

^{Írta:} **GYŐRI ISTVÁN PITUK MIHÁLY**

KALKULUS INFORMATIKUSOKNAK I.

Egyetemi tananyag

2011

COPYRIGHT: © 2011–2016, Dr. Győri István, Dr. Pituk Mihály, Pannon Egyetem Műszaki Informatikai Kar Matematika Tanszék

LEKTORÁLTA: Dr. Molnárka Győző, Széchenyi István Egyetem Műszaki Tudományi Kar Mechatronika és Gépszerkezettan Tanszék

Creative Commons NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0) A szerző nevének feltüntetése mellett nem kereskedelmi céllal szabadon másolható, terjeszthető, megjelentethető és előadható, de nem módosítható.

TÁMOGATÁS:

Készült a TÁMOP-4.1.2-08/1/A-2009-0008 számú, "Tananyagfejlesztés mérnök informatikus, programtervező informatikus és gazdaságinformatikus képzésekhez" című projekt keretében.

ISBN 978-963-279-504-1

KÉSZÜLT: a Typotex Kiadó gondozásában

FELELŐS VEZETŐ: Votisky Zsuzsa

AZ ELEKTRONIKUS KIADÁST ELŐKÉSZÍTETTE: Juhász Lehel

KULCSSZAVAK:

egyváltozós valós függvény, sorozat, határérték, folytonosság, derivált, határozatlan integrál, Riemann-integrál, improprius integrál, Laplace-transzformált

ÖSSZEFOGLALÁS:

A jegyzet a Pannon Egyetem Műszaki Informatikai Karán oktatott *Matematikai analízis I.* kurzus anyagának összefoglalása informatikus és villamosmérnök hallgatók részére. Az olvasó megismerkedhet az egyváltozós valós függvények differenciálszámításával és integrálszámításával, ezen belül az analízis olyan központi fogalmaival, mint a határérték, folytonosság, derivált és az integrál. Egy villamosságtani probléma kapcsán ismertetésre kerül a Laplace transzformált fogalma és fontosabb tulajdonságai.

Tartalomjegyzék

Be	Bevezetés				
1.	Haln	Halmazok, függvények			
	1.1.	Halmazok	6		
	1.2.	Számhalmazok	7		
	1.3.	A függvény definíciója	8		
	1.4.	Az összetett függvény	9		
	1.5.	Az inverz függvény	9		
	1.6.	Egyváltozós valós függvények	10		
2.	Egyváltozós valós függvények határértéke és folytonossága				
	2.1.	Konvergens sorozatok	12		
	2.2.	Végtelenhez tartó sorozatok	14		
	2.3.	Monoton sorozatok	15		
	2.4.	Speciális sorozatok	15		
	2.5.		16		
	2.6.		17		
	2.7.	A függvény határértéke	18		
	2.8.	Folytonosság	20		
	2.9.	Az elemi alapfüggvények	22		
3.	Egyváltozós valós függvények differenciálszámítása				
	3.1.	A differenciálhatóság fogalma	29		
	3.2.	Differenciálási szabályok	31		
	3.3.		32		
	3.4.	Magasabb rendű deriváltak	33		
	3.5.		33		
	3.6.	Középértéktételek	34		
	3.7.		34		
	3.8.	A L'Hospital-szabály	35		
	3.9.	Abszolút és lokális szélsőértékek	35		
	3.10.		36		

4.	Egyv	változós valós függvények integrálszámítása	38
	4.1.	Primitív függvény és határozatlan integrál	38
	4.2.	Alapintegrálok	39
	4.3.	Integrálás elemi átalakításokkal	39
		Parciális integrálás	
		Integrálás helyettesítéssel	
		A Riemann-integrál definíciója	
		A Riemann-integrál tulajdonságai	
		A Riemann-integrál kiszámítása	
		Az integrálfüggvény	
		Az improprius integrál	
		Az integrálszámítás néhány alkalmazása	
5.	Egy	villamosságtani probléma	53
	5.1.	Soros RLC áramkör	53
		Valós változójú komplex függvények	
		A Laplace transzformált tulajdonságai	
		A soros RLC áramkör vizsgálata	58
Iro	dalor	njegyzék	62

Bevezetés

Ebben a jegyzetben a Pannon Egyetem Műszaki Informatikai Karán az általunk tartott "Matematikai analízis I." kurzus anyagát foglaltuk össze. Célunk segíteni az informatikus és villamosmérnök hallgatóknak, hogy megismerjék az egyváltozós függvények differenciál- és integrálszámítását, és sikeresen felkészüljenek a vizsgára. A tárgyhoz gyakorlatok vannak előírva, amelyekhez a hallgatók külön feladatgyűjteményt kapnak, ezért a jegyzet gyakorlófeladatokat nem tartalmaz, csak mintapédákat. A tételek bizonyításait elhagytuk. Arra törekedtünk, hogy az analízis központi fogalmait, mint például a határérték, folytonosság, differenciálás és integrálás, és azok legfontosabb tulajdonságait összefoglaljuk. Ismertetjük többek között a szakmai tárgyakban gyakran használt Laplace transzformált fogalmát és annak alkalmazását a villamosságtanban.

Hangsúlyozzuk, hogy e jegyzet nem pótolja az előadásokon való részvételt, ahol további példákon és egyszerűbb bizonyításokon keresztül segítjük e nehéz anyag megértését. Azoknak a hallgatóknak, akiket a kihagyott bizonyítások és további lehetséges alkalmazások iránt érdeklődnek, melegen ajánljuk az irodalomjegyzékben feltüntetett tankönyveket.

A jegyzet a TÁMOP - 4.1.2-08/1/A program keretében készült.

Ezúton fejezzük ki köszönetünket Hartung Ferenc kollégánknak a jegyzet elkészítése során nyújtott értékes segítségéért.

Veszprém, 2011. január 31.

Győri István és Pituk Mihály

1. fejezet

Halmazok, függvények

1.1. Halmazok

Az *egész számok* halmazának jele \mathbb{Z} . A nemnegatív egész számokat *természetes számoknak* nevezzük. A természetes számok halmazát az \mathbb{N} , a pozitív egész számok halmazát pedig az \mathbb{N}^+ szimbólummal jelöljük. A *valós számok* halmazának jele \mathbb{R} . Az \mathbb{R} halmazt *számegyenesnek* is szokás nevezni.

Egy x valós szám abszolút értékét az

$$|x| = \begin{cases} x, & \text{ha } x \ge 0 \\ -x, & \text{ha } x < 0 \end{cases}$$

képlettel definiáljuk. Geometrialag |x| az x számnak 0-tól való távolsága a számegyenesen. Általánosabban, ha x és y két valós szám, akkor |x-y| az x és y számok egymástól való távolsága a számegyenesen. Bármely $x, y \in \mathbb{R}$ esetén

$$|x+y| \le |x|+|y|$$
. (háromszög-egyenlőtlenség)

Ha H egy adott halmaz, akkor az $x \in H$ ($x \notin H$) szimbólum azt jelenti, hogy x eleme (x nem eleme) H-nak. Egy halmazt megadhatunk elemeinek a felsorolásával vagy azoknak a tulajdonságoknak a leírásával, amelyek a halmaz elemeit jellemzik. Az 1, 3 és 10 számokból álló halmazt a következőképpen jelöljük:

$$H = \{1, 3, 10\}.$$

Ha T(x) egy állítás (tulajdonság), amely a benne szereplő x változótól függően lehet igaz vagy hamis, akkor

$$H = \{x \mid T(x)\}$$

azoknak az x elemeknek a halmazát jelöli, amelyekre T(x) igaz. Legyen

$$H = \{x \in \mathbb{R} \mid |x - 1| < 3\}.$$

Az abszolút érték geometriai jelentéséből azonnal adódik, hogy H azon $x \in \mathbb{R}$ számokból áll, amelyekre -2 < x < 4.

Legyen A, B két halmaz. A részhalmaza B-nek, jelben $A \subset B$, ha A minden eleme B-nek is eleme. A és B egyesítését, metszetét és különbségét az

$$A \cup B = \{x \mid x \in A \text{ vagy } x \in B\},\$$

$$A \cap B = \{x \mid x \in A \text{ és } x \in B\},\$$

$$A \setminus B = \{x \mid x \in A \text{ és } x \notin B\}$$

képletekkel definiáljuk. A és B Descartes-szorzatának jele $A \times B$. Az $A \times B$ halmaz azon (a,b) rendezett párokból áll, amelyekre $a \in A$ és $b \in B$. Tehát

$$A \times B = \{(a, b) \mid a \in A \text{ és } b \in B\}.$$

Az *üres halmaz* jele \emptyset . Ha $A \cap B = \emptyset$, akkor az A, B halmazokat *diszjunktaknak* mondjuk.

1.2. Számhalmazok

- **1.2.1. Definíció.** \mathbb{R} részhalmazait (valós) *számhalmazoknak* mondjuk.
- **1.2.2. Definíció.** Legyen $A \subset \mathbb{R}$. A $c \in \mathbb{R}$ számot az A halmaz $felső korlátjának (alsó korlátjának) mondjuk, ha minden <math>x \in A$ esetén $x \le c$ $(x \ge c)$.

Az A halmaz felülről korlátos (alulról korlátos), ha létezik felső korlátja (alsó korlátja).

Az A halmaz korlátos, ha korlátos felülről és alulról is.

Könnyű belátni, hogy $A \subset \mathbb{R}$ éppen akkor korlátos, ha létezik k > 0 úgy, hogy minden $x \in A$ -ra |x| < k.

Az intervallumok speciális számhalmazok. A korlátos intervallumok a következők:

$$(a,b) = \{x \in \mathbb{R} \mid a < x < b\},\$$

$$[a,b) = \{x \in \mathbb{R} \mid a \le x < b\},\$$

$$(a,b] = \{x \in \mathbb{R} \mid a < x \le b\},\$$

$$[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\},\$$

ahol $a, b \in \mathbb{R}$, a < b. Az első intervallum *nyílt*, a második *balról zárt*, *jobbról nyílt*, a harmadik *balról nyílt*, *jobbról zárt*, a negyedik pedig *zárt*. A

$$(c, \infty) = \{x \in \mathbb{R} \mid x > c \},\$$

$$[c, \infty) = \{x \in \mathbb{R} \mid x \ge c \},\$$

$$(-\infty, c) = \{x \in \mathbb{R} \mid x < c \},\$$

$$(-\infty, c] = \{x \in \mathbb{R} \mid x \le c \},\$$

ahol $c \in \mathbb{R}$, valamint a

$$(-\infty, \infty) = \mathbb{R}$$

nem korlátos intervallum.

- **1.2.3. Definíció.** Legyen $A \subset \mathbb{R}$. Az $m \in A$ számot az A halmaz legnagyobb elemének vagy maximumának (legkisebb elemének vagy minimumának) mondjuk, ha minden $x \in A$ esetén $x \le m$ ($x \ge m$). Jelölés: $m = \max A$, illetve $m = \min A$.
- **1.2.4. Példa.** Ha A = (0,1), akkor min A és max A sem létezik. Ha A = [0,1), akkor min A = 0, max A nem létezik. Ha A = (0,1], akkor min A nem létezik, max A = 1. Ha pedig A = [0,1], akkor min A = 0 és max A = 1.

Az előző példa azt mutatja, hogy korlátos *A* esetén is előfordulhat, hogy min *A* és max *A* sem létezik. Ugyanakkor igaz a következő:

- **1.2.5. Tétel.** $Ha \emptyset \neq A \subset \mathbb{R}$ felülről korlátos (alulról korlátos), akkor A felső korlátjai (alsó korlátjai) között mindig van legkisebb (legnagyobb).
- **1.2.6. Definíció.** Legyen $\emptyset \neq A \subset \mathbb{R}$. Ha A felülről korlátos (alulról korlátos), akkor A legkisebb felső korlátját (legnagyobb alsó korlátját) az A halmaz *felső határának vagy szuprémumának (alsó határának vagy infimumának)* nevezzük. Jelölés: sup A, illetve inf A.

1.3. A függvény definíciója

A függvény definíciója a következő:

1.3.1. Definíció. Legyenek A és B adott halmazok. Az $A \times B$ Descartes-szorzat Z részhalmazát A-ból B-be vezető ($A \to B$ típusú) függvénynek (leképezésnek) mondjuk, ha bármely $x \in A$ esetén legfeljebb egy $y \in B$ létezik úgy, hogy $(x, y) \in Z$. Ha ezt a leképezést f-fel jelöljük, akkor $(x, y) \in Z$ esetén y-t az x elem f általi képének mondjuk, és azt írjuk, hogy y = f(x). Az f függvény értelmezési tartományán a

$$D(f) = \{x \in A \mid \text{létezik } y \in B \text{ úgy, hogy } (x, y) \in Z\}$$

halmazt, f értékkészletén pedig az

$$R(f) = \{ y \in B \mid \text{létezik } x \in A \text{ úgy, hogy } (x, y) \in Z \}$$

halmazt értjük.

Azt, hogy f A-ból B-be vezető leképezés az $f:A\to B$ szimbólummal jelöljük. Más szóval az $f:A\to B$ szimbólum azt jelenti, hogy $D(f)\subset A$ és $R(f)\subset B$. Hangsúlyozzuk, hogy általában $D(f)\ne A$ és $R(f)\ne B$.

Ha $H \subset D(f)$, akkor a H halmaz f általi képén az

$$f(H) = \{ f(x) \mid x \in H \}$$

halmazt értjük.

Legyen $H \subset D(f)$. Az f függvény H halmazra való leszűkítésén (megszorításán), jele $f|_H$, azt a függvényt értjük, amelynek értelmezési tartománya $D(f|_H) = H$, és képlete

$$(f|_H)(x) = f(x), \qquad x \in H.$$

Az $f: A \rightarrow B$ függvény grafikonja

$$graph(f) = \{(x, f(x)) \mid x \in D(f)\} \subset A \times B.$$

1.3.2. Példa. Legyen

$$Z = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^2 + y^2 = 1\} \subset \mathbb{R} \times \mathbb{R}.$$

Z az x, y-sík azon pontjainak a halmaza, amelyek rajta vannak a (0,0) középpontú 1 sugarú körvonalon. A Z halmaz nem leképezés \mathbb{R} -ből \mathbb{R} -be, mert $(0,1) \in Z$ és $(0,-1) \in Z$ is teljesül. Viszont a

$$Z = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^2 + y^2 = 1, \ y \ge 0 \} \subset \mathbb{R} \times \mathbb{R}$$

halmaz, a (0,0) középpontú 1 sugarú felső félkörvonal, már \mathbb{R} -ből \mathbb{R} -be vezető leképezés. Ha f-fel jelöljük, akkor a definícióban használt jelöléssel D(f) = [-1,1], R(f) = [0,1] és

$$y = f(x) = \sqrt{1 - x^2}, \qquad x \in [-1, 1].$$

1.4. Az összetett függvény

1.4.1. Definíció. Legyen $f: A \to B$ és $g: B \to C$ két függvény. Minden olyan $x \in D(g)$ esetén, amelyre $g(x) \in D(f)$, legyen

$$(f \circ g)(x) = f(g(x)).$$

Az $f \circ g$ -vel jelölt függvényt, amelynek értelmezési tartománya

$$D(f \circ g) = \{x \in D(g) \mid g(x) \in D(f)\},\$$

f és g kompozíciójának nevezzük.

1.4.2. Példa. Legyen

$$f(x) = 4x + 2,$$
 $x \in [0,1],$
 $g(x) = x - 3,$ $x \in [0,4].$

Ekkor

$$(f \circ g)(x) = f(g(x)) = 4g(x) + 2 = 4(x-3) + 2 = 4x - 10.$$

Mivel D(f) = [0,1], $g(x) = x - 3 \in D(f)$ éppen akkor, ha $3 \le x \le 4$. Ha figyelembe vesszük, hogy D(g) = [0,4], azt kapjuk, hogy

$$D(f \circ g) = [3,4].$$

1.5. Az inverz függvény

- **1.5.1. Definíció.** Az f függvényt *invertálhatónak (egy-egyértelműnek)* mondjuk, ha bármely $x_1, x_2 \in D(f), x_1 \neq x_2$ esetén $f(x_1) \neq f(x_2)$.
- **1.5.2. Definíció.** Ha $f: A \to B$ invertálható, D(f) = A és R(f) = B, akkor azt mondjuk, hogy f kölcsönösen egyértelmű leképezést létesít A és B között. Más szóval f bijektív leképezés vagy röviden bijekció.

1.5.3. Definíció. Ha f invertálható, akkor f inverz függvénye az a függvény, amely R(f)-et képezi D(f)-be, és minden $y \in R(f)$ -hez azt az $x \in D(f)$ -et rendeli, amelyre y = f(x). Az inverz függvény jele: f_{-1} .

A definícióból következik, hogy $D(f_{-1}) = R(f)$ és $R(f_{-1}) = D(f)$, továbbá minden $x \in D(f)$ -re

$$f_{-1}(f(x)) = x,$$

és minden $y \in R(f)$ esetén

$$f(f_{-1}(y)) = y.$$

1.5.4. Példa. A

$$g(x) = 1 - x^2, \qquad x \in [-1, 1]$$

függvény nem invertálható, mert g(-1) = g(1). Az

$$f(x) = 1 - x^2, \qquad x \in [-1, 0]$$

függvény viszont invertálható, mert ha valamely $x_1, x_2 \in D(f) = [-1, 0]$ esetén $f(x_1) = f(x_2)$, akkor azt kapjuk, hogy $x_1^2 = x_2^2$, s innen $|x_1| = |x_2|$, majd $-x_1 = -x_2$, és végül $x_1 = x_2$ adódik. Könnyű belátni, hogy R(f) = [0, 1]. Az

$$y = f(x) = 1 - x^2$$
, $x \in D(f) = [-1, 0], y \in R(f) = [0, 1]$

feltételekből kapjuk, hogy $x^2 = 1 - y$. Innen $|x| = \sqrt{1 - y}$, majd $-x = \sqrt{1 - y}$, és végül

$$x = -\sqrt{1 - y} = f_{-1}(y)$$

adódik. Tehát f inverz függvénye:

$$f_{-1}(x) = -\sqrt{1-x}, \qquad x \in [0,1].$$

1.6. Egyváltozós valós függvények

1.6.1. Definíció. Az f függvényt valós függvénynek mondjuk, ha $R(f) \subset \mathbb{R}$. Az f függvényt egyváltozós függvénynek mondjuk, ha $D(f) \subset \mathbb{R}$.

