

协议介绍用户手册

1 协议介绍

T1 (001、Plus 两款,以下 T1 系统产品的操作流程一样)及 T2 模块: **支持 MAVLINK V1 PX4、MAVLINK V1 APM、MSP V2、优象光流+T0F 版本协议和优象光流+T0F 版本扩展协议**302GS 模块: **支持 MAVLINK V1 PX4、MSP V2 和优象纯光流版本协议**,因此还需配合 T0F 或气压计等测距传感器使用。

2、波特率:

T1(001、Plus) 和 T2 模块: 固定波特率 115200

302GS 模块: 固定波特率 460800

3、帧率:

T1(001、Plus) 模块: **50Hz**

302GS 和 T2 模块: 120Hz

4、切换协议:

通过上位机切换,或者通过串口(波特率如上所示)发送以下 ASCII 指令切换, 无需手动重启:

〈set protocol upixels〉切换为优象光流+TOF版本协议或优象纯光流版本协议;

<set protocol upx_ext> 切换为优象光流+TOF 版本扩展协议;

〈set protocol msplink〉切换为 MSP V2 协议;

⟨set protocol mav_apm⟩ 切换为 MAVLINK V1 APM 协议;

〈set protocol mav_px4〉切换为 MAVLINK V1 PX4 协议;

T1(001、P1us)和 T2 默认为优象光流+T0F 版本协议,302GS 默认为优象纯光流版本协议,可通过上位机查看版本号和当前协议,还可通过接收到的原始数据帧头判断当前输出哪种协议。

5、光流坐标系

T1-001 光流坐标系

T1-001-Plus 光流坐标系

302GS 光流坐标系

T2 光流坐标系

6、模块连接方式

6.1 T0 模块

T0-001 是单激光模块,可单独使用,也可扩展连接光流模块。连接方式如下图:

注: 如果只要用 TOF 数据, 就不用连接光流模块;

连接方式可以看下面截图,也可以找客服人员要相关视频。

串口板、T0 模块、光流模块线序对应关系如下表:

串口板	TO 模块(5P 1.0mm 端子线)	TO 模块(4P 1.0mm 端子线)	光流模块
5V	5V	5V	5V
GND	GND	GND	GND
TX	RX	TX	TX
RX	TX	RX	RX
_	IO (预留内部使用)	_	_

6.2 T1 模块

T1-001 是 T0F 和光流组成的二合一模块,连接方式如下图:

注:连接方式可以看下面截图,也可以找客服人员要相关视频。

串口板、T1 模块线序对应关系如下表:

串口板	T1 模块 (4P 1.0mm 端子线)		
5V	5V		
GND	GND		
TX	RX		
RX	TX		

6.3 T2 模块

T2-001 是 TOF 和光流组成的二合一模块,连接方式如下图:

注:连接方式可以看下面截图,也可以找客服人员要相关视频。

串口板、T2 模块线序对应关系如下表:

串口板	T2 模块(4P 1.0mm 端子线)
5V	5V
GND	GND
TX	RX
RX	TX

7、上位机使用方法

- (1)、选择端口号,选择模块,确认波特率,点击打开串口,提示:打开串口成功!若失败请检查接线和设置无误后重试;
- (2)、出厂默认 UPIXELS 协议,此时可以看到波形输出,通过下拉列表可以选择其它协议,点击切换协议即可切换;
- (3)、切换到 PX4 协议,点击固件版本可以查看固件版本号;

- (4)、T1(001、Plus)切换到 UPIXELS_EXTENSION协议,点击文件→保存日志可保存 TOF的 Distance、Confidence、Noise 和 Peak 值到上位机目录的日志文件中;
- (5)、点击图例可切换波形显示或隐藏。

7、TOF 标定

开启标定功能以及标定流程请联系客服。

1.1 MAVLINK V1

- 1、MAVLink 全称 Micro Air Vehicle Link(微型飞行器连接通信协议);
- 2、Mavlink 有 V1 和 V2 版本,本产品使用的是 V1 版本,消息格式参考 https://mavlink.io/en/messages/common.html,顺序以本手册为准;
- 3、Mavlink V1 APM 用于 APM 飞控固件; 而 Mavlink V1 PX4 用于 PX4 飞控固件。

