

h(125)→aa→yyyy

Hgg Working Group Meeting

5th July 2018

Tanvi Wamorkar¹, Toyoko Orimoto¹, Andrea Massironi²
[1] Northeastern University
[2] INFN Milano-Bicocca and CERN

H-⇒aa-⇒γγγ: Motivation

The possibility of light scalars is a very well established scenario

- The usual suspects {(N)MSSM, SM+Singlet, etc} typically have very sub-dominant BR (a→γγ), but
 - Non-trivial SM extensions can change that picture by suppressing a-fermions
 - Also, 4γ final state is basically SM background free and we can take advantage of the high γ online/offline reconstruction and identification efficiency

Existing studies show sensitivity for discovery down to Br(h \rightarrow aa \rightarrow 4 χ) ~10⁻⁵ for 300/fb @ 14 TeV hep-ph/060831

Overview of the updates

- Since we are probing m(a) from 100 MeV to 60 GeV, it is important to look at the topology of the final state
 - Higher is m(a), lower is the boost of the "a" boson and larger are the values of ΔR (calculated between two photons from the same "a")
- Depending on m(a), we can design different categories:
 - 4 resolved photons
 - 2 resolved + 1 merged photon
 - 2 pairs of merged photons
- Today's updates aim to design these categories using the Gen- and Reco- level photons

Motivation to perform a Generator level study

- Fundamental question: can we reconstruct our signal as resolved photons?
- In ECAL, a cluster of 5x5 crystals refers to $\Delta R \sim 0.123$
- Since there are always 4 γ 's at Gen level, we can see what ΔR looks like b/w γ 's coming from the same "a"
- If we choose a cut-off at $\Delta R = 0.15$, i.e consider the Y's to be merged if $\Delta R < 0.15$, then
 - For m(a) < 5 GeV, most γ 's (coming from the same "a") are merged, i.e cannot be reconstructed as two separate photons

 \bullet Begin by calculating ΔR b/w each of the 6 photon pairs

If no pairs found with $\Delta R < 0.15$

4 resolved γ's case

1 pair with $\Delta R < 0.15$

2 resolved + 1 merged γ's case

2 pairs with $\Delta R < 0.15$

2 pairs of merged γ's case

- Also need to apply detector acceptance requirements
 - Leading and sub-leading γ should have $P_T > 30$ GeV and > 18 GeV, respectively (motivated by selections in the online Di-photon HLT paths)
 - 3rd and 4th γ should have $P_T > 10$ GeV
 - All 4 γ 's should have $|\eta| < 2.5$
- Based on this criteria, events can be divided into the following categories:

4 resolved γ's:

- All in acceptance
- 1 missing γ
- > 1 missing γ

2 resolved + 1 merged γ's:

- All in acceptance
- 1 missing γ
- >1 missing γ

2 pairs of merged γ's:

- All in acceptance
- 1 missing γ
- > 1 missing γ

In red are the events with 4 resolved photons (no pairs found with $\Delta R < 0.15$)

In green are the events with 2 resolved + 1 merged photons (1 pair found with $\Delta R < 0.15$)

In blue are the events with 2 pairs of merged photons (2 pairs found with ΔR < 0.15)

Comments on generator level study

- For m(a) > 10 GeV, the fully resolved topology is the dominant one
- The fraction of events falling under the 4 resolved γ 's (all γ 's within detector acceptance) ranges from 23% for m(a) = 10 GeV to 51% for m(a) = 60 GeV
- Fraction of events under 4 resolved γ 's (1 missing γ) is also significant (from 32% for 10 GeV to 23% for 60 GeV); but, cannot reconstruct the 4 γ invariant mass here (The 4th γ can be recovered if the P_T threshold is lowered, but this may require some fine-tuning since those objects may not be supported)
- The events with 4 resolved γ 's (> 1 missing γ) are unrecoverable
- For m(a) = 5 GeV and 10 GeV, only 9% and 1% of events fall under the 2 resolved + 1 merged γ 's (all in acceptance), respectively Less important than the 4 resolved γ 's and 2 pairs of merged γ 's case, but could still be worth studying later down the line

