互评作业1:数据探索性分析与数据预处理:Chicago Building Violations

学号: 1120183560 姓名: 刘文楷

1. 数据集: wine-reviews

1个csv文件:

• building-violations.csv

读取数据:

```
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns

In [19]:
dirpath_cbv = "ChicagoBuildingViolations-dat
```

```
In [21]:

data_cbv = pd.read_csv(dirpath_cbv)

data_cbv.head()
```

	ID	VIOLATION LAST MODIFIED DATE	VIOLATION DATE	1	
0	6392482		2019-12- 04T00:00:00.000	(
1	6392480	2019-12- 04T12:40:09.000		(
2	6392335	2019-12- 04T14:00:12.000	2019-12- 04T00:00:00.000	(
3	6391883	2019-12- 04T08:32:01.000		(
4	6392369	2019-12- 04T14:14:24.000		(
5 rows × 32 columns					

显示数据信息

```
In [22]:
data_cbv = data_cbv.drop(columns=['ID', 'VIO
data cbv.info()
 <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 1677788 entries, 0 to 1677
 787
 Data columns (total 29 columns):
      Column
                                     Non
 -Null Count
                 Dtype
      _____
  _____
      VIOLATION LAST MODIFIED DATE
                                     167
 7788 non-null object
      VIOLATION DATE
                                     167
                object
 7788 non-null
  2
      VIOLATION CODE
                                     167
 7788 non-null object
      VIOLATION STATUS
  3
                                     167
 7788 non-null object
      VIOLATION STATUS DATE
                                     641
 589 non-null
                 object
  5
      VIOLATION LOCATION
                                     780
 506 non-null
                 object
      VIOLATION ORDINANCE
                                     163
 0207 non-null
                object
      INSPECTOR ID
  7
                                     167
 7788 non-null object
      INSPECTION NUMBER
                                     167
 7788 non-null int64
      INSPECTION STATUS
                                     167
 7772 non-null
                object
     INSPECTION WAIVED
                                     167
 7788 non-null
                object
      INSPECTION CATEGORY
  11
                                     167
 7788 non-null object
  12
      DEPARTMENT BUREAU
                                     167
 7788 non-null
                object
      ADDRESS
  13
                                     167
```

object

7788 non-null

14	STREET NUMBER	167		
7788	non-null int64			
15	STREET DIRECTION	167		
7788	non-null object			
16	STREET NAME	167		
7788	non-null object			
17	STREET TYPE	166		
4247	non-null object			
18	PROPERTY GROUP	167		
7788	non-null int64			
19	SSA	321		
521 r	non-null float64			
20	LATITUDE	167		
6278	non-null float64			
21	LONGITUDE	167		
6278	non-null float64			
22	LOCATION	167		
6278	non-null object			
23	Community Areas	167		
5509	non-null float64			
24	Zip Codes	167		
6278	non-null float64			
25	Boundaries - ZIP Codes	167		
5509	non-null float64			
26	Census Tracts	167		
6243	non-null float64			
27	Wards	167		
5509	non-null float64			
28	Historical Wards 2003-2015	167		
5509	non-null float64			
dtype	es: float64(9), int64(3), objec	:t(1		
7)				
memory usage: 371.2+ MB				

, 5

2. 数据分析

2.1 数据可视化和摘要

2.1.1 标称属性

```
In [23]:

title = ['VIOLATION LAST MODIFIED DATE', 'VI

In [24]:

# 由于本数据集属性太多,这里仅显示violation statu

title[3]
```

'VIOLATION STATUS'

```
getattr(data_cbv, title[3]).value_counts()
```

OPEN 1030958 COMPLIED 641247 NO ENTRY 5583

Name: VIOLATION STATUS, dtype: int64

```
data_cbv[title[3]].value_counts().head(10).p
```

<AxesSubplot:>

2.2.2 数值属性

直接调用describe函数给出数据的基本统计量

In [27]:

data_cbv.describe()

	INSPECTION NUMBER	STREET NUMBER	PROPER GRO
count	1.677788e+06	1.677788e+06	1.677788e+
mean	8.049798e+06	4.150382e+03	2.020547e+
std	4.555757e+06	2.893493e+03	1.862796e+
min	2.655750e+05	1.000000e+00	1.000000e+
25%	2.304416e+06	1.648000e+03	2.056000e+
50%	1.041875e+07	3.747000e+03	1.543230e+
75 %	1.168728e+07	6.228000e+03	3.669840e+
max	1.305092e+07	1.377000e+04	6.779750e+

数据可视化

直方图:

```
def histogram(data, x, y ,title):
    plt.figure(figsize = (15,6))
    plt.title(title)
    sns.set_color_codes("pastel")
    sns.barplot(x=x, y=y, data=df)
    locs, labels = plt.xticks()
    plt.show()

#SSA
temp = data_cbv['SSA'].value_counts()
df = pd.DataFrame({'SSA':temp.index, 'number})
histogram(df, 'SSA', 'number', 'SSA histogram')
```


盒图:

```
fig = plt.figure(figsize=(8, 15))
plt.boxplot(data_cbv['SSA'].loc[data_cbv['SSt = plt.title('Box_SSA')
```


3. 数据缺失处理

3.1 将缺失部分剔除

```
In [31]:

data_delete = data_cbv['SSA'].dropna()

temp = data_delete.value_counts()

df = pd.DataFrame({'SSA':temp.index, 'number})

histogram(df, 'SSA', 'number', 'SSA histogram')
```


3.2 用最高频率来填补缺失值

```
data_most = data_cbv['SSA'].fillna(data_cbv[
temp = data_most.value_counts()

df = pd.DataFrame({'SSA':temp.index, 'number
histogram(df, 'SSA', 'number', 'SSA histogra
```


3.3 通过属性的相关关系来填补缺失值

使用纬度LATITUDE填补经度LONGITUDE

```
In [35]:

data_fill = pd.DataFrame(data_cbv, columns=[
data_fill.head(10)
```

0	41.749169	-87.602551
1	41.749169	-87.602551
2	41.711751	-87.537842
3	41.844521	-87.712416
4	41.753908	-87.562784
5	41.806815	-87.611539
6	41.753908	-87.562784
7	41.749169	-87.602551
8	41.711751	-87.537842

LATITUDE LONGITUDE

9 41.748732 -87.659904

```
data_fill['LONGITUDE'].value_counts().head(1
```

<AxesSubplot:>

3.4 通过数据对象之间的相似性来填补缺失值

```
data_sim = data_cbv[['LATITUDE', 'LONGITUDE']
point2price = {}
for row in data_sim.iterrows():
    if point2price.get(row[1]['LONGITUDE'],
        if not pd.isnull(row[1]['LATITUDE'])
        point2price[row[1]['LONGITUDE']]
        point2price[row[1]['LONGITUDE']]
    else:
        if not pd.isnull(row[1]['LATITUDE'])
        point2price[row[1]['LONGITUDE']]

In [39]:
for k in point2price.keys():
    point2price[k][0] = round(point2price[k]
```

```
In [40]:
for row in data_sim.iterrows():
    if pd.isnull(row[1]['LATITUDE']):
        try:
            row[1]['LATITUDE'] = point2price
        except:
            continue
In [*]:
#对被填充后的price画直方图
temp = data_sim['LATITUDE'].value_counts()
df = pd.DataFrame({'LATITUDE':temp.index, 'n
histogram(df, 'LATITUDE', 'number', 'LATITUD
In [ ]:
```