

Register	3			
Number			1	

Code: 15CE51T

V Semester Diploma Examination, Nov./Dec. 2017

DESIGN OF REINFORCED CEMENT CONCRETE

	DESIGN OF REINFORCED CEMENT CONC	REIE
Tin	. Marks : 100	
Note	e: IS 456-2000 & SP-16 is permitted.	
	PART – A	
	Answer any five questions :	$5 \times 5 = 25$
t.	List the basic assumptions of design for limit state of collapse in flexure.	5
2.	Explain partial safety factors and design strength.	5
3.	Define Neutral axis, lever arm, effective depth, singly reinforced an reinforced beam.	d doubly
4.	Differentiate between one way slab and two way slab.	5
5.	Differentiate between short column and long column.	5
6.	Mention the advantages of pre-stressed concrete.	5
7.	Differentiate between pre-stressed concrete and reinforced cement concrete.	5
8.	Explain pre-tensioning system with a neat sketch.	5
	1 of 2	Turn over

PART - B

Answer any five questions, atleast two questions from each section.

 $5 \times 15 = 75$

SECTION-I

- An R.C.C. rectangular beam of 300 × 600 mm overall is reinforced with 3 bars of 20 mm φ. It is S.S. over an effective span of 5 m. What is the maximum UDL can be allowed on the beam excluding self weight. Take effective cover 50 mm. Use M 20 & Fe500 steel.
- A doubly reinforced beam of 250 × 500 mm overall has to carry a maximum B.M. of 175 kN-m under working condition. Find the area of tension and compression reinforcement. Use M 20 & Fe500 steel. Take an effective cover of 40 mm on both sides.
- A T-beam of width 250 mm and rib depth 450 mm is S.S. over an effective span of 6 m. The thickness of flange is 125 mm. It is reinforced with 6 bars of 16 mm φ as tension steel with clear cover of 25 mm. Use M 20 concrete and Fe415 steel. Find the ultimate M.R. of the beam section and super imposed UDL.

SECTION-II

- Design a Lintel over the opening 2.5 m wide to carry brick masonry of height 3.25 m.
 Thickness of wall is 300 mm, bearing 300 mm. Use M 20 grade concrete and Fe415
 steel. Take unit weight of concrete and B.B.M. as 25 kN/m³ & 19.2 kN/m³
 respectively.
- 13. Design one of the flight of stairs of school building spanning between landing beams to suit the following data:

Type of staircase: Waist slab type

No. of steps in flight = 12. Tread T = 250 mm, Riser R = 150 mm, Width of landing beams = 300 mm.

Use M 20 concrete and Fe415 steel. Adopt L.L = 5 kN/m² & floor finish = 1 kN/m². Sketch the reinforcement details.

- Design a slab over a room of clear dimension 3 m × 8 m supported on 300 mm thick brick wall. The L.L. on slab is 2.5 kN/m² and floor finish 1 kN/m². Take M 20 concrete & Fe415 steel. Sketch the reinforcement details.
- 15. Design a square footing to carry column load of 1000 kN from a 350 mm square column. The bearing capacity of soil is 120 kN/m². Use M 20 concrete & Fe500 steel. Check for shear.