Documents autorisés : une feuille A4 manuscrite recto-verso. Aucun appareil électronique. Apportez le plus grand soin à la rédaction et à la présentation. La notation en tiendra compte.

Exercice 1 On considère le nombre complexe $z = \frac{a+ib}{c+id}$ où a,b,c,d sont des réels, avec $(c,d) \neq (0,0)$. A quelle condition sur a,b,c,d a-t-on z réel ? A quelle condition sur a,b,c,d a-t-on z imaginaire pur ?

z est une fraction de deux nombres complexes. Pour l'écrire sous une forme plus simple, on va multiplier les 2 termes de la fraction par le conjugué du dénominateur :

$$z = \frac{a+ib}{c+id} = \frac{(a+ib)(c-id)}{(c+id)(c-id)} = \frac{ac-i^2bd+i(bc-ad)}{c^2-i^2d^2} = \frac{ac+bd+i(bc-ad)}{c^2+d^2}$$

On a donc : $\mathcal{R}e(z) = \frac{ac + bd}{c^2 + d^2}$ et $\mathcal{I}m(z) = \frac{bc - ad}{c^2 + d^2}$. On en déduit immédiatement que :

- z est réel si et seulement si sa partie imaginaire est nulle, c'est-à-dire sous la condition bc ad = 0.
- z est imaginaire pur si et seulement si sa partie réelle est nulle, c'est-à-dire sous la condition ac + bd = 0.

Exercice 2

On définit 4 ensembles de points M du plan complexe par les conditions ci-dessous sur leurs affixes z:

Zone A
$$1 \le |z| \le 3$$
 et $\frac{2\pi}{3} \le \arg z \le \frac{3\pi}{4}$

Zone B
$$|z| \ge 2$$
 et $-2 \le \Re e(z) \le 0$ et $-2 \le \Im m(z) \le 0$

Zone C
$$|z| \ge 1$$
 et $1 \le \Re e(z) \le 2$ et $\arg z \in \left[-\frac{\pi}{3}, -\frac{\pi}{6} \right]$

Zone D
$$\frac{\pi}{4} \le \arg z \le \frac{\pi}{2}$$
 et $\mathcal{I}m(z) \le 2$

En donnant quelques lignes d'explications pour chaque cas, hachurer ces 4 zones dans le dessin ci-dessous en indiquant à chaque fois la lettre correspondante.

Zone A La zone A correspond à une portion de la couronne dont le rayon intérieur vaut $1 \ (1 \le |z|)$ et le rayon extérieur vaut $3 \ (|z| \le 3)$. De plus, les points de cette zone sont dans le secteur angulaire issu de O et compris entre les angles $2\pi/3$ et $3\pi/4$ (arg $z \in [2\pi/3, 3\pi/4]$). D'où la zone hachurée indiquée.

Zone B Les points de cette zone ont des abscisses comprises entre -2 et 0 ($-2 \le$

 $\Re(z) \leq 0$) et des ordonnées comprises entre -2 et 0 ($-2 \leq \Im(z) \leq 0$). La zone B est donc incluse dans le carré $[-2,0] \times [-2,0]$. De plus, les points sont à l'extérieur du disque de rayon 2 ($|z| \geq 2$). D'où la zone hachurée indiquée.

Zone C Les points de cette zone sont dans le secteur angulaire issu de O et compris entre les angles $-\pi/3$ et $-\pi/6$ (arg $z \in [-\pi/3, -\pi/6]$). De plus, les abscisses des points de cette zone sont comprises entre 1 et 2 ($1 \le \Re e(z) \le 2$). La condition supplémentaire $|z| \ge 1$ (c'est-à-dire les points sont à l'extérieur du disque de rayon 1) n'apporte pas de restriction supplémentaire, car elle est déjà vérifiée par les points qui vérifient les 2 conditions précédentes. D'où la zone hachurée indiquée.

