Probability Final

2017-04-24

- Uniform distribution: $f(x) = rac{1}{b-a}$, $x \in [a,b]$
 - \circ CDF: $F(x) = \frac{x-a}{b-a}$
 - \circ MGF: $M(t) = \frac{e^{tb} e^{ta}}{t(b-a)}$
 - Median: $\frac{1}{2}(a+b)$
 - Mean: $\frac{1}{2}(a+b)$
 - Parameters: **a**, **b**
 - Variance: $\frac{1}{12}(b-a)^2$
 - Function in Python: scipy.stats.uniform
- Exponential distribution: $f(x) = heta^{-1} \exp(-rac{x}{ heta})$, $x \in [0,\infty)$
 - \circ CDF: $F(x) = 1 \exp(-\frac{x}{\theta})$
 - MGF: $M(t) = (1 \theta t)^{-1}$, for $t < \theta^{-1}$
 - Median: $\theta \ln(2)$
 - Mean: θ
 - Variance: θ^2
 - Function in Python: scipy.stats.expon
 - Parameters: $\boldsymbol{\theta}$ (scale)
 - Literal: the time needed to observe the first occurrence.
 - Versus geometric distribution: the number of trials needed to observe the first occurrence.
 - The failure rate is constant.
 - A special case of *gamma distribution* whose $\alpha = 1$
- Gamma distribution: $f(x) = \Gamma(lpha)^{-1} heta^{-lpha} x^{lpha-1} \exp(-rac{x}{ heta})$, $x \in [0,\infty)$
 - \circ CDF: $F(x) = \Gamma(lpha)^{-1} \gamma(lpha, x/ heta)$
 - \circ MGF: $M(t) = (1- heta t)^{-lpha}$ for $t < heta^{-1}$
 - Median: -
 - Mean: $\alpha\theta$
 - Variance: $\alpha \theta^2$
 - Function in Python: scipy.stats.gamma
 - Parameters: α (shape), θ (scale)

- Literal: the time needed to observe the α -th occurrence.
- Versus *negative binomial distribution*: the number of trials needed to observe the α -th occurrence.
- Gamma function: $\Gamma(\alpha) = \int_0^\infty t^{\alpha-1} e^{-t} dt$, also called **generalized factorial**. If α is a positive integer, then $\Gamma(\alpha) = (\alpha 1)!$
- $\circ~$ Lower incomplete gamma function: $\gamma(lpha,eta)=\int_0^{eta}t^{lpha-1}e^{-t}dt$
- Chi-square distribution: $f(x)=\Gamma(rac{d}{2})^{-1}2^{-rac{d}{2}}x^{rac{d}{2}-1}\exp(-rac{x}{2})$, $x\in[0,\infty)$
 - \circ CDF: $F(x) = \Gamma(rac{d}{2})^{-1} \gamma(rac{d}{2},rac{x}{2})$
 - $\circ \;\; ext{MGF:} \, M(t) = (1-2t)^{-rac{d}{2}}$, for $t < rac{1}{2}$
 - Median: -
 - Mean: *d*
 - Variance: **2***d*
 - Function in Python: scipy.stats.chi2
 - Parameters: **d** (degree of freedom)
 - A special case of *gamma distribution* whose $\alpha = \frac{d}{2}$, $\theta = 2$
- Normal distribution: $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{1}{2}(\frac{x-\mu}{\sigma})^2)$. $x \in (-\infty,\infty)$
 - CDF: -
 - MGF: $M(t) = \exp(\mu t + \frac{1}{2}\sigma^2 t^2)$
 - Median: μ
 - Mean: μ
 - Variance: σ^2
 - Function in Python: scipy.stats.norm
 - Parameters: μ (mean), σ^2 (variance)

2017-05-08

• Relationship between normal and chi-square distribution: Given a normal distribution

$$X\sim N(\mu,\sigma^2)$$
 . Then, $Z=rac{X-\mu}{\sigma}\sim N(0,1)$, and $Z^2=(rac{X-\mu}{\sigma})^2\sim \chi^2(1)$.

• Proof of $Z^2 = (\frac{X-\mu}{\sigma})^2 \sim \chi^2(1)$:

$$F(x)=P(Z^2\leq x)=P(|Z|\leq \sqrt{x})=2\cdot\int_{i=0}^{\sqrt{x}}rac{1}{\sqrt{2\pi}}\mathrm{exp}(-rac{z^2}{2})\mathrm{d}z$$

$$f(x) = F'(x) = rac{1}{\sqrt{2\pi}} \exp(-rac{x^2}{2}) rac{1}{\sqrt{x}} = \Gamma(rac{1}{2})^{-1} \gamma(rac{1}{2},rac{x}{2}) = \chi^2(1)$$

- Log normal distribution: $f(x)=rac{1}{x\sigma\sqrt{2\pi}}\exp(-rac{1}{2}(rac{\ln x-\mu}{\sigma})^2)$. $x\in(0,\infty)$
 - \circ CDF: $\Phi(\ln x \mu)$
 - MGF: -

