Национальный исследовательский Университет ИТМО Мегафакультет информационных и трансляционных технологий Факультет инфокоммуникационных технологий

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ

Билеты к экзамену. СЕМЕСТР 3

Работу

выполнили:

Бархатова Н.А.

Влазнев Д.В.

Зенкин Д.

Преподаватель:

Танченко Ю.В.

Насчет опечаток и ошибок tg: @barkhatnat 2024

СОДЕРЖАНИЕ

	Обыкновенное дифференциальное уравнение (ДУ): основные определения			
	1.1	Определение дифференциального уравнения	6	
	1.2	Порядок ДУ	(
	1.3	Теорема о первообразных	(
	1.4	Определение неопределенного интеграла	-	
2	Обыкно	венное дифференциальное уравнение (ДУ): опреде-		
	ление Д	(У, решения ДУ и их геометрический смысл. Задача		
	Коши.		8	
	2.1	Определение дифференциального уравнения	8	
	2.2	Общее решение ДУ	8	
	2.3	Частное решение ДУ	8	
	2.4	Задача Коши	(
	2.5	Виды решений	(
	2.6	Теорема "Существование и единственность решения зада-		
	чи]	Коши"(б/д)	(
3	Дифференциальные уравнения первого порядка: уравне-			
	_	зделяющимися переменными, однородное уравнения.		
	3.1	ДУ с разделенными переменными	1(
		ДУ с разделяющимися переменными		
	3.3	Однородные ДУ	11	
4	Линейное дифференциальное уравнение 1-го порядка. Ре-			
	шение методом вариации произвольной постоянной (метод			
	Лагранжа). Уравнения Бернулли			
	Уравне	Уравнение в полных дифференциалах, теорема с док-м		
5	Ľ 1	Уравнение в полных дифференциалах	1/	
5	5.1	е равнение в поливих дифференциалах	Τ	

1

	6.1	Определение ДУ 2 порядка	18
	6.2	Общее решение	18
	6.3	Геометрический смысл	18
	6.4	Частное решение	19
	6.5	Теорема о существовании и единственности решения (Тео-	
	рема	а Коши)	19
	6.6	Задача Коши и краевая задача	19
7	Диффер	ренциальные уравнения второго и высшего порядка	
	- три ти	па, решаются с помощью понижения степени через	
	замену.	••••••	21
8	Линейни	ые однородные уравнения (ЛОУ): основные опре-	
	деления	, построения решения, решение ЛОУ с постоянны-	
	ми коэф	фициентами для случая различных вещественных	
	корней х	характеристического уравнения	26
	8.1	Линейное ДУ	26
	8.2	Теорема о существовании и единственности решений	26
	8.3	Однородное линейное ДУ	26
	8.4	Свойства линейных уравнений	26
	8.5	Линейная зависимость и независимость функций	27
)	Линейни	ые однородные уравнения (ЛОУ): определения, ре-	
	шение Л	ІОУ2 с постоянными коэффициентами для случая	
	веществ	енных кратных корней характеристического урав-	
	нения		28
	9.1	Определение	28
	9.2	Корни характеристического уравнения различны	28
	9.3	Корни характеристического уравнения кратны	28
0	Линейни	ые однородные уравнения (ЛОУ): определения, ре-	
	шение Л	ІОУ2 с постоянными коэффициентами для случая	
	комплек	сных корней характеристического уравнения	29
11	Необход	имое и достаточное условие линейной независимо-	
	сти реш	ений ЛОУ2, определитель Вронского	30
	11 1	Определитель Вронского	30

	мости ряда. Гармонический ряд	44
20	Определение числового ряда, суммы ряда. Понятие сходи-	
	19.4 Геометрический ряд	43
	19.3 Сумма исходного ряда	43
	19.2 Частичная сумма	
	19.1 Числовой ряд	
	мости ряда. Геометрический ряд	
19	Определение числового ряда, суммы ряда. Понятие сходи-	40
10		_
	18.4 Метод исключения	
	чи Коши	41
	18.3 Теорема о существовании и единственности решении зада-	11
	18.2 Решение системы ДУ	
18	Системы дифференциальных уравнений. Метод исключения. 18.1 Определение	
	произвольных постоянных (Лагранжа).	
17	ЛНУ2 с постоянными коэффициентами: метод вариации	00
		30
ΤΩ	ЛНУ2 с постоянными коэффициентами: метод неопределенных коэффициентов	38
16		
	15.2 Теорема о структуре общего решения ЛНУ	
	свойства решений 15.1 Определение	
тэ	Линейное неоднородное уравнение (ЛНУ): определение,	27
1 5		
	теристического уравнения	34
	ние фундаментальной системы решений по корням харак-	
14	Линейные однородные уравнения п-ого порядка: нахожде-	
13	Фундаментальная система решений ЛОУ	33
12	Свойства определителя Вронского	32
10	<u>-</u>	
	11.2 Теорема 1 (Пеобходимое условие линейной независимости). 11.3 Теорема 2 (Достаточное условие линейной независимости).	
	11.2 Теорема 1 (Необходимое условие линейной независимости).	30

	20.1	Числовой ряд	44
	20.2	Частичная сумма	44
	20.3	Сумма исходного ряда	44
	20.4	Обобщенный гармонический ряд	44
21		а числовых рядов	45
		Свойство 1	45
		Свойство 2	45
	21.3	Свойство 3	46
22	Условия	сходимости рядов: необходимое условие, критерий	
	Коши		47
	22.1	Критерий Коши	47
		Необходимый признак сходимости числового ряда	47
	22.3	Следствие	47
23	Достато	чные условия сходимости. Признак сравнения в	
	неравен	ствах	48
	23.1	Доказательство	48
24	Достато	чные условия сходимости. Предельный признак	
	сравнен	ия	49
25	Достато	чные условия сходимости. Признак Даламбера	50
26	Достато	чные условия сходимости. Радикальный признак	
	Коши	• • • • • • • • • • • • • • • • • • • •	51
27	Достато	чные условия сходимости. Интегральный признак	
	Коши	• • • • • • • • • • • • • • • • • • • •	52
28	Знакопе	ременные ряды. Абсолютная сходимость	54
	28.1	Теорема	54
	28.2	Следствие	54
	28.3	Абсолютная и условная сходимость	54
	28.4	Свойства	54
29	Знакоче	редующиеся ряды. Теорема Лейбница	56

30	Непрерывность суммы ряда. Интегрирование рядов и диф-	
	ференцирование рядов	57
	30.1 Непрерывность суммы ряда	57
	30.2 О почленном интегрировании функционального ряда	57
	30.3 О почленном дифференцировании функционального ряда.	57
31	Степенные ряды. Сходимость. Теорема Абеля	58
	31.1 Теорема Абеля	59
32	Степенные ряды. Формулы радиусов сходимости	61
	32.1 Теорема	61
	32.2 Теорема	61
33	Ряды Тейлора и Маклорена. Определение. Условие сходи-	
	мости ряда к значению функции	62
	33.1 Ряд Тейлора	62
	33.2 Ряд Маклорена	62
	33.3 Теорема о единственности разложения в ряд Тейлора	62
	33.4 Условия разложения функции в ряд Тейлора	63
34	Разложение в ряд Маклорена элементарных функций: си-	
	нус, экспонента	64
	34.1 Разложение в ряд Маклорена для синуса	64
	34.2 Разложение в ряд Маклорена для экспоненты	64
35	Разложение в ряд Маклорена элементарных функций: би-	
	ном, логарифм	65
	35.1 Разложение в ряд Маклорена для бинома	65
	35.2 Разложение в ряд Маклорена для логарифма	65

1 Обыкновенное дифференциальное уравнение (ДУ): основные определения.

1.1 Определение дифференциального уравнения

Обыкновенным ДУ называется уравнение вида

$$F(x, y', y'', ..., y^n) = 0,$$

которое связывает саму функцию y(x), независимую переменную x и производную $y', y'', ..., y^n$.

Если искомая функция зависит от нескольких переменных, то ДУ называется дифференциальным уравнением в частных производных.

1.2 Порядок ДУ

y'=f(x) или y'=y(x) - ДУ в явном виде. Это ДУ I порядка (потому что наивысший порядок производной - 1. Соответственно уравнение II порядка будет так называться при наивысшем порядке производной - 2 и так далее)

1.3 Теорема о первообразных

Пусть функция F(x) является первообразной для функции f(x) на промежутке [a,b]. Тогда, для того чтобы функция G(x) также была первообразной для функции f(x) на том же промежутке, необходимо и достаточно, чтобы для любого $x \in [a,b]$ разность G(x) - F(x) была постоянной.

ДОКАЗАТЕЛЬСТВО

Пусть функция G(x) является первообразной для функции f(x) на промежутке [a,b]. Тогда на этом промежутке имеют место равенства F'(x)=f(x) и G'(x)=f(x), следовательно,

$$(G(x) - F(x))' = G'(x) - F'(x) = 0$$

Производная от константы равна нулю, значит G(x) - F(x) = const.

1.4 Определение неопределенного интеграла

Неопределенным интегралом от функции f(x) на промежутке [a,b] называется множество всех первообразных этой функции на этом промежутке.

2 Обыкновенное дифференциальное уравнение (ДУ): определение ДУ, решения ДУ и их геометрический смысл. Задача Коши.

2.1 Определение дифференциального уравнения

Обыкновенным ДУ называется уравнение вида

$$F(x, y', y'', ..., y^n) = 0,$$

которое связывает саму функцию y(x), независимую переменную x и про-изводную $y',y'',...,y^n$.

Если искомая функция y(x) зависит от нескольких переменных, то ДУ называется дифференциальным уравнением в частных производных.

2.2 Общее решение ДУ

Процесс нахождения решения ДУ называется его интегрированием, а графики - интегральными кривыми.

Рассмотрим ДУ F(x,y')=0. Общим решением ДУ 1-го порядка является функция $y=\phi(x,C)$, содержащая одну свободную переменную и одну константу C, удовлетворяющую условиям:

- 1. $\phi(x,C)$ является решением ДУ при любом фиксированном C.
- 2. Каково бы не было начальное условие, можно найти такое $C=C_0$, что функция $\phi(x,C)$ будет являться решением ДУ.

2.3 Частное решение ДУ

Частным решением ДУ называется функция $y=\phi(x,C_0)$, полученная из общего решения $y=\phi(x,C)$ при фиксированных значениях $x=x_0,y=y_0.$

2.4 Задача Коши

Задача поиска частного решения при $x=x_0,y=y_0$ называется задачей Коши.

