Hybrid algorithm for incompressible flow simulation on quantum hardware

Spencer H. Bryngelson

Schools of CSE and AE

Georgia Institute of Technology

CRNCH Summit February 9, 2024

Bryan

Introduction

- CFD simulations computationally expensive/prohibitive
 - We're always eager for a new supercomputer
- Can new computer architectures avoid this reliance?

Introduction MFC Performance: >0.5 ExaFLOPs, 10T grid points

mflowcode.github.io

Introduction

- CFD simulations computationally expensive/prohibitive
 - We're always eager for a new supercomputer
- Can new computer architectures avoid this reliance?

Linear system: Ax = b

Motivation: Why Quantum?

- Computational "space" doubles with each added qubit
 - Billions of grid points → 10's of qubits
- Some efficient quantum algorithms already exist! [HHL09]

Harrow, Hassidim, Lloyd PRL (2009)

Limitation: Hardware & Nonlinearity

IBM quantum computer; interior

HHL-type QLSA*

 Only possible for tiny problems on current hardware

Variational QLSA*

- More suitable to near-term hardware
- Complexity advantage unclear

State Tomography

- Full state tomography $\rightarrow O(3^N)$ circuits
- HTree tomography $\rightarrow O(N+1)$ circuits

^{*}QLSA: Quantum Linear System Algorithm

Approach: Hybrid Classical-Quantum

Incompressible Navier–Stokes

 $\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho}\nabla p + \frac{1}{\mathrm{Re}}\nabla^2 \mathbf{u}$ $\nabla \cdot \mathbf{u} = 0$

Main strategy

- Projection loop on classical computer (treat nonlinearity)
- Quantum computer for linear problem

Quantum Linear System Algorithms (QLSA)

Variational Algorithms

Ground state of a Hamiltonian ↔ Solution of a linear system

Variational Quantum Circuit

Measurement

$$E(\theta) = \langle \psi(\theta) | H | \psi(\theta) \rangle$$

$$H = A^{\dagger} (I - |b\rangle \langle b|) A$$

Parameter update

$$\theta_i o heta_{i+1}$$

Classical Optimizer

Benchmark: 2D Lid-driven Cavity

Classical simulation, Re = 400

Ghia, K. (1977)

Benchmark: 2D Lid-driven Cavity

- Small 2D test case:
 - Grid: $16 \times 16 \rightarrow \text{#qubits} = 2n = 4$
- VQE algorithm
 - Hardware efficient ansatz w/ $R_{\rm Y}$ and CNOT gates, depth = 3

Results: "Perfect" simulator

- Initial VQE parameters come from previous time step
- Converged solution tends to steady state

Results: Solution viz.

Comparing quantum to classical solution (statevec. sim.)

Results: Simulator + Artificial Noise

- Use VQE to solve pressure Poisson eq'n
- 4-qubit simulation, different noise levels

Fake Kolkata +

Mind your Measurements: Tomography

Standard quantum tomography

- 3^N circuits characterize output
 - Computational bottleneck
 - This is a complex valued state
- CFD output is real valued

More efficient tomography technique

- Formulate HTree
- Requires N + 1 circuits
 (https://github.com/QuantumApplicationLa

b/vqls-prototype)

Compare Htree to standard full state and shadow tomography

Results: Quantum Hardware

- VQE solve on IBM quantum computer Kolkata
- With HTree, measurement cost and final errors small

To come: Scaling!

Current and upcoming quantum devices

Backend	# qubits	T_1 (µs)	T_2 (µs)	$\mathrm{Error}_{1\mathrm{q}}$	$\mathrm{Error}_{2\mathrm{q}}$	t_{2q} (ns)	$t_{ m mea} \ (m ns)$
$ibmq_kolkata$	27	102.88	66.51	2.55×10^{-4}	8.89×10^{-3}	452	640
ibm_sherbrooke	127	257.56	167.28	2.17×10^{-4}	7.16×10^{-3}	533	1244
ibm_torino	133	167.79	132.44	3.08×10^{-4}	3.40×10^{-3}	124	1560

• Early results promising, low 2-qubit error ibm_torino critical

Summary

Hybrid classical-quantum CFD solver

- Acceptable performance on current quantum computers
- State tomography could bottleneck hybrid schemes
- Novel HTree method makes our method practical

Next: 3D Navier-Stokes on 133+ qubit devices

IBM Quantum Platform

Thank You!

IBM Quantum **Platform**