Week 11: Binary Classification Decision Trees Predicting Classes rather than Numeric Values

Scott Schwartz

May 18, 2021

Decision Trees

Decision Trees

Binary Classification Decision Trees

Statistical Inference

- Hypothesis Testing
 - One sample simulation p-values
 - Two sample permutation p-values
- Estimation
 - Bootstrap Confidence Intervals
- Prediction
 - Simple Linear Regression: real-valued outcome predictions with one predictor
 - Multivariate Linear Regression: real-valued outcome predictions with many predictors
 - Classification: class prediction with many predictors

Statistics and Data Science

Statistics: Inference

- Hypothesis Testing
- Estimation (Confidence Intervals)

Data Science: Machine Learning

- Prediction
 - Regression
- Classification

- Hypothesis Testing and Estimation are both aspects of Simple Linear and Multivariate Regression
 - The same is true for a related Classification method called Logistic Regression
- Our Machine Learning (ML) focus is on the Decision Tree Classification
 - but there are many other ML Classification methods and also many ML Regression methods beyond
 Simple Linear and Multivariate Regression models from Statistics

Trouble Sleeping?

```
## Rows: 2,500
## Columns: 8
## $ Age
                    <dbl> 64, 32, 67, 43, 75, 21, 30, 79, 37, 60, 27, 45, 26, 47~
## $ Race3
                    <chr> "Hispanic", NA, NA, NA, "White", "Hispanic", "White", ~
## $ Work
                     <chr> "NotWorking", "Working", "Working", "NotWorking", "Not~
## $ DaysMentHlthBad <dbl> 0, 0, 0, 30, 0, 0, 2, 0, 30, 3, 4, 26, 3, 0, 30, 2, 30~
## $ DavsPhvsHlthBad <dbl> 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 10, 3~
## $ Depressed
                    <chr> "None", "None", "None", "Most", "None", "None", "None"
## $ SleepHrsNight
                    <dbl> 5.477751, 6.819995, 5.852940, 5.721259, 8.071489, 6.39~
## $ SleepTrouble
                    <chr> "Yes", "No", "No", "Yes", "Yes", "No", "Yes", "No", "N~
```

Who reports sleep trouble?

```
library(rpart) #install.packages("rpart") # for the `rpart()` function
tree <- rpart(SleepTrouble ~ SleepHrsNight + DaysPhysHlthBad, data=NHANES)
library(partykit) #install.packages("partykit") for `as.party()` & `plot()`
plot(as.partv(tree), gp=gpar(cex=1), type="simple")
                                         Data is "recursively partitioned" -
Very similar to
Linear Regression?
                                         divided into smaller and smaller subsets.
                       SleepHrsNight
                    ≥ 5.892
                                        < 5.892
              No
                                                 DavsPhvsHlthBad
      (n = 1943, err = 21.7\%)
                                                < 8.5
                                                             ≥ 8.5
                                                                     5
                                                                    Yes
                                  (n = 422, err = 39.1\%)
                                                             (n = 135, err = 29.6\%)
```

Geometric Interpretation

Data is "recursively partitioned"

Divided into smaller and smaller subsets...

Who reports sleep trouble?

What kind of things could be different here?

plot(as.party(tree), gp=gpar(cex=1), type="simple")

Does someone have having trouble sleeping if

- they typically gets 5.2 hours of sleep on weeknights
- report having 4 days of poor physical health over the past month?

What kind of things could be different here?

Nonstandard Binary Classification Decision Trees?

- Why are there two branches only?
- Why are decision rules only a single cutoff?
- Why are decision rules based on one variable only?
- Are "composite" decision rules possible?
 How would we use a nonbinary categorical variable?

```
## # A tibble: 6 \times 2
MaritalStatus <-
                                                  level text level numeric
                                             ##
  as.factor(NHANES$MaritalStatus)
                                             ##
                                                  <fct>
                                                                          <dbl>
MaritalStatus2 <-
                                             ## 1 Divorced
  as.numeric(MaritalStatus)
                                             ## 2 LivePartner
                                             ## 3 Married
tibble(level_text=MaritalStatus,
                                             ## 4 NeverMarried
       level_numeric=MaritalStatus2) %>%
                                             ## 5 Separated
  unique() %>% arrange(level_numeric)
                                             ## 6 Widowed
```

How are decision trees constructed?

