

analiza vremenski kontinuiranih signala

Signali i sustavi

Profesor Branko Jeren

10. ožujak 2008.

sustavi školska godina 2007/2008 Cjelina 6.

Profesor Branko Jeren

Frekvencijska analiza vremenski kontinuiranih signala

Fourierova Fourierova transformacija

Spektar vremenski kontinuiranog periodičnog signala

- pokazano je kako je spektar periodičnog signala diskretan
- dan je primjer parnog periodičnog pravokutnog signala čiji je spektar

$$\forall k \in \textit{Cjelobrojni} \quad X_k = \frac{\tau}{T_0} \frac{\sin \frac{\kappa \Omega_0 \tau}{2}}{\frac{k \Omega_0 \tau}{2}}$$

gdje je T_0 perioda, a au širina pravokutnog impulsa

- razmatra se spektar tri pravokutna signala, za tri vrijednosti periode T_{01} ; $T_{02}=2.5\,T_{01}$ i $T_{03}=2\,T_{02}=5\,T_{01}$, uz fiksirani τ
- na slici koja slijedi prikazuju se normalizirani amplitudni spektri $T_{01}X_{k1}$, $T_{02}X_{k2}$ i $T_{03}X_{k3}$ (normaliziranjem se zadržava ista amplituda, τ , sva tri normalizirana spektra)

Frekvencijska analiza vremenski kontinuiranih signala

Fourierova Fourierova transformacija

Spektar vremenski kontinuiranog periodičnog signala

Slika 1: Periodični signali $\tilde{x_1}, \tilde{x_2}, \tilde{x_3}$ i normalizirani spektri $T_{01}X_{k1}, T_{02}X_{k2}, T_{03}X_{k3}$

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Spektar vremenski kontinuiranog periodičnog signala

- periodični pravokutni signal 1 $\tilde{x} \in KontPeriod_{\mathcal{T}_0}$ možemo interpretirati kao signal koji je nastao periodičnim ponavljanjem aperiodičnog pravokutnog impulsa $x \in KontSignali$ trajanja τ
- normalizirani koeficijenti spektra T_0X_k , $\forall k \in Cjelobrojni$, mogu se interpretirati kao uzorci sinc funkcije koji čine linijski spektar signala \tilde{x}
- očigledno je kako s povećanjem osnovne periode spektar periodičnog signala \tilde{x} postaje gušći i gušći no dodirnica ostaje nepromijenjena

 $^{^1}$ oznakom \tilde{x} želi se, zbog potrebe izvoda koji slijedi, naglasiti periodičnost signala

sustavi školska godina 2007/2008 Cjelina 6.

Profesor Branko Jeren

Frekvencijska analiza vremenski kontinuiranih signala

Fourierova Fourierova transformacija

Spektar vremenski kontinuiranog periodičnog signala

- intuitivno zaključujemo kako za $T_0 \to \infty$ linijski spektar postaje kontinuirana funkcija frekvencije Ω identična dodirnici
- naime, kako se normalizirani koeficijenti spektra T_0X_k izračunavaju iz

$$\forall k \in \textit{Cjelobrojni}, \quad T_0 X_k = \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \tilde{x}(t) e^{-jk\Omega_0 t} dt$$

za očekivati je onda kako se vremenski kontinuirana dodirnica izračunava iz

$$\forall \Omega \in Realni, \quad X(j\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$
 (1)

Frekvencijska analiza vremenski kontinuiranih signala

Fourierova Fourierova transformacija

Spektar vremenski kontinuiranog periodičnog signala

dakle,

$$X(j\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt = \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} e^{-j\Omega t}dt = \tau \frac{\sin\frac{\Omega\tau}{2}}{\frac{\Omega\tau}{2}}$$

• pa koeficijente Fourierovog reda možemo prikazati kao uzorke $X(j\Omega)$ jer vrijedi

$$\forall k \in \textit{Cjelobrojni}, \quad X_k = \frac{\tau}{T_0} \frac{\sin \frac{k\Omega_0 \tau}{2}}{\frac{k\Omega_0 \tau}{2}} = \frac{1}{T_0} X(jk\Omega_0)$$

• općenito, periodični signal \tilde{x} prikazujemo Fourierovim redom oblika

$$orall t \in \textit{Realni}, \quad ilde{x}(t) = \sum_{k=-\infty}^{\infty} rac{1}{T_0} X(jk\Omega_0) e^{jk\Omega_0 t}$$

Frekvencijska analiza vremenski kontinuiranih signala

Fourierova Fourierova transformacija

Spektar vremenski kontinuiranog periodičnog signala

• odnosno, uz $\Omega_0 = \frac{2\pi}{T_0}$,

$$orall t \in \textit{Realni}, \quad ilde{x}(t) = rac{1}{2\pi} \sum_{k=-\infty}^{\infty} X(jk\Omega_0) e^{jk\Omega_0 t} \Omega_0$$

- za $T_0 \to \infty$, dakle kad periodični signal prelazi u aperiodičan, možemo interpretirati
 - $\Omega_0 o d\Omega$ osnovna frekvencija postaje neizmjerno malom veličinom
 - $k\Omega_0 \to \Omega$ harmonijske frekvencije postaju tako bliske da prelaze u kontinuum
 - sumacija teži k integralu
 - $\tilde{x}(t) \rightarrow x(t)$ periodični signal prelazi u aperiodičan
 - pa gornji izraz prelazi u

$$\forall t \in Realni, \quad x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega)e^{j\Omega t}d\Omega$$
 (2)

sustavi školska godina 2007/2008 Cjelina 6.

