

Bayesian Networks

April 30, 2012

Sung-Bae Cho
Dept. of Computer Science, Yonsei University

Outline

- Bayesian Network
 - Inference of Bayesian Network
 - Modeling of Bayesian Network
- Bayesian Network Application
 - Application Example
- Summary & Review

Probabilistic Paradigm

Advantages

- Can accommodate inaccurate models
- Can accommodate imperfect sensors
- Robust in real-world applications

Pitfalls

- Computationally demanding
- False assumptions
- Approximate

Probabilistic State Estimation

- Axioms of Probability Theory
 - Pr(A) denotes probability that proposition A is true

$$0 \le \Pr(A) \le 1$$

 $\Pr(True) = 1$
 $\Pr(False) = 0$
 $\Pr(A \lor B) = \Pr(A) + \Pr(B) - \Pr(A \land B)$

Utilization

$$Pr(A \lor \neg A) = Pr(A) + Pr(\neg A) - Pr(A \land \neg A)$$

$$Pr(True) = Pr(A) + Pr(\neg A) - Pr(False)$$

$$1 = Pr(A) + Pr(\neg A) - 0$$

$$Pr(\neg A) = 1 - Pr(A)$$

Joint & Conditional Probability

Joint and Conditional Probability

$$-P(X=x \text{ and } Y=y) = P(x,y)$$

- If X and Y are independent then
- $-P(x \mid y)$ is the probability of x given y
- If X and Y are independent then

- P(x,y) = P(x) P(y)
- $P(x \mid y) = P(x,y) / P(y)$
- $P(x,y) = P(x \mid y) P(y)$
- $P(x \mid y) = P(x)$

Law of Total Probability, Marginals

Discrete case

$$\sum_{x} P(x) = 1$$

$$P(x) = \sum_{y} P(x, y)$$

$$P(x) = \sum_{y} P(x \mid y) P(y)$$

Continuous case

$$\int p(x) \, dx = 1$$

$$p(x) = \int p(x, y) \, dy$$

$$p(x) = \int p(x \mid y) p(y) \, dy$$

Probability Calculation

Bayes Formula

$$P(x, y) = P(x | y)P(y) = P(y | x)P(x)$$

$$\Rightarrow$$

$$P(x | y) = \frac{P(y | x) P(x)}{P(y)} = \frac{\text{likelihood } \cdot \text{prior}}{\text{evidence}}$$

Normalization

$$P(x | y) = \frac{P(y | x) P(x)}{P(y)} = \eta P(y | x) P(x)$$
$$\eta = P(y)^{-1} = \frac{1}{\sum_{x} P(y | x) P(x)}$$

- Conditioning
 - Total probability:

$$P(x|y) = \int P(x|y,z) P(z|y) dz$$

- Bayes rule and background knowledge: $P(x \mid y, z) = \frac{P(y \mid x, z) P(x \mid z)}{P(y \mid z)}$

Outline

- Bayesian Network
 - Inference of Bayesian Network
 - Modeling of Bayesian Network
- Bayesian Network Application
 - Application Example
- Summary & Review

Rules of Probability

Product Rule

$$P(X,Y) = P(X | Y)P(Y) = P(Y | X)P(X)$$

Marginalization

$$P(Y) = \sum_{i=1}^{n} P(Y, x_i)$$
X binary: $P(Y) = P(Y, x) + P(Y, \overline{x})$

Bayes Rule

$$P(H, E) = P(H | E)P(E) = P(E | H)P(H)$$

$$P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}$$

Chain rule of probability

$$p(x) = p(x_1,...,x_n)$$

$$= p(x_1)p(x_2 | x_1)p(x_3 | x_1,x_2)...$$

$$= \prod_{i=1}^{n} p(x_i | x_1,...,x_{i-1})$$

The Joint Distribution

- Recipe for making a joint distribution of M variables
 - Make a truth table listing all combinations of values of your variables
 - For each combination of values, say how probable it is

Α	В	С
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Α	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Using the Joint

 Once you have the joint distribution, you can ask for the probability of any logical expression involving your attribute

$$P(E) = \sum_{\text{rows matching } E} P(row)$$

gender	hours_worked	wealth	
Female	v0:40.5-	poor	0.253122
		rich	0.0245895
	v1:40.5+	poor	0.0421768
		rich	0.0116293
Male	v0:40.5-	poor	0.331313
		rich	0.0971295
	v1:40.5+	poor	0.134106
		rich	0.105933

