Lecture Two: Answer Set Programming Definitions

301315 Knowledge Representation and Reasoning ©Western Sydney University (Yan Zhang)

Logic Based Approach to Al

The Languages

Declarative Programs

Features of Logic Programming

Defeasible Reasoning

Definition

Commonsense Reasoning

The Birth of Answer Set Programming (ASP)

Syntax

ASP Building Blocks

The Signature

Terms

Atoms and Literals

Rules and Programs

Grounding

Two Case Studies

Derivation Tree

Tutorial and Lab Exercises

Logic Based Approach to AI - The Languages

- Algorithmic describe sequences of actions for a computer to perform
- Declarative describe properties of objects and relations between them
- Logic-based approach to Al proposes to:
 - use a declarative language to describe the domain
 - express various tasks (like planning or explanations of unexpected observations) as queries to the resulting program
 - use an inference engine (a collection of reasoning algorithms) to answer these queries

Logic Based Approach to AI - Declarative Programs

```
father(john,sam).
mother(alice,sam).
gender(john,male).
gender(sam,male).
gender(alice,female).
parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).
```

Logic Based Approach to AI - Declarative Programs

Feed the program to an inference engine and ask it questions (queries): Is Sam the child of John? Who are Sam's parents?

```
? child(sam,john).
? parent(X,sam).
```

Note: This is similar to how we check to see what a human knows. Does it know that Sam is John's son?

Logic Based Approach to AI - Features of Logic Programming

- ► Knowledge is represented in a precise mathematical language
- Search problems are expressed as queries
- ► An inference engine is used to answer queries
- ► The program is *elaboration tolerant*, that is, if small changes in specifications do not cause global problems change

Defeasible Reasoning - Definition

Definition

A reasoning process is *defeasible* when the corresponding argument is rationally compelling but not deductively valid.

Example

- 1. Normally, birds can fly
- 2. Normally, when the grass is wet in the morning, it rained last night
- 3. Normally, a full-time student is unemployed

Defeasible Reasoning - Commonsense Reasoning

A number of nonmonotonic logics were proposed in 1980, which started a new era of Al foundation research.

- ▶ John McCarthy developed *circumscription* (1980)
- Drew McDermott and Jon Doyle developed nonmonotonic logics (1980)
- Ray Reiter developed default logic (1980)
- Robert Moore developed autoepistemic logic which served as a starting point for the development of ASP (1980)

ASP is a kind of nonmonotonic reasoning.

Example

```
fly(X) :- bird(X), not emu(X).
bird(tweety).
```

We will conclude "fly(tweety)". But if we add new information into the program:

```
fly(X) :- bird(X), not emu(X).
bird(tweety).
emu(tweety).
```

We will not be able to conclude that "fly(tweety)".

The ASP approach to AI

- it is declarative the programmer only deals with what to do, does not deal with how to do;
- it separates knowledge representation and algorithm, allowing the same knowledge base to be used for a variety of reasoning tasks;
- it is state-of-the-art and is explored by a lively community of researchers around the world;
- it has applications in diverse domains;
- ▶ it is elegant.

ASP have been applied in the following AI areas

- planning
- data and ontology query answering
- multiagent systems
- knowledge system update and revision
- diagnostics
- semantic web
- Robotics

ASP have also been applied in other areas, such as

- bioinformatics
- software engineering
- automated product configuration
- decision support systems

Syntax - ASP Building Blocks

 $\begin{array}{c} \text{Signature} \\ \downarrow \\ \text{Terms} \\ \downarrow \\ \text{Atoms} \end{array}$

Connectives

_	classical negation
not	default negation
\leftarrow	if
or	disjunctive or

Atoms plus connectives allow us to construct rules.

Syntax - The Signature

- The building blocks of ASP are
 - ▶ objects *O*
 - functions \mathcal{F}
 - ightharpoonup predicates (i.e., relations) ${\cal P}$
 - ightharpoonup variables ${\cal V}$
- ▶ This is known as program **signature** $\Sigma = \{\mathcal{O}, \mathcal{F}, \mathcal{P}, \mathcal{V}\}.$
- ► Functions and predicates have an arity associated with them.
- arity a non-negative integer indicating the number of parameters.
- ▶ Whenever necessary, we assume that our signatures contain standard names for non-negative integers, functions, and relations of arithmetic (e.g., +, *, ≤).

