Scalars

- single number
- write scalar in italics
- E.g. Let $s \in R$ be the slope of the line

Vectors

- Array of numbers
- Identifying points in space, with each element giving the coordinate along a different axis.

Matrices

- 2-D Array of numbers
- uppercase, bold-face e.g. A

Properties of Matrices and Vectors

S.No	Matrix/Vector Property	Description
1.	Transpose of Matrix	$A = [a_{ij}]_{mxn}$, then $A^T = [a_{ji}]_{mxn}$
2.	Matrix Addition	$C_{i,j} = A_{i,j} + B_{i,j}.$
3.	Matrix Multiplication	$C_{i,j} = \sum_{k} A_{i,k} B_{k,j}.$
4.	Transpose of Matrix Product	$(\boldsymbol{A}\boldsymbol{B})^{\top} = \boldsymbol{B}^{\top}\boldsymbol{A}^{\top}.$
5.	Identity Matrix	$orall oldsymbol{x} \in \mathbb{R}^n, oldsymbol{I}_n oldsymbol{x} = oldsymbol{x}.$
6.	Inverse Matrix	$\boldsymbol{A}^{-1}\boldsymbol{A}=\boldsymbol{I}_{n}.$

S.No	Matrix/Vector Property	Description
7.	Linear Combination of vectors	$Ax = \sum_{i} x_{i}A_{:,i}$
8.	Span of set of vectors	ΣC _i V ⁽ⁱ⁾
9.	Linearly Indipendent set of vectors	If no vector is linear combination of other vectors in the set;
10.	Square Matrix	Equal no. of rows and columns
11.	Left/Right Inverse	For square matrix, left inverse = right inverse
12.	Norms	Determines size of vector; $ x _p = \left(\sum_i x_i ^p\right)^{\frac{1}{p}}$ for $p \in \mathbb{R}, p \geq 1$.
13.	Properties of Norms (function <i>f</i>)	• $f(x) = 0 \Rightarrow x = 0$ • $f(x+y) \le f(x) + f(y)$ (the triangle inequality)

Deep-learning-with-neural-networks / Chapter-wise notes
/ Ch_1_Linear_algebra
/ Readme.md

Preview Code Blame		Code Blame	Raw ☐ 丛 Ø → ∷
	15.	L1 Norm	exactly 0 and elements that are close to 0; $ oldsymbol{x} _1 = \sum_i x_i .$
	16.	Max Norm	$ \boldsymbol{x} _{\infty} = \max_{i} x_i .$
	17.	Frobenius Norm	Measures size of matrix . (Analogus to euclideannorm)

↑ Тор

S.No	Matrix/Vector Property	Description
18.	Dot product of vectors (x, y)	$m{x}^{ op}m{y} = m{x} _2 m{y} _2\cos\theta$ where $ heta$ is the angle between $m{x}$ and $m{y}$.
19.	Diagnol Matrix	$D_{i,j} = 0$ all $i \neq j$.
20.	Identity Matrix	Matrix whose diagnol enteries are 1
21.	Symmetric Matrix	$A = A^{T}$.
22.	Unit Vector	$ oldsymbol{x} _2=1.$
23.	Orthogonal Vectors	$\mathbf{x}^{T}\mathbf{y} = 0$
24.	Orthonormal Vectors	Orthogonal vectors with unit norm; $oldsymbol{A}^ op oldsymbol{A} = oldsymbol{A} oldsymbol{A}^ op = oldsymbol{I}.$
25.	Orthogonal Matrix	Square matrix with rows and columns orthonormal respectively.

Matrix Decomposition

Eigen Decomposition

Eigendecomposition is a way of **breaking/decomposing** matrix into smaller matrices (analogus to *prime factorization*).

$$A = V \operatorname{diag}(\lambda) V^{-1}$$
.

*Eigen Vector is a non-zero vector \mathbf{v} , which upon being multiplied by matrix \mathbf{A} , alters only the scale of \mathbf{v} .

$$Av = \lambda v$$
.

Below figure shows before and after multiplying eigen vector with eigen value:

- Matrix whose all eigen values are
 - o positive is called **positive definite**
 - o positive or zero-valued is called positive semi-definite
 - o negative is called **negative definite**
 - o negative or zero-valued is called **negative semi-definite**

Single Value Decomposition

SVD factorizes matrix into singular values and singular vectors. In SVD, matrix **A** can be decomposed as follows -

$$A = UDV^{\top}$$
.

Properties -

- **A** (m, n) matrix
- U (m, m) orthogonal matrix, columns of U are called left-singular vectors

- D (m, n) diagnol matrix, not necessarily square, elements along diagnol D are called singular values of A
- V (n, n) orthogonal matrix, columns of V are called right-singular vectors

Moore-Penrose Pseudoinverse

Usually matrix inversion is not possible for non-square matrices. To solve below linear equation, in case $\bf A$ is non-square matrix, we use Moore-Penrose pseudoinverse formula to find solution to $\bf x$ -

$$Ax = y$$

$$\boldsymbol{A}^{+} = \lim_{\alpha \searrow 0} (\boldsymbol{A}^{\top} \boldsymbol{A} + \alpha \boldsymbol{I})^{-1} \boldsymbol{A}^{\top}.$$

Here, U, D, V are SVD of A.

Pseudo-inverse of **D** is obtained by -

- take reciprocal of non-zero elements
- take transpose of resultant matrix

Trace Operator

Gives sum of diagnol enetries of matrix.

$$\operatorname{Tr}(\mathbf{A}) = \sum_{i} \mathbf{A}_{i,i}.$$

• Frobenius norm can be re-written in terms of Trace operator as follows -

$$||A||_F = \sqrt{\operatorname{Tr}(\boldsymbol{A}\boldsymbol{A}^\top)}.$$

• Properties of Trace operator -

ii.

$$\operatorname{Tr}(\boldsymbol{A}\boldsymbol{B}\boldsymbol{C})=\operatorname{Tr}(\boldsymbol{C}\boldsymbol{A}\boldsymbol{B})=\operatorname{Tr}(\boldsymbol{B}\boldsymbol{C}\boldsymbol{A})$$

$$\operatorname{Tr}(\boldsymbol{A}) = \operatorname{Tr}(\boldsymbol{A}^{\top}).$$