This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

際 事 務 局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類 5

C07D 453/02, A61K 31/435 A61K 31/44, 31/535

(11) 国際公開番号

WO 93/09116

A1

(43) 国際公開日

1993年5月13日(13.05.1993)

(21)国際出願番号

á

PCT/JP92/01426

(22)国際出願日

1992年11月4日(04.11.92)

(30) 優先権データ

特顏平3/319794

1991年11月7日(07.11.91)

JP

(71) 出願人(米国を除くすべての指定国について)

吉富製菜株式会社

(YOSHITOMI PHARMACEUTICAL INDUSTRIES, LTD.) (JP/JP)

〒541 大阪府大阪市中央区平野町二丁目6番9号 Osaka, (JP)

(72) 発明者;および

(75)発明者/出願人(米国についてのみ)

村上 修(MUBAKAMI, Shu)(JP/JP)

北嶋 浩(KITAJIMA, Hiroshi)(JP/JP)

應子鳴正彦(KAGOSHIMA, Masahiko)[JP/JP]

安松 浩(YASUMATSU, Hiroshi)[JP/JP]

〒871 福岡県築上郡吉宮町大字小祝955番地

吉盒製薬株式会社 中央研究所内 Fukuoka, (JP)

(74) 代理人

弁理土 高島 →(TAKASHIMA, Hajime)

〒541 大阪府太阪市中央区平野町三丁目3番9号 湯木ビル

Osaka, (JP)

(81) 指定国

AT(欧州特許), BE(欧州特許), CA, CH(欧州特許),

DE(欧州特許),DK(欧州特許),ES(欧州特許),FR(欧州特許)。

GB(欧州特許), GR(欧州特許), HU, IE(欧州特許),

IT(欧州特許), JP, KR, LU(欧州特許), MC(欧州特許),

NL(欧州特許), SE(欧州特許), US.

添付公開書類

国際調査報告書 補正書

(54) Title: QUINUCLIDINE COMPOUND AND MEDICINAL USE THEREOF

(54) 発明の名称 キヌクリジン化合物およびその医薬用途

$$\begin{array}{c}
R^{1} \longrightarrow A \longrightarrow X \\
0 \longrightarrow R^{2} \\
R^{4} \longrightarrow R^{4}
\end{array}$$
(1)

(57) Abstract

A quinuclidine compound represented by general formula (I) and a pharmaceutically acceptable acid addition salt thereof, wherein each symbol is as defined in the specification. Because they have a P substance antagonism, they are useful for treating pains such as migraine, inflammations, respiratory system diseases such as chronic bronchitis accompanied with cough, sputum, etc., asthma, or rhinitis, central nervous system diseases such as anxiety or psychosis, cardiovascular system diseases such as hypertension or heart failure, and digestive system diseases such as hypersensitive colitis, ulcerous colitis or Crohn disease.

(57) 要約

一般式(I)

$$\begin{array}{c}
R^1 & X \\
R^2 \\
R^3
\end{array}$$

$$\begin{array}{c}
R^4 & R^8 \\
R^5
\end{array}$$

(式中、各記号は明細書に定義されている通りである。)

により表されるキヌクリジン化合物またはその医薬上許容されうる酸付加塩。

本発明のキヌクリジン化合物またはその医薬上許容されうる酸付加塩は、P物質の拮抗作用を有することから、痛み(片頭痛など)、炎症、呼吸器系疾患(咳、喀痰などを伴う慢性気管支炎、喘息、鼻炎など)、中枢神経系疾患(不安症、精神病など)、循環器系疾患(高血圧症、心不全など)、消化器系疾患(過敏性大腸炎、潰瘍性大腸炎、クローン病など)の治療薬として有用である。

情報としての用途のみ

PCTに基づいて公開される国際出願のハンフレット第1頁にPCT加盟国を同定するために使用されるコード

AT オーストリア
AU オーストラリア
BB ベルバードス
BB ベルバードス
BB ベルバギー
BF ブルキナ・ファソ
BG ブルカリア
BJ ベナラジル
CA カナダ
CF 中央ンゴー
CH コスイス
CI コニト・ジボアール
CM カェュルーン
CS チェュッコ 共和国
CCM ケェュンコ 共和国
CCM ケェンブル ケ
CCM ケェュンコ 共和国
CCM ケェンフル
CCM ケェンブル
CCM ケェンフル
CCM ケーブ CCM ケェンフル
CCM ケーブル
CCM ケェンフル
CCM ケーブル
CCM ケェンフル
CCM ケーブル
C

明細書

キヌクリジン化合物およびその医薬用途

「技術分野」

本発明は、ペプチド性神経伝達物質であるP物質(Substance P: Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH₂)の拮抗作用を有することを特徴とする、痛み、炎症、呼吸器系疾患、中枢神経系疾患、消化器系疾患、循環器系疾患の治療薬として有用なキヌクリジン化合物またはその医薬上許容されうる酸付加塩およびその医薬用途に関するものである。

「背景技術」

P物質、ニューロキニンA、ニューロキニンBなどのニューロキニンと称される物質は哺乳動物において見出されるタヒキニン系ペプチドであり、とりわけP物質が痛みの伝達や、不安を惹起すること、さらには精神分裂症、呼吸器系疾患、炎症および消化器系疾患などの種々の病理学的分野に関与することはよく知られている(たとえば、ジャーナル・オブ・メディシナル・ケミストリー(Journal of Medicinal Chemistry)Vol. 25, P.1009)。したがって、P物質に特異的な拮抗作用を有する物質は前述の疾患を治療するのに有用と考えられる。

これまでに、ペプチド性P物質拮抗剤としては、米国特許第4,559,324号 (特開昭59-21656号)、ヨーロッパ公開特許第360390号 (特開平2-124887号)、ヨーロッパ公開特許第336230号 (特開平2-204499号)、ヨーロッパ公開特許第394989号 (特開平3-27399号)などに開示されているが、経口投与での有効性は必ずしも明確ではなく、また生体内でも速やかに分解されるなどの問題点が残る。一方、非ペプチド性拮抗薬としてはWO90/05729号、米国特許第5,102,667号 (特開平3-176469号)、ヨーロッパ公開特許第428434号 (特開平3-206086号)などに開示されているが、作用の持続や安全性などの点で必ずしも満足できるものとはいい難い。

ところで、特開昭59-186969号、特開平1-168686号の各公報により、鎮吐作用などを有するベンゾフランおよびベンゾピラン化合物が知られ

•

ている。また、ヨーロッパ公開特許第407137号 (特開平3-279372号)、米国特許第4,892,872号 (特開平2-28182号)などの公報により5-HT。 拮抗作用を有し、制吐剤などとして有用なベンズオキサジン化合物が知られている。

「発明の開示」

本発明者らは、かかる問題点を解決すべく鋭意研究を行った結果、新規キヌクリジン化合物がタヒキニン類、とりわけP物質の拮抗作用を有し、さらにバイオアベイラビリティーの面で改良されていることを見出し、本発明を完成させるに至った。

すなわち、本発明は、一般式(I)

$$R^{1} \xrightarrow{A} X$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4} \xrightarrow{R^{6}}$$

$$R^{6}$$

〔式中、Aはメチレン基、酸素原子、硫黄原子、-N(R7)-で表される基(式中、R7 は水素、炭素数 $1 \sim 6$ 個のアルキルまたはアラルキルを示す。)または直接結合を示す。XおよびYは同一または異なって酸素原子、硫黄原子または水素 2 原子を示す。R1 は水素、ハロゲン、炭素数 $1 \sim 6$ 個のアルキル、ハロアルキル、アラルキル、炭素数 $1 \sim 6$ 個のアルコキシ、アラルキルオキシ、アリールオキシ、アシル、アシルオキシ、ヒドロキシ、アミノ、ニトロ、シアノまたは式

- $-NHCOR^8$, $-S(O)_nR^8$, $-NHSO_2R^8$, $-COOR^8$,
- $-N(R^{8})(R^{9}), -CON(R^{8})(R^{9}), -O-CO-N(R^{8})(R^{9}),$
- $-O-CS-N(R^{8})(R^{9}), -SO_{2}N(R^{8})(R^{9})$

(式中、R * , R * は同一または異なってそれぞれ水素、炭素数 $1\sim 6$ 個のアルキル、フェニルまたはアラルキルを示し、nは0, 1または2を示す。)

¢'s

から選ばれる基を示す。 R^2 , R^3 は同一または異なって水素または炭素数 $1\sim 6$ 個のアルキルを示す。 R^4 は水素または炭素数 $1\sim 6$ 個のアルキルを示す。 R^5 はチエニルまたはフェニルを示す。 R^6 は炭素数 $1\sim 6$ 個のアルキル、炭素数 $2\sim 6$ 個のアルケニル、炭素数 $3\sim 7$ 個のシクロアルキル、フリル、チエニル、ピリジル、インドリル、ビフェニルまたはフェニルを示す。ただし、Aが酸素原子、X およびYが共に水素 2 原子、 R^1 が水素かつ R^2 , R^3 が共に水素である場合、およびAが直接結合、X およびYが共に水素 2 原子、 R^1 が水素かつ R^2 , R^3 が共に水素である場合を除く。 R^4 が共に水素である場合を除く。 R^4

により表されるキヌクリジン化合物またはその医薬上許容されうる酸付加塩に関する。

上記定義中および本明細書において、ハロゲンとは塩素、フッ素、臭素、ヨウ素を示す。

炭素数1~6個のアルキルとは、直鎖状または分枝鎖状のアルキルを示し、た とえばメチル、エチル、プロピル、イソプロピル、プチル、イソブチル、第3級 プチル、ペンチル、イソペンチル、ヘキシルなどが挙げられる。

ハロアルキルとは、アルキル部が炭素数 $1 \sim 6$ 個であって、たとえばクロロメチル、フルオロメチル、トリフルオロメチル、 2 , 2 , 2 - トリフルオロエチル、トリクロロメチルなどが挙げられる。

炭素数1~6個のアルコキシとは、直鎖状または分枝鎖状のアルコキシを示し、 たとえばメトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブ トキシ、第3級ブトキシ、ペンチルオキシ、イソペンチルオキシ、ヘキシルオキ シなどが挙げられる。

アラルキルとは、アルキル部が炭素数1~4個であるフェニルアルキルであって、ベンジル、2-フェニルエチル、1-フェニルエチル、3-フェニルプロピル、4-フェニルプチルなどが挙げられ、フェニル環上にハロゲン、ニトロ、アミノ、水酸基、トリフルオロメチル、炭素数1~6個のアルキル、炭素数1~6個のアルコキシから選ばれる1~3個の置換基を有していてもよい。

アラルキルオキシとは、アルキル部が炭素数1~4個であるフェニルアルキル

オキシであって、たとえばベンジルオキシ、2-フェニルエトキシ、3-フェニルプロポキシ、4-フェニルプトキシなどが挙げられ、フェニル環上にハロゲン、ニトロ、アミノ、水酸基、トリフルオロメチル、炭素数1~6個のアルキル、炭素数1~6個のアルコキシから選ばれる1~3個の置換基を有していてもよい。

アリールオキシとは、アリール部が複素芳香環でもよく、たとえばフェノキシ、 ピリジルオキシ、フリルオキシ、チエニルオキシなどが挙げられ、アリール部に ハロゲン、ニトロ、アミノ、水酸基、トリフルオロメチル、炭素数1~6個のア ルキル、炭素数1~6個のアルコキシから選ばれる1~3個の置換基を有してい てもよい。

アシルとは、アセチル、プロピオニル、ブチリル、イソブチリル、ピバロイルなどの炭素数2~5個のアルカノイルまたはベンゾイルなどが挙げられ、ベンゾイルのフェニル環上にハロゲン、ニトロ、アミノ、水酸基、トリフルオロメチル、炭素数1~6個のアルキル、炭素数1~6個のアルコキシから選ばれる1~3個の階換基を有していてもよい。

アシルオキシとは、アシル部が前記した炭素数 2~5 個のアルカノイルまたはベンゾイルであって、アセチルオキシ、プロピオニルオキシ、プチリルオキシ、イソブチリルオキシ、ピバロイルオキシ、ベンゾイルオキシなどが挙げられ、ベンゾイルのフェニル環上にハロゲン、ニトロ、アミノ、水酸基、トリフルオロメチル、炭素数 1~6 個のアルコキシから選ばれる 1~3 個の置換基を有していてもよい。

炭素数 $2 \sim 6$ 個のアルケニルとは、たとえばビニル、アリル、1 - プロペニル、1 - プテニル、2 - プテニル、1 - ペンテニル、1 - ペンテニル、1 - ペンテニル、1 - ペンテニル、1 - ペンテニル

炭素数3~7個のシクロアルキルとは、たとえばシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチルが挙げられ、炭素数1~4個のアルキルにより置換されていてもよい。

前記フェニル、チエニル、フリル、ピリジル、インドリル、ビフェニルにあっては、その環上にハロゲン、ニトロ、アミノ、水酸基、トリフルオロメチル、炭

素数1~6個のアルキル、炭素数1~6個のアルコキシから選ばれる1~3個の 置換基を有していてもよい。

一般式(I)で表される化合物(以下、化合物(I)という)のうち、Aとしては、 $-N(CH_3)$ -または直接結合が好ましい。X, Yはそれぞれ酸素原子または水素 2 原子が好ましい。 R^2 , R^3 は共に水素または共にメチルが好ましい。 R^4 は水素が好ましい。 R^5 , R^6 は共にフェニルが好ましい。ただし、Aが直接結合、かつXおよびYが共に水素 2 原子、かつ R^1 が水素、かつ R^2 , R^3 が共に水素である場合を除く。

本発明化合物は分子内に不斉原子を有しているので、光学異性体、ジアステレ オ異性体またはこれらの混合物のいずれの形態も包含する。また、本発明はシス ・トランス異性体も包含するが、本発明においてはシス異性体が好ましい。

また、本発明化合物は分子内に塩基性基を有することから、通常の有機酸、無機酸と酸付加塩を形成することができる。医薬上許容されうる酸付加塩としては、たとえば酢酸、プロピオン酸、コハク酸、グリコール酸、乳酸、リンゴ酸、酒石酸、クエン酸、アスコルビン酸、マレイン酸、フマル酸、メタンスルホン酸、ベンゼンスルホン酸などの有機酸、塩酸、臭化水素酸、硫酸、燐酸、硝酸などの無機酸との塩である。また、カルボキシル基を有する場合には、金属(ナトリウム、カリウム、カルシウム、アルミニウムなど)、アミノ酸(リジン、オルニチンなど)との塩とすることもできる。

3-シヒドロベンゾフラン-7-イル) メチル) アミノー2-ベンズヒドリルキ ヌクリジン、シスー3ー〔(2,2ージメチルー5ーメチルチオー2,3ージヒ ドロベンゾフラン-7-イル) メチル] アミノー2-ベンズヒドリルキヌクリジ ン、シスー3ー〔(2, 2ージメチルー2, 3ージヒドロベンゾフランー7ーイ ル) メチル) アミノー2-ベンズヒドリルキヌクリジン、シスー3-〔(6-ク ロロー3, 4-ジヒドロー4-メチル-2H-1, 4-ベンズオキサジン-8-イル) メチル] アミノー 2 ーベンズヒドリルキヌクリジン、シスーNー〔3 ー (2-ベンズヒドリルキヌクリジニル)]-6-クロロー2,2-ジメチルー3, 4-ジヒドロ-4-メチル-2H-1, 4-ベンズオキサジン-8-カルボキサ ミド、シス-N- [3-(2-ベンズヒドリルキヌクリジニル)]-5-メチル チオー2, 3-ジヒドロベンゾフラン-7-カルボキサミド、シス-N-〔3-(2-ベンズヒドリルキヌクリジニル)) -5-ベンジルチオー2, 3-ジヒド ロベンゾフラン-7-カルボキサミド、シス-N-〔3-〔2-ベンズヒドリル キヌクリジニル) 】 -5-イソプロピルチオ-2, 3-ジヒドロベンゾフラン-7-カルボキサミド、シス-N- (3-(2-ベンズヒドリルキヌクリジニル)) -2, 2-ジメチル-5-メタンスルホニル-2, 3-ジヒドロベンゾフランー 7-カルボキサミド、シス-N- [3-(2-ベンズヒドリルキヌクリジニル)] -5-メタンスルホニル-2, 3-ジヒドロベンゾフラン-7-カルボキサミド、 シス-N- [3-(2-ベンズヒドリルキヌクリジニル)]-2, 2-ジメチル -5-ジメチルアミノ-2, 3-ジヒドロベンゾフラン-7-カルボキサミド、 シスー3-((6-クロロー3, 4-ジヒドロー2, 2-ジメチルー4-メチル -2H-1, 4-ベンズオキサジン-8-イル)メチル]アミノ-2-ベンズヒ ドリルキヌクリジン、シスー3ー〔(5-メチルチオー2,3-ジヒドロベンゾ フラン-7-イル) メチル) アミノ-2-ベンズヒドリルキヌクリジン、シスー 3-((5-ベンジルチオー2, 3-ジヒドロベンゾフラン-7-イル)メチル) アミノー2-ベンズヒドリルキヌクリジン、シスー3-〔(5-イソプロピルチ オー2, 3-ジヒドロベンゾフラン-7-イル)メチル]アミノー2-ベンズヒ ドリルキヌクリジン、シスー3ー((2,2-ジメチルー5-メタンスルホニル

WO 93/09116 PCT/JP92/01426

-2, 3-3ヒドロベングフラン-7-4ル) メチル) アミノ-2-4ベンズヒドリルキヌクリジン、シス-3-(5-4タンスルホニル-2, 3-3ヒドロベングフラン-7-4ル) メチル) アミノ-2-4ベンズヒドリルキヌクリジン、シス-3-(2, 2-3メチル-5-3メチルアミノ-2, 3-3ヒドロベングフラン-10 メチル) アミノ-11 アミノ-12 ボンズヒドリルキヌクリジン、シス-13 (15 - アセトアミド-17 (15 - アセトアミド-17 (17) メチル-17 (17) アミノ-17 (18) アミノ-18 (19) アミノ-19 (19) アミノ-19 (19) アミノ-19) アミノ-19 (19) アミノ-19 (1

また、本発明は、前記一般式(I)で表されるキヌクリジン化合物またはその 医薬上許容されうる酸付加塩の治療上有効量と、医薬上許容されうる添加剤から なる医薬組成物を提供する。

さらに、本発明は、前記一般式(I)で表されるキヌクリジン化合物またはその医薬上許容されうる酸付加塩を有効成分として含有することを特徴とする鎮痛抗炎症薬;咳、喀痰を伴う慢性気管支炎、喘息、鼻炎などの呼吸器系疾患の治療薬;不安症、精神病などの中枢神経系疾患の治療薬;高血圧症、心不全などの循環器系疾患の治療薬;および過敏性大腸炎、潰瘍性大腸炎、クローン病などの消化器系疾患の治療薬を提供する。

前記一般式(I)で表されるキヌクリジン化合物としては次の表に示す化合物が含まれる。

$$\begin{array}{c|c} R^1 & & X \\ \hline & & & \\ NH & & Y \\ \hline & & & \\ R^6 & & \\ R^5 & & & \\ \end{array}$$

No.	R ¹	R²	R3	R ⁴	R ⁵	R ⁶	Х	Y
1	5-C1	Н	Н	Ħ	CsHs	C ₆ H ₅	H_2	0
2	5-Br	Н	H	H	C ₆ H ₅	СеНь	H_2	0
3	5-F	Н	Н	H	CeHs	C ₆ H ₅	H ₂	0
4	5-CH ₃	H	H	H	C ₆ H ₅	C ₆ H ₅	H_2	0
5	5-C ₂ H ₅	Н	H	H	CeHs	C ₆ H ₅	H_2	. 0
6	5-CH2CH2CH3	Н	H	H	C ₆ H ₅	CeHs	H ₂	0
7	5-CH(CH ₂) ₂	Н	H	H	CeHs	C ₆ H ₅	H ₂	0
8	5-CH ₂ C ₆ H ₅	Н	Н	H	CsHs	CeHs	H_2	0
9	5-0CH ₃	Н	H	н .	CaHs	CeHs	H_2	0
10	5-0C ₂ H ₅	Н	H	H	C ₈ H ₅	СеНъ	H ₂	0
11	5-OCH ₂ C ₆ H ₅	Н	H	H	C ₆ H ₅	C ₆ H ₅	H_2	0
12	5-0C ₆ H ₅	Н	Н	H	CeHs	CeHs	H_2	0
13	5-COCH ₃	Н	Н	H	CaHs	C ₆ H ₅	H_2	0
14	5-0C0CH ₃	Н	H	H	C ₆ H ₅	C ₆ H ₅	H_2	0
15	5-0H	Н	Н	H	C ₆ H ₅	C ₆ H ₅	H ₂	0
16	5-NH ₂	Н	H	H	CeHs	C ₆ H ₅	H_2	0
17	5-N0 ₂	Н	H	H	CeHs	C ₆ H ₅	H2	0
18	5-CN	H	H	H	CeH5	C ₆ H ₅	H ₂	0
19	5-NHCOCH ₃	H	H	H	CeHs	C ₆ H ₅	H2	0
20	5-NHCOC 6H 5	Н	H	Н	C ₆ H ₅	CeHs	H2	0

No.	R1	R²	R³	R4	R ⁵	R e	Х	Y
21	5-SCH ₃	Н	Н	Н	C ₆ H ₅	C & H 5	H2	0
22	5-SC2H5	Н	Н	Н	CeH5	C ₆ H ₅	H_2	0
23	5-SCH(CH ₃) ₂	Н	Н	Н	СеНь	C ₆ H ₅	H_2	0
24	5-S0 ₂ CH ₃	H	Н	Н	CeHs	C 6 H 5	H_2	0
25	5-S0 ₂ C ₂ H ₅	Н	Н	H	CeHs	C ₆ H ₅	H_2	0
26	5-SO ₂ CH(CH ₃) ₂	H	Н	H	CeHs	C 6 H 5	H ₂	0
27	5-SC ₆ H ₅	Н	H	H	CeHs	C & H 5	H ₂	0
28	5-SCH ₂ C ₆ H ₅	H	H	Н	C ₆ H ₅	C ₆ H ₅	H_2	0
29	5-NHSO ₂ CH ₃	Н	Н	H	C ₆ H ₅	CeHs	H ₂	0
30	5-NHSO ₂ C ₂ H ₅	Н	Ħ	Н	C_8H_5	CeHs	H_2	0
31	5-NHSO ₂ C ₆ H ₅	H	H	Н	C ₈ H ₅	CeHs	H_2	0
32	5-C00H	Н	H	Н	C ₆ H ₅	C ₆ H ₅	H ₂	0
33	5-C00CH ₃	Н	Н	н .	C ₆ H ₅	CeHs	H_2	0
34	5-C00C ₂ H ₅	Н	H	H	C ₆ H ₅	CeHs	H_2	0
35	5-C00CH ₂ C ₆ H ₅	H	H	H	C ₈ H ₅	CeHs	H_2	0
36	5-N(CH ₃) ₂	H	H	Н	CeHs	CeHs	H_2	0
37	5-NHCH ₃	H	H	H	CeHs	C _e H ₅	H_2	0
3 8	5-NH(C ₂ H ₅) ₂	H	H	Н	C & H &	C ₆ H ₅	H_2	0
39	5-CONH ₂	H	H	Н	CeHs	CeH5	H2	0
40	5-CONHCH ₃	Н	H	Н	CeHs	C 6 H 5	H ₂	0
11	5-CON(CH ₃) ₂	H	H	H	C ₆ H ₅	C 6 H 5	H ₂	0
12	5-OCONHCH ₃	H	H	Н	C & H 5	CBHs	H2	0
13	5-0CON(CH ₃) ₂	H	Н	H	CeHs	C ₅ H ₅	H2	0
14	5-OCONHCH ₂ C ₆ H ₅	H	H	H	CeHs	C ₆ H ₅	H2	0
4 5	5-OCSNHCH3	H	Н	Н	CeH5	C 8 H 5	H ₂	0
46	5-0CSN(CH ₃) ₂	H	H	H	CeH5	CsH5	H_2	0

No.	R ¹	R²	R³	R ⁴	R ⁵	R ⁶	X	Y
47	5-OCSNHCH2C6H5	H	Н	H	C ₆ H ₅	C ₆ H ₅	H2	0
48	5-S02NHCH3	H	H	H	C ₆ H ₅	CeH5	H_2	0
49	5-S0 ₂ N(CH ₃) ₂	H	H	H	C & H 5	C ₆ H ₅	H_2	0
50	5-S02NHC2H5	H	Н	H	C ₆ H ₅	СвНъ	H ₂	0
51	5-S0 ₂ N(C ₂ H ₅) ₂	H	Н	H	CeHs	CeH5	H_2	0
52	5-SO2NHC8H5	H	H	H	CeHs	CaHs	H_2	0
5 3	5-CF ₃	H	H	H	C ₆ H ₅	C ₆ H ₅	H ₂	0
54	4-CI	Н	Н	Н	CeHs	C ₆ H ₅	H ₂	0
55	4-Br	H	Ħ	H	CeH5	CeHs	H ₂	0
56	4-F	H	H	H	C ₆ H ₅	CeHs	H_2	0
57	4-CH ₃	H	H	Н	CaHs	CeH5	H ₂	0
58	4-C ₂ H ₅	H	H	H	C ₆ H ₅	CeH5	H_2	0
59	4-CH(CH ₃) ₂	H	H	H	C ₆ H ₅	CeHs	H_2	0
60	4-CH ₂ C ₆ H ₅	H	H	H	C ₆ H ₅	CeHs	H ₂	0
61	4-0CH ₃	H	H	H	CeHs	CeHs	H_2	0
62	4-0C ₂ H ₅	H	H	H	C ₆ H ₅	C ₆ H ₅	H ₂	0
63	4-OCH ₂ C ₆ H ₅	H	H	H	CeHs	CeHs	H_2	0
64	4-0C ₆ H ₅	H	H	H	C ₆ H ₅	CeHs	H ₂	0
65	4-COCH₃	H	H	H	C ₆ H ₅	CeHs	H ₂	0
66	4-0C0CH3	H	H	H	C ₈ H ₅	C&Hs	H_2	0
67	4-0H	H	H	H	CeHs	C ₆ H ₅	H_2	0
68	4-NH ₂	H	H	H	CeHs	CeH5	H_2	0
69	4-NO ₂	Н	H	H	C ₆ H ₅	CeH5	H_2	0
70	4-CN	H	H	H	C ₆ H ₅	CeH5	H_2	0
71	4-NHCOCH₃	H	H	H	C ₆ H ₅	CeHs	H2	0_

No.	R¹	R²	R³	R ⁴	R ⁵	R ⁶	Х	Y
72	4-NHCOC 6H5	Н	H	Н	CeHs	, C _€ H ₅	H_2	0
73	4-SCH ₃	Н	Н	H	CoHs	C_6H_5	H_2	0
74	4-SC ₂ H ₅	H	Н	H	C 8 H 5	C 6 H 5	H ₂	0
7 5	4-CH2CH2CH3	Н	Н	Н	C_6H_5	C ₆ H ₅	H_2	0
76	4-SCH(CH ₂) ₂	Н	Н	H	C ₆ H ₅	C ₆ H ₅	H ₂	0
77	4-S0 ₂ CH ₃	Н	Н	Н	CeHs	CaHs	H_2	0
78	4-S0 ₂ C ₂ H ₅	H	Н	Н	CeHs	CaHs	H_2	0
79	4-S0 ₂ CH(CH ₃) ₂	H	Н	H	C 6 H 5	CoHs	H_2	0
80	4-SC ₆ H ₅	H	H	H	CeH5	C ₆ H ₅	H ₂	0
81	4-SCH ₂ C ₆ H ₅	H	H	H	C ₆ H ₅	C ₆ H ₅	H_2	0
82	4-NHSO ₂ CH ₃	H	H	H	C ₆ H ₅	C ₆ H ₅	H_2	0
83	4-NHS0 ₂ C ₂ H ₅	H	H	H	C ₆ H ₅	CeHs	H_2	0
84	4-NHS0 ₂ C ₆ H ₅	H	H	H	C ₆ H ₅	CeHs	H ₂	0
85	4-COOH	H	Н	H	C 6 H 5	C 6 H 5	H ₂	0
86	4-C00CH ₃	H .	H	H	C ₈ H ₅	CeHs	H ₂	0
87	4-C00C ₂ H ₅	Н	H	H	CeH5	C 6 H 5	H_2	0
88	4-C00CH ₂ C ₆ H ₅	H	H	H	CeHs	C_6H_5	H2	0
89	4-N(CH ₃) ₂	H	H	H	СвНъ	C & H 5	H2	0
90	4-NHCH ₃	H	H	H	CeHs	C 6 H 5	H_2	0
91	$4-NH(C_2H_5)_2$	H	H	H	C_6H_5	CeHs	H_2	0
92	4-CONH ₂	H	H	H	C 6 H 5	C 8 H 5	H_2	0
93	4-CONHCH ₈	H	H	H	CeHs	C & H 5	H ₂	0
94	4-CON(CH ₈) ₂	H	H	H	CeHs	C 6 H 5	H ₂	0
95	4-OCONHCH ₃	H	H	H	C 6 H 5	C 8 H 5	H_2	0
96	4-0CON(CH ₃) ₂	H	Н	Н	СеНь	CeHe	H ₂	0
97	4-OCONHCH2C6H5	Н	Н	Н	C ₆ H ₅	C ₆ H ₅	H 2	0

No.	R ¹	R ²	R³	R ⁴	R ⁵	R ⁶	Х	Y
98	4-OCSNHCH ₃	Н	Н	H	C ₆ H ₅	C ₆ H ₅	H_2	0
99	4-0CSN(CH ₃) ₂	H	H	Н	CeHs	CeHs	H_2	0
100	4-OCSNHCH2C6H5	Ĥ	H	H	C ₆ H ₅	СеНъ	H ₂	0
101	4-SO ₂ NHCH ₃	H	H	Н	C ₆ H ₅	C ₈ H ₅	H_2	0
102	4-S0 ₂ N(CH ₃) ₂	H	H	Н	СеНь	СеНь	H_2	0
103	4-S02NHC2H5	H	H	H	CeHs	C ₆ H ₅	H_2	0
104	4-S0 ₂ N(C ₂ H ₅) ₂	H	H	H	C ₆ H ₅	CaHs	H_2	0
105	4-SO2NHC6H5	H	H	H	СвНБ	CeHs	H_2	0
106	4-CF ₃	H	H	H	C ₆ H ₅	CeHs	H_2	0
			٠,					
107	6-C1	H	H	H	C ₆ H ₅	C ₆ H ₅	H_2	0
108	6-Br	H	Н	H	CeH5	CeHs	H_2	0
109	6-P	H	H	H	CeH5	CeHs	H_2	0
110	6-CH ₃	H	H	H	CeHs	CeH5	H_2	0
111	6-C ₂ H ₅	H	H	H	СеНь	CeHs	H_2	0
112	5-S0 ₂ CH(CH ₃) ₂	H	H	H	CeHs	CeH5	H_2	0
113	6-CH(CH ₃) ₂	H	H	H	CeH5	C ₈ H ₅	H_2	0
114	6-CH ₂ C ₆ H ₅	H	H	H	C_6H_5	CeHs	H_2	0
115	6-0CH ₃	H	H	H	CeHs	CeHs	H2	0
116	6-0C ₂ H ₅	H	H	H	C ₆ H ₅	CeHs	H_2	0
117	6-0CH ₂ C ₆ H ₅	H	H	H	CeHe	C ₆ H ₅	H_2	0
118	6-0C ₆ H ₅	Н	H	Н	C ₆ H ₅	CeHs	H ₂	0
119	6-COCH ₃	H	H	H	C_6H_5	CeHs	H_2	0
120	6-0C0CH3	H	Ħ	H	C ₆ H ₅	CeHs	H_2	0
121	6-0H	H	H	H	C _e H ₅	C ₆ H ₅	H2	0
122	6-NH ₂	H	H	Н	C ₆ H ₅	C ₆ H ₅	H ₂	0

No.	R¹	R²	R³	R ⁴	R⁵	R ⁶	X	Y
123	6-N0 ₂	Н	H	Н	C ₈ H ₅	C ₆ H ₅	H ₂	0
124	6-CN	Н	Н	Н	CeHs	CeHs	H2	0
125	6-NHCOCH₃	Н	H	Н	C ₈ H ₅	C ₆ H ₅	H_2	0
126	6-NHCOC & H 5	Н	Н	Н	C ₈ H ₅	CeHs	H_2	0
127	6-SCH₃	Н	Н	Н	СвНъ	C ₆ H ₅	Н₂	0
128	6-SC ₂ H ₅	Н	H	H	СвНБ	CsHs	H ₂	0
129	6-SCH(CH ₃) ₂	H	Н	H	СеНь	C 8 H 5	H ₂	0
130	6-S0 ₂ CH ₃	H	H	Н	C ₆ H ₅	CeHs	H ₂	0
131	6-S0 ₂ C ₂ H ₅	Н	Н	H	CeHs	CeHs	H ₂	0
132	6-S0 ₂ CH(CH ₃) ₂	Н	H	Н	C ₆ H ₅	CeH5	H ₂	0
133	6-SC ₆ H ₅	Н	Н	Н	СвНб	CeHs	H ₂	0
134	6-SCH ₂ C ₆ H ₅	H	Н	H	C ₆ H ₅	CeHs	H2	0
135	6-NHSO2CH8	Н	H	Н	CeHs	CaHs	H2	0
136	6-NHSO ₂ C ₂ H ₅	Н	H	Н	C ₆ H ₅	C e H 5	H_2	0
137	6-NHSO ₂ C ₆ H ₅	Н	H	Н .	C ₆ H ₅	C & H 5	H ₂	0
138	6-COOH	H	. Н	H	CeHs	CeHs	H2	0
139	6-C00CH ₃	H	H	H	CoHs	C 6 H 5	H_2	0
140	6-C00C ₂ H ₅	H	H	Н	CeHs	CaHs	H ₂	0
141	6-C00CH ₂ C ₆ H ₅	H	Н	Н	C ₆ H ₅	C ₆ H ₅	H2	0
142	6-N(CH ₃) ₂	H	H	H	СвНь	CeHs	H_2	0
143	6-NHCH ₃	H	H	H	C6H5	C ₆ H ₅	H2	0
144	6-NH(C ₂ H ₅) ₂	H	H	H	C & H 5	C 6 H 5	H_2	0
145	6-CONH ₂	H	Н	Н	C & H 5	CeHs	H ₂	0
146	6-CONHCH₃	Н	Н	Н	C ₆ H ₅	C 6 H 5	H ₂	0
147	6-CON(CH ₃) ₂	H	Н	Н	C ₆ H ₅	C ₆ H ₅	H_2	0
148	6-OCONHCH ₃	Н	Н	Н	C & H 5	C e H 5	H ₂	0

