Heuristic Optimization: Assignment 2

A Memetic Algorithm

Alexandre Balon-Perin

Memetic Algorithm

- The initialisation solution is generated using random vectors for each chromosome of the population.
- The crossover operator creates a new generation from two randomly chosen parents. This is done for a defined number of cross-over calculated by dividing the population size by 2. The chromosome father and mother are analysed to keep the parts that are the same then the rest is selected randomly.
- The mutant operator creates a new generation from a randomly selected parent. The number of mutation for a loop is defined by the population size divided by 4.
- Improvement algorithm is the same as in the previous assignment. User can choose between first improvement or best improvement
- Selection phase selects the best individuals from the entire population meaning the parents and the children generated by mutation and cross-overs
- Diversification check if the individuals have characteristics such as average
 distance and fitness and if it is the case than a mutation is apply on all of the
 new generation except the best ones so that the population does not loose
 its diversity.

Run-Time distribution

Only 10 runs per instance unfortunately the program was too slow to make more simulations.

Instance 19

run	time (s)	objective value
1	49	560904
2	48	539119
3	48	550863
4	48	567126
5	47	566872
6	47	558993
7	47	569649
8	51	548559
9	52	558896
10	48	556527

Instance 38

run	time	objective value
1	46	174669
2	46	174184
3	47	188054
4	47	177213
5	46	175730
6	44	183598
7	44	186148
8	46	185985
9	43	182538
10	46	197147

Instance 42

run	time	objective value
1	55	517992
2	53	524605
3	53	506680
4	58	514753
5	52	496032
6	58	510436
7	56	504923
8	54	497925
9	53	520435
10	56	512305

Instance 86

run	time	objective value
1	45	184133
2	49	182593
3	46	224353
4	50	176166
5	47	206737
6	49	195677
7	49	218605
8	47	195148
9	49	198664
10	52	192363

Results

The following numbers are the results of the simulation over the 125 instances. The simulation was not very conclusive unfortunately. The objective value was not at all optimal and the computation time very high.

Computation_time: 5215 s neighbor: --transpose improvement: --best