Linear Algebra

Asst.Prof.Udom Janjarassuk

King Mongkut's Institute of Technology Ladkrabang

- We know how to solve Ax = 0 —> Elimination converted the problem to Rx = 0
 - \bullet The free variables were given special values (1 and 0)
 - ❖ then the pivot variables were found by back substitution
- We didn't care about the right side b because it is $0 \longrightarrow$ the solution was in the nullspace of A
- Now b is not 0—> row operations on the left side must act also on the right side
- \diamond One way to organize that is to add b as an extra column of the matrix

$$\begin{bmatrix} 1 & 3 & 0 & 2 \\ 0 & 0 & 1 & 4 \\ 1 & 3 & 1 & 6 \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{vmatrix} = \begin{bmatrix} 1 \\ 6 \\ 7 \end{bmatrix} \quad \text{has the augmented matrix} \quad \begin{bmatrix} 1 & 3 & 0 & 2 & 1 \\ 0 & 0 & 1 & 4 & 6 \\ 1 & 3 & 1 & 6 & 7 \end{bmatrix} = \begin{bmatrix} A & b \end{bmatrix}$$

- When we apply the usual elimination steps to A, we also apply them to b
- ❖ In this example we subtract row 1 from row 3 and then subtract row 2 from row 3
- \diamond This produces a complete row of *zeros*:

$$\begin{bmatrix} 1 & 3 & 0 & 2 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} \mathbf{1} \\ \mathbf{6} \\ \mathbf{0} \end{bmatrix} \text{ has the augmented matrix} \begin{bmatrix} 1 & 3 & 0 & 2 & \mathbf{1} \\ 0 & 0 & 1 & 4 & \mathbf{6} \\ 0 & 0 & 0 & \mathbf{0} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} R & \mathbf{d} \end{bmatrix}.$$

- * The very last zero is crucial \longrightarrow it means that the equations can be solved; the third equation has become 0 = 0
- \bullet In the original matrix A, the first row plus the second row equals the third row
- ❖ If the equations are consistent —> this must be true on the right side of the equations also
- ❖ Here are the same augmented matrices for a general $b = (b_1, b_2, b_3)$

$$\begin{bmatrix} 1 & 3 & 0 & 2 & b_1 \\ 0 & 0 & 1 & 4 & b_2 \\ 1 & 3 & 1 & 6 & b_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 0 & 2 & b_1 \\ 0 & 0 & 1 & 4 & b_2 \\ 0 & 0 & 0 & b_3 - b_1 - b_2 \end{bmatrix} = [R \ d]$$

• The third equation is 0 = 0 only if $b_3 = b_1 + b_2$

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ ■ 釣९♡

One Particular Solution

- Choose the free variables to be $x_2 = x_4 = 0$ —> then the equations give the pivot variables $x_1 = 1$ and $x_3 = 6$
- Our particular solution to Ax = b is $x_p = (1, 0, 6, 0)$
- \diamond The process starts with reducing $[A \ b]$ to $[R \ d]$

For a solution to exist

Zero rows in R must also be zero in d. Since I is in the pivot rows and pivot columns of R, the pivot variables in x_p come from d

- After row reduction we are just solving Ix = d
- Notice how we choose the free variables (as zero) and solve for the pivot variables

- \diamond After the row reduction to R, these steps will be quick
- When the free variables are zero —> the pivot variables for x_p are already seen in the right side vector d

The particular solution solves
$$Ax_p = b$$

The $n-r$ special solution solves $Ax_n = 0$

- * The two special (nullspace) solutions to Rx = 0 come from the two free columns of R, by reversing signs of 3, 2, and 4.
- \star $x = x_p + x_n$ is known as the complete solution to Ax = b

Complete solution one
$$x_p$$
 many x_n

$$x = x_p + x_n = \begin{bmatrix} 1 \\ 0 \\ 6 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -2 \\ 0 \\ -4 \\ 1 \end{bmatrix}.$$

4□ > 4回 > 4 豆 > 4 豆 > 豆 り < (*)</p>

Q: Suppose A is a square invertible matrix, m = n = r, what are x_p and x_n ?

A:

- The particular solution is the one and only solution $x_p = A^{-1}b$
- ❖ There are no special solutions or free variables \longrightarrow R = I has no zero rows
- ightharpoonup The only vector in the nullspace is $x_n = 0$
- The complete solution is $x = x_p + x_n = A^{-1}b + 0$

- * If A was invertible, then the nullspace N(A) contained only the zero vector
- Reduction went from $[A \ b]$ to $[I \ A^{-1}b]$
- \diamond The matrix A was reduced all the way to I
- \diamond Then Ax = b became $x = A^{-1}b = d$

