

Fonction d'une variable réelle : généralités

- Définitions
- Fonctions et opérations
- Fonctions et ordre
- Propriétés particulières
- Monotonie
- Limites
- Limites et opérations
- Limites et ordre
- Limites à gauche et à droite
- Formes indéterminées

Fonction d'une variable réelle, continuité

- Définition
- Continuité et opérations
- Continuité et composition
- Prolongement par continuité
- Fonctions croissantes
- Continuité sur un intervalle
- Continuité sur un intervalle fermé et borné
- Fonctions monotones

Définitions

Une fonction réelle, de variable réelle est une application d'une partie U de $\mathbb R$ à valeurs dans $\mathbb R$.

Une fonction réelle, de variable réelle est une application d'une partie U de $\mathbb R$ à valeurs dans $\mathbb R$.

On écrira:

Une fonction réelle, de variable réelle est une application d'une partie U de \mathbb{R} à valeurs dans \mathbb{R} .

On écrira:

$$U \subset \mathbb{R}$$
, $f: U \longmapsto \mathbb{R}$
 $x \longmapsto f(x)$

Remarque : U est souvent la plus grande partie de \mathbb{R} où f est calculable (définie).

$$f: \mathbb{R} \longmapsto \mathbb{R}$$

 $x \longmapsto f(x) = x^2$

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 $x \longmapsto f(x) = x^2$
 $f: U \longmapsto \mathbb{R}$

$$f: U \longrightarrow \mathbb{R}$$

 $x \longmapsto f(x) = \frac{1}{x}$

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 $x \longmapsto f(x) = x^2$
 $f: U \longmapsto \mathbb{R}$
 $x \longmapsto f(x) = \frac{1}{x}$

Dans ce cas $U = \mathbb{R}^*$.

On dit souvent « le domaine de définition de f » : \mathcal{D}_f .

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 $x \longmapsto f(x) = x^2$
 $f: U \longmapsto \mathbb{R}$
 $x \longmapsto f(x) = \frac{1}{x}$

Dans ce cas $U = \mathbb{R}^*$.

On dit souvent « le domaine de définition de f » : \mathcal{D}_f .

$$U = \mathbb{R}_+$$
 $f: U \longmapsto \mathbb{R}$ $x \longmapsto f(x) = \sqrt{x}$

Fonctions et opérations

Somme et produit des fonctions

Soit f et g deux fonctions définies sur $U \subset \mathbb{R}$. On définit :

La somme :

$$f+g: U \longrightarrow \mathbb{R}$$

 $x \longmapsto (f+g)(x) = f(x) + g(x)$

Somme et produit des fonctions

Soit f et g deux fonctions définies sur $U \subset \mathbb{R}$. On définit :

La somme :

$$f+g: U \longrightarrow \mathbb{R}$$

 $x \longmapsto (f+g)(x) = f(x) + g(x)$

► Le produit :

$$f.g: U \longrightarrow \mathbb{R}$$

 $x \longmapsto f.g(x) = f(x).g(x)$

Mathématiques et calcul 1

$$h(x) = \frac{\sin x}{x}$$

$$h(x) = \frac{\sin x}{x}$$

Fonctions et ordre

Soit f et g deux fonctions définies sur $U \subset \mathbb{R}$.

On dit que f est inférieure à g sur U si :

$$\forall x \in U \quad f(x) \le g(x)$$

Soit f et g deux fonctions définies sur $U \subset \mathbb{R}$.

On dit que f est inférieure à g sur U si :

$$\forall x \in U \quad f(x) \le g(x)$$

Notation : $f \leq g$

Soit f et g deux fonctions définies sur $U \subset \mathbb{R}$.

On dit que f est inférieure à g sur U si :

$$\forall x \in U \quad f(x) \le g(x)$$

Notation : $f \leq g$

Remarque: Deux fonctions ne sont pas toujours comparables.

Propriétés particulières

Parité, imparité, périodicité

Soit $U \subset \mathbb{R}$ une partie telle que : $\forall x \in U$, $-x \in U$ et f une fonction définie sur U.

On dit que:

▶ f est paire si : $\forall x \in U$, f(-x) = f(x)

Parité, imparité, périodicité

Soit $U \subset \mathbb{R}$ une partie telle que : $\forall x \in U$, $-x \in U$ et f une fonction définie sur U.

On dit que:

- ▶ f est paire si : $\forall x \in U$, f(-x) = f(x)
- ▶ f est impaire si : $\forall x \in U$, f(-x) = -f(x)

Parité, imparité, périodicité

Soit $U \subset \mathbb{R}$ une partie telle que : $\forall x \in U$, $-x \in U$ et f une fonction définie sur U.

On dit que:

- ▶ f est paire si : $\forall x \in U$, f(-x) = f(x)
- ▶ f est impaire si : $\forall x \in U$, f(-x) = -f(x)
- ▶ f est T-périodique si : $\exists T \in \mathbb{R}$, $\forall x \in U$: f(x+T) = f(x)

Fonction paire

Fonction impaire

Fonction périodique

Monotonie

Fonctions croissantes et décroissantes

Soit f une fonction définie sur $U \subset \mathbb{R}$ et $V \subset U$, $V \neq \emptyset$.

On dit que:

► f est croissante sur V si : $\forall x, y \in V, \quad x \ge y \implies f(x) \ge f(y)$

Fonctions croissantes et décroissantes

Soit f une fonction définie sur $U \subset \mathbb{R}$ et $V \subset U$, $V \neq \emptyset$.

On dit que:

- ► f est croissante sur V si : $\forall x, y \in V, \quad x \ge y \implies f(x) \ge f(y)$
- ► f est décroissante sur V si : $\forall x, y \in V, \quad x \ge y \implies f(x) \le f(y)$

Fonctions croissantes et décroissantes

Soit f une fonction définie sur $U \subset \mathbb{R}$ et $V \subset U$, $V \neq \emptyset$.

On dit que:

- ► f est croissante sur V si : $\forall x, y \in V, \quad x \ge y \implies f(x) \ge f(y)$
- ► f est décroissante sur V si : $\forall x, y \in V, \quad x \ge y \implies f(x) \le f(y)$
- ► f est strictement croissante sur V si : $\forall x, y \in V, \quad x > y \implies f(x) > f(y)$

Fonctions croissantes et décroissantes

Soit f une fonction définie sur $U \subset \mathbb{R}$ et $V \subset U$, $V \neq \emptyset$.

On dit que:

- ► f est croissante sur V si : $\forall x, y \in V, \quad x \ge y \implies f(x) \ge f(y)$
- ► f est décroissante sur V si : $\forall x, y \in V, \quad x \ge y \implies f(x) \le f(y)$
- ► f est strictement croissante sur V si : $\forall x, y \in V$, $x > y \Rightarrow f(x) > f(y)$
- ► f est strictement décroissante sur V si : $\forall x, y \in V, \quad x > y \implies f(x) < f(y)$

Proposition : Soit f et g deux fonctions définies sur U.

Si f et g sont croissantes sur U, la somme f + g est croissante sur U

Proposition : Soit f et g deux fonctions définies sur U.

- Si f et g sont croissantes sur U, la somme f + g est croissante sur U
- ► Si f et g sont croissantes sur U et si f et g sont positives sur U, le produit f.g est croissant sur U

Proposition : Soit f et g deux fonctions définies sur U.

- Si f et g sont croissantes sur U, la somme f + g est croissante sur U
- ► Si f et g sont croissantes sur U et si f et g sont positives sur U, le produit f.g est croissant sur U
- Si f et g sont toutes les deux croissantes ou toutes les deux décroissantes, si leur composée f ∘ g existe, alors f ∘ g est croissante

Proposition : Soit f et g deux fonctions définies sur U.

