

KOLEJ MATRIKULASI KELANTAN KELANTAN MATRICULATION COLLEGE

CHEMXCESS

CHEMISTRY 1 SK015 2 Jam

JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU. DO NOT OPEN THIS QUESTION PAPER UNTIL YOU ARE TOLD TO DO SO.

INSTRUCTION TO CANDIDATE

- 1. This questions paper consists of 6 questions.
- 2. Answer **ALL** questions and write in the foolscap papers.
- 3. All the steps must be shown clearly. Use new page for each questions.
- 4. Maximum marks awarded are shown in the brackets at the end of each questions or section.
- 5. The use of non- programmable scientific calculator is permitted.

No	Marks allocated	Marks
1	21	
2	10	
3	17	
4	9	
5	9	
6	14	
Total	80	

Kertas soalan ini mengandungi 6 halaman bercetak.

This question paper consists of 6 printed pages.

© Kolej Matrikulasi Kelantan

No		Question					
1.	(a)	Isopropyl alcohol, sold as rubbing alcohol is composed of C, H and O. Combustion of 0.255 g of isopropyl alcohol produces 0.561 g of CO ₂ and 0.306 g of H ₂ O. Determine the empirical formula of isopropyl alcohol. (6 marks)					
Ans	wer	Mass of C atom = 12/44 x 0.561 g = 0.152 g Mass of H atom = 2 (1) /18 x 0.306 g = 0.034 g Mass of O atom = 0.255-0.152-0.034 = 0.069 g					
			Carbon	Hydrogen	Oxygen		
		Mass (g)	0.153	0.034	0.068		
		Mole (mol)	0.153/12 = 0.01275 mol	0.034 /1 = 0.034 mol	0.068 /16 = 0.00425 mol	1	
		Simplest mol	0.01275/0.00425 = 2.9 = 3	0.034/0.00425= 7.9 = 8	0.00431/0.00425 = 1	1	
		Empirical formula		C₃H ₈ O₁		1	
	(b)	Si-29 (amu = 28.97	65) and Si-30 (amu natural abundance	= 29.9738). If the at	(amu = 27.9769), comic mass of silicon what are the natural (5 marks)		
Ans	wer	Let x = isotopic abundance of Si-28 Let y = isotopic abundance of Si-30					
		Therefore:					
			9765) (0.0467) + (29	9.9738) (y) = 28.085	55		
		x + 0.0467 + y = 1.0				1	
		y = 1.000 - 0.0467	, ,	n (4)		1	
		X = 0.9222 = 92.22	33 – x in the equatio	n (1)		1	
		y = 1.00 - 0.9222 - 0.0000	•	11% Si-30 = 3 11 ⁹	%	1	

		Total marks	21
		= 70.10%	1
		theoritical yield $= \frac{42.3}{60.34} \times 100$	
		$\% yield = \frac{Actual yield}{\text{theoritical yield}} \times 100$	
		Mass of bromobenzene = 0.3846 x 156.9 = 60.34 g	1
		From equation 1 mol benzene produce 1 mol bromobenzene Mole of bromobenzene = 0.3846 mol	1
Ansv	ver	(iii) percentage yield if the bromobenzene produced is 42.3 g.	
			'
		Mass of excess reactant remain = 0.0222 x (79.9x2) = 3.55 g	1
		Mol of excess reactant = 0.4068 – 0.3846 @ = 0.0222 mol	1
Ansv	ver	Excess reactant is bromine	
		(ii) mass of excess remain after the reaction completed,	
1		Thus benzene is limiting reactant	1
		Mol bromine gas needed < mol bromine gas given	1
		0.3846 mol of benzene reacts with 0.3846 mol bromine gas (needed)	1
		From equation 1 mol benzene reacts with 1 mol bromine	-
		Mole of bromine gas = 65.0 / (79.9x2) = 0.4068 mol (given)	1
Ansv	ver	Mole of benzene = 30.0 / 78 = 0.3846 mol (given)	1
		(i) limiting reactant,	
		If 30.0 g of benzene reacts with 65.0 g of bromine, determine the; (10 marks)	
		$C_6H_6 + Br_2 \longrightarrow C_6H_5Br + HBr$	
	(c)	When benzene, C_6H_6 reacts with bromine, Br_2 , bromobenzene, C_6H_5Br is obtained as follows:	