2.5 Виды решений

Решение ДУ можно получить в двух видах:

- 1. В явном виде: $y(x) = \phi(x, C)$
- 2. В неявном виде (нельзя чётко выразить x через y)

 $Hanpuмep: \sin x + e^y = x + C$

В этом случае решение ДУ записывается в виде $\Phi(x, y, z) = 0$.

Задача Коши: $\Phi(x, y, C_0)$

2.6 Теорема "Существование и единственность решения задачи Коши" (б/д)

Если в ДУ y' = f(x,y) функция f(x,y) и ее частная производная $f'_y = \frac{\partial f}{\partial y}$ непрерывны в некоторой области D(x,y), содержащей точку (x_0,y_0) , то существует единственное решение уравнения $y = \phi(x,C_0)$, удовлетворяющее настоящим условиям: $y(x_0) \Leftrightarrow x = x_0, y = y_0$.

3 Дифференциальные уравнения первого порядка: уравнения с разделяющимися переменными, однородное уравнения.

Уравнение вида F(x,y,y')=0 называют ДУ первого порядка

3.1 ДУ с разделенными переменными

Уравнение вида P(x)dx + Q(y)dy = 0 называется уравнением с разделенными переменными, где P(x) и Q(y) известные непрерывные функции.

Решение

$$\int P(x)dx + \int Q(y)dy = C$$

3.2 ДУ с разделяющимися переменными

Уравнение вида $P_1(x)Q_1(y)dx + P_2(x)Q_2(y)dy = 0$, в котором коэффиценты при дифференциалах зависят от независимых переменных, называется уравнение с разделяющимися переменными.

Решение

$$P_{1}(x)Q_{1}(y)dx + P_{2}(x)Q_{2}(y)dy = 0$$

$$P_{1}(x)Q_{1}(y)dx = -P_{2}(x)Q_{2}(y)dy$$

$$\frac{P_{1}(x)}{P_{2}(x)}dx = -\frac{Q_{2}(y)}{Q_{1}(y)}dy$$

$$\int \frac{P_{1}(x)}{P_{2}(x)}dx + \int \frac{Q_{2}(y)}{Q_{1}(y)}dy = C$$

Замечание: при решении можно потерять решения

3.3 Однородные ДУ

Функция вида f(x,y) называется однородной функцией n-ого порядка относительно x и y, если при любом допустимом λ справедливо тождество:

$$f(\lambda x, \lambda y) = \lambda^n f(x, y)$$

ДУ y' = f(x,y) называется однородным относительно x,y, если f(x,y) - однородная функция нулевого порядка относительно x,y.

$$f\left(\frac{\lambda x}{\lambda y}\right) = f\left(\frac{x}{y}\right)\lambda^0$$

Решение

Решается с помощью замены:

$$U(x) = \frac{y}{x} \Rightarrow y = xU(x)$$
$$y' = x'U(x) + xU'(x) = x + xU'(x)$$

Замена должна свести ДУ к уравнению с разделяющимися переменными:

$$y' = f(x, y)$$

$$y = Ux$$

$$U'x + U = \Phi(U)$$

$$\int \frac{dU}{\Phi(U) - U} = \ln xC$$

4 Линейное дифференциальное уравнение 1-го порядка. Решение методом вариации произвольной постоянной (метод Лагранжа). Уравнения Бернулли.

ДУ первого порядка называется линейным относительно переменной у, если его можно представить в виде:

$$y' + p(x)y = q(x)$$

где p(x), q(x)— непрерывные функции на рассматриваемом отрезке. Аналогично про линейность относительно х.

Метод Бернулли

Решение линейного ДУ ищется в виде произведения 2-х функций u,v. y=u(x)v(x), где u,v - непрерывные на отрезке в области D(x,y) функции.

Решение в общем виде

$$y = u(x)v(x)$$
$$y' = u'v + v'u$$

подставим в исходное уравнение

$$u'v + v'u + p(x)uv = q(x)$$
$$u'v + u(v' + p(x)v) = q(x)$$

приравняем к нулю выражение в скобках

$$\begin{cases} v' + p(x)v = 0, (1) \\ u'v = q(x), (2) \end{cases}$$
 (4.1)

решаем (1) уравнение

$$(\frac{dv}{dx}=v'=-p(x)v$$
 - уравнение с разделяющимися)

$$\int \frac{dv}{v} = \int -p(x)dx$$

$$e^{\ln v} = e^{\int -p(x)dx}$$

$$v = e^{\int -p(x)dx}$$

5 Уравнение в полных дифференциалах, теорема с док-м.

5.1 Уравнение в полных дифференциалах

Уравнение вида

$$P(x,y)dx + Q(x,y)dy = 0$$

называется ДУ в полных дифференциалах, если

$$P(x,y)dx+Q(x,y)dy=rac{\partial U}{\partial x}dx+rac{\partial U}{\partial y}dy=dU(x,y)=0$$

$$P=rac{\partial U(x,y)}{\partial x}$$

$$Q=rac{\partial U(x,y)}{\partial y}$$

$$\int dU(x,y)=\int 0 o U(x,y)=C$$
 $U(x,y)=C$ - решение ДУ

5.2 Теорема

Для того чтобы P(x,y)dx+Q(x,y)dy было уравнением в полных дифференциалах некоторой функции U(x,y) - функции 2-х переменных необходимо и достаточно, чтобы

$$\frac{\partial P(x,y)}{\partial y} = \frac{\partial Q(x,y)}{\partial x}$$

ДОКАЗАТЕЛЬСТВО

1. Необходимость.

ДАНО: P(x,y)dx + Q(x,y)dy = 0 - ДУ в полных дифференциалах.

ДОКАЗАТЬ:
$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

Так как

$$Pdx + Qdy = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y}$$
$$\frac{\partial U}{\partial x}dx = P, \frac{\partial U}{\partial y}dy = Q$$

Рассмотрим (из того, что нужно доказать)

$$\frac{\partial P}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial U}{\partial x} \right) = \frac{\partial^2 U}{\partial y \partial x}$$

$$\frac{\partial Q}{\partial x} = \frac{\partial}{\partial x} \left(\frac{\partial U}{\partial y} \right) = \frac{\partial^2 U}{\partial x \partial y}$$

По теореме Шварца

$$\frac{\partial^2 U}{\partial y \partial x} = \frac{\partial^2 U}{\partial x \partial y} \Rightarrow$$

$$\Rightarrow \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
Ч. Т. Д

2. Достаточность.

ДАНО: $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ ДОКАЗАТЬ: $\frac{\partial U}{\partial x} dx + \frac{\partial U}{\partial y} dy = 0 = dU(x, y)$

Найдем функцию U(x,y), удовлетворяющую условиям

$$\frac{\partial U}{\partial x} = P, \frac{\partial U}{\partial y} = Q$$

Рассмотрим

$$\frac{\partial U}{\partial x} = P$$

$$\int \frac{\partial U}{\partial x} dx = \int P(x, y) dx$$

$$y = const$$

$$U(x, y) = \int P(x, y) dx + C(y)$$

$$C(y) = \phi(y)$$

Подберем const $=\phi(y),$ чтобы она не зависела от y

$$\frac{\partial U}{\partial y} = Q$$

(здесь U это $U(x,y) = \int P(x,y)dx + C(y)$

$$\frac{\partial}{\partial y} \left(\int P(x, y) dx + \phi(y) \right) = Q(x, y)$$

$$\frac{\partial}{\partial y} \left(\int P(x, y) dx + \frac{\partial}{\partial y} (\phi(y)) \right) = Q(x, y)$$

$$\frac{\partial}{\partial y} \left(\int P(x, y) dx \right) + \phi'(y) = Q(x, y)$$

$$\phi'(y) = Q(x, y) - \frac{\partial}{\partial y} \left(\int P(x, y) dx \right)$$

Докажем промежуточный результат (то, что это Q(x,y) — $\frac{\partial}{\partial y}(\int P(x,y)dx)$ зависит только от у Для этого возьмём производную по х и получим 0.

$$\frac{\partial}{\partial x}Q(x,y)-\frac{\partial}{\partial y\partial x}(\int P(x,y)dx)=$$

$$=\frac{\partial}{\partial x}Q(x,y)-\frac{\partial}{\partial y}P(x,y)=$$

$$=0$$
 т.к. ДАНО: $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$

Доказали промежуточный результат. Идем дальше.

$$U(x,y) = \int P(x,y)dx + \phi(y)$$

$$\phi'(y) = Q(x,y) - \frac{\partial}{\partial y} (\int P(x,y)dx) = \frac{d\phi}{\partial y}$$

$$\phi(y) = \int (Q(x,y) - \frac{\partial}{\partial y} (\int P(x,y)dx))dy$$

$$U(x,y) = \int P(x,y)dx + \int (Q(x,y) - \frac{\partial}{\partial y} (\int P(x,y)dx))dy$$

$$dU(x,y) = \frac{\partial U}{\partial x}dx + \frac{\partial U}{\partial y}dy = Pdx + Qdy$$

$$dU(x,y) = \frac{\partial}{\partial x} [\int Pdx + \int (Q - \frac{\partial}{\partial y} (\int Pdx))dy]dx +$$

$$\begin{split} +\frac{\partial}{\partial y} [\int P dx + \int (Q - \frac{\partial}{\partial y} (\int P dx)) dy] dy \\ dU &= (\frac{\partial}{\partial x} (\int P dx) + \frac{\partial}{\partial x} [\int (Q - \frac{\partial}{\partial y} (\int P dx)) dy] dx + \\ +\frac{\partial}{\partial y} (\int P dx) + \frac{\partial}{\partial y} [\int (Q - \frac{\partial}{\partial y} (\int P dx)) dy] dy \\ dU &= (P + 0) dx + \frac{\partial}{\partial y} \int P dx + \frac{\partial}{\partial y} (\int Q dy) - \frac{\partial}{\partial y} \int [\frac{\partial}{\partial y} \int P dx] dy = \\ &= P dx + \frac{\partial}{\partial y} \int P dx + (\frac{\partial}{\partial y} \int Q dy) dy - \frac{\partial}{\partial y} (\int P dx dy) = \\ &= P dx + \frac{\partial}{\partial y} \int P dx + (\frac{\partial}{\partial y} \int Q dy) dy - \frac{\partial}{\partial y} \int P dx = P dx + Q dx = dU \end{split}$$
 Ч. Т. Д

6 Дифференциальные уравнения второго и высшего порядка: основные определения, теоремы.

