

# Modelagem Numérica da Atmosfera



Modelagem Numérica da Atmosfera

**Dr. Paulo Yoshio Kubota** 

# Esquema de Camada Limite Planetária

**INPE, São Jose dos Campos** 



# Modelagem Numérica da Atmosfera



# Conceito Básico de um modelo de camada limite Planetária



## Qual a importância da PBL?



#### Conceito Básico de um modelo PBL



Processos de aquecimento diabáticos internos



# Variação Diária da PBL





#### Estratocumulos PBL





**Cumulos PBL** 





## Qual a importância numérica da PBL nos MCGAs?

# Equações Governantes para o estado médio da Atmosfera



#### PBL: Equações Governantes pra o estado medio da **Atmosfera**



Media de Reynolds 
$$A = A + A'$$

Lei dos gases

$$\bar{p} \; = \; \bar{\rho} \; \; R_d \overline{\left( \overline{T_v} \right)}$$

$$\overline{T_v} = T(1 + 0.61q_v - q_l)$$
 parameterizado!

Necessita ser

Temperatura virtual

2<sup>nd</sup> ordem

$$\frac{\partial \overline{u_i}}{\partial t} + \overline{u_j} \frac{\partial \overline{u_i}}{\partial x_j} = -\delta_{i3}g + f_c \varepsilon_{ij3} \overline{u_j} - \frac{1}{\overline{\rho}} \frac{\partial \overline{P}}{\partial x_i} + \frac{v \partial^2 \overline{u_i}}{\partial x_j^2} - \frac{\partial \overline{(u_i' u_j')}_{sfc}}{\partial x_j} - \frac{\partial \overline{(u_i' u_j')}_{pbl}}{\partial x_j}$$
Adversages

Advecção media

gravidade Coriolis

Grad. Pressão stress

Viscous

Processos **Turbulento** 

de

superfície

**Transporte Turbulento** pbl

$$\frac{\partial \overline{u_i}}{\partial x_j} = \mathbf{0}$$

Conservação de calor

$$\frac{\partial \theta}{\partial t} + \overline{u_j} \frac{\partial \overline{\theta}}{\partial x_j} = -\frac{1}{\overline{\rho} c_p} \frac{\partial \overline{F_j}}{\partial x_j} - \frac{L_v E}{\overline{\rho} c_p} - \frac{\partial \overline{(u_i' \theta')}_{sfc}}{\partial x_j}$$
Radiação
Calor Latente

Cup artícia

$$-\frac{\partial\overline{\left(u_i'\theta'\right)}_{sfc}}{\partial x_j}$$
Processos
Turbulento de

Superfície

$$\underbrace{\left(\frac{\partial \overline{(u_i'\theta')}_{pbl}}{\partial x_j}\right)}_{pbl}$$

**Transporte Turbulento** pbl

Conservação de agua total

$$\frac{\partial \overline{q_t}}{\partial t} + \overline{u_j} \frac{\partial \overline{q_t}}{\partial x_j} = \frac{S_{q_t}}{\overline{\rho}} - \frac{\partial \left(\overline{u_j'q_t'}\right)_{sfo}}{\partial x_j}$$
Processos

Advecção media

Processos Turbulento de Superfície

$$\begin{array}{c}
\left(\alpha_{j}q_{t}\right)_{pbl}\\
\partial x_{j}\\
\text{Transporte}\\
\text{Turbulento}\\
\text{pbl}
\end{array}$$



#### PBL: Equações Governantes pra o estado medio da **Atmosfera**



Media de Reynolds A = A + A'

Lei dos gases

$$\bar{p} = \bar{\rho} R_d \overline{T_v}$$

 $\bar{p} = \bar{\rho} R_d (\bar{T}_v)$  Temperatura virtual  $\bar{T}_v = T(1 + 0.61q_v - q_l)$ 

Necessita ser parameterizado!

2<sup>nd</sup> ordem

#### Conservação de momentum

$$\frac{\partial \overline{u_i}}{\partial t} + \overline{u_j} \frac{\partial \overline{u_i}}{\partial x_j} = -\delta_{i3}g + f_c \varepsilon_{ij3} \overline{u_j} - \frac{1}{\overline{\rho}} \frac{\partial \overline{P}}{\partial x_i} + \frac{v \partial^2 \overline{u_i}}{\partial x_j^2} - \frac{\partial \overline{\left(u_i' u_j'\right)}_{sfc}}{\partial x_j} - \frac{\partial \overline{\left(u_i' u_j'\right)}_{pbl}}{\partial x_j} - \frac{\partial \overline{\left(u_i' u_j'\right)}_{gwdd}}{\partial x_j}$$
Advecção gravidade Coriolis Grad. Viscous Processos Transporte Turbulento de pbl gravidade superfície

#### Conservação de calor

$$\frac{\partial \theta}{\partial t} + \overline{u_j} \frac{\partial \overline{\theta}}{\partial x_j} = -\frac{1}{\overline{\rho} c_p} \frac{\partial \overline{F_j}}{\partial x_j} - \frac{L_v E}{\overline{\rho} c_p} - \frac{L_v E}{\overline{\rho} c_p} - \frac{\partial \overline{(u_i' \theta')}_{shall}}{\partial x_j} - \frac{\partial \overline{(u_i' \theta')}_{shall}}{\partial x_j} - \frac{\partial \overline{(u_i' \theta')}_{sfc}}{\partial x_j} - \frac{\partial \overline{(u_i' \theta')}_{pbl}}{\partial x_j}$$

media

Advecção Radiação L. Calor Latente

transporte por Aquecimento shallow cúmulos

pela Superfície

**Transporte Turbulento** pbl

#### Conservação de agua total

$$\frac{\partial \overline{q_t}}{\partial t} + \overline{u_j} \frac{\partial \overline{q_t}}{\partial x_j} = \frac{S_{q_t}}{\overline{\rho}} - \frac{S_{q_t}}{\overline{\rho}} - \frac{\partial \left(\overline{u_j'q_t'}\right)_{shall}}{\partial x_j} - \frac{\partial \left(u_j'q_t'\right)_{sfc}}{\partial x_j} - \frac{\partial \left(u_j'q_t'\right)_{pbl}}{\partial x_j}$$
Advecção Processo de Precipitação e evaporação transporte por shallow cúmulos pela Superfície Turbulento pbl



