지도 학습과 비지도 학습

- · supervised learning, unsupervised learning
- 비지도 학습: 데이터의 라벨 없이 학습하는거(response/dependent variable X 없음) 데이터셋을 이해하기 위한 정보 추출 변수들이 가지는 관계 분석
- 1. reduce the dimension. 데이터의 차원 감소. 차원이 감소된 데이터를 학습용 데이터로 사용할 수 있음 변수들 간 함의를 담은 소수의 변수를 사용하는 것이 더 도움이 될 수도 있음 어떤 변수들이 주요하고. 변수 통합 시 어떤 의미를 가지는지 새로 해석할 수 있음(교재. 289~291)
- 2. Clustering. 군집화 유사한 데이터끼리 묶어 의미있는 그룹을 만드는 거 그룹 내 유사점과 각 그룹을 구분하는 기준은 어떤지 확인할 수 있음

PCA(; Principal Components Analysis)

- 고차원의 데이터를 저차원의 데이터로 환원시키는 방법(numeric 데이터에서만 가능, categorical x)
- multiple numeric predictor variable들을 조합하여 비교적 적은 개수의 주요한 변수(principal component)들
 의 조합으로 만드는 것
- 기존의 전체 독립변수들의 변동성(variability)을 얼마나 잘 설명할 수 있는가를 기준으로, principal component의 중요성을 평가함
- principal component는 기존 변수들의 weighted linear combination이며. 이때 각 변수들의 계수(weight)를 통해 주성분에 대한 변수의 기여도를 확인할 수 있음
 변수들이 만드는 공분산 행렬(covariance matrix)의 고유값(eigen value)과 고유벡터(eigen vector)를 통해 설명도와 계수를 계산함

주성분 개수 결정

- 기존 변수들의 분산에 대해, 주성분이 설명할 수 있는 비율(cumulative variance)이 threshold(80% 등)를 넘을 때
- 주성분의 설명도를 나타내는 scree plot을 그려 의미있어보이는 주성분만 사용

correnpondence analysis(교재, 292)

- 범주형 자료형 사이의 관계를 분석하는 방법
- 차원 스케일링을 위해 행렬 대수를 사용한다는 점에서 PCA와 공통점을 가짐
- 주로 저차원 카테고리 데이터의 시각화를 위해 사용 PCA처럼 빅데이터 분석을 위한 변수 차원 축소용으로는 사용하지 않음

In []:

PCA 모델 사용 및 시각화

In [22]:

import pandas as pd

In [23]:

```
# 데이터 읽기
iris = pd.read_csv('iris.csv')
iris.head()
```

Out[23]:

	sepal.length	sepal.width	petal.length	petal.width	variety
0	5.1	3.5	1.4	0.2	Setosa
1	4.9	3.0	1.4	0.2	Setosa
2	4.7	3.2	1.3	0.2	Setosa
3	4.6	3.1	1.5	0.2	Setosa
4	5.0	3.6	1.4	0.2	Setosa

In [26]:

```
from sklearn.preprocessing import StandardScaler
```

In [30]:

```
# 전처리. 변수 값의 크기의 설명력에 영향을 미치는 것을 막기 위해 사용
columns = list(iris.columns)
x_iris = iris[columns[:-1]]
y_iris = iris[columns[-1]]
sc_iris = StandardScaler()
x_iris_sc = sc_iris.fit_transform(x_iris)
x_iris_sc[:5, :]
```

Out [30]:

In [31]:

```
from sklearn.decomposition import PCA
```

In [32]:

```
# 주성분 분석
pca = PCA(n_components=4)
pca.fit(x_iris_sc)
```

Out [32]:

PCA(n_components=4)

In [34]:

```
# 기존 데이터셋이 주성분으로는 어떻게 표현되는지 확인
p_component = pca.transform(x_iris_sc)
pd.DataFrame(data = p_component).head()
```

Out[34]:

	0	1	2	3
0	-2.264703	0.480027	-0.127706	-0.024168
1	-2.080961	-0.674134	-0.234609	-0.103007
2	-2.364229	-0.341908	0.044201	-0.028377
3	-2.299384	-0.597395	0.091290	0.065956
4	-2.389842	0.646835	0.015738	0.035923

In [36]:

```
# 주성분이, 기존 변수들로 어떻게 표현되는지 확인
pd.DataFrame(pca.components_, columns=columns[:-1])
# 1 주성분 = 0.521 X1 - 0.269 X2 + 0.58 X3 + 0.56 X4
```

