# Question ID fc3d783a

| Assessment | Test | Domain        | Skill                                                                         | Difficulty |
|------------|------|---------------|-------------------------------------------------------------------------------|------------|
| SAT        | Math | Advanced Math | Nonlinear equations in one variable and systems of equations in two variables |            |

### ID: fc3d783a

In the xy-plane, a line with equation 2y = 4.5 intersects a parabola at exactly one point. If the parabola has equation  $y = -4x^2 + bx$ , where b is a positive constant, what is the value of b?

### ID: fc3d783a Answer

Correct Answer: 6

Rationale

The correct answer is 6. It's given that a line with equation 2y = 4.5 intersects a parabola with equation  $y = -4x^2 + bx$ , where b is a positive constant, at exactly one point in the xy-plane. It follows that the system of equations consisting of 2y = 4.5 and  $y = -4x^2 + bx$  has exactly one solution. Dividing both sides of the equation of the line by 2 yields y = 2.25. Substituting 2.25 for y in the equation of the parabola yields  $2.25 = -4x^2 + bx$ . Adding  $4x^2$  and subtracting bx from both sides of this equation yields  $4x^2 - bx + 2.25 = 0$ . A quadratic equation in the form of  $ax^2 + bx + c = 0$ , where a, b, and c are constants, has exactly one solution when the discriminant,  $b^2 - 4ac$ , is equal to zero. Substituting 4 for a and 2.25 for c in the expression  $b^2 - 4ac$  and setting this expression equal to 0 yields  $b^2 - 4\left(4\right)\left(2.25\right) = 0$ , or  $b^2 - 36 = 0$ . Adding 36 to each side of this equation yields  $b^2 = 36$ . Taking the square root of each side of this equation yields  $b = \pm 6$ . It's given that b is positive, so the value of b is 6.

# Question ID 4661e2a9

| Assessment | Test | Domain        | Skill                                                                         | Difficulty |
|------------|------|---------------|-------------------------------------------------------------------------------|------------|
| SAT        | Math | Advanced Math | Nonlinear equations in one variable and systems of equations in two variables |            |

## ID: 4661e2a9

$$x - y = 1$$
$$x + y = x^2 - 3$$

Which ordered pair is a solution to the system of equations above?

A. 
$$(1+\sqrt{3},\sqrt{3})$$

$$B.(\sqrt{3}, -\sqrt{3})$$

$$C.(1+\sqrt{5},\sqrt{5})$$

$$D.(\sqrt{5}, -1+\sqrt{5})$$

## ID: 4661e2a9 Answer

Correct Answer: A

### Rationale

Choice A is correct. The solution to the given system of equations can be found by solving the first equation for x, which gives x = y + 1, and substituting that value of x into the second equation which gives  $y + 1 + y = (y + 1)^2 - 3$ . Rewriting this equation by adding like terms and expanding  $(y + 1)^2$  gives  $2y + 1 = y^2 + 2y - 2$ . Subtracting 2y from both sides of this equation gives  $1 = y^2 - 2$ . Adding to 2 to both sides of this equation gives  $3 = y^2$ . Therefore, it follows that  $y = \pm \sqrt{3}$ . Substituting  $\sqrt{3}$  for y in the first equation yields  $x - \sqrt{3} = 1$ . Adding  $\sqrt{3}$  to both sides of this equation yields  $x = 1 + \sqrt{3}$ . Therefore, the ordered pair  $(1 + \sqrt{3}, \sqrt{3})$  is a solution to the given system of equations.

Choice B is incorrect. Substituting  $\sqrt{3}$  for x and  $-\sqrt{3}$  for y in the first equation yields  $\sqrt{3} - (-\sqrt{3}) = 1$ , or  $2\sqrt{3} = 1$ , which isn't a true statement. Choice C is incorrect. Substituting  $1 + \sqrt{5}$  for x and  $\sqrt{5}$  for y in the second equation yields  $(1 + \sqrt{5}) + \sqrt{5} = (1 + \sqrt{5})^2 - 3$ , or  $1 + 2\sqrt{5} = 2\sqrt{5} + 3$ , which isn't a true statement. Choice D is incorrect. Substituting  $\sqrt{5}$  for x and  $(-1 + \sqrt{5})$  for y in the second equation yields  $\sqrt{5} + (-1 + \sqrt{5}) = (\sqrt{5})^2 - 3$ , or  $2\sqrt{5} - 1 = 2$ , which isn't a true statement.

# **Question ID f65288e8**

| Assessment | Test | Domain        | Skill                                                                         | Difficulty |
|------------|------|---------------|-------------------------------------------------------------------------------|------------|
| SAT        | Math | Advanced Math | Nonlinear equations in one variable and systems of equations in two variables | •••        |

## ID: f65288e8

$$\frac{1}{x^2 + 10x + 25} = 4$$

If x is a solution to the given equation, which of the following is a possible value of x + 5?

