### 프로젝트 개요

- 프로젝트 주제 : 2700명의 사람의 마스크를 착용, 오착용, 미착용한 사진을 마스크 착용 여부, 성별, 나이대(30세 미만, 30~59 세, 60세 이상)을 종합한 18개의 클래스로 분류하는 과제
- 프로젝트 개요: timm에서 제공되는 pre-trained EfficientNet을 활용하여 마스크, 성별, 나이대를 분류하는 문제를 세 개의 모델이 각각 학습하여 분류하고 종합하여 18개의 클래스를 출력하는 모델 구성하고 불균형한 dataset을 다루기 위한 imbalanced sampler, augmentation, loss에 weight를 가하는 등 기법을 탐색하여 적용해보았다.
- 활용 장비 및 재료 : (HW) 개인별 v100 서버 1개 (GPU 1개) / (OS) ubuntu 18.04 / (SW) 파이토치, vscode
- 프로젝트 구조 : 파이썬 ide 프로젝트로, train.py를 중심으로 한 파일 구조
- 기대 효과 : 마스크 착용 상태를 판별할 수 있기 때문에 다양한 대면 서비스에서 사용할 수 있을 것이다.

### 2.

1.

## 프로젝트 팀 구성 및 역할

| 김보성 | <ul> <li>적합한 LRscheduler, Optimizer, Model를 탐색</li> <li>편의성 코드/쉘 스크립트 제공</li> <li>체크포인트 활용 탐색, wandb 도입, 하이퍼파라미터 탐색</li> </ul>                                                                    |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 박이삭 | <ul> <li>모델 연령 추측에 대한 가설을 공유하고 검증</li> <li>tqdm postfix를 작성하여 학습 진행상황 확인 기능 추가</li> <li>confusion matrix를 추가하여 wandb를 통한 모델 평가에 도움</li> <li>label smoothing을 적용하고 loss의 weight를 tuning</li> </ul> |
| 사공진 | • baseline 및 team code 분석                                                                                                                                                                         |
| 이하람 | <ul> <li>train/valid split을 사람별로 하되, 클래스 라벨별로 균등하게 분리하는 기능</li> <li>CutMix 적용과 전체 학습 데이터를 이용한 학습 모드 추가</li> <li>f1 score와 early stopping 방법 수정</li> </ul>                                         |
| 전태호 | 학습/추론 시에 class별로 split 기능    split별로 여러 모델로 학습/추론                                                                                                                                                 |
| 정찬미 | <ul> <li>baseline 및 team code 분석</li> <li>여러가지 모델을 대입해서 실험</li> </ul>                                                                                                                             |
| 허진규 | <ul> <li>성능 개선을 위한 Augmentation 방법들에 대해서 탐색</li> <li>Detection을 활용한 Face cropping</li> <li>사소한 코드 오류들 수정</li> <li>응원단장</li> </ul>                                                                 |

### 3.

# 프로젝트 수행 절차 및 방법

(1)

프로젝트의 사전 기획

- 데이터 EDA (8/23) : **EDA와 함께 프로젝트가 시작**되었다. 딥러닝은 모델도 굉장히 중요하지만 결국 **데이터로 시작하고 끝난다**. 데이터의 형태, 특징에 대해서 잘 파악하는 것이 굉장히 중요하다.
- 데이터셋 설계 (8/24): 데이터의 Input 과 output 특징을 파악한 후 model에 **어떤 식으로 연결할지 고민**했다. 이 부분이 잘되어야 데이터 처리 및 모델 설계를 할 때, 방향성을 제대로 잡을 수 있기 때문이다.

#### (2)

프로젝트 수행

• 개인 베이스라인 구축 및 실험 (8/25~8/29) : 문제를 해결할 수 있는 각자의 baseline을 만들고, 빠르게 submission을 진

행했다. 성공적인 제출을 한 후에는 성능을 개선시키기 위한 가설과 검증을 통해서 진행해나갔다. 이때, 다양한 실험에서 잘 동작 할 수 있는 Baseline을 구성해 두는 것이 중요했다.

- 팀 베이스라인 구축 (8/30) : 공통적인 파이썬 프로젝트 기본 베이스라인 코드에 각자 실험했을 때 성능이 좋았던 방법론이나 기능들을 추가하여 팀 베이스라인을 구축하였다.
- 검증셋과 메트릭 점검 (8/31): validation set을 만들고, 평가 metric을 정하는 것은 Generalization 성능을 측정하는 중 요한 부분으로서 프로젝트를 진행하는 동안 필수적인 요소이다. 조심해야 할 점은 내가 하고자 하는 작업에 따라 적합한 Metric 을 정하는 것이 중요했다. 이를 기반으로 Validation과 submission 결과가 다른 이유와 해결법을 고민했다.
- 다양한 가설 검증 실험 (8/25~9/2) : 솔루션을 만드는데 **알맞은 data augmentation, optimizer, model 등에 대해서 가정하고 실험**하며 적합한 결과에 도달할 수 있었다. 학습을 시키는 동안, **다음 실험에 대한 가정을 세우고 실험을 위한 공부와 코드를 작성**했다. 이는, 생산성을 높이기 위한 중요한 부분이라는 것을 느꼈다.

