EM400 电力智能监控仪表

操作手册

目 录

1. 简述	1
1.1. EM400 的功能 1.2. EM400 的特点	
2. 安装、接线与配置	3
2.1. 尺寸与安装 2.2. 接线与配置	
3. 操作指导	10
3.1. 按键操作	
5. 运输与储藏	74
附录	75
A. 参数出厂默认值 B. 技术指标	
C. 订货说明	

1. 简述

1.1. EM400 的功能

EM400 系列电力智能监控仪表是用于中低压系统(6~35kV 和0.4kV)的智能化装置,具有强大的数据采集、处理、统计与控制功能,可实现基本单回路交流电参量的测量和计算、电能累计、2~31 次谐波监测的功能、4 路开关量输入监测、2 路继电器输出、1路4~20mA直流变送输出等功能。EM400 提供通讯接口,支持RS485 接口MODBUS 通讯协议,与计算机监控系统连接。装置外形如图1-1-1 所示。

图1-1-1 装置外形图

1.2. EM400 的特点

- 1.2.1.EM400 具有强大的数据采集、处理、统计与控制功能
- 支持三相三线制和三相四线制可选功能,具有三相电压、三相电流、零序电流、总有功功率、总无功功率、总视在功率、各相的有功、无功功率、视在功率、总功率因数、各相的功率因数、系统频率、总有功电度、总无功电度、各相的有功电度和无功电度的测量与计算功能。*
- 电压和电流的谐波畸变率(包括总畸变率 THD、奇次畸变率、偶次畸变率)、电压的 2~31 次谐波分量占有率、电流的 2~31 次谐波分量占有率、电流的 K 因数、电压的基波有效值、电流的基波有效值等的测量与计算功能。
- 具有2路继电器控制输出。*

- 具有最大共 4 路开关量输入功能: 最多可记录 32 个开关量 SOE 事件。
- 具有 1 路 4~20mA 直流变送输出功能,可任意关联电压、电流、功率。
- 正反向总有功电能、四象限无功电能累计;分时电能(4费率,48时段) 的正反向总有功电能、四象限无功电能累计。*
- 正反向总有功最大需量、正反向总无功最大需量及发生时间。*
- 各相/线电压、电流、频率、总/三相功率因数、总/三相有功功率、无功功率、视在功率的最大/最小值及发生时间。*
- 三相电压、电流不平衡度。
- 可当地查看一条回路及开关的各种电参量、运行状态等;可查看或设定运行参数,进行合、分闸等操作。*
 - **注意**:上述功能中带"*"号标识的功能,根据装置各具体型号的不同(见附录 C.订货说明)而相应选配。

1.2.2.安全性高,可靠性好

EM400在设计过程中采用了多种抗干扰措施,能够在复杂的电力系统环境中稳定运行。静电放电抗扰性符合3级;电快速瞬变脉冲群抗扰性符合3级;浪涌抗干扰性符合3级;面板防护等级符合IP50,壳体防护等级符合IP20。

1.2.3.体积小,安装方便

EM400 外形尺寸符合DIN96×96 标准, 壳体深度为60mm, 采用自锁面板式安装机构, 无需螺丝固定即可安装。

1.2.4.系统接线方便灵活

系统接线方式有三相四线制3CT(3P4W 3CT) 、三相四线制1CT(3P4W 1CT) 、三相三线制3CT(3P3W 3CT) 、三相三线制2CT(3P3W 2CT) 、三相三线制1CT(3P3W 1CT) 。

1.2.5.显示直观、操作简便

大尺寸专用液晶模块可以实时显示多项信息,配合明亮的背光,使操作者在 光线差的情况下也能准确阅读数据。操作方式人性化,操作者能在短时间内掌握, 阅读数据和参数设置等操作将变得简单易行。

1.2.6.EM400 的应用领域

 中、低压变配电自动化
 工业自动化

 智能型开关柜
 楼宇自动化

 负控系统
 能源管理系统

2. 安装、接线与配置

本章详述EM400的安装方法、接线和配置,在安装前请仔细阅读。

2.1. 尺寸与安装

2.1.1. 装置的机械尺寸

图 2-1-1 机械尺寸图 (单位: mm)

2.1.2. 安装方式

EM400 采用面板式安装,固定在开关柜面板上。

● 面板的开孔尺寸见图2-1-2-1:

图 2-1-2-1 面板开孔尺寸(单位: mm)

图 2-1-2-2 拆卸安装卡

- 考虑到接线长度,面板后要有 100mm 的深度用于容纳 EM400。实际安装中, 一般需要后部有一定的空间(至少为 130×130×100mm),以便于安装和接线。
- 先将装置两边的安装卡取下,如图 2.1.2.2,用一只手的食指和拇指将固定头

轻轻抬起(抬起时用力不可过大,否则可能会使固定头断裂),另一只手的拇指按图中箭头所示方向用力推,卡子即可取下。安装时,将装置于面板前方推放入安装孔内,然后从后方沿装置的沟槽将安装卡安上。如图 2.1.2.3,两手分别按住装置的上下两面,两拇指顶在卡子的两端,按箭头所示方向均匀用力前推,使卡子挤紧面板。两个安装卡都完成安装后,装置将牢固地固定在面板上。

图 2-1-2-3 用卡子固定 EM400 于面板上

2.1.3. 安装注意事项

- 本产品内部无用户可调元器件,安装时请勿拆开。
- 不要带电作业。
- 运行时应满足环境温度在-25℃~+70℃,湿度在 0~95%,大气压在 70kPa~ 106kPa。避免将装置置于强干扰源、辐射源、热源附近及粉尘多的地方。

2.2. 接线与配置

2.2.1. 端子定义

EM400的背面共有三组接线端子,端子示意图如图2-2-1所示:

图 2-2-1 接线端子示意图 (后视)

端子的定义如下表:

电源	PE	1		I41	17
	L	2		I42	18
	N	3	继	RO11	19
н	U1	4	继电器输出	RO12	20
电压输入	U2	5	输	RO21	21
输	U3	6	出	RO22	22
	Un	7		NC	23
坦	SHIELD	8	变送输出	AO+	24
通讯	RS+	9		AO-	25
	RS-	10		NC	26
电流输入	I11	11		NC	27
	I12	12		DI1	28
	I21	13	开关量输入	DI2	29
	122	14		DI3	30
	I31	15		DI4	31
	132	16		COM	32

注意: ① EM400 装置根据各具体型号的不同(见附录 C.订货说明),相应不具有的功能所对应的端子为空(NC)。

② 三相四线制中,Un 接入的是电压公共端;三相三线制中,Un 接入的是 B 相电压。DI 为数字量输入 Digital Input 的简写;RO 为继电器输出 Relay Output 的简写;变送输出是自供电方式,AO+是电流输出正,AO-是电流输出负。

2.2.2. 供电电源接线

EM400 的供电电源范围为 $85\sim265$ VAC 或 $85\sim265$ VDC,建议用独立的电源供电,接线如图 2-2-2 所示。

2.2.3. 电气接线

● 三相四线制 3CT

图 2-2-3-1 3P4W 3CT 接线图

● 三相四线制 1CT

图 2-2-3-2 3P4W 1CT 接线图

● 三相三线制 3CT

图 2-2-3-3 3P3W 3CT 相电压接入方式接线图

● 三相三线制 2CT

图 2-2-3-4 3P3W 2CT 相电压接入方式接线图

● 三相三线制 1CT

图 2-2-3-5 3P3W 1CT 相电压接入方式接线图

通讯接线

● 线形连接方式

图 2-2-3-6 RS485 线形连接方式接线图

注意: 在线形连接方式下应考虑阻抗匹配, 匹配电阻的阻值大约在 $100~120~\Omega$ 。

2.2.4. 开关量输入接线

EM400 可以监视 4 个干节点输入的开关/数字量状态,采用光隔离输入,隔离电压 2500VDC,装置内部输出隔离的 24VDC 为干节点提供输入回路电源。接线如图 2-2-4 所示。

2.2.5. 继电器接线

继电器控制输出节点容量为 5A/30VDC 或 5A/250VAC。当负载电流大于上述值时应采用中间继电器。接线如图 2-2-5 所示。

图 2-2-5 继电器接线图

EM400 提供"常保持输出"和"脉冲式输出"两种继电器输出模式,具体请见"参数设置第七屏"描述。

2.2.6. 直流 4~20mA 变送输出接线

直流 $4\sim20mA$ 变送输出采用光隔离输出,最大隔离电压 500VDC。负载电阻 R_L 最大 600Ω (包括线路电阻),开路电压 u 不大于 24V,接线如图 2-2-6 所示。

图 2-2-6 直流变送输出接线图

2.2.7. 接线注意事项

- 接入装置的导线截面面积应满足: 电流线截面积不小于 2.5 平方毫米, 电压线截面积不小于 1.0 平方毫米。
- 通讯线必须采用屏蔽双绞线,通讯线的 RS485+、RS485-不能接反。
- 电压及工作电源接入线应串联 2A 的保险熔丝。
- 为了减少启动时的冲击电流,建议每条电源线不超过40台装置。
- 当通讯连接采用线形连接方式时,应在位于通讯电缆起点和终点处的

RS485+与RS485-端子之间分别接入100~120Ω的线路匹配电阻。

- 波特率为 9600bps 时, 电缆长度<1200 米。
- 变送输出最大负载包括了线路电阻,接线时应注意。

3. 操作指导

本章详细介绍 EM400 的人机界面,包括如何进行数据阅读,设置相关参数 以及本地操作等。

注意: EM400 装置根据各具体型号的不同(见附录 C.订货说明),相应不具有的功能所对应的界面不显示。

3.1. 按键操作

图 3-1-1 按键示意图

EM400 的操作分为单键模式和组合键模式两种。

单键模式仅对四个按键中的某一个进行操作,用于完成装置所有监测数据的显示:

- 单□键-测量数据显示:显示电压、电流、功率因数、功率、频率等数据。
- 单□□键一谐波数据显示:显示谐波畸变率、各次谐波占有率、电压电流的基波值信息、电压电流不平衡度、K 因数等。
- 单运键-工作参数显示:显示系统的全部工作参数信息。
- 单 □ 键一累计量显示:显示各种电度量信息。 组合键操作:
- □与□键的组合:用于本地操作输出和其它专用功能。

- 🖃与 ☑ 键的组合: 用于修改本地参数。
- 三与三键的组合:用于查询设备内存中的 SOE 记录、统计量、需量。
- □与□□键的组合:用于查询设备的时间及设备的内部温度。 组合模式的进入与退出介绍:

在单键显示模式下,只需同时按下组合功能键然后松开,即可进入相应的组合键功能,再次应用该组合键即可退出到单键显示画面(第四种组合键除外)。

3.2. 数据读取(非 SOE)

显示内容	解释		
测量数据显示区四排 字	主要显示测量数据,包括:电流、电压、功率、功率因数、 频率等内容。其次显示参数、SOE、时间、本地操作等内 容。		
	a、b、c 分别代表 a 相 b 相 c 相, ∑代表总和, Avg 代表平均值, "一"为负号, n 代表零序。		
左上角 3 个小四字	由英文语义缩写字母组成,用于表示当前显示界面意义: 如电压'U',电流'I'等。		
电流负荷大小指示	实际负荷电流相对于额定负荷电流的百分比,从左到右分别代表 Ia/Ib/Ic。		
开关量指示: 开-/- 合-/L	开关量标识表示 1~4 路相应开关量输入的状态(分或合)。		
-7887- 负载性质标识 →I	电感(上方)标识显示为感性负载, 电容(下方)标识显示为容性负载。		
通讯状态标识 🖳	显示此标识表示通讯正常工作中, 不显示此标识表示通讯未工作。		
累计量显示区 10 个小8字	显示电度量数据、时间、温度等。		
单位 kVA MkW % Mkvar MkVA Hz kWh kvarh	测量数据的单位:电流 A、kA; 电压 V、kV; 有功功率 W、kW、MW; 无功功率 var、kvar、Mvar; 视在功率 VA、kVA、MVA; 频率 Hz; 百分比%; 有功电度 kWh、无功电度 kvarh。		
总尖锋平谷需量	电度量类型和需量提示		

表 3-1

3.2.1. 显示运行测量数据

在仟一单键显示方式下按 回键,测量数据显示区将显示测量到的数据。 时间显示区域(最下排小8)内容不变。

在测量数据显示模式下,长按□键直至屏幕的左上方显示'UP'字样后,再按□

键即可向上翻屏:长按□键直至屏幕的左上方显示 'DWN'字样后,再按回键即可向下翻屏。

第一屏:显示相电压 Ua, Ub, Uc 和相电压平均值 UAvg。

如图 3-2-1: Ua=221.1V: Ub=221.1V:

Uc=221.0V; UAvg=221.1V。

注: 只有接线方式为三相四线制时才显示本页,否则本页不显示。

图 3-2-1 三相相电压显示

第二屏:显示三相电流 Ia,Ib,Ic 和三相电流平均值 IAvg.

如图 3-2-2: Ia=3.286A; Ib=3.375A; Ic=3.066A; IAvg=3.243A.

图 3-2-2 三相电流显示

第三屏:显示线电压 Uab, Ubc, Uca, 线电压平均值 UAvg.

图 3-2-3 三相线电压显示

如图 3-2-3: Uab=382.8V; Ubc=382.9V; Uca=383.0V; UAvg=382.9V。

第四屏:显示三相电流 Ia, Ib, Ic,零序电流 In。

如图 3-2-4: Ia=3.286A; Ib=3.375A;

Ic=3.066A; In=0.211A.

图 3-2-4 三相电流和零序电流显示

第五屏: 当接线方式为三相四线制时,显示各相功率因数 PFa、PFb、PFc 和总功率因数 PF。

如图 3-2-5 (上):

PFa=0.987; PFb=0.988; PFc=0.989; PF=0.988.

