Lecture 1 - Basic Set Notation

Thursday, September 2, 2021 2:02 PM

Defu: Set

A set is a collection of objects.

ex. S = {1,2,3}

N = § 1, 2, 3, ... 3 "natural numbers"

Q = { m/n where m, n E [N]

Defu: Set Membership

We say "X is in S" denoted

x € S

if S confains X as an element.

Ex. 5 e N = 51, 2, 3, 4, 5, -... 3 here it is?

 $\{\chi, \gamma_3 \in \mathbb{Q}\}$

Ex. 73 & IN read: not in

	Defn: Containment
	We say "A is a subset of B" denoted
	ACB
	if xeA implies xeB. A
	Ex. \$1,2,33 CM
	Ex. QCR reals
	Ex. N & S1, 2, 33 not subset
	Defu: Set Equality We say "A is equal to B" if both A(B) and B(A.
	We write $A = B$.
	Set Operations
•	Defu: Union
	The union of A and B denoted AUB

is defined as

$$8x$$
, $A = IN$
 $B = \{-1, -2, -3, ...\}$ A \cup B
 $A \cup B = \{\pm 1, \pm 2, \pm 3, ...\}$

EX. QUR = R % QCR

Fact: If ACB then AUB = B

Defer: Intersection
We define the intersection of A and B
denoted ANB or AB as

Defn: Set Différence

We say the "différence" between A and B

denoted

A B

15 defined as

A-B= {X|XEA and X&B}

Defn: Complement

Need: Universe

A

then

Basic Theorems

(2) Associativity:
$$A \cup (B \cup C) = (A \cup B) \cup C$$

 $A(BC) = (AB) C$

led A, A, A, A, ... be subsets of S

$$\bigcup_{i=1}^{\infty} A_i = \int x \in S \mid x \in A_i \quad \text{for some } i \}$$

$$e_{X}$$
, (ef $S = (0, 1) \subset \mathbb{R}$
 e_{X} , (ef $S = [1, 1]$)

$$A_1 = 513$$
, $A_2 = [1/2, 1]$, $A_3 = [1/3, 1]$

$$\bigcup_{i=1}^{\infty} A_i = S = (0,1]$$

Defn: Cantable Intersection
The intersection of (Ai) is

We say A and B are disjoint if AB=Ø.

Defn: Pairwise Disjoint If we have a sequence (Ai) we say

they are pairwise disjoint of

$$Ai Aj = \emptyset \quad \text{for } i \neq j$$

$$\xi X. \quad A_i = [i, i+1) \quad \text{are pairwise disjoint}$$

$$\xi X. \quad A_i = \begin{bmatrix} i \\ j \end{bmatrix} \quad \text{for } i \neq j$$

$$\xi X. \quad A_i = \begin{bmatrix} i \\ j \end{bmatrix} \quad \text{are pairwise disjoint}$$

Defn: Partition

We say a seg (Ai) where Ai CS

partition S if

(b) the Ai are pairwise disjoint

(c) UA: = S

Ai (Az) Az

Defn: Power Set

The power set of a set A denoted $P(A) \quad \text{or} \quad 2^{A}$ is defined as the set of all subsets of A $2^{A} = \S B \mid B \subset A \S$ $Ex. \quad A = \S \mid_{1} Z \S \quad \text{then} \quad 2^{A} = \S \S \mid_{3} \S 2 \S, A, \emptyset \S$ $Fact: |2^{A}| = 2^{|A|}$