

SEARCH REQUEST FORM

Requestor's
Name:

Date: 21 APRIL 1993

RAILEY

Phone: 308-0281

Serial
Number: 081000,716

Art Unit: 1807

Search Topic:

Please write a detailed statement of search topic. Describe specifically as possible the subject matter to be searched. Define any terms that may have a special meaning. Give examples or relevant citations, authors keywords, etc., if known. For sequences, please attach a copy of the sequence. You may include a copy of the broadest and/or most relevant claim(s).

PLEASE SEARCH CLAIM 11, IT IS DIRECTED
TO HIV SEQUENCES, VIRUS KNOWN AS LYMPHADENOPATHY
ASSOCIATED VIRUS (LAV) OR HUMAN T CELL LYMPHOTROPIC
VIRUS TYPE III (HTLV-III), NOW CALLED HUMAN
IMMUNODEFICIENCY VIRUS TYPE I. I NEED ONLY
THE "HITS" CLOSEST TO ~~HOMOLOGY~~ HOMOLOGY.

SEARCHER'S SIGNATURE
U.S. PAT. & TM. OFF.

BIOTECH / CHEMICAL
REGISTRY

STAFF USE ONLY

Date completed: 04-26-93
Searcher: Beverly@4994
Terminal time: 47
Elapsed time: _____
CPU time: _____
Total time: 57
Number of Searches: _____
Number of Databases: 2

Search Site	Vendors
STIC	IGS Inc.
CM-1	STN
Pre-S	Dialog
N.A. Sequence	APS
A.A. Sequence	Gemini
Structure	SDC
Bibliographic	DARCoronet
	Other

=> fil reg; s ggggggggaagggctaattcactccaa/sq
FILE 'REGISTRY' ENTERED AT 14:41:40 ON 26 APR 93
USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT
COPYRIGHT (C) 1993 American Chemical Society (ACS)

Railey
08/000716

STRUCTURE FILE UPDATES: 23 APR 93 HIGHEST RN 147199-92-6
DICTIONARY FILE UPDATES: 25 APR 93 HIGHEST RN 147199-92-6

EXCLUDE SEARCH OF COMPLEMENTARY STRAND Y/(N)?::
L1 35..GGGGGACTGGAAGGGCTAATTCACTCCAA/SQSN

Seq. claim 11

=> fil ca; s 11
FILE 'CA' ENTERED AT 14:42:04 ON 26 APR 93
USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT
COPYRIGHT (C) 1993 AMERICAN CHEMICAL SOCIETY (ACS)

FILE COVERS 1967 - 13 Apr 93 (930413/ED) VOL 118 ISS 16.
For OFFLINE Prints or Displays, use the ABS or ALL formats to obtain
abstract graphic structures. The AB format DOES NOT display structure
diagrams.

L2 9 L1

=> d 1-9 .beverly; sel hit 12 1-9 rn

L2 ANSWER 1 OF 9 COPYRIGHT 1993 ACS
AN CA117(21):206366S
TI Molecular clones of HIV-1 strains MN-ST1 and BA-L and preparation of
vaccines with antigenic proteins of these strains
SO PCT Int. Appl., 55 pp.
AU Reitz, Marvin S., Jr.; Franchini, Genoveffa; Markham, Phillip D.;
Gallo, Robert C.; Lori, Franco C.; Popovic, Mikulas; Garnter,
Suzanne
AI WO 91-US7611 17 Oct 1991
PI WO 9206990 A1 30 Apr 1992
PY 1992
AB HIV-1 strain MN-ST1 cDNA and a HindIII fragment of strain BA-L cDNA
are cloned and sequenced. Plasmids for expression of infectious
viruses or env protein were prep'd. Restriction maps of MN-ST1
prophage cDNA and of the cDNA fragment from unintegrated BA-L DNA
are presented.

L2 ANSWER 2 OF 9 COPYRIGHT 1993 ACS
AN CA116(6):46279q
TI Non-infectious HIV-1 particles and their use as vaccines
SO PCT Int. Appl., 59 pp.
AU Young, Richard A.; Baltimore, David; Aldovini, Anna; Trono, Didier;
Feinberg, Mark B.
AI WO 90-US5932 16 Oct 1990
PI WO 9105860 A1 2 May 1991
PY 1991
AB Noninfectious HIV-1 particles are produced using plasmids which
encode HIV-1 mutants which are defective in viral packaging. These
particles may be used as vaccines. Plasmids encoding HIV-1 with a
deletion in the vphi. site and/or substitution mutations in the
metal-binding motifs of the gag gene were prep'd. and the constructs
were introduced into COS-1 cells. HIV-1 particles were produced but
the particles were not infectious (as detd. by failure to infect H9
T leukemia cell line).

L2 ANSWER 3 OF 9 COPYRIGHT 1993 ACS
AN CA115(25):272698m
TI Molecular clones of HIV-1 and their uses
SO U. S. Pat. Appl., 61 pp. Avail. NTIS Order No. PAT-APPL-6-599 491.
AU Reitz, Marvin
AI US 91-599491 31 Jan 1991
PI US 599491 A0 1 Aug 1991
PY 1991
AB The cDNA sequences representing the complete genomes of HIV-1 strains MN-PH1 and MN-ST1 are presented as in the cDNA for the env gene of a third HIV-1 strain, BA-L. The cDNAs can be used to produce anti-HIV-1 vaccines and for diagnosis of HIV-1 infection (no data). Expression plasmids for the env gene proteins of the strains were prep'd. A eukaryotic expression plasmid contg. the entire MN-ST1 cDNA was prep'd. for use in prodn. of the virus.

L2 ANSWER 4 OF 9 COPYRIGHT 1993 ACS
AN CA114(17):162208y
TI Production of a nonfunctional nef protein in human immunodeficiency virus type 1-infected CEM cells
SO J. Gen. Virol., 71(10), 2273-81
AU Laurent, Anne G.; Hovanessian, Ara G.; Riviere, Yves; Krust, Bernard; Regnault, Armelle; Montagnier, Luc; Findeli, Annie; Kieny, Marie Paule; Guy, Bruno
PY 1990
AB The nef gene product of the human immunodeficiency virus (HIV) is suggested to be a neg. factor involved in down-regulating viral expression by a mechanism in which the correct conformation of the nef protein is essential. The nef protein expressed by vaccinia virus recombinants is phosphorylated by protein kinase C. The present study investigated the synthesis of the nef protein and its state of phosphorylation during HIV-1 infection of a T4 cell line (CEM cells). Max. synthesis of viral proteins occurred 3 days after infection, when more than 90% of cells were producing viral proteins. The synthesis of the nef protein was detected in parallel with the env and gag proteins. As expected, the nef protein was myristylated but not phosphorylated and its half-life was less than 1 h. By the use of the polymerase chain reaction technique, the nef gene of this HIV-1 stock was isolated and sequenced. Two significant mutations were obsd. Firstly threonine, at amino acid no. 15, the site of phosphorylation by protein kinase C, was mutated into an alanine, and secondly aspartic acid of the tetrapeptide WRFD, which is probably involved in GTP binding, was mutated into an asparagine. The mutated nef gene was expressed in a vaccinia virus system, in which it was not phosphorylated and its half-life was dramatically reduced compared to the wild-type nef gene product. Furthermore, down-regulation of CD4 cell surface expression was no longer affected by the mutated nef gene. These results emphasize that phosphorylation of the nef protein provides an efficient test to monitor its biol. activity.

L2 ANSWER 5 OF 9 COPYRIGHT 1993 ACS
AN CA111(19):168198e
TI Biological and molecular characterization of human immunodeficiency virus (HIV-1BR) from the brain of a patient with progressive dementia
SO Virology, 168(1), 79-89
AU Anand, Rita; Thayer, Richard; Srinivasan, A.; Nayyar, S.; Gardner, Murray; Luciw, Paul; Dandekar, Satya
PY 1989
AB HIV-1BR was isolated from the autopsied brain tissue of a 57-yr-old man who died of progressive dementing illness. This virus was shown

to be HIV-1 by hybridization to HIV-specific DNA probes. The expression of viral proteins as tested by radioimmunoassay revealed the presence of HIV-1 specific proteins. HIV-1BR replicated in cultures of CD4+ T-lymphoid cells and induced cytopathic effects in these cells. HIV-1BR also replicated in monocyteoid cell lines. The genetic nature of this isolate was detd. by mol. cloning and sequencing of the 3'-half of the genome. DNA sequence information established that HIV-1BR is a unique HIV-1 isolate. A stretch of apprx.30 bases in the nef gene of HIV-1BR was found duplicated when compared with the other sequenced HIV-1 genomes. The functional significance of this duplication remains to be detd.

L2 ANSWER 6 OF 9 COPYRIGHT 1993 ACS
AN CA108(1):1299q
TI Complete nucleotide sequences of functional clones of the AIDS virus
SO AIDS Res. Hum. Retroviruses, 3(1), 57-69
AU Ratner, Lee; Fisher, Amanda; Jagodzinski, Linda L.; Mitsuya, Hiroaki; Liou, Ruey Shyan; Gallo, Robert C.; Wong-Staal, Flossie
PY 1987
AB To examine the mechanism of lymphocytotoxicity induced by human T-lymphotropic virus type III/lymphadenopathy assocd. virus (HTLV-III/LAV), an in vitro model has been developed. Introduction of an HTLV-III/LAV proviral clone, HXB2, into normal lymphocytes results in the prodn. of virions and cell death. The complete nucleotide sequence of the proviral form of HXB2 has now been detd. Its structure is quite similar to that previously detd. for HTLV-III/LAV clones whose biol. capacities had not previously been demonstrated. The biol. function of 2 addnl. clones of HTLV-III/LAV, BH10 and HXB3, are reported. Clone BH10 which lacks the 5' long terminal repeat sequences (LTR) and a portion of the 3'LTR is reconstituted by substituting the corresponding sequences of HXB2 and is capable of generating infectious cytopathic virions. Clone HXB3, which has been partially sequenced, is also capable of producing lymphocytopathic virus. Clone HXB3 differs from HXB2 in its lack of a termination codon in 3'orf, demonstrating that 3'orf plays no major role in virus replication or cytopathic activity. These data provide the necessary background to allow the identification of viral determinants of replication, cytopathic activity, and antigenicity using these functional proviral clones.

L2 ANSWER 7 OF 9 COPYRIGHT 1993 ACS
AN CA105(1):1450v
TI Three novel genes of human T-lymphotropic virus type III: immune reactivity of their products with sera from acquired immune deficiency syndrome patients
SO Proc. Natl. Acad. Sci. U. S. A., 83(7), 2209-13
AU Arya, Suresh K.; Gallo, Robert C.
PY 1986
AB Human T-lymphotropic virus type III or lymphadenopathy assocd. virus (HTLV-III/LAV) is the cause of acquired immune deficiency syndrome (AIDS). In addn. to the conventional retroviral genes involved in virus replication, namely, gag, pol, and env genes, DNA sequence anal. of HTLV-III genome predicted 2 addnl. open reading frames, termed short open reading frame (sor) and 3' open reading frame (3' orf). Further, functional anal. revealed another gene with transactivating function, termed tat. These HTLV-III specific genes were structurally identified and functionally characterized by cDNA cloning. DNA sequence anal. of the clones shows that the tat and 3' orf genes contain 3 exons and their transcription into functional mRNA involves 2 splicing events and that the sor gene contains .gtoreq.2 exons. In vitro transcription and translation of the cloned spliced sequences show that the sor, tat, and 3' orf genes

code for polypeptides with apparent mobilities of 24-25 kilodaltons (kDa), 14-15 kDa, and 26-28 kDa, resp. All 3 polypeptides are immune reactive and are immunogenic in the natural host. Thus, the 3 extra open reading frames of HTLV-III, 2 of which are unique to HTLV-III, are genes that function in vivo and code for 3 new and previously unrecognized HTLV-III antigens with differential immunogenicity in individuals with acquired immune deficiency syndrome and related disorders.

L2 ANSWER 8 OF 9 COPYRIGHT 1993 ACS
AN CA102(21):179952m
TI Nucleic acid structure and expression of the human AIDS/lymphadenopathy retrovirus
SO Nature (London), 313(6002), 450-8
AU Muesing, Mark A.; Smith, Douglas H.; Cabradilla, Cirilo D.; Benton, Charles V.; Lasky, Laurence A.; Capon, Daniel J.
PY 1985
AB The 9213-nucleotide structure of the acquired immune deficiency syndrome (AIDS)/lymphadenopathy virus has been detd. from mol. clones representing the integrated provirus and viral RNA. The sequence reveals that the virus is highly polymorphic and lacks significant nucleotide homol. with type C retroviruses characterized previously. Together with an anal. of the 2 major viral subgenomic RNAs, these studies establish the coding frames for the gag, pol and env genes and predict the expression of a novel gene at the 3' end of the genome unrelated to the X genes of human T-lymphotrophic virus I and II.

L2 ANSWER 9 OF 9 COPYRIGHT 1993 ACS
AN CA102(15):126416h
TI Nucleotide sequence of the AIDS virus, LAV
SO Cell (Cambridge, Mass.), 40(1), 9-17
AU Wain-Hobson, Simon; Sonigo, Pierre; Danos, Olivier; Cole, Stewart; Alizon, Marc
PY 1985
AB The complete 9193-nucleotide sequence of the probable causative agent of acquired immune deficiency syndrome (AIDS), lymphadenopathy-assocd. virus (LAV), was detd. The deduced genetic structure is unique; it shows, in addn. to the retroviral gag, pol, and env genes, 2 novel open reading frames which were designated Q and F. Remarkably, Q is located between pol and env, and F is half-encoded by the U3 element of the long terminal repeat. Thus, LAV is distinct from the previously characterized family of human T cell leukemia (lymphoma) viruses.

E1 THROUGH E14 ASSIGNED

=> fil reg; s e1-e14
FILE 'REGISTRY' ENTERED AT 14:43:18 ON 26 APR 93
USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT
COPYRIGHT (C) 1993 American Chemical Society (ACS)

STRUCTURE FILE UPDATES: 23 APR 93 HIGHEST RN 147199-92-6
DICTIONARY FILE UPDATES: 25 APR 93 HIGHEST RN 147199-92-6

1 137574-23-3/RN
1 102686-56-6/RN
1 111804-75-2/RN
1 111804-83-2/RN
1 123056-88-2/RN

1 13317-96-0/RN
1 138362-52-4/RN
1 138362-53-5/RN
1 138362-54-6/RN
1 138362-55-7/RN
1 138362-56-8/RN
1 95568-14-2/RN
1 96098-36-1/RN
1 96098-41-8/RN
L3 14 (137574-23-3/RN OR 102686-56-6/RN OR 111804-75-2/RN OR 111
804-83-2/RN OR 123056-88-2/RN OR 133172-96-0/RN OR 138362-
52-4/RN OR 138362-53-5/RN OR 138362-54-6/RN OR 138362-55-7
/RN OR 138362-56-8/RN OR 95568-14-2/RN OR 96098-36-1/RN OR
96098-41-8/RN)

=> d 1-14 .bevreg; fil ca; e alizon, m/au 10

L3 ANSWER 1 OF 14 COPYRIGHT 1993 ACS
RN 138362-56-8 REGISTRY
CN Deoxyribonucleic acid (human immunodeficiency provirus 1 clone
pA14-15HXB) (9CI) (CA INDEX NAME)
SQL 9609
MF Unspecified
CI MAN

L3 ANSWER 2 OF 14 COPYRIGHT 1993 ACS
RN 138362-55-7 REGISTRY
CN Deoxyribonucleic acid (human immunodeficiency provirus 1 clone
pA15HXB) (9CI) (CA INDEX NAME)
SQL 9606
MF Unspecified
CI MAN

L3 ANSWER 3 OF 14 COPYRIGHT 1993 ACS
RN 138362-54-6 REGISTRY
CN Deoxyribonucleic acid (human immunodeficiency provirus 1 clone
pA4HXB) (9CI) (CA INDEX NAME)
SQL 9606
MF Unspecified
CI MAN

L3 ANSWER 4 OF 14 COPYRIGHT 1993 ACS
RN 138362-53-5 REGISTRY
CN Deoxyribonucleic acid (human immunodeficiency provirus 1 clone
pA3HXB) (9CI) (CA INDEX NAME)
SQL 9607
MF Unspecified
CI MAN

L3 ANSWER 5 OF 14 COPYRIGHT 1993 ACS
RN 138362-52-4 REGISTRY
CN Deoxyribonucleic acid (human immunodeficiency provirus 1 clone
bCA20-W13) (9CI) (CA INDEX NAME)
SQL 9613
MF Unspecified
CI MAN

L3 ANSWER 6 OF 14 COPYRIGHT 1993 ACS
RN 137574-23-3 REGISTRY
CN Deoxyribonucleic acid (human immunodeficiency provirus 1 clone
.lambda.BA-L1 gene env plus 5'- and 3'-flanking region fragment)
(9CI) (CA INDEX NAME)

SQL 3807
MF Unspecified
CI MAN

L3 ANSWER 7 OF 14 COPYRIGHT 1993 ACS
RN 133172-96-0 REGISTRY
CN Deoxyribonucleic acid (human immunodeficiency provirus 1 gene nef')
(9CI) (CA INDEX NAME)
SQL 621
MF Unspecified
CI MAN

L3 ANSWER 8 OF 14 COPYRIGHT 1993 ACS
RN 123056-88-2 REGISTRY
CN Deoxyribonucleic acid (human immunodeficiency provirus clone pATZ6
gene nef) (9CI) (CA INDEX NAME)
SQL 657
MF Unspecified
CI MAN

L3 ANSWER 9 OF 14 COPYRIGHT 1993 ACS
RN 111804-83-2 REGISTRY
CN Deoxyribonucleic acid (human immunodeficiency provirus clone HXB2
13-kilodalton protein gene) (9CI) (CA INDEX NAME)
SQL 621
MF Unspecified
CI MAN

L3 ANSWER 10 OF 14 COPYRIGHT 1993 ACS
RN 111804-75-2 REGISTRY
CN Deoxyribonucleic acid (human immunodeficiency provirus clone HXB2)
(9CI) (CA INDEX NAME)
SQL 9177
MF Unspecified
CI MAN

L3 ANSWER 11 OF 14 COPYRIGHT 1993 ACS
RN 102686-56-6 REGISTRY
CN Deoxyribonucleic acid (human immunodeficiency provirus clone pSP-12
27-kilodalton protein gene) (9CI) (CA INDEX NAME)
OTHER NAMES:
CN Deoxyribonucleic acid (human T-cell leukemia provirus type III clone
pSP-12 27-kilodalton protein gene)
SQL 642
MF Unspecified
CI MAN

L3 ANSWER 12 OF 14 COPYRIGHT 1993 ACS
RN 96098-41-8 REGISTRY
CN Deoxyribonucleic acid (human immunodeficiency provirus clone H9pv.22
protein E' gene) (9CI) (CA INDEX NAME)
OTHER NAMES:
CN Deoxyribonucleic acid (lymphadenopathy/AIDS provirus clone H9pv.22
protein E' gene)
SQL 621
MF Unspecified
CI MAN

L3 ANSWER 13 OF 14 COPYRIGHT 1993 ACS
RN 96098-36-1 REGISTRY
CN Deoxyribonucleic acid (human immunodeficiency provirus clone
H9pv.22) (9CI) (CA INDEX NAME)

OTHER NAMES:

CN Deoxyribonucleic acid (lymphadenopathy/AIDS provirus clone H9pv.22)
 SQL 9213
 MF Unspecified
 CI MAN

L3 ANSWER 14 OF 14 COPYRIGHT 1993 ACS

RN 95568-14-2 REGISTRY

CN Deoxyribonucleic acid (human immunodeficiency provirus clone .lambda.J19) (9CI) (CA INDEX NAME)

OTHER NAMES:

CN Deoxyribonucleic acid (lymphadenopathy-associated provirus clone .lambda.J19)

SQL 9193

MF Unspecified

CI MAN

FILE 'CA' ENTERED AT 14:43:48 ON 26 APR 93

USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT

COPYRIGHT (C) 1993 AMERICAN CHEMICAL SOCIETY (ACS)

FILE COVERS 1967 - 13 Apr 93 (930413/ED) VOL 118 ISS 16.

For OFFLINE Prints or Displays, use the ABS or ALL formats to obtain abstract graphic structures. The AB format DOES NOT display structure diagrams.

E1	22	ALIZON, J/AU	
E2	3	ALIZON, JOSEPH/AU	
E3	2	---> ALIZON, M/AU	- Author(s)
E4	25	ALIZON, MARC/AU	
E5	3	ALJ, A/AU	
E6	1	ALJ, A E/AU	
E7	1	ALJABAB, A/AU	
E8	1	ALJABRE, S H M/AU	
E9	8	ALJADEFF, GLADIS/AU	
E10	1	ALJADEHEFF, GLADIS/AU	

=> s e3-e4; e sonico, p/au 10
 2 "ALIZON, M"/AU
 25 "ALIZON, MARC"/AU

L4 27 ("ALIZON, M"/AU OR "ALIZON, MARC"/AU)

E1	6	SONICH, V P/AU	
E2	1	SONICH, V V/AU	
E3	0	---> SONICO, P/AU	
E4	2	SONIDIS, GEORGE P/AU	
E5	1	SONIDO, E P/AU	
E6	4	SONIE, K C/AU	
E7	3	SONIER, FELIX/AU	
E8	1	SONIER, FERNAND/AU	
E9	3	SONIGO, P/AU	
E10	26	SONIGO, PIERRE/AU	

=> e stewart, c/au 10
 E1 2 STEWART, BRUCE N/AU
 E2 1 STEWART, BURCH BYRON/AU
 E3 18 ---> STEWART, C/AU
 E4 14 STEWART, C A/AU
 E5 1 STEWART, C A JR/AU

E6 5 STEWART, C B/AU
E7 10 STEWART, C C/AU
E8 7 STEWART, C D/AU
E9 1 STEWART, C E/AU
E10 6 STEWART, C E E/AU

=> s e3; e stewart, cole/au 10
L5 18 "STEWART, C"/AU

E1 2 STEWART, CLIVE EDWARD E/AU
E2 1 STEWART, CLIVE EDWARD ERNEST/AU
E3 1 --> STEWART, COLE/AU
E4 3 STEWART, COLIN/AU
E5 1 STEWART, COLIN C/AU
E6 2 STEWART, COLIN CROSBIE/AU
E7 11 STEWART, COLIN L/AU
E8 15 STEWART, COLIN S/AU
E9 1 STEWART, COLIN SAMUEL/AU
E10 4 STEWART, CONSTANCE B/AU

=> s e3; s 15 or 16; e danos, o/au 10
L6 1 "STEWART, COLE"/AU

L7 19 L5 OR L6

E1 57 DANOS, MICHAEL/AU
E2 1 DANOS, MICHEL/AU
E3 6 --> DANOS, O/AU
E4 1 DANOS, OLIVER/AU
E5 22 DANOS, OLIVIER/AU
E6 1 DANOS, OLIVIER F/AU
E7 1 DANOS, P T/AU
E8 1 DANOS, R J/AU
E9 5 DANOS, ROBERT J/AU
E10 1 DANOS, SAVAS C/AU

=> s e3-e6; e wain-hobson, s/au 9
6 "DANOS, O"/AU
1 "DANOS, OLIVER"/AU
22 "DANOS, OLIVIER"/AU
1 "DANOS, OLIVIER F"/AU
L8 30 ("DANOS, O"/AU OR "DANOS, OLIVER"/AU OR "DANOS, OLIVIER"/AU OR "DANOS, OLIVIER F"/AU)

E1 3 WAIN, WILLIAM H/AU
E2 1 WAIN, WILLIAM HENRY/AU
E3 0 --> WAIN-HOBSON, S/AU
E4 2 WAINAI, HIDEKI/AU
E5 1 WAINAI, TASUKU/AU
E6 1 WAINAI, TOHORU/AU
E7 28 WAINAI, TOHRU/AU
E8 1 WAINAI, TOORU/AU
E9 2 WAINAI, TORU/AU

=> e wain, s/au 10
E1 1 WAIN, RUSSELL/AU
E2 1 WAIN, RUSSELL EDMUND/AU
E3 0 --> WAIN, S/AU

E4 1 WAIN, W/AU
E5 8 WAIN, W H/AU
E6 3 WAIN, WILLIAM H/AU
E7 1 WAIN, WILLIAM HENRY/AU
E8 2 WAINAI, HIDEKI/AU
E9 1 WAINAI, TASUKU/AU
E10 1 WAINAI, TOHORU/AU

=> e hobson, s/au 10
E1 1 HOBSON, ROY BAXTER/AU
E2 1 HOBSON, RUSSELL B JR/AU
E3 4 --> HOBSON, S/AU
E4 1 HOBSON, SIMON WAIN/AU
E5 6 HOBSON, T/AU
E6 4 HOBSON, W/AU
E7 8 HOBSON, W C/AU
E8 115 HOBSON, W S/AU
E9 2 HOBSON, W T/AU
E10 8 HOBSON, WILLIAM/AU

=> s e3-e4
L9 4 "HOBSON, S"/AU
1 "HOBSON, SIMON WAIN"/AU
5 ("HOBSON, S"/AU OR "HOBSON, SIMON WAIN"/AU)

=> s 14 and 17 and 18 and 19; s 14 and (17 or 18 or 19); s 17 and (18 or 19); s 18 and 19
L10 0 L4 AND L7 AND L8 AND L9

L11 3 L4 AND (L7 OR L8 OR L9)

L12 0 L7 AND (L8 OR L9)

L13 0 L8 AND L9

=> s (14 or 17 or 18 or 19) and (lav or lymphadenopath? or htlv or hiv or lymphotrop? or human(2w)virus?)/ab,bi

245 LAV/AB
98 LAV/BI
264 LYMPHADENOPATH?/AB
130 LYMPHADENOPATH?/BI
1504 HTLV/AB
827 HTLV/BI
6282 HIV/AB
5288 HIV/BI
667 LYMPHOTROP?/AB
536 LYMPHOTROP?/BI

307992 HUMAN/AB
309481 HUMAN/BI
84015 VIRUS?/AB
123349 VIRUS?/BI
8477 HUMAN(2W)VIRUS?

L14 30 (L4 OR L7 OR L8 OR L9) AND (LAV OR LYMPHADENOPATH? OR HTLV OR HIV OR LYMPHOTROP? OR HUMAN(2W)VIRUS?)/AB,BI

=> s l14 and clon?/ab,bi
84117 CLON?/AB
54670 CLON?/BI

L15 17 L14 AND CLON?/AB,BI

=> s 115 and sequenc?/ab,bi

199071 SEQUENC?/AB

103235 SEQUENC?/BI

L16 14 L15 AND SEQUENC?/AB,BI

=> s (111 or 116) not 12

L17 15 (L11 OR L16) NOT L2

=> d 1-15 .beverly; fil biosi; s alizon m ?/au; s sonico p ?/au; s stewart c ?/au; s danos o ?/au; s (hobson s ? or wain s ?)/au

L17 ANSWER 1 OF 15 COPYRIGHT 1993 ACS

AN CA116(5):39665j

TI Immunogenic peptides of a variant of LAV (lymphadenopathy virus)

SO U.S., 49 pp.

AU Alizon, Marc; Sonigo, Pierre; Wain-Hobson, Simon; Montagnier, Luc

AI US 87-38332 13 Apr 1987

PI US 5034511 A 23 Jul 1991

PY 1991

AB Immunogenic peptide sequences from LAVELI are presented.

An immunogenic compn. comprising such a peptide and a physiol. acceptable carrier as well as a diagnostic kit for detecting antibodies to LAV comprising such a peptide and a reagent for detecting the formation of peptide/antibody complex are also claimed. Sequences are claimed from env, gag, and pol proteins. The complete cDNA of LAVELI is presented. The sequence was compared with those for other LAV.

L17 ANSWER 2 OF 15 COPYRIGHT 1993 ACS

AN CA112(1):2059f

TI Expression vectors for manufacture of human immunodeficiency virus 2 (HIV2) proteins

SO Fr. Demande, 31 pp.

AU Kieny, Marie Paule; Rautmann, Guy; Guy, Bruno; Montagnier, Luc; Alizon, Marc; Girard, Marc

AI FR 87-12396 7 Sep 1987

PI FR 2620030 A1 10 Mar 1989

PY 1989

AB Viral or plasmid vectors which can be used to manuf. HIV2 proteins in eukaryotes or prokaryotes are described. The HIV2 proteins can be used as vaccines or to prep. antibodies. Both proteins and antibodies can be used in diagnosis. The cDNA for HIV2 protein F was cloned in plasmid pTG186POLY, and this plasmid used to prep. recombinant vaccinia virus by std. means. BHK21 cells were infected with this recombinant virus. Protein which was recognized by serum from HIV2 pos. patients was produced by these transformants.

L17 ANSWER 3 OF 15 COPYRIGHT 1993 ACS

AN CA111(1):2164r

TI Peptides having immunological properties of HIV-2 (human immunodeficiency virus) for diagnosis and vaccines and simian immunodeficiency virus genome cDNA sequence

SO PCT Int. Appl., 96 pp.

AU Alizon, Marc; Montagnier, Luc; Guetard, Denise; Clavel, Francois; Sonigo, Pierre; Guyader, Mireille; Tiollais, Pierre; Chakrabarti, Lisa; Desrosiers, Ronald

AI WO 88-FR25 15 Jan 1988

PI WO 8805440 A1 28 Jul 1988

PY 1988

AB Peptides having immunol. properties in common with HIV-2, particularly the envelope glycoprotein of HIV-2, and with the glycoprotein of SIV-1 (simian immunodeficiency virus) are useful in detecting infection with HIV-2 and in vaccines. Diagnostic kits and cDNA sequences esp. for SIV-1 macaque are also included. The DNA of HUT 78 cells infected with SIV-1 of macaque was partially digested with restriction endonuclease Sau 345 and cloned in the BamHI of .lambda. to construct a gene bank. The recombinant phages were screened using sequences of HIV-2. One clone, .lambda.SIV-1, had a 16.5-kilobase insert comprising the entire provirus genome lacking only 250 bases at the left long terminal repeat region. The nucleotide sequence was detd. by the dideoxynucleotide method after subcloning in phage M13mp8.

L17 ANSWER 4 OF 15 COPYRIGHT 1993 ACS

AN CA110(17):152651r

TI Envelope antigens of lymphadenopathy-associated virus and their applications

SO PCT Int. Appl., 78 pp.

AU Montagnier, Luc; Krust, Bernard; Chamaret, Solange; Clavel, Francois; Chermann, Jean Claude; Barre-sinoussi, Francoise; Alizon, Marc; Sonigo, Pierre; Stewart, Cole; et al.

AI WO 85-EP548 18 Oct 1985

PI WO 8602383 A1 24 Apr 1986

PY 1986

AB Purified expression products of DNA sequences derived from the lymphadenopathy-assocd. virus (LAV) genome, particularly a 110,000-mol.-wt. glycoprotein or derived antigenic peptides which are recognized by human sera contg. antibodies against LAV, are prep'd. The glycoprotein is used in the prepn. of monoclonal antibodies and in the prodn. of an immunogenic compn. capable of neutralizing LAV. The glycoprotein or polypeptides are also useful in the diagnosis of LAV antibodies in sera of patients. T-lymphocytes derived from healthy and LAV1-infected donors were cultivated in a nondenaturing medium contg. cysteine-35S. The supernatant from the culture medium was centrifuged at 10,000 rpm for 10 min to remove the nonviral components, then at 45,000 rpm for 20 min to sediment the virus. The virus pellet was then lysed by detergent in the presence of aprotinin and the envelope glycoprotein (gp110) was purified by affinity chromatog. on Sephrose-Con A and eluted with O-methyl-.alpha.-D-mannopyranoside. The gp110 was used to immunize mice for the prodn. of monoclonal antibodies by std. hybridoma methodol. The sequencing and detn. of peptide or protein sites of particular interest were carried out on a recombinant phage corresponding to .lambda.J19 or LAV-Ia.

L17 ANSWER 5 OF 15 COPYRIGHT 1993 ACS

AN CA109(15):123790j

TI Variants of lymphadenopathy-associated viruses, their cDNA and protein sequences and their use, particularly for diagnostic purposes and for the preparation of immunogenic compositions

SO PCT Int. Appl., 72 pp.

AU Alizon, Marc; Sonigo, Pierre; Wain-Hobson, Simon; Montagnier, Luc

AI WO 87-EP326 22 Jun 1987

PI WO 8707906 A1 30 Dec 1987

PY 1987

AB Two new variants of lymphadenopathy-assocd. viruses (LAV) designated LAV1I and LAV1AL are isolated and their genomes characterized. Their DNAs and antigens can be used for the

diagnosis of AIDS and prodn. of vaccines against AIDS. The viruses were isolated from African patients from Zaire. The genetic organization of the two new isolates, esp. the region between the pol and env genes, is identical to that of the other isolates. The sizes of the U3, R, and U5 elements of the long terminal repeat are also conserved. Substantial differences are obsd. in the primary structure of their proteins; the envelope is more variable than the gag and pol gene proteins.

L17 ANSWER 6 OF 15 COPYRIGHT 1993 ACS
AN CA109(11):89337e
TI Retrovirus of the human immunodeficiency virus 2 (HIV-2) type capable of inducing AIDS, its antigenic and nucleic acid constituents, and diagnostic and therapeutic methods and kits
SO PCT Int. Appl., 117 pp.
AU Montagnier, Luc; Chamaret, Solange; Guetard, Denise; Alizon, Marc; Clavel, Francois; Guyader, Mireille; Sonigo, Pierre; Brun-Vezinet, Francoise; Rey, Marianne; et al.
AI WO 87-FR25 22 Jan 1987
PI WO 8704459 A1 30 Jul 1987
PY 1987
AB Retrovirus HIV-2 and its antigenic and nucleic acid components are useful in diagnostic (e.g. antibody immunoassays) and therapeutic methods and kits. Protein antigens p12, p16, p26, and gp140 and genetic material have been prepd. Glycoprotein gp140 is particularly useful in immunogenic compns. Nucleotide sequences useful as hybridization probes are disclosed.
HIV of patients from west Africa was isolated by stimulating their peripheral blood lymphocytes (PBLs) with PHA and cultivating in coculture with normal PBLs so stimulated and maintained in the presence of interleukin-2. The viruses were centrifuged, lysed, and deposited on nitrocellulose. The samples were treated with an HIV-1 probe corresponding to the complete genome of LAVBRU or an HIV-2 probe derived from a 2-kb cDNA clone of LAV-2ROD, both labeled with 32P, under stringent hybridization conditions. All of the virus samples hybridized with the HIV-2 probe only.

L17 ANSWER 7 OF 15 COPYRIGHT 1993 ACS
AN CA108(23):199491n
TI Preparation of recombinant viral vectors encoding human immunodeficiency virus (HIV) glycoprotein for use as anti-AIDS vaccine
SO Fr. Demande, 36 pp.
AU Kieny, Marie Paule; Rautmann, Guy; Lecocq, Jean Pierre; Hobson, Simon Wain; Girard, Marc; Montagnier, Luc
AI FR 86-5043 8 Apr 1986
PI FR 2596771 A1 9 Oct 1987
PY 1987
AB Viral vectors which encode HIV env protein or variants thereof are constructed, mammalian cells are infected with them, and the immunogenicity of the recombinant proteins are analyzed. Plasmid pTG1125 contg., inserted into the vaccinia virus thymidine kinase gene, the HIV env gene under the control of the vaccinia virus 7.5K protein gene promoter was constructed. Viral vector VV.TG. eLAV 1125 was prepd. by in vivo recombination of pTG1125 with vaccinia virus. BHK21 cells infected with this vector produced glycoproteins of mol. wt. 160, 120, and 40 kilodaltons which were recognized by antiserum isolated from AIDS patients. Balb/c mice infected with this vector produced antibodies which reacted with 160- and 40-kilodalton proteins in sera of AIDS patients.

L17 ANSWER 8 OF 15 COPYRIGHT 1993 ACS
AN CA108(13):107210u
TI Sequence analysis of the human immune deficiency
virus type 2
SO UCLA Symp. Mol. Cell. Biol., New Ser., 71(Hum. Retroviruses, Cancer,
AIDS), 31-42
AU Guyader, M.; Emerman, M.; Sonigo, P.; Clavel, F.; Montagnier, L.;
Alizon, M.
PY 1988
AB Cloned cDNA probes made from human immunodeficiency type 2
virus (HIV-2) were used to screen a genomic library made
from a T4 cell line infected with the ROD isolate of HIV
-2. Lambda clones contg. proviral DNA were characterized
by restriction mapping, and then used to det. the complete
9671-nucleotide sequence of the genome. The genomic
organization of HIV-2 was 5'LTR-gag-pol-central
region-env-orff-3'LTR; the central region contained 4 genes related
to those of HIV-1 (sor, R, tat, and art) as well as a 5th
gene (designated X) with no counterpart in HIV-1.
HIV-1 and HIV-2 differed significantly in terms of
nucleotide and amino acid sequence. The more conserved gag
and pol genes displayed only 56 and 60% nucleotide sequence
homol. and both <60% of amino acid identity. Calcn. of the
nucleotide sequence homol. for the other genes gave even
lower values, giving HIV-1 and 2 overall 42% homologous.
To det. whether or not the tat gene of HIV-1 could
trans-activate the LTR of HIV-2 and vice versa, SW480
cells were cotransfected with subgenomic fragments of HIV
-1 or HIV-2 and pHIV2-CAT or a plasmid pHIV1-CAT which
contained U3-R of HIV-1. Both HIV-1 and
HIV-2 LTRs were substantially activated by the HIV
-1 tat gene.

