Electronic Devices and Circuits

Assignment-3(CEP)

Name: Mudassar Hussain

Roll number: 23L-6006 (3B)

Design and Analysis of Single-Stage BJT Amplifier.

• Open circuit voltage gain

$$Avo = 5 \times (6 + 0 + 0 + 6) = 60$$

- Input resistance must be greater than $40k\Omega$ Rin = $(1+\beta)$ (re + Re) > $40k\Omega$
- The output impedance should be less than 500 Ω Zout \approx RC \parallel RL < 500 Ω

So first we do **DC Analysis**

- As a starting point, take DC operating current *lc* = 1m at room temperature.
- Assume $\beta = 100$

$$Re = \frac{Vt}{Ie}$$
 (IC \approx IE)

Re =
$$\frac{26m}{1mA}$$
 = 26

We use Assumptions

$$VB = \frac{VCC}{3} = \frac{15}{3} = 5V$$

ICRC =
$$\frac{VCC}{3}$$

$$RC = 5k\Omega$$

$$VBE = VB - VE$$

$$VE = 5 - 0.7 = 4.3V$$

$$RE = \frac{VE}{IE} = 4.3k\Omega$$

Take IB 10% if IE

$$IB = 0.1m$$

R1 + R2 =
$$\frac{VCC}{IB} = \frac{15}{0.1m}$$

$$R1 + R2 = 150k$$

Applying VDR

$$VB = VCC \times \frac{R2}{R1 + R2}$$

$$(150)\frac{5}{15} = R2$$

$$R2 = 50k\Omega$$

$$R1 = 100k\Omega$$

Rin =
$$(1 + \beta)$$
 (re + Re) = $101 \times (26 + 4.3k) = 436.92k > 40k$

If we take RB parallel, then Rin is

Rin = RB ||
$$(1 + \beta)$$
 (re + Re) = 33.3k || 436.92k = 30.94k < 40k (false)

• Cheak the Open circuit voltage gain

Avo =
$$\frac{RC}{re+Re}$$

= $\frac{5k}{26+4.3k}$ = 1.13, Our requirements are not fulfilled

So, we put Avo = 60

RE =
$$\frac{Rc}{Avo}$$
 - re = $\frac{5k}{60}$ - 26 = 57.33 Ω (Take standard 56 Ω)

$$Avo = \frac{RC}{re + Re}$$
$$= \frac{5k}{26 + 56} = 60.97$$

Cheak Rin

$$Rin = (1 + \beta) (re + Re) = 101 \times (26 + 56) = 8282$$

Rin = RB ||
$$(1 + \beta)$$
 (re + Re) = 33.3k || 8282 = 6232.45 Ω

$$gm = \frac{Ic}{Vt} = \frac{1m}{26m} = 0.0384$$

$$r \pi = \frac{\beta}{am} = 2.6k\Omega$$

Output Impedance, take RL = 450Ω

RC || RL =
$$\frac{RC \times RL}{RC + RL}$$
 = 5k || 450 = 395.94 < 500 Ω (Condition true)

$$Av = \frac{-gm (Rc||RL)}{1+gmRe} = 95.26m \text{ V/V}.$$

> Take Is= 10^-14 and VB = 0.7V at room temperature

$$IC = Is \times e^{Vbe/Vt}$$
 -> $Vt = 26m$

IC = 4.92mA

ICRC = VCC/3

 $RC = 345.78\Omega$

We take RC = 360Ω

IE≈IC

RE = VE / IE

$$=\frac{4.3}{4.92m}=873.9\Omega$$

We take 810Ω standard

re = $Vt / Ie = 5.284\Omega$

Rin =
$$(1 + \beta)$$
 (re + Re) = $101 \times (5.284 + 810) = 82.3k\Omega > $40k\Omega$$

IB 10% of IE

IB = 0.492m

R1 + R2 = 15/0.492m

R1 + R2 = 30.48k

Apply VDR

 $R1 = 20.32k\Omega$

R2 = 10.16kΩ

 $RB = R1 || R2 = 6.77k\Omega$

→ Take RB in parallel

Rin =RB || (1 + β) (re + Re) =
$$6.27k\Omega$$
 (False)

→ Take RB in the Series

Rin =
$$\frac{RB}{1+β}$$
 + (1 + β) (re + Re) = 82.367kΩ > 40kΩ

Consider a biasing scheme that provides thermal bias stability.

Then RE =
$$\frac{VE}{IE}$$
 = 406 Ω

->Take standard 390Ω

Rin =
$$(1 + \beta)$$
 (re + Re) = $101 \times (5.284 + 390) = 39.9 \text{k}\Omega < 40 \text{k}\Omega$

->So, we improve it take 430Ω

Rin =
$$(1 + \beta)$$
 (re + Re) = $101 \times (5.284 + 430) = 43.9 \text{k}\Omega > 40 \text{k}\Omega$

$$Avo = \frac{Rc}{re + Re}$$

$$60 = \frac{360}{5.284 + Re}$$
, Re = 0.716 Ω

So, we adjusted Re so that our open circuit gain was equal to our requirement.