- 1 All possible variables and all their possible decision rules are considered
 - Each variable and decision rule creates two new child nodes
- 2 All variable and decision rule violating stopping rule are discarded
 - node must be large enough to split, resulting nodes must be large enough
 - maximum tree depth, and maximum node count must not be exceeded
- Of those remaining, the variable and decision rule producing the lowest entropy/gini impurity nodes is selected (for possible addition into the tree)
 - entroy(p) = $-p \log(p) (1-p) \log(1-p)$ gini(p) = $1-p^2 (1-p)^2$ (entropy and gini impurity are highest if p = 0.5 and lowest if p = 1 or p = 0)
- 4 A variable and decision rule giving "sufficient improvement" is added to the tree
 - The cp parameter in the rpart() function defines "sufficient improvement": $Error(T) + cp \times splits \times Error(T_0)$ must improve (T_0) is the no splits tree)

where $1_0(\hat{y}_i) = 1$ if $\hat{y}_i = 0$

The outcome/response y_i (and hence \hat{y}) is re-coded as 0 (negative) or 1 (positive)

• \hat{v} either predicts or does not predict the positive event

Specificity:

• \hat{y} for "Do you have sleep trouble? Yes or No?" is 1 if "Yes" is predicted

1. Accuracy:
$$\frac{\sum_{i=1}^{n} 1_{y_{i}}(\hat{y}_{i})}{\sum_{i=1}^{n} 1_{y_{i}}(\hat{y}_{i}) \times 1_{1}(\hat{y}_{i})} \quad \text{where} \quad 1_{y_{i}}(\hat{y}_{i}) = 1 \text{ if } \hat{y}_{i} = y_{i}$$
2. Precision:
$$\frac{\sum_{i=1}^{n} 1_{y_{i}}(\hat{y}_{i}) \times 1_{1}(\hat{y}_{i})}{\sum_{i=1}^{n} 1_{y_{i}}(\hat{y}_{i}) \times 1_{1}(\hat{y}_{i})} \quad \text{where} \quad 1_{1}(\hat{y}_{i}) = 1 \text{ if } \hat{y}_{i} = 1$$
3. Sensitivity/Recall:
$$\frac{\sum_{i=1}^{n} 1_{y_{i}}(\hat{y}_{i}) \times 1_{1}(\hat{y}_{i})}{\sum_{i=1}^{n} 1_{y_{i}}(\hat{y}_{i}) \times 1_{0}(\hat{y}_{i})} \quad \text{where} \quad 1_{0}(\hat{y}_{i}) = 1 \text{ if } \hat{y}_{i} = 0$$
4. Specificity:
$$\frac{\sum_{i=1}^{n} 1_{y_{i}}(\hat{y}_{i}) \times 1_{0}(\hat{y}_{i})}{\sum_{i=1}^{n} (1-y_{i})} \quad \text{where} \quad 1_{0}(\hat{y}_{i}) = 1 \text{ if } \hat{y}_{i} = 0$$

For even more versions see: https://en.wikipedia.org/wiki/Sensitivity_and_specificity

What is the meaning of Accuracy, Precision, Sensitivity/Recall, and Specificity?

What do the expressions mean? $\sum_{i=1}^{n} y_i$, $\sum_{i=1}^{n} (1-y_i)$, $\sum_{i=1}^{n} 1_{v_i}(\hat{y}_i) \times 1_1(\hat{y}_i)$, etc.?

The outcome/response y_i (and hence \hat{y}) is re-coded as 0 (negative) or 1 (positive)

- \hat{y} either predicts or does not predict the positive event
- \hat{v} for "Do you have sleep trouble? Yes or No?" is 1 if "Yes" is predicted

TP, TN, FP, FN, and Confusion Matrices – What are each of these things?

	$y_i = 0$	$y_i = 1$		$y_{i} = 0$	$y_i = 1$
$\frac{1}{\hat{y}_i=0}$	n _{TN}	n _{FN}	$\overline{\hat{y}_i} = 0$) 🗸	×
$\hat{y}_i = 1$	<i>n</i> FP	<i>n</i> _{FN}	$\hat{y}_i = 1$. ×	\checkmark

$$\frac{\phantom{n_{\rm TN}}}{n = n_{\rm TN} + n_{\rm FN} + n_{\rm FP} + n_{\rm FN}}$$

This is like *Type I* and *Type II* errors from the *Hypothesis Testing* context!

• What do FP, FN, TP, or TN predictions mean practically in different contexts?

The outcome/response y_i (and hence \hat{y}) is re-coded as 0 (negative) or 1 (positive)

- \hat{y} either predicts or does not predict the positive event
- \hat{v} for "Do you have sleep trouble? Yes or No?" is 1 if "Yes" is predicted

TP, TN, FP, FN, and Confusion Matrices – What are each of these things?

