Why would φ_B be any better than φ ?

Illustration on the regression case:

Suppose (X,Y) drawn from distribution $P_{X,Y}$. φ predictor trained on $\mathcal T$ or any bootstrap sample of $\mathcal T$ $\hat{P}_{\mathcal T} \text{ empirical distribution of } \mathcal T$ $P_{\mathcal T} \text{ true distribution of } \mathcal T$ To simplify notation: $\mathbb E_{P_{X,Y}} = \mathbb E_{X,Y}, \ \mathbb E_{P_{\mathcal T}} = \mathbb E_{\mathcal T} \text{ and } \mathbb E_{\hat{P}_{\mathcal T}} = \mathbb E_{\hat{\mathcal T}}.$ $\varphi_B(\cdot) = \mathbb E_{\hat{\mathcal T}} \left(\varphi(\cdot) \right) \text{ Bagging predictor}$ $\varphi_A(\cdot) = \mathbb E_{\mathcal T} \left(\varphi(\cdot) \right) \text{ aggregated predictor}$

Average prediction error of
$$\varphi_A$$
: $e_A = \mathbb{E}_{X,Y}\left(\left[Y - \varphi_A\left(X\right)\right]^2\right)$.

Average prediction error of φ : $e = \mathbb{E}_{\mathcal{T}}\left(\mathbb{E}_{X,Y}\left([Y - \varphi(X)]^2\right)\right)$. Average prediction error of φ_A : $e_A = \mathbb{E}_{X,Y}\left([Y - \varphi_A(X)]^2\right)$.

Average prediction error of
$$\varphi_{A}$$
. $e_{A} = \mathbb{E}_{X,Y}\left(\left[T - \varphi_{A}\left(X\right)\right]\right)$.
$$e = \mathbb{E}_{X,Y}\left(Y^{2}\right) - 2\mathbb{E}_{X,Y}\left(\mathbb{E}_{\mathcal{T}}\left(Y\varphi\left(X\right)\right)\right) + \mathbb{E}_{X,Y}\left(\mathbb{E}_{\mathcal{T}}\left(\left[\varphi(X)\right]^{2}\right)\right)$$

Average prediction error of φ : $e = \mathbb{E}_{\mathcal{T}}\left(\mathbb{E}_{X,Y}\left([Y-\varphi(X)]^2\right)\right)$. Average prediction error of φ_A : $e_A = \mathbb{E}_{X,Y}\left([Y-\varphi_A(X)]^2\right)$. $e = \mathbb{E}_{X,Y}\left(Y^2\right) - 2\mathbb{E}_{X,Y}\left(\mathbb{E}_{\mathcal{T}}\left(Y\varphi(X)\right)\right) + \mathbb{E}_{X,Y}\left(\mathbb{E}_{\mathcal{T}}\left([\varphi(X)]^2\right)\right)$

Average prediction error of
$$\varphi_A$$
: $e_A = \mathbb{E}_{X,Y} \left(\left[Y - \varphi_A \left(X \right) \right]^2 \right)$. $e = \mathbb{E}_{X,Y} \left(Y^2 \right) - 2\mathbb{E}_{X,Y} \left(Y \varphi_A(X) \right) + \mathbb{E}_{X,Y} \left(\mathbb{E}_{\mathcal{T}} \left(\left[\varphi(X) \right]^2 \right) \right)$

Average prediction error of φ : $e = \mathbb{E}_{\mathcal{T}}\left(\mathbb{E}_{X,Y}\left(\left[Y - \varphi\left(X\right)\right]^{2}\right)\right)$.

Average prediction error of φ_A : $e_A = \mathbb{E}_{X,Y}\left(\left[Y - \varphi_A\left(X\right)\right]^2\right)$.

Average prediction error of
$$\varphi_A$$
: $e_A = \mathbb{E}_{X,Y} \left([Y - \varphi_A(X)] \right)$. $e = \mathbb{E}_{X,Y} \left(Y^2 \right) - 2\mathbb{E}_{X,Y} \left(Y\varphi_A(X) \right) + \mathbb{E}_{X,Y} \left(\mathbb{E}_{\mathcal{T}} \left([\varphi(X)]^2 \right) \right)$ But $\mathbb{E}_{X,Y} \left(\mathbb{E}_{\mathcal{T}} \left([\varphi(X)]^2 \right) \right) \geq \mathbb{E}_{X,Y} \left([\mathbb{E}_{\mathcal{T}} \left(\varphi(X) \right)]^2 \right)$

Average prediction error of
$$\varphi_A$$
: $e_A = \mathbb{E}_{X,Y}\left(\left[Y - \varphi_A\left(X\right)\right]^2\right)$.

