Exercise sheet 5

Descriptive Set Theory

Academic year 2023-24

1. Let E be an equivalence relation on a Polish space X. A set $A \subseteq X$ is called E-invariant if $x \in A$ and $y \in X$ implies $y \in A$, for all $x, y \in X$. Suppose that E is analytic, that is, $E \in \Sigma^1_1(X^2)$. Show that if $A, B \subseteq X$ are disjoint analytic E-invariant sets, then there is a Borel E-invariant $C \subseteq X$ separating A from B, that is, $A \subseteq C$ and $C \cap B = \emptyset$.

[Hint. Recursively define sets $A_n, C_n \subseteq X$ so that $A_0 = A$, C_n is a Borel set separating A_n from B, and $A_{n+1} \supseteq C_n$ is E-saturated, analytic, and disjoint from B.]

- 2. Let E be an equivalence relation on a Polish space X. A partial transversal for E is a set $T \subseteq X$ meeting each E-equivalence class in at most one point. Show that the following are equivalent:
 - (a) E admits an uncountable analytic partial transversal;
 - (b) E admits an uncountable Borel partial transversal;
 - (c) there is a Borel function $f: \mathbb{R} \to X$ such that $f(r_0) \not \!\! E f(r_1)$ for all distinct $r_0, r_1 \in \mathbb{R}$.
- 3. Let E be an equivalence relation on a Polish space X. A transversal for E is a set $T \subseteq X$ meeting every E-equivalence class in exactly one point. A selector for E is a map $s: X \to X$ selecting one element from each E-equivalence class, that is, $s(x) \in [x]_E$ and s(x) = s(y) if $x \to y$. Show that if E is analytic, then the following are equivalent:
 - (a) E admits an analytic transversal;
 - (b) E admits a Borel transversal;
 - (c) E admits a Borel selector.
- 4. Prove the following theorem

Let X be a Polish space. Then every $A \in \Pi_1^1(X)$ can be written as $A = \bigcup_{\xi < \omega_1} A_{\xi}$, where A_{ξ} is Borel for every $\xi < \omega_1$.

by completing the details of the following steps:

- (a) First prove the theorem for X = LO and A = WO as follows:
 - Given $\omega \leq \xi < \omega_1$, let WO_{ξ} be the set of codes for well-orders of ω with order type $\leq \xi$. Show that each WO_{ξ} is analytic.
 - Argue that there is a Borel set A_{ξ} such that $WO_{\xi} \subseteq A_{\xi} \subseteq WO$. [Optional. Show that WO_{ξ} itself is Borel by showing that its complement is analytic as well.]
 - Conclude that WO = $\bigcup_{\xi < \omega_1} A_{\xi}$.
- (b) Use the fact that WO is Π_1^1 -complete to prove the theorem for $X = \omega^{\omega}$ and an arbitrary $A \in \Pi_1^1(\omega^{\omega})$.
- (c) Use the Borel isomorphism theorem for Polish spaces to transfer the result to an arbitrary uncountable Polish space X.
- (d) What happens if X is a countable Polish space?