- Si f et g sont croissantes sur U, la somme f + g est croissante sur U
- Si f et g sont croissantes sur U et si f et g sont positives sur U, le produit f.g est croissant sur U
- Si f et g sont toutes les deux croissantes ou toutes les deux décroissantes, si leur composée f ∘ g existe, alors f ∘ g est croissante
- Si une des deux fonctions, f ou g, est croissante et l'autre décroissante et si leur composée existe, alors f ∘ g est décroissante

Limites

Limite en un point

Soit I un intervalle de \mathbb{R} et f une fonction définie sur I.

Soit x_0 un nombre réel qui appartient à I ou qui est une extrémité de I.

Limite en un point

Soit I un intervalle de \mathbb{R} et f une fonction définie sur I.

Soit x_0 un nombre réel qui appartient à I ou qui est une extrémité de I.

On dit que f a pour limite ℓ en x_0 si :

 $\forall \varepsilon > 0$, il existe un nombre $\alpha > 0$ qui a la propriété suivante :

$$(x \in I, x \neq x_0 \text{ et } |x - x_0| \leq \alpha) \Rightarrow |f(x) - \ell| \leq \varepsilon$$

Limite en un point

Soit I un intervalle de \mathbb{R} et f une fonction définie sur I.

Soit x_0 un nombre réel qui appartient à I ou qui est une extrémité de I.

On dit que f a pour limite ℓ en x_0 si :

 $\forall \varepsilon > 0$, il existe un nombre $\alpha > 0$ qui a la propriété suivante :

$$(x \in I, x \neq x_0 \text{ et } |x - x_0| \leq \alpha) \Rightarrow |f(x) - \ell| \leq \varepsilon$$

On note : $\lim_{x \to x_0} f(x) = \ell$

2012 — 2013

Remarque : La fonction f n'a pas besoin d'être définie en x_0 pour avoir une limite en x_0 .

Remarque : La fonction f n'a pas besoin d'être définie en x_0 pour avoir une limite en x_0 .

Par exemple, f peut être définie sur un intervalle $I =]x_0$, a[:]

$$\forall x \in \mathbb{R}^*_+, \quad f(x) = \frac{\sin x}{x} \qquad \lim_{x \to 0} f(x) = 1$$

$$h(x) = \frac{\sin x}{x}$$

Soit *I*, I'un des intervalles : $]-\infty$, $+\infty[$ ou [a, $+\infty[$ ou]a, $+\infty[$.

Soit $f: I \longrightarrow \mathbb{R}$ et $\ell \in \mathbb{R}$

On dit que f a pour limite ℓ quand x tend vers $+\infty$, si :

 $\forall \varepsilon > 0$, il existe un nombre r > 0 qui a la propriété suivante :

$$(x \in I \text{ et } x \ge r) \implies |f(x) - \ell| \le \varepsilon$$

Soit *I*, I'un des intervalles : $]-\infty$, $+\infty[$ ou [a, $+\infty[$ ou]a, $+\infty[$.

Soit $f: I \longrightarrow \mathbb{R}$ et $\ell \in \mathbb{R}$

On dit que f a pour limite ℓ quand x tend vers $+\infty$, si :

 $\forall \varepsilon > 0$, il existe un nombre r > 0 qui a la propriété suivante :

$$(x \in I \text{ et } x \ge r) \Rightarrow |f(x) - \ell| \le \varepsilon$$

Notation : $\lim_{x \to +\infty} f(x) = \ell$

Mathématiques et calcul 1

Soit *I*, I'un des intervalles : $]-\infty$, $+\infty[$ ou $]-\infty$, a[ou $]-\infty$, a[.

Soit $f: I \longrightarrow \mathbb{R}$ et $\ell \in \mathbb{R}$

On dit que f a pour limite ℓ quand x tend vers $-\infty$, si :

 $\forall \varepsilon > 0$, il existe un nombre r < 0 qui a la propriété suivante :

$$(x \in I \text{ et } x \le r) \Rightarrow |f(x) - \ell| \le \varepsilon$$

Soit *I*, I'un des intervalles : $]-\infty$, $+\infty[$ ou $]-\infty$, a[ou $]-\infty$, a[.

Soit $f: I \longrightarrow \mathbb{R}$ et $\ell \in \mathbb{R}$

On dit que f a pour limite ℓ quand x tend vers $-\infty$, si :

 $\forall \varepsilon > 0$, il existe un nombre r < 0 qui a la propriété suivante :

$$(x \in I \text{ et } x \le r) \Rightarrow |f(x) - \ell| \le \varepsilon$$

Notation : $\lim_{x\to -\infty} f(x) = \ell$

Proposition : Si une fonction f a une limite, cette limite est unique.

Démonstration

Supposons que f ait 2 limites différentes, ℓ et ℓ' , en x_0

Démonstration

Supposons que f ait 2 limites différentes, ℓ et ℓ' , en x_0

$$|\ell - \ell'| > 0$$
 On pose $\varepsilon = \frac{|\ell - \ell'|}{3} > 0$.

Démonstration

Supposons que f ait 2 limites différentes, ℓ et ℓ' , en x_0

$$|\ell-\ell'| > 0$$
 On pose $\varepsilon = \frac{|\ell-\ell'|}{3} > 0$.

$$\exists \alpha > 0, \quad (x \in I, \quad |x - x_0| \le \alpha) \quad \Rightarrow \quad \begin{aligned} |f(x) - \ell| & \le \quad \frac{|\ell - \ell'|}{3} \\ |f(x) - \ell'| & \le \quad \frac{|\ell - \ell'|}{3} \end{aligned}$$

Démonstration

Supposons que f ait 2 limites différentes, ℓ et ℓ' , en x_0

$$|\ell-\ell'| > 0$$
 On pose $\varepsilon = \frac{|\ell-\ell'|}{3} > 0$.

$$\exists \alpha > 0, \quad (x \in I, \quad |x - x_0| \le \alpha) \quad \Rightarrow \quad \frac{|f(x) - \ell|}{|f(x) - \ell'|} \le \frac{|\ell - \ell'|}{3}$$

Alors:

$$0 < |\ell - \ell'| \le |\ell - f(x)| + |f(x) - \ell'| \le \frac{|\ell - \ell'|}{3} + \frac{|\ell - \ell'|}{3} = \frac{2|\ell - \ell'|}{3}$$

Limites infinies

La fonction tend vers $+\infty$ quand x tend vers x_0

Soit I un intervalle de \mathbb{R} et f une fonction définie sur I.

Soit x_0 un nombre réel qui appartient à I ou qui est une extrémité de I.

Limites infinies

La fonction tend vers $+\infty$ quand x tend vers x_0

Soit I un intervalle de \mathbb{R} et f une fonction définie sur I.

Soit x_0 un nombre réel qui appartient à I ou qui est une extrémité de I.

On dit que f a pour limite $+\infty$ en x_0 si : $\forall A > 0$, il existe un nombre $\alpha > 0$ qui a la propriété suivante :

$$(x \in I, x \neq x_0 \text{ et } |x - x_0| \leq \alpha) \Rightarrow f(x) \geq A$$

La fonction tend vers $+\infty$ quand x tend vers x_0

Soit I un intervalle de \mathbb{R} et f une fonction définie sur I.

Soit x_0 un nombre réel qui appartient à I ou qui est une extrémité de I.

