1

Álgebra vectorial

1.2. El espacio vectorial de las n-plas de números reales

Definición 1.1 Dos vectores A y B de V_n son iguales siempre que coinciden sus componentes. Esto es, si $A = (a_1, a_2, ..., a_n)$ y $B = (b_1, b_2, ..., b_3)$, la ecuación vectorial A = B tiene exactamente el mismo significado que las n ecuaciones escalares

$$a_1 = b_1, \qquad a_2 = b_2, \qquad a_n = b_n$$

La suma A + B se define como el vector obtenido sumando los componentes correspondientes:

$$A + B = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n)$$

La c es un escalar, definimos cA o Ac como el vector obtenido multiplicando cada componente de A por c:

$$cA = (ca_1, ca_2, ..., ca_n)$$

TEOREMA 1.1 a. La adición de vectores es conmutativa.

$$A + B = B + A$$

Demostración.- Sea V_n el espacio vectorial n-plas y $A = (a_1, a_2, ..., a_n)$ y $B = (b_1, b_2, ...b_n)$, por lo tanto por definición de adición y propiedad de números reales, tenemos

$$A + B = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n) = (b_1 + a_1, b_2 + a_2, ..., b_n + a_n) = B + A$$

.

b. y asociativa,

$$A + (B + C) = (A + B) + C$$

Demostración.- Sea V_n el espacio vectorial n-plas y $A = (a_1, a_2, ..., a_n)$, $B = (b_1, b_2, ..., b_n)$ y $C = (c_1, c_2, ..., c_n)$ entonces

$$A + (B + C) = A + (b_1 + c_1, b_2 + c_2, ..., b_n + c_n) = (a_1 + (b_1 + c_1), a_2 + (b_2 + c_2), ..., a_1 + (b_n + c_n)) = ((a_1 + b_1) + c_1, (a_2 + b_2) + c_2, ..., (a_n + b_n) + c_n) = (a_1 + b_1, a_2 + b_2, ..., b_n + c_n) + C = (A + B) + C$$

c. La multiplicación por escalares es asociativa

$$c(dA) = (cd)A$$

Demostración.- Sea $c, d \in \mathbb{R}$ y $A \in V_n$ entonces

$$c(dA) = c(da_1, da_2, ..., da_n)$$

= $((cd)a_1, (cd)a_2, ..., (cd)a_3)$
= $(cd)A$

d. y satisface las dos leyes distributivas

$$c(A+B) = cA + cB$$
, $y(c+d)A = cA + dA$

Demostración.- Las demostraciones son fáciles de realizar siempre y cuando se tomen en cuenta Las definiciones de 12.1.

e. El vector con todos los componentes 0 se llama vector cero y se representa con O. Tiene la propiedad.

Demostración.- Existencia. Sea O = (o, o, ..., o) de donde $A + O = (a_1, a_2, ..., a_n) + (o, o, ..., o) = (a_1 + o, a_2 + o, ..., a_n + o) = (a_1, a_2, ..., a_n) = A$. Unicidad. Supongamos que $O, O' \in V_n$; $O \neq O$ tal que

$$\left\{ \begin{array}{ll} A+O=A & tomando \ A=O^{'}: \ O^{'}+O=O^{'} \\ A+O^{'}=A & tomando \ A=O: \ O+O^{'}=O \end{array} \right.$$

Por lo tanto O = O'.

f. El vector (-1)A que también se representa con -A se llama el apuesto a A. También escribimos A - B en lugar de A + (-B) y lo llamamos diferencia de A y B. La ecuación (A + B) - B = A. Demuestra que la sustracción es la operación inversa de la adición. Obsérvese que 0A = O y que 1A = A.

1.3. Interpretación geométrica para $n \leq 3$

Definición 1.2 Dos vectores A y B de V_n tienen la misma dirección si B = cA para un cierto escalar positivo c, y la dirección opuesta si B = cA para un cierto c negativo. Se llaman paralelos si B = cA para un cierto c no nulo.

1.4. Ejercicios

1.