Comments on generator level study

- For m(a) = 100 MeV and 1 GeV, the dominant category is 2 pairs of merged γ 's (all γ 's in acceptance)
 - However, for this mass regime a separate analysis has to be developed since the standard photon identification MVA will cease to work
 - New classification would be needed in this case; In contact with Michael Andrews (from CMU) (working on developing mass regression on merged photon clusters) <u>Link to Michael's presentation</u>
 - Mass regression on merged photon clusters:
 For exotic light scalar decays, A→γγ, try to perform mass regression on the merged photon cluster

Gen-Reco Matching

- Start by identifying a merged photon at Gen level (if $\Delta R < 0.15$)
- Loop over the collection of Reco photons and look for one which is close to the Gen-level merged photon within a cone of $\Delta R = 0.15$
- If more than one such Reco photons are found, then the one with the least ΔR is flagged as a merged photon at the Reco-level
- By doing this, we can flag each photon at the Reco level as "resolved" or "merged"
- Next step is to mimic the categories @ Reco level

Possible to reconstruct the 4γ invariant mass in these categories

3 merged γ's

Comments on reco level study

- Used the Gen level information to perform categorization @ Reco level
- There is slight mismatch b/w this plot & the one shown for Gen level
 - This is where the machine learning techniques can help!
- Indicative of the fact that Gen-Reco matching could be re-tuned (5 crystal separation could be too conservative)
- For m(a) > 10 GeV the fully resolved topology is the dominant one (26% for m(a) = 10 GeV to 46% for m(a) = 60 GeV)

Conclusions

- There are 3 main categories: 4 resolved γ 's, 2 resolved + 1 merged γ 's, 2 pairs of merged γ 's
- Both, Gen and Reco level studies show that for m(a) > 10 GeV, efforts should be concentrated on the 4 Resolved γ 's category
 - Main backgrounds for this final state:
 - 4 Jets
 - **y** + 3 Jets
 - YY + 2 Jets
 - $\gamma \gamma \gamma + \text{Jet}$ (Need to request for these samples)
 - DY + 2 Jets
 - Next time, present background study of these backgrounds + trigger studies

Backup

Higgs Exotic decays: Why study them?

- But how standard is the Higgs Boson?
 - Extremely narrow width ($\Gamma_h \sim 4.07 \text{ MeV}$; $\Gamma_h/m_h \sim 3.3 \text{ x} 10^{-5}$)
 - Small coupling to another light state can open up additional sizable decay modes
 - Good reasons to suspect that new physics couples preferentially to the Higgs boson (it provides one of only a few "portals" that allow SM matter to interact w/ hiddensector matter)

Catalogue of exotic decays: arxiv:1312.4992

Higgs Exotic decays: Why study them?

- Negative log-likelihood scan of B_{BSM} (branching ratio into BSM particles) when allowing additional BSM contributions to the Higgs boson width.
- Upper limit of $B_{BSM} = 0.34$ at 95% CL was obtained.
- What can we do experimentally?
 - 1. Constrain B_{BSM} indirectly by means of precision Higgs physics
 - 2.Directly look for exotic decays of the Higgs boson

From arXiv:1606.02266

H→aa→yyyy: Existing studies

- ATLAS collaboration has performed a search for "a Higgs boson decaying to four photons through light CP-odd scalar coupling" using 4.9 fb⁻¹ of 7 TeV pp collision data

 ATLAS-CONF-2012-079
- The search explores the mass range $m(a) \in [100,400]$ MeV
 - Highly boosted regime
 - Study of the fraction of H→aa→yyyy events that would contribute to an effective H→yy signal
 - 95% confidence-level exclusion limits provided on Higgs boson production cross-section times H→aa→yyyy branching fraction in the range 110 GeV < mh < 150 GeV

This search is new to CMS!

Check for gen-reco matching

P_T of Reco γ (that has been matched to a merged γ @ Gen level)

P_T of that Gen level Merged Y

