Solutions to Selected Exercises in Rick Durrett's *Probability: Theory and Examples, 4th edition*

Emad Zadegan emadzadegan.github.io Last updated 10-04-2019

1.1.4

A σ -field \mathcal{F} is said to be countably generated if there is a countable collection $\mathcal{C} \subset \mathcal{F}$ so that $\sigma(\mathcal{C}) = \mathcal{F}$. Show that \mathcal{R}^d is countably generated.

Since the rationals, **Q** are dense in the real line, **R**, it follows that any $x \in \mathbf{R}$ can be represented as the limit of a sequence $\{q_n\}_{n \in \mathbf{N}}$ where $q_n \in \mathbf{Q} \ \forall n$.

Let $\mathbf{C} = \{(a,b) : -\infty \le a < b \le \infty; a,b \in \mathbf{Q}\}$. Any open set in \mathbf{R} may be constructed as a countable union of the elements in \mathbf{C}

Let \mathcal{R} be the Borel sets on \mathbf{R} . By definition, \mathcal{R} is the smallest sigma-algebra containing the open sets. Therefore, $\mathbf{C} \subset \mathcal{R}$ since every element of \mathbf{C} is an open set. Then,

$$\mathbf{C} \subset \mathcal{R} \implies \sigma(\mathbf{C}) \subset \sigma(\mathcal{R}) = \mathcal{R}$$

By the definition of sigma-algebras and \mathbb{C} , we have that every open set is contained in $\sigma(\mathbb{C})$. By the definition of Borel sets, \mathcal{R} is the smallest sigma-algebra containing the open sets. Therefore $\mathcal{R} \subset \sigma(\mathbb{C})$.

Thus, $\mathcal{R} = \sigma(\mathbf{C})$.

To extend the proof to \mathbb{R}^d , we use $\mathbf{C}^d = \{(a_1, b_2) \times ... \times (a_d, b_d) : -\infty \leq a_i < b_i \leq \infty; a_i, b_i \in \mathbf{Q} \forall i\}$. Note that \mathbf{C}^d is a countable set.

Lemma 2: For any open set $G \subset \mathcal{R}^d$, there exists a countable collection $\{G_i\}$ of open sets such that $G = \bigcup_{i=1}^{\infty} G_i$

Proof of Lemma 2: Since G is open, for every $x \in G$ there exists an open ball centred around x contained in G. Within this open ball, there exists an open rectangle with rational endpoints containing x. We will denote this box by \mathbf{C}_x^d and note that $\mathbf{C}_x^d \in \mathbf{C}^d$. Furthermore, $G = \bigcup_{x \in G} \mathbf{C}_x^d \subset \mathbf{C}^d$.

 $\bigcup_{x \in G} \mathbf{C}_x^d$ is an uncountable union of the elements of a countable set \mathbf{C}^d . Therefore, $G = \bigcup_{x \in G} \mathbf{C}_x^d$ may be re-indexed as a countable union, for example $G = \bigcup_{i=1} G_i$ where $G_i \in \mathbf{C}^d$.

The result for \mathbb{R}^d follows from the \mathbb{R} case and Lemma 2.

1.2.3

Show that a distribution function has at most countably many discontinuities.

This a consequence of the monotonicity of the distribution function. Let F be a distribution function. And let D be the set of points at which F is discontinuous. For each $d \in D$, $F(d-) = \underset{x \uparrow d}{lim} F(x) < \underset{x \downarrow d}{lim} F(x) = F(d+)$.

Therefore for all $d \in D$ there exists a unique rational number q_d such that $F(d-) < q_d < F(d+)$. The collection $\{q_d\}_{d \in D}$ is consists of but D is uncountable. This is a contradiction and therefore a distribution function cannot have uncountably many discontinuities.

1.2.5

Suppose X has continuous density $f, P(\alpha \le X \le \beta) = 1$ and g is a function that is strictly increasing and differentiable on (α, β) . Then g(X) has density $f(g^{-1}(y))/g'(g^{-1}(y))$ for $y \in (g(\alpha), g(\beta))$ and 0 otherwise.

This follows from the chain rule, the fact that

$$\frac{d}{dx}[g^{-1}](x) = \frac{1}{g'(g^{-1}(x))} \tag{1}$$

and the fact that g is invertible since it is strictly increasing and differentiable.

Let F_g and f_g be the distribution and density functions for g(X) respectively; and let F_X and f_X be the distribution and density functions for X.

$$F_q(y) = P(g(X) \le y) \tag{2}$$

$$= P(g^{-1}(g(X)) \le g^{-1}(y)) \tag{3}$$

$$=F_X(g^{-1}(y))\tag{4}$$

Then by the definition of density,

$$f_g(y) = \frac{d}{dy} F_g(y) \tag{5}$$

$$=\frac{d}{dy}F_X(g^{-1}(y))\tag{6}$$

$$= f_X(g^{-1}(y))\frac{d}{dy}g^{-1}(y)$$
 (7)

$$= f_X(g^{-1}(y)) \frac{1}{g'(g^{-1}(y))}$$
(8)

Going from (7) to (8) uses (1).

Emad Zadegan, emadzadegan.github.io

2

1.3.5

Show that f is lower semicontinuous if and only if $x: f(x) \le a$ is closed for each $a \in \mathbb{R}$ and conclude that semicontinuous functions are measurable.

f is l.s.c. \Rightarrow $\{x: f(x) \leq a\}$ is closed for all $a \in \mathbf{R}$. Proof:

Suppose f is l.s.c., then by definition: $\liminf_{y\to x} f(y) \ge f(x)$. For an arbitrary $a\in \mathbf{R}$ let $X_a=\{x: f(x)\le a\}$. Let $\{x_n\}$ be a sequence such that it converges to some limit η and $x_n\in X_a\forall n$. If we show that $\eta\in X_a$ then we are done.

Suppose for a contradiction that $\eta \notin X_a$. Then $f(\eta) > a$.

 $\liminf_{n\to\infty} f(x_n) \le a \text{ since } x_n \in X_a \forall n$

 $\liminf_{x\to\eta} f(x) \ge f(\eta)$ since by assumption f is l.s.c.

Then putting it all together, we have:

$$\liminf_{n \to \infty} f(x_n) \le a < f(\eta) \le \liminf_{x \to \eta} f(x)$$

This is a contradiction because $\liminf_{n\to\infty} f(x_n) \ge \liminf_{x\to\eta} f(x)$

f is l.s.c. $\Leftarrow \{x : f(x) \leq a\}$ is closed for all $a \in \mathbf{R}$. Proof:

Fix x and suppose $A_{x,\epsilon} = \{y : f(y) \le f(x) - \epsilon\}$ is a closed set. Then $A_{x,\epsilon}^C = \{y : f(y) > f(x) - \epsilon\}$ is open.

By definition, $\liminf_{y\to x} f(y) = \lim_{\delta\to 0} [\inf\{f(y):y\in B(x,\delta)\setminus x\}]$ where $B(x,\delta)$ is an open ball of radius δ centered at x.

By definition $A_{x,\epsilon}^C$ is an open set containing of x and so $\forall \epsilon > 0 \ \exists \delta > 0$ such that $B(x,\delta) \subset A_{x,\epsilon}^C$. Thus we can say

$$\liminf_{y \to x} f(y) = \lim_{\delta \to 0} [\inf\{f(y) : y \in B(x, \delta) \setminus x\}] \tag{9}$$

$$= \lim_{\epsilon \to 0} [\inf\{f(y) : y \in A_{x,\epsilon}^C \setminus x\}]$$
(10)

By definition, $f(y) > f(x) - \epsilon \ \forall \epsilon > 0 \ \forall y \in A_{x,\epsilon}^C$; therefore $\inf\{f(y) : y \in A_{x,\epsilon}^C \setminus x\} > f(x) - \epsilon$ It follows that

$$\liminf_{y \to x} f(y) = \lim_{\epsilon \to 0} [\inf\{f(y) : y \in A_{x,\epsilon}^C \setminus x\}] \tag{11}$$

$$\geq f(x) \tag{12}$$

To show that f is measurable, we will apply *Theorem 1.3.1*.

Suppose f is l.s.c. and let $A = (-\infty, a], a \in \mathbf{R}$, where **R** is the real line.

Then $f^{-1}(A) = \{x : f(x) \in A\}$ is a closed a set and $A \in \mathcal{R}$ where \mathcal{R} is the Borel sets.

 $f^{-1}(A) \subset \mathcal{R}$ because $f^{-1}(A)$ is closed, \mathcal{R} is the smallest sigma-algebra generated from the open sets, and \mathcal{R} is closed under complements.

