# Birla Central Library

PILANI (Jaipur State)

Class No: 546.13

Book No .- 4494 P

Accession No - 33231

| - |  |   |  |
|---|--|---|--|
|   |  |   |  |
|   |  |   |  |
|   |  |   |  |
|   |  |   |  |
|   |  |   |  |
|   |  | • |  |
|   |  |   |  |
|   |  |   |  |

# THE PREPARATION, PROPERTIES, CHEMICAL BEHAVIOR, AND IDENTIFICATION OF ORGANIC CHLORINE COMPOUNDS

By Ernest Hamlin Huntress

A Brief Introduction to the Use of Beilstein's Handbuch der organischen Chemie

The Preparation, Properties, Chemical Behavior, and Identification of Organic Chlorine Compounds Tables of Data on Selected Compounds of Order III

By Ernest Hamin Huntress and the late Samuel Parsons Mulliken Identification of Pure Organic Compounds
Tables of Data on Selected Compounds of Order I
(Compounds of Carbon with Hydrogen or with Hydrogen and Oxygen)

# THE PREPARATION, PROPERTIES, CHEMICAL BEHAVIOR, AND IDENTIFICATION OF

# ORGANIC CHLORINE COMPOUNDS

Tables of Data on Selected Compounds of Order III

By

# ERNEST HAMLIN HUNTRESS

Professor of Organic Chemistry Massachusetts Institute of Technology

NEW YORK · JOHN WILEY & SONS, INC. LONDON · CHAPMAN & HALL, LIMITED 1948

# COPYRIGHT 1948, BY JOHN WILDS & SONS, INC.

All Rights Reserved

This book of any part thereof must not be reproduced in any form without the written permission of the publisher.

COPYRIGHT CANAJA, 1948, INTERNATIONAL COPYRIGHT, 1948

JOHN WILEY & SONS, INC., Proprietor

All Foreign Rights Reserved Reproduction in whole or in part forbidden

# PREFACE

This volume represents the second to appear in the series of Tables of Data prepared by the present author. It presents in organized and conveniently usable form a summary of data on a selected list of organic compounds containing carbon and chlorine, or carbon, oxygen, and chlorine, or carbon, hydrogen, and chlorine, or carbon, hydrogen, and chlorine. Such compounds may more briefly be described as comprising Order 3.

Although users of its predecessor will immediately recognize many aspects of similarity in this book, they will also note in this volume certain differences. These distinctions are more fully discussed in Chapter I, but certain general aspects may be noted here.

Whereas the treatment of Order 1 compounds was directed mainly toward the aspect of identification, and though this point of view is vigorously continued, the present treatment of compounds of Order 3 has been expanded to include also the preparation, properties, and general chemical behavior of the individuals selected for treatment.

A second major difference from the earlier volume is in the extent of reference to the original literature or the corresponding abstracts thereof. This documentation is carried to a degree which may suggest to organic chemists that this volume comprises a Beilstein. The author hastens to disclaim any such degree of completeness for this work but does admit that for each compound selected a meticulous search of the literature through 1945 has furnished the basis for appropriate selection and systematic grouping of the aspects to be treated.

A third important difference from the earlier volume is the inclusion of references to patents as well as scientific articles. Though such patent references are treated with reserve, it is believed that they will be of interest to all users and of special value to industrial chemists. Throughout the book emphasis is given to industrial aspects since the rapid growth of this field during the last two decades, particularly in the United States, has resulted in the production and large-scale utilization of many individual compounds of this order (3).

A fourth type of difference in the present treatment as compared with that of Order 1 is seen in the tabulation of physical constants. In the earlier volume an attempt was made to select the "best" values. This process tended to conceal the magnitude and nature of the available constants from

PREFACE vi

which such selection was made and thus somewhat to weaken the degree of reliance to which the final selection was entitled. In the present volume all the relevant data on boiling points, melting points, densities, and refractive indices have been included, thus permitting the user to make such interpretation of their consonance (or lack of it) as his particular needs may require. With certain exceptions, the amount of such physical data is surprisingly small, and no attempt to assess its reliability has been made except that instances where little effort to obtain pure products was demonstrated have usually been disregarded.

A merely superficial inspection of this volume by a nonchemical user might give the erroneous impression that the text comprised only a compilation of reported data. Careful examination by organic chemists, however, will immediately disclose that its form of organization and mode of treatment are largely influenced by the nature of the chemistry involved. conspicuously shown by what might be called "negative entries." Definite knowledge that a particular reaction has not been reported or that an individual compound does not appear in the systematic literature is often of real value. Many entries of this type appear in the current record. connection the dependence of chemists upon adequate and complete indexes to their original and especially to their abstract journals deserves emphasis. The term "unreported" as used in this book signifies that the compound in question cannot be found by systematic use of the usual index sources. Undoubtedly, instances will arise in which a substance so characterized will be found to have been embedded in details of work with other principal objectives and thus to have escaped proper indexing in the abstract journals. The author will be grateful for information on any cases of this sort.

An extended exposition of the principles involved in the formulation of this volume will be found in Chapter I. Special attention, however, may be directed to the exceptional care taken to facilitate the use of this book. For example, the volume includes (as Chapter XXIII) five kinds of indexes. These comprise not only the conventional alphabetical name index but also indexes of compounds by empirical formulas, by chemical types, and even by percentage chlorine and molecular weights. Moreover, throughout the text of the individual compounds there are inserted extremely frequent references to the related compounds which are necessarily involved. If these other compounds are themselves given detailed treatment in either this book (Order 3) or its precursor (Order 1), they are indicated by appropriate serial numbers so that no reference to either index is necessary. If, however, such secondary compounds are not themselves treated in either book, reference to the corresponding volume and page of Beilstein's Handbuch der organischen Chemie is made instead.

A brief statistical survey of the content of this volume may be of interest.

vii PREFACE

The 1320 individual compounds of Order 3 to which detailed text treatment is given are distributed among 366 groups of isomers. Of these 1320 compounds 366, i.e., 26.7% of the group, have been prepared so recently that they do not appear in the Fourth Edition of Beilstein at all. A total of 164 cross-reference headings facilitate recognition of the melting points of high-boiling liquids, or the boiling points of compounds normally met with as solids.

The total number of literature references in this volume is more than 22,000, of which total 67% represent publications since 1919 (the last year for which both the main and first supplementary series of Beilstein's *Handbuch* are complete), and 47% represent publications since 1929. The number of references associated with a given compound naturally varies widely. The highest number of references (621) is given for chloroacetic acid, followed by 405 each for trichloroacetaldehyde and ethylene chlorohydrin. More than 50 references are associated with each of 68 numbered compounds.

The preparation of this volume has been a long and laborious operation. The author wishes to place on permanent record his deep appreciation of the conscientious, faithful, and accurate secretarial assistance given him over long periods by both Miss Shirley Ridgway and Miss Mildred Capodilupo and for a shorter period by Miss Ruth Volinn.

The author is keenly aware that he cannot hope to satisfy in full the particular interests of every user. There must necessarily exist differences of opinion on the relative importance of this or that compound, reaction, or derivative. However, if all possible objections were first to be overcome nothing would ever be accomplished, and the author hopes that any deficiencies of this volume may to some extent be compensated by its merits.

Furthermore, in a work of this kind and magnitude it is inevitable that, despite every good intention and every earnest and painstaking effort, actual errors of fact will still have escaped detection and correction. The author invites the friendly cooperation of all who discover any such flaws, meanwhile being consoled by the view expressed by the ancient Chinese writer Tai T'ung, who, some seven hundred years ago, issued his History of Chinese Writing with this statement: "Were I to await perfection my book would never be finished.... The book awaits a wise and lofty spirit to correct and suppress where the text is in error, to add where it is defective, and to supply new facts where it is altogether silent."

ERNEST HAMLIN HUNTRESS

DEPARTMENT OF CHEMISTRY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
July 15, 1946

# **CONTENTS**

| Preface                                    |              |                                         |                                         | PAGES<br>V—vii  |
|--------------------------------------------|--------------|-----------------------------------------|-----------------------------------------|-----------------|
| TABLE OF CONTENTS                          |              | • • • • • • • • • • • • • • • • • • • • |                                         | ix-x            |
| TABLE OF ABBREVIATIONS                     |              |                                         |                                         | xi-xv           |
| MEMORANDUM OF CERTAIN 1946-19 REGULAR TEXT |              | ENCES NOT INCO                          |                                         | xvii–xxv        |
|                                            | Снар         | rer I                                   |                                         |                 |
| Introduction                               |              | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | 1–19            |
| DATA ON I                                  | INDIVID      | UAL COMPOUR                             | NDS                                     |                 |
|                                            | Division A   | . Solids                                |                                         |                 |
| CHAPTER II                                 | PAGES        | Снарт                                   | ER VII                                  | PAGES           |
| Serial numbers 3:0000-3:0499               | 20-84        | Serial numbers                          | 3:2500-3:2999                           | <b>277</b> –299 |
| CHAPTER III                                |              | Снарті                                  | er VIII                                 |                 |
| Serial numbers 3:0500-3:0999               | 85-125       | Serial numbers                          | 3:3000-3:3499                           | 300-334         |
| CHAPTER IV                                 |              | Снарт                                   | rer IX                                  |                 |
| Serial numbers 3:1000-3:1499 1             | 26-205       | Serial numbers                          | 3:3500-3:3999                           | <b>335–3</b> 59 |
| Chapter V                                  |              | Снарт                                   | er X                                    |                 |
| Serial numbers 3:1500-3:1999 20            | 06-252       | Serial numbers                          | 3:4000-3:4499                           | 360-409         |
| CHAPTER VI                                 |              | Снарть                                  | er XI                                   |                 |
| Serial numbers 3:2000-3:2499 2             | 53-276       | Serial numbers                          | 3:4500-3:4999                           | 410-506         |
| Division B. Liquids wi                     | th boiling p | points reported at a                    | rdinary pressure                        |                 |
| _                                          | Снарте       | r XII                                   |                                         | PAGES           |
| Section 1. $D_4^{20}$ greater than 1.      | 1500; Se     | rial numbers                            | 3:5000-3:5499                           | 507-700         |
|                                            | CHAPTER      | XIII                                    |                                         |                 |
| Section 1. $D_4^{20}$ greater than 1.      |              | erial numbers                           | 3:5500-3:5999                           | 701-789         |

|               |              |                         |                        |                     | PAGES                    |  |
|---------------|--------------|-------------------------|------------------------|---------------------|--------------------------|--|
|               |              | Сная                    | TER XIV                |                     |                          |  |
| Section 1.    | $D_4^{20}$   | greater than 1.1500;    | Serial numbers         | 3:6000-3:6499       | <b>7</b> 90–8 <b>7</b> 5 |  |
|               |              | Сн                      | APTER XV               |                     |                          |  |
| Section 1.    | $D_4^{20}$   | greater than 1.1500;    | Serial numbers         | 3:6500-3:6999       | 876-929                  |  |
|               |              | Сни                     | APTER XVI              |                     |                          |  |
| Section 2.    | $D_4^{20}$   | less than 1.1500;       | Serial numbers         | 3:7000-3:7499       | 930-1044                 |  |
|               |              | Сна                     | PTER XVII              |                     |                          |  |
| Section 2.    | $D_4^{20}$   | less than 1.1500;       | Serial numbers         | 3:7500-3:7999       | 1045-1095                |  |
| CHAPTER XVIII |              |                         |                        |                     |                          |  |
| Section 2.    | $D_{4}^{20}$ | less than 1.1500;       | Serial numbers         | 3:8000-3:8499       | 1096-1153                |  |
|               | CHAPTER XIX  |                         |                        |                     |                          |  |
| Section 2.    | $D_4^{20}$   | less than 1.1500;       | Serial numbers         | 3:8500-3:8999       | 1154-1227                |  |
| Div           | ision C.     | Liquids with boiling p  | points reported only t | under reduced press | sure                     |  |
|               |              | Сн                      | APTER XX               |                     |                          |  |
| Serial numb   | ers 3        | 3:9000-3:9299           |                        |                     | 1228-1279                |  |
|               |              | Сна                     | PTER XXI               |                     |                          |  |
| Serial numb   | ers 3        | 3:93 <b>00–3</b> :9599  |                        |                     | 1280-1322                |  |
| •             |              | Сна                     | PTER XXII              |                     |                          |  |
| Serial numb   | ers 3        | 3:9600-3:9999           |                        |                     | 1323-1358                |  |
|               |              | Снар                    | TER XXIII              |                     |                          |  |
| I. Index      | of com       | oounds according to en  | npirical formulas      |                     | 1359-1379                |  |
| II. Index     | of emp       | oirical formulas accord | ling to percentage     | chlorine content    | 1380-1382                |  |
|               | _            | rical formulas accordin | -                      | ghts                | 1383-1385                |  |
|               |              | oounds according to ch  |                        |                     | 1386-1422                |  |
| V. Index      | of comp      | pounds by names in al   | phabetical sequence    | •                   | 1423-1443                |  |

# **ABBREVIATIONS**

|                      | A                                             | aq.                    | water or aqueous                  |
|----------------------|-----------------------------------------------|------------------------|-----------------------------------|
| $[lpha]_{ m D}^{20}$ | specific rotation at 20°                      | arom.                  | aromatic                          |
|                      | for D line                                    | assoc.(d)(n)           | associate(s) (associated)         |
| Ā                    | represents acid residue                       |                        | (association)                     |
|                      | in whose description                          |                        | В                                 |
|                      | it occurs                                     | B                      | represents a molecule of          |
| abs.                 | absolute; absolutely                          | D                      | the "basic" salt-                 |
| abt.                 | about                                         |                        | forming compound in               |
| abund.               | abun <b>dant</b>                              |                        | whose description it              |
| abv.                 | above                                         |                        | occurs                            |
| Ac                   | acetyl radical, i.e.,<br>CH <sub>3</sub> .CO— | B.B.No.                | bromide-bromate num-<br>ber       |
| AcOEt                | ethyl acetate                                 | bibl.                  | bibliography                      |
| AcOH                 | acetic acid (glacial ace-                     | bkn.                   | "broken" (cf. color ter-          |
|                      | tic acid when unmodi-                         | DAII.                  | minology)                         |
|                      | fied)                                         | boilg.                 | boiling                           |
| Ac <sub>2</sub> O    | acetic anhydride                              | b.p.                   | boiling point (at atm.            |
| ac.                  | acid                                          | p.                     | pressure unless speci-            |
| acc.                 | according                                     |                        | fied)                             |
| acid.                | acidify, acidified, acidi-                    | Bu                     | n-butyl                           |
|                      | fication                                      | bril.                  | brilliant                         |
| act.                 | active                                        | brn.                   | brown                             |
| addn.(l)             | addition (additional)                         | $\mathbf{B}\mathbf{z}$ | benzoyl, i.e., C6H5.CO-           |
| adj.                 | adjacent (e.g., 1,2,3)                        | BzOH                   | benzoic acid                      |
| alc.                 | alcohol (95% unless                           |                        | C                                 |
|                      | otherwise stated); al-                        | •                      |                                   |
|                      | coholic                                       | C<br>Č                 | Centigrade degrees                |
| ald.                 | aldehyde                                      | C                      | used to designate the             |
| alk.(y)              | alkali; alkaline; (alka-                      |                        | compound in whose                 |
|                      | linity)                                       | 1- (1) (-)             | description it occurs             |
| alm.                 | almost                                        | calc.(d) (n)           | calculate(d)                      |
| Am                   | amyl                                          |                        | (calculation)                     |
| ammon.               | ammoniacal                                    | cap.                   | capillary                         |
| amorph.              | amorphous                                     | cat.                   | catalyst; catalytic;<br>catalyzed |
| amt.(s)              | amount(s)                                     | ••                     | cubic centimeter(s)               |
| anal.                | analysis; analyses                            | cc.                    | • • •                             |
| anhyd.               | anhydrous                                     | cf.                    | compare<br>centigram(s)           |
| anti-                | anti (stereomeric oppo-                       | cg.<br>charac.         | characteristic                    |
|                      | site of syn-)                                 | chem.                  | chemical                          |
| apprec.              | appreciable; appreci-                         | ciem.                  | stereochemical opposite           |
|                      | ably                                          | C16-                   | of trans-                         |
| approx.              | approximate; approxi-<br>mately               | cm.                    | centimeter(s)                     |

# ABBREVIATIONS

| coeff.            | coefficient                                | diam.              | diameter                                        |
|-------------------|--------------------------------------------|--------------------|-------------------------------------------------|
| col.(n)           | color (coloration)                         | dif.               | different; difference; difficultly              |
| comb.(d)_(n) (g)  | combine(d) (combina-<br>tion) (combining)  | dil.(td) (tg) (n)  | dilute (diluted) (dilu-                         |
| comml.            | commercial                                 | () (-8) ()         | ting) (dilution)                                |
| compd.            | compound                                   | dimin.             | diminish; diminishing;                          |
| compn.            | composition                                |                    | diminished; diminu-                             |
| conc.(d) (n)      | concentrate(d) (concen-                    |                    | tive                                            |
|                   | tration)                                   | dis.(lvd)          | dissolve (dissolved)                            |
| condens.          | condensation                               | dissoc.(d) (g) (n) | dissociate(d) (dissociat-                       |
| cond.             | condition(s)                               |                    | ing) (dissociation)                             |
| confrm.(n)        | confirm; confirmatory (confirmation)       | dist.(d) (g) (n)   | distil(led) (distilling)<br>(distillation)      |
| const.            | constant                                   | distrib.(n)        | distribute (distribution)                       |
| cont.(s) (g)      | contain(s) (containing)                    | div.(n)            | divide (division)                               |
| conv.(n)          | convert (conversion)                       | dk.                | dark                                            |
| cor.              | corrected                                  | d, $l$ -           | racemic (by external                            |
| corresp.          | corresponding                              |                    | compensation as con-                            |
| C.P.              | chemically pure                            |                    | trasted with meso)                              |
| epd.              | compound                                   | D.V.               | Duclaux Value                                   |
| crit.             | critical                                   |                    |                                                 |
| cryst.(n) (d)     | crystal(s); crystallize(s)                 |                    | ${f E}$                                         |
|                   | (d); crystalline (crys-                    | eas.               | easily                                          |
|                   | tallization)                               | efferv.            | effervesce(s); efferves-                        |
| C.S.T.            | critical solubility tem-                   |                    | cent                                            |
|                   | perature                                   | equiv.             | equivalent                                      |
|                   | D                                          | espec.             | especially                                      |
| _                 | _                                          | est.(d) (g) (n)    | estimate(s) (estimated)                         |
| •                 | derivative (used to intro-                 |                    | (estimating) (estima-                           |
|                   | duce important de-                         | <b></b>            | tion)                                           |
|                   | rivatives for specific                     | Et                 | ethyl, i.e., CH <sub>3</sub> .CH <sub>2</sub> — |
|                   | characterizations)                         | EtOH               | ethyl alcohol (generally                        |
| (D)               | dark (following name of                    |                    | refers to 95% if un-                            |
| <b>7</b> 20       | a broken color)                            | -41                | modified)                                       |
| $D_4^{20}$        | density at 20° referred to                 | eth.               | ether (generally means                          |
| ,                 | water at 4°                                | (d) (m) (m)        | ordinary diethylether)                          |
| d-                | dextrorotatory                             | evap.(d) (g) (n)   | evaporate(d) (evaporat-                         |
| dec.(d) (n)       | decompose(s) (decom-<br>posed) (decomposi- | evol.(n)           | ing) (evaporation)                              |
|                   | tion)                                      | * *                | evolve(s) (evolution)                           |
| deliq.            | deliquesce(s), deliques-                   | exam.(d) (n)       | examine(d) (examina-<br>tion)                   |
| denq.             | cent                                       | expt.(l)           | •                                               |
| depolym.(d) (n)   | depolymerize(s) (depoly-                   | ext.(d) (g) (n)    | experiment(al)<br>extract(s) (extracted)        |
| deporym.(d) (ii)  | merized) (depolymer-                       | ext.(tt) (g) (tt)  | extract(s) (extracted) (extracting) (extrac-    |
|                   | ization)                                   |                    | tion)                                           |
| deriv.(s) (d) (n) | derivative(s) (derived)                    |                    | violi)                                          |
| (c) (u) (u)       | (derivation)                               |                    | F                                               |
| desic.            | desiccator; desiccated                     | filt.(n)           | filter(s); filtrate (fil-                       |
| detectn.          | detection                                  |                    | tration)                                        |
| detn.(d)          | determine: determina-                      | floc.              | flocculate; flocculent                          |
|                   | tion (determined)                          | fluores.           | fluoresce(s); fluorescent                       |
|                   |                                            |                    |                                                 |

| f.p.<br>freq.<br>fract.(n) (nl)                                                                                         | freezing point frequently fraction; fractionate (fractionation) (frac- tional) fumaroid (stereochemi-                                                                                                                                                                                                             | insol.(y) irreg. irrit.(n) isom.(d) (n)                                                           | insoluble (insolubility) irregular irritating (irritation) isomer; isomerize (isomerized) (isomerization)                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •                                                                                                                       | cal opposite of maleinoid)                                                                                                                                                                                                                                                                                        |                                                                                                   | K                                                                                                                                                                                                                                                                                                                  |
| fumg.<br>fus.(n)                                                                                                        | fuming fuse(s), melt(s); fusi- ble; fusing (fusion)                                                                                                                                                                                                                                                               | k                                                                                                 | ionization constant                                                                                                                                                                                                                                                                                                |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                                                                                                   | L                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                         | G                                                                                                                                                                                                                                                                                                                 | (L)                                                                                               | Light (modifying name<br>of a broken color)                                                                                                                                                                                                                                                                        |
| g.                                                                                                                      | gram(s)                                                                                                                                                                                                                                                                                                           | l-                                                                                                |                                                                                                                                                                                                                                                                                                                    |
| gem.                                                                                                                    | geminate (said of two                                                                                                                                                                                                                                                                                             |                                                                                                   | laevorotatory                                                                                                                                                                                                                                                                                                      |
|                                                                                                                         | like groups attached                                                                                                                                                                                                                                                                                              | l.                                                                                                | liter(s)                                                                                                                                                                                                                                                                                                           |
|                                                                                                                         | to same atom)                                                                                                                                                                                                                                                                                                     | lft(s).                                                                                           | leaflet(s)                                                                                                                                                                                                                                                                                                         |
| geom.                                                                                                                   | geometrical                                                                                                                                                                                                                                                                                                       | lgr.                                                                                              | ligroin                                                                                                                                                                                                                                                                                                            |
| glac.                                                                                                                   | glacial                                                                                                                                                                                                                                                                                                           | liq.                                                                                              | liquid; liquefy                                                                                                                                                                                                                                                                                                    |
| gr.                                                                                                                     | green                                                                                                                                                                                                                                                                                                             | lt.                                                                                               | light (of a color)                                                                                                                                                                                                                                                                                                 |
| grad.                                                                                                                   | graduate; graduated; gradually                                                                                                                                                                                                                                                                                    |                                                                                                   | M                                                                                                                                                                                                                                                                                                                  |
| gran.                                                                                                                   | granular; granulated                                                                                                                                                                                                                                                                                              | (3.E)                                                                                             |                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                   | (M)                                                                                               | medium (modifying                                                                                                                                                                                                                                                                                                  |
|                                                                                                                         | н                                                                                                                                                                                                                                                                                                                 |                                                                                                   | name of a broken                                                                                                                                                                                                                                                                                                   |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                                                                                                   | color)                                                                                                                                                                                                                                                                                                             |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                                                                                                   |                                                                                                                                                                                                                                                                                                                    |
| H.E.                                                                                                                    | hydrolysis equivalent                                                                                                                                                                                                                                                                                             | m.                                                                                                | melt(s)                                                                                                                                                                                                                                                                                                            |
| H.E.<br>hexag.                                                                                                          | hydrolysis equivalent<br>hexagon; hexagonal                                                                                                                                                                                                                                                                       | m-                                                                                                | meit(s)<br>meta                                                                                                                                                                                                                                                                                                    |
|                                                                                                                         | hydrolysis equivalent<br>hexagon; hexagonal<br>hour(s)                                                                                                                                                                                                                                                            |                                                                                                   | • • •                                                                                                                                                                                                                                                                                                              |
| hexag.<br>hr.(s)                                                                                                        | hexagon; hexagonal                                                                                                                                                                                                                                                                                                | m-                                                                                                | meta                                                                                                                                                                                                                                                                                                               |
| hexag.<br>hr.(s)<br>ht.(d) (g)                                                                                          | hexagon; hexagonal<br>hour(s)<br>heat(ed) (heating)                                                                                                                                                                                                                                                               | m-                                                                                                | meta<br>maleinoid (stereochemi-                                                                                                                                                                                                                                                                                    |
| hexag.<br>hr.(s)                                                                                                        | hexagon; hexagonal<br>hour(s)<br>heat(ed) (heating)<br>hydrolyze; hydrolysis;                                                                                                                                                                                                                                     | m-                                                                                                | meta<br>maleinoid (stereochemi-<br>cal opposite of                                                                                                                                                                                                                                                                 |
| hexag.<br>hr.(s)<br>ht.(d) (g)                                                                                          | hexagon; hexagonal<br>hour(s)<br>heat(ed) (heating)<br>hydrolyze; hydrolysis;<br>(hydrolyzing) (hydro-                                                                                                                                                                                                            | m-<br>mal.                                                                                        | meta maleinoid (stereochemical opposite of fumaroid) maximum                                                                                                                                                                                                                                                       |
| hexag.<br>hr.(s)<br>ht.(d) (g)<br>hydrol.(g) (zd)                                                                       | hexagon; hexagonal<br>hour(s)<br>heat(ed) (heating)<br>hydrolyze; hydrolysis;<br>(hydrolyzing) (hydro-<br>lyzed)                                                                                                                                                                                                  | m- mal.  max.                                                                                     | meta maleinoid (stereochemical opposite of fumaroid) maximum methyl, i.e., CH <sub>3</sub> —                                                                                                                                                                                                                       |
| hexag.<br>hr.(s)<br>ht.(d) (g)                                                                                          | hexagon; hexagonal<br>hour(s)<br>heat(ed) (heating)<br>hydrolyze; hydrolysis;<br>(hydrolyzing) (hydro-                                                                                                                                                                                                            | m- mal.  max. Me                                                                                  | meta maleinoid (stereochemical opposite of fumaroid) maximum methyl, i.e., CH <sub>3</sub> — methanol, i.e., CH <sub>3</sub> OH                                                                                                                                                                                    |
| hexag.<br>hr.(s)<br>ht.(d) (g)<br>hydrol.(g) (zd)                                                                       | hexagon; hexagonal<br>hour(s)<br>heat(ed) (heating)<br>hydrolyze; hydrolysis;<br>(hydrolyzing) (hydro-<br>lyzed)<br>hygroscopic                                                                                                                                                                                   | m- mal.  max.  Me MeOH m.e.                                                                       | meta maleinoid (stereochemical opposite of fumaroid) maximum methyl, i.e., CH <sub>3</sub> — methanol, i.e., CH <sub>3</sub> OH milliequivalent                                                                                                                                                                    |
| hexag.<br>hr.(s)<br>ht.(d) (g)<br>hydrol.(g) (zd)                                                                       | hexagon; hexagonal<br>hour(s)<br>heat(ed) (heating)<br>hydrolyze; hydrolysis;<br>(hydrolyzing) (hydro-<br>lyzed)                                                                                                                                                                                                  | m- mal.  max.  Me MeOH m.e. mg.                                                                   | meta maleinoid (stereochemical opposite of fumaroid) maximum methyl, i.e., CH <sub>3</sub> — methanol, i.e., CH <sub>3</sub> OH milliequivalent milligram(s)                                                                                                                                                       |
| hexag.<br>hr.(s)<br>ht.(d) (g)<br>hydrol.(g) (zd)<br>hygros.                                                            | hexagon; hexagonal<br>hour(s)<br>heat(ed) (heating)<br>hydrolyze; hydrolysis;<br>(hydrolyzing) (hydro-<br>lyzed)<br>hygroscopic                                                                                                                                                                                   | m- mal.  max.  Me MeOH m.e. mg. mic.                                                              | meta maleinoid (stereochemical opposite of fumaroid) maximum methyl, i.e., CH <sub>3</sub> — methanol, i.e., CH <sub>3</sub> OH milliequivalent milligram(s) micro                                                                                                                                                 |
| hexag.<br>hr.(s)<br>ht.(d) (g)<br>hydrol.(g) (zd)<br>hygros.<br>ibid.                                                   | hexagon; hexagonal hour(s) heat(ed) (heating) hydrolyze; hydrolysis; (hydrolyzing) (hydro- lyzed) hygroscopic  I in the same place                                                                                                                                                                                | max. Me MeOH m.e. mg. mic. microcryst.                                                            | meta maleinoid (stereochemical opposite of fumaroid) maximum methyl, i.e., CH <sub>3</sub> — methanol, i.e., CH <sub>3</sub> OH milliequivalent milligram(s) micro microcrystalline                                                                                                                                |
| hexag. hr.(s) ht.(d) (g) hydrol.(g) (zd) hygros.  ibid. ident.                                                          | hexagon; hexagonal hour(s) heat(ed) (heating) hydrolyze; hydrolysis; (hydrolyzing) (hydro- lyzed) hygroscopic  I in the same place identical; identity                                                                                                                                                            | m- mal.  max.  Me MeOH m.e. mg. mic. microcryst. min.                                             | meta maleinoid (stereochemical opposite of fumaroid) maximum methyl, i.e., CH <sub>3</sub> — methanol, i.e., CH <sub>3</sub> OH milliequivalent milligram(s) micro microcrystalline minute(s); minimum                                                                                                             |
| hexag.<br>hr.(s)<br>ht.(d) (g)<br>hydrol.(g) (zd)<br>hygros.<br>ibid.                                                   | hexagon; hexagonal hour(s) heat(ed) (heating) hydrolyze; hydrolysis; (hydrolyzing) (hydro- lyzed) hygroscopic  I in the same place identical; identity identify (identified)                                                                                                                                      | m- mal.  max.  Me MeOH m.e. mg. mic. microcryst. min. minl.                                       | meta maleinoid (stereochemical opposite of fumaroid) maximum methyl, i.e., CH <sub>3</sub> — methanol, i.e., CH <sub>3</sub> OH millieguivalent milligram(s) micro microcrystalline minute(s); minimum mineral                                                                                                     |
| hexag. hr.(s) ht.(d) (g) hydrol.(g) (zd)  hygros.  ibid. ident. identif.(d) (n)                                         | hexagon; hexagonal hour(s) heat(ed) (heating) hydrolyze; hydrolysis; (hydrolyzing) (hydro- lyzed) hygroscopic  I in the same place identical; identity identify (identified) (identification)                                                                                                                     | m- mal.  max. Me MeOH m.e. mg. mic. microcryst. min. minl. misc.                                  | meta maleinoid (stereochemical opposite of fumaroid) maximum methyl, i.e., CH <sub>3</sub> — methanol, i.e., CH <sub>3</sub> OH milliequivalent milligram(s) micro microcrystalline minute(s); minimum mineral miscellaneous; miscible                                                                             |
| hexag. hr.(s) ht.(d) (g) hydrol.(g) (zd)  hygros.  ibid. ident. identif.(d) (n) i.e.                                    | hexagon; hexagonal hour(s) heat(ed) (heating) hydrolyze; hydrolysis; (hydrolyzing) (hydro- lyzed) hygroscopic  I in the same place identical; identity identify (identified) (identification) that is                                                                                                             | m- mal.  max. Me MeOH m.e. mg. mic. microcryst. min. minl. misc. mixt.                            | meta maleinoid (stereochemical opposite of fumaroid) maximum methyl, i.e., CH <sub>3</sub> — methanol, i.e., CH <sub>3</sub> OH milliequivalent milligram(s) micro microcrystalline minute(s); minimum mineral miscellaneous; miscible mixture(s)                                                                  |
| hexag. hr.(s) ht.(d) (g) hydrol.(g) (zd)  hygros.  ibid. ident. identif.(d) (n)  i.e. immed.                            | hexagon; hexagonal hour(s) heat(ed) (heating) hydrolyze; hydrolysis; (hydrolyzing) (hydro- lyzed) hygroscopic  I in the same place identical; identify identified) (identification) that is immediate; immediately                                                                                                | m- mal.  max. Me MeOH m.e. mg. mic. microcryst. min. minl. misc. mixt. mod.                       | meta maleinoid (stereochemical opposite of fumaroid) maximum methyl, i.e., CH <sub>3</sub> — methanol, i.e., CH <sub>3</sub> OH milliequivalent milligram(s) micro microcrystalline minute(s); minimum mineral miscellaneous; miscible mixture(s) moderate                                                         |
| hexag. hr.(s) ht.(d) (g) hydrol.(g) (zd)  hygros.  ibid. ident. identif.(d) (n)  i.e. immed. impt.                      | hexagon; hexagonal hour(s) heat(ed) (heating) hydrolyze; hydrolysis; (hydrolyzing) (hydro- lyzed) hygroscopic  I in the same place identical; identity identify (identified) (identification) that is immediate; immediately important                                                                            | max. Me MeOH m.e. mg. mic. microcryst. min. minl. misc. mixt. mod. modifn.                        | meta maleinoid (stereochemical opposite of fumaroid) maximum methyl, i.e., CH <sub>3</sub> — methanol, i.e., CH <sub>3</sub> OH milliequivalent milligram(s) micro microcrystalline minute(s); minimum mineral miscellaneous; miscible mixture(s) moderate modification                                            |
| hexag. hr.(s) ht.(d) (g) hydrol.(g) (zd)  hygros.  ibid. ident. identif.(d) (n)  i.e. immed. impt. inact.               | hexagon; hexagonal hour(s) heat(ed) (heating) hydrolyze; hydrolysis; (hydrolyzing) (hydro- lyzed) hygroscopic  I in the same place identical; identity identify (identified) (identification) that is immediate; immediately important inactive; inactivated                                                      | max. Me MeOH m.e. mg. mic. microcryst. min. minl. misc. mixt. mod. modifn.                        | meta maleinoid (stereochemical opposite of fumaroid) maximum methyl, i.e., CH3— methanol, i.e., CH3OH milliequivalent milligram(s) micro microcrystalline minute(s); minimum mineral miscellaneous; miscible mixture(s) moderate modification molecular                                                            |
| hexag. hr.(s) ht.(d) (g) hydrol.(g) (zd)  hygros.  ibid. ident. identif.(d) (n)  i.e. immed. impt. inact. indef.        | hexagon; hexagonal hour(s) heat(ed) (heating) hydrolyze; hydrolysis; (hydrolyzing) (hydro- lyzed) hygroscopic  I in the same place identical; identity identify identified) (identification) that is immediate; immediately important inactive; inactivated indefinite                                            | max. Me MeOH m.e. mg. mic. microcryst. min. minl. misc. mixt. mod. modifn. mol. monoclin.         | meta maleinoid (stereochemical opposite of fumaroid) maximum methyl, i.e., CH <sub>3</sub> — methanol, i.e., CH <sub>3</sub> OH milliequivalent milligram(s) micro microcrystalline minute(s); minimum mineral miscellaneous; miscible mixture(s) moderate modification molecular monoclinic                       |
| hexag. hr.(s) ht.(d) (g) hydrol.(g) (zd)  hygros.  ibid. ident. identif.(d) (n)  i.e. immed. impt. inact.               | hexagon; hexagonal hour(s) heat(ed) (heating) hydrolyze; hydrolysis; (hydrolyzing) (hydro- lyzed) hygroscopic  I in the same place identical; identity identify (identified) (identification) that is immediate; immediately important inactive; inactivated indefinite indicate; indicator; in-                  | max. Me MeOH m.e. mg. mic. microcryst. min. minl. misc. mixt. mod. modifn. mol. monoclin. ml.     | meta maleinoid (stereochemical opposite of fumaroid) maximum methyl, i.e., CH <sub>3</sub> — methanol, i.e., CH <sub>3</sub> OH milliequivalent milligram(s) micro microcrystalline minute(s); minimum mineral miscellaneous; miscible mixture(s) moderate modification molecular monoclinic milliliter            |
| hexag. hr.(s) ht.(d) (g) hydrol.(g) (zd)  hygros.  ibid. ident. identif.(d) (n)  i.e. immed. impt. inact. indef. indic. | hexagon; hexagonal hour(s) heat(ed) (heating) hydrolyze; hydrolysis; (hydrolyzing) (hydro- lyzed) hygroscopic  I in the same place identical; identity identify (identified) (identification) that is immediate; immediately important inactive; inactivated indefinite indicate; indicator; in- dicated          | max. Me MeOH m.e. mg. mic. microcryst. min. minl. misc. mixt. mod. modifn. mol. monoclin.         | meta maleinoid (stereochemical opposite of fumaroid) maximum methyl, i.e., CH <sub>3</sub> — methanol, i.e., CH <sub>3</sub> OH milliequivalent milligram(s) micro microcrystalline minute(s); minimum mineral miscellaneous; miscible mixture(s) moderate modification molecular monoclinic                       |
| hexag. hr.(s) ht.(d) (g) hydrol.(g) (zd)  hygros.  ibid. ident. identif.(d) (n)  i.e. immed. impt. inact. indef.        | hexagon; hexagonal hour(s) heat(ed) (heating) hydrolyze; hydrolysis; (hydrolyzing) (hydro- lyzed) hygroscopic  I in the same place identical; identity identify (identified) (identification) that is immediate; immediately important inactive; inactivated indefinite indicate; indicator; in- dicated infinite | max. Me MeOH m.e. mg. mic. microcryst. min. minl. misc. mixt. mod. modifn. mol. monoclin. ml.     | meta maleinoid (stereochemical opposite of fumaroid) maximum methyl, i.e., CH <sub>3</sub> — methanol, i.e., CH <sub>3</sub> OH milliequivalent milligram(s) micro microcrystalline minute(s); minimum mineral miscellaneous; miscible mixture(s) moderate modification molecular monoclinic milliliter            |
| hexag. hr.(s) ht.(d) (g) hydrol.(g) (zd)  hygros.  ibid. ident. identif.(d) (n)  i.e. immed. impt. inact. indef. indic. | hexagon; hexagonal hour(s) heat(ed) (heating) hydrolyze; hydrolysis; (hydrolyzing) (hydro- lyzed) hygroscopic  I in the same place identical; identity identify (identified) (identification) that is immediate; immediately important inactive; inactivated indefinite indicate; indicator; in- dicated          | m- mal.  Me MeOH m.e. mg. mic. microcryst. min. minl. misc. mixt. mod. modifn. mol. monoclin. ml. | meta maleinoid (stereochemical opposite of fumaroid) maximum methyl, i.e., CH <sub>3</sub> — methanol, i.e., CH <sub>3</sub> OH milliequivalent milligram(s) micro microcrystalline minute(s); minimum mineral miscellaneous; miscible mixture(s) moderate modification molecular monoclinic milliliter millimeter |

|                       | N                                             | pr.                 | prism(s)                 |
|-----------------------|-----------------------------------------------|---------------------|--------------------------|
| N                     | normal (equivalents per                       | pract.              | practically              |
| ••                    | liter)                                        | prep.(d) (g) (n)    | prepare(d) (preparing)   |
| n                     | normal                                        |                     | (preparation)            |
| $n_{\mathrm{D}}^{20}$ | refractive index at 20°                       | pres.               | presence                 |
| •                     | for D line of sodium                          | press.              | pressure                 |
| ndl.(s)               | needle(s)                                     | prim.               | primary                  |
| neg.                  | negative                                      | prin.               | principal                |
| Neut. Eq.             | neutralization equiva-                        | prismat.            | prismatic                |
| -                     | lent                                          | prob.               | probably                 |
| neut.(zd)             | neutral (neutralized)                         | proc.               | procedure                |
| no. ·                 | number                                        | prod.               | product; produce; pro-   |
| non-fus.              | non-fusible                                   |                     | duced                    |
| non-vol.              | non-volatile                                  | prop.               | property; properties     |
|                       |                                               | pt.(s)              | part(s)                  |
|                       | О                                             | pulv.(d)            | pulverize(d)             |
| 0-                    | ortho                                         | pung.               | pungent                  |
| obs.(d) (n)           | observe(d) (observa-                          | purif.(d) (g) (n)   | purify (purified) (puri- |
|                       | tion)                                         |                     | fying) (purification)    |
| obt.(d)               | obtain(ed)                                    |                     | _                        |
| opt.                  | optical                                       |                     | Q                        |
| optim.                | optimum                                       | quad.               | quadratic                |
| or.                   | orange                                        | qual.               | qualitative; qualita-    |
| ord.                  | ordinary                                      |                     | tively                   |
| orig.                 | original; originally                          | quant.              | quantity; quantitative;  |
| org.                  | organic                                       |                     | quantitatively           |
| oxid.(g) (n)          | oxidize(s) (oxidizing)                        | quat.               | quaternary               |
|                       | (oxidation)                                   | q.v.                | quod vide (which see)    |
|                       | P                                             |                     | R                        |
|                       |                                               |                     |                          |
| <b>®</b>              | preliminary test                              | rac.                | racemic                  |
| <i>p</i> -            | para                                          | rap.                | rapid; rapidly           |
| perm.                 | permanent                                     | reactn.             | reaction(s)              |
| pet.<br>Ph            | petroleum                                     | reagt.(s)           | reagent(s)               |
| phys.                 | phenyl, i.e., C <sub>6</sub> H <sub>5</sub> — | rearr.              | rearrange(s); rearrange- |
| physiol.              | physical                                      | •                   | ment                     |
| Pk                    | physiological                                 | recommd.            | recommend; recom-        |
| - A                   | picryl, i.e., 2,4,6-tri-                      |                     | mended                   |
| PkOH                  | nitrophenyl-                                  | recryst.(d) (g) (n) | (, (                     |
| pl.                   | pierie acid                                   |                     | tallizing) (recrystal-   |
| polym.(n)             | plate(s)                                      | i                   | lization)                |
| potym.(n)             | polymer; polymerize;<br>polymerized (poly-    | rect.               | rectangular              |
|                       | polymerized (poly-<br>merization)             | redis.              | redissolve               |
| pos.                  | positive                                      | reduc.(d) (g) (n)   | reduce(d) (reducing)     |
| powd.                 | positive<br>powder; powdered                  |                     | (reduction)              |
| ppt.(d) (g) (n)       |                                               | ref.                | reference                |
|                       | precipitate(d) (precipitating) (precipita-    | reminis.            | reminiscent              |
|                       | tion)                                         | reppt.(d) (g) (tn)  | reprecipitate(d) (repre- |
| Pr                    | propyl                                        |                     | cipitating) (reprecipi-  |
|                       | E57.                                          |                     | tation)                  |

| resid.                     | residue; residual                               |               | T                              |
|----------------------------|-------------------------------------------------|---------------|--------------------------------|
| resin.                     | resinify; resinification                        | Т             | Numbered Test                  |
| resp.                      | respectively                                    | tbl.(s)       | tablet(s) > tabular            |
| rhomb.                     | rhombic                                         | tech.         | technical                      |
|                            | S                                               | temp.         | temperature                    |
| a 15                       |                                                 | theor.        | theoretical                    |
| Sap. Eq.                   | saponification equiva-                          | therm.        | thermometer                    |
| (1) (-) (-)                | lent                                            | T.N.B.        | 1,3,5-trinitrobenzene          |
| sapon.(d) (g) (n)          | saponify (saponified)                           | T.N.T.        | 2,4,6-trinitrotoluene          |
|                            | (saponifying) (saponi-<br>fication)             | ter-          | tertiary                       |
| ant (d) (m) (m)            | ,                                               | trans-        | stereochemical opposite        |
| sat.(d) (g) (n)            | saturate(d) (saturating)<br>(saturation)        |               | of cis-                        |
| sec.                       | second(s)                                       | transf.       | transfer; transform            |
| 8ec.                       | secondary                                       | tt.           | test tube                      |
| sect.                      | section                                         |               |                                |
| sep.(d) (g) (n)            | separate(d) (separating)                        |               | U                              |
| sep.(u) (g) (n)            | (separation)                                    |               | O                              |
| sft.(n)(s)                 | soft; soften(s)                                 | u.c.          | uncorrected                    |
| shak.(g) (n)               | shake (shaking) (shaken)                        | undec.        | undecomposed                   |
| sint.(d)                   | sinter(s) (sintered)                            | undislvd.     | undissolved                    |
| sl.                        | slightly                                        | unoxid.       | unoxidized                     |
| sld. cap.                  | sealed capillary                                | unsat.        | unsaturated                    |
| S.N.                       | system number (Beil-                            | unsym.        | unsymmetrical                  |
|                            | stein)                                          | U.S.P.        | United States Pharma-          |
| spar.                      | sparing; sparingly                              |               | copœia                         |
| sol.(n)(y)                 | soluble (solution) (solu-                       | u.v.          | ultra violet                   |
|                            | bility)                                         |               |                                |
| solv.                      | solvent(s)                                      |               | v                              |
| sp.gr.                     | specific gravity                                | 770.0         |                                |
| sq.                        | square                                          | vac.<br>vap.  | vacuum<br>vapor; vaporize      |
| subl.(g)                   | sublimes; sublimate;                            | vap.<br>var.  | vapor, vaporize<br>variable    |
|                            | subliming; sublima-                             | vic.          | variable<br>vicinal (adjacent) |
|                            | tion                                            | vig.          | vigorous; vigorously           |
| subl. w.m.                 | sublimes without melt-                          | viol.         | violent; violently; vio-       |
|                            | ing                                             | 7-02.         | let                            |
| subseq.                    | subsequent                                      | visc.         | viscous                        |
| subst.                     | substance; substanti-                           | volat.(g) (n) | volatile (volatilizing)        |
| suff.                      | ally; substituted                               |               | (volatilization)               |
| sun. supersat. $(d)(g)(n)$ | suffices; sufficient<br>supersaturate(d)(super- | volumin.      | voluminous                     |
| arbergar.(g)(R)(H)         | saturating) (super-                             |               |                                |
|                            | saturation)                                     |               | ***                            |
| st.                        | steam                                           |               | W                              |
| s.t.                       | sealed tube                                     | warm.         | warming                        |
| stdg.                      | standing                                        | wh.           | white                          |
| sym.                       | symmetrical                                     | wt.           | weight                         |
| 81/n-                      | stereochemical opposite                         |               | <del>-</del>                   |
| - <b></b>                  | of anti-                                        |               | 77                             |
| syst.                      | system; systematic;                             |               | Y                              |
| •                          | systematically                                  | yel.          | yellow                         |

|  | • |  |  |
|--|---|--|--|
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |

# MEMORANDUM OF CERTAIN 1946-1947 REFERENCES NOT INCORPORATED IN REGULAR TEXT

The regular text of this book is made up of references selected from the chemical literature through the year 1945. Owing to the disturbed postwar conditions of the publishing and printing trades, and also to the exceptional difficulty and magnitude of this work, almost three years have elapsed since the termination of the period of writing of the organized text. Inevitably, there have appeared during this period many scientific papers whose content would gladly have been incorporated appropriately in the regular text. For practical reasons, however, such continuous adjustment was obviously impossible.

In an effort to avoid so far as possible complete loss of such material, however, certain of the more important papers which have come to the attention of the author during the 1946–1947 period have been listed in the following supplementary bibliography. Articles relevant to more than a single numbered compound are cited under the first in such a numerical series, cross-references being given under subsequent compounds to avoid excess duplication of references. In the interests of brevity, clarity, and consistency of nomenclature, slight modifications of the actual titles of the original papers have sometimes been made for purposes of this listing.

## General

(1) Table of azeotropes and nonazeotropes

Horsley, Ind. Eng. Chem., Anal. Ed. 19, 508-600 (1947)

This extraordinary 92-page compilation with its accompanying formula index and bibliography of 172 references is so generally valuable and includes so many of the serially numbered compounds of this book that it is placed at the head of this supplementary reference list without further cross-reference to it from subsequent entries below.

# 3:0075 δ-Chloro-n-valeric acid

(2) Isomeric chlorinated long-chain esters

Guest, J. Am. Chem. Soc. 69, 300-302 (1947)

—Methyl  $\delta$ -chloro-n-valerate: b.p. 89–92° at 18 mm. [From  $\delta$ -chloro-n-valeronitrile 80%  $H_2SO_4$  refluxed 50 hr.]

# 3:0235 α-Chloroisobutyric acid

(3) The chloro- and bromoisobutyronitriles

Stevens. J. Am. Chem. Soc. 70, 166 (1948)

 $\bigcirc$   $\alpha$ -Chloroisobutyramide: cryst. from EtOAc, m.p. 115–118°; from aq., m.p. 117–119°. [From  $\alpha$ -chloroisobutyryl chloride (3:5385) with conc. NH<sub>4</sub>OH at 10° in 70% yield.]

# 3:0280 Chloromaleic anhydride

(4) Use of C in determination of conjugated diolefins

Putnam, Moss, Hall, Ind. Eng. Chem., Anal. Ed. 18, 628-630 (1946)

### 3:0460 8-Chloropropionic acid

(5) Convenient synthesis of  $\beta$ -chloropropionitrile (from acrylonitrile with hydrogen chloride) Stewart, Clark, J. Am. Chem. Soc. 69, 713-714 (1947)

### 3:0885 α-Chloro-diphenylacetyl chloride

C as reagent for preparation of benzilic acid esters of tertiary amino alcohols (6) King, Holmes, J. Chem. Soc. 1947, 164-168; C.A. 41, 5121 (1947)

### 3:1150 Trichloroacetic acid

(7) Kinetics of the decomposition of certain salts of  $\overline{C}$  in ethanol-water mixtures Hall, Verhoek, J. Am. Chem. Soc. 69, 613-616 (1947)

(8) Kinetics of the decomposition of  $\overline{\mathbf{C}}$  in formamide-water mixtures Cochran, Verhoek, J. Am. Chem. Soc. 69, 2987-2988 (1947)

### 3:1212 Phenacyl chloride

(9) The reaction of C with phenylhydrazine van Alphen, Rec. trav. chim. 65, 112-116 (1946); C.A. 41, 409 (1947)

## 3:1370 Chloroacetic acid

(10) New method for the detection and determination of C (using pyridine) Ramsey, Patterson, J. Assoc. Offic. Agr. Chemists 29, 100-111 (1946); C.A. 40, 3369

(11) Effect of pH on rate of hydrolysis of C Berhenke, Britton, Ind. Eng. Chem. 38, 544-546 (1946)

### 3:1420 1,1,1-Trichloro-2,2-diphenylethane

(12) Derivatives of C

Haskelberg, Lavie, J. Am. Chem. Soc. 69, 2267-2268 (1947)

(13) Symmetrical analogues of DDT Stephenson, Waters, J. Chem. Soc. 1946, 339-343; C.A. 40, 5040 (1946)

# 3:3298 1,1,1-Trichloro-2,2-bis-(p-chlorophenyl)ethane ("DDT")

(14) Methods of preparation of C

Bailes, J. Chem. Education 22, 122 (1945); C.A. 41, 3085 (1947)

(15) Preparation of technical C

Mosher, Cannon, Conroy, Van Strien, Spalding, Ind. Eng. Chem. 38, 916-923 (1946) (16) Preparation of C using HF as condensing agent Simons, Bacon, Bradley, Cassaday, Heegberg, Tarrant, J. Am. Chem. Soc. 68, 1613-

1615 (1946) (17) Production of C

Castonguay, Ferm, Trans. Kansas Acad. Sci. 49, 167-174 (1946); C.A. 41, 2409 (1947)

(18) Synthesis of C with chlorosulfonic acid as condensing agent W. A. Cook, K. H. Cook, W. H. C. Rueggeberg, Ind. Eng. Chem. 39, 868-870, 1683 (1947)

(19) A colorimetric method for microdetermination of C (xanthydrol/KOH/pyridine method) Stiff, Castillo, Science 101, 440-443 (1945); C.A. 39, 2830 (1945)

Determination of C in organs and body fluids after oral administration (xanthydrol/-(20) KOH/pyridine method) Stiff, Castillo, J. Biol. Chem. 159, 545-548 (1945); C.A. 39, 4695 (1945)

(21) Application of xanthydrol/KOH/pyridine method to the determination of C in water Castillo, Stiff, Military Surgeon 97, 500-502 (1945); C.A. 40, 2561 (1946)

(22) Field test for surface C

Stiff, Castillo, Ind. Eng. Chem., Anal. Ed. 18, 316-317 (1946)

(23) Chemical methods for analysis of C

Ginsberg, J. Econ. Entomol. 39, 174-177 (1946); C.A. 40, 4842 (1946)

(24) Colorimetric determination of p,p'-isomer in technical C Charkin, Ind. Eng. Chem., Anal. Ed. 18, 272-273 (1946)

(25) Determination of p,p'-isomer in technical C

Cristol, Hayes, Haller, Ind. Eng. Chem., Anal. Ed. 18, 339 (1946)

(26) Determination of p,p'-isomer in technical C

Balaban, Calvert, Ind. Eng. Chem., Anal. Ed. 18, 339 (1946)

(27) Determination of p,p'-isomer in technical  $\bar{C}$  by a microscopical method McCrone, Smedal, Gilpin, Ind. Eng. Chem., Anal. Ed. 18, 578-582 (1946)

(28) Determination of C in dusts and oil solutions La Clair, Ind. Eng. Chem., Anal. Ed. 18, 763-766 (1946) (29) Determination of C as spray residue on fresh fruit by three independent methods Wichmann, Patterson, Clifford, Klein, Claborn, J. Assoc. Offic. Agr. Chemists 29, 188-190 (1946); C.A. 40, 6705 (1946)

Method 1. Organic chlorine determinations

Klein, Wichmann, ibid. 29, 191-195 (1946); C.A. 40, 6705 (1946)

Method 2. The Shechter-Haller colorimetric procedure Clifford, *ibid.* 29, 195-206 (1946); C.A. 40, 6705 (1946)

Method 3. 2,4-Dinitrophenylhydrazine method

Claborn, Patterson, ibid. 29, 206-218 (1946); C.A. 40, 6705 (1946)

(30) Decomposition and volatility of \(\bar{C}\) and some of its derivatives Wichmann, Patterson, Clifford, Klein, Claborn, J. Assoc. Offic. Agr. Chemists 29, 218-233 (1946); C.A. 40, 6740 (1946)

(31) Colorimetric determination of \(\bar{C}\) in milk and fatty materials Shechter, Pogorelskin, Haller, Ind. Eng. Chem., Anal. Ed. 19, 51-53 (1947)

(32) Estimation of  $\bar{C}$  in milk by determination of organic chlorine Carter, Ind. Eng. Chem., Anal. Ed. 19, 54 (1947)

(33) Determination of C by Shechter procedure, particularly in milk and fats Clifford, J. Assoc. Offic. Agr. Chemists 30, 337-349 (1947); C.A. 41, 6839 (1947)

(34) Nature of the by-products in technical C
Gätzi, Stammbach, Helv. Chim. Acta. 29, 563-572 (1946); Experientia 1, 276 (1945);
C.A. 40, 5040-5041 (1946)

(35) Simple purification procedure for C K. H. Cook, W. A. Cook, J. Am. Chem. Soc. 68, 1663-1664 (1946)

(36) Applications of infrared spectroscopy to C

Downing, Freed, Walker, Patterson, Ind. Eng. Chem., Anal. Ed. 18, 461-467 (1946) (37) Some derivatives of  $\overline{C}$ 

Backeberg, Marais, J. Chem. Soc. 1945, 803-805; C.A. 40, 1156, 5717 (1946) (38) Bromine analogs of C

Cristol, Haller, J. Am. Chem. Soc. 68, 140-141 (1946)

(39) Crystal structure of C and relatives Wild, Brandenberger, Helv. Chim. Acta 29, 1024-1040 (1946); C.A. 41, 428 (1947)

(40) Synthesis of some analogs of C Kirkwood, Dacey, Can. J. Research 24-B, 69-72 (1946); C.A. 49, 5717 (1946)

(41) Catalytic decomposition of C Flenner, J. Am. Chem. Soc. 68, 2399 (1946)

(42) Inhibition of catalyzed thermal decomposition of C Gunther, Tow, J. Soc. Chem. Ind. 66, 57-59 (1947); C.A. 41, 5675 (1947)

(43) Dehydrohalogenation of C

Wain, Martin, Nature 159, 68-69 (1947); C.A. 41, 2715 (1947)

(44) Estimation of  $\overline{C}$  by methods depending upon dehydrohalogenation Wain, Martin, Analyst 72, 1-6 (1947); C.A. 41, 2198 (1947)

(45) Preparation of di-(p-chlorophenyl)acetic acid from C Grummitt. Buck. Egan. Org. Syntheses 26, 21-23 (1946)

(46) Reactions of C and associated compounds

Forrest, Stephenson, Waters, J. Chem. Soc. 1946, 333-339; C.A. 49, 5038-5040 (1946)

(47) Crystallization of C from binary melts Gilpin, McCrone, Smedal, Grant, J. Am. Chem. Soc. 70, 208-211 (1947)

3:3320 1.1-Dichloro-2.2-bis-(p-chlorophenyl)ethane ("DDD")

(48) Anhydrous FeCl<sub>3</sub> as rearrangement catalyst for some chlorinated diphenylethanes Fleck, J. Org. Chem. 12, 708-712 (1947)

8:3380 4,6-Dichlororesorcinol

(49) For preparation of isomeric 2,4-dichlororesorcinol see Pectynin, Kuchina, J. Gen. Chem. (U.S.S.R.) 17, 278-282 (1947); C.A. 42, 534-535 (1948)

3:3934 p-Phenylphenacyl chloride

(50) Conversion of C to p-phenylphenacyl iodide Rheinboldt, Perrier, J. Am. Chem. Soc. 69, 3148-3149 (1947)

3:4695 2,4-Dichlorophenoxyacetic acid

(51) Preparation of C from phenol and chloroacetic acid Ebel, Bell, Fries, Kasey, Berkebile, J. Chem. Education 24, 449 (1947)

- (52) Determination of C and its compounds in commercial herbicides Rooney, Ind. Eng. Chem., Anal. Ed. 19, 475-476 (1947)
- (53) The halogenation of aryloxyacetic acids and their homologs Haskelberg, J. Org. Chem. 12, 426-433 (1947)

(54) Preparation of 2,4-dichlorophenoxyacetyl chloride Freed, J. Am. Chem. Soc. 68, 2112 (1946)

3:4375 p-Chlorophenoxyacetic acid

(-) See reference (53) under 3:4095 (above).

# 3:4410 cis-1,2,3,4,5,6-Hexachlorocyclohexane

(55) Preparation of the benzene hexachlorides

Gunther, Chemistry & Industry 1946, 399; C.A. 41, 1625 (1947)

(56) Infrared spectroscopic analysis of five isomers of C Dassch, Ind. Eng. Chem., Anal. Ed. 19, 779-785 (1947)

(57) Kinetics of the alkaline dehydrochlorination of the benzene hexachloride isomers Cristol, J. Am. Chem. Soc. 69, 338-342 (1947)

(58) Alkaline degradation of benzene hexachlorides Gunther, Blinn, J. Am. Chem. Soc. 69, 1215-1216 (1947)

(59) The gamma isomer of hexachlorocyclohexane

Slade, Chemistry & Industry 1945, 314-319; C.A. 40, 2257-2259 (1946)

(60) The epsilon isomer of hexachlorocyclohexane

Kauer, DuVall, Alquist, Ind. Eng. Chem. 39, 1334-1338 (1947)

(61) Determination of hexachlorocyclohexane is impregnated cloth Goldenson, Sass, Ind. Eng. Chem., Anal. Ed. 19, 320-322 (1947)

# 3:4612 Di-(p-chlorophenyl)acetic acid

(--) Preparation from "DDT"; see reference (45) under 3:3298 (above)

# 3:4835 Hexachloroethane

(62) Preparation of C by chlorination of liquid 1,1,2,2-tetrachloroethane and pentachloroethane Pearce, Can. J. Research 24-F, 369-379 (1946); C.A. 40, 7151 (1940)

# 3:4947 Tetrachlorophthalic anhydride

(63) Reactions and uses of C

Lawlor, Ind. Eng. Chem. 39, 1419-1423 (1947)

(64) Tetrachlorophthalic anhydride, acid and salts Lawlor, Ind. Eng. Chem. 39, 1424-1426 (1947)

(65) The esterification of C Nordlander, Cass, J. Am. Chem. Soc. 69, 2679-2682 (1947)

# 3:4990 trans-1,2,3,4,5,6-Hexachlorocyclohexane

(-) See references (55)-(61), inclusive, under cis-isomer (3:4410) (above)

# 3:5000 Carbonyl chloride (Phosgene)

(66) Heat capacity, entropy, vapor pressure, and heats of fusion and vaporization of C Giaque, Jones, J. Am. Chem. Soc. 70, 120-124 (1948)

(67) Preparation of benzoic acid from C with benzene Rueggeberg, Frantz, Ginsburg, Ind. Eng. Chem. 38, 624-626 (1946)

(68) Reaction of C with tertiary amines under conditions for formation of tetrasubstituted ureas

Lastovskii, J. Applied Chem. (U.S.S.R.) 19, 440-444 (1946); C.A. 41, 1214 (1947)

(69) Reaction of C with o-aminobenzoic acid (to give 72-75% yield isatoic anhydride) Wagner, Fegley, Org. Syntheses 27, 45-47 (1947)

# 3:5028 trans-1,2-Dichloroethylene

(70) Condensation of alkyl chlorides with polychloro-olefins Schmerling, J. Am. Chem. Soc. 68, 1655-1657 (1946)

(71) Reaction of C with isobutane Schmerling, J. Am. Chem. Soc. 70, 379-381 (1948)

# 3:5042 cis-1,2-Dichloroethylene

(-) See references (70) and (71) under trans-isomer (3:5028) (above)

# 3:5050 Chloroform

(72) The addition of polyhalomethanes to olefins

Kharasch, Jensen, Urry, J. Am. Chem. Soc. 69, 1100-1105 (1947)

(73) Compound formation of C with pyridine Davidson, Van der Werf, Boatright, J. Am. Chem. Soc. 69, 3045-3047 (1947)

### 3:5100 Carbon tetrachloride

- See references (72) and (73) under chloroform (3:5050) (above)
- (74) Analysis of the system benzene/ethanol/carbon tetrachloride (by refractive indices and densities) Campbell, Miller, Can. J. Research 25-B, No. 3, 228-242 (1947); C.A. 41, 6839 (1947)

# 3:5110 1,2-Dichloropropene-1 (low-boiling stereoisomer)

(-) See reference (70) under 3:5028 (above)

# 3:5130 1.2-Dichloroethane

(75) Reaction of C with benzene

Korshak, Kolesnikov, Kharchevnikova, Compt. rend. acad. sci. U.R.S.S. 56, 169-172 (1947); C.A. 42, 545 (1948)

# 3:5150 1,2-Dichloropropene-1 (high-boiling stereoisomer)

(—) See reference (70) under 3:5028 (above)

# 3:5170 1,1,2-Trichloroethylene

See reference (70) under 3:5028 (above) (---)

(76)Dimerization of C

Henne, Ruh, J. Am. Chem. Soc. 69, 279-281 (1947)

# 3:5190 2.3-Dichloropropene-1

(—) See reference (70) under 3:5028 (above)

# 3:5210 Trichloroacetaldehyde

(77) Determination of C in technical chloral

Harrington, Boyd, Cherry, Analyst 71, 97-107 (1946); C.A. 40, 3368 (1946)

(78)Determination of small amounts of water in C

Shaw, Bruce, Ind. Eng. Chem., Anal. Ed. 19, 884-885 (1947) (79) Hydrolysis of C in heavy hydrogen water

Lander, Wright, Nature 158, 381 (1946); C.A. 41, 1998 (1947)

# 3:5220 2,3-Dichlorobutadiene-1,3

(80) Preparation of C from tri-, tetra-, and pentachlorobutanes Klebanskii, Belen'kaya, Chevychalova, J. Applied Chem. (U.S.S.R.) 19, 200-206 (1946); C.A. 41, 685 (1947)

(—) See reference (85) under 3:5350 (below)

# 3:5280 1.3-Dichloropropene-1

(81) The cis- and trans-isomers of C

Andrews, Kepner, J. Am. Chem. Soc. 69, 2230-2231 (1947)

(82)The catalytic hydrolysis and characterization of C

Hatch, Roberts, J. Am. Chem. Soc. 68, 1196-1198 (1946)

(—) See reference (70) under 3:5028 (above)

### 3:5330 1,1,2-Trichloroethane

Ternary liquid and binary vapor equilibrium of the system: acetone/water/C (83)Treybal, Weber, Daley, Ind. Eng. Chem. 38, 817-821 (1946)

### 3:5350 3,4-Dichlorobutene-1

Preparation of C from butadiene-1,3 with chlorine (84)

Taylor, Morey, Ind. Eng. Chem. 40, 432-435 (1948)

Dehydrochlorination of C to 2-chlorobutadiene-1,3 (85) Klebanskii, Sorokina, Khavin, J. Gen. Chem. (U.S.S.R.) 17, 235-252 (1947); C.A. 42, 514-516 (1948)

### 3-Chloro-1,2-epoxypropane ("Epichlorohydrin") 3:5358

Condensation of C with phenols in presence of BF3

E. Levas, H. LeFebvre, Compt. rend. 222, 555-557 (1946); C.A. 40, 3737 (1946) H. LeFebvre, E. Levas, Mme. E. Levas, Compt. rend. 222, 1439-1440 (1946); C.A. 40, 5712 (1946)

### 3:5425 Chloroacetone

Condensation of C with formaldehyde (87)Hurd, McPhee, Morey, J. Am. Chem. Soc. 70, 329-331 (1948)

# 3:5430 a,a-Dichloroacetone

(-) See reference (87) under 3:5425 (above)

# 3:5550 1.3-Dichlorobutene-2

(88) Oxidation of C with aqueous HNO<sub>2</sub> or Ca(NO<sub>2</sub>)<sub>2</sub> Isagulyants, Mkryan, Bull. Armenian Branch Acad. Sci. U.S.S.R., 1944, No. 5/6, 17-21; C.A. 40, 3402 (1946)

[69] Preparation of bis-(3-chlorocrotyl)barbituric acid from C Tatevosyan, Tuteryan, Bull. Armenian Branch Acad. Sci. U.S.S.R., 1944, No. 5/6, 29-35; C.A. 40, 3404 (1946)

(90) Gaseous products of action of zinc dust on C Tatevosyan, Vardanyan, Bull. Armenian Branch Acad. Sci. U.S.S.R., 1941, No. 8, 75-78; C.A. 49, 3394 (1946)

(91) Reaction of C with aromatic hydrocarbons Isagulyants, Muscheghian, Compt. rend. acad. sci. U.R.S.S. 56, 165-168 (1947); C.A. 42, 530 (1948)

# 3:5552 2-Chloroethanol-1 (ethylene chlorohydrin)

(92) Determination of C (by hydrolysis and determination of chloride ion) Uhrig, Ind. Eng. Chem., Anal. Ed. 18, 469 (1946)

(93) Preparation and properties of β-chloroethyl esters of boric, silicic, and phosphoric acids Jones, Thomas, Pritchard, Bowden, J. Chem. Soc. 1946, 824-827; C.A. 41, 390-391 (1947)

(94) Analysis of water-soluble chlorohydrins Trafelet. Analytical Chemistry 20, 68-69 (1948)

# 3:5590 1.3-Dichloro-2-methylpropene-1

(95) Preparation of cis and trans isomers of C Hatch, Russ, Gordon, J. Am. Chem. Soc. 69, 2614-2616 (1947)

# 3:5633 3-Chloro-2-(chloromethyl)propene-1

(-) See reference (95) under 3:5590 (above)

# 3:5725 1,4-Dichlorobutene-2

(—) Preparation of C from butadiene-1,3 with chlorine See reference (84) under 3:5350 (above)

(—) Dehydrochlorination of C to 2-chlorobutadiene-1,3 See reference (85) under 3:5350 (above)

# 3:5750 1.1.2.2-Tetrachloroethane (acetylene tetrachloride)

(96) Liquid-vapor and liquid-liquid equilibrium of systems containing isobutyl alcohol and C Fritzsche, Stockton, Ind. Eng. Chem. 38, 737-740 (1946)

(97) Determination of \(\overline{\overline{C}}\) in air Goldenson, Thomas, J. Ind. Hyg. Toxicol. 29, 14-22 (1947); C.A. 41, 1578 (1947)

(—) Chlorination of C as source of hexachloroethane See reference (62) under 3:4835 (above)

# 3:5880 Pentachloroethane

(—) Chlorination of  $\overline{C}$  as source of hexachloroethane See reference (62) under 3:4835 (above)

# 3:5885 1,2,3-Trichloro-2-methylpropane

(-) See reference (95) under 3:5590 (above)

# 3:5900 1.3-Dichlorobutanone-2

(98) Formation of C̄ from ethyl methyl ketone by vapor-phase chlorination Rabjohn, Rogier, J. Org. Chem. 11, 781-787 (1946)

# 3:5910 $\alpha,\alpha,\beta$ -Trichloro-n-butyraldehyde ("Butyrchloral")

(99) Reaction of C with Grignard reagents Floutz, J. Am. Chem. Soc. 68, 2490-2491 (1946)

# 3:5960 m-Dichlorobenzene

(100) Synthesis of 2,4-dichloropropiophenone Sheehan, J. Am. Chem. Soc. 68, 1672 (1946)

# 3:5985 1,3-Dichloropropanol-2 ("\alpha-dichlorohydrin")

(101) Activated C; a new colorimetric reagent for vitamin A Sobel, Werbin, Ind. Eng. Chem., Anal. Ed. 18, 570-573 (1946)

(102) Determination of vitamin A with activated C: a comparison with spectrophotometric and SbCl<sub>3</sub> methods Sobel, Werbin, Ind. Eng. Chem., Anal. Ed. 19, 107-112 (1947)

```
xxiii
```

3:6297 Ethyl  $\alpha$ -chloroacetate

(103) Behavior of C with arythydrazines

van Alphen, Rec. trav. chim. 64, 305-308 (1945); C.A. 41, 407 (1947)

3:6550 p-Chlorobenzoyl chloride

(104) Conversion of C with pyridine to p-chlorobenzoic acid Allen, Kibler, McLachlin, Wilson, Org. Syntheses 26, 1-3 (1946)

3:6878 1-Chloronaphthalene

(105) 1-Halonaphthalenes in the Friedel-Crafts reaction Jacobs, Winstein, Ralls, Robson, J. Org. Chem. 11, 27-33 (1946)

3:7005 Methyl chloride

(106) Determination of C in air

Franklin, Gunn, Martin, Ind. Eng. Chem., Anal. Ed. 18, 314-316 (1946)

(107) Preparation of C (free from dimethyl ether) Pieck, Courtoy, Bull. soc. chim. Belg. 56, 65-71 (1947); C.A. 41, 6524 (1947)

3:7010 Vinyl chloride

(108) Condensation of alkyl halides with monohalo-olefins Schmerling, J. Am. Chem. Soc. 68, 1650-1654 (1946)

3:7015 Ethyl chloride

(-) See reference (70) under 3:5028 (above)

3:7020 2-Chloropropene-1

(-) See reference (108) under 3:7010 (above)

3:7025 2-Chloropropane (isopropyl chloride)

-) See reference (70) under 3:5028 (above)

(—) See reference (108) under 3:7010 (above)

3:7035 3-Chloropropene-1 (allyl chloride)

(109) Commercial-scale manufacture of \(\overline{\overline{C}}\) and of allyl alcohol from propylene Fairbairn, Cheney, Cherniavsky, Chem. Eng. Progress 43, No. 6; Trans. Am. Inst. Chem. Engrs. 280-290 (1947); C.A. 41, 5090 (1947)

(110) Conversion of C with Mg to hexadiene-1,5 (biallyl) in 55-65% yield Turk, Chanan, Org. Syntheses 27, 7-9 (1947)

(111) Condensation of C with aromatic hydrocarbons or aryl halides to give 1-aryl-2-chloro-propanes

Patrick, McBee, Hass, J. Am. Chem. Soc. 68, 1009-1011 (1946)

(—) See reference (108) under 3:7010 (above)

3:7040 1-Chloropropane (n-propyl chloride)

(-) See reference (70) under 3:5028 (above)

3:7045 2-Chloro-2-methylpropane (ter-butyl chloride)

(--) See reference (70) under 3:5028 (above)

(—) See reference (108) under 3:7010 (above)

(112) The AlCl<sub>3</sub>-catalyzed addition of C to propylene Miller, J. Am. Chem. Soc. 69, 1764-1768 (1947)

(113) The condensation of \(\bar{C}\) with cyclohexene Schmerling, J. Am. Chem. Soc. 69, 1121-1125 (1947)

(114) Formation of C by addition of hydrogen chloride to isobutylene Mayo, Katz, J. Am. Chem. Soc. 69, 1339-1348 (1947)

(115) The hydrolysis of C in 95% water/5% acetone solution Swain, Ross, J. Am. Chem. Soc. 68, 658-661 (1946)

3:7065 Acetyl chloride

(116) Ketene dimers from acid halides Sauer, J. Am. Chem. Soc. 69, 2444-2448 (1947)

3:7080 2-Chlorobutadiene-1,3 (Chloroprene)

(—) See reference (85) under 3:5350 (above)

(117) Composition and structure of dimers of C Klebanskii, Denisova, J. Gen. Chem. (U.S.S.R.) 17, 703-716 (1947); C.A. 42, 1215 (1948)

3:7085 Chloromethyl methyl ether

(118) Reaction of C with terpenes

Allard, Bull. soc. chim. France 1947, 731-735; C.A. 42, 890 (1948)

# 3:7170 Propionyl chloride See reference (100) under 3:5960 (above) (-) See reference (116) under 3:7065 (above) 3:7210 1-Chlorobutadiene-1.3 (119) Synthesis and properties of C Petrov, Sopov, J. Gen. Chem. (U.S.S.R.) 15, 981-987 (1945); C.A. 40, 6406 (1945) (-) See reference (85) under 3:5350 (above) 3:7220 2-Chloro-2-methylbutane (ter-amyl chloride) (—) See reference (108) under 3:7010 (above) 3:7370 n-Butvrvl chloride (—) See reference (116) under 3:7065 (above) 3:7465 4-Chloro-2-methylbutene-2 (120) Formation of C from isoprene by addition of HCl Jones, Chorley, J. Chem. Soc. 1946, 832-833; C.A. 41, 386 (1947) 3:7560 Isovaleryl chloride (--) See reference (116) under 3:7065 (above) 3:7598 3-Chlorobutanone-2 (—) See reference (98) under 3:5900 (above) 3: 7650 1.3-Dichlorobutene-1 The dichlorobutene prepared from crotonaldehyde (121)Andrews, J. Am. Chem. Soc. 68, 2584-2587 (1946) 3:7865 1.1-Dichlorobutene-2 (--) See reference (121) under 3:7650 (above) 3:7740 n-Valeryl chloride (—) See reference (116) under 3:7065 (above) 3:7747 1-Chloropropanol-2 (propylene chlorohydrin) (—) See reference (94) under 3:5552 (above) 3:7925 1.3-Dichlorobutane Preparation of C and its Friedel-Crafts reaction with benzene (122)Sisido, Nozaki, J. Am. Chem. Soc. 69, 961-964 (1947) 3:8012 1-Chlorobutanone-2 (--) See reference (98) under 3:5900 (above) 3:8110 d.l-1-Chlorobuten-3-ol-2 Some reactions of C (123)Bissinger, Fredenburg, Kadesch, Kung, Langston, Stevens, Strain, J. Am. Chem. Soc. **69.** 2955-2961 (1947) 3:8168 n-Caproyl chloride (—) See reference (116) under 3:7065 (above) 3:8520 n-Heptanoyl chloride Conversion of $\bar{C}$ to n-heptanoic anhydride with pyridine (124)Allen, Kibler, McLachlin, Wilson, Org. Syntheses 26, 1-3 (1946) 3:8535 Benzyl chloride (125)Use of C in production of henzyl benzoate Tharp, Nottorf, Herr, Hoover, Wagner, Weissgerber, Wilkins, Whitmore, Ind. Eng. Chem. 39, 1300-1302 (1947) (126) Reaction of $\overline{C}$ with hexamethylenetetramine in preparation of benzylamines Graymore, J. Chem. Soc. 1947, 1116-1118 (127) Rearrangement in the reaction between benzyl magnesium chloride and diethyl sulfate Burtle, Shriner, J. Am. Chem. Soc. 69, 2059-2060 (1947) 3:8680 n-Octanoyl chloride (-) See reference (116) under 3:7065 (above) 3:9132 8-Chloroisobutyric acid

 $-\beta$ -Chloro-isobutyramide: cryst. from pet. ether/EtOAc, m.p. 102-104°. [From  $\beta$ -chloroisobutyronitrile by partial hydrolysis with H<sub>2</sub>SO<sub>4</sub>: see reference (3) under

3:0235 (above),]

# 1946-1947 REFERENCES NOT INCORPORATED IN TEXT

# 3:9295 5-Chloropentanol-1

xxv

(128) The preparation of 5-diethylaminopentanol-1

— 5-Chloro-n-amyl benzoate: b.p.  $141-143^{\circ}$  at 2 mm.,  $D_{20}^{20}=1.109$ ,  $n_{D}^{20}=1.5169$ ; [from tetrahydropyran with benzoyl chloride + ZnCl<sub>2</sub> (85% yield)]

Synerholm, J. Am. Chem. Soc. **69**, 2581 (1947)

# 3:9395 6-Chlorohexanol-1

(129) Preparation of C and its reactions with amines K. N. Campbell, A. H. Sommers, J. F. Kerwin, B. K. Campbell, J. Am. Chem. Soc. 68, 1557 (1946)

# 3:9567 Phenylacetyl chloride

(130) Friedel-Crafts reactions of  $\overline{C}$  with anthracene, phenanthrene, or pyrene Hoi, Royer, Bull. soc. chim. 1946, 659-661; C.A. 41, 3453 (1947)

# 3:9858 n-Dodecanoyl chloride (lauroyl chloride)

(131) Preparation of C

Ackley, Tesoro, Ind. Eng. Chem. 18, 444-445 (1946)

(—) See reference (116) under 3:7065 (above)

# 3:9865 1,1,1-Trichloro-2,2-bis-(o-chlorophenyl)ethane ("o,o'-DDT")

(132) Preparation of C

Gätzi, Helv. Chim. Acta 29, 1159-1163 (1946); C.A. 41, 114-115 (1947)

(133) Isolation of C from technical DDT

Cristol, Soloway, Haller, J. Am. Chem. Soc. 69, 510-515 (1947)

3:9885 n-Tetradecanoyl chloride (n-myristoyl chloride)

(—) See reference (116) under 3:7065 (above)

3:9960 n-Octadecanoyl chloride (n-stearoyl chloride)

(—) See reference (116) under 3:7065 (above)



# CHAPTER I

# INTRODUCTION

| 1. | The scope of this book                                                     | 1  |
|----|----------------------------------------------------------------------------|----|
| 2. | The matter of suborders                                                    | 2  |
| 3. | The arrangement of compounds of Order 3 into divisions                     | 2  |
| 4. | The sequence of compounds within the three divisions Division A Division B |    |
|    | Division C                                                                 | 3  |
| 5. | The arrangement of data on individual compounds                            | 4  |
|    | A. The heading                                                             | 4  |
|    | B. The fundamental physical constants                                      | 7  |
|    | C. General data on other constants, preparation and properties             |    |
|    | D. Preliminary tests                                                       |    |
|    | E. Derivatives                                                             |    |
|    | F. Literature references                                                   |    |
| 6. | Abbreviations                                                              |    |
|    | Indexes                                                                    |    |
| •  | A. The empirical formula index                                             |    |
|    | B. Index of empirical formulas by percentage chlorine content              |    |
|    | C. Index of empirical formulas by molecular weights                        |    |
|    | D. Index of compounds by chemical types                                    |    |
|    |                                                                            |    |
|    | E. Alphabetical name index                                                 | 19 |

# 1. The scope of this book

Systematic classification of organic compounds may be effected in many different ways, each having certain advantages and disadvantages. Although the scope of this present book, by including the aspects of preparation, physical properties, and general chemical behavior as well as identification, is very much broader than that of its precursor, yet the advantages inherent in the general form of classification there employed have led to its extension to the present book.

According to this arrangement, all organic chemical compounds are first classified by orders. The order of a compound is established by its qualitative elementary composition; compounds containing the same elements belong to the same order. Thus, Order 1 is defined as comprising compounds of carbon with hydrogen, or of carbon with both hydrogen and oxygen; this order was treated in the above-mentioned volume. When other elements

<sup>&</sup>lt;sup>1</sup>Identification of Organic Compounds; Tables of Data on Selected Compounds of Order 1, by Ernest Hamlin Huntress and Samuel Parsons Mulliken, John Wiley & Sons, New York, xvii + 691 pages, 1941.

are also present, a compound is said to belong to a higher order: e.g., compounds of carbon with both hydrogen and nitrogen, with oxygen and nitrogen, or with hydrogen, oxygen, and nitrogen comprise Order 2. A systematic arrangement of still higher orders has been developed but need not be fully amplified here.

The substance of the present volume is concerned primarily with compounds of Order 3, i.e., with compounds containing carbon and chlorine; carbon, oxygen, and chlorine; carbon, hydrogen, and chlorine; carbon, hydrogen, and chlorine. To all such compounds deemed of sufficiently general interest to warrant detailed treatment in this book, serial numbers have been assigned as later explained. Although such serial numbers are thus restricted to species of Order 3, a vast number of compounds belonging to other orders inevitably occurs in the course of the individual texts so that this volume has far wider utility than might at first glance be supposed. At the same time not all substances belonging to Order 3 are given numbers since many are not of sufficient value to warrant such extensive treatment.

# 2. The matter of suborders

In the general plan of ordinal classification, it is sometimes (but not always) useful to effect subdivision of orders into two suborders according to whether or not the pure compounds are colored. For both Orders 1 and 2, such subordering has special merit. For the present Order 3 compounds, however, the proportion of colored individuals is almost negligible, and employment of suborders has been avoided.

# 3. The arrangement of compounds of Order 3 into divisons

Just as the individual compounds of Order 1 were ultimately further subclassified into various *genera*, each characterized by a common behavior in certain prescribed and carefully defined *generic tests*, so it would of course be perfectly possible to set up an analogous series of genera for any or all of the higher orders. After considerable reflection and experimentation, however, such extension of the method of generic subclassification has seemed an extravagant formality whose added value for the higher orders does not warrant its establishment. Consequently, the individuals comprising the present Order 3 are not arranged by genera, and there are no standardized generic tests to be systematically applied.

Instead of arrangement by genera, therefore, the compounds assigned serial numbers in this book are arranged in three divisions. The first of these divisions comprises members of Order 3 which, when pure, are normally solids with at least reasonably definite melting points. The second comprises members of Order 3 which, when pure, are liquids with boiling points attainable and recorded at ordinary pressure. The third division comprises

members of Order 3 which, even when pure, are liquids which either cannot be distilled at atmospheric pressure without serious decomposition or for which such data are available only under reduced pressure. Ample cross-references connecting the solid and liquid divisions facilitate recognition of appropriate cases.

# 4. The sequence of compounds within the three divisions

DIVISION A. The individual solids constituting Division A are arranged in the order of increasing magnitude of their respective melting points. For compounds on which there is poor agreement regarding the true melting point, the value determining the position of the compound relative to its neighbors is not necessarily the highest listed. Values printed within square brackets have been regarded by the author on the collateral evidence as possibly doubtful, and such constants have been discounted in assigning positional sequence to the compound.

Division B. This division, comprising liquids of Order 3 with boiling points at ordinary pressure, is (unlike either its predecessor or successor) further subdivided into two sections according to the specific gravity at  $20^{\circ}$ C. referred to water at  $4^{\circ}$ C. Section 1 contains such liquids with values of  $D_4^{20}$  greater than 1.15; Section 2 contains correspondingly those liquids for which the value of  $D_4^{20}$  is less than 1.15. Within each of the sections of Division B the individual species are arranged in the order of increasing magnitude of their respective boiling points, preferably at 760 mm. pressure. For compounds whose boiling points at this standard pressure are unreported, no attempt has been made to calculate over since to do so seems likely to introduce serious uncertainties.

Division C. This division contains all serially numbered compounds of Order 3 which have not been allocated to either of the preceding divisions, such cases usually comprising liquids for which boiling points are reported only at reduced pressures. Within this division an entirely different method of establishing the listing sequence is employed; viz., the compounds are listed in ascending sequence according to the composition of their empirical formulas. For any given number of carbon atoms, compounds containing carbon and chlorine, or carbon, oxygen, and chlorine, or carbon, hydrogen, and chlorine fall in that sequence. Within any one of these four subgroups the sequence is determined by increasing magnitude of the number of component atoms in the sequence (as above) of carbon, hydrogen, oxygen, and chlorine. Although expressed in words this sounds formidable, even casual inspection of the Tables or of the Empirical Formula Index quickly supplies convincing evidence of its complete simplicity in actual practice.

# 5. The arrangement of data on individual compounds

Whether the amount of data for the compounds comprising this volume is large or small, and irrespective of numerous variations of details, a certain standard form may be recognized as common to all. This form may be construed as made up of the following five elements:

- A. The heading.
- B. Fundamental physical constants.
- C. General data on other constants, preparation and properties.
- D. Designation of special or preliminary tests.
- E. Derivatives.
- F. References to the original literature.

The relative amount of space devoted to these five aspects varies according to circumstances. Each is discussed below in much further detail.

# A. The heading

The heading of each numbered compound comprises (in its most general form) five components which always occur in the following sequence from left to right, viz.,

- 1. Location number 2. Name 3. Structural 4. Empirical 5. Beilstein of compound in (or formula formula reference this book (Order 3) names)
- (1) The location number. Each compound on which detailed treatment is given in this book has been assigned an arbitrary number to facilitate frequent cross reference in indexes and other parts of the text. This number consists of a digit representing the order of the compound (thus all species of this volume have location numbers beginning with 3), followed by a colon and then a four-digit arbitrary number. The system is, therefore, entirely comparable to a telephone number, the initial digit preceding the colon corresponding to an exchange, the four following digits corresponding to an individual line.

In assigning serial location numbers to the various individuals treated in this book, a principle has been maintained whose recognition greatly facilitates recognition of the physical nature of the corresponding substances. All members of Division 1 (solids) carry numbers between 1 and 4999; all members of Division 2, Section 1, are between 5000 and 6999; all members of Division 2, Section 2, are between 7000 and 8999; all members of Division 3 are between 9000 and 9999.

