Übung 6: Rauchen und Schwangerschaft

Wir interessieren uns für den Einfluss des Rauchens während der Schwangerschaft, quantifiziert durch die Zahl der pro Tag von der Mutter gerauchten Zigaretten, auf die Gesundheit von Neugeborenen, gemessen durch deren Geburtsgewicht. Da aber auch viele andere Faktoren existieren, die einerseits vermutlich das Geburtsgewicht beeinflussen und andererseits mit dem Rauchverhalten korrelieren, sollten wir weitere erklärende Variablen berücksichtigen. Da Sie die Daten aus einer amerikanischen Studie erhalten haben, ist die Messeinheit für das Geburtsgewicht in Unzen gegeben.

cig: pro Tag Konsum von Zigaretten

bwgth: Geburtsgewicht des Neugeborenen (baby weight) in Unzen.

faminc: Familieneinkommen

male: Dummy Variable = 1 wenn Neugeborenes männlich ist

white: Dummy Variable = 1 wenn Neugeborenes weiss ist.

Verwenden Sie für diese Aufgabe die Datei Rauchen und Schwangerschaft.gdt

auf Moodle.

1. Analyse der Daten.

i. Wie viele Frauen sind in der Stichprobe enthalten? gretl Hauptfenster: Stichprobe/Zeige Status

ii. Wie hoch ist der durchschnittliche Zigarettenkonsum pro Tag? Ist dieser Durchschnittswert eine repräsentativ die typische Frau aus der Stichprobe?

gretl: Ansicht/Grundlegende Statistiken → Auswahl: faminc, motheduc und cigs

	arith. Mittel	Median	Minimum	Maximum
faminc	29,027	27,500	0,50000	65,000
motheduc	12,936	12,000	2,0000	18,000
cigs	2,0872	0,00000	0,00000	50,000
	Std. Abw.	Var'koeff.	Schiefe	Überwölbung
faminc	18,739	0,64559	0,61762	-0,52660
motheduc	2,3767	0,18373	-0,032120	0,64824
cigs	5,9727	2,8616	3,5604	14,934

iii. Wie viele Frauen Rauchen während der Schwangerschaft? Was ist der Anteil von Raucherinnen in der Stichprobe?

gretl Hauptfenster: Stichprobe/Restringiere durch Bedingung/ Boolsche Bedingung: cigs > 0 → Dadurch werden die Raucherinnen beibehalten und die Nichtraucherinnen entfernt!

iv. Wie hoch ist der durchschnittliche Zigarettenkonsum pro Tag unter den Raucherinnen?

	arith. Mittel	Median	Minimum	Maximum
faminc	20,917	18,500	0,50000	65,000
motheduc	11,637	12,000	6,0000	18,000
cigs	13,665	10,000	1,0000	50,000
	Std. Abw.	Var'koeff.	Schiefe	Überwölbung
faminc	15,142	0,72392	1,0458	0,95217
motheduc	1,7753	0,15256	0,15604	1,6180
cigs	8,6909	0,63599	1,3020	2,5502

Hinweis: Die Stichprobe ist wieder auf den Gesamtbereich wiederherzustellen!

gretl Hauptfenster: Stichprobe/Gesamtbereich wiederherstellen

- v. Wie hoch ist der durchschnittliche Familieneinkommen? Vergleichen Sie zwischen der Stichprobe und Teilmenge der Raucherinnen.
- vi. Wie viele Neugeborene sind in der Stichprobe weiss?

