

Figure 2 - WM8600A Channel Step Response Exhibiting Poor Group Delay Characteristics

Figure 3 - WM8600A Channel Step Response Resulting From Improper Group Delay Compensation

Figure 4 –WM8600A Channel Step Response with Proper Group Delay Compensation

Figure 5 – Uncompensated Channel Group Delay Characteristic

Figure 6 – WaveMaster 8600A Calibration Arrangement

Figure 7 – Dialog Showing Allpass Filter Fitter options and Final Filter Evaluation

Figure 8 - Dialog Showing Grading Options and Optimization Strategy Options

1	for n=0 ... N		for each response point	
2	$R_n = GD_{comprel}(f_n, g_{i-1}) + gd_{spec_n}$		calculate a residual	
3	for j=0 ... 2S-1		for each coefficient	
4	$J_{n,j} = \frac{\partial}{\partial(g_{i-1})_j} GD_{comprel}(f_n, g_{i-1})$		calculate an element of the Jacobian matrix	
5	$H = J^T \cdot W \cdot J$		calculate the approximate Hessian matrix	
6	for j=0 ... 2S-1		generate a matrix whose diagonal is identical to the Hessian matrix and is zero elsewhere	
7	$D_{j,j} = H_{j,j}$			
8	$\Delta P = (H + \lambda \cdot D)^{-1} \cdot J^T \cdot W \cdot R$		calculate the change in coefficient values	
9	$g_i = g_{i-1} - \Delta P$		apply the change to the coefficients	
10	$mse_i = \frac{1}{N+1} \cdot \sum_n (gd_{spec_n} + GD_{comprel}(f_n, g_{i-1}))^2$		calculate the new mean-squared error	
11	true	$mse_i > mse_{i-1}$	false	
12	$\lambda = \lambda \cdot 10$	favor steepest descent	$\lambda = \frac{\lambda}{10}$	favor Newton-Gauss convergence

Figure 9 – An Iteration of the Levenberg-Marquardt Algorithm during Allpass Filter Fit

Figure 10 – A Three-Section (Sixth Order) Digital Allpass Filter

Figure 11 – Result of Allpass Filter Fit to Group Delay Compensation Specification

Figure 12 – Definitions of Risetime, Overshoot, and Preshoot Measurements

Figure 13 – Fuzzy Membership

Figure 14 – Initial Optimization Scan and Result

Figure 15 – Second Optimization Scan and Result

Figure 16 – Third Optimization Scan and Result

Figure 17 – Fourth Optimization Scan and Result

(Vv, Pv, Sv)

Figure 18 – Score vs. Optimization System Output Variables

Figure 19 – Score and Measurer Parameter Outputs vs. Optimization System Output Control Variables

Figure 20 – Optimization Region and Result

Figure 21 – Comparison of Uncompensated and Compensated Group Delay