From 1 core to Thousands: R to pbdR

George Ostrouchov^{1,2} and Drew Schmidt²

¹Oak Ridge National Laboratory, Oak Ridge, TN ²University of Tennessee, Knoxville, TN

OLCF Workshop on Processing and Analysis of Very Large Data Sets August 8, 2013

The pbdR Core Team

Wei-Chen Chen¹ George Ostrouchov^{1,2} Pragneshkumar Patel² Drew Schmidt²

299.008 Cores and 18.688 GPUs in 18.688 Nodes with 762 TB Memory

Support

Introduction to R

This work used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory. which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This work also used resources of National Institute for Computational Sciences at the University of Tennessee, Knoxville, which is supported by the Office of Cyberinfrastructure of the U.S. National Science Foundation under Award No. ARRA-NSF-OCI-0906324 for NICS-RDAV center. This work used resources of the Newton HPC Program at the University of Tennessee, Knoxville.

²University of Tennessee. Supported in part by the project "NICS Remote Data Analysis and Visualization Center" funded by the Office of Cyberinfrastructure of the U.S. National Science Foundation under Award No. ARRA-NSF-OCI-0906324 for NICS-RDAV center.

¹Oak Ridge National Laboratory. Supported in part by the project "Visual Data Exploration and Analysis of Ultra-large Climate Data" funded by U.S. DOE Office of Science under Contract No. DE-AC05-00OR22725.

Contents

- Introduction to R
- Quick Overview of Parallel Hardware and R
- 3 pbdR: programming with big data in R
- **Benchmarks**
- Challenges

Contents

- Introduction to R
 - What is R?
 - Syntax for Data Science

•000 What is R?

Introduction to R

What is R?

- lingua franca for data analytics and statistical computing.
- Part programming language, part data analysis package.
- Dialect of S (Bell Labs).
- Syntax designed for data, scoping semantics, and 2 official OOP systems.

nbdR

Introduction to R

Who uses R?

Google, Pfizer, Merck, Bank of America, Shell^a, Oracle^b, Facebook, bing, Mozilla, okcupid^c, ebay^d, kickstarter^e, the New York Times^f

```
ahttps://www.nytimes.com/2009/01/07/technology/
business-computing/07program.html?_r=0
  bhttp://www.oracle.com/us/corporate/features/
features-oracle-r-enterprise-498732.html
  chttp://www.revolutionanalytics.com/what-is-open-source-r/
companies-using-r.php
  dhttp://blog.revolutionanalytics.com/2012/09/
using-r-in-production-industry-experts-share-their-experiences.
ht.ml
  ehttp://blog.revolutionanalytics.com/2012/09/
kickstarter-facilitates-50m-in-indie-game-funding.html
   http://blog.revolutionanalytics.com/2012/05/
nyt-charts-the-facebook-ipo-with-r.html
```

0000 What is R?

What is R?

Introduction to R

Data Types

- Storage: logical, int, double, double complex, character
- Structures: vector, matrix, array, list, dataframe
- Caveats: (Logical) TRUE, FALSE, NA

Syntax for Data Science

Introduction to R

•00

High Level Syntax

Syntax for Data Science

Introduction to R

000

More than just a Matlab clone...

- Data science (machine learning, statistics, data mining, ...) is mostly matrix algebra.
 - So what about Matlab/Python/Julia/...?
- Depends on your "religion"
- As a data analysis package, R is king.

Introduction to R

000

High Level Syntax for Data

```
pca <- prcomp(x, retx=TRUE, scale=TRUE)
prop_var <- cumsum(pca$sdev)/sum(pca$sdev)
i <- min(which(prop_var > 0.9)) - 1

y <- pca$x[, 1:i]</pre>
```


pbdR

Contents

- Introduction to R
- Quick Overview of Parallel Hardware and R
- pbdR: programming with big data in R

Parallel Hardware

Introduction to R

Three Basic Flavors of Hardware

Distributed Memory

Shared Memory

Co-Processor

GPU: Graphical Processing Unit MIC: Many Integrated Core

Parallel Hardware

Introduction to R

Your Laptop or Desktop **Distributed Memory** Interconnection Network Mem Mem Mem Mem Shared Memory Local Memory

Network Memory **pbdR** 0000 000 Benchmarks 000 000000

Parallel Hardware

Introduction to R

A Server or Cluster

Distributed Memory Interconnection Network Mem Mem Mem Mem Shared Memory Network Memory