Out [36]:

	sepal.length	sepal.width	petal.length	petal.width
0	0.521066	-0.269347	0.580413	0.564857
1	0.377418	0.923296	0.024492	0.066942
2	-0.719566	0.244382	0.142126	0.634273
3	-0.261286	0.123510	0.801449	-0.523597

In []:

In [55]:

```
# 공분산과 고유벡터, 고유값으로 PCA 인자 확인하기
covariance_matrix = np.cov([x_iris_sc[:, 0], x_iris_sc[:, 1], x_iris_sc[:, 2], x_iris_sc[:, 3]])
covariance_matrix
```

Out [55]:

In [57]:

```
value, vector = np.linalg.eig(covariance_matrix)
```

In [58]:

```
value[0] / sum(value)
```

Out [58]:

0.7296244541329988

In []:

In [47]:

```
loading = pd.DataFrame(pca.components_, columns=columns[:-1])
```

In [54]:

```
maxPC = 1.05 * np.max(np.abs(loading.values))
fig, axes = plt.subplots(4, 1, figsize=(3, 5), sharex=True)
for i, ax in enumerate(axes):
    pc_loading = loading.iloc[i]
    colors = ['CO' if j > 0 else 'C1' for j in pc_loading]
    ax.axhline(color='#888888')
    pc_loading.plot.bar(ax=ax, color=colors)
    ax.set_ylabel(f'PC{i+1}')
    ax.set_ylim(-maxPC, maxPC)
```


In [38]:

주성분 개수 선택 pca.explained_variance_ratio_

Out[38]:

array([0.72962445, 0.22850762, 0.03668922, 0.00517871])

In [39]:

import numpy as np

In [41]:

import matplotlib.pyplot as plt

In [42]:

```
pd.Series(np.cumsum(pca.explained_variance_ratio_)).plot()
plt.show()
```


In [46]:

pd.DataFrame(data=pca.explained_variance_ratio_).plot.bar(legend=False)
plt.show()

In []:

In [61]:

```
pca_df = pd.DataFrame(data = p_component)
pca_df['variety'] = iris['variety']
pca_df.head()
```

Out[61]:

	0	1	2	3	variety
0	-2.264703	0.480027	-0.127706	-0.024168	Setosa
1	-2.080961	-0.674134	-0.234609	-0.103007	Setosa
2	-2.364229	-0.341908	0.044201	-0.028377	Setosa
3	-2.299384	-0.597395	0.091290	0.065956	Setosa
4	-2.389842	0.646835	0.015738	0.035923	Setosa

In [69]:

K-Means Clustering

- clustering: 비슷한 성질을 가진 그룹들로 데이터를 분류하는 기술 유의미한 데이터 그룹을 식별하는 것이 목표
- k-means: 대규모 데이터셋에서도 잘 동작하고, 단순한 알고리즘을 가지고 있어 초기 clustering method임에 도 널리 사용되고 있음

데이터의 within-cluster SS 전체 합이 최소가 되는 k개의 군집으로 나눔

• within-cluster SS: 어떤 군집을 구성하는 인스턴스와 군집 평균과의 거리의 제곱 합 (거리 계산에 영향을 줄이기 위해 표준화 처리)

k의 수 정하기

- 경험적 방법(rule of thumb): 데이터의 수가 n개라면 k = np.sqrt(n/2)로 설정
- Elbow method: k의 수를 하나씩 늘리면서 모니터링하여, 적절한 k의 수 결정 (주관적일 수 있음) 등

k-means 알고리즘

- 1) k개의 데이터를 추출하여 각 클러스터 중심(centroid)으로 선택
- 2) 각 인스턴스와 centroid를 사이 거리를 계산하여, 인스턴스를 가까운 클러스터에 할당
- 3) 2에서 재할당된 클러스터를 기준으로 centroid 다시 계산
- 4) 2~3을 클러스터에 데이터가 추가되지 않거나 centroid가 변화하지 않을 때까지 반복

sklearn에서 초기 k개의 centroid를 선택하는 방법

- k-means++(default): 데이터 연산을 통해, 학습 수렴을 빠르게 할 수 있는 초기 centroid k개 설정
- random: 데이터 중 랜덤으로 k개 선정
- 사용자 지정: 초기 centroid k개를 사용자가 지정함