#### PBL: Equações para a energia cinetica turbulenta



TKE: medida da intensidade da mistura turbulenta  $e = \frac{1}{2} (\overline{u'^2} + \overline{v'^2} + \overline{w'^2})$ 

$$\overline{e} = \frac{1}{2} (\overline{u'^2} + \overline{v'^2} + \overline{w'^2})$$

$$\frac{\partial \bar{e}}{\partial t} + \overline{u_j} \frac{\partial \bar{e}}{\partial x_j} = \underbrace{\frac{g}{\theta_0} \overline{w' \theta_v'}}_{\text{produção}} - \overline{u_i' u_j'} \frac{\partial \overline{u_i}}{\partial x_j} - \underbrace{\frac{\partial \overline{u_j' e}}{\partial x_j}}_{\text{transporte}} - \underbrace{\frac{1}{\rho} \frac{\partial \overline{u_i' p'}}{\partial x_i}}_{\text{dissipação}} - \varepsilon$$

$$= \underbrace{\frac{g}{\theta_0} \overline{w' \theta_v'}}_{\text{produção}} - \underbrace{\frac{1}{\eta_i' u_j' e}}_{\text{dissipação}} - \underbrace{\frac{1}{\eta_i' e}}_{\text{transporte}} - \underbrace{\frac{1}{\eta_i' e}}_{\text{dissipação}}$$

$$\theta_{v} = \theta \left(1 + 0.61 q_{v} - q_{1}\right)$$
 virtual potential temperature

$$\theta_{v}' < 0$$
 ,  $w' < 0$ 

$$\theta_{v}' > 0$$
,  $w' > 0$ 





$$\theta_{v}^{\prime} < 0$$
 ,  $w' > 0$ 

$$\theta_{v}' > 0$$
 ,  $w' < 0$ 

$$\left(\mathbf{w'} \; \theta_{\mathbf{v}'} < \mathbf{0}\right)$$





#### Conceito Básico de um modelo PBL

#### PBL: Equações para a energia cinetica turbulenta









## Qual a importância numérica da PBL nos MCGAs?

# Como Parametrizar os Fluxos Turbulentos nas Equações Governantes para o estado médio da Atmosfera



## PBL: A camada em que o fluxo é turbulento



#### Conceito Básico de um modelo PBL

Os efeitos da mistura de calor, momento e umidade por turbulência em pequena escala podem representados por difusão vertical.

Os fluxos de momento, calor ou matéria são difundidos por movimentos turbulentos dentro da camada limite.

1 - 3 km

Camada de mistura

50 m

Camada de Superfície

Os efeitos da superfície (atrito, resfriamento, aquecimento ou umedecimento) são sentidos em escalas de tempo <1 dia.



# Como parameterizar os momentum de 2 ordem $w' \varphi'$



$$\frac{\partial \overline{u_i}}{\partial t} + \overline{u_j} \frac{\partial \overline{u_i}}{\partial x_j} = -\delta_{i3}g + f_c \varepsilon_{ij3} \overline{u_j} - \frac{1}{\rho} \frac{\partial \overline{P}}{\partial x_i} + \frac{\upsilon \partial^2 \overline{u_i}}{\partial x_j^2} - \frac{\partial \overline{(u_i'u_j')}}{\partial x_j}$$

$$\frac{\partial \overline{u_i}}{\partial t} = \frac{\partial \overline{u_i'u_j'}}{\partial x_j}$$

$$\overline{w'\varphi'} = \mathbf{K}(\mathbf{z}) \frac{d\varphi}{dz}$$

$$\mathbf{Teoria} \qquad do \qquad transporte \qquad gradiente \qquad ou \quad teoria \quad \mathbf{K}$$

Os fluxos de momento, calor ou matéria são difundidos por movimentos turbulentos dentro da camada limite.



# Como parameterizar os momentum de 2 ordem $w'\phi'$



$$\overline{w'\varphi'} = \mathbf{K}(\mathbf{z}) \frac{d\varphi}{dz}$$

$$\frac{\partial \bar{u}_i}{\partial t} = \frac{\partial \overline{u_i' u_j'}}{\partial x_j}$$

$$\frac{\partial \bar{u}_i}{\partial t} = \frac{\partial}{\partial x_i} \left( \mathbf{K}(\mathbf{z}) \frac{d\varphi}{dz} \right)$$

#### Desprezando a variação dos fluxos na horizontal.

$$\frac{\partial \bar{u}}{\partial t} = \mathbf{K}(\mathbf{z}) \frac{\partial}{\partial z} \left( \frac{d\varphi}{dz} \right) + \frac{\partial \mathbf{K}(\mathbf{z})}{\partial z} \left( \frac{d\varphi}{dz} \right)$$





## Qual a importância numérica da PBL nos MCGAs?

# Como Parametrizar os Fluxos Turbulentos na camada limite superficial





A resistência aerodinâmica utilizada nos cálculos dos fluxos podem ser parametrizadas por Cd e Cdn

 $C_D$  = coeficiente de arrasto (adimensional)  $C_{DN}$  = coeficiente ( $C_D$ ) sob condições neutras k = coeficiente de von Kárman = 0,4





#### 3.3 Transferência Turbulenta e Fluxos de Superfície

• função universal integrada

when  $\zeta < 0$ 

$$\Psi_M = \ln\left(\frac{z_m}{z_0}\right) + \ln\frac{(x_0^2 + 1)(x_0 + 1)^2}{(x^2 + 1)(x + 1)^2} + 2(\tan^{-1}x - \tan^{-1}x_0)$$
(3.9)

$$\Psi_H = \ln\left(\frac{z_m}{z_{0h}}\right) + 2\ln\left(\frac{y_0 + 1}{y + 1}\right) \tag{3.10}$$

$$x = (1 - 16\zeta)^{1/4}, \ x_0 = (1 - 16\zeta_0)^{1/4}, \ y = (1 - 16\zeta)^{1/2}, \ y_0 = (1 - 16\zeta_0)^{1/2} \ (3.11)$$



Figure 3.5: Relationship between stability and universal function (unstable)





#### 3.3 Transferência Turbulenta e Fluxos de Superfície

• função universal integrada

when  $\zeta \geq 0$ 

$$\Psi_M = \ln\left(\frac{z_m}{z_0}\right) + \frac{7}{3}\ln\frac{1+3\zeta+10\zeta^3}{1+3\zeta_0+10\zeta_0^3}$$
(3.12)

$$\Psi_H = \ln\left(\frac{z_m}{z_{0h}}\right) + 400 \ln\frac{1 + 7/400\zeta + 0.005\zeta^2}{1 + 7/400\zeta_0 + 0.005\zeta_0^2}$$
(3.13)



Figure 3.6: Relationship between stability and universal function (stable)







#### 3.3 Transferência Turbulenta e Fluxos de Superfície

• função universal integrada

Finalmente, o fluxo de momento  $(\tau_{wb})$  e a resistência aerodinâmica  $(r_{aw})$  entre a superfície da água e a altura de referência  $(z_m)$  são calculados a partir do resultado da velocidade de atrito e da função universal integrada.

$$\tau_{wb} = \rho u_*^2 \tag{3.15}$$

$$r_{aw} = \frac{\Psi_H}{\kappa u_*} = \frac{\Psi_M \Psi_H}{\kappa^2 u_m} \tag{3.16}$$

$$K_m : C_D = \frac{1}{r_a U_r} = \frac{\Psi_H}{k u_*} = \frac{\Psi_m \Psi_H}{k^2}$$

$$H_{wb} = \rho C_p \frac{T_{wb} - T_m}{r_{aw}} = A(T_{wb} - T_m)$$
 (3.17)

$$\lambda E_{wb} = \frac{\rho C_p}{\gamma} \frac{e_*(T_{wb}) - e_m}{r_{aw}} = D[e_*(T_{wb}) - e_m]$$
 (3.18)



