MATEMATIKA

1. letnik – splošna gimnazija

Jan Kastelic

Gimnazija Antona Aškerca, Šolski center Ljubljana

16. september 2024

Vsebina

- Osnove logike in teorije množice
- 2 Naravna in cela števila, izrazi, enačbe in neenačbe
- Oeljivost, izjave, množice
- Racionalna števila
- Realna števila, statistika
- o Pravokotni koordinatni sistem, linearna funkcija

Section 1

Osnove logike in teorije množice

3/105

Jan Kastelic (GAA) MATEMATIKA

- Osnove logike in teorije množice
 - Osnove logike
 - Osnove teorije množic
- 2 Naravna in cela števila, izrazi, enačbe in neenačbe
- Oeljivost, izjave, množice
- Racionalna števila
- Realna števila, statistika
- Pravokotni koordinatni sistem, linearna funkcija

Matematična izjava

Matematična izjava

Matematična izjava je vsaka smiselna poved, za katero lahko določimo resničnost oziroma pravilnost.

5 / 105

Matematična izjava

Matematična izjava je vsaka smiselna poved, za katero lahko določimo resničnost oziroma pravilnost.

Logična vrednost matematične izjave

5 / 105

Matematična izjava

Matematična izjava je vsaka smiselna poved, za katero lahko določimo resničnost oziroma pravilnost.

Logična vrednost matematične izjave

Matematična izjava lahko zavzame dve logični vrednosti:

5 / 105

Matematična izjava

Matematična izjava je vsaka smiselna poved, za katero lahko določimo resničnost oziroma pravilnost.

Logična vrednost matematične izjave

Matematična izjava lahko zavzame dve logični vrednosti:

• izjava je resnična/pravilna, oznaka $R/P/1/\top$;

5 / 105

Matematična izjava

Matematična izjava je vsaka smiselna poved, za katero lahko določimo resničnost oziroma pravilnost.

Logična vrednost matematične izjave

Matematična izjava lahko zavzame dve logični vrednosti:

- izjava je **resnična/pravilna**, oznaka R/P/1/T;
- izjava je **neresnična/nepravilna**, oznaka $N/0/\bot$.

5 / 105

Matematična izjava

Matematična izjava je vsaka smiselna poved, za katero lahko določimo resničnost oziroma pravilnost.

Logična vrednost matematične izjave

Matematična izjava lahko zavzame dve logični vrednosti:

- izjava je **resnična/pravilna**, oznaka R/P/1/T;
- izjava je **neresnična/nepravilna**, oznaka $N/0/\bot$.

Izjave označujemo z velikimi tiskanimi črkami (A, B, C ...).

5 / 105

Osnove logike

16. september 2024

Naloga

Ali so naslednje povedi izjave?

6/105

Naloga

Ali so naslednje povedi izjave?

- Danes sije sonce.
- Koliko je ura?
- Piramida je geometrijski lik.
- Daj mi jabolko.
- Število 12 deli število 3.
- Število 3 deli število 10.
- Ali si pisal matematični test odlično?
- Matematični test si pisal odlično.
- Ali je 10 *dl* isto kot 1 *l*?
- Število 41 je praštevilo.

16. september 2024

16. september 2024

Naloga

Spodnjim izjavam določite logične vrednosti.

7/105

Naloga

Spodnjim izjavam določite logične vrednosti.

- A: Najvišja gora v Evropi je Mont Blanc.
- B: Število je deljivo s 4 natanko takrat, ko je vsota števk deljiva s 4.
- C: Ostanek pri deljenju s 4 je lahko 1, 2 ali 3.
- D: Mesec februar ima 28 dni.
- E: Vsa praštevila so liha števila.
- F: Število 1 je naravno število.
- G: Praštevil je neskončno mnogo.

7 / 105

Osnove logike

Jan Kastelic (GAA)

Izjave delimo med:

Izjave delimo med:

• elementarne/enostavne izjave – ne moremo jih razstaviti na bolj enostavne;

8 / 105

Izjave delimo med:

- elementarne/enostavne izjave ne moremo jih razstaviti na bolj enostavne;
- **sestavljene izjave** sestavljene iz elementarnih izjav, ki jih med seboj povezujejo **logične operacije** (imenovane tudi izjavne povezave oziroma logična vezja).

8 / 105

Izjave delimo med:

- elementarne/enostavne izjave ne moremo jih razstaviti na bolj enostavne;
- **sestavljene izjave** sestavljene iz elementarnih izjav, ki jih med seboj povezujejo **logične operacije** (imenovane tudi izjavne povezave oziroma logična vezja).

Vrednost sestavljene izjave izračunamo glede na vrednosti elementarnih izjav in izjavnih povezav med njimi.

8 / 105

Izjave delimo med:

- elementarne/enostavne izjave ne moremo jih razstaviti na bolj enostavne;
- **sestavljene izjave** sestavljene iz elementarnih izjav, ki jih med seboj povezujejo **logične operacije** (imenovane tudi izjavne povezave oziroma logična vezja).

Vrednost sestavljene izjave izračunamo glede na vrednosti elementarnih izjav in izjavnih povezav med njimi.

Pravilnost sestavljenih izjav nazorno prikazujejo **resničnostne/pravilnostne tabele**.

8 / 105

Jan Kastelic (GAA)

Negacija

9 / 105

Negacija

Negacija izjave A je izjava, ki **trdi nasprotno** kot izjava A.

9 / 105

Negacija

Negacija izjave A je izjava, ki **trdi nasprotno** kot izjava A.

¬**A Ni res**, da velja izjava A.

9 / 105

Negacija

Negacija izjave A je izjava, ki trdi nasprotno kot izjava A.

¬**A Ni res**, da velja izjava A.

Če je izjava A pravilna, je $\neg A$ nepravilna in obratno: če je $\neg A$ pravilna, je A nepravilna.

9 / 105

Negacija

Negacija izjave A je izjava, ki trdi nasprotno kot izjava A.

¬**A Ni res**, da velja izjava A.

Če je izjava A pravilna, je $\neg A$ nepravilna in obratno: če je $\neg A$ pravilna, je A nepravilna.

9 / 105

Negacija

Negacija izjave A je izjava, ki trdi nasprotno kot izjava A.

¬**A Ni res**, da velja izjava A.

Če je izjava A pravilna, je $\neg A$ nepravilna in obratno: če je $\neg A$ pravilna, je A nepravilna.

Negacija negacije izjave je potrditev izjave. $\neg(\neg A) = A$

Osnove logike

10 / 105

Naloga

Izjavam določite logično vrednost, potem jih zanikajte in določite logično vrednost negacij.

10 / 105

Naloga

Izjavam določite logično vrednost, potem jih zanikajte in določite logično vrednost negacij.

- $A: 5 \cdot 8 = 30$
- B: Število 3 je praštevilo.
- C: Največje dvomestno število je 99.
- D: Število 62 je večratnik števila 4.
- E: Praštevil je neskončno mnogo.
- *F*: 7 ≤ 5
- G: Naša pisava je cirilica.

11 / 105

Konjunkcija izjav A in B nastane tako, da povežemo izjavi A in B z in (hkrati).

11 / 105

Konjunkcija izjav A in B nastane tako, da povežemo izjavi A in B z in (hkrati).

A ∧ **B** Velja izjava A **in (hkrati)** izjava B.

11 / 105

Konjunkcija izjav A in B nastane tako, da povežemo izjavi A in B z **in (hkrati)**.

A ∧ **B** Velja izjava A **in (hkrati)** izjava B.

Če sta izjavi A in B pravilni, je pravilna tudi njuna konjunkcija, če je pa ena od izjav nepravilna, je nepravilna tudi njuna konjunkcija.

11 / 105

Konjunkcija izjav A in B nastane tako, da povežemo izjavi A in B z in (hkrati).

A ∧ **B** Velja izjava A **in (hkrati)** izjava B.

Če sta izjavi A in B pravilni, je pravilna tudi njuna konjunkcija, če je pa ena od izjav nepravilna, je nepravilna tudi njuna konjunkcija.