No.	R ¹	R²	R³	R ⁴	R ^s	R ⁶	Х	Y
149	6-0CON(CH ₃) ₂	Н	Н	Н	CeHs	C 8 H 5	H ₂	0
150	6-OCONHCH2CeH5	H	H	H	C ₈ H ₅	C ₆ H ₅	H_2	0 .
151	6-OCSNHCH₃	H	H	H	CeHs	CoHs	H2	0
152	6-OCSN(CH ₃) ₂	H	H	H	C ₆ H ₅	C ₆ H ₅	H_2	0
153	6-OCSNHCH2C6H5	H	H	Н	CeHs	C.H.	H_2	0
154	6-SO2NHCH3	H	H	H	CeH5	CeHs	H ₂	0
155	6-S0 ₂ N(CH ₃) ₂	H	H	H	CeHs	CeHs	H ₂	0
156	6-SO2NHC2H5	H	H	H	C ₆ H ₅	CeHs	H_2	0
157	6-S0 ₂ N(C ₂ H ₅) ₂	H	. Н	H	CeHs	CeHs	H ₂	0
158	6-SO2NHC6H5	H	FF	H	C ₆ H ₅	C ₆ H ₅	H_2	0
159	6-CF ₃	H	H	H	CeH5	CeHs	H_2	0
							•	
160	H	СНз	CH3	Н	CeHs	C ₆ H ₅	H_2	0
161	5-C1	CH3	CH3	H	CeHs	CeH5	H ₂	0
162	5-Br	CH3	СН₃	H	C.H.	CeHs	H2	0
163	5-F	CH3	CH ₃	H	C ₆ H ₅	C ₆ H ₅	H_2	0
164	5-CH ₃	CH3	CH ₈	H	C ₆ H ₅	CeH5	H_2	0
165	5-C ₂ H ₅	СНз	CH₃	H	C ₆ H ₅	C ₆ H ₅	H_2	0
166	5-CH2CH2CH3	CH3	CH3	Н	C ₆ H ₅	C ₆ H ₅	H_2	0
167	5-CH(CH ₃) ₂	CH ₃	CH3	H	C ₆ H ₅	C ₆ H ₅	H_2	0
168	5-CH ₂ C ₆ H ₅	CH3	CH3	H	C ₆ H ₅	CeHs	H_2	0
169	5-0CH ₃	CH3	CH ₃	H	C ₆ H ₅	CeHs	H_2	0
170	5-0C ₂ H ₅	CH3	CH ₃	Ħ	C ₆ H ₅	C ₆ H ₅	H ₂	0
171	5-0CH ₂ C ₆ H ₅	CH3	CH3	H	C _e H ₅	C ₆ H ₅	H_2	0
172	5-0C6H6	CH ₃	CH3	H	C ₆ H ₅	C ₆ H ₅	H ₂	0
	5-COCH ₃	CH3_	CH3	Н	C ₆ H ₅	CeHs	H ₂	0

No.	R¹	R²	R³	R ⁴	R ⁵	R ⁶	Х	Y
174	5-0COCH ₃	CH₃	CH₃	H	C ₆ H ₅	C 6 H 5	H ₂	0
175	5-OH	СНз	СНз	H	C 6 H 5	CeHs	H_2	0
176	5-NH ₂	CH3	CH₃	Н	C 8 H 5	CeHs	H_2	0
177	5-N0 ₂	CH3	CH₃	Н	CeHs	CeHs	H_2	0
178	5-CN	CH3	CH3	Н	CeH5	CeHs	H_2	0
179	5-NHCOCH ₃	CH ₃	CH ₃	Н	C&H&	C 8 H 5	H_2	0
180	5-NHCOC ₆ H ₅	CH₃	CH₃	H	CeHs	СвНъ	H_2	0
181	5-SCH ₃	CH₃	CH3	H	C&H5	CeHs	H ₂	0
182	5-SC2H5	CH3	CH3	Н	C ₆ H ₅	C 8 H 5	H ₂	0
183	5-SCH(CH ₃) ₂	CH3	CH ₃	Н	CeHs	C ₆ H ₅	H_2	0
184	5-S0 ₂ CH ₃	CH3	CH3	Н	CeH5	CeHs	H ₂ .	0
185	5-S0 ₂ C ₂ H ₅	CH3	CH3	H	СеНь	CeHs	H_2	0
186	5-S0 ₂ CH(CH ₃) ₂	CH3	CH ₃	H	C ₆ H ₅	CeHs	H_2	0
187	5-SC ₆ H ₅	CH3	CH3	H	C ₆ H ₅	СеНь	H2	0
188	5-SCH ₂ C ₆ H ₅	CH3	CH 3	H	CeH5	C & H 5	H_2	0
189	5-NHSO ₂ CH ₃	CH3	CH 2	H	C_6H_5	CeHs	H_2	0
190	5-NHS0 ₂ C ₂ H ₅	CH3	CH₃	H	CeHs	C 6 H 5	H_2	0
191	5-NHS0 ₂ C ₆ H ₅	CH3	CH₃	H	C 6 H 5	CeH5	H ₂	0
192	5-COOH	CH ₃	CH3	H	СеНь	СвНб	H_2	0
193	5-C00CH ₃	CH ₃	CH3	H	C ₆ H ₅	CeHs	Н ₂	0
94	5-C00C ₂ H ₅	CH3	CH3	H	CeH5	CeHs	H_2	0
95	5-C00CH ₂ C ₆ H ₅	CH3	CH3	Н	CeHs	CeH5	H_2	0
96	5-N(CH ₃) ₂	CH3	CH3	H	C & H 5	C ₆ H ₅	H_2	0
97	5-NHCH ₃	СНз	CH3	H	C 8 H 5	CoHo	H2	0
98	5-NH(C ₂ H ₅) ₂	CH₃	CH₃	H	C ₈ H ₅	CeHs	H_2	0
99	5-CONH ₂	CH ₃	CH₃	H	C ₆ H ₅	C&H5	H ₂	0

No.	R¹	R²	R³	R ⁴	R ⁵	R [€]	Х	Y
200	5-CONHCH₃	CH₃	СНз	H	C ₆ H ₅	CeHs	H ₂	0
201	5-CON(CH ₃) ₂	CH3	CH ₃	H	CeHs	CeHs	H2	0
202	5-OCONHCH3	CH3	СНз	H	CeHs	C ₆ H ₅	H_2	0
203	5-0CON(CH ₃) ₂	CH ₃	СНз	H	CeHs	C ₆ H ₅	H ₂	0
204	5-OCONHCH2C6H5	CH3	СНз	H	CeH5	CeHs	H_2	0
205	5-OCSNHCH ₃	CH ₃	CH3	H	C ₆ H ₅	C ₆ H ₅	H_2	0
206	5-0CSN(CH ₃) ₂	CH₃	CH3	H	CeHe	C.H.	H_2	0
207	5-OCSNHCH2C6H5	CH3	CH3	H	CeHs	CeH5	H_2	0
208	5-SO2NHCH3	CH ₃	CH3	H	C _e H ₅	C.H.	H_2	0
209	5-S0 ₂ N(CH ₃) ₂	CH ₃	CH₃	H	C_6H_5	CeH5	H ₂	0
210	5-SO ₂ NHC ₂ H ₅	CH ₃	CH3	H	CeH5	C ₆ H ₅	H_2	0
211	5-S0 ₂ N(C ₂ H ₅) ₂	CH ₃	CH3	H	C & H 5	C.H.	H_2	0
212	5-SO2NHC6H5	CH3	CH3	H	C ₆ H ₅	CeHs	H_2	0
213	5-CF ₃	CH₃	CH ₃	H	C ₆ H ₅	CeHs	H ₂	0
214	4-C1	СНз	СН₃	H	C & H 5	CeHs	H_2	0
215	4-Br	CH3	CH₃	Н	CeHs	C ₆ H ₅	H_2	0
216	4-F	CH₃	CH₃	H	C ₆ H ₅	CeH5	H ₂	0
217	4-CH ₃	CH₃	CH₃	H	CeH5	C ₆ H ₅	H ₂	0
218	4-C ₂ H ₅	CH ₃	СН₃	H	CeHs	CeH5	H_2	0
219	4-CH(CH ₃) ₂	CH ₃	CH₃	H	CeH5	CeHs	H_2	0
220	4-CH ₂ C ₆ H ₅	CH3	CH3	H	CeH5	C ₆ H ₅	H_2	0
221	4-0CH ₃	CH3	CH₃	H	C ₆ H ₅	C ₆ H ₅	H_2	0
222	4-0C ₂ H ₅	CH₃	CH3	H	C ₆ H ₅	CeHs	H_2	0
223	4-0CH ₂ C ₆ H ₅	CH₃	CH3	H	C ₆ H ₅	C ₆ H ₅	H ₂	0
224	4-0C ₈ H ₅	CH ₃	CH3	Н	CeH5	CeH5	H ₂	0_

- No	n I	D 2	D.3	D.4	25	D.6		
No.	. R ¹	R ²	R ³	R ⁴	R 5	R ⁶	X	Y
225	4-COCH ₃	CH3	CH3	Н	C ₆ H ₅	CeHs	H_2	0
226	4-0C0CH ₃	CH ₃	CH ₃	Н	C_6H_5	C 6 H 5	H_2	0
227	4-0H	CH ₃	CH3	Н	C ₆ H ₅	C_6H_5	H_2	0
228	4-NH ₂	CH₃	СНз	H	C.H.	C 6 H 5	H ₂	0
229	4-N0 ₂	CH₃	CH3	Н	CeHs	C ₆ H ₅	H ₂	0
230	4-CN	CH ₃	CH3	H	CeH5	CeHs	H ₂	0
231	4-NHCOCH₃	CH3	CH₃	H	C _e H ₅	CeH5	H_2	0
232	4-NHCOC & H 5	СН3	CH ₃	Н	C ₆ H ₅	C ₈ H ₅	H2	0
233	4-SCH ₃	СНз	CH ₃	H	C ₆ H ₅	CeHs	Н ₂	0
234	4-SC ₂ H ₅	CH3	CH3	Н	C ₆ H ₅	C ₆ H ₅	H ₂	0
235	4-CH ₂ CH ₂ CH ₃	CH3	CH₃	Н	C ₆ H ₅	CeHs	H ₂	0
236	4-SCH(CH ₃) ₂	CH₃	CH3	H	C ₆ H ₅	CeHs	H ₂	0
237	4-S0 ₂ CH ₃	CH ₃	CH3	H	C ₆ H ₅	CeHs	H_2	0
238	4-S0 ₂ C ₂ H ₅	CH₃	CH₃	H	CeHs	CeHs	H_2	0
239	4-S0 ₂ CH(CH ₃) ₂	CH3	CH₃	Н	C _e H ₅	C 6 H 5 .	H ₂	0
240	4-SC 5 H 5	CH₃	CH₃	H	C ₆ H ₅	CeHs	H_2	0
241	4-SCH ₂ C ₆ H ₅	CH₃	CH3	Н	C ₆ H ₅	C ₆ H ₅	H_2	0
242	4-NHSO ₂ CH ₃	CH3	CH3	H	C ₆ H ₅	C ₆ H ₅	H2	0
243	4-NHS0 ₂ C ₂ H ₅	CH3	CH3	H	C 6 H 5	CeHs	H ₂	0
244	4-NHS0 ₂ C ₆ H ₅	CH₃	CH₃	H	CeHs	C 6 H 5	H ₂	0
245	4-C00H	CH ₃	CH3	Н	C 8 H 5	C ₆ H ₅	H_2	0
246	4-C00CH ₃	CH3	CH₃	Н	C & H 5	CeHs	H_2	0
247	4-C00C ₂ H ₅	CH3	CH3	Н	C ₆ H ₅	C e H 5	H ₂	0
248	4-COOCH ₂ C ₆ H ₅	CH ₃	CH ₃	Н	CeHs	CeHs	H2	0
249	4-N(CH ₃) ₂	CH3	CH ₃	Н	CeH5	C ₆ H ₅	H ₂	0
250	4-NHCH ₃	CH₃	CH₃	Н	C ₆ H ₅	C 6 H 5	H2	0

No.	R1	R²	R³	R ⁴	R ⁵	R ⁶	Х	Y
251	4-NH(C ₂ H ₅) ₂	CH₃	СН₃	Н	CeH5	C ₈ H ₅	H_2	0
252	4-CONH ₂	CH ₃	CH ₃	Н	C & H 5	CeHs	Н₂	0
	4-CONHCH ₃	СНз	CH₃	Н	C ₆ H ₅	C ₆ H ₅	H ₂	0
253	4-CON(CH ₃) ₂	CH ₃	CH ₃	H	C ₆ H ₅	CeHs	H_2	0
254		CH ₃	CH ₃	н	C ₆ H ₅	CeHs	H ₂	0
255	4-OCONHCH ₃			H	C ₆ H ₅	C ₆ H ₅	H ₂	0
256	4-0CON(CH ₃) ₂	CH3				CeH5	H ₂	0
257	4-OCONHCH ₂ C ₆ H ₅		CH ₃	Н	C ₆ H ₅			
258	4-OCSNHCH ₃	CH₃	CH₃	H	C ₆ H ₅	CeHs	H ₂	0
259	4-0CSN(CH ₃) ₂	CH3	СНз	H	CeHe	C ₆ H ₅	H ₂	0
260	4-OCSNHCH ₂ C ₆ H ₅	CH3	CH3	H	C ₆ H ₅	C ₆ H ₅	H ₂	0
261	4-SO2NHCH3	CH3	CH3	H	C & H &	C ₆ H ₅	H ₂	0
262	4-SO ₂ N(CH ₃) ₂	CH3	CH₃	H	C ₆ H ₅	C ₆ H ₅	H2	0
263	4-S02NHC2H5	CH ₃	СН₃	Ħ	C ₆ H ₅	C ₆ H ₅	H ₂	0
264	4-S0 ₂ N(C ₂ H ₅) ₂	CH3	CH3	H	C ₆ H ₅	C ₆ H ₅	H ₂	0
265	4-SO ₂ NHC ₆ H ₅	CH3	CH₃	H	C . H s	C ₆ H ₅	H ₂	0
266	4-CF ₃	CH3	CH₃	H	C ₈ H ₅	C ₆ H ₅	H ₂	0
267	6-C1	CHa	CH3	H	C ₆ H ₅	C ₆ H ₅	H_2	0
268	6-Br	CH ₃	CH₃	H	C ₆ H ₅	C ₆ H ₅	H_2	0
269	6-F	CH3	CH ₃	H	C ₆ H ₅	CeHs	H ₂	0
270	6-CH ₃	CH ₃	CH3	H	C ₆ H ₅	C ₆ H ₅	H_2	0
271	6-C ₂ H ₅	CH3	CH3	H	C ₆ H ₅	C ₆ H ₅	H_2	0
272	6-S0 ₂ CH(CH ₃) ₂	СНз	CH3	H	CeHs	C ₆ H ₅	H_2	0
273	6-CH(CH ₃) ₂	CH3	CH ₃	H	CeH5	C ₆ H ₅	H_2	0
274	6-CH ₂ C ₆ H ₅	CH3	CH3	H	C ₆ H ₅	C ₆ H ₅	H ₂	0
275	6-0CH ₃	CH ₃	CH₃	H	C ₆ H ₅	C&H5	H ₂	0

No.	R1	R²	R³	R ⁴	R ⁵	R ⁶	X	Y
276	6-0C ₂ H ₅	CH3	CH₃	Н	C ₆ H ₅	C ₆ H ₅	H_2	0
277	6-0CH ₂ C ₆ H ₅	СНз	CH₃	H	СвНв	CeH5	H_2	0
278	6-0C ₆ H ₅	CH3	СНз	Н	C ₆ H ₅	CeHs	H_2	0
279	6-COCH ₃	CH3	CH₃	Н	CeHs	C 6 H 5	H_2	0
280	6-0C0CH3	CH3	CH3	H	C&H6	C6H5	H_2	0
281	6-0H	CH ₃	CH₃	Н	C e H 5	C_6H_5	H_2	0
282	6-NH ₂	CH ₃	CH₃	Н	CeH5	C ₆ H ₅	H_2	0
283	6-N0 ₂	CH3	CH3	H	CeH5	C ₆ H ₅	H ₂	0
284	6-CN	CH₃	CH ₃	H	CeHs	CeHs	H ₂	0
285	6-NHCOCH₃	CH ₃	CH ₃	H	C ₆ H ₅	C ₆ H ₅	H_2	0
286	6-NHCOC ₈ H ₅	CH ₃	CH3	H	C ₈ H ₅	CeHs	H ₂	0
287	6-SCH ₃	CH3	CH ₃	H	СвНь	C ₆ H ₅	H_2	0
288	6-SC ₂ H ₅	СНз	CH ₃	н .	C ₆ H ₅	CeHs	H_2	0
289	6-SCH(CH ₃) ₂	CH3	CH ₃	Н	C 8 H 5	CeHs	H_2	0
290	6-S0 ₂ CH ₃	CH3	СН₃	H	CeHs	CeHs	H ₂	0
291	6-S0 ₂ C ₂ H ₅	CH ₃	CH3	H	C 6 H 5	CeHs	H_2	0
292	6-SO ₂ CH(CH ₃) ₂	CH3	CH ₃	H	C 6 H 5	CeHs	H_2	0
293	6-SC ₆ H ₅	CH3	CH₃	H	C ₆ H ₅	CeHs	H_2	0
294	6-SCH ₂ C ₆ H ₅	CH3	CH3	H	C ₆ H ₅	C ₆ H ₅	H_2	0
295	6-NHSO ₂ CH ₃	CH3	CH3	H	CaHs	C 8 H 5	H_2	0
296	6-NHSO ₂ C ₂ H ₅	СН₃	CH ₃	Н	CeHs	C_6H_5	H_2	0
297	6-NHSO ₂ C ₆ H ₅	CH ₃	CH3	Н	C & H 5	C ₆ H ₅	H_2	0
298	6-C00H	CH3	CH3	Н	CeHs	CeHs	H ₂	0
299	6-C00CH3	CH3	CH3	Н	CeHs	C ₅ H ₅	H2	0
300	6-C00C ₂ H ₅	CH₃	CH3	Н	CeHs	CeHs	H ₂	0
301	6-C00CH ₂ C ₆ H ₅	CH3	CH3	Н	CeHs	C ₆ H ₅	H_2	0

No.	R¹	R²	R³	R ⁴	R⁵	R ^e	Х	Y
302	6-N(CH ₃) ₂	CH3	CH ₃	H	C ₆ H ₅	CeHs	H ₂	0
303	6-NHCH3	CH₃	CH ₃	H	CeH5	C ₆ H ₅	H_2	0
304	6-NH(C ₂ H ₅) ₂	CH3	CH₃	Н	C ₆ H ₅	CeHs	H ₂	0
305	6-CONH ₂	CH3	CH ₃	H	CeH5	C ₈ H ₅	H_2	0
306	6-CONHCH ₃	CH₃	CH₃	H	C ₆ H ₅	CeHs	H ₂	0
307	6-CON(CH ₃) ₂	CH3	CH ₃	H	C ₆ H ₅	CeHs	H ₂	0
308	6-OCONHCH₃	CH3	CH ₃	H	C ₈ H ₅	CeHs	H ₂	0
309	6-0CON(CH ₃) ₂	CH3	CH ₃	H	C ₆ H ₅	CeH5	H2	0
310	6-OCONHCH2C6H5	CH ₃	CH3	H	C ₈ H ₅	СеНь	H ₂	0
311	6-OCSNHCH₃	CH3	СН₃	H	СвНБ	C ₆ H ₅	H_2	0
312	6-OCSN(CH ₃) ₂	CH₃	CH ₃	Н	C ₆ H ₅	C ₆ H ₅	H_2	0
313	6-OCSNHCH2C6H5	CH3	CH ₃	H	CeH5	CeHs	H_2	0
314	6-SO2NHCH3	CH ₃	CH ₃	Н	C ₈ H ₅	CeHs	H_2	0
315	6-S0 ₂ N(CH ₃) ₂	CH3	CH ₃	H	C ₆ H ₅	C ₆ H ₅	H_2	0
316	6-S02NHC2H5	CH3	CH3	H	C ₆ H ₅	CeHs	H_2	0
317	6-S0 ₂ N(C ₂ H ₅) ₂	CH3	СНз	H	C ₆ H ₅	CeHs	H_2	0
318	6-SO ₂ NHC ₆ H ₅	CH ₃	CH ₃	H	СвНБ	CeHs	H_2	0
319	6-CF ₃	CH3	CH₃	H	C ₆ H ₅	CeH5	H ₂	0
320	5-SCH ₃	CH3	H	H	C ₆ H ₅	C ₆ H ₅	H_2	0
321	5-SC ₂ H ₅	CH ₃	H	H	C _e H ₅	C.H.	H_2	0
322	5-SCH(CH ₃) ₂	CH ₃	H	H	C ₆ H ₅	CeHe	H_2	0
323	5-S02CH3	CH3	H	H	C ₆ H ₅	CeHs	H_2	0
324	5-S0 ₂ C ₂ H ₅	CH3	H	H	C ₆ H ₅	CeHs	H_2	0
325	5-S0 ₂ CH(CH ₃) ₂	CH3	H	H	C ₆ H ₅	C&H5	H_2	0
326	5-SC ₆ H ₅	CH3	H	Н	СеНь	C ₆ H ₅	H ₂	0

No.	R¹	R²	R³	R ⁴	R ⁵	R e	X	Y
327	5-CF₃	СН₃	H	Н	C ₆ H ₅	C ₆ H ₅	H ₂	0
328	5-C1	Н	Н	Н	CeHs	C ₆ H ₅	H ₂	H ₂
329	5-Br	H	H	Н	C ₆ H ₅	C 6 H 5	H_2	H_2
330	5-F	H	H	Н	C 6 H 5	C 6 H 5	H ₂	H_2
331	5-CH ₃	H	H	H	CeHs	C 6 H 5	H ₂	H_2
332	5-C ₂ H ₅	H	Н	Н	C & H 5	C ₆ H ₅	H_2	H_2
333	5-CH2CH2CH3	H	H	Н	C & H 5	CeHs	H_2	H_2
334	5-CH(CH ₃) ₂	H	H	H	CeHs	C ₆ H ₅	H_2	H ₂
335	5-CH ₂ C ₆ H ₅	H	Ħ	H	C ₆ H ₅	CeH5	H_2	H ₂
336	5-0CH ₃	H	H	H	CeHs	CeHs	H_2	H ₂
337	5-0C ₂ H ₅	H	H	H	CeHs	CaHs	H_2	H ₂
338	5-0CH ₂ C ₆ H ₅	Н	H	H	C ₆ H ₅	C & H &	H2	H ₂
339	5-0C 6 H 5	H	H	Н	C_8H_5	CeHs	H_2	H ₂
340	5-COCH ₃	H	H	H	C ₈ H ₅	CeHs	H_2	H2
341	5-0C0CH ₃	Н	H	H	C 8 H 5	CeHs	H_2	H2
342	5-0H	H	H	H	C 8 H 5	C ₆ H ₅	H ₂	H_2
343	5-NH ₂	Н	H	H	C6H5	C ₆ H ₅	H ₂	H_2
344	5-N0 ₂	H	H	H	C ₆ H ₅	CeHs	H_2	H_2
345	5-CN	H	H	Н	C 6 H 5	CaHs	H_2	H_2
346	5-NHCOCH ₃	H	H	H	C 6 H 5	C ₆ H ₅	H_2	H ₂
347	5-NHCOC ₆ H ₅	Н	Н	Н	C&H5	C 8 H 5	H_2	H ₂
348	5-SCH₃	H	H	H	C&H5	C ₆ H ₅	H_2	H ₂
349	5-SC ₂ H ₅	Н	H	H	C ₆ H ₅	C 8 H 5	H_2	H ₂
350	5-SCH(CH ₃) ₂	Н	Н	H	C 6 H 5	C ₆ H ₅	H_2	H_2
851	5-S0 ₂ CH ₃	Н	Н	Н	CeHs	CeHs	H ₂	H ₂

NO.	R¹	R²	R³	R ⁴	R ⁵	R ⁶	X	Y
352	5-S0 ₂ C ₂ H ₅	H	Н	Н	C ₆ H ₅	C _e H ₅	H ₂	H ₂
353	5-S0 ₂ CH(CH ₃) ₂	H	H	Н	C ₆ H ₅	C 6 H 5	H_2	H_2
354	5-SC ₆ H ₅	H	Н	H	C ₈ H ₅	CeHs	H_2	H_2
355	5-SCH ₂ C ₆ H ₅	H	H	H	C ₈ H ₅	CeH5	H ₂	H_2
356	5-NHSO2CH3	H	Н	H	CeHs	CaHs	H_2	H_2
357	5-NHSO ₂ C ₂ H ₅	H	H	H	C ₆ H ₅	C 8 H 5	H_2	H_2
358	5-NHSOzC&Hs	H	H	H	CeHs	C 6 H 5	H ₂	H ₂
359	5-C00H	H	H	Н	CeHs	CeHs	H_2	H_2
360	5-C00CH3	H	H	H	CeHs	CeHs	H_2	H ₂
361	5-C00C ₂ H ₅	H	·H	H	C ₆ H ₅	CeHs	H_2	H_2
362	5-C00CH2C6H5	Н	H	H	C _e H ₅	CeHs	H_2	H ₂
363	5-N(CH ₃) ₂	Н -	H	H	C ₆ H ₅	CeHs	H_2	H2
364	5-NHCH3	H	Н	н .	C ₆ H ₅	CeH5	H_2	H_2
365	5-NH(C ₂ H ₅) ₂	H	H	H	C ₆ H ₅	CeHs	H_2	H ₂
366	5-CONH ₂	H	H	H	C ₆ H ₅	CeHs	H ₂	H_2
367	5-CONHCH3	H	H	H	C ₆ H ₅	C ₆ H ₅	H_2	H_2
368	5-CON(CH ₃) ₂	H	Н	H	C ₆ H ₅	C ₆ H ₅	H ₂	H_2
369	5-OCONHCH ₃	H	H	H	C.H.	C _e H ₅	H ₂	H_2
370	5-0CON(CH ₃) _{2.}	H	Н	H	CeHs	CeHs	H ₂	H_2
371	5-OCONHCH2C6H5	H	H	H -	C ₆ H ₅	CeHs	H ₂	H_2
372	5-OCSNHCH₃	H	Н	H	C ₆ H ₅	C_6H_5	H ₂	H_2
373	5-0CSN(CH ₃) ₂	H	H	H	C ₆ H ₅	C ₆ H ₅	H_2	H_2
374	5-OCSNHCH2C6H5	Н	H	Н	CeHs	C_6H_5	H ₂	H_2
375	5-SO2NHCH3	H	H	Н	C.H.	CeHs	H_2	H_2
376	5-S0 ₂ N(CH ₃) ₂	H	H	Н	CeHs	C ₆ H ₅	H2	H_2
377	5-SO2NHC2H5	Н	H	Н	C ₆ H ₅	C ₆ H ₅	H ₂	H ₂

WO 93/09116 PCT/JP92/01426

No.	R ¹	R²	R³	R ⁴	R ⁵	R ⁶	Х	Y
378	5-S0 ₂ N(C ₂ H ₅) ₂	Н	H	Н	CeHs	C 6 H 5	H2	H ₂
379	5-SO2NHC6H5	Н	H	Н	C & H 5	C ₆ H ₅	H_2	H ₂
380	5-CF ₃	H	• Н	Н	CeHs	C ₆ H ₅	H2	Н2
381	4-C1	Н	Н	Н	C ₆ H ₅	C ₆ H ₅	H ₂	H ₂
382	4-Br	Н	. Н	H	C 8 H 5	CeHs	H2	H ₂
383	4-F	H	H	H	C ₆ H ₆	CeHs	H_2	H2
384	4-CH ₃	H	H	H	C ₆ H ₅	СеНь	H_2	H_2
385	4-C ₂ H ₅	Н	H	H	CeHs	C ₆ H ₅	H ₂	H ₂
386	4-CH(CH ₃) ₂	H	H	H	CeHs	C ₆ H ₅	H_2	H ₂
387	4-CH ₂ C ₆ H ₅	H	H	Н	C.H.	CeHs	H_2	H ₂
388	4-0CH ₃	H	H	Н	CeHs	CeH5	H ₂	H ₂
389	4-0C ₂ H ₅	H	H	H	CeHs	CeHs	H_2	H_2
390	4-0CH ₂ C ₆ H ₅	H	H	H	СвНь	CeHs	H ₂	H_2
391	4-0C ₆ H ₅	H	H	H	C 6 H 5	C & H 5	H_2	H_2
392	4-COCH ₃	H	H	H	C 8 H 5	CeHs	Н₂	H_2
393	4-OCOCH ₃	H	H	H	C_8H_5	CeHs	Н₂	H ₂
394	4-0H	Н	Н	H	C & H 5	C 6 H 5	H ₂	H ₂
395	4-NH2	H	H	H	CeHs	CeHs	H_2	H ₂
396	4-NO ₂	Н	H	H	CeHs	C _e H ₅	H_2	H ₂
397	4-CN	H	H	H	CeHs	C 6 H 5	H_2	H_2
3 98 4	4-NHCOCH₃	Н	H	H	CeHs	C ₆ H ₅	H_2	H2
399 4	4-NHCOC 6H5	Н	Н	Н	C 6 H 5	C ₆ H ₅	H_2	H2
100 4	4-SCH₃	Н	H	H	C_6H_5	C6H5	H_2	H_2
101 4	1-SC ₂ H ₅	H	H	H	CoHo	C6H5	H ₂	H2
102 4	4-CH2CH2CH3	Н	Н	H	C.H.	C ₆ H ₅	H ₂	Hz

	R¹	R ²	R³	R ⁴	R ⁵	R ^e	Х	Y
403	4-SCH(CH ₃) ₂	H	Н	Н	C & H 5	CeHs	H ₂	H_2
404	4-S02CH3	H	H	H	C ₆ H ₅	C ₆ H ₅	H_2	H_2
405	4-S0 ₂ C ₂ H ₅	H	H	H	CeHs	C ₆ H ₅	H_2	H_2
406	4-SO ₂ CH(CH ₃) ₂	H	Ħ	Н	CeH5	C ₆ H ₅	H_2	H_2
407	4-SC ₆ H ₅	H	H	Н	C ₆ H ₅	CoHs	H_2	H_2
408	4-SCH2CeH5	Н	H	H	CeH5	CeHs	H_2	H_2
409	4-NHSO2CH3	H	H	Н	CeHs	CeHs	H_2	H ₂
410	4-NHS0 ₂ C ₂ H ₅	H	H	H	CeH5	C ₆ H ₅	H2	H_2
411	4-NHSO ₂ C ₆ H ₅	H	H	Н	CeHs	C.H.	H ₂	H_2
412	4-C00H	H	Ή	H	CeHs	C ₆ H ₅	H ₂	H_2
413	4-C00CH ₃	H	H	H	C ₆ H ₅	C ₆ H ₅	H ₂	H_2
414	4-C00C ₂ H ₅	H	H	H	CeH5	CeHs	H_2	H ₂
415	4-C00CH2C6H5	H	H	Н	CeHs	CeH5	H_2	H ₂
416	4-N(CH ₃) ₂	H	H	H	CeHs	CeHs	H_2	H_2
417	4-NHCH3	H	H	H	CeHs	C ₆ H ₅	H ₂	H_2
418	4-NH(C ₂ H ₅) ₂	Н .	H'	H	C ₆ H ₅	CeH5	H_2	H_2
419	4-CONH ₂	H	H	H	CeHs	C ₆ H ₅	H_2	H_2
420	4-CONHCH ₃	H	H	H	CeHs	CeH5	H_2	H ₂
421	4-CON(CH ₃) ₂	H	H	H	C ₆ H ₅	CeHs	H ₂	H_2
422	4-0CONHCH ₃	H	H	H	C e H 5	C ₆ H ₅	H_2	H ₂
423	4-0CON(CH ₃) ₂	H	H	H	СеНь	CeHs	H_2	H ₂
424	4-0CONHCH ₂ C ₆ H ₅	H	H	Н	CeH5	CeH5	H_2	H ₂
425	4-OCSNHCH3	H	H	H	C ₆ H ₅	CeH5	H_2	H_2
426	4-0CSN(CH ₃) ₂	H	Н	H	CeH5	C.H.	H_2	H_2
427	4-OCSNHCH2C6H5	H	Н	H	CeHs .	CeH5	H_2	H_2
428	4-SO2NHCH3	H	H	Н	CeH5	CsHs	H ₂	H ₂