- A.  $\frac{1}{2}$
- 5 B. 2
- 0 C. 2
- D.  $\frac{11}{2}$

### ID: f65288e8 Answer

Correct Answer: A

Rationale

Choice A is correct. The given equation can be rewritten as  $\frac{1}{(x+5)^2} = 4$ . Multiplying both sides of this equation by  $(x+5)^2$ 

yields  $1 = 4(x+5)^2$ . Dividing both sides of this equation by 4 yields  $\frac{1}{4} = (x+5)^2$ . Taking the square root of both sides of

this equation yields  $\frac{1}{2} = x + 5$  or  $-\frac{1}{2} = x + 5$ . Therefore, a possible value of x + 5 is  $\frac{1}{2}$ .

Choices B, C, and D are incorrect and may result from computational or conceptual errors.

# Question ID f2f3fa00

| Assessment | Test | Domain        | Skill                                                                         | Difficulty |
|------------|------|---------------|-------------------------------------------------------------------------------|------------|
| SAT        | Math | Advanced Math | Nonlinear equations in one variable and systems of equations in two variables |            |

## ID: f2f3fa00

During a 5-second time interval, the average acceleration a, in meters per second squared, of an object with an initial velocity of 12 meters per second is defined by

the equation  $a = \frac{v_f - 12}{5}$ , where  $v_f$  is the final velocity of the object in

meters per second. If the equation is rewritten in the form  $v_f = xa + y$ , where x and y are constants, what is the value of x?

## ID: f2f3fa00 Answer

Rationale

The correct answer is 5. The given equation can be rewritten in the form  $v_f = xa + y$ , like so:

$$a = \frac{v_f - 12}{5}$$

$$v_f - 12 = 5a$$

$$v_f = 5a + 12$$

It follows that the value of x is 5 and the value of y is 12.

# **Question ID 6ce95fc8**

| Assessment | Test | Domain        | Skill                                                                         | Difficulty |
|------------|------|---------------|-------------------------------------------------------------------------------|------------|
| SAT        | Math | Advanced Math | Nonlinear equations in one variable and systems of equations in two variables |            |

## ID: 6ce95fc8

$$2x^2-2=2x+3$$

Which of the following is a solution to the equation above?

- A. 2
- B.  $1 \sqrt{11}$
- $\frac{1}{2} + \sqrt{11}$

## ID: 6ce95fc8 Answer

Correct Answer: D

Rationale

Choice D is correct. A quadratic equation in the form  $ax^2 + bx + c = 0$ , where a, b, and c are constants, can be solved  $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ . Subtracting 2x + 3 from both sides of the given equation yields

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

using the quadratic formula:

 $2x^2-2x-5=0$ . Applying the quadratic formula, where a=2, b=-2, and c=-5, yields

$$2x^2-2x-5=0$$
. Applying the quadratic formula, where  $a=2$ ,  $b=-2$ , and  $c=-5$ , yields 
$$x=\frac{-(-2)\pm\sqrt{(-2)^2-4(2)(-5)}}{2(2)}$$
. This can be rewritten as 
$$x=\frac{2\pm\sqrt{44}}{4}$$
. Since  $\sqrt{44}=\sqrt{2^2(11)}$ , or  $2\sqrt{11}$ , the 
$$x=\frac{2\pm2\sqrt{11}}{4}$$
.

 $x = \frac{2 \pm 2\sqrt{11}}{4}$ . Dividing 2 from both the numerator and denominator yields

 $\frac{1-\sqrt{11}}{2} \text{ . Of these two solutions, only } \frac{1+\sqrt{11}}{2} \text{ is present among the choices. Thus, the correct choice is D.}$ 

Choice A is incorrect and may result from a computational or conceptual error. Choice B is incorrect and may result from

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{a}$$
instead of 
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

using as the quadratic formula. Choice C is incorrect and may result from rewriting  $\sqrt{44}$  as  $4\sqrt{11}$  instead of  $2\sqrt{11}$ .

# Question ID 1fe32f7d

| Assessment | Test | Domain        | Skill                                                                         | Difficulty |
|------------|------|---------------|-------------------------------------------------------------------------------|------------|
| SAT        | Math | Advanced Math | Nonlinear equations in one variable and systems of equations in two variables | •••        |

ID: 1fe32f7d

$$-x^2 + bx - 676 = 0$$

In the given equation, b is a positive integer. The equation has no real solution. What is the greatest possible value of b?

### ID: 1fe32f7d Answer

Correct Answer: 51

Rationale

The correct answer is 51. A quadratic equation of the form  $ax^2 + bx + c = 0$ , where a, b, and c are constants, has no real solution if and only if its discriminant,  $-4ac + b^2$ , is negative. In the given equation, a = -1 and c = -676. Substituting -1 for a and -676 for c in this expression yields a discriminant of  $b^2$  - 4-1-676, or  $b^2$  - 2,704. Since this value must be negative,  $b^2$  - 2,704 < 0, or  $b^2$  < 2,704. Taking the positive square root of each side of this inequality yields b < 52. Since b is a positive integer, and the greatest integer less than 52 is 51, the greatest possible value of b is 51.

# **Question ID c303ad23**

| Assessment | Test | Domain        | Skill                                                                         | Difficulty |
|------------|------|---------------|-------------------------------------------------------------------------------|------------|
| SAT        | Math | Advanced Math | Nonlinear equations in one variable and systems of equations in two variables |            |

## ID: c303ad23

If  $3x^2-18x-15=0$ , what is the value of  $x^2-6x$ ?

