ST0270-031 Clase 13

J.F. Cardona

Universidad EAFIT

10 de marzo de 2020

Agenda

- Capítulo 3. Autómatas finitos y reconocedores de lenguajes regulares
 - Algoritmos de reconocimiento y autómatas
 - Introducción a los autómatas finitos
 - Autómata finito determinista
 - Autómata mínimo

Introducción a los autómatas finitos

Ejemplo. Constantes decimales

El conjunto L de constante decimales tiene el alfabeto $\Sigma = \Delta \cup \{0, \bullet\}$ donde $\Delta = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ es un dígito diferente de cero. El lenguaje regular es

$$L = (0 \cup \Delta(0 \cup \Delta)^*) \bullet (0 \cup \Delta)^+$$

El reconocedor es especificado por el diagrama de transiciones de estados o por la tabla de transiciones de estados.

Introducción a los autómatas finitos

Definición

Un autómata finito determinista M comprende cinco elementos:

- Q, el conjunto de estados (finito y no vacío).
- **3** la función de transición $\delta: (Q \times \Sigma) \to Q$.
- $q_o \in Q$, el **estado inicial**
- **⑤** $F \subseteq Q$, el conjunto de los estados finales.

Definición

- La función δ específica los movimientos: el significado de $\delta(q,a)=r$ es que la máquina M en el estado actual q lee a a y mueve al siguiente estado r.
- Si $\delta(q, a)$ está indefinida, el autómata para y se puede asumir que entra en un estado de error.
- El autómata procesa una cadena no vacía x a través de una serie de movimientos.
- La aplicación de la función de transición $\delta(\dots \delta(\delta(q_0,a_1),a_2)\dots,a_n)=q_n$ puede escribirse de forma más compacta: $\delta(q_0,a_1a_2\dots a_n)=q_n$.
- Un caso especial es la cadena vacía, la cual asume que no hay un cambio de estado.

$$\forall q \in Q : \delta(q, \epsilon) = q$$

Definición

• El dominio de la función de transición es $(Q \times \Sigma^*)$ y la definición es

$$\delta(q, ya) = \delta(\delta(q, y), a), \text{ donde } a \in \Sigma \text{ y } y \in \Sigma^*$$

- Mirando en el grafo, si $\delta(q,y)=q'$, entonces, y únicamente entonces, existe un camino del nodo q al nodo q', tal que la concatenación de las etiquetas de los arcos hacen la cadena y.
- Se dice que y es la etiqueta del camino y el camino representa la computación.
- Un carácter x es reconocido o aceptado por el autómata si este es la etiqueta de un camino desde el estado inicial a estado de aceptación, δ(q₀, x) ∈ F.
- La cadena vacía es reconocida sí, y sólo sí, el estado inicial es también un estado de aceptación. q_o ∈ F.

Lenguaje reconocido por el autómata

El lenguaje reconocido o aceptado por el autómata M es

$$L(M) = \{x \in \Sigma^* \mid x \text{ es reconocido por } M\}$$

Los lenguajes aceptados por tales autómatas son denominados *reconocibles por máquinas de estado finito*.

Dos autómatas son *equivalentes* si ellos aceptan el mismo lenguaje.

Ejemplo

El autómata M anterior está definido por:

$$Q = \{q_0, q_1, q_2, q_3, q_4\}$$

$$\Sigma = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 0, \bullet\}$$

$$\delta = \{q_0 \xrightarrow{\Delta} q_1, q_0 \xrightarrow{0} q_2, q_1 \xrightarrow{0 \cup \Delta} q_1, q_1 \xrightarrow{\bullet} q_3, q_2 \xrightarrow{\bullet} q_3, q_3 \xrightarrow{0 \cup \Delta} q_4, q_4 \xrightarrow{0 \cup \Delta} q_4\}$$

$$q_0 = q_0$$

$$F = \{q_4\}$$

Estado de error y el autómata total

- Si el movimiento no está definido en el estado q cuando se está leyendo el carácter a, se dice que el autómata falla en el estado de error q_{err}.
- El estado de error es tal que para cualquier carácter el autómata se mantiene en él, esto justifica otros nombres como sumidero o estado de trampa.
- El estado de error no es un estado de aceptación o final.
- La función de transición puede ser hecha una función total al adicionar el estado de error y las transiciones desde o hacia este:

- El autómata total acepta el mismo lenguaje que el original.
- Es habitual dejar el estado de error implícito

Limpiando autómatas

Estado alcanzable

Un estado q es **alcanzable** desde el paso p, si una computación existen desde p a q.

Estado accesible y post-accesible

Un estado es *accesible* si este puede ser alcanzado desde el estado inicial; *post-accesible* si un estado de aceptación puede ser alcanzable desde este.

Estados útiles e inútiles

Un estado es llamado *útil* si este es accesible y post-accesible; de otra forma este es *inútil*.

Limpiando el autómata

Autómata reducido

Un Autómata está limpio o reducido si cada estado es útil.

Propiedad

Para cada autómata finito existe un autómata finito que está limpio.

Limpiando autómatas

Limpiando autómatas

Propiedad

Para cada lenguaje de un autómata de estado finito, el reconocedor (determinístico) mínimo finito con respecto al número de estados es *único* (a parte del renombramiento de estados).

Descripción

- La anterior propiedad permite representar una colección de máquinas equivalentes por una máquina estándar que es la mínima.
- En la práctica esto es importante para las aplicaciones del compilador.
- Para calcular el autómata mínimo es necesario introducir una relación algebraica entre los estados equivalentes, para ser computados por el algoritmo.

Definición de indistinguible y distinguible

Los estados p y q son indistinguibles sí, y sólo sí, para cada cadena $x \in \Sigma^*$, ambos estados $\delta(p,x)$ y $\delta(q,x)$ son finales, o ninguno lo es. La relación complementaria es llamada distinguibles

Note que:

- el estado sumidero q_{err} es distinguibles de cualquier otro estado p, desde para cualquier estado existe una cadena x tal que $\delta(p,x) \in F$, mientras que para cada cadena x este es $\delta(q_{err},x) = q_{err}$;
- p y q son distinguibles si p es final y q no lo es, debido a que $\delta(p, \epsilon) \in F$ y $\delta(q, \epsilon) \notin F$;
- p y q son distinguibles sí, para cualquier carácter a, los siguientes estados $\delta(p,a)$ y $\delta(q,a)$ son distinguibles.

Relación de equivalencia

La indistinguibilidad es una relación simétrica, reflexiva, y transitiva, por lo tanto es una relación de equivalencia.

- El Autómata mínimo M', es equivalente al dado M, tiene por estados las clases de equivalencia de la relación de indistinguibilidad.
- Es simple construir sus funciones de transición: M' contiene el arco

$$\underbrace{\left[\ldots,p_r,\ldots\right]}^{C_1} \xrightarrow{b} \underbrace{\left[\ldots,q_s,\ldots\right]}^{C_2}$$

entre las clases de equivalencia C_1 y C_2 sí, y únicamente sí, M contiene un arco

$$p_r \stackrel{b}{\rightarrow} q_s$$

entre los dos estados respectivamente perteneciente a las dos clases.