	R¹ ,	R²	R³	R ⁴	R 5	R ⁶	Х	Y
429	4-S0 ₂ N(CH ₃) ₂	Н	H	Н	C ₆ H ₅	C ₆ H ₅	H_2	H_2
430	4-S02NHC2H5	Н	Н	Н	C_8H_5	C ₆ H ₅	H ₂	H_2
431	4-S0 ₂ N(C ₂ H ₅) ₂	Н	Н	Н	C ₆ H ₅	C ₆ H ₅	H ₂	H_2
432	4-SO2NHC6H6	Н	H	Н	C ₆ H ₅	C & H 5	H ₂	H_2
433	4-CF ₃	H	H	Н	CeHs	C 6 H 5	H2	H ₂
434	è-C1	Н	Н	Н	C.H.	C 6 H 5	H ₂	H ₂
435	6-Br	H	H	H	CeHs	CeHs	H_2	H2
436	6-F	Н	H	H	CeH5	CeHs	H_2	H_2
437	6-CH ₃	Н	Ħ	H	CeHs	C&H5	H ₂	H ₂
438	6-C ₂ H ₅	H	Н	H	CeHs	C & H 5	H ₂	H ₂
439	5-S0 ₂ CH(CH ₃) ₂	H	Н	Н	C ₆ H ₅	C ₈ H ₅	H 2	H_2
440	6-CH(CH ₃) ₂	H	H	H	CeHs	C ₆ H ₅	H_2	H_2
441	6-CH ₂ C ₆ H ₅	H	H	H	C & H 5	CeHs	H_2	H_2
442	6-0CH ₃	H	H	H	СеНь	CeHs	H_2	H_2
443	6-0C ₂ H ₅	H	H	H	CeHs	CeHs	H ₂	H_2
444	6-0CH ₂ C ₆ H ₅	H	Н	H	C 6 H 5	CeHs	H_2	H2
445	6-0C ₆ H ₅	H	H	H	C ₆ H ₆	CeHs	H2	H_2
446	6-COCH3	H	H	H	CeHs	C ₆ H ₅	H_2	H ₂
447	6-0C0CH ₃	H	H	H	C ₆ H ₅	C ₆ H ₅	H_2	H2
448	6-0H	H	H	H	C ₆ H ₅	C ₆ H ₅	H_2	H ₂
449	6-NH ₂	H	H	Н	C ₆ H ₅	CeHs	H ₂	H ₂
450	6-NO ₂	H	H	Н	C ₆ H ₅	C ₆ H ₅	H_2	H ₂
451	6-CN	H	Н	Н	C ₆ H ₅	СвНь	H_2	H ₂
452	6-NHCOCH ₃	H	H	Н	CeHs	C ₆ H ₅	H ₂	H2
453	6-NHCOC 6H 5	Н	Н	Н	C ₈ H ₅	C ₆ H ₅	H ₂	H2

	R ¹	R²	R³	R ⁴	R ⁶	R ⁶	X	Y
454	6-SCH₃	Н	H	H	C ₆ H ₅	C.H.	H2	H_2
455	6-SC ₂ H ₅	H	H	H	CeHs	CeH5	H_2	H_2
456	6-SCH(CH ₃) ₂	H	H	H	C ₆ H ₅	C ₆ H ₅	H_2	H_2
457	6-S0 ₂ CH ₃	H	H	H	C ₆ H ₅	CeHs	H_2	H_2
458	6-S0 ₂ C ₂ H ₅	H	Н	H	C ₆ H ₅	CsHs	H_2	H_2
459	6-S0 ₂ CH(CH ₃) ₂	H	H	H	CsH5	C ₆ H ₅	H ₂	H_2
460	6-SC _e H ₅	H	H	H	CeHs	CeHs	H2	H_2
461	6-SCH ₂ C ₆ H ₅	H	Н	H	C ₆ H ₅	CaHs	H ₂	H ₂
462	6-NHSO2CH3	H	H	H	CeHs	CeHs	H_2	H ₂
463	6-NHSO ₂ C ₂ H ₅	H	Ħ	H	C ₈ H ₅	C & H s	H ₂	H ₂
464	6-NHSO ₂ C ₆ H ₅	H	H	H	CeH5	CeH5	H ₂	H2
465	6-COOH	H	Н	Н	CsHs	C.H.	H₂	H ₂
466	6-C00CH ₃	H	Н	H	СеНъ	C & H &	H ₂	H ₂
467	6-C00C ₂ H ₅	H	Н	H	CeHs	CeH5	H ₂	H_2
468	6-C00CH ₂ C ₆ H ₅	H	H	, H -	CeHs	CoHs	H_2	H ₂
469	6-N(CH ₃) ₂	H	H	H	C ₆ H ₅	CeHs	H_2	H ₂
470	6-NHCH3	H	H	H	CeHs	C & H 5	H_2	H ₂
471	6-NH(C ₂ H ₅) ₂	H	H	H	СвНъ	CeHs	H ₂	H ₂
472	6-CONH ₂	H	H	H	CeHs	C ₆ H ₅	H_2	H ₂
473	6-CONHCH3	H	Н	H	CeHs	C.H.	H_2	H ₂
474	6-CON(CH ₃) ₂	H	Н	H	C ₆ H ₅	CaHs	H_2	H ₂
475	6-0CONHCH3	H	H	H	CoHs	C ₆ H ₅	H_2	H ₂
476	6-OCON(CH ₃) ₂	H	Н	H	CeHs	CeHs	H_2	H ₂
477	6-OCONHCH2C6H5	H	H	H	CaHa	C ₆ H ₅	H ₂	H ₂
478	6-OCSNHCH₃	H	Н	H	C ₆ H ₅	C.H.	H ₂	H ₂
479	6-0CSN(CH ₃) ₂	H	Н	H	CeH5	C ₈ H ₅	H ₂	H ₂

	R ¹	R ²	R 3	R ⁴	R ⁵	R ⁶	X	Y
480	6-OCSNHCH2C6H5	Н	H	Н	C 6 H 5	C ₆ H ₅	H_2	H ₂
481	6-SO2NHCH3	Н	Н	Н	C 6 H 5	C ₆ H ₅	H_2	H ₂
482	6-S0 ₂ N(CH ₃) ₂	H	H	H	C 6 H 5	C ₆ H ₅	H_2	H ₂
483	6-S02NHC2H5	H	H	H	C ₆ H ₅	CeHs	H_2	H ₂
484	$6-S0_2N(C_2H_5)_2$	H	H	H	C ₆ H ₅	C ₆ H ₅	H ₂	H_2
485	6-S02NHC6H5	Н	Н	H	C ₆ H ₅	CeHs	H_2	H ₂
486	6-CF ₃	H	H	H	C ₆ H ₅	C ₆ H ₅	H ₂	H ₂
487	Н	CH3	CH₃	Н	C ₆ H ₅	CeHs	H2	H ₂
488	5-C1	CH3	СН₃	H	C ₈ H ₅	CeH5	H_2	H_2
489	.5-Br	CH3	CH ₃	Н	$C_{8}H_{5}$	CeH₅	H_2	H2
490	5-F	CH3	CH3	Н	CeHs	C & H 5	H_2	H ₂
491	5-CH ₃	CH3	CH₃	Н	CeH5	CaHs	H_2	H ₂
492	5-C ₂ H ₅	CH3	CHa	H	CoHo	CeHs	H_2	H_2
493	5-CH2CH2CH3	CH ₃	СН₃	H	C 6 H 5	CsHs	H ₂	H_2
494	5-CH(CH ₃) ₂	CH3	CH₃	H	CeHs	CeHe	H_2	H_2
495	5-CH ₂ C ₆ H ₅	CH3	CH3	H	CeHs	C & H 5	H 2	H_2
496	5-0CH ₃	CH3	CH3	H	C ₆ H ₅	C_8H_5	H_2	H_2
497	5-0C ₂ H ₅	CH3	CH₃	H	C.H.	CeHs	H ₂	H ₂
498	5-0CH ₂ C ₆ H ₅	CH ₃	CH3	H	C & H 5	C 8 H 5	H ₂	H_2
499	5-0C ₆ H ₅	CH3	CH3	H	C & H 5	C 6 H 5	H_2	H_2
500	5-COCH ₃	CH₃	СН₃	H	CeH5	C_6H_5	H_2	H ₂
501	5-0COCH ₃	CH₃	CH3	Н	C ₆ H ₅	C ₆ H ₅	H ₂	H ₂
502	5-0H	CH₃	CH ₃	H	C ₆ H ₅	C ₆ H ₅	H_2	H2
503	5-NH ₂	CH₃	CH ₃	Н	CeHs	C.H.	H ₂	H ₂
504	5-NO ₂	CH₃	CH₃	Н	C 6 H 5	C 6 H 5	H ₂	H ₂

	R¹	R²	R³	R ⁴	R ⁵	R ^e	X	Y
 -	5-CN	СНз	CH₃	Н	C ₆ H ₅	C ₆ H ₅	H ₂	H_2
506	5-NHCOC 6H5	СНз	CH3	H	C ₆ H ₅	C ₆ H ₅	H_2	H ₂
507	5-SCH ₃	СHз	CH3	H	CeH5	CeHs	H_2	H_2
508	5-SC2H5	CH3	CH₃	H	CeH5	CaHs	H_2	H_2
509	5-SCH(CH ₃) ₂	CH3	CH₃	H	CeHs	CoHs	H_2	H_2
510	5-S02CH3	CH3	CH₃	H	C.H.	CeHs	H_2	H_2
511	5-S0 ₂ C ₂ H ₅	СНз	CH a	H	C _e H ₅	CeHs	H_2	H ₂
512	5-S0 ₂ CH(CH ₈) ₂	CH₃	CH3	H	CeHs	CeHs	H_2	H ₂
513	5-SC 6H 5	CH3	CH3	H	CeHs	CoHs	H ₂	H ₂
514	5-SCH2C6H5	СНз	е НЭ	H	C ₆ H ₅	СвНъ	H ₂	H_2
515	5-NHSO2CH3	CH ₃	CH ₃	H	CeHs	CeHs	H_2	H ₂
516	5-NHSO ₂ C ₂ H ₅	CH3	CH ₃	H	C ₆ H ₅	CeHs	H ₂	H ₂
517	5-NHSO2C6H5	CH3	CH ₃	H	CeHs	CeHs	H_2	H ₂
518	5-C00H	CH3	CH ₃	H	CeHs	CeHs	H_2	H ₂
519	5-C00CH ₃	CH3	CH3	H	CeHs	CeH5	H ₂	H_2
520	5-C00C2H5	CH3	CHa	H	CeH5	CeH5	H ₂	H_2
521	5-C00CH2C6H5	СНз	CH3	H	CeHs	CeHs	H_2	H ₂
522	5-N(CH ₃) ₂	CH3	CH ₃	H	CeH5	CeH5	H_2	H_2
523	5-NHCH3	CH ₃	CH 3	H	СеНь	CeHs	H_2	H_2
524	5-NH(C ₂ H ₅) ₂	CH3	CH3	H	CeHs	CeHs	H_2	H_2
525	5-CONH ₂	CH3	CH ₃	H	C ₆ H ₅	CeH5	H_2	H2
526	5-CONHCH3	СНз	CH3	H	CeH5	CeH5	H_2	H ₂
527	5-CON(CH ₃) ₂	СНз	CH3	H	C ₆ H ₅	CeHs	H2	H_2
528	5-OCONHCH3	CH3	CH3	H	CeHs	C ₆ H ₅	H_2	H2
529	5-0CON(CH ₃) ₂	СНз	CH3	H	CeHs	C ₆ H ₅	H_2	H2
530	5-OCONHCH2C6H5	CH₃	CH ₃	Н	C ₆ H ₅	CeHs	H ₂	<u>H2</u>

	R¹	R²	R³	R ⁴	R ⁵	R ⁶	Х	Y
531	5-0CSNHCH₃	CH3	CH₃	H	C ₆ H ₅	C ₆ H ₅	H ₂	H ₂
532	5-0CSN(CH ₃) ₂	CH3	CH₃	Н	C ₆ H ₅	C ₆ H ₅	H ₂	H_2
5 33	5-OCSNHCH2C6H5	CH3	CH3	Н	C 6 H 5	C ₆ H ₅	H_2	H_2
534	5-SO2NHCH3	CH3	CH₃	Н	C 6 H 5	C ₈ H ₅	H_2	H ₂
535	5-S0 ₂ N(CH ₃) ₂	CH3	CH₃	Н	C ₆ H ₅	C ₆ H ₅	H_2	H_2
536	5-S02NHC2H5	СНз	CH3	Н	CeH5	C ₆ H ₅	H_2	H_2
537	5-S0 ₂ N(C ₂ H ₅) ₂	CH₃	CH3	H	CeHs	CeHs	H 2	H ₂
538	5-SO2NHC6H5	CH3	CH3	H	C ₆ H ₅	CeHs	H_2	H ₂
539	5-CF ₃	СНз	CH3	Н	C ₆ H ₅	C ₆ H ₅	H ₂	H ₂
540	4-C1	CH3	CH ₃	Н	C ₆ H ₅	CeH5	H ₂	H ₂
541	4-Br	CH3	CH₃	Н	C _e H ₅	C ₆ H ₅	H_2	H_2
542	4-F	CH3	CH3	H	C ₆ H ₅	C ₆ H ₅	H ₂	H ₂
543	4-CH ₃	CH3	CH3	H	C _e H ₅	CeHs	Н₂	H ₂
544	4-C ₂ H ₅	CH ₈	CH₃	Н	CaHs	C ₆ H ₅	H ₂	H2
545	4-CH(CH ₃) ₂	CH ₃	CH3	Н	CeHs	C ₆ H ₅	H ₂	H ₂
546	4-CH ₂ C ₈ H ₅	CH3	CH₃	Н	CaHs	CeHs	H ₂	H ₂
547	4-0CH ₃	CH ₃	CH₃	Н	C ₆ H ₅	C ₆ H ₅	Н2.	H_2
548	4-0C ₂ H ₅	CH3	СН₃	H	C ₈ H ₅	C ₆ H ₅	H ₂	H_2
549	4-0CH ₂ C ₆ H ₅	CH3	CH3	Н	C ₆ H ₅	C ₈ H ₅	H_2	H_2
550	4-0C 8 H 5	CH3	CH₃	Н	C ₆ H ₅	C ₆ H ₅	H_2	H_2
551	4-COCH ₃	CH3	CH3	Н	C ₆ H ₅	C ₆ H ₅	H_2	H ₂
552	4-0C0CH ₃	CH3	CH3	Н	C&H&	C ₆ H ₅	H_2	H_2
553	4-0H	CH3	CH3	Н	C.H.	C ₆ H ₅	H_2	H_2
554	4-NH ₂	CH ₃	CH3	Н	CeHs	CeHs	H_2	H_2
<u>555</u>	4-N0 ₂	CH3	CH3	H	C ₆ H ₅	C ₆ H ₅	H ₂	H ₂

	R ¹	R²	R³	R ⁴	R ⁵	R ⁶	Х	Y
556	4-CN	СН₃	СНз	Н	CeH5	C.H.	H ₂	H ₂
557	4-NHCOCH3	СНз	CH3	H	СеНь	CeHs	H_2	H ₂
558	4-NHCOC ₆ H ₅	CH3	CH ₃	H	C.H.	C ₆ H ₅	H_2	H_2
559	4-SCH₃	CH3	CH ₃	H	C ₈ H ₅	C & H 5	H_2	H_2
560	4-SC ₂ H ₅	СНз	CH3	H	C ₆ H ₅	CeHs	H_2	H ₂
561	4-CH2CH2CH3	СНз	CH ₃	H	C ₆ H ₅	C & H s	H_2	H_2
562	4-SCH(CH ₃) ₂	СНз	CH₃	H	C _s H _s	CeHs	H_2	H_2
563	4-S0 ₂ CH ₃	СН₃	CH₃	H	CaHs	CeHs	H_2	H ₂
564	4-S0 ₂ C ₂ H ₅	CH ₃	СН₃	H	C ₆ H ₅	C & H 5	H_2	H_2
565	4-SO ₂ CH(CH ₃) ₂	CH3	CH3	H	CeHs	CeHs	H ₂	H ₂
566	4-SC ₆ H ₆	СНз	CH₃	H	C ₆ H ₅	C e H s	H_2	H_2
567	4-SCH ₂ C ₈ H ₅	СНз	CH3	H	CeHs	CeHs	H_2	H_2
568	4-NHSO2CH3	CH3	CH3	H	CeHs	CaHs	H ₂	H_2
569	4-NHSO ₂ C ₂ H ₅	CH3	CH3	H	CeHs	CeHs	H ₂	H ₂
570	4-NHSO2CeH5	CH3	CH3	H	CeHs	C ₆ H ₅	H_2	H ₂
571	4-C00H	CH3	CH3	H	CeHs	CaHs	H_2	H ₂
572	4-C00CH ₃	СНз	CH3	H	CeHs	CeHs	H_2	H ₂
573	4-C00C ₂ H ₅	CH3	CH3	H	CeH5	CeHs	H_2	H ₂
574	4-COOCH2C6H5	СНз	CH3	H	CeHs	CeHs	H_2	H ₂
575	4-N(CH ₃) ₂	CH3	CH3	H	CeHs	CeHs	H_2	H ₂
576	4-NHCH ₃	CH3	CH3	H	CeHs	CeH5	H_2	H ₂
577	4-NH(C ₂ H ₅) ₂	CH3	CH3	H	C ₆ H ₅	CeHs	H_2	H ₂
578	4-CONH ₂	CH3	CH3	H	C ₆ H ₅	CeHs	H_2	H ₂
579	4-CONHCH3	CH₃	CH₃	H	C ₆ H ₅	C ₆ H ₅	H_2	H ₂
580	4-CON(CH ₃) ₂	CH3	CH3	H	C ₆ H ₅	CeHs	H_2	H ₂
581	4-OCONHCH3	CH3	CH3_	H	C ₆ H ₅	CeHs	H ₂	H ₂

WO 93/09116

	R¹	R²	R 3	R ⁴	R 5	R ⁶	X	Y
582	4-0CON(CH ₃) ₂	CH3	CH ₃	Н	C ₆ H ₅	C ₆ H ₅	H_2	H ₂
583	4-0CONHCH2C6H5	CH₃	CH₃	Н	C ₆ H ₅	C 6 H 5	H ₂	H_2
584	4-OCSNHCH₃	CH₃	CH ₃	Н	CeHs	C 6 H 5	H ₂	H_2
585	4-0CSN(CH ₃) ₂	CH3	CH₃	Н	CeHs	C ₆ H ₅	H_2	H_2
586	4-OCSNHCH ₂ C ₆ H ₅	CH₃	CH3	H	C ₆ H ₅	C ₆ H ₅	H_2	H_2
587	4-SO2NHCH3	CH3	CH₃	Н	C ₆ H ₅	C 8 H 5	H ₂	H ₂
588	4-SO ₂ N(CH ₃) ₂	CH3	CH 8	H	C ₆ H ₅	CeHs	H_2	H ₂
589	4-S02NHC2H5	CH ₃	CH₃	H	C ₆ H ₅	СвНъ	H_2	H ₂
590	4-S0 ₂ N(C ₂ H ₅) ₂	CH ₃	CH3	H	C _B H ₅	CeHs	H_2	H_2
591	4-SO2NHC6H5	CH3	CH3	H	C_6H_5	CeHs	H_2	H_2
592	4-CF ₃	CH ₃	CH₃	H	C 6 H 5	CeH5	H ₂	H ₂
593	6-C1	CH ₃	CH3	Н	C.H.	C.H.	H ₂	H ₂
594	6-Br	CH ₃	CH₃	Н	CeH5	CeHs	H_2	H ₂
595	6-F	CH ₃	CH₃	Н	CeHs	CeHs	H2	H ₂
596	6-CH3	CH ₃	CH₃	Н	CeH5	CeHs	H2	H ₂
597	6-C ₂ H ₅	CH ₃	CH3	Н	CeH5	C & H 5	H ₂	H ₂
598	5-SO ₂ CH(CH ₃) ₂	CH ₃	CH ₃	Н	CeHs	C & H 5	H ₂	H_2
599	6-CH(CH ₃) ₂	CH3	CH ₃	Н	CeHs	C ₆ H ₅	H2	H_2
600	6-CH ₂ C ₆ H ₅	CH3	CH3	H	CeHs	C ₆ H ₅	H_2	H_2
601	6-0CH3	CH3	CH₃	H	C ₈ H ₅	CaHs	H_2	H_2
602	6-0C ₂ H ₅	CH3	CH3	H	C ₆ H ₅	C ₈ H ₅	H_2	H2
603	6-0CH ₂ C ₆ H ₅	CH3	СНз	H	C ₆ H ₅	C ₆ H ₅	H_2	H_2
604	6-0C ₆ H ₅	CH3	СНз	H	C ₆ H ₅	C 8 H 5	H ₂	H ₂
605	6-COCH ₃	CH3	CH3	H	C & H &	C 6 H 5	H_2	H_2
606	6-0C0CH ₃	CH3	CH3	H	CoHs	C & H 5	H ₂	_H ₂

	R¹	R²	R³	R ⁴	R ⁵	R ⁶	Х	Y
607	6-0H	СНз	CH3	H	CeH5	C ₈ H ₅	H_2	H ₂
608	6-NH ₂	CH₃	СНз	H .	C.H.	CeH5	H_2	H_2
609	6-N0 ₂	CH₃	СН₃	H	СвНъ	CeHs	H_2	H_2
610	6-CN	CH3	CH3	H	C ₆ H ₅	CeH5	H_2	H ₂
611	6-NHCOCH3	CH₃	CH3	H	СвНб	C.H.	H ₂	H ₂
612	6-NHCOCeH5	CH₃	CH3	H	CsHs	C ₆ H ₅	H_2	H_2
613	6-SCH₃	CH₃	CH3	Н	CeH5	CeHs	H2	H_2
614	6-SC ₂ H ₅	CH₃	CH₃	H	CeHs	C.H.	H2	H_2
615	6-SCH(CH ₃) ₂	CH₃	CH3	H	CsHs	CeHs	H_2	H ₂
616	6-S0 ₂ CH ₃	CH₃	CH₃	H	C ₆ H ₅	C&H5	H_2	H_2
617	6-S0 ₂ C ₂ H ₅	CH3	CH3	H	C ₆ H ₅	C ₆ H ₅	H2	H_2
618	6-S0 ₂ CH(CH ₃) ₂	CH ₃	CH ₃	H	C ₆ H ₅	CeHs	H_2	H_2
619	6-SC ₆ H ₅	СН₃	CH3	н -	CeHs	CeH5	H_2	H_2
620	6-SCH2C6H5	CH₃	CH ₃	H	C ₆ H ₅	CeHs	H_2	$\mathbf{H_2}$
621	6-NHSO2CH3	CH3	CH₃	H	CeHs	C ₆ H ₅	H ₂	H ₂
622	6-NHSO ₂ C ₂ H ₅	CH ₃	CH3	H	C ₈ H ₅	C ₆ H ₅	H_2	H_2
623	6-NHSO ₂ C ₈ H ₅	CH3	CH3	H	CaHs	CeHs	H_2	H ₂
624	6-C00H	СН₃	CH₃	H	CaHa	CeH5	H ₂	H_2
625	6-C00CH3	CH₃	CH₃	H	CsHs	CeHs	H ₂	H_2
626	6-C00C ₂ H ₅	СН₃	CH ₃	H	CeHs	CeHs	H_2	H_2
627	6-C00CH2C5H5	CH ₃	CH3	H	C _e H ₅	CeHs	H_2	H_2
628	6-N(CH ₃) ₂	CH₃	CH3	H	C ₆ H ₅	CeHs	H_2	H_2
629	6-NHCH ₃	CH₃	CH3	H	C ₆ H ₅	CeH5	H_2	H ₂
630	6-NH(C ₂ H ₅) ₂	CH₃	СНз	H	CeH5	C ₆ H ₅	H_2	H_2
631	6-CONH ₂	CH₃	CH3	H	C ₆ H ₅	CeH5	H_2	H_2
632	6-CONHCH3	CH₃	CH3_	H	C ₈ H ₅	CeH5	H2_	H ₂

	R¹	R ²	R ³	R ⁴	R ⁵	R e	Х	Y
633	6-CON(CH ₃) ₂	CH3	СН₃	Н	C ₆ H ₅	C ₆ H ₅	H ₂	H_2
634	6-0CONHCH ₃	CH₃	СН₃	H	C ₈ H ₅	C & H 5	H ₂	H ₂
635	6-0CON(CH ₃) ₂	CH3	СН₃	Н	C ₆ H ₅	C & H 5	H_2	H_2
636	6-0C0NHCH2C6H5	CH ₃	CH₃	H	C ₆ H ₅	C ₆ H ₅	H ₂	H ₂
637	6-OCSNHCH₃	CH ₃	CH₃	Н	C ₆ H ₅	C ₆ H ₅	H_2	H2
638	6-OCSN(CH ₃) ₂	CH3	CH3	H	СеНь	СвНь	H_2	H ₂
639	6-OCSNHCH2C6H5	CH3	CH3	H	CeHe	CaHs	H_2	H ₂
640	6-S02NHCH3	CH3	СНз	H	CeHs	СвНь	H ₂	Н₂
641	6-S0 ₂ N(CH ₃) ₂	CH ₃	CH ₃	H	C & H &	CeHs	H_2	H ₂
642	6-S02NHC2H5	CH3	CH3	Н	CeHs	CeHs	H_2	H_2
643	6-S0 ₂ N(C ₂ H ₅) ₂	CH ₃	CH ₃	H	CeHs	C ₈ H ₅	H ₂ .	Н₂
644	6-SO ₂ NHC ₆ H ₅	CH ₃	CH ₃	Н	CeHs	C ₆ H ₅	H ₂	H_2
645	6-CF ₃	CH3	СН₃	H	CeHs	C ₆ H ₅	H ₂	H ₂
646	5-SCH₃	CH3	H	H	C _B H ₅	CeHs	H ₂	H ₂
647	5-SC ₂ H ₅	CH3	H	H	C ₆ H ₅	CeHs	H_2	Н₂
648	5-SCH(CH ₃) ₂	CH3	H	H	CeHs	CeHs	H ₂	H2
649	5-S0 ₂ CH ₃	CH3	H	H	CeHs	C ₆ H ₅	H_2	H2
650	5-S0 ₂ C ₂ H ₅	CH3	Н	. Н	C ₆ H ₅	CeHs	H ₂	Н₂
651	5-S0 ₂ CH(CH ₃) ₂	CH3	H	Н	C ₆ H ₅	C ₆ H ₅	H ₂	H ₂
65 2	5-SC eH 5	CH3	H	H	CeHs	C ₆ H ₅	H_2	H_2
653	5-CF ₃	CH₃	Н	H	C e H 5	C ₆ H ₅	H ₂	H ₂

$$R^{1} \xrightarrow{N} X$$

$$R^{2}$$

$$R^{4} \xrightarrow{N} R^{6}$$

$$R^{5}$$

No.	R ¹	R²	R³	R ⁴	R ⁵	R e	R ⁷	X	Y
654	5-C1	H	Н	H	CeHs	C ₆ H ₅	СН₃	H_2	0
655	5-Br	H	H .	H	C ₆ H ₅	C ₆ H ₅	CH₃	H_2	0
656	5-F	H	H	H	CeHs	C ₆ H ₅	CH₃	H_2	0
657	5-CH ₃	Н	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	H_2	. 0
658	5-C ₂ H ₅	Н	H	H	C ₆ H ₅	C ₆ H ₅	CH3	H_2	0
659	5-CH2CH2CH3	Н	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	H_2	0
660	5-CH(CH ₃) ₂	Н	H	H	C ₆ H ₅	C ₆ H ₅	CH 3	H ₂	0
661	5-CH2C6H5	H	H	H	CeHs	C ₆ H ₅	CH3	H_2	0
662	5-0CH ₃	H	H	H	C ₆ H ₅	CeH5	CH3	H_2	0
663	5-0C ₂ H ₅	H	H	H	CeH5	CeHs	CH 3	H ₂	0
664	5-0CH ₂ C ₆ H ₅	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	H_2	0
665	5-0C ₆ H ₅	H	H	H	C ₆ H ₅	C ₆ H ₅	CHa	H ₂	0
666	5-COCH₃	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	H_2	0
667	5-0C0CH ₃	H	H	H	C ₆ H ₅	C ₆ H ₅	СНз	H ₂	0
868	5-0H	H	H	H	CeHs	CeHs	CH3	H ₂	0
669	5-NH ₂	Н	H	H	CeHs	C ₆ H ₅	СНз	H_2	0
370	5-N0 ₂	H	H	H	C ₆ H ₅	CeH5	CH 3	H_2	0
671	5-CN	Н	H	H	CeH5	CeHs	CH3	H_2	0
372	5-NHCOCH ₃	H	H	Н	C ₆ H ₅	C ₆ H ₅	CH₃	H ₂	0

No.	R¹	R²	R³	R ⁴	R 5	R ⁶	R ⁷	X	Y
673	5-NHCOC & H s	Н	H	Н	C ₆ H ₅	C ₆ H ₅	CH ₃	H ₂	0
674	5-SCH ₃	Н	H	Н	C ₆ H ₅	C 6 H 5	CH₃	H_2	0
675	5-SC ₂ H ₅	H	H	H	C ₆ H ₅	C ₆ H ₅	СНз	H_2	0
676	5-SCH(CH ₃) ₂	H	H	H	CeH5	C ₆ H ₅	СНз	H_2	0
677	5-S0 ₂ CH ₃	H	H	Н	CeHs	C ₈ H ₅	CH ₃	H_2	0
678	5-S0 ₂ C ₂ H ₅	H	H	H	C ₆ H ₅	CeHo	CH ₃	H_2	0
679	5-S0 ₂ CH(CH ₃) ₂	H	H	H	CeHs	C ₆ H ₅	CH3	H_2	0
680	5-SC ₆ H ₅	H	H	H	CeHs	CeHs	CH3	H_2	0
681	5-SCH ₂ C ₆ H ₅	H	H	H	C ₆ H ₅	C ₆ H ₅	CH₃	H_2	0
682	5-NHSO ₂ CH ₃	H	Н .	H	C 6 H 5	C ₆ H ₅	СН₃	H ₂	0
683	5-NHSO ₂ C ₂ H ₅	H	H	H	C_8H_5	C ₆ H ₅	CH3	H_2	0
684	5-NHSO ₂ C ₆ H ₅	H	H	H	C ₆ H ₆	CeH5	CH₃	H 2	0
685	5-COOH	H	H	H	C ₈ H ₅	CeHs	CH₃	H ₂	0
68 6	5-C00CH ₃	H	H	H	C ₆ H ₅	C ₆ H ₅	CH 3	H ₂	0
687	5-C00C ₂ H ₅	H	H	H	CeHs	СеНь	CH3	H ₂	0
688	5-C00CH ₂ C ₆ H ₅	H	H	H	C_8H_5	CeHs	CH3	H ₂	0
689	5-N(CH ₃) ₂	H	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	H ₂	0
690	5-NHCH ₃	H	H	H	CeH5	C ₆ H ₅	CH3	H ₂	0
691	$5-NH(C_2H_5)_2$	H	H	H	C&H&	C ₆ H ₅	CH3	H_2	0
692	5-CONH ₂	H	H	H	CeHs	C_8H_5	CH₃	H_2	0
693	5-CONHCH₃	H	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	H ₂	0
694	5-CON(CH ₃) ₂	H	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	H_2	0
695	5-OCONHCH₃	H	H	H	C ₆ H ₅	C ₆ H ₅	CH₃	H_2	0
696	5-0CON(CH _{3,}) ₂	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	H_2	0
697	5-OCONHCH ₂ C ₆ H ₅	H	H	H	CeHs	C 6 H 5	CH ₃	H_2	0
<u> </u>	5-OCSNHCH₃	H	Н	H	C ₆ H ₅	C ₆ H ₅	CH3	H ₂	0

No.	R ¹	R²	R³	R ⁴	R⁵	Re	R ^τ	Х	Y
699	5-0CSN(CH ₃) ₂	H	Н	Н	C _e H ₅	CeHs	CH3	H_2	0
700	5-OCSNHCH2C6H5	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	H_2	0
701	5-S02NHCH3	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	H_2	0
702	5-S0 ₂ N(CH ₃) ₂	H	H	H	CeHs	C ₆ H ₅	СНз	H_2	0
703	5-S02NHC2H5	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	H_2	0
704	5-S02N(C2H6)2	H	H	H	CeHs	CeH5	CH3	H_2	0
705	5-SO2NHC6H5	H	H	H	CeH5	C e H s	СН₃	H_2	0
706	5-CF ₃	H	H	H	CeH5	C ₆ H ₅	CH ₃	H_2	0
707	7-C1	Н	H ·	H	CeHs	C ₆ H ₅	СН₃	H ₂	0
708	7-Br	Н	H	Н	C ₆ H ₅	C ₆ H ₅	СН₃	H ₂	0
709	7-F	H	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	H ₂	. 0
710	7-CH ₃	Н	H	H	CeHs	C ₆ H ₅	CH₃	H ₂	0
711	7-C ₂ H ₅	Н	H	H	C ₆ H ₅	СеНБ	CH ₃	H_2	0
712	7-CH(CH ₃) ₂	Н	H	H	C _e H ₅	C ₆ H ₅	CH ₃	H_2	0
713	7-CH ₂ C ₆ H ₅	. Н	H	H	C ₆ H ₅	CeH5	CH ₃	H_2	0
714	7-0CH ₃	H	H	H	CeHs	C.H.	CH3	H_2	0
715	7-0C ₂ H ₅	H	H	H	C ₆ H ₅	CeHs	CH₃	H_2	0
716	7-0CH ₂ C ₆ H ₅	H	H	H	C ₆ H ₅	C ₆ H ₅	СНз	H_2	0
717	7-0C6H6	H	H	H	CeHs	CeHs	CH3	H_2	0
718	7-COCH ₃	H	H	H	C ₆ H ₅	CeHs	CH3	H_2	0
719	7-0C0CH3	H	H	H	C ₆ H ₅	C ₆ H ₅	СНз	H_2	0
720	7-0H	H	H	H	C ₈ H ₅	C ₆ H ₅	СНз	H_2	0
721	7-NH ₂	H	H	H	C ₆ H ₅	C.H.	CH₃	H ₂	0
722	7-N0 ₂	H	H	H	C ₅ H ₅	C ₆ H ₅	CH₃	H ₂	0
723_	7-CN	Н	H	Н	C ₈ H ₅	СеНь	CH3	H ₂	0