Co-Processor

GPU: Graphical Processing Unit MIC: Many Integrated Core

Introduction to R

Server to Supercomputer

Parallel Hardware

Parallel Hardware

Introduction to R

pbdR

pbdR 0000 000 Benchmarks 000 000000

R Interfaces to Parallel Hardware

R Interfaces to Native Tools virtual shared memory: nws, Rdsm Focus on who owns what data and what Sockets communication is needed **Distributed Memory** pbdMPI. socketConnection Same Task on Blocks of data Co-Processor CUDA. OpenCL **Shared Memory** OpenCL PU: Graphical Processing Unit MIC: Many Integrated Core OpenMP Focus on which tasks can be parallel OpenMP. Threads. multicore snow + multicore = parallel (fork)

Contents

- 1 Introduction to F
- 2 Quick Overview of Parallel Hardware and F
- 3 pbdR: programming with big data in R
- 4 Benchmarks
- Challenges

Introduction to R

Programming with Big Data in R (pbdR)

Productivity, Portability, Performance

- Free^a R packages.
- Bridging high-performance C with high-productivity of R
- Distributed data details implicitly managed.
- Methods have syntax identical to R.

^aMPL, BSD, and GPL licensed

Introduction to R

pbdR

0000

pbdR

Introduction to R

pbdR on HPC Resources

pbdR is currently installed and maintained on:

- Nautilus, UTK
- Kraken, UTK
- Newton, UTK
- Lens, ORNL
- tara, UMBC

If you are interested in maintaining pbdR, contact us at RBigData@gmail.com

Introduction to R

pbdR Example Syntax

```
x \leftarrow x[-1, 2:5]
x \leftarrow log(abs(x) + 1)
xtx < - t(x) %*% x
ans <- svd(solve(xtx))
```

pbdR

0000

Look familiar?

It runs on 1 core with R or on 10,000 cores with pbdR

http://r-pbd.org

Introduction to R

pbdR Paradigms

Programs that use pbdR utilize:

- Batch execution
- Single Program/Multiple Data (SPMD) style

And generally utilize:

Data Parallelism

pbdR

000

pbdR Paradigms

Introduction to R

Batch Execution

- Non-interactive
- Use

```
Rscript my_script.r
```

or

```
1 R CMD BATCH my_script.r
```

In parallel:

```
mpirun -np 2 Rscript my_par_script.r
```


pbdR

000

Introduction to R

Single Program/Multiple Data (SPMD)

- Difficult to describe, easy to do. . .
- Only one program is written, executed in batch on all processors.
- Different processors are autonomous; there is no manager.
- The dominant programming model for large machines.

Kraken: 112,896 cores in 9,408 nodes with 147 TB Memory

Contents

- Introduction to R
- Quick Overview of Parallel Hardware and R
- 3 pbdR: programming with big data in R
- 4 Benchmarks
- Challenges

Introduction to R

Truncated SVD from Random Projections¹

Prototype for Randomized SVD

Given an $m \times n$ matrix A, a target number k of singular vectors, and an exponent q (say, q=1 or q=2), this procedure computes an approximate rank-2k factorization $U\Sigma V^*$, where U and V are orthonormal, and Σ is nonnegative and diagonal.

Stage A:

- Generate an n × 2k Gaussian test matrix Ω.
- Form Y = (AA*)^QAΩ by multiplying alternately with A and A*.
 Construct a matrix Q whose columns form an orthonormal basis for the range of Y.

Stage B:

- 4 Form $B = Q^*A$.
- 5 Compute an SVD of the small matrix: $B = \tilde{U}\Sigma V^*$.
- 6 Set $U = Q\widetilde{U}$.

 $Q = Q_a$

Note: The computation of Y in step 2 is vulnerable to round-off errors. When high accuracy is required, we must incorporate an orthonormalization step between each application of A and A^* ; see Algorithm 4.4.

ALGORITIM 4.4: RANDOMIZED SUBSPACE ITERATION Given an $m \times n$ matrix A and integers ℓ and q, this algorithm computes an $m \times \ell$ orthonormal matrix Q whose range approximates the range of A. 1 Draw an $n \times \ell$ standard Gaussian matrix Ω . 2 Form $Y_0 = A\Omega$ and compute its QR factorization $Y_0 = Q_0R_0$. 3 for $j = 1, 2, \dots, q$ 4 Form $\tilde{Y}_j = A^*Q_{j-1}$ and compute its QR factorization $\tilde{Y}_j = \tilde{Q}_j\tilde{R}_j$. 5 Form $Y_j = A^*Q_{j-1}$ and compute its QR factorization $Y_j = Q_jR_j$.

