Introdução à Otimização

Aula 2
Prof. Gustavo Peixoto Silva
Decom-UFOP

Modelo de Programação Linear Análise de Atividades

Max
$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$

Sujeito a
 $a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$
 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \le b_2$
.
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$
 $x_1 \ge 0, x_2 \ge 0, ..., x_n \ge 0$

Modelo de Programação Linear Análise de Atividades

Max
$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$

 $= [c_1 c_2...c_n]. [x_1 x_2...x_n]^t$
Sujeito a
 $a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$
 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \le b_2$
.
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$

$$[A]_{mxn}.[X]_{nx1} <= [B]_{mx1}$$

$$x_1 \ge 0, x_2 \ge 0, ..., x_n \ge 0$$

Modelo de Programação Linear

$$C = [c_1 c_2, ..., c_n]$$

$$A = \begin{bmatrix} a_{11}, a_{12}, ..., a_{1n} \\ a_{21}, a_{22}, ..., a_{2n} \\ ... \\ a_{m1}, a_{m2}, ..., a_{mn} \end{bmatrix}$$

$$B = [b_1 b_2, ..., b_m]$$

Parâmetros, dados de entrada, não variam

Modelo de Programação Linear

$$C = [c_1 c_2, ..., c_n]$$

$$A = \begin{bmatrix} a_{11}, a_{12}, ..., a_{1n} \\ a_{21}, a_{22}, ..., a_{2n} \\ ... \\ a_{m1}, a_{m2}, ..., a_{mn} \end{bmatrix}$$

$$B = [b_1 b_2, ..., b_m]$$

Parâmetros, dados de entrada, não variam

$$X = [x_1 \ x_2, ..., x_n]$$

Variável de decisão, resultado do método, solução ótima

Modelo de Programação Linear

$$C = [c_1 c_2, ..., c_n]$$

$$A = \begin{bmatrix} a_{11}, a_{12}, ..., a_{1n} \\ a_{21}, a_{22}, ..., a_{2n} \\ ... \\ a_{m1}, a_{m2}, ..., a_{mn} \end{bmatrix}$$

$$B = [b_1 b_2, ..., b_m]$$

Parâmetros, dados de entrada, não variam

$$X = [x_1 \ x_{2,...}, \ x_n]$$

Variável de decisão, resultado do método, solução ótima

Max
$$Z = CX^{t}$$
, sujeito a
 $AX \le B$
 $X \ge 0$

Modelo de otimização

Modelo de Programação Linear Forma compacta

$$Max Z = \sum_{j=1}^{n} c_{j} x_{j}$$

Sujeito a

$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i, \forall i = 1, \dots, m$$

$$x_j \ge 0, \forall j = 1, \dots, n$$

Temos uma matriz $A_{m \times n}$ retangular.

Normalmente n > m, ou seja, A tem mais colunas do que linhas.

Forma Compacta - Problema das Ligas

	Liga A	Liga B	Disp. max
Cobre	2	1	16
Zinco	1	2	11
Chumbo	1	3	15
Preço de venda	\$30,00	\$50,00	

 $c[j] = preço venda de j, j \in Ligas$ disp[i] = disponibilidade de i, $i \in Materias_Primas$ a[i, j] = consumo da matéria prima i na liga j, $i \in Materia_Prima, j \in Ligas$

 $x[j] = ton da liga j produzida, j \in Ligas$

$$Max Z = \sum_{j \in Ligas} c_j x_j$$

Sujeito a

$$\sum_{j \in Ligas} a_{ij} x_j \leq disp_i \text{ , } \forall i \in Materias_Primas$$

$$x_j \ge 0$$
, $\forall j \in Ligas$

Forma Compacta - Problema das Ligas

	Liga A	Liga B	Disp. max
Cobre	2	1	16
Zinco	1	2	11
Chumbo	1	3	15
Preço de venda	\$30,00	\$50,00	