On dit que f a pour limite $+\infty$ en x_0 si : $\forall A > 0$, il existe un nombre $\alpha > 0$ qui a la propriété suivante :

$$(x \in I, x \neq x_0 \text{ et } |x - x_0| \leq \alpha) \Rightarrow f(x) \geq A$$

On note : $\lim_{x \to x_0} f(x) = +\infty$

La fonction tend vers $+\infty$ quand x tend vers $+\infty$

Soit *I*, I'un des intervalles : $]-\infty$, $+\infty[$ ou]a, $+\infty[$ ou]a, $+\infty[$.

Soit $f: I \longrightarrow \mathbb{R}$

La fonction tend vers $+\infty$ quand x tend vers $+\infty$

Soit *I*, I'un des intervalles : $]-\infty$, $+\infty[$ ou]a, $+\infty[$ ou]a, $+\infty[$.

Soit $f: I \longrightarrow \mathbb{R}$

On dit que f tend vers $+\infty$ quand x tend vers $+\infty$, si :

 $\forall A > 0$, il existe un nombre r > 0 qui a la propriété suivante :

$$(x \in I \text{ et } x \ge r) \implies f(x) \ge A$$

La fonction tend vers $+\infty$ quand x tend vers $+\infty$

Soit *I*, I'un des intervalles : $]-\infty$, $+\infty[$ ou]a, $+\infty[$ ou]a, $+\infty[$.

Soit $f: I \longrightarrow \mathbb{R}$

On dit que f tend vers $+\infty$ quand x tend vers $+\infty$, si :

 $\forall A > 0$, il existe un nombre r > 0 qui a la propriété suivante :

$$(x \in I \text{ et } x \ge r) \Rightarrow f(x) \ge A$$

Notation : $\lim_{x\to +\infty} f(x) = +\infty$

La fonction tend vers $+\infty$ quand x tend vers $-\infty$

Soit *I*, I'un des intervalles : $]-\infty$, $+\infty[$ ou $]-\infty$, a[ou $]-\infty$, a[

Soit $f: I \longrightarrow \mathbb{R}$

La fonction tend vers $+\infty$ quand x tend vers $-\infty$

Soit *I*, I'un des intervalles : $]-\infty$, $+\infty[$ ou $]-\infty$, a[ou $]-\infty$, a[.

Soit $f: I \longrightarrow \mathbb{R}$

On dit que f tend vers $+\infty$ quand x tend vers $-\infty$, si :

 $\forall A > 0$, il existe un nombre r < 0 qui a la propriété suivante :

$$(x \in I \text{ et } x \leq r) \Rightarrow f(x) \geq A$$

La fonction tend vers $+\infty$ quand x tend vers $-\infty$

Soit *I*, I'un des intervalles : $]-\infty$, $+\infty[$ ou $]-\infty$, a[ou $]-\infty$, a[.

Soit $f: I \longrightarrow \mathbb{R}$

On dit que f tend vers $+\infty$ quand x tend vers $-\infty$, si :

 $\forall A > 0$, il existe un nombre r < 0 qui a la propriété suivante :

$$(x \in I \text{ et } x \le r) \Rightarrow f(x) \ge A$$

Notation : $\lim_{x\to-\infty} f(x) = +\infty$

La fonction tend vers $-\infty$...

On dit que f tend vers $-\infty$

1. quand x tend vers x_0

 $si: -f tend vers +\infty$

1. quand x tend vers x_0

La fonction tend vers $-\infty$...

On dit que f tend vers $-\infty$

2. quand x tend vers $+\infty$

 $si: -f tend vers +\infty$

2. quand x tend vers $+\infty$

La fonction tend vers $-\infty$...

On dit que f tend vers $-\infty$

3. quand x tend vers $-\infty$

 $si: -f tend vers +\infty$

3. quand x tend vers -∞

La fonction tend vers $-\infty$...

On dit que f tend vers $-\infty$

- 1. quand x tend vers x_0
- 2. quand x tend vers $+\infty$
- 3. quand x tend vers $-\infty$
- $si: -f tend vers +\infty$
 - 1. quand x tend vers x_0
 - 2. quand x tend vers $+\infty$
 - 3. quand x tend vers $-\infty$

Limites et opérations

On suppose:
$$\lim_{x\to x_0} f(x) = \ell$$
 et $\lim_{x\to x_0} g(x) = \ell'$

On suppose:
$$\lim_{x\to x_0} f(x) = \ell$$
 et $\lim_{x\to x_0} g(x) = \ell'$

$$\lim_{x \to x_0} \left(f(x) + g(x) \right) = \ell + \ell'$$

On suppose:
$$\lim_{x\to x_0} f(x) = \ell$$
 et $\lim_{x\to x_0} g(x) = \ell'$

- $\blacktriangleright \lim_{x \to x_0} \left(f(x) + g(x) \right) = \ell + \ell'$
- $\blacktriangleright \lim_{x \to x_0} (f(x).g(x)) = \ell.\ell'$

On suppose:
$$\lim_{x\to x_0} f(x) = \ell$$
 et $\lim_{x\to x_0} g(x) = \ell'$

- $\lim_{x \to x_0} \left(f(x) + g(x) \right) = \ell + \ell'$
- $\blacktriangleright \lim_{x \to x_0} (f(x).g(x)) = \ell.\ell'$
- $\blacktriangleright \lim_{X \to X_0} \lambda.f(X) = \lambda.\ell$

On suppose:
$$\lim_{x \to x_0} f(x) = \ell$$
 et $\lim_{x \to x_0} g(x) = \ell'$

- $\lim_{x \to x_0} \left(f(x) + g(x) \right) = \ell + \ell'$
- $\blacktriangleright \lim_{X \to X_0} (f(x).g(x)) = \ell.\ell'$
- $\blacktriangleright \lim_{x \to x_0} \lambda. f(x) = \lambda. \ell$
- $\blacktriangleright \operatorname{Si} \ell' \neq 0, \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\ell}{\ell'}$

On suppose:
$$\lim_{x\to x_0} f(x) = \ell$$
 et $\lim_{x\to x_0} g(x) = \ell'$

$$\lim_{x \to x_0} \left(f(x) + g(x) \right) = \ell + \ell'$$

- $\blacktriangleright \lim_{X \to X_0} (f(x).g(x)) = \ell.\ell'$
- $\blacktriangleright \lim_{X \to X_0} \lambda.f(X) = \lambda.\ell$
- $\blacktriangleright \operatorname{Si} \ell' \neq 0, \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\ell}{\ell'}$

Proposition identique pour : $\lim_{x \to +\infty} f(x) = \ell$ et $\lim_{x \to -\infty} f(x) = \ell$

On suppose :
$$\lim_{x \to x_0} g(x) = +\infty$$

$$\lim_{x\to x_0}\frac{1}{g(x)}=0$$

On suppose :
$$\lim_{x \to x_0} g(x) = +\infty$$

- $\lim_{x\to x_0}\frac{1}{g(x)}=0$
- ► Si f est minorée, $\lim_{x \to x_0} (f(x) + g(x)) = +\infty$

- $\lim_{x\to x_0}\frac{1}{g(x)}=0$
- ► Si f est minorée, $\lim_{x \to x_0} (f(x) + g(x)) = +\infty$
- ► Si f est minorée par un nombre strictement positif, $\lim_{X \to X_0} (f(x).g(x)) = +\infty$

- $\lim_{x\to x_0}\frac{1}{g(x)}=0$
- ► Si f est minorée, $\lim_{x \to x_0} (f(x) + g(x)) = +\infty$
- ► Si f est minorée par un nombre strictement positif, $\lim_{X\to X_0} \left(f(x).g(x)\right) = +\infty$

- $\lim_{x\to x_0}\frac{1}{g(x)}=0$
- ► Si f est minorée, $\lim_{x \to x_0} (f(x) + g(x)) = +\infty$
- ▶ Si f est minorée par un nombre strictement positif, $\lim_{x\to x_0} \left(f(x).g(x)\right) = +\infty$
- $\blacktriangleright \operatorname{Si} \lim_{X \to X_0} f(X) = \ell > 0 : \lim_{X \to X_0} \left(f(X) \cdot g(X) \right) = +\infty$

Limites et ordre

Théorème : Soit f une fonction et ℓ un nombre réel.