Profesor Branko Jeren

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija

- jednadžba (1) predstavlja Fourierovu transformaciju ili spektar signala x, a (2) inverznu Fourierovu transformaciju koja omogućuje određivanje signala x iz njegova spektra
- dakle, jednadžbe (1) i (2) predstavljaju transformacijski par
 - Fourierova transformacija

$$orall \Omega \in \textit{Realni}, \quad X(j\Omega) = \int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt$$

• inverzna Fourierova transformacija

$$\forall t \in Realni, \quad x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega) e^{j\Omega t} d\Omega$$

koriste se i oznake

$$X(j\Omega) = \mathcal{F}\{x(t)\}$$
 ili $x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\Omega)$

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija

- Fourierovom transformacijom vremenski kontinuiranom aperiodičnom signalu, definiranom u vremenskoj domeni, pridružuje se frekvencijski kontinuiran aperiodičan signal, definiran u frekvencijskoj domeni
- to pridruživanje označujemo kao² CTFT, prema engleskom Continuous-time Fourier transform, i definiramo kao

 $\textit{CTFT}: \textit{KontSignali} \rightarrow \textit{KontSignali}$

$$\forall \Omega \in \textit{Realni}, \quad X(j\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$

za $\forall x \in KontSignali$ i $\forall X \in KontSignali$

²u uobičajenoj komunikaciji koristi se oznaka *FT*, dakle, jednostavno Fourierova transformacija ← □ → ← ② → ← ○

2007/2008

Fourierova transformaciia

Inverzna Fourierova transformacija

- inverznom Fourierovom transformacijom frekvencijski kontinuiranom aperiodičnom signalu (spektru), definiranom u frekvencijskoj domeni, pridružuje se vremenski kontinuiran aperiodičan signal, definiran u vremenskoj domeni
- to pridruživanje označujemo *ICTFT*, prema engleskom Inverse Contionous-time Fourier transform, i definiramo kao

ICTFT : KontSignali → KontSignali

$$orall t \in \textit{Realni}, \quad x(t) = rac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega) e^{j\Omega t} d\Omega$$

za $\forall X \in KontSignali i \forall x \in KontSignali$

sustavi školska godina 2007/2008 Cjelina 6.

Profesor Branko Jeren

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Konvergencija Fourierove transformacije

- slično kao kod Fourierovog reda, i ovdje postoje dvije klase signala za koje Fourierova transformacija konvergira
 - 1 signali konačne totalne energije za koje vrijedi

$$\int_{-\infty}^{\infty} |x(t)|^2 dt < +\infty$$

- 2 signali koji zadovoljavaju Dirichletove uvjete
 - (a) signal x je apsolutno integrabilan

$$\int_{-\infty}^{\infty} |x(t)| dt < \infty$$

- (b) signal x ima konačni broj maksimuma i minimuma, u bilo kojem konačnom intervalu vremena
- (c) ima konačni broj diskontinuiteta, u bilo kojem konačnom intervalu vremena, pri čemu svaki od diskontinuiteta mora biti konačan

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Veza Fourierove i Laplaceove transformacije

• usporedimo izraze za Fourierovu i dvostranu Laplaceovu transformaciju, 3 za $\forall t \in Realni$

$$\mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt \qquad \mathcal{L}\{x(t)\} = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$

- očigledno je kako je Fourierova transformacija vremenskog signala jednaka Laplaceovoj transformaciji na imaginarnoj osi $s = j\Omega$, kompleksne ravnine
- pa, u slučaju da područje konvergencije \mathcal{L} -transformacije sadrži imaginarnu os $s = j\Omega$, vrijedi, $\forall t \in Realni$

$$\mathcal{F}\{x(t)\} = \mathcal{L}\{x(t)\}\Big|_{s=j\Omega}$$

³Detaljnije o dvostranoj Laplaceovoj transformaciji kasnije tijekom semestra

analiza vremenski kontinuiranih signala Fourierov red

Fourierov red Fourierova transformacija

Fourierova transformacija

• rezultat Fourierove transformacije, $X(j\Omega)$,

$$\forall \Omega \in Realni, \quad X(j\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$

naziva se i Fourierov spektar ili jednostavno spektar signala x(t), $\forall t \in Realni$

• X je kompleksna funkcija realne varijable⁴ Ω i pišemo

$$\forall \Omega \in Realni, \quad X(j\Omega) = |X(j\Omega)|e^{j\angle X(j\Omega)}$$

gdje su $|X(j\Omega)|$ amplitudni spektar a, $\angle X(j\Omega)$ fazni spektar

⁴naizgled zbunjuje oznaka $X(j\Omega)$, a ne $X(\Omega)$, no to je samo stvar konvencije jer se želi istaknuti kako je funkcija definirana na imaginarnoj osi. Smisao konvencije je vidljiv i kod usporedbe s $\mathcal{L}_{\overline{\neg}}$ transformacijom

analiza vremenski kontinuiranih signala

Fourierova transformacija

Fourierova transformacija – Parsevalova jednakost

energija aperiodičnog kontinuiranog signala 5 x(t), $\forall t \in Realni$, čija je Fourierova transformacija $X(j\Omega)$, $\forall \Omega \in Realni$, je

$$E_{\mathsf{x}} = \int_{-\infty}^{\infty} |\mathsf{x}(t)|^2 dt$$
, za $|\mathsf{x}(t)|^2 = \mathsf{x}(t)\mathsf{x}^*(t) \Rightarrow$

$$E_{x} = \int_{-\infty}^{\infty} x(t)x^{*}(t)dt = \int_{-\infty}^{\infty} x(t) \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} X^{*}(j\Omega)e^{-j\Omega t}d\Omega \right] dt =$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} X^{*}(j\Omega) \left[\int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt \right] d\Omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\Omega)|^{2}d\Omega$$

$$E_{x} = \int_{-\infty}^{\infty} |x(t)|^{2} dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\Omega)|^{2} d\Omega$$

je Parsevalova jednakost za aperiodične vremenski kontinuirane signale konačne energije, i izražava princip očuvanja energije u vremenskoj i frekvencijskoj domeni

Signali i sustavi školska godina 2007/2008 Cjelina 6.