Next, to prove that $\sigma(\{(-\infty, a] : a \in \mathbf{R}\}) = \mathcal{R}$, it suffices to show that any open interval (p, q) may be expressed as the countable unions and intersections of the sets $\{(-\infty, a] : a \in \mathbf{R}\}$ and its complements.

$$(p,q) = (-\infty,p] \bigcap \left(\bigcup_{i \geq 1} (-\infty,q-\frac{1}{n}] \right)$$

Then the result follows from exercise 1.1.4.

1.6.3

Chebyshev's inequality is and is not sharp.

(i) Show that for fixed $0 < b \le a$ there exists an X with $\mathbb{E}X^2 = b^2$ for which $\mathbb{P}(|X| \ge a) = b^2/a^2$

$$X = \begin{cases} a, & \text{with probability } b^2/a^2 \\ 0, & \text{with probability } 1 - b^2/a^2 \end{cases}$$

Then $\mathbb{P}(|X| \ge a) = \mathbb{P}(|X| = a) = b^2/a^2$ and $\mathbb{E}X^2 = 0^2(1 - b^2/a^2) + a^2(b^2/a^2) = b^2$

(ii) Show that if $0<\mathbb{E}X^2<\infty$ then $\lim_{a\to\infty}a^2\mathbb{P}\big(|X|\geq a\big)/\mathbb{E}X^2=0$

$$a^21_{\{|X|\geq a\}}\leq X^2$$
 and X^2 is integrable, and
$$a^21_{\{|X|\geq a\}}\stackrel{a\to\infty}{\to} 0$$

Therefore,
$$a^2 \mathbb{P} \big(|X| \ge a \big) = \int \!\! a^2 1_{\{|X| \ge a\}} dP \overset{a \to \infty}{\underset{DCT}{\to}} 0$$

Hence, $a^2 \mathbb{P}(|X| \geq a) / \mathbb{E} X^2 \overset{a \to \infty}{\to} 0$ as desired

1.6.5

Two nonexistent lower bounds.

(i) Show that if $\epsilon > 0$, then $\inf \{ \mathbb{P}(|X| > \epsilon) : \mathbb{E}X = 0, \mathbf{var}(X) = 1 \} = 0$

Let

$$X_n = \begin{cases} -n, & \text{with probability } 1/(2n^2) \\ n, & \text{with probability } 1/(2n^2) \\ 0, & \text{with probability } 1 - 1/(n^2) \end{cases}$$

Then
$$\mathbb{E}X_n = (-n)\frac{1}{2n^2} + (n)\frac{1}{2n^2} + (0)\frac{1}{n^2} = 0$$
 and

$$\operatorname{var}(X_n) = \mathbb{E}[X_n - \mathbb{E}X_n]^2 = \mathbb{E}(X_n)^2 = (-n)^2 \frac{1}{2n^2} + (n)^2 \frac{1}{2n^2} + (0)^2 (1 - \frac{1}{n^2}) = 1$$

Note that
$$\mathbb{P}(|X_n| > \epsilon) = 1/n^2 \ \forall n > 1/\epsilon$$

Since $1/n^2$ may be arbitrarily small, the result follows.

(ii) Show that if $y \ge 1$, $\sigma^2 \in (0,1)$, then $\inf \{ \mathbb{P}(|X| > y) : \mathbb{E}X = 1, \mathbf{var}(X) = \sigma^2 \} = 0$

Let
$$Y_n = \sigma X_n + 1$$

Then
$$\mathbb{E}Y_n = \mathbb{E}(\sigma X_n + 1) = \sigma \mathbb{E}X_n + 1 = 1$$
 and

$$\operatorname{var}(Y_n) = \mathbb{E}[Y_n - \mathbb{E}Y_n]^2 = \mathbb{E}Y_n^2 - (\mathbb{E}Y_n)^2 = \left((-\sigma n + 1)^2 \frac{1}{2n^2} + (\sigma n + 1)^2 \frac{1}{2n^2} + (0 + 1)(1 - \frac{1}{n^2})\right) - 1^2 = \frac{\sigma^2 n^2 - 2\sigma n + 1}{2n^2} + \frac{\sigma^2 n^2 + 2\sigma n + 1}{2n^2} + (1 - \frac{1}{n^2}) - 1 = \sigma^2$$

Similar to (i), note that $\mathbb{P}(|Y_n| > \epsilon + 1) = 1/n^2 \ \forall n > 1/\epsilon$

Since $1/n^2$ may be arbitrarily small, the result follows.

1.6.8

Suppose the probability measure μ has $\mu(A)=\int_A f(x)dx$ for all $A\in\mathcal{R}$. Use the proof technique in Theorem 1.6.9 to show that for any g with $g\geq 0$ or $\int |g(x)|\mu(dx)<\infty$ we have

$$\int g(x)\mu(dx) = \int g(x)f(x)dx$$

(i) Indicator Functions: if $B \in \mathcal{S}$ and $g = 1_B$ then

$$\int g(x)\mu(dx) = \int_{B} \mu(dx) = \mu(B) = \int_{B} f(x)dx = \int g(x)f(x)dx$$

(ii) Simple Functions: let $g = \sum_{i=1}^{n} c_i 1_{B_i}$, where $c_i \in \mathbb{R}$ and $B_i \in \mathcal{R}$. Using (i) and the linearity of integration, we have:

$$\int g(x)\mu(dx) = \int \sum_{i=1}^{n} c_i 1_{B_i} \mu(dx)$$
(13)

$$=\sum_{i=1}^{n}c_{i}\int 1_{B_{i}}\mu(dx) \tag{14}$$

$$=\sum_{i=1}^{n}c_{i}\int_{B_{i}}\mu(dx)\tag{15}$$

$$=\sum_{i=1}^{n}c_{i}\mu(B_{i})\tag{16}$$

$$=\sum_{i=1}^{n}c_{i}\int_{B_{i}}f(x)dx\tag{17}$$

$$= \int_{B_i} \sum_{i=1}^n c_i f(x) dx \tag{18}$$

$$= \int \sum_{i=1}^{n} c_i 1_{B_i} f(x) dx$$
 (19)

$$= \int g(x)f(x)dx \tag{20}$$

(iii) Non-negative Functions let $g \ge 0$, and $g_n = \min \left(\left(\left[2^n f(x) \right] / 2^n \right), n \right)$, where [x] = floor(x). Then g_n is simple for all n, and $g_n \uparrow g$. By applying MCT, we have

$$\int g(x)\mu(dx) = \int \lim_{n \to \infty} g_n(x)\mu(dx)$$
(21)

$$= \lim_{n \to \infty} \int g_n(x)\mu(dx) \tag{22}$$

$$= \lim_{n \to \infty} \int g_n(x) f(x) dx \tag{23}$$

$$= \int g(x)f(x)dx \tag{24}$$

(iv) Integrable Functions for integrable g, let $g^+ = max(g,0)$ and $g^- = max(-g,0)$; then $g = g^+ - g^-$, and

$$\int g(x)\mu(dx) = \int g^{+}(x) - g^{-}(x)\mu(dx) = \int (g^{+}(x) - g^{-}(x))f(x)dx = \int g(x)f(x)dx$$

1.7.3

Let F, G be Stieltjes measure functions and let μ, ν be the corresponding measures on $(\mathbb{R}, \mathcal{R})$. Show that:

(i)
$$\int_{(a,b)} \{F(y) - F(a)\} dG(y) = (\mu \times \nu) (\{(x,y) : a < x \le y \le b\})$$

Note that, by the definition of Stieltjes measure functions,

$$F(y) - F(a) = \mu((a, y]) = \int_{(a, y]} d\mu = \int 1_{(a, y]}(x) d\mu(x)$$

Then, using indicator functions and applying Fubini's theorem we have:

$$\int_{(a,b]} \{F(y) - F(a)\} dG(y) = \int_{(a,b]} \int 1_{(a,y]} d\mu(x) dG(y)$$
(25)

$$= \int_{(a,b]} (y) \int 1_{(a,y]}(x) d\mu(x) d\nu(y)$$
 (26)

$$= \int 1_{(a,b]}(y) \int 1_{(a,y]}(x) d\mu(x) d\nu(y)$$
 (27)

$$= \int 1_{(a,b]}(y) \int 1_{(a,y]}(x) d\mu(x) d\nu(y)$$
 (28)

$$= \int \int 1_{(a,b]}(y)1_{(a,y]}(x)d\mu(x)d\nu(y)$$
 (29)

$$= \int \int 1_{(a < x \le y \le b]}(x, y) d\mu(x) d\nu(y) \tag{30}$$

$$= (\mu \times \nu) \big(\{ (x,y) : a < x \le y \le b \} \big) \tag{31}$$

(32)

(ii)
$$\int_{(a,b]} F(y)dG(y) + \int_{(a,b]} G(y)dF(y) = F(b)G(b) - F(a)G(a) + \sum_{x \in (a,b]} \mu(\{x\})\nu(\{x\})$$