6.1 Определение ДУ 2 порядка

Уравнение, связывающее независимую переменную x, искомую функцию y и ее производные y' и y'' называется ДУ 2 порядка

$$F(x, y, y', y'') = 0$$

В частном случае может не быть х, у, у', но обязательно будет у"

Уравнение можно разрешить относительно у" и уравнение запишется в виде:

$$y'' = f(x, y, y')$$

6.2 Общее решение

Общим решением ДУ 2 порядка называется функция $y = \phi(x, C_1, C_2)$, которая удовлетворяет условиям:

- 1. При $\forall C_1, C_2$ функция $\phi(x, C_1, C_2)$ будет являться решением ДУ.
- 2. Каковы бы ни были начальные условия $y(x_0) = y_0; y'(x_0) = y'_0$ существуют единственные значения $C_{10}; C_{20}$ постоянных C_1, C_2 такие, что функция $y = \phi(x, C_{10}, C_{20})$ является решением уравнения и удовлетворяет начальным условиям.

6.3 Геометрический смысл

Общее решение представляет собой бесконечное множество кривых, которые будут проходить через начальную точку (x_0, y_0) .

6.4 Частное решение

Частным решением ДУ 2 порядка называется всякое решение $y=\phi(x,C_{10},C_{20})$, полученное из общего решения при фиксированных значениях C_1,C_2 , которые удовлетворяют начальным условиям.

Замечание

- 1. Соотношение вида $\phi(x, y, C_1, C_2) = 0$ неявно определяющее общее решение называется общим интегралом ДУ.
- 2. График частного решения называется интегральной кривой данного ДУ.

6.5 Теорема о существовании и единственности решения (Теорема Коши)

Если правая часть уравнения y'' = f(x, y, y') и ее частные производные $f'_y, f'_{y'}$ определены и непрерывны в некоторой области G переменных x, y, y', то какова бы не была внутренняя точка (x_0, y_0, y'_0) этой области, существует и при том единственное решение $y = \phi(x)$, удовлетворяющее начальным условиям.

6.6 Задача Коши и краевая задача

Для получения решения ДУ 2 порядка необходимо задание дополнительных условий. В зависимости от способа задания этих условий \exists 2 типа задач:

- 1. Задача Коши
- 2. Краевая задача

Если условия заданы только в одной точке, то получается задача Коши:

$$\begin{cases} y'' = f(x, y, y') \\ y(x_0) = y_0 \\ y'(x_0) = y'_0 \end{cases}$$
 (6.1)

Если дополнительные условия рассматриваются в боле, чем одной точке:

$$\begin{cases} y'' = f(x, y, y') \\ y(a) = y_a \\ y(b) = y_b, \end{cases}$$

$$(6.2)$$

где a, b - границы области решения ДУ

В этом случае нет теоремы Коши; в зависимости от граничных точек можно получить одно решение, бесконечное количество решений, так и их полное отсутствие.

7 Дифференциальные уравнения второго и высшего порядка три типа, решаются с помощью понижения степени через замену.

Второго порядка

1. Уравнения не содержащие y и y' Рассмотрим

$$y'' = f(x, y, y') \Rightarrow y'' = f(x)$$

Введем новую переменную

$$y' = p(x) \Rightarrow y'' = p'(x)$$

Подставляем в исходное

$$p'(x) = f(x)$$
$$p = \int f(x)dx = F(x) + C_1$$
$$y' = p = F(x) + C_1$$

 $\frac{dy}{dx} = F(x) + C_1 - \text{уравнение с разделяющимися переменными}$

$$\int dy = \int (F(x) + C_1)dx$$

 $y = \int F(x) + C_1 x + C_2$ — общее решение исходного уравнения

Пример:

$$y'' = \cos x$$

$$y' = p(x), y'' = p'(x)$$

$$p'(x) = \cos x$$

$$dp = \cos x dx$$

$$p = \sin x + C_1$$

$$\frac{dy}{dx} = \sin x + C_1$$

$$y = -\cos x + C_1 x + C_2 - \text{ответ}$$

2. Уравнения не содержащие явным образом у

$$y'' = f(x, y')$$
или $f(x, y', y'') = 0$

Введём новую переменную

$$y'=p(x)\Rightarrow y''=p'(x)$$
 $f(x,p(x),p'(x))=0$ — уравнение 1-го порядка Пусть $p(x)=y'=\phi(x,C_1)$ — решение $y'=\phi(x,C_1)\Rightarrow=\int\phi(x,C_1)dx$ $y=\int\phi(x,C_1)dx+C_2$

Пример:

$$(1+x^2)y'' = 2xy', y(1) = 0, y'(1) = 1$$

$$y' = p(x), y'' = p'(x)$$

$$(1+x^2)p'(x) = 2xp(x)$$

$$\int \frac{dp}{p(x)} = \int 2\frac{x}{1+x^2}dx$$

$$\ln |p(x)| = \ln |1+x^2| + C_1$$

$$\ln |p(x)| = \ln |1+x^2| + \ln |C_1|$$

$$p(x=(x^2+1)C_1)$$

$$\int dy = \int (x^2+1)C_1dx$$

$$y = \frac{x^3}{3}C_1 + C_1x + C_2 - \text{общее решение}$$

$$y = 0, x = 1 \Rightarrow 0 = C_1 + \frac{1}{3}C_1 + C_2$$

$$y' = 1, x = 1 \Rightarrow 1 = (1+1)C_1 \Rightarrow C_1 = \frac{1}{2}$$

 $\Rightarrow 0 = \frac{1}{2} + \frac{1}{6} + C_2 \Rightarrow C_2 = \frac{-2}{3}$
 $y = \frac{1}{2}x + \frac{1}{6}x^3 - \frac{2}{3}$ – частное решение

3. Уравнения не содержащиех в явном виде

$$f(y, y', y'') = 0$$

Введём новую переменную

$$y'_{x} = p(y) \Rightarrow y'' = p'(y) = p'_{y} \cdot y'_{x} = p'_{y}p_{y} = p'p$$
 $f(y, p(y), p'p) = 0 - ДУ$ 1-го порядка $p = \phi(x, C_{1}) - \text{решение}$ $y' = p = \phi(x, C_{1})$ $\frac{dy}{\phi(x, C_{1})} = dx$ $\int \frac{1}{\phi(x, C_{1})} dy = x + C_{2}$ $x = \int \frac{1}{\phi(x, C_{1})} dy + C_{2} - \text{общее решение}$

3амечание: если p=0, то решение уравнения $y'=p \Leftrightarrow \frac{dy}{dx}=0 \Leftrightarrow y=const\ \Pi pumep:$

$$yy''=(y')^2$$
 $y_x'=p(y)\Rightarrow y''=p'(y)=p_y'\cdot y_x'=p_y'p_y=p'p_y$ $yp'p=p^2$ $yprac{dp}{dy}=p^2$ $\int rac{dp}{p}=\int rac{dy}{y},$ пусть р $!=0$

$$\ln|p|=\ln|y|+\ln|C_1|$$
 $y'=p=yC_1$ $rac{dy}{dx}=yC_1$ $\ln|y|=C_1x+C_2$ $y=e^{C_1x+C_2}++$ решение, где $y=$ const

Высшего порядка

1.

$$y^{(n)} = f(x)$$

Сводится к 1-му порядку путем понижения

$$y^{(n-1)} = U(x), y^{(n)} = U'(x)$$
$$U'(x) = f(x)$$
$$\int dU = f(x) \int dx$$
$$U = F(x) + C_1$$
$$y^{(n-1)} = F(X) + C_1$$

. . .

Таким образом
$$y = \underbrace{\int \int \dots \int \int}_{\text{n pa3}} f(x) dx + C_1 x^{n-1} + C_2 x^{n-2} + \dots + C_n$$

2.

$$F(x, y^{(k)}, y^{(k+1)}, \dots, y^{(n)}) = 0$$

Если уравнение не содержит искомой функции и её производных до порядка k-1 включительно, то порядок ДУ можно понизить заменой переменных. Самую низшую из производных возьмем за новую переменную.

$$y^{(k)} = z(x) \Rightarrow F(x, z(x), z'(x), z''(x), \dots, z^{(n-k)}) = 0$$

$$z = \phi(x, C_1, C_2, \dots, C_{n-k})$$
 — решение
Обратная замена: $y^{(k)} = \phi(x, C_1, C_2, \dots, C_{n-k})$

Находим решение k-кратным интегрированием.

3.

$$F(y, y', \dots, y^{(n)}) = 0$$

В уравнение не входит в явном виде аргумент x

$$p(y) = y'$$
 $y'' = p'(y) = p'_y \cdot y'_x = p'_y p_y = p'p$
 $y''' = \dots = (p')^2 + p''p^2$

8 Линейные однородные уравнения (ЛОУ): основные определения, построения решения, решение ЛОУ с постоянными коэффициентами для случая различных вещественных корней характеристического уравнения.

8.1 Линейное ДУ

ДУ n-го порядка называется линейным, если оно в первой степени относительно искомой функции у и всех её производных.

$$\frac{dy}{dx}; \frac{d^2y}{dx^2}; \frac{d^3y}{dx^3}; \dots; \frac{d^ny}{dx^n}$$

$$a_0(x)y^n + a_1(x)y^{n-1} + \ldots + a_n(x)y = F(x)$$
(1)

$$a_0(x), a_1(x), \ldots, a_n(x)$$
— коэффициенты

Замечание: Если в (1) $a_0(x) \neq 0$ при $\forall x \in [a, b]$, то (1) можно поделить на a_0

$$y^{n} + p_{1}(x)y^{n-1} + \ldots + p_{n}(x)y = f(x)$$
(2)

8.2 Теорема о существовании и единственности решений

Если коэффициенты уравнения (2) $p_i(x), i \in [1, ..., n]$ и f(x) на $x \in [a, b]$ непрерывны, то для всех $x \in (a, b)$ ДУ (2) будет иметь единственное решение.

8.3 Однородное линейное ДУ

ДУ (2) вида, где правая часть f(X) = 0, то ДУ называется однородным.

8.4 Свойства линейных уравнений

1. Уравнение остается линейным при любой замене переменной $x = \phi(\xi)$ $(\phi(\xi)$ п раз дифференцируема)

2. Уравнение остается линейным при линейных преобразованиях искомой функции

$$y(x) = \beta(x)\eta + \gamma(x)$$

8.5 Линейная зависимость и независимость функций

Выражение вида $\alpha_1\phi_1(x)+(\alpha_2\phi_2(x)+\ldots+\alpha_n\phi_n(x))$, в котором $\alpha_1,\alpha_2,\ldots,\alpha_n$ - есть некоторые постоянные, а $\phi_1(x),\phi_2(x),\ldots,\phi_n(x)$ - функции, называется линейной комбинацией функций $\phi_1(x),\phi_2(x),\ldots,\phi_n(x)$.

