DSM2 Bay-Delta Tutorial 3: Source Tracking (Fingerprinting)

Purpose: The purpose of this tutorial is to use the source tracking capabilities of the model to create a fingerprinting study. We will set up both volumetric and concentration-based fingerprinting and visualize the results.

1. Reopen the historical tutorial

- a. In windows, navigate to \{DSM2_home}\tutorial\historical.
- b. In the GUI, open historical_tutorial.

2. Create a model for source tracking:

In the background, source tracking imposes a computational cost on QUAL that is the same as one additional constituent per source. For this reason, it is useful to comment out source tracking.

- a. In *historical_qual_ec.inp*, locate the GROUPS include section.
- b. Uncomment the group definitions for source tracking. You may wish to review this file to see how the groups are identified.
- c. Similarly uncomment the two finger printing files the ones that have "source_track" in their names.

3. Define volumetric inputs

a. Create a file called tutorial_volumetric_fingerprint.inp. Go through each of the time series input files for QUAL and create an equivalent input that has a constant value of 100 with the constituent called volume. This step is conceptually simple, but will produce a large file – feel free to break it into several files if you prefer.

4. Define the fingerprinting output

a. Specify Clifton Court concentration output for each of the source groups that you defined for both EC and for *volume*. The name should be clifton_court, the concentration should be ec or volume and the interval should be 1day. Avoid

Tutorial 9: Source Tracking

redundancy -- you do not need to put the constituent name or the source into the output name: ie, use "clifton_court" for the name, not "clifton_ag" or "clifton_ec"

5. Run HYDRO and QUAL for One Year

a. Change the model name in qual_ec.inp and run HYDRO and QUAL for one year in 2002. Start QUAL a day later to avoid mass conservation errors in the first hour. Make sure the init_conc variable is set to zero so that there will be no initial condition contribution for any variables (note: for a volumetric fingerprint, it may be useful to make this concentration 100 if you want to include initial conditions in the fingerprint analysis).

6. Process the output

a. Use VISTA or HEC-DSSVUE to open up the output file. Copy May-September concentrations for each location. Paste the output into a new sheet in the Excel provided called excel_fingerprint.xls, which you can use as a reference. Use the "stacked area plot" in Excel (one of the standard Excel plot types) to plot up the fingerprint results.

Tutorial 9: Source Tracking