# Como parameterizar os momentum de 2 ordem $w' \varphi'$



$$F = \rho K(z) \frac{d\varphi}{dz}$$
  $(F = \overline{w'\varphi'})$ 

#### Formulação em diferenças finitas

$$F_{1.5} = \rho K(z_{1.5}) \frac{\varphi_2 - \varphi_1}{z_2 - z_1}$$

#### Integral da camada superfície:

$$\varphi_1$$
-  $\varphi_s$ =  $\int_{z_{o\varphi}}^{z_1} \frac{F_{o\varphi}}{\rho K(z)} dz$ 

Camada de fluxo constante:

$$\phi_1 - \phi_S \approx \frac{F_0}{\rho} \int_{Z_{0\phi}}^{Z_1} \frac{1}{K(z)} dz$$

Escoamento  $K(\mathbf{z}) = \kappa \mathbf{z} u_*$ neutro:

κ: Von Karman constant (0.4)

$$= \kappa z u_*$$

$$\rho \kappa u_* J_{Z_0}$$

u<sub>∗</sub>: Friction velocity

ρ : Density

# Calcular $K(z_{1.5})$ ???

2 Nível do modelo

1.5 Nível dos fluxos

1 Nível do modelo

Superfície



$$\phi_{1} - \phi_{s} \approx \frac{F_{0\phi}}{\rho \kappa u_{*}} \int_{Z_{0\phi}}^{Z_{1}} \frac{dz}{z} \qquad \Rightarrow \quad \phi_{1} - \phi_{s} = \frac{F_{0\phi}}{\rho \kappa u_{*}} \ln \left(\frac{Z_{1}}{Z_{o\phi}}\right)$$

$$u,v,T,q$$



# Como parameterizar os momentum de 2 ordem $w' \varphi'$



#### Coeficientes de difusão de acordo com a similaridade MO

$$K_M = \frac{1}{\phi_m^2} l^2 \left| \frac{\partial U}{\partial z} \right|$$

$$K_{M} = \frac{1}{\phi_{m}^{2}} l^{2} \left| \frac{\partial U}{\partial z} \right| \qquad K_{H} = \frac{1}{\phi_{m} \phi_{h}} l^{2} \left| \frac{\partial U}{\partial z} \right| \qquad \bullet$$



Usando a relação entre  $R_i$  e  $\frac{z}{I}$ 

$$R_{i} = \frac{g}{\theta_{v}} \frac{\frac{\partial \theta_{v}}{\partial z}}{\left|\frac{\partial U}{\partial z}\right|^{2}} = \frac{g}{\theta_{v}} \frac{z\theta_{*}\phi_{h}}{u_{*}^{2}\phi_{m}^{2}} = \frac{z}{\kappa L} \frac{\phi_{h}}{\phi_{m}^{2}}$$

$$\frac{1}{\phi_m^2} = \frac{\kappa L}{z \, \phi_h} R_i$$

$$\frac{1}{\phi_m \phi_h} = \frac{\phi_m \kappa L}{\phi_h^2} R_i$$

Resolver para 
$$\frac{Z}{L} = \xi$$



$$K_M = l^2 \left| \frac{dU}{dz} \right| f_M(R_i)$$

$$K_H = l^2 \left| \frac{dU}{dz} \right| f_H(R_i)$$



# Como parameterizar os momentum de 2 ordem $w'\phi'$



#### Coeficientes de difusão de acordo com a similaridade MO

#### Onde as Funções $\phi_m$ (esquerda) e $\phi_h$ (direita):



ne II.2. Dimensionless wind shear as a function of the M-O stability por Figure II.3 Dimensionless potential temperature gradient as a function of the M-O saw data from Izumi (1971).]



Figure 3.6: Relationship between stability and universal function (stable)



Figure 3.5: Relationship between stability and universal function (unstable)



# Como parameterizar os momentum de 2 ordem $w' \phi'$



#### Camada limite estável: fechamento e ressalvas

#### Conceito Básico de um modelo PBL

$$K = l^2 \left| \frac{dU}{dz} \right| f(R_i)$$

$$\frac{1}{l} = \frac{1}{kz} + \frac{1}{\lambda}$$
 Tamanho típico dos eddy ~  $kz$  ou  $l$ 
Onde  $\lambda \propto h$ 

#### **Camada de Superfície – Monin Obukhov**

Acima: 
$$f = \alpha^* f_{LT} + (1 - \alpha) * f_{ST}$$

$$f_{LT} \approx \begin{cases} \alpha = e^{-\frac{H}{150}} \Rightarrow f_{ST} \approx \begin{cases} \alpha = e^{-\frac{H}{30}} \\ \lambda = 150 \ m \end{cases} \Rightarrow f_{ST} \approx \begin{cases} \alpha = e^{-\frac{H}{30}} \end{cases}$$

#### Os modelos de PNT,

a difusão mantida em condições estáveis é mais forte do que indicam o LES ou as observações







# Como parameterizar os momentum de 2 ordem $w'\phi'$



#### Impacto da redução da difusão em condições estáveis

#### Conceito Básico de um modelo PBL

 $f = \alpha^* f_{LT} + (1 - \alpha) * f_{ST}$  $\alpha = e^{-\frac{H}{\lambda}}$ 

 $K = l^2 \left| \frac{dU}{dz} \right| f(R_i)$ 

ST : calda longa-- $\rightarrow$  calda curta LT30 :  $\lambda = 150 \ m \rightarrow \lambda = 30 \ m$ 

 $\lambda = 150 m$ 

 $\frac{1}{l} = \frac{1}{kz} + \frac{1}{\lambda}$ 



Quase reduz pela metade os erros no jato de baixo nível, também aumenta o giro do vento



## Qual a importância numérica da PBL nos MCGAs?

# Como Parametrizar os Fluxos Turbulentos acima da camada limite superficial



# Fechamento K com dependência da estabilidade local ()



**Fechamento K Local** 

$$K = l^2 \left| \frac{dU}{dz} \right| f(R_i)$$

O esquema é simples e fácil de implementar.

Totalmente consistente com a escala local para a camada limite estável.

É necessário um número suficiente de níveis para resolver o BL, ou seja, para localizar a inversão.