Using the Joint

$$P(PoorMale) = 0.4654$$

$$P(E) = \sum_{\text{rows matching } E} P(row)$$

$$P(Poor) = 0.7604$$

$$P(E) = \sum_{\text{rows matching } E} P(row)$$

Inference with Joint

gender	hours_worked	wealth	
Female	v0:40.5-	poor	0.253122
		rich	0.0245895
	v1:40.5+	poor	0.0421768
		rich	0.0116293
Male	v0:40.5-	poor	0.331313
		rich	0.0971295
	v1:40.5+	poor	0.134106
		rich	0.105933

$$P(E_1 \mid E_2) = \frac{P(E_1, E_2)}{P(E_2)} = \frac{\sum_{\text{rows matching } E_1 \text{ and } E_2}}{\sum_{\text{rows matching } E_2}} P(row)$$

Inference with the Joint

$$P(Male | Poor) = 0.4654/0.7604 = 0.612$$

$$P(E_1 \mid E_2) = \frac{P(E_1, E_2)}{P(E_2)} = \frac{\sum_{\text{rows matching } E_1 \text{ and } E_2}}{\sum_{\text{rows matching } E_2}} P(row)$$

Joint Distributions

Good news

 Once you have a joint distribution, you can ask important questions about stuff that involves a lot of uncertainty

Bad news

 Impossible to create for more than about ten attributes because there are so many numbers needed when you build them

Bayesian Networks (1)

- In general
 - $-P(X_1, ... X_n)$ needs at least $2^n 1$ numbers to specify the joint probability
 - Exponential storage and inference
- Overcome the problem of exponential size by exploiting conditional independence

REAL
Joint Probability Distribution
(2ⁿ-1 numbers)

Conditional
Independence
(Domain knowledge or
Derived from data)

Graphical Representation of Joint Probability Distribution (Bayesian Network)

Bayesian Networks (2)

Conditional Independencies

Efficient Representation

[Lauritzen & Spiegelhalter, 95]

Bayesian Networks (3)

- Structured, graphical representation of probabilistic relationships between several random variables
- Explicit representation of conditional independencies
- Missing arcs encode conditional independence
- Efficient representation of joint pdf (probabilistic distribution function)
- Allows arbitrary queries to be answered
- P(lung cancer=yes | smoking=no, dyspnoea=yes)=?

Bayesian Networks (4)

- Also called belief networks, and (directed acyclic) graphical models
- Bayesian network
 - Directed acyclic graph
 - Nodes are variables (discrete or continuous)
 - Arcs indicate dependence between variables
 - Conditional Probabilities (local distributions)

Bayesian Networks (5)

$$S \in \{no, light, heavy\}$$

Cancer

P(S=no)	0.80
P(S = light)	0.15
P(S = heavy)	0.05

 $C \in \{none, benign, malignant\}$

Smoking =	no	light	heavy
P(C = none)	0.96	0.88	0.60
P(C = benign)	0.03	0.08	0.25
P(C = malig)	0.01	0.04	0.15

Product Rule

• P(C,S) = P(C|S) P(S)

S^{igcup}	$C \Rightarrow$	none	benign	malignant
no		0.768	0.024	0.008
light		0.132	0.012	0.006
heav	y	0.035	0.010	0.005

S^{\downarrow} $C \Rightarrow$	none	benign	malig	total
no	0.768	0.024	0.008	.80
light	0.132	0.012	0.006	.15
heavy	0.035	0.010	0.005	.05
total	0.935	0.046	0.019	

P(Smoke)

Bayes Rule

$$P(S \mid C) = \frac{P(C \mid S)P(S)}{P(C)} = \frac{P(C,S)}{P(C)}$$

$S \downarrow C \Rightarrow$	none	benign	malig
no	0.768/.935	0.024/.046	0.008/.019
light	0.132/.935	0.012/.046	0.006/.019
heavy	0.030/.935	0.015/.046	0.005/.019

Cancer=	none	benign	malignant
P(S=no)	0.821	0.522	0.421
P(S=light)	0.141	0.261	0.316
P(S=heavy)	0.037	0.217	0.263

