Algèbre commutative et effectivité

Alexandre Guillemot

3 octobre 2022

Table des matières

1	Pré	eliminaires sur les anneaux de polynômes, idéaux, noethérianité
	1.1	Anneaux noéthériens
		1.1.1 Définition
		1.1.2 Théorème de la base de hilbert
	1.2	Division multivariée
		1.2.1 Ordres monomiaux
		1.2.2 Algorithme de division multivariée
	1.3	Bases de Gröbner
		1.3.1 Définition
		1.3.2 Idéaux monomiaux
	1.4	Algorithme de Buchberger
		1.4.1 Critère de Buchberger
	1.5	Bases de Gröbner réduites, unicité
		1.5.1 Définition
	1.6	Théorie de l'élimination
		1.6.1 Définition
		1.6.2 Application 1 : Intersection d'idéaux
		1.6.3 Application 2 : extension
		1.6.4 Application 3 : variétés paramétrées
	1.7	Changements de bases de Grobner

Introduction

L'objectif de ce cours est de "résoudre" des systèmes d'équations polynômiales. Formellement, si $f \in k[x_1, \dots, x_n]$, $I = (f_1, \dots, f_r)$, alors

$$f \in I \iff \exists g_1, \dots, g_r \in k[x_1, \dots, x_n] \mid f = f_1g_1 + \dots + f_rg_r$$

On voudrait ainsi déterminer si $f \in I$. Références : 2 livres de Cox, Little, O'Shea

Chapitre 1

Préliminaires sur les anneaux de polynômes, idéaux, noethérianité

Dans ce chapitre, tous les anneaux seront commutatifs. Fixons dès à présent un $k \in \mathbf{Fld}$ (on supposera toujours qu'on dispose d'algorithmes pour les opérations du corps).

1.1 Anneaux noéthériens

1.1.1 Définition

Définition 1.1.1. (Anneau noéthérien) Un anneau est noéthérien si toute suite croissante d'idéaux $I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots$ est stationnaire i.e.

$$\exists N \in \mathbb{N} \mid \forall m \geq N, I_m = I_N$$

Proposition 1.1.1. Un anneau est noéthérien si et seulement si tout idéal de A est finiment engendré.

Ex 1.1.1. Voici des exemples d'anneaux noéthériens/non noéthériens

Anneaux noéthériens	Anneaux non noéthériens
\mathbb{Q}	$k[\mathbb{N}]$
Plus généralement, tout corps k	
$\mathbb{R}[x]$	
Plus généralement, tout PID	
${\mathbb Z}$	
$k[x_1, \cdots, x_n]$ (conséquence de 1.1.1)	
Anneaux finis	
Anneaux artiniens	

1.1.2 Théorème de la base de hilbert

Théorème 1.1.1. (Théorème de la base de Hilbert) Soit A un anneau noéthérien. Alors A[x] est un anneau noéthérien.

Corollaire 1.1.1. Si k est un corps, alors $k[x_1, \dots, x_n]$ est noeth pour $n \in \mathbb{N}$.

 $D\'{e}monstration$. On veut montrer que tout idéal $I \stackrel{\text{id}}{\subseteq} A[x]$ est finiment engendré. Soit $I \stackrel{\text{id}}{\subseteq} A[x]$, montrons qu'il est finiment engendré. Pour chaque $n \in \mathbb{N}$, soit

$$I_n := \{ a_n \in A \mid \exists a_0 + a_1 x + \dots + a_n x^n \in I \}$$

Il est facile de voir que $I_n \stackrel{\mathrm{id}}{\subseteq} A$. Ensuite (I_i) est croissante, car si $a_i \in I_i$ pour un $i \in \mathbb{N}$, alors $\exists f \in I$ tq le coefficient directeur de f soit a_i . Mais alors $xf(x) \in I$ est de degré i+1 et son coefficient directeur est encore a_i , d'où $a_i \in I_{i+1}$. Ainsi cette suite d'idéaux est stationnaire (A noeth). Notons $N \in \mathbb{N}$ tq $m \geq N \Rightarrow I_m = I_N$. Les idéaux I_0, \dots, I_N sont finiment engendrés, notons $\{a_{i,j}\}_{1 \leq j \leq r_i}$ des familles génératrices pour I_i , pour tout $i \in [0, N]$. Pour chaque $a_{i,j}, \exists f_{ij} \in I$ tq $\deg(f_{ij}) \leq i$ et le terme de degré i de $f_{i,j}$ est $a_{i,j}$ (par définition de I_i). Montrons que $I = (\{f_{i,j}\}_{0,1 \leq i,j \leq N, r_i})$: soit $f \in I$,

- 1. si $\deg(f) = 0$, alors posons $a \in A$ to $f = ax^0$. Ainsi $a \in I_0$, ainsi $\exists b_1, \dots, b_{r_0}$ to $a = \sum_{i=1}^{r_0} b_i a_{0,i}$. Or $f_{0,i} = a_{0,i} x^0$, ainsi $f = \sum_{i=1}^{r_0} b_i f_{0,i}$.
- 2. Si $d = \deg f > 0$, notons b le coeff directeur de f. Ainsi $b \in I_d$ Cas où $d \leq N$: On peut écrire $b = \sum_{i=1}^{r_d} \lambda_i a_{d,i}$ avec $\lambda_i \in A$. Posons $S = \sum_{i=1}^{r_d} \lambda_i f_{d,i}$, alors le coefficient directeur de S est précisément b (et $\deg S \leq d$). Ainsi $\deg(f-S) < d$, et $f S \in I$. Par hypothèse de récurrence, $f S \in (\{f_{i,j}\})$ et $S \in (\{f_{i,j}\})$, donc finalement $f \in (\{f_{i,j}\})$.

Cas où d > N: Notons b le coeff directeur de $f, b \in I_d = I_N \Rightarrow b = \sum \lambda_i a_{N,i}$. Posons $T := \sum \lambda_i f_{N,i} X^{d-N}$ est de degré d et de coeff directeur b, puis on conclut comme précedemment en regardant le polynômes f - T.

Ainsi les idéaux de A[x] sont finiment engendrés, donc A[x] est noeth.

1.2 Division multivariée

1.2.1 Ordres monomiaux

Fixons $k \in \mathbf{Fld}$. Rappelons que si $I \subseteq k[x]$ non nul, alors $\exists g \in k[x]$ t.q. I = (g) (car k[x] est principal, euclidien). Soit $f \in k[x]$, alors $f \in (g) \iff g \mid f \iff$ le reste de la division euclidienne de f par g est nul (et on dispose d'un algorithme pour réaliser la division euclidienne). Question : peut-on généraliser à $k[x_1, \dots, x_n]$?