That by adding and subtracting F(a), using part (i), and simplifying we get

$$\int_{(a,b]} F(y)dG(y) = \int_{(a,b]} F(y) - F(a) + F(a)dG(y)$$
(33)

$$= \int_{(a,b]} F(y) - F(a)dG(y) + \int_{(a,b]} F(a)dG(y)$$
 (34)

$$= (\mu \times \nu) (\{(x,y) : a < x \le y \le b\}) + \int_{(a,b]} F(a) dG(y)$$
 (35)

$$= (\mu \times \nu) (\{(x,y) : a < x \le y \le b\}) + F(a) \int_{(a,b]} dG(y)$$
 (36)

$$= (\mu \times \nu) (\{(x,y) : a < x \le y \le b\}) + F(a) \int_{(a,b]} d\nu$$
 (37)

$$= (\mu \times \nu) (\{(x,y) : a < x \le y \le b\}) + F(a)[G(b) - G(a)]$$
(38)

(39)

And similarly, for the second term, we have

$$\int_{(a,b]} G(y)dF(y) = (\mu \times \nu) (\{(x,y) : a < y \le x \le b\}) + G(a)[F(b) - F(a)]$$
(40)

Note that

$$(\mu \times \nu) \big(\{(x,y) : a < x \le y \le b\} \big) + (\mu \times \nu) \big(\{(x,y) : a < y \le x \le b\} \big) \tag{42}$$

$$= \int \int 1_{(a,b]}(x)1_{(a,b]}(y)dF(x)dG(y) + \int \int 1_{(a < x = y \le b]}(x,y)dF(x)dG(y)$$
(43)

And that

$$\int \int 1_{(a,b]}(x)1_{(a,b]}(y)dF(x)dG(y) = (F(b) - F(a))(G(b) - G(a))$$
(44)

$$= F(b)G(b) - F(b)G(a) - F(a)G(b) + F(a)G(a)$$
(45)

Also, since F, and G are Stieltjes measure functions (i.e. non-decreasing and right-continuous), they may have at most countably many discontinuities, as proven in exercise 1.2.3 in Homework 1. Hence $\mu(x)$ and $\nu(x)$ are non-zero on at most countably many $x \in (a, b]$. It follows that

$$\int \int 1_{\{a < x = y \le b\}}(x, y) dF(x) dG(y) = (\mu \times \nu) (\{(x, y) : a < x = y \le b\})$$
(46)

$$= (\mu \times \nu) (\{(x, x) : a < x \le b\}) \tag{47}$$

$$= \sum_{x \in (a,b]} \mu\{x\} \times \nu\{x\} \tag{48}$$

Putting it all together, we have

$$\int_{(a,b]} F(y)dG(y) + \int_{(a,b]} G(y)dF(y) = \int \int 1_{(a,b]}(x)1_{(a,b]}(y)dF(x)dG(y)$$
(49)

$$+ \int \int 1_{(a < x = y \le b]}(x, y) dF(x) dG(y)$$

$$\tag{50}$$

$$+ F(a)[G(b) - G(a)] + G(a)[F(b) - F(a)]$$
(51)

$$= F(b)G(b) - F(b)G(a) - F(a)G(b) + F(a)G(a)$$
(52)

$$+ F(a)G(b) - F(a)G(a) + F(b)G(a) - F(a)G(a)$$
 (53)

$$+\sum_{x\in(a,b]}\mu\{x\}\times\nu\{x\}\tag{54}$$

$$= F(b)G(b) - F(a)G(a) + \sum_{x \in (a,b]} \mu\{x\} \times \nu\{x\}$$
 (55)

(iii) if F=G is continuous then $\int_{(a,b]} 2F(y)dF(y) = F^2(b) - F^2(a)$

 $F = G \implies \mu = \nu$. Furthermore, continuity of F implies that $\mu(\{x\}) = 0$ for all x. Substituting these into part (ii), we get

 $\int_{(a,b]} F(y)dG(y) + \int_{(a,b]} G(y)dF(y) = F(b)G(b) - F(a)G(a) + \sum_{x \in (a,b]} \mu\{x\} \times \nu\{x\}$ (56)

$$= F(b)G(b) - F(a)G(a) + \sum_{x \in (a,b]} \mu\{x\} \times \mu\{x\}$$
 (57)

$$= F(b)F(b) - F(a)F(a) + 0 (58)$$

$$= F^2(b) - F^2(a) \tag{59}$$

2.1.12

Let $\Omega = \{1, 2, 3, 4\}$ and $\mathcal{F} = 2^{\Omega}$, and $\mathbb{P}(\{i\}) = 1/4$. Give an example of two collections of sets \mathcal{A}_1 and \mathcal{A}_2 that are independent but such that $\sigma(\mathcal{A}_1)$ and $\sigma(\mathcal{A}_2)$ are not independent.

Let $A_1 = \{\{1,2\},\{2,3\}\}$ and $A_2 = \{\{1,3\}\}$. Then A_1 and A_2 are independent since

$$\mathbb{P}(\{1,2\} \cap \{1,3\}) = \mathbb{P}(\{1\}) = 1/4 = 1/2 \times 1/2 = \mathbb{P}(\{1,2\})\mathbb{P}(\{1,3\}), \text{ and }$$

$$\mathbb{P}(\{2,3\} \cap \{1,3\}) = \mathbb{P}(\{3\}) = 1/4 = 1/2 \times 1/2 = \mathbb{P}(\{2,3\})\mathbb{P}(\{1,3\})$$

But $\sigma(\mathcal{A}_1)$ and $\sigma(\mathcal{A}_2)$ are not independent since

$$\{1,2\} \cup \{2,3\} = \{1,2,3\} \in \sigma(\mathcal{A}_1), \text{ and } \{1,3\} \in \sigma(\mathcal{A}_2) \text{ and }$$

$$\mathbb{P}(\{1,2,3\} \cap \{1,3\}) = \mathbb{P}(\{1,3\}) = 1/2 \neq 3/4 \times 1/2 = \mathbb{P}(\{1,2,3\}) \mathbb{P}(\{1,3\})$$

Let F_n, F be distribution functions of random variables X_n, X . Show that if $X_n \Rightarrow X$ and $P(X_n = x) \to P(X = x)$ for all x, then $F_n(x) \to F(x)$ for all x.

Proof

By theorem 3.2.5 in Durrett, the following statements are equivalent:

- (i) $X_n \Rightarrow X$
- (ii) For all open sets G, $\liminf_{n\to\infty} P(X_n \in G) \ge P(X \in G)$
- (iii) For all closed sets K, $\limsup_{n\to\infty} P(X_n \in K) \leq P(X \in K)$

Therefore, using that (i) \Rightarrow (iii), we have

$$\lim_{n \to \infty} \sup P(X_n \le x) \le P(X \le x) \text{ for all } x$$
(60)

Then, using that (i) \Rightarrow (ii), we have

$$\lim_{n \to \infty} \inf P(X_n < x) \ge P(X < x) \text{ for all } x$$
(61)

Furthermore, we are given $P(X_n = x) \to P(X = x)$ which implies that $\liminf_{n \to \infty} P(X_n = x) = P(X = x)$, which implies that

$$\liminf_{n \to \infty} P(X_n = x) \ge P(X = x) \tag{62}$$

Then, adding (2) and (3) we get that

$$\liminf_{n \to \infty} P(X_n \le x) \ge P(X \le x) \text{ for all } x$$
 (63)

Then, combining (1) and (4), we have

$$\lim_{n \to \infty} \sup P(X_n \le x) \le P(X \le x) \le \liminf_{n \to \infty} P(X_n \le x) \text{ for all } x$$
 (64)

which implies that $P(X_n = x) \to P(X = x)$ as desired.

3.2.1

Give an example of randm variables X_n with densities f_n so that $X_n \Rightarrow$ a uniform distribution on (0,1) but $f_n(x)$ does not converge to 1 for any $x \in [0,1]$

Let X_n be the random variable with density $f_n(x) = 1 + 2\pi \cos(2\pi nx)$.

Then $\int_0^1 f_n(x)dx = 1$ and $F_n = \int f_n(x)dx = x + \frac{\sin(2\pi x)}{n} \to x$ for all $x \in [0,1]$ while $f_n(x) \nrightarrow x$ for all $x \in [0,1]$

3.2.9

If $F_n \Rightarrow F$ and F is continuous then $\sup_x |F_n(x) - F(x)| \to 0$

Fix $\epsilon > 0$ and choose k such that $\frac{1}{k} < \frac{\epsilon}{2}$, and for i = 0, 1, ..., k - 1, k, choose $x_i \in \mathbb{R} \cup \{-\infty, \infty\}$ such that $F(x_i) = \frac{i}{k}$. Such x_i exist by continuity of F.