Profesor Branko Jeren

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija pravokutnog impulsa

ullet \mathcal{F} -transformacija pravokutnog impulsa

$$orall t \in \textit{Realni}, \quad p_{ au}(t) = \left\{egin{array}{ll} 1 & \mathsf{za} & -rac{ au}{2} \leq t < rac{ au}{2} \ 0 & \mathsf{za} & \mathsf{ostale} \ t \end{array}
ight.$$

je

$$\mathcal{F}\{p_{\tau}(t)\} = \int_{-\infty}^{\infty} p_{\tau}(t)e^{-j\Omega t}dt = \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} e^{-j\Omega t}dt = \tau \frac{\sin\frac{\Omega\tau}{2}}{\frac{\Omega\tau}{2}}$$

• spektar je realna funkcija, što je posljedica parnosti signala $p_{ au}$, i prikazujemo ga jednim grafom

Profesor Branko Jeren

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija pravokutnog impulsa

prikazuju se pravokutni impuls i njegov realni spektar⁶

⁶spektar je frekvencijski neomeđen i ovdje je prikazan samo dio spektra 🧠

2007/2008

analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija pravokutnog impulsa

- prikazuju se pravokutni impuls i amplitudni i fazni spektar
- s obzirom da je spektar realan, faza je nula za nenegativne vrijednosti spektra, a $+\pi$ ili $-\pi$, za negativne vrijednosti spektra

sustavi školska godina 2007/2008 Cielina 6.

Profesor Branko Jeren

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija kauzalne eksponencijale

• Fourierova transformacija kauzalne eksponencijale $x(t) = e^{-bt}\mu(t), \ \forall t \in \textit{Realni}, \ i \ b \in \textit{Realni}, \ je$

 $\forall \Omega \in Realni$,

$$X(j\Omega) = \int_{-\infty}^{\infty} e^{-bt} \mu(t) e^{-j\Omega t} dt = \int_{0}^{\infty} e^{-bt} e^{-j\Omega t} dt =$$

$$= \int_{0}^{\infty} e^{-(b+j\Omega)t} dt = -\frac{1}{b+j\Omega} \left[e^{-(b+j\Omega)t} \right]_{t=0}^{t=\infty}$$

integral konvergira samo za b > 0, pa je

$$\forall \Omega \in Realni, \quad X(j\Omega) = \frac{1}{b+i\Omega}$$

⁷Prvi Dirichletov uvjet $\int_0^\infty |e^{-bt}| \ dt = \int_0^\infty e^{-bt} \ dt = -\frac{1}{b} e^{-bt} \Big|_0^\infty$, a ovaj izraz je konačan samo za b>0

Signali i sustavi školska godina 2007/2008 Cjelina 6.

Profesor Branko Jeren

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija kauzalne eksponencijale

iz

$$\forall \Omega \in Realni, \quad X(j\Omega) = \frac{1}{b+j\Omega}$$

slijedi

$$Re\{X(j\Omega)\} = rac{b}{b^2 + \Omega^2}, \qquad Im\{X(j\Omega)\} = -rac{\Omega}{b^2 + \Omega^2}$$

odnosno

$$|X(j\Omega)| = rac{1}{\sqrt{b^2 + \Omega^2}}, \qquad \angle X(j\Omega) = -\arctanrac{\Omega}{b}$$

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija kauzalne eksponencijale

2007/2008

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija kauzalne eksponencijale

- primjer Fourierove transformacije kauzalne eksponencijale $x(t)=e^{-bt}\mu(t), \ \forall t\in Realni, \ i\ b\in Realni, \ ukazuje na sljedeću važnu činjenicu$
- pokazano je da Fourierov integral, za ovaj signal, postoji samo za b > 0
- za b=0, gornja se kauzalna eksponencijala transformira u $x(t)=\mu(t)$
- zaključujemo kako za jedinični skok, $\mu(t)$, $\forall t \in Realni$, ne postoji Fourierova transformacija
- kasnije se pokazuje da za jedinični skok, i još neke druge signale, definiramo generaliziranu Fourierovu transformaciju

Profesor Branko Jeren

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Simetrije kod Fourierove transformacije

- u trećoj cjelini predavanja, razmatrana je parnost i neparnost signala te, konjugirana simetričnost kompleksnih signala, a ovdje će oni biti korišteni u izvodu nekih svojstva simetrije kod Fourierove transformacije
- razmotrimo Fourierovu transformaciju realnog signala

$$orall \Omega \in \mathit{Realni} \quad X(j\Omega) = \int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt$$

$$X(-j\Omega) = \int_{-\infty}^{\infty} x(t)e^{j\Omega t}dt$$

$$X^*(-j\Omega) = \int_{-\infty}^{\infty} x^*(t)e^{-j\Omega t}dt = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt = X(j\Omega)$$

 zaključujemo kako realni signali⁸ imaju konjugirano simetričan spektar

 $^{^8}x^*$ je konjugirano kompleksan signalu x, a za realne signale vrijedi

Signali i sustavi školska godina 2007/2008 Cjelina 6.

Profesor Branko Jeren

analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Simetrije kod Fourierove transformacije

• konjugirana simetričnost spektra, realnog vremenskog signala, rezultira u parnosti i neparnosti sljedećih komponenti spektra, $\forall \Omega \in \textit{Realni}$, pa za

$$X(j\Omega) = Re\{X(j\Omega)\} + jIm\{X(j\Omega)\} = |X(j\Omega)|e^{j\angle\{X(j\Omega)\}}$$
$$X^*(-j\Omega) = Re\{X(-j\Omega)\} - jIm\{X(-j\Omega)\} = |X(-j\Omega)|e^{-j\angle\{X(-j\Omega)\}}$$

iz
$$X(j\Omega) = X^*(-j\Omega)$$
 slijedi

$$Re\{X(j\Omega)\}=$$
 $Re\{X(-j\Omega)\}$ realni dio spektra paran $Im\{X(j\Omega)\}=$ $-Im\{X(-j\Omega)\}$ imaginarni dio spektra neparan $|X(j\Omega)|=$ $|X(-j\Omega)|$ amplitudni spektar paran $\angle\{X(j\Omega)\}=$ $-\angle\{X(-j\Omega)\}$ fazni spektar neparan

