Análise e Modelagem de Preços de Carros Usados

Gustavo Almeida Silva

Universidade Federal de Juiz de Fora

07/07/2023

O Mercado de Carros Usados

- Acessibilidade
- Sustentabilidade

Dados Utilizados

12 variáveis e 1000 observações

- v.id
- road_old
- road_now
- years
- km
- rating
- condition
- economy
- top_speed
- hp
- torque
- current_price

Separação e Análise Exploratória dos Dados

- Divisão Treino e Teste (0.75, 0.25)
- Ausência de Valores Faltantes

Modelos

- Saturado
- Correlacional

	Saturado	Correlacional
(Intercept)	-14651.9*	20605.4*
	p = <0.1	p = <0.1
road_now	0.5***	0.5***
	p = <0.1	p = <0.1
road_old	0.5***	0.5***
	p = <0.1	p = <0.1
years	-1595.4***	-1063.3**
	p = <0.1	p = <0.1
km	-4.0***	-4.0***
	p = <0.1	p = <0.1
rating	285.8	
	p = 0.2	
condition	4629.4***	
	p = <0.1	
economy	41.7	
	p = 0.8	

Num.Obs.	748	748
R2	0.995	0.985
R2 Adj.	0.995	0.984
AIC	15720.9	16585.0
BIC	15776.3	16612.7
Log.Lik.	-7848.427	-8286.511
RMSE	8722.06	15666.58

Residuos

Teste	Modelo.Sat.P.valor	Modelo.Corr.P.valor
Shapiro	0	0
Cramer	0	0
Lilliefors	0	0

- Rejeição da Hipótese de Normalidade
- Heterogeneidade da Variância

Engenharia de Características

- Criação de novas variáveis via transformação
- Tentativa de melhorar o modelo

Transformações utilizadas

- % Perda de Valor = $\frac{(ValorInicial-ValorAtual)\times 100}{ValorInicial}$
- ullet Deterioração do Veículo = Media(condition, years, km)
- Potencia do Motor = $Media(top\ speed^2,\ hp^5,\ torque)$

• Modelo: $current_price = \beta_0 + \beta_1 \ value_loss_pct + \beta_2 \ deterioration + \beta_3 \ engine_power + E$

	Features
(Intercept)	739155.0***
	p = <0.1
value_loss_pct	-771.7***
	p = <0.1
deterioration	-12.3***
	p = <0.1
engine_power	0.0
	p = 0.1
Num.Obs.	748
R2	0.880
R2 Adj.	0.879
AIC	18115.6
BIC	18138.7
Log.Lik.	-9052.782
RMSE	43639.20

Teste	Modelo.Feat.P.valor
Shapiro	0.2048031
Cramer	0.3276374
Lilliefors	0.4188786

Análise de Diagnósticos

Multicolinearidade VIF_Values value_loss_pct 1.000291 deterioration 1.008633 engine_power 1.008797

Regularização

- Busca penalizar variávies colineares
- Modelo n\u00e3o apresenta multicolinearidade, e portanto n\u00e3o espera-se melhora
- K-fold e Leave One Out para robuste de métricas
- Lasso (L1)
- Ridge (L2)
- Elastic Net (Mistura 0.7 de penalty L1 e 0.3 de Penalty L2)

Lasso Tuning

Elastic Net Tuning

Tópico extra

- Assuntos Comentados em Aula
- Modelo Bayesiano (família Gaussina sem fixação de hiperparâmetros)
- Aprendizado de Máquina (Random Forest sem tuning de hiperparâmetros)
- K-fold e Leave One Out para robuste de métricas

- Métricas iguais e piores do que o modelo linear simples
- Complexidade de Interpretação

Validação

• Melhor Modelo: $current_price = \beta_0 + \beta_1 \ value_loss_pct + \beta_2 \ deterioration + \beta_3 \ engine_power + E$

	Features
(Intercept)	739155.0***
	p = <0.1
value_loss_pct	-771.7***
	p = <0.1
deterioration	-12.3***
	p = <0.1
engine_power	0.0
	p = 0.1
Num.Obs.	748
R2	0.880
R2 Adj.	0.879
AIC	18115.6
BIC	18138.7
Log.Lik.	-9052.782
RMSE	43639.20

Validação no Conjunto de Teste

Metric	Data_test	Data_Training
rmse	4.438387e+04	4.363920e+04
rsq	8.773829e-01	8.797584e-01

Valores Preditos 5e+05 -4e+05 -> 3e+05-2e+05 -1e+05-20 10 ò 30

Χ

Conclusão

- O trabalho utilizou técnicas de regressão linear, como modelos saturados e correlacionais, engenharia de características, análise de diagnósticos e análise de resíduos
- Os resíduos do modelo não rejeitaram a hipótese de normalidade, o que indica um bom ajuste.
- A engenharia de características permitiu criar um modelo com baixa multicolinearidade, conforme indicado pelos baixos valores de VIF
- A aplicação de regularização (L1, L2 e Elastic Net) não trouxe melhorias significativas ao modelo.
- Comparando com outros modelos, como os Bayesianos e Random Forest, o modelo de regressão linear simples obteve resultados melhores e uma boa capacidade de generalização.