Shortest Reconfiguration of Matchings Nicolas Bousquet, Tatsuhiko Hatanaka, Takehiro Ito and Moritz Mühlenthaler

Presenters: Niranjan and Mano Prakash

April 20, 2023

Reconfiguration Problem: In General

Reconfiguration Problem

Goal Ask for the existence of a **step-by-step** transformation between two given configurations.

Example Rubik's Cube Configurations.

• In this paper, we consider matchings in graphs as configurations.

• Unlabelled tokens are placed on edges forming a matching of a graph.

- Unlabelled tokens are placed on edges forming a matching of a graph.
- A token can be moved to another edge provided that the edges containing tokens remain a matching. This operation is known as Token Jumping.

- Unlabelled tokens are placed on edges forming a matching of a graph.
- A token can be moved to another edge provided that the edges containing tokens remain a matching. This operation is known as Token Jumping.
- Note: If we only allow moving a token to an adjacent edge, this
 operation is called Token Sliding.

- Unlabelled tokens are placed on edges forming a matching of a graph.
- A token can be moved to another edge provided that the edges containing tokens remain a matching. This operation is known as Token Jumping.
- Note: If we only allow moving a token to an adjacent edge, this
 operation is called Token Sliding.

Adjacency relation on matchings

Two matchings M and M' of a graph G are **adjacent** if one can be obtained from the other by relocating a single token.

- Unlabelled tokens are placed on edges forming a matching of a graph.
- A token can be moved to another edge provided that the edges containing tokens remain a matching. This operation is known as Token Jumping.
- Note: If we only allow moving a token to an adjacent edge, this
 operation is called Token Sliding.

Adjacency relation on matchings

Two matchings M and M' of a graph G are **adjacent** if one can be obtained from the other by relocating a single token.

Reconfiguration sequence

 $M_0, M_1, ...M_l$ of matchings of G is a **reconfiguration sequence** of length l from M to M', if $M_0 = M, M_l = M'$, and the matchings M_{i-1} and M_i are adjacent for each $i \in \{1, 2, ...l\}$.

• Two variants - reachability variant and shortest variant

Two variants - reachability variant and shortest variant

Reconfiguration of Matchings: Reachability Variant

Input Graph G and two matchings M_s , M_t of G.

Question Is there a reconfiguration sequence from M_s to M_t ?

Two variants - reachability variant and shortest variant

Reconfiguration of Matchings: Reachability Variant

Input Graph G and two matchings M_s , M_t of G.

Question Is there a reconfiguration sequence from M_s to M_t ?

Reconfiguration of Matchings: Shortest Variant

Input Graph G and two matchings M_s , M_t of G.

Task Compute the distance from M_s to M_t , where distance is the length of shortest reconfiguration sequence from M_s to M_t .

• Two variants - reachability variant and shortest variant

Reconfiguration of Matchings: Reachability Variant

Input Graph G and two matchings M_s , M_t of G.

Question Is there a reconfiguration sequence from M_s to M_t ?

Reconfiguration of Matchings: Shortest Variant

Input Graph G and two matchings M_s , M_t of G.

Task Compute the distance from M_s to M_t , where distance is the length of shortest reconfiguration sequence from M_s to M_t .

• The reachability variant is solvable in polynomial time.

Two variants - reachability variant and shortest variant

Reconfiguration of Matchings: Reachability Variant

Input Graph G and two matchings M_s , M_t of G.

Question Is there a reconfiguration sequence from M_s to M_t ?

Reconfiguration of Matchings: Shortest Variant

Input Graph G and two matchings M_s , M_t of G.

Task Compute the distance from M_s to M_t , where distance is the length of shortest reconfiguration sequence from M_s to M_t .

- The reachability variant is solvable in polynomial time.
- This paper deals with the shortest variant.

Two variants - reachability variant and shortest variant

Reconfiguration of Matchings: Reachability Variant

Input Graph G and two matchings M_s , M_t of G.

Question Is there a reconfiguration sequence from M_s to M_t ?

Reconfiguration of Matchings: Shortest Variant

Input Graph G and two matchings M_s , M_t of G.

Task Compute the distance from M_s to M_t , where distance is the length of shortest reconfiguration sequence from M_s to M_t .

- The reachability variant is solvable in polynomial time.
- This paper deals with the **shortest variant**.
- This is an NP-hard problem.

Main Result of the paper

Theorem (Shorter Version)

Matching Distance in bipartite graphs is **fixed parameter** tractable (FPT).

