ПЛАН-КОНСПЕКТ ПРАКТИЧНОГО ЗАНЯТТЯ з дисципліни «Математичні основи ІТ»

Викладач: студент групи 641м Бужак Андрій

Дата проведення: 19.10.2021

Група: 143(1)

Вид заняття: практичне заняття Тривалість пари: 80 хвилин Тема: *Площина у просторі*.

Мета: ознайомлення студентів із основними типами рівнянь площини у просторі, особливостями їх написання та застосування; формування компетенцій розв'язування типових задач із даної тематики.

ХІД ЗАНЯТТЯ 1. Актуалізація опорних знань (5-7 хв.).

	·						
	Площина у просторі						
$N_{\underline{o}}$	Рівняння	Малюнок					
1	Площина, що проходить через задану точку $M_0(x_0;y_0;z_0)$ перпендикулярно до даного вектора $\overrightarrow{N}=(A;B;C)$ $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$	$\vec{n} = (A, B, C)$ $M(x, y, z)$					
2	Загальне рівняння площини $Ax + By + Cz + D = 0,$ $\vec{N} = (A; B; C) - вектор нормалі$ $A^2 + B^2 + C^2 > 0$	$M_0(x_0,y_0,z_0)$ \vec{r}_0 \vec{r}_0 \vec{r}_0					
3	Площина, що проходить через три задані точки, $M_1(x_1;y_1;z_1)$, $M_2(x_2;y_2;z_2), \ M_3(x_3;y_3;z_3),$ які не лежать на одній прямій $(\overline{M_1M}\times\overline{M_1M_2})\cdot\overline{M_1M_3}=0,$ тобто $\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{vmatrix}=0$	$M_3(x_3, y_3, z_3)$ $M(x, y, z)$ $M_1(x_1, y_1, z_1)$ $M_2(x_2, y_2, z_2)$					
4	Рівняння площини у відрізках (на осях) $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1,$ $a^2 + b^2 + c^2 > 0$	z c b y					

*

Відстань від точки $M_0(x_0;y_0;z_0)$ до площини Ax+By+Cz+D=0

$$|d| = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

$$d = \frac{\left| (\overline{\mathbf{N}}, \overline{\mathbf{M_1}} \overline{\mathbf{M_0}}) \right|}{\left| \overline{\mathbf{N}} \right|} = \frac{\left| Ax_0 + By_0 + Cz_0 + D \right|}{\sqrt{A^2 + B^2 + C^2}}$$

Неповне рівняння площини					
Коефіцієнт, що дорівнює нулеві	Вигляд рівняння	Розташування площини у просторі			
A = 0	By + Cz + D = 0	Паралельна осі <i>Ох</i>			
B=0	Ax + Cz + D = 0	Паралельна осі Оу			
C = 0	Ax + By + D = 0	Паралельна осі <i>О</i> z			
D = 0	Ax + By + Cz = 0	Проходить через початок координат			
A = B = 0	Cz + D = 0	Перпендикулярна осі Oz ,			
		паралельна площині Оху			
A = C = 0	By + D = 0	Перпендикулярна осі Oy ,			
		паралельна площині Охг			
B=C=0	Ax + D = 0	Перпендикулярна осі Ox ,			
		паралельна площині <i>Оуz</i>			
A = D = 0	By + Cz = 0	Проходить через вісь Ox			
B = D = 0	Ax + Cz = 0	Проходить через вісь Оу			
C = D = 0	Ax + By = 0	Проходить через вісь <i>О</i> z			
A = B = D = 0	z = 0	Збігається з площиною Оху			
A = C = D = 0	y = 0	Збігається з площиною Охг			
B = C = D = 0	x = 0	Збігається з площиною Оуг.			

Спосіб	Площини задані загальними	
\ задання	рівняннями	
Назва	$\pi_1 : A_1 x + B_1 y + C_1 z + D_1 = 0$,	$\overrightarrow{N}_1 = (A_1; B_1; C_1)$
правила	$\pi_2: A_2 x + B_2 y + C_2 z + D_2 = 0$	
чи формули		$\overrightarrow{N}_2 = (A_2; B_2; C_2)$
Кут ϕ між		
площинами/	Кут між векторами нормалей цих площин, тобто	
прямими/	^ _ ^	
прямою та	$\varphi = (\pi_1, \pi_2) = (\overrightarrow{N}_1, \overrightarrow{N}_2)$	
площиною		

Тригонометрична функція кута	$\cos \varphi =$ $= \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}}$
Умова пара- лельності	$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$
Умова перпендику- лярності	$A_1 A_2 + B_1 B_2 + C_1 C_2 = 0$

2. Розв'язування задач (70 хв.)

