

1/1

PATENT ABSTRACTS OF JAPAN

(11)Publication number: 05211868

(43)Date of publication of application: 24.08.1993

(51)Int.CI.

C12N 9/52 //(C12N 9/52 C12R 1:64)

(21)Application number: 03084324

(71)Applicant:

HOKKAIDO TOGYO KK

(22)Date of filing: 26.03.1991

(72)Inventor:

SHIBATA TOMOHIKO MATSUDA HISAO

TSUTSUMI TAIRA SUZUKI HIDEO NIIMURA YOICHI YAMAYA YOKO

(54) PRODUCTION OF ALKALI PROTEASE

(57)Abstract:

PURPOSE: To provide an alkali protease for carrying out proteolysis in a low- temperature area, capable of utilizing for food processing, industry, detergent, etc. CONSTITUTION: The objective alkali protease is produced by culturing a bacterial strain of the genus Xanthomonas capable of culturing at 10–20° C, concretely, Xanthomonas sp. S-1 (FERM P-12087) in a nutrient medium. The alkali protease has activity even in a low-temperature area, though the optimum temperature is about at 40° C.

LEGAL STATUS

[Date of request for examination]

26.03.1991

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998 Japanese Patent Office

MENU

SEARCH

INDEX

(19)日本国特許庁 (JP) (12)公開特許公報 (A)

FΙ

(11)特許出願公開番号

特開平5-211868

(43)公開日 平成5年(1993)8月24日

(51) Int. Cl. 5

識別記号 庁内整理番号

技術表示箇所

C12N 9/52

7823-4B

//(C12N 9/52

C12R 1:64)

審査請求 有 請求項の数2 (全8頁)

(21)出願番号

特願平3-84324

(22)出願日

平成3年(1991)3月26日

特許法第30条第1項適用申請有り 平成3年3月15 日 社団法人日本農芸化学会発行の「日本農芸化学会誌 65巻03号講演要旨集」に発表

(71)出願人 000241968

北海道糖業株式会社

東京都千代田区神田神保町2丁目1番地

(72)発明者 柴田 知彦

北海道網走市潮見1-358-32

(72)発明者 松田 久男

北海道中川郡本別町勇足38-6

(72)発明者 堤 平

北海道北見市北上101-15

(72)発明者 鈴木 英雄

北海道網走市南7条東3丁目

(74)代理人 弁理士 田中 昭雄

最終頁に続く

(54) 【発明の名称】アルカリプロテアーゼの製造方法

(57)【要約】

【目的】 低温領域で、蛋白質分解を目的とする食品加 工用、工業用、洗剤用等に利用可能なアルカリプロテア ーゼを提供することを目的とする。

【構成】 10~20℃の温度領域で培養可能な菌株・キサ ントモナス属、具体的にはキサントモナス・エスピー(X anthmonas sp.)S-1 (微工研寄託菌寄第12087 号) を栄 養培地にて培養することにより、至適温度は40℃前後で あるが低温領域でも活性を有するアルカリプロテアーゼ の製造方法。

【特許請求の範囲】

【請求項1】 キサントモナス属の菌株を栄養培地にて 培養し、培養物中にアルカリプロテアーゼを蓄積せし め、該培養物からアルカリブコテアーゼを採取すること を特徴とするアルカリプロデアーゼの製造方法。

キサントモナス属の菌株が、キサントモ 【請求項2】 ナス・エスピー(Kanthmonas sp.) S-1(激工研寄託 - 菌 寄第(2087号) であることを特徴とする特許請求の範囲 第1項記載のアルカリプロテアーゼの製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、アルカリプロテアー ゼの製造方法に関し、更に詳してはキサントモナス属に 属する激生物が生産する低温領域で活性を有するアルカ リプロテアーゼの製造方法に関する。

[0002]

【逆来の技術】アルカリプロテアーゼは、パチルス属、 ストレプトマイセス属、アスペルギルス属等の微生物を 利用して生産されるものが知られている。

【り003】このアルカリプロテアーゼは、食品加工、 洗剤、皮なめし(脱毛)、フィルムからの銀回収等かな り広い分野で利用されているが、近年洗剤を始めとして 酵素を低温で有効に作用するアルカリプロテアーゼの生 産が望まれており、またこの酵素が低温による培養で生 産されることが期待されている。

[0004]

【発明が解决しようとする問題点】現在、より低温で活 性を有するアルカリプロテアーゼとして市販されている アルカリプロテアーゼ (商品名 APJ-21:昭和電工製) が 洗浄力は必ずしも満足できるものでない。

[0005]

