

Stream Cipher

Bahan Kuliah Keamanan Data

Sevi **Nurafni**

Fakultas Sains dan Teknologi Universitas Koperasi Indonesia 2025

- Mengenkripsi plainteks menjadi cipherteks setiap bit per bit dengan bit-bit kunci (keystream) atau byte per byte
- Diperkenalkan oleh Vernam melalui algoritma Vernam Cipher
- Vernam cipher diadopsi dari one-time pad cipher, yang dalam hal ini diganti dengan bit (0 atau 1)

Diagram Cipher Stream

Stream Cipher

- Keystream dibangkitkan oleh keystream generator
- Keystream di-XOR-kan dengan bit-bit plainteks menghasilkan aliran bit-bit cipherteks:

$$c_i = p_i \oplus k_i$$

• Di sisi penerima dibangkitkan keystream yang sama untuk mendekripsi aliran bit-bit cipherteks:

$$p_i = c_i \oplus k_i$$

Contoh:

Plainteks: 1100101010100110001

Keystream: 1000110000101001101 ⊕

Cipherteks: 0100011010001111100

Keystream: 1000110000101001101 ⊕

Plainteks: 1100101010100110001

Enkripsi

Dekripsi

- Keamanan stream cipher bergantung seluruhnya pada keystream generator.
- Tinjau 3 kasus yang dihasilkan oleh keystream generator:
 - 1. Keystream seluruhnya 0
 - 2. Keystream berulang secara periodik
 - 3. Keystream benar-benar acak

Kasus 1: jika pembangkit mengeluarkan keystream yang seluruhnya nol

- Maka cipherteks = plainteks
- Sebab $c_i = p_i \oplus 0 = p_i$
- Proses enkripsi menjadi tidak berarti

Kasus 2: jika pembangkit mengeluarkan keystream yang berulang secara periodik

2. Keystream: 11011011011011011011011...

 Maka algoritma enkripsinya = cipher XOR sederhana yang memiliki tingkat keamanan yang rendah

Kasus 3: jika pembangkit mengeluarkan keystream benar-benar acak

- 3. Keystream: 011010100101011100110010110010...
- Maka algoritma enkripsinya = one-time pad dengan tingkat keamanan yang sempurna
- Pada kasus ini, panjang keystream = panjang plainteks, dan kita mendapatkan stream cipher sebagai unbreakable cipher

 Kesimpulan: tingkat keamanan stream cipher terletak antara cipher XOR sederhana dengan one-time pad.

 Semakin acak keluaran yang dihasilkan oleh pembangkit keystream, semakin sulit kriptanalis memecahkan cipherteks

Keystream Generator

 Keystream Generator diimplementasikan sebagai prosedur yang sama di sisi pengirim dan penerima

 Keystream generator dapat membangkitkan keystream berbasis bit per bit atau dalam bentuk blok-blok bit

 Jika keystream berbentuk blok-blok bit, cipher blok dapat digunakan untuk memperoleh stream cipher

Keystream Generator

- Keystream Generator menerima masukan sebagai kunci U. Luaran dari prosedur merupakan fungsi dari U. Pengirim dan penerima harus memiliki kunci U yang sama. Kunci U ini harus dijaga kerahasiannya.
- Keystream generator menghasilkan bit-bit kunci yang di-XOR-kan dengan bit plair

 Penerima

Keystream Generator

• Contoh: U = 11111

(U adalah kunci 4-bit yang dipilih sembarang, kecuali 0000)

Algoritma sederhana memperoleh keystream:

XOR-kan bit ke-1 dan bit ke-4 dari empat bit sebelumnya:

111101011001000

Dan akan berulang setiap 15 bit

• Secara umum, jika panjang kunci U adalah n bit, maka bit-bit kunci tidak akan berulang sampai 2^n-1 bit

Serangan pada Stream Cipher

Known-plaintext attack

- Kriptanalis mengetahui potongan P dan C yang berkoresponden.
- Hasil: K untuk potongan P tersebut karena

$$P \oplus C = P \oplus (P \oplus K)$$

$$= (P \oplus P) \oplus K$$

$$= 0 \oplus K$$

$$= K$$

Contoh

P K	01100101 001101 ⊕	(karakter 'e') (karakter '5')
C P	01010000 01100101 ⊕	(karakter 'P') (karakter 'e')
K	00110101	(karakter '5')

Flip-bit attack

 Tujuan: mengubah bit cipherteks tertentu sehingga hasil deskripsinya berubah.

Pengubahan dilakukan dengan membalikkan (flip) bit tertentu (0 menjadi 1 atau 1 menjadi 0)

Contoh

P:QT-TRNSFR US \$00010,00 FRM ACCNT 123-67 TO

C: uhtr07hjLmkyR3j7**U**kdhj38lkkldkYtr#)oknTkRgh

C: uhtr07hjLmkyR3j7 \mathbf{T} kdhj38lkkldkYtr#)oknTkRgh

P:QT-TRNSFR US \$10010,00 FRM ACCNT 123-67 TO

- Pengubahan 1 bit U dari cipherteks sehingga menjadi T.
- Hasil dekripsi: \$10,00 menjadi \$10010,00

Flip-bit attack

 Pengubah pesan tidak perlu mengetahui kunci, hanya perlu mengetahui posisi pesan yang diminati saja.

 Serangan semacam ini memnfaatkan karakteristik stream cipher yang sudah disebutkan di atas, bahwa kesalahan 1-bit pada cipherteks hanya menghasilkan kesalahan 1-bit pada plainteks hasil dekripsi.

Aplikasi Stream Cipher

- Stream cipher cocok untuk mengenkripsi aliran data yang terus menerus melalui saluran komunikasi, misalnya
- Mengenkripsi data pada saluran yang menghubungkan antara dua kompute
- Mengenkripsi suara pada jaringan telepon mobile GSM

 Alasan: jika bit cipherteks yang diterima mengandung kesalaham, maka hal ini hanya menghasilkan 1 bit kesalah pada waktu dekripsi, karena tiap bit plainteks ditentukan hanya 1 bit cipherteks

SELAMAT BELAJAR