Algorithmic Time, Energy, and Power

Introduction

- 1. Danny Hillis at MIT in 1980s was developing a supercomputer called the "connection machine"
 - Final chapter titled "New Computer Architectures and Their Relationship to Physics, or Why Computer Science is no Good"
 - Parallel algorithms researchers were, at the time, abstracting away too many details about the physical constraints of algorithms
 - Speed of light bounds communication
- 2. What would it mean to consider physical costs when designing an algorithm?

Speed Trends

- 1. An Intel Ivy Bridge CPU can, in the best case, execute ~100 billion operations per second
- 2. Trend: Performance doubles every two years
- 3. How fast will a processor be in 10 years?
 - $2 \hat{5} * 100 \text{ gigaops} = 3200 \text{ gigaops}$

Speed Limits

- 1. Consider a 2D mesh of physical processors (LxL)
 - Every interior point is connected to its 8 nearest neighbors
 - Single operation: Starts at center, travels to a unit at a corner, turns around and returns to the center
 - Want to do this operation 3 trillion times per second
- 2. How large can L be?
 - Distance for one operation: L * sqrt(2)
 - Total distance traveled: 3e12 * L * sqrt(2)
 - c = 3e8 m/s
 - 3e12 op/s = 1op/1RT * 1RT/(L * sqrt(2)) * 3e8 = 70 microns- RT = round trip

Space Limits

- 1. Consider a chip with area = 4900 microns^2
 - Need to be able to store 1 TB of data
- 2. What is the physical area of a single bit?
 - 4900 / 8 * 1e12 = 6.125e-10
 - This is on the order of a single Angstrom (size of an atom)
 - At some point, we have to consider locality

Balance in Time

- 1. Processor can perform R operations per second, which is related to transistor density
 - Doubles roughly every 1.9 years
- 2. Can move data between fast and slow memory at a rate of beta (units of words per time)
 - Referred to as "stream"
 - Doubles roughly every 2.9 years
- 3. What is the doubling time of B = R/beta?
 - R(t) = 2 (t/1.9)
 - Beta(t) = $2 \hat{t}/(2.9)$
 - $B(t) = 2 \hat{t}/(1.9) 2 \hat{t}/(1.9) 2 \hat{t}/(5.5)$

Transistor Density and Stream over Time

Balance Principles

- 1. DAG model of computation characterizes computation by two components
 - Work W = W(n) = total operations
 - Span D = D(n) = total path length (operations)
 - Transactions $Q = Q(n; Z,L) \le W$
 - Z: Size of fast memory
 - P: Number of processors
 - L: Number of words transferred between slow and fast memory at a time
- 2. Cost of doing a memory operation is still 1/R, same as a computational instruction
 - If we can parallelize memory accesses, our bandwidth is L/beta, but we must pay a 1/R cost for each of these instructions
- 3. Tp $\geq \max(D/R, W/PR, QL/beta)$
 - Assume W/P » D (Compute time needs to dominate communication time)
 - W/Q >= RPL/beta

Double-Double Toil and Trouble

- 1. Suppose a machine is perfectly balanced for sorting large arrays
- 2. Boss suggests selling a system with double the cores
- 3. How can you maintain balance if the number of cores doubles? For sorting, W/Q ~ Llog(Z/L)

- 1/2 bandwidth, 2x peak
- Square Z and square L (true)
- Double fast memory size
- Double bandwidth (true)
- 4. Llog(Z/L) = 2RPL/beta
 - $\log(Z/L) = 2RP/beta$

Power Limits

- 1. Power = Energy / Time
- 2. Increasing clock rate causes power per unit area to skyrocket
- 3. Power = Po + delta(P)
 - Po = Constant power
 - delta(P) = Dynamic power

Processor Power over Time

The Dynamic Power Equation

- 1. Energy per gate = $C * V^2$
 - C = Capacitance
 - V = Supply voltage
- 2. Clock rate (frequency) = f
 - Max switching frequency
- 3. Activity factor = a
 - Number of switches per cycle

- 4. Dynamic power = $a * f * CV^2$
 - f is proportional to V
 - Important for maintaining reliability of circuit

Power Motivates Parallelism

- 1. CPU 1 has f = 4 GHz and dynamic power = 64 watts
- 2. CPU 2 has f = 1 GHz
- 3. What is the dynamic power of CPU 2?
 - Dynamic power = 64 / 4 (1/3) = 1 Watts because V is proportional to f
- 4. What is the relative time to run a program on CPU 2 vs CPU 1?
 - 4 * T1

Power Knobs

- 1. Which of the factors of the dynamic power equation can be controlled in software?
 - C = Capacitance (false)
 - Geomtric and electrical property of material
 - V = Supply voltage (true)
 - Dynamic voltage and frequency scaling (DVFS)
 - cpufreq in Linux
 - f = Clock frequency (true)
 - Dynamic voltage and frequency scaling (DVFS)
 - cpufreq in Linux
 - a = Activity factor (true)
 - Could turn off chunks of hardware if you knew you didn't need them

Powerless to Choose

- 1. Consider two systems, A and B
 - Each are characterized by their execution time and energy to do the same computation, E and T
 - Suppose Ea < Eb and Ta > Tb
- 2. Which system has lower average power?
 - System A because power is energy divided by time

Exploiting DVFS

- 1. Consider two systems, A and B
 - Eb = 2 * Ea
 - Tb = Ta / 3
- 2. Suppose you use DVFS to rescale B so that its power matches A. Will B still be faster than A?
 - Yes; B is three times faster but only for twice the energy

Algorithmic Energy

- 1. Time: Can reduce or hide by overlap (parallelism)
- 2. Energy: Must pay energy cost for every operation
- 3. Recall the metrics of the work-span model. Which metric best quantifies energy?
 - Work, W(n) (true)
 - Span, D(n)
 - Average available parallelism W/D
 - Time = $\max(D, W/P) \le Tp \le D + (W D)/P$
 - Speedup Sp = T1 / Tp
- 4. Work counts the number of operations

Algorithmic Dynamic Power

- 1. Recall the metrics of the work-span model. Which metric best expresses dynamic power? Ignore constant power and assume constant energy per operation.
 - Work, W(n)
 - Span, D(n)
 - Average available parallelism W/D
 - Time = $\max(D, W/P) \le Tp \le D + (W D)/P$
 - Speedup Sp = T1 / Tp (true)
- 2. Power is energy per time

Parallelism and DVFS

- 1. Let sigma = frequency slowdown
 - $P' = sigma^3 * P$
- 2. If $Tp \le D + (W-D)/P$, what is the best value of sigma to use?
 - 2 * ((W-D) / (PD)) ^ (1/3)
 - Tp \leq sigma * (D + (W-D)/(P * sigma^3)
 - Take the derivative and set it equal to 0, solve for sigma

Conclusion

- 1. Simple models of computers have been extremely productive
 - CS community produces useful applications without having to think too hard about the physical limitations of machines
- 2. How do we make the most of the machines we have?
- 3. Is there a role for physical reality in the design of algorithms and software?
- 4. How do we do this and be productive developers?