Nonlinear Optimization Lecture 20 Garrick Aden-Buie Tuesday, April 5, 2016

Game Theory Intro

There are two purposes to game theory: descriptive and predictive. In engineering, the primary use is predictive.

Noncooperative N-Player Game

Theorem. Nash Equilibrium Problem

For each player i:

$$\max u_i(x^i, x^{-i})$$
s.t $x^i \in X_i \subset \mathbb{R}^{m_i}$

$$X = \prod_{i=1}^N X_i = X_1 \times X_2 \times \dots \times X_N$$

where $u_i \colon X \to \mathbb{R}$ is continuously differentiable with respect to x^i or pseudo-concave with respect to x^i . $x^* \in X$ is a solution to NE(X, u) if and only if $x^* \in X$ satisfies

$$\sum_{i=1}^{N} \left[\nabla_{x^{i}} u_{i}(x^{*}) \right]^{T} (x^{i} - x^{i*}) \le 0 \ \forall x \in X$$

This kind of problem is called *variational inequality*, because the form of the inequality changes with $x^i - x^{i*}$, as in the number of inequalities that x^* must satisfy is infinite, as the above must be satisfied $\forall x$.

Recall. For min f(x) s.t. $x \in X$, $x^* \in X$ is optimal if and only if $\nabla f(x^*)^T (x - x^*) \ge 0 \ \forall x \in X$.

Remark. In the following formulation, the optimum is for the global "system" maximum. Note the difference with the Nash equilibrium.

$$^{1}x^{*} = (x^{1*}, x^{2*}, \dots, x^{N*})$$

$$\max \sum_{i=1}^{N} u_i(x)$$
s.t $x \in X$

$$\Leftrightarrow \sum_{i=1}^{N} (\nabla_x u_i)^T (x - x^*) \le 0 \quad \forall x \in X$$

Proof (\Rightarrow) . For each i: given x^{i*} , x^{i*} maximizes u_i .

$$\left[\nabla_{x^{i}} u_{i}(x^{i*}, x^{-i*})\right]^{T} (x^{i} - x^{i*}) \le 0 \ \forall x^{i} \in X_{i}$$

This then simply leads to the Variational Inequality, so proven.

 $Proof (\Leftarrow)$. Assume that x^* satisfies the VI, and show that it is a nash equilibrium point.

Fix $j \in 1, 2, ..., N$ and let $y = \left[x^{1*}, x^{2*}, ..., y^{j}, ..., x^{N*}\right]$ for some $y^{j} \in X^{j}$. Essentially: take the optimal for all players not j and let one player's strategy vary. Note also that $y \in X$.

From here, when taking $x^i - x^{i*}$, all terms cancel except y^j .

$$\left[\nabla_{x^{j}} u_{j}(x^{*})\right]^{T} (y^{j} - x^{j*}) \le 0$$

Because our choice of y^j was arbitrary, we can do the same thing for all $y^j \in X_j$. Then x^{j*} maximizes u_j given x^{j*} (because pseudo-convex).

Scalar-based version of Nash Equilibrium Variational Inequality

$$\sum_{i=1}^{N} \sum_{j=1}^{m_i} \frac{\partial u_i(x^*)}{\partial x_j^i} (x_j^i x_j^{i*}) \le 0 \ \forall x \in X$$

Variational Inequality

Definition.

$$VI(F,\Omega)$$

$$\Omega \subset \mathbb{R}^n \text{ non-empty}$$

$$F \colon \Omega \to \mathbb{R}^n$$

$$VI(F,\Omega) \text{ is to find a vector } y$$

$$\text{such that } y \in \Omega$$

$$[F(y)]^T(x-y) \ge 0 \ \forall x \in \Omega$$

$$\langle F(y), x-y \rangle \ge 0 \ \forall x \in \Omega$$