```
In [ ]: "
```

【课程1.2】 分布分析

分布分析 → 研究数据的分布特征和分布类型,分定量数据、定性数据区分基本统计量

极差/频率分布情况/分组组距及组数

In [7]: import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline

In [143]: #数据读取

path = r"C:\Users\Administrator\Desktop\数据分析网易\00-0 QQ群资料\【非常重要】课程资料\CLASS DATA ch04进阶算法学习:统计分析能力强化【瑞客论坛 www.ruike1.com】\CLASSDATA ch04进 阶算法学习:统计分析能力强化\CH01数据特征分析\深圳罗湖二手房信息.csv" path = path.replace("\\","/")

data = pd.read csv(path,engine="python") plt.scatter(data["经度"],data["纬度"],#按照经纬度显示 s = data["房屋单价"]/500,#按照单价显示大小 c = data["参考总价"],#按照总价显示颜色 alpha = 0.4, cmap = 'Reds')

plt.grid()

print('-----\n数据长度为%i条' % len(data))

data

数据长度为75条

Out[143]:

	房屋编码	小区	朝向	房屋单价	参考首付	参考总价	经度	纬度
0	605093949	大望新平村	南北	5434	15.0	50.0	114.180964	22.603698
1	605768856	通宝楼	南北	3472	7.5	25.0	114.179298	22.566910
2	606815561	罗湖区罗芳村	南北	5842	15.6	52.0	114.158869	22.547223
3	605147285	兴华苑	南北	3829	10.8	36.0	114.158040	22.554343
4	606030866	京基东方都会	西南	47222	51.0	170.0	114.149243	22.554370
70	598258845	三九花园	南	5833	12.6	42.0	114.089539	22.577080
71	594221866	三九花园	南	5681	15.0	50.0	114.089539	22.577080
72	606700179	城市春天	南北	3571	7.5	25.0	114.083405	22.539505
73	603950517	皇御苑	东北	59701	54.0	180.0	114.081795	22.531393
74	605232094	晨晖家园	南	54285	57.0	190.0	114.067625	22.525508

52.5 175.0 n [43]: #频率分布情况 - 定量字段

```
In [43]: #频率分布情况 - 定量字段
#① 通过直方图直接判断分组组数
data[key2].hist(bins=15)
#简单查看数据分布,确定分布组数 → 一般8-16即可
#这里以15组为参考
```

Out [43]: <matplotlib.axes._subplots.AxesSubplot at 0x223b5588088>

In []: #cut 用法: https://www.cnblogs.com/sench/p/10128216.html

```
In [63]: #频率分布情况 - 定量字段
           #② 求出分组区间
           gcut = pd.cut(data[key2],10,right=False) # right是否包含左边的区间
           gcut count = gcut.value counts(sort=False) #不排序
           gcut.values
           data[f"{key2}分组区间"] = gcut.values
           print(gcut.head())
           print(gcut count)
           data.head()
           #pd.cut(x, bins, right):按照组数对x分组,且返回一个和x同样长度的分组dataframe, right → 是否右
           边包含,默认True
           #通过groupby查看不同组的数据频率分布
           #给源数据data添加"分组区间"列
           0
              [42.5, 60.0)
           1
               [25.0, 42.5)
           2
              [42.5, 60.0)
              [25.0, 42.5)
           4 [165.0, 182.5)
           Name: 参考总价, dtype: category
           Categories (10, interval[float64]): [[25.0, 42.5] < [42.5, 60.0] < [60.0, 77.5] < [77.5, 95.0] ... [130.0, 147.5] <
           [147.5, 165.0) < [165.0, 182.5) < [182.5, 200.175)]
           [25.0, 42.5)
                        14
           [42.5, 60.0)
                        17
           [60.0, 77.5)
                         1
           [77.5, 95.0)
                         2
```

[182.5, 200.175] 20

[95.0, 112.5) 4 [112.5, 130.0) 2 [130.0, 147.5) 3 [147.5, 165.0) 4 [165.0, 182.5) 8

Name: 参考总价, dtype: int64

Out[63]:

	房屋编码	小区	朝 向	房屋单 价	参考首 付	参考总 价	经度	纬度	参考总价分组区 间
0	605093949	大望新平村	南 北	5434	15.0	50.0	114.180964	22.603698	[42.5, 60.0)
1	605768856	通宝楼	南 北	3472	7.5	25.0	114.179298	22.566910	[25.0, 42.5)
2	606815561	罗湖区罗芳 村	南 北	5842	15.6	52.0	114.158869	22.547223	[42.5, 60.0)
3	605147285	兴华苑	南 北	3829	10.8	36.0	114.158040	22.554343	[25.0, 42.5)
4	606030866	京基东方都 会	西 南	47222	51.0	170.0	114.149243	22.554370	[165.0, 182.5)

