同倫類型論

JoJo

jojoid@duck.com

目录

1	<i>λ</i> 演算	. 3
	1.1 項	. 3
	1.2 自由和綁定變量	. 3
	1.3 α 等價	. 4
	1.4 代入	. 4
2	類型論	. 6
	2.1 項	. 6
	2.2 語境	. 6
	2.3 結構規則	. 6
	2.4 類型宇宙	. 6
	2.5 依賴函數類型	. 7
	2.6 依賴序偶類型	. 7
	2.7 餘積類型	. 8
	2.8 空類型 0	. 8
	2.9 單元類型 1	. 8
	2.10 自然數類型	. 9
	2.11 恆等類型	. 9
	2.12 定義	. 9
3	同倫類型論	10
	3.1 類型是高維羣胚	10

1 入演算

1.1 項

定義 1.1 項

所有項的集合 Λ 的遞歸定義如下

- 1. (變量) / 中有無窮個變量;
- 2. (抽象)如果u是一個變量且 $M \in \Lambda$,則 $(u.M) \in \Lambda$;
- 3. (應用)如果 $M,N \in \Lambda$,則 $(MN) \in \Lambda$.

更簡短的表述是

$$\varLambda \coloneqq V \mid (V.\varLambda) \mid (\varLambda\varLambda)$$

或

$$M \coloneqq u \mid (u.M) \mid (MN)$$

其中 V 是變量集.

定義 1.2 子項

項M的所有子項的集合定義爲Sub(M),Sub的遞歸定義如下

- 1. (基礎)對於任何變量x, $Sub(x) := \{x\}$;
- 2. (抽象) $Sub(x.M) := Sub(M) \cup \{(x.M)\};$
- 3. (應用) $Sub(MN) \coloneqq Sub(M) \cup Sub(N) \cup \{(MN)\}.$

引理 1.1 1. (自反性) 對於任何項 M, 有 $M \in Sub(M)$;

2. (傳遞性) 如果 $L \in Sub(M)$ 且 $M \in Sub(N)$, 則 $L \in Sub(N)$.

引理 1.2 項可以以樹表示給出,如下圖中的例子

(y(x.(xz))) 的樹表示

項的子項對應於項的樹表示的子樹.

約定 1.1 1. 最外層括號可以省略;

- 2. (抽象是右結合的) x.y.M 是 x.(y.M) 的一個縮寫;
- 3. (應用是左結合的) MNL 是 ((MN)L) 的一個縮寫;
- 4. (應用優先於抽象) x.MN 是 x.(MN) 的一個縮寫.

1.2 自由和綁定變量

定義 1.3 自由變量

項M的所有自由變量的集合定義爲FV(M),FV的遞歸定義如下

- 1. (變量) $FV(x) := \{x\};$
- 2. (抽象) $FV(x.M) := FV(M) \setminus \{x\};$
- 3. (應用) $FV(MN) := FV(M) \cup FV(N)$.

例子 1.1 (y(x.(xz))) 的樹表示如下圖所示

 $\mathit{FV}(y(x.(xz))) = \{y,z\}.$

定義 1.4 閉項

一個項 M 是**閉**的 : $\Leftrightarrow FV(M) = \emptyset$.

所有閉項的集合記爲 Λ^0 .

1.3 α 等價

定義 1.5 重命名

將項 M 中 x 的每個自由出現都替換爲 y, 結果記爲 $M^{x\to y}$.

定義 1.6 α 等價

定義 α 等價= α 爲符合如下性質的關係

- 1. (重命名)如果 y 不在 M 中出現,則 $x.M =_{\alpha} y.M^{x \to y}$;
- 2. (兼容性) 如果 $M =_{\alpha} N$, 則 $ML =_{\alpha} NL$, $LM =_{\alpha} LN$ 且對於任何變量 z 有 $z.M =_{\alpha} z.N$;
- 3. (自反性) $M =_{\alpha} M$;
- 4. (對稱性)如果 $M =_{\alpha} N$,則 $N =_{\alpha} M$;
- 5. (傳遞性) 如果 $L =_{\alpha} M$ 且 $M =_{\alpha} N$, 則 $L =_{\alpha} N$.

1.4 代人

定義 1.7 代人

 $(1a) \ x[N/x] := N;$

- (1b) 如果 $x \neq y$,則 $y[N/x] \coloneqq y$;
- (2) (PQ)[N/x] := (P[N/x])(Q[N/x]);
- $(3) 如果 z.P^{y \rightarrow z} =_{\alpha} y.P 且 z \notin FV(N), 則 (y.P)[N/x] \coloneqq z.(P^{y \rightarrow z}[N/x]).$

引理 1.3 | 設 $x \neq y$ 且 $x \notin FV(N)$,則L[M, N/x, y] = L[N, M[N/y]/x, y].

定義 1.8 同時代人

 $M[N_1,...,N_n/x_1,...,x_n]$ 表示把項 $N_1,...,N_n$ 同時代人到變量 $x_1,...,x_n$.

2 類型論

2.1 項

定義 2.1 項

比入演算多了一些常量以及新的構造.