A továbbiakban egyváltozós valós függvényeket, azaz \mathbb{R} -ből \mathbb{R} -be vezető függvényeket fogunk vizsgálni. Az egyváltozós valós függvények grafikonjait az x, y-síkban ábrázolhatjuk,

graph
$$(f) = \{(x, f(x)) \mid x \in D(f)\} \subset \mathbb{R} \times \mathbb{R} = \mathbb{R}^2.$$

Az inverz függvény definíciójából kapjuk, hogy ha $f : \mathbb{R} \to \mathbb{R}$ invertálható, akkor az f_{-1} inverz függvény grafikonját f grafikonjának az y = x egyenesre való tükrözésével kapjuk.

1.6.2. Definíció. Ha f_1 és f_2 valós függvények, akkor az $f_1 \pm f_2$, $f_1 \cdot f_2$ és $\frac{f_1}{f_2}$ függvényeket az

$$(f_1 \pm f_2)(x) = f_1(x) \pm f_2(x), \qquad x \in D(f_1 \pm f_2) = D(f_1) \cap D(f_2),$$

$$(f_1 \cdot f_2) = f_1(x) \cdot f_2(x), \qquad x \in D(f_1 \cdot f_2) = D(f_1) \cap D(f_2),$$

$$\left(\frac{f_1}{f_2}\right)(x) = \frac{f_1(x)}{f_2(x)}, \qquad x \in D\left(\frac{f_1}{f_2}\right) = \{x \in D(f_1) \cap D(f_2) \mid f_2(x) \neq 0\}$$

képletekkel definiáljuk.

1.6.3. Definíció. Az $f : \mathbb{R} \to \mathbb{R}$ függvény *felülről korlátos (alulról korlátos)*, ha létezik $c \in \mathbb{R}$ úgy, hogy minden $x \in D(f)$ -re $f(x) \le c$ $(f(x) \ge c)$.

Az $f : \mathbb{R} \to \mathbb{R}$ függvény *korlátos*, ha korlátos felülről és alulról is.

Könnyű belátni, hogy $f : \mathbb{R} \to \mathbb{R}$ éppen akkor korlátos, ha létezik k > 0 úgy, hogy minden $x \in D(f)$ -re $|f(x)| \le k$.

1.6.4. Definíció. Az $f: \mathbb{R} \to \mathbb{R}$ függvény monoton növekedő (monoton csökkenő), ha bármely $x_1, x_2 \in D(f), x_1 < x_2$ esetén $f(x_1) \leq f(x_2)$ ($f(x_1 \geq f(x_2))$). Ha az utolsó egyenlőtlenséget <-re (>-ra) cseréljük, akkor a *szigorúan monoton növekedő (szigorúan monoton csökkenő)* függvény definícióját kapjuk.

Az $f: \mathbb{R} \to \mathbb{R}$ függvény *monoton* (*szigorúan monoton*), ha monoton növekedő vagy monoton csökkenő (szigorúan monoton növekedő vagy szigorúan monoton csökkenő).

1.6.5. Definíció. Az $f : \mathbb{R} \to \mathbb{R}$ függvény *páros (páratlan)*, ha bármely $x \in D(f)$ esetén $-x \in D(f)$, és f(-x) = f(x) (f(-x) = -f(x)).

Minden páros függvény grafikonja szimmetrikus az y-tengelyre nézve, és minden páratlan függvény grafikonja szimmetrikus az origóra ((0,0) pontra) nézve.

- **1.6.6. Definíció.** Az $f : \mathbb{R} \to \mathbb{R}$ függvény *periodikus* a p periódussal, ha bármely $x \in D(f)$ esetén $x + p \in D(f)$, és f(x + p) = f(x).
- **1.6.7. Definíció.** Az $f : \mathbb{R} \to \mathbb{R}$ függvény *állandó (konstans)*, ha létezik $c \in \mathbb{R}$ úgy, hogy minden $x \in D(f)$ esetén f(x) = c.
- **1.6.8. Definíció.** Az $f: \mathbb{R} \to \mathbb{R}$ függvény *zérushelyén* olyan $a \in D(f)$ pontot értünk, ahol f(a) = 0. Ha f(a) = 0, azt is mondjuk, hogy f eltűnik az a helyen.

2. fejezet

Egyváltozós valós függvények határértéke és folytonossága

2.1. Konvergens sorozatok

2.1.1. Definíció. *Sorozatnak* olyan függvényt nevezünk, amelynek értelmezési tartománya \mathbb{N} . Valós sorozatnak \mathbb{N} -en definiált valós függvényt nevezünk. Ha $a:\mathbb{N}\to\mathbb{R}$ egy valós sorozat, akkor az a(n) számot a_n -nel szokás jelölni. Az a_n -et a sorozat n-edik tagjának mondjuk. Az $a:\mathbb{N}\to\mathbb{R}$ helyett az $\{a_n\}_{n=0}^\infty$ vagy $\{a_n\}$ jelölés használatos.

A továbbiakban csak valós sorozatokkal fogunk foglalkozni.

2.1.2. Definíció. Az $a \in \mathbb{R}$ számot az $\{a_n\}$ sorozat *határértékének (limeszének)* mondjuk, ha bármely $\epsilon > 0$ esetén létezik $n_0 \in \mathbb{N}$ úgy, hogy minden $n \geq n_0$ -ra $|a_n - a| < \epsilon$. Jelölés : $a_n \to a$ vagy $\lim_{n \to \infty} a_n = a$. A definícióban szereplő n_0 számot az ϵ *hibakorláthoz* tartozó *küszöbszámnak* nevezzük.

Az $a_n \to a \in \mathbb{R}$ feltétel geometriailag azt jelenti, hogy bármely $\epsilon > 0$ esetén az $\{a_n\}$ sorozat tagjai véges számú kivétellel benne vannak az x, y - sík $a - \epsilon < y < a + \epsilon$ sávjában.

- **2.1.3. Definíció.** Az $\{a_n\}$ sorozatot *konvergensnek* mondjuk, ha létezik $a \in \mathbb{R}$, úgy, hogy $a_n \rightarrow a$. Azokat a sorozatokat, amelyek nem konvergensek, *divergenseknek* nevezzük.
- **2.1.4. Tétel** (A határérték egyértelműsége). *Minden konvergens sorozatnak pontosan egy határértéke van.*
- 2.1.5. Példa. Legyen

$$a_n = \frac{n}{n+1}, \qquad n \in \mathbb{N}.$$

Ha a törtet $\frac{1}{n}$ -nel bővítjük, azt kapjuk, hogy

$$a_n = \frac{1}{1 + \frac{1}{n}}, \qquad n \in \mathbb{N}.$$

Ebből könnyű megsejteni, hogy $\lim_{n\to\infty}a_n=1$. Ezt igazolni fogjuk a definíció szerint is. Legyen $\epsilon>0$ adva. Ekkor az $|a_n-1|<\epsilon$ feltétel $(n\in\mathbb{N}$ esetén) ekvivalens (egyenértékű) az

$$\left| \frac{n}{n+1} - 1 \right| < \epsilon,$$

illetve

$$n \ge \frac{1}{\epsilon} - 1$$

egyenlőtlenséggel. Tehát bármely olyan $n_0 \in \mathbb{N}$, amelyre $n_0 > \frac{1}{\epsilon} - 1$ az ϵ hibakorlátnak megfelelő küszöbszám. Mivel $\epsilon > 0$ tetszőleges volt, ezért $a_n \to 1$.

2.1.6. Definíció. Ha $\{n_k\}_{k=0}^{\infty}$ természetes számok szigorúan monoton növekedő sorozata, akkor az $\{a_{n_k}\}_{k=0}^{\infty}$ sorozatot az $\{a_n\}_{n=0}^{\infty}$ sorozat *részsorozatának* nevezzük.

Az alábbi tulajdonság nyilvánvaló.

2.1.7. Tétel. Ha az $\{a_n\}_{n=0}^{\infty}$ sorozat konvergens, akkor $\{a_n\}_{n=0}^{\infty}$ bármely $\{a_{n_k}\}_{k=0}^{\infty}$ részsorozata is konvergens, és $\lim_{k\to\infty} a_{n_k} = \lim_{n\to\infty} a_n$.

A tételből következik, hogy az $a_n = (-1)^n$ sorozat divergens, hiszen

$$a_{2k} = 1 \to 1$$
, és $a_{2k+1} = -1 \to -1$.

Mivel a sorozatok speciális valós függvények, a korlátosságukat (alulról és felülről is) már definiáltuk.

2.1.8. Tétel (A konvergencia és korlátosság kapcsolata). *Minden konvergens sorozat korlátos*.

Az $a_n = (-1)^n$ sorozat példája mutatja, hogy a fordított állítás nem igaz. Közvetlenül a definícióból vezethető le a következő állítás.

2.1.9. Tétel. Ha $a_n \to 0$ és a $\{b_n\}$ sorozat korlátos, akkor $a_n b_n \to 0$.

A következő tétel azt mutatja, hogy konvergens sorozatokból az alapművelek alkalmazásával szintén konvergens sorozatokat kapunk.

- **2.1.10. Tétel** (Műveletek határértékekkel). $Ha\ a_n \to a \in \mathbb{R},\ b_n \to b \in \mathbb{R},\ akkor$
- (i) $a_n + b_n \rightarrow a + b$,
- (ii) $a_n b_n \to ab$,
- (iii) $b_n \neq 0$ minden $n \in \mathbb{N}$ -re és $b \neq 0$ további feltételek mellett $\frac{a_n}{b_n} \to \frac{a}{b}$.

A ≤ egyenlőtlenség két konvergens sorozat tagjai között "öröklődik" a határértékekre is.

2.1.11. Tétel (Határátmenet egyenlőtlenségekben). *Ha* $a_n \le b_n$ *véges számú kivétellel,* $a_n \to a \in \mathbb{R}$ *és* $b_n \to b \in \mathbb{R}$, *akkor* $a \le b$.

Az $a_n = 0$ és $b_n = \frac{1}{n}$ sorozatok példája mutatja, hogy az előző tételben a \leq egyenlőtlenség nem cserélhető ki <-re.

Az előző tulajdonsághoz kapcsolódik a következő:

2.1.12. Tétel (Rendőrelv). Ha $a_n \leq b_n \leq c_n$ véges számú kivétellel és valamely $h \in \mathbb{R}$ esetén

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = h,$$

akkor

$$\lim_{n\to\infty}b_n=h.$$

Nem minden korlátos sorozat konvergens. Viszont igaz a következő:

2.1.13. Tétel (Bolzano-Weierstrass-féle kiválasztási tétel). *Minden korlátos sorozatnak van konvergens részsorozata*.

Egy konvergens sorozat tagjai nagy *n*-ekre közel kerülnek a határértékhez, és ezért egymáshoz is. Meg lehet mutatni, hogy ez a tulajdonság egyben a konvergencia kritériuma is.

2.1.14. Tétel (Cauchy-féle konvergenciakritérium). Az $\{a_n\}$ sorozat akkor és csak akkor konvergens, ha bármely $\epsilon > 0$ esetén létezik $n_0 \in \mathbb{N}$ úgy, hogy minden $n \ge n_0$ és $m \ge n_0$ esetén $|a_n - a_m| < \epsilon$.

2.2. Végtelenhez tartó sorozatok

Most olyan sorozatokat fogunk vizsgálni, amelyek minden határon túl nőnek vagy csökkennek.

2.2.1. Definíció. Azt mondjuk, hogy az $\{a_n\}$ sorozat *tart a plusz végtelenhez (mínusz végtelenhez)*, ha bármely $c \in \mathbb{R}$ esetén létezik $n_0 \in \mathbb{N}$ úgy, hogy minden $n \ge n_0$ -ra $a_n > c$ $(a_n < c)$. Jelölés:

$$a_n \to \infty \quad (a_n \to -\infty), \qquad \text{illetve} \qquad \lim_{n \to \infty} a_n = \infty \quad (\lim_{n \to \infty} a_n = -\infty).$$

Az $a_n \to \infty$ $(a_n \to -\infty)$ feltétel geometriailag azt jelenti, hogy bármely $c \in \mathbb{R}$ esetén az $\{a_n\}$ sorozat tagjai véges számú kivétellel benne vannak az x, y-sík y > c (y < c) félsíkjában.

2.2.2. Példa. Megmutatjuk a definíció alapján, hogy $n^2 \to \infty$. Legyen $c \in \mathbb{R}$ adott. Ha c < 0, akkor az $n^2 > c$ egyenlőtlenség igaz minden $n \in \mathbb{N}$ -re, $c \ge 0$ esetén pedig éppen akkor teljesül, ha $n > \sqrt{c}$. Tehát c < 0 esetén bármely $n_0 \in \mathbb{N}$, $c \ge 0$ esetén pedig az $n_0 \in \mathbb{N}$, $n_0 > \sqrt{c}$ választás felel meg a definícióban előírt feltételnek.

A következő tulajdonság nyilvánvaló.

2.2.3. Tétel. Ha $a_n \to \infty$ $(a_n \to -\infty)$, akkor $\{a_n\}$ alulról (felülről) korlátos.

A $\pm \infty$ -be tartó sorozatokra érvényesek a következő szabályok.

2.2.4. Tétel (Műveletek végtelen határértékekkel).

- (i) Ha $a_n \to \infty$, akkor $-a_n \to -\infty$.
- (ii) Ha $a_n \to \infty$ és $\{b_n\}$ alulról korlátos, akkor $a_n + b_n \to \infty$.
- (iii) Ha $a_n \to \infty$ és van olyan c > 0 (d < 0), hogy $b_n \ge c$ ($b_n \le d$) véges számú kivétellel, akkor $a_n b_n \to \infty$ ($a_n b_n \to -\infty$).
- $akkor \ a_nb_n \to \infty \ (a_nb_n \to -\infty).$ (iv) Ha $a_n \to \infty$, $akkor \ \frac{1}{a_n} \to 0.$
- (v) Ha $a_n \to 0$ és $a_n > 0$ ($a_n < 0$) véges számú kivétellel, akkor $\frac{1}{a_n} \to \infty$ ($\frac{1}{a_n} \to -\infty$).

Az (i)–(iv)-hez hasonló állításokat meg lehet fogalmazni arra az esetre is, amikor $a_n \to -\infty$.

2.2.5. Tétel (Határátmenet egyenlőtlenségben). *Ha* $a_n \le b_n$ *véges számú kivétellel és* $a_n \to \infty$ $(b_n \to -\infty)$, *akkor* $b_n \to \infty$ $(a_n \to -\infty)$.

2.3. Monoton sorozatok

Az $\{a_n\}$ sorozat éppen akkor monoton növekedő (monoton csökkenő), ha minden $n \in \mathbb{N}$ -re $a_n \leq a_{n+1}$ ($a_n \geq a_{n+1}$), ha pedig a \leq (\geq) egyenlőtlenséget <-re (>-ra) cseréljük, akkor a szigorúan monoton növekedő (szigorúan monoton csökkenő) sorozat jellemzését kapjuk. Egy monoton sorozatnak mindig létezik (véges vagy végtelen) határértéke.

2.3.1. Tétel (Monoton sorozat határértéke). *Ha az* $\{a_n\}$ *sorozat monoton növekedő (monoton csökkenő) és felülről nem korlátos (alulról nem korlátos), akkor* $a_n \to \infty$ $(a_n \to -\infty)$. *Ha az* $\{a_n\}$ *sorozat monoton növekedő (monoton csökkenő) és felülről korlátos (alulról korlátos), akkor* $a_n \to \sup A$ $(a_n \to \inf A)$, ahol $A = \{a_n \mid n \in \mathbb{N}\}$. *Speciálisan, minden monoton és korlátos sorozat konvergens.*

2.3.2. Példa. Legyen $a_0 = \sqrt{2}$ és

$$a_{n+1} = \sqrt{2 + a_n}, \qquad n \in \mathbb{N}.$$

Teljes indukcióval bizonyítható, hogy $\{a_n\}$ monoton növekedő és minden $n \in \mathbb{N}$ -re $\sqrt{2} \le a_n \le 2$. Az előző tétel szerint $a_n \to a$ valamely $a \in \mathbb{R}$ -re. Elvégezve a határátmenetet az egyenletben és az utóbbi egyenlőtlenségben, azt kapjuk, hogy

$$a = \sqrt{2+a}$$
 és $\sqrt{2} \le a \le 2$.

Innen $a^2 = 2 + a$, tehát a = -1 vagy a = 2. Mivel a $\sqrt{2} \le a \le 2$ feltételnek csak a = 2 felel meg, ezért a = 2.

2.4. Speciális sorozatok

Ismertetünk néhány fontos sorozatot és azok konvergenciatulajdonságait.

2.4.1. Tétel (A $\{q^n\}$ geometriai sorozat). Ha q > 1, akkor $q^n \to \infty$. Ha q = 1, akkor $q^n = 1 \to 1$. Ha $q \in (-1,1)$, akkor $q^n \to 0$. Ha pedig $q \le -1$, akkor a $\{q^n\}_{n=0}^{\infty}$ sorozatnak sem véges, sem végtelen határértéke nem létezik.

2.4.2. Példa.

$$\frac{2^n + 3^n}{4^n + 5^n} = \frac{\left(\frac{2}{5}\right)^n + \left(\frac{3}{5}\right)^n}{\left(\frac{4}{5}\right)^n + 1} \longrightarrow 0,$$

miközben felhasználtuk a geometriai sorozat konvergenciatulajdonságait.