A	В	$A \wedge B$
P	Р	Р
P	Ν	Ν
N	Р	Ν
N	Ν	Ν

12 / 105

Naloga

Določite logično vrednost konjunkcijam.

Naloga

Določite logično vrednost konjunkcijam.

- Število 28 je večratnik števila 3 in večkratnik števila 8.
- Število 7 je praštevilo in je deljivo s številom 1.
- Vsakemu celemu številu lahko pripišemo nasprotno število in obratno število.
- Ostanki pri deljenju števila s 3 so lahko 0, 1 ali 2, pri deljenju s 5 pa 0, 1, 2, 3 ali 4.
- Število je deljivo s 3, če je vosta števk deljiva s 3, in je deljivo z 9, če je vsota števk deljiva z 9.

12 / 105

Disjunkcija izjav A in B nastane s povezavo **ali**.

13 / 105

Disjunkcija izjav A in B nastane s povezavo ali.

A ∨ **B** Velja izjava A **ali** izjava B (lahko tudi obe hkrati).

13 / 105

Disjunkcija izjav A in B nastane s povezavo **ali**.

A ∨ **B** Velja izjava A **ali** izjava B (lahko tudi obe hkrati).

Disjunkcija je nepravilna, če sta nepravilni obe izjavi, ki jo sestavljata, v preostalih treh primerih je pravilna.

13 / 105

Disjunkcija izjav A in B nastane s povezavo **ali**.

 $\mathbf{A} \vee \mathbf{B}$ Velja izjava A **ali** izjava B (lahko tudi obe hkrati).

Disjunkcija je nepravilna, če sta nepravilni obe izjavi, ki jo sestavljata, v preostalih treh primerih je pravilna.

Α	В	$A \vee B$
Р	Р	Р
Р	Ν	Р
Ν	Р	Р
Ν	Ν	Ν

16. september 2024

Naloga

Določite logično vrednost disjunkcijam.

Naloga

Določite logično vrednost disjunkcijam.

- Število 24 je večratnik števila 3 ali 8.
- Število 35 ni večratnik števila 7 ali 6.
- Število 5 deli število 16 ali 18.
- Ploščina kvadrata s stranico a je a^2 ali obseg kvadrata je 4a.
- Ni res, da je vsota notranjih kotov trikotnika 160°, ali ni res, da Pitagorov izrek velja v poljubnem trikotniku.

14 / 105

Osnove logike

15 / 105

15 / 105

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

Asociativnost konjunkcije in disjunkcije

15 / 105

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

Asociativnost konjunkcije in disjunkcije

$$(A \wedge B) \wedge C = A \wedge (b \wedge C)$$

$$(A \vee B) \vee C = A \vee (B \vee C)$$

15 / 105

16. september 2024

Jan Kastelic (GAA) MATEMATIKA

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

Asociativnost konjunkcije in disjunkcije

$$(A \wedge B) \wedge C = A \wedge (b \wedge C)$$

$$(A \vee B) \vee C = A \vee (B \vee C)$$

Distributivnost zakona za konjunkcijo in disjunkcijo

15 / 105

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

Asociativnost konjunkcije in disjunkcije

$$(A \wedge B) \wedge C = A \wedge (b \wedge C)$$

$$(A \vee B) \vee C = A \vee (B \vee C)$$

Distributivnost zakona za konjunkcijo in disjunkcijo

$$(A \lor B) \land C = (A \land C) \lor (B \land C)$$

$$(A \wedge B) \vee C = (A \vee C) \wedge (B \vee C)$$

Jan Kastelic (GAA) MATEMATIKA 16. september 2024 15 / 105

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

Asociativnost konjunkcije in disjunkcije

$$(A \wedge B) \wedge C = A \wedge (b \wedge C)$$

$$(A \lor B) \lor C = A \lor (B \lor C)$$

Distributivnost zakona za konjunkcijo in disjunkcijo

$$(A \lor B) \land C = (A \land C) \lor (B \land C)$$

$$(A \wedge B) \vee C = (A \vee C) \wedge (B \vee C)$$

De Morganova zakona

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

Asociativnost konjunkcije in disjunkcije

$$(A \wedge B) \wedge C = A \wedge (b \wedge C)$$

$$(A \lor B) \lor C = A \lor (B \lor C)$$

Distributivnost zakona za konjunkcijo in disjunkcijo

$$(A \lor B) \land C = (A \land C) \lor (B \land C)$$

$$(A \wedge B) \vee C = (A \vee C) \wedge (B \vee C)$$

De Morganova zakona

• negacija konjunkcije je disjunkcija negacij: $\neg(A \land B) = \neg A \lor \neg B$

15 / 105

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

Asociativnost konjunkcije in disjunkcije

$$(A \wedge B) \wedge C = A \wedge (b \wedge C)$$

$$(A \lor B) \lor C = A \lor (B \lor C)$$

Distributivnost zakona za konjunkcijo in disjunkcijo

$$(A \lor B) \land C = (A \land C) \lor (B \land C)$$

$$(A \wedge B) \vee C = (A \vee C) \wedge (B \vee C)$$

De Morganova zakona

- negacija konjunkcije je disjunkcija negacij: $\neg(A \land B) = \neg A \lor \neg B$
- negacija disjunkcije je konjunkcija negacij: $\neg(A \lor B) = \neg A \land \neg B$

4□ > 4団 > 4 豆 > 4 豆 > 豆 * 9 Q (?)

15 / 105

Osnove logike

Naloga

Katere od spodnjih izjav so pravilne in katere nepravilne?

Naloga

Katere od spodnjih izjav so pravilne in katere nepravilne?

- $(3 \cdot 4 = 12) \wedge (12 : 4 = 3)$
- $(a^3 \cdot a^5 = a^{15}) \vee (a^3 \cdot a^5 = a^8)$
- (3|30) ∧ (3|26)
- (3|30) ∨ (3|26)
- $(2^3 = 9) \lor (3^2 = 9)$
- $((-2)^2 = 4) \land \neg (-2^2 = 4)$

16 / 105

Jan Kastelic (GAA) MATEMATIKA

17 / 105

16. september 2024

Implikacija izjav A in B je sestavljena izjava, ki jo lahko beremo na različne načine.

17 / 105

Implikacija izjav A in B je sestavljena izjava, ki jo lahko beremo na različne načine.

 $A \Rightarrow B$ Če velja izjava A, potem velja izjava B. / Iz A sledi B.

17 / 105

Implikacija izjavA in B je sestavljena izjava, ki jo lahko beremo na različne načine.

 $\mathbf{A} \Rightarrow \mathbf{B}$ Če velja izjava A, **potem** velja izjava B. / Iz A sledi B.

Izjava A je **pogoj** ali **privzetek**, izjava B pa (logična) posledica izjave A.

17 / 105

Implikacija izjav A in B je sestavljena izjava, ki jo lahko beremo na različne načine.

 $\mathbf{A} \Rightarrow \mathbf{B}$ Če velja izjava A, **potem** velja izjava B. / **Iz** A **sledi** B.

Izjava A je **pogoj** ali **privzetek**, izjava B pa (logična) posledica izjave A.

Implikacija je nepravilna, ko je izjava A pravilna, izjava B pa nepravilna, v preostalih treh primerih je pravilna.

17 / 105

Implikacija

Implikacija izjav A in B je sestavljena izjava, ki jo lahko beremo na različne načine.

 $\mathbf{A} \Rightarrow \mathbf{B}$ Če velja izjava A, potem velja izjava B. / Iz A sledi B.

Izjava A je **pogoj** ali **privzetek**, izjava B pa (logična) posledica izjave A.

Implikacija je nepravilna, ko je izjava A pravilna, izjava B pa nepravilna, v preostalih treh primerih je pravilna.

Α	В	$A \Rightarrow B$
Р	Р	Р
Р	Ν	Ν
Ν	Р	Р
Ν	Ν	Р

Jan Kastelic (GAA) MATEMATIKA

Osnove logike

Naloga

Določite, ali so izjave pravilne.

Naloga

Določite, ali so izjave pravilne.

