Linear Algebra

주재걸 고려대학교 컴퓨터학과

Lecture Overview

- Elements in linear algebra
- Linear system
- Linear combination, vector equation, Four views of matrix multiplication
- Linear independence, span, and subspace
- Linear transformation
- Least squares
- Eigendecomposition
- Singular value decomposition

- A transformation, function, or mapping, T maps an input x to an output y
 - Mathematical notation: $T: x \mapsto y$
- **Domain**: Set of all the possible values of *x*
- Co-domain: Set of all the possible values of y
- Image: a mapped output y, given x
- Range: Set of all the output values mapped by each x in the domain
- Note: the output mapped by a particular
 x is uniquely determined.

Linear Transformation

- **Definition**: A transformation (or mapping) *T* is **linear** if:
 - I. $T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T and for all scalars c and d
- Simple example: $T: x \mapsto y, T(x) = y = 3x$

Transformations between Vectors

- $T: \mathbf{x} \in \mathbb{R}^n \mapsto \mathbf{y} \in \mathbb{R}^m$: Mapping n-dim vector to m-dim vector
- Example:

$$T: \mathbf{x} \in \mathbb{R}^3 \mapsto \mathbf{y} \in \mathbb{R}^2 \quad \mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \in \mathbb{R}^3 \quad \mapsto \quad \mathbf{y} = T(\mathbf{x}) = \begin{bmatrix} 4 \\ 5 \end{bmatrix} \in \mathbb{R}^2$$

Matrix of Linear Transformation

• Example: Suppose T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^3 such that

$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}2\\-1\\1\end{bmatrix}$$
 and $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}0\\1\\2\end{bmatrix}$. With no additional information,

find a formula for the image of an arbitrary \mathbf{x} in \mathbb{R}^2

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\Rightarrow T(\mathbf{x}) = T \left(x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = x_1 T \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) + x_2 T \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$$

$$= x_1 \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ -1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Matrix of Linear Transformation

• In general, let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then T is always written as a matrix-vector multiplication, i.e.,

$$T(\mathbf{x}) = A\mathbf{x}$$
 for all $\mathbf{x} \in \mathbb{R}^n$

• In fact, the j-th column of $A \in \mathbb{R}^{m \times n}$ is equal to the vector $T(\mathbf{e}_j)$, where \mathbf{e}_j is the j-th column of the identity matrix in $\mathbb{R}^{n \times n}$:

$$A = [T(\mathbf{e}_1) \quad \cdots \quad T(\mathbf{e}_n)]$$

 Here, the matrix A is called the standard matrix of the linear transformation T

Matrix of Linear Transformation

• Example: Find the standard matrix A of a linear transformation from \mathbb{R}^3 to \mathbb{R}^2 such that

$$T\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}1\\2\end{bmatrix}, T\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}4\\3\end{bmatrix}, \text{ and } T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}5\\6\end{bmatrix}.$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\Rightarrow T(\mathbf{x}) = T \begin{pmatrix} x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix} = x_1 T \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \end{pmatrix} + x_2 T \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \end{pmatrix} + x_3 T \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix}$$
$$= x_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 4 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 3 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = A\mathbf{x}$$

Linear Transformation in Neural Networks

Fully-connected layers (linear layer)

https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Affine Layer in Neural Networks

- Fully-connected layers usually involve a bias term. That's why we call it an affine layer, but not a linear layer.
- Example: Image with 4 pixels and 3 classes (cat/dog/ship)

	0.2	-0.5	0.1	2		56	+	1.1	=	-9	6.8	
	1.5	1.3	2.1	1		231		3.2		43	9.9	
	2	0.3	0.7	-1.	3	24		-1.2	71.1		.1	
2												
= 5	6 0.	2 + 2	231	-0.5	+ 2	4 0.	1	+2	2	+1	1.1	
	1.	5		1.3		2.	1	•	1		3.2)
		2		0.3		0.	7	-1	.3		-1.2	2
=	0.	2 -0	.5	0.1	2	1	.1	56 231 24				
	1.	5 1	.3	2.1	1	3	.2					
		2 0	.3	0.7	-1.	3 -1	1.2	2				0
											6	8