L17 ANSWER 9 OF 15 COPYRIGHT 1993 ACS
AN CA108(1):1300h
TI Sequence of simian immunodeficiency virus from macaque and
its relationship to other human and simian retroviruses
SO Nature (London), 328(6130), 543-7
AU Chakrabarti, Lisa; Guyader, Mireille; Alizon, Marc; Daniel, Muthiah
D.; Desrosiers, Ronald C.; Tiollais, Pierre; Sonigo, Pierre
PY 1987
AB The complete genome of the proviral form of simian immunodeficiency
virus isolated from a naturally infected macaque was cloned
(.lambda.SIV1) and sequenced. The genome of SIVmac was
9643 nucleotides long with its open reading frames and was organized
(5'LTR-gag-pol-central region-env-F-3'LTR) in a manner typical of a
lentivirus. Comparisons of the proteins of SIV with those of
HIV-1 and HIV-2 quantified the relatedness of
these viruses.

L17 ANSWER 10 OF 15 COPYRIGHT 1993 ACS
AN CA106(11):79452n
TI Molecular cloning and polymorphism of the human
immune deficiency virus type 2
SO Nature (London), 324(6098), 691-5
AU Clavel, Francois; Guyader, Mireille; Guetard, Denise; Salle,
Mireille; Montagnier, Luc; Alizon, Marc
PY 1986
AB A novel retrovirus, human immune deficiency virus
type 2 (HIV-2), was isolated and characterized.
Hybridization expts. indicated that there are substantial

differences between the DNA sequences of HIV-2 and HIV-1. Moreover, the serol. cross-reactivity of the proteins of the 2 viruses is restricted to the core protein. The 9.5-kilobase genome of HIV-2 was cloned.

Different isolates of HIV-2 exhibited restriction site polymorphism in their DNAs. The relationship of HIV-2 with other human and simian retroviruses is discussed.

L17 ANSWER 11 OF 15 COPYRIGHT 1993 ACS

AN CA106(5):28512z

TI Cloned DNA sequences, hybridizable with genomic RNA of lymphadenopathy-associated virus (lav)

SO PCT Int. Appl., 39 pp.

AU Alizon, Marc; Barre Sinoussi, Francoise; Sonigo, Pierre; Tiollais, Pierre; Chermann, Jean Claude; Montagnier, Luc; Wain-Hobson, Simon

AI WO 85-EP487 18 Sep 1985

PI WO 8601827 A1 27 Mar 1986

PY 1986

AB Cloned DNA fragments contg. sequences hybridizable to genomic RNA and DNA of lymphadenopathy-assocd. retrovirus (LAV) are obtained from a cDNA library of the LAV genome. These DNA fragments are useful as hybridization probes for detection of LAV in biol. samples taken from persons possibly afflicted with AIDS. The complete sequence and restriction map of the LAV provirus genome are presented.

L17 ANSWER 12 OF 15 COPYRIGHT 1993 ACS

AN CA105(21):185219f

TI AIDS virus env protein expressed from a recombinant vaccinia virus SO Bio/Technology, 4(9), 790-5

AU Kieny, M. P.; Rautmann, G.; Schmitt, D.; Dott, K.; Wain-Hobson, S.; Alizon, M.; Girard, M.; Chamaret, S.; Laurent, A.; et al.

PY 1986

AB Lymphadenopathy-assocd. virus (LAV) in the causative agent of AIDS, the acquired immunodeficiency syndrome. A retrovirus of the lentivirus group, LAV carries a single major target antigen at its surface: the env protein. The env coding sequence was introduced into a vaccinia virus vector. The live recombinant virus, VVTGeLAV, dets. the prodn. of env protein in infected mammalian cells. The recombinant protein reacts with sera from AIDS patients and appear to be processed and glycosylated in a manner identical to authentic env of LAV retrovirus. Inoculation of mice with VVTGeLAV elicits high titers of antisera recognizing vaccinia determinants but only low titers of antibody recognizing env proteins of LAV. Cells infected with the recombinant virus rapidly liberate a processed form of the env protein into the culture medium. This shedding of surface antigen from AIDS virus may play a role in the pathophysiol. of the disease.

L17 ANSWER 13 OF 15 COPYRIGHT 1993 ACS

AN CA105(9):73424n

TI Lymphadenopathy/AIDS virus: genetic organization and relationship to animal lentiviruses

SO Anticancer Res., 6(3, Pt. B), 403-12

AU Alizon, Marc; Montagnier, Luc

PY 1986

AB A review with 46 refs. on the mol. characterization of the probable agent of the acquired immune deficiency syndrome (AIDS), the lymphadenopathy/AIDS virus (LAV). Mol. cloning and complete nucleotide sequencing of LAV allows a detailed comparison with other AIDS virus

isolates, as well as with other human and animal retroviruses. The AIDS virus is closely related to visna virus, prototype of the lentiviruses, whereas the other human retroviruses, i.e., human T-cell leukemia viruses type I and II (HTLV-I and II), are quite remote in the evolution.

L17 ANSWER 14 OF 15 COPYRIGHT 1993 ACS
AN CA103(19):155030d
TI Nucleotide sequence of the Visna lentivirus: relationship to the AIDS virus
SO Cell (Cambridge, Mass.), 42(1), 369-82
AU Sonigo, Pierre; Alizon, Marc; Staskus, Katherine; Klatzmann, David; Cole, Stewart; Danos, Olivier; Retzel, Ernest; Tiollais, Pierre; Haase, Ashley; Wain-Hobson, Simon
PY 1985
AB The complete 9202 nucleotide sequence of the visna lentivirus was detd. The deduced genetic organization most closely resembles that of the AIDS retrovirus in that there is a novel central region sepg. pol and env. Moreover, there is a close phylogenetic relation between the conserved reverse transcriptase and endonuclease/integrase domains of the visna and AIDS viruses. These findings support the inclusion of the AIDS virus in the retroviral subfamily Lentivirinae.

L17 ANSWER 15 OF 15 COPYRIGHT 1993 ACS
AN CA102(9):73509g
TI Molecular cloning of lymphadenopathy-associated virus
SO Nature (London), 312(5996), 757-60
AU Alizon, Marc; Sonigo, Pierre; Barre-Sinoussi, Francoise; Chermann, Jean Claude; Tiollais, Pierre; Montagnier, Luc; Wain-Hobson, Simon
PY 1985
AB DNA complementary to human lymphadenopathy-assocd. virus (LAV) RNA was cloned on plasmid pBR327, and the recombinant DNA was used to transform Escherichia coli. Plasmid pLAV13 carrying a 2.5-kilobase insert was isolated and its nick-translated DNA used as a hybridization probe to detect virion RNA in infected cells. LAV virion RNA was detected in infected normal T-cells, FR8 and other B cell lines, CEM cells, and bone marrow cells from a hemophiliac with AIDS, but not in uninfected normal T lymphocyte cells or normal liver. Plasmid pLAV13, which did not integrate into the human genome, detected both RNA and integrated DNA forms in LAV-infected cells. Genomic LAV sequences were similarly cloned by inserting HindIII digests of genomic DNA of LAV-infected T cells into a phage .lambda. vector; 5 recombinants that hybridized with nick-translated pLAV13 were obtained.

FILE 'BIOSIS' ENTERED AT 14:51:16 ON 26 APR 93
COPYRIGHT (C) 1993 BIOSIS(R)

FILE COVERS 1969 TO DATE.
CAS REGISTRY NUMBERS AND CHEMICAL NAMES (CNS) PRESENT
FROM JANUARY 1969 TO DATE.

RECORDS LAST ADDED: 23 April 1993 (930423/ED) BA9510 BR4409
CAS REGISTRY NUMBERS (R) LAST ADDED: 24 April 1993 (930424/UP)

L19 O SONICO P ?/AU

L20 878 STEWART C ?/AU

L21 36 DANOS O ?/AU

17 HOBSON S ?/AU

16 WAIN S ?/AU

L22 33 (HOBSON S ? OR WAIN S ?)/AU

=> s l18 and l20 and l21 and l22; s l18 and (l20 or l21 or l22); s l20 and
(l21 or l22); s l21 and l22

L23 O L18 AND L20 AND L21 AND L22

L24 3 L18 AND (L20 OR L21 OR L22)

L25 O L20 AND (L21 OR L22)

L26 O L21 AND L22

=> s (l18 or l20 or l21 or l22) and (lav or lymphadenopath? or htlv or hiv
or lymphotrop? or human(2w)virus?)

583 LAV

4873 LYMPHADENOPATH?

4285 HTLV

30024 HIV

4762 LYMPHOTROP?

2803320 HUMAN

240513 VIRUS?

56380 HUMAN(2W)VIRUS?

L27 34 (L18 OR L20 OR L21 OR L22) AND (LAV OR LYMPHADENOPATH? OR
HTLV OR HIV OR LYMPHOTROP? OR HUMAN(2W)VIRUS?)

=> s l27 and clon? and sequenc?

128815 CLON?

191372 SEQUENC?

L28 2 L27 AND CLON? AND SEQUENC?

=> s l24 or l28; fil medl; s l28; s l18; s l20; s l21; s l22; s l19
L29 5 L24 OR L28

FILE 'MEDLINE' ENTERED AT 14:55:32 ON 26 APR 93

COPYRIGHT (C) 1993 U.S. National Library of Medicine (NLM)

FILE LAST UPDATED: 23 APR 93 (930423/UP). FILE COVERS 1972 TO DATE.
***FILE NOW RELOADED WITH 1993 MESH. NEW SUBHEADING PRE-EXPLOSION
FEATURE NOW AVAILABLE. SEE HELP PRE-EXPLOSION.***

* LIMITING SEARCH FUNCTIONS (L#/MAJ, ETC.) TEMPORARILY UNAVAILABLE.*

*****SEE HELP LLIMIT FOR DETAILS.*****

SEE HELP CTAG FOR CHECK TAGS, HELP SUBHEADING FOR SUBHEADINGS AND

HELP TREE FOR TREE NUMBER CATEGORY.

+QLF/CT SHOWS YOU THE ALLOWABLE QUALIFIERS OF A TERM.

18 ALIZON M ?/AU
499 STEWART C ?/AU
25 DANOS O ?/AU
12 HOBSON S ?/AU
11 WAIN S ?/AU
880 LAV
5422 LYMPHADENOPATH?
6592 HTLV
29914 HIV
1976 LYMPHOTROP?
4131623 HUMAN
179524 VIRUS?
15305 HUMAN(2W)VIRUS?
115931 CLON?
207238 SEQUENC?

L30 7 L27 AND CLON? AND SEQUENC?

L31 18 ALIZON M ?/AU

L32 499 STEWART C ?/AU

L33 25 DANOS O ?/AU

12 HOBSON S ?/AU
11 WAIN S ?/AU

L34 23 (HOBSON S ? OR WAIN S ?)/AU

L35 0 SONICO P ?/AU

=> s 131 and 132 and 133 and 134; s 131 and (132 or 133 or 134); s 132 and (133 or 134); s 133 and 134

L36 0 L31 AND L32 AND L33 AND L34

L37 2 L31 AND (L32 OR L33 OR L34)

L38 0 L32 AND (L33 OR L34)

L39 0 L33 AND L34

=> s 130 or 137

L40 7 L30 OR L37

=> dup rem 129,140

FILE 'BIOSIS' ENTERED AT 14:57:51 ON 26 APR 93

COPYRIGHT (C) 1993 BIOSIS(R)

FILE 'MEDLINE' ENTERED AT 14:57:51 ON 26 APR 93

COPYRIGHT (C) 1993 U.S. National Library of Medicine (NLM)

PROCESSING COMPLETED FOR L29

HELP TREE FOR TREE NUMBER CATEGORY.

+QLF/CT SHOWS YOU THE ALLOWABLE QUALIFIERS OF A TERM.

18 ALIZON M ?/AU
499 STEWART C ?/AU
25 DANOS O ?/AU
12 HOBSON S ?/AU
11 WAIN S ?/AU
880 LAV
5422 LYMPHADENOPATH?
6592 HTLV
29914 HIV
1976 LYMPHOTROP?
4131623 HUMAN
179524 VIRUS?
15305 HUMAN(2W)VIRUS?
115931 CLON?
207238 SEQUENC?

L30 7 L27 AND CLON? AND SEQUENC?

L31 18 ALIZON M ?/AU

L32 499 STEWART C ?/AU

L33 25 DANOS O ?/AU

12 HOBSON S ?/AU
11 WAIN S ?/AU
L34 23 (HOBSON S ? OR WAIN S ?)/AU

L35 0 SONICO P ?/AU

=> s 131 and 132 and 133 and 134; s 131 and (132 or 133 or 134); s 132 and (133 or 134); s 133 and 134

L36 0 L31 AND L32 AND L33 AND L34

L37 2 L31 AND (L32 OR L33 OR L34)

L38 0 L32 AND (L33 OR L34)

L39 0 L33 AND L34

=> s 130 or 137

L40 7 L30 OR L37

=> dup rem 129,140

FILE 'BIOSIS' ENTERED AT 14:57:51 ON 26 APR 93

COPYRIGHT (C) 1993 BIOSIS(R)

FILE 'MEDLINE' ENTERED AT 14:57:51 ON 26 APR 93

COPYRIGHT (C) 1993 U.S. National Library of Medicine (NLM)

PROCESSING COMPLETED FOR L29

PROCESSING COMPLETED FOR L40

L41 8 DUP REM L29 L40 (4 DUPLICATES REMOVED)

=> d 1-8 an ti au so ab; fil home

L41 ANSWER 1 OF 8 COPYRIGHT 1993 BIOSIS

AN 89:438231 BIOSIS

TI PACKAGING AND TRANSFER OF A MARKER GENE BY HIV VECTOR PARTICLES.

AU CLAVEL F; DANOS O; ALIZON M

SO MORISSET, R. A. (ED.). VE CONFERENCE INTERNATIONALE SUR LE SIDA: LE DEFI SCIENTIFIQUE ET SOCIAL; V INTERNATIONAL CONFERENCE ON AIDS: THE SCIENTIFIC AND SOCIAL CHALLENGE; MONTREAL, QUEBEC, CANADA, JUNE 4-9, 1989. 1262P. INTERNATIONAL DEVELOPMENT RESEARCH CENTRE: OTTAWA, ONTARIO, CANADA. ILLUS. PAPER. 0 (0). 1989. 583. ISBN: 0-662-56670-X

L41 ANSWER 2 OF 8 COPYRIGHT 1993 NLM

AN 87287230 MEDLINE

TI Sequence of simian immunodeficiency virus from macaque and its relationship to other human and simian retroviruses.

AU Chakrabarti L; Guyader M; Alizon M; Daniel MD; Desrosiers RC; Tiollais P; Sonigo P

SO Nature, (1987 Aug 6-12) 328 (6130) 543-7

Journal code: NSC ISSN: 0028-0836

AB Because of the growing incidence of AIDS (acquired immune deficiency syndrome), the need for studies on animal models is urgent. Infection of chimpanzees with the retroviral agent of human AIDS, the human immunodeficiency virus (HIV), will have only limited usefulness because chimpanzees are in short supply and do not develop the disease. Among non-human primates, both type D retroviruses and lentiviruses can be responsible for immune deficiencies. The D-type retroviruses, although important pathogens in macaque monkey colonies, are not satisfactory as a model because they differ in genetic structure and pathophysiological properties from the human AIDS viruses. The simian lentivirus, previously referred to as simian T-cell lymphotropic virus type III (STLV-III), now termed simian immunodeficiency virus (SIV) is related to HIV by the antigenicity of its proteins and in its main biological properties, such as cytopathic effect and tropism for CD4-bearing cells. Most importantly, SIV induces a disease with remarkable similarity to human AIDS in the common rhesus macaques, which therefore constitute the best animal model currently available. Natural or experimental infection of other monkeys such as African green monkeys or sooty mangabeys has not yet been associated with disease. Molecular approaches of the SIV system will be needed for biological studies and development of vaccines that could be tested in animals. We have cloned and sequenced the complete genome of SIV isolated from a naturally infected macaque that died of AIDS. This SIVMAC appears genetically close to the agent of AIDS in West Africa, HIV-2, but the divergence of the sequences of SIV and HIV-2 is greater than that previously observed between HIV-1 isolates.

L41 ANSWER 3 OF 8 COPYRIGHT 1993 NLM

AN 87090385 MEDLINE

TI Molecular cloning and polymorphism of the human immune deficiency virus type 2.

AU Clavel F; Guyader M; Guetard D; Salle M; Montagnier L; Alizon M

SO Nature, (1986 Dec 18-31) 324 (6098) 691-5

Journal code: NSC ISSN: 0028-0836

AB We recently reported the isolation of a novel retrovirus, the human immune deficiency virus type 2 (HIV-2), previously named LAV-2, from patients with acquired immune deficiency syndrome (AIDS) originating from West Africa. This virus is related to HIV-1, the causative agent of the AIDS epidemic now spreading in Central and East Africa, as well as the USA and Europe. (see ref. 3 for review) both by its morphology and by its tropism and in vitro cytopathic effect on CD4 (T4) positive cell lines and lymphocytes. But preliminary hybridization experiments indicated that there are substantiated differences between the sequences of the two genomes. Furthermore, the proteins of HIV-1 and HIV-2 have different sizes and their serological cross-reactivity is restricted to the major core protein, as the envelope glycoproteins of HIV-2 are not immunoprecipitated by HIV-1-positive sera. We now report the molecular cloning of the complete 9.5-kilobase (kb) genome of HIV-2, the observation of restriction site polymorphism between different isolates, and a preliminary analysis of the relationship of HIV-2 with other human and simian retroviruses.

L41 ANSWER 4 OF 8 COPYRIGHT 1993 BIOSIS
AN 86:379265 BIOSIS
TI LYMPHADENOPATHY-ACQUIRED IMMUNE DEFICIENCY SYNDROME VIRUS GENETIC ORGANIZATION AND RELATIONSHIP TO ANIMAL LENTIVIRUSES.
AU ALIZON M; MONTAGNIER L
SO ANTICANCER RES 6 (3 PART B). 1986. 403-412. CODEN: ANTRD4 ISSN: 0250-7005
AB This article presents data obtained by our group in the molecular characterization of the probable agent of the acquired immune deficiency syndrome (AIDS), the lymphadenopathy/AIDS virus (LAV). Molecular cloning and complete nucleotide sequencing of LAV allows a detailed comparison with other AIDS virus isolates, as well as other human and animal retroviruses. We have now molecular evidence that the AIDS virus is closely related to visna virus, prototype of the lentiviruses, whereas the other human retroviruses, i.e., human T-cell leukemia viruses type I and II (HTLV-I and II), are quite remote in the evolution.

L41 ANSWER 5 OF 8 COPYRIGHT 1993 BIOSIS
AN 86:377557 BIOSIS
TI GENETIC VARIABILITY OF THE ACQUIRED IMMUNE DEFICIENCY SYNDROME VIRUS NUCLEOTIDE SEQUENCE ANALYSIS OF TWO ISOLATES FROM AFRICAN PATIENTS.
AU ALIZON M; WAIN-HOBSON S; MONTAGNIER L; SONIGO P
SO CELL 46 (1). 1986. 63-74. CODEN: CELLB5 ISSN: 0092-8674
AB To define further the genetic variability of the human AIDS retrovirus, we have cloned and sequenced the complete genomes of two isolates obtained from Zairian patients. Their genetic organization is identical with that of isolates from Europe and North America, confirming a common evolutionary origin. However, the comparison of homologous proteins from these different isolates reveals a much greater extent of genetic polymorphism than previously observed. It is nevertheless possible to define conserved domains in the viral proteins, especially in the envelope, that could be of interest for the understanding of the molecular mechanisms of viral pathogenicity and for the development of diagnostic and therapeutic reagents.

L41 ANSWER 6 OF 8 COPYRIGHT 1993 BIOSIS
AN 86:99324 BIOSIS
DUPLICATE 1
DUPLICATE 2
DUPLICATE 3

TI NUCLEOTIDE SEQUENCE OF THE VISNA LENTIVIRUS RELATIONSHIP TO THE AIDS ACQUIRED IMMUNE DEFICIENCY SYNDROME VIRUS.
AU SONIGO P; ALIZON M; STASKUS K; KLATZMANN D; COLE S;
DANOS O; RETZEL E; TIOLLAIS P; HAASE A; WAIN-HOBSON S
SO CELL 42 (1). 1985. 369-382. CODEN: CELLB5 ISSN: 0092-8674
AB We have determined the complete 9202 nucleotide sequence of the visna lentivirus. The deduced genetic organization most closely resembles that of the AIDS retrovirus in that there is a novel central region separating pol and env. Moreover, there is a close phylogenetic relationship between the conserved reverse transcriptase and endonuclease/integrase domains of the visna and AIDS viruses. These findings support the inclusion of the AIDS virus in the retroviral subfamily Lentivirinae.

L41 ANSWER 7 OF 8 COPYRIGHT 1993 BIOSIS DUPLICATE 4
AN 85:296617 BIOSIS
TI NUCLEOTIDE SEQUENCE OF THE ACQUIRED IMMUNE DEFICIENCY SYNDROME VIRUS LYMPHADENOPATHY-ASSOCIATED VIRUS.
AU WAIN-HOBSON S; SONIGO P; DANOS O; COLE S; ALIZON M
SO CELL 40 (1). 1985. 9-18. CODEN: CELLB5 ISSN: 0092-8674
AB The complete 9193-nucleotide sequence of the probable causative agent of AIDS [acquired immune deficiency syndrome], lymphadenopathy-associated virus (LAV), was determined. The deduced genetic structure is unique: it shows, in addition to the retroviral gag, pol and env genes, 2 novel open reading frames termed Q and F. Remarkably, Q is located between pol and env and F is half-encoded by the U3 element of the LTR [long terminal repeat]. The data place LAV apart from the previously characterized family of human T cell leukemia/lymphoma viruses.

L41 ANSWER 8 OF 8 COPYRIGHT 1993 NLM
AN 85086249 MEDLINE
TI Molecular cloning of lymphadenopathy-associated virus.
AU Alizon M; Sonigo P; Barre-Sinoussi F; Chermann JC; Tiollais P; Montagnier L; Wain-Hobson S
SO Nature, (1984 Dec 20-1985 Jan 2) 312 (5996) 757-60
Journal code: NSC ISSN: 0028-0836
AB Lymphadenopathy-associated virus (LAV) is a human retrovirus first isolated from a homosexual patient with lymphadenopathy syndrome, frequently a prodrome or a benign form of acquired immune deficiency syndrome (AIDS). Other LAV isolates have subsequently been recovered from patients with AIDS or pre-AIDS and all available data are consistent with the virus being the causative agent of AIDS. The virus is propagated on activated T lymphocytes and has a tropism for the T-cell subset OKT4 (ref. 6), in which it induces a cytopathic effect. The major core protein of LAV is antigenically unrelated to other known retroviral antigens. LAV-like viruses have more recently been independently isolated from patients with AIDS and pre-AIDS. These viruses, called human T-cell leukaemia/lymphoma virus type III (HTLV-III) and AIDS-associated retrovirus (ARV), seem to have many characteristics in common with LAV and probably represent independent isolates of the LAV prototype. We have sought to characterize LAV by the molecular cloning of its genome. A cloned LAV complementary DNA was used to screen a library of recombinant phages constructed from the genomic DNA of LAV-infected T lymphocytes. Two families of clones were characterized which differ in a restriction site. The viral genome is longer than any other human retroviral genome (9.1-9.2 kilobases).

with chain terminating inhibitors. *Proc. Natl. Acad. Sci. USA* 74, 5463-5467.

Schünbach, J., Popovic, M., Gilden, R. V., Gonda, M. A., Sarngadharan, M. G., and Gallo, R. C. (1984). Serological analysis of a subgroup of human T-lymphotropic retroviruses (HTLV-III) associated with AIDS. *Science* 224, 503-505.

Schwartz, D. E., Tizard, R., and Gilbert, W. (1983). Nucleotide sequence of Rous sarcoma virus. *Cell* 32, 853-869.

Seiki, M., Hattori, S., Miyayama, Y., and Yoshida, M. (1983). Human adult T-cell leukemia virus: complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA. *Proc. Natl. Acad. Sci. USA* 80, 3618-3622.

Shaw, G. M., Hahn, B. H., Arya, S. K., Groopman, J. E., Gallo, R. C., and Wong-Staal, F. (1984). Molecular characterization of human T-cell leukemia (lymphotropic) virus type III in the acquired immune deficiency syndrome. *Science* 226, 1165-1171.

Shimojo, K., and Temin, H. M. (1982). Spontaneous variation and synthesis in the U3 region of the long terminal repeat of an avian retrovirus. *J. Virol.* 47, 163-171.

Shimojo, K., Golde, D. M., Miwa, M., Sugimura, T., and Chen, I. S. Y. (1984). Nucleotide sequence analysis of the long terminal repeat of human T-cell leukemia virus type II. *Proc. Natl. Acad. Sci. USA* 81, 1079-1083.

Shinnick, T. M., Lerner, R. A., and Sutcliffe, J. G. (1981). Nucleotide sequence of Moloney murine leukemia virus. *Nature* 293, 543-548.

Srinivasan, A., Reddy, E. P., Dunn, C. Y., and Aaronson, S. A. (1984). Molecular dissection of transcriptional control elements with the long terminal repeat of retrovirus. *Science* 223, 288-289.

Staden, R. (1982). Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing. *Nuc. Acids. Res.* 10, 4731-4751.

Temin, H. (1981). Structure, variation and synthesis of retrovirus long terminal repeat. *Cell* 27, 1-3.

Weinberg, R. A. (1982). Fewer and fewer oncogenes. *Cell* 30, 3-9.

> 0 <
D| |0 IntelliGenetics
> 0 <

FastDB - Fast Pairwise Comparison of Sequences
Release 5.4

Results file railey-000-716/ngs.res made by shears on Mon 26 Apr 93 14:38:23-PDT.

Query sequence being compared:RAILEY-000-716.SEQ (1-696)
Number of sequences searched: 20342
Number of scores above cutoff: 4112

Results of the initial comparison of RAILEY-000-716.SEQ (1-696) with:
Data bank : N-GeneSeq 9, all entries

10000-
 *
N -
U 5000-*
M - *
B - *
E -
R -
 - *
O -
F 1000-
 -
S - *
E 500-
Q -
U -
E -
N - *
C -
E -
S 100-
 -

PARAMETERS

Similarity matrix	Unitary	K-tuple	4
Mismatch penalty	1	Joining penalty	30
Gap penalty	1.00	Window size	32
Gap size penalty	0.33		
Cutoff score	0		
Randomization group	0		
Initial scores to save	40	Alignments to save	10
Optimized scores to save	0	Display context	50

SEARCH STATISTICS

Scores:	Mean	Median	Standard Deviation
	21	17	15.71
Times:	CPU	Total Elapsed	
	00:04:07.98	00:08:22.00	

Number of residues: 12982290
 Number of sequences searched: 20342
 Number of scores above cutoff: 4112

Cut-off raised to 10.
 Cut-off raised to 17.
 Cut-off raised to 25.
 Cut-off raised to 30.
 Cut-off raised to 33.

The scores below are sorted by initial score.
 Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

The list of best scores is:

Sequence Name	Description	Init.	Opt.	Length	Score	Score	Sig.	Frame
**** 40 standard deviations above mean ****								
1_014751	HIV-1(MN) env protein-encodin	9739	656	663	40.42	0		

		**** 39 standard deviations above mean ****					
2.	Q22488	HIV-1 proviral clone pNL4-3.	9709	640	640	39.40	0
		**** 38 standard deviations above mean ****					
3.	N60240	HTLV-III virus (HIV virus) DN	9745	633	623	38.96	0
		**** 36 standard deviations above mean ****					
4.	Q14752	HIV-1(MN-ST1) env protein-enc	9746	602	641	36.98	0
		**** 33 standard deviations above mean ****					
5.	N60365	Sequence of LAV virus genome	9193	554	554	33.93	0
6.	N60288	Sequence of the HTLV-III geno	9213	547	547	33.48	0
7.	N60476	Sequence of lymphadenopathy-a	9088	542	542	33.17	0
8.	Q15226	HIV-1 TAT mRNA.	1833	541	545	33.10	0
9.	N71016	Sequence of LAV/HTLV III envelope	4020	541	541	33.10	0
		**** 30 standard deviations above mean ****					
10.	N80436	Entire sequence of LAV EL I	9236	502	502	30.62	0
11.	Q06635	Complete sequence of HIV 1-ND	9143	499	499	30.43	0
12.	N60140	Sequence of ARV-2 (9B) cDNA i	9737	493	652	30.05	0
		**** 23 standard deviations above mean ****					
13.	Q11943	Nucleotide sequence of HIV-1	9192	394	513	23.74	0
		**** 22 standard deviations above mean ****					
14.	N80437	Entire sequence of LAV MA L	9229	382	470	22.98	0
		**** 16 standard deviations above mean ****					
15.	Q14753	HIV-1 BA-L clone.	3807	282	282	16.61	0
		**** 14 standard deviations above mean ****					
16.	N80890	Sequence of cDNA clone HIV-2	9633	246	342	14.32	0
17.	N92119	Sequence of clone HIV-2 SBL/I	9693	246	342	14.32	0
		**** 13 standard deviations above mean ****					
18.	N71017	Sequence of LAV/HTLV III gag	5340	235	235	13.62	0
		**** 12 standard deviations above mean ****					
19.	N90824	HIV LTR gene structure.	718	221	228	12.73	0
		**** 10 standard deviations above mean ****					
20.	Q21163	COS cell expression vector pi	2932	192	377	10.89	0
		**** 9 standard deviations above mean ****					
21.	Q02829	DNA complementary to simian i	9170	177	313	9.93	0
22.	Q20616	ROD HIV-2 isolate complete genome	9672	175	351	9.80	0
23.	N92768	HIV-2 variant HIV-D194 clone.	9473	174	290	9.74	0
24.	N80859	Sequence of entire HIV-2 ROD	9643	173	349	9.68	0
25.	N91774	Entire HIV-2/ST provirus DNA	9822	168	345	9.36	0
26.	N92618	Portion of the HIV-3 retrovir	360	167	220	9.29	0
		**** 8 standard deviations above mean ****					
27.	Q24802	SIVmac239 nef-deletion.	10097	151	343	8.28	0
28.	Q22487	SIVmac239 proviral genome.	10279	151	343	8.28	0
29.	N90375	DNA sequence of expression ve	1143	149	375	8.15	0
30.	N90606	piHJM vector (ATCC 67,633) DN	3353	148	381	8.08	0
31.	Q21166	Expression vector piHJM.	3900	148	381	8.08	0
		**** 7 standard deviations above mean ****					
32.	N92769	HIV-2 variant HIV-D205 clone	324	137	175	7.38	0
		**** 6 standard deviations above mean ****					
33.	Q10203	Sequence of simian immunodef	9215	128	331	6.81	0
34.	Q02830	cDNA to HIV-2 RNA.	9360	117	275	6.11	0
		**** 5 standard deviations above mean ****					
35.	Q13189	Synthetic TAR sequence.	120	109	114	5.60	0
36.	N93063	Sequence encoding hybrid prot	1383	105	266	5.35	0

37 N50333 Sequence of exons I and II an 986 104 292 5.28 0
38. Q20532 Sequence of clone lambdaAPCP1 2256 103 303 5.22 0
39. Q10014 Clone lambda APCP168i4 of bet 2256 103 303 5.22 0
40. N80604 Lambda APCP168i4, amino acids 2256 103 303 5.22 0

1. RAILY-000-716.SEQ (1-696)
Q14751 HIV-1(MN) env protein-encoding sequence.

ID Q14751 standard; DNA; 9739 BP.
AC Q14751;
DT 05-FEB-1992 (first entry)
DE HIV-1(MN) env protein-encoding sequence.

KW human immunodeficiency virus; United States; MN isolate; AIDS;

KW envelope protein; ss.

OS Human immunodeficiency virus-1 (MN).

FH Key Location/Qualifiers

FT CDS 6240..8810

FT /*tag= a

FT /product= env

PN US7599491-A.

PD 15-OCT-1991.

PF 17-OCT-1990; 183830.

PR 17-OCT-1990; US-599491.

PA (USSH) NAT INST OF HEALTH.

PI Reitz M;

DR WPI; 91-346752/47.

DR P-PSDB; R14903.

PT US HIV-1 isolates MN-ST1 and BA-L, ENV protein and DNA - are

PT useful in therapeutics, vaccines and diagnostic tests

PS Example 1; Fig 2; 6lpp; English.

CC The permuted circular unintegrated viral DNA representing the
CC complete HIV-1(MN) genome was cloned into the EcoRI site of lambda
CC gtWES.lambdA B DNA from total DNA of H9 cells producing HIV-1 (MN).
CC This clone was designated lambda MN-PH1; it was subcloned in M13mp18
CC and M13mp19 and the DNA sequence of the entire clone was obtained.
CC The four "OTHERS" in the sequence represent bases which are
CC illegible in the specification. The amino acid sequence of the env
CC protein was deduced from this sequence and the env gene was
CC subcloned so that recombinant production of the env protein was
CC possible.

SQ Sequence 9739 BP; 3457 A; 1774 C; 2313 G; 2191 T;

SQ 4 Others;

Initial Score = 656 Optimized Score = 663 Significance = 40.42

Residue Identity = 96% Matches = 665 Mismatches = 21

Gaps = 3 Conservative Substitutions = 0

10 20 30 40 50 60 70
GGGGGACTGGAAGGGCTAAATTCACTCCAACGAAAGACAAGATATCCTGATCTGTGGATCTACCAACACACAA

|||

TGGAAGGGCTAAATTCACTCCAACGAAAGACAAGATATCCTGATCTGTGGATCTACCAACACACAA

X 10 20 30 40 50 60

80 90 100 110 120 130 140
GGCTACTTCCCTGATTGGCAGAACTACACACCAGGGCCAGGGTCAGATATCCACTGACCTTGATGGTGC

||||||||||||| |||||||||||||||||||| | |||||||||||||||||||||||||||

GGCTACTTCCCTGATTAGCAGAACTACACACCAGGGCCAGGGATCAGATATCCACTGACCTTGATGGTGC

70 80 90 100 110 120 130

150 160 170 180 190 200 210
TACAAGCTAGTACCAAGTTGAGCCAGATAAGGTAGAAGAGGCCAATAAGGAGAGAACACCCAGCTTGTACAC

||||||||||||| |||| | |||| | |||| | |||||||||||||||||||

TACAAGCTAGTACCAAGTTGAGCCAGAGAAAGTTAGAAGAAGGCCAACAAAGGAGAGAACACCCAGCTTGTACAC

140 150 160 170 180 190 200

220 230 240 250 260 270 280
CCTGTGAGCCTGCATGGAATGGATGACCCCTGAGAGAGAAAGTGTAGACTGCTGGAGGTTGACAGCCGCTAGCA

||||||||||||| |||| | |||| | |||| | |||||||||||||||

CCTGTGAGCCTGCATGGAATGGATGACCCGAGAGAGAAAGTGTAGACTGCTGGAGGTTGACAGCCGCTAGCA

210 220 230 240 250 260 270 280

290 300 310 320 330 340 350 360
TTTCATCACGTGGCCCGAGAGCTGCATCCCGAGTACTTCAAGAACTGCTGACATCGAGCTGCTACAAGGGA

||||||||| ||||||||||| |||| | |||| | |||| | |||| | |||

TTTCATCACATGGCCCGAGAGCTGCATCCGGAGTACTTCAAGAACTGCTCACATCGAGCTGCTACAATGGGA

290 300 310 320 330 340 350

370 380 390 400 410 420 430

CTTTCCGCTGGGCACTTCCAGGGAGGCCTGGCCTGGCGGAACCTGGGACTGGCGAGCCCTCAGATGCTGC
 ||||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 CTTTCCGCTGGGACTTTCCAGGTAGGCCTGGCCTGGCGGGACTGGGACTGGCGAGCCCTCAGATCCTGC
 360 370 380 390 400 410 420
 440 450 460 470 480 490 500
 ATATAAGCAGCTGCTTTGCCTGTACTGGGTCTCTGGTTAGACCAGATTGAGCCTGGAGCTCTCTGG
 ||||||| ||||| ||||| ||||| ||||| ||||| |||||
 ATATAAGCAGCTGCTTTGCCTGTACTGGGTCTCTGGTTAGACCAGATCTGAGCCTGGAGCTCTCTGG
 430 440 450 460 470 480 490
 510 520 530 540 550 560 570
 CTAACATAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCCTGAGTGCTCAAGTAGTGTGCCCCGTCT
 ||||||| ||||| ||||| ||||| ||||| ||||| |||||
 CTAACATAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCCTGAGTGCTCAAGTAGTGTGCCCCGTCT
 500 510 520 530 540 550 560
 580 590 600 610 620 630 640
 GTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCCTTTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGC
 ||| ||||| ||||| ||||| ||||| ||||| |||||
 GTTATGTGACTCTGGTAGCTAGAGATCCCTCAGATCCTTTAGGCAGTGTGGAAAATCTCTAGCAGTGGCGC
 570 580 590 600 610 620 630 640
 650 660 670 680 690 X
 CCGAACAGGGACTTGAAGCGAAAGGGAAACCAGAGGACCTCTCGA
 ||||||| ||||| |||||
 CCGAACAGGGACTTGAAGCGAAAGAAAAACCA--GAGCTCTCGACGCCAGGACTCGGCTTGCTGAAGCG
 650 660 670 680 X 690 700 710
 CGCACGGCAAGAGGGCGAGGGGCGGCG
 720 730

2. RAILEY-000-716.SEQ (1-696)

Q22488 HIV-1 proviral clone pNL4-3.