O entranhamento na parte superior da camada limite não é representado



# Fechamento K com dependência da estabilidade local ()



$$K = l^2 f(R_i) \left| \frac{dU}{dz} \right|$$

# Opções de parametrização do coeficiente de difusão

$$K_{C} = k w_{i} z \left( 1 - \frac{z}{h} \right)^{2}$$

$$K_M = lqS_M$$

$$K_H = lqS_H$$

 $K_{h} = egin{cases} q\ell S_{H}ig(G_{M},G_{H}ig) & para decaimento da turbulencia \ rac{q^{2}}{q_{*}}\ell S_{H}ig(G_{M_{*}},G_{H_{*}}ig) & para crescimento da turbulencia \end{cases}$ 

$$K_{_{m}} = egin{cases} q\ell S_{_{M}}ig(G_{_{M}},G_{_{H}}ig) & para \ decaimentoda \ turbulencia \ rac{q^{2}}{q_{*}}\ell S_{_{M}}ig(G_{_{M_{*}}},G_{_{H_{*}}}ig) \ para \ crescimento \ da \ turbulencia \end{cases}$$

Hostslag e Boville,1993

Mellor e Yamada -2.0,1982

Mellor e Yamada -2.5,1982

#### Esquema de PBL Modificado

$$K_{h} = w_{1}K_{h_{MY}} + w_{2}K_{h_{TKE}} + w_{3}K_{h_{HB}}$$

$$K_{m} = w_{1}K_{m_{MY}} + w_{2}K_{m_{TKE}} + w_{3}K_{m_{HB}}$$





# Parametrização de fluxos turbulentos na camada externa



# **Fechamento do Perfil-K**



# Parametrização de fluxos turbulentos na camada externa



#### K-profile closure Troen and Mahrt (1986)

$$\overline{\theta'w'} = -K_h \left( \frac{\partial \theta}{\partial z} - \gamma_\theta \right)$$

#### Perfil dos coeficientes de difusão:

$$K_H = w_S \kappa z \left( 1 - \frac{z}{h} \right)^2$$

$$w_S = \sqrt[3]{(u_*^3 + C_1 w_*^3)}$$

$$\gamma_{\theta} = \frac{C\overline{w'\theta'}^{S}}{w_{S}h}$$

#### Hostslag e Boville,1993



$$\theta_{VS} = \theta_S + \Delta\theta$$

$$\Delta\theta = \frac{D\overline{w'\theta_V'}^S}{w_S}$$

#### Encontra inversão levantando a parcela de ar com excesso de T:

$$Ri_c = h \frac{g}{\theta_V} \frac{\theta_{vh} - \theta_{vs}}{U_h^2 + V_h^2 - U_s^2 - V_s^2} = 0.25$$



# Parametrização de fluxos turbulentos na camada externa



A interação de inversão foi muito agressiva no esquema original e muito dependente da resolução vertical:

#### Forma da implementação do ECMWF:

- ✓ Sem termos de contra-gradiente .
- √ Não usado para camada limite estável.
- ✓ Elevação do T. virtual mínima
- √ Constantes diferentes.
- ✓ Formulação implícita de entranhamento

$$K_{hi} = \frac{(w'\theta_v')_0}{\left(\frac{\partial \theta_v}{\partial x}\right)_i} C_E$$



|                  | <b>ECMWF</b> | Troen/Mahrt |
|------------------|--------------|-------------|
| $\mathbf{C}_1$   | 0.6          | 0.6         |
| D                | 2.0          | 6.5         |
| $C_{\mathbb{E}}$ | 0.2          | -           |



# Parametrização de fluxos massa



# **ED/MF** closure

# K-diffusion versus Mass flux method

?



## Evolução da Camada Limite do modelo BAM



### **MY Camada Limite Fechamento 2.0**

Desacoplamento das equações prognostica da PBL e a Superfície

Fechamento Local x Não Local

**Contra Gradiente** 

Camada Limite Úmida.





#### **Fechamento local**

Este método supoem-se um equilíbrio local entre produção e dissipação de energia cinética turbulenta.

$$\frac{\partial \bar{e}}{\partial t} + \overline{u_j} \frac{\partial \bar{e}}{\partial x_j} = \underbrace{\frac{g}{\theta_0} \overline{w' \theta_{v'}}}_{\text{produção}} - \overline{u_i' u_j'} \frac{\partial \overline{u_i}}{\partial x_j} - \underbrace{\frac{\partial \overline{u_j' e}}{\partial x_j}}_{\text{transporte}} - \underbrace{\frac{1}{\rho} \frac{\partial \overline{u_i' p'}}{\partial x_i}}_{\text{dissipação}} - \underline{\epsilon}$$

$$\frac{g}{\theta_0} \overline{\mathbf{w'} \theta_{v'}} - \varepsilon = 0$$

$$\varepsilon = \frac{g}{\theta_0} \overline{w' \theta_v'} = = \Rightarrow dissipação por difusão$$





#### **Fechamento local**

Não há variáveis prognósticas explícitas para descrever a camada limite planetária (PBL); em vez disso, toda a atmosfera é representada em camadas discretas que podem ou não fazer parte do PBL.

| $\frac{\partial \overline{u}}{\partial t}$      | = - | $\frac{\partial \overline{u'w'}}{\partial z}$                          |
|-------------------------------------------------|-----|------------------------------------------------------------------------|
| $\frac{\partial \overline{v}}{\partial t}$      | = - | $\frac{\partial \overline{v'w'}}{\partial z}$                          |
| $\frac{\partial \overline{q}}{\partial t}$      | = - | $-\frac{\partial \overline{q'w'}}{\partial z}$                         |
| $\frac{\partial \overline{\theta}}{\partial t}$ | = . | $-\frac{\partial \overline{\theta'w'}}{\partial \overline{\theta'w'}}$ |
| $o_i$                                           |     | $\partial z$                                                           |

| $\frac{\partial \bar{u}}{\partial t} = -$      | $-\frac{\partial}{\partial z}\bigg(-I$       | $K_m \frac{\partial \bar{u}}{\partial z} =$             | $K_m \frac{\partial^2 \overline{u}}{\partial^2 z}$        |
|------------------------------------------------|----------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|
| $\frac{\partial \bar{v}}{\partial t} = -$      | $-\frac{\partial}{\partial z}\bigg(-I$       | $K_m \frac{\partial \bar{v}}{\partial z} =$             | $K_m \frac{\partial^2 \bar{v}}{\partial^2 z}$             |
| $\frac{\partial \bar{q}}{\partial t} = -$      | $-\frac{\partial}{\partial z}\bigg(-1\bigg)$ | $K_q \frac{\partial \bar{q}}{\partial z} =$             | $K_q \frac{\partial^2 \overline{q}}{\partial^2 z}$        |
| $\frac{\partial \bar{\theta}}{\partial t} = -$ | $-\frac{\partial}{\partial z}\bigg(-F$       | $K_{\theta} \frac{\partial \bar{\theta}}{\partial z} =$ | $K_{\theta} \frac{\partial^2 \bar{\theta}}{\partial^2 z}$ |

| 137-level |           |
|-----------|-----------|
| model     |           |
| 255       | $U,V,T,q$ |
|           |           |
| 214       | $U,V,T,q$ |
|           |           |
| 176       | U,V,T,q   |
| 1.40      |           |
| 142       | U,V,T,q   |
| 111       | U,V,T,q   |
| 111       |           |
| 82        | UVT a     |
| 02        | U,V,T,q   |
| 5.0       |           |
| 56        | U,V,T,q   |
|           |           |
| 32        | U,V,T,q   |
| 10        |           |
| 10        | U,V,T,q   |
|           |           |
| $Z_o$     |           |
|           |           |





