V – Transformée de Fourier

Exercice 1

- a) Pour $\lambda > 0$, calculer la transformée de Fourier des signaux $x(t) = H(t) e^{-\lambda t}$ et $y(t) = e^{-\lambda |t|}$
- b) puis en déduire celles de $z(t)=\frac{2\lambda}{\lambda^2+4\pi^2t^2}$ et $w(t)=\frac{1}{1+t^2}.$

Exercice 2

Établir les principales propriétés de la transformée de Fourier par manipulation d'intégrales en exprimant les transformées des signaux suivants en terme de la transformée $\widehat{x}(f)$ de x(t):

a) x(-t)

d) $e^{2\pi i a t} x(t)$

b) x(at), a > 0

e) x'(t)

c) x(t-a)

f) $t \cdot x(t)$

Exercice 3

Quelles sont les propriétés de la transformée $\widehat{x}(f)$ lorsque l'originale $x: \mathbb{R} \to \mathbb{C}$ est :

- (a) à valeurs réelles?
- (b) paire?
- (c) impaire?

Montrer de plus que la transformée d'une fonction paire peut s'écrire

$$\widehat{x}(f) = 2 \int_0^{+\infty} x(t) \cos(2\pi f t) dt$$

et donner une expression similaire dans le cas d'une fonction impaire.

Exercice 4

a) Vérifier que $g(t) := e^{-\alpha t^2}$ (où $\alpha > 0$) est solution de $g' + 2\alpha t g = 0$.

En déduire une équation différentielle vérifiée par \widehat{g} puis que $\widehat{g}(f) = \sqrt{\frac{\pi}{\alpha}} e^{-\frac{\pi^2 f^2}{\alpha}}$.

- b) Que remarquez-vous lorsque $\alpha = \pi$?
- c) Définissons, pour $\mu \in \mathbb{R}$ et $\sigma > 0$, la gaussienne normalisée de paramètres μ et σ par

$$g_{\mu,\sigma}(t) := \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{t-\mu}{\sigma}\right)^2}.$$

Calculer la transformée de Fourier de $g_{\mu,\sigma}$ et en déduire le fait que la convolution de deux gaussiennes normalisées est encore une gaussienne normalisée (dont vous préciserez les paramètres).

d) Déterminer $\lim_{\sigma \to \infty} g_{\mu,\sigma}$ et $\lim_{\sigma \to 0} g_{\mu,\sigma}$.

Transformation de Fourier

domaina tamparal	domaina fráquential
domaine temporel $\int_{-\infty}^{+\infty} dt dt$	domaine fréquentiel $f^{+\infty}$
$x(t) = \int_{-\infty}^{+\infty} \widehat{x}(f) e^{2\pi i f t} df$	$\widehat{x}(f) = \int_{-\infty}^{+\infty} x(t) e^{-2\pi i f t} dt$
$\lambda x_1(t) + \mu x_2(t)$	$\lambda \widehat{x_1}(f) + \mu \widehat{x_2}(f)$
x(at)	$\frac{1}{ a }\widehat{x}\left(\frac{f}{a}\right)$
x(-t)	$\widehat{x}(-f)$
$\overline{x(t)}$	$\overline{\widehat{x}(-f)}$
x(t-a)	$e^{-2\pi i a f} \widehat{x}(f)$
$e^{2\pi i a t} x(t)$	$\widehat{x}(f-a)$
$\frac{\mathrm{d}x}{\mathrm{d}t}$	$2\pi \mathrm{i} f \widehat{x}(f)$
$-2\pi \mathrm{i}tx(t)$	$\frac{\mathrm{d}\widehat{x}}{\mathrm{d}f}$
$(x_1 * x_2)(t)$	$\widehat{x_1}(f)\widehat{x_2}(f)$
$x_1(t) x_2(t)$	$(\widehat{x_1}*\widehat{x_2})(f)$
$\Pi_a(t)$	$a \operatorname{sinc}(\pi a f)$
$H(t) e^{-\lambda t}, \operatorname{Re}(\lambda) > 0$	$\frac{1}{\lambda + 2\pi \mathrm{i} f}$
$\frac{1}{1+t^2}$	$\pi e^{-2\pi f }$
e^{-t^2}	$\sqrt{\pi}e^{-\pi^2f^2}$
$\delta(t)$	1
1	$\delta(f)$
$\mathrm{III}_T(t)$	$\frac{1}{T} \mathrm{III}_{\frac{1}{T}}(f)$

$$(x * y)(t) = \int_{-\infty}^{+\infty} x(u) y(t - u) du = \int_{-\infty}^{+\infty} x(t - u) y(u) du$$