

Figure 1: DEA $\leadsto M = (\{S_0, ..., S_4\}, \{1, 0\}, \delta, \{S_4\})$

Schritt 1

Der erste Schritt besteht darin, alle Zustände zu entfernen, die nicht errreichbar sind. Folgend wird eine Matrix, wie links dargestellt, aufgebaut. Es werden alle Paare markiert (\star) , die nur einen Endzustand enthalten. Im vorstehenden Fall wären es alle Paare von Zuständen, die den Zustand S_4 enthalten.

Schritt 2

Im Anschluss wird für jedes noch unmarkierte Paar überprüft, ob der Übergang in einen marlierten Zustand führt, also ob für das Paar (x, x') das Paar, welches durch den Übergang entsteht, also $\{\delta(x, a), \delta(x', a)\}$, bereits markiert ist. Wenn dies der Fall ist, wird das Paar ebenfalls markiert.

δ	0	1
$\overline{S_0 S_3}$	$S_1 S_4$	$S_2 S_0$
$S_1 S_3$	$S_4 S_4$	$S_2 S_0$
$S_2 S_3$	$S_1 S_4$	$S_2 S_2$
$S_0 S_2$	$S_1 S_3$	$S_2 S_2$
$S_1 S_2$	$S_4 S_3$	$S_2 S_3$
$S_0 S_1$	$S_1 S_4$	$S_2 S_2$

So lange wiederholen, bis nichts mehr passiert

Schritt 3

Die Übergangstabelle, welche man auch am Graphen (Übergangsdiagramm) erstellen kann, liefert den reduzierten DEA. S_0 und S_2 sowie S_1 und S_3 können jeweils zu einem Zustand verschmolzen werden.

δ	0	1
$S_0 S_3$	$S_1 S_4$	$S_2 S_0$
$S_1 S_3$	$S_4 S_4$	$S_2 S_0$
$S_2 S_3$	$S_1 S_4$	$S_2 S_2$
$S_0 S_2$	$S_1 S_3$	$S_2 S_2$
$S_1 S_2$	$S_4 S_3$	$S_2 S_3$
$S_0 S_1$	$S_1 S_4$	$S_2 S_2$

Endergebnis

Figure 2: minimierter DEA \leadsto $M = (\{S_0, ..., S_4\}, \{1, 0\}, \delta, \{S_4\})$

Basisautomat

Suche nach allen Zustandspaaren, die zu einem Zustand zusammengefasst werden können.

Erstellen einer Zustandspaartabelle (alle Möglichkeiten)

Streichen von Zuständer

- · Zustände müsser nicht mit sich selbst überprüft werden
- O Pagre misser nur in eie Richtung betrachtet werden Candene Richtung gestrichen

Streichen der Paare, die einen Endzustand Chier: () enthalten

Überprüß	ing,	ob Übe	rgang in m	arkie	rter 7	Eusland G	jht +	
Zustandspaar	٥	- Eingabe	Zustandspaar	0	1	Zustandspaar	0	1
(A,B)	(B, G)	(F, ()	(B,6)	(6,6)	(C,E)	(F,6)	((,6)	(6,E)
(A,D)	(B,C)	(F,G)	(B,H)	(6,6)	(c,c)	(F, H)	(c, 6)	(6,0)
(A,E)	(B, H)	(F,F)*	(D,E)	(C,H)	(6,F)	(G,H)	(6,6)	(E,C)
(A,F)	(0, ()	(F, G)	(D,F)	((, ()	(6,6)			
(A,6)	(8,61	(F,E)	(0,6)	((, 6)	(G,E)			
(A, H)	(B,G)	(F,()	(AD, H)	((,6)	(6,0)	Ergibt das Paal	r ein Paar,	welches
(B,D)	(6,0)	(6,6)	(E,F)	(H,C)	(F, 6)	bereits gestri		
(B'E)	(6,H)	(C,F)	(E,6)	(4,6)	(F, E)	auch gestric		
(B, F)	(G,C)	(0,6)	(E, H)	(H, 6)	(F,C)			
→ Der Pro	ozess Zl narkiert kann sein	ur Überpro wird (s übun , dass das E	ifung der Zustand en zur Minimierung) Ergebnis des Zustand Lande ich bei der Bereich, betrachte i Unmarkierte Zus L> Diese könner	dspaare u spaares er Überprüfi ch dieses tände	st später ng des Z Ir die an	markiert wird ustanspaares in dere Richtung (a	n oranger I.h. z(1,2)s	nen
D E G G H Wollman Unminin	kierte Zu Lierbar C		Minimal A,E 0	erter 0 B,H	Autow	D, f		