DEEP LEARNING FOR ARTIFICIAL INTELLIGENCE

Master Course UPC ETSETB TelecomBCN Barcelona, Autumn 2017.

Instructors

Organizers

aws educate

+ info: http://dlai.deeplearning.barcelona

[course site]

Day 1 Lecture 2

The Perceptron

Xavier Giro-i-Nieto xavier.giro@upc.edu

Associate Professor Universitat Politecnica de Catalunya Technical University of Catalonia

Acknowledgements

Santiago Pascual

Kevin McGuinness

kevin.mcguinness@dcu.ie

Video lecture (DLSL 2017)

Outline

- 1. Supervised learning: regression/classification
- 2. Single neuron models (perceptrons)
 - a. Linear regression
 - b. Logistic regression
 - C. Multiple outputs and softmax regression

Yann Lecun's Black Forest cake

"Pure" Reinforcement Learning (cherry)

- The machine predicts a scalar reward given once in a while.
- A few bits for some samples

Supervised Learning (icing)

- The machine predicts a category or a few numbers for each input
- Predicting human-supplied data
- 10→10,000 bits per sample

Unsupervised/Predictive Learning (cake)

- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- Millions of bits per sample

(Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)

We can categorize three types of learning procedures:

1. Supervised Learning:

$$\mathbf{y} = f(\mathbf{x})$$

2. Unsupervised Learning:

$$f(\mathbf{x})$$

3. Reinforcement Learning:

$$\mathbf{y} = f(\mathbf{x})$$

Z

We can categorize three types of learning procedures:

1. Supervised Learning:

$$\mathbf{y} = f(\mathbf{x})$$

2. Unsupervised Learning:

$$f(\mathbf{x})$$

3. Reinforcement Learning:

$$\mathbf{y} = f(\mathbf{x})$$

Z

		LECTURES (D5-010)		LAB
Week	Tuesday	15:00	16:00	17:00
1	19/9/2017	Welcome (XG)	Perceptron (XG)	Getting Started (JT)
2	26/9/2017	Multilayer Perceptron (ES)	Visit BSC (JT)	Visit BSC (JT)
3	3/10/2017	Layers (ES)	Frameworks (JT)	Keras & Tensorboard (JT)
4	10/10/2017	Backpropagation (VV)	Software stack (JT)	PyTorch (JT)
5	17/10/2017	Optimizers (VV)	Computational requirements (JT)	Project (XG)
6	24/10/2017	Loss function (JR)	Transfer learning (RM)	TensorFlow (JT)
7	31/10/2017	Methodology (JR)	Incremental (RM)	GPU (JT)
8	7/11/2017	Midterm (ES)	Midterm (ES)	Project (XG)
9	14/11/2017	RNNs (MRC)	Gated RNNs (MRC)	Project (XG)
10	21/11/2017	Attention (MRC)	Reinforcement (XG)	Project (XG)
11	28/11/2017	Unsupervised (XG)	Generative (SP)	GAN (SP)
12	5/12/2017	HOLIDAYS	HOLIDAYS	HOLIDAYS
13	12/12/2017	Project presentations (XG)	Project presentations (MRC)	Project presentations (ES)
14	19/12/2017	Jose M. Álvarez (XG)	Cristian Canton (XG)	Sponsors & Logistics (ES)

We can categorize three types of learning procedures:

1. Supervised Learning:

$$\mathbf{y} = f(\mathbf{x})$$

2. Unsupervised Learning:

$$f(\mathbf{x})$$

3. Reinforcement Learning:

$$\mathbf{y} = f(\mathbf{x})$$

Z

We can categorize three types of learning procedures:

1. Supervised Learning:

We have a labeled dataset with pairs (**x**, **y**), e.g. classify a signal window as containing speech or not:

$$\mathbf{x}_{1} = [x(1), x(2), ..., x(T)] \quad \mathbf{y}_{1} = \text{"no"} \\ \mathbf{x}_{2} = [x(T+1), ..., x(2T)] \quad \mathbf{y}_{2} = \text{"yes"} \\ \mathbf{x}_{3} = [x(2T+1), ..., x(3T)] \quad \mathbf{y}_{3} = \text{"yes"} \\ ...$$

Supervised learning

Fit a function: y = f(x), $x \in \mathbb{R}^m$

Given paired training examples $\{(\mathbf{x}_i, \mathbf{y}_i)\}$

Key point: generalize well to unseen examples

Black box abstraction of supervised learning

Regression vs Classification

Depending on the type of target y we get:

• Regression: $y \in \mathbb{R}^N$ is continuous (e.g. temperatures $y = \{19^\circ, 23^\circ, 22^\circ\}$)

• Classification: y is discrete (e.g. $y = \{1, 2, 5, 2, 2\}$).

Regression vs Classification

Depending on the type of target **y** we get:

• Regression: $y \in \mathbb{R}^N$ is continuous (e.g. temperatures $y = \{19^\circ, 23^\circ, 22^\circ\}$)

• Classification: y is discrete (e.g. y = {1, 2, 5, 2, 2}).

