I - Exercice 1

Notons B l'évènement correspondant à « le téléphone est défectueux » et A l'évènement correspondant à « le test est positif ». On veut calculer la probabilité si le test soit efficace, c'est-à-dire $\mathbb{P}(B|A)$. D'après les données,

$$\mathbb{P}(B) = \frac{1}{10000} \ \mathbb{P}(\overline{B}) = \frac{9999}{10000}$$

On a aussi $\mathbb{P}(A|B) = 99\%$ et $\mathbb{P}(A|\overline{B}) = 0.1\%$,

or B et \overline{B} est un système complet d'évènement($\mathbb{P}(\overline{B}) > 0, \mathbb{P}(B) > 0$), on a

$$\mathbb{P}(A) = \mathbb{P}(A|B)\mathbb{P}(B) + \mathbb{P}(A|\overline{B})\mathbb{P}(\overline{B}) > 0$$

donc

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A|B)\mathbb{P}(B)}{\mathbb{P}(A)}$$

$$= \frac{\mathbb{P}(A|B)\mathbb{P}(B)}{\mathbb{P}(A|B)\mathbb{P}(B) + \mathbb{P}(A|\overline{B})\mathbb{P}(\overline{B})}$$

$$= \frac{99\% * \frac{1}{10000}}{99\% * \frac{1}{10000} + 0.1\% * \frac{9999}{10000}}$$

Finalement, on a $\mathbb{P}(B|A) = 9\%$, le résultat n'est pas satisfaisant.

II - Exercice 2

II.A -

On a clairement que $\forall (n,k) \in \mathbb{N}^2$, pour une variable aléatoire X,

$$(X>n+k)=\{a\in\mathbb{N},a>n+k\}\subset\{a\in\mathbb{N},a>n\}=(X>n)$$

On a donc $(X > n + k) \cap (X > n) = (X > n + k)$. Alors,

$$\mathbb{P}(X>n+k)=\mathbb{P}((X>n+k)\cap(X>n))=\mathbb{P}(X>n+k|X>n)\mathbb{P}(X>n)$$

Par la définition de « sans mémoire », on a donc $\mathbb{P}(X>n+k)=\mathbb{P}(X>k)\mathbb{P}(X>n)$

II.B -

II.B.1 -

Lorsque X suit une loi géométrique de paramètre $p \in]0,1[$, on a $\forall k \in \mathbb{N}^*, \mathbb{P}(X=k)=p(1-p)^{k-1}.$

Et on a $(X > n + k) = \bigcup_{i > n + k} (X = i)$, une union dénombrable et disjoint deux-à-deux. Donc

$$\mathbb{P}(X > n + k) = \sum_{i > n + k} \mathbb{P}(X = i) = \sum_{i = n + k + 1}^{+\infty} p(1 - p)^{i - 1}$$

Or $p \in]0,1[$, la somme converge, et on a $\mathbb{P}(X>n+k)=(1-p)^{n+k}$. Par la même méthode, on a $\mathbb{P}(X>n)=(1-p)^n, \mathbb{P}(X>k)=(1-p)^k$. Nous avons bien $\mathbb{P}(X>n+k)=\mathbb{P}(X>n)\mathbb{P}(X>k)$, ce qui montre que X est sans mémoire.

II.B.2 -

Si on suppose que X modélise le rang du premier succès lors d'une succession d'épreuves de Bernoulli indépendantes de paramètre p, l'évènement (X > n + k) correspondant « on obtient le premier succès après n + k fois ». On peut aussi obtenir le même résultat si d'abord on fait n fois la succession sans succès : (X > n), et ensuite, on fait une autre succession pour k fois : (X > k). Car ces deux étapes sont indépendantes, sa possibilité est calculée par multiplication.

On a donc le même résultat : $\mathbb{P}(X > n + k) = \mathbb{P}(X > n)\mathbb{P}(X > k)$

II.C -

II.C.1 -

Si on prend k = 0, la formule devient $\forall n \in \mathbb{N}, \mathbb{P}(X > n) = \mathbb{P}(X > n)\mathbb{P}(X > 0)$. Or $\forall n \in \mathbb{N}, \mathbb{P}(X > n) > 0$, on a donc $\boxed{\mathbb{P}(X > 0) = 1}$

II.C.2 -

On va prendre $p = \mathbb{P}(X = 1)$

- $ightharpoonup p = \mathbb{P}(X=1) > 0$ car c'est une possibilité.
- ▶ $(X>0)=(X=1)\cup(X>1)$ une union dénombrable et disjoint, donc $1=\mathbb{P}(X>0)=\mathbb{P}(X=1)+\mathbb{P}(X>1)$, d'où $\mathbb{P}(X=1)=1-\mathbb{P}(X>1)<1$

On a donc $p \in]0,1[$, et on a $\mathbb{P}(X > 1) = 1 - p$ On va montrer l'énoncé par récurrence sur n

- $n = 0 : \mathbb{P}(X > 0) = (1 p)^0 = 1, \text{ on l'a montrée}$
- lacktriangle Suppose que $\mathbb{P}(X>n)=(1-p)^n,$ donc par la définition de sans mémoire, on a

$$\mathbb{P}(X > n+1) = \mathbb{P}(X > n)\mathbb{P}(X > 1) = (1-p)^n * (1-p) = (1-p)^{n+1}$$

l'énoncé est encore valide

On a donc $\mathbb{P}(X > n) = (1 - p)^n$

II.C.3 -

On a montré que $\mathbb{P}(X>0)=1$

 $\forall n \in \mathbb{N}^*, (X > n-1) = (X = n) \cup (X > n)$ une union dénombrable et disjoint, donc $p = \mathbb{P}(X > n-1) = \mathbb{P}(X = n) + \mathbb{P}(X > n)$, d'où $\mathbb{P}(X = n) = \mathbb{P}(X > n-1) - \mathbb{P}(X > n)$ et on a montré que $\mathbb{P}(X > n-1) = (1-p)^{n-1}$, $\mathbb{P}(X > n) = (1-p)^n$, et donc

$$\mathbb{P}(X=n) = (1-p)^{n-1} - (1-p)^n = p * (1-p)^{n-1}$$

En conclusion, $\forall n \in \mathbb{N}^*$, $\mathbb{P}(X = n) = p * (1 - p)^{n-1}$ Or $p \in]0,1[$, on a $\boxed{P \sim \mathscr{G}(p)}$