Rq 1.2.1. Soit
$$I \subseteq k[x]$$
, $I = (f_1, \dots, f_r)$. Alors $I = (\operatorname{pgcd}(f_1, \dots, f_r))$

Définition 1.2.1. (Ordre monomial) Un ordre monomial sur $k[x_1, \dots, x_n]$ est une relation d'ordre \leq sur l'ensemble des $\{x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n} \mid \alpha \in \mathbb{N}^n\}$ tq

- 1. \leq est un ordre total (pour tout $x^{\alpha}, x^{\beta} \in k[x_1, \cdots, x_n], (x^{\alpha} \leq x^{\beta}) \vee (x^{\beta} \leq x^{\alpha})$).
- 2. $x^{\alpha} \leq x^{\beta} \Rightarrow \forall \gamma \in \mathbb{N}^n, x^{\alpha+\gamma} \leq x^{\beta+\gamma}$
- 3. $1 \le x^{\alpha}$ pour tout $\alpha \in \mathbb{N}^n$.

Notation. On écrira $\alpha \leq \beta$ au lieu de $x^{\alpha} \leq x^{\beta}$.

- **Ex 1.2.1.** 1. Dans k[x], il est facile de vérifier qu'il n'existe qu'un seul ordre monomial $<: x^n < x^m \iff n < m$.
 - 2. Ordre lexicographique \leq_{lex} : soient $\alpha, \beta \in \mathbb{N}^n$ tq $\alpha \neq \beta$,

$$\alpha <_{lex} \beta \iff \exists 1 \leq r \leq n \mid \alpha_i = \beta_i \text{ pour } i < r \text{ et } \alpha_r < \beta_r$$

(i.e. le premier coeff non nul d $\beta - \alpha$ est positif). Par exemple, dans $k[x_1, x_2, x_3]$, $x_1^2 >_{lex} x_1 x_2 >_{lex} x_2^2 >_{lex} x_3^{2097434}$

3. Ordre lexicographique gradué \leq_{deglex} : Pour $\alpha \in \mathbb{N}^n$, notons $|\alpha| = \sum \alpha_i$. Alors soient $\alpha \neq \beta$ dans \mathbb{N}^n ,

$$\alpha <_{deglex} \beta \iff (|\alpha| < |\beta|) \lor (|\alpha| = |\beta| \land \alpha <_{lex} \beta)$$

4. Ordre lexicographique renversé gradué $<_{degrevlex}$:

$$\alpha <_{degrevlex} \beta \iff (|\alpha| < |\beta|) \lor (|\alpha| = |\beta| \land (\exists r \in [1, n]] \mid \forall i \in [r+1, n], \alpha_i = \beta_i \text{ et } \alpha_r > \beta_r))$$

(la deuxième condition reviens a vérifier que le dernier coeff non nul de $\beta - \alpha$ est négatif dans le cas où $|\alpha| = |\beta|$)

Exercice. Vérifier que ces ordres sont des ordres monomiaux.

Dans sage, on appelle "term orders" de tels ordres.

Proposition 1.2.1. Soit \leq un ordre sur \mathbb{N}^n satisfaisant les propriétés 1 et 2 de la def 1.2.1. Alors tfae

- 3. $0_{\mathbb{N}^n} \leq \alpha, \forall \alpha \in \mathbb{N}^n$
- 4. \leq est un bon ordre : $\forall E \subseteq \mathbb{N}^n$ non vide, E contient un élément minimal pour \leq .

Démonstration. $4 \Rightarrow 3$: Supposons qu'il existe $\alpha \in \mathbb{N}^n$ tq $\alpha < 0$, alors $2\alpha < \alpha$, $3\alpha < 2\alpha$ et ainsi de suite, donc $\cdots < 2\alpha < \alpha < 0$, mais alors $\{m\alpha \mid m \in \mathbb{N}\}$ n'a pas d'élément minimal, donc \leq n'est pas un bon ordre.

 $3\Rightarrow 4$: Supposons qu'il existe $F\subseteq\mathbb{N}^n$ non vide et sans élément minimal. Alors considérons l'idéal $I=(x^\alpha\mid\alpha\in F)$, d'après le théorème de la base de Hilbert, il existe un sous-ensemble fini de F, noté $\{\alpha_1,\cdots,\alpha_r\}$ tel que $I=(x^{\alpha_1},\cdots,x^{\alpha_r})$. Alors considérons $m=\min\{\alpha_1,\cdots,\alpha_r\}$, c'est un élément de F. Mais par hypothèse, il existe $\beta\in F$ tel que $\beta< s$. Mais comme $x^\beta\in I$, il existe $1\leq i\leq r$ tel que $x^{\alpha_i}\mid x^\beta$, et ainsi $\beta-\alpha_i\in\mathbb{N}^n$. Mais $\beta-\alpha_i<0$ car sinon on aurait $\beta\geq\alpha_i\geq m$.

1.2.2 Algorithme de division multivariée

Fixons maintenant un ordre monomial $\leq \sup k[x_1, \cdots, x_n]$.

Définition 1.2.2. Soit $f = \sum_{\alpha \in \mathbb{N}^n} \lambda_{\alpha} x^{\alpha} \in k[x_1, \dots, x_n] \setminus \{0\},$

- 1. Le multidegré de f est $mdeg(f) = max\{\alpha \in \mathbb{N}^n \mid \lambda_\alpha \neq 0\}$
- 2. Le coefficient dominant de $f LC(f) = \lambda_{mdeg(f)}$
- 3. Le mo,ome dominant de f est $LM(f) = x^{mdeg(f)}$
- 4. Le terme dominant de f est $LT(f) = \lambda_{mdeg(f)} x^{mdeg(f)}$

Soit (f_1, \dots, f_r) un r-tuple de polynômes non nuls de $k[x_1, \dots, x_n]$. Soit $f \in k[x_1, \dots, x_n]$, on cherche $Q_1, \dots, Q_r, R \in k[x_1, \dots, x_n]$ tq

- 1. $f = Q_1 f_1 + \cdots + Q_r f_r + R$
- 2. R=0 ou aucun des termes de R n'est divisible par $LT(f_1), \dots, LT(f_r)$.

Algorithm 1 Réalise la division euclidienne multivariée de f par f_1, \dots, f_r function Division multivariée $(f, f_1, \cdots, f_r \in k[x_1, \cdots, x_n])$ $g \leftarrow f$ $Q_1, \cdots, Q_r \leftarrow 0$ $R \leftarrow 0$ while $g \neq 0$ do b = True $i \leftarrow 1$ while b and $i \leq r$ do if $\operatorname{LT}(f_i) \mid \operatorname{LT}(g)$ then $g \leftarrow g - \frac{\operatorname{LT}(g)}{\operatorname{LT}(f_i)} f_i$ $Q_i \leftarrow Q_i + \frac{\operatorname{LT}(g)}{\operatorname{LT}(f_i)}$ $b \leftarrow False$ end if $i \leftarrow i+1$ end while $\mathbf{if}\ b\ \mathbf{then}$ h = LT(g) $g \leftarrow g - h$ $R \leftarrow R + h$ end if

end while

end function

return R, Q_1, \cdots, Q_r

Rq 1.2.2. Après chaque tour de boucle while principale, on a toujours

$$f = g + \sum Q_i f_i + R$$

au vu des calculs réalisés dans la boucle. Et comme l'algorithme se termine lorsque g=0, on obtiens finalement

$$f = \sum Q_i f_i + R$$

et aucun des termes de R n'est divisible par $\mathrm{LT}(f_i)$ vu que l'on ajoute que des termes divisibles par aucun des $\mathrm{LT}(f_i)$ dans l'algorithme. Finalement, l'algorithme termine puisque à chaque étape de la boucle while principale, le multidegré de g diminue strictement au vu des calculs effectués et du fait que \leq est une relation d'ordre monomiale.