In [80]: #频率分布情况 - 定量字段

#③ 求出目标字段下频率分布的其他统计量→频数,频率,累计频率 # pandas.core.series.Series 可以.name把名字取出来

r zj = pd.DataFrame(gcut count)

r zj.rename(columns = {gcut count.name:"频数"},inplace=**True**)

r zj['频率'] = r zj["频数"] / r zj["频数"].sum()

r_zj['累计频率'] = r_zj['频率'].cumsum()

```
r_zj['频率%'] = r_zj['频率'].apply(lambda x:"%.2f" %(x*100))
r_zj['累计频率%'] = r_zj['累计频率'].apply(lambda x: "%.2f%%" % (x*100))
r_zj.style.bar(subset=['频率','累计频率'], color='green',width=100)
# 图的讲解https://www.jianshu.com/p/5c1491d708e0++++++++++
```

Out[80]:

	频数	频率	累计频率	频率%	累计频率%
[25.0, 42.5)	14	0.186667	0.186667	18.67	18.67%
[42.5, 60.0)	17	0.226667	0.413333	22.67	41.33%
[60.0, 77.5)	1	0.013333	0.426667	1.33	42.67%
[77.5, 95.0)	2	0.026667	0.453333	2.67	45.33%
[95.0, 112.5)	4	0.053333	0.506667	5.33	50.67%
[112.5, 130.0)	2	0.026667	0.533333	2.67	53.33%
[130.0, 147.5)	3	0.040000	0.573333	4.00	57.33%
[147.5, 165.0)	4	0.053333	0.626667	5.33	62.67%
[165.0, 182.5)	8	0.106667	0.733333	10.67	73.33%
[182.5, 200.175)	20	0.266667	1.000000	26.67	100.00%

```
In [115]: #频率分布情况 - 定性字段
             # ④ 绘制频率直方图
             r_zj['频率'].plot(kind = 'bar',
                      width = 0.8,
                      figsize = (13,5),
                      rot = 0,
                      color = 'k',
                      grid = True,
                      alpha = 0.5)
             plt.rcParams['font.sans-serif']=['SimHei']
             plt.rcParams['axes.unicode_minus'] = False
             plt.title('参考总价分布频率直方图')
             #绘制直方图
             x = len(r zj)
             y = r_zj['频率']
             m = r_zj['频数']
             for i,j,k in zip(range(x),y,m):
               plt.text(i-0.1,j-0.01,'%i' % k, color = 'k')
             #添加频数标签
```

https://blog.csdn.net/TeFuirnever/article/details/88947248


```
In [137]: #频率分布情况 - 定性字段
#① 通过计数统计判断不同类别的频率

cx_g = data['朝向'].value_counts(sort=True)

r_cx = pd.DataFrame(cx_g)
r_cx.rename(columns = {cx_g.name:"频数"},inplace=True)
r_cx['频率'] = r_cx/r_cx['频数'].sum()
r_cx["累计频率"] = r_cx/r_cx['频数'].sum()
r_cx["频率%"] = r_cx['累计频率'].apply(lambda x:"%.2f%%" % (x*100))
r_cx['累计频率%'] = r_cx['累计频率'].apply(lambda x: "%.2f%%" % (x*100)) #以百分比显示累计频率
#r_cx
r_cx.style.bar(subset=['频率','累计频率'], color='#d65f5f',width=100)
```

Out[137]:

	频数	频率	累计频率	频率 %	累计频率%
南北	29	0.386667	0.386667	38.67%	38.67%
南	20	0.266667	0.266667	26.67%	26.67%
东	8	0.106667	0.106667	10.67%	10.67%
东南	5	0.066667	0.066667	6.67%	6.67%
北	4	0.053333	0.053333	5.33%	5.33%
西南	4	0.053333	0.053333	5.33%	5.33%
西北	3	0.040000	0.040000	4.00%	4.00%
东北	1	0.013333	0.013333	1.33%	1.33%
东西	1	0.013333	0.013333	1.33%	1.33%

```
plt.title('参考总价分布频率直方图')
#绘制直方图

plt.figure(num=2)
plt.pie(r_cx['频数'],
    labels=r_cx.index,
    autopct="%.2f%%",
    shadow = True)

plt.axis('equal')
#https://www.cnblogs.com/biyoulin/p/9565350.html
```

Out[142]: (-1.1101621526291232, 1.1004839130571389, -1.1062755172910221, 1.1205348076125872)

