## **ZADANIE 1.**

Dla ciągłych funkcji rzeczywistych f, g : M  $\to \mathbb{R}$  na rozmaitości gładkiej M, oraz dla  $\varepsilon$  > 0 mówimy, że g jest  $\varepsilon$ -aproskymacją f, jeśli  $||f - g|| < \varepsilon$  (tzn. dla każdego x  $\in$  M mamy  $|f(x) - g(x)| < \varepsilon$ ).

- (a) Uzasadnij, że dla każdego  $\varepsilon$  > 0 każda ciągła funkcja F : M  $\to \mathbb{R}$  posiada gładką  $\varepsilon$ -aproksymację.
- (b) Rozszerz ten wynik do sytuacji, gdy  $\varepsilon: M \to \mathbb{R}$  jest dowolną ciągłą dodatnią funkcją rzeczywistą, zaś  $\varepsilon$ -aproksymacja funkcji f to dowolna taka funkcja g, że dla każdego  $x \in M$  mamy  $|f(x) g(x)| < \varepsilon(x)$ .
- (c) Niech D  $\subseteq$  M będzie dowolnym domkniętym podzbiorem. Dla dowolnego  $\varepsilon$  jak w punkcie (b) uzasadnij, że dowolna funkcja ciągła f : M  $\to \mathbb{R}$ , która jest gładka na pewnym otwartym otoczeniu zbioru D, posiada gładką  $\varepsilon$ -aproksymację g : M  $\to \mathbb{R}$  taką, że g  $\upharpoonright$  D = f  $\upharpoonright$  D.

(a)

Daną mam ciągłą funkcję  $F: M \to \mathbb{R}$ . Wiem, że każdą funkcję mogę dowolnie dokładnie aproksymować za pomocą wielomianu o współczynnikach wymiernych.

Weźmy sobie jakiś atlas na M zawierający mapy ( $U_{\alpha}$ ,  $\phi_{\alpha}$ ). Wiem, że skoro f było ciągłe, a  $\phi$  nic nie psuje, to pewnie i f  $\circ$   $\phi^{-1}$  jest ciągłe. Czyli w ten sposób dostaję funkcję  $\mathbb{R} \to \mathbb{R}$  i na tym już chyba umiem pracować jakoś po ludzku.

Ten obrazek średnio cokolwiek daje, ale zrobiłam go i nie zamierzam usuwać, bo wygląda zajebiście.



Chyba mogę znaleźć sobie wielomian  $w \in \mathbb{R}[X^n]$  taki, że siedzi w kulce nałożonej na f w przestrzeni funkcji ciągłych. Ewentualnie mogę powiedzieć, że w to jest po prostu gładka funkcja blisko f określona na  $\phi_{\alpha}(U_{\alpha})$ , bo chyba funkcje gładkie są gęste w zbiorze funkcji ciągłych czy jakoś tak. Teraz chcę sobie produkować g =  $w(\phi(p))$ , ale wtedy to nie wyśmignie się chyba tak od razu?

Może wyprodukujmy sobie rozkład jedności  $\psi_{\alpha}$  taki, że  $\psi_{\alpha}\equiv 0$  poza  $U_{\alpha}$  i dowolny punkt  $p\in M$  jest  $\psi_{\alpha}(p)>0$  dla skończenie wielu  $\alpha$ . No i jeszcze ten  $\sum \psi_{\alpha}(p)=1$  dla każdego  $p\in M$ . Czyli mam pysia będącego rozkładem jedności. Czyli mogę go chyba użyć do wytworzenia w końcu tego g? Bo jak  $\psi_{\alpha}$  jest gładkie, to ten

$$g(p) = \sum w(\phi_{\alpha}(p))\psi_{\alpha}(p)$$

jest nadal gładkie? Znaczy tutaj jest nieścisłość, bo powinnam pisać, że tak jest dla p  $\in$  U $_{\alpha}$ , a jeśli p  $\notin$  U $_{\alpha}$ , to po prostu 0, ale to i tak na jedno wychodzi, bo wtedy  $\psi_{\alpha}$ (p) się zeruje. No i jakaś suma skończenie lokalnych gładkich funkcji bla bla bla bla

Teraz muszę się upewnić, że to faktycznie jest ograniczeniem moim?

