LAB SESSION WEEK 5 – TUTORIAL NOTES

GENERAL INFORMATION

1. Discussion Boards Opened \rightarrow The more you participate the more examples will be posted

VLSM

ARP, Inter-VLAN and Intra-VLAN comms

2. Group Lab Activity 1 Today

Form your groups and send me a private message with the team members (only one of you)

Anyone NOT in a group, I will place you in one.

Activity sheet now available in Canvas \rightarrow Lab sessions page, Week 5 tab.

You have one week to submit the completed Activity Sheet in Canvas

I will create the Canvas groups -> only one team member needs to submit.

REVISION

- 1. Basic configuration → Disable DNS lookup, hostname, SSH (user/pwd), logging sync, MOTD, shut unused ports
- 2. Logging sync \rightarrow Configured in the line console 0. This command syncs the console input/output buffer
- 3. The VLAN database → VLAN IDs, VLAN names and VLAN Membership (also need to know how to remove VLANs)
- 4. 802.1q → Frame tagging, trunk interfaces
- 5. DTP →
- 6. When using layer 2 switches alone, only hosts within the same VLAN and same IP Network can talk to each-other
- 7. Also, only a host in VLAN 99 will be able to ping the IP address on interface VLAN 99 (again, if they belong to the same IP Network)
- 8. This is because the switch only can make forwarding decisions based on MAC addresses
- 9. An interface VLAN will be in the protocol "down" state if there are no active (up) ports for that VLAN or the VLAN is not created
- 10. For hosts in different VLANs i.e. in different IP networks to communicate with each other, we need to have a routing device.
- 11. Some sh commands:
 - sh vlan brief
 - sh vlan id <x>
 - sh interface trunk
- 12. Answer to connectivity scenarios in Lab-SU4a \rightarrow go to lab handout.
- 13. What happen with the VAN connection after enabling port-security?

TUTORIAL

Intra-VLAN vs Inter VLAN communication

The Default Gateway

- 1. If hosts are not connected to the same shared media, they can't just exchange messages over the media
- 2. If the final destination is outside their Network, they need the aid of an intermediary device A communication device (typically a router) able to send messages between 2 IP Networks
- 3. Hosts must know the IP of their **Default Gateway** in order to communicate outside their Network
- 4. Today you are going to be asked to configure a default gateway, but we don't really have one in the network

ARP Process

- 1. Packets need to be encapsulated in a L2 frame for transmission
- 2. Hosts then need to know the dest. MAC address to be used for a particular dest. IP address
- 3. How do they know? The ARP (Address Resolution Protocol) process

- 4. When first need to send a message to a particular IP address:
 - If in the same Network → L2 broadcast ARP request: who is 'destination IP address'
 - If NOT → L2 broadcast ARP request: who is 'default GW address'

Inter-VLAN routing configuration:

- 1. Per-interface inter-VLAN routing (Lab 5a)
- 2. Router-on-a-stick (Lab 5B)
- 3. Layer 3 switching (not covered in this Unit)

Per-Interface Routing

1. One router Interface per VLAN → This router interface will hold the default gateway address for that VLAN

- 2. When needing to communicate outside their network \rightarrow hosts find a way through the switched network up to their default gateway
- 3. The Default Gateway (i.e. the router) will use the routing table to find the exit interface for the destination host
- 4. Configure an 802.1q trunk on inter-switch link (as we learned in lab 4)
- 5. How do we configure Fa0/11 on S1? → access for VLAN 10
- 6. How do we configure Fa0/12 on S1? → access for VLAN 20
- 7. How do we configure Fa0/11 on S2? \rightarrow access for VLAN 30
- 8. How do we configure Fa0/1, Fa0/2 and Fa0/3 on R1? \rightarrow default gateway IP address/mask for VLAN 10, 30 and 30
- 9. Routers have limited (usually a few) interfaces \rightarrow restricts the number of VLANs to only a few.
- 10. Do you see a problem with this approach?