For a given compound, the full descriptive data are recorded only in one place, i.e., in that corresponding to the location number. When occasion

arises to be reminded in some other portion of the book of certain properties of a given compound, the *heading only* is repeated followed by a cross reference to the place of detailed description, the section usually occupied by the location number being indicated merely by a dash. The most frequent occasion for this type of cross reference is to indicate the boiling point of a compound normally met with as a solid, or alternatively the melting point of a substance normally met as a liquid.

(2) The name (or names) of the compound. The second element of the heading is devoted to the name (or names) of the compound. Out of all possible names, one (regarded for the purposes of this book as the "principal name") has been printed in bold-face capitals.

In many instances, however, this principal name is followed in ordinary type by one or more other names which are in common use and which might occur alternatively to users of this volume. All these names are appropriately entered in the alphabetical name index so that the location number is readily obtained irrespective of which name may be sought by the user.

(3) The structural formula of the compound. Since it is frequently easier to interpret the chemical reactions of a compound by contemplation of its structural formula rather than its name, such structural pictures are given for all compounds in this volume.

If a particular compound reacts as if it had two different structures, both are pictured.

Although such structural formulations are construed as the third element of the heading of each compound, it may happen that, owing to practical space considerations, the picture is not actually printed as part of the top line but depressed somewhat below it.

- (4) The empirical formula. The fourth element of the heading is the empirical formula. This will be found useful in many ways, particularly in suggesting (especially with the amplification afforded by the empirical formula index) isomeric compounds from which distinction must be made, and in searching the abstract periodicals for data reported after the publication of this volume.
- (5) The Beilstein reference. Each compound listed in these Tables carries in the upper right-hand corner as the fifth element of the heading reference to Beilstein's Handbuch der organischen Chemie. All such references designate the fourth edition of this important tool.

At the time of preparation of these Tables, all twenty-seven volumes of the primary series (covering the literature up to 1910) together with the corresponding twenty-seven volumes of the first supplementary series (1910–1919, inclusive) of Beilstein's Handbuch were available. For every numbered compound of these Tables which appears in either the main or first supple-

mentary series, the Beilstein reference will comprise two parts, the first giving the volume and page in the main series, the second giving corresponding reference to the first supplementary series. To distinguish the latter, the volume reference carries the subscript 1, and the page reference is placed between parentheses to indicate that the regular pagination of such supplementary volume is designated.

In addition to the main and first supplementary series of Beilstein mentioned above, there were also available during the preparation of these *Tables* the first five volumes of the second supplementary series (1920–1929) of Beilstein's *Handbuch*. For such of the present numbered compounds as were treated in this available fragment, the Beilstein reference will, therefore, contain a third element representing the volume and page involved. For this kind of case the volume reference bears the subscript 2 (to indicate second supplementary series) together with the page reference in parentheses as before.

In accordance with the above explanation, a given compound will have either two or three Beilstein references. It is, of course, possible for a compound to have citation to only one or two out of the three maximum possibilities; absence of any data for a particular Beilstein unit is indicated by short dashes after the volume number.

The remaining possible case is that in which the compound in question is of such recent origin that Beilstein contains no reference to it either in the main section or either supplementary series. Many such compounds occur in this Order 3. Under these circumstances the usual Beilstein citation is replaced by the Beilstein System Number of the compound, e.g., Beil. S.N. 644. Such type of reference immediately indicates that no reference to the substance is contained in any Beilstein issues through Vol. V of the second supplementary series. Whenever third, fourth, or later supplementary series become available, however, this system number will indicate the position of the compound within narrow limits, even though volume and page cannot now be predicted.

The practice of giving all three Beilstein citations wherever possible serves as a continual reminder that to look merely in the main series volume of Beilstein yields material only up to 1910; for the next two decades the corresponding first and second supplements must also be examined. In this respect these *Tables of Order 3* extend the practice of those of Order 1, where only the main series citation was made, extension to the first supplement being left to the user.

That these references to Beilstein's *Handbuch* are here included only as an additional convenience to users of these *Tables* should be clearly understood. This book is wholly independent of Beilstein, and those users to whom Beilstein may be inaccessible are reassured that the value of these *Tables* to them is in no way impaired.

# B. Fundamental physical constants

The five components of the standard heading having been discussed, some comment upon the next element of each description is required. element comprises what are here designated as "fundamental physical constants" and which in the most general cases consist of data on (1) the melting point, (2) boiling point, (3) density, and (4) refractive index. In the sequence named, these are arranged in four vertical columns from left to right of a given page. For substances which are solids under ordinary conditions, the melting-point column is the first at the left of the page with the boiling-point column next following in the left central section. For such solids only rarely will density or refractive index data appear. For liquids, however, the first left-hand column is devoted to boiling-point data, the melting points being displaced to the next right-hand column because of their subordinate value in such instances.

(1) The melting point. Whereas in the earlier Tables of Order 1 the general practice was to express only a single figure for this constant, the individual descriptions of this book include substantially all values that have been reported. However, values which in the light of collective subsequent results are certainly too low, or those which because of their wide range make no claim to accuracy, are omitted. The survey of values thus set forth, together with the fact that the source of each value is also given, permits the user to form his own opinion concerning the magnitude, degree of concordance. and precision of the available data.

For each individual compound the several values are arranged in the order of diminishing numerical magnitude. In general the value of highest magnitude is employed to determine the place of the individual solid relative to its fellows (i.e., to determine its serial location number). However, values enclosed by square brackets are regarded by the author on collateral evidence as being abnormally high, and such constants are ignored in establishing the serial number of the individual.

The several melting points are recorded here just as they are reported in the original literature; whenever the designations corrected or uncorrected were included in the original source, they are repeated here; most of the values. however, fail to specify whether they are corrected or not. This careless usage of much journal literature is to be deplored.

No attempt has been made in this book generally to maintain a distinction between melting point and freezing point. Undoubtedly, most of the values reported represent conventional capillary-tube melting points; frequently. however, the values are expressed to a degree of precision suggesting that a cooling-curve method was employed. Whenever the distinction is of importance, the user can readily ascertain full details from the cited references.

(2) The boiling point. In complete analogy with its treatment of melting points, the individual descriptions of this book include substantially all recorded values of the boiling point. These are tabulated in the order of diminishing numerical magnitude of the prevailing pressures. Wherever the data can be found, the value at 760 mm. pressure is cited; however, if this is not directly reported, no attempt has been made to convert the available figures over to that pressure, as to do so would introduce unwarranted assumptions. Values of the boiling point at various pressures are meticulously included in the Tables. However, when a careful physicochemical study has been made of the vapor pressure of an individual, selected values are printed and reference made to the original for further detail.

Even a casual examination of the boiling point data reported in this book leads at once to the conviction that there has been a great variation in the precision of measurement of the prevailing pressure over the boiling liquid. In fact an incredible proportion of workers has not reported any pressure figures at all or complacently referred to the "prevailing atmospheric pressure." Even when pressure measurements are reported, the evident general lack of concordance becomes distressing evidence of the inadequacy and inaccuracy of many of the data in the literature.

(3) Densities. Unlike the extensive treatment accorded for melting points and boiling points, this book does not attempt to tabulate all possible published values for the densities of liquid compounds. However, all available data for density at 20°C. referred to water at 4°C. are given; and, whenever possible, the same procedure is extended to values for  $D_4^{25}$  and  $D_4^{15}$ . Note that, when values are given for various temperatures, those for the highest temperature are printed at the top of the density column, followed in diminishing magnitude of temperature by the other values. This simple and obvious device is intended to assist users of these Tables, but they should be reminded that this plan was not (unfortunately) employed with the Tables of Order 1.

Density data are given for all liquids for which they can be found; for compounds normally solid, the density is occasionally given for some temperature above the melting point, especially if refractive index values at the same temperature are also available.

Whenever in an original paper there exists any uncertainty as to the temperature of the water with which comparison is made, the lower subscript is replaced by a short dash to indicate that the omission of this figure is not accidental but is because of inadequate expression in the original. In many or even most such cases it is possible that the author intended to convey that the density was expressed with respect to water at the same temperature. This author, however, declines to make any such assumption and ventures to express the view that research workers and journal editors should insist upon unambiguous expression of such data.

(4) Refractive indices. These are usually given in the form  $n_{\rm D}^{20}$ , i.e., the refractive index determined at 20°C. with the D line of sodium light. In some instances data for other lines of the spectrum have been reported here when no data on the D line were available. As with the densities above, refractive index data are frequently printed for other temperatures, and the same typographical convention of placing the higher-temperature values above the lower-temperature ones is continued.

# C. General data on other constants, preparation, and properties

The preceding details of the five components of the heading and the four so-called fundamental constants having been discussed, it is now desirable to comment upon the third element of the text of each compound. material comprising this third section actually comprises most of the space of this book. Although sometimes consisting of only a few paragraphs, there are many members of Order 3 for which the general exposition of behavior requires many pages. Such extended treatments are frequently (although not invariably) subdivided by major and minor headings intended to facilitate quick recognition of the probable location of particular types of desired information. Careful examination of the text of any typical individual compound will quickly disclose that it has in general been dealt with in At the same time it is obvious that a line must be drawn generous fashion. somewhere. For example, in connection with the discussion of an alkyl halide such as n-butyl chloride, it is certainly of highest relevance to indicate the mode and extent of its ability to form n-butyl magnesium chloride. Furthermore, the value of the simpler reactions of the RMgCl compounds. particularly with reference to their utility in the identification of the initial halide itself, is evident, but on the other hand no attempt has been made to cover all the known reactions of butyl magnesium chloride since that would involve an undertaking of disproportionate magnitude.

Although details of the texts of individual compounds naturally differ in nature and magnitude and are influenced by the literature content corresponding to the direction of published research, certain aspects occur with sufficient frequency to warrant comment.

The text of each compound invariably comprises its methods of preparation and its chemical behavior. For many of the more common or especially important species, these two aspects are often preceded by an introductory section containing certain physical data (in addition to that of the heading) likely to be of particular interest or utility to organic chemists. Examples of such entries include binary and ternary systems with other compounds, especially with reference to freezing-point composition data, azeotropes, densities and/or refractive indices, etc. In this introductory section also attention is frequently directed to methods of quantitative determination

of the compound, examples of industrial or other utilization, biochemical behavior especially with regard to studies on toxicity, antiseptic character, etc. The selection of entries for this introductory section is admittedly arbitrary, and users are reminded that this book makes no claim to include all known data even on the compounds to which serial numbers are assigned. Indeed, in an effort to keep the volume within reasonable bounds, certain types of data of value to organic chemists have been deliberately (though regretfully) excluded, such as references to absorption or Raman spectra, dipole moments, and viscosities, although many instances of the four fundamental physical constants of the heading are drawn from original publications primarily concerned with these aspects.

Within the text of each individual numbered compound (immediately following the above-mentioned introductory section, if any), there occurs a section on its methods of preparation. This treatment has purposely been made as complete as possible. To a limited degree distinction has been made between preparation and formation; but, because even in contemporary publications many authors fail to report yields, adequate recognition of the appropriate category is not always possible. Original results reported only in terms of weight have been calculated over to percentage yields. Variations in yields by a single method of preparation are contrasted by massing them in the text, the uniform practice of following each statement with its corresponding citation serving conveniently to associate each yield with a particular modification. With compounds for which there are many modes of preparation, the most generally practicable methods are often singled out for particular mention at the beginning of the preparative section, followed by a systematic presentation of all the recorded methods under various subheadings appropriate to the circumstances.

Users of this book will find these sections on preparation not only extremely useful from the viewpoint of comparison of various alternatives but also very stimulating and suggestive in the formulation of unconventional approaches to their particular problems.

Within the text of each numbered compound of this book, following the introductory section (if any) and the preparative section, is next set forth the significant aspects of its chemical behavior. The length of this part of the treatment varies widely from a few phrases to many pages. Very long treatments are appropriately subdivided for practical convenience, the particular sequence of arrangement being dictated by various circumstances. For example, the earlier subdivisions often deal with pyrolysis, reduction, oxidation, and substitution reactions, followed by the behavior with inorganic and organic reactants. With bifunctional compounds the initial group is frequently followed by the behavior of each function with inorganic and organic reactants in that order. Users will experience no difficulty in recognizing

the systematic organization of each compound. Emphasis has been placed upon a systematic and logical presentation of each case, and the above general outline has served the construction of this book only as a general guide rather than a rigid frame.

Two matters continually arising within the descriptive text deserve a further word of comment. The first relates to the fact that, in the course of reporting the chemical behavior of each numbered compound, there is necessarily involved reference to many other substances. Such of these as appear in either this volume (Order 3) or its predecessor (Order 1) are immediately followed by their serial numbers. A great many other compounds belonging to orders not yet written up in this series are inevitably involved; for such compounds reference to Beilstein is usually made for the convenience of the user who may have occasion to follow the matter further.

The second matter involves the practice of this book with respect to citations. Many instances appear which at first glance might appear to involve unnecessary repetition of the citation number, but which really comprise signals to the reader. As a simple illustration, consider the following extract from the text of p-chlorophenol, referring to the method of preparation of its N-(m-nitrophenyl)carbamate, viz.: "From  $\bar{\mathbb{C}}$  with m-nitrophenzazide (283) or m-nitrophenyl isocyanate (283) in lgr. (283)." This usage designates the fact that the preparation of both the m-nitrophenyl isocyanate is given in reference (283) together with their utilization as reagents in the conversion of p-chlorophenol to the corresponding N-(m-nitrophenyl)carbamate. Of course, with commonly available reagents such extra citations need not be included.

In view of the nature and magnitude of the text of this book, there may be a tendency to regard it as a specialized Beilstein within its field. Such a characterization would carry the implication that the text comprises all known chemical information with respect to each component compound, whereas only the more important representatives of such data are offered. In this connection one common misunderstanding with respect to Beilstein's Handbuch has significance. The Beilstein classification employs the principle of "latest position in the system." This means that, when a given fact could logically be placed in several different places, it is in general associated with the last of such places in the systematic plan. For example, as the methyl ether of phenol, anisole could conceivably be discussed either under methyl alcohol or under phenol. Following the above principle, however, Beilstein discusses it under phenol with no mention whatever under methyl alcohol. For Beilstein's purpose this principle is extremely well founded. results in an orderly, systematic, and uniform procedure, and, if properly understood, causes no trouble to the user. Its employment does have the unfortunate result, however, that for compounds occurring early in the

systematic sequence the impression is often given to the uninitiated that nothing is known about reactions involving components themselves listed later in the classification scheme. In contrast to the above Beilstein usage, the present *Tables* are unrestricted by any such arbitrary rule. Inasmuch as a large proportion of the compounds with which it deals are those which in the Beilstein classification appear to be inadequately described because of their earlier position in the sequence, users will quickly appreciate the added convenience of a generous treatment of the chemistry involved.

### D. Preliminary tests

For certain of the more common compounds included in these *Tables*, there exist specific or semi-specific color tests. These are generally simple to execute, may often be applied satisfactorily to minute amounts of material, and, when positive, are so significant that their trial, if indicated, should invariably precede the derivatization of the sample. Such tests are indicated by the symbol  $\Phi$  but should be regarded as merely preliminary in character and not always carrying the same conviction as the derivatives.

### E. Derivatives

The text section of each numbered compound is usually concluded by a group of derivatives. Those which for one reason or another have special importance are designated by the symbol O placed at the left-hand side of the page. Interspersed with such cases will frequently be found others not bearing this symbol but instead merely designated by a dash. Relatives of the original parent compound so designated comprise materials, knowledge of whose existence (or less commonly nonexistence) or properties may be needed for comparison with related cases for the particular parent or other isomers thereof. Wherever possible, specific data on each relative included in this derivative section are given; in many cases, however, where careful systematic search has failed to uncover any published record of the compound. it is characterized in these tables as "unreported." All chemists recognize that reliable information that a particular compound has not yet been reported is more to be desired than its complete omission; and this feature of this volume will effect substantial economies of time for its users. Naturally, as time goes by the constant publication of new data will enable some of these informational gaps to be filled.

More than one value for the melting point of a particular product derived from a numbered parent or, conversely, several citations for the same value will often be noted through all parts of this book. These practices serve, respectively, to suggest caution because of lack of agreement and to attract attention to the concordance of results of several different workers.

The sequence in which these derivatives are listed has no relation to their

respective merits as means of identification of the particular parent. For each class of compounds, the particular sequence is arbitrary but standard in form and sequence in order to facilitate intercomparison and easy reference. For any particular class, however, the sequence is similar to that employed in Order 1 for the corresponding nonchlorinated parent.

### F. Literature references

The fifth and final section of the descriptive material comprising each serially numbered compound comprises the corresponding references to the chemical literature. These are associated with the corresponding portions of the descriptive text by arbitrary numbers set in bold-face carets, e.g. (5), the journal names being uniformly represented by the standard abbreviations employed by Chemical Abstracts. The single exception to the use of Chemical Abstracts abbreviations for literature references is that the German journal recently known as Chemisches Zentralblatt (but formerly as Chemisches Centralblatt) is here designated as Cent. This convention adequately suggests the name of the periodical in less space and improves the corresponding Beilstein abbreviation (C.) by avoiding confusion with Centigrade temperature.

The total number of such literature references in this book is very large, owing in part to the greatly increased scope of this Order 3 as compared with the restricted treatment of compounds of Order 1. It will be observed that, in addition to a much fuller record of the four fundamental physical constants, and a more generous regard for a diversified array of derivatives, this book (unlike its predecessor) deals extensively with the preparation and chemical behavior of its component species. Furthermore, whereas the earlier book arbitrarily excluded references to the patent literature, the present volume not only permits their inclusion but draws rather heavily upon it. The rapid growth of industrial organic chemistry, the fact that numerous chloro compounds of Order 3 represent individuals of great industrial significance, and the circumstances that for many such cases a large proportion of the available information is of such recent origin that little of it can be found in conventional monographs or other compendia have combined to necessitate considerable emphasis on the technical literature.

For a given individual numbered compound, a particular published article or patent is listed *only once*. The citation number representing the reference may be given many times in the descriptive text, but in the literature reference section the reference itself is not repeated. On the other hand, a given original article covering several individual compounds included in this book will be cited under each of the materials to which the article is relevant.

The order in which the literature references are arranged is determined, by the sequence in which necessity for their mention arises in the text. This

results, of course, in what may appear to be a random sequence. The author is well aware that rearrangement of these references into a sequence comprising an alphabetical author index is possible. Such an operation, however, has been regarded as impracticable since it would multiply severalfold the opportunity for error and would be unlikely to confer advantages commensurate with the labor involved.

Literature references to journals considered to be generally accessible are given directly; but those to articles in journals with limited circulation or to articles in languages other than English, German, French, or Italian are usually accompanied by the location of the corresponding abstract in both the Chemisches Centralblatt and the Chemical Abstracts. This leads to the suggestion that users of this book, to whom a particular primary publication may be inaccessible, may themselves locate the corresponding abstracts by means of the usual Author Indexes to these works. Consultation of the abstract must never be regarded as equivalent to examination of the original publication but is generally better than no information at all.

Citations to original articles in scientific journals often refer to individual pages but sometimes also to a spread of pages, depending upon the nature of the article. The practice so frequently employed by others of citing an article merely by giving its initial page and leaving to the reader the often laborious job of locating the individual page germane to the aspect in question is deplored by the present author and has been avoided in this book. a page spread (occasionally extending to the whole of a particular article) is cited, the reason is usually that the construction of the original paper is such that relevant material is scattered throughout the paper and individual page citation might be not only inadequate but even misleading. Since a given article appears (in general) but once in the group of literature references associated with each numbered compound, however, and since therefore the single number representing it may be used many times during the various aspects of the corresponding text, users finding that one of several individual pages so cited is inapplicable will recognize it is to be associated with some other aspect elsewhere in the text.

Attention is called to certain advantageous and unique practices followed by this book in connection with its citations of patents. The first element of patent citation is the name of the inventor (or of all, if more than one) if this information is known. The second element comprises the name of the company to which the patent has been assigned. All American patents are required by law to be issued to the inventors but are commonly assigned to the sponsor of the work. Foreign patents, however, do not always carry the names of individual inventors; in that event the company name has to serve both purposes. The third element is the nationality and number of the patent accompanied by its date of *issue* (not application). The fourth

15 INDEXES

element comprises reference to abstracts of the patent both in the *Chemisches Centralblatt* and in *Chemical Abstracts*. There are three reasons for this multiple form of abstract reference.

The first is that few chemists have immediate access to the corresponding original patents themselves and appreciate the convenience of the abstract. The second is the plain fact that the patent abstracts published by the Chemisches Centralblatt are usually so much more descriptive and more nearly complete than those of Chemical Abstracts that many chemists prefer to use the former. Doubters of this difference of quality between the two abstract journals are invited to convince themselves by direct comparison. Finally, the Chemical Abstracts reference is also included, however, because there may be some users of this book to whom the Centralblatt may not be available or who are timid about their ability to read even technical German. If in a particular case the patent has not been abstracted at all, this fact is also noted. Furthermore, because of the present inaccessibility of more recent issues of the Centralblatt, it has been necessary in some of the more recent references to cite only Chemical Abstracts.

In connection with the citation of patents, many instances will be noted in which the reference includes also the equivalent patents of other countries, each of these being accompanied by its dates, abstract references, etc., as for an individual patent.

The reader's attention is directed to the obvious fact that many patents are expressed in general terms so that, even though the protection sought may frequently cover one or more of the component compounds of this book, the specific individuals are not mentioned by name. No attempt has been made to interpret such general patents. For this reason systematic searchers will often consult higher or lower homologs of the compound comprising their initial interest.

#### 6. Abbreviations

Necessity for economy of space has required in this book a continuation of the extensive set of abbreviations used with the earlier Tables of Order 1 together with certain additions required by new circumstances. All these abbreviations have been selected so as to suggest the full word, particularly when assisted by the context. No attempt has been made to enslave the text to the abbreviations, however, and the full word is sometimes employed even though a mnemonic for it is given in the Table of Abbreviations.

### 7. Indexes

This book contains five different types of indexes; three of these are distinctly novel and two are conventional, as explained below.

# A. The empirical formula index

The index of empirical formulas lists each of the compounds in this book in the conventional familiar form under one or another of four parts according to whether the particular compound contains (1) only carbon and chlorine; (2) carbon, oxygen, and chlorine; (3) carbon, hydrogen, and chlorine; (4) carbon, hydrogen, oxygen, and chlorine. Within each of these parts the individual empirical formulas are arranged in groups according to increasing numbers of carbon atoms, and for a given number of carbon atoms according to increasing numbers of the other component atoms. Within each group of isomeric compounds the order of listing follows the sequence of the eight units comprising the Chemical Type Index (see below).

This empirical formula index contains also for each group of isomers both the molecular weight and the percentage chlorine content, each computed to one place of decimal units. This index not only serves as a convenient record of these constants but also suggests to the user isomers of the particular individual. The formula index may also be employed occasionally as a final verification of the presence or absence of a particular compound from the *Tables*, in possible instances where the names which occur to the worker do not appear in the alphabetical index.

A brief statistical analysis of this index may be of interest. The 1320 individual compounds comprising this book are distributed among 366 groups of isomers as follows:

|        |                    | Groups of Isomers | Individuals |
|--------|--------------------|-------------------|-------------|
| Part A | C/Cl compounds     | 11                | 11          |
| Part B | C/O/Cl compounds   | 18                | 21          |
| Part C | C/H/Cl compounds   | 135               | 566         |
| Part D | C/H/O/Cl compounds | 202               | 722         |
|        |                    |                   |             |
|        | Total              | 366               | 1320        |

The minimum number of isomers for a given empirical formula is obviously one; 28 of the above 366 groups represent such minimum cases. The maximum possible number of individual compounds within a particular empirical formula is, of course, indeterminately large; however, it is of interest to note that, of the 366 groups of isomers in this book, the largest number of individual compounds (21) occurs for the empirical formula  $C_8H_7O_2Cl$ . Other formulas with substantial numbers of individuals comprise  $C_5H_9O_2Cl$  with 20,  $C_7H_{15}Cl$  and  $C_8H_{17}Cl$  each with 18,  $C_5H_{10}Cl_2$  with 17, and  $C_6H_{11}Cl$ ,  $C_6H_{18}Cl$ , and  $C_8H_9OCl$  each with 16, corresponding to a particular molecular weight.

# B. Index of empirical formulas by percentage chlorine content

This index lists the 366 empirical formulas of the numbered compounds contained in this book in order of diminishing percentage of chlorine. This

17 INDEXES

type of index is unique; nothing of this sort exists in any other publication so far as is known. Many uses of such an index will suggest themselves, the most obvious example being to suggest various empirical formulas corresponding to a particular chlorine content.

Within this index will be observed many examples of identical chlorine contents for several different formulas; e.g., a percentage chlorine of 37.5 is common to the four different formulas C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>Cl, C<sub>3</sub>H<sub>7</sub>OCl, C<sub>8</sub>H<sub>6</sub>OCl<sub>2</sub>, and C<sub>14</sub>H<sub>9</sub>Cl<sub>3</sub>, despite the fact (as seen from the Empirical Formula Index) that the molecular weights of the last two are quite different from the others.

### C. Index of empirical formulas by molecular weights

This index lists the 366 empirical formulas of the numbered compounds contained in this book in order of increasing magnitude of molecular weight. This index (like the preceding one) is unique, and nothing of the sort exists in any other publication so far as is known. Many uses of this index will suggest themselves, the most obvious example being to suggest various empirical formulas having the same molecular magnitude.

Within this index will also be observed many examples of identical molecular weights for several different formulas; e.g., the molecular weight of 136.6 is common to the three different formulas C<sub>5</sub>H<sub>9</sub>O<sub>2</sub>Cl, C<sub>6</sub>H<sub>13</sub>OCl, and C<sub>8</sub>H<sub>5</sub>Cl.

# D. Index of compounds according to chemical types

Since, as more fully explained earlier in this chapter, the component individuals of this book are not arranged in arbitrary genera and no standardized generic tests comparable to those of Order 1 have as yet been developed, the inclusion in this volume of an index in which the compounds are arranged according to the chemical classes to which they belong is of special value and utility.

In this chemical-type index, each compound is listed in at least one of eight chemical classes (units) as follows:

- Unit 1. Chloro substitution products of saturated acyclic hydrocarbons.
- Unit 2. Chloro substitution products of unsaturated acyclic hydrocarbons.
- Unit 3. Chloro substitution products of cyclic hydrocarbons.
- Unit 4. Chloro substitution products of hydroxy compounds (alcohols or phenols).
- Unit 5. Chloro substitution products (and their relatives) of carbonyl compounds (aldehydes, ketones, quinones, aldehyde polymers, acetals, alcoholates, etc.).
- Unit 6. Chloro substitution products of carboxylic acids and anhydrides.
- Unit 7. Acyl chlorides.
- Unit 8. Chlorine substitution products of ethers and of esters.

Compounds of the last five units containing more than one functional group are also listed under such of the others as may be appropriate. For example, 2,5-dichloro-3,6-dihydroxybenzoquinone-1,4 is listed both as a

carbonyl compound (Unit 6) and as a phenol (Unit 4); diethylene glycol mono(chloroacetate) is listed not only as an ester (Unit 8) but also as an alcohol (Unit 4) and an ether (Unit 8).

It may be of interest to summarize briefly the distribution of the compounds in this book among the several classes as shown in the following summary:

| Unit 1 | 221 | Unit 5 | 146 |
|--------|-----|--------|-----|
| Unit 2 | 182 | Unit 6 | 137 |
| Unit 3 | 174 | Unit 7 | 142 |
| Unit 4 | 211 | Unit 8 | 182 |

The total number of such unit listings (1395) thus exceeds the number of individual compounds (1320) by an amount representing the cases of multiple functions.

# E. Alphabetical Index

This conventional type of index includes not only the "principal" name, but also all the subsidiary names given in the Tables for every numbered compound in this book. It cannot, of course, guarantee to contain every name which might conceivably be applied since, for the field of chemistry, such names are legion. However, with every name that is listed is associated the corresponding location (or serial) number, so that use of this index is perfectly straightforward and the index requires no cross referencing within itself. The first letter of the first syllable of the name proper establishes its position in the alphabetical sequence irrespective of any literal or numerical prefixes such as o-, m-, p-, sec-, ter-, cis-, trans-,  $\alpha$ -,  $\beta$ -,  $\gamma$ -,  $\delta$ -, d-, l-, meso-. Within a particular group of isomers with the same name, however, the sequence is o-, m-, p-; sec-, ter-; or  $\alpha$ -,  $\beta$ ,  $\gamma$ -,  $\delta$ , etc. Iso is not construed as a prefix but as part of the main root. Further details of this sort are given in the introduction to the index itself.

### CHAPTER II

# DIVISION A. SOLIDS

(3:0000-3:0499)

PENTACHLOROACETONE Cl<sub>2</sub>CH—C—CCl<sub>3</sub> CaHOCla Beil. I -656 I1---I2--- $M.P. +2.1^{\circ}$ B.P. 192° See 3:6205. Division B: Liquids, Section 1,  $D_4^{20} > 1.15$ . — 2.5-DICHLOROTOLUENE C7H6Cl2 Beil. V - 296 V1--V<sub>2</sub>-(231) M.P. 5° B.P. 199° at 761 mm.  $D_{20}^{20} = 1.2535$ See 3:6245. Division B: Liquids, Section 1,  $D_4^{20} > 1.15$ . p-CHLOROTOLUENE C7H7Cl Beil. V - 292 V<sub>1</sub>-(150)  $V_{2}$ -(226)  $M.P. + 7.8^{\circ}$ B.P. 162° See 3:8287. Division B: Liquids, Section 2,  $D_A^{20} < 1.15$ . — 1,1-DICHLORO-2-METHYLPROPANOL-2 CH<sub>3</sub> C<sub>4</sub>H<sub>8</sub>OCl<sub>2</sub> Beil. I -382 (unsym.-Dichloro-ter-butyl alcohol;  $I_1$ — CH3-C-CHCl2 dichloromethyl-methyl-carbinol) ÓН  $n_{\rm D}^{19} = 1.4598$  $D_4^{19} = 1.2363$ M.P.  $+8^{\circ}$ B.P. 151° See 3:5772. Division B: Liquids, Section 1,  $D_4^{20} > 1.15$ . o-CHLOROPHENOL OH C<sub>6</sub>H<sub>5</sub>OCl Beil. VI - 183 VI<sub>1</sub>-( 98) VI<sub>2</sub>-(170)  $D_4^{25} = 1.2456$ M.P. 8.0° B.P. 175-176°  $n_{\rm D}^{25} = 1.5573$ Sec 3:5980. Division B: Liquids, Section 1,  $D_4^{20} > 1.15$ . — DI-(β-CHLOROETHYL) CARBONATE C<sub>5</sub>H<sub>8</sub>O<sub>3</sub>Cl<sub>2</sub> Beil. III — ClCH<sub>2</sub>CH<sub>2</sub>O Ш1-- $III_{2}$ -(5) ClCH<sub>2</sub>CH<sub>2</sub>O B.P. 240-241°  $D_4^{20} = 1.3506$  $n_{\rm D}^{20} = 1.4610$ M.P. 8.5° See 3:6790. Division B: Liquids, Section 1,  $D_4^{20} > 1.15$ .

20

3:0010 CINNAMYL CHLORIDE (3-Chloro-1-phenylpropene-1) CH=CH=CH<sub>2</sub> 
$$V_1$$
-(232)  $V_2$ -(372)

M.P. B.P. 8-9° (1) 140° at 37 mm., sl. dec. (5)  $D_-^{25}$  = 1.08815 (9)  $n_D^{25}$  = 1.58065(9) 8° (2) 125-126° at 22 mm. (6)  $D_+^{15}$  = 1.101 (6)  $n_D^{12}$  = 1.587 (8) 7-8° (3) 120° at 18 mm. (6)  $D_+^{12}$  = 1.090 (8) 4-9° (4) 117-119° at 17 mm. (7) 118° at 15 mm. (8) 115° at 13 mm., sl. dec. (5) 119.5-120.5° at 12 mm. (9) 116-117° at 12 mm. (10) 106° at 10 mm. (11) 109-110° at 6 mm. (3) 102-103° at 5 mm. (3) 101.5-103.4° at 5 mm. (12) 94° at 5 mm. (13) 86-87° at 2 mm. (3)

Care should be taken to avoid confusion of  $\bar{C}$  with the acid chloride of cinnamic acid; the acid chloride is properly designated as cinnamoyl chloride (3:0330); furthermore note that some of the older publications designate  $\bar{C}$  as "styryl chloride," which is now incorrect since in current usage the name styryl is reserved for the radical  $C_6H_5.CH$ —CH— derived from styrene (14).

Attention is also drawn to the fact (not fully recognized in the older work) that in some (but not all) reactions of  $\bar{C}$  the prods. obtained may in part be derived from the synionic mesomer of  $\bar{C}$ , viz., phenyl-vinyl-carbinyl chloride (3-chloro-3-phenylpropene-1); for examples see below.

 $\tilde{C}$  when pure is colorless oil with no odor of HCl; if HCl is present  $\tilde{C}$  soon darkens on stdg. —  $\tilde{C}$  should leave no residue on distillation, and best yields of RMgCl (see below) are obtainable only with freshly distilled  $\tilde{C}$  (3).

[For prepn. of  $\bar{C}$  from cinnamyl alc. (1:5920) with HCl gas at 0° (yields: 92–93% (1), 78% (7), 60% (12)) (5) (6) (15), with HCl gas in CCl<sub>4</sub> soln. at room temp. (85% yield (7)), with 6-7 wt. pts. 6 N HCl on distn. (79% yield (4)), or with conc. HCl + ZnCl<sub>2</sub> in C<sub>6</sub>H<sub>6</sub> (54% yield (16) see indic. refs.; from cinnamyl alc. (1:5920) with PCl<sub>3</sub> in C<sub>6</sub>H<sub>6</sub> (62.5% yield (1)), or PCl<sub>3</sub> + ZnCl<sub>2</sub> in C<sub>6</sub>H<sub>6</sub> (65% (16)) (note that PCl<sub>5</sub> + ZnCl<sub>2</sub> in C<sub>6</sub>H<sub>6</sub> gave only tar (16)); from cinnamyl alc. (1:5920) with SOCl<sub>2</sub> + pyridine in CHCl<sub>3</sub> (yields: 83% (3), 69–75% (12)), with SOCl<sub>2</sub> + diethylaniline (18) or other tertiary bases (18), or with excess SOCl<sub>2</sub> in C<sub>6</sub>H<sub>6</sub> (72% yield (16)) see indic. refs.; from cinnamyl ethers by cleavage with HCl (22° B6) on htg. under press. see (8); from cinnamyl acctate (see below) by passing in dry HCl see (18).]

[For prepn. of Č from phenyl-vinyl-carbinol [Beil. VI-572, VI<sub>1</sub>-(283)] (7) with HCl gas (7) (10) or with p-nitrobenzoyl chloride in ether on htg. in s.t. (10); from phenyl-vinyl-carbinyl acetate with HCl gas see (19).]

Č with Br<sub>2</sub> (1 mole) adds 2 atoms halogen yielding (20) (6) (10)  $\alpha,\beta$ -dibromo- $\gamma$ -chloro-n-propylbenzene, tbls. from ether, m.p. 104- $105^{\circ}$  (6) (10).

C with conc. HI (D = 1.7) (3 wt. pts.) in AcOH (7) or C with KI in dry acctone (11) gives in good yield (7) cinnamyl iodide, pale yel. lfts., which after very careful recrystn. from AcOH have m.p. 57° (7); note, however, that the substance is very unstable, cf. (7) (11).

[ $\bar{C}$  on htg. with salts of acids yields a mixt. of the corresp. esters of cinnamyl alcohol (1:5920) and phenyl-vinyl-carbinol, the proportions of which vary with the nature of the acid radical, the metal, solvent, etc.; for extensive study of the reaction see (19) (7).] — [For behavior of  $\bar{C}$  with ethyl sodioacetoacetate (21), Ag salt of 3-hydroxynaphthoquinone-1,4 (2), or with 1,5-dichloroanthrone + aq. KOH (22) see indic. refs.]

 $\bar{C}$  readily hydrolyzes to the corresp. alc. (1:5920): e.g.,  $\bar{C}$  with aq. on boilg. for 1 hr. is 75% saponified (7);  $\bar{C}$  with boilg. aq. 1 N NaOH is 95% hydrolyzed in 1 hr. (7); note, however, that  $\bar{C}$  is remarkably stable toward strong aq. alk. in cold (e.g., with 3.5 vols. 53% aq. NaOH only trace of hydrolysis even after 8 hrs. shaking (7)); note also that the cinnamyl alc. (1:5920) obtd. by hydrol. is contaminated with di-cinnamyl ether, b.p. 231–232°, and probably also by the ether from phenyl-vinyl-carbinol. —  $\bar{C}$  (10 g.) with excess cold dil. aq. Na<sub>2</sub>CO<sub>3</sub> on shaking 85 hrs. gives phenyl-vinyl-carbinol (1.3 g.) + cinnamyl alc. (1:5920) (0.7 g.), di-cinnamyl ether (2.6 g.) + unhydrolyzed chlorides (4.1 g.) (7).

[C with abs. alc. KOH yields only (7) cinnamyl ethyl ether; note, however, that the course of the reaction is modified by pres. of aq. and that C with NaOH in 70% aq. alc. the cinnamyl ethyl ether is accompanied by 25-30% of ethyl phenyl-vinyl-carbinyl ether (7); furthermore C with silver oxide in abs. alc. (thus even in absence of aq.) gives both ethers (7) (for numerous details see (7)).]

[The behavior of  $\bar{C}$  with NH<sub>3</sub> (or amines) is doubtless similarly influenced by the environment but has been less thoroughly studied. —  $\bar{C}$  in ether with large excess conc. aq. NH<sub>4</sub>OK on stdg. gives (77% yield (23)) tetracinnamylammonium chloride, ndls. from alc., m.p. 199° (23);  $\bar{C}$  with abs. alc. NH<sub>3</sub> gives (24) (25) (5) mono-, di- and tri-cinnamylamines.]

Č with tertiary amines forms quaternary salts: e.g., Č with Me<sub>3</sub>N in abs. EtOH 24 hrs. at room temp. gives (26) (25) cinnamyl-trimethyl-ammonium chloride, very hygroscopic solid (for derivatives see (25) (26)); for quaternary salt formn. of C with dimethylaniline (15) or pyridine (6) (5) see indic. refs.

[ $\bar{C}$  (1 mole) with aniline (4 moles) in ether as directed gives (50% yield (27)) N-(cinnamyl)-aniline, m.p. 21°, b.p. 200–202° at 12 mm., 178° at 3 mm. (27);  $\bar{C}$  (1 mole) with hexamethylenetetramine (1 mole) in aq. alc. as directed gives (20–30% yield (8)) cinnamaldehyde (1:0245).]

 $\bar{C}$  (freshly distilled) with Mg in dry ether under special conditions gives (83% yield (3)) (12) RMgCl: note carefully, however, that this Grignard is (or behaves as) a mixture consisting of 27% cinnamyl MgCl,  $C_6H_5$ —CH=CH.CH<sub>2</sub>MgCl, accompanied by 73% phenyl-vinyl-carbinyl MgCl,  $C_6H_5$ —C(MgCl).CH=CH<sub>2</sub> (12).

[The reactns. of the Grignard mixture thus obtd. from C therefore generally yield prods. corresponding to both the components sometimes accompanied by material originating from coupling reactns. of RMgCl (either or both types) with itself:e.g., RMgCl (designating the above mixture) on acid hydrolysis with 3 N H<sub>2</sub>SO<sub>4</sub> gives not only both propenylbenzene [Beil. V-481, V<sub>1</sub>-(231), V<sub>2</sub>-(371)], b.p. 176°, and allylbenzene [Beil. V-484, V<sub>1</sub>-(233), V<sub>2</sub>-(373)], b.p. 156° (from the two RMgCl types) (combined yield 47% (12)), but also a high-boilg. residue (81% yield (12)) (from coupling of RMgCl, see below).]

[Č (2 moles) with Mg (1 atom wt.) in dry ether subsequently hydrolyzed gives a highboilg. fractn. consisting of a solid and a liquid hydrocarbon: the solid hydrocarbon (8-9% yield (28)) (1) is 1,6-diphenylhexadiene-1,5 (dicinnamyl) [Beil.  $V_1$ -(338),  $V_2$ -(597)], lfts. from alc. or AcOH, m.p. 82° (1), 81-82° (29), b.p. 211° at 11 mm. (1), 180° at 5 mm. (29); the liquid hydrocarbon (42.9% yield (28)) has now been recognized (28) (contrary to earlier views (1)) as 1,4-diphenylhexadiene-1,5, b.p. 157-160° at 2 mm.,  $D_{20}^{20} = 0.9919$ ,  $n_{D}^{20} = 1.5890$  (28). — For mode of formation of these prods. see (28).]

[ $\bar{C}$  converted to RMgCl (see above) and reacted with NH<sub>2</sub>Cl at  $-20^{\circ}$  gives (14% yield (33)) cinnamylamine.]

- Φ Phenyl-vinyl-acetic acid: cryst. from pet. ether at  $-10^{\circ}$ , m.p.  $23-24^{\circ}$  (30). [From RMgCl with CO<sub>2</sub> (note that ord. method gives low yields (38% (3) cf. (17)) but simple modification of carbonation technique raises yield to 62-66% (3)).]—This acid on htg. or on warming with either alk. or acid isomerizes (by change in position of double bond) to  $\alpha$ -phenylcrotonic acid (methylatropic acid) [Beil. IX-615)] (see also next paragraph).
- α-Phenylcrotonic acid (methylatropic acid): pr. from alc., ndls. or lfts. from aq., m.p. 135-136° (17) (p-nitrobenzyl ester, m.p. 80-81° (31)) (see also preceding paragraph). [From RMgCl (above) with ethyl chloroformate (3:7295) followed by hydrolysis of the intermediate ethyl phenyl-vinyl-acetate by htg. with 20% HCl or by shaking for 2 days with alkali (the hydrolysis being accompanied by simultaneous rearr. of the unsatd. linkage) (30).]
- **D** Phenyl-vinyl-acetic anilide: cryst. from  $C_6H_6$ , alc., or CHCl<sub>3</sub>, m.p. 97-98° (30). [From RMgCl (above) with phenyl isocyanate in dry ether (30); this prod. may be accompanied by a small amt. of  $\alpha$ -phenylcrotonanilide, m.p. 192°, from partial somerization during the reactn. (30).]
- N-(Cinnamyl)phthalimide: cryst. from 90% alc. or 90% AcOH (24) or from n-PrOH (32), m.p. 156° (32), 153° (24). [From C with K phthalimide by htg. at 160° for several hrs. (24); note that the structure of this prod. has been confirmed as the cinnamyl (and not the phenyl-vinyl-carbinyl) type (32).]
- 3:0010 (1) Rupe, Bürgin, Ber. 43, 172-178 (1910). (2) Fieser, J. Am. Chem. Soc. 48, 3213 (1926). (3) Gilman, Harris, Rec. trav. chim. 50, 1052-1055 (1931). (4) Norris, Watt, Thomas, J. Am. Chem. Soc. 38, 1078 (1916). (5) Emde, Franke, Arch. Pharm. 247, 333-334 (1909). (6) Klages, Klenk, Ber. 39, 2552-2555 (1906). (7) Meisenheimer, Link, Ann. 479, 211-277 (1930). (8) Bert, Dorier, Compt. rend. 191, 332-333 (1930); Cent. 1930, II 2376; C.A. 24, 5739 (1930). (9) Goebel, Wenzke, J. Am. Chem. Soc. 60, 698 (1938). (10) Meisenheimer, Schmidt, Ann. 475, 178-179 (1929).
- (11) Murray, J. Am. Chem. Soc. **60**, 2663 (1938). (12) Young, Ballou, Nozaki, J. Am. Chem. Soc. **61**, 12-15 (1939). (13) Murray, Cleveland, J. Am. Chem. Soc. **60**, 2665 (1938). (14) C.A. **31**, 9489 (1937). (15) Emde, Ber. **42**, 2593 (1909). (16) Clark, Streight, Trans. Roy. Soc. Canada (3) **23**, III, 77-89 (1929). (17) Gilman, Harris, J. Am. Chem. Soc. **49**, 1825-1828 (1927). (18) Darzens, Compt. rend. **152**, 1316, 1601 (1911). (19) Meisenheimer, Beutter, Ann. **508**, 58-80 (1934). (20) Grimaux, Bull. soc. chim. (2) **20**, 122-123 (1873).
- (21) Bergmann, Corte, J. Chem. Soc. 1935, 1364. (22) Barnett, Goodway, Weekes, J. Chem. Soc. 1935, 1104. (23) Emde, Arch. Pharm. 249, 93-103 (1911). (24) Posner, Ber. 26, 1857-1865 (1893). (25) Emde, Arch. Pharm. 244, 271-277 (1906). (26) Schmidt, Flaccher, Arch. Pharm. 243, 75-78 (1905). (27) von Braun, Tauber, Ann. 458, 107 (1927). (28) Gilman, Harris, J. Am. Chem. Soc. 54, 2072-2075 (1932). (29) von Braun, Köhler, Ber. 51, 84 (1918). (30) Gilman, Harris, J. Am. Chem. Soc. 53, 3541-3546 (1931).
- (31) Knowles, Cloke, J. Am. Chem. Soc. 54, 2037 (1932).
   (32) Bergmann, J. Chem. Soc. 1935,
   1362.
   (33) Coleman, Forrester, J. Am. Chem. Soc. 58, 28 (1936).

#### --- HEXACHLOROBUTENE-Y

C<sub>4</sub>H<sub>2</sub>Cl<sub>6</sub> Beil. S.N. 11

M.P. 9.5-11° B.P. 125.5° at 25 mm.

See 3:9050. Division C: Liquids with b.p. only at reduced pressure.

3:0013 7-CHLOROHEPTANOL-1 CH<sub>2</sub>.(CH<sub>2</sub>)<sub>5</sub>.CH<sub>2</sub>OH C<sub>7</sub>H<sub>15</sub>OCl Beil. S.N. 24 (ω-Chloro-n-heptyl alcohol)

M.P. B.P.  $10-11^{\circ}$  (1) (2)  $150^{\circ}$  at 20 mm. (1)  $D_4^{15} = 0.9998$  (1)  $n_D^{25} = 1.45367$  (1)  $120^{\circ}$  at 13.5 mm. (3)

Cryst. from lt. pet.

[For prepn. of  $\bar{C}$  from  $\alpha$ ,  $\omega$ -heptamethylene glycol (m.p. 20.2° (3), 18° (1), b.p. 151° at 14 mm. (1), 146° at 9 mm. (3)) with conc. HCl as directed (yields: 65% (4), 46.2% (3), 43% (1)) see indic. refs.]

[C with thiophenol in aq. NaOH htd. 3 hrs. gives (1) 7-hydroxy-n-heptyl phenyl sulfide, ndls. from pet., m.p. 49°; this prod. with SOCl<sub>2</sub> gives (1) 7-chloro-n-heptyl phenyl sulfide,

brown oil (no consts. reported).]

[ $\ddot{\mathbf{C}}$  (1 mole) with Et<sub>2</sub>NH (3-4 moles) in s.t. at 120-160° for 12-15 hrs. gives (86% yield (3)) 7-(diethylamino)heptanol-1, b.p. 132° at 9.5 mm.,  $D_4^{20} = 0.8681$ ,  $n_D^{19} = 1.4561$ , cf. (6); this prod. with SOCl<sub>2</sub> in C<sub>6</sub>H<sub>6</sub> yields (3) (6) 7-(diethylamino)-n-heptyl chloride, b.p. 126° at 15 mm.,  $n_D^{18} = 1.4528$  (3) (corresp.  $\ddot{\mathbf{B}}$ .HCl, m p. 82-84° (6)).]

 $\bar{\mathbf{C}}$  with morpholine gives (5) alm. quant. 7-(4-morpholinyl)heptanol-1, b.p. 155.5-155.8° at 5 mm.,  $D_4^{25}=0.9783$ ,  $u_1^{25}=1$  4747 (corresp. N-phenylcarbamate, m.p. 71.0-72.0° cor.) (5). —  $\bar{\mathbf{C}}$  (1 mole) with N-phenylpiperazine (2 moles) at 100° for 5 hrs. gives (4) in alm. 100% yield (as salt) N-(7-hydroxy-n-heptyl)-N'-phenylpiperazine, m.p. 75.5-76.5° cor. (corresp. N-phenylcarbamate, m.p. 96.5-97.5° cor.).

T-Chloro-n-heptyl N-phenylcarbamate: ndls. from pet. or dil. alc., m.p. 76-77° (3), 76° (1).

3:0013 (1) Bennett, Mosses, J. Chem. Soc. 1931, 1689-1700. (2) Bennett, Reynolds, J. Chem. Soc. 1935, 139. (3) Altman, Rec. trav. chim. 57, 951-952 (1938). (4) Anderson, Pollard, J. Am. Chem. Soc. 61, 3439-3440 (1939). (5) Anderson, Pollard, J. Am. Chem. Soc. 61, 3440-3441 (1939). (6) Pyman, Levene (to Boot's Pure Drug Co.), Brit. 402,159, Dec 21, 1933; Cent. 1934, I 2005; C.A. 28, 3081 (1934).

3:0014 10-CHLORODECANOL-1 CH<sub>2</sub>·(CH<sub>2</sub>)<sub>8</sub>·CH<sub>2</sub>OH C<sub>10</sub>H<sub>21</sub>OCl Beil. I - 426 (ω-Chloro-n-decyl alcohol) I<sub>1</sub>-(213)

M.P. B.P.  $10-11^{\circ}$  (1)  $164-165^{\circ}$  at 20 mm. (2)  $D_4^{25} = 0.9630$  (1)  $n_D^{25} = 1.45796$  (1)  $147.5-149^{\circ}$  at 9 mm. (3)

Cryst. from pet. eth. (1). — Almost insol. aq.; eas. sol. alc., ether, C6H6, pet. ether.

[For prepn. of  $\tilde{C}$  from  $\alpha,\omega$ -decamethylene glycol [Beil. I-494, I<sub>1</sub>-(256), I<sub>2</sub>-(560)] (m.p. 74.5° (1)) with conc. HCl (10 vols.) on boilg. 4 hrs. (2) (3) (for improvements of this method see (1)) (yields: 65% (4), 50% (2)) see indic. refs.]

[C on distn. with fused NaOH loses HCl giving two products regarded (2) as decamethylene oxide and decen-1-ol, but their structures have been questioned (3).]

Č with thiophenol in aq. NaOH, heated 3 hrs., yields (1) 10-hydroxy-n-decyl phenyl sulfide, ndls. from lt. pet., m.p. 66.5° (1); this prod. with SOCl<sub>2</sub> gives 10-chloro-n-decyl phenyl sulfide, cryst. from alc., m.p. 27.5° (1).

 $\bar{C}$  with morpholine gives (5) alm. quant. 10-(4-morpholinyl)decanol-1, m.p. 39.5-40.5°, b.p. 164.0-165.0° at 2 mm. (corresp. N-( $\alpha$ -naphthyl)carbamate, m.p. 66.5-67.5° cor. (5)).  $-\bar{C}$  (1 mole) with N-phenylpiperazine (2 moles) at 100° for 5 hrs. gives (5) in alm. 100%

24

yield (as salt) N-(10-hydroxy-n-decyl)-N'-phenylpiperazine, m.p. 67.0-68.0° cor. (corresp. N-phenylcarbamate, m.p. 95.0-96.0° cor.).

- 10-Chlorodecyl N-phenylcarbamate: ndls. from alc., m.p. 72° (1).
- 10-Chlorodecyl N-( $\alpha$ -naphthyl)carbamate: m.p. 63-64° (4).

3:0014 (1) Bennett, Mosses, J. Chem. Soc. 1931, 1698-1701. (2) Alberti, Smiecuszewski, Monatsh. 27, 411-419 (1906). (3) Franke, Kienberger, Monatsh. 33, 1191-1196 (1912). (4) Anderson, Pollard, J. Am. Chem. Soc. 61, 3439-3440 (1939). (5) Anderson, Pollard, J. Am. Chem. Soc. 61, 3440-3441 (1939).

o-CHLOROBENZALDEHYDE

C<sub>7</sub>H<sub>5</sub>OCl Beil. VII - 233 VII<sub>1</sub>-(132)

M.P. 11°

B.P. 213-214°

 $D_4^{20} = 1.2512$ 

 $n_{\rm D}^{20} = 1.56708$ 

See 3:6410. Division B: Liquids, Section 1,  $D_4^{20} > 1.15$ .

1,1,1,2,3,3,3-HEPTACHLOROPROPANE Cl Cl C3HCl7 Beil. I- $I_{1}$ -(35)

M.P. 11°

B.P. 249°

 $D_A^{34} = 1.7921$ 

See 3:6860. Division B: Liquids, Section 1,  $D_4^{20} > 1.15$ .

7-PHENOXY-n-PROPYL CHLORIDE

C<sub>9</sub>H<sub>11</sub>OCl

Beil. VI - 142

 $(\gamma$ -Chloro-n-propyl phenyl ether) VI<sub>1</sub>--O.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.Cl VI<sub>2</sub>-(145)

M.P. 11.8-12°

B.P. 245-255°

 $D^{20} = 1.1167$ 

See 3:8820. Division B: Liquids, Section 2,  $D_4^{20} < 1.15$ .

n-HEXADECANOYL CHLORIDE  $CH_3$ .  $(CH_2)_{14}$ —C=O  $C_{16}H_{31}OCl$  Beil. II - 374 (Palmitoyl chloride)  $II_{1}$ -(167)

M.P. 12° B.P. 199-200° at 20 mm.

See 3:9912. Division C: Liquids with b.p. reported only at reduced pressure.

CHLOROMALEYL (DI)CHLORIDE Beil. XVII ---

M.P. 12.7

B.P. 189°

 $D_4^{20} = 1.602$ 

 $n_{\rm D}^{20} = 1.5126$ 

XVII<sub>1</sub>-(138)

See 3:6158. Division B: Liquids, Section 1,  $D_4^{20} > 1.15$ .

DICHLOROACETIC ACID Beil. II - 202 C<sub>2</sub>H<sub>2</sub>O<sub>2</sub>Cl<sub>2</sub> II<sub>1</sub>-( 90) II<sub>2</sub>-(194)

M.P. 13° B.P. 194-195°  $D_4^{20} = 1.5642$ 

 $n_{\rm D}^{20} = 1.46582$ 

Division B: Liquids, Section 1,  $D_4^{20} > 1.15$ . See 3:6208.

**β-METHOXYETHYL TRICHLOROACETATE** C<sub>5</sub>H<sub>7</sub>O<sub>8</sub>Cl<sub>3</sub> Beil. S.N. 160 (Methyl "cellosolve" trichloro-CH<sub>2</sub>OCH<sub>3</sub> acetate) CH2OCOCCl3

M.P. 14.6-14.8° B.P. 98.0-99.5° at 17 mm.

See 3:9250. Division C: Liquids with b.p. reported only at reduced pressure.

 b-CHLOROBENZOYL CHLORIDE C7H4OCl2 Beil. IX - 341  $IX_{1}$ -(140)

M.P. 15° B.P. 221°  $D_4^{20} = 1.3621$ 

 $n_{\rm D}^{20} = 1.5790$ 

See 3:6550. Division B: Liquids, Section 1,  $D_4^{20} > 1.15$ .

3:0015 1-CHLOROHEXADECANE CH<sub>3</sub>.(CH<sub>2</sub>)<sub>14</sub>.CH<sub>2</sub>Cl C<sub>16</sub>H<sub>33</sub>Cl Beil. I - 172 (n-Hexadecyl chloride;  $I_1$  cetyl chloride) I<sub>2</sub>-(138)

B.P.

(6)  $D_4^{20} = 0.8520$  (10)  $n_D^{20} = 1.45477$  (2) M.P. 15° (1) 289° dec. 13° (2) 193-197° at 10 mm. (est.) (7) 1.4458 (10) (3) (4) 176-180° at 6 mm.  $(2) \ D_{20}^{20} = 0.8384 \ (2)$ β-form 12.1° (5) 150° at 5 mm. (8)

150° at 3 mm. (see text) (9)

α-form 7.4° (5) 149-153° at 2 mm. (4)

 $73-90^{\circ}$  at  $1 \times 10^{-4}$  mm. (10) (see text)

Note that  $\bar{C}$  shows dimorphism: the transparent  $\alpha$ -variety, f.p. 7.4° (no supercooling), when seeded with cryst. which had been cooled to 0°, changes to a white (opaque) βmodification, m.p. 12.1° (5).

#### PREPARATION OF C

[For prepn. of C from hexadecanol-1 (cetyl alc.) (1:5945) with dry HCl gas + 1% ZnCl<sub>2</sub> at 160-170° for 6 hrs. (94% yield (11)) or in EtOH with dry HCl gas 6 hrs. at 100° (yield unreported (1)) see indic. refs.; note that using 1% ZnCl<sub>2</sub> yield in 6 hrs. at 130° is 86.8%, rises to a max. of 94.6% at  $160^{\circ}$ , then falls off again to 89% at  $200^{\circ}$  (11); note also that in absence of any cat, yield at 160° is only 59% even after 20 hrs. and that with other cat. yields are low (11).]

[For prepn. of  $\bar{C}$  from hexadecanol-1 (cetyl alc.) (1:5945) with conc.  $HCl + ZnCl_2$ (yields: 65% (4), 62% (2)), with PCl<sub>5</sub> (1 mole) at 135° for 5 hrs. (yield unreported (7)) cf. (6), with SOCl<sub>2</sub> (excess but without pyridine) (87-89% yield (2)) see indic. ref. — For form. of  $\bar{C}$  from cetyl alc. + PCl<sub>5</sub> (in pres. of mesityl oxide + Ac<sub>2</sub>O) (61.5% yield) see (10). — For form. of  $\bar{C}$  from cetyl alc. with PCl<sub>3</sub> see (5), but note that prod. always conts. unchanged cetyl alc. (1:5945) and cetene-1 (1:7000) (12) cf. (2).

[For prepn. of C from cetyl stearate (1:2193) with dry HCl gas (97% yield (11)), from

cetyl acetate (1:2038) with dry HCl gas + ZnCl<sub>2</sub> at 180° (13) see indic. refs.]

[For formn. of C from a mixt. of K palmitate + K chloroacetate by electrolysis see (8).]

### PHYSICAL BEHAVIOR OF C

[For study of electrophoretic mobility of emulsions of C see (14).]

#### CHEMICAL BEHAVIOR OF C

#### WITH INORGANIC REACTANTS

With metals. [ $\bar{C}$  with Li in dry ether under N<sub>2</sub> gives (100% yield (15)) C<sub>16</sub>H<sub>33</sub>Li; on carbonation of mixt. with CO<sub>2</sub> this is converted (51% yield (15)) to n-heptadecanoic acid (margaric acid) (1:0635): note, however, that  $\bar{C}$  with Li in pet. eth. (b.p. 30-35°) gives (15) only 63% yield C<sub>16</sub>H<sub>33</sub>Li and this on carbonation only 27% overall yield of margaric acid accompanied by other prods. — For analogous reacts. of  $\bar{C}$  with Na see (15) (16); for react. of  $\bar{C}$  with Ca in dry ether under N<sub>2</sub> see (15).]

 $\bar{C}$  with Mg in dry ether + trace I<sub>2</sub> gives in 6 hrs. (96% yield (1)) C<sub>16</sub>H<sub>33</sub>MgCl.

With NH<sub>3</sub>. [C with liq. NH<sub>3</sub> in alc. in s.t. at 170° for 24 hrs. gives (70% yield (17)) di-n-hexadecylamine, cryst. from alc., m.p. 65°, b.p. 220° at 3 mm. (17), accompanied by (24% yield (17))n-hexadecylamine, m.p. 45°, b.p. 146-148° at 3 mm. (B.HCl, lfts. from abs. alc., m.p. 178° (17)).]

With misc. inorg. reactants. [C over spec. prepd. Al<sub>2</sub>O<sub>3</sub> at 250° loses HCl giving (94% yield (18)) of a mixt. of hexadecenes together with other prods.]

[C with KOH at 200-300° gives (19) palmitte acid (1:0050); C with alc. KSH gives (21) n-hexadecyl mercaptan; C with alc. K<sub>2</sub>S gives (21) di-n-hexadecyl sulfide.

 $[\bar{C} \text{ with Na}_2SO_3.7H_2O \text{ (6 moles) at 190-200}^{\circ} \text{ for 8 hrs. under press. gives (98% yield (20))}$  sodium cetanesulfonate-1.]

[For study of rate of reactn. of  $\bar{C}$  with KI in acctone at 50° and 60° see (3).]

#### WITH ORGANIC REACTANTS

[ $\tilde{C}$  with alc. KOH gives (5) ethyl *n*-hexadecyl ether, f.p. 19.9° (5);  $\tilde{C}$  with sodium allyl oxide refluxed 30 hrs. gives (70% yield (22)) allyl *n*-hexadecyl ether, pl. from aq. alc., m.p. 25° (22).]

[ $\bar{C}$  (1 mole) with 33% alc. MeNH<sub>2</sub> (1 mole) in s.t. at 140-150° for 18 hrs. gives (68% yield (17)) N-methyl-di-n-hexadecylamine, ndls. from alc., m.p. 36-37°, b.p. 269-271° at 1 mm. (17) accompanied by (15% yield (17)) N-methyl-n-hexadecylamine, b.p. 147-150° at 1 mm. ( $\bar{B}$ .HCl, m.p. 169-170° (17)). —  $\bar{C}$  (1 mole) with Mc<sub>2</sub>NH (2 moles) in alc. in s.t. at 140° for 14 hrs. gives (82.5% yield (17)) N,N-dimethyl-n-hexadecylamine, b.p. 158° at 3 mm. ( $\bar{B}$ .HCl, lfts. from AcOEt/dioxane 5/1, m.p. 198° (17)).]

Č with tertiary amines gives by addn. the corresp. quaternary ammonium salts [e.g., C with Me<sub>3</sub>N (2 moles) in alc. in s.t. at 100-105° for 12-16 hrs. (17), or C with Me<sub>3</sub>N (1 mole) in closed bottle at 110° for 5 hrs. (7), gives (100% yield (17)) trimethyl-n-hexadecyl-ammonium chloride, hygroscopic lfts. from AcOEt/alc., m.p. abt. 70° (17); for study of surface tension of aq. solns. of this salt see (7)].

 $\tilde{C}$  with pyridine (1 mole) in s.t. at 110° for 15 hrs. (23) or at 120° for 8 hrs. (7) gives *n*-hexadecyl-pyridinium chloride, cryst. with 1 H<sub>2</sub>O from alc./ether or C<sub>6</sub>H<sub>6</sub>, m.p. 83° (23), 82° (24) [for study of surface tension (7), conductivity (24), and elec. potential (24) of aq.

solns. of this salt see indic. refs.; for cat. hydrogenation of this salt to N-(n-hexadecyl) piperidine.HCl, m.p. 180° see (23); for study of favorable effect of press. on reactn. of  $\tilde{\mathbf{C}}$  with pyridine see (12).

[For analogous reactn. of  $\bar{C}$  with N,N-dimethyl-benzylamine (17) or with isoquinoline (23) see indic. refs.]

[For reactn. of  $\bar{C}$  with  $\alpha$ -picoline + NaNH<sub>2</sub> yielding  $\alpha$ -(n-heptadecyl)pyridine, m.p. 23.5°, b.p. 206° at 2.5 mm.,  $\bar{B}$ .PkOH, m.p. 87°, or of  $\bar{C}$  with  $\gamma$ -picoline + NaNH<sub>2</sub> yielding  $\gamma$ -(n-heptadecyl)pyridine, m.p. 33°, b.p. 207–210° at 2.5 mm.,  $\bar{B}$ .PkOH, m.p. 115°, see (9).]

- --- n-Hexadecyl p-nitrobenzoate: m.p. 58.4° cor. (25). [Prepd. indirectly.]
- --- n-Hexadecyl 3,5-dinitrobenzoate: m.p. 66°. [Prepd. indirectly.]
- --- N-(n-Hexadecyl)phthalimide: unreported.
- ---- S-(n-Hexadecyl)isothiourea hydrochloride: m.p. 126-128° (26). [From C with thiourea in alc. on refluxing 3-4 days (26).]
- —— n-Hexadecyl mercuric chloride: cryst. from pet. eth. or AcOEt, m.p. 114-115° (15). [Prepd. indirectly; note that m.p. of mixts. of this prod. with either n-C<sub>12</sub>H<sub>25</sub>HgCl (m.p. 114-114.5°) or C<sub>18</sub>H<sub>37</sub>HgCl (m.p. 115-116°) is depressed (15).]

3:0015 (1) Houben, Boedler, Fischer, Ber. 69, 1768-1769; 1779-1780 (1936).
(2) Clark, Streight, Trans. Roy. Soc. Canada (3) 23, 111 77-89 (1929).
(3) Conant, Hussey, J. Am. Chem. Soc. 47, 485 (1925).
(4) Norris, Taylor, J. Am. Chem. Soc. 46, 756 (1924).
(5) Phillips, Mumford, J. Chem. Soc. 1931, 1732-1735.
(6) Tüttscheff, Jahresber. 1860, 406.
(7) Hauser, Niles, J. Phys. Chem. 45, 954-959 (1940).
(8) Matsui, Arakawa, Mem. Coll. Sci. Kyoto Imp. Univ. A-15, 189-194 (1932); Cent. 1932, II 2167; C.A. 26, 5264 (1932).
(9) Tschttschibabin, Bull. soc. chim. (5) 5, 431-432 (1938).
(10) Drake, Marvel, J. Ory. Chem. 2, 394 (1937).

Guyer, Bieler, Hardmeier, Helv. Chim. Acta 20, 1462-1467 (1937).
 Fawcett, Gibson, J. Chem. Soc. 1934, 396-400.
 Jaya, G. Ger. 567,014, Dec. 24, 1932;
 Cent. 1933, I 1015; C.A. 27, 1361 (1933).
 Dickinson, Trans. Faraday Soc. 37, 140-148 (1941).
 Meals, J. Org. Chem. 9, 211-218 (1944).
 Morton, LeFevre, Hechenbleikner, J. Am. Chem. Soc. 58, 757 (1936).
 Westphal, Jerchel, Ber. 73, 1006-1011 (1940).
 Schrauth, Ger. 327,048, Oct. 4, 1920; C.A. 15, 2009 (1921).
 Turkiewicz, St. Pilat, Ber. 71, 285 (1938).

(21) Fridau, Ann. 83, 16-20 (1852). (22) Davies, Heilbron, Givens, J. Chem. Soc. 1930, 2545. (23) Karrer, Kahnt, Epstein, Jaffe, Ishii, Helv. Chim. Acta 21, 233-236 (1938). (24) Lottermoser, Frotscher, Kolloid-Beihefte 45, 305-307, 316, 320, 324, 340, 343 (1937). (25) Armstrong, Copenhaver, J. Am. Chem. Soc. 65, 2252-2253 (1943). (26) Sprague, Johnson, J. Am. Chem. Soc. 59, 1838-1839 (1937).

# - sum.-o-PHTHALYL DICHLORIDE

M.P. 16°

B.P. 276.7° at 760 mm.

 $D_4^{20} = 1.4089$ 

 $n_{\rm D}^{20} = 1.5692$ 

See 3:6900. Division B: Liquids, Section 1,  $D_4^{20} > 1.15$ .

--- 3-CHLOROBIPHENYL



M.P. 16°

B.P. 284-285°

See 3:8940. Division B: Liquids, Section 2,  $D_4^{20} < 1.15$ .

```
3:0020 \gamma-CHLORO-n-BUTYRIC ACID C_4H_7O_2Cl Beil. II - 278 II_1-(124) II_2-(253)
```

```
M.P.
                  B.P.
                                                  D_4^{20} = 1.2236 (5) \quad n_D^{20} = 1.4512 (5)
                                 at 22 mm. (3)
16°
                   196°
         (1)
                  115.0-115.5° at 13 mm. (1)
15-16°
         (2)
13-14° (10)
                  114°
                                 at 11.5 mm. (4)
12°
                   111°
                                 at 8 mm. (10)
         (3)
                                 at 6 mm.
                                           (10)
10.4°
        (11) (8)
                  107-108°
                  93.5-94°
                                 at 3 mm.
                                             (2)
```

Cryst, from ether + pet. ether; spar. sol. aq.

[For prepn. of  $\bar{C}$  from  $\gamma$ -chloro-n-butyronitrile (itself prepd. (60-70% yield (6)) from trimethylene chlorobromide) or from methyl  $\gamma$ -chloro-n-butyrate (3:8517) (10) by hydrolysis with conc. HCl (4) (5) (1) (2) see indic. refs.: from  $\gamma$ -butyrolactone (1:5070) with dry HCl see (1); from cyclopropanecarboxylic acid [Beil IX-4, IX<sub>1</sub>-(3)] in ether with dry HCl at 0° see (3); from n-butyric acid (1:1035) with SO<sub>2</sub>Cl<sub>2</sub> + dibenzoyl peroxide in CCl<sub>4</sub> (45%  $\bar{C}$  + 10%  $\alpha$ - and 45%  $\beta$ -isomers) see (7).]

 $\bar{C}$  on htg. above 180° loses HCl yielding (8)  $\gamma$ -butyrolactone (1:5070), b.p. 206°.

 $\ddot{\mathbf{C}}$  with alcs. yields corresp. esters (for study of rate of esterification of  $\ddot{\mathbf{C}}$  with EtOH see (9)). —  $\ddot{\mathbf{C}}$  with SOCl<sub>2</sub> yields  $\gamma$ -chloro-n-butyryl chloride (3:5970) q.v.

- ---- Methyl  $\gamma$ -chloro-n-butyrate: b.p. 175° (see 3:8517).
- Ethyl  $\gamma$ -chloro-n-butyrate: b.p. 186° (see 3:8597).
- $\bigcirc$   $\gamma$ -Chloro-n-butyramide: m.p. 88-90° (8). [From Me  $\gamma$ -chloro-n-butyrate (3:8517) with NH<sub>4</sub>OH (8).]
- $\mathfrak{D}$   $\gamma$ -Chloro-n-butyr-anilide: lfts. from  $C_6H_6$  + pet. eth., m.p. 69-70° cor. (2) (10). [From  $\gamma$ -chloro-n-butyryl chloride (3:5970) with aniline in ether (2) or  $C_6H_6$  (10).] [This prod. on fusion with 3 pts. KOH yields (2) (by ring closure) N-phenyl- $\alpha$ -pyrrolidone [Beil. XXI-237], m.p. 68-69° cor. (2).]
- 3:0020 (1) Cloves, Ann. 319, 360-363 (1901). (2) Lipp, Caspers, Ber. 58, 1012-1014 (1925). (3) de Barr, Am. Chem. J. 22, 335-336 (1899). (4) Wohlgemuth, Compt. rend. 158, 1578 (1914); Ann. chim. (9) 2, 305-307 (1914). (5) Schjanberg, Z. physik. Chem. A-172, 226, 233 (1935). (6) Allen, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 156-157 (1941), 8, 52-53 (1928). (7) Kharasch, Brown, J. Am. Chem. Soc. 62, 925-929 (1940). (8) Henry, Bull. soc. chim. (2) 45, 341-342 (1886). (9) Lichty, Ann. 319, 374 (1901). (10) Blicke, Wright, Zienty, J. Am. Chem. Soc. 63, 2489-2490 (1941).
  - (11) Conant, Kirner, J. Am. Chem. Soc. 46, 244 (1924).

3: 0035 d,l-
$$\beta$$
-CHLORO- $n$ -BUTYRIC ACID C<sub>4</sub>H<sub>7</sub>O<sub>2</sub>Cl Beil. II - 277 CH<sub>3</sub>.CH.CH<sub>2</sub>.COOH II<sub>1</sub>-(123) II<sub>2</sub>-(253) M.P. B.P. 16-16.5° (1) (2) 116° at 22 mm. (1)  $D_4^{20.2} = 1.1861$  (3)

16-16.5° (1) (2) 116° at 22 mm. (1) 
$$D_4^{20.2} = 1.1861$$
 (3) 110-113° at 20 mm. (3) 108.5-109.5° at 17 mm. (4)  $D_4^{20} = 1.1898$  (6)  $n_D^{20} = 1.4421$  (6) 108° at 16 mm. (5) 98.5-99.5° at 12 mm. (2)  $n_D^{19.85} = 1.4421$  (3)

White cryst. from dry ether, melting to colorless liq.

[For prepn. of  $\bar{\mathbb{C}}$  from  $\alpha$ -crotonic acid (1:0425) by satn. of ether soln. with dry HCl (1) (7) (8), or with aq. HCl at 80–100° in s.t. (5), or by boilg. with 20% HCl (9) see indic. refs.; from allyl cyanide with fumg. HCl at 50–60° see (10); from 3-chlorobutanol-1 (3:9165) by oxidn. with alk. KMnO<sub>4</sub> see (11); from  $\beta$ -chloro-n-butyraldehyde (3:9110) by oxidn. with conc. HNO<sub>3</sub> see (12); for formn. of  $\bar{\mathbb{C}}$  from n-butyric acid (1:1035) with SO<sub>2</sub>Cl<sub>2</sub> + dibenzoyl peroxide in CCl<sub>4</sub> (45%  $\bar{\mathbb{C}}$  together with 10%  $\alpha$ -chloro and 45%  $\gamma$ -chloro isomers) see (13); for formn. of  $\bar{\mathbb{C}}$  from  $\beta$ -amino-n-butyric acid in 25% aq. HCl with NOCl under press. see (14).]

 $\bar{C}$  on htg. with theoret. quant. dil. aq. alk. loses HCl giving quant. yield (2) (11)  $\alpha$ -crotonic acid (1:0425), m.p. 72°. [For study of velocity of reactn. of  $\bar{C}$  with H<sub>2</sub>O at 150°C see (1), of rate of loss of HCl from Na $\bar{A}$  by aq. at 70° see (15).]

 $\tilde{C}$  with EtOH yields ethyl  $\beta$ -chloro-n-butyrate (3:8373) [for study of rate of esterification see (4)];  $\tilde{C}$  with SOCl<sub>2</sub> yields (2)  $\beta$ -chloro-n-butyryl chloride (3:9100) q.v. [for study of behavior of  $\tilde{C}$  on cat. hydrogenation see (16)].

 $\bar{C}$  with NH<sub>3</sub> gives (17)  $\beta$ -hydroxy-n-butyramide [Beil. III<sub>1</sub>-(116)].

C on conversion to NaA, dislvd. in 2½ pts. aq. and stood 1 day with NaOAc + phenylhydrazine yields (18) (21) β-phenylhydrazino-n-butyric acid [Beil. XV-324], lfts. from alc., m.p. 111° (18) (21). [This prod. on warming with conc. H<sub>2</sub>SO<sub>4</sub> ring-closes to 1-phenyl-5-methylpyrazolidone-(3), m.p. 127° (18) (21).]

- Methyl  $\beta$ -chloro-n-butyrate: b.p. 156° (see 3:8224).
- Ethyl  $\beta$ -chloro-n-butyrate: b.p. 169° (see 3:8373).
- --- \beta-Chlorobutyramide: unreported.
- β-Chloro-n-butyranilide: cryst. from dil. alc., m.p. 89-90° (18), 90° (19). [From β-chloro-n-butyryl chloride (3:9100) with aniline (18) in acetone soln. (19).] [This prod. on htg. with AlCl<sub>3</sub> gives (55% yield (19)) 4-methyl-2-keto-tetrahydroquinoline, m.p. 98° (19).]
- β-Chloro-n-butyro-p-toluidide: cryst. from dil. alc., m.p. 124° (19), 115° (20). [From β-chloro-n-butyryl chloride (3:9100) with p-toluidine (20) in acetone soln. (19).]
  [This prod. on htg. with AlCl<sub>3</sub> gives (57% yield (19)) 4,6-dimethyltetrahydroquinoline, m.p. 131° (19).]

3:0035 (1) de Barr, Am. Chem. J. 22, 335, 342-343 (1899). (2) Cloves, Ann. 319, 358-360 (1901). (3) von Auwers, Ann. 421, 37 (1921). (4) Lichty, Ann. 319, 370, 373 (1901). (5) Lovén, Johansson, Ber. 48, 1256 (1915). (6) Schjanberg, Z. physik. Chem. A-172, 232 (1935). (7) Scheibler, Ber. 48, 1443 (1915). (8) von Auwers, Müller, J. prakt. Chem. (2) 137, 128 (1933). (9) Kaufler, Monatsh. 53/54, 124 (1929). (10) Pinner, Ber. 12, 2056 (1879).

(11) I. G., Brit. 479, 690, Feb. 10, 1938; Cent. 1938, I 3833; C.A. 32, 5003 (1938). (12) Karetnikow, J. Russ. Phys.-Chem. Soc. 11, 252 (1879). (13) Kharasch, Brown, J. Am. Chem. Soc. 62, 925-929 (1940). (14) Fischer, Scheibler, Cent. 1911, II 442; Ann. 383, 354-356 (1911). (15) Simpson, J. Am. Chem. Soc. 40, 680 (1918). (16) Paal, Schiedewitz, Ber. 62, 1937, 1939 (1929). (17) Scheibler, Magasanik, Ber. 48, 1812 (1915). (18) Michael, Ber. 34, 4052-4053 (1901). (19) Mayer, van Zütphen, Phillips, Ber. 60, 860-861 (1927). (20) Wolffenstein, Rolle, Ber. 41, 736 (1908).

(21) Lederer, J. prakt. Chem. (2) 45, 87-89 (1892).

3: 0050 
$$d$$
, $l$ - $\alpha$ -CHLORO-ISOVALERIC ACID  $C_5H_9O_2Cl$  Beil. II -316  $(\alpha$ -Chloro- $\beta$ -methyl- $n$ -butyric acid) CH<sub>3</sub>—CH—CH—COOH II<sub>1</sub>— II<sub>2</sub>—

M.P. 16° (1) B.P. 210-212° at 756 mm. (1) 
$$D_{-}^{13.2} = 1.135$$
 (1)  $n_{-}^{11} = 1.44496$  (1)

30 DIVISION A

C is insol. aq.; sol. in alc. or ether.

[For prepn. from  $\alpha$ -chloroisovaleronitrile with conc. HCl at 100° see (1); from sodium isovalerate with aq. HOCl see (2).

 $\bar{C}$  with PCl<sub>3</sub> yields (1)  $\alpha$ -chloroisovaleryl chloride (3:8144).

- ---- Methyl α-chloro-isovalerate: unreported.
- ---- Ethyl α-chloro-isovalerate: unreported.
- ---- α-Chloro-isovaleramide: unreported.
- ---- α-Chloro-isovaler-anilide: unreported.
- ---- α-Chloro-isovalero-p-toluidide: unreported.

3:0050 (1) Servais, Rec. trav. chim. 20, 51-53 (1901). (2) Schlebusch, Ann. 141, 323 (1867).

### 1,2,4-TRICHLOROBENZENE

$$\bigcup_{C_1}^{C_1}$$

C<sub>6</sub>H<sub>3</sub>Cl<sub>3</sub>

Beil. V - 204  $V_{1}$ -(112)

 $V_{2}$ -(156)

M.P. 17°

B.P. 213° cor.

See 3:6420. Division B: Liquids, Section 1,  $D_4^{20} > 1.15$ .

m-CHLOROBENZALDEHYDE



C7H5OCl

Beil. VII - 234 VII<sub>1</sub>-(133)

M.P. 17°

B.P. 216°

 $D_4^{20} = 1.2410$ 

 $n_{\rm D}^{20} = 1.5591$ 

See 3:6475. Division B: Liquids, Section 1,  $D_4^{20} > 1.15$ .

2,2,2-TRICHLOROETHANOL-1  $(\beta,\beta,\beta$ -Trichloroethyl alcohol)

Cl<sub>3</sub>C.CH<sub>2</sub>OH C<sub>2</sub>H<sub>3</sub>OCl<sub>3</sub>

Beil. I - 338

I<sub>1</sub>-(170)  $I_{2}$ -(337)

M.P. 17-18° B.P. 151°

See 3:5775. Division B: Liquids, Section 1,  $D_4^{20} > 1.15$ .

# 3: 0060 BENZOHYDRYL CHLORIDE

(Diphenylmethyl chloride, diphenylcarbinyl chloride, diphenyl-chloromethane,



Beil. V - 590

 $V_{1}$ -(278)  $V_{2}$ -(500)

a-chlorodiphenylmethane)

M.P. B.P.

at 247 mm. (12)  $D_4^{19.5} = 1.1398$  (10)  $n_D^{19.5} = 1.5959$  (10) 190-191° [20.5° (1)]

at 19 mm. (13) (14) 18° (2) 173°

17.6  $\langle 3 \rangle$ 169-170° at 17 mm. (10) 17-18° (4) 165° at 17 mm. (15)

17° 167° at 16 mm. (4) (5)

165.5° 13-15° (6) at 15 mm. (1)

14.5° (7) 161-162° at 13 mm. (3) 14°

(8) 158.0-159.5° at 12 mm. (1) (9) (24) 155-157° at 12 mm. (16)

13-14° (10) 156° at 10 mm. (7)

```
12-14° (11)
                148-150°
                               at 6 mm.
                                             (6)
                146.5-147.6° at 6 mm.
                                           (17)
                141°
                               at 4 mm.
                                           (18)
                135-145°
                               at 4 mm.
                                            (8)
                119-120°
                               at 2.5 mm.
                                           (19)
                113-114°
                               at 1.5 mm.
                                            (5)
                115-116°
                               at 1 mm.
                                           (19)
                115°
                               at 1 mm.
                                            \langle 3 \rangle
```

 $\bar{C}$  rapidly becomes turbid in contact with atmosphere and should be kept in sealed tubes (1). —  $\bar{C}$  on attempted distn. at ord. press. loses HCl and gives 1,1,2,2-tetraphenylethane [Beil. V-739, V<sub>1</sub>-(371)] (20), m.p. 211°, and 1,1,2,2-tetraphenylethylene [Beil. V-743, V<sub>1</sub>-(376)] (9), m.p. 227°.

[For prepn. of  $\bar{C}$  from diphenylcarbinol (1:5960) with dry HCl gas alone (9) (21), or in  $C_6H_6$  (92% yield (14)), or in  $C_6H_6$  +  $CaCl_2$  (yield: 90% (1), 85% (3)) (11) (17), with SOCl<sub>2</sub> in toluene (93.3% yield (2)), with PCl<sub>5</sub> in POCl<sub>3</sub> (92% yield (14)), or with BeCl<sub>2</sub> (77% yield (8)) see indic. refs.; from diphenylmethane (1:7120) with PCl<sub>5</sub> at 170° (together with other products) (22) or with NOCl (together with other products) (23) see indic. refs.: for formn. of  $\bar{C}$  from diphenylcarbinyl MgBr with ClCN (42% yield + 8% diphenylacetonitrile + 5% 1,1,2,2-tetraphenylethane) see (10); from bis-(diphenylcarbinyl) ether in  $C_6H_6$  with HCl gas (77% yield) see (11); from diphenylcarbinylhydrazine with boilg. dil. HCl see (24); from diphenyldiazomethane with HCl gas in ether at  $-80^\circ$  see (25).]

[ $\bar{C}$  with molecular Ag in  $C_6H_6$  in absence of  $O_2$  gives 100% yield (19) of 1,1,2,2-tetraphenylethane (see first paragraph); in pres. of pure  $O_2$  yield drops to 2-8% and other products are formed (19);  $\bar{C}$  in  $C_6H_6$  refluxed some hours with Na gives (80-90% yield (14)) (9) (21) 1,1,2,2-tetraphenylethane (see first paragraph);  $\bar{C}$  with Na in liq. NH<sub>3</sub> gives (26) 1,1,2,2-tetraphenylethane (65% yield) + diphenylmethane (1:7120) (27% yield).]

 $\bar{C}$  in dry ether treated with Mg + trace of I<sub>2</sub> immediately ppts. 1,1,2,2-tetraphenylethane whose yield may reach 95.5% (2); however, under special conditions (6)  $\bar{C}$  in ether with Mg + trace of I<sub>2</sub> gives (51-71%) corresp. RMgCl epd.; this prod. upon treatment with CO<sub>2</sub> gives (yield: 84% (6), 32.5% (2)) diphenylacetic acid (1:0765), m.p. 148°; the RMgCl epd. does not react (2), however, with phenyl isocyanate.

[Č with pure AlCl<sub>3</sub> immediately resinifies  $\{11\}$ ; however, Č in C<sub>6</sub>H<sub>6</sub> with AlCl<sub>3</sub> gives  $\{11\}$  triphenyl-chloromethane (3:3410) + diphenylmethane (1:7120) with a very little triphenylmethane (1:7220).]

[C htd. with 20% aq. Na<sub>2</sub>SO<sub>3</sub> soln. for 3 hrs. at 120° gives (100% yield (28)) (27) bis-(diphenylmethyl) ether [Beil. VI-679, VI<sub>1</sub>-(326)], cryst. from alc., m.p. 109° (27), 110° (17); note that this reaction probably results from intermediate diphenylcarbinol and that none of the expected sulfonate can be isolated.]

[For reactn. of  $\bar{C}$  with phenols + ZnCl<sub>2</sub> yielding mono-, di- or tri-alkylated phenols according to conditions see (13) (29) cf. (30); for reactn. of  $\bar{C}$  with thiophenols see (31); for reactn. of  $\bar{C}$  with excess Br.Mg.C=C.MgBr giving (40-50% yield) 1,1,4,4-tetraphenyl-butine see (32); for reactn. of  $\bar{C}$  with anthrone + KOH see (33).]

 $\bar{C}$  with aq. hydrolyzes yielding diphenylcarbinol (1:5960) or its reactn. products according to particular conditions; for extensive studies see (34) (12) (35) (18) (40) (35). —  $\bar{C}$  with EtOH undergoes alcoholysis yielding ethyl diphenylcarbinyl ether + HCl (for very extensive studies of this and related reactions see (1) (36) (4) (17) (37) (7) (35). —  $\bar{C}$  after warming with alc. may then be titrated quant. with stand. alkali using phenolphthalein (1).

