

La Protección Mecánica Canalización, Cajas y Tableros

¿Son importantes las condiciones del medio ambiente?

¿Que finalidad cumple la canalización?

Instalación de distribución eléctrica

Introducción La Protección mecánica de una Instalación Eléctrica

- Las características de la protección dependen de los siguientes factores:
 - La temperatura y humedad durante la operación.
 - La presencia de gases, polvo o material en el ambiente.
 - Los conductores usados en la instalación.
 - El sistema de puesta a tierra.
 - La necesidad de protección contra golpes u otros daños mecánicos.

Lugares peligrosos

- Un área peligrosa es aquella en donde una sustancia inflamable está o puede estar en un estado facilmente inflamable.
- La operación del equipo eléctrico puede ocasionar que la(s) sustancia(s) inflamables se enciendan, de alli que defina las características de su canalización, cajas de paso y tableros.
- El Código eléctrico del Perú clasifica los lugares peligrosos en tres "clases" y los subdivide en "divisiones".

Clases de lugares peligrosos

La clasificación se basa en el NEC.

Clase I

Gases o vapores inflamables

- Clase IIPolvos combustibles
- Clase III
 Pelusas combustibles.

Lugares de Clase I

- Locales cuya atmósfera están o pueden estar presentes gases o vapores inflamables en cantidad suficiente como para producir una mezcla inflamable o explosiva.
- Los gases y vapores están organizados en 4 grupos de similar peligrosidad.

Grupo A	Acetileno
Grupo B	Hidrogeno o gases de igual poder
Grupo C	Etileno, eter, etc.
Grupo D	Gasolina, benceno, solventes, etc

Lugares de Clase II

- Locales aquellos que son peligrosos debido a la presencia de polvos combustibles o eléctricamente conductivos.
- Los polvos estan divididos en 3 grupos de similar peligrosidad.

<u> </u>	
Grupo E	Polvos
	metálicos como
	Al, Magnesio,
	etc.
Grupo F	Negro de humo,
•	carbón o coque.
Grupo G	Harina polyoc
Grupo G	Harina, polvos de granos, etc.
	de granos, etc.

Lugares de Clase III

- Areas en donde existen condiciones de peligrosidad debido a la presencia de fibras o materiales que produzcan pelusas inflamables.
- Esta clase de áreas no tienen grupos específicos que las identifiquen.

Divisiones

- Los lugares de peligrosos se dividen de acuerdo a la presencia de la sustancia peligrosa:
 - Division 1 Lugares en donde la concentración de la sustancia peligrosa esta presente en condiciones de operación NORMAL.
 - División 2 Lugares en donde las sustancias peligrosas están confinadas y solo ante una FALLA se presentan en la atmósfera. O lugares en donde se previene su presencia mediante sistemas de ventilación.

Lugares peligrosos NEC

Cortesía de Cooper Crouse Hinds Video - NEC Hazardous Location Overview https://youtu.be/tE134OFI90o

Lugares peligrosos Clasificación IEC - 60079

- ZONA 0 La mezcla explosiva de gas, vapor o polvo está <u>permanentemente presente</u>, por ejemplo la fase gaseosa en el interior de un tanque de almacenamiento ó una cámara abierta.
- ZONA 1 La atmósfera explosiva está <u>casi siempre</u> <u>presente</u>, debido a la presencia de gases, vapores ó polvos, durante la operación normal del proceso.
- ZONA 2 La atmósfera explosiva no está presente durante la operación normal, sólo está presente durante períodos cortos y de manera accidental.

Influencia de la clasificación del lugar.

- Los alojamientos y dispositivos de una instalación eléctrica de un lugar peligroso deben ser certificados y debidamente etiquetados.
- La especificación de los equipos dependerá de la norma usada como referencia.

Los grados de protección del equipo

¿Que norma se usa en nuestro país?

Los Grados de protección NTP IEC-60529 -1

- Esta norma clasifica la protección que ofrece un gabinete al sistema eléctrico con respecto a:
 - Al contacto y la presencia de cuerpos extraños, como polvo.
 - El ingreso de agua.
 - La resistencia a los golpes.

