Best Algorithm for Java Developers

Experiment 1, Experimentation & Evaluation 2024

Abstract

The following experiment evaluates the performance for the four Java sorting algorithms: BubbleSortUntilNoChange, BubbleSortWhileNeeded, QuickSortGPT, and SelectionSortGPT. This set of algorithms will be evaluated under several factors that may influence their execution time, namely:

data type (integer and string); data ordering (best case, average case, and worst case); and array size (small, medium, and large).

Each of the sorting algorithms was run across all test cases, and data was gathered for the thorough comparison of its performance. This experiment aims to identify the algorithm with the fastest execution.

The results are based on median performance of many repetitions so that every condition gets a fair evaluation, and the efficiency of each algorithm was evaluated across many dimensions.

This experiment will confirm QuickSortGPT to be the best algorithm based on execution time.

1. Introduction

The topic of investigation of our experiment is the performance, more specifically the execution time required by four different sorting algorithms (the lower the better). The latter are: BubbleSortUntilNoChange, BubbleSortWhileNeeded, QuickSortGPT and SelectionSortGPT.

The motivation for this study stems from the need of a company to decide which implementation of sorting algorithm to include in the Java library they are developing.

Hypotheses:

QuickSortGPT is the sorting algorithm that delivers the best performance across all array types, sizes and data orderings, since it is the one with the better time complexity. Thus, it will outperform the other algorithms.

To run this experiment, we first consider the identification of variables that can be used to influence the outcome, including those of specifications for the test machine itself.

We proceed by testing each algorithm across various data permutations and comparing the results through data analysis and graphical comparison.

The best algorithm is then determined based on median execution times across all configurations, ensuring a fair and consistent performance.

2. Method

The following subsections provide all essential details required to replicate the experiment accurately.

2.1 Variables

The independent variables (i.e. the values changed during the experiment) are the following: the sorting algorithm, the type of data, its orderings in the array and the array size.

Independent variable	Levels		
Sorting algorithm	BubbleSortUntilNoChange, BubbleSortWhileNeede QuickSortGPT and SelectionSortGPT		
Data Type	Integer and String		
Data Orderings in the array	Best case: the data in the array are already sorted Average case: the data in the array are in random ordering Worst case: the data in the array are reverse sorted		
Array Size	Small: 100 medium: 1'000 Large: 10'000		

The dependent variable (i.e. what is measured in the experiment) is the execution time of the sorting algorithms.

Dependent variable	Measurement Scale
Execution time	Ratio scale (in ns)

The control variable(s) (i.e., what is kept constant during the experiment) are the following: hardware, Operating System, running applications, JDK, and warmup.

Control variable	Fixed Value
Hardware	Model: Dell Inc. Precision 5570 Memory: 16.0 GiB Processor: 12th Gen Intel® Core™ i7-12700H × 20 Graphics: 1: Intel® Graphics (ADL GT2) Graphics: NVIDIA RTX A1000 Laptop GPU Disk Capacity: 512.1 GB
Operating System	OS Name: Ubuntu24.04.1 LTS

	OS Type: 64-bit GNOME VERSION: 46 Windowing System: Wayland
Running applications	IDE and the shell
JDK	Java version: OpenJDK 17.0.12 IDE: IntelliJ 2024.2.4
Warmup	30

2.2 Design

Type of Study (check one):

☐ Observational Study	☐ Quasi-Experiment	☐ Experiment			
Number of Factors (check one):					
☐ Single-Factor Design	■ Multi-Factor Design	□ Other			

The experiment we designed is neither an Observational Study nor a Quasi-Experiment, as we are not looking at a phenomenon in a systematic and scientifically rigorous way in its environment, and we have complete control over manipulation of the independent variables. Therefore, it is an Experiment.

Moreover, it follows a Multi-Factorial Design, since we have more than one independent variable in the study.

