Homework 8; due Thursday, 11/09/2023

(MTH 317H, Honors Linear Algebra; Fall 2023)

1 Commentary

This assignment covers row reduction, solving equations, inverse functions and matrices, and some basic computations involving 2x2 and 3x3 determinants.

1.1 required reading

• LADW (Linear Algebra Done Wrong) sections: 2.7, 2.8, 3.1, 3.5

2 Definitions

Here is some notation we will use in this homework regarding the bookkeeping for coordinates in a basis. This is a slightly more precise variation on the definition given in LADR 3.62, as we specifically note the basis in the notation.

Definition 2.1 (variation on LADR 3.62). Let $\mathcal{B} = [v_1, \dots v_m]$ be a basis for a vector space, V. We say that $x \in V$ has the coordinates a_1, \dots, a_m in the basis, \mathcal{B} , if

$$x = a_1 v_1 + \dots + a_m v_m.$$

We use the following shorthand notation for this as

$$x = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix}_{\mathcal{B}} \quad or \quad x = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix}_{[v_i]} \quad is \ defined \ as \quad x = a_1 v_1 + \dots + a_m v_m. \tag{1}$$

Note, when working on \mathbb{R}^m with the *canonical* basis, $[e_1, \ldots, e_m]$, we will often suppress the specific indication of the basis. That is to say, it is implied that when no basis is noted, it means the canonical one is used,

$$x = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix}_{[e_i]}.$$

3 Questions

Question 3.1. Use the algorithm of LADW Chp 2, Sec 4 to compute the inverse of the following matrix A. Show your steps and confirm that your answer is correct. To confirm, this means that if you claim B is the inverse of A, then you must show that AB = BA = Id (where Id is the identity matrix).

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 3 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$

Question 3.2. Let A be the matrix,

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 3 & 0 \\ 3 & 3 & 2 \end{pmatrix}$$

- (i) Compute the determinant of the matrix, A. Show your work.
- (ii) Is it possible to solve, for all $b \in \mathbb{R}^3$, the equation

$$Ax = b$$
?

If you answer is "yes", then prove that there is a solution for each b, and if your answer is "no", then you must give an example of a particular b so that there is no vector x that solves the equation, and prove that there is no solution.

Question 3.3. Let A be the 2×2 matrix given by

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Let B_i be the matrices given by

$$B_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad B_2 = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \quad B_3 = \begin{pmatrix} 1 & 0 \\ 5 & 1 \end{pmatrix}, \quad B_4 = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}.$$

For each of the B_i matrices, above, complete the following:

- (i) compute B_iA ;
- (ii) draw a picture of \mathbb{R}^2 , showing e_1, e_2 and $B_i e_1, B_i e_2$, and describe what has changed geometrically from the list $[e_1, e_2]$ to $[B_i e_1, B_i e_2]$;

(iii) compute $\det(B_i A)$ in terms of the value of $\det(A)$. (You are meant to do this calculation directly, from the definition of 2×2 determinant. Do not invoke the properties of determinant, such as LADW Theorem 3.5.)

Question 3.4. Let the matrices A and B be given as

$$A = \begin{pmatrix} 0 & 1 & 5 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 5 & 0 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & 1 & 5 & 0 \\ 0 & 1 & 5 & 0 \\ 0 & 0 & -5 & 1 \end{pmatrix}$$

- (i) Show that the matrix A can be row-reduced to the matrix B, using row operations. Show your steps.
- (ii) Write down an invertible matrix, T, so that TA = B. Do not supply a proof, just write down a matrix. (Hint, keep track of the elementary matrices—LADW p. 41, 42— that correspond to your steps in part (i))
- (iii) Prove that T is invertible. (There are actually many ways one could argue this.)

Question 3.5. Let A be the following matrix:

$$A = \begin{pmatrix} 1 & 0 & 3 & 1 \\ 1 & 1 & 0 & 2 \\ 1 & 0 & 3 & 1 \end{pmatrix}.$$

- (i) Let R be the matrix that is the reduced echelon form of A. Write down R. You do not need to show your steps.
- (ii) Define the linear function, $L_A: \mathbb{R}^4 \to \mathbb{R}^3$, given by

 $L_A(x) = Ax$ as matrix multiplication in the canonical bases.

