2022年4月高等教育白学考试全国统一命题考试

概率论与数理统计(二)

(课程代码 02197)

注意事项:

- 1. 本试卷分为两部分、第一部分为选择题、第二部分为非选择题。
- 2. 应考者必须按试题顺序在答题卡(纸)指定位置上作答,答在试卷上无效。
- 3. 涂写部分、画图部分必须使用 2B 铅笔、书写部分必须使用黑色字迹签字笔。

第一部分 选择题

- 一、单项选择题: 本大题共 10 小题, 每小题 2 分, 共 20 分。在每小题列出的备选项中只 有一项是最符合题目要求的, 请将其选出。
- 1. 在区间(0,1)与(1,2)中各随机取一个数,则两数之和大于 $\frac{7}{4}$ 的概率为
- A. $\frac{9}{32}$ B. $\frac{11}{32}$ C. $\frac{21}{32}$ D. $\frac{23}{32}$
- 2. 设 $f_1(x)$ 为区间[-1,2]上的均匀分布的概率密度, $f_2(x)$ 为标准正态分布的概率密度,

若
$$f(x) = \begin{cases} af_1(x), & x \leq 0, \\ bf_2(x), & x > 0, \end{cases}$$
 (常数 $a > 0, b > 0$) 为概率密度,则 a, b 应满足

- A. 3a+2b=6 B. 2a+3b=6 C. a+b=1 D. a+b=2

- 3. 设随机变量 X = Y 独立同分布,其概率分布为 $P\{X = 0\} = P\{X = 1\} = \frac{1}{2}$, 则 $P\{X=Y\}=$

 - A. 0 B. $\frac{1}{4}$ C. $\frac{1}{2}$ D. 1
- 4. 设随机变量 X 的分布函数为 $F(x) = \begin{cases} 0, & x < -2, \\ \frac{1}{3}, & -2 \le x < 1, \quad \text{则 } X \text{ 的数学期望 } E(X) = 1, \\ 1, & x \ge 1, \end{cases}$
- A. 0 B. $\frac{1}{3}$ C. $\frac{2}{3}$ D. 1

概率论与数理统计(二)试题 第1页(共5页)

来源网站:www.zikaocs.com 历年直题, 自考资料, 自考视频网课

- 5. 设二维随机变量(X,Y)服从二维正态分布N(0,2;4,9;0.5),则D(X-3Y+2)=
- B. 33
- C. 67
- 6. 设在每次试验中事件 A 发生的概率为 0.75, 且已知事件 A 在 n 次独立重复试验中出 现的频率在0.74~0.76之间的概率至少为0.9,则利用切比雪夫不等式可得试验次 数n至少为
 - A. 17
- B. 186
- C. 1875
- D. 18750
- 7. 设随机变量 X 服从自由度为n的t分布,且n>1,记 $Y=\frac{1}{Y^2}$,则Y的概率分布为
 - A. F(n,1)
- B. F(1,n) C. N(0,1) D. $\gamma^{2}(n)$
- 8. 设随机变量 X 服从区间 $(0,\theta)$ 上的均匀分布, X_1,X_2,\cdots,X_n 为来自 X 的样本, \bar{X}_1,S^2 分别为样本均值和样本方差,则未知参数 θ 的极大似然估计为
 - A. $2\bar{X}$

- B. S^2
- C. $\min(X_1, X_2, \dots, X_n)$ D. $\max(X_1, X_2, \dots, X_n)$
- 9. 甲乙二人同时使用 t 检验法检验同一个假设 H_0 : $\mu = \mu_0$, 甲的检验结果是拒绝 H_0 , 乙的检验结果是接受 H_0 ,则以下叙述中错误的是
 - A. 在检验中, 甲有可能犯第一类错误
 - B. 在检验中, 乙有可能犯第一类错误
 - C. 上面结果可能是各自选取的显著性水平不同而得出的
 - D. 上面结果可能是各自抽取的样本不同而得出的
- 10. 设随机变量 $X \sim N(\mu, \sigma^2)$, 其中 μ, σ^2 都未知, X_1, X_2, \cdots, X_n (n > 1) 为来自总体 X 的 样本,记 \overline{X} 为样本均值, $Q^2 = \sum_{i=1}^n (X_i - \overline{X})^2$,则假设 $H_0: \mu = 0$ 的t检验使用的统计

A. $\frac{\overline{X}}{\sqrt{n(n-1)}Q}$ B. $\frac{\overline{X}}{Q}\sqrt{n(n-1)}$ C. $\frac{\overline{X}}{\sqrt{n}Q}$ D. $\frac{\overline{X}}{Q}\sqrt{n}$