- Če je število deljivo s 100, je deljivo tudi s 4.
- Če je štirikotnik pravokotnik, se diagonali razpolavljata.
- Če je štirikotnik kvadrat, se diagonali sekata pod pravim kotom.
- Če sta števili 2 in 3 lihi števili, potem je produk teh dveh števil sodo število.
- Če je število 18 deljivo z 9, potem je deljivo s 3.
- Če je 7 večkratnik števila 7, potem 7 deli število 43.
- Če je število deljivo s 4, potem je deljivo z 2.

18 / 105

16. september 2024

Ekvivalenca izjavi A in B poveže s če in samo če oziroma natanko tedaj, ko.

19 / 105

Ekvivalenca izjavi A in B poveže s če in samo če oziroma natanko tedaj, ko.

A ⇔ B Izjava A velja, če in samo če velja izjava B./Izjava A velja natanko tedaj, ko velja izjava B.

 Jan Kastelic (GAA)
 MATEMATIKA
 16. september 2024
 19 / 105

Ekvivalenca izjavi A in B poveže s če in samo če oziroma natanko tedaj, ko.

A ⇔ B Izjava A velja, če in samo če velja izjava B./Izjava A velja natanko tedaj, ko velja izjava B.

Ekvivalenca dveh izjav je pravilna, če imata obe izjavi enako vrednost (ali sta obe pravilni ali obe nepravilni), in nepravilna, če imata izjavi različno vrednost.

19 / 105

Ekvivalenca izjavi A in B poveže s če in samo če oziroma natanko tedaj, ko.

A ⇔ B Izjava A velja, če in samo če velja izjava B./Izjava A velja natanko tedaj, ko velja izjava B.

Ekvivalenca dveh izjav je pravilna, če imata obe izjavi enako vrednost (ali sta obe pravilni ali obe nepravilni), in nepravilna, če imata izjavi različno vrednost.

Α	В	$A \Leftrightarrow B$
Р	Р	Р
Р	N	Ν
Ν	Р	Ν
Ν	N	Р

Ekvivalenca izjavi A in B poveže s če in samo če oziroma natanko tedaj, ko.

A ⇔ B Izjava A velja, če in samo če velja izjava B./Izjava A velja natanko tedaj, ko velja izjava B.

Ekvivalenca dveh izjav je pravilna, če imata obe izjavi enako vrednost (ali sta obe pravilni ali obe nepravilni), in nepravilna, če imata izjavi različno vrednost.

Ekvivalentni/enakovredni izjavi pomenita eno in isto, lahko ju nadomestimo drugo z drugo.

Α	В	$A \Leftrightarrow B$
Р	Р	Р
Р	Ν	Ν
Ν	Р	Ν
Ν	N	Р

19 / 105

Jan Kastelic (GAA) MATEMATIKA

16. september 2024

Naloga

Določite, ali so naslednje izjave pravilne.

Naloga

Določite, ali so naslednje izjave pravilne.

- Število je deljivo z 12 natanko takrat, ko je deljivo s 3 in 4 hkrati.
- Število je deljivo s 24 natanko takrat, ko je deljivo s 4 in 6 hkrati.
- Število je praštevilo natanko takrat, ko ima natanko dva delitelja.
- Štirikotnik je kvadrat natanko tedaj, ko se diagonali sekata pod pravim kotom.
- Število je sodo natanko tedaj, ko je deljivo z 2.

20 / 105

16. september 2024

Kadar so izjave povezane z več izjavnimi povezavami, pri določanju logične vrednosti upoštevamo oklepaje in naslednji **vrstni red** oziroma **prioriteto izjavnih povezav**:

21 / 105

Kadar so izjave povezane z več izjavnimi povezavami, pri določanju logične vrednosti upoštevamo oklepaje in naslednji **vrstni red** oziroma **prioriteto izjavnih povezav**:

negacija,

Kadar so izjave povezane z več izjavnimi povezavami, pri določanju logične vrednosti upoštevamo oklepaje in naslednji **vrstni red** oziroma **prioriteto izjavnih povezav**:

- negacija,
- konjunkcija,

21 / 105

Kadar so izjave povezane z več izjavnimi povezavami, pri določanju logične vrednosti upoštevamo oklepaje in naslednji **vrstni red** oziroma **prioriteto izjavnih povezav**:

- negacija,
- konjunkcija,
- disjunkcija,

21 / 105

Kadar so izjave povezane z več izjavnimi povezavami, pri določanju logične vrednosti upoštevamo oklepaje in naslednji **vrstni red** oziroma **prioriteto izjavnih povezav**:

- negacija,
- konjunkcija,
- disjunkcija,
- implikacija,

Kadar so izjave povezane z več izjavnimi povezavami, pri določanju logične vrednosti upoštevamo oklepaje in naslednji **vrstni red** oziroma **prioriteto izjavnih povezav**:

- negacija,
- konjunkcija,
- disjunkcija,
- implikacija,
- ekvivalenca.

Kadar so izjave povezane z več izjavnimi povezavami, pri določanju logične vrednosti upoštevamo oklepaje in naslednji **vrstni red** oziroma **prioriteto izjavnih povezav**:

- negacija,
- konjunkcija,
- disjunkcija,
- implikacija,
- ekvivalenca.

Če moramo zapored izvesti več enakih izjavnih povezav, velja pravilo združevanja od leve proti desni.

21 / 105

16. september 2024

Naloga

V sestavljeni izjavi zapišite oklepaje, ki bodo predstavljali vrstni red operacij. Nato tvorite pravilnostno tabelo za sestavljeno izjavo glede na različne logične vrednosti elementarnih izjav.

Naloga

V sestavljeni izjavi zapišite oklepaje, ki bodo predstavljali vrstni red operacij. Nato tvorite pravilnostno tabelo za sestavljeno izjavo glede na različne logične vrednosti elementarnih izjav.

- $A \lor B \Leftrightarrow \neg A \Rightarrow \neg B$
- $A \lor \neg A \Rightarrow \neg B \land (\neg A \Rightarrow B)$
- $A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A$
- $A \land \neg B \Leftrightarrow A \Rightarrow B$
- $C \Rightarrow A \lor \neg B \Leftrightarrow \neg A \land C$
- $\neg A \lor \neg B \Leftrightarrow B \land (C \Leftrightarrow \neg A)$

22 / 105

Jan Kastelic (GAA) MATEMATIKA

16. september 2024

Tavtologija ali **logično pravilna izjava** je sestavljena izjava, ki je pri vseh naborih vrednosti elementarnih izjav, iz katerih je sestavjena, pravilna.

23 / 105

Tavtologija ali **logično pravilna izjava** je sestavljena izjava, ki je pri vseh naborih vrednosti elementarnih izjav, iz katerih je sestavjena, pravilna.

Protislovje

Tavtologija ali **logično pravilna izjava** je sestavljena izjava, ki je pri vseh naborih vrednosti elementarnih izjav, iz katerih je sestavjena, pravilna.

Protislovje

Protislovje je sestavljena izjava, ki ni nikoli pravilna.

23 / 105

Tavtologija ali **logično pravilna izjava** je sestavljena izjava, ki je pri vseh naborih vrednosti elementarnih izjav, iz katerih je sestavjena, pravilna.

Protislovje

Protislovje je sestavljena izjava, ki ni nikoli pravilna.

Kvantifikatorja

Tavtologija ali **logično pravilna izjava** je sestavljena izjava, ki je pri vseh naborih vrednosti elementarnih izjav, iz katerih je sestavjena, pravilna.

Protislovje

Protislovje je sestavljena izjava, ki ni nikoli pravilna.

Kvantifikatorja

• ∀ (beri '(za) vsak') – izjava velja za vsak element dane množice

23 / 105

Tavtologija ali **logično pravilna izjava** je sestavljena izjava, ki je pri vseh naborih vrednosti elementarnih izjav, iz katerih je sestavjena, pravilna.

Protislovje

Protislovje je sestavljena izjava, ki ni nikoli pravilna.