Since $F_n \Rightarrow F$, $\exists N_i \in \mathbb{N}$ such that $|F_n(x_i) - F(x_i)| \leq \frac{\epsilon}{2}$ for i = 0, 1, ..., k - 1, k, for all $n > N_i$.

Fix i and note that for all $x \in (x_{i-1}, x_i]$, we have $F_n(x) \le F_n(x_i)$, and $F_n(x_{i-1}) \le F(x)$ by monotonicity of F and F_n . Hence,

$$F_n(x) - F(x) \le F_n(x_i) - F(x_{i-1}) = F_n(x_i) - (F(x_i) - \frac{1}{k}) < \epsilon$$
(65)

$$F_n(x) - F(x) \ge F_n(x_{i-1}) - F(x_i) = F_n(x_{i-1}) - (F(x_{i-1}) + \frac{1}{k}) > -\epsilon$$
(66)

so $|F_n(x) - F(x)| < \epsilon$ for all $n > N_i$, i = 0, 1, ..., k - 1, k. Now choose $N^* = \max\{N_i : i = 0, 1, ..., k - 1, k\}$ to get $|F_n(x) - F(x)| < \epsilon$ for all x, for all $x > N_*$, and we have the desired result.

3.2.11

Let $X_n, 1 \le n \le \infty$ be integer valued. Show that $X_n \Rightarrow X$ if and only $P(X_n = m) \to P(X_\infty = m)$ for all m.

Proof

 (\Rightarrow)

Suppose $X_n \Rightarrow X$. Then $F_n(x) \to F(x)$ for all continuity points x of F. Fix m and let $a \in [m, m+1)$ and $b \in [m-1, m)$ be continuity points. Note that F may have at most countably many discontinuity points so a and b must always exist.

$$P(X_n = m) = F_n(a) - F_n(b) \to F(a) - F(b) = P(X_\infty = m)$$

 (\Leftarrow)

Suppose $P(X_n = m) \to P(X_\infty = m)$. Then $F_n(x) = \sum_{m \le x} P(X_n = m) \to \sum_{m \le x} P(X_\infty = m) = F(x)$

3.3.2

(i) Show that $\mu(\{a\}) = \lim_{T\to\infty} \frac{1}{2T} \int_{-T}^T e^{-ita} \phi(t) dt$

$$\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} e^{-ita} \phi(t) dt = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} e^{-ita} \int_{\mathbb{R}} e^{itx} d\mu(x) dt$$

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \int_{\mathbb{R}} e^{-ita} e^{itx} d\mu(x) dt$$

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{\mathbb{R}} \int_{-T}^{T} e^{-ita} e^{itx} dt d\mu(x) \quad \text{by Fubini}$$

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{\mathbb{R}} \int_{-T}^{T} e^{it(x-a)} dt d\mu(x)$$

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{x=a} \int_{-T}^{T} e^{it(x-a)} dt d\mu(x) + \lim_{T \to \infty} \frac{1}{2T} \int_{x \neq a} \int_{-T}^{T} e^{it(x-a)} dt d\mu(x)$$

$$= \mu(\{a\}) + 0$$

since

$$\lim_{T \to \infty} \frac{1}{2T} \int_{x=a}^{T} \int_{-T}^{x} e^{it(x-a)} dt d\mu(x) = \lim_{T \to \infty} \frac{1}{2T} \int_{\mathbb{R}} \int_{-T}^{T} e^{0} \mathbf{1}_{\{a\}}(x) dt d\mu(x)$$

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{\mathbb{R}} 2T \mathbf{1}_{\{a\}}(x) d\mu(x)$$

$$= \int_{\mathbb{R}} \mathbf{1}_{\{a\}}(x) d\mu(x) = \mu(\{a\})$$
(68)

$$\lim_{T \to \infty} \frac{1}{2T} \int_{x \neq a} \int_{-T}^{T} e^{it(x-a)} dt d\mu(x) = \lim_{T \to \infty} \frac{1}{2T} \int_{\mathbb{R}} \int_{-T}^{T} \cos(t(x-a)) + i \sin(t(x-a)) dt d\mu(x)$$

$$= \lim_{T \to \infty} \frac{1}{2T} \frac{1}{x-a} \int_{x \neq a} \sin(t(x-a))|_{-T}^{T} - i \cos(t(x-a))|_{-T}^{T} d\mu(x)$$

$$= \lim_{T \to \infty} \frac{1}{2T} \frac{1}{x-a} \int_{x \neq a} \sin(T(x-a)) - \sin(-T(x-a))$$

$$- i \left(\cos(T(x-a)) - \cos(-T(x-a))\right) d\mu(x)$$

$$= \lim_{T \to \infty} \frac{1}{2T} \frac{1}{x-a} \int_{x \neq a} \sin(T(x-a)) + \sin(T(x-a))$$

$$- i \left(\cos(T(x-a)) - \cos(T(x-a))\right) d\mu(x)$$

$$= \lim_{T \to \infty} \frac{1}{2T} \frac{1}{x-a} \int_{x \neq a} 2 \sin(T(x-a)) d\mu(x)$$

$$= \lim_{T \to \infty} \int_{x \neq a} \frac{\sin(T(x-a))}{T(x-a)} d\mu(x)$$

$$= \int_{x \neq a} \lim_{T \to \infty} \frac{\sin(T(x-a))}{T(x-a)} d\mu(x) \quad \text{by DCT}$$

$$= 0$$

(ii) If $P(X \in h\mathbb{Z}) = 1$ where h > 0, then its ch.f. has $\phi(2\pi/h + t) = \phi(t)$, so $P(X = x) = \frac{h}{2\pi} \int_{-\pi/h}^{\pi/h} e^{-itx} \phi(t) dt$

Note that I'm using $y \in h\mathbb{Z}$ in place of the $x \in h\mathbb{Z}$ that Durett uses for this question.

$$\frac{h}{2\pi} \int_{-\pi/h}^{\pi/h} e^{-ity} \phi(t) dt = \frac{h}{2\pi} \int_{-\pi/h}^{\pi/h} \int_{\mathbb{R}} e^{-ity} e^{itx} d\mu(x) dt$$

$$= \frac{h}{2\pi} \int_{-\pi/h}^{\pi/h} \int_{\mathbb{R}} e^{it(x-y)} d\mu(x) dt$$

$$= \frac{h}{2\pi} \int_{\mathbb{R}} \int_{-\pi/h}^{\pi/h} e^{it(x-y)} dt d\mu(x) \quad \text{by Fubini}$$

$$= \frac{h}{2\pi} \int_{x=y} \int_{-\pi/h}^{\pi/h} e^{it(x-y)} dt d\mu(x) + \frac{h}{2\pi} \int_{x\neq y} \int_{-\pi/h}^{\pi/h} e^{it(x-y)} dt d\mu(x)$$
(70)

$$\frac{h}{2\pi} \int_{x=y}^{\pi/h} \int_{-\pi/h}^{\pi/h} e^{it(x-y)} dt d\mu(x) = \frac{h}{2\pi} \int_{\mathbb{R}} \int_{-\pi/h}^{\pi/h} e^{it(y-y)} \mathbf{1}_{\{y\}}(x) dt d\mu(x)$$

$$= \frac{h}{2\pi} \int_{\mathbb{R}} \int_{-\pi/h}^{\pi/h} \mathbf{1}_{\{y\}}(x) dt d\mu(x)$$

$$= \frac{h}{2\pi} \frac{2\pi}{h} \int_{\mathbb{R}} \mathbf{1}_{\{y\}}(x) d\mu(x)$$

$$= \mu(\{y\}) = \mathbb{P}(X=y)$$
(71)

$$\frac{h}{2\pi} \int_{x\neq y}^{\pi/h} \int_{-\pi/h}^{\pi/h} e^{it(x-y)} dt d\mu(x) = \frac{h}{2\pi} \int_{x\neq y}^{\pi/h} \int_{-\pi/h}^{\pi/h} \cos(t(x-y)) + i\sin(t(x-y)) dt d\mu(x)
= \frac{h}{2\pi} \frac{1}{x-y} \int_{x\neq y}^{\pi/h} \sin(t(x-y)) \Big|_{-\pi/h}^{\pi/h} - i\cos(t(x-y))\Big|_{-\pi/h}^{\pi/h} d\mu(x)
= \int_{x\neq y} \frac{h}{2\pi} \frac{2\sin(\frac{\pi}{h}(x-y))}{x-y} d\mu(x)
= \int_{x\neq y} \frac{h}{\pi} \frac{\sin(\frac{\pi}{h}(x-y))}{x-y} d\mu(x) = (*)$$
(72)

If show (*) = 0 then the proof is complete. To see why it is zero, first note that $\sin(n\pi) = 0$ for all $n \in \mathbb{Z}$; second, note that $y \in h\mathbb{Z}$ by assumption – this implies that $y/h \in \mathbb{Z}$; and third, note that $\mathbb{P}(X \in h\mathbb{Z}) = 1$ by assumption. Therefore, $\frac{x-y}{h} \in \mathbb{Z}$ and thus $\sin(\pi \frac{(x-y)}{h}) = 0$.