## ID: c303ad23 Answer

Correct Answer: 5

Rationale

The correct answer is 5. Dividing each side of the given equation by 3 yields  $x^2$  - 6x - 5 = 0. Adding 5 to each side of this equation yields  $x^2$  - 6x = 5. Therefore, if  $3x^2$  - 18x - 15 = 0, the value of  $x^2$  - 6x is 5.

# **Question ID 7bd10ef3**

| Assessment | Test | Domain        | Skill                                                                         | Difficulty |
|------------|------|---------------|-------------------------------------------------------------------------------|------------|
| SAT        | Math | Advanced Math | Nonlinear equations in one variable and systems of equations in two variables |            |

## ID: 7bd10ef3

$$2x^2 - 4x = t$$

In the equation above, t is a constant. If the equation has no real solutions, which of the following could be the value of t?

- A. -3
- B. **-1**
- C. 1
- D. 3

### ID: 7bd10ef3 Answer

Correct Answer: A

Rationale

Choice A is correct. The number of solutions to any quadratic equation in the form  $ax^2 + bx + c = 0$ , where a, b, and c are constants, can be found by evaluating the expression  $b^2 - 4ac$ , which is called the discriminant. If the value of  $b^2 - 4ac$  is a positive number, then there will be exactly two real solutions to the equation. If the value of  $b^2 - 4ac$  is zero, then there will be exactly one real solution to the equation. Finally, if the value of  $b^2 - 4ac$  is negative, then there will be no real solutions to the equation.

The given equation  $2x^2-4x=t$  is a quadratic equation in one variable, where t is a constant. Subtracting t from both sides of the equation gives  $2x^2-4x-t=0$ . In this form, a=2, b=-4, and c=-t. The values of t for which the equation has no real solutions are the same values of t for which the discriminant of this equation is a negative value. The discriminant is equal to  $(-4)^2-4(2)(-t)$ ; therefore,  $(-4)^2-4(2)(-t)<0$ . Simplifying the left side of the inequality gives 16+8t<0. Subtracting 16 from both sides of the inequality and then dividing both sides by 8 gives t<-2. Of the values given in the options, -3 is the only value that is less than -2. Therefore, choice A must be the correct answer.

Choices B, C, and D are incorrect and may result from a misconception about how to use the discriminant to determine the number of solutions of a quadratic equation in one variable.



# Question ID 17d0e87d

| Assessment | Test | Domain        | Skill                                                                         | Difficulty |
|------------|------|---------------|-------------------------------------------------------------------------------|------------|
| SAT        | Math | Advanced Math | Nonlinear equations in one variable and systems of equations in two variables |            |

## ID: 17d0e87d

$$rac{14x}{7y}=2\sqrt{w+19}$$

The given equation relates the distinct positive real numbers w, x, and y. Which equation correctly expresses w in terms of x and y?

A. 
$$w=\sqrt{rac{x}{y}}-19$$

B. 
$$w=\sqrt{rac{28x}{14y}}-19$$

C. 
$$w = \frac{\text{msup}}{\text{msup}} - 19$$

D. 
$$w = \frac{\mathsf{msup}}{\mathsf{msup}} - 19$$

## ID: 17d0e87d Answer

Correct Answer: C

Rationale

Choice C is correct. Dividing each side of the given equation by 2 yields  $\frac{14x}{14y} = \frac{2\sqrt{w+19}}{2}$ , or  $\frac{x}{y} = \sqrt{w+19}$ . Because it's given that each of the variables is positive, squaring each side of this equation yields the equivalent equation  $\frac{x^2}{y} = w + 19$ . Subtracting 19 from each side of this equation yields  $\frac{x^2}{y} - 19 = w$ , or  $w = \frac{x^2}{y} - 19$ .

Choice A is incorrect. This equation isn't equivalent to the given equation.

Choice B is incorrect. This equation isn't equivalent to the given equation.

Choice D is incorrect. This equation isn't equivalent to the given equation.

# Question ID 66bce0c1

| Assessment | Test | Domain        | Skill                                                                         | Difficulty |
|------------|------|---------------|-------------------------------------------------------------------------------|------------|
| SAT        | Math | Advanced Math | Nonlinear equations in one variable and systems of equations in two variables | •••        |

## ID: 66bce0c1

$$\sqrt{2x+6+4}=x+3$$

What is the solution set of the equation above?

- A.  $\{-1\}$
- B. {5}
- $C. \{-1, 5\}$
- $D. \{0, -1, 5\}$

### ID: 66bce0c1 Answer

Correct Answer: B

Rationale

Choice B is correct. Subtracting 4 from both sides of  $\sqrt{2x+6}+4=x+3$  isolates the radical expression on the left side of the equation as follows:  $\sqrt{2x+6}=x-1$ . Squaring both sides of  $\sqrt{2x+6}=x-1$  yields  $2x+6=x^2-2x+1$ . This equation can be rewritten as a quadratic equation in standard form:  $x^2-4x-5=0$ . One way to solve this quadratic equation is to factor the expression  $x^2-4x-5$  by identifying two numbers with a sum of -4 and a product of -5. These numbers are -5 and 1. So the quadratic equation can be factored as (x-5)(x+1)=0. It follows that 5 and -1 are the solutions to the quadratic equation. However, the solutions must be verified by checking whether 5 and -1 satisfy the original equation,  $\sqrt{2x+6}+4=x+3$ . When x=-1, the original equation gives  $\sqrt{2(-1)+6}+4=(-1)+3$ , or 6=2, which is false. Therefore, -1 does not satisfy the original equation. When x=5, the original equation gives  $\sqrt{2(5)+6}+4=5+3$ , or 8=8, which is true. Therefore, x=5 is the only solution to the original equation, and so the solution set is  $\{5\}$ .

