Redes y Teleprocesamiento Capa de Red

Adaptado de presentación © Kurose & Ross Bibliografía: Kurose & Ross 3^{ra} Ed., Capítulo 4

Capa de Red - Contexto

Capa de Red

Objetivos de la unidad

- Comprender los principios detrás de los servicios de la capa de red
 - Ruteo, o enrutamiento (selección de la ruta)
 - Cómo funciona un router
 - Protocolo de Internet, IP
 - Tópicos avanzados (IPv6, movilidad)
- Aplicación e implementación en Internet

Capítulo 4: Capa de Red

- 4. 1 Introducción
- 4.2 Circuitos virtuales y redes de datagramas
- 4.3 ¿Qué hay dentro de un router?
- 4.4 IP: Internet Protocol
 - Formato de Datagramas
 - Direccionamiento IPv4
 - ICMP
 - IPv6

- 4.5 Algoritmo de ruteo
 - Estado de enlace
 - Vector de Distancias
 - Ruteo Jerárquico
- 4.6 Ruteo en la Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Ruteo Broadcast y Multicast

Capa de red, funciones clave

- Re-envío (forwarding)
 - Mover paquetes desde la entrada del router a su salida apropiada
- Ruteo o enrutamiento (routing)
 - Determinar la ruta que tomarán los paquetes desde el origen al destino.
 - Algoritmos de Ruteo

Analogía

- Re-envío: proceso de entrar y salir de una rotonda
- Ruteo: proceso de planear viaje de origen a destino

Funciones de reenvío y ruteo

Establecimiento de Conexión

- Luego de ruteo y re-envío, ésta es la 3ⁿ función de importancia en ciertas arquitecturas de redes:
 - X.25, Frame Relay, ATM, MPLS
- Antes de que puedan fluir datagramas, los dos hosts y los routers que intervienen establecen una conexión virtual
 - Los routers se involucran en la conexión
- Servicio de conexión en capas de Red y de Transporte
 - Red: Entre dos hosts
 - Transporte: Entre dos procesos

Modelos de servicio de la Capa de Red

¿Cuál es el modelo de servicio del canal que lleva los datagramas desde el transmisor al receptor?

Para cada datagrama individual

- Entrega garantizada
- Entrega garantizada con retardo acotado a X ms

Para un flujo de datagramas

- Entrega en orden de los datagramas
- Garantía de ancho de banda mínimo
- Restricciones a la variación del retardo

Modelos de servicio de la Capa de Red

Arquitectura de la red	Internet	ATM	ATM
Modelo de servicio	Best-effort	CBR	ABR
Garantías de ancho de banda	Ninguna	Tasa constante	Mínimo garantizado
Garantías sobre pérdidas	No	Sí	No
Orden de paquetes	No	Sí	Sí
Garantías de temporización	No	Sí	No
Indicación de congestión	No – Inferida por las pérdidas	Sin congestión	Sí

CBR = Constant bit rate ABR = Available bit rate

Capítulo 4: Capa de Red

- 4. 1 Introducción
- 4.2 Circuitos virtuales y redes de datagramas
- 4.3 ¿Qué hay dentro de un router?
- 4.4 IP: Internet Protocol
 - Formato de Datagramas
 - Direccionamiento IPv4
 - ICMP
 - IPv6

- 4.5 Algoritmo de ruteo
 - Estado de enlace
 - Vector de Distancias
 - Ruteo Jerárquico
- 4.6 Ruteo en la Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Ruteo Broadcast y Multicast

Servicios con conexión y sin conexión de la capa de Red

- Las redes de datagramas proveen servicio sin conexión en su capa de red
- Las redes de Circuitos Virtuales proveen servicio con conexión
- Análogo a los servicios de capa de Transporte, pero:
 - El servicio es host-a-host no entre procesos
 - No hay opción la capa de Red provee sólo uno de los servicios
 - La implementación está en el núcleo (core)