Syntax - The Signature

10 min classroom exercise

Example

What is the signature Σ of the following program?

```
father(john,sam).
mother(alice,sam).
gender(john,male).
gender(sam,male).
gender(alice,female).
parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).
child(X,Y) :- parent(Y,X).
```

Syntax - Terms

terms:

- Variables and object constants are terms.
- If t1, ···, tn are terms and f is a function symbol of arity n, then f(t1,···,tn) is also a term.
- ground terms are terms containing no symbols for arithmetic functions and no variables.
- Examples from our program:
 - john, sam, and alice are ground terms;
 - X and Y are terms that are variables;
 - father (X,Y) is not a term.
- ▶ If a program contains natural numbers and arithmetic functions, then both 2 + 3 and 5 are terms; 5 is a ground term while 2 + 3 is not.

Syntax - Atoms and Literals

- An **atom** is an expression of the form $p(t1, \dots, tn)$ where p is a predicate symbol of arity n and $t1, \dots, tn$ are terms.
- ▶ If the signature is sorted, these terms should correspond to the sorts assigned to the parameters of *p*.
- ▶ If p has arity 0 then parentheses are omitted.
- ▶ A **literal** is an atom or its negation.

Syntax - Atoms and Literals

Example

- ▶ father(john, sam) is an atoms of signature Σ .
- ▶ father(john, X) is an atom of signature Σ .
- ▶ father(john, sam) and $\neg father(john, sam)$ are literals of Σ .

Syntax - Rules and Programs

A **program** Π of ASP consists of a signature Σ and a collection of **rules** of this form:

$$l_0$$
 or \cdots or $l_i \leftarrow l_{i+1}, \cdots, l_m, not $l_{m+1}, \cdots, not \ l_n$,$

where each I is a literal of Σ .

Syntax - Rules and Programs

- Symbol not is a new logical connective called default negation; not I is often read as "it is not believed that I is true."
- ▶ **disjunction** *l*₁ or *l*₂ is often read as "*l*₁ is believed to be true or *l*₂ is believed to be true."

Example

```
unemployed(X) \ or \ partTime\_work(X) \leftarrow fullTime\_student(X)
```

All full-time student are either unemployed or doing part-time job.

Syntax - Grounding

The set of ground instantiations of rules of program Π is called the **grounding** of Π .

Example

Given program Π with the signature Σ where

$$\mathcal{O} = \{a, b\}$$

 $\mathcal{F} = \emptyset$
 $\mathcal{P} = \{p, q\}$
 $\mathcal{V} = \{X\}$

and program
$$\Pi = \{p(X) \leftarrow q(X)\}$$

The grounding of Π is a program Π' consists of the following rules:

$$p(a) \leftarrow q(a)$$

 $p(b) \leftarrow q(b)$

Two Case Studies

Example

Let us consider the following ASP program Π_1 :

```
fly(X) \leftarrow bird(X), not \ ab(X).

ab(X) \leftarrow penguin(X).

bird(X) \leftarrow penguin(X).

bird(tweety).

penguin(skippy).
```

- ▶ What is the signature Σ of Π_1 ?
- ▶ What facts can be derived from Π_1 ?

Two Case Studies

Example

Consider the following ASP program Π_2 :

```
ancestor(X, Y) \leftarrow parent(X, Y).

ancestor(X, Y) \leftarrow parent(X, Z), ancestor(Z, Y).

parent(alice, bob).

parent(bob, carol).

parent(dean, eric).

parent(bob, dean).
```

- ▶ Understand Π_2 with transitive rules.
- Find all objects matching X and Y for ancestor(X, Y) to be derived from Π₂.

Derivation Tree

Derivation Tree, sometimes, also called *proof tree*, is a useful tool to represent the derivation process of a logic program. Consider the following program Π^* as follows:

 $path(X, Z) \leftarrow link(X, Z).$ $path(X, Z) \leftarrow path(X, Y), link(Y, Z).$ link(a, b).link(b, c).

Then we know that the fact path(a, c) would be derived from Π^* . This derivation can be actually represented by the following derivation tree.

Derivation Tree

Derivation Tree

Note

It should be noted that such derivation tree would not work if a logic program containing rules with default negation *not*.

Tutorial and Lab Exercises

- 1. Execute three programs discussed in sections Two Case Studies and Derivation Tree of this lecture using *clingo* on your personal computer/laptop.
- 2. For program Π_2 in section Two Case Studies, establish the complete derivation tree for the fact ancestor(alice, eric).