当接线方式为三相三线制时,只显示总功率因数,如图 3-2-5(下): PF=0.988。

PF 功率因数的符号遵循 IEC 符号规约。

图 3-2-5 功率因数显示

第六屏: 显示总有功功率 P_{\sum} 、总无功功率 Q_{\sum} 、总视在 功率 S_{\sum} 、频率 F。

如图 3-2-6: $P\Sigma = 0.717kW$; $Q\Sigma = 0.114kvar$; $S\Sigma = 0.726kVA$; F=50.03Hz。

图 3-2-6 总功率参数及频率

第七屏:显示 A 相有功功率 Pa、A 相无功功率 Qa、A 相视在功率 Sa、频率 F。

如图 3-2-7: Pa=0.239kW; Qa=0.038kvar;

Sa = 0.242 kVA: F = 50.03 Hz

注:只有当接线方式为三相四线制时才显示本页,否则本页不显示。

图 3-2-7 A 相功率参数及频率

第八屏:显示 B 相有功功率 Pb、B 相无功功率 Qb、B 相视在功率 Sb、频率 F。

如图 3-2-8: Pb = 0.239kW; Qb = 0.038kvar; Sb = 0.242kVA: F = 50.03Hz。

注: 只有当接线方式为三相四线制时才显示本页, 否则本页不显示。

图 3-2-8 B相功率参数及频率

第九屏:显示 C 相有功功率 Pc、C 相无功功率 Qc、C 相 视在功率 Sc、频率 F。

如图 3-2-9: Pc=0.239kW; Qc=0.038kvar; Sc=0.242kVA; F=50.03Hz。

注: 只有当接线方式为三相四线制时才显示本页,否则本页不显示。

图 3-2-9 C相功率参数及频率

3.2.2. 显示谐波畸变率和谐波分量

在任一单键显示方式下按 3 键,显示区显示谐波畸变率、谐波分量、基波有效值、电压电流不平衡度、电流的 K 因数等数据。

在国显示谐波量模式下,长按国键直至屏幕的左上方显示'UP'字样后,再按国键即可向上翻屏;长按国键直至屏幕的左上方显示'DWN'字样后,再按国键即可向下翻屏。

图 3-2-10 三相相电压 THD

第一屏:显示三相电压总谐波畸变率。屏幕左上角显示 H -U。

当接线方式设定为三相四线制时,三相相电压 Ua、Ub、Uc 的 THD,如图 3-2-10:

THD_Ua=0.6%; THD_Ub=0.6%; THD_Uc=0.6%。 当接线方式设定为三相三线制时,三相线电压 Uab、Ubc、 Uca 的 THD,如图 3-2-11:

 $THD_Uab = 0.6\%; THD_Ubc = 0.6\%; THD_Uca = 0.6\% .$

三相电流 Ia, Ib, Ic 和零序电流 In 的 THD, 如图 3-2-12: THD_Ia=0.6%; THD_Ib=0.6%; THD_Ic=0.6%; THD In=0.6%。

第三屏:显示三相电压奇次谐波畸变率。屏幕左上角显示 HUO。

当接线方式设定为三相四线制时,三相相电压 Ua、Ub、Uc 的奇次 THD,如图 3-2-13:

THD_O_Ua=0.6%; THD_O_Ub=0.6%; THD_O_Uc=

当接线方式设定为三相三线制时,三相线电压 Uab、Ubc、Uca 的奇次 THD,如图 3-2-14:

THD_O_Uab=0.6%; THD_O_Ubc=0.6%; THD_O_Ubc=0.6%;

图 3-2-11 三相线电压 THD

图 3-2-12 三相电流 THD

图 3-2-13 三相相电压奇次 THD

图 3-2-14 三相线电压奇次 THD

第四屏:显示三相电流奇次谐波畸变率。屏幕左上角显示 HIO。

三相电流 Ia、Ib、Ic 的奇次 THD, 如图 3-2-15:

THD O Ia = 0.6%; THD O Ib = 0.6%;

 $THD_O_Ic = 0.6\%$; $THD_O_In = 0.6\%$.

图 3-2-15 三相电流奇次 THD

第五屏:显示三相电压偶次谐波畸变率。屏幕左上角显示 HUE 即。屏幕显示与第三屏类似。

第六屏:显示三相电流偶次谐波畸变率。屏幕左上角显示 HIE。屏幕显示与第四屏类似。

第七屏:显示三相相电压的基波有效值。屏幕左上角显示 H -U 即谐波电压;屏幕下方显示谐波次数'01',即基波。

当接线方式设定为三相四线制时,三相相电压 Ua、Ub、Uc 的基波有效值,如图 3-2-16:

Ua 1=220.1V; Ub 1=220.0V; Uc 1=220.1V.

当接线方式设定为三相三线制时,三相线电压 Uab、Ubc、Uca 的基波有效值,如图 3-2-17:

Uab_1=220.1V; Ubc_1=220.0V; Uca_1=0.0V (无效值)。

图 3-2-16 相电压基波有效值

图 3-2-17 线电压基波有效值

第八屏至第三十七屏: 依次显示三相电压的 2~31 次谐波占有率(相对于基波的百分含量, Harmonic Percent)。屏幕左上角

图 3-2-18 三相相电压的 2 次谐波占有率

显示 H-U 即谐波电压; 屏幕下方显示谐波次数。

当接线方式设定为三相四线制时,三相相电压 Ua、Ub、Uc 的 2 次谐波占有率,如图 3-2-18:

HP_2_Ua=0.4%; HP_2_Ub=0.4%; HP 2 Uc=0.4%
$$\circ$$

图 3-2-19 三相线电压 2 次谐波占有率

当接线方式设定为三相三线制时,三相线电压 Uab、Ubc、Uca 的 2 次谐波占有率,如图 3-2-19:

第三十八屏:显示三相电流及零序电流的基波有效值。屏幕左上角显示 H-I 即谐波电流;屏幕下方显示谐波次数'01',即基波。

三相电流 Ia、Ib、Ic、In 的基波有效值,如图 3-2-20: Ia_1=5000A; Ib_1=4999A;

第三十九屏至第六十八屏:依次显示三相电流的 2~31次谐波占有率(相对于基波的百分含量,Harmonic Percent)。 屏幕左上角显示 H-I 即谐波电流;屏幕下方显示谐波次数。

三相电流 Ia、Ib、Ic 和零序电流 In 的 2 次谐波占有率, 如图 3-2-21:

第六十九屏:显示电压电流的不平衡度。屏幕左上角显

图 3-2-20 电流的基波有效值

图 3-2-21 三相电流 2 次谐波占有率

图 3-2-22 电压电流不平衡度

示 UNB 即不平衡度; 如图 3-2-22:

电流不平衡度为: 10.8%;

电压不平衡度为: 9.6%。

第七十屏:显示三相电流及零序电流的 K 因数。屏幕左上角显示 KF 即 K 因数;如图 3-2-23:

KF Ia=3.0; KF Ib=2.6;

KF Ic=2.8; KF In=2.9.

图 3-2-23 电流的 K 因数

3.2.3. 显示工作参数

在任一单键显示方式下按 🗅 键,屏幕上显示工作参数等。

第一屏:通讯参数

屏幕左上角显示"PAR"字样表示参数(parameter),屏幕上方显示"COMM"字样表示通讯。如图 3-2-24:通讯地址号为 16,波特率为 9.6k,传输格式代码为 1。

图 3-2-24 通讯参数

传输格式代码解释:

传输格式代码	解释
0	1 位起始位, 8 位数据位, 无奇偶校验, 2 位停止位
1	1 位起始位,8 位数据位,奇校验,1 位停止位
2	1 位起始位,8 位数据位,偶校验,1 位停止位
3	1 位起始位, 8 位数据位, 无奇偶校验, 1 位停止位

注意: 出厂默认值,通讯地址为254,波特率为9.6k,传输格式代码为0。

第二屏:系统接线方式

屏幕上方显示"SYS"字样表示系统接线方式,如图 3-2-25:系统接线方式为三相四线制,3PT,3CT。 注:出厂默认值为3P4L,3PT,3CT。

第三屏: PT 变比

屏幕上方显示"PT"字样表示 PT 变比。

如图 3-2-26: PT 二次侧额定值为 220V, PT 一次 侧额定值为 1000V。

注: 出厂默认值, PT 一次侧额定值为 220V, PT 二次 侧额定值为 220V。

第四屏: CT 变比

屏幕上方显示"CT"字样表示 CT 变比。如图 3-2-27: CT 二次侧额定值为 5A, CT 一次侧额定值为 100A。

注: 出厂默认值, CT 一次侧额定值为 5000A, CT 二次侧额定值为 5A。

第五屏: 零序 CT 变比

屏幕上方显示"CT0"字样表示零序 CT 变比。如图 3-2-28: CT0 二次侧额定值为 5A, CT0 一次侧额定值为 100A。

注:出厂默认值,CT0 一次侧额定值为 5000A,CT0 二次侧额定值为 5A。

第六屏: CT 接线方向及系统频率

屏幕上方显示"SYS2"字样表示系统参数 2, 包括 CT

图 3-2-25 系统接线方式

图 3-2-26 PT 变比

图 3-2-27 CT 变比

图 3-2-28 零序 CT 变比

图 3-2-29 设置 CT 接线方向及系统频率

接线方向及系统频率。如图 3-2-29。

第一行显示 ABC,用于代表相应的第二行分别为 A、B、C 三相 CT。。

第二行表示 CT 接线方向: 从左到右依次为 A、B、C 三相 CT 的方向, 0 代表正方向, 1 代表反方向。

第三行代表系统频率: 50 / 60Hz 两种,代表当装置无 电压输入时,装置采集模拟量的跟频频率。

第七屏:继电器输出模式

屏幕上方显示"RO—M"字样表示输出模式。

如图 3-2-30: 输出模式为 1。

图 3-2-30 输出模式设置

输出模式 1:继电器输出方式为脉冲输出。即接到继电器合闸指令后,结点 闭合,延时一定时间(继电器脉冲输出宽度,见参数设置第八屏)后断开。

输出模式 2: 继电器输出方式为自保持。即接到合闸指令后,输出结点闭合;

接到分闸指令后,输出结点断开。

注: 出厂默认值,输出模式为1。

第八屏:继电器输出脉冲宽度

屏幕上方显示"RO—T"字样表示继电器输出脉冲宽 度,单位为毫秒。

如图 3-2-31:继电器输出脉冲宽度为 2000 毫秒。

图 3-2-31 继电器输出脉冲宽度

注: 出厂默认值,继电器输出脉冲宽度为2000毫秒。只 有当输出模式选择为模式1,即继电器输出为脉冲型,才能进入本页。

第九屏: 变送输出参数

屏幕上方显示"AO"字样表示变送输出参数。

第一行表示单向/双向: 0表示单向, 1表示双 向:

第二行表示关联类型,详见参数设置第九屏; 第三行表示送输出所关联电参量的量程。

图 3-2-32 变送输出设置页

第十屏: 背光点亮时间

屏幕上方显示"Ld—T"字样表示背光灯点亮时间。

如图 3-2-33: 背光点亮时间为 30 分钟,即在连续 30 分钟内未按键,背光自动熄灭; 当为 0 时,表示背光常亮。

注: 背光点亮默认值时间为5分钟。

第十一屏: 电参量最大最小值统计区间

屏幕上方显示"S--T"字样表示电参量最大最小值统计 区间。

如图 3-2-34: 电参量最大最小值统计区间为 1440 分钟。

注: 电参量最大最小值统计区间默认值时间为10分钟。

第十二屏: 软、硬件版本号

屏幕左上方显示"VER"字样表示版本号。

如右图 3-2-35: "H 1.0"表示硬件版本号为 1.0 版; "S 1.0"表示软件版本号为 1.0 版。

图 3-2-33 背光灯点亮时间

图 3-2-34 电参量最值统计区间

图 3-2-35 软、硬件版本号

3.2.4. 电度量显示

在任一单键显示方式下按□□键,将显示各种电度量。

长按 型键直至屏幕的左上方显示'UP'字样后,再按 型键即可向上翻屏;长按 型键直至屏幕的左上方显示'DWN'字样后,再按 型键即可向下翻屏。

第一屏:显示总有功绝对值电度量

屏幕左上角显示"EGY"表示电度量和"总",屏幕上方显示"EP"字样,表示总有功电度量。如图 3-2-36,总有功

图 3-2-36 总有功电度量

绝对值电度量 Ep=5037.6 kWh。

第二屏:显示总无功绝对值电度量

屏幕上方显示"总"和"Eq"字样,表示总无功电度量。 如图 3-2-37,总无功绝对值电度量 Eq=37.1kvarh。

第三、四、五屏: A/B/C 相有功绝对值电度量

屏幕上方显示"EP"字样,累计量显示区前分别显示 'a'、'b'、'c'。屏幕显示与第一屏类似。

图 3-2-37 总无功电度量

注: 只有接线方式为三相四线制时才显示本页,否则本页不显示。

第六、七、八屏: A/B/C 相无功绝对值电度量

屏幕上方显示"Eq"字样,累计量显示区前显示'a'、'b'、'c'。屏幕显示与第二屏类似。

注: 只有接线方式为三相四线制时才显示本页,否则本页不显示。

第九屏: 总正向有功绝对值电度量

屏幕显示"总"和"+EP"字样。

如图 3-2-38, +Ep=691.4 kWh。

第十至十三屏:尖/峰/平/谷费率正向有功绝对值电度量

图 3-2-38 总正向有功电度量

屏幕上方显示"+EP"字样,屏幕左上方有"尖"、"峰"、"平"、"谷"字样提示, 屏幕显示与第九屏类似。

第十四屏: 总反向有功绝对值电度量

屏幕显示"总"和"-EP"字样。

如图 3-2-39, -Ep=691.4 kWh。

图 3-2-39 总反向有功电度量

第十五至十八屏: 尖/峰/平/谷费率反向有功绝对值电度量

屏幕上方显示"-EP"字样, 费率类型分别为尖峰平谷, 屏幕显示与第十屏类似。

第十九屏: 总正向无功绝对值电度量

屏幕上方显示"总"和"+Eq"字样。

如图 3-2-40,+Eq=571.1 kvarh。

图 3-2-40 总正向无功绝对值电度量

第二十至二十三屏:尖/峰/平/谷费率正向无功绝对值电度量

屏幕上方显示"+Eq"字样, 费率类型分别为尖峰平谷, 屏幕显示与第十九屏类似。

第二十四屏: 总反向无功绝对值电度量

屏幕上方显示"总"和"-Eq"字样。

如图 3-2-41, -Eq=571.1 kvarh。

图 3-2-41 总反向无功绝对值电度量

第二十五至二十八屏:尖/峰/平/谷费率反向无功绝对值电度量

屏幕上方显示"-Eq"字样,费率类型分别为尖峰平谷,屏幕显示与第二十四 屏类似。

第二十九屏: 1 象限总无功绝对值电度量

屏幕上方显示"总"和"Eq-1"字样。

如图 3-2-42, Eq-1=11.1 kvarh。

第三十至三十三屏: 1 象限尖/峰/平/谷费率无功绝对 值电度量

图 3-2-42 象限总无功绝对值电度量

屏幕上方显示"Eq-1"字样,费率类型分别为尖峰平谷,屏幕显示与第二十

九屏类似。

第三十四屏: 4 象限总无功绝对值电度量

屏幕上方显示"Eq-4"字样,屏幕显示与第二十九屏类似。

第三十五至三十八屏: 4 象限尖/峰/平/谷费率无功绝对值电度量 屏幕上方显示"Eq-4"字样,屏幕显示与第二十九屏类似。

第三十九屏: 2 象限总无功绝对值电度量

屏幕上方显示"Eq-2"字样,屏幕显示与第二十九屏类似。

第四十至四十三屏: 2 象限尖/峰/平/谷费率无功绝对值电度量 屏幕上方显示"Eq-2"字样,屏幕显示与第二十九屏类似。

第四十四屏: 3 象限总无功绝对值电度量

屏幕上方显示"Eq-3"字样,屏幕显示与第二十九屏类似。

第四十五至四十八屏: 3 象限尖/峰/平/谷费率无功绝对值电度量 屏幕上方显示"Eq-3"字样,屏幕显示与第二十九屏类似。

3.3. 参数设置

在单键显示方式下,同时按下回键和回键并松开将进入参数设置模式,屏幕左上角显示"SET"字样。

3.3.1. 参数设定模式下各键功能简介

- □键用于激活当前设置页,同时光标所在位会闪动显示,每按一次□键光标左移一位。激活后按□键或□键可对光标所在位进行加减操作。
- 国键为加1键,每按一次光标所在位的数字进行加1操作。
- 运键为减1键,每按一次光标所在位的数字进行减1操作。
- □ 键为参数确认键,当一屏参数设定完成后,按□ 键进行参数确认,这时屏幕上方显示"Y--N"字样,按□ 键进行 Y 或 N 的选择。选定 Y 时按□ 键, 当前设定的参数被存储:选定 N 时按□ 键,当前设定的参数不被存储。

