2014-2015 学年第一学期《复变函数与积分变换 B》

课内考试卷 (A卷)

授课班号	ole 1 3			
	专业	学号	姓名	
题号		Ξ Ξ	总分	审核
得分				

一、填空题(每小题 3 分, 共 24 分)

2.
$$\sqrt[3]{-1-i} = 6/2 \left[lm \frac{3\pi + 2k\pi}{3} + i \sin \frac{-\frac{3}{4}\pi + 2k\pi}{3} \right] k=0.1,2$$

3.
$$\oint_{|z|=2} \left(\frac{i}{z-i} + \frac{e^z}{z-3} \right) dz = -2\pi$$

4.
$$\oint_{|z|=2} \frac{1}{z^{n+1}} dz = \begin{cases} 2\pi & n = 0 \\ 0 & n \neq 0 \end{cases}$$

5.
$$\lim_{n \to \infty} \frac{1 + 2ni}{1 - 3ni} = \frac{2}{3}$$

5.
$$\lim_{n \to \infty} \frac{1 + 2ni}{1 - 3ni} = -\frac{2}{3}$$
6.
$$f(z) = z^{-2} \pm z = 1$$
的泰勒级数为 $\frac{1 - 2(2-1)}{1 - 2(2-1)} + \frac{2}{3}(2-1)$

7.
$$Ln(-1-i)$$
 的主值为 $\frac{1}{2}+i(-\frac{3}{4}\pi)$

8.
$$\mathcal{L}^{-1}\left[\frac{1}{(s-1)^2+4}\right] = \frac{1}{2} e^{t} \sin 2t$$

二、计算题(每小题 6 分, 共 36 分)

阅卷人	得分

3. 设
$$f(z) = x^2 + 2xyi$$
, 试讨论 $f(z)$ 在何处可导, 何处解析.

$$U(xy)=x^2$$
, $V(x,y)=Uxy$ $U(xy)=Uxy$ $U(xy)=x^2$ $U(xy)=x^2$

4. 计算积分
$$\int_{|z|=2} z^3 e^{\frac{1}{z}} dz$$
 的值.

$$e^{\frac{1}{2}} = 1 + \frac{1}{2} + \frac{1}{2! + 2!} + \frac{1}{3! + 2!} + \frac{1}{3! + 4! + 2!} + \cdots$$

$$f = \frac{1}{2! + 2!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4! + 2!} + \cdots$$

$$f = \frac{1}{2! + 2!} + \frac{1}{3!} + \frac{1}{4! + 2!} + \cdots$$

$$f = \frac{1}{2! + 2!} + \frac{1}{3!} + \frac{1}{4! + 2!} + \cdots$$

$$f = \frac{1}{2! + 2!} + \frac{1}{3! + 4! + 2!} + \cdots$$

$$f = \frac{1}{2! + 2!} + \frac{1}{3! + 4! + 2!} + \cdots$$

$$f = \frac{1}{2! + 2!} + \frac{1}{3! + 4! + 2!} + \cdots$$

$$f = \frac{1}{2! + 2!} + \frac{1}{3! + 4! + 2!} + \cdots$$

$$f = \frac{1}{2! + 2!} + \frac{1}{3! + 4! + 2!} + \cdots$$

$$f = \frac{1}{2! + 2!} + \frac{1}{3! + 4! + 2!} + \cdots$$

$$f = \frac{1}{2! + 2!} + \frac{1}{3! + 4! + 2!} + \cdots$$

$$f = \frac{1}{2! + 2!} + \frac{1}{3! + 4! + 2!} + \cdots$$

$$f = \frac{1}{2! + 2!} + \frac{1}{3! + 4! + 2!} + \cdots$$

$$f = \frac{1}{2! + 2!} + \frac{1}{3! + 4! + 2!} + \cdots$$

$$f = \frac{1}{2! + 2!} + \frac{1}{3! + 4! + 2!} + \cdots$$

5. 讨论级数 $\sum_{n=1}^{\infty} \frac{i^n}{\ln n}$ 的收敛性和绝对收敛性.

$$\frac{|\vec{i}|}{|\vec{i}|} = \frac{1}{|\vec{i}|} = \frac{1}{|\vec{i}|} = \frac{1}{|\vec{i}|} + \frac{1}{|\vec{i}|} +$$

6. 求
$$F(s) = \frac{\sum_{n=2}^{\infty} \sum_{t=n}^{\infty} \frac{1}{s^n}}{s^4 + 5s^2 + 4}$$
 的拉氏逆变换 $f(t)$.

$$= \frac{1}{(s^2+1)(s^2+4)} = \frac{1}{3}(\frac{1}{s^2+1} - \frac{1}{s^2+4})$$

三、解答题(每小题 10分, 共 40分)