<sup>——</sup> Diphenylcarbinyl acetate [Beil. VI-680, VI<sub>1</sub>-(326)]: cryst. from AcOH, m.p. 40-41°. [From C with KOAc in AcOH (22).]

Diphenylcarbinyl benzoate: cryst. from alc., m.p. 88-89° (39), 86-88° (38). [From C in C<sub>6</sub>H<sub>6</sub> on shaking with silver benzoate (38); see also text under diphenylcarbinol (1:5960).]

3:0000 (1) Ward, J. Chem. Soc. 1927, 2285-2295. (2) Gilman, Kirby, J. Am. Chem. Soc. 48, 1733-1736 (1926). (3) Weissberger, Sangewald, Z. physik. Chem. B-20, 149 (1933). (4) Norris, Banta, J. Am. Chem. Soc. 50, 1804-1808 (1928). (5) Smith, Andrews, J. Am. Chem. Soc. 53, 3649-3650 (1931). (6) Gilman, Zoellner, J. Am. Chem. Soc. 52, 3984-3988 (1930). (7) Nixon, Branch, J. Am. Chem. Soc. 58, 492-498 (1936). (8) Bredereck, Lehmann, Schönfeld, Fritzsche, Ber. 72, 1424 (1939). (9) Engler, Bethge, Ber. 7, 1128-1129 (1874). (10) Grignard, Ono, Bull. soc. chim. (4) 39, 1594 (1926).

(11) Boeseken, Rec. trav. chim. 22, 312-314 (1903). (12) Taylor, J. Am. Chem. Soc. 86, 2094-2096 (1938). (13) Van Alphen, Rec. trav. chim. 46, 799-800, 803, 811-812 (1927). (14) Montagne, Rec. trav. chim. 25, 403-404, 408 (1906). (15) Straus, Dützmann, J. prakt. Chem. (2) 103, 42 (1921/22). (16) Rule, Bain, J. Chem. Soc. 1930, 1899. (17) Farinacci, Hammett, J. Am. Chem. Soc. 59, 2542-2546 (1937). (18) Church, Hughes, J. Chem. Soc. 1940, 920-925. (19) Nauta,

Mulder, Rec. trav. chim. 58, 1070-1080 (1939). (20) Anschütz, Ann. 235, 220 (1886).

(21) Engler, Ber. 11, 927 (1878). (22) Cono, Robinson, Ber. 40, 2162-2163 (1907). (23) Perrot, Compt. rend. 198, 1425 (1934). (24) Darapsky, J. prakt. Chem. (2) 67, 129 (1903). (25) Staudinger, Anthes, Pfenninger, Ber. 49, 1936-1937 (1916). (26) Dean, Berchet, J. Am. Chem. Soc. 52, 2825 (1930). (27) Wedekind, Schenk, Ber. 44, 201-202 (1911). (28) Schenk, Pharm. Ztg. 54, 725; Cent. 1909, II 1916. (29) Busch, Z. angew. Chem. 38, 1145-1146 (1925). (30) Busch, Knoll, Ber. 60, 2243-2257 (1927).

(31) Finzi, Bellavita, Gazz. chim. ital. 62, 699-709 (1932). (32) Wieland, Kloss, Ann. 470, 215 (1929). (33) Barnett, Goodway, J. Chem. Soc. 1929, 813-814. (34) Straus, Hussey, Ber. 42, 2180-2181 (1909). (35) Bateman, Hughes, Ingold, J. Am. Chem. Soc. 60, 3080-3082 (1938). (36) Norris, Morton, J. Am. Chem. Soc. 50, 1795-1803 (1928). (37) Kny-Jones, Ward, J. Am. Chem. Soc. 57, 2394-2396 (1935). (38) Blicke, Powers, J. Am. Chem. Soc. 51, 3382 (1929). (39) Linnemann, Ann. 133, 22 (1865). (40) Church, Hughes, J. Chem. Soc. 1940, 966-970.

#### 

M.P. 18° (1) 4° (2)

Cryst. from ether + pet. ether.

[For prepn. of  $\bar{C}$  from  $\delta$ -phenoxy-n-valeric acid [Beil. VI-165] by htg. with fumg. HCl in s.t. at 180° see (2) (4); from diethyl  $\gamma$ -chloro-n-propylmalonate [Beil. II<sub>1</sub>-(278)] with 6 N HCl see (3); from  $\delta$ -iodo-n-valeric acid [Beil. II-304, II<sub>2</sub>-(270)] by susp. in conc. HCl and htg. with AgCl see (1).]

 $\bar{C}$  distils at 141-149° at 12 mm. with sl. decomp. (1). —  $\bar{C}$  on htg. between 195-240° at ord. press. evolves HCl and leaves a viscous oil (1).  $\bar{C}$  htd. very rapidly at ord. press. over a free flame yields (1) (2) a little δ-valerolactone (1:1139).

C with SOCl<sub>2</sub> yields (5) δ-chloro-n-valeryl chloride (3:9264), b.p. 75-80° at 5-8 mm. (5).

- Methyl δ-chloro-n-valerate: unreported.
- Ethyl δ-chloro-n-valerate: see 3:8727.
- ---- δ-Chloro-n-valeramide: unreported.
- ---- δ-Chloro-n-valeranilide: unreported.
- δ-Chloro-n-valero-p-toluidide: unreported.

3:0075 (1) Cloves, Ann. 319, 363-366 (1901). (2) Funk, Ber. 26, 2574-2576 (1893). (3) Mellor, J. Chem. Soc. 79, 132 (1901). (4) Conant, Kirner, J. Am. Chem. Soc. 46, 244-245 (1924). (5) Child, Pyman, J. Chem. Soc. 1931, 41.

3: 0085 2-HYDROXYBENZOYL CHLORIDE (Salicyloyl chloride) 
$$C_7H_5O_2C!$$
 Beil. X—X<sub>1</sub>-(43)  $C_7H_5O_2C!$  Beil. X—X<sub>1</sub>-(43)  $C_7H$ 

Colorless liq.; contrary to stability originally claimed (3),  $\bar{C}$  is now (1) regarded as very unstable, must be used as soon as prepd. since upon keeping (even in sealed tubes) it rapidly decomposes and sometimes explodes.

(6)

at 0.5-1 mm. (2) (1)

at 1 mm.

59°

56°

[For prepn. of  $\bar{C}$  from salicylic acid (1:0780) with SOCl<sub>2</sub> in boilg.  $C_6H_6$  (80% yield (1) (7)) (4), with SOCl<sub>2</sub> + trace of AlCl<sub>3</sub> at 45-50° (2) (15), with COCl<sub>2</sub> (3:5000) in  $C_6H_6$  in pres. of tertiary bases such as quinoline (8), or with oxalyl (di)chloride (3:5060) in  $C_6H_6$  (98% yield (9)) see indic. refs.; for prepn. of  $\bar{C}$  from sodium (or other) salts of salicylic acid (1:0780) with SOCl<sub>2</sub> (yields: 38% (3), 36% (5)) (10) (11) (12) (13) (6) or with COCl<sub>2</sub> (3:5000) in toluene (14) see indic. refs.]

[ $\tilde{C}$  on htg. at 20 mm. begins to lose HCl at 110° yielding (1) polysalicylids;  $\tilde{C}$  in  $C_6H_6$  with diethylaniline yields (1)  $\alpha$ -disalicylid, cryst. from CHCl<sub>3</sub>, m.p. 210-212° (1), c.f. (16) (17);  $\tilde{C}$  with PCl<sub>5</sub> yields  $\alpha$ -Cl.CO.C<sub>6</sub>H<sub>4</sub>.OPCl<sub>4</sub> together with other P derivs. (17).

[For reactn. of  $\bar{C}$  with Na.C= $C-C_6H_5$  and ring closure of prod. to flavone see (18); for reactn. of  $\bar{C}$  with 1,3-dichloropropanol-2 (glycerol  $\alpha,\alpha'$ -dichlorohydrin) (3:5985) see (19).]

 $\bar{C}$  with phenol at 50° yields (15) phenyl salicylate ("Salol") (1:1415), m.p. 42°. [For reactn. of  $\bar{C}$  with 2-iodoethanol yielding corresp.  $\beta$ -iodoethyl salicylate see (22); for reactn. of  $\bar{C}$  with alc. KSH yielding  $\alpha$ -thiolsalicylic acid, m.p. 33° see (23).]

 $\bar{C}$  with  $\alpha$ -naphthylamine yields (20) salicyl- $\alpha$ -naphthalide [Beil. XII-1248], m.p. 187° (20);  $\bar{C}$  with  $\beta$ -naphthylamine yields (20) salicyl- $\beta$ -naphthalide, m.p. 188-189° (20);  $\bar{C}$  (2 moles) with benzidine (1 mole) yields (21) N,N'-disalicyloylbenzidine (use in fixation of basic dyes on cotton (21)).

Č with urea in other yields (24) N-salicyloylurea (salicyl-monoureide) cryst. from AcOH or MeOH, m.p. 192° dec. (24).

[C with McOH presumably yields methyl salicylate (1:1750), b.p. 224°; C with EtOH yields ethyl salicylate (1:1755), b.p. 234°.]

C on hydrolysis presumably yields salicylic acid (1:0780) q.v.

3:0085 (1) Anschütz, Riepenkröger, Ann. 439, 2-4 (1924). (2) Kirpal, Ber. 63, 3190 (1930). (3) Kopetschni, Karczag, Ber. 47, 235-237 (1914). (4) Wolffenstein, Ger. 284,161, May 10, 1915, Cent. 1915, I 1290. (5) McMaster, Ahmann, J. Am. Chem. Soc. 50, 148 (1928). (6) Kahovec, Kohlrausch, Z. physik. Chem. B-38, 137 (1938). (7) Lukasiak, Roczniki Farm. 12, 1-36 (1934); Cent. 1935, I 3005; C.A. 30, 7163 (1936). (8) Soc. Chem. Ind. Basel, Brit. 401,643, Dec. 14, 1933; Cent. 1934, II 2133; French 732,078, Sept. 13, 1932; Cent. 1934, I 287. (9) Adams, Uhlig, J. Am. Chem. Soc. 42, 604 (1920). (10) Anschütz, Ann. 454, 95 (1927).

(11) Higgins (to British Synthetics, Ltd.), U.S. 1,684,273, Sept. 11, 1928; Brit. 278,463, Nov. 11, 1927; French 632,767, Jan. 14, 1928; Swiss 129,881, Jan. 2, 1929; Cent. 1929, I 2471. (12) Kopetschni, Karczag, Ger. 262,883, July 25, 1913, Cent. 1913, II 728. (13) Bogert, McColin, J. Am. Chem. Soc. 49, 2651-2652 (1927). (14) Kopetschni, Karczag, Ger. 266,351, Oct. 21, 1913; Cent. 1913, II 1715. (15) Dvornikoff (to Monsanto Chem. Co.), U.S. 2,007,013, July 2, 1935; Cent. 1936, I 1053; C.A. 29, 5603 (1935). (16) Anschütz, J. prakt. Chem. (2) 105, 158-164 (1923). (17) Anschütz, Ann. 439, 270-272 (1924). (18) Simonis, Z. angew, Chem. 39, 1462 (1926).

(19) Humnicki, Roczniki Chem. 11, 670-673 (1931); Cent. 1931, II 3334. (20) Jusa, Riesz, Monatsh. 58, 143 (1931).

(21) Günther, Haller, Köster (to I.G.), Ger. 441,326, March 1, 1927; Cent. 1927, I 2358. (22) Farbwerke Meister Lucius & Bruning, Ger. 360,491, Oct. 3, 1922; Cent. 1923, II 479. (23) Chem. Fabrik. von Heyden, Ger. 365,212, Dec. 11, 1922; Cent. 1923, II 251. (24) Kaufmann, Arch. Pharm. 265, 235–236 (1927).

--- SUCCINYL (DI)CHLORIDE Cl 
$$C_4H_4O_2Cl_2$$
 Beil. II - 613 III-(264)  $CH_2-C=0$   $CH_2-C=0$   $CH_2-C=0$ 

M.P. 20° B.P. 193° at 760 mm.

$$D_4^{20} = 1.3748 \qquad n_D^{20} = 1.4683$$

34

See 3:6200. Division B: Liquids, Section 1,  $D_4^{20} > 1.15$ .

M.P. 20-21° B.P. 231° at 763.5 mm.

See 3:6670. Division B: Liquids, Section 1,  $D_4^{20} > 1.15$ .

$$p$$
-CHLOROACETOPHENONE  $C_8H_7OCl$  Beil. VII - 281  $VII_{1}$ -(151)

M.P. 20-21° B.P. 232°

 $D_{-}^{20}=1.188$ 

See 3:6735. Division B: Liquids, Section 1,  $D_4^{20} > 1.15$ .

$$--- \omega, \omega\text{-DICHLOROACETOPHENONE} \qquad \begin{array}{c} C_8H_6OCl_2 \\ \\ -C-CHCl_2 \end{array} \qquad \begin{array}{c} \text{Beil. VII - 282} \\ \text{VII}_1\text{-(152)} \end{array}$$

M.P. 20° B.P. 247–248°

See 3:6835. Division B: Liquids, Section 1,  $D_4^{20} > 1.15$ .

3: 0090 
$$p$$
-CHLOROPHENETOLE Cl $OC_2H_5$   $C_8H_9OCl$  Beil. VI - 187  $VI_1-VI_{2-}$  (76)

M.P. 21° (1) B.P. 211.6° cor. (3) 
$$D_{20.2}^{20.2} = 1.12310$$
 (2)  $n_D^{19} = 1.5227$  (5)  $20.9^{\circ}$  (2)  $210-212^{\circ}$  (1)(4)  $20^{\circ}$  (3)

Colorless oil, volatile with steam (6).

[For prepn. from p-chlorophenol (3:0475) +  $C_2H_5I$  in presence of KOH see (1), in presence of  $K_2CO_3$  + acetone (74% yield) see (4).]

Č grad. added to 2 pts. conc. HNO<sub>3</sub> (D=1.485) with cooling, then poured into aq., gives (6) 4-chloro-2-nitrophenetole [Beil VI-238], pale yel. ndls. from alc., m.p. 61° (6). [The mother liquor contains some 4-chloro-2,6-dinitrophenol [Beil, VI-260], m.p. 80° (6).]

 $\bar{C}$  htd. at 100° with abt. 30 pts. of a soln. of const.-boilg. HBr (1 vol.) in AcOH (2 vols.) for 2 hrs. gave (4) 85% yield of p-chlorophenol (3:0475).

- ⑤ 5-Chloro-2-ethoxybenzenesulfonamide: cryst. from dil. alc., m.p. 134-134.5° u.c. (7). [From C̄ by treat. with chlorosulfonic ac. followed by conversion of the intermediate sulfonyl chloride to the sulfonamide by treatment with (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> (71% yield (7))]. [Note that this prod. depresses the m.p. of the corresponding deriv. (m.p. 132-133° u.c.) from o-chlorophenetole (3:8735) (7).]
- 3:0000 (1) Beilstein, Kurbatow, Ann. 176, 31 (1875). (2) Swarts, J. chim. phys. 20, 76 (1923). (3) Peratoner, Ortoleva, Gazz. chrm. ital. 28, I 226 (1898). (4) Borosel, J. Am. Chem. Soc. 53, 1408-1409 (1931). (5) Cotton, Mouton, Ann. chim. (8) 28, 216 (1913). (6) Reverdin, Düring, Ber. 32, 153 (1899). (7) Huntress, Carten, J. Am. Chem. Soc. 62, 603-604 (1940).
- 3:0095 1-CHLORO-OCTADECANE CH<sub>3</sub>.(CH<sub>2</sub>)<sub>16</sub>.CH<sub>2</sub>Cl C<sub>18</sub>H<sub>37</sub>Cl Beil. S.N. 10 (n-Octadecyl chloride; stearyl chloride)
  - M.P. 21° (1) B.P. 180-190° at 12 mm. (1) (2) 18° (2)

Care must be taken to avoid confusion of  $\bar{C}$  with the acid chloride of stearic acid which is often designated as stearoyl chloride (3:9960).

[For prepn. of  $\bar{C}$  from octadecanol-1 (stearyl alc.) (1:5953) with excess PCl<sub>5</sub> on htg. (no statement of yields) (1) (10) or with PCl<sub>5</sub> in SOCl<sub>2</sub> (100% yield (10)) see indic. refs.] [For study of heat of adsorption of  $\bar{C}$  on steel and its bearing on lubrication see (1); for study of electrophoretic mobility of emulsions of  $\bar{C}$  see (3).]

 $\bar{C}$  with Mg in dry ether yields (4) n-C<sub>18</sub>H<sub>37</sub>MgCl [this prod. with cyclopentanone (1:5446) gives (4) a tertiary alc. which on dehydration with KHSO<sub>4</sub> yields (4) n-octadecylcyclopentene, b.p. 173-174° at 3 mm., m.p. 19°,  $D_4^{20}=0.8462$ ; similarly C<sub>18</sub>H<sub>37</sub>MgCl with cyclohexanone (1:5465) gives (4) a tertiary alc. which with KHSO<sub>4</sub> loses aq. giving (4) n-octadecylcyclohexene, b.p. 179-180° at 3 mm., m.p. 20°,  $D_4^{20}=0.8458$ ].

[ $\bar{C}$  with  $C_6H_6$  + AlCl<sub>3</sub> undergoes Friedel-Crafts reactn. yielding (4) n-(?)-octadecylbenzene [Beil. V-473, V<sub>1</sub>-(361)], m.p. 25–26°, b.p. 180–181° at 3 mm.,  $D_4^{20}=0.8566$ ,  $n_D^{20}=1.4826$ .]

 $\overline{C}$  (1 mole) with pyridine (1 mole) in s.t. at 110° for 15 hrs. gives (5) the corresp. quaternary salt, N-(n-octadecyl) pyridinium chloride, cryst. from alc./ether or  $C_6H_6$  as monohydrate, m.p. 82° (5), 86° (6); for study of conductivity and electric potential of latter see (6).

- --- n-Octadecyl p-nitrobenzoate: m.p. 64.3° cor. (7). [Prepd. indirectly.]
- ---- n-Octadecyl 3,5-dinitrobenzoate: unreported.
- ---- N-(n-Octadecyl)phthalimide: unreported.
- --- S-(n-Octadecyl)isothiourea: m.p. 83-85° (8). [Prepd. indirectly.]
- —— n-Octadecyl mercuric chloride: m.p. 115-116° (9). [Prepd. indirectly: note that m.p. of this prod. either with C<sub>16</sub>H<sub>33</sub>HgCl (m.p. 114-115°) or with C<sub>18</sub>H<sub>37</sub>HgBr (m.p. 110-111°) is depressed (9).]
- 3:0095 (1) Frewing, Proc. Roy. Soc. (London) A-182, 270-286 (1944). (2) Meyer, Streuli, Helv. Chim. Acta 20, 1179-1183 (1937). (3) Dickinson, Trans. Faraday Soc. 37, 140-148 (1941). (4) Suida, Gemassner, Ber. 72, 1168-1173 (1939). (5) Karrer, Kahnt, Epstein, Jaffe, Ishii, Helv. Chim. Acta 21, 233-234 (1938). (6) Lottermoser, Frotscher, Kolloid-Beichefte 45, 305-306, 320-321, 325, 341 (1937). (7) Armstrong, Copenhaver, J. Am. Chem. Soc. 65, 2252-2253 (1943). (8) Snell, Weissberger, J. Am. Chem. Soc. 61, 453 (1939). (9) Meals, J. Org. Chem. 9, 213-217 (1944). (10) Davies, Heilbron, Owens, J. Chem. Soc. 1930, 2546.

--- n-OCTADECANOYL CHLORIDE 
$$C_{18}H_{35}OCl$$
 Beil. II - 384 (Stearoyl chloride)  $CH_{3}$ .(CH<sub>2</sub>)<sub>16</sub>--C=O  $II_{1}$ -(176)  $II_{2}$ -(360)

M.P. 23-24° B.P. 215° at 15 mm.

See 3:9960. Division C: Liquids with b.p. reported only at reduced pressure.

### M.P. 24° (1) B.P. 192-195° at 10 mm. (1)

[For prepn. of  $\bar{C}$  from N-benzoylheptadecylamine (N-(n-heptadecyl)benzamide) with PCl<sub>5</sub> on distn. (50% yield) see (1); from silver stearate (or other stearates of metals of 1st, 2nd, or 3rd group) with Cl<sub>2</sub> see (2).]

- ---- n-Heptadecyl p-nitrobenzoate: m.p. 53.8° cor. (3). [Prepd. indirectly.]
- --- n-Heptadecyl 3,5-dinitrobenzoate: unreported.
- --- N-(n-Heptadecyl)phthalimide: unreported.
- --- S-(n-Heptadecyl)isothiourea picrate: unreported.
- ---- n-Heptadecyl mercuric chloride: unreported.

**3:0100** (1) von Braun, Sobecki, Ber. **44**, 1473 (1911). (2) C. Hunsdiecker, H. Hunsdiecker, E. Vogt, U.S. 2,176,181, Oct. 17, 1939; C.A. **34**, 1686 (1940): Brit. 456,565, Dec. 10, 1936; Cent. **1937**, I 2258; C.A., **31**, 2233 (1937): French 803,941, Oct. 12, 1936; Cent. **1937**, I 2258; [C.A. **31**, 2616 (1937)]. (3) Armstrong, Copenhaver, J. Am. Chem. Soc. **65**, 2252-2253 (1943).

### 3:0120 2-CHLOROCYCLOHEXANONE-1

$$\begin{array}{c|c} O & C_{\theta}H_{\theta}OCl & \textbf{Beil. VII - 10} \\ & H & & \textbf{VII_{1^-}(8)} \\ H_2C & CH & & \\ & C_{H_2} & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

M.P. B.P. 24° (1) 90-91° at 14-15 mm. (19) 
$$D_{15}^{20} = 1.161$$
 (6)  $n_D^{20} = 1.4825$  (6) 23-24° (2) 88-90° at 16 mm. (5) 23.2° cor. (19) 82-85° at 14 mm. (8) 23° (3) (4) (5) 82° at 13 mm. (4) 22-23° (6) (7) 82-83° at 10 mm. (3) 80.5° at 11 mm. (5) 79° at 7 mm. (6)

Č has very disagreeable physiological effects; breathing of its ether solutions or exposure of skin to its vapor produces violent illness and temporary complete blindness; also produces an eczema on the hands (although sensitivity of individuals varies) (9). — Č dec. slightly on distn. even in vacuo (10).

[For prepn. from cyclohexanone (1:5465) with  $Cl_2 + H_2O$  (61-66% yield (19)), by actn. of  $Cl_2 + CaCO_3 + H_2O$  (HOCl) (50-60% yield (7) (8)) see (7) (8) (10) (3) (4); by direct

actn. of Cl<sub>2</sub> in AcOH (100% yield (8)) see (8); via N-chlorourea (80% yield (5)) or electrochem. chlorination in HCl (18); for prepn. from cyclohexanol (1:6415) by actn. of Cl<sub>2</sub> +  $CaCO_3 + H_2O$  (HOCl) (50-60% yield (6) (9)) (1) see these; for prepn. (57% yield (5)) from 2-chlorocyclohexanol-1 (3:0175) by oxidn, with  $K_2Cr_2O_7 + H_2SO_4 + AcOH$  see (5).

C with alc. KOH (11) yields (by ring contraction) cyclopentanecarboxylic acid [Beil. IX-6] or its ethyl ester [Beil. IX<sub>1</sub>-(4)]. —  $\bar{C}$  with dil. alk. (3) or boilg. conc. K<sub>2</sub>CO<sub>3</sub> soln. (3) (12) or shaking with 40% K<sub>2</sub>CO<sub>3</sub> (50% yield (13)) gives corresp. alc., viz., cyclohexanol-2-one-1 or adipoin [Beil. VIII<sub>1</sub>-(504)], cryst. from alc., m.p. 113° (3) (14) (after fusion remelts at 90° (14), 98° (13), 92-92.5° (12). [Adipoin gives oxime, m.p. 102-103° (13); p-nitrophenylhydrazone, m.p. 146° dec. (14); semicarbazone, m.p. 238° (13); benzoate, m.p. 122-123° (13).]

Č with NaCN (2 moles) in alc. gives (64% yield (6)) 2-cyanocyclohexanone-1, b.p. 140-141° at 15 mm. or 129-131° at 7 mm. (6), which upon alk, hydrolysis gives (84.7% yield (6)) n-pimelic acid (1:0456), m.p. 104-105° (6). [Used in mfg. of pimelic acid (15).]

C with ter-butyl-, cyclohexyl-, or isopropyl MgCl is reduced to cis-2-chlorocyclohexanol (3:9374). [Č with other R.Mg.X cpds, leads to 5-membered ring cpds, which cannot be considered here.l

 $[\bar{C} \text{ with diazomethane gives (7) } (100\% \text{ yield (17)}) \alpha$ -chlorocycloheptanone.]

3:0120 (1) Vavon, Mitchovitch, Bull. soc. chim. (4) 45, 965 Note (a) (1929). (2) Favorskii, Bozhovskii, J. Russ. Phys.-Chem. Soc. 46, 1098 (1914); Cent. 1915, I 984. (3) Bouveault, Chereau, Compt. rend. 142, 1086 (1906). (4) Kotz, Gretho, J. prakt. Chem. (2) 80, 487 (1909). (5) Detoeuf, Bull. soc. chim. (4) 31, 178 (1922). (6) Meyer, Helv. Chim. Acta 16, 1291-1295 (1933). (7) Steadman, J. Am. Chem. Soc. 62, 1608 (1940). (8) Bartlett, Rosenwald, J. Am. Chem. Soc. 56, 1992 (1934). (9) Ebel, Helv. Chim. Acta 12, 9-10 (1929). (10) Osterberg, Kendall, J. Am. Chem. Soc. 42, 2618 (1920).

(11) Favorskii, Bozhovskii, J. Russ. Phys.-Chem. Soc. 50, 582-588 (1917); Cent. 1923, III 1359. (12) Ref. 4, pp. 488-489. (13) Kötz, Blendermann, Rosenbusch, Sirringhaus, Ann. 400, 62-63 (1913). (14) Willstätter, Sonnenfeld, Bcr. 46, 2957-2958 (1913). (15) Meyer, Swiss 164,832, Jan. 2, 1934; Cent. 1934, I 3266; C.A. 28, 5473 (1934). (16) Bartlett, J. Am. Chem. Soc. 57, 224-227 (1935). (17) Giratis, Bullock, J. Am. Chem. Soc. 59, 945 (1937). (18) Szper, Bull. soc. chim. (4) 51, 656 (1932). (19) Newman, Farbman, Hipsher, Org. Syntheses, 25, 22-24 (1945).

### 4-METHOXYBENZOYL CHLORIDE

C<sub>8</sub>H<sub>7</sub>O<sub>2</sub>Cl

Beil. X - 163 X1-( 77)

M.P. 24°

B.P. 262-263°

 $D_4^{20} = 1.2609$ 

 $n_{\rm D}^{20} = 1.5802$ 

Division B: Liquids, Section 1,  $D_4^{20} > 1.15$ .

3:0138 ter-BUTYL TRICHLOROACETATE

C<sub>6</sub>H<sub>9</sub>O<sub>2</sub>Cl<sub>3</sub> Cl<sub>3</sub>C.CO.O.C<sub>4</sub>H<sub>9</sub>

Beil. S.N. 160

 $D_4^{25} = 1.2363 (1) \quad n_-^{25} = 1.4398 (1)$ B.P. 37° at 1 mm. (1) M.P. 25.5° (1)

Cryst, from pentane or MeOH at 0° (1).

[For prepn. of C from trichloroacetyl chloride (3:5420) with ter-butyl alc. (1:6140) in pyridine in cold (95% yield (1)), or from trichloroacetic acid (3:1150) with isobutylene at 60° (80% yield (1)) see indic. refs.]

3:0138 (1) Scovill, Burk, Lankelma, J. Am. Chem. Soc. 66, 1039 (1944).

### 3.5-DICHLOROTOLUENE

C<sub>7</sub>H<sub>6</sub>Cl<sub>2</sub> Beil. V -2.96

V<sub>1</sub>---V<sub>2</sub>---

M.P. 26°

B.P. 201-202° cor. at 760 mm.

See 3:6310. Division B: Liquids, Section 1,  $D_4^{20} > 1.15$ .

# ---- α-NAPHTHOYL CHLORIDE

M.P. 26°

B.P. 297.5°

See 3:6930. Division B: Liquids, Section 1,  $D_4^{20} > 1.15$ .

3: 0142 2,4,6-TRICHLOROBENZAL (DI)CHLORIDE C<sub>7</sub>H<sub>3</sub>Cl<sub>5</sub> Beil. S.N. 466 (2,4,6-Trichlorobenzylidene (di)chloride)

Cl—CHCl<sub>2</sub>

M.P. 27° (1)

B.P. 158° at 15 mm. (1)

Cryst. from MeOH

[For prepn. of  $\bar{C}$  from 2,4,6-trichlorotoluene (3:0380) with  $Cl_2$  at 200° (82% yield) see (1).]

 $\tilde{C}$  on hydrolysis with fumg.  $H_2SO_4$  gives (94% yield (1)) 2,4,6-trichlorobenzaldehyde (3:1200).

3:0142 (1) Lock, Ber. 66, 1532 (1933).

3: 0150 2,6-DICHLORO-3-METHYLPHENOL OH  $C_7H_6OCl_2$  Beil. VI — (2,6-Dichloro-m-cresol) CI CI VI<sub>1</sub>—

VI<sub>1</sub>— VI<sub>2</sub>-(356)

M.P. 27° (1)

B.P. 240.5-242.5°

(1)

(2)

239.5-240.5° at 745 mm. (2)

80-85° at 4 mm.

[For prepn. of  $\tilde{C}$  from 4-amino-2,6-dichloro-3-methylphenol (1) via diazotization and treatment with alk. SnCl<sub>2</sub> (very poor yield) see (1); from 3-methylphenol-2,6-disulfonic acid (1) or from 3-methylphenolsulfonic acid-6 in nitrobenzene (2) with Cl<sub>2</sub> see indic. refs.; from 2-chloro-3-methylphenol (3:1055) or from 6-chloro-3-methylphenol (3:0700) in cold CHCl<sub>3</sub> with 1 mole Cl<sub>2</sub> see (1); from *m*-cresol (1:1730) in CHCl<sub>3</sub> at 0° with Cl<sub>2</sub> (other products are also formed) see (1).]

 $\tilde{C}$  in CHCl<sub>3</sub> with 1 mole Cl<sub>2</sub> gives alm. quant. yield (1) 2,4,6-trichloro-m-cresol (3:9618), m.p. 46° (1).

 $\bar{C}$  in CHCl<sub>3</sub> with 1 mole Br<sub>2</sub> yields (2) 2,6-dichloro-4-bromo-3-methylphenol, m.p. 64-65° (2).

② 2,6-Dichloro-3-methylphenyl benzoate: clusters of small prismatic pl. from alc., m.p. 90.5° (1). [From \(\bar{C}\) with benzoyl chloride in pyridine (1).]

- **D 2,6-Dichloro-3-methylphenyl benzenesulfonate:** thin lustrous pl. from alc., m.p. 70° (1). [From  $\bar{C}$  with benzenesulfonyl chloride in pyridine (1).] [Note proximity of the m.p. of this deriv. to that of the corresp. deriv. of 2,4-dichloro-3-methylphenol (3:1205).]
- **② 2,6-Dichloro-3-methylphenyl** p-toluenesulfonate: small pr. from alc., m.p. 92-92.5° (1). [From  $\bar{C}$  with p-toluenesulfonyl chloride in pyridine (1).]
- 3:0150 (1) Huston, Chen, J. Am. Chem. Soc. 55, 4217-4218 (1933). (2) Huston, Neely, J.Am. Chem. Soc. 57, 2178 (1935).

#### M.P. 27° (1)

Cryst. from lt. pet.

[For prepn. of  $\bar{C}$  from 2-amino-3,4-dimethylphenol (3-amino-o-4-xylenol) (1) via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reaction (yield not stated) see (1).]

The nitration of  $\bar{C}$  has not been reported, and neither of the two possible mononitroderivs, nor the corresp. dinitro-deriv. is known.

- ---- 2-Chloro-3,4-dimethylphenyl acetate: unreported.
- 2-Chloro-3,4-dimethylphenyl benzoate: m.p. 87° (1).

3:0158 (1) Hinkel, Ayling, Bevan, J. Chem. Soc., 1928, 2531.

3: 0165 
$$\beta$$
-PHENOXYETHYL CHLORIDE  $C_8H_9OCl$  Beil. VI - 142  $(\beta$ -Chloroethyl phenyl ether;  $\omega$ -chlorophenetole)  $O.CH_2.CH_2Cl$   $VI_1$ -(81)  $VI_2$ -(144)

Insol. aq., very cas. sol. alc., ether, C6H6, lgr.

[For prepn. from  $\beta$ -phenoxyethyl alcohol (1:6518) + SOCl<sub>2</sub> + pyridine (88% yield (7)) see (7) (1); from sodium phenolate + ethylene dichloride (3:5130) (poor yield) see (5) (3); from ethylene chlorobromide see (6) (1)].

- $\bar{C}$  + AlCl<sub>3</sub> + phthalic anhydride in CS<sub>2</sub> yields (9) o-[4(?)-( $\beta$ -chloroethyl)-benzoyl]-benzoic ac., cryst. from  $C_6H_6$ , m.p. 145° (9).
  - $\bigcirc$  N-(\$\beta\$-Phenoxyethyl)tetrachlorophthalimide: rods from acetone, m.p. 155–156° (10) [From  $\bigcirc$  with K tetrachlorophthalimide (10).]

3:0165 (1) Jones, J. Chem. Soc. 1936, 1861. (2) Henry, Compt. rend. 96, 1233 (1883). (3) Clemo, Perkin, J. Chem. Soc. 121, 644-645 (1922). (4) Butler, Renfrew, Cretcher, Souther, J. Am. Chem. Soc. 59, 229 (1937). (5) Wohl, Berthold, Ber. 43, 2179 (1910). (6) Bentley, Haworth, Perkin, J. Chem. Soc. 69, 165 (1896). (7) Kirner, J. Am. Chem. Soc. 48, 2748 (1926), (8) Földi, Ber. 53, 1845 (1920). (9) Bruson, Eastes, J. Am. Chem. Soc. 60, 2504 (1938). (10) Allen, Nicholls, J. Am. Chem. Soc. 56, 1409-1410 (1934).

40

Beil. S.N. 24 3:0170 9-CHLORONONANUL-1 CH<sub>2</sub>.(CH<sub>2</sub>)<sub>7</sub>.CH<sub>2</sub>OH C<sub>0</sub>H<sub>19</sub>OCl (ω-Chloro-n-nonyl ĊI alcohol)

M.P. 28° (1) B.P. 140-145° at 20 mm. (1) at 14 mm. (2) 146.5°

Cryst, from lt. pet.

[For prepn. of  $\bar{C}$  from  $\alpha, \omega$ -nonamethylene glycol [Beil. I<sub>2</sub>-(558)] (m.p. 46° (1)) with conc. HCl as directed (yields: 90% (1), 86% (2), 65% (3)) see indic. refs.]

C with thiophenol in aq. NaOH htd. 3 hrs. gives (1) 9-hydroxy-n-nonyl phenyl sulfide, cryst. from lt. pet., m.p. 60°. [This prod. with SOCl2 gives (1) 9-chloro-n-nonyl phenyl sulfide, cryst. from aq. alc. at low temp., m.p. 5° (1).

[C (1 mole) with Et<sub>2</sub>NH (3-4 moles) in s.t. at 120-160° for 12-15 hrs. gives (90% yield (2)) 9-(diethylamino)nonanol-1, b.p. 161.5° at 12 mm.,  $D_4^{15.4} = 0.8635$ ,  $n_D^{19} = 1.4574$  (2), cf. (5); this prod. with SOCl2 in C6H6 gives (2) (5) 9-(diethylamino)-n-nonyl chloride, b.p. 145° at 10 mm.,  $n_{\rm D}^{17.5} = 1.4535$  (2) (corresp. B.HCl, m.p. 85–86° (5)).]

C with morpholine gives (4) alm. quant. 9-(4-morpholinyl)nonanol-1, m.p. 31°, b.p. 173.0-173.5° at 5 mm. (corresp. N-( $\alpha$ -naphthyl)carbamate, m.p. 54.0-56.0° cor.). —  $\bar{C}$ (1 mole) with N-phenylpiperazine (2 moles) at 100° for 5 hrs. gives (3) in alm. 100% yield (as salt) N-(9-hydroxy-n-nonyi)-N'-phenylpiperazine, m.p. 80.0-80.5° cor. (corresp. Nphenylcarbamate, m.p. 94.0-95.0° cor.).

- D 9-Chloro-n-nonyl N-phenylcarbamate: cryst. from dil. alc., m.p. 70.0-70.5° (3), 67° (1) (2).
- **D** 9-Chloro-n-nonyl N-(m-nitrophenyl)carbamate: m.p. 57° (2).

3:0170 (1) Bennett, Mosses, J. Chem. Soc. 1931, 1697-1701. (2) Altman, Rec. trav. chim. 57. 951-952 (1938). (3) Anderson, Pollard, J. Am. Chem. Soc. 61, 3439-3440 (1939). (4) Anderson, Pollard, J. Am. Chem. Soc. 61, 3440-3441 (1939). (5) Pyman, Levene (to Boot's Pure Drug Co.), Brit. 402,159, Dec. 21, 1933; Cent. 1934, I 2005; C.A. 28, 3081 (1934).

3:0172 12-CHLORODODECANOL-1 C<sub>12</sub>H<sub>25</sub>OCl Beil. S.N. 24  $(\omega\text{-Chloro-}n\text{-dodecyl})$ CH<sub>2</sub>.(CH<sub>2</sub>)<sub>10</sub>.CH<sub>2</sub>OH alcohol; ω-chlorolauryl alcohol)

M.P. 28° (1) B.P. 134° at 1 mm. (1)

Colorless cryst. from lt. pet.

[For prepn. of  $\bar{C}$  from  $\alpha, \omega$ -dodecamethylene glycol [Beil. I<sub>2</sub>-(562)] (m.p. 83.5-84.5° (1)) with conc. HCl on htg. as directed (50% yield crude prod.) see (1).

12-Chlorododecyl N-phenylcarbamate: ndls. from pet., m.p. 66° (1).

3:0172 (1) Bennett, Gudgeon, J. Chem. Soc. 1938, 1679-1681.

3: 0175 trans-2-CHLOROCYCLOHEXANOL-1 C<sub>6</sub>H<sub>11</sub>OCl Beil. VI - 7 (trans-Cyclohexene chlorohydrin) OH VI<sub>2</sub>-(12)

M.P. B.P. 29° (1) (2) 104–106° at 45 mm. (4) 
$$D_{-}^{35} = 1.1233$$
 (3)  $n_{D}^{35} = 1.4832$  (3) 27° (3) 93° at 26 mm. (3) 88–90° at 20 mm. (4)  $D_{-}^{16} = 1.146$  (1)  $n_{D}^{16} = 1.4850$  (1) 85–86° at 17 mm. (26) 84–85° at 16 mm. (2) (7) 87° at 15 mm. (1) 92° at 10 mm. (5)

[See also cis-2-chlorocyclohexanol-1 (3:9374).]

Both the two theoretically possible geometrical stereoisomers of 2-chlorocyclohexanol-1 are known. The single form obtained from cyclohexene (tetrahydrobenzene) by addn. of HOCl or from cyclohexene oxide by addn. of HCl is now regarded (3) as the *trans* isomer  $\bar{\mathbf{C}}$ . The *cis* form (3:9374) is obtd. by other methods.

Colorless pr. from mixt. of  $C_6H_6+lgr.$  at low temp.;  $\bar{C}$  has characteristic odor, is vol. with steam.

[For prepn. of  $\bar{C}$  from cyclohexene (tetrahydrobenzene) (1:8070) with HOCl (yields: 70–73% (4), 70% (5)) (6) (7) (8) or with N-chlorourea (yield: 74% (26), 54% (9)) see indic. refs.; from cyclohexene oxide (see below) with conc. HCl or with ZnCl<sub>2</sub> in dry ether see (3); for probable formn. of  $\bar{C}$  from cyclohexene (1:8070) with EtOCl (3:7022) see (10); for formn. of a mixt. of both stereoisomeric 2-chlorocyclohexanols contg. 27–28%  $\bar{C}$  + 72–73% cis-isomer from 2-chlorocyclohexanone (3:0120) by reductn. with isopropyl MgCl, ter-butyl MgX, or cyclohexyl MgX see (3); for formn. of a mixt. (b.p. 78–80° at 12 mm.) of both isomers by hydrolysis of 2-chlorocyclohexanyl acetate see (11).]

C with aq. NaOH at room temp. gives (yields: 70-73% (12), 70-75% (5), 80% (9), 55% (13)) cyclohexene oxide (1,2-epoxycyclohexane) [Beil. XVII-21], b.p. 131.5° at 760 mm. [Note that reactn. of C with alk. is 300 times as fast as that of the cis isomer (3:9374) (use in detn. of proportion of C in mixts. of isomers), that the latter with alk. gives no epoxy cpd. but instead cyclohexanone, and finally that C can be separated from its isomer by conversion to cyclohexene oxide from which the remaining cis isomer can be sepd. by distn. (3).]

 $\bar{C}$  with alk. or with alc. KCl is not converted to cis isomer (3) but  $\bar{C}$  on protracted htg. with HCl rearr. to a small extent to the cis isomer.

[For use of C as seed disinfectant see (15).]

The halogen atom of  $\ddot{\mathbf{C}}$  is fairly reactive, but its replacement often involves rearr. of the cyclohexyl ring to a cyclopentyl ring.

[C on boilg, with dil. alc. slowly gives (1) trans-cyclohexanediol-1,2 [Beil VI-740] with cyclopentylformaldehyde (formylcyclopentane), the latter increasing in pres. of dil. H<sub>2</sub>SO<sub>4</sub> or of CaCl<sub>2</sub> (1).]

[ $\bar{\mathbf{C}}$  with NaOMe in MeOH yields (14) cis-2-methoxycyclohexanol-1 [Beil. VI-740], b.p. 181.5° at 760 mm.,  $D_{-}^{20}=1.015,\,n_{\mathrm{D}}^{20}=1.4605$  (14);  $\bar{\mathbf{C}}$  with NaOEt in EtOH (14) (or  $\bar{\mathbf{C}}$  in EtOH treated with Na in attempted reductn. (16) gives (87% yield (16)) cis-2-ethoxycyclohexanol-1 [Beil. VI-740], b.p. 187° at 760 mm.,  $D_{-}^{20}=0.982,\,n_{\mathrm{D}}^{20}=1.4563$  (14);  $\bar{\mathbf{C}}$  with sodium n-propylate yields (14) 2-n-propoxycyclohexanol, b.p. 205° at 760 mm.,  $D_{-}^{20}=0.970,\,n_{\mathrm{D}}^{20}=1.4580$  (14);  $\bar{\mathbf{C}}$  with sodium cyclohexanolate yields (14) 2-cyclohexanoxycyclohexanol, m.p. 50° (14).]

[C with C<sub>6</sub>H<sub>5</sub>.CH<sub>2</sub>MgCl gives (54% yield (17)) benzyl-cyclopentyl-carbinol, b.p. 166-169° at 20 mm., m.p. 30° (3,5-dinitrobenzoate, m.p. 100.5-101.5° (17)). — C with excess MeMgI gives (50% yield (13)) mixt. of both cis and trans 2-methylcyclohexanols (1:6420). — C with cyclohexyl MgCl (cf. 3:8040) yields (18) cyclohexyl-cyclopentyl-carbinol, m.p.

34° (p-nitrobenzoate, m.p. 49-50°, 3,5-dinitrobenzoate, m.p. 102°, acid phthalate, m.p. 92-93°, N-phenylcarbamate, m.p. 122° (18)).]

[ $\bar{C}$  with conc. aq. NH<sub>4</sub>OH shaken for 24 hrs. (19) or  $\bar{C}$  with NH<sub>3</sub> in alc. htd. in s.t. for 1 hr. (6) gives (yields: 71% (19), 61% (6)) cis-2-aminocyclohexanol [Beil. XIII-348], m.p. 65° (19) (6), b.p. 110° at 24 mm. (19). —  $\bar{C}$  with diethylamine (2 moles) htd. in s.t. at 150° for several hrs. (20) (or similarly with BuOH as solvent (21)) yields 2-(diethylamino)-cyclohexanol, b.p. 225° at 740 mm. (21), 224° at 730 mm. (20),  $D_{25}^{25} = 0.9280$  (21),  $n_{25}^{24} = 1.4659$  (21) (hydrochloride, m.p. 170.5–171.5° (21)). —  $\bar{C}$  with 5 pts. piperazine hydrate htd. 3 hrs. at 140° gives (22) both N,N'-bis-(2-hydroxycyclohexyl)piperazine, m.p. 205–206° (22), and N-(2-hydroxycyclohexyl)piperazine, m.p. 67–68° (22) (the latter separable by treatment of mixt. with CS<sub>2</sub> pptg. its dithiocarbamate).]

[ $\bar{\mathbf{C}}$  also reacts as a secondary alcohol: e.g.,  $\bar{\mathbf{C}}$  with PCl<sub>5</sub> yields (14) 1,2-dichlorocyclohexane [Beil. V-22, V<sub>1</sub>-(8)], b.p. 187–189°,  $\bar{\mathbf{C}}$  with PBr<sub>5</sub> yields (14) 1-bromo-2-chlorocyclohexane, b.p. 94° at 17 mm.,  $D^{20} = 1.514$ ,  $n^{20}_{D} = 1.5481$  (14).

C on oxidn. with K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>/H<sub>2</sub>SO<sub>4</sub>/AcOH gives (57% yield (9)) 2-chlorocyclohexanone (3:0120).

(Note: the following derivatives are listed as cis on the assumption of inversion during formation.)

- —— cis(?) 2-Chlorocyclohexanyl acetate: oil with odor like EtOAc, b.p. 95-96° at 11 mm. (23), 99-101° at 13 mm. (24),  $D_{25}^{25} = 1.1182$  (23),  $n_D^{25} = 1.46195$  (23). [From  $\bar{C}$  with AcCl at 10-20° (23) or in  $C_6H_6$  (espec. in pres. of  $K_2CO_3$  or  $BaCO_3$ ) (70% yield (24)), or from cyclohexene (1:8070) with  $Ac_2O$  or with  $Ac_2O + SO_2Cl_2$  in CHCl<sub>3</sub> (11). [This ester with MeOH + dry HCl gas yields  $\bar{C}$  (11). Cf. (25).]
- cis(?) 2-Chlorocyclohexanyl benzoate: lfts. from dil. alc., m.p. 120-121° (24). [From C with BzCl htd. 10 hrs. (70% yield) (24).]
- —— cis(?) 2-Chlorocyclohexanyl p-nitrobenzoate: cryst. from dil. alc., m.p. 240° dec. (24). [From Č with p-nitrobenzoyl chloride in dry ether or C<sub>6</sub>H<sub>6</sub> + Na<sub>2</sub>CO<sub>3</sub> refluxed 5 hrs. (70% yield) (24).]
- —— cis(?) 2-Chlorocyclohexanyl N-phenylcarbamate: m.p. 97-98° (2), 94-96° (17). [From C with phenyl isocyanate in lt. pet. (17).]
- —— cis(?) 2-Chlorocyclohexanyl N-( $\alpha$ -naphthyl)carbamate: m.p. 165° (3). [From  $\bar{C}$  with  $\alpha$ -naphthyl isocyanate at 100° for 4 hrs (3)]
- Godchot, Mousseron, Granger, Compt. rend. 200, 748-749 (1933). (2) Godchot, Compt. rend. 176, 448 (1923). (3) Bartlett, J. Am. Chem. Soc. 57, 224-227 (1935). (4) Coleman, Johnstone, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 158-159 (1941). Coll. Vol. 1 (1st ed.) 151-153 (1932); 5, 31-32 (1925). (5) Kendall, Osterberg, Mackenzie, J. Am. Chem. Soc. 48, 1388-1389 (1926). (6) Osterberg, Kendall, J. Am. Chem. Soc. 42, 2621-2622 (1920). (7) Fortey, J. Chem. Soc. 73, 948 (1898). (8) Levine, Cass (to du Pont Co.), U.S. 2,119,485, May 31, 1938; Cent. 1938, II 952. (9) Detoeuf, Bull. soc. chim. (4) 31, 177-178 (1922). (10) Goldschmidt, Endres, Dirsch, Ber. 58, 574 (1925).
- (11) Friese, Dj'iang, Ber. 71, 667-670 (1938). (12) Osterberg, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 185-186 (1941); Coll. Vol. 1 (1st ed.), 179-180 (1932); 5, 35-36 (1925). (13) Godehot, Bedos, Bull. soc. chim. (4) 37, 1454-1457 (1925). (14) Mousseron, Granger, Compt. rend. 205, 327-328 (1937). (15) Consolidite Alkaliwerke, Ger. 607,010, Dec. 15, 1934; Cent. 1935, I 3835. (16) Kötz, Busch, J. prakt. Chem. (2) 119, 36 (1928). (17) Cook, Hewitt, Lawrence, J. Chem. Soc. 1936, 74-75. (18) Vavon, Mitchovitch, Compt. rend. 186, 703-705 (1928). (19) Wilson, Read, J. Chem. Soc. 1935, 1272. (20) Osterberg, Kendall, J. Am. Chem. Soc. 43, 1370-1371 (1921).
- (21) Heckel, Adams, J. Am. Chem. Soc. 49, 1305-1306 (1927).
  (22) Mousseron, Bull. soc. chim.
  (4) 51, 790-793 (1932).
  (23) Bedos, Compt. rend. 183, 562-565 (1926); Cent. 1926, II 2795.
  (24) Kötz, Merkel, J. prakt. Chem. (2) 113, 64-65 (1926).
  (25) Winstein, Buckles, J. Am. Chem. Soc. 65, 616 (1943).
  (26) Newman, Vander Werf, J. Am. Chem. Soc. 67, 235 (1945).

White ndls. from dil. alc.; eas. sol. alc., ether, C<sub>6</sub>H<sub>6</sub>.

[For prepn. of  $\bar{C}$  from *m*-chloroiodobenzene [Beil. V-220] by htg. with Cu powd. under various conditions (yield: 95% (5), 67% (2), 61% (1)) see indic. refs.; from 3,3'-dinitro-biphenyl with SOCl<sub>2</sub> in s.t. at 200–210° for 10 hrs. see (4); from 3,3'-dichloro-4,4'-diamino-biphenyl (3,3'-diaminobenzidine) [Beil. XIII-234, XIII<sub>1</sub>-(67)] via tetrazotization and htg. with alc. see (6); from 3,3'-dichloro-2,4'-diaminobiphenyl via tetrazotization and treatment with H<sub>3</sub>PO<sub>2</sub> see (3).]

Č on tetranitration, e.g., with mixt. of 5 pts. abs. HNO<sub>3</sub> + 20 pts. conc. H<sub>2</sub>SO<sub>4</sub> for 2 hrs. at 100° {5}, yields {5} (7) 3,3'-dichloro-4,6,4',6'-tetranitrobiphenyl [Beil. V<sub>1</sub>-(274)], m.p. 191° {5}, 189° (7), 184° {5}: note that this prod. appears to exist in two forms: when the lower-melting form is dislvd. in boilg. AcOH and pptd. with boilg. aq., or if it is allowed to solidify after fusion, the prod. has m.p. 191°; if the above AcOH soln. is slowly cooled, however, the prod. melts at 184° {5}. [This tetranitro-\bar{C} htd. with NaOMe in MeOH yields 3,3'-dimethoxy-4,6,4',6'-tetranitrobiphenyl, m.p. 244° {5}.] — [Note also that under some conditions {7} some 3,3'-dichloro-6,6'-dinitrobiphenyl [Beil. V-585, V<sub>1</sub>-(274)], m.p. 170° {8} {7}, may form during nitration of \bar{C}.]

 $\bar{C}$  on oxidn. with  $CrO_3 + V_2O_5$  yields (3) m-chlorobenzoic acid (3:4392).

Weissberger, Sängewald, Z. physik. Chem. B-20, 155 (1933).
 Ullmann, Ann. 332, 54 (1904).
 Bellavita, Gazz. chim. ital. 65, 641 (1935).
 Mascarelli, Gatti, Gazz. chim. ital. 59, 808-809 (1929).
 van Alphen, Rec. trav. chim. 51, 362-363 (1932).
 Cain, J. Chem. Soc. 85, 7 (1904).
 Borsche, Scholten, Ber. 50, 610 (1917).
 Ullmann, Forgan, Ber. 34, 3804 (1901).

M.P. 29° B.P. 62-63° at 15 mm.

See 3:9504. Division C: Liquids with b.p. reported only at reduced pressure.

Hard cryst. with camphoraceous odor (3). [For crystallographic constants see (9).] [For prepn. from tetrachloroethylene (3:5460) (or pentachloroethane (3:5880) (2) (3)) + CHCl<sub>3</sub> (3:5050) by condensation in presence of AlCl<sub>3</sub> (88-93% yield (2), 85% yield (1) (10)) see (1) (2) (5) (7); from pentachloroacetone (3:6205) by htg. with PCl<sub>5</sub> in s.t. at 180° for 6-8 hrs. see (3); from dichloroacetyl chloride (3:5290) with AlCl<sub>3</sub> on warming (CO + CHCl<sub>3</sub> + HCl are also formed) see (11).]

Č has large mol. freezing-point lowering, viz., 120° (6). [For use in detn. of mol. wt. of org. compds. by f.p. lowering see (6).]

C on htg. especially in presence of catalysts such as ZnCl<sub>2</sub> yields HCl + hexachloropropene (3:6370); with CuCl a second reaction also occurs yielding HCl and tetrachloroethylene (3:5460). [For extensive study of these see (7) (8).]

 $\bar{C}$  in alc. on titration with alk. gives (4) (3) an apparent Neut. Eq. of 285.5 because of loss of 1 HCl and formation of hexachloropropene (3:6370).

3:6269 (1) Prins, Rec. trav. chim. 54, 249-252 (1935). (2) Farlow, Org. Syntheses 17, 58-59 (1937). (3) Fritsch, Ann. 297, 314 (1897). (4) Prins, J. prakt. Chem. 89, 415-416 (1914).
 (5) Henne, Ladd, J. Am. Chem. Soc. 60, 2491-2495 (1938). (6) Böeseken, Benedictus, Rec. trav. chim. 37, 121-129 (1918). (7) Böeseken, van der Scheer, de Voogt, Rec. trav. chim. 34, 78-95 (1915). (8) Böeseken, Rec. trav. chim. 45, 467-468 (1926). (9) Gilta, Bull. soc. chim. Belg. 39, 585-587 (1930). (10) Bergmann, Haskelberg, J. Am. Chem. Soc. 63, 1438 (1941). (11) Böeseken, Rec. trav. chim. 29, 108-111 (1910); Böeseken, Prins, Cent. 1911, I 466.

| 3:0220 p-C | HLOROBEN           | ZYL CHLORIDE  | $C_7H_6Cl_2$       | Beil. V - 297         |
|------------|--------------------|---------------|--------------------|-----------------------|
|            |                    | Cl            | CH <sub>2</sub> Cl | $V_{1}$ -(152)        |
|            |                    | `             |                    | V <sub>2</sub> -(231) |
| M.P. 30°   | (1)                | B.P. 217-218° | at 772 mm. (8)     |                       |
| 29°        | (2) (3) (4)        | 214°          | at 758 mm. (3)     |                       |
| (5) (      | 6) (7) (35)        | 214°          | (9) (10)           |                       |
| 28.2-2     | 28. <b>4°</b> (12) | 213-214°      | (11)               |                       |
| 26°        | (8)                | 114-117°      | at 30 mm. (35)     |                       |
|            |                    | 114°          | at 25 mm. (12)     |                       |
|            |                    | 113-115°      | at 24 mm. (13)     |                       |
|            |                    | 106.5-107.5°  | at 23 mm. (14)     |                       |
|            |                    | 117°          | at 20 mm. (3)      | •                     |
|            |                    | <b>94-96°</b> | at 14 mm. (8)      |                       |

Cryst. from alc., AcOH or lgr. — Eas. sol. warm but less so cold alc., very eas. sol. ether, AcOH,  $C_6H_6$ ,  $CS_2$ . — Sublimes at ord. temp. — At b.p. under ord. press. tends to decompose (7). —  $\bar{C}$  has agreeable arom. odor, but strongly attacks mucous membrane (2).

[For prepn. of  $\bar{C}$  from benzyl chloride (3:8535) with  $Cl_2$  in pres. of  $I_2$  (11) (8) (15) or  $SbCl_5$  (16) see indic. refs.; from p-chlorotoluene (3:8287) with  $SO_2Cl_2 + Bz_2O_2$  in dark (70% yield) (35), with  $Cl_2$  in light (2) (17) (11) (5) (4) (18) (19) or with  $PbCl_4.2NH_4Cl$  (9) see indic. refs.; from toluene with  $Cl_2$  see (20); for prepn. of  $\bar{C}$  from chlorobenzene (3:7903) with  $CH_2O + HCl$  (36), with bis-(chloromethyl) ether (3:5245) or chloromethyl methyl ether (3:7085) (formed by use of formaldehyde or paraformaldehyde + chlorosulfonic acid + conc.  $H_2SO_4$  or hexamethylenetetramine + conc. HCl (3)) as directed (50% yield (3)) (1) see indic. refs.]

[Č with phenol in toluene yields (21) 2-(p-chlorobenzyl)phenol, m.p. 60-61°, and p-chlorobenzyl phenyl ether, m.p. 85.5-86.5°; Č with 2,4-dichlorophenol in toluene yields (21) 2-(p-chlorobenzyl)-4,6-dichlorophenol, m.p. 69.5-70.5°, and p-chlorobenzyl 2,4-dichlorophenol at the property of the property

phenyl ether, m.p. 64.5-65.5°.]

[Č with phenol + AlCl<sub>3</sub> yields (21) 4-(p-chlorobenzyl)phenol, m.p. 87-87.5° (benzoate, m.p. 115-116°); Č with 2,6-dichlorophenol + AlCl<sub>3</sub> yields (21) 4-(p-chlorobenzyl)-2,6-dichlorophenol, m.p. 61.5-62.5° (benzoate, m.p. 116-117°).]

[For condens. of  $\bar{C}$  with p-chlorophenol (3:0475) and use of prod. as anti-moth prepn. see (22); for condens. of  $\bar{C}$  with o-cresol (1:1400) or its Na salt or with 3,5-dimethylphenol (sym-m-xylenol)(1:1455) and use of products as bactericides see (23); for condens. of  $\bar{C}$  with sulfonated phenol and use as tanning agent see (24); for condens. of  $\bar{C}$  with resorcinol (1:1530) + AlCl<sub>3</sub> in nitrobenzene yielding 55% 4-(p-chlorobenzyl)resorcinol see (25),

Č with Mg in dry ether yields (10) p-Cl.C<sub>6</sub>H<sub>4</sub>.CH<sub>2</sub>.MgCl which with phenyl isocyanate as directed (10) gives p-chlorophenylacetanilide [Beil. XII-275], lfts. from alc., m.p. 168° cor. (26), 165−166° u.c. (10), 164.5° (27).

 $\bar{C}$  on boilg. with aq. (2) (3) hydrolyzes to p-chlorobenzyl alc. [Beil. VI-444], m.p. 70-71° (3) (for rate see (7));  $\bar{C}$  on boilg. with Pb(NO<sub>3</sub>)<sub>2</sub> for 2 days (28) or on boilg. in 60% alc. with hexamethylenetetramine (29) yields p-chlorobenzaldehyde (3:0765), m.p. 46-47° (3).

 $\ddot{\mathbf{C}}$  with alc. KOH yields (30) p-chlorobenzyl ethyl ether [Beil. VI-444, VI<sub>1</sub>-(222)], oil, b.p. 225° (for study of rate of reactn. see (31));  $\ddot{\mathbf{C}}$  with KOAc in abs. alc. yields (28) p-chlorobenzyl acetate [Beil. VI-445], b.p. 240° (28);  $\ddot{\mathbf{C}}$  with boilg. alc. KCN yields (11) (28) (20) p-chlorobenzyl cyanide [Beil. IX-448], m.p. 30° (20), b.p. 265-267° (20), which on hydrolysis yields p-chlorophenylacetic acid (3:3135), m.p. 105° (20).

 $\bar{C}$  with KI in alc. gives alm. quant. yield (17) p-chlorobenzyl iodide, m.p. 64° (17) (for study of rate of reactn. of  $\bar{C}$  with NaI (34) or KI (14) (6) in acetone see indic. refs.);  $\bar{C}$  with Na<sub>2</sub>SO<sub>3</sub> yields (18) (13) sodium p-chlorotoluene- $\omega$ -sulfonate (corresp. sulfonamide,

m.p. 157° (18), corresp. sulfonanilide, m.p. 235° (18)).

[ $\bar{C}$  with thiourea (1 mole) in alc. refluxed 30 min. gives (37) S-(p-chlorobenzyl)isothiourea hydrochloride (p-chlorobenzyl isothiuronium chloride), cryst. from 1:1 conc. HCl + aq., m.p. 197°; this prod. is useful in identification of organic acids (37).]

 $\bar{C}$  on oxidn. with CrO<sub>3</sub> (11) (3) or with KMnO<sub>4</sub> (1) (12) yields p-chlorobenzoic acid (3:4940), m.p. 236°.

3:0220 (1) Blanc, Bull. soc. chim. (4) 33, 317-318 (1923). (2) Jackson, Field, Ber. 11, 904-905 (1878). (3) Stephen, Short, Gladding, J. Chem. Soc. 117, 522 (1920). (4) Jones, J. Chem. Soc. 1938, 1416. (5) Weissberger, Sängewald, Z. physik. Chem. B-20, 147 (1933). (6) Bennett, Jones, J. Chem. Soc. 1935, 1818-1819. (7) Olivier, Rec. trav. chim. 41, 307-308 (1921). (8) Bergmann, Engel, Z. physik. Chem. B-15, 96 (1931-2). (9) Seyewetz, Travitz, Compt. rend. 136, 241 (1903). (10) Underwood, Gale, J. Am. Chem. Soc. 56, 217-2120 (1934).

Beilstein, Kuhlberg, Neuhoff, Ann. 148, 320-322 (1868).
 de Bruyne, Davis, Gross, J. Am. Chem. Soc. 55, 3938 (1934).
 Sprung, J. Am. Chem. Soc. 52, 1640-1649 (1930).
 Conant, Kirner, Hussey, J. Am. Chem. Soc. 47, 499 (1925).
 Olivier, Rec. trav. chim. 41, 419-421 (1921).
 Wertyporoch, Ann. 493, 162-163 (1932).
 van Raalte, Rec. trav. chim. 18, 388-392 (1899).
 Clutterbuck, Cohen, J. Chem. Soc. 123, 2508-2515 (1923).
 (19)

46 3:0220-3:0235

Zelinsky, Schering-Kahlbaum, Ger. 478,084, June 20, 1929; Cent. 1929, II 1216. (20) von Walther, Wetzlich, J. prakt. Chem. (2) 61, 187-188 (1900).

(21) Huston, Guile, Headley, Warren, Baur, Mate, J. Am. Chem. Soc. 55, 4639-4643 (1933). (22) Weiler, Berres (to I.G.), Ger. 542,069, Jan. 20, 1932; Cent. 1932, I 3014. (23) Klarmann, Gates (to Lehn and Fink, Inc.), U.S. 1,926,873, 1,926,874, Sept. 12, 1933; Cent. 1934, I 83. (24) I.G., Brit. 320,056, Oct. 31, 1929, Cent. 1930, I 590; Brit. 321,190, Nov. 28, 1929; Cent. 1930, I 1259. (25) Klarmann, von Wowern, J. Am. Chem. Soc. 51, 608 (1929). (26) Jenkins, Richardson, J. Am. Chem. Soc. 55, 1619 (1933). (27) Mehner, J. makt. Chem. (2) 62, 562 (1900). (28) Beilstein, Kuhlberg, Ann. 147, 345, 346, 352 (1868). (29) Mayer, English, Ann. 417, 78-79 (1918). (30) Naquet, Ann. Suppl. 2, 250-251 (1862/63).

(31) Franzen, Rosenberg, J. prakt. Chem. (2) 101, 334-335 (1921). (32) Kindler, Ann. 452, 119-120 (1927). (33) von Walther, Hirschberg, J. prakt. Chem. (2) 77, 377-378 (1903). (34) Westheimer, J. Am. Chem. Soc. 62, 1893 (1940). (35) Kharasch, Brown, J. Am. Chem. Soc. 61, 2146 (1939). (36) Tschunkur, Eichler (to I.G.), Ger. 509,149, Oct. 8, 1933; Cent. 1931, I 360

[C.A. 25, 711 (1931)]. (37) Dewey, Sperry, J. Am. Chem. Soc. 61, 3251-3252 (1939).

CHLOROBENZOTRICHLORIDE C7H4Cl4 Beil. V - 302  $V_1$ -(153)  $V_{2}$ -(234)

M.P. 30° **B.P. 260°** 

Division B: Liquids, Section 1,  $D_4^{20} > 1.15$ . See 3:6880.

2,3-DICHLORODIOXANE-1,4 C<sub>4</sub>H<sub>6</sub>O<sub>2</sub>Cl<sub>2</sub> Beil. S.N. 2668

M.P. 30° B.P. 100-101° at 24-25 mm.

See 3:9105. Division C: Liquids with b.p. only at reduced pressure.

3: 0235 α-CHLORO-ISOBUTYRIC ACID C<sub>4</sub>H<sub>7</sub>O<sub>2</sub>Cl Beil. II-294 II1---II<sub>2</sub>—

M.P. 31° (1) (2) B.P. 118° at 50 mm. (1) 28-30° (3) 116-118° at 50 mm. (4) 80-82° at 12 mm, (2)

Eas. sol. aq.

[For prepn. of C from isobutyric acid (1:1030) with Cl2 in light (5) (10) or with cat, as specified (6) (7), or with SO<sub>2</sub>Cl<sub>2</sub> + dibenzoyl peroxide in CCl<sub>4</sub> (15% C + 85% β-chloro isomer) (3:9132) (3), see indic. refs.; from  $\beta,\beta,\beta$ -trichloro-ter-butyl alc. ("Chloretone") (3:2662) with aq. alk. (small yield together with other prods.) see (1) (2); from 2-chloro-2methylpropanol-1 (β-chloro-isobutyl alc.) (3:7305) by oxidn. with conc. HNO<sub>3</sub> see (8); from  $\alpha$ -chloro-isobutyryl chloride (3:5385) by hydrolysis with ag. see (9),1

 $\bar{C}$  with aq. alk. yields (5)  $\alpha$ -hydroxy-isobutyric acid (1:0431) together with other products. — C with aq. Ca(OCl)<sub>2</sub> yields (4) chloroform (3:5050) + AcOH (1:1010) + CO<sub>2</sub>. C with SOCl<sub>2</sub> (11) yields α-chloro-isobutyryl chloride (3:5385), b.p. 117-118°

- Methyl  $\alpha$ -chloro-isobutyrate: b.p. 129° (see 3:7918).
- ---- Ethyl  $\alpha$ -chloro-isobutyrate: b.p. 148° (see 3:8147).
- ---- α-Chloro-isobutyramide: unreported.
- D  $\alpha$ -Chloro-isobutyr-anilide: m.p. 71–71.5° (3), 68° (12), 67–68° (13). [From  $\alpha$ -chloro-isobutyryl chloride with aniline (3).] [Note that  $\beta$ -chloro-isobutyr-anilide has m.p. 109.0–109.5° (3).]
- $\bigcirc$   $\alpha$ -Chloro-isobutyro-p-toluidide: unreported.

3:0235 (1) Ostropjatow, J. Russ. Phys.-Chem. Soc. 28, 50 (1896); Ber. 29, Referate, 908-909 (1896). (2) Jacob, Bull. soc. chim. (5) 7, 581-586 (1940); C.A. 36, 3507 (1942). (3) Kharasch, Brown, J. Am. Chem. Soc. 62, 925-929 (1940). (4) Ssuknewitsch, Tschilingarjan, Ber. 68, 1216 (1935). (5) Balbiano, Ber. 11, 1693 (1878); Gazz. chim utal. 8, 371 (1878). (6) Bass (to Dow Chem. Co.), U.S. 2,010,685; Aug. 6, 1935; Cent. 1936, I 880; C.A. 29, 6608 (1935). (7) Loder, Ries (to du Pont), U.S. 2,043,670; June 9, 1936, Cent. 1936, II 2229; C.A. 30, 5240 (1936). (8) Henry, Bull. soc. chim. (2) 26, 24 (1876). (9) Michael, Ber. 34, 4054 (1901). (10) Zal'kind, Markov, J. Applied Chem. (U.S.S.R.) 10, 1042-1044 (1937); Cent. 1938, II 2421; C.A. 32, 1652 (1938). [Note that C.A. has erroneously rendered isobutyric acid as "isocleic acid" throughout.] (11) Blaise, Montagne, Compt. rend. 174, 1555 (1922). (12) von Braun, Jostes, Munch, Ann. 453, 127-128 (1927). (13) Bischoff, Walden, Ann. 279, 113-114 (1894).

## 3: 0240 DIMETHYL meso- $\alpha$ , $\alpha'$ -DICHLOROSUCCINATE $C_6H_8O_4Cl_2$ Beil. II -619

COOCH<sub>3</sub>

$$H_{-C}$$
 $H_{-C}$ 
 $H_{-C}$ 
 $H_{-C}$ 
 $H_{-C}$ 
 $H_{-C}$ 

#### M.P. 31.5-32° (1)

[For prepn. of  $\check{C}$  from  $meso-\alpha,\alpha'$ -dichlorosuccinic acid (3:4930) in MeOH with HCl gas see (1).]

[For studies on dipole moment see (2).]

3:0240 (1) Kirchhoff, Ann. 280, 215 (1894). (2) Hassel, Naeshagen, Tids. Kemi Bergvesen 10, 126-127 (1930); Cent. 1931, I 893; C.A. 25, 1493 (1931).

#### M.P. 32°

[For prepn. from p-xylene, chloroacetyl chloride (3:5235) + AlCl<sub>3</sub>, see (1) (2).]  $\bar{C}$  on oxidn. with alk. KMnO<sub>4</sub> gives (2) trimellitic ac. (1:0551), m.p. 228°.

3:0245 (1) Kunckell, Ber. 30, 579 (1897). (2) Collet, Bull. soc. chim. (3) 17, 509 (1897).

[See also 2-(chloromethyl)naphthalene (3:0747).]

Colorless cryst. from alc. at  $-15^{\circ}$  (9);  $\tilde{C}$  on distn. tends to dec. and even in vacuum must be distd. with care (11), since it readily changes to a chlorine-free solid melting around 200° (11). —  $\tilde{C}$  is a powerful skin irritant (15).

The prepn. of  $\bar{C}$  has been much studied in recent years because of its importance in prepn. of the important plant-growth stimulant  $\alpha$ -naphthylacetic acid (1:0728).

[For prepn. of  $\bar{\bf C}$  from naphthalene + paraformaldehyde (or trioxymethylene) in AcOH with conc. HCl + H<sub>3</sub>PO<sub>4</sub> (yields: 70-72% (15), 56.5% (20), 54% (21), 45% (15) (13)) see indic. refs.; from naphthalene + paraformaldehyde (or trioxymethylene) in AcOH with dry HCl gas (yields: 73-95% (3), denied (15), 51.5% (19), 31.6% (20)) or in AcOH/H<sub>3</sub>PO<sub>4</sub>/conc. HCl (74-77% yield (44)) cf. (15) see indic. refs.; from naphthalene + paraformaldehyde (or trioxymethylene) + ZnCl<sub>2</sub> in pet. ether (yields: 42% (4), 36% (17), 11% (4)) see indic. refs.: for prepn. of  $\bar{\bf C}$  from aq. formaldehyde soln. (formalin) with conc. HCl + HCl gas see (8) (7), or with replacement of the HCl gas by conc. H<sub>2</sub>SO<sub>4</sub> (yields: 68-70% (11), 60-70% (24) cf. (46), 60% (22), 33% (23)) (6) (26); for prepn. of  $\bar{\bf C}$  from naphthalene + chloromethyl ether (3:7085) (50% yield) see (10); from naphthalene + sym.-dichlorodimethyl ether (3:5245) + H<sub>3</sub>PO<sub>4</sub> (or H<sub>2</sub>SO<sub>4</sub>) see (27); note that in prepn. of  $\bar{\bf C}$  by the preceding methods other products are also formed, notably 1,5-bis-(chloromethyl)naphthalene, cf. (2) (13), colorless cryst. from C<sub>6</sub>H<sub>6</sub>, m.p. 144° (2), b.p. 175-185° at 12 mm. (2), and di-( $\alpha$ -naphthyl)methane [Beil. V-728, V<sub>1</sub>-(360)], cryst. from alc., m.p. 108° (13).]

[For prepn. of  $\bar{C}$  from  $\alpha$ -methylnaphthalene (1:7600) with  $Cl_2$  see (9) (12) (14); from  $\alpha$ -naphthylmethylcarbinol [Beil. VI-667, VI<sub>1</sub>-(320)] with SOCl<sub>2</sub> in toluene (79% yield (18)) or with conc. HCl on htg. in s.t. (30% yield (1)) see indic. refs.; from N-benzoyl- $\alpha$ -naphthylmethylamine (1) or N-benzoyl- $\alpha$ -naphthylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmethylmet

C on oxidn. with Cu(NO<sub>3</sub>)<sub>2</sub> or C with hexamethylenetetramine refluxed in alc. gives

(yields: 60% (4), 59-60% (11), 48% (6)) α-naphthaldehyde [Beil. VII-400, 955, VII<sub>1</sub>-(212)], b.p. 291-292° (28), 158-159° at 14 mm. (6) (oxime, m.p. 98° (11) (28), phenylhydrazone, m.p. 82° (11), p-nitrophenylhydrazone, m.p. 237° (11), 2,4-dinitrophenylhydrazone, m.p. 254° (11), semicarbazone, m.p. 224° (4), 219° (11)).

[ $\bar{C}$  on cat. hydrogenation (10) or on reductn. with Zn in alc. + dry HCl gas at 0° (68% yield (4)) (15), or by hydrolysis of  $\alpha$ -C<sub>10</sub>H<sub>7</sub>.CH<sub>2</sub>MgCl (see below) (80% yield (15)), gives  $\alpha$ -methylnaphthalene (1:7600); note that reductn. of  $\bar{C}$  with 4Na + alc. is incomplete (4).]

[Č with Mg in dry ether + trace I<sub>2</sub> + trace MeI under N<sub>2</sub> readily gives (88–92% yield (15)) (18) corresp. α-C<sub>10</sub>H<sub>7</sub>.CH<sub>2</sub>MgCl. This RMgCl cpd. shows many of usual reactns.: e.g., with aq. it gives (80% yield (15)) α-methylnaphthalene (1:7600); on carbonation with CO<sub>2</sub> and subsequent acidification it gives (59.4% yield (18)) α-naphthylacetic acid (1:0728); with phenyl isocyanate it gives (36% yield (18)) (15) α-naphthylacetic anilide, m.p. 156–157° (15); with α-naphthyl isocyanate it gives (15) α-naphthylacetic α-naphthalide, cryst. from xylene, m.p. 175–177° (15); with HgCl<sub>2</sub> it gives (15) α-naphthylcarbinyl-mercuric-chloride, cryst. from 80% alc., m.p. 126–128° (15); with Me2SO<sub>4</sub> it gives (55.1% yield (18)) α-ethylnaphthalene; with ClNH<sub>2</sub> it gives (47% yield (45)) α-(aminomethyl)-naphthalene. However, in certain cases, the RMgCl cpd. shows abnormal reactns.: e.g., with formaldehyde gas it gives (18) α-methyl-β-naphthylcarbinol + 1,2-di-(α-naphthyl)-ethane; with ethyl chloroformate it gives (18) ethyl α-methyl-β-naphthoate; with acetyl chloride it gives (poor yield (22)) 1,3-di-α-naphthyl-2-methylpropene-1. (Note also that the closely related α-C<sub>10</sub>H<sub>7</sub>.CH<sub>2</sub>.COOMgCl with C<sub>2</sub>H<sub>5</sub>MgBr or iso-C<sub>3</sub>H<sub>7</sub>MgCl yields (29) α-naphthylmalonic acid, m.p. 151° dec.)]

[ $\bar{C}$  with diethyl malonate + NaOEt in alc. gives (yields: 82% (19), 80% (8)) diethyl  $\alpha$ -naphthylmethylmalonate which upon hydrolysis gives (99% yield (19))  $\alpha$ -naphthylmethylmalonic acid, and this on htg. at 175° loses CO<sub>2</sub> giving (92% yield (19))  $\beta$ -(1-naphthyl)propionic acid, m.p. 156.0–156.6° cor. (19) (methyl ester, m.p. 36° (2)). —  $\bar{C}$  with diethyl methyl-malonate + NaOEt in abs. alc. gives similarly (70.5% yield (21)) diethyl methyl-( $\alpha$ -naphthylmethyl)malonate, and ultimately (73% yield (21))  $\beta$ -(1-naphthyl)isobutyric acid, m.p. 91.8–92.6° (21).]

[ $\bar{C}$  with KCN in dil. EtOH (yields: 87% (31), 40% (14) (20) (26) (30) (46) or with NaCN in MeOH (yield 85% (2)) gives  $\alpha$ -naphthylacetonitrile, b.p. 183–187° at 13 mm., m.p. 31–32° (31), which on hydrolysis with AcOH/H<sub>2</sub>SO<sub>4</sub>/aq. (20) (2) (31) cf. (32) (46) gives  $\alpha$ -naphthylacetic acid (1:0728).]

[ $\bar{C}$  with KOAc in AcOH refluxed for 2 hrs. gives (2)  $\alpha$ -naphthylcarbinyl acetate, b.p. 134-136° at 1.5 mm. (2), which on hydrol. with alc. KOH gives  $\alpha$ -naphthylcarbinol (see above). —  $\bar{C}$  with aq. Na<sub>2</sub>SO<sub>3</sub> + NaOH gives (4) sodium 1-naphthylmethanesulfonate. — For study of nitration of  $\bar{C}$  see (42) (43).]

[ $\overline{C}$  with paraformaldehyde + ZnCl<sub>2</sub> + dry HCl gas in pet. ether gives (57% yield (4)) 1,5-bis-(chloromethyl)naphthalene, m.p. 144° (see above).]

[For reactn. of  $\tilde{C}$  with 2-(chloromethyl)naphthalene (3:0747) see (33); for reactn. of  $\tilde{C}$  with  $\beta$ -methylnaphthalene (1:7605) + AlCl<sub>3</sub> in CS<sub>2</sub> see (33).]

[For reactn. of  $\bar{C}$  with xylene in prepn. of synthetic resins see (34); for reactn. of  $\bar{C}$  with 2,2'-dihydroxydiethyl sulfide ("thiodiglyccl") in prepn. of textile assts. see (35); for condens. of  $\bar{C}$  with 2-hydroxy-3-naphthoic acid derivs. in prepn. of prods. for animalization of vegetable fibers see (37).]

[ $\bar{C}$  with aq. at 100° for 1½ hrs. is 21.5% hydrolyzed (1). —  $\bar{C}$  with MeOH gives (87% yield (36)) (2) methyl  $\alpha$ -naphthylmethyl ether, b.p. 134° at 11 mm. (36), 101–103° at 1.5 mm. (2);  $\bar{C}$  with EtOH + CaCO<sub>3</sub> gives ethyl  $\alpha$ -naphthylmethyl ether, b.p. 144.5° at 11 mm. (36); other alcs. behave similarly (36). — For reactn. of  $\bar{C}$  with cresol in prepn. of synthetic resins see (38).]

[ $\bar{C}$  with liq. NH<sub>3</sub> as directed (39) gives 72%  $\alpha$ -naphthylmethylamine (N-benzoyl deriv., lfts. from alc., m.p. 154° (1)) + 20% bis-( $\alpha$ -naphthylmethyl)amine (N-benzoyl deriv., pr. from alc., m.p. 134° (1)). —  $\bar{C}$  with alc. NH<sub>3</sub> as directed (39) gives 11% of the above prim. amine + 38% of the above sec. amine + 47% tris-( $\alpha$ -naphthylmethyl)amine, cryst. from alc., m.p. 178° (39). — Note the use of the above bis-( $\alpha$ -naphthylmethyl)amine as useful reagent for quant. pptn. of HNO<sub>3</sub> (6). — For reactn. of  $\bar{C}$  with (CH<sub>3</sub>)<sub>2</sub>NH see (1). —  $\bar{C}$  with aniline at 100° gives (77% yield (4)) N-( $\alpha$ -naphthylmethyl)aniline, m.p. 67° (4) (corresp. nitroso cpd., m.p. 57° (4)).]

[ $\bar{C}$  with thiourea in alc. as directed (40) yields  $S-(\alpha-\text{naphthylmethyl})$  isothiourea hydrochloride, m.p. 238° (40). —  $\bar{C}$  with p-toluenesulfonamide + alc. KOH refluxed 12 hrs. gives (57% yield (6))  $N,N-bis-(\alpha-\text{naphthylmethyl})p$ -toluenesulfonamide, cryst. from boilg. alc., m.p. 134° (6).]

[C with various polynitrophenols gives addn. prods.: e.g., that from pieric acid has m.p. 80-82° (41), 84° (4); that from 2,4,6-trinitro-m-cresol has m.p. 81.5-82° (41); that from 2,4,6-trinitroresorcinol (styphnic acid) has m.p. 112.5-113° (41).]

① N-( $\alpha$ -Naphthylmethyl)phthalimide ( $\alpha$ -phthalimido- $\alpha$ -methylnaphthalene): white ndls. from hot alc., m.p. 174-175° (6). [From  $\bar{C}$  + Na phthalimide refluxed 6 hrs. in alc. in 82% yield (6).] — [Hydrolysis of this prod. with 4 pts. conc. HCl in s.t. 2 hrs. at 100° gives (86% yield (6))  $\alpha$ -naphthylmethylamine (see above).]

3:0250 (1) von Braun, Moldaenke, Ber. 56, 2167-2172 (1923). (2) Manske, Ledingham, Can. J. Research 17-B, 14-20 (1939); Cent. 1939, I 4037; C.A. 33, 5387 (1939). (3) Darzens, Levy, Compt. rend. 202, 73-75 (1936). (4) Anderson, Short, J. Chem. Soc. 1933, 485. (5) de Pommereau, Compt. rend. 175, 105-106 (1922). (6) Rupe, Brentano, Helv. Chem. Acta 19, 581-586 (1936). (7) Reddelien, Lange (to I.G.), Ger. 508,890, Oct. 2, 1930, Brit. 337,289, Nov. 20,1930; Cent. 1931, I 1830. (8) von Braun, Nelles, Ber. 66, 1470 (1933). (9) Davies, Oxford, J. Chem. Soc. 1931, 220-221. (10) Vavon, Bolle, Callin, Bull. soc. chem. (5) 6, 1032-1033 (1939).

Coles, Dodds, J. Am. Chem. Soc. 60, 853-854 (1938).
 Scherler, Ber. 24, 3929-3930 (1891).
 Lock, Walter, Ber. 75, 1158-1161 (1942).
 Wislicenus, Wren, Ber. 38, 506-507 (1905).
 Grummitt, Buck, J. Am. Chem. Soc. 65, 295-296 (1943).
 Ruggli, Burckhardt, Helv. Chim. Acta 23, 443 (1940).
 Blanc, Bull. soc. chim. (4) 33, 319 (1923).
 Gilman, Kirby, J. Am. Chem. Soc. 51, 3475-3478 (1929).
 Fieser, Gates, J. Am. Chem. Soc. 62, 2338 (1940).
 Cambron, Can. J. Research 17-B, 10-13 (1939).

(21) Fieser, Novello, J. Am. Chem. Soc. 62, 1856-1857 (1940). (22) Campbell, Anderson, Gilmore, J. Chem. Soc. 1940, 821. (23) Ruggli, Preuss, Helv. Chim. Acta 24, 1349-1350 (1941). (24) Shmuk, Guseva, Doklady Vsesoyuz Akad. Sci'sko-Khoz. Nauk im. Lenna 1940, No. 14, 3-5; C.A. 37, 2005 (1943). (25) Lange (to I.G.), Ger. 533,132, Sept. 9, 1931; Cent. 1931, II 2659. (26) Roblin, Hechenbleikne (to Arrerican Cyanamide Co.), U.S. 2,166,554, July 18, 1939; Cent. 1939, II 4354. (27) Cambron (to Hon. Advis. Council for Sci. and Ind. Research), U.S. 2,304,537, Dec. 8, 1942; C.A. 37, 2748 (1943). (28) Hinkel, Ayling, Beynon, J. Chem. Soc. 1936, 342. (29) Ivanov, Pchenitchy, Bull. soc. chim. (5) 1, 232 (1934). (30) Higginbottom, Short, Rec. trav. chim. 53, 1141 (1934).

(31) Briggs, Wilson, J. Chem. Soc. 1941, 501. (32) Buu-Hoi, Cagniant, Bull. soc. chim. (5) 9, 725-727 (1942); C.A. 37, 5393 (1943). (33) Clar, Lombardi, Gazz. chim. ital. 62, 542-544 (1932); C.A. 27, 81 (1933). (34) Deutsche Hydrierwerke, Brit. 465, 148, May 27, 1937; Cent. 1937, II 4397. (35) I.G., French 811,273, April 10, 1937; Cent. 1937, II 1083. (36) Reddelien, Lange (to I.G.), Ger. 516,280, Jan. 21, 1931; Cent. 1931, I 2396. (37) I.G., Brit. 462,290, April 1, 1937; Cent. 1937, II 2456. (38) Kränzlein, Voss, Brunner, Ger. 526,391, June 5, 1931; Cent. 1931, II 1203. (39) von Braun, Ber. 70, 979-980, 983-984 (1937). (40) Sprague, Johnson, J. Am. Chem. Soc. 59, 1839 (1937).

