1

Sumário:

- Projecto de um circuito digital
- Portas lógicas universais
- Família lógica TTL
- Níveis de tensões de entrada e saída
- Folhas de dados

Portas lógicas

2

Projecto de um circuito digital

- 1. Traduzir o problema numa tabela de verdade
- 2. A partir da tabela de verdade obter a função lógica numa das formas canónicas
- 3. Simplificar a função lógica, pelo método mais adequado:
 - 1. Mapas de Karnaugh
 - 2. Teoremas da álgebra de Boole
 - 3. Propriedades da álgebra de Boole
 - 4. Postulados da álgebra de Boole
- 4. Construir o circuito com os dispositivos apropriados (Contactos ou Portas lógicas)

Portas lógicas Portas lógicas elementares IGUALDADE NEGAÇÃO ou NÃO (NOT) UNIÃO ou OU (OR) NÃO OU (NOR) NÃO OU EXCLUSIVO (EXCLUSIVE OR) NÃO OU EXCLUSIVO (EXCLUSIVE NOR)

Portas lógicas universais (NAND e NOR) • Em geral é mais simples construir/fabricar as portas lógicas NAND e NOR. • Por isso, estas funções são consideradas funções universais. • Assim sendo é conveniente, a fim de usarmos o menor número de portas lógicas, transformar a função lógica, depois de simplificada, de maneira a usarmos portas de um só tipo (NAND ou NOR).

5

Porta lógica NOT	Representação da porta lógica NOT recorrendo apenas à porta lógica NAND	Representação da porta lógica NOT recorrendo apenas à porta lógica NOR
A F	A F	A F
$F = \overline{A}$	$F = \overline{A}$	$F = \overline{A}$

$$F = \overline{A \bullet A} = \overline{A}$$

$$F=\overline{A+A}=\overline{A}$$

Tal como é possível verificar as funções lógicas obtidas em cada representação são idênticas.

Portas lógicas

6

Porta lógica AND	Representação da porta lógica AND recorrendo apenas à porta lógica NAND	Representação da porta lógica AND recorrendo apenas à porta lógica NOR
A B F	A B	A (2) F (3) F
$F = A \bullet B$	$F = \overline{\overline{A \bullet B}} = A \bullet B$	$F = \overline{\overline{A} + B} = A \bullet B$

$$(1)\overline{A \bullet B}$$

$$(2)\overline{A+A} = \overline{A}$$

$$(3)\overline{B+B} = \overline{B}$$

$$F = \overline{\overline{A \bullet B} \bullet \overline{A \bullet B}} = \overline{\overline{A \bullet B}} = \overline{A \bullet B} = A \bullet B$$

$$F = \overline{\overline{A} + \overline{B}} = \overline{\overline{A}} \bullet \overline{\overline{B}} = A \bullet B$$

Tal como é possível verificar as funções lógicas obtidas em cada representação são idênticas.

7

 $F = \overline{\overline{A \bullet B}} = \overline{\overline{A}} + \overline{\overline{B}} = A + B$

 $F = \overline{\overline{A + B} \bullet \overline{A + B}} = \overline{\overline{A + B}} = A + B$

Tal como é possível verificar as funções lógicas obtidas em cada representação são idênticas.

Portas lógicas

8

Constituição dos circuitos integrados que contêm portas lógicas

- Cada circuito integrado é constituído, geralmente, por várias portas lógicas de um mesmo tipo.
- As diversas portas lógicas são distinguidas num desenho técnico através da utilização das letras do alfabeto.
- Num desenho técnico, são também identificados os diferentes terminais das diferentes portas lógicas, bem como a referência do próprio circuito integrado.

9

Os componentes principais que constituem as portas lógicas são os transístores bipolares (família lógica TTL) ou os transístores de efeito de campo – FETs – (família lógica CMOS).

Estes transístores comportam-se como interruptores electrónicos que ou estão em condução (1) ou estão ao corte (0).

A figura apresenta um exemplo de um circuito eléctrico (porta lógica que implementa a função **AND**), utilizando a tecnologia **TTL**.

Portas lógicas

10

Família lógica TTL

A família **TTL** é principalmente reconhecida pelo facto de ter duas séries que começam pelos números 54 para os componentes de uso militar e 74 para os componentes de uso comercial.

TTL 74L de Baixa Potência

TTL 74H de Alta Velocidade

TTL 74S Schottky

TTL 74LS Schottky de Baixa Potência (LS-TTL)

TTL 74AS Schottky Avançada (AS-TTL)

TTL 74ALS- TTL Schottky Avançada de Baixa Potência

11

Níveis de tensão de entrada e saída da família lógica TTL

Faixas de **tensão** correspondentes aos **níveis lógicos de entrada**:

- entre 2 (v) e 5 (v), nível lógico 1;
- entre 0 (v) e 0,8 (v), nível lógico 0;
- entre 0,8 (v) e 2 (v) o componente não reconhece qualquer nível lógico.

Faixas de tensão correspondentes aos níveis lógicos de saída:

- entre 2,4 (v) e 5 (v), nível lógico 1;
- entre 0,3 (v) e 0,5 (v), nível lógico 0;
- entre 0 (v) e 0,3 (v) e ainda entre 0,5 (v) e 2,4 (v) o componente não reconhece qualquer nível lógico.

Os valores acima apresentados variam de circuito integrado para circuito integrado, daí que a utilização dos circuitos integrados nunca dispensa a consulta das respectivas folhas de dados.

Portas lógicas

12

Para além da família lógica TTL, existe ainda outra família lógica denominada CMOS.

A tecnologia CMOS oferece vantagens, relativamente à família lógica TTL, quanto á:

- tensão de alimentação
- temperatura de funcionamento
- imunidade ao ruído
- potência dissipada
- .

No entanto a tecnologia TTL como é mais antiga, encontra-se mais desenvolvida, apresentando um maior número de circuitos disponíveis.

