

By: Amulya Baniya

Evaluate
$$\int_0^{2\pi} (x-4)\sin(x) \, dx$$

HINT:

Use integration by parts:

$$\int f(x)g(x) dx = F(x)g(x) - \int F(x)g'(x) dx + C, \text{ such that } F(x) = \int f(x) dx$$

Take
$$f(x) = \sin(x)$$
 and $g(x) = x - 4$

Choosing g(x) = x - 4 reduces the degree to 0 after g'(x) which prevents the repetitive use of integration by parts.

Additional note:

LIATE

An acronym that is very helpful to remember when using integration by parts is **LIATE**. Whichever function **comes first** in the following list should be g(x):

\mathbf{L}	Logarithmic functions	$\ln(x), \log_{10}(x)$
I	Inverse trig. functions	$\arccos(x), \arctan(x)$
A	Algebraic functions	$x, x^3, 5x^2$
\mathbf{T}	Trigonometric functions	$\sin(x), \cos(x)$
E	Exponential Functions	$e^x, 2^x$