ID Q22488 standard; DNA; 9709 BP.
 AC Q22488;
 DT 06-JUL-1992 (first entry)
 DE HIV-1 proviral clone pNL4-3.
 KW AIDS; Acquired Immune Deficiency Syndrome; polymerase chain reaction;
 KW PCR; site-directed mutagenesis; retrovirus; null-mutation; human; ss.
 OS Human immunodeficiency virus.
 FH Key Location/Qualifiers
 FT repeat_region 1..634
 FT /*tag= a
 FT /rpt_type= TERMINAL
 FT /note= "5'LTR"
 FT repeat_unit 456..548
 FT /*tag= b
 FT /standard_name= R
 FT GC_signal 375..385
 FT /*tag= c
 FT /standard_name= Sp1_binding_site
 FT GC_signal 389..395
 FT /*tag= d
 FT /standard_name= Sp1_binding_site
 FT GC_signal 399..407
 FT /*tag= e
 FT /standard_name= Sp1_binding_site
 FT primer_bind 636..656
 FT /*tag= f
 FT /standard_name= Lys_tRNA_pbs
 FT CDS 790..2292
 FT /*tag= g
 FT /product= qaq

FT CDS 2087..5096
FT /*tag= h
FT /product= pol
FT /note= "NH2-terminal uncertain"
FT CDS 5041..5619
FT /*tag= i
FT /product= vif
FT CDS 5559..5849
FT /*tag= j
FT /product= vpr
FT CDS 6061..6306
FT /*tag= k
FT /product= vpu
FT exon 5830..6044
FT /*tag= l
FT /product= tat
FT /note= "full-length tat obtained by splicing"
FT exon 5969..6044
FT /*tag= m
FT /product= rev
FT /note= "full-length rev obtained by splicing"
FT exon 8369..8414
FT /*tag= n
FT /product= tat
FT /note= "see above"
FT exon 8369..8643
FT /*tag= o
FT /product= rev
FT /note= "see above"
FT CDS 6221..8785
FT /*tag= p
FT /product= env
FT CDS 8787..9407
FT /*tag= q
FT /product= nef
FT repeat_region 9076..9709
FT /*tag= r
FT /rpt_type= TERMINAL
FT /note= "3'LTR"
FT repeat_unit 9531..9624
FT /*tag= s
FT /standard_name= R
FT polyA_signal 9602..9607
FT /*tag= t
PN W09200987-A.
PD 23-JAN-1992.
PF 10-JUL-1991; U04884.
PR 12-JUL-1990; US-551945.
PA (HARD) HARVARD COLLEGE.
PI Desrosiers RC.
DR WPI; 92-056816/07.
PT Primate lentivirus vaccine protecting against AIDS - and primate
PT lentiviruses and their DNA clones contg. null mutations, useful for
PT producing vaccine
PS Disclosure: Fig 3; 51pp; English.
CC The proviral clone pNL4-3 was used as the basis for creating the
CC null-mutations of the invention. The clone was described in
CC Adachi et al., J.Virol. 59:284, 1986. See Q21079-Q21086 for
CC examples of mutagenic primers for site-directed deletion of regions
CC of NL4-3.
SQ Sequence 9709 BP; 3421 A; 1759 C; 2365 G; 2161 T;
SQ 3 Others;

Initial Score = 640 Optimized Score = 640 Significance = 39.40
Residue Identity = 92% Matches = 640 Mismatches = 49
Gaps = 0 Conservative Substitutions = 0

10 20 30 40 50 60 70
 GGGGGACTGGAAGGGCTAATTCACTCCCAACGAAGACAAGATATCCTTGATCTGTGGATCTACCACACACAA
 ||||||| ||||| ||||| ||||| |||||
 TGGAAAGGGCTAATTGGTCCCCAAAAGACAAGAGATCCTTGATCTGTGGNNNCACCACACACAA
 X 10 20 30 40 50 60
 80 90 100 110 120 130 140
 GGCTACTTCCTGATTGGCAGAACTACACACCAGGGCCAGGGTCAGATATCCACTGACCTTTGGATGGTGC
 ||||||| ||||| ||||| ||||| |||||
 GGCTACTTCCTGATTGGCAGAACTACACACCAGGGCCAGGGTCAGATATCCACTGACCTTTGGATGGTGC
 70 80 90 100 110 120 130
 150 160 170 180 190 200 210
 TACAAGCTAGTACCAAGTTGAGCCAGATAAGGTAGAACAGAGGCCAATAAGGAGAGAACACAGCTTGTACAC
 | ||||| ||||| ||||| ||||| ||||| ||||| |||||
 TTCAAGTTAGTACCAAGTTGAACCAAGAGCAAGTAGAACAGAGGCCAATAAGGAGAGAACAGCTTGTACAC
 140 150 160 170 180 190 200
 220 230 240 250 260 270 280
 CCTGTGAGCCCTGCATGGAAATGGATGACCCCTGAGAGAGAACTGTTAGCTGAGGTTTGACAGCCGCCTAGCA
 ||||| ||||| ||||| ||||| ||||| ||||| |||||
 CCTATGAGCCAGCATGGATGGAGGACCCGGAGGGAGAAGTATTAGTGTGAAAGTTTGACAGCCTCCTAGCA
 210 220 230 240 250 260 270 280
 290 300 310 320 330 340 350 360
 TTTCATCACGTGGCCCGAGAGCTGCATCCGGAGTACTTCAGAAACTGCTGACATCGAGCTTGCTACAAGGGA
 ||||| ||||| ||||| ||||| ||||| ||||| |||||
 TTTCGTCACATGGCCCGACAGCTGCATCCGGAGTACTACAAAGACTGCTGACATCGAGCTTCTACAAGGGA
 290 300 310 320 330 340 350
 370 380 390 400 410 420 430
 CTTTCCGCTGGGCACCTTCAGGGAGGCGTGGCCTGGGCGGAACCTGGGAGTGGCGAGCCCTCAGATGTCG
 ||||| ||||| ||||| ||||| ||||| ||||| |||||
 CTTTCCGCTGGGGACTTCCAGGGAGGTGGCCTGGGCGGGACTGGGAGTGGCGAGCCCTCAGATGTCAC
 360 370 380 390 400 410 420
 440 450 460 470 480 490 500
 ATATAAGCAGCTGCTTTGCCTGACTGGTCTCTCTGGTTAGACCAGATTGAGCCTGGAGCTCTGG
 ||||| ||||| ||||| ||||| ||||| |||||
 ATATAAGCAGCTGCTTTGCCTGACTGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGAGCTCTGG
 430 440 450 460 470 480 490
 510 520 530 540 550 560 570
 CTAACCTAGGGAAACCCACTGCTTAAGCCTCAATAAAAGCTTGCCCTGAGTGCTCAAGTAGTGTGCCCCGTCT
 ||||| ||||| ||||| ||||| ||||| |||||
 CTAACCTAGGGAAACCCACTGCTTAAGCCTCAATAAAAGCTTGCCCTGAGTGCTCAAAGTAGTGTGCCCCGTCT
 500 510 520 530 540 550 560
 580 590 600 610 620 630 640
 GTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCCTTTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGC
 ||||| ||||| ||||| ||||| |||||
 GTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCCTTTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGC
 570 580 590 600 610 620 630 640
 650 660 670 680 690 X
 CGAACACAGGGACTTGAAGCGAAAGTAAAGCCAGAGGAGATCTCTCGACGCCAGGACTCGGCTTGCTGAAGCG
 ||||| ||||| |||||
 CGAACACAGGGACTTGAAGCGAAAGTAAAGCCAGAGGAGATCTCTCGACGCCAGGACTCGGCTTGCTGAAGCG
 650 660 670 680 690 700 710
 CGCACGGCAAGAGGGAGGGGGGGCG
 720 730

N60240 HTLV-III virus (HIV virus) DNA.

ID N60240 standard; DNA; 9745 BP.
AC N60240;
DT 01-JAN-1980 (first entry)
DE HTLV-III virus (HIV virus) DNA.
KW HTLV-III; HIV virus; AIDS; active immunization;
KW passive immunization; vaccine; ss.
OS HIV virus (HTLV-III).
FH Key Location/Qualifiers
FT CDS 786..2318
FT /*tag= a
FT /note= "gag protein open reading frame"
FT CDS 2078..5122
FT /*tag= b
FT /note= "pol protein open reading frame"
FT CDS 5037..5646
FT /*tag= c
FT /note= "sor protein open reading frame"
FT CDS 6230..8818
FT /*tag= d
FT /note= "env-lor protein open reading frame"
PN EP-185444-A.
PD 25-JUN-1986.
PF 10-OCT-1985; 307260.
PR 10-OCT-1984; US=659339.
PR 23-JAN-1985; US=693866.
PA (CENT-) CENTOCOR INC.

PI Chang NT

DR WPI; 86-163443/26.
DR P-PSDB; P60346-49.
PT New immunoreactive HTLV-III polypeptide expressed by transformed
PT cells - and derived antibodies, useful for diagnosis of AIDS and
PT in active or passive immunisation
PS Disclosure; Fig. 3; 60pp; English.
CC HIV virus cDNA is cleaved with restriction endonucleases to produce
CC fragments coding for the specified proteins. The resulting proteins,
CC gag, pol, sor and env-lor, and antibodies against them are useful
CC for immunoassay of HIV virus, e.g. by sandwich type RIA. The
CC proteins may also be used in vaccines for active immunization.
SQ Sequence 9745 BP; 3434 A; 1782 C; 2363 G; 2166 T;

Initial Score = 633 Optimized Score = 623 Significance = 38.96
Residue Identity = 97% Matches = 626 Mismatches = 13
Gaps = 4 Conservative Substitutions = 0

X 10 20
GGGGGACTGGAAGGGCTAATT
|||||

CAATGACTTACAAGGCAGCTGTAGATCTTAGCCACTTTAAAGAAAAGGGGGACTGGAAAGGGCTAATT
9060 9070 9080 9090 9100 X 9110 9120

30 40 50 60 70 80 90
ACTCCCAACGAAGACAAGATACTCTGATCTGTGGATCTACCACACACAAGGCTACTTCCCTGATTGGCAGA
|||||
ACTCCCAACGAAGACAAGATACTCTGATCTGTGGATCTACCACACACAAGGCTACTTCCCTGATTAGCAGA
9130 9140 9150 9160 9170 9180 9190

100 110 120 130 140 150 160
ACTACACACCAGGGCCAGGGTCAGATATCCACTGACCTTGGATGGTGTACAAGCTAGTACCAAGTTGAGC
|||||
ACTACACACCAGGGCCAGGGTCAGATATCCACTGACCTTGGATGGTGTACAAGCTAGTACCAAGTTGAGC
9200 9210 9220 9230 9240 9250 9260 9270

170 180 190 200 210 220 230
CAGATAAGGTAGAAGAGGCCAATAAAGGAGAGA--ACACCAAGCTTGTACACCCCTGTGAGCTGGCATGCAAT

||||| ||||| ||||| ||||| ||||| ||||| CAGAGAACTTAGAAGAACCAACAAAGGAGAGAACACACCAGCTTGTACACCCGTGAGCCTGCATGGAAT
 9280 9290 9300 9310 9320 9330 9340
 240 250 260 270 280 290 300
 GGATGACCTGAGAGAGAAGTGTAGACTGGAGGTTGACAGCCGCTAGCATTCATCACGTGGCCCGAGA
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 GGATGACCC--GGAGAGAAGTGTAGACTGGAGGTTGACAGCCGCTAGCATTCATCACATGGCCCGAGA
 9350 9360 9370 9380 9390 9400 9410
 310 320 330 340 350 360 370 380
 GCTGCATCCGGAGTACTTCAGAACTGCTGACATCGAGCTTGCTACAAGGGACTTCCGCTGGGACTTTCC
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 GCTGCATCCGGAGTACTTCAGAACTGCTGACATCGAGCTTGCTACAAGGGACTTCCGCTGGGACTTTCC
 9420 9430 9440 9450 9460 9470 9480
 390 400 410 420 430 440 450
 AGGGAGGCCGTGGCCTGGCCGAACTGGGAGTGGCGAGCCCTCAGATGCTGCATAAAGCAGCTGCTTTTG
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 AGGGAGGCCGTGGCCTGGCCGGACTGGGAGTGGCGAGCCCTCAGATCCTGCATAAAGCAGCTGCTTTTG
 9490 9500 9510 9520 9530 9540 9550
 460 470 480 490 500 510 520
 CCTGTACTGGGTCTCTGGTTAGACCAAGATTGAGCCTGGAGCTCTGGCTAACTAGGAAACCCACTGC
 ||||| ||||| ||||| ||||| ||||| |||||
 CCTGTACTGGGTCTCTGGTTAGACCAAGATCTGAGCCTGGAGCTCTGGCTAGCTAGGAAACCCACTGC
 9560 9570 9580 9590 9600 } 9610 9620
 530 540 550 560 570 580 590
 TTAAGCCTCAATAAAGCTTGCCTTGAGTGTCAAGTAGTGTGCCCCGTCTGGTGTGACTCTGGTA
 ||||| ||||| ||||| ||||| |||||
 TTAAGCCTCAATAAACCTTGCCTTGAGTGTCAAGTAGTGTGCCCCGTCTGGTGTGACTCTGGTA
 9630 9640 9650 9660 9670 9680 9690 9700
 600 610 620 630 640 650 660
 AGAGATCCCTAGACCCTTTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGCCCGAACAGGGACTTGAAGC
 ||||| ||||| ||||| |||||
 AGAGATCCCTAGACCCTTTAGTCAGTGTGGAAAATCTCTAGCA → RNA site
 9710 9720 9730 9740 X
 670 680 690
 GAAAGGAAACCAAGAGGAGCTCT

Defined by
 Chung -
 which has
 been supplemented
 with HXB2
 sequences to complete
 a 5'LTR
 see chung et al

4. RAILEY-000-716.SEQ (1-696)

Q14752 HIV-1(MN-ST1) env protein-encoding sequence.

ID Q14752 standard; DNA; 9746 BP.
 AC Q14752;
 DT 05-FEB-1992 (first entry)
 DE HIV-1(MN-ST1) env protein-encoding sequence.
 KW human immunodeficiency virus; United States; MN isolate; AIDS;
 KW envelope protein; ss.
 OS Human immunodeficiency virus-1 (MN).
 FH Key Location/Qualifiers
 FT CDS 6243..8806
 FT /*tag= a
 FT /product= env
 PN US7599491-A.
 PD 15-OCT-1991.
 PF 17-OCT-1990; 183830.
 PR 17-OCT-1990; US-599491.
 PA (USSH) NAT INST OF HEALTH.
 PI Reitz M;
 DR WPI; 91-346752/47.
 DR P-PSDB; R14904.

PT US HIV-1 isolates MN-ST1 and BA-L, ENV protein and DNA - are
 PT useful in therapeutics, vaccines and diagnostic tests
 PS Example 2; Fig 6; 61pp; English.
 CC The infectious molecular clone, lambda MN-ST1, was obtained by
 CC cloning integrated provirus from DNA purified from peripheral blood
 CC lymphocytes infected with HIV-1(MN) and maintained in culture for
 CC one month. The integrated proviral DNA was partially digested with
 CC Sau3A to give fragments of 15-20 kb. The fragments were cloned in
 CC EMBL3 and the entire sequence of the clone was determined.
 SQ Sequence 9746 BP; 3465 A; 1752 C; 2355 G; 2174 T;

 Initial Score = 602 Optimized Score = 641 Significance = 36.98
 Residue Identity = 93% Matches = 645 Mismatches = 41
 Gaps = 5 Conservative Substitutions = 0

10	20	30	40	50	60	70
GGGGGACTGAAAGGGCTAATTCACTCCAACGAAGACAAGATATCCTGATCTGTGGATCTACCAACACACAA						
TGGATGGGTTAATTTACTCCAAAG-AGACAAGACATCCTGATCTGTGGGTCTACCAACACACAA						
X	10	20	30	40	50	60

80	90	100	110	120	130	140
GGCTACTTCCCTGATTGGCAGAACTACACACCAGGGCCAGGGTCAGATATCCACTGACCTTGGATGGTGC						
GGCTACTTCCCTGATTGGCAGAACTACACACCAGGGCCAGGGTCAGATATCCACTGACCTTGGATGGTGC						
70	80	90	100	110	120	130

150	160	170	180	190	200	210
TACAAGCTAGTACCACTTGAGCCAGATAAGGTAGAAGAGGCCAATAAGGAGAGAACACCGCTTGTACAC						
TTCAAGCTAGTACCACTTGAGCCAGAGATAAGAAGAGGCCAATAAGGAGAGAACACTGCTTGTACAC						
140	150	160	170	180	190	200

220	230	240	250	260	270	280
CCTGTGAGCCTGCATGGAATGGATGACCCCTGAGAGAGAACTGTTAGAGTGGAGGTTGACAGCCGCTAGCA						
CCTATGAGCCAGCATGGGATGGATGACCCGGAGAGAGAACTGTTAGTGTGGAAGTCTGACAGCCACCTAGCA						
210	220	230	240	250	260	270

290	300	310	320	330	340	350	360
TTTCATCACGTGGCCCGAGAGCTGCATCCGGAGTACTTCAAGAACTGCTGACATCGAGCTTGCTACAAGGGA							
TTTCAGCATTATGCCCGAGAGCTGCATCCGGAGTACTACAAGAACTGCTGACATCGAGCTATCTACAAGGGA							
290	300	310	320	330	340	350	

370	380	390	400	410	420	430
CTTCCCGCTGGGCACTTCCAGGGAGGCGTGGCCTGGCGGAACCTGGGAGTGGCGAGCCCTCAGATGCTGC						
CTTCCCGCTGGGCACTTCCAGGGAGGCGTGGCCTGGCGGAACCGGGAGTGGCGAGCCCTCAGATGCTGC						
360	370	380	390	400	410	420

440	450	460	470	480	490	500
ATATAAGCAGCTGCTTTGCCTGACTGGGTCTCTGGTTAGACCAAGATTGAGCCTGGAGCTCTCTGG						
ATATAAGCAGCTGCTTCGCCTGACTGGGTCTCTGGTTAGACCAAGATGAGCCTGGAGCTCTCTGG						
430	440	450	460	470	480	490

510	520	530	540	550	560	570
CTAACTAGGGAAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTGAGTGTGCTCAAGTAGTGTGTGCCGTCT						
CTAACTAGGGAAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTGAGTGTGCTCAAGTAGTGTGTGCCGTCT						
500	510	520	530	540	550	560

580	590	600	610	620	630	640
GTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCCTTTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGC						

GTTATGTCACTCTGGTAGCTAGAGATCCCTCAGATCCTTTAGGCA--GTGAAATCTCTAGCAGTGGCGC
 570 580 590 600 610 620 630
 650 660 670 680 690 X
 CCGAACACGGGAC--TTGAAAGCGAAAGGAAACCAGAGGAGCTCTCGA
 ||||||| ||||||| ||||||| ||||||| |||||||
 CCGAACACGGGACCTCTGAAAGCGAAAGAGAAACCAGAGGAGCTCTCGACCCAGGACTCGGCTTGCTGAAG
 640 650 660 670 680 690 700 710
 CGCGCACGGCAAGAGGGGAGGGGGCGCG
 720 730

5. RAILEY-000-716.SEQ (1-696)

N60365 Sequence of LAV virus genome .

ID N60365 standard; cDNA; 9193 BP.
 AC N60365;
 DT 20-AUG-1991 (first entry)
 DE Sequence of LAV virus genome .
 KW AIDS vaccine; diagnosis; immunoassay; HIV; HTLV-III; ss.
 OS Lymphadenopathy virus.
 FH Key Location/Qualifiers
 FT CDS 312..1838
 FT /*tag= a
 FT /product= gag
 FT CDS 1631..4642
 FT /*tag= b
 FT /product= pol
 FT CDS 4554..5165
 FT /*tag= c
 FT /product= ORF Q
 FT CDS 5746..8352
 FT /*tag= d
 FT /product= env
 FT CDS 8324..8974
 FT /*tag= e
 FT /product= ORF F
 PN W08602383-A.
 PD 24-APR-1986.
 PF 18-OCT-1985; E00548.
 PR 18-OCT-1984; FR-016013.
 PR 16-NOV-1984; GB-029099.
 PR 21-JAN-1985; GB-001473.
 PA (CNRS) CNRS CENT NAT RECH SCI.
 PA (INSP) INST PASTEUR.
 PI Montagnier L, Krust B, Chamaret S, Clavel F, Chermann J-C,
 PI Barre-Sinoussi F, Alizon M, Sonigo P, Stewart C, Danos O,
 PI Wain-Hobson S.
 DR WPI; 86-119166/18.
 DR P-PSDB; P60419, P60420, P60421, P60422, P60423.
 PT Purified glyco:protein and peptide(s) - are recognised by sera contg.
 PT antibodies against lymphadenopathy virus and useful in detecting
 PT AIDS antibodies or in vaccines
 PS Disclosure; Fig 4; 75pp; English.
 CC The inventors claim a polypeptide which is recognised by sera of
 CC human origin contg. antibodies against the virus of
 CC lymphadenopathies (LAV) or acquired immune deficiency syndrome
 CC (AIDS). Also claimed are various peptides corresp. to the AA
 CC sequences deducible from proteins encoded by LAV DNA, defined by
 CC specific residues (e.g. 12-32, 37-46, 49-79, 88-153) in accordance
 CC with a formula given in the specification.
 SQ Sequence 9193 BP; 3278 A; 1652 C; 2216 G; 2047 T;

Initial Score = 554 Optimized Score = 554 Significance = 33.93
 Residue Identity = 99% Matches = 554 Mismatches = 4

Gaps = 0 Conservative Substitutions = 0

X 10 20
GGGGACTGGAAGGGCTAATTC

CAATGACTTACAAGGCAGCTGTAGATCTTAGCCACTTTTAAAGAAAAGGGGGACTGGAAGGGCTAATTC
8590 8600 8610 8620 8630 8640 8650

30 40 50 60 70 80 90
ACTCCCAACGAAGACAAGATATCCTGATCTGTGATCTACCACACACAAGGCTACTTCCCTGATTGGCAGA
|||||||
ACTCCCAACGAAGACAAGATATCCTGATCTGTGATCTACCACACACAAGGCTACTTCCCTGATTGGCAGA
8660 8670 8680 8690 8700 8710 8720

100 110 120 130 140 150 160
ACTACACACCAGGGCCAGGGTCAGATATCCACTGACCTTGATGGTCTACAAGCTAGTACCAAGTTGAGC
|||||||
ACTACACACCAGGGCCAGGGTCAGATATCCACTGACCTTGATGGTCTACAAGCTAGTACCAAGTTGAGC
8730 8740 8750 8760 8770 8780 8790 8800

170 180 190 200 210 220 230
CAGATAAGGTAGAACAGGCCAATAAAGGAGAGAACACCAAGCTTGTACACCCCTGTGAGCCTGCATGGAATGG
|||||||
CAGATAAGGTAGAACAGGCCAATAAAGGAGAGAACACCAAGCTTGTACACCCCTGTGAGCCTGCATGGAATGG
8810 8820 8830 8840 8850 8860 8870

240 250 260 270 280 290 300 310
ATGACCCCTGAGAGAGAACAGTGTAGACTGGAGGTTGACAGCCGCTAGCATTCTACACGTGGCCCCGAGAGC
|||||||
ATGACCCCTGAGAGAGAACAGTGTAGACTGGAGGTTGACAGCCGCTAGCATTCTACACGTGGCCCCGAGAGC
8880 8890 8900 8910 8920 8930 8940

320 330 340 350 360 370 380
TGCATCCGGAGTACTCAAGAACTGCTGACATCGAGCTTGTCTACAAGGACTTCCGCTGGCAGTTCCAG
|||||||
TGCATCCGGAGTACTCAAGAACTGCTGACATCGAGCTTGTCTACAAGGACTTCCGCTGGCAGTTCCAG
8950 8960 8970 8980 8990 9000 9010

390 400 410 420 430 440 450
GGAGGCCTGGCTGGCGGAAGTGGGAGTGGCGAGCCCTCAGATGCTGCATATAAGCAGCTGCTTTGCC
|||||||
GGAGGCCTGGCTGGGGGGACTGGGAGTGGCGAGCCCTCAGATGCTGCATATAAGCAGCTGCTTTGCC
9020 9030 9040 9050 9060 9070 9080

460 470 480 490 500 510 520
TGTACTGGCTCTCTGGTTAGACCAGATTGAGCCCTGGGAGCTCTGGCTAACTAGGGAAACCCACTGCTT
|||||||
TGTACTGGCTCTCTGGTTAGACCAGATTGAGCCCTGGGAGCTCTGGCTAACTAGGGAAACCCACTGCTT
9090 9100 9110 9120 9130 9140 9150 9160

530 540 550 560 570 580 590
AAGCCTCAATAAGCTGCCTTGAGTGCTCAAGTAGTGTGCCCCGTCTGGTGTGACTCTGGTAACTAG
|||||||
AAGCCTCAATAAGCTGCCTTGAGTGCTCA
9170 9180 9190 X

600
AGATCCCTCA

6. RAILEY-000-716.SEQ (1-696)

N60288 Sequence of the HTLV-III genome.

ID N60288 standard; DNA; 9213 BP.

AC N60288;

DT 08-JUN-1991 (first entr)

DE Sequence of the HTLV-III genome.
KW HIV; LAV; AIDS; diagnosis; vaccine; ss.
OS HTLV-IIIB/H9 cells (ATCC CRL 8543).
FH Key Location/Qualifiers
FT repeat_region 1..96
FT /*tag= a
FT misc_feature 97..183
FT /*tag= b
FT /label= unique region
FT CDS 336..731
FT /*tag= c
FT /product= gag
FT CDS 732..1772
FT /*tag= d
FT /product= p24gag
FT CDS 1639..4677
FT /*tag= e
FT /product= pol
FT CDS 4622..5200
FT /*tag= f
FT /product= p'
FT CDS 5802..7335
FT /*tag= g
FT /product= env
FT CDS 7336..8373
FT /*tag= h
FT /product= gp41env
FT CDS 8375..8995
FT /*tag= i
FT /product= E'
FT misc_feature 8662..9117
FT /*tag= j
FT /label= unique region
FT repeat_region 9118..9213
FT /*tag= k
FT polyA_signal 9090..9095
FT /*tag= l
FT polyA_signal 9190..9195
FT /*tag= m
PN EP-187041-A.
PD 09-JUL-1986.
PF 23-DEC-1985; 309454.
PR 24-DEC-1984; US-685272.
PR 04-DEC-1985; US-805069.
PA (GETH) GENENTECH INC.
PI Capon DJ, Lasky LA;
DR WPI; 86-177602/28.
DR P-PSDB; P60309, P61507, P61504, P61514, P61515.
PT Acquired immune deficiency syndrome polypeptide(s) - obtd. by
PT molecular cloning etc. and used for diagnosis and in vaccines
PT against virus disease
PS Example; fig 2; 125pp; English.
CC A comparison of N60287 with the cDNA of the HTLV-III genome
CC revealed one particular clone, designated p7.11 which contained a
CC DNA sequence encoding this peptide (P60308) sequence. This approx.
CC 2.2 kilobase covers the precursor gag region and encodes, 5' to 3',
CC p-12, p-15, p-24 a second p-15 protein, and approx. 300 extra base
CC pairs 3' to the gag region (see N60288).
SQ Sequence 9213 BP; 3297 A; 1656 C; 2217 G; 2043 T;

Initial Score = 547 Optimized Score = 547 Significance = 33.48
Residue Identity = 98% Matches = 547 Mismatches = 10
Gaps = 0 Conservative Substitutions = 0

X 10 20
GGGGGACTGGAAGGGCTAATTG

CAATGACTTACAAGGCAGCTGTAGATCTTAGCCACTTTAAAAGAAAAGGGGGACTGGAAGGGCTAATT
 8610 8620 8630 8640 8650 8660 8670
 |||||||
 30 40 50 60 70 80 90
 ACTCCCAACGAAAGACAAGATATCCTTGATCTGTGGATCTACCACACACAAGGCTACTTCCCTGATTGGCAGA
 |||||||
 ACTCCCAACGAAAGACAAGATATCCTTGATCTGTGGATCTACCACACACAAGGCTACTTCCCTGATTGGCAGA
 8680 8690 8700 8710 8720 8730 8740 8750
 |||||||
 100 110 120 130 140 150 160
 ACTACACACCAGGGCAGGGTCAGATATCCACTGACCTTGGATGGTGCTACAAGCTAGTACCAAGTTGAGC
 |||||||
 ACTACACACCAGGACCGAGGATCAGATATCCACTGACCTTGGATGGTGCTACAAGCTAGTACCAAGTTGAGC
 8760 8770 8780 8790 8800 8810 8820
 |||||||
 170 180 190 200 210 220 230
 CAGATAACGTAGAACAGGCCAATAAAGGAGAGAACACCAAGCTTGTACACCCGTGAGCCCTGCATGGAATGG
 |||||||
 CAGATAAGGTAGAACAGGCCAACAAAGGAGAGAACACCAAGCTTGTACACCCGTGACCCCTGCATGGAATGG
 8830 8840 8850 8860 8870 8880 8890
 |||||||
 240 250 260 270 280 290 300 310
 ATGACCCCTGAGAGAGAACTGTTAGAGTGGAGGTTGACAGCCGCCTAGCATTTCATCACGTGGCCCCGAGAGC
 |||||||
 ATGACCCGGAGAGAGAACTGTTAGAGTGGAGGTTGACAGCCGCCTAGCATTTCATCACGTGGCCCCGAGAGC
 8900 8910 8920 8930 8940 8950 8960
 |||||||
 320 330 340 350 360 370 380
 TGCATCCGGAGTACTTCAAGAACTGCTGACATCGAGCTTGTACAAGGGACTTCCGCTGGGACTTTCCAG
 |||||||
 TGCATCCGGAGTACTTCAAGAACTGCTGATATCGAGCTTGTACAAGGGACTTCCGCTGGGACTTTCCAG
 8970 8980 8990 9000 9010 9020 9030
 |||||||
 390 400 410 420 430 440 450
 GGAGGCCTGGCCTGGCGGAACCTGGGAGTGGCGAGCCCTCAGATGCTGCATATAAGCAGCTGCTTTGCC
 |||||||
 GGAGGCCTGGCCTGGCGGGACTGGGAGTGGCGAGCCCTCAGATGCTGCATATAAGCAGCTGCTTTGCC
 9040 9050 9060 9070 9080 9090 9100 9110
 |||||||
 460 470 480 490 500 510 520
 TGTACTGGGTCTCTGGTTAGACCAGATTGAGCCTGGGAGCTCTGGCTAACTAGGAAACCACTGCTT
 |||||||
 TGTACTGGGTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTGGCTAACTAGGAAACCACTGCTT
 9120 9130 9140 9150 9160 9170 9180
 |||||||
 530 540 550 560 570 580 590
 AAGCCTCAATAAAGCTGCCTTGAGTGCCTCAAGTAGTGTGCCCCGTGTTGTGACTCTGGTAACTAG
 |||||||
 AAGCCTCAATAAAGCTGCCTTGAGTGCCT
 9190 9200 9210 X
 |||||||
 600
 AGATCCCTC

7. RAILEY-000-716.SEQ (1-696)
 N60476 Sequence of lymphadenopathy-associated virus (LAV)

ID N60476 standard; cDNA; 9088 BP.
 AC N60476;
 DT 24-AUG-1991 (first entry)
 DE Sequence of lymphadenopathy-associated virus (LAV) genome in lambda-J19.
 KW HTLV-III; human T-cell leukemia/lymphoma virus type III; ARV; AIDS;
 KW associated retrovirus; HIV; ARC; probe; diagnosis; ss.

DS Lymphadenopathy-associated virus.
 PN WD8601827-A.
 PD 27-MAR-1986.
 PF 19-SEP-1955; 007200.
 PR 19-SEP-1984; GB-023659.
 PA (INSP) INST PASTEUR.
 PA (CNRS) CENT NAT RECH SCIENTIFIQU.
 PI Alizon M, Barre Sinoussi F, Sonigo P, Tiollais P, Chermann JC,
 PI Montagnier L, Wainhobson S;
 DR WPI; 86-094080/14.
 PT Cloned DNA contg. fragment hybridised with genomic RNA or LAV -
 PT used for detection of lymphadenopathy-associated virus
 PS Disclosure: Fig 4-11; 24pp; English.
 CC THe inventors claim a DNA SQ which is hybridizable with the genomic
 CC RNA of the LAV viruses. Specifically claimed are SQs which code for
 CC the envelope proteins, polymerase and core proteins. Also claimed
 CC is a probe for the in vitro detection of LAV. N60476 was prep'd.
 CC from virions from FR8, an immortalized permanent LAV producing B-
 CC lymphocyte line.
 SQ Sequence 9088 BP; 3257 A; 1624 C; 2185 G; 2022 T;

 Initial Score = 542 Optimized Score = 542 Significance = 33.17
 Residue Identity = 99% Matches = 542 Mismatches = 1
 Gaps = 0 Conservative Substitutions = 0

X	10	20						
	GGGGGACTGGAAGGGCTAATT							
CAATGACTTACAAGGCAGCTGTAGATCTTAGCCACTTTTAAAAGAAAAGGGGGACTGGAAAGGGCTAATT	8500	8510	8520	8530	8540	8550	8560	
	30	40	50	60	70	80	90	
ACTCCCAACGAAGACAAGATACTCTTGATCTGTGATCTACCACACACAAGGCTACTTCCCTGATTGGCAGA	8570	8580	8590	8600	8610	8620	8630	
	100	110	120	130	140	150	160	
ACTACACACCAGGCCAGGGTCAGATATCCACTGACCTTGGATGGTGTACAAGCTAGTACCAAGTTGAGC	8640	8650	8660	8670	8680	8690	8700	
	170	180	190	200	210	220	230	
CAGATAAGGTAGAACAGGCCAATAAAGGAGAGAACACCAGCTTGTACACCCGTGAGCCTGCATGGAATGG	8720	8730	8740	8750	8760	8770	8780	
	240	250	260	270	280	290	300	310
ATGACCCCTGAGAGAGAAGTGTAGACTGGAGGTTGACAGCCGCTAGCATTCATCACGTGGCCCCGAGAGC	8790	8800	8810	8820	8830	8840	8850	
	320	330	340	350	360	370	380	
TGCATCCGGAGTACTTCAAGAACTGCTGACATCGAGCTTGTACAAGGGACTTCCGCTGGGCACCTTCCAG	8860	8870	8880	8890	8900	8910	8920	
	390	400	410	420	430	440	450	
GGAGGCCGTGGCCTGGGCCGAAGTGGGAGTGGCGAGCCCTCAGATGCTGCATATAAGCAGCTGCTTTGCC	8930	8940	8950	8960	8970	8980	8990	
	460	470	480	490	500	510	520	
GGAGGCCGTGGCCTGGGCCGAAGTGGGAGTGGCGAGCCCTCAGATGCTGCATATAAGCAGCTGCTTTGCC	9000	9010	9020	9030	9040	9050	9060	

460 470 480 490 500 510 520
TGTACTGGTCTCTGGTAGACCAAGATTGACCCCTGGAGCTCTGGCTAACTAGGAAACCACTGCTT
|||||||
TGTACTGGTCTCTGGTAGACCAAGATTGACCCCTGGAGCTCTGGCTAACTAGGAAACCACTGCTT
9000 9010 9020 9030 9040 9050 9060 9070

530 540 X 550 560 570 580 590
AAGCCTCAATAAAGCTGCCTTGAGTGCTCAAGTAGTGTGCCGTCTGTTGTGACTCTGGTA
|||||||
AAGCCTCAATAAAGCTT
9080 X

8. RAILEY-000-716.SEQ (1-696)

Q15226 HIV-1 TAT mRNA.

