

OPENING PROBLEM

The parsec, the light-year, and the astronomical unit are all units of length used to measure large distances in space. The length of each unit in metres is shown alongside.

1 parsec $\approx 3.1 \times 10^{16} \text{ m}$ 1 light-year $\approx 9.5 \times 10^{15}$ m 1 astronomical unit $\approx 1.5 \times 10^{11}$ m

Things to think about:

- a Can you write the length of each unit in metres as an ordinary number?
- **b** What advantages are there to writing the lengths in the form given above?
- How much farther is a parsec than a light-year?
- How many astronomical units are there in one parsec?

Exponent notation can be used to represent repeated multiplications of the same number.

For example, we represent $5 \times 5 \times 5$ as 5^3 , which reads "5 to the power 3". We say that 5 is the base, and 3 is the exponent, power, or index.

If n is a positive integer, then a^n is the product of n factors of a.

$$a^n = \underbrace{a \times a \times a \times a \times \dots \times a}_{n \text{ factors}}$$

EXPONENT LAWS

In previous years we have seen the following exponent laws for integer exponents:

If m and n are integers, then:

$$\bullet \quad a^m \times a^n = a^{m+n}$$

•
$$\frac{a^m}{a^n} = a^{m-n}$$
 provided $a \neq 0$

$$\bullet \ (a^m)^n = a^{mn}$$

$$\bullet (ab)^n = a^n b^n$$

•
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$
 provided $b \neq 0$

•
$$a^0 = 1$$
 provided $a \neq 0$

$$\bullet \quad a^{-n} = \frac{1}{a^n}$$

To multiply numbers with the same base, keep the base and add the exponents.

To divide numbers with the same base, keep the base and subtract the exponents.

When raising a power to a power, keep the base and multiply the exponents.

To expand a product to a power, raise each factor to the power.

To expand a quotient to a power, raise both the numerator and denominator to the power.

Any non-zero number raised to the power of zero is 1.

 a^n and a^{-n} are reciprocals of one another.

In particular, $a^{-1} = \frac{1}{a}$.

Example 1

Self Tutor

Simplify using the exponent laws:

a
$$7^8 \times 7^4$$

$$b \quad \frac{x^{11}}{x^k}$$

$$(5^a)^3$$

$$7^{8} \times 7^{4}$$

$$= 7^{8+4}$$

$$= 7^{12}$$

$$\mathbf{b} \qquad \frac{x^{11}}{x^k} \\ = x^{11-k}$$

$$(5^a)^3$$

$$= 5^{a \times 3}$$

$$= 5^{3a}$$

EXERCISE 1A

1 Simplify using the exponent laws:

a
$$3^2 \times 3^5$$

b
$$x^6 \times x^3$$

$$x^5 \times x^n$$

d
$$t^3 \times t^4 \times t^5$$

$$e \frac{7^9}{7^5}$$

$$f = \frac{x^7}{x^3}$$

g
$$\frac{t^6}{t^x}$$

$$\mathbf{h} \quad t^{3m} \div t$$

$$(5^3)^2$$

$$(t^4)^3$$

$$(y^3)^m$$

$$(a^{3m})^4$$

2 Simplify using the exponent laws:

$$\mathbf{a} \quad (x^4)^t \times x^5 \qquad \qquad \mathbf{b} \quad \frac{k^2 \times k^m}{k^n}$$

$$\frac{k^2 \times k^m}{k^n}$$

$$c \frac{c^5}{(c^x)^4}$$

$$\mathbf{d} \quad \frac{(m^2)^t}{m^3 \times m^s}$$

Example 2

Self Tutor

Write as a power with a prime number base:

a
$$4 \times 2^p$$

$$\mathbf{b} \quad \frac{3^x}{9^y}$$

$$c 25^{x-1}$$

a
$$4 \times 2^p$$
 b $\frac{3^x}{9^y}$ $= 2^2 \times 2^p$ $= 2^{2+p}$ $= \frac{3^x}{(3^2)^3}$

$$= \frac{\frac{3^x}{9^y}}{(3^2)^y}$$
$$= \frac{3^x}{3^2y}$$

$$\begin{array}{ll} \mathbf{c} & 25^{x-1} \\ & = (5^2)^{x-1} \\ & = 5^{2(x-1)} \\ & = 5^{2x-2} \end{array}$$

