PAT-NO:

JP02001237069A

DOCUMENT-IDENTIFIER: JP 2001237069 A

TITLE:

EL ELEMENT AND MANUFACTURING METHOD OF THE SAME

PUBN-DATE:

August 31, 2001

INVENTOR-INFORMATION:

NAME

COUNTRY

AOKI, DAIGO

N/A

MIYOSHI, KENYA

N/A

ASSIGNEE-INFORMATION:

NAME

COUNTRY

DAINIPPON PRINTING CO LTD

N/A

APPL-NO:

JP2000045566

APPL-DATE:

February 23, 2000

INT-CL (IPC): H05B033/10, H05B033/14, H05B033/22

ABSTRACT:

PROBLEM TO BE SOLVED: To provide an EL element emitting light with pattern and a simple manufacturing method of the same.

SOLUTION: The manufacturing method of the EL element with an EL layer between electrodes facing each other, includes a process of forming a photocatalytic material containing a layer on one of the above electrodes, a process of forming a pattern by exposing the photocatalytic material containing layer in the shape of the pattern, depending on the difference of liability to moistening, and a process of forming at least one layer out of an electric charge injection layer, an electric charge conducting layer and a luminous layer, on the exposing part of the photocatalytic material containing layer, and a process of forming an another electrode.

COPYRIGHT: (C)2001,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-237069 (P2001 - 237069A)

(43)公開日 平成13年8月31日(2001.8.31)

(51) Int.Cl.7		識別記号	FΙ		テーマコード(参考)
H05B	33/10		H05B	33/10	3K007
	33/14			33/14	A
	33/22			33/22	Z

		客查請求	未請求	請求項の数9	OL	(全	9 頁)	
(21)出願番号	特願2000-45566(P2000-45566)	(71) 出顧人	000002897					
(22)出顧日	平成12年2月23日(2000.2,23)	大日本印刷株式会社 東京都新宿区市谷加賀町一丁目1番1号						
		(72)発明者	青 木	大 吾				
				「宿区市谷加賀町 「刷株式会社内	1—1.	11番	1号	
		(72)発明者	三好					
				所宿区市谷加賀町 「刷株式会社内	1—T E	11番	1号	
		(74)代理人	10006428	-				
				-	(外3名			
		Fターム(参	考) 3K00	07 ABI5 ABI8 C	AO1 CB	DAO DAO	1	
				DBO3 EA02 E	300 FA	01		

(54) 【発明の名称】 EL素子およびその製造方法

(57)【要約】

【課題】 パターン発光できるEL素子の簡便な製造方 法とEL素子の提供。

【解決手段】 対向する電極と、前記対向する電極の間 にEL層を有してなる、EL素子の製造方法であって、 前記一方の電極上に、光触媒含有層を形成する工程と、 前記光触媒含有層をパターン状に露光して、濡れ性の違 いによるパターンを形成する工程と、前記光触媒含有層 の露光部上に、電荷注入層、電荷輸送層および発光層の 少なくとも一層を形成する工程と、他方の電極を形成す る工程を含むEL素子の製造方法。

【特許請求の範囲】

【請求項1】対向する電極と、前記対向する電極の間に EL層を有してなる、EL素子の製造方法であって、 前記一方の電極上に、光触媒含有層を形成する工程と、 前記光触媒含有層をパターン状に露光して、濡れ性の違 いによるパターンを形成する工程と、

前記光触媒含有層の露光部上に、電荷注入層、電荷輸送 層および発光層の少なくとも一層を形成する工程と、 他方の電極を形成する工程、とを含むEL素子の製造方

【請求項2】対向する電極と、前記対向する電極の間に EL層を有してなる、EL素子の製造方法であって、 前記一方の電極上に、光触媒含有層を形成する工程と、 前記光触媒含有層をパターン状に露光して、濡れ性の違 いによるパターンを形成する工程と、

前記光触媒含有層の露光部上に、絶縁層を形成する工程

前記絶縁層を設けた光触媒含有層上にEL層を形成する 工程と、

他方の電極を形成する工程、とを含むEL素子の製造方 20 法。

【請求項3】対向する電極と、前記対向する電極の間に EL層を有してなる、EL素子の製造方法であって、 前記一方の電極上に、光触媒含有層を形成する工程と、 前記光触媒含有層をパターン状に露光して、濡れ性の違 いによるパターンを形成する工程と、

前記光触媒含有層の露光部上に、UV硬化樹脂からなる 絶縁層を形成する工程と、

前記絶縁層を設けた光触媒含有層を全面露光した後に、 を形成する工程と、

他方の電極を形成する工程、とを含むEL素子の製造方 法。

【請求項4】対向する電極と、前記対向する電極の間に EL層を有してなる、EL素子であって、

前記二つの電極間に光触媒含有層を少なくとも一層有 し、かつ、

いずれの電極のパターン形状とも異なるパターンの発光 表示を行い得ることを特徴とする、EL素子。

【請求項5】前記光触媒含有層上に、少なくとも一層の 40 パターン状の電荷注入層、電荷輸送層または発光層を有 し、このパターン形状に対応する発光パターンを表示し 得る、請求項4に記載のEL素子。