Figure 1: Experiment considering one algorithm on one data type

2.3 Apparatus and Materials

The relevant "props" used in this experiment are the following:

- A Dell laptop, hardware model Dell Inc. Precision 5570, with Ubuntu24.04.1 LTS as Operating Systems
- OpenJDK 17.0.12
- IntelliJ 2024.2.4
- A background process on the computer that gets automatically triggered (used to measure the time)

2.4 Procedure

To perform the experiment, we start our Dell laptop, we make sure all applications are closed, and we open OpenJDK and the shell.

Then, using IntelliJ as IDE and OpenJDK 17.0.12 as java version, we execute each sorting algorithm on every permutation (e.g., Figure 1) and capture the execution time through a background process. For each group, we collect 50 measurements after 30 warmup rounds. This is because relevant statistics can be computed from 30 or more data points and we observed that after the first 30 runs the execution time of the algorithms becomes stable. After that, for each permutation, we compute the minimum, first quartile, median, third quartile, and maximum values.

Lastly, the sorting algorithm that demonstrates the best performance across all array types, sizes, and data orderings is the one with the highest number of smaller medians across all permutations.

3. Results

3.1 Visual Overview

Here are reported the box plot summarizing the results of all the permutations.

3.2 Descriptive Statistics

Below are reported the statistics for each permutation.

	BubbleSortUntilNoChange	BubbleSortWhileNeeded	QuickSortGPT	SelectionSortGPT
	Minimum: 3706	Minimum: 3402	Minimum: 214626	Minimum: 6348
Integer	First quartile: 3848	First quartile: 3495	First quartile: 225859	First quartile: 12888
Best case	Median: 3992	Median: 3628	Median: 263756	Median: 35869
Small	Third quartile: 4261	Third quartile: 3829	Third quartile: 275306	Third quartile: 37739
	Maximum: 5610	Maximum: 6846	Maximum: 489096	Maximum: 161116
	Minimum: 3338	Minimum: 2573	Minimum: 3161830	Minimum: 3119080
Integer	First quartile: 3968	First quartile: 2981	First quartile: 3226823	First quartile: 3138862
Best case	Median: 4067	Median: 3146	Median: 3290154	Median: 3146323
Medium	Third quartile: 4103	Third quartile: 3161	Third quartile: 3328139	Third quartile: 3154399
	Maximum: 5854	Maximum: 3349	Maximum: 3510895	Maximum: 3179118
	Minimum: 32916	Minimum: 24614	Minimum: 320964236	Minimum: 319449939
Integer	First quartile: 39555	First quartile: 25192	First quartile: 328384234	First quartile: 319547036
Best case	Median: 40063	Median: 30096	Median: 330161760	Median: 319595375
Large	Third quartile: 40438	Third quartile: 30382	Third quartile: 331295721	Third quartile: 319681854
	Maximum: 111983	Maximum: 100638	Maximum: 333778866	Maximum: 321996684
Integer	Minimum: 40750	Minimum: 78206	Minimum: 11204	Minimum: 40394
	First quartile: 42321	First quartile: 79965	First quartile: 11608	First quartile: 41391
Average	Median: 43577	Median: 81707	Median: 12031	Median: 45848
case Small	Third quartile: 45658	Third quartile: 105033	Third quartile: 12397	Third quartile: 68070
Siliali	Maximum: 56443	Maximum: 130469	Maximum: 13475	Maximum: 84115
	Minimum: 7216353	Minimum: 4977575	Minimum: 113776	Minimum: 3148598
Integer	First quartile: 7248829	First quartile: 5012925	First quartile: 117234	First quartile: 3173368
Average	Median: 7274641	Median: 5027040	Median: 119774	Median: 3184306
case	Third quartile: 7307326	Third quartile: 5037130	Third quartile: 121864	Third quartile: 3192070
Medium	Maximum: 7454786	Maximum: 5156499	Maximum: 136070	Maximum: 3202753
Integer	Minimum: 945156201	Minimum: 549391511	Minimum: 1805513	Minimum: 320345765
Average	First quartile: 949892659	First quartile: 550036569	First quartile: 1833020	First quartile: 320428365