(3) 프로젝트 완료

• 최종 제출물 산출 및 선택 (9/2) : 대회 마지막 날까지 실험한 내용을 바탕으로 가장 리더보드 성능이 좋았던 솔루션을 최종적으로 선택하여 대회를 마무리 하였다.

### 4.

## 프로젝트 수행 결과

(1)

탐색적 분석 및 전처리

- 대회 데이터 : 전체 사람 4,500명의 마스크 착용 사진, 미착용 사진, 혹은 이상하게 착용한 사진, 전체 데이터셋 중에서 60%를 학습 데이터셋으로 활용
- Input이 될 X에 대한 분석
  - 이미지 사이즈 : (width, height) = (384, 512) / 이미지 확장자 : jpg, png, jpeg
  - 분석 대상이 되는 객체(사람)의 위치 : 보통 이미지 중앙
- target이 될 y에 대한 분석
  - y값의 독립적 분포 확인



(핵심) age의 data 분포





y값들간의 관계 분포 확인



(2) 모델 개요

| Dataloader          | Data Augmentation   | Model                         | Optimizer & Scheduler           |
|---------------------|---------------------|-------------------------------|---------------------------------|
| Batch size : 32, 60 | Random Augmentation | EfficientNet_b3a (pretrained) | Adam<br>StepLR, CosineAnnealing |

## (3) 모델 선정 및 분석

- timm의 EfficientNet, Inception\_Resnetv2, DenseNet,ResNext 모델 및 훈련된 가중치 사용
- 가중치 동결(freeze)에 따른 결과 확인
- ImageNet 데이터가 아닌 얼굴 데이터에 학습했던 네트워크 모델 시도
- 결과적으로 사전학습된 EfficientNet\_b3a가 가장 좋은 결과를 도출

### (4) 모델 평가 및 개선

• Confusion Matrix: confusion matrix를 통해 남녀의 나이대 예측에 차이가 있음을 보았고 균일한 예측을 지향하기 위해 남녀 분류 결과에 따라 달리 적용될 수 있게 두 개의 연령 분류모델을 성별을 구분하여 학습 시켜 마스크, 성별, 남성 연령, 여성연령 분류 모델로 총 4개의 EfficientNet을 사용하였다.



(5) 시연 결과

• 위 실험 결과를 바탕으로 전체 데이터셋을 학습하면서 실험 시 early stop이 일어났던 근처에서 가장 좋은 성능을 낸 checkpoint를 선정하여 inference를 진행하여 acc 75.31%, f1 score 0.708의 결과를 얻었다.

| F1     | Accuracy |  |
|--------|----------|--|
| (Rank) |          |  |
|        |          |  |
| 0.708  | 75.318   |  |

### 5.

# 자체 평가 의견

- 달성도, 완성도 : 기본적으로 1등과 0.08 정도의 차이가 나고, 기본적으로 다른 팀들과 비슷한 수준의 모델을 만든 것 같습니다.
- 잘한 부분
  - 팀코드를 빠르게 합친 것
  - 그래픽카드를 쉬지 못하게 한 것
- 시도했으나 잘 되지 않았던 것들
  - Loss의 weight를 통해 나이 분류에서 클래스 추측이 한쪽으로 편향되는 것을 줄일 수는 있었지만 그 이상 정확도 등의 개선을 위해서는 추가적인 기법 도입이 필요했음.
  - 평균적인 얼굴 위치에 대한 Crop을 Augmentation으로 사용하였으나 Test set에서의 평균과 맞지 않았는지 성능 개선 이 없었음.

### • 아쉬웠던 점들

- 더 다양한 아이디어를 시도/실현해보지 못한 것
- 데이터 EDA를 더 열심히 해보지 않은 것
- 실험 관리, 버전 관리를 제대로 하지 못했던 것
- 실험 일지를 작성하지 않은 것

### • 도전할 것, 시도할 것

- 노션 프로젝트 보드로 아이디어와 실험관리를 잘 하면 좋겠다.
- 줌각코 활성화! 서로의 지식, 노하우 공유, 어려운 점 해결