【請求項6】陽極上に光触媒含有層を有し、前記光触媒 含有層上に、パターン状の正孔注入層を有し、前記正孔 注入層上に発光層を有するEL素子であって、前記正孔 注入層のパターンに対応する発光パターンを表示し得 る、請求項5に記載のEL素子。

【請求項7】前記光触媒含有層上に、少なくとも一層の

部分に対応する発光パターンを表示し得る、請求項4に 記載のEL素子。

【請求項8】前記絶縁層がUV硬化樹脂からなる、請求 項7に記載のEL素子。

【請求項9】前記光触媒含有層が、酸化チタンを含有す るものである、請求項4に記載のEL素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、EL(エレクトロ 10 ルミネッセンス)素子、特にディスプレイ装置に使用さ れる有機EL素子に関する。

[0002]

【従来の技術】EL素子は自発光の面状表示素子として の使用が注目されている。その中でも、有機物質を発光 材料として用いた有機薄膜ELディスプレイは、印加電 圧が10V弱であっても高輝度な発光が実現するなど発 光効率が高く、単純な素子構造で発光が可能で、特定の パターンを発光表示させる広告その他低価格の簡易表示 用のディスプレイへの応用が期待されている。

【0003】しかしながら、EL素子を用いたディスプ レイを実際に製造するにあたっては、電極や有機EL層 のパターニングが必要であって、典型的にはフォトリソ 工程や複雑なパターン成膜装置によるパターニング工程 を要し、工程の複雑化やコストの上昇を招く。また有機 EL材料をマスク蒸着によりパターニングする方法で は、高価格の真空装置が必要となり、歩留まりや、コス トが問題となる。一方、インクジェット法による塗布に よりパターン形成する方法は、工程は比較的簡便ではあ るが、歩留まりや膜厚均一性の点で問題がある。また、 電荷注入層、電荷輸送層および発光層の少なくとも一層 30 広告用EL素子等多様な形状や大面積化が要求される場 合には、生産性が著しく低下する問題がある。

> 【0004】このように、EL素子、特に有機ELディ スプレイの製造においては、電極、有機EL層および絶 縁層等のパターニングを行うために、工程数が非常に多 くなり、歩留まり、生産性、コストの面で大きな課題を 抱えている。

[0005]

【発明が解決しようとする課題】本発明の目的は、パタ ーン発光することのできるEL素子の簡便な製造方法で あって、低価格のディスプレイを提供できる製造方法を 提供することと、そのような方法により製造しうるEL 素子を提供することである。

[0006]

【課題を解決するための手段】本発明者らは、光触媒含 有層にパターン露光することで濡れ性の違いによるパタ ーンを形成し、そのパターンを利用してEL層を形成す ることにより前記課題を解決できることを見出し本発明 を完成させた。

【0007】したがって、本発明のEL素子の製造方法 絶縁パターンを有し、この絶縁層パターンの存在しない 50 は、対向する電極と、前記対向する電極の間にEL層を

有してなる、E L 素子の製造方法であって、前記一方の電極上に、光触媒含有層を形成する工程と、前記光触媒含有層をパターン状に露光して、濡れ性の違いによるパターンを形成する工程と、前記光触媒含有層の露光部上に、電荷注入層、電荷輸送層および発光層の少なくとも一層を形成する工程と、他方の電極を形成する工程とを含むことを特徴とする。

【0008】また、別の態様の本発明のEL素子の製造方法は、対向する電極と、前記対向する電極の間にEL層を有してなる、EL素子の製造方法であって、前記一10方の電極上に、光触媒含有層を形成する工程と、前記光触媒含有層をパターン状に露光して、濡れ性の違いによるパターンを形成する工程と、前記光触媒含有層の露光部上に、絶縁層を形成する工程と、前記絶縁層を設けた光触媒含有層上にEL層を形成する工程と、他方の電極を形成する工程とを含む方法である。

【0009】さらに本発明のEL素子は、対向する電極と、前記対向する電極の間にEL層を有してなる、EL素子であって、前記二つの電極間に光触媒含有層を少なくとも一層有し、かつ、いずれの電極のパターン形状と 20も異なるパターンの発光表示を行い得ることを特徴とするものである。

[0010]

【発明の実施の形態】以下、本発明を具体的に説明する。

【0011】<u>EL</u>素子

本発明のEL素子の第1の特徴は、対向する電極のいずれのパターン形状とも異なるパターンの発光表示を行い得るものであることである。したがって、電極のパターニングは必要ではなく、製造が簡便化できる。

【0012】本発明のEL素子の第2の特徴は、対向する電極の間に光触媒含有層を少なくとも一層有することである。この層は製造を簡素化するために設ける層であり、絶縁性の材料からなることもあるが、意外にもEL素子の発光性能を害しない。

【0013】パターン発光手段

本発明のEL素子のパターン発光は、第1に光触媒含有層上にEL層をパターニングして、パターン化されたEL層を発光させる方式であることができる。このEL層は、その下位概念として、電荷注入層(正孔および電子輸送層)ならびに発光層を含むものであるが、パターニングを行うのはこれらの電荷注入層、電荷輸送層または発光層の少なくとも1層であればよい。例えば、陽極上に光触媒含有層を有し、前記正孔注入層上に前記パターンにかかわらず全面に発光層を有するEL素子であることができる。また、一部の発光層をパターニングするとともに、このパターニングされた発光層と異なる色の発光層を全面形成することにより、全面発光しながら、その中にパター50