Notation. Le reste obtenu s'écrira \bar{f}^{f_1,\dots,f_t} . Si $F = \{f_1,\dots,f_r\}$, on écrira \bar{f}^F .

Rq 1.2.3. L'algo donne l'exitence de Q_i et R tq $f = \sum Q_i f_i + R$ satisfaisant les conditions imposées précédemment. Ces Q_i et R ne sont pas uniques.

Ex 1.2.2.
$$k[x_1, x_2]$$
, $<_{lex} = :<$, $f = x_1^2 + x_1x_2 + x_2^2$, $f_1 = x_1$, $f_2 = x_1 + x_2$. Alors $f = (x_1 + x_2)f_1 + x_2^2$

(Résultat obtenu en appliquant l'algorithme de division multivariée)

$$= x_1 f_2 + x_2^2$$

= $x_1 f_1 + x_2 f_2 + 0$

donc $f \in (f_1, f_2)$ mais $\bar{f}^{f_1, f_2} \neq 0$!

1.3 Bases de Gröbner

1.3.1 Définition

Définition 1.3.1. (Base de Gröbner, 1) Soit $I \stackrel{\mathrm{id}}{\subseteq} k[x_1, \cdots, x_n]$ non nul. Une base de Gröbner de I est un ensemble fini $G \subseteq I$ tq

- 1. I = (G),
- $2. \ f \in I \iff \bar{f}^G = 0$

Par convention, ∅ est une base de Gröbner de l'idéal nul.

Ex 1.3.1. 1. Si $0 \neq g \in k[x]$, alors $\{g\}$ est une BDG (base de Gröbner) de (g).

2. Si $0 \neq g \in k[x_1, \dots, x_n]$, alors $\{g\}$ est une BDG de (g).

Comment peut-on avoir $f \in (f_1, \dots, f_r)$ mais $\bar{f}^{f_1, \dots, f_r} \neq 0$? Il faut qu'à une étape de la division, LT(f) ne soit pas divisible par aucun des $LT(f_i)$.

1.3.2 Idéaux monomiaux

Définition 1.3.2. (Idéal monomial) Un idéal $I \subseteq k[x_1, \dots, x_n]$ est monomial s'il existe des monômes m_1, \dots, m_r tq $I = (m_1, \dots, m_r)$ (par convention $\{0\}$ est monomial).

Proposition 1.3.1. Soient $m_1, \dots, m_r \in k[x_1, \dots, x_n]$ des monömes, alors $m \in (m_1, \dots, m_r) \iff m \text{ est divisible par l'un des } m_i$

Démonstration. Si m est divisible par l'un des m_i , il est clair que $m \in (m_1, \dots, m_r)$. Pour prouver l'implication réciproque, supposons que $m \in (m_1, \dots, m_r)$. Alors on peut écrire

$$m = \sum_{i=1}^{r} a_i m_i$$

avec $a_i \in k[x_1, \dots, x_n]$. Maintenant écrivons chaque a_i comme

$$a_i(x) = \sum_{\alpha \in \mathbb{N}^n} \lambda_{\alpha}^i x^{\alpha}$$

Alors

$$m = \sum_{i=1}^{r} \sum_{\alpha \in \mathbb{N}^n} \lambda_{\alpha}^{i} x^{\alpha} m_{i}$$

Maintenant comme m est un monome, il va exister i, α tels que $m = \lambda x^{\alpha} m_i$, donc $m_i \mid m$. \square Soient $f_1, \dots, f_r \in k[x_1, \dots, x_n]$. LT(f) divisible par l'un des $LT(f_1), \dots, LT(f_r)$ si et seulement si $LT(f) \in (\{LT(f_i)\})$ d'après la proposition précédente.

Notation. Soit $E \subseteq k[x_1, \dots, x_n]$, on note

$$\mathrm{LT}(E) := \{\mathrm{LT}(f) \mid f \in E\}$$

Définition 1.3.3. (Base de Gröbner, 2) Une base de Gröbner d'un idéal $I \stackrel{\text{id}}{\subseteq} k[x_1, \cdots, x_n]$ est un ensemble (fini) $G \subseteq I$ tq (LT(I)) = (LT(G))

Théorème 1.3.1. Les deux définitions de bases de Gröbner sont équivalentes.

Démonstration. def $1 \Rightarrow \text{def } 2$: Soit $f \in I$ si $LT(f) \notin (LT(G))$, alors LT(f) n'est divisible par aucun des LT(g), $g \in G$ donc $\bar{f}^G \neq 0$.

def $2 \Rightarrow$ def 1: Notons $G = \{g_1, \dots, g_r\}$. Soit $f \in I$, on veut que $\bar{f}^G = 0$. Il suffit de montrer que le reste est nul à chaque étape de l'algo de division. Or à l'étape 0 il l'est, puis en supposant qu'il l'est à l'étape m, on a

$$f = g + \sum Q_i g_i \in I$$

et donc $g \in I$. Ainsi $LT(g) \in (LT(I)) = (LT(G))$ et donc il existe un g_i tel que $LT(g_i) \mid LT(g)$ daprès 1.3.1, et ainsi le reste est inchangé à cette étape.

Théorème 1.3.2. Tout $I \stackrel{\text{id}}{\subseteq} k[x_1, \cdots, x_n]$ admet une base de Gröbner.

 $D\'{e}monstration$. On cherche $G \subseteq I$ tq (LT(G)) = (LT(I)). D'après 1.1.1, $\exists H \subseteq LT(I)$ tq (H) = (LT(I)). Notons h_1, \dots, h_r des polynômes de I dont les termes dominants sont les éléments de H. Alors $\{h_1, \dots, h_r\}$ est une BDG de I.

1.4 Algorithme de Buchberger

1.4.1 Critère de Buchberger

Définition 1.4.1. $f, g \in k[x_1, \dots, x_n]$, alors

$$S(f,g) := \frac{\operatorname{ppcm}(\operatorname{LM}(f),\operatorname{LM}(g))}{\operatorname{LT}(f)} f - \frac{\operatorname{ppcm}(\operatorname{LM}(f),\operatorname{LM}(g))}{\operatorname{LT}(g)} g$$

Théorème 1.4.1. (Critère de Buchberger) Soit $G = \{g_1, \dots, g_r\} \subseteq k[x_1, \dots, x_r]$. Alors G est une BDG de (G) si et seulement si $\forall g, h \in G$, $\overline{S(g,h)}^G = 0$

 $D\'{e}monstration. \Rightarrow : G \ BDF, \ f,g \in G. \ Comme \ S(f,g) \in I, \ alors \ \overline{S(f,g)}^G = 0.$ $\Leftarrow : \ Supposons \ que \ pour \ tout \ g,h \in G, \ alors \ \overline{S(g,h)}^G = 0. \ Soit \ f \in I, \ on \ veut \ mq \ LT(f) \in (LT(G)). \ Or \ I = (g_1, \cdots, g_r). \ Donc \ il \ existe \ q_1, \cdots, q_r \in k[x_1, \cdots, x_n] \ tq$

$$f = \sum_{i=1}^{r} q_i g_i$$

Alors $LM(f) \leq \max_{i} \{LM(q_i g_i)\} = M$.

