

信息系统分析与设计 PART II 关联分析 Association Analysis

Dr. Guannan Liu

>>> Outline

- Basic concepts
- Frequent Itemset
- Frequent Itemset Generation: Apriori
- Rule generation

>>> Association Rule Mining

Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

```
\{Diaper\} \rightarrow \{Beer\},\
\{Milk, Bread\} \rightarrow \{Eggs, Coke\},\
\{Beer, Bread\} \rightarrow \{Milk\},\
```

Implication means co-occurrence, not causality!

>>> Definition: Frequent Itemset

- Itemset
 - A collection of one or more items
 - Example: {Milk, Bread, Diaper}
 - □ k-itemset
 - An itemset that contains k items
- Support count (σ)
 - □ Frequency of occurrence of an itemset
 - □ E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$
- Support
 - ☐ Fraction of transactions that contain an itemset
 - \square E.g. s({Milk, Bread, Diaper}) = 2/5
- Frequent Itemset
 - An itemset whose support is greater than or equal to a minsup threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

>>> Definition: Association Rule

Association Rule

- \square An implication expression of the form $X \to Y$, where X and Y are itemsets
- Example: $\{Milk, Diaper\} \rightarrow \{Beer\}$

Rule Evaluation Metrics

- □ Support (s)
 - Fraction of transactions that contain both X and Y
- □ Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example:

$$\{Milk, Diaper\} \Rightarrow \{Beer\}$$

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{\sigma(\text{Milk}, \text{Diaper})} = \frac{2}{3} = 0.67$$

>>> Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - □ support ≥ minsup threshold
 - \Box confidence \geq minconf threshold
- Brute-force approach:
 - ☐ List all possible association rules
 - □ Compute the support and confidence for each rule
 - □ Prune rules that fail the *minsup* and *minconf* thresholds
 - ⇒ Computationally prohibitive!

>>> An exercise

 Total number of itemsets in a transactional data set with d items.

 The total number of possible rules extracted from a transactional data set with d items.

□ Tips

>>> Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

```
\{Milk, Diaper\} \rightarrow \{Beer\} (s=0.4, c=0.67)
\{Milk, Beer\} \rightarrow \{Diaper\} (s=0.4, c=1.0)
\{Diaper, Beer\} \rightarrow \{Milk\} (s=0.4, c=0.67)
\{Beer\} \rightarrow \{Milk, Diaper\} (s=0.4, c=0.67)
\{Diaper\} \rightarrow \{Milk, Beer\} (s=0.4, c=0.5)
\{Milk\} \rightarrow \{Diaper, Beer\} (s=0.4, c=0.5)
```

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

>>> Mining Association Rules

- Two-step approach:
 - Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup
 - Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

>>> Frequent Itemset Generation

>>> Frequent Itemset Generation

- Brute-force approach:
 - □ Each itemset in the lattice is a candidate frequent itemset
 - □ Count the support of each candidate by scanning the database

- □ Match each transaction against every candidate
- \square Complexity \sim O(NMw) => Expensive since M = 2^d !!!

>>> Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - □ Complete search: M=2^d
 - ☐ Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - □ Reduce size of N as the size of itemset increases
 - Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - □ Use efficient data structures to store the candidates or transactions
 - □ No need to match every candidate against every transaction

>>> Reducing Number of Candidates

- Apriori principle:
 - □ If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- □ Support of an itemset never exceeds the support of its subsets
- ☐ This is known as the anti-monotone property of support

>>> Illustrating Apriori Principle

>>> Illustrating Apriori Principle

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Count
3
2
3
2
3
3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

Triplets (3-itemsets)

d,
١,

Itemset	Count
{Bread,Milk,Diaper}	3

>>> Apriori Algorithm

Method:

- □ Let k=1
- Generate frequent itemsets of length 1
- □ Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - Count the support of each candidate by scanning the dataset
 - Eliminate candidates that are infrequent, leaving only those that are frequent

>>> Candidate Generation

- \bullet $F_{k-1} \times F_1$
 - □ Complete because each k-itemset is composed of a frequent (k-1)-itemset and a frequent 1-itemset
 - □ {beer, diaper} * {milk}
 - Not necessary, because {milk, beer} is already infrequent!
- \bullet $F_{k-1} \times F_{k-1}$

>>> Reducing Number of Comparisons

Candidate counting:

- □ Scan the database of transactions to determine the support of each candidate itemset
- □ To reduce the number of comparisons, store the candidates in a hash structure
 - Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

>>> Rule Generation

- How to efficiently generate rules from frequent itemsets?
 - □ In general, confidence does not have an anti-monotone property $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$
 - □ But confidence of rules generated from the same itemset has an anti-monotone property
 - \Box e.g., L = {A,B,C,D}:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

>>> Rule Generation for Apriori Algorithm

>>> Rule Generation for Apriori Algorithm

- Candidate rule is generated by merging two rules that share the same prefix in the rule consequent
- join(CD=>AB,BD=>AC) would produce the candidate rule D => ABC
- Prune rule D=>ABC if its subset AD=>BC does not have high confidence

>>> Factors Affecting Complexity

- Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 - □ this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - more space is needed to store support count of each item
 - if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
 - □ since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 - transaction width increases with denser data sets
 - □ This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

>>> Compact Representation of Frequent Itemsets

 Some itemsets are redundant because they have identical support as their supersets

TID	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	B1	B2	B 3	B4	B5	B6	B7	B8	B9	B10	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

$$=3\times\sum_{k=1}^{10}\binom{10}{k}$$

Need a compact representation

>>> Maximal Frequent Itemset

An itemset is maximal frequent if none of its immediate supersets is frequent

>>> Closed Itemset

An itemset is closed if none of its immediate supersets has the same support as the itemset

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,B,C,D\}$
4	{A,B,D}
5	$\{A,B,C,D\}$

Itemset	Support
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3

Itemset	Support
$\{A,B,C\}$	2
$\{A,B,D\}$	3
$\{A,C,D\}$	2
$\{B,C,D\}$	3
$\{A,B,C,D\}$	2

>>> Maximal vs Closed Itemsets

TID	Items		null	Transaction Ids
1	ABC	124	123 1234 245	√ 345
2	ABCD	A	B C D	E
3	BCE			
4	ACDE	12 124 24	4 123 2 3 24	34 05 45 05
5	DE	(AB) (AC) (AD)	AE BC BD BE	CD CE DE DE
		12 2 ABD ABE	ACD ACE ADE BCD 3 ABCE ABDE ACDE	BCE BDE CDE
Mat average wheel by a great section of the section				
		orted by any		
	transactio	ns	ABCDE	

>>> Maximal vs Closed Frequent Itemsets

>>> Maximal vs Closed Itemsets

Thanks!

Let's enjoy playing with data?

