Filière MP

Soient a et b tels que $-\infty \le a < b \le +\infty$ et f une fonction de a, b dans a, de classe a sur a, a.

f est dite absolument monotone (en abrégé AM) si

$$\forall n \in \mathbb{IN}, \forall x \in [a,b[,f^{(n)}(x) \geq 0].$$

f est dite complètement monotone (en abrégé CM) si

$$\forall n \in \mathbb{IN}, \forall x \in]a,b[,(-1)^n f^{(n)}(x) \geq 0.$$

Partie I -

- **I.A** Soient f et g deux fonctions AM définies sur]a, b[. Montrer que f + g et fg sont AM. Qu'en est-il pour les fonctions CM ?
- **I.B** Si f est une fonction AM sur]a,b[, montrer par récurrence que e^f l'est aussi.
- **I.C** Soient $f:]a, b[\to \mathbb{R} \text{ et } g:]-b, -a[\to \mathbb{R} \text{ définie par} : g(x) = f(-x). Montrer que <math>f \text{ est AM sur }]a, b[\text{ si, et seulement si, } g \text{ est CM sur }]-b, -a[.$

I.D -

- I.D.1) Vérifier que la fonction –ln est CM sur [0, 1].
- I.D.2) Montrer que $f:]0, 1[\rightarrow \mathbb{R}$ définie par

$$f(x) = \frac{1}{\sqrt{1-x^2}}$$

est AM sur]0, 1[.

- I.D.3) Montrer que la fonction arcsin est AM sur]0, 1[.
- I.D.4) Montrer que la fonction tan est AM sur $]0, \frac{\pi}{2}[$.

I.E -

I.E.1) On suppose dans cette question que $a \in \mathbb{R}$ et f est AM sur]a,b[. Montrer qu'il existe $\lambda \in \mathbb{R}$ tel que

$$\lambda = \lim_{a^+} f$$
.

On prolonge f en posant $f(a) = \lambda$. Montrer que f est dérivable à droite en a, et que f' est continue à droite en a.

- I.E.2) Plus généralement, montrer que f est indéfiniment dérivable à droite en a avec des dérivées positives ou nulles. Le même phénomène se produit-il en b?
- **I.F** On suppose dans cette question $0 \le a < b < +\infty$.

On note $C_{a,b}$ l'espace vectoriel des fonctions continues de [a,b] dans \mathbb{R} .

On rappelle qu'une fonction f de $C_{a,b}$ est dite positive si, pour tout $x \in [a,b]$, $f(x) \ge 0$.

Une application $\mu: C_{a,b} \to \mathbb{R}$ est appelée forme linéaire positive si elle est linéaire et si, de plus, on a :

$$\forall f \in C_{a,b}, f \ge 0 \Rightarrow \mu(f) \ge 0.$$

Soit μ une forme linéaire positive et e_x la fonction définie par $e_x(t) = e^{-xt}$ si $t \in [a,b]$. On pose $\tilde{\mu}(x) = \mu(e_x)$.

- I.F.1) Soit $f \in C_{a,b}$, montrer que $|\mu(f)| \le \mu(|f|)$.
- I.F.2) Montrer que : $\forall f \in C_{a,b}$, $\mu(f) \le \mu(f_0) ||f||_{\infty}$ où $f_0(x) = 1$ et

$$||f||_{\infty} = \sup_{x \in [a,b]} |f(x)|.$$

- I.F.3) Montrer que $\tilde{\mu}$ est positive, décroissante et continue sur [a,b].
- I.F.4) On note $e_{n,x}$ la fonction définie par : $e_{n,x}(t) = t^n e^{-xt}$ si $t \in [a,b]$. Montrer que $\varphi : [a,b] \to \mathbb{R}$ définie par $\varphi(x) = \mu(e_{n,x})$ est dérivable sur [a,b], décroissante et que : $\varphi'(x) = -\mu(e_{n+1,x})$.

On pourra justifier et utiliser le résultat suivant, vrai pour tout $u \in \mathbb{R}$:

$$0 \le e^{-u} - 1 + u \le e^{|u|} u^2 / 2$$
.

