• * PALM INTRANET

Day : Friday Date: 4/14/2006

Time: 08:28:11

Continuity Information for 10/628734

Parent Data

10628734

is a continuation in part of <u>09447966</u>

Child Data

PCT/US03/35460 is a continuation of 10628734

Applining Contents Petition into ActiviAgent	Continuity Data Foreign Data Invent
Search Another: Application# Search	or Patent# Search
PCT / Search	or PG PUBS # Search
Attorney Docket #	Sezich
Bar Code # Sea	rein)

To go back use Back button on your browser toolbar.

Back to PALM ASSIGNMENT OASIS Home page

Day : Friday Date: 4/14/2006

Time: 08:28:23

• * PALM INTRANET

Inventor Information for 10/628734

Inventor Name	City	State/Country
WOLFF, JON A.	MADISON	WISCONSIN
MONAHAN, SEAN D.	MADISON	WISCONSIN
HAGSTROM, JAMES E.	MIDDLETON	WISCONSIN
ROZEMA, DAVID B.	MADISON	WISCONSIN
BUDKER, VLADIMIR G.	MIDDLETON	WISCONSIN
SLATTUM, PAUL M.	MADISON	WISCONSIN

Apple late Contents Petition late Atty/Agent late	Continuity Data	Foreign Data
	Patent#	Sendi
Attorney Docket #	Search	

To go back use Back button on your browser toolbar.

Back to $\underline{PALM} \mid \underline{ASSIGNMENT} \mid \underline{OASIS} \mid Home page$

Day: Friday Date: 4/14/2006

Time: 08:29:02

PALM INTRANET

Application Number Information

Application Number: 09/000533 Order This

File Assignments

Examiner Number: 75009 / WILSON, MICHAEL

Filing or 371(c) Date: 12/30/1997

Group Art Unit: 1632

Effective Date: 12/30/1997

Class/Subclass: 514/044.000

Application Received: 12/30/1997

Lost Case: NO

Pat. Num./Pub. Num: /20020001574 Issue Date: 00/00/0000

Interference Number:

Date of Abandonment: 10/10/2001

Unmatched Petition: NO L&R Code: Secrecy Code:1

Attorney Docket Number:

Third Level Review: NO

Secrecy Order: NO

Status: 161 / ABANDONED -- FAILURE TO RESPOND TO AN

Status Date: 04/08/2002

OFFICE ACTION

Confirmation Number: 5446

Oral Hearing: NO

Title of Invention: PROCESS OF DELIVERING A POLYNUCLEOTIDE TO A MUSCLE CELL

VIA THE VASCULAR SYSTEM

Bar Code	PALM Location	Location Date	Charge to Loc	Charge to Name	1 3	Location
09000533	<u>9200</u>	10/03/2005	No Charge to Location	No Charge to Name	RAHMAN,MOHAMMAD	

To go back use Back button on your browser toolbar.

Back to PALM | ASSIGNMENT | OASIS | Home page

PALM INTRANET

Day: Friday Date: 4/14/2006

Time: 08:34:42

Application Number Information

Application Number: 09/707117

Assignments

Filing or 371(c) Date: 11/06/2000

Effective Date: 11/06/2000

Application Received: 11/07/2000

Patent Number:

Issue Date: 00/00/0000

Date of Abandonment: 00/00/0000

Attorney Docket Number: Mirus.018.02

Status: 41 /NON FINAL ACTION MAILED

Confirmation Number: 8189

Examiner Number: 75009 / WILSON, MICHAEL

Group Art Unit: 1632

Class/Subclass:

514/044.000

Lost Case: NO

Interference Number:

Unmatched Petition: NO

L&R Code: Secrecy Code:1

Third Level Review: NO

Secrecy Order: NO

Mail Misc Comm.

Waiting for Response

IFW IMAGE

Desc.

Status Date: 03/16/2006

Oral Hearing: NO

Title of Invention: INTRAVASCULAR DELIVERY OF NUCLEIC ACID

To go back use Back button on your browser toolbar.

Back to PALM | ASSIGNMENT | OASIS | Home page

Journals Database MeSH Database Single Citation Matcher

Clinical Queries Special Queries LinkOut

My NCBI

Batch Citation Matcher

Related Resources

Order Documents

NLM Mobile NLM Catalog

TOXNET

NLM Gateway

Consumer Health Clinical Alerts

ClinicalTrials.gov

PubMed Central

<u>Schratzberger P, Krainin JG, Schratzberger G, Silver M, Ma H,</u> Kearney M, Zuk RF, Brisken AF, Losordo DW, Isner JM.

