Machine Learning Tricks

Philipp Koehn

Machine Learning

- Myth of machine learning
 - given: real world examples
 - automatically build model
 - make predictions
- Promise of deep learning
 - do not worry about specific properties of problem
 - deep learning automatically discovers the feature
- Reality: bag of tricks

failures in machine learning

Failures in Machine Learning

Too high learning rate may lead to too drastic parameter updates→ overshooting the optimum

Failures in Machine Learning

Bad initialization may require many updates to escape a **plateau**

Failures in Machine Learning

Local optima trap training

Learning Rate

- Gradient computation gives direction of change
- Scaled by learning rate
- Weight updates
- Simplest form: fixed value
- Annealing
 - start with larger value (big changes at beginning)
 - reduce over time (minor adjustments to refine model)

Initialization of Weights

- Initialize weights to random values
- But: range of possible values matters

Local Optima

• Cartoon depiction

- Reality
 - highly dimensional space
 - complex interaction between individual parameter changes
 - "bumpy"

Vanishing and Exploding Gradients

- Repeated multiplication with same values
- If gradients are too low $\rightarrow 0$
- If gradients are too big $\to \infty$

Overfitting and Underfitting

- Complexity of the problem has too match the capacity of the model
- Capacity ≃ number of trainable parameters

ensuring randomness

Ensuring Randomness

Typical theoretical assumption

independent and identically distributed

training examples

- Approximate this ideal
 - avoid undue structure in the training data
 - avoid undue structure in initial weight setting
- ML approach: Maximum entropy training
 - Fit properties of training data
 - Otherwise, model should be as random as possible (i.e., has maximum entropy)

Shuffling the Training Data

- Typical training data in machine translation
 - different types of corpora
 - * European Parliament Proceedings
 - * collection of movie subtitles
 - temporal structure in each corpus
 - similar sentences next too each other (e.g., same story / debate)
- Online updating: last examples matter more
- Convergence criterion: no improvement recently
 - → stretch of hard examples following easy examples: prematurely stopped
- ⇒ randomly shuffle the training data (maybe each epoch)

Weight Initialization

- Initialize weights to random values
- Values are chosen from a uniform distribution
- Ideal weights lead to node values in transition area for activation function

adjusting the learning rate

Adjusting the Learning Rate

- Gradient descent training: weight update follows the gradient downhill
- Actual gradients have fairly large values, scale with a learning rate (low number, e.g., $\mu = 0.001$)
- Change the learning rate over time
 - starting with larger updates
 - refining weights with smaller updates
 - adjust for other reasons
- Learning rate schedule

Batched Gradient Updates

- Accumulate all weight updates for all the training example → update (converges slowly)
- Process each training example → update (stochastic gradient descent)
 (quicker convergence, but last training disproportionately higher impact)
- Process data in batches
 - compute all their gradients for individual word predictions errors
 - use sum over each batch to update parameters
 - → better parallelization on GPUs
- Process data on multiple compute cores
 - batch processing may take different amount of time
 - asynchronous training: apply updates when they arrive
 - mismatch between original weights and updates may not matter much

avoiding local optima

Avoiding Local Optima

- One of hardest problem for designing neural network architectures and optimization methods
- Ensure that model converges to at least to a set of parameter values that give results close to this optimum on unseen test data.
- There is no real solution to this problem.
- It requires experimentation and analysis that is more craft than science.
- Still, this section presents a number of methods that generally help avoiding getting stuck in local optima.

Overfitting and Underfitting

- Neural machine translation models
 - 100s of millions of parameters
 - 100s of millions of training examples (individual word predictions)
- No hard rules for relationship between these two numbers
- Too many parameters and too few training examples → overfitting
- Too few parameters and many training examples → underfitting

Regularization

- Motivation: prefer as few parameters as possible
- Strategy: set un-needed paramters a value of 0
- Method
 - adjust training objective
 - add cost for any non-zero parameter
 - typically done with L2 norm
- Practical impact
 - derivative of L2 norm is value of parameter
 - if not signal from training: reduce value of parameter
 - alsp called weight decay
- Not common in deep learning, but other methods understood as regularization

Curriculum Learning

- Human learning
 - learn simple concepts first
 - learn more complex material later
- Early epochs: only easy training examples
 - only short sentences
 - create artificial data by extracting smaller segments
 (similar to phrase pair extraction in statistical machine translation)
 - Later epochs: all training data
- Not easy to callibrate

Dropout

- Training may get stuck in local optima
 - some properties of task have been learned
 - discovery of other properties would take it too far out of its comfort zone.
- Machine translation example
 - model learned the language model aspects
 - but cannot figure out role of input sentence
- Drop out: for each batch, eliminate some nodes

Dropout

Dropout

- For each batch, different random set of nodes is removed
- Their values are set to 0 and their weights are not updated
- 10%, 20% or even 50% of all the nodes
- Why does this work?
 - robustness: redundant nodes play similar nodes
 - ensemble learning: different subnetworks are different models

generative adversarial training

Sequence-Level Training

- Traditional training
 - predict one word at a time
 - compare against correct word
 - proceed training with correct word
- Sequence-level training
 - predict entire sequence
 - measure translation with sentence-level metric (e.g., BLEU)
- May use n-best translations, beam search, etc.

Generative Adversarial Networks (GAN)

- Game between two players
 - generator proposes a translation
 - discriminator distinguishes between generator's translation and human translation
 - generator tries to fool discriminator
- Training example: input sentence *x* and output sentence *y*
- Generator
 - traditional neural machine translation model
 - generates full sentence translations t for each input sentence
- Discriminator
 - is trained to classify (x, y) as correct example
 - is trained to classify (x, t) as generated example

Generative Adversarial Networks (GAN)

- 1. First train generator to some maturity
- 2. Train discriminator on generator predictions and human reference translations
- 3. Train jointly
 - generator with additional objective to fool discriminator
 - discriminator to do well on detecting generator's output as such

• In practice, this is hard to callibrate correctly