 Before looking into the complete version, we shall look into what fixed parameter tractability is.

Fixed Parameter Tractability

• Instead of expressing the running time as a function T(n) of n, we express it as a function T(n,k) of the input size n and some parameter k of the input.

Fixed Parameter Tractability

• Instead of expressing the running time as a function T(n) of n, we express it as a function T(n,k) of the input size n and some parameter k of the input.

Fixed Parameter Tractability

A problem is *fixed-parameter tractable* if there is an $f(k)n^c$ algorithm for some constant c and a parameter k.

Main Result of the paper

Theorem (Shorter Version)

Matching Distance in bipartite graphs is **fixed parameter** tractable (FPT).

Main Result of the paper

Theorem (Shorter Version)

Matching Distance in bipartite graphs is **fixed parameter** tractable (FPT).

Theorem

Matching Distance in bipartite graphs can be solved in $2^d n^{\mathcal{O}(1)}$, where d is the size of the symmetric difference of the two given matchings.

Overview of the algorithm

Case-2 - Overview

• From the given Matching Distance instance, we construct an instance of Directed Steiner Tree (We will define it soon..).

Case-2 - Overview

- From the given Matching Distance instance, we construct an instance of Directed Steiner Tree (We will define it soon..).
- Directed Steiner Tree Problem is known to be FPT.

Case-2 - Overview

- From the given Matching Distance instance, we construct an instance of Directed Steiner Tree (We will define it soon..).
- Directed Steiner Tree Problem is known to be FPT.
- This will give us an FPT algorithm for matching distance in bipartite graphs.

Directed Steiner Tree

- Input Directed Graph D = (V, A), integral arc weights c_a for each $a \in A$, root vertex $r \in V$, and terminals $T \subseteq V$
 - Task Find a minimum-cost directed tree in D that connects the root r to each terminal.

Directed Steiner Tree

Input Directed Graph D=(V,A), integral arc weights c_a for each $a\in A$, root vertex $r\in V$, and terminals $T\subseteq V$

Task Find a minimum-cost directed tree in *D* that connects the root *r* to each terminal.

An example:

Directed Steiner Tree

Input Directed Graph D=(V,A), integral arc weights c_a for each $a\in A$, root vertex $r\in V$, and terminals $T\subseteq V$

Task Find a minimum-cost directed tree in *D* that connects the root *r* to each terminal.

An example:

Directed Steiner Tree

Input Directed Graph D=(V,A), integral arc weights c_a for each $a\in A$, root vertex $r\in V$, and terminals $T\subseteq V$

Task Find a minimum-cost directed tree in D that connects the root r to each terminal.

An example:

Directed Steiner Tree

Input Directed Graph D = (V, A), integral arc weights c_a for each $a \in A$, root vertex $r \in V$, and terminals $T \subseteq V$

Task Find a minimum-cost directed tree in D that connects the root r to each terminal.

An example:

Directed Steiner Tree has an algorithm which runs in $2^{|T|}n^{\mathcal{O}(1)}W$ where W is the maximum arc weight.

Input An instance $I := (G[U, W], M_s, M_t)$ of MATCHING DISTANCE where M_s, M_t are maximum matchings.

- Input An instance $I := (G[U, W], M_s, M_t)$ of MATCHING DISTANCE where M_s, M_t are maximum matchings.
- Goal We will convert I to an instance I' := (D, c, r, T) of DIRECTED STEINER TREE such that given a Steiner Tree F for I', we can construct in polynomial time a transformation from M_s to M_t of cost at most c(F).

Let X_s be the set of M_s -exposed vertices in G. We construct the digraph D = (U', A) as follows.

 $U' := \mathcal{E}_G \cup \{r\}$, where r is a new vertex.

Let X_s be the set of M_s -exposed vertices in G. We construct the digraph D = (U', A) as follows.

 $U' := \mathcal{E}_G \cup \{r\}$, where r is a new vertex.

The arcs and arc weights of D are as follows.

Let X_s be the set of M_s -exposed vertices in G. We construct the digraph D = (U', A) as follows.

 $U' := \mathcal{E}_G \cup \{r\}$, where r is a new vertex.

The arcs and arc weights of D are as follows.

The terminals of the DIRECTED STEINER TREE instance are

$$T := \left[\bigcup_{Z \in \mathcal{C}} V(Z) \bigcup_{Z \in \mathcal{P}} (V(Z) \setminus X_s)\right] \cap U'$$

where \mathcal{P} and \mathcal{C} are the paths and cycles respectively which form connected components of $M_s \oplus M_t$.