Kvantifikatorja

- ∀ (beri '(za) vsak') izjava velja za vsak element dane množice
- ullet (beri 'obstaja' ali 'eksistira') izjava je pravilna za vsaj en element dane množice

23 / 105

Pomen izjav v matematiki

24 / 105

Jan Kastelic (GAA) MATEMATIKA

Pomen izjav v matematiki

Aksiomi so najpreprostejše izjave, ki so očitno pravilne in zato njihove pravilnosti ni treba dokazovati.

24 / 105

Pomen izjav v matematiki

Aksiomi so najpreprostejše izjave, ki so očitno pravilne in zato njihove pravilnosti ni treba dokazovati.

Izreki ali **teoremi** so izjave, ki so pravilne, vendar pa njihova pravilnost ni očitna. Pravilnost izreka (teorema) moramo potrditi z dokazom, ki temelji na aksiomih in na preprostejših že prej dokazanih izrekih.

24 / 105

Pomen izjav v matematiki

Aksiomi so najpreprostejše izjave, ki so očitno pravilne in zato njihove pravilnosti ni treba dokazovati.

Izreki ali **teoremi** so izjave, ki so pravilne, vendar pa njihova pravilnost ni očitna. Pravilnost izreka (teorema) moramo potrditi z dokazom, ki temelji na aksiomih in na preprostejših že prej dokazanih izrekih.

Definicije so izjave, s katerimi uvajamo nove pojme. Najpreprostejših pojmov v matematiki ne opisujemo z definicijami (to so pojmi kot npr.: število, premica ipd.); vsak nadaljnji pojem pa moramo definirati, zato da se nedvoumno ve, o čem govorimo.

24 / 105

Množice

Množica

Množica je skupek elementov, ki imajo neko skupno lastnost.

Množica je določena, če:

- lahko naštejemo vse njene elemente ali
- poznamo pravilo, ki pove, kateri elementi so v množici (iz univerzalne množice).

Označujemo jih z velikimi črkami (A, B, C... ali A, B, C...).

Univerzalna množica

Univerzalna množica ali **univerzum** (\mathcal{U}) je množica vseh elementov, ki v danem primeru nastopajo oziroma jih opazujemo.

Element množice

Element množice je objekt v množici.

Označujemo jih z malimi črkami $(a, b, c \dots)$.

Elemente množice zapisujemo v zavitem oklepaju (npr. $A = \{a, b, c\}$).

Element je lahko vsebovan v množici (npr. $a \in A$) ali pa v množici ni vsebovan (npr. $d \notin A$).

Prazna množica

Prazna množica $(\emptyset, \{\})$ je množica, ki ne vsebuje nobenega elementa.

Moč množice

Moč množice

Število elementov v množici predstavlja **moč množice**. Oznaka: $\mathbf{m}(\mathcal{A})$ ali $|\mathcal{A}|$.

Množica je lahko:

- končna množica vsebuje končno mnogo elementov: $\mathbf{m}(\mathcal{A}) = \mathbf{n}$;
- neskončna množica vsebuje neskončno mnogo elementov: $\mathbf{m}(\mathcal{A}) = \infty$.

Če ima množica toliko elementov, kot jih ima množica naravnih števil, je ta števno neskončna. Njeno moč pišemo kot: $m(A) = \aleph_0$.

Za množici, ki imata isto moč, rečemo, da sta ekvipolentni oziroma ekvipotentni.

Jan Kastelic (GAA) MATEMATIKA 16. september 2024 27 / 105

Section 2

Naravna in cela števila, izrazi, enačbe in neenačbe

29 / 105

- 1) Osnove logike in teorije množice
- 💿 Naravna in cela števila, izrazi, enačbe in neenačbe
 - Naravna in cela števila
 - Računanje z naravnimi in celimi števili
 - Izraz, enačba, neenačba
 - Računanje s potencami z naravnimi eksponenti
 - Razčlenjevanje izrazov
 - ullet Razstavljanje izrazov v množici $\mathbb Z$
 - Reševanje linearnih in razcepnih enačb v množici $\mathbb Z$
 - Reševanje linearnih neenačb v množici Z
- Deljivost, izjave, množice

Jan Kastelic (GAA) MATEMATIKA 16. september 2024 30 / 105

Naravna števila

Množica naravnih števil:

$$\mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

Naravna števila so števila s katerimi štejemo.

Naravna števila lahko predstavimo s točko na številski premici.

31 / 105

Množico naravnih števil definirajo Peanovi aksiomi:

- Vsako naravno število (n) ima svojega naslednika (n+1).
- Število 1 ni naslednik nobenega naravnega števila.
- Različni naravni števili imata različna naslednika: $(n+1 \neq m+1; n \neq m)$.
- Če neka trditev velja za vsako naravno število in tudi za njegovega naslednika, velja za vsa naravna števila princip popolne indukcije.

V množici $\mathbb N$ sta definirani notranji operaciji: **seštevanje** in **množenje**.

32 / 105

Seštevanje

Poljubnima naravnima številoma a in b priredimo **vsoto** a + b.

Vsota naravnih števil je naravno število: $a, b \in \mathbb{N} \Rightarrow a + b \in \mathbb{N}$.

Lastnosti:

- **komutativnost** členov/zakon o zamenjavi členov: a + b = b + a.
- asociativnost členov/zakon o združevanju členov: (a + b) + c = a + (b + c).

33 / 105

Množenje

Poljubnima naravnima številoma a in b priredimo **produkt** $a \cdot b$.

Produkt naravnih števil je naravno število: $a, b \in \mathbb{N} \Rightarrow a \cdot b \in \mathbb{N}$.

Lastnosti:

- **komutativnost** faktorjev/zakon o zamenjavi faktorjev: $a \cdot b = b \cdot a$.
- asociativnost faktorjev/zakon o združevanju faktorjev: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- **distributivnost**/zakon o razčlenjevanju: $a \cdot (b + c) = a \cdot b + a \cdot c$.
- zakon o nevtralnem elementu: $a \cdot 1 = a$.

34 / 105

Cela števila

Množica celih števil:

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, 3, \ldots\}$$

Množica celih števil je definirana kot unija treh množic:

$$\mathbb{Z} = \mathbb{Z}^- \cup \{0\} \cup \mathbb{Z}^+$$

- množica **pozitivnih celih števil** (\mathbb{Z}^+) naravna števila;
- število 0;
- množica **negativnih celih števil** (\mathbb{Z}^-) nasprotna števila vseh naravnih števil.

Nasprotno število število a je -a.

Jan Kastelic (GAA) MATEMATIKA 16. september 2024 35 / 105

Poleg seštevanja in množenja je kot notranja operacija množice celih števil definirano še **odštevanje**.

Odštevanje

Poljubnima naravnima številoma a in b priredimo razliko a - b.

Odštevanje definiramo kot prištevanje nasprotne vrednosti: a-b=a+(-b)

Za odštevanje velja zakon **distributivnosti**: $a \cdot (b - c) = a \cdot b - a \cdot c$.

36 / 105

Računski zakoni

Komutativnostni zakon:

$$a+b=b+a$$
 in $a\cdot b=b\cdot a$

Asociativnostni zakon:

$$a + (b + c) = (a + b) + c$$
 in $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

Zakon o nevtralnem elementu:

$$a+0=a$$
 in $a\cdot 1=a$

• Zakon o inverznem/nasprotnem elementu:

$$a + (-a) = 0$$

Distributivnostni zakon:

$$a \cdot (b \pm c) = a \cdot b \pm a \cdot c$$

(ロト 4個 b 4 분 b 4 분 b -) 원 - 이익()

Pravila za računanje s celimi števili

•
$$-(-a) = a$$

- $0 \cdot a = 0$
- \bullet $-1 \cdot a = -a$
- (-a) + (-b) = -(a+b)
- $\bullet \ (-a) \cdot b = -(a \cdot b) = a \cdot (-b)$
- $(-a) \cdot (-b) = a \cdot b$

38 / 105

16. september 2024

Računanje z naravnimi in celimi števili

40 / 105

Izraz, enačba, neenačba

41 / 105

Računanje s potencami z naravnimi eksponenti

Potenca $\mathbf{a}^{\mathbf{n}}$, pri čemer je $n \in \mathbb{N}$, je produkt n faktorjev enakih a.

