

Biomechanical Modeling of Split-leg Squat and Heel Raise on the Hybrid Ultimate Lifting Kit (HULK)

William K. Thompson (presenter)
Christopher A. Gallo
Beth E. Lewandowski

Kathleen M. Jagodnik
Baylor College of Medicine

Brad T. Humphreys

Justin H. Funk

Nathan W. Funk

ZIN Technologies

John K. DeWitt

American Society for Gravitational and Space Research - Annual Meeting

October 29, 2016

Digital Astronaut Project – Load Configuration

- Same subject, objectives and methods as the preceding Gallo presentation
- These exercises
 - Split-leg squat (SLS)
 - Heel Raise (HR) (still in progress)
- Load configuration analysis is the primary focus of this presentation
- We also have data available for stance and cadence variations

Exercises and Load Configurations

How does the loading method affect localized physiological outcomes on HULK for exercises of interest?

Split-leg squat (SLS)

Free weight "Gold standard"

HULK Long Bar

HULK Harness*

HULK T-Bar

* Yo-yo Technologies http://www.yoyotechnology com/products/yoyo-squat/

Major Findings for SLS

Comparison of Live Video and OpenSim Model Kinematics for SLS

SLS Load Configuration Analysis - Kinematics

Hip

Knee

- Harness posture is more "upright" vs. long bar
 - Less hip and knee flexion over the course of the rep
- Hip abduction (not shown) remains <10 deg for all three load cases throughout the movement

SLS Load Configuration Analysis – Ground Reaction Forces

Target Leg

Back Leg

Long Bar

Harness

- Harness shifts the subject's load distribution more onto the back foot relative to both long bar and free weight
- Shear forces are higher with the harness

SLS Load Configuration Analysis – Centers of Pressure Loci in Target Foot

Free Weight

Long Bar

Harness

- Long Bar COP locus shifts more laterally toward mid-foot vs. free weight
- Harness COP locus shifts more forward (toward toe) and slightly more medially vs. free weight and long bar

SLS Load Configuration Analysis – Joint Torques (Inverse Dynamics)

Hip

Knee

- Harness exercise produces less hip and knee torque vs. long bar over the course of the rep
- Long bar vs. free weight exhibits only minor differences

SLS Load Configuration Analysis – Kinetics: Hip Muscle Forces and EMG

Muscle **Forces**

EMG Envelope

Hip Extensors (Glutes)

(RecFem)

- Harness reduces estimated muscle forces in agonist muscles
- Consistent with reduction in target leg GRF, joint torque and EMG responses
- **MVC** normalizations differ among trials since data were acquired on different days

SLS Load Configuration Analysis – Kinetics: Knee Muscle Forces and EMG

Muscle **Forces**

EMG Envelope

Knee Extensors (Quads)

Knee Flexors

(Hamstrings)

No data

- Free Weight appears to activate the knee extensors earlier in the lift.
- Harness case shows much less hip extensor activation than the bar cases.
- Harness case shows more uniform knee flexor activation over the course of the lift.

Discussion of SLS findings to date

- Using the harness (vs. long bar):
 - The subject places more weight on the non-exercising leg and shear GRFs increase
 - COP shifts more forward and medially in the target foot
 - A small (<50 N-m) knee flexion moment occurs in the exercising leg at the top of the movement
 - Range of motion increases (+15%) at both hip and knee joints
 - Peak joint moments decrease in the hip (-29%) and knee (-6%)
 - Peak hip extensor (-37%) and knee extensor (-8%) muscle forces decrease
- These single-subject results suggest that exercise at a higher applied load with the harness may be needed to impart the same exercise stimulus as with the long bar.
- Modeling can help to quantify this difference in other subjects

Preliminary Findings for Heel Raise

Comparison of Live Video and OpenSim Model Kinematics for Heel Raise

- Only kinematic and EMG results will be presented here
- Some key single-tether data are still needed to complete the analyses
- Plan to acquire data in Nov 2016

HR Load Configuration Analysis - Kinematics

- Ranges of motion in the ankle and MTP joint are general highest for the harness
- The subject adopted a motion to lengthen the free weight and T-Bar concentric phases vs. the long bar and harness concentric phases
- There is a noticeable hesitation followed by a punctuated movement when using the T Bar

EMG Comparison for HR

- The shape of the gastrocnemius activation profile is relatively consistent across loading configurations
- MVC normalizations differ among trials since data were acquired on different days

Looking Forward

- Plan to publish load configuration analysis findings when complete
- Incorporate deadlift findings into load configuration analysis (Jagodnik)
- Will continue modeling efforts to inform and support the development of exercise countermeasure devices on NASA deep space missions
- Incorporate predictive models to provide kinematic estimations for situations where motion capture is impractical (e.g., microgravity)

Questions?

Thank you for listening!