Если существуют какие-то $\alpha_i \neq 0$ такие, что для $\forall x \in (a,b)$ верно тождество $\alpha_1\phi_1(x)+(\alpha_2\phi_2(x)+\ldots+\alpha_n\phi_n(x)=0,$ то $\phi_1(x),\phi_2(x),\ldots,\phi_n(x)$ называют линейно зависимыми функциями.

Если же не существуют такие $\alpha_i \neq 0$ такие, что для $\forall x \in (a,b)$ верно тождество $\alpha_1\phi_1(x) + (\alpha_2\phi_2(x) + \ldots + \alpha_n\phi_n(x) = 0$, то $\phi_1(x), \phi_2(x), \ldots, \phi_n(x)$ называют линейно независимыми функциями.

9 Линейные однородные уравнения (ЛОУ): определения, решение ЛОУ2 с постоянными коэффициентами для случая вещественных кратных корней характеристического уравнения.

9.1 Определение

Линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида:

$$y'' + py' + qy = 0,$$

где р, q - постоянные величины

9.2 Корни характеристического уравнения различны

Пусть корни характеристического многочлена $\lambda^n + a_1 \lambda^{n-1} + \cdots + a_n = 0$ равны $\lambda_1, \lambda_2, \cdots, \lambda_n$, вещественны и различны.

В силу подстановки Эйлера им соответствует п различных решений характеристическгого уравнения $y_1 = e^{\lambda_1 x}, \cdots, y_n = e^{\lambda_n x}$, тогда общее решение имеет вид:

$$\overline{y}(x) = C_1 e^{\lambda_1 x} + \dots + C_n e^{\lambda_n x}$$

где C_1, \cdots, C_n - произвольные постоянные

9.3 Корни характеристического уравнения кратны

Пусть λ_1 - корень характеристического уравнения кратности k, т.е характеристическое уравнение можно представить в виде:

$$(\lambda - \lambda_1)^k [b_0 \lambda^{n-k} + \dots + b_{n-k}] = 0$$

, тогда линейно независимые функции $e^{\lambda_1 x}, x e^{\lambda_1 x}, \cdots, x^{k-1} e^{\lambda_1 x}$ тоже являются решениями ДУ

Линейные однородные уравнения (ЛОУ): определения, решение ЛОУ2 с постоянными коэффициентами для случая комплексных корней характеристического уравнения.

11 Необходимое и достаточное условие линейной независимости решений ЛОУ2, определитель Вронского.

11.1 Определитель Вронского

Рассмотрим п штук функций, который зависят от x, то есть $y_1(x), \ldots, y_n(x)$ и которые имеют непрерывные производные до (n-1) порядка включительно. Тогда определителем Вронского называется функциональный определитель вида:

$$W(y_1(x), \dots, y_n(x)) = \begin{vmatrix} y_1(x) & y_2(x) & \dots & y_n(x) \\ y'_1(x) & y'_2(x) & \dots & y'_n(x) \\ y''_1(x) & y''_2(x) & \dots & y''_n(x) \\ \dots & \dots & \dots & \dots \\ y_1^{(n-1)}(x) & y_2^{(n-1)}(x) & \dots & y_n^{(n-1)}(x) \end{vmatrix}$$

11.2 Теорема 1 (Необходимое условие линейной независимости)

Если $y_i, i=1\cdots n$ линейно зависимые, то определитель Вронского равен нулю: W(x)=0.

ДОКАЗАТЕЛЬСТВО

Рассмотрим n=3. Пусть $y_1(x), y_2(x), y_3(x)$ - линейно зависимые.

Тогда по определению линейной зависимости:

$$c_1y_1 + c_2y_2 + c_3y_3 = 0$$

Пусть
$$c_3 \neq 0 \Rightarrow c_3 y_3 = -c_1 y_1 - c_2 y_2 \Rightarrow y_3 = \frac{-c_1 y_1 - c_2 y_2}{c_3} \Rightarrow$$

$$W(x) = \begin{vmatrix} y_1 & y_2 & \frac{-c_1y_1 - c_2y_2}{c_3} \\ y_1' & y_2' & \frac{-c_1y_1 - c_2y_2}{c_3} \\ y_1'' & y_2'' & \frac{-c_1y_1 - c_2y_2}{c_3} \end{vmatrix} = 0$$

Так как последний столбец является линейной комбинацией первых двух столбцов. Ч.Т.Д.

11.3 Теорема 2 (Достаточное условие линейной независимости)

Если $y_1(x),y_2(x),\ldots,y_n(x)$ являются линейно независимыми функциями, то $W(x)\neq 0$ ни в одной точке $\int [a,b]$

ДОКАЗАТЕЛЬСТВО

Используем метод от противного. Пусть W(x)=0. Рассмотрим $x_0\in(a,b)$

$$\begin{cases} C_1 y_1(x_0) + C_2 y_2(x_0) = 0 \\ C_1 y_1'(x_0) + C_2 y_2'(x_0) = 0 \end{cases}$$

$$\Delta = \begin{vmatrix} y_1(x_0) & y_2(x_0) \\ y'_1(x_0) & y'_2(x_0) \end{vmatrix} = [def] = W(x) = 0$$

Значит, система имеет решение при $C_1 = C_1^0, C_2 = C_2^0 \Rightarrow y = C_1^0 y_1 + C_2^0 y_2 -$ решение системы. Тогда y_1 можно выразить через y_2 , что противоречит условию о том, что функции линейно независимы. Ч.Т.Д.

12	Свойства	определителя	Вронского.
----	----------	--------------	------------

См. выше.

13 Фундаментальная система решений ЛОУ.

ФСР называют любую систему п-линейно независимых решений.

Теорема (о структуре общего решения ЛОУ

Если $y_1(x), y_2(x), \ldots, y_n(x)$ образуют ФСР линейного дифференциального уравнения $a_0(x)y^n+a_1(x)y^{n-1}+\ldots+a_n(x)y=0$, то общее решение будет иметь вид

$$y = C_1 y_1(x) + C_2 y_2(x) + \ldots + C_n y_n(x)$$
, где C_1, C_2, \ldots, C_n — константы Доказательство

Продифференцируем $C_1y_1(x) + C_2y_2(x) + \ldots + C_ny_n(x)$ (n-1) раз

$$\begin{cases} y = C_1 y_1(x) + C_2 y_2(x) + \dots + C_n y_n(x) \\ y' = C_1 y_1'(x) + C_2 y_2'(x) + \dots + C_n y_n'(x) \\ \vdots \\ y^{(n-1)} = C_1 y_1^{(n-1)}(x) + C_2 y_2^{(n-1)}(x) + \dots + C_n y_n^{(n-1)}(x) \end{cases}$$
(13.1)

Система линейных уравнений неоднородная из-за левой части. Рассмотрим

⇒ система имеет единственное решение, построенное на линейно независимых решениях. Ч.Т.Д.

14 Линейные однородные уравнения n-ого порядка: нахождение фундаментальной системы решений по корням характеристического уравнения.

Рассмотрим линейное однородное ДУ

$$a_1y^n + a_2y^{n-1} + \ldots + a_ny = 0$$

 $y=e^{\lambda x}$ - решение ДУ $a_1\lambda^n+a_2\lambda^{n-1}+\ldots+a_n\lambda^0=0$ - характеристическое степенное уравнение $\lambda_i\in\mathbb{C}$

Рассмотрим несколько случаев:

1. Если λ_i вещественное и различные, то $y = e^{\lambda_i x}$

$$y_{oo} = e^{\lambda_1 x} C_1 + e^{\lambda_2 x} C_2 + \ldots + e^{\lambda_n x} C_n$$

2. Если корни характеристического уравнения комплексные

Рассмотрим
$$y'' + ay' + y = 0, D < 0$$

Пусть
$$\lambda_1 = a + ib, \lambda_2 = a - ib$$

$$y_1 = e^{\lambda_1 x} = e^{(a+ib)x}, y_2 = e^{\lambda_2 x} = e^{(a-ib)x}$$

Подставим в исходное ДУ: $y = y_1C_1 + y_2C_2 = e^{(a+ib)x}C_1 + e^{(a-ib)x}C_2$

Используем формулы Эйлера:

$$e^{i\phi} = \cos\phi + i\sin\phi$$

$$e^{-i\phi} = \cos\phi - i\sin\phi$$

$$e^{(a+ib)x} = e^{ax} \cdot e^{ibx} = e^{ax} (\cos bx + i\sin bx)$$
$$e^{(a-ib)x} = e^{ax} (\cos bx - i\sin bx)$$

$$y = y_1 C_1 + y_2 C_2 = C_1 e^{ax} (\cos bx + i \sin bx) + C_2 e^{ax} (\cos bx - i \sin bx) =$$

$$= e^{ax} \cos bx (C_1 + C_2) + e^{ax} \sin bx (C_1 - C_2) = e^{ax} \cos bx C_1 + e^{ax} \sin bx C_2$$

Если ЛОУ с вещественными коэффициентами имеет комплексное решение, то действительная и мнимая части по отдельности тоже являются решением исходного уравнения

$$y_{00} = y_1C_1 + y_2C_2 = e^{ax}\cos bxC_1 + e^{ax}\sin bxC_2$$

3. Случай кратных корней характеристического уравнения $y=e^{\lambda_1 x}, \lambda_1 \in \mathbb{R}$ $y_1=e^{\lambda_1 x},$ тогда пусть $y_2=e^{\lambda_1 x}\cdot U(x),$ где U(x) - независимая функция. Так как y_2 - решение ДУ, то это удовлетворяет исходным условиям.

$$y'' + \alpha_1 y' + \alpha_2 y = 0$$

Подставим решение в исходное уравнение

$$y = e^{\lambda_1 x} U(x)$$

$$y' = e^{\lambda_1 x} \lambda_1 U(x) + e^{\lambda_1 x} U'(x)$$

$$y'' = e^{\lambda_1 x} \lambda_1^2 U(x) + e^{\lambda_1 x} \lambda_1 U'(x) + e^{\lambda_1 x} U''(x)$$

$$e^{\lambda_1 x} \lambda_1^2 U(x) + e^{\lambda_1 x} \lambda_1 U'(x) + e^{\lambda_1 x} \lambda_1 U'(x) + e^{\lambda_1 x} U''(x) +$$

$$+ \alpha_1 e^{\lambda_1 x} \lambda_1 U(x) + \alpha_2 e^{\lambda_1 x} U'(x) + \alpha_2 e^{\lambda_1 x} U(x) = 0$$

$$e^{\lambda_1 x} (\lambda_1^2 U(x) + \lambda_1 U'(x) + U''(x) + \alpha_1 \lambda_1 U(x) + \alpha_2 U'(x) + \alpha_2 U(x)) = 0$$

$$e^{\lambda_1 x} (U''(x) + U'(x)(2\lambda_1 + \alpha_2) + U(x)(\lambda_1^2 + \alpha_1 \lambda_1 + \alpha_2)) = 0$$

$$U''(x) + U'(x)(2\lambda_1 + \alpha_2) + U(x)(\lambda_1^2 + \alpha_1\lambda_1 + \alpha_2) = 0$$

$$2\lambda_1 + \alpha_2 = 0, \lambda_1^2 + \alpha_1 \lambda_1 + \alpha_2 = 0$$
$$U''(x) = 0 \Rightarrow U'(x) = A \Rightarrow dU = Adx, U = AX + B$$

А и В - вещественные константы, можно выбрать самостоятельно. Пусть A = 1, B=0, тогда $U=x,y_2=e^{\lambda_1 x}\cdot U(x)=e^{\lambda_1 x}\cdot x$

$$y_{oo} = y_1 C_1 + y_2 C_2 = e^{\lambda_1 x} C_1 + e^{\lambda_1 x} x C_2$$

Если корень вещественный кратности n, то решение состоит из набора линейно независимых функций: $e^{\lambda_1 x}, e^{\lambda_1 x} x, e^{\lambda_1 x} x^2, e^{\lambda_1 x} x^3, \dots, e^{\lambda_1 x} x^{n-1}$ Для комплексных корней работает так же.

