# 开发笔记 -基因注释概况: 模型与软件

于秋林

**BGI-RD** 深圳

March 22, 2012

- 1 概述
- ② 原核基因预测
  - Genemark
  - Glimmer
- 3 真核基因预测
  - 生物背景
  - HMM 简介
  - HMM in augustus
    - 外显子建模
    - 内含子建模
    - 其他子模型
    - 转移矩阵
  - 模型的变体
  - 基于 GC 含量的训练
  - 利用外部证据推断基因结构
  - augustus 实现
- 4 用例测试
  - 原核基因
  - 真核基因: Augustus
  - IMM 模型

- ORF 确定基因结构
- 偏倚数量化
- 内含子参数确定

#### 两类不同的基因:

- 原核牛物基因:结构简单,冗余少,利用 即可界定多数 基因。
- 真核牛物基因:结构复杂,噪声大,需对不同子结构分别建 模。

## 软件及模型:

- Genemark: Fixed-order Markov Model
- Glimmer:Interpolated Markov Model
- Augustus: Hidden Markov Model

不同物种的一些基因结构是相近的,特别是一些较保守的基因家族,在一些位点上有些短的特征信号非常保守,称为 motif。Genamark 和 Glimmer 采用的策略是先利用可信度高的样本构造训练集,将训练集打散成 kmer,统计 kmer 的相对频率(这个应该是与位置信息无关的?待确定,如果是与位置信息无关的,那么信息没有充分利用,难道是因 为在后面的预测环节中位置信息是难以获取利用的,所以在这一步特征生成的过程中就没必要强调位置信息??在真 核基因预测中,motif 是与位置紧密相关的,有大把文献讲怎样找这些 motif,这也是因为真核基因结构复杂的必然 <mark>需求</mark>),经讨归一化的频率可处理成反映训练集特征的分值,对未知序列,选定一种 orf,顺次滑动累加分值,如果某 段序列有持续高分,则暗示可能含有与训练集相近的结构,很可能是基因。

#### Genemark

最先取得成功的是原核基因预测,其中比较优秀的是 Genemark: 最初用于原核生物基因预测,首先用高分样本训练参数,然后采用 5 阶 Markov 模型对序列按照不同的读码框打分确定基因结构。后期使用 HMM 为真核基因结构建模,对应的版本是: GeneMark-E\* 和 GeneMark.hmm-E.

开发者:Georgia Institute of Technology, Atlanta, Georgia, USA.

在一定范围内,马氏链的阶数越高越好(太高的话会 overfit?是 个可以谈的话题,关系模型的弹性和准确,但现有的计算能力下 这种扣心只是乐观的一厢情愿),但通常不会高于 10,原因:

- 计算复杂度, 这些串的概率都是用常量存储的, 数量是随阶 数指数增长的
- 太长的 motif 会导致支持数据不够 H.influenzae genome size 1.8mb,5-order,averagefold =  $1.8^6/4(5+1) = 439$  (順便统计 一下每种 motif 的真实含量,搞清楚那个卡方阈值 400 到底 怎么来的,肯定先从经验分布下手,那个95置信区间是不 是虚的?)

#### 中可靠基因构成的训练集和随机集合的碱基组成是很不同:

- 单碱基水平:GC 偏倚
- motif 水平: 短的强信号
- 序列水平: 熵分布……

精心构造的训练集在不同长度的 motif 分布都有特征 (分布谱), 分布谱反映了训练集合的特征。GeneMark 只能利用定长的 motif,对数据集的描述能力有限。

## Glimmer

Glimmer 在定阶马尔科夫模型上做改进,提出可变阶的 Interpolated Markov Model。企图利用不同长度的 motif 更精细 地描述数据集特征。

IMM 的特点是对训练集中不同强度的模式都可以充分利用,优先使用强的 long motif, 如果 long motif 没有足够的数据支持,IMM 对该 long motif 的次阶子串进行打分,并通过一种准确的加权策略利用次阶子串'插值'出这个 long motif 分数(l=interpolated), 如果次级子串仍然没有足够的支持,这种'插值'还可以继续下去,直到子串短到可以被足够数据支持为止,最短即是单个字符。

### Glimmer

Glimmer 的打分策略设计非常巧妙,细节见: IMM frame

1997 年的文章: Microbial gene identification using interpolated

Markov models

1999 年的文章: Improved microbial gene identification with

Glimmer

真核预测的版本:

http://www.cbcb.umd.edu/software/GlimmerHMM/,同样利用HMM 对基因结构建模。



Figure: 真核基因结构

与原核生物不同,真核生物基因结构复杂,不能用简单的马氏链 方法预测。复杂性体现在:

- 结构,强信号短特征-子模型作为隐状态
- 大量噪声 -对 intron,间区细致建模
- 调控机制和表达模式 -利用外部证据, 可以做的地方

## 复杂不全是坏事:

如果结构中某部分有强特征,则可以针对该特征建立细致的子模 型。在整个 augustus 框架中,每个子模型是 HMM 的隐状态。

### 为什么不用 HMM 预测原核生物?

1:原核基因相对均匀,没有强模式构建隐状态;2:状态间没有 强依赖关系

### 问题

概述

一阶 HMM 是在用非依赖的方法处理依赖问题?马氏链或 HMM,所谓马氏性质未必界限分明

说三个算法, 具体对 HMM 的算法链到之前的 HMM 教程。

## HMM in augustus



## HMM in augustus

概述

- 符号发射不定长, 目标是寻找好的 parse
- 多相位,2 方向



Figure: single and initial extron length distribution



Figure: internal and terminal extron length distribution

## 外显子建模

- human: single, initial, internal, terminal: n = 462, n = 822, n = 4334, n = 822, respectively;
- Drosophila: single, initial, internal, terminal: n=76, n=324, n=917, n=324, respectively.
- 外显子分布窄,可以构造经验分布
- 密度估计利用高斯核函数

# 内含子建模



Figure: intron length distribution

## 内含子建模

#### 显然:

- 内含子分布宽
- 内含子分布比外显子规律
- 峰后近似几何分布, 对长内含子有低估, 适当 shift

几何分布对内含子的低估问题: Reese et all, GENIE, a gene finder for Drosophila.

#### 所以:

- 宽分布不适合采用经验分布描述 (内存开销只是一方面)
- 采用经验分布 + 几何分布的混合模型,有 shift,但没有验证是否解决了对长内含子的低估

# 内含子建模



Figure: augustus 内含子模型

内含于参数 是由三个限制条件决定的。

## 强短信号

真核基因结构复杂证据之一是在基因上下游有丰富的特征模体 (motif), 有效识别这些模体可以帮助检测潜在基因区域。除了对外显子和内含子长度建模外, augustus 也对这些短模式建立子模型。



Figure: 外显子与内含子之间由 GT-AG 间隔,这是一个明显的短信号

## 两个滑动模型

对子模型建模 augustus 采用原核基因预测常用的两个小模型: 窗口加权字串模型 (WWAM), 插值马氏链 (IMM)。 这两个模型的训练与原核基因的短模式训练相似。

# 其他子模型

| state                              | submodels                                                      |
|------------------------------------|----------------------------------------------------------------|
| $E_{\rm single}$                   | translation initiation motif, start codon, initial pattern,    |
|                                    | initial content model, exon content model, stop codon          |
| $\mathbf{E}_{	ext{init}}^{j}$      | translation initiation motif, start codon, initial pattern,    |
|                                    | initial content model, exon content model                      |
| $\mathrm{E}^{j}$                   | initial pattern, exon content model, internal 3' content model |
| $\mathbf{E}_{	ext{term}}^{j}$      | initial pattern, exon content model, stop codon                |
| IR                                 | non-coding model                                               |
| $\mathrm{DSS}^{j}$                 | dss model                                                      |
| $\mathrm{ASS}^j$                   | branch point model, ass model                                  |
| $\mathcal{I}_{\mathrm{short}}^{j}$ | non-coding model                                               |
| ${ m I}_{ m fixed}^j$              | non-coding model                                               |
| ${ m I}_{ m geo}^j$                | non-coding model                                               |

# 转移矩阵

以上定义的所有模型均为'发射模型',是 HMM 中的微观部分,以(条件)概率分布(矩阵)形式存在, 保证打分规则一致性。另外,即使所有模型已经完整定义,在预测阶段,HMM 沿未知序列滑动时,事先不知道 parse 是什么样,因此不能直接使用。子模型之间的转移由转移矩阵决定,仍然是概率形式,是 HMM 的宏观部分。

constraints\_shadow\_partial.txt constraints\_shadow\_partial\_utr.txt states\_shadow\_2igenic.cfg states\_shadow.cfg states\_shadow\_intronless.cfg states\_shadow\_utr.cfg states\_singlestrand\_2igenic.cfg states\_singlestrand.cfg trans\_shadow\_atleastone.pbl trans\_shadow\_complete.pbl trans\_shadow\_complete\_utr.pbl trans\_shadow\_exactlyone.pbl trans\_shadow\_intronless.pbl trans\_shadow\_partial.pbl trans\_shadow\_partial\_utr.pbl trans\_singlestrand\_atleastone.pbl trans\_singlestrand\_complete.pbl trans\_singlestrand\_exactlyone.pbl trans\_singlestrand\_partial.pbl

## 模型的变体

### geneModel=:

- partial(default)
- intronless
- complete
- atleastone
- exactlyone

- singlestrand=true
- hintsfile=hintsfile
- extrisnicCfgFile=cfgfile

- Burge:基因预测模型的多数参数与GC含量关系密切。
- Genescan 训练集分 GC%(<43%, 43%-51%, 51%-57%,</li>
   >57%)4 个子集训练 4 组参数, 预测时根据输入序列 GC 含量选择其中一组参数。

## Genescan 没有充分利用训练集。

概述

- Mario: Augustus 将训练集按 GC 含量分成 10 份,用所有 训练数据单独训练每个子集
- 参与训练的子集权重由与被训练子集的平均 GC 含量 (α) 差 异决定, 权重决定训练层数
- 权重近似成 1-10 之间的整数:  $w(\alpha, \beta) = cell(10 * exp(-200 * (\alpha \beta)^2))$
- 在预测时,选择与输入序列 GC 含量接近的一组参数进行预测。
- 权重参数文件在: augustus/config/species/centain species/certain — species\_weightmatrix.txt
- Pitfall:augustus 每个子集的 size?

这是最容易提升性能的部分,除了 augustus, genescan 等软件也 在做这种努力。整合外部 hint 的参数文件 在:/augustus/config/extrinsic/\*\*.cfg, 主要规定了激励、罚分规 则。

- M manual anchor
- P protein database hit
- E est database hit
- C combined est/protein database hit
- D Dialign
- R retroposed genes
- T transMapped refSeqs

数据集

## 整体分值计算

$$P(S|M) = \sum_{x=1 \text{ or } 9}^{n} IMM_8(S_x)$$

## motif 分值计算

$$IMM_k(S_x) = \lambda_k(S_{x-1}) * P_k(S_x) + [1 - \lambda_k S_{x-1}] * IMM_{k-1}(S_x)$$

 $\lambda$  是表示数据可信度的权数 ,  $P_k(S_k)$  是一个估计值。

#### ORF

## 完整的基因结构包含起始密码子和终止密码子:

- A genome of length n is comprised of (n/3) codons
- Stop codons break genome into segments between consecutive stop codons
- The subsegments of these that start from the Start codon (ATG) are ORFs

如果序列是随机的,终止密码子应该每 21(21 = 64/3) 个密码子中出现一次,基因长度要大于此长度。设定合理的阈值确定长ORF 即可将随机序列与基因分离。当确定一段 orf 后可以结合密码子使用偏倚,motif 位点特征等进一步分析确定是否是基因。

## 偏倚数量化

## 基因组在不同层面上存在组成偏倚。

- GC 含量 影响多数参数训练
- 密码子
- 信号位点碱基丰度 检测短模式

## 偏倚数量化



From lectures by Serafim Batzoglou (Stanford)

Figure: 供体位点显示强烈偏倚

在真核基因预测中,我们关心的子模型特征通常是碱基丰度偏 倚。对偏倚数量化既是统计依据的需要也便干程序自动工作。 假定:

- 背景序列每个字出现概率是均匀分布 (1/20 或 1/4)
- 强信号处概率分布是不均匀的(但无须知道具体分布)
- 一个好的数量标准可以反映这种差异,它最好是这二者的函数。

## 出于同样的工程需要,这个量已被信号工程师定义过:

$$H = -\sum_{i=1}^{4 \text{or} 20} P_i * (log_2 P_i)$$

若以 2 为底取对数,信息强度的单位是 bit。

## 偏倚数量化



• 位点 1:

$$H_{bg} = -\sum_{i=1}^{20} (1/20) * \log_2(1/20) = 4.32 bit, H_{site1} = 0 bit,$$
 信号强度:4.32bit

• 位点 2:

$$H_{bg} = -\sum_{i=1}^{20} (1/20) * \log_2(1/20) = 4.32 \textit{bit}, H_{\textit{site}2} = 4.32 \textit{bit}$$
,信号强度:0bit

# 内含子参数确定

## 内含子模型三个参数确定:

• 
$$d + \frac{1}{a} = E[L]$$

• 
$$P(M = d) = P(M = d + 1)$$

• 
$$P(M = l) = (1 - p)(1 - q)^{l - d - 1}q$$