- Median: μ
- Mean: $\exp(\mu + \frac{1}{2}\sigma^2)$
- Variance: $(\exp(\sigma^2) 1) \exp(2\mu + \sigma^2)$
- Literal: $\ln(X) \sim N(\mu, \sigma^2)$
- Bivariate distribution of the discrete type:
 - $\circ~$ Joint probability mass function: f(x,y)=P(X=x,Y=y)
 - \circ Marginal probability mass function of X: $P(X=x)=f_X(x)=\sum_y f(x,y)$
 - o Marginal probability mass function of Y: $P(Y=y)=f_Y(y)=\sum_x f(x,y)$
 - $\circ \; X$ and Y are **independent** random variables iff P(X=x,Y=y)=P(X=x)P(Y=y)
 - $\circ \ E[u(X,Y)] = \sum \sum_{(x,y) \in S} u(x,y) f(x,y)$
 - $\circ~$ Covariance: $\sigma_{XY} = E[(X-\mu_X)(Y-\mu_Y)] = E(XY) \mu_X \mu_Y$
 - Correlation coefficient: $\rho = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$
 - $\circ~$ Least squares regression line: $y-\mu_Y=
 horac{\sigma_Y}{\sigma_X}(x-\mu_X)$
 - \circ Conditional probability mass function of X: $f(x|y) = f(x,y)/f_Y(y)$
 - $\circ~$ Conditional probability mass function of Y: $f(y|x)=f(x,y)/f_X(x)$
 - $\circ \;\;$ Conditional mean of X given Y=y: $\mu_{X|y}=E[X|y]=\sum_x xf(x|y)$
 - \circ Conditional mean of Y given X=x: $\mu_{Y|x}=E[Y|x]=\sum_y yf(y|x)$
 - Conditional variance of X given Y = y:

$$\sigma_{X|y}^2 = E[(X - \mu_{X|y})^2|y] = \sum_x (x - \mu_{X|y})^2 f(x|y) = E[X^2|y] - (\mu_{X|y})^2$$

• Conditional variance of Y given X = x:

$$\sigma_{Y|x}^2 = E[(Y - \mu_{Y|x})^2 | x] = \sum_y (y - \mu_{Y|x})^2 f(y|x) = E[Y^2 | x] - (\mu_{Y|x})^2$$

2017-05-15

- Bivariate distribution of the continuous type: the same concept as the discrete type.
- Bivariate normal distribution:
 - \circ Conditional mean of Y given X=x: $\mu_{Y|x}-\mu_Y=
 horac{\sigma_Y}{\sigma_X}(x-\mu_X)$
 - \circ Conditional variance of Y given X=x: $\sigma_{Y|x}^2=\sigma_Y^2(1ho^2)$
- Independent v.s. Uncorrelated
 - For any distribution: independent → uncorrelated
 - For normal distribution: independent ↔ uncorrelated
- Multivariate normal distribution: $(2\pi)^{-\frac{1}{2}k}|\Sigma|^{-\frac{1}{2}}\exp(-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu))$
- [x] Homework: 4.1-8, 4.2-3, 4.3-7, 4.4-16, 4.5-10
- Solutions: <u>hw4_b00401062.pdf</u>

2017-05-22

- Let X have a PDF that is f(x), and Y=u(x) be a function of X. The PDF of Y is $g(y)=f(u^{-1}(y))|(u^{-1})'(y)|.$
- Let Y have a distribution that is U(0,1), and F(x) be a cdf and strictly increasing on the support a < x < b. Then the random variable X defined by $X = F^{-1}(Y)$ is a continuous-type random variable with cdf F(x).
- Let X have the cdf F(x) of the continuous type that is strictly increasing on the support a < x < b. Then the random variable Y, defined by Y = F(X), has a distribution that is U(0,1).
- Given X_1 and X_2 have a joint PDF that is $f_X(x_1, x_2)$, and $Y_1 = u_1(X_1, X_2)$, $Y_2 = u_2(X_1, X_2)$. The joint PDF of Y_1 and Y_2 is $f_Y(y_1, y_2) = f_X[u_1^{-1}(y_1, y_2), u_2^{-1}(y_1, y_2)]|J|$.
- $\bullet \quad \text{Jacobian matrix } \boldsymbol{J} \text{ is } \begin{bmatrix} \frac{\partial u_1^{-1}}{\partial y_1} & \frac{\partial u_1^{-1}}{\partial y_2} \\ \frac{\partial u_2^{-1}}{\partial y_1} & \frac{\partial u_2^{-1}}{\partial y_2} \end{bmatrix}$
- The mean of a random sample $\overline{X} = \sum_{i=1}^n X_i/n$ from a distribution with mean μ and variance σ^2 :
 - Mean of \overline{X} : μ
 - Variance of \overline{X} : σ^2/n
- If X_1, X_2, \ldots, X_n are n observations of a random sample from a population, then
 - \circ Sample mean: $\overline{X} = \sum_{i=1}^n X_i/n$
 - Sample variance: $S^2 = \sum_{i=1}^n (X_i \overline{X})^2/(n-1)$

