(3.1.5) Let $A \subset S$. Show that if c is a cluster point of A, then c is a cluster point of S. Note the difference from Proposition 3.1.15

(3.1.12) Prove Proposition 3.1.17, that is, Let $S \subset \mathbb{R}$ be such that c is a cluster point of both $S \cap (-\infty, c)$ and $S \cap (c, \infty)$, let $f : S \to \mathbb{R}$ be a function, and let $L \in \mathbb{R}$. Then c is a cluster point of S and

$$\lim_{x\to c} f(c) = L \qquad \text{if and only if} \qquad \lim_{x\to c^-} f(x) = \lim_{x\to c^+} f(x) = L$$

(3.2.2) Using the definition of continuity directly prove that $f:(0,\infty)\to\mathbb{R}$ defined by $f(x):=\frac{1}{x}$ is continuous.

(3.2.13) Let $f: S \to \mathbb{R}$ be a function and $c \in S$, such that for every sequence $\{x_n\}_{n=1}^{\infty}$ in S with $\lim_{n\to\infty} x_n = c$, the sequence $\{f(x_n)\}_{n=1}^{\infty}$ converges. Show that f is continuous at c.

(3.2.15) Suppose $g: \mathbb{R} \to \mathbb{R}$ is a continuous function such that g(0) = 0, and suppose $f: \mathbb{R} \to \mathbb{R}$ is such that $|f(x) - f(y)| \le g(x - y)$ for all x and y. Show that f is continuous.