Question 1

(GE with 2 goods)

A <u>household</u> supplies 1 unit of labor inelastically (i.e., doesn't value leisure) and consumes two types of goods in quantities: c_1 (e.g., apples) and c_2 (e.g., oranges). The preferences are

$$u(c_1, c_2) = ac_1^{\alpha}c_2^{1-\alpha}$$

with $\alpha \in (0,1)$ and a > 0.

The <u>production</u> technology uses labor (ℓ) as its only input and can produce good 1 or good 2 with separate constant returns to scale production functions: $y_1 = z_1 \ell_1$ and $y_2 = z_2 \ell_2$. with productivities $z_1 > 0$ and $z_2 > 0$.

The total labor allocated to producing each good cannot add to more than the total labor endowment: $\ell_1 + \ell_2 = 1$ (i.e., holds at equality due to inelastic supply).

- (a) Carefully define a feasible allocation in this economy
- (b) Formulate the planner's problem. (hint: how many constraints and choice variables are there compared to the examples in class?)
- (c) Provide a system of equations which would solve the planning problem, and solve for the allocation.

Now, assume that firms operate the production technology, and that both firms and consumers are <u>price takers</u> for the market prices of labor and goods. Let q_1 and q_2 be the prices of the 2 goods. Let w be the wage of the consumer per unit of labor.

- (d) What is a price system for this economy?
- (e) What is the consumer's budget constraint? What are the choice variables of the consumer? (Hint: careful on what they are not allowed to choose). Write down the consumer's problem.
- (f) What are the profits of firm 1 with output y_1 ? What are the choice variables of the firm? (Hint: again, careful on what they are not allowed to choose). Write down the full profit maximization problem of firm type 1. Repeat for firm type 2.
- (g) Carefully define a competitive equilibrium for this economy.
- (h) Solve for the competitive equilibrium. Does this decentralize the planner's problem?

¹Hint: Equations combining "apples" and "oranges" directly without any prices may be correct, but they may not be useful as they are physically district objects.

Question 2

A <u>price taking</u> consumer has an exogenous endowment $\{y_t\}_{t=0}^{\infty}$. They choose consumption to maximize their welfare given a discount rate $\beta \in (0,1)$, and a concave $u(\cdot)$.

$$\max_{\{c_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t) \tag{1}$$

s.t.
$$\sum_{t=0}^{\infty} q_t^0 c_t \le \sum_{t=0}^{\infty} q_t^0 y_t$$
 (2)

where $\{q_t\}_{t=0}^{\infty}$ are the price of one unit of consumption good delivered at time t measured in units of time 0 consumption (i.e., use a $q_0^0 = 1$ normalization of the price level here). Assume the utility has the form,

$$u(c) = \begin{cases} \frac{1}{1-\gamma}c^{1-\gamma} & \text{if } \gamma > 0, \gamma \neq 1\\ \log c & \text{if } \gamma = 1 \end{cases}$$

Note: you will note that the marginal utility, $u'(c) = c^{-\gamma}$ holds for all $\gamma > 0$, including the special log case. This means you will not need to treat it separately.

Assume there is a large number of identical agents in the economy, all with identical processes $y_t = y_0 \delta^t$ for $0 < \delta < 1/\beta$.

Finally, recall that if $q_0^0 = 1$, then r_{0t} is the "yield to maturity on a t-period zero-coupon bond purchased at time 0" through,

$$\frac{q_t^0}{q_0^0} \equiv \frac{1}{(1+r_{0t})^t}$$

- (a) What is the feasibility condition in the economy (i.e. relate c_t and y_t)? (hint: can use a representative agent with a large number of price taking agents).
- (b) Solve for q_t^0 in this model, explaining why q_0^0 can be chosen for convenience. Then use this to find r_{0t} from the definition above.
- (c) In the special case of $\gamma = 1$, compute q_t^0 and r_{0t} . Compute the special case of $\gamma = 1$ and $\delta = 1$.
- (d) Interpret r_{01} if $\gamma = 1$ for the $\delta > 1$ and $\delta < 1$ cases
- (e) Interpret r_{01} for $\gamma > 0$ and $\delta = 1$. In particular, discuss any reliance on γ .