Missing Arcs Represent Conditional Independence

Start and Battery are independent, given Engine Turns Over

$$p(s | b, t) = p(s | t)$$

$$p(b,t,s) = p(b)p(t \mid b)p(s \mid t)$$

General product (chain) rule for Bayesian networks

$$p(x_1, x_2,...,x_n) = \prod_{t=1}^{n} p(x_t \mid parents(x_t))$$

Bayesian Network

$$P(A, G, E, S, C, L, SC) =$$

$$P(A) \cdot P(G) \cdot$$

$$P(E \mid A) \cdot P(S \mid A, G) \cdot$$

$$P(C \mid E, S)$$
.

$$P(SC \mid C) \cdot P(L \mid C)$$

Outline

- Bayesian Network
 - Inference of Bayesian Network
 - Modeling of Bayesian Network
- Bayesian Network Application
 - Application Example
- Summary & Review

Inference

- We now have compact representations of probability distributions: Bayesian Networks
- Network describes a unique probability distribution P
- How do we answer queries about P?
- We use inference as a name for the process of computing answers to such queries

Inference: The Good & Bad News

- We can do inference
- We can compute any conditional probability
- P(Some variables | Some other variable values)

$$P(E_1 \mid E_2) = \frac{P(E_1, E_2)}{P(E_2)} = \frac{\sum_{\text{jointentries matching } E_1 \text{ and } E_2}}{\sum_{\text{jointentries matching } E_2}}$$

The sad, bad news

Conditional probabilities by enumerating all matching entries in the joint are expensive: Exponential in the number of variables

Sadder and worse news

General querying of Bayesian networks is NP-complete

Hardness does not mean we cannot solve inference
It implies that we cannot find a general procedure that works efficiently for all networks
For particular families of networks, we can have provably efficient procedures

Queries: Likelihood

- There are many types of queries we might ask.
- Most of these involve evidence
 - Evidence e is an assignment of values to a set E variables in the domain
 - Without loss of generality $\boldsymbol{\mathcal{E}} = \{ X_{k+1}, ..., X_n \}$
- Simplest query: compute probability of evidence

$$P(\boldsymbol{e}) = \sum_{x_1} \dots \sum_{x_k} P(x_1, \dots, x_k, \boldsymbol{e})$$

• This is often referred to as computing the likelihood of the evidence

Queries

- Often we are interested in the conditional probability of a variable given the evidence P(X,e)
- evidence $P(X \mid e) = \frac{P(X,e)}{P(e)}$
- This is the a posteriori belief in X, given evidence e
- A related task is computing the term P(X, e)
 - i.e., the likelihood of e and X = x for values of X
 - we can recover the a posteriori belief by

$$P(X = X \mid e) = \frac{P(X = X, e)}{\sum_{x'} P(X = X', e)}$$

A Posteriori Belief

This query is useful in many cases:

- Prediction: what is the probability of an outcome given the starting condition
 - Target is a descendent of the evidence
- **Diagnosis**: what is the probability of disease/fault given symptoms
 - Target is an ancestor of the evidence
- As we shall see, the direction between variables does not restrict the directions of the queries
 - Probabilistic inference can combine evidence from all parts of the network

Approaches to Inference

- Exact inference
 - Inference in Simple Chains
 - Variable elimination
 - Clustering / join tree algorithms
- Approximate inference
 - Stochastic simulation / sampling methods
 - Markov chain Monte Carlo methods
 - Mean field theory

Inference in Simple Chains

• How do we compute $P(X_2)$?

$$P(x_{2}) = \sum_{x_{1}} P(x_{1}, x_{2}) = \sum_{x_{1}} P(x_{1}) P(x_{2} \mid x_{1})$$

$$X_{1} \longrightarrow X_{2} \longrightarrow X_{3}$$

• How do we compute $P(X_3)$?

$$P(x_3) = \sum_{x_2} P(x_2, x_3) = \sum_{x_2} P(x_2) P(x_3 \mid x_2)$$

• we already know how to compute $P(X_2)$...

$$P(x_2) = \sum_{x_1} P(x_1, x_2) = \sum_{x_1} P(x_1) P(x_2 \mid x_1)$$

Inference in Simple Chains

How do we compute $P(X_n)$?