3.3.2. 参数设置

参数设置模式的起始界面为密码确认。每次进入参数设置模式都先提示输入密码,密码显示为"---"。密码共 4 位,范围为 0000~9999,出厂的默认值为 0000。按□键可在 4 个密码位之间循环切换选择,按□或□键对选定位进行加减操作,范围 0~9,输入完成后按□避确认。只有确认密码后才能进行参数设置,否则停留在本页。

当进入参数设置屏后,如当前页参数设置完成,按□键屏幕上方会提示是否存储当前设定参数,如图 3-3-2 所示。 "Y"代表 YES,即存储设定的参数,"N"代表 NO,即不存储参数。按□键可进行"Y"或"N"的选择,按□键确认。

图,3-3-3 参数错误提示

选择"Y"并按 型键确认后,如设置的参数合法,则存储当前参数;如不合法,屏幕上方显示"ERR"字样提示,如图 3-3-3 所示,参数不被存储。此时可按 型键重新设置参数,也可按 型键翻屏。

注意:无论在哪一屏参数设置页,同时按下□望和□3键将退出参数设置模式,返回单键显示方式。在参数设置页,如果没有按□键激活当前设置页,或激活当前页而没按□3键进行参数修改,这时按□9键将直接翻屏,当前页中的参数不被存储。如果在10分钟内没有按键,屏幕将自动返回

到单键显示模式。

长按 型键直至屏幕的左上方显示'UP'字样后,再按 型键即可向上翻屏,长按 型键直至屏幕的左上方显示'DWN'字样后,再按 型键即可向下翻屏。

参数设置第一屏:通讯参数设置页

本界面用来设置 EM400 的通讯地址、波特率、

传输格式。屏幕最上方显示"COMM"字样,表示当前页为通讯参数设置页。

如图 3-3-4 所示,通讯地址的范围为 $1\sim254$; 波特率共有 0.6k、1.2k、2.4k、4.8k、9.6k、19.2kbps 六种可供选择; 传输格式代码共有 0, 1, 2, 3 四种可供选择(具体

通讯地址

波特率

传输格式

图 3-3-4 通讯参数设置页

图 3-3-5 系统接线方式设置页

含义见 3.2.3 显示工作参数,第一屏)。

参数设置第二屏:系统接线方式设置

本页用来设置系统的接线方式。屏幕最上方显示"SYS"字样,表示当前页为系统接线方式设置页,如图 3-3-5 所示。

共有5种方式可供选择:

方式 1: 3P4L 3PT 3CT

方式 2: 3P4L 3PT 1CT

方式 3: 3P3L 3PT (2PT) 3CT

方式 4: 3P3L 3PT (2PT) 2CT

方式 5: 3P3L 3PT (2PT) 1CT

参数设置第三屏: PT 设置

本页用来设置 PT 的一次侧额定电压值和二次侧额

定电压值。屏幕最上方显示"PT"字样,表示当前页为 PT 设置页,如图 3-3-6

所示。

PT 二次侧额定值的范围为 $100V\sim220V$,PT 一次 侧额定值的范围为 $100V\sim35000V$ 。

参数设置第四屏: CT 设置

本页用来设置 CT 的一次侧额定电流值和二次侧额 定电流值。屏幕最上方显示"CT"字样,表示当前页为 CT 设置页,如图 3-3-7 所示。

CT 的二次侧额定电流共有 1A 和 5A 两种可供选择, CT 的一次侧额定电流的范围为 1A~9999A。

注: 一次侧额定电流值不能小于二次侧额定电流值。

参数设置第五屏: CT0 (零序 CT) 设置

本页用来设置 CT0 的一次侧额定电流值和二次侧额定电流值。屏幕上方显示"CT0"字样,表示当前页为 CT0 设置页,如图 3-3-8 所示。

图 3-3-6 PT 变比设置页

图 3-3-7 CT 变比设置页

26

CT0 二次侧额定值共有 1A 和 5A 两种可供选择, CT0 一次侧额定值的范围 为 1A ~ 9999A。

注:一次侧额定电流值不能小于二次侧额定电流值。

参数设置第六屏: CT 接线方向及系统频率设置

本页用来设置 CT 接线方向及系统频率。屏幕上方显示"SYS2"字样,表示当前页为 CT 接线方向及系统频率设置页,如图 3-3-9 所示。

图 3-3-9 输入模式设置页

第一行显示 ABC: 代表相应的第二行分别为 A、B、C 三相 CT 接线设置。

第二行用于设定 CT 接线方向: 从左到右依次为 A、B、C 三相 CT 接线方向, 0 代表正方向, 1 代表反方向。

第三行用于设定系统频率: 50 / 60Hz 两种,用于设定装置无电压输入时,装置采集模拟量的跟频频率。

参数设置第七屏:继电器输出模式设置

本页用来设置继电器输出模式。屏幕上方显示 "RO-M"字样,表示当前页为继电器输出模式设置 页,如图 3-3-10 所示。

共有1和2两种输出模式可供选择。

模式1:继电器输出方式为脉冲输出。

模式 2: 继电器输出方式为自保持。

图 3-3-10 继电器输出模式设置页

参数设置第八屏:继电器输出脉冲宽度设置

当继电器设置为脉冲输出方式时,本页用来设置输出脉冲宽度。屏幕上方显示"RO-T"字样以做提示,如图 3-3-11 所示。

脉冲宽度的范围为50~20000毫秒。

注: 只有当输出模式选择为模式 1,即继电器输出为脉冲型,才能进入本页,否则本页不显示。

图 3-3-11 继电器脉冲宽度设置页

参数设置第九屏:变送输出参数设置

本界面用来设置变送输出参数。屏幕最上方显示"AO"字样,表示当前页为变送输出参数设置页。

第一行表示单向/双向: 0表示单向,1表示双向:

単向/双向 关联类型 量程

图 3-3-12 变送输出设置页

第二行表示关联类型,详见下表;

第三行表示相应电参量的量程,量程用来设置变送输出所关联测量量的范围。只有关联有功功率、无功功率、功率因数、频率可以设置为双向。当设置为单向时,4mA表示 0,20mA表示满量程。当设置为双向时,4mA表示负量程,20mA表示正量程。例:当量程设置为1.000kW,如果设置为单向,则输出4mA表示0kW,输出20mA表示1.000kW,输出12mA表示0.500kW;如果设置为双向,则输出4mA表示-1.000kW,输出20mA表示1.000kW,输出12mA表示0kW。频率F设置为双向时,实际量程范围是50Hz±量程,50Hz输出12mA

关联类型用来设置变送输出关联哪种测量量:

关联类型	描述	备注	关联类型	描述	备注
1	关联 Uab	単向	16	关联 P	单向/双向
2	关联 Ubc	单向	17	关联 Q	单向/双向
3	关联 Uca	单向	18	关联 S	单向
4	关联 线电 压平均值	单向	19	关联 PFa	单向/双向
5	关联 Uan	单向	20	关联 PFb	单向/双向
6	关联 Ubn	单向	21	关联 PFc	单向/双向
7	关联 Ucn	単向	22	关联 Pa	单向/双向
8	关联 相电 压平均值	単向	23	关联 Pb	单向/双向
9	关联 Ia	单向	24	关联 Pc	单向/双向
10	关联 Ib	单向	25	关联 Qa	单向/双向
11	关联 Ic	单向	26	关联 Qb	单向/双向
12	关联 电流 平均值	单向	27	关联 Qc	单向/双向
13	关联 In	单向	28	关联 Sa	单向
14	关联 F	单向/双向,当 为双向时,表	29	关联 Sb	単向

			示 50Hz±量程			
1	.5	关联 PF	单向/双向	30	关联 Sc	单向

参数设置第十屏: 背光时间设置

本页用来设置背光的点亮时间。屏幕上方显示"Ld-T"字样,表示当前页为背光时间设置页,如图 3-3-13 所示。 背光时间的范围为 0 分钟~30 分钟,当设置为 0 时,

表示背光常亮。

图 3-3-13 背光时间设置页

参数设置第十一屏: 电参量最大最小值统计区间设置

本页用来设置电参量最大最小值统计区间。屏幕上方显示"S-T"字样,表示当前页为电参量最大最小值统计区间设置页,如 3-3-14 所示。

电参量最大最小值统计区间范围为1~1440分钟。

SET 5--T

图 3-3-14 电参量最大最小值统 计区间设置页

参数设置第十二屏:系统时间设置

本页用来设置系统时间。屏幕上方显示"TIME"字样,表示当前页为系统时间设置页,如图 3-3-15 所示。如图,表示 08 年 12 月 10 日 16 时 19 分。

图 3-3-15 系统时间设置页

参数设置第十三屏:保护密码设置

本页用来设置系统保护密码。屏幕最上方显示 "KEY"字样,表示当前页为保护密码设置页,如图

图 3-3-16 保护密码设置页

3-3-16 所示。

已设定密码会显示在屏幕上,密码范围 0000~9999。

注:参数设置和本地操作都用此密码。

参数设置第十四屏: 费率时段设置 1

本页用来设置 00:00~06:00 的时段费率。屏幕最上方显示 "ET-1"字样,表示当前页为费率时段设置 1,如图 3-3-17 所示。

图 3-3-17 费率时段设置页

每一位数代表一个步进时段(0.5 小时),激活后显示该时段的时间,每个数的取值范围为1~4,代表费率如下表:

费率类型代码	解释
1	尖费率
2	峰费率
3	平费率
4	谷费率

参数设置第十五屏: 费率时段设置 2

本页用来设置 06:00~12:00 的时段费率。屏幕最上方显示"ET-2"字样,操作方法和显示与第十四屏类似。

参数设置第十六屏: 费率时段设置 3

本页用来设置 12:00~18:00 的时段费率。屏幕最上方显示"ET-3"字样,操作方法和显示与第十四屏类似。

参数设置第十七屏: 费率时段设置 4

本页用来设置 18:00~24:00 的时段率费。屏幕最上方显示 "ET-4"字样,操作方法和显示与第十四屏类似。

参数设置第十八屏: 总有功电量底数设置

本页用来设置总有功电量底数,如图 3-3-18 所示,屏幕

图 3-3-18 总有功电度量底数设置页

最上方显示"EP"和"总",表示为总有功电量设置,屏幕右下方显示"kWh"。 当前的底数会显示在最下一排。范围 0~99999999.9。

参数设置第十九屏: 总无功电量底数设置

本页用来设置总无功电量底数,如图 3-3-19 所示,屏幕最 上方显示"Eq"和"总",表示为总无功电量设置,屏幕右下 方显示"kvarh"表示为无功电量。当前的底数会显示在最下 一排。范围 0~99999999.9。

+FP SET

图 3-3-19 总无功电度量底 数设置页

参数设置第二十屏: A 相有功电量底数设置

当接线方式为三相四线制时,本页用来设置 A 相有功电 量底数,如图 3-3-20 所示,屏幕最上方显示"EP",表示为 有功电量设置,屏幕右下方显示"kWh", "a"表示为 A 相。 当前的底数会显示在最下一排。范围 0~99999999.9。

参数设置第二十一、二十二屏: B/C 相有功电量底数设置 图 3-3-20 A 相有功电量底数

设置页

当接线方式为三相四线制时,分别用来设置 B、C 相有功电量底数。"b" 表示为B相, "c"表示为C相。操作方法和显示与第二十屏类似。

参数设置第二十三至二十五屏: A/B/C 相无功电量底数设置

当接线方式为三相四线制时,分别用来设置 A、B、C 相无功电量底数。屏 幕最上方显示"Eq",屏幕右下方显示"kvarh"表示为无功电量, "a"表示为 A相, "b"表示为B相, "c"表示为C相。操作方法和显示与第二十屏类似。

参数设置第二十六屏: 总正向有功绝对值电度量底数设置

本页用来设置总正向有功绝对值电度量底数。如图 3-3-21: 屏幕最上方显示"总"和"+EP", 屏幕右下方显示 "kWh" 。 当 前 的 底 数 会 显 示 在 最 下 一 排 。 范 围 0 ~ 99999999999999.9。

图 3-3-21 总正向有功电度量 底数设置页

参数设置第二十七屏: 总尖费率正向有功电度量底数设置

本页用来设置总尖费率正向有功电度量底数,操作方法和显示与第二十六屏 类似。

参数设置第二十八至三十屏: 总峰/平/谷费率正向有功电度量底数设置

分别用来设置总峰、平、谷费费率正向有功电度量底数。屏幕最上方显示"+EP"费率类型分别为峰、平、谷,操作方法和显示与第二十六屏类似。

参数设置第三十一屏: 总反向有功绝对值电度量底数设置

本页用来设置总反向有功绝对值电度量底数。屏幕最上方显示"-EP", 操作方法和显示与第二十六屏类似。

参数设置第三十二至三十五屏: 总尖/峰/平/谷费率反向有功电度量底数设置

分别用来设置总尖、峰、平、谷费费率反向有功电度量底数。屏幕最上方显示"一EP"费率类型分别为尖、峰、平、谷,操作方法和显示与第二十六屏类似。

参数设置第三十六屏: 总正向无功绝对值电度量底数设置

本页用来设置总正向无功绝对值电度量底数。如图 3-3-22: 屏幕最上方显示"总"和"+Eq",屏幕右下方显示"kvarh"。当前的底数会显示在最下一排。范围 0~99999999.9。