case	Median: 952158101	Median: 550422494	Median: 1843384	Median: 320492252
Large	Third quartile: 952812825	Third quartile: 550705820	Third quartile: 1851597	Third quartile: 320540993
Largo	Maximum: 965151741	Maximum: 555707871	Maximum: 1870782	Maximum: 321361416
	Minimum: 51180	Minimum: 32405	Minimum: 23645	Minimum: 35599
Integer	First quartile: 120329	First quartile: 80667	First quartile: 24495	First quartile: 35946
Worse case	Median: 125789	Median: 84328	Median: 24872	Median: 36690
Small	Third quartile: 508259	Third quartile: 306569	Third quartile: 25365	Third quartile: 162469
Oman	Maximum: 645547	Maximum: 490241	Maximum: 38613	Maximum: 195820
	Minimum: 4744419	Minimum: 2933181	Minimum: 2208503	Minimum: 3126921
Intonor				
Integer Worse case	First quartile: 4771992 Median: 4789770	First quartile: 2980955 Median: 2984164	First quartile: 2268868 Median: 2287465	First quartile: 3144908
				Median: 3151546
Medium	Third quartile: 4807446 Maximum: 5035942	Third quartile: 2986981	Third quartile: 2336306 Maximum: 2479269	Third quartile: 3164305
		Maximum: 3032064		Maximum: 3431527
Integrar	Minimum: 475056238	Minimum: 296931038	Minimum: 226688798	Minimum: 319622658
Integer	First quartile: 476561603	First quartile: 297336011	First quartile: 227601658	First quartile: 319715665
Worse case	Median: 477334915	Median: 297535559	Median: 239457925	Median: 319771466
Large	Third quartile: 478230921	Third quartile: 297729802	Third quartile: 240254318	Third quartile: 319793914
	Maximum: 485408135	Maximum: 299102934	Maximum: 243336325	Maximum: 330395820
.	Minimum: 4128	Minimum: 3673	Minimum: 41095	Minimum: 162017
String	First quartile: 4255	First quartile: 3797	First quartile: 45411	First quartile: 164207
Best case	Median: 4317	Median: 3837	Median: 219521	Median: 165533
Small	Third quartile: 4369	Third quartile: 3895	Third quartile: 222180	Third quartile: 167476
	Maximum: 5570	Maximum: 4589	Maximum: 234847	Maximum: 173080
	Minimum: 19778	Minimum: 18903	Minimum: 3794231	Minimum: 2336162
String	First quartile: 21665	First quartile: 19567	First quartile: 3812966	First quartile: 2354546
Best case	Median: 23756	Median: 20379	Median: 3827709	Median: 2365754
Medium	Third quartile: 24866	Third quartile: 21354	Third quartile: 3865023	Third quartile: 2379697
	Maximum: 28109	Maximum: 22514	Maximum: 3970244	Maximum: 2402021
	Minimum: 313539	Minimum: 309491	Minimum: 427456747	Minimum: 245224519
String	First quartile: 323815	First quartile: 312166	First quartile: 428280992	First quartile: 245292563
Best case	Median: 338631	Median: 314639	Median: 428775108	Median: 245362692
Large	Third quartile: 346211	Third quartile: 317782	Third quartile: 429358620	Third quartile: 245431628
	Maximum: 388585	Maximum: 331508	Maximum: 433590994	Maximum: 248413062
Otalia a	Minimum: 76676	Minimum: 48008	Minimum: 6583	Minimum: 29410
String	First quartile: 79747	First quartile: 53225	First quartile: 7300	First quartile: 30366
Average	Median: 82424	Median: 55442	Median: 7795	Median: 30824
case	Third quartile: 85691	Third quartile: 59327	Third quartile: 8136	Third quartile: 31149
Small	Maximum: 99265	Maximum: 68924	Maximum: 9184	Maximum: 32590
	Minimum: 13115330	Minimum: 9246458	Minimum: 245845	Minimum: 2827600
String	First quartile: 13268145	First quartile: 9302672	First quartile: 247559	First quartile: 2838592
Average	Median: 13345388	Median: 9333492	Median: 249893	Median: 2843645
case	Third quartile: 13431233	Third quartile: 9371653	Third quartile: 251986	Third quartile: 2849873
Medium	Maximum: 14357974	Maximum: 9634803	Maximum: 255237	Maximum: 2885195
	Minimum: 2956010469	Minimum: 1222328567	Minimum: 3600710	Minimum: 268789306
String	First quartile: 2973015185	First quartile: 1224690506	First quartile: 3618260	First quartile: 269424929
Average	Median: 2980427441	Median: 1226000519	Median: 3640104	Median: 269693126
case	Third quartile: 2986446741	Third quartile: 1227157639	Third quartile: 3660832	Third quartile: 269959132
Large	Maximum: 3026133031	Maximum: 1252971557	Maximum: 3773153	Maximum: 278637050
	Minimum: 77494	Minimum: 43929	Minimum: 32339	Minimum: 28286
String	First quartile: 78106	First quartile: 44235	First quartile: 32828	First quartile: 28995
Worse case	Median: 78752	Median: 44403	Median: 33191	Median: 29561
Small	Third quartile: 79015	Third quartile: 44576	Third quartile: 33717	Third quartile: 31277
Giliali	Maximum: 83826	Maximum: 62758	Maximum: 38831	Maximum: 70238
	Minimum: 7828365	Minimum: 4221896	Minimum: 2967740	Minimum: 2915356
String	First quartile: 7849651	First quartile: 4224543	First quartile: 2986436	First quartile: 2941025
•	·	· ·	Median: 3016197	Median: 2949147
Worse case	Median: 7877101 Third quartile: 7902842	Median: 4225490 Third quartile: 4230753		Third quartile: 2961433
Medium		!	Third quartile: 3023169	!
	Maximum: 8311323	Maximum: 4245713	Maximum: 3132358	Maximum: 3027745
C4=!	Minimum: 1995038205	Minimum: 419072375	Minimum: 329300749	Minimum: 714739939
String	First quartile: 2006161706	First quartile: 419359576	First quartile: 329839117	First quartile: 716416187
Worse case	Median: 2014484412	Median: 419556266	Median: 330129917	Median: 717251293
Large	Third quartile: 2019364755	Third quartile: 419818804	Third quartile: 330300313	Third quartile: 717941155
	Maximum: 2036314834	Maximum: 440260711	Maximum: 334829769	Maximum: 725715441