- Compute $P(X_1)$, $P(X_2)$, $P(X_3)$, ...
- We compute each term by using the previous one

$$P(x_{i+1}) = \sum_{x_i} P(x_i) P(x_{i+1} | x_i)$$

- Complexity:
 - Each step costs $O(|Val(X_i)| \times |Val(X_i + 1)|)$ operations
- Compare to naïve evaluation, that requires summing over joint values of *n*-1 variables

$$P(X_n) = \sum_{X_1, X_2, ..., X_{n-1}} P(X_1, X_2, ..., X_n)$$

Outline

- Bayesian Network
 - Inference of Bayesian Network
 - Modeling of Bayesian Network
- Bayesian Network Application
 - Application Example
- Summary & Review

Why Learning?

knowledge-based (expert systems)

- -Answer Wizard, Office 95, 97, & 2000
- -Troubleshooters, Windows 98 & 2000

-Causal discovery
-Data visualization
-Concise model of data
-Prediction

data-based

Why Learning?

- Knowledge acquisition is bottleneck
 - Knowledge acquisition is an expensive process
 - Often we don't have an expert
- Data is cheap
 - Amount of available information growing rapidly
 - Learning allows us to construct models from raw data
- Conditional independencies & graphical language capture structure of many real-world distributions
- Graph structure provides much insight into domain
 - Allows "knowledge discovery"
- Learned model can be used for many tasks
- Supports all the features of probabilistic learning
 - Model selection criteria
 - Dealing with missing data & hidden variables

Why Struggle for Accurate Structure?

Adding an arc

- Increases the number of parameters to be fitted
- Wrong assumptions about causality and domain structure

Missing an arc

- Cannot be compensated by accurate fitting of parameters
- Also misses causality and domain structure

Learning Bayesian Networks from Data

Bayesian

network

learner

data

<i>X</i> ₁	X_2	X_3	
True	1	0.7	
False	5	-1.6	
False	3	5.9	•••
true	2	6.3	
	:		***

Prior/expert information

Bayesian networks

Learning Bayesian Networks

Known Structure, Complete Data

- Network structure is specified
 - Inducer needs to estimate parameters
- Data do not contain missing values

Unknown Structure, Complete Data

- Network structure is not specified
 - Inducer needs to select arcs & estimate parameters
- Data do not contain missing values

Known Structure, Incomplete Data

- Network structure is specified
- Data contain missing values
 - Need to consider assignments to missing values

Unknown Structure, Incomplete Data

- Network structure is not specified
- Data contain missing values
 - Need to consider assignments to missing values

Two Types of Methods for Learning BNs

- Constraint based
 - Finds a Bayesian network structure whose implied independence constraints "match" those found in the data
- Scoring methods (Bayesian, MDL, MML)
 - Find the Bayesian network structure that can represent distributions that "match" the data (i.e., could have generated the data)
- Practical considerations
 - The number of possible BN structures is super exponential in the number of variables.
 - How do we find the best graph(s)?

Outline

- Bayesian Network
 - Inference of Bayesian Network
 - Modeling of Bayesian Network
- Bayesian Network Application
 - Application Example
- Summary & Review

What are BNs useful for?

Prediction: P(symptom|cause)=?

Diagnosis: P(cause|symptom)=?

• Classification: $\max_{class} P(class|data)$

Decision-making (given a cost function)

Data mining: induce best model from data

Why use BNs?

- Explicit management of uncertainty
- Predictive-Diagnostic Reasoning
- Modularity (modular specification of a joint distribution) implies maintainability
- Better, flexible and robust decision making MEU (Maximization of Expected Utility), VOI (Value of Information)
- Can be used to answer arbitrary queries multiple fault problems (General purpose "inference" algorithm)
- Easy to incorporate prior knowledge
- Easy to understand

Uncertainty Handling

Partial evidence handling

Input/output converting

Utilization of Probability Evidence Why Bayesian Network?

Probabilistic evidence handling

Predictive Reasoning

Direction of Reasoning

Diagnostic Reasoning

Direction of Reasoning

Predictive-Diagnostic Reasoning Why Bayesian Network?

