

Seeing Far in the Dark with Patterned Flash

Zhanghao Sun¹*, Jian Wang²*, Yicheng Wu², Shree Nayar²

¹ Stanford University, ² Snap Inc. (* equal contribution)

Code and data: https://github.com/zhsun0357/Seeing-Far-in-the-Dark-with-Patterned-Flash

Problem in the Traditional Flash

- Physical law: light falls off with 1/depth²
- Flash is limited in distance
- o Flash signal is overwhelmed by sensor noise

Proposed: Patterned Flash

- PF concentrates light into a dot array for higher signal-noise ratio at dots' location
- PF is also a structured light system that supports depth estimation

• Joint image reconstruction & depth estimation

Distance

In simulations

Distance

- o PF achieves better image restoration quality
- o PF achieves sub-pixel disparity accuracy for depth est.

Distance

Distance

Hardware Prototype

- Setup: camera, projector, beam splitter (for easily adjusting baseline only)
- Regular pattern vs. random pattern
 The former one has better image restoration quality
- DLP projector is used to emulate the PF and UF
- Laser projector has no light loss, but has low power

Image Restoration

• PF resolves fine details and avoids reconstruction artifacts compared to UF; additionally, PF has depth

Applications

UF Captured PF Captured UF Detection PF Detection

Output

Out

- Low-light imaging (can be extended to other modalities, like IR, UV, hyper-spectral imaging)
- High-level tasks in low-light env., like face/car detection
- Single-shot flash/no-flash imaging; 3D-based background blurring
- PF hardware implementations: MEMS scanner, VCSEL array, diffractive optical element (DOE), ...