1.1.1 MAVLINK V1 APM

用一个消息 ID 为 0x64 的数据包发送光流,另一个消息 ID 为 0x84 的数据包发送距离数据。

		数据类型	说明
帧头	A	uint8_t	0xFE
负载长度	<u>f</u>	uint8_t	消息负载长度,固定为 0x1A
包序列号	<u>.</u>	uint8_t	数据包序列号 0x00-0xFF 循环
系统 ID		uint8_t	发送本消息的设备编号,用于区分同一网络中
			的不同设备,固定为 0x00
组件 ID		uint8_t	发送本消息的组件编号,用于区分同一设备中
			不同组件,固定为 0x9E
消息 ID		uint8_t	不同消息 ID 对应不同的消息负载格式,固定
			为 0x64
	time_usec(us) ^{注1}	uint64_t	Timestamp (time since system boot)
	flow_comp_x(m/s)	float	Flow in x-sensor direction, angular-speed
			compensated 没有陀螺仪因此不补偿直接使用
			(优 象 协 议 的
			flow_x_integral(rad)/10000)*(优象协议中
消			的激光测距值 m)/(优象协议中的
息			$integration_timespan(s))^{rac{\pm 2}{2}}$
负	flow_comp_y(m/s)	float	Flow in y-sensor direction, angular-speed
载 compensated 没有陀螺仪因此不补偿直		compensated 没有陀螺仪因此不补偿直接使用	
			(优 象 协 议 中 的

26			(flow y integral(rad)/10000)*(优象协议
个			中的激光测距值 m)/(优象协议中的
- 字			integration_timespan(s))
寸 节	ground distance(m)	float	Ground distance. Positive value: distance
	ground_urs carree (iii)	11000	known. Negative value: Unknown distance
			使用优象协议中的激光测距值(m)
	flow x(dpix)	int16 t	Flow in x-sensor direction 使用优象协议
	110" <u>_</u> n (ap1n)	111010_0	中的 flow_x_integral*10/36 ^{註3}
	flow y(dpix)	int16 t	Flow in y-sensor direction 使用优象协议
			中的 flow y integral*10/36
	sensor id	uint8 t	Sensor ID 固定为 0x00
	quality	uint8 t	Optical flow quality / confidence. 0: bad,
		_	255: maximum quality 使用优象协议中的
			valid 值只有 0x00-invalid 和 0xF5-valid 两
			种
	flow_rate_x(rad/s)	float	未使用
	flow_rate_y(rad/s)	float	未使用
帧校验		uint16_t	校验从负载长度到消息载荷,但需要在消息负
			载后额外加上一个 MAVLINK_CRC_EXTRA 值 ^{注4} ,
			使用 CRC-16/MCRF4XX 算法
帧头		uint8_t	0xFE
负载长度	Ę	uint8_t	消息负载长度 0x0E
包序列号	<u>1</u> J	uint8_t	数据包序列号 0x00-0xFF 循环
系统 ID		uint8_t	同上
组件 ID	△ 4	uint8_t	同上
消息 ID		uint8_t	不同消息 ID 对应不同的消息负载格式,固定
			为 0x84
	time_boot(ms)	uint32_t	Timestamp (time since system boot)
	min_distance(cm)	uint16_t	Minimum distance the sensor can measure T1
			固定为 0x0002,T2 固定为 0x0005
	max_distance(cm)	uint16_t	Maximum distance the sensor can measure T1
			固定为 0x0190,T2 固定为 0x05DC
	<pre>current_distance(cm)</pre>	uint16_t	Current distance reading 使用优象协议中
N/A			的测距值(cm)
消	Type	uint8_t	Type of distance sensor 固定为 0x00
息	id	uint8_t	Onboard ID of the sensor 固定为 0x00
负	orientation	uint8_t	Direction the sensor faces.
载			downward-facing: <u>ROTATION PITCH 270</u> ,
1.4			upward-facing: <u>ROTATION PITCH 90</u> ,
14			backward-facing: <u>ROTATION PITCH 180</u> ,
个			forward-facing: <u>ROTATION NONE</u> ,
字			left-facing: <u>ROTATION YAW 90</u> ,
节			right-facing: <u>ROTATION YAW 270.</u>