Pravila za računanje s potencami:

- $\mathbf{a^n} \cdot \mathbf{b^n} = (\mathbf{ab})^\mathbf{n}$ potenci z enakima eksponentoma zmnožimo tako, da zmnožimo osnovi in prepišemo eksponent
- $oldsymbol{a^m}\cdot oldsymbol{a^n}=oldsymbol{a^{m+n}}$ potenci z enako osnovo zmnožimo tako, da osnovo prepišemo in seštejemo eksponenta
- $(a^n)^m = a^{nm}$ potenco potenciramo tako, da osnovo prepišemo in zmnožimo eksponenta

 Jan Kastelic (GAA)
 MATEMATIKA
 16. september 2024
 42 / 105

Razčlenjevanje izrazov

43 / 105

Razstavljanje izrazov v množici $\mathbb Z$

44 / 105

Reševanje linearnih in razcepnih enačb v množici Z

45 / 105

Reševanje linearnih neenačb v množici Z

46 / 105

Section 3

Deljivost, izjave, množice

Jan Kastelic (GAA) MATEMATIKA

- Osnove logike in teorije množice
- 2 Naravna in cela števila, izrazi, enačbe in neenačbe
- Oeljivost, izjave, množice
 - Relacija deljivosti
 - Pravila za deljivost
 - Praštevila in sestavljena števila
 - Največji skupni delitelj in najmanjši skupni večkratnik
 - Osnovni izrek o deljenju
 - Evklidov algoritem in zveza Dv = ab
 - Številski sestavi
 - Izjave
 - Množice

16. september 2024

Relacija deljivosti

Jan Kastelic (GAA) MATEMATIKA

Pravila za deljivost

Jan Kastelic (GAA)

Praštevila in sestavljena števila

51 / 105

Največji skupni delitelj in najmanjši skupni večkratnik

52 / 105

Osnovni izrek o deljenju

Jan Kastelic (GAA) MATEMATIKA

Evklidov algoritem in zveza Dv = ab

54 / 105

Številski sestavi

16. september 2024

Izjave

4□ > 4□ > 4 = > 4 = > = 990

Množice

4□ > 4□ > 4 = > 4 = > = 9 < ○</p>

57 / 105

Section 4

Racionalna števila

- Osnove logike in teorije množice
- 2 Naravna in cela števila, izrazi, enačbe in neenačbe
- 3 Deljivost, izjave, množice
- 🐠 Racionalna števila
 - Številski ulomki
 - Racionalna števila
 - Urejenost racionalnih števil
 - Algebrski ulomki
 - Računanje z ulomki
 - Potence s celimi eksponenti
 - Pravila za računanje s potencami s celimi eksponenti

16. september 2024

Številski ulomki

Jan Kastelic (GAA) MATEMATIKA

61 / 105

Jan Kastelic (GAA) MATEMATIKA

62 / 105

16. september 2024

Glede na predznak razdelimo racionalna števila v tri množice:

$$\mathbb{Q} =$$

Glede na predznak razdelimo racionalna števila v tri množice:

• množico negativnih racionalnih števil Q-,

$$\mathbb{Q} = \mathbb{Q}^-$$

62 / 105

Glede na predznak razdelimo racionalna števila v tri množice:

- množico negativnih racionalnih števil Q⁻,
- množico z elementom nič: $\{\mathbf{0}\}$ in

$$\mathbb{Q} = \mathbb{Q}^- \cup \{0\}$$

62 / 105

Glede na predznak razdelimo racionalna števila v tri množice:

- množico negativnih racionalnih števil Q⁻,
- množico z elementom nič: $\{\mathbf{0}\}$ in
- množico pozitivnih racionalnih števil: Q⁺.

$$\mathbb{Q} = \mathbb{Q}^- \cup \{0\} \cup \mathbb{Q}^+$$

63 / 105

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti večji* (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b, d \in \mathbb{N}$) velja natanko ena izmed treh možnosti:

63 / 105

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti večji* (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d \in \mathbb{N}$) velja natanko ena izmed treh možnosti:

• prvi ulomek je večji od drugega $\frac{a}{b} > \frac{c}{d}$ natanko tedaj, ko je ad > bc;

63 / 105

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti* $ve\check{c}ji$ (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d\in\mathbb{N}$) velja natanko ena izmed treh možnosti:

- prvi ulomek je večji od drugega $\frac{a}{b} > \frac{c}{d}$ natanko tedaj, ko je ad > bc;
- ② drugi ulomek je večji od prvega $\frac{a}{b} < \frac{c}{d}$ natanko tedaj, ko je ad < bc;

63 / 105

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti* $ve\check{c}ji$ (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d\in\mathbb{N}$) velja natanko ena izmed treh možnosti:

- prvi ulomek je večji od drugega $\frac{a}{b} > \frac{c}{d}$ natanko tedaj, ko je ad > bc;
- ② drugi ulomek je večji od prvega $\frac{a}{b} < \frac{c}{d}$ natanko tedaj, ko je ad < bc;
- o ulomka sta enaka $\frac{a}{b} = \frac{c}{d}$ natanko tedaj, ko je ad = bc.

63 / 105

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti večji* (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d \in \mathbb{N}$) velja natanko ena izmed treh možnosti:

- prvi ulomek je večji od drugega $\frac{a}{b} > \frac{c}{d}$ natanko tedaj, ko je ad > bc;
- ② drugi ulomek je večji od prvega $\frac{a}{b} < \frac{c}{d}$ natanko tedaj, ko je ad < bc;
- **3** ulomka sta enaka $\frac{a}{b} = \frac{c}{d}$ natanko tedaj, ko je ad = bc.

Enaka ulomka predstavljata isto racionalno število.

63 / 105

64 / 105

64 / 105

Slike pozitivnih racionalnih števil ležijo desno, slike negativnih racionalnih števil pa levo od koordinatnega izhodišča.

64 / 105

Slike pozitivnih racionalnih števil ležijo desno, slike negativnih racionalnih števil pa levo od koordinatnega izhodišča.

$$\mathbb{Q}^ \mathbb{Q}^+$$
negativna števila pozitivna števila

64 / 105

Slike pozitivnih racionalnih števil ležijo desno, slike negativnih racionalnih števil pa levo od koordinatnega izhodišča.

V množici ulomkov velja, da je vsak negativen ulomek manjši od vsakega pozitivnega ulomka.

64 / 105

Monotonost vsote

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

65 / 105

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$$

65 / 105

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$$

65 / 105

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$$

Tranzitivnost

65 / 105

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$$

Tranzitivnost

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{c}{d} < \frac{e}{f} \quad \Rightarrow \quad \frac{a}{b} < \frac{e}{f}$$

65 / 105

66 / 105

Jan Kastelic (GAA) MATEMATIKA

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

16. september 2024

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

66 / 105

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} < 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} > \frac{c}{d} \cdot \frac{e}{f}$$

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} < 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} > \frac{c}{d} \cdot \frac{e}{f}$$

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} < 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} > \frac{c}{d} \cdot \frac{e}{f}$$

Pri prehodu na nasprotno vrednost se neenačaj obrne:

Pri množenju neenakosti s pozitivnim številom se znak neenakosti ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} < 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} > \frac{c}{d} \cdot \frac{e}{f}$$

Pri prehodu na nasprotno vrednost se neenačaj obrne:

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad -\frac{a}{b} > -\frac{c}{d}$$

Urejenost racionalnih števil

67 / 105

Jan Kastelic (GAA)

Ureienost racionalnih števil

• prvi ulomek je večji ali enak od drugega $\frac{a}{b} \geq \frac{c}{d}$ natanko tedaj, ko je $ad \geq bc$;

67 / 105

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \geq \frac{c}{d}$ natanko tedaj, ko je $ad \leq bc$;

67 / 105

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \le bc$;

Za (zgornjo) relacijo delne urejenosti veljajo naslednje lastnosti:

67 / 105

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \le bc$;

Za (zgornjo) relacijo delne urejenosti veljajo naslednje lastnosti:

• $\frac{a}{b} \leq \frac{a}{b}$ - refleksivnost;

Ureienost racionalnih števil

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \le bc$;

Za (zgornjo) relacijo delne urejenosti veljajo naslednje lastnosti:

- $\frac{a}{b} \leq \frac{a}{b}$ refleksivnost;
- $\frac{a}{b} \le \frac{c}{d} \land \frac{c}{d} \le \frac{a}{b} \Rightarrow \frac{a}{b} = \frac{c}{d}$ antisimetričnost in

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \le bc$;

Za (zgornjo) relacijo delne urejenosti veljajo naslednje lastnosti:

- $\frac{a}{b} \leq \frac{a}{b}$ refleksivnost;
- $\frac{a}{b} \le \frac{c}{d} \land \frac{c}{d} \le \frac{a}{b} \Rightarrow \frac{a}{b} = \frac{c}{d}$ antisimetričnost in
- $\frac{a}{b} \le \frac{c}{d} \land \frac{c}{d} \le \frac{e}{f} \Rightarrow \frac{a}{b} \le \frac{e}{f}$ tranzitivnost.