图 3-3-22 总正向无功电度量 底数设置页

参数设置第三十七屏: 总尖费率正向无功电度量底数设置

本页用来设置总尖费率正向无功电度量底数,操作方法和显示与第三十六屏 类似。

参数设置第三十八至四十屏: 总峰/平/谷费率正向无功电度量底数设置

分别用来设置总峰、平、谷费费率无向有功电度量底数。屏幕最上方显示"+ Eq"费率类型分别为峰、平、谷,操作方法和显示与第三十六屏类似。

参数设置第四十一屏: 总反向无功绝对值电度量底数设置

本页用来设置总反向无功绝对值电度量底数。屏幕最上方显示"-Eq",操作方法和显示与第三十六屏类似。

参数设置第四十二至四十五屏:总尖/峰/平/谷费率反向无功电度量底数设置分别用来设置总尖、峰、平、谷费费率反向无功电度量底数。屏幕最上方显示"-Eq"费率类型分别为尖、峰、平、谷,操作方法和显示与第三十六屏类似。

参数设置第四十六屏: 1 象限总无功绝对值电度量底数设置

本页用来设置 1 象限总无功绝对值电度量底数。屏幕最上方显示"Eq-1", 屏幕右下方显示"kvarh"表示为无功电量,操作方法和显示与第三十六屏 类似。

参数设置第四十七至五十屏: 1 象限总尖/峰/平/谷费率无功电度量底数设置分别用来设置 1 象限总尖、峰、平、谷费费率反向有功电度量底数。屏幕最上方显示"Eq-1"费率类型分别为尖、峰、平、谷,屏幕右下方显示"kvarh"表示为无功电量,操作方法和显示与第三十六屏类似。

参数设置第五十一屏: 4 象限总无功绝对值电度量底数设置

本页用来设置 4 象限总无功绝对值电度量底数。屏幕最上方显示"Eq-4", 屏幕右下方显示"kvarh"表示为无功电量,操作方法和显示与第三十六屏类似。

参数设置第五十二至五十五屏: 4 象限总尖/峰/平/谷费率无功电度量底数设置

分别用来设置 4 象限总尖、峰、平、谷费费率反向有功电度量底数。屏幕最上方显示"Eq-4"费率类型分别为尖、峰、平、谷,屏幕右下方显示"kvarh"表示为无功电量,操作方法和显示与第三十六屏类似。

参数设置第五十六屏: 2 象限总无功绝对值电度量底数设置

本页用来设置 2 象限总无功绝对值电度量底数。屏幕最上方显示"Eq-2", 屏幕右下方显示"kvarh"表示为无功电量,操作方法和显示与第三十六屏类似。

参数设置第五十七至六十屏: 2 象限总尖/峰/平/谷费率无功电度量底数设置

分别用来设置 2 象限总尖、峰、平、谷费费率反向有功电度量底数。屏幕最上方显示"Eq-2"费率类型分别为尖、峰、平、谷,屏幕右下方显示"kvarh"表示为无功电量,操作方法和显示与第三十六屏类似。

参数设置第六十一屏: 3 象限总无功绝对值电度量底数设置

本页用来设置 3 象限总无功绝对值电度量底数。屏幕最上方显示"Eq-3", 屏幕右下方显示"kvarh"表示为无功电量,操作方法和显示与第三十六屏类似。

参数设置第六十二至六十五屏: 3 象限总尖/峰/平/谷费率无功电度量底数设置

分别用来设置 3 象限总尖、峰、平、谷费费率反向有功电度量底数。屏幕最上方显示 "Eq-3" 费率类型分别为尖、峰、平、谷,屏幕右下方显示 "kvarh" 表示为无功电量,操作方法和显示与第三十六屏类似。

完成全部的参数设置后,按国键将返回到第一屏。

3.4. 本地操作

在单键显示模式下,同时按下☑键和□键,将进入本地操作模式,屏幕左上角显示 OPR(OPERATE)。

注意: 无论在哪一屏本地操作界面,同时按下 ➡️键和 ➡️键将退出本地操作模式返回单键显示模式,当前页中的操作不被执行;如果没有按 ➡️键激活当前操作页,这时按 ➡️键将直接翻屏。如果在 10 分钟内没有按键,将自动返回到单键显示模式。

3.4.1. 本地操作功能简介

在本地操作模式中,可以进行:

● 控制继电器的分、合操作:

- 清除 SOE,清除电量底数,清除最大需量;
- 电参量的最大值、最小值复位;
- 系统复位操作。

3.4.2. 各屏本地操作介绍

本地操作模式的起始界面为密码确认,每次进入本地操作模式都先提示输入密码,密码显示为"---"。密码共 4位,范围为 0000~9999,出厂的默认值为"0000"。为增强保密性,只有正在设定的密码位显示数字,其它位都显示为"-"。输入完成后按量键确认,如果输入密码正确则进入本地操作第一屏,否则停留在本页。

图 3-4-2 第一路继电器操作

本地操作第一屏:第一路继电器输出操作

本页用来设置第一路继电器分合状态。如图 3-4-2 所示屏幕最上方显示 "OUT"字样,表示为继电器输出操作,屏幕中部显示"1",表示 第一路。

按□键后继电器状态 "OP" 闪烁, 按□键或□型键可进行 "OP"或 "CL"的选择。 "OP"即 "OPEN"表示继电器分操作, "CL"即 "CLOSE"表示继电器合操作。

注意: 当继电器输出方式设置为脉冲输出时,不能选择"OP", 只能选择为"CL"。

选择好继电器状态后,按 型键会出现是否确认当前操作的提示,如图 3-4-3。"Y"代表 YES,即确认本地操作,"N"代表 NO,即不

进行本地操作。按□键可进行"Y"或"N"的选择,按□键确认。

选择"N"按三键确认后,不操作继电器。选择Y按三键,并不马上操作继电器,而是先对当前继电器状态进行检查:如当前继电器未动作,那么将对继电器进行操作;如当前继电器正在动作中,将不操作继电器,同时屏幕上方显示"ERR"字样表示操作失败,如图 3-4-4。此时按三章键将翻到下一屏;

图 3-4-3 继电器操作确认

图 3-4-4 继电器操作失败

按回键可重新设置继电器状态。

本地操作第二屏: 第二路继电器输出操作

本页用来设置第二路继电器分合状态。屏幕中部显示 "2",表示第二路。

第二路继电器的操作方法和第一路完全相同,请参照第一路的方法进行操作。

ELR. **50**E

图 3-4-5 清除开关量 SOE

本地操作第三屏:清除开关量 SOE

本页用来清除开关量 SOE 记录。如图 3-4-5 屏幕左上角显示"CLR a",屏幕最上方显示"SOE"字样,表示清除开关量 SOE。

如不想清除 SOE, 按□避将跳过此屏; 如要清除, 请按□键, 此时屏幕变为如图 3-4-6 所示。选择"Y"即 YES, 确认清除 SOE, 选择"N"即 NO, 不清除 SOE。

图 3-4-6 确认清除 SOE

本地操作第四屏:清除电量累计值

本页用来清除所有电量累计值。如图 3-4-7,屏幕左上角显示"CLR"(CLEAR)表示清除,屏幕最上方显示"ENGY"(ENGERY)字样表示清除电量底数,清除电量累计值的操作和清除 SOE 的操作相同。

CLR ENGY

图 3-4-7 清除电度量累计值

本地操作第五屏: 最大需量清除

本页用来清除最大需量。如图 3-4-8,屏幕左上角显示 "CLR"(CLEAR)表示清除,屏幕最上方显示"DMD"字样表示清除最大需量。清除最大需量的操作和清除 SOE 的操作相同。

CLR IMI

图 3-4-8 清除最大需量

本地操作第六屏: 电参量最大值最小值复位

本页用来复位电参量最大值最小值。如图 3-4-9,屏幕左上角显示"RST"(RESET)表示复位,屏幕最上方显示"MXMN"(MAXMIN)字样表示复位最大值最小值。复位电参量最大值最小值的操作和清除 SOE 底数的操作相同。

电参量最大值最小值复位后,各种电参量的最大最小值复位为当前的测量值。

RST MYMM

图 3-4-9 复位最值

本地操作第七屏:系统复位

本页用来使系统复位。如图 3-4-10,屏幕左上角显示 "RST"(RESET)表示复位,屏幕最上方显示"SYS"(SYSTEM)表示系统。

系统复位操作和清除 SOE 底数的操作相同。

RST **545**

图 3-4-10 系统复位

3.5. SOE 及统计量查询

3.5.1. 功能介绍

在单键显示模式下,同时按下 型键和 区键,进入事件记录查询模式,屏幕左上角显示"SOE a"字样,表示开关量事件记录。可按 区键或 区键上下翻页查看相关内容。按 区键将直接翻屏,依次为设电量底数、"SOE b"、电参量的最大值最小值、最大需量"DMD"。

注意: 如果在 10 分钟内没有按键,将自动返回到单键显示模式。

3.5.2. 查询开关量 SOE 操作介绍

如果内存中无 SOE 记录, 进入查询 SOE 模式后, 屏幕上方显示"NO",

如图 3-5-1 所示。进入查询 SOE 模式后,如图 3-5-2:

- ① 开关量 SOE 事件总数 (最大为 32 个)。如图目前总共有 16 个被记录 事件。
- ② 当前正在查看的事件。如图目前正在查看的为第3个发生的事件。
- ③ 事件的类型: 如下表。

类型编号	类型说明
1	开关量输入1变位事件
2	开关量输入2变位事件
3	开关量输入3变位事件
4	开关量输入4变位事件

- ④ 事件的状态。0代表单点信息状态由合到分:1代表单点信息状态由 分到合。
- ⑤ 表示事件发生的时间。如图 3-5-2, 开关量输入 2 由合至分的变位事 件发生在 07 年 11 月 27 日 13 时 21 分 59 秒 253 毫秒。

若有多个 SOE 事件,可按□避逮或□键上下翻页查看。

3.5.3. 设电度量底数 SOE 操作介绍

如果通过界面或者通讯设置过电度量底数,装置会相应产生一条设电度量底 数 SOE。如果内存中无设电度量底数 SOE 记录,进入查询 SOE 模式后,屏幕上 方显示"NO",如图 3-5-3 所示。如果内存中存有设电度量底数 SOE 记录,进 入查询越限告警 SOE 模式后,如图 3-5-4:

图 3-5-3 无告警 SOE 记录

图 3-5-4 设电量底数 SOE 记录

- ① 设电量底数 SOE 事件总数 (最大为 2 个)。如图目前共有 2 个被记录事件。
- ② 当前正在查看的事件。如图目前正在查看的为第1个发生的事件。
- ③ 事件的类型: ENGY 代表时间的类型为设电量底数。
- ④ 表示事件发生的时间。如图 3-5-4, 在 07 年 11 月 27 日 13 时 21 分 59 秒 253 毫秒设定过电量底数。

若有多个 SOE 事件,可按 🖾 键或 🗷 键上下翻页查看。

3.5.4. 查询电参量最大最小值操作介绍

进入电参量最大最小值模式后,可按 国键或 国键上下翻页查看;按 回键查看某电参量的值及发生时间,最大最小值及发生时间秒级闪烁。时间的显示方式为年一月一日和时:分:秒交替显示。当前查看的统计数据均为上一个统计区间的统计值。

第一屏:相电压最大值

本屏显示三相电压的最大值,如图 3-5-5: 屏幕左上角显示"U_max",表示电压最大值,'a'、'b'、'c'分别表示 A 相、B 相、C 相电压,单位为 V 或 kV。最下一排显示最大值发生的时间。

注: 在三相四线制下才显示本页。

第二屏: 相电压最小值

本屏显示三相电压的最小值,如图 3-5-6: 屏幕左上角

图 3-5-5 相电压最大值

图 3-5-6 相电压最小值

显示"U_min",表示电压最小值, 'a'、'b'、'c'分别表示 A 相、B 相、C 相电压,单位为 V 或 kV。最下一排显示最小值发生的时间。

注: 在三相四线制下才显示本页。

第三屏:线电压最大值

本屏显示线电压的最大值,屏幕左上角显示"U_max"字样,表示电压最大值, 'ab'、'bc'、'ca'分别表示线电压 AB、BC、CA,显示同第一屏类似。

第四屏:线电压最小值

本屏显示线电压的最小值,屏幕左上角显示"U_min"字样,表示电压最小值,'ab'、'bc'、'ca'分别表示线电压 AB、BC、CA,显示同第二屏类似。

第五屏: 电流最大值

本屏显示电流的最大值,屏幕左上角显示"I_max"字样,表示电流最大值, 'a'、'b'、'c'、'n'分别表示 A 相、B 相、C 相、零序电流,单位为 A。 显示同第一屏类似。

第六屏: 电流最小值

本屏显示电流的最小值,屏幕左上角显示"I_min"字样,表示电流最小值, 'a'、'b'、'c'、'n'分别表示 A 相、B 相、C 相、零序电流,单位为 A。 显示同第二屏类似。

第七屏: 功率因数最大值

本屏显示功率因数的最大值,屏幕左上角显示"PF_max"字样,表示功率 因数最大值, 'a'、'b'、'c'、''分别表示 A 相、B 相、C 相、总功率 因数,显示同第一屏类似。

注: 在三相三线制下不显示 A 相、B 相、C 相功率因数的最大值,只在第一行显示 总功率因数的最大值。

第八屏: 功率因数最小值

本屏显示电流的最小值,屏幕左上角显示"PF_min"字样,表示功率因数最小值, 'a'、'b'、'c'、''分别表示 A 相、B 相、C 相、总功率因数,显示同第二屏类似。

注: 在三相三线制下不显示 A 相、B 相、C 相功率因数的最小值,只在第一行显示 总功率因数的最小值。

第九屏: 总功率、频率最大值

本屏显示功率、频率的最大值,屏幕左上角显示"P_max"字样,表示功率、频率最大值, 'Σ'表示总功率,前三行分别为有功功率、无功功率、视在功率,单位分别为 kW、kvar、kVA。第四行为频率,单位为 Hz。最下一排显示最大值发生的时间。

第十屏: 总功率、频率最小值

本屏显示功率、频率的最小值,屏幕左上角显示"P_min"字样,表示功率、 频率最小值,显示同第九屏类似。

第十一屏: A 相功率最大值

本屏显示 A 相功率最大值,屏幕左上角显示"Pa_max"字样,表示 A 相功率最大值,' Σ '表示总功率,前三行分别为有功功率、无功功率、视在功率,单位分别为 kW、kvar、kVA。最下一排显示最大值发生的时间。