Circuitos virtuales (VC)

- Objetivo
 - Lograr que el camino de origen a destino se comporte aproximadamente como un circuito telefónico
- Tres fases identificables:
 - Establecimiento de la llamada
 - Transferencia de datos
 - Finalización de la llamada
- Cada paquete lleva un identificador del VC
 - Y no la dirección del host destino
- Cada router en el camino de origen a destino mantiene el "estado" por cada conexión que pasa por él
- Enlace y recursos del router (ancho de banda, buffers) pueden ser asignados al VC

Implementación de VC

- Un VC queda definido por
 - 1. Camino desde origen a destino
 - Número de VC, uno por cada enlace a lo largo del camino
 - Entradas en tablas de reenvío en los routers a lo largo del camino
- Los paquetes de cada VC llevan el número de VC correspondiente.
- El núm. de VC cambia en cada enlace
 - El nuevo número de VC se toma de la tabla de reenvío

Implementación de VC

Interfaz de entrada	Número de VC entrante	Interfaz de salida	Número de VC saliente
1	12	2	22
2	63	1	18
3	7	2	17
1	97	3	87

Establecimiento del circuito virtual

4-15

Redes de Datagramas

- El emisor pone la dirección destino en cada paquete
- No hay estado mantenido en cada router por cada conexión

Tabla de re-envío IP

- Direccionamiento IP
 - Direcciones IP destino de 32 bits
- $i2^{32} \sim 4.000.000.000$ posibles entradas!

Rango de direcciones destino	Interfaz
11001000 00010111 00010000 00000000 a	0
11001000 00010111 00010111 11111111	
11001000 00010111 00011000 00000000 a	1
11001000 00010111 00011000 11111111	
11001000 00010111 00011001 00000000 a	2
11001000 00010111 00011111 11111111	
cualquier otro caso	3

Coincidencia del prefijo más largo

Prefijo coincidente	Interfaz
11001000 00010111 00010	0
11001000 00010111 00011000	1
11001000 00010111 00011	2
cualquier otro caso	3

Dirección destino			¿Interfaz?	
11001000	00010111	00010110	10100001	
11001000	00010111	00011000	10101010	

Redes de Datagramas o de VC

Internet

- Datos que se intercambian entre computadores
 - Servicio "elástico", sin requerimientos estrictos de tiempo
- Sistemas terminales "inteligentes" (computadores)
 - Pueden adaptarse, hacer control o recuperación de errores
 - Núcleo simple, la complejidad está en la "periferia"
- Muchos tipos de enlaces
 - Características diferentes: satélite, radio, fibra, cable
 - Es difícil uniformar servicios: tasas, pérdidas, ancho de banda

ATM

- Evoluciona a partir de la telefonía
- Conversación humana
 - Tiempos estrictos, requerimientos de confiabilidad
 - Necesidad de servicios garantizados
- Sistemas terminales "bobos"
 - Teléfonos
 - Complejidad dentro de la red

4-19

Para investigar

- Las funciones de reenvío y ruteo, ¿son individuales o globales de toda la red?
- ¿Qué inconvenientes presenta la creación manual de las tablas de reenvío?
- ¿A qué función de la capa de Red se parece el acuerdo de tres vías de TCP?
- ¿En qué consiste el modelo de servicio best-effort?
- ¿En qué consiste un protocolo de señalización?
- ¿Por qué usar diferentes números de circuito virtual en diferentes enlaces?

