测试题解答 8.10

- (1) cardS=n, card $P(S)=2^n$;
- (2) cardN= \aleph_0 , cardN×N×N= \aleph_0 , cardP(N)= \aleph
- (3) card $\mathbf{R}=\aleph$, card $\mathbf{R}\times\mathbf{R}=\aleph$
- (4) $cardX = \aleph$
- (5) card $T=\aleph_0$
- (6) $cardS = 36^6$

测试题解答 8.11

- (1) 令 $f: A \rightarrow B$, f(x)=x, 则 f 为单射函数,从而有 $A \leqslant \cdot B$. 不一定得到 $A < \cdot B$. 对于无穷集 B 来说,可能与其真子集 A 等势. 例如 $\mathbb{Q} \approx \mathbb{N}$.
- (2) 因为 $A \subseteq B$,存在单射函数 $f: A \to B$, f(x) = x, 因此 $A \preccurlyeq \cdot B$. 同理存在单射函数 $g: B \to C$. 又 $A \approx C$,故存在双射函数 $h: C \to A$,因此 $g \circ h: B \to A$ 为单射,从而得到 $B \preccurlyeq \cdot A$. 综合上述有 $A \approx B$,根据等势的传递性有 $A \approx B \approx C$,因此 $\operatorname{card} A = \operatorname{card} B = \operatorname{card} C$.
 - (3) card(A-B)不是可数的. 用反证法证明如下:

如果 card(A-B)是可数的,而 B 也是可数的,那么它们的并集也是可数的,从而得到 $cardA = card((A-B) \cup B) \le \aleph_0$,从而 A 也是可数集,这与已知 $cardA = \aleph$ 矛盾.

测试题解答 8.12

 $\operatorname{card}(A \times B) = \aleph_0$. 设 $A = \{0, 1, ...\}, B = \{1, 2, ..., n\},$ 令

 $f: A \times B \rightarrow A$

 $f(\langle i, j \rangle) = n \ i + j - 1, \ \forall i \in A, j \in B,$

则可以证明 $f \in A \times B$ 到 A 的双射.

假设存在< i,j>, < k,t>使得 f(< i,j>)=f(< k,t>),即 ni+j-1=nk+t-1. 假设 $i\neq k$,不妨设 i>k,那么有 n(i-k)=t-j. 而 $n(i-k)\geq n$,与 t-j< n 矛盾,从而证明了 i=k. 由 i=k 不难得到 j=t. 这就证明了 f 的单射性.

 $\forall y \in A$, 令 y 除以 n 的商为 i, 余数为 r, 即 y=ni+r, 其中 $i \in A$,

 $r \in \{0,1,...,n-1\}$. 那么有 f(< i, r+1>) = ni + r+1-1 = ni + r = y, 从而证明了f的满射性.