注: 在三相四线制下才显示本页。

第十二屏: A 相功率最小值

本屏显示 A 相功率的最小值,屏幕左上角显示"Pa_min"字样,表示 A 相功率最小值,显示同第十一屏类似。

注: 在三相四线制下才显示本页。

第十三屏: B 相功率最大值

本屏显示 B 相功率的最大值,屏幕左上角显示"Pb_max"字样,表示 B 相功率最大值,显示同第十一屏类似。

注: 在三相四线制下才显示本页。

第十四屏: B 相功率最小值

本屏显示 B 相功率的最小值,屏幕左上角显示"Pb_min"字样,表示 B 相功率最小值,显示同第十一屏类似。

注: 在三相四线制下才显示本页。

第十五屏: C 相功率最大值

本屏显示 C 相功率的最大值,屏幕左上角显示"Pc_max"字样,表示 C 相功率最大值,显示同第十一屏类似。

注: 在三相四线制下才显示本页。

第十六屏: C 相功率最小值

本屏显示 C 相功率的最小值,屏幕左上角显示"Pc_min"字样,表示 C 相功率最小值,显示同第十一屏类似。

注: 在三相四线制下才显示本页。

3.5.5. 查询最大需量操作介绍

进入最大需量模式后,可按 国键或 国键上下翻页查看;此时最大需量发生时间秒级闪烁。时间的显示方式为年一月一日和时:分:秒交替显示。当前查看的最大需量均为上一个需量周期(15分钟)的统计值。

第一屏: 正向有功最大需量

本屏显示正向有功最大需量,如图 3-5-7: 屏幕左上角显示"DMD",表示最大需量,屏幕最上方显示"+P"字样,表示为正向有功最大需量,单位为kW。

表示正向有功最大需量为 1.924kW;

最大时间的发生时间为07年12月29日09时25分13秒。

第二屏:反向有功最大需量

本屏显示反向有功最大需量,屏幕左上角显示"DMD",表示最大需量,屏幕最上方显示"-P"字样,表示为反向有功最大需量,单位为kW。

图 3-5-7 正向有功最大需量

第三屏: 正向无功最大需量

本屏显示正向无功最大需量,屏幕左上角显示"DMD",表示最大需量, 屏幕最上方显示"+q"字样,表示为正向无功最大需量,单位为 kvar。

第四屏: 反向无功最大需量

本屏显示反向无功最大需量,屏幕左上角显示"DMD",表示最大需量, 屏幕最上方显示"-q"字样,表示为反向无功最大需量,单位为 kvar。

3.5.6. 其他查询

在单**☞**键模式测量数据显示时,同时按下□键和□键,可查看三种格式的时间和设备的当前温度。

第一屏:时间格式1

在本屏的最下排显示系统时间,格式为月一日 时:分,如图 3-6-1: 当前系统时间:2月20日19时38分。

02-20 19:38

图 3-6-1 时间格式 1

第二屏:时间格式2

图 3-6-2 时间格式 2

02:4 :50

在本屏的最下排显示系统时间,格式为时:分:秒,如图 3-6-2: 当前系统时间:2时41分50秒。

第三屏: 设备温度

25.8

图 3-6-3 设备温度

在本屏的最下排显示设备温度,如图 3-6-3:当前设备温度:25.8℃。

第四屏:时间格式3

在本屏的最下排显示系统时间,格式为年一月一日,如图 3-6-4: 当前系统时间: 2008年2月20日。

2008-02-20

图 3-6-4 时间格式 3

第五屏: 无显示

在本屏的最下排无显示。

4. 通讯

4.1. MODBUS 协议概述

MODBUS-RTU 通讯协议是比较常用的一种通讯协议,主从应答式连接(半双工)。主站(如 PC 机等)发出信号寻址某一台终端设备(如 EM400),被寻址的终端设备发出应答信号传输给主机。

4.2. 通讯协议地址表及说明

继电器操作地址表,支持功能码01读取与功能码05遥控操作

地址	类型	名称	寄存器
00010	RW	RL1	1
00011	RW	RL2	1

数字量地址表,支持功能码02 读取

地址	类型	名称	寄存器
10100	RO	DI1	1
10101	RO	DI2	1
10102	RO	DI3	1
10103	RO	DI4	1

系统信息地址表 支持功能码 03、04 读取与功能码 06、10 设置

地址	类型	名称	取值范围	备注	寄存器
40010	RO	ASCII 码表示硬件版本号			1
40011	RO	ASCII 码表示软件版本号			1
40012	RO	ASCII 码表示年			1
40013 ~ 40015	RO	ASCII 码表示产品顺序号			3

40020	RW	系统时间××年××月			1
40021	RW	系统时间××日××时			1
40022	RW	系统时间××分××秒		与广播全写	1
40023	RW	系统时间××毫秒			1
40030	RW	通讯地址	1~254	默认值: 254	1
40032	RW	通讯波特率	1~6	默认值:5	1
40034	RW	通讯校验方式	0~3	默认值: 0	1
40050	RO	子站状态			1
40055	WO	子站设置			1
40060	RO	电度量冻结解冻状态			1

系统参数地址表,支持功能码03、04读取与功能码06、10设置

地址	类型	名称	取值范围	备注	寄存器
40062	RW	系统频率选择	5000/6000		1
40065	RW	电参量最大最小值统 计区间	1~1440min	默认值: 10	1
40067	RW	CT 方向设置			2(连写)
40070	RW	遥测接线方式	1~5	默认值:1	1
40072	RW	PT 的一次电压额定值	100~35000V	默认值:	2(连写)

40073	RW	PT 的二次电压额定值	100~220V	220/220	
40075	RW	bit14-bit0 表示 CT 一次 电流额定值 bit15=0/1 表示次级为 5A/1A	一次电流额 定值: 1~9999A	默认值: 0x1388 (5000: 5)	1
40077	RW	bit14-bit0 表示零序 CT 的一次电流额定值 bit15=0/1 表示次级为 5A/1A	一次电流额 定值: 1~9999A	默认值: 0x1388 (5000: 5)	1
40081	RW	继电器输出功能设置	1~2	默认值:1	1
		\			
40085		AO 关联电参量量程			2(连写)
40086		AO 关联电参量类型			- (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
40088	RW	继电器脉冲宽度	50~20000	默认值: 2000, 单位: ms	1
40090	RW	背光点亮时间	0~30 分钟	默认值:5	1
40092~ 40097	RW	分时计费设置 (4费率48时段)	步进: 0.5 小 时	默认值: 0xaa	6(连写)

基本电参量地址表,支持功能码 03、04 读取

地址	类型	数据定义	寄存器
40100	RO	线电压 Uab	1
40101	RO	线电压 Ubc	1
40102	RO	线电压 Uca	1
40103	RO	线电压平均值 ULLAvg	1
40104	RO	相电压 Uan	1
40105	RO	相电压 Ubn	1

40106	RO	相电压 Ucn	1
40107	RO	相电压平均值 ULNAvg	1
40108	RO	电流 Ia	1
40109	RO	电流 Ib	1
40110	RO	电流 Ic	1
40111	RO	三相电流平均值 IAvg	1
40112	RO	零序电流 In	1
40113	RO	总频率 (F)	1
40115	RO	总功率因数(PF)	1
40116	RO	总有功功率 (W)	1
40117	RO	总无功功率 (Q)	1
40118	RO	总视在功率(S)	1
40119	RO	A 相功率因数 (PFa)	1
40120	RO	B 相功率因数 (PFb)	1
40121	RO	C 相功率因数 (PFc)	1
40122	RO	A 相有功功率(Wa)	1
40123	RO	B 相有功功率(Wb)	1
40124	RO	C 相有功功率(Wc)	1
40125	RO	A 相无功功率(Qa)	1
40126	RO	B 相无功功率(Qb)	1
40127	RO	C 相无功功率(Qc)	1
40128	RO	A 相视在功率(Sa)	1
40129	RO	B 相视在功率(Sb)	1
40130	RO	C 相视在功率(Sc)	1

注 1: 三相三线制时地址 40104~40107, 40119~40130 中的数据无效皆为 0。

注 2: 以上数据 (Ai) 与实际值之间的对应关系为:

电压: U=(Ai/10)×(PT1/PT2), Ai 为无符号整数,单位 V。

电流: I=(Ai/1000)×(CT1/CT2), Ai 为无符号整数,单位 A。

零序电流: In=(Ai/1000) ×(CT01/CT02), Ai 为无符号整数, 单位A。

有功功率: P=Ai×(PT1/PT2)×(CT1/CT2), Ai 为有符号整数, 单位 W。

无功功率: Q=Ai×(PT1/PT2)×(CT1/CT2), Ai 为有符号整数, 单位 var。

视在功率: S=Ai×(PT1/PT2)×(CT1/CT2), Ai 为无符号整数, 单位 VA。

功率因数: PF=Ai/1000,Ai 为有符号整数,无单位。

频率: F=Ai/100, Ai 为无符号整数,单位 Hz。

电度量地址表,支持功能码03、04读取与功能码10设置

地址	类型	数据定义	寄存器
40200	RW	总有功绝对值电度量累计值	2
40202	RW	总无功绝对值电度量累计值	2
40204	RW	A 相有功绝对值电度量累计值	2
40206	RW	B相有功绝对值电度量累计值	2
40208	RW	C相有功绝对值电度量累计值	2
40210	RW	A 相无功绝对值电度量累计值	2
40212	RW	B相无功绝对值电度量累计值	2
40214	RW	C相无功绝对值电度量累计值	2
40216	RW	总正向有功绝对值电度量累计值	2
40218	RW	总尖费率正向有功绝对值电度量累计值	2
40220	RW	总峰费率正向有功绝对值电度量累计值	2
40222	RW	总平费率正向有功绝对值电度量累计值	2
40224	RW	总谷费率正向有功绝对值电度量累计值	2
40226	RW	总反向有功绝对值电度量累计值	2
40228	RW	总尖费率反向有功绝对值电度量累计值	2
40230	RW	总峰费率反向有功绝对值电度量累计值	2
40232	RW	总平费率反向有功绝对值电度量累计值	2

40234	RW	总谷费率反向有功绝对值电度量累计值	2
40236	RW	总正向无功绝对值电度量累计值	2
40238	RW	总尖费率正向无功绝对值电度量累计值	2
40240	RW	总峰费率正向无功绝对值电度量累计值	2
40242	RW	总平费率正向无功绝对值电度量累计值	2
40244	RW	总谷费率正向无功绝对值电度量累计值	2
40246	RW	总反向无功绝对值电度量累计值	2
40248	RW	总尖费率反向无功绝对值电度量累计值	2
40250	RW	总峰费率反向无功绝对值电度量累计值	2
40252	RW	总平费率反向无功绝对值电度量累计值	2
40254	RW	总谷费率反向无功绝对值电度量累计值	2
40256	RW	I象限总无功绝对值电度量累计值	2
40258	RW	I象限总尖费率无功绝对值电度量累计值	2
40260	RW	I象限总峰费率无功绝对值电度量累计值	2
40262	RW	I象限总平费率无功绝对值电度量累计值	2
40264	RW	I象限总谷费率无功绝对值电度量累计值	2
40266	RW	IV 象限总无功绝对值电度量累计值	2
40268	RW	IV 象限总尖费率无功绝对值电度量累计值	2
40270	RW	IV 象限总峰费率无功绝对值电度量累计值	2
40272	RW	IV 象限总平费率无功绝对值电度量累计值	2
40274	RW	IV 象限总谷费率无功绝对值电度量累计值	2
40276	RW	II 象限总无功绝对值电度量累计值	2
40278	RW	II 象限总尖费率无功绝对值电度量累计值	2
40280	RW	II 象限总峰费率无功绝对值电度量累计值	2
40282	RW	II 象限总平费率无功绝对值电度量累计值	2
40284	RW	II 象限总谷费率无功绝对值电度量累计值	2
40286	RW	III 象限总无功绝对值电度量累计值	2
40288	RW	III 象限总尖费率无功绝对值电度量累计值	2
40290	RW	III 象限总峰费率无功绝对值电度量累计值	2
40292	RW	III 象限总平费率无功绝对值电度量累计值	2

40294	RW	III 象限总谷费率无功绝对值电度量累计值	2
-------	----	-----------------------	---

注 1: 三相三线制时地址 40204~40215 无效皆为 0。

注 2: 以上数据(Ai)与实际值之间的对应关系为:

有功电度: Ep=Ai/10,Ai 为无符号长整型(0~999,999,999),单位 kWh。

无功电度: Eq=Ai/10, Ai 为无符号长整型(0~999, 999, 999), 单位 kvarh。

注 3: 表底设置时,需要对所有的分电量和总电量进行设置。

谐波统计量(谐波畸变率/2~15 次谐波含有率)地址表,支持功能码 03、04 读取

地址	类型	数据定义	寄存器
40300	RO	A相(Uab线)电压总谐波畸变率	1
40301	RO	B相(Ubc线)电压总谐波畸变率	1
40302	RO	C相(Uca线)电压总谐波畸变率	1
40303	RO	电流 Ia 总谐波畸变率	1
40304	RO	电流 Ib 总谐波畸变率	1
40305	RO	电流 Ic 总谐波畸变率	1
40306	RO	零序电流 In 总谐波畸变率	1
40308	RO	A相(Uab线)电压奇次谐波畸变率	1
40309	RO	B相(Ubc线)电压奇次谐波畸变率	1
40310	RO	C相(Uca线)电压奇次谐波畸变率	1
40311	RO	电流 Ia 奇次谐波畸变率	1
40312	RO	电流 Ib 奇次谐波畸变率	1
40313	RO	电流 Ic 奇次谐波畸变率	1
40314	RO	零序电流 In 奇次谐波畸变率	1
40315	RO	A相(Uab线)电压偶次谐波畸变率	1
40316	RO	B相(Ubc线)电压偶次谐波畸变率	1
40317	RO	C相(Uca线)电压偶次谐波畸变率	1