ン発光を組み合わせることができる。

【0014】本発明のEL素子のパターン発光は、第2に光触媒含有層上に絶縁層をパターニングして、絶縁されなかった部分のEL層を発光させる方式であることもできる。

【0015】光触媒含有層

(光触媒含有層)本発明のEL素子に設けられる光触媒含有層は、対向する電極の間に設けられるのであれば、電極に隣接する位置あるいは電極との間になんらかの層が介在して電極に隣接しない位置であってもよい。例えば電荷輸送層と発光層の間などEL層内部であっても設けることができる。典型的には、光触媒含有層は、一方の電極上に後述の通常の塗膜形成方法により設けることができる。

【0016】本発明においては、絶縁性の比較的高い光触媒含有物質であっても光触媒含有層の厚みを適切にすることにより予想外にもEL素子の発光ができる。この場合の好ましい厚みは5~1000nm、好ましくは10~100nmである。本発明において光触媒含有層とは、広く光照射によって濡れ性が今後変化し得る層および既に変化した層を意味する。また、光触媒とは、このような変化を引き起こすものであれば、どのような物質であってもよい。光触媒含有層はパターン状に露光することにより、濡れ性の変化によるパターンを形成することができる。

【0017】(濡れ性変化の原理)本発明においては、 光の照射によって近傍の物質 (バインダーなど) に化学 変化を起こすことが可能な光触媒を用いて、光照射を受 けた部分に濡れ性の違いによるパターンを形成する。光 触媒による作用機構は、必ずしも明確なものではない が、光の照射によって光触媒に生成したキャリアが、バ インダーなどの化学構造を直接変化させ、あるいは酸 素、水の存在下で生じた活性酸素種によってバインダー などの化学構造を変化させることにより、表面の濡れ性 が変化すると考えられる。

【0018】(光触媒材料)本発明に用いられる光触媒材料としては、例えば光半導体として知られている酸化チタン(TiO_2)、酸化亜鉛(ZnO)、酸化すず(SnO_2)・チタン酸ストロンチウム(SrTi

0 O3)・酸化タングステン(WO3)、酸化ビスマス (Bi2O3)、酸化鉄(Fe2O3)のような金属酸 化物を挙げることができるが、特に酸化チタンが好ましい。酸化チタンは、バンドギャップエネルギーが高く、 化学的に安定であり、毒性もなく、入手も容易である点 で有利である。

層を有し、可記正孔注入層上に前記パターンにかかわら ず全面に発光層を有するEL素子であることができる。 また、一部の発光層をパターニングするとともに、この パターニングされた発光層と異なる色の発光層を全面形 成することにより、全面発光しながら、その中にパター 50 業 (株)、STS-02、平均結晶子径7 n m)、硝酸 解膠型のアナターゼ型チタニアゾル (日産化学、TA-15、平均結晶子径12nm)を挙げることができる。 【0020】光触媒含有層中の光触媒の量は、5重量% ~60重量%であることが好ましく、20重量%~40 重量%であることがより好ましい。

【0021】(バインダー成分) 本発明の光触媒含有層 に用いることのできるバインダーは、好ましくは主骨格 が前記光触媒の光励起により分解されないような高い結 合エネルギーを有するものであり、例えば、(1) ゾル ゲル反応等によりクロロまたはアルコキシシラン等を加 10 水分解、重縮合して大きな強度を発揮するオルガノボリ シロキサン、あるいは(2) 揺水性や揺油性に優れた反 応性シリコーンを架橋したオルガノポリシロキサン等を 挙げることができる。

【0022】前記(1)の場合、一般式YnSiX 4-n (n=1~3)で表される珪素化合物の1種また は2種以上の加水分解縮合物、共加水分解化合物が主体 であることができる。前記一般式では、Yは例えばアル キル基、フルオロアルキル基、ビニル基、アミノ基また はエポキシ基であることができ、Xは例えばハロゲン、 メトキシル基、エトキシル基、またはアセチル基である ことができる。

【0023】具体的には、メチルトリクロルシラン、メ チルトリブロムシラン、メチルトリメトキシシラン、メ チルトリエトキシシラン、メチルトリイソプロポキシシ ラン、メチルトリ t ーブトキシシラン; エチルトリクロ ルシラン、エチルトリブロムシラン、エチルトリメトキ シシラン、エチルトリエトキシシラン、エチルトリイソ プロポキシシラン、エチルトリt-ブトキシシラン; n ープロピルトリクロルシラン、nープロピルトリブロム 30 メタアクリロキシプロピルトリイソプロポキシシラン、 シラン、nープロピルトリメトキシシラン、nープロピ ルトリエトキシシラン、n-プロピルトリイソプロポキ シシラン、n-プロピルトリt-ブトキシシラン; n-ヘキシルトリクロルシラン、n-ヘキシルトリブロムシ ラン、n-ヘキシルトリメトキシシラン、n-ヘキシル トリエトキシシラン、n-ヘキシルトリイソプロポキシ シラン、n-ヘキシルトリt-ブトキシシラン; n-デ シルトリクロルシラン、nーデシルトリブロムシラン、 n-デシルトリメトキシシラン、n-デシルトリエトキ シシラン、 \mathbf{n} ーデシルトリイソプロポキシシラン、 \mathbf{n} ー 40 ロピルトリエトキシシラン、 γ ーメルカプトプロピルト デシルトリtーブトキシシラン; nーオクタデシルトリ クロルシラン、nーオクタデシルトリブロムシラン、n ーオクタデシルトリメトキシシラン、n-オクタデシル トリエトキシシラン、n-オクタデシルトリイソプロポ キシシラン、nーオクタデシルトリセーブトキシシラ ン;フェニルトリクロルシラン、フェニルトリプロムシ ラン、フェニルトリメトキシシラン、フェニルトリエト キシシラン、フェニルトリイソプロポキシシラン、フェ ニルトリセーブトキシシラン; テトラクロルシラン、テ トラブロムシラン、テトラメトキシシラン、テトラエト 50 ンのの1種または2種以上の加水分解縮合物、共加水分