<u>Задача 1.</u> Скласти рівняння площини, що проходить через точку $M_3(-3;-2;2)$ паралельно до площини Oyz. Розв'язання.

Изкана площина паралельна до Oyz, а значить, перпендикулярна до осі Ox, тобто $\vec{i} \parallel \vec{n} = (A;B;C)$, зокрема, можна взяти $\vec{n} = \vec{i} = (1;0;0)$. Крім того, площина проходить через точку $M_3(-3;-2;2)$, отже, можемо написати рівняння прямої, що проходить через точку перпендикулярно до даного вектора: $A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$. Підставляючи координати точки і вектора,

маємо:
$$1\cdot(x-(-3))+0\cdot(y-(-2))+0\cdot(z-2)=0$$
 Спрощуючи, отримаємо
$$x+3=0.$$

Шукана площина паралельна до Oyz, а значить, у загальному рівнянні Ax + By + Cz + D = 0

II cnoció

виконуються рівності B=C=0, тобто її загальне рівняння має вигляд

Ax + D = 0.

Точка $M_3(-3;-2;2)$ належить шуканій площині, а значить, її координати задовольняють рівняння. Тому

$$A(-3) + D = 0$$
,
звідки $D = 3A$.
Тоді
 $Ax + 3A = 0$,
а значить,
 $x + 3 = 0$.

Bidnosids: x + 3 = 0.

Задача 2. Скласти рівняння площини, що проходить через точки $M_1(1;-3;2)$ і $M_2(-2;1;4)$ паралельно до осі Ox.

<u>Розв'язання</u>. Площина паралельна до осі Ox, отже, в її загальному рівнянні Ax + By + Cz + D = 0

виконується рівність A=0, тобто рівняння шуканої площини має вигляд By+Cz+D=0 .

Точки $M_1(1;-3;2)$ і $M_2(-2;1;4)$ лежать у цій площині, отже, їхні координати задовольняють рівняння площини, тобто

$$\begin{cases} B \cdot (-3) + C \cdot 2 + D = 0, \\ B \cdot 1 + C \cdot 4 + D = 0. \end{cases}$$

Віднімемо перше рівняння від другого: 4B + 2C = 0, звідки C = -2B. З другого рівняння D = -B - 4C. Тоді

$$D = -B - 4C = \{C = -2B\} = -B - 4(-2B) = 7B.$$

Підставимо знайдені вирази C = -2B і D = 7B у рівняння By + Cz + D = 0.

Маємо:

$$By - 2Bz + 7B = 0.$$

Поділивши на $B \neq 0$, отримуємо:

$$y - 2z + 7 = 0.$$

Bidnosids: y - 2z + 7 = 0.

Задача 3. Скласти рівняння площини, що проходить через точки $M_1(1;2;0)$ і $M_2(2;1;1)$ паралельно до вектора $\vec{a}=(3;0;1)$. Знайти кут між цією площиною та площиною x-y-z-10=0.

<u>Розв'язання</u>. **1)** Очевидно, що вектор нормалі $\vec{n} = (A; B; C)$ шуканої площини є перпендикулярним одночасно до двох векторів:

$$\vec{a} = (3;0;1)$$
 Ta $\vec{b} = \overline{M_1 M_2} = (2-1;1-2;1-0) = (1;-1;1)$,

а значить, \vec{n} колінеарний до $\vec{c} = \vec{a} \times \vec{b}$, зокрема, можна взяти

$$\vec{n} = \vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 3 & 0 & 1 \\ 1 & -1 & 1 \end{vmatrix} = 0 - 3\vec{k} + \vec{j} - 0 + \vec{i} - 3\vec{j} = \vec{i} - 2\vec{j} - 3\vec{k} .$$

Отже, $\vec{n} = \vec{a} \times \vec{b} = (1; -2; -3)$ і площина проходить через, наприклад, точку $M_1(1;2;0)$. Пишемо рівняння прямої, що проходить через точку перпендикулярно до даного вектора: $A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$.

Підставляючи координати точки і вектора, маємо:

$$1 \cdot (x-1) + (-2) \cdot (y-2) + (-3) \cdot (z-0) = 0.$$

Відкриваючи дужки та зводячи подібні, дістаємо шукане рівняння:

$$x - 2y - 3z + 3 = 0$$
.

