

ECE 661 COMP ENG ML & DEEP NEURAL NETS

11. LARGE LANGUAGE MODELS INFERENCE

This lecture

Applying machine learning into the real world

Outline

Lecture 11: Large Language Model Inference

- Inference Basic
- Additional Transformer Designs
 - KV cache
 - Attention mechanisms optimization
- Advanced Inference Systems
 - FlashAttention
 - vLLM
- LLM Inference Randomness

LLM Inference

- What is Inference in Machine Learning?
 - The process of inputting new data into a trained machine learning model to generate a prediction.
 - Example: Inputting an image into a CNN model to recognize its class

- What is Inference in context of LLMs?
 - The process of generating text outputs based on input prompts, by iteratively predicting the next token in a sequence.

- Loading Weight to GPU
- Tokenizing the input text sequence (Prompt)
- Prefill Phase
- Decoding Phase

Key Phases

Detokenize output tokens

- Loading Weight to GPU
 - LLaMa-2-7B (FP32 ~ 28GB)

- Tokenizing the input text sequence (Prompt)
 - Tokenizer breaks down text into tokens (e.g word, subword, characters)
 - Tokens are converted into vectors that model can understand
 - Text -> tokens -> vector

Tokenization

- Tokenization is the process of dividing text into smaller units called tokens, which are typically words or sub-words.
- Tokens are mapped to vectors for use in neural networks.

Two Approaches:

- **Top-Down (Rule-based tokenization)** uses predefined rules to segment text into tokens, typically based on grammar and syntax, e.g., splitting sentences at punctuation marks or spaces.
- **Bottom-up (Subword tokenization)** breaks down words into smaller units, such as subwords or characters, allowing for the handling of unknown words and variations, e.g., Byte Pair Encoding used in BERT and GPT.

Byte-Pair Encoding

Byte Pair Encoding is a compression-based tokenization method that iteratively merges the most frequent character pairs to create subword units.

Step 1: Start with a vocabulary containing the individual characters present in the training corpus.

Step 2: Examine the training corpus and identify the two most frequently adjacent symbols.

Step 3: Add a new merged symbol representing the combined pair to the vocabulary. Replace every instance of the adjacent pair in the corpus with the new merged symbol.

Step 4: Continue counting and merging the most frequent pairs. Repeat until you've performed k merges, resulting in k novel tokens.

Step 5: The final vocabulary consists of the original set of characters plus the k new symbols created through merging.

https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf

Byte-Pair Encoding

Initial vocabulary:
characters

Split each word
into characters

Words in the data:

word	count	Current merge table:
cat mat	4 5	(empty)
mats	2	
mate	3	
ate	3	
eat	2	

- Prefill Phase (Single-step Phase)
 - Running the tokenized prompt through the LLM Model to generate the first token

- Prefill Phase (Single-step Phase)
 - Running the tokenized prompt through the LLM Model to generate the first token
- Decoding Phase (Multi-step Phase)
 - Appending the generated token to the sequence of input tokens and using it as a new input to generate the next token

- Prefill Phase (Single-step Phase)
 - Running the tokenized prompt through the LLM Model to generate the first token
- Decoding Phase (Multi-step Phase)
 - Appending the generated token to the sequence of input tokens and using it as a new input to generate the next token

Repeat decoding until meeting a stopping criteria

- Generating end-of-sequence token
- Reaching maximum sequence length

LLM Inference Scenarios

- Inference Fewer request, offline traffic, latency
 Take a series of tokens as inputs, and generate subsequent tokens autoregressively until they meet a stopping criteria
 - Prefill Phase (Process the input)

Decoding Phase (Generate the output)

- Serving Many requests, online traffic, cost-per-query
 - Co-locate the two phases and batch the computation of prefill and decoding across all users and requests

Outline

Lecture 11: Large Language Model Inference

- Inference Basic
- Additional Transformer Designs
 - KV cache
 - Attention mechanisms optimization
- Advanced Inference Systems
 - FlashAttention
 - vLLM
- LLM Inference Randomness

KV Cache

Recaps Attention Function

- Token generation (Attention computation)
 - Keys and Values of all preceding tokens
 - Query from current token
 - Recalculating previous tokens' attention
- Token generation only occurs in Decoder

• Without Cache

Step 1

 d_{head} : the hidden dimension of the attention head

• Without Cache

• Without Cache

Without Cache

Function

Storing previously calculated Keys and Values

Benefits

- Reducing the size of the matrices involved (compute attention only for new tokens.)
- Leading to faster matrix multiplication and overall improved efficiency.

Drawbacks

Requiring EXTRA memory to store the KV cache

• With Cache

With Cache

With Cache

With Cache

Outline

Lecture 11: Large Language Model Inference

- Inference Basic
- Additional Transformer Designs
 - KV cache
 - Attention mechanisms optimization
- Advanced Inference Systems
 - FlashAttention
 - vLLM
- LLM Inference Randomness

KV cache Memory Usage

- How Big is KV cache?
 - Total size of KV cache (FP16 = 2 bytes):

$$Size_{KV} = 2 * n_{batch} * n_{seq} * n_{layers} * (n_{heads} * d_{head}) * 2(bytes)$$

- *n_{batch}*: batch size,
- n_{seq} : total sequence length
- n_{lavers} : the number of decoder attention layers,
- n_{heads} : the number of attention heads per attention layer
- d_{head} : the hidden dimension of the attention head
- $(n_{heads} * d_{head})$: generally called embedding dimension "d"
- Llama-2-7B: $n_{lavers} = 32$, $n_{heads} = 32$, $d_{head} = 128$
 - $n_{batch} = 1$, $n_{seg} = 100$ $\rightarrow Size_{KV} = 0.05$ GB **A100 GPU Memory = 80GB**