Use the reduction algorithm of LADR 2.31, starting with the ordered list,

$$[L_A(e_1), L_A(e_2), L_A(e_3), L_A(e_4)],$$

to give a basis for range(L_A). You **do not** need to show your steps in the algorithm, just state the resulting basis.

(iii) Let $b \in \mathbb{R}^3$ be given as

$$b = \begin{pmatrix} 4 \\ -1 \\ 4 \end{pmatrix}.$$

Represent b uniquely using the basis vectors for range (L_A) from part (ii). Use this to solve for x, in the equation

$$L_A(x) = b.$$

(iv) For the same b as in part (iii), use the row reduction algorithm in LADW section 2.2 to solve for one solution, x, in the equation

$$Ax = b$$
.

(Because null $(L_A) \neq \{0\}$, there are infinitely many solutions, but you just need to give one here.)

(v) For the matrix, R, from part (i), define the linear function, $L_R : \mathbb{R}^4 \to \mathbb{R}^3$, given by $L_R(x) = Rx$ as matrix multiplication in the canonical bases.

Why will solving for x in the equation

$$L_R(x) = b$$

not give the correct solution to $L_A(x) = b$? Give a new vector, z, so that

$$L_A(x) = b \iff L_R(x) = z.$$

Question 3.6. Define the vector space V as

$$V = \{ p \in \mathcal{P}_4 : p(0) = 0 \}.$$

Define the function, $L: V \to \mathcal{P}_3$ as

$$L(f) = f' + f''.$$

(i) Briefly observe / justify that

$$V = \{ f \in \mathcal{P}_4, : f(x) = a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4, \text{ for some, } a_1, \dots, a_4 \in \mathbb{R} \}.$$

- (ii) Compute null(L). Prove that your answer is correct.
- (iii) Prove that L is a bijection.
- (iv) By a direct calculation, write down a formula for L^{-1} . That is to say, given a generic $q \in \mathcal{P}_3$, with

$$q(x) = b_0 + b_1 x + b_2 x^2 + b_3 x^3,$$

if $L^{-1}(q) = p$, with

$$p(x) = a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4,$$

you need to specify the coefficients a_1, \ldots, a_4 in terms of the given b_0, \ldots, b_3 .

(Hint: you know that $L^{-1}(q) = p$ if and only if q = L(p). This should allow you to set up 4 equations in 4 unknowns—the a_i —and you should be able to solve directly for a_i in terms of b_i .)

(v) Confirm that your answer is correct. That is to say, you must demonstrate that $L(L^{-1}(q)) = q$ and $L^{-1}(L(p)) = p$.

Question 3.7. Assume that V and L are as in Question 3.6. Let p_0, \ldots, p_3 be the canonical basis polynomials for \mathcal{P}_3

$$p_0(x) = 1$$
, $p_1(x) = x$, $p_2(x) = x^2$, $p_3(x) = x^3$.

Let the following q_1, \ldots, q_4 be a choice of basis for V:

$$q_1(x) = x$$
, $q_2(x) = x^2$, $q_3(x) = x^3$, $q_4(x) = x^4$.

(i) Write down a matrix, A, so that in the bases for V and \mathcal{P}_3 given above,

if
$$p = a_1 q_1 + \dots + a_4 q_4$$
, i.e. $p = \begin{pmatrix} a_1 \\ \vdots \\ a_4 \end{pmatrix}_{[q_i]}$,

and
$$L(p) = b_0 p_0 + \dots + b_3 p_3 = \begin{pmatrix} b_0 \\ \vdots \\ b_3 \end{pmatrix}_{[p_i]}$$
,

then
$$\begin{pmatrix} b_0 \\ \vdots \\ b_3 \end{pmatrix} = A \begin{pmatrix} a_1 \\ \vdots \\ a_4 \end{pmatrix}$$
 as matrix multiplication

- (ii) Using the algorithm of LADW Chp 2, Sec 4, compute the inverse matrix, A^{-1} . Confirm by matrix multiplication that your answer is correct. No need to show your steps, as you have done a similar computation in Question 3.1. Just write the matrix and confirm.
- (iii) For the sake of comparing methods, do this part pretending you have not done Question 3.6 yet.

Using the matrix A^{-1} , write down the formula for L^{-1} . Given that a linear function is uniquely determined by its action on a basis, it is OK to specify L^{-1} by specifying $L^{-1}(p_i)$. Or, you can just write down a formula for $L^{-1}(q)$ for a generic q.