2) Знайдемо кут між площиною (π) x-2y-3z+3=0 та площиною (π_1) x-y-z-10=0. Кут між площинами дорівнює куту φ між їхніми векторами нормалі $\vec{n}=(1;-2;-3)$ та $\vec{n}_1=(1;-1;-1)$. Знайдемо косинус кута φ :

$$\cos \varphi = \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}} =$$

$$= \frac{1 \cdot 1 + (-2) \cdot (-1) + (-3) \cdot (-1)}{\sqrt{1^2 + (-2)^2 + (-3)^2} \sqrt{1^2 + (-1)^2 + (-1)^2}} = \frac{6}{\sqrt{14}\sqrt{3}} = \frac{6}{\sqrt{42}}$$

Bionosiob:
$$x - 2y - 3z + 3 = 0$$
; $\cos \varphi = \frac{6}{\sqrt{42}}$

Задача 4. Скласти рівняння площини, що проходить через точку M(2;-1;1) та відтинає на координатних осях рівні відрізки. Знайти об'єм піраміди, яку відтинає ця площина від координатного кута та відстань від початку координат до цієї площини.

Розв'язання. 1) Запишемо рівняння площини у відрізках:

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1.$$

3а умовою задачі b = c = a. Тому

$$\frac{x}{a} + \frac{y}{a} + \frac{z}{a} = 1$$
.

Точка M(2;-1;1) належить шуканій площині, отже, $\frac{2}{a} + \frac{-1}{a} + \frac{1}{a} = 1$.

Тоді $\frac{2}{a}$ = 1, отже, a = 2. Таким чином, шукане рівняння має вигляд

$$\frac{x}{2} + \frac{y}{2} + \frac{z}{2} = 1.$$

Домножаючи обидві частини на 2 та переносячи константу вліво, маємо x + y + z - 2 = 0.

2) Знаходимо далі об'єм піраміди, яку відтинає дана площина від першого координатного кута. Це прямокутна піраміда, в основі якої прямокутний рівнобедрений трикутник з катетом a=2, а висота піраміди - це відрізок довжини a=2, який площина відтинає на вісі Oz. Таким чином,

$$V = \frac{1}{3}S_{och}h = \frac{1}{3} \cdot \frac{1}{2}a^2 \cdot a = \frac{a^3}{6} (oo.^3)$$

При a = 2 маємо: $V = \frac{a^3}{6} = \frac{2^3}{6} = \frac{4}{3} (ooleda)^3$

3) Знаходимо відстань від початку координат O(0;0;0) до площини x+y+z-2=0. Використовуємо формулу

$$|d| = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}.$$

Підставляємо $x_0=y_0=z_0=0$, A=B=C=1, D=-2:

$$|d| = \frac{|1 \cdot 0 + 1 \cdot 0 + 1 \cdot 0 - 2|}{\sqrt{1^2 + 1^2 + 1^2}} = \frac{2}{\sqrt{3}}.$$

Bionosiob:
$$x + y + z - 2 = 0$$
; $V = \frac{4}{3} (oo.^3)$; $|d| = \frac{2}{\sqrt{3}}$

Задача 5. Визначити координати та напрямні косинуси вектора нормалі площини, яка проходить через точки $M_1(1;2;0)$, $M_2(2;1;1)$ і $M_3(3;0;1)$. З'ясувати, який кут дана площина утворює з площиною x-y+3z-4=0. Розв'язання. 1) Запишемо рівняння площини, що проходить через три точки

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0.$$

Підставимо координати заданих точок:

$$\begin{vmatrix} x-1 & y-2 & z-0 \\ 2-1 & 1-2 & 1-0 \\ 3-1 & 0-2 & 1-0 \end{vmatrix} = 0.$$

Перетворимо:

$$\begin{vmatrix} x-1 & y-2 & z-0 \\ 1 & -1 & 1 \\ 2 & -2 & 1 \end{vmatrix} = 0,$$

$$\underbrace{-(x-1)}_{x-1+y-2=0} + \underbrace{\frac{2(y-2)}_{x-1+y-2=0}}_{y-2=0} + \underbrace{\frac{2(y-2)}_{y-2=0}}_{y-2=0} + \underbrace{\frac{2(y-2)$$

$$(\pi)$$
 $x + y - 3 = 0$.