Si
$$\forall x$$
, $f(x) \ge 0$ et si $\lim_{x \to x_0} f(x) = \ell$, alors : $\ell \ge 0$

Théorème : Soit f une fonction et ℓ un nombre réel.

Si
$$\forall x$$
, $f(x) \ge 0$ et si $\lim_{X \to X_0} f(x) = \ell$, alors : $\ell \ge 0$

Supposons $\ell < 0$. On a alors : $\ell < \frac{\ell}{2} < 0$ donc : $-\frac{\ell}{2} > 0$.

Pour $\varepsilon = -\frac{\ell}{2}$, il existe $\alpha > 0$ qui a la propriété suivante :

$$(x \neq x_0 \text{ et } |x - x_0| \leq \alpha) \Rightarrow |f(x) - \ell| \leq \varepsilon = -\frac{\ell}{2}$$

Théorème : Soit f une fonction et ℓ un nombre réel.

Si
$$\forall x$$
, $f(x) \ge 0$ et si $\lim_{X \to X_0} f(x) = \ell$, alors : $\ell \ge 0$

Supposons $\ell < 0$. On a alors : $\ell < \frac{\ell}{2} < 0$ donc : $-\frac{\ell}{2} > 0$.

Pour $\varepsilon = -\frac{\ell}{2}$, il existe $\alpha > 0$ qui a la propriété suivante :

$$(x \neq x_0 \text{ et } |x - x_0| \leq \alpha) \Rightarrow |f(x) - \ell| \leq \varepsilon = -\frac{\ell}{2}$$

Alors:
$$\frac{\ell}{2} \le f(x) - \ell \le -\frac{\ell}{2}$$
 c'est-à-dire: $\frac{3\ell}{2} \le f(x) \le \frac{\ell}{2} < 0$

Théorème : Soit f une fonction et ℓ un nombre réel.

Si
$$\forall x$$
, $f(x) \ge 0$ et si $\lim_{X \to X_0} f(x) = \ell$, alors : $\ell \ge 0$

Supposons $\ell < 0$. On a alors : $\ell < \frac{\ell}{2} < 0$ donc : $-\frac{\ell}{2} > 0$.

Pour $\varepsilon = -\frac{\ell}{2}$, il existe $\alpha > 0$ qui a la propriété suivante :

$$(x \neq x_0 \text{ et } |x - x_0| \leq \alpha) \Rightarrow |f(x) - \ell| \leq \varepsilon = -\frac{\ell}{2}$$

Alors:
$$\frac{\ell}{2} \le f(x) - \ell \le -\frac{\ell}{2}$$
 c'est-à-dire: $\frac{3\ell}{2} \le f(x) \le \frac{\ell}{2} < 0$

Or f est positive...

Théorème : Soit f une fonction et ℓ un nombre réel.

Si
$$\forall x$$
, $f(x) \ge 0$ et si $\lim_{X \to X_0} f(x) = \ell$, alors : $\ell \ge 0$

Théorème applicable aussi, si
$$\lim_{x\to +\infty} f(x) = \ell$$
 ou si $\lim_{x\to -\infty} f(x) = \ell$

Théorème : Soit f une fonction et ℓ un nombre réel.

Si
$$\forall x$$
, $f(x) \ge 0$ et si $\lim_{X \to X_0} f(x) = \ell$, alors : $\ell \ge 0$

Théorème applicable aussi, si
$$\lim_{x\to +\infty} f(x) = \ell$$
 ou si $\lim_{x\to -\infty} f(x) = \ell$

Attention: même si $\forall x, f(x) > 0$, $\ell \ge 0$

Corollaire: Soit f et g deux fonctions telles que : $f \le g$.

$$\mathsf{Si}: \lim_{x \to x_0} f(x) = \ell \quad \mathsf{et} \quad \lim_{x \to x_0} g(x) = \ell' \quad \mathsf{alors} \ : \ \ \ell \leq \ell'$$

Corollaire: Soit f et g deux fonctions telles que : $f \le g$.

$$\mathsf{Si}: \lim_{x \to x_0} f(x) = \ell \quad \mathsf{et} \quad \lim_{x \to x_0} g(x) = \ell' \quad \mathsf{alors} \ : \ \ \ell \leq \ell'$$

Si
$$f \le g$$
, $g - f \ge 0$...

« Théorème des gendarmes »

Théorème : Soit f, g et h trois fonctions et ℓ un nombre réel.

Si
$$f \le g \le h$$
 et si $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = \ell$ alors :

$$\lim_{x\to x_0}g(x)=\ell$$

« Théorème des gendarmes »

Théorème: Soit f, g et h trois fonctions et ℓ un nombre réel.

Si
$$f \le g \le h$$
 et si $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = \ell$ alors :

$$\lim_{x\to x_0}g(x)=\ell$$

 $\forall \varepsilon > 0, \exists \alpha > 0$:

$$(x \neq x_0 \text{ et } |x - x_0| \leq \alpha) \Rightarrow (|f(x) - \ell| \leq \varepsilon \text{ et } |h(x) - \ell| \leq \varepsilon)$$

« Théorème des gendarmes »

Théorème: Soit f, g et h trois fonctions et ℓ un nombre réel.

Si
$$f \le g \le h$$
 et si $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = \ell$ alors :

$$\lim_{x\to x_0}g(x)=\ell$$

 $\forall \varepsilon > 0, \ \exists \alpha > 0$:

$$(x \neq x_0 \text{ et } |x - x_0| \leq \alpha) \Rightarrow (|f(x) - \ell| \leq \varepsilon \text{ et } |h(x) - \ell| \leq \varepsilon)$$

Si
$$f \le g \le h$$
: $f(x) - \ell \le g(x) - \ell \le h(x) - \ell$

Théorème: Soit f, g et h trois fonctions et ℓ un nombre réel.

Si
$$f \le g \le h$$
 et si $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = \ell$ alors :

$$\lim_{x\to x_0}g(x)=\ell$$

 $\forall \varepsilon > 0, \ \exists \alpha > 0$:

$$(x \neq x_0 \text{ et } |x - x_0| \leq \alpha) \Rightarrow (|f(x) - \ell| \leq \varepsilon \text{ et } |h(x) - \ell| \leq \varepsilon)$$

Si
$$f \le g \le h$$
: $-\varepsilon \le f(x) - \ell \le g(x) - \ell \le h(x) - \ell \le \varepsilon$

Théorème: Soit f, g et h trois fonctions et ℓ un nombre réel.

Si
$$f \le g \le h$$
 et si $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = \ell$ alors :

$$\lim_{x\to x_0}g(x)=\ell$$

 $\forall \varepsilon > 0, \ \exists \alpha > 0$:

$$(x \neq x_0 \text{ et } |x - x_0| \leq \alpha) \Rightarrow (|f(x) - \ell| \leq \varepsilon \text{ et } |h(x) - \ell| \leq \varepsilon)$$

Si
$$f \le g \le h$$
: $-\varepsilon \le f(x) - \ell \le g(x) - \ell \le h(x) - \ell \le \varepsilon$

$$|g(x) - \ell| \le \varepsilon$$

Corollaire : Si
$$f \le g$$
 et si $\lim_{x \to x_0} f(x) = +\infty$ alors : $\lim_{x \to x_0} g(x) = +\infty$

Corollaire : Soit *f* et *g* deux fonctions.