ID Q15226 standard; mRNA; 1833 BP.
AC Q15226;
DT 11-MAR-1992 (first entry)
DE HIV-1 TAT mRNA.
KW Retrovirus; treatment; oligonucleotide; anti-sense; binding; ss.
OS Synthetic.
PN W09118004-A.
PD 28-NOV-1991.
PF 22-APR-1991; U02734.
PR 11-MAY-1990; US-521907.
PA (ISIS-) ISIS PHARM INC.
PI Ecker DJ;
DR WPI; 91-369176/50.
PT Anti-sense DNA capable of binding HIV virus TAT mRNA in human
PT cells - for treatment of retroviral disease e.g. AIDS
PS Disclosure; Fig 1; 24pp; English.
CC The oligonucleotides represented in Q15220-25 are capable of
CC binding at least a portion of tat mRNA of HIV. They can be used to
CC treat HIV and other human retroviruses. It is partic. effective
CC therapeutically because particular sites of the RNA of HIV or other
CC RNA are targeted e.g. the tat mRNA.
SQ Sequence 1833 BP; 525 A; 408 C; 510 G; 390 U;

Initial Score = 541 Optimized Score = 545 Significance = 33.10
Residue Identity = 73% Matches = 546 Mismatches = 29
Gaps = 1 Conservative Substitutions = 0

X 10 20
GGGGACTGGAAGGGCTAATTC
|||||||
CAAUGACUUACAAGGCAGCUGUAGAUUCUAGCCACUUUUAAAAGAAAAGGGGGACUGGAAGGGCUAAUUC
1210 1220 1230 1240 1250 1260 1270

30 40 50 60 70 80 90
ACTCCCAACGAAGACAAGATATCCTTGATCTGTGATCTACCACACACAAGGCTACTTCCCTGATTGGCAGA
|||||||
ACUCCCAACGAAGACAAGAUUCCUGAUCUGUGGAUCUACACACACAAGGUACUUCCCUGAUUAGCAGA
1280 1290 1300 1310 1320 1330 1340 1350

100 110 120 130 140 150 160
ACTACACACCAGGGCAGGGTCAGATATCCACTGACCTTGGATGGTGCTACAAGCTAGTACCACTGAGC
|||||||
ACUACACACCAGGGCAGGGAUCAAGAUUCCACACUGACCUUUGGAUGGGUGCUACAAGCUAGUACCAAGGUUGAGC
1360 1370 1380 1390 1400 1410 1420

170 180 190 200 210 220 230
CAGATAACGTAGAACAGGCCAATAAAGGAGAGAACACCAAGCTTGTACACCTGTGAGCCTGCATGGAATGG
|||||||
CAGAGAAGGUACAAGAACCAACAAAGGAGAGAACACCAAGGUACACCCUGUGAGCGUGCAUGGAAUGC

1430	1440	1450	1460	1470	1480	1490	
240	250	260	270	280	290	300	310
ATGACCCCTGAGAGAGAAAGTGTAGACTGGAGGTTGACAGCCGCCCTAGCATTTCATCACGTGGCCCGAGAGC							
AUGACCCGGAGAGAGAAGGUUAGAGUGGGGUUVUGACAGCCGCCUAGCAUUUCAUCACAUGGCCCGAGAGC							
1500	1510	1520	1530	1540	1550	1560	
320	330	340	350	360	370	380	
TGCATCCGGAGTACTTCAGAACTGCTGACATCGAGCTTGCTACAAGGGACTTCCGCTGGGACTTCCAG							
UGCAUCCGGAGAUACUUAAGAACUGCUGACAUUCGAGCUUGGUACAAAGGGACUUUCCGCUUGGGACUUUCAG							
1570	1580	1590	1600	1610	1620	1630	
390	400	410	420	430	440	450	
GGAGGGCTGGCTGGCGGAACGGGGACTGGCGAGCCCTCAGATGCTGCATAAGCAGCTGCTTTGCC							
GGAGGGCUUGGCCUGGGCGGACUGGGGAGUGGGAGGCCUCAGAUCCUGCAUAAAAGCAGCUGCUUUUUGCC							
1640	1650	1660	1670	1680	1690	1700	1710
460	470	480	490	500	510	520	
TGTACTGGGTCTCTGGTTAGACCAGATTGAGCCTGGGAGCTCTGGCTAACTAGGAAACCCACTGCTT							
UGUACUGGGUCUCUCUGGUUAGACCAAGCAGCAGCCUUGGGAGCUCUCUGGUUAACUAAGGAACCCACUGCUU							
1720	1730	1740	1750	1760	1770	1780	
530	540	550	560	570	X	580	590
AAGCCTCAATAAGCTGCCCTGAGTGCT-TCAAGTAGTGTGCCCCGTCTGTTGTGACTCTGGTAAC							
AAGCCUCUAAAAGCUUGCCUUGAGUGCUGUCAAAAAAAA							
1790	1800	1810	1820	1830	X		
600	610	620					
GAGATCCCTCAGACCCCTTTAGTCAGTG							

9. RAILEY-000-716.SEQ (1-696)

N71016 Sequence of LAV/HTLV III envelope gene (env).

ID N71016 standard; DNA; 4020 BP.
 AC N71016;
 DT 23-APR-1991 (first entry)
 DE Sequence of LAV/HTLV III envelope gene (env).
 KW Glycoprotein gp 110; gp 41; AIDS vaccine; diagnosis; ss.
 OS LAV/HTLV III.
 FH Key Location/Qualifiers
 FT CDS 487..3072
 FT /*tag= a
 FT /note= "A recombinant virus contg. this SQ is
 FT claimed"
 PN WO8702038-A.
 PD 09-APR-1987.
 PF 24-SEP-1986; 022987.
 PR 25-SEP-1985; US-779909.
 PR 27-MAR-1986; US-842984.
 PR 09-SEP-1986; US-905217.
 PA (ONCO-) ONCOGEN.
 PA (HUSS/) HU S L.
 PI Hu SL, Purchio AF, Madisen L;
 DR WPI; 87-108683/15.
 DR P-PSDB; P70665.
 PT New recombinant viruses for directing expression of peptide(s)
 PT etc. - useful in vaccines for protecting humans against AIDS
 PT caused by LAV/HTLV III
 PS Disclosure; Fig 2; 165pp; English.
 CC Recombinant Ac-NPV carrying the chimeric LAV/HTLV III env gene was

CC used to infect SF9 cells in tissue culture. The proteins produced on
CC cultivation were immunoreactive with AIDS patient serum as well as
CC with monoclonal antibodies which define LAV/HTLV III envelope
CC glycoproteins gp. 110 and gp. 41. A recombinant DNA vector
CC comprising ps-env 1,2,5 or 7 pV-gag1, pAc-gag1 or pAc-env 5, is
CC claimed.

50 Sequence 4020 BP; 1352 A; 734 C; 990 G; 944 T;

Initial Score = 541 Optimized Score = 541 Significance = 33.10
Residue Identity = 99% Matches = 541 Mismatches = 4
Gaps = 0 Conservative Substitutions = 0

X 10 20
GGGGGACTGGAAGGGCTAATTC
|||||

CAATGACTTACAAGGCAGCTAGATCTTAGCCACTTAAAGAAAAGGGGGACTGGAAGGGCTAATTC
3430 3440 3450 3460 3470 3480 3490

30 40 50 60 70 80 90
ACTCCCAACGAAGACAAGATATCCTGATCTGTGATCTACCACACACAAGGCTACTTCCCTGATTGGCAGA
|||||
ACTCCCAACGAAGACAAGATATCCTGATCTGTGATCTACCACACACAAGGCTACTTCCCTGATTGGCAGA
3500 3510 3520 3530 3540 3550 3560

100 110 120 130 140 150 160
ACTACACACCAGGGCCAGGGTCAGATATCCACTGACCTTGATGGTGTACAAGCTAGTACCAAGTTGAGC
|||||
ACTACACACCAGGGCCAGGGTCAGATATCCACTGACCTTGATGGTGTACAAGCTAGTACCAAGTTGAGC
3570 3580 3590 3600 3610 3620 3630 3640

170 180 190 200 210 220 230
CAGATAAGGTAGAACAGGCCAATAAAGGAGAGAACACCAGCTTGTACACCCCTGTGAGCCTGCATGGAATGG
|||||
CAGATAAGGTAGAACAGGCCAATAAAGGAGAGAACACCAGCTTGTACACCCCTGTGAGCCTGCATGGAATGG
3650 3660 3670 3680 3690 3700 3710

240 250 260 270 280 290 300 310
ATGACCCCTGAGAGAGAAGTGTAGAGTGGAGGTTGACAGCCGCCTAGCATTGATCACGTGGCCCCGAGAGC
|||||
ATGACCCCTGAGAGAGAAGTGTAGAGTGGAGGTTGACAGCCGCCTACGATTGATCACGTGGCCCCGAGAGC
3720 3730 3740 3750 3760 3770 3780

320 330 340 350 360 370 380
TGCATCCGGAGTACTTCAAGAACTGCTGACATCGAGCTTGTACAAGGACTTCCGCTGGGACTTTCCAG
|||||
TGCATCCGGAGTACTTCAAGAACTGCTGACATCGAGCTTGTACAAGGACTTCCGCTGGGACTTTCCAG
3790 3800 3810 3820 3830 3840 3850

390 400 410 420 430 440 450
GGAGGGCTGGCCTGGCGGAACCTGGGAGTGGCGAGCCCTCAGATGCTGCATATAAGCAGCTGCTTTGCC
|||||
GGAGGGCTGGCCTGGCGGGACTGGGAGTGGCGAGCCCTCAGATGCTGCATATAAGCAGCTGCTTTGCC
3860 3870 3880 3890 3900 3910 3920

460 470 480 490 500 510 520
TGTACTGGTCTCTGGTTAGACCAGATTGAGCCTGGGAGCTCTGGCTAACTAGGAAACCCACTGCTT
|||||
TGTACTGGTCTCTGGTTAGACCAGATTGAGCCTGGGAGCTCTGGCTAACTAGGAAACCCACTGCTT
3930 3940 3950 3960 3970 3980 3990 4000

530 540 X 550 560 570 580 590
AAGCCTCAATAAAGCTGCCCTGAGTGTCAAGTACTGTGTGCCGTCTGGTGTGACTCTGGTAAC
|||||
AAGCCTCAATAAAGCTTGC
4010 4020

10. RAILEY-000-716.SEQ (1-696)

N80436 Entire sequence of LAV EL I

ID N80436 standard; cDNA; 9236 BP.
AC N80436;
DT 16-DEC-1990 (first entry)
DE Entire sequence of LAV EL I
KW HIV; HTLV III; AIDS; diagnosis; vaccine; probe; hybridisation; ss.
OS Lymphadenopathy associated virus EL I.
FH Key Location/Qualifiers
FT misc_feature 1..98
FT /*tag= a
FT /label=R
FT misc_feature 99..182
FT /*tag= b
FT /label=U5
FT misc_feature 8683..9138
FT /*tag= c
FT /label=U3
FT misc_feature 9139..9236
FT /*tag= d
FT /label=R
FT CDS 336..1835
FT /*tag= e
FT /label=GAG, P80884
FT CDS 1634..4699
FT /*tag= f
FT /label=POL, P81854
FT CDS 4647..5222
FT /*tag= g
FT /label=Q, P81855
FT CDS 5165..5452
FT /*tag= h
FT /label=R, P81856
FT CDS 5436..5651
FT /*tag= i
FT /label=S, P81857
FT CDS 5830..8388
FT /*tag= j
FT /label=ENV, P81858
FT CDS 8393..9010
FT /*tag= k
FT /label=F, P81859
PN WO8707906-A.
PD 30-DEC-1987.
PF 22-JUN-1987; E00326.
PR 23-JUN-1986; EP-401380.
PA (INSP) Inst Pasteur.
PI Alizon M, Sonigo P, Wain-Hobson S, Montagnier L;
DR WPI; 88-014396/02.
DR P-PSDB; P80884, P81854, P81855, P81856, P81857, P81858, P81859.
PT New variants of lymphadenopathy associated virus (LAV) -
PT used for prodn. of DNA, antigens and antibodies used in
PT diagnosis of AIDS and pre-AIDS
PS Claim 3; Fig 7A-7J; 72pp; English.
CC LAV EL I (n80436) and LAV MA L (n80437) were isolated from the peripheral
CC blood lymphocytes of patients. The different AIDS virus isolates
CC are designated by 3 letters of the patients name. Stable probes including
CC the DNA sequences can be used for detection of the new LAV viruses or
CC related viruses or DNA proviruses in eg biological samples. The proteins
CC or peptides can be used for detection of antibodies induced in vivo and
CC present in biological fluids. The DNA can also be used for the expression
CC of LAV viral antigens for the prodn. of a vaccine against LAV. The
CC polypeptides can also be used for the prodn. of antibodies for the
CC detection of proteins related to the LAV viruses, partic. for diagnosis

CC of AIDS or pre-AIDS.

Sequence 9236 BP; 3360 A; 1642 C; 2190 G; 2044 T;

Initial Score = 502 Optimized Score = 502 Significance = 30.62

Residue Identity = 89% Matches = 502 Mismatches = 57

Gaps = 0 Conservative Substitutions = 0

X 10 20
GGGGACTGGAAGGGCTAATT

||||||||||||||||||||||

CAATGACTTACAAAGAAGCTCTAGATCTCAGCCACTTTAAAAGAAAAGGGGGACTGGAAGGGCTAATT

8630 8640 8650 8660 8670 8680 8690

30 40 50 60 70 80 90

ACTCCCAACGAAAGACAAGATATCCTTGATCTGTGGATCTACCACACACAAGGCTACTTCCTGATTGGCAGA

||||||| ||||||||| ||||||||| ||| ||||| ||||||||| ||||||||| ||||||||| |||

GGTCCAAAAAGAGACAAGAGATCCTTGATCTTGCGTCTACAAACACACAAGGCATCTTCCTGATTGGCAAA

8700 8710 8720 8730 8740 8750 8760 8770

100 110 120 130 140 150 160

ACTACACACCAGGGCCAGGGTCAGATACTCCACTGACCTTGGATGGTGTACAAGCTAGTACCAAGTTGAGC

||||||||| ||||||||| ||||||||| ||||||||| ||||||||| ||||||||| ||||||||| |||

ACTACACACCAGGGCCAGGGATCAGATACTCCACTAACCTTGGATGGTGTACAAGCTAGTACCAAGTTGATC

8780 8790 8800 8810 8820 8830 8840

170 180 190 200 210 220 230

CAGATAAGGTAGAAGAGGCCAATAAAGGAGAGAACACCAAGCTTGTACACCCGTGAGCCTGCATGGAATGG

||| | ||||||||| | ||| | ||||| | ||| | ||||| | ||| | ||||| | | | | ||| | ||| |

CACAGGAGGTAGAAGAAGACACTGAAGGAGAGACCAACAGCTTGTACACCCATATGCCAGCATGGAATGG

8850 8860 8870 8880 8890 8900 8910

240 250 260 270 280 290 300 310

ATGACCCCTGAGAGAGAAGTGTAGACTGGAGGTTGACAGCCCTAGCATTCTACACGTGGCCCGAGAGC

||||||| | ||||| | ||||| | ||||| | ||||| | ||||| | ||||| | | | | ||| | ||| |

AGGACCCGGAGAGACAAGTGTAAATGGAGATTAAACAGCAGACTAGCATTGAGCACAGGCCGAGAGA

8920 8930 8940 8950 8960 8970 8980

320 330 340 350 360 370 380

TGCATCCGAGACTTCAAGAACTGCTGACATCGAGCTTGTACAAGGGACTTCCGCTGGGACTTTCAG

||||||||| | ||| | ||||| | ||||| | ||||| | ||||| | ||||| | ||| | ||| |

TGCATCCGGAGTTCTACAAAAGACTGATGACACCGAGCTTGTACAAGGGACTTCCGCTGGGACTTTCAG

8990 9000 9010 9020 9030 9040 9050

390 400 410 420 430 440 450

GGAGGCCTGGCCTGGCGGAACCTGGGAGTGGCGAGCCCTCAGATGCTGCATATAAGCAGCTGCTTTGCC

||||||||| | ||||| | ||||| | ||||| | ||||| | ||||| | ||||| | ||| | ||| |

GGAGGCCTGGACTGGGGACTGGGAGTGGCTAACCCCTCAGATGCTGCATATAAGCAGCTGCTTTGCC

9060 9070 9080 9090 9100 9110 9120 9130

460 470 480 490 500 510 520

TGTACTGGGTCTCTGGTTAGACCAAGATTGACCCCTGGGAGCTCTGGCTAACTAGGAAACCCACTGCTT

||||||||| | ||||| | ||||| | ||||| | ||||| | ||||| | ||| | ||| |

TGTACTGGGTCTCTGGTTAGACCAAGATTGACCCCTGGGAGCTCTGGCTAGCTAGGAAACCCACTGCTT

9140 9150 9160 9170 9180 9190 9200

530 540 550 560 570 580 590

AAGCCTCAATAAGCTGCCTTGAGTGCTCAAGTAGTGTGCCCCGTCTGGTGTGACTCTGGTAACTAG

||||||||| | ||||| | ||||| | ||||| | ||||| | ||| | ||| |

AAGCCTCAATAAGCTGCCTTGAGTGCTCAA

9210 9220 9230 X

600

AGATCCCTCAG

> D <
D| D IntelliGenetics
> D <

FastDB - Fast Pairwise Comparison of Sequences
Release 5.4

Results file railey-000-716.res made by shears on Mon 26 Apr 93 15:30:46-PDT.

Query sequence being compared:RAILEY-000-716.SEQ (1-696)

Number of sequences searched: 128494

Number of scores above cutoff: 4938

Results of the initial comparison of RAILEY-000-716.SEQ (1-696) with:

Data bank : EMBL-NEW 2, all entries

Data bank : GenBank 75, all entries

Data bank : GenBank-NEW 2, all entries

Data bank : UEMBL 33_75, all entries

100000-
-
N -
U50000- *
M - *
B . -
E -
R -
- *
O -
F10000-
-
S -
E 5000- *
Q -
U -
E -
N *
C - *
E -
S 1000-
-
-
500-
- *
-
-
- *
-
-
100-
- *
-
50-
-
-
- *

PARAMETERS

Similarity matrix	Unitary	K-tuple	4
Mismatch penalty	1	Joining penalty	30
Gap penalty	1.00	Window size	32
Gap size penalty	0.33		
Cutoff score	0		
Randomization group	0		
Initial scores to save	40	Alignments to save	10
Optimized scores to save	0	Display context	50

SEARCH STATISTICS

Scores:	Mean	Median	Standard Deviation
	30	30	12.19

Times:	CPU	Total Elapsed
	00:44:53.05	01:01:44.00

Number of residues:	154807074
Number of sequences searched:	128494
Number of scores above cutoff:	4938

Cut-off raised to 24.
Cut-off raised to 28.
Cut-off raised to 31.
Cut-off raised to 34.
Cut-off raised to 37.
Cut-off raised to 40.
Cut-off raised to 43.
Cut-off raised to 46.
Cut-off raised to 48.
Cut-off raised to 51.
Cut-off raised to 53.
Cut-off raised to 56.

The scores below are sorted by initial score.
Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

The list of best scores is:

Sequence Name	Description	Init. Score	Opt. Score	Length	Sig. Frame
---------------	-------------	-------------	------------	--------	------------

**** 53 standard deviations above mean ****						
1. HIVPV22	Human immunodeficiency virus	9770	681	684	53.41	0
**** 52 standard deviations above mean ****						
2. HIVHXB2CG	Human immunodeficiency virus	9718	664	671	52.01	0
3. REHTLV3	Human T-cell leukaemia type I	9748	664	671	52.01	0
4. HIVH3CG	Human T-cell lymphotropic vir	9749	664	671	52.01	0
**** 51 standard deviations above mean ****						
5. HIVJRCSF	Human immunodeficiency virus	9540	652	652	51.03	0
**** 50 standard deviations above mean ****						
6. HIVNY5CG	Human immunodeficiency virus	9022	650	650	50.86	0
7. HIVNL43	Human immunodeficiency virus	9709	645	645	50.45	0
8. AIHTLV31	Human t-cell leukemia virus t	660	644	645	50.37	0
**** 49 standard deviations above mean ****						
9. REHIVXB2	Human T-lymphotropic virus ty	923	631	631	49.31	0
**** 48 standard deviations above mean ****						
10. REHIVXB3	Human T-lymphotropic virus ty	923	626	626	48.90	0
11. HIVZ6	Human immunodeficiency virus	5159	626	626	48.90	0
12. HIVZ2Z6	Human immunodeficiency virus	9081	626	626	48.90	0
**** 47 standard deviations above mean ****						
13. HIVSF2B13	Human immunodeficiency virus	3983	605	605	47.17	0
14. HIVSF2B13	Human immunodeficiency virus	3983	605	605	47.17	0
**** 46 standard deviations above mean ****						
15. REHIVAT3	Human T-lymphotropic virus ty	917	598	598	46.60	0
16. HIVIHB101	Human Immunodeficiency virus	9781	596	507	46.43	0
**** 44 standard deviations above mean ****						
17. HIVSFAAA	Human immunodeficiency virus	3954	574	603	44.63	0
**** 43 standard deviations above mean ****						
18. HIVMNCG	Human immunodeficiency virus	9738	563	639	43.73	0
19. HIVBRUCG	Human immunodeficiency virus	9229	556	556	43.15	0
**** 42 standard deviations above mean ****						
20. REHIVC15	Human T-lymphotropic virus ty	769	550	550	42.66	0
21. HL20RF	Human T-cell lymphotropic vir	768	549	549	42.58	0
22. HIVPCV12	Human immunodeficiency virus	2304	542	544	42.00	0
**** 41 standard deviations above mean ****						
23. HIVNE033	Human immunodeficiency virus	851	537	537	41.59	0
24. HIVNE002	Human immunodeficiency virus	851	537	537	41.59	0
25. HIVNE037	Human immunodeficiency virus	851	535	535	41.43	0
26. HIVNE103	Human immunodeficiency virus	851	534	534	41.35	0
27. HIVNE038	Human immunodeficiency virus	851	534	534	41.35	0
28. HIVNE031	Human immunodeficiency virus	851	534	534	41.35	0
29. HIVNE023	Human immunodeficiency virus	851	534	534	41.35	0
30. HIVNE005	Human immunodeficiency virus	851	534	534	41.35	0
31. HIVNE004	Human immunodeficiency virus	851	534	534	41.35	0
32. HIVNE001	Human immunodeficiency virus	851	534	534	41.35	0
33. HIVNE087	Human immunodeficiency virus	851	533	533	41.27	0
34. HIVNE084	Human immunodeficiency virus	851	533	533	41.27	0
35. HIVNE046	Human immunodeficiency virus	851	533	533	41.27	0
36. HIVNE040	Human immunodeficiency virus	851	533	533	41.27	0
37. HIVNE036	Human immunodeficiency virus	851	533	533	41.27	0
38. HIVNE032	Human immunodeficiency virus	851	533	533	41.27	0
39. HIVNE027	Human immunodeficiency virus	851	533	533	41.27	0
40. HIVNE022	Human immunodeficiency virus	851	533	533	41.27	0

1. RAILEY-000-716.SEQ (1-696)

HIVPV22 Human immunodeficiency virus type 1, isolate PV22,

LOCUS HIVPV22 9770 bp ss-RNA VRL 15-MAR-1990
 DEFINITION Human immunodeficiency virus type 1, isolate PV22, complete genome (H9/HTLV-III proviral DNA).
 ACCESSION K02083
 KEYWORDS TAR protein; acquired immune deficiency syndrome; complete genome; env protein; gag protein; long terminal repeat (LTR); pol protein; polyprotein; proviral gene; rev protein; reverse transcriptase; tat protein; trans-activator.

SOURCE Human immunodeficiency virus type 1 (HIV-1), isolate PV22 (from H9-derived family), proviral DNA.
 ORGANISM Human immunodeficiency virus type 1
 Viridae; ss-RNA enveloped viruses; Positive strand RNA virus;
 Retroviridae; Lentivirinae.
 REFERENCE 1 (bases 1 to 9770; 1 to 9770)
 AUTHORS Muesing,M.A., Smith,D.H., Cabradilla,C.D., Benton,C.V., Kasky,L.A. and Capon,D.J.
 TITLE Nucleic acid structure and expression of the human AIDS/lymphadenopathy retrovirus
 JOURNAL Nature 313, 450-458 (1985)
 STANDARD full automatic
 REFERENCE 2 (sites)
 AUTHORS van Beveren,C.P., Coffin,J. and Hughes,S.
 TITLE Appendix B: HTLV-3/LAV genome
 JOURNAL (in) Weiss,R., Teich,N., Varmus,H. and Coffin,J. (Eds.); RNA TUMOR VIRUSES, MOLECULAR BIOLOGY OF TUMOR VIRUSES, SECOND EDITION, 2 : SUPPLEMENTS AND APPENDIXES: 1106-1123, Cold Spring Harbor Laboratory, CSH, NY (1985)
 STANDARD full automatic
 REFERENCE 3 (bases 2111 to 2112)
 AUTHORS Muesing,M.A.
 JOURNAL Unpublished (1987) Whitehead Inst Cambridge, Mass
 STANDARD full automatic
 COMMENT [1] revised sequence, personal communication.
 [(in) Weiss,R., Teich,N., Varmus,H. and Coffin,J. (Eds.);RNA Tumor Viruses,Molecul] review; bases 1 to 9769.
 [3] revises [1],[(in) Weiss,R., Teich,N., Varmus,H. and Coffin,J. (Eds.);RNA Tumor Viruses,Molecul].

This sequence for a H9/HTLV-III virus was determined from one complete proviral clone [1]. Additionally, several cDNA clones of the viral RNA were sequenced for comparison with the entire proviral sequence. The differences between cDNA and proviral DNA are extensive and are listed in the Sites Table as variations. The authors believe that the variations may be due in part to different strains in the H9/HTLV-III cell line, because it was established by infection with material from several AIDS patients.

With the addition of g at 2111, gag cds and pol cds are very close to those of HXB2, BRU, and related HIV viruses.

For details and other references pertaining to Sites and Features, see the HIV reference entry.

FEATURES	Location/Qualifiers
cellular	1..9 /note="human cellular DNA"
LTR	10..643 /note="5' LTR"
repeat_region	463..560 /note="R repeat 5' copy"
prim_transcript	464..9678 /note="genomic mRNA"
prim_transcript	464..9678 /note="tat, rev, nef subgenomic mRNA"
misc_feature	464 /note="numbered 1 in [1]"
variation	510 /note="a in provirus; g in cDNA [1]"
variation	575 /note="g in provirus; a in cDNA [1]"
intron	753..5822 /note="tat, rev, nef subgenomic mRNA intron 1"
variation	5716 /note="g in provirus; a in cDNA [1]"
variation	5992

/note="a in provirus; g in cDNA [1]"
variation 6007
/note="c in provirus; t in cDNA [1]"
variation 6047
/note="c in provirus; g in cDNA [1]"
variation 6051
/note="c in provirus; a in cDNA [1]"
variation 6055..6057
/note="agg in provirus; gaa in cDNA [1]"
intron 6091..8420
/note="tat cds intron 2"
intron 6091..8420
/note="rev cds intron 2"
intron 6091..8420
/note="tat, rev, nef subgenomic mRNA intron 2"
variation 6108
/note="t in provirus; c in cDNA [1]"
variation 6120
/note="a in provirus; c in cDNA [1]"
variation 6125..6126
/note="gc in provirus; gtaac in cDNA [1]"
variation 6136
/note="a in provirus; c in cDNA [1]"
variation 6235
/note="t in provirus; a in cDNA [1]"
variation 6352
/note="g in provirus; a in cDNA [1]"
variation 6760
/note="t in provirus; a in cDNA [1]"
variation 7090
/note="c in provirus; t in cDNA [1]"
variation 7100
/note="a in provirus; g in cDNA [1]"
variation 7134..7135
/note="ca in provirus; ac in cDNA [1]"
variation 7183..7184
/note="gt in provirus; aa in cDNA [1]"
variation 7199
/note="a in provirus; g in cDNA [1]"
variation 7284..7285
/note="aa in provirus; gc in cDNA [1]"
variation 7303
/note="a in provirus; c in cDNA [1]"
variation 7511
/note="a in provirus [1]; c in cDNA [1]"
variation 7533
/note="t in provirus [1]; a in cDNA [1]"
variation 7586
/note="c in provirus [1]; t in cDNA [1]"
variation 7648
/note="a in provirus [1]; g in cDNA [1]"
variation 8139
/note="a in provirus; c in cDNA [1]"
variation 8143
/note="t in provirus; c in cDNA [1]"
variation 8222
/note="g in provirus; a in cDNA [1]"
variation 8269
/note="a in provirus [1]; g in cDNA [1]"
variation 8285
/note="g in provirus [1]; t in cDNA [1]"
variation 8376
/note="a in provirus [1]; g in cDNA [1]"
variation 8381
/note="a in provirus [1]; g in cDNA [1]"
variation 8476

/note="a in provirus [1]; g in cDNA [1]"
variation
8869
/note="a in provirus [1]; g in cDNA [1]"
variation
8979
/note="t in provirus; t in cDNA [1]"
variation
8990
/note="a in provirus; c in cDNA [1]"
variation
8999
/note="c in provirus [1]; a in cDNA [1]"
variation
9031
/note="a in provirus [1]; g in cDNA [1]"
LTR
9128..9761
/note="3' LTR"
variation
9291
/note="t in provirus [1]; g in cDNA [1]"
variation
9295
/note="g in provirus [1]; t in cDNA [1]"
variation
9303
/note="g in provirus [1]; a in cDNA [1]"
variation
9548
/note="g in provirus [1]; c in cDNA [1]"
repeat_region
9581..9678
/note="R repeat 3' copy"
polyA_signal
9654..9659
/note="mRNA polyadenylation signal"
cellular
9762..9770
/note="human cellular DNA"
CDS
join(5876..6090,8421..8466)
/note="tat protein"
/codon_start=1
/translation="MEPVDPRLEPWKHPGSQPKTACTNCYCKCCFHCQVCFITKALG
ISYGRKKRRQRRRPPQGSQTHQVSLSKQPTSOPRGDPTGPKE"
CDS
join(6015..6090,8421..8695)
/note="rev protein"
/codon_start=1
/translation="MAGRSGDSDEDLLKAVRLIKFLYQSNNPPNPEGTRQARRNRRRR
WRERQRQIHSISERILSTYLGRSAEPVPLQLPPLERLTLDNECGTSGTQGVGSPQI
LVESTILESRAKE"
CDS
799..2337
/note="gag polyprotein precursor"
/codon_start=1
/translation="MGARASVLSGGELDRWEKIRLRPGGKKKYKLKHIVWASRELERF
AVNPGLETSEGCROILGQLQPSLQTGSEELRSLYNTVATLYCVHQRIEIKDTKEALD
KIEEEQNKSKKKAQQAAADTGHSSQVSQNYPIVONIQGQMVGQAIISPRTLNAAWVKVE
EKAFAFSPEVIMFSALESEGATPQDLNTMLNTVGHHQAAMQMLKETINEAAEWDRVHPV
HAGPIAPGQMRPREGSDIAGTTSTLQEQQIGWMNNPIPVGELYKRWIILGLNKIVRM
YSPTSILDIRQGPKEFRDYLDRFYKTLRAEQAQEVKNWMTETLLVGNANPDCKTIL
KALGPAATLEEMMTACQGVGGPGHKARVLAEAMSQVTNTATIMMQRGNFRNQRKMVKC
FNCGKEGHARTNCRAPRKKGCKCGKEGHQMKDTERQANFLGKIWPSYKGRPGNFLQ
SRPEPTAPPFLQSRPEPTAPPEESFRSGVETTPPKQEPIDKELYPLTSRSLFGND
PSSQ"
CDS
2094..5141
/partial
/note="pol polyprotein; (NH2-terminus uncertain)"
/codon_start=1
/translation="FFREDLAFLQGKAREFSSEQTRANSPTISSEQTRANSPTRRELQ
VWGRDNNSPSEAGADRGCTVSFNFPQITLWQRPLVTIKIGGQLKEALLDTGADDTVLE
EMSLPGRWRKPKMIGGIGGGFIKVRYDQILIEICGHKAIGTVLVGPTPVNIIGRNLLTQ
IGCTLNFPISPIETVPVKLKPGMDGPKVKQWPLETEEKIKALVEICTEMKEKGKISKIG
PENPYNTPVFAIKKKDSTKWRKLVDRELNRKTQDFWEVQLGIPHPAGLKKKSVTVL
DVGDAYFSVPLDEDFRKYTAFTIPSINNETPGIRYQYNVLPQGWKGSPAIFQSSMTKI
LEPFRKQNPDIVYQYMDLYVGSDLEIGQHRTKIEELRQHLLRWGLTPDKHQKEP
PFLWMGYELHPDKWTQPIVLPEKDSWTVDNIOKLVGKLNWASQIYPGIKVRQLCKLL
RGTKALTEVIPLTEEAELELAENREILKEPVHGVVYDPSKDLIAEIQKQGQGQWTYQI
YQEPFKNLKTGKYARMRGAHTNDVKQLEAVQKITTESIVIWGKTPKFKLPIQKETWE
TWWTEYWQATHIPEWEFVNTPPLVKI WYQI FKFPIVGRAFTFYVUDGAANRETRLGKAGY

LTNKGKQKVPLNTNTNGQKTELQAIYLALQDSCGLEVNIVTDSQYALGIQQAQPDQSES
 ELVNGQIEQLIKKQKVYLAHVPANKGIGGNEQVDKLVSAGIRKILFLDGIDKAQDEHE
 KYHSNWRAMASDFNLPPVVAKEIVASCDCKCBLKGEAMHGQVDCSPGIWQLDCTHLEGK
 VILVAVHVVASGYIEAEVPAETGQETAYFLKLAGRWPVKTIHTDNGSNFTSATVKAAC
 CWWAGIKQEFQIPVNPQSGCVVESMNKKELKKIICQVRDQAEHLKTAQVMAVFIIHNFKR
 KGGIGGYSAGERIVDIIATDIQTKELQKQITKIQNFRVYYRDSRNPLWKGPALKLWKG
 EGAVVIQDNNSDIKVVPRRAKAIIRDYQKOMAGDDCVAQRQDED"
 CDS 5086..5664
 /note="vif protein"
 /codon_start=1
 /translation="HENRWQVMIVWQVDRMRIRTWKSLVKHHMVVSGKARGWFYRHYY
 ESPHPRISEVEHIPLG达尔维TYWGLHTGERDWHLGQGVSIERKKRYSTQVDP
 ADQLIHLYYFDCFSDAIRKALLGHIVSPRCEYQAGHNKVGSLQYLALAALITPKKIK
 PPLPSVTKLTEDRWNKPQTKGHRGSHTMNGH"
 CDS 5604..5840
 /note="vpr protein"
 /codon_start=1
 /translation="MEQAPEDQGPQREPHNEWTLEELLEELKNEAVRHFPRIWLHGLGQ
 HIYETYGDTHAGVEAIIRILQQLLFIHFQNHVST"
 CDS 6107..6352
 /note="vpu protein"
 /codon_start=1
 /translation="HQPIQIAIAVALVVAIIIAILVWSIVIIYEYRKILRQRKIDRLIDR
 LIERAEDSGNESEGEISALVEMGVEMGHAPWDVDDL"
 CDS 6267..8837
 /note="envelope polyprotein"
 /codon_start=1
 /translation="MRVKEKYQHLWRWGWRWGTMLLGMLMICSATEKLWVTVYYGVPV
 WKEATTTLFCASDAKAYDTEVHNWATHACVPTDNPQEVVLVNVTFENFMWKNMDMVE
 QMHEDIISLWDQSLKPCVKLTPLCVSLSKCTDLKNDNTNSSGCRMIMEKGEIKNCFSN
 ISTSIRGKVQKEYAFFYKLDIIPIDNDTTSYTLTCNTSVITQACPVSFEPPIHYC
 APAGFAILKCNNKTFNGTCPCTNVSTQCTHIGRPVVSTQLLNGSLAEEEVIRSAN
 FTDNAKTIIIVQLNGSVEINCTRPNNTNRKSIRIQRGPGRAFVTIGKIGNMRQAHCNIS
 RAKWNNTLKQIDSKLREGFCNNKTIIFKQSSGCDPEIVTHSFNCGGEFFYCNSTQLFN
 STWFNSTWSTEGSNNTTEGSDTITLPCRRIKQFINMWQEYVGKAMYAPPISCQIRCSSNIT
 GLLLTRDGGNNNNESEIFRPGGDMRDNRSELKYKVVKIEPLGVAPTKAKRRVVR
 EKRAVGIGALFLGFLGAAGSTMGAASMTLTQARQQLSGIVQ00NNNLLRAIEAQQHLL
 QLTWVGKQQLQARILAVERYLKDQQLLGQIWCGCSKQICTTAVPWNASWSNKSLEQIWN
 NMTHWEWDREINNYTSLIHSLIEESQONQOEKEKNEQELLELDKWANLWNWLNIWNWLWYI
 KLFIMIVGGLVGLRIVFAVLSIVNRVRQGYSPLSFGTHLPTPRGPDRPEGIEEEDGER
 DRDRSIRLVNGSLALIWDDLRLSCLFSYHRLRDLLIIVTRIVELLGRRGWEALKYWWN
 LLQYWQELKNSAVSLLNATAIAVAEGTDRVIEVVQGAYRAIRHIPRRIQGLERILL
 CDS 8839..9459
 /note="nef protein"
 /codon_start=1
 /translation="MGGKWSKSSVIGHPAVRERMRAEAEPADGVGAASRDLEKHGAI
 SSNTAANNAACAWLEAQEEKVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIH
 SQRRODILDWLWYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPEPDKVEEANKGE
 NTSLHPVSLHGMDDPEREVELEWRFDSRLAFHHVARELHPEYFKNC"

BASE COUNT 3436 a 1786 c 2376 g 2172 t

ORIGIN 482 bp upstream of BglII site.

