Softmax

Dear Professor: Mr.Manthouri

Produced By: Ghasemi, morteza

https://github.com/Morteza-Ghasemi

January 2021

1

- Classification is a large domain in the field of statistics and machine learning. Generally, classification can be broken down into two areas
 - Binary classification, where we wish to group an outcome into one of two groups.
 - Multi-class classification, where we wish to group an outcome into one of multiple (more than two) groups.

- Softmax Regression (synonyms: Multinomial Logistic, Maximum Entropy Classifier, or just Multi-class Logistic Regression) is a generalization of logistic regression that we can use for multi-class classification (under the assumption that the classes are mutually exclusive).
- In contrast, we use the (standard) Logistic Regression model in binary classification tasks.
- Softmax classifiers give you probabilities for each class label.

Implementing Softmax Regression with Scikit-Learn

Importing libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
```

- Importing iris dataset:
 - from sklearn import datasets
 - iris = datasets.load_iris()
 - X = iris.data
 - y = iris.target

- Training the Algorithm
 - ✓ The fit method of **Softmax Regression** class is called to train the algorithm on the training data, which is passed as a parameter to the fit method.
 - ✓ from mlxtend.classifier import SoftmaxRegression
 - ✓ soft_regressor = SoftmaxRegression()
 - ✓ soft_regressor.fit(X_train, y_train)

- Making Predictions
 - ✓ To make predictions, the predict method of the **Softmax Regression** class is used.
 - ✓ y_pred = soft_regressor.predict(X_test)

- Evaluating the Algorithm
 - ✓ Confusion matrix, precision, recall, and F1 measures are the most commonly used metrics for classification tasks.
 - ✓ from sklearn.metrics import classification_report, confusion_matrix
 - ✓ print(confusion_matrix(y_test,y_pred))
 - ✓ print(classification_report(y_test,y_pred))

- Evaluating the Algorithm
 - ✓ The output of the **Softmax Regression** looks like this:

########## [[10 6 0] [0 18 0] [0 11 0]]	softmax Reg	ression #	#########	ŧ
	precision	recall	f1-score	support
0	1.00	0.62	0.77	16
1	0.51	1.00	0.68	18
2	0.00	0.00	0.00	11
avg / total	0.56	0.62	0.55	4 5