Zone D Les points de cette zone sont dans le secteur angulaire issu de O et compris entre les angles $\pi/4$ et $\pi/2$ (arg $z \in [\pi/4, \pi/2]$). De plus, les ordonnées des points de cette zone sont inférieures à 2 ($\mathcal{I}m(z) \leq 2$). D'où le triangle hachuré indiqué.

Exercice 3 Résoudre dans \mathbb{C} l'équation $2z^2 + (i-3)z - 1 + 3i = 0$

Indication : $\sqrt{16^2 + 30^2} = 34$

Nous avons affaire à une équation polynomiale de degré 2. On va la résoudre en calculant son discriminant Δ , dont on cherchera ensuite une racine δ ($\delta \in \mathbb{C}$ tel que $\delta^2 = \Delta$). Les deux solutions de l'équation seront alors finalement $z_1 = \frac{-(i-3)-\delta}{4}$ et $z_2 = \frac{-(i-3)+\delta}{4}$.

On a ici : $\Delta = (i-3)^2 - 4(2)(-1+3i) = -1 - 6i + 9 + 8 - 24i = 4(5+12i) = 16 - 30i$. Notons maintenant $\delta = \alpha + i\beta$. L'égalité $\delta^2 = \Delta$ implique $\alpha^2 - \beta^2 = 16$ (égalité des parties réelles) et $2\alpha\beta = -30 < 0$ (égalité des parties imaginaires). De plus, on a égalité des modules $|\delta|^2 = |\Delta|$, c'est-à-dire $\alpha^2 + \beta^2 = \sqrt{16^2 + 30^2} = 34$. On a donc le système :

$$\begin{cases} \alpha^2 - \beta^2 = 16 & (1) \\ \alpha^2 + \beta^2 = 34 & (2) \\ \alpha\beta < 0 & (3) \end{cases}$$

En faisant (1) + (2), puis (2) - (1), on en déduit $\alpha^2 = 25$ et $\beta^2 = 9$, soit $\alpha = \pm 5$ et $\beta = \pm 3$. D'après (3), α et β sont de signes opposés. D'où $\delta = 5 - 3i$ (ou son opposé). Les 2 racines du polynôme sont donc :

$$z_1 = \frac{3-i+5-3i}{4} = 2-i$$
 et $z_2 = \frac{3-i-5+3i}{4} = \frac{-1+i}{2}$

Exercice 4 Soit
$$z = \sqrt{2 + \sqrt{3}} + i\sqrt{2 - \sqrt{3}}$$

1. Calculer z^2 , et déterminer son écriture sous forme exponentielle.

$$z^{2} = \left(\sqrt{2 + \sqrt{3}} + i\sqrt{2 - \sqrt{3}}\right)^{2} = 2 + \sqrt{3} + \underbrace{i^{2}}_{-1} \left(2 - \sqrt{3}\right) + 2i\sqrt{2 + \sqrt{3}}\sqrt{2 - \sqrt{3}}$$
$$= 2\sqrt{3} + 2i\sqrt{(2 + \sqrt{3})(2 - \sqrt{3})} = 2\sqrt{3} + 2i\sqrt{4 - 3} = 2\sqrt{3} + 2i$$

On en déduit que le module de z^2 vaut $\sqrt{(2\sqrt{3})^2 + 2^2} = \sqrt{16} = 4$.

D'où
$$z^2 = 4 \frac{2\sqrt{3} + 2i}{4} = 4\left(\frac{\sqrt{3}}{2} + i\frac{1}{2}\right) = 4\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) = 4e^{i\frac{\pi}{6}}$$

2. En déduire une écriture exponentielle de z, et les valeurs de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.

On sait que $(\pm\sqrt{\rho}\,e^{i\theta/2})^2=\rho\,e^{i\theta}$. Or, on a ici $z^2=4\,e^{i\frac{\pi}{6}}$, d'où $z=\pm\,2\,e^{i\frac{\pi}{12}}$. De plus, les parties réelles et imaginaires de z sont positives, donc $z=2\,e^{i\frac{\pi}{12}}$. On peut maintenant identifier les deux écritures de z:

$$z = 2e^{i\frac{\pi}{12}} = 2\cos\frac{\pi}{12} + 2i\sin\frac{\pi}{12} = \sqrt{2+\sqrt{3}} + i\sqrt{2-\sqrt{3}}$$

