Quadratic Zeeman Effect in ³He and Beyond

Gordon W.F. Drake, Aaron T. Bondy, and Evan Petrimoulx
University of Windsor
Windsor, Ontario, Canada

Collaborators

Oliver Hallett (undergraduate student)
Benjamin Najem (undergraduate student)

Financial Support: NSERC and SHARCnet

³He Magnetometry Workshop University of Michigan Ann Arbor, MI, October 14, 2024

Outline

- 1. Orders of magnitude
- 2. The Zeeman effect review of basic formalism
- 3. The Foldy-Wouthuysen transformation
- 4. Quadratic Zeeman effect for ³He
- 5. Possible wave function corrections
- 6. Results for ${}^{3}\text{He}^{+}$ for odd powers of B
- 7. Higher order quadratic perturbations
- 8. Nonrelativistic wave functions for helium and second-order perturations
- 9. Relativistic M1 Corrections for ³He⁺

Not covered: nuclear polarizability and excitation, recoil, QED corrections to the linear Zeeman effect · · · ·

Quadratic Zeeman effect studied by J. Killingbeck, J. Phys. B 12, 25 (1979) for hydrogen in isolation from other physical effects.

The quadratic Zeeman effect

J Killingbeck

Physics Department, University of Hull, Hull HU6 7RX, England

Received 6 March 1978, in final form 25 July 1978

Abstract. The hydrogen-atom quadratic Zeeman effect is treated by several techniques, and a new perturbation approach is suggested which involves numerical solution of a radial equation based on the s part of the potential. The low-field results appear to be more accurate than those of previous workers.

1. Introduction

Many papers have been written on the theory of the quadratic Zeeman effect for the hydrogen atom. Besides being deceptively simple from a theoretical viewpoint, the problem has relevance for astrophysics and also for the theory of simple excitons in solid-state physics. Garstang (1977) gives a good survey of the theory and of its applications. The vast majority of the calculations on the problem use very large matrices which are diagonalised on a computer, and there has been some discussion in the literature about the way in which continuum-type basis functions should be included to give a complete basis set. An alternative approach has been tried by Cizek and Vrscay (1977); they transformed the Hamiltonian and then treated the resulting eigenvalue problem by perturbation theory, forming Padé approximants to their energy series. For the ground-state problem they went up to about 30th order, which presumably involves considerable computation. Some of the most accurate results for the ground-state problem are those of Cabib et al (1972), who used a method which involves fairly large matrices as well as numerical integration of the Schrödinger differential equation. We

A. Schneider et al. Nature 606, 878 (2022)

Fig. 1| **Breit–Rabi diagram of {}^3He^+.** The energies of the hyperfine states E_1 , E_2 , E_3 and E_4 are plotted as a function of the magnetic field according to equation (1). The arrows below m_j and m_l indicate the orientation with respect to the magnetic field of the total angular momentum of the electron j = 1/2 and the nuclear spin I = 1/2, which are antiparallel to the magnetic moments μ_e and μ_l , respectively. The four double-headed arrows indicate the hyperfine transitions measured in this work. The transition frequencies given on the right side refer to the magnetic field in the Penning trap B = 5.7 T, which is marked in the plot by the black dashed line.

Orders of Magnitude

The atomic unit of magnetic field strength is

$$\frac{\hbar}{ea_0^2} = 2.35051757077(73) \times 10^5 \text{ T} = \kappa$$

The largest steady magnetic field ever produced is 45.22 T, which is only 1.9×10^{-4} a.u.

At 1T,
$$B = 4.25 \times 10^{-6}$$
 a.u.

The helion to electron mass ratio is $M_{^3\mathrm{He}}/m_e=5495.9$ and $M_p.m_e=1836$.

For a quadratic Zeeman effect at 1 T,

$$B\frac{M_p}{m_e} = 0.007811$$

which is not that small, but it is even in the magnetic quantum number M.

The fine structure constant squared $\alpha^2 = 5.325 \times 10^{-5}$.