2.2 語境

定義 2.2 語境

一個語境是一個列表

$$x_1: A_1, x_2: A_2, ..., x_n: A_n$$

其中 $x_1,...,x_n$ 是不同的變量,它們分別擁有類型 $A_1,...,A_n$. 我們用 Γ,Δ 等字母來縮寫語境.

定義 2.3 語境規則

 Γ ctx 是一個判斷,表示" Γ 是良構的語境."有如下規則

$$\frac{}{\cdot ctx}$$
 ctx-EMP

$$\frac{x_1:A_1,x_2:A_2,...,x_{n-1}:A_{n-1}\vdash A_n:\mathcal{U}_i}{(x_1:A_1,...,x_n:A_n)\ ctx}\ ctx\text{-}EXT$$

其中,變量 x_n 與變量 $x_1,...,x_n$ 中的任何一個都不同.

2.3 結構規則

定義 2.4 Vble 規則

$$\frac{(x_1:A_1,...,x_n:A_n)\ ctx}{x_1:A_1,...,x_n:A_n\vdash x_i:A_i}\ Vble$$

定義 2.5 判斷相等

如果
$$a =_{\alpha} b$$
, 則 $a \equiv b$.

$$\frac{\Gamma \vdash a : A}{\Gamma \vdash a \equiv a : A}$$
$$\frac{\Gamma \vdash a \equiv b : A}{\Gamma \vdash b \equiv a : A}$$

$$\frac{\Gamma \vdash a \equiv b : A \quad \Gamma \vdash b \equiv c : A}{\Gamma \vdash a \equiv c : A}$$

$$\frac{\varGamma \vdash a : A \quad \varGamma \vdash A \equiv B : \mathcal{U}_i}{\varGamma \vdash a : B}$$

$$\frac{\varGamma \vdash a \equiv b : A \quad \varGamma \vdash A \equiv B : \mathcal{U}_i}{\varGamma \vdash a \equiv b : B}$$

2.4 類型宇宙

定義 2.6 類型宇宙層級

有如下規則

$$\mathcal{U}_0,\mathcal{U}_1,\mathcal{U}_2,\dots$$

$$\frac{\Gamma \ ctx}{\Gamma \vdash \mathcal{U}_{i} : \mathcal{U}_{i+1}} \ \mathcal{U}\text{-}INTRO$$

$$\frac{\Gamma \vdash A : \mathcal{U}_{i}}{\Gamma \vdash A : \mathcal{U}_{i+1}} \ \mathcal{U}\text{-}CUMUL$$

2.5 依賴函數類型

定義 2.7 依賴函數類型

$$\frac{\varGamma \vdash A : \mathcal{U}_i \quad \varGamma, x : A \vdash B : \mathcal{U}_i}{\varGamma \vdash (x : A) \to B : \mathcal{U}_i} \ \varPi\text{-}FORM$$

$$\frac{\varGamma \vdash A_1 \equiv A_2 : \mathcal{U}_i \quad \varGamma, x : A_1 \vdash B_1 \equiv B_2 : \mathcal{U}_i}{\varGamma \vdash (x : A_1) \to B_1 \equiv (x : A_2) \to B_2 : \mathcal{U}_i} \ \varPi\text{-}FORM\text{-}EQ}$$

$$\frac{\varGamma, x : A \vdash b : B}{\varGamma \vdash (x : A) \mapsto b : (x : A) \to B} \ \varPi\text{-}INTRO$$

$$\frac{\varGamma, x : A \vdash b_1 \equiv b_2 : B}{\varGamma \vdash (x : A) \mapsto b_1 \equiv (x : A) \mapsto b_2 : (x : A) \to B} \ \varPi\text{-}INTRO\text{-}EQ}$$

$$\frac{\varGamma \vdash f : (x : A) \to B}{\varGamma \vdash f(a) : B[a/x]} \ \varPi\text{-}ELIM$$

$$\frac{\varGamma \vdash f_1 \equiv f_2 : (x : A) \to B}{\varGamma \vdash f_1(a) \equiv f_2(a) : B[a/x]} \ \varPi\text{-}ELIM\text{-}EQ}$$

$$\frac{\varGamma \vdash f : (x : A) \mapsto b : B}{\varGamma \vdash f : (x : A) \mapsto b(a) \equiv b[a/x] : B[a/x]} \ \varPi\text{-}COMP}$$

$$\frac{\varGamma \vdash f : (x : A) \to B}{\varGamma \vdash f \equiv (x \mapsto f(x)) : (x : A) \to B} \ \varPi\text{-}UNIQ}$$