#### **Fechamento local**

Os fluxos verticais que são expressos como termos quadráticos nas quantidades turbulentas são representados pela difusão vertical ao longo do gradiente das quantidades em grande escala.

$$-(\overline{uw}) = K_M \frac{\partial \overline{U}}{\partial z}$$

$$\overline{u'w'} = -K_M \frac{\partial \overline{u}}{\partial z}, \quad \overline{v'w'} = -K_M \frac{\partial \overline{v}}{\partial z} 
\overline{\theta'w'} = -K_H \frac{\partial \overline{\theta}}{\partial z}, \quad \overline{q'w'} = -K_H \frac{\partial \overline{q}}{\partial z}$$

u e w são os componentes turbulentos da velocidade zonal e vertical

 $\it U$  é o componente da velocidade zonal em grande escala e

 $K_M$  é um coeficiente de difusão do momento.



#### **Fechamento Local K**





#### Conceito Básico de um modelo PBL

Os coeficientes de mistura são calculados de acordo com o esquema de fechamento "nível 2.0" **exemplo: Mellor e Yamada** (1982).

$$\overline{u'w'} = -K_M \frac{\partial \overline{u}}{\partial z}, \quad \overline{v'w'} = -K_M \frac{\partial \overline{v}}{\partial z}$$

$$\overline{\theta'w'} = -K_H \frac{\partial \overline{\theta}}{\partial z}, \quad \overline{q'w'} = -K_H \frac{\partial \overline{q}}{\partial z}$$

$$\frac{\partial \overline{\phi'w'}}{\partial z} \approx \frac{\partial}{\partial z} \left( -K \frac{\partial \overline{\phi}}{\partial z} \right) \approx -K \frac{\partial^2 \overline{\phi}}{\partial z^2}$$

# Os coeficientes de difusão $[K_x]$ precisam ser especificados em função das características do fluido por exemplo:

- · cisalhamento,
- · estabilidade,
- escalas de comprimento.







#### **Fechamento local MY 2.0**

O método de Fechamento local MY 2.0 de turbulência envolve duas suposições.

(1) Os coeficientes de difusão são expressos como:

$$K_M = lqS_M$$

$$K_H = lqS_H$$

 $K_M$  e  $K_H$ são os coeficientes de difusão para momento e calor, l é a escala mestre de comprimento de turbulência,  $q^2$  é a energia cinética turbulenta . q é a magnitude da velocidade turbulenta do vento.  $S_M$  e  $S_H$  são fluxo de momento  $S_H$  e parâmetros de estabilidade do fluxo de calor.





$$K_M = lqS_M \qquad K_H = lqS_H$$

$$\frac{q}{l} = \left[ \frac{1}{GM} \left[ \left( \frac{\partial U}{\partial z} \right)^2 + \left( \frac{\partial V}{\partial z} \right)^2 \right] \right]^{1/2} \qquad \qquad \frac{q}{l} = -\left[ \frac{1}{GH} \left[ \beta * g \left( \frac{\partial \theta}{\partial z} \right)^2 \right] \right]^{1/2}$$

$$R_{iB} = \frac{\frac{g}{\theta} * \frac{d\theta}{dz}}{\left(\frac{dU}{dz}\right)^{2} + \left(\frac{dV}{dz}\right)^{2}} = \frac{Stabil}{Shear}$$

$$R_{iF} = r_1 \left( R_{iB} + r_2 - \sqrt{(R_{iB}(R_{iB} - r_3) + r_4)} \right)$$





$$R_{iF} = r_1 \left( R_{iB} + r_2 - \sqrt{(R_{iB}(R_{iB} - r_3) + r_4)} \right)$$

$$\begin{cases} alfa = b_1(gam1 - c_1) + 3 * (a_2 + 2 * a_1) \\ beta = b_1(gam1 - c_1) \\ gama = \frac{a_2}{a_1}(b_1(gam1 + gam2) - 3 * a_1) \\ delta = \frac{a_2}{a_1} * b_1 * gam1 \end{cases}$$

$$\begin{cases} r_1 = \frac{1}{2} \frac{gama}{alfa} \\ r_2 = \frac{beta}{gama} \\ r_3 = 2 * \frac{(2 * alfa * delta - gama * beta)}{(gama * gama)} \\ r_4 = r_2 * r_2 \end{cases}$$

$$\begin{cases} a_1 = 0.92 \\ a_2 = 0.17 \\ b_1 = 16.6 \\ b_2 = 10.1 \end{cases} \begin{cases} c_1 = 0.08 \\ vk0 = 0.4 \\ sffrac = 0.01 \\ r_2 = 10.1 \end{cases}$$
$$gam1 = \frac{1}{3} - 2\left(\frac{a_1}{b_1}\right)$$
$$gam2 = \frac{(b_2 + 6 * a_1)}{b_1}$$

$$R_{iB} = \frac{\frac{g}{\theta} * \frac{d\theta}{dz}}{\left(\frac{dU}{dz}\right)^{2} + \left(\frac{dV}{dz}\right)^{2}} = \frac{Stabil}{Shear}$$





$$S_H = \frac{s_1 - s_2 R_{iF}}{(1 - R_{iF})}$$

$$gam1 = \frac{1}{3} - 2\left(\frac{a_1}{b_1}\right)$$

$$gam2 = \frac{(b_2 + 6 * a_1)}{b_1}$$

$$s_1 = 3 * a2 * gam1$$
  
 $s_2 = 3 * a2 * (gam1 + gam2)$ 

$$\begin{cases} a_1 = 0.92 \\ a_2 = 0.17 \\ b_1 = 16.6 \\ b_2 = 10.1 \end{cases}$$





$$R_{iF} = r_1 \left( R_{iB} + r_2 - \sqrt{(R_{iB}(R_{iB} - r_3) + r_4)} \right)$$

$$S_H = \frac{s_1 - s_2 R_{iF}}{(1 - R_{iF})}$$

$$R_{iF} = -\frac{GH}{GM} = \frac{S_M}{S_H} * R_{iB}$$

$$S_M = S_H * \frac{R_{iF}}{R_{iB}}$$





#### **Fechamento local MY 2.0**

$$G_{M} = \frac{l^{2}}{q^{2}} \left[ \left[ \frac{\partial u}{\partial z} \right]^{2} + \left[ \frac{\partial v}{\partial z} \right]^{2} \right] \qquad G_{M} = \frac{l^{2}}{q^{2}} \beta g \left[ \left[ \frac{\partial theta}{\partial z} \right]^{2} \right] \qquad l = \frac{k_{0}z}{1 + \frac{k_{0}z}{l_{0}}}$$

$$G_{M} = \frac{l^{2}}{q^{2}} \beta g \left[ \left[ \frac{\partial theta}{\partial z} \right]^{2} \right]$$

$$l = \frac{k_0 z}{1 + \frac{k_0 z}{l_0}}$$

O comprimento mistura máximo  $l_0=10\ metros$  na formula de blackerdar é usado como primeira aproximação do calculo interativo

$$l = \frac{l_0 k_0 z}{l_0 + k_0 z}$$

$$\frac{1}{G_M} = b_1 S_M (1 - R_{iF})$$

$$\frac{q}{l} = \sqrt{b_1 S_M (1 - R_{iF}) \left[ \left[ \frac{\partial u}{\partial z} \right]^2 + \left[ \frac{\partial v}{\partial z} \right]^2 \right]}$$





