Clustering

CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu

The Problem of Clustering

- Given a set of points, with a notion of distance between points, group the points into some number of *clusters*, so that
 - members of a cluster are close/similar to each other
 - Members of different clusters are dissimilar
- Usually:
 - points are in a high---dimensional space
 - similarity is defined using a distance measure
 - Euclidean, Cosine, Jaccard, edit distance, ...

Example: Clusters

Application: SkyCat

- A catalog of 2 billion "sky objects" represents objects by their radiation in 7 dimensions (frequency bands).
- Problem: Cluster into similar objects, e.g., galaxies, nearby stars, quasars, etc.
- Sloan Sky Survey is a newer, better version.

Clustering Movies

- Intuitively: Movies divide into categories, and customers prefer a few categories.
 - But what are categories really?
- Represent a movie by the customers who bought/rated it
- Similar movies's have similar sets of customers, and vice-versa
- Space of all movies:
 - Think of a space with one dimension for each customer.
 - Values in a dimension may be 0 or 1 only.
 - A movies's point in this space is $(x_1, x_2, ..., x_k)$, where $x_i = 1$ iff the ith customer bought the movie.

Cosine, Jaccard, and Euclidean

- We have a choice:
 - 1. Sets as vectors: measure similarity by the cosine distance.
 - Sets as sets: measure similarity by the Jaccard distance.
 - Sets as points: measure similarity by Euclidean distance.

Methods of Clustering

Hierarchical:

- Agglomerative (bottom up):
 - Initially, each point is a cluster
 - Repeatedly combine the two "nearest" clusters into one.
- Divisive (top down):
 - Start with one cluster and recursively split it

- Maintain a set of clusters
- Points belong to "nearest" cluster

Hierarchical Clustering

- Key operation:
 Repeatedly combine two nearest clusters
- Three important questions:
 - 1. How do you represent a cluster of more than one point?
 - 2. How do you determine the "nearness" of clusters?
 - 3. When to stop combining clusters?

Hierarchical Clustering — (2)

- Key problem: as you build clusters, how do you represent the location of each cluster, to tell which pair of clusters is closest?
- Euclidean case: each cluster has a centroid = average of its points
 - Measure cluster distances by distances of centroids

Example: Hierarchical clustering

Data

Dendrogram

And in the Non-Euclidean Case?

- The only "locations" we can talk about are the points themselves.
 - i.e., there is no "average" of two points.
- Approach 1: clustroid = point "closest" to other points.
 - Treat clustroid as if it were centroid, when computing intercluster distances.

"Closest" Point?

- Possible meanings:
 - 1. Smallest maximum distance to the other points.
 - 2. Smallest average distance to other points.
 - 3. Smallest sum of squares of distances to other points.
 - For distance d centroid c of cluster C is:

$$\min_{c} \sum_{x \in C} d(x, c)^2$$

Defining "Nearness" of Clusters

- Approach 2: intercluster distance = minimum of the distances between any two points, one from each cluster.
- Approach 3: Pick a notion of "cohesion" of clusters, e.g., maximum distance from the clustroid.
 - Merge clusters whose union is most cohesive.

Cohesion

- Approach 1: Use the diameter of the merged cluster = maximum distance between points in the cluster.
- Approach 2: Use the average distance between points in the cluster.
- Approach 3: Use a density-based approach: take the diameter or avg. distance, e.g., and divide by the number of points in the cluster.
 - Perhaps raise the number of points to a power first, e.g., square-root.

Implementing hierarchical clustering

- Naïve implementation:
 - At each step, compute pairwise distances between all pairs of clusters
 - $O(N^3)$
- Careful implementation using priority queue can reduce time to O(N² log N)
 - Still too expensive for really big datasets that do not fit in memory

k – Means Algorithm(s)

- Assumes Euclidean space/distance.
- Start by picking k, the number of clusters.
- Initialize clusters by picking one point per cluster.
 - Example: pick one point at random, then k-1 other points, each as far away as possible from the previous points.

Populating Clusters

- For each point, place it in the cluster whose current centroid it is nearest.
- 2. After all points are assigned, fix the centroids of the k clusters.
- Optional: reassign all points to their closest centroid.
 - Sometimes moves points between clusters.

Example: Assigning Clusters

Clusters after first round

Getting k Right

- Try different k, looking at the change in the average distance to centroid, as k increases.
- Average falls rapidly until right k, then changes little.

Example: Picking k

Too few; many long distances to centroid.

Example: Picking k

Just right; distances rather short.