No.	R¹	R²	R³	R ⁴	R ⁵	R ⁶	R ⁷	X	Y
7 24	7-NHCOCH₃	Н	Н	H	CeHs	C ₆ H ₅	CH ₃	H_2	0
7 25	7-NHCOC ₆ H ₅	H	H	H	C ₆ H ₅	CeHs	CH3	H_2	0
726	7-SCH₃	H	H	Н	C ₆ H ₅	C ₆ H ₅	CH₃	H_2	0
727	7-SC ₂ H ₅	H	H	H	C ₆ H ₅	CeH5	CH₃	H_2	0
728	7-CH ₂ CH ₂ CH ₃	H	H	H	C ₈ H ₅	C ₆ H ₅	CH3	H ₂	0
729	7-SCH(CH ₃) ₂	H	H	Н	C_8H_5	C ₆ H ₅	CH₃	H_2	0
730	7-S0 ₂ CH ₃	Н	H	H	CeHs	CeH5	CH3	H_2	0
731	7-S0 ₂ C ₂ H ₅	H	H	H	C & H 5	CeHs	CH3	H_2	0
732	7-S0 ₂ CH(CH ₃) ₂	H	H	H	C_6H_5	C ₆ H ₅	CH3	H_2	0
733	7-SC 6H 5	H	H .	H	C 6 H 5	C ₆ H ₅	CH3	H2	0
734	7-SCH2C6H5	H	H	H	CeHs	CeHs	CH3	H_2	0
735	7-NHSO2CH3	H	H	H	CeHs	C ₆ H ₅	CH3	H ₂	0
736	7-NHSO ₂ C ₂ H ₅	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	H ₂	0
737	7-NHS0 ₂ C ₆ H ₅	H	H	H	CoHo	C ₆ H ₅	CH ₃	H ₂	0
738	7-COOH	H	H	H	C ₆ H ₅	C ₈ H ₅	CH3	H_2	0
739	7-C00CH ₈	H	H	H	C ₆ H ₅	C_8H_5	CH3	H_2	0
74 0	7-C00C ₂ H ₅	H	H	H	C.H.	C ₆ H ₅	CH3	H_2	0
741	7-C00CH ₂ C ₆ H ₅	H	H	H	CeHs	C ₆ H ₅	CH3	H ₂	0
742	7-N(CH ₃) ₂	H	H	H	CeHs	СвНь	CH3	H_2	0
743	7-NHCH ₃	H	H	H	C.H.	C ₆ H ₅	CH3	H_2	0
744	7-NH(C ₂ H ₅) ₂	H	H	H	CeH5	CeH5	СН₃	H_2	0
745	7-CONH ₂	H	H	H	C 6 H 5	CeHs	CH3	H ₂	0
746	7-CONHCH ₃	H	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	H ₂	0
747	7-CON(CH ₃) ₂	H	H	H	CeHs	C ₆ H ₅	СНз	H_2	0
748	7-OCONHCH ₃	H	H	H	C ₆ H ₅	C&H5	CH ₃	H ₂	0
749	7-0CON(CH ₃) ₂	H	Н	Н	C ₆ H ₅	CeHs	CH₃	H ₂	0

R ¹	R ²	R ³	R ⁴	R ^s	R ^e	R ^τ	Х	Y
7-000NHCH_C_H_	н	Н	Н	CaH5	CeHs	СН₃	H ₂	0
							H2	0
							Н₂	0
								0
								0
_								0
								0
								0
								0
7-SO2NHC6H5								
7-CF ₃	H	H.	H	C ₆ H ₅	СвНв	CH3	Н2	0
6-C1	H	H	H	C ₆ H ₆	CeHs	CH3	H ₂	0
6-Br	H	H	H	C ₈ H ₅	CeHs	CH3	H ₂	0
6-F	H	H	H	C ₆ H ₅	CeHs	CH3	H ₂	0
6-CH ₃	H	H	H	CaHa	C ₆ H ₅	CH3	H ₂	0
6-C ₂ H ₅	·H	H	Н .	C_8H_5	CeHs	CH3	H ₂	0.
6-S0 ₂ CH(CH ₃) ₂	H	H	H	CeH5	C ₆ H ₅	CH3	H_2	0
6-CH(CH ₃) ₂	H	H	H	C ₆ H ₅	CeHs	CH ₃	H ₂	0
6-CH ₂ C ₆ H ₅	H	H	H	C_6H_5	CeHs	CH3	H_2	0
6-0CH3	H	H	H	C ₆ H ₅	CeHs	CH3	H ₂	0
6-0C ₂ H ₅	H	H	H	C ₈ H ₅	CeHs	CH3	H ₂	0
6-0CH ₂ C ₆ H ₅	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	H_2	0
	H	H	H	C ₆ H ₅	CeH5	CH3	H ₂	0
	H	H	H	C ₆ H ₅	C ₆ H ₅	CH₃	H ₂	0
		H	H	C ₆ H ₅	CeH5	CH ₃	H ₂	0
		Н	H			CH ₃	H2	0
	7-0C0NHCH ₂ C ₆ H ₅ 7-0CSNHCH ₃ 7-0CSNHCH ₂ C ₆ H ₅ 7-0CSNHCH ₂ C ₆ H ₅ 7-S0 ₂ NHCH ₃ 7-S0 ₂ NHC ₂ H ₅ 7-S0 ₂ NHC ₂ H ₅ 7-S0 ₂ NHC ₆ H ₅ 7-CF ₃ 6-C1 6-Br 6-P 6-CH ₃ 6-C ₂ H ₅ 6-S0 ₂ CH(CH ₃) ₂ 6-CH(CH ₃) ₂ 6-CH ₂ C ₆ H ₅	7-0C0NHCH ₂ C ₆ H ₅ H 7-0CSNHCH ₃ H 7-0CSNHCH ₂ C ₆ H ₅ H 7-0CSNHCH ₂ C ₆ H ₅ H 7-0CSNHCH ₂ C ₆ H ₅ H 7-S0 ₂ NHCH ₃ H 7-S0 ₂ NHC ₂ H ₅ H 7-S0 ₂ NHC ₂ H ₅ H 7-S0 ₂ NHC ₆ H ₅ H 7-CF ₃ H 6-CI H 6-Br H 6-CH ₃ H 6-CyH ₅ H 6-CyH ₅ H 6-Ch(CH ₃) ₂ H 6-Ch(CH ₃) ₂ H 6-Ch ₂ C ₆ H ₅ H 6-OC ₂ H ₅ H 6-OC ₂ H ₅ H 6-OC ₂ H ₅ H	7-OCONHCH2C6H5 H H 7-OCSNHCH3 H H 7-OCSNHCH3C6H5 H H 7-OCSNHCH2C6H5 H H 7-SO2NHCH3 H H 7-SO2NHCH3 H H 7-SO2NHC2H5 H H 7-SO2NHC2H5 H H 7-SO2NHC6H5 H H 7-CF3 H H 6-CF3 H H 6-CH3 H H 6-CC2H5 H H 6-CC2H5 H H 6-CC2H5 H H 6-CCCC6H5 H H 6-OCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	7-0C0NHCH ₂ C ₆ H ₅ H H H 7-0CSNHCH ₈ H H H 7-0CSNHCH ₂ C ₆ H ₅ H H H 7-0CSNHCH ₂ C ₆ H ₅ H H H 7-0CSNHCH ₂ C ₆ H ₅ H H H 7-SO ₂ NHCH ₂ H H H 7-SO ₂ NHC ₂ H ₅ H H H 7-SO ₂ NHC ₂ H ₅ H H H 7-SO ₂ NHC ₂ H ₅ H H H 7-SO ₂ NHC ₆ H ₅ H H H 7-CF ₃ H H H 6-CF ₃ H H H 6-Cl H H H H	7-0C0NHCH2CeHs H H H CeHs 7-0CSNHCH3 H H H CeHs 7-0CSNHCH2CeHs H H H CeHs 7-0CSNHCH2CeHs H H H CeHs 7-S02NHCH3 H H H CeHs 7-S02NHCH3 H H H CeHs 7-S02NHC2Hs H H H CeHs 7-S02NHC2Hs H H CeHs 7-S02NHC2Hs H H CeHs 7-S02NHCeHs H H CeHs 7-S02NHCeHs H H CeHs 6-C1 H H H CeHs 6-C1 H H CeHs 6-C2Hs H H CeHs 6-C2Hs H H CeHs 6-C2Hs H H CeHs 6-C1CH32 H H CeHs 6-CC2Hs H H CeHs 6-OCH2CeHs H H CeHs 6-OCH2CeHs H H CeHs 6-OCH2CeHs H H CeHs 6-OCCH3 H H CeHs 6-OCCH3 H H CeHs 6-OCCH3 H H CeHs	7-OCONHCH2C6H5 H H H C6H5 C6H5 7-OCSNHCH3 H H H C6H5 C6H5 7-OCSN(CH3)2 H H H C6H5 C6H5 7-OCSNHCH2C6H5 H H H C6H5 C6H5 7-SO2NHCH3 H H C6H5 C6H5 7-SO2NHCH3 H H C6H5 C6H5 7-SO2NHCH3 H H C6H5 C6H5 7-SO2NHC2H5 H H C6H5 C6H5 7-SO2NHC2H5 H H C6H5 C6H5 7-SO2NHC6H5 H H C6H5 C6H5 7-CF3 H H C6H5 C6H5 6-C1 H H H C6H5 C6H5 6-C1 H H H C6H5 C6H5 6-C43 H H C6H5 C6H5 6-C2H5 H H C6H5 C6H5 6-C2H5 H H C6H5 C6H5 6-C10C1 H H H C6H5 C6H5 6-C10 C6H5 C6H5 6-C10 C6H5 C6H5 6-OC1 C6H5 C6H5 6-OC1 C6H5 C6H5 6-OC1 C6H5 C6H5 C6H5 C6H5 C6H5 C6H5 C6H5 C6H5	7-OCONHCH2C6H5 H H H C6H5 C6H5 CH3 7-OCSNHCH3 H H H C6H5 C6H5 CH3 7-OCSNHCH2C6H5 H H H C6H5 C6H5 CH3 7-OCSNHCH2C6H5 H H H C6H5 C6H5 CH3 7-SO2NHCH3 H H H C6H5 C6H5 CH3 7-SO2NHCH3 H H C6H5 C6H5 CH3 7-SO2NHC2H5 H H C6H5 C6H5 CH3 7-SO2NHC2H5 H H C6H5 C6H5 CH3 7-SO2NHC2H5 H H C6H5 C6H5 CH3 7-SO2NHC6H5 H H C6H5 C6H5 CH3 7-CF3 H H C6H5 C6H5 CH3 7-CF3 H H C6H5 C6H5 CH3 6-C1 H H H C6H5 C6H5 CH3 6-C1 H H H C6H5 C6H5 CH3 6-C1 H H H C6H5 C6H5 CH3 6-C1 H H H C6H5 C6H5 CH3 6-C1 H H H C6H5 C6H5 CH3 6-OC1 H H H C6H5 C6H5 CH3 6-OC2H5 H H H C6H5 C6H5 CH3 6-OC6H5 H H C6H5 C6H5 CH3 6-OCCH3 H H C6H5 C6H5 CH3 6-OCCH3 H H C6H5 C6H5 CH3	7-0CONHCH2C8Hs H H H C8Hs C8Hs CH3 H2 7-0CSNHCH3 H H H C8Hs C8Hs CH3 H2 7-0CSNHCH2C8Hs H H H C8Hs C8Hs CH3 H2 7-0CSNHCH2C8Hs H H H C8Hs C8Hs CH3 H2 7-0CSNHCH2C8Hs H H H C8Hs C8Hs CH3 H2 7-SO2NHCH3 H H H C8Hs C8Hs CH3 H2 7-SO2NHC2Hs H H H C8Hs C8Hs CH3 H2 7-SO2NHC6Hs H H H C8Hs C8Hs CH3 H2 7-SO2NHC6Hs H H C8Hs C8Hs CH3 H2 7-CF3 H H C8Hs C8Hs CH3 H2 7-CF3 H H C8Hs C8Hs CH3 H2 6-C1 H H H C8Hs C8Hs CH3 H2 6-C1 H H H C8Hs C8Hs CH3 H2 6-CH3 H H H C8Hs C8Hs CH3 H2 6-CCH5 H H H C8Hs C8Hs CH3 H2 6-CCH5 H H H C8Hs C8Hs CH3 H2 6-CCH6CH3)2 H H H C8Hs C8Hs CH3 H2 6-CH(CH3)2 H H H C8Hs C8Hs CH3 H2 6-CCH2C8Hs H H C8Hs C8Hs CH3 H2 6-OCH2 H H H C8Hs C8Hs CH3 H2 6-OCH2 H H H C8Hs C8Hs CH3 H2 6-OCH2 C8Hs H H C8Hs C8Hs CH3 H2 6-OCH3 H H H C8Hs C8Hs CH3 H2 6-OCH3 H H H C8Hs C8Hs CH3 H2 6-OCCH3 H H H C8Hs C8Hs CH3 H2 6-OCCH3 H H H C8Hs C8Hs CH3 H2 6-OCCH3 H H H C8Hs C8Hs CH3 H2

No.	R¹	R²	R³	R 4	R⁵	R ⁶	R ⁷	Х	Y
775	6-NH ₂	Н	Н	Н	C ₆ H ₅	C ₆ H ₅	CH₃	H ₂	0
776	6-N0 ₂	H	H	H	C_6H_5	C 6 H 5	CH₃	H_2	0
777	6-CN	H	H	H	C_6H_5	CeHs	СНз	H2	0
778	6-NHCOCH3	H	H	H	C_8H_5	C 6 H 5	CH3	H_2	0
7 79	6-NHCOC ₆ H ₅	H	H	Н	C ₆ H ₅	C ₆ H ₅	СНз	H_2	0
7 80	6-SCH₃	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	H_2	0
781	6-SC ₂ H ₅	H	H	Н	C ₆ H ₅	C ₆ H ₅	CH₃	H_2	0
782	6-SCH(CH ₃) ₂	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	H_2	0
783	6-S0 ₂ CH ₃	H	H	H	C ₆ H ₅	CeHs	CH₃	H ₂	0
784	6-S0 ₂ C ₂ H ₅	H	H	H	CeH5	C ₆ H ₅	CH₃	H_2	0
785	6-S0 ₂ CH(CH ₃) ₂	H	H	H	CeHs	C ₆ H ₅	CH ₃	H ₂	0
786	6-SC ₆ H ₅	H	H	H	C ₆ H ₅	C ₆ H ₅	CH₂	H_2	0
787	6-SCH ₂ C ₆ H ₅	H	H	H	CeHs	C ₆ H ₅	CH3	H_2	0
788	6-NHSO ₂ CH ₃	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	H ₂	0
789	6-NHS0 ₂ C ₂ H ₅	H .	H	H	CeHs	CeHs	CH₃	H ₂	0
790	6-NHSO ₂ C ₆ H ₅	H	H	. Н	C_6H_5	C_6H_5	CH₃	H2	0
791	6-C00H	H	H	H	C ₆ H ₅	CeHs	CH ₃	H ₂	0
792	6-C00CH ₃	H	H -	H	C ₆ H ₅	C & H 5	CH₃	H ₂	0
793	6-C00C ₂ H ₅	H	H	H	C ₆ H ₅	СеНь	CH₃	H_2	0
794	6-C00CH ₂ C ₆ H ₅	H	H	H	C ₈ H ₅	CeH5	CH3	H_2	0
795	6-N(CH ₃) ₂	H	Н	H	$C_{6}H_{5}$	C ₆ H ₅	CH3	H_2	0
796	6-NHCH ₃	H	H	H	C ₆ H ₅	C ₆ H ₅	CH₃	H_2	0
797	$6-NH(C_2H_5)_2$	H	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	H_2	0
798	6-CONH ₂	H	H	H	CeHs	C ₆ H ₅	CH ₃	H_2	0
799	6-CONHCH₃	H	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	H2	0
800	6-CON(CH ₃) ₂	Н	Н	Н	C ₆ H ₅	C ₆ H ₅	СНз	H ₂	0

No.	R¹	R²	R³	R ⁴	R ⁵	R ⁶	R ⁷	Х	Υ
801	6-0CONHCH₃	Н	Н	Н	CoHo	CeH5	СНз	H_2	0
802	6-0CON(CH ₃) ₂	H	Н	H	CeHe	C ₆ H ₅	CH3	H_2	0
803	6-OCONHCH2C6H	5 H	Н	H	C ₈ H ₅	C ₆ H ₅	СНз	H_2	0
804	6-OCSNHCH3	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	H_2	0
805	6-0CSN(CH ₃) ₂	H	H	H	C ₆ H ₅	C ₆ H ₅	CH₃	H_2	0
806	6-OCSNHCH2C8H	5 · H	H	H	C ₆ H ₅	CeHs	CH₃	H_2	0
807	6-SO2NHCH3	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	H2	0
808	6-S0 ₂ N(CH ₃) ₂	H	H	H	C ₆ H ₅	C.H.	CH ₃	H_2	0
809	6-S02NHC2H5	H	H	H	C ₆ H ₅	C ₆ H ₅	СНз	H2	0
810	6-S0 ₂ N(C ₂ H ₅) ₂	H	H	H	C ₆ H ₅	CeHs	CH ₃	H ₂	0
811	6-SO2NHC6H5	H	H	H	CeH5	CeHs	CH ₃	H_2	0
812	6-CF ₃	H	H	H	CeHs	C ₆ H ₅	CH₃	H_2	0
813	6-C1	CH3	CH3	H	C ₆ H ₅	C 8 H 5	CH3	H_2	0
814	6-Br	CH3	CH3	H	CeHs	C ₆ H ₅	CH3	H_2	0
815	6-F	CH ₃	CH3	H	CeHs	CeHs	CH3	H_2	0
816	6-CH ₃	CH3	CH3	H	CeHs	C_8H_5	CH ₃	H_2	0
817	6-C ₂ H ₅	CH3	СНз	H	CeHs	C ₈ H ₅	CH ₃	H_2	0
818	6-S0 ₂ CH(CH ₃) ₂	CH ₃	CH ₃	H	CeH5	C 8 H 5	CH ₃	H_2	0
819	6-CH(CH ₃) ₂	CH ₃	CH3	H	CeHs	C ₈ H ₅	CH ₃	H_2	0
820	6-CH ₂ C ₆ H ₅	CH ₃	CH3	H	CoHs	C ₆ H ₅	CH ₃	H ₂	0
821	6-0CH ₃	CH3	CH3	H	CeHs	C&H5	CH3	H_2	0
822	6-0C ₂ H ₅	CH ₃	CH3	H	C ₆ H ₅	C ₆ H ₅	CH₃	H_2	0
823	6-0CH ₂ C ₆ H ₅	CH ₃	CH3	H	$C_{\mathfrak{o}}H_{\mathfrak{d}}$	C ₆ H ₅	CH ₃	H_2	0
824	6-0C ₆ H ₅	CH3	CH₃	H	C ₆ H ₅	CeHs	CH3	H ₂	0
825	6-COCH ₃	CH3	CH3	Н .	C ₆ H ₅	C ₆ H ₅	CH ₃	H ₂	0

No.	R¹	R²	R³	R4	R 5	R ^e	R ⁷	X	Y
826	6-0C0CH ₃	СН₃	СНз	H	CeHs	C ₆ H ₅	СНз	H ₂	0
827	6-0H	CH3	CH3	H	CoHs	C6H5	CH ₃	H_2	0
828	6-NH ₂	СН₃	СНз	H	CeHs	CeHs	CH₃	H2	0
829	6-N0 ₂	CH3	CH3	H	СвНь	CeHs	CH 3	H_2	0
830	6-CN	CH3	СНз	Н	C 8 H 5	C ₆ H ₅	CH ₃	H_2	0
831	6-NHCOCH₃	CH3	СНз	H	CaHs	CeHs	CH ₃	H_2	0
832	6-NHCOC 6H 5	CH3	CH3	H	C 6 H 5	C ₆ H ₅	CH3	H_2	0
833	6-SCH ₃	CH3	CH3	H	C ₆ H ₅	C ₆ H ₅	CH3	H_2	0
834	6-SC ₂ H ₅	CH3	CH3	H	C 6 H 5	CeHs	СН₃	H_2	0
835	6-SCH(CH ₃) ₂	CH3	CH3	Н	C ₆ H ₅	CeHs	CH₃	H_2	0
836	6-S0 ₂ CH ₃	CH3	CH3	H	C & H 5	CeHs	CH ₃	H ₂	0
837	6-S0 ₂ C ₂ H ₅	CH3	CH3	H	CoHs	C_6H_5	CH₃	H_2	0
838	6-SO ₂ CH(CH ₃) ₂	СНз	CH3	H	CeHs	C ₈ H ₅	CH3	H ₂	0
839	6-SC ₆ H ₅	CH ₃	CH₃	H	CeHs	CeHs	CH3	H 2	0
840	6-SCH ₂ C ₆ H ₅	CH3	CH3	H	C6H5	C ₆ H ₅	CH₃	H ₂	0
841	6-NHSO ₂ CH ₃	CH3	CH ₃	H	C _e H ₅	C & H 5	CH₃	H ₂	0
842	6-NHS0 ₂ C ₂ H ₅	CH3	CH3	H	CeHe	CoHo	CH3	H ₂	0
843	6-NHS0 ₂ C ₆ H ₅	CH3	CH3	H	CeHs	C 6 H 5	CH ₃	H_2	0
844	6-СООН	CH3	CH3	H	C 8 H 5	C & H 5	CH3	H ₂	0
845	6-C00CH ₃	CH3	CH3	H	CeHs	CeHs	CH3	H_2	0
846	6-C00C ₂ H ₅	CH3	CH3	H	C 8 H 5	CeHs	CH3	H_2	0
847	6-COOCH ₂ C ₆ H ₅	CH3	CH3	H	C 8 H 5	C 6 H 5	СНз	H_2	0
848	6-N(CH ₃) ₂	CH3	CH3	H	C ₆ H ₅	CeHs	CH3	H_2	0
849	6-NHCH ₃	CH₃	CH3	H	C 6 H 5	CeH5	CH ₃	H_2	0
850	6-NH(C ₂ H ₅) ₂	CH3	CH3	H	C 6 H 5	C ₆ H ₅	CH ₃	H_2	0
851	6-CONH ₂	CH3	CH ₃	Н	C&H5	C ₈ H ₅	CH3	H ₂	0

No.	R¹	R²	K.3	R ⁴	R⁵	R ⁶	R ⁷	X	Y
852	6-CONHCH3	CH₃	CH3	Н	CeHs	C ₆ H ₅	CH₃	H ₂	0
853	6-CON(CH ₃) ₂	CH ₃	CH₃	H	C ₆ H ₅	CeH5	CH₃	H2	0
854	6-OCONHCH₃	CH3	CH₃	H	C ₆ H ₅	C ₆ H ₅	CH₃	H ₂	0
855	6-0CON(CH ₃) ₂	CH3	CH ₃	Н	C ₈ H ₅	C ₆ H ₅	CH₃	H_2	0
856	6-OCONHCH2C6H5	CH3	CH3	Н	C ₆ H ₅	C ₈ H ₅	CH3	H ₂	0
857	6-OCSNHCH₃	СНз	CH3	H	CeH5	C ₆ H ₅	CH₃	H_2	0
858	6-OCSN(CH ₃) ₂	CH3	CH3	H	C ₆ H ₅	C ₆ H ₅	CH₃	H_2	0
859	6-OCSNHCH2C6H5	CH3	CH₃	H	CeH5	CeHs	CH₃	H_2	0
860	6-SO2NHCH3	CH3	CH ₃	H	CeH5	C 6 H 5	CH3	H_2	0
861	6-S0 ₂ N(CH ₃) ₂	CHs	CH ₃	H	CeH5	CeHs	СНз	H_2	0
862	6-S02NHC2H5	CH₃	CH₃	H	CeHs	C ₆ H ₅	CH3	H_2	0
863	6-S0 ₂ N(C ₂ H ₅) ₂	CH3	CH3	H	CeHs	CeHs	CH3	H_2	0
864	6-SO2NHCeH5	CH3	CH3	H	C.H.	C ₆ H ₅	CH3	H2	0
865	6-CF ₃	CH3	CH3	Н	CeHs	C ₆ H ₅	CH3	H ₂	0
866	5-C1	H	Н	. Н	CeHs	C _e H ₅	CH ₃	H ₂	H_2
867	5-Br	H	Н	Н	CeH5	C ₈ H ₅	СН₃	H_2	H_2
868	5-F	H	H	H	C ₆ H ₅	CaHs	CH ₃	H ₂	H_2
869	5-CH₃	H	H	H	C ₆ H ₅	C ₆ H ₅	CH₃	H_2	H_2
870	5-C ₂ H ₅	H	H	Н	C ₆ H ₅	C ₆ H ₅	CH₃	H_2	H_2
871	5-CH2CH2CH3	H	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	H_2	H2
872	5-CH(CH ₃) ₂	H	H	Н	C ₆ H ₅	CeHs	CH3	H_2	H ₂
873	5-CH ₂ C ₆ H ₅	H	Н	H	C ₆ H ₅	C ₆ H ₅	CH3	H_2	H ₂
874	5-0CH ₃	H	H	H	C ₆ H ₅	C ₆ H ₅	CH₃	H_2	H2
875	5-0C ₂ H ₅	H	Н	H	C ₈ H ₅	C ₈ H ₅	CH3	H_2	H_2
876	5-OCH ₂ C ₆ H ₅	H	Н	H	CeHs	C ₈ H ₅	CH3	H ₂	H ₂

WO 93/09116 PCT/JP92/01426

No.	R¹	R²	R³	R ⁴	R 5	R ⁶	R7	Х	Y
877	5-0C ₆ H ₅	Н	H	Н	C 8 H 5	C ₆ H ₅	CH ₃	H ₂	H_2
878	5-COCH₃	Н	H	Н	C_6H_5	C ₆ H ₅	CH3	H_2	H_2
879	5-0COCH3	Н	H	H	C ₆ H ₅	C 6 H 5	CH3	H_2	H_2
880	5-0H	H	Н	H	C ₆ H ₅	C ₆ H ₅	CH₃	H2	H_2
881	5-NH ₂	H	H	H	C ₆ H ₅	C ₆ H ₅	CH₃	H2	H_2
882	5-NO ₂	H	H	Н	C ₆ H ₅	C ₆ H ₅	CH₃	H ₂	H_2
883	5-CN	Н	H	H	C ₈ H ₅	C ₆ H ₅	CH3	H ₂	H_2
884	5-NHCOCH ₈	H	Н	H	C ₆ H ₅	C_6H_5	CH3	H_2	H_2
885	5-NHCOC & H 5	H	H -	H	C 6 H 5	C ₆ H ₅	CH3	H ₂	H_2
886	5-SCH₃	H	H	H	C_6H_5	C ₆ H ₅	CH3	H ₂ .	H ₂
887	5-SC ₂ H ₅	H	H	H	CeH5	C ₈ H ₅	CH3	H_2	H ₂
888	5-SCH(CH ₃) ₂	H	H	H	C 6 H 5	C_8H_5	CH3	H_2	H ₂
889	5-S0 ₂ CH ₃	H	H	H	C ₆ H ₅	C 8 H 5	CH3	H_2	H ₂
890	5-S0 ₂ C ₂ H ₅	H	H	H	C 6 H 5	C ₆ H ₅	CH3	H_2	H ₂
891	5-S0 ₂ CH(CH ₃) ₂	H	H	H	CeHs	CeHe	CH3	H_2	H ₂
892	5-SC ₆ H ₅	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	H_2	H ₂
893	5-SCH ₂ C ₆ H ₅	H	H	H ·	C_6H_5	C ₆ H ₅	CH3	H_2	H ₂
894	5-NHSO ₂ CH ₃	H	H	H	C&H5	C ₆ H ₅	CH3	H_2	H ₂
895	5-NHSO ₂ C ₂ H ₅	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	H_2	H_2
896	5-NHSO ₂ C ₆ H ₅	H	H	H	C ₀ H ₅	C ₆ H ₅	CH3	H2	H2
897	5-C00H	H	H	H	C ₅ H ₅	C ₆ H ₅	CH3	H_2	H ₂
898	5-C00CH ₃	H	H	H	CeHs	C ₆ H ₅	CH3	H ₂	H_2
899	5-C00C ₂ H ₅	H	H	H	CeH5	C 6 H 5	CH3	H ₂	H_2
900	5-COOCH ₂ C ₆ H ₅	H	H	H	CeHs	C ₆ H ₅	CH3	H ₂	H_2
901	5-N(CH ₃) ₂	Н	H	Н	CeH5	CeH5	СН₃	H 2	H ₂

No.	R¹	Ŗ²	R³	R4	R⁵	R ⁶	R ⁷	Х	Y
902	5-NHCH3	Н	Н	H	CeHs	C ₈ H ₅	СН₃	H ₂	H ₂
903	5-NH(C ₂ H ₅) ₂	H	H	H	C&H5	C_6H_5	CH₃	H_2	H_2
904	5-CONH ₂	H	H	Н	CeHs	C ₆ H ₅	CH₃	H_2	H_2
905	5-CONHCH₃	Н	H	Н	C ₆ H ₅	СвНб	CH3	H ₂	H_2
906	5-CON(CH ₃) ₂	H	H	H	CeH5	C ₆ H ₅	CH3	H_2	H_2
907	5-OCONHCH3	H	H	H	CeHs	CeH5	CH₃	H_2	H_2
908	5-0CON(CH ₃) ₂	Н	H	H	CeH5	CeHs	CH₃	H ₂	H ₂
909	5-OCONHCH2C6H5	H	H	H	C ₆ H ₅	C ₆ H ₅	CH₃	H_2	H_2
910	5-OCSNHCH3	H	Н	H	C ₆ H ₅	C ₆ H ₅	CH₃	H ₂	H_2
911	5-0CSN(CH ₃) ₂	Н	H -	H	C & H 5	C ₆ H ₅	CH3	H2	H_2
912	5-OCSNHCH2C6H5	Н	H	H	C ₆ H ₅	CeH5	CH₃	H_2	H_2
913	5-SO2NHCH3	H	H	H	CeH5	C ₆ H ₅	CH₃	H_2	H ₂
914	5-S0 ₂ N(CH ₃) ₂	H	H	H	CeHs	C ₆ H ₅	CH3	H_2	H_2
915	5-S02NHC2H5	H	H	H	CeH5	C ₆ H ₅	СНз	H_2	H ₂
916	5-S0 ₂ N(C ₂ H ₅) ₂	H	H	H	CeHs	CeHs	CH3	H_2	H ₂
917	5-S02NHCaHs	H	H	H	C ₆ H ₅	C ₆ H ₅	CH₃	H_2	H ₂
918	5-CF ₃	H	H	H	CeH5	CeHs	CH ₃	H_2	H ₂
919	7-C1	H	H	H	CeHs	CeH5	CH ₃	H_2	H ₂
920	7 -Br	H	H	H	CeHs	CeH5	CH₃	H_2	H ₂
921	7-F	H	H	H	C ₆ H ₅	CeH5	CH ₃	H_2	H ₂
922	7-CH ₃	H	H	H	CeHs	C ₆ H ₅	CH₃	H 2	H ₂
923	7-C2H5	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	H2	H_2
924	7-CH(CH ₃) ₂	H	H	H	CeH5	C ₈ H ₅	CH3	H_2	H ₂
925	7-CH ₂ C ₆ H ₅	H	H	H	C ₆ H ₅	C ₆ H ₅	CH₃	H_2	H ₂
926	7-0CH ₃	H	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	H2_	H ₂