Stichprobe/Restringiere durch Bedingung/ Benutze Dummy Variable/white

- → Dadurch werden die nichtweisse Neugeborenen entfernt!
- 2. Welchen Einfluss erwarten Sie für die Variablen *cigs* und *faminc* auf das Geburtsgewicht des Neugeborenen (welche Vorzeichen für β₂ und β₃)? Begründen Sie Ihre Antwort.
- 3. Schätzen Sie das Modell 1: $bwght = \beta_1 + \beta_2 cigs + u$

- 4. Welche Korrelation erwarten Sie zwischen den Variablen *cigs* (Zig-Konsum) und *faminc* (Familieneinkommen)? Erklären Sie, warum die Korrelation positiv oder negativ sein könnte.
- 5. Analysieren Sie die Korrelationstruktur zwischen den Variablen *bwght*, *cigs* und *faminc*

gretl Hauptfenster: Ansicht/Korrelationsmatrix → Variablen bwght, cigs und faminc auswählen

6. Ermitteln Sie die Korrelation zwischen *cigs* und *faminc* mittels einer Regression. Einmal für die gesamte Stichprobe, einmal für die Gruppe der Raucherinnen. Wie ändert sich diese Korrelation für diese Teilmenge aus der Stichprobe?

Regression für die gesamte Stichprobe:

```
Abhängige Variable: faminc

Koeffizient Std.-fehler t-Quotient p-Wert

const 30,1598 0,524988 57,45 0,0000 ***
cigs -0,542928 0,0830042 -6,541 8,58e-011 ***

Mittel d. abh. Var. 29,02666 Stdabw. d. abh. Var. 18,73928
Summe d. quad. Res. 472475,2 Stdfehler d. Regress. 18,46324
R-Quadrat 0,029945 Korrigiertes R-Quadrat 0,029245
```

Regression für die Gruppe der Raucherinnen gretl: Stichprobe/Restringiere durch Bedingung/cigs > 0

```
Abhängige Variable: faminc

Koeffizient Std.-fehler t-Quotient p-Wert

const 23,8077 1,93141 12,33 1,26e-026 ***
cigs -0,211509 0,119344 -1,772 0,0778 *

Mittel d. abh. Var. 20,91745 Stdabw. d. abh. Var. 15,14250
Summe d. quad. Res. 47668,34 Stdfehler d. Regress. 15,06626
R-Quadrat 0,014736 Korrigiertes R-Quadrat 0,010045
```

Hinweis: Die Stichprobe ist wieder auf den Gesamtbereich wiederherzustellen!

7. Welchen Effekt hat vermutlich die Hinzunahme von *faminc* auf den geschätzten Regressionskoeffizienten b₂ (= b_{cios})?

Hinweis: Benutzen Sie Ihr Ergebnis aus Frage 6

8. Schätzen Sie das Modell 2: bwght = $\beta_1 + \beta_2$ cigs + β_3 faminc + u

```
Abhängige Variable: bwght

Koeffizient Std.-fehler t-Quotient p-Wert

const 116,974 1,04898 111,5 0,0000 ***
cigs -0,463408 0,0915768 -5,060 4,75e-07 ***
faminc 0,0927647 0,0291879 3,178 0,0015 ***

Mittel d. abh. Var. 118,6996 Stdabw. d. abh. Var. 20,35396
Summe d. quad. Res. 557485,5 Stdfehler d. Regress. 20,06282
R-Quadrat 0,029805 Korrigiertes R-Quadrat 0,028404
F(2, 1385) 21,27392 P-Wert(F) 7,94e-10
Log-Likelihood -6130,414 Akaike-Kriterium 12266,83
Schwarz-Kriterium 12282,54 Hannan-Quinn-Kriterium 12272,70
```

9. Vermuten Sie, dass die Berücksichtigung dieser Dummy-Variable einen deutlichen Effekt auf b_{cigs} und b_{faminc} oder deren Standardfehler hat? Warum bzw. warum nicht? Überprüfen Sie Ihre Vermutung anschliessend.

10. Es soll nun die Dummy-Variable *male* als zusätzlicher Regressor hinzugefügt werden (Wert 1, wenn das Neugeborene männlich ist, 0 für weiblich).