In []:

k-means 모델 사용 및 시각화

In [71]:

```
# 데이터 전처리(스케일링)

purchase = pd.read_csv('purchase.csv')

x = purchase[['Age', 'EstimatedSalary']]

sc_purchase = StandardScaler()

x_sc = sc_purchase.fit_transform(x)
```

In [76]:

```
from sklearn.cluster import KMeans

plt.figure(figsize=(12, 12))

for k in range(1, 7):
    km = KMeans(n_clusters=k)
    km.fit(x_sc)
    ids = km.predict(x_sc)

plt.subplot(3, 2, k)
    plt.tight_layout()

plt.title(f'k value = {k}')
    plt.xlabel('age')
    plt.ylabel('salary')

plt.scatter(x_sc[:, 0], x_sc[:, 1], c=ids)
plt.show()
```

C:\Users\user\underchanaconda3\underchenvs\underchenv_temp\underchenv|lib\underchenv|site-packages\underchenv|sklearn\underchenv|cluster\underchenv_kmeans.py:1 036: User\undercharning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=2.

warnings.warn(

In [88]:

```
# k=2일 LH kmeans

km_2 = KMeans(n_clusters=2)

km_2.fit(x_sc)

km_df_2 = purchase.copy()

ids = km_2.predict(x_sc)

km_df_2['cluster'] = ids

km_df_2.head()
```

Out[88]:

	User ID	Gender	Age	EstimatedSalary	Purchased	cluster
0	15624510	Male	19	19000	0	0
1	15810944	Male	35	20000	0	0
2	15668575	Female	26	43000	0	0
3	15603246	Female	27	57000	0	0
4	15804002	Male	19	76000	0	0

In [89]:

```
# 정확도 계산
print(sum(km_df_2['Purchased'] == km_df_2['cluster']) / len(km_df_2))
```

0.8225

In [90]:

```
# k=6일 때 kmeans
km_6 = KMeans(n_clusters=6)
km_6.fit(x_sc)
km_df_6 = purchase.copy()
ids = km_6.predict(x_sc)
km_df_6['cluster'] = ids
km_df_6.head()
```

Out [90]:

	User ID	Gender	Age	EstimatedSalary	Purchased	cluster
0	15624510	Male	19	19000	0	5
1	15810944	Male	35	20000	0	5
2	15668575	Female	26	43000	0	5
3	15603246	Female	27	57000	0	1
4	15804002	Male	19	76000	0	1

In [96]:

```
fig, ax = plt.subplots(1, 2, figsize=(8, 4))
km_df_6.boxplot(column = 'Age', by='cluster', ax=ax[0])
km_df_6.boxplot(column = 'EstimatedSalary', by='cluster', ax=ax[1])
```

Out [96]:

<AxesSubplot:title={'center':'EstimatedSalary'}, xlabel='cluster'>

In [118]:

```
# 사람의 나이와 연봉이 - 구매 선택과 관련이 있을지. 데이터분석

for i in range(6):
    n = len(km_df_6.groupby('cluster').get_group(i))
    n_1 = sum(km_df_6.groupby('cluster').get_group(i)['Purchased'] == 1)
    n_0 = sum(km_df_6.groupby('cluster').get_group(i)['Purchased'] == 0)
    print(f'{i} 군집: 총인원={n}, 구매한 사람 수={n_1}, 구매하지 않은 사람 수={n_0}')
```

```
0 군집: 총인원=46, 구매한 사람 수=41, 구매하지 않은 사람 수=5
1 군집: 총인원=72, 구매한 사람 수=1, 구매하지 않은 사람 수=71
2 군집: 총인원=119, 구매한 사람 수=15, 구매하지 않은 사람 수=104
3 군집: 총인원=45, 구매한 사람 수=37, 구매하지 않은 사람 수=8
4 군집: 총인원=57, 구매한 사람 수=49, 구매하지 않은 사람 수=8
5 군집: 총인원=61, 구매한 사람 수=0, 구매하지 않은 사람 수=61
```

In [120]:

Out[120]:

(0.0, 277.57960865225056)

In [137]:

```
# kmeans 사용하여 예측
# test할 때도, train에서 했던 변형을 똑같이 적용해줘야 함!!
person = [[20, 19000]]
person_sc = sc_purchase.transform(person)
km_2.predict(person_sc)
```

C:\Users\user\unders\un

Out[137]:

arrav([0])