Choices A, C, and D are incorrect because each of these sets contains at least one value that results in a false statement when substituted into the given equation. For instance, in choice D, when 0 is substituted for x into the given equation, the result is  $\sqrt{2(0)+6}+4=(0)+3$ , or  $\sqrt{6}+4=3$ . This is not a true statement, so 0 is not a solution to the given equation.



# Question ID 97e50fa2

| Assessment | Test | Domain        | Skill                                                                         | Difficulty |
|------------|------|---------------|-------------------------------------------------------------------------------|------------|
| SAT        | Math | Advanced Math | Nonlinear equations in one variable and systems of equations in two variables |            |

### ID: 97e50fa2



The graph of the function f, defined by  $f(x) = -\frac{1}{2}(x-4)^2 + 10$ , is shown in the xy-plane above. If the function g (not shown) is defined by g(x) = -x + 10, what is one possible value of a such that f(a) = g(a)?

### ID: 97e50fa2 Answer

Rationale

The correct answer is either 2 or 8. Substituting x = a in the definitions for f and g gives  $f(a) = -\frac{1}{2}(a-4)^2 + 10$  and g(a) = -a + 10, respectively. If f(a) = g(a), then g(a) = -a + 10. Subtracting 10 from both sides of this equation gives  $g(a) = -\frac{1}{2}(a-4)^2 = -a$ . Multiplying both sides by g(a) = -a + 10. Subtracting 10 from both sides of this equation gives  $g(a) = -\frac{1}{2}(a-4)^2 = -a$ . Multiplying both sides by  $g(a) = -\frac{1}{2}(a-4)^2 = 2a$ . Expanding  $g(a) = -\frac{1}{2}(a-4)^2 = -a$ . One way to solve this equation is to factor  $g(a) = -\frac{1}{2}(a-4)^2 = -a$ . One way to solve this equation is to factor  $g(a) = -\frac{1}{2}(a-4)^2 = -a$ . Therefore, the possible values of a are either 2 or 8. Note that 2 and 8 are examples of ways to enter a correct answer.

Alternate approach: Graphically, the condition f(a) = g(a) implies the graphs of the functions y = f(x) and y = g(x) intersect at x = a. The graph y = f(x) is given, and the graph of y = g(x) may be sketched as a line with y-intercept 10 and a slope of -1 (taking care to note the different scales on each axis). These two graphs intersect at x = 2 and x = 8.

# Question ID 3d12b1e0

| Assessment | Test | Domain        | Skill                                                                         | Difficulty |
|------------|------|---------------|-------------------------------------------------------------------------------|------------|
| SAT        | Math | Advanced Math | Nonlinear equations in one variable and systems of equations in two variables | •••        |

### ID: 3d12b1e0

$$-16x^2 - 8x + c = 0$$

In the given equation, c is a constant. The equation has exactly one solution. What is the value of c?

### ID: 3d12b1e0 Answer

Correct Answer: -1

Rationale

The correct answer is -1. A quadratic equation in the form  $ax^2 + bx + c = 0$ , where a, b, and c are constants, has exactly one solution when its discriminant,  $b^2 - 4ac$ , is equal to 0. In the given equation,  $-16x^2 - 8x + c = 0$ , a = -16 and b = -8. Substituting -16 for a and -8 for b in  $b^2 - 4ac$  yields  $-8^2 - 4-16c$ , or 64 + 64c. Since the given equation has exactly one solution, 64 + 64c = 0. Subtracting 64 from both sides of this equation yields 64c = -64. Dividing both sides of this equation by 64 yields c = -1. Therefore, the value of c is -1.

# Question ID 71014fb1

| Assessment | Test | Domain        | Skill                                                                         | Difficulty |
|------------|------|---------------|-------------------------------------------------------------------------------|------------|
| SAT        | Math | Advanced Math | Nonlinear equations in one variable and systems of equations in two variables |            |

## ID: 71014fb1

$$(x-1)^2=-4$$

How many distinct real solutions does the given equation have?

- A. Exactly one
- B. Exactly two
- C. Infinitely many
- D. Zero

### **ID: 71014fb1 Answer**

Correct Answer: D

Rationale

Choice D is correct. Any quantity that is positive or negative in value has a positive value when squared. Therefore, the left-hand side of the given equation is either positive or zero for any value of x. Since the right-hand side of the given equation is negative, there is no value of x for which the given equation is true. Thus, the number of distinct real solutions for the given equation is zero.

