

CBE 750 Course Project

Optimization Model for Operating Battery Systems in Multi-Level Electricity Markets

Ranjeet Kumar

Department of Chemical and Biological Engineering University of Wisconsin-Madison

Problem Statement

- Aim: To operate a battery system in a multi-level electricity market to maximize the daily revenues
- Battery systems can be integrated in a power grid to provide energy and regulation services
- Two components of revenues considered:
 - Energy sale: Battery provides net power to the grid and the grid pays the battery for the amount of energy sold
 - Providing regulation capacity or "band": Grid pays the battery for providing a "band" around mean power within which grid can regulate net power output from battery
- Energy sale is organized in a three level market while regulation market has two levels
- Net battery power can be negative when the battery is drawing power from grid to recharge
- Problem is formulated as a deterministic linear program
- A comparison of monthly yearly revenues will be made by solving the optimization problem with two approaches:
 - Rolling horizon of 1 day
 - Solving complete optimization problem for 1 month year

Battery Operation Model

Energy Prices:

Regulation Prices:

Day-ahead market

Quarter-hourly market

Optimization Model for one day: Constraints and Objective Function

$$R:=\{1,..,n_r\},\; Q:=\{1,..,n_q\},\; D:=\{1,..,n_d\}$$
 where, $n_r=3,\; n_q=4,\; n_d=24$

where,
$$n_r=3,\; n_q=4,\; n_d=24$$

$$i \in R, j \in Q, k \in D$$

$$i \in R, j \in Q, k \in D$$
 $\Delta t_r = 5 \min, \Delta t_q = 15 \min, \Delta t_d = 60 \min$

Energy balance equations for the battery at each subinterval:

$$E_{i,j,k} = E_{i-1,j,k} - \eta(P_{i,j,k} + P_{j,k} + P_k)\Delta t_r$$

$$E_{1,j,k} = E_{n_r,j-1,k} - \eta(P_{1,j,k} + P_{j,k} + P_k)\Delta t_r$$

$$E_{1,1,k} = E_{n_r,n_q,k-1} - \eta(P_{1,1,k} + P_{1,k} + P_k)\Delta t_r$$

$$E_{1,1,1} = E_0 - \eta(P_{1,1,1} + P_{1,1} + P_1)\Delta t_r$$

Energy regulation at each subinterval:

$$P_{i,j,k} + P_{j,k} + P_k + R_{j,k}^U + R_k^U \le P_{max}$$

$$P_{j,k} + P_k + R_{j,k}^U + R_k^U \le P_{max}$$

$$P_k + R_k^U \le P_{max}$$

$$P_{i,j,k} + P_{j,k} + P_k - R_{j,k}^D - R_k^D \ge -P_{max}$$

$$P_{j,k} + P_k - R_{j,k}^D - R_k^D \ge -P_{max}$$

$$P_k + R_k^D \ge -P_{max}$$

Bounds on variables:

$$0 \leq E_{i,j,k} \leq E_{max} \qquad 0 \leq R_{j,k}^{U} \leq R_{max}$$

$$-P_{max} \leq P_{i,j,k} \leq P_{max} \qquad 0 \leq R_{k}^{U} \leq R_{max}$$

$$-P_{max} \leq P_{j,k} \leq P_{max} \qquad 0 \leq R_{j,k}^{D} \leq R_{max}$$

$$-P_{max} \leq P_{k} \leq P_{max} \qquad 0 \leq R_{k}^{D} \leq R_{max}$$

Revenue from energy market:

$$Rev_E = \sum_{i \in R} \sum_{j \in Q} \sum_{k \in D} \Delta t_r(\pi_{i,j,k}^E P_{i,j,k}) + \sum_{j \in Q} \sum_{k \in D} \Delta t_q(\pi_{j,k}^E P_{j,k}) + \sum_{k \in D} \Delta t_d(\pi_k^E P_k)$$

Revenue from regulation market:

$$Rev_{R} = \sum_{j \in Q} \sum_{k \in D} \Delta t_{q}(\pi_{j,k}^{U} R_{j,k}^{U}) + \sum_{k \in D} \Delta t_{d}(\pi_{k}^{U} R_{k}^{U}) + \sum_{j \in Q} \sum_{k \in D} \Delta t_{q}(\pi_{j,k}^{D} R_{j,k}^{D}) + \sum_{k \in D} \Delta t_{d}(\pi_{k}^{D} R_{k}^{D})$$

Objective:

$$Max Rev_E + Rev_R$$

Results: Solving Complete Optimization Problem for 1 year

- Approach:
 - A single optimization problem formulated to maximize revenues of the whole year
- Problem size:
 - 911041 linear constraints
 - 1103761 variables
- Computation time (Solved in Julia using Gurobi solver)
 - ~ 20 seconds
- Total annual revenues: \$293,125
 - Revenues from energy sale: \$201,281
 - Revenues from regulation: \$91,844

Results: Simultaneously Solving Complete Optimization Problem for 1 year

20

10

Time (hr)

15

Energy trading profile in a day:

10

Time (hr)

20

25

Results: Simultaneously Solving Complete Optimization Problem for 1 year

Regulation trading profile in a day:

Results: Solving Complete Optimization Problem for 1 year

Cumulative revenues in a year:

- Approach:
 - An optimization problem formulated to maximize revenues of each day sequentially
 - Takes the solution of the end of previous day as the initial point for the present day
- Problem size for each day:
 - 2497 linear constraints
 - 3025 variables
- Computation time (Solved in Julia using Gurobi solver)
 - 0.01-0.02 seconds for each day
 - 5-10 seconds for whole year
- Total annual revenues: \$296,985
 - Revenues from energy sale: \$205,835
 - Revenues from regulation: \$91,150

Energy trading profile in a day:

Regulation trading profile in a day:

Cumulative revenues in a year:

Comparison

Simultaneously solving

- Problem size:
 - 911041 linear constraints
 - 1103761 variables
- Computation time
 - ~ 20 seconds

- Total annual revenues: \$293,125
 - Revenues from energy sale: \$201,281
 - Revenues from regulation: \$91,844

Rolling horizon

- Problem size for each day:
 - 2497 linear constraints
 - 3025 variables
- Computation time
 - 0.01-0.02 seconds for each day
 - ~ 5-10 seconds for whole year
- Total annual revenues: \$296,985
 - Revenues from energy sale: \$205,835
 - Revenues from regulation: \$91,150

Conclusions

- Rolling horizon approach is much computationally faster than the simultaneous approach
- Although trends of the solutions are similar, rolling horizon approach results in slightly higher annual revenues than the simultaneous approach
- Expect the rolling horizon approach to perform much better than the simultaneous approach to solve stochastic model for this problem
- A real-time optimal controller can be designed to operate the battery in an optimal way with rolling horizon approach

Thank you!