A link to the online notebook is here: https://github.com/thetruejacob/CS112/blob/master/Assignment/Causal%20Inference%20Assignment.ipynb (https://github.com/thetruejacob/CS112/blob/master/Assignment/Causal%20Inference%20Assignment/Causal%20Inference%20Assignment.ipynb)

Debugging

In the 3 cases below (a through c), identify the major coding error in each case and explain how to fix it, in 1-2 sentences. DO NOT actually copy/paste corrected code:

- 1. https://gist.github.com/diamonaj/2e5d5ba5226b7b9760f5d1bf1e7bf765) https://gist.github.com/diamonaj/2e5d5ba5226b7b9760f5d1bf1e7bf765)
- https://gist.github.com/diamonaj/3b6bc83d040098486634184d99fc4c55 (https://gist.github.com/diamonaj/3b6bc83d040098486634184d99fc4c55)
- 3. https://gist.github.com/diamonaj/a88cb40132ed8584e5182b585e1c84c8 (https://gist.github.com/diamonaj/a88cb40132ed8584e5182b585e1c84c8)
- 1. The problem is that Match was never run, and so instead of the Match object being fed into the MatchBalance function, the GenMatch object was incorrectly used instead.
- 2. There is a mismatch between the 'ATE' specified in the GenMatch function and the default 'ATT' in the Match function.

 This can be fixed by specifying 'ATE' in the Match function.
- 3. There is a mistmatch between the M = 2 in the Match function and the default M = 1 in the GenMatch function. This can fixed by making both specifications of M equivalent. Secondly, Y should only be included as an argument in Match after covariate balance has been established. It is unclear if this was done prior, and so this may not necessarily be a mistake.

Replication

Replicate figure 8 in https://gking.harvard.edu/files/counterf.pdf (https://gking.harvard.edu/files/counterf.pdf).

A few suggestions:

- Read the class breakout instructions above to get the data and relevant columns,
- If you are not clear on the model, read the relevant sections of the paper and focus on understanding Table 2;
- To plot the figure, you should use a strategy similar to the one we used in the statistics scavenger hunt, which was also used in a previous assignment (e.g., holding predictors at their medians and looping through values of one variable to obtain treatment effects at different levels of the variable--you may want to review the answer key for that previous assignment, but please note that you WON'T have to simulate coefficients this time because there is no need to estimate uncertainty e.g., intervals).

However, you don't need to simulate coefficients this time.

```
In [1]: foo <- read.csv("https://course-resources.minerva.kgi.edu/uploaded_files/mke/00086
677-3767/peace.csv")
foo <- foo[c(-19, -47), ]
head(foo)</pre>
```

X	dataset	ccode	cnumb	cluster	clust2	cname	yrbeg	yrend	decade	 L13	Phat13	
1	8	AFG2	2	AFG	AFG	Afghanistan- Taliban	93	NA	5	 -0.9587072	0.2771371	-2.8
2	1	AFG1	1	AFG	AFG	Afghanistan	78	92	4	 -0.9591957	0.2770393	-3.2
3	9	MEX	88	MEX	MEX	Mexico	92	94	5	 -0.1507243	0.4623901	1.4
4	1	RUS	109	RUS	FSU	Russia- Chechnya	94	96	5	 0.2437635	0.5606409	-1.8
5	9	THA	123	THA	THA	Thailand- Commun.	67	85	3	 -0.2880664	0.4284773	0.1
6	1	CHD1	24	CHD	CHD	Chad	65	79	3	 -1.0295979	0.2631621	-1.7

```
Call:
glm(formula = pbs2s3 ~ wartype + logcost + wardur + factnum +
    factnum2 + trnsfcap + untype4 + treaty + develop + exp +
    decade, family = binomial, data = foo)
Deviance Residuals:
```