- $n_{batch} = 16$, $n_{sea} = 100$ $\rightarrow Size_{KV} = 0.8GB$
- $n_{batch} = 16$, $n_{seq} = 10000 \rightarrow Size_{KV} = 80GB$

Attention mechanisms optimization

• Reduce KV Cache Memory Usage with n_{heads}

- Multi-head Attention (MHA): N head for Query, Key, Value
- Grouped-query attention (GQA): N head for Query, G head for Key and Value
- Multi-query attention (MQA): N head for Query, 1 head for Key and Value

Outline

Lecture 11: Large Language Model Inference

- Inference Basic
- Additional Transformer Designs
 - KV cache
 - Attention mechanisms optimization
- Advanced Inference Systems
 - FlashAttention
 - vLLM
- LLM Inference Randomness

FlashAttention

Uses tiling to reduce the number of memory reads/writes between
 GPU high bandwidth memory (HBM) and GPU on-chip SRAM

Attention Memory Access

- Input stage
 - Load Q, $K(n_{seq}*d)$ from High Bandwidth Memory (HBM)
 - Calculate and write back s ($n_{seq}*n_{seq}$) to HBM
- Intermediate stage
 - Load s ($n_{seq} * n_{seq}$) from HBM
 - Calculate and write back $P(n_{seq} * n_{seq})$ to HBM.
- Output stage
 - Load $P(n_{seq} * n_{seq})$ and $V(n_{seq} * d)$ from HBM,
 - Calculate and write back o ($n_{seq}*d$) to HBM

$$-\Theta(n_{seq}*d+n_{seq}*n_{seq})$$

FlashAttention Memory Access

- Key Idea
 - Breaking down the large attention matrix into smaller sub-matrices (tiles).
 - Tile fits within SRAM (access faster than HBM)
 - Significantly reducing the need to access HBM during computation
- Breakdown of FlashAttention
 - Load a tile (part of Q, K, V) from HBM into SRAM (size: M)
 - Perform all operations for the given tile in SRAM
 - Eliminate the need to load and write back of S and P to HBM
 - Write O back to HBM once the computation is complete

HBM Memory Access Complexity

$$-\Theta(\frac{n_{seq}^2*d^2}{M})$$

FlashAttention

Results on NVDIA H100

Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness."

Outline

Lecture 11: Large Language Model Inference

- Inference Basic
- Additional Transformer Designs
 - KV cache
 - Attention mechanisms optimization
- Advanced Inference Systems
 - FlashAttention
 - vLLM
- LLM Inference Randomness

vLLM

 A high-throughput and memory-efficient inference and serving engine for LLMs

- Motivation
 - KV cache Memory Usage problem

- Reservation: not used at the current step, but used in the future
- Internal fragmentation: over-allocated due to the unknown output length.
- External fragmentation: due to different sequence lengths.

Memory Wastes in LLM KV Cache

vLLM Analogy

- Inspired by Virtual Memory Management in Operating system
- Key Algorithm: PagedAttention

Memory management in OS

Memory management in vLLM

PagedAttention

Storing Continuous Keys and Values in non-contiguous memory space

Multiple Request Serving

Block Table

Logical token blocks

Alan	Turing	is	а
computer	scientist	and	mathema tician
renowned			

Physical token blocks (KV Cache)

computer	scientist	and	mathem atician
Artificial	Intellige nce	is	the
renowned			
future	of	technolog y	
Alan	Turing	is	а

Block Table

Logical token blocks

Artificial	Intelligence	is	the
future	of	technology	

Token Block Sharing

Performance Comparison with HuggingFace and TGI

- Throughput
 - 24x higher than HuggingFace
 - 3.5x higher than Text Generation Inference (TGI)

Serving throughput when each request asks for 3 output completions.

Outline

Lecture 11: Large Language Model Inference

- Inference Basic
- Additional Transformer Designs
 - KV cache
 - Attention mechanisms optimization
- Advanced Inference Systems
 - FlashAttention
 - vLLM
- LLM Inference Randomness

Temperature

- A crucial hyperparameter in fine-tuning the output of LLMs
 - control the randomness and creativity of generated text by adjusting word probability distributions.
- How it is Implemented
 - Softmax (same as Temperature = 1)

$$P_i = \frac{e^{x_i}}{\sum_j e^{x_j}}$$

Softmax with Temperature (T)

$$P_i = \frac{e^{x_i/T}}{\sum_j e^{x_j/T}}$$

Temperature (T=10)

Temperature (T=0.3)

Temperature (T) = 0.3

Temperature (T=0)

Temperature (T) = 0

Temperature Impact

- Low Temperature $(T \rightarrow 0)$
 - Makes the model more deterministic
 - Higher probability words become even more likely
- High Temperature (T > 1):
 - Increases randomness.
 - Less probable words have a higher chance of selection
- Practical Usage:
 - Low T: For precise and factual responses
 - High T: For creative writing and idea generation

Top_p

- Top_p (Nucleus Sampling)
 - Selects tokens based on cumulative probability until reaching a predefined threshold p.
 - Considers the smallest set of top tokens whose probabilities sum up to p.

Top_k

- Top_k (Top_k Sampling)
 - Considers only the top k most probable tokens.
 - Ignores all tokens outside the top k probabilities.

In this lecture we learned

- LLM Inference
 - Prefill and decoding phase
- Additional Transformer Design
 - KV cache
 - Group Query Attention, Multi-query Attention
- Advanced Inference Systems
 - FlashAttention
 - vLLM
- Temperature, Top-k & Top-p