Space-bounded quantum state testing via space-efficient quantum singular value transformation

François Le Gall, Yupan Liu, Qisheng Wang

Nagoya University

Available at arXiv:2308.05079

Shenzhen-Nagoya Workshop on Quantum Science, September 2024

- 1 Main results: Complete characterizations of quantum logspace from state testing
- 2 Implication: Algorithmic Holevo-Helstrom measurement
- 3 Proof technique: Space-efficient quantum singular value transformation
- 4 Open problems

What is quantum state testing

Task: Quantum state testing (with two-sided error).

Given two quantum devices Q_0 and Q_1 that prepare $\operatorname{poly}(n)$ -qubit quantum (mixed) states $\rho_0 \in \mathbb{C}^{N \times N}$ and $\rho_1 \in \mathbb{C}^{N \times N}$, respectively, which may be viewed as "sample access" to ρ_0 and ρ_1 . Decide whether $\operatorname{dist}(\rho_0, \rho_1) \leq \varepsilon_1$ or $\operatorname{dist}(\rho_0, \rho_1) \geq \varepsilon_2$.

The classical counterpart and the one-sided error variant are as follows:

- ▶ **Distribution testing** (a.k.a. closeness testing of distributions, see [Canonne'20]): Given sample accesses to probability distributions D_0 and D_1 , decide whether $\operatorname{dist}(D_0, D_1) \leq \varepsilon_1$ or $\operatorname{dist}(D_0, D_1) \geq \varepsilon_2$.
- ▶ Quantum state certification [Bădescu-O'Donnell-Wright'19]: Given "sample access" to ρ_0 and ρ_1 , decide whether $\rho_0 = \rho_1$ or $\operatorname{dist}(\rho_0, \rho_1) \geq \varepsilon$.

Typical goal: Minimize the number of copies (*sample complexity*) of ρ_0 and ρ_1 .

In this work: Viewing quantum state testing as a computational (promise) problem.

Main result: Space-bounded state certification (one-sided error scenario)

Task 1.1 (Space-bounded quantum state certification). Given two *polynomial-size* $O(\log n)$ -qubit quantum circuits Q_0 and Q_1 that prepare $O(\log n)$ -qubit quantum (mixed) states ρ_0 and ρ_1 , respectively. Decide whether $\rho_0 = \rho_1$ or $\operatorname{dist}(\rho_0, \rho_1) \geq \alpha$.

Classical and quantum distance-like measures that are considered:

	Quantum	Classical	
ℓ_1 norm	trace distance $td(\rho_0,\rho_1) := \tfrac{1}{2} Tr \rho_0 - \rho_1 $	total variation distance (a.k.a. statistical distance)	
ℓ_2 norm	Hilbert-Schmidt distance $\mbox{HS}^2(\rho_0,\rho_1) := \tfrac{1}{2} \mbox{Tr}(\rho_0-\rho_1)^2$	Euclidean distance	

Theorem 1.2 (Space-bounded quantum state certification is coRQ_UL-complete).

The following space-bounded quantum state certification problems are $coRQ_UL$ -complete. For any $\alpha(n) \geq 1/poly(n)$, decide whether

- **1** $\overline{\mathsf{CERTQSD}}_{\mathsf{log}}$: $\rho_0 = \rho_1$ or $\mathsf{td}(\rho_0, \rho_1) \geq \alpha(n)$;
- ② $\overline{\mathsf{CERTQHS}}_{\mathsf{log}}$: $\rho_0 = \rho_1$ or $\mathsf{HS}^2(\rho_0, \rho_1) \geq \alpha(n)$.

Remark. coRQ_UL captures the power of *unitary* quantum logspace that *always* accepts *yes* instances, while accepting *no* instances with probability at most 1/2.

Main result: Space-bounded quantum state testing (two-sided error scenario)

Task 1.3 (Space-bounded quantum state testing). Given two *polynomial-size* $O(\log n)$ -qubit quantum circuits Q_0 and Q_1 that prepare $O(\log n)$ -qubit quantum (mixed) states ρ_0 and ρ_1 , respectively. Decide whether $\operatorname{dist}(\rho_0,\rho_1) \leq \beta$ or $\operatorname{dist}(\rho_0,\rho_1) \geq \alpha$.