#### **Fechamento local MY 2.0**

O comprimento mistura máximo  $l_0=10\ metros$  na fórmula de blackerdar é usado como primeira aproximação do cálculo interativo

$$l = \frac{l_0 k_0 z}{l_0 + k_0 z}$$

$$l = \frac{l_0 k_0 z}{l_0 + k_0 z}$$

$$\frac{q^2}{l^2} = \frac{1}{G_M} \left[ \left[ \frac{\partial u}{\partial z} \right]^2 + \left[ \frac{\partial v}{\partial z} \right]^2 \right]$$

$$\frac{q}{l} = \sqrt{b_1 S_M (1 - R_{iF}) \left[ \left[ \frac{\partial u}{\partial z} \right]^2 + \left[ \frac{\partial v}{\partial z} \right]^2 \right]}$$

$$\frac{q}{l} * l = \sqrt{b_1 S_M (1 - R_{iF}) \left[ \left[ \frac{\partial u}{\partial z} \right]^2 + \left[ \frac{\partial v}{\partial z} \right]^2 \right] * l}$$

$$q = \sqrt{b_1 S_M (1 - R_{iF}) \left[ \left[ \frac{\partial u}{\partial z} \right]^2 + \left[ \frac{\partial v}{\partial z} \right]^2 \right] * l}$$

$$\frac{1}{G_M} = b_1 S_M (1 - R_{iF})$$

$$K_H = lqS_H$$

$$K_M = lqS_M$$





#### **Fechamento local MY 2.0**

A razao de SH para SM é igual à razão do número de Richardson do fluxo turbulento pelo número de Richardson Bulk (larga escala)

### KM e KH são restritos a:.

$$1 \le (K_M = lqS_M) \le 300$$

$$0.1 \le (K_H = lqS_H) \le 300$$





$$\frac{\partial \bar{u}}{\partial t} = \mathbf{K}(\mathbf{z}) \frac{\partial}{\partial z} \left( \frac{d\varphi}{dz} \right) + \frac{\partial \mathbf{K}(\mathbf{z})}{\partial z} \left( \frac{d\varphi}{dz} \right)$$





#### **Fechamento local MY 2.0**



**Analise** 

Simulação 1.8x1.8 graus Superestima o transporte de umidade







# Acoplamento das equações prognostica da PBL e a Superfície

(2) A equação da energia cinética turbulenta (TKE) é fechada assumindo que a produção e a dissipação do TKE sejam instantaneamente equilibradas em cada ponto.

Essa suposição leva a um sistema de equações para l, q, SM e SH que podem ser resolvidas simultaneamente para fornecer os coeficientes de difusão vertical usados para acoplar as camadas discretas do GCM e as camadas superficiais do modelo de superficie.





As equações prognósticas para temperaturas e umidade atmosféricas são então acopladas às equações SSIB para a superfície do solo e a copa.

E o sistema de equações acopladas é resolvido simultaneamente com a difusão vertical de calor, umidade e momento, conforme Mellor e Yamada (1982).).



Mellor e Yamada 2.0

Forte dependência dos parâmetros específicos do esquema SSiB na 1º camada



Hostlag e Boville

Não existe forte dependência do tipo específico de esquema de superfície na 1º camada



### Evolução da Camada Limite do modelo BAM



### **MY Camada Limite Fechamento 2.0**

Desacoplamento das equações prognóstica da PBL e a Superfície

Fechamento Local x Não Local

**Contra Gradiente** 

Camada Limite Úmida.



### Dinâmica 17/09/2019 a 11/10/2019

#### **Conceito Basico de um modelo PBL**

### Desacoplamento das equações prognóstica da PBL e a Superfície

### Metodologia utilizada no esquema de Hostlag e Boville

- Separa o sistema de Equações Prognósticas da camada limite e da superfície.
- Assim a camada limite pode ser numericamente tratada de forma independente.



#### Hostlag e Boville

Não existe forte dependência do tipo específico de esquema de superfície na 1º camada





### Metodologia utilizada no esquema de Hostlag e Boville

#### Pontos Estável e neutros

define a difusividade termo <u>contra gradiente é zero</u> para o caso estável

$$\frac{z_k - z_{k-1}}{2 * L} = zl \le 1$$

$$K_c = ku_* \frac{z_k - z_{k-1}}{2} \frac{\left[1 - \frac{z_k - z_{k-1}}{2 * h}\right]^2}{\left[1 + \beta_s \frac{z_k - z_{k-1}}{2 * l}\right]}$$

$$\frac{z_k - z_{k-1}}{2 * L} = zl > 1$$

$$K_c = ku_* \frac{z_k - z_{k-1}}{2} \frac{\left[1 - \frac{z_k - z_{k-1}}{2 * h}\right]^2}{\left[\beta_s + \frac{z_k - z_{k-1}}{2 * L}\right]}$$

$$\beta_s$$
=5

$$L = \frac{u_*^3}{k * \frac{g}{T_0} \frac{H_0}{\rho_{air} cp}}$$

### Metodologia utilizada no esquema de Hostlag e Boville

### Instável para camada de superfície

Termo *contra-gradiente é zero* 

$$\beta_m$$
=15

$$K_c = u_* k \frac{z_{k-Z_{k-1}}}{2} \left[ 1 - \frac{z}{h} \right]^2 \left[ 1 - \beta_m \frac{z_{k-Z_{k-1}}}{2 * L} \right]^{1/3}$$



### Evolução da Camada Limite do modelo BAM



### **MY Camada Limite Fechamento 2.0**

Desacoplamento das equações prognostica da PBL e a Superfície

Fechamento Local x Não Local

**Contra Gradiente** 

Camada Limite Úmida.







$$\overline{w'C'} = -K_c \frac{\partial C}{\partial z}, \qquad (3.1)$$

$$\overline{w'C'} = -K_c \left( \frac{\partial C}{\partial z} - \gamma_c \right). \tag{3.8}$$









