8/5/5
DIALOG(R)File 351:Derwent WPI
(c) 2001 Derwent Info Ltd. All rts. reserv.

009565138

WPI Acc No: 1993-258686/199332

XRAM Acc No: C93-114929

New granulocyte colony stimulating factor fusion proteins - contg.

stabilising protein, for treating leukopenia, leukaemia, etc.

Patent Assignee: RHONE POULENC RORER SA (RHON); RHONE-POULENC RORER SA (RHON)

Inventor: YEH P

Number of Countries: 022 Number of Patents: 007

Patent Family:

iaccirc ramitly	•						
Patent No	Kind	Date	Applicat No	Kind	Date	Week	
WO 9315211	A1	19930805	WO 93FR86	Α	19930128	199332	В
FR 2686900	A1	19930806	FR 921065	Α	19920131	199344	
FI 9403564	Α	19940729	WO 93FR86	Α	19930128	199437	
			FI 943564	Α	19940729		
NO 9402858	Α	19940801	WO 93FR86	Α	19930128	199438	
			NO 942858	Α	19940801		
EP 624200	A1	19941117	EP 93904130	Α	19930128	199444	
			WO 93FR86	Α	19930128		
JP 7503844	W	19950427	JP 93512987	A	19930128	199525	
			WO 93FR86	Α	19930128		
US 5665863	Α	19970909	WO 93FR86	A	19930129	199742	
			US 94256938	Α	19940727		

Priority Applications (No Type Date): FR 921065 A 19920131 Cited Patents: DE 3723781; EP 361991; EP 364980; EP 395918; EP 401384; WO 9013653

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

WO 9315211 A1 F 36 C12N-015/62

Designated States (National): CA FI JP NO US

Designated States (Regional): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

FR 2686900 A1 26 C12P-021/02

EP 624200 A1 F C12N-015/62 Based on patent WO 9315211

Designated States (Regional): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

JP 7503844 W C1::N-015/09 Based on patent WO 9315211 US 5665863 A 32 C12N-015/27 Based on patent WO 9315211 FI 9403564 A C12N-000/00

NO 9402858 A C12N-000/00

Abstract (Basic): WO 9315211 A

New recombinant polypeptides (I) comprise an active portion (II) coupled to a protein stabilising structure (III), where (II) comprises all or part of human granulocyte colony stimulating factor (G-CSF) or a G-CSF variant.

Also claimed are: (1) nucleotide sequences coding for (I); (2) expression cassettes contg. such a nucleotide sequence under the control of a transcription initiation region and opt. a transcription termination region; (3) self-replicating plasmids contg. such expression cassettes; and (4) recombinant eukaryotic or prokaryotic cells contg. such sequences, cassettes or plasmids.

USE/ADVANTAGE - (I) may be used to treat diseases requiring an increase in granulocyte count and/or activity, esp. leucopenia and certain forms of leukaemia, or to stimulate the immune system during transplantation (e.g. of bone marrow) or after cancer chemotherapy. (I) are capable of maintaining G-CSF activity for long periods in vivo. E.g., a specifically disclosed polypeptide (HSA-G-CSF) has lowerf activity than native G-CSF in vitro but comparable activity in vivo. Dwg.0/8

Title Terms: NEW; GRANULOCYTE; COLONY; STIMULATING; FACTOR; FUSE; PROTEIN; CONTAIN; STABILISED; PROTEIN; TREAT; LEUKOPENIA; LEUKAEMIA

Derwent Class: B04; D16

International Patent Class (Main): C12N-000/00; C12N-015/09; C12N-015/27;
C12N-015/62; C12P-021/02

International Patent Class (Additional): A61K-037/02; A61K-038/00; C07K-013/00; C07K-014/53; C12N-001/19; C12N-015/14; C12N-015/81; C12R-001-645

File Segment: CPI

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE

PCT

. DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets 5 : C12N 15/62, 1/19, A61K 37/02 C07K 13/00, C12N 15/27, 15/14 // (C12N 1/19, C12R 1:645)	A1	(11) Numéro de publication internationale: (43) Date de publication internationale:	WO 93/15211 5 août 1993 (05.08.93)
(21) Numéro de la demande internationale: PCT/F (22) Date de dépôt international: 28 janvier 199	FR93/00	BE, CH, DE, DK, ES, FR, GB	S, brevet europeen (AT, GR, IE, IT, LU, MC

(30) Données relatives à la priorité: 92/01065

أترو

31 janvier 1992 (31.01.92) FR

(71) Déposant (pour tous les Etats désignés sauf US): RHONE-POULENC RORER S.A. [FR/FR]; 20, avenue Ray-mond-Aron, F-92160 Antony (FR).

(72) Inventeur; et

(75) Inventeur/Déposant (US seulement): YEH, Patrice [FR/ FR]; 11 bis, rue Lacépède, F-75005 Paris (FR).

(74) Mandataire: BECKER, Philippe; Rhône-Poulenc Rorer S.A., Direction Brevets, 20, avenue Raymond-Aron, F-92165 Antony Cédex (FR).

Publiée

Avec rapport de recherche internationale. Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si de telles modifications sont

(54) Title: NEW POLYPEPTIDES HAVING GRANULOCYTE COLONY STIMULATING ACTIVITY, PREPARATION THEREOF AND PHARMACEUTICAL COMPOSITIONS CONTAINING SAID POLYPEPTIDES

(54) Titre: NOUVEAUX POLYPEPTIDES AYANT UNE ACTIVITE DE STIMULATION DES COLONIES DE GRANU-LOCYTES, LEUR PREPARATION ET COMPOSITIONS PHARMACEUTIQUES LES CONTENANT

(57) Abstract

New polypeptides having human granulocyte colony stimulating activity, preparation thereof and pharmaceutical compositions containing said polypeptides.

(57) Abrégé

La présente invention concerne de nouveaux polypeptides ayant une activité de stimulation des colonies de granulocytes humains, leur préparation et des compositions pharmaceutiques les contenant.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AT	Autriche	FR	France	MR	Mauritanie
AU	Australie	GA	Gahon	MW	Malawi
BB	Barbade	CB	Royaume-Uni	NL	Pays-Bas
BE	Belgique	CN	Guinée	NO	Norvege
BF	Burkina Faso	CR	Grèce	NZ	Nouvelle-Zélande
BG	Bulgarie	HU	Hongric	PL.	Pologne
BJ	Bénin	IE	Irlande	PT	Portugal
BR	Brésil	IT	Italie	RO	Roumanie
CA	Canada	JP	Japon	RU	Fédération de Russie
CF	République Centrafricaine	KP	République populaire démocratique	SD	Soudan
CC	Congo		de Corée	SE	Suède
CH	Suisse	KR	République de Corée	SK	République slovaque
а	Côte d'Ivoire	KZ	Kazakhstan	SN	Sénégal
CM	Cameroun	LI	Liechtenstein	SU	Union sovičtique
cs	Tchécoslovaquie ·	LK	Sri Lanka	TD	Tchad
cz	République tehèque	LU	Luxembourg	TC	Tugo
DE	Allemagne	MC	Monaco	ÜA	Ukraine
DK	Danemark	MG	Madagascar	us	Etats-Unis d'Amérique
ES	Espagne	MI.	Mali	VN	Viet Nam
FI	Finlande	MN	Mongolic		* 1991. 5 104000

1

NOUVEAUX POLYPEPTIDES AYANT UNE ACTIVITE DE STIMULATION DES COLONIES DE GRANULOCYTES. LEUR PREPARATION ET COMPOSITIONS PHARMACEUTIQUES LES CONTENANT

La présente invention concerne de nouveaux polypeptides ayant une activité de stimulation des colonies de granulocytes humain, leur préparation et des compositions pharmaceutiques les contenant.

5

10

15

30

La présente invention concerne en particulier des polypeptides chimères composés d'une partie biologiquement active constituée par tout ou partie du G-CSF ou d'un variant du G-CSF, et d'une structure stabilisatrice essentiellement protéique lui conférant de nouvelles propriétes biologiques.

Le G-CSF humain est un polypeptide sécrété de 174 acides aminés, ayant un poids moléculaire de 18 kD environ. Il a été isolé initialement à partir d'une lignée cellulaire cancéreuse (EP 169 566), et son gène a été cloné, séquencé, et exprimé dans différents hôtes cellulaires par les techniques du génie génétique (EP 215 126, EP 220 520). Un ARNm codant potentiellement pour une forme du G-CSF ayant 177 acides aminés a par ailleurs été mis en évidence [Nagata S. et al., EMBO J. 5 (1986) 575-581]. Le G-CSF possède la capacité de stimuler la différentiation et la prolifération de cellules progénitrices de la moelle osseuse en granulocytes. A ce titre, il possède la capacité de stimuler les capacités protectrices de l'organisme contre l'infection en favorisant la croissance des polynucléaires neutrophiles et leur différentiation aboutissant à la maturité. Il est ainsi capable d'activer les fonctions prophylactiques de l'organisme, et peut être utilisé dans différentes situations pathologiques dans lesquelles le nombre de neutrophiles est anormalement faible, ou dans lesquelles le système immunitaire doit être renforcé. De telles situations surviennent par exemple à la suite des traitements de chimiothérapie anticancéreuse, lors de greffes, et en particulier de greffes de moelle osseuse, ou lors des leukopénies.

L'un des inconvénients du G-CSF actuellement disponible réside dans le fait qu'il est dégradé rapidement par l'organisme une fois administré. Ceci est d'autant plus sensible que le G-CSF est généralement utilisé à des doses faibles. De plus, l'utilisation de doses plus importantes n'a pu permettre d'améliorer les capacités

5

10

20

25

2

thérapeutiques de cette molécule et peut induire des effets secondaires indésirables. Ces phénomènes d'élimination et de dégradation <u>in vivo</u> constituent donc pour l'instant un obstacle à l'exploitation de l'activité biologique du G-CSF en tant qu'agent pharmaceutique.

La présente invention permet de remédier à ces inconvénients. La présente invention fournit en effet de nouvelles molécules permettant une exploitation optimale sur le plan thérapeutique des propriétés biologiques du G-CSF. La demanderesse a en effet mis en évidence que l'activité optimale du G-CSF se manifestait lorsque le G-CSF était présent à faible dose et pendant un temps prolongé. La demanderesse a maintenant réalisé des molécules capables de maintenir dans l'organisme une activité G-CSF pendant un temps suffisamment long. De plus, la demanderesse a montré qu'il est possible d'exprimer dans des hôtes cellulaires à des niveaux élevés des fusions génétiques générant des chimères présentant de nouvelles propriétés pharmacocinétiques et les propriétés biologiques désirables du G-CSF. En particulier, les polypeptides hybrides de l'invention conservent leur affinité pour les récepteurs du G-CSF, et sont suffisamment fonctionnels pour conduire à la prolifération et à la différentiation cellulaire. Les molécules de l'invention possèdent par ailleurs une distribution et des propriétés pharmacocinétiques particulièrement avantageuses dans l'organisme et permettent le développement thérapeutique de leur activité biologique.

Un objet de la présente invention concerne donc des polypeptides recombinants comportant une partie active constituée par tout ou partie du G-CSF, ou d'un variant du G-CSF, et une structure stabilisatrice essentiellement protéique.

Au sens de la présente invention, le terme variant du G-CSF désigne toute molécule obtenue par modification de la séquence comprise entre les résidus Thr586 et Pro759 de la séquence présentée sur la Figure 1, conservant une activité G-CSF, c'est-à-dire la capacité de stimuler la différenciation des cellules cibles et la formation de colonies de granulocytes. Cette séquence corresponds à celle du G-CSF mature décrite par Nagata et al. [EMBO J. 5 (1986) 575-581]. Par modification, on doit entendre toute mutation, substitution, délétion, addition ou modification consécutive à une action de nature génétique et/ou chimique. De tels variants peuvent être générés dans des buts différents, tels que notamment celui d'augmenter l'affinité de la molécule pour le(s) récepteur(s) du G-CSF, celui d'améliorer ses

3

niveaux de production, celui d'augmenter sa résistance à des protéases, celui d'augmenter son efficacité thérapeutique ou de réduire ses effets secondaires, ou celui de lui conférer de nouvelles propriétés pharmacocinétiques et/ou biologiques.