Initial Score = 681 Optimized Score = 684 Significance = 53.41
Residue Identity = 98% Matches = 685 Mismatches = 9
Gaps = 2 Conservative Substitutions = 0

ACAAGGCTACTTCCCTGATTGGCAGAACTACACACCAGGACCAAGGGATCAGATATCCACTGACCTTGGATG
 80 90 100 110 120 130 140
 150 160 170 180 190 200 210
 GTGCTACAAGCTAGTACCGATTGAGCCAGATAAGTAGAAGAGGCCAATAAAGGAGAGAACACCAGCTTGT
 |||||||
 GTGCTACAAGCTAGTACCGATTGAGCCAGATAAGTAGAAGAGGCCAACAAAGGAGAGAACACCAGCTTGT
 150 160 170 180 190 200 210
 220 230 240 250 260 270 280
 ACACCCCTGTGAGCCTGCATGGAATGGATGACCCCTGAGAGAGAAAGTGTAGACTGGAGGTTGACAGCCGCCT
 |||||||
 ACACCCCTGTGAGCCTGCATGGAATGGATGACCCCGAGAGAGAAAGTGTAGACTGGAGGTTGACAGCCGCCT
 220 230 240 250 260 270 280
 290 300 310 320 330 340 350
 AGCATTTCATCACGTGGCCCGAGAGCTGCATCCGGAGTACTTCAAGAACTGCTGACATCGAGCTTGCTACAA
 |||||||
 AGCATTTCATCACGTGGCCCGAGAGCTGCATCCGGAGTACTTCAAGAACTGCTGATATCGAGCTTGCTACAA
 290 300 310 320 330 340 350
 360 370 380 390 400 410 420
 GGGACTTTCCGCTGGGACTTTCCAGGGAGGCCTGGGCTGGGGAACTGGGGAGTGGCGAGCCCTCAGATG
 |||||||
 GGGACTTTCCGCTGGGACTTTCCAGGGAGGCCTGGGCTGGGGAACTGGGGAGTGGCGAGCCCTCAGATG
 360 370 380 390 400 410 420 430
 430 440 450 460 470 480 490 500
 CTGCATATAAGCAGCTGCTTTGCTGTACTGGGTCTCTGGTTAGACCAAGATTGAGCCTGGGAGCTCT
 |||||||
 CTGCATATAAGCAGCTGCTTTGCTGTACTGGGTCTCTGGTTAGACCAAGATCTGAGCCTGGGAGCTCT
 440 450 460 470 480 490 500
 510 520 530 540 550 560 570
 CTGGCTAACTAGGGAAACCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCC
 |||||||
 CTGGCTAACTAGGGAAACCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCC
 510 520 530 540 550 560 570
 580 590 600 610 620 630 640
 GTCTGTTGTGACTCTGGTAACTAGAGATCCCTCAGACCCCTTGTAGTCAGTGAAAATCTCTAGCAGTG
 |||||||
 GTCTGTTGTGACTCTGGTAACTAGAGATCCCTCAGACCCCTTGTAGTCAGTGAAAATCTCTAGCAGTG
 580 590 600 610 620 630 640
 650 660 670 680 690 X
 GCGCCCGAACAGGGACTGAAAGCGAAAGGGAAACCAAGAGGAGCTCTCGACCGCAGGACTGGCTTGCTGA
 |||||||
 GCGCCCGAACAGGGACTGAAAGCGAAAGGGAAACCAAGAGGAGCTCTCGACCGCAGGACTGGCTTGCTGA
 650 660 670 680 690 700 710
 AGCGCGCACGGCAAGAGGCCAGGGCGGGCGGG
 720 730 740

2. RAILEY-000-716.SE0 (1-696)

HIVHXB2CG Human immunodeficiency virus type 1 (HXB2), complete

LOCUS HIVHXB2CG 9718 bp ss-RNA **VRL** 14-JAN-1992
DEFINITION Human immunodeficiency virus type 1 (HXB2), complete genome;
 HIV1/HTLV-III/LAV reference genome.
ACCESSION K03455
KEYWORDS TAR protein; acquired immune deficiency syndrome; complete genome;
 env protein; gag protein; long terminal repeat (LTR); pol protein;
 polyprotein; proviral gene; reverse transcriptase; trans-activator.
SOURCE HTLV-III/LAV (isolate HXB2) proviral DNA.

ORGANISM Human immunodeficiency virus type I
Viridae; ss-RNA enveloped viruses; Positive strand RNA virus;
Retroviridae; Lentivirinae.

REFERENCE 1 (sites)
AUTHORS Rosen,C.A., Sodroski,J.G. and Haseltine,W.A.
TITLE The location of cis-acting regulatory sequences in the human T cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat
JOURNAL Cell 41, 813-823 (1985)
STANDARD full automatic

REFERENCE 2 (bases 9577 to 9718; 493 to 674)
AUTHORS Wong-Staal,F., Gallo,R.C., Chang,N.T., Ghayeb,J., Papas,T.S., Lautenberger,J.A., Pearson,M.L., Petteway,S.R.Jr., Ivanoff,L., Baumeister,K., Whitehorn,E.A., Rafalski,J.A., Doran,E.R., Josephs,S.J., Starcich,B., Livak,K.J., Patarca,R., Haseltine,W.A. and Ratner,L.
TITLE Complete nucleotide sequence of the AIDS virus, HTLV-III
JOURNAL Nature 313, 277-284 (1985)
STANDARD full automatic

REFERENCE 3 (sites)
AUTHORS van Beveren,C.P., Coffin,J. and Hughes,S.
TITLE Appendix B: HTLV-3/LAV genome
JOURNAL (in) Weiss,R., Teich,N., Varmus,H. and Coffin,J. (Eds.); RNA TUMOR VIRUSES, SECOND EDITION, 2: 1102-1123,
Cold Spring Harbor Laboratory, Cold Spring Harbor (1985)
STANDARD full automatic

REFERENCE 4 (bases 1 to 653)
AUTHORS Starcich,B., Ratner,L., Josephs,S.F., Okamoto,T., Gallo,R.C. and Wong-Staal,F.
TITLE Characterization of long terminal repeat sequences of HTLV-III
JOURNAL Science 227, 538-540 (1985)
STANDARD full automatic

REFERENCE 5 (sites)
AUTHORS Allan,J.S., Coligan,J.E., Barin,F., McLane,M.F., Sodroski,J.G., Rosen,C.A., Haseltine,W.A., Lee,T.H. and Essex,M.
TITLE Major glycoprotein antigens that induce antibodies in AIDS patients are encoded by HTLV-III
JOURNAL Science 228, 1091-1094 (1985)
STANDARD full automatic

REFERENCE 6 (sites)
AUTHORS Arya,S.K., Guo,C., Josephs,S.F. and Wong-Staal,F.
TITLE Trans-activator gene of human T-lymphotropic virus type III (HTLV-III)
JOURNAL Science 229, 69-73 (1985)
STANDARD full automatic

REFERENCE 7 (sites)
AUTHORS Sodroski,J., Patarca,R., Rosen,C., Wong-Staal,F. and Haseltine,W.A.
TITLE Location of the trans-activating region on the genome of human T-cell lymphotropic virus type III
JOURNAL Science 229, 74-77 (1985)
STANDARD full automatic

REFERENCE 8 (sites)
AUTHORS Rabson,A.B., Daugherty,D.F., Venkatesan,S., Boulukos,K.E., Benn,S.I., Folks,T.M., Feorino,P. and Martin,M.
TITLE Transcription of novel open reading frames of AIDS retrovirus during infection of lymphocytes
JOURNAL Science 229, 1388-1390 (1985)
STANDARD full automatic

REFERENCE 9 (sites)
AUTHORS Allan,J.S., Coligan,J.E., Lee,T.-H., McLane,M.F., Kanki,P.J., Groopman,J.E. and Essex,M.
TITLE A new HTLV-III/LAV encoded antigen detected by antibodies from AIDS patients
JOURNAL Science 230, 810-813 (1985)
STANDARD full automatic

REFERENCE 10 (sites)
AUTHORS Dauton,A.I., Sodroski,J.G., Rosen,C.A., Goh,W.C. and Haseltine,W.A.

TITLE The trans-activator gene of the human T cell lymphotropic virus type III is required for replication
JOURNAL Cell 44, 941-947 (1986)
STANDARD full automatic
REFERENCE 11 (sites)
AUTHORS Starcich,B.R., Hahn,B.H., Shaw,G.M., McNeely,P.D., Modrow,S., Wolf,H., Parks,E.S., Parks,W.P., Josephs,S.F., Gallo,R.C. and Wong-Staal,F.

TITLE Identification and characterization of conserved and variable regions in the envelope gene of HTLV-III/LAV, the retrovirus of AIDS
JOURNAL Cell 45, 637-648 (1986)
STANDARD full automatic
REFERENCE 12 (sites)
AUTHORS Feinberg,M.B., Jarret,R.F., Aldovini,A., Gallo,R.C. and Wong-Staal,F.

TITLE HTLV-III expression and production involve complex regulation at the levels of splicing and translation of viral RNA
JOURNAL Cell 46, 807-817 (1986)
STANDARD full automatic
REFERENCE 13 (sites)
AUTHORS Terwilliger,E., Sodroski,J.G., Rosen,C.A. and Haseltine,W.A.

TITLE Effects of mutations within the 3' orf open reading frame region of human T-cell lymphotropic virus type III (HTLV-III/LAV) on replication and cytopathogenecity
JOURNAL J. Virol. 60, 754-760 (1986)
STANDARD full automatic
REFERENCE 14 (sites)
AUTHORS Lightfoote,M.M., Coligan,J.E., Folks,T.M., Fauci,A.S., Martin,M.A. and Venkatesan,S.

TITLE Structural characterization of reverse transcriptase and endonuclease polypeptides of the acquired immunodeficiency syndrome retrovirus
JOURNAL J. Virol. 60, 771-775 (1986)
STANDARD full automatic
REFERENCE 15 (sites)
AUTHORS Rosen,C.A., Sodroski,J.G., Goh,W.C., Dayton,A.I., Lippke,J.A. and Haseltine,W.A.

TITLE Post-transcriptional regulation accounts for the trans-activation of the human T-lymphotropic virus type III
JOURNAL Nature 319, 555-559 (1986)
STANDARD full automatic
REFERENCE 16 (sites)
AUTHORS Sodroski,J., Goh,W.C., Rosen,C., Dayton,A.I., Terwilliger,E. and Haseltine,W.A.

TITLE A second post-transcriptional trans-activator gene required for HTLV-III replication
JOURNAL Nature 321, 412-417 (1986)
STANDARD full automatic
REFERENCE 17 (sites)
AUTHORS Arya,S.K. and Gallo,R.C.

TITLE Three novel genes of human T-lymphotropic virus type III: Immune reactivity of their products with sera from acquired immune deficiency syndrome patients
JOURNAL Proc. Natl. Acad. Sci. U.S.A. 83, 2209-2213 (1986)
STANDARD full automatic
REFERENCE 18 (sites)
AUTHORS Willey,R., Rutledge,R.A., Dias,S., Folks,T., Theodore,T., Buckler,C.E. and Martin,M.A.

TITLE Identification of conserved and divergent domains within the envelope gene of the acquired immunodeficiency syndrome virus
JOURNAL Proc. Natl. Acad. Sci. U.S.A. 83, 5038-5042 (1986)
STANDARD full automatic
REFERENCE 19 (sites)
AUTHORS di Marzo Veronese,F., Copeland,T.D., DeVico,A.L., Rahmn,R., Oroszlan,S., Gallo,R.C. and Sarngadharan,M.C.

TITLE Characterization of highly immunogenic p66/p51 as the reverse transcriptase of HTLV-III/LAV
JOURNAL Science 231, 1289-1291 (1986)
STANDARD full automatic
REFERENCE 20 (sites)
AUTHORS Lee,T.-H., Coligan,J.E., Allan,J.S., McLane,M.F., Groopman,J.E. and Essex,M.
TITLE A new HTLV-III/LAV protein encoded by a gene found in cytopathic retroviruses
JOURNAL Science 231, 1546-1549 (1986)
STANDARD full automatic
REFERENCE 21 (sites)
AUTHORS Sodroski,J., Goh,W.C., Rosen,C., Tartar,A., Portetelle,D., Burny,A. and Haseltine,W.A.
TITLE Replicative and cytopathic potential of HTLV-III/LAV with sor gene deletions
JOURNAL Science 231, 1549-1553 (1986)
STANDARD full automatic
REFERENCE 22 (sites)
AUTHORS Kan,N.C., Franchini,G., Wong-Staal,F., DuBois,G.C., Robey,W.G., Lautenberger,J.A. and Papas,T.S.
TITLE Identification of HTLV-III/LAV sor gene product and detection of antibodies in human sera
JOURNAL Science 231, 1553-1555 (1986)
STANDARD full automatic
REFERENCE 23 (sites)
AUTHORS Kramer,R.A., Schaberg,M.D., Skalka,A.M., Ganguly,K., Wong-Staal,F. and Reddy,P.E.
TITLE HTLV-III gag protein is processed in yeast cells by the virus pol-protease
JOURNAL Science 231, 1580-1584 (1986)
STANDARD full automatic
REFERENCE 24 (sites)
AUTHORS Jones,K.A., Kadonaga,J.T., Luciw,P.A. and Tjian,R.
TITLE Activation of the AIDS retrovirus promoter by the cellular transcription factor, Spi
JOURNAL Science 232, 755-759 (1986)
STANDARD full automatic
REFERENCE 25 (bases 8761 to 9060)
AUTHORS Fisher,A.G., Ratner,L., Mitsuya,H., Marselle,L.M., Harper,M.E., Broder,S., Gallo,R.C. and Wong-Staal,F.
TITLE Infectious mutants of HTLV-III with changes in the 3' region and markedly reduced cytopathic effects
JOURNAL Science 233, 655-659 (1986)
STANDARD full automatic
REFERENCE 26 (sites)
AUTHORS Wright,C.M., Felber,B.K., Paskalis,H. and Pavlakis,G.N.
TITLE Expression and characterization of the trans-activator of HTLV-III/LAV virus
JOURNAL Science 234, 988-992 (1986)
STANDARD full automatic
REFERENCE 27 (bases 5611 to 5611)
AUTHORS Ratner,L.
JOURNAL Unpublished (1987) Washington U Med School, St. Louis, MO
STANDARD full automatic
REFERENCE 28 (sites)
AUTHORS Wong-Staal,F., Chanda,P.K. and Ghrayeb,J.
TITLE Human immunodeficiency virus: the eighth gene
JOURNAL AIDS Res. Hum. Retroviruses 3, 33-39 (1987)
STANDARD full automatic
REFERENCE 29 (sites)
AUTHORS Patarca,R., Heath,C., Goldenberg,G.J., Rosen,C.A., Sodroski,J.G., Haseltine,W.A. and Hansen,U.M.
TITLE Transcription directed by the HIV long terminal repeat in vitro
JOURNAL AIDS Res. Hum. Retroviruses 3, 41-55 (1987)
STANDARD full automatic

REFERENCE 30 (bases 1 to 9635; 1 to 9635)
AUTHORS Ratner,L., Fisher,A., Jagodzinski,L.L., Mitsuya,H., Liou,R.-S.,
Gallo,R.C. and Wong-Staal,F.
TITLE Complete nucleotide sequences of functional clones of the AIDS
virus
JOURNAL AIDS Res. Hum. Retroviruses 3, 57-69 (1987)
STANDARD full automatic
REFERENCE 31 (sites)
AUTHORS Muesing,M.A., Smith,D.H. and Capon,D.J.
TITLE Regulation of mRNA accumulation by a human immunodeficiency virus
trans-activator protein
JOURNAL Cell 48, 691-701 (1987)
STANDARD full automatic
REFERENCE 32 (sites)
AUTHORS Modrow,S., Hahn,B.H., Shaw,G.M., Gallo,R.C., Wong-Staal,F. and
Wolf,H.
TITLE Computer-assisted analysis of envelope protein sequences of seven
human immunodeficiency virus isolates: Prediction of antigenic
epitopes in conserved and variable regions
JOURNAL J. Virol. 61, 570-578 (1987)
STANDARD full automatic
REFERENCE 33 (sites)
AUTHORS Goh,W.C., Sodroski,J.G., Rosen,C.A. and Haseltine,W.A.
TITLE Expression of the env gene protein of human T-lymphotropic virus
type III (HTLV-III/LAV) in bacteria
JOURNAL J. Virol. 61, 633-637 (1987)
STANDARD full automatic
REFERENCE 34 (sites)
AUTHORS Nabel,G. and Baltimore,D.
TITLE An inducible transcription factor activates expression of human
immunodeficiency virus in T cells
JOURNAL Nature 326, 711-713 (1987)
STANDARD full automatic
REFERENCE 35 (sites)
AUTHORS Fisher,A.G., Ensoli,B., Ivanoff,L., Chamberlain,M., Petteway,S.,
Ratner,L., Gallo,R.C. and Wong-Staal,F.
TITLE The sor gene of hiv-1 is required for efficient virus transmission
in vitro
JOURNAL Science 237, 888-893 (1987)
STANDARD full automatic
REFERENCE 36 (sites)
AUTHORS Ido,E., Han,H.-p., Kezdy,F.J. and Tang,J.
TITLE Kinetic studies of human immunodeficiency virus type 1 protease and
its active-site hydrogen bond mutant A28S
JOURNAL J. Biol. Chem. 266, 24359-24366 (1991)
STANDARD full automatic
COMMENT [6] sites; tat mRNA and other transcript boundaries.
[7] sites; tat mRNA.
[8] sites; mRNA splice sites.
[9] sites; 27K antigen cds.
[5] sites; gp160 and gp120 coding sequences.
[11] sites; regulatory sequences in the LTR.
[(in) Weiss,R., Teich,N., Varmus,H. and Coffin,J. (Eds.);RNA Tumor
Viruses, Second review; bases 1 to 9718.
[15] sites; trans-activator function and TAR sequence.
[19] sites; pol coding sequence.
[22] sites; 23K sor gene product.
[23] sites; pol NH2-terminal region.
[20] sites; sor 23K protein.
[21] sites; sor 23K protein.
[24] sites; Sp1 binding sites in the promoter region.
[17] sites; acceptor and donor splice sites for tat and 27K. [10]
sites; deletion mutants in the tat gene.
[18] sites; env gene conserved/variable regions; separate entries.
[16] sites; trs cds boundaries.
[12] sites; trs rds boundaries.

[11] sites; env gene conserved/variable regions; separate entries.
[26] sites; tar or transactivator target.
[13] sites; 3' orf mutations.
[14] sites; pol p34 terminus.
[31] sites; promoter, TAR, tat-III mutants.
[32] sites; envelope protein epitopes.
[33] sites; trs/art protein.
[34] sites; inducible enhancer element.
[27] revises [30].
[29] sites; long terminal repeat.
[28] sites; R orf.
[35] sites; sor.

Sequence for [25] kindly provided in computer-readable form by
L.Ratner, 19-AUG-1986.

The HXB2 sequence is being used as a reference genome for all the HIV entries because it has been derived from a demonstrably infectious clone. Hence not all of the 'sites' references above were concerned with this isolate.

FEATURES	Location/Qualifiers
exon	<5830..6044 /number=2 /note="tat protein, (first expressed exon)"
exon	<5969..6044 /number=2 /note="trs protein, (first expressed exon)"
LTR	1..634 /note="5' LTR"
repeat_region	454..551 /note="R repeat 5' copy"
mRNA	455..9635 /note="HXB2 genomic mRNA"
prim_transcript	455..9635 /note="tat, trs, 27K subgenomic mRNA"
intron	743..5776 /note="tat, trs, 27K mRNA intron 1"
intron	6045..8377 /note="tat intron 1"
intron	6045..8377 /note="trs intron 2"
intron	6045..8377 /note="27K mRNA intron 2"
intron	6045..8377 /note="tat, trs intron 2"
exon	8378..>8423 /number=3 /note="tat protein"
exon	8378..>8652 /number=3 /note="trs protein"
LTR	9085..9718 /note="3' LTR"
repeat_region	9539..9635 /note="R repeat 3' copy"
polyA_signal	9611..9616 /note="HXB2 mRNA polyadenylation signal"
CDS	join(5830..6044,8378..8423) /note="tat protein" /codon_start=1 /translation="MEPVDPRLEPWKPGSQPKTACTNCYCKCCFHCQVCFITKALG ISYGRKKRRQRRRAHQNSQTHQASLSKQPTSQSRGDPTGPKE"
CDS	join(5969..6044,8378..8652) /note="trs protein" /codon_start=1 /translation="MACRSQDSDFEI TATURI TKII YASNPPPNPECTRQARRNRNRRR"

WRERQRQIHSISERILGTLYRSAEPVPLQLPPLERLTLCNEDCGTSGTQGVGSPQI
LVESTVLESGTKE"

CDS 789..2291
/note="gag polyprotein"
/codon_start=1
/translation="M GARASVLSGGELDRWEKIRLRPGGKKYKLKHIVWASRELERF
AVNPGLLETSEGCRQILCQLOPSLQTCSEELRSLYNTVATLYCVHGRIEIKDTKEALD
KIEEEQNKSKKKABQAAADTCHSNQVSQNYPIVQNIQGQMVMHQAIISPRLNAWVKVE
EKAFSPEVIPMFMSALSEGATPQDLNTHLNTPGCHQAAAMQMLKETINEAAEWDRVHPV
HAGPIAPGQHREPRGSIDIAGTTSLGEQIGWMNNPIPVGEGIYKRWIILGLNKIVRM
YSPTSILDIOGPKEPFRDYVDRFYKTLRAEQASGEVKNUWTETLLVGNANPDCKTIL
KALGPAATLEEMMTACQGVGGPGHKARVLAEAMSQVTNSATIMMQRGNFRNQRKIVKC
FNGKGEHTARNCRAPRKKGCWKGCGKEGHQMKDTERQANFLGKIWP SYKGRPGNFLQ
SRPEPTAPPEESFRSGCETTTPPKQEPIDKELYPLTSRSLFGNDPSSQ"

CDS 2357..5095
/partial
/note="pol polyprotein; (NH2-terminus uncertain)"
/codon_start=1
/translation="MSLPGRWKPKMIGGIGGFIKVQYDGILIEICGHKAIGTVLVGP
TPVNIIGRNLLTGIGCTLNFPISPIETVPVKLKPGMDGPVKQWPLTEEKIKALVEIC
TEMEKEGKISKIGOPENPYNTPVFAIKKKDSTKWRKLVDLFRELNKRTQDFWEVQLGIPH
PAGLKKKKSVTVLDVGDAYFSVPLDEDFRKYTAFTIIPSINNETPGIRYQYNVLPQGWK
GSPAIFQSSMTKILEPFRKQNPDIVYQYMDDLYVGSDLEIGQHRTKIEELRQHLLRW
GLTPDKKHQKEPPFLWMGYELHPDKWTVGPIVLPKEDSWTVNDIQKLVGKLNWASQI
YPGIKVRQLCLLRGTKALTEVIPLTEEAELELAENREILKEPVHGVVYDPSKDLIAE
IQKQGQGQHWTQIYQEPFKNLKTGKJYARMRGAHTNDVKQLTEAVQKITTESIVWGKT
PKFKLPIQKETWETWWTEYHQA TWIPEWEFVNTPPLVKLWYQLEKEPIVGAETFYVDG
AANRETKLKGAGYVTNRGRQKVVTLDTTNQKTELQAIYLALQDSGLEVNIVTDSQYA
LGIIQAGQPDQSESELVNGQITEGLIKKEKVYLA WPAHKGIGGNEQVDKLVSA GIKV
FLDGIDKAQDEHEKYHSNWRAMASDFNLPPVVAKEIVASCDKCQLKGEAMHGQVDCSP
GIWQLDCTHLEGKVILVAVHVASGYIEAEVIPAETGQETAYFLKLAGRWPVKTIHTD
NGSNFTGATVRAACHWAGIKQEFQIPYNPQSVESMNKELKKIIGQVRDQAEHLKT
AVQMAVFIIHNFKRKGIGGYSAGERIVDIIATDIQTKELQKQITKIQNFRVYYRDSRN
SLWKGPAKLLWKGEAVVIQDNSDIKVVPRRKAKIIRDYQKQMACDDCVASRQDED"

CDS 5040..5618
/note="sor 23K protein"
/codon_start=1
/translation="MENRWQVMIVWQVDRMRIRTWKSLVKHHMYVSGKARGWFYRH
ESPHPRISSEVHILPCDARLVITTYWGLHTGERDWHLGQGVSIERKKRYSTQVDPEL
ADQLIHLYYDFCFSDSAIRKALLGHIVSPRCEYQAGHNKVGSLQYLALAALITPKKIK
PPLPSVTKLTEDRWNKPQTKCHRGSHTMNGH"

CDS 5558..5794
/note="R; (ORF) protein"
/codon_start=1
/translation="MEQAPEDQGPQREPHNEWTLEELLEELKNEAVRFPRIWLHGLGQ
HIYETYGDWTAGVEAIRILQQLLFIHFQNWST"

CDS 6224..8794
/note="envelope polyprotein"
/codon_start=1
/translation="MRVKEKYQHLWRWGRWCTMLLGMLMICSATEKLWVTVYYGVPV
WKEATTTLFCASDAKAYDTEVHNWATHACVPTDPNPQEVLVNVNTENFDMWKNDMVE
QMHEDIISLWDQSLKPCVKLTPLCVSLKCTDLKNDNTNTSSSGRMIMEKGEIKNCFSN
ISTSIRGKVQKEYAFFYKLDIIPIDNDTTSYLTSCTNSVITQACPKVSFEPPIHYC
APAGFAILKCNNKTFNGTCPCTNVSTVQCTHCIRPVVSTQLLNGSLAEEEVIRSVN
FTDNAKTIIIVQLNTSVEINCRPNNNTRKRIRIQRGPGRAFVTIGKIGNMRQAHCNIS
RAKWNNLTKQIDS KLRQFGNNKTIIFKQSSGDP EIVTHSFNCGEFFYCNSTQLFN
STWFNSTHSTEGSNNTEGSDTITLPCRIKQIINMWQKVGKAMYAPPISCGQIRCSSNIT
GLLLTRDGGNSNNESEIFRLGGCDMRDNWRSELKYKVVKIEPLCVAPTAKRRVVQR
EKRAVGIGALFLGFLGAAGSTMCAASMTLTQBARQLLSGIVQQQNNLLRAIEAQQHLL
QLTWGIKQARILAVERYLKDQQLGIWCCSGKLICTTAVPWNASWSNKSLEQIWN
HTTWMEWDREINNNYTSIHSIIEESQNGQEKNEGELLEDKwasLwnwfniTNWLWYI
KLFIMIVGGLVGLRIVFAVLSIVNVRQGYSPLSFQTHLPPIP RGPDRPEGIEEEGGER
DRDRSIRLVNGSLALIWDLRSCLFSYHRLRDLLLIVTRIVELLGRRGWEALKYWWN
LLQYHSQELKNSAVSLLNATAIAVAEGTDRVIEVUQGACRAIRHIPRRIRQGLERILL

CDS 8796..9167

/note="27K protein; premature termination"
/codon_start=1
/translation="MGGKWSKSSVIGWLTVRERMRAAEPAAADGVGAASRDLEKHGAI
SSNTAATNAACAHLEAQEEEEVGFPVPQVPLRPMTYKAADVLSHFLKEKGLEG
SQRQQDILDWIYHTQGYFPD"

BASE COUNT 3411 a 1773 c 2370 g 2164 t

ORIGIN 435 bp upstream of Pvull site; 5' end of proviral genome.

Initial Score = 664 Optimized Score = 671 Significance = 52.01

Residue Identity = 97% Matches = 673 Mismatches = 13

Gaps = 3 Conservative Substitutions = 0

10 20 30 40 50 60 70

GGGGGACTGGAAGGGCTAATTCACTCCAACGAAAGACAAGATATCCTGATCTGTGGATCTACCACACACAA
||
TGGAAAGGGCTAATTCACTCCAACGAAAGACAAGATATCCTGATCTGTGGATCTACCACACACAA
X 10 20 30 40 50 60

80 90 100 110 120 130 140

GGCTACTTCCCTGATTGGCAGAACTACACACCAGGGCCAGGGTCAGATATCCACTGACCTTGGATGGTGC
||||||||||||| ||||||||||||||||||| |||||||||||||||||||
GGCTACTTCCCTGATTGGCAGAACTACACACCAGGGCCAGGGTCAGATATCCACTGACCTTGGATGGTGC
70 80 90 100 110 120 130

150 160 170 180 190 200 210

TACAAGCTAGTACCAAGTTGAGCCAGATAAGGTAGAAGAGGCCAATAAGGAGAGAACACCGCTTGTACAC
||||||||||||||||| ||| ||||||| ||| |||||||||||||||||||
TACAAGCTAGTACCAAGTTGAGCCAGAGAAAGTTAGAAGAAGGCCAACAAAGGAGAGAACACCGCTTGTACAC
140 150 160 170 180 190 200

220 230 240 250 260 270 280

CCTGTGACCTGCATGGAATGGATGACCTGAGAGAGAACTGTTAGACTGGAGGTTGACAGCCGCTAGCA
||||||||||||| |||||||||||||||
CCTGTGACCTGCATGGAATGGATGACCCGGAGAGAGAAAGTGTAGACTGGAGGTTGACAGCCGCTAGCA
210 220 230 240 250 260 270 280

290 300 310 320 330 340 350 360

TTTCATCACGTGGCCCGAGAGCTGCATCCGGAGTACTTCAAGAACTGCTGACATCGAGCTTGCATAAGGGA
|||||||||||||
TTTCATCACATGGCCCGAGAGCTGCATCCGGAGTACTTCAAGAACTGCTGACATCGAGCTTGCATAAGGGA
290 300 310 320 330 340 350

370 380 390 400 410 420 430

CTTTCGCGTGGGCACTTCCAGGGAGGGCTGGCTGGCGGAACCTGGGACTGGCGAGCCCTCAGATGCTGC
|||||||||
CTTTCGCGTGGGCACTTCCAGGGAGGGCTGGCTGGCGGAACCTGGGACTGGCGAGCCCTCAGATGCTGC
360 370 380 390 400 410 420

440 450 460 470 480 490 500

ATATAAGCAGCTGCTTTTGCTGACTGGTCTCTCTGGTTAGACCAAGATTGAGCCTGGAGCTCTCTGG
|||||||||
ATATAAGCAGCTGCTTTTGCTGACTGGTCTCTCTGGTTAGACCAAGATGAGCCTGGAGCTCTCTGG
430 440 450 460 470 480 490

510 520 530 540 550 560 570

CTAACTAGGGAACCCACTGCTTAAGCCTCAATAAGCTTGCCTGAGTGCTCAAGTAGTGTGTGCCGTCT
|||||||||
CTAACTAGGGAACCCACTGCTTAAGCCTCAATAAGCTTGCCTGAGTGCTCAAGTAGTGTGTGCCGTCT
500 510 520 530 540 550 560

580 590 600 610 620 630 640

GTGCTGTGACTCTGGTAACTAGAGATCCCTCAGACCCCTTTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGC
|||||||||
GTGCTGTGACTCTGGTAACTAGAGATCCCTCAGACCCCTTTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGC
570 580 590 600 610 620 630 640

650 660 670 680 690 X
 CCGAACAGGGACTTGAAGCGAAAGGAAACCAGAGGAGCTCTCGA
 ||||||| ||||| ||||| ||||| |||||
 CCGAACAGGGACCTGAAGCGAAAGGAAACCA---GAGCTCTCGACGCAGGACTCGGCTTGCTGAAGCG
 650 660 670 680 X 690 700 710

 CCCGCACGGCAAGAGGGGAGGGGGCGG
 720 730

3. RAILEY-000-716.SEQ (1-696)

REHTLV3 Human T-cell leukaemia type III (HTLV-III) provira

LOCUS REHTLV3 9748 bp RNA VRL 08-MAY-1992
DEFINITION Human T-cell leukaemia type III (HTLV-III) proviral genome (AIDS
virus for acquired immune deficiency syndrome)
ACCESSION X01762
KEYWORDS acquired immune deficiency syndrome; direct repeat; endonuclease;
glycoprotein; inverted repeat; protease; provirus;
reverse transcriptase; terminal repeat.
SOURCE Human immunodeficiency virus type 1
ORGANISM Human immunodeficiency virus type 1
Viridae; ss-RNA enveloped viruses; Positive strand RNA viruses;
Retroviridae; Lentivirinae.
REFERENCE 1 (bases 1 to 9748)
AUTHORS Wong-staal,F., Gallo,R.C., Chang,N.T., Ghrayeb,J., Papas,T.S.,
Lautenberger,J.A., Pearson,M.L., Petteway,S.R.Jr., Ivanoff,L.,
Baumeister,K., Whitehorn,E.A., Rafalski,J.A., Doran,E.R.,
Josephs,S.J., Starcich,B., Livak,K.J., Patarca,R., Haseltine,W. and
Ratner,L.
TITLE Complete nucleotide sequence of the AIDS virus, HTLV-III
JOURNAL Nature 313, 277-284 (1985)
STANDARD full automatic
REFERENCE 2 (bases 1 to 9748)
AUTHORS Muesing,M.A., Smith,D.H., Cabradilla,C.D., Benton,C.V., Kasky,L.A.
and Capon,D.J.
TITLE Nucleic acid structure and expression of the human AIDS/
lymphadenopathy retrovirus
JOURNAL Nature 313, 450-458 (1985)
STANDARD full automatic
FEATURES Location/Qualifiers
 misc_feature 1..634
 /note="long terminal repeat"
repeat_unit 1..2
 /note="inverted repeat"
promoter 427..430
 /note="TATA-box"
misc_feature 453
 /note="U3 region"
misc_feature 454..551
 /note="R region"
misc_RNA 454
 /note="cap site"
misc_feature 552..634
 /note="U5 region"
repeat_unit 633..634
 /note="inverted repeat"
misc_feature 635..653
 /note="tRNA binding site (tRNA-Lys)"
repeat_region 1968..2002
 /note="direct repeat"
repeat_region 2031..2065
 /note="direct repeat"
repeat_region 2128..2163
 /note="direct repeat"
repeat_region 2164..2174