The Zeeman Effect – Review of Basic Formalism

Start from the Dirac Hamiltonian for an electron

$$H_{\mathrm{D}} = c\boldsymbol{\alpha} \cdot \boldsymbol{\pi} - \beta mc^2 + V - \frac{eh}{4M_n} g_I \boldsymbol{\sigma_{\mathsf{N}}} \cdot \mathbf{B}$$

and wave function

$$\psi(\mathbf{r}, \sigma_{\mathsf{N}}) = \psi_e(\mathbf{r})\chi(\sigma_{\mathsf{N}}), \text{ with } \sigma_{\mathsf{N}} = \uparrow \text{ or } \downarrow$$

where $\mathbf{\pi} = \mathbf{p} - e\mathbf{A}$, M_p is the proton mass

and ${\bf A}$ is the vector potential ${\bf A}=\frac{1}{2}B(y{\bf \hat{i}}-x{\bf \hat{j}})$

so that $\mathbf{B} = \nabla \times \mathbf{A} = B\hat{\mathbf{k}}$ is a uniform field pointing in the z-direction.

Then for the electron $H_{\mathrm{Zeeman}} = -ce \alpha \cdot \mathbf{A} = -\frac{1}{2}ceB(x\alpha_y - y\alpha_x)$

At this level there is no obvious quadratic Zeeman effect!

The Foldy-Wouthuysen Transformation

Objective: transform away the coupling to the small component of the wave functions so that the Dirac α operator gets replaced by the Pauli $2 \times 2 \sigma$ operator.

i.e., find an operator S such that the unitary transformation

$$H_{\rm FW} = e^{iS}(H - i\partial_t)e^{-iS}$$

does not couple large with small components. Choose

$$S = -\frac{i}{2mc} \left\{ \beta \boldsymbol{\alpha} \cdot \boldsymbol{\pi} - \frac{1}{3m^2c^2} \beta (\boldsymbol{\alpha} \cdot \boldsymbol{\pi})^3 + \frac{1}{2mc^2} [\boldsymbol{\alpha} \cdot \boldsymbol{\pi}, V - i\partial_t] \right\}$$

References:

K. Pachucki, Phys. Rev. A 69, 052502 (2004).

L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 30 (1950).

Expand $H_{\rm FW} = e^{iS}(H - i\partial_t)e^{-iS}$ in a power series to obtain

$$H_{\text{FW}} = (1 + iS + \frac{1}{2!}(iS)^2 + \cdots)(H_{\text{D}} - i\partial_t)(1 - iS + \frac{1}{2!}(iS)^2 + \cdots)$$
$$= H_{\text{D}} + [iS, H_{\text{D}} - i\partial_t] + \frac{1}{2!}[iS, [iS, H_{\text{D}} - i\partial_t]] + \cdots$$

Finally, substitute for S from the previous slide to obtain

$$H_{\mathbf{FW}} = \frac{\boldsymbol{\pi}^{2}}{2m} + V - \frac{\boldsymbol{\pi}^{4}}{8m^{3}c^{2}}$$

$$- \frac{e\hbar}{4m}g_{s}\boldsymbol{\sigma}\cdot\mathbf{B} - \frac{e\hbar}{4M_{p}}g_{I}\boldsymbol{\sigma}_{N}\cdot\mathbf{B}$$

$$+ \frac{e\hbar}{8m^{2}c^{2}}[\hbar\nabla\cdot\mathbf{E} + \boldsymbol{\sigma}\cdot(\mathbf{E}\times\boldsymbol{\pi} - \boldsymbol{\pi}\times\mathbf{E})]$$

$$+ \frac{e\hbar}{4m^{3}c^{2}}\boldsymbol{\pi}^{2}\boldsymbol{\sigma}\cdot\mathbf{B}$$

with $g_s \simeq -2$ and $g_I \simeq -4.2549955 \cdots$. The main linear Zeeman contribution comes from the terms $\frac{e\hbar}{4mc}g_s\boldsymbol{\sigma}\cdot\mathbf{B}$ and $\frac{e\hbar}{4M_cc}g_I\boldsymbol{\sigma_N}\cdot\mathbf{B}$, with $M_p/m \simeq 1836$.

The main quadratic Zeeman contributions come from the first and last terms, with $\pi=\mathbf{p}-e\mathbf{A}$.

$$\pi^2 = \mathbf{p}^2 - \mathbf{A} \cdot \mathbf{p} - \mathbf{p} \cdot \mathbf{A} + \mathbf{A}^2$$

In the Coulomb gauge $\nabla \cdot \mathbf{A} = 0$, $\mathbf{p} \cdot \mathbf{A} = \frac{1}{2} \mathbf{B} \cdot \mathbf{L}$, and $\mathbf{A}^2 = \frac{1}{4} B^2 (x^2 + y^2)$.

