Lecture 3 Numerical Measures

BIO210 Biostatistics

Xi Chen

Spring, 2025

School of Life Sciences
Southern University of Science and Technology

Summarise data using numbers

- Central tendency (mean, median, mode)
- Extremes (smallest, largest)
- Range
- Interquartile range (IQR)
- Dispersion (variance, standard deviation)

Central tendency

$$\bullet \ \ \text{Arithmetic mean:} \ \ \bar{x} = \frac{x_1 + x_2 + x_3 + \dots + x_{n-1} + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i$$

• Median: the 50th percentile

• Mode: the most frequent values

Central tendency

	Mean	Median	Mode
1, 2, 3, 4, 5, 6, 7, 8, 9	5	5	X
2, 3, 5, 7, 7, 7, 7, 11, 13	6.89	7	7
2, 3, 5, 7, 7, 7, 7, 11, 13, 65	12.7	7	7
2, 2, 2, 5, 6, 63, 63, 63, 64, 65	33.5	34.5	2, 63
2, 3, 4, 5, 6, 60, 61, 62, 63	33	33	Х

The Shape of The Data

Geometric Mean

Geometric mean:
$$\mathsf{GM} = \sqrt[n]{x_1 x_2 x_3 \cdots x_{n-1} x_n} = \left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}}$$

$$\log \mathsf{GM} = \frac{1}{n} \log \left(\prod_{i=1}^{n} x_i \right) = \frac{1}{n} \sum_{i=1}^{n} \log x_i$$

Log scale in biology

Dispersion

Dispersion

• Variance:
$$\mathbb{V}\mathrm{ar} = \frac{1}{n}\sum_{i=1}^n(x_i-\mu)^2 \text{ or } \frac{1}{n-1}\sum_{i=1}^n(x_i-\bar{x})^2$$

• Standard deviation: $\sqrt{\mathbb{V}ar}$

Grouped data

Transcription factor binding motif length (bp):

Mean:

Grouped data

Motif length (bp) Absolute frequency		Relative frequency	
11	10	0.5	
13	7	0.35	
16	2	0.1	
17	1	0.05	
Total 20		1	
Iotal	20	1	

Weighted average

Value	Absolute frequency	
x_1	f_1	
x_2	f_2	
x_3	f_2	
:	:	
÷	:	
x_{n-1}	f_{n-1}	
x_{n-1} x_n	f_n	

$$\bar{x} = \frac{x_1 f_1 + x_2 f_2 + \dots + x_{n-1} f_{n-1} + x_n f_n}{f_1 + f_2 + \dots + f_{n-1} + f_n}$$

$$= \frac{x_1 f_1 + x_2 f_2 + \dots + x_{n-1} f_{n-1} + x_n f_n}{\sum_{i=1}^n f_i}$$

$$= \frac{f_1}{\sum_{i=1}^n f_i} x_1 + \frac{f_2}{\sum_{i=1}^n f_i} x_2 + \dots + \frac{f_n}{\sum_{i=1}^n f_i} x_n$$

$$= w_1 x_1 + w_2 x_2 + \dots + w_n x_n = \sum_{i=1}^n w_i x_i$$

Weighted average

Grading system:

Attendance Assignments		Mid-term exam	Final exam
10%	20%	30%	40%

Pixel luminance:

$$0.2126 \times R + 0.7152 \times G + 0.0722 \times B$$

$$0.299 \times R + 0.587 \times G + 0.114 \times B$$

Weighted average

A badly manufactured dodecahedron die

Values		Relative frequency	
	1	8%	
	2	5%	
	3	5%	
	4	5%	
	5	5%	
	6	10%	
	7	10%	
	8	10%	
	9	10%	
	10	12%	
	11	10%	
	12	10%	

We roll the die repeadly for a large number of times. What will be the average number?

Summary of descriptive statistics

```
Tables (absolute/relative frequency table)

Graphs (Bar chart, pie chart, histogram, box plot, line graph, scatter plot)

Data presentation 

Central tendency (arithmetic/geometric mean, median, mode)

Dispersion (variance, standard deviation)

Others (range, IQR)
```

New way of calculating mean: weighted average $ar{x} = \sum_{i=1}^n w_i x_i$