from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

In []:

cd /content/drive/MyDrive/Colab Notebooks
/content/drive/MyDrive/Colab Notebooks

In []:

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns
sns.set_style('darkgrid')
sns.set(font_scale=1.3)

ds = pd.read excel('Churn Modelling.xlsx')

ds

													O	ut[]:
	Ro wN um ber	Cus tom erI d	Su rn a me	Cre dit Sco re	Ge ogr ap hy	G en de r	A g e	T en ur e	Ba lan ce	Num OfPr oduc ts	Has Cr Car d	IsAct iveM embe r	Esti mate dSal ary	E xi te d
0	1.0	156 346 02. 0	Ha rgr av e	619 .0	Fra nce	Fe m al e	4 2 0	2. 0	0.0	1.0	1.0	1.0	1013 48.88	1. 0
1	2.0	156 473 11. 0	Hil 1	608	Spa in	Fe m al e	4 1	1. 0	83 80 7.8 6	1.0	0.0	1.0	1125 42.58	0.
2	3.0	156 193 04. 0	On io	502	Fra nce	Fe m al e	4 2 0	8. 0	15 96 60. 80	3.0	1.0	0.0	1139 31.57	1. 0
3	4.0	157 013 54. 0	Bo ni	699 .0	Fra nce	Fe m al e	3 9 0	1. 0	0.0	2.0	0.0	0.0	9382 6.63	0. 0

	Ro wN um ber	Cus tom erI d	Su rn a me	Cre dit Sco re	Ge ogr ap hy	G en de r	A g e	T en ur e	Ba lan ce	Num OfPr oduc ts	Has Cr Car d	IsAct iveM embe r	Esti mate dSal ary	E xi te d
4	5.0	157 378 88. 0	Mi tch ell	850 .0	Spa in	Fe m al e	4 3 0	2. 0	12 55 10. 82	1.0	1.0	1.0	7908 4.10	0.
••						•••		•••		•••		•••		•••
9 9 9 5	999 6.0	156 062 29. 0	Ob ijia ku	771 .0	Fra nce	M al e	3 9 0	5. 0	0.0	2.0	1.0	0.0	9627 0.64	0.
9 9 9 6	999 7.0	155 698 92. 0	Jo hn sto ne	516 .0	Fra nce	M al e	3 5	10 .0	57 36 9.6 1	1.0	1.0	1.0	1016 99.77	0.
9 9 9 7	999 8.0	155 845 32. 0	Li u	709 .0	Fra nce	Fe m al e	3 6	7. 0	0.0	1.0	0.0	1.0	4208 5.58	1. 0
9 9 9 8	999 9.0	156 823 55. 0	Sa bb ati ni	772 .0	Ger ma ny	M al e	4 2 0	3.	75 07 5.3 1	2.0	1.0	0.0	9288 8.52	1. 0
9 9 9	100 00.0	156 283 19. 0	W alk er	792 .0	Fra nce	Fe m al e	2 8 0	4. 0	13 01 42. 79	1.0	1.0	0.0	3819 0.78	0. 0

10000 rows × 14 columns

sns.histplot(x='Geography',data=ds)

In []:

Out[]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f133173a450>

In []:

sns.swarmplot(x="Geography", y="CreditScore", data=ds)

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py: 1296: UserWarning: 87.5% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot. warnings.warn(msg, UserWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py: 1296: UserWarning: 76.0% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot. warnings.warn(msg, UserWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py: 1296: UserWarning: 75.9% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot. warnings.warn(msg, UserWarning)

Out[]:

<matplotlib.axes. subplots.AxesSubplot at 0x7f1331755710>

sns.pairplot(ds)

<seaborn.axisgrid.PairGrid at 0x7f133111e9d0>

In []:

ds.head()

0

In []:

													U	սւլյ
	Ro wN um ber	Cus tom erI d	Su rn a me	Cre ditS cor e	Ge ogr aph y	G en de r	A g e	T en ur e	Bal an ce	Num OfPr oduct s	Has Cr Car d	IsAct iveM embe r	Esti mate dSala ry	E xi te d
)	1.0	156 346 02.0	Ha rgr av e	619. 0	Fra nce	Fe m al e	4 2 0	2. 0	0.0	1.0	1.0	1.0	1013 48.88	1. 0

