

Testes de Hipóteses I

Felipe Figueiredo

Testes de Hipóteses

Testes de Hipóteses para

Testes de Hipóteses para a média

Resumo

Testes de Hipóteses I

Testes para uma amostra

Felipe Figueiredo

Instituto Nacional de Traumatologia e Ortopedia

Testes de Hipóteses

- Podemos tomar decisões baseado nos dados de um experimento (amostra).
- Para isto, precisamos de um critério sistemático e rigoroso que possa aferir o quanto os dados suportam esta decisão.
- Usando os conceitos de probabilidades, poderemos ainda calcular a probabilidade de que esta decisão esteja errada.

Testes de Hipóteses I

Felipe Figueiredo

Testes de Hipóteses Hipóteses

Hipóteses Significância Região crítica

Testes de Hipóteses para proporções

Testes de Hipóteses para a média

Resumo

Sumário

Testes de Hipóteses I

> Felipe Figueiredo

Testes de

Testes de Hipóteses para

Testes de Hipóteses para a média

Resumo

Testes de Hipóteses

- Hipóteses
- Significância
- Região crítica
- 2 Testes de Hipóteses para proporções
 - Estatística de teste
 - Exemplos
- Testes de Hipóteses para a média
 - Estatística de teste
 - Exemplos
- Resumo

Testes de Hipóteses

Testes de Hipóteses I

Felipe Figueiredo

Testes de Hipóteses Hipóteses

Significância Região crítica

Testes de Hipóteses para proporções

Testes de Hipóteses para a média

Definition

Em Estatística, uma hipótese é uma afirmação sobre uma característica de uma população, tipicamente o valor de um parâmetro.

Definition

Um teste de hipótese (ou teste de significância) é um procedimento sistemático para testar uma afirmação sobre uma característica de uma população.

Componentes de um testes de hipóteses

Testes de Hipóteses I

Felipe Figueiredo

Testes de Hipóteses

Hipóteses Significância Região crítica

Testes de Hipóteses para

Testes de Hipóteses para a média

Resumo

São necessários para um teste de hipóteses:

- As hipóteses nula e alternativa
- O nível de significância
- A estatística de teste
- A região crítica

•

Identificando hipóteses

- Para efetuar um teste de hipóteses é necessária a formulação de uma hipótese nula e uma hipótese alternativa.
- A hipótese nula (H₀) é uma hipótese que contém uma afirmação de igualdade.
- A hipótese alternativa (H₁ ou H_a) é o complementar da hipótese nula.

Identificando hipóteses

 Uma hipótese estatística deve ser testável frente a dados obtidos de um experimento.

Example

Um jornalista alega que a maior parte dos motoristas atravessa o sinal vermelho.

Example

Pesquisadores afirmam que a temperatura corporal média de adultos sadios não ultrapassa 37°C.

Testes de Hipóteses I

Felipe Figueiredo

Testes de Hipóteses Hipóteses Significância

Região crítica
Testes de
Hipóteses

proporções
Testes de

Resumo

INTO

Testes de Hipóteses I

Felipe Figueiredo

Hipóteses
Hipóteses
Significância
Região crítica

Testes de Hipóteses para

Testes de Hipóteses para a média

Resumo

Identificando hipóteses

INTO

Testes de Hipóteses I

Felipe Figueiredo

Testes de Hipóteses Hipóteses

Testes de Hipóteses

Testes de Hipóteses

Pooumo

Roteiro

- Identificar a afirmação a ser testada e expressá-la em forma simbólica
- Expressar em forma simbólica a afirmação que deve ser verdadeira, caso a afirmação de interesse seja falsa
- Oas duas expressões obtidas, a hipótese H₀ será a que contém igualdade =, enquanto a H₁ será a que contém um sinal de <, > ou ≠.

Identificando hipóteses

Testes de Hipóteses I

Felipe Figueiredo

Testes de Hipóteses Hipóteses

Hipóteses Significância Região crítica

Testes de Hipóteses para proporções

Testes de Hipóteses para a média

Posumo

Example

Formulação verbal:

A proporção de motoristas que admitem atravessar o sinal vermelho é maior que 50%.

