IN THE CLAIMS:

Please amend the claims as follows:

1. (Currently amended) A method of treating a trichomoniasis infection in a subject in need thereof, the method comprising administering to the subject an effective amount of a compound of Formula (I):

$$A_1-Ar_1-L-Ar_2-A_2 \tag{I}$$

wherein:

Ar₁ is and Ar₂ are each independently selected from the group consisting of:

$$(R_1)_m$$
 $(R_1)_n$
 $M=N$
and
 $(R_1)_n$
 $(R_2)_n$
 $(R_3)_n$
 $(R_4)_n$
 $(R_4)_n$
 $(R_4)_n$
 $(R_5)_n$
 $(R_7)_n$
 $(R_7$

Ar₂ is:

$$(R_1)_n$$

$$\begin{array}{c}
4 \\
7
\end{array}$$

wherein:

M, N and Z and N are each independently selected from the group consisting of N and CH;

Z is N;

Y is selected from the group consisting of NR_3 , O, S, Se, and Te, wherein R_3 is selected from the group consisting of H, alkyl, and substituted alkyl;

each m is independently an integer from 0 to 2;

each n is independently an integer from 0 to 3;

each R_1 is independently selected from the group consisting of alkyl, substituted alkyl, halo, hydroxyl, alkoxyl, aryl, substituted aryl, aryloxyl, and aralkyloxyl; and

wherein if Ar₁ or Ar₂ is:

$$(R_1)_n$$

$$\begin{array}{c}
 & Z \\
 & & Z \\
 & & & & Z
\end{array}$$

Ar₄-or Ar₂ is attached to L through a bond at carbon 2; L is selected from the group consisting of:

$$(R_2)_p \qquad (R_2)_p \qquad (R_2)_q \qquad (R_2)_q \qquad ,$$

$$(R_2)_q \qquad (R_2)_q \qquad (R_2)_q \qquad ;$$
 and
$$;$$

wherein:

p is an integer from 0 to 2;

each q is independently an integer from 0 to 4;

X is selected from the group consisting of O, S, NR₄, Se, and Te, wherein R₄ is selected from the group consisting of H, alkyl, and substituted alkyl;

each R_2 is independently selected from the group consisting of alkyl, substituted alkyl, halo, hydroxyl, alkoxyl, aryl, substituted aryl, aryloxyl, and aralkyoxyl; and

 $A_{\mbox{\scriptsize 1}}$ and $A_{\mbox{\scriptsize 2}}$ are each independently selected from the group consisting of:

wherein:

R₅, R₆, R₇, R₈, and R₉ are each independently selected from the group consisting of H, alkyl, substituted alkyl, cycloalkyl, aryl, substituted aryl, aralkyl, hydroxyl, alkoxyl, hydroxyalkyl, hydroxycycloalkyl, alkoxycycloalkyl, aminoalkyl, acyloxyl, alkylaminoalkyl, and alkoxycarbonyl; or

 R_5 and R_6 together represent a C_2 to C_{10} alkyl, C_2 to C_{10} hydroxyalkyl, or C_2 to C_{10} alkylene;

or a pharmaceutically acceptable salt thereof.

2. (Withdrawn) The method of Claim 1, wherein the compound of Formula (I) comprises a compound of Formula (II):

$$\begin{pmatrix}
R_1 \\
M = N
\end{pmatrix}_{m}
\begin{pmatrix}
R_1 \\
N = M
\end{pmatrix}_{m}$$
(II)

wherein:

each M and N is independently selected from the group consisting of N and CH;

each m is independently an integer from 0 to 2; each R_1 is independently selected from the group consisting of alkyl, substituted alkyl, halo, hydroxyl, alkoxyl, aryl, substituted aryl, aryloxyl, and aralkyloxyl;

L is selected from the group consisting of:

$$(R_2)_p$$
 $(R_2)_p$ and $(R_2)_p$

wherein:

p is an integer from 0 to 2;

each R_2 is independently selected from the group consisting of alkyl, substituted alkyl, halo, hydroxyl, alkoxyl, aryl, substituted aryl, aryloxyl, and aralkyloxyl;

X is selected from the group consisting of O, S, NR₄, Se, and Te, wherein R₄ is selected from the group consisting of H, alkyl, and substituted alkyl; and

A₁ and A₂ are each independently selected from the group consisting of:

wherein:

 R_5 , R_6 , R_7 , R_8 , and R_9 are each independently selected from the group consisting of H, alkyl, substituted alkyl, cycloalkyl, aryl, substituted aryl, aralkyl, hydroxyl, alkoxyl, hydroxyalkyl, hydroxycycloalkyl, alkoxycycloalkyl, aminoalkyl, acyloxyl, alkylaminoalkyl, and alkoxycarbonyl; or

 R_5 and R_6 together represent a C_2 to C_{10} alkyl, C_2 to C_{10} hydroxyalkyl, or C_2 to C_{10} alkylene; or a pharmaceutically acceptable salt thereof.