キシシラン、テトラブトキシシラン、ジメトキシジエト キシシラン;ジメチルジクロルシラン、ジメチルジブロ ムシラン、ジメチルジメトキシシラン、ジメチルジエト キシシラン;ジフェニルジクロルシラン、ジフェニルジ ブロムシラン、ジフェニルジメトキシシラン、ジフェニ ルジエトキシシラン;フェニルメチルジクロルシラン、 フェニルメチルジブロムシラン、フェニルメチルジメト キシシラン、フェニルメチルジエトキシシラン; トリク ロルヒドロシラン、トリブロムヒドロシラン、トリメト キシヒドロシラン、トリエトキシヒドロシラン、トリイ ソプロポキシヒドロシラン、トリセーブトキシヒドロシ **ラン;ビニルトリクロルシラン、ビニルトリブロムシラ** ン、ビニルトリメトキシシラン、ビニルトリエトキシシ ラン、ビニルトリイソプロポキシシラン、ビニルトリセ ープトキシシラン;トリフルオロプロピルトリクロルシ ラン、トリフルオロプロピルトリブロムシラン、トリフ ルオロプロピルトリメトキシシラン、トリフルオロプロ ピルトリエトキシシラン、トリフルオロプロピルトリイ ソプロポキシシラン、トリフルオロプロピルトリモーブ 20 トキシシラン: ケーグリシドキシプロピルメチルジメト キシシラン、アーグリシドキシプロピルメチルジエトキ シシラン、ケーグリシドキシプロピルトリメトキシシラ ン、アーグリシドキシプロピルトリエトキシシラン、ア ーグリシドキシプロピルトリイソプロポキシシラン、ャ -グリシドキシプロピルトリt-ブトキシシラン;r-メタアクリロキシプロピルメチルジメトキシシラン、ャ ーメタアクリロキシプロピルメチルジエトキシシラン、 γ ーメタアクリロキシプロピルトリメトキシシラン、 γ メタアクリロキシプロピルトリエトキシシラン、γγ - メタアクリロキシプロピルトリt - ブトキシシラ ン;アーアミノプロピルメチルジメトキシシラン、アー アミノプロピルメチルジエトキシシラン、ァーアミノプ ロピルトリメトキシシラン、アーアミノプロピルトリエ トキシシラン、ケーアミノプロピルトリイソプロポキシ シラン、ケーアミノプロピルトリセーブトキシシラン; **アーメルカプトプロピルメチルジメトキシシラン、ァー** メルカプトプロピルメチルジエトキシシラン、アーメル カプトプロピルトリメトキシシラン、アーメルカプトプ リイソプロポキシシラン、アーメルカプトプロピルトリ tープトキシシラン;β-(3,4-エポキシシクロへ キシル) エチルトリメトキシシラン、β-(3,4-エ ボキシシクロヘキシル) エチルトリエトキシシラン;お よび、それらの部分加水分解物;およびそれらの混合物 を挙げることができる。

【0024】また、バインダーとして、特に好ましくは フルオロアルキル基を含有するボリシロキサンを用いる ことができ、具体的には、下記のフルオロアルキルシラ

解縮合物が挙げられ、また、一般にフッ素系シランカッ プリング剤として知られているものを使用してもよい。 [0025]

 CF_3 (CF_2) $_3$ CH_2 CH_2 Si (OCH_3) $_3$ CF₃ (CF₂)₅ CH₂ CH₂ Si (OCH₃)₃ CF3 (CF2) 7 CH2 CH2 Si (OCH3) 3 CF3 (CF2) 9 CH2 CH2 Si (OCH3) 3 $(CF_3)_2CF(CF_2)_4CH_2CH_2Si(OC$ Нз)з