2.	(a)	A green laser pointer emits light with a wavelength of 532 nm. Determine; (4 marks)				
		(i) the frequency of the light,				
Ans	wer	$V = c/\lambda$ @ = 3.0 x 10 ⁸ / 532 x 10 ⁻⁹ m	1			
		= 5.639 x 10 ¹⁴ s ⁻¹ (unit insist)	1			
		(ii) the energy of the photon.				
Ans	wer	E = hv @ = 6.6256×10^{-34} J s x 5.639×10^{-14} s ⁻¹	1			
		= 3.736 x 10 ⁻¹⁹ J (unit insist)	1			
	(b)	The proton number of element P and Q are 12 and 17 respectively. Draw the orbital diagram for the valence electron of each element. Suggest the most stable ions for P and Q . Write their respectively electronic configuration.				
		(4 marks)				
Ans	wer	$P = 1s^2 2s^2 2p^6 3s^2$ its valence electron is $3s^2$				
		Orbital diagram : 3s	1			
		The most stable ion is P ²⁺	1			
		Q = $1s^2 2s^2 2p^6 3s^2 3p^5$ its valence electron is $3s^2 3p^5$ $ \frac{1}{3s} \qquad \frac{1}{3p} \qquad \frac{1}{3p} $ Orbital diagram : $\frac{1}{3s}$	1			
		The most stable ion is Q ⁻	1			
	(0)	Cive the fermula when B reacts with O State the time of the hand				
	(c)	Give the formula when P reacts with Q . State the type of the bond formed. (2 marks)				
Ans	wer	PQ ₂ , ionic bond formed.	1+1			
		Total marks	10			

3.	(a)	What would you expert SiF ₄ to be polar or non polar compound? Justify your answer.				
		(4 marks)				
Ans	wer	Lewis Structure : :F: :F: :F: :F: :F: F F	1 (show bond dipole)			
	1	SiF ₄ is a non polar molecule because bond dipoles can cancel each other, μ = 0	1 + 1			
	(b)	State the hybridisation of the central atom in SiCl ₄ . Draw orbital diagram and draw the overlapping of orbitals in SiCl ₄ . (9 marks)				
Ans	wer	Hybridisation Si in SiCl₄ = sp³ Central atom : Si	1			
		Electron valence Configuration : 3s ² 3p ²	1			
		Orbital diagram :				
		<u> </u>	1			
		Ground state : 3s 3p	'			
		Excited state: $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$	1			
		Hybridisation state : $\frac{\uparrow}{Sp^3}$ $\frac{\uparrow}{Sp^3}$	1			

		3p	Shape -1m Overlappin g -1m Label of electron & sigma bond – 1m Label of atom and hybrid – 1m
	(c)	Give TWO factors that influence the strength of the van der Waals forces. Explain your answers. (4 marks)	
Ans	wer	Molecular size - the larger molecular size, the stronger the Van Der Waals forces this is because the increasing number of electron and increasing polarisability.	1
		Polarity of molecule - the more polar molecule, the stronger dipole-dipole forces.	1 1
		Molecular shape - the larger the surface area in contact between the molecules, the stronger van der Waals forces between the molecules. @ - this is because when the larger surface area in contact, will make van der Waals forces becomes stronger forces.	1 1 (Any two factors)
		Total	17 marks

		Maximum	9 marks
		Total	10 marks
		in position.	
Answer		Liquid changes to solid is the freezing process. When liquid cooled (temperature is lowered), the particles lose kinetic energy and move slowly. Intermolecular forces become stronger and particles become fixed	1 1
		(3 marks)	
	(c)	Explain the process $H_2O(I)$ \longrightarrow $H_2O(s)$ by using kinetic molecular theory.	
		mass $CaH_2 = 1.77 \times 10^{-3} \times 42.1$ = 0.0745 g	1
		2 mol of H_2 is produced from 1 mol CaH_2 3.54 x 10^{-3} mol is produced from 1.77 x 10^{-3} mol CaH_2	1
		$n = \frac{760}{0.08206 Latm \ mol^{-1}K^{-1} \ x \ 298 \ K}$ = 3.54 x 10 ⁻³ mol	1
Answ	ver	$n = \frac{PV}{RT}$ @ $\frac{731.2}{760} atm \times 0.090 L$	1
		(4 marks)	
		90.0 mL of hydrogen gas was collected over water at 25 °C and at pressure T mmHg. If the partial pressure of hydrogen gas is 731.2 mmHg and the vapour pressure of water is U mmHg, determine the mass of calcium hydride decomposed in the reaction. (4 marks)	
		$CaH_2(s) + 2H_2O(I)$ \longrightarrow $Ca(OH)_2(s) + 2H_2(g)$	
	(b)	The reaction of calcium hydride with water represented as	
		Volume of flask R = 2.22 – 1.00 = 1.22 dm³ @ 1.22 L	1
7 1170		1.00 x 1.00 = 0.45 x V_2 $V_2 = 2.22 \text{ dm}^3$ @ 2.22 L	1
Ansv	<i>Ner</i>	$P_1V_1 = P_2V_2$ @	1
		When the tap is opened, ammonia passes into flask R and the total pressure in both flask is 0.45 atm. Determine the volume of flask R . (2 marks)	
4.	(a)	Two glass flask R and S connected via a tap. While the tap is closed and there is vacuum in flask R , 1.00 dm³ flask S is filled with ammonia gas at 1.00 atm and 300 K.	