			固定为 0x19
	covariance(cm²)	uint8_t	Measurement variance. Max standard
			deviation is 6cm. UINT8_MAX if unknown
			固定为 0x00
	horizontal_fov(rad) ^注	float	未使用
	4		
	vertical_fov(rad)	float	未使用
	quaternion	float[4]	未使用
	signal_quality(%)	uint8_t	未使用
帧校验		uint16_t	同上

- 注 1: 黄色文字背景表示非固定量;
- 注 2: 需要按公式中的单位转换单位,下文不再赘述;
- 注 3: 本文所有数据均采用小端模式发送,下文不再赘述;

注 5: 蓝色字体表示为协议可选项,本文未使用未包含进固件,并非固定为 0.

1. 1. 2 MAVLINK V1 PX4

1.1.2.1 T1(001、Plus)和T2模块

用一个消息 ID 为 0x6A 的数据包发送光流数据,另一个消息 ID 为 0x84 的数据包发送距离数据。

	数据类型	说明
帧头	uint8_t	0xFE
负载长度	uint8_t	消息负载长度,固定为 0x2C
包序列号	uint8_t	数据包序列号 0x00-0xFF 循环
系统 ID	uint8_t	发送本消息的设备编号,用于区分同一网络
		中的不同设备,固定为 0x00

组件 ID		uint8_t	发送本消息的组件编号,用于区分同一设备中不同组件,固定为 0x9E
消息 ID		uint8_t	不同消息 ID 对应不同的消息负载格式,固定为 0x6A
	time usec(us)	uint64 t	Timestamp (time since system boot)
	integration_time(us)	uint32 t	Integration time. Divide integrated_x
		_	and integrated y by the integration
			time to obtain average flow. The
			 integration time also indicates the 使
			用 优 象 协 议 中 的
			 integration_timespan(us)值
	integrated_x(rad)	float	Flow around X axis (Sensor RH rotation
			about the X axis induces a positive
			flow. Sensor linear motion along the
消			positive Y axis induces a negative
息			flow.) 使用优象协议中的
负			flow_x_integral(rad)/10000
载	<pre>integrated_y(rad)</pre>	float	Flow around Y axis (Sensor RH rotation
			about the Y axis induces a positive
44			flow. Sensor linear motion along the
个			positive X axis induces a positive
字			flow.) 使用优象协议中的
节			flow_y_integral(rad)/10000
	integrated_xgyro(rad)	float	RH rotation around X axis 固定为 NaN 值
	integrated_ygyro(rad)	float	RH rotation around Y axis 固定为 NaN 值
I	integrated_zgyro(rad)	float	RH rotation around Z axis 固定为 NaN 值
	time_delta_distance(us)	uint32_t	Time since the distance was sampled T1
			固定为 0x00008235, T2 固定为 0x0000208D
	distance(m)	float	Distance to the center of the flow
			field. Positive value (including zero):
			distance known. Negative value: Unknown
			distance 使用优象协议中的激光测距值
	(%)	10 .	(m)
	temperature(°C)	int16_t	Temperature 固定为 0x0000
	sensor_id	uint8_t	Sensor ID 固定为 0x00
	<mark>quality</mark> 	uint8_t	Optical flow quality / confidence. 0: no
			valid flow, 255: maximum quality 使用 优象协议中的 valid 值只有 0x00-invalid
			和 0xF5-valid 两种
帧校验		uin+16 +	校验从负载长度到消息载荷,但需要在消息
快仅独		uint16_t	位验外贝敦下度到有总载何,但而安任有总 负载后额外加上一个 MAVLINK CRC EXTRA
ı			值,使用 CRC-16/MCRF4XX 算法
		uin+0 +	11。使用 CRC-10/MCRF4AA 昇伝 0xFE
帧头		uint8_t	UXITE

