Equations and Math Supplement

Daniel Ari Friedman ORCID: 0000-0001-6232-9096 Email: daniel@activeinference.institute

August 16, 2025

Contents

1	Equations and Math Supplement (Appendix)
	1.1 Volume of a Tetrahedron (Lattice)
	1.2 Expanded Ace 5×5 Matrix
	1.3 Cayley-Menger Determinant (Coxeter.4D)
	1.4 Piero della Francesca Formula (PDF)
	1.5 Gerald de Jong Formula (GdJ)
	1.6 Fisher Information Matrix (FIM)
	1.7 Empirical Fisher Information Matrix
	1.8 Natural Gradient
	1.9 Free Energy (Active Inference)
	1.10Quadray Normalization (Fuller.4D)
	1.11 Distance (Embedding Sketch; Coxeter.4D slice)
	1.12 Minkowski Line Element (Einstein.4D analogy)
	1.13 High-Precision Arithmetic Note
	1.13.1Reproducibility artifacts and external validation
	1.14 Namespaces summary (notation)

1 Equations and Math Supplement (Appendix)

1.1 Volume of a Tetrahedron (Lattice)

$$V = \frac{1}{6} \left| \det \left[P_1 - P_0, \ P_2 - P_0, \ P_3 - P_0 \right] \right| \tag{1}$$

Notes.

• P_0, \dots, P_3 are vertex coordinates; the determinant computes the volume of the parallelepiped spanned by edge vectors, with the 1/6 factor converting to tetra volume.

Tom Ace 5×5 tetravolume (IVM units):

$$V_{ivm} = \frac{1}{4} \left| \det \begin{pmatrix} a_0 & a_1 & a_2 & a_3 & 1 \\ b_0 & b_1 & b_2 & b_3 & 1 \\ c_0 & c_1 & c_2 & c_3 & 1 \\ d_0 & d_1 & d_2 & d_3 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix} \right|$$
 (2)

Notes.

• Rows correspond to Quadray 4-tuples of the vertices; the last row encodes the affine constraint. Division by 4 returns IVM tetravolume.

Expanded Ace 5×5 Matrix

The expanded form of the Ace 5×5 matrix with explicit Ouadray coordinates:

$$M(q_0,q_1,q_2,q_3) = \begin{bmatrix} q_{01} & q_{02} & q_{03} & q_{04} & 1\\ q_{11} & q_{12} & q_{13} & q_{14} & 1\\ q_{21} & q_{22} & q_{23} & q_{24} & 1\\ q_{31} & q_{32} & q_{33} & q_{34} & 1\\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}, \qquad V_{ivm} = \frac{1}{4} \left| \det M(q_0,q_1,q_2,q_3) \right| \tag{3}$$

Notes.

- Matrix structure: Each row represents a vertex with its Quadray coordinates plus affine coordinate 1.
- **Last row**: Enforces projective normalization constraint.
- **Volume computation**: Determinant divided by 4 gives IVM tetravolume.

XYZ determinant volume and S3 conversion:

$$V_{xyz} = \frac{1}{6} \left| \det \begin{pmatrix} x_a & y_a & z_a & 1 \\ x_b & y_b & z_b & 1 \\ x_c & y_c & z_c & 1 \\ x_d & y_d & z_d & 1 \end{pmatrix} \right|, \qquad V_{ivm} = S3 \, V_{xyz}, \quad S3 = \sqrt{\frac{9}{8}}$$
 (4)

Notes.

• Homogeneous determinant in Cartesian coordinates for tetra volume; conversion to IVM units uses S3 = $\sqrt{9/8}$ as used throughout.

Cayley-Menger Determinant (Coxeter.4D)

For tetrahedron volume from edge lengths (Coxeter.4D approach):

$$288 V^{2} = \det \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & d_{01}^{2} & d_{02}^{2} & d_{03}^{2} \\ 1 & d_{10}^{2} & 0 & d_{12}^{2} & d_{13}^{2} \\ 1 & d_{20}^{2} & d_{21}^{2} & 0 & d_{23}^{2} \\ 1 & d_{30}^{2} & d_{31}^{2} & d_{32}^{2} & 0 \end{pmatrix}$$
 (5)

Notes.

- Pairwise distances: d_{ij} are Euclidean distances between vertices P_i and P_j .
 Length-only formulation: Cayley-Menger provides a length-only formula for simplex volumes, here specialized to tetrahedra.
- Conversion to IVM: Use $V_{ivm} = S3 \cdot V_{xyz}$ with $S3 = \sqrt{9/8}$ to convert to IVM units.

Piero della Francesca Formula (PDF)

For tetrahedron volume from edge lengths meeting at a vertex:

$$144\,V_{xyz}^2 = 4a^2b^2c^2 - a^2\,(b^2 + c^2 - f^2)^2 - b^2\,(c^2 + a^2 - e^2)^2 - c^2\,(a^2 + b^2 - d^2)^2 + (b^2 + c^2 - f^2)(c^2 + a^2 - e^2)(a^2 + b^2 - d^2) \\ \tag{6}$$

Notes.

- **Edge lengths**: a, b, c are edges meeting at a vertex, d, e, f are opposite edges.
- Conversion to IVM: Use $V_{ivm} = S3 \cdot V_{xyz}$ with $S3 = \sqrt{9/8}$.