Choices A, B, and C are incorrect and may result from conceptual errors.

# **Question ID e9349667**

| Assessment | Test | Domain        | Skill                                                                         | Difficulty |
|------------|------|---------------|-------------------------------------------------------------------------------|------------|
| SAT        | Math | Advanced Math | Nonlinear equations in one variable and systems of equations in two variables |            |

## ID: e9349667

$$y = x^2 + 2x + 1$$
  
 $x + y + 1 = 0$ 

If  $(x_1,y_1)$  and  $(x_2,y_2)$  are the two solutions to the system of equations above, what is the value of  $y_1+y_2$ ?

- A. -3
- B. \_2
- C. -1
- D. 1

#### ID: e9349667 Answer

Correct Answer: D

#### Rationale

Choice D is correct. The system of equations can be solved using the substitution method. Solving the second equation for y gives y = -x - 1. Substituting the expression -x - 1 for y into the first equation gives  $-x - 1 = x^2 + 2x + 1$ . Adding x + 1 to both sides of the equation yields  $x^2 + 3x + 2 = 0$ . The left-hand side of the equation can be factored by finding two numbers whose sum is 3 and whose product is 2, which gives (x + 2)(x + 1) = 0. Setting each factor equal to 0 yields x + 2 = 0 and x + 1 = 0, and solving for x yields x = -2 or x = -1. These values of x can be substituted for x in the equation y = -x - 1 to find the corresponding y-values: y = -(-2) - 1 = 2 - 1 = 1 and y = -(-1) - 1 = 1 - 1 = 0. It follows that (-2, 1) and (-1, 0) are the solutions to the given system of equations. Therefore,  $(x_1, y_1) = (-2, 1)$ ,  $(x_2, y_2) = (-1, 0)$ , and  $y_1 + y_2 = 1 + 0 = 1$ .

Choice A is incorrect. The solutions to the system of equations are  $(x_1, y_1) = (-2, 1)$  and  $(x_2, y_2) = (-1, 0)$ . Therefore, -3 is the sum of the x-coordinates of the solutions, not the sum of the y-coordinates of the solutions. Choices B and C are incorrect and may be the result of computation or substitution errors.

# Question ID b03adde3

| Assessment | Test | Domain        | Skill                                                                         | Difficulty |
|------------|------|---------------|-------------------------------------------------------------------------------|------------|
| SAT        | Math | Advanced Math | Nonlinear equations in one variable and systems of equations in two variables | •••        |

## ID: b03adde3

If 
$$u-3=\frac{6}{t-2}$$
, what is  $t$ 

in terms of *u*?

A. 
$$t = \frac{1}{u}$$

B. 
$$t = \frac{2u + 9}{u}$$

c. 
$$t = \frac{1}{u - 3}$$

$$\int_{D.} t = \frac{2u}{u-3}$$

## ID: b03adde3 Answer

Correct Answer: D

Rationale

Choice D is correct. Multiplying both sides of the given equation by t-2 yields (t-2)(u-3)=6. Dividing both sides of this equation by u-3 yields  $t-2=\frac{6}{u-3}$ . Adding 2 to both sides of this equation yields  $t=\frac{6}{u-3}+2$ , which can be rewritten as  $t=\frac{6}{u-3}+\frac{2(u-3)}{u-3}$ . Since the fractions on the right-hand side of this equation have a common denominator, adding

the fractions yields  $t=\frac{6+2(u-3)}{u-3}$ . Applying the distributive property to the numerator on the right-hand side of this equation yields  $t=\frac{6+2u-6}{u-3}$ , which is equivalent to  $t=\frac{2u}{u-3}$ .

Choices A, B, and C are incorrect and may result from various misconceptions or miscalculations.

# **Question ID 1ce9ffcd**

| Assessment | Test | Domain        | Skill                                                                         | Difficulty |
|------------|------|---------------|-------------------------------------------------------------------------------|------------|
| SAT        | Math | Advanced Math | Nonlinear equations in one variable and systems of equations in two variables | •••        |

### ID: 1ce9ffcd

$$-9x^2 + 30x + c = 0$$

In the given equation, c is a constant. The equation has exactly one solution. What is the value of c?

- A. **3**
- B. **0**
- C. -25
- D. -53

### ID: 1ce9ffcd Answer

Correct Answer: C

Rationale

Choice C is correct. It's given that the equation  $-9x^2 + 30x + c = 0$  has exactly one solution. A quadratic equation of the form  $ax^2 + bx + c = 0$  has exactly one solution if and only if its discriminant,  $-4ac + b^2$ , is equal to zero. It follows that for the given equation, a = -9 and b = 30. Substituting -9 for a and a = -9 and a = -9

Choice A is incorrect. If the value of c is 3, this would yield a discriminant that is greater than zero. Therefore, the given equation would have two solutions, rather than exactly one solution.

Choice B is incorrect. If the value of c is 0, this would yield a discriminant that is greater than zero. Therefore, the given equation would have two solutions, rather than exactly one solution.

Choice D is incorrect. If the value of c is -53, this would yield a discriminant that is less than zero. Therefore, the given equation would have no real solutions, rather than exactly one solution.