15 Линейное неоднородное уравнение (ЛНУ): определение, свойства решений.

15.1 Определение

Линейным неоднородным уравнением называется уравнение вида:

$$y^{(n)} + p_1(x)y^{(n-1)}(x) + \dots + p_n(x)y(x) = f(x)$$

Из теоремы о существовании решения для однородного ДУ, т.е f(x) = 0 получаем, что если на [a,b] коэффициенты p(x) и f(x), $x \in [a,b]$, непрерывные функции, то ДУ имеет единственное решение, которое удовлетворяет начальным условиям:

$$y(x_0) = y_0; y'(x_0) = y'_0; \dots; y^{(n)}(x_0) = y_0^{(n)}; a < x < b$$

15.2 Теорема о структуре общего решения ЛНУ

Общим решением линейного неоднородного уравнения называется сумма его частного решения и решения соответствующего ему однородного уравнения:

$$y = \tilde{y} + y_0,$$

где $\tilde{y}-$, а y_0 - решение соответствующего ему однородного уравнения.

Если правая часть ЛНУ состоит из суммы нескольких функций, т.е $f_1(x) + f_2(x) + \cdots + f_n(x)$, то решение неоднородного ДУ будет иметь вид:

$$y = \tilde{y}_1 + \tilde{y}_2 + \dots + \tilde{y}_n + y_0,$$

16~ ЛНУ2 с постоянными коэффициентами: метод неопределенных коэффициентов.

этому билету не повезло, потому что его никто не захотел расписывать :(

17 ЛНУ2 с постоянными коэффициентами: метод вариации произвольных постоянных (Лагранжа).

Метод вариации произвольных постоянных позволяет найти общее решение линейного неоднородного уравнения, если известно общее решение соответствующего однородного уравнения.

17.1 Теорема

Общее решение неоднородного уравнения L[y] = f(x) на некотором интервале (a,b) может быть найдено в квадратурах, если известно общее решение соответствующего линейного уравнения на том же интервале.

Доказывать теорему будем для случая n=2, то есть для ДУ 2-го порядка:

$$y'' + p_1(x)y' + p_2(x)y = f(x)(1) \Leftrightarrow L[x] = f(x)$$
(1*)

Пусть $y_1(x), y_2(x)$ - ФСР L[y] = 0 на интервале (a, b). Мы уже знаем, что общее решение однородного уравнения это

$$y_{oo} = y_1 C_1 + y_2 C_2$$

Будем искать решение неоднородного уравнения (1^*) в виде

$$\tilde{y} = y_1 C_1(x) + y_2 C_2(x)$$

 $C_1(x), C_2(x)$ стали функциями. Мы хотим их подобрать так, чтобы \tilde{y} было частным решением уравнения L[y] = f(x).

Тогда возьмем $\tilde{y} = y_1 C_1(x) + y_2 C_2(x)$, продифференцируем дважды и подставим в исходное.

$$\tilde{y}' = y_1'C_1(x) + y_1C_1'(x) + y_2'C_2(x) + y_2C_2'(x) \Rightarrow$$

$$\Rightarrow \tilde{y}' = y_1'C_1(x) + y_2'C_2(x)$$

$$\tilde{y}'' = y_1''C_1(x) + y_2''C_2(x) + C_1'(x)y_1' + C_2'(x)y_2'$$

$$y_1''C_1(x) + y_2''C_2(x) + C_1'(x)y_1' + C_2'(x)y_2' + p_1(x)(y_1'C_1(x) + y_2'C_2(x)) + p_2(x)(y_1C_1(x) + y_2C_2(x))$$

$$C_1(x)(y_1'' + p_1(x)y_1' + p_2(x)y_1) + C_2(x)(y_2'' + p_1(x)y_2' + p_2(x)y_2) + C_1'(x)y_1' + C_2'(x)y_2' = f(x)$$

$$y_1'' + p_1(x)y_1' + p_2(x)y_1 = 0, y_2'' + p_1(x)y_2' + p_2(x)y_2 = 0$$

$$C_1'(x)y_1' + C_2'(x)y_2' = f(x)$$

$$\begin{cases}
C_1'(x)y_1 + C_2'(x)y_2 = 0 \\
C_1'(x)y_1' + C_2'(x)y_2' = f(x)
\end{cases}$$
(17.1)

Определитель этой системы есть определитель Вронского Φ CP $y_1(x), y_2(x)$, а он, как известно, ни в одной точке интервала (a, b) не обращается в 0. Следовательно, система имеет единственное решение.

$$C'_1(x) = \phi_1(x), C'_2(x) = \phi_2(x)$$

$$C_1(x) = \int \phi_1(x)dx + C_1*, C_2(x) = \int \phi_2(x)dx + C_2*$$

$$\tilde{y} = y_1(\int \phi_1(x)dx + C_1*) + y_2(\int \phi_2(x)dx + C_2*) =$$

$$= y_1C_1* + y_2C_2* + y_1\int \phi_1(x)dx + y_2\int \phi_2(x)dx$$

общее решение = общее решение однородного + частное неоднородного.

18 Системы дифференциальных уравнений. Метод исключения.

18.1 Определение

Система n уравнений первого порядка разрешенная относительно входящих в систему производных от искомых функций называется системой ДУ, имеющей нормальную форму или нормальная система Коши.

$$\begin{cases}
\frac{dy_1}{dx} = f(x_1, y_1, y_2, \dots, y_n) \\
\frac{dy_2}{dx} = f(x_1, y_1, y_2, \dots, y_n) \\
\dots \\
\frac{dy_n}{dx} = f(x_1, y_1, y_2, \dots, y_n)
\end{cases}$$
(18.1)

Порядком системы называется число n.

18.2 Решение системы ДУ

Решением нормальной системы называются функции $y_1(x), \dots, y_n(x)$, при подстановке которых ДУ обращаются в тождество.

Задача Коши для системы ДУ состоит в нахождении решений $y_1(x), \cdots, y_n(x)$, удовлетворяющих начальным условиям:

$$y_1(x_0) = y_1^0; \dots; y_n(x_0) = y_n^0$$

18.3 Теорема о существовании и единственности решении задачи Коши

Если правые части системы ДУ $f_i(x_1, y_1, \cdots, y_n)$, а также частные производные $\frac{\partial f_i}{\partial y_i}$ непрерывны по всем переменным в некоторой области, то, какие бы ни были начальные условия принадлежащие области G, существует единственное решение системы, удовлетворяющее этим начальным условиям.

18.4 Метод исключения

Рассмотрим систему для n=3:

$$\begin{cases} \frac{dy_1}{dx} = f_1(x_1, y_1, y_2, y_3) \\ \frac{dy_2}{dx} = f_2(x_1, y_1, y_2, y_3) \\ \frac{dy_3}{dx} = f_3(x_1, y_1, y_2, y_3) \end{cases}$$
(18.2)

Возьмем еще одну производную от первого уравнения по х:

$$\frac{d^2y_1}{dx^2} = \frac{\partial f_1}{\partial x} + \frac{\partial f_1}{\partial y_1} \cdot \frac{dy_1}{dx} + \frac{\partial f_1}{\partial y_2} \cdot \frac{dy_2}{dx} + \frac{\partial f_1}{\partial y_3} \cdot \frac{dy_3}{dx} = \tilde{f}_2(x, y_1, y_2, y_3)$$

Полученное выражение зависит только от x, y_1, y_2, y_3 . Если взять еще одну производную, то она тоже будет зависеть от x, y_1, y_2, y_3 , т.е:

$$\begin{cases} \frac{dy_1}{dx} = f_1(x_1, y_1, y_2, y_3) \\ \frac{d^2y_1}{dx^2} = \tilde{f}_2(x_1, y_1, y_2, y_3) \\ \frac{d^3y_1}{dx^3} = \tilde{f}_3(x_1, y_1, y_2, y_3) \end{cases}$$
(18.3)

Из первых двух уравнений можно выразить y_2, y_3 через $x, y, \frac{dy_1}{dx}, \frac{d^2y_1}{dx^2}$. Подставляя найденные значения в третье уравнение системы, мы получаем ДУ относительно $y_1(x)$, которое надо проинтегрировать, а затем получить $y_2(x), y_3(x)$

19 Определение числового ряда, суммы ряда. Понятие сходимости ряда. Геометрический ряд.

Пусть дана бесконечная последовательность элементов $a_1, a_2, \ldots, a_n = a_n$

19.1 Числовой ряд

Числовым рядом называется выражение вида: $a_1+a_2+\ldots+a_n+\ldots=\sum_{i=1}^\infty a_i$, где $a_1,a_2,\ldots,a_n=a_n$ - элементы ряда, a_n - общий член ряда, n - индекс.

19.2 Частичная сумма

Суммой S_n первых n элементов ряда называется частичной суммой ряда.

$$S_n = a_1 + a_2 + \ldots + a_n = \sum_{k=1}^n a_k$$

 S_n - последовательность из частичных сумм.

