Algoritmos y Estructuras de Datos. K1041. 1 ^{er} Recuperatorio de 2 ^{do} Examen Parcial. Fecha: 23/11/2018 Apellido y nombre:							
Para aprobar debe sumar 60 puntos (calificación 6), siendo 80 puntos el mínimo para aprobación directa (calificación 8).							
1) Algoritmo. Seleccione la respuesta correcta e ingrese un comentario describiendo su decisión.							
<pre>template <typename t=""> T miFuncion(Nodo<t>* & p) { Nodo<t>* aux = p; T v = aux->info; p = aux->sig; delete aux; return v; }</t></t></typename></pre>	¿Qué resultado produce esta función? [] Elimina un nodo de una estructura pila [] Elimina un nodo de una estructura lista [] Elimina un nodo de una estructura cola [] Ninguna de las anteriores						
Comentario/supuestos sobre la respuesta	a seleccionada:						

(20 puntos)

2) Checkin. Se desea conocer el tiempo de espera promedio de los pasajeros para hacer el checkin en el aeropuerto. Cada vez que ingresa un nuevo pasajero a la fila (única), se emite y coloca en el equipaje un código de barras autoadhesivo con el id de pasajero. Una vez que el pasajero es atendido, se lee este código y el sistema almacena el tiempo que transcurrió hasta que salió de la fila. Puede haber más de un mostrador de atención operativo.

<u>Se pide</u>: Crear un programa que gestione el ingreso de nuevos pasajeros desde la función *nuevoPasajero()*, donde se genera el registro Pasajero:

id_pasajero	momento_de_ingreso	
Entero	entero largo	

Que al ser atendido, la lectura del código invoca la función *Pasajero atenderProximo()*, con cuyo retorno se deberá calcular la diferencia de tiempo invocando la función *long tiempoDeEspera(long momento)* que retornará el tiempo transcurrido respecto del dato recibido por parámetro. En la función *main()* se acumula el tiempo de espera de todos los pasajeros y la cantidad. Crear las estructuras necesarias. *Info*: Para obtener el momento actual, invocar la función time(NULL) de la biblioteca time.h

(40 puntos)

3) Logística. Cada unidad de una flota de transporte de carga está equipada con un dispositivo que registra cada 60 minutos las mediciones de todos los sensores instalados y las almacena en una estructura que contiene registros de tipo Medición, cuyos atributos son:

id_unidad	fecha_hora	velocidad	temperatura	combustible	ubicaciones
entero	entero largo	decimal	decimal	decimal	array de LatLon [5]

A su vez, cada registro almacena en la estructura **ubicaciones**, la posición geográfica medida cada 10 minutos en registros LatLon:

latitud	longitud
decimal	decimal

<u>Se pide</u>: Crear la función **descargarMediciones()** que recibe por parámetro la estructura con mediciones, la ruta al archivo y que deberá guardar en el archivo todas las mediciones ordenadas por fecha_hora. Crear las estructuras necesarias. **Info:** El valor de fecha_hora se obtuvo invocando a la función time(NULL).