# **Question ID 30281058**

| Assessment | Test | Domain        | Skill                                                                         | Difficulty |
|------------|------|---------------|-------------------------------------------------------------------------------|------------|
| SAT        | Math | Advanced Math | Nonlinear equations in one variable and systems of equations in two variables |            |

## ID: 30281058

In the xy-plane, the graph of  $y = x^2 - 9$  intersects line p at (1,a) and (5,b), where a and b are constants. What is the slope of line p?

- A. 6
- B. 2
- C. -2
- D. -6

### ID: 30281058 Answer

Correct Answer: A

Rationale

Choice A is correct. It's given that the graph of  $y = x^2 - 9$  and line p intersect at (1,a) and (5,b). Therefore, the value of y when x = 1 is the value of a, and the value of y when x = 5 is the value of b. Substituting 1 for x in the given equation yields  $y = (1)^2 - 9$ , or y = -8. Similarly, substituting 5 for x in the given equation yields  $y = (5)^2 - 9$ , or y = 16. Therefore, the intersection points are (1, -8) and (5, 16). The slope of line p is the ratio of the change in y to the change in x between these

two points:  $\frac{16 - (-8)}{5 - 1} = \frac{24}{4}$ , or 6.

Choices B, C, and D are incorrect and may result from conceptual or calculation errors in determining the values of a, b, or the slope of line p.

# **Question ID 5910bfff**

| Assessment | Test | Domain        | Skill                                                                         | Difficulty |
|------------|------|---------------|-------------------------------------------------------------------------------|------------|
| SAT        | Math | Advanced Math | Nonlinear equations in one variable and systems of equations in two variables | •••        |

### ID: 5910bfff

$$D = T - \frac{9}{25}(100 - H)$$

The formula above can be used to approximate the dew point D, in degrees Fahrenheit, given the temperature T, in degrees Fahrenheit, and the relative humidity of H percent, where H > 50. Which of the following expresses the relative

humidity in terms of the temperature and the dew point?

A. 
$$H = \frac{25}{9}(D-T)+100$$

$$H = \frac{25}{9}(D-T)-100$$

$$_{C.}H = \frac{25}{9}(D+T)+100$$

$$H = \frac{25}{9}(D+T)-100$$

### ID: 5910bfff Answer

Correct Answer: A

Rationale

Choice A is correct. It's given that  $D = T - \frac{9}{25}(100 - H)$ . Solving this formula for H expresses the relative humidity in

terms of the temperature and the dew point. Subtracting T from both sides of this equation yields  $D-T=-\frac{9}{25}(100-H)$ .

Multiplying both sides by  $-\frac{25}{9}$  yields  $-\frac{25}{9}(D-T) = 100 - H$ . Subtracting 100 from both sides yields

$$-\frac{25}{9}(D-T)-100 = -H$$
. Multiplying both sides by  $-1$  results in the formula  $\frac{25}{9}(D-T)+100 = H$ .

Choices B, C, and D are incorrect and may result from errors made when rewriting the given formula.



# **Question ID 1697ffcf**

| Assessment | Test | Domain        | Skill                                                                         | Difficulty |
|------------|------|---------------|-------------------------------------------------------------------------------|------------|
| SAT        | Math | Advanced Math | Nonlinear equations in one variable and systems of equations in two variables | •••        |

## **ID: 1697ffcf**

In the *xy*-plane, the graph of  $y = 3x^2 - 14x$  intersects the graph of y = x at the points (0, 0) and (a, a). What is the value of a?

### ID: 1697ffcf Answer

#### Rationale

The correct answer is 5. The intersection points of the graphs of  $y = 3x^2 - 14x$  and y = x can be found by solving the system consisting of these two equations. To solve the system, substitute x for y in the first equation. This gives  $x = 3x^2 - 14x$ . Subtracting x from both sides of the equation gives  $0 = 3x^2 - 15x$ . Factoring 3x out of each term on the left-hand side of the equation gives 0 = 3x(x - 5). Therefore, the possible values for x are 0 and 5. Since y = x, the two intersection points are (0,0) and (5,5). Therefore, a = 5.

# **Question ID 5edc8c98**

| Assessment | Test | Domain        | Skill                                                                         | Difficulty |
|------------|------|---------------|-------------------------------------------------------------------------------|------------|
| SAT        | Math | Advanced Math | Nonlinear equations in one variable and systems of equations in two variables | •••        |

#### ID: 5edc8c98

$$64x^2 - (16a + 4b)x + ab = 0$$

In the given equation, a and b are positive constants. The sum of the solutions to the given equation is k(4a+b), where k is a constant. What is the value of k?

### ID: 5edc8c98 Answer

Correct Answer: .0625, 1/16

#### Rationale

The correct answer is  $\frac{1}{16}$ . Let p and q represent the solutions to the given equation. Then, the given equation can be rewritten as 64x - px - q = 0, or  $64x^2 - 64p + q + pq = 0$ . Since this equation is equivalent to the given equation, it follows that -16a + 4b = -64p + q. Dividing both sides of this equation by -64 yields  $\frac{16a + 4b}{64} = p + q$ , or  $\frac{1}{16}4a + b = p + q$ . Therefore, the sum of the solutions to the given equation, p + q, is equal to  $\frac{1}{16}4a + b$ . Since it's given that the sum of the solutions to the given equation is k4a + b, where k is a constant, it follows that  $k = \frac{1}{16}$ . Note that 1/16, .0625, 0.062, and 0.063 are examples of ways to enter a correct answer.