	Ro wN um ber	Cus tom erI d	Su rn a me	Cre ditS cor e	Ge ogr aph y	G en de r	A g e	T en ur e	Bal an ce	Num OfPr oduct s	Car Car	r ive	M	Es mat dSal r	te	E xi te d
1	2.0	156 473 11.0	Hil 1	608. 0	Spa in	Fe m al e	4 1	1. 0	83 80 7.8 6	1.0	0.0) 1	1.0	112 42.5		0.
2	3.0	156 193 04.0	On io	502. 0	Fra nce	Fe m al e	4 2	8. 0	15 96 60. 80	3.0	1.0) (0.0	113 31.5		1. 0
3	4.0	157 013 54.0	Bo ni	699. 0	Fra nce	Fe m al e	3 9 0	1. 0	0.0	2.0	0.0) (0.0	938 6.6		0. 0
4	5.0	157 378 88.0	Mi tch ell	850. 0	Spa in	Fe m al e	4 3 0	2.	12 55 10. 82	1.0	1.0) 1	1.0	790 4.1		0.
ds.	desc	ribe	()												lr	n []:
	Row Nu mbe	on e r	ne	Cre ditS core	Age	Ten ure		Bala nce	Nur Off odu	er C	rC	IsActi veMe mber	at	stim edS lary		ut[]: xit ed
c o u n t	1000 0.00 000	000	00	1000 0.00 0000	1000 0.00 0000	1000 0.00 0000	(1000 0.000 000	1000	00	00 0.0 000 0	10000 .0000 00		0000	0	000 00. 000
m e a	5000	909	94 5	650. 5288	38.9 2180	5.01 2800	4	7648 5.889 288	1.53 20		70 50	0.515 100	0.	009 239 881		.20

n

00

e+07

00

0

288

881

	Row Nu mbe r	Cust ome rId	Cre ditS core	Age	Ten ure	Bala nce	Num OfPr oduct s	Has CrC ard	IsActi veMe mber	Estim atedS alary	Exit ed
st d	2886 .895 68	7.19 3619 e+04	96.6 5329 9	10.4 8780 6	2.89 2174	6239 7.405 202	0.581 654	0.45 584	0.499 797	57510 .4928 18	0.40 2769
m in	1.00 000	1.55 6570 e+07	350. 0000 00	18.0 0000 0	0.00	0.000	1.000	0.00	0.000	11.58 0000	0.00
2 5 %	2500 .750 00	1.56 2853 e+07	584. 0000 00	32.0 0000 0	3.00 0000	0.000	1.000	0.00	0.000	51002 .1100 00	0.00 0000
5 0 %	5000 .500 00	1.56 9074 e+07	652. 0000 00	37.0 0000 0	5.00 0000	9719 8.540 000	1.000	1.00 000	1.000 000	10019 3.915 000	0.00 0000
7 5 %	7500 .250 00	1.57 5323 e+07	718. 0000 00	44.0 0000 0	7.00 0000	1276 44.24 0000	2.000	1.00 000	1.000	14938 8.247 500	0.00 0000
m a x	1000 0.00 000	1.58 1569 e+07	850. 0000 00	92.0 0000 0	10.0 0000 0	2508 98.09 0000	4.000 000	1.00 000	1.000	19999 2.480 000	1.00 0000
ما م	al -										In []:

ds.dtypes

RowNumber	float64
CustomerId	float64
Surname	object
CreditScore	float64
Geography	object
Gender	object
Age	float64
Tenure	float64
Balance	float64
NumOfProducts	float64
HasCrCard	float64
IsActiveMember	float64

EstimatedSalary float64 Exited float64

dtype: object

ds.skew()

In []:

/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:1 : FutureWarning: Dropping of nuisance columns in DataFrame red uctions (with 'numeric only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

"""Entry point for launching an IPython kernel.

Out[]: RowNumber 0.000000 CustomerId 0.001149 -0.071607CreditScore Age 1.011320 Tenure 0.010991 -0.141109Balance NumOfProducts 0.745568 HasCrCard -0.901812IsActiveMember -0.060437 EstimatedSalary 0.002085 Exited 1.471611 dtype: float64

ds.isnull().any()

Out[]:

In []:

RowNumber False CustomerId False False Surname CreditScore False Geography False Gender False False Age False Tenure Balance False NumOfProducts False HasCrCard False IsActiveMember False EstimatedSalary False Exited False dtype: bool

6.