#### Fechamento Local x Não Local

$$\overline{w'C'} = -K_c \frac{\partial C}{\partial z}, \qquad (3.1)$$

$$\frac{\partial \bar{u}}{\partial t} = \mathbf{K}(\mathbf{z}) \frac{\partial}{\partial z} \left( \frac{d\varphi}{dz} \right) + \frac{\partial \mathbf{K}(\mathbf{z})}{\partial z} \left( \frac{d\varphi}{dz} \right)$$

$$\overline{w'C'} = -K_c \left( \frac{\partial C}{\partial z} - \gamma_c \right). \tag{3.8}$$

$$\frac{\partial \overline{u}_i}{\partial t} = \frac{\partial \overline{u_i'u_j'}}{\partial x_j}$$

$$\frac{\partial \bar{u}_i}{\partial t} = -\frac{\partial}{\partial x_j} \left( \mathbf{K}(\mathbf{z}) \frac{d\varphi}{dz} - \mathbf{K}(\mathbf{z}) \gamma_c \right)$$

$$\frac{\partial \bar{u}_i}{\partial t} = -\frac{\partial}{\partial x_j} \left( \mathbf{K}(\mathbf{z}) \frac{d\varphi}{dz} \right) + \frac{\partial \mathbf{K}(\mathbf{z}) \gamma_c}{\partial x_j}$$

$$\frac{\partial \bar{u}}{\partial t} = -\mathbf{K}(\mathbf{z}) \frac{\partial}{\partial z} \left( \frac{d\varphi}{dz} \right) - \frac{\partial \mathbf{K}(\mathbf{z})}{\partial z} \left( \frac{d\varphi}{dz} \right) + \frac{\partial \mathbf{K}(\mathbf{z})\gamma_c}{\partial z}$$





### Metodologia utilizada no esquema de Hostlag e Boville

### Instável (camada limite externa)

Termo contra-gradiente não é zero

$$K_c = w_m k \frac{z_{k-Z_{k-1}}}{2} \left[ 1 - \frac{z_k - z_{k-1}}{2 * h} \right]^2$$

Escala de velocidade turbulenta para momentum

$$w_m = \left[ u_*^3 - u_*^3 * 0.1 * 15 * \frac{h}{L} \right]^{\frac{1}{3}}$$







# Metodologia utilizada no esquema de Hostslag e Boville,1993

### Instável (camada limite externa)

Termo contra-gradiente *não é zero* 

$$\gamma_c = d \frac{wC_0}{w_* * h} = 7.2 * \frac{w_*}{w_m} * \frac{1}{h * w_m}$$

$$\gamma_{\theta} = \frac{H}{\rho_{air}c_p}\gamma_c$$

Escala de velocidade turbulenta para momentum  $w_m = \left[u_*^3 - u_*^3 * 0.1 * 15 * \frac{h}{L}\right]^{\frac{1}{3}}$ 

$$w_* = \left[\frac{H_0}{\rho_{air}c_p} * \frac{g*h}{T_0}\right]^{\frac{1}{3}}$$





Quais as vantagens de realizar o desacoplamento das equações prognostica da PBL:

1) Pode ser acoplada a diferentes esquemas de superfície













Quais as vantagens de realizar o desacoplamento das equações prognostica da PBL:

2) Pode ser introduzir diferentes tipos de fechamento da camada limite.





# Opções de parametrização do coeficiente de difusão

$$K_{C} = k w_{i} z \left( 1 - \frac{z}{h} \right)^{2}$$

$$K_{M} = lqS_{M}$$

$$K_H = lqS_H$$

$$K_{h} = egin{cases} q\ell S_{H}ig(G_{\!\!\!M},G_{\!\!\!H}ig) & ext{para decaimento da turbulencia} \ rac{q^{2}}{q_{*}}\ell S_{H}ig(G_{\!\!\!M_{*}},G_{\!\!\!H_{*}}ig) & ext{para crescimento da turbulencia} \end{cases}$$

$$egin{aligned} K_{_{m}} = & \begin{cases} q\ell S_{_{M}}ig(G_{_{M}},G_{_{H}}ig) & para \ decaimentoda \ turbulencia \ & \\ rac{q^{2}}{q_{*}}\ell S_{_{M}}ig(G_{_{M_{*}}},G_{_{H_{*}}}ig) \ para \ crescimento \ da \ turbulencia \end{cases}$$

Hostslag e Boville,1993

Mellor e Yamada -2.0,1982

Mellor e Yamada -2.5,1982

#### Esquema de PBL Modificado

$$K_{h} = w_{1}K_{h_{MY}} + w_{2}K_{h_{TKE}} + w_{3}K_{h_{HB}}$$

$$K_{m} = w_{1}K_{m_{MY}} + w_{2}K_{m_{TKE}} + w_{3}K_{m_{HB}}$$













UTC

UTC

06hrs

UTC

12hrs







transp. umidade e difusao vertical media 12Z01JAN2003 00Z10JAN2003

transp. umidade e difusao vertical media 18201JAN2003 00Z10JAN2003





MY2.5
transp. umidade e difusao vertical media
00202JAN2003 00210JAN2003

transp, umidade e difusao vertical media 06Z01JAN2003 00Z10JAN2003



















UTC 18hrs

Paulo Yoshio Kubota













# **Desacoplamento** das equações prognóstica da PBL e











<sup>j</sup>aulo Yoshio Kubota





### **Desacoplamento** das equações prognostica da PBL e a Superfície

# Experimento teste com a nova PBL e o esquema IBIS

- Tempo de integração de 1 mês p/ dezembro de 2003
- Resolução TQ0062L028 (dt = 1200 seg)
- Condição inicial do NCEP (00/01/01/2003), SST observada do NCEP.
- Simulação com :
- Dinâmica Euleriana Grade gaussiana regular
- Convecção profunda de Grell
- Convecção Rasa de Tiedke
- Radiação de onda curta de Lacis e Hansen
- Radiação de Onda Longa de Harshvardham
- Camada Limite de Hostlag e Boville
- Arrasto por onda de gravidade de Alpert
- Esquema de Superfície IBIS-DYNA



# <u>Desacoplamento</u> das equações prognóstica da PBL e a 🖠



# "ACOPLAMENTO" DO MCGA-CPTEC COM O IBIS "Precipitação"

$$K_{h} = w_{1}K_{h_{MY}} + w_{2}K_{h_{TKE}} + w_{3}K_{h_{HB}}$$

$$K_{m} = w_{1}K_{m_{MY}} + w_{2}K_{m_{TKE}} + w_{3}K_{m_{HB}}$$

#### Observado GPCP



# Simulação com o mesmo peso para cada coeficiente de difusão



Norte da AMAZ.:sul

NE:super.





#### "ACOPLAMENTO" DO MCGA-CPTEC COM O IBIS

"Precipitação"

#### Observado GPCP





### Mellor Yamada 2.0 $K_m = K_{m_{MY}}$ $K_h = K_{h_{MY}}$



Mellor Yamada 2.5  $K_h = K_{h_{TKE}}$   $K_m = K_{m_{TKE}}$ 







# "RESULTADO" DO MCGA-CPTEC COM O IBIS (Média Anual de Precipitação)





### Evolução da Camada Limite do modelo BAM



### **MY Camada Limite Fechamento 2.0**

Desacoplamento das equações prognostica da PBL e a Superfície

Fechamento Local x Não Local

**Contra Gradiente** 

Camada Limite Úmida.