Schätzen Sie das Modell 3: bwght = $\beta_1 + \beta_2 cigs + \beta_3 faminc + \beta_4 male + u$

	-	ht					
	Koeffizien	t Stdfe	hler	t-Quotient	p-W	ert	
const	115,228	1,2078	8	95,40	0,00	00	***
cigs	-0,461046	0,0913	378	-5,048	5,07	e-07	***
faminc	0,096879	8 0,0291	453	3,324	0,00	09	***
male	3,11397	1,0764	0	2,893	0,00	39	***
Mittel d. a	abh. Var.	118,6996	Stdab	w. d. abh. V	ar.	20,3	3539
Summe d. qu	ad. Res.	554134,6	Stdfe	hler d. Regr	ess.	20,0	0096
R-Quadrat		0,035636	Korri	giertes R-Qu	adrat	0,03	3354
F(3, 1384)		17,04780	P-Wer	t(F)		7,10)e-1
Log-Likelih	lood	-6126,230	Akaik	e-Kriterium		1226	50,4
Schwarz-Kri	terium	12281,40	Hanna	n-Quinn-Krit	erium	1226	58,2

11. Interpretieren Sie b_{faminc} im Modell 3.

Hinweis: Das Geburtsgewicht bwght ist hier in Unzen angegeben (1 Unze = 28.35 Gramm), das Einkommen der Familie faminc ist in \$1000 -Einheiten angegeben.

12. Schätzen Sie das Modell 3 mit dem Geburtsgewicht des Neugeborenen in Gramm ausgedrückt.

Modell 4:
$$bwghtgr = \beta_1^* + \beta_2^* cigs + \beta_3^* fa \min c + \beta_4^* male + u$$

Hinweis: 1 Unze = 28.35 Gramm → Variable bwghtgr = bwght x 28.35 gretl Hauptfenster: Hinzufügen/ Definiere neue Variable/

bwghtgr = bwght x 28.35

Abhängige 1	Variable: bwgh	ıtgr				
	Koeffizient	Stdfe	hler	t-Quotient	p-Wer	t
const	3266,71	34,243	4	95,40	0,0000	***
cigs	-13,0706	2,589	43	-5,048	5,07e-	07 ***
faminc	2,74654	0,826	268	3,324	0,0009	***
male	88,2810	30,515	8	2,893	0,0039	***
Mittel d.	abh. Var.	3365,133	Stdak	ow. d. abh. V	ar. 5	77,0349
Summe d. q	uad. Res.	4,45e+08	Stdfe	ehler d. Regr	ess. 5	67,2737
R-Quadrat		0,035636	Korri	igiertes R-Qu	adrat 0	,033546
F(3, 1384)		17,04780	P-Wei	rt(F)	7	,10e-11

- 13. Wie ist die Beziehung zwischen den Koeffizienten aus Modell 2 und 3.
- 14. Interpretieren Sie den Koeffizienten b_{faminc}
- 15. Durch Diskussionen mit anderen CAS-Teilnehmern haben Sie folgende Modelle zusammengestellt:
 - i. bwght = $\beta_1 + \beta_2$ cigs + β_3 ln(faminc) + β_4 male + υ
 - ii. $ln(bwght) = \beta_1 + \beta_2 cigs + \beta_3 ln(faminc) + \beta_4 male + u$
 - iii. $ln(bwght) = \beta_1 + \beta_2 cigs + \beta_3 faminc + \beta_4 male + u$

Schätzen Sie diese Modelle und interpretieren Sie jeweils den Koeffizienten b3

Schätzergebnisse:

- i. $bwght = 112.138 0.465 cigs + 1.927 \ln(faminc) + 3.096 male$
- ii. ln(bwght = 4.703 0.00406cigs + 0.0169 ln(faminc) + 0.0258 male
- iii. ln(bwght) = 4.729 0.0401 cigs + 0.000878 faminc + 0.0259 male
- 16. Erstellen Sie ein Histogramm von In(bwght) und bwght. Welcher Unterschied ist zu vermerken?

