1 Mike Questions

- 1. What is the difference between $\vec{c_i}$ and c_i ? Should we just use \vec{c} and c_i ?
- 2. Why does a $\vec{c_i}$ term appear in the denominator? is ω_j a function of $\vec{c_i}$ in this notation?
- 3. \vec{c} denotes the entire genome, correct?
- 4. If \vec{c} does denote the whole genome, should ϕ have some sort of subscript relating it to the current gene in the genome?
- 5. Is it alright if I use ν to denote the number of synonyms to c_i ?
- 6. Where do the mutation terms go? I think I'll include them for completeness. Just turn exp $\left[-\sum_{j}\beta_{j}\omega_{j}(\vec{c}_{\iota})\phi\right]$ into exp $\left[-\sum_{j}(\mu_{j}-\beta_{j}\omega_{j}(\vec{c}_{\iota}))\phi\right]$?
- 7. C only contains synonymous sequences, correct?

2 Notation

 \vec{c} is the vector of codons (of length n, the length of the ??genome/gene??)

 $??\vec{c}_{\iota}/c_{\iota}??$ is the i^{th} codon of \vec{c}

 $\vec{\theta}$ is our given conditions, including β, ϕ, ω , and the effective population size \sum_{j} is shorthand for $\sum_{j=1}^{n}$, the sum over the whole ??genome/gene??

 β_j is the cost of codon translation. In the NSE model, this is constant. In the ROC model, this is the main variable.

 ω_j is the odds of a nonsense error at codon j, $\frac{p_j}{1-p_i}$

 ϕ is the expression level of the gene

 \mathbb{C} is the set of all possible ??synonymous?? sequences

 ν is the number of synonymous codons to $\vec{c_i}$

3 Math

"The probability of seeing codon \vec{c}_i at position i (given our conditions) is approximately the fitness of that sequence divided by the sum of the fitness of all possible synonymous sequences"

$$P(\vec{c}_{\iota}|\vec{\theta}) \approx \frac{\exp\left[-\sum_{j} \beta_{j} \omega_{j}(\vec{c}_{\iota})\phi\right]}{\sum_{K \in \mathbb{C}} \exp\left[-\sum_{j} \beta_{j} \omega_{j}(\vec{c}_{\iota})\phi\right]}$$

Rewrite the sum as the sum across the synonyms. Added notation: ν is the number of synonyms for the given codon i

$$\approx \frac{\sum_{K \in \mathbb{C}|c_k = c_{\ell}} \exp\left[-\sum_{j} \beta_j \omega_j(\vec{c_{\ell}})\phi\right]}{\sum_{\ell=1}^{\nu} \sum_{K \in \mathbb{C}|c_k = c_{\ell}} \exp\left[-\sum_{j} \beta_j \omega_j(\vec{c_{\ell}})\phi\right]}$$

Pull out the term for the current codon chain, where $c_j=c_i$

$$\approx \frac{\left[\sum_{K \in \mathbb{C}} \exp\left[-\sum_{j \neq k} \beta_j \omega_j(\vec{c_\iota})\phi\right]\right] \left(\exp\left[-\beta_k \omega_k(\vec{c_\iota})\phi\right]\right)}{\sum_{\ell=1}^{\nu} \sum_{K \in \mathbb{C} | c_k = c_\ell} \exp\left[-\sum_j \beta_j \omega_j(\vec{c_\iota})\phi\right]}$$

Which cancels to

$$\approx \frac{\exp\left[-\beta_k \omega_k(\vec{c_t})\phi\right]}{\sum_{\ell=1}^{\nu} \exp\left[-\sum_j \beta_j \omega_j(\vec{c_t})\phi\right]}$$