(41) Dermer, Proc. Oklahoma Acad. Sci. 22, 160-162 (1941); C.A. 37, 4376 (1943). (42) Izmail'skii, Kozin, Compt. rend. acad. sci. U.R.S.S. 28, 621-624 (1940); C.A. 35, 2882 (1941). (43) Izmail'skii, Compt. rend. acad. sci. U.R.S.S. 29, 98-102 (1940); C.A. 35, 3248 (1941). (44) Grummitt, Buck, Org. Syntheses 24, 30-32 (1944). (45) Coleman, Forrester, J. Am. Chem. Soc. 58, 28 (1936). (46) Shmuk, Guseva, J. Applied Chem. (U.S.S.R.) 14, 1031-1035 (1941); C.A. 39, 4069 (1945).

#### 3:0255 m-CHLOROPHENOL

M.P. 32.8° (1) B.P. 215.5-217.1° (7) 
$$D_{-}^{50} = 1.237$$
 (9)  $n_{D}^{40} = 1.5565$  (1) 32° (2) 216° (17)  $D_{-}^{25} = 1.268$  (9) 31-32° (3) 213-216° (8) 31° (4) 214° (6) cor. (16) 28.5° (5) 211-212° u.c. (5) 28° (6) 98° at 12 mm. (2)

 $\bar{C}$  has odor like phenol (for study of strength of odor in aq. soln. see (10)). —  $\bar{C}$  in pres. of aq. has unusual tendency to form supersatd. solns. (11) (for temp./compn. data on soly. of  $\bar{C}$  in aq. or in  $C_6H_6$  see (11)). —  $\bar{C}$  eas. discolors in air.

[For prepn. of  $\bar{C}$  from *m*-chloroaniline [Beil. XII-602, XII<sub>1</sub>-(300)] via diazotization and subsequent reaction with aq. (yields: alm. quant. {12} {13}, 67% {1}, 64% {8}, 55% {4}, 50% {14}) {15} {5} {16} see indic. refs. (note that the process is sensitive to conditions and refs. indic. give valuable information on its control); for formn. of  $\bar{C}$  from *m*-dichlorobenzene (3:5960) with NaOMe in MeOH in s.t. at 180° for 30 hrs. see (17).

 $\bar{C}$  like its isomers is sol. in conc. Na<sub>2</sub>CO<sub>3</sub> soln. at room temp. and is repptd. by CO<sub>2</sub> (18). [For studies of value of ionization const. of  $\bar{C}$  in aq. or dil. MeOH or dil. EtOH see (19) (20) (6) (21) (22).]

 $\tilde{\mathbf{C}}$  on fusion with KOH yields (23) resorcinol (1:1530). — [For condens. of  $\tilde{\mathbf{C}}$  with phthalic anhydride to yield 3,6-dichlorofluorane ("fluorescein chloride") [Beil. XIX-147] (impt. intermed. in prepn. of rhodamine dyes) see (12) (68).]

[Č conv. to dry Na salt and treated with CO<sub>2</sub> under press. yields after acidifn. (14) 6-carboxy-3-chlorophenol (4-chloro-2-hydroxybenzoic acid) (4-chlorosalicylic acid) (3:4908), ndls. from aq., m.p. 207° (14).]

[ $\bar{C}$  in the Reimer-Tiemann reactn. with alk. (or better Ca(OH)<sub>2</sub> + Na<sub>2</sub>CO<sub>3</sub> (24)) and chloroform (24) or bromoform (25) yields both 6-aldehydo-3-chlorophenol (4-chlorosalicylaldehyde) (3:0960) and 4-aldehydo-3-chlorophenol (3:4280) in o/p ratio of 0.71 with CHCl<sub>3</sub> (26) (25) and 0.84 with CHBr<sub>3</sub> (25).] — [The 4-aldehydo-3-chlorophenol has also been obtd. (50% yield) from  $\bar{C}$  in C<sub>6</sub>H<sub>6</sub> with HCl + HCN + ACl<sub>3</sub> (29).]

 $[\bar{C}]$  in aq. Na<sub>2</sub>CO<sub>3</sub> soln couples with 1 equiv. of benzenediazonium chloride yielding (27) (18) 3-chloro-4-phenylazophenol, or.-yel. ndls. from 25% AcOH, m.p. 95° (27), or, on expos. to HCl, or.-red, m.p. 114° (27) (18);  $\bar{C}$  in aq. NaOH with 2 equivs. of benzenediazonium chloride yields (27) 3-chloro-2,4-bis (phenylazo)phenol, dark red-brn., m.p. 181°; no tris-azo cpds. appear to be formed (27). — For study of coupling of  $\bar{C}$  with p-nitrobenzene-diazonium bisulfate see (28).

 $[\bar{C} \text{ is } not \text{ reduced by HI in AcOH (30); for study of replacement of Cl by H with H<sub>2</sub> + Ni cat. at room temp. see (31).]$ 

[ $\bar{\mathbf{C}}$  with p-aminophenol oxidized in alk. soln. with NaOCl yields (32) indochlorophenol;  $\bar{\mathbf{C}}$  with p-aminodimethylaniline on oxidn. with NaOCl as directed (8) yields 3-chloro-N,N-dimethylindoaniline.]

[For condensation of  $\bar{C}$  with formaldehyde (33) or with benzaldehyde-o-sulfonic acid (34) and use of product as mothproofing agents see indic. refs.; for reactn. of  $\bar{C}$  with unsatd. halides in pres. of alk. yielding m-chlorophenyl alkenyl ethers which by rearr. yield corresp. substituted phenols used as bactericides see (35) (36).]

[For condens. of  $\tilde{C}$  with malic acid  $(1:0450) + \text{conc. } H_2SO_4$  giving small yield of 7-chlorocoumarin [Beil. XVII-331] see (37); with ethyl acetoacetate  $(1:1710) + H_2SO_4$ 

giving small yield of 7-chloro-4-methylcoumarin [Beil. XVII-336] see (37); with ethyl methylacetoacetate  $(1:1712) + P_2O_5$  yielding 7-chloro-2,3-dimethylchromone [Beil. XVII<sub>1</sub>-(177)] see (38).]

 $\bar{C}$  with 3 moles Br<sub>2</sub> (in aq. KBr) gives 100% yield (39) 2,4,6-tribromo-3-chlorophenol, ndls. from dil. alc., m.p. 105-106° cor. (39) (methyl ether, m.p. 96° (39));  $\bar{C}$  in 10% aq. KOH with 4 moles I<sub>2</sub> (in aq. KI) gives 2,4,6-triiodo-3-chlorophenol, ndls. from boilg. AcOH, m.p. 139-140° (39).

[C in dil. NaOH mixed with aq. NaNO<sub>2</sub> and acidified as directed (40) gives (40% yield (40)) (43) 3-chloro-4-nitrosophenol, m.p. 133° (40), 129.6° (41); on soln. in Na<sub>2</sub>CO<sub>3</sub> and subsequent acidification this cpd. yields (40) (43) the isomeric 3-chlorobenzoquinone-4-monoxime, m.p. 184° dec. (40), cf. (42).

[C on mononitration with H<sub>2</sub>SO<sub>4</sub> + NaNO<sub>3</sub> as directed (44) or C in AcOH with fumg. HNO<sub>3</sub> at 0° (45) gives (yield: 32% (45), 22% (44)) 3-chloro-6-nitrophenol [Beil. VI-238], volatile with steam, m.p. 41° (44), together with (60% yield (44)) 3-chloro-4-nitrophenol [Beil. VI-240], not volatile with steam, white ndls. from dil. HCl or aq., m.p. 121-122° (44). — Note that the two other position isomers although known have been obtd. indirectly: 3-chloro-2-nitrophenol, anhydrous form, yel. cryst., m.p. 45-47° (46) (47); monohydrate, colorless cryst. from pet. ether, m.p. 37.5-38° (46) (47) (44); 3-chloro-5-nitrophenol [Beil. VI-239] (48), m.p. 147°.]

[C on dinitration as directed (44) (49) gives 3-chloro-4,6-dinitrophenol [Beil. VI-259, VI<sub>1</sub>-(128)], colorless cryst. from aq. or lt. pet., m.p. 92-93° (44). — Note that two other position isomers are known but prepd. indirectly: 3-chloro-2,6-dinitrophenol, white cryst. from dil. HCl, m.p. 114.5° (44) (49); 3-chloro-2,4-dinitrophenol, cryst. from aq., m.p. 138-140° (44) (49).]

Č on trinitration by soln. in 1½ pts. fumg. H<sub>2</sub>SO<sub>4</sub> (27% SO<sub>3</sub>) and treated in cold for 1 hr. with 10 pts. 70% HNO<sub>3</sub> (44) cf. (4) (50) yields 3-chloro-2,4,6-trinitrophenol [Beil. VI-292], cryst. from aq. or dil. H<sub>2</sub>SO<sub>4</sub>, m.p. 114° (44), 116° (4), 119° (50). — [Note that if  $\bar{C}$  is sulfonated prior to trinitration the isomeric 3-chloro-2,5,6-trinitrophenol, m.p. 112.5−113.5° (44), is obtd. (44).]

[For studies on the sulfonation of  $\bar{C}$  see (44) (51) (52) (53).]

[ $\bar{C}$  in MeOH/KOH with MeI yields (29) m-chlorophenyl methyl ether (m-chloroanisole) (8:6195).] [ $\bar{C}$  in EtOH/KOH with EtI gives (18) 3-chlorophenyl ethyl ether (m-chlorophenetole) (3:6323), b.p. 204–205° at 717 mm.,  $D_4^{20} = 1.1712$  (18) (for rate of formn. from sodium salt of  $\bar{C}$  with EtI in alc. soln. see (55)).]

- —— m-Chlorophenyl acetate [Beil. VI-185]: oil, b.p.  $116.5^{\circ}$  at 21 mm. (18),  $108^{\circ}$  at 12 mm. (57),  $84-86^{\circ}$  at 2 mm. (57), m.p.  $-1.5^{\circ}$  to  $-0.5^{\circ}$  (18),  $D_4^{20} = 1.2209$  (18). [From  $\bar{C}$  with  $Ac_2O + NaOAc$  (18) or indirectly from m-chloroaniline via diazotiazation, etc. (57).] [For rate of reactn. of  $\bar{C}$  with AcBr see (58).]
- m-Chlorophenyl benzoate [Beil. IX-117]: pr. from dil. alc. or dil. acetone, m.p. 71-72° (18). [From C in 10% aq. Na<sub>2</sub>CO<sub>3</sub> with BzCl (18); for study of rate of benzoylation of C see (59).]
- m-Chlorophenyl m-nitrobenzoate: ndls. from alc. or dil. acetone, m.p. 94-95° (18). [From C in alk. with m-nitrobenzoyl chloride (18).]
- m-Chlorophenyl p-nitrobenzoate: m.p. 99°.
- m-Chlorophenyl 3,5-dinitrobenzoate: m.p. 156°.
- —— m-Chlorophenyl benzenesulfonate: unrecorded.
- ---- m-Chlorophenyl p-toluenesulfonate: unrecorded.
- —— m-Chlorophenyl benzyl ether: m.p. 59°. [From C + benzyl-phenyl-dimethyl-ammonium chloride (60).]
- —— m-Chlorophenyl p-nitrobenzyl ether: unrecorded.

- —— m-Chlorophenyl 2,4-dinitrophenyl ether: pale yel. ndls. from alc., m.p. 75° (61). [From C in alk. with alc. 2,4-dinitrochlorobenzene (61).]
- m-Chlorophenoxyacetic acid: cryst. from aq., m.p. 108-110° u.c. (62), Neut. Equiv. 186.5. [From Č in aq. NaOH with chloracetic acid (62).]
- ---- m-Chlorophenyl N-phenylcarbamate: unrecorded.
- m m-Chlorophenyl N-(p-bromophenyl)carbamate: ndls. from  $C_6H_6$  + EtOAc, m.p. 121-123° cor. (64). [From  $\ddot{C}$  + p-bromobenzazide in lgr. (64).]
- 0 m-Chlorophenyl N-(p-iodophenyl)carbamate: m.p. 138-139° (69). [From  $\ddot{\textbf{C}}$  with p-iodobenzazide in hot lgr. (69).]
- m-Chlorophenyl N-(m-nitrophenyl)carbamate: m.p. 115-116° u.c., 117-118° cor. (70). [From C with m-nitrophenyl isocyanate in lgr. (70).]
- m m-Chlorophenyl N-(p-nitrophenyl)carbamate: pale yel. pr. from lgr., m.p. 144° cor. (65). [From  $\ddot{\mathbf{C}}$  + p-nitrobenzazide in lgr. (65).]
- m-Chlorophenyl N-(3,5-dinitro-4-methylphenyl)carbamate: or.-yel. pr. from lgr., m.p. 170-172° u.c., 174-176° cor. (63). [From C with 3,5-dinitro-4-methylbenzazide in lgr. (63).]
- $\bigcirc$  m-Chlorophenyl N-( $\alpha$ -naphthyl)carbamate: cryst. from lgr., m.p. 157-158° (66). [From  $\bar{C} + \alpha$ -naphthyl isocyanate in lgr. (66).]
- m-Chlorophenyl N-(β-naphthyl)carbamate: pr. from igr., m.p. 114-115° u.e., 116-117° cor. (67). [From C + β-naphthyl isocyanate (or azide) in lgr. (67).]
- ---- m-Chlorophenyl N,N-diphenylcarbamate: unreported.
- 3:0255 (1) Holleman, Rinkes, Rec. trav. chim. 30, 81-82, 86 (1911); 42, 1092 (1923). (2) Kuhn, Wassermann, Helv. Chim. Acta 11, 14 (1928). (3) Williams, Fogelberg, J. Am. Chem. Soc. 52, 1358 (1930). (4) Seekles, Rec. trav. chim. 42, 76-77 (1923). (5) Uhlemann, Ber. 11, 1161-1162 (1878). (6) Bennett, Brooks, Glasstone, J. Chem. Soc. 1935, 1523. (7) Kohlrausch, Pongratz, Monatsh. 65, 202 (1935). (8) Fieser, Thompson, J. Am. Chim. Soc. 61, 382-383 (1939). (9) Thole, Mussell, Dunstan, J. Chem. Soc. 101, 1115 (1913). (10) Holleman, Rec. trav. chim. 37, 106 (1918).
- (11) Sidgwick, Turner, J. Chem. Soc. 121, 2256-2263 (1922). (12) Hodgson, J. Soc. Dyers Colourists 42, 175-179 (1926). (13) British Dyestuffs Corp., Ltd., & Hodgson, Brit. 200,714, Aug. 9, 1923; Cent. 1925, II 2297. (14) Varnholt, J. prakt. Chem. (2) 36, 27-28 (1887). (15) Tschunkur, Herdieckhoff (to L.G.), Ger. 497,412, May 9, 1930; Cent. 1930, II 984. (16) Beilstein, Kurbatow, Ann. 176, 45 (1875). (17) Holleman, de Mooy, Rec. trav. chim. 35, 19, 27 (1915). (18) Wohlleben, Ber. 42, 4371-4373 (1909). (19) Murray, Gordon, J. Am. Chem. Soc. 57, 110-111 (1935). (20) Schwarzenbach, Egli, Helv. Chim. Acta 17, 1181 (1934).
- Hodgson, Smith, J. Chem. Soc. 1939, 263-264. (22) Jenkins, J. Chem. Soc. 1939, 1137-1140. (23) Tijmstra, Chem. Weekblad 5, 96-101 (1908), Cent. 1908, I 1051. (24) Hodgson, Jenkinson, J. Chem. Soc. 1927, 1740-1742. (25) Hodgson, Jenkinson, J. Chem. Soc. 1929, 1641-1642. (26) Hodgson, Jenkinson, J. Chem. Soc. 1929, 469-471. (27) Hodgson, Turner, J. Chem. Soc. 1942, 433-435. (28) Richardson, J. Chem. Soc. 1937, 1363-1365. (29) Gattermann, Ann. 357, 334, 349 (1907). (30) Shoesmith, Hetherington, Slater, J. Chem. Soc. 125, 1317-1318 (1924).
- (31) Kelber, Ber. 54, 2255-2260 (1921). (32) Heller, Ann. 418, 270-271 (1918). (33) Weiler, Berres, Wenk, Stötter (to I.G.), Ger. 536,551, Oct. 24, 1931; Cent. 1932, I 3013. (34) I.G., Austrian 124,284, Aug. 25, 1931; Cent. 1933, II 375. (35) Deichsel (to Winthrop Chem. Co.), U.S. 2,002,447, May 21, 1935; Cent. 1935, II 2581; C.A. 29, 4376 (1935). (36) Deichsel (to I.G.), Brit. 443,113, March 19, 1936; Cent. 1937, I 384; C.A. 30, 4873 (1936). (37) Clayton, J. Chem. Soc. 93, 2021-2022 (1908). (38) Simonis, Schuhmann, Ber. 50, 1146 (1917). (39) Kohn, Zandmann, Monatsh. 47, 362, 366 (1926). (40) Hodgson, Kershaw, J. Chem. Soc. 1929, 1553, 1555.
- (41) Hodgson, Moore, J. Chem. Soc. 123, 2502-2503 (1923). (42) Hodgson, Nicholson, J. Chem. Soc. 1940, 1268. (43) British Dyestuffs Corp., Ltd., & Hodgson, Brit. 206,734, Dec. 6, 1924; Cent. 1925, II 2094. (44) Hodgson, Moore, J. Chem. Soc. 127, 1599-1604 (1925). (45) Roberts, Rhys, J. Chem. Soc. 1937, 41. (46) Hodgson, Moore, J. Chem. Soc. 1926, 156, 156, 158. (47) Hodgson, J. Soc. Dyers Colourists, 43, 73 (1927). (48) Hodgson, Wignall, J. Chem. Soc. 1926, 2077. (49) Hodgson, Kershaw, J. Chem. Soc. 1930, 2169-2171. (50) Tijmstra, Rec. trav. chim. 21, 293 (1902).
  - (51) Hodgson, Kershaw, J. Chem. Soc. 1930, 1419-1425; 1929, 2918, 2923. (52) Schoepfle.

Van Natta, Clarkson, J. Am. Chem. Soc. 50, 1174 (1928). (53) Schlubach, Mergenthaler, Ber. 58, 2734 (1925). (54) Ghaswalla, Donnan, J. Chem. Soc. 1936, 1344. (55) Goldsworthy, J. Chem. Soc. 1926, 1254. (56) Réverdin, Eckhard, Ber. 32, 2626 (1899). (57) Haller, Schaffer, J. Am. Chem. Soc. 55, 4954-4955 (1933); U.S. 1,933,975, Nov. 7, 1933; Cent. 1934, I 948. (58) Bassett, J. Chem. Soc. 1931, 2516-2518. (59) Bernoulli, St. Goar, Helv. Chim. Acta 9, 755 (1926). (60) Baw, J. Indian Chem. Soc. 3, 101-104 (1926).

(61) Bost, Nicholson, J. Am. Chem. Soc. 57, 2368-2369 (1935). (62) Koelsch, J. Am. Chem. Soc. 53, 304-305 (1931). (63) Sah, Rec. trav. chim. 58, 587-588 (1939). (64) Sah, Cheng, Rec. trav. chim. 58, 596-599 (1939). (66) French, Wirtel, J. Am. Chem. Soc. 48, 1736-1739 (1926). (67) Sah, Rec. trav. chim. 58, 454-458 (1939). (68) British Dyestuffs Corp., Ltd., & Hodgson, Brit. 205,254, Nov. 8, 1923; Cent. 1924, I 711. (69) Sah, Young, Rec. trav. chim. 59, 357-363 (1940). (70) Sah, Woo, Rec. trav. chim. 58, 1014-1015 (1939).

3: 0270 d,l- $\beta$ -CHLORO-n-VALERIC ACID  $C_5H_9O_2Cl$  Beil. S.N. 162  $CH_3$ -CH<sub>2</sub>-COOH Cl

M.P. 33° (1) B.P. 112° at 10 mm. (1)  $D_4^{20} = 1.1484$  (1)  $n_D^{20} = 1.4462$  (1)

[For prepn. of C from propylidene-acetic acid (penten-2-oic acid-1) [Beil. II-426, II<sub>1</sub>-(191), II<sub>2</sub>-(399)] with dry HCl gas at 20° for 2 days (100% yield) see (1).]

- ---- Methyl β-chloro-n-valerate: unreported.
- Ethyl  $\beta$ -chloro-n-valerate: b.p. 189° see (3:8629).
- —— β-Chloro-n-valeramide: unreported.
- ----- β-Chloro-n-valeranilide: unreported.
- ----- β-Chloro-n-valero-p-toluidide: unreported.

3:0270 (1) Schjanberg, Ber. 70, 2385-2391 (1937).

#### 3:0280 CHLOROMALEIC ANHYDRIDE

Cl—C—C

O

H—C—C

O

H—C—C

O

M.P. B.P. 33° (1) 196.3° cor. (2) 
$$D_{25}^{25} = 1.5421$$
 (2)  $n_{\text{He}}^{16.7} = 1.50594$  (1 34.5° (2) (3) 194°  $D_{4}^{15} = 1.5427$  (1)  $n_{\text{He}}^{13.9} = 1.50933$  (1 150–151° at 210 mm. (2) 95° at 25 mm. (3A) 87° at 14 mm. (1) 78° at 8 mm. (1)

C usually observed as a colorless oil. On cooling and scratching it solidifies to a cryst. mass fusing about 0° and suddenly changing to a hard cryst. form, m.p. 34.5°, with evoln. of ht. (2) (3).

[For prepn. from chlorofumaric ac. (3:4853) by distn. with  $P_2O_5$  see (1) (4), by distn. with  $POCl_3$  see (5) (such products are claimed by (1) to be impure); for prepn. by distn. with AcCl see (2); for still other methods see Beil. XVII-434.]

[For Diels-Alder addn. of  $\bar{C}$  to cyclopentadiene-1,3 (1:8030) giving 71% yield of prod. m.p. 161°, or to anthracene (1:7285), giving 56% yield of prod., m.p. 157°, see (7); note, however, that  $\bar{C}$  with isoeugenol (1:1785) or with isosafrole (1:7610) not only adds but also loses HCl giving (8) derivs. of 3-methyl-3,4-dihydronaphthalene-1,2-dicarboxylic anhydride.]

 $\bar{C}$  reacts with aq. evolving ht. and upon evapn. yields (3) (3A) (6) chloromaleic ac. (3:3432), cryst. from mixt. of CHCl<sub>3</sub> + AcOH (6), which after drying at 100° have m.p. 114-115° (6).

3:0280 (1) von Auwers, Harres, Bcr. 62, 1686-1687 (1929).
 (2) Perkin, J. Chem. Soc. 53, 703-705 (1888).
 (3) van der Riet, Ann. 280, 227 (1894).
 (3A) Zincke, Fuchs, Ber 26, 508 (1893).
 (4) Walden, Ber. 30, 2885-2886 (1897).
 (5) Thomas-Mamert, Bull. soc. chim. (3) 13, 847 (1895).
 (6) Michael, Tissot, J. prakt. Chem. (2) 52, 331 (1895).
 (7) Synerholm, J. Am. Chem. Soc. 67, 1229-1230 (1945).
 (8) Synerholm, J. Am. Chem. Soc. 67, 345 (1945).

3:0290 TRICHLOROMETHYL TRICHLOROACETATE C<sub>3</sub>O<sub>2</sub>Cl<sub>6</sub> Beil. III -17 (Perchloromethyl acetate) Cl<sub>3</sub>C.O.CO.CCl<sub>3</sub> III<sub>1</sub>— III<sub>2</sub>—

M.P. 34° (1) B.P. 191-192° (1) 
$$D_4^{35} = 1.67331$$
 (1)  $73-74$ ° at 10 mm. (1)

Sol. without decompn. in other, CHCl<sub>3</sub>, C<sub>6</sub>H<sub>6</sub>, or pet. eth.

[For prepn. (71% yield (3)) by electrolysis of potassium trichloroacetate (3) or mixt. of Na and Zn trichloroacetates (2) (4) see (2) (3) (4); for formn. from methyl trichloroacetate on chlorination see (1).

 $\bar{C}$  with aq. decomposes to trichloroacetic acid (3:1150) + phosgene (3:5000) + HCl (2) (4).

 $\bar{C}$  with aniline yields N,N'-diphenylurea + aniline trichloroacetate + aniline hydrochloride (2).

 $\overline{C}$  with AlCl<sub>3</sub> yields hexachloroethane (3:4835) +  $\overline{CO_2}$  (5).

3:0290 (1) Anschütz, Emery, Ann. 273, 59 (1893). (2) Elbs, Kratz, J. prakt. Chem. (2) 55, 502-505 (1897). (3) Gibson, Proc. Roy. Soc. Edunburgh 44, II 140-152 (1924); C.A. 18, 3041 (1924). (4) Fichter, Fritsch, Müller, Helv. Chim. Acta 6, 506 (1933). (5) Jaeger, Cent. 1912, I 1817.

| M.P. 34° | (2) (3) (4) (5) | B.P. 273.7-273.8 | ° at 738 mm. | (7)  |
|----------|-----------------|------------------|--------------|------|
| 33°      | (6)             | 267-268°         |              | (2)  |
| 32.2     | 3° (7)          | 210-211°         | at 150 mm.   | (8)  |
| 31°      | (15)            | 165-170°         | at 28 mm.    | (3)  |
|          |                 | 154°             | at 12.5 mm.  | (15) |
|          |                 | 150-155°         | at 10 mm.    | (5)  |

Cryst. from alc. — Volatile with steam (6). — Sol. alc.,  $CCl_4$  (7); very sol.  $C_6H_6$  or pet. eth. (2).

[For prepn. (36.8% yield  $\{7\}$ ) (together with other products) from biphenyl by direct chlorination in presence of Fe or other cat. see  $\{7\}$  (2) (8) (9); for prepn. (25-38% yield (5)) from diazotized o-chloroaniline + C<sub>6</sub>H<sub>6</sub> see  $\{5\}$  (4); for prepn. (60% yield (15)) from diazotized o-aminobiphenyl via Cu<sub>2</sub>Cl<sub>2</sub> method see  $\{15\}$  (10).]

[ $\bar{C}$  with aq. 15-30% NaOH at 300-400° (16) in pres. of Cu (17), or  $\bar{C}$  with aq. Na<sub>2</sub> $\bar{C}O_3$  + Cu at 300° (12), or  $\bar{C}$  with aq. vapor over cat. at 525-560° (11), gives 2-hydroxybiphenyl (1:1440) (16) (17) (11) or its mixt. with 3-hydroxybiphenyl (1:1475) (12).]

[For reactn. of  $\tilde{C}$  with phthalic anhydride + AlCl<sub>3</sub> yielding o-[4-(2'-chlorophenyl)-benzoyl]benzoic acid, short rods from AcOH, m.p. 190° cor., see (13) (14).]

 $\tilde{C}$  (12 g.) on mononitration at 40° with a mixt. of conc. HNO<sub>3</sub> (D=1.43) (10 g.) + conc. H<sub>2</sub>SO<sub>4</sub> (15 g.) gives (25% yield (3)) (18) of 2-chloro-4'-nitrobiphenyl, cryst. from pet. ether, m.p. 74-75° (18), 73-74° (3) accompanied by (50% yield (3)) of 2-chloro-4',5'-dinitrobiphenyl (see next paragraph). [Note that only one other nitro-2-chlorobiphenyl isomer is known, viz., 2-chloro-2'-nitrobiphenyl, m.p. 71° (19), and this has been prepd. only by indirect means (19).]

 $\tilde{\mathbb{C}}$  on dinitration (see above) or 2-chloro-4'-nitrobiphenyl on further nitration with fumg. HNO<sub>3</sub> (D=1.5) at 100° for 5 min. gives (18) 2-chloro-4',5'-dinitrobiphenyl, cryst. from AcOH, m.p. 159-160° (18), 158-159° (3) (formerly erroneously regarded (3) as the 2-chloro-3',4'-dinitro isomer). [Note that two other isomeric dinitro-2-chlorobiphenyls are known, viz., 2-chloro-4,4'-dinitrobiphenyl, m.p. 153-154° (18), and 2-chloro-3,5-dinitrobiphenyl, m.p. 115-116° (20), 119° (21), but both have been obtd. only by indirect means.] [ $\tilde{\mathbb{C}}$  with Mg in evacuated hard-glass tube at 200-215° for 6 hrs. gives (32% yield (15)) o-xenyl MgCl.]

C on oxidn. with CrO<sub>3</sub> + AcOH yields (2) o-chlorobenzoic acid (3:4150), m.p. 141°.

3:0360 (1) Hale, J. Am. Chem. Soc. 54, 4458-4459 (1932). (2) Kramers, Ann. 189, 142-145 (1877). (3) Mascarelli, Gatti, Gazz. chim. ital. 63, 656-660 (1933). (4) Weissberger, Sangowald, Z. physik. Chem. B-20 155 (1933). (5) Elks, Haworth, Hey, J. Chem. Soc. 1940, 1284-1286. (6) Bell, J. Chem. Soc. 128, 2773. (7) Jenkins, McCullough, Booth, Ind. Eng. Chem. 22, 31-34 (1930). (8) Britton, Stoesser (to Dow Chem. Co.) U.S. 1,835,754, Dec. 8, 1931; Cent. 1932, I 1440; C.A. 26, 995 (1932). (9) Britton, Stoesser (to Dow Chem. Co.), U.S. 1,890,427, Dec. 6, 1932; Cent. 1933, II 2894; C.A. 27, 1642 (1933). (10) Mascarelli, Gatti, Pirona, Atti accad. Lincei (6) 14, 506-511 (1931); Cent. 1932, I 2713 [C.A. 26, 4322 (1932)].

(11) Booth (to Swann Research, Inc.), U.S. 1,925,367, Sept. 5, 1933; Cent. 1934, I 128 [C.A. 27, 5342 (1933)]. (12) Britton (to Dow Chem. Co.), U.S. 1,959,283, May 15, 1934; Cent. 1934, II 1688; C.A. 28, 4433 (1934). (13) Groggins, Ind. Eng. Chem. 22, 622-623 (1930). (14) Groggins, U.S. 1,786,526-1,786,529, Dec. 30, 1930; Cent. 1931, II 3157-3158. (15) Zaheer, Faseeh, J. Indian Chem. Soc. 21, 27-28 (1944); C.A. 39, 291 (1945). (16) du Pont Co., Brit. 496,319, March 22, 1934; Cent. 1934, I 3801 [C.A. 28, 4745 (1934)]. (17) Britton (to Dow Chem. Co.), U.S. 1,996,744, April 9, 1935; Cent. 1935, II 1962 [C.A. 29, 3354 (1935)]. (18) Case, J. Am. Chem. Soc. 65, 2137-2138 (1943). (19) Mascurelli, Gatti, Atti accad. Lincei (6) 13, 887-892 (1931); Cent. 1931, II 2605; not in C.A. (20) Bradsher. Amore, J. Am. Chem. Soc. 66, 1283-1284 (1944). (21) Borsche, Scholten, Ber. 50, 602-603 (1917).

# 3: 0310 m-XYLYLENE (DI)CHLORIDE $(\omega,\omega'\text{-Dichloro-}m\text{-xylene})$ CH<sub>2</sub>Cl $C_8H_8Cl_2$ Beil. V - 373 V<sub>1</sub>— V<sub>2</sub>—(291) .

M.P. 34.2° (1) B.P. 250-255° (1) 32-34° (4)

Cryst. which show remarkable ability to supercool without solidification. — Č sublimes. — Sol. in alc., ether, CHCl<sub>3</sub>, pet. eth.

[From prepn. from m-xylyleneglycol + boilg. conc. HCl see (1); from m-xylene (1:7420) + PCl<sub>5</sub> at 190° see (2); for formn. of  $\bar{C}$  (3%) during chloromethylation of benzyl chloride (3:8535) see (4).]

 $\bar{C}$  on htg. with K phthalimide yields (3) N,N'-m-xylylenediphthalimide [Beil. XXI-496], white ndls. from AcOH, m.p. 237° (3).

3:0310 (1) Colson, Ann. chim. (6) 6, 113-114 (1885). (2) Colson, Gauthier, Ann. chim. (6) 11, 23 (1887). (3) Posner, Schreiber, Ber. 57, 1137 (1924). (4) Kulka, Can. J. Research 23-B, 107 (1945).

3: 0320 1,2-DICHLORONAPHTHALENE 
$$C_{10}H_6Cl_2$$
 Beil. V - 542  $V_{1^-}$  (262)  $C_1$   $C_1$   $C_2$   $C_2$   $C_3$   $C_4$   $C_4$   $C_4$   $C_5$   $C_4$   $C_5$   $C_6$   $C_7$   $C_8$   $C_8$   $C_9$   $C_9$ 

M.P. B.P. 35° (1) 295–298° (5) 
$$D_4^{48.5} = 1.3147$$
 (6)  $n_D^{48.5} = 1.63375$  (6) (2) (10) 151–153° at 19 mm. (6) 34–35° (3) (4) 34° (7) (8) 33–34° (5)

Colorless cryst. from alc. (4). — Volatile with steam (2).

[For prepn. of  $\bar{C}$  from 2-chloronaphthalenesulfonyl chloride-1 on distn. with excess PCl<sub>5</sub> (1) or on htg. with 3 moles PCl<sub>5</sub> at 160–165° for 5 hrs. (36% yield (5)); from 2-amino-1-chloronaphthalene (3) (4) or 2-amino-1-nitronaphthalene (2) via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> see indic. refs.; from 1-chloronaphthol-2 (3:1700) by htg. with PCl<sub>5</sub> see (8); from potassium 7,8-dichloronaphthalenesulfonate-2 + H<sub>3</sub>PO<sub>4</sub> on distn. with superheated steam see (7).]

[ $\bar{C}$  on nitration with a mixt. of equal pts. fumg. HNO<sub>3</sub> (D=1.45) + conc. H<sub>2</sub>SO<sub>4</sub> gives (9) 1,2-dichloro-x,y-dinitronaphthalene, pale yel. ndls. from hot AcOH, m.p. 169.5° (9).]

[C on monosulfonation with ClSO<sub>3</sub>H in CS<sub>2</sub> yields (10) a mixt. of 1,2-dichloronaphthalene-sulfonic acid-5 [Beil. XI-163] (corresp. sulfonyl chloride, m.p. 106°, corresp. sulfonamide, m.p. 217°) and 1,2-dichloronaphthalenesulfonic acid-6 [Beil. XI-182] (corresp. sulfonyl chloride, m.p. 167°, corresp. sulfonamide, m.p. 190°.]

C on oxidn. with CrO<sub>3</sub>/AcOH yields (9) 5,6-dichloronaphthoquinone-1,4 [Beil. VII-730], yel. ndls., m.p. 181° (9).

3:0320 (1) Armstrong, Wynne, Chem. News 73, 55 (1896). (2) Clemo, Cockburn, Spence, J. Chem. Soc. 1931, 1272. (3) Cleve, Ber. 20, 1991 (1887). (4) Weissberger, Sängewald, Hampson, Trans. Faraday Soc. 30, 890 (1934). (5) Beattie, Whitmore, J. Am. Chem. Soc. 55, 1546-1548 (1933). (6) von Auwers, Frühling, Ann. 422, 194, 200 (1921). (7) Cleve, Ber. 25, 2489 (1892). (8) Cleve, Ber. 21, 896 (1888). (9) Hellström, Ber. 21, 3268-3269 (1888). (10) Armstrong, Wynne, Chem. News 60, 58 (1889); 61, 274 (1890).

3: 0330 CINNAMOYL CHLORIDE 
$$C_9H_7OCl$$
 Beil. IX - 587 IX<sub>1</sub>-(233)

M.P. B.P. 36° (1) (2) 257.5° at 760 mm. (2)  $D_4^{45.3} = 1.1617$  (15)  $n_D^{42.5} = 1.61364$  (15) (5) (6) 170-171° at 58 mm. (9)  $D_-^{37.6} = 1.1632$  (7) (9) 154° u.c. at 25 mm. (6)  $n_D^{37.6} = 1.6202$  (7) 35° (7) (14) 131° at 20 mm. (15) 34° (8) 147° at 16 mm. (10) 136-137° at 15 mm. (3) (5) 130° at 14 mm. (11) 130° at 12 mm. (4) (12) 136° at 11 mm. (13) 131° at 11 mm. (14) 127.3-127.6° at 8 mm. (15) 101° at 8 mm. (15) 101° at 2 mm. (16)

58

White cryst., sol. in CCl<sub>4</sub> and in pet. eth. — Note that the name cinnamoyl chloride avoids confusion with cinnamyl chloride, C<sub>6</sub>H<sub>5</sub>.CH=CH.CH<sub>2</sub>Cl (3:0010).

[For prepn. of  $\bar{C}$  from cinnamic acid (1:0735) with PCl<sub>5</sub> (86% yield (17)) (9) (18), with PCl<sub>3</sub> (19) (15) (6), with PCl<sub>3</sub> + ZnCl<sub>2</sub> (86% yield (17)), with SOCl<sub>2</sub> alone (yields: 98% (17), 90–95% (13), 89% (11)) (62) (1) (2) (16) or in CCl<sub>4</sub> (80% yield (3)), with COCl<sub>2</sub> (3:5000) in pres. of tertiary bases (20), with p-toluenesulfonyl chloride in pyridine or diethylaniline (21), see indic. refs.; from sodium salt of cinnamic acid (1:0735) with oxalyl (di)chloride (3:5060) in C<sub>6</sub>H<sub>6</sub> (75–90% yield) see (22).]

[ $\bar{C}$  in CCl<sub>4</sub> with Cl<sub>2</sub> in dark gives (5) an oily prod. which with aq. hydrolyzes to a mixt. of cinnamic acid dichloride [Beil. IX-514, IX<sub>1</sub>-(200)], m.p. 167°, and allocinnamic acid dichloride [Beil. IX-514], m.p. 84°;  $\bar{C}$  in CCl<sub>4</sub> with Cl<sub>2</sub> in direct sunlight, however, yields (5)  $\alpha,\beta$ -dichloro- $\beta$ -phenylpropionyl chloride (the acid chloride of cinnamic acid dichloride), ndls. from pet. eth., m.p. 54-55° (5), 55° (23).]

[Č is not reduced by copper hydride (24) but on cat. hydrogenation as directed (25) (26) yields cinnamaldehyde (1:0245).] [Č with KCN + quinoline gives (34% yield (57)) 1-cinnamoyl-2-cyano-1,2-dihydroquiroline which on acid hydrolysis yields 30% cinnamaldehyde (1:0245).]

[ $\bar{C}$  with 5%  $H_2O_2$  in acetone + pyridine yields (27) di-cinnamoyl peroxide, m.p. 144° (27).]

[C with anhydrous neutral K oxalate (28), or with dil. aq. KOH + methylaniline or dimethylaniline (29) or with pyridine (30), or with excess  $K_2S_2O_5$  in pyridine (31), or with Na cinnamate (6), yields cinnamic anhydride [Beil. IX-586, IX<sub>1</sub>-(232)], ndls. from  $C_6H_5$  or alc., m.p. 136° (30).] — [ $\bar{C}$  with aq. under certain conditions yields cinnamic anhydride + HCl (for use in micro detn. of aq. (2), or indirectly for micro detn. of  $O_2$  (after combustion), see (4) (32)).]

[For reactn. of  $\bar{C}$  with diethyl malonate (1 mole) + Na (2 moles) see (33); for reactn. of  $\bar{C}$  with ethyl sodio-acetoacetate giving (60% yield (10)) (34) ethyl  $\alpha$ -cinnamoylacetoacetate, m.p. 44° (10) (Cu enolate, m.p. 164° (10)), with methyl sodio-acetoacetate giving (35) methyl  $\alpha$ -cinnamoylacetoacetate, m.p. 49-50° (35), with ethyl sodio-benzoylacetate giving (10) ethyl cinnamoyl-benzoyl-acetate (Cu enolate, m.p. 202° (10)), or with sodio-benzoylacetone giving (36) benzoyl-cinnamoyl-methane, m.p. 111° u.c. (36), see indic. refs.]

[ $\bar{C}$  with  $C_6H_6+AlCl_3$  in  $CS_2$  gives (37) (38) (39) (41) (by combined ring closure and addition to the unsatd. linkage or vice versa) 3-phenylhydrindone-1 (3-phenylindanone-1) [Beil. VII-483, VII<sub>1</sub>-(265)], cryst. from MeOH, m.p. 78° (37), 77-78° (39) (oxime, m.p. 141° (40), phenylhydrazone, m.p. 130° (40), p-nitrophenylhydrazone, m.p. 220-221° (39), semicarbazone, m.p. 223-225° (39)), accompanied by  $\beta$ , $\beta$ -diphenyl-propiophenone (1,3,3-triphenylpropanone-1 [Beil. VII-524, VII<sub>1</sub>-(293)] (38) and other prods.: note that under similar conds. (41) with toluene or o-xylene neither of the corresp. indanones is formed (see also below); however,  $\bar{C}$  + m-xylene + AlCl<sub>3</sub> in  $CS_2$  yields (41) 5,7-dimethyl-3-phenylindanone-1, m.p. 101° (semicarbazone, m.p. 195-197° (41)), and  $\bar{C}$  + p-xylene + AlCl<sub>3</sub> in  $CS_2$  yields (41) 4,7-dimethyl-3-phenylindanone-1, m.p. 94-95° (oxime, m.p. 218-219°; phenylhydrazone, m.p. 193-194°; semicarbazone, m.p. 232° (41)).]

[ $\bar{C}$  with many arom. cpds. in pres. of AlCl<sub>3</sub> condenses with loss of HCl to yield corresp. benzalacetophenone (chalcone) derivs.:  $\bar{C}$  with  $C_6H_6$  + AlCl<sub>3</sub>, however, gives no (41) chalcone (see above);  $\bar{C}$  with toluene + AlCl<sub>3</sub> yields (41) 4'-methylchalcone, m.p. 76° (41);  $\bar{C}$  with o-xylene + AlCl<sub>3</sub> in CS<sub>2</sub> gives (63% yield (41)) 3',4'-dimethylchalcone, m.p. 72-73° (41);  $\bar{C}$  with m-xylene + AlCl<sub>3</sub> in CS<sub>2</sub> yields (41) 2',4'-dimethylchalcone, oil, b.p. 218-219° at 11 mm. (41);  $\bar{C}$  with biphenyl + AlCl<sub>3</sub> in CS<sub>2</sub> gives (78% yield (45)) (11) 4'-phenylchalcone, m.p. 155-156° (45), 165° (11).]

[Similar chalcone formation occurs with many arom. ethers; e.g.,  $\bar{C}$  with anisole + AlCl<sub>3</sub> in CS<sub>2</sub> gives (42) 4'-methoxychalcone [Beil. VIII-193, VIII<sub>1</sub>-(580)], m.p. 106-107° (42);  $\bar{C}$  similarly with phenetole gives (42) 4'-ethoxychalcone [Beil. VIII-193], m.p. 74-75° (42);  $\bar{C}$  similarly with methyl p-tolyl ether gives (43) not only 2'-methoxy-5'-methylchalcone, m.p. 55-56°, but also by demethylation 2'-hydroxy-5'-methylchalcone, m.p. 111° (43);  $\bar{C}$  similarly with methyl 3,4-dimethylphenyl ether yields (13) 4',5'-dimethyl-2'-methoxychalcone, m.p. 78° (13);  $\bar{C}$  similarly with methyl  $\beta$ -naphthyl ether yields (44)  $\beta$ -methoxynaphthochalcone, m.p. 138-140° (44);  $\bar{C}$  similarly with diphenyl ether yields (37) 4'-phenoxychalcone, m.p. 85° (37); for extension of this reactn. to ethers of polyhydric phenols such as  $\bar{C}$  + AlCl<sub>3</sub> + catechol dimethyl ether (veratrole) (1:7560) (44), resorcinol dimethyl ether (1:7570) (13), resorcinol diethyl ether (1:7585) (13) (43), hydroquinone diethyl ether (1:7185) (43), and pyrogallol trimethyl ether (1:7145) (44) see indic. refs.]

[Similar formation of substituted chalcones occurs with  $\bar{C} + AlCl_3 + phenols$ ; e.g., for cases of  $\bar{C}$  with o-cresol (1:1400) (46), resorcinol (1:1530) (47), phloroglucinol (1:1620) (47) cf. (48) see indic. refs.]

[ $\bar{C}$  with diazomethane in ether gives (49) (50) (note both replacement of Cl and addn. to unsatd. linkage) 5-(diazoacetyl)-4-phenylpyrazoline, cryst. from  $C_6H_6$  + pet. eth.; m.p. 80-81° (49), 77-78° (50).]

 $[\bar{C} + \text{NaN}_3]$  in ether gives (12% yield (51)) (52) cinnamoyl azide, cryst. from lgr., m.p. 86° dec. (51) (52); this cpd. on htg. above m.p. or preferably in  $C_6H_6$  readily loses  $N_2$  and rearr. giving (77% yield (53)) (51) (52) styryl isocyanate, b.p. 107° at 12 mm.; this isocyanate (or even its azide precursor) with aq. at 50° yields (51)  $N_iN'$ -distyrylurea, m.p. 213–214° (51); for its reactn. with MeOH yielding (52) methyl N-styrylcarbamate, m.p. 126°, with EtOH yielding (52) ethyl N-styrylcarbamate, m.p. 87°, with ammonia gas in dry ether yielding (51) N-styrylurea, m.p. 143°, or with aniline yielding (52) N-phenyl-N-styrylurea, m.p. 217°, see indic. refs.]

[ $\bar{C}$  with free NH<sub>2</sub>OH in C<sub>6</sub>H<sub>6</sub> gives (100% yield (16)) cinnamoylhydroxamic acid, cryst. from hot EtOAc by addn. of lgr., m.p. 119.5° (16), 111.5° (54).]

[ $\bar{C}$  htd. with urea at 70° gives (44% yield (55)) (56) N-cinnamoylurea, m.p. 208–209° (55), 197° (56).]

[For reactn. of  $\bar{C}$  with  $C_6H_5MgBr$  see (58); for reactn. of  $\bar{C}$  with cellulose see (59); for reactn. with o-aminothiophenol yielding 1-styrylbenzothiazole see (60); for reactn. of  $\bar{C}$ 

with m-aminobenzoic acid and ring closure of intermediate m-(cinnamoylamino)benzoic acid to 1-(N),9-pyridanthrone-2', m.p. 408°, see (61).]

[C with MeOH yields methyl cinnamate (1:2090), m.p. 36°; C with EtOH yields ethyl cinnamate (1:4206), b.p. 271°; C with phenol (1:1420) gives (63-75% yield (62)) phenyl cinnamate, cryst. from 95% alc., m.p. 75-76° (62).]

 $\bar{\mathbf{C}}$  on hydrolysis yields cinnamic acid (1:0735), m.p. 133°; for the amide, anilide, p-toluidide, and other derivs. corresp. to  $\bar{\mathbf{C}}$  see cinnamic acid (1:0735). [For reaction of  $\bar{\mathbf{C}}$  with piperidine giving 93% yield cinnamopiperidide, m.p. 122°, or with morpholine giving 99% yield cinnamomorpholide, m.p. 94°, see (63).]

3:0330 (1) Meyer, Monatsh. 22, 428 (1901). (2) van Nieuwenberg, Mikrochim. Acta 1, 71-74 (1937). (3) Bergs, Wittfeld, Frank, Ber. 67, 1621 (1934). (4) LaCourt, Compt. rend. 205, 280-282 (1937). (5) Michael, Smith, Am. Chem. J. 39, 26 (1908). (6) Liebermann, Ber. 21, 3372-3373 (1888). (7) Koehl, Wenzke, J. Am. Chem. Soc. 59, 1418 (1937). (8) Kohlrausch, Pongratz, Monatsh. 64, 383 (1934). (9) Claisen, Autweiler, Ber. 13, 2124 (1880). (10) Borsche, Peter, Ann. 453, 153-156 (1927).

(11) Bergmann, Wolff, J. Am. Chem. Soc. 54, 1646-1647 (1932). (12) Benary, Reiter, Soenderop, Ber. 50, 75, Note 3 (1917). (13) von Auwers, Risse, Ber. 64, 2220-2222 (1931). (14) Rupe, Ann. 369, 318 (1909). (15) von Auwers, Schmidt, Ber. 46, 483 (1913). (16) Jones, Mason, J. Am. Chem. Soc. 49, 2534 2535 (1927). (17) Clark, Bell, Trans. Roy. Soc. Can. (3) 27, III 97-103 (1933). (18) Rostoski, Ann. 178, 214 (1875). (19) Griffin, Nelson, J. Am. Chem. Soc. 37, 1563 (1915). (20) Soc. Chem. Ind. Basel, Brit. 401,643, Dec. 14, 1933; Cent. 1934, II 2133: French 732,078. Sept. 13, 1932; Cent. 1934, I 287.

(21) Ullmann, Nadai, Ber. 41, 1871 (1908). (22) Adams, Uhlich, J. Am. Chem. Soc. 42, 606 (1920). (23) Clarke, J. Chem. Soc. 97, 892-893 (1910). (24) Neunhoeffer, Nordel, J. prakt. Chem. (2) 144, 63-66 (1935). (25) Rosenmund, Zetsche, Ber. 56, 1483-1484 (1923). (26) Zetsche, Swiss 92,404, Jan. 2, 1922; Cent. 1922, IV 889. (27) Gelissen, Ger. 480,362, Aug. 7. 1929; Dutch 14,663, June 15, 1926; Cent. 1929, II 2831. (28) Gerhardt, Ann. 87, 76 (1853). (29) Edeleanu, Zaharia, Bul. Chim. Soc. Română Stiinte 3, 83 (1900). (30) Wedekind, Ber. 34, 2074-2075 (1901).

(31) Gazopoulos, Praktika 6, 347-353 (1931); Cent. 1932, I 3172; C.A. 27, 3204 (1933). (32) LaCourt, Bull. soc. chim. Belg. 46, 428-433 (1937). (33) Lampe, Milobedzka, Ber. 46, 2237-2238 (1913). (34) Fischer, Kuzel, Ber. 16, 166-167 (1883). (35) Lampe, Blenderowna, Bluman, Roczniki Chem. 17, 216-225 (1937); Cent. 1937, II 2988. (36) Hiemesch, Ber. 47, 116 (1914). (37) Kohler, Heritage, Burnley, Am. Chem. J. 44, 64-66 (1910). (38) McKenzie, Barrow, J. Chem. Soc. 119, 72-73 (1921). (39) von Auwers, Auffenberg, Ber. 52, 110-111 (1919). (40) Liebermann, Hartmann, Ber. 25, 2128-2129 (1892).

(41) von Auwers, Risse, Ann. 502, 290-299 (1933). (42) Stockhausen, Gattermann, Ber. 25, 3535-3537 (1892). (43) Simonis, Lear, Ber. 59, 2911-2912 (1926). (44) Monti, Gazz. chim. ital. 60, 45-48 (1930). (45) Bachmann, Wiselogle, J. Am. Chem. Soc. 56, 1559 (1934). (46) Neurath, Monatsh. 27, 1148-1149 (1906). (47) Shinoda, Sato, J. Pharm. Soc. Japan 48, 109-114 (1928); Cent. 1928, II 1885. (48) K. W. Rosenmund, M. Rosenmund, Ber. 61, 2611 (1928). (49) Grundmann, Ann. 524, 35, 48 (1936). (50) Bradley, Schwarzenbach, J. Chem. Soc. 1928, 2909.

(51) Jones, Mason, J. Am. Chem. Soc. 49, 2531-2532 (1927).
(52) Forster, J. Chem. Soc. 95, 437-438 (1909).
(53) Nelles, Ber. 65, 1347 (1932).
(54) Thiele, Pickard, Ann. 309, 194 (1899).
(55) Jerzmenowska-Sienkiewiczowa, Roczniki Chem. 15, 510-515 (1935); Cent. 1936, I 2554;
C.A. 30, 2933 (1936).
(56) Clark, Moore, MacArthur, Trans. Roy. Soc. Can. (3) 28, III
199 (1934); Cent. 1935, II 45; C.A. 29, 1078 (1935).
(57) Sugasawa, Tsuda, J. Pharm. Soc. Japan
58, 103-105 (1936); Cent. 1938, II 3670; C.A. 32, 5836 (1938).
(58) Kohler, Heritage, Am. Chem. J. 33, 30-31 (1905).
(59) von Frank, Mendrzyk, Ber. 63, 875-887 (1930).
(60) Mills, Whitworth, J. Chem. Soc. 1927, 2748.

(61) Seka, Ber. 58, 1778-1781 (1925). (62) Womack, McWhirter, Org. Syntheses 20, 77-78 (1940). (63) Cromwell, Caughlan, J. Am. Chem. Soc. 67, 904 (1945).

3: 0340 p-CHLOROPHENYL ETHYL KETONE C<sub>9</sub>H<sub>9</sub>OCl Beil. VII - 301 (4-Chloropropiophenone) Cl CO.CH<sub>2</sub>.CH<sub>3</sub>

Insol. aq.; sol. alc., ether, CS<sub>2</sub>, and most org. solv. — Cryst. from abs. alc. at  $-15^{\circ}$  (1). [For prepn. from propionyl chloride (3:7170) (2) (81% yield (4)) or propionic anhydride (1:1100) (1) + chlorobenzene + AlCl<sub>3</sub> see (1) (2) (4); for prepn. from p-chloro- $\alpha$ -methoxystyrene (68% yield (3)) by htg. in s.t. 2 hrs. at 300° see (3).

 $\bar{\mathbb{C}}$  on treatment with *n*-butyl nitrite + dry HCl gas in ether (1) (4) gives (83% yield (4)) 4-chloro-isonitrosopropiophenone, ndls. from dil. alc., m.p. 122-123° (4); 114° (1).  $[\bar{\mathbb{C}} + \text{NaOEt}]$  in abs. alc. + *n*-butyl nitrite yields (1) only *p*-chlorobenzoic acid (3:4940), m.p. 243° (1).]

- D p-Chloropropiophenone oxime: from  $\ddot{\textbf{C}}$  + hot alc. NH<sub>2</sub>OH soln. (2); lfts., m.p. 62-62.5° (2).
- D p-Chloropropiophenone semicarbazone: ndls., m.p. 175-176° (3).

3:0340 (1) Edkins, Linnell, Quart. J. Pharm. Pharmacol. 9, 203-229 (1936); Cent. 1937, I 4781; C.A. 30, 6724 (1936). (2) Collet, Compt. rend. 126, 1577 (1898). (3) Lauer, Spielman, J. Am. Chem. Soc. 55, 4928 (1933). (4) Hartung, Munch, Crossley, J. Am. Chem. Soc. 57, 1091 (1935).

3: 0350 3,5-DICHLOROBENZYL CHLORIDE  $C_7H_5Cl_3$  Beil. S.N. 466 Cl —  $CH_2Cl$ 

M.P. 36° (1)

Cryst. from MeOH (1); note that  $\tilde{\mathbf{C}}$  has same m.p. as 3,5-dichlorobenzal dichloride (3:0370), but the m.p. of a mixture of the two is depressed (1).

[For prepn. of C from 3,5-dichlorobenzyl alc. with PCl<sub>5</sub> (91% yield) see (1).]

3:0350 (1) Asinger, Lock, Monatsh. 62, 347 (1933).

3: 0360 3,5-DICHLOROBIPHENYL Cl  $C_{12}H_8Cl_2$  Beil. V  $V_1-V_{2^-}$  (484)

M.P. 36° (1) B.P. 180° at 15 mm. (2) 166° at 10 mm. (1)

[For prepn. from 5-phenyl-4,5-dihydroresorcinol [Beil. VII-706] by conversion with  $PCl_5$  in CHCl<sub>3</sub> to 3,5-dichloro-1-phenylcyclohexadiene-2,4, colorless oil, b.p. 156° at 10 mm. (1), which in CHCl<sub>3</sub> on treatment with Cl<sub>2</sub> first adds 2Cl<sub>2</sub>, then splits off 2HCl to yield  $\tilde{C}$ , see (1); for prepn. from 3,5-dichloro-2-aminobiphenyl via replacement of  $-NH_2$  by -H via diazo reactn. see (2)

 $\bar{C}$  (5 g.) in AcOH (12 ml.) on nitration with mixt. (50 ml.) of equal vols. fumg. HNO<sub>3</sub> + AcOH yields (1) mainly 3,5-dichloro-4'-nitrobiphenyl, pale yel. ndls. from alc., m.p. 146° (1), accompanied by a smaller amt. of 3,5-dichloro-2'-nitrobiphenyl, ndls., m.p. 75° (1).

 $\tilde{C}$  on oxidn, with  $CrO_3$  + AcOH yields (1) (2) 3,5-dichlorobenzoic acid (3:4840), m.p. 183° (1), 188° (2).

3:0360 (1) Hinkel, Hey, J. Chem. Soc. 1928, 2786-2791, (2) Scarborough, Waters, J. Chem. Soc. 1927, 93.

## M.P. 36.5° (1)

Colorless cryst, from MeOH or from dil, AcOH; eas, sol, usual org, solv. [Note that C has same m.p. as the closely related 3,5-dichlorobenzyl chloride (3:0350) but that a mixture of the two becomes liquid.

[For prepn. of C from 3,5-dichlorobenzaldehyde (3:1475) with PCl<sub>5</sub> (80% yield) see (1).1

 $\bar{C}$  on hydrolysis with fumg.  $H_2SO_4$  as directed gives (71-80% yield (1)) 3,5-dichlorobenzaldehyde (3:1475) (for study of rate of hydrol. in 50% alc. at 83.5° see (2)).

3:0370 (1) Asinger, Lock, Monatsh. 62, 347 (1933). (2) Asinger, Lock, Monatsh. 62, 337-338 (1933).

3: 0372 2,4,6-TRIMETHYLBENZYL CHLORIDE 
$$C_{10}H_{13}Cl$$
 Beil. S.N. 469  $(\alpha^2$ -Chloroisodurene)  $CH_3$   $CH_2Cl$ 

114-115° at 10 mm. (3)

[See also the isomeric 2,4,5-trimethylbenzyl chloride (3:9702).]

Colorless cryst. from alc. (4). — C blisters skin (3). — [Equiv. conductance of C in liq. SO<sub>2</sub> is 10 times that of benzyl chloride (3:8535) (3) cf. (5).]

#### PREPARATION OF C

[For prepn. of C from 1,3,5-trimethylbenzene (mesitylene) (1:7455) with formalin  $(1:0145) + \text{conc. HCl} + \text{HCl gas at } 55^{\circ} \text{ for } 5\frac{1}{2} \text{ hrs. (yields: } 55-61\% \text{ (1), } 29\% \text{ (3)) (some)}$  $\alpha^2$ ,  $\alpha^4$ -dichloropentamethylbenzene = bis-1,3-(chloromethyl)2,4,6-trimethylbenzene, cryst. from pet. eth., m.p. 105° (1) (3), is also formed) see indic. refs.]

[For prepn. of C from mesitylene (1:7455) with chloromethyl methyl ether (3:7085) + SnCl<sub>4</sub> (yields: 60% (4) cf. (6)), or in AcOH without other cat. (yields: 80-85% (7), 80% (2)), or with chloromethyl ethyl ether (3:7195) + SnCl<sub>4</sub> in CCl<sub>4</sub> soln. at  $-5^{\circ}$  (70% yield (8)), see indic. refs.]

#### CHEMICAL BEHAVIOR OF C

**Reduction.** [ $\overline{C}$  with  $H_2$  + Pt cat. in alc. soln. gives (80% yield (2) cf. (7)) 1,2,3,5tetramethylbenzene (isodurene) [Beil. V-430, V<sub>2</sub>-(329)] (9), liquid, b.p. 195-197° at 760 mm., f.p.  $-24^{\circ}$ ,  $D_4^{20} = 0.8906$ .]

Hydrolysis. C on hydrolysis (no details (2)) gives 2,4,6-trimethylbenzyl alc. (mesitylcarbinol), ndls. from alc., m.p. 89° (2), 88-89° (10) (3) (11), 87° (12) (corresp. N-phenylcarbamate, m.p. 124-125° (11)).

Conversion to ethers. [C with MeOH/KOH at 100° for 3 hrs. gives (79% yield (3)) methyl 2,4,6-trimethylbenzyl ether, oil, b.p. 109-110° at 15 mm. (3); C with EtOH/KOH similarly gives (77% yield (3)) ethyl 2,4,6-trimethylbenzyl ether, oil, b.p. 114-115° at 14 mm. (3).]

Conversion to esters. [C with AgOAc in AcOH at 100° for 3 hrs. gives (70% yield (3)) 2,4,6-trimethylbenzyl acetate, oil, b.p. 136-137° at 15 mm. (3); this ester on hydrolysis with 15% aq. KOH at 100° for 3 hrs. gives (91% yield (3)) 2,4,6-trimethylbenzyl alc., m.p. 88-89°. (See also above.)]

Conversion to nitrile.  $\bar{C}$  in alc. with aq. NaCN (1) (13) or KCN (4) (8), or C with CuCN in pyridine (14) cf. (1), gives (yields: almost 100% (13), 89-93% (1)) mesitylacetonitrile, cryst. from pet. eth., m.p. 79-80° (1), 79° (4); b.p. 160-165° at 22 mm. (13), 150-155° at 15 mm. (4), 190° at 11 mm. (8); this nitrile on hydrolysis with abt. 50% H<sub>2</sub>SO<sub>4</sub> under reflux for 6 hrs. gives (87% yield (1)) mesitylacetic acid [Beil. IX-563, IX<sub>1</sub>-(219)], cryst. from dil. alc. or lgr., m.p. 167-168° (1) (note that partial hydrolysis may give mesitylacetamide, m.p. 216° (8)).

# BEHAVIOR OF C WITH ORGANOMETALLIC COMPOUNDS

With MeMgI. [C with MeMgI in dry ether undergoes mainly a coupling reaction giving (86% yield (15)) 1,2-dimesitylethane, m.p. 117.0-117.5°, accompanied by a little ethylmesitylene (1-ethyl-2,4,6-trimethylbenzene), b.p. 212-214° (15), 210° at 725 mm. (16),  $D_{20}^{20} = 0.894$  (16),  $n_{1}^{20} = 1.5074$  (16) (corresp. dinitro deriv., m.p. 111° (17), 109-111° (17) (15)).]

With misc. reactants. [ $\bar{C}$  with diethyl sodiomalonate gives (4) diethyl  $\alpha$ -(2,4,6-trimethylbenzyl)malonate, m.p. 36°, b.p. 195–197° at 15 mm. (4). —  $\bar{C}$  with ethyl sodiobenzoylacetate gives (21% yield (18)) ethyl  $\alpha$ -(2,4,6-trimethylbenzyl)benzoylacetate which upon alk. hydrolysis gives (45% yield (18)) the ketone 1-benzoyl-2-mesitylethane, ndls. from MeOH, m.p. 85.0–85.5° (18).]

## OTHER REACTIONS OF C

[C (1 mole) with hexamethylenediamine (1 mole) in CHCl<sub>3</sub> refluxed 3 hrs. gives (96% yield (19)) corresp. quaternary salt, C.C<sub>6</sub>H<sub>12</sub>N<sub>4</sub>: this prod. in aq. refluxed 4 hrs. does not give the expected mesitaldehyde but instead (75% yield (19)) di-(2,4,6-trimethylbenzylamino)methane, cryst. from alc., m.p. 151.5-152° (19).

N-(2,4,6-Trimethylbenzyl)phthalimide: ndls. from alc., m.p. 209.5-210° (19). [From C with K phthalimide at 170-180° for 4 hrs. as directed (19) (63% yield (19)).]

3:0372 (1) Fuson, Rabjohn, Org. Syntheses 25, 65-68 (1945).
 (2) Vavon, Bolle, Calin, Bull. soc. chim. (5) 6, 1025-1033 (1939).
 (3) Nauta, Dienske, Rec. trav. chim. 55, 1000-1006 (1936).
 (4) Hoch, Compt. rend. 192, 1465-1466 (1931).
 (5) Nauta, Wuis, Rec. trav. chim. 56, 540 (1937).
 (6) Sommelet, Compt. rend. 157, 1443 (1913).
 (7) Vavon, Bolle, Compt. rend. 204, 1826-1828 (1937).
 (8) Sordes, Compt. rend. 195, 248-249 (1932).
 (9) Smith, Org. Syntheses, Coll. Vol. 2 (1st ed.), 360-362 (1943); 11, 66-69 (1931).
 (10) Fuson, Southwick, Rowland, J. Am. Chem. Soc. 66, 1112 (1944).

(11) Carre, Bull. soc. chim. (4) 7, 842-843 (1910). (12) Bock, Lock, Schmidt, Monatsh, 64, 412 (1934). (13) Fuson, Corse, McKeever, J. Am. Chem. Soc. 62, 3250 (1940). (14) Newman, J. Am. Chem. Soc. 59, 2472 (1937). (15) Fuson, Denton, Kneisley, J. Am. Chem. Soc. 63, 2652-2653 (1941). (16) Smith, Kiess, J. Am. Chem. Soc. 61, 285-286 (1939). (17) Smith, Kiess, J. Am. Chem. Soc. 61, 995-996 (1939). (18) Fuson, Ullyott, Hickson, J. Am. Chem. Soc. 61, 410-411 (1939). (19) Fuson, Denton, J. Am. Chem. Soc. 63, 654-656 (1941).

64

#### 3:0375 14-CHLOROTETRADECANOL-1

C<sub>14</sub>H<sub>29</sub>OCl Beil. S.N. 24

 $(\omega$ -Chloro-n-tetradecyl

CH2.(CH2)12.CH2OH alcohol; ω-chloromyristyl alcohol)

#### M.P. 37-38° (1) B.P. 156-160° at 4 mm. (1)

Colorless cryst.

[For prepn. of  $\bar{C}$  from  $\alpha, \omega$ -tetradecamethylene glycol [Beil. I<sub>2</sub>-(564)] (m.p. 85°) with SOCl<sub>2</sub> + dimethylaniline in C<sub>6</sub>H<sub>6</sub> (43% yield) or by htg. with conc. HCl (32% yield) see (1); note that by the first method a little 1,14-dichlorotetradecane, cryst. from MeOH, m.p. 40°, is also formed.]

14-Chlorotetradecyl N-phenylcarbamate: lfts. from lt. pet., m.p. 68° (1).

3:0375 (1) Bennett, Gudgeon, J. Chem. Soc. 1938, 1679-1681.

3:0380 2,4,6-TRICHLOROTOLUENE

M.P. 38° (1) 34° (7) 33-34° (2)(3)31.9-32° (4)

Colorless ndls. from alc. (2); eas. volatile with steam (2).

[For prepn. of C from 2,4,6-trichloro-3-aminotoluene [Beil. XII-873] via diazotization and reaction with alc. see (2) (1) (4) (7); from 6-chloro-2,4-diaminotoluene via tetrazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reaction see (3).] .

[C with Cl<sub>2</sub> in pres. of Al/Hg yields (5) 2,3,4,6-tetrachlorotoluene (3:2480), m.p. 89° (5), but  $\bar{C}$  with  $Cl_2$  at 200° gives (82% yield (7)) 2,4,6-trichlorobenzal dichloride (3:0142).]

C on mononitration with cold fumg. HNO3 yields (2) (1) (6) 2,4,6-trichloro-3-nitrotoluene [Beil. V-333], ndls. from AcOH + EtOH (2) or dil. AcOH (6), m.p. 54° (2) (6), 50° (1); Č on dinitration (2) yields 2,4,6-trichloro-3,5-dinitrotoluene, cryst. from AcOH, m.p. 178-180° (2).

C on oxidn. with dil. HNO<sub>3</sub> readily yields (2) 2,4,6-trichlorobenzoic acid (3:4545), m.p. 160-161° (2).

3:0380 (1) Bureš, Trpišovska, Časopis Českoslov. Lékárnictva 15, 179-186 (1935); Čent. 1936, I 1209; C.A. 30, 1753 (1936). (2) Cohen, Dakin, J. Chem. Soc. 81, 1335-1336 (1902). (3) Morgan, Drew, J. Chem. Soc. 117, 786 (1920). (4) Maryott, Hobbs, Gross, J. Am. Chem. Soc. 62, 2321 (1940). (5) Cohen, Dakin, J. Chem. Soc. 85, 1284-1285 (1904). (6) Bureš, Trpišovska, Casopis Ceskoslov. Lékárnictva 17, 185-195 (1937); Cent. 1938, I 872; C.A. 32, 923 (1938). (7) Lock, Ber. 66, 1532 (1933).

3: 0395  $d,l-\alpha,\alpha'$ -DICHLOROSUCCINYL (DI)CHLORIDE

, CO—Cl 
$$C_4H_2O_2Cl_4$$
 Beil. II —  $II_1$ —  $II_2$ —(558)  $Cl$ — $Cl$ — $Cl$ — $Cl$ 

M.P. 39° (1) B.P. 78.5° at 7 mm. (1)

[For prepn. of  $\bar{C}$  from  $d_i l - \alpha_i \alpha'$ -dichlorosuccinic acid (3:4711) with PCl<sub>5</sub> (2 moles) (yield 100%) see (1).]

 $\ddot{\mathbf{C}}$  on hydrolysis yields (1)  $d_{l}\mathbf{l}$ - $\alpha_{l}\alpha'$ -dichlorosuccinic acid (3:4711).

[Č with  $C_6H_6$  + AlCl<sub>3</sub> gives (66% yield (1)) solely d,l-1,2-dichloro-1,2-dibenzoylethane (d,l-2,3-dichloro-1,4-diphenylbutandione-1,4), m.p. 86° (2) (3).]

3:0395 (1) Lutz, J. Am. Chem. Soc. 49, 1110 (1927). (2) Conant, Lutz, J. Am. Chem. Soc. 47, 886 (1925). (3) Lutz, J. Am. Chem. Soc. 48, 2908, 2911 (1926).

Ndls. from hot conc. lgr.; spar. sol. aq.; eas. sol. alc., ether, AcOH. — C forms a monohydrate, C.H<sub>2</sub>O, m.p. 42° (4) (1). — [For crystallographic data see (2).]

[For prepn. of  $\mathbb{C}$  from p-cresol (1:1410) with  $\operatorname{Cl}_2$  (1) in  $\operatorname{CCl}_4$  (7) (6) or in aq. NaOH (8), or with  $\operatorname{SO}_2\operatorname{Cl}_2$  (2 moles) (9), see indic. refs.; from 4-methylphenoldisulfonic acid-2,6 [Beil. XI-261, XI<sub>1</sub>-(62)] with  $\operatorname{Cl}_2$  in aq. soln. see (3); from 1,2,3,3,5,5,6-heptachloro-1-methylcyclohexanone-4 [Beil. VII-19] by reduction with  $\operatorname{SnCl}_2$  (poor yield (7)) or from 3,5-dichloro-1-methyl-1-dichloromethylcyclohexadien-2,5-one-4 [Beil. VII<sub>1</sub>-(99)] by reduction with  $\operatorname{Zn} + \operatorname{AcOH}$  (4) see indic. refs.; from ethyl 2,6-dichloro-4-methylphenyl ether by cleavage with conc. HCl see (5) although identity of prod. is doubtful.]

[ $\bar{C}$  with dry NH<sub>3</sub> gas forms at room temp. a mol. cpd.  $\bar{C}.NH_3$ ; at  $-15^\circ$  a mol. cpd.  $\bar{C}.2NH_3$  (10);  $\bar{C}$  with alc. NH<sub>3</sub> htd. in s.t. short time at 100° gives (1) an NH<sub>4</sub> salt,  $C_7H_5Cl_2-ONH_4$ , colorless ndls, m.p. 125°, which sublime unchanged and from whose aq. soln. acidification reppts.  $\bar{C}$  (1) (dif. from 4,6-dichloro-2-methylphenol (3:1020) q.v.)] — [ $\bar{C}$  also yields a yellow silver salt (11) (12) which in light rapidly turns green and decomposes (11) (12).]

[C in AcOH with conc. HNO<sub>3</sub> in cold gives (yield: 92% (6), 82% (7)) 2,6-dichloro-4-methyl-quinitrol, alm. colorless ndls., m.p. 74-76° (6) (7), 80-82° if taken in warm bath (6) (for study of reactions of this prod. with McOH and with EtOH see (13)).]

[ $\bar{C}$  with warm dil. HNO<sub>3</sub> (D=1.1) readily oxidizes yielding (1) as the only solid product oxalic acid (1:0445);  $\bar{C}$  on oxidn. with CrO<sub>3</sub> in AcOH yields (1) an acid, C<sub>7</sub>H<sub>4</sub>O<sub>3</sub>Cl<sub>2</sub>, m.p. 156° u.c., which, however, is *not* the expected 3,5-dichloro-4-hydroxybenzoic acid, m.p. 255-256°.]

[ $\bar{C}$  on monosulfonation with fumg.  $H_2SO_4$  (65%  $SO_3$ ) at 50° yields (14) 2,6-dichloro-4-methylphenolsulfonic acid-3.]

[ $\bar{\mathbf{C}}$  in MeOH/KOH with MeI refluxed 5 hrs. gives (15) 2,6-dichloro-4-methylphenyl methyl ether, b.p. 234° (15), which on oxidn with dil. HNO<sub>3</sub> (D=1 15) by refluxing for 50 hrs. yields (15) 2,6-dichloro-4-methoxybenzoic acid, m.p. 200-201° (15); the ethyl ether of  $\bar{\mathbf{C}}$  is an oil, b.p. 147-154° at 16 mm., and has been reported by indirect means (5).]

- 2.6-Dichloro-4-methylphenyl acetate: lfts. from dil. AcOH, m.p. 48° (7).
- 2,6-Dichloro-4-methylphenyl benzoate: tbls. from dil. alc., m.p. 91° (7) (4). [From C on htg. with benzoic anhydride (1:0595) (7).]

3:0400 (1) Claus, Riemann, Ber. 16, 1599-1601 (1883). (2) Groth, Miers, Ber. 17, 2532 (1884). (3) Datta, Mitter, J. Am. Chem. Soc. 41, 2034 (1919). (4) von Auwers, Ber. 44, 800 (1911). (5) Autenrieth, Mühlinghaus, Ber. 39, 4104 (1906). (6) Jones, Kenner, J. Chem. Soc. 1931, 1856-1857. (7) Zincke, Ann. 328, 278, 289-291 (1903). (8) Chulkov, Parini, Barshev, Org.

66

Chem. Ind. (U.S.S.R.) 3, 410-412 (1937); Cent. 1938, II 305; C.A. 31, 7047 (1937). (9) Mazzara, Lamberti-Zanardi, Gazz. chim. ital. 26, II 400-401 (1896). (10) Korczynski, Cent. 1909, II 806. (11) Hantzsch, Scholtze, Ber. 40, 4877, 4879 (1907). (12) Hunter, Rathmann, J. Gen. Chem. (U.S.S.R.) 7, 2230-2234 (1937); Cent. 1938, I 3332; C. A. 32, 518 (1938). (13) Jones, Kenner, Chem. Soc. 1931, 1943-1950. (14) Weiler, Better (to I.G.), Ger. 557,450, Aug. 24, 1931; Cent. 1932, II 2371. (15) Bertozzi, Gazz. chim. ital. 29, II 37-38 (1899).

## 3:0410 2,6-DICHLOROBENZYL CHLORIDE

C7H5Cl3 Beil. S.N. 466

$$C_{\rm Cl}$$
 CH<sub>2</sub>Cl

#### M.P. 39-40° (1)

Colorless cryst. from lgr., ether, or alc. + ether.

[For prepn. of C from 2,6-dichlorotoluene (3:6270) by treatment at b.p. with Cl<sub>2</sub> in u.v. light see (1).]

C with Mg in dry ether gives 90% yield 2,6-dichlorobenzyl MgCl; this prod. upon treatment with CO<sub>2</sub> (1) or with methyl chloroformate (3:5075) followed by appropriate treatment yields 2,6-dichlorophenylacetic acid, cryst. from alc., m.p. 157-158° (1).

3:0410 (1) Austin, Johnson, J. Am. Chem. Soc. 54, 658-659 (1932).

# 3:0422 OCTACHLOROCYCLOPENTENE

Beil. V - 62 **V**1---

| M.P.       |                | B.P.     |            |            |                        |                             |
|------------|----------------|----------|------------|------------|------------------------|-----------------------------|
| 41°        | (1) (8)        | 283-284° | at 733 mm. | (5) (6)    | $D_4^{50} = 1.817 (4)$ | $n_{\rm D}^{50}=1.5660~(4)$ |
| 40-4       | <b>1° (</b> 7) | 283°     |            | (1)        |                        |                             |
| <b>40°</b> | (2)            | 183°     | at 20 mm.  | (2)        |                        |                             |
| 39°        | (3)            | 140°     | at 10 mm.  | <b>(4)</b> |                        |                             |
| 38°        | (4)            |          |            |            |                        |                             |
| 32°        | (10)           |          |            |            |                        |                             |

[See also hexachlorobutadiene-1,3 (3:6425).]

Colorless cryst. from 95% alc. (4) or EtOH contg. 5% tetrachloroethylene (3:5460) (3). [For prepn. of C from pentachlorocyclopentenone [Beil. VII-49] (7), from either the higher- or lower-melting stereoisomer of hexachlorocyclopentenone [Beil. VII-49] (1). from dibromo-dichloro-cyclopentanetrione [Beil. VII-853] (8), or from xanthogallol (tetrabromocyclopentenedione [Beil. VII<sub>1</sub>-(321)] (2), all with PCl<sub>5</sub> in s.t., at elevated temps, as directed, see indic. refs.]

[For formn. from nonachloropentene-1 (itself obtd. from hexachloropropene (3:6370) with trichloroethylene (3:5170) + AlCl<sub>3</sub> (9)) by elimination of 1 HCl with alc. KOH yielding octachloropentadiene-1,3 followed by rearr. to C by boilg. with AlCl3 see (3).1

[For formn. of C (together with CCl<sub>4</sub> (3:5100) and hexachloroethane (3:4835) by highpress./high-temp. chlorination of chloropentanes see (4); by exhaustive chlorination of hexyl iodide, heptaldehyde, heptylic acid, etc. (5), of high-mol.-wt. hydrocarbons (6), or of 3-chloro-5,6-dihydroxy-2-(dichloromethyl)pyridine [Beil. XII-164] (10), see indic. refs.]

Note that C, formerly regarded as hexachlorobutadiene-1,3 (3:6425), is currently (3) believed to have the structure octachlorocyclopentene; for Raman spectra evidence see (11). 3:0422 (1) Zincke, Küster, Ber. 23, 2214-2215 (1890). (2) Hantzsch, Strasser, Ann. 488, 209 (1931). (3) Fruhwirth, Ber. 74, 1700-1701 (1941). (4) McBee, Hass, Pierson, Ind. Eng. Chem. 33, 181-185 (1941). (5) Krafft, Ber. 10, 803-806 (1877). (6) Hartmann, Ber. 24, 1011-1026 (1891). (7) Zincke, Meyer, Ann. 367, 9 (1909). (8) Henle, Ann. 352, 52-53 (1907). (9) Prins, Rec. trav. chim. 57, 661-662 (1938); 51, 1068-1070 (1932). (10) Hoffmann, Ber. 22, 1269-1270 (1889).

(11) Kohlrausch, Wittek, Ber. 75, 227-232 (1942).

# 3: 0425 2,3,4-TRICHLOROTOLUENE

$$\begin{array}{cccc} {\rm CH_3} & {\rm C_7H_5Cl_3} & & \text{Beil. V - 298} \\ & & & \text{V_1--} \\ & & & \text{V_2-(232)} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{array}$$

C<sub>5</sub>H<sub>9</sub>O<sub>2</sub>Cl

Beil. S.N. 162

Ndls. from MeOH or EtOH; volatile with steam.

[For prepn. of  $\bar{C}$  from 2,3-dichloro-4-aminotoluene [Beil. XII-990] via diazotization and use of  $Cu_2Cl_2$  reaction see (4); from toluene with  $AlCl_3 + SO_2Cl_2$  (34%  $\bar{C} + 40\%$  2,4,5-trichlorotoluene (3:2100)) see (2); for formn. of  $\bar{C}$  (together with other isomers) from toluene, o-chlorotoluene (3:8245), or p-chlorotoluene (3:8287) with  $Cl_2$  see (1); from 2,3-dichlorotoluene (3:6345) or 2,4-dichlorotoluene (3:6290) with  $Cl_2$  in pres. of Al/Hg see (5); for prepn. of  $\bar{C}$  from its sulfonic acid by hydrolysis see (1) (7).]

[C with Cl<sub>2</sub> in pres. of Al/Hg yields (6) 2,3,4,6-tetrachlorotoluene (3:2480).]

 $\bar{C}$  on mononitration (1) (4) by soln. in cold fumg. HNO<sub>3</sub> yields a mononitro  $\bar{C}$  [Beil. V-333], ndls. from alc., m.p. 60-61° (4), 60° (1);  $\bar{C}$  on dinitration by warming with a mixt. of 2 pts. fumg. HNO<sub>3</sub> and 1 pt. conc. H<sub>2</sub>SO<sub>4</sub> (1) (4) cf. (7) yields 2,3,4-trichloro-5,6-dinitro-toluene [Beil. V-345], ndls. from alc., m.p. 141° (1) (2), 140-141° (4).

 $\bar{C}$  on shaking with 2 pts. fumg. H<sub>2</sub>SO<sub>4</sub> at 60° yields (1) (7) a monosulfonic acid (use in sepn. of  $\bar{C}$  from 2,4,5-trichlorotoluene (3:2100) which is not sulfonated under these conditions (1) (7)).

 $\bar{C}$  on oxidn, with dil. HNO<sub>3</sub> in s.t. at 150° (4) yields 2,3,4-trichlorobenzoic acid (3:4810), m.p. 186-187° (4).

3:0425 (1) Scelig, Ann. 237, 132, 137, 138, 140, 156 (1887). (2) Silberrad, J. Chem. Soc. 127, 2681-2682 (1925). (3) I.G., Brit. 287,178, May 9, 1928; Cent. 1929, II 352. (4) Cohen, Dakin, J. Chem. Soc. 81, 1327-1328 (1902). (5) Ref. 4, pp. 1339-1341. (6) Cohen, Dakin, J. Chem. Soc. 85, 1283 (1904). (7) Prentzell, Ann. 296, 181-182 (1897).

# 3:0440 CHLOROPIVALIC ACID

(β-Chloro-α,α-dimethylpropionic acid)

CH<sub>2</sub>-C-CC

## M.P. 40-42° (1) B.P. 126-129° at 30 mm. (1)

[For prepn. of  $\bar{C}$  from pivalic acid (trimethylacetic acid) (1:0410) with  $SO_2Cl_2$  + dibenzoyl peroxide in  $CCl_4$  see (1).]

© Chloropivalamide: pl. from aq., m.p. 108-109° (1).

**3:0440** (1) Kharasch, Brown, J. Am. Chem. Soc. **62**, 925-929 (1940). (2) Kharasch, Brown (to du Pont Co.), U.S. 2,302,228, Nov. 17, 1942; C.A. **37**, 2018 (1943).

3: 0455 2,6-DICHLORO-2,6-DIMETHYLHEPTANE 
$$C_9H_{18}Cl_2$$
 Beil. I - 167  $I_1$ —  $I_2$ —(129)  $CH_3$ — $C$ — $CH_2$ . $CH_2$ . $CH_2$ — $C$ — $CH_3$   $CH_3$ 

68

M.P. 41-42° (1)

[For prepn. of  $\bar{C}$  from 2,6-dimethylheptanediol-2,6 [Beil. I-494] (2) with conc. HCl or AcCl see (1) (2); from the corresponding internal ether, viz.,  $\alpha,\alpha,\alpha',\alpha'$ -tetramethylpentamethylene oxide (2,2,6,6-tetramethyltetrahydropyran) [Beil. XVII-17], with HCl see (1).]

 $\bar{C}$  on warming with aq. readily hydrolyzes (1) back to 2,6-dimethylheptanediol-2,6 (monohydrate, cryst. from  $C_6H_6$ , m.p. 60-61°; anhydrous form by heating monohydrate at 135-140°, m.p. 76-77° (1).

[ $\bar{C}$  in  $C_6H_6$  + AcOH treated with Zn dust in a stream of dry HCl yields (2) mixt. of  $\alpha$ - and  $\beta$ -cyclogeraniols [Beil. VI-66, VI<sub>1</sub>-(43)].]

**3:0455 (1)** Bruylants, Bull. acad. roy. Belg. **1909**, 276–282; Cent. **1909**, II 797; C.A. **4**, 1485 (1910); Rec. trav. chim. **29**, 130–133 (1910). **(2)** Staudinger, Widmer, Helv. Chim. Acta **9**, 531, 546–547 (1926).

3: 0460 
$$\beta$$
-CHLOROPROPIONIC ACID  $C_3H_5O_2Cl$  Beil. II - 249 (3-Chloropropanoic acid) ClCH<sub>2</sub>.CH<sub>2</sub>.COOH II<sub>1</sub>-(111) II<sub>2</sub>-(226) M.P. 42° (1) (2) B.P. 204° (11) 41.5° (3) 203-205° at 764 mm. (12)

41.5° (3)203-205° at 764 mm. (12) 41° (4) (19) 127 at 35 mm. (13)40.5° cor. (5) 120° at 30 mm. (27)40° (6)(7)124° at 25 mm. (1) 39° 105-107° at 20 mm. (8) (9) (14)38.5-39.5° (10) 108° at 12 mm. (1)

Lfts. from lgr. or pet. eth. — Very eas. sol. aq., alc.,  $CHCl_3$ ; spar. sol. dry ether. — Fairly hygroscopic. —  $\tilde{C}$  on boilg. slightly dec. to HCl + acrylic ac. (1:1020). [Note that samples with m.p. higher than 42° may have contd. adipic ac. (8).] [For stability of  $\tilde{C}$  in aq. soln. see (8).]

[For prepn. of  $\bar{C}$  from acrolein (1:0115) via addn. of HCl to  $\beta$ -chloropropionaldehyde (3:5576) and subsequent oxidn. with fumg. HNO<sub>3</sub> (yield: 65-70% (14), 60-65% (15), 50% (1)) see (15) (14) (7) (1) (16); from 3-chloropropanol-1 (trimethylene chlorohydrin) (3:8285) by oxidn. with conc. HNO<sub>3</sub> (yield: 78-79% (9)) (17) (13) (27) or alk. KMnO<sub>4</sub> (18) see indic. refs.; from  $\beta$ -hydroxypropionitrile (ethylene cyanohydrin) by hydrolysis with HCl see (10); from phosgene + ethylene + AlCl<sub>3</sub> via hydrolysis of intermediate  $\beta$ -chloropropionyl chloride (3:5690) see (19); for other methods see Beil. II-249.]

