ngnzbeasz

June 19, 2024

[1]: import os, shutil

```
train_dir = 'C:/Users/flavi/Desktop/Projeto-20240530/train'
     validation_dir = 'C:/Users/flavi/Desktop/Projeto-20240530/validation'
     test_dir = 'C:/Users/flavi/Desktop/Projeto-20240530/test'
[2]: from keras.utils import image_dataset_from_directory
     IMG_SIZE = 150
     train_dataset = image_dataset_from_directory(
     train_dir,
     image_size=(IMG_SIZE, IMG_SIZE),
     batch_size=32)
     validation_dataset = image_dataset_from_directory(
     validation_dir,
     image_size=(IMG_SIZE, IMG_SIZE),
     batch_size=32)
     test_dataset = image_dataset_from_directory(
     test_dir,
     image_size=(IMG_SIZE, IMG_SIZE),
     batch_size=32)
    Found 40000 files belonging to 10 classes.
    Found 10000 files belonging to 10 classes.
    Found 10000 files belonging to 10 classes.
[3]: from tensorflow import keras
     from keras import layers
     from keras import models
     from keras.preprocessing import image
     data_augmentation = keras.Sequential(
         layers.RandomFlip("horizontal_and_vertical"),
         layers.RandomRotation(0.1),
         layers.RandomZoom(0.2),
     )
     inputs = keras.Input(shape=(IMG_SIZE, IMG_SIZE, 3))
```

```
x = data_augmentation(inputs)
     x = layers.Rescaling(1./255)(inputs)
     x = layers.Conv2D(filters=32, kernel_size=3, activation="relu",
      →padding='same')(x)
     x = layers.BatchNormalization()(x)
     x = layers.MaxPooling2D(pool_size=2)(x)
     x = layers.Conv2D(filters=64, kernel_size=3, activation="relu", __
      →padding='same')(x)
     x = layers.BatchNormalization()(x)
     x = layers.MaxPooling2D(pool_size=2)(x)
     x = layers.Conv2D(filters=128, kernel_size=3, activation="relu", __
      →padding='same')(x)
     x = layers.BatchNormalization()(x)
     x = layers.MaxPooling2D(pool_size=2)(x)
     x = layers.Flatten()(x)
     x = layers.Dropout(0.5)(x)
     x = layers.Dense(512, activation="relu")(x)
     outputs = layers.Dense(10, activation="softmax")(x)
     model = keras.Model(inputs=inputs, outputs=outputs)
[4]: model.compile(
         optimizer='adam',
         loss='sparse_categorical_crossentropy',
         metrics=['accuracy']
     )
[5]: from keras.callbacks import ReduceLROnPlateau
     reduce_lr = ReduceLROnPlateau(
         monitor='val_loss',
         factor=0.2,
         patience=2,
         min_lr=0.001
[6]: from keras.callbacks import EarlyStopping
     early_stopping = EarlyStopping(
         monitor='val_loss',
         patience=5,
        restore_best_weights=True
     )
```

```
[7]: from keras.callbacks import ModelCheckpoint
     model_checkpoint = ModelCheckpoint(
         filepath='C:/Users/flavi/Desktop/projetoClassificaoDeImagens/
      odl_project_2201707_2211044/ModelosS/ModelS_AdamOptimizerComData.keras',
         save_best_only=True,
         monitor='val_loss'
     )
[8]: callbacks = [reduce_lr, early_stopping, model_checkpoint]
     history = model.fit(
         train_dataset,
         epochs=30,
         validation_data=validation_dataset,
         callbacks=callbacks
     )
    Epoch 1/30
    1250/1250
                          1441s 1s/step -
    accuracy: 0.3599 - loss: 2.6228 - val_accuracy: 0.4222 - val_loss: 1.5588 -
    learning_rate: 0.0010
    Epoch 2/30
    1250/1250
                          1221s
    977ms/step - accuracy: 0.5683 - loss: 1.2108 - val_accuracy: 0.5635 - val_loss:
    1.2211 - learning_rate: 0.0010
    Epoch 3/30
    1250/1250
                          752s 601ms/step
    - accuracy: 0.6369 - loss: 1.0144 - val_accuracy: 0.5190 - val_loss: 1.3985 -
    learning_rate: 0.0010
    Epoch 4/30
    1250/1250
                          680s 544ms/step
    - accuracy: 0.6869 - loss: 0.8906 - val_accuracy: 0.5244 - val_loss: 1.5803 -
    learning_rate: 0.0010
    Epoch 5/30
    1250/1250
                          1091s
    873ms/step - accuracy: 0.7235 - loss: 0.7926 - val_accuracy: 0.6576 - val_loss:
    1.0033 - learning_rate: 0.0010
    Epoch 6/30
    1250/1250
                          1241s
    993ms/step - accuracy: 0.7566 - loss: 0.6982 - val_accuracy: 0.6394 - val_loss:
    1.0638 - learning_rate: 0.0010
    Epoch 7/30
    1250/1250
                          1244s
    995ms/step - accuracy: 0.7805 - loss: 0.6307 - val_accuracy: 0.6777 - val_loss:
    1.0417 - learning_rate: 0.0010
    Epoch 8/30
    1250/1250
                          1240s
```

```
992ms/step - accuracy: 0.8055 - loss: 0.5612 - val_accuracy: 0.6312 - val_loss:
    1.2235 - learning_rate: 0.0010
    Epoch 9/30
    1250/1250
                          1227s
    982ms/step - accuracy: 0.8270 - loss: 0.5035 - val_accuracy: 0.6568 - val_loss:
    1.1859 - learning_rate: 0.0010
    Epoch 10/30
    1250/1250
                          1244s
    995ms/step - accuracy: 0.8421 - loss: 0.4559 - val_accuracy: 0.6666 - val_loss:
    1.1801 - learning_rate: 0.0010
[9]: import matplotlib.pyplot as plt
     plt.plot(history.history['accuracy'], 'bo', label='Training acc')
    plt.plot(history.history['val_accuracy'], 'b', label='Validation acc')
     plt.title('Training and validation accuracy')
     plt.xlabel('Epochs')
     plt.ylabel('Accuracy')
     plt.legend()
     plt.show()
    plt.plot(history.history['loss'], 'bo', label='Training loss')
     plt.plot(history.history['val_loss'], 'b', label='Validation loss')
     plt.title('Training and validation loss')
     plt.xlabel('Epochs')
     plt.ylabel('Loss')
     plt.legend()
     plt.show()
```



```
[10]: val_loss, val_acc = model.evaluate(validation_dataset)
print('Validation Accuracy:', val_acc)
```