负载长		uint8_t	消息负载长度,固定为 0x0E
包序列	包序列号		数据包序列号 0x00-0xFF 循环
系统 ID		uint8_t	同上
组件 ID		uint8_t	同上
消息 ID		uint8_t	不同消息 ID 对应不同的消息负载格式,固
			定为 0x84
	<pre>time_boot(ms)</pre>	uint32_t	Timestamp (time since system boot)
	min_distance(cm)	uint16_t	Minimum distance the sensor can measure
			固定为 0x0002
	max_distance(cm)	uint16_t	Maximum distance the sensor can measure
			固定为 0x0FA0
	<pre>current_distance(cm)</pre>	uint16_t	Current distance reading 使用优象协议
			中的激光测距值(cm)
No.	Type	uint8_t	Type of distance sensor 固定为 0x00
消	id	uint8_t	Onboard ID of the sensor 固定为 0x01
息	orientation	uint8_t	Direction the sensor faces.
负			downward-facing: <u>ROTATION_PITCH_270</u> ,
载			upward-facing: <u>ROTATION PITCH 90</u> ,
1.4			backward-facing: <u>ROTATION PITCH 180</u> ,
14			forward-facing: <u>ROTATION NONE</u> ,
个字			left-facing: <u>ROTATION YAW 90</u> ,
子 节			right-facing: <u>ROTATION YAW 270.</u>
l ₁	2)		固定为 0x19
	covariance(cm ²)	uint8_t	Measurement variance. Max standard
			deviation is 6cm. UINT8_MAX if unknown
		0.1	固定为 0x00
	horizontal_fov(rad)	float	未使用
	vertical_fov(rad)	float	未使用
	quaternion	float[4]	未使用
7 F 17 = 4	signal_quality(%)	uint8_t	未使用
帧校验		uint16_t	同上

1.1.2.2 302GS 模块

只用一个消息 ID 为 0x6A 的数据包发送光流数据。

	数据类型	说明
帧头	uint8_t	0xFE
负载长度	uint8_t	消息负载长度,固定为 0x2C
包序列号	uint8_t	数据包序列号 0x00-0xFF 循环
系统 ID	uint8_t	发送本消息的设备编号,用于区分同一网络

			中的不同设备,固定为 0x00
组件 ID		uint8_t	发送本消息的组件编号,用于区分同一设备
77t ==			中不同组件,固定为 0x9E
消息 ID		uint8_t	不同消息 ID 对应不同的消息负载格式 0x6A
	time_usec(us)	uint64_t	Timestamp (time since system boot)
	<pre>integration_time(us)</pre>	uint32_t	Integration time. Divide integrated_x
			and integrated_y by the integration
			time to obtain average flow. The
			integration time also indicates the 使
			用优象协议中的 integration_timespan 值
	• • • • • • •	0.1	(us)
	integrated_x(rad)	float	Flow around X axis (Sensor RH rotation
			about the X axis induces a positive
 消			flow. Sensor linear motion along the
初 息			positive Y axis induces a negative
^心 负			flow n integral (nod) /10000
载	integrated w(rad)	float	flow_x_integral(rad)/10000 Flow around Y axis (Sensor RH rotation
+44	integrated_y(rad)	110at	about the Y axis induces a positive
44			flow. Sensor linear motion along the
个			positive X axis induces a positive
· 字			flow.) 使用优象协议中的
节			flow_y_integral (rad)/10000
	integrated_xgyro(rad)	float	RH rotation around X axis 固定为 NaN 值
	integrated_ygyro(rad)	float	RH rotation around Y axis 固定为 NaN 值
	integrated_zgyro(rad)	float	RH rotation around Z axis 固定为 NaN 值
	time delta distance(us)	uint32 t	Time since the distance was sampled 固
		_	定为 0x00000000
	distance(m)	float	Distance to the center of the flow
			field. Positive value (including zero):
			distance known. Negative value: Unknown
			distance 使用优象协议中的激光测距值
			(m)
	temperature(°C)	uint16_t	Temperature 固定为 0x0000
	sensor_id	uint8_t	Sensor ID 固定为 0x00
	quality	uint8_t	Optical flow quality / confidence. 0: no
			valid flow, 255: maximum quality使用
			优象协议中的 valid 值只有 0x00-invalid
			和 0xF5-valid 两种
帧校验		uint16_t	同上

