CS 5003: Parameterized Algorithms Lectures 20-21

Krithika Ramaswamy

IIT Palakkad

Longest Path

Instance: An undirected graph G and an integer k

Question: Poes there exist a (simple) path consisting of at least k vertices?

<u>Parameter:</u> k

* NP-hard as Hamiltonian Path is a special case of Longest Path

Longest Path

- * Suppose we know that there is a 5-path.
- * How to determine if there is a 6-path?
 - * Look at the 5-path's last vertex and check if there is an "unused-neighbour"

An Exponential Time Algorithm

- * Define $\Gamma(v, X) = 1$ iff G has IXI-path using vertices in X and ending at v
 - * G has a k-path iff $\Gamma(v, Z) = 1$ for some v and Z s.t |Z|=k
- * Compute $\Gamma(v, X) = 1$ for all v and X such that |X| = 1
 - * For every v and every X with |X|=1, $\Gamma(v,X)=1=\inf X=\{v\}$
- * For each v, for each X with $|X| \ge 2$ and $v \in X$,
 - * $\Gamma(v, X) = 1$ iff $\exists w \in N(v)$ s.t $\Gamma(w, X \setminus \{v\}) = 1$

Color Coding Algorithm

- * Let Z denote $\{1, 2, \ldots, k\}$.
- * Randomly color the vertices of G using colours from Z. Let χ denote this coloring.
- * Focus on finding a colorful k-path: a path in which no 2 vertices have same colour
- * Define $\Gamma(v,C)=1$ iff G has colorful ICI-path using colours in C and ending at v
 - * G has a colorful k-path iff $\Gamma(v, Z) = 1$ for some v in V(G)
- * Compute $\Gamma(v, C) = 1$ for all v and C such that |C| = 1
 - * For every v and every i, $\Gamma(v, i) = 1 = \inf \chi(v) = i$
- * For each v, for each C with $|C| \ge 2$ and $\chi(v) \in C$,
 - * $\Gamma(v,C) = 1$ iff $\exists w \in N(v)$ s.t $\Gamma(w,X \setminus \{\chi(v)\}) = 1$

 $O(2^k n^2)$ randomized algorithm

Analysis

- * Running Time: $O(2^k n^2)$ time
- Correctness:
 - * If (G,k) is a no-instance then Algorithm is correct
 - * If (G,k) is a yes-instance
 - * The random colouring need not color the vertices of any k-path with distinct colours
 - * Success probability >= $(k! k^{n-k})/k^n = k!/k^k > (k/e)^k/k^k = e^{-k}$

Theorem: Longest Path can be solved in randomized $O(2^k n^2)$ time, with success probability at least e^{-k} .

Color Coding Algorithm

Given (G,k), run the following algorithm e^k times. If one of the executions return yes, then declare that (G,k) is a yes-instance. Else, declare that (G,k) is a no-instance.

- * Randomly color the vertices of G using colours from Z. Let χ denote this coloring.
- * Pefine $\Gamma(v,C)=1$ iff G has colorful ICI-path using colours in C and ending at v
 - * G has a colorful k-path iff $\Gamma(v, Z) = 1$ for some v in V(G)
- * Compute $\Gamma(v, C) = 1$ for all v and C such that |C| = 1
 - * For every v and every i, $\Gamma(v, i) = 1 = \inf \chi(v) = i$
- * For each v, for each C with $|C| \ge 2$ and $\chi(v) \in C$,
 - * $\Gamma(v, C) = 1$ iff $\exists w \in N(v)$ s.t $\Gamma(w, X \setminus \{\chi(v)\}) = 1$

O((2e)k n²) randomized algorithm

Identity1: k! > (k/e)k

Identity2: $(1-p)^{\dagger} <= (e^{-p})^{\dagger}$

- * Running Time: $O((2e)^k n^2)$ time
- * Correctness:
 - * If (G,k) is a no-instance then Algorithm is correct
 - * If (G,k) is a yes-instance
 - * The random colouring (of an execution) need not color the vertices of any k-path with distinct colours
 - * Success probability >= $(k!.k^{n-k})/k^n = k!/k^k > (k/e)^k/k^k = e^{-k}$
 - * Pr(No colorful k-path is found in all runs) <= (1-e-k)^ek <= 1/e
 - * Success probability >= 1-1/e > 1/2

Theorem: Longest Path can be solved in randomized $O((2e)^k n^2)$ time, with constant success probability.

Perandomization

Pefinition: An (n,k,r)-splitter F is a family of functions from [n] to [n] such that for every set $S \subseteq [n]$ of size k, there is a function f in F that splits S evenly. That is, for each pair $i, j \in [r]$, $|f^{-1}(i) \cap S|$ and $|f^{-1}(j) \cap S|$ differ by <=1.

Pefinition: An (n,k,k)-splitter is called an (n,k)-perfect hash family.

Theorem: For any n,k>=1, there is a construction of an (n,k,k^2) -splitter of size $k^{0(1)}\log n$ in time $k^{0(1)}\log n$.

Theorem: For any n,k>=1, there is a construction of an (n,k)-perfect hash family of size $e^k k^{O(\log k)} \log n$ in time $e^k k^{O(\log k)} n \log n$.

Color Coding Algorithm

Given (G,k), run the following algorithm for each coloring function f in F. If one of the executions return yes, then declare that (G,k) is a no-instance. Else, declare that (G,k) is a yes-instance.

- * Color the vertices of G using f. Let χ denote this coloring.
- * Pefine $\Gamma(v,C)=1$ iff G has colorful ICI-path using colours in C and ending at v
 - * G has a colorful k-path iff $\Gamma(v, Z) = 1$ for some v in V(G)
- * Compute $\Gamma(v, C) = 1$ for all v and C such that |C| = 1
 - * For every v and every i, $\Gamma(v, i) = 1$ = iff $\chi(v) = i$
- * For each v, for each C with $|C| \ge 2$ and $\chi(v) \in C$,
 - * $\Gamma(v,C) = 1$ iff $\exists w \in N(v)$ s.t $\Gamma(w,X \setminus \{\chi(v)\}) = 1$

Theorem: Longest Path can be solved in (2e)k k^{0(log k)} n⁰⁽¹⁾ time.