Č on htg. with aq. alk. or alk. carbonates (1) (7) (19) or on passing over activated carbon at 230-240° at 250-320 mm. (21) loses HCl and yields acrylic ac. (1:1020). [The alk. salts of Č dec. even at ord. temp. giving alk. chlorides (3).] [For example of use of Č as source of acrylic acid in Diels-Alder addn. reactions see under 9,10-dichloroanthracene (3:4916).]

 $\tilde{C}$  with PCl<sub>3</sub> (12) or SOCl<sub>2</sub> (22) yields  $\beta$ -chloropropionyl chloride (3:5690) q.v., b.p. 144°.

Č (1 g.) + pyridine (2 g.) htd. at 100° solidifies after 2 hrs. to give 100% yield addn. cpd. Č.C₅H₅N, pr. from abs. alc., m.p. 160° (26).

- —— Methyl β-chloropropionate: b.p. 148-150° at 760 mm. (3:5765)
- Ethyl  $\beta$ -chloropropionate: b.p. 162-163° at 760 mm. (3:8290).
  - ---- β-Chloropropionamide: unrecorded.
- Φ β-Chloropropionanilide: cryst. from aq. or MeOH, m.p. 119° (23). [From β-chloropropionyl chloride + aniline in acetone in 90% yield (23).]
- **Φ** β-Chloropropion-p-toluidide: cryst. from MeOH, m.p. 121° (23) (22).
- Φ β-Phenoxypropionic acid: ndls. from hot aq. (24) or lgr. (25); m.p. 98° (24), 97-98° (25). [From  $\bar{C}$  + phenol + NaOH, 36% yield (25).]

3:0460 (1) Moureu, Murat, Tampier, Ann. chim. (9) 15, 222-228 (1921). (2) Wooten, Hammett, J. Am. Chem. Soc. 57, 2291 (1935). (3) Beckurts, Otto, Ber. 18, 226, 846 (Note) (1885).
(4) Michael, Ber. 34, 4047-4048 (1901). (5) Linnemann, Ann. 163, 96 (1872). (6) Lichty, Ann. 319, 369-370 (1901). (7) Moureu, Ann. chim. (7) 2, 157-158 (1894); Bull. soc. chim. (3) 9, 388 (1893). (8) Simpson, J. Am. Chem. Soc. 40, 675 (1918). (9) Powell, Huntress, Hershberg, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 168-169 (1941). (10) Jacobs, Heidelberger, J. Am. Chem. Soc. 39, 1465-1466 (1917).

(11) de Barr, Am. Chem. J. 22, 334 (1899). (12) Henry, Compt. rend. 106, 114 (1885); J. prakt. Chem. (2) 31, 126 (1885). (13) Powell, J. Am. Chem. Soc. 46, 2879 (1924). (14) Moureu, Chaux, Bull. soc. chim. (4) 35, 1360-1364 (1924). (15) Moureu, Chaux, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 166-168 (1941). (16) Arndt, Ber. 56, 1276-1277 (Note) (1923). (17) Rojahn, Ber. 54, 3116-3117 (1921). (18) Brit. (to I.G.), 479,690, Mar. 10, 1938; Cent. 1938, I 3833; French 824,489, Feb. 9, 1938; C.A. 32, 5857 (1938). (19) Pace, Gazz. chim. ital. 59, 580-582 (1929). (20) Klebanskii, Chevychalova, Cent. 1938, I 1335; C.A. 34, 6222 (1940).

(21) Bauer, Lauth (to Rohm and Haas Co.), U.S. 2,087,466, July 20, 1937; Ger. 646,820, June 23, 1937; Cent. 1937, II 2072; Brit. 526,122, Sept. 11, 1940; C.A. 35, 6981 (1941). (22) Wolffenstein, Rolle, Ber. 41, 736 (1908). (23) Mayer, van Zütphen, Philipps, Ber. 58, 860 (1927); Mayer, Ger. 415,096, June 13, 1925; Cent. 1925, II 1094. (24) Powell, J. Am. Chem. Soc. 45, 2710 (1923). (25) Arndt, Kallner, Ber. 57, 204 (1924). (26) Kirpal, Wojnar, Ber. 71, 1264 (1938). (27) Fieser, Seligman, J. Am. Chem. Soc. 58, 2484 (1936).

3: 0470 PENTACHLOROPROPIONYL CHLORIDE 
$$C_3 \circ Cl_6$$
 Beil. II —  $Cl_3 \circ Cl_6 \circ C$ 

#### M.P. 42° (1)

Colorless not especially hygroscopic ndls.

[For prepn. of  $\bar{C}$  from trichloroacrylic acid chloride (3:5845) by addn. of  $Cl_2$  in bright sunlight see (1).]

 $\bar{C}$  with AlCl<sub>3</sub> (1 mole) at 60° decomposes in two ways (1), leading on one hand to CO and hexachlorethane (3:4835), and on the other to phosgene (3:5000) and tetrachloroethylene (3:5460).

[ $\ddot{\mathbf{C}}$  with  $\mathbf{C}_6\mathbf{H}_6$  + AlCl<sub>3</sub> yields (1) phenyl pentachloroethyl ketone ( $\alpha,\alpha,\beta,\beta,\beta$ -pentachloropropiophenone) [Beil. VII<sub>1</sub>-(161)], m.p. 83° (1).]

C on hydrolysis yields pentachloropropionic acid (3:4895).

3:0470 (1) Böeseken, Hasselbach, Rec. trav. chim. 32, 11-13 (1913).

3:0475 p-CHLOROPHENOL ClOH C<sub>6</sub>H<sub>5</sub>OCl Beil. VI - 186 VI<sub>1</sub>-(100) VI<sub>2</sub>-(174)

| M.P.  |            | B.P.     |            |            |                       |                         |             |
|-------|------------|----------|------------|------------|-----------------------|-------------------------|-------------|
| 43°   | (1)        | 219.75   | at 760 mm. | (11)       | $D_4^{78.1} = 1.2238$ |                         |             |
| 42.9° | (2) (3)    | 218.3-2  | 218.9°     | (12)       | -                     |                         | 1.5480 (23) |
| 42.5° | (4)        | 218°     | (6)        | (15)       |                       | $n_{\rm D}^{40} =$      | 1.5600 (14) |
| 40-41 | ° (5)      | 217°     | at 760 mm. | <b>(7)</b> |                       |                         | 1.5579 (3)  |
| 41°   | (6) (15)   | 217°     |            | (10)       |                       | $n_{\mathrm{D}}^{20} =$ | 1.5690 (14) |
| 40°   | (7)        | 216.0°   | at 760 mm. | (13)       |                       |                         |             |
| 38-39 | ° (8)      | 99.7°    | at 12 mm.  | (13)       |                       |                         |             |
| 37°   | (9) (10) ( | 20) (55) |            |            |                       |                         |             |
| 36°   | (39)       |          |            |            |                       |                         |             |

[See also o-chlorophenol (3:5980).]

 $\bar{C}$  has disagreeable and persistent odor (15) for study of strength of which in aq. soln. see (16). —  $\bar{C}$  is spar. sol. aq. at ord. temp. (for details see (17)); but  $\bar{C}$  is eas. sol. alc., ether,  $C_6H_6$ ,  $CHCl_3$ ,  $CS_2$ . —  $\bar{C}$  (like its o-isomer (3:5980)) is volatile with steam (for studies see (18)) even from soln. in equiv. aq. NaOH (19) (dif. and sepn. from 2,4-dichlorophenol (3:0560), 2,6-dichlorophenol (3:1595), and 2,4,6-trichlorophenol (3:1673) (19).

The cryoscopic const. of  $\bar{C}$  is 85.8 (20).

## SELECTED DATA ON BINARY SYSTEMS CONTG. C

 $\overline{C}$  + aq.: for solubility/temp. data see (17).

 $\bar{C} + C_6H_6$ : for solubility/temp. data (17) or for vapor-press. data (21) see indic. refs.; for association of  $\bar{C}$  in  $C_6H_6$  soln. see (30).  $\bar{C} + \text{MeOH}$  (1:6120): for vapor-press. data see (21).  $\bar{C} + \text{acetone}$  (1:5400): for vapor-press. data see (21).  $\bar{C} + \text{methyl}$  acetate (1:3005): for vapor-press. data see (21).

 $\ddot{\mathbf{C}}$  + nitrobenzene: for f.p./compn. data and diagrams see (24) (25), eutectic m.p. -24.5° contg. 41.5 wt. %  $\ddot{\mathbf{C}}$  (24), m.p. -30.5° contg. 50.5 mol. %  $\ddot{\mathbf{C}}$  (25).

 $\overline{C}$  + aniline: for  $D^{25}$  and  $D^{50}$  + viscosity at 25° and 50° sec (26).  $\overline{C}$  + p-toluidine: for f.p./compn. and  $n_D^{54}$ /compn. data and diagrams see (4) cf. (29); note two eutectics,  $E_1$ , m.p. 21° contg. 28 mol. %  $\overline{C}$ , and  $E_2$ , m.p. 7.4° contg. 71 mol. %  $\overline{C}$  (4).  $\overline{C}$  + benzylamine: for f.p./compn. diagram see (27), noting two molecular cpds., one of compn. 3  $\overline{C}$ .1 benzylamine, m.p. 55°, the other 1  $\overline{C}$ .1 benzylamine, m.p. 16° (27).  $\overline{C}$  + phenylhydrazine: for f.p./compn. data and diagram see (1).

 $\bar{C}$  + piperidine: for  $n_{D}^{65}$ /compn. data see (23).

 $\bar{\bf C}$  + pyridine: for f.p./compn. diag. of entire system see (4) cf. (28) (note two eutectics, viz.,  $E_1$ , m.p.  $-19.5^\circ$  contg. 66.6 mol. %  $\bar{\bf C}$ ,  $E_2$ , m.p.  $-47.3^\circ$  contg. 13.5 mol. %  $\bar{\bf C}$ ); for  $n_D^{25}$ /compn. and  $n_D^{50}$ /compn. data over entire system see (14).

 $\ddot{\mathbf{C}}$  + o-chlorophenol (3:5980): for f.p./compn. data and diagram see (3) (note that the eutectic, m.p. about  $-20.5^{\circ}$ , conts. about 38.5 mol. %  $\ddot{\mathbf{C}}$ ).  $\ddot{\mathbf{C}}$  + p-dichlorobenzene (3:0980): for f.p./compn. diagram see (4) (note eutectic m.p. 27.2° contg. 73.4 mol. %  $\ddot{\mathbf{C}}$ ); for  $n_{\mathbf{D}}^{54}$ / compn. data see (4).

#### AZEOTROPIC SYSTEMS CONTG. Č

 $\bar{\bf C}$  with naphthalene (1:7200) forms a const.-boilg. mixt., b.p. 216.3° contg. 36.5%  $\bar{\bf C}$  (11).  $\bar{\bf C}$  with *p*-dibromobenzene forms a const.-boilg. mixt., b.p. 215.05° contg. 35%  $\bar{\bf C}$  (11).

## PREPARATION OF C

From p-chloroaniline. [For prepn. of  $\bar{C}$  from p-chloroaniline [Beil. XII-607, XII<sub>1</sub>-(304)] via diazotization to salts of p-chlorobenzenediazonium hydroxide [Beil. XVI-463, XVI<sub>1</sub>-(355)] and hydrolysis of the latter (yields not stated) (3) (10) in an inert solvent (31) see indic. refs.; for study of rate of hydrolysis (32) of p-chlorobenzenediazonium chloride and influence of light thereon (33) see indic. refs.]

From phenol. [For prepn. of  $\bar{C}$  from phenol (1:1420) with Cl<sub>2</sub> at temps. over range 40°-155° see (3) cf. (6) (35); with Cl<sub>2</sub> + conc. aq. Na<sub>2</sub>CO<sub>3</sub> soln. see (34); by use of N,N-dichlorobenzenesulfonamide in CHCl<sub>3</sub> at -15° see (36) (note that evidence obtd. from this reaction in pres. of isobutylene indicates that phenyl hypochlorite is first formed and subsequently rearranges (36)); by use of N,N'-dichlorourea + HCl see (37); with EtOCl (3:7022) in CCl<sub>4</sub> at -20° see (38); or by use of SO<sub>2</sub>Cl<sub>2</sub> see (39) (40) (41) (for use of SO<sub>2</sub>Cl<sub>2</sub> on NaOC<sub>6</sub>H<sub>5</sub> see (7)). — Note that in all these methods some o-chlorophenol (3:5980) is usually also formed.]

From p-aminophenol. [For form. of  $\bar{C}$  from p-aminophenol [Beil. XIII-427, XIII<sub>1</sub>-(143)] via diazotization, conversion to corresp. PtCl<sub>4</sub> double salt, and dry distn. see (42); or via diazotization, conv. to corresp. ZnCl<sub>2</sub> double salt, and decompn. by addn. of molten phenol (yield 40% accompanied by 41% hydroxybiphenyl + 11% diphenyl ether) see (43).]

From p-dichlorobenzene. [For prepn. of  $\tilde{C}$  from p-dichlorobenzene (3:0980) with MeOH/NaOMe in s.t. at 180° (44) (45), or with MeOH/NaOH in s.t. at 190-195° (90%) yield (46)) or at 200° for 25 hrs. under press. (8), see indic. refs.; for use of aq. alk. or alk. earths with MeOH in pres. of copper salts at 150-190° under press. see (47) (note, however, that, although the hydrolysis of p-dichlorobenzene to  $\tilde{C}$  is markedly facilitated by presence of Cu, e.g., with aq. NaOH, maximum yield is 30% while with MeOH/NaOH + Cu yield is 85% (48), yet in presence of Cu<sub>2</sub>O some ord. phenol (1:1420) is also formed (49); for prepn. of  $\tilde{C}$  from p-dichlorobenzene (3:0980) by vapor-phase hydrolysis with steam + cat. at 550-850° see (50).]

From other miscellaneous sources. [For formn. of  $\bar{C}$  from various p-chlorophenyl ethers by cleavage, e.g., from p-chloroanisole (3:6300) with conc. HCl in s.t. (51) or with MeOH/NaOMe in s.t. at 176° (45); from p-chlorophenetole (3:0090) with conc. HCl (52) or with HBr in AcOH (85% yield (53)); or from p-chlorophenoxyacetic acid (3:4375) with conc. HCl in s.t. at 150° (34), see indic. refs.]

 $[\bar{C}]$  is also obtainable by hydrolysis of its various esters, but these need not be cited here.] [For formn. of  $\bar{C}$  from p-bromophenol with  $SO_2Cl_2$  at ord. temp. see (55); from calcium salt of p-dichlorobenzenesulfonic acid with  $Ca(OH)_2 + Cu$  at 200-220° followed by removal of the sulfonic acid group from the resultant p-chlorophenolsulfonic acid see (56).]

#### BIOCHEMICAL ASPECTS OF C

[For studies involving fate of  $\bar{C}$  in animal metabolism see (57) (58) (59); for studies from various aspects of bactericidal and fungicidal action of  $\bar{C}$  see (60) (61) (62) (63) (64) (65) (67) (68).]

[For studies from various aspects of effect of  $\bar{C}$  and other chlorophenols on taste of water see (69) (70) (71) (72) (73).]

## MISCELLANEOUS USES OF C

[For use of  $\bar{C}$  in selective solv. refining of mineral oils see (74); as denaturant for alc. see (75); as solv. for lignin see (76).]

## QUANT. DETN. OF C

See text below under bromination of  $\bar{\mathbf{C}}$ , iodination of  $\bar{\mathbf{C}}$ , and nitration of  $\bar{\mathbf{C}}$ .

## CHEMICAL BEHAVIOR OF C

#### Pyrolysis of C

[Č on pyrolysis through silica tube at red heat gives (77) 3,6-dichlorodiphenylene oxide, m.p. 188° (77).]

## REDUCTION OF C

[ $\bar{C}$  with  $H_2$  + Ni cat. in aq. or aq. alc. alk. soln. loses chlorine quant. as HCl (78) (for study of rate see (79)); note also that  $\bar{C}$  with Li at 220° (80) or with Ca at 160° (80) followed by treatment with aq. gives (yields 14% and 36% resp.) phenol (1:1420). — Note that  $\bar{C}$  with aq. Cu<sub>2</sub>O at 250–380° under press. gives (81) phenol (1:1420) (see also above under prepn. of  $\bar{C}$  from p-dichlorobenzene). — Note that reduction of  $\bar{C}$  to 4-chlorocyclohexanol-1 (3:9376) appears to be unreported.]

## OXIDATION OF C

[ $\bar{\mathbf{C}}$  on oxidn. with 35% peracetic acid at 25° gives (82) slowly (17 days) in small yield  $\beta$ -chloromuconic acid (2-chlorobutadien-1,3-dicarboxylic acid-1,4), m.p. 223°, accompanied in the mother liquor by some lactone ( $C_6H_5O_6Cl$ ) of 3-chloro-4,5-dihydroxyhexen-2-dioic acid-1,6, m.p. 177° (82). —  $\bar{\mathbf{C}}$  on electrolytic oxidn. gives (83) benzoquinone-1,4 (1:9025).].

## NUCLEAR SUBSTITUTION OF C

(See also below under condensation reactions of C.)

**Halogenation of \tilde{C}.** Fluorination. [The fluorination of  $\tilde{C}$  has not been reported, and no fluoro- or difluoroderiv. of  $\tilde{C}$  is known.]

Chlorination. [ $\bar{C}$  with Cl<sub>2</sub> (2 moles) in AcOH in cold gives (80% yield (84)) 2,4-dichorophenol (3:0560), m.p. 45°; presumably  $\bar{C}$  with Cl<sub>2</sub> (3 moles) would give 2,4,6-trichlorophenol (3:1673), but such reaction is not actually reported. — For study of rate of chlorination of  $\bar{C}$  with Cl<sub>2</sub> in CCl<sub>4</sub> (85) or with NaOCl in alk. soln. at 25° (86), or behavior of  $\bar{C}$  with Cl<sub>2</sub> in presence of radioactive HCl in C<sub>6</sub>H<sub>6</sub> soln. (87), see indic. refs.]

Bromination. [C with Br<sub>2</sub> (1 mole) in CCl<sub>4</sub> at room temp. gives (62% yield (88)) 2-bromo-4-chlorophenol, m.p. 33-34°, b.p. 121-123° at 10 mm. (corresp. benzoyl deriv., m.p. 99-100°) (88).]

Č with Br<sub>2</sub> (2 moles) in AcOH (89) (90) (91) or Č with Br<sub>2</sub> (2 moles) in aq. KBr soln. (92) gives (yields not stated) 4-chloro-2,6-dibromophenol, ndls. from dil. alc., m.p. 92° (89), 90° cor. (92), 89° (90) (corresp. methyl ether, m.p. 74° (92); 2,4-dinitrophenyl ether, m.p. 145-146° (90), p-toluenesulfonate, m.p. 107-108° (90)). [Note difference from the isomeric 4-chloro-3,5-dibromophenol, m.p. 121° (93), 118° (94) (corresp. Me ether, m.p. 82.5° (93), benzoyl deriv., m.p. 132° (94)).]

[Č with Br<sub>2</sub> (4 moles) in pres. of Fe powder gives (93) 4-chloro-2,3,5,6-tetrabromophenol, m.p. 215° (corresp. methyl ether, m.p. 161°, benzoyl deriv., m.p. 203° (93)).]

[For quant. detn. of C by dibromination with KBrO<sub>3</sub>/KBr soln. see (95) (96) (97).]

Iodination.  $\bar{C}$  with I<sub>2</sub> (1 mole) in aq. KI + conc. NH<sub>4</sub>OH gives (88% yield (98)) 4-chloro-2-iodophenol, ndls. from CHCl<sub>3</sub> or lt. pet., m.p. 78° (98) (99) (corresp. acetyl deriv., m.p. 57° (98); corresp. benzoyl deriv., m.p. 88° (99), 83-84° (98); corresp. N-phenyl-carbamate, m.p. 128° (99)).

 $\bar{C}$  with excess  $I_2$  in eq. KI + conc. NH<sub>4</sub>OH (98), or  $\bar{C}$  in alk. soln. with  $I_2$  in eq. KI (92),

or  $\overline{C}$  in alk. soln. with  $I_2 + KIO_3$  followed by dil.  $H_2SO_4$  (89), or  $\overline{C}$  with ICl (99), gives (89% yield (98)) 4-chloro-2,6-iodophenol, ndls. from alc. or lt. pet., m.p. 109° cor. (92), 108° (98) (100), 107-108° (89), 106-107° (99) (corresp. methyl ether, m.p. 79° (92); corresp. acetyl deriv., m.p. 128° (98), 127.5° (100)).

[For quant. detn. of  $\bar{C}$  by di-iodination using  $I_2$  + borax soln. see (97).]

Nitration of  $\bar{C}$ .  $\bar{C}$  on mononitration with dil. HNO<sub>3</sub> (101) (102), or with 30% HNO<sub>3</sub> in cold (103), or with nitrosulfonic acid + fumg. HNO<sub>3</sub> (104), or in MeOH with HNO<sub>3</sub> (105), gives (yields 90% (103), 85% (102), 77% (104)) 4-chloro-2-nitrophenol [Beil. VI-238, VI<sub>1</sub>-(122)], yel. cryst. from alc., volatile with steam, m.p. 86-87° (101) (102) (corresp. methyl ether, m.p. 98° (44), 97.5° cor. (106); corresp. ethyl ether, m.p. 61-62° (101); corresp. benzyl ether, m.p. 84-85° (99)). — [For use of mononitration in quant. detn. of mixts. of  $\bar{C}$  with o-chlorophenol (3:5980) see (107) cf. (112).]

C on dinitration with conc. HNO<sub>3</sub> (108) (or the above 4-chloro-2-nitrophenol on further nitration with fumg. HNO<sub>3</sub> (101)) gives 4-chloro-2,6-dinitrophenol [Beil. VI-260, VI<sub>1</sub>-(128)], yel. ndls. or lfts. from aq., ndls. or pr. from alc., ether, or CHCl<sub>3</sub>, m.p. 81° (108) (corresp. methyl ether, m.p. 66° (109), 64° (94); corresp. ethyl ether, m.p. 54-55° (110); corresp. N-phenylcarbamate cannot be prepared (111)).

Nitrosation of C. [Unlike the isomeric o-chlorophenol (3:5980) the nitrosation of C has not been reported, and no nitroso-p-chlorophenol is known.]

Sulfonation of  $\bar{C}$ . [ $\bar{C}$  with equiv. amt. fumg.  $H_2SO_4$  (D=1.90) at  $100^\circ$  (113) (114) gives 4-chlorophenolsulfonic acid-2 [Beil. XI-236], deliquescent tbls. of monohydrate from aq., m.p. 75-76° (113) (for study of acid strength see (115)). — Note also that  $\bar{C}$  with very large excess (15 wt. pts.) fumg.  $H_2SO_4$  (20%  $SO_3$ ) gives (80-85% yield (116)) a bimolecular condensation prod. of the above sulfonic acid.]

Mercuration of  $\bar{C}$ . [ $\bar{C}$  with HgO/HgSO<sub>4</sub> on warming, followed by neutraliz. with NaOH, gives (117) 4-chloro-2-hydroxymercuriphenol [Beil. XVI<sub>1</sub>-(564)]. — For other studies of mono- and di-mercuration of  $\bar{C}$  see (118) (119); for patents see (120) (121).]

#### CONDENSATION REACTIONS INVOLVING NUCLEAR HYDROGEN OF C

With alcohols.  $\tilde{C}$  with alcs. contg. more than one C in pres. of conc. HClO<sub>4</sub> at 0-160° gives ultimately (although doubtless through formn. of intermediate esters followed by rearr. or intermediate formn. of olefins followed by addn.) (122) the corresp. 2-alkyl-4-chlorophenols [e.g.,  $\tilde{C}$  with isopropyl alc. (1:6135) + conc. HClO<sub>4</sub> as directed (122) gives 4-chloro-2-isopropylphenol, sol. aq. NaOH, b.p. 235-250° accompanied by 4-chloro-2,6-diisopropylphenol, insol. aq. NaOH, m.p. 260-265°].

With aldehydes. [ $\bar{\mathbb{C}}$  with formaldehyde (1:0145) + conc. HCl + H<sub>2</sub>SO<sub>4</sub> is claimed (123) to undergo simple chloromethylation yielding 5-chloro-2-hydroxybenzyl chloride, m.p. 85° (123); note, however, that further condensation (involving 2 additional moles of formaldehyde) may occur giving (67% yield (124)) 6-chloro-8-(chloromethyl)benzodioxane-1,3, cryst. from MeOH, m.p. 103° (124). —  $\bar{\mathbb{C}}$  with formaldehyde (1:0145) + aq. alkali gives (125) 4-chloro-2,6-bis-(hydroxymethyl)phenol ("p-chlorophenol dialcohol"), m.p. 154° (126) (corresp. mono-(p-toluenesulfonate), m.p. 151° (127)); note that reaction of  $\bar{\mathbb{C}}$  with 1 mole formaldehyde to give 4-chloro-2-(hydroxymethyl)phenol (5-chlorosalicyl alcohol) is not reported although the latter [Beil. VI-893], m.p. 93°, is known.]

With CHCl<sub>3</sub>, chloral, or hexamethylenetetramine. [Č with CHCl<sub>3</sub> + EtOH + aq. NaOH (128), or Č with hexamethylenetetramine in anhydrous glyceroboric acid at 150-155° followed by H<sub>2</sub>SO<sub>4</sub> hydrolysis (129), or Č with chloral + anhydrous Na<sub>2</sub>HPO<sub>4</sub> at 70-75° (giving (4-chloro-2-hydroxyphenyl)-trichloromethyl-carbinol cf. (130)) followed by hydrolysis + oxidation (131), gives (18% yield (129)) 5-chloro-2-hydroxybenzaldehyde (5-chlorosalicylaldehyde) (3:2800), m.p. 99-100°.]

With CCl<sub>4</sub>. [C with CCl<sub>4</sub> in aq. NaOH (128) in pres. of Cu or Cu compds. (132) or C with CCl<sub>4</sub> in alc. KOH in s.t. at 140° for 5-6 hrs. (133) gives 5-chloro-2-hydroxybenzoic acid (5-chlorosalicylic acid) (3:4705), m.p. 172°.]

With CO<sub>2</sub> or organic acids. [C (as dry NaA) with CO<sub>2</sub> at 140-150° under press. gives (135) (136) Na salt of 5-chlorosalicylic acid (3:4705) (see also above).]

[C with o-chlorobenzoic acid (3:4150) in MeOH/NaOMe + trace Cu powder evapd., htd. at 200°, then htd. with conc. H<sub>2</sub>SO<sub>4</sub> for 15 min. gives (136) 2-chloroxanthone, m.p. 165° (136).]

With acid chlorides of organic acids. The conventional type of reaction of  $\bar{C}$  with acyl halides is to form the corresp. p-chlorophenyl esters (see also below under reactions of phenolic hydrogen of  $\bar{C}$ ); however, with  $\bar{C}$  acid chlorides in pres. of AlCl<sub>3</sub> the ultimate product (undoubtedly formed by rearr. of an intermediate ester) is the ketone [e.g.,  $\bar{C}$  with benzoyl chloride (3:6240) + AlCl<sub>3</sub> in CS<sub>2</sub> (137) or acetylene tetrachloride (3:5750) (138) gives 4-chloro-2-benzoylphenol (5-chloro-2-hydroxybenzophenone), m.p. 95.0-95.5° (138), 94-95° (139), 94° (137), 93-94° (140), frequently accompanied by p-chlorophenyl benzoate, m.p. 87° (see below); for analogous behavior of  $\bar{C}$  with p-toluyl chloride (3:8740) see (138)].

With anhydrides. [ $\bar{C}$  with phthalic anhydride (1:0725) + AlCl<sub>3</sub> at 140-145° (141) cf. (143) or in acetylene tetrachloride (3:5750) (142) gives (70% yield (142)) o-(5-chloro-2-hydroxybenzoyl)benzoic acid [Beil.  $X_{1}$ -(470)], cryst. from hot AcOH, acetone, or alc., m.p. 202°, after sintering at 192° (142); this product ring-closes under the conditions of its formn (141) (142) (143) (144) or with cone.  $H_2SO_4$  at 100° (144) (142) cf. (141) giving 4-chloro-1-hydroxyanthraquinone [Beil. VIII-340, VIII<sub>1</sub>-(651)], yel.-or. ndls. from AcOH or pyridine, m.p. 194° (141), 193-194° (145), 192-193° (146), 189° (142), 188° (147) (corresp. methyl ether, m.p. 168° (145), corresp. acetate, m.p. 176-177° (146)), also obtd. (70% yield (145)) directly from  $\bar{C}$  with phthalic anhydride (1:0725) + AlCl<sub>3</sub> + NaCl at 200-220° for 3 hrs. (See also next paragraph.)]

[Note, however, that  $\bar{C}$  with phthalic anhydride (1:0725) + conc.  $H_2SO_4$  at 200° (148) (149) or in pres. of conc.  $H_2SO_4 + H_3BO_3$  at 200° for  $3\frac{1}{2}$  hrs. (150) (151) (143) (152) (153) (154) (155) (156) goes further than above giving (yield: 68-74% (150)) 1,4-dihydroxyan-thraquinone (quinizarin) (1:9085), cryst. from AcOH, m.p. 200-202° cor. (150).]

[C with 4-chlorophthalic anhydride (3:2725) + H<sub>3</sub>BO<sub>3</sub> + fumg. H<sub>2</sub>SO<sub>4</sub> at 175–195° for 20 hrs. gives (157) 6-chloro-1,4-dihydroxyanthraquinone (6-chloroquinizarin), tbls. from toluene, m.p. 188° (158) (corresp. dimethyl ether, m.p. 168.5° (158); diacetate, m.p. 213° (158)). — For completely analogous behavior under similar circumstances of C with 3,4-dichlorophthalic anhydride (3:3695) or C with 4,5-dichlorophthalic anhydride (3:4830) see these cpds.]

[ $\bar{C}$  with 4-sulfophthalic anhydride +  $H_3BO_3$  +  $H_2SO_4$  at 200° for 4 hrs. gives (45% yield (159) (160) cf. (161)) 1,4-dihydroxyanthraquinonesulfonic acid-6 (6-sulfoquinizarin) [Beil. XI-357]; for study of Na salt of latter as acid-base indicator see (162).]

[For behavior of  $\bar{C}$  with 3-methylphthalic anhydride + AlCl<sub>3</sub> (144) (163), with 4-methylphthalic anhydride + AlCl<sub>3</sub> (163), with naphthalene-1,2-dicarboxylic acid anhydride + AlCl<sub>3</sub> + NaCl (164), or with naphthalene-2,3-dicarboxylic acid anhydride + AlCl<sub>3</sub> + NaCl (165), see indic. refs.]

With esters of keto acids. [ $\bar{C}$  (1 mole) with ethyl acetoacetate (1:1710) + conc. H<sub>2</sub>SO<sub>4</sub> stood 24 hrs. gives (2.7% yield (166)) 6-chloro-2-methylcoumarin [Beil. XVII-336, XVII<sub>1</sub>-(173)], m.p. 186–187° (167), 186° (168), 185° (170), 184–185° (166), 184° (169); note, however, that 4-chloro-2-acetylphenol (5-chloro-2-hydroxyacetophenone) (see below) with Ac<sub>2</sub>O + NaOAc at 160–170° for 5 hrs. gives (167) both the above 6-chloro-2-methylcoumarin and the isomeric 6-chloro-2-methylchromone, ndls. from AcOH, m.p. 115–116° (167).]

[Note also that  $\bar{C}$  with  $\alpha$ -alkylacetoacetates +  $P_2O_5$  gives the corresp. chromones: e.g.,

 $\bar{\mathbf{C}}$  with ethyl  $\alpha$ -methylacetoacetate (1:1712) gives (17% yield (171)) 6-chloro-2,3-dimethyl-chromone, m.p. 107°;  $\bar{\mathbf{C}}$  with ethyl  $\alpha$ -ethylacetoacetate (1:1723) gives (171) 6-chloro-3-ethyl-2-methylchromone, m.p. 109°;  $\bar{\mathbf{C}}$  with ethyl  $\alpha$ -(n-propyl)acetoacetate gives (172) 6-chloro-2-methyl-3-n-propylchromone, m.p. 108°;  $\bar{\mathbf{C}}$  with ethyl  $\alpha$ -isopropylacetoacetate gives (172) 6-chloro-2-methyl-3-n-propylchromone, m.p. 108°;  $\bar{\mathbf{C}}$  with ethyl  $\alpha$ -isopropylacetoacetate gives (172) 6-chloro-3-isopropyl-2-methylchromone, m.p. 127°.]

[C with diethyl oxaloacetate + conc. H<sub>2</sub>SO<sub>4</sub> at 0° gives (small yield (170)) ethyl 6-chlorocoumarin-4-carboxylate [Beil. XVIII<sub>1</sub>-(493)], yel. ndls., m.p. 96-97°; C with diethyl acetonedicarboxylate (1:1772) + conc. H<sub>2</sub>SO<sub>4</sub> gives (6% yield (170)) ethyl 6-chlorocoumarinyl-4-acetate [Beil. XVIII<sub>1</sub>-(493)], m.p. 167°.]

With diazonium salts.  $\bar{C}$  in alk. soln. couples with diazonium salts giving upon acidification the corresp. chloro-hydroxy-azo derivs. [e.g.,  $\bar{C}$  with benzenediazonium chloride (aniline diazotized in HCl soln.) gives (173) 4-chloro-2-(benzeneazo)phenol (5-chloro-2-hydroxyazobenzene) [Beil. XVI-93], red-or. ndls. from AcOH, mp. 110-111° (173) (174);  $\bar{C}$  with diazotized p-nitroaniline gives (175) 4-chloro-2-(p-nitrobenzeneazo)phenol, m.p. 140-143°; for patent on coupling of  $\bar{C}$  with other diazonium salts see (176)].

With other miscellaneous reactants. [For condensation of  $\bar{C}$  with indene (di)chloride (2,3-dichloroindane) see (177); for condensation of  $\bar{C}$  with o-nitrobenzenesulfinic acid (178) or with 2-chloro-5-nitrobenzenesulfinic acid (179) see indic. refs.; for oxidative condensation of  $\bar{C}$  with N,N-dialkyl-p-phenylenediamines, etc., to give various indophenols see (180).]  $[\bar{C}$  (2 moles) with SCl<sub>2</sub> (1 mole) in CCl<sub>4</sub> at  $-10^{\circ}$  (181) or in CS<sub>2</sub> at  $40-45^{\circ}$  (70% yield (182)) or  $\bar{C}$  with S<sub>2</sub>Cl<sub>2</sub> in CS<sub>2</sub> at room temp. (42% yield (182)) gives bis-(5-chloro-2-hydroxyphenyl) sulfide [Beil. VI<sub>1</sub>-(396)], ndls. or lfts. from C<sub>6</sub>H<sub>6</sub>, m.p. 175° (183), 174° (182), 173-174° (184), 173° (181) (corresp. dimethyl ether, m.p. 112° (182); diethyl ether, m.p. 145° (185), dibenzoate, m.p. 145° (182)); for use as disinfectant (181) (183) or in mothproofing compositions (186) see indic. refs.]

[ $\bar{C}$  (2 moles) with SOCl<sub>2</sub> (1 mole) + AlCl<sub>3</sub> in CS<sub>2</sub> gives (70% yield (184)) bis-(5-chloro-2-hydroxyphenyl) sulfoxide [Beil. VI<sub>1</sub>-(396)], pr. from dil. alc., m.p. 202° (corresp. dinitration prod., m.p. 180–181° (184)).]

## REACTIONS INVOLVING NUCLEAR HALOGEN OF C

[ $\bar{C}$  on fusion with KOH (187) (188) or  $\bar{C}$  with aq. alkali or alk. carbonates in pres. of Cu or Cu compds. at elevated temp. under press. (189), or  $\bar{C}$  with aq. Ba(OH)<sub>2</sub> at 170–195° under press. (190), or  $\bar{C}$  with alkali or alk.-earth hydroxides + Cu salts at elevated temp. under press. (191) gives 1,4-dihydroxybenzene (hydroquinone) (1:1590); note, however, that in such fusions with alkali some 1,3-dihydroxybenzene (resorcinol) (1:1530) is also formed (187) (188) (192) (193), and  $\bar{C}$  (as Na $\bar{A}$ ) with NaOH at 310° for 5 hrs. gives (194) as high as 38% resorcinol (1:1530) + a trace of 2,4'-dihydroxybiphenyl; however,  $\bar{C}$  on fusion with K<sub>2</sub>CO<sub>3</sub> is claimed (193) to yield only hydroquinone (1:1590).]

 $[\bar{C} \text{ with Na}_2S + \text{NaOH at 210-215}^\circ \text{ for 24 hrs. gives (195) 4-mercaptophenol (monothiohydroquinone)}$  [Beil. VI-859, VI<sub>1</sub>-(419)], m.p. 29-30°.]

 $[\bar{C} \text{ with NH}_3 \text{ in pres. of Cu cpds. htd. under press. gives (196) } p-aminophenol; <math>\bar{C} \text{ similarly with prim. aliphatic amines gives (196) corresp. } N-alkyl-p-aminophenols.]$ 

# REACTIONS OF C INVOLVING PHENOLIC H (I.E., H OF THE OH GROUP)

Acidic strength.  $\ddot{\mathbf{C}}$  behaves as weak acid, is soluble in aq. alk. or in large excess (2.75 moles of 2 N (197)) aq. Na<sub>2</sub>CO<sub>3</sub> soln. from which it is repptd. by CO<sub>2</sub> (197). — Dissoc. const. of  $\ddot{\mathbf{C}}$  in aq. at 28.5° = 6.6 × 10<sup>-10</sup> (198); for studies of dissoc. const. in other solutions, e.g., in 50% MeOH at 20° (199) (200) or at 28.5° (198), or at 18° over range 0-95% MeOH by volume (203), in 30% aq. EtOH at 25° (200) (9) (201), or at 18° over range

0-95% EtOH by vol. (202), see indic. refs. — For hydrogen potential of  $\bar{C}$  in 48.95 vol. % EtOH or 95 vol. % EtOH at 20° see (204). — For titration of  $\bar{C}$  with standard NaOH and indicator see (205).

Salts of C. [NaA; from C in abs. EtOH with equiv. Na, evapd. under H<sub>2</sub>, dried at 140-150° (134); very hygroscopic ndls. from conc. alc. soln., turning brown in air; in contrast to Na phenolate is fairly eas. sol. dry ether (206); for behavior with CO<sub>2</sub> at 140-150° giving Na salt of 5-chlorosalicylic acid (3:4705) see (134) (135).]

 $[\bar{C} (38.4 \text{ pts.}) \text{ with KOH } (5.6 \text{ pts.}) \text{ in } C_6H_6 \text{ gives } (207) \text{ KA.}2\bar{C}.]$ 

[Č with AlCl<sub>3</sub> evolves heat and HCl giving (208) Cl.C<sub>6</sub>H<sub>4</sub>.OAlCl<sub>2</sub>, m.p. 185–187° (208).] [For patents on use of alkali salts of C as anti-gumming agents for motor fuels see (209); for use of aq. solns. of salts of C as wash liquid for fuel gas purification see (210).]

#### ETHERIFICATION (see also below under D's)

Aliphatic ethers of  $\tilde{C}$ .  $\tilde{C}$  with alkyl halides usually in presence of an acid acceptor gives the corresponding p-chlorophenyl ethers [e.g., for methyl ether (p-chloroanisole) (3:6300) or for ethyl ether (p-chlorophenetole) (3:0090) see these compds. — p-Chlorophenyl n-propyl ether appears to be unreported; for p-chlorophenyl isopropyl ether, b.p. 101° at 17 mm. (211), 73-75° at 1.5 mm. (212),  $n_D^{25} = 1.5127$  (212), see indic. refs. — For p-chlorophenyl isobutyl ether, b.p. 95-97° at 3 mm.,  $n_D^{25} = 1.5090$ , see (213); the n-butyl, sec-butyl and ter-butyl ethers are unreported. — For p-chlorophenyl n-amyl ether, b.p. 132-133° at 12 mm., p-chlorophenyl n-hexyl ether, b.p. 172° at 34 mm., p-chlorophenyl n-heptyl ether, b.p. 162° at 14 mm., and p-chlorophenyl n-hexadecyl ether, m.p. 48°, see (214)].

[ $\bar{C}$  with vinyl chloride (3:7010) + aq. NaOH + CuCl<sub>2</sub> at 170–190° for 10 hrs. under press. gives (215) p-chlorophenyl vinyl ether, b.p. 193–194°,  $D^{20}_{-}=1.138$ . —  $\bar{C}$  with allyl bromide + K<sub>2</sub>CO<sub>3</sub> in acetone gives (100% yield (216)) p-chlorophenyl allyl ether, b.p. 232–234° at ord. press., 106–107° at 12 mm.; note that distn. at ord. press. causes thermal rearr. to 4-chloro-2-allylphenol, b.p. 137° at 18 mm., 124–125° at 12 mm., mp. 48° (corresp. p-nitrobenzoate, m.p. 82°) (216). —  $\bar{C}$  with methallyl chloride (3:7145) + K<sub>2</sub>CO<sub>3</sub> in acetone gives (217) p-chlorophenyl methylallyl ether, b.p. 101.5° at 8 mm.,  $D^{20}_{20}=1.0979$ ,  $n^{20}_{10}=1.5304$ ; this prod. on thermal rearr. gives (217) 4-chloro-2-methallylphenol, b.p. 113° at 8 mm.,  $D^{20}_{20}=1.145$ ,  $n^{20}_{10}=1.5622$ , accompanied by some 5-chloro-2,2-dimethyl-coumaran, b.p. 96° at 5 mm.,  $D^{20}_{20}=1.135$ ,  $n^{20}_{10}=1.5300$  (217).]

[ $\bar{\mathbf{C}}$  with ethylene oxide (1:6105) in alc. NaOEt adds giving (218) cf. (219) ethylene glycol mono-(p-chlorophenyl) ether (p-chlorophenyl)  $\beta$ -hydroxyethyl ether), m.p. about 28° (corresp. p-nitrobenzoate, m.p. 90-91°) (218); note that the corresp. ethylene glycol bis-(p-chlorophenyl ether) is unreported.

[ $\tilde{C}$  (as Na $\tilde{A}$ ) with 2-chloropropanol-1 (3:7917) gives (220) p-chlorophenyl  $\beta$ -hydroxyisopropyl ether (propylene glycol  $\beta$ -(p-chlorophenyl) ether), b.p. 151–153° at 18 mm. —  $\tilde{C}$  with 3-chloropropanediol-1,2 (glycerol  $\alpha$ -monochlorohydrin) (3:9038) in alk. soln. (221), or  $\tilde{C}$  with glycerol (1:6540) + NaOAc at 200–210° in atmosphere of illuminating gas (222) gives p-chlorophenyl  $\beta$ , $\gamma$ -dihydroxy-n-propyl ether (glycerol  $\alpha$ -(p-chlorophenyl ether), cryst. from  $C_6H_6$ , m.p. 80° (221), 76° (222); b.p. 214–215° at 19 mm. (221), 173–175° at 17 mm. (223).]

[ $\bar{C}$  with diethyl chlorofumarate (3:6864) + NaOEt at 150° gives (224) diethyl p-chlorophenoxyfumarate, b.p. 199–200° at 12 mm. —  $\bar{C}$  (as Na $\bar{A}$ ) +  $\bar{C}$  with ethyl phenylpropiolate as directed gives (224) ethyl  $\beta$ -(p-chlorophenoxy)cinnamate, m.p. 63–64°, b.p. 220–225° at 12 mm.]

Aromatic ethers of  $\tilde{C}$ . [p-Chlorophenyl phenyl ether: b.p. 161-162° at 19 mm. (225), 146-150° at 7 mm. (226),  $n_D^{25} = 1.5865$  (225); note that although this prod. has not been reported by etherification of  $\tilde{C}$  it has been obtd. from diphenyl ether (1:7125) in AcOH

with  $Cl_2$  (226), from K phenolate + p-chloroiodobenzene (225), or from p-aminophenol phenyl ether via diazotization and use of  $Cu_2Cl_2$  reaction (226); for studies of its chlorination, bromination, iodination, and nitration see (226), for metalation see (227); note also that the product first reported (228) was impure (225).]

p-Chlorophenyl p-chlorophenyl ether (bis-(p-chlorophenyl) ether) [m.p. 30° (226) (229), b.p. 168-172° at 7 mm. (226); note that this prod. has not been reported by etherification of Č but has been prepd. from diphenyl ether (1:7125) in AcOH with Cl<sub>2</sub> (226), or from p-aminophenol p-chlorophenyl ether via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reaction (226) (229); for mononitration to 4-chlorophenyl 4-chloro-2-nitrophenyl ether, m.p. 75° (see also below) or dinitration to bis-(4-chloro-2-nitrophenyl) ether, m.p. 152° (229), 154° (236), see (229) (236)].

p-Chlorophenyl o-nitrophenyl ether [from  $\bar{C}$  (as  $K\bar{A}$ ) with o-chloronitrobenzene on htg. (230) (231) in pres. of Cu bronze (232) (yields: 75% (232), 72% (230)), pale yel. cryst. from MeOH, m.p. 46° (231), 45.5° (230), 44-45° (232), b.p. 220° at 20 mm. (232), 208° at 11 mm. (232); note that this prod. does not (229) react with piperidine at 100°].

p-Chlorophenyl m-nitrophenyl ether [m.p. 60° (233), reported only by indirect means (233)]. p-Chlorophenyl p-nitrophenyl ether: from  $\bar{\mathbf{C}}$  (as  $K\bar{\mathbf{A}}$ ) with p-chloronitrobenzene on htg. (81% yield (230)) (229) (233), m.p. 76.5° (230), 76° (233), 75.5-76° (229); b.p. 215° at 12 mm. (229) or as one prod. of nitration of p-chlorophenyl phenyl ether (above) (226). — [For pat. on use as insecticide see (134).]

p-Chlorophenyl 2,4-dinitrophenyl ether: from  $\bar{C}$  (as K $\bar{A}$  (230) or Na $\bar{A}$  (235)) with 2,4-dinitrochlorobenzene on htg. (97% yield (230)); yel. tbls. from 1:2 EtOH/AcOH, m.p. 126° (235), 123° (230).

p-Chlorophenyl 2,4,6-trinitrophenyl ether. [This prod. which should easily be obtd. from  $\bar{C}$  (as  $K\bar{A}$ ) with 2,4,6-trinitrochlorobenzene (picryl chloride) appears to be unreported.]

p-Chlorophenyl 4-chloro-2-nitrophenyl ether: from  $\bar{C}$  (as  $K\bar{A}$ ) with 2,5-dichloronitrobenzene on htg. (84.4% yield (230)) (229) (231) (84), pale yel. ndls. from alc., m.p. 79° (230), 78° (231), 75° (229); b.p. 215-220° at 15 mm. (229).

p-Chlorophenyl 4-bromo-2-nitrophenyl ether: from  $\bar{C}$  (as KA) with 2,5-dibromonitrobenzene on htg. (91.9% yield (230)) (236), pale yel. ndls. from AcOH, m.p. 100-101° (236), 100.5° (230).

#### ESTERIFICATION

Esters of inorganic acids. [ $\bar{C}$  with SOCl<sub>2</sub> + pyridine in C<sub>6</sub>H<sub>6</sub> as directed gives (237) (238) bis-(p-chlorophenyl) sulfite, b.p. 213-214° at 12 mm., sl. dec.]

- [ $\bar{C}$  (3 moles) with PCl<sub>3</sub> (1 mole) at 150° gives (239) tris-(p-chlorophenyl) phosphite, m.p. 49°, b.p. 290–297° at 15 mm. (corresp. MeI addn. prod., m.p. 71° (239)); note, however, that  $\bar{C}$  with large excess PCl<sub>3</sub> at 100° gives (240) p-chlorophenylphosphorous dichloride Cl.C<sub>6</sub>H<sub>4</sub>.OPCl<sub>2</sub>, b.p. 128–130° at 12 mm., and di-(p-chlorophenyl)phosphorous chloride (Cl.C<sub>6</sub>H<sub>4</sub>.O)<sub>2</sub>=P-Cl, b.p. 225–227° at 11 mm.]
- [C (3 moles) with POCl<sub>3</sub> (1 mole) under reflux (241), or C with POCl<sub>3</sub> in cold alk. soln. (242) (243), or C (as NaA) with POCl<sub>3</sub> in neutral inert solv. (244), gives tri-(p-chlorophenyl) phosphate [Beil. VI-188, VI<sub>1</sub>-(102)], m.p. 117° (241), 112° (244). Note, however, that C with POCl<sub>3</sub> in pres. of Mg at 130–140° gives (245) p-chlorophenylphosphoryl dichloride, Cl.C<sub>6</sub>H<sub>4</sub>.O—P(O)Cl<sub>2</sub> [Beil. VI-188, VI<sub>1</sub>-(102)], b.p. 265° at 760 mm. (246) (247), 141° at 12 mm. (246), 95–115° at 0.1 mm. (245), accompanied by di-(p-chlorophenylphosphoryl chloride (Cl.C<sub>6</sub>H<sub>4</sub>.O)<sub>2</sub>P(O)Cl [Beil. VI-188], b.p. 164–176° at 0.1 mm. (245); these two products may be hydrolyzed, respectively, to p-chlorophenylphosphoric acid [Beil. VI-188] cf. (248), m.p. 80–81° (249), and di-(p-chlorophenyl)phosphoric acid [Beil. VI-188], m.p. 126–127° (242), 133–135° cor. (248) (250).]

[For analogous behavior of C with TiCl<sub>4</sub> see (251).]

Esters of aliphatic organic acids (see also below under D's).

p-Chlorophenyl acetate: from  $\bar{C}$  with Ac<sub>2</sub>O + NaOAc (252); m.p. 7-8° (252), b.p. 226-228° (253), 100-102° at 15 mm. (254), 108° at 12.5 mm. (252), 90-92° at 2.5 mm. (61),  $D_4^{20}$  = 1.2248 (252). — Note that this prod. with AlCl<sub>3</sub> on htg. (255) (254) (61) or  $\bar{C}$  with AcCl + FeCl<sub>3</sub> directly (256) gives (100% yield (255)) 4-chloro-2-acetylphenol (5-chloro-2-hydroxy-acetophenone) [Beil. VIII-86], m.p. 55° (256), 54° (61), 53.5-54.5° (167), b.p. 97-99° at 2 mm. (61) (corresp. acetate, b.p. 156-157° (140)).

p-Chlorophenyl propionate: from  $\bar{C}$  with propionyl chloride (3:7170) (140) (61); oil, b.p. 234-236° (140), 76-78° at 2 mm. (61). — Note that this prod. with AlCl<sub>3</sub> undergoes Fries rearr. giving (140) (61) 4-chloro-2-propionylphenol (5-chloro-2-hydroxypropiophenone), m.p. 59.7° (61), 56.5-57.5° (140) (corresp. methyl ether, m.p. 41-42°, b.p. 135-140° at 6 mm. (257)).

p-Chlorophenyl n-butyrate: from  $\tilde{C}$  with n-butyryl chloride (3:7370) (140) (61); oil, b.p. 249-251° (140), 96-98° at 3 mm. (61). — Note that this prod. with AlCl<sub>3</sub> undergoes Fries rearr. giving (140) (61) 4-chloro-2-(n-butyryl)phenol (5-chloro-2-hydroxy-n-butyro-phenone), m.p. 50.5° (61), 49-50° (140); b.p. 108-112° at 3 mm. (61).

p-Chlorophenyl isobutyrate: from  $\bar{\rm C}$  with isobutyric acid (1:1030) + POCl<sub>3</sub> (258); m.p. 29°, b.p. 120° at 11 mm. (258). — Note that this prod. with AlCl<sub>3</sub> undergoes Fries rearr. giving (258) 4-chloro-2-isobutyrylphenol (5-chloro-2-hydroxy-isobutyrophenone), oil, b.p. 130° at 20 mm.,  $D_4^{20}=1.192, n_{\rm He}^{20}=1.5521$  (258).

[For generally analogous behavior of  $\bar{C}$  with *n*-valeryl chloride (3:7740), *n*-caproyl chloride (3:8168), *n*-heptanoyl chloride (3:8520), *n*-octanoyl chloride (3:8680) see (61); with chloroacetyl chloride (3:5235) see (259); with  $\alpha$ -bromo-isovaleryl bromide see (260).]

 $\bar{\mathbf{C}}$  (as Na $\bar{\mathbf{A}}$ ) (2 moles) with COCl<sub>2</sub> (3:5000) in C<sub>6</sub>H<sub>6</sub> at 130–180° under press. (261) or  $\bar{\mathbf{C}}$  (as K $\bar{\mathbf{A}}$ ) in conc. aq. soln. with COCl<sub>2</sub> in toluene (262), or  $\bar{\mathbf{C}}$  with trichloromethyl chloroformate (diphsogene) (3:5515) + aq. NaOH (263), gives di-(p-chlorophenyl) carbonate [Beil. VI-187], m.p. 147° (263), 144–145° (264).

Esters of aromatic organic acids (see also below under ©'s).

p-Chlorophenyl benzoute: from C with benzoyl chloride (3:6240) (265) (for study of rate at 25° sec (268)) in pres. of aq. NaOH (252) (266) (267); m.p. 87-87.5° (138), 87° u.e. (252), 86° (266) (267). — Note that this prod. with AlCl<sub>3</sub> undergoes Fries rearr. giving (140) 4-chloro-2-benzoylphenol (5-chloro-2-hydroxybenzophenone), m.p. 95.0-95.5° (138), 94-95° (139), 94° (137), 93-94° (140) (corresp. benzoate, m.p. 112° (139)).

p-Chlorophenyl cinnamate: from  $\bar{C}$  with cinnamoyl chloride (3:0330) (68% yield (260)), m.p. 105° (260) (269).

- ---- p-Chlorophenyl methyl ether (p-chloroanisole): oil. (See 3:6300.)
- p-Chlorophenyl ethyl ether (p-chlorophenetole): m.p. 20-21°. (See 3:0090.)
- p-Chlorophenyl acetate: m.p. 7-8° (252). [For further details see above under esters of C with aliphatic organic acids.]
  - D p-Chlorophenyl benzoate: m.p. 87.0-87.5° (138), 87° u.c. (252), 86° (266) (267).
    [From \(\tilde{C}\) with benzoyl chloride in pres. of aq. NaOH (252) (266) (267) (see also above under esters of \(\tilde{C}\) with aromatic organic acids).]
  - --- p-Chlorophenyl o-nitrobenzoate: unreported.
  - D p-Chlorophenyl m-nitrobenzoate: m.p. 124.5° (252). [From C with m-nitrobenzoyl chloride + aq. NaOH (252).]
  - D p-Chlorophenyl p-nitrobenzoate: m.p. 171° (270).
  - D p-Chlorophenyl 3,5-dinitrobenzoate: m.p. 186° (271).
  - --- p-Chlorophenyl benzenesulfonate: unreported.

- ---- p-Chlorophenyl p-toluenesulfonate: unreported.
- D p-Chlorophenyl benzyl ether: ndls. from alc., m.p. 71° (272), 70-71° (273). [Note, however, that C with benzyl chloride (3:8535) + AlCl<sub>3</sub> gives not only this prod. but also (273) cf. (274) some Fries rearr. prod., viz., 4-chloro-2-benzylphenol (5-chloro-2-hydroxydiphenylmethane), m.p. 48-49° (273), 48.5° (274) (corresp. benzoate, m.p. 54-55°, benzenesulfonate, m.p. 68-69°, p-toluenesulfonate, m.p. 75.0-75.5° (273)).]
- p-Chlorophenyl p-nitrobenzyl ether: cryst. from alc., m.p. 101.3° (275). [From C + p-nitrobenzyl chloride (m.p. 71°) (or p-nitrobenzyl bromide, m.p. 99°) in alc. NaOEt (275).]
- D p-Chlorophenyl 2,4-dinitrophenyl ether: yel. tbls. from 1:2 EtOH/AcOH, m.p. 126° (235), 123° (230). [From C (as KA (230) or NaA (235)) with 2,4-dinitrochlorobenzene (m.p. 51°) on htg. (97% yield (230)).]
- D p-Chlorophenoxyacetic acid (3:4375): pr. from hot aq., m.p. 156.7-157.2° cor. (279), 155-156.5° u.e. (276), 155-156° (277), 154-155° (278). [From \(\bar{\mathbf{C}}\) with chloroacetic acid in aq. alk. (279) (276) (277) (278).]
- —— p-Chlorophenyl N-phenylcarbamate: cryst. from alc., m.p. 138° (280), 137-138° (263). [From C (as NaA) with phenylisocyanide dichloride on htg. (280); note, however, prepn. from C + phenyl isocyanate has not been reported.
- ① p-Chlorophenyl N-(p-bromophenyl)carbamate: white pl. from  $C_6H_6/EtOAc$ , m.p.  $196-197^{\circ}$  cor. (281). [From  $\bar{C}$  with p-bromobenzazide (281) in lgr. (281).]
- D p-Chlorophenyl N-(p-iodophenyl)carbamate; m.p. 214-215° (282). [From C with p-iodobenzazide (282) in lgr. (282).]
- ① p-Chlorophenyl N-(m-nitrophenyl)carbamate: white pl. from lgr., m.p. 136° u.c., 139° cor. (283). [From C with m-nitrobenzazide (283) or m-nitrophenyl isocyanate (283) in lgr. (283)]
- p-Chlorophenyl N-(p-nitrophenyl)carbamate: pale yel. rods from lgr., m.p. 196° cor.
   (284). [From C with p-nitropenzazide (284) in lgr. (284).]
- $\bigcirc$  p-Chlorophenyl N-(3,5-dinitrophenyl)carbamate: yel. pl. from  $C_6H_6/EtOAc$ , m.p. 197-198° (285). [From  $\bar{C}$  with 3,5-dinitrophenzazide (285) in lgr. (285).]
- D p-Chlorophenyl N-(3,5-dinitro-4-methylphenyl)carbamate: pale yel. pl. from lgr., m.p. 206-207° u.c., 212-213° cor. (286). [From C with 3,5-dinitro-4-methylbenzazide (286) in lgr. (286).]
- p-Chlorophenyl N-(α-naphthyl)carbamate: m.p. 165-166° (287). [From C with α-naphthyl isocyanate in lgr. (287).]
- D p-Chlorophenyl N-(β-naphthyl)carbamate: pl. from lgr., m.p. 165-166° u.c., 169-170° cor. (288). [From C with β-naphthyl isocyanate (288) in lgr. (288).]
- p-Chlorophenyl N,N-diphenylcarbamate: m.p. 97° (289). [From C with N,N-diphenylcarbamyl chloride (289).]
- 3:0475 (1) Puschin, Dimitrijevic, Z. physik. Chem. A-184, 231-237 (1939). (2) Holleman; Rinkes, Koninkl. Akad. Wetenschappen Amsterdam 18, 540-541 (1910); Cent. 1910, I 1502; C.A. 5, 1282 (1911). (3) Holleman, Rinkes, Rec. trav. chum. 30, 82-92 (1911). (4) Burnham, Madgin, J. Chem. Soc. 1936, 789-793. (5) Williams, Fogleberg, J. Am. Chem. Soc. 52, 1358 (1930). (6) Dubois, Zeit. für Chemie, 1867, 205; Jahresber. 1867, 206. (7) Durrans, J. Chem. Soc. 121, 47 (1922). (8) Minaev, Fedorov, Sarnit, Org. Chem. Ind. (U.S.S.R.) 4, No. 13, 19-22 (1937); Cent. 1938, II 173; C.A. 31, 8514 (1937). (9) Bennett, Brooks, Glasstone, J. Chem. Soc. 1935, 1823, 1826. (10) Beilstein, Kurbatow, Ann. 176, 30-35 (1875).
- (11) Lecat, Rec. trav. chim. 47, 16 (1928). (12) Kohlrausch, Pongratz, Monatsh. 65, 202 (1935). (13) Jorissen, Z. anorg. allgem. Chem. 104, 161 (1918). (14) Puschin, Matavulj, Z. physik. Chem. A-164, 81-82 (1933). (15) Petersen, Bachr-Predari, Ann. 157, 124-125 (1871). (16) Holleman, Rec. trav. chim. 37, 105-106 (1918). (17) Sidgwick, Turner, J. Chem. Sc. 121, 2256-2259 (1922). (18) Virtanen, Pulkki, J. Am. Chem. Soc. 50, 3138-3151 (1928); Ann. acad. sci. Fennicae 29-A, 28 pp. (1927); Cent. 1928, I 167; C.A. 22, 4351 (1928). (19) Takagi, Ishimasa, J. Pharm. Soc.

Japan, No. 517, 253-260 (1925); Cent. 1926, I 182; C.A. 20, 2669 (1926). (20) Jona, Gazz. chim. ital. 39, II 303-304 (1908).

(21) Weissenberger, Schuster, Lielacher, Monatsh. 46, 295-296 (1925).
(22) von Auwers, Z. physik. Chem. A-158, 418 (1932).
(23) Puschin, Matavulj, Z. physik. Chem. A-158, 291 (1932).
(24) Hrynakowski, Szmyt, Z. physik. Chem. A-182, 110, 113-114 (1938).
(25) Luchinskii, Likhacheva, J. Phys. Chem. (U.S.S.R.) 7, 723-727 (1936); Cent. 1937, 14767; C.A. 30, 7992 (1936).
(26) Thole, Mussell, Dunstan, J. Chem. Soc. 103, 1115 (1913).
(27) Puschin, Rikovski, Ann. 532, 297-299 (1937).
(28) Burnham, Madgin, J. Chem. Soc. 1936, 1303-1306.
(30) Landee, Johns, J. Am. Chem. Soc. 63, 2895 (1941).

(31) Tschunkur, Herdieckerhoff (to I.G.), Ger. 497,412, May 9, 1930; Cent. 1930, II 984; [C.A. 24, 3520 (1930)]. (32) Euler, Ann. 325, 303 (1903). (33) Ruff, Stein, Ber. 34, 1675 (1901). (34) Tishchenko, J. Russ. Phys.-Chem. Soc. 60, 153-162 (1928); Cent. 1928, II 767; C.A. 22, 3397, (1928). (35) Faust, Muller, Ann. 173, 303-304 (1874). (36) Likhosherstov, Arkhangel'skaya J. Gen. Chem. (U.S.S.R.) 7, 1914-1928 (1937); Cent. 1938, I 3330; C.A. 32, 519 (1938). (37) Likhosherstov, J. Russ. Phys.-Chem. Soc. 61, 1019-1023; 1025-1028 (1929); Cent. 1930, I 1294; C.A. 24, 836 (1930). (38) Goldschmidt, Endres, Dirsch, Ber. 58, 576 (1925). (39) Peratoner, Finocchiaro, Gazz. chim. ital. 24, I 238-239 (1894). (40) Peratoner, Gazz. chim. ital. 28, I 210 (1898).

(41) Dubois, Zeit. für Chemie 1866, 705; Jahresber. 1866 283. (42) Schmitt, Cook, Ber. 1, 67-68 (1868). (43) Hodgson, Foster, J. Chem. Soc. 1942, 583. (44) Holleman, de Mooy, Rec. trav. chim. 35, 14, 18, 27-28 (1915). (45) de Lange, Rec. trav. chim. 38, 103-105 (1919). (46) Chemische Werke Ichendorf, Ger. 281,175, Dec. 15, 1914; Cent. 1915, I 180; [C.A. 9, 1830 (1915)]. (47) Lofton, Burroughs (to Pennsylvania Coal Products Co.) U.S. 2,126,648, Aug. 9, 1938; Cent. 1938, II 3006; C.A. 32, 7925 (1938). (48) Kipriyanov, Dashevskii, Ukrain. Khem. Zhur. 7, Wiss-Tech. Abt. 78-86 (1932); Cent. 1933, II 1338; C.A. 27, 3824 (1933). (49) Vorozhtzov, Karlash, Compt. rend. acad. sci. U.R.S.S. 1933, 221-223; Cent. 1935, I 55; C.A. 28, 1991 (1934); Russ. 30,690, June 30, 1933; Cent. 1934, I 767; C.A. 28, 5834 (1934). (50) Lloyd, Kennedy, U.S. 1,849,844, March 15, 1932; Cent. 1932, I 2994; [C.A. 26, 2747 (1932)].

(51) Autenrieth, Arch. Pharm. 233, 31-32 (1895). (52) Autenrieth, Muhlinghaus, Ber. 39, 4102 (1906). (53) Borosel, J. Am. Chem. Soc. 53, 1408-1409 (1931). (54) Peratoner, Gazz. chim. ital. 28, I 239 (1898). (55) Peratoner, Vitale, Gazz. chim. ital. 28, I 216 (1898). (56) Boehringer und Sohne, Ger. 286,266, July 30, 1915; Cent. 1915, II 566; [C.A. 10, 1254 (1916)]. (57) Shiple, Muldoon, Sherwin, J. Biol. Chem. 60, 59-67 (1924). (58) Muldoon, Shiple, Sherwin, Proc. Soc. Exptl. Biol. Med. 21, 145 (1923); Cent. 1924, II 1363, not in C.A. (59) Coombs, Hele, Biochem. J. 20, 606-612 (1927); Cent. 1926, II 1975; C.A. 21, 3224-3225 (1927). (60) Woodward, Kingery, Williams, J. Lab. Clin. Med. 19, 1216-1223 (1934); Cent. 1935, I 256; C.A. 28, 6849 (1934).

(61) Klarmann, Shternov, Gates, J. Am. Chem. Soc. 55, 2576-2589 (1933). (62) Klarmann, Shternov, Gates, J. Lab. Clin. Med. 19, 835-851 (1934); C.A. 28, 4792 (1934). (63) Engelhardt, Biochem. Z. 190, 217-225 (1927); Cent. 1928, II 691; C.A. 22, 1990-1991 (1928). (64) Kuroda, Arch. exptl. Path. Pharmakol. 112, 60-64 (1926); Cent. 1926, I 3610; C.A. 20, 2705-2706 (1926). (65) Kuroda, Biochem. Z. 169, 281-289 (1926); Cent. 1928, I 3068; C.A. 20, 3315 (1926). (66) Cooper, Forstner, Biochem. J. 18, 941-947 (1924); Cent. 1925, I 104; C.A. 19, 311 (1925). (67) Cooper, Woodhouse, Biochem. J. 17, 600-612 (1923); Cent. 1923, III 1625; C.A. 18, 403 (1924). (68) Uhlenhuth, Hailer, Arch. Hyg. 92, 30-52 (1923); Cent. 1923, IV 435; C.A. 18, 543 (1924). (89) Kohman, Ind. Eng. Chem. 15, 518 (1923). (70) Osborn, J. Am. Water Works Assoc. 17, 586-590 (1927); Cent. 1927, II 312; C.A. 21, 2343 (1927).

(71) Harrison, J. Am. Water Works Assoc. 15, 292-297 (1926); Cent. 1926, I 3501; C.A. 20, 2216 (1926). (72) Harrison, J. Am. Water Works Assoc. 17, 336-340 (1927); Cent. 1927, I 3026; C.A. 21, 1686 (1927). (73) Harrison, J. Am. Water Works Assoc. 21, 542-549 (1929); Cent. 1929, II 618; C.A. 23, 3286 (1929). (74) Saegbarth (to Edeleanu, G. m.b.h.), U.S. 2,138,772, Nov. 29, 1939; Cent. 1939, I 2114; C.A. 33, 2321 (1939). (75) Orelup, Ohlsson, Isermann, U.S. 1,730,850, Oct. 8, 1929; Cent. 1929, II 3254; C.A. 23, 5541 (1929). (76) Hilmer, Cellulosechem. 6,169-187 (1925); Cent. 1926, I 890; not in C.A. (77) Bell, J. Chem. Soc. 1936, 1244. (78) Kelber, Ber. 50, 309 (1917). (79) Kelber, Ber. 54, 2259-2260 (1921). (80) Spencer, Price, J. Chem. Soc. 97, 388-389 (1910).

(81) Vorozhtzov, Karlash, Russ. 30,689, June 30, 1933; Cent. 1934, I 767; C.A. 28, 5834 (1934).
(82) Böeseken, Metz, Rec. trav. chim. 54, 346, 350 (1935).
(83) Fichter, Adler, Helv. Chim. Acta 92, 279-281 (1926).
(84) Groves, Turner, Sharp, J. Chem. Soc. 1929, 516, 519.
(85) Roberts, Soper, J. Chem. Soc. 1932, 1982.
(86) Soper, Smith, J. Chem. Soc. 1926, 1589.
(87) Thomas, J. Am. Chem. Soc. 63, 629-630 (1941).
(88) Raiford, Miller, J. Am. Chem. Soc. 55, 2127 (1933), (89) Hunter, Joyce, J. Am. Chem. Soc. 39, 2643-2644 (1917).
(90) Fox, Turner, J. Chem. Soc. 1930, 1861.

- (91) Lauer, J. Am. Chem. Soc. 48, 449 (1926). (92) Kohn, Rosenfeld, Monatsh. 46, 106-107, 112-115 (1925). (93) Kohn, Dömötör, Monatsh. 47, 228-233 (1926). (94) Kohn, Kramer, Monatsh. 49, 153-155 (1928). (95) Day, Taggart, Ind. Eng. Chem. 20, 545-547 (1928). (96) Feist, Klatt, Pharm. Ztg. 76, 112-113 (1931); Cent. 1931, I 3492; [C.A. 25, 1632 (1931)]. (97) Khaletskii, Yanovitskaya, Farmatsiya i Farmakol (U.S.S.R.) 1938, No. 1, 17-19; C.A. 33, 8143 (1934); Cent. 1938, II 1454. (98) Varma, Yashoda, J. Indian Chem. Soc. 16, 477-478 (1939). (99) Buchan, McCombie, J. Chem. Soc. 1931, 140-144. (100) Brenaus, Girod, Compt. rend. 186, 1553-1555 (1928).
- (101) Faust, Saame, Ann. Suppl. 7, 191-195 (1870). (102) Mottier, Arch. sci. phys. nat. 16, 301-303 (1934); Cent. 1935, I 3278; C.A. 29, 3322 (1935). (103) Neunhoeffer, Ber. 68, 1777-1778 (1935). (104) Varma, Sharma, J. Indian Chem. Soc. 7, 629-630 (1930). (105) Plazek, Roczniki Chem. 10, 761-776 (1930); Cent. 1931, I 1428; [C.A. 25, 1504-1505 (1931)]. (106) Reverdin, Ber. 36, 1689-1690 (1903). (107) Takagi, Tanaka, J. Pharm. Soc. Japan 1925, No. 517, 247-252; Cent. 1926, I 182; C.A. 20, 2669 (1926). (108) Dubois, Zeit. für Chemie, 1867, 206; Jahresber. 1867, 613. (109) Schouten, Rec. trav. chim. 56, 555 (1937). (110) Petersen, Baehr-Predari, Ann. 167, 161 (1871).
- (111) Tarbell, Mallatt, Wilson, J. Am. Chem. Soc. 64, 2229 (1942). (112) Rashevskaya, Zil'berman, Chernyarskaya, Skirvskaya, J. Gen. Chem. (U.S.S.R.) 10, 499-505 (1937); Cent. 1938, I 58; C.A. 31, 6212 (1937). (113) Petersen, Baehr-Predari, Ann. 157, 128-147 (1871). (114) Gauntlett, Smiles, J. Chem. Soc. 127, 2745-2746 (1925). (115) Hamer, Pinching, Acree, J. Research Natl. Bur. Standards 31, 291-304 (1943). (116) Schoepfle, Van Natta, Clarkson; J. Am. Chem. Soc. 50, 1172-1174 (1928). (117) Bayer and Co., Ger. 234,851, May 20, 1911, Cent. 1911, I 1769; C.A. 5, 2912 (1911). (118) Hart, Andersen, J. Am. Chem. Soc. 57, 1060 (1935). (119) Kalinowski, Roczniki Chem. 9, 131-147 (1929); Cent. 1929, I 2301; C.A. 23, 3216 (1929). (120) Engelmann (to du Pont Co.), U.S. 1,748,331, Feb. 25, 1930; Cent. 1930, II 802; C.A. 24, 1927 (1930).
- (121) Engelmann, Funk (to du Pont Co.), U.S. 1,801,145, April 14, 1931; Cent. 1932, I 571; C.A. 25, 3430 (1931). (122) Hinsberg, Ger. 538,376, Nov. 14, 1931; Cent. 1932, I 2094; [C.A. 26, 1617 (1932)]. (123) F. Bayer and Co., Ger. 132,475, June 9, 1902; Cent. 1902, II 82. (124) Buehler, Bass, Darling, Lubs, J. Am. Chem. Soc. 62, 890-891 (1940). (125) Weiler, Berres (to I.G.), Ger. 510,447, Oct. 18, 1930; Cent. 1931, I 2115; C.A. 25, 974 (1931). (126) Hanus, J. prakt. Chem. (2) 158, 253 (1941). (127) Zinke, Hanus, Ziegler, J. prakt. Chem. (2) 152, 142 (1939). (128) Sen, Ray, J. Indian Chem. Soc. 9, 176 (1932). (129) Duff, J. Chem. Soc. 1941, 547-550. (130) Pauly, Schanz, Ber. 56, 979-985 (1923).
- (131) Haakh, Smola, Austrian 141,159, March 25, 1935; Cent. 1935, II 439; C.A. 29, 4021 (1935). (132) Zeitner, Landau, Ger. 258,887, April 17, 1913, Cent. 1913, I 1641; [C.A. 7, 2996 (1913)]. (133) Hasse, Ber. 10, 2190 (1877). (134) Varnholt, J. prakt. Chem. (2) 36, 17-22 (1887). (135) Chem. Fabrik von Heyden, Ger. 33,635; Friedlander 1, 234 (1877-1887). (136) Dhar, J. Chem. Soc. 117, 1068 (1920). (137) Pieroni, Gazz. chim. ital. 62, 390 (1932). (138) Hayashi, J. prakt. Chem. (2) 123, 298-299, 304 (1929). (139) Arventi, Bull. soc. chim. (5) 3, 603 (1936). (140) Wittig, Bangert, Richter, Ann. 446, 194, 198, 186, 188 (1926).
- (141) Ullmann, Ger. 282,493, March 6, 1915; Cent. 1915, I 643; [C.A. 9, 2598 (1915)]. (142) Ullmann, Conzetti, Ber. 53, 829-831 (1920). (143) Rogers, Ogilvie, Crowell (to Natl. Aniline and Chem. Co.), U.S. 1,886,237, Nov. 1, 1932; Cent. 1933, II 1765; C.A. 27, 1366 (1933). (144) Hayashi, J. Chem. Soc. 1927, 2519-2520. (145) Waldmann, J. prakt. Chem. (2) 130, 98-99 (1931). (146) Green, J. Chem. Soc. 1927, 1434-1435. (147) Conant, Fieser, J. Am. Chem. Soc. 46, 1866 (1924). (148) Bayer, Caro, Ber. 8, 152 (1875). (149) Liebermann, Ann. 212, 11-12 (1882). (150) Bigelow, Reynolds, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 476-478 (1941); (1st ed.), 464-465 (1932); 6, 78-80 (1926).
- (151) Reynolds, Bigelow, J. Am. Chem. Soc. 48, 420-422 (1926). (152) Spalding (to Natl. Aniline and Chem. Co.), U.S. 1,845,632, Feb. 16, 1932; Cent. 1933, I 1489; C.A. 26, 2203 (1532). (153) Gubelmann, Wieland (to Newport Chem. Corpn.), U.S. 1,790,915, Feb. 3, 1931; Cent. 1932, I 2238; C.A. 25, 1539 (1931). (154) Orelup, U.S. 1,790,510, Jan. 27, 1931; Cent. 1932, I 2238 [C.A. 25, 1265 (1931)]. (155) Dodd, Sprent and United Alkali Co., Brit. 245,584, Feb. 4, 1921; Cent. 1927, I 360; C.A. 21, 249 (1927) (156) Soc. étude colorantes solides, French 550,362, March 5, 1923; Cent. 1925, I 1245; not in C.A. (157) Scottish Dyes, Ltd., Bangham, Hooley, Thomas, Brit. 339,589, Jan. 8, 1931; Cent. 1932, I 2095; [C.A. 25, 2859 (1931)]. (158) Waldmann, J. prakt. Chem. (2) 126, 255 (1930). (159) Schwenk, Waldmann, Z. angew. Chem. 45, 20-21 (1932). (160) Schwenk (to General Aniline Works), U.S. 1,890,866, Dec. 13, 1932; Cent. 1933, II 613; [C.A. 27, 1642 (1933)].
- (161) Mildner (to I.G.), Ger. 534,930, Oct. 3, 1931; Cent. 1932, I 591; [C.A. 26, 1142 (1932)]. (162) Green, Ind. Eng. Chem., Anal. Ed. 14, 249 (1942). (163) Hayashi, J. Chem. Soc. 1936, 1513-1518. (164) Waldmann, J. prakt. Chem. (2) 131, 77-78 (1931). (165) Waldmann, Mathio-

wetz, Ber. 64, 1718 (1931). (166) Clayton, J. Chem. Soc. 93, 2022 (1908). (167) Wittig, Ber. 57, 88-91 (1924). (168) Mayer, Philipps, Ruppert, Schmitt, Ber. 61, 1971, 1974 (1928). (169) Chakravarti, Dutta, J. Indian Chem. Soc. 17, 65-71 (1940). (170) Dey, J. Chem. Soc. 107, 1642, 1644 (1915).

(171) Simonis, Schuhmann, Ber. 50, 1144-1145 (1917). (172) Chakravarti, J. Indian Chem. Soc. 9, 28 (1932). (173) Krause, Ber. 32, 126 (1899). (174) Hodgson, Rosenberg, J. Soc. Chem. Ind. 497, 405-408 (1930). (175) Ernsberger, Brode, J. Org. Chem. 6, 333 (1941). (176) F. Bayer and Co., Ger. 210,964, June 16, 1909; Cent. 1909, II 243; C.A. 3, 2512 (1909). (177) Suter, Lutz, J. Am. Chem. Soc. 60, 1365-1368 (1938). (178) Kent, Smiles, J. Chem. Soc. 1934, 426. (179) Krishna, J. Chem. Soc. 123, 2785 (1923). (180) M.L.B., Ger. 158,091, Jun. 21, 1905; Cent. 1905, I 478.

(181) F. Dunning, B. Dunning, W. Drake, J. Am. Chem. Soc. 53, 3466-3469 (1931). (182) Richter, Ber. 49, 1024-1025 (1916). (183) Muth (to I.G.), Ger. 568,944, Jan. 1, 1933; Cent. 1933, I 2280, C.A. 27, 2696 (1933). (184) Gazdar, Smiles, J. Chem. Soc. 97, 2251-2252 (1910). (185) Hilditch, Smiles, J. Chem. Soc. 99, 416 (1911). (186) I.G., Brit. 349,004, June 18, 1931; Cent. 1932, I 313; [C.A. 26, 2026 (1932)]. (187) Petersen, Bachr-Predari, Ann. 157, 126-128 (1871). (188) Faust, Ber. 6, 1022-1023 (1873). (189) Bochringer und Sohne, Ger. 269,544, Jan. 22, 1914; Cent. 1914, I 591-592; [C.A. 8, 2221 (1914)]. (190) Bayer and Co., Ger. 249,939, Aug. 1, 1912; Cent. 1912, II 655; [C.A. 6, 3329 (1912)].

(191) Burroughs (to Pennsylvania Coal Products Co.), U.S. 2,041,592, May 19, 1936; Cent. 1937, I 1016; C.A., 30, 4513 (1936). (192) Blanksma, Chem. Weekblad 5, 93-95 (1908); Cent. 1908, I 1051; C.A. 2, 1700 (1908). (193) Tijmstra, Chem. Weekblad 5, 96-101 (1908); Cent. 1908, I 1051; C.A. 2, 1700-1701 (1908). (194) Fierz-Pavid, Stamm, Helv. Chim. Acta 25, 304-370 (1942); C.A. 36, 5469 (1942). (195) Imperial Chem. Ind., Ltd. and Palmer, But. 381,237, Oct. 27, 1932; Cent. 1933, I 675, C.A. 27, 3946 (1933). (196) A.G.F.A., Ger. 205,415, Dec. 28, 1908; Cent. 1909, I 600; [C.A. 3, 1695 (1909)]. (197) Wohlleben, Ber. 42, 4373 (1909). (198) Murray, Gordon, J. Am. Chem. Soc. 57, 110-111 (1935). (199) Kuhn, Wassermann, Helv. Chim. Acta 11, 27 (1928). (200) Jenkins, J. Chem. Soc. 1339, 1139.

(201) Baddeley, Bennett, Glasstone, Jones, J. Chem. Soc. 1935, 1827–1830. (202) Mizutani, Z. physik. Chem. 118, 326 (1925). (203) Mizutani, Z. physik. Chem. 118, 331 (1925). (204) Schwarzenbach, Egli, Helv. Chim. Acta 17, 1176–1182 (1934). (205) Naegel, Kollond-Chem. Beihefte 21, 344,387 (1926). (206) Hantzsch, Mai, Ber. 28, 978 (1895). (207) Schulke-Mayr, Flemming, Ger. 247,410, May 5, 1929; Cent. 1912, II 165; [C.A. 6, 2674 (1912)]. (208) Perrier, Bull. soc. chim. (3) 15, 1183 (1896). (209) Benedict (to Universal Oil Products Co.) U.S. 2,051,-814, Aug. 25, 1936; Cent. 1937, I 495; [C.A. 30, 6938 (1936)]. (210) Vorhees (to Standard Oil Co. of Indiana), U.S. 2,196,281, April 9, 1940; 1942, I 701, C.A. 34, 5275 (1940).

(211) Jones, J. Chem. Soc. 1942, 418–420. (212) Bradfield, Jones, Orton, J. Chem. Soc. 1929, 2815. (213) Bradfield, Jones, J. Chem. Soc. 1929, 3081. (214) Jones, J. Chem. Soc. 1935, 1834. (215) Ernst, Berndt (to I.G.), Ger. 513,679, Dec. 1, 1930; Cent 1931, I 1011–1012, [C.A. 25, 1841 (1931)]. (216) Claisen, Eisleb, Ann. 401, 34–38 (1913). (217) Bartz, Miller, Adams, J. Am. Chem. Soc. 57, 371–376 (1935). (218) Boyd, Marle, J. Chem. Soc. 105, 2123, 2136 (1914). (219) Boyd, Thomas, J. Chem. Soc. 115, 1242 (1919). (220) Bayer and Co., Ger. 282,991, March 24, 1915; Cent. 1915, I 815; C.A. 9, 2568 (1915).

(221) Poulenc Freres, Fourneau, Ger. 219,325, Feb. 23, 1910; Cent. 1910, I 974; [C.A. 4, 2029–2030 (1910)]. (222) Ehlotzky, Monatsh. 36, 664–665 (1909). (223) Nieuwland, Vogt, Foohey, J. Am. Chem. Soc. 52, 1023 (1930). (224) Ruhemann, Bcr. 54, 918,921 (1921). (225) Suter, Green, J. Am. Chem. Soc. 59, 2579 (1937). (226) Brewster, Stevenson, J. Am. Chem. Soc. 62, 3144–3146 (1940). (227) Langham, Brewster, Gilman, J. Am. Chem. Soc. 63, 545–549 (1941). (228) Mailhe, Murat, Compt. rend. 154, 601–603 (1912); Bull. soc. chem. (4) 11, 329–331 (1912). (229) LeFevre, Saunders, Turner, J. Chem. Soc. 1927, 1170–1173. (230) Raiford, Colbert, J. Am. Chem. Soc. 48, 2659–2660 (1926).

(231) McCombie, Macmillan, Scarborough, J. Chem. Soc. 1931, 533-534. (232) Roberts, Turner, J. Chem. Soc. 127, 2007-2008 (1925). (233) Scarborough, J. Chem. Soc. 1929, 2364-2365. (234) Hester (to Röhm and Haas Co.), Ger. 703,189, Jan. 30, 1941; C.A. 36, 212 (1942). (235) Bost, Nicholson, J. Am. Chem. Soc. 57, 2368-2369 (1935). (236) Fox, Turner, J. Chem. Soc. 1930, 1119-1120. (237) Richter, Ber. 49, 2344 (1916). (238) B.A.S.F., Ger. 303,033, Jan. 14, 1918; Cent. 1918, I 499-500; C.A. 13, 324 (1919). (239) Michaelis, Kachne, Rocholl, Ber. 31, 1053 (1898). (240) Strecker, Grossmann, Ber. 49, 85 (1916).

(241) Breusch, Keskin, Rev. faculté sci. univ. Istanbul, 7A, 182–189 (1942); C.A. 38, 1483 (1944). (242) Autenrieth, Ber. 36, 2375–2377 (1897). (243) Autenrieth, Vamossy, Z. physiol. Chem. 25, 446 (1898). (244) A.G.F.A., Ger. 246,871, May 11, 1912; Cent. 1912, I 1875; [C.A. 6, 2497 (1912)]. (245) Rosenmund, Vogt, Arch. Pharm. 281, 317–327 (1943); C.A. 38, 5804–5805 (1943). (246) Anschütz, Molineus, Ann. 415, 53 (1918). (247) Kekulé, Ber. 6, 944 (1873). (248) Zetsche,

Nachmann, Helv. Chim. Acta 9, 425-427 (1926). (249) Kekulé, Barbaglia, Ber. 5, 877 (1872). (250) Kosolapoff, J. Am. Chem. Soc. 64, 2982-2983 (1942).