/note="direct repeat"
misc_feature 7786..7787
/note="put.peptide cleavage site"
misc_feature 9098..9103
/note="poly purine stretch"
repeat_region 9115..9748
/note="long terminal repeat"
misc_feature 9115..9567
/note="U3 region"
misc_feature 9568..9665
/note="R region"
misc_feature 9641..9646
/note="polyadenylation signal"
misc_feature 9666..9748
/note="U5 region"
repeat_unit 9747..9748
/note="inverted repeat"
CDS 787..2321
/note="gag precursor polypeptide"
CDS 1183..2321
/note="gag p24 and gag p15 for major capsid protein and
for put. retroviral nucleic acid binding protein
(NBP) (ref.2) (boundaries not defined)"
CDS 787..1182
/note="gag p17"
/codon_start=1
/translation="MGARASVLSGGELDRWEKIRLRPGGKKYKLKHIVWASRELERF
AVNPGLLETSEGCRQILGQLQPSLGTGSEELRSLYNTVATLYCVHQRIEIKDTKEALD
KIEEEQNKSKKKAQQAAADTGHSSQVSQNY"
CDS 2081..5125
/note="pol precursor polypeptides put. protease at 5'
terminus reverse transcriptase put. endonuclease at 3'
terminus"
/codon_start=1
/translation="FFREDLAFLQGKAREFSSE@TRANSPTISSE@TRANSPTRRELQ
VWGRDNNSPNEAGADRGCTVSFNFPQITLWQRPLVTIKIGGQLKEALLDTGADDTVLE
EMSLPGRWPKPMIGGIGGFIKVRYDQILIEICCHKAIGTVLVGPTPVNIIGRNLLTQ
IGCTLNFPISPIETVVKLKPGMDCPVKVQWPLTEEKIKALVEICTEMKEGKISKIG
PENPYNTPVFAIKKDSTKWRKLVDRELNRKTQDFWEVQLGIPHPAGLKKKSVTUL
DVGDAYFSVPLDEDFRKYTAFTIPSINNETPGIRYQYNVLPOGWKGSPAIFQSSMTKI
LEPFKKQNPDIVIYQYMDDLVYVGSDLEIGQHRTKIEELRQHLLRWGLTPDKHHQKEP
PFLWMGYELHPDKWTVPQIVLPEKDSWTVNIDQKLVGKLNWASQIYPGIKVRQLCKLL
RGTKALTEVIPLTEEAELELAENREILKEPVHGYYYDPSKDLIAEIQKQGQGQWTYQI
YQEPFKNLKTGKYARMRGAHTNDVQLTEAVQKITTESIVIWCCKTPFKLPIQKETWE
TWWTEYQWQATWIPEWEFVNTPPLVWLWYQLEKEPIVGAETFYVGDGAANRETKLGKAGY
VTNKGRQKVVPNTNTNGKTELGAIYLALQDSGLEVNVITDSQYALGIQIAQPDKSES
ELVNQIIEQLIKKEKVYLAWVPAHKGIGGNEQVDKLVSAGIRKILFLDGIDKAQDEHE
KYHSNWRAMASDFNLPVVAKIEIVASCDCQKLGEGAMHGQVDCSPGIWQLDCTHLEGK
VILVAHVHASGYIEAEVIPAETGQETAYFLLKLAGRPVVKTIHTDNGSNFTSATVKA
CWWAGIKQEFGIPYNPQSQQGVVESMNKELKKIIGQVRDQAEHLKTAQVMASFHNFKR
KGGIGGYSAGERIVDIATDIQTKELQKQITKIQNFRVYYRDSRNPLWKGPAKLLWKG
EGAVVIQDNSDIKVVPRRAKIIIRDYKQMAGDDCVASRQDED"
CDS 5040..5648
/note="SOR short open reading frame pot. vestigial env
gene"
/codon_start=1
/translation="CQEEKQRSLGIMENRHWQVMIVWQVDRMRIRTWKSLVKHHMYVSG
KARGWFYRHYYESPHPRISSEVHPIPLG达尔VITYWGLHTGERDWHLGQGVSIEWRK
KRYSTQVDPPELADQLIHLYYFDCFSDSAIRKALLGHIVSPRCEYQAGHNKVGSLQYLA
LAALITPKKKIKPPLPSVTKLTEDRWNKPQKTKGHRGSHTMNGH"
CDS 6323..8821
/note="env-lor precursor polypeptide"
/codon_start=1
/translation="MLHICSAKEKLHVTVYYGVFWKEATTTLFCASDAKAYDTEVHN
VWATHACVPTDPNPQEUVLVNVTENFNMMWKNRDHEQMHEIDIISLWDQSLKPCVKLTPL
CVSLKCTDLKNDTNSSSGRM1NEFKGEIKNCFSNISTSTRGKVQKFYAFFYKI D1TP

IDNDTTSYTLTCNTS VITQACPKV SFEPIPIHYCAPAGFAILKCN NKTFNGTGPCTN
 VSTVQCTHGIRPVV STQLLLNGSLAEEEVIRSANFTD NAKTIIVQLNQSVEINCRP
 NNNTRKSIRIQRGP GRAFTIGKIGNMRQAHCNISRAKWNNTLKGIDSKLRE0FGNNK
 TIIFKQSSGGDPEIVTHSFNC GEF FYC CNSTQLFNSTWFS TKG SNNTEGSDTIT
 LPCRIKQIINH WQEVGKAMYAPPISGQIRC SNSNITC LLLTRDCGNSNN ESEIFRPGGG
 DMRDNWRSELYKYKVVKIEPLGVAPT KAKRRVVQREKRAVGIGALFLGFLGAAGSTMG
 AASMTLVQAR QLLSGIVQQQNNLLRAIEAQHLLQLTWVGIKQLGARILAVERYLKD
 QOLLGIWGCGSKLIC TTAVPHNASHSNKSLEQIWNNTM WMEWDREINNYTS LIHS LIE
 ESQNQQEKNEQELLEDK WASLWNWFN ITNW LWHYIKLFI MIVGGLVGLRIVFAVLSVV
 NRV RQGYSPLSFQTHLP IPRGPDRPEGIEEEGGERDRDRSIRLVNGSLALI WDDLRSL
 CLFSYHRLRD LLLIVTRIVELLGR RGWEALKYWWNLLQYW S QELKNSAVSLLNATAIA
 VAE GTDRVIEVVQGAYRAIRHIPR RIRQGLERILL"

CDS

6323..8821
 /note="envelope glycoprotein"
 /codon_start=1
 /translation="MLMICSATEKLWVTVYYGVPVWKEATTTFCASDAKAYDTEVHN
 VWATHACVPTDPNPQE VV LVNV T ENFN MWKNDM VEGM HEDI IISL WD QSL KPCV KLTPL
 CVSLKCTDLKNDTNTN SSSGRM IHEKGEIKNC SFNIST SIRG KVQKEYAFFYKLDIIP
 IDNDTTSYTLTCNTS VITQACPKV SFEPIPIHYCAPAGFAILKCN NKTFNGTGPCTN
 VSTVQCTHGIRPVV STQLLLNGSLAEEEVIRSANFTD NAKTIIVQLNQSVEINCRP
 NNNTRKSIRIQRGP GRAFTIGKIGNMRQAHCNISRAKWNNTLKGIDSKLRE0FGNNK
 TIIFKQSSGGDPEIVTHSFNC GEF FYC CNSTQLFNSTWFS TKG SNNTEGSDTIT
 LPCRIKQIINH WQEVGKAMYAPPISGQIRC SNSNITC LLLTRDCGNSNN ESEIFRPGGG
 DMRDNWRSELYKYKVVKIEPLGVAPT KAKRRVVQREKRAVGIGALFLGFLGAAGSTMG
 AASMTLVQAR QLLSGIVQQQNNLLRAIEAQHLLQLTWVGIKQLGARILAVERYLKD
 QOLLGIWGCGSKLIC TTAVPHNASHSNKSLEQIWNNTM WMEWDREINNYTS LIHS LIE
 ESQNQQEKNEQELLEDK WASLWNWFN ITNW LWHYIKLFI MIVGGLVGLRIVFAVLSVV
 NRV RQGYSPLSFQTHLP IPRGPDRPEGIEEEGGERDRDRSIRLVNGSLALI WDDLRSL
 CLFSYHRLRD LLLIVTRIVELLGR RGWEALKYWWNLLQYW S QELKNSAVSLLNATAIA
 VAE GTDRVIEVVQGAYRAIRHIPR RIRQGLERILL"

CDS

7787..8821
 /note="put. or transmembrane protein"
 /codon_start=1
 /translation="AVGIGALFLGFLGAAGSTMCAASMTLVQAR QLLSGIVQQQNNL
 LRAIEAQHLLQLTWVGIKQLGARILAVERYLKDQOLLGIWGCGSKLIC TTAVPHN
 ASWSNKSLEQIWNNTM WMEWDREINNYTS LIHS LIEESQNQQEKNEQELLEDK WASLWN
 WFNFN NWLWHYIKLFI MIVGGLVGLRIVFAVLSV VNRQGYSPLSFQTHLP IPRGPDR
 PEGIEEEGGERDRDRSIRLVNGSLALI WDDLRSLCLFSYHRLRD LLLIVTRIVELLGR
 RGWEALKYWWNLLQYW S QELKNSAVSLLNATAIAVAEGTDRVIEVVQGAYRAIRHIP
 RIRQGLERILL"

BASE COUNT 3431 a 1781 c 2368 g 2168 t
 ORIGIN

Initial Score = 664 Optimized Score = 671 Significance = 52.01
 Residue Identity = 97% Matches = 673 Mismatches = 13
 Gaps = 3 Conservative Substitutions = 0

10	20	30	40	50	60	70
GGGGGACTGGAAGGGCTAATTCACTCCAACGAAGACAAGATATCCTTGATCTGTGGATCTACCACACCAA						
X	10	20	30	40	50	60

TGGAAAGGGCTAATTCACTCCAACGAAGACAAGATATCCTTGATCTGTGGATCTACCACACCAA

80	90	100	110	120	130	140
GGCTACTTCCCTGATTGGCAGAACTACACACCAGGGCCAGGGTCAGATATCCACTGACCTTGGATGGTGC						
X	10	20	30	40	50	60

GGCTACTTCCCTGATTAGCAGAACTACACACCAGGGCCAGGGTCAGATATCCACTGACCTTGGATGGTGC

70	80	90	100	110	120	130
TACAAGCTAGTACCA GAGTTGAGCCAGATAAGGTAGAAGAGGCCAATAAGGAGAGAACACCA GCTTACAC						
X	10	20	30	40	50	60

TACAAGCTAGTACCA GAGTTGAGCCAGAGAAGTTAGAAGAAGCCAA CAAAGGAGAGAACACCA GCTTACAC

140	150	160	170	180	190	200
220	230	240	250	260	270	280

CCTGTGAGCCTGCATGGAATGGATGACCCCTGAGAGAGAACTGTTAGAGTGGAGGTTGACAGCCGCTAGCA
 |||||||
 CCTGTGAGCCTGCATGGAATGGATGACCCGGAGAGAGAACTGTTAGAGTGGAGGTTGACAGCCGCTAGCA
 210 220 230 240 250 260 270 280

 290 300 310 320 330 340 350 360
 TTTCATCACGTGGCCCGAGAGCTGCATCCGGAGTACTTCAGAACTGCTGACATCGAGCTTGCTACAAGGGA
 |||||||
 TTTCATCACATGGCCCGAGAGCTGCATCCGGAGTACTTCAGAACTGCTGACATCGAGCTTGCTACAAGGGA
 290 300 310 320 330 340 350

 370 380 390 400 410 420 430
 CTTTCCGCTGGGCACTTCCAGGGAGGCGTGGCTGGCGGAACTGGGACTGGCGAGCCCTCAGATGCTGC
 |||||||
 CTTTCCCTGGGACTTCCAGGGAGGCGTGGCTGGCGGAACTGGGACTGGCGAGCCCTCAGATCCTGC
 360 370 380 390 400 410 420

 440 450 460 470 480 490 500
 ATATAAGCAGCTGCTTTGCCTGTACTGGTCTCTGGTTAGACCAGATTGAGCCTGGAGCTCTCTGG
 |||||||
 ATATAAGCAGCTGCTTTGCCTGTACTGGTCTCTGGTTAGACCAGATGAGCCTGGGAGCTCTCTGG
 430 440 450 460 470 480 490

 510 520 530 540 550 560 570
 CTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCTTGAGTGCCTCAAGTAGTGTGCCCGTCT
 |||||||
 CTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCTTGAGTGCCTCAAGTAGTGTGCCCGTCT
 500 510 520 530 540 550 560

 580 590 600 610 620 630 640
 GTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGC
 |||||||
 GTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGC
 570 580 590 600 610 620 630 640

 650 660 670 680 690 X
 CGAACAGGGACTTGAAAGCGAAAGGGAAACCAGAGGAGCTCTCGA
 |||||||
 CGAACAGGGACCTGAAAGCGAAAGGGAAACCA---GAGCTCTCGACGCCAGGACTCGGCTTGCTGAACCG
 650 660 670 680 X 690 700 710

 CGCACGGCAAGAGGCGAGGGCGGGCG
 720 730

4. RAILEY-000-716.SEQ (1-696)

HIVH3CG Human T-cell lymphotropic virus type III, complete

ID HIVH3CG standard; RNA; VRL; 9749 BP.
 XX
 AC K02010; K02008; K02009;
 XX
 DT 18-NOV-1986 (Rel. 10, Created)
 DT 23-OCT-1992 (Rel. 33, Last updated, Version 4)
 XX
 DE Human T-cell lymphotropic virus type III, complete reference genome
 DE (isolates HXB2, HXB3, BH10, BH5 and BH8 of HTLV-III DNA).
 XX
 KW acquired immune deficiency syndrome; complete genome; env gene;
 KW gag gene; long terminal repeat; pol gene; polyprotein; provirus;
 KW reverse transcriptase; tar protein; trans-activator.
 XX
 DS Human immunodeficiency virus type 1
 DC Viridae; ss-RNA enveloped viruses; Positive strand RNA viruses;
 DC Retroviridae; Lentivirinae.
 XX

RN [1]
RP 1-653, 9116-9749
RA Starcich B., Ratner L., Josephs S.F., Okamoto T., Gallo R.C.,
RA Wong-staal F.;
RT "Characterization of long terminal repeat sequences of HTLV-III";
RL Science 227:538-540(1985).
XX
RN [2]
RP 1-9749
RA Wong-staal F., Gallo R.C., Chang N.T., Ghrayeb J., Papas T.S.,
RA Lautenberger J.A., Pearson M.L., Petteway S.R.Jr., Ivanoff L.,
RA Baumeister K., Whitehorn E.A., Rafalski J.A., Doran E.R.,
RA Josephs S.J., Starcich B., Livak K.J., Patarca R., Haseltine W.,
RA Ratner L.;
RT "Complete nucleotide sequence of the AIDS virus, HTLV-III";
RL Nature 313:277-284(1985).
XX
RN [3]
RC exons only, tat mrna
RP 508-9666
RA Arya S.K., Guo C., Josephs S.F., Wong-staal F.;
RT "Trans-activator gene of human T-lymphotropic virus type III
(HTLV-III)";
RL Science 229:69-73(1985).
XX
RN [4]
RP 5775-6082, 8397-8499
RA Sodroski J.G., Patarca R., Rosen C.A., Wong-staal F., Haseltine W.;
RT "Location of the trans-activating region on the genome of human
T-cell lymphotropic virus type III";
RL Science 229:74-77(1985).
XX
RN [5]
RC mrna splice sites
RA Rabson A.B., Daugherty D.F., Venkatesan S., Boulukos K.e.,
RA Benn S.I., Folks T.M., Feorino P., Martin M.;
RT "Transcription of novel open reading frames of AIDS retrovirus
during infection of lymphocytes";
RL Science 229:1388-1390(1985).
XX
RN [6]
RC 27k antigen cds
RA Allan J.S., Coligan J.E., Lee T.H., McLane M.F., Kanki P.J.,
RA Groopman J.E., Essex M.;
RT "A new HTLV-III/LAV encoded antigen detected by antibodies from
AIDS patients";
RL Science 230:810-813(1985).
XX
RN [7]
RC in hxb-3
RP 5778-8933
RA Croul R., Ganguly K., Gordon M., Conroy R., Schaber M., Kramer R.,
RA Shaw G., Wong-staal F., Reddy E.P.;
RT "HTLV-III env gene products synthesized in E. coli are recognized
by antibodies present in the sera of AIDS patients";
RL Cell 41:979-986(1985).
XX
RN [8]
RC gp160 and gp120 coding sequences
RA Allan J.S., Coligan J.E., Barin F., McLane M.F., Sodroski J.G.,
RA Rosen C.A., Haseltine W.A., Lee T.H., Essex M.;
RT "Major glycoprotein antigens that induce antibodies in AIDS
patients are encoded by HTLV-III";
RL Science 228:1091-1094(1985).
XX
RN [9]

RC regulatory sequences in the ltr
RA Rosen C.A., Sodroski J.G., Haseltine W.A.;
RT "The location of cis-acting regulatory sequences in the human T
RT cell lymphotropic virus type III (HTLV-III/LAV) long terminal
RT repeat";
RL Cell 41:813-823(1985).
XX
RN [10]
RP 1-9749
RA Van Beveren C., Coffin J.M., Hughes S.;
RT "Appendix B: HTLV-3/LAV genome";
RL (in) Weiss R., Teich N., Varmus and Coffin J.M. (eds.);
RL RNA TUMOR VIRUSES SECOND EDITION:1102-1148;
RL Cold Spring Harbor Laboratory, New York (1985)
XX
RN [11]
RC trans-activator function and tar sequence
RA Rosen C.A., Sodroski J.G., Goh W.C., Dayton A.I., Lippke J.,
RA Haseltine W.A.;
RT "Post-transcriptional regulation accounts for the trans-activation
RT of the human T-lymphotropic virus type III";
RL Nature 319:555-559(1986).
XX
RN [12]
RC pol coding sequence
RA Marzo Veronese F., Copeland T.D., DeVico A.L., Rahman R.,
RA Oroszlan S., Gallo R.C., Sarngadharan M.G.;
RT "Characterization of highly immunogenic p66/p51 as the reverse
RT transcriptase of HTLV-III/LAV";
RL Science 231:1289-1291(1986).
XX
RN [13]
RC the 23k sor gene product
RA Kan N.C., Franchini G., Wong-staal F., DuBois G.C., Robey W.G.,
RA Lautenberger J.A., Papas T.S.;
RT "Identification of HTLV-III/LAV sor gene product and detection of
RT antibodies in human sera";
RL Science 231:1553-1555(1986).
XX
RN [14]
RC pol nh₂-terminal region
RA Kramer R.A., Schaberg M.D., Skalka A.M., Ganguly K., Wong-staal F.,
RA Reddy E.P.;
RT "HTLV-III gag protein is processed in yeast cells by the virus
RT pol-protease";
RL Science 231:1580-1584(1986).
XX
RN [15]
RC sor 23k protein
RA Lee T.H., Coligan J.E., Allan J.S., McLane M.F., Groopman J.E.,
RA Essex M.;
RT "A new HTLV-III/LAV protein encoded by a gene found in cytopathic
RT retroviruses";
RL Science 231:1546-1549(1986).
XX
RN [16]
RC sor 23k protein
RA Sodroski J.G., Goh W.C., Rosen C.A., Tartar A., Portetelle D.,
RA Burny A., Haseltine W.;
RT "Replicative and cytopathic potential of HTLV-III/LAV with sor
RT gene deletions";
RL Science 231:1549-1553(1986).
XX
RN [17]
RC sp1 binding sites in the promoter region
RA Jones K.A., Kadonaga J.T., Luciw P.A., Tian R.;

RT "Activation of the AIDS retrovirus promoter by the cellular
RT transcription factor, Spi";
RL Science 232:755-759(1986).
XX
RN [18]
RC acceptor and donor splice sites for tat and 27k
RA Arya S.K., Gallo R.C.;
RT "Three novel genes of human T-lymphotropic virus type III: Immune
RT reactivity of their products with sera from acquired immune
RT deficiency syndrome patients";
RL Proc. Natl. Acad. Sci. U.S.A. 83:2209-2213(1986).
XX
RN [19]
RC deletion mutants in the tat gene
RA Dayton A.I., Sodroski J.G., Rosen C.A., Goh W.C., Haseltine W.A.;
RT "The trans-activator gene of the human T cell lymphotropic virus
RT type III is required for replication";
RL Cell 44:941-947(1986).
XX
RN [20]
RC hypervariable and conserved regions in the env gene
RA Willey R.W., Ruthledge R.A., Dias S., Folks T., Theodore T.S.,
RA Buckler C.E., Martin M.A.;
RT "Identification of conserved and divergent domains within the
RT envelope gene of the acquired immunodeficiency syndrome
RT retrovirus";
RL Proc. Natl. Acad. Sci. U.S.A. 83:5038-5042(1986).
XX
RN [21]
RC art cds boundaries
RA Sodroski J.G., Goh W.C., Rosen C.A., Dayton A., Terwilliger E.,
RA Haseltine W.;
RT "A second post-transcriptional trans-activator gene required for
RT HTLV-III replication";
RL Nature 321:412-417(1986).
XX
DR EPD; 14085; HIV-1(HTLV-III) LTR.
DR SWISS-PROT; P03347; GAG_HIV10.
DR SWISS-PROT; P03366; POL_HIV10.
DR SWISS-PROT; P03375; ENV_HIV10.
DR SWISS-PROT; P03401; VIF_HIV10.
DR SWISS-PROT; P03404; NEF_HIV10.
DR SWISS-PROT; P04606; TAT_HIV10.
DR SWISS-PROT; P04616; REV_HIV10.
DR SWISS-PROT; P04617; REV_HIV1P.
DR SWISS-PROT; P04624; ENV_HIV1Y.
DR SWISS-PROT; P05854; NEF_HIV1Y.
DR SWISS-PROT; P05920; VPU_HIV10.
DR SWISS-PROT; P05926; VPR_HIV10.
XX
CC Sequence for [7] was kindly supplied in computer readable form by
CC R. Crowl, 09/17/85. R. Patarca provided sites information and a
CC clean copy for [4], 09/16/85. Acquired immune deficiency syndrome
CC (AIDS) is caused by a retrovirus known by several names, perhaps
CC representing two separate strains: human T-cell lymphotropic
CC virus-III (HTLV-III), whose sequence is given below, and
CC lymphadenopathy-associated virus (LAV) are thought to be one strain
CC differing from AIDS-associated retrovirus type 2 (ARV-2) when
CC overall homology is the criterion. Some reading frame similarities
CC suggest that ARV-2 and LAV are more closely related. All three
CC viruses, whose sequences do not differ by more than 6%, are
CC believed to belong to the C type subfamily Lentiviridae, the "slow"
CC retroviruses. The BH10 sequence differs from BH8 and BH5 by 0.9% in
CC the coding regions and 1.8% in the noncoding regions, and the
CC authors of [2] believe that these are stable variants. The 5' and
CC 3' LTRs of BH10 and BH8 were not fully sequenced; the missing bases

CC (493-675 and 9608-9749) were filled in by [2] from the proviral
CC clone HXB2 [1]. The sequence below is that of BH10 with exception
CC of the variation at position 9197 which allows annotation of the
CC 27K coding sequence. The BH8 sequence spans bases 6033 to 9607, the
CC BH5 sequence spans bases 675 to 6038, and the HXB3 sequence [7]
CC spans bases 5778 to 8933. While this entry is offered as the
CC reference locus for the AIDS retroviral sequence loci, no claim is
CC being made that this sequence is more prevalent or typical than
CC others, all of which have been entered in this library with
CC annotation. The HTLV-III genome encodes at least six proteins or
CC polyproteins: gag, pol, env, TAT, 27K antigen and the sor 23K
CC product. The 3' ORF (positions 8797-9447) is truncated in BH10
CC (stop codon at positions 9196-9198), but reads through in BH8 and
CC other sequences to yield what is now called the 27K antigen. The
CC sequence below is from BH10 with exception of the variation at
CC position 9197 which allows annotation of the 27K coding sequence.
CC Additionally there are four short open reading frames, bases
CC 1248-1406, 4442-4642, 5592-5828 and 6095-6340, which are conserved
CC to a large degree. A seventh gene has been proposed based upon a
CC combination of mutational and regulatory evidence: called "ART" (CC
for anti-repression transactivator), its product appears to act
CC post-transcriptionally to relieve negative repression of gag and
CC env production [21]. The exon assignments for ART are putative, but
CC if they are corroborated, the ART protein would be 116 amino acids
CC in length. The mechanism for pol gene translation has not been
CC elucidated: a gag-pol fusion protein is possible; splicing or
CC frameshift have not been ruled out. The viral protease would be
CC determined by the region in question. Approximately two-thirds of
CC the variant sites in the gag and pol genes are "silent mutations",
CC while over half of those in the env gene are not. Reference [20]
CC defines divergent and conserved regions for the env gene. Because
CC of the excessive variability of the env gene, differences between
CC the sequences summarized herein and other env gene entries have not
CC been annotated; only HTLV-III sequence variations have been
CC included in the sites of this entry. Other entries will include
CC information for alignment with this entry, including the Zaire and
CC New York isolate sequences reported by [20]. The TAT protein
CC (trans-activator protein, approximately 14 kd) is an effector of an
CC autostimulatory pathway through interaction with a positive control
CC element, the trans-activating responsive sequence, TAR. TAT seems
CC to be a transcriptional control molecule in HTLV-I, but [11]
CC demonstrates that it is a post-transcriptional regulatory molecule
CC in HTLV-III. Deletion mutants in the TAT gene are incapable of
CC prolific replication and exhibit no cytopathic effects in T4+ cell
CC lines [19]. The TAR sequence(s) are found to be between -17 and +80
CC relative to the cap site +1 (base 455) and is highly conserved.
CC Enhancer sequences which need not be viral-specific are found
CC upstream from TAR [9],[11]. Three tandem decanucleotide SpI binding
CC sites are located between bases 377 and 409, of which site III
CC shows the strongest affinity for the cellular factor; intact, the
CC three sites cause up to a tenfold effect on transcriptional
CC efficiency in vitro ([17] (The authors demonstrate the existence of
CC SpI in a human T-cell line). In addition to the ~9.4 kb genomic
CC mRNA, subgenomic mRNAs of 7.4, 5.5, 5.0, 4.3, 2.0 and 1.8 have been
CC detected. All are probably polyadenylated at the same site,
CC position 9666 below, with a potential polyadenylation signal at
CC 9642-9648, and capped at the same site, position 455, with a
CC potential TATA box at 427-431. The doubly-spliced transcript of
CC about 2.0 kb is responsible for the TAT message at least, and
CC depending upon the acceptor site, also for the sor and 27K
CC messages, given that a single, albeit partial, mRNA exists for all
CC three [18]. The acceptor splice for TAT is at position 5811 and the
CC putative acceptor splice for 27K is at position 6010; the donor
CC splice site in all three cases would be at position 6079 [18]. The
CC doubly spliced message would also encode the newly proposed ART
CC protein.

XX
FH Key Location/Qualifiers
FH
FT repeat_region 1..634
FT /note="5' LTR"
FT repeat_region 1..634
FT /note="5' LTR"
FT variation 82..82
FT /note="a in BH10; g in H9"
FT variation 101..101
FT /note="g in BH10; a in H9"
FT variation 108..108
FT /note="a in [2], H9; g in HXB2 [1]"
FT variation 164..164
FT /note="g in [2]; t in HXB2 [1], H9"
FT variation 168..168
FT /note="t in [2]; g in HXB2 [1], H9"
FT variation 176..176
FT /note="a in [2]; g in HXB2 [1], H9"
FT variation 183..183
FT /note="c in [2], H9; t in HXB2 [1]"
FT variation 227..227
FT /note="a in [2], H9; g in HXB2 [1]"
FT variation 291..291
FT /note="a in [2]; g in HXB2 [1], H9"
FT variation 333..333
FT /note="c in [2]; t in HXB2 [1], H9"
FT misc_feature 377..386
FT /note="Sp1 binding site III [17]"
FT misc_feature 388..397
FT /note="Sp1 binding site II [17]"
FT misc_feature 399..408
FT /note="Sp1 binding site I [17]"
FT variation 421..421
FT /note="c in BH10, BH5; t in H9"
FT repeat_region 454..551
FT /note="R repeat 5' copy"
FT repeat_region 454..551
FT /note="R repeat 5' copy"
FT misc_RNA 455..455
FT /note="genomic mRNA start (cap site) [10]"
FT misc_RNA 455..455
FT /note="TAT,ART mRNA exon 1 start (cap site) [10], [18],[21]"
FT variation 501..501
FT /note="a in BH10, BH5, H9; g in HXB2 [1]"
FT misc_feature 636..653
FT /note="primer (Lys-tRNA) binding site"
FT variation 654..654
FT /note="c in BH10, BH5; t in H9"
FT variation 677..677
FT /note="g in BH10, BH5; ggag in H9"
FT variation 704..704
FT /note="tga in BH10, H9; g in BH5 [2]"
FT CDS 787..2325
FT /note="gag polyprotein precursor"
FT variation 1290..1290
FT /note="a in BH10; g in BH5 [2], H9"
FT variation 1431..1431
FT /note="a in BH10; g in BH5 [2], H9"
FT variation 1455..1455
FT /note="t in BH10, H9; c in BH5 [2]"
FT variation 1611..1611
FT /note="a in BH10, H9; g in BH5 [2]"
FT variation 1620..1620
FT /note="c in BH10, H9; t in BH5 [2]"

FT variation 1656..1656
FT variation /note="a in BH10, H9; g in BH5 [2]"
FT variation 1662..1662
FT variation /note="t in BH10; c in BH5 [2], H9"
FT variation 1675..1675
FT variation /note="g in BH10, BH5; c in H9"
FT variation 1722..1722
FT variation /note="g in BH10, H9; a in BH5 [2]"
FT variation 1806..1806
FT variation /note="g in BH10, BH5; a in H9"
FT variation 1845..1845
FT variation /note="a in BH10, BH5; g in H9"
FT variation 1903..1903
FT variation /note="a in BH10, H9; t in BH5 [2]"
FT variation 1906..1906
FT variation /note="g in BH10, H9; a in BH5 [2]"
FT variation 1923..1923
FT variation /note="g in BH10, H9; a in BH5 [2]"
FT variation 1950..1950
FT variation /note="g in BH10, H9; a in BH5 [2]"
FT variation 1953..1953
FT variation /note="g in BH10, H9; t in BH5 [2]"
FT variation 1988..1988
FT variation /note="c in BH10, H9; t in BH5 [2]"
FT variation 1992..1992
FT variation /note="c in BH10, H9; a in BH5 [2]"
FT variation 2003..2003
FT variation /note="g in BH10, H9; a in BH5 [2]"
FT variation 2013..2013
FT variation /note="g in BH10, H9; a in BH5 [2]"
FT CDS 2391..5129
FT variation /note="pol polyprotein (NH2-terminus uncertain; AA at 2391)"
FT variation 2468..2468
FT variation /note="g in BH10, BH5; a in H9"
FT variation 2591..2591
FT variation /note="c in BH10, H9; t in BH5 [2]"
FT variation 2600..2600
FT variation /note="g in BH10, H9; a in BH5 [2]"
FT variation 2741..2741
FT variation /note="g in BH10; a in BH5 [2], H9"
FT variation 2827..2827
FT variation /note="a in BH10, H9; g in BH5 [2]"
FT variation 2858..2858
FT variation /note="a in BH10, H9; g in BH5 [2]"
FT variation 2990..2990
FT variation /note="c in BH10, H9; t in BH5 [2]"
FT variation 3007..3007
FT variation /note="tta in BH10, H9; gtg in BH5 [2]"
FT variation 3097..3097
FT variation /note="a in BH10; g in BH5 [2], H9"
FT variation 3122..3122
FT variation /note="c in BH10, H9; t in BH5 [2]"
FT variation 3222..3222
FT variation /note="c in BH10, H9; t in BH5 [2]"
FT variation 3302..3302
FT variation /note="ag in BH10, H9; ga in BH5 [2]"
FT variation 3368..3368
FT variation /note="g in BH10, H9; a in BH5 [2]"
FT variation 3389..3389
FT variation /note="g in BH10, BH5; a in H9"
FT variation 3395..3395
FT variation /note="c in BH10, H9; t in BH5 [2]"
FT variation 3755..3755
FT variation /note="a in BH10, BH5; g in H9"
FT variation 3767..3767

FT /note="g in BH10, H9; a in BH5 [2]"
FT variation 3833..3833
FT /note="t in BH10, BH5; c in H9"
FT variation 3855..3855
FT /note="t in BH10, BH5; c in H9"
FT variation 3899..3899
FT /note="c in BH10, BH5; t in H9"
FT variation 3922..3922
FT /note="a in BH10, H9; g in BH5 [2]"
FT variation 3934..3934
FT /note="a in BH10, BH5; g in H9"
FT variation 3954..3954
FT /note="g in BH10, BH5; c in H"
FT variation 3962..3962
FT /note="caa in BH10, H9; tag in BH5 [2]"
FT variation 3977..3977
FT /note="g in BH10, H9; a in BH5 [2]"
FT variation 3984..3984
FT /note="c in BH10, H9; a in BH5 [2]"
FT variation 3993..3993
FT /note="a in BH10, H9; c in BH5 [2]"
FT variation 4010..4010
FT /note="a in BH10; g in BH5 [2], H9"
FT variation 4016..4016
FT /note="g in BH10, H9; a in BH5 [2]"
FT variation 4029..4029
FT /note="t in BH10, H9; c in BH5 [2]"
FT variation 4049..4049
FT /note="a in BH10; g in BH5 [2], H9"
FT variation 4064..4064
FT /note="c in BH10, H9; t in BH5 [2]"
FT variation 4116..4116
FT /note="a in BH10, BH5; c in H9"
FT variation 4167..4167
FT /note="g in BH10, BH5; c in H9"
FT variation 4292..4292
FT /note="t in BH10, H9; a in BH5 [2]"
FT CDS 5074..5652
FT /note="sor 23K protein"
FT variation 5156..5156
FT /note="a in BH10, H9; g in BH5 [2]"
FT variation 5314..5314
FT /note="t in BH10, BH5; c in H9"
FT variation 5348..5348
FT /note="a in BH10, H9; g in BH5 [2]"
FT variation 5401..5401
FT /note="t in BH10, H9; c in BH5 [2]"
FT variation 5412..5412
FT /note="c in BH10, H9; t in BH5 [2]"
FT variation 5548..5548
FT /note="a in BH10, H9; g in BH5 [2]"
FT variation 5628..5628
FT /note="g in BH10, H9; a in BH5 [2]"
FT variation 5846..5846
FT /note="g in BH10, H9, HXB3; a in BH5 [2]"
FT CDS 5864..6078
FT /note="TAT protein,exon 2 (first expressed exon)"
FT variation 5934..5934
FT /note="a in BH10, H9, HXB3; c in BH5 [2]"
FT CDS 6003..6078
FT /note="ART protein,exon 2 (first expressed exon;
FT putative)"
FT variation 6035..6045
FT /note="ccctctcaagg in BH10,HXB3 [7]; gtcatcgaaag
FT in BH8 [2]; g in BH5 [2],clone 12 cDNA [21]"
FT variation 6086..6086

FT variation /note="g in BH10, BH8, H9; a in HXB3 [7]"
FT variation 6096..6096
FT variation /note="t in BH10, HXB3 [7], H9; c in BH8 [2]"
FT variation 6108..6108
FT variation /note="a in BH10, HXB3 [7], H9; c in BH8 [2]"
FT variation 6113..6114
FT variation /note="gc in BH10,HXB3 [7],H9; gtaac in BH8 [2]"
FT variation 6124..6124
FT variation /note="a in BH10, HXB3 [7], H9; c in BH8 [2]"
FT variation 6152..6152
FT variation /note="g in BH10, HXB3 [7], BH8; c in H9"
FT CDS 6255..8825
FT variation /note="envelope protein precursor (env)"
FT variation 6373..6373
FT variation /note="a in BH10, HXB3 [7], H9; t in BH8 [2]"
FT variation 6474..6474
FT variation /note="t in BH10, BH8 [2], H9; g in HXB3 [7]"
FT variation 6748..6748
FT variation /note="t in BH10, HXB3 [7], H9; a in BH8 [2]"
FT variation 6929..6929
FT variation /note="t in BH10, HXB3 [7], H9; c in BH8 [2]"
FT variation 7088..7088
FT variation /note="a in BH10, H9; g in BH8 [2], HXB3 [7]"
FT variation 7119..7119
FT variation /note="a in BH10; HXB3 [7], H9; g in BH8 [2]"
FT variation 7121..7123
FT variation /note="cca in BH10,H9; cac in BH8 [2],HXB3 [7]"
FT variation 7171..7172
FT variation /note="gt in BH10, H9; aa in BH8 [2], HXB3[7]"
FT variation 7187..7187
FT variation /note="a in BH10, H9; g in BH8 [2], HXB3 [7]"
FT variation 7272..7273
FT variation /note="aa in BH10, H9; gc in BH8[2], HXB3 [7]"
FT variation 7291..7291
FT variation /note="a in BH10, BH8 [2], H9; c in HXB3 [7]"
FT variation 7343..7343
FT variation /note="g in BH10, BH8 [2]; a in HXB3 [7], H9"
FT variation 7439..7454
FT variation /note="gtttaatagtacttgg in BH10,HXB3 [7],and H9"
FT variation 7461..7461
FT variation /note="a in BH10, BH8 [2]; g in HXB3 [7], H9"
FT variation 7499..7499
FT variation /note="c in BH10, BH8 [2]; a in HXB3 [7], H9"
FT variation 7521..7521
FT variation /note="a in BH10, BH8 [2]; t in HXB3 [7], H9"
FT variation 7574..7574
FT variation /note="t in BH10, CH8 [2]; c in HXB3 [7], H9"
FT variation 7636..7637
FT variation /note="cg in BH10, HXB3 [7], H9; gc in BH8[2]"
FT variation 7636..7636
FT variation /note="g in BH10, BH8 [2]; a in HXB3 [7], H9"
FT variation 7645..7645
FT variation /note="a in BH10, BH8 [2], H9; g in HXB3 [7]"
FT variation 8060..8061
FT variation /note="ca in BH10, BH8 [2], H9; ac in H"
FT variation 8127..8127
FT variation /note="a in BH10, BH8 [2], H9; c in HXB[7]"
FT variation 8131..8131
FT variation /note="t in BH10, BH8 [2], H9; c in HXB3 [7]"
FT variation 8135..8135
FT variation /note="c in BH10, BH8 [2], H9; g in HXB3 [7]"
FT variation 8257..8257
FT variation /note="g in BH10, BH8, HXB3; a in H9"
FT variation 8273..8273
FT variation /note="t in BH10, BH8, HXB3; g in H9"
FT variation 8364..8364