 H_3) 3

 $(CF_3)_2 CF (CF_2)_8 CH_2 CH_2 Si (OC$ Нэ) з

CF3 (C6 H4) C2 H4 Si (OCH3) 3

CF₃ (CF₂)₃ (C₆ H₄) C₂ H₄ Si (OCH

CF₃ (CF₂)₅ (C₆ H₄) C₂ H₄ Si (OCH э) з

CF3 (CF2) 7 (C6 H4) C2 H4 Si (OCH з) з

 CF_3 (CF_2) $_3$ CH_2 CH_2 $SiCH_3$ (OC $H_3)_2$

CF₃ (CF₂)₅ CH₂ CH₂ SiCH₃ (OC H₃)₂

 CF_3 (CF_2) $_7$ CH_2 CH_2 $SiCH_3$ (OC $H_3)_2$

 CF_3 (CF_2) $_9$ CH_2 CH_2 $SiCH_3$ (OC

(CF₃)₂CF (CF₂)₄CH₂CH₂SiCH₃ $(OCH_3)_2$

(CF₃)₂CF (CF₂)₆CH₂CH₂SiCH₃ $(OCH_3)_2$

(CF₃)₂CF (CF₂)₈CH₂CH₂SiCH₃ (OCH₃)₂

CF3 (C6 H4) C2 H4 SiCH3 (OCH3) 2 CF₃ (CF₂)₃ (C₆ H₄) C₂ H₄ SiCH 3 (OCH3)₂

CF₃ (CF₂)₅ (C₆ H₄) C₂ H₄ SiCH 3 (OCH3)2

CF₃ (CF₂)₇ (C₆ H₄) C₂ H₄ SiCH 3 (OCH3)2

 CF_3 (CF_2) $_3$ CH_2 CH_2 Si (OCH_2 CНз)з

 CF_3 (CF_2) 5 CH_2 CH_2 Si (OCH_2 CНз) з

CF₃ (CF₂)₇ CH₂ CH₂ Si (OCH₂ C Нэ)з

 CF_3 (CF_2) $_9$ CH_2 CH_2 Si (OCH_2 C

2 Si (OCH3)3

上記のようなフルオロアルキル基を含有するポリシロキ サンをバインダーとして用いることにより、光触媒含有 層の非光照射部の挠水性および挠油性が大きく向上す

【0026】前記(2)の反応性シリコーンとしては、 下記一般式で表される骨格を持つ化合物を挙げることが できる。

 $[0027] - (Si(R^1)(R^2)O)_n -$ (CF3)2 CF (CF2) 6 CH2 CH2 Si (OC 10 ただし、nは2以上の整数、R¹、R² はそれぞれ炭素 数1~10の置換もしくは非置換のアルキル、アルケニ ル、アリールあるいはシアノアルキル基であることがで きる。好ましくは全体の40モル%以下がビニル、フェ ニル、ハロゲン化フェニルであることができる。また、 R1 および/またはR2 がメチル基であるものが表面エ ネルギーが最も小さくなるので好ましく、好ましくはメ チル基が60モル%以上であり、鎖末端または側鎖に は、分子鎖中に少なくとも1個以上の水酸基などの反応 性基を有する。

> 【0028】また、前記のオルガノポリシロキサンとと もにジメチルポリシロキサンのような架橋反応を起こさ ない安定なオルガノシリコン化合物をバインダーに混合 してもよい。

【0029】(光触媒含有層に用いるその他の成分)本 発明に用いられる光触媒含有層には、未露光部の濡れ性 を低下させるため界面活性剤を含有させることができ る。この界面活性剤は光触媒により分解除去されるもの であれば限定されないが、具体的には、好ましくは例え ば日本サーファクタント工業製:NIKKOL BL 30 BC、BO、BBの各シリーズ等の炭化水素系の界面活 性剤、デュポン社製: ZONYL FSN、FSO、旭 硝子製:サーフロンS-141、145、大日本インキ 製:メガファックF-141、144、ネオス製:フタ ージェントF-200、F251、ダイキン工業製:ユ ニダインDS-401、402、スリーエム製:フロラ ードFC-170、176等のフッ素系あるいはシリコ ーン系の非イオン界面活性剤を挙げることができる。ま た、カチオン系、アニオン系、両性界面活性剤を用いる こともできる。

40 【0030】また、本発明に好適に用いられる光触媒含 有層には、他の成分、例えば、ポリビニルアルコール、 不飽和ポリエステル、アクリル樹脂、ポリエチレン、ジ アリルフタレート、エチレンプロピレンジエンモノマ ー、エポキシ樹脂、フェノール樹脂、ポリウレタン、メ ラミン樹脂、ポリカーボネート、ポリ塩化ビニル、ポリ アミド、ポリイミド、スチレンブタジエンゴム、クロロ プレンゴム、ポリプロピレン、ポリブチレン、ポリスチ レン、ポリ酢酸ビニル、ナイロン、ポリエステル、ポリ ブタジエン、ポリベンズイミダゾール、ポリアクリロニ CF₃ (CF₂)₇ SO₂ N (C₂ H₅) C₂ H₄ CH 50 トリル、エピクロルヒドリン、ポリサルファイド、ポリ

イソプレン等のオリゴマー、ポリマーを含むことができ

【0031】さらに、本発明に用いられる光触媒含有層 には、光触媒の光活性を増感させる成分である増感色素 を含んでいてもよい。このような増感色素の添加によ り、低い露光量で濡れ性を変化させるあるいは異なる波 長の露光で濡れ性を変化させることができる。また、光 触媒含有層には、EL材料を添加することもでき、例え ば、電荷注入材料、電荷輸送材料または発光材料を混合 できる。

【0032】(光触媒含有層の形成方法)光触媒含有層 の形成方法は特に限定されないが、例えば光触媒を含ん だ塗布液を、スプレーコート、ディップコート、ロール コート、ビードコートなどの方法により基材に塗布して 形成することができる。

