EC2104 Tutorial 7 solution

ling

Section 1

Question 7: Finding eigenvalues and eigenvectors

Question 7: Finding eigenvalues and eigenvectors

Given
$$\mathbf{A} = \begin{pmatrix} -1 & 3 \\ 2 & 0 \end{pmatrix}$$

Find eigenvectors and eigenvalues

•
$$\mathbf{A} - \lambda \mathbf{I} = \begin{pmatrix} -1 - \lambda & 3 \\ 2 & -\lambda \end{pmatrix}$$

- Solving $det(\mathbf{A} \lambda \mathbf{I}) = 0 = (1 + \lambda)\lambda 6 \Rightarrow \lambda_1 = 2, \lambda_2 = -3$
- Solving $(\mathbf{A} \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$

•
$$\lambda = 2 : \begin{bmatrix} -3 & 3 & 0 \\ 2 & -2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \mathbf{v} = s \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

•
$$\lambda = -3 : \begin{bmatrix} 2 & 3 & 0 \\ 2 & 3 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{3}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \mathbf{v} = \mathbf{s} \begin{pmatrix} -\frac{3}{2} \\ 1 \end{pmatrix}$$

Section 2

Question 7: Eigendecomposition

Question 7: Eigendecomposition

Given
$$\mathbf{A} = \begin{pmatrix} -1 & 3 \\ 2 & 0 \end{pmatrix} \mathbf{D} = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix} \mathbf{P} = \begin{pmatrix} 1 & -3 \\ 1 & 2 \end{pmatrix} \mathbf{P}^{-1} = \frac{1}{5} \begin{pmatrix} 2 & 3 \\ -1 & 1 \end{pmatrix}$$

- Since $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$, we have $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$
 - $D := [\lambda_1 \ \lambda_2], P := [v_1 \ v_2]$
 - $AP = PD \Rightarrow APP^{-1} = PDP^{-1}$

• AP =
$$\begin{pmatrix} -1 & 3 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 1 & -3 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 9 \\ 2 & -6 \end{pmatrix}$$

• PD = $\begin{pmatrix} 1 & -3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix} = \begin{pmatrix} 2 & 9 \\ 2 & -6 \end{pmatrix}$

• PD =
$$\begin{pmatrix} 1 & -3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix} = \begin{pmatrix} 2 & 9 \\ 2 & -6 \end{pmatrix}$$

• Note:
$$\mathbf{DP} = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix} \begin{pmatrix} 1 & -3 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & -6 \\ -3 & -6 \end{pmatrix}$$

Eigendecomposition (cont)

Given
$$\mathbf{A} = \begin{pmatrix} -1 & 3 \\ 2 & 0 \end{pmatrix} \mathbf{D} = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix} \mathbf{P} = \begin{pmatrix} 1 & -3 \\ 1 & 2 \end{pmatrix} \mathbf{P}^{-1} = \frac{1}{5} \begin{pmatrix} 2 & 3 \\ -1 & 1 \end{pmatrix}$$

Eigendecomposition: $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$

- In general, power of diagonal matrix is the power of the entries
 - i.e. $\begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}^n = \begin{pmatrix} 2^n & 0 \\ 0 & (-3)^n \end{pmatrix}$
- Using eigendecomposition we have $\mathbf{A}^n = \mathbf{P}\mathbf{D}^n\mathbf{P}^{-1}$
 - $\mathbf{A}^n = \mathbf{A}\mathbf{A}\cdots\mathbf{A} = (\mathbf{P}\mathbf{D}\mathbf{P}^{-1})(\mathbf{P}\mathbf{D}\mathbf{P}^{-1})\cdots(\mathbf{P}\mathbf{D}\mathbf{P}^{-1})$
 - Note that $\mathbf{PP}^{-1} = \mathbf{I}$
 - Simplifying: $\mathbf{A}^n = \mathbf{PDD} \cdots \mathbf{DP}^{-1} = \mathbf{PD}^n \mathbf{P}^{-1}$