AMENDMENTS TO THE CLAIMS

This listing of claims replaces all prior versions, and listings, of claims in the application:

1	1. (Currently Amended) A method <u>executed by a computer</u> of determining a desired	
2	product corresponding to a user objective, comprising the steps of:	
3	(a) providing a first said user objective;	
4	(b) providing a first set of input data selected from one or both of wellbore data and	
5	reservoir data;	
6	(c) automatically generating a first workflow in response to the first user objective;	
7	(d) automatically selecting a first subset of one or more software modules of a first	.ool
8	and a second subset of software modules of a second tool in response to the first workflow;	
9	(e) executing said one or more software modules of the first subset on [[in]] a proce	ssor
10	in response to said first set of input data; and	
11	executing one or more software modules of the second subset on said processor in	
12	response to output from the one or more software modules of the first subset; and	
13	(f) determining a first said desired product in response to [[the]] at least executing the	<u>1e</u>
14	software modules of the first and second subsets, wherein the first said desired product incl	<u>udes</u>
15	a model of a reservoir to be produced by a well step (e).	

1	2. (Currently Amended) The method of	claim 1, further comprising:
2	(g) providing a second said user object	etive;
3	(h) providing a second set of input date	ta;
4	(i) automatically generating a second	workflow in response to the second user objective
5	(j) automatically selecting a third subs	set of one or more additional software modules of
6	the first tool and a fourth subset of software r	nodules of the second tool in response to said
7	second workflow, wherein the third subset is	different from the first subset, and the fourth
8	subset is different from the second subset;	
9	(k) executing said one or more addition	onal software modules in the third subset on said
10	processor in response to said second set of in	put data; and
11	executing one or more software modu	les in the fourth subset on said processor in
12	response to output from the one or more softy	vare modules of the third subset; and
13	(1) determining a second said desired]	product in response to the executing the software
14	modules of the third and fourth subsets step (k) .

1	3. (Currently Amended) A <u>computer-readable medium program storage device</u> readable
2	by a <u>computer</u> machine tangibly embodying a set of instructions executable by said <u>computer</u>
3	machine to perform method steps for determining a desired product corresponding to a user
4	objective, said method steps comprising:
5	(a) receiving a first said user objective;
6	(b) receiving a first set of input data selected from one or both of wellbore data and
7	reservoir data;
8	(e) automatically generating a first workflow in response to the first user objective;
9	(d) automatically selecting a first subset of one or more software modules of a first tool
10	and a second subset of software modules of a second tool in response to the first workflow;
11	(e) executing said one or more software modules in the first subset on a processor in
12	response to said first set of input data; and
13	executing one or more software modules of the second subset on said processor in
14	response to output from the one or more software modules of the first subset; and
15	(f) determining a first said desired product in response to the at least executing the
16	software modules of the first and second subsets, wherein the first said desired product includes
17	a model of a reservoir to be produced by a well step (e).

1	4. (Currently Amended) The computer-readable medium program storage device of claim
2	3, said method steps further comprising:
3	(g) receiving a second said user objective;
4	(h) receiving a second set of input data;
5	(i) automatically generating a second workflow in response to the second user objective
6	(j) automatically selecting a third subset of one or more additional software modules of
7	the first tool and a fourth subset of software modules of the second tool in response to said
8	second workflow, wherein the third subset is different from the first subset, and the fourth
9	subset is different from the second subset;
10	(k) executing said one or more additional software modules in the third subset on said
11	processor in response to said second set of input data; and
12	executing one or more software modules in the fourth subset on said processor in
13	response to output from the one or more software modules of the third subset; and
14	(1) determining a second said desired product in response to the executing the software
15	modules of the third and fourth subsets step (k).
1	5. (Currently Amended) A system responsive to a set of input data and a user objective
2	adapted for generating a desired product corresponding to said user objective, comprising:
3	first apparatus adapted for receiving a first said user objective and a first set of input
4	data selected from one or both of wellbore data and reservoir data;
5	second apparatus adapted for automatically generating a first workflow in response to
6	the first user objective;
7	third apparatus adapted for automatically selecting a first subset of one or more
8	software modules of a first tool and a second subset of software modules of a second tool in
9	response to the first workflow; and
10	processor apparatus adapted for automatically executing said one or more software
11	modules of the first subset in response to said first set of input data, executing one or more
12	software modules of the second subset in response to output from the one or more software
13	modules of the first subset, and generating a first said desired product in response to at least the
14	execution of said one or more the software modules of the first and second subsets, wherein the
15	first said desired product includes a model of a reservoir to be produced by a well.