2.6 依賴序偶類型

定義 2.8 依賴序偶類型

$$\frac{\Gamma \vdash A : \mathcal{U}_i \quad \Gamma, x : A \vdash B : \mathcal{U}_i}{\Gamma \vdash (x : A) \times B : \mathcal{U}_i} \quad \Sigma \text{-}FORM$$

$$\frac{\Gamma \vdash A_1 \equiv A_2 : \mathcal{U}_i \quad \Gamma, x : A_1 \vdash B_1 \equiv B_2 : \mathcal{U}_i}{\Gamma \vdash (x : A_1) \times B_1 \equiv (x : A_2) \times B_2 : \mathcal{U}_i} \quad \Sigma \text{-}FORM\text{-}EQQ$$

$$\frac{\Gamma, x : A \vdash B : \mathcal{U}_i \quad \Gamma \vdash a : A \quad \Gamma \vdash b : B[a/x]}{\Gamma \vdash (a, b) : (x : A) \times B} \quad \Sigma \text{-}INTRO$$

$$\frac{\Gamma, x : A \vdash B : \mathcal{U}_i \quad \Gamma \vdash a_1 \equiv a_2 : A \quad \Gamma \vdash b_1 \equiv b_2 : B[a/x]}{\Gamma \vdash (a_1, b_1) \equiv (a_2, b_2) : (x : A) \times B} \quad \Sigma \text{-}INTRO\text{-}EQQ$$

$$\frac{\Gamma, x : (x : A) \times B \vdash C : \mathcal{U}_i \quad \Gamma, x : A, y : B \vdash g : C[(x, y)/z] \quad \Gamma \vdash p : (x : A) \times B}{\Gamma \vdash ind_{(x : A) \times B}(z : C, x : y : g, p) : C[p/z]} \quad \Sigma \text{-}ELIM$$

$$\frac{\Gamma, x : (x : A) \times B \vdash C : \mathcal{U}_i \quad \Gamma, x : A, y : B \vdash g : C[(x, y)/z] \quad \Gamma \vdash p_1 \equiv p_2 : (x : A) \times B}{\Gamma \vdash ind_{(x : A) \times B}(z : C, x : y : g, p_2) : C[p_1/z] \equiv C[p_2/z]} \quad \Sigma \text{-}ELIM\text{-}EQQ$$

$$\frac{\Gamma, x : (x : A) \times B \vdash C : \mathcal{U}_i \quad \Gamma, x : A, y : B \vdash g : C[(x, y)/z] \quad \Gamma \vdash a : A \quad \Gamma \vdash b : B[a/x]}{\Gamma \vdash ind_{(x : A) \times B}(z : C, x : y : g, (a, b)) \equiv g[a, b/x, y] : C[p/z]} \quad \Sigma \text{-}COMP$$

2.7 餘積類型

定義 2.9 餘積類型

$$\frac{\Gamma \vdash A : \mathcal{U}_i \quad \Gamma \vdash B : \mathcal{U}_i}{\Gamma \vdash A + B : \mathcal{U}_i} + FORM$$

$$\frac{\Gamma \vdash A_1 \equiv A_2 : \mathcal{U}_i \quad \Gamma \vdash B_1 \equiv B_2 : \mathcal{U}_i}{\Gamma \vdash A_1 + B_1 \equiv A_2 + B_2 : \mathcal{U}_i} + FORM - EQ$$

$$\frac{\Gamma \vdash A : \mathcal{U}_i \quad \Gamma \vdash B : \mathcal{U}_i \quad \Gamma \vdash a : A}{\Gamma \vdash inl(a) : A + B} + INTRO_1$$

$$\frac{\Gamma \vdash A : \mathcal{U}_i \quad \Gamma \vdash B : \mathcal{U}_i \quad \Gamma \vdash b : B}{\Gamma \vdash inr(b) : A + B} + INTRO_2$$

$$\frac{\Gamma \vdash A : \mathcal{U}_i \quad \Gamma \vdash B : \mathcal{U}_i \quad \Gamma \vdash b_1 \equiv b_2 : A}{\Gamma \vdash inl(a_1) \equiv inl(a_2) : A + B} + INTRO_2 - EQ$$

$$\frac{\Gamma \vdash A : \mathcal{U}_i \quad \Gamma \vdash B : \mathcal{U}_i \quad \Gamma \vdash b_1 \equiv b_2 : B}{\Gamma \vdash inr(b_1) \equiv inr(b_2) : A + B} + INTRO_2 - EQ$$

$$\frac{\Gamma \vdash A : \mathcal{U}_i \quad \Gamma \vdash B : \mathcal{U}_i \quad \Gamma \vdash b_1 \equiv b_2 : B}{\Gamma \vdash inr(b_1) \equiv inr(b_2) : A + B} + INTRO_2 - EQ$$

$$\frac{\Gamma, z : (A + B) \vdash C : \mathcal{U}_i \quad \Gamma, x : A \vdash c : C[inl(x)/z] \quad \Gamma, y : B \vdash d : C[inr(y)/z] \quad \Gamma \vdash e : (A + B)}{\Gamma \vdash ind_{A+B}(z.C, x.c, y.d, e) : C[e/z]} + -ELIM$$

$$\frac{\Gamma, z : (A + B) \vdash C : \mathcal{U}_i \quad \Gamma, x : A \vdash c : C[inl(x)/z] \quad \Gamma, y : B \vdash d : C[inr(y)/z] \quad \Gamma \vdash e_1 \equiv e_2 : (A + B)}{\Gamma \vdash ind_{A+B}(z.C, x.c, y.d, e_1) \equiv ind_{A+B}(z.C, x.c, y.d, e_2) : C[e_1/z]} + -ELIM - EQ$$

