

Professora: Aurora Pozo Carga horária: 60 horas - 4 créditos Primeiro semestre de 2018

O que é Computação bioinspirada?

- Computação bioinspirada é uma importante área de pesquisa da Ciência de Computação que foca na investigação do aprendizado de máquina e técnicas de otimização, geralmente inspiradas por princípios biológicos, os quais podem ser utilizados para resolver problemas complexos através do uso de sistemas inteligentes.
- Exemplos dessas técnicas são as redes neurais, algoritmos genéticos, inteligência coletiva, técnicas de inteligência híbrida e aprendizagem por reforço. Exemplos de aplicações são a mineração de dados, bioinformática, finanças, controle, robótica, modelagem e predição de séries temporais, modelagem de fluxos de dados, redes complexas e análise de agrupamentos.

Solução de problemas

Quais itens acima devem ser colocados na mochila?

A Gryphon Investimentos S.A. gerencia recursos de terceiros para decidir a composição de uma ou mais carteira de investimentos:

Carteira de Investimentos

A Tabela 1 mostra os dados dos títulos existentes.

Determine qual o percentual do total deve ser aplicado em cada tipo título.

Título	Retorno anual	Anos para vencimento	Risco
1	8,7%	15	1 - Muito baixo
2	9,5%	12	2 - Regular
3	12,0%	8	4 - Alto
4	9,0%	7	2 - Baixo
5	13,0%	11	4 - Alto
6	20,0%	5	5 - Muito Alto

Carteira de Investimentos

Deve ser considerado que:

(B)Não mais que 25% do total aplicado deve ser investido em uma única aplicação;

Google

 $P_1 \leq 25$

 $P_2 \leq 25$

 $P_3 \leq 25$

Carteira de Investimentos

Deve ser considerado que:

(C)O total aplicado em títulos de alto risco deve ser, no máximo, de 50% do total investido;

Google

- (1) Percorrer todas as cidades.
- (2) Passar por todas apenas uma única vez.
- (3) Minimizar a distância percorrida!

Para o Problema do Caixeiro Viajante Simétrico existem (n-1)!/2 soluções distintas em termos de distância!

Problemas NP-difícil

Quanto tempo para resolver usando 1 computador capaz de fazer 1 bilhão de adições por segundo ?

Cidades	(n-1)!/2	Tempo
5	12	Insignif.
10	181440	0.001 s
15	43 bilhões	10 min
20	6.0 x 10 ¹⁶	36 anos
25	3.1 x 10 ²³	235 milhões
25	3.1 X 10-5	de anos

E para valores acima de 26 ?

Computação Bio-Inspirada

- Toma os seres vivos como fonte de inspiração para o desenvolvimento de técnicas de solução de problemas;
- Busca desenvolver ferramentas (algoritmos) para solução de problemas complexos;
- Principais frentes:
 - Redes Neurais Artificiais;
 - Computação Evolutiva;
 - Inteligência Coletiva;
 - Sistemas Imunológicos Artificiais

INTELIGÊNCIA COLETIVA

Otimização por Colônia de Formigas

Ementa

- Proporcionar aos alunos o ferramental teórico e as experiências práticas necessárias ao projeto e análise de algoritmos metaheurísticos.
- Debater as principais metaheurísticas da literatura partindo da: Representação de soluções, Vizinhança, Busca local ate as algoritmos genéticos e outros métodos populacionais assim como recozimento simulado, busca tabu, GRASP.
- Aplicar em vários contextos os conceitos teóricos desenvolvidos.

Tópicos

- Introdução
- Busca Local
- Simulated Annealing
- ► Tabu Search, Iterated Local Search
- Estrategias Evolutivas
- Algoritmos Genéticos
- Evolução Diferencial
- Particle Swarm Optimization
- Greedy Randomized Adaptive Search Procedures (GRASP)
- Ant Colony Optimization

Avaliação da disciplina

- A avaliação consistirá de um projeto: P1, mais a participação e desempenho nas atividades avaliativas em sala de aulas computacionais (T1, T2,...,T8).
- ▶ O projeto P1 tera peso de 30%.
- ▶ Para os testes {T1...T8}, serão consideradas as 7 (sete) melhores notas e feita a média MT= soma [7_melhores_T] / 7, que terá peso 30%.
- Prova Escrita PE (40%)
- A média parcial (MP) será dada por:
- $MP = 0.30 \times P1 + 0.30 \times MT + 0.4 \times PE$
- Projeto P1: Implementação computacional da técnica aplicada a um problema. Apresentação de um artigo relatando os resultados obtidos (formato de artigo: introdução, trabalhos relacionados, proposta, experimentos, discussão e resultados). Apresentação oral e escrita do trabalho

Bibliografia

- Sean Luke, 2013, *Essentials of Metaheuristics*, Lulu, second edition, available for free at http://cs.gmu.edu/~sean/book/metaheuristics/
- Software ECJ
- Manual de Computação Evolutiva e metaheuristicas
 - Antonio Gaspar Cunha, Ricardo Takahashi, Carlos Henggeler Antunes
 - ▶ Belo Horizonte Editora UFMG Coimbra, Imprensa da Universidade de Coimbra, 2013