- **2.4.3. Tétel** (Az $\{\sqrt[n]{a}\}$ sorozat). Bármely a > 0 esetén $\sqrt[n]{a} \to 1$.
- **2.4.4. Tétel** (Az $\{\sqrt[n]{n}\}$ sorozat). $\sqrt[n]{n} \to 1$.
- 2.4.5. Példa.

$$\lim_{n\to\infty} \sqrt[n]{2n+1} = 1,$$

mert minden $n \in \mathbb{N}^+$ -ra

$$\sqrt[n]{2}\sqrt[n]{n} = \sqrt[n]{2n} \le \sqrt[n]{2n+1} \le \sqrt[n]{3n} = \sqrt[n]{3}\sqrt[n]{n},$$

és

$$\lim_{n\to\infty} \left(\sqrt[n]{2}\sqrt[n]{n}\right) = \lim_{n\to\infty} \left(\sqrt[n]{3}\sqrt[n]{n}\right) = 1.$$

- **2.4.6. Tétel** (Az $\{(1+\frac{1}{n})^n\}$ sorozat). Az $\{(1+\frac{1}{n})^n\}$ sorozat monoton növekedő és korlátos, ezért konvergens is.
- 2.4.7. Definíció. Az

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

határértéket Euler-féle számnak nevezzük. Közelítő értéke:

$$e \approx 2.7$$
.

2.5. A bővített számegyenes

2.5.1. Definíció. Az

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$$

halmazt *bővített számegyenesnek* nevezzük.

A valós számok < rendezési relációját kiterjesztjük $\overline{\mathbb{R}}$ -ra a következőképpen: minden $a \in \mathbb{R}$ esetén

$$-\infty < a$$
, és $a < \infty$.

valamint

$$-\infty < \infty$$
.

A $\pm \infty$ szimbólumokkal a következő műveleteket definiáljuk:

$$-(\pm\infty) = \mp\infty;$$

$$+\infty + a = a + (+\infty) = +\infty,$$
 ha $a > -\infty,$
 $-\infty + a = a + (-\infty) = -\infty,$ ha $a < +\infty;$

$$(\pm \infty) \cdot a = a \cdot (\pm \infty) = \pm \infty,$$
 ha $a > 0$,
 $(\pm \infty) \cdot a = a \cdot (\pm \infty) = \pm \infty,$ ha $a < 0$;

$$\frac{a}{+\infty} = 0,$$
 ha $a \in \mathbb{R}$.

Hangsúlyozzuk, hogy a

$$\begin{array}{ccc}
+\infty - \infty, & -\infty + \infty, \\
(\pm \infty) \cdot 0, & 0 \cdot (\pm \infty) \\
\frac{\pm \infty}{\pm \infty}, & \frac{\pm \infty}{\mp \infty}, & \frac{a}{0} & (a \in \overline{\mathbb{R}})
\end{array}$$

műveleteket nem értelmezzük.

Az előző definíciókat azért vezettük be, hogy a határértékszámítás szabályait egységesen fogalmazhassuk meg.

2.5.2. Tétel (Műveletek határértékekkel). $Ha\ a_n \to a \in \overline{\mathbb{R}}\ \acute{e}s\ b_n \to b \in \overline{\mathbb{R}},\ akkor$

(i)
$$a_n + b_n \rightarrow a + b$$
,

(ii)
$$a_n b_n \to ab$$

(ii)
$$a_n b_n \to ab$$
,
(iii) $\frac{a_n}{b_n} \to \frac{a}{b}$,

feltéve, hogy a jobb oldalon szereplő művelet értelmezve van a bővített számegyenesen.

2.6. Környezetek és pontozott környezetek

2.6.1. Definíció. Egy $a \in \mathbb{R}$ pont (ϵ -sugarú) környezetén

$$K_{\epsilon}(a) = \{x \in \mathbb{R} \mid |x - a| < \epsilon \} = (a - \epsilon, a + \epsilon)$$

alakú halmazt (intervallumot) értünk, ahol $\epsilon \in (0, \infty)$.

Az $a \in \mathbb{R}$ pont (ϵ -sugarú) pontozott környezetén

$$P_{\epsilon}(a) = K_{\epsilon}(a) \setminus \{a\} = (a - \epsilon, a) \cup (a, a + \epsilon)$$

alakú halmazt értünk, ahol $\epsilon \in (0, \infty)$.

 $K_{\epsilon}(a)$ azon $x \in \mathbb{R}$ pontok halmaza, amelyekre $|x-a| < \epsilon$, azaz a-tól való távolságuk kisebb, mint ϵ . Hasonlóképpen, $P_{\epsilon}(a)$ azon a-tól különböző $x \in \mathbb{R}$ pontok halmaza, amelyeknek a-tól való távolsága kisebb, mint ϵ .

A jobb oldali és bal oldali környezeteket hasonlóképpen definiáljuk.

2.6.2. Definíció. Az $a \in \mathbb{R}$ pont $(\epsilon$ -sugarú) jobb oldali (bal oldali) környezetén

$$K_{\epsilon}^+(a) = [a, a + \epsilon) \qquad (K_{\epsilon}^-(a) = (a - \epsilon, a])$$

alakú intervallumot értünk, ahol $\epsilon \in (0, \infty)$.

Az $a \in \mathbb{R}$ pont $(\epsilon$ -sugarú) jobb oldali (bal oldali) pontozott környezetén

$$P_{\epsilon}^+(a) = (a, a+\epsilon) \qquad (P_{\epsilon}^-(a) = (a-\epsilon, a))$$

alakú intervallumot értünk, ahol $\epsilon \in (0, \infty)$.

Most a $+\infty$ és $-\infty$ környezeteit és pontozott környezeteit definiáljuk.

2.6.3. Definíció. A + ∞ *környezetén és egyúttal pontozott környezetén* (c, ∞) alakú intervallumot értünk, ahol $c \in \mathbb{R}$.

A $-\infty$ környezetén és egyúttal pontozott környezetén $(-\infty, c)$ alakú intervallumot értünk, ahol $c \in \mathbb{R}$.

2.7. A függvény határértéke

2.7.1. Definíció. A $b \in \mathbb{R}$ számot az $f : \mathbb{R} \to \mathbb{R}$ függvény *határértékének* mondjuk az $a \in \mathbb{R}$ pontban, ha f értelmezve van a valamely pontozott környezetében és bármely olyan $\{x_n\}_{n=0}^{\infty}$ sorozatra, amelyre $x_n \in D(f)$, $x_n \neq a$ minden $n \in \mathbb{N}$ -re, és $x_n \to a$, a függvényértékek $\{f(x_n)\}_{n=0}^{\infty}$ sorozata b-hez tart. Jelölés: $f(x) \to b$, ha $x \to a$ vagy $\lim_{x \to a} f(x) = b$.

Hasonlóan definiáljuk a jobb oldali és bal oldali határértékeket is.

2.7.2. Definíció. A $b \in \mathbb{R}$ számot az $f : \mathbb{R} \to \mathbb{R}$ függvény *jobb oldali (bal oldali) határértékének* mondjuk az $a \in [-\infty, \infty)$ $(a \in (-\infty, \infty])$ pontban, ha f értelmezve van a valamely jobb oldali (bal oldali) pontozott környezetében és bármely olyan $\{x_n\}_{n=0}^{\infty}$ sorozatra, amelyre $x_n \in D(f)$, $x_n > a$ $(x_n < a)$ minden $n \in \mathbb{N}$ -re, és $x_n \to a$, a függvényértékek $\{f(x_n)\}_{n=0}^{\infty}$ sorozata b-hez tart. Jelölés: $f(x) \to b$, ha $x \to a + (f(x) \to b)$, ha $x \to a - (f(x) \to b)$ vagy $\lim_{x \to a + (f(x) \to b)} f(x) = b$ $\lim_{x \to a - (f(x) \to b)} f(x) = \lim_{x \to a - (f(x) \to b)} f(x) = \lim_{x \to a - (f(x) \to b)} f(x) = \lim_{x \to a - (f(x) \to b)} f(x) = \lim_{x \to a - (f(x) \to b)} f(x) = \lim_{x \to a - (f(x) \to b)} f(x) = \lim_{x \to a - (f(x) \to b)} f(x) = \lim_{x \to a -(f(x) \to b)} f(x) = \lim_{x \to a -(f(x)$

Nyilvánvaló, hogy $a=-\infty$ ($a=+\infty$) esetén a határérték és a jobb oldali (bal oldali) határérték fogalma megegyezik.

A határérték és a féloldali határértékek között a következő a kapcsolat.

2.7.3. Tétel. Legyen $a \in \overline{\mathbb{R}}$. $A \lim_{x \to a} f(x)$ határérték pontosan akkor létezik, ha $\lim_{x \to a^+} f(x)$ és $\lim_{x \to a^-} f(x)$ létezik, és

$$\lim_{x \to a-} f(x) = \lim_{x \to a+} f(x).$$

A határértéket definiálhattuk volna a környezetek és pontozott környezetek segítségével is. Ugyanis igaz a következő állítás.

2.7.4. Tétel. $Az \ f : \mathbb{R} \to \mathbb{R}$ függvény határértéke az $a \in \overline{\mathbb{R}}$ pontban egyenlő a $b \in \overline{\mathbb{R}}$ számmal pontosan akkor, ha b bármely K környezetéhez létezik az a számnak olyan P pontozott kör*nyezete, amelyre* $f(P) \subset K$.

Hasonlóképpen fogalmazhatjuk át a jobb oldali és bal oldali határérték definícióját is. A definícióból és a sorozatokra vontakozó eredményekből következik:

2.7.5. Tétel (A határértékszámítás szabályai). Legyen $a \in \mathbb{R}$. (i) Ekkor

$$\begin{split} \lim_{x \to a} (f(x) + g(x)) &= \lim_{x \to a} f(x) + \lim_{x \to a} g(x), \\ \lim_{x \to a} (f(x) \cdot g(x)) &= \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x), \\ \lim_{x \to a} \frac{f(x)}{g(x)} &= \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \end{split}$$

feltéve, hogy $\lim_{x\to a} f(x)$ és $\lim_{x\to a} g(x)$ létezik, és a jobb oldalon szereplő művelet értelmezve van $\overline{\mathbb{R}}$ -ban.

- (ii) Ha $\lim_{x \to a} f(x) = 0$ és g korlátos a valamely pontozott környezetében, akkor $\lim_{x \to a} (f(x) \cdot g(x)) = 0.$
- (iii) Ha $\lim_{x \to a} f(x) = 0$ és f > 0 a valamely pontozott környezetében, akkor $\lim_{x \to a} \frac{1}{f(x)} = +\infty$. (iv) Ha $\lim_{x \to a} f(x) = 0$ és f < 0 a valamely pontozott környezetében, akkor $\lim_{x \to a} \frac{1}{f(x)} = -\infty$.
- (v) Ha $\lim_{x \to a} f(x)$, $\lim_{x \to a} g(x)$ létezik és $f \le g$ a valamely pontozott környezetében, akkor $\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$.
- (vi) (rendőrelv) Ha $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = b \in \overline{\mathbb{R}}$ és $f \le g \le h$ az a pont valamely pontozott környezetében, akkor $\lim_{x \to a} g(x) = b$.

Hasonló állításokat lehet megfogalmazni jobb oldali és bal oldali határértékekre is. Most következzen két további fontos állítás.

2.7.6. Tétel (Az összetett függvény határértéke). Legyen $a \in \mathbb{R}$. Ha

$$\lim_{x \to a} g(x) = b \in \overline{\mathbb{R}}, \qquad \lim_{x \to b} f(x) = c \in \overline{\mathbb{R}},$$

és $g(x) \neq b$ minden x-re az a pont valamely pontozott környezetéből, akkor

$$\lim_{x \to a} f(g(x)) = c.$$

2.7.7. Tétel (Monoton függvény határértéke). Legyen $-\infty \le a < b \le +\infty$. Ha f monoton (a,b)-ben, akkor $\lim_{x\to a^+} f(x)$ és $\lim_{x\to b^-} f(x)$ létezik. Ha f monoton növekedő (a,b)-ben, akkor

$$\lim_{x \to a^{+}} f(x) = \inf f((a, b)), \qquad \lim_{x \to b^{-}} f(x) = \sup f((a, b)),$$

ha pedig f monoton csökkenő (a, b)-ben, akkor

$$\lim_{x \to a^{+}} f(x) = \sup f((a, b)), \qquad \lim_{x \to b^{-}} f(x) = \inf f((a, b)),$$

ahol $f((a,b)) = \{f(x) \mid x \in (a,b)\}.$

2.8. Folytonosság

2.8.1. Definíció. Az $f: \mathbb{R} \to \mathbb{R}$ függvényt *folytonosnak* mondjuk az $a \in D(f)$ helyen, ha

$$\lim_{x \to a} f(x) = f(a).$$

Az $f: \mathbb{R} \to \mathbb{R}$ függvény jobbról (balról) folytonos az $a \in D(f)$ helyen, ha

$$\lim_{x \to a^+} f(x) = f(a) \qquad \left(\lim_{x \to a^-} f(x) = f(a)\right).$$

Nyilvánvaló, hogy az $f : \mathbb{R} \to \mathbb{R}$ függvény pontosan akkor folytonos az a helyen, ha itt jobbról és balról is folytonos.

Ha figyelembe vesszük, hogy a határérték definícója átfogalmazható környezetek segítségével, akkor a folytonosság következő ekvivalens megfogalmazását kapjuk.

2.8.2. Tétel. Az $f : \mathbb{R} \to \mathbb{R}$ függvény pontosan akkor folytonos az $a \in D(f)$ helyen, ha f értelmezve van a valamely környezetében és bármely $\epsilon > 0$ esetén létezik $\delta > 0$ úgy, hogy minden $x \in D(f)$, $|x-a| < \delta$ esetén $|f(x) - f(a)| < \epsilon$.

Ha f nem folytonos az a helyen, azt is mondjuk, hogy f-nek itt szakadása van. A definícióból és a határértékszámítás szabályaiból következnek az alábbi tulajdonságok.

- **2.8.3. Tétel** (Műveletek folytonos függvényekkel). Ha f és g folytonosak az a helyen, akkor (i) ugyanilyen f + g is,
- (ii) ugyanilyen fg is,
- (iii) $g(a) \neq 0$ további feltétel mellett ugyanilyen $\frac{f}{g}$ is.

Ha g folytonos az a helyen és f folytonos a g(a) helyen, akkor $f \circ g$ folytonos az a helyen.

Most egy függvény intervallumon való folytonosságát definiáljuk.

2.8.4. Definíció. Legyen $I \subset \mathbb{R}$ intervallum a és b végpontokkal, ahol

$$-\infty < a < b < +\infty$$
.

Az f függvényt folytonosnak nevezzük az I intervallumon, ha f folytonos minden $c \in (a,b)$ pontban, továbbá $a \in I$ esetén a-ban jobbról folytonos, $b \in I$ esetén pedig b-ben balról folytonos.

2.8.5. Tétel (Műveletek intervallumon folytonos függvényekkel). *Ha f és g folytonosak az* $I \subset \mathbb{R}$ *intervallumon, akkor*

- (i) ugyanilyen f + g is,
- (ii) ugyanilyen fg is,
- (iii) ha g sehol sem tűnik el I-ben, akkor ugyanilyen $\frac{f}{g}$ is.

Most a korlátos, zárt intervallumon folytonos függvények fontosabb tulajdonságait ismertetjük.

2.8.6. Tétel (Weierstrass tétele). *Ha az f függvény folytonos az* $[a, b] \subset \mathbb{R}$ *intervallumon, akkor az* [a, b]-hez tartozó függvényértékek között mindig van legnagyobb és legkisebb is.

A feltételek fontosságát illusztrálja a következő két példa.

2.8.7. Példa. Az

$$f(x) = \frac{1}{x}, \qquad x \in (0,1]$$

függvény folytonos a (0,1] intervallumon. Ugyanakkor

$$\lim_{x \to 0+} f(x) = \infty,$$

ezért a (0,1] intervallumhoz tartozó függvényértékek között nincs legnagyobb. Tehát Weierstrass tételében lényeges, hogy zárt intervallumról van szó.

2.8.8. Példa. Legyen

$$f(x) = \begin{cases} \frac{1}{x}, & \text{ha } x \in (0,1] \\ 0, & \text{ha } x = 0 \end{cases}.$$

Annak ellenére, hogy f csak 0-ban nem folytonos (jobbról), a függvényértékek között nincs legnagyobb.

2.8.9. Tétel (Bolzano-féle közbülsőérték-tétel). Ha f folytonos az $[a,b] \subset \mathbb{R}$ intervallumon, akkor bármely f(a) és f(b) közé eső d szám esetén van olyan $c \in [a,b]$, amelyre f(c) = d.

Bolzano tételének két fontos következménye:

- **2.8.10. Tétel.** Ha f folytonos az $[a, b] \subset \mathbb{R}$ intervallumon és f(a) f(b) < 0, akkor létezik $c \in (a, b)$ úgy, hogy f(c) = 0.
- **2.8.11. Tétel.** Ha az f függvény folytonos és nem állandó az $I \subset \mathbb{R}$ intervallumon, akkor f(I) intervallum.

A következő két állítás az összetett és inverz függvény folytonosságáról szól.

- **2.8.12. Tétel** (Az összetett függvény folytonossága). *Ha g folytonos és nem állandó az I* $\subset \mathbb{R}$ *intervallumon és f folytonos a J* = g(I) *intervallumon, akkor f* \circ *g folytonos az I intervallumon.*
- **2.8.13. Tétel** (Az inverz függvény folytonossága). Ha f szigorúan monoton és folytonos az $I \subset \mathbb{R}$ intervallumon, akkor f invertálható az I intervallumon és f_{-1} folytonos a J = f(I) intervallumon.

2.9. Az elemi alapfüggvények

Az alábbiakban felsorolunk néhány elemi alapfüggvényt és azok fontosabb tulajdonságait.