- 1. Si $LM(f) = \mathbb{M}$: Alors $LM(f) = LT(q_ig_i)$ pour un certain i. Mais $LM(q_ig_i) = LM(q_i)LM(g_i)$ et donc $LM(f) \in (LT(G))$.
- 2. Si $LM(f) < \mathbb{M}$: Soit $1 \le i_1 < i_2 < \dots < i_s \le r$ les indices tels que $LM(q_{i_j}g_{i_j}) = \mathbb{M}$. Alors on peut réécrire f comme

$$f = \sum_{j=1}^{s} LT(q_{i_j})g_{i_j} + \sum_{i=1}^{r} q'_i g_i$$

(et donc $LM(q_i'g_i) < \mathbb{M}$). Considérons $\sum_j LT(q_{i_j})g_{i_j}$, on peut l'exprimer en fonction des $S(g_{i_j},g_{i_{j+1}})$. Pour le voir, notons $h_j = LT(q_{i_j})g_{i_j}$, alors

$$\sum_{j} h_{j} = LC(h_{1}) \left(\frac{h_{1}}{LC(h_{1})} - \frac{h_{2}}{LC(h_{2})} \right)$$

$$+ (LC(h_{1}) + LC(h_{2})) \left(\frac{h_{2}}{LC(h_{2})} - \frac{h_{3}}{LC(h_{3})} \right)$$

$$+ (LC(h_{1}) + LC(h_{2}) + LC(h_{3})) \left(\frac{h_{3}}{LC(h_{3})} - \frac{h_{4}}{LC(h_{4})} \right)$$

$$+ \cdots$$

$$+ (LC(h_{1}) + \cdots + LC(h_{s-1})) \left(\frac{h_{s-1}}{LC(h_{s-1})} - \frac{h_{s}}{LC(h_{s})} \right)$$

$$+ (LC(h_{1}) + \cdots + LC(h_{s})) \frac{h_{s}}{LC(h_{s})}$$

Or $\sum_{j} LC(h_{j}) = 0$ car LM(f) < M, donc le dernier terme s'annule et donc on a bien

$$\sum_{j} h_{j} = \sum_{j=1}^{s-1} \left(\sum_{k=1}^{j} LC(h_{k}) \right) S(h_{j}, h_{j+1})$$

Rq 1.4.1. Si f et g sont de même multidegré,

$$S(f,g) := \frac{1}{LC(f)}f - \frac{1}{LC(g)}g$$

Ainsi,

$$S(h_j, h_{j+1}) = \frac{1}{LC(h_j)} h_j - \frac{1}{LC(h_{j+1})} h_{j+1}$$

De plus,

$$\begin{split} S(h_j,h_{j+1}) &= \frac{1}{LC(h_j)}h_j - \frac{1}{LC(h_{j+1})}h_{j+1} \\ &= \frac{LT(q_{i_j})}{LC(q_{i_j}g_{i_j})}g_{i_j} - \frac{LT(q_{i_{j+1}})}{LC(q_{i_{j+1}}g_{i_{j+1}})}g_{i_{j+1}} \\ &= \frac{LM(q_{i_j})}{LC(g_{i_j})}g_{i_j} - \frac{LM(q_{i_{j+1}})}{LC(g_{i_{j+1}})}g_{i_{j+1}} \\ &= \frac{LM(g_{i_j}q_{i_j})}{LT(g_{i_j})}g_{i_j} - \frac{LM(g_{i_{j+1}}q_{i_{j+1}})}{LT(g_{i_{j+1}})}g_{i_{j+1}} \\ &= m_jS(g_{i_j},g_{i_{j+1}}) \end{split}$$

pour un certain monôme m_i . Donc

$$\begin{split} f &= \sum_{j} LT(g_{i_{j}})g_{i_{j}} + \sum_{i} q'_{i}g_{i} \\ &= \sum_{j} h_{j} + \sum_{i} q'_{i}g_{i} \\ &= \sum_{j=1}^{s-1} \left(\sum_{k=1}^{j} LC(h_{k})\right) S(h_{j}, h_{j+1}) + \sum_{i} q'_{i}g_{i} \\ &= \sum_{j=1}^{s-1} m_{j} \left(\sum_{k=1}^{j} LC(h_{k})\right) S(g_{i_{j}}, g_{i_{j+1}}) + \sum_{i} q'_{i}g_{i} \end{split}$$

et $\max(LM(q_i'g_i)) < \mathbb{M}$. Par hypothèse, $\overline{S(g_{i_j},g_{i_{j+1}})}^G = 0$. Donc l'algorithme de division multivariée donne

$$S(g_{i_j}, g_{i_{j+1}}) = \sum_{i=1}^r b_i^j g_i$$

Par définition de l'algorithme, chaque $b_i^j q_i$ est de multidegré au plus $mdeg(S(g_{i_j}, g_{i_{j+1}}))$. Mais alors

$$\operatorname{mdeg}(m_jS(g_{i_j},g_{i_{j+1}})) = \operatorname{mdeg}(S(h_j,h_{j+1})) < \mathbb{M}$$

Donc

$$f = \sum_{j=1}^{s-1} \left(\sum_{k=1}^{j} LC(h_k) \right) m_j S(g_{i_j}, g_{i_{j+1}}) + \sum_i q_i' g_i$$

= $\sum_i c_i g_i$

avec $LM(c_ig_i) < M$. Par récurrence sur la différence entre LM(f) - M, on peut conclure.

Corollaire 1.4.1. (Algorithme de Buchberger) Soit $I = (f_1, \dots, f_r) \stackrel{\text{id}}{\subseteq} k[x_1, \dots, x_n]$. Posons $G^0 = \{f_1, \dots, f_r\}$ et pour $n \ge 1$, on définit

$$G^{n} = G^{n-1} \cup \left\{ \overline{S(f,g)}^{G^{n-1}} \mid f, g \in G^{n-1}, \overline{S(f,g)}^{G^{n-1}} \neq 0 \right\}$$

Alors il existe $N \in \mathbb{N}$ tel que $n \geq N \Rightarrow G^n = G^N$. Dans ce cas, G^N est une bdg de I.

Démonstration. Si $G^n = G^{n+1}$, alors par le critère de Buchberger G^n est une bdg. Il faut donc montrer que la suite (G^n) est stationnaire. Supposons le contraire, alors pour tout $n \geq 0, \exists f,g \in G^n$ tq $\overline{S(f,g)}^{G^n} \neq 0$. Par définition de l'algorithme de division multivariée, aucun des termes de $\overline{S(f,g)}^{G^n}$ n'est dans $(LT(G^n))$. En particulier, $LT(\overline{S(f,g)}^{G^n}) \notin (LT(G^n))$. On a donc $(LT(G^n)) \nsubseteq (LT(G^{n+1}))$ et donc on obtiens une suite d'idéaux strictement croissante dans $k[x_1, \cdots, x_n]$, contradiction.