【0033】光触媒等を含む塗布液を用いる場合に、塗 布液に使用することができる溶剤としては、特に限定さ れないが、例えばエタノール、イソプロパノール等のア ルコール系の有機溶剤を挙げることができる。

【〇〇34】(光触媒を作用させる照射光線)光触媒を 作用させるための照射光線は、光触媒を励起することが できれば限定されない。このようなものとしては紫外 線、可視光線、赤外線の他、これらの光線よりもさらに 短波長または長波長の電磁波、放射線であることができ

【0035】例えば光触媒として、アナターゼ型チタニ アを用いる場合は、励起波長が380 n m以下にあるの で、光触媒の励起は紫外線により行うことができる。こ ルハライドランプ、キセノンランプ、エキシマレーザ 一、その他の紫外線光源を使用することができる。

【0036】EL層

本発明のEL素子に設けられるEL層は、エレクトロル ミネッセンスを起こすものであれば限定されない。ま た、EL層は対向する電極の間に設けられる。

【〇〇37】本発明のEL層はさらに、その構成要素と して、必須の層として発光層、任意の層として、発光層 に正孔を輸送する正孔輸送層および電子を輸送する電子 輸送層(これらはまとめて、電荷輸送層とよぶことがあ 40 る)、ならびに、発光層または正孔輸送層に正孔を注入 する正孔注入層および発光層または電子輸送層に電子を 注入する電子注入層(これらはまとめて、電荷注入層と よぶことがある)を設けることができる。

【0038】これらEL層を構成する材料としては例え ば以下のものが挙げられる。

【0039】(発光層)

<色素系>シクロペンタジエン誘導体、テトラフェニル ブタジエン誘導体、トリフェニルアミン誘導体、オキサ ジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリ 50 ムが挙げられる。

ルベンゼン誘導体、ジスチリルアリーレン誘導体、シロ ール誘導体、チオフェン環化合物、ピリジン環化合物、 ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘 導体、トリフマニルアミン誘導体、オキサジアゾールダ イマー、ビラゾリンダイマー

10

<金属錯体系>アルミキノリノール錯体、ベンゾキノリ ノールベリリウム錯体、ベンゾオキサゾール亜鉛錯体、 ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポル フィリン亜鉛錯体、ユーロビウム錯体、等、中心金属に することによりEL素子の発光特性を向上させることが 10 Al、Zn、Be等または、Tb、Eu、Dy等の希土 類金属を有し、配位子にオキサジアゾール、チアジアゾ ール、フェニルピリジン、フェニルベンゾイミダゾー ル、キノリン構造等を有する金属錯体。

> 【0040】<高分子系>ポリパラフェニレンビニレン 誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘 導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリ ビニルカルバゾール等、ポリフルオレン誘導体

(ドーピング材料)ペリレン誘導体、クマリン誘導体、 ルブレン誘導体、キナクリドン誘導体、スクアリウム誘 20 導体、ポルフィリン誘導体、スチリル系色素、テトラセ ン誘導体、ピラゾリン誘導体、デカシクレン、フェノキ サゾン

(正孔注入層(陽極バッファー材料))フェニルアミン 系、スターバースト型アミン系、フタロシアニン系、酸 化パナジウム、酸化モリブデン、酸化ルテニウム、酸化 アルミニウム等の酸化物、アモルファスカーボン、ポリ アニリン、ポリチオフェン誘導体

(電子注入層(陰極バッファー材料))アルミリチウ ム、フッ化リチウム、ストロンチウム、酸化マグネシウ のような紫外線を発するものとしては水銀ランプ、メタ 30 ム、フッ化マグネシウム、フッ化ストロンチウム、フッ 化カルシウム、フッ化バリウム、酸化アルミニウム、酸 化ストロンチウム、カルシウム、ポリメチルメタクリレ ート、ポリスチレンスルホン酸ナトリウム

対向する電極

電極は特に限定されないが、好ましくは、電極は陽極と 陰極からなり、陽極と陰極のどちらか一方が、透明また は、半透明であり、陽極としては、正孔が注入し易いよ うに仕事関数の大きい導電性材料が好ましく、逆に陰極 としては、電子が注入し易いように仕事関数の小さい導 電性材料が好ましい。また、複数の材料を混合させても よい。いずれの電極も、抵抗はできるだけ小さいものが 好ましく、一般には、金属材料が用いられるが、有機物 あるいは無機化合物を用いてもよい。電極の形状は特に 限定されず、典型的には全面に形成されているが、なん らかのパターンで形成されていてもよい。

【0041】具体的には好ましい陽極材料は、ITO、 酸化インジウム、金、ポリアニリン、陰極材料として は、マグネシウム合金 (MgAg他)、アルミニウム合 金 (AlLi、AlCa、AlMg他)、金属カルシウ

【0042】絶縁層

本発明のEL素子の一態様において設けられる絶縁層 は、電極からEL層への電荷の供給を止めて絶縁層が設 けられた部分を発光させないために設けられる。

【0043】本発明においては、絶縁層としてUV硬化 樹脂を用いると、製造工程上有利であり好ましい。例え ば、光触媒含有層にパターン露光を行って、露光により 濡れ性が高まった部分のみに絶縁層形成材料を塗布し、 全面に紫外線を照射することにより、絶縁層が硬化する と同時に、絶縁層が形成されていない光触媒含有層が露 10 い。 出している部分の濡れ性が高まる。これによって、さら に光触媒含有層上にEL層を形成できる。この場合、E L層は光触媒含有層の絶縁層のない部分にのみ形成 (す なわちパターン露光する部分のみEL層を形成する)、 全面形成(すなわち、光触媒含有層の絶縁層のない部分 と絶縁層上の双方に形成する) のいずれであってもよ く、要求される製品や、製造コストその他から適宜選択 できる。

