

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME										
CENTRE NUMBER						NDIDATE MBER				
FURTHER MATI	HEMATIC	s							923	31/13
Paper 1						0	ctobe	r/Nove	ember	2018
									3 I	hours
Candidates ansv	ver on the	Questi	on Pa	per.						
Additional Materials: List of Formulae (MF10)										

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a calculator is expected, where appropriate.

Results obtained solely from a graphic calculator, without supporting working or reasoning, will not receive credit.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

1	The vectors a ,	b o	c and	d ir	n ℝ ³	are	given	hν
1	The vectors a,	ν , \cdot	cana	un	1 11/2	arc	given	υy

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 2 \\ 9 \\ 0 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 3 \\ 3 \\ 4 \end{pmatrix} \quad \text{and} \quad \mathbf{d} = \begin{pmatrix} 0 \\ -8 \\ 3 \end{pmatrix}.$$

(i)	Show that $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ is a basis for \mathbb{R}^3 .	[3]
(ii)	Express d in terms of a , b and c .	[2]

2	The roots	of the	equation

$$x^3 + px^2 + qx + r = 0$$

are α , 2α , 4α , where p, q, r and α are non-zero real constants.

$2p\alpha + q = 0.$	[4]
	••••••
	•••••
	••••••
Show that	
$p^3r - q^3 = 0.$	[2]

(ii)

$$p^3r - q^3 = 0.$$

3 The sequence of positive numbers u_1 , u_2 , u_3 , is such that $u_1 < 3$ and, for n_2	≥ 1,
--	------

$$u_{n+1} = \frac{4u_n + 9}{u_n + 4}.$$

(i)	By considering $3 - u_{n+1}$, or otherwise, prove by mathematical induction that $u_n < 3$ for all positive integers n .

© UCLES 2018

(ii)	Show that $u_{n+1} > u_n$ for $n \ge 1$.	[3]

4	A curve	is	defined	parametrically	b	y
---	---------	----	---------	----------------	---	---

$$x = t - \frac{1}{2}\sin 2t \quad \text{and} \quad y = \sin^2 t.$$

The arc of the curve joining the point where t = 0 to the point where $t = \pi$ is rotated through one complete revolution about the *x*-axis. The area of the surface generated is denoted by *S*.

) Show that	
	c^π
	$S = a\pi \int_{-\pi}^{\pi} \sin^3 t \mathrm{d}t,$

J_0	
where the constant a is to be found.	[5]
	••••••
	••••••
	••••••
	••••••

•••••
•••••

(i)	Show that $\lambda + \mu$ is an eigenvalue of the matrix $\mathbf{A} + \mathbf{B}$ with \mathbf{e} as a corresponding to the state of the matrix $\mathbf{A} + \mathbf{B}$ with \mathbf{e} as a corresponding to the state of the matrix $\mathbf{A} + \mathbf{B}$ with \mathbf{e} as a corresponding to the state of the state	esponding eigenvector.
	matrix A , given by $\mathbf{A} = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 2 & 3 \\ 1 & 0 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 2 \\ \end{pmatrix}, \begin{pmatrix} 1 \\ 4 \\ \end{pmatrix} \text{ and } \begin{pmatrix} 0 \\ 1 \\ \end{pmatrix} \text{ as eigenvectors.}$	
as ($\mathbf{A} = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 2 & 3 \\ 1 & 0 & 2 \end{pmatrix}$	
as ($\mathbf{A} = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 2 & 3 \\ 1 & 0 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix} \text{ and } \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \text{ as eigenvectors.}$	
as ($\mathbf{A} = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 2 & 3 \\ 1 & 0 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix} \text{ and } \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \text{ as eigenvectors.}$	
as ($\mathbf{A} = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 2 & 3 \\ 1 & 0 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix} \text{ and } \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \text{ as eigenvectors.}$	
as ($\mathbf{A} = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 2 & 3 \\ 1 & 0 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix} \text{ and } \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \text{ as eigenvectors.}$	
as ($\mathbf{A} = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 2 & 3 \\ 1 & 0 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix} \text{ and } \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \text{ as eigenvectors.}$	
as ($\mathbf{A} = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 2 & 3 \\ 1 & 0 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix} \text{ and } \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \text{ as eigenvectors.}$	
as ($\mathbf{A} = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 2 & 3 \\ 1 & 0 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix} \text{ and } \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \text{ as eigenvectors.}$	
as ($\mathbf{A} = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 2 & 3 \\ 1 & 0 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix} \text{ and } \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \text{ as eigenvectors.}$	

