Задача 1. Вычисление экспоненты

Источник: повышенной сложности*

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: разумное

В данной задаче нужно научиться вычислять экспоненту от заданного числа X, то есть e^X для e — натурального логарифма. Использовать функции \exp , pow и подобные из стандартной библиотеки или откуда-то eщё e запрещено. Лучше вообще e так не подключать.

Подсказка: используйте ряд Тейлора.

Формат входных данных

В первой строке записано одно целое число N — количество аргументов, для которых нужно вычислить экспоненту ($1 \le N \le 10^4$). Далее идёт N строк, по одному вещественному числу X в каждой. Каждое число — это число, экспоненту от которого надо вычислить.

Все числа X лежат в диапазоне (-100, 100).

Формат выходных данных

Выведите N строк, в каждой строке одно вещественное число, которое равно $\exp(X) = e^X$ для соответствующего аргумента X из входного файла.

Следует выводить числа с помощью формата "%0.15g", чтобы число выводилось в экспоненциальном виде с 15 знаками после десятичной точки. Ответ считается верным, если его относительная ошибка не превышает 10^{-12} .

Пример

input.txt	output.txt
8	1
0.0	2.71828182845905
1.0	0.367879441171442
-1.0	7.38905609893065
2.0	0.135335283236613
-2.0	2.68811714181614e+43
100.0	3.72007597602084e-44
-100.0	1.20849583696666
0.189376476361643	

Задача 2. Угол в треугольнике

Источник: повышенной сложности*

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: разумное

Требуется найти угол $\angle BAC$ в заданном треугольнике ABC.

Формат входных данных

В первой строке задано целое число Q — количество тестовых случаев $(1 \leqslant Q \leqslant 3 \cdot 10^5)$. В каждой из следующих Q строк описан один случай.

Каждый случай описывается шестью вещественными числами: A_x , A_y — координаты вершины угла, B_x , B_y — координаты другой вершины треугольника, C_x , C_y — координаты третьей вершины.

Все вещественные числа заданы с максимально возможной точностью и по абсолютной величине не превышают 10^3 .

Пусть M — максимум из абсолютных величин всех шести координат, заданных в тестовом случае. Гарантируется, что $|AB|, |AC| > \frac{1}{20}M$. То есть стороны треугольника, инцидентные искомому углу, имеют довольно большую длину.

Формат выходных данных

Нужно вывести Q строк, в каждой из которых должен быть записан угол при вершине A в треугольнике ABC. Все углы нужно выводить с максимально возможной точностью, рекомендуется использовать формат "%0.20g". Углы нужно выводить в градусах, в пределах от 0 до 180 градусов включительно.

Ответ засчитывается, если он отличается от истинного менее чем на 10^{-11} .

Пример

·	
input.txt	output.txt
8	36.869897645844019962
2 1 2 3 5 5	45
2 1 4 3 2 3	26.565051177077990019
3 1 3 5 2 3	0
0 0 1 0 10 0	174.28940686250035697
0 0 1 0 -10 1	0
7 4 3 3 3 3	0.00057295779511172474814
0 0 1 0 1 1e-5	89.999427042204885652
0 0 1 0 1e-5 1	

Задача 3. Динамический поиск

Источник: повышенной сложности*, обязательна на «отлично»

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда*
Ограничение по памяти: разумное

Имеется множество целых чисел X, изначально оно пустое. Нужно выполнить M заданных операций над этим множеством.

Есть три типа операций:

- 1. add v добавить число v в множество X. Если такого числа ещё не было в множестве, надо его добавить и напечатать слово added. Если такое число уже есть в множестве, нужно напечатать слово dupe и ничего не делать.
- 2. **remove** v удалить число v из множества X. Если такое число есть в множестве, нужно его удалить и напечатать слово **removed**. А если такого числа нет, нужно напечатать слово **miss** и ничего не делать.
- 3. lower v найти минимальное число в множестве X, которое больше или равно заданному v (т.е. lower_bound). Если такое число в множестве есть, нужно напечатать в файл. А если его нет, то есть если v больше всех чисел множества X, то нужно напечатать ### (три символа решётки, ASCII 35).

Внимание: операции нужно выполнять в режиме "online": считывать операцию из файла разрешается только после того, как все предыдущие операции уже выполнены.

Задачу нужно решать используя сбалансированное дерево поиска.

Формат входных данных

В первой строке содержится целое число M — количество операций ($1 \le M \le 3 \cdot 10^5$). В остальных M строках записаны операции в порядке их выполнения. Все числа v в файле целые и по абсолютной величине не превышают 10^9 .

Формат выходных данных

Нужно вывести M строк, в каждой из которых требуется записать результат выполнения соответствующей операции.

Императивное программирование Контест 13: дополнительный,

Пример

input.txt	output.txt
16	added
add 7	added
add 3	added
add 5	dupe
add 5	added
add 10	dupe
add 7	miss
remove 6	removed
remove 5	added
add 5	removed
remove 3	5
lower 2	5
lower 5	added
add 1	1
lower 0	10
lower 10	###
lower 15	