PCIe6920-API DLL 接口函数说明

杜威达/13918476336/上海比宣信息科技有限公司

PCIe-6920 内置 IQ 解调功能,适用于平衡探测器的 DAS 系统,既支持单通道的 IQ 解调,也支持双通道的 IQ 解调。同时上传速率可配置为 250M、125M、83.33M、62.5M、50M;

当使用**上传原始数据**、或者**单通道解调**功能时,每帧点数(单个触发脉冲采集的点数)可以最大支持 131072 点,即单根光纤长度在 250M(0.4m 空间分辨率)上传速率下,最大可以达到 131072*0.4m=52.4288 公里,如果上传速率降低,可支持更长的光纤长度;

当使用双通道解调功能时,每帧点数(单个触发脉冲采集的点数)可以最大支持 65536 点,即单根光纤长度在 250M (0.4m 空间分辨率)上传速率下,最大可以达到 65536*0.4m=26.2144 公里,两个通道光纤总公里数为 26.2144*2=52.4288 公里;如果上传速率降低,可支持更长的光纤长度。

■ int pcie6920_open ()
<i>\</i> ************************************
函数说明:
打开设备
函数参数:
无
函数返回值:
成功,返回0
失败,返回-1
<i> </i> ************************************
■ void pcie6920_close ()
<i> </i> ************************************
函数说明:
关闭设备
函数参数:
无
函数返回值:
无
<i> </i> ************************************
■ int pcie6920_demodulation_ch_quantity_set(unsigned int demodulation_ch_quantity)
<i> </i> ************************************
函数说明:
设置IQ解调通道数量
函数参数:
demodulation_ch_quantity:如果需要使用板卡内置的IQ解调功能,可将参数设置为1或2

成功,0

函数返回值:

```
失败, -1
int pcie6920_set_points_num_per_scan(unsigned int point_num_per_scan)
函数说明:
  设置每次触发脉冲每通道采集的点数
函数参数:
  point_num_per_scan: 每通道采集的点数,该参数必须是256的整数倍;
函数返回值:
  成功,0
  失败,-1
/*********************
 int pcie6920_set_scan_rate(double scan_rate)
函数说明:
  设置扫描率, 即激光脉冲的频率
函数参数:
  scan rate: 扫描率,单位为Hz;
函数返回值:
  成功,0
  失败,-1
int pcie6920_set_pusle_width(unsigned int pulse_high_width_ns)
函数说明:
  设置触发脉冲的高电平宽度
函数参数:
  pulse_high_width_ns: 单位为ns, 该参数必须是4ns的整数倍, 最小值为4ns;
函数返回值:
  成功, 0
  失败, -1
/*********************
 int pcie6920_set_center_freq(unsigned int center_freq_hz)
函数说明:
  如果使用IQ解调功能,需要设置信号的中心频率;对于声光调制器移频80M的系统,该参
数设置为8000000即可。
函数参数:
  center_freq_hz: 采集信号的中心频率,单位为Hz;
函数返回值:
```

失败, -1

■ int pcie6920_data_src_sel(unsigned int data_src_sel)

函数说明:

板卡上已经做了数字下变频的功能,可以对采集的数据进行数字I/Q解调,**data_src_sel**参数和**demodulation_ch_quantity**共同用于选择读取解调算法中哪一位置处的数据。

图 3.2 数字正交解调流程

函数参数:

pcie6920_read_data函数读取的数据应该按照下表进行解析:

编	data_s	demodulation	上传的数据	上传数据解析规则
号	rc_sel	_ch_quantity		
1	0	忽略	采集的原始数据	ch0_datach1_datach0_datach1_da
				ta·····
2	2	1	通道0经过低通滤	I_0 Q_0 I_0 Q_0
			波器之后的I/Q数	
			据	
3	2	2	通道0和1经过低通	I_0 Q_0 I_1 Q_1 I_0 Q_0 I_1 Q_1
			滤波器之后的I/Q	
			数据	
4	3	1	通道0解调后的幅	$arctan(Q_0/I_0)\sqrt{(I_0^2+Q_0^2)}$
			值和相位数据	$arctan(Q_0/I_0) \sqrt{(I_0^2 + Q_0^2) \cdot \cdot \cdot \cdot}$
5	3	2	通道0和1解调后的	$arctan(Q_0/I_0)\sqrt{(I_0^2+Q_0^2)}$
			幅值和相位数据	$arctan(Q_1/I_1) \sqrt{(I_1^2+Q_1^2)}$
				$arctan(Q_0/I_0) \sqrt{(I_0^2+Q_0^2)}$
				$arctan(Q_1/I_1)$ $\sqrt{(I_1^2+Q_1^2)}$

ch0_data---ch1_data--- I_0 --- Q_0 --- I_1 ---- Q_1 --- $arctan(Q_0/I_0)$ --- $arctan(Q_1/I_1)$,这8种数据需要按照16位有符号数据(short)解析; $\sqrt{(I_0^2+Q_0^2)}$ --- $\sqrt{(I_1^2+Q_1^2)}$,这两种数据需要按照16位无符号数(unsigned short) 进行解析。

读取上来的arctan相位值是定点数,其和π的对应关系为: 25735---正π, -25735---负π。采

集卡内部没有对相位做解卷绕,需要用户在应用程序中做空间和时间的解卷绕处理,解卷绕方法如下图所示:

$$\Delta \varphi_i = \begin{cases} (\varphi_{i+1} - \varphi_i) - 2\pi, & (\varphi_{i+1} - \varphi_i) > +\pi \\ (\varphi_{i+1} - \varphi_i) + 2\pi, & (\varphi_{i+1} - \varphi_i) < -\pi \\ (\varphi_{i+1} - \varphi_i), & \text{其他} \end{cases}$$

函数返回值:

成功,0

失败,-1

■ int pcie6920 upload rate sel(unsigned int upload rate sel)

函数说明:

设置IQ或者相位/幅值解调数据的上传速率,在相同光纤长度的情况下降低上传的数据量,但是会降低单个采样点的空间分辨率。

函数参数:

upload_rate_sel:

- 1: 上传速率250M,对应单点空间分辨率0.4m;
- 2: 上传速率125M,对应单点空间分辨率0.8m;
- 3: 上传速率83.33M, 对应单点空间分辨率1.2m;
- 4: 上传速率62.5M, 对应单点空间分辨率1.6m;
- 5: 上传速率50M,对应单点空间分辨率2m;

函数返回值:

成功,0

失败,-1

int pcie6920_point_num_per_ch_in_buf_query(unsigned int *p_point_num_in_buf_per_ch)

函数说明:

查询缓存中每通道的数据点数

函数参数:

p_point_num_in_buf_per_ch: 缓存中每通道的数据点数

函数返回值:

成功,0

失败,-1

int pcie6920_read_data(unsigned int point_num_per_ch,short *p_raw_data, unsigned int *p_points_per_ch_returned)

函数说明: 读取数据 函数参数: point_num_per_ch: 每通道读取的点数,该参数必须为256整数倍,建议一次至少读取512* point_num_per_scan个点数,提高PCIe总线的数据传输利用率 p_raw_data: 指向读取数据缓冲区的指针,该指针代表的缓存长度必须为point_num_per_ch 参数的2倍或4倍,读取数据的解析方式请参考pcie6920_data_src_sel函数; p_points_per_ch_returned: 每通道实际读取的数据个数 函数返回值: 成功,0 失败,-1 **/*********************** int pcie6920 start (void) 函数说明: 开始采集 函数参数: 无 函数返回值: 成功,0 失败, 负值 int pcie6920_stop (void) 函数说明: 停止采集 函数参数: 无 函数返回值: 成功,0 失败, 负值

/********************