1.2 MSP V2

- 1、MSP 全称 Multiwii Serial Protocol;
- 2、MSP有 V1、V2 orver V1和 V2三个版本,本产品使用的是 V2版本;
- 3、MSP用于iNavflight、MultiWii、CleanFlight和BetaFlight等飞控。

1.2.1 T1(001、Plus)和T2模块

用一个消息 ID 为 0x1F01 的数据包发送距离数据,另一个消息 ID 为 0x1F02 的数据包发送光流数据。

		数据类型	说明	
帧头		wint8 t	0x24	
帧头		uint8 t	0x58	
	t on magnanga	uint8_t	0x3C	
	t or response			
flag		uint8_t	固定为 0x00	
消息 ID		uint16_t	不同消息 ID 对应不同的消息负载格式,固定为	
			0x1F01	
负载长度		uint16_t	消息负载长度,固定为 0x0005	
消息	<u>quality</u>	uint8_t	使用优象协议中的激光测距置信度	
负载	distance(mm)	uint32_t	使用优象协议的激光测距值(mm)	
校验		uint8_t	校验从 flag 到消息载荷,使用 crc8_dvb_s2 算	
			法	
帧头		uint8_t	0x24	
帧头		uint8_t	0x58	
requese	t or response	uint8_t	0x3C	
flag		uint8_t	固定为 0x00	
消息 ID		uint16_t	不同消息 ID 对应不同的消息负载格式,固定为	
			0x1F02	
负载长度	Ę	uint16_t	消息负载长度,固定为 0x0009	
	<mark>quality</mark>	uint8_t	使用优象协议中的 valid 值只有 0-invalid 和	
			245-valid 两种	
	motionX(rad/s)	int32_t	optical flow angular rate in rad/s measured	
			about the X body axis 使用(优象协议的	
消息			flow_x_integral(rad)/10000)/(优象协议中的	
负载			integration_timespan(s))	
	motionY(rad/s)	int32_t	optical flow angular rate in rad/s measured	
			about the Y body axis 使用(优象协议的	
			flow_y_integral(rad)/10000)/(优象协议中的	
			integration_timespan(s))	
校验	· 校验 1		同上	
校验		uint8_t	同上	

1.2.2 302GS 模块

只用一个消息 ID 为 0x1F02 的数据包发送光流数据。

帧头		uint8_t	0x24	
帧头		uint8_t 0x58		
requeset or response		uint8_t	0x3C	
flag		uint8_t	固定为 0x00	
消息 ID	消息 ID		不同消息 ID 对应不同的消息负载格式,固定为	
			0x1F02	
负载长度	£	uint16_t	消息负载长度,固定为 0x0009	
	quality	uint8_t	使用优象协议中的 valid 值只有 0-invalid 和	
			245-valid 两种	
	<pre>motionX(rad/s)</pre>	int32_t	optical flow angular rate in rad/s measured	
			about the X body axis 使用(优象协议的	
			flow_x_integral(rad)/10000)/(优象协议中的	
		integration_timespan(s))		
	<pre>motionY(rad/s)</pre>	int32_t	optical flow angular rate in rad/s measured	
			about the Y body axis 使用(优象协议的	
			flow_y_integral(rad)/10000)/(优象协议中的	
			integration_timespan(s))	
校验 uint8_t		uint8_t	同上	