2007/2008

analiza vremenski kontinuiranih signala

Fourierova transformacija

Simetrije kod Fourierove transformacije

- razmotrimo Fourierovu transformaciju parnog signala
- za realan i paran signal $x(t)=x(-t)=\frac{1}{2}[x(t)+x(-t)],$ vrijedi $\mathcal{F}\{x(t)\}=\frac{1}{2}[\mathcal{F}\{x(t)\}+\mathcal{F}\{x(-t)\}]$

$$\mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$

$$\mathcal{F}\{x(-t)\} = \int_{-\infty}^{\infty} x(-t)e^{j\Omega t}dt = \int_{-\infty}^{\infty} x(t)e^{j\Omega t}dt$$

$$\mathcal{F}\{x(t)\} + \mathcal{F}\{x(-t)\} = 2\int_{-\infty}^{\infty} x(t)\cos(\Omega t)dt$$

• pa je za realan, i paran, signal x(t) Fourierova transformacija realna i parna (vidi primjer spektra pravokutnog impulsa)

$$\mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t) \cos(\Omega t) dt$$

sustavi školska godina 2007/2008 Cjelina 6.

Profesor Branko Jeren

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija – svojstvo vremenskog pomaka

• Fourierova transformacija signala $x(t)=p_{ au}(t-rac{ au}{2})$, dakle,

$$orall t \in \textit{Realni}, \quad x(t) = \left\{ egin{array}{ll} 1 & \mathsf{za} \ 0 \leq t < au \ 0 & \mathsf{za} \ \mathsf{ostale} \ t \end{array}
ight.$$
 je

$$\mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt = \int_{0}^{\tau} e^{-j\Omega t}dt = e^{-j\frac{\Omega\tau}{2}}\underbrace{\tau\frac{\sin\frac{\Omega\tau}{2}}{\frac{\Omega\tau}{2}}}_{\mathcal{F}\{p_{\tau}(t)\}}$$

 Fourierovu transformaciju pomaknutog pravokutnog impulsa možemo poopćiti, i definirati kao svojstvo pomaka Fourierove transformacije,

$$\mathcal{F}\{x(t-t_0)\} = e^{-j\Omega t_0}X(j\Omega) = |X(j\Omega)|e^{j[\angle X(j\Omega) - \Omega t_0]}$$

 pomak signala u vremenskoj domeni rezultira u linearnom faznom pomaku njegove transformacije

Frekvencijska analiza vremenski kontinuiranih

Fourierov red Fourierova transformacija

Fourierova transformacija pravokutnog impulsa – neparnog

 prikazuju se pomaknuti pravokutni impuls (signal nije više paran) i njegov spektar

 $-\pi$

2007/2008

analiza vremenski kontinuiranih signala Fourierov red

Fourierov red Fourierova transformacija

Fourierova transformacija pravokutnog impulsa – neparnog

- interpretira se faza pomaknutog pravokutnog impulsa
- plavo je faza nepomaknutog (parnog) pravokutnog impulsa, $\angle \mathcal{F}\{p_{\tau}(t)\}$, zeleno je doprinos fazi zbog pomaka signala u vremenskoj domeni $-\frac{\Omega \tau}{2}$, a crveno je ukupna faza
- na donjoj slici prikazuju se samo glavne vrijednosti faze u intervalu $-\pi$ i π (dakle faza modulo 2π), i to je u literaturi uobičajeni način prikaza faze

2007/2008

analiza vremenski kontinuiranih signala Fourierov red Fourierova transformacija

Fourierova transformacija – svojstvo dualnosti

- očigledna je sličnost izraza za Fourierovu i inverznu Fourierovu transformaciju
- za očekivati je, ako je npr. Fourierova transformacija pravokutnog impulsa sinc funkcija, da će inverzna transformacija spektra koji je oblika pravokutnog impulsa dati vremensku funkciju oblika sinc
- ovo svojstvo Fourierove transformacije naziva se svojstvo dualnosti
- može se pokazati da ako je

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\Omega)$$

vrijedi⁹

$$X(jt) = X(t) \stackrel{\mathcal{F}}{\longleftrightarrow} 2\pi x(-\Omega)$$

 $^{^{9}}$ za $t \in Realni$ vrijedi X(jt) = X(t)

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija Fourierova transformacija – svojstvo dualnosti – izvod za potrebe izvoda

$$X(j\Omega)=\int_{-\infty}^{\infty}x(t)e^{-j\Omega t}dt$$
 pišemo $X(j
u)=\int_{-\infty}^{\infty}x(t)e^{-j
u t}dt$

zamjenom $t = -\Omega$ slijedi

$$X(j\nu) = -\int_{\Omega = +\infty}^{\Omega = -\infty} x(-\Omega)e^{-j\nu(-\Omega)}d\Omega = \frac{1}{2\pi} \int_{\Omega = -\infty}^{\Omega = \infty} 2\pi x(-\Omega)e^{j\nu\Omega}d\Omega$$

zamjenom $\nu=t$ slijedi

$$X(jt) = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi x (-\Omega) e^{j\Omega t} d\Omega$$

$$X(jt) = X(t) \stackrel{\mathcal{F}}{\longleftrightarrow} 2\pi x(-\Omega)$$

sličnim izvodom (zamjenama $t=\Omega$ i u=-t)

$$X(-jt) = X(-t) \stackrel{\mathcal{F}}{\longleftrightarrow} 2\pi x(\Omega)$$

2007/2008

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija – svojstvo dualnosti

analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

\mathcal{F} —transformacija — vremensko skaliranje

• neka je $X(j\Omega) = \mathcal{F}\{x(t)\}$, tada je

$$\mathcal{F}\{x(at)\} = \frac{1}{|a|} X\left(\frac{j\Omega}{a}\right)$$

izvod: za a>0 i zamjenu at= au

$$\mathcal{F}\{x(at)\} = \int_{-\infty}^{\infty} x(at)e^{-j\Omega t}dt = \frac{1}{a}\int_{-\infty}^{\infty} x(\tau)e^{-\frac{j\Omega}{a}\tau}d\tau = \frac{1}{a}X\left(\frac{j\Omega}{a}\right)$$