Des polypeptides de l'invention particulièrement avantageux sont ceux dans lesquels la partie biologiquement active possède :

- (a) la séquence peptidique comprise entre les résidus Thr586 et Pro759 de la séquence présentée sur la Figure 1, ou,
 - (b) une partie de la structure (a), ou,

5

10

15

20

25

(c) une structure dérivée des structures (a) ou (b) par modifications structurales (mutation, substitution addition et/ou délétion d'un ou plusieurs résidus) et ayant une activité biologique identique ou modifiée. Ce dernier type de polypeptides comprend par exemple les molécules dans lesquelles certains sites de glycosylation ont été modifiés ou supprimés, ainsi que des molécules dans lesquelles un, plusieurs, voire tous les résidus cystéine ont été substitués. Il comprend également des molécules obtenues à partir de (a) ou (b) par délétion de régions n'intervenant pas ou peu dans l'activité, ou intervenant dans une activité indésirable, et des molécules comportant par rapport à (a) ou (b) des résidus supplémentaires, tels que par exemple une méthionine N-terminale ou un signal de sécrétion.

Plus préférentiellement, les polypeptides chimères de l'invention comprennent une partie active de type (a).

La partie active des molécules de l'invention peut être couplée à la structure stabilisatrice protéique, soit directement, soit par l'intermédiaire d'un peptide de jonction. De plus, elle peut constituer l'extrémité N-terminale comme l'extrémité C-terminale de la molécule. Préférentiellement, dans les molécules de l'invention, la partie active constitue la partie C-terminale de la chimère.

Comme indiqué plus haut, la structure stabilisatrice des polypeptides de l'invention est essentiellement protéique.

Préférentiellement, cette structure est un polypeptide possédant une demievie plasmatique élevée. A titre d'exemple, il peut s'agir d'une albumine, une apolipoprotéine, une immunoglobuline ou encore une transferrine. Il peut également s'agir de peptides dérivés de telles protéines par modifications structurales, ou de peptides synthétisés artificiellement ou semi-artificiellement, et possédant une

4

demie-vie plasmatique élevée. Par ailleurs, la structure stabilisatrice utilisée est plus préférentiellement un polypeptide faiblement ou non-immunogénique pour l'organisme dans lequel les polypeptides de l'invention sont utilisés.

Dans un mode de réalisation particulièrement avantageux de l'invention, la structure stabilisatrice est une albumine ou un variant de l'albumine et par exemple la sérum-albumine humaine (SAH). Il est entendu que les variants de l'albumine désignent toute protéine à haute demie-vie plasmatique obtenue par modification (mutation, délétion et/ou addition) par les techniques du génie génétique d'un gène codant pour un isomorphe donné de la sérum-albumine humaine, ainsi que toute macromolécule à haute demie-vie plasmatique obtenue par modification in vitro de la protéine codée par de tels gènes. L'albumine étant très polymorphe, de nombreux variants naturels ont dèjà été identifiés, et plus de 30 types génétiques différents ont été répertoriés [Weitkamp L.R. et al., Ann. Hum. Genet. 37 (1973) 219]. Plus préférentiellement, la structure stabilisatrice est une albumine mature.

10

15

20

25

30

A titre d'exemples on peut citer des polypeptides de l'invention comportant, dans le sens N-terminal --> C-terminal, (i) la séquence de la SAH mature couplée directement à la séquence du G-CSF mature (cf. Figure 1), ou (ii) la séquence du G-CSF mature couplée par l'intermédiaire d'un peptide de liaison à la séquence de la SAH mature.

Un autre objet de l'invention concerne un procédé de préparation des molécules chimères décrites ci-avant. Plus précisément, ce procédé consiste à faire exprimer par un hôte cellulaire eucaryote ou procaryote une séquence nucléotidique codant pour le polypeptide désiré, puis à récolter le polypeptide produit.

Parmi les hôtes eucaryotes utilisables dans le cadre de la présente invention, on peut citer les cellules animales, les levures, ou les champignons. En particulier, s'agissant de levures, on peut citer les levures du genre <u>Saccharomyces</u>, <u>Kluyveromyces</u>, <u>Pichia</u>, <u>Schwanniomyces</u>, ou <u>Hansenula</u>. S'agissant de cellules animales, on peut citer les cellules COS, CHO, Cl27, etc... Parmi les champignons susceptibles d'être utilisés dans la présente invention, on peut citer plus particulièrement <u>Aspergillus</u> ssp. ou <u>Trichoderma</u> ssp. Comme hôtes procaryotes, on préfère utiliser les bactéries telles que <u>Escherichia coli</u>, ou appartenant aux genres <u>Corynebacterium</u>, <u>Bacillus</u>, ou <u>Streptomyces</u>.

5

Les séquences nucléotidiques utilisables dans le cadre de la présente invention peuvent être préparées de différentes manières. Généralement, elles sont obtenues en assemblant en phase de lecture les séquences codant pour chacune des parties fonctionnelles du polypeptide. Celles-ci peuvent être isolées par les techniques de l'homme de l'art, et par exemple directement à partir des ARN messsagers (ARNm) cellulaires, ou par reclonage à partir d'une banque d'ADN complémentaire (ADNc) isolé à partir de cellules productrices, ou encore il peut s'agir de séquences nucléotidiques totalement synthétiques. Il est entendu de plus que les séquences nucléotidiques peuvent également être ultérieurement modifiées, par exemple par les techniques du génie génétique, pour obtenir des dérivés ou des variants desdites séquences.

10

15

20

25

30

Plus préférentiellement, dans le procédé de l'invention, la séquence nucléotidique fait partie d'une cassette d'expression comprenant une région d'initiation de la transcription (région promoteur) permettant, dans les cellules hôtes, l'expression de la séquence nucléotidique placée sous son contrôle et codant pour les polypeptides de l'invention. Cette région peut provenir de régions promoteurs de gènes fortement exprimés dans la cellule hôte utilisée, l'expression étant constitutive ou régulable. S'agissant de levures, il peut s'agir du promoteur du gène de la phosphoglycérate kinase (PGK), de la glycéraldéhyde-3-phosphate déshydrogénase (GPD), de la lactase (LAC4), des énolases (ENO), des alcools deshydrogénases (ADH), etc... S'agissant de bactéries, il peut s'agir du promoteur des gènes droit ou gauche du bactériophage lambda (PL, PR), ou encore des promoteurs des gènes des opérons tryptophane (Ptrp) ou lactose (Plac). En outre, cette région de contrôle peut être modifiée, par exemple par mutagénèse in vitro, par introduction d'éléments additionnels de contrôle ou de séquences synthétiques, ou par des délétions ou des substitutions des éléments originels de contrôle. La cassette d'expression peut également comprendre une région de terminaison de la transcription fonctionnelle dans l'hôte envisagé, positionnée immédiatement en aval de la séquence nucléotidique codant pour un polypeptide de l'invention.

Dans un mode préféré, les polypeptides de l'invention résultent de l'expression dans un hôte eucaryote ou procaryote d'une séquence nucléotidique et de la sécrétion du produit d'expression de ladite séquence dans le milieu de culture. Il est en effet particulièrement avantageux de pouvoir obtenir par voie recombinante des molécules directement dans le milieu de culture. Dans ce cas, la séquence

6

nucléotidique codant pour un polypeptide de l'invention est précédée d'une séquence "leader" (ou séquence signal) dirigeant le polypeptide naissant dans les voies de sécrétion de l'hôte utilisé. Cette séquence "leader" peut être la séquence signal naturelle du G-CSF ou de la structure stabilisatrice dans le cas où celle-ci est une protéine naturellement sécrétée, mais il peut également s'agir de toute autre séquence "leader" fonctionnelle, ou d'une séquence "leader" artificielle. Le choix de l'une ou l'autre de ces séquences est notamment guidé par l'hôte utilisé. Des exemples de séquences signal fonctionnelles incluent celles des gènes des phéromones sexuelles ou des toxines "killer" de levures.

En plus de la cassette d'expression, un ou plusieurs marqueurs permettant de sélectionner l'hôte recombiné peuvent être additionnés, tels que par exemple le gène <u>URA</u>3 de la levure <u>S. cerevisiae</u>, ou des gènes conférant la résistance à des antibiotiques comme la généticine (G418) ou à tout autre composé toxique comme certains ions métalliques.

10

15

30

L'ensemble constitué par la cassette d'expression et par le marqueur de sélection peut être introduit directement dans les cellules hôtes considérées, soit inséré préalablement dans un vecteur autoréplicatif fonctionnel. Dans le premier cas, des séquences homologues à des régions présentes dans le génôme des cellules hôtes sont préférentiellement additionnées à cet ensemble; lesdites séquences étant alors positionnées de chaque côté de la cassette d'expression et du gène de sélection de façon à augmenter la fréquence d'intégration de l'ensemble dans le génôme de l'hôte en ciblant l'intégration des séquences par recombinaison homologue. Dans le cas où la cassette d'expression est insérée dans un système réplicatif, un système de réplication préféré pour les levures du genre Kluyveromyces est dérivé du plasmide pKD1 initialement isolé de K. drosophilarum; un système préféré de réplication pour les levures du genre Saccharomyces est dérivé du plasmide 2µ de S. cerevisiae. De plus, ce plasmide d'expression peut contenir tout ou partie desdits systèmes de réplication, ou peut combiner des éléments dérivés du plasmide pKD1 aussi bien que du plasmide 2µ.

En outre, les plasmides d'expression peuvent être des vecteurs navettes entre un hôte bactérien tel que <u>Escherichia coli</u> et la cellule hôte choisie. Dans ce cas, une origine de réplication et un marqueur de sélection fonctionnant dans l'hôte bactérien sont requises. Il est également possible de positionner des sites de

7

restriction entourant les séquences bactériennes et uniques sur le vecteur d'expression: Ceci permet de supprimer ces séquences par coupure et religature <u>in vitro</u> du vecteur tronqué avant transformation des cellules hôtes, ce qui peut résulter en une augmentation du nombre de copies et en une stabilité accrue des plasmides d'expression dans lesdits hôtes. Par exemple, de tels sites de restriction peuvent correspondre aux séquences telles que 5'-GGCCNNNNNGGCC-3' (<u>Sfil</u>) ou 5'-GCGGCCGC-3' (<u>Notl</u>) dans la mesure où ces sites sont extrêmement rares et généralement absents d'un vecteur d'expression.

Après construction de tels vecteurs ou cassette d'expression, ceux-ci sont introduits dans les cellules hôtes retenues selon les techniques classiques décrites dans la littérature. A cet égard, toute méthode permettant d'introduire un ADN étranger dans une cellule peut être utilisée. Il peut s'agir notamment de transformation, électroporation, conjugaison, ou toute autre technique connue de l'homme de l'art. A titre d'exemple pour les hôtes de type levure, les différentes souches de <u>Kluyveromyces</u> utilisées ont été transformées en traitant les cellules entières en présence d'acétate de lithium et de polyéthylène glycol, selon la technique décrite par Ito et al. [J. Bacteriol. <u>153</u> (1983) 163]. La technique de transformation décrite par Durrens et al. [Curr. Genet. <u>18</u> (1990) 7] utilisant l'éthylène glycol et le diméthylsulfoxyde a également été utilisée. Il est aussi possible de transformer les levures par électroporation, selon la méthode décrite par Karube et al. [FEBS Letters <u>182</u> (1985) 90]. Un protocole alternatif est également décrit en détail dans les exemples qui suivent.

10

15

30

Après sélection des cellules transformées, les cellules exprimant lesdits polypeptides sont inoculées et la récupération desdits polypeptides peut être faite, soit au cours de la croissance cellulaire pour les procédés "en continu", soit en fin de croissance pour les cultures "en lots" ("batch"). Les polypeptides qui font l'objet de la présente invention sont ensuite purifiés à partir du surnageant de culture en vue de leur caractérisation moléculaire, pharmacocinétique et biologique.