Calculations for ³He

For two-electron helium, $\sigma \to \sigma_1 + \sigma_2$ and $x^2 + y^2 \to \sum_{i=1}^2 (x_i^2 + y_i^2)$.

For convenience, write the Zeeman Hamiltonian in the form

$$H_{\mathsf{Z}} = \frac{e\hbar}{2M_p} g_I \mathbf{B} \cdot \left\{ \boldsymbol{\sigma}_{\mathsf{N}} + \frac{M_p}{m} \left(\frac{g_s}{g_I} (\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2) \left[1 - \left(\frac{eA}{mc} \right)^2 \right] + \mathbf{B} \frac{e}{2g_I \hbar} \sum_{i=1}^2 (x_i^2 + y_i^2) \right) \right\}$$

For the $1s^2$ 1S_0 state, $\langle \boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2 \rangle = 0$, and

$$\langle \sum_{i=1}^{2} (x_i^2 + y_i^2) \rangle = \langle \sum_{i=1}^{2} (r_i^2 - z_i^2) \rangle$$
$$= \frac{2}{3} \langle \sum_{i=1}^{2} \langle r_i^2 \rangle = 1.591310 \cdots a_0^2$$

With B expressed in Tesla, the fractional correction for the quadratic Zeeman effect is thus

$$\frac{M_p}{m} \frac{B}{2g_I} \langle \sum_{i=1}^{2} (x_i^2 + y_i^2) \rangle = \frac{1836/2}{2.3505 \times 10^5} \cdot \frac{1.5913}{4.255} = 0.001461 \times B$$

This is enhanced by the factor of $M_p/m \simeq 1836$, but it is a common shift for both $\mathcal{M}_{\rm N}=\pm 1/2$, and so it does not change the transition frequency.

Wave Function Corrections

Recall that

$$H_{\mathsf{Z}} = rac{e\hbar}{2M}g_{I}\mathbf{B} \cdot \left[oldsymbol{\sigma}_{\mathsf{N}} + rac{M}{m}\left(rac{g_{s}}{g_{I}}(oldsymbol{\sigma}_{1} + oldsymbol{\sigma}_{2}) + \mathbf{B}rac{e}{2g_{I}\hbar}\sum_{i=1}^{2}(x_{i}^{2} + y_{i}^{2})
ight)
ight]$$

In lowest order, the nuclear Zeeman effect depends on the expectation value

$$\Delta E(\mathcal{M}) = \frac{e\hbar}{2M} g_I \frac{\langle \psi | \mathbf{B} \cdot \boldsymbol{\sigma}_{\mathsf{N}} | \psi \rangle}{\langle \psi | \psi \rangle}$$
$$= \frac{e\hbar}{2M} g_I B \mathcal{M} \frac{\langle \psi | \psi \rangle}{\langle \psi | \psi \rangle} \quad \text{with } \mathcal{M} = \pm \frac{1}{2}.$$

In other words, there are no perturbative corrections to the norm.

For the electronic Zeeman term, when relativistic and quadratic terms are included, the operator $\sigma_{1,z}+\sigma_{2,z}$ assumes the more general form

$$\mathcal{O}_1 \sigma_{1,z} + \mathcal{O}_2 \sigma_{2,z} = \frac{1}{2} (\mathcal{O}_1 + \mathcal{O}_2) (\sigma_{1,z} + \sigma_{2,z}) + \frac{1}{2} (\mathcal{O}_1 - \mathcal{O}_2) (\sigma_{1,z} - \sigma_{2,z})$$

The antisymmetric operator $\sigma_{1,z}-\sigma_{2,z}$ connects 1S_0 states with 3S_1 and 3D_1 states, but still with magnetic quantum number $\mathcal{M}=0$, and so such terms do not contribute.

Result for He⁺

For He⁺, the term
$$\frac{e\hbar}{4m^3c^2}\boldsymbol{\pi}^2\boldsymbol{\sigma}\cdot\mathbf{B}$$
 contributes since $\mathcal{M}=\pm\frac{1}{2}$

The fractional correction is

$$1 + \frac{g_s}{g_I} \frac{M_p}{m} \left(\frac{eA}{mc}\right)^2$$

$$= 1 + \frac{1}{4} \frac{g_s}{g_I} \frac{M_p}{m} \alpha^2 \frac{2}{3} \langle r^2 \rangle \frac{B^2}{\kappa^2}$$

$$= 1 + 1.03 \times 10^{-13} B^2$$

with B in Tesla, using $\kappa = 2.3506 \times 10^5 \, \mathrm{T}$ and $\langle r^2 \rangle = 3/4 \; \mathrm{for \; He^+}.$