Theorem 1.4 (Space-bounded quantum state testing is BQL-complete). The following space-bounded quantum state testing problems are BQL-complete. For any α, β such that $\alpha(n) - \beta(n) \ge 1/\text{poly}(n)$ or any $g(n) \ge 1/\text{poly}(n)$, decide whether

- GAPQSD_{log}: $td(\rho_0, \rho_1) \ge \alpha$ or $td(\rho_0, \rho_1) \le \beta$;
- $\textbf{②} \ \mathsf{GAPQHS}_{\mathsf{log}} \text{: } \mathrm{HS}^2(\rho_0,\rho_1) \geq \alpha \ \mathsf{or} \ \mathrm{HS}^2(\rho_0,\rho_1) \leq \beta;$
- $\textbf{3} \ \mathsf{GAPQED}_{\mathsf{log}} \colon S(\rho_0) S(\rho_1) \geq g \ \mathsf{or} \ S(\rho_1) S(\rho_0) \geq g;$
- $\text{ \mathfrak{G} APQJS$}_{\text{log}} \colon \mathrm{QJS}_2(\rho_0,\rho_1) \geq \alpha \text{ or } \mathrm{QJS}_2(\rho_0,\rho_1) \leq \beta.$

 $\underline{\textbf{Remark}}$. BQL captures the power of quantum computation with $O(\log n)$ qubits.

Summary: Time- and space-bounded distribution and state testing

Task 1.5 (Time-bounded quantum state testing). Given two *polynomial-size* quantum circuits Q_0 and Q_1 that prepare $\operatorname{poly}(n)$ -qubit quantum (mixed) states ρ_0 and ρ_1 , respectively. Decide whether $\operatorname{dist}(\rho_0,\rho_1) \leq \beta$ or $\operatorname{dist}(\rho_0,\rho_1) \geq \alpha$.

Computational hardness of time- and space-bounded distribution and state testing:

	ℓ_1 norm	ℓ_2 norm	Entropy
Classical	SZK-complete*	BPP-complete	SZK-complete
Time-bounded	[SV03,GSV98]	Folklore	[GV99,GSV98]
Quantum	QSZK-complete*	BQP-complete	QSZK-complete
Time-bounded	[Wat02,Wat09]	[BCWdW01, RASW23]	[BASTS10]
Quantum	BQL-complete	BQL-complete	BQL-complete
Space-bounded	This work	[BCWdW01] and this work	This work

<u>Takeaways</u>. For space-bounded state testing and certification problems, the computational hardness of these problems is *as easy as* just preparing quantum states, which is *independent of the choice* of aforementioned distance-like measures.

- 1 Main results: Complete characterizations of quantum logspace from state testing
- 2 Implication: Algorithmic Holevo-Helstrom measurement
- 3 Proof technique: Space-efficient quantum singular value transformation
- Open problems

Distinguishing quantum states and Holevo-Helstrom bound

Problem 2.1 (Computational Quantum Hypothesis Testing). Given polynomial-size quantum circuits Q_0 and Q_1 acting on n qubits and having r output qubits. Let ρ_b be the state obtained by performing Q_b on $|0^n\rangle$ and tracing out the non-output qubits for $b \in \{0,1\}$. Now, consider the following computational task:

- ▶ **Input:** A quantum state ρ , either ρ_0 or ρ_1 , is chosen uniformly at random.
- **Output:** A bit *b* indicates that $\rho = \rho_b$.

Holevo-Helstrom bound

Theorem 2.2 [Holevo'73, Helstrom'69] Given a quantum state ρ , either ρ_0 or ρ_1 , that is chosen uniformly at random, the maximum success probability to discriminate between quantum states ρ_0 and ρ_1 is given by $\frac{1}{2}+\frac{1}{2}\mathrm{td}(\rho_0,\rho_1)$.

