EE142 Problem Set 9

Vighnesh Iyer

November 15, 2017

1 Review of Important Concepts

Assume a memoryless distortion circuit is modeled by $I_{out} = a_0 + a_1V_{in} + a_2V_{in}^2 + a_3V_{in}^3$ and the input DC bias voltage is $V_{in,0}$.

- (a) Derive IIP3, OIP3, IP_{1dB} , and IP_{3dB}
- (b) If IIP3 is 10V, what is the input-blocker level that degrades the small-signal gain of the desired signal by 2dB?
- (c) Following part (b), what will be the tolerable blocker levels for a two-tone blocker?
- (d) If IIP3 is 10V, what are the IP_{1dB} for two-tone and three-tone input signals?
- (e) If the modeled circuit is a BJT with $I_{out} = I_s \exp(V_{be}/V_T)$, use a math tool to find the actual output third-harmonic current as a function of the input magnitude. Compare the actual values to the estimated values via the power series.

2 Distortion of a Source Follower

For the source follower shown below, calculate the required bias current (I_{bias} and W/L for the long-channel transistor to drive the load with a swing of 100 mV (at both f_1 and f_2), with IM3 equal to -50 dBc.

Correction: vout= 0.1cos(2pi*f1*t)+0.1cos(2pi*f2*t) vin magnitude is not specified

EE142 Problem Set 9

3 Pre-distortion and Source-degeneration Linearizer

- (a) For the above schematic, what are the OIP3 of the BJT stage for $R_e = 0\Omega$ and $R_e = 0.02\Omega$?
- (b) What are the two possible R_e for the BJT stage to have an OIP3 of 10A?