Department of Cardiovascular Research, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02135, USA.

This study was designed to test the hypothesis that transcutaneous ultrasound (US) exposure may augment the transfection efficiency and biological outcome associated with nonviral DNA gene transfer. Hindlimb muscles of New Zealand White rabbits were transfected with the reporter plasmid pCMV-beta, with or without US exposure. Optimization studies employed US exposure at various frequencies, mechanical indices, duty cycles, durations of exposure, and exposure time points. Based on these results, we explored the effect of US exposure on nonviral gene transfer of vascular endothelial growth factor (VEGF, phVEGF165) to promote neovascularization of ischemic hindlimbs. Ultrasound at 1 MHz, 100 W/cm (2), 6% duty cycle, and 5 minutes exposure time, applied immediately following DNA injection, was found to be the most effective among the settings tested, increasing beta-galactosidase expression approximately 20 fold. Compared with US exposure alone, or phVEGF165 only, phVEGF165 + US exposure yielded a statistically significant improvement in revascularization, as determined by calf blood pressure ratio, angiographic score, intravascular Doppler blood flow, and capillary/myocyte ratio. These data demonstrate that ultrasound, when applied directly after intramuscular gene transfer, significantly increases transfection efficiency in vivo. The biological significance of this finding was confirmed by augmented limb perfusion in response to US exposure and naked VEGF DNA.

PMID: 12409255 [PubMed - indexed for MEDLINE]

EAST Search History

Ref #	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	2	"6627616".pn.	US-PGPUB; USPAT; EPO; DERWENT	OR	OFF	2006/04/14 08:12
L2	1	"6627616".pn. and VEGF	US-PGPUB; USPAT; EPO; DERWENT	OR	OFF	2006/04/14 08:14
L3	2434	muscle and vascularization and vegf	US-PGPUB; USPAT; EPO; DERWENT	OR	OFF	2006/04/14 08:15
L4	2439	muscle and vascularization and (vegf or veg)	US-PGPUB; USPAT; EPO; DERWENT	OR	OFF	2006/04/14 08:15
L5	-16	(muscle and vascularization and (vegf or veg)).clm.	US-PGPUB; USPAT; EPO; DERWENT	OR	«OFF	2006/04/14 08:17
L6	111	(muscle SAME (revascularization or vascularization)) same (vegf or veg)	US-PGPUB; USPAT; EPO; DERWENT	OR	OFF	2006/04/14 08:17

4/14/06 8:21:27 AM C:\Documents and Settings\jwoitach\My Documents\EAST\Workspaces\stem cell.wsp

EAST Search History

Ref #	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	0	"6627616".pn. and angiogenic	US-PGPUB; USPAT; EPO; DERWENT	OR	OFF	2006/04/14 08:25
L2	0	"6627616".pn. and vascularization	US-PGPUB; USPAT; EPO; DERWENT	OR	OFF	2006/04/14 08:25
L3	0	"6627616".pn. and (revascularization or re-vascularization)	US-PGPUB; USPAT; EPO; DERWENT	OR	OFF	2006/04/14 08:26
L4	0	"6627616".pn. and (vessel with formation)	US-PGPUB; USPAT; EPO; DERWENT	OR	OFF	2006/04/14 08:26
L5	0	"6627616".pn. and (flow with improving)	US-PGPUB; USPAT; EPO; DERWENT	ŌR	OFF	2006/04/14 08:26
L6	0	"6627616".pn. and (flow with (increase or increases))	US-PGPUB; USPAT; EPO; DERWENT	OR	OFF	2006/04/14 08:27

(34) In another preferred embodiment, the permeability of the blood vessel

can also be increased by a biologically-active molecule. A biologically-active

molecule is a protein or a simple chemical such as papaverine or histamine that

increases the permeability of the vessel by causing a change in function,

activity, or shape of cells within the vessel wall such as the endothelial or

smooth muscle cells. Typically, biologically-active molecules interact with a

specific receptor or enzyme or protein within the vascular cell to change the

vessel's permeability. Biologically-active molecules include vascular

permeability factor (VPF) which is also known as vascular endothelial growth

factor $(\underline{\text{VEGF}})$. Another type of biologically-active molecule can also increase

permeability by changing the extracellular connective material. For example,

an enzyme could digest the extracellular material and increase the number and

size of the holes of the connective material.