Min 1Q Median 3Q Max -2.5438 -0.6184 -0.2655 0.4773 2.7049

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) 8.6088620 2.1965592 3.919 8.88e-05 ***
wartype
          -1.7420043 0.5966755 -2.920 0.00351 **
logcost
         -0.4448499 0.1366487 -3.255 0.00113 **
wardur
           0.0063857 0.0039946 1.599 0.10991
factnum
          -1.2589333 0.8257914 -1.525 0.12738
          0.0616696 0.0930082
                                0.663 0.50730
factnum2
trnsfcap
           0.0040934 0.0020585
                                1.989 0.04675 *
           3.1351843 1.4934804
                                 2.099 0.03580 *
untype4
treaty
           2.1243681 0.7785943
                                2.728 0.00636 **
                                1.697
develop
           0.0007901 0.0004655
                                       0.08967 .
           -6.0161789 3.5523605 -1.694 0.09035.
exp
           -0.2987758 0.1925220 -1.552 0.12068
decade
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 158.345 on 121 degrees of freedom Residual deviance: 91.297 on 110 degrees of freedom AIC: 115.3

Number of Fisher Scoring iterations: 6

```
In [3]: glm2 <- glm(pbs2s3 ~ wartype + logcost + wardur + factnum +</pre>
                                     factnum2 + trnsfcap + untype4 +
        treaty + develop + exp + decade + I(wardur*untype4), data = foo, family = binomia
        1)
        summary(glm2)
        Call:
        glm(formula = pbs2s3 ~ wartype + logcost + wardur + factnum +
            factnum2 + trnsfcap + untype4 + treaty + develop + exp +
            decade + I(wardur * untype4), family = binomial, data = foo)
        Deviance Residuals:
           Min
                 1Q Median
                                       30
                                               Max
        -2.4725 -0.6082 -0.2733
                                  0.4336
                                            2.6419
        Coefficients:
                             Estimate Std. Error z value Pr(>|z|)
        (Intercept)
                            8.1892936 2.4675178
                                                 3.319 0.000904 ***
        wartype
                           -1.6663860 0.5962554 -2.795 0.005194 **
        logcost
                           -0.4371467 0.1361314 -3.211 0.001322 **
        wardur
                            0.0055304 0.0041052
                                                  1.347 0.177922
        factnum
                           -1.0453757
                                      1.1122909 -0.940 0.347300
        factnum2
                            0.0322828 0.1454713
                                                  0.222 0.824377
                                                  1.903 0.057054 .
        trnsfcap
                            0.0040839 0.0021462
                            0.2616384 2.8207883
                                                  0.093 0.926099
        untype4
                                                  2.752 0.005926 **
        treaty
                            2.1262049 0.7726535
                           0.0007643 0.0004609
                                                  1.658 0.097308 .
        develop
                           -6.2153385 3.5594910 -1.746 0.080788 .
        exp
        decade
                           -0.2836770 0.1916737
                                                 -1.480 0.138873
        I(wardur * untype4) 0.0372672 0.0498959
                                                 0.747 0.455125
        Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
        (Dispersion parameter for binomial family taken to be 1)
            Null deviance: 158.345 on 121 degrees of freedom
        Residual deviance: 89.804 on 109 degrees of freedom
        AIC: 115.8
        Number of Fisher Scoring iterations: 8
```

The following object is masked from package:datasets:

euro

wartype	logcost	wardur	untype4	factnum	factnum2	trnsfcap	treaty	develop	ехр	decade
0.6393443	11.90362	1	1	3.336066	13.45082	58.66762	0.2868852	542.7804	0.1230395	3.47541
0.6393443	11.90362	2	1	3.336066	13.45082	58.66762	0.2868852	542.7804	0.1230395	3.47541
0.6393443	11.90362	3	1	3.336066	13.45082	58.66762	0.2868852	542.7804	0.1230395	3.47541
0.6393443	11.90362	4	1	3.336066	13.45082	58.66762	0.2868852	542.7804	0.1230395	3.47541
0.6393443	11.90362	5	1	3.336066	13.45082	58.66762	0.2868852	542.7804	0.1230395	3.47541
0.6393443	11.90362	6	1	3.336066	13.45082	58.66762	0.2868852	542.7804	0.1230395	3.47541
_										
wartype	logcost	wardur	untype4	factnum	factnum2	trnsfcap	treaty	develop	ехр	decade
wartype 0.6393443	logcost 11.90362	wardur			factnum2 13.45082	trnsfcap 58.66762	treaty 0.2868852	develop 542.7804	exp 0.1230395	decade 3.47541
						-	•	•		
0.6393443	11.90362	1	0	3.336066	13.45082	58.66762	0.2868852 0.2868852	542.7804	0.1230395	3.47541
0.6393443	11.90362 11.90362	1 2	0 0	3.336066 3.336066 3.336066	13.45082 13.45082	58.66762 58.66762	0.2868852 0.2868852	542.7804 542.7804	0.1230395 0.1230395	3.47541 3.47541
0.6393443 0.6393443 0.6393443	11.90362 11.90362 11.90362	1 2 3	0 0	3.336066 3.336066 3.336066	13.45082 13.45082 13.45082	58.66762 58.66762 58.66762	0.2868852 0.2868852 0.2868852	542.7804 542.7804 542.7804	0.1230395 0.1230395 0.1230395	3.47541 3.47541 3.47541

```
In [5]: glm1treatpreds = predict(glm1, treat, type = "response")
    glm2treatpreds = predict(glm2, treat, type = "response")
    glm1controlpreds = predict(glm1, control, type = "response")

plot(treat$wardur, glm1treatpreds - glm1controlpreds, type = '1', lty = 3, ylim = c(0,0.8),
    main = "Causal Effect of Multidimensional UN Peacekeeping Operations",
    xlab = "Duration of wars in months",
    ylab = "Marginal effects of UN peacekeeping operations")
lines(control$wardur, glm2treatpreds - glm2controlpreds)
legend('topright', legend = c("Original model", "Model with interasction term"), l
ty = c(3,1))
```

Causal Effect of Multidimensional UN Peacekeeping Operations

Treatment Specification

```
In [6]: Tr <- rep(0, length(foo$untype))
    Tr[which(foo$untype != "None")] <- 1
    # What does this mean? What is "treatment"?
    # Treatment means UN peacekeeping intervention</pre>
```

Table of ATTs

- 1. In no more than 1 sentence, articulate the causal question as best you can (being as clear as you can about treatment and control):
- 2. In no more than 1 sentence, explain how/why SUTVA might be violated here. In no more than 1 additional sentence, explain how you could in theory use the "restrict" argument (in Match()/GenMatch()) to help address this potential problem.
- 3. Use simple logistic regression, propensity score matching, and genetic matching to try to answer these questions.
- 1. By how much better or worse are countries who have recieved UN peacebuilding operations on the metric of lenient peacebuilding success 2 and 5 years into the future than if they not did not recieve peacebuilding operations?
- 2. In an increasingly globalist economy, the politics of any one country are rarely limited to the confines of a geographical border (for example, UN peacebuilding operations in one country can set a precedent making it easier for peacebuilding to be seen as the go-to solution for other similar cases). In theory, this could be mitigated by preventing two closely tied countries to be matched together, e.g. Austria and Germany.
- 3. See below.

```
Call: glm(formula = pbs21 ~ Tr + wartype + logcost + wardur + factnum +
    factnum2 + trnsfcap + treaty + develop + exp + decade, family = binomial,
    data = foo, subset = !is.na(pbs21))
```

Coefficients:

factnum	wardur	logcost	wartype	Tr	(Intercept)
-0.9587863	0.0032791	-0.3127275	-1.5672612	0.7130543	7.3711369
decade	exp	develop	treaty	trnsfcap	factnum2
-0.3374430	-4.8553044	0.0001873	1.5459400	0.0042836	0.0501228