Average prediction error of
$$\varphi_A$$
. $e_A = \mathbb{E}_{X,Y} \left([T - \varphi_A(X)] \right)$. $e = \mathbb{E}_{X,Y} \left(Y^2 - 2\mathbb{E}_{X,Y} \left(Y\varphi_A(X) \right) + \mathbb{E}_{X,Y} \left(\mathbb{E}_{\mathcal{T}} \left([\varphi(X)]^2 \right) \right) \right)$ But $\mathbb{E}_{X,Y} \left(\mathbb{E}_{\mathcal{T}} \left([\varphi(X)]^2 \right) \right) \geq \mathbb{E}_{X,Y} \left([\mathbb{E}_{\mathcal{T}} \left(\varphi(X) \right)]^2 \right)$

Average prediction error of
$$\varphi_A$$
: $e_A = \mathbb{E}_{X,Y}\left(\left[Y - \varphi_A\left(X\right)\right]^2\right)$.

Average prediction error of
$$\varphi_A$$
: $e_A = \mathbb{E}_{X,Y} \left([Y - \varphi_A(X)] \right)$. $e = \mathbb{E}_{X,Y} \left(Y^2 \right) - 2\mathbb{E}_{X,Y} \left(Y\varphi_A(X) \right) + \mathbb{E}_{X,Y} \left(\mathbb{E}_{\mathcal{T}} \left([\varphi(X)]^2 \right) \right)$ But $\mathbb{E}_{X,Y} \left(\mathbb{E}_{\mathcal{T}} \left([\varphi(X)]^2 \right) \right) \geq \mathbb{E}_{X,Y} \left([\varphi_A(X)]^2 \right)$

Average prediction error of φ : $e = \mathbb{E}_{\mathcal{T}}\left(\mathbb{E}_{X,Y}\left(\left[Y - \varphi\left(X\right)\right]^{2}\right)\right)$.

Average prediction error of
$$\varphi_A$$
: $e_A = \mathbb{E}_{X,Y} \left([Y - \varphi_A(X)]^2 \right)$.
$$e = \mathbb{E}_{X,Y} \left(Y^2 - 2\mathbb{E}_{X,Y} \left(Y(\varphi_A(X)) + \mathbb{E}_{X,Y} \left(\mathbb{E}_{\mathcal{T}} \left([\varphi(X)]^2 \right) \right) \right)$$

$$e = \mathbb{E}_{X,Y}\left(Y^2\right) - 2\mathbb{E}_{X,Y}\left(Y\varphi_A(X)\right) + \mathbb{E}_{X,Y}\left(\mathbb{E}_{\mathcal{T}}\left(\left[\varphi(X)\right]^2\right)\right)$$
 But $\mathbb{E}_{X,Y}\left(\mathbb{E}_{\mathcal{T}}\left(\left[\varphi(X)\right]^2\right)\right) \ge \mathbb{E}_{X,Y}\left(\left[\varphi_A(X)\right]^2\right)$

So $e > e_A$.

Average prediction error of
$$\varphi_A$$
: $e_A = \mathbb{E}_{X,Y}\left([Y - \varphi_A(X)]^2\right)$.

Average prediction error of
$$\varphi_A$$
: $e_A = \mathbb{E}_{X,Y} \left([Y - \varphi_A(X)] \right)$. $e = \mathbb{E}_{X,Y} \left(Y^2 \right) - 2\mathbb{E}_{X,Y} \left(Y\varphi_A(X) \right) + \mathbb{E}_{X,Y} \left(\mathbb{E}_{\mathcal{T}} \left([\varphi(X)]^2 \right) \right)$

But
$$\mathbb{E}_{X,Y}\left(\mathbb{E}_{\mathcal{T}}\left(\left[\varphi(X)\right]^{2}\right)\right) \geq \mathbb{E}_{X,Y}\left(\left[\varphi_{A}(X)\right]^{2}\right)$$

So $e \geq e_{A}$.
Moreover:
 $e - e_{A} = \mathbb{E}_{X,Y}\left(\mathbb{E}_{\mathcal{T}}\left(\left[\varphi(X)\right]^{2}\right) - \left[\mathbb{E}_{\mathcal{T}}\left(\varphi(X)\right]^{2}\right)$

$$\begin{aligned} & \text{Moreover:} \\ & e - e_A = \mathbb{E}_{X,Y} \left(\mathbb{E}_{\mathcal{T}} \left(\left[\varphi(X) \right]^2 \right) - \left[\mathbb{E}_{\mathcal{T}} \left(\varphi(X) \right) \right]^2 \right) \\ & e - e_A = \mathbb{E}_{X,Y} \left(\mathbb{E}_{\mathcal{T}} \left(\left[\varphi(X) \right]^2 \right) - \left[\varphi_A(X) \right]^2 \right) \end{aligned}$$

Average prediction error of φ : $e = \mathbb{E}_{\mathcal{T}}\left(\mathbb{E}_{X,Y}\left(\left[Y - \varphi\left(X\right)\right]^{2}\right)\right)$.