Router-on-a-stick

- 1. Only ONE interface between one of the switches and the router \rightarrow this link will carry **ALL** VLANs
- Configure an 802.1q trunk on inter-switch link (as we learned in lab 4)
 Fa0/5 on S1 and Fa0/5 on S2 configured as switchport mode trunk
- 3. Configure the switchport connecting to router as an 802.1q trunk Fa0/5 on S1 and Fa0/5 on S2 configured as switchport mode trunk
- 4. Configure <u>sub-interfaces</u> on the router with the corresponding 802.1q encapsulation for each VLAN We need at least 3 sub-interfaces (1 more if we are configuring a switch management VLAN)
- 5. Each sub-interface will be configured with the default gateway address for the corresponding VLAN
- 6. When needing to communicate outside their network → hosts find a way through the switched network up to their default gateway
- 7. The Default Gateway (i.e. the router) use the routing table to find the exit sub-interface for the destination host
- 8. Efficient use of router interfaces without restricting the number of VLANs to the number of available router interfaces.

VLSM exercise

Major Network: 172.16.0.0/16

Refer to diagram for Network and Host requirements

Solution:

- How many networks do we need? 6
- Arrange the Networks by size:
 - o Network B
 - o Network C
 - o Network A
 - o Link 1
 - o Link 2
 - o Link 3

Network B (520 hosts):

- How many usable IP addresses? \rightarrow 1024 2 = 1022
- How many host bits? \rightarrow 1024 = 2^10 \rightarrow 10 host bits
- How many network bits? → 32 bits 10 host bits → 22 network bits
- Subnet mask? \rightarrow /22
- Subnet mask in dotted decimal notation? → 255.255.252.0

11111111	•	11111111	•	11111100	•	00000000
255		255		128+64+32 +16+8+4		0
255		255		252		0

• Network address \rightarrow 172.16.0.0/22

172	•	16	0000000	0000000
172		16	0	0

• Broadcast Address \rightarrow 172.16.3.255/22

172	•	16	0000011	11111111
172		16	3	255

Network C (120 hosts):

- How many usable IP addresses? \rightarrow 128 2 = 126
- How many host bits? \rightarrow 128 = 2^7 \rightarrow 7 host bits
- How many network bits? \rightarrow 32 bits 7 host bits \rightarrow 25 network bits
- Subnet mask? \rightarrow /25
- Subnet mask in dotted decimal notation? → 255.255.255.128

11111111 . 11111111 . 11111111 . 10000000 255 . 255 . 255 . 128

• Network address \rightarrow 172.16.4.0 /25

172 . 16 . **0000100** . **00000000** 172 . 16 . 4 . 0

• Broadcast Address \rightarrow 172.16.4.127 /25

172 . 16 . **00000100** . **01111111**

172 . 16 . 4 . 64+32+16+8+4+2+1

172 . 16 . 4 . 127

Network A:

- How many usable IP addresses? \rightarrow 32 2 = 30
- How many host bits? \rightarrow 32 = 2^5 \rightarrow 5 host bits
- How many network bits? \rightarrow 32 bits 5 host bits \rightarrow 27 network bits
- Subnet mask? \rightarrow /27
- Subnet mask in dotted decimal notation? → 255.255.255.224

11111111	•	11111111	•	11111111	•	11100000
255		255		255		128+64+32
255		255		255		224

• Network address \rightarrow 172.16.4.128 /27

172	•	16	0000100	•	10000000
172		16	4		128

• Broadcast Address \rightarrow 172.16.4.159 /27

172	•	16	. 00	0000100	•	10011111
172		16		4		128+16+8+4+2+1
172		16		Δ		159

Link 1:

- How many usable IP addresses? \rightarrow 4 2 = 2
- How many host bits? \rightarrow 4 = 2^2 \rightarrow 2 host bits
- How many network bits? \rightarrow 32 bits 2 host bits \rightarrow 30 network bits
- Subnet mask? \rightarrow /30
- Subnet mask in dotted decimal notation? → 255.255.255.252

11111111	•	11111111	•	11111111	•	11111100
255		255	•	255		128+64+32+16+8+4
255		255		255		252

• Network address → 172.16.4.160

```
   172
   .
   16
   .
   0000100
   .
   10100000

   172
   .
   16
   .
   4
   .
   128+32

   172
   .
   16
   .
   4
   .
   160
```

• Broadcast Address \rightarrow 172.16.4.163

172	•	16	0000100	•	10100011
172		16	4	•	128+32+ 2+1
172		16	4		163

Calculate Link 2 and Link 3's Networks.

VLSM Exercise 2

Note: For students to complete in their own time.

Major Network: 136.186.224.0/19

Network Name	Network Address	Subnet Mask	Broadcast Address