Rozdzielone zmienne

$$y'(t) = f(t)g(y)$$

dzielimy przez g i całkujemy (rozdzielamy y, t):

$$\int_{y(t_0)}^{y(t)} \frac{1}{g(z)} dz = \int_{t_0}^{t} f(s) ds$$

Liniowe I-szego rzędu

$$y'(t) + p(t)y(t) = q(t)$$

q(t) = 0 to jed norodne

mnożymy przez czynnik całkujący $e^{P(t)}$ i zwija się do pochodnej:

$$(y(t)e^{P(t)})' = q(t)e^{P(t)}$$
 (lub zero)

$$y(t) = e^{-P(t)} \left(\int_{t_0}^t q(s)e^{P(s)} ds + y_0 e^{P(t_0)} \right)$$

Równanie zupełne

$$M(t,y) + N(t,y)y' = 0$$

tż. $\frac{\partial}{\partial y}M(t,y)=\frac{\partial}{\partial t}N(t,y)$ można zapisać alternatywnie z $y'=\frac{dy}{dt}$ Szukamy różniczki zupełnej φ :

$$M(t,y) = \frac{\partial}{\partial t}\varphi(t,y)$$

$$N(t,y) = \frac{\partial}{\partial y}\varphi(t,y)$$

Z jednego całkujemy ($\varphi(t,y)=\int M(t,y){f dt}$) zamiast stałej (h(y)) i liczymy φ do drugiego podstawiamy, różniczkujemy i mamy stałą (h(y)) z N

$$\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial t}}{N} = \phi(t)$$

Jeżeli powyższe gówno jest zależne tylko od t to $e^{\int \phi(t)}$ jest czynnikiem całkującym (uzupełnia do zupełnego). Jak poniższe gówno od tylko y to $e^{\int \psi(y)}$:

$$\frac{\frac{\partial N}{\partial t} - \frac{\partial M}{\partial y}}{M} = \psi(y)$$

Inne dziwne gówna:

- 1. Bernoulliego $\frac{dy}{dt}+p(t)y(t)=q(t)+y^m(t)$. Mnożymy przez $(1-m)y^{-m}$ podstawiamy $z(t)=y^{1-m}(t)$ i mamy liniowe niejednorodne
- 2. Riccatiego $\frac{dy}{dt} + p(t)y(t) + q(t)y^2(t) = f(t)$

- 1. Malthus: $P'(t) = aP(t) \rightarrow P(t) = P_0 e^{a(t-t_0)}$ w chuj
- 2. Von Foerstera: $P'(t) = aP^2(t) \rightarrow P(t) = P_0 \frac{a}{1-aP_0t}$ w chuj ale w T_{ks}
- 3. Benjamina Gompertza $P'(t)=\lambda e^{\alpha t}P(t)\to P(t)=P_0e^{-\frac{\lambda}{\alpha}(1-e^{\alpha(t-t_0)})}$
- 4. Verhalust $P(t)' = bP(t) \left(\frac{a}{b} P(t) \right)$ pochodna zmienia znak jak duzo P
- 5. Ciało: $T'(t)=k(T(t)-T_o)\wedge T(0)=T_0\to T(t)=T_o+(T_0-T_o)e^{-kt}$ liniowe niejednordone, $o\neq 0$

Peano - istnienie

y'=f(t,y)ciągła na prostokącie: $R=\{(t,y);t_0\leqslant t\leqslant t_0+a,|y-y_0|\leqslant b\}$ $M=\max_{(t,y)\in R}|f(t,y)|\quad \alpha=\min\left\{a,\frac{b}{M}\right\}$ istnieje **conajmniej** jedno rozwiąznie na $[t_0,t_0+\alpha]$

Picard-Lindelof - jedyność

y'=f(t,y) i $\frac{\partial}{\partial y}f(t,y)$ ciągła na prostokącie: $R=\{(t,y);t_0\leqslant t\leqslant t_0+a,|y-y_0|\leqslant b\}$ tak samo M,α istnieje **dokładnie** jedno rozwiąznie na $[t_0,t_0+\alpha]$ chcemy mieć, że α to dowolna zmienna, wtedy mamy $[t_0,\infty]$

Iteracja Picarda

$$y_{0}(t) = y_{0}$$

$$y_{1}(t) = y_{0} + \int_{t_{0}}^{t} f(s, y_{0}(s)) ds$$

$$\vdots$$

$$y_{n+1}(t) = y_{0} + \int_{t_{0}}^{t} f(s, y_{n}(s)) ds$$

 y_n w granicy to rozwiązanie

Lemat Gronwalla

U(t) nieujemna funkcja:

$$u(t) \leqslant a + b \int_{t_0}^t u(s) ds$$

dla $a, b \ge 0$, wtedy:

$$u(t) \leqslant ae^{b(t-t_0)}$$