Identikus függvény (id). Az

$$id(x) = x, \qquad x \in \mathbb{R},$$

képlettel definiált *identikus függvény* folytonos és szigorúan monoton növekedő a $(-\infty,\infty)$ -n.

Pozitív kitevőjű hatványfüggvények (idⁿ, $n \in \mathbb{N}^+$). Bármely $n \in \mathbb{N}^+$ esetén az

$$id^n(x) = x^n, \qquad x \in \mathbb{R},$$

képlettel definiált n-edik hatványfüggvény folytonos a $(-\infty, \infty)$ -n; páratlan n esetén a $(-\infty, \infty)$ -n szigorúan monoton növekedő, ha pedig n páros, akkor a $(-\infty, 0]$ -n szigorúan monoton csökkenő és a $[0, \infty)$ -n szigorúan monoton növekedő. Ha n páros (páratlan), akkor az id n függvény is páros (páratlan).

Negatív kitevőjű hatványfüggvények ((id $^{-n}$, $n \in \mathbb{N}^+$). Bármely $n \in \mathbb{N}^+$ esetén az

$$id^{-n}(x) = x^{-n} = \frac{1}{x^n}, \qquad x \in \mathbb{R} \setminus \{0\}$$

képlettel definiált id $^n: \mathbb{R} \setminus \{0\}: \to \mathbb{R}$ hatványfüggvény folytonos a $(-\infty,0)$ és $(0,\infty)$ intervallumon; a $(0,\infty)$ -n szigorúan monoton csökkenő, továbbá páros vagy páratlan attól függően, hogy n páros vagy páratlan.

Gyökfüggvények (id $^{\frac{1}{n}}$, $n \in \mathbb{N}^+$). Bármely $n \in \mathbb{N}^+$ esetén az n-edik gyökfüggvényt, jele id $^{\frac{1}{n}}$, az

$$id^{\frac{1}{n}} = \begin{cases} (id^n)_{-1} & \text{ha } n \text{ páratlan} \\ (id^n)|_{[0,\infty)} \end{pmatrix}_{-1} & \text{ha } n \text{ páros} \end{cases}$$

képlettel definiáljuk. Jelölés:

$$\operatorname{id}^{\frac{1}{n}}(x) = \sqrt[n]{x}, \qquad x \in \begin{cases} (-\infty, \infty) & \text{ha } n \text{ p\'aratlan} \\ [0, \infty) & \text{ha } n \text{ p\'aros} \end{cases}$$

Az id $^{\frac{1}{n}}$ függvény folytonos és szigorúan monoton növekedő a $[0,\infty)$ -n, illetve a $(-\infty,\infty)$ -n attól függően, hogy n páros vagy páratlan.

Polinomok. Legyen $n \in \mathbb{N}$ és $a_0, a_1, \ldots, a_n \in \mathbb{R}$ adottak. A

$$p(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n, \qquad x \in \mathbb{R},$$

képlettel definiált $p: \mathbb{R} \to \mathbb{R}$ függvényt *n-edfokú polinomnak* nevezzük; az a_0 szám a p polinom *főegyütthatója*. A p polinom folytonos a $(-\infty, \infty)$ -n.

Természetes logaritmusfüggvény (ln). Meg lehet mutatni, hogy létezik egy valós függvény, jele ln, a következő tulajdonságokkal:

$$D(\ln) = (0, \infty),$$

$$\ln(xy) = \ln x + \ln y, \quad \text{ha } x, y \in (0, \infty),$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1.$$

Ezek a tulajdonságok az ln függvényt egyértelműen meghatározzák. Az ln függvényt $termé-szetes\ logaritmusfüggvénynek\ nevezzük.$ Az ln függvény szigorúan monoton növekedő és folytonos a $(0,\infty)$ -n, továbbá

$$\ln 1 = 0, \qquad \ln e = 1,$$

$$\ln x^n = n \ln x, \qquad \text{ha } x \in (0, \infty) \text{ és } n \in \mathbb{N},$$

$$\lim_{x \to 0^+} \ln x = -\infty, \qquad \lim_{x \to \infty} \ln x = \infty.$$

Exponenciális függvény (exp). Az exponenciális függvényt, jele exp, az

$$\exp = (\ln)_{-1}$$

képlettel definiáljuk. Az exp: $(-\infty, \infty) \to (0, \infty)$ függvény pozitív, szigorúan monoton növekedő és folytonos a $(-\infty, \infty)$ -n. További fontosabb tulajdonságai:

$$\exp 0 = 1, \qquad \exp 1 = e,$$

$$\exp(x+y) = \exp x \exp y, \qquad \text{ha } x, y \in \mathbb{R},$$

$$\lim_{x \to -\infty} \exp x = 0, \qquad \lim_{x \to \infty} \exp x = \infty,$$

$$\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = \exp x,$$

$$\lim_{x \to 0} \frac{\exp x - 1}{x} = 1.$$

Az exp és ln függvények segítségével definiálhatjuk egy pozitív szám tetszőleges hatványát.

2.9.1. Definíció. Bármely $a \in (0, \infty)$ és $b \in \mathbb{R}$ esetén

$$a^b = \exp(b \ln a).$$

Mivel $\ln e = 1$, ezért a definíció szerint

$$e^x = \exp x, \qquad x \in \mathbb{R}.$$

Általános alapú exponenciális függvény $(\exp_a, a>0, a\neq 1)$. Bármely $a\in (0,1)\cup (1,\infty)$ esetén az

$$\exp_a x = a^x = \exp(x \ln a), \qquad x \in \mathbb{R},$$

képlettel definiált $\exp_a:(-\infty,\infty)\to(0,\infty)$ függvényt a alapú exponenciális függvénynek nevezzük. Az \exp_a függvény pozitív, folytonos, $a\in(0,1)$ esetén szigorúan monoton csökkenő, $a\in(1,\infty)$ esetén pedig szigorúan monoton növekedő. További fontosabb tulajdonságai:

$$a^0=1,$$

$$a^{x+y}=a^xa^y, \qquad \text{ha } x,\,y\in\mathbb{R},$$

$$\left(a^x\right)^y=a^{xy}, \qquad \text{ha } x,\,y\in\mathbb{R},$$

$$\text{ha } a\in(0,1), \qquad \text{akkor } \lim_{x\to-\infty}a^x=\infty \text{ \'es } \lim_{x\to\infty}a^x=0.$$

$$\text{ha } a\in(1,\infty), \qquad \text{akkor } \lim_{x\to-\infty}a^x=0 \text{ \'es } \lim_{x\to\infty}a^x=\infty.$$

Általános alapú logaritmusfüggvény $(\log_a, a > 0, a \neq 1)$. Bármely $a \in (0,1) \cup (1,\infty)$ esetén a \log_a -val jelölt a alapú logaritmusfüggvény definíciója:

$$\log_a = (\exp_a)_{-1}.$$

A $\log_a:(0,\infty)\to\mathbb{R}$ függvény folytonos, $a\in(0,1)$ esetén szigorúan monoton csökkenő, $a\in(1,\infty)$ esetén pedig szigorúan monoton növekedő. Fontosabb tulajdonságai:

$$\begin{split} \log_a 1 &= 0, \\ \log_a (a^x) &= x, & \text{ha } x \in \mathbb{R}, \\ a^{\log_a x} &= x, & \text{ha } x \in (0, \infty), \\ \log_a (xy) &= \log_a x + \log_a y, & \text{ha } x, y \in (0, \infty), \\ \log_a (x^y) &= y \log_a x, & \text{ha } x \in (0, \infty) \text{ \'es } y \in \mathbb{R}; \\ \log_a x &= \frac{\ln x}{\ln a}, & \text{ha } x \in (0, \infty), \\ \text{ha } a \in (0, 1), & \text{akkor } \lim_{x \to 0^+} \log_a x = \infty \text{ \'es } \lim_{x \to \infty} \log_a x = -\infty, \\ \text{ha } a \in (1, \infty), & \text{akkor } \lim_{x \to 0^+} \log_a x = -\infty \text{ \'es } \lim_{x \to \infty} \log_a x = \infty. \end{split}$$

Általános kitevőjű hatványfüggvény (id b , $b \in \mathbb{R}$). Bármely $b \in \mathbb{R}$ esetén az

$$id^b(x) = x^b = \exp(b \ln x), \qquad x \in (0, \infty),$$

képlettel definiált $\mathrm{id}^b:(0,\infty)$ függvény folytonos a $(0,\infty)$ -n. Ha $b\in(0,\infty)$, akkor szigorúan monoton növekedő, ha pedig $b\in(-\infty,0)$, akkor szigorúan monoton csökkenő. További tulajdonságok:

$$x^{-b} = \frac{1}{x^b}, \qquad \text{ha } x \in (0, \infty) \text{ \'es } b \in \mathbb{R},$$

$$x^{b+c} = x^b x^c, \qquad \text{ha } x \in (0, \infty) \text{ \'es } b, c \in \mathbb{R},$$

$$(x^b)^c = x^{bc}, \qquad \text{ha } x \in (0, \infty) \text{ \'es } b, c \in \mathbb{R},$$

$$\begin{aligned} &\text{ha } b \in (0, \infty), & \text{akkor } \lim_{x \to 0^+} x^b = 0 \text{ \'es } \lim_{x \to \infty} x^b = \infty. \\ &\text{ha } b \in (-\infty, 0), & \text{akkor } \lim_{x \to 0^+} x^b = \infty \text{ \'es } \lim_{x \to \infty} x^b = 0. \end{aligned}$$

A harmadik tulajdonság szerint ha $x \in (0, \infty)$ és $n \in \mathbb{N}^+$, akkor

$$\left(x^{\frac{1}{n}}\right)^n = x.$$

Tehát

$$x^{\frac{1}{n}} = \sqrt[n]{x}$$
, ha $x \in (0, \infty)$ és $n \in \mathbb{N}^+$.

Trigonometrikus függvények (sin, cos, tg, ctg). Az x, y-sík 1 sugarú körvonalának minden P pontja azonosítható azzal a radiánban mért $x \in [0,2\pi)$ szöggel, amelyet az OP szakasz (O==(0,0)) bezár az x-tengely pozitív irányával. A $[0,2\pi)$ -n úgy definiáljuk a sin és cos (szinusz és koszinusz) függvényeket, hogy az $x \in [0,2\pi)$ szöggel azonosított P pont koordinátái : $P==(\cos x, \sin x)$. Ezután mindkét függvényt kiterjesztjük a $(-\infty, \infty)$ -re a

$$\sin(x+2k\pi) = \sin x$$
, $\cos(x+2k\pi) = \cos x$, $x \in [0,2\pi)$, $k \in \mathbb{Z}$,

képlettel. Ekkor $D(\sin) = D(\cos) = (-\infty, \infty)$, $R(\sin) = R(\cos) = [-1,1]$. Mindkét függvény periodikus 2π periódussal és folytonos a $(-\infty, \infty)$ -n. A sin függvény szigorúan monoton növekedő a $[-\pi/2, \pi/2]$ -n és szigorúan monoton csökkenő a $[\pi/2, 3\pi/2]$ -n. A cos függvény szigorúan monoton csökkenő a $[0, \pi]$ -n és szigorúan monoton növekedő a $[\pi, 2\pi]$ -n. További fontosabb tulajdonságok :

$$\begin{split} \sin 0 &= 0, \quad \sin \frac{\pi}{6} = \frac{1}{2}, \quad \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}, \quad \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}, \quad \sin \frac{\pi}{2} = 1, \quad \sin \pi = 0, \\ \cos 0 &= 1, \quad \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}, \quad \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}, \quad \cos \frac{\pi}{3} = \frac{1}{2}, \quad \cos \frac{\pi}{2} = 0, \quad \cos \pi = -1, \\ \sin (-x) &= -\sin x, \quad \cos (-x) = \cos x, \quad x \in \mathbb{R}, \\ \sin^2 x + \cos^2 x &= 1, \quad x \in \mathbb{R}, \\ \sin(x+y) &= \sin x \cos y + \cos x \sin y, \quad x, \quad y \in \mathbb{R}, \\ \cos(x+y) &= \cos x \cos y - \sin x \sin y, \quad x, \quad y \in \mathbb{R}, \\ \sin(2x) &= 2 \sin x \cos x, \quad \cos(2x) = \cos^2 x - \sin^2 x, \quad x \in \mathbb{R}, \\ \sin^2 x &= \frac{1 - \cos(2x)}{2}, \quad \cos^2 x &= \frac{1 + \cos(2x)}{2}, \quad x \in \mathbb{R}, \\ \sin x - \sin y &= 2 \sin \frac{x-y}{2} \cos \frac{x+y}{2}, \quad x, \quad y \in \mathbb{R}, \\ \cos x - \cos y &= -2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}, \quad x, \quad y \in \mathbb{R}, \\ \lim_{x \to 0} \frac{\sin x}{x} &= 1. \end{split}$$

A tg (tangens) és ctg (kotangens) függvényeket a

$$\operatorname{tg} x = \frac{\sin x}{\cos x}, \quad \operatorname{ha} x \in \mathbb{R} \setminus \{\pi/2 + k\pi \mid k \in \mathbb{Z}\},$$

illetve

$$\operatorname{ctg} x = \frac{\cos x}{\sin x}, \quad \text{ha } x \in \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\},$$

képletekkel értelmezzük. Tehát

$$D(\mathsf{tg}) = \mathbb{R} \setminus \{\pi/2 + k\pi \mid k \in \mathbb{Z}\}, \qquad D(\mathsf{ctg}) = \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}.$$

Megjegyezzük, hogy az angol nyelvű irodalomban a tan és cot jelölés használatos tg és ctg helyett. Mindkét függvény periodikus π periódussal, továbbá mindkét függvény folytonos az értelmezési tartományának részintervallumain. A tg függvény szigorúan monoton növekedő a $(-\pi/2, \pi/2)$ intervallumon, tg 0 = 0, és

$$\lim_{x \to -\frac{\pi}{2}^+} \operatorname{tg} x = -\infty, \qquad \lim_{x \to \frac{\pi}{2}^-} \operatorname{tg} x = +\infty.$$

A ctg függvény szigorúan monoton csökkenő a $(0, \pi)$ -n, ctg $\frac{\pi}{2}$ = 0, és

$$\lim_{x \to 0^+} \operatorname{ctg} x = +\infty, \qquad \lim_{x \to \pi^-} \operatorname{ctg} x = -\infty.$$

Arkuszfüggvények (arcsin, arccos, arctg, arcctg). Az arkusz szó latin eredetű, jelentése: ív. Az arkuszszinusz-, arkuszkoszinusz-, arkusztangens-, és arkuszkotangens-függvényeket a következőképpen definiáljuk:

$$\begin{aligned} &\arcsin = \left(\sin |_{[-\pi/2,\pi/2]}\right)_{-1} \\ &\arccos = \left(\cos |_{[0,\pi]}\right)_{-1} \\ &\arctan = \left(\operatorname{tg} |_{(-\pi/2,\pi/2)}\right)_{-1} \\ &\operatorname{arcctg} = \left(\operatorname{ctg} |_{(0,\pi)}\right)_{-1} \end{aligned}$$

Az arcsin : $[-1,1] \rightarrow [-\pi/2,\pi/2]$ páratlan, folytonos és szigorúan monoton növekedő a [-1,1]-n, továbbá

$$\arcsin(-1) = -\frac{\pi}{2}$$
, $\arcsin 0 = 0$, $\arcsin 1 = \frac{\pi}{2}$.

Az arccos : $[-1,1] \rightarrow [0,\pi]$ folytonos és szigorúan monoton csökkenő a [-1,1]-n, továbbá

$$\arccos(-1) = \pi$$
, $\arccos 0 = \frac{\pi}{2}$, $\arccos 1 = 0$.

Az arctg : $(-\infty, \infty) \to (-\pi/2, \pi/2)$ páratlan, folytonos és szigorúan monoton növekedő a $(-\infty, \infty)$ -n, arctg 0 = 0, valamint

$$\lim_{x \to -\infty} \arctan x = -\frac{\pi}{2}, \qquad \lim_{x \to \infty} \arctan x = \frac{\pi}{2}.$$

Az arcctg : $(-\infty, \infty) \to (0, \pi)$ folytonos és szigorúan monoton csökkenő a $(-\infty, \infty)$ intervallumon, arcctg $0 = \pi/2$, továbbá

Az arkuszfüggvények grafikonjai:

2.1. ábra.

2.3. ábra.

2.4. ábra.

3. fejezet

Egyváltozós valós függvények differenciálszámítása

3.1. A differenciálhatóság fogalma

3.1.1. Definíció. Legyen $f: \mathbb{R} \to \mathbb{R}$ értelmezve az $a \in D(f)$ pont valamely környezetében, és legyen $x \in D(f) \setminus \{a\}$. Az

$$\frac{f(x) - f(a)}{x - a}$$

hányadost az f függvény a és x helyekhez tartozó különbségi hányadosának nevezzük.

Az a és x helyekhez tartozó különbségi hányados az f grafikonjának (a, f(a)) és (x, f(x)) pontjait összekötő egyenes (szelő) meredeksége (az ábrán látható α szög tangense).

3.1. ábra.

3.1.2. Definíció. Ha a

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

határérték létezik és véges, akkor az f függvényt differenciálhatónak mondjuk az a helyen, a határértéket pedig az f függvény a pontbeli differenciálhányadosának nevezzük.

3.1.3. Definíció. Az $f: \mathbb{R} \to \mathbb{R}$ függvény *deriváltfüggvénye* röviden *deriváltja*, jele f' vagy $\frac{df}{dx}$, az a függvény, amelynek értelmezési tartománya D(f) azon x pontjaiból áll, amelyekben f differenciálható, és minden ilyen x-hez az f függvény x pontbeli differenciálhányadosát rendeli hozzá.

Tehát

$$D(f') = \{a \in D(f) \mid f \text{ differenciálható az } a \text{ helyen}\}$$

és

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}, \quad \text{ha } a \in D(f').$$

3.1.4. Definíció. Ha $f: \mathbb{R} \to \mathbb{R}$ differenciálható az a helyen, akkor az

$$y = f'(a)(x-a) + f(a)$$

egyenest az f függvény a helyhez tartozó érintőjének nevezzük.