$y_i = 0$ $y_i = 1$	1. Accuracy: $\frac{n_{\text{TP}} + n_{\text{T}}}{n}$
$egin{array}{lll} \hat{y}_i = 0 & n_{TN} & n_{FN} \ \hat{y}_i = 1 & n_{FP} & n_{FN} \ \end{array}$	2. Precision: $\frac{n_{TP}}{n_{TP}+n_{E}}$
	3. Sensitivity/Recall: $\frac{n_{TP}}{n_{TP}+n_{F}}$
$\frac{n = n_{TN} + n_{FN} + n_{FP} + n_{FN}}{}$	4. Specificity: $\frac{n_{\text{TN}}}{n_{\text{TN}} + n_{\text{F}}}$

For more information see: https://en.wikipedia.org/wiki/Confusion matrix#Example

What's Worse? FN or FP?

Is it more costly to wrongly ignore cancer (FN)?

Is it more costly to approve bad applicants (FP)?

What's Worse? FN or FP?

Sometimes it's not immediately clear which may be better or worse

Regarding self-quarantine, some questions

- Does FN meaningfully increase transmission?
- Does FP meaningfully decrease well-being?

Regarding hospitalization, some questions

- Does FN significantly worsen outcomes?
- Does FP prohibitively burden medical care?

This depends on the costs and benefits of the intervention/failure to intervene

What's Worse? FN or FP?

- Sensitivity/Recall is also called the True Positive Rate (TPR)
 - The FALSE Positive Rate (FPR) is 1-TPR
 FPR tells you the proportion of positives that are missed
- Specificity is also called the True Negative Rate (TPR)
 - The FALSE Negative Rate (FNR) is 1-TNR
 FNR tells you the proportion of negatives that are missed

For more information see: https://en.wikipedia.org/wiki/Confusion_matrix#Example

1 Decide what matters: accuracy, precision, sensitivity/recall, or specificity?

Accuracy is often a good choice, but not for some class imbalance contexts

- If you care about FP but they're rare, then accuracy overemphasizes FN
 - If most predictions are negative, then most errors are FN, so FN drives accuracy...
- If you care about FN but they're rare, then accuracy overemphasizes FP
 - If most predictions are positive, then most errors are FP, so FP drives accuracy. . .
- 2 Use the 80-20 train-test split methodology to compare competing models
 - Build the classification model with 80% of the data
 - Score the predictions on the remaining 20% of the data
 - This suggests how well a model will actually generalize and perform on new data

Review: The 80/20 Train-Test Split

- Classification is about doing something (predicting) in the sample
- So you should try to see how well you can do that thing in the population. . .

- ← Here we split a "representative" population sample into two "representative" samples
 - 1 You fit the model based on a "representative" sample
 - 2 So subsamples are "representative of the population"
 - 3 Use 80% of the data to fit the "representative" model
 - 4 Use 20% to see if the model's actually "representative"

This strategy shows when the model for 80% of the data doesn't work well for the remaing 20% of the data, which could happen if

- The subsample aren't "representative" to begin with
- The model is overly specific to 80% of the data

Review: The 80/20 Train-Test Split

Fit a model on 80% of the data \rightarrow "score" the model on the remaining 20%

- The train-test method is a wonderful tool in LARGE data contexts
 - when there's enough data so the random train-test split isn't just "lucky"
- In its more advanced (data science) forms, train-test is a powerful model tuning tool

- Like Hypothesis Testing, it is subject to "random chance" (of the test-train split)
- Unlike Hypothesis Testing, it is based on observed out of sample generalizability, rather than tests based on modeling assumptions
- It's not about parameters or 'right' or 'wrong', but picking models predicting new data 'well'

Trouble Sleeping: 80-20 Train-Test Split

```
NHANES %>% rowid_to_column() ->
                                                 SleepHrsNight
  NHANES; n <- nrow(NHANES)
set.seed(1002); train ids <-</pre>
                                                   ≥ 5.776
                                                             < 5.776
  sample(1:n, size=round(0.8*n))
                                                                  DaysPhysHlthBad
train <- NHANES %>%
  filter(rowid %in% train ids)
                                                                  < 14.5 ≥ 14.5
test <- NHANES %>%
                                                          SleepHrsNight
  filter(!(rowid %in% train_ids))
                                                           > 3.4 < 3.471
tree <- rpart(SleepTrouble ~
  SleepHrsNight + DaysPhysHlthBad,
  data=train)
tree %>% as.party() %>%
plot(type="extended", #gp=gpar(cex=0.8), \( \tilde{\sigma} \)
     tp args=list(id=FALSE))
```