1.3 优象协议

1.3.1 T1(001、Plus)和T2模块

1.3.1.1 光流+TOF 版本协议

序号		包数据	内容说明
1	包头	0xFE	数据包的开始标识
2	3	0x0A	数据包字节数(固定值 0x0A)
3		flow_x_integral 的低字节	X 像素点累计时间内的累加位移,
4		flow_x_integral 的高字节	(radians*10000)[除以 10000 乘以 高度(mm)后为实际位移(mm)]
5	光	flow_y_integral 的低字节	Y 像素点累计时间内的累加位移,

6	流激	flow_y_integral 的高字节	(radians*10000)[除以 10000 乘以 高度(mm)后为实际位移(mm)]
7	<u>光</u> 数	integration_timespan的低字 节	上一次发送光流数据到本次发送光
8	据结	integration_timespan的高字 节	流数据的累计时间(us)
9	构体	激光测距的低字节	激光测距距离(mm),比如低字节为 0x12,高字节为 0x08,则激光测距
10		激光测距的高字节	距离为 0x0812=2066mm
11		valid	状态值: 0(0x00) 为光流数据不可用, 245(0xF5) 为光流数据可用
12		激光测距的置信度	激光测距置信度,比如 0x64 表示激 光测距置信度为 100%
13	校验值	XOR	3-12 字节异或
14	包尾	0x55	数据包的结束标识(固定值 0x55)

1.3.1.2 光流+TOF 版本扩展协议

序号		包数据	内容说明
1	包头	0xFE	数据包的开始标识
2		0x0A	数据包字节数(固定值 0x0A)
3		flow_x_integral 的低字节	X 像素点累计时间内的累加位移,
4		flow_x_integral 的高字节	(radians*10000)[除以 10000 乘以 高度(mm)后为实际位移(mm)]
5		flow_y_integral 的低字节	Y 像素点累计时间内的累加位移,
6	flow_y_integral	flow_y_integral 的高字节	(radians*10000)[除以 10000 乘以 高度(mm)后为实际位移(mm)]
7		integration_timespan的低字 节	上一次发送光流数据到本次发送光 流数据的累计时间(us)

8	光	integration_timespan的高字 节	
9	流激	激光测距的低字节	激光测距距离(mm),比如低字节为 0x12,高字节为 0x08,则激光测距
10	光	激光测距的高字节	距离为 0x0812=2066mm
11	数 据 结	valid	状态值: 0(0x00)为光流数据不可用,245(0xF5)为光流数据可用
12	— 培 — 构 — 体	激光测距的置信度	激光测距置信度,比如 0x64 表示激 光测距置信度为 100%
13		激光测距的 peak 的第 0 字节	激光测距的 peak 值,比如第 0 字节
14		激光测距的 peak 的第 1 字节	为 0x78, 第 1 字节为 0x56, 第 2 字
15		激光测距的 peak 的第2字节	节为 0x34, 第 0 字节为 0x12, 则 0x12345678 表示激光测距的 peak
16		激光测距的 peak 的第 3 字节	为 305419896
17		激光测距的 noise 低字节	激光测距的 noise 值,比如低字节 为 0x32, 高字节为 0x00, 则 0x0032
18		激光测距的 noise 高字节	表示激光测距的 noise 为 50
19	校验值	XOR	3-18 字节异或
20	包尾	0x55	数据包的结束标识(固定值 0x55)

1.3.2 302GS 模块

使用纯光流版本协议。

序号	包数据	内容说明

1	包 头	0xFE	数据包的开始标识(固定值)
2		0x0A	光流数据结构体字节数(固定值)
3		flow_x_integral 的的低字节	X 像素点累计时间内的累加位移, (radians*10000)
4		flow_x_integral 的高字节	[除以 10000 乘以高度(mm) 后为实际位移(mm)]
5		flow_y_integral 的低字节	Y 像素点累计时间内的累加位移, (radians*10000)
6	光 流	flow_y_integral 的高字节	[除以 10000 乘以高度(mm) 后为实际位移(mm)]
7	数据结构体	integration_timespan的低字 节	上一次发送光流数据到本次发送光 流数据的累计时间(us)
8		integration_timespan的高字 节	
9		ground_distance 的低字节	预留。默认为 999 (0x03E7)
10		ground_distance 的高字节	
11		valid	状态值: 0(0x00) 为光流数据不可用, 245(0xF5) 为光流数据可用
12		version	光流模块的版本号 0x00
13	校验值	Xor	光流数据结构体(Byte 3 [~] Byte 12) 10 个字节的异或值
14	包 尾	0x55	数据包的结束标识(固定值 0x55)