We don't need to look at all Steiner trees!

Proposition

Given a Steiner Tree F for I', we can construct a Steiner Tree F' with $c(F') \le c(F)$ which satisfies the following properties:

- (i) For each $P \in \mathcal{P}$, F' contains all arcs of P.
- (ii) For each $C \in \mathcal{C}$, F' misses exactly one arc of C.
- (iii) For each $P \in \mathcal{P}$, r is joined to the M_s -exposed vertex of P.

Lemma

Lemma

Let F be a Steiner Tree for I'. Then we can construct in polynomial time a transformation from M_s to M_t of length at most c(F).

 We can assume that F satisfies the properties listed in the previous proposition.

Lemma

- We can assume that F satisfies the properties listed in the previous proposition.
- Perform DFS traversal of F giving preference to the largest weight arcs.

Lemma

- We can assume that F satisfies the properties listed in the previous proposition.
- Perform DFS traversal of F giving preference to the largest weight arcs.
- Each arc of nonzero weight corresponds to a token.

Lemma

- We can assume that F satisfies the properties listed in the previous proposition.
- Perform DFS traversal of F giving preference to the largest weight arcs.
- Each arc of nonzero weight corresponds to a token.
- When traversing down an arc of weight 1, move its token to target destination. No move when backtracking.

Lemma

- We can assume that F satisfies the properties listed in the previous proposition.
- Perform DFS traversal of F giving preference to the largest weight arcs.
- Each arc of nonzero weight corresponds to a token.
- When traversing down an arc of weight 1, move its token to target destination. No move when backtracking.
- When traversing down an arc of weight 2, we move its token away from the target destination. When backtracking, move it to the target position.

A necessary and sufficient condition

Lemma

There is a transformation from M_s to $M_t \iff$ for each cycle $C \in C$, there is an M_s -alternating path starting from an M_s -exposed vertex and ending at a vertex in C.

A necessary and sufficient condition

<u>Lem</u>ma

There is a transformation from M_s to $M_t \iff$ for each cycle $C \in C$, there is an M_s -alternating path starting from an M_s -exposed vertex and ending at a vertex in C.

Note: This is true for Case 2 in general, not just for maximum matchings.

A necessary and sufficient condition

Lemma

There is a transformation from M_s to $M_t \iff$ for each cycle $C \in C$, there is an M_s -alternating path starting from an M_s -exposed vertex and ending at a vertex in C.

Note: This is true for Case 2 in general, not just for maximum matchings. For each cycle $C \in \mathcal{C}$, we have to slide the token along this M_s -alternating path and then keep moving the token to its target position.

ullet C has at most $\frac{d}{4}$ cycles.

- \mathcal{C} has at most $\frac{d}{4}$ cycles.
- For each $C \in C$, we have to use one of the M_s -alternating paths from the previous lemma.

- C has at most $\frac{d}{4}$ cycles.
- For each $C \in C$, we have to use one of the M_s -alternating paths from the previous lemma.
- For each cycle, we have at most two choices to reconfigure it use an *M*-exposed vertex from *U* or from *W*.

- \mathcal{C} has at most $\frac{d}{4}$ cycles.
- For each $C \in C$, we have to use one of the M_s -alternating paths from the previous lemma.
- For each cycle, we have at most two choices to reconfigure it use an *M*-exposed vertex from *U* or from *W*.
- Branch over all of the at most $2^{\frac{d}{4}}$ choices.

- \mathcal{C} has at most $\frac{d}{4}$ cycles.
- For each $C \in C$, we have to use one of the M_s -alternating paths from the previous lemma.
- For each cycle, we have at most two choices to reconfigure it use an *M*-exposed vertex from *U* or from *W*.
- Branch over all of the at most $2^{\frac{d}{4}}$ choices.
- Create two sub-instances: one for the elements of $\mathcal{P} \cup \mathcal{C}$ to be reconfigured using a vertex from U and one for those that have to use a vertex from W.

- \mathcal{C} has at most $\frac{d}{4}$ cycles.
- For each $C \in \mathcal{C}$, we have to use one of the M_s -alternating paths from the previous lemma.
- For each cycle, we have at most two choices to reconfigure it use an *M*-exposed vertex from *U* or from *W*.
- Branch over all of the at most $2^{\frac{d}{4}}$ choices.
- Create two sub-instances: one for the elements of $\mathcal{P} \cup \mathcal{C}$ to be reconfigured using a vertex from U and one for those that have to use a vertex from W.
- For the first sub-instance, delete all the exposed vertices in W. This gets rid of all the M_s -augmenting paths. Now modify the target matching appropriately to get a new matching distance instance for maximum matchings.