- 17. Ersetzen Sie *faminc* durch *fatheduc* (Ausbildungsdauer des Vaters gemessen in Jahren). Schätzen Sie die folgenden Modelle und interpretieren Sie jeweils den Koeffizienten b₃:
 - i. bwght = $\beta_1 + \beta_2$ cigs + β_3 fatheduc + β_4 male + u
 - ii. bwght = $\beta_1 + \beta_2$ cigs + β_3 ln(fatheduc) + β_4 male + u
 - iii. $ln(bwght) = \beta_1 + \beta_2 cigs + \beta_3 ln(fatheduc) + \beta_4 male + u$
 - iv. $ln(bwght) = \beta_1 + \beta_2 cigs + \beta_3 fatheduc + \beta_4 male + u$

Schätzergebnisse:

i.	bwght = $113.260 - 0.571$ cigs + 0.411 fatheduc + 3.568 male	lin-lin
ii.	bwght = $106.528 - 0.574$ cigs + 4.772 ln(fatheduc) + 3.524 male	lin-log
iii.	ln(bwght) = 4.664 - 0.005cigs + 0.0372 ln(fatheduc) + 0.0313 male	log-log
iv.	ln(bwght) = 4.716 -0.0049cigs + 0.0033 fatheduc + 0.0317 male	log-lin

Schätzen Sie das Modell 5:

```
bwght = \beta_1 + \beta_2cigs + \beta_3parity + \beta_4faminc + \beta_5motheduc + \beta_6fatheduc + u
```

Die Variable *parity* stellt die Reihenfolge des Neugeborenen unter den Familienkindern. Wenn parity = 3 bedeutet es, dass das erfasste Neugeborene das dritte Kind der Frau ist.

- Warum reduziert gretl hier jeweils die Zahl der einbezogenen Familien bei diesen Schätzungen (Frage 13)? Könnte das Konsequenzen bzgl. der Repräsentativität der "selektierten" Familien haben?
- i. Spielt die Reihenfolge des Neugeborenen eine Rolle für das Geburtsgewicht? Interpretieren Sie den Koeffizienten b₃.
- ii. Sind alle Steigungskoeffizienten gemeinsam signifikant?
- Testen Sie die Nullhypothese im Modell 5, dass die Elternausbildung keinen Effekt auf das Gewicht des Neugeborenen hat.
 - i. Mittels gretl Test

gretl: Tests /Variable weglassen →Schätze reduziertes Modell → interpretieren Sie den p-Wert.

```
Nullhypothese: Die Regressionskoeffizienten sind Null für die Variablen motheduc, fatheduc

Teststatistik: F(2, 1185) = 1,43727, p-Wert 0,23799
```

- ii. Bestimmen Sie den kritischen Wert F_c mittels gretl. Was ist Ihre Schlussfolgerung? gretl Hauptfenster: Werkzeuge / Statistische Tabellen / F / rechtsseitige Wahrscheinlichkeit = 0.05
- iii. Berechnen Sie den F-Wert mittels Bestimmtheitsmass R² durch eigene Schätzung des restringierten Modells.

Hinweis: Die Schätzung des restringierten Modells sollte mit den gleichen Daten wie im Modell 6 erfolgen. Deshalb muss eine Proxy-Variable fath_moth = fatheduc x motheduc gebildet. Die Stichprobe kann mittels diese Proxy-Variable reduziert werden.

gretl: Hinzufügen / Definiere neue Variable: fath_moth = fatheduc x motheduc

gretl: Stichprobe / Restringiere durch Bedingung / fath_moth > 0

Regression mit nur 1191 Beobachtungen → 197 Beobachtungen wurden entfernt!

Unter Berücksichtigung aller Beobachtungen ist das R² anders! Deshalb ist die Benutzung der Proxy-Variable wichtig!