5.	cont	mol of SO_2 and 1.0 mol of O_2 were allowed to reach equilibrium in a tainer of 1.0 dm ³ at 450 °C. The equilibrium mixture was found to contain 0 mol of SO_3 . The reaction is exothermic.					
	(a)	Calculate reaction.	on for the (4 marks)				
Ans	wer			200 (=)	. 0 (5)		
			Initial(M)	2SO ₂ (g)	+ O ₂ (g) -	2SO ₃ (g)	
			Change (M)	-2x	-X	+2x	
			Equilibrium(M)	2-2x	1-x	1.50	1
		2x = 1. x = 0.					
			ation of SO₂ at eq	= 2-	-1.50 = 0.50 M		1
		Concentra	ation of O ₂ at equi	=1-0	· x .75 = 0.25 M		1
			$Kc = \frac{[SO_3]^2}{[SO_2]^2 x [O_2]}$	ī			
			$=\frac{(1.50)^2}{(0.50)^2 \times 0.2}$	25			
			= 36				1

	(b)	Sketch a graph to show how the concentration changes with time for each of the species before and after the system has achieved equilibrium.	
		(3 marks)	
Answ	er	Concentration (mol dm ⁻³)	Axes <i>x</i> and <i>y</i> – 1
		2.00 1.75 1.50 1.25	Value concentrati on related with answer in
		1.00 0.75 0.50	(a) for three species – 1 Curve
		0.30 [O2] [O2]	decreasing and constant
		0 time t	after t for SO ₂ and O ₂ and vice
		[t = time the system achieves equilibrium]	versa for SO₃ - 1
	(c)	Explain the effect of lowering the temperature on the equilibrium constant value. (2 marks)	
Answ	er	The reaction is exothermic. When temperature is lowered, the equilibrium position will shift to the right in order to release more heat to the system until new equlibrium is reestablish. Therefore, more [SO ₃]	1
		will produce, and value of K_c will increase.	1
		Total	9 marks

6	(0)	The pH of equivelen	as point for the titro	ion botwoon othono	io opid and		
О	(a) The pH at equivalence point for the titration between ethanoic acid and sodium hydroxide is about 9. Explain qualitatively the sodium ethanoate						
		salt hydrolysis by using hydrolysis equation.					
		(2 marks)					
Ansu	ver	Sodium ethanoat, Cl			d cation.		
		CH₃COONa(aq) —		Cl ⁻ (aq)			
		Na⁺ is cation of stron	g base, NaOH, Na +	does not hydrolyz	ed in water	1	
	CH₃COO⁻ is conjugate base of weak acid, CH₃COOH.						
		, ,					
		CH₃COO is hydrolyz	-			1	
		CH₃COO⁻(aq) + F			l)		
	(b)	The solubility produ	uct of iron(III) hvo	droxide. Fe(OH) ₃ a	t 25 °C is		
	(-)	1.0 x 10 ⁻³⁶ .	,,		0 0 .0		
			the solubility (in g/l) of iron(III) hydroxid	de.		
					(3 marks)		
Ansu	ver		Fe(OH) ₃ (s)	Fe ³⁺ (aq) +	3OH ⁻ (aq)		
		Initial(M)	-	0	0		
		Change (M)	-	+S	+3s		
		Equilibrium(M)	-	S	3s	1	
		$K_{sp} = [Fe^{3+}]$	II OH-13				
		$1.0 \times 10^{-36} = (s)(3)$	ງເ ວາ າ ງ ຣ) ³			4	
			7 x 10 ⁻¹⁰ M			1	
			x 10 ⁻¹⁰ mol/L x 106.	85 g/mol		1	
		= 4.69 x	∶10 ⁻⁸ g/L				
I		(ii) Does a pi	recinitate form if 2.0	mL of 0.2 M NaOH	is added to		
			of 0.1 M Fe(NO ₃) ₃ . E		เอ ผนน อ น เบ		
		20.0 1112	3 3(1 13 3/3. L		(6 marks)		
Ansu	ver		$.2 \times 0.002 = 4.0 \times 1$				
		Mole of $Fe^{3+} = 0$	$0.1 \times 0.020 = 2 \times 10^{-3}$	³ mol			
			4.0 - 4.0-4				
		Molarity of OH	$= \frac{4.0 \times 10^{-4}}{0.022} = 0.01$	818 M		1	
			0.022 2.0 × 10 ⁻³			ı	
	Molarity of Fe ³⁺ = $\frac{2.0 \times 10^{-3}}{0.022}$ = 0.09090				1		
			0.022				
		$Q_{sp} = [Fe^{3+}][C$				á	
) x (0.01818) ³			1	
		= 5.46 x 10	D- <i>'</i>			1	
		0 . K				1	
		$Q_{sp} > K_{sp}$ Solution is supersatu	red Precinitate wi	Il form until O	K _{on}	1	
		Reaction proceeds fi			· -sμ·		

	(c)	0.50:1.0 in 1.0 dm ³ water. The acid dissociation constant of HF is			
		7.1 x 10 ⁻⁴ . Determine the pH of the solution.			
		(3 marks)			
Ansı	ver	$pH = -\log K_a + \log \frac{[F^-]}{[HF]}$	1		
		$= -\log 7.1 \times 10^{-4} + \log \frac{0.50}{1.0}$	1		
		= 2.84	1		
		Total	14 marks		