FT CDS /note="g in BH10, HXB3 [7]; a in BH8 [2], H9"
FT CDS 8409..8683
FT CDS /note="ART protein,exon 3 (putative; AA at 8411)"
FT variation 8409..8454
FT variation /note="TAT protein, exon 3 (AA at 8410)"
FT variation 8422..8422
FT variation /note="t in BH10,HXB3 [7],clone 12 cDNA [21]; a in BH8 [2]; c in H9"
FT variation 8464..8464
FT variation /note="g in BH10,BH8,HXB3,clone 12 cDNA [21]; a in H9"
FT variation 8657..8657
FT variation /note="g in BH10,BH8 [2]; a in HXB3 [7],H9,clone 12 cDNA [21]"
FT variation 8672..8672
FT variation /note="g in BH10,HXB3 [7],clone 12 cDNA [21],H9; a in BH8 [2]"
FT variation 8692..8692
FT variation /note="g in BH10,HXB3 [7],clone 12 cDNA [21],H9; a in BH8 [2]"
FT variation 8748..8748
FT variation /note="g in BH10,HXB3 [7],clone 12 cDNA [21],H9; t in BH8 [2]"
FT variation 8758..8758
FT variation /note="g in BH10,H9; c in BH8 [2]; a in HXB3 [7], clone 12 cDNA [21]"
FT variation 8771..8771
FT variation /note="t in BH10,HXB3 [7],clone 12 cDNA [21],H9; c in BH8 [2]"
FT CDS 8827..9447
FT variation /note="27K protein,exon 3 (first expressed exon)"
FT variation 8857..8857
FT variation /note="g in BH10,BH8,HXB3,clone 12 cDNA [21]; a in H9"
FT variation 8924..8924
FT variation /note="c in BH10,HXB3 [7],clone 12 cDNA [21],H9; t in BH8 [2]"
FT variation 8967..8967
FT variation /note="c in BH10,clone 12 cDNA [21],H9; t in BH8 [2]"
FT variation 8978..8978
FT variation /note="a in BH10,clone 12 cDNA [21],H9; c in BH8 [2]"
FT variation 8985..8985
FT variation /note="t in BH10,clone 12 cDNA [21],H9; c in BH8 [2]"
FT variation 8987..8987
FT variation /note="a in BH10,BH8; c in H9,clone 12 cDNA [21]"
FT variation 8994..8994
FT variation /note="c in BH10,clone 12 cDNA [21],H9; t in BH8 [2]"
FT variation 9019..9019
FT variation /note="g in BH10,BH8; a in H9,clone 12 cDNA [21]"
FT repeat_region 9116..9749
FT variation /note="3' LTR"
FT variation 9169..9196
FT variation /note="t in BH10,clone 12 cDNA [21]; c in BH8 [2]"
FT variation 9197..9197
FT variation /note="g in BH8 [2],H9,clone 12 cDNA [21]; a in BH10 [2]"
FT variation 9216..9216
FT variation /note="g in BH10,BH8; a in H9,clone 12 cDNA [21]"
FT variation 9222..9223
FT variation /note="ga in BH10,clone 12 cDNA [21],H9; ag in BH8[2]"
FT variation 9279..9279

FT variation /note="g in BH10,BH8,clone 12 cDNA [21]; t in H9"
 FT variation 9283..9283
 FT variation /note="t in BH10,BH8,clone 12 cDNA [21]; g in H9"
 FT variation 9284..9284
 FT variation /note="t in BH10,H9,clone 12 cDNA [21]; a in BH8 [2]"
 FT variation 9291..9291
 FT variation /note="a in BH10,BH8,clone 12 cDNA [21]; g in H9"
 FT variation 9297..9297
 FT variation /note="c in BH10,clone 12 cDNA [21],H9; t in BH8 [2]"
 FT variation 9354..9354
 FT variation /note="g in BH10, HIVDSM>, H9; t in BH8 [2]"
 FT variation 9406..9406
 FT variation /note="a in BH10,BH8; g in H9,clone 12 cDNA [21]"
 FT variation 9448..9448
 FT variation /note="c in BH10; t in BH8 [2],H9,clone 12 cDNA"
 FT variation 9536..9563
 FT variation /note="c in BH10,BH8,clone 12 cDNA [21]; g in H9"
 FT repeat_region 9570..9666
 FT variation /note="R repeat 3' copy"
 FT variation 9616..9616
 FT variation /note="g in HXB2; a in H9, clone 12 cDNA [21]"
 FT variation 9621..9621
 FT variation /note="g in HXB2; a in H9, clone 12 cDNA [21]"
 FT variation 9663..9663
 FT variation /note="t in BH10,H9; tg in clone 12 cDNA [21]"
 FT polyA_site 9666..9666
 FT polyA_site /note="TAT,ART,27K mRNA exon 3 end (poly-A site)
[10],[18],[21]"
 FT polyA_site 9666..9666
 FT /note="genomic mRNA end (poly-A site) [10]"
 XX
 S0 Sequence 9749 BP; 3431 A; 1781 C; 2369 G; 2168 T; 0 other;

Initial Score = 664 Optimized Score = 671 Significance = 52.01
 Residue Identity = 97% Matches = 673 Mismatches = 13
 Gaps = 3 Conservative Substitutions = 0

10	20	30	40	50	60	70
GGGGGACTGGAAGGGCTAATTCACTCCAACGAAAGACAAGATATCCTGATCTGTGGATCTACCACACACAA						
TCCAAGGGCTAATTCACTCCAACGAAAGACAAGATATCCTGATCTGTGGATCTACCACACACAA						
X	10	20	30	40	50	60
80	90	100	110	120	130	140
GGCTACTTCCCTGATTGGCAGAACTACACACCAGGGCCAGGGTCAGATATCCACTGACCTTGATGGTGC						
GGCTACTTCCCTGATTAGCAGAACTACACACCAGGGCCAGGGATCAGATATCCACTGACCTTGATGGTGC						
70	80	90	100	110	120	130
150	160	170	180	190	200	210
TACAAGCTAGTACCAAGTTGAGCCAGATAAGGTAGAAGAGGCCAATAAAGGAGAGAACACCCAGCTTGTACAC						
TACAAGCTAGTACCAAGTTGAGCCAGAGAAAGTTAGAAGAAGCCAACAAAGGAGAGAACACCCAGCTTGTACAC						
140	150	160	170	180	190	200
220	230	240	250	260	270	280
CCTGTGAGCCTGCATGGAATGGATGACCCCTGAGAGAGAACTGTTAGACTGGAGGTTGACAGCCGCCTAGCA						
CCTGTGAGCCTGCATGGAATGGATGACCCGGAGAGAGAACTGTTAGACTGGAGGTTGACAGCCGCCTAGCA						
210	220	230	240	250	260	270
290	300	310	320	330	340	350
TTTCATCACGTGGCCCCAGAGCTGCATCCGGAGTACTTCAGAACTGCTGACATCGAGCTTGCTACAAGGGA						
TTTCATCACGTGGCCCCAGAGCTGCATCCGGAGTACTTCAGAACTGCTGACATCGAGCTTGCTACAAGGGA						

TTTCATCACATGGCCCGAGAGCTGCATCCGGAGTACTTCAGAACTGCTGACATCGAGCTTGCTACAAGGGA
 290 300 310 320 330 340 350
 370 380 390 400 410 420 430
 CTTTCCGGTGGGCACTTCCAGGGAGGGTGGCCTGGCGGAACGGGGACTGGGAGTGGCGAGCCCTCAGATGCTGC
 ||||||| ||||||| ||||||| ||||||| ||||||| ||||||| |||||
 CTTTCCGGTGGGACTTCCAGGGAGGGTGGCCTGGCGGGACTGGGAGTGGCGAGCCCTCAGATCCTGC
 360 370 380 390 400 410 420
 440 450 460 470 480 490 500
 ATATAAGCAGCTGCTTTGCCTGTACTGGTCTCTGGTTAGACCAGATTGAGCCTGGGAGCTCTCTGG
 ||||||| ||||||| ||||||| ||||||| ||||||| ||||||| |||||
 ATATAAGCAGCTGCTTTGCCTGTACTGGTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGG
 430 440 450 460 470 480 490
 510 520 530 540 550 560 570
 CTAACATAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCCTGAGTGCCTCAAGTAGTGTGTGCCGTCT
 ||||||| ||||||| ||||||| ||||||| ||||||| ||||||| |||||
 CTAACATAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCCTGAGTGCCTCAAGTAGTGTGTGCCGTCT
 500 510 520 530 540 550 560
 580 590 600 610 620 630 640
 GTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTAGTCAGTGTGAAAATCTCTAGCAGTGGCGC
 ||||||| ||||||| ||||||| ||||||| ||||||| ||||||| |||||
 GTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTAGTCAGTGTGAAAATCTCTAGCAGTGGCGC
 570 580 590 600 610 620 630 640
 650 660 670 680 690 X
 CCGAACAGGGACTTGAAGCGAAAGGGAAACCAGAGGAGCTCTCGA
 ||||||| ||||||| ||||||| |||||||
 CCGAACAGGGACCTGAAGCGAAAGGGAAACCA--GAGCTCTCGACGCAGGACTCGGCTTGCTGAAGCG
 650 660 670 680 X 690 700 710
 CGCACGGCAAGAGGGCGAGGGCGGGCG
 720 730

5. RAILEY-000-716.SEQ (1-696)

HIVJRCSF Human immunodeficiency virus type 1, isolate JRCSF

LOCUS HIVJRCSF 9540 bp ss-RNA VRL 28-SEP-1992
DEFINITION Human immunodeficiency virus type 1, isolate JRCSF; complete genome.
ACCESSION M38429
KEYWORDS long terminal repeat (LTR).
SOURCE HIV-1 proviral DNA from extracellular virus taken from cerebral spinal fluid (1986). Infectious clone.
ORGANISM Human immunodeficiency virus type 1
 Viridae; ss-RNA enveloped viruses; Positive strand RNA virus;
 Retroviridae; Lentivirinae.
REFERENCE 1 (bases 1 to 9540)
AUTHORS Koyanagi,S. and Chen,I.S.
JOURNAL Unpublished (1988) UCLA School of Medicine, Los Angeles.
STANDARD full automatic
COMMENT Kindly provided in computer-readable form by Irvin Chen, UCLA School of Medicine, Los Angeles. JRCSF and JRFL (see <HIVJRFL> were isolated from cerebral spinal fluid and brain tissue of the patient JR, who died with Kaposi's sarcoma and severe AIDS encephalopathy (Science 236, 819-822, 1987). Both clones are infectious, but JRFL productively infects macrophages while JRCSF does not. (Peripheral blood was not available from the patient). The JRCSF and JRFL env nucleotide sequences differ by at least 3%; further characterization of them is forthcoming (Peng,S. et al., Nature 1990, in press). Both manifest insertions in nef previously reported for HIVBRVA.
FEATURES Location/Qualifiers

LTR 1..635
/partial
protein_bind 378..387
/bound_moiety="Sp1"
protein_bind 389..398
/bound_moiety="Sp1"
protein_bind 400..409
/bound_moiety="Sp1"
exon 5842..6056
/number=2
/gene="tat"
exon 5981..6056
/number=2
/gene="rev"
exon 8366..8456
/number=3
/gene="tat"
exon 8366..8640
/number=3
/gene="rev"
LTR 9103..9540
/partial
CDS <2085..5108
/gene="pol"
/product="pol polyprotein"
/codon_start=1
/translation="FFREDLAFLQGKAREFPSE@TRANSPTRREL@VWGRDSNSLSEA
GAEAGADR@GIVSFNFP@ITLW@RPLVTIKIGGQLKEALLDTGADDTVLEDMDLPGRW
KPKMIGGICGFVKRQYDQIPIDICGHKAVGTVLVGPTPVNIIGRNLLTQIGCTLNFP
ISPIETVPVKLKPGMDGPKV@WPLTEEKIKALVEICTEMEKEGKISKIGPENPYNTP
VFAIKKKDSTKWRKLVDRELNRRTQDFWEV@LGIPHAGLKKKSVTVDVGDAYFS
VPLDKDFRKYTAFITPSINNETPGIERYQYNVLPGQWKGSPIFQSSMTKILEPFRKQN
PDIIYQYMDLYVGSDLEIGQHRTKIEELR@HLLKGFTTPDKKHQKEPPFLWMGYE
LHPDKWTVQPIVLPBKPEKDSWTVDI@KLVGKLNWASQIYAGIKVQLCCKLRLGTAKLT
VIPLTKEAELEAENREILKEPVHGYYYDPSKDLIVEI@KQGGQWTYQIFQEPFKNL
KTGKYARTRAHTNDVK@TEAVQKIANESIVI@WGKIPKFKLPIQKETWETWHTEYWQ
ATWIPEWEFVNTPPLVKLWYQBLEKEPIVGAETFYV@DGAANRET@LGKAGYVTSRG@K
VVSLTDTTN@KTELQAIHLALQDSCLEVNI@TDS@YALGII@QAPDKSESELVSQIIE
QLIKKEKVYLAHVPAHKGICCGNEGV@KLVSA@IRKVLFLDGIDKAGEDHEKYHSNWRA
MASDFNLPPIVAKEIVASCDK@QLKGEAMHG@VDCSPGI@LDCTHLEGKII@LVAHV
ASGYIEAEVIPAETGQETAYFLLKLAGRWPVTTI@TDNGSNFTSTTVKAACWWAGIKQ
EFGIPYNP@S@GVVESMNKELKKI@GQVRD@AEHLKTAVQMAVFIHNFKRKGGIGGYS
AGERIIDIIATDIQTKE@LQK@ITKIQ@NFRVYYRDNRDPI@WKGPAKLLWKGEGAVV@Q
NSDIKVVPRRKVKIIRDYGK@MAGDDCVASR@DED"
CDS 790..2304
/gene="gag"
/product="gag polyprotein"
/codon_start=1
/translation="MGARASVLSGCCELDRWEKIRLRPGGKKVRLKHIVWASRELERF
AVNPGLLESSEGCRQILGQ@QPSLKTGSEELTSLYNTVATLYCVH@RIEIKDTKEALE
KIEEE@TKSMKKAGQAADTGNS@VS@NYP@IVQNLQGQMVH@AIS@PRTLN@AWVKVIE
EKA@SPEVIPMF@SSEGATPQDLNTMLNTVG@GH@AAMQMLKETINE@AAEW@DRLHPV
HAGPIAPGQMREPRGSDIAGT@TSLQEQI@WMTNNPIPVG@IYKR@IILGLNKIVRM
YSPVSI@LDI@GPKEPFRDYVDRFY@TLRAE@ATQEVKNWM@TETLLV@QNA@P@DCKTIL
KALGP@ATLEEMM@TAC@GVGGPCHKARVLA@EAM@QVTP@T@IMM@QRGNFRN@QRKNVKC
FNC@GKE@HIARNCRAPRKKG@CWKGCGKE@HQMK@CTER@QANFL@KI@WPSYKGRPGN@FLQ
SRPEPT@PPEESFR@GEETATPSG@QEQK@EPIDKELY@PLT@SLRSLFGNDPSS@"
CDS 5053..5631
/gene="vif"
/product="vif protein"
/codon_start=1
/translation="MENRW@VMIVW@VDRMR@IRTWN@SLV@KHHMY@ISG@KAKGW@IYKHHY
ESTN@P@RSSEV@IPLG@D@ARL@VITTY@WGL@HT@GERD@WHLG@GVS@ME@R@T@R@Y@ST@Q@V@P@DL
AD@LI@H@YY@F@C@F@SE@AIR@N@I@L@G@H@I@V@S@P@R@C@E@Y@Q@G@H@S@K@V@G@S@L@Q@Y@L@T@A@L@I@K@P@K@K@
P@P@L@P@S@V@K@L@T@E@R@W@N@K@P@Q@K@T@K@G@H@R@G@S@H@M@N@G@H@"
CDS 5571..5861

```

/gene="vpR"
/codon_start=1
/translation="MEQAPEDQGPQREPYNNEWTLEELKNEAVRHFPRIWLHSLGQ
YIYETYGDTHAGVEAIRILQQLLFIHFRIGCRHSRIGITRQRRARNGASRS"
CDS 6073..6318
/gene="vpU"
/codon_start=1
/translation="HQPLQILAIHALVYAGIIIAIVWSIVLIEYRKILRQRKIDRLID
KIRERAEDSGNESEGDDGEELSALVERGH LAPWDINDL"
CDS 6236..8782
/gene="env"
/product="envelope polyprotein"
/codon_start=1
/translation="MRVKCIRKNYQHLWKGGILLGTLMICSAVEKLWVTVVYGVVW
KETTTTLCASDAKAYDTEVHNWATHACVPTDPNPQEVVLENVTEDFNMKNNMVEQ
MQEDVINLWDQSLKPCVKLTPLCVTLNCKDVNTNTSSSEGMMERGEIKNCNFNITK
SIRDKVQKEYALFYKLDVVPIDNKNNTKYRLISCTNSVTQACPVSFEPPIHYCAP
AGFAILKCNNTFNGKGQCKNVSTVQCTHGIRPVVSTQLLNGSLAEEKVVIRSDNFT
DNAKTIIVQLNESVKINCTRPSNNTRKSIHIGPCRAFYTTGEIIGDIRQAHCNISRAQ
WNNTLKGIVEKLRQFFNNKTIVFTHSSGGDPEIVMHMFNCGEFFYCNSTQLFNSTWN
DTEKSSGTGNDTIIILPCRKIQIINMWQEVGKAMYAPPIKGQIRCSSNITGLLLTRDG
GKNESEIEIFRPGGGDMRDNRSELKYKVVKIEPLGVAPTAKRVRVQREKRAVGIG
ALFLGFLGAAGSTMGRSMTLTQARQLLSGIVQQQNNLLRAIEAQGHMLQLTVWCIK
QLQARVLAVERYLKDKQQLMGIWCGSGKLICTTAVPWNTSWSNKSLSDIWNNMTWMWEWE
KEIENYTNTIYTLIEESQIQQEKENNEGELLEDKWAISLWNWFGITKWLWYIKIFIMIVG
GLIGLRIVFSVLSIVNRVRQGYSPLSFQTLLPATRGPDPRPEGIEEEGGERDRDRSGQL
VNGFLALIWWDLRSLFLFSYHRLRDLLLTVTRIVELLGRRGWEILKYWWNLLQYWSQE
LKNSAVSLLNATAIAVAEGTDRIIEVVQRVYRAILHIPTRIRQGLERALL"
CDS 8784..9434
/gene="nef"
/codon_start=1
/translation="MGCKWSKHSVPGWSTVRERMRAEPAATDVRQTEPAAVGVGAVS
RDLEKHGAITSNTAAATNADCAWLEAYEDEEVGFPVRPQVPLRPMTYKAAIDLHFLK
EKGGLEGLIYSQKRQDILDWLWYHTQGYFPDWQNYTAGPGVRFPLTFGWCFKLVPVDP
EKVEEANEENNCLLHPMSQHGMDDPEKEVLWKFDSKLALHHVARELHPEYYKDC"

```

BASE COUNT 3425 a 1691 c 2308 g 2116 t

ORIGIN 5' terminus of 5'LTR.

Initial Score = 652 Optimized Score = 652 Significance = 51.03
 Residue Identity = 94% Matches = 652 Mismatches = 38
 Gaps = 0 Conservative Substitutions = 0

X	10	20	30	40	50	60	70
GGGGGACTGGAAGGGCTAATTCACTCCAAACGAAAGACAAGATATCCTTGATCTGGATCTACCACACAA							
CTCGAAGGGCTAATTACTCACAGAAAAGACAAGATATCCTTGATCTGGATCTACCACACACAA							
X	10	20	30	40	50	60	
80	90	100	110	120	130	140	
GGCTACTTCCCTGATTGGCAGAACTACACACCAGGGCCAGGGTCAGATATCCACTGACCTTGGATGGTGC							
GGCTACTTCCCTGATTGGCAGAACTACACAGCAGGACCAGGGTCAGATTCACACTGACCTTGGATGGTGC							
70	80	90	100	110	120	130	
150	160	170	180	190	200	210	
TACAAGCTAGTACCAAGTTGAGCCAGATAAGGTAGAAGAGGGCCAATAAAGGAGAGAACCCAGCTTGTACAC							
TTCAAGCTAGTACCAAGTTGATCCAGAGAAGGTAGAAGAGGGCCAATGAAGGAGAGAACAACTGCTTGTACAC							
140	150	160	170	180	190	200	210
220	230	240	250	260	270	280	
CCTGTGAGCCTGCATGGAATGGATGACCTGAGAGAGAAGTCTTAGCTGAGTGGAGGTTGACAGCCGCTAGCA							
CCTATGCCAGCATGGAATGGACGACCCAGAGAAGGAAGTGTAGCTGGAAGTTGACAGCAAGCTAGCA							
220	230	240	250	260	270	280	

290 300 310 320 330 340 350 360
 TTTCATCACGTGGCCCGAGAGCTGCATCCGGAGTACTTCAGAACTGCTGACATCGAGCTTGCTACAAGGGA
 || ||||||| ||||| ||||| ||||| ||||| ||||| |||||
 TTGCATCACGTGGCCCGAGAGCTGCATCCGGAGTACTACAAGGACTGCTGACACCAGCTTCTACAAGGGA
 290 300 310 320 330 340 350

 370 380 390 400 410 420 430
 CTTTCCGGCTGGGCACTTCCAGGGAGGCGTGGCCTGGCGGAACCTGGGACTGGCGAGCCCTCAGATGCTGC
 ||||| ||||| ||||| ||||| ||||| ||||| |||||
 CTTTCCGGCTGGGCACTTCCAGGGAGGCGTGGCCTGGCGGAACCTGGGACTGGCGAGCCCTCAGATGCTGC
 360 370 380 390 400 410 420

 440 450 460 470 480 490 500
 ATATAAGCAGCTGCTTTTGCCCTGACTGGGTCTCTGGTTAGACCAGATTGAGCCTGGGAGCTCTCTGG
 ||||| ||||| ||||| ||||| ||||| ||||| |||||
 ATATAAGCAGCTGCTTTTGCCCTGACTGGGTCTCTGGTTAGACCAGATGAGCCTGGGAGCTCTCTGG
 430 440 450 460 470 480 490

 510 520 530 540 550 560 570
 CTAACATAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCCTGAGTGCTCAAGTAGTGTGTGCCGTCT
 ||||| ||||| ||||| ||||| ||||| ||||| |||||
 CTAGCTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCCTGAGTGCTCAAGTAGTGTGTGCCGTCT
 500 510 520 530 540 550 560 570

 580 590 600 610 620 630 640
 GTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCCTTTAGTCAGTGTGAAAATCTCTAGCAGTGGCGC
 ||||| ||||| ||||| ||||| ||||| ||||| |||||
 GTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCCTTTAGTCAGTGTGAAAATCTCTAGCAGTGGCGC
 580 590 600 610 620 630 640

 650 660 670 680 690 X
 CCGAACAGGGACTTGAAGCGAAAGGGAAACCAGAGGGAGCTCTCGA
 ||||| ||||| ||||| ||||| |||||
 CCGAACAGGGACCGGAAAGCGAAAGAGAAACCAGAGGGAGATCTCGACGCAACTCGGCTTGCTGAAGCG
 650 660 670 680 690 700 710

 CGCACAGCAAGAGGGCGAGGGCGGGCG
 720 730 740

6. RAILEY-000-716.SE0 (1-696)

HIVNY5CG Human immunodeficiency virus type 1, isolate NY5.

LOCUS HIVNY5CG 9022 bp ss-RNA VRL 28-SEP-1992
 DEFINITION Human immunodeficiency virus type 1, isolate NY5, complete genome.
 Infectious single LTR molecular proviral genome.
 ACCESSION M38431
 KEYWORDS .
 SOURCE HIV-1, isolate NY5, unintegrated circular viral DNA. Infectious.
 ORGANISM Human immunodeficiency virus type 1
 Viridae; ss-RNA enveloped viruses; Positive strand RNA virus;
 Retroviridae; Lentivirinae.
 REFERENCE 1 (bases 1 to 9022)
 AUTHORS Theodore,T. and Buckler-White,A.
 JOURNAL Unpublished (1988)
 STANDARD full automatic
 COMMENT Computer-readable copy of sequence kindly provided by Chuck
 Buckler, 01-NOV-1988. A partial sequence for NY5, isolated in 1984,
 is on page I-A-101 of this compendium and, as the 5' half of the
 hybrid HIVNL43, also an infectious clone, on page I-A-64.
 Hirt Supernatant DNA extracted from A3.01 cells infected with the
 NY5 HIV isolate stock was digested with EcoRI and cloned into
 lambda WESB. The insert is an EcoRI permuted single LTR clone and
 was then transferred into pBR322. In the sequence below position
 one is the first base of the single LTR of the clone while the last
 base (9022) is the one just before the LTR of the intact circle

FEATURES	Location/Qualifiers
LTR	1..634 /partial
protein_bind	377..386 /bound_moiety="Spi"
protein_bind	388..397 /bound_moiety="Spi"
protein_bind	399..408 /bound_moiety="Spi"
protein_bind	636..653 /bound_moiety="Lys-tRNA"
exon	5830..6044 /number=2 /gene="tat"
exon	5969..6044 /number=2 /gene="rev"
exon	8316..8406 /number=3 /gene="tat"
exon	8316..8590 /number=3 /gene="rev"
CDS	<2085..5096 /gene="pol" /codon_start=1 /translation="FFREDLAFPQGKAREFSSE@TRANSPTRREL@VWGRDNNSLSEA GADR@GTVSFSFP@ITLWQRPLVTIKIGG@LKEALLDTGADDTVEEMNLPGRWKPKM IGGIGGFICVKR@YDQILIEICGHKAIGT@LVGPTPVNIIGRNLLT@IGCTLNFPISPI ETVPV@KLPGMDGPVKW@P@TEEKIKA@LVEICTEM@EGK@KISKIGPENPYNTPVFAI KKKDSTK@WRKLVD@FRELNKRT@DFWEVQLGIPHPAGLK@KKSVTVLDVGDAYFSVPLD KDFRKYT@FTIPSINNETPGIRY@Y@NVL@QGWKGSPAIF@CSMTKILEPFRK@NPDIV IYQYMDLYVGSDLEI@GQHRTK@IEELRQH@LLRGFTTPDKH@KEPPFLWMGYELHPD KWTVQPIVLP@EKDS@TVNDI@QKLVG@LN@WAS@IYAGIKVRQLC@LLRG@IKA@LTVVPL TEEAEL@LA@NREILKEPVHG@YYDPSKDLIAEIQK@QG@QWTY@IY@QEPFKNLKTGK YARMKG@AHTNDV@QKLT@EA@QKIA@TESIVI@WGKTPFKLPI@KET@WEAW@WTEY@W@ATWI PEWEFVNTPPLV@KLWY@QLEKEPII@GA@TFY@V@DGA@ANRET@KLG@KAGY@V@DRGR@QKV@PL TD@TN@QKTEL@QIHL@L@QD@SG@L@EV@N@I@V@T@D@S@Q@Y@AL@I@Q@Q@P@K@SE@E@L@V@S@Q@I@E@B@LIK KEKVY@LA@W@PAHK@G@C@G@N@E@Q@D@K@L@V@S@A@I@R@K@V@L@F@D@G@I@D@K@A@Q@E@E@H@K@Y@H@S@N@W@R@A@M@D FN@L@P@V@V@A@K@I@V@A@S@C@D@K@C@Q@L@K@G@E@M@H@G@Q@V@D@C@S@P@G@I@W@Q@L@D@C@T@H@E@G@K@V@I@V@H@V@A@S@G@Y IEAEV@I@P@A@T@G@Q@E@T@Y@F@L@L@K@L@A@R@W@P@V@K@T@V@H@D@N@S@N@F@T@S@T@V@K@A@C@W@A@G@I@K@E@F@G@I PYNPQS@QGV@I@E@S@M@N@K@E@K@K@I@G@Q@V@R@D@Q@E@H@L@K@T@V@Q@M@A@F@I@H@N@F@K@R@G@G@I@G@Y@S@A@G@E@R@ IVD@I@A@T@D@I@Q@I@K@L@Q@K@I@T@K@I@Q@N@F@R@Y@Y@R@D@S@R@D@P@W@K@G@P@K@L@L@W@K@G@E@G@A@V@I@Q@D@N@S@D@I KVV@P@R@R@K@A@K@I@R@D@Y@G@Q@M@G@D@D@C@V@A@S@R@Q@D@E@D@" CDS 790..2292 /gene="gag" /codon_start=1 /translation="MCARASVLSGGELDKWEKIRLRPGGKK@YRLKHI@WASRELERF AVNPGLLETSEGCRQILRQL@QPSL@TGSEERRSLFNTVAVLYCVH@RIDVK@DTKEALD KIEEEQN@SK@K@Q@Q@A@A@D@T@G@N@S@Q@V@G@N@Y@P@I@V@Q@N@L@Q@Q@M@V@H@Q@A@I@P@R@T@L@N@A@V@K@V@E EKA@F@S@P@E@I@P@M@F@S@A@L@S@E@G@A@T@P@Q@D@L@N@L@N@T@V@G@G@H@Q@A@A@M@Q@M@L@K@E@T@I@N@E@A@E@W@D@R@L@H@P@V HAG@P@G@Q@M@R@E@P@R@G@S@D@I@G@T@T@S@L@Q@E@Q@I@G@W@M@T@H@N@P@P@I@P@V@G@E@I@Y@K@R@W@I@L@G@L@N@K@I@R@M Y@S@P@T@S@I@L@D@I@R@G@P@K@E@P@F@R@D@Y@V@D@R@F@Y@K@T@L@R@E@Q@A@S@Q@E@V@K@N@W@M@T@E@T@L@L@V@Q@N@A@P@D@C@K@T@I@L K@A@L@G@P@A@T@L@E@M@H@T@A@C@Q@G@V@G@P@G@H@K@A@V@L@A@E@A@M@S@Q@V@T@N@P@A@T@I@M@Q@R@G@N@F@R@N@Q@K@K@T@V@C@ F@N@C@K@E@G@H@I@A@K@N@C@A@P@R@K@K@G@C@H@Q@M@K@D@C@T@E@R@Q@A@N@F@L@C@K@I@W@P@S@H@K@G@R@P@G@N@F@L@Q@R@P@E@P@E@E@S@F@R@G@E@T@T@P@S@Q@K@Q@E@P@I@D@K@E@L@Y@P@A@S@L@R@S@L@F@G@S@D@P@S@Q@" CDS 5041..5619 /gene="vif" /codon_start=1 /translation="MENRW@QVM@IV@W@Q@V@DRMR@INT@W@K@L@V@K@H@M@Y@I@R@K@A@D@W@F@Y@R@H@Y EST@NPK@I@S@E@V@H@I@P@L@G@D@A@K@L@V@I@T@Y@W@G@L@H@T@G@E@R@D@W@H@L@G@Q@G@V@S@I@E@W@K@K@R@Y@S@T@Q@V@D@P@D@L@ AD@Q@L@I@L@H@Y@F@D@C@F@S@E@A@R@N@T@I@L@G@R@I@V@S@P@R@C@E@Y@Q@A@H@N@K@V@G@S@L@Q@Y@L@A@A@I@K@P@K@Q@K@ P@P@L@P@S@V@R@K@L@T@E@D@R@W@N@K@P@Q@K@T@K@G@H@R@G@S@H@T@M@N@G@" CDS 5559..5849 /gene="vpR" /codon_start=1

/translation="MEGAPEDQGPQREPYNNEWTLEELKSEAVRHFPRIWLHNLGQ
 HIYETYGDTWAGVEAIRILQQQLLFIHFRIGCQHSRIGIIRQRARRNGASRS"
 CDS 6061..6147
 /gene="vpU"
 /codon_start=1
 /translation="MLSFNSCVDHSHVRIQESIKTKSRQDN"
 CDS 6180..8732
 /gene="env"
 /product="envelope polyprotein"
 /codon_start=1
 /translation="MRAKGTRKNYQHLWRWTMLLGMLMICSAAEQLWVTVYYGVPW
 KEATTTLCASDAKAYDTEVHNWATHACVPTDPNPQEYVLQNVTENFMWKNNMVEQ
 MHEDIISLWDQSLKPCVKLTPLCVTLNCTDLTNATYANGSSEERGEIRNCNSFNVTTII
 RNKIQKEYALFYRLDIVPIDKDNTSYTLINCDTSVITQACPKVSEPIPIHYCAPAGF
 AILKCNDKKFNGTGPCTNVSTVQCTHGIKPVVSTQLLLNGSLAEGEVVISENFTNNV
 KTIIVQLNESVEINCRPNNNTRKGIAIGPGRTLYAREKIIGDIRGAHCNLRAKWND
 TLKQIVTKLKEGFRNKTVFVNQSSGGDPEIVMHSHFCNCGEFFYCKTQLFNSTWLFNS
 TWNDTERSDNNETIILPCRNIQIINRWQEVGKAMYAPPISGGIIRCSSNITGLLTRDG
 GDKENSTTEIFRPGGGDMRDNRSELVYKYKVVVIEPLGVAPTKAKRRVVQREKRAVGA
 LGALFLGFLGAAGSTMGAASMALTQTRQLMSGIVQQQNNLLKAIEAQQHLLQLTVWG
 IKGLQARVLAVERYLKQQLLRIWCGSGKLICTTVWPWNASWSNKSLDKIWDNMWTMME
 WEREIDNYTCLYLIEESQIQGEKNEQELLEDWKASLWNWFDTKWLWYIKIFIMI
 VGGGLIGLRIVFTVLSIVNVRVQGYSPLSFQTRLPAQRGPDRPEGIEEEGGERDRDRSG
 PLVNGFLALIWVDLRSLCLFSYHRLRDLLLIVARIVELLGRRGWEALKYCWNLLQYWG
 QELKNSAISLLNATAVAVAEGTDRVIEVAQRICRGILHIPRRIRQGLERLLL"
 CDS 8734..9022
 /gene="nef"
 /partial
 /codon_start=1
 /translation="MGGKWSKRSMMSGPAVRERMKRTEPAADVGAVSRDLEKHGAI
 SSNTAATNANCWLEAHEEEVGFVPRPQVPLRPITRKAAMDLSHFLKEEGX"

BASE COUNT 3230 a 1591 c 2188 g 2013 t

ORIGIN 5' terminus of 5'LTR (start of U3)

Initial Score = 650 Optimized Score = 650 Significance = 50.86
 Residue Identity = 94% Matches = 650 Mismatches = 39
 Gaps = 0 Conservative Substitutions = 0

10	20	30	40	50	60	70
GGGGGACTGGAAGGGCTAATTCACTCCAACGAAAGACAAGATATCCTGATCTGTGGATCTACCACACACAA						
TCCAAGGGCTAATTGGTCCCAAAGAACAGACAAGATATCCTGATCTGTGGATCTACCACACACAA						
X	10	20	30	40	50	60
80	90	100	110	120	130	140
GGCTACTTCCCTGATTGGCAGAACTACACACCAGGGCCAGGGTCAGATATCCACTGACCTTGGATGGTGC						
GGCTACTTCCCTGATTGGCAGAACTACACACCAGGGCCAGGGATCAGATATCCACTGACCTTGGATGGTGC						
70	80	90	100	110	120	130
150	160	170	180	190	200	210
TACAAGCTAGTACCACTTGAGCCAGATAAGGTAGAAGAGGCCAATAAAGGAGAGAACACCACTTGTACAC						
TTCAAGTTAGTACCACTTGAGCCAGGGCAGGTAGAAGAGGCCAATGAAGGAGAGAACACAGCTTGTACAC						
140	150	160	170	180	190	200
220	230	240	250	260	270	280
CCTGTGAGCCTGCATGGAATGGATGACCTGAGAGAGAACTGTTAGAGTGGAGGTTTGACAGCCGCTAGCA						
CCTATGAGCCAGCATGGATGGAGGACCCGGAGGGAGAACTTATAGTGTGGAAGTTGACAGCCTCCTAGCA						
210	220	230	240	250	260	270
290	300	310	320	330	340	350
TTTCATCACGTGGCCCCAGAGCTGCATCCGAGTACTTCAGAACTGCTGACATCGAGCTTGTACAAGGGA						
TTTCGTCACTGGCCCCAGAGCTGCATCCGAGTACTACAAAGACTGCTGACATCGAGCTTGTACAAGGGA						

290	300	310	320	330	340	350
370	380	390	400	410	420	430
CTTTCGGCTGGGCACTTCCAGGGAGGCCTGGCCTGGCGGAAC	ACTGGGAGTGGCGAGCCCTCAGATGCTGC					
CTTTCGGCTGGGACTTTCCAGGGAGGTGTGGCCTGGCGGGAC	TGGGAGTGGCGAGCCCTCAGATGCTGC					
360	370	380	390	400	410	420
440	450	460	470	480	490	500
ATATAAGCAGCTGCTTTGCCTGTA	CTGGTCTCTCTGGTTAGACCAGATTGAGCCTGGAGCTCTCG					
ATATAAGCAGCTGCTTTGCCTGTA	CTGGTCTCTCTGGTTAGACCAGATCGAGCCTGGAGCTCTCG					
430	440	450	460	470	480	490
510	520	530	540	550	560	570
CTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCTTGAGT	GCTCAAGTAGTGTGTGCCCGTCT					
CTAGCTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCTTGAGT	GCTCAAGTAGTGTGTGCCCGTCT					
500	510	520	530	540	550	560
580	590	600	610	620	630	640
GTTCGTGACTCTGGTA	ACTAGAGATCCCTCAGACCCTTTAGTCAGTGTGGAAAATCTCTAGCAGTGGCG					
GTTCGTGACTCTGGTA	ACTAGAGATCCCTCAGACCCTTTAGTCAGTGTGGAAAATCTCTAGCAGTGGCG					
570	580	590	600	610	620	630
650	660	670	680	690	X	
CCGAACAGGGACTTGAGAGCGAAAGTAAAGCCAGAGGAGATCTCTGACG	CAGCAGGACTCGGCTTGCTGAAGCG					
CCGAACAGGGACTTGAGAGCGAAAGTAAAGCCAGAGGAGATCTCTGACG	CAGCAGGACTCGGCTTGCTGAAGCG					
650	660	670	680	690	700	710
CGCACGGCAAGAGGGCGAGGGGCGGGCG						
720	730					

7. RAILEY-000-716.SEQ (1-696)

HIVNL43 Human immunodeficiency virus type 1, NY5/BRU (LAV-)

LOCUS HIVNL43 9709 bp ss-RNA VRL 15-JUN-1989
 DEFINITION Human immunodeficiency virus type 1, NY5/BRU (LAV-1) recombinant clone pNL4-3.
 ACCESSION M19921
 KEYWORDS .
 SOURCE Human immunodeficiency virus type 1 (HIV-1), NY5/BRU (LAV-1) recombinant clone pNL4-3.
 ORGANISM Human immunodeficiency virus type 1
 Viridae; ss-RNA enveloped viruses; Positive strand RNA virus;
 Retroviridae; Lentivirinae.
 REFERENCE 1 (bases 1 to 9709)
 AUTHORS Adachi,A., Gendelman,H.E., Koenig,S., Folks,T., Willey,R.,
 Rabson,A. and Martin,M.A.
 TITLE Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone
 JOURNAL J. Virol. 59, 284-291 (1986)
 STANDARD full automatic
 REFERENCE 2 (bases 1 to 9709)
 AUTHORS Buckler,C.E., Buckler-White,A.J., Willey,R.L. and McCoy,J.
 JOURNAL Unpublished (1988) .
 STANDARD full automatic
 REFERENCE 3 (sites)
 AUTHORS Buckler,C.E.
 JOURNAL Unpublished (1988)
 STANDARD full automatic
 REFERENCE 4 (sites)

AUTHORS Dai,L.C., Littau,R., Takahashi,K. and Ennis,F.A.
 TITLE Mutation of human immunodeficiency virus type 1 at amino acid 585
 on gp41 results in loss of killing by CD8+ A24-restricted
 cytotoxic T lymphocytes
 JOURNAL J. Virol. 66, 3151-3154 (1992)
 STANDARD full automatic
 COMMENT [3] sites; revisions of [3].

