Capstone #2 -- Examining and Predicting Fake News

Introduction

The problem of fake online news is a persistent problem problem in contemporary society, impacting politics and society. Many NLP and machine learning scholars have researched this increasingly important problem and have developed highly-technical, insightful analyses. In this project, I examine the problem of fake news classification, by analyzing a large dataset of scraped news articles using various Python libraries. Using the large fake news dataset scraped by Maciej Szpakowski available at

https://github.com/several27/FakeNewsCorpus , I sample a subset of news articles and perform text analysis on them. This project is relevant to people who are interested in how text analysis approaches can aid in the way we understand contemporary online journalism.

Data Cleaning and Pre-processing

Initial sampling and EDA

The corpus that I used includes over 20 million articles. Because of considerations regarding time and processing power, I first decided to sample 10,000 articles for my analysis. While performing initial EDA on the corpus, it became apparent that all articles were categorized into 12 different news types (Fig. 1).

Fig 1.

Upon inspecting each of these news types, some issues began to emerge. Namely, all articles from any given source were given a particular label without consideration of individual articles. For example, all articles from nytimes.com were labelled as "reliable," all articles from "beforeitsnews.com" were labelled as 'fake', and all articles from "sputniknews.com" were labelled as "bias". Figure 2 shows the top ten news sources from particular web domains represented in the dataset.

Fig. 2

While the vast majority of articles from The New York Times can likely be considered reliable, some of the labelling of other various news sources seems to present some issues in the data. For example, all articles from 'dailykos.com' were labelled as 'political' (Fig. 5), all articles from 'express.co.uk' were labelled as 'rumor (Fig. 6)', and all articles from 'sputniknews.com' (Fig. 7) were labelled as 'bias.' Is every single article from each of these sources inherently more political or biased than articles from sources labelled as 'reliable'? Because of the issues presented with the labelling, I decided to resample from the original dataset.

Fig. 3

Fig. 4

News Category

Fig. 5

Fig. 6

Fig. 7

Initial sampling

Due to the inherent biases in the dataset for the labelled categories 'junksci', 'bias', etc., it was initially decided to resample the dataset by including data from the two categories 'fake' and 'reliable'. Although there are issues with designating all articles from certain sources with the labels 'fake' or 'reliable', the sources used with these labels seem to be more consistent than with the other labels -- nytimes.com is, for the most part, reliable, whereas, a major website represented in the data, beforeitsnews.com, is not.

EDA of Sampled Data

The sampled data contains 10,000 articles labelled 'reliable' and 10,000 labelled 'fake'. The majority of these 20,000 articles were from nytimes.com (labelled as 'reliable') and beforeitsnews.com (labelled as 'fake'). There were, however, 141 difference online news sources represented in the data (Fig. 9).

Fig 8.

Fig. 9

Sentiment Analysis

The nltk Vader Sentiment Intensity Analyzer and TextBlob were used to analyze polarity in the corpora. Documents were labeled 1 (positive) if their score was greater than 0.2 (on the - 1 to 1 scale used by both libraries), -1 (negative) if the score was less than -0.2, and neutral if it was between them.

Textblob was also used to calculate subjectivity scores. The scale for subjectivity scores is -1 to 1. Documents were labeled 1 (biased) if their subjectivity score was greater than 0.55, and -1 (unbiased) if the score was less than 0.45, and 0 if the score was between 0.45 and 0.55.

Polarity scores

	Label	SIA Polarity	TextBlob Polarity	TextBlob
		Score	Score	Subjectivity
Fake News	1	5468	983	1128
	-1	3013	67	5784
	0	5013	7944	3088
Reliable News	1	6721	1175	762
	-1	2581	73	6800
	0	698	8752	2438

The averages of all the scores taken for both the 'fake news' and 'reliable news' in the sampled data are as follows:

Fake

Textblob average polarity score: 0.105032

Textblob average subjectivity score: 0.4175212

SIA compound average: 0.22

SIA negative average: 0.072

SIA neutral average: 0.83

SIA positive average: 0.92

Reliable

Textblob average polarity score: 0.098

Textblob average subjectivity score: 0.407

SIA compound average: 0.377

SIA negative average: 0.059

SIA neutral average: 0.84

SIA positive average: 0.092

Additionally, 23% of the articles labeled 'fake' had a subjectivity score higher than or equal to .5, whereas only 17% of the articles labeled 'reliable' had such a value.