2) Вектор нормалі знайденої площини має вигляд $\vec{n} = (1;1;0)$. Шукаємо його напрямні косинуси. Для вектора $\vec{a} = (a_x; a_y; a_z)$ напрямні косинуси (косинуси кутів, які утворює цей вектор з додатними напрямками координатних осей) обчислюють за формулами:

$$\cos \alpha = \frac{a_x}{\sqrt{a_x^2 + a_y^2 + a_z^2}}, \quad \cos \beta = \frac{a_y}{\sqrt{a_x^2 + a_y^2 + a_z^2}}, \quad \cos \gamma = \frac{a_z}{\sqrt{a_x^2 + a_y^2 + a_z^2}}.$$

Підставляємо координати вектора $\vec{n} = (1;1;0)$:

$$\cos \alpha = \frac{1}{\sqrt{1^2 + 1^2 + 0^2}} = \frac{1}{\sqrt{2}}, \quad \cos \beta = \frac{1}{\sqrt{1^2 + 1^2 + 0^2}} = \frac{1}{\sqrt{2}},$$
$$\cos \gamma = \frac{1}{\sqrt{1^2 + 1^2 + 0^2}} = \frac{0}{\sqrt{2}} = 0.$$

3) Знаходимо косинус кута між площиною (π) x+y-3=0 з вектором нормалі $\vec{n}=(1;1;0)$ та площиною (π_1) x-y+3z-4=0 з вектором нормалі $\vec{n}_1=(1;-1;3)$:

$$\cos \varphi = \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}} = \frac{1 \cdot 1 + 1 \cdot (-1) + 0 \cdot 3}{\sqrt{1^2 + 1^2 + 0^2} \sqrt{1^2 + (-1)^2 + 3^2}} = \frac{0}{\sqrt{2} \sqrt{11}} = 0,$$

Отже, площини (π) та (π_1) перпендикулярні.

Відповідь:
$$x + y - 3 = 0$$
; $\cos \alpha = \cos \beta = \frac{1}{\sqrt{2}}$, $\cos \gamma = 0$ ($\alpha = \beta = 45^{\circ}$, $\gamma = 90^{\circ}$); площини перпендикулярні.

Задача 8. Скласти рівняння площини, що проходить через точку $M_1(1;1;1)$ паралельно векторам $\overrightarrow{a_1}=(0;1;2)$ та $\overrightarrow{a_2}=(-1;0;1)$. Розв'язання.

Задача зводиться до задачі №3. Оскільки площина паралельна двом векторам $\overrightarrow{a_1} = (0;1;2)$ та $\overrightarrow{a_2} = (-1;0;1)$, то її вектор нормалі можна шукати у вигляді векторного добутку векторів $\overrightarrow{a_1}$ та $\overrightarrow{a_2}$:

$$\vec{n} = \vec{a_1} \times \vec{a_2} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 1 & 2 \\ -1 & 0 & 1 \end{vmatrix} = \begin{pmatrix} \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix}; - \begin{vmatrix} 0 & 2 \\ -1 & 1 \end{vmatrix}; \begin{vmatrix} 0 & 1 \\ -1 & 0 \end{vmatrix} = (1; -2; 1).$$

Пишемо рівняння прямої, що проходить через точку $M_1(1;1;1)$ перпендикулярно до вектора $\vec{n} = (1;-2;1)$:

$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0.$$

Підставляючи координати точки і вектора, маємо:

$$1 \cdot (x-1) + (-2) \cdot (y-1) + 1 \cdot (z-1) = 0.$$

Відкриваючи дужки та зводячи подібні, дістаємо шукане рівняння:

$$x - 2y + z = 0.$$

Bidnosidu: x-2y+z=0.

<u>Задача 6.</u> Скласти рівняння площини, яка проходить через точку $M_0(1;0;-1)$ i

- **а)** паралельна площині 2x y + 3z = 0;
- **б)** перпендикулярна до площин x + 2y + 1 = 0 та 3x 2y + z 4 = 0.

Розв'язання. **а)** Шукана площина (π_1) паралельна площині (π) 2x - y + 3z = 0, тому рівняння (π_1) можна шукати у вигляді

$$2x - y + 3z + D = 0.$$

Невідомий коефіцієнт D знайдемо з умови, що точка $M_0(1;0;-1)$ лежить у площині (π_1) :

$$2 \cdot 1 - 0 + 3 \cdot (-1) + D = 0$$
,

звідки D = 1. Отже, рівняння шуканої площини

$$2x - y + 3z + 1 = 0$$
.

<u>**АБО**</u> Рівняння площини (π_1) можна записати, виходячи з умови, що вектором нормалі для (π_1) буде той самий вектор, що й для (π) - це вектор $\vec{n} = (2; -1; 3)$

і (π_1) проходить через точку $M_0(1;0;-1)$. Цього досить, щоб записати рівняння вигляду

$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$$
.

Підставляючи координати $\vec{n} = (2; -1; 3)$ та $M_0(1; 0; -1)$, записуємо рівняння шуканої площини:

$$2(x-1)+(-1)(y-0)+3(z-(-1))=0$$

звідки

$$2x - y + 3z + 1 = 0$$
.

