Anexa A

Proiecte

1. Acoperirea convexă a unui poligon arbitrar.

Input: Un poligon \mathcal{P} din \mathbb{R}^2 .

Output: Vârfurile acoperirii convexe $Conv(\mathcal{P})$ (determinate în timp liniar). Reprezentare grafică.

2. Invarianța acoperirii convexe la transformări afine.

Input: O mulţime \mathcal{P} din \mathbb{R}^2 , o transformare afină $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$.

Output: Acoperirea convexă a imaginii lui \mathcal{P} prin φ (coincide cu imaginea lui Conv (\mathcal{P}) prin φ). Reprezentare grafică — ilustrează cât mai sugestiv proprietatea de invarianță la transformări afine a acoperirii convexe.

3. Poziția unui punct față de un poligon convex.

Input: Un poligon convex \mathcal{P} din \mathbb{R}^2 , un punct $A \in \mathbb{R}^2$.

Output: Precizează poziția lui A față de $\mathcal P$ (în interior, pe laturi, în exterior), folosind o împărțire convenabilă pe sectoare. Reprezentare grafică.

4. Poligon convex şi punct exterior.

Input: Un poligon convex \mathcal{P} din \mathbb{R}^2 , un punct $A \in \mathbb{R}^2$ în exteriorul lui \mathcal{P} .

Output: Determină vârfurile acoperirii convexe $Conv(\mathcal{P} \cup \{A\})$ (ca listă ordonată, parcursă în sens trigonometric). Reprezentare grafică.

5. Poligoane cu laturi paralele.

Input: Două dreptunghiuri / poligoane convexe \mathcal{P}, \mathcal{Q} din \mathbb{R}^2 , disjuncte, având laturile paralele.

Output: Determină vârfurile acoperirii convexe $Conv(\mathcal{P} \cup \mathcal{Q})$ (ca listă ordonată, parcursă în sens trigonometric). Reprezentare grafică.

6. Cercuri.

Input: O mulţime de cercuri C_1, \ldots, C_q de rază 1, disjuncte, din planul \mathbb{R}^2 (sunt indicate centrele cercurilor), un punct $A \in \mathbb{R}^2$.

Output: Precizează poziția lui A față de $Conv(C_1 \cup ... \cup C_q)$. Reprezentare grafică.

7. Triangulări ale poligoanelor – invarianța la transformări afine

Input: Un poligon \mathcal{P} din planul \mathbb{R}^2 , o transformare afină $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$.

Output: Construiește o triangulare $\mathcal{T}_{\mathcal{P}}$ a lui \mathcal{P} și imaginea acesteia prin φ ca triangulare a lui $\varphi(\mathcal{P})$. Reprezentare grafică — ilustrează cât mai sugestiv modificarea triangulărilor poligoanelor după aplicarea unei transformări afine.

8. Poziția unui punct față de un poligon

Input: Un poligon \mathcal{P} din planul \mathbb{R}^2 , un punct $A \in \mathbb{R}^2$.

Output: Determină o triangulare $\mathcal{T}_{\mathcal{P}}$ a lui \mathcal{P} . Precizează poziția lui A față de \mathcal{P} (în exterior, pe laturi, în interior). În cazul în care este un punct interior, indică triunghiul din $\mathcal{T}_{\mathcal{P}}$ căruia A îi aparține.

9.* Vizibilitate

Input: Un poligon \mathcal{P} , un punct A în interiorul lui \mathcal{P} .

Output: Determină, folosind o triangulare $\mathcal{T}_{\mathcal{P}}$ a lui \mathcal{P} , regiunea lui \mathcal{P} care este vizibilă din A. Reprezentare grafică.

10. Triangulări ale mulțimilor de puncte - invarianța la transformări afine

Input: O mulțime \mathcal{M} de puncte, reprezentând vârfurile unui triunghi și puncte în interiorul acestuia.

Output: Construiește o triangulare $\mathcal{T}_{\mathcal{M}}$ a lui \mathcal{M} și imaginea acesteia prin φ ca triangulare a lui $\varphi(\mathcal{M})$. Reprezentare grafică — ilustrează cât mai sugestiv modificarea triangulărilor mulțimilor de puncte după aplicarea unei transformări afine.

11. Poziția unui punct față de o triangulare

Input: O mulţime \mathcal{M} de puncte, reprezentând vârfurile unui triunghi şi puncte în interiorul acestuia, un punct $A \in \mathbb{R}^2$.

Output: Determină o triangulare $\mathcal{T}_{\mathcal{M}}$ a lui \mathcal{M} . Precizează poziția lui A față de \mathcal{M} (în exterior, pe laturi, în interior). În cazul în care este un punct interior, indică triunghiul din $\mathcal{T}_{\mathcal{M}}$ căruia A îi aparține.

12.* Echivalenţa triangulărilor

Input: O mulțime \mathcal{M} de puncte, două triangulări $\mathcal{T}_{\mathcal{M}}, \mathcal{T}'_{\mathcal{M}}$ ale lui \mathcal{M} .

Output: Precizează dacă cele două triangulări sunt echivalente, i.e. pot fi transformate una intr-alta într-un număr finit de paşi, prin aplicarea unor modificări de tip "flip". Reprezentare grafică.