

Gameboard

Maths

Acceleration f(t) 3ii

Acceleration f(t) 3ii

A cyclist travels along a straight road. Her velocity $v \, {
m m \, s^{-1}}$, at time t seconds after starting from a point O, is given by

$$v=2 ext{ for } 0 \leq t \leq 10$$

$$v = 0.03t^2 - 0.3t + 2 \text{ for } t \ge 10$$

Part A Displacement at t=10

Find the displacement of the cyclist from O when $t=10\,\mathrm{s}.$

Part B Expression for displacement

Find an expression for the displacement of the cyclist from O as a function of time for $t \geq 10\,\mathrm{s}$. Give your answer using fractions, not decimals.

The following symbols may be useful: t

Part C Time

Find the time when the acceleration of the cyclist is $0.6\,\mathrm{m\,s^{-2}}$.

Part D Displacement

Find the displacement of the cyclist from O when her acceleration is $0.6\,\mathrm{m\,s^{-2}}$.

Used with permission from UCLES, A Level, June 2006, OCR M1, Question 4

<u>Gameboard</u>

Maths

Calculus and Vectors 1ii

Calculus and Vectors 1ii

A particle P of mass $0.2\,\mathrm{kg}$ moves on a smooth horizontal plane. Initially it is projected with velocity $0.8\,\mathrm{m\,s^{-1}}$ from a fixed point O towards another fixed point A. At time $t\,\mathrm{s}$ after projection, P is $x\,\mathrm{m}$ from O and is moving with velocity $v\,\mathrm{m\,s^{-1}}$, with the direction OA being positive. A force of $(1.5t-1)\,\mathrm{N}$ acts on P in the direction parallel to OA.

Part A Expression for v

Find an expression for v in terms of t.

The following symbols may be useful: t, v

Find the time (in seconds) when the velocity of P is next $0.8\,\mathrm{m\,s^{-1}}$.

Find the first time when ${\cal P}$ subsequently passes through ${\cal O}.$

Find the second time when P subsequently passes through O.

Part D Distance in third second

Find the distance P travels in the third second of its motion.

Used with permission from UCLES, A Level, June 2013, OCR M3, Question 3

Gameboard:

STEM SMART Double Maths 22 - Vector Equations of Motion

<u>Gameboard</u>

Maths

Kinematics & Calculus

Kinematics & Calculus

Figure 1: Velocity-time graph of the motion of two particles A and B along the same straight line.

The diagram shows the (t,v) graphs for two particles A and B which move on the same straight line. The units of v and t are $\mathrm{m\,s^{-1}}$ and s respectively. Both particles are at the point S on the line when t=0. The particle A is initially at rest, and moves with acceleration $0.18t\,\mathrm{m\,s^{-2}}$ until the two particles collide when $t=16\,\mathrm{s}$. The initial velocity of B is $U\,\mathrm{m\,s^{-1}}$ and B has variable acceleration for the first five seconds of its motion. For the next ten seconds of its motion B has a constant velocity of $9\,\mathrm{m\,s^{-1}}$; finally B moves with constant deceleration for one second before it collides with A.

Part A t for same velocity

Calculate the value of t at which the two particles have the same velocity.

${\bf Part \ B} \qquad {\bf Calculate} \ U$

For $0 \le t \le 5$ the distance of B from S is $(Ut + 0.08t^3)$ m.

Calculate U.

Calculate how far B is from S when $t=5\,\mathrm{s}$.

Part D v_B when $t=16\,\mathrm{s}$

Calculate the velocity of B when $t=16\,\mathrm{s}.$

Used with permission from UCLES, A Level Maths, June 2016, OCR M1, Question 7

Gameboard:

STEM SMART Double Maths 22 - Vector Equations of Motion

<u>Gameboard</u>

Maths

Vectors & Calculus 2i

Vectors & Calculus 2i

A projectile has velocity $egin{pmatrix} A \\ 5-gt \end{pmatrix} \mathrm{m}\,\mathrm{s}^{-1}.$

Part A Displacement

Given that the particle is at $inom{5}{10}$ when t=0.

Find an expression for the x-component of the particle's displacement, in metres, as a function of t.