313/313 52s 166ms/step accuracy: 0.6562 - loss: 0.9955 Validation Accuracy: 0.6575999855995178

[11]: loss, accuracy = model.evaluate(test_dataset)
print(f"Loss: {loss}, Accuracy: {accuracy}")

313/313 52s 166ms/step - accuracy: 0.6516 - loss: 1.0232

Loss: 1.0121647119522095, Accuracy: 0.6565999984741211

[12]: import numpy as np
 from sklearn.metrics import confusion_matrix, classification_report
 import seaborn as sns
 import matplotlib.pyplot as plt

Function to evaluate the model and get true and predicted labels

```
def evaluate_model(model, dataset):
    all_labels = []
    all_predictions = []
    for images, labels in dataset:
        predictions = model.predict(images)
        predicted_labels = np.argmax(predictions, axis=1)
        true_labels = labels.numpy() # Convert to numpy array if not already
        all_labels.extend(true_labels)
        all predictions.extend(predicted labels)
    return np.array(all_labels), np.array(all_predictions)
# Get true and predicted labels for the test dataset
true_labels, predicted_labels = evaluate_model(model, test_dataset)
# Compute the confusion matrix
conf_matrix = confusion_matrix(true_labels, predicted_labels)
# Plot the confusion matrix
plt.figure(figsize=(10, 8))
sns.heatmap(conf_matrix, annot=True, fmt="d", cmap="Blues",__
 →xticklabels=range(10), yticklabels=range(10))
plt.title('Matriz de Confusão')
plt.xlabel('Previsão')
plt.ylabel('Realidade')
plt.show()
# Print classification report
class_names = [str(i) for i in range(10)] # Define class names based on your
 \rightarrow dataset
print(classification_report(true_labels, predicted_labels,__
 ⇔target_names=class_names))
# Extract precision, recall, and F1-score for each class from classification □
\hookrightarrow report
report = classification_report(true_labels, predicted_labels,_
 starget_names=class_names, output_dict=True)
metrics = {'precision': [], 'recall': [], 'f1-score': []}
for cls in class_names:
    metrics['precision'].append(report[cls]['precision'])
    metrics['recall'].append(report[cls]['recall'])
    metrics['f1-score'].append(report[cls]['f1-score'])
# Plot precision, recall, and F1-score
```

```
plt.figure(figsize=(10, 6))
bar_width = 0.2
index = np.arange(len(class_names))
plt.bar(index, metrics['precision'], bar_width, label='Precision')
plt.bar(index + bar_width, metrics['recall'], bar_width, label='Recall')
plt.bar(index + 2*bar_width, metrics['f1-score'], bar_width, label='F1-score')
plt.xlabel('Class')
plt.ylabel('Scores')
plt.title('Precision, Recall e F1-score para cada classe')
plt.xticks(index + bar_width, class_names)
plt.legend()
plt.tight_layout()
plt.show()
1/1
                1s 685ms/step
1/1
                Os 209ms/step
1/1
                Os 248ms/step
1/1
                Os 261ms/step
1/1
                Os 219ms/step
1/1
                Os 169ms/step
1/1
                Os 227ms/step
1/1
                Os 286ms/step
1/1
                Os 218ms/step
1/1
                Os 194ms/step
1/1
                Os 222ms/step
1/1
                Os 293ms/step
1/1
                Os 228ms/step
1/1
                Os 222ms/step
1/1
                Os 227ms/step
1/1
                Os 305ms/step
1/1
                Os 323ms/step
1/1
                Os 269ms/step
1/1
                Os 217ms/step
1/1
                Os 190ms/step
1/1
                Os 231ms/step
1/1
                Os 284ms/step
1/1
                Os 299ms/step
1/1
                Os 244ms/step
1/1
                0s 180ms/step
1/1
                0s 137ms/step
1/1
                Os 296ms/step
1/1
                Os 245ms/step
1/1
                Os 242ms/step
1/1
                Os 243ms/step
```

