Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 29.04.2011

Arbeitszeit: 120 min

Name:							
Vorname(n):							
Matrikelnummer	•						Note:
							_
	Aufgabe	1	2	3	4	\sum	
	erreichbare Punkte	10,5	11	9	9,5	40	
	erreichte Punkte						
${\bf Bitte}\;$							
tragen Sie	Name, Vorname und	Matrik	elnumr	ner auf	dem I	Oeckbla	tt ein,
rechnen Si	e die Aufgaben auf se	parater	n Blätte	ern, ni	c ht auf	dem A	Angabeblatt,
beginnen S	Sie für eine neue Aufg	abe im	mer au	ch eine	neue S	Seite,	
geben Sie	auf jedem Blatt den N	Vamen	sowie d	lie Mat	rikelnu	mmer a	an,
begründen	Sie Ihre Antworten a	usführl	lich und	1			
	e hier an, an welchen ntreten können:	n der fo	olgende	n Tern	nine Sie	e nicht	zur mündlichen
□ Fr., 0	$6.05.2011 \Box \text{ Mo., } 09$.05.201	1 🗆 I	Di., 10.0	05.2011	. D	o., 12.05.2011

1. In einem homogenen, konstanten Magnetfeld mit der magnetischen Flussdichte B befindet sich eine Rahmenspule mit N Windungen, siehe Abbildung 1. Diese ist um die feste Achse senkrecht zu dem Magnetfeld drehbar gelagert und mit dem Inertialsystem über eine lineare Drehfeder, die bei $\alpha=0^{\circ}$ entspannt ist und die Federkonstante c aufweist, sowie einen linearen, geschwindigkeitsproportionalen Dämpfer mit der Dämpfungskonstanten d verbunden. Die Spule besitzt die Induktivität L, den Ohmschen Widerstand R und ein nicht zu vernachlässigendes Massenträgheitsmoment J bezüglich der Drehachse. Wird an den Anschlüssen der Spule die Spannung u_L angelegt, stellt sich der Strom i ein, der das Moment M_{el} auf die Spule zur Folge hat.

Abbildung 1: Rahmenspule im Magnetfeld.

- a) Stellen Sie die Gleichung für die Stromdynamik auf. Verwenden Sie dazu den 2 P. verketten Fluss $\Phi=BA+Li$ mit der durchfluteten Fläche A und das Induktionsgesetz $\frac{\mathrm{d}}{\mathrm{d}t}\Phi=-Ri+u_L$.
- b) Bestimmen Sie das Moment M_{el} zufolge des Stroms i. Sie können die Lorentz- 2,5 P.| kraft $\mathbf{F} = li\mathbf{e}_i \times \mathbf{B}$ für einen Linienleiter der Länge l zu Hilfe nehmen.
- c) Geben Sie die Modellgleichungen des nichtlinearen Systems in der Form 3 P.

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x} = \mathbf{f}(\mathbf{x}, u)$$
$$y = q(\mathbf{x}, u)$$

an. Wählen Sie den Zustand $\mathbf{x} = [\alpha, \omega, i]^T$ mit $\dot{\alpha} = \omega$, den Eingang $u = u_L$ und den Ausgang $y = \alpha$.

d) Linearisieren Sie das System um eine allgemeine Ruhelage (\mathbf{x}_R, u_R) und geben 3 P.| Sie es in der Form

$$\Delta \dot{\mathbf{x}} = \mathbf{A} \Delta \mathbf{x} + \mathbf{b} \Delta u$$
$$\Delta y = \mathbf{c}^T \Delta \mathbf{x}$$

an.

- 2. Bearbeiten Sie die nachfolgenden voneinander unabhängigen Aufgabenstellungen:
 - a) Gegeben ist das System

$$\dot{\mathbf{x}} = \begin{bmatrix} -3 & 0 & 0 \\ 0 & -2 & 4 \\ 0 & -4 & -2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \underbrace{\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}}_{\mathbf{c}^T} \mathbf{x}.$$
(1)

- i. Geben Sie den Zeitverlauf von $\mathbf{x}(t)$ für einen beliebigen Anfangswert $\mathbf{x}(0) = 1$ P. \mathbf{x}_0 und den Eingang u = 0 an.
- ii. Weisen Sie nach, ob das System (1) asymptotisch stabil ist. 1 P.
- iii. Zeigen Sie, dass das System (1) nicht beobachtbar ist. Vertauschen Sie 2 2 P. | Einträge von **c** so, dass die Beobachtbarkeit gegeben ist.
- b) Diskretisieren Sie das kontinuierliche System

$$\dot{\mathbf{x}} = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}$$
(2)

mit der Abtastzeit $T_a = 1s$.

- i. Geben Sie das Abtastsystem in Form eines Differenzengleichungssystems 2 P. an.
- ii. Bestimmen Sie die zugehörige z-Übertragungsfunktion. 1,5 P.|
- c) Es liegt das erreichbare Abtastsystem

$$\mathbf{x}_{k+1} = \begin{bmatrix} -0.5 & 1\\ -0.85 & -0.9 \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} 0\\ 1 \end{bmatrix} u_k$$

$$y_k = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}_k$$
(3)

vor.