za a < 0 i zamjenu $at = \tau$

$$\begin{split} \mathcal{F}\{x(at)\} &= \int_{-\infty}^{\infty} x(at) e^{-j\Omega t} dt = \frac{1}{a} \int_{\infty}^{-\infty} x(\tau) e^{-\frac{j\Omega}{a}\tau} d\tau = \\ &= -\frac{1}{a} \int_{-\infty}^{\infty} x(\tau) e^{-\frac{j\Omega}{a}\tau} d\tau = -\frac{1}{a} X \left(\frac{j\Omega}{a}\right) = \frac{1}{|a|} X \left(\frac{j\Omega}{a}\right) \end{split}$$

- zaključuje se kako vremenska kompresija signala za faktor
 a > 1 rezultira u ekspanziji spektra za isti faktor
- ekspanzija x(t), za a < 1, rezultira u kompresiji $X(j\Omega)$

sustavi školska godina 2007/2008 Cjelina 6.

Profesor Branko Jeren

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija – vremensko skaliranje

sustavi školska godina 2007/2008 Cielina 6.

Profesor Branko Jeren

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija – konvolucija u vremenskoj domeni

• za Fourierovu transformaciju konvolucije u vremenskoj domeni, vrijedi, $\forall t \in \textit{Realni} \ i \ \forall \Omega \in \textit{Realni}$

$$(x_1 * x_2)(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X_1(j\Omega)X_2(j\Omega)$$

izvod:

iz
$$\forall t \in Realni$$
, $(x_1 * x_2)(t) = \int_{-\infty}^{\infty} x_1(t-\tau)x_2(\tau) d\tau$,

$$\mathcal{F}\{(x_1*x_2)(t)\} = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} x_1(t-\tau)x_2(\tau) d\tau \right] e^{-j\Omega t} dt$$

zamjenom redoslijeda integracije

$$\mathcal{F}\{(x_1 * x_2)(t)\} = \int_{-\infty}^{\infty} \left[\underbrace{\int_{-\infty}^{\infty} x_1(t-\tau)e^{-j\Omega t} dt}_{X_2(\tau) d\tau}\right] x_2(\tau) d\tau$$

2007/2008

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija – konvolucija u vremenskoj domeni

pa je

$$\mathcal{F}\{(x_1 * x_2)(t)\} = X_1(j\Omega) \underbrace{\int_{-\infty}^{\infty} x_2(\tau) e^{-j\Omega\tau} d\tau}_{X_2(j\Omega)} = X_1(j\Omega) X_2(j\Omega)$$

- ovo svojstvo ilustriramo na primjeru Fourierove transformacije trokutastog signala $v(t)=(au-|t|)p_{2 au}(t)$
- ovaj signal moguće je prikazati kao rezultat konvolucije $(p_{\tau} * p_{\tau})(t)$

 pa, prepoznajemo kako se F-transformacija signala v, svodi na produkt spektara signala p_T

sustavi školska godina 2007/2008 Cjelina 6.

Profesor Branko Jeren

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija – konvolucija u vremenskoj domeni

$$v(t) = (p_ au * p_ au)(t) \overset{\mathcal{F}}{\longleftrightarrow} \left[au rac{sin rac{\Omega au}{2}}{rac{\Omega au}{2}}
ight] \left[au rac{sin rac{\Omega au}{2}}{rac{\Omega au}{2}}
ight] = au^2 \left[rac{sin rac{\Omega au}{2}}{rac{\Omega au}{2}}
ight]^2$$

sustavi školska godina 2007/2008 Cielina 6.

Profesor Branko Jeren

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija – konvolucija u frekvencijskoj domeni

• Fourierova transformacija, produkta signala u vremenskoj domeni, je $\forall t \in \textit{Realni} i \ \forall \Omega \in \textit{Realni}$

$$\mathcal{F}\{x_1(t)x_2(t)\} = rac{1}{2\pi}X_1(j\Omega) * X_2(j\Omega) =$$

$$= rac{1}{2\pi}\int_{-\infty}^{\infty}X_1(j(\Omega - \Psi))X_2(j\Psi) d\Psi$$

izvod:

$$\mathcal{F}\{(x_1(t)x_2(t))\} = \int_{-\infty}^{\infty} x_1(t)x_2(t)e^{-j\Omega t} dt$$

supstitucijom inverzne transformacije za $x_2(t)$

$$\mathcal{F}\{(x_1(t)x_2(t))\} = \int_{-\infty}^{\infty} x_1(t) \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} X_2(j\Psi) e^{j\Psi t} d\Psi \right] e^{-j\Omega t} dt$$

 $x_2(t)$

kontinuiranih signala Fourierov red Fourierova

Fourierov red Fourierova transformacija

Fourierova transformacija – konvolucija u frekvencijskoj domeni

zamjenom redoslijeda integracije

$$\mathcal{F}\{(x_1(t)x_2(t))\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_2(j\Psi) \left[\underbrace{\int_{-\infty}^{\infty} x_1(t)e^{-j(\Omega-\Psi)t} dt}_{X_1(j(\Omega-\Psi))}\right] d\Psi$$

$$\mathcal{F}\{(x_1(t)x_2(t))\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_2(j\Psi) X_1(j(\Omega - \Psi)) d\Psi =$$
$$= \frac{1}{2\pi} X_1(j\Omega) * X_2(j\Omega)$$

 konvolucija u frekvencijskoj domeni biti će ilustrirana nakon nekoliko prikaznica

