What is "mode"?

N = 5 K = 3 N - k + 1 = 5 - 3 + 1

= 5-34

Shruk

in. Size

convolve2d(A,	np.fliplr(np.flipud(w)),	<pre>mode='valid')</pre>

• The movement of the filter is bounded by the edges of the image. The output is therefore always smaller than the input. I would be the edges of the image. The output is therefore always

30	3	2_2	1	0
0_2	0_2	1_{0}	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

	•	
12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

Padding ("same" mode)

- What if we want the output to be of the same size as the input image?
- Then we can use padding i.e. add imaginary zeros around the input.

Trainer: Dr. Darshan Ingle.

Even more padding! ("full " mode)

- We could extend the filter further and still get non-zero outputs.
- This is not very common these days.
- "full" padding"
 - i. Input Length = N
 - ii. Kernel length = K ³
 - iii. Output length = N+K-1

Summary of Modes

- Input length = N
- Kernel length = K

	Mode	Output Size	Usage
24 (Valid	N - K + 1	Typical
2	Same	N	Typical
3	Full	N + K - 1	Atypical

A new perspective on Convolution

https://i.insider.com/5e6f8386235c180f1533f1c2?width=800&format=jpeg&auto=webp

Sliding Pattern Finder that passes through the entire image.

How to view Convolution as Matrix Multiplication?

• Lets see 1D Convolution first because its easy to understand and 2D Convolution is just going to be a generalization of this.

Input image:
$$a = [a_1, a_2, a_3, a_4]$$

Filter: $w = [w_1, w_2]$

Output image: $b = a * w = [a_1w_1 + a_2w_2, a_2w_1 + a_3w_2, a_3w_1 + a_4w_2]$
 $a = (a_1, a_2, a_3, a_4)$
 $w = (w_1, w_2)$

Convolution

 $b = a * w = (a_1w_1 + a_2w_2, a_2w_1 + a_3w_2, a_3w_1 + a_4w_2)$

1D Convolution in general

$$b_i = \sum_{i'=1}^K a_{i+i'} w_{i'}$$

• Note: It is very same as 2D Convolution's equation, just without 2nd index

Matrix Multiplication

- Can we do the same operation using Matrix Multiplication.
- YES!!!
- HOW????????

So what do we understand?

By repeating the same filter again and again, we can do convolution without actually doing convolution.

$$\begin{pmatrix} a_1w_1 + a_2w_2 \\ a_2w_1 + a_3w_2 \\ a_3w_1 + a_4w_2 \end{pmatrix} = \begin{pmatrix} w_1 & w_2 & 0 & 0 \\ 0 & w_1 & w_2 & 0 \\ 0 & \overline{0} & w_1 & w_2 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix}$$

Problem with Matrix Multiplication?

Problem with Matrix Multiplication?

- Ofilter gets repeated multiple times
- (3) It takes up a lot more space
- (3) Filter w was vector of size 2.

 (n Matrix mult, w becomes a 2D Motrix of size 3x4.

$$\begin{pmatrix} a_1w_1 + a_2w_2 \\ a_2w_1 + a_3w_2 \\ a_3w_1 + a_4w_2 \end{pmatrix} = \begin{pmatrix} w_1 & w_2 & 0 & 0 \\ 0 & w_1 & w_2 & 0 \\ 0 & 0 & w_1 & w_2 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix}$$

Lets replace Matrix Multiplication with Convolution

MATRIX Mutt. is BIG & SLOW.

-. We will go for Convolution which is SMALL

EAST.

Trainer: Dr. Darshan Ingle.

Parameter Sharing / Weight Sharing

$$9 = \omega^T \cdot \chi$$

why q = 0|p Activation X = i|p feature vector W = weight matrix.

What it I use the same weights (W1, W2) again Aagah?

Disc less ex RAM

3) Computation becomes far more ett viect.

- '. Convolution takes saves both SPACE & TIME by using less weigh

Why do this?

Consider a fully connected ANN

EX: MNIST dataset

28×28 = 784-sized input vector

what if the image size is slightly larger 4 it is a color image?. Ex: CIFAR-10: 32x32x3=3072-sized input vector.

Modern CMV such VGG ! 224 × 224

If we are using full weight matrix, the #ilp features =1,50,528

Features

Modern 4D image: 1280×720 = 2.8 million features. Too Large for a NN.

Why do this?

Convolution = Corclation. FILTER = Pattern Finder.

We want the same fitter to look at all locations on the image.

This is called as Translational Invariance.

Translational Invariance

Suppose we are building a Dog vs cat classifier

If we use a fully connected NN, then the NN has to learn the weights for each of these positions separatery.

A yet after that, NN wort generalize that well but it we come arrows the same cut in a different parities, NN shall fail to recognize it.

Trainer: Dr. Darshan Ingle.

Translational Invariance

.. Having a Shared Pattern finder metes more sens.