$$\begin{aligned} \left\| f(\mathbf{x}) - \mathbf{g}(\mathbf{x}) \right\| &= \left\| f(\mathbf{x}) - \sum \mathbf{w}(\phi_{\alpha}(\mathbf{x})) \psi_{\alpha}(\mathbf{x}) \right\| \leq \\ &\leq \left\| \sum (\psi_{\alpha}(\mathbf{x})) [f(\mathbf{x}) - \mathbf{w}(\phi_{\alpha}(\mathbf{x}))] \right\| < \\ &< \left| \sum (\psi_{\alpha}(\mathbf{x})) \varepsilon \right| = 1 \cdot \varepsilon = \varepsilon \end{aligned}$$

(b)

Teraz zamiast ładnej kulki mam troszkę brzydszą kulkę bo  $\{w: f(x) - \varepsilon(x) < w(x) < f(x) + \varepsilon(x)\}$ , ale nadal mogę znaleźć jakieś gładkie w i postąpić analogicznie jak wyżej.

(c)

Czyli robię jakieś bump function? Czyli biorę sobie atlas  $(U_1, \phi_1)$ ,  $(U_2, \phi_2)$  taki, że  $U_1 = M \setminus D$ , a  $U_2$  jest otwartym podzbiorem zawierającym  $D \subseteq U_2$ . Niech wtedy  $\psi_1, \psi_2$  będzie gładkim rozkładem jedności takim, że  $\psi_1 \equiv 0$  na D. Wtedy  $\phi_2$  na D się nie zeruje, a sumuje do 1, a na okolicy D musi stopniowo schodzić do 0, czyli wyśmignie. To teraz wystarczy znaleźć funkcję, która na  $f(\phi_2(D))$  jest identyczna, a na pozostałej części troszkę odbiega, ale to też się da zrobić, taka funkcja to może być w i wtedy

$$g(x) = \begin{cases} w(\phi_2(x)) & x \in D \\ \sum w(\phi_\alpha(x))\psi_\alpha(x) & wpp \end{cases}$$

## **ZADANIE 2.**

Dla niezwartej rozmaitości gładkiej M skonstruuj gładką funkcję  $f:M\to\mathbb{R}$  taką, że dla każdego naturalnego n przeciwobraz  $f^{-1}([-n,n])$  jest zwartym podzbiorem w M. Funkcje o tej własności nazywają się funkcjami właściwymi. Wskazówka: wykorzystaj zadanie 6 z listy 1: uzasadnij też najpierw następujący fakt pomocniczy: istnieje ciąg otwartych zbiorów  $V_i$  takich, że  $\bigcup_{i\in\mathbb{N}}V_i=M$ , oraz dla każdego i domknięcie

 $cl(V_i)$  w M jest zwarte i zawarte w  $V_{i+1}$ .

Zadanie 6 w liście 1 mówi, że każda rozmaitość M jest przeliczalną sumą otwartych podzbiorów homeomorficznych z otwartymi kulami w  $\mathbb{R}^n$ , których domknięcia w M sa homeomorficzne z domkniętymi kulami w  $\mathbb{R}^n$ .

Myślę, że wystarczy wziąć ten ciąg jak z faktu pomocniczego i troszkę go podciąć tak, żeby był homeomorficzny z otwartymi kulami. To już robiliśmy. Potem wiem, że domknięcie otwartej kuli jest zbiorem zwartym w  $\mathbb{R}^n$ , czyli jego przeciwobraz przez funkcje z atlasu też jest zbiorem zwartym. Mogę więc funkcją f skalować promień na kolejne liczby naturalne, a odległość od kuli i położenie w odpowiedniej półkuli skalować na cały taki odcinek. Taki mam chwilowo pomysł.

To może teraz uzasadnienie faktu pomocniczego? Niech  $\bigcup U_i = M$  będzie przeliczalnym pokryciem M. To suniemy z tworzeniem ciągu  $V_i$ ? Niech  $V_0 = U_0$ . Czy mogę powiedzieć, że jeśli zrobię  $V_1 = U_1 \cup cl(V_0)$  to jeśli rzucę to na  $\mathbb{R}^n$  i znajdę tam otwarty podzbiór niebędący całym obrazem M, który to zawiera, to jestem w domu? Raczej tak. Czyli takie coś powtarzam dla każdego i i jestem w domu.