

Lecture 4: CMOS Implementation of logic blocks and sequential elements

Signal Strength

- Strength of signal
 - How close it approximates ideal voltage source
- V_{DD} and GND rails are strongest 1 and 0
- nMOS pass strong 0
 - But degraded or weak 1
- pMOS pass strong 1
 - But degraded or weak 0
- Thus nMOS are best for pull-down network
- And, pMOS are best for pull-up network

Pass Transistors

Transistors can be used as switches

$$g = 0$$

 $s \rightarrow -d$

$$g = 1$$
 $s_{-} = 0$

Input
$$g = 1$$
 Output $0 \rightarrow \infty$ strong 0

Input
$$g = 0$$
 Output $0 \rightarrow -\infty$ degraded 0

Transmission Gates

- Pass transistors produce degraded outputs
- ☐ Transmission gates pass both 0 and 1 well

$$g = 0$$
, $gb = 1$
 $a - b$

$$g = 1$$
, $gb = 0$
 $a \rightarrow b$

Input

Output

Tristates

☐ Tristate buffer produces Z when not enabled

EN	А	Υ	
0	0	2	
0	1	7	
1	0	0	
1	1	1	

Nonrestoring Tristate

- Transmission gate acts as tristate buffer
 - Only two transistors
 - But nonrestoring
 - Noise on A is passed on to Y

Tristate Inverter

Tristate inverter produces restored output

- Violates conduction complement rule
- Because we want a Z output

Multiplexers

2:1 multiplexer chooses between two inputs

S	D1	D0	Υ
0	X	0	
0	X	1	
1	0	X	
1	1	X	

Gate-Level Mux Design

- \Box $Y = SD_1 + \overline{S}D_0$ (too many transistors)
- ☐ How many transistors are needed? 10

Transmission Gate Mux

Nonrestoring mux uses two transmission gates

Only 4 transistors

Inverting Mux

- Inverting multiplexer
 - Use compound AOI22
 - Or pair of tristate inverters
 - Essentially the same thing
- Noninverting multiplexer adds an inverter

4:1 Multiplexer

4:1 mux chooses one of 4 inputs using two selects

✓ Two levels of 2:1 muxes

Or four tristates

D Latch

- When CLK = 1, latch is *transparent*
 - D flows through to Q like a buffer
- When CLK = 0, the latch is *opaque*
 - Q holds its old value independent of D
- a.k.a. transparent latch or level-sensitive latch

D Latch Design

Multiplexer chooses D or old Q

D Latch Operation

16

D Flip-flop

+ve edge triggered

- When CLK rises, D is copied to Q
- ☐ At all other times, Q holds its value
- a.k.a. positive edge-triggered flip-flop, master-slave flip-flop

D Flip-flop Design

■ Built from master and slave D latches

D Flip-flop Operation