Trouble Sleeping: Confusion Matrices

```
tree_train_pred <- predict(</pre>
                                             tree_test_pred <- predict(</pre>
  tree, type="class")
                                              tree, type="class", newdata=test)
train_conf_mtrx <- table(</pre>
                                             test_conf_mtrx <- table(</pre>
  `y-hat`=tree_train_pred.
                                              `y-hat`=tree_test_pred,
 observed v = train$SleepTrouble)
                                             observed v`=test$SleepTrouble)
train conf mtrx
                                             test conf mtrx
## observed v
                                             ##
                                                     observed v
                                             ## y-hat No Yes
## y-hat
          No Yes
##
    No 1447 461
                                             ##
                                                 No 339 133
##
    Yes
          24 68
                                             ##
                                                 Yes 9 19
train conf mtrx/sum(train conf mtrx)
                                             test conf mtrx/sum(test conf mtrx)
##
        observed v
                                             ##
                                                     observed v
## y-hat
            No
                  Ves
                                             ## y-hat
                                                        No Yes
    No. 0.7235 0.2305
##
                                             ##
                                                 No. 0.678 0.266
    Yes 0.0120 0.0340
##
                                             ## Yes 0.018 0.038
```

Trouble Sleeping: Metrics (Accuracy, etc.)

```
n TN <- train conf mtrx[1,1]
                                                n TN <- test conf mtrx[1,1]
n_FN <- train_conf_mtrx[1,2]</pre>
                                                n_FN <- test_conf_mtrx[1,2]</pre>
n_FP <- train_conf_mtrx[2,1]</pre>
                                                n_FP <- test_conf_mtrx[2,1]</pre>
n TP <- train conf mtrx[2,2]
                                                n TP <- test conf mtrx[2,2]
# accuracy
                                                # accuracy
(n_TP+n_TN)/sum(train_conf_mtrx)
                                                (n_TP+n_TN)/sum(test_conf_mtrx)
## [1] 0.7575
                                                ## [1] 0.716
# precision
                                                # precision
(n TP)/(n TP+n FP)
                                                (n TP)/(n TP+n FP)
## [1] 0.7391304
                                                ## [1] 0.6785714
# sensitivity/recall: TPR = 1-FPR
                                                # sensitivity/recall: TPR = 1-FPR
(n_TP)/(n_TP+n_FN)
                                                (n_TP)/(n_TP+n_FN)
## [1] 0.1285444
                                                ## [1] 0.125
# specificity: TNR = 1-FNR
                                                # specificity: TNR = 1-FNR
(n_TN)/(n_TN+n_FP)
                                                (n_TN)/(n_TN+n_FP)
## [1] 0.9836846
                                                ## [1] 0.9741379
```


Let's just compare the out of sample generalizability

```
tree1 test pred <-
                                              tree2 test pred <-
  predict(tree1, type="class",
                                                predict(tree2, type="class",
         newdata=test)
                                                        newdata=test)
tree1 test confmtrx <-
                                              tree2 test confmtrx <-
  table(`y-hat`=tree1_test_pred,
                                                table('y-hat'=tree2_test_pred,
       observed v = test$SleepTrouble)
                                                     observed v = test$SleepTrouble)
tree1_test_confmtrx
                                              tree2_test_confmtrx
##
        observed v
                                              ##
                                                      observed v
## y-hat No Yes
                                              ## y-hat No Yes
##
    No. 339 133
                                              ## No 320 116
## Yes 9 19
                                              ## Yes 28 36
# accuracy
                                              # accuracy
n <- sum(tree1 test confmtrx)</pre>
                                              n <- sum(tree2 test confmtrx)</pre>
sum(diag(tree1_test_confmtrx))/n
                                              sum(diag(tree2_test_confmtrx))/n
## [1] 0.716
                                              ## [1] 0.712
```