Protección Cont	Protección Prinara Cifra			
Contacto		Cuerpos Extraños	IP	
Sin protección	Sin protección Sin protección			
Con áreas importantes del cuerpo (reverso de la mano)	Ø > 50mm	Cuerpos extraños grandes, de diámetro mayor que los 50 mm	1	
Con el dedo	Ø > 12mm	Cuerpos extraños de mediano tamaño, diámetro mayor que 12 mm	2	
Con herramientas y cables, diámetro mayor que 2,5 mm	Ø > 2.5mm	Cuerpos extraños pequeños, diámetro mayor que 2,5 mm	3	

Protección Contra	Protección Prinara Cifra IP		
Con herramientas y cables, diámetro mayor que I mm	Ø>1mm	Cuerpos extraños redondos, diámetro mayor que 1mm	4
Protección completa		Depósitos de polvo	5
Protección completa		Entrada de polvo	6

Protección Segunda Cifra IP	Protección co	Protección contra agua				
0	Sin protección					
1	Gotas de agua cayendo verticalmente	٥ ٥ ٥				
2	Gotas de agua cayendo a 15 grados de la vertical	150				

Protección Segunda Cifra IP	Protección contra agua				
3	Agua en espray cayendo a 60 grados de la vertical				
4	Agua proyectada desde todas las direcciones				
5	Jets de agua				

Protección Segunda Cifra IP	Protección contra agua				
6	Flujo de agua importante				
7	Inmersión de corto plazo				
8	Inmersión				

Ensayos de tableros para verificar grado de protección

Panel en una cámara de polvo para el ensayo de IP5X

Ensayo de IP5X en ejecución

Agradecimiento Sunlight Electrical Pte Ltd, Singapore

Clasificación de la protección NEMA - UL

- La norma NEMA clasifica los alojamientos en nueve tipos.
- La clase se basa en las características del lugar de instalación y el desempeño esperado.
- Las clases definidas son: 1, 2, 3, 3R, 4, 4X, 6, 12 y 13

Ejemplos de Clase NEMA

Clase	NEMA Std. 250
3R	Gabinetes destinados al uso a la intemperie primariamente para proporcionar un grado de protección contra lluvia y lluvia helada; sin daño por la formación de hielo en el gabinete.
4X	Gabinetes destinados para el uso en interiores o a la intemperie primariamente para proporciona protección contra corrosión, polvo y lluvias sopladas por el viento, agua salpicada o disparada por mangueras.
12	Gabinetes destinados al uso de interiores, primariamente para proporcionar un grado de protección contra polvo, suciedad cayendo y goteo de líquidos no corrosivos.

Referencia Cruzada Clase NEMA - IP IEC

Clase	Grado de Protección IEC							
	IP23	IP30	IP32	IP55	IP64	IP65	IP66	IP67
1	X							
2		Х						
3					Х			
3R			Х					
4							Х	
4x							Х	
6								Х
12				Х				
13						Х		

Ejemplo de cajas y tableros Clase NEMA

- Caja NEMA 4IP 66.
- Construida en fibra de vidrio resistente a la intemperie ideal para aplicaciones tanto interiores como al aire libre.

Ejemplo de cajas y tableros Clase NEMA

- Caja NEMA 7.
- Construida en fundición de aluminio a prueba de explosión.
- Clase I
 División 1 y 2,
 Grupos a, b y
 c.
- Tablero de bombas

Protección contra los impactos mecánicos NTP IEC 62262

- El índice IK indica de la resistencia de una envolvente al impacto mecánico nocivo que un alojamiento ofrece a los equipos instalados dentro de él
- El índice son dos dígitos desde 00 hasta 10 (20 J) que representan la energía que la envolvente puede absorber.

Los Grados de protección IK – Norma NTP IEC 62262

Grado IK	00	01	02	03	04	05
Energía (J)		0,15	0,20	0,35	0,5	0,7
Masa y altura del golpe		0,2 kg 70 mm	0,2 kg 100 mm	0,2 kg 175 mm	0,2 kg 250 mm	0,2 kg 350 mm

Los Grados de protección IK – Norma NTP IEC 62262

Grado IK	06	07	08	09	10
Energía	1	2	5	10	20
(J)					
Masa y	0,5 kg	0,5 kg	1,7 kg	5 kg	5 kg
altura del	200 mm	400 mm	295 mm	200 mm	400 mm
golpe					

El índice IK actualmente es usado en nuestro país por las distribuidoras para luminarias.

Agradecimientos

- Comisión Electrotécnica Internacional (IEC)
 - NTP IEC 60529, Grados de protección proporcionados por las envolventes (Código IP).
 - NTP IEC 62262, Grados de protección proporcionados por las envolventes de materiales eléctricos contra los impactos mecánicos externos (Código IK).
- Asociación Nacional de Fabricantes Eléctrico (NEMA)
 - NEMA 250, Envolventes para equipo eléctrico (máximo 1000 V)
- Eaton Cooper Crouse Hinds Electric Company.