Métodos Numéricos Estabilidad de sistemas dinámicos y álgebra lineal

Carlos Manuel Rodríguez Martínez

Facultad de Física - Universidad Veracruzana

9 de marzo de 2020

En el capítulo anterior...

Estudiamos mapas lineales de la forma

$$x_{n+1} = a_{11}x_n + a_{11}y_n$$

 $y_{n+1} = a_{21}x_n + a_{22}y_n$

que se pueden simplificar a

$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = A \begin{pmatrix} x_n \\ y_n \end{pmatrix},$$

• Donde $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$. Analizando los eigenvalores se puede averiguar si un punto fijo es una fuente o sumidero. ¿Por qué?

Mapas no lineales y matriz Jacobiana

• Sea un sistema dinámico dado por

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}),$$

donde $\mathbf{x} \in U$, con puntos fijos \mathbf{x}^* para los cuales

$$\mathbf{f}(\mathbf{x}^*) = 0 \Rightarrow \frac{d\mathbf{x}^*}{dt} = 0.$$

• Haciendo que $\mathbf{x} = \mathbf{x}^* + \Delta \mathbf{x}$, y expandiendo alrededor de \mathbf{x}^* queda

$$f(x^* + \Delta x) = f(x^*) + Df(x^*)\Delta x + \cdots$$

• $Df(x^*)$ es el Jacobiano.

$$\mathbf{J} = D\mathbf{f}(\mathbf{x}) = \frac{d\mathbf{f}}{d\mathbf{x}} = \begin{pmatrix} \frac{\partial \mathbf{f}}{\partial x_1} & \cdots & \frac{\partial \mathbf{f}}{\partial x_n} \end{pmatrix} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

Mapas no lineales y matriz Jacobiana

• Al tomar los términos a primer orden queda

$$\frac{d}{dt}(\mathbf{x}^* + \Delta \mathbf{x}) = \mathbf{f}(\mathbf{x}^*) + D\mathbf{f}(\mathbf{x}^*)\Delta \mathbf{x},$$

pero

$$\mathbf{f}(\mathbf{x}^*) = 0, \, \frac{d\mathbf{x}^*}{dt} = 0,$$

entonces queda

$$\frac{d\Delta \mathbf{x}}{dt} = \mathbf{J}(\mathbf{x}^*) \cdot \Delta \mathbf{x}.$$

• Esto es una ecuación diferencial cuya solución es

$$\Delta \mathbf{x} = \hat{u}e^{\lambda t},$$

donde λ son los eigenvalores de $\mathbf{J}(\mathbf{x}^*)$, es decir, las soluciones a

$$|\mathbf{J}(\mathbf{x}^*) - \lambda \mathbb{I}| = 0.$$

Mapas no lineales y matriz Jacobiana

- Se observa que si $\lambda > 1$ los intervalos Δx serán cada vez más grandes, por lo tanto el punto es una fuente.
- Si $\lambda < 1$ los intervalos Δx serán cada vez más pequeños, por lo tanto el punto es un sumidero.
- Si ocurre que un eigenvalor es > 1 y otro < 1 entonces se tiene un punto de silla.

Ejemplo: Mapa de Henón

• El mapa de Henón está dado por

$$f_{a,b}(x,y) = (a - x^2 + by, x).$$

Su matriz Jacobiana es

$$D\mathbf{f}(x,y) = \begin{pmatrix} -2x & b \\ 1 & 0 \end{pmatrix}.$$

• Gráficas de sus eigenvalores evaluados en puntos fijos.

(a) Punto fijo 1.

(b) Punto fijo 2.

Figura: Eigenvalores.

Ejemplo: Mapa de Henón

- Para puntos periódicos de periodo 2 se evalúa el Jacobiano
 Df²(p) = Df(f(p)) · Df(p).
- Este proceso se generaliza para puntos periódicos de periodo n, evaluando Df⁽ⁿ⁾(p).
- Sea $\mathbf{p_r}$ un punto de la órbita periódica originada a partir de un punto periódico $\mathbf{p_k}$, entonces

$$D\mathbf{f}^{(\mathbf{k})}(\mathbf{p}_r) = D\mathbf{f}(p_{r-1}) \cdot D\mathbf{f}(p_{r-2}) \cdots D\mathbf{f}(p_1) \cdot D\mathbf{f}(p_k) \cdots D\mathbf{f}(p_r)$$

Mapa de Henón: Puntos fijos

• Resolviendo $(x, y) = (a - x^2 + by, x)$ se pueden encontrar los puntos fijos. Esta ecuación se reduce a

$$x^2 + (1 - b)x - a = 0,$$

cuya solución es

$$x = \frac{-(1-b) \pm \sqrt{(1-b)^2 + 4a}}{2}.$$

La condición para que esta solución sea real es $4a > -(1-b)^2$.

• Esto significa que si b = 0.4 entonces para que exista un punto fijo a > -0.09.

Mapa de Henón: Puntos fijos

- Para los puntos periódicos de periodo 2, se resuelve $(x,y) = f^{(2)}(x,y) = (a (a x^2 + by)^2 + bx, a x^2 + by).$
- Desarrollando se llega a

$$a(1-b)^2 - (x^2-a)^2 + x(1-b)^3 = 0,$$

cuyas soluciones son

$$x = \frac{1}{2} \left(b - 1 \pm \sqrt{4a - 3b^2 + 6b - 3} \right),$$
$$x = \frac{1}{2} \left(1 - b \pm \sqrt{4a + b^2 - 2b + 1} \right),$$

y la condición para que la solución sea real es

$$4a+6b-3b^2-3>0$$
, $\rightarrow 4a>3(b-1)^2$.

 Si b = 0.4, entonces para que exista un punto de periodo 2, a > 0.27.

Mapa de Henón: Puntos fijos

Todo esto se puede visualizar mejor en un diagrama de bifurcación.

Figura: Diagramas de bifurcación del mapa de Henón.