Formulação matemática:

 $H_0: p = 0.5$

 $H_1: p > 0.5$

Identificando hipóteses

Testes de Hipóteses I

> Felipe Figueiredo

Testes de Hipóteses Hipóteses Significância

Região crítica

Testes de

Hipóteses para

Testes de Hipóteses para a média

Resumo

Identificando hipóteses

Testes de Hipóteses I

Felipe Figueiredo

Hipóteses
Hipóteses
Significância

Testes de Hipóteses para

Testes de Hipóteses para a média

Resumo

Protótipo

Example

Formulação verbal:

no máximo 2.20m.

Formulação matemática:

Testes de

Hipóteses I

Felipe

Figueiredo

Hipóteses

Considere o seguinte exemplo:

Example

Uma empresa oferece um produto que afirma que "ser capaz de aumentar as chances de que o sexo do bebê de um casal seja um menino em até 85%, e uma menina em até 80%". Você resolve testar o produto que confere maior chance de nascimento de meninas em 100 casais.

A altura média de jogadores profissionais de basquete é de

 $H_0: \mu = 2.20$ $H_1: \mu < 2.20$

Há evidências para aceitar a alegação do produto, se forem observadas (em 100 nascimentos):

52 meninas?

2 97 meninas?

Example

Formulação verbal:

A dose média contida em um comprimido de paracetamol é de 750mg.

Formulação matemática:

 $H_0: \mu = 750$

 $H_1: \mu \neq 750$

Protótipo

Example

Testes de Hipóteses I

Felipe Figueiredo

Hipóteses
Hipóteses
Significância
Região crítica

Testes de Hipóteses para

Testes de Hipóteses

Resumo

Protótipo

Testes de Hipóteses I

Felipe Figueiredo

Hipóteses
Hipóteses
Significância

Testes de Hipóteses para

Testes de Hipóteses

Resumo

em 100. Isso poderia ser explicado como (a) um evento *extremamente* raro ocorrer ao acaso ou (b) o

produto é eficaz.

Protótipo

Esperamos cerca de 50 meninas em 100 nascimentos

 (H_0) . Como 52 é próximo de 50, não deveríamos

É muito pouco provável o nascimento de 97 meninas

concluir que o produto é eficaz.

Testes de Hipóteses I

Felipe Figueiredo

Hipóteses Hipóteses Significância Região crítica

Testes de Hipóteses para proporções

Testes de Hipóteses para a média

lesumo

Rejeitar hipóteses

 Ao executar um teste de hipóteses observamos se os dados indicam que se deve rejeitar a hipótese H₀.

• No primeiro caso, dizemos que não há evidência de

Isso vale, mesmo considerando que em ambos os

A diferença é que no segundo caso, o resultado é

significativamente maior que o esperado ao acaso.

casos o resultado é acima da média.

que o produto seja eficaz, e que no segundo caso há.

- H₀ representa a possibilidade de observarmos o resultado ao acaso.
- Caso haja evidências para que H₀ seja rejeitada,
 "assumimos" que a H₁ deve ser verdadeira.
- Mas isso n\(\tilde{a}\) seja falsa e \(H_1\) seja verdadeira!

Testes de Hipóteses I

Felipe Figueiredo

Testes de Hipóteses Hipóteses Significância Região crítica

Testes de Hipóteses para

Testes de Hipóteses para a média

Tipos de erros em testes de hipóteses

Um erro do tipo I ocorre se a hipótese nula for rejeitada

Um erro do tipo II ocorre se a hipótese não for rejeitada

Testes de Hipóteses I

Felipe Figueiredo

Significância Região crítica

Tipos de erros em testes de hipóteses

H₀ é verdadeira

Decisão correta

Erro do tipo I

 H_0 é falsa

Erro do tipo II

Decisão correta

Testes de Hipóteses I

Felipe Figueiredo

Hipóteses Significância

Rejeitar hipóteses

Testes de Hipóteses I

Felipe Figueiredo

Significância Região crítica

Nível de significância

Decisão

Não rejeitar H₀

Rejeitar *H*₀

Testes de Hipóteses I

> Felipe Figueiredo

Hipóteses Significância

Importante

Definition

Definition

quando for falsa.

quando é verdadeira.

