11 Lecture 11: Inner product and orthogonality (17/03/2020)

11.1 The inner product

let $\vec{u}, \vec{v} \in \mathbb{R}^n$, where:

$$\vec{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}, \ \vec{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix},$$

The matrix-vector product $\vec{u}^T \vec{v}$ outputs a 1×1 matrix, which is just a single number (or scalar in Linear algebra terms). This operation between to column vectors is referred to as the dot-poduct or inner-product, and is usually denoted as follows:

$$\vec{u} \cdot \vec{v} = u_1 v_1 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i$$
 (1)

The algebraic rules for the dot product are:

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u} \tag{2}$$

$$(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w} \tag{3}$$

$$(c\vec{u}) \cdot \vec{v} = c(\vec{u} \cdot \vec{v}) = \vec{u} \cdot (c\vec{u}) \tag{4}$$

$$\vec{u} \cdot \vec{u} \ge 0$$
, Where $\vec{u} \cdot \vec{u} = 0$ iff $\vec{u} = 0$ (5)

The length of any vector in \mathbb{R}^n space is defined as:

$$||\vec{v}|| = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{\sum_{i=1}^{n} v_i^2}$$
 (6)

$$||\vec{v}||^2 = \vec{v} \cdot \vec{v} \tag{7}$$

Notice that the length of a vector has linear properties just like the vector itself:

$$||c\vec{v}|| = |c| \, ||\vec{v}|| \tag{8}$$

11.2 normalizing a vector

Normalizing a vector will output a vector referred to as a unit vector. This vector (denoted with a hat rather then a regular vector arrow) has a length of 1 and represents nothing but the direction of the original vector.

$$\hat{u} = \frac{\vec{u}}{||\vec{u}||} \tag{9}$$

11.3 Distance between points in \mathbb{R}^n

The distance between points in any \mathbb{R}^n space is defined as follows: let $\vec{u}, \vec{v} \in \mathbb{R}^n$. The distance between \vec{u} and \vec{v} , denoted as: dist (\vec{u}, \vec{v}) is the length of the vector $\vec{u} - \vec{v}$.

$$\operatorname{dist}(\vec{u}, \vec{v}) = ||\vec{u} - \vec{v}|| \tag{10}$$

$$= \sqrt{\sum_{j=1}^{n} (\sum_{i=1}^{n} (u_i - v_i)_j)^2}$$
 (11)

Figure 1: Representation of 2 perpendicular vectors \vec{u} and \vec{v} in 2D space.

11.4 orthogonal vectors

The vectors \vec{u} and \vec{v} (in any \mathbb{R}^n space) are perpendicular (or orthogonal in more than 2 dimensional space) iff $||\vec{u} - \vec{v}|| = ||\vec{u} - (-\vec{v})||$.

$$(\text{dist } (\vec{u}, -\vec{v})^2) = ||\vec{u} + \vec{v}||^2 \tag{12}$$

$$= ||\vec{u}||^2 + ||\vec{v}||^2 + 2\vec{u} \cdot \vec{v} \tag{13}$$

$$(\text{dist } (\vec{u}, \vec{v})^2) = ||\vec{u} - \vec{v}||^2 \tag{14}$$

$$= ||\vec{u}||^2 + ||\vec{v}||^2 - 2\vec{u} \cdot \vec{v} \tag{15}$$

These distances are equal iff $2\vec{u} \cdot \vec{v} = -2\vec{u} \cdot \vec{v}$. The only case where this can happen is if $2\vec{u} \cdot \vec{v} = 0$, thus: 2 vectors in any \mathbb{R}^n space are orthogonal iff $\vec{u} \cdot \vec{v} = 0^1$.

11.5 Orthogonal complements

let W be a subspace in \mathbb{R}^n . If a vector \vec{z} is orthagonal to every vector in W, then \vec{z} is referred to as the orthogonal compliment to W, and denoted as W^{\perp} . Notes:

- 1. $\vec{x} \in W^{\perp}$ iff \vec{x} is orthogonal to every single vector in W.
- 2. W^{\perp} is a subspace of \mathbb{R}^n .

Theorem 1 let A be an $m \times n$ matrix. The orthogonal complement of the row space of A os the null space of A and the orthogonal complement of the column space of A is the null space of A^T .

$$(Row A)^{\perp} = Nul A \tag{16}$$

$$(Col\ A)^{\perp} = Nul\ A^{T} \tag{17}$$

11.6 Orthogonal and orthonormal sets

A set of vectors $\{\vec{u}_1, \dots, \vec{u}_p\} \in \mathbb{R}^n$ is said to be orthogonal if $\vec{u}_i \cdot \vec{v}_j = 0$ whenever $i \neq j$. An orthogonal basis is a basis to a subspace that is also an orthogonal set.

Theorem 2 Let $\{\vec{u}_1, \dots, \vec{u}_p\}$ be an orthogonal basis to the subsapce W of \mathbb{R}^n . For each \vec{y} in W the weights in the linear combination:

$$\vec{y} = \sum_{i=1}^{p} c_i \vec{u}_i \tag{18}$$

are given by:

$$c_j = \frac{\vec{y} \cdot \vec{u}_j}{\vec{u}_j \cdot \vec{u}_j} \qquad (j = 1, \dots, p)$$
(19)

 $[\]vec{1}\vec{0}^T\vec{v} = 0$, $\vec{u}^T\vec{0} = 0$ thus every vector is considered to be orthogonal with the zero vector.

A set of vectors $\{\vec{u}_1, \dots, \vec{u}_p\}$ is orthonormal if it's an orthogonal set of unit vectors. The easiest example of this is the set of unit vectors describing \mathbb{R}^n cartesian space:

$$\{\hat{\boldsymbol{e}}_1, \cdots, \hat{\boldsymbol{e}}_n\} \in \mathbb{R}^n$$
 (20)

Theorem 3 An $m \times n$ matrix has orthonormal columns iff $U^TU = I$

Theorem 4 Let U be an $m \times n$ matrix with orthonormal columns. let $\vec{x}, \vec{y} \in \mathbb{R}^n$. Then:

- 1. $||U\vec{x}|| = ||\vec{x}||$
- 2. $(U\vec{x}) \cdot (U\vec{y}) = \vec{x} \cdot \vec{y}$
- 3. $(U\vec{x}) \cdot (U\vec{y}) = 0$ iff $\vec{x} \cdot \vec{y} = 0$

Note that the mapping $\vec{x} \to U\vec{x}$ preserves lengths and orthogonality of vectors.