【0044】<u>EL素子の製造手順</u>

本発明のEL素子の製造方法は、光触媒含有層上に光照 20 射によって濡れ性の異なるパターンを形成して、その濡 れ性の違いを利用して濡れ性の高い部分にEL層または 絶縁層を形成することによりパターニングすることに特 徴がある。

【0045】具体的な態様としては、対向する電極と、 前記対向する電極の間にEL層を有してなる、EL素子 の製造方法であって、前記一方の電極上に、光触媒含有 層を形成する工程と、前記光触媒含有層をパターン状に 露光して、濡れ性の違いによるパターンを形成する工程 と、前記光触媒含有層の露光部上に、電荷注入層、電荷 30 輸送層および発光層の少なくとも一層を形成する工程 と、他方の電極を形成する工程、によりEL素子を製造 する方法がある。別の態様としては、光触媒含有層上の 濡れ性の違いによるパターンを形成後、光触媒含有層の 露光部上に、絶縁層を形成する工程と絶縁層を設けた光 触媒含有層上にEL層を形成する工程と、他方の電極を 形成する工程を含む方法が挙げられる。さらに別の態様 としては、光触媒含有層上の濡れ性の違いによるパター ンを形成後、光触媒含有層の露光部上に、UV硬化樹脂 からなる絶縁層を形成する工程と、絶縁層を設けた光触 40 媒含有層を全面露光した後に、電荷注入層、電荷輸送層 および発光層の少なくとも一層を形成する工程と、他方 の電極を形成する工程を含む方法が挙げられる。

【0046】上記の方法において、パターニングされた 光触媒含有層上に、EL層または絶縁性樹脂層を形成す る方法としては、例えばEL層または絶縁性樹脂層の材 料を、塗布、インクジェット、または蒸着により光触媒 含有層に付着させることが挙げられる。この場合、典型 的には付着させた時点でパターニングされるが、所望に

たは化学的エネルギーを加えることにより濡れ性の低い 部分を除去してパターンが形成される方法であってもよ い。このような除去方法としては、例えば接着テープに よる剥離やエッチングなどが挙げられる。

【0047】なお、本発明のEL素子は、典型的には上 記の方法で製造されるが、上記と異なる方法で製造され てもよく、さらに上記方法と異なる方法でなければ製造 できない構造を有するものであってもよい。例えば電極 と光触媒含有層との間に別の層が積層されていてもよ

【0048】<u>EL素子の具体例</u>

以下、図を用いてEL素子の具体例を説明する。

【0049】図1は、本発明のEL素子の一例の構造を 示す断面図であり、基材1上に順次第1電極2、光触媒 含有層3および第2電極5が設けられ、第2電極5と光 触媒含有層3の間にはパターン発光させる部分にのみ、 発光層4が設けられている。このようなEL素子におい ては、光触媒含有層3の厚み及び材料などの条件を適切 に選択することにより、予想外にも第1電極2と第2電 極5との間の導通を防ぎながらも光触媒含有層を通じて 電荷を発光層に注入させて発光させることができる。

【0050】図2は、本発明のEL素子の別の一例の構 造を示す断面図であり、基材1上に順次第1電極2、光 触媒含有層3、発光層4および第2電極5が設けられ、 発光層4と光触媒含有層3の間にはパターン発光させる 部分にのみ、電荷注入層6が設けられている。このよう なEし素子においては、典型的には電荷注入層が形成さ れている部分が発光、形成されていない部分が発光しな いEL素子となるが、電荷注入層が形成されている部分 が発光、形成されていない部分が微弱発光するEL素子 とすることもできる。

【0051】また、図2のパターニングされた電荷注入 層の代わりに、別の発光層を形成すれば、この発光層と 全面に形成された発光層とで2色の発光表示をすること も可能である。

【0052】図3は、本発明のEL素子のさらに別の一 例の構造を示す断面図であり、基材1上に順次第1電極 2、光触媒含有層3および第2電極5が設けられ、第2 電極5と光触媒含有層3の間にはパターン発光させる部 分にのみ、発光層4が、発光させない部分には絶縁層7 が設けられている。

【0053】用途

本発明のEL素子の用途としては、様々なものが挙げら れ、例えば、表札、掲示板、案内表示用サイン、非常・ 警告用サイン、道路標識、時計やメーター表示用固定文 字、値札、メニュー、ちらし広告、ハガキ、挨拶状 (グ リーティングカード)、プリペイドカード、ペーパーラ イクディスプレイ、電子書籍、照明、遊戯施設やイベン ト会場での玩具、ロゴマークの表示、広告用看板やカレ より、全面塗布後の固形化後または固形化前に物理的ま 50 ンダー、ディスプレイ、バッチ地図または地図記号な

13

ど、特定パターンを表示するもの、あるいはパターン (マーク)形状そのものに意味があるものを表示するの に有効である。

[0054]

