In Sem 2

Computational finance (CS401) Winter 2018

Time: 2hr

- Ito's lemma F(t, S(t)) where $dS = \mu S dt + \sigma S dW$ then $dF = \left(\frac{\partial F}{\partial t} + \mu S \frac{\partial F}{\partial S} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 F}{\partial S^2}\right) dt + \sigma S \frac{\partial F}{\partial S} dW$ • Black Scholes Merton formula for European call $c(x, t) = xN(d_1) - Ke^{-r\tau}N(d_2)$
- Black Scholes Merton formula for European call $c(x,t) = xN(d_1) Ke^{-r\tau}N(d_2)$ $\tau = T - t, \ d_1 = \frac{\log \frac{x}{K} + (r + \frac{\sigma^2}{2})\tau}{\sigma\sqrt{\tau}}, \ d_2 = d_1 - \sigma\sqrt{\tau}$

1. Geometric Brownian motion

A stock follows a GBM. The stock is currently priced 50. Its expected return and volatality are 12% and 30% per annum respectively. What is the probability that the stock will be greater than 80 in two years time?

2. Ito's lemma

Let the stock price be given by $dS = \mu S dt + \sigma S dW$. The price of a forward contract that matures at time T at time t is given by $F(t, S(t)) = S(t)e^{r(T-t)}$. Show using Ito's lemma that the forward contract price also evolves like a geometric motion with parameters $\mu' = \mu - r$ and $\sigma' = \sigma$.

3. Conditional expectation

A miner is trapped in a mine containing 3 doors. The first door leads to a tunnel that will take him to safety after 3 hours of travel. The second door leads to a tunnel that will return him to the mine after 5 hours of travel. The third door leads to a tunnel that will return him to the mine after 7 hours. If we assume that the miner is at all times equally likely to choose any one of the doors, what is the expected length of time until he reaches safety?

4. Martingales

Let $S_n = \sum_{i=1}^n X_i$ be the position of the random walker at time n. Show that $Y_n = S_n^2 - n$ is a martingale with respect to $X_1, X_2, \dots X_n$.

5. Black-Scholes-Merton option formula

a. Show that the probability that the European call option will be exercised is $N(d_2)$. b. A European asset-or-nothing call pays its holder a fixed amount F if the price at expiration is larger than K and pays 0 otherwise. Find the value of the call option that expires in 6 months time and has $F = 100 \ K = 40$ if the present price of the security is 38, its volatality is 32% per annum and the risk free interest rate is 6% per annum.