Capítulo 4: Capa de Red

- 4. 1 Introducción
- 4.2 Circuitos virtuales y redes de datagramas
- 4.3 ¿Qué hay dentro de un router?
- 4.4 IP: Internet Protocol
 - Formato de Datagramas
 - Direccionamiento IPv4
 - ICMP
 - IPv6

- 4.5 Algoritmo de ruteo
 - Estado de enlace
 - Vector de Distancias
 - Ruteo Jerárquico
- 4.6 Ruteo en la Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Ruteo Broadcast y Multicast

Arquitectura de routers, generalidades

- Dos funciones clave de los routers
 - Correr algoritmos/protocolos de ruteo (RIP, OSPF, BGP)
 - Re-envío de datagramas desde enlaces de entrada a salida

Funciones de los puertos de entrada

- Dada la dirección destino del datagrama, se obtiene el puerto de salida usando la tabla de re-envío en memoria de ese puerto de entrada
- Objetivo
 - Procesamiento completo en puerto de entrada "a velocidad de la línea"
- Encolar si los datagramas llegan más rápido que la tasa de re-envío a la estructura de Switching Fabric

Tres tipos de estructuras de switches

Conmutación vía Memoria

Primera generación de routers

- Computador tradicional con conmutación bajo control directo de la CPU
- Los paquetes se copian a la memoria del sistema
- Velocidad limitada por ancho de banda de la memoria (por cada datagrama se cruzan dos buses)

Conmutación vía Bus

- Los datagramas transitan desde la memoria del puerto de entrada a la memoria del puerto de salida vía un bus compartido
- Competencia por el bus: la rapidez de conmutación está limitada por ancho de banda del bus

 Bus de 1 Gbps, Cisco 1900: rapidez suficiente para routers de acceso y de empresas (no router regional o backbone)

Conmutación vía una red de interconexión

- Supera limitaciones de ancho de banda del bus
- Redes de interconexión originalmente desarrolladas para conectar procesadores en multi-procesadores
- Diseño avanzado: fragmentación de datagramas en celdas de tamaño fijo, las cuales pueden ser conmutadas en la estructura más rápidamente
- Cisco 12000: conmuta a través de la red de interconexión a 60 Gbps

Puertos de Salida

- Almacenamiento (Buffering) requerido cuando los datagramas llegan desde la estructura de switches más rápido que la tasa de transmisión
- Disciplina de cola (Scheduling) elige entre los datagramas encolados para transmisión

Encolamiento en puerto de salida

- Almacenamiento cuando la tasa de llegada del switch excede la rapidez de la línea de salida.
- El buffer puede desbordar
 - Provocará retardo en cola y posibles pérdidas

Competencia en puerto de salida, tiempo t

Un paquete más tarde

Encolamiento en puerto de entrada

- Red de interconexión más lenta que las puertas de entradas combinadas
 - Puede ocurrir encolamiento en colas de entrada
- Bloqueo de principio de cola (Head Of Line, HOL): datagramas encolados al principio de la cola de entrada impiden que otros en la cola puedan seguir
- El buffer de entrada puede desbordar
 - También provocará retardo en cola y posibles pérdidas

Políticas de descarte y envío

- Descarte al ingresar a la cola
 - Drop-tail
 - Cuando no hay espacio, descartar el que llega
 - Random Early Detection (RED)
 - A la llegada de un paquete éste es marcado (para su eliminación posterior al hacer espacio en caso de llegar a lleno) o descartado dependiendo del largo promedio de la cola.
- Para el envío de paquetes
 - First-come-first-served (FCFS)
 - Como una fila en un comercio, una típica política default
 - Weighted fair queuing (WFQ)
 - Comparte el ancho de banda de salida equitativamente entre las conexiones de extremo a extremo (requiere manejar más información de estado)

Capítulo 4: Capa de Red

- 4. 1 Introducción
- 4.2 Circuitos virtuales y redes de datagramas
- 4.3 ¿Qué hay dentro de un router?
- 4.4 IP: Internet Protocol
 - Formato de Datagramas
 - Direccionamiento IPv4
 - ICMP
 - IPv6

- 4.5 Algoritmo de ruteo
 - Estado de enlace
 - Vector de Distancias
 - Ruteo Jerárquico
- 4.6 Ruteo en la Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Ruteo Broadcast y Multicast