$$\frac{\Gamma, z : (A + B) \vdash C : \mathcal{U}_i \quad \Gamma, x : A \vdash c : C[inl(x)/z] \quad \Gamma, y : B \vdash d : C[inr(y)/z] \quad \Gamma \vdash a : A}{\Gamma \vdash ind_{A+B}(z.C, x.c, y.d, inl(a)) \equiv c[a/x] : C[inl(a)/z]} + -COMP_1$$

$$\frac{\Gamma, z : (A + B) \vdash C : \mathcal{U}_i \quad \Gamma, x : A \vdash c : C[inl(x)/z] \quad \Gamma, y : B \vdash d : C[inr(y)/z] \quad \Gamma \vdash b : B}{\Gamma \vdash ind_{A+B}(z.C, x.c, y.d, inr(b)) \equiv d[b/y] : C[inr(b)/z]} + -COMP_2$$

2.8 空類型 0

定義 2.10 空類型 0

$$\begin{split} \frac{\Gamma\ ctx}{\Gamma\vdash\mathbf{0}:\mathcal{U}_i}\ \mathbf{0}\text{-}FORM \\ \frac{\Gamma,x:\mathbf{0}\vdash C:\mathcal{U}_i\quad \Gamma\vdash a:\mathbf{0}}{\Gamma\vdash ind_{\mathbf{0}}(x.C,a):C[a/x]}\ \mathbf{0}\text{-}ELIM \\ \\ \frac{\Gamma,x:\mathbf{0}\vdash C:\mathcal{U}_i\quad \Gamma\vdash a_1\equiv a_2:\mathbf{0}}{\Gamma\vdash ind_{\mathbf{0}}(x.C,a_1)\equiv ind_{\mathbf{0}}(x.C,a_2):C[a_1/x]\equiv C[a_2/x]}\ \mathbf{0}\text{-}ELIM\text{-}EQ \end{split}$$

2.9 單元類型 1

定義 2.11 單元類型 1

$$\begin{split} \frac{\Gamma \ ctx}{\Gamma \vdash \mathbf{1} : \mathcal{U}_i} \ \mathbf{1}\text{-}FORM \\ \frac{\Gamma \ ctx}{\Gamma \vdash \star : \mathbf{1}} \ \mathbf{1}\text{-}INTRO \\ \frac{\Gamma \ x : \mathbf{1} \vdash C : \mathcal{U}_i \quad \Gamma \vdash c : C[\star/x] \quad \Gamma \vdash a : \mathbf{1}}{\Gamma \vdash ind_{\mathbf{1}}(x.C,c,a) : C[a/x]} \ \mathbf{1}\text{-}ELIM \\ \frac{\Gamma, x : \mathbf{1} \vdash C : \mathcal{U}_i \quad \Gamma \vdash c : C[\star/x] \quad \Gamma \vdash a_1 \equiv a_2 : \mathbf{1}}{\Gamma \vdash ind_{\mathbf{1}}(x.C,c,a_1) \equiv ind_{\mathbf{1}}(x.C,c,a_2) : C[a_1/x] \equiv C[a_2/x]} \ \mathbf{1}\text{-}ELIM\text{-}EQ} \\ \frac{\Gamma, x : \mathbf{1} \vdash C : \mathcal{U}_i \quad \Gamma \vdash c : C[\star/x]}{\Gamma \vdash ind_{\mathbf{1}}(x.C,c,\star) \equiv c : C[\star/x]} \ \mathbf{1}\text{-}COMP} \end{split}$$

2.10 自然數類型

定義 2.12 自然數類型

$$\frac{\Gamma\ ctx}{\Gamma\vdash\mathbb{N}:\mathcal{U}_i}\ \mathbb{N}\text{-}FORM$$

$$\frac{\Gamma\ ctx}{\Gamma\vdash0:\mathbb{N}}\ \mathbb{N}\text{-}INTRO_1$$

$$\frac{\Gamma\vdash n:\mathbb{N}}{\Gamma\vdash succ(n):\mathbb{N}}\ \mathbb{N}\text{-}INTRO_2$$

$$\frac{\Gamma\vdash n_1\equiv n_2:\mathbb{N}}{\Gamma\vdash succ(n_1)\equiv succ(n_2):\mathbb{N}}\ \mathbb{N}\text{-}INTRO_2\text{-}EQ$$

$$\frac{\Gamma\vdash n_1\equiv n_2:\mathbb{N}}{\Gamma\vdash succ(n_1)\equiv succ(n_2):\mathbb{N}}\ \mathbb{N}\text{-}INTRO_2\text{-}EQ$$

$$\frac{\Gamma,x:\mathbb{N}\vdash C:\mathcal{U}_i\quad \Gamma\vdash c_0:C[0/x]\quad \Gamma,x:\mathbb{N},y:C\vdash c_s:C[succ(x)/x]\quad \Gamma\vdash n:\mathbb{N}}{\Gamma\vdash ind_{\mathbb{N}}(x.C,c_0,x.y.c_s,n):C[n/x]}\ \mathbb{N}\text{-}ELIM$$

