13 - Memory

CEG 4330/6330 - Microprocessor-Based Embedded Systems Max Gilson

PC Architecture

- A computer requires the processor, memory, and I/O to communicate with each other using busses
- Bridges are used to convert between busses
- Northbridge
 - Used to "bridge" the processor bus, PCI-E bus, and memory bus so they can all communicate
- Southbridge
 - Used to "bridge" the I/O ports so they can all communicate and eventually communicate with the processor and memory

The Great Memory Hierarchy

Locality of Reference

- Temporal Locality
 - Recently accessed data/instructions are likely to be accessed again
 - Example: In a loop, some of the variables/data will be accessed every time the loop runs
- Spatial Locality
 - Data that exists in nearby memory addresses are likely to be accessed in the future
 - Example: Instructions get accessed one instruction after the other (except for subroutines)
 - Example: Arrays may get accessed one element after the other
- In both of these cases, the cache memory becomes incredibly useful because we can access memory very quickly

Caches Exploiting Temporal and Spatial Locality

Temporal

- When something is accessed from memory, it's also saved onto the cache
- Then when the CPU needs to access it again, it'll go to the cache instead of the slow RAM

Spatial

- When something is accessed from memory, the next few memory locations are saved to the cache also
- Then if the CPU needs to access the next item in memory, it'll go to the cache
- The number of memory words that are accessed are called the cache line size or cache block size

SRAM vs DRAM

- Random Access Memory
 - Static RAM
 - Faster but more expensive
 - Used for caches
 - Volatile
 - Dynamic RAM
 - Slower but less expensive
 - Used for main memory
 - Volatile

Static RAM

- SRAM uses transistor to store a single bit of data
- SRAM does not need periodic refreshment to maintain data
- SRAM's structure is complex than DRAM
- SRAM are expensive as compared to DRAM
- SRAM are faster than DRAM
- SRAM are used in Cache memory

Dynamic RAM

- DRAM uses a separate capacitor to store each bit of data
- DRAM needs periodic refreshment to maintain the charge in the capacitors for data
- DRAM's structure is simplex than SRAM
- DRAM's are less expensive as compared to SRAM
- DRAM's are slower than SRAM
- DRAM are used in Main memory

Addressing, RAS, and CAS

- Assume 1GB of memory on a chip of DRAM
 - 2³⁰ possible addresses
 - Memory is in the form of a grid, with addresses and columns
 - With address multiplexing, 15
 wires (smaller chip, less pins)
- RAS Row Address Strobe
- CAS Column Address Strobe

Chip Size

- Chip size is generally determined by the number/size of pins required
 - Reducing number/size of pins is a great way to shrink the size of an IC
- The IC silicon wafer inside the plastic housing is much smaller

Single DRAM IC vs DRAM Card

- It is not physically/financially possible to incorporate 16GB of DRAM into a single IC
- To achieve these memory sizes, many DRAM ICs are soldered to a circuit board that plugs in as a card
 - This is a "stick" of RAM
- Many embedded systems do not have space or do not require this amount of memory, so a single IC can be used

DRAM Controller

- A DRAM controller (memory controller) can be used as an interface between a processor and DRAM
 - This is not always required, many microprocessors do not require a memory controller, they interface with DRAM directly
- The CPU's connection to the memory controller is not multiplexed (30 bits)
 - Address pins + Address strobe
- The DRAM's connection to the memory controller is multiplexed (15 bits)
 - Address pins + Row address strobe + Column address strobe
- A memory controller is especially useful when using multiple DRAM chips
- In modern hardware, the memory controller is integrated into the CPU itself

DRAM Refreshing

- DRAM requires periodic refreshing in order to retain the memory
 - Once power is removed, the memory is gone forever
- CAS-before-RAS:

Bus Arbitration

- Bus arbitration is where multiple master devices request access and grant access to the bus
 - A simple example: every master can grant or request bus access
- This is necessary for refreshing RAM
 - A CPU might want to read from memory, but the memory controller might want to refresh
 - The memory controller can request usage of the bus periodically to refresh
 - The CPU must wait for the memory controller to grant access to the bus
- Interrupts do not work for bus arbitration because CPU requires immediate memory access when an interrupt is triggered

DDR SDRAM

- SDRAM: Synchronous Dynamic Access Memory
 - Memory that is synchronized to a clock
- DDR: Double Data Rate
 - Transfers data at both rising and falling edges of clock
- The DRAM in your laptop/desktop is most likely some form of DDR SDRAM

Dual Channel

- Multi-channeled memory allows for accessing multiple memory addresses simultaneously
- Assume:
 - Even addresses are stored in Bank 0 of memory
 - Odd addresses are stored in Bank 1 of memory
 - Using multiple banks is known as interleaved memory
- With a dual channel memory, both address 0 and address 1 can be accessed simultaneously, greatly improving memory bandwidth

