PHYSICAL HUMAN-ROBOT INTERACTION

Modeling DC motors

Riccardo Muradore

Outline

- ▶ Why DC motor?
- ► How a DC motor works
- Modeling
- Block diagram
- ► Motor, gear box and load

Rotor (windings, commutator, shaft)

Permanent magnet

(Internet)

Red: magnetic field due to the rotor windings Blue: magnetic field due to the stator windings Purple: superposition of the two magnetic fields

Permanent magnet A coil on the rotor The rotor is moved externally

The stator field induces the back electromotive force (back EMF) voltage e(t)

Permanent magnet
A coil on the rotor
The rotor is moved externally
Commutator connected to the coil

The stator field induces the back electromotive force (back EMF) voltage e(t)

What happens when the single coil is connected to a generator? (the current in the rotor windings is not zero)

(Internet)

Equilibrium of forces (sum equal to zero)

What happens when the single coil is connected to a generator? (the current in the rotor windings is not zero)

(Internet)

What happens when the single coil is connected to a generator? (the current in the rotor windings is not zero)

(Internet)

Torque:

$$\tau = IA\Phi\sin(\alpha)$$

I, current (rotor),

Φ, magnetic flux (stator),

Permanent magnet DC motor (Φ = const.)

If the number if coils within the rotor windings is large and only one coil is connected at a time to the commutator, we have $\sin(\alpha) \simeq 1$ and

torque $au = K_m I$

Mechanical equation

Assumption: no load

J: rotor inertia

b: viscous friction coefficient

 θ : rotor angular position

The angular velocity $\dot{ heta}$ satisfies the differential equation

$$J\frac{d\dot{\theta}}{dt} + b\dot{\theta} = K_m I \qquad (J\ddot{\theta} + b\dot{\theta} = K_m I) \tag{1}$$

where the applied torque $\tau = K_m I$ is obtained as the product of the torque constant K_m and the rotor corrent I

Electrical equation

Assumption: no load

The current I satisfies the differential equation

$$L\dot{I} + RI = V - K_e \dot{\theta} \tag{2}$$

where R and L are the resistance and inductance of the electric windings, V is the input voltage and K_e is the electric constant.

The product $K_e\dot{\theta}$ is the back emf voltage.

The overall model of a permanent magnet DC motor is given by the two coupled differential equations

$$J\ddot{\theta} + b\dot{\theta} = K_m I \tag{3}$$

$$I\dot{I} + RI = V - K_s \dot{\theta} \tag{4}$$

$$L\dot{I} + RI = V - K_e \dot{\theta} \tag{4}$$

Computing the Laplace transform, we end up with the following transfer function mapping input voltage into position

$$P(s) = \frac{\hat{\theta}(s)}{\hat{V}(s)} = \frac{K_m}{s\left[(Js+b)(Ls+R) + K_m K_e\right]}$$
 (5)

Remark The parameters are positive.

Modeling DC motors Riccardo Muradore 15

The coupled differential equations

$$J\ddot{\theta} + b\dot{\theta} = K_m I$$

$$L\dot{I} + RI = V - K_e \dot{\theta}$$
(6)

$$L\dot{I} + RI = V - K_e \dot{\theta} \tag{7}$$

describe the following block diagram

Modeling DC motors Riccardo Muradore 16

Block diagram with external load

What happens when there is an external load?

The previous block diagram is equivalent to the following one

Block diagram with gear box

What happens when there is a (ideal) gear box?

$$\theta_I = \frac{1}{N} \theta_r \tag{8}$$

(*r*: rotor, *l*: load)

The work is constant:

$$\tau_r \theta_r = \tau_l \theta_l \tag{9}$$

The power is constant:

$$\tau_r \dot{\theta}_r = \tau_l \dot{\theta}_l \tag{10}$$

When N > 1, the rotor speed is larger than the angular velocity after the gear box, whereas the motor torque is smaller than the torque after the gear box

Block diagram with gear box

Block diagram with load and gear box

Equivalent block diagram

If N is large, the effect of the load on the motot is negligible

$$\frac{1}{\left(J+\frac{J_l}{N^2}\right)s+\left(b+\frac{b_l}{N^2}\right)}$$

From the Internet

How does it work?

Brushed DC motor https://www.youtube.com/watch?v=LAtPHANEfQo

Brushless DC motor https://www.youtube.com/watch?v=bCEiOnuODac