- I.F.5) Montrer que $\tilde{\mu}$ est indéfiniment dérivable sur [a, b] et que : $\tilde{\mu}^{(n)}(x) = (-1)^n \mu(e_{n,x})$. En déduire que $\tilde{\mu}$ est CM.
- I.F.6) Proposer deux exemples de formes linéaires non nulles positives μ_1 , μ_2 ; calculer $\tilde{\mu}_1$ et $\tilde{\mu}_2$.

<u>Partie II -</u>

On suppose dans cette partie que : $-\infty < a < 0 < b \le +\infty$. On utilisera librement la formule de Taylor avec reste intégrale.

II.A - Soit f une fonction AM sur]a,b[et

$$R_n(f,x) = f(x) - f(0) - \sum_{k=1}^n \frac{f^{(k)}(0)}{k!} x^k.$$

- II.A.1) Prouver que, pour n fixé, la fonction $x \mapsto R_n(f, x)/x^n$ est croissante sur]0,b[et possède une limite nulle quand x tend vers 0.
- II.A.2) Montrer que la série

$$\sum \frac{f^{(n)}(0)}{n!} x^n$$

converge pour $x \in [0,b[$. Soit g(x) sa somme, montrer que $g \le f$.

II.A.3) Déduire de II.A.1 et II.A.2 que : g = f sur [0,b[.

On pourra prendre 0 < x < y < b et montrer que

$$0 \le R_n(f,x) \le \left(\frac{x}{v}\right)^n f(y)$$
.

II.A.4) Montrer que f est développable en série entière au voisinage de 0.

On pourra poser $\varepsilon \in \{-1,1\}$, $h_{\varepsilon}(x) = f(x) + \varepsilon f(-x)$ si |x| < r et $r = \min(b, -a)$.

II.B - En suivant les indications de la question I.E, on prolonge f en a. Montrer que pour tout $x \in [a,b[$

$$f(x) = \sum_{n=0}^{\infty} f^{(n)}(a) \frac{(x-a)^n}{n!}.$$

II.C - Montrer que si f s'annule en $x_0 \in]a,b[$, alors f est nulle. Donner l'ensemble des fonctions f AM sur]a,b[telles que, pour un $p \in \mathbb{N}$ fixé, $f^{(p)}$ possède un zéro dans]a,b[.

Partie III -

On suppose dans cette partie que $-\infty < a < b < +\infty$.

Étant donné $h \in \mathbb{R}^{+^*}$, on définit sur l'ensemble des fonctions réelles d'une variable réelle les applications T_h , Δ_h et I par :

$$T_h(f)(x) = f(x+h), \Delta_h(f)(x) = f(x+h) - f(x)$$
 et $I(f)(x) = \Delta_h^0(f)(x) = f(x)$.

Plus généralement, on peut définir les opérateurs aux différences finies successifs : $\Delta_h^{n+1} = \Delta_h \circ \Delta_h^n$.

III.A - On suppose f définie sur]a,b[. Quel est l'ensemble de définition de $\Delta_h^n(f)$?

III.B - Montrer que, pour tout $n \in \mathbb{N}$,

$$\Delta_h^n(f)(x) = \sum_{k=0}^n (-1)^{n-k} C_n^k f(x+kh) \text{ où } C_n^k = \frac{n!}{k!(n-k)!}.$$

III.C - On suppose f définie et AM sur]a,b[. Montrer que, pour tout $n \in \mathbb{N}$, $\Delta_b^n(f) \ge 0$.

On pourra poser $X(h) = \Delta_h^{n+1}(f)(x)$ et exprimer X'(h) en fonction de $\Delta_h^n(f')(x+h)$.

III.D - On considère les fonctions f totalement monotones (TM) c'est-à-dire, définies sur]a,b[, de classe C^{∞} telles que :

$$\forall n \in \mathbb{N}, \forall h \in [0,(b-a)/n[, \forall x \in [a,b-nh[,\Delta_h^n(f)(x) \geq 0.$$

III.D.1) Montrer qu'une fonction TM est positive et croissante.

III.D.2) On pose

$$S_j = \sum_{k=0}^{n} (-1)^{n-k} C_n^k \frac{k^j}{j!}$$

pour $j \in \mathbb{I}\mathbb{N}$ et $\psi(t) = (e^t - 1)^n$. Déduire du calcul des dérivées successives de ψ en 0 que S_i vaut 0 si j < n et que S_n vaut 1.

III.D.3) Montrer que toute fonction TM est AM.