No.	R¹	R²	R³	R ⁴	R 5	R e	R ⁷	Х	Y
927	7-0C ₂ H ₅	H	Н	Н	C ₆ H ₅	C ₆ H ₅	CH₃	H ₂	H ₂
928	7-0CH ₂ C ₆ H ₅	H	H	H	CeHs	C ₆ H ₅	СН₃	H_2	H_2
929	7-0C ₆ H ₅	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	H ₂	H ₂
930	7-COCH ₃	Н	H	H	C ₆ H ₅	C 6 H 5	СН₃	H ₂	H ₂
931	7-0C0CH ₃	Н	H	Н	C ₆ H ₅	CeHs	СН₃	H ₂	Н₂
932	7-0H	Н	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	H ₂	H ₂
933	7-NH ₂	H	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	H ₂	H ₂
934	7-N0 ₂	H	H	H	C ₆ H ₅	CeHs	CH₃	H_2	H ₂
935	7-CN	H	H	H	C e H 5	C ₆ H ₅	CH₃	H2	H2
936	7-NHCOCH ₃	Н	Н .	H	C ₆ H ₅	C ₆ H ₅	CH₃	H ₂	Н₂
937	7-NHCOC 6 H 5	Н	H	H	C ₆ H ₅	C ₆ H ₅	CH3	H2	H ₂
938	7-SCH ₃	H	H	H	CeHs	C ₆ H ₅	СНз	H_2	H_2
939	7-SC ₂ H ₅	H	H	H	C & H 5	C ₆ H ₅	CH3	H ₂	H_2
940	7-CH ₂ CH ₂ CH ₃	H	H	H	C 6 H 5	CeHs	CH3	H_2	H_2
941	7-SCH(CH ₃) ₂	Н	H	H	C ₆ H ₅	CaHs	CH3	H ₂	H_2
942	7-S0 ₂ CH ₃	H	H	Н	CeHs	CeHs	CH3	H_2	H_2
943	7-S0 ₂ C ₂ H ₅	H	H	H	C ₆ H ₅	C6H5	СНз	H ₂	H ₂
944	7-S0 ₂ CH(CH ₃) ₂	Н	H	H	C ₈ H ₅	CeHs	CH3	H ₂	H ₂
945	7-SC ₆ H ₅	H	H	H	C ₆ H ₅	СеНь	CH ₃	H ₂	H ₂
946	7-SCH ₂ C ₆ H ₅	H	H	H	CeH5	CeH5	CH3	H ₂	H_2
947	7-NHSO ₂ CH ₃	Н	H	H	C ₈ H ₅	C ₆ H ₅	CH3	H ₂	H_2
948	7-NHSO ₂ C ₂ H ₅	H	H	Н	CaHa	CeH5	CH ₃	H ₂	H ₂
149	7-NHSO ₂ C ₆ H ₅	H	H	H	C ₆ H ₅	C ₆ H ₅	CH₃	H ₂	H_2
50	7-C00H	H	H	H	CeHs	C 8 H 5	CH ₃	H ₂	H ₂
51	7-C00CH ₃	H	H	H	CeHs	C ₆ H ₅	CH₃	H ₂	H ₂
52	7-C00C ₂ H ₅	Н	H	Н	C ₆ H ₅	C ₆ H ₅	CH3	H ₂	H ₂

No.	R¹	R²	R³	R ⁴	R ⁵	R e	R7	X	Y
953	7-C00CH ₂ C ₆ H ₅	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	H ₂	H ₂
954	7-N(CH ₃) ₂	H	H	H	CeHs	CeH5	CH3	H_2	H ₂
955	7-NHCH3	H	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	H_2	H ₂
956	7-NH(C ₂ H ₅) ₂	H	H	H	C ₆ H ₅	C ₆ H ₅	CH₃	H2	H_2
957	7-CONH ₂	H	H	H	CeHs	C ₆ H ₅	CH₃	H_2	H ₂
958	7-CONHCH3	Н	H	H	CeH5	C ₆ H ₅	CH3	H_2	H_2
959	7-CON(CH ₃) ₂	H	H	H	C.H.	C ₆ H ₅	СНз	H_2	H_2
960	7-OCONHCH3	H	H	H	C ₆ H ₅	CaHs	CH₃	H ₂	H_2
961	7-0CON(CH ₃) ₂	H	H	H	CoHo	C ₆ H ₅	CH3	H_2	H ₂
962	7-OCONHCH2C6H5	H	Н.	H	C ₆ H ₅	C 6 H 5	CH ₃	H_2	H ₂
963	7-OCSNHCH3	H	H	H	CeHs	СеНъ	CH3	H ₂ .	H_2
964	7-0CSN(CH ₃) ₂	H	H	H	C ₆ H ₅	CeHs	CH3	H_2	H ₂
965	7-OCSNHCH2C6H5	H	H	H	CeHs	СъНъ	CH ₃	H_2	H_2
966	7-SO2NHCH3	H	H	H	CeH5	CeHs	CH3	H ₂	H_2
967	7-S0 ₂ N(CH ₃) ₂	H	H	H	CeHs	CeHs	CH3	H_2	H_2
968	7-SO2NHC2H5	H	H	H	C ₆ H ₅	CeHs	CH ₃	H_2	H_2
969	7-S0 ₂ N(C ₂ H ₅) ₂	H	H	H	CeHs	C.H.	CH₃	H_2	H_2
970	7-SO2NHC6H5	H	H	H	CeH5	C ₆ H ₅	CH ₃	H_2	H ₂
971	7-CF ₃	H	H	H	CeHs	C ₆ H ₅	CH3	H_2	H_2
972	6-C1	H	H	H	CeHs	CeH5	CH3	H_2	H_2
973	6-Br	H	H	H	CeHe	C ₆ H ₅	CH₃	H_2	H_2
974	6-F	H	H	H	C ₆ H ₅	C ₆ H ₅	СН₃	H_2	H_2
975	6-CH ₃	H	H	H	CeHs	C ₈ H ₅	CH₃	H_2	H ₂
976	6-C ₂ H ₅	H	H	H	C ₆ H ₅	C ₆ H ₅	CH₃	H_2	H_2
377	6-S0 ₂ CH(CH ₃) ₂	H	H	Н	C ₆ H ₅	C ₈ H ₅	CH₃	H ₂	H ₂

No.	R¹	R ²	R³	R ⁴	R 5	R ⁶	R ⁷	X	Y
978	6-CH(CH ₃) ₂	Н	H	Н	C ₆ H ₅	C 8 H 5	CH₃	H_2	H ₂
979	6-CH ₂ C ₆ H ₅	Н	H	H	C ₆ H ₅	C 6 H 5	CH₃	H_2	H ₂
980	6-0CH ₃	H	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	H ₂	H_2
981	6-0C ₂ H ₅	Н	H	H	CeHs	CeH5	СНз	H_2	H_2
982	6-0CH ₂ C ₆ H ₅	H	H	H	CeH5	C ₆ H ₅	CH ₃	H2	H ₂
983	6-0C ₆ H ₅	H	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	H_2	H ₂
984	6-COCH ₃	H	H	H	CeHs	C ₈ H ₅	CH3	H ₂	H ₂
985	6-0C0CH ₃	H	H	H	C e H 5	CeHs	CH3	H2	Н₂
986	6-0H	H	H	H	C 6 H 5	C ₆ H ₅	CH3	H_2	H2
987	6-NH ₂	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	H2	H2
988	6-N0 ₂	H	H	H	C_6H_5	CeHs	CH3	H_2	H_2
989	6-CN	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	H 2	H_2
990	6-NHCOCH₃	H	H	H	C ₈ H ₅	CeHs	CH₃	H_2	H_2
991	6-NHCOC ₆ H ₅	H	H	H	C ₆ H ₅	C ₆ H ₅	CH₃	H ₂	H_2
992	6-SCH ₃	H	H	H	C 6 H 5	CeHs	CH₃	H2	H2
993	6-SC ₂ H ₅	H	H	H	C_6H_5	C ₆ H ₅	CH ₃	H_2	H_2
994	6-SCH(CH ₃) ₂	H	H	H	C ₆ H ₅	C ₈ H ₅	CH3	H_2	H_2
995	6-S0 ₂ CH ₃	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	H ₂	H2
996	6-S0 ₂ C ₂ H ₅	H	H	H	CeHs	C ₆ H ₅	CH3	H ₂	H_2
997	6-SO ₂ CH(CH ₃) ₂	H	H	H	C ₆ H ₅	CeHs	CH3	H2	H_2
998	6-SC ₆ H ₅	H	H	H	CeHs	C ₆ H ₅	CH3	H ₂	H ₂
999	6-SCH ₂ C ₆ H ₅	H	H	H	C 6 H 5	C_6H_5	CH ₃	H ₂	H_2
000	6-NHSO ₂ CH ₃	H	H	H	C & H 5	C_6H_5	CH ₃	H ₂	H ₂
001	6-NHSO ₂ C ₂ H ₅	H	H	H	CeHs	C ₆ H ₆	CH3	H_2	H_2
002	6-NHSO ₂ C ₆ H ₅	H	H	H	CeHs	C ₆ H ₅	CH ₃	H_2	H_2
003	6-СООН	Н	Н	Н	C 8 H 5	C ₈ H ₅	CH₃	H ₂	Н₂

No.	R¹	R²	R³	R ⁴	R ⁵	R ⁶	R ⁷	X	Y
 L004	6-C00CH ₃	Н	Н	Н	C ₆ H ₅	C ₆ H ₅	СНз	H ₂	H ₂
1005	6-C00C ₂ H ₅	H	H	H	C ₆ H ₅	C ₈ H ₅	CH3	H_2	H_2
1006	6-C00CH ₂ C ₆ H ₅	H	H	H	CeH5	CeH5	CH₃	H_2	H_2
1007	6-N(CH ₃) ₂	Н	H	H	CeH5	CeHs	CH3	H_2	H ₂
1008	6-NHCH3	H	H	H	C ₆ H ₅	C ₆ H ₅	СНз	H_2	H_2
1009	6-NH(C ₂ H ₅) ₂	H	H	H	CeH5	C ₆ H ₅	CH3	H_2	H_2
010	6-CONH ₂	H	H	H	C ₈ H ₅	C ₆ H ₅	CH3	H_2	H_2
1011	6-CONHCH₃	H	H	H	C & H 5	C ₆ H ₅	CH 3	H_2	H_2
1012	6-CON(CH ₃) ₂	H	H	H	C ₆ H ₅	CeHs	CH3	H_2	H_2
1013	6-OCONHCH3	H	H	H	CeH5	C ₆ H ₅	CH3	H2	H_2
014	6-0CON(CH ₃) ₂	H	Н	H	C & H 5	CeH5	CH3	H_2	H_2
015	6-OCONHCH2CeH5	H	H	H	CeHs	C ₆ H ₅	CH3	H_2	H_2
1016	6-OCSNHCH₃	H	H	H	CeH5	C ₆ H ₅	CH3	H_2	H_2
1017	6-OCSN(CH ₃) ₂	H	H	H	C & H 5	C ₆ H ₅	CH3	H_2	H_2
018	6-OCSNHCH2C8H5	H	H	H	C 6 H 5	C _e H ₅	CH3	H_2	H_2
019	6-SO ₂ NHCH ₃	Н	H	H	C ₆ H ₅	C ₆ H ₅	CH3	H ₂	H_2
020	6-S0 ₂ N(CH ₃) ₂	H	H	Н	C ₈ H ₅	CeHs	CH3	H_2	H_2
021	6-SO ₂ NHC ₂ H ₅	Н	H	H	C e H 5	CeHs	CH3	H_2	H_2
1022	6-S0 ₂ N(C ₂ H ₅) ₂	H	H	H	CeHs	CeHs	CH3	H_2	H_2
1023	6-SO2NHC6H5	Н	H	H	CeHs	CeHs	CH ₃	H_2	H_2
1024		Н	H	Ħ	CeH5	CeHs	CH3	H_2	H ₂
1025	6-C1	СН₃	CH₃	H	C _e H ₅	CeH5	CH ₃	H ₂	H ₂
1026		CH ₃	CH₃	H	CeH5	C ₆ H ₅	CH ₃	H_2	H_2
1027		CH₃	CH₃	H	C ₆ H ₅	C ₆ H ₅	CH ₃	H_2	H_2
1028		CH ₃	CH3	H	C ₆ H ₅	C ₆ H ₅	CH ₃	H ₂	H ₂

No.	R¹	R²	R³	R ⁴	R ⁵	R e	R ⁷	X	Y
1029	6-C ₂ H ₅	CH3	CH ₃	Н	C ₆ H ₅	C ₆ H ₅	CH3	H ₂	H ₂
1030	6-SO ₂ CH(CH ₃) ₂	CH3	CH3	Н	C ₆ H ₅	C 6 H 5	СНз	H_2	H_2
1031	6-CH(CH ₃) ₂	CH3	CH3	H	C ₆ H ₅	C_6H_5	СНз	H_2	H_2
1032	6-CH ₂ C ₆ H ₅	CH3	CH3	H	C 6 H 5	C 6 H 5	CH ₃	H_2	H_2
1033	6-0CH ₃	CH3	CH3	H	C ₆ H ₅	C.H.	CH3	H ₂	H_2
1034	6-0C ₂ H ₅	CH ₃	CH3	H	C_6H_5	CeHs	CH ₃	H_2	H_2
1035	6-0CH ₂ C ₆ H ₅	CH3	CH3	H	C ₆ H ₅	C ₆ H ₅	CH3	H_2	H_2
1036	6-0C e H 5	CH3	CH ₃	Н	CeHs	CeHs	CH₃	H2	H ₂
1037	6-COCH ₃	CH3	CH3	H	C ₆ H ₅	CeHs	CH₃	H_2	H_2
1038	6-0C0CH3	CH3	CH3	Н	C ₈ H ₅	C 6 H 5	CH3	H_2	H_2
1039	6-0H	CH3	CH3	H	C&H5	C 6 H 5	CH3	H_2	H ₂
1040	6-NH ₂	CH3	CH₃	H	CeHs	CeHs	CH3	H_2	H ₂
1041	6-N0 ₂	CH3	CH3	H	CoHo	CeHs	CHa	H_2	H_2
042	6-CN	CH3	CH3	H	C ₆ H ₅	CeHs	CH₃	H_2	H ₂
043	6-NHCOCH₃	CH3	CH ₃	H	C ₆ H ₅	CeHs	CH 3	H ₂	H ₂
044	6-NHCOC ₆ H ₅	CH3	CH _a	H	C_6H_5	СеНь	CH3	H_2	H ₂
045	6-SCH ₃	CH3	CH3	H	CeHs	C ₆ H ₅	CH3	H ₂	H2
046	6-SC ₂ H ₅	СНз	CH3	H	C 6 H 5	C ₈ H ₅	CH3	H ₂	H ₂
.047	6-SCH(CH ₃) ₂	CH3	CH ₃	H	C&Hs	CeHs	CH3	H_2	H_2
048	6-S0 ₂ CH ₃	CH3	CH ₃	H	C ₆ H ₅	CeHs	CH3	H_2	H_2
049	6-S0 ₂ C ₂ H ₅	CH3	CH3	H	C ₆ H ₅	СеНь	CH₃	H ₂	H ₂
050	6-S0 ₂ CH(CH ₃) ₂	CH ₃	CH ₃	H	CeHs	C ₆ H ₅	CH3	H ₂	H ₂
051	6-SC & H 5	CH3	CH ₃	H	C ₆ H ₅	C ₆ H ₅	CH3	H ₂	H_2
052	6-SCH ₂ C ₆ H ₅	CH3	CH ₃	H	CeHs	CeHs	CH₃	H ₂	H_2
053	6-NHSO ₂ CH ₃	CH₃	CH3	H	C ₆ H ₅	C ₆ H ₅	CH₃	H ₂	H_2
054	6-NHS0 2 C 2 H 5	CH₃	CH3	H	C 6 H 5	CeHs	CH₃	H ₂	H₂

No.	\mathbb{R}^1	R ²	R³	R ⁴	R ⁵	R ^e	R ⁷	X	Y
		СНз	CH₃	Н	CeHs	СеНь	CH₃	H ₂	H ₂
1055	6-NHSO ₂ C ₆ H ₅	CH ₃	CH ₃	H	CeH5	C ₆ H ₅	CH₃	H2	H ₂
1056	6-COOH		CH ₃	Н	C ₆ H ₅	C ₆ H ₅	CH₃	H2	H_2
1057	6-C00CH ₃	CH ₃			CeHs	CeH5	СН₃	H ₂	H ₂
1058	6-C00C ₂ H ₅	CH ₃	CH ₃	H		CeHs	СНз	H ₂	H ₂
1059	6-COOCH ₂ C ₆ H ₅	CH ₃	CH₃	H	C H s		CH ₃	H ₂	H ₂
1060	6-N(CH ₃) ₂	CH3	CH₃	H	C ₆ H ₅	C ₈ H ₅			H ₂
1061	6-NHCH₃	CH₃	CH ₃	H	C ₆ H ₅	C ₆ H ₅	CH₃	H ₂	
1062	6-NH(C ₂ H ₅) ₂	CH₃	CH₃	H	C ₆ H ₅	C _e H ₅	CH₃	H ₂	H ₂
1063	6-CONH ₂	CH₃	CH₃	H	C ₆ H ₅	CeHs	CH₃	H ₂	H ₂
1064	6-CONHCH3	CH₃	CH3.	H	CeHs	CeHs	CH₃	H ₂	H ₂
1065	6-CON(CH ₃) ₂	CH3	CH₃	H	C ₆ H ₅	C ₈ H ₅	CH ₃	H ₂	H ₂
1066	6-OCONHCH ₃	CH3	CH3	H	CeH5	СеНь	CH₃	H ₂	H ₂
1067	6-0CON(CH ₃) ₂	CH3	CH3	H	CeHs	C ₆ H ₅	CH₃	H_2	H ₂
1068	6-OCONHCH ₂ C ₆ H ₅	CH3	CH3	H	CeHs	CeHs	CH3	H_2	H ₂
1069	6-OCSNHCH ₃	CH3	CH3	H	CeHs	CeHs	CH ₃	H_2	H_2
1070	6-0CSN(CH ₃) ₂	CH3	CH3	H	CeH5	CeHs	CH ₃	H_2	H2
1071	6-OCSNHCH2C6H5	CH3	CH3	Н	CeHs	C ₈ H ₅	CH₃	H_2	H_2
1072	6-S02NHCH3	CH3	CH3	H	CeHs	C ₆ H ₅	CH3	H_2	H_2
1073	6-S0 ₂ N(CH ₃) ₂	CH3	CH₃	H	CeHs	CeHs	CH3	H_2	H2
1074	6-S02NHC2H5	CH3	CH3	H	CeH5	CeH5	CH3	H_2	H_2
1075	6-S0 ₂ N(C ₂ H ₅) ₂	CH3	CH3	H	C ₆ H ₅	C ₈ H ₅	СНз	H_2	H2
1076	6-SO2NHCeH5	CH3	CH ₃	H	CeH5	CeHe	CH₃	H_2	H ₂
1077	6-CF ₃	CH3	CH3	H	CeHs	CeHs	CH ₃	H_2	H_2
1078	5-C1	H	H	H	C ₆ H ₅	CeH5	CH3	0	0
1079	5-Br	H	H	Н	C ₆ H ₅	C 6 H 5	CH ₃	0_	0

No.	R¹	R²	R³	R 4	R ⁵	R ⁶	R ⁷	Х	Y
1080	5-F	Н	Н	Н	C ₆ H ₅	C ₈ H ₅	СН₃	0	0
1081	5-CH ₃	Н	Н	Н	C ₆ H ₅	C ₆ H ₅	СНз	0	0
1082	5-C ₂ H ₅	Н	Н	Н	C ₆ H ₅	C ₆ H ₅	CH₃	0	0
1083	5-CH2CH2CH3	H	Н	Н	C ₆ H ₅	C ₆ H ₅	СН₃	0	0
1084	5-CH(CH ₃) ₂	Н	H	Н	CeHs	СвНъ	СН₃	0	0
1085	5-CH ₂ C ₆ H ₅	Н	H	Н	CoHs	C 6 H 5	CH₃	0	0
1086	5-0CH ₃	H	H	H	CeHs	СеНь	СНз	0	0
1087	5-0C ₂ H ₅	H	H	Н	C ₆ H ₅	СвНъ	CH ₃	0	0
1088	5-0CH ₂ C ₆ H ₅	Н	H	H	C ₆ H ₅	CeHs	CH3	0	0
1089	5-0C ₆ H ₅	Н	H	Н	C ₆ H ₅	C ₆ H ₅	CH ₃	0	0
1090	5-COCH ₃	H	H	H	C ₆ H ₅	CeH5	CH ₃	0	0
1091	5-0COCH3	H	H	H	C ₆ H ₅	C 8 H 5	CH3	0	0
1092	5-OH	H	H	H	C.H.	CeHs	CH3	0	0
1093	5-NH ₂	H	H	H	CeH5	CeHs	CH3	0	0
1094	5-N0 ₂	H	H	H	C _e H ₅	CeHs	CH3	0	0
1095	5-CN	Н	H	H	C ₆ H ₅	CeHs	CH3	0	0
1096	5-NHCOCH₃	H	H	H	CeHs	CeHs	CH ₃	0	0
1097	5-NHCOC ₆ H ₅	H	H	H	C 8 H 5	C ₆ H ₅	CH3	0	0
1098	5-SCH ₃	Н	H	H	C & H 5	СвНъ	CH3	0	0
1099	5-SC ₂ H ₅	Н	H	H	CeHs	C ₆ H ₅	СНз	0	0
1100	5-SCH(CH ₃) ₂	H	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	0	0
1101	5-S0 ₂ CH ₃	Н	H	H	C & H 5	CeHs	CH3	0	0
1102	5-S0 ₂ C ₂ H ₅	Н	H	H	CeHe	C ₆ H ₅	CH ₃	0	0
1103	5-S0 ₂ CH(CH ₃) ₂	H	H	H	C & H 5	C ₆ H ₅	CH3	0	0
1104	5-SC ₆ H ₅	H	H	H	C ₆ H ₅	CeHs	CH₃	0	0
1105	5-SCH ₂ C ₆ H ₅	H	Н	H	C e H 5	C 6 H 5	CH ₃	0	0

No.	R¹	R²	R³	R ⁴	R ⁵	R ⁶	R ⁷	Х	Y
1106	5-NHSO₂CH₃	H	H	Н	CeHs	C ₈ H ₅	CH3	0	0
1107	5-NHSO ₂ C ₂ H ₅	H	H	H	C ₆ H ₅	C ₈ H ₅	CH3	0	0
1108	5-NHSO2C6H5	H	H	H	CeHo	C ₆ H ₅	CH3	0	0
1109	5-C00H	H	H	H	C ₆ H ₅	C.H.	CH ₃	0	0
1110	5-C00CH ₃	H	H	H	C ₆ H ₅	CeH5	CH ₃	0	0
1111	5-C00C ₂ H ₅	H	H	H	C ₆ H ₅	CeH5	CH ₃	0	0
1112	5-COOCH2C6H5	H	H	H	CeH5	C ₆ H ₅	CH ₃	0	0
1113	5-N(CH ₃) ₂	H	H	H	C ₈ H ₅	C ₆ H ₅	CH ₃	0	0
114	5-NHCH3	H	H	H	CeHe	CeH5	CH3	0	0
115	5-NH(C ₂ H ₅) ₂	H	H .	H	C ₆ H ₅	CeHs	CH₃	0	0
116	5-CONH ₂	H	H	H	C ₈ H ₅	CeHs	CH₃	0	0
117	5-CONHCH ₃	H	H	H	CeHs	CeHs	CH3	0	0
118	5-CON(CH ₃) ₂	H	H	H	C ₆ H ₅	C ₆ H ₅	CH₃	0	0
119	5-OCONHCH ₃	H	H	H	CeHs	C ₆ H ₅	CH₃	0	0
120	5-0CON(CH ₃) ₂	H	H	H	CeH5	CeH5	CH₃	0	0
121	5-OCONHCH ₂ C ₆ H ₅	H	H	·H	CeH5	C ₆ H ₅	CH3	0	0
122	5-OCSNHCH ₃	H	H	H	CeHs	C ₆ H ₅	CH3	0	0
123	5-0CSN(CH ₃) ₂	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	0	0
124	5-OCSNHCH2C6H5	H	H	H	CeH5	C ₆ H ₅	CH3	0	0
125	5-SO2NHCH3	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	0	0
126	5-S0 ₂ N(CH ₃) ₂	H	H	H	C.H.	C ₆ H ₅	СНз	0	0
127	5-SO2NHC2H5	H	H	H	C ₆ H ₅	C ₈ H ₅	СНз	0	0
128	5-S0 ₂ N(C ₂ H ₅) ₂	H	H	H	CeHs	C ₆ H ₅	СНз	0	0
129	5-SO2NHC6H5	H	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	0	0
130	5-CF ₃	H	H	Н	CeHs	CeHs	CH ₃	0	0

No.	R¹	R²	R³	R4	R ⁵	R ⁶	R ⁷	Х	Y
1131	7-01	Н	Н	Н	C ₆ H ₅	C ₆ H ₅	CH ₃	0	0
1132	7-Br	H	H	H	C ₆ H ₅	C ₆ H ₅	CH₃	0	0
1133	7-F	H	H	H	C 6 H 5	C 6 H 5	CH₃	0	0
1134	7-CH ₃	H	H	H	CeHs	C ₆ H ₅	CH₃	0	0
1135	7-C ₂ H ₅	H	H	H	C 6 H 5	C ₆ H ₅	CH₃	0	0
1136	7-CH(CH ₃) ₂	H	H	Н	C & H 5	CeHs	СНэ	0	0
1137	7-CH ₂ C ₆ H ₅	H	H	H	C 6 H 5	CeHs	CH₃	0	0
1138	7-0CH ₃	H	H	H	C ₈ H ₅	C & H 5	CH₃	0	0
1139	7-0C ₂ H ₅	H	H	H	CeHs	C ₆ H ₅	CH 3	0	0
1140	7-0CH ₂ C ₆ H ₅	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	0	0
1141	7-0C 6 H 5	H	H	H	C ₆ H ₅	C 6 H 5	CH ₃	0	0
1142	7-COCH ₃	H	H	H	C ₆ H ₅	C_6H_5	CH3	0	0
1143	7-0C0CH ₃	H	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	0	0
1144	7-0H	H	H	H	C ₆ H ₅	C ₆ H ₅	CH₃	0	0
1145	7-NH ₂	H	H	H	C.H.	C ₆ H ₅	CH ₃	0	0
1146	7-N0 ₂	H	H	H	CeHs	C ₆ H ₅	CH₃	0	.0
1147	7-CN	H	H	H	C & H &	C ₆ H ₅	CH ₃	0	0
1148	7-NHCOCH ₃	H	H	H	C e H 5	C ₆ H ₅	CH₃	0	0
1149	7-NHCOC 6 H 5	H	H	H	C 6 H 5	C ₆ H ₅	CH 3	0	0
1150	7-SCH ₃	H	H	H	CeHs	C.H.	CH3	0	0
1151	7-SC ₂ H ₅	H	H	H	C & H 5	C ₆ H ₅	CH ₃	0	0
1152	7-CH2CH2CH3	H	H	H	СвНъ	C ₆ H ₅	CH₃	0	0
153	7-SCH(CH ₃) ₂	H	H	H	C ₆ H ₅	C 6 H 5	CH3	0	0
154	7-S0 ₂ CH ₃	H	H	H	C ₆ H ₅	C ₈ H ₅	CH3	0	0
155	7-S0 ₂ C ₂ H ₅	H	H	H	C_6H_5	C_6H_5	CH3	0	0
156	7-S0 ₂ CH(CH ₃) ₂	Н	Н	Н	C ₆ H ₅	C ₆ H ₅	CH₃	0	0

No.	R¹	R²	R³	R ⁴	R ⁵	R e	R ⁷	X	Y
1157	7-SC6H5	Н	Н	Н	C 8 H 5	CeHs	СН₃	0	0
1158	7-SCH2C6H5	H	H	Н	C ₈ H ₅	CeH5	CH ₃	0	0
1159	7-NHSO2CH3	H	H	H	C ₈ H ₅	C ₆ H ₅	CH3	0	0
1160	7-NHSO ₂ C ₂ H ₅	H	H	Н	C ₆ H ₅	CeHs	CH ₃	0	. 0
1161	7-NHSO ₂ C ₆ H ₅	Н	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	0	0
1162	7-C00H	Н	H	H	CeHs	CeHs	CH3	0	0
1163	7-C00CH3	H	Н	H	C ₆ H ₅	CeHs	CH3	0	0
1164	7-C00C ₂ H ₅	H	H	H	C ₈ H ₅	C ₆ H ₅	CH₃	0	0
1165	7-C00CH2C6H5	H	H	H	CeHs	C ₆ H ₅	CH3	0	0
1166	7-N(CH ₃) ₂	H	Н.	H	C ₆ H ₅	C ₆ H ₅	CH3	0	0
1167	7-NHCH ₃	Н	H	H	CaHs	C ₆ H ₅	CH3	0	0
1168	7-NH(C ₂ H ₅) ₂	H	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	0	0
1169	7-CONH ₂	H	H	H	CeH5	C e H s	CH3	0	0
1170	7-CONHCH3	H	H	H	CeHs	CeH5	CH3	0	0
1171	7-CON(CH ₃) ₂	H	H	H	CeHs	СеНб	CH3	0	0
1172	7-OCONHCH3	H	H	H	CeH5	C & H 5	CH3	0	0
1173	7-0CON(CH ₃) ₂	H	H	H	CeHs	C ₆ H ₅	CH ₂	0	0
1174	7-OCONHCH2C6H5	H	H	H	CeHs	CeHs	CH3	0	0
1175	7-OCSNHCH3	H	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	0	0
1176	7-0CSN(CH ₃) ₂	H	H	H	C ₈ H ₅	CeHs	CH3	0	0
1177	7-OCSNHCH2C6H5	H	H	H	C ₆ H ₅	CeH5	CH₃	0	0
1178	7-SO2NHCH3	H	H	H	C ₆ H ₅	CeHs	CH3	0	0
1179	7-S0 ₂ N(CH ₃) ₂	H	H	H	CeHs	СеНъ	CH₃	0	0
1180	7-S02NHC2H5	H	H	H	CeHs	C ₆ H ₅	CH3	0	0
1181	7-S0 ₂ N(C ₂ H ₅) ₂	H	H	H	C ₆ H ₅	CeH5	CH3	0	0
1182	7-SO2NHC8H5	H	Н	H	C ₆ H ₅	CeH5	CH3	0	0_

No.	R1	R²	R³	R ⁴	R 5	R ⁶	R ⁷	X	Y
1183	7-CF ₃	H	Н	Н	C _e H ₅	C ₈ H ₅	СН₃	0	0
1184	6-C1	H	H	H	C ₆ H ₅	C_6H_5	CH₃	0	0
1185	6-Br	H	H	H	C_6H_5	C 6 H 5	CH₃	0	0
1186	6-F	H	H	H	C_8H_5	C & H 5	CH₃	0	0
1187	6-CH ₃	H	H	H	C_8H_5	CeHs	CH3	0	0
1188	6-C ₂ H ₅	H	H	H	C 8 H 5	C ₆ H ₅	CH3	0	0
1189	6-S0 ₂ CH(CH ₃) ₂	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	0	0
1190	6-CH(CH ₃) ₂	H	H	H	C.H.	СеНь	CH ₈	0	0
1191	6-CH ₂ C ₆ H ₅	H	H	H	C.H.	C ₆ H ₅	CH ₃	0	0
1192	6-0CH³	H	H	H	CeHs	C ₆ H ₅	CH₃	0	0
1193	6-0C ₂ H ₅	H	H	H	CeH5	C _e H ₅	CH ₃	0	0
1194	6-0CH ₂ C ₆ H ₅	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	0	0
1195	6-0C ₈ H ₅	H	H	H	C ₆ H ₅	CeHs	CH ₃	0	0
1196	6-COCH ₃	H	Н	H	C ₆ H ₅	CeHs	CH3	0	0
1197	6-0C0CH ₃	H	H	H	C ₆ H ₅	CeH5	CH3	0	0
1198	6- 0 H	H	H	H	C ₆ H ₅	CeHs	СН₃	0	0
1199	6-NH ₂	H	H	H	C ₆ H ₅	CeHs	CH₃	0	0
1200	6-N0 ₂	H	H	H	C ₈ H ₅	C ₆ H ₅	CH ₃	0	0
1201	6-CN	H	H	H	C ₆ H ₅	CeHs	CH₃	0	0
1202	6-NHCOCH₃	H	H	H	C ₆ H ₅	C 6 H 5	CH ₃	0	0
1203	6-NHCOC & H 5	H	H	H	CeHs	C ₆ H ₅	CH ₃	0	0
1204	6-SCH ₃	H	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	0	0
1205	6-SC ₂ H ₅	H	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	0	0
1206	6-SCH(CH ₃) ₂	H	H	H	CeHs	C ₆ H ₅	CH ₃	0	0
1207	6-S0 ₂ CH ₃	Н	H	Н	C 8 H 5	СвНъ	CH3	0	0

