JAYPEE INSTITUTE OF INFORMATION TECHNOLOGY, NOIDA

Information Security Lab Project Report

File Encryption/ Decryption Tool

SUBMITTED BY

AYUSH UPADHYAY

Problem Statement

- A Python-based file encryption and decryption tool that allows users to secure sensitive data by encrypting files and later decrypting them when needed.
- The tool should provide a simple and user-friendly interface. Users can choose to encrypt a file by generating a unique key using the Fernet symmetric key encryption algorithm and subsequently decrypt the file using the same key.
- The tool must handle file existence checks, key generation, and user confirmation before overwriting decrypted files ensuring proper error handling, such as notifying users of invalid keys during decryption.
- This project aims to provide a practical solution for users who need to secure and manage their sensitive files with ease.

Key Concepts

The project involves several key topics and concepts. Here are the main topics used in the project:

File Operations:

- Reading and writing files using Python's open function.
- Checking file existence with os.path.exists.

Cryptography:

- Utilizing the cryptography library for encryption and decryption.
- Fernet symmetric key encryption scheme.

User Input and Interaction:

• Accepting user input using input for choices, filenames, and key confirmation.

Error Handling:

• Using try and except blocks to handle exceptions, such as InvalidToken during decryption.

Control Flow:

• Using if, elif, and else statements for decision-making based on user choices.

Modularization:

 Organizing code into functions (generate_key, load_key, encrypt, decrypt) for modularity and readability.

These key topics collectively contribute to the implementation of a secure file encryption and decryption tool.

Source Code

```
from cryptography.fernet import Fernet, InvalidToken
import os
def generate key():
    key = Fernet.generate key()
    with open("Secret.key", "wb") as key file:
        key file.write(key)
def load key():
    return open("Secret.key", "rb").read()
def encrypt(filename, key):
    f = Fernet(key)
    with open(filename, "rb") as file:
        file data = file.read()
        encrypted data = f.encrypt(file data)
    with open(filename, "wb") as file:
        file.write(encrypted data)
def decrypt(filename, key):
    f = Fernet(key)
    with open(filename, "rb") as file:
        encrypted data = file.read()
        try:
            decrypted data = f.decrypt(encrypted data)
        except InvalidToken:
            print("Invalid key. Decryption failed.")
            return
    confirm = input(f"Do you want to overwrite the original file
'{filename}' with decrypted data? (yes/no): ").lower()
    if confirm == 'yes':
        with open(filename, "wb") as file:
            file.write(decrypted data)
        print("File Decrypted and Overwritten Successfully!!!")
    else:
```

```
print("Decryption canceled. The original file was not
overwritten.")
# Main part of the script
choice = input("Enter 'E' to encrypt or 'D' to decrypt the file:
").lower()
if choice == 'e':
    filename = input("Enter the file name to encrypt (including
file extension): ")
    if os.path.exists(filename):
        generate key()
        key = load key()
        encrypt(filename, key)
        print("File Encrypted Successfully!!!")
    else:
        print(f"File '{filename}' not found. Please check the
file name and try again.")
elif choice == "d":
    filename = input("Enter the file name to decrypt (including
file extension): ")
    if os.path.exists(filename):
        key = load key()
       decrypt(filename, key)
    else:
        print(f"File '{filename}' not found. Please check the
file name and try again.")
else:
    print("Invalid choice. Please enter 'E' to encrypt a file or
'D' to decrypt a file.")
```

Implementation Details

Before encryption

```
ayush.txt - Notepad

File Edit Format View Help

Hello, How are you?
```

Running Program for encryption

After encryption

Running Program for decryption

After Decryption

References

- https://www.w3schools.com/python/
- https://www.geeksforgeeks.org/cryptography-introduction/
- https://www.tutorialspoint.com/what-is-cryptography-in-computer-network