Un système d'expression préféré des polypeptides de l'invention consiste en l'utilisation des levures du genre <u>Kluyveromyces</u> comme cellule hôte, transformées par certains vecteurs dérivés du réplicon extrachromosomique pKD1 initialement isolé chez <u>K. marxianus</u> var. <u>drosophilarum</u>. Ces levures, et en particulier <u>K. lactis</u> et <u>K. fragilis</u> sont généralement capables de répliquer lesdits vecteurs de façon stable et

8

possèdent en outre l'avantage d'être incluses dans la liste des organismes G.R.A.S. ("Generally Recognized As Safe"). Des levures privilégiées sont préférentiellement des souches industrielles du genre Kluyveromyces capables de répliquer de façon stable lesdits plasmides dérivés du plasmide pKD1 et dans lesquels a été inséré un marqueur de sélection ainsi qu'une cassette d'expression permettant la sécrétion à des niveaux élevés des polypeptides de l'invention.

7

•

La présente invention concerne également les séquences nucléotidiques codant pour les polypeptides chimères décrits ci-avant, ainsi que les cellules recombinantes, eucaryotes ou procaryotes, comprenant de telles séquences.

10

15

La présente invention concerne aussi l'application à titre de médicament des polypeptides selon la présente invention. Plus particulièrement, l'invention a pour objet toute composition pharmaceutique comprenant un ou plusieurs polypeptides tel que décrit ci-avant. Plus particulièrement, ces compositions peuvent être utilisées dans toutes les situations pathologiques dans lesquelles le nombre et/ou l'activité des granulocytes doivent être stimulées. Notamment, elles peuvent être utilisées pour la prévention ou le traitement des leukopénies ou de certaines leucémies, ou dans le cas de greffes ou de traitement anticancéreux, pour renforcer ou restaurer le système immunitaire.

La présente invention sera plus complètement décrite à l'aide des exemples qui suivent, qui doivent être considérés comme illustratifs et non limitatifs.

LISTE DES FIGURES

Les représentations des plasmides indiquées dans les Figures suivantes ne sont pas traçées à l'échelle et seuls les sites de restriction importants pour la compréhension des clonages réalisés ont été indiqués.

Figure 1: Séquence nucléotidique du fragment de restriction HindIII du plasmide pYG1259 (chimère prépro-SAH-G.CSF). Les flèches noires indiquent la fin des régions "pré" et "pro" de la SAH. Les sites de restriction MstII, ApaI et SstI (SacI) sont soulignés. La séquence peptidique du G-CSF est en italique (Thr586->Pro759, la numérotation des acides aminés correspond à la protéine chimère mature).

15

20

Figure 2: Schématisation des chimères du type SAH-G.CSF (A), du type G.CSF-SAH (B) ou G.CSF-SAH-G.CSF (C). Abréviations utilisées: M/LP, méthionine initiatrice de la traduction, éventuellement suivie d'une séquence signal de sécrétion; SAH, sérum-albumine humaine mature ou un de ses variants; G.CSF, peptide dérivé du G-CSF et ayant une activité identique ou modifiée. La flèche noire indique l'extrémité N-terminale de la protéine mature.

Figure 3: Carte de restriction du plasmide pYG105 et stratégie de construction des plasmides d'expression des protéines chimères de la présente invention. Abréviations utilisées: P, promoteur transcriptionnel; T, terminateur transcriptionnel; IR, séquences répétées inversées du plasmide pKD1; LPSAH, région "prépro" de la SAH; Apr et Kmr désignent respectivement les gènes de résistance à l'ampicilline (E, coli) et au G418 (levures).

Figure 4: Caractérisation du matériel sécrété après 4 jours de culture (erlenmeyers) de la souche CBS 293.91 transformée par les plasmides pYG1266 (plasmide d'expression d'une chimère du type SAH-G.CSF) et pKan707 (plasmide contrôle). Dans cette expérience les résultats des panneaux A, B, et C ont été migrés sur le même gel (SDS-PAGE 8,5 %) puis traités séparemment.

A, coloration au bleu de coomassie; standard de poids moléculaire (piste 2); surnageant équivalent à 100 µl de la culture transformée par les plasmides pKan707 en milieu YPL (piste 1), ou pYG1266 en milieu YPD (piste 3) ou YPL (piste 4).

- B, caractérisation immunologique du matériel sécrété après utilisation d'anticorps primaires dirigés contre le G-CSF humain: même légende qu'en A.
- C, caractérisation immunologique du matériel sécrété après utilisation d'anticorps primaires dirigés contre l'albumine humaine: même légende qu'en A.
- Figure 5: Séquence nucléotidique du fragment de restriction HindIII du plasmide pYG1301 (chimère G.CSF-Gly4-SAH). Les flèches noires indiquent la fin des régions "pré" et "pro" de la SAH. Les sites de restriction ApaI, SstI (SacI) et MstII sont soulignés. Les domaines G.CSF (174 résidus) et SAH (585 résidus) sont séparés par le linker synthétique GGGG. La numérotation des acides aminés corresponds à la protéine chimère G.CSF-Gly4-SAH mature (763 résidus). La séquence nucléotidique comprise entre le codon de terminaison de la traduction et le

15

20

25

30

3

site <u>Hind</u>III provient de l'ADN complémentaire (cDNA) de la SAH tel que décrit dans la demande de brevet EP 361 991.

Figure 6: Caractérisation du matériel sécrété après 4 jours de culture (erlenmeyers en milieu YPD) de la souche CBS 293.91 transformée par les plasmides pYG1267 (chimère SAH-G.CSF), pYG1303 (chimère G.CSF-Gly4-SAH) et pYG1352 (chimère SAH-Gly4-G.CSF) après migration sur gel SDS-PAGE 8,5 %.

A, coloration au bleu de coomassie; surnageant équivalent à 100 µl de la culture transformée par les plasmides pYG1303 (piste 1), pYG1267 (piste 2) ou pYG1352 (piste 3); standard de poids moléculaire (piste 4).

B, caractérisation immunologique du matériel sécrété après utilisation d'anticorps primaires dirigés contre le G-CSF humain : même légende qu'en A.

Figure 7: Activité sur la prolifération cellulaire <u>in vitro</u> de la lignée murine NFS60. La radioactivité (³H-thymidine) incorporée dans les noyaux cellulaires après 6 heures d'incubation est représentée en ordonnée (cpm); la quantité de produit indiquée en abscisse est exprimée en molarité (unités arbitraires).

Figure 8 : Activité sur la granulopoièse <u>in vivo</u> chez le rat. Le nombre de neutrophiles (moyenne de 7 animaux) est indiquée en ordonnée en fonction du temps. Les produits testés sont la chimère SAH-G.CSF (pYG1266, 4 ou 40 mg/rat/jour), le G-CSF référence (10 mg/rat/jour), la SAH recombinante purifiée à partir de surnageant de <u>Kluyveromyces lactis</u> (rHSA, 30 mg/rat/jour, cf. EP 361 991), ou du sérum physiologique.

EXEMPLES

TECHNIQUES GENERALES DE CLONAGE

Les méthodes classiquement utilisées en biologie moléculaire telles que les extractions préparatives d'ADN plasmidique, la centrifugation d'ADN plasmidique en gradient de chlorure de césium, l'électrophorèse sur gels d'agarose ou d'acrylamide, la purification de fragments d'ADN par électroélution, les extraction de protéines au phénol ou au phénol-chloroforme, la précipitation d'ADN en milieu salin par de l'éthanol ou de l'isopropanol, la transformation dans <u>Escherichia coli</u>

10

15

20

25

30

etc... sont bien connues de l'homme de métier et sont abondament décrites dans la littérature [Maniatis T. et al., "Molecular Cloning, a Laboratory Manual", Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1982; Ausubel F.M. et al. (eds), "Current Protocols in Molecular Biology", John Wiley & Sons, New York, 1987].

Les enzymes de restriction ont été fournies par New England Biolabs (Biolabs), Bethesda Research Laboratories (BRL) ou Amersham et sont utilisées selon les recommandations des fournisseurs.

Les plasmides de type pBR322, pUC et les phages de la série M13 sont d'origine commerciale (Bethesda Research Laboratories).

Pour les ligatures, les fragments d'ADN sont séparés selon leur taille par électrophorèse en gels d'agarose ou d'acrylamide, extraits au phénol ou par un mélange phénol/chloroforme, précipités à l'éthanol puis incubés en présence de l'ADN ligase du phage T4 (Biolabs) selon les recommandations du fournisseur.

Le remplissage des extrémités 5' proéminentes est effectué par le fragment de Klenow de l'ADN Polymérase I d'<u>E.coli</u> (Biolabs) selon les spécifications du fournisseur. La destruction des extrémités 3' proéminentes est effectuée en présence de l'ADN Polymérase du phage T4 (Biolabs) utilisée selon les recommandations du fabricant. La destruction des extrémités 5' proéminentes est effectuée par un traitement ménagé par la nucléase S1.

La mutagénèse dirigée <u>in vitro</u> par oligodéoxynucléotides synthétiques est effectuée selon la méthode développée par Taylor et al. [Nucleic Acids Res. <u>13</u> (1985) 8749-8764] en utilisant le kit distribué par Amersham.

L'amplification enzymatique de fragments d'ADN par la technique dite de PCR [Polymérase-catalyzed Chain Reaction, Saiki R.K. et al., Science 230 (1985) 1350-1354; Mullis K.B. et Faloona F.A., Meth. Enzym. 155 (1987) 335-350] est effectuée en utilisant un "DNA thermal cycler" (Perkin Elmer Cetus) selon les spécifications du fabricant.

La vérification des séquences nucléotidiques est effectuée par la méthode développée par Sanger et al. [Proc. Natl. Acad. Sci. USA, <u>74</u> (1977) 5463-5467] en utilisant le kit distribué par Amersham.

Les transformations de <u>K. lactis</u> avec l'ADN des plasmides d'expression des protéines de la présente invention sont effectuées par toute technique connue de l'homme de l'art, et dont un exemple est donné dans le texte.

Sauf indication contraire, les souches bactériennes utilisées sont <u>E. coli</u> MC1060 (<u>lac</u>IPOZYA, X74, <u>gal</u>U, <u>gal</u>K, <u>str</u>A^r), ou <u>E. coli</u> TG1 (<u>lac</u>, <u>pro</u>A,B, <u>sup</u>E, thi, hsdD5 / FtraD36, <u>pro</u>A⁺B⁺, <u>lac</u>I^q, <u>lac</u>Z, M15).

Les souches de levures utilisées appartiennent aux levures bourgeonnantes et plus particulièrement aux levures du genre <u>Kluyveromyces</u>. Les souche <u>K. lactis</u> MW98-8C (a. <u>uraA</u>, <u>arg</u>, <u>lys</u>, K⁺, pKD1°) et <u>K. lactis</u> CBS 293.91 ont été particulièrement utilisées ; un échantillon de la souche MW98-8C a été déposé le 16 Septembre 1988 au Centraalbureau voor Schimmelkulturen (CBS) à Baarn (Pays-Bas) où il a été enregistré sous le numéro CBS 579.88.

5

10

15

20

Les souches de levures transformées par les plasmides d'expression codant pour les protéines de la présente invention sont cultivées en erlenmeyers ou en fermenteurs pilotes de 2l (SETRIC, France) à 28°C en milieu riche (YPD : 1 % yeast extract, 2 % Bactopeptone, 2 % glucose ; ou YPL : 1 % yeast extract, 2 % Bactopeptone, 2 % lactose) sous agitation constante.