Profesor Branko Jeren

Frekvencijska analiza vremenski kontinuiranih signala

Fourierova transformacija

Generalizirana Fourierova transformacija

- Fourierova transformacija nije konvergentna, u smislu regularnih funkcija, za neke vrlo uobičajene funkcije,
- prije je to pokazano za jedinični skok
- ovdje se pokazuje da je, unatoč tome, moguća njihova Fourierova transformacija, uvođenjem singularnih funkcija, tj. Diracove funkcije u frekvencijskoj domeni i vremenskoj domeni

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija jediničnog impulsa

• \mathcal{F} -transformacija jediničnog impulsa $\delta(t)$, $\forall t \in Realni$, je

$$\mathcal{F}\{\delta(t)\} = \int_{-\infty}^{\infty} \delta(t)e^{-j\Omega t}dt = 1$$

• ${\cal F}$ —transformacija pomaknutog jediničnog impulsa $\delta(t-t_0)$ je

$$\mathcal{F}\{\delta(t-t_0)\}=\int_{-\infty}^{\infty}\delta(t-t_0)e^{-j\Omega t}dt=e^{-j\Omega t_0}$$

- očigledno je da pomak jediničnog impulsa $\delta(t)$ ne mijenja amplitudu Fourierove transformacije, ali mijenja fazu $\angle\{\mathcal{F}\{\delta(t)\}\}$ koja, za $t_0>0$, pada linearno
- gradijent faze odgovara iznosu pomaka jediničnog impulsa, za t₀, u vremenskoj domeni
- slijedi slika koja ilustrira oba primjera

Profesor Branko Jeren

Frekvencijska analiza vremenski kontinuiranih signala

Fourierova transformacija

Frekvencijska analiza vremenski kontinuiranih signala

Profesor Branko Jeren

analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija – svojstvo dualnosti

• pokazano je kako je $\mathcal{F}\{\delta(t)\}=1$, dakle,

$$\delta(t) \stackrel{\mathcal{F}}{\longleftrightarrow} 1$$

• određuje se inverzna Fourierova transformacija jediničnog impulsa zadanog u frekvencijskoj domeni, dakle, $\delta(\Omega)$, $\forall \Omega \in Realni$,

$$\mathcal{F}^{-1}\{\delta(\Omega)\} = rac{1}{2\pi} \int_{-\infty}^{\infty} \delta(\Omega) e^{j\Omega t} d\Omega = rac{1}{2\pi}$$

pa je

$$\frac{1}{2\pi} \stackrel{\mathcal{F}}{\longleftrightarrow} \delta(\Omega)$$

odnosno

$$1 \stackrel{\mathcal{F}}{\longleftrightarrow} 2\pi\delta(\Omega)$$

• do istog rezultata bilo je moguće doći izravnom uporabom svojstva dualnosti

Profesor Branko Jeren

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija – svojstvo dualnosti

Profesor Branko Jeren

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija jediničnog skoka

- pokazano je kako kauzalna eksponencijala, $e^{-bt}\mu(t)$, $\forall t \in Realni$, ima Fourierovu transformaciju za b>0
- jedinični skok možemo interpretirati kao

$$\forall t \in \textit{Realni}, \quad \mu(t) = \lim_{b \to 0} e^{-bt} \mu(t)$$

korištenjem izraza za F. transformaciju kauzalne eksponencijale možemo pisati

$$\mathcal{F}\{\mu(t)\} = \lim_{b \to 0} \mathcal{F}\{e^{-bt}\mu(t)\} = \lim_{b \to 0} \frac{1}{b+j\Omega} =$$

$$= \lim_{b \to 0} \left[\frac{b}{b^2 + \Omega^2} - j\frac{\Omega}{b^2 + \Omega^2}\right] =$$

$$= \lim_{b \to 0} \left[\frac{b}{b^2 + \Omega^2}\right] + \frac{1}{j\Omega}$$

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija jediničnog skoka

• član $\lim_{b\to 0}\left[\frac{b}{b^2+\Omega^2}\right]$ ima svojstvo da je površina ispod njegove krivulje jednaka π , neovisno o vrijednosti b,

$$\int_{-\infty}^{\infty} \frac{b}{b^2 + \Omega^2} \ d\Omega = \arctan \frac{\Omega}{b} \bigg|_{-\infty}^{\infty} = \pi$$

uvidom u graf funkcije zaključujemo kako, za $b \to 0$, funkcija prelazi u Diracov δ intenziteta π u $\Omega = 0$

pa uz
$$\lim_{b \to 0} \left\lceil \frac{b}{b^2 + \Omega^2} \right\rceil = \pi \delta(\Omega) \Rightarrow$$

$$\forall t \in Realni, \quad \mathcal{F}\{\mu(t)\} = \pi \delta(\Omega) + \frac{1}{j\Omega} = \frac{1$$

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija periodičnih signala

 određuje se Fourierova transformacija kompleksne eksponencijale

$$\forall t \in Realni, \quad x(t) = e^{j\Omega_0 t}$$

uvrštenjem u transformacijski integral

$$\int_{-\infty}^{\infty} e^{j\Omega_0 t} e^{-j\Omega t} dt = \int_{-\infty}^{\infty} e^{j(\Omega_0 - \Omega)t} dt$$

evidentno je kako on ne konvergira za $\Omega=\Omega_0$

Fourierova transformaciia

Fourierova transformacija periodičnih signala

- već je pokazano kako je Fourierova transformacija Diracove funkcije konstanta, te kako je Fourierova transformacija konstante Diracova funkcija (svojstvo dualnosti)
- isto tako je pokazano kako je Fourierova transformacija pomaknute Diracove funkcije kompleksna eksponencijala
- može se zaključiti da će, primjenom svojstva dualnosti, pomaknuta Diracova funkcija, u frekvencijskom području, za inverznu transformaciju imati kompleksnu eksponencijalu u vremenskoj domeni
- razmotrimo signal x(t), $\forall t \in Realni$, čija je Fourierova transformacija Diracova funkcija, površine (intenziteta) 2π , na frekvenciji $k\Omega_0$
- inverzna \mathcal{F} -transformacija ovog impulsa je