Ex 1: Find the condition on (b_1, b_2, b_3) for Ax = b to be solvable, if

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ -2 & -3 \end{bmatrix} \text{ and } b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Reduction:

$$\begin{bmatrix} 1 & 1 & b_1 \\ 1 & 2 & b_2 \\ -2 & -3 & b_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & b_1 \\ 0 & 1 & b_2 - b_1 \\ 0 & -1 & b_3 + 2b_1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2b_1 - b_2 \\ 0 & 1 & b_2 - b_1 \\ 0 & 0 & \boldsymbol{b_3} + \boldsymbol{b_1} + \boldsymbol{b_2} \end{bmatrix}$$

- The last equation is 0 = 0 provided $b_3 + b_1 + b_2 = 0$
- ❖ This is the condition to put b in the column space —> then Ax = b will be solvable
- ❖ There is no free variables since n r = 2 2 → no special solutions
- \bullet The nullspace solution is $x_n = 0$
- * The particular solution to Ax = b and Rx = d is at the top of the final column d:

Only solution to
$$Ax = b$$
 is $x = x_p + x_n = \begin{bmatrix} 2b_1 - b_2 \\ b_2 - b_1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

- ❖ The previous example is typical of the extremely important case when A has full column rank —> every column has a pivot
- ❖ The rank is r = n → the matrix is tall and thin $(m \ge n)$
- \diamond Row reduction puts *I* at the top, when *A* is reduced to *R*:

Full column rank
$$R = \begin{bmatrix} I \\ 0 \end{bmatrix} = \begin{bmatrix} n \text{ by } n \text{ identity matrix} \\ m - n \text{ rows of zeros} \end{bmatrix}$$

❖ There are no free columns or free variables —> the nullspace is zero vector

Every matrix A with full column rank (r = n) has all these properties:

- 1. All columns of A are pivot columns
- 2. There are no free variables or special solutions
- 3. The nullspace N(A) contains only the zero vector x = 0
- 4. If Ax = b has a solution (it might not) then it has only one solution

- ❖ The other extreme case is full row rank
- Now either has one or infinitely many solutions
- ❖ In this case A is short and wide $(m \le n)$ —> the number of unknowns is at least the number of equations
- * A matrix has full row rank if r = m —> every row has a pivot

Ex 2: Given the following systems of linear equations

Find the rank of coefficient matrix. Discuss about the solution of the given system

- \diamond There are two planes in xyz space
- ❖ The planes are not parallel, so they intersect in a line
- ❖ This line of solutions is what elimination will find
- ❖ The particular solution will be one point on the line
- * Adding the nullspace vectors x_n will move us along the line in the Figure

 $x = x_p + x_n$ gives the whole line of solutions:

• We find x_p and x_n by elimination on $[A \ b]$

$$\begin{bmatrix} 1 & 1 & 1 & 3 \\ 1 & 2 & -1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 1 & -2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} R & d \end{bmatrix}$$

- The particular solution (x_p) has free variable $x_3 = 0$
 - * x_p comes directly from d on the right side: $x_p = (2, 1, 0)$
- \diamond The special solution (s) has $x_3 = 1$
 - s comes directly from the third column (free column) of R: s = (-3, 2, 1)
- * It is wise to check that x_p and s satisfy the original equations $Ax_p = b$ and As = 0
- * The nullspace solution x_n is any multiple of s —> it moves along the line of solutions

Please notice how to write the answer:

Complete solution
$$x = x_p + x_n = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix}$$
.

- ❖ Any point on the line could have been chosen as the particular solution —> we choose the point with $x_3 = 0$
- ❖ The particular solution is NOT multiplied by an arbitrary constant

Every matrix A with full row rank (r = m) has all these properties:

- 1. All rows have pivots, and R has no zero rows
- 2. Ax = b has a solution for every right side b
- 3. The column space is the whole space \mathbb{R}^m
- 4. There are n r = n m special solutions in the nullspace of A
- \bullet In this case with m pivots, the rows are "linearly independent"
- So the columns of A^T are "linearly independent" —> The nullspace of A^T is the zero vector

The four possibilities for linear equations depend on the rank r:

```
Square and invertible
                                            Ax = b has 1 solution
        and
              r = n
r=m
                        Short and wide
                                            Ax = b has \infty solutions
r=m and
              r < n
r < m and r = n
                     Tall and thin
                                            Ax = b has 0 or 1 solution
r < m and
                        Not full rank
                                            Ax = b has 0 or \infty solutions
            r < n
```

- \diamond The reduced R will fall in the same category as the matrix A
- \bullet In case the pivot columns happen to come first, we can display these four possibilities for R as well:

Four types for
$$R$$
 $\begin{bmatrix} I \end{bmatrix}$ $\begin{bmatrix} I & F \end{bmatrix}$ $\begin{bmatrix} I & F \end{bmatrix}$ Their ranks $r = m = n$ $r = m < n$ $r = n < m$ $r < m, r < n$

Independence, Basis and Dimension

- There are n columns in an m by n matrix, but the true "dimension" of the column space is not necessarily n
- ❖ The dimension is measured by counting independent columns
- \diamond We will see that the true dimension of the column space is the rank r
- * The idea of independence applies to any vectors $v_1, ..., v_n$ in any vector space
- * Most of this section concentrates on the subspaces that we know and use —> the column space in \mathbb{R}^m and the nullspace in \mathbb{R}^n

