Avaliação do speedup para o algoritmo conta-K

Diogo Fernando de Melo Sales. R.A: 93814

Abstract—The present work is a brief theoretical and practical study of the metrics used to evaluate the performance of the tests of a parallel code, more precisely the study of the Speedup metrics, whose evaluation of the result expresses the performance of the parallel code over the sequential code.

Index Terms—parallel, speedup

I. Introdução

Quando trata-se do assunto programação paralela existe um leque grande de métricas para avaliar os dados extraídos dos testes. Uma dessas métricas é o Speedup a qual avalia o ganhado obtido da versão paralela para a versão sequencial. Teoricamente é esperado um speedup linear onde ao aumentar o número de threads o ganho aumenta proporcionalmente. Entretanto, na prática é diferente e devido a diversos fatores como , falhas na cache, falso compartilhamento na cache, má otimização do código paralelo, escalonamento do S.O. isso não acontece e geralmente o speedup extraído é menor do que o linear.

II. PROBLEMA

O algoritmo Conta-K possui um funcionamento bem simples. Dado um vetor de n elementos é feita uma contagem de um elemento especifico do vetor. Esse algoritmo foi desenvolvido sequencialmente e paralelamente.

III. AMBIENTE EXPERIMENTAL E EXPERIMENTOS REALIZADOS

- Ambiente: Com o S.O.Ubuntu 20.04 LTS possuindo um processador Intel Core i5-8250u com quatro núcleos com frequência base de 1.60 GHz e máxima de 3.60 GHz com 6 Mb de cache e uma memória RAM de 8 Gbytes;
- Tamanho das entradas:foi utilizado um vetor tamanho 1.840.900.000 tanto na versão sequencial e na paralelas.
- Quantidade de threads: foram feitos experimentos com 2,4,8 e 16 threads;
- Quantas execuções: foram realizadas para cada variação do experimento foram feitas 3 execuções para cada instância e realizada uma média simples dos valores coletados;

IV. SPEEDUP

Na arquitetura de computadores o Speedup evidencia o ganho de tempo obtido na execução paralela para um dado número de tarefas concorrentes.

$$S(t) = \frac{Tempo\ de\ Execução\ Sequencial}{Tempo\ de\ Execução\ com\ t\ Threads}$$

A Figura 1 a seguir evidencia o Speedup alcançado nos testes realizados no algoritmo conta-K. Em geral, o resultado

esperado corresponde à noção que o maior número de threads corresponde a um maior SpeedUp entretando, isso não acontece.

Fig. 1. Gráfico do valor do Speedup calculado.

V. Considerações Finais

O resultado do gráfico mostra a discrepância entre o modelo teórico e o real. O importante é salientar que para cada problema existe um número de processos o qual resultará no melhor speedup já que os problemas são diferentes e o jeito de encontrar esse número mágico é realizando testes. Para o caso apresentado o melhor número de threads é quatro devido as limitações da maquina utilizada, em um hardware mais parrudo por exemplo esse número seria outro e, possivelmente, o tempo de execução seria menor.

REFERENCES

[EZL89] Derek L Eager, John Zahorjan, and Edward D Lazowska. "Speedup versus efficiency in parallel systems". In: *IEEE transactions on computers* 38.3 (1989), pp. 408–423.

[Kum+94] Vipin Kumar et al. *Introduction to parallel computing*. Vol. 110. Benjamin/Cummings Redwood City, CA, 1994.

[Kyr17] Christos Kyrkou. *An Introduction to Parallel Computing*. Oct. 2017. URL: https://https://medium.com/@ckyrkou/an-introduction-to-parallel-computing-dffa6b79e57c.

[Bet18] Tyler Elliot Bettilyon. *High Performance Computing is More Parallel Than Ever*. Dec. 2018. URL: https://medium.com/tebs-lab/the-age-of-parallel-computing-b3f4319c97b0.