诱导范数

定义:设 $\|X\|_{\alpha}$ 是向量范数, $\|A\|_{\beta}$ 是矩阵范数,如果对于任何矩阵 A 与向量 X都有

$$\left\|AX\right\|_{\alpha} \le \left\|A\right\|_{\beta} \left\|X\right\|_{\alpha}$$

则称矩阵范数 $\|A\|_{\beta}$ 与向量范数 $\|X\|_{\alpha}$ 是相容的.

例: 矩阵的Frobenius范数与向量的2-范数是相容的.

证明: $||AX||_2 = ||AX||_F \le ||A||_F ||X||_F = ||A||_F ||X||_2$

例 设 $\|X\|_{\alpha}$ 是向量的范数,则

$$||A||_{i} = \max_{X \neq 0} \frac{||AX||_{\alpha}}{||X||_{\alpha}}$$

满足矩阵范数的定义,且 $\|A\|_i$ 是与向量范数 $\|X\|_{\alpha}$ 相容的矩阵范数.

证明: 首先我们验证此定义满足范数的四条性质。非负性,齐次性与三角不等式易证. 现在考虑矩阵范数的相容性.

设 $B \neq 0$,那么

$$\begin{aligned} & \|AB\|_{i} = \max_{X \neq 0} \frac{\|ABX\|_{\alpha}}{\|X\|_{\alpha}} = \max_{BX \neq 0} (\frac{\|A(BX)\|_{\alpha}}{\|BX\|_{\alpha}} \frac{\|BX\|_{\alpha}}{\|X\|_{\alpha}}) \\ & \leq \max_{BX \neq 0} \frac{\|A(BX)\|_{\alpha}}{\|BX\|_{\alpha}} \max_{X \neq 0} \frac{\|BX\|_{\alpha}}{\|X\|_{\alpha}} \\ & \leq \max_{Y \neq 0} \frac{\|AY\|_{\alpha}}{\|Y\|_{\alpha}} \max_{X \neq 0} \frac{\|BX\|_{\alpha}}{\|X\|_{\alpha}} \\ & = \|A\|_{i} \|B\|_{i} \end{aligned}$$

因此 $\|A\|_{i}$ 的确满足矩阵范数的定义.

最后证明 $||A||_i$ 与 $||X||_\alpha$ 是相容的.

由 ||A||, 的定义可知, 当 $X \neq 0$ 时,

$$\left\|A\right\|_{i} \geq \frac{\left\|AX\right\|_{\alpha}}{\left\|X\right\|_{\alpha}}, \rightarrow \left\|AX\right\|_{\alpha} \leq \left\|A\right\|_{i} \left\|X\right\|_{\alpha}$$

当
$$X = 0$$
 时, $||AX||_{\alpha} = ||A||_{i} ||X||_{\alpha} = 0$,

这说明 $\|A\|_i$ 与 $\|X\|_{\alpha}$ 相容的.

定义:上面所定义的矩阵范数称为由向量范数 $\|X\|_{\alpha}$ 所诱导的诱导范数或算子范数.由向量 p--范数 $\|X\|_{p}$ 所诱导的矩阵范数称为矩阵 p--范数.即

$$||A||_p = \max_{X \neq 0} \frac{||AX||_p}{||X||_p}$$

常用的矩阵 P--范数为 $||A||_1$, $||A||_2$ 和 $||A||_{\infty}$.

证明不要求掌握,但是以下三种范数的计算在考试范围!!!

定理: 设 $A \in C^{m \times n}$,则

(1) 列和范数
$$||A||_1 = \max_j (\sum_{i=1}^m |a_{ij}|), \quad j = 1, 2, \dots, n$$

(2) 谱范数
$$||A||_2 = \max_j (\lambda_j (A^H A))^{\frac{1}{2}}, \quad j = 1, 2, \dots, n$$

其中 $\lambda_j(A^HA)$ 表示矩阵 A^HA 的第 j个特征值.

(3) 行和范数
$$||A||_{\infty} = \max_{i} (\sum_{j=1}^{n} |a_{ij}|), \quad i = 1, 2, \dots, m$$

例: 已知
$$A = \begin{bmatrix} 2 & -1 & 0 \\ 0 & 2 & 3 \\ 1 & 2 & 0 \end{bmatrix}$$
,计算 $\|A\|_1$, $\|A\|_2$, $\|A\|_\infty$ 和 $\|A\|_F$.

A:
$$||A||_1 = 5$$
, $||A||_F = \sqrt{23}$, $||A||_{\infty} = 5$,

$$A^{H}A = \begin{vmatrix} 5 & 0 & 0 \\ 0 & 9 & 6 \\ 0 & 6 & 9 \end{vmatrix}$$
, 所以 $A^{H}A$ 的特征值为 5, 15, 3. $||A||_{2} = \sqrt{15}$.

例:证明:对于任何矩阵 $A \in C^{m \times n}$ 都有

(a)
$$||A^H||_1 = ||A^T||_1 = ||A||_{\infty}$$

(b)
$$||A^H||_2 = ||A^T||_2 = ||A||_2$$

(c)
$$||A^H A||_2 = ||A||_2^2$$

矩阵的谱半径及其性质

定义: 设 $A \in C^{n \times n}$, A 的 n 个特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$,我们称 $\rho(A) = \max\{|\lambda_1|, |\lambda_2|, \dots, |\lambda_n|\}$

为矩阵A的谱半径.

例: 设 $A \in C^{n \times n}$, 那么 $\rho(A) \leq ||A||$.

其中|A|是矩阵A的任何一种范数.

$$AX = \lambda X, X \neq 0$$

$$|\lambda||X|| = ||\lambda X|| = ||AX||$$

$$\leq ||A|||X||, \quad \longrightarrow |\lambda| \leq ||A||.$$

例:设A是一个n阶正规矩阵,则 $\rho(A) = ||A||_2$

证明: 设A 的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$, A 是正规矩阵, 所以存在酉矩阵 U 使得 A = U diag $(\lambda_1, \lambda_2, \dots, \lambda_n)$ U^H , 从而

$$A^{H}A = U \operatorname{diag}(\left|\lambda_{1}\right|^{2}, \left|\lambda_{2}\right|^{2}, \cdots, \left|\lambda_{n}\right|^{2})U^{H}$$

所以
$$||A||_2 = \max_j (\lambda_j(A^H A))^{\frac{1}{2}} = \max_j |\lambda_j| = \rho(A).$$

例:设 $\| \cdot \|$ 是 $C^{n \times n}$ 上的矩阵范数.证明:

- $(1) \quad ||I|| \ge 1$
- (2) A为可逆矩阵, A为A的特征值,则有

$$\left\|A^{-1}\right\|^{-1} \leq \left|\lambda\right| \leq \left\|A\right\|$$