Agrupamentos de Séries Temporais de Imagens de Satélite por *VNS* Básico com Busca Local e Restrições

Wanderson L. da Silva Francisco A. M. Neto

IMECC/Unicamp

2014

Sumário

- Motivação
- 2 Formulação do problema
- Proposta

 Busca local

 Estruturas de vizinhança

 Aplicação em séries temporais
- 4 Conclusão

Plano

- Motivação
- 2 Formulação do problema
- Proposta

 Busca local
 Estruturas de vizinhança

 Aplicação em séries temporais
- 4 Conclusão

Pletora de dados

Aplicações

United States: Influenza-like illness (ILI) data provided publicly by the U.S. Centers for Disease Control

Interdisciplinaridade

Otimização e mineração de dados

- Linear and nonlinear separation of patterns by linear programming
- Integer programming and the theory of grouping
- A branch and bound algorithm for feature subset selection
- Evaluating alternative linear programming models to solve the two-group discriminant problem
- Improved linear programming models for discriminant analysis
- Misclassification minimization
- Support vector networks
- Mathematical programming in data mining
- Feature subset selection within a simulated annealing data mining algorithm
- Optimization-based data clustering using the nested partitions method

Plano

- Motivação
- 2 Formulação do problema
- 3 Proposta Busca local Estruturas de vizinhança Aplicação em séries temporais
- 4 Conclusão

Problema original

Problema de agrupamento por partição

Seja $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_m\}$, onde $\mathbf{x}_i = (x_{i1}, \dots, x_{id}) \in \mathbb{R}^d$. O problema de agrupamento consiste em obter uma partição \mathbf{P}^* de \mathbf{X} em k subconjuntos que atenda um determinado critério de qualidade Q, de forma que $Q(\mathbf{P}^*) \geq Q(\mathbf{P}), \forall \mathbf{P} \in \mathcal{P}$.

Problema de agrupamento por partição

Seja $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_m\}$, onde $\mathbf{x}_i = (x_{i1}, \dots, x_{id}) \in \mathbb{R}^d$. O problema de agrupamento consiste em obter uma partição \mathbf{P}^* de \mathbf{X} em k subconjuntos que atenda um determinado critério de qualidade Q, de forma que $Q(\mathbf{P}^*) \geq Q(\mathbf{P}), \ \forall \mathbf{P} \in \mathcal{P}$.

Problema de agrupamento baseado em centroides

Determinar um conjunto $C^* = \{\mathbf{c}_1, \cdots, \mathbf{c}_k\}$ de centroides que formem k subconjuntos do tipo

$$C_j = \left\{ \forall x \in X \middle| \underset{1 \le l \le k}{\operatorname{argmin}} d(\mathbf{x}, \mathbf{c}_l) = j \right\},$$

de forma que C^* atenda um critério de qualidade Q tal que $Q(\mathbf{C}^*) \geq Q(\mathbf{C})$ para todo C.

Formalização do problema

min
$$f(C) = \sum_{i=1}^{n} \min_{1 \le j \le k} ||x_i - c_j||^2$$

s.a. $C \in \Omega$

tal que:

- 2 $(C_i, C_j \in \Omega, \text{com } C_i \neq C_j) \Rightarrow \mathbf{x} \in C_i \text{ e } \mathbf{y} \in C_j, \text{ então}$ $\exists \mathbf{w} \in \mathbb{R}^d \text{ tal que } (\mathbf{w}^t \mathbf{x}) \cdot (\mathbf{w}^t \mathbf{y}) < 0$

Plano

- Motivação
- 2 Formulação do problema
- 3 Proposta

Estruturas de vizinhança Aplicação em séries temporais

4 Conclusão

Objetivos

Uso combinado da *VNS* com o *k*-médias projetado

Objetivos

Uso combinado da *VNS* com o *k*-médias projetado

Uso do descritor $<\mathcal{F}, L_2>$ para aplicação de métodos de dados estáticos em séries temporais.

1 Um mínimo local com relação a uma estrutura de vizinhança não é necessariamente um mínimo local com relação às outras estruturas de vinhança.

- ① Um mínimo local com relação a uma estrutura de vizinhança não é necessariamente um mínimo local com relação às outras estruturas de vinhança.
- 2 Um mínimo global é um mínimo local com relação a quaisquer estruturas de vizinhança.

- ① Um mínimo local com relação a uma estrutura de vizinhança não é necessariamente um mínimo local com relação às outras estruturas de vinhança.
- 2 Um mínimo global é um mínimo local com relação a quaisquer estruturas de vizinhança.
- Para um grande número de problemas, mínimos locais com relação a uma, ou a várias vizinhanças, são relativamente próximos.

Algorithm 1: esquema geral do algoritmo proposto

```
input
              X
                         conjunto dos pontos \{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n\} a serem agrupados
                         conjunto de centroides iniciais \{\mathbf{c}_1, \mathbf{c}_2, \cdots, \mathbf{c}_k\}
                         conjunto de restrições de caixa \{\mathcal{H}_1, \mathcal{H}_2, \cdots, \mathcal{H}_{k'}\}
              \Omega_c
              k
                         número de grupos a serem gerados
                       tempo máximo de execução
output
                         melhor solução (conjunto de centroides) obtida dentre as
investigadas.
BasicVNS(\mathbf{X}, \mathbf{C}, \Omega_c, k, t_{max})
i_{max} \leftarrow \frac{n}{10}
repeat
      i \leftarrow 1:
      repeat
           \mathbf{C}' \leftarrow \mathsf{Shake}(\mathbf{C}, i):
            \mathbf{C}'' \leftarrow \text{LocalSearch}(\mathbf{X}, k, \mathbf{C}', \Omega_c);
            \mathbf{C}, i \leftarrow \text{NeighbourhoodChange}(\mathbf{C}, \mathbf{C}'', i)
      until i = i_{max};
      t \leftarrow tempo de processamento
until t > t_{max}:
```

Incorporando conhecimento

formas de restrição

Relações de paridade,

Incorporando conhecimento

formas de restrição

- Relações de paridade,
- 2 Amostra de classes,

Incorporando conhecimento

formas de restrição

- 1 Relações de paridade,
- 2 Amostra de classes,
- 3 Seeds para inicialização.