*【実施例】<u>実施例1</u>

(光触媒含有層用塗布液の調製)まず、下記組成の光触 媒含有層用の塗布液を調製した。

14

[0055]

光触媒含有層組成物 (石原産業 (株) 製ST-K01) …2重量部 オルガノアルコキシラン (東芝シリコーン (株) 製TSL8113)

…0.4重量部

フルオロアルコキシラン (トーケムプロダクツ (株) 製MF-160E)

…0.3重量部

…3重量部

<u>イソプロピルア</u>ルコール

(光触媒含有層の成膜)上記の光触媒含有層塗液を洗浄したガラス基板上にスピンコーターで塗布し、150 ℃、10分間の乾燥処理後、加水分解、重縮合反応を進行させた。光触媒がオルガノシロキサン中に強固に固定された、透明な厚み20nmの光触媒含有層が形成された。

【0056】(光触媒含有層における濡れ性の相違によるパターン形成)上記の光触媒含有層にマスクを介して水銀灯(波長365nm)により70mW/cm²の照20度で50秒間パターン照射を行ない、照射部位と非照射部位との水に対する接触角を接触角測定器(協和界面科学(株)製CA-Z)を用いて測定した。測定はマイクロシリンジから水滴を滴下して30秒後に行った。その結果、非照射部位における水の接触角は142°であるのに対し、照射部位における水の接触角は10°以下であり、照射部位と非照射部位との濡れ性の相違によるパターン形成が可能なことが確認された。

【0057】(発光層用塗布液の調製)有機EL素子の発光層形成用に、下記の組成の塗液を調製した。 【0058】

ポリビニルカルバゾール

…70重量部

クマリン6

…1 重量部

オキサジアゾール化合物

…30重量部

1.1.2トリクロロエタン

…663重量部

(有機EL素子の作製) ITO基板を洗浄した後、上記の光触媒含有層を $20\,\mathrm{nm}$ の膜厚で全面に成膜した。続いて、 $5\,\mathrm{mm}$ 角の穴のあいたマスクを介して、水銀灯(波長 $365\,\mathrm{nm}$)により $70\,\mathrm{mW/c\,m^2}$ の照度で50秒間、照射を行なった。

【0059】さらに、有機EL層用の塗液をスピンコーターにより、パターン照射した光触媒含有層上に全面塗布すると、5mm角の照射部位のみに有機EL層が塗布された。これを80℃で乾燥することにより、膜厚100nmの発光層が照射部位のみに形成された。

【0060】この上に上部電極として、A1Li合金を500nmの膜厚で全面に蒸着してEL素子を製造し、発光させたところ、パターン発光が得られた。

【0061】実施例2

実施例1と同様に、ITO基板を洗浄した後、上記の光※50

※触媒含有層を20nmの膜厚で全面に成膜した。続いて、5mm角の穴のあいたマスクを介して、水銀灯(波長365nm)により70mW/cm²の照度で50秒間、照射した後、正孔注入層用塗布液として、市販の導電性塗布液(PEDOT:Bayer社製)をスピン塗布したことろ、5mm角の光照射部のみ、塗布液が塗布された。これをオーブンで80℃、30分加熱することにより、5mm角のパターンで、50nmの膜厚の正孔注入層が形成された。この上に実施例1の発光層を全面に塗布し、これを80℃で乾燥することにより、膜厚100nmの発光層が全面に形成された。

【0062】この上に上部電極として、A1Li合金を500nmの膜厚で全面に蒸着してEL素子を製造し、発光させたところ、パターン発光が得られた。

【0063】実施例3

ITO基板を洗浄した後、上記の光触媒含有層を20n mの膜厚で全面に成膜した。続いて、5mm角の部分を マスクし、他の部分を水銀灯(波長365 nm)により 30 70 mW/c m² の照度で50秒間、照射した後、市販 のUV硬化樹脂(日本化薬(株)製 商品名PEG40 ODA) に対して開始剤 (チバスペシャリティケミカル ズ(株)製 商品名ダロキュア1173)を5重量%添 加したUV硬化樹脂液をスピンナーで塗布し、5mm角 の部分以外にUV硬化樹脂を塗布した。この後、全面 に、水銀灯 (波長365nm) により70mW/cm² の照度で50秒間、照射し、UV硬化樹脂を硬化すると ともに、5mm角の部分の濡れ性を向上させた。この上 に、実施例1~2の発光層を全面に塗布し、80℃で乾 40 燥させた後、上部電極として、A1Li合金を500n mの膜厚を全面に蒸着してEL素子を製造し、発光させ たところ、パターン発光が得られた。

【0064】てEL素子を製造し、発光させたところ、 パターン発光が得られた。

[0065]

【発明の効果】本発明によって、パターン発光を行うことのできるEL素子の簡便な製造方法と、その方法によって製造できるEL素子を提供することができる。

【図面の簡単な説明】

【図1】本発明のEL素子の一例の構造を示す断面図で

特開2001-237069

16

ある。

【図2】本発明のEL素子の別の一例の構造を示す断面 図である。

【図3】本発明のEL素子のさらに別の一例の構造を示す断面図である。

【符号の説明】

1 基材

3 光触媒含有層

5 第2電極

7 絶縁層

2 第1電極

4 発光層

6 電荷注入層

【図1】

【図2】

【図3】