EXEMPLE 1 : CONSTRUCTION D'UN FRAGMENT DE RESTRICTION MSTIL/HINDIII INCLUANT LA PARTIE MATURE DU G-CSF HUMAIN

Un fragment de restriction MstII-HindIII incluant la forme mature du G-CSF humain est généré, par exemple selon la stratégie suivante : un fragment de restriction KpnI-HindIII est d'abord obtenu par la technique d'amplification enzymatique PCR en utilisant les oligodéoxynucléotides Sq2291 CAAGGATCCAAGCTTCAGGGCTGCGCAAGGTGGCGTAG-3', le site HindIII Sq2292 (5'-CGGGGTACCTTAGGCTTAACCCCCCTGsouligné) GGCCCTGCCAGC-3', le site KpnI est souligné) comme amorce sur le plasmide BBG13 servant comme matrice. Le plasmide BBG13 comporte le gène codant pour la forme B (174 acides aminés) du G-CSF mature humain, obtenu auprès de British Bio-technology Limited, Oxford, England. Le produit d'amplification enzymatique d'environ 550 nucléotides est ensuite digéré par les enzymes de restriction KpnI et HindIII et cloné dans le vecteur pUC19 coupé par les mêmes enzymes, ce qui génère le plasmide recombinant pYG1255. Ce plasmide est la source d'un fragment de restriction MstII-HindIII, dont la séquence est incluse dans celle de la Figure 1. Un fragment de restriction MstII-HindIII codant pour la même séquence polypeptidique peut également être généré par la technique d'amplification PCR à partir des cDNA correspondants, dont la séquence est connue [Nagata S. et al., EMBO J. 5 (1986)

10

20

25

30

575-581]. Ces cDNA peuvent être isolés par les techniques de l'homme de l'art, par exemple en utilisant le kit distribué par Amersham, à partir d'une lignée cellulaire humaine exprimant le G-CSF, et par exemple la lignée cellulaire CHU-2 de carcinome humain [Nagata et al., Nature 319 (1986) 415-418].

Il peut être également souhaitable d'insérer un linker peptidique entre la partie SAH et G-CSF, par exemple pour permettre une meilleure présentation fonctionnelle de la partie transductrice. Un fragment de restriction MstII-HindIII est par exemple généré par substitution du fragment MstII-ApaI de la Figure 1 par les oligodéoxynucléotides Sq2742 (5'-TTAGGCTTAGGTGGTGGCGGTACCCCCC-TGGGCC-3', les codons codant pour les résidus glycine de ce linker particulier sont soulignés) et Sq2741 (5'-CAGGGGGGTACCGCCACCACCTAAGCC-3') qui forment en s'appariant un fragment MstII-ApaI. Le plasmide pYG1336 ainsi généré comporte donc un fragment de restriction MstII-HindIII, dont la séquence est identique à celle de la Figure 1 à l'exception du fragment MstII-ApaI.

15 EXEMPLE 2 : FUSIONS EN PHASE TRADUCTIONNELLE ENTRE LA SAH ET LE G-CSF HUMAIN

E.2.1. Fusion traductionnelle du type SAH-G.CSF.

Le plasmide pYG404 est décrit dans la demande de brevet EP 361 991. Ce plasmide comporte un fragment de restriction HindIII codant pour le gène de la prépro-SAH précédé des 21 nucléotides naturellement présents immédiatement en amont de l'ATG initiateur de traduction du gène PGK de S. cerevisiae. Plus particulièrement, ce fragment comporte un fragment de restriction HindIII-MstII correspondant à la totalité du gène codant pour la prépro-SAH à l'exception des trois acides aminés les plus C-terminaux (résidus leucine-glycine-leucine). La ligature de ce fragment avec le fragment MstII-HindIII du plasmide pYG1255 permet de générer le fragment HindIII du plasmide pYG1259 qui code pour une protéine chimère dans laquelle la forme B du G-CSF mature est positionnée par couplage génétique en phase traductionnelle en C-terminal de la molécule de SAH. La séquence nucléotidique de ce fragment de restriction est donnée à la Figure 1, ainsi que la séquence polypeptidique de la chimère correspondante (SAH-G.CSF, cf. Figure 2, panneau A).

Un fragment de restriction <u>Hind</u>III identique à l'exception du fragment <u>Mst</u>II-<u>Apa</u>I peut également être facilement généré et qui code pour une protéine chimère

14

dans laquelle la forme B du G-CSF mature est positionnée par couplage génétique en phase traductionnelle en C-terminal de la molécule de SAH et d'un linker peptidique particulier. Par exemple ce linker est constitué de 4 résidus glycine dans le fragment HindIII du plasmide pYG1336 (chimère SAH-Gly4-G.CSF, cf. Figure 2, panneau A).

E.2.2. Fusion traductionnelle du type G.CSF-SAH.

5

10

15

20

25

30

Dans un mode réalisation particulier, les techniques combinées de mutagénèse dirigée et d'amplification PCR permettent de construire des gènes hybrides codant pour une protéine chimère (Figure 2, panneau B) résultant du couplage traductionnel entre un peptide signal (et par exemple la région prépro de la SAH), une séquence incluant un gène ayant une activité G-CSF, et la forme mature de la SAH ou un de ses variants moléculaires. Ces gènes hybrides sont préférentiellement bordés en 5' de l'ATG initiateur de traduction et en 3' du codon de fin de traduction par des sites de restriction HindIII. Par exemple l'oligodéoxynucléotide Sq2369 (5'-GTTCTACGCCACCTTGCGCAGCCCGGTGGAGGCGGT-GATGCACACAAGAGTGAGGTTGCTCATCGG-3', résidus soulignés (optionnels) correspondent dans cette chimère particulière à un linker peptidique composé de 4 résidus glycine) permet par mutagénèse dirigée de mettre en phase traductionelle la forme mature du G-CSF humain du plasmide BBG13 immédiatement en amont de la forme mature de la SAH, ce qui génère le plasmide intermédiaire A. De façon similaire, l'utilisation de l'oligodéoxynucléotide Sq2338 [5'-<u>CAGGGAGCTGGCAGGGCCCAGGGGGGT</u>TCGACGAAACACACCCCTG-GAATAAGCCGAGCT-3' (brin non codant), les nucléotides complémentaires aux nucléotides codant pour les premiers résidus N-terminaux de la forme mature du G-CSF humain sont soulignés] permet par mutagénèse dirigée de coupler en phase traductionnelle de lecture la région prépro de la SAH immédiatement en amont de la forme mature du G-CSF humain, ce qui génère le plasmide intermédiaire B. On génère ensuite le fragment HindIII de la Figure 5 en associant le fragment HindIII-SstI du plasmide B (jonction région prépro de la SAH + fragment N-terminal du GCSF mature) avec le fragment SstI-HindIII du plasmide A [jonction G-CSF mature-(glycine)x4-SAH mature]. Le plasmide pYG1301 contient ce fragment de restriction HindIII particulier codant pour la chimère G.CSF-Gly4-SAH fusionnée immédiatement en aval de la région prépro de la SAH.

15

20

25

30

E.2.3. Fusion traductionnelle du type G.CSF-SAH-G.CSF.

Ces mêmes techniques de mutagénèse dirigée et d'amplification de l'ADN in <u>vitro</u> permettent de construire des gènes hybrides dans lesquelles une séquence codant pour une activité G-CSF est couplée aux extrémités N- et C- terminales de la SAH ou un de ses variants moléculaires (Figure 2, panneau C). Ces gènes hybrides sont préférentiellement bordés en 5' de l'ATG initiateur de traduction et en 3' du codon de fin de traduction par des sites de restriction <u>HindIII</u>.

EXEMPLE 3: CONSTRUCTION DES PLASMIDES D'EXPRESSION

Les protéines chimères des exemples précédents peuvent être exprimées dans les levures à partir de promoteurs fonctionnels, régulables ou constitutifs, tels que, par exemple, ceux présents dans les plasmides pYG105 (promoteur <u>LAC4</u> de <u>Kluvveromyces lactis</u>), pYG106 (promoteur <u>PGK</u> de <u>Saccharomyces cerevisiae</u>), pYG536 (promoteur <u>PHO</u>5 de <u>S. cerevisiae</u>), ou des promoteur hybrides tels que ceux portés par les plasmides décrits dans la demande de brevet EP 361 991.

Par exemple, le fragment de restriction HindIII du plasmide pYG1259 est cloné dans l'orientation productive dans le site de restriction HindIII du plasmide d'expression pYG105, ce qui génère le plasmide d'expression pYG1266 (Figure 3). Le plasmide pYG105 corresponds au plasmide pKan707 décrit dans la demande de brevet EP 361 991 dans lequel le site de restriction HindIII a été détruit par mutagénèse dirigée (oligodeoxynucleotide Sq1053: 5'-GAAATGCATAAGCTC-TTGCCATTCTCACCG-3') et dont le fragment SalI-SacI codant pour le gène <u>URA</u>3 a été remplacé par un fragment de restriction <u>Sal</u>I-<u>Sac</u>I comportant le promoteur <u>LAC</u>4 (sous la forme d'un fragment <u>Sal</u>I-<u>Hind</u>III) et le terminateur du gène PGK de S. cerevisiae (sous la forme d'un fragment HindIII-SacI). Le plasmide pYG105 est mitotiquement très stable en l'absence de généticine (G418) et permet d'exprimer la protéine chimère à partir du promoteur LAC4 de K. lactis, notamment quand la source carbonnée est du lactose. Dans une autre exemplification, le clonage dans l'orientation productive du fragment de restriction HindIII du plasmide pYG1259 dans le site <u>Hind</u>III du plasmide pYG106 génère le plasmide d'expression pYG1267. Les plasmides pYG1266 et pYG1267 sont isogéniques entre eux à l'exception du fragment de restriction SalI-HindIII codant pour le promoteur LAC4

15

30

de K. lactis (plasmide pYG1266) ou le promoteur <u>PGK</u> de <u>S. cerevisiae</u> (plasmide pYG1267).

Dans une autre exemplification, le clonage dans l'orientation productive du fragment de restriction <u>HindIII</u> du plasmide pYG1336 (chimère SAH-Gly4-G.CSF, cf. E.2.1.) dans le site <u>HindIII</u> des plasmides pYG105 et pYG106 génère les plasmides d'expression pYG1351 et pYG1352, respectivement.

De même, le clonage dans l'orientation productive du fragment de restriction <u>HindIII</u> du plasmide pYG1301 (chimère G.CSF-Gly4-SAH, cf. E.2.2.) dans le site <u>HindIII</u> des plasmides pYG105 et pYG106 génère les plasmides d'expression pYG1302 et pYG1303, respectivement.

EXEMPLE 4: TRANSFORMATION DES LEVURES

La transformation des levures appartenant au genre Kluyveromyces, et en particulier les souches MW98-8C et CBS 293.91 de K. lactis, s'effectue par exemple par la technique de traitement des cellules entières par de l'acétate de lithium (Ito H. et al., J. Bacteriol. 153 (1983) 163-168), adaptée comme suit. La croissance des cellules se fait à 28°C dans 50 ml de milieu YPD, avec agitation et jusqu'à une densité optique à 600 nm (DO₆₀₀) comprise entre 0,6 et 0,8 ; les cellules sont récoltées par centrifugation à faible vitesse, lavées dans une solution stérile de TE (10 mM Tris HCl pH 7,4; 1 mM EDTA), resuspendues dans 3-4 ml d'acétate lithium (0,1 M dans du TE) pour obtenir une densité cellulaire d'environ 2 x 108 cellules/ml, puis incubées à 30°C pendant 1 heure sous agitation modérée. Des aliquotes de 0,1 ml de la suspension résultante de cellules compétentes sont incubés à 30°C pendant 1 heure en présence d'ADN et à une concentration finale de 35 % de polyéthylène glycol (PEG4000, Sigma). Après un choc thermique de 5 minutes à 42°C, les cellules sont lavées 2 fois, resuspendues dans 0,2 ml d'eau stérile et incubées 16 heures à 28°C dans 2 ml de milieu YPD pour permettre l'expression phénotypique de la fusion ORF1-APH exprimée sous contrôle du promoteur Pk1; 200 µl de la suspension cellulaire sont ensuite étalés sur boites YPD sélectives (G418, 200 µg/ml). Les boites sont mises à incuber à 28°C et les transformants apparaissent après 2 à 3 jours de croissance cellulaire.