	(1)	/ 1\ /0\
The	e matrix B has eigenvalues 4, 5 and 1 with corresponding eigenvectors $\begin{pmatrix} 1\\2\\1 \end{pmatrix}$,	$\begin{pmatrix} 4 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$
resp	pectively.	(-1)
		521
(III)	Find a matrix P and a diagonal matrix D such that $(\mathbf{A} + \mathbf{B})^3 = \mathbf{PDP}^{-1}$.	[3]
		•••••
		•••••
		•••••
		••••••
		••••••
		•••••

6 The curve *C* has equation

$$y = \frac{x^2 + ax - 1}{x + 1},$$

where a is constant and a > 1.

(i)	Find the equations of the asymptotes of C .	[3]
(ii)	Show that <i>C</i> intersects the <i>x</i> -axis twice.	[1]

(iii)	Justifying your answer, find the number of stationary points on C .	[2]
(iv)	Sketch C, stating the coordinates of its point of intersection with the v-axis.	[3]

		12	
7	(i)	Use de Moivre's theorem to show that	
		$\sin 8\theta = 8\sin \theta \cos \theta (1 - 10\sin^2 \theta + 24\sin^4 \theta - 16\sin^6 \theta).$	[6]
			••••••
			••••••
			•••••
			••••••
			•••••
			••••••

(ii)	Use the equation $\frac{\sin 8\theta}{\sin 2\theta} = 0$ to find the roots of
(11)	$\sin 2\theta$
	$16x^6 - 24x^4 + 10x^2 - 1 = 0$
	10x - 24x + 10x - 1 = 0
	in the form $\sin k\pi$, where k is rational. [4]
	[]

8 The plane Π_1 has equation

$$\mathbf{r} = \begin{pmatrix} 5 \\ 1 \\ 0 \end{pmatrix} + s \begin{pmatrix} -4 \\ 1 \\ 3 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}.$$

	sian equation of I	-1.		
	······			
•••••	•••••			•••••
	equation $3x + y$		ve onesver in degrace	
			our answer in degrees.	
			our answer in degrees.	
			our answer in degrees.	
			our answer in degrees.	
			our answer in degrees.	
			our answer in degrees.	
			our answer in degrees.	
			our answer in degrees.	

(iii)	Find an equation of the line of intersection of Π_1 and Π_2 , giving your answer in the form $\mathbf{r} = \mathbf{a} + \mathbf{a}$	· λ b . [5]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

9	The curve C has polar equation	
	1	$r = 5\sqrt{\cot\theta},$

$$r = 5\sqrt{\cot\theta}$$
.

where $0.01 \le \theta \le \frac{1}{2}\pi$.

(i)	Find the area of the finite region bounded by C and the line $\theta = 0.01$, showing full working. Give your answer correct to 1 decimal place. [3]
Let .	P be the point on C where $\theta = 0.01$.
(ii)	Find the distance of P from the initial line, giving your answer correct to 1 decimal place. [2]

i)]	Find the maximum distance of C from the initial line.	
		••••••
		•••••
		••••••
		••••••
		•••••
		•••••
	Sketch C .	

		18
10	(i)	Find the particular solution of the differential equation
		$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2\frac{\mathrm{d}x}{\mathrm{d}t} + 10x = 37\sin 3t,$
		given that $x = 3$ and $\frac{dx}{dt} = 0$ when $t = 0$. [10]

