Floating Point

Lecture 3

Yeongpil Cho

Hanyang University

Today: Floating Point

- Background: Fractional binary numbers
- **IEEE floating point standard: Definition**
- Example and properties
- Rounding, addition, multiplication
- Creating Floating Point Number
- Floating point in C
- Summary

Fractional binary numbers

- What is 1011.101₂?
 - 8+0+2+1+1/2+0+1/8=11+5/8

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-j}^{i} b_k \times 2^k$$

Fractional Binary Numbers: Examples

Value Representation

5 3/4
2 7/8
101.11₂
10.111₂
1.0111₂

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - Use notation 1.0ε

Representable Numbers

Limitation #1

- Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations

```
    Value Representation
    1/3 0.01010101[01]...2
    1/5 0.001100110011[0011]...2
    1/10 0.0001100110011[0011]...2
```

Limitation #2

- Just one setting of binary point within the w bits
 - Limited range of numbers
 - both 2^{100} and 2^{-100} need at least 100 bits

Today: Floating Point

- Background: Fractional binary numbers
- **IEEE floating point standard: Definition**
- **■** Example and properties
- Rounding, addition, multiplication
- **■** Creating Floating Point Number
- Floating point in C
- Summary

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand or Mantissa M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
 - positive and negative both are possible

Encoding

- MSB s is sign bit s
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

s exp frac	
------------	--

Precision options

■ Single precision: 32 bits (float in C)

Double precision: 64 bits (double in C)

Extended precision: 80 bits (Intel only, long double in C)

S	ехр	frac
1	15-bits	63 or 64-bits

"Normalized" Values

 $v = (-1)^s M 2^E$

- When: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as a *biased* value: *E* = *Exp* − *Bias*
 - Exp: unsigned value of exp field
 - $Bias = 2^{k-1} 1$, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
 - ex) Exp = 127 with E = 0, Exp = 119 with E = -8
 - Why use the bias?
 - Making Exp to be proportional to the size of the floating point number
 - Speeding up the comparison between floating point numbers
- Significand coded with implied leading 1: M = 1.xxx...x2
 - xxx...x: bits of frac field
 - Get extra leading bit for "free"
 - Minimum when frac=000...0 (M = 1.0)
 - Maximum when frac=111...1 (M = 2.0ε)

Normalized Encoding Example

```
v = (-1)^s M 2^E

E = Exp - Bias
```

- Value: float F = 15213.0;
 - $15213_{10} = 11101101101101_2$ = $1.1101101101101_2 \times 2^{13}$

Significand

```
M = 1.101101101_2
frac= 101101101101_000000000_2
```

Exponent

```
E = 13
Bias = 127
Exp = 140 = 10001100_{2}
```

Result:

Denormalized Values

$$v = (-1)^{s} M 2^{E}$$

 $E = 1 - Bias$

- **Condition:** exp = 000...0
- Exponent value: E = 1 Bias (instead of E = 0 Bias)
- Significand coded with implied leading 0: *M* = 0.xxx...x₂
 - xxx...x: bits of frac
 - Adding 1 to E is needed because the implicit leading 1 of M is removed unlike the Normalized case
 - allows normalized and denormalized values to be linked
 - 1×2^{-125} (exp = 2) \rightarrow 1×2^{-126} (exp = 1) \rightarrow 0.1 × 2⁻¹²⁶ (exp = 0)

Cases

- exp = 000...0, frac = 000...0
 - Represents zero value
 - impossible in the normalized value due to its implicit leading 1
 - Note distinct values: +0 and -0
 - but these are considered identical
- exp = 000...0, frac ≠ 000...0
 - Numbers closest to 0.0
 - The implicit leading 1 makes the size of a number bound to the exp
 - $ex) 1.0001 \times 2^{-127} (exp = 0) vs 0.0001 \times 2^{-126} (exp = 0)$

Special Values

■ Condition: **exp** = 111...1

- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, frac ≠ 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$, uninitialized value (possibly)

Visualization: Floating Point Encodings

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- **■** Creating Floating Point Number
- Floating point in C
- Summary

