Fundamentals of Differentiation Part 3

Dr. Ronald Koh ronald.koh@digipen.edu (Teams preferred over email)

AY 22/23 Trimester 2

Recap

Chain Rule

$$(\underline{f} \circ \underline{g})'(x) = \underline{f}'(\underline{g}(x)) \cdot \underline{g}'(x)$$

- Implicit and explicit equations, how to differentiate implicitly
- **Solution** Explicit equations: Tangent line equation to f at (a, f(a))

$$y = f'(a)(x-a) + f(a)$$

Implicit equations: Tangent line equation to graph at (x_0, y_0)

$$y = \underbrace{\frac{dy}{dx}(x_0, y_0)}_{\text{derivative of } y} (x - x_0) + y_0$$

$$= \underbrace{\frac{dy}{dx}(x_0, y_0)}_{\text{derivative of } y} (x - x_0) + y_0$$

Table of contents

Migher order derivatives

- 2 Increasing and decreasing functions

 - Definitions and Examples
 Increasing/Decreasing Test

Higher order derivatives

If a function y = f(x) is differentiable, then we have a function f'(x), the derivative of y = f(x).

We also have the derivative of f'(x), which is a function f''(x), called the *second derivative* of f(x), is the derivative of the first derivative f(x) = f(x)

$$f''(x) = (f')'(x).$$

The second derivative can also be written as

$$f'(x) = \cos x$$

$$f''(x) = -\sin x$$

Find the second derivative for each of the following functions.

$$f(x) = 3x^{2} + 2x + 1 \implies f'(x) = 6x + 2 \implies f''(x) = 6.$$

$$f(x) = \sin(2x) \implies f'(x) = \cos(2x) = 2\cos(2x)$$

$$f(x) = e^{5x}$$

$$f'(x) = \ln(x^{2} + 1)$$

$$f''(x) = e^{5x} \implies f''(x) = -2\sin(2x) \cdot 2$$

$$= -4\sin(2x)$$

$$f''(x) = e^{5x} \cdot 5 = 5e^{5x}$$

$$f(x) = \frac{1}{x^{2}+1} \cdot 2x = \frac{2x}{x^{2}+1} = \frac{2x \cdot (x^{2}+1)^{-1}}{x^{2}+1}$$

$$f''(x) = 2 \cdot (x^{2}+1)^{-1} + 2x \cdot (-1)(x^{2}+1)^{-2} \cdot 2x$$

$$= \frac{2}{x^{2}+1} - \frac{4x^{2}}{(x^{2}+1)^{2}}$$

$$= \frac{2(x^{2}+1)}{(x^{2}+1)^{2}} - \frac{4x^{2}}{(x^{2}+1)^{2}} = -\frac{2(x^{2}-1)}{(x^{2}+1)^{2}}$$

Third derivative onwards

$$\sim f^{(3)}(x)$$

The third derivative f'''(x) of y = f(x) is the derivative of the second derivative

$$f'''(x) = (f'')'(x).$$

The fourth derivative and onwards are abbreviated slightly differently (for pretty obvious reasons)

$$f^{(4)}(x) = (f''')'(x).$$

In general, the *n*-th derivative $f^{(n)}(x)$ is obtained by differentiating the (n-1)-th derivative:

$$f^{(n)}(x) = (f^{(n-1)})'(x).$$

Find the third derivative for each of the functions. (These were the functions in Exercise 1) $f(x) = 3x^{2} + 2x + 1$ $f(x) = \sin(2x)$ $f(x) = e^{5x}$ $f(x) = -4 \sin(2x)$ $f(x) = 5^{3} e^{5x}$ $f(x) = 1 - (x)^{2} = 5^{3} e^{5x}$ 2-8cos(2X) $f(x) = \ln(x^2 + 1)$ $-4\chi(\chi^{2}+1)^{-2}+(-2)(\chi^{2}+1)^{-3}\frac{2\chi}{8}$

$$= \frac{-4x}{(x^{2}+1)^{2}} + \frac{8x^{2}-0x}{(x^{2}+1)^{3}}$$

$$= \frac{(4x(x^{2}+1))^{3}}{(x^{2}+1)^{3}} + \frac{(8x^{3}-8x)}{(x^{2}+1)^{3}} = \frac{(4x^{3}-|2x|)^{3}}{(x^{2}+|3|)^{3}}$$

Definitions of increasing and decreasing functions

Definition

Let A be any subset of the domain of a function f. For $x_1, x_2 \in A$,

• f is increasing on A if

$$f(x_1) < f(x_2)$$
 whenever $x_1 < x_2$,

• f is decreasing on A if

$$f(x_1) > f(x_2)$$
 whenever $x_1 < x_2$.

Important: For a function to be increasing/decreasing, $f(x_1) \le f(x_2)/f(x_1) \ge f(x_2)$ must hold for all pairs of $x_1 < x_2$!

Examples of increasing functions

What do you observe about the gradient of the functions here?

Examples of decreasing functions

What do you observe about the gradient of the functions here?

Increasing/Decreasing Test

By observing the sign (positive/negative) of the gradient of a differentiable function f, we can tell if f is increasing or decreasing.

Theorem (Increasing/Decreasing Test or I/D Test)

Let I be an interval which is a subset of the domain of f. If f is differentiable on I, then

- f is increasing on I if and only if f'(x) > 0 on A,
- f is decreasing on I if and only if f'(x) < 0 on A.

Example 1

The graph of the *derivative* f' of a function f is shown below.

Critical points of f

Definition

- (\star) A critical point of a function f is a point c where either
 - **1** f'(c) = 0, or
 - 2 f is not differentiable at c.

Critical points play an important role in the identification of intervals where a function is increasing or decreasing, and they also play a big role in optimization (later in the course).

Let
$$f(x) = x^2 + 1 > 0$$

What is the domain of f ?

- Find the intervals for which f is increasing or decreasing.

Step 1: Domain=
$$(RV)$$

Step 2: $f'(x) = \frac{(x^2+1)\cdot 1 - x(2x)}{(x^2+1)^2}$
 $= \frac{1-x^2}{(x^2+1)^2}$ here zero
Find Critical points: $f'(x)=0$.

Step 4

i Lin Creasing (-1,1)

f decreasing $(-\infty,-1)$ and $(1,\infty)$