Show that, for large positive	values of t and for any initial condi	itions,
Show that, for large positive	values of t and for any initial condi $x \approx \sqrt{(37)}\sin(3t - \phi)$,	itions,
	$x \approx \sqrt{(37)}\sin(3t - \phi),$	itions,
	$x \approx \sqrt{(37)}\sin(3t - \phi),$	
where the constant ϕ is such	$x \approx \sqrt{(37)}\sin(3t - \phi),$	[3]
where the constant ϕ is such the constant ϕ is such that	$x \approx \sqrt{(37)}\sin(3t - \phi),$ that $\tan \phi = 6.$	[3]
where the constant ϕ is such the constant ϕ is such that	$x \approx \sqrt{(37)}\sin(3t - \phi),$ that $\tan \phi = 6.$	[3]
where the constant ϕ is such the constant ϕ is such that	$x \approx \sqrt{(37)}\sin(3t - \phi),$ that $\tan \phi = 6.$	[3]
where the constant ϕ is such the constant ϕ is such that	$x \approx \sqrt{(37)}\sin(3t - \phi),$ that $\tan \phi = 6.$	[3]
where the constant ϕ is such	$x \approx \sqrt{(37)}\sin(3t - \phi),$ that $\tan \phi = 6.$	[3]
where the constant ϕ is such	$x \approx \sqrt{(37)}\sin(3t - \phi),$ that $\tan \phi = 6.$	[3
where the constant ϕ is such the constant ϕ is such that	$x \approx \sqrt{(37)}\sin(3t - \phi),$ that $\tan \phi = 6.$	[3
where the constant ϕ is such	$x \approx \sqrt{(37)}\sin(3t - \phi),$ that $\tan \phi = 6.$	[3
where the constant ϕ is such	$x \approx \sqrt{(37)}\sin(3t - \phi),$ that $\tan \phi = 6.$	[3
where the constant ϕ is such the constant ϕ is such that	$x \approx \sqrt{(37)}\sin(3t - \phi),$ that $\tan \phi = 6.$	[3]
where the constant ϕ is such	$x \approx \sqrt{(37)}\sin(3t - \phi),$ that $\tan \phi = 6.$	[3]
where the constant ϕ is such	$x \approx \sqrt{(37)}\sin(3t - \phi),$ that $\tan \phi = 6.$	[3]

11 Answer only **one** of the following two alternatives.

EITHER

(i)	By considering $(2r+1)^2 - (2r-1)^2$	$(1)^2$, use the method of differences to prove that	
		$\sum_{r=1}^{n} r = \frac{1}{2}n(n+1).$	[3]

$\sum_{r=1}^{n} r^3 = \frac{1}{4}n^2(n+1)^2.$	[5]

The sums S and T are defined as follows:

$$S = 1^{3} + 2^{3} + 3^{3} + 4^{3} + \dots + (2N)^{3} + (2N+1)^{3},$$

$$T = 1^{3} + 3^{3} + 5^{3} + 7^{3} + \dots + (2N-1)^{3} + (2N+1)^{3}.$$

(iii)	Use the result given in part (ii) to show that $S = (2N+1)^2(N+1)^2$. [1]
(iv)	Hence, or otherwise, find an expression in terms of N for T , factorising your answer as far as possible. [2]
(v)	Deduce the value of $\frac{S}{T}$ as $N \to \infty$. [2]

OR

The curve C has equation

x^2	+	2xy	=	v^3	_	2.
	•			. 7		

(i) Show that $A(-1, 1)$ is the only point on C with x -coordinate equal to -1 .	[2]
For $n \ge 1$, let A_n denote the value of $\frac{d^n y}{dx^n}$ at the point $A(-1, 1)$.	
(ii) Show that $A_1 = 0$.	[3]

) :	Show that $A_2 = \frac{2}{5}$.	[3]
•		
•		••••
•		
•		••••
•		••••
•		••••
•		••••
•		••••
		•••••
		••••
		••••
		••••
		•••••
•		
		••••

	•0		
T .4	$I_n = \int_{-1}^0 x^n \frac{\mathrm{d}^n y}{\mathrm{d} x^n} \mathrm{d} x.$		
Let	I . ux		
	Show that for $n \ge 2$,	$-1)^{n+1}A_{n-1} - nI_{n-1}.$	[3]
	Show that for $n \ge 2$,	$-1)^{n+1}A_{n-1} - nI_{n-1}.$	[3]
	Show that for $n \ge 2$,	$-1)^{n+1}A_{n-1} - nI_{n-1}.$	[3]
	Show that for $n \ge 2$,	$(-1)^{n+1}A_{n-1} - nI_{n-1}.$	[3]
	Show that for $n \ge 2$,	$(-1)^{n+1}A_{n-1} - nI_{n-1}.$	
	Show that for $n \ge 2$,		
	Show that for $n \ge 2$,		
	Show that for $n \ge 2$, $I_n = (-1)^n$		
	Show that for $n \ge 2$, $I_n = (-1)^n$		
	Show that for $n \ge 2$, $I_n = (-1)^n$		
	Show that for $n \ge 2$, $I_n = (-1)^n$		
	Show that for $n \ge 2$, $I_n = (-1)^n$		
	Show that for $n \ge 2$, $I_n = (-1)^n$		

v)	Deduce the value of I_3 in terms of I_1 . [2]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.