$$\frac{\Gamma,x:\mathbb{N}\vdash C:\mathcal{U}_i\quad \Gamma\vdash c_0:C[0/x]\quad \Gamma,x:\mathbb{N},y:C\vdash c_s:C[succ(x)/x]\quad \Gamma\vdash n_1\equiv n_2:\mathbb{N}}{\Gamma\vdash ind_{\mathbb{N}}(x.C,c_0,x.y.c_s,n_1)\equiv ind_{\mathbb{N}}(x.C,c_0,x.y.c_s,n_2):C[n_1/x]\equiv C[n_2/x]}$$

$$\frac{\Gamma,x:\mathbb{N}\vdash C:\mathcal{U}_i\quad \Gamma\vdash c_0:C[0/x]\quad \Gamma,x:\mathbb{N},y:C\vdash c_s:C[succ(x)/x]}{\Gamma\vdash ind_{\mathbb{N}}(x.C,c_0,x.y.c_s,0)\equiv c_0:C[0/x]}\ \mathbb{N}\text{-}COMP_1$$

$$\frac{\Gamma,x:\mathbb{N}\vdash C:\mathcal{U}_i\quad \Gamma\vdash c_0:C[0/x]\quad \Gamma,x:\mathbb{N},y:C\vdash c_s:C[succ(x)/x]\quad \Gamma\vdash n:\mathbb{N}}{\Gamma\vdash ind_{\mathbb{N}}(x.C,c_0,x.y.c_s,succ(n))\equiv c_s[n,ind_{\mathbb{N}}(x.C,c_0,x.y.c_s,n)/x,y]:C[succ(n)/x]}\ \mathbb{N}\text{-}COMP_2}$$

2.11 恆等類型

定義 2.13 恆等類型

便等類型
$$\frac{\Gamma \vdash A : \mathcal{U}_i \quad \Gamma \vdash a : A \quad \Gamma \vdash b : A}{\Gamma \vdash a =_A b : \mathcal{U}_i} = -FORM$$

$$\frac{\Gamma \vdash A : \mathcal{U}_i \quad \Gamma \vdash a_1 \equiv a_2 : A \quad \Gamma \vdash b_1 \equiv b_2 : A}{\Gamma \vdash a_1 =_A b_1 \equiv a_2 =_A b_2 : \mathcal{U}_i} = -FORM\text{-}EQ$$

$$\frac{\Gamma \vdash A : \mathcal{U}_i \quad \Gamma \vdash a_1 =_A b_1}{\Gamma \vdash refl_a : a =_A a} = -INTRO$$

$$\frac{\Gamma \vdash A : \mathcal{U}_i \quad \Gamma \vdash a_1 \equiv a_2 : A}{\Gamma \vdash refl_{a_1} \equiv refl_{a_2} : a_1 =_A a_1} = -INTRO$$

$$\frac{\Gamma \vdash A : \mathcal{U}_i \quad \Gamma \vdash a_1 \equiv a_2 : A}{\Gamma \vdash refl_{a_1} \equiv refl_{a_2} : a_1 =_A a_1} = a_2 =_A a_2$$

$$= -INTRO\text{-}EQ$$

$$\frac{\Gamma, x : A, y : A, p : x =_A y \vdash C : \mathcal{U}_i \quad \Gamma, z : A \vdash c : C[z, z, refl_z/x, y, p] \quad \Gamma \vdash a : A \quad \Gamma \vdash b : A \quad \Gamma \vdash q : a =_A b}{\Gamma \vdash ind_{=_A}(x y.p.C, z.c. a, b, q) : C[a, b, q/x, y, p]} = -ELIM$$

$$\frac{\Gamma, x : A, y : A, p : x =_A y \vdash C : \mathcal{U}_i \quad \Gamma, z : A \vdash c : C[z, z, refl_z/x, y, p] \quad \Gamma \vdash a : A \quad \Gamma \vdash b : A \quad \Gamma \vdash q_1 \equiv q_2 : a =_A b}{\Gamma \vdash ind_{=_A}(x y.p.C, z.c. a, b, q_2) : C[a, b, q_1/x, y, p] \equiv C[a, b, q_2/x, y, p]} = -ELIM\text{-}EQ}$$

$$\frac{\Gamma, x : A, y : A, p : x =_A y \vdash C : \mathcal{U}_i \quad \Gamma, z : A \vdash c : C[z, z, refl_z/x, y, p] \quad \Gamma \vdash a : A}{\Gamma \vdash ind_{=_A}(x y.p.C, z.c. a, a, refl_a) \equiv c[a/z] : C[a, a, refl_a/x, y, p]} = -COMP}$$

$$\frac{\Gamma, x : A, y : A, p : x =_A y \vdash C : \mathcal{U}_i \quad \Gamma, z : A \vdash c : C[z, z, refl_z/x, y, p] \quad \Gamma \vdash a : A}{\Gamma \vdash ind_{=_A}(x y.p.C, z.c. a, a, refl_a) \equiv c[a/z] : C[a, a, refl_a/x, y, p]} = -COMP}$$

$$\frac{\Gamma, x : A, y : A, p : x =_A y \vdash C : \mathcal{U}_i \quad \Gamma, z : A \vdash c : C[z, z, refl_z/x, y, p] \quad \Gamma \vdash a : A}{\Gamma \vdash ind_{=_A}(x y.p.C, z.c. a, a, refl_a) \equiv c[a/z] : C[a, a, refl_a/x, y, p]} = -COMP}$$

