Venkata Surya Abburi

Resume_proejct_1(health insurance claim predictor)

□ Project Name & Purpose − "My project is called <i>AI-Powered Health Insurance Claim Predictor</i> . I built it to automate claim verification and detect fraud in the health insurance sector."
☐ Real-life Use Cases — Used by insurance companies to flag suspicious claims, speed up claim settlement, reduce manual verification, and improve customer trust.
☐ Impact in the Industry — Reduces claim processing time, saves operational costs, improves fraud detection accuracy, and supports faster decision-making for insurers.
□ Why These Technologies −
• Python & Pandas – Data cleaning and processing.
• Scikit-learn – Fraud detection model building.
• LangChain – Summarizing complex medical reports and enabling claim query chatbot.
• Power BI – Real-time claim analytics dashboard.
• Flask – Lightweight deployment for end-to-end accessibility.
□ Result − Achieved high fraud detection accuracy, automated medical report understanding, and delivered a unified solution for insurers.
☐ Q: Which algorithm did you use for fraud detection and why? A: I used XGBoost because it handles imbalanced data effectively, is fast, and delivers high accuracy on structured datasets like claim records.
☐ Q: How did you handle class imbalance in your dataset? A: I applied SMOTE oversampling for the minority class and adjusted class weights in the model to improve recall on fraudulent claims.

☐ Q: Why did you use LangChain in this project? A: LangChain allowed me to summarize lengthy medical reports into short insights and power a chatbot for quick claim-related queries.
☐ Q: Why did you choose Flask over Django? A: Flask is lightweight and easy to integrate with ML models, making it ideal for quick deployment without the overhead of a full framework.
☐ Q: Which evaluation metric was most important and why? A: I focused on Recall and F1-score because in fraud detection, catching fraudulent claims is more critical than overall accuracy.