20. Schätzen Sie das Modell 6:

 $ln(bwght) = \beta_1 + \beta_2 cigs + \beta_3 ln(faminc) + \beta_4 parity + \beta_5 male + \beta_6 white + u$

```
Modell 14: KQ, benutze die Beobachtungen 1-1388
Abhängige Variable: l_bwght

Koeffizient Std.-fehler t-Quotient p-Wert

const 4,65771 0,0221653 210,1 0,0000 ***
cigs -0,00435015 0,000851842 -5,107 3,73e-07 ***
l_faminc 0,00927740 0,00593081 1,564 0,1180
parity 0,0159828 0,00563877 2,834 0,0047 ***
male 0,0265458 0,0100295 2,647 0,0082 ***
white 0,0547875 0,0130518 4,198 2,87e-05 ***

Mittel d. abh. Var. 4,760031 Stdabw. d. abh. Var. 0,190662
Summe d. quad. Res. 48,04116 Stdfehler d. Regress. 0,186446
R-Quadrat 0,047187 Korrigiertes R-Quadrat 0,043740
F(5, 1382) 13,68835 P-Wert(F) 4,58e-13
Log-Likelihood 364,8246 Akaike-Kriterium -717,6492
Schwarz-Kriterium -686,2355 Hannan-Quinn-Kriterium -705,9010
```

- i. Was ist der Effekt auf das Geburtsgewicht, wenn die Mutter 10 Zigaretten pro Tag mehr raucht?
- ii. Wie viel mehr Geburtsgewicht weist ein männliches Neugeborenes gegenüber einem Weiblichen auf, ceteris paribus? Ist der Koeffizient β₅ signifikant auf 5%-Niveau?
- iii. Wie viel mehr Geburtsgewicht weist ein weisses Neugeborenes gegenüber der Referenzgruppe auf, ceteris paribus? Ist der Koeffizient β_6 signifikant auf 5%-Niveau?

21. Schätzen Sie das Modell 7:

 $ln(bwght) = \beta_1 + \beta_2 cigs + \beta_3 ln(faminc) + \beta_4 parity + \beta_5 male + \beta_6 white + \beta_7 motheduc + \beta_8 fatheduc + \beta_8 fatheduc$

i. Was ist die Auswirkung eines zusätzlichen Ausbildungsjahres der Mutter auf das Geburtsgewicht?

```
Modell 13: KQ, benutze die Beobachtungen 1-1388 (n = 1191)
Fehlende oder unvollständige Beobachtungen entfernt: 197
Abhängige Variable: 1 bwght
              Koeffizient Std.-fehler t-Quotient
                                                           p-Wert
                                            121,9
                                                          0,0000
              4,65267
                            0,0381545
  const
              -0,00521438 0,00102675
                                               -5,079
                                                           4,42e-07 ***
  cigs
  1,292
                                                           0,1967
  parity 0,0172014 0,0002000
male 0,0341430 0,0107022
0,0453991 0,0150870
                                                            0,0051
                                                            0,0015 ***
                                                3,190
                                                 3,009
                                                            0,0027
  -1,001
                                                           0,3170
                                                1,256
                                                            0,2093
Mittel d. abh. Var. 4,767536 Stdabw. d. abh. Var. 0,188013
Summe d. quad. Res. 39,99114 Stdfehler d. Regress. 0,183861
R-Quadrat 0,049303 Korrigiertes R-Quadrat 0,043678
F(7, 1183) 8,764331 P-Wert(F) 1,55e-10
                                                          -646,2122
Log-Likelihood
                        331,1061 Akaike-Kriterium -646,2122
-605,5518 Hannan-Quinn-Kriterium -630,8901
Schwarz-Kriterium
```

22. Schätzen Sie das Modell 8:

bwght = β_1 + β_2 cigs + β_3 In(faminc) + β_4 parity + β_5 male + β_6 white + β_7 motheduc + β_8 fatheduc + α

i. Wie viel mehr Geburtsgewicht weist ein männliches Neugeborenes gegenüber der Referenzgruppe auf, ceteris paribus? Ist der Koeffizient b₅ signifikant auf dem 5%-Signifikanzniveau?

