정보통신망

제 5 강

데이터 통신의 기능(I)

컴퓨터과학과 손진곤 교수

컴퓨터과학과 손진곤 교수

학습 목차

제 5 강 데이터 통신의 기능(I)

- 1 데이터 교환 방식
- 2 다중화
- 3 동기화

학습 내용

- ▮ 데이터 통신의 개요
 - 회선 교환, 메시지 교환, 패킷 교환
- **!** 다중화
 - 다중화 정의 및 목적, 종류
- ▮ 동기화
 - 비트 동기, 문자 동기, 프로세스 동기

학습 목표

- **▮ 데이터 교환 방식**에 관하여 구분하여 설명할 수 있다.
- **<u>다중화의 정의와 종류</u>에 대하여 설명할 수 있다.**
- **동기화의 개념 및 방법**에 대하여 설명할 수 있다.

제5강 데이터 통신의 기능(I)

1. 데이터 교환 방식

- (1) 회선 교환
- (2) 메시지 교환
- (3) 패킷 교환
- (4) 교환 방식의 비교

1 회선 교환

회선 교환 방식 (Circuit switching)

- 회선(circuit) : 설정된 통신경로의 집합
- 연결지향형 데이터 전송

1 | 회선 교환

회선 교환 방식의 특징

- 연결지향형 전송 (connection-oriented transmission)
 - 연결 설정 ==> 데이터 전송 ==> 연결 해제
 - [비교] 비연결형 (connectionless) 전송
- 연결 설정 후 회선을 <u>전용선처럼 사용</u>하므로 대량의 실시간 데이터 전송에 적합

2 | 메시지 교환

메시지 교환 (message switching)

- 전송 데이터 크기 그대로 전송
- 전용선 불필요하지만 헤더(목적지 주소)가 필요
- Store-and-forward 방식
 - 각 노드는 기억장치를 갖춘 컴퓨터.
 - 각 노드에서 데이터를 수신 후 잠시 <u>저장</u>하면서 적절한 선로를 찾아 송신함.
- <u>대용량 데이터 전송</u>에 적합함.
- 전송지연이 길어서 실시간 서비스에는 부적절함.

2 | 메시지 교환

메시지 교환의 장점

- 메시지를 분할하고 재조립하는 과정이 불필요.
- 메시지 교환은 메시지의 분할 없이 전송하므로 <u>헤더 오버헤드</u>가 패킷 교환보다 훨씬 적다.

2 | 메시지 교환

메시지 교환의 단점

- 저장 후 전송(store-and-forward) 방식으로 전체 메시지를 보내야 하므로 모든 중간 노드는 주기억장치는 물론 보조기억장치까지 사용하게 되어 패킷 교환에 비해 더 많은 전송 시간이 소요됨.
- 전송 시에 오류가 발생하면 전체 메시지를 폐기하고 재전송해야 하므로 대역폭의 낭비가 발생함.

패킷 교환

패킷 교환 방식 (Packet switching)

■ 전송 데이터를 <u>일정의 크기로 분할</u>하여 전송

■ Packet : 보통 128 바이트

데이터 정보1 정보1 패킷(1) 제기(n) 패킷(3) 제더

PDU (Protocol Data Unit)

- bit or symbol
- frame
- packet / datagram
- segment

3 | 패킷 교환

패킷 교환 방식

- 주기억장치만을 사용하므로 전송 지연을 줄일 수 있음.
 - ※ 메시지 교환 방식: 보조기억장치를 사용하는 경우가 발생하여 전송 지연이 큼.
- 패킷마다 헤더(header)가 필요함(오버헤드 발생).
- <u>짧은 실시간 전송</u>에 많이 사용되는 교환 방식.

종류

- 데이터그램 (datagram) 패킷 교환
- 가상회선 (virtual circuit) 패킷 교환

패킷 교환

데이터그램 (datagram) 방식

■ 비연결형 (connectionless) 전송

[그림] 데이터그램 방식

패킷 교환

가상회선 (virtual circuit) 방식

- 가상회선 (논리적 경로)
 - 연결지향형 전송 (회선교환과 유사)

[그림] 가상회선 방식

교환 방식의 비교

데이터 교환 방식에 대한 타이밍도

교환 방식의 비교

데이터 교환 방식의 정리

교환방식	연결성	활용 환경	기타 성질
회선교환	연결지향형	대용량 데이터 전송	메시지 분실 가능
메시지교환	비연결형	대용량 데이터 전송	메시지 분실 가능성 없음
데이터그램 패킷교환	비연결형	실시간 소용량 데이터 전송	메시지 재구성 필요
가상회선 패킷교환	연결지향형	실시간 소용량 데이터 전송	메시지 재구성 필요 없음

제5강 데이터 통신의 기능(I)