The following symbols may be useful: A, g, t

Find an expression for the y-component of the particle's displacement, in metres, as a function of t.

The following symbols may be useful: A, g, t

Part B Force

Find an expression for the force on the particle, given that it has mass $m \lg$. Give your answer in the form $a\underline{i} + b\underline{j}$ where \underline{i} and \underline{j} are unit vectors in the x and y directions respectively.

The following symbols may be useful: A, g, i, j, m $\,$

${\bf Part \ C} \qquad {\bf Value \ of} \ A$

The projectile hits a target at the coordinates $\binom{20}{0}$.

What is the value of A? Give your answer to 2 significant figures. In your calculation, use the approximation $g\simeq 10\,\mathrm{m\,s^{-2}}$ and assume that the target is hit at t>0.

Created for isaacphysics.org by Jonathan Waugh

Gameboard:

STEM SMART Double Maths 22 - Vector Equations of Motion

<u>Gameboard</u>

Maths

Vectors & Calculus 1i

Vectors & Calculus 1i

A planet moves through space. The force on the planet is given by

$$oldsymbol{\underline{F}} = egin{pmatrix} -mAB^2\cos Bt \ -mAB^2\sin Bt \end{pmatrix}$$

where A and B are numerical constants and m is the mass of the planet.

Part A Velocity

Given that the velocity of the planet when t=0 is $\begin{pmatrix} 0 \\ AB \end{pmatrix}$.

Find an expression for the x-component of the velocity of the planet as a function of time.

The following symbols may be useful: A, B, cos(), sin(), t, tan()

Find an expression for the *y*-component of the velocity of the planet as a function of time.

The following symbols may be useful: A, B, cos(), sin(), t, tan()

Part B Displacement

Given that the displacement of the planet when t=0 is $\binom{A}{0}$.

Find an expression for the x-component of the displacement of the planet as a function of time.

The following symbols may be useful: A, B, cos(), sin(), t, tan()

Find an expression for the y-component of the displacement of the planet as a function of time.

The following symbols may be useful: A, B, cos(), sin(), t, tan()

Part C Modulus

Find an expression for the modulus of the displacement. Simplify your answer as far as possible.

The following symbols may be useful: A, B, cos(), sin(), t, tan()

Part D Shape of path

What is the shape of the path that the planet follows?

Created for isaacphysics.org by Jonathan Waugh

Gameboard:

STEM SMART Double Maths 22 - Vector Equations of Motion

Home

<u>Gameboard</u>

Maths

Geometry

Vectors

Vector Equations of Motion 1

Vector Equations of Motion 1

This question looks at three different uses of calculus in vector problems.

Part A Integrating to find particle displacement

A particle moves in the x-y plane with velocity $\underline{\boldsymbol{v}} = \begin{pmatrix} 2t\mathrm{e}^{-2t^2} \\ 3t\mathrm{e}^{-4t^2} \end{pmatrix}$. Find an expression for the displacement of the particle at time t, given that the particle is at the origin when t=0.

Enter an expression for the x component of the displacement.

The following symbols may be useful: e, t

Enter an expression for the *y* component of the displacement.

The following symbols may be useful: t

Part B Finding a maximum speed

At a time t s a particle moves in the x-y plane with velocity $\underline{v} = \binom{2t\mathrm{e}^{-2t^2}}{3} \mathrm{m}\,\mathrm{s}^{-1}$. What is the maximum speed of the particle? Give your answer as an expression in terms of e .

The following symbols may be useful: e

Part C Distance of closest approach to the origin

The displacement of a particle is given by the expression $\underline{\boldsymbol{s}} = \begin{pmatrix} \mathrm{e}^{3t} \\ \mathrm{e}^{6t} - 5 \end{pmatrix}$. Find the shortest distance between the particle and the origin during the particle's motion. Give your answer in the form $\frac{\sqrt{a}}{2}$.

Created for isaacphysics.org by Jonathan Waugh

Gameboard:

STEM SMART Double Maths 22 - Vector Equations of Motion

Gameboard

Maths

Projectiles: Trajectories 3i

Projectiles: Trajectories 3i

Figure 1: The trajectory of a particle P.

