Introduction to Image Processing

Prof Emmanuel Agu

Computer Science Dept. Worcester Polytechnic Institute (WPI)

What is an Image?

2-dimensional matrix of Intensity (gray or color) values

F(x,y)

I(u,v)

Example of Digital Images

- a) Natural landscape
- b) Synthetically generated scene
- c) Poster graphic
- d) Computer screenshot
- e) Black and white illustration
- f) Barcode
- g) Fingerprint
- h) X-ray
- i) Microscope slide
- j) Satellite Image
- k) Radar image
- 1) Astronomical object

Example: a camera Converts light to image

Credits: Gonzales and Woods

Digital Image?

•Remember: digitization causes a digital image to become an approximation of a real scene

Real image

Digital Image (an approximation)

Real image

Digital Image (an approximation)

Digital Image

- Common image formats include:
 - 1 values per point/pixel (B&W or Grayscale)
 - 3 values per point/pixel (Red, Green, and Blue)
 - 4 values per point/pixel (Red, Green, Blue, + "Alpha" or Opacity)

Grayscale

RGB

We will start with gray-scale images, extend to color later

What is image Processing?

- Algorithms that alter an input image to create new image
- Input is image, output is image

- Improves an image for human interpretation in ways including:
 - Image display and printing
 - Image editting
 - Image enhancement
 - Image compression

Example Operation: Noise Removal

Noisy Image

Denoised Image

Think of noise as white specks on a picture (random or non-random)

Examples: Noise Removal

Example: Contrast Adjustment

Low Contrast

Original Contrast

High Contrast

Example: Edge Detection

Example: Region Detection, Segmentation

Example: Image Compression

Original, 2.1MB

JPEG Compression, 308KB (15%)

Damaged Image

Restored Image

Credit: M. Bertalmio, G. Sapiro, V. Caselles, C. Ballester: Image Inpainting, SIGGRAPH 2000

Inpainting? Reconstruct corrupted/destroyed parts of an image

Examples: Artistic (Movie Special)Effects

Biology

Credit: Dartmouth Electron Microscopy Facility

Astronomy

Credit: NASA, Jeff Hester, and Paul Scowen (Arizona State) More info here

Applications of Image Processing

Medicine

Applications of Image Processing: Medicine

Applications of Image Processing

Satellite Imagery

Credit: NASA

Personal Photos

Credit: Tom Fletcher

Applications of Image Processing: Geographic Information Systems (GIS)

- Terrain classification
- Meteorology (weather)

Applications of Image Processing: Law Enforcement

- Number plate recognition for speed cameras or automated toll systems
- Fingerprint recognition

Applications of Image Processing: HCI

- Face recognition
- Gesture recognition

Computer Vision

Object detection, recognition, shape analysis, tracking Use of Artificial Intelligence and Machine Learning

Image Analysis

Segmentation, image registration, matching

Low-level

Image Processing

Image enhancement, noise removal, restoration, feature detection, compression

Key Stages in Digital Image Processing

Key Stages in Digital Image Processing: Image Aquisition

Key Stages in Digital Image Processing: Image Enhancement

Key Stages in Digital Image Processing: Image Restoration

Key Stages in Digital Image Processing:

Key Stages in Digital Image Processing: Segmentation

Key Stages in Digital Image Processing: Object Recognition

Key Stages in Digital Image Processing: Representation & Description

Key Stages in Digital Image Processing: Image Compression

Key Stages in Digital Image Processing: Colour Image Processing

