

2.2 The Euclidean Topology

2.2.1 Definition: The Euclidean topology on \mathbb{R}

A subset S of \mathbb{R} is said to be open in the *euclidean topology on* \mathbb{R} if it has the following property:

(*) For each $x \in S$, there exist a, b in \mathbb{R} , with a < b, such that $x \in (a, b) \subseteq S$

2.2.2 Definition: Basis

Let (X,T) be a topological space. A collection B of open subsets of X is said to be a **basis** for the topology T if every open set is a union of members of B. **Example:**

Let (X, T) be a discrete space and B the family of all singleton subsets of X; that is, $B = \{\{x\} : x \in X\}$, Then B is a basis for T. **Proposition:** Let X be a non-empty set and let \mathbf{B} be a collection of subsets of X. Then \mathbf{B} is a basis for a topology on X if and only if \mathbf{B} has the following properties:

(a)
$$X = \bigcup_{B \in \mathbf{B}} B$$
, and

(b) for any $B_1, B_2 \in \mathbf{B}$, the set $B_1 \cap B_2$ is a union of members of **B**

Example: Let B be the collection of all "open rectangles"

$$\{\langle x, y \rangle : \langle x, y \rangle \in \mathbb{R}^2, a < x < b, c < y < d\}$$

in the plane which have each side parallel to the X - orY - axis.

Then B is a basis for a topology on the plane. This topology is called the euclidean topology.

Proposition: Let (X,T) be a topological space. A family **B** of open subsets of X is a basis for T if and only if for any point x belonging to any open set U, there is a $B \in \mathbf{B}$ such that $x \in B \subseteq U$ **Proposition:** Let $\mathbf{B}_1 and \mathbf{B}_2$ be bases for topologies T_1 and T_2 , respectively, on a non-empty set X. Then $T_1 = T_2$ if and only if

- (i) for each $B \in \mathbf{B}_1$ and each $x \in B$, there exists a $B' \in \mathbf{B}_2$ such that $x \in B' \subseteq B$, and
- (ii) for each $B \in \mathbf{B}_2$ and each $x \in B$, there exists a $B' \in \mathbf{B}_1$ such that $x \in \mathbf{B}' \subseteq B$.

2.3 Limit points:

2.3.1 Definition: Limit point

Let A be a subset of a topological space (X,T). A point $x \in X$ is said to be a **limit point of** A if every open set, U, containing x contains a point of A different from x

Example: Consider the topological space (X,T) where the set $X = \{a,b,c,d,e\}$, the topology $T = \{X,\phi,\{a\},\{c.d\},\{a,c,d\},\{b,c,d,e\}\}$, and $A = \{a,b,c\}$. Then

b, dande are limit point of A but a and c are not the limit points of A. **Proof:**

The set $\{a\}$ is open and contains no other point of A. So a is not a limit point of A. The set $\{c,d\}$ is an open set containing c but no other point of A. So c is not a limit point of A.

Proposition: Let A be a subset of a topological space (X,T) and $A^{'}$ the set of all limit points of A. Then $A \cup A^{'}$ is a closed set.

2.3.2 Definition: Closure of A

Let A be a subset of a topological space (X,T). Then the set $A \cup A'$ consisting of A and all its limit points is called the **Closure of** A and is denoted by \bar{A} .

2.3.3 Definition: dense in X

Let A be a subset of a topological space (X,T). Then A is said to be **dense** in X or **everywhere dense** in X if $\bar{A} = X$

This is what I have read till now

3 Revised Plan of action

Week-1(26/06/23 to 2/07/23): Limit points

Week-2(2/07/23 to 9/07/23): Homeomorphisms

Week-3(9/07/23 to 16/07/23): Continuous Mapping

Week-4(16/07/23 to 23/07/23): Metric Spaces and Compactness

Week-5(23/07/23 to 30/07/23): Finite Products and Countable Products