The statistics we compute are the following: minimum, first quartile (Q1), median, third quartile (Q3) and maximum.

The minimum is the smallest value in a data set. The first quartile (also known as Q1) is the value below which 25% of the data falls. The median is the middle value of the data (when it is ordered from smallest to largest). The third quartile (also known as Q3) is the below which 75% of the data falls, and the maximum is the highest value in the set.

4. Discussion

4.1 Compare Hypothesis to Results

Our measurements shows that for the majority of the groups, QuickSortGPT has the better performance (i.e. execution time), as expected in our hypothesis.

The only permutations that are not consistent with our initial assumption are all the ones containing the already sorted array (i.e. best case). That's because QuickSortGPT's best case is equal to its time complexity.

4.2 Limitations and Threats to Validity

The main limitation in our study coincides with the values we use to represent the dimensions of the array considered (i.e. small, medium and large). Indeed, to really reflect the order of magnitude of the different sizes, our values are not so precise. The correct ones should be e.g. 100, 10'000, 100'000. Our choice was forced by memory constraints.

Despite that, our results are still reliable since the difference between 100 and 10'000 provides an effective size difference.

This problem can be solved in an environment that provides an adequate amount of memory.

4.3 Conclusions

This experiment underlines that, among the four candidate algorithms, QuickSortGPT is the most efficient algorithms considering execution time as only criterion for performance, with consistently lower execution times across the majority of tested configurations.

Despite that, this study shows that QuickSortGPT is not the best for all the input arrays, as it performs badly on already sorted arrays due to its time complexity in the best-case scenario.

In summary, this study indicates that QuickSortGPT is the most effective algorithm for general applications where execution time is the only performance criterion.

Appendix

See our **GitHub repository** to check for extra materials and raw data.