Demonstration of a Power-efficient and Cost-effective Power Delivery Architecture for Heterogeneously Integrated Wafer-scale Systems

Haoxiang Ren, Krutikesh Sahoo, Tianyu Xiang, Guangqi Ouyang, and Subramanian S. Iyer | UCLA CHIPS

300 mm Silicon-Interconnect Fabric

(Si-IF) based wafer-scale system [1]

Power: 40-60 kW

Introduction

- Advanced packaging paradigms make enormous demands on uniform power delivery at multiple domain voltages. i.e., low PDN impedance at all frequencies.
- Delivering this power through TSVs/TWVs leads to complex and expensive processes and structures.
- In this work, we addressed these two problems through:
- Front-side power delivery at high voltage via PCB-let
- Granular step down at the dielet level using intimately connected GaN switching devices connected to control circuits on the chiplet

[1] S. Jangam and S. S. Iyer, "Silicon-Interconnect Fabric for Fine-Pitch (≤10 µm) Heterogeneous Integration," IEEE TCPMT, 2021.

Comparison of Different PDNs for Wafer-scale Systems

GaN/Si-Interconnect Fabric (GaN/Si-IF) with TSV-less Dielet-side PDN: a Compact Power Delivery and Interconnect Platform

- •GaN VR is vertically close to the PoL: higher power efficiency and better power integrity
- •Compact system: higher power density compared to 2D structure
- •Fine-pitch dielet-dielet & dielet-converter bonding interconnection
- •Divide PDN into three components: Passives in the silicon substrate; High voltage switches in GaN-on-Si; Control circuits in silicon chiplets

Demonstration of a TSV-less, Dielet-side Power Delivery Network

Integration Process Flow:

Thin dielet design, fabrication, and singulation; substrate design and fabrication;
PCB design and fabrication

Dielet-to-substrate Cu-Cu bonding

Deposition of Al₂O₃ for encapsulation by ALD

Deposition of SiO₂ for electrical isolation by PECVD

Deposition and patterning of SU8 in between of dielets

SU8 descum; SiO₂ & Al₂O₃ etching

Cu bottom-up electroplating

Solder paste screen printing and reflow

Flux applying and PCB-to-wafer assembling

Underfill applying (skipped in this work)

Demonstration:

Preparation of GaN-on-Si wafers

Fabrication of HEMT devices and their metal contacts (skipped in this work)

Patterning of Cu wires and Cu bonding pillars by the Damascene process (<300°C)

Dielet-to-GaN wafer assembly by Cu-Cu thermal compression bonding (<400°C, <150 MPa)

Deposition of Al₂O₃ for encapsulation by ALD (<200°C)</p>

Mechanical and Electrical Results:

- •A dielet-on-GaN/Si-IF vertical structure was demonstrated with a ≤ 10 µm Cu-Cu bond pitch
- •A PCB-on-dielets-on-wafer 3D dielet-side PDN was demonstrated

- Meets the mil-spec shear test requirements
- Excellent Cu-Cu TCB specific contact resistance
- Unchanged GaN quality: XRD, Raman, and PL
- Passed the mil-spec temp/humidity reliability test

Summary

- Developed a low-cost, TSV-less dielet-side PDN architecture for wafer-scale and interposer power delivery.
- Demonstrated a dielet-on-GaN-on-Si platform for granular wafer-scale voltage regulation using Cu-Cu TCB at fine pitch.
- Proposed the three-way distribution of the PDN for high power efficiency and density.

Acknowledgement

This work was supported in part by the Semiconductor Research Corporation (SRC) JUMP ASCENT, SRC JUMP CHIMES, National Science Foundation (NSF), UCOP MRPI MRP-17-454999, and the UCLA CHIPS consortium.