(251) Luchinskii, J. Gen. Chem. (U.S.S.R.) 7, 2044-2047 (1937); Cent. 1338, I 3909; C.A. 32, 519 (1938). (252) Wohlleben, Ber. 42, 4372-4373 (1909). (253) Seelig, J. prakt. Chem. (2) 39, 175 (1889). (254) Karrer, Yen, Reichstein, Helv. Chim. Acta 13, 1315 (1930). (255) von Auwers, Wittig, Ber. 57, 1275 (1924). (256) Nencki, Stoeber, Ber. 30, 1769 (1897). (257) Chakravarti, Majumdar, J. Indian Chem. Soc. 15, 137 (1938). (258) von Auwers, Baum, Lorenz, J. prakt. Chem. (2) 115, 91-92 (1927). (259) Fries, Hasselbach, Schröder, Ann. 405, 368-370 (1914). (260) Skraup, Beng, Ber. 60, 946, 948 (1927)

(261) von Heyden, Ger. 81,375, Friedländer 4, 1117 (1894–1897). (262) Barral, Morel, Bull. soc. chim. (3) 21, 722–727 (1899). (263) Melnikow, J. prakt. Chem. (2) 127, 236–237 (1930). (264) Barral, Compt. rend. 126, 908 (1898); 138, 910 (1904). (265) Mosso, Jahresber. 1887, 1301. (266) Autenrieth, Muhlinghaus, Ber. 39, 4102 (1906). (267) Autenrieth, Arch. Pharm. 233, 41 (1895). (268) Bernouilli, St. Goar, Helv. Chim. Acta 9, 754–755 (1996). (269) Anschütz, Ber. 60, 1322 (1927). (270) I.G., Danish 59,316, Dec. 22, 1941; Cent. 1942, II 812, not in C.A.

(271) Tseng, Ph.D. Thesis, M.I.T. (unpublished). (272) Baw, J. Indian Chem. Soc. 3, 104 (1926). (273) Huston, Guile, Chen, Headley, Warren, Baur, Mate, J. Am. Chem. Soc. 55, 4641-4642 (1933). (274) Klarmann, Gates, Shternov, J. Am. Chem. Soc. 54, 3323 (1932). (275) Lyman, Reid, J. Am. Chem. Soc. 42, 616 (1920). (276) Koelsch, J. Am. Chem. Soc. 53, 304-305 (1931). (277) Minton, Stephen, J. Chem. Soc. 121, 1600 (1922). (278) Behaghel, J. prakt. Chem. (2) 114, 297-298 (1926). (279) Hayes, Branch, J. Am. Chem. Soc. 65, 1555 (1943). (280) Hantzsch, Mai, Ber. 28, 979-980 (1895).

(281) Sah, Cheng, Rec. trav. chim. 58, 592-593 (1939). (282) Sah, Young, Rec. trav. chim. 59, 357-363 (1940); C.A. 35, 4363 (1941). (283) Sah, Woo, Rec. trav. chim. 58, 1014-1015 (1939). (284) Sah, Cheng, Rec. trav. chim. 58, 596-597 (1939). (285) Sah, Ma, J. Chinese Chem. Soc. 2, 230-231 (1934). (286) Sah, Rec. trav. chim. 58, 587-588 (1939). (287) French, Wirtel, J. Am. Chem. Soc. 48, 1736-1739 (1926). (288) Sah, Rec. trav. chim. 58, 454-458 (1939). (289) Korczynski, Gazz. chim. idal. 53, 96 (1923).

# 3:0480 4-CHLORO-5-ISOPROPYL-2-METHYLPHENOL C10H13()Cl Beil. VI --

$$(p-(5)\text{Chlorocarvacrol}) \qquad \qquad \text{Cl} \qquad \qquad \textbf{VI}_1--$$

$$(\text{CH}_3)_2\text{CII}--\text{CII}_3 \qquad \qquad \textbf{VI}_2-(\textbf{494})$$

Volatile with steam.

[For prepn. of  $\bar{C}$  from 2-hydroxy-p-cymene (carvacrol)(1:1760) with  $Cl_2$  (4) or with  $SO_2Cl_2$  (1) see indic. refs.; from 4-chloro-5-isopropyl-2-methyl-aniline (5-chloro-2-amino-p-cymene) (2) via diazotization and subsequent hydrolysis see (2); from 5-amino-2-hydroxy-p-cymene (5-aminocarvacrol) via diazotization and subsequent reactn. with aq. HCl + Cu powder see (3); from 4-chloro-2-methylphenol (p-chloro-p-cresol) (3:0780) by reactn. with isopropyl alc. +  $H_2SO_4$  at 80° or in decalm soln. with propylene + AlCl<sub>3</sub> see (5).]

[C has outstanding bactericidal properties and is used ("Carvasept" (6)) as disinfectant, antiseptic, germicide, preservative (7), and anthelmintic (8) (9); for reviews of bactericidal actn. see (10) (11) (12) (13).]

[For solubilization of  $\bar{C}$  with soap solns. (14) and use of  $\bar{C}$  in soap solns. as disinfectant see (14) (15) (16); for prepr. of esters of  $\bar{C}$ , e.g., the carbonate, m.p. 83-84° (from  $\bar{C}$  + dil. aq. NaOH + phosgene), or the salicylate, m.p. 60-61° (from  $\bar{C}$  + salicylic acid + POCl<sub>3</sub>), see (17); for mercuration of  $\bar{C}$  see (18); for use of  $\bar{C}$  in mouth wash see (19).

- ⊕ 4-Chloro-5-isopropyl-2-methylphenyl ethyl ether: m.p. 54-56° (17). [From C in dil. aq. NaOH with Et<sub>2</sub>SO<sub>4</sub> (17).]
- 4-Chloro-5-isopropyl-2-methylphenoxyacetic acid: m.p. 160-161° (17). [From C in dil. aq. NaOH with chloroacetic acid (17).]

3:0480 (1) Chem. Fabrik von Heyden, A.G., French 736,304, Nov. 22, 1932; Cent. 1933, 1653. (2) Wheeler, Giles, J. Am. Chem. Soc. 44, 2608 (1922). (3) Philipp (to Chem. Fabrik von Heyden, A.G.), Ger. 522,062, Mar. 30, 1931; Cent. 1931, II 123. (4) Momm, Brit. 411,430, July 5, 1934; Cent. 1934, II 2104. (5) Günther (to I.G.), Ger. 495,717, April 10, 1930; Cent. 1930, II 984. (6) Kuhn, Arch. Hyg. 105, 18-28 (1930). (7) Philipp (to Chem. Fabrik von Heyden, A.G.), Ger. 528,767, Feb. 16, 1935; Cent. 1935, I 3613. (8) Lamson, Stoughton, Buss, J. Pharmacol. 56, 60-62 (1936); Cent. 1938, I 2213; C.A. 36, 3888 (1936). (9) Kochmann, Arch. exptl. Path. Pharmakol. 161, 196-205 (1931); Cent. 1931, II 2030; C.A. 26, 1339 (1932). (10) Heading, Pharm. J. 138, 321-322 (1937); Chemist and Druggist 126, 392-393 (1937); Cent. 1937, II 2208. (11) Weichardt, Münch. Med. Wochschr. 78, 1515-1516 (1931). (12) Kuhn, Med. Klin. 28, 790-791 (1932); Cent. 1932, II 1036; Med. Klin. 26, 1047-1048 (1930); Cent. 1930, II 2282. (13) Hermann, Pharm. Zentralhalle 72, 613 (1931); Cent. 1932, I 1266. (14) Hueter, Engelbrecht (to "Unichem" Chemikalien Handels, A.G.), U.S. 2,267,101, Dec. 23, 1941; C.A. 36, 2376 (1942). (15) Deutsche Hydrierwerke, A.G., French 823,289, Jan. 18, 1938; Cent. 1938, I 2587. (16) Gelinsky, Ger. 649,126, Aug. 16, 1937; Cent. 1937, II 3627. (17) Philipp (to Chem. Fabrik von Heyden), U.S. 1,957,908, May 8, 1934; Ger. 541,316; June 30, 1934; Cent. 1934, II 2104; C.A. 28, 4180 (1934). (18) Christiansen (to E. R. Squibb and Sons), U.S. 2,252,705, Aug. 19, 1941; C.A. 35, 7657 (1941). (19) Pepsodent Co., Brit. 352,397, April 3, 1929; C.A. 27, 375 (1933); French 693,083, Nov. 14, 1930; Cent. 1931, I 1481.

3: 0485 DIMETHYL d,l- $\alpha,\alpha'$ -DICHLOROSUCCINATE  $C_6H_8O_4Cl_2$  Beil. II — (Dimethyl allo-dichlorosuccinate; COOCH<sub>3</sub> II<sub>1</sub>-(267) dimethyl isodichlorosuccinate) H—C—Cl Cl—C—H

[For prepn. of  $\tilde{C}$  from  $d_l$ - $\alpha,\alpha'$ -dichlorosuccinic acid (3:4711) in MeOH with H<sub>2</sub>SO<sub>4</sub> at ord. temp. see (3); from dimethyl  $d_l$ -tartrate (1:2385) (1) or from dimethyl low-melting  $\beta$ -chloro- $d_l$ -malate [Beil. III-438, III<sub>2</sub>-(290)] (2) with SOCl<sub>2</sub> in pyridine see indic. refs.]  $\tilde{C}$  with dimethylaniline loses 1 HCl yielding (1) dimethyl chlorofumarate (3:6582).

3:0485 (1) Darzens, Séjourne, Compt. rend. 154, 1616 (1912). (2) Kuhn, Wagner-Jauregg, Ber. 61, 514 (1928). (3) Holmberg, Arkiv. Kemi, Mineral. Geol. 8, No. 2, 17, 33 (1920); Cent. 1921, I 820; C.A. 16, 2116 (1922).

3: 0490 2,5-DICHLOROBENZAL (DI)CHLORIDE 
$$C_7H_4Cl_4$$
 Beil. V - 302  $V_1$ —  $CHCl_2$   $V_2$ -(234)

Cryst. from CHCl<sub>3</sub>; very eas. sol. org. solvents but spar. sol. in aq. —  $\bar{C}$  has faint but not disagreeable odor. — Volatile with steam.

[For prepn. of  $\bar{C}$  from 2,5-dichlorobenzaldehyde (3:1145) with PCl<sub>5</sub> (78% yield (1)) or with ClSO<sub>3</sub>H in CHCl<sub>3</sub> (3) see indic. refs.; from 2,5-dichlorotoluene (3:6245) at b.p. with Cl<sub>2</sub> see (2).]

 $\bar{C}$  on hydrolysis, e.g., by protracted refluxing (56 hrs.) with aq. + CaCO<sub>3</sub> (2), or by treatment with fumg. H<sub>2</sub>SO<sub>4</sub> (3), yields 2,5-dichlorobenzaldehyde (3:1145). [For study of rate of hydrolysis in 50% alc. at 83.5° see (1).]

3:0490 (1) Asinger, Lock, Monatsh. 62, 336–337 (1933). (2) de Crauw, Rec. trav. chim. 50, 773 (1931). (3) Gnehm, Schüle, Ann. 299, 359–360 (1898).

# CHAPTER III

### DIVISION A. SOLIDS

(3:0500-3:0999)

3: 0520 ISOPHTHALYL (DI)CHLORIDE Cl 
$$C_8H_4O_2Cl_2$$
 Beil. IX - 834 IX<sub>1</sub>-(372)

C=O

M.P. B.P. (3)  $D_4^{46.9} = 1.3872$  (9)

42-43° (2) 200° (7) at 15 mm. (7)

41-43° (18) 156° at 15 mm. (8)

41° (3) (4) 142.6-143° at 14 mm. (5)

(6)Prisms from pet. ether.

143-144°

136°

40.5-41° (5)

40°

[For prepn. of C from isophthalic acid (1:0900) with PCl<sub>5</sub> (3) in a s.t. at 200° (10) or in POCl<sub>3</sub> (8) see indic. refs.; with AcCl (3:7065) in s.t. at 130° for 8 hrs. see (1); with  $SOCl_2$  (yield: 100% (6), 92% (18), 67% (2), 62% (7)) (5) see indic. refs.; for prepn. of  $\overline{C}$ from 1,3-bis-(trichloromethyl)benzene by partial catalytic hydrolysis see (4) (17).]

at 13 mm.

at 11 mm. (18)

C with excess McOH yields (11) dimethyl isophthalate (1:2244), m.p. 67-68°; cf. also under isophthalic acid (1:0900); C with excess phenol yields (3) diphenyl isophthalate, m.p. 120° (3).

[C on cat. hydrogenation in xylene with Pd cat. as specified (12) gives 83% yield isophthalaldehyde [Beil. VII-675, VII<sub>1</sub>-(364)], cryst. from alc., m.p. 88-89° (12) (dioxime, m.p. 178°; bis-phenylhydrazone, m.p. 242-244° (12).

[C with AlCl<sub>3</sub> + benzene yields (13) 1,3-dibenzoylbenzene (isophthalophenone) [Beil. VII-829, VII<sub>1</sub>-(443)], m.p. 100-101° (dioxime, m.p. 70-75° (10)); for corresp. reactn. of  $\bar{\mathbf{C}}$  with m-xylene (1:7420) see (14); for corresp. reactn. of  $\bar{\mathbf{C}}$  with anisole (1:7445) see (15).

[For reactns, of C with ethyl sodio-acetoacetate sec (8) and with ethyl sodio-cyanoacetate see (16).] [For behavior of C with diazomethane see (18).]

C on hydrolysis yields isophthalic acid (1:0900) q.v. for further characterization.

3:0520 (1) Liebermann, Kardos, Ber. 46, 211 (1913). (2) Reindel, Siegel, Ber. 56, 1554 (1923). (3) Schreder, Ber. 7, 708 (1874). (4) I.G., French 820,697, Nov. 16, 1937; Cent. 1938, I 1661; C.A. 32, 3422 (1938). (5) Kohlrausch, Pongratz, Stockmair, Monatsh. 67, 109 (1935). (6) Meyer, Monatsh. 22, 436 (1901). (7) McMaster, Ahmann, J. Am. Chem. Soc. 50, 148 (1928). (8) Ruggli, Gassenmeier, Helv. Chim. Acta 22, 499-500 (1939). (9) von Auwers, Schmidt, Ber. 46, 484 (1913). (10) Münchmeyer, Ber. 19, 1848-1849 (1886).

(11) Baeyer, Villiger, Ann. 276, 258 (1893). (12) Rosenmund, Zetsche, Ber. 54, 2890 (1921). (13) Ador, Ber. 13, 320 (1880). (14) Clar, John, Hawran, Ber. 62, 945 (1929). (15) Weiss, Chledowski, Monatsh. 65, 358, 362-363 (1935). (16) Sacher, Bull. soc. chim. (3) 11, 1097 (1894). (17) I.G., Ger. 708,149, June 5, 1941; C.A. 37, 2746 (1943). (18) Ruggli, Knecht, Helv. chim.

Acta 27, 1108-1115 (1944); C.A. 39, 4857 (1945).

3:0525 16-CHLOROHEXADECANOL-1 C<sub>16</sub>H<sub>33</sub>OCl Beil. S.N. 24 (ω-Chloro-n-hexadecyl alcohol; CH<sub>2</sub>—(CH<sub>2</sub>)<sub>14</sub>.CH<sub>2</sub>OH

ω-Chloropalmityl alcohol)

86

M.P. 43° (1)

Colorless cryst. from lt. pet.

[For prepn. of  $\bar{C}$  from  $\alpha,\omega$ -hexadecamethylene glycol [Beil. I<sub>2</sub>-(565)] (m.p. 87-88° (1)) with SOCl<sub>2</sub> + dimethylaniline in C<sub>6</sub>H<sub>6</sub> (60% yield) see (1); note that a little 1,16-dichlorohexadecane, cryst. from McOH, m.p. 47°, is also formed.]

3:0525 (1) Bennett, Gudgeon, J. Chem. Soc. 1938, 1679-1681.

[For prepn. of  $\bar{C}$  from p-chlorobenzoic acid (3:4940) with MeOH + HCl (2) or MeOH + H<sub>2</sub>SO<sub>4</sub> (2) (6) see indic. refs.; from Ag $\bar{A}$  + MeI in s.t. at 100° see (5); from p-chlorobenzoyl chloride (3:6550) with MeOH see (3).]

 $\bar{\mathbf{C}}$  on htg. with sirupy  $\mathbf{H}_3\mathbf{PO}_4$  at 200° yields (7) p-chlorobenzoic acid (3:4940), dimethyl ether, and probably some p-chlorotoluene (3:8287).

C̄ added to 5-6 pts. very conc. HNO<sub>3</sub> at 0°, poured onto ice, yields (3) methyl 4-chloro-3-nitrobenzoate [Beil. IX-402], cryst. from MeOH, m.p. 83° (3).

[ $\bar{\mathbf{C}}$  with Na + methyl acetate condenses giving (60% yield (6)) methyl p-chlorobenzoylacetate, b.p. 172° at 12 mm., m.p. 36-37° (6); this prod. with excess phenylhydrazine in alc. + AcOH gives on htg. 3-(p-chlorophenyl)-1-phenylpyrazolone-5, or. eryst. from AcOH, m.p. 140° (6); corresp. prod. from p-nitrophenylhydrazine, m.p. 200-205° (6).]

 $\bar{C}$  on hydrolysis (Sap. Eq. = 170.5) yields methyl alcohol (1:6120) + p-chlorobenzoic acid (3:4940). [For studies of hydrolysis under various cond. see (2) (4).] — For the amide, anilide, p-toluidide, and other derivs, corresp. to  $\bar{C}$  see p-chlorobenzoic acid (3:4940).

3:0535 (1) Jaeger, Z. Krist. 42, 22 (1907). (2) Kellas, Z. physik Chem. 24, 243-252 (1897). (3) Montagne, Rec. trav. chim. 19, 55-56, 61 64 (1900). (4) Jones, McCombie, Scarborough, J. Chem. Soc. 123, 2694-2697 (1923). (5) Emmelling, Rec. 8, 883 (1875). (6) Wahl, Rolland, Ann. chim. (10) 10, 9-12, 15-17 (1928). (7) Raikow, Tischkow, Chem. Zlq. 29, 1209 (1905). (8) Berger, Rec. trav. chim. 43, 170 (1924). (9) Kahovec, Wagner, Monatsh. 74, 285 (1943).

3:0550 3,4-DICHLOROBENZALDEHYDE 
$$C_7H_4OCl_2$$
 Beil. VII - 238  $VII_1$ -(134)

Colorless adds. from alc. (1), odor like benzaldehyde (2). — Eas. volatile with steam (2) (3).

[For preph. of C from 3,4-dichlorotoluene (3:6355) via chlorination to 3,4-dichlorobenzal

(di)chloride (3:6876) and hydrolysis of the latter with fumg. H<sub>2</sub>SO<sub>4</sub> (5% SO<sub>3</sub>) (36% yield (3)), conc. H<sub>2</sub>SO<sub>4</sub> (4), or CaCO<sub>3</sub> + H<sub>2</sub>O (40% yield (3)) see (2) (3) (4); for prepn. from 4-chloro-3-nitrobenzaldehyde via reduction, diazotization, etc., see (1).]

C with satd. aq. NaHSO<sub>3</sub> yields a cpd. C.NaHSO<sub>3</sub> (3). [Use in purification of C (3).]
C on oxidn. with KMnO<sub>4</sub> yields (2) 3,4-dichlorobenzoic acid (3:4925), m.p. 201-202° (3).
C with conc. aq. KOH undergoes Cannizzaro reactn. yielding 3,4-dichlorobenzyl alcohol, ndls. from aq., m.p. 38° (3), and 3,4-dichlorobenzoic acid (see above).

Č on nitration as specified (5) (4) gives (71% yield (4)) 3,4-dichloro-6-nitrobenzalde-hyde [Beil. VII₁-(144)], yel. pr. from C<sub>6</sub>H<sub>6</sub>, m.p. 73° (5). [This product with NH<sub>4</sub>OH/AgNO<sub>3</sub> is oxidized (4) to 3,4-dichloro-6-nitrobenzoic acid, cryst. from C<sub>6</sub>H<sub>6</sub>, m.p. 165° (6).]

[For conversion of  $\bar{C}$  to 3,4-dichlorostyrene (7) (8) cf. (9) via reaction with MeMgI giving (73% yield (7)) 3,4-dichlorophenyl-methyl-carbinol (7) (8) and dehydration of latter with KHSO<sub>4</sub> (yields 83% (8), 64% (7)) see indic. refs.]

- 3,4-Dichlorobenzaldoxime (anti form): m.p. 114-115° (2), 118-119° (1). [The syn isomer, ndls. from alc., m.p. 120° rap. htg., is converted by fusion (2) to the anti form.]
   3,4-Dichlorobenzaldehyde phenylhydrazone: unrecorded.
- 1) 3 4-Dichlorobenzaldehyde p-nitrophenylhydrazone: or. ndls., m.p. 276-277° (1).
- --- 3,4-Dichlorobenzaldehyde 2 4-dinitrophenylhydrazone: unrecorded.
- 3,4-Dichlorobenzaldehyde semicarbazone: unrecorded.

3:0550 (1) Hodgson, Beard, J. Chem. Soc. 1927, 25. (2) Erdmann, Schwechten, Ann. 260, 72-73 (1890). (3) Kraay, Rec. trav. chim. 49, 1086 (1930). (4) Ruggli, Zaeslin, Lang, Helv. Chim. Acta 21, 1248 (1938). (5) Hoechst Farbwerke, Ger. 254,467, Dec. 3, 1912; Cent. 1913, I 199. (6) Ruggli, Zaeslin, Helv. Chim. Acta 19, 437 (1936). (7) Marvel, Overberger, Allen, Johnston, Saunders, Young, J. Am. Chem. Soc. 68, 863-864 (1946). (8) Brooks, J. Am. Chem. Soc. 66, 1295-1297 (1944). (9) Michalek, Clark, Chem. & Eng. News 22, 1559-1563 (1944).

M.P. B.P. (1) (2) 210.2-211.5° u.c. (18) 
$$D_{-}^{25} = 1.4723$$
 (8) (43-44° (17) 209-211° (6) (11)  $n_{D}^{25} = 1.1729$  (8) (43° (3) (4) 209-210° (4) (16) (18) 206-208° u.c. at 753 mm. (7) (42° (5) 106.2-107.6° at 14-16 mm. (3) (41-42° (11)

Colorless ndls. from  $C_6H_6$ . —  $\bar{C}$  has unpleasant and persistent odor suggesting iodoform (1) (for study of strength of odor of aq. solns. of  $\bar{C}$  see (1)). —  $\bar{C}$  is spar. sol. aq. (100 g. aq. at 20° dis. 0.45 g.  $\bar{C}$ ), but is eas. sol. alc., ether,  $C_6H_6$ , or CHCl<sub>3</sub>. —  $\bar{C}$  is volatile with steam; note, however, that from alk. soln.  $\bar{C}$  is not volatile with steam (dif. and sepn. from 2-chlorophenol (3:5980) or 4-chlorophenol (3:0475) (9)), although  $\bar{C}$  is volatile with steam from aq. solns. contg. PbCO<sub>3</sub> (dif. and sepn. of  $\bar{C}$  from 2,4,6-trichlorophenol (3:1673) (9)). — Note that comml.  $\bar{C}$  often contains 2,4,6-trichlorophenol, and that  $\bar{C}$  prepd. by chlorination of phenol may cont. 2,6-dichlorophenol (3:1595).

[For prepn. of  $\bar{C}$  from p-chlorophenol (3:0475) or o-chlorophenol (3:5980) with  $Cl_2$  (1 mole) in AcOH soln. (80% yield) see (6); from phenol (1:1420) with  $Cl_2$  (2 moles) diluted with  $CO_2$  in AcOH and under these cond. giving exclusively  $\bar{C}$  see (7).]

[For formn. of  $\bar{C}$  (together with other prods.) from phenol (1:1420) with Cl<sub>2</sub> (2 moles) (2) (1) (4) (10), with Cl<sub>2</sub> (2 moles) in alk. soln. (11) (12), with N,N'-dichlorourea in HCl soln. (13), or with SO<sub>2</sub>Cl<sub>2</sub> (14) see indic. refs.; for formn. of  $\bar{C}$  from salicylic acid (1:0780) in excess aq. KOH with Cl<sub>2</sub> see (15); from 3,5-dichloro-2-hydroxybenzoic acid (3,5-dichloro-salicylic acid) (3:4935) on distn. with lime see (16) (17); from 2,6-dichloro-3-hydroxybenzaldehyde (3:4160) in excess 50% aq. KOH on htg. at 80° (94% yield) see (5).]

Nuclear substitution of  $\bar{C}$ .  $\bar{C}$  in AcOH with Br<sub>2</sub> (1 mole) (7) (18), or in 50% AcOH with Br<sub>2</sub> (1 mole) in AcOH (19), yields 6-bromo-2,4-dichlorophenol, ndls. from  $C_6H_6$  or lt. pet., m.p. 68-69° (19), 68° (7) (18), b.p. 268° dec. (18), 204° at 19 mm. (19), 198° at 15 mm. (19), 192° at 12 mm. (19) (corresp. methyl ether, m.p. 65° (7); corresp. 2,4-dinitrophenyl ether, yel. lfts. from alc., m.p. 140-141° (19); corresp. p-toluenesulfonate, m.p. 82-83° (19)). — [This 6-bromo-2,4-dichlorophenol with excess Br<sub>2</sub> in pres. of Fe powder and absence of aq. yields (20) 2,4-dichloro-3,5,6-tribromophenol, cryst. from AcOH, m.p. 209° (20) (corresp. methyl ether, m.p. 143-144° (20), corresp. benzoate, m.p. 202° (20)).]

Č in aq. NaOH with I<sub>2</sub> (1 mole) in aq. KI yields (7) 2,4-dichloro-6-iodophenol, ndls. from dil. alc., m.p. 63° (7) (corresp. methyl ether, m.p. 35°, b.p. 278-285° u.c. (7)).

C on nitration by soln. in cold fumg. HNO<sub>3</sub>, subsequently poured into aq. (4) cf. (21), yields 2,4-dichloro-6-nitrophenol [Beil. VI-241, VI<sub>1</sub>-(122)], yel. cryst. from alc., m.p. 121-122° (4), 124° (22).

Condensation reactions involving nuclear hydrogens. [ $\tilde{C}$  with formalin (1:0145) + conc. HCl + conc. H<sub>2</sub>SO<sub>4</sub> in pres. of stream of HCl gas at 35-40° (23), or  $\tilde{C}$  with trioxymethylene + AcOH/H<sub>2</sub>SO<sub>4</sub> at 50° (24), gives (54% yield (23)) 6,8-dichlorobenzodioxane-1,3, volatile with steam, cryst. from MeOH, m.p. 111° (24), 109-109.5° (23). —  $\tilde{C}$  with formalin (1:0145) + conc. HCl in stream of HCl gas at 50° for 36 hrs. gives (72% yield (23)) 3,5-dichloro-2-hydroxybenzyl chloride, ndls. from pet. eth., m.p. 82-84° (23); this prod. on hydrol. with aq. at 50° yields (23) 3,5-dichloro-2-hydroxybenzyl alc., ndls. from aq., m.p. 80-81°, also formed as by-product of the dichlorobenzodioxane mentioned above.]

[C with methylal (1:0105), methylene diacetate, or methylene (di)iodide in pres. of conc. H<sub>2</sub>SO<sub>4</sub> or ZnCl<sub>2</sub> (25) or  $\bar{C}$  + formalin (1:0145) with AcOH/H<sub>2</sub>SO<sub>4</sub> (26) yields methylene-bis-(2,4-dichlorophenol) (2,2'-dihydroxy-3,5,3',5'-tetrachlorodiphenylmethane); for use of this prod. as mothproofing cpd., antiseptic, and seed disinfectant see (25) (26) (27) (28) (29) (30). — Note, however, that  $\bar{C}$  (as Na salt) with methylene (di)chloride (3:5020) at 120-140° in s.t. for 6 hrs. gives (24) bis-(2,4-dichlorophenoxy)methane, m.p. 98°. —  $\bar{C}$  with SCl<sub>2</sub> or S<sub>2</sub>Cl<sub>2</sub> + AlCl<sub>3</sub> in CS<sub>2</sub> or CCl<sub>4</sub> yields (31) 2,2'-dihydroxy-3,5,3',5'-tetrachlorodiphenyl sulfide, m.p. 188°. — For condens. of  $\bar{C}$  with benzaldehyde o- (or p-) sulfonic acids and use of products as mothproofing agts. see e.g. (26).]

[ $\bar{C}$  with phthalic anhydride (1:0725) + AlCl<sub>3</sub> at 150° for 2 hrs. yields (36) cf. (37) (38) 2-(3',5'-dichloro-2'-hydroxybenzoyl)benzoic acid, colorless lfts. from alc., m.p. 204° cor. (36), which with conc. H<sub>2</sub>SO<sub>4</sub> ring-closes to 2,4-dichloro-1-hydroxyanthraquinone, yel. ndls. from C<sub>6</sub>H<sub>6</sub>, m.p. 242° (36), 241-242° (39). —  $\bar{C}$  with 4,5-dichlorophthalic anhydride (3:4830) + fumg. H<sub>2</sub>SO<sub>4</sub> + H<sub>3</sub>BO<sub>3</sub> at 195° yields (40) 2,6,7-trichloro-1,4-dihydroxyanthraquinone (2,6,7-trichloroquinizarin).]

Reactions of the phenolic group of  $\bar{C}$  (see also under  $\oplus$  below).  $\bar{C}$  behaves as a weak acid:  $\bar{C}$  is sol, in aq. alk, but largely pptd, by  $CO_2$ . — Dissoc. const. at 25° in aq. is 31.  $\times$  10<sup>-7</sup> (41) cf. (42).

[For study of bactericidal prop. of  $\bar{C}$  see (43); for use as insecticide in paper see (44); for prepn. and use of metal complexes as antiseptics see (45).]

[Č with alkali metals gives corresp. alk. 2,4-dichlorophenolates: K 2,4-dichlorophenolate with CO<sub>2</sub> at 140° yields (15) 3,5-dichloro-2-hydroxybenzoic acid (3,5-dichlorosalicylic acid) (3:4935).]

- [ $\bar{C}$  with ethyl  $\alpha$ -methylacetoacetate (1:1712) + P<sub>2</sub>O<sub>5</sub> gives (14.5% yield (46)) 6,8-dichloro-2,3-dimethylchromone [Beil. XVII<sub>1</sub>-(177)], ndls. from alc., m.p. 141°.]
- [ $\bar{C}$  in 20% aq. KOH htd. 2 hrs. at 100° with Me<sub>2</sub>SO<sub>4</sub> (22) cf. (1) yields 2,4-dichlorophenyl methyl ether (2,4-dichloroanisole) [Beil. VI-189, VI<sub>1</sub>-(103)], b.p. 232-233° cor. at 743.5 mm.; m.p. 27-28° (47).  $-\bar{C}$  with EtI + K<sub>2</sub>CO<sub>3</sub> in acetone refluxed 6-8 hrs. gives (90% yield (48)) 2,4-dichlorophenyl ethyl ether (2,4-dichlorophenetole), oil, b.p. 235-236° (48), 236-237° (4) (for study of cleavage of this ether with HBr/AcOH see (48), for study of rate of formation see (49)).  $-\bar{C}$  with allyl bromide + K<sub>2</sub>CO<sub>3</sub> in acetone yields (50) allyl 2,4-dichlorophenyl ether, b.p. 144-145° at 25 mm. (50).]
  - 2,4-Dichlorophenyl acetate: oil, b.p. 244-245° (4), 167-168° at 80 mm. (51). [From C with AcCl refluxed 40 min. (86% yield (51)); this ester with AlCl<sub>3</sub> at 170° for 40 min. undergoes Fries rearr. giving (75% yield (51)) 3,5-dichloro-2-hydroxyacetophenone, m.p. 95-96° (51).]
  - ② 24-Dichlorophenyl benzoate: cryst. from alc., m.p. 96.5° (5), 96° (1), 97° [Beil. IX-117]. [From C in dil. aq. NaOH shaken with BzCl (5) cf. (1).] [For study of nitration of this ester see (6).]
  - **② 2,4-Dichlorophenyl** *m*-nitrobenzoate: ndls. from alc., m.p. 115-116° (6). [From  $\ddot{\mathbf{C}}$  + *m*-nitrobenzoyl chloride in dil. aq. alk.; for study of its nitration see (6).]
  - ---- 2,4-Dichlorophenyl p-nitrobenzoate: unreported.
  - ---- 2,4-Dichlorophenyl 3,5-dinitrobenzoate: unreported.
  - ---- 2,4-Dichlorophenyl benzenesulfonate: unreported.
  - 2,4-Dichlorophenyl p-toluenesulfonate: pr. from alc., m.p. 125° (6).
  - Q 2,4-Dichlorophenyl benzyl ether: pr. from alc., ether, or pet. eth., m.p. 62° (52), 61-62° (53), 60° (54), 59.0-59.5° (55). [From \(\tilde{\mathbb{C}}\) + benzyl chloride (3:8535) + NaOEt in hot alc. (53), or from Na salt of \(\tilde{\mathbb{C}}\) + benzyl chloride in MeOH (55); note, however, that Na salt of \(\tilde{\mathbb{C}}\) with benzyl chloride in toluene at 160° for 5 hrs. undergoes instead nuclear alkylation yielding (55) 2,4-dichloro-6-benzylphenol (3,5-dichloro-2-hydroxydiphenylmethane), cryst. from pet. eth., m.p. 77.0-77.5° (55).]
  - ② 2,4-Dichlorophenyl p-nitrobenzyl ether: ndls. from ether, m.p. 148-150° (53).
  - 2,4-Dichlorophenyl 2,4-dinitrophenyl ether: lfts. from AcOH, AcOH/EtOH, or EtOH, m.p. 119° (56), 118-119° (6), 118° (57). [From Na or K salt of C + 2,4-dinitrochlorobenzene refluxed in alc. (56) (6) (57).]
  - **D** 2,4-Dichlorophenoxyacetic acid (3:4095): cryst. from  $C_6H_6$ , m.p. 138° (58), Neut. Eq. = 221.0. [From  $\bar{C}$  + chloroacetic acid in slight excess aq. NaOH, refluxed and then acidified (87% yield (58)); for studies on use of this prod. as plant hormone see (59).]
  - 2,4-Dichlorophenyl N-phenylcarbamate: unreported.
  - 2,4-Dichlorophenyl N(p-iodophenyl)carbamate: m.p. 182-183° (61). [From C + p-iodobenzazide in hot lgr. (61).]
  - **D 2,4-Dichlorophenyl** N-(p-bromophenyl)carbamate: rods from lgr./AcOEt, m.p. 169° cor. (62). [From  $\tilde{C}+p$ -bromobenzazide in hot lgr. (62).]
  - **D 2,4-Dichlorophenyl** N-(p-nitrophenyl) carbamate: yel. pl. from lgr./EtOAc, m.p. 205° cor. (62). [From  $\bar{C} + p$ -nitrobenzazide in hot lgr. (63).]
  - ② 2,4-Dichlorophenyl N-(3,5-dinitro-4-methylphenyl)carbamate: or.-yel. pr. from lgr. or EtOAc, m.p. 153° u.c., 157° cor. (64). [From C + 3,5-dinitro-4-methylbenzazide in hot lgr. (64).]
  - 2.4-Dichlorophenyl  $N-(\alpha$ -naphthyl)carbamate: unreported.
  - D 2,4-Dichlorophenyl N-(β-naphthyl)carbamate: pl. from lgr., m.p. 162° u.c., 166° cor.
     (65). [From C + β-naphthyl isocyanate (or azide) in hot lgr. (65).]

3:0560 (1) Holleman, Rec. trav. chim. 37, 96-107 (1918). (2) van de Lande, Rec. trav. chim. 51, 103, 110 (1932). (3) Kohlrausch, Stockmair, Ypsilanti, Monatsh. 67, 89 (1936). (4) Fischer, Ann. Suppl. 7, 180-190 (1870). (5) Lock, Monatsh. 55, 311-312 (1930). (6) Groves, Turner, Sharp, J. Chem. Soc. 1929, 516, 518, 521-522. (7) Kohn, Sussmann, Monatsh. 46, 590-591, 594 (1925). (8) Sun, Liu, J. Chinese Chem. Soc. 5, 39-40 (1937). (9) Takagi, Ishimasa, J. Pharm. Soc. Japan 1925, No. 517, 253-260 (1925); Cent. 1926, I 182; C.A. 20, 2669 (1926). (10) Rashevskaya, Zil'berman, Chernyavskaya, Skvirskaya, J. Applied Chem. (U.S.S.R.) 10, 499-505 (1937); Cent. 1938, I 58; C.A. 31, 6212 (1937).

(11) Chandelon, Ber. 16, 1751-1752 (1883). (12) Chulkov, Parini, Staroselets, Org. Chem. Ind. (U.S.S.R.) 3, 97-101 (1937); Cent. 1938, I 1419; C.A. 31, 4967 (1937). (13) Likhosherstov, J. Russ. Phys.-Chem. Soc. 61, 1019-1023, 1025-1028 (1929); Cent. 1930, I 1294; C.A. 24, 836. (1930). (14) Steinkopf, Mieg, Herold, Ber. 53, 1145 (1920). (15) Tarugi, Gazz. chim. ital. 30, II 489, 491 (1900). (16) Hecht, Am. Chem. J. 12, 505 (1890). (17) Zincke, Ann. 261, 253-254 (1891). (18) Garzino, Gazz. chim. ital. 17, 495-502 (1887). (19) Rox, Turner, J. Chem. Soc.

1930, 1861-1863. (20) Kohn, Domotor, Monatsh. 47, 215-216 (1926).

(21) Armstrong, J. Chem. Soc. 25, 96 (1872). (22) Kohn, Kramer, Monatsh. 49, 156 (1928). (23) Buehler, Brown, Holbert, Fulmer, Parker, J. Org. Chem. 6, 905-906 (1941). (24) Ziegler, Simmler, Ber. 74, 1871-1879 (1941). (25) Weiler, Wenk, Stotter, Ger. 540,208, Dec. 12, 1931; Brit. 337,832, Dec. 4, 1930; French 39,334, Oct. 12, 1931; Cent. 1932, I 3013. (26) Weiler, Wenk, Stötter, U.S. 1,707,181, March 26, 1929; French 651,646, Feb. 21, 1929; Cent. 1929, II 499. (27) I.G., Austrian 118,640, July 25, 1930; Cent. 1930, II 2978. (28) I.G., Swiss 134,012, Sept. 2, 1929; Cent. 1930, I 1876. (29) I.G., Brit. 334,847, Oct. 9, 1930; Cent. 1931, II 618. (30) I.G., Brit. 337,473, Nov. 27, 1930; Cent. 1931, I 2233.

(31) Muth (to I.G.), Ger. 583,055, Aug. 28, 1933; Cent. 1933, II 3883. (32) I.G., Swiss 137,923-137,929; 138,180-138,183, April 16, 1930; Cent. 1930, II 1453. (33) I.G., Swiss 148,330, Oct. 1, 1931; Cent. 1932, I 1845. (34) Weiler (to I.G.), Ger. 548,822, April 20, 1932; Cent. 1932, II 799. (35) Weiler, Retter (to I.G.), Ger. 604,980, Nov. 3, 1934; Cent. 1935, I 1150. (36) Ullmann, Conzetti, Ber. 53, 827, 831-832 (1920). (37) Scottish Dyes, Ltd. + Thomas + Hooley, Brit. 234,533, June 25, 1925; Ceni. 1926, I 245. (38) Ullmann, Ger. 282,493, March 6, 1915; Cent. 1915, I 643. (39) Zahn, Ber. 67, 2078 (1934). (40) Scottish Dyes, Ltd. + Bangham, Hooley, Thomas, Brit. 339,589, Jan. 8, 1931; Cent. 1932, I 2095.

(41) Hantzsch, Ber. 32, 3070 (1899). (42) Murray, Gordon, J. Am. Chem. Soc. 57, 110-111 (1935). (43) Ordal, Proc. Soc. Exptl. Biol. Med. 47, 387-389 (1941); C.A. 35, 6061 (1941). (44) Ellis (to Insulite Co.), U.S. 2,161,654, June 6, 1939; Cent. 1939, II 4620. (45) I.G., Brit. 356,192, Oct. 1, 1931; Cent. 1931, II 3360. (46) Simonis, Schuhmann, Ber. 50, 1148 (1917). (47) Lock, Monatsh. 62, 184-185 (1933). (48) Birosel, J. Am. Chem. Soc. 53, 1408-1412 (1931). (49) Goldsworthy, J. Chem. Soc. 1926, 1254-1256. (50) Raiford, Howland, J. Am. Chem. Soc. **53,** 1055 (1931).

(51) Chien, Yin, J. Chinese Chem. Soc. 7, 40-45 (1939); C.A. 34, 1979 (1940). (52) Bradfield, Jones, J. Chem. Soc. 1931, 2906. (53) von Auwers, Ann. 357, 92-93 (1907). (54) Baw, J. Indian Chem. Soc. 3, 104 (1926). (55) Huston, Eldredge, J. Am. Chem. Soc. 53, 2263 (1931). (56) Bost, Nicholson, J. Am. Chem. Soc. 57, 2368-2369 (1935). (57) Raiford, Thiessen, Wernert. J. Am. Chem. Soc. 52, 1208 (1930). (58) Pokorny, J. Am. Chem. Soc. 63, 1768 (1941). (59) Zimmermann, Ind. Eng. Chem. 35, 597-599 (1943). (60) Zimmermann, Hitchcock, Contrib. Boyce Thompson Inst. 12, 321-343 (1942); C.A. 36, 6199 (1942).

(61) Sah, Young, Rec. trav. chim. 59, 357-363 (1940); C.A. 35, 4363 (1941). (62) Sah, Gheng. Rec. trav. chim. 58, 592-594 (1939). (63) Sah, Chiao, Rec. trav. chim. 58, 596-599 (1939). (64) Sah, Rec. trav. chim. 58, 587-589 (1939). (65) Sah, Rec. trav. chim. 58, 454-458 (1939).

3: 0563 1,8-DICHLOROPROPANONE-2 
$$(\alpha,\alpha'-Dichloroacetone, CH_2-C-CH_2 sym.-dichloroacetone, Cl  $(\alpha,\alpha'-Dichloroacetone, CH_2-C-CH_2 sym.-dichloroacetone, Cl  $(\alpha,\alpha'-Dichloroacetone, CH_2-C-CH_2 sym.-dichloroacetone, Cl  $(\alpha,\alpha'-Dichloroacetone, CH_2-C-CH_2 sym.-dichloroacetone, Cl  $(\alpha,\alpha'-Dichloroacetone, CH_2-C-CH_2 sym.-dichloroacetone, CH_2-C-CH_2 sym.-dichloroacetone, CH_2-C-CH_2 sym.-dichloroacetone, CH_2-C-CH_2 sym.-dichloroacetone, CH_2-C-CH_2 sym.-dichloroacetone, CH_2-C-C-CH_2 sym.-dichloro$$$$$$

Colorless tbls. or ndls. volatile even at ord. temp. — Vapors are lachrymatory; liquid blisters skin. — Appreciably sol. in aq. especially on warming, eas. sol. alc., ether. — Volatile with steam.

[For prepn. of  $\bar{C}$  from 1,3-dichloropropanol-2 (glycerol  $\alpha$ -dichlorohydrin) (3:5985) by oxidn. with Na<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> + H<sub>2</sub>SO<sub>4</sub> (68-75% yield {10}), with K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> + H<sub>2</sub>SO<sub>4</sub> (1) {2} {4} (6) (7) {8} (9) {11} (generally poorer yields) see indic. refs. (note also that b.p. of  $\bar{C}$  is very close to that of the precursor 1,3-dichloropropanol-2 (3:5985), a fact which leads to some doubt as to the true yield of  $\bar{C}$  in certain of the older reports); for prepn. of  $\bar{C}$  from acetone (1:5400) with Cl<sub>2</sub> directly (12), in pres. of I<sub>2</sub>, FeCl<sub>3</sub>, or SbCl<sub>5</sub> (yield: 28%  $\bar{C}$  accompanied by 48.6% unsym.-dichloroacetone (3:5430) {13}), in pres. of NiCl<sub>2</sub> at 70° (other prods. are also formed {14}), or in pres. of aq. + CaCO<sub>3</sub> (yield: 10%  $\bar{C}$  accompanied by other prods. (16)) {4} (15), see indic. refs.]

[For prepn. of  $\bar{C}$  from epichlorohydrin (3-chloro-1,2-epoxypropane) (3:5358) with  $S_2Cl_2$  (yield: 33%  $\bar{C}$  accompanied by 67% 1,3-dichloropropanol-2 (3:5985) (17)), from ethyl  $\gamma$ -( $\alpha$ )-chloro- $\alpha$ ( $\gamma$ )-ethoxyacetoacetate (18) or from ethyl  $\alpha$ , $\gamma$ -dichloracetoacetate (19) by ketonic cleavage with HCl, from allene (propadiene) (20) or 1,2-dichloropropene-2 (21) with HOCl, or from 1,3-diiodoacetone on digestion with AgCl (22) cf. (3) see indicrefs.]

 $[\bar{C}]$  on reduction with yeast gives (53% yield (2)) 1,3-dichloropropanol-2 (3:5985), b.p. 178° (2). —  $\bar{C}$  with Zn + AcOH does *not* give acetone but yields (23) a gas formerly supposed to have been cyclopropanone (since it yielded with semicarbazide a semicarbazone, m.p. 156° (23)) although in the light of later work (24) (25) (26) this now appears very doubtful. — For polarographic study of reduction potential of  $\bar{C}$  see (27).]

 $\bar{\bf C}$  with aq. alk. presumably yields 3-chloropropanone-2-ol-1 [Beil. I-823] and/or propanone-2-diol-1,3 (dihydroxyacetone) [Beil. I-846, I<sub>1</sub>-(428), I<sub>2</sub>-(889)] since  $\bar{\bf C}$  readily reduces Fehling's soln. (28).

 $\bar{C}$  with satd. aq. NaHSO<sub>3</sub> soln. yields a NaHSO<sub>3</sub> cpd. which seps. with  $2\frac{1}{2}$  H<sub>2</sub>O (1), 3 H<sub>2</sub>O (7). —  $\bar{C}$  with aq. K<sub>2</sub>SO<sub>3</sub> soln. yields (30) corresp. salt of acetone- $\alpha$ , $\alpha$ '-disulfonic acid [Beil. IV<sub>2</sub>-(530)].

[C with KOAc (slightly more than 1 mole) in boilg. AcOH gives (48% yield (29)) chloro-acetylmethyl acetate, b.p. 112-114° at 16 mm. (29). — C with K benzoate refluxed in alc. yields (23) 1,3-dibenzoyloxyacetone, long ndls. from alc., but m.p. not reported.]

[C in dry McOH treated with HCl gas gives (84.5% yield (31)) 1,3-dichloroacetone dimethylketal, cryst. from McOH, m.p. 81.5° (31); C in abs. EtOH similarly treated gives (smaller yield (31)) 1,3-dichloroacetone diethylketal, m.p. 28° (31). — For reactn. of C with ethylene glycol see (32).]

[ $\bar{C}$  with equal wt. ethyl mercaptan gives (34% yield (33)) 1,3-bis-(ethylmercapto)-propanone-2, b.p. 117-121° at 15 mm. (33) (corresp. semicarbazone, m.p. 98-99°), but  $\bar{C}$  with large excess ethyl mercaptan (4 wt. pts.) gives also 1,2,2,3-tetra(ethylmercapto)-propane, oil (33). —  $\bar{C}$  (1 mole) with benzyl mercaptan (2 moles) in alc. NaOH yields (34) 1,3-bis-(benzylmercapto)propanone-2, oil, which on oxidn. in acid soln. with KMnO4 gives the corresp. disulfone, ndls. from alc., m.p. 182° (34).] — [For reactn. of  $\bar{C}$  with alk. sulfides and/or polysulfides in prepn. of resins see (37).]

Č with KI even at room temp. (7) yields 1,3-diiodoacetone, pr. from acetone, m.p. 61°. [For reaction of  $\bar{C}$  with MeMgBr as means of prepn. of sym.-dichloro-ter-butyl alcohol (3:5977) see the latter.]

[Č with excess conc. aq. or liq. HCN in alc. at 30° for 12 hrs. (11) cf. (35) or with 25% HCN in pres. of a little NH<sub>4</sub>OH (36) yields  $\beta_{,}\beta'$ -dichloro- $\alpha$ -hydroxyisobutyronitrile (not isolated), which on hydrolysis with HCl (11) (35) (36) gives the corresp. acid,  $\beta_{,}\beta'$ -dichloro- $\alpha$ -hydroxyisobutyric acid, in p. 91–92° (11).]

[C with diazotized aniline in pres. of NaOAc yields (3) 1,3-dichloro-1-(benzeneazo)-propanone-2, red-or. cryst. from hot alc., m.p. 156-157° (3); for corresp. homologs using

diazotized o-toluidine or p-toluidine see (3).]

[C with equiv. molar quant. thioacetamide in acetone or alc. followed by htg. with ZnCl<sub>2</sub> (38) (39) gives 4-(chloromethyl)-2-methylthiazole hydrochloride (free base is oil, b.p. 65-67° at 3 mm. (38) (39)); for polymerization of this prod. by htg. see (38). — C with thiobenzamide in acetone followed by htg. of resultant intermediate with HCl in acetone gives 4-(chloromethyl)-2-phenylthiazole hydrochloride (yields: 80-81% (40) (41)) (corresp. free base, m.p. 51° (40), 48.2-51.2° cor. (41)); for reactns. of this prod. see (41). — For analogous reactn. of C with many other substituted thiobenzamides to give corresp. substituted thiazoles see (40) (39).]

 $[\bar{C}$  with equiv. molar amt. carbamyl chloride in dry ether at room temp. for 15 min. is claimed (2) to yield  $\beta,\beta'$ -dichloroisopropyl carbamate ("Aleudrin"), white cryst. from alc., m.p. 80-81° (2);  $\bar{C}$  with 2 molar equivs. of carbamyl chloride similarly treated is claimed (2) to yield  $\beta,\beta$ -dichloroisopropyl allophanate, cryst. from 60% alc., m.p. 182° (2); note, however, that in view of the facts that the  $\bar{C}$  used in the cited work was obtd. from 1,3-dichloropropanol-2, that the b.p.'s of this precursor and  $\bar{C}$  are almost identical, and that the  $\bar{C}$  employed was purified only by distillation, the indicated esters may have been due to the presence of unoxidized starting material.]

- D 1,3-Dichloropropanone-2 semicarbazone: m.p. 120° (23). [Note that this prod. is very sensitive to heat (care in recrystn. from aq. or C<sub>6</sub>H<sub>6</sub>) and is also changed by stdg. in solution (23).]
- ① 1,3-Dichloropropanone-2 4-(p-bromophenyl)semicarbazone: ndls. from alc., m.p.  $196^{\circ}$  cor. dec. (42). [From C + 4-(p-bromophenyl)semicarbazide in alc. refluxed for 12 hrs. (42).]
- © Condensation product (C<sub>17</sub>H<sub>19</sub>O<sub>4</sub>N<sub>3</sub>SCl<sub>2</sub>) of C with N-methyl-3-(carbohydrazido)-pyridinium p-toluenesulfonate: cryst. from 1:1 alc./ether, m.p. 115° cor. (43). [From C with nicotinic acid hydrazide metho-p-toluenesulfonate in abs. alc. on refluxing for 15 mins. (43).]

3:0563 (1) Markownikow, Ann. 208, 353-358 (1881). (2) Sen, Barat, J. Indian Chem. Soc. 2, 77-81 (1925). (3) Favrel, Bull. soc. chim. (5) 1, 983-986, 989 (1934). (4) Posner, Rohde, Ber. 42, 3237-3242 (1909). (5) Edwards, Evans, Watson, J. Chem. Soc. 1937, 1944. (6) Glutz, Fischer, J. prakt. Chem. (2) 4, 54-55 (1871). (7) von Hoerman, Ber. 13, 1706-1709 (1880). (8) Cloez, Ann. chim. (6) 9, 167-170 (1886). (9) Erlenbach, Ann. 269, 46-48 (1892). (10) Conant, Quayle, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 211-213 (1941); Coll. Vol. 1 (1st ed.), 206-207 (1932); 2, 13-15 (1922).

- (11) Grimaux, Adam, Bull. soc. chim. (2) 36, 19-21 (1881). (12) Barbaglia, Ber. 7, 467-469 (1874). (13) Consortium für Elektrochem. Ind., French 707,852, July 16, 1931; Cent. 1931, II 2056. (14) Akashi, Bull. Irist. Phys.-Chem. Research (Tokyo) 12, 329-340 (1933); Cent. 1933, I 3066; C.A. 27, 3447 (1933). (15) Kling, Bull. soc. chim. (3) 33, 322-323 (1905); Ann. chim. (8) 5, 474-475 (1905). (16) Fritsch, Ber. 26, 598 (1893); Ann. 279, 315-316 (1894). (17) Malinovskii, J. Gen. Chem. (U.S.S.R.) 9, 832-839 (1939); C.A. 34, 375 (1940). (18) Erlenbach, Ann. 269, 18-19 (1892). (19) Wislicenus, Ber. 43, 3532-3533 (1910). (20) Smirnoff, J. Russ. Phys.-Chem. Soc. 35, 854-872 (1903); Cent. 1904, I 576.
- (21) Henry, Compt. rend. **94**, 1428 (1882). (22) Völker, Ann. **192**, 93-95 (1878). (23) von Romburgh, Verslag Akad. Wetenschappen Amsterdam **31**, 655-656 (1922); Cent. **1924**, I 159; C.A. **18**, 1271 (1924). (24) Ingold, J. Chem. Soc. **119**, 328-329 (1921). (25) Ingold, Sako, Thorpe, J. Chem. Soc. **121**, 1197 (1922). (26) Dem'yanov, Feofilaktov, J. Gen. Chem. (U.S.S.R.) **9**, 340-360 (1939); Cent. **1939**, II 2913; C.A. **34**, 385 (1940). (27) Winkel, Proske, Ber. **69**, 700-701 (1936). (28) Klimont, Chem. Ztg. **69**, 521 (1922). (29) Hess, Fink, Ber. **48**, 2004 (1915). (30) Raschig, Prahl, Ber. **59**, 2027-2028 (1926).
- (31) Prjanischnikow, Leontowitsch, Ber. 68, 1867 (1935). (32) Kuhn, J. prakt. Chem. (2) 156, 124 (1940). (33) Rojahn, Lemme, Arch. Pharm. 263, 615-616 (1925). (34) Fromm, Kapellei, Taubmann, Ber. 61, 1357-1358 (1928). (35) Glattfeld, Schneider, J. Am. Chem. Soc. 60, 417 (1938). (36) Fourneau, Bull. soc. chim. (4) 29, 413-414 (1921). (37) I.G., French 785,705, Aug. 17, 1935; Cent. 1936, I 1134. (38) Hooper, Johnson, J. Am. Chem. Soc. 56, 470-471 (1934). (39) Johnson (to Winthrop Chem. Co.), U.S. 2,014,498, Sept. 17, 1935; Cent. 1936, I 1114; C.A. 29, 7344 (1935). (40) Suter, Johnson, Rec. trav. chim. 49, 1066-1068 (1930).

(41) Huntress, Pfister, J. Am. Chem. Soc. 65, 1668-1670 (1943). (42) Wheeler, J. Am. Chem. Soc. 51, 3654 (1929). (43) Allen, Gates, J. Am. Chem. Soc. 6, 596-601 (1941).

### 3: 0565 PHENYL CHLOROACETATE C<sub>8</sub>H<sub>7</sub>O<sub>2</sub>Cl Beil. VI - 153 VI<sub>1</sub>-( 87) ClCH<sub>2</sub>.CO.C VI<sub>2</sub>-(154) M.P. B.P. $n_{\rm D}^{44} = 1.5146 (9)$ 45° (1) (2)230-235° $D_4^{44} = 1.2202 (9)$ 44-45° 155° (3) at 65 mm. (7) 44° (5) 123-126° at 14 mm. (2) 43° (7) 40.2° (6)

Ndls. or lfts. from alc. — Insol. aq.; eas. sol. alc., ether.

[For prepn. of  $\bar{C}$  from phenol (1:1420) with chloroacetyl chloride (3:5235) on htg. alone (7) (6) (3), in ether soln. + pyridine (2), or with AlCl<sub>3</sub> in CS<sub>2</sub> (1) see indic. refs.; with chloroacetic acid (3:1370) +  $P_2O_5$  in CHCl<sub>3</sub> (8) or on htg. with POCl<sub>3</sub> or ZnCl<sub>2</sub> (5) see (8) (5).]

 $\bar{C}$  hydrolyzes rather easily, even slowly on stdg. in moist air (3).  $\bar{C}$  on mere refluxing for  $\frac{3}{4}$  hr. with abs. alc. or with alc. NaOEt undergoes trans-esterification yielding (3) ethyl chloroacetate (3:5700) and phenol (1:1420).

C in ether treated with NH<sub>3</sub> gas reacts vigorously yielding (3) NH<sub>4</sub> phenolate (sol. in aq.) and chloroacetamide (insol. aq.), m.p. 118° (3).

 $\bar{C}$  with aniline (2 moles) at 80° for 1 hr. gives (4) aniline hydrochloride (sol. in aq.) + phenyl N-phenylaminoacetate [Beil. XII-471] pptd. from alc. by addn. of aq., m.p. 82-83° (4). [Note that  $\bar{C}$  on boilg. with aniline yields (4) N-phenylaminoacetanilide (N-phenyl-glycine anilide) [Beil. XII-556], m.p. 111-112° (4).]

C with phenylhydrazine (2 moles) at 50° for ¼ hr. yields (4) phenyl β-phenylhydrazinoacetate [Beil. XV-321], lfts. from C<sub>6</sub>H<sub>6</sub> or from alc. by addn. of aq., m.p. 93-94° (4).

C htd. with AlCl<sub>3</sub> for 5 hrs. at 130-140° gives (10) o-hydroxyphenacyl chloride (vol. with steam), m.p. 74°, + p-hydroxyphenacyl chloride (not vol. with steam), m.p. 148°.

 $\bar{C}$  + equal wt. pyridine htd. at 100° gives (1) cpd.  $\bar{C}.C_5H_5N.5H_2O$ , ndls. from alc., m.p. 165-168° dec. (11), cf. (4).

3:0565 (1) Kunckell, Johannssen, Ber. 30, 1714-1715 (1897). (2) Mannich, Drauzburg, Arch. Pharm. 250, 534 (1912). (3) Morel, Bull. soc. chim. (3) 21, 958-964 (1899). (4) Morel, Bull. soc. chim. (3) 21, 958-964 (1899). (5) Nencki, Ber. 26, Ref., 588 (1893). (6) Prevost, J. prakt. Chem. (2) 4, 379-380 (1871). (7) Fries, Pfaffendorf, Ber. 43, 214-215 (1910). (8) Bakunin, Gazz. chim. ital. 30, II 358 (1900). (9) van der Stichele, J. Chem. Soc. 123, 1228 (1923). (10) von Auwers, Mauss, Ber. 61, 419 (1928).

(11) Barnett, Cook, J. Chem. Soc. 121, 797 (1922).

# 3: 0572 DI-(β-CHLOROETHYL) OXALATE

C<sub>6</sub>H<sub>8</sub>O<sub>4</sub>Cl<sub>2</sub> Beil. S.N. 170

94

CO.O.CH<sub>2</sub>.CH<sub>2</sub>Cl CO.O.CH<sub>2</sub>.CH<sub>2</sub>Cl

# M.P. 45° (1) B.P. 132° at 3 mm. (2)

[For prepn. of C from ethylene chlorohydrin (3:5552) with anhydrous oxalic acid (1:0535) by satn. with HCl gas and htg. at 100° see (1).]

[Č with Me<sub>3</sub>N in C<sub>6</sub>H<sub>6</sub> gives (1) "oxalylcholine chloride," C<sub>12</sub>H<sub>26</sub>O<sub>4</sub>N<sub>2</sub>Cl<sub>2</sub>, very hygroscopic cryst. ndls. (chloroaurate, m.p. 256.5° dec.).]

 $[\bar{C} + C_6H_6 + AlCl_3 \text{ gives (2) bibenzyl } (1:7149) + \tan .]$ 

**3:0572** (1) Contardi, Ercoli, Atti IX congresso intern. chim. Madrid 9, V, 163-173 (1934); Cent. **1936**, II 3903-3904; C.A. **31**, 1764 (1937). (2) Markarov-Zemlyanskii, Korshak, Savenkov, J. Gen. Chem. (U.S.S.R.) **11**, 331 334 (1941); Cent. **1942**, I 993; C.A. **35**, 5883 (1941).

3:0580 3,4,5-TRICHLOROTOLUENE



Readily volatile with steam.

[For prepn. of C from 3,5-dichloro-4-aminotoluene [Beil. XII-990] or from 4,5-dichloro-3-aminotoluene [Beil. XII-872] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. see (1); from potassium salt of 3,4,5-trichlorotoluenesulfonic acid-2 by hydrolysis with strong H<sub>2</sub>SO<sub>4</sub> see (2).]

[ $\bar{C}$  with  $Cl_2$  in pres. of Al/Hg yields (3) 2,3,4,5-tetrachlorotoluene (3:2710), m.p. 97-98° (3).]

C on mononitration with cold fumg. HNO<sub>3</sub> (1) yields 3,4,5-trichloro-2-nitrotoluene [Beil. V-333], pr. from alc., m.p. 81-82° (1); C on dinitration with a mixt. of 6 pts. fumg. HNO<sub>3</sub> and 4 pts. conc. H<sub>2</sub>SO<sub>4</sub> (1) yields 3,4,5-trichloro-2,6-dinitrotoluene [Beil. V-346], ndls. from AcOH, m.p. 163-164° (1).

 $\bar{C}$  on oxidn. with dil. HNO3 in s.t. at 130° readily yields (1) 3,4,5-trichlorobenzoic acid (3:4920), m.p. 203° (1).

3:0580 (1) Cohen, Dakin, J. Chem. Soc. 81, 1336-1339 (1902). (2) Wynne, J. Chem. Soc. 61, 1070-1071 (1892). (3) Cohen, Dakin, J. Chem. Soc. 89, 1454 (1906).

M.P. 45.4-46.1° (1) 43.5-44° (2)

[For prepn. of  $\bar{C}$  from p-chloro- $\alpha$ -chlorostyrene by elimination of HCl with 25% alc. KOH (36% yield (1)) (2) see indic. refs.]

[For study of dipole moment see (3).]

[ $\bar{C}$  with I<sub>2</sub> in liq. NH<sub>3</sub> at  $-34^{\circ}$  readily g ves (98% yield (1)) p-chlorophenyl-iodo-acetylene, m.p. 84.7–85.0° (1).

[Č with NH<sub>3</sub>/Cu<sub>2</sub>Cl<sub>2</sub> as directed gives (50% yield (5)) di-(p-chlorophenyl)biacetylene, m.p. 258° (5).]

Di-(p-chlorophenylethynyl)mercury: m.p. 221-222° (2), 221.5° (1). [From C in alc. with alk. K<sub>2</sub>HgI<sub>4</sub> according to (4); note that m.p. of this prod. is only slightly higher than that (213-214°) for the corresp. prod. from o-chlorophenylacetylene (3:9497).]

3:0590 (1) Vaughn, Nieuwland, J. Am. Chem. Soc. 56, 1207-1209 (1934). (2) Otto, J. Am. Chem. Soc. 56, 1303-1394 (1934). (3) Otto, Wenzke, J. Am. Chem. Soc. 56, 1314-1315 (1934). (4) Johnson, McEwen, J. Am. Chem. Soc. 48, 471 (1926). (5) Zal'kind, Fundyler, J. Gen. Chem. (U.S.S.R.) 9, 1725-1728 (1939); C.A. 34, 3719 (1940).

3: 0610 2,3,5-TRICHLOROTOLUENE  $CH_3$   $C_7H_5Cl_3$  Beil. V - 299  $V_1$ —  $V_2$ —

# M.P. 45-46° (1) B.P. 229-231° at 757 mm. (1)

[For prepn. of  $\bar{C}$  from 3,5-dichloro-2-aminotonuene [Beil. XII-837] or from 2,5-dichloro-3-aminotoluene [Beil. XII-872] via diazotization and use of CuCl<sub>2</sub> reactn. see (1); for formn. of  $\bar{C}$  from 3,5-dichlorotoluene (3:6310) with Cl<sub>2</sub> in pres. of Al/Hg see (2).]

[C with Cl2 in pres. of Al/Hg yields (3) 2,3,5,6-tetrachlorotoluene (3:2575).]

 $\bar{C}$  on mononitration with cold fumg. HNO<sub>3</sub> (1) yields 2,3,5-trichloro-4(or 6)-nitrotoluene [Beil. V-333], ndls. from alc. or AcOH, m.p. 58-59° (1);  $\bar{C}$  on dinitration with 6 pts. fumg. HNO<sub>3</sub> + 4 pts. conc. H<sub>2</sub>SO<sub>4</sub> yields 2,3,5-trichloro-4,6-dinitrotoluene [Beil. V-345], ndls. from alc. + AcOH, m.p. 149-150° (1).

 $\bar{C}$  on oxidn. with dil. HNO<sub>3</sub> in a s.t. at 140° yields (1) 2,3,5-trichlorobenzoic acid (3:4485), m.p. 162° (1).

3:0610 (1) Cohen, Dakin, J. Chem. Soc. 81, 1329-1331 (1902). (2) Cohen, Dakin, J. Chem. Soc. 81, 1343-1344 (1902). (3) Cohen, Dakin, J. Chem. Soc. 85, 1284 (1904).

M.P. 46° (1) (2) B.P. 265° (2) 45° (3) 162–163° at 28 mm. (3)

[For prepn. of  $\bar{C}$  from m-cresol (1:1730) in aq. alk. with excess  $Cl_2$  (3) or from m-cresol with  $Cl_2$  in the dark (2) see indic. refs. (note that m-cresol with  $Cl_2$  in sunlight yields (2)

3,5,6-trichloro-2-methylbenzoquinone-1,4 [Beil. VII-651, VII<sub>1</sub>-(354)], m.p. 238° (2)); from 2,4-dichloro-3-methylphenol (3:1205), from 2,6-dichloro-3-methylphenol (3:0150), and from 4.6-dichloro-3-methylphenol (3:1745) in CHCl<sub>3</sub> with Cl<sub>2</sub> see (1).]

[Č with PCl<sub>5</sub> yields (2) both tris-(2,4,6-trichloro-3-methylphenyl) phosphate, m.p. 230° (2), and bis-(2,4,6-trichloro-3-methylphenyl) phosphate, m.p. 94.5° (2); for study of Hg, Sb, and Bi derivs, of Č see (2).

 $[\tilde{C}$  on sulfonation with fumg.  $H_2SO_4$  (50%  $SO_3$ ) at 50° yields (4) a monosulfonic acid; for condens, of  $\tilde{C}$  with benzaldehyde-p-sulfonic acid and use of prod. as motheroofing agent see (5); for study of use of Na or K salts of  $\tilde{C}$  as wood impregnants (preservatives) see (6).]

Č with aqua regia at 100° for 1½ hrs. gives (25% yield (3)) 3,5,6-trichloro-2-methyl-

benzoquinone-1,4 (see above), m.p. 233° (3).

[C in aq. alk. with Me<sub>2</sub>SO<sub>4</sub> yields (2) corresp. methyl ether, ndls. from alc., m.p. 46°, b.p. 258° (2); C in aq. alk. with Et<sub>2</sub>SO<sub>4</sub> yields (2) corresp. ethyl ether, ndls. from alc., m.p. 35.5°, b.p. 266° (2).]

- --- 2,4,6-Trichloro-3-methylphenyl acetate: m.p. 35°, b.p. 270° (2).
- **② 2,4,6-Trichloro-3-methylphenyl benzoate:** fine prismatic pl. from alc., m.p. 53° (1). [From  $\bar{C}$  with BzCl in pyridine (1).]
- **② 2,4,6-Trichloro-3-methylphenyl benzenesulfonate:** prismatic pl. from alc., m.p. 121° (1). [From Č with benzenesulfonyl chloride in pyridine (1).]
- **D 2,4,6-Trichloro-3-methylphenyl** p-toluenesulfonate: prismatic pl. from alc., m.p. 92-93° (1). [From Č with p-toluenesulfonyl chloride in pyridine (1).]

3:0618 (1) Huston, Chen, J. Am. Chem. Soc. 55, 4218 (1933). (2) Burës, Chem. Listy 21, 108-114, 148-162, 221-227, 261-265 (1927); Cent. 1927, II 1345; C.A. 22, 63 (1928). (3) Chulkov, Parini, Barshev, Org. Chem. Ind. (U.S.S.R.) 3, 410-412 (1937); Cent. 1938, II 305; C.A. 31, 7047 (1937). (4) Weiler, Better (to I.G.), Ger. 557,450, Aug. 24, 1931; Cent. 1932, II 2371. (5) Weiler (to I.G.), Ger. 548,822, April 20, 1932; Cent. 1932, II 799. (6) Iwanowski, et al., Przemysl Chem. 16, 205-221 (1932); Cent. 1933, I\_867; C.A. 27, 3796 (1933).

# 3:0625 2.3.6-TRICHLOROTOLUENE

M.P. 45-46° (1) 41-42° (2)

White ndls, from alc.

[For prepn. of  $\bar{C}$  from 2,6-dichloro-3-aminotoluene [Beil. XII-872] via diazotization and use of  $Cu_2Cl_2$  reactn. see (1); from p-toluenesulfonyl chloride via chlorination, hydrolysis to acid, and subsequent hydrolytic cleavage of the sulfonic acid radical see (3) (2); for formn. of  $\bar{C}$  together with other prods. from 2,5-dichlorotoluene (3:6245) or 2,6-dichlorotoluene (3:6270) with  $Cl_2$  in pres. of Al/Hg see (4).

[C with Cl<sub>2</sub> in pres. of Al/Hg yields (5) 2,3,5,6-tetrachlorotoluene (3:2575).]

Č on mononitration by soln. in cold fumg. HNO<sub>3</sub> yields (1) 2,3,6-trichloro-5-nitrotoluene [Beil. V-333], ndls. from alc., m.p. 57-58° (1); Č on dinitration, e.g., with 6 pts. fumg. HNO<sub>3</sub> + 4 pts. conc. H<sub>2</sub>SO<sub>4</sub> (1), yields 2,3,6-trichloro-4,5-dinitrotoluene [Beil. V-346], pr. from AcOH, m.p. 140-142° (1), 140-141° (6).

C on oxidn. with dil. HNO3 in s.t. at 140° yields (1) 2,3,6-trichlorobenzoic acid (3:4500), m.p. 164°.

3:0625 (1) Cohen, Dakin, J. Chem. Soc. 81, 1331-1332 (1902). (2) Austin, Johnson, J. Am. Chem. Soc. 54, 658 (1932). (3) Geigy Co., Ger. 210,856, June 16, 1909; Cent. 1909, II 79. (4) Ref. 1, pp. 1342-1343. (5) Cohen, Dakin, J. Chem. Soc. 85, 1284 (1904). (6) Qvist, Holmberg, Acta Acad. Aboensis Math. Phys. 6, No. 14, 3-28 (1932); Cent. 1932, 2816; C.A. 27, 5726-5727 (1933).

Cryst. from CCl4; spar. sol. alc.; eas. sol. ether, CS2, lgr., or 90% AcOH; sublimes.

[For prepn. of  $\bar{C}$  from 3,5-dichloro-2-nitroaniline [Beil. XII-733] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. (note that the nitro group is also replaced by chloride) in 83% yield (4) see (4) (5); from 2,3,4-trichloroaniline [Beil. XII-626] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reaction see (7) (6) cf. (1); from 1,2,3-trichlorobenzene (3:0990) with Cl<sub>2</sub> in CCl<sub>4</sub> in pres. of Al/Hg see (7); for formn. of  $\bar{C}$  as by-prod. of actn. of conc. HNO<sub>3</sub> on acet-2,4-dichloroanilide see (2).

[For use of C in mixts. of dielectric liquids see (8).]

[For behavior of  $\bar{C}$  with liq.  $Cl_2$  yielding addn. products see (9).]

[For behavior of C with NaOMe see (4) (10).]

 $\bar{C}$  on mononitration by warming with HNO<sub>3</sub> (D=1.52) (1) yields 1,2,3,4-tetrachloro-5-nitrobenzene [Beil. V-247], m.p. 64.5° (1), 62.0-63.5° (7), 66-67° (11); this prod. on further nitration by boilg. 2 hrs. with 10 pts. mixed HNO<sub>3</sub> (D=1.52) + conc. H<sub>2</sub>SO<sub>4</sub> yields 1,2,3,4-tetrachloro-5,6-dinitrobenzene, m.p. 151° (11).

3:0655 (1) Beilstein, Kurbatow, Ann. 192, 238-239 (1878). (2) Gotts, Hunter, J. Chem. Soc. 125, 447 (1924). (3) Dadieu, Pongratz, Kohlrausch, Monatsh. 61, 433 (1932). (4) Holleman, Rec. trav. chim. 39, 741-743, 749 (1920). (5) Holleman, van Haeften, Rec. trav. chim. 40, 70 (1921). (6) Körner, Contardi, Atti accad. Lincei (5) 18, I 96 (1904). (7) Cohen, Hartley, J. Chem. Soc. 87, 1365 (1905). (8) Compagnie Française Thomson-Houston, French 48,584, April 5, 1938; Cent. 1938, II 906; C.A. 33, 277 (1939). (9) van der Linden, Rec. trav. chim. 55, 421-430 (1936). (10) de Crauw, Rec. trav. chim. 50, 787 (1931).

(11) Berckmans, Holleman, Rec. trav. chim. 44, 856-857 (1925).

# 3: 0670 2,4'-DICHLOROBIPHENYL C<sub>12</sub>H<sub>8</sub>Cl<sub>2</sub> Beil. S.N. 479

M.P. 46° (1) B.P. 191° at 30 mm. (2)

Cryst from alc. (1); sol. in  $C_6H_6$  or AcOH (1).

[For prepn. of C from 2-amino-4'-chlorobiphenyl (2), from 4-amino-2,4'-dichlorobiphenyl (1), or 2,4'-diaminobiphenyl (1) by appropriate diazo reactions see (1) (2).]

 $\bar{C}$  on oxidn. with  $CrO_3 + AcOH$  yields (2) p-chlorobenzoic acid (3:4940), m.p. 232° (2).

3:0670 (1) Finzi, Bellavita, Gazz. chim. ital. 64, 339 (1934). (2) de Crauw, Rec. trav. chim. 56, 776-777 (1931).

3:0685 2,4-DICHLOROBIPHENYL 
$$C_{12}H_8Cl_2$$
 Beil. V —  $V_1-V_2-(483)$ 

Pale yel. cryst. (1).

[For prepn. of C from 3-amino-4-chlorobiphenyl (3) or from 4-amino-3-chlorobiphenyl (1) via appropriate diazo methods see (1) (3).]

C htd. with aq. alk. for 3 hrs. at 290-300° yields (4) phenylpyrocatechol (3,4-dihydroxy-biphenyl) (1:1576), m.p. 144 8-145.2° (4); diacetate, m.p. 77.5-78° (4).

C on oxidn. with CrO<sub>3</sub> + AcOII yields (1) (3) 3,4-dichlorobenzoic acid (3:4925), m.p. 198° (3), 200° (1).

**3:0685** (1) Scarborough, Waters, J. Chem. Soc. **1926**, 560. (2) Zerweck, Schutz (to General Aniline and Film Corp.), U.S. 2,280,504, Apr. 21, 1942, C.A. **36**, 5658 (1942). (3) Blakey, Scarborough, J. Chem. Soc. **1927**, 3007. (4) Harvey (to E R. Squibb and Sons), U.S. 1,952,755, March 27, 1934; Cent. **1934**, II 1846; C.A. **28**, 3426 (1934).

Strong camphoraceous odor! — Cryst. from ice-cold lt. pet. ether (3) (2). — Volatile with steam (2).

[For prepn. from 4-chloro-3-aminotolucne (2-chloro-5-methylaniline) [Beil. XII-871] via diazo reaction see (1) (2) (4); from 6-amino-m-cresol (2-amino-5-methylphenol) [Beil. XIII-590] see (1).]

 $\tilde{C}$  treated with  $(CH_3)_2SO_4+aq$ . NaOH gives its methyl ether, 2-chloro-5-methylanisole, b.p. 212.5° (3). [This methyl ether on oxidn. with dil. KMnO<sub>4</sub> (2.7 hrs. for 5 g.) gave (3) 4-chloro-3-methoxybenzoic ac., pr. from 50% alc. or pl. from CHCl<sub>3</sub>, m.p. 211° (3), Neut. Eq. 186.5.]

- © 6-Chloro-3-methylphenyl benzoate: from  $\bar{C} + BzCl + pyridine$ ; pr. contg. alc. (3) from alc., m.p. 31° (3), 38° (1); cryst. from lt. pet. ether, m.p. 40° (3).
- ⊕ 6-Chloro-3-methylphenyl benzenesulfonate: from C
  + benzenesulfonyl chloride +
  pyridine; cryst. from alc., m.p. 99° (1).
- © 6-Chloro-3-methylphenyl p-toluenesulfonate: from  $\bar{C}$  + p-toluenesulfonyl chloride + pyridine; hexag. pr. from alc. (3) (1) or acetone (3), m.p. 96° (3), 93-94° (1).

3:0700 (1) Houston, Chen, J. Am. Chem. Soc. 55, 4214-4216 (1933).
 42) Kraay, Rec. trav. chim.
 49, 1090 (1930).
 43) Gibson, J. Chem. Soc. 1926, 1424-1425.
 44) Hodgson, Moore, J. Chem. Soc. 1926, 2038-2039.
 45) Raschig, Ger. 232,071, March 4, 1911; Cent. 1911, I 854.

Tbls. from CHCl<sub>3</sub> + lgr. (3) (4); cryst. from pet. eth. (5). — [For crystallog. data see (5) (8).]

[For prepn. (93% yield (9)) from o-chlorobenzoyl chloride (3:6640) +  $C_6H_6$  + AlCl<sub>3</sub> see (3) (5) (9); for formation (12%) in reaction of BzOH + chlorobenzene + AlCl<sub>3</sub> (main prod. 4-chlorobenzophenone (3:1914)) see (2).]

 $\bar{C}$  on reduction with 10% Na/Hg + ale. (11) or boilg. alc. KOH (12) gives almost exclusively 2-chlorodiphenylcarbinol [Beil. VI-680], m.p. 65° (11) (12), 62° (19). —  $\bar{C}$  with Al/Hg + 80% alc. (6) gives mainly 2-chlorodiphenylcarbinol (above) + a little 2,2′-dichlorobenzpinacol. —  $\bar{C}$  with Zn + AcOH (11) or  $\bar{C}$  in alc. on long exposure to sunlight (11) (13) (14) gives 2,2′-dichlorobenzpinacol [Beil. VI<sub>1</sub>-(523)], m.p. 174-175° (6), 178° dec. (11).

Č htd. with aniline 3-4 hrs. at 200° yields (4) 2-chlorobenzophenone anil [Beil. XII-201], pale yel. ndls. or scales from alc., m.p. 128° (4). [Fused subst. or solns. in org. solvents (especially CHCl<sub>3</sub>) are yellow.]

Č fused for 3 hrs. at 200° with a mixt. of KOH + NaOH gives (1) BzOH (1:0715) (90-95% yield) + chlorobenzene (3:7903) but no o-chlorobenzenic acid; however, Č with aq. NaOH + trace CuO in iron bomb (or in pres. of Fe powder) at 240° for 6 hrs. gives (58% yield (20)) fluorenone (1:9014).

 $\bar{C}$  with CH<sub>3</sub>MgI yields (15) 1-(o-chlorophenyl)-1-phenylethylene, oil, b.p. 162-163° at 18 mm. (15);  $\bar{C}$  with Mg + MgI<sub>2</sub> easily loses nuclear halogen (16).

② 2-Chlorobenzophenone oxime: from C̄ + NH<sub>2</sub>OH.HCl + dil. alc. KOH (5) (17) (7) or from C̄ + NH<sub>2</sub>OH.HCl + alc. htd. in s.t. for 3 hrs. at 130° (17); cryst. from pet. ether, m.p. 133-134° (17), 121° (5) (7). [With PCl<sub>5</sub> in dry ether, followed by aq. this oxime yields by Beckmann rearr. o-chlorobenzanilide [Beil. XII-266], m.p. 118° (5), 114° (17).] [The above oxime boiled with conc. aq. KOH for 1 day (5) or refluxed 6 hrs. with 20 pts. 30% MeOH/KOH, then diluted with aq. (17) (18), gives 3-phenylindoxazene [Beil. XXVII-71], ndls. or tbls. from ether or alc., m.p. 83-84° (18), 82.5° (5) (11).]

3:0715 (1) Lock, Rödiger, Ber. 72, 867 (1939). (2) Newton, Groggins, Ind. Eng. Chem. 27, 1398 (1935). (3) Overton, Ber. 26, 28-29 (1893). (4) Graebe, Keller, Ber. 32, 1687 (1899). (5) Montagne, Koopal, Rec. trav. chim. 29, 139-145 (1910). (6) Cohen, Böeseken, Rec. trav. chim. 38, 114-115 (1919). (7) von Auwers, Lechner, Bundesmann, Ber. 58, 50 (1925). (8) Jaeger, Z. Krist. 56, 48 (1916). (9) Mayer, Freund, Ber. 55, 2051-2052 (1922). (10) Koopal, Rec. trav. chim. 34, 153 (1915).

(11) Ref. 10, pp. 157-160. (12) Montagne, van Charante, Rec. trav. chim. 31, 311-312 (1912). (13) Cohen, Böeseken, Rec. trav. chim. 39, 258 (1920). (14) Böeseken, Cohen, Langdeijk, Rec. trav. chim. 46, 383-396 (1927). (15) Bergmann, Bondi, Ber. 64, 1473-1474 (1931). (16) Gom-

berg, Bailar, J. Am. Chem. Soc. 51, 2231 (1929). (17) Meisenheimer, Meis, Ber. 57, 295 (1924).
(18) Cathcart, Meyer, Ber. 25, 1498, 3295 (1892). (19) Montagne, Rec. trav. chim. 26, 266 (1907).
(20) Britton, Moyle, Bryner (to Dow Chem. Co.), U.S. 2,377,751, June 5, 1945; C.A. 39, 4097 (1945).

100

[For prepn. of  $\bar{C}$  from 2,2'-dichlorobenzilic acid (1) by oxidn. with CrO<sub>3</sub>/AcOH (47% yield (1)) or from di-(o-chlorophenyl)carbinol (1) by oxidn. with Na<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>/H<sub>2</sub>SO<sub>4</sub>/AcOH see indic. refs.l

① 2,2'-Dichlorobenzophenone 2,4-dinitrophenylhydrazone: m.p. 206-208° (1).

3:6717 (1) Haller, Bartlett, Drake, Newman, Cristol et al., J. Am. Chem. Soc. 67, 1600-1601 (1945).

3: 0720 ETHYLENE GLYCOL bis-CHLOROACETATE C<sub>6</sub>H<sub>8</sub>O<sub>4</sub>Cl<sub>2</sub> Beil. S.N. 160 ClCH<sub>2</sub>.CO.O.CH<sub>2</sub> ClCH<sub>2</sub>.CO.O.CH<sub>4</sub>

Cryst. from ether/pet. eth. — Insol. aq. (dif. from  $\beta$ -hydroxyethyl chloroacetate (3:6780)).

[For prepn. of  $\bar{\mathbf{C}}$  from ethylene oxide (1:6105) with chloroacetic acid (3:1370) as by-product of prepn. of  $\beta$ -hydroxyethyl chloroacetate (3:6780) see (1); note also that  $\bar{\mathbf{C}}$  is formed (together with ethylene glycol (1:6465)) by disproportionation of  $\beta$ -hydroxyethyl chloroacetate (3:6780) on long stdg. in ord. glass bottles (1).

C on shaking with aq. is hydrolyzed only very slowly (1).

[For use of  $\bar{C}$  as insecticide, fungicide, and disinfectant see (2).]

**3:0720** (1) Meerwein, Sönke, *J. prakt. Chem.* (2) **137**, 316-318 (1933). (2) Peet (to Rohm and Haas Co.), U. S. 1,816,441, July 28, 1831; *Cent.* **1932**, I 1146; *C.A.* **25**, 5501 (1931); French 667,633, Oct. 18, 1929; *Cent.* **1930**, I 2614.

3: 0730 CHLOROACETIC ACID ANHYDRIDE 
$$C_4H_4O_3Cl_2$$
 Beil. II - 199  $II_{1^-}(89)$   $II_{1^-}(89)$   $II_{1^-}(89)$   $II_{1^-}(89)$   $II_{1^-}(89)$   $II_{1^-}(193)$   $II_{1^-}(193)$ 

Note that the above name of  $\tilde{C}$  is so rendered to emphasize that it is the anhydride of chloroacetic acid (not a monochlorinated acetic anhydride).

Pr. from C<sub>6</sub>H<sub>6</sub>; eas. sol. cold ether, CHCl<sub>3</sub>; spar. sol. cold C<sub>6</sub>H<sub>6</sub>; insol. cold lgr.

[For prepn. of  $\bar{C}$  from chloroacetic acid (3:1370) with  $P_2O_5$  in vac. (2), or with  $Ac_2O_5$  (6) (in latter case note also formn. of mixed anhydride acetic-chloroacetic anhydride, b.p. 80-83° at 30 mm. (5), 80-85° at 20 mm. (3),  $D_4^{20} = 1.2003$  (5)), or with chloroacetyl chloride (3:5235) + an inorg. acid chloride (7) or  $AlCl_3$  (8), see indic. refs.; for prepn. of  $\bar{C}$  from sodium chloroacetate with oxalyl (di)chloride (3:5060) in  $C_6H_6$  (54% yield) see (9); for prepn. of  $\bar{C}$  from chloroacetyl chloride (3:5235) with  $Na_2CO_3$  (4) or  $KNO_3$  (1) see indic. refs.]

C with aq. K<sub>2</sub>CO<sub>3</sub> yields (2) polyglycolide (1:4970), m.p. 220°.

[For reactn. of  $\bar{C}$  with AlCl<sub>3</sub> + toluene giving 46-59%  $\omega$ -chloro-p-methylacetophenone (3:1130) see (10); for reactn. of  $\bar{C}$  with AlCl<sub>3</sub> + biphenyl giving 41% yield  $\omega$ -chloro-p-phenylacetophenone, pale yel. ndls. from dil. alc., m.p. 122-123° see (11); for abnormal reactn. of  $\bar{C}$  with benzyl MgCl yielding  $\omega$ -chloro- $\sigma$ -methylacetophenone (3:9660) see (12).]

