

Modul M1 – Allgemeine Psychologie Vorlesung

Prof. Dr. Florian Kattner
Professur für Allgemeine Psychologie
Health and Medical University
Olympischer Weg 1
14471 Potsdam

Plan der Vorlesung

Nr.	Datum	Thema
1	12.10.2021 (Di)	Einführung: Was ist Allgemeine Psychologie?
2	19.10.2021 (Di)	Psychophysik I: Schwellenmessung
3	26.10.2021 (Di)	Psychophysik II: Skalierung, adaptive Verfahren und Signalentdeckungstheorie
4	02.11.2021 (Di)	Visuelle Wahrnehmung I: Grundlagen des Sehens
5	09.11.2021 (Di)	Visuelle Wahrnehmung II: Neuronale Verarbeitung (Retina)
6	16.11.2021 (Di)	Visuelle Wahrnehmung III: Kortikale Organisation
7	23.11.2021 (Di)	Visuelle Wahrnehmung IV: Farbwahrnehmung
8	07.12.2021 (Di)	Visuelle Wahrnehmung V: Farb-, Tiefen- und Größenwahrnehmung
9	07.12.2021 (Di)	Auditive Wahrnehmung I: Grundlagen des Hörens
10	14.12.2021 (Di)	Auditive Wahrnehmung II: Richtungshören und auditive Szenenanalyse
11	11.01.2022 (Di)	Aufmerksamkeit
12	18.01.2022 (Di)	Gedächtnis I: Gedächtnissysteme und Arbeitsgedächtnis
13	25.01.2022 (Di)	Gedächtnis II: Langzeitgedächtnis
14	01.02.2022 (Di)	Gedächtnis III und Sprache
15	08.02.2022 (Di)	Wiederholung und Fragestunde

Der physikalische Reiz: Schall

- Schwankungen des Luftdrucks
 - Luftmoleküle werden angestoßen (z.B. durch Vibrationen der Lautsprechermembran)
 - Verdichtung/Verdünnung der Luft
 - Muster breitet sich in Luft aus (340 m/s)
 - Mathematische Beschreibung: Sinus

Schallwelle

 Muster an Druckschwankungen (Druck an Zeitpunkt t) kann als Sinusfunktion mit drei Parametern beschrieben werden:

$$p(t) = \mathbf{A} \cdot \sin(2\pi \mathbf{f} t + \boldsymbol{\theta})$$

- 1. **Phase** θ : Horizontale Verschiebung der Schwingung (Einheit: π)
- 2. Amplitude A: Maximale Druckänderung in einer Richtung (Einheit: Pa) → Pegel (dB) = log (Druck)
- 3. Frequenz *f*: Anzahl der Schwingungen (Zu- und Abnahme des Drucks) pro Sekunde (Einheit: Hz)

Schalldruckpegel

 Schalldruckpegel als logarithmische Transformation des Schalldrucks:

$$L_p = 20 \cdot log\left(\frac{p}{p_0}\right)$$

- Referenzdruck $ρ_0$ = 20 μPa (Hörschwelle bei 1000 Hz)
- × 10 im Druck entspricht +20 im Pegel
- Anstieg von 10 auf 100 Mio. μPa entspricht 0 140 dB!
- → Kleinster wahrnehmbarer Druck: 20 µPa (0 dB)
- → Normale Unterhaltung: 20 000 µPa (60 dB)
- → Lauter Straßenlärm: 200 000 µPa (80 dB)
- → Düsenjet: 200 000 000 µPa (140 dB)

Schalldruckpegel: Rechnen mit dB

Schalldruck von 2000 µPa → Pegel von 40 dB

$$20 \log(2000/20) = 20 \log(100) = 20 \log(10^2) = 20 \cdot 2 = 40$$

Schalldruck von 20000 µPa → Pegel von 60 dB

$$20 \log(20000/20) = 20 \log(10^3) = 20 \cdot 3 = 60$$

Welcher Pegel ergibt sich bei 200 µPa?

20 dB!

• Wie wirkt sich Verdoppelung des Schalldrucks auf den Pegel in dB aus: Summe von zwei Lautsprechern, die je 60 dB abgeben?

$$20 \log((2 \cdot 20000)/20) = 20 \log(40000/20) = 20 \log(2000) = 66.02 \text{ dB}$$

→ Verdoppelung des Drucks bedeutet immer Zuwachs von ca. 6 dB:

$$L_{2p} = 20 \cdot \log\left(\frac{2p}{p_0}\right) = 20\log(2) + 20\log\left(\frac{p}{p_0}\right)$$

Mentimeter-Frage

- Was sind 0 dB + 0 dB?
- https://www.menti.com/ycstbn8rmk
- 0 dB entspricht Schalldruck von 20 μPa:

$$20 \log(20/20) = 20 \log(1) = 0 dB$$

Schalldruck bei 2 x 0 dB:

$$20 \log((20+20)/20) = 20 \log(2) = 6 dB$$

52%

https://www.mentimeter.com/s/df0da7d08c32574dd3b060fec5f1ad77/508b8c197263

Lautheit

 Lautheit L (psychologische Größe!) wird primär durch den Schalldruckpegel (SPL) bestimmt. Nach Stevens' Potenzgesetz:

$$L = a p^b$$
$$\log(L) = a + b SPL$$

- Lautheit hängt aber auch von anderen Faktoren ab: Frequenz, Spektrum, Dauer, Bedeutung, Erwartungen, ...
 - → 40 dB bei 100 Hz ist deutlich lauter als 40 dB bei 500 Hz!
 - → Lange Töne klingen oft lauter als kurze Töne

Lautheit und Frequenz

- Isophone: Kurven gleicher Lautheit
 - Einheit **phon** gibt an, bei welchem Pegel ein 1000-Hz-Ton als gleich laut empfunden wird wie das eigentliche Schallereignis einer anderen Frequenz.

Frequenzen des Schalls

- Menschen hören Frequenzen zwischen ca. 20 und 20000 Hz
- Vergleich: Elefant (16-12000 Hz), Hund (67-45000 Hz), Katze (45-64000 Hz), Fledermaus (2000-110000 Hz)

- Tonhöhe = Eigenschaft von Hörempfindungen, mit der sich Töne von "tief" nach "hoch" anordnen lassen.
- Eng verbunden mit der Frequenz, aber die meisten Geräusche, Klänge und Sprachsignale enthalten viele verschiedene Frequenzen!
 - → Komplexe Töne (harmonische Klänge) bestehen aus einer Grundfrequenz und ganzzahligen Vielfachen.
 - → Tonhöhe wird bestimmt durch die **Grundfrequenz** (entspricht der Periodizität)
- Tonchroma: Ähnlichkeit von Klängen, deren Grundfrequenzen in ganzzahligem Verhältnis stehen (Oktavabstand)

Tonhöhe und Frequenz

- **Shepard-Töne** (Shepart, 1965)
 - → Transitivität der Tonhöhenwahrnehmung bricht zusammen: A > B, B > C, ... A > C

- Tritone-Paradox (Deutsch, 1986)
 - Ansteigendes oder absteigendes Tonpaar?
 - → Bei halbem Oktavabstand ist die Wahrnehmung der relativen Tonhöhe instabil!

Tonhöhe und Frequenz

- Phänomen des fehlenden Grundtons:
 Bei komplexen Tönen bleibt die Tonhöhe erhalten, auch wenn die Grundfrequenz selbst im Ton nicht enthalten ist.
- → Tonhöhe muss aus Periodizität (rote gestrichelte Linie) erschlossen werden!

Harmonische 1-4

Harmonische 4-10