No.	R¹	R²	R³	R ⁴	R ⁵	R ⁶	R ⁷	X	Y
 L208	6-S0 ₂ C ₂ H ₅	H	Н	Н	CeHs	C 6 H 5	CH₃	0	0
1209	6-SO ₂ CH(CH ₃) ₂	H	H	H	CeHs	CeHs	CH 3	0	0
1210	6-SC ₆ H ₅	Н	H	H	C ₆ H ₅	C ₆ H ₅	CH3	0	0
1211	6-SCH ₂ C ₆ H ₅	H	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	0	0
1212	6-NHSO2CH3	Н	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	0	0
213	6-NHSO ₂ C ₂ H ₅	H	Н.	H	CeHs	CeH5	CH ₃	0	0
214	6-NHSO ₂ C ₈ H ₅	H	H	H	C.H.	CeHs	CH ₃	0	0
215	6-C00H	H.	H	H	C ₆ H ₅	CeH5	CH3	0,	0
216	6-C00CH ₃	H	H	H	C ₆ H ₅	CeHs	CH3	0	0
217	6-C00C ₂ H ₅	H	н .	H	CoHo	C ₆ H ₅	CH3	0	0,
218	6-C00CH ₂ C ₆ H ₅	H	H	H	C ₈ H ₅	CeH5	CH ₃	0.	0
219	6-N(CH ₃) ₂	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	0	0
220	6-NHCH ₃	H	H _.	H	C ₆ H ₅	CeHs	CH3	0	0
221	6-NH(C ₂ H ₅) ₂	H	H	H	C ₈ H ₆	CeHs	CH3	0	0
222	6-CONH ₂	H	H	H	C ₆ H ₅	C ₆ H ₅	CH₃	0	0
223	6-CONHCH ₃	H	H	H	C 6 H 5	CeH5	CH3	0	0
224	6-CON(CH ₃) ₂	H	H	Ħ	CeH5	C ₆ H ₅	CH ₃	0	0
225	6-OCONHCH3	H	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	0	0
226	6-0CON(CH ₃) ₂	H	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	0	0
227	6-OCONHCH2C6H5	H	H	H	CeH5	C ₆ H ₅	CH3	0	0
.228	6-OCSNHCH3	H	H	H	C ₆ H ₅	C ₆ H ₅	СН₃	0	0
229	6-0CSN(CH ₃) ₂	H	H	H	C ₈ H ₅	C ₆ H ₅	CH₃	0	0
230	6-OCSNHCH2C6H5	H	H	H	C ₆ H ₅	C ₆ H ₅	СНз	0	0
231	6-SO ₂ NHCH ₃	H	H	H	C ₆ H ₅	C ₆ H ₅	CH₃	0	0
232	6-S0 ₂ N(CH ₃) ₂	H	H	H	C ₆ H ₅	CeHs	CH3	0	0
233	6-S02NHC2H5	H	H	H	CeH5_	C ₆ H ₅	CH ₃	0	0

No.	R¹	R²	R³	R ⁴	R 5	R 6	R ⁷	Х	Y
1234	6-S0 ₂ N(C ₂ H ₅) ₂	Н	Н	Н	C ₆ H ₅	C ₆ H ₅	CH ₃	0	0
1235	6-S02NHC6H5	Н	H	H	C_6H_5	C 6 H 5	CH₃	0	0
1236	6-CF ₃	• Н	H	H	C ₆ H ₅	C ₆ H ₅	CH3	0	0
1237	6-C1	CH ₃	CH ₃	Н	C 8 H 5	C _e H ₅	CH3	0	0
1238	6-Br	CH3	СНз	H	C&H5	CeHs	CH3	0	0
1239	6-F	CH3	CH3	H	C.H.	C ₆ H ₅	CH3	0	0
1240	6-CH ₃	CH3	CH ₃	H	CeH5	CeHs	CH3	0	0
1241	6-C ₂ H ₅	CH3	CH3	H	C & H 5	CeHs	CH ₃	0	0
1242	6-SO ₂ CH(CH ₃) ₂	CH3	CH3	H	CeH5	CeHs	CH ₃	0	0
1243	6-CH(CH ₃) ₂	CH3	CH3	H	C_6H_5	CeHs	CH3	0	0
1244	6-CH ₂ C ₆ H ₅	CH ₃	CH3	H	C ₆ H ₅	C ₈ H ₅	CH ₃	0	0
1245	6-0CH ₃	CH₃	CH3	H	C ₆ H ₅	C ₆ H ₅	CH₃	0	0
1246	6-0C ₂ H ₅	СНз	CH3	H	CeHe	C & H &	CH3	0	0
1247	6-0CH ₂ C ₆ H ₅	CH3	CH3	H	C ₈ H ₅	CeHs	CH3	0	0
1248	6-0C ₆ H ₅	CH3	CH3	Н	C ₈ H ₅	C ₆ H ₅	CH3	0	0
1249	6-COCH ₃	CH3	CH3	Н	CeHs	C ₆ H ₅	CH3	0	0
1250	6-0C0CH3	CH ₃	CH3	H	C ₈ H ₅	C ₆ H ₅	CH₃	0	0
1251	6-0H	CH ₃	CH ₃	H	CeHs	C&H5	CH3	0	0
1252	6-NH ₂	CH3	CH3	H	C 8 H 5	C & H 5	CH₃	0	0
1253	6-N0 ₂	CH3	CH3	H	C 6 H 5	C ₆ H ₅	CH₃	0	0
1254	6-CN	CH3	CH3	H	C ₆ H ₅	C ₆ H ₅	CH₃	0	0
1255	6-NHCOCH ₃	CH ₃	CH3	H	CeHs	C&H5	CH₃	0	0
1256	6-NHCOC 6H 5	CH3	CH3	H	C&H5	C ₆ H ₅	CH3	0	0
1257	6-SCH₃	CH3	CH3	H	C&H5	C.H.	CH ₃	0	0
1258	6-SC ₂ H ₅	CH₃	CH₃	H	C 6 H 5	CaHs	CH₃	0	0

No.	R ¹	R²	R³	R ⁴	R ⁵	Re	R ⁷	Х	Y
 1259	6-SCH(CH ₃) ₂	CH3	CH3	H	СеНъ	C ₆ H ₅	СНз	0	0
1260	6-S0 ₂ CH ₃	CH3	CH3	H	C ₆ H ₅	C ₆ H ₅	CH3	0	Ö
1261	6-S0 ₂ C ₂ H ₅	CH3	СНз	H	CeH5	CeHs	CH ₃	0	0
1262	6-SO ₂ CH(CH ₃) ₂	CH3	CH3	H	CeHs	CeHs	CH3	0	0
1263	6-SC ₆ H ₅	CH3	CH3	H	C ₆ H ₅	CeHs	CH3	0	0
1264	6-SCH ₂ C ₆ H ₅	CH3	CH ₃	H	C_8H_5	CeHs	CH3	0	0
1265	6-NHSO2CH3	CH3	СНз	H	CeH5	C ₆ H ₅	CH3	0	0
1266	6-NHSO ₂ C ₂ H ₅	CH3	CH3	H	CeHs	CeHs	CH3	0	0
1267	6-NHSO ₂ C ₆ H ₅	CH3	СНз	H	CeHs	CeH5	CH₃	0	0
1268	6-C00H	СНз	СН3.	H	C.H.	CeHs	CH₃	0	0
1269	6-C00CH ₃	CH3	CH3	H	C ₆ H ₅	C ₆ H ₅	CH3	0	0
1270	6-C00C ₂ H ₅	CHa	CH3	H	C.H.	CeHs	CH₃	0	0
1271	6-COOCH ₂ C ₆ H ₅	CH3	CH3	H	CeHs	C ₆ H ₅	CH₃	0	0
1272	6-N(CH ₃) ₂	CH ₃	CH3	H	CeH5	CeHs	CH₃	0	0
1273	6-NHCH ₃	CHa	CH3	H	CeHs	CeHs	CH3	0	0
1274	6-NH(C ₂ H ₅) ₂	CH3	CH3	H	C_8H_5	C ₆ H ₅	CH3	0	0
1275	6-CONH ₂	CH3	CH3	H	CeHs	C_6H_5	CH3	0	0
1276	6-CONHCH3	CH ₃	CH3	H	C ₆ H ₅	C ₆ H ₅	CH3	0	0
1277	6-CON(CH ₃) ₂	CH3	CH3	H	C ₆ H ₅	C ₆ H ₅	CH3	0	0
1278	6-OCONHCH ₃	CH3	CH3	H	CeH5	CeHs	CH ₃	0	0
1279	6-0CON(CH ₃) ₂	CH3	CH3	H	C ₆ H ₅	C ₆ H ₅	CH3	0	0
1280	6-OCONHCH ₂ C ₆ H ₅	CH3	CH3	H	C ₆ H ₅	CeH5	СНз	0	0
1281	6-OCSNHCH ₃	CH3	CH3	H	C _e H ₅	СвНъ	CH3	0	0
1282	6-OCSN(CH ₃) ₂	CH3	CH3	H	C ₈ H ₅	C ₆ H ₅	CH 3	0	0
1283	6-OCSNHCH ₂ C ₆ H ₅	CH3	CH ₃	H	CeH5	C ₆ H ₅	CH3	0	0
1284	6-SO ₂ NHCH ₃	CH₃	CH3	H	C ₆ H ₅	C ₆ H ₅	СНз	00	0

No.	R1	R²	R³	R ⁴	R 5	R ⁶	R ⁷	Х	Y
1285	6-S0 ₂ N(CH ₃) ₂	CH3	CH3	Н	C ₆ H ₅	C ₆ H ₅	CH3	0	0
1286	6-S02NHC2H5	CHa	CHa	Н	C ₆ H ₅	CeHs	CH3	0	0
1287	6-SO ₂ N(C ₂ H ₅) ₂	CH3	CH3	H	C ₆ H ₅	CeHs	CH3	0	0
1288	6-S0 ₂ NHC ₆ H ₅	CH3	CH3	Н	C ₆ H ₅	C ₆ H ₅	CH3	0	0
1289	6-CF ₃	CH ₃	CH3	H	CeHs	СвНь	CH3	0	0
1290	5-C1	H	Н	H	C & H &	C 8 H 5	CH₃	0	H ₂
1291	5-Br	H	H	H	CeHs	C ₈ H ₅	CH₃	0	H_2
1292	5-F	H	H	H	CeH5	C ₆ H ₅	CH₃	0	H_2
1293	5-CH ₃	H	H	H	C ₆ H ₅	C ₆ H ₅	CH₃	0	H_2
1294	5-C ₂ H ₅	H	H	H	C 6 H 5	CeHo	CH ₃	0	H_2
1295	5-CH2CH2CH3	H	H	H .	C ₆ H ₅	C ₆ H ₅	CH3	0	H_2
1296	5-CH(CH ₃) ₂	H	H	H	CeHs	CeHs	CH3	0	H_2
1297	5-CH ₂ C ₆ H ₅	H	H	H	CeHs	CeHs	СН₃	0 .	H_2
1298	5-0CH ₃	H	H	H	C_8H_5	CeHs	CH3	0	H_2
1299	5-0C ₂ H ₅	H	H	H	CsHs	C & H &	CH3	0	H_2
1300	5-0CH ₂ C ₆ H ₅	Н	H	H	C ₆ H ₅	CeHs	CH₃	0	H_2
1301	5-0C ₆ H ₅	H	H	H	C ₆ H ₅	CeHs	CH₃	0	H_2
1302	5-COCH ₃	H	H	H	C 8 H 5	C & H 5	CH₃	0	H_2
1303	5-OCOCH ₃	Н	H	Н	C 8 H 5	CeHs	CH3	0	H_2
1304	5-0H	H	H	H	C ₆ H ₅	C 6 H 5	CH3	0	H_2
1305	5-NH ₂	H	H	H	C 6 H 5	C ₆ H ₅	CH3	0	H_2
1306	5-N0 ₂	H	H	H	C ₆ H ₅	C ₆ H ₅	CH₃	0	H_2
1307	5-CN	H	H	H	CeH5	C ₆ H ₅	CH3	0	H_2
1308	5-NHCOCH ₃	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	0	H_2
1309	5-NHCOC & H &	Н	Н	H	CeHs	C ₆ H ₅	CH₃	0	H_2

No.	R ¹	R²	R³	R ⁴	R⁵	R ^e	R ⁷	X	Y
1910	5-SCH ₃	Н	H	Н	C ₆ H ₅	C ₈ H ₅	СН₃	0	H_2
1310	5-SC ₂ H ₅	H	Н	н	СеНь	C ₆ H ₅	СНз	0	H_2
1311	5-SCH(CH ₃) ₂	Н	Н	H	C ₆ H ₅	C ₆ H ₅	СНз	0	H2
1312		Н	H	Н	C ₆ H ₅	C ₆ H ₅	CH₃	0	H ₂
1213	5-S0 ₂ CH ₃	H	H	Н	C ₆ H ₅	CeHs	CH₃	0	H_2
1314	5-S0 ₂ C ₂ H ₅		H	Н	CeH5	C ₆ H ₅	СНз	0	H ₂
1315	5-S0 ₂ CH(CH ₃) ₂	H		Н	CeHs	C _s H _s	CH ₃	0	H ₂
1316	5-SC _e H ₅	H	H			CaHs	CH ₃	0	H ₂
1317	5-SCH ₂ C ₆ H ₅	H	Ħ	H	C H		CH ₃	0	H ₂
1318	5-NHSO2CH3	H	H	H	C ₆ H ₅	C ₆ H ₅		0	H ₂
1319	5-NHS0 ₂ C ₂ H ₅	H	H ·	H 	C ₆ H ₅	C ₆ H ₅	CH3		
1320	5-NHSO ₂ C ₆ H ₅	H	H	H	C ₆ H ₅	C ₆ H ₅	CH₃	0	H ₂
1321	5-C00H	H .	H	Н	C ₈ H ₅	C ₆ H ₅	CH3	0	H ₂
1322	5-C00CH ₃	H	H	H	CeHs	CeHs	CH3	0	H ₂
1323	5-C00C ₂ H ₅	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	0	H ₂
1324	5-C00CH2C&H5	H	H	H	CeHs	CeHs	CH₃	0	H ₂
1325	5-N(CH ₃) ₂	H	H	H	CeH5	CeHs	CH3	0	H ₂
1326	5-NHCH3	H	H	H	CeHs	CeHs	CH3	0	H ₂
1327	5-NH(C ₂ H ₅) ₂	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	0	H2
1328	5-CONH ₂	H	H	H	CeHs	C&Hs	CH₃	0	H_2
1329	5-CONHCH3	H	H	H	CeH5	C&Hs	CH3	0	H_2
1330	5-CON(CH ₃) ₂	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	0	H_2
1331	5-0CONHCH ₃	Н	H	H	C ₆ H ₅	CeHs	CH3	0	H_2
1332	5-0C0N(CH ₃) ₂	H	H	H	C ₆ H ₅	CeHs	CH3	0	H_2
1333	5-OCONHCH2C6H5	H	H	H	C ₆ H ₅	C ₆ H ₅	СНз	0	H_2
1334	5-OCSNHCH ₃	H	H	H	C ₈ H ₅	C ₆ H ₅	CH3	0	H_2
1335	5-0CSN(CH ₃) ₂	Н	Н	_ <u>H</u>	C ₆ H ₅	C ₆ H ₅	СНз	0	H ₂
				. —					

WO 93/09116 PCT/JP92/01426

No.	R ¹	R²	R³	R ⁴	R 5	R ^e	R ⁷	Х	Y
1336	5-OCSNHCH2C6H5	H	Н	Н	C _e H ₅	C _e H ₅	CH ₃	0	H_2
1337	5-SO2NHCH3	H	H	H	C ₈ H ₅	CeHs	CH ₃	0	H_2
1338	5-S02N(CH3)2	Н	H	H	C 8 H 5	CeHs	CH ₃	0	H_2
1339	5-S02NHC2H5	H	H	Н	CeHs	CeH5	CH ₃	0	H_2
1340	5-S0 ₂ N(C ₂ H ₆) ₂	H	H	Н	CeHs	CeH5	CH₃	0	H2
1341	5-SO2NHC8H5	H	H	Н	C ₆ H ₅	C 6 H 5	CH3	0	H_2
1342	5-CF ₃	H	Н	H	C ₆ H ₅	СвНб	CH₃	0	H ₂
1343	7-C1	Н	Н	H.	CeHs	C ₆ H ₅	CH3	0	H2
1344	7-Br	H	H	H	CeHs	CeH5	СНз	0	H_2
1345	7-F	H	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	0 ·	H_2
1346	7-CH ₃	H	H	Н	C ₈ H ₅	CaHs	CH ₃	0	H_2
1347	7-C ₂ H ₅	H	H	H	CoHo	CeHs	CH ₃	0	H_2
1348	7-CH(CH ₃) ₂	H	H	H	C ₈ H ₅	C 8 H 5	CH3	0	H 2
1349	7-CH ₂ C ₆ H ₅	H	H	H	C ₆ H ₅	СвНъ	CH3	0	H_2
1350	7-0CH ₃	H	H	H	C ₆ H ₅	CeHs	CH₃	0	H_2
1351	7-0C ₂ H ₅	H	H	H	C_8H_5	C 8 H 5	CH₃	0	H_2
1352	7-0CH ₂ C ₈ H ₅	H	H	H	CeHs	CeHs	CH ₃	0	H_2
1353	7-0C ₆ H ₅	H	H	H	C.H.	C ₆ H ₅	CH₃	0	H ₂ .
1354	7-COCH ₃	H	H	H	C ₆ H ₅	CeHs	CH ₃	0	H_2
1355	7-0C0CH ₃	H	H	H	C ₆ H ₅	CeHs	CH3	0	H_2
1356	7-0H	H	H	H	CeH5	C&H5	CH ₃	0	H ₂
1357	7-NH ₂	H	Н	H	CeHs	CeHs	CH ₃	0	H ₂
1358	7-N0 ₂	H	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	0	H ₂
1359	7-CN	H	H	H	C ₆ H ₅	C & H 5	CH3	0	H ₂
1360	7-NHCOCH₃	H	H	Н	C ₈ H ₅	СеНь	CH₃	0	H 2

No.	R¹	R²	R³	R ⁴	R ^s	R ⁶	R ⁷	<u> </u>	Y
1361	7-NHCOC eH 5	Н	H	Н	C ₆ H ₅	C ₆ H ₅	CH₃	0	H ₂
1362	7-SCH ₃	H	H	H	C ₆ H ₅	C 8 H 5	CH3	. 0	H_2
1363	7-SC ₂ H ₅	H	H	H	CeHs	C ₆ H ₅	CH₃	0	H_2
1364	7-CH2CH2CH3	H	H	H	C ₆ H ₅	C ₆ H ₅	CH₃	0	H_2
1365	7-SCH(CH ₃) ₂	H	H	H	CeH5	C ₆ H ₅	CH₃	0	H ₂
1366	7-S0 ₂ CH ₃	H	H	H	C ₆ H ₅	CeH5	СНз	0	H_2
1367	7-S0 ₂ C ₂ H ₅	H	H	H	C ₆ H ₅	CeH5	CH₃	0	H_2
1368	7-S0 ₂ CH(CH ₈) ₂	H	H	H	C ₆ H ₅	CeHs	CH3	0	H_2
1369	7-SC 6H 5	H	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	0	H_2
1370	7-SCH2C6H5	H	Н.	H	C ₆ H ₅	C ₆ H ₅	CH ₃	0	H ₂
1371	7-NHSO2CH3	H	H	H	CeHs	C ₆ H ₅	CH3	0	H ₂
1372	7-NHS0 ₂ C ₂ H ₅	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	0	H ₂
1373	7-NHSO ₂ C ₆ H ₅	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	0	H_2
1374	7-C00H	H	H	H	CeH5	CeHs	CH3	0	H ₂
375	7-C00CH ₃	H	H	H	CeH5	C ₆ H ₅	CH3	0	H_2
376	7-C00C ₂ H ₅	H	H	H	C6H5	C ₆ H ₅	CH₃	0	H_2
377	7-C00CH2C6H5	H	H	H	C ₆ H ₅	C ₆ H ₅	CH₃	0	H_2
378	7-N(CH ₃) ₂	H	H	H	CeH5	C ₆ H ₅	CH ₃	0	H_2
379	7-NHCH ₃	H	H	H	C ₆ H ₅	C.H.	CH3	0	H_2
380	7-NH(C ₂ H ₅) ₂	H	H	H	CeH5	CeH5	CH3	0	H_2
381	7-CONH ₂	H	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	0	H_2
382	7-CONHCH3	H	H	H	CeH5	CeHs	CH3	0	H_2
383	7-CON(CH ₃) ₂	H	H	H	C&H5	C ₆ H ₅	CH3	0	H_2
.384	7-OCONHCH₃	H	Н	H	C ₆ H ₅	C ₆ H ₅	CH ₃	0	H_2
.385	7-0CON(CH ₃) ₂	H	H	H	CeH5	C.H.	CH3	0	H_2
.386	7-OCONHCH ₂ C ₈ H ₅	H	H	H	CeHs	C.H.	CH₃	0	H2

WO 93/09116 PCT/JP92/01426

No.	R¹	R²	R³	R ⁴	R ⁵	R e	R 7	Х	Y
1387	7-OCSNHCH ₃	Н	Н	Н	C ₆ H ₅	CeHs	СН₃	0	H2
1388	7-0CSN(CH ₃) ₂	Н	H	H	C 6 H 5	CeHs	CH₃	0	H_2
1389	7-OCSNHCH2C6H5	H	H	H	C ₆ H ₅	C 6 H 5	CH3	0	H_2
1390	7-SO2NHCH3	H	H	H	C 6 H 5	C 8 H 5	СНэ	0	H_2
1391	7-S0 ₂ N(CH ₃) ₂	Н	H	H	C ₆ H ₅	C_6H_5	СНз	0	H_2
1392	7-SO ₂ NHC ₂ H ₅	H	H	H	C&H5	C 6 H 5	CH3	0	H_2
1393	7-S0 ₂ N(C ₂ H ₅) ₂	Н	H	H	C ₆ H ₅	СвНб	CH 3	0	H_2
1394	7-S02NHC6H5	H	H	H	C ₆ H ₅	C ₆ H ₅	CH₃	0	H2
1395	7-CF ₃	H	H	H	C ₆ H ₅	C ₆ H ₅	CH₃	0	H ₂
1396	6-C1	Н	H	H	C _e H ₅	C.H.	CH₃	0	H ₂
1397	6-Br	H	H	H	C ₆ H ₅	CeHs	CH₃	0	H ₂
1398	6-F	H	H	H	C ₆ H ₅	C ₆ H ₅	CH 2	0	H ₂
1399	6-CH ₃	H	Н	H	C ₆ H ₅	СвНъ	CH3	0	H ₂
1400	6-C ₂ H ₅	Н	H	H	CeHs	C ₆ H ₅	CH3	0	H_2
1401	6-S0 ₂ CH(CH ₃) ₂	H	Н	Н	C ₆ H ₅	C ₆ H ₅	CH3	0	H_2
1402	6-CH(CH ₃) ₂	Н	H	H	C ₆ H ₅	C ₆ H ₅	CH3	0	H_2
1403	6-CH ₂ C _e H ₅	H	H	H	C 8 H 5	C ₈ H ₅	CH₃	0	H_2
1404	6-0CH ₃	H	H	Н	C & H 5	C ₆ H ₅	CH3	0	H_2
1405	6-0C ₂ H ₅	H	H	H	CeH5	C ₆ H ₅	CH3	0	H ₂
1406	6-0CH ₂ C ₆ H ₅	H	H	H	C & H 5	C ₆ H ₅	CH3	0	H ₂
1407	6-0C ₆ H ₅	H	H	H	C & H 5	C ₆ H ₅	CH ₃	0	H2
1408	6-COCH ₃	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	0	H ₂
1409	6-0C0CH3	H	H	H	C ₆ H ₅	C&H5	CH₃	0	H ₂
1410	6-0H	Н	H	H	CeH5	C&H5	CH₃	0	H ₂
1411	6-NH ₂	Н	H	H	C ₆ H ₅	C ₆ H ₅	CH3	0	H ₂

No.	R ¹	R²	R³	R ⁴	R ⁵	R ⁶	R7	X	Y
412	6-NO ₂	H	Н	Н	CeHs	CeH5	CH₃	0	H_2
413	6-CN	H	H	Н	C ₆ H ₅	CeH5	CH3	0	H_2
414	6-NHCOCH₃	H	H	Н	CeHs	CeH5	CH ₃	0	H_2
415	6-NHCOC & H s	H	Н	H	C ₆ H ₅	C ₆ H ₅	CH₃	0	H_2
416	6-SCH ₃	H	H	H	CoHo	C ₆ H ₅	CH ₃	0	H 2
417	6-SC ₂ H ₅	H	Н	H	C ₆ H ₅	C ₆ H ₅	CH₃	0	H_2
418	6-SCH(CH ₃) ₂	H	H	H	C ₆ H ₅	C ₈ H ₅	CH₃	0	H_2
419	6-S0 ₂ CH ₃	H	H	H	C ₆ H ₅	CeHs	CH₃	0	H 2
420	6-S0 ₂ C ₂ H ₅	H	H	Н	C ₆ H ₅	C ₆ H ₅	CH₃	0	H 2
421	6-SO ₂ CH(CH ₃) ₂	H	H	Н	C ₆ H ₅	C ₆ H ₅	CH3	0	H ₂
422	6-SC ₆ H ₅	H	H	Н	C ₆ H ₅	CsHs	CH₃	0	H ₂
423	6-SCH ₂ C ₆ H ₅	H	H	H	CeHs	C ₆ H ₅	СН₃	0	H ₂
424	6-NHSO2CH3	H	H	Н	CeHs	C ₆ H ₅	СН₃	0	H ₂
425	6-NHSO ₂ C ₂ H ₅	H	H	Н	CeHs	C ₆ H ₅	CH₃	0	H ₂
426	6-NHSO ₂ C ₆ H ₅	H	H	Н	CeHs	CeH5	СН₃	0	H ₂
427	6-C00H	H	H	H	CeHs	C ₆ H ₅	CH₃	0	H ₂
428	6-C00CH ₃	H	H	H	CeHs	C ₆ H ₅	СНз	0	H ₂
429	6-C00C ₂ H ₅	H	H	H	CeH5	CeH5	СНз	0	H_2
430	6-C00CH ₂ C ₆ H ₅	H	H	H	C ₆ H ₅	C ₈ H ₅	CH₃	0	H ₂
431	6-N(CH ₃) ₂	H	H	Н	CeHs	C ₆ H ₅	CH₃	0	H_2
432	6-NHCH₃	H	H	H	C ₆ H ₅	C ₆ H ₅	CH3	0	H_2
433	6-NH(C ₂ H ₅) ₂	H	H	H	C ₆ H ₅	C ₆ H ₅	CH ₃	0	H_2
434	6-CONH ₂	H	H	Н	C ₆ H ₅	C ₆ H ₅	CH₃	0	H_2
435	6-CONHCH3	H	H	H	C ₆ H ₅	C ₆ H ₅	СН₃	0	H_2
436	6-CON(CH ₃) ₂	H	Н	H	CeH5	C ₆ H ₅	CH₃	0	H2
437	6-0CONHCH₃	H	H	Н	C ₆ H ₅	C ₆ H ₅	CH₃	0	H ₂

No.	R¹	R²	R ³	R ⁴	R ⁵	R ⁶	R7	Х	Y
1438	6-0CON(CH ₃) ₂	Н	Н	Н	C 6 H 5	CeHs	CH3	0	H_2
1439	6-OCONHCH2C6H	I ₅ H	Н	H	C 6 H 5	C ₆ H ₅	CH3	0	H_2
1440	6-OCSNHCH₃	H	Н	H	CeHs	C ₆ H ₅	CH ₃	0	H_2
1441	6-OCSN(CH ₃) ₂	H	Н	H	C_6H_5	CeHs	CH ₃	0	H_2
1442	6-OCSNHCH ₂ C ₆ H	1 ₅ H	Н	H	C ₆ H ₅	C ₆ H ₅	CH ₃	0	H_2
1443	6-SO ₂ NHCH ₃	Н	H	H	C_6H_5	C6H5	CH₃	0	H_2
1444	6-SO ₂ N(CH ₃) ₂	H	H	H	C ₆ H ₅	C 6 H 5	CH3	0	H_2
1445	6-SO2NHC2H5	Н	H	H	CeH5	C ₆ H ₅	CH3	0	H_2
1446	6-SO ₂ N(C ₂ H ₅) ₂	Н	H	H	C ₆ H ₅	C 6 H 5	CH₃	0	Н2
1447	6-SO ₂ NHC ₆ H ₅	Н	H	H	C ₆ H ₅	C 8 H 5	CH₃	0	H ₂
1448	6-CF ₃	Н	Н	H	C.H.	CeHs	CH₃	0	H ₂
1449	6-C1	СН₃	CH3	H	C ₆ H ₅	C ₆ H ₅	CH₃	0	H ₂
1450	6-Br	CH3	CH3	H	CeHs	CeHs	CH ₃	0	H_2
1451	6-F	CH3	CH₃	H	C ₆ H ₅	CeHs	CH₃	0	H_2
1452	6-CH ₃	CH3	CH3	Н	CeHe	CeHs	CH ₃	0	H_2
1453	6-C ₂ H ₅	CH3	CH3	H	C . H 5	CeH5	CH ₃	0	H_2
1454	6-S0 ₂ CH(CH ₃) ₂	CH3	CH₃	H	C ₆ H ₅	C ₆ H ₅	CH₃	0	H_2
1455	6-CH(CH ₃) ₂	CH3	CH₃	H	CeHs	C ₆ H ₅	CH3	0	H_2
1456	6-CH ₂ C ₆ H ₅	CH3	СН₃	H	C 8 H 5	C ₆ H ₅	CH3	0	H_2
1457	6-0CH3	CH3	CH3	H	C_6H_5	C_6H_5	CH3	0	H ₂
1458	6-0C ₂ H ₅	CH3	CH3	H	C 6 H 5	C ₆ H ₅	CH₃	0	H ₂
1459	6-OCH ₂ C ₆ H ₅	CH3	CH3	H	C 8 H 5	C_8H_5	CH3	0	H ₂
1460	6-0C ₆ H ₅	CH3	CH ₃	H	C 6 H 5	C_6H_5	CH3	0	H ₂
1461	6-COCH ₃	CH3	CH ₃	H	C ₆ H ₅	C ₆ H ₅	CH3	0	H2
1462	6-0COCH₃	СНз	CH ₃	Н	CeHs	C ₈ H ₅	CH3	0	H ₂

No.	R ¹	R²	R³	R ⁴	R ⁵	R ^e	R7	X	Y
 1463	6-0H	CH3	CH ₃	Н	CeHe	C ₆ H ₅	CH ₃	0	H ₂
1464	6-NH ₂	CH ₃	CH3	H	CeHs	CeHs	CH₃	0	H_2
1465	6-NO ₂	CH ₃	CH ₃	H	CeHs	C ₈ H ₅	CH₃	0	H_2
1466	6-CN	CH3	CH3	H	C ₆ H ₅	C ₆ H ₅	CH3	0	H_2
1467	6-NHCOCH₃	CH3	СНз	H	CeHs	C ₈ H ₅	CH₃	0	H_2
468	6-NHCOC & H &	CH3	CH3	H	C ₆ H ₅	C ₆ H ₅	CH₃	0	H_2
1469	6-SCH ₃	CH ₃	CH3	H	CeHs	CeH5	CH₃	0	H_2
1470	6-SC ₂ H ₅	CH3	CH3	H	CeHs	C ₆ H ₅	CH3	0	H_2
471	6-SCH(CH ₃) ₂	CH ₃	CH3	H	C ₆ H ₅	C ₆ H ₅	CH3	0	H ₂
472	6-SO ₂ CH ₃	СН₃	CH3 .	H	C ₆ H ₅	CeHs	CH3	0	H2
473	6-S0 ₂ C ₂ H ₅	CH₃	CH ₃	H	CaHa	C ₆ H ₅	СНз	0	H_2
474	6-S0 ₂ CH(CH ₃) ₂	CH₃	CH3	H	C ₆ H ₅	CeHs	CH3	0	H2
475	6-SC ₆ H ₅	CH₃	CH3	H	CeHs	CeHs	CH₃	0	H ₂
476	6-SCH ₂ C ₆ H ₅	CH₃	CH3	H	CeHs	C ₆ H ₅	CH₃	0	H_2
477	6-NHSO2CH3	CH₃	CH3	H	CeHs	CaHs	CH3	0	H_2
478	6-NHSO ₂ C ₂ H ₅	CH3	CH3	Н	CeHs	CeHs	CH3	0	H_2
479	6-NHSO ₂ C ₆ H ₅	CH₃	CH3	H	CeHs	C ₆ H ₅	CH₃	0	H_2
480	6-C00H	CH₃	CH ₃	H	C ₆ H ₅	C ₆ H ₅	CH3	0	H_2
481	6-C00CH ₃	CH3	CH₃	H	C ₆ H ₅	CeHs	CH3	0	H_2
482	6-C00C ₂ H ₅	СНз	CH3	H	CeHs	C ₆ H ₅	CH ₃	0	H2
483	6-C00CH ₂ C ₆ H ₅	СН₃	CH3	H	CeHs	CeH5	СН₃	0	H2
484	6-N(CH ₃) ₂	СНз	CH3	H	C ₆ H ₅	C ₆ H ₅	СН₃	0	H_2
485	6-NHCH ₃	CH₃	CH3	H	CeHs	C ₆ H ₅	CH3	0	H_2
486	6-NH(C ₂ H ₅) ₂	CH ₃	CH ₃	H	CeHs	C ₆ H ₅	CH₃	0	H_2
487	6-CONH ₂	CH3	CH₃	H	CeHs	CeHs	СНз	0	H ₂
488	6-CONHCH ₃	CH ₃	CH ₃	H	СвНБ	C ₆ H ₅	CH ₃	0	H_2

No.	R¹	R²	R³	R ⁴	R ⁵	R ⁶	R ⁷	X	Y
1489	6-CON(CH ₃) ₂	CH₃	СН₃	Н	C 8 H 5	CaHs	СН₃	0	H_2
1490	6-OCONHCH₃	CH ₃	CH3	Н	C ₆ H ₅	CeHs	CH₃	0	H ₂
1491	6-0CON(CH ₃) ₂	CH3	CH3	Н	C ₆ H ₅	C&H5	CH ₃	0	H_2
1492	6-OCONHCH ₂ C ₆ H ₅	CH3	СНз	H	CeHs	CeHs	CH3	0	H2
1493	6-OCSNHCH₃	CH3	CH3	Н	CeHs	CeHs	CH₃	0	H ₂
1494	6-0CSN(CH ₃) ₂	CH3	CH3	H	CeHs	CeHs	CH3	0	H_2
1495	6-OCSNHCH ₂ C ₆ H ₅	CH3	CH3	Н	CeHs	C ₆ H ₅	CH3	0	H ₂
1496	6-SO ₂ NHCH ₃	CH3	CH3	H	C ₆ H ₅	CaHs	CH3	0	H_2
1497	6-S0 ₂ N(CH ₃) ₂	CH3	СНз	H	CeHs	СвНб	СН₃	0	H ₂
1498	6-SO ₂ NHC ₂ H ₅	CH3	CH3	H	CeH5	CaHs	CH₃	0	H_2
1499	6-S0 ₂ N(C ₂ H ₅) ₂	CH3	CH3	H	C ₆ H ₅	C ₆ H ₅	CH3	0	H ₂
1500	6-SO ₂ NHC ₆ H ₅	CH3	CH3	Н	C ₆ H ₅	C ₆ H ₅	СН₃	0	H2
1501	6-CF ₃	CH ₃	CH₃	H	C & H 5	CeHs	CH₃	0	H2