(iii) If X = Y + b then Eexp(itX) = eitbEexp(itY). So if $P(X \in b + h\mathbb{Z}) = 1$, the inversion formula in (ii) is valid for $x \in b + h\mathbb{Z}$.

 $\phi_X(t) = e^{itb}\phi_Y(t)$ and so

$$P(X = x) = \frac{h}{2\pi} \int_{-\pi/h}^{\pi/h} e^{-itx} \phi_X(t) dt$$

$$= \frac{h}{2\pi} \int_{-\pi/h}^{\pi/h} e^{-itx} e^{itb} \phi_Y(t) dt$$

$$= \frac{h}{2\pi} \int_{-\pi/h}^{\pi/h} e^{-it(x-b)} \phi_Y(t) dt$$

$$= P(Y = x - b)$$

$$(73)$$

3.3.8

Use the last result to conclude that if $X_1, X_2, ...$ are independent and have the Cauchy distribution, then $(X_1 + ... + X_n)/n$ has the same distribution as X_1 .

$$\phi_{X_i}(t) = \exp(-|t|) \Rightarrow \phi_{\frac{X_i}{n}}(t) = \phi_{X_i}(\frac{t}{n}) = \exp(-|\frac{t}{n}|) \Rightarrow \phi_{(\frac{X_1}{n}+\ldots+\frac{X_n}{n})}(t) = \exp(-|\frac{t}{n}|)^n = \exp(-|t|) \text{ for iid } X_i,$$
 by theorem 3.3.2

3.3.9

Suppose $X_n \Rightarrow X$ and X_n has a normal distribution with mean 0 and variance σ_n^2 . Prove that $\sigma_n^2 \to \sigma \in [0, \infty)$

 $X_n \stackrel{d}{\to} X \Rightarrow \phi_{X_n}(t) \to \phi_X(t)$ for all $t \in \mathbb{R}$.

Since $X_n \sim \mathcal{N}(0, \sigma_n^2)$, we have $\phi_{X_n}(t) = \exp(-\sigma_n^2 t^2/2)$ for all n.

 $\phi_{X_n}(0) = 1$ for all n, which implies that $\phi_X(0) = 1$. And also, $\phi_{X_n}(t) \leq 1$ for all t, n, which implies that $\phi_X(t) \leq 1$ for all t.

By theorem 3.3.1, $\phi_X(t)$ is uniformly continuous. Therefore for all $\epsilon > 0$ there exists $\delta > 0$ such that $|\phi_X(r) - \phi_X(r)| < \epsilon$ whenever $|r - s| < \delta$.

Set $\epsilon = 1/2$ and r = 0, then by uniform continuity and the fact that $\phi_X(0) = 1$, we have $|1 - \phi_X(s)| < 1/2$. A little manipulation gives $1 - \phi_X(s) \le |1 - \phi_X(s)| < 1/2 \Rightarrow 1/2 < \phi_X(s)$ for $s \in (-\delta, \delta)$.

Note that $\sigma_n^2 = -\frac{2}{t^2}\log(\phi_{X_n}(t))$ for all $t \neq 0 \in \mathbb{R}$. And by continuity of logarithm and the fact that $\phi_{X_n}(t) \to \phi_X(t)$, we have $-\frac{2}{t^2}\log(\phi_{X_n}(t)) \to -\frac{2}{t^2}\log(\phi_X(t))$

Fix $t = s^* \in (0, s)$, then $1/2 < \phi_X(s^*) \le 1$.

then $\sigma_n^2 = -\frac{2}{s^{*2}} \log(\phi_{X_n}(s^*)) \to -\frac{2}{s^{*2}} \log(\phi_X(s^*)) = \sigma^2$

$$\sigma^2 \in [0, \infty)$$
 because $1/2 < \phi_X(s^*) < 1$.

3.3.10

Show that if X_n and Y_n are independent for $1 \le n \le \infty, X_n \Rightarrow X_\infty$, and $Y_n \Rightarrow Y_\infty$, then $X_n + Y_n \Rightarrow X_\infty + Y_\infty$

Since X_n and Y_n are independent, we have

$$\phi_{X_n+Y_n}(t) = \phi_{X_n}(t)\phi_{Y_n}(t) \to \phi_{X_\infty}(t)\phi_{Y_\infty}(t) = \phi_{X_\infty+Y_\infty}(t)$$

3.3.13

Let $X_1, X_2, ...$ be independent taking values 0 and 1 with probability 1/2 each. $X = \sum_{j \geq 1} X_j/3^j$ has the Cantor distribution. Compute the ch.f. ϕ of X and notice that ϕ has the same value at $t = 3^k \pi$ for k = 1, 2, 3, ...

$$\begin{split} \phi_{X_i}(t) &= \frac{1}{2} + \frac{1}{2}e^{it} \\ \phi_{\frac{2X_j}{3^j}}(t) &= \frac{1}{2} + \frac{1}{2}e^{i2t/3^j} \\ \phi_{X}(t) &= \prod_{j=1}^{\infty} \phi_{\frac{2X_j}{3^j}}(t) = \prod_{j=1}^{\infty} \left[\frac{1}{2} + \frac{1}{2}e^{i2t/3^j} \right] \end{split}$$

$$\phi_{X}(3^{k}\pi) = \prod_{j=1}^{\infty} \phi_{\frac{2X_{j}}{3^{j}}}(3^{k}\pi)$$

$$= \prod_{j=1}^{\infty} \left[\frac{1}{2} + \frac{1}{2}e^{i2(3^{k}\pi)/3^{j}} \right]$$

$$= \prod_{j=1}^{\infty} \left[\frac{1}{2} + \frac{1}{2}e^{i2\pi 3^{k-j}} \right]$$

$$= \prod_{j=1}^{\infty} \left[\frac{1}{2} + \frac{1}{2}\cos(2\pi 3^{k-j}) + i\frac{1}{2}\sin(2\pi 3^{k-j}) \right]$$

$$= \prod_{j=1}^{\infty} \left[\frac{1}{2} + \frac{1}{2}\cos(2\pi 3^{k-j}) + i\frac{1}{2}\sin(2\pi 3^{k-j}) \right] \prod_{j>k}^{\infty} \left[\frac{1}{2} + \frac{1}{2}\cos(2\pi 3^{k-j}) + i\frac{1}{2}\sin(2\pi 3^{k-j}) \right]$$

$$= \prod_{j\leq k}^{\infty} \left[1 + 0 \right] \prod_{j>k}^{\infty} \left[\frac{1}{2} + \frac{1}{2}\cos(2\pi 3^{k-j}) + i\frac{1}{2}\sin(2\pi 3^{k-j}) \right] \qquad (*)$$

$$= \prod_{j>0}^{\infty} \left[\frac{1}{2} + \frac{1}{2}\cos(2\pi 3^{-j}) + i\frac{1}{2}\sin(2\pi 3^{-j}) \right]$$

$$= \prod_{j=1}^{\infty} \left[\frac{1}{2} + \frac{1}{2}e^{it3^{-j}} \right]$$

which does not depend on k.

Note that (*) holds because for all $j \leq k$, $\cos(2\pi 3^{k-j}) = 1$ and $\sin(2\pi 3^{k-j}) = 0$.

3.3.23

If $X_1, X_2, ...$ are independent and have characteristic function $exp(-|t|^{\alpha})$ then $(X_1 + ... + X_n)/n^{1/\alpha}$ has the same distribution as X_1 .

$$\phi_{X_{i}}(t) = \exp(-|t|^{\alpha}) \Rightarrow \phi_{\frac{X_{i}}{n^{1/\alpha}}}(t) = \exp(-|\frac{t}{n^{1/\alpha}}|^{\alpha}) = \exp(-\frac{|t|^{\alpha}}{n}) \Rightarrow \phi_{\frac{X_{1}}{n^{1/\alpha}} + \dots + \frac{X_{n}}{n^{1/\alpha}}}(t) = \left[\exp(-\frac{|t|^{\alpha}}{n})\right]^{n} = \exp(-|t|^{\alpha}) = \phi_{X_{1}}(t)$$

3.3.26

Show that if X and Y are independent and X+Y and X have the same distribution then Y=0 a.s.

$$\phi_{X+Y}(t) = \phi_X(t)\phi_Y(t) = \phi_X(t)$$

$$\Rightarrow \phi_X(t)(1-\phi_Y(t))=0$$
 for all t. So either $\phi_X(t)=0$ or $(1-\phi_Y(t))=0$ for all t.