Tehát az f'(a) differenciálhányados az f függvény a helyhez tartozó érintőjének a meredeksége (az ábrán látható α szög tangense).

3.2. ábra.

Az $f: \mathbb{R} \to \mathbb{R}$ függvény a pontbeli jobb oldali (bal oldali) differenciálhányadosának (deriváltjának) definícióját úgy kapjuk, hogy az a ponbeli differenciálhányados definíciójában szereplő határértéket jobb oldali (bal oldali) határértékkel helyettesítjük. Jele: $f'_+(a)$ ($f'_-(a)$). Tehát

$$f'_{+}(a) = \lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a}$$

és

$$f'_{-}(a) = \lim_{x \to a-} \frac{f(x) - f(a)}{x - a},$$

feltéve, hogy a jobb oldali, illetve bal oldali határérték létezik és véges. A következő összefüggés nyilvánvaló.

3.1.5. Tétel. f'(a) éppen akkor létezik, ha $f'_+(a)$ és $f'_-(a)$ is létezik, és

$$f'_{+}(a) = f'_{-}(a).$$

3.1.6. Példa. Az $f(x) = |x|, x \in \mathbb{R}$, függvény nem differenciálható 0-ban, mert

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{|x| - 0}{x - 0} = \lim_{x \to 0^{+}} \frac{x}{x} = 1,$$

és

$$f'_{-}(0) = \lim_{x \to 0-} \frac{|x| - 0}{x - 0} = \lim_{x \to 0+} \frac{-x}{x} = -1.$$

A következő tétel a differenciálhatóság és folytonosság közötti kapcsolatról szól.

3.1.7. Tétel. Ha $f: \mathbb{R} \to \mathbb{R}$ differenciálható az a helyen, akkor itt folytonos is.

A tétel megfordítása nem igaz, mert például az $f(x) = |x|, x \in \mathbb{R}$, függvény folytonos 0-ban, de itt nem differenciálható.

3.2. Differenciálási szabályok

A következő tételek a fontosabb differenciálási szabályokat írják le.

3.2.1. Tétel (Differenciálási szabályok). Ha $f: \mathbb{R} \to \mathbb{R}$ és $g: \mathbb{R} \to \mathbb{R}$ differenciálható az a helyen, akkor ugyanilyen az $f \pm g$, $f \cdot g$, és a $g(a) \neq 0$ feltétel mellett az $\frac{f}{g}$ függvény is, mégpedig

$$(f \pm g)'(a) = f'(a) \pm g'(a),$$

$$(f \cdot g)'(a) = f'(a)g(a) + f(a)g'(a),$$

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g^2(a)}.$$

3.2.2. Tétel (Az összetett függvény differenciálása). Ha $g: \mathbb{R} \to \mathbb{R}$ differenciálható az a helyen és $f: \mathbb{R} \to \mathbb{R}$ differenciálható a g(a) helyen, akkor $f \circ g$ is differenciálható az a helyen, mégpedig

$$(f \circ g)'(a) = f'(g(a)) \cdot g'(a).$$

3.2.3. Tétel (Az inverz függvény differenciálása). Ha $f: \mathbb{R} \to \mathbb{R}$ folytonos és szigorúan monoton az a pont valamely környezetében, differenciálható az a helyen és $f'(a) \neq 0$, akkor f_{-1} is differenciálható a b = f(a) helyen, mégpedig

$$(f_{-1})'(b) = \frac{1}{f'(a)} = \frac{1}{f'(f_{-1}(b))}.$$

3.3. Az elemi alapfüggvények deriváltjai

Az elemi alapfüggvények deriváltfüggvényeit táblázatban foglaltuk össze.

f(x)	f'(x)
С	0
x^b	bx^{b-1}
e^x	e^x
a^x	$a^x \ln a$
$\ln x$	$\frac{1}{x}$
$\log_a x$	$\frac{1}{x \ln a}$
sin x	$\cos x$
$\cos x$	$-\sin x$
tg x	$\frac{1}{\cos^2 x}$
ctg x	$-\frac{1}{\sin^2 x}$
arcsin x	$\frac{1}{\sqrt{1-x^2}}$
arccos x	$-\frac{1}{\sqrt{1-x^2}}$
arctg x	$\frac{1}{1+x^2}$
arcctg x	$-\frac{1}{1+x^2}$

$$(c \in \mathbb{R}, b \in \mathbb{R}, a \in (0, \infty) \setminus \{1\})$$

A táblázat úgy értendő, hogy f differenciálható minden olyan x helyen, ahol f értelmezve van és az f'(x) kifejezés értelmes.

Előfordul, hogy egy függvény az értelmezési tartományának feltüntetése nélkül, csak a képletével van megadva. Ilyenkor a függvény értelmezési tartományán minden olyan $x \in \mathbb{R}$ számnak a halmazát értjük, amelyekre a kifejezés értelmes. Kivételt csak a

$$h(x) = f(x)^{g(x)}$$

alakú függvények képeznek, amelyek értelmezési tartományán a

$$D(h) = \{x \in D(f) \cap D(g) \mid f(x) > 0\}$$

halmazt értjük. Az ilyen esetekben a deriváltfüggvény jelölésére f'(x) helyett a kényelmesebb (f(x))' szimbólum használatos. Eszerint az $\ln(x-2)$ "függvény" értelmezési tartománya a $(2,\infty)$ intervallum, és itt

$$(\ln(x-2))' = \frac{1}{x-2}.$$

3.3.1. Példa. Az x^x függvény értelmezési tartománya a $(0, \infty)$ intervallum, és itt

$$(x^x)' = (e^{x \ln x})' = e^{x \ln x} (x \ln x)' = e^{x \ln x} \left(1 \ln x + x \frac{1}{x} \right) = x^x (\ln x + 1).$$

3.4. Magasabb rendű deriváltak

3.4.1. Definíció. Az $f: \mathbb{R} \to \mathbb{R}$ függvény *első deriváltján* az f' deriváltfüggvényt értjük. Bármely $n \in \mathbb{N}^+$ esetén f(n+1)-edik deriváltjának az n-edik derivált deriváltfüggvényét mondjuk. Az f n-edik deriváltját $f^{(n)}$ -nel jelöljük. Ha $a \in D(f^{(n)})$, akkor f-et n-szer differenciálhatónak mondjuk az a helyen.

Magát f-et f nulladik deriváltjának is szokták nevezni, és $f^{(0)}$ -val jelölik. Az n=2, 3 esetben inkább az

$$f^{(2)} = f'', \qquad f^{(3)} = f'''$$

jelölés használatos. Találkozhatunk az n-edik derivált

$$f^{(n)} = \frac{d^n f}{dx^n}$$

tört alakú jelölésével is.

3.5. Intervallumon való differenciálhatóság

3.5.1. Definíció. Legyen $I \subset \mathbb{R}$ intervallum a és b végpontokkal, ahol

$$-\infty < a < b < \infty$$
.

Azt mondjuk, hogy az $f: I \to \mathbb{R}$ függvény *differenciálható az I intervallumon*, ha f differenciálható minden $x \in (a, b)$ helyen, továbbá ha $a \in I$, akkor f a-ban jobbról differenciálható, ha pedig $b \in I$, akkor f b-ben balról differenciálható. Ekkor az

$$f_I'(x) = \begin{cases} = f'(x), & \text{ha } x \in (a, b) \\ = f'_+(a), & \text{ha } x = a \text{ és } a \in I \\ = f'_-(b), & \text{ha } x = b \text{ és } b \in I \end{cases}$$

képlettel definiált $f_I':I\to\mathbb{R}$ függvényt az f függvényI intervallumon vett deriváltfüggvényének nevezzük.

A továbbiakban szükségünk lesz a következő fogalomra is.

3.5.2. Definíció. Az f függvényt folytonosan differenciálhatónak nevezzük az $I \subset \mathbb{R}$ intervallumon, ha f differenciálható I-n és az f'_I deriváltfüggvény folytonos I-n.

3.6. Középértéktételek

Ismertetjük a differenciálszámítás három fontos középértéktételét.

3.6.1. Tétel (Rolle tétele). Legyen $[a, b] \subset \mathbb{R}$. Ha $f : \mathbb{R} \to \mathbb{R}$ folytonos [a, b]-n, differenciálható (a, b)-n és f(a) = f(b), akkor létezik $c \in (a, b)$ úgy, hogy

$$f'(c) = 0.$$

A tétel feltételei mellett az f függvénynek van olyan érintője, amelyik párhuzamos az x-tengellyel.

3.6.2. Tétel (Lagrange tétele). Legyen $[a,b] \subset \mathbb{R}$. Ha $f: \mathbb{R} \to \mathbb{R}$ folytonos [a,b]-n és differenciálható (a,b)-n, akkor létezik $c \in (a,b)$ úgy, hogy

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

A tétel feltételei mellett az f függvénynek van olyan érintője, amelyik párhuzamos az a és b helyekhez tartozó szelővel.

Az f(b) = f(a) esetben Lagrange tétele Rolle tételébe megy át.

3.6.3. Tétel (Cauchy tétele). Legyen $[a,b] \subset \mathbb{R}$. Ha $f: \mathbb{R} \to \mathbb{R}$ és $g: \mathbb{R} \to \mathbb{R}$ folytonosak [a,b]-n, differenciálhatók (a,b)-n és g' sehol sem tűnik el (a,b)-n, akkor létezik $c \in (a,b)$ úgy, hogy

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

A g(x) = x esetben Cauchy tétele Lagrange tételébe megy át.

3.7. Monotonitási kritériumok

3.7.1. Definíció. Legyen $I \subset \mathbb{R}$ intervallum a és b végpontokkal, ahol

$$-\infty \le a < b \le \infty$$
.

Az I intervallum belsején az (a, b) intervallumot értjük. Jele: int I

A következő fontos tétel Lagrange tételének következménye.

3.7.2. Tétel (Monotonitási kritériumok). *Legyen* $I \subset \mathbb{R}$ *intervallum. Ha az* $f : \mathbb{R} \to \mathbb{R}$ *függvény folytonos* I-n, *differenciálható* I *belsejében, és* $f' \geq 0$ ($f' \leq 0$) I *belsejében, akkor* f *az* I *intervallumon monoton növekedő (monoton csökkenő), ha pedig az* $f' \geq 0$ ($f' \leq 0$) *feltételt az* f' > 0 (f' < 0) *feltételre cseréljük, akkor* f *szigorúan monoton növekedő (szigorúan monoton csökkenő)* I-n.

Az előző tétel speciális esete a következő:

3.7.3. Tétel. Legyen $I \subset \mathbb{R}$ intervallum. Ha $f : \mathbb{R} \to \mathbb{R}$ folytonos I-n és f' = 0 I belsejében, akkor f állandó.

3.8. A L'Hospital-szabály

A Cauchy-féle középértéktétel segítségével lehet bizonyítani a következő állítást.

3.8.1. Tétel (L'Hospital-szabály). Legyen $a \in \overline{\mathbb{R}}$. Tegyük fel, hogy vagy

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0,$$

vagy pedig

$$\lim_{x \to a} |g(x)| = \infty.$$

Ha valamely $b \in \overline{\mathbb{R}}$ esetén

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = b,$$

akkor

$$\lim_{x \to a} \frac{f(x)}{g(x)} = b.$$

Hasonló állítások igazak jobb oldali és bal oldali határértékek esetén is.

3.8.2. Példa. A L'Hospital-szabály ismételt alkalmazásával kapjuk, hogy

$$\lim_{x \to 0} \frac{e^x - \sin x - 1}{x^2} = \lim_{x \to 0} \frac{e^x - \cos x}{2x} = \lim_{x \to 0} \frac{e^x + \sin x}{2} = \frac{1}{2}.$$

3.8.3. Példa. A L'Hospital-szabály szerint

$$\lim_{x \to \infty} \frac{\ln(1+3x)^7}{\ln(2+5x)^4} = \lim_{x \to \infty} \frac{7\ln(1+3x)}{4\ln(1+5x)} = \frac{7}{4} \lim_{x \to \infty} \frac{\frac{3}{1+3x}}{\frac{5}{2+5x}} = \frac{21}{20} \lim_{x \to \infty} \frac{2+5x}{1+3x} = \frac{7}{4}.$$

3.9. Abszolút és lokális szélsőértékek

3.9.1. Definíció. Legyen adva egy $f: \mathbb{R} \to \mathbb{R}$ függvény. Az $a \in D(f)$ számot f abszolút maximumhelyének (abszolút minimumhelyének) mondjuk, ha minden $x \in D(f)$ -re $f(x) \le f(a)$ $(f(x) \ge f(a))$.

Az abszolút maximumhely és abszolút minimumhely közös neve *abszolút szélsőértékhely*. Az abszolút szélsőértékhely helyett a *globális szélsőértékhely* elnevezés is használatos.

3.9.2. Definíció. Az $a \in D(f)$ szám f lokális maximumhelye (lokális minimumhelye), ha f definiálva van a valamely δ -sugarú környezetében ($\delta > 0$), továbbá minden $x \in (a - \delta, a) \cup \cup (a, a + \delta)$ esetén $f(x) \leq f(a)$ ($f(x) \geq f(a)$). Ha \leq (\geq) egyenlőtlenséget <-re (>-ra) cseréljük, akkor a *szigorú lokális maximumhely (szigorú lokális minimumhely*) definícióját kapjuk. A (szigorú) lokális maximumhelyek és lokális minimuhelyek közös neve (*szigorú*) lokális szélsőértékhely.

A következő tételben lokális szélsőértékhely létezésének szükséges feltételét adjuk meg.

- **3.9.3. Tétel.** Ha a az $f : \mathbb{R} \to \mathbb{R}$ függvény lokális szélsőértékhelye és f differenciálható az a helyen, akkor f'(a) = 0.
- **3.9.4. Definíció.** Azokat az a pontokat, amelyekre f'(a) = 0 az $f : \mathbb{R} \to \mathbb{R}$ függvény kritikus (stacionárius) pontjainak nevezzük.
- **3.9.5. Példa.** Könnyű ellenőrizni, hogy 0 az $f(x) = x^3$, $x \in \mathbb{R}$, függvény kritikus pontja, ugyanakkor f szigorúan monoton növekedő a $(-\infty, \infty)$ -n. Tehát egy kritikus pont általában nem lokális szélsőértékhely.

A monotonitási kritériumokból következik, hogy ha a az $f: \mathbb{R} \to \mathbb{R}$ függvény kritikus pontja, és az f' deriváltfüggvény előjelet vált az a pontban, akkor a f-nek lokális szélsőértékhelye. Weierstrass tételéből tudjuk, hogy bármely korlátos zárt intervallumon folytonos függvénynek van abszolút maximumhelye és abszolút minimumhelye. Ezeket a következőképpen határozhatjuk meg:

- **3.9.6. Tétel.** Legyen $[a,b] \subset \mathbb{R}$. Ha f folytonos [a,b]-n, akkor legnagyobb (legkisebb) értékét vagy az intervallum valamelyik végpontjában, vagy pedig olyan $c \in (a,b)$ pontban veszi fel, ahol f'(c) = 0 vagy f'(c) nem létezik.
- **3.9.7. Példa.** Keressük meg az

$$f(x) = 3x^4 - 20x^3 + 48x^2 - 48x + 1,$$
 $x \in [0,3],$

függvény (abszolút) maximumát és minimumát. Mivel f folytonos és

$$f'(x) = 12(x^3 - 5x^2 + 8x - 4) = 12(x - 1)(x - 2)^2, \quad x \in (0, 3),$$

ezért az előző tétel szerint f maximumhelye és minimuhelye az

$$x_1 = 0,$$
 $x_2 = 1,$ $x_3 = 2,$ $x_4 = 3$

pontok valamelyike. Összehasonlítva az

$$f(0) = 1$$
, $f(1) = -16$, $f(2) = -15$, $f(3) = -8$

függvényértékeket azt kapjuk, hogy a legnagyobb függvényérték 1, a legkisebb pedig -16.

3.10. Konvexség, konkávság

Emlékeztetőül: egy $f: \mathbb{R} \to \mathbb{R}$ függvény $x_1, x_2 \in D(f), x_1 < x_2$, helyekhez tartozó szelőjének meredeksége

$$\frac{f(x_2)-f(x_1)}{x_2-x_1}$$
,

a szelő egyenlete pedig

$$y = \frac{f(x_2) - f(x_1)}{x_2 - x_1} (x - x_1) + f(x_1).$$

3.10.1. Definíció. Legyen $I \subset \mathbb{R}$ intervallum és $f: I \to \mathbb{R}$. Az f függvényt az I-n konvexnek (konkávnak) mondjuk, ha bármely $x_1, x, x_2 \in I$, $x_1 < x < x_2$, esetén

$$f(x) \leq \frac{f(x_2) - f(x_1)}{x_2 - x_1} (x - x_1) + f(x_1), \quad \bigg(f(x) \geq \frac{f(x_2) - f(x_1)}{x_2 - x_1} (x - x_1) + f(x_1) \bigg).$$

Ha \leq (\geq) egyenlőtlenséget <-re (>-ra) cseréljük, akkor az I-n szigorúan konvex (szigorúan konkáv) függvény definícióját kapjuk.

Az f függvény akkor konvex (konkáv) az I intervallumon, ha bármely $x_1, x_2 \in I$, $x_1 < x_2$, esetén az x_1 és x_2 helyekhez tartozó szelő az (x_1, x_2) intervallumon f grafikonja fölött (alatt) fekszik.

3.10.2. Tétel (Konvexség és konkávság kritériuma). *Ha f folytonos az I* $\subset \mathbb{R}$ *intervallumon és f' (szigorúan) monoton növekedő ((szigorúan) monoton csökkenő) I belsejében, akkor az f függvény I-n (szigorúan) konvex ((szigorúan) konkáv).*

Speciálisan, ha $f: \mathbb{R} \to \mathbb{R}$ folytonos az I-n és $f'' \ge 0$ ($f'' \le 0$) I belsejében, akkor f I-n konvex (konkáv), ha pedig $a \ge (\le)$ egyenlőtlenséget >-re (<-ra) cseréljük, akkor f I-n szigorúan konvex (szigorúan konkáv).