2 使用说明

2.1 烧录方法

2.1.1 QGroundControl

https://github.com/mavlink/qgroundcontrol/releases QGroundControl 地面站 https://firmware.ardupilot.org/Copter/ APM 固件

https://github.com/PX4/PX4-Autopilot/tags PX4 固件

飞控通过 USB 连接 PC, PC 打开 QGroundControl 地面站,等待连接成功后点击左上角图标→选择 Vehicle Setup→选择固件,此时重新拔插 USB,勾选**高级设置**在下拉列表中选择**自定义固件文件...**后点击确定或者**选择版本在线升级**,在弹出的文件选择框中选择固件即可开始升级:

2.1.2 MissionPlanner

https://firmware.ardupilot.org/Tools/MissionPlanner/ MissionPlanner 地面站 https://firmware.ardupilot.org/Copter/ APM 固件

飞控通过 USB 连接 PC, 在地面站与飞控未连接的情况下, 选择初始设置页面→安装固件→点

击 Load custom firmware 选择固件即可自动升级:

2.1.3 INAV Configurator

https://github.com/iNavFlight/inav-configurator/releases INAV Configurator 地面站 https://github.com/iNavFlight/inav/tags iNavflight 固件 https://zadig.akeo.ie/ Zagid 驱动

1、先按住板端按键再通过 USB 连接 PC, 此时进入 DFU 模式, 打开 Zadig 软件,选择 STM32 BOOTLOADER,选择 WinUSB,点击 Replace Driver 安装驱动;

2、iNavConfigurator 烧录固件方法: 先按住板端按键再通过 USB 连接 PC,此时进入 DFU 模式,在主界面点击 Firmware Flasher 页面,选择**板子和固件型号**,勾选 No reboot sequence 和 Full chip erase,选择 Load Firmware [Online]或 Load Firmware [Local] 加载所需固件,最后点击 Flash Firmware,提示 Programming: SUCCESSFUL 成功。

2.2 使用方法

2.2.1 QGroundControl+APM 飞控

https://ardupilot.org/copter/docs/parameters-Copter-stable-V4.2.0.html APM 参数说明

- 1、通过串口指令或优象上位机将光流模块设置为 APM 协议;
- 2、飞控通过 USB 连接 PC, PC 打开 QGroundControl 地面站, 待连接成功后点击左上角图标 →选择 Vehicle Setup→选择参数:

3、以插入 pixhawk 2. 4. 8 的 TELEM2 口(将 TELEM2 口的 5V/RX/GND 分别接光流模块的 V/TX/G)为例:

(1)、搜索 SERIAL2_BAUD, T1(001、Plus)和 T2)模块设置为 115200

(2)、搜索 SERIAL2_PROTOCOL,设置为 MAVLink1

(3)、搜索 FLOW_TYPE,设置为 MAVLink 或 5

4、重新拔插 USB, 点击主界面的断开连接,待自动重连成功后回到主界面点击左上角图标→选择 Analyze Tools→选择 MAVLink 检测,在右上角的下拉列表中选择 **System 0**,可以看到新增的 DISTANCE_SENSOR 和 OPTICAL_FLOW_RAD 数据:

2.2.2 QGroundControl+PX4 飞控

http://docs.px4.io/main/zh/advanced config/parameter reference.html PX4 自动驾驶用户指南 PX4 自动驾驶用户指南

- 1、通过串口指令或优象上位机将光流模块设置为 PX4 协议;
- 2、飞控通过 USB 连接 PC, PC 打开 QgroundControl 地面站,等待连接成功后点击左上角图标→选择 Vehicle Setup→选择参数:

3、以插入 pixhawk 2. 4. 8 的 TELEM2 口(将 TELEM2 口的 5V/RX/GND 分别接光流模块的 V/TX/G) 为例:

(1)、搜索 MAV_1_CONFIG, 插入 TELEM2 口,则参照下表设置为 102

砂对照: 0: Disabled 6: UART 6 101: TELEM 1 102: TELEM 2 103: TELEM 3 104: TELEM/SERIAL 4 201: GPS 1 202: GPS 2 203: GPS 3 300: Radio Controller 301: Wifi Port 401: Pixhawk Payload Bus

(2)、重启 QGC 并搜索 **SER_TEL2_BAUD**, T1(001、Plus) 和 T2 模块设置为 115200, 302GS 模块设置为 460800

(3)、搜索 EKF2_AID_MASK, 至少勾选 use optical flow

(4)、搜索 EKF2_RNG_AID 为 Range aid enabled(设置为 Range aid enabled 后,定高高度由激光雷达提供,如果遇到障碍物,飞机会爬升,如果不希望这样,那就设置为 Range aid disabled,此时高度环控制采用气压计融合结果)

(5)、搜索 SENS_FLOW_ROT(光流安装方向,根据你具体安装情况而定,可以设置为 0-7)

根据光流模块安装位置设置 EKF2_OF_POS_X, EKF2_OF_POS_Y, EKF2_OF_POS_Z (这些参数是机体 NED 坐标系下的), 根据光流模块安装位置设置 EKF2_RNG_POS_X, EKF2_RNG_POS_Y, EKF2_RNG_POS_Z。

4、重新拔插 USB,点击主界面的断开连接,待自动重连成功后回到主界面点击左上角图标→选择 Analyze Tools →选择 MAVLink 检测,可以看到新增的 DISTANCE_SENSOR 和 OPTICAL FLOW RAD 数据:

2.2.3 MissionPlanner+APM 飞控

- 1、通过串口指令或优象上位机将光流模块设置为 APM 协议;
- 2、飞控通过 USB 连接 PC, PC 打开 MissionPlanner 地面站,右上角选择正确的端口号和波特率,等待连接成功后点击配置/调试页面→选择全部参数树:

3、以插入 pixhawk 2. 4. 8 的 TELEM2 口(将 TELEM2 口的 5V/RX/GND 分别接光流模块的 V/TX/G) 为例:

(1)、FLOW TYPE 设置为 5;

(2)、SERIAL2_BAUD 设置为 115, SERIAL2_PROTCOL 设置为 1;

(3)、RNGFND1_TYPE 设置为 10, T1 的 RNGFND1_MAX_CM 设为 400, T2 的 RNGFND1_MAX_CM 设为 1500, T1 的 RNGFND1_MIN_CM 设为 2, T2 的 RNGFND1_MIN_CM 设为 5, RNGFND1_ORIENT 设为 25;

4、点击右侧的写入参数,然后重启飞控,地面站重新连接飞控,即可在主界面的状态页面看到 opt_m_x、opt_m_y、opt_qua 和 rangefinder1 数据有更新:

2.2.4 INAV Configurator+iNavflight 飞控

https://github.com/iNavFlight/inav/tree/master/docs iNavflight Docs

- 1、通过串口指令或优象上位机将光流模块设置为 MSP 协议;
- 2、不要按住板端按键直接通过 USB 连接 PC,选择右上角正确的 USB 端口号和默认波特率 115200,点击 Connect 连接;

3、

(1)、将模块接入飞控的串口如 UART4,在 Ports 页面中设置波特率: T1(001、Plus)和 T2模块设置为 115200,并开启 MSP,点击 Save and Reboot;

(2)、在 Configuration 页面中将 Rangefinder 和 Optical flow 设置为 MSP, 点击 Save and Reboot;

(3)、此时光流和声呐图标点亮,光流数据需要在 CLI 页面中用 cli 命令开启:

set debug mode = FLOW RAW

save

最后点击 Sensors 页面观察数据。