A particle P is projected with speed $32\,\mathrm{m\,s^{-1}}$ at an angle of elevation α , where $\sin\alpha=\frac{3}{5}$, from a point A on horizontal ground. At the same instant a particle Q is projected with speed $20\,\mathrm{m\,s^{-1}}$ at an angle of elevation β , where $\sin\beta=\frac{24}{25}$, from a point B on the same horizontal ground. The particles move freely under gravity in the same vertical plane and collide with each other at the point C at the instant when they are travelling horizontally.

Part A Velocities of P and Q

Express the initial velocity of P in vector form using the unit vectors $\underline{\boldsymbol{i}}$ and $\underline{\boldsymbol{j}}$, where $\underline{\boldsymbol{i}}$ is a unit vector in the direction of \overrightarrow{AB} and \boldsymbol{j} is a unit vector vertically upwards.

The following symbols may be useful: i, j, k

Express the initial velocity of Q in vector form using the unit vectors $\underline{\boldsymbol{i}}$ and $\underline{\boldsymbol{j}}$, where $\underline{\boldsymbol{i}}$ is a unit vector in the direction of \overrightarrow{AB} and \boldsymbol{j} is a unit vector vertically upwards.

The following symbols may be useful: i, j, k

Calculate the height of ${\cal C}$ above the ground. Give your answer to 3 significant figures.

Part C Time in air

Find the time, t, between projection and collision. Give your answer to 3 significant figures.

Part D Distance AB

Calculate the distance AB. Give your answer to 3 significant figures.

Adapted with permission from UCLES, A Level, June 2016, OCR M2, Question 7

Gameboard:

STEM SMART Double Maths 22 - Vector Equations of Motion

<u>Gameboard</u>

Maths

Ships at Sea

Ships at Sea

Part A Unit vector

Find the unit vector in the same direction as $\underline{\bm{p}}=6\underline{\bm{i}}-3\underline{\bm{j}}+2\underline{\bm{k}}$ in $\underline{\bm{i}}$, $\underline{\bm{j}}$, $\underline{\bm{k}}$ format.

The following symbols may be useful: i, j, k, p

Hence, find a vector of magnitude 4 parallel to \boldsymbol{p} .

The following symbols may be useful: i, j, k, p

${\bf Part \, B} \hspace{0.5cm} S \ {\bf and} \ T$

In an experiment two ships, ${\cal S}$ and ${\cal T}$, move in a calm sea.

In a simple model, S and T are treated as objects whose dimensions are negligible. Which single word describes an object for which such a modelling assumption is made?

Part C Position of S

S starts from the origin and moves with constant velocity $\underline{v_1} = 4\underline{i} - 3\underline{j}$, where $\underline{v_1}$ is measured in $\mathrm{km}\,\mathrm{h}^{-1}$.

Write down the position vector of S in terms of t using ijk notation.

The following symbols may be useful: i, j, k, t

Part D Calm sea assumption

In the experiment the two ships, S and T, move in a calm sea.

Using the information given, justify limiting the velocity vectors of S and T to two dimensions.

Easier question?

Part E Do they meet?

T starts from the point with position vector $(3\underline{\pmb{i}}-5\underline{\pmb{j}})$ and moves with constant velocity $\underline{\pmb{v_2}}=(\underline{\pmb{i}}+4\underline{\pmb{j}})$ where $\underline{\pmb{v_2}}$ is measured in $\mathrm{km}\,\mathrm{h}^{-1}$.

Do S and T ever meet? If so, find the time in seconds. If not, enter in 0.

Part F Minimum distance

Find the minimum distance between S and T. Give your answer using exact fractions and surds.

A second experiment is undertaken. The behavior of S is unchanged. T starts from the same point as before, but this time it is the intention that S and T meet. The required constant velocity to set for T is of the form $(\underline{i} + y \underline{j})$.

Find the value of y.

Part H Percentage accuracy

The ships are each approximately $40\,\mathrm{m}$ long. Estimate the maximum percentage error in the calculation of the time it takes for the ships to meet due to using the assumption described in <u>Part B</u>. Give your answer to 1 significant figure.

Created for isaacphysics.org by Sally Waugh