In []:

ds['CreditScore'].describe()

Out[]:

count 10000.000000

```
mean
           650.528800
            96.653299
std
min
           350.000000
25%
           584.000000
50%
           652.000000
           718.000000
75%
           850.000000
Name: CreditScore, dtype: float64
                                                               In []:
ds['Age'].describe()
                                                              Out[]:
         10000.000000
count
             38.921800
mean
std
             10.487806
            18.000000
min
25%
             32.000000
50%
             37.000000
75%
            44.000000
            92.000000
max
Name: Age, dtype: float64
                                                               In []:
ds['Balance'].describe()
                                                              Out[]:
          10000.000000
count
mean
          76485.889288
std
          62397.405202
min
               0.000000
25%
               0.000000
          97198.540000
50%
75%
         127644.240000
         250898.090000
max
Name: Balance, dtype: float64
                                                               In []:
l=['Balance','Age','CreditScore']
for i in 1:
  a=ds[i].quantile(0.1)
  b=ds[i].quantile(0.9)
ds=ds[(ds[i] < b) & (ds[i] > a)]
                                                               In []:
ds['CreditScore'].describe()
                                                              Out[]:
count
         7995.000000
          650.995497
mean
std
           66.328034
          522.000000
min
25%
          599.000000
50%
          652.000000
75%
          704.000000
```

```
777.000000
max
Name: CreditScore, dtype: float64
                                                            In []:
ds['Balance'].describe()
                                                           Out[]:
          7995.000000
count
          76183.940614
mean
          62412.914155
std
min
              0.000000
25%
              0.000000
         96858.350000
50%
75%
        127530.095000
max
         250898.090000
Name: Balance, dtype: float64
                                                            In []:
ds['Age'].describe()
                                                           Out[]:
        7995.000000
count
mean
          38.881301
std
          10.465870
          18.000000
min
25%
          32.000000
50%
          37.000000
75%
          44.000000
          92.000000
Name: Age, dtype: float64
7.
                                                            In [ ]:
from sklearn.preprocessing import LabelEncoder
encoder=LabelEncoder()
for i in ds:
 if ds[i].dtype=='object':
  ds[i]=encoder.fit transform(ds[i])
ds.head()
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:5
: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFr
ame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.or
g/pandas-docs/stable/user guide/indexing.html#returning-a-view
-versus-a-copy
  11 11 11
                                                           Out[]:
```

	Ro wN um ber	Cus tom erI d	Su rn a me	Cre ditS cor e	Ge ogr aph y	G en de r	A g e	T en ur e	Bal an ce	Num OfPr oduct s	Has Cr Car d	IsAct iveM embe r	Esti mate dSala ry	E xi te d
0	1.0	156 346 02.0	10 11	619. 0	0	0	4 2	2. 0	0.0	1.0	1.0	1.0	1013 48.88	1. 0
1	2.0	156 473 11.0	10 60	608.	2	0	4 1	1. 0	83 80 7.8 6	1.0	0.0	1.0	1125 42.58	0. 0
3	4.0	157 013 54.0	26 4	699. 0	0	0	3 9 0	1. 0	0.0	2.0	0.0	0.0	9382 6.63	0. 0
5	6.0	155 740 12.0	49	645. 0	2	1	4 4 0	8. 0	11 37 55. 78	2.0	1.0	0.0	1497 56.71	1.
9	10.0	155 923 89.0	97 8	684. 0	0	1	2 7	2.	13 46 03. 88	1.0	1.0	1.0	7172 5.73	0. 0

8.

In []:

ds.shape
 (3354, 14)
x = ds.ilog

x = ds.iloc[:,:13]
y = ds.iloc[:,13]

x.head()

	Row Nu mbe r	Cus tom erId	Su rn am e	Cre ditS core	Geo gra phy	G en de r	A g e	Te nu re	Bal anc e	Num OfPr oduct s	Has Cr Car d	IsActi veMe mber	Estim atedS alary
0	1.0	156 346 02.0	10 11	619. 0	0	0	4 2	2.	0.0	1.0	1.0	1.0	10134 8.88
1	2.0	156 473 11.0	10 60	608. 0	2	0	4 1	1. 0	838 07. 86	1.0	0.0	1.0	11254 2.58
3	4.0	157 013 54.0	26 4	699. 0	0	0	3 9 0	1. 0	0.0	2.0	0.0	0.0	93826 .63
5	6.0	155 740 12.0	49 2	645. 0	2	1	4 4 0	8. 0	113 755 .78	2.0	1.0	0.0	14975 6.71
9	10.0	155 923 89.0	97 8	684. 0	0	1	2 7 0	2. 0	134 603 .88	1.0	1.0	1.0	71725 .73
у.1	nead()											In []:
0 1 3 5 9 Nar 9 .	1 0.0 3 0.0 5 1.0 9 0.0 Name: Exited, dtype: float64												
fr	In []:										In []:		

from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x = sc.fit_transform(x)

<pre>from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2, random_state=0) x_train.shape</pre>	In []:
(6396, 13)	Out[]:
	In []:
y_train.shape	Out[]:
(6396,)	In []:
x_test.shape	ш [].
(1599, 13)	Out[]:
y test.shape	In []:
	Out[]:
(1599,)	