Problem Definition: Bicycle Routing

- Let V be the set of nodes and E be the set of edges.
- Decision variable: $P = (v_1, v_2, ..., v_k)$ be a route with $v_1 = 0$ and $v_{20} = 19$.
- For each edge $(i,j) \in E$:
 - $d_{ij} \in [50,200]$: distance between nodes i and j (in meters)
 - a_{ii}: scenic beauty score (1 = worst, 5 = best)
 - b_{ii} : roughness score (1 = very rough, 5 = smooth)
 - s_{ii}: safety score (1 = very safe, 5 = dangerous)
 - l_{ii} : slope score (1 = gentle, 5 = steep)
- Objectives:
 - Minimize Σ (d_{ij})
 - Maximize $\Sigma(a_{ij}) + \Sigma(b_{ij}) + \Sigma(6 s_{ij}) + \Sigma(6 l_{ij})] * (1 / (4.|P|))$
- Dataset: 300 samples selected from a pre-generated set of random routes, each consisting of 7 to 10 nodes.

0	1	2	3
4	5	6	7
8	9	10	11
10	10	14	15
12	13	14	15
10	17	10	10
16	17	18	19

Path	d	а	b	Ø	ı
[0, 3, 8, 5, 14, 16, 2, 9, 11, 19]	1125	20	24	22	25
[0, 3, 5, 14, 17, 8, 6, 7, 12, 19]	981	30	25	29	24

Algorithmic Approach

- NSGA-II (Non-dominated Sorting Genetic Algorithm II): Uses non-dominated sorting and crowding distance to maintain a diverse set of solutions.
- MOEA/D (Multi-Objective Evolutionary Algorithm based on Decomposition): Decomposes the multi-objective problem into many single-objective sub-problems using weight vectors and solve it in parallel.

^{*}We used the default value for mutation and crossover for each algorithm.

Results

600

Comparison of NSGA-II and MOEA/D Results 3.8 3.6 2.8 2.6

1000

Total Distance (minimize)

1200

1400

Original data points

New generated route: [0, 10, 6, 9, 14, 11, 3, 12, 19] (1170.0, 3.875)

Dataset Routes NSGA-II Solutions MOEA/D Solutions

Pareto Front (NSGA-II) Pareto Front (MOEA/D)

New generated route: [0, 2, 10, 8, 3, 1, 19] (596, 3.54)

Discussion

- We used PyGMO to efficiently identify optimal trade-offs for bicycle routing using four comfort and distance metrics.
- The new generated Pareto points with NSGA-II and MOEA/D are more efficient than Pareto points form our original dataset, showing the efficiency of the methods.
- Our approach can be applied to other datasets, with simple formatting.

Limitation and Future Work:

- Equal metric weights: currently, we ignore user preferences but will personalize weights to reflect individual priorities.
- Synthetic network: synthetic network may not capture real-world complexity, we will test on real-world data such as OpenStreetMap.