Can get probability distribution of multiple target nodes

App. Exam: BN Based Robot Intelligence

- · (플래너): 문은 어디에 있는가? (도메인 정보): 벽 쪽, 네모난 형태
- ・(플래너): 문 통과가 가능한가?
- (영상필터): 문의 종류(미는 문), 문이 열린 상태(조금 열림), 문과의 거리
- [추론]: 통과 가능 판단
- (플래너): 문으로 이동, 장애물 발견
- (추론): 통과 가능성 낮아짐
- (추론): 장애물 이동 방향 입력 결과 통과 가능성 높아짐
- · (플래너): 문 통과 및 이동: 거실->거실 문->주방

· BN을 이용한 문 통과 가능성 추론 및 장애물 판단

App. Exam: BN Based Robot Intelligence (2)

- [플래너]: 냉장고 예상 위치는?
- (도메인 지식): 벽면 쪽
- (추론): 발견된 물체(싱크대) 근처, 벽 면 쪽
- [영상필터]: 냉장고 앞, 의자 발견
- ・[플래너]: 냉장고 앞 이동 가능?
- [추론]: 장애물 때문에 이동 불가, 치 워야 함
- [영상필더]: 장애물=의자
- (추론): 의자는 로봇이 옆으로 움직 일 수 있음
- (추론): 유저에게 치워도 되는지 물 어보시오!

· 냉장고 앞으로 이동하기 위한 추론

App. Exam: BN Based Robot Intelligence (3)

- 로봇: "의자를 치우겠습니다. 괜찮습 니까?"
- 유저: "그래 치워라."
- (플래너): 의자 옆으로 밀기
- [추론]: 유저 위치=주방, 의자가 있을 위치= 식탁 옆
- [추론]: 식탁이 가깝고, 식탁 옆에 공 간 있으므로 그고스로 이동하시오.
- (플래너): 의자를 식탁으로 이동
- · (플래너): 냉장고 앞으로 이동, 냉장 고 문 열기 수행
- •[플래너]: 냉장고 문열기 중 실패
- (추론): 냉장고 옆에 다른 장애물이 있는 것으로 추정됨

· 냉장고 앞의 다른 장애물 추론

1. Door Passability

- Given: 조금 <u>먼 거리</u>, 문은 <u>여닫이 문, 열려</u> 있음, <u>장애물은 안 보임</u>
- Output: 문 통과 가능성 70%

2. Approaching & Obstacle Detection

- Given: 문으로 <u>접근</u>, <u>장애물</u> 발견
- Output: 문 통과 가능성 55%

3. Inference of Obstacle's Status

- Given: 장애물 위치는 <u>오른편</u>, 장애물은 <u>오른쪽으로 이동중</u>
- Output: 문 통과 가능성 68%

4. Approaching Refrigerator

5. Removing Obstacle

- Given: <u>냉장고 왼편에 물체</u>, 냉장고 앞에 <u>의자</u>. <u>테이블 가까움</u>
- Output: 장애물 치우기! 추천 위치 1. <u>테이블 근처</u> 85% > 2. <u>냉장고 오른쪽</u> 76%

Applications

Industrial

- Processor Fault Diagnosis by Intel
- Auxiliary Turbine Diagnosis -GEMS by GE
- Diagnosis of space shuttle propulsion systems - VISTA by NASA/Rockwell
- Situation assessment for nuclear power plant – NRC

Military

- Automatic Target Recognition
 MITRE
- Autonomous control of unmanned underwater vehicle
 - Lockheed Martin
- Assessment of Intent

- Medical Diagnosis
 - Internal Medicine
 - Pathology diagnosis -Intellipath by Chapman & Hall
 - Breast Cancer Manager with Intellipath

Commercial

- Financial Market Analysis
- Information Retrieval
- Software troubleshooting and advice - Windows 95 & Office 97
- Pregnancy and Child Care -Microsoft
- Software debugging -American Airlines' SABRE online reservation system

Outline

- Bayesian Network
 - Inference of Bayesian Network
 - Modeling of Bayesian Network
- Bayesian Network Application
 - Application Example 1
 - Application Example 2
- Summary & Review

Summary & Review

- Motivation
 - Explicit representation of uncertainty using the calculus of probability theory
- Bayesian Network
 - Inference & Modeling Methods
 - Applications
- Ongoing research
 - How to use Bayesian intelligence for robot control
 - How to design probabilistic models
 - How to combine the deliberative method with reactive method

향후 일정

• 5/2: IT 표준화 최신현황 및 전망 (진병문 본부장, 5시 B039) *** Review Paper Due

5/7(2): 허윤진, 김용중

5/9: 정원섭

5/14(2): 이명춘, 양견모

• 5/16: 이시혁

5/21(2): 박성기, 정광복

• 5/23: 박광일

5/30: 이석준

• 6/4: 윤성재

• 6/11: 텀프로젝트 최종 발표