Alternate approach: The given equation can be rewritten as  $64x^2 - 44a + bx + ab = 0$ , where a and b are positive constants. Dividing both sides of this equation by 4 yields  $16x^2 - 4a + bx + \frac{ab}{4} = 0$ . The solutions for a quadratic equation in the form  $Ax^2 + Bx + C = 0$ , where A, B, and C are constants, can be calculated using the quadratic formula,  $x = \frac{-B + \sqrt{B^2 - 4AC}}{2A}$  and  $x = \frac{-B - \sqrt{B^2 - 4AC}}{2A}$ . It follows that the sum of the solutions to a quadratic equation in the form  $Ax^2 + Bx + C = 0$  is  $\frac{-B + \sqrt{B^2 - 4AC}}{2A} + \frac{-B - \sqrt{B^2 - 4AC}}{2A}$ , which can be rewritten as  $\frac{-B + -B + \sqrt{B^2 - 4AC} - \sqrt{B^2 - 4AC}}{2A}$ , which is equivalent to  $\frac{-2B}{2A}$ , or  $\frac{-B}{A}$ . In the equation  $16x^2 - 4a + bx + \frac{ab}{4} = 0$ , A = 16, B = -4a + b, and  $C = \frac{ab}{4}$ . Substituting 16 for A and -4a + b for B in  $\frac{-B}{A}$  yields  $\frac{-4a + b}{16}$ , which can be rewritten as  $\frac{1}{16}4a + b$ . Thus, the sum of the solutions to the given equation is  $\frac{1}{16}4a + b$ . Since it's given that the sum of the solutions to the given equation is  $k^4a + b$ , where k is a constant, it follows that  $k = \frac{1}{16}$ .

# **Question ID ff2e5c76**

| Assessment | Test | Domain        | Skill                                                                         | Difficulty |
|------------|------|---------------|-------------------------------------------------------------------------------|------------|
| SAT        | Math | Advanced Math | Nonlinear equations in one variable and systems of equations in two variables |            |

## ID: ff2e5c76

$$x^2 - 40x - 10 = 0$$

What is the sum of the solutions to the given equation?

- A. **0**
- B. **5**
- C. 10
- D. **40**

#### ID: ff2e5c76 Answer

Correct Answer: D

Rationale

Choice D is correct. Adding 10 to each side of the given equation yields  $x^2$  - 40x = 10. To complete the square, adding  $\frac{40}{2}^2$ , or  $20^2$ , to each side of this equation yields  $x^2$  -  $40x + 20^2 = 10 + 20^2$ , or  $x - 20^2 = 410$ . Taking the square root of each side of this equation yields  $x - 20 = \pm \sqrt{410}$ . Adding 20 to each side of this equation yields  $x = 20 \pm \sqrt{410}$ . Therefore, the solutions to the given equation are  $x = 20 + \sqrt{410}$  and  $x = 20 - \sqrt{410}$ . The sum of these solutions is  $20 + \sqrt{410} + 20 - \sqrt{410}$ , or 40.

Choice A is incorrect and may result from conceptual or calculation errors.

Choice B is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect and may result from conceptual or calculation errors.

# Question ID 2c5c22d0

| Assessment | Test | Domain        | Skill                                                                         | Difficulty |
|------------|------|---------------|-------------------------------------------------------------------------------|------------|
| SAT        | Math | Advanced Math | Nonlinear equations in one variable and systems of equations in two variables |            |

## ID: 2c5c22d0

$$y = x^2 + 3x - 7$$
  
 $y - 5x + 8 = 0$ 

How many solutions are there to the system of equations above?

- A. There are exactly 4 solutions.
- B. There are exactly 2 solutions.
- C. There is exactly 1 solution.
- D. There are no solutions.

### ID: 2c5c22d0 Answer

Correct Answer: C

Rationale

Choice C is correct. The second equation of the system can be rewritten as y = 5x - 8. Substituting 5x - 8 for y in the first equation gives  $5x - 8 = x^2 + 3x - 7$ . This equation can be solved as shown below:

$$x^2 + 3x - 7 - 5x + 8 = 0$$

$$x^2 - 2x + 1 = 0$$

$$(x-1)^2=0$$

$$x = 1$$

Substituting 1 for x in the equation y = 5x - 8 gives y = -3. Therefore, (1, -3) is the only solution to the system of equations.

Choice A is incorrect. In the xy-plane, a parabola and a line can intersect at no more than two points. Since the graph of the first equation is a parabola and the graph of the second equation is a line, the system cannot have more than 2 solutions. Choice B is incorrect. There is a single ordered pair (x,y) that satisfies both equations of the system. Choice D is incorrect because the ordered pair (1,-3) satisfies both equations of the system.