Clean copy of sequence [3] kindly provided by Chuck Buckler, NIAID,
 Bethesda, MD, 24-JUN-1988. The construction of pNL4-3 has been
 described in [1]. pNL4-3 is a recombinant (infectious) proviral
 clone that contains DNA from HIV isolates NY5 (5' half) and BRU (3'
 half). The site of recombination is the EcoRI site at positions
 5743-5748.

The length and sequence of the vpr coding region corresponds to
 that of the BRU, SC, SF2, MAL and ELI isolates. The vpr coding
 region of these isolates is about 18 amino acid residues longer
 than the vpr coding region of the IIIb isolates. In HIVNL43, this
 shift is due to a single base deletion (with respect to the IIIb's)
 at position 5770. The sequence at this position is 'atttc' in
 HIVNL43 and 'attttc' in HIVXB2.

The original BRU clone, sequenced by Wain-Hobson, et al. (Cell 40,
 9-17 (1985)), and the BRU portion of the pNL4-3 recombinant clone
 are different clones from the same BRU isolate.

Two of the revisions reported in the FEATURES produced changes in
 amino acid sequences. The revision at position 2421 changes one
 amino acid residue from 'R' to 'G' in the pol coding region. The
 revision at positions 8995-9000 changes three amino acid residues
 from 'AHT' to 'VTP' in the nef coding region.

FEATURES	Location/Qualifiers
LTR	1..634 /note="5' LTR"
repeat_region	454..550 /note="R repeat 5' copy"
prim_transcript	455..9626 /note="tat, rev, nef subgenomic mRNA"
intron	744..5776 /note="tat, rev, nef mRNA intron 1"
misc_feature	5743..5748 /note="EcoRI site of recombination"
misc_recomb	5743..5744 /note="HIV-1 isolate NY5 DNA end/HIV-1 isolate LAV DNA start"
intron	6045..8368 /note="tat cds intron 2"
intron	6045..8368 /note="rev cds intron 2"
intron	6045..8368 /note="tat, rev, nef mRNA intron 2"
LTR	9076..9709 /note="3' LTR"
repeat_region	9529..9626 /note="R repeat 3' copy"
polyA_signal	9602..9607 /note="mRNA polyadenylation signal"
CDS	join(5830..6044,8369..8414) /note="tat protein" /codon_start=1 /translation="MEPVDPRLEPWKPGSQPKTACTNCYCKKCCFHCVCFMTKALG ISYGRKKRRQRRRAHQNSQTHQASLSKQPTSQSQRGDPTGPKE"
CDS	join(5969..6044,8369..8643) /note="rev protein" /codon_start=1

/translation="MAGRSGDSDEELIRTVRLIKLYQSNPPPNPEGTRQARRRRR
WRERQRQIHSISERILSTYLRSAEPVPLQLPPLERLTLDNCEDCGTSGTQGVGSPQI
LVEPTVLESGTKE"
CDS 790..2292
/note="gag polyprotein"
/codon_start=1
/translation="M GARASVL SG GELDKWEKIRL RP GGKK QYKL KHIV WASRELERF
AVN PGLLET SECCRQ I L G Q L Q PSL Q TGSEEL R SLYNTIAVLYCVH QRIDV KDT KEALD
KIEEEQNKSKKAQQAAADTGNNSQVSQNYPIVGNLQGQM VHQAIS PRTLNAWVKVVE
EKA F S P E V I P M F S A L S E G A T P Q D L N T M L N T V G G H Q A A M Q M L K E T I N E E A A E W D R L H P V
HAGPIAPGQMRREPRGSIDIAGTSTLQE QIGWHTHNPPIPVGEIYKRWII LGLNKIVRM
YSPTSILD IRQGPKEPF RDYVDRFYKTLRAEQASQEVKNWMTE TLLVQNANPDCKTIL
KALGPGATLEEMMTACQGVGGPGHKARVLAEMS QVTNPATIMIQKG NFRN QRKTVKC
FN CGKEGHIAKNCRAPRKKGCWKCGKEGHQMKDTERQANFLCKIWP SHKGRPGNFLQ
SRPEPTAPPEESFRFGEETTPS QKQEPIDKELYPLASLRLSLFGSDPSSQ"
CDS 2085..5096
/partial
/note="pol polyprotein; (NH2-terminus uncertain)"
/codon_start=1
/translation="FFREDLAFFQGKAREFSSEGTRANS PTRRELQVWGRDNNSLSEA
GADRQGTVSFSFPQITLWQRLPVTIKIGGLKEALLDTGADDT VLEEMNL PGRWKP KM
IGGIGGFIVKGQYDQILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPI SPI
ETVPVKKLPKCMDGPVKVQWPLTEEKIKALVEICTEMEKEGKISKIGPENPYNTPVFAI
KKKDSTKWRKLVDFRELNKRTQDFWEVQLGIPHPAGLKQKKS VTVLDVGDAYFSVPLD
KDFRKYTAF TIPSINNETPGIRYQYVNL P QGWKGSPAIFQCSMTKILEPFRKQNP DIV
IYQYMDDLYVGSDLEIGQHRTKIEELRGQHLLRWGFTTPD KKHQKEPPFLWMGYELHPD
KWTVQPIVLP EKDSWTVNDI QKL VCGKLNWASQIYAGIKV RQLC L RGT KALTEVVPL
TEEA ELELA ENREILKEPVHG VYDPSKDLIAEIGKQGQG QW TYQIYQEPFKNLKTGK
YARMKG AHTNDVKG QL TEAVQ KIATESIVI WKGKTPKF KLP I QKETWEAWWTEYHQATWI
PEWEFVNTPPLVKLWYQLEKEPI IGAETFYV DGAANRET KLGKAGYV TDRGRQKV VPL
TD TTNQ KTELQAIHLA L QD S G L E V N I V T D S Q Y A L C I I Q A Q P D K S E S E L V S Q I I E Q L I K
KEKVYLA WPAHKGIG GNEQVDGLVSACIRKVLFLDGIDKAQEEHEKYHSNWRAMASD
FNLPPVVAKEIVASC DK C QLKGEAMHGQVDCSPGIWQLDCTHLEGK VILVAVHV ASGY
IEAEVIPAETGQETAYFLLKLAGRWPVKT VHDNGS NFTSTTVKAACWWAGIKQEF CI
PYNPQSQGVIESMN KELKKIIGQVRDQAEHLKTA VQMAVFIHNFKRKGGIGGYSAGER
IVDIIATDIQTKELQKQITKIQNFRVYYRDSRDPVWKGP AKLLWKGEGAVVIQDNS DI
KVVPRRKAKIIRDY GQ QMAGDDCVA SRQDED"
CDS 5041..5619
/note="vif protein"
/codon_start=1
/translation="MENRWQVMIVWQVDRMRINTWKRLVKHHMYISRKAKDW FYRH YH
ESTNP KISSEVH I PLGDAKLV ITTYWGLHTGERDWHLGQGV SIE WRKKR YSTQVDP DL
ADQLIHLHYDFCFS EASIRN TILG RIVSPRCEYQAGHNKVGSLQYLA ALI KPKQIK
PPLPSVRKLTEDRWNKPQTKGHR GS HTMNGH"
CDS 5559..5849
/note="vpr protein"
/codon_start=1
/translation="MEQAPEDQGPQREP YNEWT LLEELKSEAVRHFPRIWLHNLQ
HIYETYGD TWAGVEAIIRILQQLLFIHFRIGCRHSRIGVTRQRRARNGASRS"
CDS 6061..6306
/note="vpu protein"
/codon_start=1
/translation="MQPII VAI VALVV A IIIAIVVWSIVIIEYRKILRQRKIDRLI DR
LIERAEDSGNESEGEV SALVEMGV EMGHAPWD IDDL"
CDS 6221..8785
/note="envelope polyprotein"
/codon_start=1
/translation="MRVKE KYQHLW RWG WKW CTM LLGIL MICSATEKLW VTV YYGV
WKEATT TLFCASDAKAYDTEHVNVWATHACVPTDPNPQEVV LVN VTENFN MWKNDMVE
QMHEDIISLWDQSLKPCVKLTPLCVSLKCTDLKNDTNTN SSSCRM IMEKG EIKNC SFN
ISTSIRDKVQKEYAFFYKLDIVP IDNTSYRLIS CNTSVITQACPKV SFEP IPIHYCAP
AGFAILKCN NKTFNGT GPCTNV STVQCTH GIRPV VSTQ LLLN GSLA EEDV V IR SAN FT
DNA KTIIVQ LNTS VEIN CTRP NNTRK SIRI QRG PGRA FVTICK I GNM RQAH CNIS RA
KWNATL KQIASKLREQFGNNK TII FKQSSCCDPEIVTHSFNC GGEFFYCN STQLFNST
WFN STWSTEGS NNTEGSDTITL PCRIKQF INMW QGEV GKAM YAPP ISG QI RC SSN IT GL
LITRDQGNNNNGSF1F R P G G QDM RDN WRSF I YK YKU VKTF PIQVAPT KAKR RVV ARFK

RAVGIGALFLGFLGAAGSTMGCTSMTLVQARQLLSDIVQQQNNLLRAIEAQQQHLLQL
TVWGIKQQLQARILAVERYLKDQQLLGIWCGSGKLCITTAWPWNASWSNKSLEQIWNMM
TWMEDREINNYTSЛИHSLIEESQNGQEKNEGELLEDKwasLWNWFNITNWLYIKL
FIMIVGGVLVGLRIVFAVLSIVNRVRGGYSPLSFGTHLPPIPRGPDRPEGIEEEGGERDR
DRSIRLVNGSLALIWDLRLSLCLFSYHRLRDLLIVTRIVELLGRGWEALKYWWNLL
QYWSQELKNSAVNLLNATAIAVAEGTDRVIEVLAQAYRAIRHIPRRIRQGLERILL"

CDS

8787..9407

/note="nef protein"

/codon_start=1

/translation="MGGKWSKSSVIGWPAVRERMRAEPAADGVGAVSRDLEKHGAI
SSNTAANNAACAWLEAQEEEEEVGFPTPQVPLRPMTYKAADVLSHFLKEKGLEGLIH
SQRRQDILDWIYHTQGYFPDWQNYTPGPGVRYPLTFGWCYKLVPEDKVEEANKGE
NTSLLHPVSLHGMDDPEREVLEWRFDSDLAFHHVARELHPEYFKNC"

BASE COUNT 3421 a 1756 c 2366 g 2166 t

ORIGIN 5' terminus of NYS LTR

Initial Score = 645 Optimized Score = 645 Significance = 50.45

Residue Identity = 93% Matches = 645 Mismatches = 44

Gaps = 0 Conservative Substitutions = 0

10 20 30 40 50 60 70

GGGGGACTGGAAGGGCTAATTCACTCCCAACGAAGACAAGATATCCTGATCTGTGGATCTACCACACACAA
||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
TGGAAAGGGCTAATTGGTCCAAAAAGACAAGAGATCCTGATCTGTGGATCTACCACACACAA
X 10 20 30 40 50 60

80 90 100 110 120 130 140

GGCTACTTCCCTGATTGGCAGAACTACACACCAGGGCCAGGGTCAGATATCCACTGACCTTGGATGGTGC
||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
GGCTACTTCCCTGATTGGCAGAACTACACACCAGGGCCAGGGATCAGATATCCACTGACCTTGGATGGTGC
70 80 90 100 110 120 130

150 160 170 180 190 200 210

TACAAGCTAGTACCAAGTTGAGCCAGATAAGTAGAAGAGGCCAATAAGGAGAGAACACCAAGCTTGTACAC
||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
TTCAAGTTAGTACCAAGTTGAACCAGAGCAAGTAGAAGAGGCCAATAAGGAGAGAACACAGCTTGTACAC
140 150 160 170 180 190 200

220 230 240 250 260 270 280

CCTGTGACCTGCATGGAATGGATGACCCCTGAGAGAGAAAGTGTAGTGAGGTTGACAGCCGCCTAGCA
||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
CCTATGAGCCAGCATGGATGGAGGACCCGGAGGGAGAAGTATTAGTGTGGAGTTGACAGCCTCCTAGCA
210 220 230 240 250 260 270 280

290 300 310 320 330 340 350 360

TTTCATCACGTGGCCCCAGAGCTGCATCCGGACTTCAAGAACTGCTGACATCGAGCTTGTACAAGGGA
||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
TTTCGTACATGGCCCGAGAGCTGCATCCGGAGTACTACAAAGACTGCTGACATCGAGCTTGTACAAGGGA
290 300 310 320 330 340 350

370 380 390 400 410 420 430

CTTTCGGCTGGGCACTTCCAGGGAGGGCTGGCTGGCGGAACACTGGGAGTGGCGAGCCCTCAGATGCTGC
||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
CTTTCGGCTGGGCACTTCCAGGGAGGTGTGGCTGGCGGAACACTGGGAGTGGCGAGCCCTCAGATGCTAC
360 370 380 390 400 410 420

440 450 460 470 480 490 500

ATATAACGAGCTGCTTTTGCTGTACTGGGTCTCTCTGGTTAGACCAGATTGAGCCTGGAGCTCTCTGG
||||| ||||| ||||| ||||| ||||| ||||| |||||
ATATAACGAGCTGCTTTTGCTGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGAGCTCTCTGG
430 440 450 460 470 480 490

510 520 530 540 550 560 570

CTAACTAGGGAAACCCACTGCTTAAGCCTCAATAAGCTTGCCTGAGTGCTCAAGTAGTGTGTGCCGTCT
||||| ||||| ||||| ||||| ||||| ||||| |||||
CTAACTAGGGAAACCCACTGCTTAAGCCTCAATAAGCTTGCCTGAGTGCTCAAAGTAGTGTGTGCCGTCT

500	510	520	530	540	550	560	
580	590	600	610	620	630	640	
GTTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTCTAGTCAGTGTGAAAATCTCTAGCAGTGGCGC							
GTTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTCTAGTCAGTGTGAAAATCTCTAGCAGTGGCGC							
570	580	590	600	610	620	630	640
650	660	670	680	690	X		
CCGAACAGGGACTTGAAAGCGAAAGGGAAACCAGAGGAGCTCTCGA							
CCGAACAGGGACTTGAAAGCGAAAGTAAAGCCAGAGGAGATCTCGACGCAGGACTCGGCTTCGTAAGCG							
650	660	670	680	690	700	710	
CGCACGGCAAGAGGCCAGGGGGCGCG							
720	730						

8. RAILEY-000-716.SEQ (1-696)

AIHTLV31 Human t-cell leukemia virus type iii provirus, 5'

ID AIHTLV31 standard; RNA; VRL; 660 BP.
XX
AC K02008;
XX
DT 13-JUN-1985 (Rel. 06, Created)
DT 11-AUG-1990 (Rel. 25, Last updated, Version 1)
XX
DE Human t-cell leukemia virus type iii provirus, 5' ltr from hxb2
XX
KW acquired immune deficiency syndrome; long terminal repeat;
KW provirus.
XX
OS Human immunodeficiency virus type 1
OC Viridae; ss-RNA enveloped viruses; Positive strand RNA viruses;
OC Retroviridae; Lentivirinae.
XX
RN [1]
RP 1-660
RA Starcich B., Ratner L., Josephs S.F., Okamoto T., Gallo R.C.,
RA Wong-staal F.;
RT "Characterization of long terminal repeat sequences of HTLV-III";
RL Science 227:538-540(1985).
XX
CC Acquired immune deficiency syndrome (aids) is caused by a
CC retrovirus known by four different names, probably representing
CC four different strains: human t-cell leukemia virus-iii (htlv-iii),
CC aids-associated retrovirus type 2 (arv-2), aids virus, and
CC lymphadenopathy-associated virus (lav). it is still unclear with
CC which type of virus it is most closely associated.
CC
CC the ltr has u3, r, and u5 regions of 453, 98, and 83 bp,
CC respectively. this sequence has some regions homologous to human
CC t-cell growth factor (tcgf), and the u3 region shows 83% homology
CC with intron 1 of human gamma-interferon (gamma-if) [1]; they
CC conclude that the regions in the htlv-iii ltr which correspond to
CC regions in tcgf and gamma-if could be important in host cell
CC tropism of transcriptional regulation of this virus.
XX
FH Key Location/Qualifiers
FH
XX
SQ Sequence 660 BP; 160 A; 159 C; 187 G; 154 T; 0 other;

Initial Score = 644 Optimized Score = 645 Significance = 50.37
Residue Identity = 97% Matches = 645 Mismatches = 15

Gaps = 0 Conservative Substitutions = 0

X	10	20	30	40	50	60	70	
GGGGGACTGGAAGGGCTAATTCACTCCAAACGAAGACAAGATATCCTTGATCTGTGGATCTACCACACCAA								
TAGTAGTTGGAAGGGCTAATTCACTCCAAACGAAGACAAGATATCCTTGATCTGTGGATCTACCACACCAA	X	10	20	30	40	50	60	70
	80	90	100	110	120	130	140	
GGCTACTTCCCTGATTGGCAGAACTACACACCAGGGCCAGGGTCAGATATCCACTGACCTTGGATGGTGC								
GGCTACTTCCCTGATTAGCAGAACTACACACCAGGGCCAGGGTCAGATATCCACTGACCTTGGATGGTGC	80	90	100	110	120	130	140	
	150	160	170	180	190	200	210	
TACAAGCTAGTACCACTGAGCCAGATAAGGTAGAACAGGCCAATAAGGAGAGAACACCACCTTGTACAC								
TACAAGCTAGTACCACTGAGCCAGATAAGGTAGAACAGGCCAATAAGGAGAGAACACCACCTTGTACAC	150	160	170	180	190	200	210	
	220	230	240	250	260	270	280	
CCTGTGAGCCTGCATGGATGGATGACCCCTGAGAGAGAACGTGTTAGACTGGAGGTTGACAGCCGCCTAGCA								
CCTGTGAGCCTGCATGGGATGGATGACCCGGAGAGAACGTGTTAGACTGGAGGTTGACAGCCGCCTAGCA	220	230	240	250	260	270	280	
	290	300	310	320	330	340	350	360
TTTCATCACGTGGCCCCAGAGCTGCATCCGGAGTACTTCAGAAACTGCTGACATCGAGCTTGTACAAGGGA								
TTTCATCACGTGGCCCCAGAGCTGCATCCGGAGTACTTCAGAAACTGCTGATATCGAGCTTGTACAAGGGA	290	300	310	320	330	340	350	360
	370	380	390	400	410	420	430	
CTTTCCGCTGGGCACTTCCAGGGAGGGCTGGCTGGCGGAACTGGGAGTGGCGAGCCCTCAGATGCTGC								
CTTTCCGCTGGGCACTTCCAGGGAGGGCTGGCTGGCGGAGCTGGGAGTGGCGAGCCCTCAGATCCTGC	370	380	390	400	410	420	430	
	440	450	460	470	480	490	500	
ATATAAGCAGCTGCTTTGCCTGACTGGGTCTCTGGTTAGACCAAGATTGAGCCTGGAGCTCTCTGG								
ATATAAGCAGCTGCTTTGCCTGACTGGGTCTCTGGTTAGACCAAGATTGAGCCTGGAGCTCTCTGG	440	450	460	470	480	490	500	
	510	520	530	540	550	560	570	
CTAACTAGGGAAACCACTGCTTAAGCCTCAATAAGCTTGCCTTGAGTGTCAAGTAGTGTGTGCCGTCT								
CTAGCTAGGGAAACCACTGCTTAAGCCTCAATAAGCTTGCCTTGAGTGTCAAGTAGTGTGTGCCGTCT	510	520	530	540	550	560	570	
	580	590	600	610	620	630	640	
GTTGTGACTCTGGTAACTAGAGATCCCTCAGACCCCTTTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGC								
GTTGTGACTCTGGTAACTAGAGATCCCTCAGACCCCTTTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGC	580	590	600	610	620	630	640	
	650	X	670	680	690			
CCGAACACGGGACTTGAAGCGAAAGGAAACCAAGAGGAGCTCTCGA								
CCGAACACGGGAC	650	660						

LOCUS REHIVXB2 923 bp RNA VRL 01-JUN-1992
DEFINITION Human T-lymphotropic virus type III (HTLV-III) 3'ORF HXB2 RNA
ACCESSION X03187
KEYWORDS acquired immune deficiency syndrome; long terminal repeat;
 provirus; unidentified reading frame.
SOURCE Aids-associated retrovirus
ORGANISM Aids-associated retrovirus
 Viridae; ss-RNA enveloped viruses; Positive strand RNA viruses;
 Retroviridae.
REFERENCE 1 (bases 1 to 923)
AUTHORS Ratner,L., Starcich,B., Josephs,S.F., Hahn,B.H., Reddy,E.P.,
 Livak,K.J., Petteway,S.R.Jr., Pearson,M.L., Haseltine,W.A.,
 Arya,S.K. and Wong-staal,F.
TITLE Polymorphism of the 3' open reading frame of the virus associated
 with the acquired immune deficiency syndrome, human T-lymphotropic
 virus type III
JOURNAL Nucleic Acids Res. 13, 8219-8229 (1985)
STANDARD full automatic
COMMENT *source: clone_library=lambda gtws-lambda b; *source: clone=HXB2;

Clone HXB2 with a termination codon at amino acid residue 124 gives
 rise to viral particles and cytopathic effects, and thus appears to
 be a fully functional clone. The N terminal portion of the 3' ORF
 protein product may include the functional region of the molecule.
 HXB2 represents an integrated proviral clone; author numbering
 refers to viral cap site at pos. +1. see x03287 - x03292.

FEATURES	Location/Qualifiers
misc_feature	288..923 /note="3' LTR"
misc_feature	288..742 /note="U3 sequence"
misc_feature	743..840 /note="R sequence"
misc_feature	841..923 /note="U5 sequence"
CDS	1..369 /note="3' ORF; (aa 1-123)" /codon_start=1 /translation="MGGKWSKSSVIGWPTVRERMRRAEPAADGVGAASRDLEKHGAI SSNTAATNAACAWLEAQEEEEVGFPVTPQVPLRPMTYKAADVLSHFLKEKGGL SQRRQDILDWIYHTQGYFPD"

BASE COUNT 249 a 207 c 262 g 205 t

ORIGIN

Initial Score = 631 Optimized Score = 631 Significance = 49.31
 Residue Identity = 98% Matches = 631 Mismatches = 10
 Gaps = 0 Conservative Substitutions = 0

	X	10	20
CAATGACTTACAAGGCAGCTGTAGATCTTAGCCACTTTTAAAGAAAAGGGGGACTGGAAAGGGCTAATT	GGGGGACTGGAAAGGGCTAATT		
240 250 260 270 280 X 290 300			
30 40 50 60 70 80 90			
ACTCCCAACGAAGACAAGATATCCTTGATCTGTGATCTACCACACACAAGGCTACTTCCCTGATTGGCAGA	GGGGGACTGGAAAGGGCTAATT		
310 320 330 340 350 360 370			
100 110 120 130 140 150 160			
ACTACACACCAGGCCAGGGTCAGATATCCACTGACCTTGGATGGTCTACAAGCTAGTACCAAGTTGAGC			
380 390 400 410 420 430 440			
ACTACACACCAGGCCAGGGTCAGATATCCACTGACCTTGGATGGTCTACAAGCTAGTACCAAGTTGAGC			

170 180 190 200 210 220 230
 CAGATAACGTAGAAGAGGCCAATAAAGGAGAGAACACCAGCTTGTACACCCGTGAGCCTGCATGGAATGG
 ||||| ||||| ||||| |||||
 CAGATAAGATAGAAGAGGCCAATAAAGGAGAGAACACCAGCTTGTACACCCGTGAGCCTGCATGGGATGG
 450 460 470 480 490 500 510 520
 240 250 260 270 280 290 300 310
 ATGACCCCTGAGAGAGAACTGTTAGAGTGGAGGTTGACAGCCGCCTAGCATTCATCACGTGGCCCAGAGC
 ||||| ||||| |||||
 ATGACCCGGAGAGAGAACTGTTAGAGTGGAGGTTGACAGCCGCCTAGCATTCATCACGTGGCCCAGAGC
 530 540 550 560 570 580 590
 320 330 340 350 360 370 380
 TGCATCCGGAGTACTCAAGAACTGCTGACATCGAGCTTGTACAAGGGACTTCCGCTGGGACTTTCCAG
 ||||| |||||
 TGCATCCGGAGTACTCAAGAACTGCTGACATCGAGCTTGTACAAGGGACTTCCGCTGGGACTTTCCAG
 600 610 620 630 640 650 660
 390 400 410 420 430 440 450
 GGAGGCCTGGCCTGGCGGAACCTGGGACTGGCAGCCCTCAGATGCTGCATATAAGCAGCTGCTTTGCC
 |||||
 GGAGGCCTGGCCTGGCGGGACTGGGACTGGCAGCCCTCAGATCCTGCATATAAGCAGCTGCTTTGCC
 670 680 690 700 710 720 730
 460 470 480 490 500 510 520
 TGTACTGGGTCTCTGGTTAGACCAGATTGAGCCTGGGAGCTCTGGCTAACTAGGAAACCCACTGCTT
 |||||
 TGTACTGGGTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTGGCTAACTAAGGAAACCCACTGCTT
 740 750 760 770 780 790 800
 530 540 550 560 570 580 590
 AAGCCTCAATAAAGCTGCCCTGAGTCCTCAAGTAGTGTCGCCGTCTTGTGACTCTGGTAACTAG
 |||||
 AAGCCTCAATAAAGCTGCCCTGAGTCCTCAAGTAGTGTCGCCGTCTTGTGACTCTGGTAACTAG
 810 820 830 840 850 860 870 880
 600 610 620 630 640 650 660 670
 AGATCCCTCAGACCCTTTAGTCAGTGAAAATCTCTAGCAGTGGCGCCGAACAGGGACTTGAAAGCGA
 |||||
 AGATCCCTCAGACCCTTTAGTCAGTGAAAATCTCTAGCA
 890 900 910 920 X
 680 690
 AAGGGAAACCAAGAGGAGCTCT

10. RAILEY-000-716.SE0 (1-696)

REHIVXB3 Human T-lymphotropic virus type III (HTLV III) 3'

LOCUS REHIVXB3 923 bp RNA VRL 01-JUN-1992
DEFINITION Human T-lymphotropic virus type III (HTLV III) 3' ORF HXB3 RNA
ACCESSION X03188
KEYWORDS acquired immune deficiency syndrome; long terminal repeat;
 provirus; unidentified reading frame.
SOURCE Aids-associated retrovirus
ORGANISM Aids-associated retrovirus
 Viridae; ss-RNA enveloped viruses; Positive strand RNA viruses;
 Retroviridae.
REFERENCE 1 (bases 1 to 923)
AUTHORS Ratner,L., Starcich,B., Josephs,S.F., Hahn,B.H., Reddy,E.P.,
 Livak,K.J., Petteway,S.R.Jr., Pearson,M.L., Haseltine,W.A.,
 Arya,S.K. and Wong-staal,F.
TITLE Polymorphism of the 3' open reading frame of the virus associated
 with the acquired immune deficiency syndrome, human T-lymphotropic
 virus type III
JOURNAL Nucleic Acids Res. 13, 8219-8229 (1985)

STANDARD full automatic
COMMENT *source: clone_library=lambda gt yes-lambda b; *source: clone=HXB3;

HXB3 represents an integrated proviral clone; see x03187 - x03190;

author numbering refers to viral cap site at pos. +1.

FEATURES Location/Qualifiers
misc_feature 288..923
/note="3' LTR"
misc_feature 288..742
/note="U3 sequence"
misc_feature 743..840
/note="R sequence"
misc_feature 841..923
/note="U5 sequence"
CDS 1..618
/note="3' ORF; (aa 1-206)"
/codon_start=1
/translation="MGGKHSKSSVVGPAVRERMRRRAEPAAAGVGAASRDLEKHGAI
SSNTAANNAACAWLEAQEEEKVGFPVTPQVPLRPTYKAADVLSHFLKEKGLEGLIH
SGRRQDILDLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWRYKLVPEPEKLEEANKGE
NTSLLHPVSLHGMDDPEREVLEWRFDRLAFHHVARELHPEYFKNC"

BASE COUNT 252 a 208 c 260 g 203 t
ORIGIN

Initial Score = 626 Optimized Score = 626 Significance = 48.90
Residue Identity = 97% Matches = 626 Mismatches = 15
Gaps = 0 Conservative Substitutions = 0

X 10 20
GGGGGACTGGAAGGGCTAATT
|||||||
CAATGACTTACAAGGCAGCTGTAGATCTTAGCCACTTTAAAAGAAAAGGGGGACTGGAAAGGGCTAATT
240 250 260 270 280 X 290 300

30 40 50 60 70 80 90
ACTCCCAACGAAGACAAGATATCCTTGATCTGTGATCTACCACACACAAGGCTACTTCCCTGATTGGCAGA
|||||||
ACTCCCAACGAAGACAAGATATCCTTGATCTGTGATCTACCACACACAAGGCTACTTCCCTGATTGGCAGA
310 320 330 340 350 360 370

100 110 120 130 140 150 160
ACTACACACCAGGGCAGGGTCAGATATCCACTGACCTTGGATGGTGTACAAGCTAGTACCAAGCTTGGAC
|||||||
ACTACACACCAGGGACCAAGGATAAGATATCCACTGACCTTGGATGGCGTACAAGCTAGTACCAAGCTTGGAC
380 390 400 410 420 430 440

170 180 190 200 210 220 230
CAGATAAGGTAGAACAGGCCAATAAACGGAGAGAACACCCAGCTTGTACACCCCTGTGAGCCTGCATGGAATGG
|||||||
CAGAGAAGTTAGAACAGCCAACAAGGAGAGAACACCCAGCTTGTACACCCCTGTGAGCCTGCATGGAATGG
450 460 470 480 490 500 510 520

240 250 260 270 280 290 300 310
ATGACCCCTGAGAGACAAGTGTAGAGTGGAGGTTGACAGCCGCTAGCATTGATCACGTGGCCGAGAGC
|||||||
ATGACCCGGAGAGAGACAAGTGTAGAGTGGAGGTTGACAGCCGCTAGCATTGATCACGTGGCCGAGAGC
530 540 550 560 570 580 590

320 330 340 350 360 370 380
TGCATCCGGAGTACTTCAAGAACTGCTGACATCGAGCTTGTACAAGGGACTTCCGCTGGGCACCTTCAG
|||||||
TGCATCCGGAGTACTTCAAGAACTGCTGATATCGAGCTTGTACAAGGGACTTCCGCTGGGCACCTTCAG
600 610 620 630 640 650 660

390 400 410 420 430 440 450

GGAGGCCTGGCCTGGCGGAACCTGGGAGTGGCGAGCCCTCAGATGCTGCATATAAGCAGCTGCTTTGCC
||||||| ||||| ||||| |||||
GGAGGCCTGGCCTGGCGGGACTGGGAGTGGCGAGCCCTCAGATCCTGCATATAAGCAGCTGCTTTGCC
670 680 690 700 710 720 730

460 470 480 490 500 510 520
TGTACTGGGTCTCTGGTTAGACCAGATTGAGCCTGGGAGCTCTGGCTAACTAGGAACCCACTGCTT
||||||| ||||| ||||| |||||
TGTACTGGGTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTGGCTAACTAAGGAACCCACTGCTT
740 750 760 770 780 790 800

530 540 550 560 570 580 590
AAGCCTCAATAAGCTTGCTTGAGTGCTTCAAGTAGTGTGCCCCGTCTGTTGTGACTCTGGTAAC TAG
||||||| |||||
AAGCCTCAATAAGCTTGCTTGAGTGCTTCAAGTAGTGTGCCCCGTCTGTTGTGACTCTGGTAAC TAG
810 820 830 840 850 860 870 880

600 610 620 630 640 650 660 670
AGATCCCTCAGACCCTTTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGCCCCAACAGGGACTTGAAAGCGA
|||||||
AGATCCCTCAGACCCTTTAGTCAGTGTGGAAAATCTCTAGCA
890 900 910 920 X

680 690
AAGGGAAACCAAGAGGAGCTCT