	Forencon Servicen: Date: / /
	Date: 24th May. Name: Rakshita. C.U.
	Course: Logic Duign USN: 4ALISECO4D.
	Topic: Boolian equations for digital Circuits. Sem & sec: IV Sem &A'sec
	Gillaub Repository: Rakshita.
	tardian unibed to margatti
	Report:
	Bodien equations for digital Circuits.
	Combinational Circuits: Conversion of Mux and Decoders to logic pater.
	→ coxt of the Grant.
	-> Dimple realization of a Circuit.
	It is defind with but of elements, at set of operators, & a No. of
	Get al al mate (a.)
	Tion beyond elevators as i can
	Two binary operators - or 4 AND (+) (*)
	many operator - Not
	Axioms or partulater of Borleau algubra are a set of logical
	expressions upon which we can build a set of Muchil tunners
	"AND operation" "OR operation" "NOT operation"
	+0.0 = 0 $+0+0=0$ $+0$ or $0'=1$.
	+0.1=0. $+0+1=1$ $+1=0.$
	→ 1.630=10.0+ 01.001 → 1+0=1 reports
	→ 1.1 = 1. 3 490 → 1 + 1 = 1
*	In Boolean Algebra In ordinary algebra.
	$A+A=A$ $\Rightarrow AA=A$ $\Rightarrow A+A=A$ $\Rightarrow AA=A^2$
	1+1=1. \$1.1=1 1+1=2 1.1=1
*	En Binary No. Slm:
	1+1 = 10. 1.1 = 1.
	taloms and postulates:
-	$\chi + 0 = \chi \rightarrow \chi + \chi = 1.$ $\rightarrow \chi \cdot 1 = \chi$
-	$2+1=1$ $\rightarrow \overline{(2)}(01)(x1)'=x.$ $\rightarrow 22=x$
	$x+\chi=x$, $\rightarrow \chi.0=0$. $\rightarrow \chi.\overline{\chi}=0$.

	colso Date: / /
	14 Commedative law:
	2> Anocative low:
	36 Distributive law:
	Middle of a making of dayling
	Theorems of Boolian algebra:
	Absorption Theorem: * x + xy = x.
	$\rightarrow \chi(1+y) = \alpha$
. wtoo sool o	* x+ xy = x+y.
	though it is two -
	Myx To Logic Gates:
	MAND MAD Similarian Antis
	$A \longrightarrow Y \longrightarrow Sliction Output (Y) \longrightarrow Y = A \overline{S} + B S.$ $B \longrightarrow B \longrightarrow B$
	B-4 I B
	3"-1 11 s so - minute paried out
	Enverter design: - Y= 1. Ā+O.A. ⇒Y=Ā.
	1011 - rillmigo prosest
losigo	Derign of & Segment decoder with Common ande diplay.
tupyrms,	BCD to 7 Segment duoder.
neutrong	
.1 =	B- BCD to - C b = B+ CD + D
	$c \rightarrow 1$ - Segment $\rightarrow e$ $c = B + E + D$
	D-> ducoder. + d=A+BD+cD+BCD.
	1 1 1 E = 12 N+ CD
	ordolo providere al f= A+EDEHUBDI+BELLON AL
4	
47	sml2 ou maniel at #
	1 = 1.1 (1 = 14)
	: ataluting and market
	PS/. C +- 1=X+P +- 1=0+0
	g · x · e · c · c · c · c · x · s · · ·
The section is	