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi \delta(\Omega - k\Omega_0) e^{j\Omega t} d\Omega = e^{jk\Omega_0 t}$$

Fourierova transformaciia

Fourierova transformacija periodičnih signala

• Fourierova transformacija signala $e^{jk\Omega_0t}$, $\forall t \in Realni$, je

$$e^{jk\Omega_0t} \stackrel{\mathcal{F}}{\longleftrightarrow} 2\pi\delta(\Omega-k\Omega_0)$$

 zaključujemo kako će za proizvoljni periodični signal, prikazan Fourierovim redom,

$$\forall t \in Realni, \quad x(t) = \sum_{k=-\infty}^{\infty} X_k e^{jk\Omega_0 t}$$

Fourierova transformacija biti, za $\forall \Omega \in Realni$, i $\forall k \in C$ jelobrojni,

$$X(j\Omega) = \sum_{k=0}^{\infty} 2\pi X_k \delta(\Omega - k\Omega_0)$$

dakle, niz Diracovih funkcija, intenziteta $2\pi X_k$, koji se pojavljuju na frekvencijama $k\Omega_0$

Profesor Branko Jeren

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija sinusoidnog signala

• određuje se Fourierova transformacija svevremenskog sinusoidnog signala $x(t) = \cos(\Omega_0 t)$, $\forall t \in Realni$,

$$\mathcal{F}\{\cos(\Omega_0 t)\} = \mathcal{F}\left\{\frac{1}{2}e^{j\Omega_0 t} + \frac{1}{2}e^{-j\Omega_0 t}\right\} =$$

$$= \pi\delta(\Omega - \Omega_0) + \pi\delta(\Omega + \Omega_0)$$

Profesor Branko Jeren

Frekvencijska analiza vremenski kontinuiranih signala

Fourierova transformacija

Fourierova transformacija sinusoidnog signala

• određuje se Fourierova transformacija svevremenskog sinusoidnog signala $x(t) = \sin(\Omega_0 t)$, $\forall t \in Realni$,

$$\mathcal{F}\{\sin(\Omega_0 t)\} = \mathcal{F}\left\{\frac{1}{2j}e^{j\Omega_0 t} - \frac{1}{2j}e^{-j\Omega_0 t}\right\} =$$
$$= -j\pi\delta(\Omega - \Omega_0) + j\pi\delta(\Omega + \Omega_0)$$

općenito, za svevremenski sinusoidni signal, vrijedi

$$A\cos(\Omega_0 t + \Theta) \stackrel{\mathcal{F}}{\longleftrightarrow} \pi A e^{j\Theta} \delta(\Omega - \Omega_0) + \pi A e^{-j\Theta} \delta(\Omega + \Omega_0)$$

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija niza Diracovih δ funkcija

- određuje se Fourierova transformacija niza Diracovih δ funkcija

$$orall t \in \textit{Realni}, \quad \textit{comb}_{\mathcal{T}}(t) = \sum_{n=-\infty}^{\infty} \delta(t-n\mathcal{T})$$

 kako se radi o periodičnom signalu, s periodom T, moguće ga je prikazati pomoću Fourierovog reda

$$comb_T(t) = \sum_{k=-\infty}^{\infty} X_k e^{jk\Omega_s t} = \frac{1}{T} \sum_{k=-\infty}^{\infty} e^{jk\Omega_s t}, \quad \Omega_s = \frac{2\pi}{T}$$

• jer su Fourierovi koeficijenti

$$orall k \in \mathit{Cjelobrojni}, \quad X_k = rac{1}{T} \int_{-rac{T}{2}}^{rac{T}{2}} \delta(t) e^{-jk\Omega_s t} dt = rac{1}{T}$$

Profesor Branko Jeren

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija niza Diracovih δ funkcija

• pa se prema izrazu za \mathcal{F} —transformaciju periodičnih signala, perioda $T=rac{2\pi}{\Omega_{\mathrm{s}}}$,

$$\forall \Omega \in Realni, \quad X(j\Omega) = \sum_{k=-\infty}^{\infty} 2\pi X_k \delta(\Omega - k\Omega_s)$$

određuje Fourierova transformacija niza Diracovih δ funkcije

 $\forall t \in Realni,$

$$egin{aligned} \mathcal{F}\{comb_{T}(t)\} &= \sum_{k=-\infty}^{\infty} 2\pi rac{1}{T} \delta(\Omega - k\Omega_{s}) = \ &= rac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\Omega - krac{2\pi}{T}) = rac{2\pi}{T} comb_{rac{2\pi}{T}}(j\Omega) \end{aligned}$$

Profesor Branko Jeren

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija niza Diracovih δ funkcija

školska godina 2007/2008 Cielina 6.

Profesor Branko Jeren

Fourierova transformaciia

Fourierova transformacija vremenski omeđenog sinusoidnog signala

 određuje se Fourierova transformacija vremenski omeđenog sinusoidnog signala, $\forall t \in Realni$,

$$x(t) = p_ au(t) \cos(\Omega_0 t) = \left\{egin{array}{ll} \cos(\Omega_0 t) & -rac{ au}{2} \leq t < rac{ au}{2} \ 0 & ext{za ostale } t \end{array}
ight.$$

$$X(j\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt = \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \cos(\Omega_{0}t)e^{-j\Omega t}dt =$$

$$= \frac{1}{2} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \left(e^{j\Omega_{0}t} + e^{-j\Omega_{0}t}\right)e^{-j\Omega t}dt =$$

$$= \frac{1}{2} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} e^{-j(\Omega-\Omega_{0})t}dt + \frac{1}{2} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} e^{-j(\Omega+\Omega_{0})t}dt =$$

$$= \frac{\tau}{2} \frac{\sin(\frac{(\Omega-\Omega_{0})\tau}{2}}{\frac{(\Omega-\Omega_{0})\tau}{2}} + \frac{\tau}{2} \frac{\sin(\frac{(\Omega+\Omega_{0})\tau}{2})}{\frac{(\Omega+\Omega_{0})\tau}{2}}$$

