		T ,
COGNOME	NOME	MATRICOLA
○ Gr. 1 Trombetti R. (A-G)	\bigcirc Gr.	2 Cioffi F. (H-Z)
Risolvere gli esercizi inserend effettuati e fornendo spiegazio NON SI ACCETTANO RISPO	ni chiare ed essenziali.	i predisposti con indicazione dei calcoli

1. Determinare un sistema di equazioni lineari in 4 incognite su \mathbb{R} che abbia tra le sue soluzioni i vettori (1,2,-1,1) e (2,2,0,1).

2. Dato uno spazio vettoriale V finitamente generato su un campo K, dire cosa è la dimensione di V ed esibire uno spazio vettoriale di dimensione 3.

2.	Dimostrare che i seguenti sottoinsiemi	di \mathbb{R}^4	sono	linearmente	indipendenti ϵ	e completarli in	una
bas	se di \mathbb{R}^4 :						

$$S = \{(1, 2, -1, 1), (0, 1, 0, 1), (1, 1, -1, 1)\}$$

$$T = \{(2, 2, 0, 1), (1, 0, 0, 1)\}$$

4. Dire quali tra le seguenti applicazioni è un'applicazione lineare:

 $f_1: \mathbb{R}^2 \to \mathbb{R}^2$ tale che $f_1(x,y) = (2x+y,-y-1)$ $f_2: \mathbb{R}^2 \to \mathbb{R}^3$ tale che $f_2(x,y) = (2x-3y,x+y,x-y)$ $f_3: \mathbb{R}^3 \to \mathbb{R}^2$ tale che $f_3(x,y,z) = (xy,y-x)$

5. Dire cosa è il rango di una matrice reale ed esibire una matrice di tipo 3×4 che abbia rango 2.

- **6.** Si consideri l'applicazione $g:(x,y,z)\in\mathbb{R}^3\to(x+2y,x-z)\in\mathbb{R}^2$.
 - (i) Determinare una base del nucleo e una base dell'immagine di g.
 - (ii) Determinare la matrice associata a g nei riferimenti $\mathcal{B} = ((1,0,0),(0,1,0),(0,0,1))$ di \mathbb{R}^3 e $\mathcal{B}' = ((1,1),(0,-1))$ di \mathbb{R}^2 .

- **7.** Data la matrice $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 2 & 0 \end{pmatrix}$,
 - (i) calcolare autovalori ed autospazi di A;
 - (ii) dire se A è diagonalizzabile e in caso di risposta positiva esibire una base di \mathbb{R}^3 costituita da autovettori.

8. Fissato nel piano della geometria elementare un riferimento cartesiano monometrico ortogonale, determinare la retta r passante per i punti A(1,-1) e B(-2,1) e determinare un punto C tale che il triangolo ABC sia rettangolo in B.

- **9.** Fissato nello spazio della geometria elementare un riferimento cartesiano monometrico ortogonale, si considerino le rette r: $\begin{cases} x-y=0\\ x+y-z=-2 \end{cases}$ e s:(x,y,z)=(1,-1,1)+t(1,0,1) e il punto A(0,1,1).
 - (i) Determinare il piano parallelo a r e a s e passante per il punto A.
 - (ii) Determinare il piano π ortogonale s e passante per il punto A.
 - (iii) Determinare una sfera tangente nel punto A al piano π precedentemente determinato.