14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

14: FM Radio Receiver

FM Radio Block Diagram

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

FM spectrum: 87.5 to $108\,\mathrm{MHz}$

Each channel: $\pm 100 \, \mathrm{kHz}$

Baseband signal:

Mono (L + R): $\pm 15 \,\mathrm{kHz}$

Pilot tone: 19 kHz

Stereo (L – R): $38 \pm 15 \,\mathrm{kHz}$

RDS: $57 \pm 2 \,\mathrm{kHz}$

FM Modulation:

Freq deviation: $\pm 75 \, \mathrm{kHz}$

L–R signal is multiplied by $38\,\mathrm{kHz}$ to shift it to baseband

[This example is taken from Ch 13 of Harris: Multirate Signal Processing]

Aliased ADC

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

FM band: 87.5 to $108\,\mathrm{MHz}$ Normally sample at $f_s>2f$

However:

 $f_s = 80 \, \mathrm{MHz}$ aliases band down to $[7.5, \, 28] \, \mathrm{MHz}$.

-ve frequencies alias to $[-28, -7.5] \,\mathrm{MHz}.$

We must suppress other frequencies that alias to the range $\pm [7.5,\ 28]\ \mathrm{MHz}.$

Need an analogue bandpass filter to extract the FM band. Transition band mid-points are at $f_s=80\,\mathrm{MHz}$ and $1.5f_s=120\,\mathrm{MHz}$.

You can use an aliased analog-digital converter (ADC) provided that the target band fits entirely between two consecutive multiples of $\frac{1}{2}f_s$.

Lower ADC sample rate ©. Image = undistorted frequency-shifted copy.

Channel Selection

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

FM band shifted to 7.5 to $28\,\mathrm{MHz}$ (from 87.5 to $108\,\mathrm{MHz}$)

We need to select a single channel $200\,\mathrm{kHz}$ wide

We shift selected channel to DC and then downsample to $f_s=400\,\mathrm{kHz}$. Assume channel centre frequency is $f_c=c\times100\,\mathrm{kHz}$

We must apply a filter before downsampling to remove unwanted images

The downsampled signal is complex since positive and negative frequencies contain different information.

We will look at three methods:

- 1 Freq shift, then polyphase lowpass filter
- 2 Polyphase bandpass complex filter
- 3 Polyphase bandpass real filter

Channel Selection (1) take work out of full

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Multiply by $e^{-j2\pi r \frac{f_c}{80 \, \mathrm{MHz}}}$ to shift channel at f_c to DC.

$$f_c = c \times 100 \,\mathrm{k} \Rightarrow \frac{f_c}{80 \,\mathrm{M}} = \frac{c}{800}$$

Result of multiplication is complex (thick lines on diagram)

Next, lowpass filter to $\pm 100 \, \mathrm{kHz}$

$$\Delta \omega = 2\pi \frac{200 \text{ k}}{80 \text{ M}} = 0.157$$

$$\Rightarrow M = \frac{60 \text{ dB}}{3.5\Delta\omega} = 1091$$

Finally, downsample 200:1

Polyphase:

$$H_p(z)$$
 has $\left\lceil \frac{1092}{200} \right\rceil = 6$ taps

Complex data \times Real Coefficients (needs 2 multiplies per tap)

Couplex by weal: multiples *> L Multiplication Load:

$$2 \times 80 \,\mathrm{MHz}$$
 (freq shift) + $12 \times 80 \,\mathrm{MHz}$ ($H_p(z)$) = $14 \times 80 \,\mathrm{MHz}$

channel number

Channel Selection (2)

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Channel centre frequency $f_c = c \times 100 \, \mathrm{kHz}$ where c is an integer.