- \bullet $\mathcal C$ has at most $\frac{d}{4}$ cycles.
- For each $C \in C$, we have to use one of the M_s -alternating paths from the previous lemma.
- For each cycle, we have at most two choices to reconfigure it use an *M*-exposed vertex from *U* or from *W*.
- Branch over all of the at most $2^{\frac{d}{4}}$ choices.
- Create two sub-instances: one for the elements of $\mathcal{P} \cup \mathcal{C}$ to be reconfigured using a vertex from U and one for those that have to use a vertex from W.
- For the first sub-instance, delete all the exposed vertices in W. This gets rid of all the M_s -augmenting paths. Now modify the target matching appropriately to get a new matching distance instance for maximum matchings.
- ullet For the second sub-instance, delete the M_s -exposed vertices of W.

- C has at most $\frac{d}{4}$ cycles.
- For each $C \in \mathcal{C}$, we have to use one of the M_s -alternating paths from the previous lemma.
- For each cycle, we have at most two choices to reconfigure it use an *M*-exposed vertex from *U* or from *W*.
- Branch over all of the at most $2^{\frac{d}{4}}$ choices.
- Create two sub-instances: one for the elements of $\mathcal{P} \cup \mathcal{C}$ to be reconfigured using a vertex from U and one for those that have to use a vertex from W.
- For the first sub-instance, delete all the exposed vertices in W. This
 gets rid of all the M_s-augmenting paths. Now modify the target
 matching appropriately to get a new matching distance instance for
 maximum matchings.
- ullet For the second sub-instance, delete the M_s -exposed vertices of W.
- Solve each sub-instance using the algorithm for maximum matchings and combine the optimal solutions of the two sub-instances.

Lemma

Case 2 can be solved in $2^d n^{\mathcal{O}(1)}$.

Lemma

Case 2 can be solved in $2^d n^{\mathcal{O}(1)}$.

Proof:

Lemma

Case 2 can be solved in $2^d n^{\mathcal{O}(1)}$.

Proof:

There are at most $\frac{d}{2}$ terminals in the DIRECTED STEINER TREE instance obtained from the case where M_s is maximum.

Lemma

Case 2 can be solved in $2^d n^{\mathcal{O}(1)}$.

Proof:

There are at most $\frac{d}{2}$ terminals in the DIRECTED STEINER TREE instance obtained from the case where M_s is maximum. Hence it can be solved in time $2^{\frac{d}{2}}n^{\mathcal{O}(1)}$.

Lemma

Case 2 can be solved in $2^d n^{\mathcal{O}(1)}$.

Proof:

There are at most $\frac{d}{2}$ terminals in the DIRECTED STEINER TREE instance obtained from the case where M_s is maximum.

Hence it can be solved in time $2^{\frac{d}{2}}n^{\mathcal{O}(1)}$.

For the general case 2, we branch over at most $2^{\frac{d}{4}}$ choices. Since each of these can be solved in $2^{\frac{d}{2}}n^{\mathcal{O}(1)}$, we can solve case 2 in time $2^{\frac{d}{4}}\times 2^{\frac{d}{2}}n^{\mathcal{O}(1)}$.

• In this case, the shortest transformation visits a non-maximal matching.

- In this case, the shortest transformation visits a non-maximal matching.
- Such a transformation is possible only if M_s is not maximum.

- In this case, the shortest transformation visits a non-maximal matching.
- Such a transformation is possible only if M_s is not maximum.
- If one of M_s or M_t is non-maximal, the shortest transformation has length $\frac{d}{2}$ if $M_s \oplus M_t$ contains no cycles, or $\frac{d}{2}+1$ otherwise.

- In this case, the shortest transformation visits a non-maximal matching.
- Such a transformation is possible only if M_s is not maximum.
- If one of M_s or M_t is non-maximal, the shortest transformation has length $\frac{d}{2}$ if $M_s \oplus M_t$ contains no cycles, or $\frac{d}{2} + 1$ otherwise.
- If M_s and M_t are maximal, we can transform M_s into a non-maximal matching by sliding tokens along an M_s -augmenting path.

Shortest Reconfiguration of Matchings

Thank You!