3.10.3. Példa. Legyen

$$f(x) = \frac{1}{1+x^2}, \qquad x \in \mathbb{R}.$$

Az f függvény folytonos, továbbá

$$f'(x) = \frac{-2x}{(1+x^2)^2}, \qquad x \in \mathbb{R}$$
$$f''(x) = \frac{2 \cdot (3x^2 - 1)}{(1+x^2)^3}, \qquad x \in \mathbb{R}.$$

Mivel f'' < 0 a $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ intervallumon és f'' > 0 a $\left(-\infty, -\frac{1}{\sqrt{3}}\right)$, $\left(\frac{1}{\sqrt{3}}, \infty\right)$ intervallumokon, ezért a $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ -n f szigorúan konkáv, a $\left(-\infty, -\frac{1}{\sqrt{3}}\right)$ -n és az $\left(\frac{1}{\sqrt{3}}, \infty\right)$ -n pedig szigorúan konvex

4. fejezet

Egyváltozós valós függvények integrálszámítása

4.1. Primitív függvény és határozatlan integrál

4.1.1. Definíció. Legyen $I \subset \mathbb{R}$ intervallum és f egy I-n definiált valós függvény. Az $F: I \to \mathbb{R}$ függvényt f primitív függvényének mondjuk az I intervallumon, ha F differenciálható I-n és itt $F_I' = f$.

Emlékeztetőül: F_I' az F függvény I-n vett deriváltját jelöli (lásd 3.5.1 Definíció). A következő tulajdonság Lagrange tételének következménye.

- **4.1.2. Tétel.** Ha F az f függvény primitív függvénye az I intervallumon, akkor minden $c \in \mathbb{R}$ esetén F+c is primitív függvénye f-nek I-n, és f bármely primitív függvénye I-n F+c alakú, ahol $c \in \mathbb{R}$.
- **4.1.3. Definíció.** Egy f valós függvény határozatlan integrálján az $I \subset \mathbb{R}$ intervallumon f I-n vett primitív függvényeinek halmazát értjük (ha nem üres). Jelölés: $\int f$ vagy $\int f(x) \, dx$. Az f függvényt integrandusnak nevezzük.

Ha F primitív függvénye f-nek I-n, akkor

$$\int f = \{ F + c \mid c \in \mathbb{R} \} \qquad I - n.$$

Ezt a következő pontatlan, de rövidsége miatt kényelmes és ezért általánosan használt alakban szokás írni:

$$\int f = F + c, \qquad \text{(az } I \text{ intervallumon)},$$

vagy

$$\int f(x) dx = F(x) + c, \qquad (x \in I).$$

Mivel

$$\left(\frac{x^2}{2}\right)' = x, \qquad x \in (-\infty, \infty),$$

ezért

$$\int x \, dx = \frac{x^2}{2} + c, \qquad x \in (-\infty, \infty).$$

4.2. Alapintegrálok

A differenciálási szabályok megfordításával kapjuk a következő integrálokat.

$\int f(x) dx$	F(x)+c
$\int x^b dx$	$\frac{x^{b+1}}{b+1} + c$
$\int \frac{1}{x} dx$	$\ln x + c$
$\int e^x dx$	$e^x + c$
$\int a^x dx$	$\frac{a^x}{\ln a} + c$
$\int \sin x dx$	$-\cos x + c$
$\int \cos x dx$	$\sin x + c$
$\int \frac{1}{\cos^2 x} dx$	tg x + c
$\int \frac{1}{\sin^2 x} dx$	$-\operatorname{ctg} x + c$
$\int \frac{1}{\sqrt{1-x^2}} dx$	$\arcsin x + c$
$\int \frac{1}{1+x^2} dx$	arctg x + c

$$(b \in \mathbb{R} \setminus \{-1\}, a \in (0, \infty) \setminus \{1\})$$

A táblázatban szereplő integrálformulák érvényesek minden olyan nyílt intervallumon, ahol *f* és a jobb oldalon szereplő függvény értelmezve van.

4.3. Integrálás elemi átalakításokkal

4.3.1. Tétel (Linearitás). *Ha f-nek és g-nek primitív függvénye az* $(a, b) \subset \mathbb{R}$ *intervallumon F, illetve G, továbbá k* $\in \mathbb{R}$ *, akkor* (kf)*-nek primitív függvénye* (a, b)*-n k F,* (f+g)*-nek pedig*

F+G. Eszerint

$$\int (kf) = k \int f,$$

$$\int (f+g) = \int f + \int g.$$

Az első képletet úgy kell érteni, hogy az $\int (kf)$ függvényhalmaz elemei az $\int f$ függvényhalmaz elemeinek k-szorosai, a második képletet pedig úgy, hogy az $\int (f+g)$ függvényhalmaz elemei az $\int f$ és $\int g$ függvényhalmaz elemeinek összeadásával állnak elő. Hasonlóképpen értendők a további határozatlan integrálokkal kapcsolatos képletek is.

4.3.2. Tétel (Lineáris helyettesítés). *Legyen* f-nek az $(\alpha, \beta) \subset \mathbb{R}$ intervallumon primitív függvénye F, továbbá g(x) = ax + b lineáris függvény, $a, b \in \mathbb{R}$, $a \neq 0$, és (γ, δ) olyan intervallum, hogy $g((\gamma, \delta)) \subset (\alpha, \beta)$. Ekkor az $f \circ g$ függvénynek (γ, δ) -n primitív függvénye $\frac{1}{a}(F \circ g)$, azaz

$$\int f(ax+b) dx = \frac{1}{a} F(ax+b) + c, \qquad x \in (\gamma, \delta).$$

4.3.3. Példa.

$$\int \sqrt{3x+5} \, dx = \int (3x+5)^{\frac{1}{2}} \, dx = \frac{1}{3} \frac{(3x+5)^{\frac{3}{2}}}{\frac{3}{2}} + c = \frac{2}{9} \sqrt{(3x+5)^3} + c,$$

ahol $x \in (-\frac{5}{3}, \infty)$.

4.3.4. Példa.

$$\int \cos^2 x \, dx = \int \frac{1 + \cos 2x}{2} \, dx = \int \left(\frac{1}{2} + \frac{\cos 2x}{2}\right) dx$$
$$= \frac{1}{2} \int 1 \, dx + \frac{1}{2} \int \cos 2x \, dx = \frac{1}{2} x + \frac{1}{2} \frac{\sin 2x}{2} + c = \frac{x}{2} + \frac{\sin 2x}{4} + c,$$

ahol $x \in (-\infty, \infty)$.

4.4. Parciális integrálás

A szorzat deriváltjából könnyen levezethető a következő tétel.

4.4.1. Tétel (Parciális integrálás). Legyen $(a, b) \subset \mathbb{R}$. Ha f és g differenciálhatók (a, b)-n és az fg' függvénynek van primitív függvénye (a, b)-n, akkor az f'g függvénynek is van primitív függvénye (a, b)-n, és

$$\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g'(x) dx, \qquad x \in (a,b).$$

4.4.2. Példa.

$$\int (\cos x)x \, dx = \int (\sin x)'x \, dx = (\sin x)x - \int (\sin x)1 \, dx = (\sin x)x + \cos x + c,$$

ahol $x \in (-\infty, \infty)$.

4.5. Integrálás helyettesítéssel

Az alábbi tétel az összetett függvény differenciálási szabályából következik.

4.5.1. Tétel (1. típusú helyettesítés). Legyen g differenciálható és nem állandó az $(a,b) \subset \mathbb{R}$ intervallumon. Ha F primitív függvénye f-nek a g((a,b)) intervallumon, akkor $F \circ g$ primitív függvénye f-nek (a,b)-n, azaz

$$\int (f(g(x))g'(x) dx = F(g(x)) + c, \qquad x \in (a, b),$$

avagy

$$\int (f(g(x))g'(x) dx = \left[\int f(u) du \right]_{u=g(x)}.$$

Ez utóbbi képlethez formálisan úgy is eljuthatunk, hogy a bal oldali integrálban bevezetjük az u=g(x) helyettesítést, majd a $\frac{du}{dx}=g'(x)$ képletből a g'(x) dx=du összefüggést származtatjuk, és így jutunk a jobb oldalon látható integrálhoz.

4.5.2. Példa. Az

$$\int (\sin^2 x) \cos x \, dx$$

integrálból az $u = \sin x$ helyettesítéssel, amikor $\frac{du}{dx} = \cos x$, s így $\cos x \, dx = du$, az

$$\left[\int u^2 \, du\right]_{u=\sin x}$$

integrált kapjuk. Mivel

$$\int u^2 du = \frac{u^3}{3} + c,$$

ezért

$$\int (\sin^2 x) \cos x \, dx = \frac{\sin^3 x}{3} + c, \qquad x \in (-\infty, \infty).$$

4.5.3. Tétel (2. típusú helyettesítés). *Tegyük fel, hogy g differenciálható az* $(\alpha, \beta) \subset \mathbb{R}$ *intervallumon és g' sehol sem tűnik el* (α, β) -n. Ha H primitív függvénye $(f \circ g)g'$ -nek (α, β) -n, akkor $H \circ g_{-1}$ primitív függvénye f-nek a $g((\alpha, \beta))$ intervallumon, azaz

$$\int f(x) dx = \left[\int (f(g(u)))g'(u) du \right]_{u=g_{-1}(x)}, \qquad x \in g((\alpha, \beta)).$$

A képlethez formálisan úgy juthatunk el, hogy a bal oldali integrálban elvégezzük az x = g(u) helyettesítést, majd a $\frac{dx}{du} = g'(u)$ összefüggésből a dx = g'(u) du kifejezést származtatjuk, végül megkapjuk a jobb oldali integrált. Ennek kiszámítása után u helyébe $g_{-1}(x)$ -et kell írunk.

4.5.4. Példa. Az

$$\int x \sqrt[3]{x-1} \, dx$$

integrálból az $x = u^3 + 1$ helyettesítéssel a $\frac{dx}{du} = 3u^2$ és $dx = 3u^2du$ kifejezéseket használva az

$$\int (u^3+1)u \, 3u^2 \, du = 3 \int (u^6+u^3) \, du$$

integrált kapjuk. Ezt már ki tudjuk számítani:

$$3\int (u^6+u^3)\,du = 3\left(\frac{u^7}{7} + \frac{u^4}{4}\right) + c = \frac{3}{7}u^7 + \frac{3}{4}u^4 + c.$$

Végül az $x = u^3 + 1$ összefüggésből nyert $u = \sqrt[3]{x-1}$ felhaszálásával kapjuk, hogy

$$\int x \sqrt[3]{x-1} \, dx = \frac{3}{7} \left(\sqrt[3]{x-1} \right)^7 + \frac{3}{4} \left(\sqrt[3]{x-1} \right)^4 + c, \qquad x \in (-\infty, \infty).$$

4.6. A Riemann-integrál definíciója

Adott egy nemnegatív folytonos f az $[a,b] \subset \mathbb{R}$ intervallumon. Kiszámítandó annak a "görbevonalú" trapéznak a T területe, amelyet felülről az y=f(x) görbe, oldalról az x=a és x=b egyenesek, alulról pedig az x-tengely határol. Az alábbiakban definiált fogalmak segítségével alsó és felső becslést adhatunk T-re. A konstrukció abban az általánosabb esetben is használható, amikor f csupán korlátos [a,b]-n.

4.6.1. Definíció. Az $[a, b] \subset \mathbb{R}$ intervallum *felosztásán* olyan véges $\{x_0, \dots, x_k\}$ sorozatot értünk, amelyre

$$a = x_0 < x_1 < \cdots < x_k = b$$
.

4.6.2. Definíció. Legyen adva egy korlátos f függvény az [a, b] intervallumon és $\Phi = \{x_0, \ldots, x_k\}$ legyen [a, b] egy felosztása. A korlátosság miatt minden $i \in \{1, 2, \ldots, k\}$ esetén az

$$m_i = \inf f([x_{i-1}, x_i]), \qquad M_i = \sup f([x_{i-1}, x_i])$$

számok jól definiáltak. Az

$$s_{\Phi} = \sum_{i=1}^{k} m_i (x_i - x_{i-1})$$

összeget az f függvény Φ felosztáshoz tartozó alsó összegének, az

$$S_{\Phi} = \sum_{i=1}^{k} M_i (x_i - x_{i-1})$$

összeget az f függvény Φ felosztáshoz tartozó felső összegének nevezzük (lásd a 4.1 ábra).

Ha f korlátos [a, b]-n, akkor [a, b] bármely Φ felosztására

$$\inf f([a,b]) \cdot (b-a) \le s_{\Phi} \le \sup f(([a,b]) \cdot (b-a).$$

4.6.3. Definíció. Bármely [a, b]-n korlátos f esetén legyen

$$I_A = \sup\{ s_{\Phi} \mid \Phi \text{ az } [a, b] \text{ felosztása} \},$$

és

$$I_F = \inf\{ S_{\Phi} \mid \Phi \text{ az } [a, b] \text{ felosztása} \}.$$

Az I_A számot az f függvény (Darboux-féle) alsó integráljának, az I_F számot pedig f (Darboux-féle) felső integráljának nevezzük.

Nyilvánvaló, hogy ha f nemnegatív és folytonos [a,b]-n, akkor az [a,b] bármely Φ felosztására

$$s_{\Phi} \leq T \leq S_{\Phi}$$
,

és ezért

$$I_A \leq T \leq I_F$$

is teljesül, ahol T a kiszámítandó terület.

4.6.4. Definíció. Az f függvényt *integrálhatónak* mondjuk az $[a, b] \subset \mathbb{R}$ intervallumon, ha f korlátos [a, b]-n és $I_A = I_F$. Ekkor az $I = I_A = I_F$ közös értéket az f függvény [a, b]-n vett Riemann-féle határozott integráljának, vagy röviden Riemann-integráljának nevezzük. Jele:

$$\int_a^b f \qquad \text{vagy} \qquad \int_a^b f(x) \, dx.$$

Szükségünk lesz a következő fogalomra.

4.6.5. Definíció. Azt mondjuk, hogy az f függvény szakaszosan folytonos (szakaszosan monoton) az $[a, b] \subset \mathbb{R}$ intervallumon, ha [a, b]-nek létezik $\{x_0, \ldots, x_k\}$ felosztása ($a = x_0 < x_1 < \cdots < x_k = b$) úgy, hogy az (x_{i-1}, x_i) , $i \in \{1, \ldots, k\}$, részintervallumok mindegyikében f folytonos (monoton).

A következő tétel azt mutatja, hogy a függvények egy igen széles osztálya integrálható.

4.6.6. Tétel (Egzisztencia tétel). Ha f korlátos és szakaszosan folytonos vagy szakaszosan monoton az [a, b] intervallumon, akkor f integrálható is [a, b]-n.

Legyen f nemnegatív és folytonos [a,b]-n. Ekkor f integrálhatósága folytán $I_A = I_B = \int_a^b f$. Figyelembe véve, hogy $I_A \le T \le I_F$, azt kapjuk, hogy

$$T = \int_{a}^{b} f$$

ahol T a szakasz elején említett síkidom területe.

A következő tétel azt mutatja, hogy az integrálhatóságot és az integrál értékét nem befolyásolja, ha az integrandust véges számú pontban megváltoztatjuk.

4.6.7. Tétel. Legyenek f és g az $[a,b] \subset \mathbb{R}$ intervallumon definiált valós függvények. Ha f integrálható az [a,b]-n, és van [a,b]-nek olyan véges H részhalmaza, hogy f=g az $[a,b] \setminus H$ halmazon, akkor g is integrálható [a,b]-n, és

$$\int_{a}^{b} g = \int_{a}^{b} f.$$

Ez a tétel motiválja az alábbi definíciót.

4.6.8. Definíció. A g függvényt az $[a,b] \subset \mathbb{R}$ intervallumon *tágabb értelemben integrálhatónak* mondjuk, ha van olyan az [a,b]-n integrálható f, amely g-vel [a,b]-n véges számú pont kivételével egyenlő. Ekkor definícióképpen

$$\int_{a}^{b} g = \int_{a}^{b} f.$$

4.6.9. Példa. A

$$g(x) = \frac{\sin x}{x}, \qquad x \in (0,1]$$

függvény ugyan nincs definiálva 0-ban, mégis tágabb értelemben integrálható a [0,1]-en, mivel a

$$\lim_{x \to 0} g(x) = \lim_{x \to 0} \frac{\sin x}{x} = 1$$

limeszreláció folytán korlátos, és ha a 0 helyen bárhogyan definiáljuk, akkor szintén korlátos és szakaszosan folytonos függvényt kapunk.

A továbbiakban az integrálhatóságot mindig tágabb értelemben fogjuk érteni.

4.7. A Riemann-integrál tulajdonságai

A következő tételekben összefoglaljuk a Riemann-integrál fontosabb tulajdonságait.

4.7.1. Tétel. Ha f és g integrálható az $[a,b] \subset \mathbb{R}$ intervallumon és α , β állandók, akkor $\alpha f + \beta g$ is integrálható az [a,b]-n, és

$$\int_{a}^{b} (\alpha f + \beta g) = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g.$$

4.7.2. Tétel. Ha f és g integrálható az $[a,b] \subset \mathbb{R}$ intervallumon és $f \leq g$ az [a,b]-n, akkor

$$\int_{a}^{b} f \le \int_{a}^{b} g.$$

4.7.3. Tétel. Ha f integrálható az $[a,b] \subset \mathbb{R}$ intervallumon, akkor |f| is integrálható az [a,b]-n, és

$$\left| \int_{a}^{b} f \right| \leq \int_{a}^{b} |f|.$$

4.7.4. Tétel. Ha f integrálható az [a,b] intervallumon és $c \in (a,b)$, akkor f integrálható [a,c]-n és [c,b]-n is, és

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$$

4.8. A Riemann-integrál kiszámítása

A Riemann-integrál kiszámítása szempontjából alapvető fontosságú a következő tétel.