Ligas = {Liga A, Liga B}
Matérias_Primas={Cobre, Zinco, Chumbo}

$$c[j]$$
 = preço venda de j , $j \in Ligas$
 $disp[i]$ = disponibilidade de i ,
 $i \in Materias_Primas$
 $a[i, j]$ = consumo da matéria prima i na liga j ,
 $i \in Materia_Prima$, $j \in Ligas$
 $x[j]$ = ton da liga j produzida, $j \in Ligas$

$$Max Z = \sum_{j \in Ligas} c_j x_j$$

Sujeito a

$$\sum_{j \in Ligas} a_{ij} x_j \leq disp_i \text{ , } \forall i \in Materias_Primas$$

$$x_j \ge 0$$
, $\forall j \in Ligas$

Forma Compacta - Problema das Ligas

	Liga A	Liga B	Disp. max
Cobre	2	1	16
Zinco	1	2	11
Chumbo	1	3	15
Preço de venda	\$30,00	\$50,00	

Ligas = {Liga A, Liga B} // colunas

$$Mat\'erias_Primas=\{Cobre, Zinco, Chumbo\}$$

// linhas

 $c[j], j \in Ligas$ // preço venda de j,

 $disp[i], i \in Materias_Primas$

// disponibilidade de i

 $a[i, j], i \in Materia_Prima, j \in Ligas$

// consumo da mat\'eria prima i na liga j

 $var x[j], j \in Ligas$ // ton produzida da liga j

```
Max Z = \sum_{j \in Ligas} c[j] * x[j]
```

Sujeito a

$$\sum_{j \in Ligas} a[i, j] * x[j] \le disp[i], \forall i \in Materias_Primas$$
$$x[j] \ge 0, \forall j \in Ligas$$

Modelo Compacto do GUSEK

```
em C temos:
int matriz[30][30];
float vet[30];
```

```
set MP := {1..3}; # conjunto das matérias primas
set Ligas := {1..2}; # conjunto das ligas
param PV{Ligas};# preço de venda de cada liga
param disp{i in MP}; # disponibilidade de cada matéria prima
param matriz{i in MP, j in Ligas}; # matriz de consumo
var x{j in Ligas}, >=0; # toneladas de cada liga produzida
maximize lucro: sum{j in Ligas} x[j] * PV[j];
Disp Mat Prima{i in MP}: sum{j in Ligas} x[j] * matriz[i, j]
<= disp[i];
solve;
```

Modelo Compacto do **GUSEK** (cont.)

```
data;
param PV :=
    1 30
    2 50;
param disp :=
    1 16
    2 11
    3 15;
param matriz :
       1
              2:=
1
       2
               1
              2
       1
               3;
3
       1
end;
```

Ativar a opção de geração do arquivo com o resumo da solução

M 2.1 - Alocação de recursos

Giapetto Comp. Fabrica 2 tipos de brinquedos de madeira: soldados e trens. Um soldado é vendido por \$27 e usa \$10 de matéria prima. Cada soldado produzido aumenta o custo de produção com energia em \$14. Um trem é vendido por \$21 e usa \$9 de matéria prima. Cada trem montado aumenta o custo de produção com energia em \$10.

A produção dos brinquedos requer dois tipos de mão de obra: carpinteiro e acabador. Um soldado requer 1 hora de carpintaria e 2 horas de acabamento. E um trem requer 1 hora de carpintaria e 1 hora de acabamento. Giapetto tem disponível 80 horas de carpintaria e 100 horas de acabamento por semana. A demanda por soldados é ilimitada, mas no máximo 40 trens são vendidos por semana. Monte um modelo de PL para ajudar Giapetto a melhorar seus resultados semanais.

```
Variáveis de decisão: x1 – quant. de soldados produzidos/semana x2 – quant. de trens produzidos/semana

Função objetivo: Max L = 27x1 + 21x2 –(10x1 + 9x2) –(14x1 + 10x2) Max L = 3x1 + 2x2

Sujeito a: x1 + x2 <= 80 (1) restrição de carpintaria 2x1 + x2 <= 100 (2) restrição de acabamento x2 <= 40 (3) restrição de demanda x1 >= 0 e Inteiro, x2 >= 0 e Inteiro
```