得分 阅卷人

1. 在复平面上求解析函数
$$f(z)$$
 使其虚部为 $v(x,y) = e^x \sin y + 3y$.
ik- $(x = y) = e^x \log + 1$ $\Rightarrow u(x,y) = e^x \log y + 3x + C(y)$
 $(x = y) = e^x \log y + 1$ $\Rightarrow u(x,y) = e^x \log y + 3x + C(y)$
 $(x = y) = e^x \log y + ((y) = -e^x \log y)$
 $(x = y) = e^x \log y + ((y) = -e^x \log y)$

$$i \cdot u_{1} \cdot y_{1} = e^{x} \cdot w_{1} + 3x + C$$

$$\Rightarrow f(z) = e^{x} \cdot w_{1} + 3x + C + i \cdot (e^{x} \cdot y_{1} + 3y_{1})$$

$$i \cdot z_{1} = e^{x} \cdot w_{1} + 3x + C + i \cdot (e^{x} \cdot y_{1} + 3y_{1})$$

$$= e^{x} \cdot y_{1} + i \cdot y_{2} = e^{x} \cdot w_{3} + 3 + i \cdot (e^{x} \cdot y_{1} + y_{2})$$

$$= e^{x} \cdot y_{1} + i \cdot y_{2} = e^{x} \cdot w_{3} + 3 + i \cdot (e^{x} \cdot y_{1} + y_{2})$$

$$= e^{x} \cdot y_{1} + i \cdot y_{2} = e^{x} \cdot w_{3} + 3 + i \cdot (e^{x} \cdot y_{1} + y_{2})$$

$$= e^{x} \cdot w_{3} + 3x + C$$

$$= e^{x} \cdot w_{3} + 3x + C$$

$$= e^{x} \cdot w_{3} + 3x + C$$

2. 求函数 $f(z) = \frac{1}{z^2(z-1)}$ 分别在圆环域 (1) 0 < |z| < 1 (2) |z-1| > 1 内的洛朗展开式.

$$=-\frac{(+\pm 212-1)-1(2-1)}{2-1}$$

$$=-\left(\frac{1}{2-1}-\frac{1}{2-1}\right)^{2}+\frac{1}{2-1}$$

$$=-\left(\frac{1}{2-1}-\frac{1}{2-1}\right)^{2}+\frac{1}{2-1}$$

$$=-\left(\frac{1}{2-1}-\frac{1}{2-1}\right)^{2}+\frac{1}{2-1}$$

$$=-\left(\frac{1}{2-1}-\frac{1}{2-1}\right)^{2}+\frac{1}{2-1}$$

$$= -\left(\frac{1}{|2-1|^2} + \frac{2}{|2-1|^3} - \frac{3}{|2-1|^4}\right)$$

$$= -\left(\frac{1}{|2-1|^2} + \frac{2}{|2-1|^3} + \frac{3}{|2-1|^4}\right)$$

$$= \frac{1}{|2-1|^2} - \frac{2}{|2-1|^3} + \frac{3}{|2-1|^4}$$

$$(1+1) = \frac{1}{1-1} \cdot \frac{1}{1-1} = \frac{1}{(2-1)^3} - \frac{2}{(2-1)^4} + \frac{1}{(2-1)^4}$$

$$= \sum_{n=1}^{\infty} \frac{(2-1)^{n+1} N}{(-1)^{n+1} N} - \frac{2}{(2-1)^4} + \frac{1}{(2-1)^4}$$

3. 计算积分
$$\int_{C} \frac{\sin z}{z^{2}(1-z)} dz$$
 的值,其中 C 为负向圆周 $|z|=2$.

$$\int_{C} \frac{\sin z}{z^{2}(1-z)} dz = \int_{|z|=\frac{1}{2}} \frac{\sin z}{1-z} dz + \int_{|z|=\frac{1}{2}} \frac{\sin z}{z^{2}(1-z)} dz = \int_{|z|=\frac{1}{2}} \frac{\sin z}{|z|} dz + \int_{|z|=\frac{1}{2}} \frac{\sin z}{|z|} dz = \int_{|z|=\frac{1}{2}} \frac{\sin z}{|z|} dz + \int_{|z|=\frac{1}{2}} \frac{\sin z}{|z|} dz = \int_{|z|=\frac{1}{2}} \frac{\sin z}{|z|} dz + \int_{|z|=\frac{1}{2}} \frac{\sin z}{|z|} dz = \int_{|z|=\frac{1}{2}} \frac{\sin z}{|z|}$$

4. 用拉氏变换求微分方程 y'' - 2y' + y = 0 的满足 y(0) = 0, y'(0) = 1 的特解.

$$= \frac{5^2 Y(1) - 1 - 25 Y(1) + Y(1) = 0}{(5 - 1)^2}$$