- 3. (Withdrawn) The method of Claim 2, wherein M and N are each CH.
- 4. (Withdrawn) The method of Claim 2, wherein L comprises:

5. (Withdrawn) The method of Claim 2, wherein L comprises:

$$(R_2)_p$$

- 6. (Withdrawn) The method of Claim 2, wherein X is oxygen.
- 7. (Withdrawn) The method of Claim 2, wherein A_1 and A_2 each comprise:

and wherein R_6 and R_7 are independently selected from the group consisting of H, alkyl, substituted alkyl, and cycloalkyl; and R_5 is selected from the group consisting of H, hydroxyl, and alkoxyl.

8. (Withdrawn) The method of Claim 2, wherein A_1 and A_2 each comprise:

$$\begin{array}{c|c}
 & NR_5 \\
 & NR_5 \\
 & NR_6 \\
 & R_7
\end{array}$$

and wherein R₅, R₆, R₇, and R₈ are each H.

9. (Withdrawn) The method of Claim 2, wherein the compound is selected from the group consisting of:

2,5-Bis(4-amidinophenyl)furan;

2,5-Bis[4-(O-methyloxyamidino)phenyl]furan;

2,5-Bis[4-(N-isopropylamidino)phenyl]furan;

2,5-Bis[4-(N-cyclohexylamidino)phenyl]furan;

2,5-Bis(4-guanidinophenyl)furan; and

3,5-Bis(4-amidinophenyl)furan.

10. (Withdrawn) The method of Claim 1, wherein the compound of Formula (I) comprises a compound of Formula (III):

wherein:

Y is selected from the group consisting of NR₃, O, S, Se, and Te, wherein R₃ is selected from the group consisting of H, alkyl, and substituted alkyl;

Z is selected from the group consisting of CH and N; each n is independently an integer from 0 to 3;

each R₁ is independently selected from the group consisting of alkyl, substituted alkyl, halo, hydroxyl, alkoxyl, aryl, substituted aryl, aryloxyl, and aralkyloxyl;

L is selected from the group consisting of:

$$(R_2)_q \qquad (R_2)_q \qquad (R_2$$

wherein:

X is selected from the group consisting of O, S, NR_4 , Se, and Te, wherein R_4 is selected from the group consisting of H, alkyl, and substituted alkyl; each q is independently an integer from 0 to 4;

each R_2 is independently selected from the group consisting of alkyl, substituted alkyl, halo, hydroxyl, alkoxyl, aryl, substituted aryl, aryloxyl, and aralkyloxyl; and

A₁ and A₂ are each independently selected from the group consisting of:

$$NR_5$$
 NR_5
 R_9 , and R_8
 R_7
 R_8

wherein:

 R_5 , R_6 , R_7 , R_8 , and R_9 are each independently selected from the group consisting of H, alkyl, substituted alkyl, cycloalkyl, aryl, substituted aryl, aralkyl, hydroxyl, alkoxyl, hydroxyalkyl, hydroxycycloalkyl, alkoxycycloalkyl, aminoalkyl, acyloxyl, alkylaminoalkyl, and alkoxycarbonyl; or

 R_5 and R_6 together represent a C_2 to C_{10} alkyl, C_2 to C_{10} hydroxyalkyl, or C_2 to C_{10} alkylene; or a pharmaceutically acceptable salt thereof.

- 11. (Withdrawn) The method of Claim 10, wherein Y is NH and Z is N.
- 12. (Withdrawn) The method of Claim 10, wherein L comprises:

13. (Withdrawn) The method of Claim 10, wherein L comprises:

14. (Withdrawn) The method of Claim 10, wherein each A₁ and A₂ comprise

and wherein R_6 and R_7 are independently selected from the group consisting of H, alkyl, substituted alkyl, and cycloalkyl; and R_5 is selected from the group consisting of H, hydroxyl, and alkoxyl.