Serial R

```
randSVD \leftarrow function(A, k, q=3)
2
3
         ## Stage A
4
        Omega <- matrix(rnorm(n*2*k).
5
                   nrow=n, ncol=2*k)
        Y <- A %*% Omega
6
7
        Q \leftarrow ar.Q(ar(Y))
         At \leftarrow t(A)
8
9
         for(i in 1:q)
10
11
              Y <- At %*% Q
             Q \leftarrow qr.Q(qr(Y))
12
13
             Y <- A %*% Q
             Q \leftarrow qr.Q(qr(Y))
14
15
16
17
         ## Stage B
18
        B <- t(Q) %*% A
19
        U <- La.svd(B)$u
20
        U <- Q %*% U
        U[, 1:k]
21
22
```

¹Halko, Martinsson, and Tropp, 2011. Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions *SIAM Review* **53** 217–288

Productivity Benchmark

Introduction to R

Randomized SVD

Serial R

```
randSVD \leftarrow function(A, k, q=3)
 2
         ## Stage A
         Omega <- matrix(rnorm(n*2*k),
                nrow=n. ncol=2*k)
 6
         Y <- A %*% Omega
         Q \leftarrow qr.Q(qr(Y))
 8
         At \leftarrow t(A)
 9
         for(i in 1:a)
10
11
              Y <- At %*% Q
12
              Q \leftarrow qr.Q(qr(Y))
13
              Y <- A %*% Q
14
              Q \leftarrow qr.Q(qr(Y))
15
16
17
         ## Stage B
18
         B <- t(Q) %*% A
19
         U \leftarrow La.svd(B)u
20
         U <- Q %*% U
21
         U[, 1:k]
22
```

Parallel pbdR

```
randSVD \leftarrow function(A, k, q=3)
 3
         ## Stage A
         Omega <- ddmatrix("rnorm",
                nrow=n. ncol=2*k)
6
         Y <- A %*% Omega
         Q \leftarrow qr.Q(qr(Y))
         At \leftarrow t(A)
         for(i in 1:q)
10
11
              Y <- At %*% Q
12
              Q \leftarrow qr.Q(qr(Y))
13
              Y <- A %*% Q
14
              Q \leftarrow qr.Q(qr(Y))
15
16
17
         ## Stage B
18
         B <- t(Q) %*% A
19
         U <- La.svd(B)$u</p>
         U <- Q %*% Ù
20
         U[, 1:k]
21
22
```


Productivity Benchmark

Introduction to R

Non-Optimal Choices Throughout

- Only libre software used (no MKL, ACML, etc.).
- 2 1 core = 1 MPI process.
- No tuning for data layout.

Benchmark Data

- Random normal N(100, 10000).
- 2 Local problem size of $\approx 45.5MB$.
- **3** Three sets: 500, 1000, and 2000 columns.
- Several runs at different core sizes within each set.

Introduction to R

Covariance Code

```
x <- ddmatrix("rnorm", nrow=n, ncol=p, mean=mean, sd=sd)
2
  cov.x \leftarrow cov(x)
```


Introduction to R

Linear Model Code

```
x <- ddmatrix("rnorm", nrow=n, ncol=p, mean=mean, sd=sd)
  beta_true <- ddmatrix("runif", nrow=p, ncol=1)</pre>
3
4
  y <- x %*% beta_true
5
  beta_est <- lm.fit(x=x, y=y)$coefficients
```


Introduction to R

Data Generation

Introduction to R

lm.fit()

Contents

- Introduction to R
- 2 Quick Overview of Parallel Hardware and R
- 3 pbdR: programming with big data in R
- 4 Benchmarks
- 6 Challenges

Challenges

Introduction to R

Challenges

- Perceptions.
- Library loading.
- Profiling.

Challenges

Introduction to R

Adding More Levels of Parallelism

Distributed Memory (cluster nodes)
Shared Memory (multicore)
Co-Processor (GPU, manycore)

- pbdDMAT + CUBLAS: near term on Titan
- pbdDMAT ScaLAPACK + DPLASMA: QR only
- pbdDMAT + PLASMA or MKL or ACML: often helps
- pbdDMAT + MAGMA: may not help

Challenges

Introduction to R

Tutorials

- OLCF Very Large Data Workshop ... NEXT!
- Seoul National University, August 20
- SC13, November 17-22, Denver

Invited Talks

- International Association for Statistical Computing, Aug 22-23, Seoul
- 59th ISI World Statistics Congress, August 25-30, Hong Kong

pbdR

Thanks for coming!

Introduction to R

Questions?

Be sure to stick around for the tutorial!