20

EXEMPLE 5: SECRETION DES CHIMERES

Après sélection sur milieu riche supplémenté en G418 les clones recombinants sont testés pour leur capacité à sécréter la forme mature des protéines chimères entre SAH et G-CSF. Quelques clones correspondant à la souche K. lactis CBS 293.91 transformée par les plasmides pYG1266 ou pYG1267 (SAH-G.CSF), pYG1302 ou pYG1303 (G.CSF-Gly4-SAH) ou encore pYG1351 ou pYG1352 (SAH-Gly4-G.CSF) sont mis à incuber en milieu liquide complet sélectif à 28°C. Les surnageants cellulaires sont alors testés après électrophorèse en gel d'acrylamide à 8.5 %, soit directement par coloration du gel d'acrylamide par du bleu de coomassie (Figure 4, panneau A), soit après immunoblot en utilisant comme anticorps primaires des anticorps polyclonaux de lapin spécifiquement dirigés contre le G-CSF humain, ou contre la SAH. Lors des expériences de détection immunologique, le filtre de nitrocellulose est d'abord incubé en présence de l'anticorps spécifique, lavé plusieurs fois, incubé en présence d'anticorps de chèvre anti-lapin biotinylés, puis incubé en présence d'un complexe avidine-péroxydase en utilisant le "kit ABC" distribué par Vectastain (Biosys S.A., Compiègne, France). La réaction immunologique est ensuite révélée par addition de diamino-3,3' benzidine tetrachlorydrate (Prolabo) en présence d'eau oxygénée, selon les recommandations du fournisseur. Les résultats de la Figure 4 démontrent que la protéine hybride SAH-G.CSF est reconnue à la fois par des anticorps dirigés contre l'albumine humaine (panneau C) et le G-CSF humain (panneau B). Les résultats de la Figure 6 indiquent que la chimère SAH-Gly4-G.CSF (piste 3) est particulièrement bien sécrétée par la levure Kluyveromyces, possiblement du fait que la présence du linker peptidique entre partie SAH et partie G-CSF est plus favorable à un repliement indépendant de ces 2 parties lors du transit de la chimère dans la voie sécrétoire. De plus la fusion Nterminale (G.CSF-Gly4-SAH) est également sécrétée par la levure Kluyveromyces (Figure 6, piste 1).

EXEMPLE 6: PURIFICATION ET CARACTERISATION MOLECULAIRE DES PRODUITS SECRETES

Après centrifugation d'une culture de la souche CBS 293.91 transformée par les plasmides d'expression selon l'exemple 3, le surnageant de culture est passé à travers un filtre de 0,22 mm (Millipore), puis concentré par ultrafiltration (Amicon)

en utilisant une membrane dont le seuil de discrimination se situe à 30 kDa. Le concentrat obtenu est alors ajusté à 50 mM Tris HCl à partir d'une solution stock de Tris HCl 1M (pH 6), puis déposé par fractions de 20 ml sur une colonne (5 ml) échangeuse d'ions (Q Fast Flow, Pharmacia) équilibrée dans le même tampon. La protéine chimère est alors éluée de la colonne par un gradient (0 à 1 M) de NaCl. Les fractions contenant la protéine chimère sont alors réunies et dialysées contre une solution de Tris HCl 50 mM (pH 6) et redéposées sur colonne Q Fast Flow (1 ml) équilibrée dans le même tampon. Après élution de la colonne, les fractions contenant la protéine sont réunies, dialysées contre de l'eau et lyophilisées avant caractérisation: par exemple, le séquençage (Applied Biosystem) de la protéine SAH-G.CSF sécrétée par la levure CBS 293.91 donne la séquence N-terminale attendue de la SAH (Asp-Ala-His...), démontrant une maturation correcte de la chimère immédiatement en C-terminal du doublet de résidus Arg-Arg de la région "pro" de la SAH (Figure 1).

15 EXEMPLE 7: ACTIVITE BIOLOGIQUE DES CHIMERES ENTRE SAH ET G-CSF

E.7.1. Activité biologique in vitro.

Les chimères purifiées selon l'exemple 6 sont testées pour leur capacité à permettre la prolifération in vitro de la lignée murine IL3-dépendante NFS60, par mesure de l'incorporation de thymidine tritiée essentiellement selon le protocole décrit par Tsuchiya et al. [Proc. Natl. Acad. Sci. (1986) 83 7633]. Pour chaque chimère, les mesures sont réalisées entre 3 et 6 fois dans un test trois points (trois dilutions du produit) dans une zone ou la relation entre quantité de produit actif et incorporation de thymidine marquée (Amersham) est linéaire. Dans chaque plaque de microtitration, l'activité d'un produit référence constitué de G-CSF humain recombinant exprimé dans des cellules mammifères est également systématiquement incorporé. Les résultats de la Figure 7 démontrent que la chimère SAH-G.CSF (pYG1266) sécrétée par la levure Kluyveromyces est capable in vitro de transduire un signal de prolifération cellulaire pour la lignée NFS60. Dans ce cas particulier, l'activité spécifique (cpm/molarité) de la chimère est environ 7 fois plus faible que celle du G-CSF référence (non couplé).

E.7.2. Activité in vivo

L'activité de stimulation des chimères SAH/G-CSF sur la granulopoièse in vivo est testée après injection sous-cutanée chez le rat (Sprague-Dawley/CD, 250-300 g, 8-9 semaines) et comparée à celle du G-CSF référence exprimé à partir de cellules de mammifère. Chaque produit, testé à raison de 7 animaux, est injecté par voie sous-cutanée en région dorso-scapulaire à raison de 100 ml pendant 7 jours consécutifs (J1-J7). 500 ml de sang sont recueillis aux jours J-6, J2 (avant la 2ème injection), J5 (avant la 5ème injection) et J8, et une numération sanguine est effectuée. Dans ce test, l'activité spécifique (unités de neutropoièse/mole injectée) de la chimère SAH-G.CSF (pYG1266) est identique à celle du G-CSF référence (Figure 8). Puisque cette chimère particulière possède in vitro une activité spécifique 7 fois plus faible que celle du G-CSF référence (Figure 7), il est donc démontré que le couplage génétique du G-CSF sur la SAH en modifie favorablement les propriétés pharmacocinétiques.

20

REVENDICATIONS

- Polypeptide recombinant comportant une partie active constituée par tout ou partie du G-CSF ou d'un variant du G-CSF couplé à une structure stabilisatrice essentiellement protéique.
- 2. Polypeptide selon la revendication 1 caractérisé en ce que la partie active présente une structure choisie parmi :

5

10

15

20

- (a) la séquence peptidique comprise entre les résidus Thr586-Pro759 de la séquence donnée sur la Figure 1,
- (b) une partie de la structure peptidique (a) ayant conservé l'activité biologique du G-CSF, et,
- (c) une structure dérivée des structures (a) ou (b) par modifications structurales (mutation, substitution, addition et/ou délétion d'un ou plusieurs résidus), et ayant conservé l'activité biologique du G-CSF, ou une activité modifiée.
- 3. Polypeptide selon la revendication 1 ou 2 caractérisé en ce que la partie active est couplée à l'extrémité N-terminale de la structure stabilisatrice.
 - 4. Polypeptide selon la revendication 1, 2 ou 3 caractérisé en ce que la partie active est couplée à l'extrémité C-terminale de la structure stabilisatrice.
 - 5. Polypeptide selon l'une des revendications 1 à 4 caractérisé en ce que la structure stabilisatrice est un polypeptide possédant une demie-vie plasmatique élevée.
 - 6. Polypeptide selon la revendication 5 caractérisé en ce que le polypeptide possédant une demie-vie plasmatique élevée est une protéine telle qu'une albumine, une apolipoprotéine, une immunoglobuline ou encore une transferine.
- 7. Polypeptide selon la revendication 5 caractérisé en ce que le polypeptide possédant une demie-vie plasmatique élevée est dérivé par modification(s) structurale(s) (mutation, substitution, addition et/ou délétion d'un ou plusieurs résidus, modification chimique) d'une protéine selon la revendication 6.

- 8. Polypeptide selon l'une des revendications 5 à 7 caractérisé en ce que la structure stabilisatrice est un polypeptide faiblement ou non-immunogénique pour l'organisme dans lequel il est utilisé.
- 9. Polypeptide selon la revendication 5 caractérisé en ce que la structure stabilisatrice est une albumine ou un variant de l'albumine.
 - 10. Séquence nucléotidique codant pour un polypeptide selon l'une quelconque des revendications 1 à 9.
- 11. Séquence nucléotidique selon la revendication 10 caractérisée en ce qu'elle comprend une séquence "leader" permettant la sécrétion du polypeptide exprimé.
 - 12. Cassette d'expression comprenant une séquence nucléotidique selon l'une des revendications 10 ou 11 sous le contrôle d'une région d'initiation de la transcription et éventuellement d'une région de terminaison de la transcription.
- 13. Plasmide autoréplicatif comportant une cassette d'expression selon la revendication 12.
 - 14. Cellule recombinante eucaryote ou procaryote dans laquelle a été inséré une séquence nucléotidique selon l'une des revendications 10 ou 11 ou une cassette d'expression selon la revendication 12 ou un plasmide selon la revendication 13.
- 15. Cellule recombinante selon la revendication 14 caractérisée en ce qu'il s'agit d'une levure, d'une cellule animale, d'un champignon ou d'une bactérie.
 - 16. Cellule recombinante selon la revendication 15 caractérisée en ce qu'il s'agit d'une levure.
 - 17. Cellule recombinante selon la revendication 16 caractérisée en ce qu'il s'agit d'une levure du genre <u>Saccharomyces</u> ou <u>Kluyveromyces</u>.
- 18. Procédé de préparation d'un polypeptide tel que défini dans l'une des revendications 1 à 9 caractérisé en ce que l'on cultive une cellule recombinante selon l'une des revendications 14 à 17 dans des conditions d'expression, et on récupère le polypeptide produit.

22

- 19. Composition pharmaceutique comprenant un ou plusieurs polypeptides selon l'une quelconque des revendications 1 à 9.
- 20. Composition pharmaceutique selon la revendication 19 destinée à être utilisée dans toutes les situations pathologiques dans lesquelles le nombre et/ou l'activité des granulocytes doivent être stimulées.
- 21. Composition pharmaceutique selon la revendication 20 destinée à la prévention ou au traitement des leukopénies ou de certaines leucémies.
- 22. Composition pharmaceutique selon la revendication 20 utilisable dans le cas de greffes ou de traitement anticancéreux, pour restaurer le système immunitaire.

