Nume, prenume	N = Nr.	<mark>a</mark> = (N mod 5)+1	Data completării
	matricol	<mark>b</mark> = a mod 3, <mark>c</mark> = a + b	formularului
Drincianu Alexandru-	11879	a = 5	
Mihai		b = 2	10.12.2020
		c = 7	

Lucrarea de control nr. 1 - Programarea 2 - Setul de întrebări nr. 1

(Formularul completat se depune în format pdf până la ora 17:10)

1. Se consideră un sistem liniar \mathbf{S} cu orientarea u \rightarrow y. El se găsește în condiții inițiale nule.

i) Interpretați afirmația: "Pentru sistemul **S** este valabil principiul superpoziției." (0.3 pt.) *Răspuns:*

Fie $u_1(t)$ si $u_2(t)$ semnale de intrare admisibile care vor produce la iesiri semnalele $y_1(t)$ si $y_2(t)$ si z_1 , z_2 constante numere complexe.

Sistemul verifica principiul superpozitiei pentru ca oricare ar fi $u_1(t)$ si $u_2(t)$ si c_1 , c_2 rezulta ca $y_3(t) = c_1 * y_1(t) + c_2 * y_2(t)$.

ii) La intrarea u a sistemului **S** se aplică semnalul scară u(t) = f(t) reprezentat cu roșu în figură. În figură, pe axa timpului, unitatea este 1 secundă (latura unui pătrățel).

Analizați și argumentați corectitudinea sau incorectitudinea următoarelor afirmații:

a) În primele 5 secunde, adică pentru $t \in [0, 5)$, răspunsul sistemului S la semnalul de intrare u(t) = f(t) coincide cu răspunsul sistemului S la semnalul de intrare: $u(t) = u_1(t) = 4 \cdot \sigma(t-1) + \sigma(t-2) - \sigma(t-3) \cdot (0.35 \text{ pt.})$ Răspuns:

Semmalul coincide au raspunul vintemului S clear pentru $t \in [0, 4]$.

Putem observa ca semnalul pleaca de la t = 0 si la momentul t = 1 ajunge la 4, apoi creste cu o unitate la t = 2, apoi scade cu o unitate pentru t = 3.

b) În primele 6 secunde, adică pentru $t \in [0, 6)$, răspunsul sistemului **S** la semnalul de intrare u(t) = f(t) coincide cu răspunsul sistemului S la semnalul de intrare:

$$u(t) = u_2(t) = 4 \cdot \sigma(t-1) + \sigma(t-2) - \sigma(t-3) - \sigma(t-4) + \sigma(t-5) + 3 \cdot \sigma(t-6). \tag{0.35 pt.}$$

2. Răspunsul la semnal treaptă unitară al unui sistem liniar în timp continuu aflat în condiții inițiale nule are expresia $y_{\sigma}(t) = \frac{\mathbf{a}+1}{\mathbf{c}+1} \cdot \left(1-e^{-\frac{\mathbf{c}+1}{\mathbf{b}+1}\cdot t}\right)$. Să se calculeze răspunsul sistemului în condiții inițiale nule la impuls unitar." (0.5 pt.).

Răspuns:

Mg(t) =
$$\frac{a+1}{c+1} \cdot (1-e^{-\frac{c+1}{b+1}}) = \frac{a+5}{8} \cdot (1-e^{-\frac{c+1}{b+1}})$$

= $\frac{3}{4} \cdot (1-e^{-\frac{c+1}{b+1}}) = \frac{a+5}{8} \cdot (1-e^{-\frac{c+1}{b+1}})$

Penton an colcula rayonal intervalue la injuls unider

Trubule să derina $\frac{b}{b} = \frac{b}{b} = \frac{b}{b} = \frac{b}{b}$

=) $\frac{b}{b} = \frac{b}{b} = \frac{b}{$

3. Se consideră o conexiune paralel între un regulator PI și un regulator PD.

a) Notăm parametrii regulatorului PI cu indicele 1, iar pe cei ai regulatorului PD cu indicele 2. Desenați schema bloc a conexiunii. (0.2 pt.).

Răspuns:

b) Arătați că ansamblul celor două regulatoare interconectate alcătuiește un regulator PID. (0.3 pt.). *Răspuns:*