Problem Statement

- Given the small size of the MPCV exercise device, will it be able to provide sufficient physiological loading to maintain musculoskeletal performance?
- Advanced Exercise Concepts Project Risk:
 - Single-tether design may limit exercise performance (?)
- Advance Exercise Concepts Project Requirement:
 - The device shall allow the crew member to perform squat, deadlift and heel raise exercises with proper body positioning*

*according to JSC-29558, "Resistive Exercise Description Document"

Biomechanical Modeling and Simulation (M/S)

- Human exercises/movements
- Primarily resistance training
 - Regular squat (SQ)
 - Split-leg squat (SLS)
 - Heel-raise (HR)
 - Deadlift (DL)
- Using measured input data
 - Motion history (kinematics)
 - Applied forces
 - Ground Reaction Forces (GRF)
 - Device loads
 - Subject's anthropometrics
- Estimate outcomes
 - Muscle forces and moment arms
 - Joint torques
 - Mechanical loads (bones/joints)

Methods: Data Collection

- GRC Exercise Countermeasures Lab (ECL)
- 3 sessions: APR, JUL, OCT 2015
- Mocap, EMG and force data are synced.
 - Motion capture: BTS Smart-D[®], 12 camera system, 100 Hz sampling
 - Ground Reaction Forces (GRF): Kistler[®] Model
 9261 force plates, 100 Hz sampling
 - Device loads: load cells internal to HULK
- EMG: BTS FreeEMG 16 wireless sensors
 - 1000Hz sampling
 - Band pass filtered 20-450 Hz
 - Full wave rectified, RMS envelope
 - MVC normalized
- 1 subject for this data set

NASA

Methods: EMG

Sensor	Muscle	location
--------	--------	----------

Blue 1	Tibialis Anterior
Blue 2	Vastus Medialis
Blue 3	Rectus Femoris
Blue 4	Vastus Lateralis
Blue 5	Hip Adductors
Blue 6	Rectus Abdominis
Blue 7	External Obliques
Blue 8	Medial Gastrocnemius
Red 1	Lateral Gastrocnemius
Red 2	Semitendinosus
Red 3	Biceps Femoris
Red 4	Gluteus Maximus
Red 5	Multifidus
Red 6	Longissimus
Red 7	Middle Trapezius
Red 8	Upper Trapezius

Head	and Neck
1.	Frontalis
2.	Temporalis
3.	Masseter
4.	Sternocleidomastoid (SCM)
5.	C4 Cervical Paraspinals (CP)

Trunk

Lower Trapezius Infraspinatus Latissimus Dorsi T2 Paraspinals T8 Paraspinals T10 Paraspinals L1 Paraspinals Rectus Abdominal Colique Internal Oblique Serratus Antierio Pedorais Major

o. A

O. Anterior Deltoid Lateral Deltoid Posterior Deltoid Bioeps Brachii Triceps Branchii Brachioradials Wrist Flexor Wrist Extensor

.eg :8.

Gluteus Medius
Gluteus Maximus
Hip Adductor
Hip Plexor
Vastus Medialis Oblique (VMO)
Vastus Lateralis (VL)
Medial Gastrochemius
Lateral Gastrochemius
Lateral Gastrochemius

Tibialis Anterior

EMG Processing

- Sampling rate = 1000 Hz
- Band pass filtering: 20 to 450 Hz,
- Full-wave rectified and enveloped with RMS calculation
- EMG activation levels (0.0 to 1.0) normalized to the subject's MVC
- MVC tests were performed prior to application of the mocap markers.
 - Muscles isolated for testing according to: Hislop HJ, Avers D, Brown M, Daniels and Worthingham's Muscle Testing: Techniques of Manual Examination and Performance Testing, 9th Edition, Elsevier Saunders, St. Louis, MO, 2014.

Methods: Biomechanical Models in OpenSim

- OpenSim (Stanford Univ.) is freely available
 biomechanical simulation software allowing users to
 - Develop models of musculoskeletal structures
 - Create dynamic simulations of movement and kinematics
 - Calculate estimates for muscle and joint kinetics
- Used a modified and scaled version of the Rajagopal*
 (2016) lower body model from OpenSim

*Rajagopal, A., Dembia, C.L., DeMers, M.S., Delp, D.D., Hicks, J.L., and Delp, S.L., "Full body musculoskeletal model for muscle-driven simulation of human gait," (in review, submitted to IEEE Transactions on Biomedical Engineering) (2016).

Long Bar HR

Harness Squat

T-Bar Heel Raise

Methods: OpenSim Work Flows

For detailed explanation of the workflow steps, refer to the OpenSim User's Guide.

http://simtk-confluence.stanford.edu:8080/display/OpenSim/User%27s+Guide

Model Scaling

Match the model to the subject's anthropometric measurements

Inverse Kinematics (IK)

Compute the joint angles that best replicate the marker position history

<u>Inverse</u> Dynamics (ID)

Determine the net joint forces and joint torques based on kinematics

Static Optimization (SO)

the net muscle group forces at each instant in time

(iteration among steps is assumed)

EMG Validation

Methods: Statistical Analysis in Matlab

- Determine rep start and stop times from a marker trajectory
- Resample outcomes onto a normalized time vector from 0.0 to 1.0
- Compute ensemble average
- Perform statistical analysis at each increment (μ and σ)