Predictive Modeling

The data was divided into a training and testing set. A multinomial naive Bayes classifier was trained using sckit-learn, and then used to predict the labels for the testing data. Accuracy varied depending on vectorization approach:

Bag-of-words

Predictions were 88.1% accurate

Tf-idf

Predictions were 88.9% accurate

Tf-idf with two bigrams

Predictions were 92.2% accurate.

There may be some issues with this model, linked with the data itself. Inspecting the most predictive features revealed, for example, that some of the most predictive bigrams for classification were 'york time' and 'york citi'. This is due to the over-representation of The New York Times as news labelled as 'reliable' in the dataset.

In order to deal with the problem of the over representation of articles from the New York Times in the dataset, the data was resampled to get a more varied distribution of article sources.

Analysis after Resampling

The New York Times and Beforeitsnew.com were vastly overrepresented in the dataset. While there were 141 different domains represented, the vast majority of documents come from one of two domains.

'Domain' Counts in Initially Sampled Data

Because the domains were so unbalanced, undersampling was performed to somewhat rectify this problem. The New York Times and beforeitsnews.com were undersampled to 100 random articles. After this, the distribution of domains was more balanced.

'Domain' Counts in Undersampled Data

Because The New York Times and beforeitsnews.com were so overrepresented in the initial dataset, undersampling them left the dataset with only 3410 article, which is a potential problem. In any case, a multinomial Naïve Bayes was trained on the newly sampled data, and new accuracies were observed. Again, accuracy varied depending on the vectorization approach:

Bag-of-words

Predictions were 79.4% accurate

Tf-idf

Predictions were 65.9% accurate

Tf-idf with two bigrams

Predictions were 92.2% accurate.

It is clear from looking at the informative features that document source is still playing a large role in predicting whether a given document is 'fake' or 'relaliable'. Even after resampling, some of the most informative features for td-idf with bigrams were "new york", "associ press", and "thomson reuter". This indicates that document source is highly relevant in determining whether a document is predicting as being 'fake' or 'reliable'

Multi-class Classifier

Additionally, a multi-class classifier was built to include other classes than 'fake' and 'reliable' from the initial dataset. The categories of 'bias' and 'political' were also include, as these are the next largest types represented in the dataset. A multinomial Naïve Bayes classifier was built, using count_vectorizer(), which yielded 68% accuracy. As the heat map in Figure 12 shows, the classifier most accurately predicted the category of documents that had been labelled as "reliable".

Fig. 12

Conclusion

The most significant finding from the sentiment analysis of documents labelled 'fake' or 'reliable' from the dataset was that 23% of the articles labeled 'fake' had a subjectivity score higher than or equal to .5, whereas only 17% of the articles labeled 'reliable' had this high of a subjectivity score. It seemed that the TextBlob subjectivity score was more important than the polarity score in distinguishing between 'reliable' and 'fake' documents.

In the predictive analysis, various classifiers using different vectorization techniques were fairly accurate in determining whether a document from the testing data was labelled as 'fake' or 'reliable'. An inspect of the most informative features indicated, however, the terms linked to document source were particularly important in determining which class a given document belonged to. This indicates that words linked to what source an article came from may be more important than other words in determining whether it will be classified as 'fake' or 'reliable'.

Lastly, a multi-class Naïve Bayes classifier was built to predict the four labels of 'fake', 'reliable', 'bias', and 'political', found in the dataset. The classifier performed best at predicting the 'reliable' label for documents in the testing data.