Parameters 2018 model 1

Rates for the home and away goals

$$\ln \lambda_k(t) = \ln \alpha_i + \ln \beta_j + \ln \gamma_h + \mathbb{I}\{\text{half} = 2\} \ln \tau + \omega_{\lambda x} x(t) + \omega_{\lambda y} y(t) + \omega_{\lambda x^*} x^*(t) + \omega_{\lambda y^*} y^*(t)$$
$$\ln \mu_k(t) = \ln \alpha_j + \ln \beta_i + \mathbb{I}\{\text{half} = 2\} \ln \tau + \omega_{\mu x} x(t) + \omega_{\mu y} y(t) + \omega_{\mu x^*} x^*(t) + \omega_{\mu y^*} y^*(t)$$

- *i*: home team index;
- *j*: away team index;
- α : attack strength parameter;
- $1/\beta$: defense strength parameter;
- γ_h : home advantage parameter;
- τ : second half parameter;
- x(t): the number of goals of the home team until minute t;
- y(t): the number of goals of the away team until minute t;
- $x^*(t)$: the number of red cards of the home team until minute t;
- $y^*(t)$: the number of red cards of the away team until minute t;
- $\omega_{\lambda x}$, $\omega_{\lambda y}$, $\omega_{\mu x}$ and $\omega_{\mu y}$: parameters that measure the impact of the scored goals in the rates;
- $\omega_{\lambda x^*}$, $\omega_{\lambda y^*}$, $\omega_{\mu x^*}$ and $\omega_{\mu y^*}$: parameters that measure the impact of red cards in the rates.

Rates for the home and away red cards

$$\begin{split} \lambda_k^*(t) &= A_\lambda \Big(t + 45^{\mathbb{I}\{\text{half} = 2\}} \Big) \\ \mu_k^*(t) &= A_\mu \Big(t + 45^{\mathbb{I}\{\text{half} = 2\}} \Big) \end{split}$$

Stoppage time

The stoppage time for the first half, U^1 , and the second half, U^2 , are modeled as:

$$U^1 \sim \text{Poisson}(\eta_1 + \rho_1 r^1)$$

 $U^2 \sim \text{Poisson}(\eta_2 + \rho_2 r^2 + \kappa c)$

- r^t is the amount of red cards received in half t until minute 45;
- $c = \begin{cases} 1, & \text{if } |x-y| \leq 1 \text{ at minute } 45 \text{ of the second half;} \\ 0, & \text{otherwise.} \end{cases}$

Constraint

The constraint for identificability is

$$\sum_{i=1}^{n} \log(\alpha_i) = \sum_{i=1}^{n} \log(\beta_i).$$

Table 1: Alphas and betas

Team	α	β
América-MG	0.0594	0.0955
Athletico-PR	0.1163	0.0725
Atlético-MG	0.1142	0.0834
Bahia	0.0758	0.0824
Botafogo	0.0767	0.0904
Ceará	0.0609	0.0737
Chapecoense	0.0643	0.1006
Corinthians	0.0672	0.0677
Cruzeiro	0.0670	0.0682
Flamengo	0.1269	0.0541
Fluminense	0.0648	0.0940
Grêmio	0.0945	0.0517
Internacional	0.1020	0.0545
Palmeiras	0.1362	0.0462
Paraná	0.0334	0.1246
Santos	0.0939	0.0790
São Paulo	0.0960	0.0634
Sport	0.0672	0.1143
Vasco da Gama	0.0757	0.0954
Vitória	0.0677	0.1361

```
Estimative = c(exp(mod_1$gamma), exp(mod_1$tau), mod_1$omega))
kable(goals, digits = 4, caption = "Goal rate parameters")
```

Table 2: Goal rate parameters

Parameter	Estimative
$\overline{\gamma_h}$	1.7998
au	1.3853
$\omega_{\lambda x}$	-0.2350
$\omega_{\lambda y}$	0.3093
$\omega_{\mu x}$	0.0996
$\omega_{\mu y}$	-0.1241
$\omega_{\lambda x^*}$	-0.6620
$\omega_{\lambda y^*}$	0.3196
$\omega_{\mu x^*}$	-0.1808
$\omega_{\mu y^*}$	-0.0581

```
Parameter = c("$A_\\lambda$", "$A_\\mu$")
reds = tibble(Parameter, Estimative = exp(mod_1$a))
kable(reds, digits = 8, caption = "Red card rate parameters")
```

Table 3: Red card rate parameters

Parameter	Estimative
$\overline{A_{\lambda}}$	0.00001959
A_{μ}	0.00003227

Table 4: Stoppage time parameters

Parameter	Estimative
$\overline{\eta_1}$	2.3879
η_2	3.5898
$ ho_1$	0.9702
$ ho_2$	0.2034
κ	1.0271

```
mod_1$loglik
```

[1] -2047.963