4.8.1. Tétel (Newton-Leibniz-szabály). Ha f integrálható az $[a,b] \subset \mathbb{R}$ intervallumon, F folytonos [a,b]-n, továbbá F primitív függvénye f-nek (a,b)-n, akkor

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

4.8.2. Definíció. Legyen $[a, b] \subset \mathbb{R}$ intervallum. Az F(b) - F(a) különbséget az $[F(x)]_a^b$ szimbólummal jelöljük, és az F függvény [a, b] intervallumon vett megváltozásának nevezzük.

A Newton-Leiniz-szabályt a Lagrange-féle középértéktétel segítségével lehet igazolni.

4.8.3. Példa. A Newton-Leibniz-szabály szerint

$$\int_{2}^{3} x^{2} dx = \left[\frac{x^{3}}{3} \right]_{2}^{3} = \frac{3^{3}}{3} - \frac{2^{3}}{3} = \frac{27}{3} - \frac{8}{3} = \frac{19}{3}.$$

A parciális integrálás a következőképpen fogalmazható át határozott integrálra.

4.8.4. Tétel (Parciális integrálás). Ha f és g folytonosan differenciálható az $[a, b] \subset \mathbb{R}$ intervallumon, akkor

$$\int_{a}^{b} f'(x)g(x) dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f(x)g'(x) dx.$$

4.8.5. Példa.

$$\int_{1}^{2} \ln x \, dx = \int_{1}^{2} 1 \cdot \ln x \, dx = \int_{1}^{2} (x)' \ln x \, dx = \left[x \ln x \right]_{1}^{2} - \int_{1}^{2} x \frac{1}{x} \, dx$$
$$= 2 \ln 2 - \int_{1}^{2} 1 \, dx = 2 \ln 2 - \left[x \right]_{1}^{2} = 2 \ln 2 - 1.$$

Vezessük be a következő jelölést.

4.8.6. Definíció. Bármely $a \in D(f)$ esetén legyen

$$\int_{a}^{a} f = 0,$$

továbbá b < a esetén

$$\int_{a}^{b} f = -\int_{b}^{a} f,$$

feltéve, hogy f integrálható a $[b, a] \subset \mathbb{R}$ intervallumon.

4.8.7. Tétel (Integrálás helyettesítéssel). *Tegyük fel, hogy g nem állandó és folytonosan dif-* $ferenciálható az [a, b] \subset \mathbb{R}$ intervallumon és f folytonos a g([a, b]) intervallumon. Ekkor

$$\int_{g(a)}^{g(b)} f(x) \, dx = \int_{a}^{b} f(g(u))g'(u) \, du.$$

4.8.8. Példa. A 2-x=u, avagy x=g(u)=2-u helyettesítéssel kapjuk, hogy

$$\int_0^1 \frac{x}{\sqrt{2-x}} dx = -\int_{g(1)}^{g(2)} \frac{x}{\sqrt{2-x}} dx = \int_1^2 \frac{2-u}{\sqrt{u}} du$$
$$= \int_1^2 \left(\frac{2}{\sqrt{u}} - \sqrt{u}\right) du = \left[4\sqrt{u} - \frac{2}{3}\sqrt{u^3}\right]_1^2 = 4(\sqrt{2} - 1) - \frac{2}{3}(\sqrt{8} - 1).$$

4.9. Az integrálfüggvény

4.9.1. Definíció. Legyen $I \subset \mathbb{R}$ intervallum, és tegyük fel, hogy f integrálható I bármely zárt részintervallumán. Rögzített $c \in I$ esetén legyen

$$G(x) = \int_{c}^{x} f$$
, ha $x \in I$.

A $G: I \to \mathbb{R}$ függvényt az f függvényc helyhez tartozó *integrálfüggvényének* nevezzük.

Ha f integrálható I minden zárt részintervallumán, akkor tetszőleges $c, d, x \in I$ esetén

$$\int_{C}^{x} f = \int_{d}^{x} f + \int_{C}^{d} f.$$

Ezért ha G az f függvény valamely $c \in I$ helyhez tartozó integrálfüggvénye, akkor f-nek bármely más helyhez tartozó integrálfüggvénye G+k alakú, ahol k állandó.

A következő tételek az integrálfüggvény két fontos tulajdonságát írják le.

- **4.9.2. Tétel.** Ha G valamely $c \in I$ helyhez tartozó integrálfüggvénye f-nek az $I \subset \mathbb{R}$ intervallumon, akkor G folytonos I-n.
- **4.9.3. Tétel.** Legyen G valamely $c \in I$ helyhez tartozó integrálfüggvénye f-nek az $I \subset \mathbb{R}$ intervallumon, és $a \in I$. Ha a nem jobb oldali (bal oldali) végpontja I-nek, és itt f jobbról (balról) folytonos, akkor G jobbról (balról) differenciálható az a helyen, és

$$G'_{+}(a) = f(a)$$
 $(G'_{-}(a) = f(a)).$

Az előző tétel egyik fontos következménye, hogy minden folytonos függvénynek van primitív függvénye. Pontosabban:

4.9.4. Tétel. Ha f folytonos az $I \subset \mathbb{R}$ intervallumon, akkor itt van primitív függvénye, és primitív függvényei egybeesnek integrálfüggvényeivel.

4.10. Az improprius integrál

A Riemann-integrál két alapvető hátránya, hogy csak korlátos intervallumon és csak korlátos függvényekre definiált. Az integrálhatóság definíciójának egy lehetséges kiterjesztése nem korlátos függvényekre és nem korlátos intervallumokra a következő:

4.10.1. Definíció. Legyen $a, b \in \mathbb{R}$, a < b, és tegyük fel, hogy f integrálható az (a, b) intervallum minden zárt részintervallumán. Azt mondjuk, hogy az f függvény *improprius integrálja* (a, b)-n konvergens, ha f valamely $c \in (a, b)$ helyhez tartozó

$$G(x) = \int_{c}^{x} f$$
, ha $x \in (a, b)$,

integrálfüggvényére a

$$\lim_{x \to a^+} G(x) \qquad \text{és} \qquad \lim_{x \to b^-} G(x)$$

határérték létezik és véges. Ekkor az

$$I = \lim_{x \to b-} G(x) - \lim_{x \to a+} G(x) = \lim_{x \to b-} \int_{c}^{x} f + \lim_{x \to a+} \int_{x}^{c} f$$

számot az f függvény (a, b)-n vett improprius integráljának mondjuk, és az

$$\int_{a}^{b} f$$
, illetőleg $\int_{a}^{b} f(x) dx$

szimbólummal jelöljük. Ha f improprius integrálja (a,b)-n nem konvergens, akkor divergensnek mondjuk.

Az "improprius" latin eredetű szó jelentése "nem valódi".

Az, hogy az improprius integrál értékét ugyanazzal az $\int_a^b f$ szimbólummal jelöljük, mint a Riemann-integrált nem okoz zavart, mert igaz a következő:

4.10.2. Tétel. Legyen $a, b \in \mathbb{R}$, a < b, és f korlátos az [a, b]-n. Ekkor f-nek (a, b)-n pontosan akkor improprius integrálja az I szám, ha f (Riemann szerint) integrálható [a, b]-n, és integrálja I.

Ha $a \in \mathbb{R}$ és f korlátos a-nak egy jobb oldali vagy bal oldali környezetében, akkor az improprius integrált egyszerűbben is jellemezhetjük.

4.10.3. Tétel. Legyen $a \in \mathbb{R}$, $b \in \overline{\mathbb{R}}$ $(a \in \overline{\mathbb{R}}, b \in \mathbb{R})$, a < b. Tegyük fel, hogy f korlátos a-nak egy jobb oldali (b-nek egy bal oldali) környezetében, továbbá f integrálható (a,b) minden zárt részintervallumán. Az f függvény (a,b)-n vett improprius integrálja pontosan akkor konvergens, ha a

$$\lim_{x \to b-} \int_{a}^{x} f \qquad \left(\lim_{x \to a+} \int_{x}^{b} f \right)$$

határérték létezik és véges, konvergencia esetén pedig

$$\int_{a}^{b} f = \lim_{x \to b^{-}} \int_{a}^{x} f \qquad \left(\int_{a}^{b} f = \lim_{x \to a^{+}} \int_{x}^{b} f \right).$$

A Newton-Leibniz-szabály módosítható improprius integrálok kiszámítására is.

4.10.4. Tétel. Legyen $a, b \in \overline{\mathbb{R}}$, a < b, f integrálható (a, b) minden zárt részintervallumán, és tegyük fel, hogy F primitív függvénye f-nek (a, b)-n. Ekkor f improprius integrálja (a, b)-n pontosan akkor konvergens, ha létezik és véges a

$$\lim_{x \to a^{+}} F(x) \qquad \text{\'es} \qquad \lim_{x \to b^{-}} F(x)$$

határérték, konvergencia esetén pedig

$$\int_{a}^{b} f = \lim_{x \to b-} F(x) - \lim_{x \to a+} F(x).$$

4.10.5. Definíció. A függvénymegváltozáshoz hasonlóan a

$$\lim_{x \to b^{-}} F(x) - \lim_{x \to a^{+}} F(x)$$

különbséget (amennyiben a bal és jobb oldali határérték létezik és véges) az

$$[F(x)]_{a^+}^{b-}$$

szimbólummal jelöljük.

4.10.6. Példa. Az előző tétel szerint

$$\int_0^1 \frac{1}{\sqrt{x}} dx = \left[2\sqrt{x} \right]_{0+}^{1-} = \lim_{x \to 1-} 2\sqrt{x} - \lim_{x \to 0+} 2\sqrt{x} = 2.$$

Megjegyezzük, hogy ez az integrál a Riemann-féle értelemben nem létezik, mert

$$\lim_{x \to 0+} \frac{1}{\sqrt{x}} = +\infty$$

folytán az integrandus nem korlátos.

4.10.7. Példa.

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} = \lim_{x \to \infty} \arctan x - \lim_{x \to -\infty} \arctan x = \pi.$$

Az improprius integrál konvergenciájának gyakran jól használható elegendő feltétele a következő:

4.10.8. Tétel. Legyen $a, b \in \overline{\mathbb{R}}$, a < b. Ha f és g integrálható (a, b) minden zárt részintervallumán, továbbá az (a, b)-n $|f| \le g$, és az

$$\int_a^b g$$

improprius integrál konvergens, akkor az

$$\int_a^b f$$

improprius integrál is konvergens.

4.10.9. Példa. Az

$$\int_{1}^{\infty} \frac{\sin x}{x^2} dx$$

improprius integrál konvergens, mert

$$\left| \frac{\sin x}{x^2} \right| \le \frac{1}{x^2}, \quad \text{ha } x \in (1, \infty),$$

és az

$$\int_{1}^{\infty} \frac{1}{x^2} dx = \left[-\frac{1}{x} \right]_{1}^{\infty} = \lim_{x \to \infty} \left(-\frac{1}{x} \right) + 1 = 1$$

improprius integrál konvergens.

4.11. Az integrálszámítás néhány alkalmazása

A Riemann-integrál jól használható síkidomok területének és forgástestek térfogatának kiszámítására. (A terület és térfogat fogalmának részletesebb tárgyalásához később vissza fogunk térni.)

4.11.1. Tétel (Területszámítás). Legyen $[a,b] \subset \mathbb{R}$. Tegyük fel, hogy f és g olyan folytonos függvények [a,b]-n, amelyekre $g \leq f$ az [a,b]-n. Annak a síkidomnak a területe, amelyet felülről f grafikonja, alulról g grafikonja, oldalról pedig az x=a és x=b egyenesek határolnak (lásd a következő ábra):

$$T = \int_{a}^{b} (f(x) - g(x)) dx.$$

4.11.2. Példa. Annak a síkidomnak a T területe, amelyet felülről az $f(x) = \sqrt{x}$, alulról pedig az $g(x) = x^2$ függvény grafikonja határol (a [0,1] intervallumon):

$$T = \int_0^1 (\sqrt{x} - x^2) = \left[\frac{2}{3} \sqrt{x^3} - \frac{x^3}{3} \right]_0^1 = \frac{2}{3} - \frac{1}{3} = \frac{1}{3}.$$

4.11.3. Tétel (Forgástest térfogata). Ha f nemnegatív folytonos függvény az $[a,b] \subset \mathbb{R}$ intervallumon, akkor annak a testnek a térfogata, amely f grafikonjának az x-tengely körüli megforgatásával keletkezik (lásd a következő ábra):

$$V = \pi \int_a^b f^2(x) \, dx.$$

4.11.4. Példa. Annak a testnek a térfogata, amely az $f(x) = 1 + e^x$, $x \in [0,2]$, függvény grafikonjának az x-tengely körüli megforgatásával keletkezik:

$$V = \pi \int_0^2 (1 + e^x)^2 dx = \pi \int_0^2 (1 + 2e^x + e^{2x}) dx$$
$$= \pi \left[x + 2e^x + \frac{e^{2x}}{2} \right]_0^2 = 2\pi e^2 + \frac{\pi (e^4 - 1)}{2}.$$

A Riemann-integrál segítségével függvénygrafikon ívhosszát is kiszámíthatjuk. Az ívhossz definíciója a következő:

4.11.5. Definíció. Legyen adva egy f függvény az $[a,b] \subset \mathbb{R}$ intervallumon. Ha $\Phi = \{x_0,\ldots,x_k\}$ [a,b] felosztása, akkor az f grafikonjának $(x_{i-1},f(x_{i-1}))$ és $(x_i,f(x_i))$ pontpárjait $(i \in \{1,\ldots,k\})$ összekötő szakaszok egy *törött vonalat (poligont)* alkotnak, amelynek hossza:

$$\ell_{\Phi} = \sum_{i=1}^{k} \sqrt{(x_i - x_{i-1})^2 + (f(x_i) - f(x_{i-1}))^2}.$$

Ha

$$\ell = \sup\{ \ell_{\Phi} \mid \Phi \text{ az } [a, b] \text{ felosztása} \} < \infty,$$

akkor f grafikonját rektifikálhatónak mondjuk, és az ℓ számot a grafikon ivhosszának nevezzük.

4.11.6. Tétel (Függvénygrafikon ívhossza). Ha f folytonosan differenciálható az $[a, b] \subset \mathbb{R}$ intervallumon, akkor f grafikonja rektifikálható, és ívhossza:

$$\ell = \int_a^b \sqrt{1 + \left(f'(x)\right)^2} \, dx.$$

4.11.7. Példa. Az $f(x) = \frac{2}{3}\sqrt{(1+x)^3}$ függvény deriváltja a [0,1] intervallumon:

$$f'(x) = \sqrt{1+x}, \qquad x \in [0,1].$$

Ezért f grafikonjának ívhossza:

$$\ell = \int_0^1 \sqrt{2+x} \, dx = \left[\frac{2}{3} \sqrt{(2+x)^3} \right]_0^1 = \frac{2}{3} (\sqrt{27} - \sqrt{8}).$$

5. fejezet

Egy villamosságtani probléma

5.1. Soros RLC áramkör

Ha egy váltakozóáramú áramforráshoz sorosan egy R ohmos ellenállást, egy L induktivitású tekercset és egy C kapacitású kondenzátort kapcsolunk, akkor az ún. soros RLC áramkört kapjuk [1]:

5.1. ábra.

Tegyük fel, hogy R, L, C konstans értékek. Jelölje a t időpontban E(t) az áramforrás által az áramkörbe juttatott "külső" feszültséget, I(t) az áramkörben folyó áramerősséget, Q(t) a kondenzátor töltését. Ekkor a tekercs két vége között $L\frac{dI}{dt}$ önindukciós feszültség, a kondenzátoron pedig Q/C feszültség lép fel, ezért Kirchoff második törvénye alapján

$$E = L\frac{dI}{dt} + \frac{Q}{C} + RI.$$

Figyelembe véve az $I = \frac{dQ}{dt} = Q'$ összefüggést, azt kapjuk, hogy

$$LQ''(t) + RQ'(t) + \frac{1}{C}Q(t) = E(t).$$

Ehhez a másodrendű differenciálegyenlethez tartozó kezdeti értékek:

$$Q(0) = Q_0,$$
 $Q'(0) = I(0) = I_0.$

Ezt a problémát a következő részben bevezetett Laplace transzformált segítségével fogjuk vizsgálni.

5.2. Valós változójú komplex függvények

Bármely (x, y), $(u, v) \in \mathbb{R}^2$ esetén legyen

$$(x, y) + (u, v) = (x + u, y + v),$$

 $(x, y) \cdot (u, v) = (xu - yv, xv + yu).$

Az \mathbb{R}^2 halmazt a fenti képletekkel definiált összeadás és szorzás műveletével *komplex számtestnek* nevezzük, és \mathbb{C} -vel jelöljük. Az i=(0,1) komplex szám a *képzetes egység*. Ha az (x,0) alakú komplex számokat azonosítjuk az x valós számmal, akkor $i^2=-1$, továbbá bármely z=(x,y) komplex szám felírható a z=x+iy algebrai alakban, ahol $x=\operatorname{Re} z$ a z szám valós része, $y=\operatorname{Im} z$ pedig z képzetes része. A z=x+iy szám abszolút értéke (modulusa)

$$|z| = \sqrt{x^2 + y^2},$$

és konjugáltja

$$\bar{z} = x - iy$$
.