No.	R¹	R ²	R³	R ⁴	R ⁵	R ⁶	A	<u> </u>	<u>Y</u>
502	H	Н	Н	H	CeHs	C ₆ H ₅	CH ₂	H ₂	0
503	H	CH ₃	CH ₃	H	C ₆ H ₅	C ₆ H ₅	0	H_2	0
504	H	Н	H	H	CeH5	C ₆ H ₅	S	H_2	0
505	н .	H	H	H	CeHe	C ₆ H ₅	N-CH ₃	0	0
506	Н	СН₃	CH3	Н	C ₆ H ₅	ÇI CI	-	H ₂	0
507	H	CH ₈	CH3	Н	C ₆ H ₅		-	H ₂	0
508	H	CH3	CH3	H	C ₆ H ₅	_ -⊘	CH ₃ _	H_2	0
509	H	CH3	CH3	H	CeHs	\overline{H}	_ '	H_2	0
510	H	CH₃	CH ₃	H	C ₆ H ₅	$\overline{\Diamond}$	-	H2	0
511	H	Н	H	H	C ₆ H ₅	-⟨₫⟩	CH ₂	H ₂	H ₂
512	Н	CH3	CH ₃	H	C ₈ H ₅	~ ⊘	0	H ₂	H ₂
513	H	Н	H	H	C _e H ₅	$\overline{\lozenge}$	S	H ₂	H2
514	H	Н	H	Н	CeHs	$-\langle 0 \rangle$	N-CH3	0	H ₂

No.	R³	R 2	R³	R ⁴	R ⁵	R €	A	X	Y
1515	Н	СН₃	CH₃	Н	C ₆ H ₅	Ç1 C	<u> </u>	H ₂	H ₂
1516	Н	СН₃	СНз	H	C ₈ H ₅	CI CI		H ₂	H ₂
1517	H	CH ₃	CH3	H	C ₆ H ₅		ł ₃ —	H ₂	H2
1518	H	СН₃	CH₃	Н	CeHs	\overline{H}	-	H ₂	H ₂
1519	H	CH₃	CH3	H	CeHs	$-\langle \bigcirc_{\!\!N} \rangle$	-	H ₂	H ₂

また、本発明は、一般式 (I')

$$R^{1} \xrightarrow{A} X$$

$$R^{2}$$

$$R^{4} \xrightarrow{NH} R^{5}$$

$$R^{5}$$

$$R^{5}$$

〔式中、Aはメチレン基、酸素原子、硫黄原子、-N(R^7)-で表される基(式中、 R^7 は水素、炭素数 $1\sim 6$ 個のアルキルまたはアラルキルを示す。)または直接結合を示す。Xは酸素原子、硫黄原子または水素 2 原子を示す。 R^1 は水素、ハロゲン、炭素数 $1\sim 6$ 個のアルキル、ハロアルキル、アラルキル、炭素数 $1\sim 6$ 個のアルコキシ、アラルキルオキシ、アリールオキシ、アシル、アシルオキシ、ヒドロキシ、アミノ、ニトロ、シアノまたは式

- $-NHCOR^{s}$, $-S(O)_{x}R^{s}$, $-NHSO_{2}R^{s}$, $-COOR^{s}$,
- $-N(R^{s})(R^{s}), -CON(R^{s})(R^{s}), -O-CO-N(R^{s})(R^{s}),$
- $-O-CS-N(R^8)(R^9), -SO_2N(R^8)(R^9)$

(式中、 R^8 , R^8 は同一または異なってそれぞれ水素、炭素数 $1 \sim 6$ 個のアルキル、フェニルまたはアラルキルを示し、n は 0, 1 または 2 を示す。)

から選ばれる基を示す。 R^2 , R^3 は同一または異なって水素または炭素数 $1\sim 6$ 個のアルキルを示す。 R^4 は水素または炭素数 $1\sim 6$ 個のアルキルを示す。 R^5 はチエニルまたはフェニルを示す。 R^6 は炭素数 $1\sim 6$ 個のアルキル、炭素数 $2\sim 6$ 個のアルケニル、炭素数 $3\sim 7$ 個のシクロアルキル、フリル、チエニル、ピリジル、インドリル、ビフェニルまたはフェニルを示す。1

により表されるキヌクリジン化合物またはその医薬上許容されうる酸付加塩も提供する。

一般式 (I')で表される化合物 (以下、化合物 (I')という) は、一般式 (I) においてYが水素 2 原子で飽和された化合物の合成中間体としても有用である。

本発明化合物は、以下に示す方法によって製造することができる。 方法1

一般式(I)においてYが酸素原子である化合物は、米国特許第3,560,510号明細書またはジヤーナル・オブ・メディシナル・ケミストリー(Journal of Medicinal Chemistry) 第10巻、Na6、587頁に記載の方法に準じて合成される一般式(II)

$$R^4$$
 NH_2
 R^6
 R^5

(式中、各記号は前記と同義である。)

により表される化合物(以下、化合物(II)という)と、米国特許第4,892,872号明細書またはヨーロッパ公開特許第407137号公報に記載の方法に準じて合成される一般式(III)

$$\begin{array}{c|c}
R^1 & X \\
\hline
COOH & R^2 \\
R^3
\end{array} (III)$$

(式中、各記号は前記と同義である。)

により表されるカルボン酸またはその反応性誘導体とを縮合させることにより得られる。

化合物(II)と一般式(III)で表される化合物(以下、化合物(III)という)との縮合反応は、それ自体公知のアミド化法あるいはペプチド合成法などが準用できる。たとえば化合物(III)が遊離のカルボン酸の場合、そのアミド化反応は、ジシクロヘキシルカルボジイミド、ハロゲン化リン(三塩化リン、オキシ塩化リンなど)、ジフェニルホスホリルアジド、2-クロローNーメチルピリジニウムヨーダイドートリブチルアミン系(向山法)などの縮合剤の存在下に、不活性溶

媒中あるいは無溶媒で、冷却下または室温ないし加温下に行われる。一般式 (III) で表されるカルボン酸の反応性誘導体が酸ハライド(酸クロリド、酸プロミドな ど) あるいは混合酸無水物 (低級アルキル炭酸混合酸無水物、アルキルリン酸混 合酸無水物など)の場合、その反応は、不活性溶媒中あるいは無溶媒で、好まし くはトリエチルアミン、N-メチルモルホリン、ピリジン、ジメチルアニリンな どの有機塩基、あるいは炭酸水素アルカリ、炭酸アルカリ、水酸化アルカリなど の無機塩基の脱酸剤の存在下に冷却下から加温下に行われる。さらに、反応性誘 導体として低級アルキルエステル (メチルエステル、エチルエステルなど)、あ るいはいわゆる活性エステル(p-ニトロフェニルエステル、p-クロロベンジ ルエステル、p-クロロフェニルエステル、コハク酸イミドエステル、ベンゾト リアゾールエステルなど)を用いる場合、反応は不活性溶媒中あるいは無溶媒で 室温から加温下によって行われる。以上に述べたアミド化反応に用いられる不活 性溶媒としてはヘキサン、ベンゼン、トルエンなどの炭化水素類、クロロホルム、 ジクロロメタン、ジクロロエタンなどのハロゲン化炭化水素類、テトラヒドロフ ラン、ジオキサンなどのエーテル類、酢酸エチルなどのエステル類、アセトンな どのケトン類、メタノール、エタノール、イソプロピルアルコールなどのアルコ ール類、ジメチルホルムアミドなどのアミド類、アセトニトリル、ジメチルスル ホキシド、水など、またはその混合溶媒があげられ、反応に応じて適宜選択する ことができる。

方法2

一般式(I)においてYが水素で飽和された化合物は、化合物(II)と米国特許第4,892,872号明細書またはヨーロッパ公開特許第407137号公報に記載の方法に準じて合成される一般式(IV)

$$R^1$$
 CHO
 R^2
 R^2
 R^3
(IV)

(式中、各記号は前記と同義である。)

により表される化合物(以下、化合物(IV)という)とを還元的縮合反応に付すか;米国特許第3,506,673号明細書に記載の方法に準じて合成される一般式(V)

$$R^4 \longrightarrow R^6$$
 (V)

(式中、各記号は前記と同義である。)

により表される化合物(以下、化合物(V)という)と一般式(VI)

$$\begin{array}{c|c}
R^1 & X \\
\hline
CH_2NH_2
\end{array} (VI)$$

(式中、各記号は前記と同義である。)

により表される化合物(以下、化合物(VI)という)とを還元的縮合反応に付すか;化合物(VI)と一般式(VII)

$$R^4 \longrightarrow R^6$$
 (VII)

〔式中、Lは反応活性な脱離基(有機合成化学上よく知られる脱離基を示し、たとえば塩素、臭素、沃素、フッ素などのハロゲン、メタンスルホニルオキシ、トリフルオロメタンスルホニルオキシ、p-トルエンスルホニルオキシ、ニトロベンゼンスルホニルオキシなどのスルホン酸エステル基など)を示し、他の各記号は前記と同義である。〕

により表される化合物(以下、化合物(VII)という)を縮合反応に付すか;または化合物(II)と一般式(VIII)

$$\begin{array}{c|c}
R^1 & X \\
\hline
CH_2-L & R^2 \\
\end{array}$$
(VIII)

(式中、各記号は前記と同義である。)

により表される化合物(以下、化合物(VIII)という)とを縮合させることによって製造することができる。

化合物(II)と化合物(IV)との還元的縮合反応、および化合物(V)と化合 物 (VI) との還元的縮合反応は、本反応を阻害しない適当な溶媒中、還元剤の存 在下に行われるか、または、触媒量の脱水剤の存在下あらかじめ相当するイミン (シッフの塩基) に誘導した後、続いて還元剤を添加することにより行われる。 容媒としては前述した溶媒を用いることができる。還元条件としては、白金、パ ラジウム、ラネーニッケル、ロジウムなどの金属やそれらの担体との混合物を触 媒とする接触的水素還元;または水素化リチウムアルミニウム、水素化シアノホ ウ素ナトリウム、水素化ホウ素ナトリウム、水素化ホウ素カリウムなどの水素化 金属類による還元; 金属ナトリウム、金属マグネシウムなどとメタノール、エタ ノールなどのアルコールによる還元;鉄、亜鉛などの金属と塩酸、酢酸などの酸 による還元などの反応条件を挙げることができる。特に、水素化シアノホウ素ナ トリウムなどの水素化金属類による還元の場合、好ましくは塩酸または酢酸など の酸の存在下に実施するのが望ましい。必要に応じて用いられる脱水縮合剤とし ては特に限定はなく、無機酸(塩酸、硫酸、硝酸など)、有機酸(メタンスルホ ン酸、p-トルエンスルホン酸など)、ルイス酸(塩化アルミニウム、四塩化錫、 塩化鉄、トリフルオロボランエテラート、ジブチル錫ジクロリドなど)、モレキ ュラーシーブなどが挙げられる。還元的縮合反応の温度は用いられる溶媒により 異なるが、一般には-20℃~100℃が好ましい。また、本反応は常圧で十分 目的を達成できるが、場合によっては加圧あるいは減圧下に行ってもよい。

化合物 (VI) と化合物 (VII)との縮合反応、および化合物 (II) と化合物 (VIII)

との縮合反応は、塩基の存在下または非存在下に、本反応を阻害しない溶媒(ヘキサン、ベンゼン、トルエンなどの炭化水素類、クロロホルム、ジクロロメタンなどのハロゲン化炭化水素類、酢酸エチルなどのエステル類、ジメチルホルムアミド、ジメチルアセトアミドなどのアミド類、アセトニトリル、ジメチルスルホキシドなど)中、または無溶媒で行われる。必要に応じて用いられる塩基としては特に限定はなく、好ましくは炭酸ナトリウム、炭酸カリウムなどのアルカリ炭酸金属塩、炭酸水素ナトリウムなどのアルカリ炭酸水素金属塩、水素化ナトリウム、水素化リチウムなどの水素化アルカリ金属、ナトリウムメトキシド、ナトリウムエトキシド、カリウム第三プトキシドなどのアルカリ金属アルコキシド、トリエチルアミン、ピリジンなどの有機塩基が挙げられる。また、テトラーnープチルアンモニウムプロマイド、ベンジルトリエチルアンモニウムヨーダイドなどの相間移動触媒を用い、水とその他の有機溶媒との混合溶媒中で反応を行う場合には、水酸化ナトリウム、水酸化カリウムなどの水酸化アルカリ金属を用いることもできる。反応は通常0℃~150℃で行われる。

なお、化合物(VI)は一般式(III)で表されるカルボン酸誘導体をアミド体へ と導き、有機化学上公知の方法に準じて還元することによって容易に合成するこ とができる。

また、化合物(VIII)は、たとえば一般式(III)で表されるカルボン酸またはそのエステル体を有機化学上公知の方法により還元してアルコール体へと導き、さらにその水酸基をハロゲン化することなどにより、容易に合成される。 方法3

一般式(I)においてYが水素で飽和された化合物は、化合物(I')を還元反応に付すことによっても製造することができる。

還元反応は反応を阻害しない溶媒中、冷却下ないし加温下において行われる。 還元剤としては水素化リチウムアルミニウム、水素化アルミニウム、トリメトキシ水素化リチウムアルミニウム、メトキシエトキシアルミニウムハイドライド、ナトリウムビス- (2-メトキシエトキシ)アルミニウムハイドライド、ボランなどの無機水素化物などが挙げられる。 万法4

一般式(I)においてYが硫黄原子である化合物は、化合物(I')をチオン化 試薬を用いて直接チオン化することによって製造される。

チオン化試薬としては五硫化リン、Lawesson試薬〔2,4ービス(4ーメトキシフェニル)-1,3,2,4ージチアジホスフェタン-2,4ージスルフィッド〕、硫化水素などが挙げられ、反応は、通常反応に不活性な溶媒(ピリジン、ジメチルアニリン、ベンゼン、トルエン、キシレン、テトラヒドロフラン、クロロホルム、ジオキサンなど、またはその混合溶媒)中、30 $^{\circ}$ ~100 $^{\circ}$ で30分から5時間で進行する。

以上のようにして得られる反応生成物は再結晶法、カラムクロマトグラフィーなどの有機合成化学上よく知られた方法により、容易に精製することができる。なお、所望の絶対配置を有する立体異性体は光学活性な原料を用いて合成するか、あるいはラセミ体の反応生成物を適当な光学分割試薬を用いることにより、製造することができる。

また、このようにして得られた本発明の化合物(I)のいくつかは、常法により無機酸または有機酸と処理することによって前記に示した酸付加塩とすることができる。

本発明の化合物(I)、その異性体および医薬上許容されうる塩は、P物質の 拮抗作用を有することから、無痛覚症、炎症、喘息、アレルギー、中枢神経系疾 患、循環器系疾患、消化器系疾患などの諸症状において治療学的応用を見出すこ とができ、痛み(片頭痛など)、炎症、呼吸器系疾患(咳、喀痰などを伴う慢性 気管支炎、喘息、鼻炎など)、中枢神経系疾患(不安症、精神病など)、循環器 系疾患(高血圧症、心不全など)、消化器系疾患(過敏性大腸炎、潰瘍性大腸炎、 クローン病など)の治療薬として有用である。具体的には、鎮痛抗炎症薬、鎮咳 去痰剤、抗喘息薬、抗不安薬、降圧剤、抗潰瘍剤などとして用いられる。

以下に薬理実験例を示す。

実験例1:P物質受容体結合試験

モレキュラーファーマコロジー (Molecular Pharmacology) 23巻、563~

569頁(1983年)に報告されたリー(lee)CMらの方法に従って本発明化合物のP物質拮抗作用を検討した。すなわち、雄ウィスターラットから下顎腺を取り出し、体積10倍の氷冷50mMトリス塩酸緩衝液(pH7.4)においてホモジナイズした。このホモジネートを300mMの塩化カリウムと10mMのEDTA存在下、氷冷にてインキュベートし、50,000×Gで遠心分離にかけた。こうして得られたペレットを体積20倍の氷冷50mMトリス塩酸緩衝液(pH7.4)に懸濁し、再度遠心分離し、得られたペレットを体積60倍のトリス塩酸緩衝液に懸濁して組織標本を作成した。

受容体結合試験は、上述の組織標本 $400\mu1$ に 50mMトリス塩酸緩衝液(pH7.4)、0.02%ウシ血清アルプミン、 1μ gのキモスタチン、 2μ gのロイペプチン、 20μ gのバシトラシンならびに被験化合物を含む 1.2nMの放射性リガンド($[^3H]$ ーサプスタンスP)を添加し最終体積を $500\mu1$ とした。次に 20° でで 10分間反応させた後、反応液に 5m1のトリス塩酸緩衝液を加えすばやく吸引濾過し、フィルターを氷冷したトリス塩酸緩衝液 2m1で 2回洗浄した。フィルター上の放射能活性は液体シンチレーションカウンターで測定し、一般的な統計的手法により 50%阻害濃度 IC_{50} 値を求めた。特異的結合は、 1μ MのP物質の存在下で試験して得られる非特異的結合を全体の結合から引くことにより求めた。その結果を次の表に示す。

化合物	I C 50 (n M)
実施例 6 の化合物	5. 4
実施例7の化合物	1 3
実施例17の化合物	1. 1
対照化合物	2 3

対照化合物はWO90/05729号にて公開された(\pm) -シス-3-{(2-メトキシフェニル)メチルアミノ} -2-ベンズヒドリルキヌクリジンである。

実験例2:P物質誘発気道収縮に対する化合物の拮抗作用

ハートレイ (Hartley)系雌性モルモットをペントバルビタール (30 mg/kg) の腹腔内投与により麻酔し、気管と頸動脈のカニュレーションを行った。人工呼吸下 (50 strokes/分) でP物質10-8mo1/kgの静脈投与による気道抵抗をコンツェット (Konzett)とロスラー(RossIer) の方法 [アルシーフ・フュア・エクスペリメンテレ・パトロギー・ウント・ファルマコロギー (Arch. Exp. Pathol. Pharmakol.) 195巻、71-74頁 (1940年)] を修正して測定した。10分間隔でP物質を投与した。収縮が安定したところで、次のP物質投与3分前に被験化合物を静脈投与し、その抑制率から50%有効量 (ED50、mg/kg) を計算した。その結果を次の表に示す。

化合物	ED ₅₀ (mg/kg)
実施例7の化合物	0. 083
実施例17の化合物	0. 031
対照化合物	0. 11

(対照化合物は実験例1のものと同一である。)

実験例3:急性毒性

本発明の化合物(I)を前述の医薬として用いる場合、それ自体あるいは適宜、 薬理学的に許容される担体、賦形剤、希釈剤などと混合し、散剤、顆粒剤、錠剤、 カプセル剤、注射剤などの形態で経口的または非経口的に投与することができる。 投与量は対象疾患、症状、あるいは用いる化合物により異なるが、経口投与の場 合、通常、成人1日当たり1~100mg程度である。

以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。

実施例1

公知の方法にて得られる6-クロロー3、4-ジヒドロー4-メチルー2H-1、4-ベンズオキサジン-8-カルボン酸4.83gとトリエチルアミン7.0m1のテトラヒドロフラン溶液70m1を-5℃に冷却する。この溶液に温度を-5℃に保ちながら塩化ピバロイル3.1m1を滴下する。同温で15分間撹拌後、公知の方法により製造されたシス-3-アミノ-2-ベンズヒドリルキヌクリジン5.84gの塩化メチレン溶液を滴下する。反応混合物を1時間撹拌後、減圧濃縮し塩化メチレンと1規定水酸化ナトリウム溶液に分配させる。有機層を食塩水で洗浄後、硫酸マグネシウムで乾燥する。濃縮し、イソプロピルアルコールより結晶化し、この結晶をメタノールにより再結晶することにより、シスーN-(3-(2-ベンズヒドリルキヌクリジニル))-6-クロロー3、4-ジヒドロ-4-メチル-2H-1、4-ベンズオキサジン-8-カルボキサミド2.2gを得る。融点240~241℃

NMR (CDC13, 100MHz):

1. 20-2. 10 (5H), 2. 70-2. 90 (4H), 2. 94 (3H, s), 3. 44 (2H, m),

4.04 (2H. m), 4.51 (2H, m), 6.62 (1H, d. J=3Hz), 6.90-7.24 (11H),

8.01 (1H, d, J=10Hz)

元素分析: C30H34C1N3Oとして

計算值: C 71.77, H 6.42, N 8.37

実測値: C 71.57, H 6.49, N 8.33

実施例2

2, 2-ジメチル-2, 3-ジヒドロベンゾフラン-7-カルボン酸2.3g と塩化ピバロイル1.46m1、トリエチルアミン3.36m1、シス-3-ア ミノ-2-ベンズヒドリルキヌクリジン2.92gを用いて実施例1と同じ製造 法に付することにより、シス-N-(3-(2-ベンズヒドリルキヌクリジニル)〕 -2, 2-ジメチル-2, 3-ジヒドロベンゾフラン-7-カルボキサミド1. 2gを得る。融点254~255℃

NMR (CDC1 $_{3}$, 100MHz):

- 1.60 (3H. s), 1.84 (3H. s), 2.60-3.05 (4H), 3.13 (2H. s),
- 3.94 (1H. dd, J=8Hz, 10Hz), 4.18 (1H. d. J=10Hz), 4.44 (1H. m).
- 6. 70-7. 25 (12H), 7. 54 (1H, m), 8. 12 (1H, d, J=8Hz)

元素分析: C₃₁H₃₄N₂O₂ として

計算值: C 79.79, H 7.34, N 6.00

実測値: C 79.67, H 7.49, N 6.03

実施例3

- NMR (CDC1 $_3$, 100MHz):
 - 1.60 (3H. s). 1.85 (3H. s), 1.10-2.10 (11H), 2.44 (3H. s),
 - 2.64-3.04 (4H), 3.12 (2H), 3.80-4.26 (2H), 4.44 (1H, m),
 - 6. 90-7. 24 (12H), 7. 48-7. 56 (1H), 8. 08 (1H, d, J=8Hz)

元素分析: CasHasNaOaSとして

計算值: C 74.96, H 7.08, N 5.46

実測値: C 74.90, H 7.08, N 5.43

実施例4

2, 2-ジメチル-5-ニトロ-2, 3-ジヒドロベンゾフラン-7-カルボン酸2. 9gと塩化ピバロイル1. <math>46m1、トリエチルアミン3. 36m1、シス-3-アミノ-2-ベンズヒドリルキヌクリジン2. 92gを用いて実施例1と同じ製造法に付することにより、シス-N-(3-(2-ベンズヒドリルキヌクリジニル))-2, 2-ジメチル-5-ニトロ-2, 3-ジヒドロベンゾフ

ランー7ーカルボキサミド1. 2gを得る。融点258~260℃ NMR (CDC13,100MHz):

- 1.60 (3H, s), 1.85 (3H, s), 1.10-2.10 (11H), 2.68-3.16 (4H),
- 3.24 (2H, s), 4.03 (1H, dd, J=7Hz, 12Hz), 4.14 (1H, d, J=12Hz),

4.50 (1H. m), 6.84-7.28 (10H), 8.08 (1H, m), 8.49 (1H, J=2Hz)

元素分析: C31H33N3O4 として

計算值: C 72.78, H 6.50, N 8.21

実測値: C 72.65, H 6.47, N 8.17

実施例5

シスーNー(3-(2-ベンズヒドリルキヌクリジニル))-2, 2-ジメチル-5-ニトロ-2, 3-ジヒドロベンゾフラン-7-カルボキサミド1.8 g を窒素気流下、<math>1 モル濃度のボランのテトラヒドロフラン溶液 2 0 m 1 に溶解し、5 時間還流する。反応液を濃縮後、5 %塩酸 3 0 m 1 にて 2 時間還流を行い、冷却して水酸化ナトリウムよりアルカリ性とする。析出する物質をジクロロメタンで抽出後、有機層を硫酸マグネシウムで乾燥濃縮する。得られる残渣をエタノールから結晶化することにより、シスー3-(2,2-ジメチル-5-ニトロー2,3-ジヒドロベンゾフラン-7-イル)メチル)アミノー<math>2-ベンズヒドリルキヌクリジン0.52 gを得る。融点 194~195 $\mathbb C$

NMR (CDC1s. 100MHz):

- 1.44 (3H, s), 1.48 (3H, s), 1.04-2.12 (11H), 2.45-2.90 (4H).
- 3.00 (2H, s), 3.05-3.40 (3H), 3.67 (1H, dd, J=8Hz.12Hz),
- 4.42 (1H. d. J=12Hz), 6.90-7.36 (11H), 7.82 (1H. m)

元素分析: С 31 Н 35 N 3 O 4 として

計算値: C 74.82, H 7.09, N 8.45

実測値: C 74.88, H 7.17, N 8.46

実施例 6

9gと1モル濃度のボランのテトラヒドロフラン溶液20m1を実施例5と同様の製造法に付すことにより、シス-3-[(2,2-ジメチル-5-メチルチオ-2,3-ジヒドロベンゾフラン-7-イル)メチル]アミノ-2-ベンズヒドリルキヌクリジン0.85gを得る。融点136~138℃

NMR (CDC1 $_3$, 100MHz):

- 1.37 (3H, s). 1.43 (3H, s), 1.10-2.10 (11H), 2.38 (3H, s),
- 2.45-2.90 (4H), 2.84 (2H, s), 3.00-3.40 (3H),
- 3.66 (1H, dd, J=8Hz, 12Hz), 4.46 (1H, d, J=12Hz),
- 6.24 (1H, d, J=2Hz), 6.92 (1H, d, J=1Hz), 7.00-7.38 (11H)

元素分析: C₃₂H₃₈N₂O₂Sとして

計算值: C 77.07, H 7.68, N 5.62

実測值: C 76.82, H 7.64, N 5.61

実施例7

シスーNー〔3-(2-ベンズヒドリルキヌクリジニル)〕-2, 2-ジメチル-2, 3-ジヒドロベンゾフラン-7-カルボキサミド2.5 gと1モル濃度のボランのテトラヒドロフラン溶液 <math>2.7 m1を実施例 5と同様の製造法に付すことにより、シスー3-((2,2-ジメチル-2,3-ジヒドロベンゾフラン-7-イル)メチル〕アミノー $2-ベンズヒドリルキヌクリジン1.50 gを得る。融点 <math>1.6.4 \sim 1.6.5$ $\mathbb C$

NMR (CDC1 $_3$, 100MHz):

- 1.37 (3H, s), 1.44 (3H, s), 1.10-2.20 (11H), 2.44-2.90 (4H),
- 2.93 (2H, s), 3.00-3.42 (3H), 3.66 (1H, dd, J=8Hz, 12Hz),
- 4.46 (1H. d. J=12Hz). 5.98 (1H. d. J=8Hz). 6.52 (1H. dd. J=8Hz.8Hz).
- 6.80-7.40 (11H)

実施例8

シス-N-(3-(2-ベンズヒドリルキヌクリジニル))-6-クロロ-3, 4-ジヒドロ-4-メチル-2H-1, 4-ベンズオキサジン-8-カルボキサミド1.0gと1モル濃度のボランのテトラヒドロフラン溶液10m1を実施例

5 と同様の製造法に付すことにより、シス-3-((6-クロロ-3, 4-ジヒドロ-4-メチル-2H-1, 4-ベンズオキサジン-8-イル) メチル] アミノ-2-ベンズヒドリルキヌクリジン 0.3 6 gを得る。融点 1 8 1 ~ 1 8 3 ℃ NMR (CDC13, 1 0 0 MHz):

- 1.04-2.12 (7H), 2.44-2.90 (5H), 2.80 (3H, s), 3.00-3.20 (2H),
- 3.20-3.41 (2H), 3.66 (1H, dd, J=8Hz, 12Hz), 3.99 (2H, dd, J=5Hz, 6Hz),
- 4.47 (1H, d, J=12Hz). 5.89 (1H, d, J=3Hz), 6.41 (1H, d, J=3Hz),
- 7,00-7,40 (10H)

実施例9

NMR (CDC13, 100MHz):

- 1.20-2.10 (5H), 1.48 (3H, s), 1.73 (3H, s), 2.64-3.00 (4H),
- 2.98 (3H, s). 3.16 (2H. m). 4.06 (2H. m). 4.50 (2H. m).
- 6.66 (1H, d, J=2Hz), 6.90-7.30 (11H), 8.21 (1H, d, J=10Hz)

元素分析: Ca2Ha7C1NaO2 として

計算值: C 72.37. H 7.02. N 7.91

実測値: C 72.06, H 7.11, N 7.83

実施例10

5-メチルチオー2、3-ジヒドロベンゾフランー7-カルボン酸0.84g と塩化ピバロイル0.48m1、トリエチルアミン0.56m1、シスー3-アミノー2-ベンズヒドリルキヌクリジン1.18gを用いて実施M1 と同じ製造 法に付することにより、シスーN- $\{3-(2-$ ベンズヒドリルキヌクリジニル) $\}$

-5-xチルチオー 2, 3-ジヒドロベンゾフランー 7-カルボキサミド 1. 14 gを得る。融点 2 0 0 \sim 2 0 1 $^{\circ}$ C

NMR (CDC1 $_3$, 100MHz):

1.25-2.10 (5H), 2.45 (3H, s), 2.70-3.12 (4H), 3.32 (2H, t. J=8Hz).

3.80-4.28 (2H), 4.50 (1H, m), 4.88 (2H, m), 6.80-7.30 (11H),

7.52 (1H. d. J=2Hz), 7.90 (1H. d. J=10Hz)

元素分析: C₃₀H₃₂N₂O₂Sとして

計算值: C 74.35, H 6.66, N 5.78

実測値: C 73.78, H 6.83, N 5.68

実施例11

5-ベンジルチオー2, 3-ジヒドロベンゾフランー7-カルボン酸0.94 gと塩化ピバロイル0.40m1、トリエチルアミン0.46m1、シスー3-アミノー2-ベンズヒドリルキヌクリジン0.88gを用いて実施例1と同じ製造法に付することにより、シスーNー(3-(2-ベンズヒドリルキヌクリジニル)] -5-ベンジルチオー2, 3-ジヒドロベンゾフランー7-カルボキサミド1.14gを得る。融点184~185℃

NMR (CDC1₃, 100MHz):

1.25-2.10 (5H), 2.70-3.12 (4H), 3.90-4.24 (2H), 4.48 (1H, m),

4.88 (2H, m). 6.80-7.30 (16H), 7.66 (1H, d, J=2Hz),

7.86 (1H. d. J=10Hz)

実施例12

5- 4 プロピルチオー 2、3- 3 ヒドロベンゾフランー 7- 2 ルボン酸 0. 57g と塩化ピバロイル 0、30m 1、トリエチルアミン 0、70m 1、シスー 3- 2 アミノー 2- 2 ベンズヒドリルキヌクリジン 0、69g を用いて実施例 1 と同じ製造法に付することにより、シスーNー(3-(2- 2) ベンズヒドリルキヌクリジール)) -5- 4 プロピルチオー 2、3- 3 ヒドロベンゾフランー 7- 2 ボキサミド 0、90g を得る。融点 $176 \sim 177$ \mathbb{C}

NMR (CDC1 $_3$, 100MHz):

1.24 (6H, d. J=8Hz). 1.40-2.10 (5H). 2.70-3.44 (6H). 4.08 (2H, m).

4.50 (1H, m), 4.89 (2H, m), 6.80-7.38 (11H), 7.66 (1H, d, J=2Hz).

7.87 (1H, d, J=10Hz)

元素分析: C32H36N2O2Sとして

計算值: C 74.96, H 7.08, N 5.46

実測値: C 75.07, H 7.16. N 5.45

実施例 1 3

2、2-ジメチル-5-メタンスルホニル-2、3-ジヒドロベンゾフラン-7-カルボン酸1. 35gとクロロ炭酸エチル0. 61m1、トリエチルアミン1. 4m1、シスー3-アミノ-2-ベンズヒドリルキヌクリジン1. 39gを用いて実施例1と同じ製造法に付することにより、シスーNー〔<math>3-(2-ベンズヒドリルキヌクリジニル)〕 -2、2-ジメチル-5-メタンスルホニル-2、3-ジヒドロベンゾフラン-7-カルボキサミド1. 67gを得る。融点249~250℃

NMR (CDC1₃, 100MHz):

1.66 (3H, s), 1.90 (3H, s), 1.40-2.10 (5H), 2.70-3.10 (4H),

3.00 (3H, s), 3.23 (2H, m), 3.86-4.24 (2H), 4.50 (1H, m),

6.80-7.38 (11H), 7.66 (1H, d, J=2Hz), 7.87 (1H, d, J=10Hz)

元素分析: C32H26N2O2Sとして

計算值: C 74.96. H 7.08. N 5.46

実測値: C 75.07, H 7.16, N 5.45

実施例14

5-メタンスルホニルー2、3-ジヒドロベンゾフランー7-カルボン酸1. 0 gとクロロ炭酸エチル0. 5 4 m1、トリエチルアミン1. 2 m1、シスー3 -アミノー2 -ベンズヒドリルキヌクリジン1. 1 7 gを用いて実施例1 と同じ製造法に付することにより、シスーN-(3-(2-ベンズヒドリルキヌクリジニル))-5-メタンスルホニルー2、3-ジヒドロベンゾフランー7-カルボキサミド1. 6 5 gを得る。融点2 6 6 ~ 2 6 7 $\mathbb C$

NMR (CDC13, 100MHz):

1.30-2.10 (5H), 2.60-3.10 (4H), 3.00 (3H, s), 3.40 (2H, m),

3.86-4.14 (2H), 4.52 (1H, m), 5.00 (2H, m), 6.80-7.30 (10H).