- i. Prüfen Sie das System (3) auf asymptotische Stabilität. 1 P.|
- ii. Entwerfen Sie einen Zustandsregler so, dass die Eigenwerte des geschlossenen Kreises bei [-0.6, -0.4] liegen. Geben Sie den Rückführvektor $\mathbf{k} = [k_1, k_2]^T$ an.

Abbildung 2: Strukturschaltbild des kaskadierten Regelkreises.

3. Gegeben ist ein kaskadierter Regelkreis wie in Abbildung 2 dargestellt. Folgende Streckenübertragungsfunktionen sind gegeben:

$$G_1(s) = \frac{2}{\sqrt{3}s}, \quad G_2(s) = \frac{10(1 + \frac{2-\sqrt{3}}{2}s)}{1 + \frac{1}{2}s}.$$

Die Störübertragungsfunktion lautet

$$G_d(s) = \frac{1}{5} \frac{1}{(1 + \frac{\sqrt{3}}{20}s)(1 + \frac{\sqrt{3}}{30}s)}.$$

Für den inneren Regelkreis wird ein P-Regler mit:

$$R_1(s) = 3$$

verwendet.

a) Ermitteln Sie die Übertragungsfunktion $T_{r_1,y_1}(s)$ des inneren Regelkreises. 1 P.

3 P.

b) Skizzieren Sie das Bodediagramm der Übertragungsfunktion

$$G_3(s) = T_{r_1,y_1}(s)G_2(s).$$

Verwenden Sie dazu die beiliegende Vorlage und zeichnen Sie im Betragsgang die Asymptoten ein.

Hinweis: Benutzen Sie zum Zeichnen die Näherung $\sqrt{3} \approx 7/4$. Achten Sie auf eine qualitativ richtige Darstellung der wesentlichen Einzelheiten. Die genauen Zahlenwerte spielen nur eine untergeordnete Rolle.

- c) Entwerfen Sie für den äußeren Regelkreis einen Regler $R_2(s)$, sodass die Sprungantwort des geschlossenen Regelkreises die nachfolgenden Spezifikationen erfüllt:
 - Anstiegszeit $t_r = 0.75 \,\mathrm{s}$,
 - prozentuales Überschwingen ü= 10% und
 - $\bullet \ e_{\infty}|_{r_2(t)=\sigma(t)}=0.$
- d) Es wird angenommen, dass die Störung d(t) messbar ist. Entwerfen Sie eine 1P. exakte Störgrößenkompensation, indem sie am Ausgang des Reglers $R_2(s)$ die Größe $R_d(s)\hat{d}(s)$ subtrahieren. Legen Sie die Übertragungsfunktion $R_d(s)$ so aus, dass der Einfluss der Störung d(t) am Ausgang y(t) exakt kompensiert wird.

- 4. Bearbeiten Sie die nachfolgenden voneinander unabhängigen Aufgabenstellungen.
 - a) Abbildung 3 zeigt die Impulsantwortfolge (g_k) eines linearen zeitinvarianten Abtastsystems.

Abbildung 3: Impulsantwortfolge (g_k) eines linearen zeitinvarianten Abtastsystems.

i. Bestimmen Sie aus den gegebenen Übertragungsfunktionen $G_i(z)$, i=2 P.| $1, \ldots, 4$, die zu der Impulsantwortfolge gemäß Abbildung 3 passende. Achten Sie auf eine ausreichende Begründung Ihrer Antworten.

$$G_1(z) = \frac{-2z^2 + \frac{1}{2}z + 2}{z^2}$$

$$G_2(z) = \frac{-2z^2 + \frac{1}{2}z + 2}{z^3}$$

$$G_3(z) = \frac{-2z^3 + \frac{1}{2}z^2 + 2z - 2}{z^3}$$

$$G_4(z) = \frac{2z^2 + \frac{1}{2}z - 2}{(z - 1)^3}$$

- ii. Geben Sie den Grenzwert $\lim_{k\to\infty}(y_k)$ der Ausgangsfolge des Systems auf 1 P.| Anregung mit einem Einheitssprung $(u_k)=(1,1,1,1,\ldots)$ an, falls dieser existiert.
- iii. Bestimmen Sie die Markov-Parameter des Systems. Welche Aussagen können Sie über das gegebene System anhand der zugehörigen Hankelmatrix treffen?
- b) Gegeben ist der digitale Regelkreis gemäß Abbildung 4.

Abbildung 4: Blockschaltbild eines digitalen Regelkreises.

Bekannt sind die kontinuierliche Strecke

$$G(s) = \frac{4}{s} \tag{4}$$

und der digitale Regler

$$R(z) = \frac{z - 1/2}{z - \gamma}.\tag{5}$$

Die Abtastung erfolgt mit $T_a = 1/4$ s.

- i. Geben Sie die zeitdiskrete Übertragungsfunktion des Regelkreises im z- $1{,}5\,\mathrm{P.}|$ Bereich an.
- ii. Bestimmen Sie mit Hilfe des Jury-Verfahrens den Wertebereich für γ , für 3,5 P.| den der geschlossene Kreis BIBO-stabil ist.

Hinweis: Führen Sie das Jury-Verfahren zunächst mit allgemeinen Polynomkoeffizienten a_0, \ldots, a_n aus. Zur Vereinfachung der Ausdrücke sei an die Beziehung $1-a^2=(1-a)(1+a)$ erinnert.