- 2. 다중화
- (1) 다중화 원리 및 목적
- (2) 다중화 종류

$1 \quad ert$ 다중화 정의 및 목적

다중화 정의 및 목적

- 다중화 (multiplexing [muxing])의 정의 원격통신 및 컴퓨터통신망에서 복수개의 신호를 하나의 매체에서 사용할 수 있도록 하나의 신호로 결합하는 방법.
- 다중화의 목적
 정보통신 자원인 전송 매체의 공유
- 다중화의 사례전화망, TV/라디오 방송망

2 | 다중화 종류

다중화 종류

- 시분할 다중화 (TDM: Time Division Multiplexing)
- 주파수 분할 다중화 (FDM: Frequency Division Multiplexing)
- 파장 분할 다중화 (WDM: Wavelength Division Multiplexing)

다중화 종류

시분할 다중화 방식

- Time Division Multiplexing (TDM)
 - 매체 사용권을 분할된 시간으로 제공함.

2 | 다중화 종류

주파수 분할 다중화 방식

- Frequency Division Multiplexing (FDM)
 - 매체 사용권을 분할된 주파수 대역으로 제공함.
 - 여러 개의 낮은 속도의 데이터를
 각각 서로 다른 반송파 주파수에 변조하여
 통신선로에 보내는 방식.
- 예
 - 라디오 방송

다중화 종류

주파수 분할 다중화 방식

다중화 종류

파장 분할 다중화 방식

- Wavelength Division Multiplexing (WDM)
- 광통신에서의 다중화로서 FDM과 개념적으로 같음.
- 즉, 서로 다른 wavelength를 사용하여 다중화함. (→ color)

https://en.wikipedia.org/wiki/Wavelength-division_multiplexing

제5강 데이터 통신의 기능(I)

3. 동기화

- (1) 동기화의 정의 및 목적
- (2) 동기화 방법
- (3) 프로세스 동기

동기화의 정의 및 목적

동기화 (synchronization)의 정의

Chronos

Synchronized swimming

https://en.wikipedia.org/wiki/Chronos http://www.xinhuanet.com/english/photo/2015-07/

$1 \quad \mid \quad$ 동기화의 정의 및 목적

동기화 (synchronization)의 정의

- 송수신자가 서로 동일한 속도로 데이터를 송수신하도록
 해주는 데이터 통신 기능
- 송신자와 수신자 사이에 데이터를 송수신하는 시점을 일치시킴.
- 비트 펄스에 대해 <u>정확한 표본화 위치</u>를 찾는 기술

$oldsymbol{1}$ 등기화의 정의 및 목적

동기화 기능의 필요성

- 작은 회로망 내부
 - 발진된 하나의 주파수로
 회로 전체의 소자들이 동기화되기 용이함.
- 정보통신망
 - 원격의 송신기와 수신기 사이의 동기가 어려움.
 - 동기화 기술이 필요함.

동기화의 정의 및 목적

동기화 기능의 필요성

[그림] 잘못된 동기에 의한 오류의 발생

2 | 동기화 방법

제3강 동기화 참조

- 비트 동기 (bit synchronization)
- 문자 동기 (character synchronization)

2 | 동기화 방법

비트 동기화 방법

- (1) 두 지국이 독립된 각자의 클록을 가지고 있는 경우
- (2) 한 지국만 클록을 가지고 있는 경우
- (3) 두 지국이 각자의 클록을 가지고 있으나, 종속지국이 초기 몇 비트 동안만 제어지국의 클록을 사용하여 동기시키고, 그 이후에는 자기의 클록을 사용함.

프로세스 동기

프로세스 동기

process: a series of events to produce a result

두 개의 비동기 프로세스

프로세스 동기

단계 A4 와 B2에서의 동기

프로세스 동기

두 개의 동기 프로세스

학습 내용 정리

제 5 강

데이터 통신의 기능(I)

- (1) 데이터 교환 방식
 - 회선 교환
 - 메시지 교환
 - 패킷 교환 (datagram / virtual circuit)
 - 교환 방식의 비교

학습 내용 정리

제 5 강

데이터 통신의 기능(I)

- (2) 다중화
 - 다중화의 정의 및 목적
 - 다중화 종류
 - TDM / FDM / WDM 방식
- (3) 동기화
 - 비트 동기, 문자 동기, 프로세스 동기

다음 차시 강의

제 6 강

데이터 통신의 기능(II)

- (1) 주소 지정
 - 주소지정 방식 종류
- (2) 오류제어
 - 오류와 오류제어
 - 오류검출 방식
 - 귀환오류제어
 - 전진오류정정

좋은 글, 좋은 생각

We cannot solve our problems with the same thinking we used when we created them.

우리가 어떤 문제를 만들 때 사용했던 똑같은 생각으로는 그 문제를 해결할 수 없습니다.

- Albert Einstein