Higher-Order Perturbations

For He⁺, the perturbation equation

$$(H^{(0)} - E^{(0)})\psi^{(1)} + (x^2 + y^2)\psi^{(0)} = E^{(1)}\psi^{(0)}$$

can be solved analytically, with the result

$$E = Z^{2} \left(-\frac{1}{2} + 2\lambda - \frac{53}{3}\lambda^{2} + \frac{5581}{9}\lambda^{3} + \cdots \right)$$

for a 1s electron with nuclear charge Z, and $\lambda = \frac{1}{8Z^4} \left(\frac{B}{\kappa}\right)^2$

from J. Killingbeck, J. Phys. B 12, 25 (1979).

Second-Order Quadratic Shift for Helium

For brevity, define $V = \sum_{i=1}^{2} (x_i^2 + y_i^2)$

Solve the perturbation equation variationally

$$(H^{(0)} - E^{(0)})\psi^{(1)} + V\psi^{(0)} = E^{(1)}\psi^{(0)}$$

by writing $|\psi^{(1)}\rangle$ in terms of a complete set of pseudostates $|n\rangle$

$$|\psi^{(1)}\rangle = \sum_{n\neq 0} \frac{|n\rangle\langle n|V - E^{(1)}|0\rangle}{E_0 - E_n}$$

Then $E^{(2)} = \langle \psi^{(0)} | V | \psi^{(1)} \rangle / 64$

Since $x^2 + y^2 = r^2 - z^2 = \frac{2}{3}[P_0 - P_2(\cos \theta)]$, there are contributions from both intermediate S-states and D-states.

Nonrelativistic Wave functions for Helium

The Hamiltonian in atomic units is

$$H = -\frac{1}{2}\nabla_1^2 - \frac{1}{2}\nabla_2^2 - \frac{Z}{r_1} - \frac{Z}{r_2} + \frac{1}{r_{12}}$$

Expand

$$\Psi(\mathbf{r}_{1}, \mathbf{r}_{2}) = \sum_{i,j,k} a_{ijk} r_{1}^{i} r_{2}^{j} r_{12}^{k} e^{-\alpha r_{1} - \beta r_{2}} \mathcal{Y}_{l_{1}l_{2}L}^{M}(\mathbf{\hat{r}_{1}}, \mathbf{\hat{r}_{2}}) \pm \text{exchange}$$

where $i + j + k \leq \Omega$ (Pekeris shell).

Diagonalize H in the

$$\phi_{ijk} = r_1^i r_2^j r_{12}^k e^{-\alpha r_1 - \beta r_2} \mathcal{Y}_{l_1 l_2 L}^M(\mathbf{\hat{r}_1}, \mathbf{\hat{r}_2}) \pm \text{exchange}$$

basis set.

New Variational Techniques

I. Double the basis set

If
$$\phi_{i,j,k}(\alpha,\beta) = r_1^i r_2^j r_{12}^k e^{-\alpha r_1 - \beta r_2}$$

then $\tilde{\phi}_{i,j,k} = a_1 \phi_{i,j,k}(\alpha_1,\beta_1) + a_2 \phi_{i,j,k}(\alpha_2,\beta_2)$
asymptotic inner correlation

II. Include the screened hydrogenic function

$$\phi_{\mathsf{SH}} = \psi_{1s}(Z)\psi_{nL}(Z-1)$$

explicitly in the basis set.

III. Optimize the nonlinear parameters

$$\frac{\partial E}{\partial \alpha_t} = -2\langle \Psi_{\mathsf{tr}} \mid H - E \mid r_1 \Psi(\mathbf{r}_1, \mathbf{r}_2; \alpha_t) \pm r_2 \Psi(\mathbf{r}_2, \mathbf{r}_1; \alpha_t) \rangle
\frac{\partial E}{\partial \beta_t} = -2\langle \Psi_{\mathsf{tr}} \mid H - E \mid r_2 \Psi(\mathbf{r}_1, \mathbf{r}_2; \alpha_t) \pm r_1 \Psi(\mathbf{r}_2, \mathbf{r}_1; \alpha_t) \rangle$$

for t=1, 2, with $\langle \Psi_{\mathsf{tr}} \mid \Psi_{\mathsf{tr}} \rangle = 1$. $\Psi(\mathbf{r}_1, \mathbf{r}_2; \alpha_t) = \mathsf{terms} \; \mathsf{in} \; \Psi_{\mathsf{tr}} \; \mathsf{which} \; \mathsf{depend} \; \mathsf{explicitly} \; \mathsf{on} \; \alpha_t.$

For all states up to n=10 and L=7, see Drake and Yan, PRA 46, 2378 (1992) and http://drake.sharcnet.ca for downloadable resources.