Hierarchical Clustering

- agglomerative algorithm: 모든 인스턴스 각각을 하나의 cluster로 두고, cluster 간 dissimilarity를 측정하여 가장 덜 다른 군집끼리 결합하는 알고리즘
- 두 집단 사이의 거리를 구하는 방식
 - complete linkage: 두 집단의 요소가 이룰 수 있는 모든 순서쌍 사이의 거리 중 최대값
 - single linkage: 두 집단의 요소가 이룰 수 있는 모든 순서쌍 사이의 거리 중 최소값

$$D(A, B) = \min d(a_i, b_j)$$
 for all pairs i, j

- average linkage: 두 집단의 요소가 이룰 수 있는 모든 순서쌍 사이의 거리의 평균
- minimum variance(Wald): 두 집단을 합쳤을 때 within-cluster SS

In []:

hierarchical clustering 모델 사용 및 시각화

In [122]:

sample = purchase.sample(20)

In [123]:

sample

Out[123]:

	User ID	Gender	Age	EstimatedSalary	Purchased
329	15639576	Female	47	107000	1
269	15583137	Male	40	61000	0
214	15622478	Male	47	43000	0
24	15705113	Male	46	23000	1
36	15690188	Female	33	28000	0
394	15757632	Female	39	59000	0
399	15594041	Female	49	36000	1
161	15670619	Male	25	90000	0
298	15675791	Male	45	79000	0
5	15728773	Male	27	58000	0
142	15617134	Male	35	59000	0
389	15668521	Female	48	35000	1
236	15660541	Male	40	57000	0
181	15774727	Female	31	71000	0
361	15778830	Female	53	34000	1
201	15708196	Male	49	74000	0
364	15654456	Male	42	104000	1
396	15706071	Male	51	23000	1
248	15730688	Male	41	52000	0
367	15671249	Male	46	88000	1

In [126]:

```
sample_x = sample[['Age', 'EstimatedSalary']]
sample_x_sc = sc_purchase.transform(sample_x)
```

In [127]:

from scipy.cluster.hierarchy import linkage, dendrogram

In [128]:

```
Z = linkage(sample_x_sc)
```

In [129]:

In [130]:

```
sample['User ID'] = range(len(sample_x_sc))
sample
```

Out[130]:

	User ID	Gender	Age	EstimatedSalary	Purchased
329	0	Female	47	107000	1
269	1	Male	40	61000	0
214	2	Male	47	43000	0
24	3	Male	46	23000	1
36	4	Female	33	28000	0
394	5	Female	39	59000	0
399	6	Female	49	36000	1
161	7	Male	25	90000	0
298	8	Male	45	79000	0
5	9	Male	27	58000	0
142	10	Male	35	59000	0
389	11	Female	48	35000	1
236	12	Male	40	57000	0
181	13	Female	31	71000	0
361	14	Female	53	34000	1
201	15	Male	49	74000	0
364	16	Male	42	104000	1
396	17	Male	51	23000	1
248	18	Male	41	52000	0
367	19	Male	46	88000	1

In [131]:

from sklearn.cluster import AgglomerativeClustering

In [132]:

```
clustering = AgglomerativeClustering().fit(sample_x_sc)
clustering.labels_
```

Out[132]:

```
array([0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0], dtype=int64)
```

In [133]:

```
sample['cluster'] = clustering.labels_
sample
```

Out[133]:

	User ID	Gender	Age	EstimatedSalary	Purchased	cluster
329	0	Female	47	107000	1	0
269	1	Male	40	61000	0	0
214	2	Male	47	43000	0	1
24	3	Male	46	23000	1	1
36	4	Female	33	28000	0	0
394	5	Female	39	59000	0	0
399	6	Female	49	36000	1	1
161	7	Male	25	90000	0	0
298	8	Male	45	79000	0	0
5	9	Male	27	58000	0	0
142	10	Male	35	59000	0	0
389	11	Female	48	35000	1	1
236	12	Male	40	57000	0	0
181	13	Female	31	71000	0	0
361	14	Female	53	34000	1	1
201	15	Male	49	74000	0	0
364	16	Male	42	104000	1	0
396	17	Male	51	23000	1	1
248	18	Male	41	52000	0	0
367	19	Male	46	88000	1	0

In [134]:

```
print(sum(sample['Purchased'] == sample['cluster']) / len(sample))
```

0.8