Si
$$f$$
 est bornée et si $\lim_{x \to x_0} g(x) = 0$ alors : $\lim_{x \to x_0} f(x) \cdot g(x) = 0$

Corollaire : Soit *f* et *g* deux fonctions.

Si
$$f$$
 est bornée et si $\lim_{x\to x_0}g(x)=0$ alors : $\lim_{x\to x_0}f(x).g(x)=0$

$$(\exists M: |f(x)| \le M) \Rightarrow (|f(x).g(x)| \le M.|g(x)|)$$

Limites à gauche et à droite

► Si pour $x \in]a, x_0[$, $\lim_{x \to x_0} f(x) = \ell$ on dit que f tend vers ℓ quand x tend vers x_0 à gauche.

- ► Si pour $x \in]a, x_0[$, $\lim_{x \to x_0} f(x) = \ell$ on dit que f tend vers ℓ quand x tend vers x_0 à gauche.
- ▶ Si pour $x \in]x_0$, b[, $\lim_{x \to x_0} f(x) = \ell$ on dit que f tend vers ℓ quand x tend vers x_0 à droite.

- ► Si pour $x \in]a, x_0[$, $\lim_{x \to x_0} f(x) = \ell$ on dit que f tend vers ℓ quand x tend vers x_0 à gauche.
- ► Si pour $x \in]x_0$, b[, $\lim_{x \to x_0} f(x) = \ell$ on dit que f tend vers ℓ quand x tend vers x_0 à droite.

Notation : $\lim_{x \to x_0^-} f(x) = \ell$ limite à gauche

- ► Si pour $x \in]a, x_0[$, $\lim_{x \to x_0} f(x) = \ell$ on dit que f tend vers ℓ quand x tend vers x_0 à gauche.
- ▶ Si pour $x \in]x_0$, b[, $\lim_{x \to x_0} f(x) = \ell$ on dit que f tend vers ℓ quand x tend vers x_0 à droite.

Notation :
$$\lim_{x\to x_0^-} f(x) = \ell$$
 limite à gauche $\lim_{x\to x_0^+} f(x) = \ell$ limite à droite

2012 — 2013

2012 — 2013

$$\bigsqcup_{x \to x_0} \left(f(x) - g(x) \right) \operatorname{si} : \lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \pm \infty \quad (\infty - \infty)$$

$$\bigsqcup_{x \to X_0} \left(f(x) - g(x) \right) \text{ si } : \lim_{x \to X_0} f(x) = \lim_{x \to X_0} g(x) = \pm \infty \quad (\infty - \infty)$$

$$\blacktriangleright \lim_{x \to X_0} \left(f(x).g(x) \right) \text{ si } : \lim_{x \to X_0} f(x) = 0, \ \lim_{x \to X_0} g(x) = \pm \infty \quad (0.\infty)$$

$$\blacktriangleright \lim_{x \to X_0} \left(f(x) - g(x) \right) \text{ si } : \lim_{x \to X_0} f(x) = \lim_{x \to X_0} g(x) = \pm \infty \quad (\infty - \infty)$$

$$\blacktriangleright \lim_{x \to X_0} \left(f(x).g(x) \right) \text{ si } : \lim_{x \to X_0} f(x) = 0, \ \lim_{x \to X_0} g(x) = \pm \infty \quad (0.\infty)$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} \text{ si } : \lim_{x \to x_0} f(x) = 0, \ \lim_{x \to x_0} g(x) = 0 \quad (\frac{0}{0})$$

$$\blacktriangleright \lim_{x \to X_0} \left(f(x) - g(x) \right) \text{ si } : \lim_{x \to X_0} f(x) = \lim_{x \to X_0} g(x) = \pm \infty \quad (\infty - \infty)$$

$$\blacktriangleright \lim_{x \to X_0} \left(f(x).g(x) \right) \text{ si } : \lim_{x \to X_0} f(x) = 0, \ \lim_{x \to X_0} g(x) = \pm \infty \quad (0.\infty)$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} \text{ si } : \lim_{x \to x_0} f(x) = 0, \ \lim_{x \to x_0} g(x) = 0 \quad \left(\frac{0}{0}\right)$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} \text{ si } : \lim_{x \to x_0} f(x) = \pm \infty, \ \lim_{x \to x_0} g(x) = \pm \infty \quad \left(\frac{\infty}{\infty}\right)$$

$$\lim_{x \to x_0} \left(f(x) - g(x) \right) \text{ si } : \lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \pm \infty \quad (\infty - \infty)$$

$$\blacktriangleright \lim_{x \to x_0} \left(f(x).g(x) \right) \text{ si } : \lim_{x \to x_0} f(x) = 0, \ \lim_{x \to x_0} g(x) = \pm \infty \quad (0.\infty)$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} \text{ si } : \lim_{x \to x_0} f(x) = 0, \ \lim_{x \to x_0} g(x) = 0 \quad \left(\frac{0}{0}\right)$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} \text{ si } : \lim_{x \to x_0} f(x) = \pm \infty, \ \lim_{x \to x_0} g(x) = \pm \infty \quad \left(\frac{\infty}{\infty}\right)$$

$$\lim_{x \to x_0} \left(f(x) - g(x) \right) \text{ si } : \lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \pm \infty \quad (\infty - \infty)$$

$$\blacktriangleright \lim_{x \to X_0} \left(f(x).g(x) \right) \text{ si } : \lim_{x \to X_0} f(x) = 0, \ \lim_{x \to X_0} g(x) = \pm \infty \quad (0.\infty)$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} \text{ si } : \lim_{x \to x_0} f(x) = 0, \ \lim_{x \to x_0} g(x) = 0 \quad \left(\frac{0}{0}\right)$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} \text{ si : } \lim_{x \to x_0} f(x) = \pm \infty, \ \lim_{x \to x_0} g(x) = \pm \infty \quad (\frac{\infty}{\infty})$$

$$\blacktriangleright \lim_{x \to +\infty} (\sqrt{x} - x) \quad \text{et} \quad \lim_{x \to +\infty} \exp(\sqrt{x} - x)$$

- $\blacktriangleright \lim_{x \to +\infty} (\sqrt{x} x) \quad \text{et} \quad \lim_{x \to +\infty} \exp(\sqrt{x} x)$
- $\lim_{x \to +\infty} \left(2 \ln(x+1) \ln(x^2+1) \right)$

- $\blacktriangleright \lim_{x \to +\infty} (\sqrt{x} x) \quad \text{et} \quad \lim_{x \to +\infty} \exp(\sqrt{x} x)$
- $\lim_{x \to +\infty} \left(2 \ln(x+1) \ln(x^2+1) \right)$
- $\lim_{x \to 0^{+}} \exp\left(\frac{1}{x}\right) \quad \text{et} \quad \lim_{x \to 0^{-}} \exp\left(\frac{1}{x}\right)$

- $\blacktriangleright \lim_{X \to +\infty} \left(\sqrt{X} X \right) \quad \text{et} \quad \lim_{X \to +\infty} \exp \left(\sqrt{X} X \right)$
- $\lim_{x \to +\infty} \left(2 \ln(x+1) \ln(x^2+1) \right)$
- $\lim_{x \to 0^{+}} \exp\left(\frac{1}{x}\right) \quad \text{et} \quad \lim_{x \to 0^{-}} \exp\left(\frac{1}{x}\right)$
- $\lim_{x \to +\infty} \frac{1 + e^x}{1 e^x} \quad \text{et} \quad \lim_{x \to -\infty} \frac{1 + e^x}{1 e^x}$

- $\blacktriangleright \lim_{X \to +\infty} \left(\sqrt{X} X \right) \quad \text{et} \quad \lim_{X \to +\infty} \exp \left(\sqrt{X} X \right)$
- $\lim_{x \to +\infty} \left(2 \ln(x+1) \ln(x^2+1) \right)$
- $\lim_{x \to 0^{+}} \exp\left(\frac{1}{x}\right) \quad \text{et} \quad \lim_{x \to 0^{-}} \exp\left(\frac{1}{x}\right)$
- $\lim_{x \to +\infty} \frac{1 + e^x}{1 e^x} \quad \text{et} \quad \lim_{x \to -\infty} \frac{1 + e^x}{1 e^x}$
- $\lim_{x \to +\infty} \frac{\ln(x+1)}{\ln x}$

Continuité

Fonction continue

Soit A une partie de \mathbb{R} et f une fonction définie sur A.

