MATEMÁTICA COMPUTACIONAL EXERCÍCIOS

- 1) Dada a função $f(x) = x^3 2x 1$
 - *a)* Sabe-se que dentro do intervalo [0,5] existe uma raiz desta função. Estabeleça a melhor aproximação possível para esse intervalo, considerando números inteiros.
 - **b)** Considerando E \leq 0,01, e arredondamento na 2ª casa decimal, encontre a raiz no intervalo que foi obtido no item **a)**, usando os métodos NR (X₀ = 1) e secante (X₀ = 1 e X₁ = 1,2)
- **2)** Dada a função $f(x) = x^3 5x^2 + 17x + 21$.
 - *a)* Sabe-se que dentro do intervalo [-6,3] existe uma raiz desta função. Estabeleça a melhor aproximação possível para esse intervalo, considerando números inteiros.
 - **b)** Considerando E < 0,0005 e arredondamento na 4^a casa decimal, encontre a raiz no intervalo que foi obtido no item **a)**, usando os métodos bissecção, NR (escolha o melhor X_0) e secante ($X_0 = -0.4$ e $X_{1=} -0.2$)

Observe a quantidade de iterações necessárias em cada método para se chegar a raiz aproximada e identifique qual o método mais eficiente.

RESPOSTAS

- 1) a) [1,2] b) 1,62 (X₅ no NR e X₆ na Secante)
- **2) a)** [-1,0] **b)** -0,9321 (X₂ no NR e X₆ na Secante)