量表达式为

第二部分 非选择题

二、填空题: 本大题共 15 小题, 每小题 2 分, 共 30 分。

- 12.9张电影票中有4张为头等座票,随机发给先后到来的9个人,第二个到的人拿到 头等座票的概率为_____.
- 13. 设 A, B 是两个事件, 且 P(A) = 0.3, P(B|A) = 0.4, P(A|B) = 0.6,则 $P(A \cup B) =$
- 14. 设X 服从[2,9]上的均匀分布,则P{1 < X < 5} = ______.
- 15. 设随机变量 X 的概率密度为 $f(x) = \frac{1}{2}e^{-|x|}, (-\infty < x < +\infty)$,则当 $x \ge 0$ 时, X 的分布函数 $F(x) = ______.$
- 16. 某校体检表明学生的身高 X (单位: m) 服从正态分布,学生平均身高为1.70m,若身高的标准差为 0.08m,则 $P\{1.62 < X < 1.78\}=$ ______. (附: $\Phi(x)$ 为标准正态分布函数, $\Phi(1) = 0.841$)
- 17. 设随机变量 X 与 Y 都服从区间 [0,4] 上的均匀分布,且 $P\{X \le 3, Y \le 3\} = \frac{9}{16}$,则 $P\{X > 3, Y > 3\} = \underline{\hspace{1cm}}$.
- 18. 设随机变量 X 与 Y 相互独立,已知 X 服从参数为 1 的指数分布, $P\{Y=-1\}=\frac{3}{4}$, $P\{Y=1\}=\frac{1}{4}, \ \, 则\ P\{2X\leqslant Y+3\}=\underline{\hspace{1cm}}.$
- 19. 设随机变量 X 服从参数为 2 的泊松分布, Y 服从参数为 3 的指数分布,则 E(X-3Y+1)=______.
- 20. 设a为区间 (0,1) 内的一个定点,随机变量 X 服从区间 [0,1] 上的均匀分布,以 Y 表示 X 到a 的距离,若 $E(Y) = \frac{1}{4}$,则 a =______.
- 21. 己知随机变量 $X \sim B\left(16, \frac{1}{2}\right)$, Y 服从参数为 4 的泊松分布, D(X-Y)=2,则 Cov(X,Y)=______.

概率论与数理统计(二)试题 第3页(共5页)

来源网站:www.zikaocs.com 历年真题,自考资料,自考视频网课

- 22. 设 $X_1, X_2, \cdots, X_{100}$ 是来自总体X 的样本,若 $P\{X=0\}=0.8$, $P\{X=1\}=0.2$,则依据中心极限定理将概率 $P\left\{\sum_{i=1}^{100}X_i \leqslant 28\right\}$ 用标准正态分布函数 $\Phi(x)$ 近似表示为______.
- 23. 设随机变量 X 的分布律为 $\frac{X \mid 0}{P \mid 1-3\theta \mid \theta \mid 2\theta}$, $X_1, X_2, ..., X_n$ 是来自总体 X 的样本, \bar{X} 是样本均值,则 θ 的矩估计为______.
- 24. 设 $X \sim N(\mu, \sigma^2)$, X_1, X_2, X_3 为来自总体 X 的样本,则 $\hat{\mu}_1 = \frac{1}{3}X_1 + \frac{1}{4}X_2 + \frac{1}{4}X_3$, $\hat{\mu}_2 = \frac{1}{5}X_1 + \frac{2}{5}X_2 + \frac{2}{5}X_3$, $\hat{\mu}_3 = \frac{1}{3}\sum_{i=1}^{3}X_i$ 作为 μ 的估计量,有效估计量是______.
- 25. 设 X_1, X_2, \cdots, X_{16} 是来自总体 $X \sim N(\mu, 1)$ 的样本,考虑检验假设问题 $H_0: \mu = 2$,若检验的拒绝域为 $W = \{\bar{X} \geqslant 2.6\}$,则检验犯第一类错误的概率为______. (附: $\Phi(x)$ 为标准正态分布函数, $\Phi(2.4) = 0.9918$)
- 三、计算题: 本大题共2小题, 每小题8分, 共16分。
- 26. 设某地区成年居民中偏胖者占10%,不胖不瘦者占82%,偏瘦者占8%,又知偏胖者患高血压病的概率为20%,不胖不瘦者患高血压病的概率为10%,偏瘦者患高血压病的概率为5%.
 - (1) 求该地区成年居民患高血压病的概率;
 - (2) 现知该地区某一成年居民患有高血压病,求其是偏胖者的概率.
- 27. 设二维随机变量 (X,Y) 的概率密度为 $f(x,y) = \begin{cases} ax^2, & 0 \le x \le 1, 0 \le y \le 3, \\ 0, & \text{其他,} \end{cases}$ 求: (1) 常数 a; (2) $P\{X+Y>1\}$.
- 四、综合题: 本大题共 2 小题, 每小题 12 分, 共 24 分。
- 28. 设随机变量 X 的概率密度为 $f_X(x) = \begin{cases} 4x^3, & 0 \le x \le 1, \\ 0, & \text{其他,} \end{cases}$
 - 求: (1) X 的分布函数 F(x); (2) $P\left\{\frac{1}{4} \le X \le \frac{1}{2}\right\}$; (3) Y 的概率密度 $f_Y(y)$.

概率论与数理统计(二)试题 第4页(共5页)

29. 设二维随机变量(X,Y)的分布律为

Y	1	2	3
1	$\frac{1}{6}$	$\frac{1}{9}$	118
2	$\frac{1}{3}$	а	b

- (1) 当a,b为何值时,X与Y不相关;
- (2) 当 X 与 Y 不相关时,分别求关于 X Y 的边缘分布律,并判断 X 与 Y 是否相互独立?
- (3) 求X+Y的分布律及 $P{X+Y \leq 3}$.

五、应用题:本题 10 分。

- 30. 设某人群的体重X (单位: kg) $\sim N(\mu, \sigma^2)$, 现从该人群中随机抽取 9 个人,其体重分别为: 60, 63, 75, 75, 60, 60, 68, 68, 65.
 - 求: (1) 样本均值 \bar{x} 及样本方差 s^2 ;
 - (2) 总体均值 μ 的置信度为 95%的置信区间. (附: $t_{0.025}(8)=2.306$)

来源网站:www.zikaocs.com 历年真题,自考资料,自考视频网课