Optimal two-outcome measurement $\{\Pi_0,\Pi_1\}$ achieving the max. discrimination prob.:

$$\Pi_0 = \frac{I}{2} + \frac{1}{2} \text{sgn}^{(\text{SV})} \Big(\frac{\rho_0 - \rho_1}{2} \Big) \text{ and } \Pi_1 = \frac{I}{2} - \frac{1}{2} \text{sgn}^{(\text{SV})} \Big(\frac{\rho_0 - \rho_1}{2} \Big).$$

It is straightforward to see that $td(\rho_0, \rho_1) = \frac{1}{2}Tr|\rho_0 - \rho_1| = Tr(\Pi_0\rho_0) - Tr(\Pi_0\rho_1)$.

An approximately explicit implementation of the HH measurement

Theorem 2.3 (Algorithmic Holevo-Helstrom measurement, this work). Let ρ_0 and ρ_1 be states prepared by n-qubit quantum circuits Q_0 and Q_1 , respectively, as defined in Problem 2.1. An approximate version of the Holevo-Helstrom measurement Π_0 , denoted as $\tilde{\Pi}_0$, can be implemented such that

$$|\operatorname{td}(\rho_0, \rho_1) - (\operatorname{Tr}(\tilde{\Pi}_0 \rho_0) - \operatorname{Tr}(\tilde{\Pi}_0 \rho_1))| \le 2^{-n}.$$

The quantum circuit implementation of $\tilde{\Pi}_0$, acting on O(n) qubits, requires $\operatorname{poly}(N)$ queries onto the circuits Q_0 , Q_1 , one-, and two-qubit gates, where $N=2^n$. Moreover, the circuit description can be computed in deterministic time $\operatorname{poly}(N)$ and space O(n).

<u>Proof Sketch.</u> Instead of implementing $\{\Pi_0,\Pi_1\}$, it suffices to approx. implement $\{\hat{\Pi}_0,\hat{\Pi}_1\}$ by the space-efficient QSVT assoc. with the sign function (Theorem 1.4 \blacksquare):

$$\hat{\Pi}_0 = \frac{I}{2} + \frac{1}{2}P_{d'}^{\mathrm{sgn}}\Big(\frac{\rho_0 - \rho_1}{2}\Big) \text{ and } \hat{\Pi}_1 = \frac{I}{2} - \frac{1}{2}P_{d'}^{\mathrm{sgn}}\Big(\frac{\rho_0 - \rho_1}{2}\Big).$$

Once we have a block-encoding of $P_{d'}^{\text{sgn}}(\frac{\rho_0-\rho_1}{2})$, we can implement Π_0 :

- 1 Main results: Complete characterizations of quantum logspace from state testing
- 2 Implication: Algorithmic Holevo-Helstrom measurement
- 3 Proof technique: Space-efficient quantum singular value transformation
- Open problems

Quantum singular value transformation in a nutshell

QSVT [Gilyén-Su-Low-Wiebe'19] is a systematic approach to (time-efficiently) manipulating singular values $\{\sigma_i\}_i$ of an Hermitian matrix A using a corresponding projected unitary encoding $A = \tilde{\Pi}U\Pi$ for orthogonal projectors $\tilde{\Pi}$ and Π .

Quantum singular value transformation, revisited

Given a singular value decomposition $A=\sum_i \sigma_i |\tilde{\psi}_i\rangle\langle\psi_i|$ associated with an s(n)-qubit projected unitary encoding, we can approximately implement a QSVT $f^{(\mathrm{SV})}(A)=\sum_i f(\sigma_i)|\tilde{\psi}_i\rangle\langle\psi_i|$ by employing a polynomial P_d of degree $d=O\left(\frac{1}{\delta}\log\frac{1}{\varepsilon}\right)$ satisfying that

- ▶ P_d well-approximates f on the interval of interest \mathcal{I} : $\max_{x \in \mathcal{I} \setminus \mathcal{I}_{\delta}} |P_d(x) f(x)| \le \varepsilon$ where $\mathcal{I}_{\delta} \subseteq \mathcal{I} \subseteq [-1,1]$ and typically $\mathcal{I}_{\delta} := (-\delta,\delta)$.
- ▶ P_d is bounded: $\max_{x \in [-1,1]} |P_d(x)| \le 1$.