10

5

1/10

SEO. ID NO: 1

TYPE DE SEQUENCE : LONGUEUR :

Nucléotide et sa protéine corréspondante 2382 nucléotides

NOMBRE DE BRINS :

CONFIGURATION:

Linéaire

TYPE DE MOLECULE :

Fragment de restriction <u>Hind</u>III du plasmide d'expression pYG1259 (chimère G.CSF-SAH)
Recombinaisons génétiques in vitro

PCT/FR93/00086

ORIGINE:

AAGCT TTACAACAAA TATAAAAACA			TCC CTT CTT TTT Ser Leu Leu Phe	
AGC TCG GCT TAT TCC AGG GGT Ser Ser Ala Tyr Ser Arg Gly	GTG TTT CGT Val Phe Arg	CGA GAT GCA CAC Arg Asp Ala His	AAG AGT GAG GTT Lys Ser Glu Val	GCT CAT Ala His 9
CGG TTT AAA GAT TTG GGA GAA Arg Phe Lys Asp Leu Gly Glu	GAA AAT TTC Glu Asn Phe	AAA GCC TTG GTG Lys Ala Leu Val	TTG ATT GCC TTT Leu Ile Ala Phe	GCT CAG Ala Gln 29
TAT CTT CAG CAG TGT CCA TTT Tyr Leu Gln Gln Cys Pro Phe	GAA GAT CAT Glu Asp His	GTA AAA TTA GTG Val Lys Leu Val	AAT GAA GTA ACT Asn Glu Val Thr	GAA TTT Glu Phe 49
GCA AAA ACA TGT GTT GCT GAT Ala Lys Thr Cys Val Ala Asp	GAG TCA GCT Glu Ser Ala	GAA AAT TGT GAC Glu Asn Cys Asp	AAA TCA CTT CAT Lys Ser Leu His	ACC CTT Thr Leu 69
TTT GGA GAC AAA TTA TGC ACA Phe Gly Asp Lys Leu Cys Thr	Val Ala Thr	Leu Arg Glu Thr	Tyr Gly Glu Met	Ala Asp 89
TGC TGT GCA AAA CAA GAA CCT Cys Cys Ala Lys Gln Glu Pro	Glu Arg Asn	Glu Cys Phe Leu	Gln His Lys Asp	Asp Asn 109
CCA AAC CTC CCC CGA TTG GTG Pro Asn Leu Pro Arg Leu Val	Arg Pro Glu	Val Asp Val Met	Cys Thr Ala Phe	His Asp 129
AAT GAA GAG ACA TIT TIG AAA Asn Glu Glu Thr Phe Leu Lys	Lys Tyr Leu	Tyr Glu Ile Ala	Arg Arg His Pro	Tyr Phe 149
TAT GCC CCG GAA CTC CTT TTC Tyr Ala Pro Glu Leu Leu Phe	Phe Ala Lys	Arg Tyr Lys Ala	Ala Phe Thr Glu	Cys Cys 169
CAA GCT GCT GAT AAA GCT GCC Gln Ala Ala Asp Lys Ala Ala	Cys Leu Leu	Pro Lys Leu Asp	Glu Leu Arg Asp	Glu Gly 189
AAG GCT TCG TCT GCC AAA CAG Lys Ala Ser Ser Ala Lys Gln	Arg Leu Lys	Cys Ala Şer Leu	Gln Lys Phe Gly	Glu Arg 209
GCT TTC AAA GCA TGG GCA GTA Ala Phe Lys Ala Trp Ala Val	Ala Arg Leu	Ser Gln Arg Phe	Pro Lys Ala Glu	Phe Ala 229
GAA GIT TCC AAG TTA GTG ACA Glu Val Ser Lys Leu Val Thr	Asp Leu Thr	Lys Val His Thr	Glu Cys Cys His	Gly Asp 249
CTG CTT GAA TGT GCT GAT GAC Leu Leu Glu Cys Ala Asp Asp	Arg Ala Asp	Leu Ala Lys Tyr	Ile Cys Glu Asn	Gln Asp 269
TCG ATC TCC AGT AAA CTG AAG Ser Ile Ser Ser Lys Leu Lys	Glu Cys Cys	Glu Lys Pro Leu	Leu Glu Lys Ser	His Cys 239
ATT GCC GAA GTG GAA AAT GAT Ile Ala Glu Val Glu Asn Asp	GAG ATG CCT Glu Met Pro	GCT GAC TTG CCT Ala Asp Leu Pro	TCA TTA GCT GCT Ser Leu Ala Ala	GAT TTT Asp Phe 309
GTT GAA AGT AAG GAT GTT TGC Val Glu Ser Lys Asp Val Cys	AAA AAC TAT Lys Asn Tyr	GCT GAG GCA AAG Ala Glu Ala Lys	GAT GTC TTC CTG Asp Val Phe Leu	GGC ATG Gly Met 329
TTT TTG TAT GAA TAT GCA AGA Phe Leu Tyr Glu Tyr Ala Arg	AGG CAT CCT Arg His Pro	GAT TAC TCT GTC Asp Tyr Ser Val	GTA CTG CTG CTG Val Leu Leu Leu	AGA CTT Arg Leu 349

WO 93/15211 PCT/FR93/00086 2/10

GCC Ala	AAG Lys	ACA Thr	TAT Tyr	GAA Glu	ACC Thr	ACT Thr	CTA Leu	GAG Glu	AAG Lys	TGC Cys	TGT Cys	GCC Ala	GCT Ala	GCA Ala	GAT Asp	CCT Pro	CAT His	GAA Glu	TGC Cys	369
TAT Tyr	GCC Ala	AAA Lys	GTG Val	TTC Phe	GAT Asp	GAA Glu	TTT Phe	AAA Lys	CCT Pro	CTT Leu	GTG Val	GAA Glu	GAG Glu	CCT Pro	CAG Gln	AAT Asn	TTA Leu	ATC Ile	aaa Lys	389
CAA Gln	AAT Asn	TGT Cys	GAG Glu	CTT Leu	TTT Phe	GAG Glu	CAG Gln	CTT Leu	GGA Gly	GAG Glu	TAC Tyr	AAA Lys	TTC Phe	CAG Gln	AAT Asn	GCG Ala	CTA Leu	TTA Leu	GTT Val	409
CGT Arg	TAC Tyr	ACC Thr	AAG Lys	AAA Lys	GTA Val	CCC Pro	CAA Gln	GTG Val	TCA Ser	ACT Thr	CCA Pro	ACT Thr	CTT Leu	GTA Val	GAG Glu	GTC Val	TCA Ser	AGA Arg	AAC Asn	429
CTA Leu	GGA Gly	AAA Lys	GTG Val	GGC Gly	AGC Ser	AAA Lys	TGT Cys	TGT Cys	AAA Lys	CAT His	CCT Pro	GAA Glu	GCA Ala	AAA Lys	AGA Arg	ATG Met	CCC Pro	TGT Cys	GCA Ala	449
GAA Glu	GAC Asp	TAT	CTA Leu	TCC Ser	GTG Val	GTC Val	CTG Leu	AAC Asn	CAG Gln	TTA Leu	TGT Cys	GTĞ Val	TTG Leu	CAT His	GAG Glu	ÀAA Lys	ACG Thr	CCA Pro	GTA Val	469
AGT Ser	GAC Asp	AGA Arg	GTC Val	ACC Thr	AAA Lys	TGC Cys	TGC Cys	ACA Thr	GAA Glu	TCC Ser	TTG Leu	GTG Val	AAC Asn	AGG Arg	CGA Arg	CCA Pro	TGC Cys	TTT Phe	TCA Ser	489
GCT Ala	CTG Leu	GAA Glu	GTC Val	GAT Asp	GAA Glu	ACA Thr	TAC Tyr	GTT Val	CCC Pro	AAA Lys	GAG Glu	TTT Phe	AAT Asn	GCT Ala	GAA Glu	ACA Thr	TTC Phe	ACC Thr	TTC Phe	509
His	Ala	Asp	Ile	Cys	Thr	Leu	Ser	Glu	Lys	Glu	Arg	Gln	ATC Ile	Lys	Lys	Gln	Thr	Ala	Leu	529
Val	Glu	Leu	Val	Lys	His	Lys	Pro	Lys	Ala	Thr	Lys	Glu	CAA Gln	Leu	Lys	Ala	Val	Met	Asp	549
Asp	Phe	Ala	Ala	Phe	Val	Glu	Lys	Cys	Cys	Lys	Ala	Asp	GAT Asp	Lys	Glu	Thr	Cys	Phe	Ala	569
Glu	Glu	Gly	Lys	Lys	Leu	Val	Ala	Ala	Ser	Gln	Ala	Ala	TTA Leu	Gly	Leu	Thr	Pro	Leu	Gly	589
Pro	Ala	Ser	Ser	Leu	Pro	Gln	Ser	Phe	Leu	Leu	Lys	Cys	TTA <i>Leu</i>	Glu	Gln	Val	Arg	Lys	Ile	609
GIN	GIY	Asp	Gly	Ala	Ala	Leu	Gln	Glu	Lys	Leu	Cys	Ala	ACC Thr	Tyr	Lys	Leu	Cys	His	Pro	629
Glu	Glu	Leu	Va l	Leu	Leu	Gly	His	Ser	Leu	Gly	Ile	Pro	TGG Trp	Ala	Pro	Leu	Ser	Ser	Cys	649
CCC Pro	AGC Ser	CAG Gln	GCC Ala	CTG Leu	CAG Gln	CTG Leu	GCA Ala	GGC Gly	TGC Cys	TTG <i>Leu</i>	AGC Ser	CAA Gln	CTC Leu	CAT His	AGC Ser	GGC Gly	CTT Leu	TTC Phe	CTC Leu	669
TAC Tyr	CAG Gln	GGG Gly	CTC Leu	CTG <i>Leu</i>	САG Glл	GCC Ala	CTG Leu	GAA Glu	GGG Gly	ATA Ile	TCC Ser	CCC Pro	GAG Glu	TTG <i>Leu</i>	GGT Gly	CCC Pro	ACC Thr	TTG <i>Leu</i>	GAC <i>Asp</i>	689
Thr	Leu	Gln	Leu	Asp	Va l	Ala	Asp	Phe	Ala	Thr	Thr	Ile	TGG Trp	Gln	Gln	Met	Glu	Glu	Leu	709
GGA Gly	ATG Met	GCC Ala	CCT Pro	GCC Ala	CTG <i>Leu</i>	САG Glп	CCC Pro	ACC Thr	САG Glп	GGT Gly	GCC Ala	ATG Met	CCG Pro	GCC Ala	TTC Phe	GCC Ala	TCT Ser	GCT Ala	TTC Phe	. 729
CAG Gln	CGC Arg	CGG Arg	GCA Ala	GGA Gly	GGG Gly	GTC Val	CTG Leu	GTT Val	GCT Ala	AGC Ser	CAT His	CTG <i>Leu</i>	CAG Gln	AGC Ser	TTC Phe	CTG Leu	GAG Glu	GTG Val	TCG Ser	749
TAC Tyr	CGC Arg	GTT Val	CTA Leu	CGC Arg	CAC His	CTT Leu	GCG Ala	CAG Gln	ccc Pro	TGA	AGCI	T								759

Figure 1(b)

Figure 2

(optionnel)

Figure 3

Figure 4

6/10

SEO, JD NO:

WO 93/15211

TYPE DE SEQUENCE :

Nucléotide et sa protéine correspondante

LONGUEUR: 2455 nucléotides

NOMBRE DE BRINS : CONFIGURATION:

Linéaire

TYPE DE MOLECULE :

Fragment de restriction <u>Hind</u>III du plasmide d'expression pYG1301 (chimère G.CSF-Gly4-SAH positionnée immédiatement en aval de la région prépro de la SAH)
Recombinaisons génétiques in vitro

ORIGINE:

AAG	CT T	TACA	ACAA	A TA	TAAA	AACA	ATG	AAG	TGG	GTA	ACC	TTT	ATT	TCC	CTT	CTT	TTT	CTC	TTT	
							wet	Lys	TŢ	Vai	Thr	Phe	Ile			Leu	Phe	Leu	Phe	-12
AGC	TCG	GCT	TAT	TCC	AGG	GGT	GTG	TTT	CGT	CGA	ACC	CCC	CTG	Apa: GGC	CCT	GCC	AGC	TCC	CTG	
Ser	Ser	Ala	Tyr	Ser	Arg	Gly	Val	Phe	Arg	Arg	Thr	Pro	Leu	Gly	Pro	Ala	Ser	Ser	Leu	9
											I	>G-C	SF							_
CCC	CAG	AGC	TTC	CTG	CTC	AAG	TGC	TTA	GAG	CAA	GTG	AGG	AAG	ATC	CAG	GGC	GAT	GGC	GCA	
PIO	GIN	ser	Pne	ren	Leu	Lys	Cys	Leu	Glu	Gln	Val	Arg	Lys	Ile	Gln	Gly	Asp	Gly	Ala	29
GCG	CTC	CAG	GAG	AAG	CTG	ىلىكىل	GC.	204	ጥልሮ	A A C	CTC	TY2C	CAC	~~	CAC	CAC	~~~	~~~	O TTO	
Ala	Leu	Gln	Glu	Lys	Leu	Cys	Ala	Thr	Tyr	Lys	Leu	Cys	His	Pro	Glu	Glu	Leu	Val	Leu	. 49
												Set	т							7,7
CTC	GGA	CAC	TCT	CTG	GGC	ATC	ccc	TGG	GCT	ccc	CT <u>G</u>	AGC	TCC	TGC	CCC	AGC	CAG	GCC	CTG	
Leu	Gly	His	Ser	Leu	Gly	Ile	Pro	Trp	Ala	Pro	Leu	Ser	Ser	Cys	Pro	Ser	Gln	Ala	Leu	69
CAG	CTG	GCA	GGC	TGC	ניות	AGC	CAA	CTY	СУТ) ACC	ccc	ىنملت	TTC-	CTI-C	mac.	C3.C		~~~		
Gln	Leu	Ala	Gly	Cys	Leu	Ser	Gln	Leu	His	Ser	Glv	Leu	Phe	Leu	TVr	Gln	GUU	TAN	Lou	89
																				03
CAG	GCC	CTG	GAA	GGG	ATA	TCC	CCC	GAG	TTG	GGT	ccc	ACC	TTG	GAC	ACA	CTG	CAG	CTG	GAC	
GII.	Ala	. Leu	GIU	GIY	TIE	ser	Pro	GIU	Leu	GIY	Pro	Thr	Leu	Asp	Thr	Leu	Gln	Leu	Asp	109
GTC	GCC	GAC	TTT	GCC	ACC	ACC	ATC	TGG	CAG	CAG	ATG	GAA	GAA	CTIC	GCIA	እጥር:	CCC	COTE	GCC .	
Val	Ala	Asp	Phe	Ala	Thr	Thr	Ile	Trp	Gln	Gln	Met	Glu	Glu	Leu	Glv	Met	Ala	Pro	Ala	129
																				12,
Lou	CAG	CCC	ACC	CAG	GGT	GCC	ATG	CCG	GCC	TTC	GCC	TCT	GCT	TTC	CAG	CGC	CGG	GCA	GGA	
	Gln	FIO	1111	GIII	GIA	AIG	Mec	Pro	Ala	Pue	ATA	ser	Ala	Phe	Gln	Arg	Arg	Ala	Gly	149
GGG	GTC	CTG	GTT	GCT	AGC	CAT	CTG	CAG	AGC	TTC	CTG	GAG	GTG	TCG	TAC	CGC	بلبلك	αтъ	CCC	
Gly	Val	Leu	Val	Ala	Ser	His	Leu	Gln	Ser	Phe	Leu	Glu	Val	Ser	Tyr	Arg	Val	Leu	Arg	169
His	CTT Leu	Ala	CAG	Dro	CIV	Cly	Cly	COL	GAT	GCA	CAC	AAG	AGT	GAG	GIT	GCT	CAT	CGG	TTT	
		G-0	SF<	I	GIY	lin	ker	717)	ASD [:	AIG AIG	HIS	Lys	ser	GIU	vaı	Ala	His	Arg	Phe	189
AAA	GAT											تهلمك	ינייניע	CCC	пчтчт		~~	m.m		
Lys	Asp	Leu	Gly	Glu	Glu	Asn	Phe	Lys	Ala	Leu	Val	Leu	Ile	Ala	Phe	Ala	Gln	TAT	Lou	209
																				203
CAG	CAG	TGT	CCA	LLL	GAA	GAT	CAT	GTA	AAA	TTA	GTG	AAT	GAA	GTA	ACT	GAA	TTT	GCA	AAA	
GIII	Gln	Cys	PIO	Pne	Glu	ASP	HIS	vaı	Lys	Leu	Val	Asn	Glu	Val	Thr	Glu	Phe	Ala	Lys	229
ACA	TGT	GTT	GCT	GAT	GAG	TCA	GCT	GAA	ААТ	тст	GAC	ΔΔΔ	TCΔ	بلملت	ሮልሞ	ACC	ىلىك	بلعلمان	CCA	
Thr	Cys	Val	Ala	Asp	Glu	Ser	Ala	Glu	Asn	Cys	Asp	Lys	Ser	Leu	His	Thr	Leu	Phe	GCA	249
																			=	247
GAC	AAA	TTA	TGC	ACA	GIT	GCA	ACT	CTT	CGT	GAA	ACC	TAT	CCT	GAA	ATG	GCT	GAC	TGC	TGT	
nap	Lys	beu	Cys	ınr	vaı	Ala	Thr	Leu	Arg	GIu	Thr	Tyr	Gly	Glu	Met	Ala	Asp	Cys	Cys	269
GCA	AAA	CAA	GAA	CCT	GAG	AGA	ААТ	GAA	ፐርር	ጉጥጉ	טדים	CAA	CAC	222	СУТ	CAC	N N C	~~?	330	
Ala	Lys	Gln	Glu	Pro	Glu	Arg	Asn	Glu	Cys	Phe	Leu	Gln	His	Lvs	Asp	Asp	Asn	Pro	AAC	289
																				20)
CIC	CCC	CGA	TTG	GTG	AGA	CCA	GAG	GTT	GAT	GTG	ATG	TGC	ACT	CCT	TTT	CAT	GAC	AAT	GAA	
red	Pro	Arg	rea	vaı	Arg	Pro	Glu	Val	Asp	Val	Met	Cys	Thr	Ala	Phe	His	Asp	Asn	Glu	309
GAG	ACA	TTT	TTG	AAA	AAA	TAC	TTA	ТАТ	GAA	АТТ	GCC	AGA	AC A	ሮልጥ	ىئىك	ר מידי	بتبطعل	መለመ	CCC	
Glu	Thr	Phe	Leu	Lys	Lys	Tyr	Leu	Tyr	Glu	Ile	Ala	Ara	Ara	His	Pro	Tvr	Phe	TVY	Δla	329
					-	-		-					- 3			-3-		-1-	-114	343

CCG Pro	GAA Glu	CTC Leu	CTT Leu	TTC Phe	TTT Phe	GCT Ala	AAA Lys	AGG Arg	TAT Tyr	AAA Lys	GCT Ala	GCT Ala	TTT Phe	ACA Thr	GAA Glu	TGT Cys	TGC Cys	CAA Gln	GCT Ala	349
GCT Ala	GAT Asp	AAA Lys	GCT Ala	GCC Ala	TGC Cys	CTG Leu	TTG Leu	CCA Pro	AAG Lys	CTC Leu	GAT Asp	GAA Glu	CTT Leu	CGG Arg	GAT Asp	GAA Glu	GGG Gly	AAG Lys	GCT Ala	369
TCG Ser	TCT Ser	GCC Ala	AAA Lys	CAG Gln	AGA Arg	CTC Leu	AAG Lys	TGT Cys	GCC Ala	AGT Ser	CTC Leu	CAA Gln	AAA Lys	TTT Phe	GGA Gly	GAA Glu	AGA Arg	GCT Ala	TTC Phe	389
AAA Lys	GCA Ala	TGG Trp	GCA Ala	GTA Val	GCT Ala	CGC Arg	CTG Leu	AGC Ser	CAG Gln	AGA Arg	TTT Phe	CCC Pro	AAA Lys	GCT Ala	GAG Glu	TTT Phe	GCA Ala	GAA Glu	GTT Val	409
TCC	AAG Lys	TTA	GTG	ACA	GAT	CTT	ACC	AAA	GTC	CAC	ACG	GAA	TGC	TGC	CAT	GGA	GAT	CTG	CTT	429
GAA	TGT Cys	CCT	GAT	GAC	AGG	GCG	GAC	CTT	GCC	AAG	ТАТ	ATC	TGT	GAA	AAT	CAA	GAT	TCG	ATC	
TCC	AGT	AAA	CTG	AAG	GAA	TGC	TGT	GAA	AAA	CCT	CTG	TTG	GAA	AAA	TCC	CAC	TGC	ATT	GCC	449
														-			-		Ala	469
GAA Glu	GTG Val	GAA Glu	AAT Asn	GAT Asp	GAG Glu	ATG Met	CCT Pro	GCT Ala	GAC Asp	TTG Leu	CCT Pro	TCA Ser	TTA Leu	GCT Ala	GCT Ala	GAT Asp	TTT Phe	GTT Val	GAA Glu	489
AGT Ser	AAG Lys	GAT Asp	GTT Val	TGC Cys	AAA Lys	AAC Asn	TAT Tyr	GCT Ala	GAG Glu	GCA Ala	AAG Lys	GAT Asp	GTC Val	TTC Phe	CTG Leu	GGC Gly	ATG Met	TTT Phe	TTG Leu	509
TAT Tyr	GAA Glu	TAT Tyr	GCA Ala	AGA Arg	AGG Arg	CAT His	CCT Pro	GAT Asp	TAC Tyr	TCT Ser	GTC Val	GTA Val	CTG Leu	CTG Leu	CTG Leu	AGA Arg	CTT Leu	GCC Ala	AAG Lys	529
ACA Thr	TAT Tyr	GAA Glu	ACC Thr	ACT Thr	CTA Leu	GAG Glu	AAG Lys	TGC Cys	TGT Cys	GCC Ala	GCT Ala	GCA Ala	GAT Asp	CCT Pro	CAT His	GAA Glu	TGC Cys	TAT Tyr	GCC Ala	549
AAA Lys	GTG Val	TTC Phe	GAT Asp	GAA Glu	TTT Phe	AAA Lys	CCT Pro	CTT Leu	GTG Val	GAA Glu	GAG Glu	CCT Pro	CAG Gln	AAT Asn	TTA Leu	ATC Ile	AAA Lvs	CAA Gln	AAT Asn	569
TGT	GAG Glu	CTT	TTT	GAG	CAG	CTT	GGA	GAG	TAC	AAA	TTC	CAG	ААТ	GCG	CTA	TTA	GIT	CGT	TAC	589
																		_	GGA	207
Thr	Lys	Lys	Val	Pro	Gln	Val	Ser	Thr	Pro	Thr	Leu	Val	Glu	Val	Ser	Arg	Asn	Leu	Gly	609
AAA Lys	GTG Val	GGC	AGC Ser	AAA Lys	TGT Cys	TGT Cys	AAA Lys	CAT His	CCT Pro	GAA Glu	GCA Ala	AAA Lys	AGA Arg	ATG Met	CCC Pro	TGT Cys	GCA Ala	GAA Glu	GAC Asp	629
TAT Tyr	CTA Leu	TCC Ser	GTG Val	GTC Val	CTG Leu	AAC Asn	CAG Gln	TTA Leu	TGT Cys	GIG Val	TTG Leu	CAT His	GAG Glu	AAA Lys	ACG Thr	CCA Pro	GTA Val	AGT Ser	GAC Asp	649
AGA Arg	GTC Val	ACC Thr	AAA Lys	TGC Cys	TGC Cys	ACA Thr	GAA Glu	TCC Ser	TTG Leu	GTG Val	AAC Asn	AGG Arg	CGA Arg	CCA Pro	TGC Cys	TTT Phe	TCA Ser	GCT Ala	CTG Leu	669
GAA Glu	GTC Val	GAT Asp	GAA Glu	ACA Thr	TAC Tyr	GTT Val	CCC Pro	AAA Lys	GAG Glu	TTT Phe	AAT Asn	GCT Ala	GAA Glu	ACA Thr	TTC Phe	ACC Thr	TTC Phe	CAT His	GCA Ala	689
GAT Asp	ATA Ile	TGC Cys	ACA Thr	CTT Leu	TCT Ser	GAG Glu	AAG Lys	GAG Glu	AGA Arg	CAA Gln	ATC Ile	AAG Lvs	AAA Lvs	CAA Gln	ACT Thr	GCA Ala	CTT	GTT Val	GAG	709
	GTG																			
Leu	Val	Lys	His	Lys	Pro	Lys	Ala	Thr	Lys	Glu	Gln	Leu	Lys	Ala	Val	Met	Asp	Asp	Phe	.729
Ala	GCT Ala	Phe •	GTA Val	GAG Glu	AAG Lys	TGC Cys	TGC Cys	AAG Lys	GCT Ala	Asp	GAT Asp MstI	Lys	GAG Glu	ACC Thr	TGC Cys	TTT Phe	GCC Ala	GAG Glu	GAG Glu	749
CCT	AAA	AAA	CTT	GIT	CCT	GCA	AGT	CAA	CCT	GCC	TTA	CCC	TTA	TAA	CATO	CACAT	TT			_
GIÀ	Lys	гÀ2	ren	val	Ala	Ala	ser	GIn	Ala	Ala	Leu	Gly	Leu	***						763

AAAAGCATCT CAGCCTACCA TGAGAATAAG AGAAAGAAAA TGAAGATCAA AAGCTT

8/10

Figure 6

Figure 7 .