2.12 定義

例子 2.1 $\circ :\equiv (A:\mathcal{U}_i) \mapsto (B:\mathcal{U}_i) \mapsto (C:\mathcal{U}_i) \mapsto (g:B\to C) \mapsto (f:A\to B) \mapsto (x:A) \mapsto g(f(x)).$

3 同倫類型論

3.1 類型是高維羣胚

引理 3.1 對於任何 $A:\mathcal{U}_i,x,y:A$,都能構造一個函數 $_{-}^{-1}:(x=_Ay) \to (y=_Ax)$ 使得 $(refl_x)^{-1}\equiv refl_x.$

 p^{-1} 稱爲 p 的**逆**.

Proof. 第一種證明

設 $A: \mathcal{U}_i, D: (x,y:A) \to (x=Ay) \to \mathcal{U}_i, D(x,y,p) :\equiv (y=Ax).$

隨即我們就能構造一個函數 $d := x \mapsto \operatorname{refl}_x : (x : A) \to D(x, x, \operatorname{refl}_x)$.

然後根據恆等類型的消除規則我們有,對於任何 $x,y:A,p:(x=_Ay)$, 可以構造項 $\operatorname{ind}_{=,\cdot}(D,d,x,y,p):(y=_Ax)$.

現在對於任何 x,y:A 我們可以定義期望得到的函數 $_^{-1}:\equiv p\mapsto \mathrm{ind}_{=_4}(D,d,x,y,p).$

由恆等類型的計算規則, $(\operatorname{refl}_x)^{-1} \equiv \operatorname{refl}_x$.

Proof. 第二種證明

對於每個 x,y:A 和 p:x=y,我們想要構造一個項 $p^{-1}:y=x$. 根據 p 的道路歸納,我們只需要給出 y 是 x 且 p 是 refl_x 時的構造. 在該情况下, refl_x 和 refl_x^{-1} 的類型都是 x=x. 因此我們可以簡單地定義 $\mathrm{refl}_x^{-1}:\equiv \mathrm{refl}_x$. 於是根據道路歸納,我們完成了構造.

引理 3.2 對於任何 $A: \mathcal{U}_i, x, y, z: A$,都能構造一個函數 • : $(x =_A y) \to (y =_A z) \to (x =_A z)$ 使得 $refl_x$ • $refl_x:\equiv refl_x$.

p•q稱爲p和q的連接.

Proof. 第一種證明

期望得到的函數擁有類型 $(x,y,z:A) \rightarrow (x=_A y) \rightarrow (y=_A z) \rightarrow (x=_A z).$

我們將改爲定義一個函數, 擁有和預期等價的類型 $(x,y:A) \to (x=_A y) \to (z:A) \to (y=_A z) \to (x=_A z)$, 這允許我們使用兩次恆等類型的消除規則.

設 $D:(x,y:A) \to (x=Ay) \to \mathcal{U}_i, D(x,y,p) :\equiv (z:A) \to (q:y=Az) \to (x=Az).$

然後,爲了對 D 應用恆等類型的消除規則,我們需要類型爲 $(x:A) \to D(x,x,\mathrm{refl}_x)$ 的函數,也就是類型爲 $(x,z:A) \to (q:x=_Az) \to (x=_Az)$.

現在設 $E:(x,z:A) \rightarrow (q:x=_Az) \rightarrow \mathcal{U}_i, E(x,z,q) :\equiv (x=_Az).$

隨即我們能構造函數 $e := x \mapsto \operatorname{refl}_r : (x : A) \to E(x, x, \operatorname{refl}_r)$.

對 E 應用恆等類型的消除規則,我們得到函數 $d:(x,z:A) \to (q:x=_Az) \to E(x,z,q), x \mapsto z \mapsto q \mapsto \operatorname{ind}_{=_A}(E,e,x,z,q).$

因爲 $E(x,z,q)\equiv(x=_Az)$,所以 $d:(x:A)\to D(x,x,\mathrm{refl}_x)$.

然 後 對 D 應 用 恆 等 類 型 的 消 除 規 則 我 們 有 , 對 於 任 何 $x,y:A,p:(x=_Ay)$, 可 以 構 造 項 $\operatorname{ind}_{=_A}(D,d,x,y,p) \equiv \operatorname{ind}_{=_A}\left(D,(x,z:A) \mapsto (q:y=_Az) \mapsto \operatorname{ind}_{=_A}(E,e,x,z,q),x,y,p\right):(z:A) \to (q:y=_Az) \to (x=_Az).$

於是我們有

$$(x,y:A) \mapsto (p:x=_A y) \mapsto \operatorname{ind}_{=_A} \left(D, (x,z:A) \mapsto (q:y=_A z) \mapsto \operatorname{ind}_{=_A} (E,e,x,z,q), x,y,p\right):$$

$$(x,y:A) \rightarrow (x=_A y) \rightarrow (z:A) \rightarrow (y=_A z) \rightarrow (x=_A z)$$