Average prediction error of
$$\varphi_A$$
: $e_A = \mathbb{E}_{X,Y}\left(\left[Y - \varphi_A\left(X\right)\right]^2\right)$.

$$e = \mathbb{E}_{X,Y} (Y^2) - 2\mathbb{E}_{X,Y} (Y\varphi_A(X)) + \mathbb{E}_{X,Y} (\mathbb{E}_{\mathcal{T}} ([\varphi(X)]^2))$$

But
$$\mathbb{E}_{X,Y}\left(\mathbb{E}_{\mathcal{T}}\left(\left[\varphi(X)\right]^{2}\right)\right) \geq \mathbb{E}_{X,Y}\left(\left[\varphi_{A}(X)\right]^{2}\right)$$
 So $e \geq e_{A}$.

Moreover:

wherever,
$$e - e_A = \mathbb{E}_{X,Y} \left(\mathbb{E}_{\mathcal{T}} \left([\varphi(X)]^2 \right) - [\mathbb{E}_{\mathcal{T}} (\varphi(X))]^2 \right)$$

$$e - e_A = \mathbb{E}_{X,Y} \left(\mathbb{E}_{\mathcal{T}} \left([\varphi(X)]^2 \right) - [\varphi_A(X)]^2 \right)$$

$$-e_A = \mathbb{E}_{X,Y} \left(\mathbb{E}_{\mathcal{T}} \left([\varphi(X)]^2 \right) - [\varphi_A(X)]^2 \right)$$

Interpretation: if $\varphi_{\mathcal{T}}$ differs a lot from $\varphi_{\mathcal{T}'}$, then $e - e_A$ is large. \Rightarrow The highest the variance of φ across training sets \mathcal{T} , the more improvement φ_A produces.

Ok, so φ_A always improves on φ , especially when φ is highly variable w.r.t. changes in \mathcal{T} .

Ok, so φ_A always improves on φ , especially when φ is highly variable w.r.t. changes in $\mathcal T$.

 $\begin{array}{c} \text{But } \varphi_A \text{ is not } \varphi_B. \text{ Recall:} \\ \varphi_A(\cdot) = \mathbb{E}_{\mathcal{T}}\left(\varphi(\cdot)\right) \text{ aggregated predictor (over all N-size training sets)} \\ \varphi_B(\cdot) = \mathbb{E}_{\hat{\mathcal{T}}}\left(\varphi(\cdot)\right) \text{ Bagging predictor (over bootstrap samples)} \\ \varphi_B \text{ approximates } \varphi_A \text{ and thus } e_B \geq e_A \end{array}$

Ok, so φ_A always improves on φ , especially when φ is highly variable w.r.t. changes in $\mathcal T$.

But φ_A is not φ_B . Recall:

$$\begin{split} \varphi_A(\cdot) &= \mathbb{E}_{\mathcal{T}}\left(\varphi(\cdot)\right) \text{ aggregated predictor (over all N-size training sets)} \\ \varphi_B(\cdot) &= \mathbb{E}_{\hat{\mathcal{T}}}\left(\varphi(\cdot)\right) \text{ Bagging predictor (over bootstrap samples)} \\ \varphi_B \text{ approximates } \varphi_A \text{ and thus } e_B \geq e_A \end{split}$$

- lacktriangle If arphi highly variable w.r.t. \mathcal{T} , $arphi_B$ improves on arphi through aggregation.
- ▶ But if φ is rather stable w.r.t. \mathcal{T} , $e_A \approx e$ and since φ_B approximates φ_A , e_B might be greater than e.

So it does not always work?

So it does not always work?

Actually, no, it does not always work.

Bagging should be used to transform highly variable predictors φ into a more accurate averaged commitee φ_B .

Examples of φ that Bagging improve:

- \rightarrow Trees, Neural Networks.
- Examples of φ that Bagging does not improve much (or degrades):
- → Support Vector Machines, Gaussian Processes.

And in the classification case?

And in the classification case?

Majority vote:
$$\varphi_B(x) = \arg\max_j \sum_{b=1}^B I(\varphi^b(x) = j)$$

More drastic conclusions:

- ullet arphi unstable w.r.t. ${\mathcal T}$ and reasonable performance $\Rightarrow arphi_B$ near optimal.
- φ stable w.r.t. $\mathcal{T}\Rightarrow \varphi_B$ worse than φ .
- φ poor performance $\Rightarrow \varphi_B$ worse than φ .