Since, by definition, $\phi_X(0) = 1$, it follows that $\phi_X(t) \neq 0$ for all t, and therefore, $\phi_Y(t) = 1$ for all t.

$$\phi_Y(t) = 1 \Rightarrow \lim_{h \downarrow 0} \tfrac{\phi_Y(h) - 2\phi_Y(0) + \phi_Y(-h)}{h^2} = \lim_{h \downarrow 0} \tfrac{1 - 2 + 1}{h^2} = 0 \Rightarrow E|Y|^2 < \infty \text{ by theorem } 3.3.9.$$

Then we apply theorem 3.3.8 (since $E|Y|^2 < \infty$) to get $\phi_Y(t) = 1 + itEY - t^2E(Y^2)/2 + o(t^2)$. But since we know that $\phi_X(0) = 1$, it follows that EY = 0 and $E(Y^2)$. Therefore Y = 0 a.s.

5.1.3

Prove Chebyshev's inequality. If a>0 then $P(|X| \ge |\mathcal{F}) \le a^{-2}E(X^2|\mathcal{F})$

Note that $\mathbf{1}_{|X|\geq a} = \mathbf{1}_{|X|/a\geq 1} = \mathbf{1}_{X^2/a^2\geq 1} \leq X^2/a^2$. Thus,

$$P(X \ge a|\mathcal{F}) = E[\mathbf{1}_{|X| \ge a}|\mathcal{F}]$$

$$= E[\mathbf{1}_{X^2/a^2 \ge 1}|\mathcal{F}]$$

$$\le E[X^2/a^2|\mathcal{F}]$$

$$= a^{-2}E[X^2|\mathcal{F}]$$
(75)

5.1.4

Suppose $X \ge 0$ and $EX = \infty$. Show that there exists a unique \mathcal{F} -measurable Y with $0 \le Y \le \infty$ such that for all $A \in \mathcal{F}$ we have

$$\int_{A} XdP = \int_{A} YdP$$

Hint: Let $X_M = X \wedge M, Y_M = E(X_M | \mathcal{F}),$ and let $M \to \infty$

We will use the hint and let $X_M = X \wedge M, Y_M = E(X_M | \mathcal{F})$. Note that $X_M \uparrow X$ as $M \to \infty$ and therefore $Y_M \uparrow$ to some limit. Let $Y = \lim_{M \to \infty} Y_M$.

By the definition of conditional expectation, we have

$$\int_A X \wedge M dP = \int_A Y_M dP \quad \text{for all } A \in \mathcal{F}$$

Taking the limit as $M \to \infty$ and applying MCT to both sides of the equation (since $X_M \uparrow X$ and $Y_M \uparrow Y$) we get

$$\int_A X dP = \int_A \lim_{M \to \infty} X \wedge M dP = \lim_{M \to \infty} \int_A X \wedge M dP = \lim_{M \to \infty} \int_A Y_M dP = \int_A \lim_{M \to \infty} Y_M dP = \int_A Y dP = \int$$

5.1.7

Show that when E|X|, E|Y|, and E|XY| are finite, each statement implies the next one and give examples with $X,Y \in \{-1,0,1\}$ a.s. that show the reverse implications are false: (i) X and Y are independent, (ii) E(Y|X) = EY, (iii) E(XY) = EXEY.

First note that $E(Y|X) = E(Y|\sigma(X))$

$$(i) \Rightarrow (ii)$$

Let $A \in \sigma(X)$. Then by the definition of conditional expectation we have $\int_A Y dP = \int_A E(Y|\sigma(X)) dP$

Then $\int_A Y dP = E[Y \mathbf{1}_A] = EY E \mathbf{1}_A = \int_A EY dP$, where the second equality follows from independence.

Example to demonstrate the converse is false:

Let $X, Y \in \{-1, 0, 1\}$ with the following joint distribution:

X/Y	-1	0	1
-1	0	0.25	0
0	0.25	0	0.25
1	0	0.25	0

Then, $P(X=0,Y=0)=0\neq 1/4=1/2\times 1/2=P(X=0)P(Y=0)$. Therefore X and Y are not independent.

$$(ii) \Rightarrow (iii)$$

CLAIM: $E[E(Z|\mathcal{G})] = EZ$

PROOF: By the second property of conditional expectation, for all $A \in \mathcal{G}$, $\int_A Z dP = \int_A E(Z|\mathcal{G}) dP$.

Let $A = \Omega$, and we get $EZ = \int_{\Omega} Z dP = \int_{\Omega} E(Z|\mathcal{G}) dP = E[E(Z|\mathcal{G})]$

By theorem 5.1.7, if $X \in \mathcal{F}$ and E|Y|, and E|XY| are finite, then $E(XY|\mathcal{F}) = XE(Y|\mathcal{F})$

 $X \in \sigma(X)$ and the expectations are finite, so $E(XY|\sigma(X)) = XE(Y|\sigma(X)) = XEY$, where the second equality follows from (ii). Then taking expectation of left and right sides of the equality we get: LHS: $E(XY) = E[E(XY|\sigma(X))]$ and RHS: E[XEY] = EXEY

Example to demonstrate the converse is false:

Let $X \in \{-1, 0, 1\}$ and $X \in \{-1, 1\}$ with the following joint distribution:

X/Y	-1	1
-1	0	0.25
0	0.5	0
1	0	0.25

Then EXY = 0 = EXEY but $E(Y|X = -1) = 1 \neq 0 = EY$

5.1.9

Let $var(X|\mathcal{F}) = E(X^2|\mathcal{F}) - E(X|\mathcal{F})^2$. Show that $var(X) = E(var(X|\mathcal{F})) + var(E(X|\mathcal{F}))$

$$E(var(X|\mathcal{F})) = E[E(X^{2}|\mathcal{F}) - E(X|\mathcal{F})^{2}] = E[E(X^{2}|\mathcal{F})] - E[E(X|\mathcal{F})^{2}]$$

$$= E[X^{2}| - E[E(X|\mathcal{F})^{2}]$$
(76)

$$var(E(X|\mathcal{F})) = E[E(X|\mathcal{F})^2] - E[E(X|\mathcal{F})]^2$$
$$= E[E(X|\mathcal{F})^2] - E[X]^2$$
(77)

Then,

$$E(var(X|\mathcal{F})) + var(E(X|\mathcal{F})) = E[X^{2}] - E[E(X|\mathcal{F})^{2}] + E[E(X|\mathcal{F})^{2}] - E[X]^{2}$$

$$= E[X^{2}] - E[X]^{2}$$

$$= var(X)$$
(78)

5.1.11

Show that if X and Y are random variables with $E(Y|\mathcal{G}) = X$ and $EY^2 = EX^2 < \infty$, then X = Y a.s.

By theorem 5.1.7, if $X \in \mathcal{G}$ and $E[Y], E[XY] < \infty$ then $E(XY|\mathcal{G}) = XE(Y|\mathcal{G})$

Note that $X = E(Y|\mathcal{G}) \in \mathcal{G}$ by definition of conditional expectation. And $(EXY)^2 \leq EX^2EY^2 < \infty$ by the Cauchy-Schwarz inequality and the assumption of the question. Therefore, we can apply the theorem to get $E(XY|\mathcal{G}) = XE(Y|\mathcal{G})$. Taking expectation on both sides gives:

$$E[E(XY|\mathcal{G})] = E[XE(Y|\mathcal{G})]$$

$$= E[X^2]$$
(79)

Then

$$E(X - Y)^{2} = E(X^{2}) - 2E(XY) + E(Y^{2})$$

$$= E(X^{2}) - 2E(X^{2}) + E(Y^{2})$$

$$= E(X^{2}) - 2E(X^{2}) + E(X^{2})$$

$$= 0$$
(80)

Then by Markov's inequality we have for all $\epsilon > 0$ $P(|X - Y| \ge \epsilon) \le \frac{E(X - Y)^2}{\epsilon^2} = 0$. Therefore X = Y a.s.

5.1.12

The result in the last exercise implies that if $EY^2 < \infty$ and $E(Y|\mathcal{G})$ has the same distribution as Y, then $E(Y|\mathcal{G}) = Y$ a.s. Prove this under the assumption $E|Y| < \infty$. Hint: The trick is to prove that $\operatorname{sgn}(X) = \operatorname{sgn}(E(X|\mathcal{G}))$ a.s. and then take X = Y - c to get the desired result.

Suppose X is a random variable with $E|X| < \infty$ such that $X \stackrel{d}{=} E(X|\mathcal{G})$. Let $A = \{\omega : X(\omega) > 0\}$, $B = \{\omega : E(X|\mathcal{G})(\omega) > 0\}$.