Degrees of Freedom: 121 Total (i.e. Null); 110 Residual

Null Deviance: 167

Residual Deviance: 117.2 AIC: 141.2

***** (V1) wartype **** before matching: mean treatment mean control	** 0.63889 0.63953
std mean diff	-0.13261
<pre>mean raw eQQ diff med raw eQQ diff max raw eQQ diff</pre>	0 0 0
mean eCDF diff med eCDF diff max eCDF diff	0.000323 0.000323 0.00064599
<pre>var ratio (Tr/Co) T-test p-value</pre>	1.0174 0.99468
***** (V2) logcost **** before matching: mean treatment mean control std mean diff	** 12.904 11.485 79.811
mean raw eQQ diff med raw eQQ diff max raw eQQ diff	1.4788
mean eCDF diff med eCDF diff max eCDF diff	0.16371 0.16085 0.30039
var ratio (Tr/Co) T-test p-value KS Bootstrap p-value KS Naive p-value KS Statistic	0.49056 0.00067727 0.014 0.020516 0.30039
***** (V3) wardur ***** before matching: mean treatment mean control std mean diff	78.083 80.198
<pre>mean raw eQQ diff med raw eQQ diff max raw eQQ diff</pre>	6.5
mean eCDF diff med eCDF diff max eCDF diff	0.035364 0.028424 0.11047
var ratio (Tr/Co) T-test p-value KS Bootstrap p-value KS Naive p-value KS Statistic	0.90266 0.798 0.91617
***** (V4) factnum **** before matching: mean treatment mean control std mean diff	3.7778 3.1512

```
Call: glm(formula = pbs51 ~ Tr + wartype + logcost + wardur + factnum +
    factnum2 + trnsfcap + treaty + develop + exp + decade, family = binomial,
    data = subset(foo, !is.na(pbs51)))
```

Coefficients:

(Intercept)	Tr	wartype	logcost	wardur	factnum
7.0355574	0.8233143	-1.7061721	-0.2483537	0.0036864	-1.1098129
factnum2	trnsfcap	treaty	develop	exp	decade
0.0603537	0.0043292	1.3278703	0.0002431	-4.9364476	-0.3071584

Degrees of Freedom: 116 Total (i.e. Null); 105 Residual

Null Deviance: 160.7

Residual Deviance: 114 AIC: 138

mean control	* 0.69697 0.63095 14.146
med raw eQQ diff	0.060606 0 1
med eCDF diff	0.033009 0.033009 0.066017
` ' '	0.92424 0.49864
mean control	* 13.068 11.448 98.484
med raw eQQ diff max raw eQQ diff	1.7034 1.199 3.912
med eCDF diff max eCDF diff	0.18876 0.18398 0.33658
T-test p-value KS Bootstrap p-value KS Naive p-value	0.41403 0.00010717 0.006 0.0093267 0.33658
***** (V3) wardur ***** before matching: mean treatment mean control std mean diff	78.393
~~	20.636 12 312
med eCDF diff	0.047216 0.040043 0.12662
T-test p-value KS Bootstrap p-value	0.74088 0.79814 0.65 0.84194 0.12662
std mean diff	3.8485 3.1786

```
In [120]: ## propensity score matching - 2 years

glm.prop2 = glm(Tr ~ wartype + logcost + wardur + factnum + factnum2 + trnsfcap +
    treaty + develop + exp + decade + I(wardur**2), data = foo, subset = !is.na(pbs21)
    , family = binomial)
    mout.prop2 = Match(Tr = Tr[!is.na(foo$pbs21)], X = glm.prop2$fitted.values, Y = fo
    o$pbs21, caliper = 0.2, M = 1)
    mbprop2 = MatchBalance(Tr ~ wartype + logcost + wardur + factnum + factnum2 + trns
    fcap + treaty + develop + exp + decade + I(wardur**2), data = foo, nboots = 500, m
    atch.out = mout.prop2)
```