Tiny Floating Point Example

8-bit Floating Point Representation

- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the frac

Same general form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

Dynamic Range (Positive Only) $V = (-1)^s M 2^E$

						, ,
	s	ехр	frac	E	Value	n: E = Exp - Bias
	0	0000	000	-6	0	d: E = 1 − Bias
	0	0000	001	-6	1/8*1/64 = 1/512	closest to zero
Denormalized numbers	0	0000	010	-6	2/8*1/64 = 2/512	
	0	0000	110	-6	6/8*1/64 = 6/512	
	0	0000	111	-6	7/8*1/64 = 7/512	largest denorm
	0	0001	000	-6	8/8*1/64 = 8/512	smallest norm
	0	0001	001	-6	9/8*1/64 = 9/512	
	0	0110	110	-1	14/8*1/2 = 14/16	
	0	0110	111	-1	15/8*1/2 = 15/16	closest to 1 below
Normalized	0	0111	000	0	8/8*1 = 1	
numbers	0	0111	001	0	9/8*1 = 9/8	closest to 1 above
	0	0111	010	0	10/8*1 = 10/8	
	0	1110	110	7	14/8*128 = 224	
	0	1110	111	7	15/8*128 = 240	largest norm
	0	1111	000	n/a	inf	

• We can sort float pointing numbers using integer sorting algorithms.

Dynamic Range

			Single p	recision	Double precision	
Description	ехр	frac	Value	Decimal	Value	Decimal
Zero	0000	000	0	0.0	0	0.0
MIN denormalized	0000	001	2 ⁻²³ ×2 ⁻¹²⁶	1.4×10 ⁻⁴⁵	2 ⁻⁵² ×2 ⁻¹⁰²²	4.9×10 ⁻³²⁴
MAX denormalized	0000	111	(1-ε) ×2 ⁻¹²⁶	1.2×10 ⁻³⁸	(1-ε) ×2 ⁻¹⁰²²	2.2×10 ⁻³⁰⁸
MIN normalized	0001	000	1×2 ⁻¹²⁶	1.2×10 ⁻³⁸	1×2 ⁻¹⁰²²	2.2×10 ⁻³⁰⁸
One	0111	000	1×2°	1.0	1×2º	1.0
MAX normalized	1110	111	(2-ε) ×2 ¹²⁷	3.4×10 ³⁸	(2-ε) ×2 ¹⁰²³	1.8×10 ³⁰⁸

Distribution of Values

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is $2^{3-1}-1=3$

■ Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

Denormalized value is distributed uniformly

Today: Floating Point

- Background: Fractional binary numbers
- **IEEE floating point standard: Definition**
- **■** Example and properties
- Rounding, addition, multiplication
- **■** Creating Floating Point Number
- Floating point in C
- Summary

Floating Point Operations: Basic Idea

Floating point computations are approximated due to limited range and precision.

```
• x +_f y = Round(x + y)
```

•
$$x \times_f y = Round(x \times y)$$

■ Basic idea

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	- \$1
■ Round down $(-\infty)$	\$1	\$1	\$1	\$2	- \$2
■ Round up $(+\infty)$	\$2	\$2	\$2	\$3	- \$1
Nearest Even (default)	\$1	\$2	\$2	\$2	- \$2

Closer Look at Round-To-Even

Default Rounding Mode

- Approximating all values in one direction (either upwards or downwards)
 results in over-estimation or under-estimation.
- Only the round-to-even method avoids this bias by approximating values upward and downward by half.

Applying to Other Decimal Places / Bit Positions

- Round to the nearest significant figures
- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

7.8949999	7.89	(Less than half way)
7.8950001	7.90	(Greater than half way)
7.8950000	7.90	(Half way—round up)
7.8850000	7.88	(Half way—round down)

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.00110 ₂	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.002	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.102	(1/2—down)	2 1/2

FP Multiplication

- \blacksquare $(-1)^{s1} M1 2^{E1} \times (-1)^{s2} M2 2^{E2}$
- **Exact Result:** $(-1)^s M 2^E$
 - Sign s: s1 ^ s2
 - Significand *M*: *M1* x *M2*
 - Exponent *E*: *E1* + *E2*