[For behavior of  $\bar{C}$  with various carbohydrates (13) and with cellulose (14) see indic. refs.]  $\bar{C}$  htd. 4 hrs. at 160–180° with phenyl isothiocyanate yields (15) after distn. at 14–20 mm. 2,4-dioxo-3-phenylthiazolidine [Beil. XXVII-238, XXVII<sub>1</sub>-(305)], m.p. 147–148° (15).]

 $\bar{C}$  with aq. hydrolyzes almost instantly yielding chloroacetic acid (3:1370). — For the amide, anilide, p-toluidide, and other derives corresp. to  $\bar{C}$  see chloroacetic acid (3:1370).

3:0730 (1) Diels, Okada, Bcr. 44, 3335 (1911). (2) Bischoff, Walden, Bcr. 27, 2949 (1894). (3) Watson, Gregory, J. Chem. Soc. 1929, 1375. (4) Patterson, Bcr. 38, 210-213 (1905). (5) Baroni, Gazz. chim. ital. 63, 29-30 (1933). (6) Clarke, Malm (to Eastman Kodak Co.), U.S. 1,648,540, Nov. 8, 1927; Cent. 1928, I 1459; C.A. 22, 433 (1928). (7) Salmoiraghi, Italian 290,541, June 17, 1930; Cent. 1937, I 185. (8) Strosacker, Schwegler (to Dow Chem. Co.), U.S. 1,713,104, May 14, 1929; Cent. 1929, II 1215; C.A. 23, 3234-3235 (1929). (9) Adams, Ulich, J. Am. Chem. Soc. 42, 607 (1920). (10) Noller, Adams, J. Am. Chem. Soc. 46, 1892-1893 (1924).

(11) Silver, Lowy, J. Am. Chem. Soc. 56, 2429-2430 (1934). (12) Austin, Johnson, J. Am. Chem. Soc. 54, 656 (1932). (13) Brass, Kurz, Cellulosechem. 15, 99-102 (1934). (14) Soc. Chem. Ind. Basel, French 764,308, May 18, 1934; Cent. 1935, I 650. (15) Dubsky, Ber. 56, 1690-1691 (1917). (16) Ballaus, Monatsh. 74, 91 (1943).

3:0738 
$$\alpha, \alpha', \beta, \beta, \beta, \beta', \beta' - \beta' - OCl'ACHLORODIETHYL ETHER C4H2OCl8 Beil. I - 624 (bis-( $\alpha, \beta, \beta, \beta$ -tetrachloroethyl) ether) Cl Cl I<sub>1</sub>— I<sub>2</sub>-(681)$$

M.P. 47° (1) B.P. 130-131° at 11 mm. (1) 45-46° (1) 128-130° at 9 mm. (1) 40-42° (2)

Cryst. with agreeable camphoraceous odor from MeOH or EtOH. — Eas. sol. MeOH,  $C_6H_6$ , toluene, or pet. ether; spar. sol. in abs. alc. below 0°.

C slowly sublimes but on attempted distn. at ord. press. decomposes at about 240°.

[For prepn. of  $\bar{\mathbb{C}}$  from chloral (3:5210), chloral hydrate (3:1270), or metachloral with ClSO<sub>3</sub>H or FSO<sub>3</sub>H at not above 50-60° see {1}; note that from chloral (3:5210) with ClSO<sub>3</sub>H at -50° for 10-12 hrs. yield of  $\bar{\mathbb{C}}$  may be as high as 50%; from metachloral with ClSO<sub>3</sub>H at 50° for a few hrs. yield is 60% {1}; note also that various other products including chloralide (3:3510) are also formed. — For form. of  $\bar{\mathbb{C}}$  from trichloroethylene (3:5170) with excess Cl<sub>2</sub>O in CCl<sub>4</sub> at -20° {2}, or perhaps from  $\alpha,\alpha'$ -dichlorodicthyl ether (3:7595) with Cl<sub>2</sub> in sunlight (3), see indic. refs.]

C on htg. in pres. of air gives (2) phosgene (3:5000).

 $\overline{C}$  on reduction with conc. HI (D=1.78) in boilg. AcOH quantitatively yields (2) ethane.

C is fairly stable toward boilg. aq. or aq. alkalies (1).

Č is claimed (1) to react with 2 moles of RMgX cpds. of either aliphatic or aromatic types, but no details are reported.

**3:0738** (1) Fuchs, Katscher, *Ber.* **62**, 2381–2386 (1929). (2) Goldschmidt, Schussler, *Ber.* **58**, 569–570 (1925). (3) Roth, *Ber.* **8**, 1017–1018 (1875).

White cryst. (from pet. ether) (1); hygroscopic scales (from lgr.) (2). — Eas. deliquesces absorbing  $\frac{1}{2}$  mole H<sub>2</sub>O. — Eas. sol. aq. but insol. almost all org. solvents except cold pet. ether or cold lgr.

[For prepn. from catechol (1,2-dihydroxybenzene) (1:1520) by action of SO<sub>2</sub>Cl<sub>2</sub> in ether at 0° see (1) (2); for prepn. from o-benzoquinone [Beil. VII-600] by action of ethereal HCl see (2); 4-chlorocatechol (3:2470) is also a by-product of both methods.]

[ $\bar{C}$  on oxidn. with PbO<sub>2</sub> in pet. ether gives (12% yield (2)) 3-chloro-o-benzoquinone [Beil. VII<sub>1</sub>-(338)]; for use in prepn. of  $\alpha$ -chlorophenazine see (1).]

C with FeCl<sub>3</sub> gives a blue-green color, changing to clear red on addn. of Na<sub>2</sub>CO<sub>3</sub> (2).

3-Chloropyrocatechol dibenzoate: ndls. from alc., m.p. 108-109° (2); 109° u.c. (1).
 3:0745 (1) Wrede, Mühlroth, Ber. 63, 1932-1933 (1930). (2) Willstätter, Müller, Ber. 44, 2184-

**3:0745** (1) Wrede, Mühlroth, *Ber.* **63**, 1932–1933 (1930). **(2)** Willstätter, Müll**er**, *Ber.* **44**, 2184–2189 (1911).

[See also 1-(chloromethyl)naphthalene (3:0250).]

Colorless cryst. from alc. (6) (5); loses HCl on attempted distn. at ord. press.

[For prepn. of  $\tilde{C}$  from 2-methylnaphthalene (1:7605) with  $Cl_2$  in sunlight (5) (3) (6) and best at elevated temp., e.g. 220° (7) or even 250-280° (8) (53% yield (11)), see indic. refs.; from  $\beta$ -naphthylcarbinol [Beil. VI-668] (4) (2) with  $PCl_3$  (2) or with  $SOCl_2$  in toluene (4) see indic. refs.; from N-(benzoyl)- $\beta$ -naphthylmethylamine (1) or from N-(benzoyl)- $\beta$ -naphthylmethyl)amine (1) by htg. with  $PCl_3$  see (1).]

 $\bar{C}$  on oxidn. with aq. Pb(NO<sub>3</sub>)<sub>2</sub> soln. yields (6)  $\beta$ -naphthaldehyde (1:0036);  $\bar{C}$  on oxidn. with alk. KMnO<sub>4</sub> yields (6)  $\beta$ -naphthoic acid (1:0800).

C on reductn. with Zn/Cu couple yields (2) 2-methylnaphthalene (1:7605).

[ $\bar{C}$  with excess Na in dry ether readily gives (8)  $\alpha,\beta$ -bis-(2-naphthylmethyl)ethane, m.p. 182° (9) (picrate, m.p. 198° (9)).] — [For study of reactn. of  $\bar{C}$  with 1-(chloromethyl)-naphthalene (3:0250) + AlCl<sub>3</sub> in CS<sub>2</sub> see (7).]

[C with Mg in dry ether + trace  $C_2H_5I$  gives corresp.  $\beta$ - $C_{10}H_7$ .  $CH_2MgCl$ , but reactn. is capricious and requires pure C (4); the RMgCl cpd. with AcCl in ether does not follow a normal course but gives instead 1,3-di-( $\beta$ -naphthyl)-2-methylpropene-1, cryst. from AcOH, m.p. 184-185° (4).]

[For study of reactn. of  $\tilde{C}$  with ethyl acetoacetate + NaOEt in abs. alc. giving (83% yield) ethyl  $\alpha$ -( $\beta$ -naphthylmethyl)acetoacetate see (10).]

 $\overline{C}$  with aq. at 100° for  $1\frac{1}{2}$  hrs. is 17% hydrolyzed (1).

[ $\bar{C}$  with large excess of conc.  $C_6H_6$  soln. of dimethylamine htd. in s.t. at 100° for 10 hrs. yields (1) N,N-dimethyl- $\beta$ -naphthylmethyl-amine.]

3:0747 (1) von Braun, Moldaenke, Ber. 56, 2168-2171 (1923). (2) Sah, Rec. trav. chim. 59, 461-470 (1940); C.A. 35, 4763 (1941). (3) Achmatowicz, Lindenfeld, Roczniki Chem. 18, 69-74 (1938); Cent. 1939, II 389. (4) Campbell, Anderson, Gilmore, J. Chem. Soc. 1940, 820. (5) Scherler, Ber. 17, 1529 (1884). (6) Schulze, Ber. 17, 1529 (1884). (7) Clar, Lombardi, Gazz. chim. ital. 62, 542-544 (1932); C.A. 27, 81 (1933). (8) Clar, Wallenstein, Ber. 64, 2080, 2082 (1931). (9) Friedman, Ber. 49, 1354-1355 (1916). (10) Sempronj, Gazz. chim. ital. 68, 263-266 (1938).

(11) Tarbell, Fukushima, Dam, J. Am. Chem. Soc. 67, 198 (1945).

## 

[See also liquid diastereoisomer (3:9068).]

Colorless crystals from alc. (2).

[For prepn. of  $\tilde{C}$  (30-50% yield of mixed solid + liquid stereomers (2)) from 1,2-dichloroethylene (3:5030) + 1,1,2-trichloroethane (3:5330) + 1% AlCl<sub>3</sub> for 5 days at 35-40° see (2); for formn. of  $\tilde{C}$  from 1,2-dichloroethylene (3:5030) with HCl + AlCl<sub>3</sub> at 50° see (1).]

Č in CCl<sub>4</sub> treated with AlCl<sub>3</sub> remains colorless and the solution does not (2) evolve HCl, even on boilg.

Č in alc. treated with Zn dust gives (80% yield (2)) 1-chlorobutadiene-1,3 (3:7210), b.p. 68° (2).

 $\bar{C}$  dissolved in hot alc. and titrated with N/10 KOH splits off 1.44-1.59 moles HCl (2).

[A pentachlorobutane obtained (3) from trichloroethylene (3:5170) + 1,1-dichloroethane (3:5035) + AlCl<sub>3</sub> may or may not be identical with  $\tilde{C}$ .]

3:0750 (1) Müller, Hönn, *J. prakt. Chem.* (2) 133, 289–290 (1932). (2) Prins, *Rec. trav. chim.* 56, 121–123 (1937). (3) Consortium für Elektrochem. Ind., Brit. 453,414, Oct. 8, 1936; *Cent.* 1937, I 1012.

# 3:0765 p-CHLOROBENZALDEHYDE CLCCHO C7H5OCl Beil. VII - 235 VIII-(133)

| M.P. | 49°    | (1)     | R.P. | 214.5-216.5° | at | 760 mm. | (3) |     |
|------|--------|---------|------|--------------|----|---------|-----|-----|
|      | 48°    | (2) (3) |      | 213-214°     |    |         | (6) | (8) |
|      | 47.5°  | (4) (6) |      | 213°         | at | 748 mm. | (9) |     |
|      | 47°    | (5)     |      | 108-111°     | at | 25 mm.  | (7) |     |
|      | 46-47° | (7)     |      |              |    |         |     |     |

Colorless pl. with odor like benzaldehyde. — Volatile with steam. — Somewhat sol. cold aq., more sol. hot aq.; eas. sol. alc., ether,  $C_6H_6$ ,  $CS_2$ , AcOH. — Forms spar. sol. NaHSO<sub>3</sub> cpd.

[For prepn. of  $\bar{C}$  from p-chlorotoluene (3:8287) with  $CrO_2Cl_2$  (10), or by halogenation to p-chlorobenzal (di)chloride (3:6700) (7) (46) or p-chlorobenzal (di)bromide (11) and their subsequent hydrolysis with fumg.  $H_2SO_4$  (6) (12) (13), conc.  $H_2SO_4$  (7), anhydrous oxalic acid (8), or water in a s.t. at 170° (14) (15) see indicated refs.; from p-aminobenzaldehyde by diazotization and reactn. with CuCl (73% yield (16)) see (16) (17) (1); from p-chlorobenzyl chloride (3:0220) (or bromide) by boilg. with aq.  $Pb(NO_3)_2$  in  $CO_2$  (4) (5) or with hexamethylenetetramine (2); from p-chlorobromobenzene vap-chlorophenyl MgBr and its reactn. with ethyl orthoformate (64% yield) (18); from p-chlorobenzonitrile with  $SnCl_2$  (19); from chlorobenzene + HCN +  $AlCl_3$  (20) or with CO +  $AlCl_3$  (21); from p-chlorobenzylamine with hexamethylenetetramine (45) see indic. refs.]

 $\bar{\mathbb{C}}$  with KMnO<sub>4</sub> (2) (4) (5) or even slowly in air oxidizes to p-chlorobenzoic ac. (3:4940), m.p. 236°. [For study of auto-oxidation see (22).] —  $\bar{\mathbb{C}}$  on cat. hydrogenation (92% yield (23)) or electrolytic reductn. (24) or by actn. of iodo-magnesium hydrobenzoinate (84% yield (25)) gives p-chlorobenzyl alc., ndls. from  $C_6H_6/lgr.$ , m.p. 71–72.5° (23). —  $\bar{\mathbb{C}}$  with conc. alk. undergoes Cannizzaro reactn. (for study see (26) (28)) although presumable products, p-chlorobenzyl alc. and p-chlorobenzoic ac., have not been (by this reactn.) actually isolated. [For study of  $\bar{\mathbb{C}}$  in mixed Cannizzaro reactn. see (27).]

 $\bar{C}$  on reduction with Ni/Al alloy (Raney Ni) in aq. alk. gives (60% yield (48)) toluene (1:7405).

Č with dil. KCN gives benzoin condensation yielding 4,4'-dichlorobenzoin, m.p. 85-87° (29), which on oxidn. with HNO<sub>3</sub> in AcOH yields 4,4'-dichlorodibenzil, m.p. 195-196° (29).

C on htg. with NaOAc + Ac<sub>2</sub>O for 8 hrs. at 180-200° undergoes Perkin reactn. giving (yield: 52% (13), 60% (17)) p-chlorocinnamic ac., m.p. 249-250° (17), 247° (13) (31). [This with Br<sub>2</sub> in CHCl<sub>3</sub> gives (30) p-chlorocinnamic acid dibromide, m.p. 191° (30).]—C + malonic acid + pyridine gives alm. quant. yield (31) p-chlorocinnamic acid. [With-

out pyridine reactn. gives (100% yield (31)) p-chlorobenzalmalonic acid, m.p. 197-198° dec. (31).]

 $\bar{C}$  on mononitration with conc. HNO<sub>3</sub> + conc. H<sub>2</sub>SO<sub>4</sub> at 80-90° gives (32) (33) 4-chloro-3-nitrobenzaldehyde [Beil. VII-262], ndls. from CHCl<sub>3</sub>/lgr. or from aq., m.p. 62° (32) (33); ndls. from dil. alc., m.p. 64.5° (34) [oxime, pale yel. ndls. from alc., m.p. 146° (34), 141.5-142.5° (35); phenylhydrazone, m.p. 148.5-149.5° (35), p-nitrophenylhydrazone, or. ndls., m.p. 278-279° (34); semicarbazone, yel. ndls., m.p. 244-245° dec. (35)].

Č htd. at 100° with 1 mole aniline gives (16) (36) p-chlorobenzalaniline, pale yel. pl., from alc., m.p. 62° (16) (36); Č htd. with 1 mole p-toluidine gives (16) (36) p-chlorobenzal-p-toluidine, colorless ndls. from alc., m.p. 125° (16) (36).

[For conversion of  $\tilde{C}$  with MeMgX to p-chlorophenyl-methyl-carbinol and dehydration of latter to p-chlorostyrene see (46).]

- p-Chlorobenzaldoxime (anti form): cryst. from alc., m.p. 106-107° (6) (37). [From C + NH<sub>2</sub>OH.HCl + Na<sub>2</sub>CO<sub>3</sub> (6); the syn isomer has m.p. 142° (37), 140° (6), and on fusion is converted to anti isomer (6).]
- **p-Chlorobenzaldehyde phenylhydrazone:** lt. yel. cryst. from dil. alc., m.p. 127-127.5° (35), 126-128° (38). [For study of kinetics of formn. see (39).]
- p-Chlorobenzaldehyde p-nitrophenylhydrazone: dk. br. cryst. from alc., m.p. 216.5° u.c. (40), 224° (41), 218-220° (35).
- p-Chlorobenzaldehyde 2,4-dinitrophenylhydrazone: or. cryst., m.p. 270° (42), 265° (45), 264° cor. (43). [Use in detn. of C (43).]
- p-Chlorobenzaldehyde semicarbazone: tbls. from pyridine (10), ndls. from MeOH (44, m.p. 230° (10) (47), 232-233° (44).

3:0765 (1) Blanksma, Chem. Weekblad 6, 909 (1909). (2) Mayer, English, Ann. 417, 78-79 (1918). (3) Kahovec, Kohlrausch, Z. physik. Chem. B-38, 138 (1937). (4) Jackson, White, Ber. 11, 1043 (1887). (5) Jackson, White, Am. Chem. J. 3, 31-32 (1881). (6) Erdmann, Schwechten, Ann. 260, 63-65 (1890). (7) McEwen, Org. Syntheses, Coll. Vol. 2 (1st ed.), 133-135 (1943). (8) Erdmann, Kirchhoff, Ann. 247, 368 (1888). (9) Hoechster Farbwerke, Ger. 207,157; Cent. 1909, I 962. (10) Law, Perkin, J. Chem. Soc. 93, 1636 (1908).

(11) Lock, Bayer, Ber. 72, 1067 (1939). (12) Kaeswurm, Ber. 19, 742 (1886). (13) Böck, Lock, Schmidt, Monatsh. 64, 407 (1934). (14) Beilstein, Kuhlberg, Ann. 146, 328 (1868). (15) Beilstein, Kuhlberg, Ann. 147, 352-353 (1868). (16) von Walther, Ractze, J. prakt. Chem. (2) 65, 259-264 (1902). (17) van der Lee, Rec. trav. chrm. 45, 678-680 (1926). (18) Bodroux, Compt. rend. 138, 701 (1904); Bull. soc. chim. (3) 31, 585-588 (1904). (19) Stephen, J. Chem. Soc. 127, 1874 (1925). (20) Hinkel, Ayling, Benyon, J. Chem. Soc. 1936, 342.

(21) Ger. 281,212, Dec. 15, 1914; Cent. 1915, I 178; Ger. 403,489, Sept. 29, 1924; Cent. 1925, I 1369; Brit. 334,009, Sept. 18, 1930; Cent. 1930, II 3850. (22) van der Beek, Rec. trav. chim. 51, 411-413 (1932). (23) Carothers, Adams, J. Am. Chem. Soc. 46, 1681-1682 (1924). (24) Law, J. Chem. Soc. 99, 1114-1115 (1911). (25) Shankland, Gomberg, J. Am. Chem. Soc. 52, 4975 (1930). (26) Eitel, Lock, Monatsh. 72, 392-409 (1939). (27) Bailar, Barney, Miller, J. Am. Chem. Soc. 58, 2110-2111 (1936). (28) Molt, Rec. trav. chim. 56, 233-246 (1937). (29) Gomberg, Van Natta, J. Am. Chem. Soc. 51, 2241 (1929). (30) Wilstaedt, Ber. 64, 2693 (1931).

(31) K. C. Pandya, R. B. Pandya, Proc. Indian Acad. Sci. 14-A, 112-122 (1941); C.A. 36, 1599 (1942). (32) Erdmann, Ernst, Hugho, Ann. 294, 380 (1897). (33) Hodgdon, Smith, J. Soc. Chem. Ind. 49, T408-410 (1930). (34) Hodgson, Beard, J. Chem. Soc. 1927, 20. (35) van der Lee, Rec. trav. chim. 45, 278-281 (1926). (36) DeGaouck, LeFevre, J. Chem. Soc. 1938, 741-742. (37) Brady, McHugh, J. Chem. Soc. 125, 551 (1924). (38) Charlton, Earl, Kenner, Luciano, J. Chem. Soc. 1932, 40. (39) Bodforss, Z. physik. Chem. 109, 242 (1924). (40) Shoppee, J. Chem. Soc. 1931, 1232.

(41) Hodgson, Handley, J. Chem. Soc. 1928, 1886. (42) Blanksma, Wackers, Rec. trav. chim. 55, 658 (1936). (43) Eitel, Lock, Monatsh. 72, 389-390 (1939). (44) Henderson, Heilbron, J. Chem. Soc. 197, 1749 (1915). (45) Graymore, Davies, J. Chem. Soc. 1945, 294. (46) Ushakov, Matuzov, J. Gen. Chem. (U.S.S.R.) 14, 120-127 (1944); C.A. 39, 916 (1945). (47) Vogelsang, Rec. trav. chim. 62, 5-11 (1943); C.A. 39, 1394 (1945). (48) Schwenk, Papa, Whitman, Ginsburg, J. Org. Chem. 9, 1-8 (1944).

Ndls. (from pet. eth.).

[For prepn. from o-cresol (1:1400) by chlorination with SO<sub>2</sub>Cl<sub>2</sub> see (1) (5).]

 $\ddot{C}$  dislyd. in 5 pts. AcOH and treated with small excess of conc. HNO<sub>3</sub> (D=1.42) yields (3) 6-nitro-4-chloro-2-methylphenol [Beil. VI<sub>1</sub>-(178)], yel. ndls., m.p. 107° (3), eas. sol. alc.,  $C_6H_6$ , less sol. AcOH, acetate, m.p. 88° (3).

 $\bar{C}$  htd. with phthalic anhydride (1:0725) + NaCl.AlCl<sub>3</sub> at 150-200° for 2 hrs. yields (4) after decompn. with HCl, and repeated recrystn. from  $C_6H_6$ , AcOH, xylene, 1-hydroxy-2-methyl-4-chloroanthraquinone, yel.-br. cryst., m.p. 177-179° (4).

 $\bar{C}$  htd. with KOH + CH<sub>3</sub>I yields (1) 4-chloro-2-methylanisole, volatile with steam, b.p. 212.6-214.6° cor. at 758 mm. (1).

**① 4-Chloro-2-methylphenyl benzoate**; from  $\ddot{C} + BzCl + aq$ . NaOH; lfts. from pet. eth., m.p.  $71-72^{\circ}$  (1).

**3:0780** (1) Peratoner, Condorelli, Gazz. chim. ital. **28**, I 211 (1898). (2) Klarmann, Shternov Gates, J. Am. Chem. Soc. **55**, 2585 (1933). (3) Zincke, Ann. **417**, 222-223 (1918) (4) Waldmann, Sellner, J. prakt. Chem. **150**, 152 (1938). (5) Sah, Anderson, J. Am. Chem. Soc. **63**, 3165 (1941).

Ndls. from alc. — Volatile with steam. — Sublimes.

[For prepn. of Č from naphthalenedisulfonic acid-1,6 [Beil. XI-213] (16), from K salt of 6-chloronaphthalenesulfonic acid-1 [Beil. XI-161] (4), from 6-chloronaphthalenesulfonyl chloride-1 [Beil. XI-165] (8), from 5-chloronaphthalenesulfonyl chloride-2 [Beil. XI-180] (7), from 5-nitronaphthalenesulfonyl chloride-2 [Beil. XI-180] (7), from 5-nitronaphthalenesulfonyl chloride-2 [Beil. XI-180] (7), from 5-nitronaphthalenesulfonyl chloride-2 [Beil. XI-214] (10) (3) (6) by htg. with PCl<sub>5</sub> as directed see indic. refs.; for prepn. of Č from 5-chloronaphthalenesulfonyl chloride-1 (both above) by htg. at 210-250° see (7); for prepn. of Č from 6-chloronaphthylamine-2 via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. see (2); from 6-sulfonaphthylamine-1 [Beil. XIV-758, XIV<sub>1</sub>-(735)] or from 5-sulfonaphthylamine-2 [Beil. XIV-748, XIV<sub>1</sub>-(733)] via treatment of corresp. diazonium salt with PCl<sub>5</sub> in PCl<sub>5</sub> see (11); from 1,6-diaminonaphthalene [Beil. XIII-204] by tetrazotization in HCl and htg. with Cu pdr. (24% yield (3)) (12) (13) see indic. refs.; for prepn. of Č from 1,6-dichloronaphthalenedisulfonic acid-4,8 [Beil. XI-213] or from 1,6-dichloronaphthalenedisulfonic acid-3,8 [Beil. XI-214] via hydrolysis of the -SO<sub>3</sub>H group by htg. with dil. H<sub>2</sub>SO<sub>4</sub> in s.t.

at 180-200° see (1); from 1,6-dichloronaphthalenesulfonyl chloride-3 [Beil. XI-182] (14) or from 1,6-dichloronaphthalenesulfonyl chloride-1 [Beil. XI-163] (18) by htg. with conc. HCl in s.t. at 290° see indic. refs.; from sodium  $\alpha$ -naphthalenesulfonate [Beil. XI-155, XI<sub>1</sub>-(37)] with boilg. dil. HCl + KClO<sub>3</sub> (other products are also formed) see (15).]

[C on mononitration in AcOH with fumg. HNO<sub>3</sub> yields (19) (20) 1,6-dichloro-4-nitro-

naphthalene [Beil. V-556], m.p. 119° (19) ]

[C on monosulfonation with mixt. of equal vols. conc. + fumg. H<sub>2</sub>SO<sub>4</sub> (17) or with ClSO<sub>3</sub>H in CS<sub>2</sub> (18) gives 1,6-dichloronaphthalenesulfonic acid-4 [Beil. XI-163] (corresp. sulfonyl chloride, m.p. 151° (17) (18), corresp. sulfonamide, m.p. 216° (18)).]

[ $\bar{C}$  on oxidn, with dil. HNO<sub>3</sub> in s.t. at 150° yields (19) a mixt. of 3-chlorophthalic acid (3:4820) and 4-chlorophthalic acid (3:4820) together with their nitro derivs.]

3:0810 (1) Friedländer, Kielbasinski, Ber. 29, 1980-1982 (1896). (2) Schroeter, Ber. 63, 1318 (1930). (3) Hampson, Weissberger, J. Chem. Soc. 1936, 394. (4) Forsling, Ber. 20, 2105 (1887).
 5) Erdmann, Kirchhoff, Ann. 247, 379 (1888). (6) Ferrero, Bolliger, Helv. Chim. Acta 11, 1146-1150 (1928). (7) Armstrong, Wynne, Chem. News 71, 255 (1895). (8) Sindall, Chem. News 60, 58 (1889). (9) Cleve, Bull. soc. chim. (2) 26, 448 (1876). (10) Armstrong, Wynne, Chem. News 62, 164 (1890).

(11) Érdmann, Ann. 275, 214-215, 256, 279 (1893). (12) Friedlander, Szymanski, Ber. 25, 2081 (1892). (13) Kehrmann, Matis, Ber. 31, 2419 (1898). (14) Armstrong, Wynne, Chem. News 76, 69 (1897). (15) Kozlov, Talybov, J. Gen. Chem. (U.S.S.R.) 9, 1827-1833 (1939); C.A. 34, 4067 (1940). (16) Zil'berman, Rashevaskaya, Martyntsova, J. Applied Chem. (U.S.S.R.) 9, 1832-1840 (1936); Cent. 1937, I 4787, C.A. 31, 2597 (1937). (17) Cleve, Ber. 24, 3477-3478 (1891). (18) Armstrong, Wynne, Chem. News 61, 274-275 (1890). (19) Cleve, Bull. soc. chim. (2) 23, 499 (1878). (20) Armstrong, Wynne, Chem. News 61, 94 (1890).

# 3:0825 2,4-DICHLOROBENZOPHENONE C<sub>13</sub>H<sub>8</sub>OCl<sub>2</sub> Beil. VII - 420 (2,4-Dichlorophenyl phenyl ketone) C<sub>10</sub>Cl VII<sub>1</sub>—

M.P. 48-49° (1) (2) 52° (3)

Cryst. (from alc. (1)).

[For prepn. from m-dichlorobenzene (3:5960) + BzCl (3:6240) + AlCl<sub>3</sub> at 110-140° see (3) (2); for prepn. (67% yield (1)) from 2,4-dichlorobenzohydrol by oxidn. with CrO<sub>3</sub> in AcOH see (1).]

 $\bar{C}$  fused for 3 hrs. at 200° with a mixt. of KOH + NaOH gives (1) m-dichlorobenzene (3:5960) and BzOH (1:0715) (92% yield (1)).

[C does not give a smooth reaction with NaOMe (2).]

3:0825 (1) Lock, Rödiger, Ber. 72, 868-869 (1939). (2) van de Lande, Rec. trav. chim. 51, 99, 105 (1932). (3) Böeseken, Rec. trav. chim. 27, 15 (1908).

3:0840 2,7-DICHLORO-2,7-DIMETHYLOCTANE 
$$C_{10}H_{20}Cl_2$$
 Beil. I —  $Cl$   $Cl$   $I_{1-}$  (66)  $I_{2-}$   $CH_3$ — $C$ — $CH_2$ . $CH_2$ . $CH_2$ . $CH_3$ — $C$ — $CH_3$   $CH_3$ 

Cryst. (from abs. alc.) with agreeable musk-like odor.

[For prepn. of C from 2,7-dimethyloctanediol-2,7 [Beil. I<sub>1</sub>-(257)] with conc. HCl in the cold or with HCl gas in toluene see (1).]

3:0840 (1) Bouvet, Bull. soc. chim. (4) 17, 204 (1915).

Colorless ndls.

[For prepn. of Č from anhydrous chloral (3:5210) with 1 mole n-butyl alcohol (1:6180) (1) (2), or from chloral hydrate (3:1270) under reflux with n-BuOH (yields: 54% in 45 min., 28% in 60 min. (3)) or with tri-n-butyl orthoformate, see indic. refs.; for study of formn. of Č from chloral ethylalcoholate (3:0860) or from chloral n-propyl-hemiacetal by reflux with n-BuOH for 45 min. (yield 40-50%) see (3).]

[ $\bar{C}$  with AcCl gives (78% yield (1)) corresp. acetate, b.p. 129–131° at 20 mm. (1).] [For behavior of  $\bar{C}$  with diazomethane see (4).]

3:0843 (1) Fourneau, Florence, Bull. soc. chim. (4) 47, 352 (1930). (2) Kuntze, Arch. Pharm. 246, 98 (1908). (3) Post, J. Org. Chem. 6, 832-833 (1941). (4) Meerwein, Bersin, Burneleit, Ber. 62, 1009 (1929).

M.P. 49-50° (1)

[For form. of  $\bar{C}$  from 3,5-dimethylphenol (sym.-m-xylenol) (1:1455) with  $SO_2Cl_2$  in CHCl<sub>3</sub> (as by-product of the principal isomer 4-chloro-3,5-dimethylphenol (3:3505)) see (1).]

- --- 2-Chloro-3,5-dimethylphenyl acetate: unreported.
- ---- 2-Chloro-3,5-dimethylphenyl benzoate: unreported.
- 3:0844 (1) Lesser, Gad, Ber. 56, 974 (1923).

3: 0846 1,1,1-TRICHLOROPROPANOL-2 
$$C_3H_5OCl_3$$
 Beil. I - 365  $(\beta,\beta,\beta$ -Trichloroisopropyl  $CH_3$ — $CH$ — $CCl_3$   $I_1$ -(185) alcohol; "Isopral") OH 12-(385)

Hexag. cryst. from aq. (7); for crystallographic data see (2). — Spar. sol. aq., eas. sol. org. solvents (for data see (7)). —  $\bar{C}$  has high vapor press. (for measurement see (2)) and sublimes even at ord. temp. (for study of sublimation of  $\bar{C}$  by various methods see (5)).

[For prepn. of  $\tilde{\mathbb{C}}$  from 1,1,1-trichloropropanone-2 (3:5620) by reduction with fused Al(OEt)<sub>3</sub> in abs. alc. under H<sub>2</sub> or N<sub>2</sub> (8) or with AlEt<sub>3</sub> etherate in ether (3) (yields: 67% (8), 65% (3)) see indic. refs.; for prepn. of  $\tilde{\mathbb{C}}$  from chloral (3:5210) with CH<sub>3</sub>MgBr (9) (19) (2) cf. (4) or MeMgI (2) cf. (4) (yield: 40% (9) (2)) see indic. refs. (note that by this method the normal addn. of RMgX leading to  $\tilde{\mathbb{C}}$  is accompanied by reduction leading to 2,2,2-trichloroethanol (3:5775) and the relative proportion of these two reactions is profoundly influenced by the pres. of metal salts (9)); for prepn. of  $\tilde{\mathbb{C}}$  from chloral (3:5210) with ZnMe<sub>2</sub> see (6).]

Č is used as hypnotic pharmaceutical under the trade name "Isopral" (10), for use as seed disinfectant see (11); for study of disinfectant power and toxicity see (12); for comparative study of narcotic action see (13). — For study of tests for C see (7) (14).

 $\bar{C}$  on reduction in aq. AcOH + Zn dust in cold yields (15) 1,1-dichloropropene-1 (3:5120).  $\bar{C}$  on oxidn. with fumg. HNO<sub>3</sub> under reflux for 5 hrs. gives (2) trichloroacetic acid (3:1150); use of  $K_2CR_2O_7$  +  $H_2SO_4$  gives only insignificant yields (2) while less strong HNO<sub>3</sub> even after 4 hrs. at 100° has only slight action (2).

 $\bar{C}$  with  $P_2O_5$  on htg. loses  $H_2O$  giving (84% yield (19)) (2) 1,1,1-trichloropropene-2 (3:5345), b.p. 114-115° at 757 mm. (2).

[ $\bar{C}$  with HNO<sub>3</sub>/H<sub>2</sub>SO<sub>4</sub> mixt. yields (2)  $\beta,\beta,\beta$ -trichloroisopropyl nitrate, oil,  $D_{-}^{13} = 1.499$ ,  $n_{\bar{D}} = 1.47892$ , but decompg. on htg. —  $\bar{C}$  with PCl<sub>3</sub> or PCl<sub>5</sub> yields (2) (1) various partial ester/acid chloride derivs. of phosphorous or phosphoric acids. —  $\bar{C}$  with SOCl<sub>2</sub> evolves HCl + SO<sub>2</sub> and also yields (2) a liq. presumably  $\beta,\beta,\beta$ -trichloroisopropyl chlorosulfonate.]

 $\tilde{C}$  with aq. or alc. NaOH or conc. aq. Na<sub>2</sub>CO<sub>3</sub> gives on htg. (16) (17) mainly acetaldehyde (1:0100) and lactic acid (1:0400), also accompanied by formic acid (1:1005) and carbon monoxide; for use of this reactn. in detection of  $\tilde{C}$  see (14). —  $\tilde{C}$  with EtOH/NaOEt on htg. gives (15) ethyl  $\alpha$ -ethoxypropionate [Beil. III-280, III<sub>1</sub>-(109), III<sub>2</sub>-(206)], b.p. 155° cor. at 760 mm.,  $D_4^{20} = 0.9446$ ,  $n_D^{20} = 1.40125$ .

[Č with AcCl yields (2)  $\beta,\beta,\beta$ -trichloroisopropyl acetate, b.p. 180–181° cor. 766 mm., m.p. + 8°,  $D_{13}^{13} = 1.353$ ,  $n_{\overline{D}} = 1.46017$  (2).]

—  $\beta_{\gamma}\beta_{\gamma}\beta_{\gamma}$ -Trichloroisopropyl carbamate: cryst. from  $C_6H_6$ , m.p. 125° (18). Prepd. indirectly from  $\beta_{\gamma}\beta_{\gamma}\beta_{\gamma}$ -trichloroisopropoxy MgBr with phosgene in toluene, followed by treatment with NH<sub>3</sub> (35% yield (18)).]

3:0846 (1) Henry, Compt. rend. 138, 205 (1904). (2) Vitoria, Rec. trav. chim. 24, 265-287 (1905); Bull. acad. roy. Belg. 1904, 1087-1123; Cent. 1905, I 344-345. (3) Meerwein, Hinz, Majert, Söhnke, J. prakt. Chem. (2) 147, 236-237 (1936). (4) Bayer and Co., Ger. 151,545, May 20, 1904; Cent. 1904, I 1586. (5) Eder, Haas, Mikrochemie (Emich Festschrift), 1930, 59, 67, 78, 80. (6) Garzarolli-Thurnlackh, Ann. 210, 77-79 (1881). (7) Genot, J. pharm. Belg. 12, 735-736 (1930); Cent. 1930, II 3062. (8) Meerwein, Schmidt, Ann. 444, 234 (1925). (9) Kharasch, Kleiger, Martin, Mayo, J. Am. Chem. Soc. 63, 2306-2307 (1941). (10) Cent. 1903, II 899.

(11) von Leuthold, Austrian 145,527, May 11, 1936; Cent. 1936, II 1052. (12) Howard, Stimpert, J. Am. Pharm. Assoc. 14, 487-489 (1925); Cent. 1925, II 1696; C.A. 19, 2864 (1925). (13) Lendle, Arch. expll. Path. Pharmakol. 125, 287-300 (1927); Cent. 1928, I 715; C.A. 22, 639 (1928). (14) Serantes, Anales soc. quim. argentina 12, 199-200 (1924); C.A. 19, 704 (1925). (15) Wohl, Roth, Ber. 49, 215-216 (1907). (16) Hebert, Bull. soc. chim. (4) 27, 49 (1920). (17) Mossler, Monatsh. 29, 583-590 (1908). (18) Yoder, J. Am. Chem. Soc. 45, 479 (1923).

(19) Kharasch, Rossin, Fields, J. Am. Chem. Soc. 63, 2559-2560 (1941).

110

3:0855 
$$d_1l-\alpha_1\beta$$
-DICHLOROPROPIONIC ACID  $C_3H_4O_2Cl_2$  Beil.II - 252  $CH_2$ -CH-COOH  $II_1$ -(111)  $II_2$ -

[For prepn. from methyl  $\alpha,\beta$ -dichloropropionate (3:9103) by boilg. with 20% HCl (65% yield) see (3); from 2,3-dichloropropanol-1 ("β-dichlorohydrin") (3:6060) by oxidn. with HNO<sub>3</sub> see (1) (6) (7) (2) (5); from  $\alpha,\beta$ -dichloroacrolein by oxidn. with HNO<sub>3</sub> see (7); from a-chloropropionic acid (3:6125) with Cl<sub>2</sub> at 45° see (8); for forma. of C from  $\alpha$ -chloroacrylic acid (3:1445) (6) (9) or from  $\alpha$ -chloro- $\beta$ -hydroxypropionic acid ( $\alpha$ -chlorohydracrylic acid) [Beil. III-298] (10), or  $\alpha,\beta$ -dihydroxypropionic acid (glyceric acid) (11) by htg. with fumg. HCl in s.t. at 100°, see indic. refs.]

C with ag. or alc. readily loses HCl yielding (12) (6) (9) \(\alpha\)-chloroacrylic acid (3:1445), m.p. 65°.

Č in MeOH treated as directed (13) with activated Zn gives (72% yield) acrylic acid (1:1020), b.p. 140°.

[ $\bar{C}$  with SOCl<sub>2</sub> gives (15)  $\alpha,\beta$ -dichloropropionyl chloride (3:9032).]

C htd. with Ag<sub>2</sub>CO<sub>3</sub> yields (5) α-chloro-β-hydroxypropionic acid (α-chlorohydracrylic acid).

- Methyl  $\alpha,\beta$ -dichloropropionate: b.p. 72-75° at 21 mm. (see 3:9103).
- Ethyl  $\alpha_0\beta$ -dichloropropionate: b.p. 183-184° (see 3:6090). [For the sec-butyl,  $\beta$ -chloroethyl, and cyclohexyl esters of  $\bar{C}$  see (3); for glycol and other esters see (14).
  - --- α,β-Dichloropropionamide: unreported.
  - --- α,β-Dichloropropionanilide: unreported.
  - ---- α,β-Dichloropropion-p-toluidide: unreported.

3:0855 (1) Henry, Bcr. 7, 414 (1874). (2) Bockemuller, Hoffmann, Ann. 519, 190 (1935). (3) Marvel, Dec, Cooke, Cowan, J. Am. Chem. Soc. 62, 3495-3498 (1940). (4) Simpson, J. Am. Chem. Soc. 40, 676, 679 (1918). (5) Koelsch, J. Am. Chem. Soc. 52, 3365 (1930). (6) Werigo, Melikov, Ber. 10, 1499-1500 (1877). (7) Yarnall, Wallis, J. Org. Chem. 4, 287 (1939). (8) Röhm & Haas Co., Ger. 579,654, June 29, 1931, Cent. 1933, II 1587. (9) Otto, Beckurts, Ber. 18, 244 (1885). (10) Melikov, Ber. 13, 274 (1880). (11) Werigo, Melikov, Ber. 12, 178 (1879). (12) Werigo, Werner, Ann. 170, 168 (1873).

(13) Röhm & Haas Co., Ger. 575,423, Apr. 27, 1933; Cent. 1933, II 133. (14) Pollack (to Pittsburgh Plate Glass Co.), U.S. 2,257,021, Sept. 23, 1941; C.A. 36, 95-96 (1942). (15) Leimu.

Ber. 70, 1046, 1050 (1937).

| 3:0860 CHLORAL ETHYLALCOHOLATE C <sub>4</sub> H (Chloral alcoholate; tri- chloroacetaldehyde (mono)ethylacetal) Cl <sub>3</sub> C.CH—OC <sub>2</sub> H <sub>5</sub> OH |                                |                               |      |                    |              |                     | Beil. I - 621<br>I <sub>1</sub> -(330)<br>I <sub>2</sub> -(681) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------|------|--------------------|--------------|---------------------|-----------------------------------------------------------------|
| -                                                                                                                                                                      | 0°                             | (1)]<br>(2)(3)                | B.P. | 115-117°<br>116.8° | at 771 mm.   | (1)<br>(5)          |                                                                 |
|                                                                                                                                                                        | 7.5°<br>6.6°                   | (4)<br>(5)                    |      | 115-116°<br>111.0  | at 741.4 mm. | (9)<br>. <b>(4)</b> |                                                                 |
| 4.<br>4.                                                                                                                                                               | 6°<br>5.2° (<br>5°–46.5°<br>0° | (6) (7)<br>(10)<br>(8)<br>(9) |      |                    |              |                     |                                                                 |

[See also chloral (3:5210) and chloral hydrate (3:1270).]

# PREPARATION

From chloral. [For prepn. of  $\bar{C}$  from chloral (3:5210) with EtOH (1:6130) (yields: 100% (11), 71.3% with 95% EtOH refluxed 2 hrs. (4) (9) (12)) see indic. refs.; for influence of solvents see (13) (14); for form. of  $\bar{C}$  from chloral (3:5210) + AcH + Al(OEt)<sub>3</sub> see (8).]

From chloral hydrate. [For prepn. of  $\bar{C}$  from chloral hydrate (3:1270) with EtOH (1:6130) (yield: 75% in 60 min., 38% in 24 hrs. reflux (4)), with triethyl orthoformate (1:3241) (25% yield in 105 min. reflux (4)), or with tetraethyl orthosilicate (4% yield in 4 hrs. reflux (4)) see indic. refs.]

From ethyl alcohol. [For formn. of  $\ddot{C}$  as end prod. of reaction of ethyl alcohol (1:6130) with  $Cl_2$  see (15).]

# PHYSICAL PROFERTIES

 $\tilde{C}$  is less sol. in aq. than chloral hydrate (3:1270) (6) (7). — [For study of toxicity of  $\tilde{C}$  as compared with chloral hydrate (3:1270) see (29).]

# CHEMICAL BEHAVIOR

**Dissociation.**  $\tilde{C}$  on distillation (7) or in some solns, in org. solvents cf. (17) (2) (18) is partially dissociated into chloral (3:5210) and EtOH (1:6130).

# BEHAVIOR WITH INORGANIC REACTANTS

With  $H_2SO_4$ .  $\bar{C}$  with cold cone.  $H_2SO_4$  yields (1) chloral (3:5210) (or its polymerization products) and EtHSO<sub>4</sub>.

With aq. alkali.  $\bar{C}$  with aq. alkali gives (6) CHCl<sub>3</sub> (3:5050) + salts of formic acid (1:1005).

With chlorine. [ $\bar{C}$  with Cl<sub>2</sub> at 80° gives (19) trichloroacetaldehyde diethylacetal (3:6317).] With PCl<sub>5</sub>. [ $\bar{C}$  with PCl<sub>5</sub> in ether below 20° (20) (4) cf. (21) (22) gives (yields: 55-74% (20), 25-33% (11))  $\alpha,\beta,\beta,\beta$ -tetrachloroethyl ethyl ether [Beil. I-623, I<sub>2</sub>-(681)], b.p. 189.7° at 758.7 mm. (21), 189.4° at 749.1 mm. cor. (20), 184° at 738 mm. (4), 79° at 16 mm. (20);  $D_4^{18} = 1.4225$  (20).]

# BEHAVIOR WITH ORGANIC REACTANTS

With other alcohols. [Č with other alcohols may undergo an exchange of alkyl radicals; for studies of such interchange see (4) (2).]

With aic. NaOEt. [C with EtOH/NaOEt yields (23) CHCl<sub>3</sub> (3:5050) + ethyl formate (1:3000).]

With alc. KCN. [C with EtOH/KCN gives within 1 min. (88% yield (24)) ethyl dichloroacetate (3:5850): cf. behavior of chloral (3:5210) with KCN in various alcohols.]

With acid chlorides. [C with AcCl (3:7065) gives (25) the corresp. acetate [Beil. I-153], b.p. 198°. — C with isovaleryl chloride (3:7560) gives (41% yield (26)) the corresp. isovalerate, b.p. 143° at 20 mm. (26).]

With diazomethane. [ $\bar{C}$  with CH<sub>2</sub>N<sub>2</sub> in EtOH soln. at 0° gives (27) trichloroacetaldehyde ethyl-methyl-acetal [Beil. I-621, I<sub>2</sub>-(681)], b.p. 193.4° cor. (28), 78-80° at 13 mm. (27) accompanied by 3,3,3-trichloro-1,2-epoxypropane (3:5760).]

- **Behavior on heating.** Note that  $\bar{C}$  on htg. gives off inflammable vapor (EtOH) (dif. from chloral hydrate (3:1270) whose initial ignition cannot be maintained).
- P Behavior with conc. HNO<sub>3</sub>. C reacts violently on warming with conc. HNO<sub>3</sub> (dif.) from chloral hydrate (3:1270) which is almost unaffected).
- P Iodoform test. C with aq. alk. + I<sub>2</sub>/KI soln. on warming gives iodoform, m.p. 119° accompanied of course by CHCl<sub>3</sub> (3:5050) (dif. from chloral hydrate (3:1270)).

3:0860 (1) Jacobsen, Ann. 157, 244-245 (1871). (2) Willcox, Brunel, J. Am. Chem. Soc. 38, 1821-1841 (1916). (3) Kuntze, Arch. Pharm. 246, 98 (1908). (4) Post, J. Org. Chem. 6, 830-835 (1941). (5) Leopold, Z. physik. Chem. 66, 359-380 (1909). (6) Trillat, Bull. soc. chim. (3) 17, 233-234 (1897). (7) Lieben, Ber. 3, 909-910 (1870). (8) Nagai, Biochem. Z. 152, 268 (1924). (9) Martius, Mendelssohn-Bartholdy, Ber. 3, 444 (1870). (10) Kurnakow, Efrema, Z. physik. Chem. 85, 411-418 (1913).

(11) Magnani, McElvain, J. Am. Chem. Soc. 66, 2212 (1938). (12) Personne, Compt. rend. 69, 1363 (1869). (13) Grabowsky, Herold, Z. physik. Chem. B-28, 290-302 (1935). (14) Buthmann, Z. physik. Chem. B-23, 100-104 (1933). (15) Chattaway, Backeberg, J. Chem. Soc. 125, 1097-1101 (1924). (16) Bruner, Cent. 1902, I 978. (17) Beckmann, Z. physik. Chem. 2, 724-728 (1888). (18) Willcox, Brunel, J. Am. Chem. Soc. 38, 2533-2535 (1916). (19) Byasson, Bull. soc. chim. (2) 32, 304 (1879); Compt. rend. 87, 26 (1878). (20) Neher, Foster, J. Am. Chem. Soc. 31, 410-412 (1909).

(21) Paterno, Pisati, Gazz. chim. ital. 2, 333-338 (1872). (22) Henry, Ber. 4, 101, 435-438 (1871). (23) Kekulé, Ann. 119, 188-189 (1861). (24) Chattaway, Irving, J. Chem. Soc. 1929, 1042. (25) Meyer, Dulk, Ann. 171, 69-72 (1874). (26) Fourneau, Florence, Bull. soc. chim. (4) 47, 353 (1930). (27) Meerwein, Bersin, Burneleit, Bcr. 62, 1002, 1007-1009 (1929). (28) Magnanni, Gazz. chim. ital. 16, 331 (1886). (29) Adams, J. Pharmacol. 78, 340-345 (1943); C.A. 37, 6035 (1943).

# 3:0870 1,2,3,4-TETRACHLOROBUTADIENE-1,3 C<sub>4</sub>H<sub>2</sub>Cl<sub>4</sub> Beil. S.N. 12 (Solid stereoisomer) HC=C-C=CH

# M.P. 50° (1)

[See also the liquid stereoisomer (3:6150).]

[For isolation of  $\bar{C}$  from the high-boilg, fractn. resulting in the preparation of trichloroethylene (3:5170) from 1,1,2,2-tetrachloroethane (acetylene tetrachloride) (3:5750) see (1).]

Č adds Cl<sub>2</sub> (although much more slowly than its liquid stereoisomer) yielding 1,1,2,3,4,4-hexachlorobutene-2 (3:1945), m.p. 80° (1). [This product with Zn/Cu couple in hot alc. regenerates C̄, but in alc. with Ca(OH)<sub>2</sub> or with alk. at room temp. gives the liquid stereoisomer (3:9046) (1).]

Č in CHCl<sub>3</sub> treated with Br<sub>2</sub> gives (100% yield (1)) 1,2-dibromo-1,2,3,4-tetrachloro-butene-2, m.p. 105° (1). [This prod. with Zn/Cu couple in hot alc. regenerates Č (1).]

3:0870 (1) Müller, Hüther, Ber. 64, 589-600 (1931); C.A. 25, 3956 (1931).

α-CHLORO-DIPHENYLACETYL CHLORIDE C14H10OCl2 3:0885 Beil. IX - 675 (Diphenyl-chloro-acetyl chloride) IX<sub>1</sub>-(283)

Cryst. from lgr.

[For prepn. of  $\bar{C}$  from benzilic acid ( $\alpha$ -hydroxy-diphenyl-acetic acid) (1:0770) with 2 moles PCl<sub>5</sub> at 120-130° (2), at 100° (8) (68% yield (9)), or with excess PCl<sub>5</sub> in C<sub>6</sub>H<sub>6</sub> at room temp. (7) see indic. refs. (Note that benzilic acid dislvd. in undil. SOCl2 yields (4) benzophenone (1:5150), that benzilic acid treated with 3 moles SOCl<sub>2</sub> in CCl<sub>4</sub> for several days at room temp. ppts. (5) diphenylchloroacetic acid (3:3585), m.p. 118-119° dec., and that benzilic acid in CCl4 with 6 moles SOCl2 refluxed for several days yields (5) on concn. of the soln. diphenyl-chloro-acetic anhydride [Beil. IX<sub>1</sub>-(228)], m.p. 129° (5).) - For formn, of C from diphenylketene [Beil. VII-471, VII<sub>1</sub>-(254)] with SOCl<sub>2</sub> or SO<sub>2</sub>Cl<sub>2</sub> by htg. at 100° in s.t. in absence of air (1), or from diphenyldiazomethane [Beil. VII-418, VII<sub>1</sub>-(226)] with liq. phosgene in pet. ether in s.t. (92% yield), see (6).]

[For abnormal reactn. of  $\bar{C}$  with  $C_6H_5MgBr$  see (9) (10); for reactn. of  $\bar{C}$  with Zn filings in dry ether yielding diphenylketene (above) see (11); for reactn. of C with phenylhydroxylamine in ether giving quant, yield of anhydro-[N-phenyl-benzilhydroxamic acid] [Beil. XXVII<sub>1</sub>-(290), cryst. from MeOH, m.p. 72-73°, see (12).]

 $\bar{C}$  in ether treated with gaseous NH<sub>3</sub> (2) (13) yields  $\alpha$ -chloro-diphenylacetamide, m.p. 115° (2), 111-113° (13). [This product on boilg, with aq. yields (2) benzilamide, m.p. 154° (2).]

C dislyd. in dry ether and treated with 2 moles aniline in dry ether ppts. aniline hydrochloride and from the filtrate addn. of pet. ether ppts. (3) a-chloro-diphenyl-acet-anilide, m.p. 88° (3); this prod. on htg. with more aniline or C warmed with 4 moles aniline yields (3) a-anilido-diphenyl-acet-anilide, ndls. from alc., m.p. 181-182° (3). [Both the first prod. (on treatment with Na<sub>2</sub>CO<sub>3</sub>) and the latter prod. (on HCl hydrolysis) yield (3) benzilic acid anilide, m.p. 175° (3).]

3:0885 (1) Staudinger, Göhring, Scholler, Ber. 47, 47-48 (1914). (2) Bickel, Ber. 22, 1538-1539 (1889). (3) Klinger, Ann. 389, 255-264 (1912). (4) Meyer, Monatsh. 22, 793 (1901). (5) Stollf, Ber. 43, 2471-2473 (1910). (6) Staudinger, Anthes, Pfenninger, Ber. 49, 1939-1940 (1916). (7) Setlur, Nadkaring, Proc. Indian Acad. Sci. 12-A, 266-269 (1940); C.A. 35, 1398 (1941). (8) Staudinger, Ann. 356, 72-75 (1907). (9) McKenzie, Boyle, J. Chem. Soc. 119, 1137-1139 (1921). (10) Boyle, McKenzie, Mitchell, Ber. 70, 2153-2160 (1937). (11) Staudinger, Ber. 38, 1735-1736 (1905). (12) Staudinger, Jelangin, Ber. 44, 371-373 (1911). (13) Staiptonff, Ber. 41, 3502 (1908).

(1911). (13) Steinkopff, Ber. 41, 3593 (1908).

3: 0900 β-NAPHTHOYL CHLORIDE

B.P. 304-306° (2) M.P. 51° (1) 43° (2)

Cryst. pdr. from C<sub>6</sub>H<sub>6</sub> + lt. pet. (1). - Sol. ether, CHCl<sub>3</sub>, C<sub>6</sub>H<sub>6</sub>; insol. aq.

[For prepn. of  $\tilde{C}$  from  $\beta$ -naphthoic acid (1:0800) with PCl<sub>5</sub> (2) (3) or with SOCl<sub>2</sub> (100% yield (4)) (1) (5) see indic. refs.]

 $\bar{C}$  with ter bases +  $K_2S_2O_5$  (6) or  $\bar{C}$  with calcium  $\beta$ -naphthoate at 150-160° (7) yields  $\beta$ -naphthoic acid anhydride, m.p. 134° (7) [cf.  $\alpha$ -naphthoyl chloride (3:6930)].

[ $\bar{C}$  with AlCl<sub>3</sub> and hydrocarbons yields corresp.  $\beta$ -naphthyl ketones: e.g., with biphenyl (8), with  $\beta$ -methylnaphthalene (9), with 2,3- (10), 2,6- (11), and 2,7- (12) dimethylnaphthalenes, or with anisole (13) see indic. refs.;  $\bar{C}$  with RMgX cpds. also yields  $\beta$ -naphthyl ketones; e.g., see (14).]

[For use of C in prepn. of vat dyes from mono- and diamino-anthraquinones see (15).]

 $\tilde{C}$  with hydrazine hydrate yields (5) both  $\beta$ -naphthoylhydrazine ( $\beta$ -naphthoylhydrazide), cryst. from alc., m.p. 147.5° (5), and N,N'-bis-( $\beta$ -naphthoyl)hydrazine, cryst. from AcOH, m.p. 241° (5).

 $\bar{\mathbf{C}}$  on hydrolysis yields  $\beta$ -naphthoic acid (1:0800), m.p. 184°. — For the amide, anilide, p-toluidide, and other derivs. corresp. to  $\bar{\mathbf{C}}$  see  $\beta$ -naphthoic acid (1:0800); in addition see below.

**⑤**  $\beta$ -Naphthoic  $\beta$ -naphthalide: ndls. from hot CHCl<sub>3</sub>, m.p. 238° (4). [From  $\tilde{C} + \beta$ -naphthylamine in  $C_6H_6$  (4).]

3:0900 (1) Bell, J. Chem. Soc. 1930, 1985. (2) Vieth, Ann. 180, 317-319 (1875). (3) Raiford, Lankelma, J. Am. Chem. Soc. 47, 1118 (1925). (4) Beckmann, Liesche, Correns, Ber. 56, 352 (1923). (5) Goldstein, Cornamusaz, Helv. Chim. Acta 15, 941 (1932). (6) Gasopoulos, Praktika 6, 347-353 (1931); Cent. 1932, I 3172; C.A. 27, 3204 (1933). (7) Hausamann, Ber. 9, 1515 (1876). (8) de Ceuster, Cent. 1932, II 1296. (9) Clar, Ber. 62, 356-357 (1929). (10) Cook, J. Chem. Soc. 1933, 1596.

(11) Fieser, Dietz, Ber. **62**, 1831 (1929). (12) Cook, J. Chem. Soc. **1931**, 492. (13) Migita, Bull. Chem. Soc. Japan **7**, 379 (1932). (14) Fieser, Seligman, J. Am. Chem. Soc. **58**, 478-480 (1936). (15) Meyer, Hopff (to I.G.), Ger. 432,579, Aug. 7, 1926; Cent. **1926**, II 2231.

# 3: 0915 1,2,3,5-TETRACHLOROBENZENE

$$\begin{array}{cccc} & \text{Cl} & \text{C}_6\text{H}_2\text{Cl}_4 & \text{Beil. V - 204} \\ & & \text{V}_1\text{-(113)} \\ & & \text{V}_2\text{-(157)} \end{array}$$

Ndls. from alc. — Spar. sol. cold alc.; eas. sol.  $C_6H_6$ , very eas. sol.  $CS_2$  or lgr. — Volatile with steam.

[For prepn. of  $\bar{C}$  from 2,4,6-trichloroaniline [Beil. XII-627, XII<sub>1</sub>-(312)] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. (2) (6) (9) or otherwise (5) (yield: 64% (6), 61% (9), 55.8% (2)) see indic. refs.; from 2,3,4,6-tetrachloroaniline [Beil. XII-630, XII<sub>1</sub>-(313)] by replacement of  $-NH_2$  by -H (3); from 2,6-dichloro-p-phenylenediamine [Beil. XIII-118, XIII<sub>1</sub>-(37)] via tetrazotization and warming with Cu<sub>2</sub>Cl<sub>2</sub> see (7); for formn. of  $\bar{C}$  from p-dichlorobenzene (3:0980) with AlCl<sub>3</sub> + S<sub>2</sub>Cl<sub>2</sub> in SO<sub>2</sub>Cl<sub>2</sub> at 40° (10% pure  $\bar{C}$  + 67% 1,2,4,5-tetrachlorobenzene (3:4115)) see (1); from 2,4,6-trichlorophenol (3:1673) with PCl<sub>3</sub> + PCl<sub>5</sub> in s.t. at 200–300° see Beil. V-204; from 3,5-dibromo-4-chlorobenzenesulfonyl chloride (10) or 2,5-dichlorobenzene-1,3-bis-(sulfonyl chloride) (8) or chlorobenzene-2,4,6-tris-(sulfonyl chloride) (4) on htg. in s.t. with PCl<sub>5</sub> see indic. refs.; for formn. of  $\bar{C}$  from 1,3,5-trichloro-

benzene (3:1400) with Cl<sub>2</sub> in pres. of Al/Hg see (11); from benzene (12), chlorobenzene (13), or diphenyl sulfone (14) with Cl<sub>2</sub> followed by treatment with alc. KOH see indic. refs.] [For behavior of  $\tilde{C}$  with liq. Cl<sub>2</sub> yielding addn. products see (15).]

[For behavior of C with NaOMe see (2) (16).]

 $\bar{C}$  on mononitration, e.g., by boilg, for  $\frac{1}{2}$  hr. with 3 pts. HNO<sub>3</sub> (D=1.52) as directed (17), gives 96.7% yield (17) 1,2,3,5-tetrachloro-4-nitrobenzene, cryst. from spontaneous evapn. of alc. soln., m.p. 40-41° (17) (the m p. of 21-22° previously reported (5) was on impure material).

 $\bar{C}$  on dinitration, e.g., by boilg. with a mixt. of 10 pts. fumg. HNO<sub>3</sub> (D=1.52) + 4 pts. conc. H<sub>2</sub>SO<sub>4</sub> for 1 hr. and then pouring into aq. (17), gives (100% yield (17)) (9) 1,2,3,5-tetrachloro-4,6-dinitrobenzene [Beil. V-266], pl. from 90% AcOH, m.p. 162° (9), 161-162° (17). (This prod. on htg. with aniline yields (9) (18) 2-chloro-1,3,5-trianilino-4,6-dinitrobenzene, crimson pl., m.p. 179° (9), 179-180° (18).)

3:0915 (1) Silberrad, J. Chem. Soc. 121, 1020 (1922). (2) Holleman, Rec. trav. chim. 39, 739, 749 (1920). (3) Willgerodt, Wilcke, Ber. 43, 2752 (1910). (4) Olivier, Rec. trav. chim. 39, 197 (1920). (5) Beilstein, Kurbatow, Ann. 192 237-238 (1878). (6) Dadieu, Pongratz, Kohlrausch, Monatsh. 61, 433-434 (1932). (7) Schoutissen, J. Am. Chem. Soc. 55, 4539 (1933). (8) Gebauer-Fulnegg, Figdor, Monatsh. 48, 633 634 (1927). (9) Jackson, Carlton, Ber. 35, 3855 (1902); Am. Chem. J. 31, 365-368 (1904). (10) Anschutz, Molineus, Ann. 415, 62 (1918). (11) Cohen, Hartley, J. Chem. Soc. 87, 1366 (1905). (12) Istrati, Ann. chim. (6) 6, 380, 384, 391 (1885). (13) Jungfleisch, Ann. chim. (4) 15, 299, 302 (1868). (14) Otto, Ostrop, Ann. 141, 105 (1867). (15) van der Linden, Rec. trav. chim. 55, 421-430 (1936). (16) de Crauw, Rec. trav. chim. 56, 787 (1931). (17) Berckmans, Holleman, Rec. trav. chim. 44, 852-856 (1925). (18) Qvist, Salo, Acta Acad. Aboensis Math. et Phys. 8, No. 4 (1934); Cent. 1934, II 595; Cent. 1936, 1540.

3: 0925 
$$\alpha,\beta,\beta$$
-TRICHLORO- $n$ -BUTYRIC ACID Cl C<sub>4</sub>H<sub>5</sub>O<sub>2</sub>Cl<sub>3</sub> Beil. II -281 CH<sub>3</sub>-C-CH-COOH II<sub>1</sub>- II<sub>2</sub>- Cl Cl Cl

M.P. 51.5-52° (1)

Tbls. from lgr. — Spar. sol. aq., eas. sol. alc., ether, C<sub>6</sub>H<sub>6</sub>, CHCl<sub>3</sub>, CS<sub>2</sub>.

[For prepn. of  $\bar{C}$  from either  $\beta$ -chlorocrotonic acid (3:2625) or  $\beta$ -chloroisocrotonic acid (3:1300) in  $CS_2$  soln. with  $CI_2$  stood several days in the dark see (1).]

[ $\bar{C}$  in aq. with granulated Zn stood for 6 weeks, then acidified, yields (1) mainly  $\beta$ -chloro-isocrotonic acid (3:1300) accompanied by some  $\beta$ -chlorocrotonic acid (3:2625); note that former is separated from latter by its greater volatility with steam.]

C with aq. Na<sub>2</sub>CO<sub>3</sub> soln. on boilg. loses both HCl and CO<sub>2</sub> yielding the higher-boilg. (1) 1,2-dichloropropene-1 (3:5150).

 $\bar{C}$  with alc. KOH (2 moles) loses HCl yielding (1) mainly  $\alpha,\beta$ -dichloroisocrotonic acid [Beil. II-418], m.p. 75.5°, accompanied by a little  $\alpha,\beta$ -dichlorocrotonic acid [Beil. II-418], m.p. 92°; note that these are separated by the greater soly. of the former in lgr. (1).

The acid chloride corresp. to C is unreported.

- Methyl  $\alpha,\beta,\beta$ -trichloro-n-butyrate: unreported.
- Ethyl  $\alpha, \beta, \beta$ -trichloro-n-butyrate: unreported.
- ---- α,β,β-Trichloro-n-butyramide: unreported.
- α,β,β-Trichloro-n-butyranilide: unreported.
   α,β,β-Trichloro-n-butyr-α-naphthalide: unreported.

3:0925 (1) Szenic, Taggesell, Ber. 28, 2665-2672 (1895).

M.P. 52° (1)

Cryst. from lt. pet. — Volatile with steam.

[For prepn. of  $\bar{C}$  from 6-chloro-2-amino-3,4-dimethylphenol (5-chloro-3-amino-0-4-xylenol) (1) via diazotization and reaction with  $Cu_2Cl_2$  (yield not stated) see (1); from 2,6-dichloro-3,4-dimethylaniline (3,5-dichloro-0-4-xylidine) (2) via diazotization and hydrolysis (yield not stated) see (1).]

The nitration of  $\bar{C}$  has not been reported, and the expected 5-nitro-2,6-dichloro-3,4-dimethylphenol is unknown.

2,6-Dichloro-3,4-dimethylphenyl acetate: unreported.

D 2.6-Dichloro-3,4-dimethylphenyl benzoate: m.p. 89° (1).

3:6935 (1) Hinkel, Ayling, Bevan, J. Chem. Soc. 1928, 2532. (2) Hinkel, Ayling, Bevan, J. Chem. Soc. 1928, 1878.

M.P. 52-53° (1) B.P. 80-81° at 40 mm. (1)

Soft waxy solid with characteristic alkyl halide odor; on long stdg. the opaque crystn. structure disappears and  $\bar{C}$  becomes transparent (1).

[For prepn. of  $\bar{C}$  from 2,2,3,3-tetramethylbutane (hexamethylethane) (1:7090) with  $Cl_2$  in  $CCl_4$  soln. in sunlight (33% yield together with other products) see (1).]

 $\bar{C}$  with Mg + trace of I<sub>2</sub> + a little C<sub>2</sub>H<sub>5</sub>Br in dry ether gives in 19 hrs. 70% yield corresp. RMgCl (accompanied by 24% 2,2,3,3,6,6,7,7-octamethyloctane, pl. from MeOH, m.p. 74.0-74.5°, from coupling of  $\bar{C}$ ) (1).

C converted (as above) to RMgCl, treated with wet ether, and poured into dil. H<sub>2</sub>SO<sub>4</sub> gives (1) hexamethylethane (1:7090), m.p. 101-102° (1).

 $\ddot{C}$  converted to RMgCl (as above) and the ether soln. treated at  $-5^{\circ}$  with CO<sub>2</sub> gives (59% yield (1)) 3,3,4,4-tetramethylpentanoic acid, cryst. from dil. MeOH, m.p. 66–67° (1). [This acid with SOCl<sub>2</sub> in C<sub>6</sub>H<sub>5</sub> gives (80% yield (1)) the corresp. acid chloride, b.p. 87–88° at 20 mm.,  $D_{-}^{20} = 0.9821$ ,  $n_{D}^{20} = 1.4557$ ; the latter with dry NH<sub>3</sub> in ether gives (77% yield (1)) the corresp. amide, cryst. from CHCl<sub>3</sub>, m.p. 137–138° (a second cryst. form from MeOH has m.p. 149–150° but after fusion melts 137–138°), or with aniline in ether gives the corresp. anilide, cryst. from pet. eth., m.p. 175–176° (1).]

C converted to RMgCl (as above) and the ether soln. treated at -5° with dry O<sub>2</sub> for 4 hrs. gives (53% yield (1)) 2,2,3,3-tetramethylbutanol-1, very volatile solid, m.p. 149-150° [corresp. 3,5-dinitrobenzoate, m.p. 88-90°; N-phenylcarbamate, m.p. 65-66° (1)].

Č converted to RMgCl (as above) and treated with ethereal HgCl<sub>2</sub> gives (35% yield (1)) 2,2,3,3-tetramethylbutyl mercuric chloride, feathery white cryst., m.p. 170-171° (1).

3:0945 (1) Whitmore, Marker, Plambeck, J. Am. Chem. Soc. 63, 1626-1630 (1941).

3:0960 4-CHLORO-2-HYDROXYBENZALDEHYDE C<sub>7</sub>H<sub>5</sub>O<sub>2</sub>Cl Beil. No. 744 (4-Chlorosalicylaldehyde) Cl CHO

M.P. 52.5° (1)

Long colorless ndls. from alc. or dil. AcOH (1). —  $\tilde{C}$  has odor of walnuts (1). —  $\tilde{C}$  is apprec. sol. in aq. or aq.  $H_2SO_3$ ; readily sol. in org. solvents. —  $\tilde{C}$  is very volatile with steam even from its yel. soln. in alk. (1).

[For prepn. of  $\tilde{\mathbf{C}}$  from *m*-chlorophenol (3:0255) via Reimer-Tiemann procedure see (1).]

Č does not reduce NH<sub>4</sub>OH/AgNO<sub>3</sub> o Fehling soln.; is very resistant to oxidn. by acid, alk., or neutral KMnO<sub>4</sub>, and to acetylation (but not benzoylation, q.v. below) (1).

 $\bar{C}$  with FeCl<sub>3</sub> gives brown ppt.; with CuSO<sub>4</sub> or  $Cr_2(SO_4)_3$  + dil. aq. alk. gives bright green copper salt and a dark green chromium salt (1).

Č on mononitration as specified (2) yields 5-nitro-4-chloro-2-hydroxybenzaldehyde, pale yel. ndls. from alc., m.p. 116° (2). [This product yields a phenylhydrazone, or.-yel. ndls., m.p. 188° dec.; a p-nitrophenylhydrazone, brn.-yel. ndls. from alc. or AcOH, m.p. 294° dec.; and a semicarbazone, pale yel. ndls. from dil. AcOH, dec. above 300° (2).]

Č on dinitration as specified (2) yields 3,5-dinitro-4-chloro-2-hydroxybenzaldehyde, pale gold.-yel. ndls. from aq., m.p. 153° (2). [This product yields a phenylhydrazone, light brn. cryst. from alc., m.p. 219°; a p-nitrophenylhydrazone, light brn. cryst. from dil. AcOH, m.p. 286° dec.; and a semicarbazone, light yel. cryst. from dil. AcOH, m.p. 225° dec. (2).]

- (1). 4-Chloro-2-hydroxybenzaldoxime: colorless ndls. from alc., m.p. 155° (1).
- 4-Chloro-2-hydroxybenzaldehyde p-nitrophenylhydrazone: or. ndls. from AcOH, m.p. 257° (1).
- 4-Chloro-2-hydroxybenzaldehyde semicarbazone: pale yel. cryst. from AcOH, m.p. 212° (1).
- 4-Chloro-2-benzoxybenzaldehyde: from C + BzCl in ether + pyridine; ndls. from alc., m.p. 98.5° (1).
- 3:0960 (1) Hodgson, Jenkinson, J. Chem. Soc. 1927, 1740-1741. (2) Hodgson, Jenkinson, J. Chem. Soc. 1928, 2273-2274.

3:0980 p-DICHLOROBENZENE CI C<sub>6</sub>H<sub>4</sub>Cl<sub>2</sub> Beil. V - 203 
$$V_{1}$$
-(111)  $V_{2}$ -(154)

M.P. B.P. 55° (1) (51) 174° at 764.2 mm. (24)  $D_{4}^{80.3}$  = 1.2189 (33)  $D_{53.3}^{80.3}$  = 1.52104 (33) 53.3-54.2° (4) 173.5° at 755 mm. (31)  $D_{53.2}^{69.9}$  = 1.2310 (33) 53.2° (5) (6) (7) 173.0° (26) (27)  $D_{53.0}^{69.9}$  = 1.2310 (33)  $D_{53.0}^{69.9}$  = 1.2310 (33)  $D_{53.0}^{69.9}$  = 1.52665 (33)

Colorless cryst., alm. insol. aq. (0.077 g. per 1000 g. aq. at 30° (22) cf. (13)); misc. hot alc. (50 ml. abs. alc. + 5 ml. aq. at 25° dis. 4.55 g.  $\bar{C}$  (26)), eas. sol. ether,  $C_6H_6$ , CHCl<sub>3</sub>, CS<sub>2</sub>. — Readily sublimes; eas. volatile with steam.

[For data on crystallographic consts. see (34) (35); for data on rate of evapn. of cryst.  $\tilde{C}$  see (11);  $\tilde{C}$  has molec. f.p. depression of 77 (36) and because of its accessibility, ease of purification, convenient m.p. and large f.p. depression is often used for making mol. wt. detns.]

[For f.p./compn. data and diagram of system  $\bar{C}$  + o-dichlorobenzene (3:6055) (eutectic, m.p.  $-23.4^{\circ}$  contg. 13.3%  $\bar{C}$ ) see (17) (27); for f.p./compn. data and diagram for system  $\bar{C}$  + m-dichlorobenzene (3:5960) (eutectic, m.p.  $-29.9^{\circ}$  contg. 12.0%  $\bar{C}$ ) see (17); for f.p./compn. data on ternary system of all three dichlorobenzenes see (27). — For f.p./compn. data and diagrams for systems  $\bar{C}$  + biphenyl (1:7175) (eutectic, m.p.  $26.9^{\circ}$  contg. 57.5 mole %  $\bar{C}$  (6)) (19),  $\bar{C}$  + naphthalene (1:7200) (eutectic, m.p.  $30.2^{\circ}$  contg. 60.6 mole %  $\bar{C}$  (6)),  $\bar{C}$  + triphenylmethane (1:7220) (eutectic, m.p.  $35.9^{\circ}$  contg. 68.5 mole %  $\bar{C}$  (6)),  $\bar{C}$  + nitrobenzene (eutectic, m.p.  $-6.8^{\circ}$  contg. 32%  $\bar{C}$  (9)),  $\bar{C}$  + p-chlorophenol (3:0475) (eutectic, m.p.  $27.2^{\circ}$  contg. 26.6 mole %  $\bar{C}$  (18)) see indic. refs. — For thermal anal. of system  $\bar{C}$  + SbCl<sub>3</sub> (eutectic, m.p.  $39.5^{\circ}$  contg. 49.5 wt. %  $\bar{C}$  (37)), and of system  $\bar{C}$  + SbBr<sub>3</sub> (eutectic, m.p.  $48.5^{\circ}$  contg. 73.5 wt. %  $\bar{C}$  (37)), see (37).

[ $\bar{C}$  with p-dibromobenzene gives a series of solid solns. cf. (38) (39) (40) (41) (23) (24) (26); for study of systems  $\bar{C}$  + p-chloro-iodobenzene (23) (34) and  $\bar{C}$  + p-di-iodobenzene (23) see indic. refs.]

[For data on densities of solns. of  $\tilde{C}$  in  $C_6H_6$  (1:6400) and in *n*-hexane (1:8530) see (42); for data on  $D_{\alpha}^{25}$  and  $n_{\alpha}^{25}$  of solns. of  $\tilde{C}$  in  $C_6H_6$  see (7).

 $\bar{\mathbf{C}}$  is widely used as anti-moth agent and vapor fumigant but lit. and patents are so numerous that they cannot be included here; note, however, prevention of caking of  $\bar{\mathbf{C}}$  by mixt. with 1-10% paraformaldehyde (43). — [For study of toxicity of  $\bar{\mathbf{C}}$  see (44). — For use of  $\bar{\mathbf{C}}$  in prepn. of sulfur dyes see (45).]

[For detn. of  $\bar{C}$  in air see (46); for detn. of  $\bar{C}$  in soil by means of detn. of refractive index of solns. in kerosene see (47).]

[For prepn. of  $\bar{C}$  from p-chloroaniline [Beil. XII-607, XII<sub>1</sub>-(304)] via diazotization, prepn. of diazonium/ZnCl<sub>2</sub> double salt, and decompn. of latter in molten phenol (41% yield  $\bar{C}$  together with 31% hydroxybiphenyl + 15% diphenyl ether) see (48); from p-phenylenediamine [Beil. XIII-61, XIII<sub>1</sub>-(18)] via tetrazotization in AcOH (49) or H<sub>3</sub>PO<sub>4</sub> (50) with nitrosylsulfuric acid followed by subsequent reactn. with Cu<sub>2</sub>Cl<sub>2</sub> (yield: 70% (49) (50)) cf. (51), or by reduction with SnCl<sub>2</sub>/HCl to p-phenylenedihydrazine and oxidn. with CuSO<sub>4</sub> (52), see indic. rcfs.]

[For prepn. of  $\bar{\mathbb{C}}$  from p-chloro-nitrobenzene [Beil. V-243, V<sub>1</sub>-(130)] with conc. HCl in s.t. at 270° (53), or with SOCl<sub>2</sub> in s.t. at 160–200° (54) (55), see indic. refs.; from p-bromonitrobenzene [Beil. V-248, V<sub>1</sub>-(132)] (56), phenol-p-sulfonic acid [Beil. XI-241, XI<sub>1</sub>-(55)] (57), or p-chlorophenol (3:0475) (16) with PCl<sub>5</sub> on htg. see indic. refs.; from p-chlorophenzenesulfonic acid [Beil. XI-54, XI<sub>1</sub>-(14)] with SOCl<sub>2</sub> in s.t. at 160–200° see (54) (55); from 2,5-dichlorobenzophenone (3:2340) by fusion with KOH/NaOH (65% yield) see (58); from di-p-chlorophenyl sulfide or di-p-chlorophenyl sulfoxide with S at 260–270° for 3–8 hrs. see (59); from p-chlorophenyl selenium trichloride by htg. at 184° (90% yield) see (12).]

[For form. of  $\bar{\mathbf{C}}$  (together with o- and m-isomers in some cases) from  $C_6H_6$  with  $Cl_2$  in pres. of  $I_2$  (15),  $MoCl_5$  (60),  $AlCl_3$  (61), or conc.  $H_2SO_4$  (62), by electrolysis of susp. in AcOH+aq. HCl (69) or with aqua regia (70), see indic. refs.: from chlorobenzene (3:7903) with  $Cl_2+cat$ . at 600° (17) cf. (63), or with  $Cl_2$  in pres. of  $AlCl_3$  (65% yield (27)),  $FeCl_3$  (55% yield (27)), or Al/Hg (66), see indic. refs.; from chlorobenzene (3:7903) with  $Al_2S_2Cl_3$  (i.e.,  $2AlCl_3+S_2Cl_2$  (64))  $+SO_2Cl_2$  (64) (65), or by boilg. with  $FeCl_3$  (67), or in small amt. by htg. with  $PbCl_4.2NH_4Cl$  in s.t. at 210° (68), see indic. refs.]

[ $\bar{C}$  with Cl<sub>2</sub> (61) in pres. of Al/Hg (66) or  $\bar{C}$  with Al<sub>2</sub>S<sub>2</sub>Cl<sub>8</sub> (i.e., 2AlCl<sub>3</sub> + S<sub>2</sub>Cl<sub>2</sub>) + SO<sub>2</sub>Cl<sub>2</sub> (64) gives (58% yield (64)) 1,2,4-trichlorobenzene (3:6420);  $\bar{C}$ , however, chlorinates less readily than o-dichlorobenzene (3:6055), and if their mixture or eutectic is chlorinated residual  $\bar{C}$  can be separated by fractional freezing (71) (72) (73). —  $\bar{C}$  with Cl<sub>2</sub> in pres. of Fe (74) or with Al<sub>2</sub>S<sub>2</sub>Cl<sub>8</sub> (i.e., 2AlCl<sub>3</sub> + S<sub>2</sub>Cl<sub>2</sub>) + SO<sub>2</sub>Cl<sub>2</sub> as directed (64) gives (yields: 67% (64), 39% (74)) (75) 1,2,4,5-tetrachlorobenzene (3:4115). —  $\bar{C}$  with liq. Cl<sub>2</sub> + sunlight + cat. (76) (77) or  $\bar{C}$  in CCl<sub>4</sub> under 1% aq. NaOH in sunlight (76) adds 3Cl<sub>2</sub> yielding a mixt. of  $\beta$ - (m.p. 262° (76)) and  $\alpha$ - (m.p. 89.6° (76)) p-dichlorobenzene hexachlorides (use as insecticide (77)). — For study of photochem. chlorination of  $\bar{C}$  see (78).]

[ $\bar{C}$  when pure can be recovered unchanged after boiling with liq. Br<sub>2</sub> (79); however,  $\bar{C}$  warmed with Br<sub>2</sub> in pres. of Fe (79) or htd. with Br<sub>2</sub> + NaNO<sub>2</sub> + fumg. H<sub>2</sub>SO<sub>4</sub> in s.t. at 200° for 4 hrs. (80) gives (19% yield (79)) 2,5-dibromo-1,4-dichlorobenzene, ndls. from hot alc., m.p. 148° (79), 146° (80). —  $\bar{C}$  with excess Br<sub>2</sub> + AlCl<sub>3</sub> as directed (81) gives 2,3,5,6-tetrabromo-1,4-dichlorobenzene, m.p. 278-278.5° (81).]

[C passed over Pt spiral at bright red heat yields (82) 2,5,2',5'-tetrachlorobiphenyl, m.p. 84-85° (82). — C in EtOH at 55° in pres. of Adams' cat. (PtO<sub>2</sub>) with excess H<sub>2</sub> at 3 atm. press. yields (83) cyclohexane (1:8405). — C in alc. KCN with NiCl<sub>2</sub> htd. in s.t. 20 hrs. at 260-270° gives (12% yield (84)) terephthalic acid (1:0910).]

[ $\bar{C}$  with Na + n-butyl chloride (3:7160) in xylene at 150° gives small yield (85) p-di-n-butylbenzene, b.p. 224-225.5° at 759 mm. (85). —  $\bar{C}$  with Mg + I<sub>2</sub> (0.25 equiv.) gives in 6 hrs. 58% yield (86) p-chlorophenyl MgCl.]

[ $\bar{C}$  with ethylene + AlCl<sub>3</sub> gives a mixt. (87) of mono-, di-, tri-, and tetra-ethyl-p-dichlorobenzenes.]

[ $\bar{C}$  (3 moles) with CHCl<sub>3</sub> (1 mole) + AlCl<sub>3</sub> gives (14% yield (88)) tris-(2,5-dichlorophenyl)methane, colorless cryst. from  $C_6H_6$ , m.p. 206-208° (88). —  $\bar{C}$  with CCl<sub>4</sub> + AlCl<sub>3</sub> at room temp. (88) or in CS<sub>2</sub> (89) (90) gives (26% yield (88)) 2,5,2',5'-tetrachlorobenzophenone dichloride, m.p. 173-174° (89) (88); this with dil. alc. on boilg. or htg. in s.t. at 130° hydrolyzes to 2,5,2',5'-tetrachlorobenzophenone, colorless cryst. from alc., m.p. 128° (89) (90). —  $\bar{C}$  with CCl<sub>4</sub> + AlCl<sub>3</sub> at 55° for 10 hrs. presumably first yields tris-(2,5-dichlorophenyl)methyl chloride (not isolated) which then loses 1 HCl giving (23% yield (88)) 1,4,7-trichloro-9-(2,5-dichlorophenyl)fluorene (?), m.p. 179-180° (88).]

[C with acetyl chloride (3:7065) + AlCl<sub>3</sub> gives (91) 2,5-dichloroacetophenone, b.p. 251° at 756 mm., m.p. 14° (91) (oxime, m.p. 130°, via Beckmann rearr. with conc. H<sub>2</sub>SO<sub>4</sub> gives acet-2,5-dichloroanilide, m.p. 133° (91)). — C with benzoyl chloride (3:6240) + AlCl<sub>3</sub> yields (91) (92) 2,5-dichlorobenzophenone, white ndls. from alc., m.p. 88° (91), 85-86° (92) (oxime, m.p. on slow htg. 207°, via Beckmann rearr. with conc. H<sub>2</sub>SO<sub>4</sub> gives benz-2,5-dichloroanilide, m.p. 122° (91)). — C with o-chlorobenzoyl chloride (3:6640) + AlCl<sub>3</sub> gives (92) 2,2',5-trichlorobenzophenone, m.p. 145-147° (92). — C with 2,4-dichlorobenzoyl chloride + AlCl<sub>3</sub> gives 2,5,2',4'-tetrachlorobenzophenone, m.p. 176° (92).] — [Note that C fails to react with sym-dichlorodimethyl ether (3:5245).]

[ $\bar{C}$  with phthalic anhydride (1:0725) + AlCl<sub>3</sub> gives (59.3% (94), 27% (93)) o-(2,5-dichlorobenzoyl)benzoic acid, colorless pr. from  $C_6H_6$ , m.p. 169° cor. (93), 167° (94); this prod. on ring closure with fumg.  $H_2SO_4$  (94) or conc.  $H_2SO_4$  (93) at 150° gives (yields: 83.5% (94), 83% (93)) 1,4-dichloroanthraquinone [Beil. VII-787, VII<sub>1</sub>-(111)], or.-yel. ndls. from AcOH, m.p. 187.5° cor. (93), 186° (94). — Note that  $\bar{C}$  reacts with phthalic anhydride + AlCl<sub>3</sub> less readily than o-dichlorobenzene (3:6055) (use in sepn. of the two isomers (95)). — For corresp. condens. of  $\bar{C}$  with 3-sulfophthalic anhydride and 4-sulfophthalic anhydride in pres. of AlCl<sub>3</sub> see (96).]