【問題点を解決するための手段】本発明者らは、低温領 域で充分な洗浄効果を有するアルカリプロテアーゼの生 産、更に低温培養で効率よくアルカリプロテアーゼを生 産させる方法について鋭意研究を重ね、広く自然界より アルカリプロテアーゼ生産菌を検索した結果、キサント モナス属に属する菌株から低温領域で活性を有するアル カリプロテアーゼが得られることを見出し、この発明を 完成するに至ったものである。

【0006】即ち、従来の菌株では一般に酵素の生産は 30℃以上の培養温度が普通であるが、この発明のキサン トモナス菌株は10~25℃の温度領域で培養され、15℃の 培養温度でアルカリプロテアーゼの生産が最大となり、 低温領域で活性を有するアルカリプロテアーゼが得られ

【0007】この発明のアルカリプロテアーゼを生産す る分離菌株の菌学的性質について、以下に示す。

A、严重的性質

肉汁寒医培地上で30℃、2日間培養した時、以下の用態。50~m、好ましてはpH3.2~8.7 である。但し、この条件

的特徴が観察された。

 細胞の形 :桿菌

大きさ

コロニーの大きさ :直径 0.5mm

2) 運動性 :有り

3) 胞子 :形成されない

2

4) グラム染色 : 陰性

【0008】B. 生理的性質

1) 硝酸塩の還元

10 2) インドール 生成

アルギニンデハイドラーゼ:-3 1

41 ウレアーゼ

βーガラクトシダーゼ

オキシダーゼ

7) カタラーゼ

8) ゼラチンの加水分解

9) ツィーン80の加水分解 10) 0Fテスト

11)

生育の温度範囲 : 37℃

20 12) グルコーてからの酸生成 :-

マルトースからの酸生成 :-13)

糖類及び有機酸の消化性 14) グルコース

: + カプロン酸 アラビノース :-マレイン酸 マンニット : -クエン酸 マルトース : + フェニル酢酸

マンノース アジピン酸 : + ブルコン酸

【0009】以上の菌学的性質からこの菌株は、キサン あるが、このプロテアーゼについても低温領域における 30 トモナス属に属するとみなされる。したがって、本菌株 をキサントモナス・エスピー(Xanthomonas sp.) S-1 と 命名し、工業技術院激生物工業技術研究所に寄託した。 寄託番号は微工研寄託 菌寄第12087 号である。

> 【0010】この発明に使用する微生物としては、上記 キサントモナス・エスピー(Xanthomonas sp.) S-1(微工 研寄託 茵寄第12087号)が挙げられるが、この菌だけ に限らずキサントモキス属に属し低温領域でアルカリブ ロテアーゼを生産する菌は全てこの発明において使用す ることができる.

【0011】この発明においてアルカリプロテアーゼを 40 生産する培地としては、通常の微生物の培養に用いられ るもので、本菌株に利用可能なもので有れば良く、炭素 **源としてはデンプン、デキストリン、糖蜜、グルコー** ス、無機塩としてはリン酸2ナトリウム、硫酸マグネシ ウム等の塩類や炭酸塩を加えてアルカリ性培地が好まし - 4、窒素源としては硝酸ナトリウム、尿素、有機窒素源 等が使用される。

【0012】培養温度は10~25℃の範囲にあり、好まし では12~17℃である。培養pH7.0~9.0 の範囲にあ

に限定されるものではない。培養は通常48~96時間培養 することにより、培養液中にアルカリプロテアーゼが蓄 積される。

【0013】培養終了後、培養液より遠心分離及び濾過 などの一般的な固液分離手段により菌体及び不溶物を除 いて粗酵素液を得る。このようにして得られた粗酵素液 を硫安塩析によりアルカリプロテアーゼを得る。このま まで使用するか、更に透析、有機溶媒分別法、カラムク ロマト等公知の精製法により精製しても良い。

的性質は次の通りである。

a. 作用

アルカリ条件下で各種のタンパク質を分解する。

b. 至適pH及び安定pH範囲

至適pHは10.5~12であり、安定pH範囲は相対活性90 * 以上としたとき p H 7 ~12である。

c. 至適温度と耐熱性

至適温度は45℃であり、30℃の温度まで活性が維持され る。更に、Ca^{1 5} 5 mM 添加により、耐熱性は約10℃向上す

【0015】以上で明らかなように、この発明によれば 比較的低温領域で活性なアルカリプロテアーゼをキサン

トモナス国の菌株より低温培養で効率よく生産すること ができる。

[0016]

【実施例】以下、実施例によりこの発明を具体的に説明 する.