40318	RO	电流 Ia 偶次谐波畸变率	1
40319	RO	电流 Ib 偶次谐波畸变率	1
40320	RO	电流 Ic 偶次谐波畸变率	1
40321	RO	零序电流 In 偶次谐波畸变率	1
40329	RO	A 相(Uab 线)电压 2 次谐波占有率	1
40330	RO	A 相(Uab 线)电压 3 次谐波占有率	1
40331	RO	A 相(Uab 线)电压 4 次谐波占有率	1
40332	RO	A 相(Uab 线)电压 5 次谐波占有率	1
40333	RO	A 相(Uab 线)电压 6 次谐波占有率	1
40334	RO	A 相(Uab 线)电压 7 次谐波占有率	1
40335	RO	A 相(Uab 线)电压 8 次谐波占有率	1
40336	RO	A相(Uab线)电压 9次谐波占有率	1
40337	RO	A 相(Uab 线)电压 10 次谐波占有率	1
40338	RO	A 相(Uab 线)电压 11 次谐波占有率	1
40339	RO	A 相(Uab 线)电压 12 次谐波占有率	1
40340	RO	A 相(Uab 线)电压 13 次谐波占有率	1
40341	RO	A 相(Uab 线)电压 14 次谐波占有率	1
40342	RO	A 相(Uab 线)电压 15 次谐波占有率	1
40344	RO	B相(Ubc线)电压2次谐波占有率	1
40345	RO	B相(Ubc线)电压 3次谐波占有率	1
40346	RO	B相(Ubc线)电压 4次谐波占有率	1
40347	RO	B相(Ubc线)电压 5次谐波占有率	1
40348	RO	B相(Ubc线)电压 6次谐波占有率	1
40349	RO	B相(Ubc线)电压7次谐波占有率	1
40350	RO	B相(Ubc线)电压 8次谐波占有率	1
40351	RO	B相(Ubc线)电压 9次谐波占有率	1
40352	RO	B相(Ubc线)电压 10次谐波占有率	1
40353	RO	B相(Ubc线)电压 11 次谐波占有率	1

40354	RO	B相(Ubc线)电压 12 次谐波占有率	1
40355	RO	B相(Ubc线)电压13次谐波占有率	1
40356	RO	B相(Ubc线)电压 14次谐波占有率	1
40357	RO	B相(Ubc线)电压 15 次谐波占有率	1
40359	RO	C相(Uca线)电压 2 次谐波占有率	1
40360	RO	C相(Uca线)电压 3 次谐波占有率	1
40361	RO	C相(Uca线)电压 4次谐波占有率	1
40362	RO	C相(Uca线)电压 5次谐波占有率	1
40363	RO	C相(Uca线)电压 6次谐波占有率	1
40364	RO	C相(Uca线)电压7次谐波占有率	1
40365	RO	C相(Uca线)电压 8次谐波占有率	1
40366	RO	C相(Uca线)电压 9 次谐波占有率	1
40367	RO	C相(Uca线)电压 10 次谐波占有率	1
40368	RO	C相(Uca线)电压11次谐波占有率	1
40369	RO	C相(Uca 线)电压 12 次谐波占有率	1
40370	RO	C相(Uca线)电压 13 次谐波占有率	1
40371	RO	C相(Uca线)电压 14 次谐波占有率	1
40372	RO	C相(Uca线)电压 15 次谐波占有率	1
40374	RO	电流 Ia 的 2 次谐波占有率	1
40375	RO	电流 Ia 的 3 次谐波占有率	1
40376	RO	电流 Ia 的 4 次谐波占有率	1
40377	RO	电流 Ia 的 5 次谐波占有率	1
40378	RO	电流 Ia 的 6 次谐波占有率	1
40379	RO	电流 Ia 的 7 次谐波占有率	1
40380	RO	电流 Ia 的 8 次谐波占有率	1
40381	RO	电流 Ia 的 9 次谐波占有率	1
40382	RO	电流 Ia 的 10 次谐波占有率	1
40383	RO	电流 Ia 的 11 次谐波占有率	1

40384	RO	电流 Ia 的 12 次谐波占有率	1
40385	RO	电流 Ia 的 13 次谐波占有率	1
40386	RO	电流 Ia 的 14 次谐波占有率	1
40387	RO	电流 Ia 的 15 次谐波占有率	1
40389	RO	电流 Ib 的 2 次谐波占有率	1
40390	RO	电流 Ib 的 3 次谐波占有率	1
40391	RO	电流 Ib 的 4 次谐波占有率	1
40392	RO	电流 Ib 的 5 次谐波占有率	1
40393	RO	电流 Ib 的 6 次谐波占有率	1
40394	RO	电流 Ib 的 7 次谐波占有率	1
40395	RO	电流 Ib 的 8 次谐波占有率	1
40396	RO	电流 Ib 的 9 次谐波占有率	1
40397	RO	电流 Ib 的 10 次谐波占有率	1
40398	RO	电流 Ib 的 11 次谐波占有率	1
40399	RO	电流 Ib 的 12 次谐波占有率	1
40400	RO	电流 Ib 的 13 次谐波占有率	1
40401	RO	电流 Ib 的 14 次谐波占有率	1
40402	RO	电流 Ib 的 15 次谐波占有率	1
40404	RO	电流 Ic 的 2 次谐波占有率	1
40405	RO	电流 Ic 的 3 次谐波占有率	1
40406	RO	电流 Ic 的 4 次谐波占有率	1
40407	RO	电流 Ic 的 5 次谐波占有率	1
40408	RO	电流 Ic 的 6 次谐波占有率	1
40409	RO	电流 Ic 的 7 次谐波占有率	1
40410	RO	电流 Ic 的 8 次谐波占有率	1
40411	RO	电流 Ic 的 9 次谐波占有率	1
40412	RO	电流 Ic 的 10 次谐波占有率	1
40413	RO	电流 Ic 的 11 次谐波占有率	1

40414	RO	电流 Ic 的 12 次谐波占有率	1
40415	RO	电流 Ic 的 13 次谐波占有率	1
40416	RO	电流 Ic 的 14 次谐波占有率	1
40417	RO	电流 Ic 的 15 次谐波占有率	1
40419	RO	零序电流 In 的 2 次谐波占有率	1
40420	RO	零序电流 In 的 3 次谐波占有率	1
40421	RO	零序电流 In 的 4 次谐波占有率	1
40422	RO	零序电流 In 的 5 次谐波占有率	1
40423	RO	零序电流 In 的 6 次谐波占有率	1
40424	RO	零序电流 In 的 7 次谐波占有率	1
40425	RO	零序电流 In 的 8 次谐波占有率	1
40426	RO	零序电流 In 的 9 次谐波占有率	1
40427	RO	零序电流 In 的 10 次谐波占有率	1
40428	RO	零序电流 In 的 11 次谐波占有率	1
40429	RO	零序电流 In 的 12 次谐波占有率	1
40430	RO	零序电流 In 的 13 次谐波占有率	1
40431	RO	零序电流 In 的 14 次谐波占有率	1
40432	RO	零序电流 In 的 15 次谐波占有率	1

注:以上数据(Ai)与实际值之间的对应关系为:

谐波畸变率: THD=Ai/10, Ai 为无符号整型,单位%。

谐波占有率: HP=Ai/10, Ai 为无符号整型,单位%。

遥信量地址表,支持功能码03、04读取

地址	类型	数据定义	寄存器
40500	RO	开关量输入遥信	1

谐波量(16~31次谐波含有率)地址表,支持功能码03、04读取

地址	类型	数据定义	寄存器
40610	RO	A 相(Uab 线)电压 16 次谐波占有率	1

			1
40611	RO	A 相(Uab 线)电压 17 次谐波占有率	1
40612	RO	A 相(Uab 线)电压 18 次谐波占有率	1
40613	RO	A 相(Uab 线)电压 19 次谐波占有率	1
40614	RO	A 相(Uab 线)电压 20 次谐波占有率	1
40615	RO	A 相(Uab 线)电压 21 次谐波占有率	1
40616	RO	A 相(Uab 线)电压 22 次谐波占有率	1
40617	RO	A 相(Uab 线)电压 23 次谐波占有率	1
40618	RO	A 相(Uab 线)电压 24 次谐波占有率	1
40619	RO	A 相(Uab 线)电压 25 次谐波占有率	1
40620	RO	A 相(Uab 线)电压 26 次谐波占有率	1
40621	RO	A 相(Uab 线)电压 27 次谐波占有率	1
40622	RO	A 相(Uab 线)电压 28 次谐波占有率	1
40623	RO	A 相(Uab 线)电压 29 次谐波占有率	1
40624	RO	A相(Uab线)电压30次谐波占有率	1
40625	RO	A 相(Uab 线)电压 31 次谐波占有率	1
40630	RO	B相(Ubc线)电压 16次谐波占有率	1
40631	RO	B相(Ubc线)电压 17次谐波占有率	1
40632	RO	B相(Ubc线)电压 18次谐波占有率	1
40633	RO	B相(Ubc线)电压 19次谐波占有率	1
40634	RO	B相(Ubc线)电压 20 次谐波占有率	1
40635	RO	B相(Ubc线)电压 21 次谐波占有率	1
40636	RO	B相(Ubc线)电压 22 次谐波占有率	1
40637	RO	B相(Ubc线)电压23次谐波占有率	1
40638	RO	B 相(Ubc 线)电压 24 次谐波占有率	1
40639	RO	B相(Ubc线)电压 25 次谐波占有率	1
40640	RO	B相(Ubc线)电压 26 次谐波占有率	1
40641	RO	B相(Ubc线)电压 27 次谐波占有率	1
40642	RO	B相(Ubc线)电压 28 次谐波占有率	1
40643	RO	B相(Ubc线)电压 29 次谐波占有率	1
40643	RO	B相(Ubc线)电压 29 次谐波占有率	1

40644	RO	B相(Ubc线)电压 30 次谐波占有率	1
40645	RO	B相(Ubc线)电压 31 次谐波占有率	1
40650	RO	C 相(Uca 线)电压 16 次谐波占有率	1
40651	RO	C 相(Uca 线)电压 17 次谐波占有率	1
40652	RO	C 相(Uca 线)电压 18 次谐波占有率	1
40653	RO	C相(Uca线)电压 19 次谐波占有率	1
40654	RO	C相(Uca线)电压 20 次谐波占有率	1
40655	RO	C相(Uca线)电压 21 次谐波占有率	1
40656	RO	C相(Uca线)电压 22 次谐波占有率	1
40657	RO	C相(Uca线)电压 23 次谐波占有率	1
40658	RO	C相(Uca线)电压 24 次谐波占有率	1
40659	RO	C相(Uca线)电压 25 次谐波占有率	1
40660	RO	C相(Uca线)电压 26 次谐波占有率	1
40661	RO	C相(Uca线)电压 27 次谐波占有率	1
40662	RO	C相(Uca线)电压 28 次谐波占有率	1
40663	RO	C相(Uca线)电压 29 次谐波占有率	1
40664	RO	C相(Uca线)电压 30 次谐波占有率	1
40665	RO	C相(Uca线)电压 31 次谐波占有率	1
40670	RO	电流 Ia 的 16 次谐波占有率	1
40671	RO	电流 Ia 的 17 次谐波占有率	1
40672	RO	电流 Ia 的 18 次谐波占有率	1
40673	RO	电流 Ia 的 19 次谐波占有率	1
40674	RO	电流 Ia 的 20 次谐波占有率	1
40675	RO	电流 Ia 的 21 次谐波占有率	1
40676	RO	电流 Ia 的 22 次谐波占有率	1
40677	RO	电流 Ia 的 23 次谐波占有率	1
40678	RO	电流 Ia 的 24 次谐波占有率	1
40679	RO	电流 Ia 的 25 次谐波占有率	1

40680	RO	电流 Ia 的 26 次谐波占有率	1
40681	RO	电流 Ia 的 27 次谐波占有率	1
40682	RO	电流 Ia 的 28 次谐波占有率	1
40683	RO	电流 Ia 的 29 次谐波占有率	1
40684	RO	电流 Ia 的 30 次谐波占有率	1
40685	RO	电流 Ia 的 31 次谐波占有率	1
40690	RO	电流 Ib 的 16 次谐波占有率	1
40691	RO	电流 Ib 的 17 次谐波占有率	1
40692	RO	电流 Ib 的 18 次谐波占有率	1
40693	RO	电流 Ib 的 19 次谐波占有率	1
40694	RO	电流 Ib 的 20 次谐波占有率	1
40695	RO	电流 Ib 的 21 次谐波占有率	1
40696	RO	电流 Ib 的 22 次谐波占有率	1
40697	RO	电流 Ib 的 23 次谐波占有率	1
40698	RO	电流 Ib 的 24 次谐波占有率	1
40699	RO	电流 Ib 的 25 次谐波占有率	1
40700	RO	电流 Ib 的 26 次谐波占有率	1
40701	RO	电流 Ib 的 27 次谐波占有率	1
40702	RO	电流 Ib 的 28 次谐波占有率	1
40703	RO	电流 Ib 的 29 次谐波占有率	1
40704	RO	电流 Ib 的 30 次谐波占有率	1
40705	RO	电流 Ib 的 31 次谐波占有率	1
40710	RO	电流 Ic 的 16 次谐波占有率	1
40711	RO	电流 Ic 的 17 次谐波占有率	1
40712	RO	电流 Ic 的 18 次谐波占有率	1
40713	RO	电流 Ic 的 19 次谐波占有率	1
40714	RO	电流 Ic 的 20 次谐波占有率	1
40715	RO	电流 Ic 的 21 次谐波占有率	1

40716	RO	电流 Ic 的 22 次谐波占有率	1
40717	RO	电流 Ic 的 23 次谐波占有率	1
40718	RO	电流 Ic 的 24 次谐波占有率	1
40719	RO	电流 Ic 的 25 次谐波占有率	1
40720	RO	电流 Ic 的 26 次谐波占有率	1
40721	RO	电流 Ic 的 27 次谐波占有率	1
40722	RO	电流 Ic 的 28 次谐波占有率	1
40723	RO	电流 Ic 的 29 次谐波占有率	1
40724	RO	电流 Ic 的 30 次谐波占有率	1
40725	RO	电流 Ic 的 31 次谐波占有率	1
40730	RO	零序电流 In 的 16 次谐波占有率	1
40731	RO	零序电流 In 的 17 次谐波占有率	1
40732	RO	零序电流 In 的 18 次谐波占有率	1
40733	RO	零序电流 In 的 19 次谐波占有率	1
40734	RO	零序电流 In 的 20 次谐波占有率	1
40735	RO	零序电流 In 的 21 次谐波占有率	1
40736	RO	零序电流 In 的 22 次谐波占有率	1
40737	RO	零序电流 In 的 23 次谐波占有率	1
40738	RO	零序电流 In 的 24 次谐波占有率	1
40739	RO	零序电流 In 的 25 次谐波占有率	1
40740	RO	零序电流 In 的 26 次谐波占有率	1
40741	RO	零序电流 In 的 27 次谐波占有率	1
40742	RO	零序电流 In 的 28 次谐波占有率	1
40743	RO	零序电流 In 的 29 次谐波占有率	1
40744	RO	零序电流 In 的 30 次谐波占有率	1
40745	RO	零序电流 In 的 31 次谐波占有率	1

注: 以上数据(Ai)与实际值之间的对应关系为:

谐波占有率: HP=Ai/10, Ai 为无符号整型,单位%。

电压、电流质量地址表,支持功能码03、04读取

地址	类型	数据定义	寄存器
40760	RO	电压不平衡度	1
40761	RO	电流不平衡度	1

注: 以上数据(Ai)与实际值之间的对应关系为:

不平衡度: Ai/10, Ai=无符号整型,单位%。

需量统计地址表,支持功能码03、04读取

地址	类型	名称	寄存器
40770	RO	总正向有功最大需量	2
40772	RO	总反向有功最大需量	2
40774	RO	总正向无功最大需量	2
40776	RO	总反向无功最大需量	2
40800	RO	正向有功最大需量发生时间 3	
40803	RO	总反向有功最大需量发生时间 3	
40806	RO	总正向无功最大需量发生时间 3	
40809	RO	总反向无功最大需量发生时间	3

注: 以上数据(Ai)与实际值之间的对应关系为:

有功最大需量: P=Ai/10, Ai 为无符号整数,单位 W。

无功最大需量: Q=Ai/10, Ai 为无符号整数,单位 var。

电参量统计地址表,支持功能码03、04读取

22 T.2011 - T. 2444 MING 4 22 1 A 1 MING			
地址	类型	名称 寄存:	
41000	RO	线电压 Uab 最大值	1
41001	RO	线电压 Ubc 最大值	1
41002	RO	线电压 Uca 最大值	1
41003	RO	目电压 Uan 最大值 1	
41004	RO	目电压 Ubn 最大值 1	
41005	RO	相电压 Ucn 最大值	1
41006	RO	电流 Ia 最大值 1	

41007	RO	电流 Ib 最大值	1
41008	RO	荒 Ic 最大值 1	
41009	RO	电流 In 最大值	1
41010	RO	总频率 (F) 最大值	1
41011	RO	总功率因数(PF)最大值	1
41012	RO	A 相功率因数 (PFa) 最大值	1
41013	RO	B 相功率因数 (PFb) 最大值	1
41014	RO	C 相功率因数 (PFc) 最大值	1
41015	RO	A 相有功功率(Wa)最大值	1
41016	RO	A 相无功功率(Qa)最大值	1
41017	RO	A 相视在功率(Sa)最大值	1
41018	RO	B 相有功功率(Wb)最大值	1
41019	RO	B 相无功功率(Qb)最大值	1
41020	RO	B 相视在功率 (Sb) 最大值	1
41021	RO	C 相有功功率(Wc)最大值	1
41022	RO	C 相无功功率(Qc)最大值	1
41023	RO	C 相视在功率(Sc)最大值	1
41024	RO	总有功功率(W)最大值	1
41025	RO	总无功功率(Q)最大值	1
41026	RO	总视在功率 (S) 最大值	1
41030	RO	线电压 Uab 最小值	1
41031	RO	线电压 Ubc 最小值	1
41032	RO	线电压 Uca 最小值	1
41033	RO	相电压 Uan 最小值 1	
41034	RO	相电压 Ubn 最小值 1	
41035	RO	相电压 Ucn 最小值 1	
41036	RO	电流 Ia 最小值 1	
41037	RO	电流 Ib 最小值 1	
41038	RO	电流 Ic 最小值	1

41039	RO	电流 In 最小值	1
41040	RO	总频率(F)最小值	1
41041	RO	总功率因数(PF)最小值	1
41042	RO	A 相功率因数 (PFa) 最小值	1
41043	RO	B 相功率因数 (PFb) 最小值	1
41044	RO	C 相功率因数 (PFc) 最小值	1
41045	RO	A 相有功功率(Wa)最小值	1
41046	RO	A 相无功功率(Qa)最小值	1
41047	RO	A 相视在功率(Sa)最小值	1
41048	RO	B 相有功功率 (Wb) 最小值	1
41049	RO	B 相无功功率(Qb)最小值	1
41050	RO	B 相视在功率 (Sb) 最小值	1
41051	RO	C 相有功功率(Wc)最小值	1
41052	RO	C 相无功功率(Qc)最小值	1
41053	RO	C 相视在功率 (Sc) 最小值	1
41054	RO	总有功功率(W)最小值	1
41055	RO	总无功功率(Q)最小值	1
41056	RO	总视在功率 (S) 最小值	1
41060	RO	线电压 Uab 最大值发生时间	3
41063	RO	线电压 Ubc 最大值	3
41066	RO	线电压 Uca 最大值发生时间	3
41069	RO	相电压 Uan 最大值发生时间	3
41072	RO	相电压 Ubn 最大值发生时间	3
41075	RO	相电压 Ucn 最大值发生时间 3	
41078	RO	电流 Ia 最大值发生时间 3	
41081	RO	电流 Ib 最大值发生时间 3	
41084	RO	电流 Ic 最大值发生时间 3	
41087	RO	电流 In 最大值发生时间 3	
41090	RO	总频率 (F) 最大值发生时间	3

41093	RO	总功率因数 (PF) 最大值 3	
41096	RO	A 相功率因数 (PFa) 最大值发生时间	3
41099	RO	B 相功率因数 (PFb) 最大值发生时间	3
41102	RO	C 相功率因数 (PFc) 最大值发生时间	3
41105	RO	A 相有功功率(Wa)最大值发生时间	3
41108	RO	A 相无功功率(Qa)最大值发生时间	3
41111	RO	A 相视在功率(Sa)最大值发生时间	3
41114	RO	B 相有功功率(Wb)最大值发生时间	3
41117	RO	B 相无功功率(Qb)最大值发生时间	3
41120	RO	B 相视在功率 (Sb) 最大值发生时间	3
41123	RO	C 相有功功率 (Wc) 最大值发生时间	3
41126	RO	C 相无功功率(Qc)最大值发生时间	3
41129	RO	C 相视在功率(Sc)最大值发生时间	3
41132	RO	总有功功率(W)最大值发生时间	3
41135	RO	总无功功率(Q)最大值发生时间	3
41138	RO	总视在功率 (S) 最大值发生时间	3
41150	RO	线电压 Uab 最小值发生时间	3
41153	RO	线电压 Ubc 最小值发生时间	3
41156	RO	线电压 Uca 最小值发生时间	3
41159	RO	相电压 Uan 最小值发生时间	3
41162	RO	相电压 Ubn 最小值发生时间	3
41165	RO	相电压 Ucn 最小值发生时间	3
41168	RO	电流 Ia 最小值发生时间	3
41171	RO	电流 Ib 最小值发生时间 3	
41174	RO	电流 Ic 最小值发生时间 3	
41177	RO	电流 In 最小值发生时间 3	
41180	RO	总频率 (F) 最小值发生时间 3	
41183	RO	总功率因数(PF)最小值 3	
41186	RO	A 相功率因数(PFa)最小值发生时间	3

41189	RO	B 相功率因数 (PFb) 最小值发生时间	3
41192	RO	C 相功率因数 (PFc) 最小值发生时间	3
41195	RO	A 相有功功率(Wa)最小值发生时间	3
41198	RO	A 相无功功率(Qa)最小值发生时间	3
41201	RO	A 相视在功率(Sa)最小值发生时间	3
41204	RO	B 相有功功率(Wb)最小值发生时间	3
41207	RO	B 相无功功率(Qb)最小值发生时间	3
41210	RO	B 相视在功率 (Sb) 最小值发生时间	3
41213	RO	C 相有功功率(Wc)最小值发生时间	3
41216	RO	C 相无功功率(Qc)最小值发生时间	3
41219	RO	C 相视在功率(Sc)最小值发生时间	3
41222	RO	总有功功率(W)最小值发生时间	3
41225	RO	总无功功率(Q)最小值发生时间	3
41228	RO	总视在功率(S)最小值发生时间	3

注: 以上数据(Ai)与实际值之间的对应关系为:

电压: U=(Ai/10)×(PT1/PT2), Ai 为无符号整数,单位 V。

电流: I=(Ai/1000)×(CT1/CT2), Ai 为无符号整数,单位 A。

零序电流: In=(Ai/1000) ×(CT01/CT02), Ai 为无符号整数,单位

 A_{\circ}

有功功率: P=Ai×(PT1/PT2)×(CT1/CT2), Ai 为有符号整数,单位W。

无功功率: Q=Ai×(PT1/PT2)×(CT1/CT2), Ai 为有符号整数,单位 var。

视在功率: S=Ai×(PT1/PT2)×(CT1/CT2), Ai 为有符号整数,单位 VA。

功率因数: PF=Ai/1000, Ai 为有符号整数, 无单位。

频率: F=Ai/100, Ai 为无符号整数,单位 Hz。

电流 K 因数读取地址表,支持 03、04 功能码读取规则

地址	类型	名称	寄存器
41250	RO	A 相电流 K 因数	1
41251	RO	B 相电流 K 因数	1
41252	RO	相电流 K 因数 1	
41253	RO	N 相电流 K 因数	1

注: 以上数据(Ai)与实际值之间的对应关系为:

K因数: KF=Ai/10, Ai 为无符号整数, 无单位。

电压电流基波值读取地址表,支持03、04功能码读取规则

地址	类型	名称	寄存器
41300	RO	A 相电压基波有效值	1
41301	RO	B相电压基波有效值	1
41302	RO	C相电压基波有效值	1
41303	RO	相电流基波有效值 1	
41304	RO	B相电流基波有效值	1
41305	RO	C相电流基波有效值	1
41306	RO	「相电流基波有效值 1	

注: 以上数据(Ai)与实际值之间的对应关系为:

电压: U=(Ai/10)×(PT1/PT2), Ai 为无符号整数,单位 V。

电流: I=(Ai/1000) ×(CT1/CT2), Ai 为无符号整数,单位 A。

零序电流: In=(Ai/1000) ×(CT01/CT02), Ai 为无符号整数,单位

 A_{\circ}

重要电参量快速读取地址表,支持03、04功能码读取规则

地址	类型	数据定义	寄存器
42000	RO	遥信 1	1
42001	RO	保留	1
42002	RO	电流 Ia	1

42003	RO	电流 Ib	1
42004	RO	电流 Ic	1
42005	RO	零序电流 In	1
42006	RO	线电压 Uab	1
42007	RO	线电压 Ubc	1
42008	RO	线电压 Uca	1
42009	RO	相电压 Uan(三相四线制时有效)	1
42010	RO	相电压 Ubn (三相四线制时有效)	1
42011	RO	相电压 Ucn(三相四线制时有效)	1
42012	RO	频率(F)	1
42013	RO	总有功功率(W)	1
42014	RO	总无功功率(Q)	1
42015	RO	总视在功率(S)	1
42016	RO	总功率因数(PF)	1
42017	RO	总有功电量(Ep)	2
42019	RO	总无功电量 (Eq)	2
42021	RO	保留	2
42023	RO	保留	2

注 1: 三相三线制时地址 42009~42011 中的数据无效皆为 0。

注 2: 以上数据(Ai)与实际值之间的对应关系为:

电压: U=(Ai/10)×(PT1/PT2), Ai 为无符号整数,单位 V。

电流: I=(Ai/1000) ×(CT1/CT2), Ai 为无符号整数,单位 A。

零序电流: In=(Ai/1000) ×(CT01/CT02), Ai 为无符号整数,单位

 A_{\circ}

有功功率: P=Ai×(PT1/PT2)×(CT1/CT2), Ai 为有符号整数, 单位 W。

无功功率: Q=Ai×(PT1/PT2)×(CT1/CT2), Ai 为有符号整数,单位 var。

视在功率: S=Ai×(PT1/PT2)×(CT1/CT2), Ai 为无符号整数,单

位 VA。

功率因数: PF=Ai /1000,Ai 为有符号整数,无单位。

频率: F=Ai/100, Ai 为无符号整数,单位 Hz。

有功电度: Ep=Ai/10, Ai 为无符号长整型(0~999, 999, 999), 单位 kWh。

无功电度: Eq=Ai/10, Ai 为无符号长整型(0~999, 999, 999), 单位 kvarh。

电能脉冲量: E=Ai×脉冲常数 (kWh/ 每个脉冲), Ai 为无符号长整型(0~4294967295), 无单位。

温度地址表: 支持功能码 03、04 读取

地址	类型	名称	寄存器
48000	RO	温度	1

注: 以上数据(Ai)与实际值之间的对应关系为:

温度: T=(Ai/10), Ai 为无符号整数,单位℃。

4.3. 寄存器地址说明

- 硬件版本号寄存器(40010): 存放于程序存储器中。
- 软件件版本号寄存器(40011):存放于程序存储器中。
- 生产年份(40012): 由生产检验后特殊下载 E2p 中。
- 产品生产顺序号(40013~40015): 由生产检验后特殊下载 E2p 中。
- 系统时间——年、月寄存器(40020): 高字节表示年,范围 00~99, 代表 2000~2099; 低字节表示月,范围 1~12。
- 系统时间——日、时寄存器(40021): 高字节表示日,范围 1~31; 低字节表示时,范围 00~23。
- 系统时间——分、秒寄存器(40022): 高字节表示分,范围 00~59; 低字节表示秒,范围 00~59。

- 系统时间——毫秒寄存器 (40023): 范围 0~999。
- 通讯地址 (40030): 取值 1~254, 另外的 0,255 根据不同协议留用广播地址: 254 作为出厂默认地址。
- 通讯波特率 (BAUD) (40032): 1~6 分别表示波特率,如下表:

通讯波特率代码	解释
1	600 bps
2	1200 bps
3	2400 bps
4	4800 bps
5	9600 bps
6	19200 bps

● 通讯波特率 (PARITY) (40034): 范围 0~3,表示校验方式,如下表:

校验方式代码	解释
0	无奇偶校验、2位停止位
1	奇校验,1位停止位
2	偶校验,1位停止位
3	无奇偶校验,1位停止位

● 子站状态寄存器 (40050):

位址	定义	缺省值	备注
Bit0	遥信变位标志	0 (无)	遥信查询后清零
Bit1	硬 SOE 存在标志	0 (无)	通讯 SOE 全部查询后清零
Bit2	保留	0	
Bit3	请求对时标志	1(上电未对时)	远方对时后清零
Bit4	软 SOE 存在标志	0 (无)	通讯 SOE 全部查询后清零
Bit5	保留	0	
Bit6	保留	0	
Bit7	保留	0	
Bit8	保留	0	

Bit9	硬时钟异常	0	动态
Bit10	保留	0	
Bit11	保留	0	
Bit12	E2p 读写异常	0	动态
Bit13	AD 采集异常	0	动态
Bit14	保留	0	
Bit15	保留	0	

● 子站设置寄存器 (40055):

位址	定义	缺省值
Bit0	清除硬 SOE	0
Bit1	保留	0
Bit2	电度量全部清除	0
Bit3	保留	0
Bit4	保留	0
Bit5	保留	0
Bit6	保留	0
Bit7	保留	0
Bit8	电度量全部冻结	0
Bit9	电度量全部解冻	0
Bit10	保留	0
Bit11	需量清零	0
Bit12	保留	0
Bit13	保留	0
Bit14	最大最小值复归	0
Bit15	强制复位	0