Fixing

- If $M \ge 2$, shift M right, increment E
 - Decrease M to [1.0, 2.0)
- If E out of range, overflow
- Round M to fit frac precision

Floating Point Addition

- - Assume E1 > E2
- **Exact Result:** $(-1)^s M 2^E$
 - Sign s, significand M:
 - Result of signed align & add
 - Exponent E: E1

Fixing

- If M ≥ 2, shift M right, increment E
 - Decrease M to [1.0, 2.0)
- if M < 1, shift M left k positions, decrement E by k</p>
 - Increase M to [1.0, 2.0)
- Overflow if E out of range
- Round M to fit frac precision

Get binary points lined up

Mathematical Properties of FP Add

Compare to those of Abelian Group

Closed under addition?

Yes

- But may generate infinity or NaN
- Commutative?

Yes

Associative?

- No
- Overflow and inexactness of rounding
- 0 is additive identity?

Yes

 \bullet (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14

- -a + 0 = a
- Every element has additive inverse?

Almost

Yes, except for infinities & NaNs

Monotonicity

■ $a \ge b \Rightarrow a+c \ge b+c$?

Almost

Except for infinities & NaNs

Mathematical Properties of FP Mult

Compare to Commutative Ring

Closed under multiplication?

Yes

- But may generate infinity or NaN
- Multiplication Commutative?

Yes

• Multiplication is Associative?

- No
- Possibility of overflow, inexactness of rounding
- Ex: (1e20*1e20) *1e-20= inf, 1e20* (1e20*1e-20) = 1e20
- 1 is multiplicative identity?

Yes

• Multiplication distributes over addition?

- No
- Possibility of overflow, inexactness of rounding
- \blacksquare 1e20*(1e20-1e20) = 0.0, 1e20*1e20 1e20*1e20 = NaN

Monotonicity

- $a \ge b \& c \ge 0 \Rightarrow a * c \ge b * c$?
 - Except for infinities & NaNs

Almost

Today: Floating Point

- Background: Fractional binary numbers
- **IEEE floating point standard: Definition**
- **■** Example and properties
- Rounding, addition, multiplication
- Creating Floating Point Number
- Floating point in C
- Summary

Creating Floating Point Number

Steps

- Normalize to have leading 1
- Round to fit within fraction

Postnormalize to deal with effects of rounding

Case Study

Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers

128	10000000
15	00001101
33	00010001
35	00010011
138	10001010
63	00111111

Normalize

S	exp	frac
1	4-bits	3-bits

Requirement

- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	1000000	1.000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Rounding

1.BBGRXXX

Guard bit: LSB of result

Sticky bit: OR of remaining bits

Round bit: 1st bit removed

Round up conditions

■ Round = 1, Sticky = $1 \rightarrow > 0.5$

Guard = 1, Round = 1, Sticky = 0 → Round to even

Value	Fraction	GRS	Incr?	Rounded
128	1.0000000	000	N	1.000
15	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	Y	1.010
138	1.0001010	011	Y	1.001
63	1.1111100	111	Y	10.000

Postnormalize

Issue

- Rounding may have caused overflow
- Handle by shifting right once & incrementing exponent

Value	Rounded	Ехр	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64

Today: Floating Point

- Background: Fractional binary numbers
- **IEEE floating point standard: Definition**
- **■** Example and properties
- Rounding, addition, multiplication
- **■** Creating Floating Point Number
- Floating point in C
- Summary

Floating Point in C

C Guarantees Two Levels

- •float single precision
- **double** double precision

Conversions/Casting

- Casting between int, float, and double changes bit representation
- double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - $-1.999 \rightarrow 1, -1.999 \rightarrow -1$
 - Not defined when out of range or NaN
 - Generally sets to TMin (Positive float may become negative int)
- int → double
 - Exact conversion, as long as int has ≤ 53 bit word size
 - double's faction is 52-bit
- int → float
 - Will round according to rounding mode

Today: Floating Point

- Background: Fractional binary numbers
- **IEEE floating point standard: Definition**
- Example and properties
- Rounding, addition, multiplication
- **■** Creating Floating Point Number
- Floating point in C
- Summary

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers