

Wyznaczenie pozycji satelity na podstawie danych z efemerydy transmitowanej

Geodezja satelitarna

Maciej Grzymała maciej.grzymala@pw.edu.pl Wydział Geodezji i Kartografii, Politechnika Warszawska Warszawa, 2023

Spis treści

1	RINEX nawigacyjny	2
2	Opis formatu RINEX	2
3	Wyznaczenie pozycji satelity na podstawie danych z efemerydy transmitowanej	3
4	Wyznaczenie pozycji satelity - algorytm	5
5	Efemerydy precyzyjne - format sp3 (standard product 3)	7

1 RINEX nawigacyjny

Aby wyznaczyć pozycję satelity, należy wykorzystać dane zapisane w pliku: **RINEX nawigacyjny**. Struktura tego formatu zawiera dwie sekcje informacji:

- sekcja nagłówka: zawiera globalne informacje ważne dla całości danych (aktualizowane co 24 godziny)
- sekcja danych: zawiera dane efemerydalne dla danego satelity w danej epoce (aktualizowane co dwie* godziny)

2 Opis formatu RINEX

```
G: GPS
                               RINEX VERSION / TYPE
           N: GNSS NAV DATA
           IGG of WUELS
                     20210228 235950 UTC PGM / RUN BY / DATE
 GPSA
     9.3132E-09 0.0000E+00 -5.9605E-08
                               IONOSPHERIC CORR
                      0.0000E+00
     9.0112E+04 0.0000E+00 -1.9661E+05
                      0.0000E+00
                               IONOSPHERIC CORR
 GPUT -5.5879354477E-09-6.217248938E-15 319488 2147
                               TIME SYSTEM CORR
      18
        1929
                               LEAP SECONDS
                               END OF HEADER
 G01 2021 02 28 23 59 44 7.513849996030E-04-8.299139153678E-12 0.00000000000E+00
    10
    11
    13
    14
    7.92000000000E+04
```

Tabela 1: Ramka depeszy nawigacyjnej: w formacie RINEX 3

SV PRN	epoka t_{oc}	a_{f_0}	a_{f_1}	a_{f_2}
G01	2021 02 28 23 59 44	7.513849996030E-04	-8.299139153678E-12	0.00000000000E+00
	IODE	C_{rs}	Δn	M_0
	3.00000000000E+00	1.008750000000E+02	4.281249759808E-09	1.081547729844E+00
	C_{uc}	e	C_{us}	\sqrt{a}
	5.453824996948E-06	1.043849776033E-02	7.821246981621E-06	5.153689664841E+03
	t_{oe}	C_{ic}	Ω_0	C_{is}
	8.63840000000E+04	-3.725290298462E-08	-1.933522986353E+00	1.341104507446E-07
	i_0	C_{rc}	ω	$\dot{\Omega}$
	9.831578153722E-01	2.405000000000E+02	8.198055840789E-01	-8.268201546639E-09
	IDOT (i_0)	CODE L2	GPS week	L2 P data flag
	4.021596087048E-10	1.00000000000E+00	2.147000000000E+03	0.00000000000E+00
	SV accuracy	health	T_{GD}	IODC
	2.00000000000E+00	0.00000000000E+00	4.656612873077E-09	3.00000000000E+00
	T_{om}	FIT interval	rezerwowe	rezerwowe
	7.92000000000E+04			

3 Wyznaczenie pozycji satelity na podstawie danych z efemerydy transmitowanej

Standardowy format danych efemerydalnych zapisanych w formacie RINEX zaiera:

- Parametry zegara: informacje o czasie (data, tydzień GPS, sekunda tygodnia GPS) i poprawki do wskazań zegara satelity
- Keplerowskie parametry orbity
- Parametry perturbacyjne
- Informacje o stanie satelity (określenie zdolności do użycia)

Rysunek 7: Elementy orbity keplerowskiej

Ω : rektascenzja węzła wstępującego;

 λ_0 : długość węzła wstępującego;

 $i\,$: nachylenie płaszczyzny orbity;

 ω : argument perigeum;

t₀ : czas przejścia satelity przez

perigeum;

 $u=\omega+\nu$: argument szerokości.

Rysunek 1: Elementy orbity keplerowskiej

Rysunek 2: Geometria orbity eliptycznej

 $r = \parallel \mathbf{r} \parallel$: odległość centrum mas Ziemia-satelita;

 ν : anomalia prawdziwa;

E: anomalia mimośrodowa;

a: dłuższa półoś elipsoidy;

e: mimośród;

p : parametr ogniskowy;

 φ : mimośród kątowy;

x'y': współrzędne orbitalne.

Rysunek 2: Geometria orbity

Tabela 2: Opis ramki depeszy nawigacyjnej

py ind	parametr	unit	opis				
Parametry zegara							
	SV PRN	-	numer PRN satelity				
0-5	t_{oc}	-	czas zegara satelity [yy mm dd hh mm ss]				
17	t_{oe}	SOW	epoka wyznaczenia efemerydy, dana w sekundach tygodnia GPS (epoka odniesienia efemerydy)				
6	α_{f_0}	S	współczynnik wielomianu do poprawki zegara satelity (opóźnienie)				
7	α_{f_1}	s/s	współczynnik wielomianu do poprawki zegara (dryft)				
8	α_{f_2}	s/s^2	współczynnik wielomianu do poprawki zegara (częstotliwość dryftowania)				
27 GPS numer tygodnia systemu GPS week			numer tygodnia systemu GPS				
Elem	nenty orbity Keplerowskiej						
16	\sqrt{a}	\sqrt{m}	pierwiastek z dużej półosi orbity				
14	e	-	ekscentr (mimośród) orbity				
21	i_0	rad	kąt inklinacji na epokę odniesienia				
19	Ω_0	rad	rektascenzja (długość geograficzna) węzła wstępującego na początek tygodnia GPS				
23	ω	rad	argument perygeum				
12	M_0	rad	anomalia średnia na epokę odniesienia				
Para	metry pertur	bacyjne					
11	Δn	$\mathrm{rad/s}$	poprawka ruchu średniego				
24	$\dot{\Omega}$	$\mathrm{rad/s}$	tempo zmiany rektascenzji węzła wstępującego				
25	$ \stackrel{ ext{IDOT}}{(i_0)} $	rad/s	tempo zmian inklinacji				
13	C_{uc}	rad	amplituda korekcji harmonicznej cosinusowej do argumentu szerokosci				
15	C_{us}	rad	amplituda korekcji harmonicznej sinusowej do argumentu szerokosci				
18	C_{ic}	rad	amplituda korekcji harmonicznej cosinusowej do kąta inklinacji				
20	C_{is}	rad	amplituda korekcji harmonicznej sinusowej do kąta inklinacji				
22	C_{rc}	m	amplituda korekcji harmonicznej cosinusowej do promienia orbity				
10	C_{rs}	m	amplituda korekcji harmonicznej sinusowej do promienia orbity				

4 Wyznaczenie pozycji satelity - algorytm

Zestawienie stałych:

$$\mu = 3.986005 \cdot 10^{14} \left[\frac{m^3}{s^2} \right]$$

$$\omega_E = 7.2921151467 \cdot 10^{-5} \left[\frac{rad}{s} \right]$$

t – czas, na który chcemy policzyć współrzędne satelity, podany w sekundach GPS

1. Czas jaki upłynął od epoki wyznaczenia efemerydy

$$t_k = t - t_{oe} \tag{1}$$

2. Obliczenie dużej półosi orbity

$$a = (\sqrt{a})^2 \tag{2}$$

3. Wyznaczenie średniej prędkości kątowej n, znanej jako ruch średni (ang. mean motion) na podstawie III prawa Keplera: (a – duża półoś orbity)

$$n_0 = \sqrt{\frac{\mu}{a^3}} \tag{3}$$

4. Wyznaczenie poprawionego ruchu średniego:

$$n = n_0 + \Delta n \tag{4}$$

5. Poprawiona anomalia średnia na epokę t_k :

$$M_k = M_0 + n \cdot t_k \tag{5}$$

6. Wyznaczenie anomalii mimośrodowej (Równanie Keplera) :

$$E_k = M_k + e\sin(E_k) \tag{6}$$

Równanie to należy rozwiązać w sposób iteracyjny: (dla i=1,2,3...)

$$E_1 = M_k \tag{7a}$$

$$E_{i+1} = M_k + e\sin(E_i) \tag{7b}$$

Kryterium zakończenia obliczeń iteracyjnych wymaga spełnienia warunku: $|E_i - E_{i-1}| < 10^{-12}$

7. Wyznaczenie anomalii prawdziwej:

$$v_k = \arctan\left(\frac{\sqrt{1 - e^2}\sin(E_k)}{\cos(E_k) - e}\right) \tag{8}$$

* skorzystać z funkcji atan2 (odpowiednie ćwiartki dla arcus tangens)

8. Wyznaczenie argumentu szerokości:

$$\Phi_k = v_k + \omega \tag{9}$$

9. Wyznaczenie poprawek do argumentu szerokości Δu_k , promienia orbity Δr_k i inklinacji orbity Δi_k :

$$\Delta u_k = C_{us} \sin(2\Phi_k) + C_{uc} \cos(2\Phi_k) \tag{10a}$$

$$\Delta r_k = C_{rs}\sin(2\Phi_k) + C_{rc}\cos(2\Phi_k) \tag{10b}$$

$$\Delta i_k = C_{is} \sin(2\Phi_k) + C_{ic} \cos(2\Phi_k) \tag{10c}$$

10. Wyznaczenie poprawionych wartości argumentu szerokości u_k , promienia orbity r_k i inklinacji orbity i_k :

$$u_k = \Phi_k + \Delta u_k \tag{11a}$$

$$r_k = a\left(1 - e\cos(E_k)\right) + \Delta r_k \tag{11b}$$

$$i_k = i_0 + \dot{i_0} \cdot t_k + \Delta i_k \tag{11c}$$

* i_0 to IDOT

11. Wyznaczenie pozycji satelity w układzie orbity:

$$x_k = r_k \cdot \cos(u_k) \tag{12a}$$

$$y_k = r_k \cdot \sin(u_k) \tag{12b}$$

KONTROLA obliczeń: wyznaczenie długości promienia w układzie orbitalnym

$$\begin{split} r_{kontrola} &= \sqrt{x_k^2 + y_k^2} \\ \text{kryterium kontroli:} & |r_k - r_{kontrola}| < 0,01 \end{split}$$

12. Poprawiona długość węzła wstępującego:

$$\Omega_k = \Omega_0 + (\dot{\Omega} - \omega_E)t_k - \omega_E t_{oe} \tag{13}$$

13. Wyznaczenie pozycji satelity w układzie geocentrycznym ECEF:

$$X_k = x_k \cos(\Omega_k) - y_k \cos(i_k) \sin(\Omega_k)$$
(14a)

$$Y_k = x_k \sin(\Omega_k) + y_k \cos(i_k) \cos(\Omega_k)$$
(14b)

$$Z_k = y_k \sin(i_k) \tag{14c}$$

KONTROLA obliczeń: wyznaczenie długości promienia w układzie geocentrycznym ECEF

 $r_{kontrola} = \sqrt{X_k^2 + Y_k^2 + Z_k^2}$ kryterium kontroli: $|r_k - r_{kontrola}| < 0,01$

14. Obliczenie błędu synchronizacji zegara satelity na podstawie wielomianu drugiego stopnia:

$$\delta t^s = \alpha_{f_0} + \alpha_{f_1}(t - t_{oe}) + \alpha_{f_2}(t - t_{oe})^2 \tag{15}$$

15. Obliczenie poprawki relatywistycznej i dodanie jej do wartości błędu synchronizacji zegara satelity:

$$\delta t_{rel} = \frac{-2\sqrt{\mu}}{c^2} e\sqrt{a} \sin E_k \tag{16}$$

$$\delta t_{rel}^s = \delta t^s + \delta t_{rel} \tag{17}$$

gdzie: c = 299792458.0 [m/s] – prędkość światła

5 Efemerydy precyzyjne - format sp3 (standard product 3)

```
#cP2020
          2 1 0 0
                     0.00000000
                                    96 ORBIT IGS14 HLM
   ## 2090 518400.00000000
                          900.0000000 58880 0.0000000000000
2
           G01G02G03G04G05G06G07G08G09G10G11G12G13G14G15G16G17
3
           G18G19G20G21G22G23G24G25G26G27G28G29G30G31G32
                    0
                       0
                         0
                            0
                               0
                                 0
                                    0
                                       0
                                         0
                            0
                    0
                       Ω
                         0
                               0
                                 0
                                    0
                                       0
                                         Ω
                    0
                       0
                               0
                                  0
                                    0
                                       0
   ++
            2
               2
                  3
                    3
                       2
                          2
                            2
                               2
                                  2
                                    3
                                       2
                                          2
                                            2
                            2
                               2
   ++
                    2
                          2
                                  2
                                    2
                                       3
10
                            0
            0
               0
                  0
                    0
                       0
                         0
                               0
                                  0
                                    0
                                               0
   ++
                                       0
                                         0
                                            0
11
12
   ++
            0
               0
                  0
                    0
                       0
                         0
                            0
                               0
                                  0
                                    0
                                       0
                                         0
                                            0
                                               0
  13
  1.2500000 1.025000000
                           0.0000000000
                                        0.000000000000000
15
      0.0000000
               %f
16
            0
                                       0
  %i
        0
                0
                     0
                           0
                                 0
                                              0
  %i
        0
            0
                 0
                     0
                           0
                                  0
                                        0
                                              0
18
   /* RAPID ORBIT COMBINATION FROM WEIGHTED AVERAGE OF:
19
   /* cod emr esa gfz jpl ngs sio usn whu
   /* REFERENCED TO IGS TIME (IGST) AND TO WEIGHTED MEAN POLE:
21
   /* PCV:IGS14_2086 OL/AL:FES2004
                                NONE
                                        Y ORB: CMB CLK: CMB
22
     2020 2 1 0 0 0.00000000
  PG01 14300.139771 -20523.295606
                                  8215.807004
                                              -280.482055
                                                         6
                                                                 86
24
                       20.578803 -20932.604552
                                                               3 140
  PG02 -15483.231867
                                              -396.449429
                                                         8
       17512.408473 -13085.435307 -15075.443351
                                               -84.349607 10 8
                                                               6 99
26
                                               -42.424870
        7970.412031 -14047.302378 -21075.831056
                                                               8 102
27
   PG04
                                                         8
                                                            8
   PG05
      -26323.332276
                     1719.498103
                                 -4025.909704
                                                -6.917796
                                                               7 120
```

Efemerydy satelitów w postaci współrzędnych XYZ w układzie geocentrycznym ECEF.

Tabela 3: Opis danych z pliku .sp3

rok miesiąc dzie	rok miesiąc dzień godzina minuta sekunda						
* 2020 2 1 0 0 0	c 2020 2 1 0 0 0.00000000						
numer satelity	X [km]	Y [km]	Z [km]	$\delta t \; [\mu s]$			
PG01	14300.139771	-20523.295606	8215.807004	-280.482055			

Literatura