Observe que o teste de hipótese nunca deve aceitar uma hipótese nula, apenas rejeitá-la ou deixar de rejeitá-la.

Definition

O nível de significância de um teste de hipótese é sua probabilidade máxima admissível para cometer um erro do tipo I. Ele é denotado por α .

Definition

A probabilidade de se cometer um erro do tipo II é denotada por β .

Identificando a região crítica

- OF INTO
- Testes de Hipóteses I

Felipe Figueiredo

Testes de Hipóteses Hipóteses Significância Região crítica

Testes de Hipóteses para

Testes de Hipóteses

Resumo

- Para identificar a região crítica (ou região de rejeição) do teste, devemos observar se o teste é unicaudal (à esquerda ou à direita) ou bicaudal.
- Se H_1 é do tipo \neq , o teste é bicaudal (ou bilateral).
- Se H_1 é do tipo <, o teste é unicaudal (ou unilateral) à esquerda.
- Se H_1 é do tipo >, o teste é unicaudal à direita.

Identificando a região crítica

Testes de Hipóteses I

Felipe Figueiredo

Hipóteses
Hipóteses
Significância

Região crítica
Testes de

Hipóteses para proporções

Testes de Hipóteses para a média

Resumo

 H_0 : $\mu = \mu_0$

 H_1 : $\mu < \mu_0$

Decisão

- Veremos a seguir uma estatística de teste para cada tipo de teste.
- Calculamos a estatística de teste (valor crítico) e verificamos se este está dentro da região crítica
- Se a estatística de teste estiver dentro da região crítica, devemos rejeitar H₀
- Caso contrário, não devemos rejeitar *H*₀.

Testes de Hipóteses I

Felipe Figueiredo

Testes de Hipóteses Hipóteses

Significância Região crítica

Hipóteses
para
proporcões

Testes de Hipóteses

Resumo

Estatística de teste

 H_0 : $\mu = \mu_0$

 H_1 : $\mu \neq \mu_0$

Em um teste de proporções, devemos considerar:

 H_0 : $\mu = \mu_0$

 $H_1: \mu > \mu_0$

- *n* = tamanho da amostra
- \hat{p} = proporção na amostra
- p = proporção na população
- q = 1 p
- A estatística de teste para uma proporção é

$$z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}}$$

Testes de Hipóteses l

Felipe Figueiredo

Hipóteses Testes de Hipóteses para proporções

Testes de Hipóteses para a média

Exemplo

Testes de Hipóteses I

Felipe Figueiredo

Exemplos

Example

Estudos sobre mortalidade de homens com idade superior a 65 anos de uma cidade mostram que 4% deles morrem dentro de um ano. Num grupo de 1000 indivíduos selecionados dessa população, 60 morreram no período de um ano. Suspeita-se de que houve um aumento da mortalidade anual nessa população.

Exemplo

Testes de

Hipóteses I

Felipe

Figueiredo

Exemplos

Solução

Hipóteses

$$H_0: p = 0.04$$

$$H_1: p > 0.04$$

- Região crítica: à direita de $z_{0.05} = 1.645$ (ou seja, qualquer $z > z_{0.05}$).
- Dados

$$n = 1000, \hat{p} = 0,06$$

Estatística de teste

$$z = \frac{0.06 - 0.04}{\sqrt{\frac{0.04 \times (1 - 0.04)}{1000}}} = 3.32$$

Exemplo

- Comparando z e $z_{0.05}$ observamos que 3.32 > 1.645.
- Como a estatística de teste está dentro da região crítica, rejeitamos H_0 ao nível de significância de 5%.
- Conclusão: rejeitamos a hipótese de que a proporção de idosos que morrem por ano nessa cidade é igual a 4%, em favor da hipótese de que essa proporção é maior 4%, ao nível de significância de 5%