Rq 1.4.2. L'algorithme de Buchberger n'est pas optimal. Pour des versions optimisées, voir les algorithmes F4 et F5 (Faugère)

1.5 Bases de Gröbner réduites, unicité

Ex 1.5.1. (x-y,y-z)=(x-z,y-z). Les deux couples de générateurs sont des bdg pour l'ordre lex.

1.5.1 Définition

Définition 1.5.1. (bdg réduite) Soit G une bdg de $I \stackrel{\text{id}}{\subseteq} k[x_1, \dots, x_n]$. Cette base est réduite si

- 1. Pour tout $g \in G$, LC(g) = 1
- 2. Pour tout $g, h \in G$ distincts, aucun monôme de g n'est divisible par LT(h).

Théorème 1.5.1. Tout idéal $I \stackrel{\text{id}}{\subseteq} k[x_1, \cdots, x_n]$ admet une unique bdg réduite.

Rq 1.5.1. La bdg réduite dépend de l'ordre monomial!

On aura besoin d'outils de réduction.

Lemme 1.5.1. Soit $G = \{g_1, \dots, g_r\}$ une bdg de I idéal.

- 1. Si $1 \le i, j \le r$ distincts sont tq $LT(g_i) \mid LT(g_j)$, alors $G \setminus \{g_i\}$ est une bdg de I
- 2. Si $h_1, \dots, h_r \in I$ sont $tq \operatorname{mdeg}(h_i) = \operatorname{mdeg}(g_i)$, alors $H = (h_1, \dots, h_r)$ est une bdq de I.

 $D\'{e}monstration.$ 1. Comme G est une bdg, (LT(G)) = (LT(I)). Maintenant si $LT(g_i) \mid LT(g_i)$, alors $(LT(G\setminus\{g_i\})) = (LT(G))$ et donc $G\setminus\{g_i\}$ est une bdg.

2. (LT(G)) = (LT(H)) vu que LM(G) = LM(H).

Démonstration. (1.5.1) Soit $G = (g_1, \dots, g_r)$ une bdg de I.

- 1. Divisons chaque g_i par $LC(g_i)$. On peut donc supposer que $LC(g_i) = 1$.
- 2. Chaque fois que $LT(g_i) \mid LT(g_j)$, on peut toujours retirer g_j et toujours avoir une bdg. On peut donc supposer que $\forall i \neq j, LT(g_i) \nmid LT(g_j)$.
- 3. Enfin, pour chaque i, considérons $\bar{g}_i^{G\backslash\{g_i\}}\in I$, et par définition aucun monôme de $\bar{g}_i^{G\setminus\{g_i\}}$ n'est divisible par un des $LT(g_j)$, et $LT\left(\bar{g}_i^{G\setminus\{g_i\}}\right) = LT(g_i)$. Par le 2 du lemme, alors $(\bar{g}_1^{G\setminus\{g_1\}}, \cdots, \bar{g}_r^{G\setminus\{g_r\}})$ est une bdg, qui de plus est réduite.

Ceci prouve l'existence d'une bdg réduite pour I. Reste à montrer l'unicité : soient G, G'deus bdg réduites de I. Soit $g \in G$, il existe $g' \in G'$ tel que $LT(g') \mid LT(g)$. De même, il existe $g'' \in G$ tel que $LT(g'') \mid LT(g')$, et ainsi $LT(g'') \mid LT(g)$, donc g'' = g, et donc LT(g') = LT(g). Ainsi on a montré que LT(G) = LT(G'). Considérons maintenant $g-g'\in I$, en particulier $\overline{g-g'}^G=0$. Notons que si $h\in G\setminus\{g\}$, alors aucun des termes de g n'est divisible par LT(h). De même pour g', car LT(G) = LT(G'). De même aucun monôme de g - g' n'est divisible par LT(g) car LT(g) = LT(g') donc LT(g - g') < LT(g). D'où $\overline{g-g'}^G = g - g' = 0$ donc g = g'.

Théorie de l'élimination 1.6

1.6.1Définition

Définition 1.6.1. Soit $E \subseteq k[x_1, \dots, x_n]$. On pose

- 1. $E_1 = E \cap k[x_2, \cdots, x_n]$
- $2. E_2 = E \cap k[x_3, \cdots, x_n]$
- 3. ...
 4. $E_{n-1} = E \cap k[x_n]$ 5. $E_n = E \cap k$

Si E = I est un idéal, les I_i sont appelés idéaux d'élimination de I.

Ex 1.6.1.
$$I = (x - y + 1, x + y)$$
. Alors $I_1 = (2y - 1)$. $I_2 = \{0\}$.

Théorème 1.6.1. (Théorème d'élimination) Soit $I \stackrel{\text{id}}{\subseteq} k[x_1, \dots, x_n]$, soit < l'ordre lex avec $x_1 > \dots > x_n$. Soit G une bdg de I. Pour chaque $l \in [1, n]$, une base de Gröbner de I_l est G_l .

Démonstration. Clairement, $G_l \subseteq I_l$ donc $(LT(G_l)) \subseteq (LT(I_l))$. Il faut montrer \supseteq . Soit $f \in I_l$. Alors $f \in I$, d'où $LT(f) \in (LT(G))$. On sait que $f \in k[x_{l+1}, \dots, x_n]$. Soit $g \in G$ tq $LT(g) \mid LT(f)$. D'où $LT(g) \in k[x_{l+1}, \dots, x_n]$. Comme < est l'ordre lex, on en déduite que $g \in k[x_{l+1}, \dots, x_n]$. Donc $g \in G_l$ et $LT(f) \in (LT(G_l))$.

Par conséquent, une bdg pour l'ordre lex contient des éléments qui font intervenir de moins en moins de variables.

1.6.2 Application 1 : Intersection d'idéaux

Problème : $I=(f_1,\cdots,f_r),\ J=(g_1,\cdots,g_s)$. Calculer des générateurs de $I\cap J$. Pour cela, on ajoute une variable t.

Notation. SI $I \stackrel{\text{id}}{\subseteq} k[x_1, \dots, x_n]$ et $f \in k[t]$, on pose

$$fI = (fp \mid p \in I) \stackrel{\mathrm{id}}{\subseteq} k[t, x_1, \cdots, x_n]$$

Théorème 1.6.2. Avec les notations ci-dessus,

$$I \cap J = (tI + (1-t)J) \cap k[x_1, \cdots, x_n]$$

Démonstration. \subseteq : Soit $f \in I \cap J$, alors $f = tf + (1-t)f \in (tI + (1-t)J)$, puis $f \in k[x_1, \dots, x_n]$.

 \supseteq : Soit $f \in (tI + (1-t)J) \cap k[x_1, \dots, x_n]$. Posons

$$\varepsilon_{\lambda}: k[t, x_1, \cdots, x_n] \rightarrow k[x_1, \cdots, x_n]$$

$$h \mapsto h(\lambda, x_1, \cdots, x_n)$$

Remarquons alors que $\varepsilon_0(tI) = \{0\}$, $\varepsilon_1(tI) = I$. De même, $\varepsilon_0((1-t)J) = J$, $\varepsilon_1((1-t)J) = \{0\}$. Ecrivons f = f' + f'' avec $f' \in tI$, $f'' \in (1-t)J$. Alors $\varepsilon_0(f) = \varepsilon_0(f'') \in J$. $\varepsilon_1(f) = \varepsilon_1(f') \in I$. Et $\varepsilon_0(f) = \varepsilon_1(f) = f$ vu que $f \in k[x_1, \dots, x_n]$.