Moreover, all coefficients of P_d (namely, pre-processing) can be computed in deterministic $\operatorname{poly}(d)$ time (and thus space). Hence, the transformation $P_d^{(\mathrm{SV})}(A)$ can be implemented by a $\operatorname{poly}(d)$ -size quantum circuit acts on $O(\max\{\log d, s(n)\})$ qubits.

Remark. Quantum circuit implementation in QSVT is already space-efficient!

Space-efficient quantum singular value transformation

Question 3.1 (Space-efficient QSVT). Can we implement a degree-d QSVT for any $O(\log n)$ -qubit projected unitary encoding with $d \leq \operatorname{poly}(n)$, using only $O(\log n)$ space in both (classical) pre-processing and quantum circuit implementation?

Partial solutions:

- Space-efficient QSVT associated with Chebyshev polynomials (underlying Grover search) is implicitly established in [Gilyén-Su-Low-Wiebe'19].
- ▶ A natural approach is "projecting" the *continuous function bounded on* [-1,1], e.g., the sign function, to the basis formed by Chebyshev polynomials [Metger-Yuen'23]:
 - \diamond Classical (deterministic) pre-processing requires $O(\text{poly} \log n)$ space;
 - The approximation error (caused directly by the polynomial approximation) on the interval of interest increases from ε to O(ε log d) due to the Chebyshev truncation.

Theorem 3.2 (Space-*efficient* QSVT, this work). Implement a degree-d QSVT associated with *piecewise-smooth functions* for any $O(\log n)$ qubit *bitstring indexed encoding* with $d \leq \operatorname{poly}(n)$ requires (randomized) $O(\log n)$ space for pre-processing and $O(\log n)$ qubits in quantum circuit implementation. The polynomial approximation error on the interval of interest is $O(\varepsilon)$. Moreover, the implementation requires $O(d^2 \|\mathbf{c}\|_1)$ uses of U, U^{\dagger} , C_{Π} NOT, C_{Π} NOT, among with other gates, where \mathbf{c} is the coefficients of *averaged* Chebyshev truncation, and $\|\mathbf{c}\|_1 \leq O(\log d)$.

E.g. Normalized log function $\ln_{\beta}(x) := \frac{2\ln(1/x)}{2\ln(2/\beta)}$ on the interval $\mathcal{I} = [\beta, 1]$ for any $\beta \ge 1/\text{poly}(n)$.

- 1 Main results: Complete characterizations of quantum logspace from state testing
- 2 Implication: Algorithmic Holevo-Helstrom measurement
- 3 Proof technique: Space-efficient quantum singular value transformation
- 4 Open problems

Conclusions and open problems

Take-home messages on our work

- Space-bounded quantum state certification problems w.r.t. trace distance and Hilbert-Schmidt distance are coRQ_UL-complete (Theorem 1.2). This is the *first* family of natural coRQ_UL-complete problem!
- Space-bounded quantum state testing problems w.r.t. common distance-like measures (i.e., trace distance, squared Hilbert-Schmidt distance, quantum entropy difference, quantum Jensen-Shannon divergence) are BQL-complete (Theorem 1.4).
- **3** Holevo-Helstrom measurement can be approx. implemented by the space-efficient QSVT in quantum poly(N) time and O(n) space (Theorem 2.3), where $N=2^n$. Consequently, QSZK is in QIP(2) with a quantum linear space honest prover.
- Quantum singular value transformation on bitstring indexed encoding can be done in quantum logspace, with a randomized classical pre-processing (Theorem 3.2).

Open problems

- Are there any other applications of space-efficient QSVT?
- (Inspired by Tom Gur) What about the computational complexity for space-bounded quantum channel testings with respect to different distance-like measures?

Thanks!