Linear Regression (eg. 1D input - 1D ouput)

Linear Regression (eg. 1D input - 1D ouput)

Linear Regression (M-D input)

Input data can also be M-dimensional with vector **x**:

$$y = \mathbf{w}^{T} \cdot \mathbf{x} + b = w1 \cdot x1 + w2 \cdot x2 + w3 \cdot x3 + ... + wM \cdot xM + b$$

e.g. we want to predict the **price of a house (y)** based on:

$$x2,3 = location (lat, lon)$$

$$y = price = w1 \cdot (sqm) + w2 \cdot (lat) + w3 \cdot (lon) + w4 \cdot (yoc) + b$$

Regression vs Classification

Depending on the type of target **y** we get:

• Regression: $y \in \mathbb{R}^N$ is continuous (e.g. temperatures $y = \{19^\circ, 23^\circ, 22^\circ\}$)

• Classification: y is discrete (e.g. $y = \{1, 2, 5, 2, 2\}$).

Binary Classification (eg. 2D input, 1D ouput)

Multi-class Classification

Produce a classifier to map from pixels to the digit.

- ▶ If images are grayscale and 28×28 pixels in size, then $\mathbf{x}_i \in \mathbb{R}^{784}$
- $y_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Example of a **multi-class classification** task.

Multi-class Classification

- **Classification: y** is discrete (e.g. **y** = {1, 2, 5, 2, 2}).
 - Beware! These are unordered categories, not numerically meaningful outputs: e.g. code[1] = "dog", code[2] = "cat", code[5] = "ostrich", ...
 - Classes are often coded as one-hot vector (each class corresponds to a different dimension of the output space)

One-hot representation

Both <u>regression</u> and <u>classification</u> problems can be addressed with the perceptron:

The Perceptron is seen as an **analogy** to a biological neuron.

Biological neurons fire an impulse once the sum of all inputs is over a threshold.

The perceptron acts like a switch (learn how in the next slides...).

Rosenblatt's Perceptron (1958)

Weights and bias are the parameters that define the behavior (must be learned).

The output y is derived from a sum of the weighted inputs plus a bias term.

Single neuron model: Regression

The perceptron can solve <u>regression</u> problems when f(a)=a. [identity]

The perceptron can solve <u>classification</u> problems when $f(a)=\sigma(a)$. [sigmoid]

The perceptron can solve <u>classification</u> problems when $f(a)=\sigma(a)$. [sigmoid]

The **sigmoid function** $\sigma(x)$ or **logistic curve** maps any input x between [0,1]:

$$f(x)=rac{1}{1+e^{-x}}$$

For classification, regressed values must be bounded between 0 and 1 to represent probabilities.

Setting a **threshold (thr)** at the output of the perceptron allows solving classification problems between two classes (binary) & estimate probabilities:

Setting a **threshold (thr)** at the output of the perceptron allows solving classification problems between two classes (binary) & estimate probabilities:

Softmax classifier: Mulitclass

Ideally we would like to predict the probability that y takes a particular value given x,

$$P(y = j | \mathbf{x}), \quad j \in \{1, \dots, K\}$$

with:

$$\sum_{j=1}^K P(y=j|x) = 1$$

The logistic regression classifier does this for the binary case. The **softmax classifier** extends it to the multiclass case.

Softmax classifier: Multiclass

Probability estimations for each class can also be obtained by **softmax normalization** on the output of two neurons, one specialised for each class.

Softmax regression

$$P(y = k | \mathbf{x}) = \frac{\exp \mathbf{x}^T \mathbf{w}_k}{\sum_{n=1}^{N} \exp \mathbf{x}^T \mathbf{w}_n}$$

Softmax classifier: Multiclass

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \text{softmax} \begin{bmatrix} W_{1,1}x_1 + W_{1,2}x_2 + W_{1,3}x_3 + b_1 \\ W_{2,1}x_1 + W_{2,2}x_2 + W_{2,3}x_3 + b_2 \\ W_{3,1}x_1 + W_{3,2}x_2 + W_{3,3}x_3 + b_3 \end{bmatrix}$$

TensorFlow, "MNIST for ML beginners"

 $y = \operatorname{softmax}(Wx + b)$

$$egin{bmatrix} y_1 \ y_2 \ y_3 \ \end{bmatrix} = {
m softmax} \left[egin{array}{c} W_{1,1} & W_{1,2} & W_{1,3} \ W_{2,1} & W_{2,2} & W_{2,3} \ W_{3,1} & W_{3,2} & W_{3,3} \ \end{bmatrix} \cdot egin{bmatrix} x_1 \ x_2 \ x_3 \ \end{bmatrix} + egin{bmatrix} b_2 \ b_3 \ \end{bmatrix}$$

Multiple classes can be predicted by putting many neurons in parallel, each processing its binary output out of N possible classes.

Effect of the softmax

 z_5

 z_6

 z_3

 z_4

Next lecture...

Perceptrons can only produce linear decision boundaries.

Many interesting problems are not linearly separable.

Real world problems often need non-linear boundaries

- Images
- Audio
- Text

Questions?