Corollaire 1.6.1. Si $I=(f_1,\cdots,f_r),\ J=(g_1,\cdots,g_s)$. Alors une bdf de $I\cap J$ pour l'ordre lex est obtenue en calculant une bdg de $(tI+(1-t)J)\stackrel{\mathrm{id}}{\subseteq} k[t,x_1,\cdots,x_n]$ et en élimnant t (i.e. en prenant l'intersection avec $k[x_1, \dots, x_n]$).

1.6.3Application 2: extension

Soit k un corps algébriquement clos. On veut montrer le théorème suivant :

Théorème 1.6.3. (Théorème d'extension) Soit $I = (f_1, \dots, f_r) \stackrel{\text{id}}{\subseteq} k[x_1, \dots, x_n]$. Notons $f_i(x_1, \cdots, x_n) = g_i(x_2, \cdots, x_n)x_1^{N_1} + h_i$

$$cs\ soit\ (a_2,\cdots,a_n)\in V(I_1)\ tel\ aue\ (a_2,\cdots,a_n)\notin V(a_1,\cdots,a_n)$$

où $\deg_{x_1} h_i < N_i$. Alors soit $(a_2, \dots, a_n) \in V(I_1)$ tel que $(a_2, \dots, a_n) \notin V(g_1, \dots, g_r)$, il existe $a_1 \in k$ tel que $(a_1, \dots, a_n) \in V(I)$.

Pour cela, nous aurons besoin des résultants.

Résultants

On veut une façon de déterminer si deux polynômes ont un facteur non trivial en commun. Idée : soient $f, g \in k[x]$ de degré d, e > 0 respectivement. Alors f et g ont un facteur commun non constant ssi $\exists \alpha, \beta \in k[x]$ tq

- 1. $\alpha, \beta \neq 0$
- 2. $\alpha f + \beta g = 0$
- 3. $\deg \alpha < e, \deg \beta < d$.

$$f = \sum_{i=0}^{d} a_i x^i, \ g = \sum_{i=0}^{e} b_i x^i, \ \alpha = \sum_{i=0}^{e-1} \alpha_i x^i, \ \beta = \sum_{i=0}^{d-1} \beta_i x^i.$$
 Il suffit de vérifier si
$$(\alpha_0 + \alpha_1 x + \dots + \alpha_{e-1} x^{e-1}) f + (\beta_0 + \beta_1 x + \dots + \beta_{d-1} x^{d-1}) g = 0$$

admet une solution non nulle en les α_i , β_i . Ce système est donné par la matrice de Sylvester

$$Syl(f,g,x) = \begin{bmatrix} \alpha_0 & 0 & \cdots & 0 & \beta_0 & 0 & \cdots & 0 \\ \alpha_1 & \alpha_0 & \ddots & \vdots & \beta_1 & \beta_0 & \ddots & \vdots \\ \vdots & \alpha_1 & \ddots & 0 & \vdots & \beta_1 & \ddots & 0 \\ \alpha_{d-1} & \vdots & \ddots & \alpha_0 & \beta_{e-1} & \vdots & \ddots & \beta_0 \\ \alpha_d & \alpha_{d-1} & & \alpha_1 & \beta_e & \beta_{e-1} & & \beta_1 \\ 0 & \alpha_d & \ddots & \vdots & 0 & \beta_e & \ddots & \vdots \\ \vdots & \ddots & \ddots & \alpha_{d-1} & \vdots & \ddots & \ddots & \beta_{e-1} \\ 0 & \cdots & 0 & \alpha_d & 0 & \cdots & 0 & \beta_e \end{bmatrix} \in \mathcal{M}_{d+e}(k)$$

Définition 1.6.2. Le résultant de f et g est $Res(f,g,x) := \det Syl(f,g,x)$

Proposition 1.6.1. $Res(f, g, x) = 0 \iff f \text{ et } g \text{ ont } un \text{ facteur } non \text{ constant } en \text{ commun.}$

Proposition 1.6.2. Fixons $d, e \ge 1$. Il existe $A, B \in \mathbb{Z}[X_0, \dots, X_d, Y_0, \dots, nY_e, x]$ to pour tout $f, g \in k[x]$ avec deg $f, \deg g = d, e$, on a

$$Res(f, g, x) = A(a_0, \dots, a_d, b_0, \dots, b_e, x) f + B(a_0, \dots, a_d, b_0, \dots, b_e, x) g$$

 $D\acute{e}monstration.$ Syl(f, g, x) est la matrice de l'application linéaire

$$\varphi: k[x]_{< e} \times k[x]_{< d} \to k[x]_{< e+d}$$

$$(\alpha, \beta) \mapsto \alpha f + \beta g$$

dans les bases canoniques de $k[x]_{\leq e}$, $k[x]_{\leq d}$. Soit M la transposée de la comatrice de Syl(f,g,x). Alors par définition,

$$Syl(f, g, x)M = Res(f, g, x)I_{d+e}$$

donc

$$Syl(f,g,x)M\begin{bmatrix}1\\0\\\vdots\\0\end{bmatrix} = \begin{bmatrix}Res(f,g,x)\\0\\\vdots\\0\end{bmatrix}$$

Maintenant M times vecteur est un vecteur dont les coord sont des polynômes évalués en les a_i et b_j . Ainsi

$$\varphi(P_0 + P_1X + \dots + P_{e-1}X^{e-1}, Q_0 + Q_1X + \dots + Q_{d-1}X^{d-1}) = Res(f, g, x)$$

où $P_i, Q_j \in \mathbb{Z}[a_i, b_j]$.

$$\Rightarrow (P_0 + P_1X + \dots + P_{e-1}X^{e-1})f + (Q_0 + Q_1X + \dots + Q_{d-1}X^{d-1})g = Res(f, g, x)$$

Ainsi on pose
$$A = P_0 + P_1 X + \dots + P_{e-1} X^{e-1}, B = Q_0 + Q_1 X + \dots + Q_{d-1} X^{d-1}.$$

 \mathbf{Rq} 1.6.1. La proposition et sa preuve restent vraies si on remplace k par un anneau commutatif.

Théorème d'extension

 $f,g\in k[x_1,\cdots,x_n]$, alors $Res(f,g,x_1)\in k[x_2,\cdots,x_n]$. Notons $I=(f_1,\cdots,f_r)\stackrel{\mathrm{id}}{\subseteq} k[x_1,\cdots,x_n]$, pour tout i

$$f_i = g_i(x_2, \dots, x_n)x_1^{N_1} + \text{ termes de } \deg_{x_1} < N_1$$

Lemme 1.6.1. Le théorème d'extension est vrai pour n=2.