実施例 1

普通寒天培地にキサントモナス・エスピー(Kanthomonas sp.) 3-1(微工研寄託菌寄第12087 号) を接種し、15℃ で3日間培養する。次にミルクカゼイン1%、塩化カリウ 【0014】得られたアルカリプロテアーゼの物理化学 10 ム0.2%、硫酸マグネシウム0.02%、グルコース1%、酵母 エキス0.4%、リン酸2ナトリウム1.2%を含む液体培地を 120 ℃にて20分間滅菌した後、別途滅菌した0.1M炭酸ナ トリウム緩衝液(pH10.5)を容量比0.25% 添加し、pH8.5の 培養液を調製した。この培養液を500ml 容振盪フラスコ に100ml 分注し、上記培養した種菌を1白金耳接種し、 10℃、15℃、23℃、30℃の各温度で72時間振盪培養し た,24時間ごとにpH, 菌体濃度(OD.,,nmの吸光値), 酵 素活性を測定し、各培養温度での最大菌体濃度値及び最 大酵素活性値を下記表1に示す。

> 20 [0017]

> > 【表1】

表 1

培養温度	最大菌体濃度値	最大活性値
(℃)	(A ₈₈₀)	(PU/m1)
10	6.0	285
15	5.8	370
23	5.2	160
30	5.1	43

【0018】なお、アルカリプロテアーゼの酵素活性側 定方法は次の方法で行なった。30℃に保温した2%カゼイ ン溶液(pH10.5)1.0ml に適宜希釈した酵素1.0ml を加え 10分間反応させた後、トリクロロ酢酸混液4.0ml を加え て反応を停止させ、30℃20分間放置し、東洋遮紙No.6で 週別後、週夜1.0ml に0.4M- 炭酸ナトリウム溶液5.0ml を加え、これに5倍希釈したフォリン試薬1.0ml を加え て30℃で20分間放置し、660nmでの吸光度を測定する。前 記条件下で1分間にチロシン1 μg 相当量を遊離させる 酵素量を工単位(pu)とする。

【0019】以上表1に示した結果より明らかなよう に、キサントモナス・エスピー(Xanthomonas sp.) S-1 (微工研寄託菌寄第12087号) では培養温度10~15℃程 度の比較的低温の培養温度でアルカリプロテアーゼの最 大活性値が得られた。

【0020】実施例2

培養温度を15℃に設定する以外は実施例1と同じ条件で 6 本培養し、得られた培養液480ml を遠心分離により徐 |菌し、上澄液450ml(350Pl/ml)||を得た。この上澄液に硫 50 安を加え70% 飽和とし、アルカリプロチアーゼを析出さ

反応条件:30分間

酵素量 : 30PU/ml

基質濃度:1%

6

蛋白質分解率の測定は、アンソンー萩原変法に従い、各

基質と所定の条件で反応させた後、直ちにBio-Rad のPr

olein Assay を用い蛋白質量を測定し、未反応分との比

により分解率を求めた。その結果を下記表2に示す。

せ、遠心分離により塩析物を回収した。この塩析物を50 mMトリスーHCL 緩衝液(pH8.0) 5ml に溶解し、該溶液を 透析膜に入れ、該緩衝液にて1夜透析し、15回の粗酵素 液(8.050PU/ml)を得た。この酵素を使用し、以下アルカ リプロテアーゼの物理化学的性質を調べた。

【0021】(1)作用(アルカリ条件下における各種 蛋白質の分解率)

測定条件 pH

: 10.5(10mM ホウ砂-NaOH 緩衝液)

温度 :30℃

[0022]

表 2

【表2】

カゼイン	ゼイン	大豆蛋白	ヘモグロビン
(%)	(%)	(%)	(%)
94.0	85.0	70.0	45.0

【0023】(2)至適pH及び安定pH範囲

至適pHは、カゼイン1%を含む各pHの緩衝液に酵素を 30PU/ml となるように加え、30℃で10分間反応させ、各 p Hにおける活性を測定することにより求めた。図1に 至適pHでの活性を100 とした時の各pHでの相対活性 として示す。

【0024】また、安定pH範囲は各pHの緩衝液に酵 素を210PU/m1となるように加え、15℃で24時間インキュ 30 の各温度との相対活性を図3に示す。 ペートした後、30℃, pH10.5 で活性を測定することによ り求めた。図2にインキュペート前のpH10.5における活 性を100 とした時の相対活性として示す。なお、使用し た緩衝液及びそのpH範囲は以下の通りである。

[0025]

pH範囲 緩衝液 pH $3 \sim 7$ McIlvaine pH 7∼9 トリスーHCL pH 9 ホウ砂-HCI pH 10 ∼12 ホウ砂-HCL

【0026】図1、図2から明らかなように、至適pH は10 5~12である。また、安定pH範囲は相対活性90% 以上としたときpH7~12である。

【0027】(3)至適温度及び耐熱性

至適温度は、基質として1%カゼインを含むpH10.5の緩衝 液に酵素を加え、10分間各温度で反応させ、活性を測定 することにより求め、至適温度での活性を100とした時

【0028】耐熱性は、50mMトリスーHCI 緩衝液(pH8.

