UROP Final Presentation

-Developing Origami robot simulator using Pybullet library-

Chani Song, Advised by Changwoo Ha SNU STAR LAB, December 14th 2023

Contents

- 1. Research Purpose
- 2. Prior Research
- 3. Research Progress
 - 3-1. Setting coefficient of restitution
 - 3-2. Defining Origami robot
 - 3-3. Analysis of Origami robot's mechanism
 - 3-4. Drop Test
 - 3-5. Control of Origami robot
- 4. Future Work
- 5. References
- 6. FAQ

Research Purpose

- Research Objectives
 - Developing Origami Robot Simulator using Pybullet
 - Imitate Drop Test
 - Test Origami Robot Control
- Significance of the Study
 - Control of Origami Robot is challenging
 - Bistability, Light-weight, Deformability, Grasping Motion
 - Control Method Research needed

- Originality of the Study
 - Complicated constraints between panels: New Simulation System Needed
 - No Study about Origami robot simulation on drop test, control simulation
- Expected Contribution
 - Opening a new Methodology of Origami Robot Research
 - Optimize Design for Drop Test
 - Control of Origami Robot: Microfliers, Jumping Motion

Prior Research: Origami Robot Kinematics / Drop Test

- 'Leaf-Like Origami with Bistability for Self-Adaptive Grasping Motions' (Yasuda & Yang, 2022)
 - Analysis of Origami Robot Kinematics
 - Describe configuration using 1 variable ψ (parameters ρ_M , ρ_B , θ_G)
 - Bistability of Origami Robot
 - Drop Test

Prior Research: Fabrication of controllable Origami Robot

- 'Solar-powered shape-changing origami microfliers' (Johnson, 2023)
 - Fabrication of controllable Origami Robot
 - Costly, or at least Complicated: Necessity for control simulation
 - Control configuration mid-air, falling motion

Prior Research: Simulation research on Origami Robot

- 'Lattice-and-Plate Model: Mechanics Modeling of Physical Origami Robots' (Zhang, 2023)
 - Simulate Origami robots using lattice-and-plate model, based on mechanics
- 'Multiphysics Simulation of Magnetically Actuated Robotic Origami Worms' (Swaminathan, 2021)
 - Simulate magnetically actuated Origami robots using Grasshopper 3D to calculate force, strain

- 'Modeling of an origami robot driven by electrostatic forces' (Li, 2021)
 - Simulate origami robot using FEM
- 'Finite element simulation of robotic origami folding' (Thai, 2018)
 - Simulate origami robot using FEM
- => No Simulation base research about control / drop test, dynamics

Prior Research: Pybullet

- Pybullet: Open-source Python library for simulating & controlling physics in 3D environments.
- Example: Simulation for dropping 4-Panel Origami Robot

Research Progress: Review of Midterm Presentation

- Simulation goal: Recreate the Drop test from 'Leaf-Like Origami with Bistability for Self-Adaptive Grasping Motions' (Yasuda & Yang, 2022)
- Setup drop test simulation environment: Adjust COR (Coefficient of Restitution), Add sphere
- Fabricated five Miura-Ori unit cells with appropriate Geometry
- Calculated configuration with respect to ψ using nonlinear solver
 - Failed to implement in pybullet

Research Progress: Analysis of Origami robot's mechanism

- Succeed to implement various configuration in pybullet
 - Revised panel making algorithm using vector calculation

- Succeed to imitate drop test in pybullet
 - Thickness of the Panels is crucial to trigger grasping motions

Thickness = 0.05

Thickness = 0.0001 Grasping motion occurs

- Optimize grasping motion
 - Obtain optimal initial configuration, geometric condition for optimal grasping motion by simulation
 - Optimal: Minimize the maximum bouncing back height

 $(speed \times 100)$

Geometric Contraint: $\overline{OA} = 30, \overline{AD} = 50$

- Interpretation of the simulation results
- Zone 1
 - Panels could not withstand the gravity
 - Every Origami robot act like $\psi = 0$
- Zone 2
 - The ball doesn't bounce back (probably error)
- Zone 3
 - Grasping motion occurs, along with unstable bouncing back

Stable grasping motion

Zone 2 Zone 4 Zone 4

- Similar simulation experiments based on geometric constraints
- Experiment with \overline{OA} , \overline{AD} = 10 ~ 60

=> Using pybullet simulation, able to obtain optimal condition for grasping

- Sometimes we get the expected motion, sometimes we don't
- 2 Optimal-looking solutions for drop test: $(\overline{OA}, \overline{AD}, \psi) = (60, 30, -60^{\circ}), (40, 10, -50^{\circ})$

 $(\overline{OA}, \overline{AD}, \psi) = (40, 10, -50^{\circ})$ Grasping motion

- Low height because of damping effect, rather than grasping motion
- Need Better Experiment Setting

Research Progress: Control of Origami Robot

- To control Origami Robot, Joint attachment is needed
- Need to revise URDF(Unified Robot Description Format) File
- Now Working on..
- Goal: To attach joints between Origami Panels and control
- Apply to Four Miura-Ori unit cells and implement back-and-forth, left-and-right motion

=> For Future Works

Future Work

- Find the optimal condition for grasping motion (if necessary)
 - This project aimed to see possibility of pybullet
- Control the Origami robot by attaching joints
 - Revise URDF File
 - Implement Jumping motion & back-and-forth, left-and-right motion
 - Apply Reinforcement Learning

Appendix References

- [1] Yasuda, H., Johnson, K., Arroyos, V., Yamaguchi, K., Raney, J. R., & Yang, J. (2022). Leaf-like origami with bistability for self-adaptive grasping motions. Soft Robotics, 9(5), 938-947.
- [2] Johnson, K., Arroyos, V., Ferran, A., Villanueva, R., Yin, D., Elberier, T., ... & Gollakota, S. (2023). Solar-powered shape-changing origami microfliers. *Science Robotics*, 8(82), eadg4276.
- [3] Zhang, H., & Paik, J. (2023). Lattice-and-plate model: Mechanics modeling of physical origami robots. *Soft Robotics*, *10*(1), 149-158.
- [4] Swaminathan, R., Cai, C. J., Yuan, S., & Ren, H. (2021). Multiphysics simulation of magnetically actuated robotic origami worms. *IEEE Robotics and Automation Letters*, *6*(3), 4923-4930.
- [5] Li, J., Godaba, H., Zhang, Z., Foo, C. C., & Zhu, J. (2021, November). Modeling of an origami robot driven by electrostatic forces. In 2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP) (pp. 651-655). IEEE.
- [6] Thai, P. T., Savchenko, M., & Hagiwara, I. (2018). Finite element simulation of robotic origami folding. Simulation Modelling Practice and Theory, 84, 251-267.

FAQ

Thank you for your time and attention.