Démonstration. Notons deg $f_1 = d$, deg $f_2 = e$. Alors il existe $A, B \in \mathbb{Z}[X_0, \dots, X_d, Y_0, \dots, Y_e, x_1, \dots, x_n]$. Alors

$$Res(f_1, f_2, x_1) = A(a_0, \dots, a_d, b_0, \dots, b_e, x_2, \dots, x_n, x_1) f_1 + B(a_0, \dots, a_d, b_0, \dots, b_e, x_2, \dots, x_n, x_1) f_2$$

Le membre de droite de cette égalité est dans I, et $Res(f_1, f_2, x_1) \in k[x_1, \dots, x_n]$. Ainsi $Res(f_1, f_2, x_1) \in I \cap k[x_2, \dots, x_n] = I_1$. Soit $(c_2, \dots, c_b) \in V(I_1)$. En particulier, $Res(f_1, f_2, x_1)(c_2, \dots, c_n) = 0$. On cherche $c_1 \in k$ solution commune de $f_1(x_1, c_2, \dots, c_n) = 0$ et $f_2(x_1, c_2, \dots, c_n)$. Comme k est algébriquement clos, $f_1(x_1, c_2, \dots, c_n)$ et $f_2(x_1, c_2, \dots, c_n)$ ont un zéro commun si et seulement si leur pgcd est non trivial ssi leur résultat s'annule. Maintenant

$$Res(f_1(x_1, c_2, \cdots, c_n), f_2(x_1, c_2, \cdots, c_n), x_1) = Res(f_1(x_1, \cdots, x_n), f_1(x_1, \cdots, x_n), x_1)(c_2, \cdots, c_n)$$

En effet, on a supposé que $(c_2, \dots, c_n) \notin V(g_1, g_2)$, et alors deux cas se présentent :

1. aucun des g_i ne s'annule en (c_2, \dots, c_n) , dans ce cas

$$\deg_{x_1} f_i(x_1, c_2, \cdots, c_n) = \deg_{x_1} f(x_1, \cdots, x_n)$$

et donc l'égalité précédente est vraie.

2. l'un des g_i s'annule en (c_2, \dots, c_n) . Sans perte de généralité, supposons que g_2 s'annule (et donc g_1 ne s'annule pas) en (c_2, \dots, c_n) . En remplaçant f_2 par $f'_2 = f_2 + x_1^N f_1$, avec N >> 0 ($N \ge \deg_{x_1} f_2$), on se ramène au cas 1 en remarquant que f_1, f_2 one une solution commune en c_1 si et seulement si f_1, f'_2 ont une solution commune en c_1 .

d'où
$$f_1(x_1,c_2,\cdots,c_n)$$
 et $f_2(x_1,c_2,\cdots,c_n)$ ont un zéro communt c_1 .

Définition 1.6.3. Soient $f_1, \dots, f_r \in k[x_1, \dots, x_n]$. Considérons

$$u_2f_2 + \cdots + u_rf_r \in k[x_1, \cdots, x_n, u_2, \cdots, u_r]$$

Alors

$$Res(f_1, u_2 f_2 + \dots + u_r f_r, x_1) = \sum_{\alpha \in \mathbb{N}^{r-1}} h_{\alpha}(x_2, \dots, x_n) u^{\alpha} \in k[x_2, \dots, x_n, u_2, \dots, u_r]$$

et les $h_{\alpha} \in k[x_1, \cdots, x_n]$ sont les résultants généralisés de f_1, \cdots, f_r par rapport à x_1 .

Démonstration. (Théorème d'extension) On cherche une racine commune aux $f_i(x_1, c_2, \dots, c_n)$. Le cas r=2 a été fait dans le lemme 1.6.1. Ainsi supposons que $r\geq 3$, et supposons sans perte de généralité que $g_1(c_2, \dots, c_n) \neq 0$. On a

$$Res(f_1, u_2 f_2 + \dots + u_r f_r, x_1) = \sum_{\alpha \in \mathbb{N}^{r-1}} h_{\alpha}(x_2, \dots, x_n) u^{\alpha}$$

Montrons que $h_{\alpha} \in I_1$, pour tout $\alpha \in \mathbb{N}^{r-1}$. Par la proposition, il existe

$$\tilde{A}, \tilde{B} \in \mathbb{Z}[u_2, \cdots, u_r, x_1, \cdots, x_n, X_0, \cdots, X_d, Y_0, \cdots, Y_e]$$

tq

$$Af_A + B(u_2f_2 + \dots + u_rf_r) = Res(f_1, u_2f_2 + \dots + u_rf_r, x_1) = \sum_{\alpha \in \mathbb{N}^{r-1}} h_{\alpha}(x_2, \dots, x_n)u^{\alpha}$$

où A, B sont des évaluations de \tilde{A} et \tilde{B} . Ecrivons

$$A = \sum_{\alpha} A_{\alpha} u^{\alpha}$$

$$B = \sum_{\alpha} B_{\alpha} u^{\alpha}$$

Alors

$$\sum_{\alpha} h_{\alpha} u^{\alpha} = \sum_{\alpha} (\underbrace{A_{\alpha} f_{1}}) u^{\alpha} + \sum_{i=2}^{r} \sum_{\beta} (\underbrace{B_{\beta} f_{i}}) u^{\beta + e_{i}}$$

où $e_i=(0,\cdots,0,1,0,\cdots,0)$ (le 1 est à la *i*-ème position). Par comparaison des coeffs devant chaque u^{α} , on obtient que $h_{\alpha}\in I$ pour tout $\alpha\in\mathbb{N}^{r-1}$. Par définition, $h_{\alpha}\in k[x_2,\cdots,x_n]$ donc $h_{\alpha}\in I_1$. En particulier, $h_{\alpha}(c_2,\cdots,c_n)=0$ pour tout $\alpha\in\mathbb{N}^{r-1}$.

1. Supposons que $g_2(c_2,\cdots,x_n)\neq 0$ et $\deg_{x_1}f_2>\max(\deg_{x_1}(f_i))_{3\leq i\leq r}$. Alors

$$\deg_{x_1}(u_2f_2 + \dots + u_rf_r) = \deg_{x_1}((u_2f_2 + \dots + u_rf_r)(c_2, \dots, c_n))$$

Alors

$$0 = Res(f_1, u_2 f_2 + \dots + u_r f_r, x_1)(c_2, \dots, c_n) = Res(f_1(c_2, \dots, c_n), u_2 f_2(c_2, \dots, c_n) + \dots + u_r f_r(c_2, \dots, c_n), x_1)$$

Alors $f_1(x_1, c_2, \dots, c_n)$ et $\sum_{i=2}^r u_i f_i(x_1, c_2, \dots, c_n)$ ont un facteur en commun non constant dans $k[u_2, \dots, u_r][x_1]$. Comme $f_1(x_1, c_2, \dots, c_n) \in k[x_1]$, ce facteur commun $D(x_1)$ est dans $k[x_1]$. En évaluant u_j en 1 et u_k en 0 pour $k \neq j$, on obtient que $D(x_1) \mid f_j(x_2, c_2, \dots, c_n)$ pour chaque j. Ainsi il existe $c_1 \in k$ tq $f_i(c_1, \dots, c_n) = 0$ pour tout i (on prend une racine de D, qui existe car $k = \bar{k}$).

