Pregunta 1 Sin responder aŭn Puntúa como 1,00 P Marcar pregunta	Decidir si la siguiente afirmación es verdadera o falsa. Si Γ es un conjunto inconsistente, entonces existe una fórmula α tal que $\alpha \in \Gamma$ y $\neg \alpha \in \Gamma$. Seleccione una: a. Falsa b. Verdadera	
Pregunta 2 Sin responder aún Puntúa como 1,00 P Marcar pregunta	Consideremos el lenguaje L con igualdad y un símbolo de función binario f . Sea la estructura $M=(\mathbb{R},d)$, donde $d(r,s)= r-s $. ¿Cuál de las siguientes fórmulas distingue al elemento 0 ? Seleccione una: a. $\forall x(f(x,u)=x)$ b. $\forall x\exists y(f(x,u)=y)$ c. $\forall x(f(x,x)=u)$	
Pregunta 3 Sin responder aún Puntúa como 1,00 Marcar pregunta	Sea $L = \langle f, c, r, = \rangle$ un lenguaje con igualdad, donde f es un símbolo de función unaria, r es un símbolo de relación binaria, y c es un símbolo de constante. Dado n , un número natural fijo mayor a 1, determinar si es expresable en L la siguiente propiedad: Hay a lo sumo n elementos tales que su imagen vía f está relacionada a izquierda (vía la interpretación de r) con la interpretación de c . Seleccione una: a. Es expresable b. No es expresable b. No es expresable	
Pregunta 4 Sin responder aún Puntúa como 1,00 Marcar Pregunta	Consideremos el lenguaje L con igualdad y un símbolo de función binario f . Sea la estructura $N=(\mathbb{N},+)$, φ_1 una fórmula que distingue al 1 y consideremos $\varphi(u)=\exists x\exists y(\varphi_1(y)\wedge f(u,y)=f(f(x,x),x))$. ¿A cuál conjunto expresa la fórmula φ ? Seleccione una: $ (\exists x)=\{x\in\mathbb{N}\} $ $ (\exists x) [x\in\mathbb{N}] $	
Pregunta 5 Sin responder aún Puntúa como 1,00 Marcar pregunta	Sea α una fórmula proposicional y v una valuación tal que $v \models \alpha$. Definimos v' como $v'(p) = 1$ sii $v(p) = 0$. ¿Cuál de las siguientes afirmaciones es correcta? Seleccione una: $0 = 0$ $0 =$	
Pregunta 6 Sin responder aún Puntúa como 1,00 Marcar pregunta	Sea $L = \langle f, c, r, = \rangle$ un lenguaje con igualdad, donde f es un símbolo de función unaria, r es un símbolo de relación binaria, y c es un símbolo de constante. Determinar si es expresable en L la siguiente propiedad: () Hay a lo sumo finitos elementos tales que su imagen vía f está relacionada a izquierda (vía la interpretación de r) con la interpretación de c . Seleccione una: () Seleccione una: () AT: full Commanda f C	
Pregunta 7 Sin responder aún Puntúa como 1,00 P Marcar pregunta	Sea L un lenguaje y M una L -estructura. Seleccione la opción correcta. Seleccione una: o a. Γ es correcto pero no completo con respecto a M . b. Γ es completo pero no correcto con respecto a M . c. Γ no es correcto ni completo con respecto a M .	
Pregunta 8 Sin responder aŭn Puntúa como 1,00 P Marcar pregunta	Decidir si la siguiente afirmación es verdadera o falsa. Si Γ es un conjunto insatisfacible, entonces existe una fórmula $\alpha \in \Gamma$ tal que $Con(\Gamma) = Con(\alpha)$. Seleccione una: $Con(\Gamma) = \left\{ \begin{array}{c} P_i \\ P_i \end{array} \right\} \text{on Filtal} on F$	
Pregunta 9 Sin responder aún Puntúa como 1,00 V Marcar pregunta	Consideremos el lenguaje L con igualdad y un símbolo de función binario f . Sea la estructura $N=(\mathbb{N},+)$. ¿Cuál de las siguientes fórmulas distingue al elemento 1? (Consideramos $0\in\mathbb{N}$, como corresponde). Seleccione una:	
Pregunta 10 Sin responder aûn Puntûa como 1.00	Decidir si la siguiente afirmación es verdadera o falsa: Existe un conjunto satisfacible y finito Γ tal que el conjunto $\{v \in VAL \mid v \models \Gamma\}$ es finito. Seleccione una: O a. Verdadera (a) b. Falsa Γ fante que existe \Rightarrow for Γ to finite Γ for	

Pregunta 11 Sin responder aun Puntua como 10,00 P Marcar pregunta	Sea $L=\{s,p,=\}$ un lenguaje de primer orden con igualdad, con un símbolo de función unaria s , y un símbolo de relación unario p . Sea $SIP=SQ\cup\{A_1,A_2,A_3\}$, donde: $A_1=\neg\exists x(\forall y(-(s(y)=x)))$ $A_2=\forall x(p(x)\to p(s(x))$ $A_3=\forall x\forall y(s(x)=s(y)\to x=y)$ $A_3=\forall x\forall y(s(x)=s(y)\to x=y)$ $A_3=\forall x\forall y(s(x)=s(y)\to x=y)$ $A_3=\forall x\forall y(s(x)=s(y)\to x=y)$ Sea M una L -estructura, con universo $\mathbb Z$ (el conjunto de los número enteros), donde el símbolo s es interpretado como la función "siguiente", y donde la interpretación de p es "este número es par".	
	Probar SIP es correcto pero no completo con respecto a M . (Puede utilizar el cuadro de texto o adjuntar un archivo con la resolución en pdf. En ese caso, verifique que el archivo se haya adjuntado correctamente.)	