# Question ID fc3dfa26

| Assessment | Test | Domain        | Skill                                                                         | Difficulty |
|------------|------|---------------|-------------------------------------------------------------------------------|------------|
| SAT        | Math | Advanced Math | Nonlinear equations in one variable and systems of equations in two variables |            |

## ID: fc3dfa26

$$\frac{4x^2}{x^2 - 9} - \frac{2x}{x + 3} = \frac{1}{x - 3}$$

What value of *x* satisfies the equation above?

- A. -3
- $-\frac{1}{2}$
- c.  $\frac{1}{2}$
- D. 3

### ID: fc3dfa26 Answer

Correct Answer: C

Rationale

Choice C is correct. Each fraction in the given equation can be expressed with the common denominator  $x^2-9$ . Multiplying

 $\frac{2x}{x+3} \text{ by } \frac{x-3}{x-3} \text{ yields } \frac{2x^2-6x}{x^2-9} \text{ , and multiplying } \frac{1}{x-3} \text{ by } \frac{x+3}{x+3} \text{ yields } \frac{x+3}{x^2-9} \text{ . Therefore, the given equation can be}$   $\frac{4x^2}{x^2-9} - \frac{2x^2-6x}{x^2-9} = \frac{x+3}{x^2-9} \text{ . Multiplying each fraction by the denominator results in the equation}$   $4x^2 - (2x^2-6x) = x+3, \text{ or } 2x^2+6x = x+3. \text{ This equation can be solved by setting a quadratic expression equal to 0,}$ then solving for x. Subtracting x+3 from both sides of this equation yields  $2x^2+5x-3=0$ . The expression  $2x^2+5x-3=0$  can be factored, resulting in the equation (2x-1)(x+3)=0. By the zero product property, 2x-1=0 or x+3=0. To solve for x in 2x-1=0, 1 can be added to both sides of the equation, resulting in 2x=1. Dividing both sides of this equation by 2 results in  $x=\frac{1}{2}$ . Solving for x in x+3=0 yields x=-3. However, this value of x would result in the second fraction of

the original equation having a denominator of 0. Therefore, x = -3 is an extraneous solution. Thus, the only value of x that satisfies the given equation is  $x = \frac{1}{2}$ .

Choice A is incorrect and may result from solving x + 3 = 0 but not realizing that this solution is extraneous because it would result in a denominator of 0 in the second fraction. Choice B is incorrect and may result from a sign error when solving 2x - 1 = 0 for x. Choice D is incorrect and may result from a calculation error.

# Question ID a54753ca

| Assessment | Test | Domain        | Skill                                                                         | Difficulty |
|------------|------|---------------|-------------------------------------------------------------------------------|------------|
| SAT        | Math | Advanced Math | Nonlinear equations in one variable and systems of equations in two variables |            |

### ID: a54753ca

In the *xy*-plane, the graph of the equation  $y = -x^2 + 9x - 100$  intersects the line y = c at exactly one point. What is the value of c?

- A.  $-\frac{481}{4}$
- B. -100
- C.  $-\frac{319}{4}$
- D.  $-\frac{9}{2}$

### ID: a54753ca Answer

Correct Answer: C

Rationale

Choice C is correct. In the *xy*-plane, the graph of the line y=c is a horizontal line that crosses the *y*-axis at y=c and the graph of the quadratic equation  $y=-x^2+9x-100$  is a parabola. A parabola can intersect a horizontal line at exactly one point only at its vertex. Therefore, the value of c should be equal to the *y*-coordinate of the vertex of the graph of the given equation. For a quadratic equation in vertex form,  $y=ax-h^2+k$ , the vertex of its graph in the *xy*-plane is h,k. The given quadratic equation,  $y=-x^2+9x-100$ , can be rewritten as  $y=-x^2-2\frac{9}{2}x+\frac{9^2}{2}+\frac{9^2}{2}-100$ , or  $y=-x-\frac{9^2}{2}+-\frac{319}{4}$ . Thus, the value of c is equal to  $-\frac{319}{4}$ .

Choice A is incorrect and may result from conceptual or calculation errors.

Choice B is incorrect and may result from conceptual or calculation errors.

Choice D is incorrect and may result from conceptual or calculation errors.

# Question ID 58b109d4

| Assessment | Test | Domain        | Skill                                                                         | Difficulty |
|------------|------|---------------|-------------------------------------------------------------------------------|------------|
| SAT        | Math | Advanced Math | Nonlinear equations in one variable and systems of equations in two variables |            |

### ID: 58b109d4

$$x^2 + y + 7 = 7$$
$$20x + 100 - y = 0$$

The solution to the given system of equations is (x, y). What is the value of x?

### ID: 58b109d4 Answer

Correct Answer: -10

Rationale

The correct answer is -10. Adding y to both sides of the second equation in the given system yields 20x + 100 = y. Substituting 20x + 100 for y in the first equation in the given system yields  $x^2 + 20x + 100 + 7 = 7$ . Subtracting 7 from both sides of this equation yields  $x^2 + 20x + 100 = 0$ . Factoring the left-hand side of this equation yields x + 10x + 10 = 0, or  $x + 10^2 = 0$ . Taking the square root of both sides of this equation yields x + 10 = 0. Subtracting 10 from both sides of this equation yields x = -10. Therefore, the value of x is -10.