Digital microsystems design

Lab 3

Overview

- External connectivity of a microprocessor
 - Memory / I/O connectivity

Exercise

- Design the memory map and the memory decoder for a 32bits uP system using the following memory requirements:
 - 256MB EPROM ending at FFFFFFFH, using 64M x 16bits memories
 - 512MB SRAM, using 64M x 8 bits memories
 - 1GB DRAM, using 128M x 4 bits memories, placed as a contiguous memory address space

- Determine the size of the whole address space of the processor
- Determine the number of memory circuits required by the design
- Determine the number of 32bits blocks and their sizes (in MB and hexa)
- Determine the number of selection lines
- Design the memory map
- Design the memory decoder using a 3-to-8 decoder

- Determine the size of the whole address space of the processor
 - Max amount of memory = 2 ^ address bus width of the processor
 - 2^32 = 2^2 x 2^30 = 4 GB
 - Address space of the processor:
 - 0000_0000h FFFF_FFFh

- Determine the number of memory circuits required by the design
 - No of circuits = size of the required memory / size of the available memory circuits
 - No of EEPROM circuits = 256MB / (64M x 16 bits) = 256MB / 128MB = 2
 - No of SRAM circuits = 512MB / 64MB = 8
 - No of DRAM circuits = 1GB / (128M x 4) = 1GB / (128M x 1/2B) = 1024MB / 64MB = 16

- Determine the number of 32bits blocks
 - Circuits have to be grouped into blocks in order to match the data bus width of the processor
 - No of circuits per block = processor data bus width / memory data bus width
 - No of blocks = no of circuits / no of circuits per block
 - EEPROM
 - No of EEPROM circuits per block = 32 / 16 = 2
 - No of EEPROM blocks = 2 / 2 = 1
 - SRAM
 - No of SRAM circuits per block = 32 / 8 = 4
 - No of SRAM blocks = 8 / 4 = 2
 - DRAM
 - No of SRAM circuits per block = 32 / 4 = 8
 - No of DRAM blocks = 16 / 8 = 2

- Determine the size of each block (in MB and hexa)
 - EEPROM
 - Block B1: 2 * 128 MB = 256 MB = 2^8*2^20 = 2^28 = 1000_0000h
 - SRAM
 - B2: 4 * 64 MB = 256 MB = 2^28 = 1000_0000h
 - B3: 4 * 64 MB = 256 MB = 2^28 = 1000 0000h
 - DRAM
 - B4: 8 * 128 M x 4bits = 512 MB = 2^29 = 2000_0000h
 - B5: 8 * 128 M x 4bits = 512 MB = 2^29 = 2000_0000h

• Visualize the system (block diagram)

- Memory map
 - B1
 - B2
 - B3
 - B4
 - B5

- Decoding
 - Decoding circuits
 - 74x138: decoder $3 \rightarrow 8$,
 - 74x139: decoder 2 x 2 \rightarrow 4,
 - 74x42: decoder $4 \rightarrow 10$,
 - 74x154: decoder $4 \to 16$.

• 74x138 decoder

E3	/E2	/E1	A2	A1	A0	/Y7	/Y6	/Y5	/Y4	/Y3	/Y2	/Y1	/Y0
1	0	0	0	0	0	1	1	1	1	1	1	1	0
1	0	0	0	0	1	1	1	1	1	1	1	0	1
1	0	0	0	1	0	1	1	1	1	1	0	1	1
1	0	0	0	1	1	1	1	1	1	0	1	1	1
1	0	0	1	0	0	1	1	1	0	1	1	1	1
1	0	0	1	0	1	1	1	0	1	1	1	1	1
1	0	0	1	1	0	1	0	1	1	1	1	1	1
1	0	0	1	1	1	0	1	1	1	1	1	1	1
0	Х	Х	Х	Х	Х	1	1	1	1	1	1	1	1
Х	1	Х	Х	Х	Х	1	1	1	1	1	1	1	1
Х	Х	1	Х	Х	Х	1	1	1	1	1	1	1	1

- Memory decoder
 - Component of a digital system that generates selection signal for the slave module addressed by in the current bus transaction
 - Inputs: most significant bits of the address bus
 - Outputs: selection signals for each memory module
 - Design steps
 - Memory requirements and constraints
 - Memory setup
 - Memory map
 - Logic design
 - Optimization (speed, space, complexity)

Decoding table

A 31	A 30	A 29	A 28	A 27	A 26	A 25	A 24				A4	A3	A2	A1	A0	
																B1
																B2
																В3
																B4
																B5

• Selection functions

Memory decoder