1/1	0s	185ms/step
1/1	0s	231ms/step
1/1	0s	237ms/step
1/1	0s	166ms/step
1/1	0s	266ms/step
1/1	0s	-
1/1	0s	250ms/step
1/1		160ms/step
1/1		296ms/step
1/1		257ms/step
1/1		164ms/step
1/1		243ms/step
1/1		244ms/step
1/1		298ms/step
1/1		218ms/step
1/1		207ms/step
1/1		167ms/step
1/1		223ms/step
1/1		291ms/step
1/1		247ms/step
1/1		195ms/step
1/1		252ms/step
1/1		295ms/step
1/1		235ms/step 235ms/step
		235ms/step 225ms/step
1/1		_
1/1		241ms/step
1/1		258ms/step
1/1		248ms/step
1/1		191ms/step
1/1		211ms/step
1/1		301ms/step
1/1		273ms/step
1/1	0s	_
1/1		209ms/step
1/1	0s	-
1/1	0s	-
1/1		298ms/step
1/1		231ms/step
1/1		186ms/step
1/1	0ຮ	-
1/1	0ຮ	_
1/1	0ຮ	294ms/step
1/1	0s	-
1/1	0s	· 1
1/1		175ms/step
1/1		214ms/step
1/1	0s	290ms/step
1/1	0s	220ms/step

1/1	0s	210ms/step
1/1	0s	165ms/step
1/1	0s	272ms/step
1/1	0s	289ms/step
1/1	0s	301ms/step
1/1	0s	270ms/step
1/1	0s	-
1/1	0s	_
1/1	0s	-
1/1	0s	-
1/1	0s	222ms/step
1/1	0s	_
1/1	0s	-
1/1		225ms/step
1/1		248ms/step
1/1	0s	_
1/1	0s	
1/1	0s	
1/1	0s	_
1/1	0s	281ms/step
1/1	0s	-
1/1	0s	-
1/1	0s	-
1/1	0s 0s	
	0s 0s	-
1/1		-
1/1	0s	248ms/step
1/1	0s	
1/1	0s	-
1/1	0s	-
1/1	0s	
1/1	0s	-
1/1	0s	. т
1/1	0s	212ms/step
1/1	0s	178ms/step
1/1	0s	235ms/step
1/1	0s	
1/1	0s	
1/1	0s	
1/1	0s	203ms/step
1/1	0s	187ms/step
1/1	0s	241ms/step
1/1	0s	231ms/step
1/1	0s	264ms/step
1/1	0s	254ms/step
1/1	0s	158ms/step
1/1	0s	245ms/step
1/1	0s	288ms/step
1/1	0s	233ms/step
		_

1/1	0s	164ms/step
1/1	0s	250ms/step
1/1	0s	269ms/step
1/1	0s	_
1/1	0s	-
1/1	0s	-
1/1	0s	-
1/1	0s	
1/1		244ms/step
1/1	0s	
1/1	0s	-
1/1	0s	-
1/1	0s	
1/1	0s 0s	_
1/1	0s	_
1/1		261ms/step
1/1	0s	_
1/1	0s	_
1/1	0s	
1/1	0s	
1/1	0s	· 1
1/1	0s	_
1/1	0s	199ms/step
1/1	0s	203ms/step
1/1	0s	195ms/step
1/1	0s	236ms/step
1/1	0s	302ms/step
1/1	0s	234ms/step
1/1	0s	224ms/step
1/1	0s	171ms/step
1/1	0s	209ms/step
1/1	0s	281ms/step
1/1	0s	237ms/step
1/1	0s	251ms/step
1/1	0s	179ms/step
1/1	0s	217ms/step
1/1	0s	256ms/step
1/1	0s	249ms/step
1/1	0s	178ms/step
1/1	0s	219ms/step
1/1	0s	164ms/step
1/1	0s	226ms/step
1/1	0s 0s	317ms/step
1/1	0s 0s	-
		216ms/step
1/1	0s	224ms/step
1/1	0s	292ms/step
1/1	0s	239ms/step
1/1	0s	162ms/step