By the definition of conditional expectation we have $\int_B X dP = \int_B E(X|\mathcal{G}) dP$.

And since $X \stackrel{d}{=} E(X|\mathcal{G})$, we have $\int_B E(X|\mathcal{G})dP = \int_A XdP$. Therefore $\int_B XdP = \int_A XdP$. Furthermore,

$$\int_{A\cap B} XdP + \int_{A\cap B^C} XdP = \int_A XdP$$

$$= \int_B XdP$$

$$= \int_{A\cap B} XdP + \int_{A^C\cap B} XdP$$
(81)

which implies that $\int_{A \cap B^C} X dP = \int_{A^C \cap B} X dP$

Note that $X(A \cap B^C) > 0$ and $X(A^C \cap B) \leq 0$. Therefore, both integrals above are =0, and hence $\{X > 0, E(X|\mathcal{G}) \leq 0\} = A \cap B^C = \phi$. Since $X \stackrel{d}{=} E(X|\mathcal{G})$ it follows that $\{E(X|\mathcal{G}) > 0, X \leq 0\} = \phi$ also. Thus $\operatorname{sgn}(X) = \operatorname{sgn}(E(X|G))$ a.s.

Now suppose that Y is a random variable such that $E|Y| < \infty$ such that $X \stackrel{d}{=} E(Y|\mathcal{G})$. Let X = Y - c. By the above arguments, we have that $\{Y - c > 0, E(Y - c|\mathcal{G}) \le 0\} = \{E(Y - c|\mathcal{G}) > 0, Y - c \le 0\} = \phi$ or equivalently $\{Y > c, E(Y|\mathcal{G}) \le c\} = \{E(Y|\mathcal{G}) > c, Y \le c\} = \phi$.

Since \mathbb{Q} is dense in \mathbb{R} we have that

$$\{Y \neq E(Y|G)\} = \bigcup_{c \in \mathbb{O}} \Big(\{Y > c, E(Y|G) \leq c\} \cup \{E(Y|\mathcal{G}) > c, Y \leq c\}\Big) = \phi$$

Therefore $E(Y|\mathcal{G}) = Y$ a.s. as desired

5.3.2.

Give an example of a martingale X_n with $\sup_n |X_n| < 1$ and $P(X_n = ai.o.) = 1$ for a = -1, 0, 1. This example shows that it is not enough to have $\sup |X_{n+1} - X_n| < \infty$ in Theorem 5.3.1.

Let $U_i \stackrel{iid}{\sim} Uniform(0,1), i \in \mathbb{N}$.

If $X_n = 0$ then let $X_{n+1} = 1$ if $U_{n+1} \ge 1/2$, and $X_{n+1} = -1$ if $U_{n+1} < 1/2$.

If $X_n \neq 0$ then let $X_{n+1} = 0$ if $U_{n+1} > 1/n^2$, and $X_{n+1} = n^2 X_n$ if $U_{n+1} < 1/n^2$.

 $\sum 1/n^2 < \infty$ so by the Borel Cantelli lemma we even entually just go from 0 to ± 1 and then back to 0 again, so $\sup |X_n| < \infty$.

5.4.7

Let X_n and Y_n be martingales with $EX_n^2 < \infty$ and $EY_n^2 < \infty$.

$$EX_nY_n - EX_0Y_0 = \sum_{m=1}^n E(X_m - X_{m-1})(Y_m - Y_{m-1})$$

Note that

$$E(X_m - X_{m-1})(Y_m - Y_{m-1}) = E[(X_m - X_{m-1})Y_m] - E[(X_m - X_{m-1})Y_{m-1})]$$

$$= EX_m Y_m - EX_{m-1} Y_m - EX_m Y_{m-1} + EX_{m-1} Y_{m-1}$$
(82)

By theorem 5.4.6 (orthogonality of martingale increments) we have that $E[(X_m - X_{m-1})Y_{m-1}] = 0$ Then we have

$$E[(X_m - X_{m-1})Y_{m-1}] = 0 \Rightarrow E[X_m Y_m - X_{m-1} Y_{m-1}] = 0 \Rightarrow EX_m Y_{m-1} = EX_{m-1} Y_{m-1}$$

and similarly

$$EY_m X_{m-1} = EX_{m-1} Y_{m-1}$$

Substituting these into (1) and summing from m = 1 to n we have

$$\sum_{m=1}^{n} E(X_m - X_{m-1})(Y_m - Y_{m-1}) = \sum_{m=1}^{n} E[(X_m - X_{m-1})Y_m] - E[(X_m - X_{m-1})Y_{m-1})]$$

$$= \sum_{m=1}^{n} EX_m Y_m - EX_{m-1} Y_m - EX_m Y_{m-1} + EX_{m-1} Y_{m-1}$$

$$= \sum_{m=1}^{n} EX_m Y_m - EX_{m-1} Y_{m-1} - EX_{m-1} Y_{m-1} + EX_{m-1} Y_{m-1}$$

$$= \sum_{m=1}^{n} EX_m Y_m - EX_{m-1} Y_{m-1}$$

$$= EX_n Y_n - EX_0 Y_0$$
(83)

(The last equality follows by telescoping the sum)

5.4.8

Let $X_n, n \ge 0$ be a martingale and let $\xi_n = X_n - X_{n-1}$ for $n \ge 0$. Show that if $EX_0^2, \sum_{m=1}^{\infty} \xi_m^2 < \infty$ for $n \ge 1$ then $X_n \to X_\infty$ a.s. and in L^2

In the previous exercise, let X = Y and note that

$$\sum_{m=1}^{n} \xi_m^2 = \sum_{m=1}^{n} E(X_m - X_{m-1})^2$$

$$= \sum_{m=1}^{n} E(X_m - X_{m-1})(X_m - X_{m-1})$$

$$= EX_n X_n - EX_0 X_0$$

$$= EX_n^2 - EX_0^2$$
(84)

Rearranging (3) and using that $EX_0^2, \sum_{m=1}^n \xi_m^2 < \infty$ we get $EX_n^2 = EX_0^2 + \sum_{m=1}^n \xi_m^2 < \infty$.

Thus sup $EX_n^2 < \infty$, and so $X_n \longrightarrow X$ a.s. and in L^p by theorem 5.4.5 (L^p convergence theorem).

5.4.10

Let $\xi_1, \xi_2, ...$ be i.i.d. with $E\xi_i = 0$ and $E\xi_i^2 < \infty$. Let $S_n = \xi_1 + ... + \xi_n$. Theorem 5.4.1 implies that for any stopping time N, $ES_{N^n} = 0$. Use Theorem 5.4.12 to conclude that if $EN^{1/2} < \infty$ then $ES_N = 0$.

 S_n is a martingale.

By theorem 5.2.6, for any stopping time N, and martingale S_n , $S_{N \wedge n}$ is a martingale.

Note that $EN^{1/2} < \infty \Rightarrow N^{1/2} < \infty$ a.s. $\Rightarrow N < \infty$ a.s.

Furthermore, $ES_{N \wedge n} = 0$, because $\{N \wedge n = n\} \in \mathcal{F}_n$ for all n so $N \wedge n$ is a stopping time, and, $P(N \wedge n \leq n) = 1$ so by theorem 5.4.1, we have $0 = ES_0 = ES_{N \wedge n} = ES_n = 0$.

Also, note that
$$S_{N \wedge m} - S_{N \wedge m-1} = \begin{cases} S_m - S_{m-1}, & \text{if } N \geq m \\ 0, & \text{otherwise} \end{cases}$$

and
$$A_n = \sum_{m=1}^n E((S_{N \wedge m} - S_{N \wedge m-1})^2 | \mathcal{F}_{m-1}) = \sum_{m=1}^{N \wedge n} E(\xi_m^2 | \mathcal{F}_{m-1}) = \sum_{m=1}^{N \wedge n} E\xi_m^2 < \infty$$

by the assumptions of independence and finiteness of second moments of ξ_i 's.

Letting $n \to \infty$, we have that $A_{\infty} < \infty$ since $N < \infty$ a.s..

Now by theorem 5.4.12, we have $E(\sup |S_{N \wedge n}|) \leq 3EA_{\infty}^{1/2} < \infty$.

Finally, since i. $|S_{N \wedge n}| \leq \sup |S_{N \wedge n}|$ for all n, and ii. $E(\sup |S_{N \wedge n}|) < \infty$, and iii. $ES_{N \wedge n} = 0$, we can use the dominated convergence theorem to get

$$ES_N = E(\lim_{n \to \infty} S_{N \wedge n}) = \lim_{n \to \infty} E(S_{N \wedge n}) = \lim_{n \to \infty} 0 = 0$$

5.5.2

Let $Z_1, Z_2, ...$ be i.i.d. with $E|Z_i| < \infty$, let θ be an independent r.v. with finite mean, and let $Y_i = Z_i + \theta$. If Z_i is normal(0,1) then in statistical terms we have a sample from a normal population with variance 1 and unknown mean. The distribution of θ is called the prior distribution, and $P(\theta \in \mathring{u}|Y_1,...,Y_n)$ is called the posterior distribution after n observations. Show that $E(\theta|Y_1,...,Y_n) \to \theta$ a.s.

