ICT 133 Structured Programming

Seminar 1

- The roles of hardware and software in a computing system.
- The software development process
- Python programming language.
- Programming with numbers

Software vs Hardware

- Computer program software
 - set of instructions

- Computer hardware
 - executes the instructions

Hardware

Natural Language vs Programming Language

- Natural language
 - Ambiguous and imprecise
- Programming language
 - Unambiguous and precise
 - precise form syntax
 - precise meaning semantics

Types of Programming Languages

- Low-level or machine language
 - in 0s and 1s E.g., 1100001000000001
- Assembly language
 - Uses mnemonics instead of 0s and 1s
 - E.g., ADD R2, R0, R1
- High-level computer languages
 - Understood by humans
 - E.g., c = a + b

Compiler

4

Interpreter

Source: Python Programming, 3/e

Software Development

- Analyze the Problem
 - What problem to solve
- Determine Specifications
 - What program must do
- Create a Design
 - What steps can solve the algorithm

Input	Input celsius
Processing	fahrenheit = 9/5 celsius + 32
Output	Output fahrenheit

Pseudocode

- Implement the Design
 - The steps in programming language
- Test/Debug/Run the Program
- Maintain the Program

- Created by Guido van Rossum
- Released in 1991
- Multiple programming paradigms: objectoriented, imperative, functional and procedural
- Large and comprehensive standard library
- Current version 3.7.2

4

A First Python Program

```
def main():
    print("Hello World!")
```

main()

- Case Sensitive
- Indent block of statements

Output statement

print(expr₁, ..., expr_n)

```
print("Hello world")
print(2+3)
print("2+3 =", 2+3)
```

Output:

```
Hello world 5 2+3 = 5
```

4

Output statement

```
print(expr_1, ..., expr_n, end = " ")
```

```
print("Hello world", end = " ")
print(2+3, end = " ")
print("2+3 = ", 2+3)
```

Output:

Hello world 5 2+3 = 5

Variable

A name given to a value.

Use the variable to refer to the value. e.g., print(name, "scored", score, "points")

Output: Alan scored 5 points

Variable Name

- Case sensitive
- Cannot be any Python keyword
- Only uppercase and lowercase alphabets, digits and _
- No spaces, commas and symbols such as \$, &, % and *
- Cannot start with a digit
- Are the following variable names acceptable?
 count1 total-price for 1stName
 high_Score maxDiscount \$amount

Python Keywords

and	as	assert	break	class
continue	def	del	elif	else
except	False	finally	for	from
global	if	import	in	is
lambda	None	nonlocal	not	or
pass	raise	return	True	try
while	with	yield		

Assignment statement

birthYear = 2000

Simultaneous Assignment Statement

$$\overrightarrow{var_1}$$
, ..., $\overrightarrow{var_n}$ = $\overrightarrow{value_1}$, ..., $\overrightarrow{value_n}$

$$x, y = 5, 2$$

 $sum, diff = x+y, x-y$
 $x, y = y, x$

Input statement

input (prompt)

```
Enter friend' name: Alan Hello Alan
```

- All user input are values of str type
- A str consists of zero or more characters.

Comment

comment

```
# A simple program that prints out Hello World!
def main():
    print("Hello World!") #prints Hello World!
```


Number Data Types

- int
 - Whole number, exact

- float
 - Decimal number, imprecise

4

Type Conversion

int()

```
score = int(input("Enter score: "))
```

Recall that all user input are values of str type

```
weight = float(input("Enter weight: "))
```

A str must be converted to numeric types before performing arithmetic operations on them

Arithmetic (Binary) Operators

Operator	Use	Description	precedence
+	x + y	Add x and y	
-	х - у	Subtract y from x	lowest
*	x * y	Multiply y by x	
/	x / y	Divide x by y	
//	x // y	Divide x by y, result in int	next highest
%	x % y	Compute remainder after dividing x by y	
**	x ** y	x raised to the power of y	highest

Examples

3 + 4.0	7.0
3 + 4	7
10.0 / 3.0	3.3333333333333
10 / 3	3.3333333333333
10 // 3	3
1/2	0.5
1//2	0
10.5 % 3.0	1.5
4 % 5	4

Expressions

Evaluates to value

```
e.g., 0.5 * mass * pow(c,2)
```

- May include:
 - Literals
 - Identifiers
 - Operators and function calls

Increment

$$x = x + 1$$

Once the value on the RHS is computed, it is stored back into (assigned) into x

Source: Python Programming, 3/e

Operator	Use	Description
+=	x += y	x = x + y
-=	x -= y	x = x - y
*=	x *= y	x = x * y
/=	x /= y	x = x / y
//=	x //= y	x = x // y
%=	x %= y	x = x % y

4

Type Conversion

- Implicit typing
 - mixed-typed expressions:

```
3 + 4.0 evaluates to 7.0
```

Explicit typing

```
3 + int(4.0) evaluates to 7 int("32") evaluate to 32 float("32") evaluate to 32.0
```


Rounding

- round(n), to the nearest whole number
 - round(3.912) evaluates to 4

- round(n, p), to another float with p decimal digits
 - round (3.912, 2) evaluates to 3.91
 - round(145/2) evaluates to 72 why?

Using the Math Library

Python	Mathematics	English
pi	16	An approximation of pi
е	e r	An approximation of e
sqrt(x)	\sqrt{x}	The square root of x
sin(x)	sin <i>x</i>	The sine of x
cos(x)	COS X	The cosine of x
tan(x)	tan x	The tangent of x
asin(x)	arcsin <i>x</i>	The inverse of sine x
acos(x)	arccos x	The inverse of cosine x
atan(x)	arctan x	The inverse of tangent x

Source: Python Programming, 3/e

Using the Math Library

Python	Mathematics	English
log(x)	ln x	The natural (base e) logarithm of x
log10(x)	$\log_{10} x$	The common (base 10) logarithm of x
exp(x)	e^x	The exponential of x
ceil(x)	$\lceil x \rceil$	The smallest whole number $>= x$
floor(x)		The largest whole number $\leq x$

Source: Python Programming, 3/e

Using the Math Library

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

from math import sqrt, pow

```
a, b, c = 6, 11, -35
discrim = sqrt(pow(b, 2) - 4*a*c)
print("First root =", (-b + discrim )/(2 * a))
print("Second root =", (-b - discrim )/(2 * a))
```