注:广播冻结解冻时,不需要返回报文。当上位机发出冻结命令后,读取的所有电度量为冻结时刻的电度量累计值,而装置内部电度量累计继续执行,如果要想刷新上报电度量累计值,上位机必须发出解冻命令,这样方便用户统一抄表。

● 电度量冻结解冻状态寄存器(40060):

高位字节为 00,低位字节的 BIT1 表示电度量的冻结、解冻状态,其它位无效。1 表示冻结,0 表示解冻。

● 系统频率选择(40062):

5000 代表系统默认频率为 50Hz,6000 代表系统默认频率为 60Hz。

● CT 方向设置(40067、40068):

40067 高字节、低字节分别代表 A、B相 CT 接线方向设置,40068 高字节代表 C相 CT 接线方向设置。0x00 代表正方向,0xFF 代表反方向。

● 遥测接线方式(40070): 1~5分别表示具体接线方式,如下表:

接线方式代码	解释
1	三相四线制 3CT(3P4W/3PT+3CT)
2	三相四线制 1CT(3P4W/3PT+1CT)
3	三相三线制 3CT(3P3W/3PT+3CT)
4	三相三线制 2CT(3P3W/3PT(或 2PT)+2CT)
5	三相三线制 1CT(3P4W/3PT+1CT)

◆ 输出功能设置(40081): 1~2 分别表示 2 个继电器输出方式,如下表:

继电器输出方式代码	解释
1	脉冲输出型
2	常保持型输出型

- 背光点亮时间(40090): 0~30 分钟, 其中的 0 表示常亮。
- 变送输出关联电参量的量程(40085): 用来设置变送输出所关联电参量的量程
- 变送输出关联类型(40086):

BIT15 表示单/双向, 0 表示单向, 1 表示双向。 BIT14 BIT0 表示变送输出关联类型, 具体见下表。

只有关联有功功率、无功功率、功率因数、频率可以设置为双向。 当设置为单向时,4mA表示 0,20mA表示满量程。当设置为双向时, 4mA表示负量程,20mA表示正量程。例:当量程设置为1.000kW,如 果设置为单向,则输出4mA表示0kW,输出20mA表示1.000kW,输 出 12mA 表示 0.500kW; 如果设置为双向,则输出 4mA 表示 -1.000kW,输出 20mA 表示 1.000kW,输出 12mA 表示 0kW。频率 F 设置为双向时,实际量程范围是 50Hz±量程,50Hz输出 12mA

关联类型用来设置变送输出关联哪种测量量:

关联类型	描述	备注	关联类型	描述	备注
1	关联 Uab	单向	16	关联 P	单向/双向
2	关联 Ubc	单向	17	关联 Q	单向/双向
3	关联 Uca	单向	18	关联 S	单向
4	关联 线电 压平均值	单向	19	关联 PFa	单向/双向
5	关联 Uan	单向	20	关联 PFb	单向/双向
6	关联 Ubn	单向	21	关联 PFc	单向/双向
7	关联 Ucn	单向	22	关联 Pa	单向/双向
8	关联 相电 压平均值	単向	23	关联 Pb	单向/双向
9	关联 Ia	単向	24	关联 Pc	单向/双向
10	关联 Ib	单向	25	关联 Qa	单向/双向
11	关联 Ic	单向	26	关联 Qb	单向/双向
12	关联 电流 平均值	单向	27	关联 Qc	单向/双向
13	关联 In	单向	28	关联 Sa	单向
14	关联 F	单向/双向,当 为双向时,表 示 50Hz±量程	29	关联 Sb	単向
15	关联 PF	单向/双向	30	关联 Sc	単向

● 分时计费设置(40092~40097): 用于设置 4 费率 48 时段; 时段的步进为 0.5 小时。

每两位表示时段(步进)的费率:

Bit1/bit0	00	01	10	11
费率	尖	峰	立	谷

寄存器 40092~40097 代表 48 个步进时段:

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															, ,	

40092	4 时段	3 时段	2 时段	1时段	8 时段	7时段	6时段	5 时段
40093	12 时段	11 时段	10 时段	9时段	16 时段	15 时段	14 时段	13 时段
40094	20 时段	19 时段	18 时段	17 时段	24 时段	23 时段	22 时段	21 时段
40095	28 时段	27 时段	26 时段	25 时段	32 时段	31 时段	30 时段	29 时段
40096	36 时段	35 时段	34 时段	33 时段	40 时段	39 时段	38 时段	37 时段
40097	44 时段	43 时段	42 时段	41 时段	48 时段	47 时段	46 时段	45 时段

注:步进时段为 0.5 小时, 1 时段代表 00:00~00:30, 2 时段代表 00:30~01:00, 47 时段代表 23:00~23:30, 48 时段代表 23:30~00:00。

● 4路数字量输入(40500): 读遥信状态,低字节 0~3 位依次是第 1~4 个遥信输入,其他位补零

字节中的位	7	6	5	4	3	2	1	0
高字节(补零)	0	0	0	0	0	0	0	0
低字节	0	0	0	0	DI4	DI3	DI2	DI1

- 需量发生时间寄存器 - 以寄存器 40800、40801、40802
 - 40800 寄存器的高字节表示年,范围从 0~99;
 - 40800 寄存器的低字节表示月, 范围从 1~12;
 - 40801 寄存器的高字节表示日,范围从 1~31;
 - 40801 寄存器的低字节表示时, 范围从 $0\sim23$:
 - 40802 寄存器的高字节表示分,范围从 0~59;
 - 40802 寄存器的低字节表示秒,范围从 0~59。
- 电参量的最大最小值发生时间寄存器——以寄存器 41060、41061、 41062 为例:
 - 41060 寄存器的高字节表示年,范围从 0~99;
 - 41060 寄存器的低字节表示月, 范围从 1~12;
 - 41061 寄存器的高字节表示日, 范围从 1~31;

41061 寄存器的低字节表示时,范围从 0~23;

41062 寄存器的高字节表示分,范围从 0~59;

41062 寄存器的低字节表示秒,范围从 0~59。

● 快速遥信查询寄存器 -- 寄存器 42000:

字节中 的位	7	6	5	4	3	2	1	0
42000 高字节	0	0	0	0	0	0	0	0
42000 低字节	保留	保留	保留	保留	DI4	DI3	DI2	DI1

4.4. SOE 通讯格式说明

查询开关量 SOE 的功能码为 55H,查询告警 SOE 的功能码为 56H,此为 MODBUS-RTU 规约的扩充部分,其功能是询问指定地址的 SOE 信息,不支持广播命令。

通讯格式如下:

● 主站询问:

格式举例:

Field Name	Example(HEX)
Slave Address	2A
Function	55 (56)
CRC16Lo	DE (9E)
CRC16Hi	EF (EE)

● 子站回答:

结构为如下 8 字节信息:

信息	年	月	日	时	分	毫秒高&秒	毫秒低
----	---	---	---	---	---	-------	-----

信息字节:

BIT7、BIT6 位代表该遥信的变化状态,如下表:

BIT7	BIT6	含义
0	0	开关量遥信状态由分到合(0>1)
1	1	开关量遥信状态由合到分(1>0)
1	0	无定义
0	1	设电度量底数

BIT0~BIT5 代表遥信的序号: 单点 0~31

7	6	5	4	3	2	1	0
保留	保留	保留	保留	DI4	DI3	DI2	DI1
15	14	13	12	11	10	9	8
保留	保留	保留	保留	保留	保留	保留	保留
23	22	21	20	19	18	17	16
保留	保留	保留	保留	保留	保留	保留	保留
31	30	29	28	27	26	25	24
保留	保留	保留	保留	保留	保留	保留	设电度量 底数

年字节: 范围 00~99 (2000~2099年);

月字节: 范围 01~12 (01~12月);

日字节: 范围 01~31 (01~31 日):

时字节: 范围 00~23 (00~23 时);

分字节: 范围 00~59 (00~59 分);

毫秒高&秒字节: BIT7,BIT6 代表毫秒高,范围: 0~3;

BIT5-BIT0 代表秒, 范围 0~59 (0~59 秒);

毫秒低字节: 范围 0~255; (和毫秒高一起组成毫秒,范围 0~999)。 格式举例: (SOE 数据结构长度为 8, 1 个 SOE, 2002 年 3 月 25 日 10 时 32 分 24 秒 300 毫秒,第三个遥信由合变分)

Field Name	Example(Hex)
Slave Address	2A
Function	55
Byte Count	09

SOE Status	00
SOE0-信息	C2
SOE0-年	02
SOE0-月	03
SOE0-日	19
SOE0-时	0A
SOE0-分	20
SOE0-毫秒高&秒	58
SOE0-毫秒低	2C
CRC16 Lo	В6
CRC16 Hi	F0

数据长度根据 SOE 个数 M 和 SOE 数据结构长度而定, M 取值范围(0~4), 规定当子站 SOE 数目不小于四个时,每次发四个 SOE,当 SOE 数目不足四个时,一次发完。 如果子站无 SOE 记录时, Byte Count 字节填零。子站存在 SOE 记录时, Byte Count 字节后的第一个字节为 SOE 的状态字节(SOE Status),其最低位(BIT0)表示子站是否还有 SOE 记录,BIT0 为 0 时,表示子站无 SOE 记录;BIT0 为 1 时,表示子站有 SOE 记录,等待主站进行查询。该字节的其他位(BIT1~BIT7)保留。

5. 运输与储藏

本产品运输时,需在包装条件下进行,运输和拆封过程中不应受到剧烈振动和冲击。存放装置应在原包装内,保存地点应环境清洁,环境温度不超过-30℃~+80℃,相对湿度不超过95%(不结露),空气中不含腐蚀性气体和霉菌。

附录

A. 参数出厂默认值

序号	参数名称	默认值	备注	
1	通讯参数 COMM	254, 9.6k, 0	通 讯 地 址 号 为 254; 波 特 率 为 9600bps; 传输格式: 1 位起始位, 8 位数据位, 无奇偶校验, 2 位停止位	
2	系统接线方式 SYS	1	3P4L 三相四线制 3PT3CT	
3	一次侧电压额定值 PT1	220	单位: V	
3	二次侧电压额定值 PT2	220	单位: V	
4	一次侧电流额定值 CT1	5000	单位: A	
4	二次侧电流额定值 CT2	5	单位: A	
5	一次侧零序电流额定	5000	单位: A	
3	二次侧零序电流额定	5	单位: A	
6	系统频率选择	50	系统默认频率为 50Hz	
7	CT 方向设置	000	三相 CT 的接线方向都为正	
8	继电器输出模式	1	继电器输出为脉冲型	
9	继电器输出脉冲宽度	2000	单位: ms	
	变送输出关联项	9	关联 A 相电流(Ia)	
10	单向/双向	0	单向	
	变送输出关联最大值		6.000A	
11	背光灯点亮时间	5	单位:分钟	
12	电参量统计区间	10	单位:分钟	
13	保护密码	0000		
14	时段费率	各时段均为3	表示平费率	

B. 技术指标

● 符合标准

标准代码	标准名称	级别
GB/T 13729-2002	远动终端设备	
GB/T17626.2-2006	静电放电抗扰性试验	等级 3
GB/T17626.4-2008	电快速瞬变脉冲群抗扰性试验	等级 3
GB/T17626.5-2008	浪涌抗扰性试验	等级 3

● 监测技术指标

电压	精度: 0.2 级;	范围: 0~42000V
电流	精度: 0.2 级;	范围: 0~6000A
功率因数	精度: 0.5 级;	范围: 0≤ COSΦ ≤1
有功功率	精度: 0.5 级;	范围: 0~756000kW

无功功率	精度: 0.5 级; 范围: 0~756000kvar
视在功率	精度: 0.5 级; 范围: 0~756000kVA
电能	精度: 0.5 级; 范围: 0~99999999.9 kWh
频率	精度: 0.01Hz; 范围: 45~65Hz
谐波精度	精度: B级
开关量采集	分辨率: 2ms; 去抖时间: 60ms
变送输出	精度: 0.5 级

● 工作参数

工作电源:	85~265VAC 或 85~265VDC
功耗:	<5W
工作环境:	-25℃ ~ +70℃, 95% 不结露
存储温度:	-30°C ∼ +80°C
液晶显示器:	分段式液晶,视域 64mm×55mm
重量:	360 克
防护等级:	面板 IP50,壳体 IP20
输入特性:	相电压额定值: 220VAC 范围: 20VAC~264VAC 电流额定值: 5A; 范围: 0.05~6A 电流额定值: 1A; 范围: 0.01~1.2A 开关量采集: 无源节点光隔离输入(隔离电压 2500VDC)
输出特性:	遥控继电器: 250V/5A AC 或 30V/5A DC 变送输出: 4~20mA,负载电阻≤600Ω,隔离电压 500VDC
通信:	通信接口: RS485 通信协议: MODBUS-RTU 通信速率: 600/1200/2400/4800/9600/19200bps
支持接线方式:	三相四线制 3CT、1CT 和三相三线制 3CT、2CT、1CT
显示更新速度:	<3 秒
其他:	绝缘符合 DL478、振动符合 GB7261-87、抗干扰符合 GB6162

C. 订货说明

产品型号说明:

功 能 号	EM400-U	EM400-I	EM400-T
切能 号	EW1400-0	EW1400-1	E1V14UU-1
电压			
电流			
功率因数			
系统频率			
有功/无功/视在功率			
基本电能			
四象限电能			
分时费率统计			
最大需量统计			
极值统计			
谐波			
不平衡度			
4 路开关量			
1路 4~20mA 直流变送输出			
2 路继电器			
RS485 通讯			
液晶显示			

EM400 装置根据具体型号和功能选配的不同(见附录 C.订货说明),相应不具有的功能所对应的界面不显示。通讯上传的数据中,对于没有的功能,相应值无效。

订货时需要标明的相关标准(对应铭牌内容)

- ▶ 电源标准配置:交流或直流电源 85VAC/DC~265VAC/DC, 5W;
- **CT** 额定标准输入: 5AAC, 连续过载 2 倍; 可选: 1AAC, 连续过载 2 倍。

厦门 ABB 低压电器设备有限公司

福建厦门火炬高科技开发区创新三路 12-20 号

邮编: 361006

电话: (86592) 6038118 传真: (86592) 6038110 客服热线: (86592) 5719201 技术说明,如有变更恕不另行通知。V2. 2

ABB Xiamen Low Voltage Equipment

Co..Ltd.

No.12-20,3rd,Chuang Xin Road,Xiamen High

Technology Development ZoneXiamen

SEZ,Fujian,P.R.China 361006

TeI:(86592)6038118 Fax:(86592)6038110

Customer Service Hot Line: (86592) 5719201