Figure 8

INTERNATIONAL SEARCH REPORT

International application No. PCT/FR93/00086

In	ssification of subject matter t. Cl. 5	2R 1/645)	C12N 15/27;
	to International Patent Classification (IPC) or to both national cla	assification and IPC	
<u> </u>			
	ocumentation searched (classification system followed by classification	on symbols)	
	t. Cl. ⁵ : CO7K; C12N; A61K	•	
Documentat	ion searched other than minimum documentation to the extent that su	ch documents are included in th	ne fields searched
Electronic d	ata base consulted during the international search (name of data base	and, where practicable, search t	erms used)
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, or	of the relevant passages	Relevant to claim No.
Y	DE, A, 3 723 781 (CHUGAISEIYAKU K.K. 21 January 1988, see page 4, lir line 1; claims; tables	.) ne 68 - page 5,	1,5-6,8-9
Α			19-22
Y	EP, A, O 364 980 (DENKI KAGAKU KOGYO 25 April 1990, see abstract see page 2, lines 28-30 see page 3, lines 1-6 see page 3, line 54	OKABUSHIKI KAISHA)	1,5-6,8-9
Y	EP, A, O 395 918 (VASCULAR LABORATOR 7 November 1990, see column 1, 1 see column 16, lines 26-40	RY, INC.) lines 24-48	1,5-6,8-9
Y	WO, A, 9 013 653 (DELTA BIOTECHNOLOG 15 November 1990, see page 9, 1	GY LIMITED) ines 18-24	1,5-6,8-9
Α	EP, A, O 361 991 (RHONE-POULENC SANT cited in the application	,	10-18
Furthe	r documents are listed in the continuation of Box C.	See patent family annex.	
"A" document to be of	at defining the general state of the art which is not considered the particular relevance	document published after the inter and not in conflict with the applic minciple or theory underlying the	ation but cited to understand
"L" document cited to	ons twhich may throw doubts on priority claim(s) or which is establish the publication date of another citation or other	ment of particular relevance; the idered novel or cannot be considewhen the document is taken alone	ered to involve an inventive
"O" document means	referring to an oral disclosure, use, exhibition or other comb	ment of particular relevance; the idered to involve an inventive sbined with one or more other such dg obvious to a person skilled in the	step when the document is occuments, such combination
the prior	ty date claimed "&" docu	ment member of the same patent	family
	4000 /47 00 00)	iling of the international sear 1993 (02.07.93)	ch report
Name and me	siling address of the ISA/ Authorized	-55	
	n Patent Office Authorized	onicer	
Facsimile No	1 eleptione	No.	
om PCT/ISA	/210 (second sheet) (July 1002)		

INTERNATIONAL SEARCH REPORT

International application No.
PCT/FR93/00086

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim N
	see examples 1-4	
A	EP, A, O 401 384 (KIRIN-AMGEN, INC.) 12 December 1990, see page 1, line 15 - page 3	1,19-22
	<u>.</u> .	
	·	
	·	
	·	

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

FR 9300086 SA 70240

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

17/6

17/06/93

Patent document cited in search report	Publication date	Patent family member(s)	Publicati date
DE-A-3723781	21-01-88	AU-B- 611	
		AU-A- 7566	587 21-01-88
_		BE-A- 1000	253 27-09-88
		CH-A- 671	
		FR-A- 2601	591 22-01-88
		GB-A,B 2193	631 17-02-88
		JP-A- 63146	826 18-06-88
		NL-A- 8701	
		SE-A- 8702	907 19-01-88
		JP-A- 63146	
		JP-A- 63152	326 24-06-88
		JP-A- 63146	828 18-06-88
EP-A-0364980	25-04-90	JP-A- 2111	799 24-04-90
		DE-U- 6890	
		JP-A- 2275	
EP-A-0395918	07-11-90	AU-A- 5316	290 18-10-90
•		CA-A- 2014	
		CN-A- 1049	
		JP-A- 3117	
WO-A-9013653	15-11-90	AU-B- 630	450 29-10-92
		AU-A- 5564	
		EP-A- 0470	
		GB-A,B 2246	
		JP-T- 4506	
EP-A-0361991	04-04-90	FR-A- 2635	115 09-02-90
		FR-A- 2649	
		AU-B- 623	
		AU-A- 3933	
		JP-A- 2276	
EP-A-0401384	12-12-90	CA-A- 2006	596 22-06-90
		WO-A- 9006	

I CLASSE	MENT DE LANGEN	TON 61 - but me - but his in	Demands Intelligence (40	
		TON (si plusieurs symboles de classification		
		ale des brevets (CIB) on à la fois selon la cis		21/10/100
CIB	5 C12N15/6 C12N15/2	2; C12N1/19; 7; C12N15/14;	A61K37/02; C07 //(C12N1/19,C12R1/649	7K13/00
	0121113/2	7, CIZN15/14;	//(C12Ņ1/19,C12R1/64:	9)
II. DOMAI	NES SUR LESQUEL	S LA RECHERCHE A PORTE		
		Documentation min	nimale consultée ⁸	
Système	e de classification	Syr	nboles de classification	
CIB	5	CO7K ; C12N ;	A61K	
				······································
		Documentation consultée autre que la do où de tels documents font partie des dom		
		-		
III. DOCU	MENTS CONSIDERE	S COMME PERTINENTS ¹⁰		
Catégorie °	ldes	ntification ées éocuments cités, avec indicat des passages pertinents ¹³	tion, si nécessaire,12	No. des revendications
				visites 14
Y		723 781 (CHUGAISEIYAKU K	(.K.)	1,5-6,
		ier 1988 ge 4, ligne 68 - page 5,	liano 1.	8-9
	revendi	ge 4, fighe 66 - page 5, cations; tableaux	, righe 1;	
A				19-22
Υ	EP,A,0	364 980 (DENKI KAGAKU		1,5-6,
		BUSHIKI KAISHA)		8-9
	25 Avri			
	voir ab		20	
	voir pa	ge 2, ligne 28 - ligne 3 ge 3, ligne 1 - ligne 6	su	
	voir pa	ge 3, ligne 54		
	, ,		:	
Y		395 918 (VASCULAR LABORA	ATORY ,	1,5-6,
	INC.)	hwa 1000		8-9
		bre 1990 lonne 1, ligne 24 - lign	20.49	
		lonne 16, ligne 26 - lig		
			,	
			-/	
° Catégo	ries spéciales de docum	nents cités: ¹¹	"T" document ultérieur publié postérieurement	à la date de dépôt
		at général de la technique, non	international ou à la date de priorité et n'e à l'état de la technique pertinent, mais cit	uppartenenant pas
	nsidéré comme particul cument antérieur, mais	publié à la date de dépôt interna-	le principe ou la théorie constituent la bas "X" document particulièrement pertinent; l'inve	
	nal ou après cette date	n doute sur une revendication de	quée ne peut être considérée comme nouve impliquant une activité inventive	
pris	orité ou cité pour déten	miner la date de publication d'une	"Y" document particulièrement pertinent; l'inve	ention reven-
		eraison spéciale (telle qu'indiquée) ne divulgation orale, à un usage, à	diquée ne peut être considérée comme imp activité inventive lorsque le document est	
un	e exposition ou tous su	tres moyens date de dépôt international, mais	physicurs autres documents de même natu naison étant évidente pour une personne d	re, cette combi- u métier.
postérieures	nent à la date de priori	té revendiquée	"&" document qui fait partie de la même famili	
IV. CERTI	FICATION			
Date à laqu	elle la recherche intern	ationale a été effectivement achevée	Date d'expédition du présent rapport de res	therche Internationale
	17 JI	UIN 1993	0 2 -07- 1993	
Administrati	ion chargée de la reche	rche internationale	Signature du fonctionnaire autorisé	
	oppice e	TUROPEEN DES BREVETS	LE CORNEC N.D.R.	

Demande Internationale No

THE CONTRACT CONTINE LEGITATION IN	EUXIEME FEUILLE)	IQUES SUR LA
Identification des documents cités, ¹⁶ avec indication, des passages pertinents ¹⁷	si nécessaire	No. des revendication visées 18
WO,A,9 013 653 (DELTA BIOTECHNOLOGY LIMITED) 15 Novembre 1990 voir page 9, ligne 18 - ligne 24		1,5-6, 8-9
EP,A,O 361 991 (RHONE-POULENC SANTE) 4 Avril 1990 cité dans la demande voir exemples 1-4		10-18
EP,A,O 401 384 (KIRIN-AMGEN, INC.) 12 Décembre 1990 voir page 1, ligne 15 - page 3		1,19-22
•		
	WO,A,9 013 653 (DELTA BIOTECHNOLOGY LIMITED) 15 Novembre 1990 voir page 9, ligne 18 - ligne 24 EP,A,0 361 991 (RHONE-POULENC SANTE) 4 Avril 1990 cité dans la demande voir exemples 1-4 EP,A,0 401 384 (KIRIN-AMGEN, INC.) 12 Décembre 1990	WO,A,9 013 653 (DELTA BIOTECHNOLOGY LIMITED) 15 Novembre 1990 voir page 9, ligne 18 - ligne 24 EP,A,0 361 991 (RHONE-POULENC SANTE) 4 Avril 1990 cité dans la demande voir exemples 1-4 EP,A,0 401 384 (KIRIN-AMGEN, INC.) 12 Décembre 1990

ANNEXE AU RAPPORT DE RECHERCHE INTERNATIONALE RELATIF A LA DEMANDE INTERNATIONALE NO.

FR 9300086 SA 70240

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche internationale visé ci-dessus.

Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du

Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

17/06/93

DE-A-3723781	21-01-88	AU-B- AU-A-	611856 7566587	27-06-91
		AU-A-	7566507	
			/ 30036/	21-01-88
		BE-A-	1000253	27-09-88
		CH-A-	671157	15-08-89
		FR-A-	2601591	22-01-88
		GB-A,B	2193631	17-02-88
		JP-A-	63146826	18-06-88
		NL-A-	8701640	16-02-88
		SE-A-	8702907	19-01-88
		JP-A-	63146827	18-06-88
		JP-A-	63152326	24-06-88
		JP-A-	63146828	18-06-88
EP-A-0364980	25-04-90	JP-A-	2111799	24-04-90
	20 01 00	DE-U-	6890599	19-05-93
		JP-A-	2275900	09-11-90
EP-A-0395918	07÷11-90	AU-A-	5316290	18-10-90
	0, 11 30	CA-A-	2014470	13-10-90
		CN-A-	1049865	13-03-91
		JP-A-	3117484	20-05-91
WO-A-9013653	15-11-90	AU-D	620450	
	12-11-30	AU-B-	630450	29-10-92
		AU-A-	5564690	29-11-90
		EP-A-	0470165	12-02-92
		GB-A,B	2246783	12-02-92
		JP-T-	4506598	19-11-92
EP-A-0361991	04-04-90	FR-A-	2635115	09-02-90
		FR-A-	2649991	25-01-91
		AU-B-	623425	14-05-92
		AU-A-	3933289	08-02-90
		JP-A-	2276589	13-11-90
EP-A-0401384	12-12-90	-CA-A-	2006596	22-06-90
		WO-A-	9006952	28-06-90

EPO FORM POOR