3 Write as a power with a prime number base:

- a 121
- **b** 32
- c 81
- $d 4^3$

- 25^2
- $17^t \times 49$
- $3^a \div 9$
- h $8^p \div 4$

- $(25^t)^2$
- $16^{k-3} \times 2^{-k}$

(8) Write as a fraction in lowest terms:

a	6	-	1
	0		

c 13⁻¹

e 5^{-3} f 7^{-2} i $5^0 - 5^{-1}$ i $3^0 + 3^1 - 3^{-1}$

 $9 10^{-3}$

 $112^{-1}-12^{-2}$

Write as a power with a negative exponent:

a
$$\frac{5^3}{5^5}$$

b
$$\frac{2^6}{2^{10}}$$

$$\frac{x^4}{x^9}$$

d
$$\frac{y^3}{(y^5)^2}$$

10 Write as a fraction in lowest terms:

$$(\frac{3}{8})^{-1}$$

b
$$(\frac{2}{3})^{-1}$$

$$(\frac{1}{5})^{-1}$$

d
$$(\frac{1}{2})^{-2}$$

$$(\frac{2}{3})^{-3}$$

$$(\frac{4}{5})^{-2}$$

$$(1\frac{1}{2})^{-3}$$

h
$$(3\frac{1}{2})^{-}$$

Write without brackets or negative exponents:

a
$$(5x)^{-1}$$

b
$$5x^{-1}$$

$$c 7a^{-1}$$

$$d(7a)^{-1}$$

$$\left(\frac{1}{t}\right)^{-2}$$

f
$$\left(\frac{3x}{y}\right)^{-1}$$
 g $(5t)^{-2}$

$$(5t)^{-2}$$

h
$$(5t^{-2})^{-1}$$

i
$$xy^{-1}$$

$$(xy)^{-1}$$

$$k \ xy^{-3}$$

$$(xy)^{-3}$$

$$m (3pq)^{-1}$$

$$n 3(pq)^{-1}$$

•
$$3pq^{-1}$$
 • $\frac{(xy)^3}{y^{-2}}$

$$(5x^{-2}y^3)^3$$

$$\left(\frac{c}{2d^3}\right)^{-2}$$

s
$$\left(\frac{3r^{-3}}{t}\right)^{-2}$$
 t $\left(\frac{2p}{5q^{-2}}\right)^{-3}$

t
$$\left(\frac{2p}{5q^{-2}}\right)^{-3}$$

12 Use the exponent laws to show that, for positive a and b and integer n:

$$\frac{1}{a^{-n}}=a^n$$

$$b \quad \left(\frac{a}{b}\right)^{-n} = \frac{b^n}{a^n}$$

13 The units for speed kilometres per hour or km/h can be written in exponent form as $km h^{-1}$. Write these units in exponent form:

a m/s

b cubic metres/hour

square centimetres per second

d cubic centimetres per minute

e grams per second

f kilogram metres per second

g metres per second per second.

14 Find the smaller of 2^{125} and 3^{75} without using a calculator. Hint: $2^{125} = (2^5)^{25}$

Order these numbers from smallest to largest: 290, 360, 536, 1024

RATIONAL EXPONENTS

A rational number is a number which can be written in the form $\frac{m}{n}$ where m and n are integers, $n \neq 0$. Notice that the integers themselves are rational numbers, since for example $5 = \frac{5}{1}$.

For any positive base a, we choose to define a raised to a rational exponent so that the exponent laws still hold. This helps give meaning to values such as $3^{\frac{1}{2}}$ and $5^{\frac{2}{3}}$.

RATIONAL EXPONENTS OF THE FORM $\frac{1}{n}$

INVESTIGATION 1

This Investigation will help you discover the meaning of $a^{\frac{1}{n}}$ where n is an integer.