Avo =
$$\frac{Rc}{re+Re}$$

= $\frac{390}{5.284+0.716}$
= $\frac{390}{5.284+1}$ take Re standard 1.0 Ω , and adjust the RC = 390Ω
= 62.06

Check Output Impedance

Take RL =
$$2.2k\Omega$$
, RC = 390Ω

Zo =
$$\frac{RC \times RL}{RC + RL} = \frac{390 \times 2.2k}{390 + 2.2k} = 331.27 < 500\Omega$$

$$gm = \frac{Ic}{Vt} = \frac{4.96m}{26m} = 0.1907$$

$$Av = \frac{-gm (Rc||RL)}{1+gmRe} = -53.055 \text{ V/V}$$

Temperature Analysis

The performance of the amplifier changes with temperature due to variations in the parameters of the BJT:

Effect on DC Parameters

1. **VBE:**

- o VBE decreases at −2mV/∘C.
- o At room temperature (25∘C), VBE = 0.7V.
- o At 60°C: VBE=0.7V−2mV/°C· (60−25) = 0.63V
- At -10 °C: VBE=0.7V+2mV/°C· (25-(-10)) = 0.76V

2. **IC:**

- \circ IC = Is $x e^{Vbe/Vt}$
- o As VBE decreases, IC increases exponentially.
- o IC approximately doubles for every 10°C rise in temperature.

3. **VCE:**

- VCE = VCC ICRC
- o As IC increases, VCE decreases, reducing the available signal swing.

Effect on AC Parameters

1. re:

- o re=VT / IE
- With VT increasing linearly and IC increasing exponentially, re decreases:

$$re \propto \frac{1}{Ic}$$

o At 25°C, re=5.284Ω

o At 60 oC, assuming IC doubles (IC ≈ 9.84mA): re = 26m / 9.84 = 2.64 Ω

2. Open-Circuit Voltage Gain (Avo):

$$\circ \quad \mathsf{Avo} = \frac{Rc}{re + Re}$$

o At 25°C: re=5.284, Avo =
$$\frac{390}{5.284+1}$$
 = 62.06

o At 60 °C, re=2.64Ω, Avo =
$$\frac{390}{2.64+1}$$
 = 110.57

o The gain increases with temperature, which may lead to distortion.

3. Input Resistance (Rin):

- \circ Rin=(1+ β) (re + RE)
- o At 25°C, Rin=43.9kΩ
- o At 60 oC, re=2.64Ω, Rin=101 x (2.64Ω+1Ω) = 26.56kΩ
- o Rin decreases, which could cause input signal distortion.

4. Output Resistance (Rout):

o Rout is determined primarily by RC || RL and is less affected by temperature.

Signal Swing

The signal swing is determined by the maximum VCE variation. For proper operation, VCE must remain above the saturation voltage (VCE (sat)) and below VCC.

1. Maximum VCE:

o At 25 °C, IC=4.92mA, VCE (max) =
$$15V-(4.92mA \cdot 390\Omega) = 13.08V$$

2. Minimum VCE:

o VCE (min)=2V

3. Signal Swing:

$$\Delta VCE = VCE (max) - VCE (min) = 13.08V - 2V = 11.08V$$

Using the open-circuit voltage gain Av=62.06

VP = 11.08/62.06 = 178.5mV this is too low, we take 300mV to achieve our requirements

> Conflicting Requirements and Tradeoffs

1. Voltage Gain vs. Thermal Stability:

- o To achieve a gain of 60, RE was minimized, reducing thermal stability.
- This tradeoff can be mitigated by adding a bypass capacitor across RE, maintaining Avo while improving thermal stability.

2. Input Resistance vs. Voltage Gain:

o Increasing RE improves Rin but reduces Avo. The chosen RE balances both requirements.

3. Output Resistance vs. Signal Swing:

 A lower RC reduces Rout but also limits signal swing. The chosen RC provides an acceptable balance.

T - Model

$$Rin = \frac{Vi n}{Vsig-Vin} \times Rx$$

Rx is RSIG we take it $1k\Omega$

$$Rin = \frac{300m}{306.2m - 300m} \times 1k = 48.3k > 40k\Omega$$

$$VL = \frac{RL}{Ro + RL} \times VOUT$$

$$Ro = \frac{Vout - VL}{VL} \times RL$$

$$=\frac{260.3m - 300m}{260.3m} \times 2.2k$$

= 335.5Ω

Output Impedance

Zout \approx RC || RL < 500 Ω