1. Ring, Ideal

- (1) Describe the group of units in $\mathbb{R}[x]$, $\mathbb{Z}/n\mathbb{Z}$ and $\mathbb{Z}[i]$.
- (2) An element a of a ring R is called nilpotent if $a^n = 0$ for some $n \in \mathbb{N}$. Show that if u is a unit and a is nilpotent in R then u + a is a unit.
- (3) Let E be the set of all integer sequences $a = (a_1, a_2, a_3, ...)$. We add sequences componentwise. Let E be the set of all mappings $f: E \longrightarrow E$ such that f(a + b) = f(a) + f(b) for all $a, b \in E$. Let E be the shift operator E be the s
- (4) Let R be a ring and R[[t]] denote the set of all formal power series in an indeterminate t. A formal power series is a formal expression of the form $f(t) = \sum_{i=0}^{\infty} a_i t^i$ where $a_i \in R$ for all i. We add and multiply formal power series as we add and multiply polynomials. Under these operations R[[t]] is a ring. Show that f(t) is a unit if and only if a_0 is a unit. Show that if f(t) is nilpotent then all a_i are so. Is the converse true?
- (5) Let $\mathbb{Q}[\alpha, \beta]$ denote the smallest subring of \mathbb{C} containing $\alpha = \sqrt{2}$ and $\beta = \sqrt{3}$. Show that $\mathbb{Q}[\alpha, \beta] = \mathbb{Q}[\gamma]$ where $\gamma = \alpha + \beta$.
- (6) Prove that every non zero ideal in $\mathbb{Z}[i]$ contains a non zero integer.
- (7) Describe the kernels of the homomorphisms $\phi : \mathbb{R}[x] \longrightarrow \mathbb{C}$ given by $\phi(f(x)) = f(2+i)$.
- (8) Show that nilpotent elements of a ring R form an ideal. This ideal, denoted by nil(R), is called the nilradical of R. Determine the nilradical of $\mathbb{Z}/12\mathbb{Z}$ and $\mathbb{Z}/n\mathbb{Z}$ and $\mathbb{R}[x]$.
- (9) Show that all ideals of the power series ring R[[x]] are principal.
- (10) Let I and J be ideals of a ring R. The sum I+J of I and J is defined by $I+J=\{x+y|x\in I,y\in J\}$. Show that I+J is an ideal of R.
- (11) The product IJ of I and J is defined to be the set

$$IJ = \{ \sum_{i} x_i y_i | x_i \in I, y_i \in J \text{ for all } i \}$$

Show that IJ is an ideal and $I \cap J \subseteq IJ$. Show by an example that IJ need not be equal to $I \cap J$

(12) An isomorphism of a ring R is called an automorphism of R. Determine all automorphisms of $\mathbb{Z}[x]$ and \mathbb{R} ..

1