What to do:

- 1 Notice that $5^{\frac{1}{2}} \times 5^{\frac{1}{2}} = 5^{\frac{1}{2} + \frac{1}{2}} = 5^1 = 5$ and that $\sqrt{5} \times \sqrt{5} = 5$ also.

a Copy and complete:

$$1 3^{\frac{1}{2}} \times 3^{\frac{1}{2}} = 3^{\frac{1}{2}+\frac{1}{2}} = 3^{\frac{1}{2}} = 3^{\frac{1}{$$

ii
$$13^{\frac{1}{2}} \times 13^{\frac{1}{2}} = \dots = \dots = \dots = \dots$$

 $\sqrt{13} \times \sqrt{13} = \dots$

$$\begin{array}{ll} & a^{\frac{1}{2}}\times a^{\frac{1}{2}}=.....=....=.....\\ & \sqrt{a}\times \sqrt{a}=...... \end{array}$$

- **b** Copy and complete: $a^{\frac{1}{2}} = \dots$
- **2** Notice that $7^{\frac{1}{3}} \times 7^{\frac{1}{3}} \times 7^{\frac{1}{3}} = 7^{\frac{1}{3} + \frac{1}{3} + \frac{1}{3}} = 7^1 = 7$ and that $\sqrt[3]{7} \times \sqrt[3]{7} \times \sqrt[3]{7} = 7$ also.
 - a Copy and complete:

i
$$8^{\frac{1}{3}} \times 8^{\frac{1}{3}} \times 8^{\frac{1}{3}} = \dots = \dots = \dots$$

 $\sqrt[3]{8} \times \sqrt[3]{8} \times \sqrt[3]{8} = \dots$

ii
$$27^{\frac{1}{3}} \times 27^{\frac{1}{3}} \times 27^{\frac{1}{3}} = \dots = \dots = \dots$$

 $\sqrt[3]{27} \times \sqrt[3]{27} \times \sqrt[3]{27} = \dots$

- **b** Copy and complete: $a^{\frac{1}{3}} = \dots$
- **3** Suggest a rule for the general case: $a^{\frac{1}{n}} = \dots$

From the Investigation, you should have concluded that

$$a^{rac{1}{2}}=\sqrt{a}$$

$$a^{\frac{1}{3}}=\sqrt[3]{a}$$

In general, if n is a positive integer, then

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$
 where $\sqrt[n]{a}$ is called the *n*th root of a .

Example 7

Use your calculator to evaluate $\sqrt[4]{50}$ correct to 2 decimal places.

$$\sqrt[4]{50} = 50^{\frac{1}{4}}$$

Casio fx-CG50

TI-84 Plus CE

HP Prime

 $\sqrt[4]{50} \approx 2.66$

5 Use your calculator to evaluate correct to 2 decimal places:

$$\frac{1}{\sqrt[4]{80}}$$

d
$$\frac{1}{\sqrt[6]{12}}$$

RATIONAL EXPONENTS OF THE FORM

INVESTIGATION 2

This Investigation will help you discover the meaning of $a^{\frac{m}{n}}$ where m, n are integers, n > 0.

What to do:

a Copy and complete by applying the rule $(a^m)^n = a^{mn}$:

$$(8^2)^{\frac{1}{3}} = 8 \cdots$$

ii
$$\left(8^{\frac{1}{3}}\right)^2 = 8\cdots$$

b Copy and complete by applying the rule $a^{\frac{1}{n}} = \sqrt[n]{a}$:

$$(8^2)^{\frac{1}{3}} = \sqrt[3]{8^2}$$

- Hence copy and complete: $8^{\frac{2}{3}} = \sqrt[3]{8 \cdot \cdots} = (\sqrt[3]{8})^{\cdots}$
- 2 Copy and complete:

$$a \quad a^{\frac{m}{n}} = (a^{\cdots})^{\frac{1}{\cdots}}$$
$$= \because \sqrt{a^{\cdots}}$$

$$\mathbf{b} \quad a^{\frac{m}{n}} = \left(\frac{1}{a^{\cdots}}\right)^{\cdots}$$
$$= \left(\frac{1}{a^{\cdots}}\right)^{\cdots}$$