Algebrski ulomki

Jan Kastelic (GAA)

Računanje z ulomki

Potence s celimi eksponenti

70 / 105

Jan Kastelic (GAA) MATEMATIKA

Pravila za računanje s celimi eksponenti

71 / 105

Premo in obratno sorazmerje

Odstotki

Section 5

Realna števila, statistika

16. september 2024

Jan Kastelic (GAA) MATEMATIKA

- Osnove logike in teorije množice
- 2 Naravna in cela števila, izrazi, enačbe in neenačbe
- 3 Deljivost, izjave, množice
- Racionalna števila
- 듌 Realna števila, statistika
 - Realna števila
 - Kvadratni in kubični koren
 - Intervali
 - Absolutna vrednost
 - Sistem linearnih enačb

16. september 2024

Realna števila

16. september 2024

Kvadratni in kubični koren

77 / 105

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\check{c}\right)\;\left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\breve{c}\right)\ \left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

$$\left(g\right)\ 8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\breve{c}\right)\ \left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

(g)
$$8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(j)
$$(2-4\sqrt{3})\cdot 3\sqrt{2}-(2\sqrt{2}-3\sqrt{3})^2$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\breve{c}\right)\ \left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

(g)
$$8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(j)
$$(2-4\sqrt{3})\cdot 3\sqrt{2}-(2\sqrt{2}-3\sqrt{3})^2$$

(I)
$$(3-2\sqrt{2})^3 - (\sqrt{8}-5\sqrt{2})(-3\sqrt{2})$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\breve{c}\right)\ \left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

$$\text{(g) }8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(j)
$$(2-4\sqrt{3})\cdot 3\sqrt{2}-(2\sqrt{2}-3\sqrt{3})^2$$

(I)
$$(3-2\sqrt{2})^3 - (\sqrt{8}-5\sqrt{2})(-3\sqrt{2})$$

(o)
$$\sqrt{300} - \sqrt{5 - 2\sqrt{6}} \cdot \sqrt{5 + 2\sqrt{6}} + \sqrt{5^4}$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\breve{c}\right)\ \left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

(g)
$$8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(j)
$$(2-4\sqrt{3})\cdot 3\sqrt{2}-(2\sqrt{2}-3\sqrt{3})^2$$

(I)
$$(3-2\sqrt{2})^3 - (\sqrt{8}-5\sqrt{2})(-3\sqrt{2})$$

(o)
$$\sqrt{300} - \sqrt{5 - 2\sqrt{6}} \cdot \sqrt{5 + 2\sqrt{6}} + \sqrt{5^4}$$

(r)
$$\sqrt{5\sqrt{3}-5} \cdot \sqrt{2\sqrt{3}+2} - (\sqrt{5})^3$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

(č)
$$(5\sqrt{3} + 2\sqrt{27})(\sqrt{75} - 4\sqrt{12} + \sqrt{147})$$

(g)
$$8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(j)
$$(2-4\sqrt{3}) \cdot 3\sqrt{2} - (2\sqrt{2}-3\sqrt{3})^2$$

(I)
$$(3-2\sqrt{2})^3 - (\sqrt{8}-5\sqrt{2})(-3\sqrt{2})$$

(o)
$$\sqrt{300} - \sqrt{5 - 2\sqrt{6}} \cdot \sqrt{5 + 2\sqrt{6}} + \sqrt{5^4}$$

(r)
$$\sqrt{5\sqrt{3}-5} \cdot \sqrt{2\sqrt{3}+2} - (\sqrt{5})^3$$

(u)
$$(\sqrt{17}-3)\sqrt{26+6\sqrt{17}}-\sqrt{2}(\sqrt{2}+\sqrt{6})$$

Interval je množica vseh realnih števil, ki ležijo med dvema danima številoma a in b, a < b. Števili a in b imenujemo **krajišči intervala**.

4□▶4圖▶4분▶4분▶ 분 900

79 / 105

Interval je množica vseh realnih števil, ki ležijo med dvema danima številoma a in b, a < b.

Vključenost krajišč

Števili a in b imenujemo krajišči intervala.

79 / 105

Interval je množica vseh realnih števil, ki ležijo med dvema danima številoma a in b, a < b.

Števili a in b imenujemo krajišči intervala.

Vključenost krajišč

• Simbola "[" in "]" označujeta krajišče, ki spada k intervalu.

79 / 105

Interval je množica vseh realnih števil, ki ležijo med dvema danima številoma a in b, a < b.

Števili a in b imenujemo krajišči intervala.

Vključenost krajišč

- Simbola "[" in "]" označujeta krajišče, ki spada k intervalu.
- Simbola "(" in ")" označujeta krajišče, ki ne spada k intervalu.

79 / 105

Interval je množica vseh realnih števil, ki ležijo med dvema danima številoma a in b, a < b.

Števili a in b imenujemo **krajišči intervala**.

Vključenost krajišč

- Simbola "[" in "]" označujeta krajišče, ki spada k intervalu.
- Simbola "(" in ")" označujeta krajišče, ki ne spada k intervalu.

Pri zapisu intervalov moramo biti pozorni na zapis vrstnega reda števil, ki določata krajišči.

$$[a,b] \neq [b,a]$$

Vrste intervalov

16. september 2024

Vrste intervalov

Zaprti interval

16. september 2024

Vrste intervalov

Zaprti interval

$$[\mathbf{a},\mathbf{b}] = \{\mathbf{x} \in \mathbb{R}; \mathbf{a} \leq \mathbf{x} \leq \mathbf{b}\}$$

Vsebuje vsa realna števila med a in b, vključno s krajiščema a in b.

Jan Kastelic (GAA)

Vrste intervalov

Zaprti interval

$$[\mathbf{a},\mathbf{b}] = \{\mathbf{x} \in \mathbb{R}; \mathbf{a} \leq \mathbf{x} \leq \mathbf{b}\}$$

Vsebuje vsa realna števila med a in b, vključno s krajiščema a in b.

Odprti interval

16. september 2024

Vrste intervalov

Zaprti interval

$$[\mathbf{a},\mathbf{b}] = \{\mathbf{x} \in \mathbb{R}; \mathbf{a} \leq \mathbf{x} \leq \mathbf{b}\}$$

Vsebuje vsa realna števila med a in b, vključno s krajiščema a in b.

Odprti interval

$$(\mathbf{a},\mathbf{b}) = \{\mathbf{x} \in \mathbb{R}; \mathbf{a} < \mathbf{x} < \mathbf{b}\}$$

Vsebuje vsa realna števila med a in b, vendar ne vsebuje krajišč a in b.

16. september 2024

Intervali

Polodprti/polzaprti interval

81 / 105

Polodprti/polzaprti interval

•

$$[\mathsf{a},\mathsf{b})=\{\mathsf{x}\in\mathbb{R};\mathsf{a}\leq\mathsf{x}<\mathsf{b}\}$$

Vsebuje vsa realna števila med a in b, vključno s krajiščem a, vendar ne vsebuje krajišča b.