1	6. (Currently Amended) The system of claim 5, wherein:		
2	said first apparatus receives a second said user objective and a second set of input data;		
3	said second apparatus automatically generates a second workflow in response to the		
4	second user objective;		
5	said third apparatus automatically selects a third subset of one or more additional		
6	software modules of the first tool and a fourth subset of software modules of the second tool in		
7	response to said second workflow, wherein the third subset is different from the first subset,		
8	and the fourth subset is different from the second subset; and		
9	said processor apparatus automatically executes said one or more additional software		
10	modules in the third subset in response to said second set of input data, executes one or more		
11	software modules in the fourth subset in response to output from the one or more software		
12	modules of the third subset, and generates a second said desired product in response to the		
13	execution of the said one or more additional software modules of the third and fourth subsets.		
1	7. (Currently Amended) A method <u>executed by a computer</u> for determining a final product		
2	in response to a user objective, comprising the steps of:		
3	(a) providing said user objective and providing input data selected from one or both of		
4	wellbore data and reservoir data;		
5	(b) generating a specific workflow corresponding to said user objective;		
6	(e) selecting a plurality of software modules in response to said specific workflow, said		
7	plurality of software modules including a first subset of software modules having a first		
8	predetermined sequence, and a second subset of software modules having a second		
9	predetermined sequence;		
10	(d) executing said plurality of software modules of the first subset in said first		
11	predetermined sequence in response to said input data; and		
12	executing said software modules of the second subset in said second predetermined		
13	sequence in response to output of the first subset of software modules; and		
14	(e) generating said final product when the execution of said plurality of software		
15	modules in said predetermined sequence is complete, wherein said final product includes a		
16	model of a reservoir to be produced by a well.		

8. (Cancelled)

1	9. (Currently Amended) The method of claim 7 [[8]], wherein the executing step (d)
2	comprises the steps of: executing said first subset plurality of software modules in said first
3	predetermined sequence in response to said input data thereby generating generates conditioned
4	data; and executing said second subset plurality of software modules in said second
5	predetermined sequence is in response to said conditioned data, said final product being
6	generated when the execution of said second subset plurality of software modules in said
7	second predetermined sequence is complete.
1	10. (Currently Amended) A <u>computer-readable medium</u> program storage device readable
2	by a <u>computer</u> machine tangibly embodying a set of instructions executable by the <u>computer</u>
3	machine to perform method steps for determining a final product in response to a user
4	objective, said method steps comprising:
5	(a) providing said user objective and providing input data selected from one or both of
6	wellbore data and reservoir data;
7	(b) generating a specific workflow corresponding to said user objective;
8	(e) selecting a plurality of software modules in response to said specific workflow, said
9	plurality of software modules <u>including a first subset of software modules</u> having a <u>first</u>
10	predetermined sequence, and a second subset of software modules having a second
11	predetermined sequence;
12	(d) executing said plurality of software modules of the first subset in said first
13	predetermined sequence in response to said input data; and
14	executing said software modules of the second subset in said second predetermined
15	sequence in response to output of the first subset of software modules; and
16	(e) generating said final product when the execution of said plurality of software
17	modules in said predetermined sequence is complete, wherein said final product includes a
18	model of a reservoir to be produced by a well.