► Si $x_0 \in A$ on dit que f est continue en x_0 si : $\lim_{x \to x_0} f(x) = f(x_0)$.

Fonction continue

Soit A une partie de \mathbb{R} et f une fonction définie sur A.

- ► Si $x_0 \in A$ on dit que f est continue en x_0 si : $\lim_{x \to x_0} f(x) = f(x_0)$.
- ► On dit que *f* est continue sur *A* si *f* est continue en tout point de *A*.

Fonction continue

Soit A une partie de \mathbb{R} et f une fonction définie sur A.

- ► Si $x_0 \in A$ on dit que f est continue en x_0 si : $\lim_{x \to x_0} f(x) = f(x_0)$.
- ➤ On dit que f est continue sur A si f est continue en tout point de A.

 $\forall \varepsilon > 0$, il existe un nombre $\alpha > 0$ ayant la propriété suivante :

$$(x \in A \text{ et } |x - x_0| \le \alpha) \Rightarrow |f(x) - f(x_0)| \le \varepsilon$$

Continuité de la somme et du produit

Soit f et g deux fonctions continues sur A et $\lambda \in \mathbb{R}$ Supposons que f et g sont continues en $x_0 \in A$ (sur A), alors :

▶ La fonction f + g est continue en x_0 (sur A)

Continuité de la somme et du produit

Soit f et g deux fonctions continues sur A et $\lambda \in \mathbb{R}$ Supposons que f et g sont continues en $x_0 \in A$ (sur A), alors :

- ▶ La fonction f + g est continue en x_0 (sur A)
- ▶ La fonction f.g est continue en x_0 (sur A)

Continuité de la somme et du produit

Soit f et g deux fonctions continues sur A et $\lambda \in \mathbb{R}$ Supposons que f et g sont continues en $x_0 \in A$ (sur A), alors :

- ▶ La fonction f + g est continue en x_0 (sur A)
- ▶ La fonction f.g est continue en x₀ (sur A)
- ▶ La fonction $\lambda . f$ est continue en x_0 (sur A)

Continuité de la somme et du produit

Soit f et g deux fonctions continues sur A et $\lambda \in \mathbb{R}$ Supposons que f et g sont continues en $x_0 \in A$ (sur A), alors :

- ▶ La fonction f + g est continue en x_0 (sur A)
- ▶ La fonction f.g est continue en x₀ (sur A)
- ▶ La fonction $\lambda . f$ est continue en x_0 (sur A)
- ► Si $g(x_0) \neq 0$, la fonction $\frac{f}{g}$ est continue en x_0 (sur A)

Continuité de $g \circ f$

Théorème : Soit $f: A \longrightarrow \mathbb{R}$ et $g: B \longmapsto \mathbb{R}$

On suppose que $f(A) \subset B$ et que $\lim_{x \to x_0} f(x) = \ell \in B$

Si g est continue en ℓ , alors : $\lim_{x \to x_0} g \circ f(x) = g(I)$

g est continue en ℓ :

$$\forall \varepsilon > 0$$
, $\exists \alpha > 0$: $(y \in B \text{ et } |y - \ell| \le \alpha) \Rightarrow |g(y) - g(\ell)| \le \varepsilon$

f a pour limite ℓ en x_0 :

$$\alpha > 0$$

$$\exists \beta > 0 : (x \in A, x \neq x_0, |x - x_0| \leq \beta) \Rightarrow |f(x) - \ell| \leq \alpha$$

$$\forall \varepsilon > 0, \quad \exists \alpha > 0 : \quad (y \in B \text{ et } |y - \ell| \le \alpha) \quad \Rightarrow \quad |g(y) - g(\ell)| \le \varepsilon$$

$$\exists \beta > 0 : \quad (x \in A, x \ne x_0, |x - x_0| \le \beta) \quad \Rightarrow \quad |f(x) - \ell| \le \alpha$$

$$\forall \varepsilon > 0, \ \exists \beta > 0 :$$

 $(x \in A, x \neq x_0, |x - x_0| \leq \beta) \Rightarrow |g(f(x)) - g(\ell)| \leq \varepsilon$

Corollaire 1 : La composée de deux fonctions continues est continue.

Continuité de $g \circ f$

Corollaire 1 : La composée de deux fonctions continues est continue.

Corollaire 2 : Soit $f: I \longrightarrow \mathbb{R}$ une fonction et u_n une suite définie par récurrence par :

$$u_0$$
, et $u_{n+1} = f(u_n)$

- 1. Si u_n est convergente vers $L \in I$
- 2. Si f est continue

Alors *L* vérifie :
$$f(L) = L$$

Soit f une fonction définie sur]a,b[et ℓ un nombre réel.

Supposons que
$$\lim_{x\to a} f(x) = \ell$$

Soit f une fonction définie sur]a,b[et ℓ un nombre réel.

Supposons que $\lim_{x\to a} f(x) = \ell$

On définit la fonction g sur [a, b[par :

$$g(x) = \begin{cases} f(x) & \text{si } x \in]a, b[\\ \ell & \text{si } x = a \end{cases}$$

Soit f une fonction définie sur]a,b[et ℓ un nombre réel.

Supposons que $\lim_{x\to a} f(x) = \ell$

On définit la fonction g sur [a, b[par :

$$g(x) = \begin{cases} f(x) & \text{si } x \in]a, b[\\ \ell & \text{si } x = a \end{cases}$$

$$\lim_{x\to a}g(x)=\lim_{x\to a}f(x)=\ell=g(a)$$

Soit f une fonction définie sur]a,b[et ℓ un nombre réel.

Supposons que $\lim_{x\to a} f(x) = \ell$

On définit la fonction g sur [a, b[par :

$$g(x) = \begin{cases} f(x) & \text{si } x \in]a, b[\\ \ell & \text{si } x = a \end{cases}$$

$$\lim_{x\to a} g(x) = \lim_{x\to a} f(x) = \ell = g(a) \quad g \text{ est continue en } a$$

Soit f une fonction définie sur a, b et ℓ un nombre réel.

Supposons que
$$\lim_{x\to a} f(x) = \ell$$

On définit la fonction g sur [a, b[par :

$$g(x) = \begin{cases} f(x) & \text{si } x \in]a, b[\\ \ell & \text{si } x = a \end{cases}$$

$$\lim_{x\to a} g(x) = \lim_{x\to a} f(x) = \ell = g(a) \quad g \text{ est continue en } a$$

g est le prolongement par continuité de f en a.