7. 60-7.84 (2H), 8. 14 (1H, d. J=2Hz)

元素分析: C30H32N2O4Sとして

計算值: C 69.74, H 6.24, N 5.42

実測値: C 69.58. H 6.50. N 5.38

実施例 15

2, 2-iジメチルー5-iジメチルアミノー2, 3-iジヒドロベンゾフランー7-カルボン酸1. 40gとクロロ炭酸エチル0. 78m1、トリエチルアミン1. 7m1、シスー3-rミノー2-iベンズヒドリルキヌクリジン1. 61gを用いて実施例1と同じ製造法に付することにより、シスーN-(3-(2-i)ベンズヒドリルキヌクリジニル)) -2, 2-iジメチルー5-iジメチルアミノー2, 3-iジヒドロベンゾフランー1-i0・加ボキサミド11、15g0を得る。融点12340~1250 を得る。

NMR (CDC1₃, 100MHz):

- 1.66 (3H. s), 1.84 (3H. s), 1.40-2.10 (5H), 2.70-3.20 (4H).
- 2.84 (6H, s), 3.76-4.56 (3H), 6.75 (2H, d, J=2Hz),
- 6.90-7.32 (11H), 8.24 (1H. d. J=10Hz)

元素分析:CaaHaaNaOa として

計算值: C 77.77, H 7.71, N 8.24

実測値: C 77.96. H 7.87. N 8.15

実施例16

ズオキサジン-8-4ル)メチル)アミノ-2-4ンズヒドリルキヌクリジン1. 6 gを得る。融点166-167^{\circ}

NMR (CDC1 $_3$, 100MHz):

1.21 (3H, s). 1.24 (3H, s). 1.04-2.12 (8H). 2.44-2.90 (5H),

2.87 (3H, s), 3.00-3.40 (2H), 3.68 (1H, m), 4.46 (1H, d. J=12Hz),

5.74 (1H. d. J=3Hz). 6.43 (1H. d. J=3Hz). 7.00-7.40 (10H)

元素分析: C32H38C1N3Oとして

計算值: C 74.47, H 7.42, N 8.14

実測値: C 74.86, H 7.47, N 8.16

実施例17

NMR (CDC1: 100MHz):

1.10-2.10 (5H), 2.40 (3H, s), 2.45-3.30 (8H), 3.30-3.80 (2H),

4.20-4.55 (3H). 6.44 (1H. d. J=2Hz). 6.90-7.38 (11H)

元素分析: C30H34N2OSとして

計算值: C 76.56, H 7.28, N 5.95

実測値: C 76.27, H 7.29, N 5.91

実施例18

シス-N-(3-(2-ベンズヒドリルキヌクリジニル)]-5-ベンジルチオー2,3-ジヒドロベンゾフラン<math>-7-カルボキサミド0.78gと1 モル農度のボランのテトラヒドロフラン溶液15m1を実施例5と同様の製造法に付すことにより、シス-3-((5-ベンジルチオー2,3-ジヒドロベンゾフラン-7-イル)メチル)アミノ-2-ベンズヒドリルキヌクリジン<math>0.51gを得

る。

NMR (CDC1 $_3$, 100MHz):

- 1.04-2.10 (5H), 2.40-3.08 (6H), 3.16 (1H, s), 3.28-3.80 (2H),
- 3.94 (1H, s), 4.28 (2H, t, J=8Hz), 4.46 (1H, d, J=12Hz),
- 6.49 (1H, d, J=2Hz), 6.96 (1H, d, J=2Hz), 7.00-7.12 (15H)

実施例19

シス-N-(3-(2-ベンズヒドリルキヌクリジニル))-5-イソプロピルチオ-2、<math>3-ジヒドロベンゾフラン-7-カルボキサミド0.82gと1モル濃度のボランのテトラヒドロフラン溶液<math>1.6m1を実施例5と同様の製造法に付すことにより、シス-3-((5-イソプロピルチオ-2、<math>3-ジヒドロベンゾフラン-7-イル)メチル)アミノ-2-ベンズヒドリルキヌクリジン<math>0.36gを得る。融点 $1.75\sim1.76$ $\mathbb C$

NMR (CDC1 $_3$, 100MHz):

- 1.21 (6H, d, J=7Hz), 1.30-2.10 (6H), 2.40-3.30 (9H),
- 3.30-3.80 (2H), 4.20-4.56 (3H), 6.62 (1H, d, J=2Hz),
- 6. 90-8. 38 (11H)

元素分析:C₂₂H₃₈N₂OSとして

計算值: C 77.07, H 7.68, N 5.62

実測値: C 77.08, H 7.73, N 5.56

実施例20

シスーNー〔3-(2-ベンズヒドリルキヌクリジニル)〕 -2, 2-ジメチル-5-メタンスルホニルー2, 3-ジヒドロベンゾフラン-7-カルボキサミド1. <math>48gと1モル濃度のボランのテトラヒドロフラン溶液 30m1を実施例 5と同様の製造法に付すことにより、シスー3-((2,2-ジメチル-5-メタンスルホニルー2,3-ジヒドロベンゾフラン-7-イル)メチル〕アミノー2-ベンズヒドリルキヌクリジン<math>0.54gを得る。融点 $162\sim164$ $\mathbb C$ NMR(CDC1 $_3$,100MHz):

1. 44 (6H, d, J=4Hz), 1. 00-2. 08 (6H), 2. 40-3. 40 (9H), 3. 00 (3H, m),

3.70 (1H. m), 4.48 (1H. d. J=12Hz), 7.00-7.60 (12H)

元素分析: C32H38N2O3Sとして

計算值: C 72.42, H 7.22, N 5.28

実測値: C 72.45, H 7.31, N 5.19

実施例21

NMR (CDC13, 100MHz):

1.00-2.08 (6H). 2.40-3.28 (8H). 3.00 (3H. m). 3.49 (1H. m).

3.68 (1H. m), 4.30-4.60 (3H), 7.00-7.60 (12H)

元素分析: Cs2Hs4N2OsSとして

計算值: C 71.69, H 6.82, N 5.57

実測値: C 71.70, H 6.84, N 5.53

実施例22

NMR (CDC1 $_3$, 100MHz):

1.30 (6H, d, J=4Hz), 1.00-2.08 (6H), 2.40-3.40 (9H), 2.68 (6H, s),

3.00 (3H. m), 3.70 (1H. m), 4.48 (1H. d. J=12Hz), 5.85 (1H. m),

6.46 (1H, m), 6.90-7.50 (10H)

元素分析: C33H41N3OSとして

計算値: C 79.96, H 8.34, N 8.48

実測値: C 79.65, H 8.34, N 8.43

実施例23

5-アセトアミドー2.2-ジメチルー2.3-ジヒドロベンゾフラン-7-カルボン酸メチルエステル2. 4gをエタノール30m1とテトラヒドロフラン 20m1の混合溶媒に溶解させる。続いて臭化リチウム1水和物2.09gと水 素化ホウ素ナトリウム 0.76gを加え、6時間還流させる。次に溶媒を濃縮除 去し残渣を酢酸エチルと水に分配させ、酢酸エチル層を飽和炭酸水素ナトリウム 水溶液と飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させる。硫酸マグネシウ ムと溶媒を除去し残渣をシリカゲルクロマトにより精製して、5-アセトアミド -2.2-ジメチル-7-ヒドロキシメチル-2.3-ジヒドロベンゾフラン1. 5gを得る。かくして得られる5-アセトアミドー2,2-ジメチル-7-ヒド ロキシメチルー2. 3-ジヒドロベンゾフラン1. 5gをジクロロエタン25m 1に溶解させ氷冷下、塩化チオニル0.6mlを加え2時間撹拌する。次に反応 液を飽和炭酸水素ナトリウム水溶液と飽和食塩水で洗浄し、硫酸マグネシウムで 乾燥させる。硫酸マグネシウムと溶媒を除去し残渣にノルマルヘキサンを加えて 結晶化させることにより、5-アセトアミド-7-クロロメチル-2.2-ジメ チルー2、3-ジヒドロベンゾフラン1、45gを得る。融点164~165°C 5-アセトアミドー7-クロロメチルー2.2-ジメチルー2.3-ジヒドロ ベンゾフラン 0. 5 1 g、シスー 3 - アミノー 2 - ベンズヒドリルキヌクリジン 0.59gをジメチルホルムアミド10m1に溶解させ、炭酸カリウム0.55 gを加えて一昼夜室温にて撹拌する。反応液を水とクロロホルムに分配させ、ク ロロホルム層を濃縮後シリカゲルカラムクロマトにて精製することにより、シス ンー7ーイル)メチル〕アミノー2ーベンズヒドリルキヌクリジン0.23gを 得る。

実施例24

バイオオーガニック・アンド・メディシナル・ケミストリー・レターズ(Bio-organic & Medicinal Chemistry Letters) Vol. 1、No. 2、pp 129-132に記載の方法にて合成される(一) -3 - アミノー 2 - ベンズヒドリルキヌクリジン 3 0 m g と 5 - メチルチオー 2 、 3 - ジヒドロベンゾフランー 7 - カルボン酸 3 2 m g 、トリエチルアミン 0 、 0 4 2 m 1 、 0 口口炭酸エチル 0 、 0 1 6 m 1 を用いて実施例 1 と同様の製造法に付することにより、(一) - シスーNー〔3 - (2 - ベンズヒドリルキヌクリジニル)1 - 5 - メチルチオー 2 、 3 - ジヒドロベンゾフランー 7 - カルボキサミド 4 0 m g を得る。かくして得られるアミド体を 1 モル 濃度のボランのテトラヒドロフラン溶液 3 m 1 を用いて実施例 5 と同じ製造法に付し、シリカゲルクロマトグラフィーにて精製することにより、(一) - シスー 3 - 〔5 - メチルチオー 2 、3 - ジヒドロベンゾフランー 7 - イル)メチル 1 アミノー 2 - ベンズヒドリルキヌクリジン 4 m 2 を得る。

製剤例

次に、本発明の医薬の製剤例をあげる。

(1) 錠剤

上記化合物(I)を0.5部、乳糖25部、結晶セルロース35部およびコーンスターチ3部とをよく混和したのち、コーンスターチ2部で製した結合剤とよく練合する。この練合物を16メッシュで篩過し、オープン中50℃で乾燥後、24メッシュで篩過する。ここに得た練合粉体とコーンスターチ8部、結晶セルロース11部およびタルク9部とをよく混合した後、圧搾打錠し、1錠当たり有効成分0.5mg含有の錠剤を得る。

(2) 1%散剤

上記の化合物(I)を1部と乳糖90部をよく混和し、適当量のメチルセルロースより製した結合剤とよく練合する。これを16メッシュで篩過し、オープン中50℃で乾燥する。乾燥顆粒末を32メッシュで圧篩過し、適量のシリコンジオキシドとよく混和して、1%散剤を得る。

請求の範囲

1. 一般式(I):

$$R^{1} \xrightarrow{A} X$$

$$R^{2}$$

$$R^{2}$$

$$R^{4} \xrightarrow{NH} R^{6}$$

$$R^{6}$$

〔式中、Aはメチレン基、酸素原子、硫黄原子、-N(R7)-で表される基(式中、R7 は水素、炭素数 $1\sim 6$ 個のアルキルまたはアラルキルを示す。)または直接結合を示す。XおよびYは同一または異なって酸素原子、硫黄原子または水素 2 原子を示す。R1 は水素、ハロゲン、炭素数 $1\sim 6$ 個のアルキル、ハロアルキル、アラルキル、炭素数 $1\sim 6$ 個のアルコキシ、アラルキルオキシ、アリールオキシ、アシル、アシルオキシ、ヒドロキシ、アミノ、ニトロ、シアノまたは式

- $-NHCOR^{8}$, $-S(O)_{2}R^{8}$, $-NHSO_{2}R^{8}$, $-COOR^{8}$,
- $-N(R^{8})(R^{9}), -CON(R^{9})(R^{9}), -O-CO-N(R^{8})(R^{9}).$
- $-O-CS-N(R^{8})(R^{9}), -SO_{2}N(R^{9})(R^{9})$

(式中、 R^8 , R^8 は同一または異なってそれぞれ水素、炭素数 $1 \sim 6$ 個のアルキル、フェニルまたはアラルキルを示し、n は 0, 1 または 2 を示す。)から選ばれる基を示す。 R^2 , R^3 は同一または異なって水素または炭素数 $1 \sim 6$ 個のアルキルを示す。 R^4 は水素または炭素数 $1 \sim 6$ 個のアルキルを示す。 R^5 はチエニルまたはフェニルを示す。 R^6 は炭素数 $1 \sim 6$ 個のアルキル、炭素数 $2 \sim 6$ 個のアルケニル、炭素数 $3 \sim 7$ 個のシクロアルキル、フリル、チエニル、ピリジル、インドリル、ビフェニルまたはフェニルを示す。ただし、Aが酸素原子、かつX およびY が共に水素 2 原子、かつX およびY が共に水素 2 原子、かつX およびY が共に水素 2 原子、かつX に水素 2 原子、かっ2 によって、2 によって、2

が水素、かつ R^2 , R^3 が共に水素である場合を除く。〕 により表されるキヌクリジン化合物またはその医薬上許容されうる酸付加塩。

- 2. Aが-N(CH_s)-または直接結合を示し、XおよびYが同一または異なって酸素原子または水素 2 原子を示し、 R^s , R^s が共に水素または共にメチルを示し、 R^s が水素を示し、 R^s , R^s が共にフェニルであることを特徴とする請求の範囲第1項記載のキヌクリジン化合物またはその医薬上許容されうる酸付加塩。ただし、Aが直接結合、かつXおよびYが共に水素 2 原子、かつ R^s が共に水素である場合を除く。
- 3. シス-N-(3-(2-ベンズヒドリルキヌクリジニル)) 6-クロロー3, 4-ジヒドロー4-メチルー2H-1, 4-ベンズオキサジンー8-カルボ キサミド、シス-N-(3-(2-ベンズヒドリルキヌクリジニル))-2, 2-ジメチル-2, 3-ジヒドロベンゾフラン-7-カルボキサミド、シス-N-[3-(2-ベンズヒドリルキヌクリジニル)]-2,2-ジメチル-5-メチ ルチオー2, 3-ジヒドロベンゾフラン-7-カルボキサミド、シス-N-〔3 - (2-ベンズヒドリルキヌクリジニル)]-2,2-ジメチル-5-ニトロー 2. 3-ジヒドロベンゾフラン-7-カルボキサミド、シス-3-〔(2, 2-ジメチル-5-ニトロ-2, 3-ジヒドロベンゾフラン-7-イル)メチル]ア ミノー2-ベンズヒドリルキヌクリジン、シスー3-〔(2,2-ジメチルー5 ーメチルチオー2, 3ージヒドロベンゾフランー7ーイル)メチル]アミノー2 ーベンズヒドリルキヌクリジン、シスー3-〔(2,2-ジメチルー2,3-ジ ヒドロベンゾフランー 7 ーイル) メチル] アミノー 2 ーベンズヒドリルキヌクリ ジン、シスー3ー [(6ークロロー3, 4ージヒドロー4ーメチルー2H-1, 4-ベンズオキサジン-8-イル) メチル) アミノ-2-ベンズヒドリルキヌク リジン、シス-N- (3-(2-ベンズヒドリルキヌクリジニル)) - 6-クロ ロー2, 2-ジメチルー3, 4-ジヒドロー4-メチルー2H-1, 4-ベンズ オキサジン-8-カルボキサミド、シス-N-〔3-〔2-ベンズヒドリルキヌ クリジニル)] -5-メチルチオ-2, 3-ジヒドロベンゾフラン-7-カルボ キサミド、シス-N-〔3-(2-ベンズヒドリルキヌクリジニル)〕-5-ベ

ンジルチオー2、3-ジヒドロベンゾフラン-7-カルボキサミド、シスーN-3-ジヒドロベンゾフラン-7-カルボキサミド、シス-N-〔3-〔2-ベン ズヒドリルキヌクリジニル)] - 2, 2 - ジメチル - 5 - メタンスルホニル - 2, 3-ジヒドロベンゾフラン-7-カルボキサミド、シス-N-〔3-〔2-ベン ズヒドリルキヌクリジニル)] - 5 - メタンスルホニル - 2 , 3 - ジヒドロベン ゾフラン- 7 - カルボキサミド、シスーN - 〔3 - 〔2 - ベンズヒドリルキヌク リジニル)」-2、2-ジメチル-5-ジメチルアミノ-2、3-ジヒドロベン ゾフラン-7-カルボキサミド、シス-3-〔(6-クロロ-3.4-ジヒドロ メチル〕アミノー2-ベンズヒドリルキヌクリジン、シスー3-〔(5-メチル チオー2、3-ジヒドロベンゾフラン-7-イル)メチル]アミノー2-ベンズ ヒドリルキヌクリジン、シスー3ー〔(5-ベンジルチオー2,3-ジヒドロベ ンゾフラン-7-イル)メチル〕アミノ-2-ベンズヒドリルキヌクリジン、シ スー3-〔(5-イソプロピルチオー2.3-ジヒドロベンゾフラン-7-イル) メチル】アミノー2-ベンズヒドリルキヌクリジン、シスー3-〔(2.2-ジ メチルー5-メタンスルホニルー2, 3-ジヒドロベンゾフランー7-イル)メ チル〕アミノー2ーベンズヒドリルキヌクリジン、シスー3ー〔(5ーメタンス ルホニルー2, 3ージヒドロベンゾフランー7ーイル)メチル]アミノー2ーベ ンズヒドリルキヌクリジン、シスー3-〔(2,2-ジメチル-5-ジメチルア ミノー2、3ージヒドロベンプフランー7ーイル)メチル]アミノー2ーベンズ ヒドリルキヌクリジン、シスー3-〔(5-アセトアミドー2,2-ジメチルー 2. 3-ジヒドロベンゾフラン-7-イル)メチル)アミノ-2-ベンズヒドリ ルキヌクリジン、および(-) -シス-3-〔(5-メチルチオ-2, 3-ジヒ ドロベンゾフラン-7-イル)メチル〕アミノ-2-ベンズヒドリルキヌクリジ ンから選ばれる請求の範囲第1項または第2項記載のキヌクリジン化合物または その医薬上許容されうる酸付加塩。

4. 請求の範囲第1項ないし第3項のいずれかに記載の化合物の治療上有効量と、

医薬上許容されうる添加剤からなる医薬組成物。

- 5. 請求の範囲第1項ないし第3項のいずれかに記載の化合物を有効成分として 含有することを特徴とする鎮痛抗炎症薬。
- 6. 請求の範囲第1項ないし第3項のいずれかに記載の化合物を有効成分として 含有することを特徴とする咳、喀痰を伴う慢性気管支炎、喘息、鼻炎などの呼吸 器系疾患の治療薬。
- 7. 請求の範囲第1項ないし第3項のいずれかに記載の化合物を有効成分として合有することを特徴とする不安症、精神病などの中枢神経系疾患の治療薬。
- 8. 請求の範囲第1項ないし第3項のいずれかに記載の化合物を有効成分として含有することを特徴とする高血圧症、心不全などの循環器系疾患の治療薬。
- 9. 請求の範囲第1項ないし第3項のいずれかに記載の化合物を有効成分として 含有することを特徴とする過敏性大腸炎、潰瘍性大腸炎、クローン病などの消化 器系疾患の治療薬。

10. 一般式(I'):

$$R^{1} \xrightarrow{A} X$$

$$R^{2}$$

$$R^{4} \xrightarrow{NH} R^{6}$$

$$R^{5}$$

$$R^{5}$$

$$(1')$$

〔式中、Aはメチレン基、酸素原子、硫黄原子、-N(R⁷)-で表される基(式中、R⁷ は水素、炭素数 $1\sim 6$ 個のアルキルまたはアラルキルを示す。)または直接結合を示す。Xは酸素原子、硫黄原子または水素 2 原子を示す。R¹ は水素、ハロゲン、炭素数 $1\sim 6$ 個のアルキル、ハロアルキル、アラルキル、炭素数 $1\sim 6$ 個のアルコキシ、アラルキルオキシ、アリールオキシ、アシル、アシルオキシ、ヒドロキシ、アミノ、ニトロ、シアノまたは式

 $-NHCOR^8$, $-S(O)_nR^8$, $-NHSO_2R^8$, $-COOR^8$,

- $-N(R^{s})(R^{s}), -CON(R^{s})(R^{s}), -O-CO-N(R^{s})(R^{s}),$
- $-O-CS-N(R^8)(R^9), -SO_2N(R^8)(R^9)$

(式中、 R^8 , R^9 は同一または異なってそれぞれ水素、炭素数 $1 \sim 6$ 個のアルキル、フェニルまたはアラルキルを示し、n は 0, 1 または 2 を示す。)から選ばれる基を示す。 R^2 , R^3 は同一または異なって水素または炭素数 $1 \sim 6$ 個のアルキルを示す。 R^4 は水素または炭素数 $1 \sim 6$ 個のアルキルを示す。 R^5 はチエニルまたはフェニルを示す。 R^6 は炭素数 $1 \sim 6$ 個のアルキル、炭素数 $2 \sim 6$ 個のアルケニル、炭素数 $3 \sim 7$ 個のシクロアルキル、フリル、チェニル、ピリジル、インドリル、ビフェニルまたはフェニルを示す。1

により表されるキヌクリジン化合物またはその医薬上許容されうる酸付加塩。

補正された 請求の範囲

[1993年4月5日(05.04.93)国際事務局受理;出願当初の請求の範囲1,2 及び10は補正された;他の請求の範囲は変更なし。(5頁)]

1. (補正後) 一般式(I):

$$R^{1} \xrightarrow{A} X$$

$$R^{2}$$

$$R^{2}$$

$$R^{4} \xrightarrow{NH} R^{6}$$

$$R^{5}$$

〔式中、Aはメチレン基、酸素原子、硫黄原子、-N(R7)-で表される基(式中、R7 は水素、炭素数 $1\sim 6$ 個のアルキルまたはアラルキルを示す。)または直接結合を示す。XおよびYは同一または異なって酸素原子、硫黄原子または水素 2 原子を示す。R1 は水素、ハロゲン、炭素数 $1\sim 6$ 個のアルキル、ハロアルキル、アラルキル、炭素数 $1\sim 6$ 個のアルコキシ、アラルキルオキシ、アリールオキシ、アシル、アシルオキシ、ヒドロキシ、アミノ、ニトロ、シアノまたは式

- $-NHCOR^8$, $-S(O)_{a}R^8$, $-NHSO_{2}R^8$, $-COOR^8$,
- $-N(R^{s})(R^{s}), -CON(R^{s})(R^{s}), -O-CO-N(R^{s})(R^{s}),$
- $-O-CS-N(R^{8})(R^{9}), -SO_{2}N(R^{8})(R^{9})$

(式中、 R^8 , R^8 は同一または異なってそれぞれ水素、炭素数 $1 \sim 6$ 個のアルキル、フェニルまたはアラルキルを示し、n は 0, 1 または 2 を示す。)から選ばれる基を示す。 R^2 , R^3 は同一または異なって水素または炭素数 $1 \sim 6$ 個のアルキルを示す。 R^4 は水素または炭素数 $1 \sim 6$ 個のアルキルを示す。 R^5 はチエニルまたはフェニルを示す。 R^6 は炭素数 $1 \sim 6$ 個のアルキル、炭素数 $2 \sim 6$ 個のアルケニル、炭素数 $3 \sim 7$ 個のシクロアルキル、フリル、チエニル、ピリジル、インドリル、ビフェニルまたはフェニルを示す。ただし、Aが酸素原子、かつXが水素 2 原子、Yが酸素原子または水素 2 原子、かつX1 が水素、かつ X^2 , X^3 2 原子、 X^4 3 が共に水素である場合、および X^4 4 に水素である場合、および X^4 6 になって、 X^4 5 が共に水素である場合、および X^4 7 になって、 X^4 7 になって、 X^4 7 になって、 X^4 7 になって、 X^4 8 が共に水素である場合、および X^4 8 になって、 X^4 9 になって、 $X^$

素原子または水素 2 原子、かつ R^1 が水素、かつ R^2 , R^3 が共に水素である場合を除く。〕

により表されるキヌクリジン化合物またはその医薬上許容されうる酸付加塩。

2. (補正後) Aが $-N(CH_a)$ -または直接結合を示し、XおよびYが同一ま たは異なって酸素原子または水素 2 原子を示し、 R^2 , R^3 が共に水素または共 にメチルを示し、R⁴が水素を示し、R⁵, R⁵が共にフェニルであることを特 徴とする請求の範囲第1項記載のキヌクリジン化合物またはその医薬上許容され うる酸付加塩。ただし、Aが直接結合、かつXが水素2原子、Yが酸素原子また は水素 2 原子、かつ R^1 が水素、かつ R^2 , R^3 が共に水素である場合を除く。 シス-N-〔3-(2-ベンズヒドリルキヌクリジニル)〕-6-クロロー 4 - ジヒドロー4 - メチルー2H-1, 4 - ベンズオキサジンー8 - カルボ + キサミド、シスーN- $\{3-(2-ベンズヒドリルキヌクリジニル)\}-2, 2$ ージメチルー2、3ージヒドロベンゾフランー7ーカルボキサミド、シスーNー $[3 - (2 - \sqrt{3} + \sqrt{3}$ ルチオー2.3ージヒドロベンゾフラン-7-カルボキサミド、シス-N-〔3 (2-ベンズヒドリルキヌクリジニル)] -2, 2-ジメチル-5-ニトロー 2, 3-ジヒドロベンゾフランー7-カルボキサミド、シスー3-〔(2, 2-ジメチルー5ーニトロー 2, 3ージヒドロベンゾフランー7ーイル)メチル)ア ミノー2ーベンズヒドリルキヌクリジン、シスー3ー〔(2.2ージメチルー5 - メチルチオー2, 3 - ジヒドロベンゾフラン-7-イル) メチル] アミノー2 ーベンズヒドリルキヌクリジン、シスー3-〔(2,2ージメチルー2,3ージ ヒドロベンゾフラン-7-イル)メチル]アミノ-2-ベンズヒドリルキヌクリ ジン、シスー3-〔(6-クロロー3,4-ジヒドロー4-メチルー2H-1. 4-ベンズオキサジン-8-イル)メチル)アミノ-2-ベンズヒドリルキヌク リジン、シス-N-〔3-(2-ベンズヒドリルキヌクリジニル)〕-6-クロ オキサジン-8-カルボキサミド、シス-N-〔3-〔2-ベンズヒドリルキヌ クリジニル)〕-5-メチルチオ-2,3-ジヒドロベンゾフラン-7-カルボ

キサミド、シス-N-(3-(2-ベンズヒドリルキヌクリジニル))-5-ベ

医薬上許容されうる添加剤からなる医薬組成物。

5. 請求の範囲第1項ないし第3項のいずれかに記載の化合物を有効成分として 含有することを特徴とする鎮痛抗炎症薬。

- 6. 請求の範囲第1項ないし第3項のいずれかに記載の化合物を有効成分として 含有することを特徴とする咳、喀痰を伴う慢性気管支炎、喘息、鼻炎などの呼吸 器系疾患の治療薬。
- 7. 請求の範囲第1項ないし第3項のいずれかに記載の化合物を有効成分として 含有することを特徴とする不安症、精神病などの中枢神経系疾患の治療薬。
- 8. 請求の範囲第1項ないし第3項のいずれかに記載の化合物を有効成分として含有することを特徴とする高血圧症、心不全などの循環器系疾患の治療薬。
- 9. 請求の範囲第1項ないし第3項のいずれかに記載の化合物を有効成分として含有することを特徴とする過敏性大腸炎、潰瘍性大腸炎、クローン病などの消化器系疾患の治療薬。
- 10. (補正後) 一般式(I'):

$$R^{1} \xrightarrow{A} X$$

$$R^{2}$$

$$R^{3}$$

$$R^{4} \xrightarrow{NH} R^{6}$$

$$R^{5}$$

(式中、Aはメチレン基、酸素原子、硫黄原子、-N(R^7)-で表される基(式中、 R^7 は水素、炭素数 $1\sim 6$ 個のアルキルまたはアラルキルを示す。)または直接結合を示す。Xは酸素原子、硫黄原子または水素 2 原子を示す。 R^1 は水素、ハロゲン、炭素数 $1\sim 6$ 個のアルキル、ハロアルキル、アラルキル、炭素数 $1\sim 6$ 個のアルコキシ、アラルキルオキシ、アリールオキシ、アシル、アシルオキシ、ヒドロキシ、アミノ、ニトロ、シアノまたは式

 $-NHCOR^{8}$, $-S(O)_{n}R^{8}$, $-NHSO_{2}R^{8}$, $-COOR^{8}$,

 $-N(R^{8})(R^{9}), -CON(R^{8})(R^{9}), -O-CO-N(R^{8})(R^{9}),$

 $-O-CS-N(R^8)(R^9), -SO_2N(R^8)(R^9)$

(式中、R 8 , R 8 は同一または異なってそれぞれ水素、炭素数 $1 \sim 6$ 個のアルキル、フェニルまたはアラルキルを示し、n は 0, 1 または 2 を示す。) から選ばれる基を示す。 R^2 , R^3 は同一または異なって水素または炭素数 $1 \sim 6$ 個のアルキルを示す。 R^4 は水素または炭素数 $1 \sim 6$ 個のアルキルを示す。 R^6 は犬エニルまたはフェニルを示す。 R^6 は炭素数 $1 \sim 6$ 個のアルキル、炭素数 $2 \sim 6$ 個のアルケニル、炭素数 $3 \sim 7$ 個のシクロアルキル、フリル、チエニル、ピリジル、インドリル、ビフェニルまたはフェニルを示す。 ただし、 A が酸素原子、かつX が水素 2 原子、かつX が水素 2 原子、かつX が水素 2 原子、かつX が水素 2 原子である場合、および4 が直接結合、かつ4 が水素 2 原子である場合、および4 が共に水素 2 原子である場合を除く。 1

により表されるキヌクリジン化合物またはその医薬上許容されうる酸付加塩。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP92/01426

	SSIFICATION OF SUBJECT MATTER			
Int.	nt. Cl ⁵ C07D453/02, A61K31/435, 31/44, 31/535			
According to International Patent Classification (IPC) or to both national classification and IPC				
B. FIELDS SEARCHED				
	ocumentation searched (classification system followed b			
Int.				
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched				
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAS ONLINE				
C. DOCU	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.	
Х У	JP, A, 3-503768 (Pfizer Inc.), August 22, 1991 (22. 08. 91), Claim & WO, A1, 90/05525 & EP, A, 409931 & US, A, 5162339		10 1-9	
	·		1	
Further documents are listed in the continuation of Box C. See patent family annex.				
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art				
Date of the actual completion of the international search Date of mailing of the international search report				
January 14, 1993 (14. 01. 93) February 9, 1993 (09. 02. 93)				
Name and m	Name and mailing address of the ISA/ Authorized officer			
Japan	Japanese Patent Office			
Facsimile No).	Telephone No.		

国際調查報告 92/01426 国際出願者号 PCT/JP A. 発明の属する分野の分類(国際特許分類(IPC)) Int. CL C07D453/02, A61K31/435,31/44,31/535 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. CL5 C07D453/02. A61K31/435-31/44,31/535 最小限資料以外の資料で調査を行った分野に含まれるもの 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CAS ONLINE C. 関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 JP, A, 3-503768 (Pfizer Inc.) 22.8月.1991(22.08.91), 特許請求の範囲をWO,A1,90/05525 &EP, A, 409931&US, A, 5162339 X 1 0 Y 1 - 9□ C額の続きにも文献が列挙されている。 □ パテントファミリーに関する別紙を参照。 * 引用文献のカテゴリー 「丁」国際出願日又は優先日後に公表された文献であって出願と 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 矛盾するものではなく、発明の原理又は理論の理解のため 「E」先行文献ではあるが、国際出顧日以後に公表されたもの に引用するもの 「L」優先権主張に経義を提起する文献又は他の文献の発行日 「X」特に関連のある文献であって、当該文献のみで発明の新規 若しくは他の特別な理由を確立するために引用する文献 性又は進歩性がないと考えられるもの (理由を付す) 「Y」特に関連のある文献であって、当該文献と他の1以上の文 「O」口頭による開示、使用、展示等に言及する文献 献との、当業者にとって自明である組合せによって進歩性 「P」国際出願日前で、かつ優先権の主張の基礎となる出願の日 がないと考えられるもの の後に公表された文献 「&」同一パテントファミリー文献 国際調査を完了した日 国際調査報告の発送日 09.02.93 14.01.93

名称及びあて先

۵

4

日本国特許庁(ISA/JP)

郵便番号100

東京都千代田区霞が関三丁目 4番 3号

特許庁審査官(権限のある職員)

大 宅 郁 治

電話番号 03-3581-1101 内線

3 4 5 2

18829