**** (V1) wartype ***	**	
warcype	Before Matching	After Matching
mean treatment	0.63889	0.66667
mean control	0.63953	0.89394
std mean diff	-0.13261	-47 . 476
	*******	1,71,0
mean raw eQQ diff	0	0.16216
med raw eQQ diff	0	0
max raw eQQ diff	0	1
mean eCDF diff	0.000323	0.081081
med eCDF diff	0.000323	0.081081
max eCDF diff	0.00064599	0.16216
var ratio (Tr/Co)	1.0174	2.3438
T-test p-value	0.99468	0.044013
***** (V2) logcost ***		
	Before Matching	After Matching
mean treatment	12.904	12.747
mean control	11.485	12.375
std mean diff	79.811	20.96
mean raw eQQ diff	1.4788	0.44013
med raw eQQ diff	1.1386	0.3517
max raw eQQ diff	3.3142	1.7813
11.55	0.46054	
mean eCDF diff	0.16371	0.053563
med eCDF diff	0.16085	0.054054
max eCDF diff	0.30039	0.13514
mar ratio (Mr/Co)	0 40056	0.76607
var ratio (Tr/Co)	0.49056 0.00067727	0.76697 0.41714
T-test p-value	0.00067727	0.41714
KS Bootstrap p-value KS Naive p-value	0.016	0.822
KS Statistic	0.30039	0.13514
AS SCACISCIC	0.30039	0.13314
**** (V3) wardur ***	*	
(10) "41441	Before Matching	After Matching
mean treatment	78.083	80.788
mean control	80.198	101.21
std mean diff	-2.5968	-24.235
mean raw eQQ diff	16.417	32.649
med raw eQQ diff	6.5	12
max raw eQQ diff	312	312
mean eCDF diff	0.035364	0.072693
med eCDF diff	0.028424	0.081081
max eCDF diff	0.11047	0.13514
var ratio (Tr/Co)	0.68352	0.66114
T-test p-value	0.90266	0.30945
KS Bootstrap p-value	0.738	0.778
KS Naive p-value	0.91617	0.88811
KS Statistic	0.11047	0.13514
*****	.tt.	
***** (V4) factnum ***		After Matabia
mean treatment	Before Matching 3.7778	After Matching 3.7879
mean treatment mean control	3.7778	4.1465
std mean diff	41.389	-23.343
Sea mean attr	41.303	-23.343
moon row ood diff	0 72222	0 61065

**** (V1) wartype ***	**	
(, 21 -	Before Matching	After Matching
mean treatment	0.69697	0.69697
mean control	0.63095	0.84848
std mean diff	14.146	-32.466
mean raw eQQ diff	0.060606	0.15152
med raw eQQ diff	0	0
<pre>max raw eQQ diff</pre>	1	1
mean eCDF diff	0.033009	0.075758
med eCDF diff	0.033009	0.075758
max eCDF diff	0.066017	0.15152
max ecbi dili	0.000017	0.13132
var ratio (Tr/Co)	0.92424	1.6429
T-test p-value	0.49864	0.12805
***** (V2) logcost ***	**	
	Before Matching	After Matching
mean treatment	13.068	13.068
mean control	11.448	13.283
std mean diff	98.484	-13.039
	1 7024	0 40027
mean raw eQQ diff	1.7034	0.40037
med raw eQQ diff	1.199	0.35417 1.2192
max raw eQQ diff	3.912	1.2192
mean eCDF diff	0.18876	0.072856
med eCDF diff	0.18398	0.060606
<pre>max eCDF diff</pre>	0.33658	0.27273
war ratio (Mr/Co)	0 41402	0 75575
<pre>var ratio (Tr/Co) T-test p-value</pre>	0.41403	0.75575 0.55159
KS Bootstrap p-value	0.0001	0.136
KS Naive p-value	0.002	0.1717
KS Statistic	0.33658	0.27273
ND Deacibelotticities	0.0000	0.27273
**** (V3) wardur ****	*	
wardur ***	Before Matching	After Matching
mean treatment	83	83
mean control	78.393	76.061
std mean diff	5.5292	8.3283
mean raw eQQ diff	20.636	24.636
med raw eQQ diff	12	12
max raw eQQ diff	312	96
mean eCDF diff	0.047216	0.092227
med eCDF diff	0.040043	0.060606
max eCDF diff	0.12662	0.24242
man maki- (m-/g)	0.74000	0.0506
var ratio (Tr/Co)	0.74088	2.2526
T-test p-value KS Bootstrap p-value	0.79814 0.702	0.68689 0.188
KS Naive p-value	0.702	0.28675
KS Statistic	0.12662	0.24242
NO DEACTSCIC	0.12002	0.24242
	de de	
***** (V4) factnum ***	** Before Matching	After Matching
mean treatment	3.8485	3.8485
mean control		4.5758
std mean diff	43.401	-47.117
moon row ood diff	n 75750	0 00000
moon watt ooo diff	11 /k'/kU	n anana

```
In [87]: ## genetic matching - 2 years
genout2 = GenMatch(Tr = Tr, X = foo[,c('wartype', 'logcost', 'wardur', 'factnum',
    'factnum2', 'trnsfcap', 'treaty', 'develop', 'exp', 'decade')], pop.size = 200, ma
    x.generations = 30, wait.generations = 10)
    mout.gen2 = Match(Tr = Tr, X = foo[,c('wartype', 'logcost', 'wardur', 'factnum', '
    factnum2', 'trnsfcap', 'treaty', 'develop', 'exp', 'decade')], Weight.matrix = gen
    out2)
    summary(mout.gen2)
    mbgen2 = MatchBalance(Tr ~ wartype + logcost + wardur + factnum + factnum2 + trnsf
    cap + treaty + develop + exp + decade, data = foo, nboots = 500, match.out = mout.
    gen2)
```

```
Sun Dec 2 19:28:51 2018
Domains:
  0.000000e+00
                                                               1.000000e+03
                              <= X1
  0.000000e+00
                               <= X2
                                                               1.000000e+03
                                                  <=
  0.000000e+00
                               <= X3
                                                  <=
                                                               1.000000e+03
                              <= X4
  0.000000e+00
                                                 <=
                                                               1.000000e+03
                              <= X5
  0.000000e+00
                                                 <=
                                                               1.000000e+03
                             <= X6
                                               <=
  0.000000e+00
                                                               1.000000e+03
                                                <=
                             <= x7
  0.000000e+00
                                                               1.000000e+03
                             <= X8
                                               <=
  0.000000e+00
                                                               1.000000e+03
                              <= X9
                                                <=
  0.000000e+00
                                                               1.000000e+03
  0.000000e+00
                              <= X10 <=
                                                               1.000000e+03
Data Type: Floating Point
Operators (code number, name, population)
                (1) Cloning.....
                (2) Uniform Mutation.....
                (3) Boundary Mutation..... 25
                (4) Non-Uniform Mutation..... 25
                (5) Polytope Crossover..... 25
                (6) Simple Crossover..... 26
                (7) Whole Non-Uniform Mutation..... 25
                (8) Heuristic Crossover..... 26
                (9) Local-Minimum Crossover..... 0
SOFT Maximum Number of Generations: 30
Maximum Nonchanging Generations: 10
Population size
                                  : 200
Convergence Tolerance: 1.000000e-03
Not Using the BFGS Derivative Based Optimizer on the Best Individual Each Genera
tion.
Not Checking Gradients before Stopping.
Using Out of Bounds Individuals.
Maximization Problem.
GENERATION: 0 (initializing the population)
Lexical Fit.... 3.619644e-02 3.663105e-02 4.443076e-02 5.993813e-02 1.36817
0 e - 01 \quad 1.463514 e - 01 \quad 3.364049 e - 01 \quad 4.608520 e - 01 \quad 5.023484 e - 01 \quad 5.041209 e - 01 \quad 5.086120 e - 01 \quad
41209e-01 6.135993e-01 6.993742e-01 6.993742e-01 8.781816e-01 1.000000e+00
1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#unique...... 200, #Total UniqueCount: 200
var 1:
best..... 7.601709e+02
mean..... 5.088144e+02
variance..... 8.560847e+04
best..... 8.134234e+02
mean..... 5.035996e+02
variance..... 7.879828e+04
var 3:
best..... 7.687076e+02
mean..... 5.129343e+02
variance..... 9.159326e+04
var 4:
best..... 2.865622e+02
mean..... 5.166789e+02
variance..... 7.636507e+04
var 5:
best..... 6.589374e+01
mean..... 4.720103e+02
variance..... 8.339195e+04
best..... 6.291587e+01
mean..... 5.204777e+02
```

0 0001500104

wari anda

```
Sun Dec 2 19:48:53 2018
Domains:
 0.000000e+00
                           1.000000e+03
             <= X1
 0.000000e+00
             <= X2
                           1.000000e+03
                      <=
 0.000000e+00
             <= X3
                     <=
                           1.000000e+03
 0.000000e+00
             <= X4
                     <=
                           1.000000e+03
             <= X5
 0.000000e+00
                     <=
                           1.000000e+03
            <= X6
                    <=
 0.000000e+00
                           1.000000e+03
                    <=
            <= x7
 0.000000e+00
                           1.000000e+03
            <= X8
                    <=
 0.000000e+00
                           1.000000e+03
             <= X9
                     <=
 0.000000e+00
                           1.000000e+03
             <= X10 <=
 0.000000e+00
                           1.000000e+03
Data Type: Floating Point
Operators (code number, name, population)
       (1) Cloning.....
       (2) Uniform Mutation.....
       (3) Boundary Mutation..... 25
       (4) Non-Uniform Mutation..... 25
       (5) Polytope Crossover..... 25
       (6) Simple Crossover..... 26
       (7) Whole Non-Uniform Mutation..... 25
       (8) Heuristic Crossover..... 26
       (9) Local-Minimum Crossover..... 0
SOFT Maximum Number of Generations: 30
Maximum Nonchanging Generations: 10
Population size
               : 200
Convergence Tolerance: 1.000000e-03
Not Using the BFGS Derivative Based Optimizer on the Best Individual Each Genera
tion.
Not Checking Gradients before Stopping.
Using Out of Bounds Individuals.
Maximization Problem.
GENERATION: 0 (initializing the population)
Lexical Fit.... 3.085053e-02 9.444451e-02 9.659111e-02 1.046843e-01 1.36969
3e-01 1.700211e-01 2.867543e-01 3.174823e-01 3.174823e-01 3.684836e-01 3.9
82818e-01 4.478101e-01 4.478101e-01 6.464668e-01 6.464668e-01 7.535576e-01
8.431776e-01 8.431776e-01 1.000000e+00 1.000000e+00
#unique...... 200, #Total UniqueCount: 200
var 1:
best..... 7.403834e+02
mean..... 4.754568e+02
variance..... 8.446285e+04
best..... 9.381350e+01
mean..... 4.780446e+02
variance..... 8.425747e+04
var 3:
best..... 2.592302e+02
mean..... 4.909182e+02
variance..... 8.018370e+04
var 4:
best..... 3.268888e+02
mean..... 4.992295e+02
variance..... 8.639208e+04
var 5:
best..... 2.173523e+02
mean..... 5.016731e+02
variance..... 9.692432e+04
var 6:
best..... 6.529214e+02
mean..... 5.072512e+02
wari anda
              0 0010050±04
```

```
In [152]: table = matrix(nrow = 9, ncol = 3)
          colnames(table) = c(" tmt effect (bias adj)", "tmt effect (no bias adj)", "p-value
           (from MatchBalance)")
           rownames(table) = c("logistic regression", "len success 2 years", "len success 5 y
          ears",
                                "p- score matching", "len success 2 years", "len success 5 yea
          rs",
                               "gen match", "len success 2 years", "len success 5 years")
          table[2,] = c("NA", glm2$coef[2], mb2$BMsmallest.p.value)
          table[3,] = c("NA", glm5$coef[2], mb5$BMsmallest.p.value)
          table[5,] = c(Match(Tr = Tr[!is.na(foo$pbs21)], X = qlm.prop2$fitted.values, Y = p
          bs21[!is.na(foo\$pbs21)], caliper = 0.2, M = 1)\$est,
                         Match(Tr = Tr[!is.na(foo$pbs21)], X = glm.prop2$fitted.values, Y = p
          bs21[!is.na(foo$pbs21)], caliper = 0.2, M = 1)$est.noadj,
                        mbprop2$AMsmallest.p.value)
           table[6,] = c(Match(Tr = Tr[!is.na(foo$pbs51)], X = glm.prop5$fitted.values, Y = s
          ubset(foo, !is.na(pbs51))$pbs51, caliper = 0.2, M = 1)$est,
                        Match(Tr = Tr[!is.na(foo$pbs51)], X = glm.prop5$fitted.values, Y = su
          bset(foo, !is.na(pbs51))$pbs51, caliper = 0.2, M = 1)$est.noadj,
                        mbprop5$AMsmallest.p.value)
          table[8,] = c(Match(Tr = Tr[!is.na(foo$pbs21)], Y = pbs21[!is.na(foo$pbs21)], X =
           foo[!is.na(foo$pbs21), c('wartype', 'logcost', 'wardur', 'factnum', 'factnum2', 't
           rnsfcap', 'treaty', 'develop', 'exp', 'decade')], Weight.matrix = genout2)$est,
                        Match(Tr = Tr[!is.na(foo$pbs21)], Y = pbs21[!is.na(foo$pbs21)], X = f
          oo[!is.na(foo$pbs21), c('wartype', 'logcost', 'wardur', 'factnum', 'factnum2', 'tr
          nsfcap', 'treaty', 'develop', 'exp', 'decade')], Weight.matrix = genout2)$est.noad
           j,
                        mbgen2$AMsmallest.p.value)
           table[9,] = c(Match(Tr = Tr[!is.na(foo$pbs51)], Y = pbs51[!is.na(foo$pbs51)], X =
           foo[!is.na(foo$pbs51), c('wartype', 'logcost', 'wardur', 'factnum', 'factnum2', 't
           rnsfcap', 'treaty', 'develop', 'exp', 'decade')], Weight.matrix = genout5)$est,
          Match(Tr = Tr[!is.na(foo$pbs51)], Y = pbs51[!is.na(foo$pbs51)], X = f
oo[!is.na(foo$pbs51), c('wartype', 'logcost', 'wardur', 'factnum', 'factnum2', 'tr
          nsfcap', 'treaty', 'develop', 'exp', 'decade')], Weight.matrix = genout5)$est.noad
           j,
                        mbgen5$AMsmallest.p.value)
          as.table(table)
```

```
tmt effect (bias adj) tmt effect (no bias adj)
logistic regression
                                         0.713054334569193
len success 2 years NA
len success 5 years NA
                                         0.823314327283805
p- score matching
len success 2 years 0.207070707070707
                                         0.207070707070707
len success 5 years 0.393939393939394
                                         0.393939393939394
gen match
0.194444444444444
len success 5 years 0.1515151515152
                                         0.151515151515152
                   p-value (from MatchBalance)
logistic regression
len success 2 years 3.27673510471804e-05
len success 5 years 0.000107165177905877
p- score matching
len success 2 years 0.0440132332461307
len success 5 years 0.0292387177729629
gen match
len success 2 years 0.30093349441952
len success 5 years 0.256
```

Decision Memo

(ii) Let's pretend you have to write a decision memo for policy purposes summarizing all your work (above). Your memo would begin with a a brief executive summary summarizing what you've done and your policy advice, and it would end with a brief concluding passage restating your analysis and what you want your reader to take away from it (including the policy advice). The executive summary and the conclusion would be very similar--to the extent the two are at all different, there is scope for the conclusion to be a bit more technical and/or nuanced, and the conclusion could also include some recommendations for relevant future analysis. DO NOT WRITE the ENTIRE decision memo. Instead, just provide a 3-5 sentence executive summary AND a separate 3-5 sentence conclusion. DO ADDRESS THE MEMO TO A SPECIFIC PERSON (USE YOUR IMAGINATION, BUT TAKE THE EXERCISE SERIOUSLY.)

To Alexis Diamond, IFC

Executive Summary

Under a naive analysis, we found UN peacebuilding efforts to be extremely successful, leading to a 71% increase in lenient peacebuilding success 2 years into the future, and a 82% increase 5 years into the future. By running a more sophisticated analysis, we found a more sensible estimated treatment effect of 19% increase 2 in success 2 years into the future, and 15% years into the future. As a rough rule of thumb, we suggest the UN evaluate decisions for further peacebuilding efforts by understanding that they would be increasing the probability of near future success by around 15-20%.

Conclusion

Using three different methods of estimating the effect of UN peacebuilding efforts (logistic regression, propensity score matching, and genetic matching), we found that the method that achieved the greatest covariate balance (and hence is likeliest to get to the true effect size) also gave the smallest estimate, while the most unbalanced method heavily overestimated the efficacy of peacebuilding operations. In future, it would be most interesting to perform quantile estimation to understand the characteristics of countries that benefited the most from peacebuilding efforts.