19.3 Сумма исходного ряда

Если S_n имеет конечный предел, т.е. $\lim_{x\to\infty}S_n=S$, то последовательность S_n сходится, а $\lim_{x\to\infty}S_n=\lim_{x\to\infty}S_n$ называется суммой исходного ряда, т.е. $\sum_{n=1}^\infty a_n$ Если $\lim_{x\to\infty}S_n=S$ конечное число, то ряд $\sum_{n=1}^{\inf a_n}$ сходится. Если такого числа не существует, то ряд $\sum_{n=1}^\infty a_n$ расходится

19.4 Геометрический ряд

$$\sum_{n=1}^{\infty} aq^{n-1} \begin{cases} \text{сходится, если } |q| < 1 \\ \text{расходится, если } |q| >= 1 \end{cases}$$
 (19.1)

20 Определение числового ряда, суммы ряда. Понятие сходимости ряда. Гармонический ряд.

Пусть дана бесконечная последовательность элементов $a_1, a_2, \ldots, a_n = a_n$

20.1 Числовой ряд

Числовым рядом называется выражение вида: $a_1+a_2+\ldots+a_n+\ldots=\sum_{i=1}^\infty a_i$, где $a_1,a_2,\ldots,a_n=a_n$ - элементы ряда, a_n - общий член ряда, n - индекс.

20.2 Частичная сумма

Суммой S_n первых n элементов ряда называется частичной суммой ряда.

$$S_n = a_1 + a_2 + \ldots + a_n = \sum_{k=1}^n a_k$$

 S_n - последовательность из частичных сумм.

20.3 Сумма исходного ряда

Если S_n имеет конечный предел, т.е. $\lim_{x\to\infty}S_n=S$, то последовательность S_n сходится, а $\lim_{x\to\infty}S_n=\lim_{x\to\infty}S_n$ называется суммой исходного ряда, т.е. $\sum_{n=1}^\infty a_n$ Если $\lim_{x\to\infty}S_n=S$ конечное число, то ряд $\sum_{n=1}^\infty a_n$ сходится. Если такого числа не существует, то ряд $\sum_{n=1}^\infty a_n$ расходится

20.4 Обобщенный гармонический ряд

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} = \begin{cases} \text{сходится, если } \alpha > 1 \\ \text{расходится, если } \alpha <= 1 \end{cases}$$

21 Свойства числовых рядов.

21.1 Свойство 1

Если сходится ряд, полученный из данного ряда отбрасыванием или присоединением конечного числа членов, то сходится и сам данный ряд, и наоборот. Иными словами, отбрасывание или присоединение конечного числа членов ряда не влияет на сходимость ряда.

ДОКАЗАТЕЛЬСТВО

Пусть S_n - частичная сумма ряда $\sum_{n=1}^{\infty} a_n$, C_k - сумма k отброшенных членов и y_{n-k} - сумма членов ряда, входящих в сумму S_n и не входящих в сумму C_k . При достаточно большом п все отброшенные элементы будут содержаться в сумме S_n , т.е. $S_n = C_k + y_{n-k}$ (k - фиксированное число, C_k - const). Тогда если существует $\lim_{n\to\infty} y_{n-k}$, то существует и $\lim_{n\to\infty} S_n$, т.е исходный ряд сходится. Аналогично с добавлением.

21.2 Свойство 2

Если сходится ряд $\sum\limits_{n=1}^{\infty}a_n=S,$ то ряд $\sum\limits_{n=1}^{\infty}C\cdot a_n$ (С - константа) также сходится, причем его сумма равна $C\cdot S$

ДОКАЗАТЕЛЬСТВО

Пусть S_n - частичная сумма ряда $\sum\limits_{n=1}^\infty a_n,\, S_n=a_1+a_2+\cdots+a_n,\,$ и $\overline{S_n}$ - частичная сумма ряда $\sum\limits_{n=1}^\infty C\cdot a_n,\, \overline{S_n}=Ca_1+\cdots+Ca_n.$ Тогда $\overline{S_n}=C(a_1+\cdots+a_n)=CS_n.$ Отсюда если существует $\lim\limits_{n\to\infty}S_n=S,\,$ то существует и $\lim\limits_{n\to\infty}\overline{S_n}=C\cdot S.$ То есть ряд $\sum\limits_{n=1}^\infty C\cdot a_n$ тоже сходится.

21.3 Свойство 3

Если ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ сходятся и их суммы равны A и B соответственно, то их можно почленно складывать (или вычитать), причем ряды $\sum_{n=1}^{\infty} (a_n \pm b_n)$ также сходятся и их суммы равны $S = A \pm B$.

ДОКАЗАТЕЛЬСТВО

Пусть A_n, b_n, S_n - частичные суммы этих рядов, тогда $S_n = (a_1 \pm b_1) + \cdots + (a_n \pm b_n) = (a_1 + \cdots + a_n) \pm (b_1 + \cdots + b_n) = A_n + B_n$. Переходя к переделу получим:

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} (A_n \pm B_n) = A \pm B$$

22 Условия сходимости рядов: необходимое условие, критерий Коши.

22.1 Критерий Коши

Для того чтобы числовой ряд $\sum_{n=1}^{\infty} a_n$ сходился, необходимо и достаточно, чтобы для $\forall \epsilon > 0 \exists N = N(\epsilon)$ такой, что при n > N выполняется неравенство

$$|a_n + a_{n+1} + \ldots + a_{n+p}| < \epsilon, p = 0, 1, 2, \ldots$$

так же имеется запись через частичные суммы S_{n+p}, S_{n-1}

$$|a_n + a_{n+1} + \ldots + a_{n+p}| < \epsilon \Leftrightarrow |S_{n+p} - S_{n-1}| < \epsilon, p = 0, 1, 2, \ldots$$

Из критерия Коши вытекает необходимый признак сходимости числового ряда

22.2 Необходимый признак сходимости числового ряда

Если
$$\sum_{n=1}^{\infty} a_n$$
 сходится, то $\lim_{n \to \infty} a_n = 0$ ДОКАЗАТЕЛЬСТВО

По признаку Коши $|S_n-S_{n-1}|<\epsilon\Leftrightarrow |a_n|<\epsilon=$ по определению $\lim_{n\to\infty}a_n=0$ Ч.Т.Д.

22.3 Следствие

Если
$$\lim_{n\to\infty}a_n\neq 0$$
, то $\sum_{n=1}^\infty a_n$ расходится

23 Достаточные условия сходимости. Признак сравнения в неравенствах.

Пусть даны положительные ряды $\sum\limits_{n=1}^{\infty}a_n$ и $\sum\limits_{n=1}^{\infty}b_n$ и для всех номеров п выполняется условие $a_n <= b_n$, то утверждается:

- 1. Если $\sum_{n=1}^{\infty} b_n$ сходится, то $\sum_{n=1}^{\infty} a_n$ тоже сходится
- 2. Если $\sum_{n=1}^{\infty} a_n$ расходится, то $\sum_{n=1}^{\infty} b_n$ тоже расходится

То есть из сходимости второго ряда следует сходимость первого ряда, а из расходимости первого ряда следует расходимость второго ряда.

23.1 Доказательство

- 1. Распишем частные суммы этих рядов $S_n = \sum_{n=1}^{\infty} a_n$ и $\sigma_n = \sum_{n=1}^{\infty} b_n$. По условию теоремы $a_n <= b_n$, значит и $S_n <= \sigma_n$. Так как ряд $\sum_{n=1}^{\infty} b_n$ сходится, то существует конечный предел $\lim_{x \to \infty} \sigma_n = \sigma$. Поскольку $b_n >= 0$ для любых n, то $\sigma_n < \sigma \Rightarrow S_n <= \sigma_n < \sigma \Rightarrow S_n < \sigma$, то есть последовательность частичных сумм S_n ограничена числом σ и является монотонной. Известно, что монотонная ограниченная последовательность имеет предел. Тогда существует конечный предел $\lim_{x \to \infty} S_n = S$. Ч.Т.Д.
- 2. По условию $a_n <= b_n$ и оба ряда состоят из неотрицательных чисел, значит $S_n <= \sigma_n$. Так как ряд $\sum_{n=1}^{\infty} a_n$ расходится, то $\lim_{x \to \infty} S_n = \infty$, по теореме о предельных переходах в неравенствах получаем, что $\lim_{x \to \infty} \sigma_n = \infty$, т.е. $\sum_{n=1}^{\infty} b_n$ тоже расходится. Ч.Т.Д.

24 Достаточные условия сходимости. Предельный признак сравнения.

Если существует конечный предел $\lim_{n\to\infty}\frac{a_n}{b_n}=L, 0< L<\infty,$ то ряды $\sum_{n=1}^\infty a_n$ и $\sum_{n=1}^\infty b_n$ имеют одинаковую сходимость или расходимость

ДОКАЗАТЕЛЬСТВО

$$\lim_{n \to \infty} \frac{a_n}{b_n} = L$$

По определению лимита:

$$\left|\frac{a_n}{b_n} - L\right| < \varepsilon$$

$$-\varepsilon < \frac{a_n}{b_n} - L < \varepsilon \Rightarrow (-\varepsilon + L)b_n < a_n < (\varepsilon + L)b_n$$

Если $\sum_{n=1}^{\infty} b_n$ сходится, то $\sum_{n=1}^{\infty} (\varepsilon + L) b_n$ тоже сходится, откуда по первому признаку сравнения рядов следует сходимость ряда $\sum_{n=1}^{\infty} a_n$.

Если $\sum_{n=1}^{\infty} b_n$ расходится, то $\sum_{n=1}^{\infty} (-\varepsilon + L)b_n$ тоже расходится, откуда по первому признаку сравнения рядов следует сходимость ряда $\sum_{n=1}^{\infty} a_n$.

25 Достаточные условия сходимости. Признак Даламбера.

Пусть дан ряд $\sum_{n=1}^{\infty} a_n$, где $|a_n| > 0$ (то есть положительный ряд), рассмотрим предел $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$, тогда

- 1. Числовой ряд $\sum\limits_{n=1}^{\infty}a_n$ сходится, если 0 < L < 1
- 2. Числовой ряд $\sum_{n=1}^{\infty} a_n$ расходится, если L>1
- 3. При L=1 необходимы доп. исследования

ДОКАЗАТЕЛЬСТВО

1. 0 < L < 1

Пусть 0 < L < q < 1. Тогда можно найти такой номер N, что для всех n > N выполняется неравенство

$$\left|\frac{a_{n+1}}{a_n}\right| < \epsilon = q - L \Rightarrow \left|\frac{a_{n+1}}{a_n}\right| < q \Rightarrow a_{n+1} < q \cdot a_n$$

$$a_{n+1} < q \cdot a_n \Leftrightarrow a_{n+2} < q \cdot a_{n+1} = q \cdot q \cdot a_n < q^2 \cdots a_n$$
$$a_{n+3} < q \cdot a_{n+2} = q \cdot q^2 \cdots a_n < q_n^3$$

Члены ряда $a_n+a_{n+1}+\ldots+a_{n+k}+\ldots$ не превосходят членов ряда $q\cdot a_n+q^2\cdot a_n+\ldots+q^k\cdot a_n+\ldots$

 $0 < q < 1, q, q^2, q^3$ —геометрическая прогрессия, значит ряд сходящийся. Значит, по теореме сравнения исходный ряд тоже сходится. Ч.Т.Д.