б) Шукана площина π_4 перпендикулярна до площин (π_2) x+2y+1=0 та (π_3) 3x-2y+z-4=0.

Зрозуміло, що вектор нормалі \overrightarrow{N} шуканої площини можна шукати у вигляді векторного добутку векторів нормалей $\overrightarrow{n_2}$ і $\overrightarrow{n_3}$ площин π_2 та π_3 :

$$\overrightarrow{N} = \overrightarrow{n_2} \times \overrightarrow{n_3} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 2 & 0 \\ 3 & -2 & 1 \end{vmatrix} = \overrightarrow{i} \begin{vmatrix} 2 & 0 \\ -2 & 1 \end{vmatrix} - \overrightarrow{j} \begin{vmatrix} 1 & 0 \\ 3 & 1 \end{vmatrix} + \overrightarrow{k} \begin{vmatrix} 1 & 2 \\ 3 & -2 \end{vmatrix} = 2\overrightarrow{i} - \overrightarrow{j} - 8\overrightarrow{k} .$$

Отже, можна записати рівняння площини, що проходить через точку $M_0(1;0;-1)$ перпендикулярно до вектора $\overrightarrow{N} = (2;-1;-8)$:

$$2(x-1)+(-1)(y-0)+(-8)(z-(-1))=0.$$

Спрощуючи, отримаємо: 2x - y - 8z - 10 = 0.

Bionosids: a)
$$2x - y + 3z + 1 = 0$$
; 6) $2x - y - 8z - 10 = 0$

<u>Задача 7.</u> Серед трьох пар площин знайти пару паралельних і знайти відстань між ними:

a)
$$3x + y - z - 3 = 0$$
 ma $6x + 2y - 2z - 6 = 0$;

6)
$$2x - y + z + 4 = 0$$
 ma $x + y - z - 1 = 0$;

6)
$$2x-3y+5z-1=0$$
 ma $4x-6y+10z+2=0$.

<u>Розв'язання</u>. Площини $A_1x + B_1y + C_1z + D_1 = 0$ та $A_2x + B_2y + C_2z + D_2 = 0$ паралельні, якщо

$$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} \neq \frac{D_1}{D_2},$$

співпадають, якщо

$$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} = \frac{D_1}{D_2}$$

Перевіряємо пару площин а):

$$\frac{3}{6} = \frac{1}{2} = \frac{-1}{-2} = \frac{-3}{-6}$$

отже, площини цієї пари співпадають.

Перевіряємо пару площин б):

$$\frac{2}{1} \neq \frac{-1}{1} = \frac{1}{-1} \neq \frac{4}{-1}$$

отже, площини не паралельні.

Перевіряємо пару площин в):

$$\frac{2}{4} = \frac{-3}{-6} = \frac{5}{10} \neq \frac{-1}{2},$$

значить, площини паралельні, але не співпадають. Знайдемо відстань між цими площинами. Для цього візьмемо точку в одній площині та знайдемо відстань від неї до іншої площини. Беремо, наприклад, точку у площині (π) 2x-3y+5z-1=0 та шукаємо відстань від неї до площини (π_1) 4x-6y+10z+2=0. Щоб вибрати точку у площині, задамо 2 координати точки довільно, а третю знайдемо з рівняння площини, підставивши в нього дві довільно обрані нами. Нехай $x_0=0$, $y_0=-2$, тоді, підставимо ці значення у рівняння площини (π) та знайдемо відповідну координату z_0 : $2\cdot 0-3\cdot (-2)+5z_0-1=0 \Rightarrow z_0=-1$,

отже, точка $M_0(0;-2;-1)$ належить площині (π) . Шукаємо відстань від $M_0(0;-2;-1)$ до (π_1) 4x-6y+10z+2=0 :

$$|d| = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}} = \frac{|4 \cdot 0 - 6 \cdot (-2) + 10 \cdot (-1) + 2|}{\sqrt{4^2 + (-6)^2 + 10^2}} = \frac{4}{\sqrt{152}} = \frac{4}{2\sqrt{38}} = \frac{2}{\sqrt{38}}.$$

<u>Відповідь</u>: пара паралельних площин - в); $|d| = \frac{2}{\sqrt{38}}$

3. Підведення підсумків заняття, оголошення домашнього завдання (до 5 хв.)

Д/з: пряма у просторі, взаємне розміщення прямої та площини у просторі, зб. задач Дубовик В.П., Юрик І.І. с. 66-67, №171, 174 (1), 175(1), 177(a), 179, 181, 185.