Testes de Hipóteses I

Felipe Figueiredo

Testes de Exemplos

Estatística de teste

- Em um teste para a média μ , devemos observar o tamanho da amostra.
- Se a amostra é grande, fazemos o teste Z (valor crítico z_c) com a estatística de teste:

$$Z = \frac{\bar{X} - \mu}{\frac{s}{\sqrt{n}}}$$

• Se a amostra for pequena, fazemos o teste t (valor crítico $t_{(al,\alpha)}$) com a estatística de teste:

$$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}}$$

Testes de Hipóteses I

Felipe Figueiredo

Estatística de teste

Exemplo 1

Testes de Hipóteses I

Felipe Figueiredo

Testes de Hipóteses

Testes de Hipóteses para proporções

Testes de Hipóteses para a média Estatística de teste

Resumo

Example

Um método padrão para identificação de bactérias em hemoculturas vem sendo utilizado há muitos anos e seu tempo médio de execução (desde a etapa de preparo das amostras até a identificação do gênero e espécie) é de 40.5 horas. Um microbiologista propôs uma nova técnica que ele afirma ter menor tempo de execução que o método padrão. A nova técnica foi aplicada em uma amostra de 18 hemoculturas e para cada uma mediu-se o tempo de execução. A média amostral foi 39.42 horas e o desvio padrão amostral foi 1,96 horas.

Exemplo 1

liberdade.

significância $\alpha = 0.05$.

na região de rejeição.

(t = -2.34 < -1.74).

 $t_{(17.0.05)} = 1.74$

• Para testar essa hipótese usaremos o teste t pois a

amostra é pequena (n = 18) com gl = 17 graus de

• Como o teste é unicaudal (à esquerda), consultamos a

Após calcular a estatística de teste, devemos comparar

com o valor crítico t_c para verificar se ela está contida

Consultando a tabela t. encontramos o valor crítico

• O valor t = -2.34 está dentro da região crítica

Como a estatística de teste está dentro da região

Conclusão: Rejeita-se a hipótese de que o tempo

40.5 horas, ao nível de significância de 5%

médio de execução do novo método é igual a 40.5

crítica, rejeitamos H_0 ao nível de significância de 5%.

horas, em favor da hipótese de que ele é menor do que

Testes de Hipóteses I

Felipe Figueiredo

estes de lipóteses

Testes de Hipóteses para

Testes de Hipóteses para a média Estatística de teste Exemplos

Resumo

Exemplo 1

Solução

Hipóteses

$$H_0$$
: $\mu = 40.5$

$$H_1: \mu < 40.5$$

- Região crítica: $t < -t_{(17,0.05)}$ (ou seja, qualquer t < -1.74).
- Dados

$$n = 18, \bar{x} = 39.42, s = 1.96$$

Estatística de teste

$$t = \frac{39.42 - 40.5}{\frac{1.96}{\sqrt{18}}} = -2.34$$

Testes de Hipóteses I

Felipe Figueiredo

estes de

Testes de Hipóteses para

Testes de Hipóteses para a média Estatística de teste Exemplos

Resumo

Exemplo 1

Testes de Hipóteses I

Felipe Figueiredo

Testes de Hipóteses Testes de

Testes de Hipóteses para

Testes de Hipóteses para a média Estatística de teste Exemplos

Exemplo 2

Testes de Hipóteses I

Felipe Figueiredo

Example

Uma indústria farmacêutica especifica que em certo analgésico a quantidade média de ácido acetil salicílico deve ser 5.5 gramas por comprimido. A indústria suspeita que houve problemas na produção de um determinado lote e que, nesse lote, a quantidade média dessa substância está diferente da especificada. Para verificar essa suspeita, a indústria selecionou uma amostra aleatória de 40 comprimidos desse lote, observando uma quantidade média de ácido acetil salicílico igual a 5.2 gramas e um desvio padrão de 0.7 gramas.