2. L > 1

 $|\frac{a_{n+1}}{a_n}| > 1 \Rightarrow a_{n+1} > a_n \Rightarrow \sum_{n=1}^{\infty} a_n$ - расходится, т.к. не выполнено необходимое условие сходимости и ряд расходится.

26 Достаточные условия сходимости. Радикальный признак Коши.

Пусть дан ряд $\sum_{n=1}^{\infty} a_n$, где $a_n > 0; n = 1 \dots \infty$, рассмотрим предел $\lim_{n \to \infty} \sqrt[n]{a_n}$, тогда

- 1. Числовой ряд $\sum\limits_{n=1}^{\infty}a_n$ сходится, если 0 < L < 1
- 2. Числовой ряд $\sum\limits_{n=1}^{\infty}a_n$ расходится, если L>1
- 3. При L=1 необходимы доп. исследования

ДОКАЗАТЕЛЬСТВО

- 1. 0 < L < 1 Пусть 0 < L < q < 1. Тогда можно найти такой номер N, что для всех n > N выполняется неравенство $\sqrt[n]{a_n} < q \Rightarrow a_n < q^n$. $\sum_{n=1}^{\infty} q^n$ сходится (геом прогрессия) $\Rightarrow \sum_{n=1}^{\infty} a_n$ тоже сходится.
- 2. L > 1 $\sqrt[n]{a_n}$ > 1 \Rightarrow a_n > 1 \Rightarrow не выполнено необходимое условие сходимости и ряд расходится.

Достаточные условия сходимости. Интегральный признак 27 Коши.

Рассмотрим функцию f(x), которая определена, непрерывна, не возрастающая на луче $x \ge 1$, тогда:

- 1. Числовой ряд $\sum_{n=1}^{\infty} f(n)$ сходится, если $\int_{1}^{\infty} f(x)dx$ сходится. 2. Числовой ряд $\sum_{n=1}^{\infty} f(n)$ расходится, если $\int_{1}^{\infty} f(x)dx$ расходится.

ДОКАЗАТЕЛЬСТВО

Рассмотрим f(x) - непрерывную, невозрастающую, функцию на $x \ge 1$. Рассмотрим на графике функции точки с абсциссами x = 1, x = $2, \cdots, x = n$ и построим две ступенчатые фигуры:

- 1. Выступающую фигуру
- 2. Входящую фигуру

Фигуры - прямоугольники. Площадь Q криволинейной трапеции ограничена x = 1, x = n, y = 0, y = f(x):

$$Q = \int_{1}^{n} f(x)dx$$

Рассмотрим частную сумму $S_n = f(1) + f(2) + f(3) + \cdots + f(n)$. Тогда выступающая площадь равна $Q_+ = f(1) + f(2) + \dots + f(n-1) = S_{n-1}$, а входящая часть равна $Q_{-}=f(2)+\cdots+f(n)=S_{n}-f_{1}$. По построению:

$$Q_{-} < Q < Q_{+} \Rightarrow S_{n} - f_{1} < \int_{1}^{n} f(x) dx < S_{n-1}$$

Пусть $\int_1^\infty f(x) dx$ сходится к конечному числу A при $n \to \infty$. А f_1 равняется конечному числу K. Тогда

$$S_n - f_1 < \int_1^n f(x)dx \Rightarrow S_n < A + K \Rightarrow S = \lim_{n \to \infty} S_n \le A + K$$

A+K - конечное число, следовательно, S тоже конечное число, и ряд сходится.

Пусть $\int_{1}^{\infty} f(x) dx$ расходится, тогда

$$\lim_{n \to \infty} \int_{1}^{n} f(x)dx = \infty \Rightarrow \infty < S_{n-1} \Rightarrow S = \lim_{n \to \infty} S_{n-1} = \infty$$

Следовательно, ряд расходится.

28 Знакопеременные ряды. Абсолютная сходимость.

Числовой ряд $\sum_{n=1}^{\infty} a_n$, членами которого являются действительные числа любого знака, называется знакопеременным рядом.

Рассмотрим ряд, составленный из абсолютных величин его членов, то есть:

$$|a_1| + |a_2| + \ldots + |a_n| + \ldots$$

28.1 Теорема

Если сходится ряд из абсолютных величин $\sum_{n=1}^{\infty} |a_n|$, то сходится и соответствующий знакопеременный ряд $\sum_{n=1}^{\infty} a_n$

28.2 Следствие

Если ряд
$$\sum_{n=1}^{\infty}|a_n|$$
 сходится, то справедливо неравенство $|\sum_{n=1}^{\infty}a_n|<=\sum_{n=1}^{\infty}|a_n|$

28.3 Абсолютная и условная сходимость

Знакопеременный числовой ряд $\sum_{n=1}^{\infty} a_n$ называется абсолютно сходящимся, если сходится ряд из абсолютных величин, т.е. $\sum_{n=1}^{\infty} |a_n|$

Знакопеременный числовой ряд $\sum_{n=1}^{\infty} a_n$ называется условно сходящимся, если он сходится, а ряд из абсолютных величин расходится.

28.4 Свойства

1. Если ряд абсолютно сходится и имеет сумму ряда, то ряд, полученный перестановкой элементов, тоже сходится и имеет ту же сумму ряда.

- 2. Абсолютно сходящиеся ряды с суммами S_1, S_2 можно почленно складывать, вычислять и получать абсолютно сходящийся ряд с суммой $S_1 \pm S_2$
- 3. Перестановка членов условно сходящегося знакопеременного ряда приводит к изменению суммы ряда. Поэтому действия над условно сходящимися рядами нельзя производить, не убедившись в абсолютной сходимости.
- 4. Для исследования абсолютной сходимости используют признаки сходимости для положительных рядов.

29 Знакочередующиеся ряды. Теорема Лейбница

Числовой ряд вида $a_1 - a_2 + a_3 - \ldots + (-1)^{n+1}a_n + \ldots$, где все числа a_n положительные, называется знакочередующимся рядом.

Теорема (признак Лейбница)

Пусть в знакочередующемся ряде $a_1 - a_2 + a_3 - \ldots + (-1)^{n+1}a_n + \ldots$, числовая последовательность a_n убывает. То есть $a_1 > a_2 > a_3 > \ldots > a_n > \ldots$ и $\lim_{n \to \infty} a_n = 0$, тогда этот ряд сходится, причем сумма ряда S положительна и не превосходит первый член ряда $0 < S <= a_1$

ДОКАЗАТЕЛЬСТВО

Рассмотрим четную частичную сумму S_{2n} .

$$S_{2n} = (a_1 - a_2) + (a_3 - a_4) + \ldots + (a_{2n-1} - a_{2n})$$

По условиям теоремы эта последовательность убывает.

 $(a_1-a_2)>0, (a_3-a_4)>0,\ldots,(a_{2n-1}-a_{2n})>0, S_{2n}>0,$ с возрастанием n частичные суммы S тоже возрастают C другой стороны

$$S_{2n} = a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (a_{2n-2} - a_{2n-1}) - a_{2n}$$

Из a_1 вычитаются положительные элементы, значит $S_{2n} < a_1$.

 S_{2n} монотонно возрастает и ограничена, а значит существует конечный предел $\lim_{n \to \infty} S_{2n} = S$,где $0 < S <= a_1$

Для нечетной частичной суммы S_{2n+1} :

$$S_{2n+1} = S_{2n} + a_{2n+1}$$

$$\lim_{n \to \infty} S_{2n+1} = \lim_{n \to \infty} S_{2n} + \lim_{n \to \infty} a_{2n+1}$$

$$\lim_{n \to \infty} S_{2n+1} = S + 0 = S$$

Данный ряд сходится и $S_n <= a_1$ Ч. Т. Д.

30 Непрерывность суммы ряда. Интегрирование рядов и дифференцирование рядов.

30.1 Непрерывность суммы ряда

Если члены ряда $\sum_{k=1}^{\infty} u_k(x)$ непрерывны на D и ряд сходится равномерно на D, то сумма ряда будет функцией, непрерывной на D.

30.2 О почленном интегрировании функционального ряда

Если члены ряда $\sum_{k=1}^{\infty} u_k(x)$ непрерывны на промежутке [a,b] и ряд сходится равномерно на этом промежутке к некоторой сумме S(x), то ряд можно интегрировать почленно на любом промежутке $[c,d] \in [a,b]$, т.е.

$$\sum_{k=1}^{\infty} \int_{c}^{d} u_{k}(x) dx = \int_{c}^{d} S(x) dx$$

30.3 О почленном дифференцировании функционального ряда

Если члены ряда $\sum_{k=1}^{\infty} u_k(x)$ непрерывно дифференцируемы на промежутке [a,b] функции, ряд сходится хотя бы в одной точке этого промежутка, а ряд $\sum_{k=1}^{\infty} u_k'(x)$ сходится равномерно на [a,b], то ряд $\sum_{k=1}^{\infty} u_k(x)$ также сходится равномерно на [a,b] к некоторой сумме S(x) и $\sum_{k=1}^{\infty} u_k'(x) = S'(x)$.

31 Степенные ряды. Сходимость. Теорема Абеля

Функциональным рядом называется ряд, членами которого являются функции, зависящие от x, x - вещественная переменная.

$$U_1(x) + U_2(x) + \ldots + U_n(x) + \ldots = \sum_{n=1}^{\infty} U_n(x)$$

При фиксированном x мы получаем положительный ряд, который имеет сходимость и расходимость.

Множество всех значений x, при которых ряд сходится, называют областью сходимости функционального ряда. Замечание: функциональный ряд всегда сходится хотя бы в одной точке

В курсе рассматриваются функциональные ряды на примере степенных рядов.