Example: Picking k

Too many; little improvement in average distance.

BFR Algorithm

- BFR [Bradley-Fayyad-Reina] is a variant of k-means designed to handle very large (disk-resident) data sets.
- It assumes that clusters are normally distributed around a centroid in a Euclidean space.
 - Standard deviations in different dimensions may vary.

BFR - (2)

- Points are read one main-memory-full at a time.
- Most points from previous memory loads are summarized by simple statistics.
- To begin, from the initial load we select the initial k centroids by some sensible approach.

Initialization: k - Means

- Possibilities include:
 - Take a small random sample and cluster optimally
 - Take a sample; pick a random point, and then k-1 more points, each as far from the previously selected points as possible.

Three Classes of Points

- The discard set (DS): points close enough to a centroid to be summarized.
- The compression set (CS): groups of points that are close together but not close to any centroid. They are summarized, but not assigned to a cluster.
- 3. The *retained set (RS)*: isolated points.

"Galaxies" Picture

Summarizing Sets of Points

- For each cluster, the discard set is summarized by:
 - 1. The number of points, N.
 - 2. The vector SUM, whose *i*th component is the sum of the coordinates of the points in the *i*th dimension.
 - 3. The vector SUMSQ: i^{th} component = sum of squares of coordinates in i^{th} dimension.

Comments

- 2d + 1 values represent any size cluster.
 - $\mathbf{d} = \mathbf{d}$ = number of dimensions.
- Averages in each dimension (centroid) can be calculated as SUM_i/N .
 - $SUM_i = i^{th}$ component of SUM.
- Variance of a cluster's discard set in dimension i is: $(SUMSQ_i/N) (SUM_i/N)^2$
 - And standard deviation is the square root of that.
- Q: Why use this representation of clusters?

Processing "Memory-Load" of Points

- Find those points that are "sufficiently close" to a cluster centroid; add those points to that cluster and the DS.
- Use any main-memory clustering algorithm to cluster the remaining points and the old RS.
 - Clusters go to the CS; outlying points to the RS.

Processing – (2)

- 3. Adjust statistics of the clusters to account for the new points.
 - Add N's, SUM's, SUMSQ's.
- 4. Consider merging compressed sets in the CS.
- If this is the last round, merge all compressed sets in the CS and all RS points into their nearest cluster.

A Few Details . . .

- How do we decide if a point is "close enough" to a cluster that we will add the point to that cluster?
- How do we decide whether two compressed sets deserve to be combined into one?

How Close is Close Enough?

- We need a way to decide whether to put a new point into a cluster.
- BFR suggest two ways:
 - The Mahalanobis distance is less than a threshold.
 - Low likelihood of the currently nearest centroid changing.

Mahalanobis Distance

- Normalized Euclidean distance from centroid.
- For point $(x_1,...,x_k)$ and centroid $(c_1,...,c_k)$:
 - 1. Normalize in each dimension: $y_i = (x_i c_i)/\sigma_i$
 - 2. Take sum of the squares of the y_i 's.
 - Take the square root.

Mahalanobis Distance — (2)

- If clusters are normally distributed in d dimensions, then after transformation, one standard deviation = \sqrt{d} .
 - i.e., 70% of the points of the cluster will have a Mahalanobis distance $< \sqrt{d}$.
- Accept a point for a cluster if its M.D. is < some threshold, e.g. 4 standard deviations.

Picture: Equal M.D. Regions

Should 2 CS subclusters be combined?

- Compute the variance of the combined subcluster.
 - N, SUM, and SUMSQ allow us to make that calculation quickly.
- Combine if the variance is below some threshold.
- Many alternatives: treat dimensions differently, consider density.

The CURE Algorithm

Problem with BFR/k -means:

Assumes clusters are normally distributed in each dimension.

 And axes are fixed – ellipses at an angle are not OK.

CURE:

- Assumes a Euclidean distance.
- Allows clusters to assume any shape.

Example: Stanford Faculty Salaries

Starting CURE

- Pick a random sample of points that fit in main memory.
- Cluster these points hierarchically group nearest points/clusters.
- 3. For each cluster, pick a sample of points, as dispersed as possible.
- 4. From the sample, pick representatives by moving them (say) 20% toward the centroid of the cluster.

Example: Initial Clusters

Example: Pick Dispersed Points

Example: Pick Dispersed Points

Finishing CURE

- Now, visit each point p in the data set.
- Place it in the "closest cluster."
 - Normal definition of "closest": that cluster with the closest (to p) among all the sample points of all the clusters.