Appln. Serial No. 10/726,288
Amendment Dated December 4, 2008
Reply to Office Action Mailed September 4, 2008

11. (Cancelled)

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1	12.	(Currently Amended) The <u>computer-readable medium</u> program storage device of claim
2	<u>10</u> [[1	1]], wherein the executing step (d) comprises the steps of: executing said first subset
3	plurali	ty of software modules in said first predetermined sequence in response to said input data

- 4 thereby generating generates conditioned data; and executing said second subset plurality of
- 5 software modules in said second predetermined sequence is in response to said conditioned
- data, said final product being generated when the execution of said second subset plurality of
- 7 software modules in said second predetermined sequence is complete.
- 1 13. (Currently Amended) A system adapted for determining a final product in response to a user objective, comprising:
 - first apparatus adapted for receiving said user objective and receiving input data selected from one or both of wellbore data and reservoir data;
 - second apparatus adapted for generating a specific workflow corresponding to said user objective;
 - third apparatus adapted for selecting a plurality of software modules in response to said specific workflow, said plurality of software modules including a first subset of software modules having a first predetermined sequence, and a second subset of software modules having a second predetermined sequence;
 - fourth apparatus adapted for executing said plurality of software modules of the first subset in said first predetermined sequence in response to said input data[[;]] and executing said software modules of the second subset in said second predetermined sequence in response to output of the first subset of software modules; and
 - fifth apparatus adapted for generating said final product when the execution of said plurality of software modules in said predetermined sequence is complete, wherein said final product includes a model of a reservoir to be produced by a well.

14. (Cancelled)

- 1 15. (Currently Amended) The system of claim 13 [[14]], wherein the fourth apparatus
- 2 adapted for executing said plurality of software modules in said predetermined sequence in
- 3 response to said input data comprises:
- 4 apparatus adapted for executing said first subset plurality of software modules in said
- 5 first predetermined sequence in response to said input data thereby generating generates
- 6 conditioned data; and the fourth apparatus adapted for executing said second subset plurality of
- 7 software modules in said second predetermined sequence is in response to said conditioned
- 8 data, said final product being generated when the execution of said second subset plurality of
- 9 software modules in said second predetermined sequence is complete.
- 1 16. (New) The method of claim 1, wherein executing the one or more software modules of
- 2 the first subset causes conditioning of the input data to provide the output that includes
- 3 conditioned input data.
- 1 17. (New) The method of claim 16, wherein conditioning the input data includes
- 2 interpreting the input data.
- 1 18. (New) The method of claim 1, further comprising using the reservoir model to predict
- 2 performance of producing from the reservoir.
- 1 19. (New) The computer-readable medium of claim 3, wherein executing the one or more
- 2 software modules of the first subset causes conditioning of the input data to provide the output
- 3 that includes conditioned input data.
- 1 20. (New) The computer-readable medium of claim 19, wherein conditioning the input data
- 2 includes interpreting the input data.

- 1 21. (New) The computer-readable medium of claim 3, further comprising using the
- 2 reservoir model to predict performance of producing from the reservoir.
- 1 22. (New) The system of claim 5, wherein executing the one or more software modules of
- 2 the first subset causes conditioning of the input data to provide the output that includes
- 3 conditioned input data.
- 1 23. (New) The system of claim 22, wherein conditioning the input data includes
- 2 interpreting the input data.
- 1 24. (New) The system of claim 5, wherein the processor apparatus is to further use the
- 2 reservoir model to predict performance of producing from the reservoir.
- 1 25. (New) The method of claim 7, wherein executing the first subset of software modules
- 2 causes conditioning of the input data to provide the output that includes conditioned input data.
- 1 26. (New) The method of claim 25, wherein conditioning the input data includes
- 2 interpreting the input data.
- 1 27. (New) The method of claim 7, further comprising using the reservoir model to predict
- 2 performance of producing from the reservoir.
- 1 28. (New) The computer-readable medium of claim 10, wherein executing the first subset
- 2 of software modules causes conditioning of the input data to provide the output that includes
- 3 conditioned input data.
- 1 29. (New) The computer-readable medium of claim 28, wherein conditioning the input data
- 2 includes interpreting the input data.

- 1 30. (New) The computer-readable medium of claim 10, wherein the method steps further
- 2 comprise using the reservoir model to predict performance of producing from the reservoir.
- 1 31. (New) The system of claim 13, wherein executing the first subset of software modules
- 2 causes conditioning of the input data to provide the output that includes conditioned input data.
- 1 32. (New) The system of claim 31, wherein conditioning the input data includes
- 2 interpreting the input data.
- 1 33. (New) The system of claim 13, further comprising a sixth apparatus to use the reservoir
- 2 model to predict performance of producing from the reservoir.