Convolution on Color Images

Color: 3D: HXWXC (Ht XWish XColor)

Convolution on Color Images

424

2-D

of plmage N-K+1 5-2+1

= 4

Convolution on Color Images

2-D (2-D "dot product") - a grayscale pattern-finder

$$(A * w)_{ij} = \sum_{i'=1}^{K} \sum_{j'=1}^{K} A(i + i', j + j') w(i', j')$$

E.g. if the filter is looking for red circles it won't match a green circle

3-D (3-D "dot product") - a color pattern-finder

$$(A * w)_{ij} = \sum_{c=1}^{3} \sum_{i'=1}^{K} \sum_{j'=1}^{K} A(i+i',j+j',c)w(i',j',c)$$

What more?

Input Image: H x W x 3, which is a 3D vector

• Kernel: K x K x 3, which is a 3D vector

I (P=3D)

Output Image: (H-K+1) x (W-K+1), which is a 2D vector

I/P= N(20) Filter > K O/P: N-K+1 (20)

- We know that Neural Networks have a repeating structures (i.e. they have "uniformity")
- Ex: For a Dense layer, if the input is 1D, then the output is also 1D and hence can be fed from one layer to another.
- But, in our case, we see that the output is 2D and input is 3D.
- Question: So how do we solve this?
- Answer: Lets see this now.

$$(A*w)_{ij} = \sum_{c=1}^{3} \sum_{i'=1}^{K} \sum_{j'=1}^{K} A(i+i',j+j',c)w(i',j',c)$$

Multiple Features

Trainer: Dr. Darshan Ingle.

Multiple Features

- 3D
- Consider we have an image A with dimensions: H x W x 3
- If we use the "same" mode, and apply one filter, then we get output, lets say B1 with dimensions: H x W 25
- If we use the "same" mode, and apply one more filter, then we get output, lets say B2 with dimensions: H x W 25
- If we stack up B1 and B2 together, we get a new output image, lets say B with dimensions: H x W x 2, i.e. a 3D image as our original image

Multiple Features

Convolution in Deep Neural Network

Lets vectorize this operation, we don't need to do each color convolution separately

$$B = A * w$$

$$A = Input Ing, w = fitter$$

$$shape(A) = H \times W \times C_1$$

$$shape(w) = C_1 \times K \times K \times C_2$$

$$shape(B) = H \times W \times C_2$$

$$B(i,j,c) = \sum_{i'=1}^{K} \sum_{j'=1}^{K} \sum_{c'=1}^{C_1} A(i+i',j+j',c') w(c',i',j',c)$$

So What is this 3rd dimension in the Output image?

Convolution Layer

```
Convolution
Convolution
Dense \ layer: \ \underline{\sigma}(W * x + \underline{b})
```

Shape of the bias

- In a Dense layer, if W^Tx is a vector of size M, b is also a vector of size M
- In a Conv layer, b does not have the same shape as W * x (a 3-D image)
- Technically, this is not allowed by the rules of matrix arithmetic
- But the rules of broadcasting (in Numpy code) allow it
- If W * x has the shape H x W x C₂, then b is a vector of size C₂
 - One scalar per feature map

Conv layer:
$$\sigma(W * x + b)$$

Dense layer:
$$\sigma(W^Tx + b)$$

How much do we save? (INVOLUTION)

Has convolution saved my time 4 space?

Input (mg: 32 x 32 x 3

Filter: 3×5×5×64 (i.e. 64 feature mgs)

Output long: 28 x 28 x 64 (assuming mode = Valid')
why 287 N-K+1

H-k+1 = 32-5+1=28

.: #of parameters (ignore the bias) = 3 × 5 × 5 × 64=4-800

How much do we save? MATRIX MULTIPLICATION

How are Convolution filters found?

- Since convolution is just a part of some neural network layer, it's easy to conceive of how the filters will be found
- Initially, we looked at convolution as an image modifier (blur, edge)
- Now, we see it as a pattern finder / shared-parameter matrix multiplication / feature transformer
- In other words, W will be found the same as before, automatically!
- Still gradient descent, model.fit()

Conv layer: $\sigma(W * x + b)$

Dense layer:
$$\sigma(W^Tx + b)$$

CNN Architecture

CNN Architecture

- Now that you understand how exactly a convolution layer works including the bias term and activation function
 we can now consider the architecture of a convolution neural network and why it's that way.
- So as a little bit of a history lesson, modern CNN is essentially all originated from the same model, the LeNet.

• This is named after Yann LeCun, one of the original Deep Learning pioneers, along with Geoff Hinton and Yoshua Bengio.

Typical CNN

Typical CNN

Pooling means Downsampling i'e-output a smaller image frama bigger one. eg: If i/p image = 100 × 100 then if pool-size = 2 then my of image = 50 × 50 -1. Downsample by 2

POOLING

Types of Pooling

- There are two types of Pooling:
- 1. Max pooling
- 2. Average pooling

• Which one to use is a Hyperparameter choice.

Max Pooling

Average Pooling

Why to use Pooling?

• Practical: If we shrink the image, we have less data to process.

• Translational Invariance: I don't care where in the image the feature occurred, I just care that it did.