Chapter 10: Function: Local study April 28, 2023

Contents

1	Con	tinuity
	1.1	First approach
		1.1.1 Example
	1.2	Definition
		Intermediate value theorem
		1.3.1 Examples
2	Ima	ge of an interval by a continuous function
2	Ima 2.1	ge of an interval by a continuous function Remark
2	2.1	Remark
2	$2.1 \\ 2.2$	Remark
	2.1 2.2 2.3	Remark
	2.1 2.2 2.3 Diff	Remark

Mathematics 1 Continuity

1 Continuity

1.1 First approach

Let f be a function from $I \subset R$ to R, we say that f is continuous over I if "the graph of f can be drown without taking off the pencil from the paper".

1.1.1 Example

1.2 Definition

1 f continuous at $a \in I$: we say f is continuous at a - a being a point of I - if and only if:

$$f(a) = \lim_{x \to a} f(x)$$

$$f(a) = \lim_{\substack{x \to a \\ x > a}} f(x) = \lim_{\substack{x \to a \\ x < a}} f(x)$$

② f continuous over I: we say f is continuous over $I \subset R$ if and only if $\forall a \in I, f$ is continuous at a.

1.3 Intermediate value theorem

Let f be a function continuous over $I \subset R$ and $(a, b) \in I^2$. if f(a)f(b) < 0 then there exists (at least one) c from [a, b] such that f(c) = 0.

1.3.1 Examples

must intersect the x-axis

Second example: $f(x) = x^2 - 2x + 1$ $f(x) = x^2 \cos(x) + x \sin(x) + 1 = 0$ does f have any solutions?

$$I = [0, \pi] \ f(a = 0) = 1 \ \text{and} \ f(b = \pi) = -\pi^2 + 1 < 0$$

1

1. $f: x \mapsto f(x)$ is constant over $I \subset \mathbb{R}$.

2.
$$f(a) \times f(b) < 0$$
.

IVT $\Rightarrow \exists c \in]0, \pi[, f(c) = 0.$

Mathematics 3 Differentiability

2 Image of an interval by a continuous function

Let $f: I \subset \mathbb{R} \to \mathbb{R}$ and $A \subset I$. We call image of A by f and denote $f(A): f(A) = \{f(x), x \in A\}$.

2.1 Remark

 $\forall y \in f(A), \exists x \in A, y = f(x).$ Example: $f: x \mapsto x^2 \text{ and } A = [-3, 2] \to f(A) = [0, 9].$

2.2 Proposition

- The image of an interval by a continuous function is an interval.
- The image of a segment ([a,b]) by a continuous function is a segment. counter example: $f: x \mapsto \frac{1}{x}$ (continuous over \mathbb{R}_+^*) $f(]0,1] \subset \mathbb{R}_+^*$) $= [1,+\infty[$

2.3 Corollary

Let f be a continuous function over segment [a, b]. Then f([a, b]) = [m, M] where m and M are respectively the minimum and maximum of f over [a, b].

3 Differentiability

All function below are of type $f:I\to\mathbb{R}$ where I is an interval of \mathbb{R} containing at least two points.

3.1 Definition

we say that f is differentiable at a if the following quantity $\frac{f(x)-f(a)}{x-a}$ (the increasing rate of f at a) has a finite limit l at a.

If so, then f is differentiable at a and ...