Exemplo 2

Testes de Hipóteses I

Felipe Figueiredo

Exemplo 2

Solução

Hipóteses

$$H_0: \mu = 5.5$$

$$H_1: \mu \neq 5.5$$

- Região crítica: $z < -z_{0.025}$ ou $z > z_{0.025}$ (ou seja, z < -1.96 ou z > 1.96).
- Dados

$$n = 40, \bar{x} = 5.2, s = 0.7$$

Estatística de teste

$$z = \frac{5.2 - 5.5}{\frac{0.7}{\sqrt{1000}}} = -2.71$$

Testes de Hipóteses I

Felipe Figueiredo

Exemplos

Exemplo 2

- Testes de
- O valor z = -2.71 está dentro da região crítica (z = -2.71 < -1.96).
- Como a estatística de teste está dentro da região crítica, rejeitamos H_0 ao nível de significância de 5%.

• Para testar essa hipótese usaremos o teste Z pois a

Consultando a tabela Z, encontramos o valor crítico

Após calcular a estatística de teste, devemos comparar

com o valor crítico z_c para verificar se ela está contida

O teste é bicaudal, portanto consultamos a

amostra é grande (n = 40).

significância $\frac{\alpha}{2} = 0.025$.

na região de rejeição.

 $z_{0.025} = 1.96$.

 Conclusão: rejeitamos a hipótese de que a quantidade média de ácido acetil salicílico (gramas por comprimido) de certo analgésico é igual a 5.5 gramas ao nível de significância de 5%

Hipóteses I Felipe Figueiredo

Exemplos

Bônus: Intervalo de Confiança

alternativa é bilateral.

Nessa situação, podemos usar o intervalo de confiança

calcularemos um intervalo de 95% de confiança para a

para realizar o teste de hipóteses, pois a hipótese

Como queremos um teste a 5% de significância,

quantidade média de ácido acetil salicílico, por

- Testes de Hipóteses I

Felipe Figueiredo

Exemplo 2 (a revanche)

• $IC_{0.95} = (\bar{x} \pm E)$

• $z_c = z_{0.025} = 1.96$

• $1 - \alpha = 0.95$

 $\alpha = 0.05$

• $\frac{\alpha}{2} = 0.025$

Testes de Hipóteses I

Felipe Figueiredo

• $IC_{0.95} =$ $(5.2 \pm 1.96 \times \frac{0.7}{\sqrt{40}})$

• $IC_{0.95} = (5.2 \pm 0.2)$

• $IC_{0.95} = (5.0, 5.4)$

Lembrete da margem de erro: $E = z_c \times \frac{3}{\sqrt{n}}$

Interpretação do IC

comprimido.

A quantidade média de ácido acetil salicílico, por comprimido, está entre 5,0 e 5,4 gramas, com 95% de confianca.

- Teste de hipóteses baseado no intervalo de confiança: o valor 5.5 não pertence ao intervalo de 95% de confiança para a quantidade média de ácido acetil salicílico, por comprimido.
- Conclusão: rejeitamos a hipótese de que a quantidade média de ácido acetil salicílico de certo analgésico é igual a 5.5 gramas ao nível de significância de 5%.

Testes de Hipóteses I

Felipe Figueiredo

Exemplos

Resumo

Example

Para executar um teste de hipóteses, é necessário:

- Formular a hipótese a ser testada e a hipótese nula, e escrevê-las em linguagem simbólica (H_0 e H_1)
- 2 Decidir qual o tipo de teste (unicaudal à esquerda, unicaudal à direita ou bicaudal)
- 3 Determinar a distribuição a ser usada e calcular a estatística de teste
- Verificar se esta está contida na região de rejeição e decidir se há evidências para rejeitar a hippótese H_0 .

Testes de Hipóteses I

> Felipe Figueiredo