81 / 105

Polodprti/polzaprti interval

Vsebuje vsa realna števila med a in b, vključno s krajiščem a, vendar ne vsebuje krajišča b.

Vsebuje vsa realna števila med a in b, vključno s krajiščem b, vendar ne vsebuje krajišča a.

81 / 105

82 / 105

Jan Kastelic (GAA) MATEMATIKA

$$\bullet \ [\mathbf{a}, \infty) = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} \geq \mathbf{a}\}$$

- $\bullet \ [\mathsf{a},\infty) = \{\mathsf{x} \in \mathbb{R}; \mathsf{x} \geq \mathsf{a}\}$
- $\bullet \ (\mathsf{a},\infty) = \{\mathsf{x} \in \mathbb{R}; \mathsf{x} > \mathsf{a}\}$

16. september 2024

- $\bullet \ [\mathbf{a}, \infty) = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} \geq \mathbf{a}\}$
- $ullet (\mathbf{a}, \infty) = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} > \mathbf{a}\}$
- $ullet (-\infty, \mathbf{b}] = \{ \mathbf{x} \in \mathbb{R}; \mathbf{x} \leq \mathbf{b} \}$

16. september 2024

$$\bullet \ [\mathbf{a}, \infty) = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} \geq \mathbf{a}\}$$

$$\bullet \ (\mathsf{a},\infty) = \{\mathsf{x} \in \mathbb{R}; \underbrace{\mathsf{x} > \mathsf{a}}_{\mathsf{a}}\}$$

$$\bullet \ \ (-\infty, \mathbf{b}] = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} \le \mathbf{b}\}$$

$$\bullet \ (-\infty, \mathbf{b}) = \{ \mathbf{x} \in \mathbb{R}; \mathbf{x} < \mathbf{b} \}$$

$$\bullet \ [\mathbf{a}, \infty) = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} \geq \mathbf{a}\}$$

$$\bullet \ (\mathsf{a},\infty) = \{\mathsf{x} \in \mathbb{R}; \mathsf{x} > \mathsf{a}\}$$

$$\bullet \ (-\infty, \mathbf{b}] = \{ \mathbf{x} \in \mathbb{R}; \mathbf{x} \le \mathbf{b} \}$$

$$ullet$$
 $(-\infty, \mathbf{b}) = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} < \mathbf{b}\}$

$$ullet$$
 $(-\infty,\infty)=\{\mathbf{x};\mathbf{x}\in\mathbb{R}\}=\mathbb{R}$

16. september 2024

b

Intervali

16. september 2024

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

83 / 105

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

Naloga 585

Dana sta intervala I = [-2, 5) in J = (3, 6).

83 / 105

Jan Kastelic (GAA) MATEMATIKA

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

Naloga 585

Dana sta intervala I = [-2, 5) in J = (3, 6).

• Zapiši $I \cap J$ in $I \cup J$.

83 / 105

Jan Kastelic (GAA) MATEMATIKA

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

Naloga 585

Dana sta intervala I = [-2, 5) in J = (3, 6).

- Zapiši $I \cap J$ in $I \cup J$.
- ullet Izračunaj vsoto največjega celega števila iz I in najmanjšega celega števila iz J.

83 / 105

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

Naloga 585

Dana sta intervala I = [-2, 5) in J = (3, 6).

- Zapiši $I \cap J$ in $I \cup J$.
- ullet Izračunaj vsoto največjega celega števila iz I in najmanjšega celega števila iz J.

Naloga 583

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

Naloga 585

Dana sta intervala I = [-2, 5) in J = (3, 6).

- Zapiši $I \cap J$ in $I \cup J$.
- ullet Izračunaj vsoto največjega celega števila iz I in najmanjšega celega števila iz J.

Naloga 583

Zapišite množico vseh neengativnih realnih števil, ki so maniša od 6. ter iskano množico predstavite na številski premici.

Naloga 585

Dana sta intervala I = [-2, 5) in J = (3, 6).

- Zapiši $I \cap J$ in $I \cup J$.
- \bullet Izračunaj vsoto največjega celega števila iz I in najmanjšega celega števila iz J.

Naloga 583

- (c) [4,8] in (3,5]
- (f) [-2, 4] in $(2, \infty)$

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

Naloga 585

Dana sta intervala I = [-2, 5) in J = (3, 6).

- Zapiši $I \cap J$ in $I \cup J$.
- ullet Izračunaj vsoto največjega celega števila iz I in najmanjšega celega števila iz J.

Naloga 583

- (c) [4,8] in (3,5]
- (f) [-2,4] in $(2,\infty)$
- (g) $(-\infty, 3]$ in (-1, 5]

Jan Kastelic (GAA)

Linearna neenačba ima v splošnem obliko: $\mathbf{ax} + \mathbf{b} < \mathbf{cx} + \mathbf{d}$; $a, b, c, d \in \mathbb{R}$.

84 / 105

Linearna neenačba ima v splošnem obliko: $\mathbf{ax} + \mathbf{b} < \mathbf{cx} + \mathbf{d}$; $a, b, c, d \in \mathbb{R}$.

Reševanje linearne neenačbe

Neenačbo rešimo tako, da ji po korakih prirejamo enostavnejšo ekvivalentno neenačbo, dokler ne pridemo do rešitve. Množica rešitve linearne neenačbe je interval, množica intervalov, točka, množica točk ali pa nima rešitve.

84 / 105

Linearna neenačba ima v splošnem obliko: $\mathbf{ax} + \mathbf{b} < \mathbf{cx} + \mathbf{d}$; $a, b, c, d \in \mathbb{R}$.

Reševanje linearne neenačbe

Neenačbo rešimo tako, da ji po korakih prirejamo enostavnejšo ekvivalentno neenačbo, dokler ne pridemo do rešitve. Množica rešitev linearne neenačbe je interval, množica intervalov, točka, množica točk ali pa nima rešitve.

Pravila preoblikovanja

Jan Kastelic (GAA) MATEMATIKA 16. september 2024 84 / 105

Linearna neenačba ima v splošnem obliko: $\mathbf{ax} + \mathbf{b} < \mathbf{cx} + \mathbf{d}$; $a, b, c, d \in \mathbb{R}$.

Reševanje linearne neenačbe

Neenačbo rešimo tako, da ji po korakih prirejamo enostavnejšo ekvivalentno neenačbo, dokler ne pridemo do rešitve. Množica rešitev linearne neenačbe je interval, množica intervalov, točka, množica točk ali pa nima rešitve.

Pravila preoblikovanja

• na levi in desni strani neenačbe lahko prištejemo (ali odštejemo) isto število;

Jan Kastelic (GAA) MATEMATIKA 16. september 2024 84 / 105

Linearna neenačba ima v splošnem obliko: $\mathbf{ax} + \mathbf{b} < \mathbf{cx} + \mathbf{d}$; $a, b, c, d \in \mathbb{R}$.

Reševanje linearne neenačbe

Neenačbo rešimo tako, da ji po korakih prirejamo enostavnejšo ekvivalentno neenačbo, dokler ne pridemo do rešitve. Množica rešitev linearne neenačbe je interval, množica intervalov, točka, množica točk ali pa nima rešitve.

Pravila preoblikovanja

- na levi in desni strani neenačbe lahko prištejemo (ali odštejemo) isto število;
- levo in desno stran neenačbe lahko pomnožimo z istim (pozitivnim) številom;

 Jan Kastelic (GAA)
 MATEMATIKA
 16. september 2024
 84 / 105

Linearna neenačba ima v splošnem obliko: $\mathbf{ax} + \mathbf{b} < \mathbf{cx} + \mathbf{d}$; $a, b, c, d \in \mathbb{R}$.

Reševanje linearne neenačbe

Neenačbo rešimo tako, da ji po korakih prirejamo enostavnejšo ekvivalentno neenačbo, dokler ne pridemo do rešitve. Množica rešitev linearne neenačbe je interval, množica intervalov, točka, množica točk ali pa nima rešitve.

