Class/Discussion Section: CS143/1A

PROBLEM 1: Suppose relation R(A, B, C) has the tuples:

Α	В	С
3	2	1
3 4 4 2	2 2 5 5	1 3 6 3 6
4	5	6
2	5	3
1	2	6

and relation S(A, B, C) has the tuples:

Α	В	С
2	5	3
2	5	4
4	2	3
3	2	1

Compute $(R - S) \cup (S - R)$, often called the "symmetric difference" of R and S. List all the tuples in the result relation.

SOLUTION: Relation $(R - S) \cup (S - R)$ has tuples:

Α	В	С
4	5	6
1	2	6
2	5	4

PROBLEM 2: Suppose relation R(A, B) has the tuples:

Α	В
1	2
3	4
5	6

and relation S(B, C, D) has the tuples:

В	C	D
2	4	6
8	6	8
7	5	9

Compute $R \bowtie_{R.A < S.C \cap R.B < S.D} S$ and list all the result tuples.

Class/Discussion Section: CS143/1A

SOLUTION: Relation $R \bowtie_{R.A < S.C} S$ has tuples:

R.A	R.B	S.B	S.C	S.D
1	2	2	4	6
1	2	8	6	8
1	2	7	5	9
3	4	2	4	6
3	4	8	6	8
3	4	7	5	9
5	6	8	6	8

Relation $R \bowtie_{R.B < S.D} S$ has tuples:

R.A	R.B	S.B	S.C	S.D
1	2	2	4	6
1	2	8	6	8
1	2	7	5	9
3	4	2	4	6
3	4	8	6	8
3	4	7	5	9
5	6	8	6	8
5	6	7	5	9

Relation $R \bowtie_{R.A < S.C \cap R.B < S.D} S$ has tuples:

R.A	R.B	S.B	S.C	S.D
1	2	2	4	6
1	2	8	6	8
1	2	7	5	9
3	4	2	4	6
3	4	8	6	8
3	4	7	5	9
5	6	8	6	8

PROBLEM 3: Assume the following database for this problem. The relations represent information on bank branches:

Customer(customer - name, street, city)
Branch(branch - name, city)
Account(customer - name, branch - name, account - number)

The *Customer* relation has the customer names and their addresses.

Write a relational-algebra expression for each of the following queries:

Class/Discussion Section: CS143/1A

- a) Find names of all customers who have an account in 'Region12' branch.
- b) Find names of all customers who have an account in a branch NOT located in the same city as the one they live in.
- c) Find the branches that do not have any accounts.
- d) Find names of customers who do not have any accounts in the 'Region12' branch.
- e) Find names of customers who have accounts in all the branches located in 'Los Angeles'.
- f) Find names of customers who have only one account.

SOLUTIONS:

a)
$$\pi_{customer-name}\left(\sigma_{branch-name='Region12'}(Account)\right)$$
b) $\pi_{customer-name}\left(\sigma_{A.city<>B.city\land A.branch-name=B.branch-name}(\rho_B(Branch) \times \rho_A(Customer \bowtie Account))\right)$
c) $\pi_{branch-name}(Branch) - \pi_{branch-name}(Account)$
d) $\pi_{customer-name}(Customer) - \pi_{customer-name}\left(\sigma_{branch-name='Region12'}(Account)\right)$
e) $\pi_{customer-name}(Customer) - \pi_{customer-name}\left(\pi_{customer-name}(Customer) \times \pi_{branch-name}\left(\sigma_{city='LosAngeles'}(Branch)\right) - \pi_{customer-name,branch-name}(Account)\right)$

f) $\pi_{customer-name}(Customer) - \pi_{A.customer-name}(\sigma_{(A.branch-name <> B.branch-name <> A.customer-name}) \wedge A.customer-name = B.customer-name$ $(\rho_A(Account) \times \rho_B(Account))$

PROBLEM 4: The relation Student(sid, GPA) captures the student-GPA information, where sid is the id of a student and GPA is the student's GPA. Write a relational algebra that finds the ids of the students with the lowest GPA.

SOLUTION:

$$\pi_{sid}(Student) - \pi_{A.sid}\left(\sigma_{A.sid <> B.sid \land A.GPA > B.GPA}(\rho_A(Student) \times \rho_B(Student))\right)$$