Write
$$c = 4k + l$$
 where $k = \left\lfloor \frac{c}{4} \right\rfloor$ and $l = c_{\text{mod } 4}$
$$\begin{matrix} c \\ \hline u[r] \\ \hline @80M \end{matrix} G_{[c]}(z) - 200:1 \end{matrix} \times \begin{matrix} v[n] \\ \hline @400k \end{matrix}$$

We multiply u[r] by $e^{-j2\pi r\frac{c}{800}}$, convolve with h[m] and then downsample:

$$\begin{split} v[n] &= \sum_{m=0}^{M} h[m] u[200n - m] e^{-j2\pi(200n - m)\frac{c}{800}} & [r = 200n] \\ &= \sum_{m=0}^{M} h[m] e^{j2\pi\frac{mc}{800}} u[200n - m] e^{-j2\pi200n\frac{4k+l}{800}} & [c = 4k+1] \\ &= \sum_{m=0}^{M} g_{[c]}[m] u[200n - m] e^{-j2\pi\frac{ln}{4}} & [g_{[c]}[m] \stackrel{\Delta}{=} h[m] e^{j2\pi\frac{mc}{800}}] \\ &= (-j)^{ln} \sum_{m=0}^{M} g_{[c]}[m] u[200n - m] & [e^{-j2\pi\frac{ln}{4}} \text{ indep of } m] \end{split}$$

Multiplication Load for polyphase implementation:

 $G_{[c],p}(z)$ has complex coefficients imes real input \Rightarrow 2 mults per tap $(-j)^{ln} \in \{+1,\ -j,\ -1,\ +j\}$ so no actual multiplies needed Total: $12 \times 80 \, \mathrm{MHz}$ (for $G_{[c],p}(z)$) + 0 (for $-j^{ln}$) = $12 \times 80 \, \mathrm{MHz}$

Channel Selection (3)

14: FM Radio Receiver

• FM Radio Block Diagram

Aliased ADC

Channel Selection

Channel Selection (1)

Channel Selection (2)

Channel Selection (3)

FM Demodulator

Differentiation Filter

Pilot tone extraction

Polyphase Pilot tone

Summary

Channel frequency $f_c = c \times 100 \, \mathrm{kHz}$ where c = 4k + l is an integer

$$\begin{split} g_{[c]}[m] &= h[m]e^{j2\pi\frac{cm}{800}} \\ g_{[c],p}[s] &= g_c[200s+p] = h[200s+p]e^{j2\pi\frac{c(200s+p)}{800}} \\ &= h[200s+p]e^{j2\pi\frac{cs}{4}}e^{j2\pi\frac{cp}{800}} \triangleq h[200s+p]e^{j2\pi\frac{cs}{4}}\alpha^p \end{split}$$
 [polyphase] Define $f_{[c],p}[s] = h[200s+p]e^{j2\pi\frac{(4k+l)s}{4}} = j^{ls}h[200s+p]$

Although $f_{[c],p}[s]$ is complex it requires only one multiplication per tap because each tap is either purely real or purely imaginary.

Multiplication Load:

$$6 \times 80 \, \mathrm{MHz} \, (F_p(z)) + 4 \times 80 \, \mathrm{MHz} \, (\times e^{j2\pi \frac{cp}{800}}) = 10 \times 80 \, \mathrm{MHz}$$

FM Demodulator

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Complex FM signal centred at DC: $v(t) = |v(t)|e^{j\phi(t)}$ We know that $\log v = \log |v| + j\phi$

The instantaneous frequency of v(t) is $\frac{d\phi}{dt}$.

We need to calculate
$$x(t) = \frac{d\phi}{dt} = \frac{d\Im(\log v)}{dt} = \Im\left(\frac{1}{v}\frac{dv}{dt}\right) = \frac{1}{|v|^2}\Im\left(v^*\frac{dv}{dt}\right)$$

We need:

- (1) Differentiation filter, D(z)
- (2) Complex multiply, $w[n] \times v^*[n]$ (only need \Im part)
- (3) Real Divide by $|v|^2$

Differentiation Filter

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Window design method:

- (1) calculate d[n] for the ideal filter
- (2) multiply by a window to give finite support

$$\frac{v[n]}{D(z)} \frac{w[n]}{w[n]}$$

Differentiation:
$$\frac{d}{dt}e^{j\omega t} = j\omega e^{j\omega t} \quad \Rightarrow \quad D(e^{j\omega}) = \begin{cases} j\omega & |\omega| \le \omega_0 \\ 0 & |\omega| > \omega_0 \end{cases}$$

