CSE-105:
PROGRAMMING FUNDAMENTALS
LECTURE 2: BASICS OF C

COURSE INSTRUCTOR: MD. SHAMSUJJOHA

What is Computer?

Computer

- Device capable of performing computations and making logical decisions
- Computers process data under the control of sets of instructions called computer programs

Hardware

- Various devices comprising a computer
- Keyboard, screen, mouse, disks, memory, CD-ROM, and processing units

Software

Programs that run on a computer

Six logical units of computer

- Six logical units of computer
 - 1. Input unit
 - Accepts information from the user and transforms it to *digital codes* that the computer can process → Receiving section:
 - Obtains information from input devices such as Keyboard, mouse, microphone, Scanner ...
 - 2. Output unit
 - An *interface* by which the computer conveys the output to the user → "Shipping" section
 - Takes information processed by computer, Places information on output devices Screen, printer, networks, ...
 - Information used to control other devices

- Six logical units of computer
 - 3. Memory unit
 - A semiconductor device which stores the information necessary for a program to run.
 - 2 types
 - ROM (Read Only Memory)
 - Contains information that is necessary for the computer to boot up
 - The information stays there permanently even when the computer is turned off.
 - RAM (Random Access Memory)
 - Contains instruction or data needed for a program to run
 - Got erased when the computer is turned off.

- □ Six logical units of computer
 - Central processing unit (CPU)
 - Does most of the work in executing a program
 - The CPU inside a PC is usually the microprocessor consists of 3 main parts:
 - A. Control Unit
 - Fetch instructions from main memory and put them in the instruction register (Also called Forth logic unit of a Computer)
 - B. ALU (Arithmetic Logic Unit)
 - Execute arithmetic operations (Also called Fifth logic unit of a Computer)

- Six logical units of computer
 - 6. Secondary storage unit
 - Long-term, high-capacity "warehouse" section
 - Storage
 - Inactive programs or data
 - Secondary storage devices
 - Disks
 - Longer to access than primary memory
 - Less expensive per unit than primary memory

The von Neumann architecture

How it works

- □ How does a computer execute a program ? (example programs: a computer game, a word processor, etc)
 - The instructions that comprise the program are copied from the permanent secondary memory into the main memory
 - After the instructions are loaded, the CPU starts executing the program.
 - For each instruction, the instruction is retrieved from memory, decoded to figure out what it represents, and the appropriate action carried out. (the *fetch execute cycle*)
 - Then the next instruction is fetched, decoded and executed.

Machine Languages, Assembly Languages, and High-level Languages

- Three types of computer languages
 - 1. Machine language
 - Only language computer directly understands
 - "Natural language" of computer
 - Defined by hardware design
 - Machine-dependent
 - Generally consist of strings of numbers
 - Ultimately 0s and 1s
 - Instruct computers to perform elementary operations
 - One at a time
 - Cumbersome for humans
 - Example:
 - +1300042774
 - +1400593419
 - +1200274027

Machine Languages, Assembly Languages, and High-level Languages

- Three types of computer languages
 - 2. Assembly language
 - English-like abbreviations representing elementary computer operations
 - Clearer to humans
 - Incomprehensible to computers
 - Translator programs (assemblers)
 - Convert to machine language
 - Example:

LOAD BASEPAY
ADD OVERPAY
STORE GROSSPAY

Machine Languages, Assembly Languages, and High-level Languages

- □ Three types of computer languages
 - 3. High-level languages
 - Similar to everyday English, use common mathematical notations
 - Single statements accomplish substantial tasks
 - Assembly language requires many instructions to accomplish simple tasks
 - Translator programs (compilers)
 - Convert to machine language
 - Interpreter programs
 - Directly execute high-level language programs
 - Example:

```
grossPay = basePay + overTimePay
```

C History

- Developed between 1969 and 1973 along with Unix
- □ Due mostly to Dennis Ritchie
- Designed for systems programming
 - Operating systems
 - Utility programs
 - Compilers
 - Filters

C Programming Environment

C Programming Environment

- Phases of C Programs:
 - 1. Edit
 - 2. Preprocess
 - 3. Compile
 - 4. Link
 - 5. Load
 - 6. Execute

C Compilers, Linkers, Loaders

Some Key Terms

- Source Program
 - printable/Readable Program file
- Object Program
 - nonprintable machine readable file
- Executable Program
 - nonprintable executable code
- Syntax errors
 - reported by the compiler
- Linker errors
 - reported by the linker
- Execution/Run-time errors
 - reported by the operating system


```
#include <stdio.h>
int main ()
{
    printf("This is Our First C\n Programme");
```

Output: This is Our First C
Programme

```
#include <stdio.h>
 int main ()
     printf("This \n is Our First C\n Programme");
                     Output: This
                              is Our First C
                               Programme
```

```
#include <stdio.h>
int main ()
    printf("This \n is Our First C\n Programme"
    printf("PROGRAMME");
                   Output: This
                             is Our First C
                             ProgrammePROGRAMME
```

```
#include <stdio.h>
int main ()
    printf("This \n is Our First C\n Programme
    printf("PROGRAMME");
                   Output: This
                             is Our First C
                             Programme PROGRAMME
```

```
#include <stdio.h>
int main ()
    printf("This \n is Our First C\n Programme
    printf(" PROGRAMME") ;
                    Output: This
                             is Our First C
                             Programme PROGRAMME
```

```
#include <stdio.h>
int main ()
    printf("This \n is Our First C\n Programme");
    print(("\nPROGRAMME");
                   Output: This
                             is Our First C
                             Programme
                             PROGRAMME
```

```
#include <stdio.h>
int main ()
    printf("This \n is Our First C\n Programme(\n")
    printf("PROGRAMME");
                    Output: This
                             is Our First C
                             Programme
                             PRØGRAMME
```

```
#include <stdio.h>
int main ()
{
    printf("T\nh\ni\ns is Our First C Programme ");
```

```
Output: T
    h
    i
    s is Our First C Programme
```

Summary

- We have looked at some underlying hardware
- □ We have seen some different types of languages;
 - the relevance of **semantics** and **syntax**.
- We have observed the detail necessary in an imperative language to instruct a computer properly.
- □ Finally, we examined the syntax to **print** a line of text to the screen of our computer.

Questions or Suggestions

THANK YOU!

Inquiry dishacse@yahoo.com