- 15. (Withdrawn) The method of Claim 10, wherein the compound is selected from the group consisting of 4,4'-Bis{2-[(4-amidino)benzimidazoyl]}biphenyl and 2,5-Bis{2-[5-(*N*-isopropylamidino)benzimidazoyl]}benzo[b]furan.
- 16. (Currently amended) The method of Claim 1, wherein the compound of Formula (I) comprises is a compound of Formula (IV):

$$\begin{array}{c|c}
(R_1)_m & (R_1)_n \\
\hline
(R_1)_m & (R_1)_n \\
\hline
A_1 & (IV)
\end{array}$$

wherein:

M, N and Z and N are each independently selected from the group consisting of N and CH;

Z is N;

Y is selected from the group consisting of NR₃, O, S, Se, and Te, wherein R₃ is selected from the group consisting of H, alkyl, and substituted alkyl;

m is an integer from 0 to 2;

n is an integer from 0 to 3;

p is an integer from 0 to 2;

each R_1 and R_2 is independently selected from the group consisting of alkyl, substituted alkyl, halo, hydroxyl, alkoxyl, aryl, substituted aryl, aryloxyl, and aralkyloxyl;

X is selected from the group consisting of O, S, NR_4 , Se, and Te, wherein R_4 is selected from the group consisting of H, alkyl, and substituted alkyl; and A_1 and A_2 are each independently selected from the group consisting of:

$$R_5$$
 R_6 , R_8 R_9 , and R_8 R_7 R_8 R_7 R_8

wherein:

R₅, R₆, R₇, R₈, and R₉ are each independently selected from the group consisting of H, alkyl, substituted alkyl, cycloalkyl, aryl, substituted aryl, aralkyl, hydroxyl, alkoxyl, hydroxycycloalkyl, alkoxycycloalkyl, aminoalkyl, acyloxyl, alkylaminoalkyl, and alkoxycarbonyl; or

 R_5 and R_6 together represent a C_2 to C_{10} alkyl, C_2 to C_{10} hydroxyalkyl, or C_2 to C_{10} alkylene; or a pharmaceutically acceptable salt thereof.

- 17. (Canceled)
- 18. (Currently amended) The method of Claim 16, wherein Y is NH and Z is N.
- 19. (Canceled)
- 20. (Currently amended) The method of Claim 16, wherein A_1 and A_2 <u>are</u> each comprise:

wherein R₅, R₆ and R₇ are each H.

- 21. (Original) The method of Claim 16, wherein the compound is 2-(4-Amidinophenyl)-5-[2-(5-amidinobenzimidazoyl)]thiophene.
- 22. (Original) The method of Claim 1, wherein the trichomoniasis infection is caused by the protozoan parasite *Trichomonas vaginalis*.
- 23. (Currently amended) The method of Claim 1, wherein the compound of Formula (I) comprises is a prodrug.
- 24. (Original) The method of Claim 1, wherein the compound of Formula (I) is administered in the form of a pharmaceutically acceptable salt.
- 25. (Currently amended) The method of Claim 24, wherein the pharmaceutically acceptable salt comprises is a hydrochloride salt.
 - 26. (Original) The method of Claim 1, wherein the subject is a human.
- 27. (Original) The method of Claim 1, comprising administering the compound of Formula (I) orally in one of a solid or a liquid formulation.
- 28. (Original) The method of Claim 1, comprising administering the compound in a liposomal formulation.
- 29. (Original) The method of Claim 1, comprising administering the compound of Formula (I) to prevent or reduce the incidence of recurrence of the *T. vaginalis* infection.
 - 30. (Withdrawn) A compound of Formula (III):

$$\begin{array}{c|c}
(R_1)_n & (R_1)_n \\
Z & Z
\end{array}$$

$$A_1 & A_2$$
(III)

wherein:

Y is selected from the group consisting of NR₃, O, S, Se, and Te, wherein R₃ is selected from the group consisting of H, alkyl, and substituted alkyl;

Z is selected from the group consisting of CH and N; each n is independently an integer from 0 to 3;

each R_1 is independently selected from the group consisting of alkyl, substituted alkyl, halo, hydroxyl, alkoxyl, aryl, substituted aryl, aryloxyl, and aralkyloxyl;

L is selected from the group consisting of:

$$(R_2)_q \qquad (R_2)_q \qquad (R_2)_q \qquad (R_3)_q \qquad (R_4)_q \qquad (R_4$$

wherein:

X is selected from the group consisting of O, S, NR_4 , Se, and Te, wherein R_4 is selected from the group consisting of H, alkyl, and substituted alkyl; each q is independently an integer from 0 to 4;

each R_2 is independently selected from the group consisting of alkyl, substituted alkyl, halo, hydroxyl, alkoxyl, aryl, substituted aryl, aryloxyl, and aralkyloxyl; and

 A_1 and A_2 are each independently selected from the group consisting of:

$$NR_5$$
 NR_5
 R_9 , and NR_5
 R_8
 R_7
 R_8

wherein:

 R_5 , R_6 , R_7 , R_8 , and R_9 are each independently selected from the group consisting of H, alkyl, substituted alkyl, cycloalkyl, aryl, substituted aryl, aralkyl, hydroxyl, alkoxyl, hydroxyalkyl, hydroxycycloalkyl, alkoxycycloalkyl, aminoalkyl, acyloxyl, alkylaminoalkyl, and alkoxycarbonyl; or

 R_5 and R_6 together represent a C_2 to C_{10} alkyl, C_2 to C_{10} hydroxyalkyl, or C_2 to C_{10} alkylene; or a pharmaceutically acceptable salt thereof.