Fehlende oder unvollständige Beobachtungen entfernt: 197 Abhängige Variable: bwght							
	Koeffizient	Stdfe	hler	t-Quotient	p-W	ert	
const	106,538	4,0763	 0	26,14	3,14	e-119	***
cigs	-0,597376	0,1096	95	-5,446	6,27	e-08	***
l faminc	1,22061	0,9124	34	1,338	0,18	12	
parity	1,91752	0,6552	84	2,926	0,00	35	***
male	3,82465	1,1433	9	3,345	0,00	80	***
white	4,63746	1,6118	5	2,877	0,00	41	***
motheduc	-0,336755	0,3176	34	-1,060	0,28	93	
fatheduc	0,415149	0,2786	76	1,490	0,13	66	
Mittel d. ab	h. Var. 1	19,5298	Stdab	w. d. abh. Va	ar.	20,14	1124
Summe d. qua	d. Res. 4	56463,7	Stdfe	hler d. Regre	ess.	19,64	1313
R-Quadrat	0	,054445	Korri	giertes R-Qua	adrat	0,048	8850
F(7, 1183)	9	,730940	P-Wer	t(F)		7,996	-12
Log-Likeliho	od -5	232,416	Akaik	e-Kriterium		10480	0,83
Schwarz-Krit	erium 1	0521,49	Hanna	n-Quinn-Krit	erium	1049	5,15

- 23. Antworten Sie auf diese Fragen mittels einer Regression.
 - ii. Wie viel wiegt ein weibliches Neugeborenes im Durchschnitt in Kg?

Abhängige Variable:	bwght				
Koeffi	zient Stdf	ehler	t-Quotient	p-Wert	
const 117,1	67 0,787	514	148,8	0,0000	***
male 2,9	1,091	.15	2,697	0,0071	***
Mittel d. abh. Var.	118,6996	Stdak	ow. d. abh. V	ar. 2	0,3539
Summe d. quad. Res.	571612,8	Stdfe	hler d. Regr	ess. 2	0,3081
R-Quadrat	0,005219	Korri	igiertes R-Qu	adrat 0	,004501
F(1, 1386)	7,271438	P-Wer	rt(F)	0	,007091
Log-Likelihood	-6147,782	Akaik	re-Kriterium	1	2299,50
Schwarz-Kriterium	12310,03	Hanna	n-Quinn-Krit	erium 1	2303,48

- iii. Wie viel mehr Geburtsgewicht in Gramm weist ein männliches Neugeborenes gegenüber einem Weiblichen auf?
- iv. Warum ist der Steigungskoeffizient kleiner als β₅ im Modell 7
- 24. Welches Modell würden Sie vorziehen? Begründen Sie Ihre Antwort.

Zusammenstellung der zu vergleichenden Modelle mit den entsprechenden Kriterien.

Modell 5: bwght = 114.524 -0.596cigs + 1.787parity + 0.0560faminc - 0.37motheduc + 0.472fatheduc

Modell 6: Inbwght = 4.657 -0.00435cigs + 0.00927Infaminc + 0.0159parity + 0.0265male + 0.0547white

Modell 7: lnbwght = 4.657 - 0.00521 cigs + 0.0172 parity + 0.0117 lnfaminc + 0.0341 male + 0.045 white - 0.0029 motheduc + 0.00327 fatheduc

Modell 8: bwght = 106.53 - 0.5973 cigs + 1.917 parity + 1.22 lnfaminc + 3.82 male + 4.63 white - 0.336 motheduc + 0.415 fatheduc

Modell	2	3	5	6	7	8
Abh. Variable	bwght	bwght	bwght	Inbwght	Inbwght	bwght
#Regressoren	3	4	6	6	8	8
\overline{R}^{2}	0.028	0.0327	0.0346	0.0437	0.0436	0.0488
Akaike	12266	12261.6	10496	-717.64	-646.21	10480
SIC	12282		10526	-686.2	-605.5	10521