Let $\mathcal{F}_n = \sigma(Y_1, ..., Y_n)$ and $\mathcal{F}_{\infty} = \sigma(\bigcup_n \mathcal{F}_n)$. Then

$$E(\theta|\mathcal{F}_n) \xrightarrow{a.s.} E(\theta|\mathcal{F}_\infty) = \theta$$

where the a.s. convergence on the left is due to theorem 5.5.7, and the equality on the right is due to the fact that $\theta \in \mathcal{F}_{\infty}$ which is a consequence of the strong law of large numbers as follows:

$$\frac{Y_1 + \dots + Y_n}{n} = \theta + \frac{Z_1 + \dots + Z_n}{n} \xrightarrow{a.s.} \theta + EZ_i = \theta + 0$$

5.5.5

Let X_n be a r.v.'s taking values in $[0,\infty)$. Let $D=\{X_n=0 \text{ for some } n\geq 1\}$ and assume that $P(D|X_1,...,X_n)\geq \delta(x)>0$ on $\{X_n\leq x\}$. Use theorem 5.5.8 to conclude that

$$P(D \cup \{\lim_{n \to \infty} X_n = \infty\}) = 1$$

By theorem 5.5.8, if $\mathcal{F}_n \uparrow \mathcal{F}_{\infty}$ and $A \in \mathcal{F}_{\infty}$, then $E(\mathbf{1}_A | \mathcal{F}_n) \to \mathbf{1}_A$

Let $\mathcal{F}_n = \sigma(X_1, ..., X_n)$ and $\mathcal{F}_{\infty} = \sigma(\bigcup_n \mathcal{F}_n)$. Then $D \in \mathcal{F}_{\infty}$.

Let $B = \{\omega : \lim_{n \to \infty} X_n(\omega) \neq \infty\}$. Note that $P(B \cup B^c) = 1$.

Let $B_M = \{\omega : \liminf_{n \to \infty} X_n(\omega) \le M\}$ for $M \in \mathbb{N}$. Note that $B = \bigcup_M B_M$,

Fix some $M \in \mathbb{N}$, and note that for all $\omega \in B_M$, we have $X_n(\omega) \leq M+1$ infinitely often.

In other words, $B_M \subset \{\omega : X_n(\omega) \leq M + 1 \text{ i.o.}\}.$

Then by theorem 5.5.8, we have

$$0 < \delta(M+1) \le P(D|X_1, ..., X_n) = P(D|\mathcal{F}_n) = E(\mathbf{1}_D|\mathcal{F}_n) \longrightarrow \mathbf{1}_D \tag{85}$$

which implies that $B_M \subset \{\omega : X_n(\omega) \leq M+1 \text{ i.o.}\} \subset D \text{ (because } 0 < E(\mathbf{1}_D | \mathcal{F}_{\infty}) \in \{0,1\})$

Since $B_M \subset D$, and $B = \bigcup_M B_M$, we have $B \subset D$, and it follows that

$$1 \geq P(D \cup \{\lim_{n \to \infty} X_n = \infty\}) = P(D \cup B^c) \geq P(B \cup B^c) = 1$$

which gives the desired result.

5.7.2

Let S_n be an asymmetric simple random walk with $1/2 , and let <math>\sigma^2 = pq$. Use the fact that $X_n = (S_n - (p-q)n)^2 - \sigma^2 n$ is a martingale to show $var(T_b) = b\sigma^2/(p-q)^3$.

Since $X_n = (S_n - (p-q)n)^2 - \sigma^2 n$ is a martingale, and $T_b = \inf\{n : S_n = b\}$ is a stopping time, it follows by theorem 5.2.6 that $X_{T_b \wedge n} = (S_{T_b \wedge n} - (p-q)(T_b \wedge n))^2 - \sigma^2 (T_b \wedge n)$ is also a martingale.

Since $X_{T_b \wedge 0} = X_0 = (S_0 - (p-q)0)^2 - \sigma^2 0 = 0$, and $(T_b \wedge n)$ is a bounded stopping time, it follows by theorem 5.4.1 that

$$EX_{T_b \wedge 0} = EX_{T_b \wedge n} = E[(S_{T_b \wedge n} - (p - q)(T_b \wedge n))^2 - \sigma^2(T_b \wedge n)] = 0$$

Then we have

$$E[(S_{T_b \wedge n} - (p - q)(T_b \wedge n))^2] = E[\sigma^2(T_b \wedge n)]$$

Using Fatou's lemma (since $(S_{T_b \wedge n} - (p-q)(T_b \wedge n))^2 \geq 0$), and bounded convergence theorem since $(T_b \wedge n)$ is bounded) we have

$$E[(b - (p - q)T_b)^2] = E[\lim_{n \to \infty} (S_{T_b \wedge n} - (p - q)(T_b \wedge n))^2]$$

$$= E[\liminf_{n \to \infty} (S_{T_b \wedge n} - (p - q)(T_b \wedge n))^2]$$

$$\leq \liminf_{n \to \infty} E[(S_{T_b \wedge n} - (p - q)(T_b \wedge n))^2]$$

$$= \liminf_{n \to \infty} E[\sigma^2(T_b \wedge n)]$$

$$= \lim_{n \to \infty} E[\sigma^2(T_b \wedge n)]$$

$$= E[\lim_{n \to \infty} \sigma^2(T_b \wedge n)] = \sigma^2 ET_b = b/(2p - 1) < \infty$$
(86)

Thus $ET_b^2 \le b/(2p-1) < \infty$. Then,

$$0 = EX_{T_b \wedge n} = E[(S_{T_b \wedge n} - (p - q)(T_b \wedge n))^2 - \sigma^2(T_b \wedge n)]$$

= $E[S_{T_b \wedge n}^2 - 2S_{T_b \wedge n}(p - q)(T_b \wedge n) + (p - q)^2(T_b \wedge n)^2 - \sigma^2(T_b \wedge n)]$ (87)

Note that $S_{T_b \wedge n}^2 \leq b^2 < \infty$. Moreover, $E[T_b \wedge n] \leq E[T_b] = b/(2p-1) < \infty$ by theorem 5.7.7 (d). And $ES_{T_b \wedge n}(T_b \wedge n) \leq \left[E[S_{T_b \wedge n}^2]E[(T_b \wedge n)^2]\right]^{1/2} < \infty$ by the Cauchy-Schwarz inequality and (5).

Thus we can apply dominated convergence theorem to (6) to get

$$0 = \lim_{n \to \infty} E[S_{T_b \wedge n} - (p - q)(T_b \wedge n))^2 - \sigma^2(T_b \wedge n)]$$

$$= \lim_{n \to \infty} E[S_{T_b \wedge n}^2 - 2S_{T_b \wedge n}(p - q)(T_b \wedge n) + (p - q)^2(T_b \wedge n)^2 - \sigma^2(T_b \wedge n)]$$

$$= E\lim_{n \to \infty} [S_{T_b \wedge n}^2 - 2S_{T_b \wedge n}(p - q)(T_b \wedge n) + (p - q)^2(T_b \wedge n)^2 - \sigma^2(T_b \wedge n)]$$

$$= E[b^2 - 2b(p - q)T_b + (p - q)^2T_b^2 - \sigma^2T_b]$$

$$= b^2 - 2b(p - q)b/(2p - 1) + (p - q)^2ET_b^2 - \sigma^2b/(2p - 1)$$

$$= b^2 - 2b(p - q)b/(p - q) + (p - q)^2ET_b^2 - \sigma^2b/(p - q)$$

$$= -b^2 + (p - q)^2ET_b^2 - \sigma^2b/(p - q)$$

$$= -b^2 + (p - q)^2ET_b^2 - \sigma^2b/(p - q)$$

Rearranging (7) gives $ET_b^2 = \frac{\sigma^2b/(p-q)+b^2}{(p-q)^2} = \sigma^2b/(p-q)^3 + b^2/(p-q)^2$

Finally, using the fact that (p-q)=2p-1 and $E[T_b]=b/(2p-1)$ (theorem 5.7.7 d), we get the desired result:

$$Var(T_b) = E[T_b^2] - E[T_b]^2 = \sigma^2 b/(p-q)^3 + b^2/(p-q)^2 - b^2/(2p-1)^2 = \sigma^2 b/(p-q)^3$$