From the Investigation, you should have discovered that if m, n are integers, n > 0, then

$$a^{\frac{m}{n}}=\sqrt[n]{a^m}=\left(\sqrt[n]{a}
ight)^m$$

When dealing with exponents in this form, it is often easiest to write the base number as a prime raised

- 6 Use your calculator to evaluate, rounded to 3 significant figures where necessary:

7 Without using your calculator, evaluate $\frac{\sqrt[3]{9} \times \sqrt[4]{27}}{\sqrt[12]{243}}$.

GAME

This game can be played by either 1 or 2 players.

if be played by								
1	5	3	1/3	2	4	1/8	2	4/5
		4		2/3	81	3	$-\frac{1}{2}$	81
92.59(5)	-3	1 27	125		64	$\frac{1}{2}$	243	5
	3		-2	3	32	7	3/4	2
	0	2	1/2	$-\frac{2}{3}$	1	6	2	36
49	25	1/2	-3	0	-2	64	7	1 5
25	1 81	-4	27	2	-3	5	4	27
-1	6	$-\frac{1}{3}$	16	-2	1/16	3	125	$\frac{1}{2}$
$\frac{1}{25}$	16	343	$\frac{1}{2}$	5	3	1	9	1 5
		$ \begin{array}{c cccc} \frac{1}{4} & 5 \\ 2 & 9 \\ 32 & -3 \\ 4 & 3 \\ 5 & 0 \\ 49 & 25 \\ 25 & \frac{1}{81} \\ -1 & 6 \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

In this game, three squares on the board are selected at a time to create a statement of the form $a^b = c$. Once used, each square is crossed out and cannot be used again.

One player variant: Try to use all 81 squares in 27 selections.

Two player variant: Take alternate turns. The last player who is able to make a valid selection

is the winner.

STANDARD FORM (SCIENTIFIC NOTATION)

We can use standard form or scientific notation to write very large and very small numbers in a way that is easier to understand.

Standard form involves writing any positive number as a number between 1 inclusive and 10, multiplied by an integer power of 10.

The result has the form $a \times 10^k$ where $1 \le a < 10$ and k is an integer.

For example:

- $68\,000\,000$ is written in standard form as 6.8×10^7
- 0.000471 is written in standard form as 4.71×10^{-4} .

When a number is written in standard form:

- its significant figures are the same and in the same order
- the decimal point is immediately after the first significant figure
- 10^k is the *place value* of the first significant figure in the original number.
 - If the original number is greater than or equal to 10, then k is positive.
 - If the original number is between 1 inclusive and 10, then k = 0.
 - If the original number is less than 1, then k is negative.

Example 9	→ Self Tutor			
Write in scientific notation: a 23 600 000	b 0.000 023 6			
$ 23600000 $ $ = 2.36 \times 10^7 $	b 0.0000236 = $2.36 \div 10^5$ = 2.36×10^{-5}			

EXERCISE 1C

1 Write in scientific notation:

a	230	b 53 900	c 0.0361	d	0.00680
e	3.26	f 0.5821	g 361 000 000	h	0.000 001 674

- 2 Write each quantity in standard form:
 - a There are approximately 4 million red blood cells in a drop of blood.
 - **b** The thickness of a coin is about 0.0008 m.
 - c A Rubik's Cube has approximately 43 252 000 000 000 000 000 possible arrangements.
 - **d** The probability of winning the major prize in a lottery is approximately 0.000 000 003 422.

Example 10	→) Self Tutor
Write as an ordinary number: $\mathbf{a} 2.57 \times 10^4$	b 7.853×10^{-3}
a 2.57×10^4 = 2.5700×10000 = 25700	b 7.853×10^{-3} = $0.007.853 \div 10^{3}$ = $0.007.853$

- 3 Write as an ordinary number:
 - a 2.3×10^3
- **b** 2.3×10^{-2}
- c 5.64×10^5
- **d** 7.931×10^{-4}

- $e 9.97 \times 10^{0}$
- 6.04×10^7
- $9 4.215 \times 10^{-1}$
- h 3.621×10^{-8}