Données fournies par le fabriquant du moteur :

	VOLTAGE		NO LOAD		AT MAXIMUM EFFICIENCY				STALL			
MODEL	OPERATING RANGE	NOMINAL	SPEED	CURRENT	SPEED	CURRENT	TORQUE OL		OUTPUT	TORQUE		CURRENT
			r/min	Α	r/min	Α	$mN \cdot m$	g∙cm	W	mN·m	g∙cm	Α
(RF-370CA-15370)	3 ~ 12	12V CONSTANT	5600	0.026	4840	0.17	2.48	25.3	1.25	18.3	187	1.06

Introduction:

Les mesures sont réalisées en deux parties, la première permet d'obtenir des valeurs précises de la vitesse de rotation en fonction de la tension d'alimentation et la deuxième permet de connaître la tension générée lorsque les vitesses sont les mêmes qu'à la première partie.

Méthode de mesures partie 1 :

Le moteur RF-370A-15370 est connecté à une alimentation DC, celle-ci délivre une tension de 0 à 12V par pas de 1V. A chaque saut de tension, la vitesse est mesurée à l'aide d'un tachymètre optique.

Schéma de mesures partie 1 :

Résultats partie 1 :

U in [V]	v [rpm]	Ui [V]	rendement [-]
0	0	0	0,000
1	382	0,82	0,820
2	840	1,8	0,900
3	1293	2,78	0,927
4	1750	3,75	0,938
5	2210	4,75	0,950
6	2667	5,73	0,955
7	3124	6,7	0,957
8	3584	7,69	0,961
9	4044	8,68	0,964
10	4494	9,66	0,966
11	4954	10,58	0,962
12	5406	11,52	0,960

Méthode de mesures partie 2 :

Pour cette deuxième partie, le un banc de test est composé d'un deuxième moteur DC qui permet d'entrainer le moteur RF-370A-15370. Le moteur M1 est alimenté avec une tension DC alors que le moteur M2 (RF-370A-15370) génère une tension en fonction de sa vitesse de rotation.

Schéma de mesure partie 2 :

Résultats partie 2 :

$$I_{Max} = \frac{K_E \times \omega}{R_{Rotor}} = \frac{U_i}{R_{Rotor}}$$

Ui [V]	I max [mA]	UT [V]	I min [mA]	UT [V]
0	0	0	0	0
0,82	77	0	0	0,82
1,8	168	0	0	1,8
2,78	260	0	0	2,78
3,75	350	0	0	3,75
4,75	444	0	0	4,75
5,73	536	0	0	5,73
6,7	626	0	0	6,7
7,69	719	0	0	7,69
8,68	811	0	0	8,68
9,66	903	0	0	9,66
10,58	989	0	0	10,58
11,52	1077	0	0	11,52