Let's just compare the out of sample generalizability

```
tree1 test pred <-
                                              tree2 test pred <-
  predict(tree1, type="class",
                                                predict(tree2, type="class",
         newdata=test)
                                                        newdata=test)
tree1 test confmtrx <-
                                              tree2 test confmtrx <-
  table(`y-hat`=tree1_test_pred,
                                                table('y-hat'=tree2_test_pred,
       observed v = test$SleepTrouble)
                                                     observed v = test$SleepTrouble)
tree1_test_confmtrx/sum(tree1_test_confmtrx)
                                              tree2_test_confmtrx/sum(tree2_test_confmtrx)
##
        observed v
                                                      observed v
                                              ##
## y-hat No Yes
                                              ## y-hat No Yes
##
    No. 0.678 0.266
                                              ## No 0.640 0.232
## Yes 0.018 0.038
                                              ## Yes 0.056 0.072
# accuracy
                                              # accuracy
n <- sum(tree1 test confmtrx)</pre>
                                              n <- sum(tree2 test confmtrx)</pre>
sum(diag(tree1_test_confmtrx))/n
                                              sum(diag(tree2_test_confmtrx))/n
## [1] 0.716
                                              ## [1] 0.712
```

```
n TN <- tree1 test confmtrx[1,1]</pre>
                                                n TN <- tree2 test confmtrx[1,1]
n_FN <- tree1_test_confmtrx[1,2]</pre>
                                                n_FN <- tree2_test_confmtrx[1,2]</pre>
n_FP <- tree1_test_confmtrx[2,1]</pre>
                                                n_FP <- tree2_test_confmtrx[2,1]</pre>
n TP <- tree1 test confmtrx[2,2]
                                                n TP <- tree2 test confmtrx[2,2]
# accuracy
                                                # accuracy
(n TP+n TN)/sum(tree1 test confmtrx)
                                                (n_TP+n_TN)/sum(tree2_test_confmtrx)
## [1] 0.716
                                                ## [1] 0.712
# precision
                                                # precision
(n TP)/(n TP+n FP)
                                                 (n TP)/(n TP+n FP)
## [1] 0.6785714
                                                ## [1] 0.5625
# sensitivity/recall: TPR = 1-FPR
                                                # sensitivity/recall: TPR = 1-FPR
(n_TP)/(n_TP+n_FN)
                                                 (n_TP)/(n_TP+n_FN)
## [1] 0.125
                                                ## [1] 0.2368421
# specificity: TNR = 1-FNR
                                                # specificity: TNR = 1-FNR
(n_TN)/(n_TN+n_FP)
                                                (n_TN)/(n_TN+n_FP)
## [1] 0.9741379
                                                ## [1] 0.9195402
```

Comparing Models

Which of the two models above do we prefer? [Use generalizability on test data...]

How to choose between models: Rationale 1

- If a FP is costly, then low FPR (high sensitivity/recall) is important
 - sensitivity/recall = TPR = 1-FPR
- If a FN is costly, then low FNR (high specificity) is important
 - specificity = TNR = 1-TNR
- Accuracy is a weighted average of sensitivity/recall and specificity
 - sensitivity/recall gets more weight if positive outcomes are more prevalent
 - specificity gets more weight if negative outcomes are more prevalent

How to choose between models: Rationale 2

- Less complex models are less likely to overfit the data
 - Less complex model performance tends to generalize better
- Less complex models tends be easier to interpret than more complex models

Multi-Class (Non-Binary) Outcomes

Controlling FP and FN with Thresholding

```
tree2 test pred <-
                                             threshold_20 <- tree2_test_pred %>%
  predict(tree2, type="class",
                                               mutate(prediction=ifelse(
          newdata=test)
                                                 Yes>=0.20, "Yes", "No"))
  table('y-hat'=tree2_test_pred,
                                             table('y-hat'=threshold_20$prediction,
       observed y = test$SleepTrouble)
                                                      observed y = test$SleepTrouble)
##
        observed y
                                             ##
                                                      observed v
                            FPR: 8%
                                                                         FPR: 25%
## y-hat No Yes
                                             ## y-hat No Yes
                            TPR: 24%
##
    Nο
        320 116
                                                                         TPR: 38%
                                             ##
                                                  No
                                                      261 94
##
    Yes
         28 36
                                             ##
                                                  Yes 87
                                                           58
predict(tree2, newdata=test) %>%
                                             threshold 70 <- tree2_test_pred %>%
  as tibble() -> tree2 test pred
                                               mutate(prediction=ifelse(
tree2_test_pred %>% head(3)
                                                 Yes>=0.70, "Yes", "No"))
                                             table('y-hat'=threshold_70$prediction,
## # A tibble: 3 x 2
                                                      observed y`=test$SleepTrouble)
##
       No Yes
##
    <dbl> <dbl>
                                             ##
                                                      observed v
## 1 0.810 0.190
                                                                         FPR: 5%
                                             ## v-hat No Yes
## 2 0 253 0 747
                                             ##
                                                  No. 333 127
                                                                         TPR: 17%
## 3 0.810 0.190
                                             ##
                                                  Yes
                                                      15
```