Exercices

Utilisation des opérations

Soit f une fonction définie sur $]1, +\infty[$ par :

$$f(x) = \frac{\sqrt{x+1} - \sqrt{x-1}}{x^2 + 1}$$

f est continue sur $]1, +\infty[$

Exercices

Utilisation des opérations

Soit f une fonction définie sur \mathbb{R} par :

$$f(x) = \frac{e^x - \sin x}{\sqrt{x^2 + 1}}$$

Exercices

Utilisation des limites

Soit f une fonction définie sur \mathbb{R} par :

$$\begin{cases} f(x) & = \frac{x^3 + 8}{x + 2} & \text{si } x \neq -2 \\ f(-2) & = 12 \end{cases}$$

► Si f est majorée, alors :

- ► Si f est majorée, alors :
 - 1. f a une limite quand x tend vers b

- ► Si f est majorée, alors :
 - 1. f a une limite quand x tend vers b
 - 2. $\lim_{x \to b} f(x) = \sup\{y = f(x) \mid x \in [a, b[\}] = \sup_{x \in [a, b[} f(x)]$

- ► Si f est majorée, alors :
 - 1. f a une limite guand x tend vers b
 - 2. $\lim_{x \to b} f(x) = \sup\{y = f(x) \mid x \in [a, b[\}] = \sup_{x \in [a, b[]]} f(x)$
- ▶ Si f n'est pas majorée, alors $\lim_{x \to b} f(x) = +\infty$

- ► Si f est majorée, alors :
 - 1. f a une limite guand x tend vers b
 - 2. $\lim_{x \to b} f(x) = \sup\{y = f(x) \mid x \in [a, b[\}] = \sup_{x \in [a, b[]]} f(x)$
- ▶ Si f n'est pas majorée, alors $\lim_{x \to b} f(x) = +\infty$

Théorème valide si on remplace b par $+\infty$

Fonction croissante majorée, non minorée

Fonction croissante majorée et minorée

► Si f est minorée, alors :

- ► Si f est minorée, alors :
 - 1. f a une limite quand x tend vers a

- ► Si f est minorée, alors :
 - 1. f a une limite quand x tend vers a

2.
$$\lim_{x \to a} f(x) = \inf\{y = f(x) \mid x \in]a, b]\} = \inf_{x \in [a, b]} f(x)$$

- ▶ Si f est minorée, alors :
 - 1. f a une limite quand x tend vers a

2.
$$\lim_{x \to a} f(x) = \inf\{y = f(x) \mid x \in]a, b]\} = \inf_{x \in [a, b]} f(x)$$

► Si f n'est pas minorée, alors $\lim_{x\to a} f(x) = -\infty$

- ▶ Si f est minorée, alors :
 - 1. f a une limite quand x tend vers a

2.
$$\lim_{x \to a} f(x) = \inf\{y = f(x) \mid x \in]a, b]\} = \inf_{x \in [a, b]} f(x)$$

▶ Si f n'est pas minorée, alors $\lim_{x\to a} f(x) = -\infty$

Théorème valide si on remplace a par $-\infty$

Fonction croissante minorée, non majorée

Fonction croissante ni majorée, ni minorée

Mathématiques et calcul 1

Proposition : Soit a et b deux nombres réels tels que a < b et $f: [a,b] \longrightarrow \mathbb{R}$ une fonction continue.

Si f(a) et f(b) sont non-nuls et de signes contraires,

alors:

il existe au moins un nombre $c \in]a, b[$ tel que f(c) = 0.

Proposition : Soit a et b deux nombres réels tels que a < b et $f: [a,b] \longrightarrow \mathbb{R}$ une fonction continue.

Si f(a) et f(b) sont non-nuls et de signes contraires,

alors:

il existe au moins un nombre $c \in]a, b[$ tel que f(c) = 0.

Soit
$$m_0 = \frac{a_0 + b_0}{2}$$
.

Mathématiques et calcul 1

Soit
$$m_0 = \frac{a_0 + b_0}{2}$$
.

► Si
$$f(m_0) = 0$$
, $c = m_0$

Soit
$$m_0 = \frac{a_0 + b_0}{2}$$
.

- ► Si $f(m_0) = 0$, $c = m_0$
- ► Si $f(m_0) > 0$, $a_1 = m_0$, et $b_1 = b_0$ donc $f(a_1) > 0$

Soit
$$m_0 = \frac{a_0 + b_0}{2}$$
.

- ► Si $f(m_0) = 0$, $c = m_0$
- ► Si $f(m_0) > 0$, $a_1 = m_0$, et $b_1 = b_0$ donc $f(a_1) > 0$
- ► Si $f(m_0) < 0$, $a_1 = a_0$, et $b_1 = m_0$ donc $f(b_1) < 0$

Soit
$$m_0 = \frac{a_0 + b_0}{2}$$
.

- ► Si $f(m_0) = 0$, $c = m_0$
- ► Si $f(m_0) > 0$, $a_1 = m_0$, et $b_1 = b_0$ donc $f(a_1) > 0$
- ► Si $f(m_0) < 0$, $a_1 = a_0$, et $b_1 = m_0$ donc $f(b_1) < 0$

$$a_0 < m_0 < b_0 \implies a_0 \le a_1 < b_1 \le b_0$$

Soit
$$m_0 = \frac{a_0 + b_0}{2}$$
.

- ► Si $f(m_0) = 0$, $c = m_0$
- ► Si $f(m_0) > 0$, $a_1 = m_0$, et $b_1 = b_0$ donc $f(a_1) > 0$
- ► Si $f(m_0) < 0$, $a_1 = a_0$, et $b_1 = m_0$ donc $f(b_1) < 0$

$$a_0 < m_0 < b_0 \quad \Rightarrow \quad a_0 \le a_1 < b_1 \le b_0$$

$$b_1 - a_1 = \begin{cases} b_0 - m_0 &= b_0 - \frac{a_0 + b_0}{2} &= \frac{b_0 - a_0}{2} & (\text{si } f(m_0) > 0) \\ m_0 - a_0 &= \frac{a_0 + b_0}{2} - a_0 &= \frac{b_0 - a_0}{2} & (\text{si } f(m_0) < 0) \end{cases}$$

Soit
$$m_1 = \frac{a_1 + b_1}{2}$$
.

Mathématiques et calcul 1

Soit
$$m_1=\frac{a_1+b_1}{2}$$
.

► Si
$$f(m_1) = 0$$
, $c = m_1$

Soit
$$m_1=\frac{a_1+b_1}{2}$$
.

- ► Si $f(m_1) = 0$, $c = m_1$
- ► Si $f(m_1) > 0$, $a_2 = m_1$, et $b_2 = b_1$ donc $f(a_2) > 0$

Soit
$$m_1=\frac{a_1+b_1}{2}$$
.

- ► Si $f(m_1) = 0$, $c = m_1$
- ► Si $f(m_1) > 0$, $a_2 = m_1$, et $b_2 = b_1$ donc $f(a_2) > 0$
- ► Si $f(m_1) < 0$, $a_2 = a_1$, et $b_2 = m_1$ donc $f(b_2) < 0$

Soit
$$m_1 = \frac{a_1 + b_1}{2}$$
.

- ► Si $f(m_1) = 0$, $c = m_1$
- ► Si $f(m_1) > 0$, $a_2 = m_1$, et $b_2 = b_1$ donc $f(a_2) > 0$
- ► Si $f(m_1) < 0$, $a_2 = a_1$, et $b_2 = m_1$ donc $f(b_2) < 0$

$$a_1 < m_1 < b_1 \implies a_0 \le a_1 \le a_2 < b_2 \le b_1 \le b_0$$

Soit
$$m_1 = \frac{a_1 + b_1}{2}$$
.