Степенным рядом называется функциональный ряд вида:

$$\sum_{n=1}^{\infty} C_n (x-x_0)^n$$
или $\sum_{n=1}^{\infty} C_n x^n$

Можно перейти из первого вида во второй путем замены $(x-x_0)=t$

$$\sum_{n=1}^{\infty} C_n (x-x_0)^n, C_n - \text{вещ константа}, x_0 - \text{фиксированное вещ число}$$

$$\sum_{n=1}^{\infty} C_n(x-x_0)^n = C_0 + C_1(x-x_0) + C_2(x-x_0)^2 + \ldots + C_n(x-x_0)^n + \ldots$$

$$\sum_{n=1}^{\infty} C_n x^n = C_0 + C_1 x + C_2 x^2 + \ldots + C_n x^n + \ldots$$

Степенной ряд $\sum_{n=1}^{\infty} C_n x^n$ всегда сходится в точке x=0, а ряд $\sum_{n=1}^{\infty} C_n (x-x_0)^n$ всегда сходится в точке $x=x_0$. Их сумма ряда всегда равна коэффициенту C_0 Замечание: $\frac{1}{x}$ - не степенной ряд.

31.1 Теорема Абеля

Если степенной ряд $\sum_{n=1}^{\infty} C_n x^n$ сходится при $x=x_1\neq 0$, то ряд будет абсолютно сходится при $|x|<|x_1|$. Если степенной ряд расходится при $x=x_2\neq 0$, то ряд будет расходиться при $|x|>|x_2|$

ДОКАЗАТЕЛЬСТВО

1. Про сходимость

Т.к. ряд $\sum_{n=1}^{\infty} C_n x^n$ сходится, то $\lim_{n\to\infty} C_n x^n = 0 \Rightarrow$ предел последовательности сходится \Rightarrow существует такое число M>0, такое, что $|C_n x^n| < M$ для всех n

Рассмотрим ряд из абсолютных величин $\sum_{n=1}^{\infty} |C_n x^n|$. Оценим общий член.

$$|C_n x^n| = \left| \frac{C_n x^n x_1^n}{x_1^n} \right| = \overbrace{|C_n x_1^n|}^{=C_n} \left| \left(\frac{x}{x_1} \right)^n \right| < Mq^n, \frac{x}{x_1} = q < 1$$

 $\sum\limits_{n=1}^{\infty}Mq^n$ - ряд составлен из элементов геометрической сходящейся прогрессии \Rightarrow по теореме сравнения исходный ряд сходится при $|x|<|x_1|$. Ч.Т.Д.

2. Про расходимость

Доказываем методом от противного. Пусть при $|x| > |x_2|$ ряд $\sum_{n=1}^{\infty} C_n x^n$ сходится. Из предыдущего пункта имеем, что при $|x_2| < |x| \sum_{n=1}^{\infty} C_n x_2^n$ сходится. Два этих ряда не могут одновременно сходиться \Rightarrow первоначальное утверждение неверно $\Rightarrow \sum_{n=1}^{\infty} C_n x^n$ расходится. Ч.Т.Д.

3амечание: Теорема Абеля дает возможность установить область сходимости степенного ряда. Область сходимости симметрична относительно точки 0.

32 Степенные ряды. Формулы радиусов сходимости.

32.1 Теорема

Пусть $\sum_{n=1}^{\infty} C_n x^n$ сходится в точке $x \neq 0$, тогда либо этот ряд абсолютно сходится в каждой точке числовой прямой, либо существует число R > 0 такое, что ряд абсолютно сходится при |x| < R и расходится при |x| > R

Интервалом сходимости степенного ряда $\sum_{n=1}^{\infty} C_n x^n$ называют интервал (-R;R), где R>0. При $\forall x(-R;R)$ ряд абсолютно сходится в каждой точке, при |x|>R ряд расходится

32.2 Теорема

При условии существования конечного предела $\lim_{n\to\infty}\frac{C_{n+1}}{C_n}=L,0< L<+\infty$ степенного ряда $\sum_{n=1}^\infty C_n x^n$ или $\sum_{n=1}^\infty C_n (x-x_0)^n$ можно найти по формуле

$$R = \lim_{n \to \infty} \frac{C_n}{C_{n+1}}$$

ДОКАЗАТЕЛЬСТВО

Рассмотрим $\sum\limits_{n=1}^{\infty}|C_nx^n|=|C_0|+|C_1x|+|C_2x^2|+\ldots+|C_nx^n|+\ldots\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{|C_{n+1}||x^{n+1}|}{|C_n||x^n|}=\lim_{n\to\infty}\frac{C_{n+1}}{C_n}|x|=|x|\frac{C_{n+1}}{C_n}=|x|L$ По признаку Даламбера при L < 1 ряд сходится. $|x|L<1\Rightarrow|x|<\frac{1}{L}\Rightarrow$ Но по определению ряд сходится при $|x|< R\Rightarrow R=\frac{1}{L}\Rightarrow R=\lim_{n\to\infty}\frac{C_n}{C_{n+1}}$ Ч.Т.Д.

Аналогично можно сделать относительно радикального признака Коши Интервалом сходимости степенного ряда

33 Ряды Тейлора и Маклорена. Определение. Условие сходимости ряда к значению функции.

33.1 Ряд Тейлора

Пусть функция f(x) определена на промежутке $(x_0-R,x_0+R),R>0$ и ∞ раз дифференцируема в точке x_0 , тогда рассмотрим ряд

$$\sum_{n=0}^{\infty} \frac{f^n(x_0)}{n!} (x - x_0)^n$$

этот ряд называется рядом Тейлора функции f(x) в окрестности точки x_0 .

33.2 Ряд Маклорена

Если $x_0=0$, то $\sum_{n=0}^{\infty}\frac{f^n(0)}{n!}(x)^n$, этот ряд называется рядом Маклорена функции f(x) в окрестности $x_0=0$

33.3 Теорема о единственности разложения в ряд Тейлора

Если на интервале $(x_0-R,x_0+R), R>0$ функция разлагается в степенной ряд $\sum_{n=0}^{\infty} C_n(x-x_0)^n$, то этот ряд называется рядом Тейлора для функции f(x) в точке x_0

ДОКАЗАТЕЛЬСТВО

Если ряд разлагается в степенной ряд, то он сходится, а следовательно его сумма конечна в каждой точке области сходимости. Это означает, что ряд можно бесконечно раз продифференцировать в точке x_0 :

$$f^{(n)}(x_0) = n(n-1)(n-2)\cdots 1 \cdot a_n \Rightarrow a_n = \frac{f^{(n)}(x_0)}{n!} \Rightarrow a_n = C_n$$

33.4 Условия разложения функции в ряд Тейлора

Для того, чтобы функцию можно было разложить в степенной ряд $\sum_{n=0}^{\infty} C_n x^n$ на интервале (-R, R), R>0, R - радиус сходимости необходимо и достаточно чтобы на этом интервале функция f(x) имела производные всех порядков и чтобы остаточный член в формуле Маклорена стремился к нулю на этом интервале т.е.:

$$f(x) = f(0) + \frac{f'(0)}{1!} + \dots + \frac{f^{(n)}(0)}{n!}x^n + R_n(x),$$

где $R_n(x) \to 0; n \to \infty$.

ДОКАЗАТЕЛЬСТВО

Необходимо. Пусть степенной ряд сходится, тогда ряд имеет конечную сумму ряда $S(x) \Rightarrow$ можно продифференцировать в точке $\in (-R, R) \Rightarrow f(x)$ на (-R, R) имеет все производные $f^{(n)}(x)$ т.е

$$f(x) = f(0) + \frac{f'(0)}{1!} + \frac{f''(0)}{2!} + \cdots$$

Достаточно.Пусть функция имеет производные всех порядков, тогда

$$f(x) = f(0) + \frac{f'(0)}{1!} + \dots + \frac{f^{(n)}(0)}{n!}x^n + R_n(x),$$

где $R_n(x) \to 0, n \to \infty \Rightarrow$.

$$R_n(x) = f(x) - f(0) - \frac{f'(0)}{1!} - \dots - \frac{f^{(n)}(0)}{n!}x^n$$

$$f(x) = S_{part}(x) \Rightarrow$$

ряд Тейлора сходится к частичной сумме $S_{part}(x) \Rightarrow$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} C_n x^n$$

следовательно сходится.

34 Разложение в ряд Маклорена элементарных функций: синус, экспонента.

34.1 Разложение в ряд Маклорена для синуса

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^n \frac{x^{2n-1}}{(2n-1)!} + \dots$$

Область сходимости: $x \in \mathbb{R}$.

34.2 Разложение в ряд Маклорена для экспоненты

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$$

Область сходимости: $x \in \mathbb{R}$.

ullet Экспонента: ${
m e}^x=1+rac{x}{1!}+rac{x^2}{2!}+rac{x^3}{3!}+\cdots=\sum_{n=0}^{\infty}rac{x^n}{n!}, x\in\mathbb{C}.$

ullet Натуральный логарифм («ряд Меркатора»): $\ln(1+x) = x - rac{x^2}{2} + rac{x^3}{3} - \dots = \sum_{n=0}^{\infty} rac{(-1)^n x^{n+1}}{(n+1)} = \sum_{n=1}^{\infty} rac{(-1)^{n-1} x^n}{n}$ для всех $-1 < x \le 1$.

ullet Биномиальное разложение: $(1+x)^{lpha}=1+\sum_{n=1}^{\infty}inom{lpha}{n}x^n$, для всех |x|<1 и всех комплексных lpha, где $inom{lpha}{n}=\prod_{k=1}^nrac{lpha-k+1}{k}=rac{lpha(lpha-1)\cdots(lpha-n+1)}{n!}$

Разложение в ряд Маклорена элементарных функций: бином, логарифм

Разложение в ряд Маклорена для бинома

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots = \sum_{k=0}^{\infty} \binom{n}{k}x^k$$

Область сходимости:

Разложение в ряд Маклорена для логарифма 35.2

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$$

Область сходимости: $-1 \le x < 1$.

• Тригонометрические функции^{[6][7]}:

ullet Cuhyc: $\sin x = x - rac{x^3}{3!} + rac{x^5}{5!} - rac{x^7}{7!} + rac{x^9}{9!} - \dots = \sum_{n=0}^{\infty} rac{(-1)^n x^{2n+1}}{(2n+1)!}, \quad x \in \mathbb{C}.$

 $\mathbf{3}!$ $\mathbf{5}!$ $\mathbf{6}!$ $\mathbf{6}!$ $\mathbf{5}!$ $\mathbf{7}!$ $\mathbf{5}!$ $\mathbf{5}!$ $\mathbf{7}!$ $\mathbf{7}!$ $\mathbf{5}!$ $\mathbf{7}!$ $\mathbf{7$

ullet Котангенс: $\operatorname{ctg}\ x = x^{-1} - rac{1}{3}x - rac{1}{45}x^3 - rac{2}{945}x^5 + \cdots = \sum_{n=0}^{\infty} rac{(-1)^n 2^{2n} B_{2n}}{(2n)!} x^{2n-1}$ для всех $0 < |x| < \pi$, где B_{2n} — числа Бернулли.