M 2.2 - Alocação de recursos

Para o problema anterior, considere agora o acréscimo da seguinte restrição: Para cada trem, pelo menos 4 soldados devem ser produzidos. Acrescente esta restrição ao modelo de PL anterior para ajudar Giapetto a melhor seus resultados semanais.

```
Variáveis de decisão: x1 – quant. de soldados produzidos/semana x2 – quant. de trens produzidos/semana

Função objetivo: Max L = 27x1 + 21x2 - (10x1 + 9x2) - (14x1 + 10x2)
Max L = 3x1 + 2x2

Sujeito a: x1 + x2 <= 80 (1) restrição de carpintaria 2x1 + x2 <= 100 (2) restrição de acabamento x2 (3) restrição de demanda

x1 >= 4x2
x1 - 4x2 >= 0
x1 >= 0 e Inteiro , x2 >= 0 e Inteiro
```

M 2.3 - Uma empresa manufatura 4 produtos I, II, III e IV que passam por 3 tipos de máquina M1, M2 e M3 e utilizam dois tipos de mão de obra: MO1 e MO2. Considerando os dados a seguir, formular o problema para maximizar o lucro mensal da empresa respeitando suas restrições.

Máq.	tempo disp. h/mês
M1	80
M2	20
М3	40

Mão de obra	tempo disp. homens-h/mês
MO1	120
MO2	160

número de máq-hora por unidade de cada produto

Máq	Produtos					
	I II III IV					
M1	5	4	8	9		
M2	2	6		8		
M3	3	4	6	2		

número de homens-hora por unidade de cada produto

MDO	Produtos				
	I II III IV				
MO1	2	4	2	8	
MO2	7 3 7				

	Produtos				
	I II III IV				
Potencial max. de venda (unid/mês)	70	60	40	20	
Lucro (\$/unid)	10,0	8,00	9,00	7,00	

	Produtos			
	I II III IV			
Potencial máximo de venda (unid/mês)	70	60	40	20
Lucro (\$/unid)	10,0	8,00	9,00	7,00

1. Variáveis de decisão:

X1 =

X2 =

X3 =

X4 =

2. Função objetivo:

Max/Min ??? Z =

3. Restrições

(Pot. Venda)

3. Restrições (continuação)

(Maq. 1)

(Maq. 2)

(Maq. 3)

(MDO 1)

(MDO 1)

(NNVs)

Máq.	tempo disp. h/mês
M1	80
M2	20
M3	40

Mão de obra	tempo disp. homens-h/mês
MO1	120
MO2	160

número de máq-hora por unidade de cada produto

Máq	Produtos					
	I II III IV					
M1	5	4	8	9		
M2	2	6		8		
M3	3	4	6	2		

número de homens-hora por unidade de cada produto

MDO	Produtos					
	_	=	Ш	IV		
MO1	2	4	2	8		
MO2	7	3		7		

Uma empresa de laticínios fabrica os seguintes produtos: iogurte, queijo minas, queijo mussarela, queijo parmesão e queijo provolone. Para a fabricação de cada um dos 5 produtos, são necessários 3 tipos de matérias-primas: leite, soro e gordura. A tabela a seguir apresenta as quantidades de matérias-primas necessárias para produzir 1 Kg de cada produto. A quantidade de matéria-prima diária disponível é limitada: 1.200 l de leite, 460 l de soro e 650 Kg de gordura.

	logurte	Q. Minas	Mussarela	Parmesão	Provolone
Leite (I)	0,70	0,40	0,40	0,60	0,60
Soro (I)	0,16	0,22	0,32	0,19	0,23
Gordura (Kg)	0,25	0,33	0,45	0,40	0,47
Lucro R\$/Kg	0,80	0,70	1,15	1,30	0,70

A disponibilidade diária de mão de obra especializada também é limitada (170 horashomem(hh)/dia) A empresa necessita de 0,05 hh/Kg de iogurte, 0,12 hh/Kg de queijo minas, 0,09 hh/Kg de queijo mussarela, 0,04 hh/Kg de queijo parmesão e 0,16 hh/Kg de queijo provolone. Por razões contratuais, a empresa precisa produzir uma quantidade mínima de 320Kg de iogurte, 380Kg de queijo minas, 450Kg de queijo mussarela, 240Kg de queijo parmesão e 180Kg de queijo provolone. A quantidade de queijo mussarela produzida não pode ultrapassar o dobro da quantidade de logurte produzida no período.

O mercado é capaz de absorver qualquer quantidade que for produzida dos produtos. Formular um modelo de PL para determinar a quantidade diária a ser produzida de cada produto de tal forma a gerar o maior lucro possível.