N

44

67

98

135

182

236

302

376

464

561

674

797

938

1090

1262

1446

1652

1871

2114

Extp

Convergence table for gro	und state energy of helium $1s^2 \ ^1S_0$		
Eenrgy	Difference		

Difference

-2.903 724 131 001 531 809 52

-2.903 724 351 566 477 006 22 0.000 000 220 564 945 196 70 -2.903 724 373 891 109 909 02 0.000 000 022 324 632 902 80

-2.903 724 376 548 959 509 68 0.000 000 002 657 849 600 66

-2.903 724 377 034 119 592 06

-2.903 724 377 034 119 595 82

-2.90372437703411959813+

-2.903 724 376 960 412 587 10 0.000 000 000 411 453 077 42

-2.903 724 377 018 168 461 60

-2.903 724 377 030 786 217 38

-2.903 724 377 033 426 036 92 0.000 000 000 002 639 819 54 0.000 000 000 000 540 455 36 -2.903 724 377 033 966 492 28 -2.903 724 377 034 076 499 72 0.000 000 000 000 110 007 44

-2.903 724 377 034 107 875 42 -2.903 724 377 034 116 018 94

-2.903 724 377 034 118 518 36

0.000 000 000 000 008 143 52 0.000 000 000 000 002 499 42 -2.903 724 377 034 119 239 36 -2.903 724 377 034 119 478 92

-2.903 724 377 034 119 553 56 -2.903 724 377 034 119 582 74

 $0.000\,000\,000\,000\,000\,721\,00$

0.000 000 000 000 000 239 56 0.000 000 000 000 000 074 64 0.000 000 000 000 000 029 18 0.000 000 000 000 000 009 32

 $-0.000\,000\,000\,000\,000\,000\,23$

0.000 000 000 057 755 874 50

0.000 000 000 012 617 755 78

 $0.000\,000\,000\,000\,031\,375\,70$

3.21 2.56 3.13 0.000 000 000 000 000 003 76 2.48

Ratio

9.88

8.40

6.46

7.12

4.58

4.78

4.88

4.91

3.51

3.85

3.26

3.47

3.01

1.63

Convergence table for $C^{(2)}=\sum_{n\neq 0} \frac{\langle 0|V|n\rangle\langle n|V|0\rangle}{E_0-E_n}$ with $V=\sum_{i=1}^2(x_i^2+y_i^2)$

\overline{N}	$C^{(2)}$	Difference	
44	-2.256 977 108 97		
67	-2.256 876 425 86	0.000 100 683 12	
98	-2.256 839 847 04	0.00003657881	
135	-2.256 836 242 96	0.000 003 604 08	
182	-2.256 835 064 51	0.000 001 178 46	
236	-2.256 834 880 76	0.00000018375	
302	-2.256 834 860 98	0.00000001977	
376	-2.256 834 846 56	0.000 000 014 42	
464	-2.256 834 846 64	-0.000 000 000 08	
561	-2.256 834 846 90	-0.000 000 000 26	
674	-2.256 834 847 00	-0.000 000 000 10	

Second-Order Quadratic Shift for Helium - Results

Define
$$C^{(2)}=\sum_{n\neq 0} \frac{\langle 0|V|n\rangle\langle n|V|0\rangle}{E_0-E_n}$$
 with $V=\sum_{i=1}^2(x_i^2+y_i^2)$

$$C^{(2)}$$
 (S–S part) $-2.256\,834\,847(1)(674 \text{ terms})$ $C^{(2)}$ (S–D part) $0.543\,351\,801(1)$ Total $-1.713\,483\,046(1)(1014 \text{ terms})$

Compare with -53/192 = -0.2760 for He⁺.