現在對於任何 a,b,c:A 我們可以定義期望得到的函數

$$\bullet : \equiv (p:a =_A b) \mapsto \operatorname{ind}_{=_A} \left(D, (x:A) \mapsto (q:b =_A c) \mapsto \operatorname{ind}_{=_A} (E,e,x,c,q), a,b,p \right) :$$

$$(a,b,c:A) \rightarrow (a =_A b) \rightarrow (b =_A c) \rightarrow (a =_A c).$$

由恆等映射的計算規則,得

$$\operatorname{refl}_a \bullet \operatorname{refl}_a \equiv \operatorname{ind}_{=_A} \left(D, (x:A) \mapsto \operatorname{ind}_{=_A} (E,e,x,a,\operatorname{refl}_a), a,a,\operatorname{refl}_a \right) \equiv \operatorname{ind}_{=_A} (E,e,a,a,\operatorname{refl}_a) \equiv e(a) \equiv \operatorname{refl}_a.$$

Proof. 第二種證明

對於每個 x,y,z:A, p:x=y 和 q:y=z, 我們想要構造一個項 $p \cdot q:x=z$. 根據 p 的道路歸納, 我們只需要給出 y 是 x 且 p 是 $refl_x$ 時的構造,即對於每個 x,z:A 和 q:x=z, 構造一個項 $refl_x \cdot q:x=z$. 根據 q 的道路歸納, 只需給出 z 是 x 且 q 是 $refl_x$ 時的構造,即對於每個 x:A,構造一個項 $refl_x \cdot refl_x:x=x$. 因此我們可以簡單地定義 $refl_x \cdot refl_x:x=refl_x$. 於是根據道路歸納,我們完成了構造.

引理 3.3 設 $A:\mathcal{U}_i$, x,y,z,w:A, p:x=y, q:y=z且 r:z=w. 我們有以下結論:

1. $p = p \cdot refl_u \perp p = refl_x \cdot p$;

 $2.\; p \bullet p^{-1} = refl_x \mathrel{\rlap{\ \perp}\!\!\!\!\perp} p^{-1} \bullet p = refl_y;$

3. $(p^{-1})^{-1} = p$;

4. $p \cdot (q \cdot r) = (p \cdot q) \cdot r$.

Proof. 所有證明都使用道路歸納.

 $1. \ \text{第一種證明:} \ \text{設} \ D: (x,y:A) \rightarrow (p:x=y) \rightarrow \mathcal{U}, D(x,y,p) :\equiv \left(p = p \cdot \operatorname{refl}_y\right). \ \text{那麼} \ D(x,x,\operatorname{refl}_x) \ \text{是 refl}_x = \operatorname{refl}_x \cdot \operatorname{refl}_x. \ \text{因爲 refl}_x \equiv \operatorname{refl}_x, \ \text{我們有} \ D(x,x,\operatorname{refl}_1) \equiv \left(\operatorname{refl}_x = \operatorname{refl}_x\right). \ \text{因此可以構造函數} \ d:\equiv x \mapsto \operatorname{refl}_{\operatorname{refl}_x} : (x:A) \rightarrow D(x,x,\operatorname{refl}_1). \ \text{根據道路歸納, 對於每個} \ x,y:A \ \text{和} \ p:x=y, \ \text{我們有項} \ \operatorname{ind}_{=_A}(D,d,x,y,p) : p = p \cdot \operatorname{refl}_y.$

第二種證明:根據 p 的道路歸納,只需要假設 y 是 x 且 p 是 refl_x . 在該情況下, $p \bullet \operatorname{refl}_y \equiv \operatorname{refl}_x \bullet \operatorname{refl}_x \equiv \operatorname{refl}_x$. 因此只需證明 $\operatorname{refl}_x = \operatorname{refl}_x$. 這是簡單的,即 $\operatorname{refl}_{\operatorname{refl}_x} : \operatorname{refl}_x = \operatorname{refl}_x$.

2. 第一種證明: 設 $D:(x,y:A) \to (p:x=y) \to \mathcal{U}, D(x,y,p) \coloneqq (p \bullet p^{-1} = \operatorname{refl}_x)$. 那麼 $D(x,x,\operatorname{refl}_x)$ 是 $\operatorname{refl}_x \bullet \operatorname{refl}_x^{-1} = \operatorname{refl}_x$. 因爲 $\operatorname{refl}_x^{-1} \equiv \operatorname{refl}_x$ 且 $\operatorname{refl}_x \bullet \operatorname{refl}_x = \operatorname{refl}_x$,我們有 $D(x,x,\operatorname{refl}_x) \equiv (\operatorname{refl}_x = \operatorname{refl}_x)$. 因此可以構造函數 $d:\equiv x \mapsto \operatorname{refl}_{\operatorname{refl}_x} : (x:A) \to D(x,x,\operatorname{refl}_x)$. 根據道路歸納,對於每個 x,y:A 和 p:x=y,我們有項 $\operatorname{ind}_{=A}(D,d,x,y,p):p \bullet p^{-1} = \operatorname{refl}_x$.

第二種證明:根據 p 的道路歸納,只需要假設 $y \in x$ 且 $p \in refl_x$. 在該情況下, $p \cdot p^{-1} \equiv refl_x \cdot refl_x^{-1} \equiv refl_x$.

