COURSE ON MISSILE DYNAMICS

Problems

A certain drone missile has the following data:

$$W = 1,700 \text{ lbs.}$$

$$S = 27.0 \text{ ft.}^2$$

$$c = 2.42 \text{ ft}.$$

$$\left(\frac{dC_L}{da}\right)_H = 3.0 \text{ rad}^{-1}$$

$$\frac{\partial C_m}{\partial d} = 0.3 \text{ rad}^{-1}$$

$$\frac{\partial Cy}{\partial a} = -1.7 \text{ vad}$$

$$\frac{\partial Cy}{\partial Pb} = 0$$

$$I_x = 85$$
 ft. lb. sec.²

$$I_y = 650$$
 ft. 1b. sec.²

$$I_z = 700$$
 ft. lb. sec.²

$$\frac{\partial C_{N}}{\partial C_{N}} = -1.7 \text{ vad}$$

$$\frac{\partial C_{N}}{\partial C_{N}} = -0.25 \text{ vad}$$

$$\frac{\partial C_{N}}{\partial C_{N}} = 0.25 \text{ vad}$$

$$\frac{\partial C_{N}}{\partial C_{N}} = 0.25 \text{ vad}$$

$$\frac{\partial C_{N}}{\partial C_{N}} = -0.05 \text{ vad}$$

Calculate:

- 1. Period and damping of the pitching mode.
- 2. Period of the phugoid.
- 3. Period and damping of the Dutch role for the following conditions:

h		М	
10,000 ft.	0.6	0.75	
30,000 ft.	0.6	0.75	

Assume: for h = 10,000 ft.
$$\rho = 0.001756$$
 $\frac{1b \sec^2}{ft^4}$ $\alpha = 1078 \text{ ft/sec}$ $\rho = 0.000890$ $\frac{1b \sec^2}{ft^4}$ $\alpha = 995 \text{ ft/sec}$