0s	256ms/step
0s	287ms/step
0s	271ms/step
0s	241ms/step
0s	178ms/step
0s	274ms/step
0s	225ms/step
0s	_
0s	_
0s	-
0s	_
0s	-
0s	_
0s	-
	-
0s	-
0s	_
	_
	_
	-
	-
	-
	-
	344ms/step
	_
	173ms/step
	159ms/step
	228ms/step
	-
	-
	-
	-
	244ms/step 203ms/step
	-
	258ms/step
	141ms/step
	-
	-
	-
	233ms/step
	261ms/step
US	211ms/step
	0s 0

1/1	0s	243ms/step
1/1	0s	235ms/step
1/1	0s	201ms/step
1/1	0s	300ms/step
1/1	0s	229ms/step
1/1	0s	215ms/step
1/1	0s	-
1/1	0s	_
1/1	0s	-
1/1		215ms/step
1/1	0s	_
1/1	0s	-
1/1	0s	
1/1	0s	-
1/1	0s	-
1/1	0s	-
1/1	0s	
1/1	0s	_
1/1	0s	_
1/1	0s	_
1/1	0s	-
1/1	0s	
1/1	0s	-
1/1	0s	
1/1	0s	-
1/1	0s	284ms/step
1/1	0s	_
1/1	0s	
1/1		181ms/step
1/1	0s	172ms/step
1/1	0s	283ms/step
1/1	0s	375ms/step
1/1	0s	308ms/step
1/1	0s	295ms/step
1/1	0s	239ms/step
1/1	0s	212ms/step
1/1	0s	208ms/step
1/1	0s	296ms/step
1/1	0s	251ms/step
1/1	0s	_
1/1	0s	_
1/1		211ms/step
1/1	0s	-
1/1	0s	
1/1	0s	-
-, -	2.5	, boop

1/1	0s	205ms/step
1/1	0s	177ms/step
1/1	0s	175ms/step
1/1	0s	232ms/step
1/1		226ms/step
1/1		195ms/step
1/1	0s	218ms/step
1/1	0s	229ms/step
1/1		268ms/step
1/1	0s	265ms/step
1/1	0s	266ms/step
1/1	0s	219ms/step
1/1	0s	201ms/step
1/1	0s	289ms/step
1/1	0s	223ms/step
1/1	0s	242ms/step
1/1	0s	210ms/step
1/1	0s	230ms/step
1/1	0s	300ms/step
1/1	0s	299ms/step
1/1	0s	248ms/step
1/1	0s	188ms/step
1/1	0s	241ms/step
1/1	0s	330ms/step
1/1	0s	293ms/step
1/1	0s	231ms/step
1/1	0s	216ms/step
1/1	0s	250ms/step
1/1	0s	149ms/step
1/1		244ms/step
1/1		187ms/step
1/1		173ms/step
1/1	0s	174ms/step
1/1	0s	222ms/step
1/1	0s	280ms/step
1/1	0s	249ms/step
1/1	0s	257ms/step
1/1	0s	-
1/1	0s	_
1/1		231ms/step
1/1		228ms/step
1/1		266ms/step
1/1	1s	525ms/step

Matriz de Confusão											
0 -	713	8	20	48	14	5	12	23	119	38	- 800
г -	33	682	3	25	6	4	7	9	82	149	- 700
2 -	122	0	377	124	154	63	66	63	18	13	- 600
m -	12	3	49	576	91	139	43	53	20	14	- 500
Realidade 5 4	31	1	48	80	667	24	35	98	14	2	
Reali 5	13	1	48	266	62	528	6	58	12	6	- 400
9 -	6	5	32	146	101	29	653	16	8	4	- 300
۲ -	14	5	18	74	66	57	5	743	4	14	- 200
ω -	76	15	2	24	7	7	7	8	826	28	- 100
ი -	32	41	4	37	11	0	7	26	41	801	
	Ó	i	2	3	4 Prev	5 risão	6	7	8	9	- 0

	precision	recall	f1-score	support
0	0.68	0.71	0.69	1000
1	0.90	0.68	0.77	1000
2	0.63	0.38	0.47	1000
3	0.41	0.58	0.48	1000
4	0.57	0.67	0.61	1000
5	0.62	0.53	0.57	1000
6	0.78	0.65	0.71	1000
7	0.68	0.74	0.71	1000
8	0.72	0.83	0.77	1000
9	0.75	0.80	0.77	1000
accuracy			0.66	10000
macro avg	0.67	0.66	0.66	10000
weighted avg	0.67	0.66	0.66	10000