- ► Si $f(m_1) = 0$, $c = m_1$
- ► Si $f(m_1) > 0$, $a_2 = m_1$, et $b_2 = b_1$ donc $f(a_2) > 0$
- ► Si $f(m_1) < 0$, $a_2 = a_1$, et $b_2 = m_1$ donc $f(b_2) < 0$

$$a_1 < m_1 < b_1 \implies a_0 \le a_1 \le a_2 < b_2 \le b_1 \le b_0$$

$$b_2 - a_2 = \begin{cases} b_1 - m_1 &= \frac{b_1 - a_1}{2} &= \frac{b_0 - a_0}{2^2} & (\text{si } f(m_1) > 0) \\ m_1 - a_1 &= \frac{b_1 - a_1}{2} &= \frac{b_0 - a_0}{2^2} & (\text{si } f(m_1) < 0) \end{cases}$$

$$ightharpoonup a_0 \le a_1 \le \cdots \le a_n < b_n \le \cdots \le b_1 \le b_0$$

$$a_0 \le a_1 \le \cdots \le a_n < b_n \le \cdots \le b_1 \le b_0$$

•
$$f(a_n) > 0$$
 et $f(b_n) < 0$

$$a_0 \le a_1 \le \cdots \le a_n < b_n \le \cdots \le b_1 \le b_0$$

- $f(a_n) > 0$ et $f(b_n) < 0$
- \triangleright par construction a_n est croissante et b_n est décroissante

$$a_0 \le a_1 \le \cdots \le a_n < b_n \le \cdots \le b_1 \le b_0$$

- $f(a_n) > 0$ et $f(b_n) < 0$
- \triangleright par construction a_n est croissante et b_n est décroissante

►
$$b_n - a_n = \frac{b_0 - a_0}{2^n}$$
 donc: $\lim_{n \to \infty} (b_n - a_n) = 0$

$$a_0 \le a_1 \le \cdots \le a_n < b_n \le \cdots \le b_1 \le b_0$$

- $f(a_n) > 0$ et $f(b_n) < 0$
- ightharpoonup par construction a_n est croissante et b_n est décroissante
- ► $b_n a_n = \frac{b_0 a_0}{2^n}$ donc: $\lim_{n \to \infty} (b_n a_n) = 0$

Les suite a_n et b_n sont adjacentes, elles convergent donc vers la même limite : c.

$$a_0 \le a_1 \le \cdots \le a_n < b_n \le \cdots \le b_1 \le b_0$$

- $f(a_n) > 0$ et $f(b_n) < 0$
- ightharpoonup par construction a_n est croissante et b_n est décroissante

►
$$b_n - a_n = \frac{b_0 - a_0}{2^n}$$
 donc: $\lim_{n \to \infty} (b_n - a_n) = 0$

Les suite a_n et b_n sont adjacentes, elles convergent donc vers la même limite : c.

$$f$$
 est continue, donc : $\lim_{n\to\infty} f(a_n) = \lim_{n\to\infty} f(b_n) = f(c)$

$$a_0 \le a_1 \le \cdots \le a_n < b_n \le \cdots \le b_1 \le b_0$$

- $f(a_n) > 0$ et $f(b_n) < 0$
- \blacktriangleright par construction a_n est croissante et b_n est décroissante

►
$$b_n - a_n = \frac{b_0 - a_0}{2^n}$$
 donc: $\lim_{n \to \infty} (b_n - a_n) = 0$

Les suite a_n et b_n sont adjacentes, elles convergent donc vers la même limite : c.

$$f$$
 est continue, donc : $\lim_{n\to\infty} f(a_n) = \lim_{n\to\infty} f(b_n) = f(c)$

$$f(a_n) > 0 \Rightarrow f(c) \ge 0$$

 $f(b_n) < 0 \Rightarrow f(c) \le 0$ donc $f(c) = 0$

Corollaire : Un polynôme de degré impair à coefficients réels possède au moins une racine réelle.

Soit $f : [a, b] \longrightarrow \mathbb{R}$ une fonction continue.

Soit k un nombre strictement compris entre f(a) et f(b),

alors :

il existe un nombre c, a < c < b tel que : f(c) = k.

Soit $f : [a, b] \longrightarrow \mathbb{R}$ une fonction continue.

Soit k un nombre strictement compris entre f(a) et f(b), alors :

il existe un nombre c, a < c < b tel que : f(c) = k.

Supposons : f(a) < k < f(b), on pose : $\forall x \in [a, b], \quad g(x) = f(x) - k$

Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction continue.

Soit k un nombre strictement compris entre f(a) et f(b), alors :

il existe un nombre c, a < c < b tel que : f(c) = k.

Supposons : f(a) < k < f(b), on pose :

$$\forall x \in [a, b], \quad g(x) = f(x) - k$$

$$g(a) = f(a) - k < 0$$
 et $g(b) = f(b) - k > 0$

$$\exists c \in]a, b[: g(c) = 0$$

Soit $f : [a, b] \longrightarrow \mathbb{R}$ une fonction continue.

Soit k un nombre strictement compris entre f(a) et f(b), alors :

il existe un nombre c, a < c < b tel que : f(c) = k.

Supposons : f(a) < k < f(b), on pose :

$$\forall x \in [a, b], \quad g(x) = f(x) - k$$

$$g(a) = f(a) - k < 0$$
 et $g(b) = f(b) - k > 0$

$$\exists c \in]a, b[: g(c) = 0 = f(c) - k$$

Corollaire: Si une fonction f est continue sur un intervalle I, alors f(I) est un intervalle.

Corollaire: Si une fonction f est continue sur un intervalle I, alors f(I) est un intervalle.

$$\forall x, y \in f(I)$$
, si $x < k < y$, $\exists c \in I : f(c) = k$

1. La fonction f est bornée sur [a, b]

- 1. La fonction f est bornée sur [a, b]
- 2. f([a,b]) = [m,M] où: $m = \inf_{x \in [a,b]} f(x)$, $M = \sup_{x \in [a,b]} f(x)$

1. La fonction f est bornée sur [a, b]

2.
$$f([a,b]) = [m,M]$$
 où: $m = \inf_{x \in [a,b]} f(x)$, $M = \sup_{x \in [a,b]} f(x)$

Théorème admis

Proposition : Soit *I* un intervalle et $f: I \longrightarrow \mathbb{R}$ une fonction strictement monotone.

Alors : *f* est injective.

Proposition : Soit *I* un intervalle et $f: I \longrightarrow \mathbb{R}$ une fonction strictement monotone.

Alors : f est injective.

Soit $x \neq y$, en supposant f strictement croissante :

$$x < y \Rightarrow f(x) < f(y)$$

 $x > y \Rightarrow f(x) > f(y)$ $f(x) \neq f(y)$

1. f(I) est un intervalle

1. f(I) est un intervalle et f est une bijection de I sur f(I).

- 1. f(I) est un intervalle et f est une bijection de I sur f(I).
- 2. Si a et b sont les bornes de l'intervalle I, alors : $\lim_{x \to a} f(x)$ et $\lim_{x \to b} f(x)$ sont les bornes de l'intervalle f(I).

- 1. f(I) est un intervalle et f est une bijection de I sur f(I).
- 2. Si a et b sont les bornes de l'intervalle I, alors : $\lim_{x\to a} f(x)$ et $\lim_{x\to b} f(x)$ sont les bornes de l'intervalle f(I).
- 3. La bijection réciproque de f est continue, strictement monotone et de même sens de variation que f.

- 1. f(I) est un intervalle et f est une bijection de I sur f(I).
- 2. Si a et b sont les bornes de l'intervalle I, alors : $\lim_{x \to a} f(x)$ et $\lim_{x \to b} f(x)$ sont les bornes de l'intervalle f(I).
- 3. La bijection réciproque de f est continue, strictement monotone et de même sens de variation que f.

f bijective : $\exists f^{-1}$; si f strictement croissante :

$$x = f^{-1}(x') > f^{-1}(y') = y \iff x' = f(x) > f(y) = y'$$