2017-05-29

- Laplace distribution: $f(x; heta) = rac{1}{2} heta^{-1} \exp(-rac{|x|}{ heta}), x \in (-\infty, \infty)$
- Beta distribution:

$$f(x;\alpha,\beta) = \Gamma(\alpha+\beta)\Gamma(\alpha)^{-1}\Gamma(\beta)^{-1}x^{\alpha-1}(1-x)^{\beta-1} = \mathrm{B}(\alpha,\beta)x^{\alpha-1}(1-x)^{\beta-1}, x \in [0,1]$$

- $\bullet \ \ \text{F distribution:} \ f(x;d_1,d_2) = \mathrm{B}(\tfrac{d_1}{2},\tfrac{d_1}{2})^{-1}(\tfrac{d_1}{d_2})^{\frac{d_1}{2}}(1+\tfrac{d_1}{d_2}x)^{-\frac{d_1+d_2}{2}}x^{\frac{d_1}{2}-1}, x \in [0,\infty)$
- If X_1, X_2, \ldots, X_n are independent random variables with respective moment-generating functions $M_{X_i}(t)$, $i=1,2,3,\ldots,n$, then the moment-generating function of $Y=\sum_{i=1}^n c_i X_i$ is $M_Y(t)=\prod_{i=1}^n M_{X_i}(c_i t)$
- If X_1 and X_2 are two independent $\operatorname{Exponential}(\theta)$, then $X_1 X_2 \sim \operatorname{Laplace}(\theta)$.
- If $X_1 \sim \operatorname{Gamma}(\alpha, \theta)$ and $X_2 \sim \operatorname{Gamma}(\beta, \theta)$ are independent, then $\frac{X_1}{X_1 + X_2} \sim \operatorname{Beta}(\alpha, \beta)$
- ullet If $X_1\sim \chi^2(d_1)$ and $X_2\sim \chi^2(d_2)$ are independent, then $rac{X_1/d_1}{X_2/d_2}\sim F(d_1,d_2)$
- If $Z\sim N(0,1)$ and $U\sim \chi^2(d)$ are independent, then $\frac{Z}{\sqrt{U/d}}=rac{\overline{X}-\mu}{S/\sqrt{n}}\sim T(d)$, where d=n-1

- If X_1, X_2, \ldots, X_n are n independent $\operatorname{Bernoulli}(p)$, then $\sum_{i=1}^n X_i \sim \operatorname{Binomial}(n,p)$
- If X_1, X_2, \ldots, X_n are n independent $\operatorname{Geometric}(p)$, then $\sum_{i=1}^n X_i \sim \operatorname{Negative\ Binomial}(n,p)$
- If X_1, X_2, \ldots, X_n are n independent $\operatorname{Exponential}(\theta)$, then $\sum_{i=1}^n X_i \sim \operatorname{Gamma}(n, \theta)$
- ullet If $X_1\sim \chi^2(d_1)$, $X_2\sim \chi^2(d_2)$, ..., $X_n\sim \chi^2(d_n)$ are independent, then $\sum_{i=1}^n X_i\sim \chi^2(\sum_{i=1}^n d_i)$
- ullet If Z_1,Z_2,\ldots,Z_n are n independent N(0,1), then $\sum_{i=1}^n Z_i^2 \sim \chi^2(n)$
- If $X_1\sim N(\mu_1,\sigma_1^2)$, $X_2\sim N(\mu_2,\sigma_2^2)$, ..., $X_n\sim N(\mu_n,\sigma_n^2)$ are independent, then $\sum_{i=1}^n c_iX_i\sim N(\sum_{i=1}^n c_i\mu_i,\sum_{i=1}^n c_i^2\sigma_i^2)$
- If X_1,X_2,\ldots,X_n are n independent $N(\mu,\sigma^2)$, then $\overline{X}=\sum_{i=1}^n X_i/n \sim N(\mu,\sigma^2/n)$
- ullet If X_1,X_2,\ldots,X_n are n independent $N(\mu,\sigma^2)$, then $(n-1)S^2/\sigma^2\sim \chi^2(n-1)$

2017-06-06

- Central limit theorem: $\overline{X} = \sum_{i=1}^n X_i/n$ is the mean of a random sample from a distribution with mean μ and variance σ^2 . Then, $\frac{\overline{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$
- Half-unit correction for continuity: $P(Y=k) = P(k-rac{1}{2} < Y < k+rac{1}{2})$
- Chebyshev's inequality: $P(|X-\mu| \geq k\sigma) \leq 1/k^2 ext{ or } P(|X-\mu| \geq arepsilon) \leq \sigma^2/arepsilon^2$
- Law of large numbers: $\lim_{n\to\infty} P(|\frac{Y}{n}-p|<\varepsilon)=1$, i.e. $\frac{Y}{n}$ converges in probability to p when n is large enough.