2. On se ramène au cas 1 en remplaçant f_2 par $x_1^N f_1 + f_2$ avec N suffisament grand.

1.6.4 Application 3 : variétés paramétrées

Une variété est V(I), $I \subseteq k[x_1, \cdots, x_n]$. Paramètres? x=t, y=2t est une paramtrisation d'une variété V(y-2x). Donnons un autre exemple : $x=t^2$, $y=t^3$ est la paramétrisation de $V(y^2-x^3)$. Un dernier exemple : $x=s^2+t^2$, $y=s^2-t^2$, z=st. Il est difficile de savoir directement si c'est une variété. Formalisme : on a des équations polynomiales

$$\begin{cases} x_1 = f_1(t_1, \dots, t_m) \\ \vdots \\ x_n = f_n(t_1, \dots, t_m) \end{cases}$$

De façon équivalente, on a un morphisme de variétés

$$F: \quad \mathbb{A}^m \quad \to \quad \mathbb{A}^n \\ (t_1, \cdots, t_m) \quad \mapsto \quad (f_1(t_1, \cdots, t_m), \cdots, f_n(t_1, \cdots, t_m))$$

Quetion : quelle est la plus petite variété contenant $F(\mathbb{A}^m)$? Idée : considérer le graphe de $F:\{(\underline{t},F(\underline{t}))\in\mathbb{A}^m\times\mathbb{A}^n\}$. C'est l'ensemble $V(x_1-f_1,\cdots,x_n-f_n)\subseteq\mathbb{A}^m\times\mathbb{A}^n$. Considérons le diagramme commutatif

où i est l'inclusion

$$i: \mathbb{A}^m \to \mathbb{A}^m \times \mathbb{A}^n$$

 $t \mapsto (t, f(t))$

et p la projection sur la deuxième coordonnée.

Théorème 1.6.4. (Implicitisation) Soit k un corps infini, notons $I = (x_i - f_i \mid 1 \leq i \leq n) \stackrel{\text{id}}{\subseteq} k[t_1, \dots, t_m, x_1, \dots, x_n]$. Alors $\overline{F(\mathbb{A}^m)} = V(I_m)$ où I_m est l'idéal d'élimination $I \cap k[x_1, \dots, x_n]$.

On montre d'abord le cas où $k = \bar{k}$.

Théorème 1.6.5. (Théorème de cloture) Supposons que k est algébriquement clos. Soit $I = (f_1, \dots, f_r) \stackrel{\mathrm{id}}{\subseteq} k[x_1, \dots, x_n]$. Soit $1 \leq l \leq n$ un entier et considérons I_l . Enfin soit

$$\pi_l: \quad \mathbb{A}^n \quad \to \quad \mathbb{A}^{n-l}$$

$$(x_1, \dots, x_n) \quad \mapsto \quad (x_{l+1}, \dots, x_n)$$

$$(1.1)$$

Alors $\overline{\pi_l(V(I))} = V(I_l)$.

Démonstration. Découle du nullstellensatz : déja, $\pi_l(V(I)) \subseteq (I_l)$. En effet, si $(a_1, \dots, a_n) \in V(I)$, alors $\pi_l(a_1, \dots, a_n) = (a_{l+1}, \dots, a_n)$. Mais si $g \in I_l$, alors $g \in I$ donc $g(a_1, \dots, a_n) = 0$ puis g ne fait pas intervenir les l premières variables. Ainsi $(a_{l+1}, \dots, a_n) \in V(I_l)$. Soit $f \in I(\pi_l(V(I))) \subseteq k[x_{l+1}, \dots, x_n]$, puis considérons f comme élément de $k[x_1, \dots, x_n]$. Alors $f \in I(V(I))$ puisque f ne fait pas intervenir les l première variables. Ainsi $\exists N > 0$ tel que $f^N \in I$. Mais f ne fait pas intervenir les l premières variables, donc $f^N \in I_l$ et ainsi $f \in \sqrt{I_l} = I(V(I_l))$. Donc $I(\pi_l(V(I))) \subseteq I(V(I_l))$. On applique V:

$$V(I_l) \supseteq V(I(\pi_l(V(I)))) \supseteq V(I(V(I_l))) \supseteq V(\sqrt{I_l}) = V(I_l)$$

donc toutes ces inclusions sont des égalités.

 $D\'{e}monstration.$ (1.6.4)

Cas 1 : k algébriquement clos On veut montrer que $\overline{F(\mathbb{A}^n)} = V(I_m)$ où $I = (x_i - f_i)$. Le théorème de cloture appliqué à p et V(I) : $\overline{p(V(I))} = V(I_m)$. Mais $p(V(I)) = F(\mathbb{A}^n)$.

Cas 2 : k n'est pas algébriquement clos Soit \bar{k} sa clôture algébrique. Le morphisme $F: \mathbb{A}^m_k \to \mathbb{A}^n_k$ s'étend naturellement en un morphisme $\bar{F}: \mathbb{A}^n_{\bar{k}} \to \mathbb{A}^m_{\bar{k}}$ qui envoie \underline{t} sur

 $\underline{f}(\underline{t})$. Notons $\overline{I} = (x_i - f_i) \stackrel{\text{id}}{\subseteq} \overline{k}[x_1, \dots, x_n]$. Par ce qui précède, $\overline{\overline{F}}(\mathbb{A}^n_{\overline{k}}) = V((\overline{I})_m)$. Or les générateurs de $(\overline{I})_m$ dans une BDG pour l'odre lex sont dans $k[x_1, \dots, x_n]$, et ainsi $(\overline{I})_m = \overline{I_m}$. Finalement, on a (comme précédemment) que $F(\mathbb{A}^m_k) \subseteq V(I_m)$. Supposons que

V(J) est une autre variété tq $F(\mathbb{A}^m_k) \subseteq V(J) \subseteq V(I_m)$ où $J \stackrel{\mathrm{id}}{\subseteq} k[x_1, \cdots, x_n]$. Prenons $g \in J$, alors $g \circ F \in k[t_1, \cdots, t_m]$. Alors $g \circ F$ s'annule sur \mathbb{A}^m (car $F(\mathbb{A}^m_k) \subseteq V(J)$). Comme le corps est ifini, $g \circ F = 0$. En particulier, $g \circ F$, vu comme élément de $K[t_1, \cdots, t_n]$ s'annule sur \mathbb{A}^m_k et est donc nul. Donc

$$\bar{F}(\mathbb{A}^m_{\bar{k}}) \subseteq V(\bar{J})$$

Or
$$\overline{\bar{F}(\mathbb{A}^n_{\bar{k}})} = V(\bar{I}_m)$$
. Ainsi $V(\bar{I}_m) \subseteq V(\bar{J})$, donc $V(I_m) \subseteq V(J)$.

1.7 Changements de bases de Grobner

Définition 1.7.1. Soit $M \in M_{m,n}(\mathbb{R})$. On définit une relation $<_M$ sur \mathbb{N}^n de la façon suivante :

$$\alpha <_M \beta \iff M\alpha <_{lex} M\beta$$

Ex 1.7.1. Sur $k[x_1, x_2, x_3]$, I_3 convient pour $<_{lex}$,

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

convient pour $<_{deglex}$,

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

convient pour $<_{degrevlex}$.