An Analysis of Clustering Algorithms

Matt Bailey Neeraj Rajesh John Roush Matthew Sinda

Agenda

- Introduction
- Objective
- Clustering Algorithms
 - Overview
 - Algorithm Implementation
- Testing Framework
- Results
- Conclusion

Introduction

- Data has grown at an explosive rate
 - 2007 saw 295 exabytes of digital data
 - 2013 saw 1,200 exabytes of digital data
 - Average of 35 petabytes per day
- Presents a challenge not only in efficient storage, but perhaps more importantly, how to efficiently process the data

Introduction

Data Mining – helps solve the problem of analyzing the wealth of data

Data mining results from a natural evolution of data storage and analysis, and it comprises of combination of statistical and technological methods for learning about data and then making predictions based on what was learned¹.

^{1.} Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Techniques. Elsevier, Amsterdam, third edition, 2012.

Objective

- Can we arbitrarily pick a clustering algorithm and use it on a data set?
- Our project looks at four clustering algorithms to see how they compare to one another
 - Which algorithms work with which types of data set
 - When to use each algorithm
- Characteristics that will be compared are:
 - Overall Performance
 - CPU usage/run time
 - Memory usage
 - Accuracy

Clustering Algorithm Background

- Clustering involves grouping data objects based on some similarity metric
 - Numeric attributes and numeric similarity measure
 - For consistency, Euclidean distance is used as the similarity measure

$$d(p,q) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2}$$

Other measures could be used

Clustering Algorithm Background

- 3 types of clustering algorithms
 - Distance-Based
 - Multiple centers closest wins
 - Density-Based
 - Similar objects form densely-packed "neighborhoods"
 - Probabilistic-Based
 - Every object belongs to every cluster with some probability highest value wins

K-Means Algorithm

- Centroid-based algorithm:
 - Assigns data to the nearest cluster
 - Calculates new centers from the mean of each cluster
 - Iterates until centers stop changing
- Trade-offs:
 - Very simple to implement
 - Good performance characteristics: O(n) runtime and memory usage
 - Performance is sensitive to initial choice of cluster centers
 - Choosing the number and location of initial centers is difficult
 - Sensitive to outliers
 - Works best for compact, convex clusters

K-Medoids Algorithm

- Also centroid-based
 - Distance-based
 - Center is an object that is most representative for each cluster
- Algorithm Implementation
 - K-Medoids implemented from the PAM (Partitioning Around Medoids) algorithm
 - Tries to find one object per cluster that most accurately represents all of the data objects in a cluster
 - Greedy Method chooses the object with the lowest cost as determined by the similarity measure
 - Efficiency is determined by desired accuracy
 - Algorithm must check each object against all other objects
 - Number of objects to check is defined by the programmer
 - Actual implementation runs in O(n²)

DBSCAN Algorithm

- Density-based algorithm
 - Clusters together all data objects which are density-connected
 - Density is defined over a fixed-radius "ε-neighborhood"
- Trade-offs
 - Can determine number of clusters automatically
 - Handles non-convex or non-compact clusters
 - Calculates distance between pairs of objects rather than object-to-cluster
 - Potentially requires $O(n^2)$ runtime
 - \blacksquare Can be $O(n \log n)$, but very complex to implement
 - Density and neighborhood radius must be given a priori
 - Fails if clusters do not have consistent density

Fuzzy C-Means Algorithm

- Probabilistic Model-Based
 - C-Means or Fuzzy Cluster
 - Assign data points to a cluster based on some degree of membership
 - Points can belong to a cluster to some degree but also to other clusters to a lesser degree
- Algorithm Implementation
 - C-Means or Fuzzy Cluster implemented from the EM (Expectation-Maximization) algorithm
 - Starts with randomly-selected objects as potential centers and then iteratively works through new centers in two steps
 - Expectation Calculates distance to each of the potential centers, and their degree of membership
 - Maximization Recalculates the new centers based off optimal centers
 - Runs until there is no more changes
 - Potential for algorithm never to converge due to floating point inaccuracies inherent in all CPUs
 - Actual implementation stopped when the change between values was sufficiently small enough
 - Determined to be 0.000001
 - Run time is O(n)

Implementation

- All clustering algorithms implemented in Java
 - Easy to use, familiar
 - Performance is comparable to C/C++ (if used carefully!)
 - Challenging to get accurate performance measurements
- Pseudo-random data generator, also in Java
 - Generates clusters in various shapes and configurations
 - Random background noise or other complications
 - Provides "ground-truth" information for evaluating correctness

Evaluating Performance

- Run-time performance:
 - Measured with the JVM internal clock (microsecond resolution)
 - Averaging over many iterations to smooth out GC pauses, etc.
- Memory usage:
 - Difficult by design to monitor true memory usage of the JVM
 - Cheated by using Java Instrumentation Agent and reflection
 - Measurements are approximate
 - Requires unusual coding style

Evaluating Cluster Quality

- Intrinsic Methods compare to ground truth
 - BCubed Precision: fraction of objects in a cluster that truly belong together
 - BCubed Recall: fraction of objects belonging together that end up clustered together
- Extrinsic Methods absolute quality metrics
 - Compactness: average distance between objects in the same cluster
 - Separation: average distance between objects and the nearest foreign cluster
 - Silhouette coefficient: the difference between Separation and Compactness

- Given the data sets that we ran the algorithms against, it appears that:
 - DBSCAN was the most accurate; K-Medoids being the least accurate
 - Based on Clusters
 - K-Means used the least memory
 - DBSCAN ran the quickest
 - Based on Number of Attributes
 - C-Means had a spike but overall, the lowest run time
 - DBSCAN used the least memory
 - Based on Number of Tuples
 - K-Means ran the quickest
 - K-Means used the least Memory

Clusters - Generated Data

Clusters - KMeans

Clusters - CMeans

Clusters - kMedoids

Clusters - DBSCAN

Attribute Count

Attribute Count

Tuple Count

Tuple Count

Conclusion

- Due to differences in algorithm properties, it's difficult to say which is best
 - "Best" based off
 - Different data sets
 - Number of attributes
 - Easy to create a data set that an algorithm will NOT be good at

References

- •Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Techniques. Elsevier, Amsterdam, third edition, 2012.
- •Martin Hilbert and Priscila Lopez. The World's Technological Capacity to Store, Communicate, and Compute Information. Science, 332(6025):60-65, April 2011.
- •H. V. Jagadish, Johannes Gehrke, Alexandros Labrinidis, Yannis Papakonstantinou, Jignesh M. Patel, Raghu Ramakrishnan, and Cyrus Shahabi. Big data and its technical challenges. Com mun. ACM, 57(7):86-94, July 2014.
- •Juha Lehikoinen and Ville Koistinen. In big data we trust? Interactions, 21(5):38-41, September 2014.

Questions?