Variables Uniformes Continua

Nombre del/los estudiante/s: Emilio Balan, Amilcar Campos, Elian Carrasco, Citlali Gutiérrez, Héctor Rodríquez

Curso: Probabilidad 1 (Grupo B) - Docente: Lic. Ernesto Guerrero Lara Fecha de entrega: 8 de noviembre del 2020

Función de densidad

Características de la función de densidad

Calcular la función de distribución

Calcular la esperanza matemática

La esperanza para esta variable uniforme continua es la siguiente:

$$E(X) = \frac{a+b}{2}$$

Demostración. Sabemos que la función de densidad se encuentra dado por:

$$f_X(x) = \begin{cases} \frac{1}{b-a} & \text{si } a < x < b \\ 0 & \text{en otro caso} \end{cases}$$

De igual forma sabemos que la esperanza para una variable continua, se calcula mediante:

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$$

Así que la esperanza nos quedaría de la siguiente forma:

$$E(X) = \int_{-\infty}^{\infty} \frac{x}{b-a} dx$$

$$E(X) = \frac{x^2}{2(b-a)} \Big|_a^b = \frac{b^2}{2(b-a)} - \frac{a^2}{2(b-a)} = \frac{b^2 - a^2}{2(b-a)} = \frac{b+a}{2}$$

Sea X una variable aleatoria con distribución unif(a,b), sabemos que la esperanza cuenta con las siguientes propiedades:

a)
$$E(X^2) = \frac{a^2 + ab + b^2}{a^2}$$

a)
$$E(X^2) = \frac{a^2 + ab + b^2}{3}$$

b) $E(X^n) = \frac{b^{n+1} - a^{n+1}}{(n+1)(b-a)}$

Demostración de la propiedad a). La función de densidad se encuentra dado por:

$$f_X(x) = \begin{cases} \frac{1}{b-a} & \text{si } a < x < b \\ 0 & \text{en otro caso} \end{cases}$$

Así como la esperanza para una variable continua, se calcula mediante:

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$$

Así que la esperanza nos quedaría de la siguiente forma:

$$E(X^2) = \int_{-\infty}^{\infty} \frac{x^2}{b-a} dx$$

$$E(X) = \frac{x^3}{3(b-a)} \Big|_a^b = \frac{b^3 - a^3}{3(b-a)} = \frac{(b-a)(b^2 + ab + a^2)}{3(b-a)} = \frac{a^2 + ab + b^2}{3}$$

Demostración de la propiedad b). La función de densidad se encuentra dado por:

$$f_X(x) = \begin{cases} \frac{1}{b-a} & \text{si } a < x < b \\ 0 & \text{en otro caso} \end{cases}$$

Así como la esperanza para una variable continua, se calcula mediante:

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$$

Así que la esperanza nos quedaría de la siguiente forma:

$$E(X^n) = \int_{-\infty}^{\infty} \frac{x^n}{b-a} dx$$

$$E(X) = \frac{x^{n+1}}{(n+1)(b-a)} \Big|_a^b = \frac{b^{n+1} + a^{n+1}}{(n+1)(b+a)}$$

Calcular la varianza

La varianza se obtiene de la forma ya conocida; es decir, como la varianza de esos mismos valores. Expresada en términos de momentos, la varianza será:

$$Var(X) = \frac{(b-a)^2}{12}$$

Demostración. Por información previa sabemos que:

$$Var(X) = E(X^2) - E^2(X)$$

Y por las propiedades de la esperanza, sabemos que esto es igual a:

$$= \frac{a^2 + ab + b^2}{3} - \frac{(a+b)^2}{4}$$

$$= \frac{4a^2 + 4ab + 4b^2 - 3b^2 - 6ab - 3a^2}{12}$$

$$= \frac{a^2 - 2ab + b^2}{12}$$

$$= \frac{(b-a)^2}{12}$$

Ejercicios propuestos