Bármely $0 \neq z = x + iy$ komplex szám a

$$z = r[\cos \varphi + i \sin \varphi]$$

trigonometrikus alakban is írható, ahol r = |z|, $\varphi \in \mathbb{R}$ (z argumentuma) pedig olyan, hogy $\cos \varphi = \frac{x}{r}$ és $\sin \varphi = \frac{y}{r}$. Ha

$$z_1 = r_1 [\cos \varphi_1 + i \sin \varphi_1]$$
 és $z_2 = r_2 [\cos \varphi_2 + i \sin \varphi_2]$

két 0-tól különböző trigonometrikus alakban felírt komplex szám, akkor

$$z_1 z_2 = r_1 r_2 [\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2)],$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} [\cos(\varphi_1 - \varphi_2) + i \sin(\varphi_1 - \varphi_2)].$$

Az első összefüggésből kapjuk, hogy ha $z = r[\cos \varphi + i \sin \varphi]$ és $n \in \mathbb{N}^+$, akkor

$$z^n = r^n [\cos(n\varphi) + i\sin(n\varphi)].$$

Ez Moivre tétele.

Valós változójú komplex függvények, azaz $\mathbb{R} \to \mathbb{C}$ típusú függvények véges határértékének, folytonosságának, differenciálhatóságának és integrálhatóságának a definícióját vissza lehet vezetni a korábban már tárgyalt $\mathbb{R} \to \mathbb{R}$ típusú függvények megfelelő definíciójára. Ha $f: \mathbb{R} \to \mathbb{C}$, akkor $t \in D(f)$ esetén

$$f(t) = \operatorname{Re} f(t) + i \operatorname{Im} f(t)$$
.

A

$$(\operatorname{Re} f)(t) = \operatorname{Re} f(t), \qquad (\operatorname{Im} f)(t) = \operatorname{Im} f(t), \qquad t \in D(f),$$

képlettel definiált Re f és Im f függvény neve f valós része, illetve f képzetes része. A $c \in \mathbb{C}$ szám f határértéke az $a \in \mathbb{R}$ helyen, jelben $\lim_{t \to a} f(t) = c$, ha

$$\lim_{t \to a} (\operatorname{Re} f)(t) = \operatorname{Re} c, \qquad \text{ és } \qquad \lim_{t \to a} (\operatorname{Im} f)(t) = \operatorname{Im} c.$$

Tehát

$$\lim_{t \to a} f(t) = \lim_{t \to a} (\operatorname{Re} f)(t) + i \lim_{t \to a} (\operatorname{Im} f)(t),$$

feltéve, hogy a jobb oldalon szerepő határértékek léteznek és végesek.

Az f függvény éppen akkor folytonos az $a \in D(f)$ helyen vagy az $I \subset D(f)$ intervallumon, ha ugyanilyenek a Re f és Im f függvények.

Az f függvény differenciálhányadosa az $a \in D(f)$ helyen

$$f'(a) = (\text{Re } f)'(a) + i(\text{Im } f)'(a),$$

feltéve, hogy a jobb oldalon szereplő differenciálhányadosok léteznek.

Az f függvény éppen akkor integrálható az $[a, b] \subset \mathbb{R}$ intervallumon, ha ugyanilyenek a Re f és Im f függvények, és integrálhatóság esetén

$$\int_{a}^{b} f = \int_{a}^{b} \operatorname{Re} f + i \int_{a}^{b} \operatorname{Im} f.$$

Ha $(a, b) \subset \mathbb{R}$, akkor f(a, b)-n vett improprius integrálja éppen akkor konvergens, ha konvergensek Re f és Im f(a, b)-n vett improprius integráljai, és konvergencia esetén

$$\int_{a}^{b} f = \int_{a}^{b} \operatorname{Re} f + i \int_{a}^{b} \operatorname{Im} f.$$

A fentiekből adódik, hogy a határértékszámítás, differenciálszámítás és integrálszámítás szabályainak nagy része átvihető valós változójú komplex függvényekre is.

A továbbiakban szükségünk lesz az exponenciális függvény kiterjesztésére komplex számokra. A kiterjesztés egyik lehetséges módja: bármely $z \in \mathbb{C}$ esetén legyen

$$e^z = e^{\operatorname{Re} z} [\cos(\operatorname{Im} z) + i \sin(\operatorname{Im} z)].$$

Ez az ún. Euler-formula.

5.3. A Laplace transzformált fogalma

5.3.1. Definíció. Legyen adva egy $[0,\infty)$ -en definiált valós vagy komplex f függvény, és tegyük fel, hogy f integrálható (tágabb értelemben) a $[0,\infty)$ bármely korlátos zárt részintervallumán. Azt mondjuk, hogy az $f:[0,\infty)\to\mathbb{C}$ függvény *Laplace transzformáltja létezik* az $s\in\mathbb{C}$ helyen, ha az

$$\int_0^\infty e^{-st} f(t) \, dt$$

improprius integrál konvergens. Azt az $F: \mathbb{C} \to \mathbb{C}$ függvényt pedig, amelyet az

$$F(s) = \int_0^\infty e^{-st} f(t) dt$$

képlet definiál minden olyan $s \in \mathbb{C}$ -re, amelyre az improprius integrál konvergens, az f függvény Laplace transzformáltjának nevezzük, és $F = \mathcal{L}\{f\}$ -fel jelöljük. Az f függvény az $\mathcal{L}\{f\}$ Laplace-transzformált generátorfüggvénye.

Használatos az $\mathcal{L}\{f(t)\}(s)$ jelölés is, amely főleg akkor kényelmes, ha a generátorfüggvény nincs elnevezve, csak a képletét ismerjük.

Az $\mathcal{L}{f}$ függvény (ha létezik) komplex változójú komplex értékű függvény.

5.3.2. Definíció. Legyen $\lambda \in \mathbb{R}$. Azt mondjuk, hogy a $[0, \infty)$ -n definiált f függvény λ -exponenciálisan korlátos, ha létezik $M \geq 0$ úgy, hogy minden $t \geq 0$ esetén

$$|f(t)| < Me^{\lambda t}$$
.

Legyen Λ azoknak a $[0,\infty)$ -n definiált valós vagy komplex értékű függvényeknek a halmaza, amelyek integrálhatók $[0,\infty)$ minden zárt részintervallumán és valamely $\lambda \in \mathbb{R}$ esetén λ -exponenciálisan korlátosak.

Meg lehet mutatni, hogy a Λ-hoz tartozó függvények Laplace transzformáltja jól definiált. Pontosabban:

- **5.3.3. Tétel** (Egzisztencia tétel). Ha $f \in \Lambda$ és Res elegendően nagy, akkor az $\mathcal{L}\{f\}(s)$ Laplace-transzformált létezik.
- **5.3.4. Tétel** (Unicitás tétel). Legyen $f, g \in \Lambda$, és tegyük fel, hogy

$$\mathcal{L}{f(t)}(s) = \mathcal{L}{g(t)}(s)$$
, ha Re s elég nagy.

Ha f és g folytonosak a $[0, \infty)$ -n, akkor f(t) = g(t) minden $t \ge 0$ esetén.

5.4. A Laplace transzformált tulajdonságai

A következő tételek a Laplace-transzformált fontosabb tulajdonságait foglalják össze.

5.4.1. Tétel (Linearitás). Ha $f, g \in \Lambda$ és $a, b \in \mathbb{C}$, akkor $af + bg \in \Lambda$, és

$$\mathcal{L}\{af+bg\}(s) = a\mathcal{L}\{f\}(s)+b\mathcal{L}\{g\}(s),$$
 ha Re s elég nagy.

5.4.2. Tétel (Deriváltak transzformáltjai). Ha $f, f' \in \Lambda$, akkor

$$\mathcal{L}{f'}(s) = s\mathcal{L}{f}(s) - f(0+),$$
 ha Re s elegendően nagy,

ahol

$$f(0+) = \lim_{t \to 0+} f(t).$$

Általánosabban, ha valamely $n \in \mathbb{N}^+$ esetén $f, f' \dots, f^{(n)} \in \Lambda$, akkor

$$\mathcal{L}\{f^{(n)}\}(s) = s^n \mathcal{L}\{f\}(s) - s^{n-1} f(0+) - s^{n-2} f'(0+) - \dots - f^{(n-1)}(0+),$$

ha Re s elég nagy.

Vezessük be a következő fogalmat.

5.4.3. Definíció. Legyenek f és g a $[0, \infty)$ -n definiált komplex függvények. Tegyük fel, hogy f és g integrálható a $[0, \infty)$ bármely zárt részintervallumán. Bármely $t \in [0, \infty)$ esetén legyen

$$(f*g)(t) = \int_0^t f(t-u)g(u) du.$$

Az f * g függvényt f és g konvolúciójának nevezzük.

5.4.4. Tétel (Konvolúciós tétel). Ha f, $g \in \Lambda$, akkor $f * g \in \Lambda$, és

$$\mathcal{L}\left\{f * g\right\}(s) = \mathcal{L}\left\{f\right\}(s) \cdot \mathcal{L}\left\{g\right\}(s),$$
 ha Re s elegendően nagy.

5.4.5. Tétel (Csillapítási tétel). Legyen $f \in \Lambda$ és $z \in \mathbb{C}$. Ekkor a

$$g(t) = e^{-zt} f(t), \qquad t \in [0, \infty),$$

függvény is a Λ osztályba tartozik, és az $\mathcal{L}{f} = F$ jelöléssel

$$\mathcal{L}\left\{e^{-zt}f(t)\right\}(s) = F(s+z),$$
 ha Re s elég nagy.

A következő táblázat a Λ osztályba tartozó néhány elemi függvény Laplace transzformáltját tartalmazza.

f(t)	$F(s) = \mathcal{L}\{f(t)\}(s)$
1	$\frac{1}{s}$
t^n	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
sin bt	$\frac{b}{s^2+b^2}$
$\cos bt$	$\frac{s}{s^2+b^2}$
$e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}$
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}$
$t \sin bt$	$\frac{2bs}{(s^2+b^2)^2}$
t cos bt	$\frac{s^2 - b^2}{(s^2 + b^2)^2}$

$$(n \in \mathbb{N}, a \text{ és } b \in \mathbb{R})$$

A Laplace tanszformált differenciálegyenletekre történő alkalmazását teszi lehetővé a következő tétel.

5.4.6. Tétel. Legyen $a_0, ..., a_{n-1} \in \mathbb{R}$ és $g \in \Lambda$. Tegyük fel, hogy x a $[0, \infty)$ -en n-szer differenciálható valós függvény, továbbá

$$x^{(n)}(t) + a_{n-1}x^{(n-1)}(t) + \ldots + a_0x(t) = g(t), \quad hat > 0.$$

Ekkor $x, x', \ldots, x^{(n)} \in \Lambda$.

5.5. A soros RLC áramkör vizsgálata

Most térjünk vissza a bevezetőben tárgyalt soros RLC áramkör kapcsán felmerült

$$LQ''(t) + RQ'(t) + \frac{1}{C}Q(t) = E(t),$$

$$Q(0) = Q_0, \qquad Q'(0) = I(0) = I_0$$

kezdetiérték-feladat vizsgálatához.

Az első egyenlet mindkét oldalának Laplace transzformáltját véve kapjuk

$$Ls^{2}\mathcal{L}\{Q\}(s) - LsQ(0) - LQ'(0) + Rs\mathcal{L}\{Q\}(s) - RQ(0) + \frac{1}{C}\mathcal{L}\{Q\}(s) = \mathcal{L}\{E\}(s).$$

Innen

$$\mathcal{L}\{Q\}(s) = \Phi(s) + \Psi(s),$$

ahol

$$\Phi(s) = \frac{(Ls + R)Q_0 + LI_0}{Ls^2 + Rs + \frac{1}{C}}, \qquad \Psi(s) = \frac{\mathcal{L}\{E\}(s)}{Ls^2 + Rs + \frac{1}{C}}.$$

Vegyük észre, hogy ha ϕ az

$$Ly''(t) + Ry'(t) + \frac{1}{C}y(t) = 0,$$
 $y(0) = Q_0,$ $y'(0) = I_0$

feladat megoldása, ψ pedig az

$$Ly''(t) + Ry'(t) + \frac{1}{C}y(t) = E(t),$$
 $y(0) = 0,$ $y'(0) = 0$

feladat megoldása, akkor

$$\mathcal{L}\{\phi(t)\}(s) = \Phi(s)$$
 és $\mathcal{L}\{\psi(t)\}(s) = \Psi(s)$,

azaz $Q = \phi + \psi$.

Most tekintsük a kezdetiérték-feladat 4 speciális esetét.

1. eset: Tegyük fel, hogy áramkörben levő elemek ellenállása 0 (ún. LC kör), azaz R = 0, és nincs külső feszültség a rendszeren (E(t) = 0), azaz feltöltjük egy teleppel a kondenzátort, majd a telepet lekapcsoljuk az áramkörről:

Ekkor a differenciálegyenlet alakja:

$$LQ''(t) + \frac{1}{C}Q(t) = 0.$$

Amint azt már beláttuk,

$$\mathcal{L}{Q}(s) = \Phi(s) = \frac{L(sQ_0 + I_0)}{Ls^2 + \frac{1}{C}}.$$

Vezessük be az

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

jelölést. Ekkor

$$\mathcal{L}\{Q\}(s) = Q_0 \frac{s}{s^2 + \omega_0^2} + \frac{I_0}{\omega_0} \frac{\omega_0}{s^2 + \omega_0^2},$$

és ezért

$$Q(t) = \phi(t) = Q_0 \cos \omega_0 t + \frac{I_0}{\omega_0} \sin \omega_0 t.$$

Tehát a rendszer egy ω_0 frekvenciájú szabadrezgést végez. (Az ω_0 számot a rendszer *saját-frekvenciájának* nevezzük.)

2. eset: Tegyük fel, hogy R=0, $Q_0=0$, $I_0=0$, és $E(t)=E_0\cos\omega t$ külső feszültség hat a rendszerre, ahol $\omega\neq\omega_0$, $E_0\in\mathbb{R}$. Ekkor

$$\mathcal{L}\{Q\}(s) = \Psi(s) = \frac{E_0}{L\omega_0} \frac{\omega_0}{s^2 + \omega_0^2} \frac{s}{s^2 + \omega^2},$$

és ezért a konvolúciós és unicitás tétel szerint

$$\begin{split} Q(t) &= \psi(t) \\ &= \frac{E_0}{L\omega_0} \int_0^t \sin(\omega_0(t-u)) \cos \omega u \, du \\ &= \frac{E_0}{2L\omega_0} \int_0^t \left(\sin(\omega_0(t-u) + \omega u) + \sin(\omega_0(t-u) - \omega u) \right) du \\ &= \frac{E_0}{2L\omega_0} \left(\frac{\cos \omega t - \cos \omega_0 t}{\omega_0 - \omega} + \frac{\cos \omega t - \cos \omega_0 t}{\omega_0 + \omega} \right) \\ &= \frac{E_0}{L(\omega_0^2 - \omega^2)} (\cos \omega t - \cos \omega_0 t) \\ &= \frac{2E_0}{L(\omega_0^2 - \omega^2)} \sin \frac{(\omega_0 - \omega)t}{2} \sin \frac{(\omega_0 + \omega)t}{2}. \end{split}$$

Ha $|\omega_0 - \omega|$ kicsi, akkor $\omega_0 + \omega > |\omega_0 - \omega|$, és így a megoldás utóbbi képletét úgy is tekinthetjük, hogy az egy gyorsan oszcilláló függvény, sin $\frac{(\omega_0 + \omega)t}{2}$, amelynek az amplitúdója,

$$\frac{2E_0}{L(\omega_0^2 - \omega^2)} \sin \frac{(\omega_0 - \omega)t}{2}$$

lassan oszcillál. Ezt a jelenséget *lebegésnek* hívják, amely tehát akkor figyelhető meg, ha a külső erő frekvenciája közel megegyezik a rendszer sajátfrekvenciájával. Egy ilyen megoldás grafikonja látható a következő ábrán:

3. eset: Tegyük fel, hogy R = 0, $Q_0 = 0$, $I_0 = 0$, és $E(t) = E_0 \cos \omega_0 t$, azaz a rendszer sajátfrekvenciájával megegyező frekvenciájú külső erő hat a rezgőkörre. Ekkor

$$\mathcal{L}{Q}(s) = \Psi(s) = \frac{E_0}{L\omega_0} \frac{\omega_0}{s^2 + \omega_0^2} \frac{s}{s^2 + \omega_0^2},$$

és ezért a konvolúciós tétel szerint

$$\begin{split} Q(t) &= \psi(t) \\ &= \frac{E_0}{L\omega_0} \int_0^t \sin(\omega_0(t-u)) \cos \omega_0 u \, du \\ &= \frac{E_0}{2L\omega_0} \int_0^t \Bigl(\sin(\omega_0(t-u) + \omega_0 u) + \sin(\omega_0(t-u) - \omega_0 u) \Bigr) du \\ &= \frac{E_0}{2L\omega_0} t \sin \omega_0 t. \end{split}$$

Egy olyan oszcilláló megoldást kaptunk, amelynek amplitúdója tart végtelenbe, ha $t \to \infty$. Ezt a jelenséget *rezonanciának* hívják.

4. eset: Tegyük fel, hogy R = 0, $Q_0 \in \mathbb{R}$, $I_0 \in \mathbb{R}$, és $E(t) = E_0 \cos \omega t$ külső feszültség hat a rendszerre, ahol $\omega \neq \omega_0$, $E_0 \in \mathbb{R}$. Ekkor a megoldás az 1. és 2. esetben kiszámított két függvény összege lesz:

$$Q(t) = Q_0 \cos \omega_0 t + \frac{I_0}{\omega_0} \sin \omega_0 t + \frac{E_0}{L(\omega_0^2 - \omega^2)} (\cos \omega t - \cos \omega_0 t).$$

Irodalomjegyzék

- [1] Borrelli, R. L.-Coleman, C. S.: Differential Equations. A Modeling Perspective. John Wiley & Sons, New York, 1996
- [2] Császár Ákos: Valós analízis I. Tankönyvkiadó, Budapest, 1988
- [3] Hatvani László: Kalkulus közgazdászoknak. Polygon, Szeged, 2006
- [4] Koltay László és Szalkai István: *Analízis I. feladatgyűjtemény*. Pannon Egyetemi Kiadó, 2009
- [5] Laczkovich Miklós-T. Sós Vera: Analízis I. Nemzeti Tankönykiadó, Budapest, 2005