1.5 Gerald de Jong Formula (GdJ)

Native Quadray formula for tetrahedron volume:

$$V_{ivm} = \frac{1}{4} \left| \det \begin{pmatrix} a_1 - a_0 & a_2 - a_0 & a_3 - a_0 \\ b_1 - b_0 & b_2 - b_0 & b_3 - b_0 \\ c_1 - c_0 & c_2 - c_0 & c_3 - c_0 \end{pmatrix} \right|$$
 (7)

Notes.

- Quadray differences: Each column represents edge vectors P_1-P_0 , P_2-P_0 , P_3-P_0 in Quadray coordinates.
- Native IVM: Returns tetravolume directly in IVM units without conversion.
- Integer arithmetic: Exact for integer Quadray coordinates.

See code: tetra_volume_cayley_menger. For tetrahedron volume background, see Tetrahedron - volume. Exact integer determinants in code use the Bareiss algorithm. External validation: these formulas align with implementations in the 4dsolutions ecosystem. See the Resources section for comprehensive details.

1.6 Fisher Information Matrix (FIM)

Background: Fisher information.

$$F_{i,j} = \mathbb{E}\left[\frac{\partial \log p(x;\theta)}{\partial \theta_i} \frac{\partial \log p(x;\theta)}{\partial \theta_i}\right] \tag{8}$$

Notes.

• Defines the Fisher information matrix as the expected outer product of score functions; see Fisher information

Figure: empirical estimate shown in the FIM heatmap figure. See code: fisher information matrix.

See src/information.py — empirical outer-product estimator (fisher_information_matrix).

1.7 Empirical Fisher Information Matrix

For empirical estimation from data, the Fisher Information Matrix is computed as:

$$F_{i,j} = \frac{1}{N} \sum_{n=1}^{N} \frac{\partial \log p(x_n; \theta)}{\partial \theta_i} \frac{\partial \log p(x_n; \theta)}{\partial \theta_j}$$
 (9)

Notes.

- Empirical estimate of the FIM from N data samples; converges to the theoretical FIM as $N \to \infty$.
- Used in natural gradient descent and information geometry applications.

1.8 Natural Gradient

Background: Natural gradient (Amari).

$$\theta \leftarrow \theta - \eta F(\theta)^{-1} \nabla_{\theta} L(\theta) \tag{10}$$

Explanation.

• Natural gradient update: right-precondition the gradient by the inverse of the Fisher metric (Amari); see Natural gradient.

See code: natural_gradient_step.

See src/information.py — damped inverse-Fisher step (natural gradient step).

1.9 Free Energy (Active Inference)

$$\mathcal{F} = -\log P(o \mid s) + \text{KL}[Q(s) \parallel P(s)] \tag{11}$$

Explanation.

• **Partition**: variational free energy decomposes into expected negative log-likelihood and KL between approximate posterior and prior; see Free energy principle.

See code: free_energy.

See src/information.py — discrete-state variational free energy (free energy).

Note: The main figures demonstrating natural gradient trajectories and free energy landscapes are shown in Section 4: Optimization in 4D. The appendix focuses on unique figures specific to mathematical formulations and validation.

1.10 Quadray Normalization (Fuller.4D)

Given q=(a,b,c,d), choose $k=\min(a,b,c,d)$ and set q'=q-(k,k,k,k) to enforce at least one zero with non-negative entries.

1.11 Distance (Embedding Sketch; Coxeter.4D slice)

Choose linear map M from quadray to \mathbb{R}^3 (or \mathbb{R}^4) consistent with tetrahedral axes; then $d(q_1,q_2)=\|M(q_1)-M(q_2)\|_2$.

1.12 Minkowski Line Element (Einstein.4D analogy)

$$ds^2 = -c^2 dt^2 + dx^2 + dy^2 + dz^2 (12)$$

Background: Minkowski space.

1.13 High-Precision Arithmetic Note

When evaluating determinants, FIMs, or geodesic distances for sensitive problems, use quad precision (binary128) via GCC's libquadmath (_float128, functions like expq, sqrtq, and quadmath_snprintf). See GCC libquadmath. Where possible, it is useful to use symbolic math libraries like SymPy to compute exact values.

1.13.1 Reproducibility artifacts and external validation

- This manuscript's artifacts: Raw data in quadmath/output/ for reproducibility and downstream analysis:
 - fisher_information_matrix.csv / .npz: empirical Fisher matrix and inputs
 - fisher_information_eigenvalues.csv / fisher_information_eigensystem.npz: eigenspectrum and eigenvectors
 - natural gradient path.png with natural gradient path.csv / .npz: projected trajectory and raw coordinates
 - ivm_neighbors_data.csv / ivm_neighbors_edges_data.npz: neighbor coordinates (Quadray and XYZ)
 - polyhedra quadray constructions.png: synergetics volume relationships schematic
- External validation resources: The 4dsolutions ecosystem provides extensive cross-validation. See the Resources section for comprehensive details on computational implementations and validation.

1.14 Namespaces summary (notation)

- Coxeter.4D: Euclidean E⁴; regular polytopes; not spacetime (cf. Coxeter, Regular Polytopes, Dover ed., p. 119). Connections to higher-dimensional lattices and packings as in Conway & Sloane.
- Einstein.4D: Minkowski spacetime; indefinite metric; used here only as a metric analogy when discussing geodesics and information geometry.
- Fuller.4D: Quadrays/IVM; tetrahedral lattice with integer tetravolume; unit regular tetrahedron has volume 1; synergetics scale relations (e.g., S3).