Independence, Basis and Dimension

- ❖ Previously, we study "vectors" that are not column vectors
 - they can be matrices and functions
 - \bullet they can be linearly independent or dependent
- ❖ The goal is to understand a basis for a vector space
- ❖ A basis contains independent vectors that "span the space"

The four essential ideas in this section are:

- 1. Independent vectors (not too many)
- 2. Spanning a space (not too few)
- 3. Basis for a space (not too many or too few)
- 4. Dimension of a space (the right number of vectors)

Definition

The columns of A are linearly independent when the only solution to Ax = 0 is x = 0. —> No other combination Ax of the columns gives the zero vector

- With linearly independent columns, the nullspace N(A) contains only the zero vector
- Consider a example of linear independence (and dependence) with three vectors in \mathbb{R}^3 :
 - If three vectors are NOT in the same plane, they are independent. No combination of v_1, v_2, v_3 (see the following figure)
 - If three vectors w_1, w_2, w_3 are in the same plane, they are dependent

- Suppose the vectors are the columns of A, and independent—> the nullspace only contains x = 0
- The following definition of independence will apply to any sequence of vectors in any vector space (they would mean the same thing as the previous definition)

Definition

The sequence of vectors $v_1, ..., v_n$ is linearly independent if the only combination that gives the zero vector is $0v_1 + 0v_2 + ... + 0v_n$. —> thus linear independent means that $x_1v_1 + x_2v_2 + ... + x_nv_n = 0$ only happens when all x's are zero.

- \bullet If a combination gives 0, when the x's are not all zero \longrightarrow the vectors are dependent
- **❖ Correct language:** "The sequence of vectors is linearly independent"
 - **❖ Acceptable**: "The vectors are independent"
 - **❖ Unacceptable**: "The matrix is independent"

- ❖ The key question is: Which combinations of the vectors give zero?
- \diamond Some small examples in \mathbb{R}^2 :
 - (a) The vector (1,0) and (0,1) are independent
 - (b) The vectors (1,0) and (1,0.00001) are independent
 - (c) The vector (1,1) and (-1,-1) are dependent
 - (d) The vector (1,1) and (0,0) are dependent because of the zero vector

Ex 3: Given the matrix A, show that the columns of A are dependent.

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 5 \\ 1 & 0 & 3 \end{bmatrix}$$

❖ The columns of A are dependent. —> Ax = 0 has a nonzero solution.

$$Ax = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 5 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix} \text{ is } -3 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} 3 \\ 5 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

 \diamond The rank is only r=2

Q: How to find that solution to Ax = 0?

A: The systematic way is elimination.

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 5 \\ 1 & 0 & 3 \end{bmatrix} \text{ reduces to } R = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

• The solution x = (-3, 1, 1) was exactly the special solution.

Full column rank

- \bullet The columns of A are independent exactly when the rank is r = n
- \diamond there are *n* pivots and no free variables
- Only x = 0 is in the nullspace

- **❖** Important fact
 - Suppose seven columns have five components each (m = 5 less than n = 7)
 - ❖ Then the columns must be dependent —> any seven vectors from \mathbb{R}^5 are dependent
 - The rank of A cannot be larger than 5 —> there cannot be more than five pivots in five rows
 - The system has at least 7-5=2 free variables —> so it has nonzero solutions

Any set of n vectors in \mathbb{R}^m must be linearly dependent if n > m

❖ If $n \le m$, the columns might be dependent or might be independent

- ❖ The first subspace discussed previously was the column space
- ❖ Starting with columns $v_1 + ... + v_n$ →> the subspace was filled out by including all combinations $x_1v_1 + ... + x_nv_n$
- \diamond The column space consists of all combinations Ax of all the columns
- ❖ The column space is spanned by the columns

Definition

A set of vectors spans a space if their linear combination fill the space

- The columns of a matrix span its column space. They might be dependent:
 - $v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ span the full two-dimensional space \mathbb{R}^2
 - $v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 4 \\ 7 \end{bmatrix}$ also span the full space \mathbb{R}^2
 - $w_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $w_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$ only span a line in \mathbb{R}^2
- * Think of two vectors coming out from (0,0,0) in 3-dimensional space —> generally, they span a plane
- Other possibilities: (which might not independent)
 - two vectors span a line
 - three vectors span all of \mathbb{R}^3 , or only a plane
 - three vectors span a line

❖ Here is a new subspace —> the combinations of the rows produce the "row space"

Definition

The row space of a matrix is the subspace of \mathbb{R}^n spanned by the rows.

The row space of A is $C(A^T)$ —> it is the column space of A^T

Ex 4: Given the matrix A, find the column space and row space of A

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 7 \\ 3 & 5 \end{bmatrix}$$

- ❖ The column space of A is the plane in \mathbb{R}^3 spanned by the two columns of A
- The row space of A is spanned by the three rows of A in \mathbb{R}^2