Hence
$$d[n] = \frac{1}{2\pi} \int_{-\omega_0}^{\omega_0} j\omega e^{j\omega n} d\omega = \frac{j}{2\pi} \left[\frac{\omega e^{jn\omega}}{jn} - \frac{e^{jn\omega}}{j^2 n^2} \right]_{-\omega_0}^{\omega_0}$$

$$= \frac{n\omega_0 \cos n\omega_0 - \sin n\omega_0}{\pi n^2}$$
[IDTFT]

Using M=18, Kaiser window, $\beta=7$ and $\omega_0=2.2=\frac{2\pi\times140~\mathrm{kHz}}{400~\mathrm{kHz}}$: Near perfect differentiation for $\omega\leq1.6~(\approx100~\mathrm{kHz}$ for $f_s=400~\mathrm{kHz})$ Broad transition region allows shorter filter

Pilot tone extraction

+

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Aim: extract $19\,\mathrm{kHz}$ pilot tone, double freq \rightarrow real $38\,\mathrm{kHz}$ tone.

- (1) shift spectrum down by $20 \, \mathrm{kHz}$: multiply by $e^{-j2\pi n \frac{20 \, \mathrm{kHz}}{400 \, \mathrm{kHz}}}$
- (2) low pass filter to $\pm 1\,\mathrm{kHz}$ to extract complex pilot at $-1\,\mathrm{kHz}$: H(z)
- (3) square to double frequency to $-2\,\mathrm{kHz}$

$$[(e^{j\omega t})^2 = e^{j2\omega t}]$$

- (4) shift spectrum up by $40\,\mathrm{kHz}$: multiply by $e^{+j2\pi n\frac{40\,\mathrm{kHz}}{400\,\mathrm{kHz}}}$
- (5) take real part

More efficient to do low pass filtering at a low sample rate:

Transition bands:

$$F(z)$$
: $1 \to 17 \,\mathrm{kHz}$, $H(z)$: $1 \to 3 \,\mathrm{kHz}$, $G(z)$: $2 \to 18 \,\mathrm{kHz}$
 $\Delta \omega = 0.25 \Rightarrow M = 68$, $\Delta \omega = 0.63 \Rightarrow 27$, $\Delta \omega = 0.25 \Rightarrow 68$

Polyphase Pilot tone

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

Anti-alias filter: F(z)

Each branch, $F_p(z)$, gets every 20^{th} sample and an identical $e^{j2\pi\frac{n}{20}}$ So $F_p(z)$ can filter a real signal and then multiply by fixed $e^{j2\pi\frac{p}{20}}$

Anti-image filter: G(z)

Each branch, $G_p(z)$, multiplied by identical $e^{j2\pi\frac{n}{10}}$ So $G_p(z)$ can filter a real signal

Multiplies:

F and G each: $(4+2) \times 400 \, \text{kHz}$, $H + x^2$: $(2 \times 28 + 4) \times 20 \, \text{kHz}$

Total: $15 \times 400 \, \mathrm{kHz}$

[Full-rate H(z) needs $273 \times 400 \, \mathrm{kHz}$]

Summary

14: FM Radio Receiver

- FM Radio Block Diagram
- Aliased ADC
- Channel Selection
- Channel Selection (1)
- Channel Selection (2)
- Channel Selection (3)
- FM Demodulator
- Differentiation Filter
- Pilot tone extraction
- Polyphase Pilot tone
- Summary

- Aliased ADC allows sampling below the Nyquist frequency
 - Only works because the wanted signal fits entirely within a Nyquist band image
- Polyphase filter can be combined with complex multiplications to select the desired image
 - subsequent multiplication by $-j^{ln}$ shifts by the desired multiple of $\frac{1}{4}$ sample rate
 - No actual multiplications required
- FM demodulation uses a differentiation filter to calculate $\frac{d\phi}{dt}$
- Pilot tone bandpass filter has narrow bandwidth so better done at a low sample rate
 - double the frequency of a complex tone by squaring it

This example is taken from Harris: 13.