0) に210PU/miの酵素を加え、各温度で3時間熱処理 し、水冷した後、30℃,pH10.5 で活性を測定することに より求め、熱処理前のpH10.5における活性を100 とした 時の相対活性として図4に示す。

【0029】Ca¹¹塩添加(Ca¹¹塩添加量:5mM)による耐 熱性の向上を下記表3に示す。

[0030]

【表3】

40

反応温度(%)	相対性(%)	
	Ca²+塩無添加	Ca²→塩5mW
4	100	100
10	100	100
20	100	100
2 5	100	100
30	98	100
35	66	96
40	50	88
45	5	77
50	0	54

【0031】図3、図4から明らかなように至適温度は 表 3 に示すごとくCa¹¹ 5 mM 添加により、耐熱性は約10℃ 30 Ø p H : 10.5(10 mM ホウ砂-NaOH **緩衝液**) 向上した。

【0032】 (4) 金属イオンの影響

下記測定条件の下で各裁衝液に一定量の本酵素液を加 え、各種金属塩を1mM 添加25℃恒温槽で1 時間保温後、 酵素の残存活性を測定し、金属塩無添加の活性を100と したときの相対活性を下記の表4に示す。

【0033】測定条件

温度 :30℃ 反応時間:10分間

基質: 1% カゼイン溶液(各緩衝液で調整)

[0034]

【表4】

10

金属塩	相対活性(%)	
	pH7.0	pH10.5
無添加	100	100
NaNoO.	100	100
Ca(CH ₃ COO) ₂	100	100
BaCl2	100	100
CoClz	100	100
HgCl ₂	88	6
ZnSO ₄	100	100
CuSO.	100	100
MgS0₄	100	100
FeSO.	100	100
MnSO ₄	100	100
Al ₂ (SO ₄) ₃	88	100
Fe ₂ (SO ₄) ₃	13	92

【0035】表4より明らかなように、この発明に係る 酵素液はpH7.0 の条件で3価の鉄イオンに、pH10.5の条 件で水銀イオンに強く活性を阻害される他は、他の金属 イオンには活性を殆ど阻害されることはなかった。

【0036】(5)阻害剤の影響

下記測定条件の下で20mMトリス-HCI緩衝液(pH7.0) にこ 40 碁質 : 1% カゼイン溶液 (上記緩衝液で調整) の発明で得られた酵素液を加え、各阻害剤を所定濃度添 加して25℃で30分間処理した後、酵素の残存活性を測定 し、阻害剤無添加の活性を100 としたときの相対活性を

下記表5に示す。

【0037】測定条件

pH: 7.0(20aMトリスーHCL 緩衝液)

温度 :30℃ 反応時間:10分間

[0038]

【表 5】

表 5

阻害剤	濃度 (mM)	相対活性(%)
無添加	_	100
DFP	1 5	62 28
PMSF	1 5	13 10
EDTA-2Na	1 5	8 0 7 6
РСМВ	1 5	100 97
TPCK	1 5	94 81
TLCK	1 5	98 93
HgCl ₂	1 5	87 72

DFP : ジイソプロピルフルオロリン酸

PMSF : フェニルメタンスルフォニルフルオリド

PCMB : パラクロロマーキュリー安息香酸

TPCK : トシルフェニルアラニンクロロメチルケトン

TLCK :トシルリシンクロロメチルケトン

【0039】表5から明らかなように、この発明に係る 酵素はセリンプロテアーゼ阻害剤のジイソプロピルフル オロリン酸 (DFP) やフェニルメタンスルフォニルフ ルオリド(PMSF)による活性の阻害が、金属プロテ アーゼ阻害剤のエチレンジアミンテトラアセテート-2Na (EDTA-2Na) やSHプロテアーゼ阻害剤のパラ

阻害に比べ高いため、この発明に係る酵素は活性中心に セリン残基を持つセリンプロテアーゼであると推定され

【0040】また動物のセリンプロテアーゼのキモトリ プシンの阻害剤であるトシルフェニルアラニンクロロメ チルケトン (TPCK) 或はトリプシンの阻害剤である クロロマーキュリー安息香酸(PCMB)による活性の 50 トシルリシンクロロメチルケトン(TLCK)によって

特開平5-211868

14

殆ど活性は阻害されないことが明かとなった。

【図面の簡単な説明】

【図1】実施例2で得られた粗酵素液の至適pHを示す 図

13

【図2】実施例2で得られた粗酵素液の安定pH範囲を

示す図

【図3】実施例2で得られた粗酵素液の至適温度を示す 図

【図4】実施例2で得られた粗酵素液の耐熱性を示す図

[図2]

【図3】

[図4]

フロントページの続き

(72)発明者 新村 洋一

北海道網走市駒場5-71-1

(72)発明者 山屋 陽子

北海道網走市南5条西4丁目