On en déduit :
$$\cos \frac{\pi}{12} = \frac{\sqrt{2+\sqrt{3}}}{2}$$
 et $\sin \frac{\pi}{12} = \frac{\sqrt{2-\sqrt{3}}}{2}$.

Exercice 5

1. Calculer le produit $P_n = \prod_{k=2}^n \frac{k+1}{k-1}$ pour $n \ge 2$.

Ecrivons ce produit sous forme développée :

$$P_n = \prod_{k=2}^n \frac{k+1}{k-1} = \frac{3}{1} \frac{4}{2} \frac{5}{3} \frac{6}{4} \dots \frac{n-1}{n-3} \frac{n}{n-2} \frac{n+1}{n-1}$$

Sous cette forme, on voit que seuls les 2 premiers termes du dénominateur et les 2 derniers termes du numérateur ne se simplifient pas (c'est-à-dire ne sont pas présents à la fois en haut et en bas de la fraction). Donc

$$P_n = \frac{n(n+1)}{2}$$

2. Calculer la somme
$$S_n = \sum_{k=2}^n (\ln(k+1) - \ln(k-1))$$
 pour $n \ge 2$.

MÉTHODE 1 : on peut utiliser les propriétés du logarithme $\ln a + \ln b = \ln(ab)$ et $\ln a - \ln b = \ln \frac{a}{b}$. D'où

$$S_n = \sum_{k=2}^n \left(\ln(k+1) - \ln(k-1) \right) = \sum_{k=2}^n \ln\left(\frac{k+1}{k-1}\right) = \ln\left(\prod_{k=2}^n \frac{k+1}{k-1}\right) = \ln P_n$$

MÉTHODE 2 : on peut mettre la somme sous forme développée :

$$S_n = \ln 3 - \ln 1 + \ln 4 - \ln 2 + \ln 5 - \ln 3 + \dots + \ln n - \ln(n-2) + \ln(n+1) - \ln(n-1)$$

= $(\ln 3 + \ln 4 + \dots + \ln n + \ln(n+1)) - (\ln 1 + \ln 2 + \dots + \ln(n-2) + \ln(n-1))$

Presque tous les termes se simplifient, sauf les 2 derniers de la première somme et les 2 premiers de la deuxième somme. D'où

$$S_n = \ln n + \ln(n+1) - \ln 1 - \ln 2 = \ln \frac{n(n+1)}{2} = \ln P_n$$

Exercice 6

Soit $n \ge 2$ un entier naturel fixé, et z un nombre complexe différent de -1 et racine n-ième de -1, c'est-à-dire que z vérifie $z^n = -1$.

Calculer
$$A_n = \sum_{k=0}^{n-1} z^{2k}$$
.

On a
$$A_n = \sum_{k=0}^{n-1} z^{2k} = 1 + z^2 + z^4 + \ldots + z^{2n-2} = 1 + z^2 + (z^2)^2 + \ldots + (z^2)^{n-1}$$
. Il s'agit de

la somme des n premiers termes d'une suite géométrique de raison z^2 , d'où $A_n = \frac{1 - (z^2)^n}{1 - z^2}$.

On peut noter qu'en effet $1-z^2\neq 0$ car $z\neq 1$ (car 1 n'est pas une racine *n*-ième de -1) et car $z\neq -1$ par hypothèse.

Par ailleurs
$$(z^2)^n = z^{2n} = (z^n)^2 = (-1)^2 = 1$$
. D'où $A_n = 0$

 $\underline{\text{ATTENTION}}: z^2 z^k = z^{2+k} \text{ et non pas } z^{2k}$