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija vremenski omeđenog sinusoidnog signala

2007/2008

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija vremenski omeđenog sinusoidnog signala

- do istog rezultata moguće je bilo doći primjenom svojstva frekvencijskog pomaka
- za $x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\Omega)$ vrijedi

$$x(t)e^{j\Omega_0t} \stackrel{\mathcal{F}}{\longleftrightarrow} X(j(\Omega-\Omega_0))$$

$$x(t)e^{-j\Omega_0t} \stackrel{\mathcal{F}}{\longleftrightarrow} X(j(\Omega+\Omega_0))$$

nadalje za produkt (što je zapravo amplitudna modulacija)

$$x(t)\cos(\Omega_0 t) = \frac{1}{2}[x(t)e^{j\Omega_0 t} + x(t)e^{-j\Omega_0 t}]$$

vrijedi

$$x(t)\cos(\Omega_0 t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{2}[X(j(\Omega-\Omega_0)) + X(j(\Omega+\Omega_0))]$$

• za $x(t)=p_{\tau}(t)$ slijedi prije izvedeni izraz za spektar omeđenog sinusoidalnog signala

analiza vremenski kontinuiranih signala Fourierov red

Fourierov red Fourierova transformacija

Fourierova transformacija vremenski omeđenog sinusoidnog signala

- razmotrimo i treći način izračuna spektra omeđenog sinusoidnog signala
- primjenjuje se svojstvo konvolucije u frekvencijskoj domeni¹⁰

$$x_1(t)x_2(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{2\pi} \int_{-\infty}^{\infty} X_1(j(\Omega - \Psi))X_2(j\Psi)d\Psi$$

• u prethodnom slučaju, omeđenog sinusoidalnog signala $x_1(t) = p_{\tau}(t)$ a $x_2(t) = \cos(\Omega_0 t)$ i njegov spektar možemo interpretirati i kao frekvencijsku konvoluciju spektra pravokutnog signala $p_{\tau}(t)$ i signala $\cos(\Omega_0 t)$

¹⁰izvod dan ranije

Profesor Branko Jeren

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Fourierova transformacija vremenski omeđenog sinusoidnog signala

Profesor Branko Jeren

vremenski kontinuiranih signala Fourierov red Fourierova transformacija

Tablica parova osnovnih Fourierovih transformacija

Vrem. domena: $x(t)$	Frek. domena: $X(j\Omega)$
$\delta(t)$	1
$\delta(t-t_0)$	$e^{-j\Omega t_0}$
$\mu(t)$	$\pi\delta(\Omega)+rac{1}{j\Omega}$
1	$2\pi\delta(\Omega)$
$e^{j\Omega_0t}$	$2\pi\delta(\Omega-\Omega_0)$
$\mu(t+\tfrac{\tau}{2})-\mu(t-\tfrac{\tau}{2})$	$ au rac{\sinrac{\Omega au}{2}}{rac{\Omega au}{2}}$
$\Omega_1 rac{\sinrac{\Omega_1 t}{2}}{rac{\Omega_1 t}{2}}$	$2\pi \left[\mu(\Omega+rac{\Omega_1}{2})-\mu(\Omega-rac{\Omega_1}{2}) ight]$
$e^{-bt}\mu(t), b>0$	$rac{1}{b+j\Omega}$
$A\cos(\Omega_0 t + \phi)$	$\pi A e^{j\phi} \delta(\Omega - \Omega_0) + \pi A e^{-j\phi} \delta(\Omega + \Omega_0)$
$\cos(\Omega_0 t)$	$\pi\delta(\Omega-\Omega_0)+\pi\delta(\Omega+\Omega_0)$
$\sin(\Omega_0 t)$	$-j\pi\delta(\Omega-\Omega_0)+j\pi\delta(\Omega+\Omega_0)$
$\sum_{k=-\infty}^{\infty} X_k e^{jk\Omega_0 t}$	$\sum_{k=-\infty}^{\infty} 2\pi X_k \delta(\Omega - k\Omega_0)$
$\frac{\sum_{k=-\infty}^{\infty} X_k e^{jk\Omega_0 t}}{\sum_{n=-\infty}^{\infty} \delta(t - nT)}$	$\frac{\sum_{k=-\infty}^{\infty} 2\pi X_k \delta(\Omega - k\Omega_0)}{\frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\Omega - k\frac{2\pi}{T})}$

Signali i sustavi školska godina 2007/2008 Cjelina 6.

Profesor Branko Jeren

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red Fourierova transformacija

Neka svojstva Fourierove transformacije

Svojstvo	Vrem. domena: $x(t)$	Frek. domena: $X(j\Omega)$
Linearnost	$ax_1(t) + bx_2(t)$	$aX_1(j\Omega)+bX_2(j\Omega)$
Konjugiranost	$x^*(t)$	$X^*(-j\Omega)$
V. inverzija	$\times (-t)$	$X(-j\Omega)$
Dualnost	X(jt)	$2\pi x(-\Omega)$
Dualnost	X(-jt)	$2\pi x(\Omega)$
V. skaliranje	x(at)	$\frac{1}{ a }X(\frac{j\Omega}{a})$
V. pomak	$x(t-t_0)$	$e^{-j\dot{\Omega}t_0}X(j\Omega)$
Modulacija	$x(t)e^{j\Omega t_0}$	$X(j(\Omega-\Omega_0))$
Modulacija	$x(t)\cos(\Omega_0 t)$	$\frac{1}{2}X(j(\Omega-\Omega_0))+\frac{1}{2}X(j(\Omega+\Omega_0))$
Derivacija	$\frac{d^k x(t)}{dt^k}$	$(j\Omega)^k X(j\Omega)$
Konvolucija	$(x_1 * x_2)(t)$	$X_1(j\Omega)X_2(j\Omega)$
Množenje	$x_1(t)x_2(t)$	$\frac{1}{2\pi}X_1(j\Omega)*X_2(j\Omega)$