Paradigmas supervisionados, não supervisionados e semissupervisionados

Restritividade por pressupostos

Função LocalSearch

Algorithm 2: *k*-médias projetado

 $\mathbf{C} \leftarrow \text{LocalSearch}(\mathbf{X}, k, \mathbf{C}, \Omega_c)$

passo 1 (inicialização): usar C como solução inicial

passo 2 (atribuição): associar cada elemento x_j , com $j \in \{1, \dots, n\}$, ao centroide mais próximo $(C \rightarrow P)$

passo 3 (teste de otimalidade local): se não houve alguma mudança no passo anterior, parar aqui

passo 4 (projeção): $C' \leftarrow \text{Projection}(C', C, \Omega_c)$

passo 5 (atualização): trocar os centroides C da solução corrente por C' e voltar para o **passo 2**

Espaço factível

 $\Omega_c = \{\mathcal{H}_1, \cdots, \mathcal{H}_{k'}\}, \text{ com}:$

$$\mathcal{H}_i = \left\{ \mathbf{x} \in \mathbb{R}^d \middle| \mu_j - \frac{3\sigma_j}{\sqrt{n_i}} \le x_j \le \mu_j - \frac{3\sigma_j}{\sqrt{n_i}}, \forall j \in \{1, \cdots, d\} \right\},\,$$

onde μ_i e σ_i são, respectivamente, a média e o desvio padrão, na dimensão i, da amostra $A_i = \{\mathbf{x}_1^{(i)}, \dots, \mathbf{x}_n^{(i)}\}$ de uma classe i.

Estrutura de vizinhança 1

realocação dos mais distantes

$$N_i^{(1)}(C_1) = \left\{ C \in \Omega \middle| (r(C_1, C) = i) \bigwedge (\mathbf{w}(C_1) \cdot \mathbf{e}_j \geq L) \right\}$$

com *i* varia entre 1 e *i*.

Medida de aderência

$$\eta(\mathbf{x}_j) = \frac{||\mathbf{x}_j - \mathbf{c}_l|| - \mu_l}{\sigma_l},$$

onde

$$\mu_{I} = \frac{\sum_{\mathbf{x} \in \mathbf{C}_{I}} ||\mathbf{x} - \mathbf{c}_{I}||}{\#\mathbf{C}_{I}},$$

$$\sigma_{I} = \left(\frac{1}{\#\mathbf{C}_{I}} \sum_{\mathbf{x} \in \mathbf{C}_{I}} |||\mathbf{x}_{j} - \mathbf{c}_{I}|| - \mu_{I}|^{2}\right)^{\frac{1}{2}}.$$

Estrutura de vizinhança 2

realocação do mais discrepante

$$N_i^{(2)}(C_1) = \left\{ C \in \Omega \middle| (r(C_1, C) = i) \bigwedge (\Theta(C_1) \cdot \mathbf{e}_j \geq L,) \right\}$$

onde:

- *i* varia entre 1 e *i*,
- L é o i-ésimo maior valor de η entre os elementos da solução C_1 ,
- $\Theta(C_1)$ é o vetor decrescente dos valores η dos elementos de C_1 .

Estrutura de vizinhança 3

realocação intensa

$$extbf{N}_{i}^{(3)}(extbf{\emph{C}}_{1}) = \left\{ extbf{\emph{C}} \in \Omega \middle| \Theta(extbf{\emph{C}}_{i}) \cdot extbf{\emph{e}}_{j} \geq L_{i}
ight\},$$

com
$$L_i = 5 - 0, 1i$$
.

transformação de dados

Análise funcional

Para y(k), com $k \in \{1, 2, 3, \dots, n\}$, têm-se:

$$y_t = \bar{y} + \sum_{k=1}^{\lfloor \frac{n}{2} \rfloor} \left[A_k \cos \left(\frac{2\pi kt}{n} \right) + B_k \sin \left(\frac{2\pi kt}{n} \right) \right],$$

onde \bar{y} é a média aritmética dos dados e

$$A_k = \frac{2}{n} \sum_{t=1}^n y_t \cos\left(\frac{2\pi kt}{n}\right)$$
 e $B_k = \frac{2}{n} \sum_{t=1}^n y_t \sin\left(\frac{2\pi kt}{n}\right)$.

Plano

- Motivação
- 2 Formulação do problema
- 3 Proposta

 Busca local
 Estruturas de vizinhança
 Aplicação em séries temporais
- 4 Conclusão

Trabalhos futuros

benckmarking

Avaliar comparativamente o método proposto em dados sintéticos, reais e nas séries temporais de *NDVI*.

algoritmos	B-cubed recall	B-cubed precision	MSSC
k-médias Multi-start k-médias COP k-médias			
k-médias projetado			
$VNS + N^{(1)(2)(3)} + k$ -médias			
$VNS + N^{(1)(2)(3)} + COP k$ -médias			
$VNS + N^{(1)(2)(3)} +$			
<i>k</i> -médias projetado			