Check Sums

 $C^{(2)}({\rm S-D})$ is the same as two-ninths the quadrupole polarizability $2\alpha_q/9=0.543\,351\,800(1)$

[Yan et al. PRA 54, 2824 (1996)]

By closure
$$\sum_n \langle 0|V|n\rangle\langle n|V|0\rangle \ = \ \langle 0|V^2|0\rangle$$

$$4.610\,516\,51 \ = \ 4.610\,516\,51$$

The total fractional correction to the $\frac{\hbar e}{2M_p} \boldsymbol{\sigma}_{\text{N}} \cdot \mathbf{B}$ term is $1 + 0.001461 \times B - 0.445 \times 10^{-15} B^3$

Relativistic Corrections for ³He⁺

For ³He⁺, there is also a contribution from terms of the form

$$C_{\text{rel}}^{(2)} = \sum_{n \neq 0} \frac{\langle 0|V|n\rangle\langle n|Q_{\text{M1}}|0\rangle}{E_0 - E_n}$$

with
$$V = \frac{B^2}{8} \sum_{i=1}^{2} (x_i^2 + y_i^2)$$

and
$$Q_{\mathsf{M1}} = \mu_{\mathsf{B}} \left(\frac{-2p^2}{3m^2c^2} + \frac{Ze^2}{3mc^2r} \right) \boldsymbol{\sigma} \cdot \mathbf{B}$$

The order of magnitude as a fractional correction to $\mu_N \sigma_N \cdot \mathbf{B}$ is

$$\frac{M_p g_s}{m a_t} \kappa^2 \alpha^2 B^2 \sim 1.03 \times 10^{-13} B^2$$
 with B in Tesla.

Dirac Equation for the Helion Nucleus

Regard the ³He nucleus as a Dirac particle with anomalous magnetic moment $\mathcal{A} = (Mg_I)/(2M_p) + 1$ corresponding to $g_I = -4.5525 \cdots$ relative to $g_e = -2$

$$H_{\rm D} = c\boldsymbol{\alpha} \cdot \boldsymbol{\pi} - \beta M c^2 + V + \frac{e\mathcal{A}}{2M} (i\beta \boldsymbol{\alpha} \cdot \mathbf{E} - \beta \boldsymbol{\Sigma} \cdot \mathbf{B})$$

(K. Pachucki, Phys. Rev. A 69, 052502 (2004).)

Apply a Foldy-Wouthuysen transformation as before to obtain (in simplified form)

$$H_{\mathbf{FW}} = \frac{\boldsymbol{\pi}^{2}}{2M} + V - \frac{\boldsymbol{\pi}^{4}}{8M^{3}c^{2}}$$

$$- \frac{e\hbar}{4M_{p}}g_{I}\boldsymbol{\sigma}_{N}\cdot\mathbf{B}$$

$$+ \frac{e\hbar}{8M^{2}c^{2}}(1 + 2\mathcal{A})(\hbar\nabla\cdot\mathbf{E} + \boldsymbol{\sigma}_{N}\cdot(\mathbf{E} \times \boldsymbol{\pi} - \boldsymbol{\pi} \times \mathbf{E}))$$

$$+ \frac{e\hbar}{4M^{3}c^{2}}\left[\boldsymbol{\pi}^{2}\boldsymbol{\sigma}_{N}\cdot\mathbf{B} + \mathcal{A}\boldsymbol{\pi}\cdot\mathbf{B}\boldsymbol{\pi}\cdot\boldsymbol{\sigma}_{N}\right]$$

The fractional correction is now

$$1 + \frac{1}{g_I} \frac{M_p}{M} \left(\frac{eA}{Mc}\right)^2$$

$$= 1 + \frac{1}{4g_I} \frac{M_p}{M} \left(\frac{m}{M}\right)^2 \alpha^2 \frac{2}{3} \langle r_N^2 \rangle \frac{B^2}{\kappa^2}$$

$$= 1 + \frac{1}{4g_I} \frac{M_p}{M} \left(\frac{m}{M}\right)^4 \alpha^2 \frac{2}{3} \langle r^2 \rangle \frac{B^2}{\kappa^2}$$

$$= 1 + 3.10 \times 10^{-32} B^2$$

Summary

- 1. We have surveyed possible sources of nonlinearity in the Zeeman effect for ³He.
- 2. The quadratic effect is relatively large, especially for the electronic energy shift in comparison with the nuclear Zeeman effect, but it has no effect on the transition frequency.
- 3. The cubic Zeeman effect does alter the transition frequency, but it is at the level of parts in 10^{13} .
- 4. We have presented new results for the quadratic effect in helium beyond lowest order.