# Processos turbulentos da PBL-ÚMIDA (BRETHERTON e PARK, 2009)



# Parametrização de turbulência úmida



#### Processos relacionados a nebulosidade







### Processos relacionados a nebulosidade





$$\overline{w'\chi'} = -K_{\chi} \frac{\partial \chi}{\partial z}$$

$$K_m = {}^{l}S_m {}^{e^{1/2}}$$

$$K_h = l S_h e^{1/2}$$

$$l = \frac{e^{3/2}}{b_1 D}$$

$$D = \frac{e^{3/2}}{b_1 l}$$

$$(b_1 = 5.8)$$

#### Processos relacionados a nebulosidade



Funções de estabilidade adimensional  $S_{h,m}$  (Galperin, 1988)

$$S_h = \frac{\alpha_5}{1 + \alpha_3 G_h}$$

$$S_m = \frac{\alpha_1 + \alpha_2 G_h}{(1 + \alpha_3 G_h)(1 + \alpha_4 G_h)}$$

$$K_h = l S_h e^{1/2}$$

$$K_h = lS_h e^{1/2}$$

$$K_m = lS_m e^{1/2}$$

Estas funções são expressos em termos de uma razão de estabilidade adimensional

$$G_h = \frac{N^2 l^2}{(2e)}$$

 $N^2$  é o quadrado da frequência de flutuabilidade úmida

$$\alpha_1 = 0.55600;$$
 $\alpha_2 = -4.3649;$ 
 $\alpha_3 = -34.6764;$ 
 $\alpha_4 = -6.1272;$ 
 $\alpha_5 = 0.698600$ 



# Processos turbulentos da PBL-ÚMIDA (BRETHERTON e PARK, 2009) Formulação



Estas funções são expressos em termos de uma razão de estabilidade adimensional

$$G_h = \frac{N^2 l^2}{(2e)}$$
  $N^2$  é o quadrado da frequência de flutuabilidade úmida

Nós restringimos  $G_h < 0.0233$ ,

Esta é uma condição teórica <u>para manter a produção de cisalhamento positiva em turbulência</u> <u>homogeniamente estratificada, com cisalhamento instávelmente.</u>

O verdadeiro limite superior de Gh na estratificação instável é  $\frac{-1}{\alpha_3} = 0.0288$ , onde as funções de estabilidade se tornam infinitas,.

Nosso limite superior  $G_h < 0.0233$  mantém  $S_h = 3.64$ . Comparado com um valor neutro ( $G_h = 0$ ) onde  $S_h = 0.70$ 



# Processos turbulentos da PBL-ÚMIDA (PARK e BRETHERTON, 2009)



### Transporte de TKE e metodo de solução na camada limite convectiva

$$\langle e \rangle = b_1(-S_h \langle W_b \rangle + S_m \langle W_s \rangle)$$

### Todos os termos no lado direito desta equação podem ser calculados a partir dos perfis médios termodinâmicos e de cisalhamento

$$K_m = l S_m e^{1/2}$$

$$q = \sqrt{b_1 S_M (1 - R_{iF}) \left[ \left[ \frac{\partial u}{\partial z} \right]^2 + \left[ \frac{\partial v}{\partial z} \right]^2 \right] * l}$$

$$K_h = lS_h e^{1/2} (b_1 = 5.8)$$

$$(b_1 = 5.8)$$

$$G_h = \frac{N^2 l^2}{(2e)}$$

$$\langle \mathbf{e} \rangle = b_1(-S_h \langle W_b \rangle + S_m \langle W_s \rangle)$$

$$l = \frac{\mathbf{e}^{3/2}}{b_1 \mathbf{D}}$$

$$D = \frac{e^{3/2}}{b_1 l}$$

$$S_h = \frac{\alpha_5}{1 + \alpha_3 G_h}$$

$$l = \frac{e^{3/2}}{b_1 D} \qquad \qquad D = \frac{e^{3/2}}{b_1 l} \qquad S_h = \frac{\alpha_5}{1 + \alpha_3 G_h} \qquad S_m = \frac{\alpha_1 + \alpha_2 G_h}{(1 + \alpha_3 G_h)(1 + \alpha_4 G_h)}$$



# Processos turbulentos da PBL-ÚMIDA (BRETHERTON e PARK, 2009)





# (1)o cálculo da interação da nebulosidade estratiforme com o coeficiente de difusão vertical.



Fig. 6. A conceptual model of the subtropical stratocumulus to trade Cu transition



# Processos turbulentos da PBL-ÚMIDA (BRETHERTON e PARK, 2009)





# (1)o cálculo da interação da nebulosidade estratiforme com o coeficiente de difusão vertical.

$$\overline{u_i''u_j''} - \frac{2}{3}e\delta_{ij} = -K_{\rm m}\left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right)$$

$$\overline{u_i''\theta''} = -K_{\rm h}\frac{\partial \theta}{\partial x_i}$$

$$\overline{u_i''q_i''} = -K_{\rm h}\frac{\partial q_{\rm v}}{\partial x_i}$$

$$\overline{u_i''s''} = -K_{\rm h}\frac{\partial s}{\partial x_i},$$



$$K_{\rm m} = c_{\rm m} \, l \sqrt{e},$$
  $K_{\rm h} = \left(1 + \frac{2l}{\Delta}\right) K_{\rm m}.$ 

$$l = 0.76\sqrt{e} \left( \frac{g}{\theta_{\rm v,0}} \frac{\partial \theta_{\rm v}}{\partial z} \right)^{-\frac{1}{2}}$$

$$l = \begin{cases} \min\left(1.8z, \mathbf{\Delta}, 0.76\sqrt{e}\left(\frac{g}{\theta_{v,0}}\frac{\partial\theta_{v}}{\partial z}\right)^{-\frac{1}{2}}\right) & \text{for } \frac{\partial\theta_{v}}{\partial z} > 0, \\ \min\left(1.8z, \mathbf{\Delta}\right) & \text{for } \frac{\partial\theta_{v}}{\partial z} \leq 0. \end{cases}$$

$$c_{\rm m} = 0.1$$
$$\Delta = \sqrt[3]{\Delta x \Delta y \Delta z}$$

(1) foi implementada uma nova equação para o cálculo da pressão de vapor de saturação.



## Dinâmica 17/09/2019 a 11/10/2019



### **Desacoplamento** das equações prognóstica da PBL e a Superfície

## Versão Operacional do modelo BAM







## Dinâmica 17/09/2019 a 11/10/2019



### **Desacoplamento** das equações prognóstica da PBL e a Superfície









Fonte: DayanaCastilho

Paulo Yoshio Kubota







Fonte: DayanaCastilho

Paulo Yoshio Kubota



## Dinâmica 17/09/2019 a 11/10/2019



**Desacoplamento** das equações prognóstica da PBL e a Superfície

# Fim