- 31. (Withdrawn) The compound of Claim 30, wherein Z is N and Y is NH.
- 32. (Withdrawn) The compound of Claim 30, wherein L comprises:

33. (Withdrawn) The compound of Claim 30, wherein L comprises:

34. (Withdrawn) The compound of Claim 30 wherein A_1 and A_2 each comprise:

wherein R_6 and R_7 are independently selected from the group consisting of H, alkyl, substituted alkyl and cycloalkyl; and R_5 is selected from the group consisting of H, hydroxyl, and alkoxyl.

- 35. (Withdrawn) The compound of Claim 30, wherein the compound is selected from the group consisting of 4,4'-Bis{2-[(4-amidino)benzimidazoyl]}biphenyl, 2,5-Bis{2-[5-(*N*-isopropylamidino)benzimidazoyl]}benzo[b]furan, and pharmaceutically acceptable salts thereof,
- 36. (Withdrawn) A compound of Claim 30, wherein the pharmaceutically acceptable salt is a hydrochloride salt.
 - 37. (Withdrawn) A pharmaceutical formulation comprising:
 - (a) a compound of Formula (III); and
 - (b) a pharmaceutically acceptable carrier.
 - 38. (Withdrawn) A method of preparing a compound of Formula (V):

$$(R_1)_n$$
 $(R_1)_n$
 (V)
 A_1
 A_2

wherein:

each n is independently an integer from 0 to 3;

each R_1 is independently selected from the group consisting of alkyl, substituted alkyl, halo, hydroxyl, alkoxyl, aryl, substituted aryl, aryloxyl, and aralkyloxyl;

L is selected from the group consisting of:

$$(R_2)_q \qquad (R_2)_q \qquad (R_2)_q \qquad (R_3)_q \qquad (R_4)_q \qquad (R_2)_q \qquad (R_4)_q \qquad (R_4$$

wherein each q is independently an integer from 0 to 4 and each R₂ is independently selected from the group consisting of alkyl, substituted alkyl, halo, hydroxyl, alkoxyl, aryl, substituted aryl, aryloxyl, and aralkyloxyl; and

A₁ and A₂ are each independently selected from the group consisting of:

$$NR_5$$
 NR_5
 R_9 , and R_8
 R_7
 R_8

wherein:

 R_5 , R_6 , R_7 , R_8 , and R_9 are each independently selected from the group consisting of H, alkyl, substituted alkyl, cycloalkyl, aryl, substituted aryl, aralkyl, hydroxyl, alkoxyl, hydroxyalkyl, hydroxycycloalkyl, alkoxycycloalkyl, aminoalkyl, acyloxyl, alkylaminoalkyl, and alkoxycarbonyl; or

 R_5 and R_6 together represent a C_2 to C_{10} alkyl, C_2 to C_{10} hydroxyalkyl, or C_2 to C_{10} alkylene;

the method comprising refluxing a mixture of a dialdehyde, two molar equivalents of a diamine and two molar equivalents of an aromatizing reagent in a polar, protic solvent to form a compound of Formula (V).

- 39. (Withdrawn) The method of Claim 38, wherein the dialdehyde is selected from the group consisting of 4,4'-diformyl-1,1'-biphenyl and benzo[b]furan-2,5-dicarboxaldehyde.
 - 40. (Withdrawn) The method of Claim 38, wherein the diamine is selected

from the group consisting of 4-amidino-1,2-phenylenediamine and 4-*N*-isopropylamidino-1,2-phenylenediamine.

- 41. (Withdrawn) The method of Claim 38, wherein the aromatizing reagent comprises 1,4-benzoquinone.
- 42. (Withdrawn) The method of Claim 38, wherein the polar, protic solvent comprises ethanol.
 - 43. (Withdrawn) The method of Claim 38, comprising:
 - (a) dissolving the compound of Formula (V) in a solvent to form a reaction mixture; and
 - (b) treating the reaction mixture with a solvent saturated with HCl to form a hydrochloride salt of the compound of Formula (V).