3. 第一種證明: 設 $D:(x,y:A) \to (p:x=y) \to \mathcal{U}, D(x,y,p) :\equiv \left(p^{-1}\right)^{-1} = p$. 那麼 D(x,x,p) 是 $\left(\operatorname{refl}_x^{-1}\right)^{-1} = \operatorname{refl}_x$. 因爲 $\operatorname{refl}_x^{-1} \equiv \operatorname{refl}_x$,所以 $\left(\operatorname{refl}_x^{-1}\right)^{-1} \equiv \operatorname{refl}_x^{-1} \equiv \operatorname{refl}_x$,那麼 $D(x,x,\operatorname{refl}_x) \equiv \left(\operatorname{refl}_x = \operatorname{refl}_x\right)$. 因此我們能構造函數 $d:\equiv x \mapsto \operatorname{refl}_{\operatorname{refl}_x} : (x:A) \to D(x,x,\operatorname{refl}_x)$. 根據道路歸納,對於每個 x,y:A 和 p:x=y,我們有項 $\operatorname{ind}_{=_x}(D,d,x,y,p) : (p^{-1})^{-1} = p$.

第二種證明: 根據 p 的道路歸納, 只需要假設 $y \in x$ 且 $p \in refl_x$. 在該情況下, $(p^{-1})^{-1} \equiv (refl_x^{-1})^{-1} \equiv refl_x$.

 $4. \quad 我 們 想要構造的函數的類型是 \quad (x,y,z,w:A) \rightarrow (p:x=y) \rightarrow (q:y=z) \rightarrow (r:z=w) \rightarrow (p \bullet (q \bullet r) = (p \bullet q) \bullet r), \quad 我 們 改 爲 證 明 \\ (x,y:A) \rightarrow (p:x=y) \rightarrow (z:A) \rightarrow (q:y=z) \rightarrow (w:A) \rightarrow (r:z=w) \rightarrow (p \bullet (q \bullet r) = (p \bullet q) \bullet r).$

設 $D_1:(x,y:A) \rightarrow (p:x=y) \rightarrow \mathcal{U}, D_1(x,y,p):\equiv (z:A) \rightarrow (q:y=z) \rightarrow (w:A) \rightarrow (r:z=w) \rightarrow (p \bullet (q \bullet r) = (p \bullet q) \bullet r).$ 根據 p 的道路歸納,只需要構造類型爲 $(x:A) \rightarrow D_1(x,x,\mathrm{refl}_x) \equiv (x,z:A) \rightarrow (q:x=z) \rightarrow (w:A) \rightarrow (r:z=w) \rightarrow (\mathrm{refl}_x \bullet (q \bullet r) = (\mathrm{refl}_x \bullet q) \bullet r)$ 的函數.

爲了構造這個類型的函數, 我們設 $D_2:(x,z:A) \to (q:x=z) \to \mathcal{U}, D_2(x,z,q):\equiv (w:A) \to (r:z=w) \to (\mathrm{refl}_x \bullet (q \bullet r) = (\mathrm{refl}_x \bullet q) \bullet r).$ 根據 q 的道路歸納,只需要構造類型爲 $(x:A) \to D(x,x,\mathrm{refl}_x) \equiv (x,w:A) \to (r:x=w) \to (\mathrm{refl}_x \bullet (\mathrm{refl}_x \bullet r) = (\mathrm{refl}_x \bullet r) = (\mathrm{refl}_x \bullet r) \to (\mathrm{refl}_x \bullet r) \to$

爲了構造這個類型的函數,我們設 $D_3:(x,w:A) \to (r:x=w) \to \mathcal{U}, D_3(x,w,r):\equiv (\mathrm{refl}_x \bullet (\mathrm{refl}_x \bullet r) = (\mathrm{refl}_x \bullet \mathrm{refl}_x) \bullet r).$ 根據 r 的道路歸納,只需要構造類型爲 $(x:A) \to D_3(x,x,\mathrm{refl}_x) \equiv (x:A) \to (\mathrm{refl}_x \bullet (\mathrm{refl}_x \bullet \mathrm{refl}_x) = (\mathrm{refl}_x \bullet \mathrm{refl}_x) \bullet \mathrm{refl}_x) \equiv (x:A) \to \mathrm{refl}_x = \mathrm{refl}_x$ 的函數. 這是簡單的,即 $\mathrm{refl}_{\mathrm{refl}_x}$.

因此,應用3此道路歸納,我們就得到了想要的類型的函數.

定義 3.1 迴路空間

給定一個類型 A 和一個點 a:A,定義它們的**迴路空間** $\Omega(A,a)$ 爲類型 $a=_A a$. 如果上下文中點 a 是清楚的,有時可以簡單地簡寫爲 ΩA . 迴路空間的項稱爲**迴路**.

還可以定義迴路空間的迴路空間 $\Omega^2(A,a) \coloneqq \Omega(\Omega(A,a),refl_a) \equiv \Omega(a=_A a,refl_a) \equiv \left(refl_a=_{a=_A a} refl_a\right)$,它的項稱爲 2 維迴路.