Pravila preoblikovanja

- na levi in desni strani neenačbe lahko prištejemo (ali odštejemo) isto število;
- levo in desno stran neenačbe lahko pomnožimo z istim (pozitivnim) številom;
- če levo in desno stran neenačbe pomnožimo z negativnim številom, se znak neenakosti obrne.

Jan Kastelic (GAA) MATEMATIKA 16. september 2024 84 / 105

Intervali

Reši neenačbo in rešitev zapiši z intervalom.

16. september 2024

Reši neenačbo in rešitev zapiši z intervalom.

(f)
$$3 - (2 - 2x)^2 > 4x(1 - x)$$

85 / 105

Jan Kastelic (GAA) MATEMATIKA

Reši neenačbo in rešitev zapiši z intervalom.

(f)
$$3 - (2 - 2x)^2 > 4x(1 - x)$$

(I)
$$\frac{x+3}{8} \ge \frac{2x-9}{4}$$

16. september 2024

Jan Kastelic (GAA) MATEMATIKA

Reši neenačbo in rešitev zapiši z intervalom.

(f)
$$3 - (2 - 2x)^2 > 4x(1 - x)$$

(I)
$$\frac{x+3}{8} \ge \frac{2x-9}{4}$$

(p)
$$\frac{x+3}{6} - \frac{2x-1}{12} \le (3+4)^0 + \frac{3x-2}{8}$$

85 / 105

Reši neenačbo in rešitev zapiši z intervalom.

(f)
$$3 - (2 - 2x)^2 > 4x(1 - x)$$

(I)
$$\frac{x+3}{8} \ge \frac{2x-9}{4}$$

(p)
$$\frac{x+3}{6} - \frac{2x-1}{12} \le (3+4)^0 + \frac{3x-2}{8}$$

Naloga 584

Reši sistem neenačb in rešitev zapiši z intervalom.

85 / 105

Reši neenačbo in rešitev zapiši z intervalom.

(f)
$$3 - (2 - 2x)^2 > 4x(1 - x)$$

(I)
$$\frac{x+3}{8} \ge \frac{2x-9}{4}$$

(p)
$$\frac{x+3}{6} - \frac{2x-1}{12} \le (3+4)^0 + \frac{3x-2}{8}$$

Naloga 584

Reši sistem neenačb in rešitev zapiši z intervalom.

(č)
$$x + 4 \le 8$$
; $5 - x < 8$

85 / 105

Reši neenačbo in rešitev zapiši z intervalom.

(f)
$$3 - (2 - 2x)^2 > 4x(1 - x)$$

(I)
$$\frac{x+3}{8} \ge \frac{2x-9}{4}$$

(p)
$$\frac{x+3}{6} - \frac{2x-1}{12} \le (3+4)^0 + \frac{3x-2}{8}$$

Naloga 584

Reši sistem neenačb in rešitev zapiši z intervalom.

(č)
$$x + 4 \le 8$$
; $5 - x < 8$

(h)
$$3 - (2 + 4x) < x^2 - (2 - x)^2$$
; $2 - (2 - x)(x + 2) \ge x^2$

85 / 105

Reši neenačbo in rešitev zapiši z intervalom.

(f)
$$3 - (2 - 2x)^2 > 4x(1 - x)$$

(I)
$$\frac{x+3}{8} \ge \frac{2x-9}{4}$$

(p)
$$\frac{x+3}{6} - \frac{2x-1}{12} \le (3+4)^0 + \frac{3x-2}{8}$$

Naloga 584

Reši sistem neenačb in rešitev zapiši z intervalom.

(č)
$$x + 4 \le 8$$
; $5 - x < 8$

(h)
$$3 - (2 + 4x) < x^2 - (2 - x)^2$$
; $2 - (2 - x)(x + 2) \ge x^2$

(e)
$$5x - 3 \ge 4$$
; $11 - 10x \ge -3$

Jan Kastelic (GAA) MATEMATIKA

Intervali

Reši neenačbo $4 - (2x + 3)^3 \ge -101 - 4(x + 1)(2x^2 + 7x)$ v množici:

- realnih števil in rešitev ponazori na številski premici,
- naravnih števil in rešitev ponazori na številski premici,
- celih števil in rešitev ponazori na številski premici.

86 / 105

Reši neenačbo $4 - (2x+3)^3 \ge -101 - 4(x+1)(2x^2+7x)$ v množici:

- realnih števil in rešitev ponazori na številski premici,
- naravnih števil in rešitev ponazori na številski premici,
- celih števil in rešitev ponazori na številski premici.

Naloga 588

Dana sta izraza
$$A = 3 - (2x - 1)^2 + 4x(x + 2)$$
 in $B = 2 - \frac{x+1}{3}$. Za katere x je:

86 / 105

Reši neenačbo $4 - (2x + 3)^3 \ge -101 - 4(x + 1)(2x^2 + 7x)$ v množici:

- realnih števil in rešitev ponazori na številski premici,
- naravnih števil in rešitev ponazori na številski premici,
- celih števil in rešitev ponazori na številski premici.

Naloga 588

Dana sta izraza $A=3-(2x-1)^2+4x(x+2)$ in $B=2-\frac{x+1}{3}$. Za katere x je:

vrednost izraza A negativna,

86 / 105

Reši neenačbo $4 - (2x + 3)^3 \ge -101 - 4(x + 1)(2x^2 + 7x)$ v množici:

- realnih števil in rešitev ponazori na številski premici,
- naravnih števil in rešitev ponazori na številski premici,
- celih števil in rešitev ponazori na številski premici.

Naloga 588

Dana sta izraza $A=3-(2x-1)^2+4x(x+2)$ in $B=2-\frac{x+1}{3}$. Za katere x je:

- vrednost izraza A negativna,
- vrednost izraza B vsaj -88,

86 / 105

Reši neenačbo $4 - (2x + 3)^3 \ge -101 - 4(x + 1)(2x^2 + 7x)$ v množici:

- o realnih števil in rešitev ponazori na številski premici,
- o naravnih števil in rešitev ponazori na številski premici,
- celih števil in rešitev ponazori na številski premici.

Naloga 588

Dana sta izraza $A = 3 - (2x - 1)^2 + 4x(x + 2)$ in $B = 2 - \frac{x+1}{3}$. Za katere x je:

- vrednost izraza A negativna,
- vrednost izraza B vsaj -88,
- vrednost izraza B za 20 manjša od vrednosti izraza A?

86 / 105

Absolutna vrednost

Jan Kastelic (GAA)

Sistem linearnih enačb

Jan Kastelic (GAA) MATEMATIKA

Obravnavanje linearnih enačb, neenačb, sistemov

89 / 105

Absolutna in relativna napaka

Jan Kastelic (GAA)

Sredine

91 / 105

Razpršenost podatkov

Jan Kastelic (GAA)

Prikazi

Jan Kastelic (GAA)

Section 6

Pravokotni koordinatni sistem, linearna funkcija

94 / 105

- Osnove logike in teorije množice
- 2 Naravna in cela števila, izrazi, enačbe in neenačbe
- Oblivost, izjave, množice
- Racionalna števila
- 6 Realna števila, statistika
- o Pravokotni koordinatni sistem, linearna funkcija
 - Pravokotni koordinatni sistem
 - Razdalja med točkama in razpolovišče daljice
 - Ploščina trikotnika
 Jan Kastelic (GAA)

16. september 2024

Pravokotni koordinatni sistem

96 / 105

Razdalja med točkama in razpolovišče daljice

97 / 105

Ploščina trikotnika

Jan Kastelic (GAA) MATEMATIKA

Osnovno o funkcijah

99 / 105

Linearna funkcija in premica

◆ロト ◆問 ト ◆ 豆 ト ◆ 豆 ・ 夕 Q Q

100 / 105

Oblike enačbe premice

Presešišče premic

Sistem linearnih neenačb

 Jan Kastelic (GAA)
 MATEMATIKA
 16. september 2024
 103 / 105

Modeliranje z linearno funkcijo

◆ロト ◆問 ト ◆ 豆 ト ◆ 豆 ・ 夕 Q Q

 Jan Kastelic (GAA)
 MATEMATIKA
 16. september 2024
 104 / 105

(i) Linearno programiranje

105 / 105