[C on partial hydrol. with aq. MeOH alk., alk. carbonates, or best alk. earths in pres. of Cu or Cu salts at elevated temps. under press. gives in excellent yield (98) (99) (100) (101) (102) (103) (104) (105) p-chlorophenol (3:0475) (some phenol (1:1420) is also formed (102)); if the hydrolysis of C is carried further (100) (106) hydroquinone (1:1590) is also obtd.]—[For study of kinetics of reactn. of C with MeOH/alk. see (99) (107) (108).]

[C with anhyd. NH<sub>3</sub> in alc. in pres. of CuCl<sub>2</sub> + Cu under press. at 150-200° yields (109) p-chloroaniline [Beil. XII-607, XII<sub>1</sub>-(304)]; C with conc. aq. NH<sub>4</sub>OH in pres. of CuO under press. at 150-200° gives (110) (111) (112) (113) (114) p-phenylenediamine [Beil. XIII-61, XIII<sub>1</sub>-(18)]. — [C with K diphenylamine at 240-245° gives (115) not only the expected N,N,N',N'-tetraphenyl-p-phenylenediamine, tbls. from acctone, m.p. 199-200°, but also by rearr. N,N,N',N'-tetraphenyl-m-phenylenediamine, m.p. 137.5-138°.]

[ $\bar{C}$  on mononitration, e.g., with 5 wt. pts. abs. HNO<sub>3</sub> at 0° (116) (99), with 2 wt. pts. HNO<sub>3</sub> (D=1.48) below 50° (120), or with 1.5 pts. of a mixt.contg.2 pts. HNO<sub>3</sub> (D=1.54) + 3 pts. conc. H<sub>2</sub>SO<sub>4</sub> (117) (118) (119) at 70-100° for 30-60 min., yields 1,4-dichloro-2-nitrobenzene [Beil. V-245, V<sub>1</sub>-(131)], cryst. from alc., m.p. 55° (120), 54.5° (99), 54° (119), 53° (116) (note close proximity of this m.p. to that of the initial  $\bar{C}$ ).]

[C on dinitration, e.g., with 4 wt. pts. fumg. HNO<sub>3</sub> (D=1.52) + 10 wt. pts. conc. H<sub>2</sub>SO<sub>4</sub> at b.p. for 5 hrs. (8) (121), or with 3 wt. pts. HNO<sub>3</sub> (D=1.52) + 7.5 wt. pts. conc. H<sub>2</sub>SO<sub>4</sub> at b.p. for 2 hrs. (122), finally poured into aq., gives a mixt. contg. all three possible dinitrop-dichlorobenzenes; of these the chief prod. is 1,4-dichloro-2,6-dinitrobenzene [Beil. V-265, V<sub>1</sub>-(138)], m.p. 106° (123) (119), 105-106° (122), 105° (121), obtd. by recrystn. (repeated if necessary) of the crude dinitration prod. from 30 pts. 95% alc. (121); the mother liquors contain the more soluble 1,4-dichloro-2,3-dinitrobenzene, m.p. 102-103° (122), 101.2° (119),

- 101° (121), and 1,4-dichloro-2,5-dinitrobenzene, m.p. 119° (122) (121) (124). For f.p. compn. data and diagrams of mixtures of the 2,6- and 2,3-dinitro-p-dichlorobenzenes see (119), of mixtures of the 2,6- and 2,5-dinitro-p-dichlorobenzenes see (121). Note also that the prod., m.p. 81°, formerly (8) supposed to be the 2,5-dinitro isomer, has since (121) been proved to be a compound of the 2,6- and 2,5-dinitro-1,4-dichlorobenzenes. The relative proportion of the three dinitration products varies with conditions (119) (121) (122) (124).]
- [ $\bar{C}$  on monosulfonation, e.g., with 1.5 wt. pts. fumg. H<sub>2</sub>SO<sub>4</sub> (10–12% SO<sub>3</sub>) at 140–150° for 45 min. (118) cf. (27), gives on pouring into aq. (85–90% yield (118)) 1,4-dichlorobenzene-sulfonic acid-2, cryst. from aq. as monohydrate (for derivs. see below). Note that  $\bar{C}$  is not sulfonated by conc. H<sub>2</sub>SO<sub>4</sub> even at 210° (16) (dif. from o-dichlorobenzene (3:6055) and use in sepn. from  $\bar{C}$ ); for removal of chlorobenzene (3:7903) from mixt. with dichlorobenzenes via sulfonation of former with 95% H<sub>2</sub>SO<sub>4</sub> see (17). For use of reactn. prod. of  $\bar{C}$  with SO<sub>3</sub> as dye intermed. or for mothproofing of wool see (125). For reactn. of sodium p-dichlorobenzenesulfonate with fused NaOH to yield hydroquinone (1:1590) see (126).]
- [C with 5 moles ClSO<sub>3</sub>H at 150° for 1 hr. (127) (128) gives (85% yield (127) (128)) 1,4-dichlorobenzenesulfonyl chloride-2, cryst. from lgr., m.p. 39° (127) (128), 38° (129), 36.8° (27) (corresp. amide, see below; corresp. sulfonanilide, m.p. 160° (128)); for use in prepn. of tetrachlorothioindigo see (130). C with 30 pts. ClSO<sub>3</sub>H at 140° for 48 hrs. (128) gives both 1,4-dichlorobenzene-bis-(sulfonyl chloride)-2,6, m.p. 114° (corresp. bis-sulfonanilide, m.p. 215-217° dec. (128)) and 1,4-dichlorobenzene-bis-(sulfonyl chloride)-2,5, m.p. 182° (corresp. bis-sulfonanilide, m.p. not given). Note that C reacts with ClSO<sub>3</sub>H much less easily than o-dichlorobenzene; for use in sepn. of the two isomers via formn. of o-dichlorobenzenesulfonyl chloride and sepn. from unchanged C by distn. see (131).]
  - D 1,4-Dichlorobenzenesulfonamide-2 (2,5-dichlorobenzenesulfonamide-1): cryst. from dil. alc., m.p. 179.5-180° u.c. (129), 181° (127), 185-186° (27). [From Č via treatment with ClSO<sub>3</sub>H as directed (129) to 1,4-dichlorobenzenesulfonyl chloride-2 (see above) and subsequent conv. with (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> to desired sulfonamide.] [Note that, although the m.p. of this sulfonamide is practically identical with that from m-dichlorobenzene (3:5960), each depresses the m.p. of a mixt. with the other; the m.p.'s of the precursor sulfonyl chlorides, viz. 52-53° for the isomer from m-dichlorobenzene, 38° for that from Č, may also serve to distinguish them (129).] [For similar prepn. and use of 1,4-dichlorobenzenesulfonamide-2 see (132).]
- 3:0980 (1) Paulsen, Monatsh. 72, 257 (1939). (2) Rule, McLean, J. Chem. Soc. 1931, 690. (3) Sugden, J. Chem. Soc. 125, 1173 (1924). (4) Dadieu, Pongratz, Kohlrausch, Monatsh. 61, 431 (1932). (5) Perkin, J. Chem. Soc. 69, 1202 (1896). (6) Morris, Cook, J. Am. Chem. Soc. 57, 2404-2406 (1935). (7) Martin, George, J. Chem. Soc. 1933, 1414. (8) Nason, J. Am. Chem. Soc. 40, 1602-1604 (1918). (9) Hrynakowski, Samyt, Z. physik. Chem. A-182, 112-113 (1938). (10) Groves, Sugden, J. Chem. Soc. 1937, 1783.
- (11) Tammann, Dreyer, Z. physik. Chem., Bodenstein Festband, 4 (1931). (12) Foster, Rec. trav. chim. 53, 412-413 (1934). (13) Klemenc, Löw, Rec. trav. chim. 49, 637-640 (1930). (14) Müller, Jahresber. 1864, 524. (15) Jungfeisch, Ann. chim. (4) 15, 252-264 (1868). (16) Beilstein, Kurbatow, Ann. 176, 32-33 (1876). (17) Wibaut, van de Lande, Wallagh, Rec. trav. chim. 56, 65-70 (1937). (18) Burnham, Madgin, J. Chem. Soc. 1936, 790-791. (19) Warner, Scheib, Svirbley, J. Chem. Phys. 2, 591-593 (1934). (20) Glass, Madgin, J. Chem. Soc. 1933, 1432.
- (21) Narbutt, Ber. 52, 1030 (1919). (22) Gross, Saylor, J. Am. Chem. Soc. 53, 1748-1750 (1931). (23) Nagornov, Z. physik. Chem. 75, 578-581 (1911). (24) Kruyt, Z. physik. Chem. 79, 667-668 (1912). (25) Mills, Jahresber. 1882, 103. (26) Küster, Würfel, Z. physik. Chem. 59, 66-71 (1904). (27) Holleman, van der Linden, Rec. trav. chim. 30, 317-332 (1911). (28) Block, Z. physik. Chem. 78, 397 (1911). (29) C. G. LeFevre, R. J. W. LeFevre, J. Chem. Soc. 1336, 490. (30) Bruni, Gorni, Atti accad. Lincei (5) 9, II 327 (1900); Cent. 1901, I 162.

(31) Jaeger, Z. anorg. allgem. Chem. 101, 115 (1917). (32) Quick, J. Am. Chem. Soc. 42, 1035-1040 (1920). (33) von Auwers, Ann. 422, 164 (1921). (34) Hendricks, Z. Krist. 84, 85-96 (1932). (35) Huggins, J. Am. Chem. Soc. 45, 272 (1923). (36) von Auwers, Z. physik. Chem. 30, 312 (1899). (37) Menschutkin, J. Russ. Phys.-Chem. Soc. 43, 416 (1911); Cent. 1910, 11 379-381. (38) Deffet, Bull. soc. chim. Belg. 47, 464-470 (1938). (39) Vuks, Acta Physicochim. U.R.S.S. 6, 327-338 (1937). (40) Meyer, Rec. trav. chim. 42, 306-312 (1923).

(41) Nagornov, Zemcuzny, Kurnakov, Z. physik. Chem. 76, 241-250 (1911). (42) Smyth, Morgan, Boyco, J. Am. Chem. Soc. 50, 1542 (1928). (43) Hinegardner (to du Pont Co.), U.S. 2,081,326, May 25, 1937; Cent. 1937, II 3381; C.A. 31, 5112 (1937). (44) Cameron, Thomas et al., J. Path. Bact. 44, 281-296 (1937); C.A. 31, 4399 (1937). (45) Palmer, Lloyd, J. Am. Chem. Soc. 52, 3388-3395 (1930). (46) Darkis, Vermillion, Gross, Ind. Eng. Chem. 32, 946-949 (1940). (47) Chisholm, Koblitsky, J. Assoc. Oficial Agr. Chem. 26, 273-277 (1943). (48) Hodgson, Foster, J. Chem. Soc. 1942, 581-583. (49) Hodgson, Walker, J. Chem. Soc. 1935, 530. (50) Schoutissen, J. Am. Chem. Soc. 55, 4537 (1933).

(51) Sandmeyer, Ber. 17, 2652 (1884).
(52) Schoutissen, J. Am. Chem. Soc. 55, 4546 (1933).
(53) Lobry de Bruyn, van Leent, Rec. trav. chim. 15, 86 (1896).
(54) Meyer, Monatsh. 36, 721, 724 (1915).
(55) Kinzlberger & Co., Ger. 280,739, Nov. 26, 1914; Cent. 1915, I 104. (56) Schmidt, Wagner, Ann. 387, 164-165 (1911).
(57) Kekulé, Ber. 6, 944 (1873).
(58) Lock, Ródiger, Ber. 72, 869 (1939).
(59) Billman, Dougherty, J. Am. Chem. Soc. 61, 387-389 (1938).

(60) Aronheim, Ber. 8, 1400-1401 (1875).

(61) Mouneyrat, Pouret, Compt. rend. 127, 1026 (1898). (62) Battegay, French 641,102. July 28, 1928; Cent. 1928, II 1718. (63) Imperial Chem. Ind. & Wheeler, Bitt. 388,818, March 30, 1933; Cent. 1933, I 4037. (64) Silberrad, J. Chem. Soc. 121, 1017-1020 (1922). (65) Silberrad, J. Chem. Soc. 119, 2029-2036 (1921). (66) Cohen, Hartley, J. Chem. Soc. 87, 1362 1364 (1905). (67) Thomas, Compt. rend. 126, 1212 (1898). (68) Seyewetz, Trawitz, Compt. rend. 136, 242 (1903). (69) Fichter, Glantzstein, Ber. 49, 2475-2481 (1916). (70) Datta, Fernandes, J. Am. Chem. Soc. 36, 1009 (1914).

(71) Zil'berman, Slobodnik, J. Applied Chem. (U.S.S.R.) 10, 1080-1085 (1937); Cent. 1938, II 1580 (1938); C.A. 32, 1664 (1938). (72) Slobodnik, Zil'berman, Russ. 48,285, Aug. 31, 1936; Cent. 1937, II 288. (73) Britton (to Dow Chem. Co.), U.S. 1,923,419, Aug. 22, 1933; Cent. 1933, II 3049; C.A. 27, 5086 (1933). (74) Holleman, Rec. trav. chim. 39, 737 (1920). (75) Roberts & Co., Ltd., & Silberrad, Brit. 193,200, March 15, 1923, Cent. 1925, I 904. (76) van der Linden, Ber. 45, 412-414 (1912). (77) Bender (to Great Northern Electrochem. Co.), U.S. 2,010,841, Aug. 13, 1935; Cent. 1936, I 1112. (78) Fisk, Noyes, J. Am. Chem. Soc. 58, 1707-1714 (1936). (79) Wheeler, McFarland, Am. Chem. J. 19, 366 (1897). (80) Varma, Shankarayan, J. Indian Chem. Soc. 13, 31-33 (1936).

(81) Mouneyrat, Pouret, Compt. rend. 129, 607 (1899). (82) Meyer, Hofmann, Monatsh. 38, 145 (1917). (83) Brown, Durand, Marvel, J. Am. Chem. Soc. 58, 1595-1596 (1936). (84) Slebodzinski, J. prakt. Chem. (2) 143, 120 (1935). (85) Morgan, Hickinbottom, J. Chem. Soc. 121, 1891-1892 (1921). (86) E. L. St. John, N. B. St. John, Rec. trav. chim. 55, 587 (1936). (87) Istrati, Ann. chim. (6) 6, 475-487 (1885). (88) Wilson, Huang, J. Chinese Chem. Soc. 4, 142-148 (1936). (89) Nortis, Green, Am. Chem. J. 26, 497-499 (1901). (90) Boeseken, Rec. trav. chim. 27, 8-9 (1908).

(91) de Crauw, Rec. trav. chim. 50, 797-769 (1931). (92) Ganzmuller, J. prakt. Chem. (2) 138, 311-312 (1933). (93) Phillips, J. Am. Chem. Soc. 48, 3198-3199 (1926). (94) Kogan, Ganina, Ind. Org. Chem. U.S.S.R. 1, 89-91 (1936); Cent. 1936, II 1341; C.A. 30, 5216 (1936). (95) Dodd, Sprent & United Alkali Co., Ltd., Brit. 204,528, Oct. 25, 1923; Cent. 1925, II 1228. (96) Schwenk, Waldmann, Z. angew. Chem. 45, 17-21 (1932). (97) Stephen, Short, Gladding, J. Chem. Soc. 117, 513 (1920). (98) Chemische Werke Ichendorf, Ger. 281,175, Dec. 15, 1914; Cent. 1915, I 180. (99) Holleman de Mooy, Rec. trav. chim. 35, 8-9, 18, 27-28 (1915). (100) Lloyd, Kennedy. U.S. 1,849,844, March 15, 1932; Cent. 1932, I 2994.

(101) Vorozhtzov, Karlash, Russ. 30,690, June 30, 1933; Cent. 1934, I 767. (102) Vorozhtzov, Karlash, Compt. rend. acad. sci. U.R.S.S. 1933, 221-223; Cent. 1935, I 55; C.A. 28, 1991 (1934), (103) Kiprianov, Dashevskii, Ukrain. Khem. Zhur. 7, Wiss.-Tech. Abt. 78-87 (1932); Cent. 1933, II 1338; C.A. 27, 3824 (1933). (104) Lufton, Burroughs (to Pennsylvania Coal Prod. Co.), U.S. 2,126,648, Aug. 9, 1938; Cent. 1938, II 3006; C.A. 32, 7925 (1938). (105) Minaev, Fedorov, Sarnit, Org. Chem. Ind. (U.S.S.R.), 4, No. 13, 19-22 (1937); Cent. 1938, II 173; C.A. 31, 8514 (1937). (106) Popov, Popova, J. Applied Chem. (U.S.S.R.), 9, 1303-1307 (1936); Cent. 1937, I 2362; C.A. 31, 2589 (1937). (107) Holleman, Rec. trav. chim. 37, 203 (1918). (108) de Lango, Rec. trav. chim. 38, 101-105 (1919). (109) Hale, Cheney (to Dow Chem. Co.), U.S. 1,729,775, Oct. 1, 1929; Cent. 1936, I 2007; C.A. 23, 5474 (1929). (110) Quick, J. Am. Chem. Soc. 42, 1035-1040 (1920).

(111) Grosvenor, Miller, U.S. 1,445,637, Feb. 20, 1923; Cent. 1925, II 1800. (112) Williams (to Dow Chem. Co.), U.S. 1,775,360, Sept. 9, 1930; Cent. 1931, II 1195. (113) Federal Phosphorus Co., Brit. 370,774, May 5, 1932; Cent. 1932, II 1237. (114) Booth (to Swann Research, Inc.), U.S. 1,954,469, April 10, 1934; Cent. 1934, II 1846. (115) Haeussermann, Bauer, Ber. 32, 1914–1915 (1899); Haeussermann, Ber. 33, 939–941 (1900); Ber. 34, 38–40 (1901). (116) Booy, Dienske, Rec. trav. chim. 45, 449–450 (1926). (117) Morgan, J. Chem. Soc. 81, 1382 (1902). (118) Crowell, Raiford, J. Am. Chem. Soc. 42, 147–149 (1920). (119) Page, Heasman, J. Chem. Soc. 123, 3247–3255 (1923). (120) Lock, Ber. 68, 1510 (1935).

(121) Macleod, Pfund, Kilpatrick, J. Am. Chem. Soc. 44, 2260-2271 (1922). (122) Holleman, den Hollander, Rec. trav. chim. 39, 440-446 (1920). (123) Misslin, Helv. Chim. Acta 3, 631 (1920). (124) Holleman, den Hollander, van Haeften, Rec. trav. chim. 40, 323-326 (1921). (125) Seel, U.S. 2,171,166, Aug. 29, 1939; C.A. 34, 272 (1940); Ger. 680,329, Aug. 3, 1929; C.A. 36, 2158 (1942). (126) von Bramer (to Eastman Kodak Co.), U.S. 1,421,869, July 4, 1922; Cent. 1924, I 2823; C.A. 16, 2867 (1922). (127) Stewart, J. Chem. Soc. 121, 2557-2558 (1922). (128) Gebauer-Fulnegg, Figdor, Monatsh. 48, 627-637 (1927); Gebauer-Fulnegg, Neumann, Monatsh. 50, 236 (1928). (129) Huntress, Carten, J. Am. Chem. Soc. 62, 511-514 (1940). (130) United Alkali Co., Dodd, Sprent, Brit. 251,321, May 27, 1926; Cent. 1926, II 2356.

(131) Imperial Chem. Ind., & Bennet, Brit. 440,205, Jan. 23, 1936; Cent. 1936, I[4367. (132) Kyrides (to Monsanto Chem. Co.), U.S. 1,993,722, March 5, 1935; Cent. 1935, II 1446.

## 3: 0985 18-CHLORO-OCTADECANOL-1 C<sub>18</sub>H<sub>37</sub>OCl Beil. S.N. 24 (ω-Chloro-n-octadecyl CH<sub>2</sub>.(CH<sub>2</sub>)<sub>16</sub>.CH<sub>2</sub>OH alcohol; ω-chlorostearyl alcohol) M.P. 53-54.5° (1)

Colorless crystals.

[For prepn. from  $\alpha$ ,  $\omega$ -octadecamethylene glycol (m.p. 97-98°) with SOCl<sub>2</sub> + dimethylaniline in C<sub>6</sub>H<sub>6</sub> (50% yield) see (1); note that a little 1,18-dichloro-octadecane with m.p. 54° (i.e., practically the same as  $\bar{\mathbf{C}}$ ) is also formed.]

C is only slightly attacked by KOH (2).

D 18-Chloro-octadecyl N-phenylcarbamate: lfts. from ale. or lt. pet., m.p. 77° (1).

3: 9985 (1) Bennett, Gudgeon, J. Chem. Soc. 1938, 1679-1681. (2) Seck, Dittmar, Chem. Umschau Fette, Öle, Wachse, Harze 39, 226-229 (1932); Cent. 1933, I 1757; [C.A. 27, 703 (1933)].

3: 0990 1,2,3-TRICHLOROBENZENE Cl 
$$C_6H_3Cl_3$$
 Beil. V - 203 (vic-Trichlorobenzene)  $C_1$   $C_1$   $V_1$ -(112)  $V_2$ -(156)

| M.P. | <b>54°</b>   | (1)     | B.P. 218-219 | (3) |
|------|--------------|---------|--------------|-----|
|      | 53-54°       | (2) (3) |              |     |
|      | 52.3-53.0°   | (4)     |              |     |
|      | 52.4°        | (5)     |              |     |
|      | 52°          | (6)     |              |     |
|      | <b>50.8°</b> | (7)     |              |     |

Tbls. from alc.; eas. sol.  $CS_2$  or  $C_6H_6$ ; spar. sol. alc.; volatile with steam. [For use as component of mixtures for dif. inflammable electric insulating materials see (8).] [For thermal anal. of mixts. of  $\bar{C}$  with 1,2,4-trichlorobenzene (3:6420) and with 1,3,5-trichlorobenzene (3:1400) see (5).]

[For prepn. of C from 2,3,4-trichloroaniline [Beil. XII-626] with ethyl nitrite (3) or by diazotization and reaction with alc. (35% yield (4)), or from 3,4,5-trichloroaniline [Beil.

XII-630, XII<sub>1</sub>-(313)] via diazotization (9) (6) and reaction with alc. (9), or by reduction to 3,4,5-trichlorophenylhydrazine and reaction of this with Fehling soln. (poor yield (6)) (5), see indic. refs.; for prepn. of  $\bar{C}$  from 2,3-dichloroaniline [Beil. XII-621] (7) or from 2,6-dichloroaniline [Beil. XII-626] (7) (4) via diazotization and use of  $Cu_2Cl_2$  reaction see indic. refs.; for prepn. of  $\bar{C}$  from 4-chloro-3,5-diaminobenzenesulfonic acid-1 [Beil. XIV-718, XIV<sub>1</sub>-(727)] via conv. to 3,4,5-trichlorobenzenesulfonic acid-1 and subsequently hydrolyzing the sulfonic acid group see (1).]

[For form. of  $\bar{C}$  (together with other prod.) from a mixt. of o- and p-dichlorobenzenes with Cl<sub>2</sub> (10), or from m-dichlorobenzene + AlCl<sub>3</sub> + Cl<sub>2</sub> (11), or from  $\alpha$ -,  $\beta$ -, or  $\gamma$ -benzene-hexachlorides with alc. KOH (5), or from  $\alpha$ -benzenehexachloride with pyridine or quinoline (5), see indic. refs.]

[Č with Cl<sub>2</sub> in pres. of Al/Hg yields (9) exclusively 1,2,3,4-tetrachlorobenzene (3:0655), m.p. 44-45° (9); Č with liq. Cl<sub>2</sub> in s.t. at room temp. for 7 days adds 6 atoms halogen yielding (12) 1,1',2,2',3,3',4,5,6-enneachlorocyclohexane (1,2,3-trichlorobenzene hexachloride), pr. from MeOH, m.p. 80° (12).]

[Č on hydrolysis with steam at 550-800° over cat. yields (13) pyrogallol (1:1555); for behavior of Č with NaOMe in McOH see (6) (14).]

 $\bar{\mathbf{C}}$  on mononitration, e.g., by soln. of  $\bar{\mathbf{C}}$  (1 g.) in 5 ml. fumg. HNO<sub>3</sub> (D=1.49) (17), gives 100% yield (17) 1,2,3-trichloro-4-nitrobenzene [Beil. V-246], long colorless ndls. from alc., m.p. 56° (15) (7), 55-56° (17) (3) (note that the isomeric 1,2,3-trichloro-5-nitrobenzene [Beil. V-247, V<sub>1</sub>-(131)] has m.p. 72°).

 $\bar{C}$  on dinitration, e.g.,  $\bar{C}$  (1 g.) refluxed 1 hr. with 5 ml. fumg. HNO<sub>3</sub> (D=1.49) + 5 ml. conc. H<sub>2</sub>SO<sub>4</sub>, then poured into aq. (17) (16), gives 100% yield 1,2,3-trichloro-4,6-dinitrobenzene, ndls. from hot alc., m.p. 92-93° (16) (17); this prod. (1 g). htd. 1 hr. at 100° with 5 g. aniline as directed (17) yields 1,3-dianilino-2-chloro-4,6-dinitrobenzene, cryst. from C<sub>6</sub>H<sub>6</sub> or alc., m.p. 136-138° (17). [Note that an isomeric 1,2,3-trichloro-4,5-dinitrobenzene, cryst. from alc., m.p. 105-106° (16), has been obtd. by further nitration of 1,2,3-trichloro-5-nitrobenzene (mentioned in preceding paragraph).]

Č with chlorosulfonic acid as directed (17) gives 1,2,3-trichlorobenzenesulfonyl chloride-4, m.p. 64-65° u.c. (17), 65-66° (2); this prod. with (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> readily yields (17) 1,2,3-trichlorobenzenesulfonamide-4, m.p. 226-230° dec. u.c. (17).

3:0990 (1) I.G., Brit. 319,149, Oct. 10, 1929; French 661,490, July 25, 1929; Cent. 1930, I 740. (2) I.G., Brit. 287,178, May 9, 1928; Cent. 1929, II 352. (3) Beilstein, Kurbatow, Ann. 192, 234-235 (1878). (4) Dadieu, Pongratz, Kohlrausch, Monatsh. 61, 431-432 (1932). (5) van der Linden, Ber. 45, 231-247 (1912). (6) Holleman, Rec. trav. chim. 37, 196-201 (1918). (7) Körner, Contardi, Atti accad. Lincei (5) 18, I 100 (1904). (8) Zünderwerke E. Bruun, A. G., Ger. 570,460, Feb. 16, 1933; Cent. 1933, I 2770. (9) Cohen, Hartley, J. Chem. Soc. 87, 1365-1366 (1905). (10) Britton (to Dow Chem. Co.), U.S. 1,923,419, Aug. 22, 1933; Cent. 1933, II 3049; C.A. 27, 5086 (1933).

(11) Mouneyrat, Pouret, Compt. rend. 127, 1028 (1898). (12) van der Linden, Rec. trac. chim. 55, 316-317 (1936). (13) Lloyd, Kennedy, U.S. 1,849,844, March 15, 1932; Cent. 1932, I 2994; C.A. 26, 2747 (1932). (14) de Crauw, Rec. trav. chim. 50, 779-780 (1931). (15) Holleman, Rec. trav. chim. 39, 449 (1920). (16) Hüffer, Rec. trav. chim. 40, 451-452 (1921). (17) Huntress, Carten, J. Am. Chem. Soc. 62, 512-514 (1940).

3:0995 1,1-Di-(p-CHLOROPHENYL)ETHANE

C<sub>14</sub>H<sub>12</sub>Cl<sub>2</sub> Beil

Beil. S.N. 479

#### M.P. 54-55° (1) B.P. 143-145° at 2 mm. (1)

Colorless cryst. from 90% AcOH. — Note that, when pure, neither solid  $\bar{C}$  nor its solns. snow any fluorescence either in visible or ultraviolet light. (1). — Note also that, although m.p. of  $\bar{C}$  is identical with that of its next lower homolog, viz., di-(p-chlorophenyl)methane (4,4'-dichlorodiphenylmethane) (3:1057), nevertheless the m.p. of their mixture is depressed to 40-50° (1).

[For prepn. of  $\tilde{C}$  from 1,1-di-(p-chlorophenyl)cthylene (3:2475) by cat. hydrogenation (62% yield) see (1); for formn. of  $\tilde{C}$  from chlorobenzene (3:7903) with acetylene in presence of AlCl<sub>3</sub> see (2), but note that by this method various undetermined impurities which show blue fluorescence are also formed (1).]

 $\ddot{C}$  on oxidn. with  $CrO_3/AcOH$  + trace of  $H_2SO_4$  gives (1) 4,4'-dichlorobenzophenone (3:4270), m.p. 142-144°.

C does not (1) yield an addn. prod. with PkOH.

3:0995 (1) Grummitt, Buck, Becker, J. Am. Chem. Soc. 67, 2265-2266 (1945). (2) Cook, Chambers, J. Am. Chem. Soc. 43, 338 (1921).

#### CHAPTER IV

#### DIVISION A. SOLIDS

(3:1000-3:1499)

3:1000  $\gamma_1\gamma_1\gamma_2$ -TRICHLORO-n-BUTYRIC ACID  $C_4H_5O_2Cl_3$  Beil. S.N. 162  $Cl_3C.CH_2.COOH$ 

M.P. 55° (1)

Colorless ndls. from hot aq.

[For prepn. of  $\bar{C}$  from  $\gamma, \gamma, \gamma$ -trichloro-*n*-butyronitrile (see below) by hydrolysis with conc. HCl at 60° for 6 hrs. see (1).]

—γ<sub>2</sub>γ<sub>2</sub>γ-Trichloro-n-butyronitrile: ndls. from pet. ether, m.p. 41° u.c.; b.p. 214-216° at 760 mm., 90-95° at 12 mm. (1). [From acrylonitrile with CHCl<sub>3</sub> in pres. of aq. trimethylbenzylammonium hydroxide at 0.5° for 24 hrs. (11% yield (1)).] [Note that this nitrile upon acid hydrolysis gives C̄, but upon alkalıne hydrolysis gives succinic acid (1:0530), m.p. 188-189° (1).]

— $\gamma,\gamma,\gamma$ -Trichloro-*n*-butyramide: cryst. from toluene, m.p. 89-90° u.c. (1). [From  $\gamma,\gamma,\gamma$ -trichloro-*n*-butyronitrile (above) with 27% H<sub>2</sub>O<sub>2</sub> + aq. NaOH at 40-45° for 5 hrs. (1).]

3:1000 (1) Bruson, Niederhauser, Riener, Hester, J. Am. Chem. Soc. 67, 601 (1945).

3:1010 3-CHLORO-2-HYDROXYBENZALDE-  $C_7H_5O_2Cl$  Beil. VIII — HYDE CHO CHO CHO CHO CHO CHO CHO CHO CHO CHO

M.P. 55° (1) 54.5-55.5° (2) 54° (3) (4)

Long colorless ndls. from MeOH (1). — Readily sol. in usual org. solvents (1). — Volatile with steam [diff. from 3-chloro-4-hydroxybenzaldehyde (3:4065) (1)].

[For prepn. from o-chlorophenol (3:5980) with CHCl<sub>3</sub> + alk. (10-15% yield (1)) or via condensation with formalin + alk. to 3-chloro-2-hydroxybenzyl alc. and oxidn. of latter with Na m-nitrobenzenesulfonate + alk. (2) see indic. refs.; from 3-chloro-2-hydroxybenzoic acid (3-chlorosalicylic ac.) (3:4745) by reductn. with Na/Hg in pres. of H<sub>3</sub>BO<sub>3</sub> see (4).]

C with satd. aq. NaHSO3 soln. yields NaHSO3 cpd. (1) (2).

C dissolves in aq. alk. with yel. color (4) (2).

C with aq. FeCl<sub>3</sub> yields violet-red color (2).

 $\bar{C}$  is not nitrated by cold AcOH/HNO<sub>3</sub> soln. (1); but  $\bar{C}$  (2 g.) in AcOH (10 ml.) treated at 45° for 15 min. with soln. of 0.8 ml. conc. HNO<sub>3</sub> (D=1.42) in AcOH (4 ml.), then poured into aq., gives (1) 2.15 g. 3-chloro-5-nitro-2-hydroxybenzaldehyde, yel. ndls. from dil. alc., m.p. 129° (1).

The methyl ether of  $\bar{C}$ , viz., 3-chloro-2-methoxybenzaldehyde, is a liq., b.p. abt. 255°, f.p. 0° (1).

- 3-Chloro-2-hydroxybenzaldoxime: lfts. from dil. alc., m.p. 167-168° (2).
- --- 3-Chloro-2-hydroxybenzaldehyde phenylhydrazone: unrecorded.
- --- 3-Chloro-2-hydroxybenzaldehyde p-nitrophenylhydrazone: unrecorded.
- --- 3-Chloro-2-hydroxybenzaldehyde 2,4-dinitrophenylhydrazone: unrecorded.
- 3-Chloro-2-hydroxybenzaldehyde semicarbazone: cryst. from 50% AcOH, m.p. 240-243° (2).

3:1010 (1) Davies, Rubinstein, J. Chem. Soc. 123, 2850 (1923). (2) Hanus, J. prakt. Chem. (2) 158, 263-264 (1941). (3) Duff, J. Chem. Soc. 1941, 547-550. (4) Bayer and Co., Ger. 228,838, Nov. 22, 1910; Cent. 1911, I 51.

Ndls. from hot aq. or pet. ether. Spar. sol. cold but more eas. sol. hot aq.; eas. sol. alc., ether, CHCl<sub>3</sub>, CS<sub>2</sub>. Volatile with steam.

[For prepn. of  $\bar{C}$  from o-cresol (1:1400) with  $Cl_2$  (7) (4) (1) in  $CCl_4$  (61% yield (2)) in  $CCl_4$  in pres. of Fe (8) or in pres. of  $PCl_5$  in sunlight at elevated temp. (8), with  $Cl_2$  in NaOH soln. at room temp. (5), or with  $SO_2Cl_2$  (3), see indic. refs.; for formn. from 2-methylphenoldisulfonic acid-4,6 (6) in nitrobenzene with  $Cl_2$  (other products are also formed) see (6).]

 $[\bar{C} \text{ with dry NH}_3 \text{ gas at room temp. (9) forms a cpd., } \bar{C}.2NH_3 \text{ (9); } \bar{C} \text{ on evapn. of alc. NH}_3 \text{ soln. does not give an NH}_4 \text{ salt but is recovered unchanged (dif. from 2,6-dichloro-4-methylphenol (3:0400) q.v.) (7).}$ 

 $[\bar{C}$  (1 pt.) in 2 pts. ice-cold HNO<sub>3</sub> (D=1.48) stood 24 hrs. gives (37% yield (2)) a prod. of compn.  $C_7H_6O_6N_2Cl_2$ , white ndls. from dry ether by pptn. with pet. ether, m.p. 109° dec. (2).

[ $\bar{C}$  with boilg. dil. HNO<sub>3</sub> oxidizes (7) to oxalic acid (1:0445);  $\bar{C}$  on oxidn. with  $K_2Cr_2O_7$  + dil.  $H_2SO_4$  gives (4) 6-chloro-2-methylbenzoquinone-1,4 (6-chloro-p-toluquinone) [Beil. VII-650, VII<sub>1</sub>-(353)], yel. ndls., vol. with steam, m.p. 90° (4);  $\bar{C}$  digested with aqua regia for  $1\frac{1}{2}$  hrs. at 100° gives (16% yield (5)) 3,5,6-trichloro-2-methylbenzoquinone-1,4 (trichloro-p-toluquinone) [Beil. VII-651, VII<sub>1</sub>-(354)], yel. lfts. from alc., m.p. 233° (5);  $\bar{C}$  with CrO<sub>3</sub>/AcOH gives a mixt. (4) of chlorinated quinones.]

[ $\bar{C}$  does not react with PCl<sub>5</sub> (10);  $\bar{C}$  on monosulfonation with fumg. H<sub>2</sub>SO<sub>4</sub> (65% SO<sub>3</sub>) at 50° yields (11) 4,6-dichloro-2-methylphenolsulfonic acid-3; for condensation of  $\bar{C}$  with benzaldehydesulfonic acid-4 and use as motheroofing agt. see (12).]

[C in MeOH/KOH refluxed 6½ hrs. with MeI (74% yield (3)), or C in aq. alk. with Me<sub>2</sub>SO<sub>4</sub> (1) gives the corresp. methyl ether (4,6-dichloro-2-methylanisole), m.p. 33° (1), 29-30° (3), b.p. 230° (1); C in aq. alk. soln. treated with Et<sub>2</sub>SO<sub>4</sub> gives (1) corresp. ethyl ether (4,6-dichloro-2-methylphenetole), m.p. 27.5° (1).]

- ① 4,6-Dichloro-2-methylphenyl acetate: m.p. 28.5°, b.p. 254° (1). [From Č with excess Ac<sub>2</sub>O + a drop of conc. H<sub>2</sub>SO<sub>4</sub> htd. 4 hrs. at 100° (1).]
- (1). [From C with benzoyl chloride (1).]
- 3:1020 (1) Bures, Chem. Listy 21, 108-114, 148-162, 221-227, 261-265 (1927); Cent. 1927, II 1344; C.A. 22, 63 (1928). (2) Zincke, Ann. 417, 199, 206-207, 221-222 (1918). (3) Martini, Gazz. chim. ital. 29, II 60-61 (1899). (4) Claus, Schweitzer, Ber. 19, 927-929 (1886). (5) Chulkov, Parini, Barshev, Org. Chem. Ind. (U.S.S.R.) 3, 410-412 (1937); Cent. 1938, II 305; C.A. 31, 7047 (1937). (6) Huston, Neeley, J. Am. Chem. Soc. 57, 2177 (1935). (7) Claus, Riemann, Ber. 16, 1601-1602 (1883). (8) Tanaka, Morikawa, Sakamoto, J. Chem. Soc. Japan 51, 275-277 (1930); C.A. 26, 706 (1932). (9) Korczynski, Cent. 1909, II 806. (10) Anschutz, Ann. 464, 108 (1927).
- (11) Weiler, Better (to I.G.), Ger. 557,450, Aug. 24, 1931; Cent. 1932, II 2371. (12) Weiler (to I.G.), Ger. 548,822, April 20, 1932; Cent. 1932, II 799.

## 3:1025 3-CHLORO-4-METHYLPHENOL OH C<sub>7</sub>H<sub>7</sub>OCl Beil. VI -402 VI<sub>1</sub>— VI<sub>2</sub>—

M.P. 55° (1) (2) B.P. 228° at 760 mm. (2) 229° at 735 mm. (1)

Long colorless ndls., markedly sol. in aq. and volatile with steam (1). — Eas. sol. alc., ether, or  $C_6H_6$ .

[For prepn. (77% yield) from 3-chloro-4-methylaniline [Beil. XII-988] via diazo reaction see (1).]

Č dislvd. in 20% NaOH and shaken with (CH<sub>3</sub>)<sub>2</sub>SO<sub>4</sub> gives 95% yield of corresponding methyl ether, viz., 3-chloro-4-methylanisole, b.p. 212° (1). [Oxidn. of this ether with dil. aq. KMnO<sub>4</sub> yields (1) 2-chloro-4-methoxybenzoic acid [Beil. X-175], ndls. from aq., m.p. 208° (1).]

**3:1025** (1) Ullmann, Wagner, Ann. **355**, 367-368 (1907). (2) Badische Anilin und Soda-fabrik, Ger. 156,333, Nov. 14, 1904; Cent. **1904**, II 1672.

3:1040 o-XYLYLENE (DI)CHLORIDE 
$$(\omega,\omega'$$
-Dichloro-o-xylene)  $CH_2Cl$   $C_8H_8Cl_2$  Beil. V - 364  $V_1$ —  $CH_2Cl$   $V_2$ -(283)

Cryst. (from pet. eth.). — Sublimes. — Sol. alc., ether, CHCl<sub>3</sub>, lgr. Powerful lachrymator.

[For prepn. from o-xylyleneglycol + boilg. conc. HCl see (3); from o-xylene (1:7430) + PCl<sub>5</sub> at 190° see (3) (4); from o-xylene (1:7430) + Cl<sub>2</sub> in sunlight see (1); for formn. of  $\tilde{C}$  (13%) during chloromethylation of benzyl chloride (3:8535) see (5).]

C on oxidn, with KMnO<sub>4</sub> yields phthalic ac. (1:0820).

3:1040 (1) Radziewanowski, Schramm, Cent. 1898, I 1019. (2) Quelet, Bull. soc. chim. (4) 53, 223 (1934). (3) Colson, Ann. chim. (6) 6, 108-109 (1885). (4) Colson, Gautier, Ann. chim. (6) 11, 22 (1887). (5) Kulka, Can. J. Research 23-B, 107 (1945).

Transparent cryst. (1) (2) from pet. eth. — Very spar. sol. cold aq.; pronounced phenolic odor (1).

[For prepn. from m-cresoldisulfonic acid by chlorination see (2); from 2-nitro-3-methylphenol via 2-amino-3-methylphenol see (2); from 2-chloro-3-methylanisole by boilg. with HI see (1).]

Č treated with  $(CH_3)_2SO_4 + aq$ . NaOH gives its methyl ether, 2-chloro-3-methylanisole, pr. from light pet. eth., m.p. 24.2°, b.p. 218.5° (1). [This methyl ether on oxidn. with dil. KMnO<sub>4</sub> (7½ hrs. for 5 g.) gave (1) 2-chloro-3-methoxybenzoic acid, stout colorless rectangles, m.p. 160.5° (1), 160° (3), Neut. Eq. 186.5.]

- **D** 2-Chloro-3-methylphenyl benzoate: from  $\tilde{C} + BzCl + pyridine$ , pr. from alc., m.p. 55-56° (2). [Note that this value is numerically the same as  $\tilde{C}$  and that the deriv. must be distinguished from orig.  $\tilde{C}$ , e.g., by mixed m.p. or behavior with alk.]
- 0 2-Chloro-3-methylphenyl benzenesulfonate: from C + benzenesulfonyl chloride + pyridine; pl. from alc., m.p. 58-58.5° (2). [See note for above deriv.]
- **D** 2-Chloro-3-methylphenyl p-toluenesulfonate: from  $\bar{C}+p$ -toluenesulfonyl chloride + pyridine; pr. from alc. m.p. 96° (2). [Note that this deriv. does not distinguish  $\bar{C}$  from 6-chloro-3-methylphenol (3:0700) or 4-chloro-3-methylphenol (3:1535).]

3:1055 (1) Gibson, J. Chem. Soc. 1926, 1424-1428. (2) Huston, Chen, J. Am. Chem. Soc. 55, 4214-4218 (1933). (3) Hodgson, Beard, J. Chem. Soc. 1926, 150.

# 3:1057 4,4'-DICHLORODIPHENYL- C<sub>13</sub>H<sub>10</sub>Cl<sub>2</sub> Beil. V - 590 W<sub>1</sub>— CH<sub>2</sub> CH<sub>3</sub>H<sub>10</sub>Cl<sub>2</sub> Beil. V - 590 V<sub>1</sub>— V<sub>2</sub>-(501) M.P. 55-56° (1) B.P. 337° at 760.5 mm. (5) 55° (2) (3) (4) (5) 186-190° at 18 mm. (1)

208-210° at 15 mm.

(3)

Colorless ndls, from MeOH.

54-55° (7)

[For prepn. of  $\bar{C}$  from 4,4'-dichlorobenzophenone (3:4270) by reduction with conc. HI + red P in boilg. AcOH (4) or as by-prod. of reduction with Zn dust + AcOH + dil. H<sub>2</sub>SO<sub>4</sub> (5) see indic. refs.; from 4,4'-diaminodiphenylmethane [Beil. XII-238, XII<sub>1</sub>-(71)] by tetrazotization and subsequent use of Cu<sub>2</sub>Cl<sub>2</sub> reaction (50% yield) see (1).]

[For prepn. of  $\bar{C}$  from chlorobenzene (3:7903) by action of sym-dichloro-dimethyl ether (3:5245) in pres. of ZnCl<sub>2</sub> (3) or better (alm. 100% yield (3)) conc. H<sub>2</sub>SO<sub>4</sub> at 40°, or by action in pres. of H<sub>2</sub>SO<sub>4</sub> of various other formaldehyde derivs. (6), see indic. refs.; from p-chlorobenzyl chloride (3:0220) with chlorobenzene (3:7903) + conc. H<sub>2</sub>SO<sub>4</sub> (67% yield (3)) see indic. refs.]

[For prepn. of  $\bar{\mathbb{C}}$  from "DDT" (3:3298), from 1,1-dichloro-2,2-bis-(p-chlorophenyl)-ethylene (3:2438), or from di-(p-chlorophenyl)acetic acid (3:4612) by action of KOH in ethylene glycol refluxed 8-10 hrs. (alm. 100% yield) see (2).]

[For form. of  $\bar{C}$  (21% yield) from hydrazone of 4,4'-dichlorobenzophenone (3:4270) via Wolff-Kishner reduction see (7).]

C on oxidn. with CrO<sub>3</sub>/AcOH readily gives (3) 4,4'-dichlorobenzophenone (3:4270),

m.p. 145° (3).

 $\tilde{C}$  on dinitration by addn. to 8 pts. fumg. HNO<sub>3</sub> (D=1.5) with water cooling gives (1) 3,3'-dinitro-4,4'-dichlorophenylmethane, white pl. from AcOH, m.p. 198-199° (1), 196° (3); this prod. with piperidine splits out 2 moles HCl giving (1) 3,3'-dinitro-4,4'-dipiperidinodiphenylmethane, m.p. 183-184° (1). — [Note, however, that  $\tilde{C}$  dislvd. in 9-10 wt. pts. conc. HNO<sub>3</sub> (D=1.42) and kept at 100° for 1 hr. (3) gives some of the above dinitro derivative but is also in part oxidized and nitrated (or vice versa) with formn. of 3,3'-dinitro-4,4'-dichlorobenzophenone, ndls. from alc., m.p. 132° (3); see also text of 4,4'-dichlorobenzophenone regarding nitration.]

3:1057 (1) LeFevre, Turner, J. Chem. Soc. 1927, 1120. (2) White, Sweeney, U.S. Pub. Health Repts. 60, 66-71 (1945). (3) Stephen, Short, Gladding, J. Chem. Soc. 117, 522-523 (1920). (4) Montagne, Rec. trav. chim. 25, 390 (1906). (5) Montagne, Rec. trav. chim. 25, 412 (1906). (6) Bentley, Catlow (to W. Blythe and Co., Ltd.), Brit. 446,450, May 28, 1936; Cent. 1936, II 4050-4051; C.A. 30, 6760 (1936). (7) Grummitt, Jenkins, J. Am. Chem. Soc. 68, 914 (1946).

3:1058 β,β-DICHLOROPROPIONIC ACID

 $C_3H_4O_2Cl_2$ 

Beil. II -252

130

Cl<sub>2</sub>CH.CH<sub>2</sub>.COOH

M.P. 56° (1)

Colorless cryst., eas. sol. aq., alc., ether, C6H6, or CHCl3.

[For prepn. of  $\bar{C}$  from  $\beta$ -chloroacrylic acid (3:2240) by addn. of 1 HCl with 40% aq. HCl in s.t. at 80-85° for 35-40 hrs. (yield not stated) see (1).

 $\bar{C}$  with alc. KOH splits out 1 HCl giving (1)  $\beta$ -chloroacrylic acid (3:2240).

 $\bar{C}$  with SOCl<sub>2</sub> at 75-80° for 3-4 hrs. gives (2)  $\beta,\beta$ -dichloropropionyl chloride (3:9032-A).

- Methyl  $\beta$ ,  $\beta$ -dichloropropionate: unreported.
- Ethyl β,β-dichloropropionate: b.p. 171-175° (1). [From C in EtOH with dry HCl (1).]
- $\mathfrak{D}$   $\beta,\beta$ -Dichloropropionamide: ndls. from CHCl<sub>3</sub>, m.p. 140° (1). [From ethyl  $\beta,\beta$ -dichloropropionate (above) with conc. aq. NH<sub>4</sub>OH on shaking at room temp. (1).]
- B.B-Dichloropropionanilide: unreported.
- $\beta_{\beta}$ -Dichloropropion- $\beta$ -toluidide: unreported.

3:1058 (1) Otto, Ann. 239, 266-272 (1887). (2) Leimu, Ber. 70, 1050 (1937).

3:1060 2,3,5-TRICHLOROBENZALDEHYDE

C7H3OCl3

Beil. S.N. 635

M.P. 56° (1)

Colorless and s. (from dil. alc.) with characteristic pungent odor. — Volatile with steam. — [Note that a patent abstract gives m.p. as 75-76° (2).]

[For prepn. of  $\bar{C}$  from 3-amino-2,5-dichlorobenzaldehyde (presumably by diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reaction) see {1}.]

 $\tilde{C}$  on oxidn. with neutral KMnO<sub>4</sub> gives (1) 2,3,5-trichlorobenzoic acid (3:4485), m.p. 162-163°.

 $\bar{C}$  with PCl<sub>5</sub> should give 2,3,5-trichlorobenzal (di)chloride, but this compd. is unreported in the literature.

- 2,3,5-Trichlorobenzaldoxime: unreported.
- 2,3,5-Trichlorobenzaldehyde phenylhydrazone: unreported.
- ---- 2,3,5-Trichlorobenzaldehyde p-nitrophenylhydrazone: unreported.
- 2,3,5-Trichlorobenzaldehyde 2,4-dinitrophenylhydrazone: unreported.

**3:1060** (1) Hodgson, Beard, J. Chem. Soc. **1927**, 2381–2382. (2) Chem. Fabrik Griesheim-Elektron, Brit. 251,511, May 27, 1926; Cent. **1926**, II 2355; [C.A. **21**, 1361 (1927)]; French 603,-650, April 20, 1926; Cent. **1926**, II 2355; not in C.A.

#### 

M.P. 56-57° (1) (4) B.P. 118-121° (1) 55-56° (2) 96-97.5° (2)

Cryst. from C<sub>6</sub>H<sub>6</sub> (3). — Eas. sol. aq. or ether; sol. CS<sub>2</sub>.

[For prepn. of  $\bar{C}$  from dichloroacetaldehyde (3:5180) with a limited amt. of cold aq. see (2); for formn. of  $\bar{C}$  from  $\alpha,\beta,\beta$ -trichloroethyl ethyl ether with aq. see (2); for formn. of  $\bar{C}$  as by-product of actn. of  $Cl_2$  on paraldehyde in prepn. of butyrchloral (3:5910) see (2); for formn. of  $\bar{C}$  from chloral hydrate with Al/Hg + aq. see (5).]

C with conc. H<sub>2</sub>SO<sub>4</sub> yields (3) dichloroacetaldehyde (3:5180), b.p. 89°.

3:1085 (1) Denaro, Gazz. chim. ital. 14, 119-120 (1884). (2) Oddo, Mameli, Gazz. chim. ital. 33, II 398-399 (1903). (3) Friedrich, Ann. 206, 251-254 (1880). (4) Ingold, J. Chem. Soc. 125, 1537 (1924). (5) Deodhar, J. Indian Chem. Soc. 11, 84 (1934).

[See also 2-chlorohydroquinone (3:3130).]

Pale yel. cryst.; eas. sol. aq., alc., ether,  $CHCl_3$ . — Volatile even at ord. tem. — Gradually dec. by light (3) (for study of photochem. decompn. in alc. see (12)). — Sol. in conc.  $H_2SO_4$  on warming with brown black color.

[For prepn. of  $\tilde{C}$  from 2-chlorohydroquinone (3:3130) by oxidn. with NaClO<sub>3</sub> + H<sub>2</sub>SO<sub>4</sub> + V<sub>2</sub>O<sub>5</sub> in AcOH (92% yield (13)), with K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> + H<sub>2</sub>SO<sub>4</sub> (yield: 89% (14), 84% (1)) (7), with MnO<sub>2</sub> + dil. H<sub>2</sub>SO<sub>4</sub> (56% yield (1)), or with PbO<sub>2</sub> in C<sub>6</sub>H<sub>6</sub> (2) see indic. refs.; from 2-chloro-4-aminophenol [Beil. XIII-510, XIII<sub>1</sub>-(181)] by oxidn. with K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> +

H<sub>2</sub>SO<sub>4</sub> (68% yield (8)) (10) (15) see indic. refs.; from benzoquinone-1,4 (1:9025) in CCl<sub>4</sub> with ⅓ mole HCl gas see (9); for formn. of Č (together with other prods.) from oxidn. of copper salt of quinic acid [Beil. X-535, X<sub>1</sub>-(270)] with MnO<sub>2</sub>, NaCl + dil. H<sub>2</sub>SO<sub>4</sub> see (16).]

[For use of C as vulcanization accelerator see (17); for use as seed disinfectant see (18);

for study of bactericidal action see (19).]

 $\bar{\mathbb{C}}$  on reductn. with aq. SO<sub>2</sub> gives (16) (7) 2-chlorohydroquinone (3:3130) (note, however, that  $\bar{\mathbb{C}}$  in dil. aq. NaOH under N<sub>2</sub> with SO<sub>2</sub> is in part reduced to 2-chlorohydroquinone and in part sulfonated (20)). [For studies on oxidn.-reductn. potential of system  $\bar{\mathbb{C}}$  + 2-chlorohydroquinone (3:3130) see (1) (2) (3) (21) (22) (23) (24).] —  $[\bar{\mathbb{C}}$  with 2-chlorohydroquinone (3:3130) yields (1) (16) (25) the corresp. quinhydrone, monohydrate, violet pr. with green shimmer, m.p. 70-72° (25), anhydrous form, m.p. 93-94° (25), 67° (1);  $\bar{\mathbb{C}}$  with hydroquinone (1:1590) gives (25) (6) corresp. quinhydrone, dark green ndls. from alc., m.p. 132-133° (25), 130-135° (6).]

[ $\bar{C}$  in CHCl<sub>3</sub> with HCl gas (7) (26) or  $\bar{C}$  with hot conc. HCl (83% yield (10)) gives only 2,5-dichlorohydroquinone (3:4690), but  $\bar{C}$  in ether with HCl gas (26) or  $\bar{C}$  dislvd. in cold dil. HCl (D=1.10) (26) gives both 2,3-dichlorohydroquinone (3:4220) and 2,5-dichlorohydroquinone (3:4690);  $\bar{C}$  refluxed with conc. HBr gives (27) 2-chloro-5-bromohydroquinone [Beil. VI-853], ndls. m.p. 171-172° (28) (diacetate, m.p. 145-146° (28));  $\bar{C}$  in alc. with KCN + H<sub>2</sub>SO<sub>4</sub> gives in good yield (29) 3,6-dihydroxyphthalonitrile (2,3-dicyanohydroquinone) [Beil. X-551].]

[C with Ac<sub>2</sub>O + trace H<sub>2</sub>SO<sub>4</sub> yields (29) a chloro-hydroxyhydroquinone triacetate, ndls. from alc., m.p. 96-97° (29); C with AcCl gives (28) 2,5-dichlorohydroquinone diacetate, m.p. 141°; C with AcBr gives (28) 2-chloro-5-bromohydroquinone diacetate, m.p. 145-146° (28).]

[ $\tilde{C}$  with 2,3-dimethylbutadiene-1,3 (1:8050) gives an adduct which upon oxidn. yields (30) 2-chloro-6,7-dimethylnaphthoquinone-1,4; for reactn. of  $\tilde{C}$  with diazotized aniline see (31); for addn. prods. of  $\tilde{C}$  with hexamethylbenzene (1:7265) see (5).]

[Č in alc. or AcOH on warming with aniline gives (32) 2,5-dianilinobenzoquinone-1,4 [Beil. XIV-138, XIII<sub>1</sub>-(413)], red-br. scales, m.p. 345° u.c.]

[C in dil. alc. with NH<sub>2</sub>OH.HCl as directed (33) gives 2-chlorobenzoquinone-1,4-monoxime-4 (purified (with difficulty) by conv. to the mixt. of stereoisomeric oxime acetates followed by hydrolysis), m.p. 142° (34), 148° dec. (35); this prod. by special treatment yields a dioxime [Beil. VII-632].]

 $\tilde{C}$  in cold dil. alc. with semicarbazide HCl gives (36) 2-chlorobenzoquinone-1,4-semi-carbazone-4, deep yel. cryst. from acetone + pet. ether, m.p. 185° dec. (36); this prod. on boilg. with dil. aq. NaOH yields o-chlorophenol (3:5980) + N<sub>2</sub> + CO<sub>2</sub> + NH<sub>3</sub> (36);  $\tilde{C}$  does not give a bis-semicarbazone (36).

Conant, Fieser, J. Am. Chem. Soc. 45, 2201-2202 (1923). (2) Hunter, Northley, J. Phys. Chem. 37, 885-886 (1933). (3) LaMer, Baker, J. Am. Chem. Soc. 44, 1956, 1960 (1922).
 Clarke, J. Ind. Eng. Chem. 10, 891-895 (1918). (5) Pfeiffer, Ann. 412, 291-292 (1916).
 Siegmund, J. prakt. Chem. (2) 92, 360-361 (1915). (7) Levy, Schultz, Ann. 210, 145-147 (1881). (8) van Erp, Ber. 58, 663-665 (1925). (9) Michael, Cobb, J. prakt. Chem. (2) 82, 304-305 (1910). (10) Eckert, Endler, J. prakt. Chem. (2) 104, 83 (1922).

(11) Kehrmann, Ber. 21, 3316 (1888). (12) Leighton, Dresia, J. Am. Chem. Soc. 52, 3557-3562 (1930). (13) Underwood, Walsh, J. Am. Chem. Soc. 58, 646-647 (1936). (14) Den Holander, Rec. trav. chim. 39, 483-484 (1920). (15) Kollrepp, Ann. 234, 14 (1886). (16) Städeler, Ann. 69, 302-309 (1849). (17) Fisher (to Naugatuck Chem. Co.), French 740,978, Feb. 3, 1933; Cent. 1933, I 3133. (18) I.G., Brit. 275,539, Sept. 28, 1927; French 623,867, July 2, 1927; Austrian 108,914, Feb. 25, 1928; Cent. 1928, I 2292. (19) Morgan, Cooper, J. Soc. Chem. Ind. 43-T, 352-354 (1924). (20) Dodgson, J. Chem. Soc. 1930, 2498-2502.

(21) Hunter, Kvalnes, J. Am. Chem. Soc. 54, 2874-2875, 2878 (1932). (22) Kvalnes, J. Am. Chem. Soc. 56, 668 (1934). (23) Conant, Fieser, J. Am. Chem. Soc. 44, 2484-2485, 2489 (1922).

(24) Conant, J. Am. Chem. Soc. 49, 293-297 (1927). (25) Ling, Baker, J. Chem. Soc. 63, 1318-1319 (1893). (26) Peratoner, Genco, Gazz. chim. ital. 24, II 394 (1894). (27) Ref. 7, pp. 160-161.
(28) Schulz, Ber. 15, 656 (1882). (29) Thiele, Günther, Ann. 349, 48, 52 (1906). (30) I.G., Brit. 324,661, Feb. 27, 1930; French 677,296, March 6, 1930; 677,781, March 14, 1930; Cent. 1930, II 810.

(31) Günther (to I.G.), Ger. 508,395, Oct. 1, 1930; Cent. 1931, I 1676; cf. Gunther (to General Aniline Works), U.S. 1,735,432, Nov. 12, 1929; Cent. 1930, II 137. (32) Niemeyer, Ann. 228, 331 (1885). (33) Kehrmann, Ann. 279, 30-39 (1894); Ber. 21, 3316-3317 (1888). (34) Bridge, Ann. 277, 100-101 (1893). (35) Fischer, Neber, Ber. 45, 1097 (1912). (36) Heilbron, Henderson, J. Chem. Soc. 103, 1416 (1913).

Lifts. from pet. ether (5), alc. (1) (5), or ether (2); eas. sol. in org. solv. except lgr. —  $\bar{C}$  on distn. even under reduced press. loses HCl with partial conversion (2) to phenyl vinyl ketone; nevertheless in small amts. of less than 10 g.  $\bar{C}$  may be distd. below 2 mm. (3); in general, however, unnecessary htg. of  $\bar{C}$  should be avoided (4).

[For prepn. of  $\bar{C}$  from  $\beta$ -chloropropionyl chloride (3:5690) with  $C_6H_6+AlCl_3$  (yield: 90% (1), 80–90% (6), 65% (5)) see indic. refs. (note, however, that this method is best suited for small runs (6) since with large units much  $\omega$ -benzylacetophenone [Beil. VII-444, VII<sub>1</sub>-(237)], m.p. 72°, is also formed (6) (4); furthermore that  $\bar{C}$  prepd. by this method melts at 49° even when white, unless it is treated with decolorizing carbon (3); for prepn. from benzoyl chloride (3:6240) + ethylene +  $AlCl_3$  (87-92% yield) in special apparatus see (3); for prepn. of  $\bar{C}$  from phenyl vinyl ketone + HCl gas in dry ether see (2); for formn. of  $\bar{C}$  from ethyl phenyl ketone (propiophenone) (1:5525) +  $Cl_2$  see (7).]

[ $\bar{C}$  htd. 15-30 min. in AcOH with 1½ moles NaOAc or KOAc, then poured into aq. and neutralized with K<sub>2</sub>CO<sub>3</sub>, gives (8)  $\beta$ -acetoxypropiophenone, lfts. from MeOH, m.p. 53-54° (8);  $\bar{C}$  in hot alc. treated with KOAc, then with aq. NaCN, gives (65% yield (9))  $\beta$ -cyanopropiophenone, lfts. from alc., m.p. 76° (2,4-dinitrophenylhydrazone, m.p. 141°; corresp.  $\beta$ -benzoylpropionic acid, m.p. 116° (9)).]

[ $\bar{C}$  under certain circumstances reacts as potential phenyl vinyl ketone: e.g.,  $\bar{C}$  + KOAc in hot MeOH treated with phenyl-nitromethane + NaOMe gives (82% yield (10)) (presumably by addn. to phenyl vinyl ketone)  $\gamma$ -nitro- $\gamma$ -phenylbutyrophenone, ndls. from  $C_6H_6$  + pet. eth. or from MeOH, m.p. 72° (10); similarly  $\bar{C}$  + KOAc in hot MeOH treated with desoxybenzoin (1:5165) + NaOMe gives (55% yield (6)) 1,2,5-triphenylpentanedione-1,5, m.p. 95° (monoxime, m.p. 131°; dioxime, m.p. 162°; 2,4-dinitrophenylhydrazone, m.p. 221°) (6).]

 $\bar{C}$  in AcOH reduced with  $H_2$  + Adams cat. gives (11) 3-chloro-1-phenylpropanol-1, b.p. 130-132° at 8 mm. (p-nitrobenzoate, m.p. 62-63°) (11).

[For study of rate of reactn. of  $\bar{C}$  with KI in acctone see (5); for study of  $\bar{C}$  with Na + liq. NH<sub>3</sub> see (12); for behavior of  $\bar{C}$  with anthrone see (13) (14) (15); for reactn. of  $\bar{C}$  with  $C_6H_5MgBr$  yielding  $\omega$ -benzylacetophenone ( $\beta$ -phenylpropiophenone) (cf. above) see

(16) (2); for reactn. of  $\bar{C}$  with sodium benzenesulfinate giving (68% yield)  $\beta$ -(benzenesulfonyl)propiophenone, m.p. 98° see (17).]

 $\tilde{C}$  htd. with aq. + aniline for 30 min. at 100° gives (4)  $\beta$ -anilinopropiophenone, pl. from alc., m.p. 111-112° (4); note, however, that  $\tilde{C}$  htd. with aniline + aniline HCl yields (4) 4-phenylouinoline.

[C in MeOH boiled 3 hrs. with hydrazine hydrate (87%) gives (28% yield (18)) 3-phenylpyrazoline-2, b.p. 164° at 17 mm., m.p. 44-45° (18) (1-nitroso deriv., m.p. 152.5-153.5°; 1-carbomethoxy deriv., m.p. 123-124°; 1-carbothoxy deriv., m.p. 72°) (18). — C (or phenyl vinyl ketone) with phenylhydrazine yields by ring closure (19) 1,3-diphenyl-pyrazoline-2 [Beil. XXIII-153], m.p. 152-153° (19).]

[ $\bar{\mathbf{C}}$  htd. in alc. with NH<sub>2</sub>OH.HCl + NaOH gives very small yield (8) corresp. oxime, m.p. 56-58°; from the mother liquor, however, is obtd. (8) as a result of ring closure 3-phenylisoxazoline, tbls. from lgr. m.p. 66-67°, which is the sole product starting from  $\beta$ -acetoxypropiophenone (above); another by-product of oximation is N,N-bis-( $\beta$ -benzoylethyl)hydroxylamine dioxime, m.p. 154-155° (8).]

- β-(Phthalimido) propiophenone: cryst. from alc., m.p. 130° (1). [From C + K phthalimide in 68% yield on htg. in s.t. for 1 hr. at 130-140° (1); on hydrolysis with fumg. HCl in AcOH in s.t. at 145-150° for 1 hr. this prod. gives 95% yield (1) β-aminopropiophenone hydrochloride, cryst. from abs. alc., m.p. 128° (1).]
- ① 1-Methyl-3-carbohydrazidopyridinium p-toluenesulfonate: cryst. from alc., m.p. 171° cor. (20). [From Č + nicotinic hydrazide/methyl p-toluenesulfonate addn. prod. as directed (20).]
- 3:1115 (1) Hale, Britton, J. Am. Chem. Soc. 41, 845-847 (1919). (2) Kohler, Am. Chem. J. 42, 389 (1909). (3) Allen, Cressmann, Bell, Can. J. Research 8, 440-446 (1933). (4) Kenner, Statham, J. Chem. Soc. 1935, 301. (5) Conant, Kirner, J. Am. Chem. Soc. 46, 239-240, 251 (1924). (6) Allen, Barker, J. Am. Chem. Soc. 54, 740-742 (1932). (7) Szper, Bull. soc. chim. (4) 51, 656 (1932). (8) von Auwers, Müller, J. prakt. Chem. (2) 137, 124-127 (1937). (9) Allen, Gilbert, Young, J. Org. Chem. 2, 231 (1937). (10) Allen, Bridgess, J. Am. Chem. Soc. 51, 2153-2154 (1929).
- (11) Case, J. Am. Chem. Soc. 55, 2929 (1933). (12) Dean, Berchet, J. Am. Chem. Soc. 52, 2826 (1930). (13) Allen, Overbaugh, J. Am. Chem. Soc. 57, 1322-1325 (1935). (14) Nakanishi, Proc. Imp. Acad. Tokyo 9, 394-397 (1933); Cent. 1934, II 2218; C.A. 28, 762-763 (1934). (15) Kränzlein, Vollmann, Greune, Wolfraim, Ger. 488,608, Jan. 18, 1920; Cent. 1930, II 3860. (16) Weizmann, Bergmann, J. Chem. Soc. 1936, 402. (17) Kohler, Larsen, J. Am. Chem. Soc. 57, 1449 (1935). (18) von Auwers, Heimke, Ann. 458, 207-208 (1927). (19) von Auwers, Ber. 65, 832-833 (1932). (20) Allen, Gates, J. Org. Chem. 6, 596-601 (1941).

### 3:1130 p-METHYLPHENACYL CHLORIDE $C_9H_9OCl$ Beil. VII - 309 (Chloromethyl p-tolyl ketone, $CH_3$ CO.CH<sub>2</sub>Cl $VII_1$ -(165) $\omega$ -chloro-p-methylacetophenone)

M.P. 57-58° (1) (5) B.P. 260-263° (2) 55.5-56° (2) (3) 260-265° sl. dec. (3) 54.5-55° (4) 113° at 4 mm. (4)

Ndls. from alc.; eas. sol. alc., ether.

[For prepn. from toluene (1:7405) + chloroacetyl chloride (3:5235) + AlCl<sub>3</sub> see (2) (3); from toluene + chloroacetic acid anhydride (3:0730) + AlCl<sub>3</sub> (46-59% yield) see (4).]

C on oxidn. with alk. KMnO<sub>4</sub> gives terephthalic ac. (1:0910) (2).

 $\bar{C}$  with NaI in acetone gives p-methylphenacyl iodide, ndls. from alc., m.p. 42-43° (11).

C refluxed with alc. KOAc yields (2) p-methylphenacyl acetate [Beil. VIII-113], ndls from alc., m.p. 83-83.5° (2), 85-86° (1).

 $\bar{C}$  dislyd. in alc. warmed at 60° with Na<sub>2</sub>S.9H<sub>2</sub>O dislyd. in aq. gives (5) (73% yield (6)) bis-(p-methylphenacyl)sulfide, pale yel. ndls. from alc., m.p. 88° (5); 88.8-89.3° (6). [For detn. of  $\bar{C}$  by titration of residual chloride ion from this reaction see (5).]

[For reactions of  $\bar{C}$  with phenol + KOH + Cu see (7); with phenyl-p-bromophenyl-, p-nitrophenyl-, o-tolyl-, and p-tolyl-hydrazines see (5); with Br<sub>2</sub> see (8); with KCN or KSCN see (9); with alc. NaOEt see (10).]

3:1130 (1) von Auwers, Ber. 39, 3761 (1906). (2) Collet, Bull. soc. chim. (3) 17, 507-508 (1897). (3) Ryan, Ber. 31, 2132 (1898). (4) Noller, Adams, J. Am. Chem. Soc. 46, 1893-1894 (1924). (5) Hoogeveen, Rec. trav. chim. 50, 674-677 (1931). (6) Chrzaszc-Zewska, Chwalinski, Roczniki Chem. 8, 432-443 (1928); Cent. 1929, I 511; C. A. 23, 1629 (1929). (7) Sabetay, Bull. soc. chim. (4) 45, 537 (1929). (8) Rabcewicz-Zubkowski, Roczniki Chem. 10, 541-544 (1930); Cent. 1930, II 3273. (9) Rabcewicz-Zubkowski, Kaflinska, Roczniki Chem. 10, 555-569 (1930); Cent. 1930, II 3274. (10) Almström, Ber. 47, 848-849 (1914).

(11) Jacobs, Heidelberger, J. Biol. Chem. 21, 456 (1915).



Ndls. from alc. (4). — Very eas. sol. alc., ether, CHCl<sub>3</sub>, C<sub>6</sub>H<sub>6</sub>, CS<sub>2</sub>, AcOH (4). — Eas. volatile with steam (4). — Sol. in conc. H<sub>2</sub>SO<sub>4</sub> with olive-yel. color; repptd. in cryst. form on dilution (4) (8).

[For prepn. of  $\bar{C}$  from benzaldehyde (1:0195) by chlorination in presence of SbCl<sub>5</sub> + I<sub>2</sub> see (5) (1) (9); from 2,5-dichlorotoluene (3:6245) by chlorination to 2,5-dichlorobenzal (di)chloride (3:0490) (m.p. 42°) and hydrolysis of the latter with CaCO<sub>3</sub> + H<sub>2</sub>O see (1); from 5-nitro-2-chlorobenzaldehyde via reduction to 5-amino-2-chlorobenzaldehyde followed by diazotization + use of CuCl see (6).]

 $\bar{C}$  with satd. aq. NaHSO<sub>3</sub> soln. yields a cpd.,  $\bar{C}$ .NaHSO<sub>3</sub> (5), ndls. fairly eas. sol. aq. but dissociating on warming into  $\bar{C}$  + aq. (5).

 $\bar{C}$  on oxidn. with KMnO<sub>4</sub> (2) (4) yields 2,5-dichlorobenzoic ac. (3:4340), m.p. 152° (2), 152-153° (4). —  $\bar{C}$  with 50% aq. KOH (5) (1) (6) undergoes Cannizzaro reactn. giving (90% yield (6)) 2,5-dichlorobenzyl alc., cryst. from C<sub>6</sub>H<sub>6</sub>, m.p. 80° (1) (6), and (84% yield (7)) 2,5-dichlorobenzoic ac. (3:4340), cryst. from aq., m.p. 155° (5) (7). —  $\bar{C}$  on reductn. with 4% Na/Hg in alc. yields (1) 2,5-dichlorobenzyl alc., m.p. 80° (1).

Č with PCl<sub>5</sub> (3) gives (78% yield (3)) 2,5-dichlorobenzal (di)chloride (3:0490), b.p. 118-120° at 14 mm., m.p. 42° (8), 43° (3).

C on mononitration as specified (5) gives (100% yield (9)) a mixt. of two isomers; by recrystallization from MeOH (9) or EtOH (5) this mixt gives (62% yield (9)) 2,5-dichloro-6-nitrobenzaldehyde, lfts. or ndls., m.p. 137° (5); the other more soluble isomer is 2,5-dichloro-3-nitrobenzaldehyde (10), m.p. 66.5-67° (5). [The latter yields a phenylhydrazone, or. ndls., m.p. 171°, a p-nitrophenylhydrazone, deep or. ndls., m.p. 290-292° dec., and on oxidn. with alk. KMnO<sub>4</sub> yields 2,5-dichloro-3-nitrobenzoic ac., colorless ndls. from AcOH, m.p. 220° (10).]

[For conversion of Č to 2,5-dichlorostyrene (12) (13) via reaction with MeMgX giving (83% yield (12)) 2,5-dichlorophenyl-methyl-carbinol and dehydration of latter with KHSO<sub>4</sub> (37% yield (12)) see indic. refs.]

Č htd. with NaOAc + Ac<sub>2</sub>O for 8 hrs. at 180-200° gives (78% yield (11)) 2,5-dichlorocinnamic ac., colorless cryst. from dil. alc. or from AcOH, m.p. 194.5° cor. (11).

Č in alc. boiled a few minutes with aniline (1 mole) gives (5) 2,5-dichlorobenzal anil, lfts. from alc., m.p. 71.5-72° (5).

- 2.5-Dichlorobenzaldoxime: ndls. from dil. alc., m.p. 127.5-128° (5).
- 2,5-Dichlorobenzaldehyde phenylhydrazone: cryst. from alc., m.p. 104-105° (5).
- --- 2,5-Dichlorobenzaldehyde p-nitrophenylhydrazone: unrecorded.
- 2.5-Dichlorobenzaldehyde 2.4-dinitrophenylhydrazone: unrecorded.
- 2,5-Dichlorobenzaldehyde semicarbazone: unrecorded.

3:1150 TRICHLOROACETIC ACID Cl<sub>3</sub>C—COOH

3:1145 (1) de Crauw, Rec. trav. chim. 56, 773-774 (1931). (2) Gnehm, Ber. 17, 753 (1884). (3) Asinger, Lock, Monatsh. 62, 336-337 (1933). (4) Erdmann, Schwechten, Ann. 260, 70-72 (1890). (5) Gnehm, Banziget, Ber. 29, 875-876 (1896), Ann. 296, 62-80 (1897). (6) Erdmann, Ann. 272, 154-156 (1892). (7) Lock, Ber. 66, 1531 (1933). (8) Gnehm, Schule, Ann. 299, 359-361 (1898). (9) Lock, Ber. 68, 1508-1509 (1935). (10) Hodgson, Beard, J. Chem. Soc. 1927, 2381.

(11) Bock, Lock, Schmidt, Monatsh. 64, 407 (1934). (12) Brooks, J. Am. Chem. Soc. 66, 1297 (1944). (13) Michalek, Clark, Chem. & Eng. News 22, 1559-1563 (1944).

C<sub>2</sub>HO<sub>2</sub>Cl<sub>3</sub>

Beil. II - 206

```
II_{1}-(92)
                                                                                  II_{2}-(196)
M.P.
                         B.P.
                                                                 D_4^{125} = 1.5082 (9)
59.4°
               (1)
                         197.55°
                                         at 760 mm. (25) (26)
                                                                 D_4^{\tilde{1}00} = 1.5451 (9)
59.2°
               (2) (5)
                         196-197°
                                         cor.
                                                      (27)
                                                                  D_4^{75} = 1.5829 (9)
59.10°
               (3)
                         196.5°
                                                       (3)
                                                                  D_4^{\hat{6}08} = 1.6030 (31)
58.9°
               (5)
                         196°
                                         at 760 mm. (28)
58.7°
                         195.5°
                                                                      n_{\rm D}^{60.8} = 1.4603 (31)
               (5)
                                         at 765 mm. (9)
                                                                  D_4^{25} = 1.62
58.6°
               (5)
                         195.0-195.5° at 754 mm. (20)
58.5°
               (4) (5)
                         195°
                                                                 [For D_4^t over temp.
                                                      (24)
58.3°
               (5)
                         194.1-194.7°
                                                      (29)
                                                                 range 80.2°-196° see
58.1°
               (5)
                                                                 (9).]
58°
               (6)
                         141-142°
                                         at 25 mm. (30)
57.9°
              (5)(7)
                         115°
                                         at 22 mm. (19)
57.8°
               (5)
                         107°
                                         at 21 mm. (9)
57.6°
               (8)
57.5°
              (5)(9)
57.4°
             (11)
57.3°
              (7) (10)
             (11) (74)
57.2°
              (5) (12)
57°
             (13) (14)
             (15) (16) (17) (18) (19)
             (20) (78)
56.7-56.8° (21)
```

[See also chloroacetic acid (3:1370) and dichloroacetic acid (3:6208).]

56.3° cor.

55°

(22)

(23) (24)

#### MISCELLANEOUS PHYSICAL PROPERTIES OF C

#### POLYMORPHISM OF C

Note that unlike chloroacetic acid (3:1370)  $\bar{C}$  does not exhibit polymorphism [however, for a possible unstable form melting about 50° see (10)].

#### CRYOSCOPIC CONSTANT OF C

[Molal f.p. constant for  $\tilde{C}$  is 12.07° (for 1000 g.  $\tilde{C}$ ) (32); for use of  $\tilde{C}$  as cryoscopic solvent see (17).]

#### Association of C

[For studies on extent of association of  $\tilde{C}$  in vapor as function of temp. (28), in  $C_6H_6$  soln. (33) (34), in liq. HF (35) (36), in phenol (37), or in p-chlorotoluene (3:8287) (42), see indic. refs.]

#### HEAT OF COMBUSTION OF C

[For studies on heat of combustion of  $\bar{C}$  see (38) (39) (40) (41).]

#### EXCHANGE REACTIONS

[For study of behavior of  $\bar{C}$  with  $H_2O^{18}$  see (43).]

#### Adsorption of C by Various Adsorbents

[For studies on adsorption of  $\bar{C}$  from aqueous solns. by various forms of carbon (44) (45) (46) (47) (48) (49), by silica gel (46), by filter paper (50), by hide-powder (51), by viscose (52), by synthetic resins (53), by freshly pptd. Fe(OH)<sub>3</sub> (54), by metastannic acid (55), see indic. refs.]

[For studies on adsorption of C from non-aqueous solvents by wood charcoal (56), or from aq. alc. by charcoal (57), see indic. refs.]

#### DISTRIBUTION OF C BETWEEN SOLVENTS

[For data on distribution of  $\bar{C}$  between aq. and ether at 25° (58) (59); between aq. and amylene at 22° (60) cf. (61); between aq. and  $C_6H_6$  (60) (61) (62) cf. (63); between aq. and toluene at 25° (64); between aq and isopropylbenzene (cumene) at 25° (64); between aq. and n-AmOH at 25° (64); between aq and iso-AmOH at 25° (64); between aq and olive oil at 25° and 37° (65), see indic refs.]

[For data on distribution of C between aq. and nitrobenzene at 25° (62) (64), between aq. and o-nitrotoluene at 25° (64) (68), see indic. refs]

[For data on distribution of  $\tilde{C}$  between aq. and  $CHCl_3$  (3:5050) at 25° (62) (64); between aq. and  $CCl_4$  (3:5100) at 25° (62) (64); between aq. and EtBr at 25° (64); between aq. and MeI at 25° (64) (69), see indic. refs.]

[For data on distribution of  $\bar{C}$  between aq. and  $CS_2$  at 25° (62); between acetone and glycerol at 25° (66); for distribution of  $\bar{C}$  between aq. and mixtures of  $C_6H_6$  + nitrobenzene (67); between aq. and mixtures of  $C_6H_6$  +  $cH_6$  +  $cH_6$  +  $cH_6$  (67), see indic. refs.]

#### BINARY SYSTEMS CONTG. C

#### Azeotropic Systems

[ $\bar{\mathbf{C}}$  with pentachloroethane (3:5880) forms a const.-boilg. mixt., b.p. 161.8° at 760 mm., contg. 3.5 wt. %  $\bar{\mathbf{C}}$  (25);  $\bar{\mathbf{C}}$  with p-dichlorobenzene (3:0980) forms a const.-boilg. mixt., b.p. 174.0° at 760 mm., contg. about 12 wt. %  $\bar{\mathbf{C}}$  (26);  $\bar{\mathbf{C}}$  with o-bromotoluene forms a const.-boilg. mixt., b.p. 180.0° at 760 mm., contg. about 18 wt. %  $\bar{\mathbf{C}}$  (26).]

#### Other Physical Data on Binary Systems Contg. C

 $\tilde{\mathbf{C}}$  + aq. [ $\tilde{\mathbf{C}}$  is eas. sol. aq.; for study of hydration at  $-35^{\circ}$  see (70) cf. (34); for f.p./compn. data see (3); for data on  $D_{20}^{20}$  (31) and  $D_{25}^{25}$  (71) of aq. solns. see indic. refs.; for  $n_D^{18}$  (8),  $n_D^{20}$  (31) cf. (73) see indic. refs.]

 $\bar{C} + H_2SO_4$ . [For f p./compn. data and diagram (no compd. formed) see (10).]

 $\bar{C} + H_3PO_3$ . [For f p./compn. data and diagram (no compd. formed) see (12).]

 $\tilde{\mathbf{C}}$  + AcOH (1:1010). [For f.p./compn. data (no epd.) (74),  $D_4^{25}$  (2), viscosity (2), and conductivity (1) see indic refs.]

 $\ddot{\mathbf{C}}$  + chloroacetic acid (3:1370). [For f.p./compn. data (74), eutectic, m.p. 17.5°, contg. 51.5 mole %  $\ddot{\mathbf{C}}$  (75), see indic. refs.]

 $\bar{C}$  + dichloroacetic acid (3:6208). [For f.p./compn. data (74), eutectic, m.p. -11.0°, contg. 36 mole %  $\bar{C}$  (75), see indic. refs.]

 $\ddot{\mathbf{C}}$  + miscellaneous cpds. of Order 1. [For f.p./compn. data on following systems see indic. refs.]

 $\bar{C}$  with hydrocarbons:  $\bar{C} + C_6 II_6$  (1:7400) (5);  $\bar{C}$  + camphene (76).

 $\vec{C}$  with alcohols:  $\vec{C}$  + EtOH (1:6130) (14);  $\vec{C}$  + ter-BuOH (1:6140) (14);  $\vec{C}$  + cetyl alc. (1:5945) (14);  $\vec{C}$  + d-borneol (1:5990) (14);  $\vec{C}$  + l-menthol (1:5940) (14);  $\vec{C}$  + pinacol (1:5805) (14);  $\vec{C}$  + meso-erythritol (1:5825) (6);  $\vec{C}$  + d-manntol (1:5830) (14).

 $\bar{C}$  with phenols:  $\bar{C}$  + phenol (1:1420) (14) (11);  $\bar{C}$  + o-cresol (1:1400) (11);  $\bar{C}$  + m-cresol (1:1730) (11);  $\bar{C}$  + p-cresol (1:1410) (11);  $\bar{C}$  + quaiacol (1:1405) (14);  $\bar{C}$  + thymol (1:1430) (11);  $\bar{C}$  +  $\alpha$ -naphthol (1:1500) (11);  $\bar{C}$  +  $\beta$ -naphthol (1:1540) (11);  $\bar{C}$  + hydroquinone (1:1590) (14)

 $\bar{C}$  with aldehydes:  $\bar{C}$  + benzaldehyde (1:0195) (7);  $\bar{C}$  + salicylaldehyde (1:0205) (7);  $\bar{C}$  + m-hydroxybenzaldehyde (1:0055) (7);  $\bar{C}$  + p-hydroxybenzaldehyde (1:0060) (7);  $\bar{C}$  + p-anisaldehyde (1:0240) (7);  $\bar{C}$  + vanillin (1:0050) (7);  $\bar{C}$  + p-peronal (1:0010) (7).

 $\bar{C}$  with ketones:  $\bar{C}$  + acetophenone (1:5515) (7);  $\bar{C}$  + benzophenone (1.5150) (7);  $\bar{C}$  + p-methoxybenzophenone (1:5170) (7);  $\bar{C}$  + benzil (1:9015) (7);  $\bar{C}$  + dibenzalacetone (1:9024)

(7);  $\bar{C}$  + benzoquinone-1,4 (1:9025) (7).  $\bar{C}$  with acids:  $\bar{C}$  + acetrc acid (1:1010) (74);  $\bar{C}$  + benzoic acid (1:0715) (74);  $\bar{C}$  + o-toluic acid (1:0690) (74);  $\bar{C}$  + m-toluic acid (1:0705) (74);  $\bar{C}$  + p-toluic acid (1:0795) (74);  $\bar{C}$  + phenylacetic acid (1:0665) (74);  $\bar{C}$  + cinnamic acid (1:0735) (74);  $\bar{C}$  + crotonic acid (1:0425) (74).

 $\bar{C}$  with esters:  $\bar{C}$  + EtOAc (1:3015) (5);  $\bar{C}$  +  $\alpha$ -naphthyl acetate (1:2124) (5);  $\bar{C}$  +  $\beta$ -naphthyl acetate (1:2273) (5);  $\bar{C}$  + methyl benzoate (1:3586) (5);  $\bar{C}$  + ethyl benzoate (1:3721) (5);  $\bar{C}$  + benzyl benzoate (1:4422) (5);  $\bar{C}$  + phenyl benzoate (1:2257) (5);  $\bar{C}$  + methyl cinnamate (1:2090) (5);  $\bar{C}$  + phenyl salicylate ("Salol") (1:1415) (5); various others (5).

 $\bar{C}$  with ethers:  $\bar{C}$  + duethyl ether (1:6110) (77);  $\bar{C}$  + veratrole (1:7560) (14)

 $\tilde{\mathbf{C}}$  + compounds of Order 2.  $\tilde{\mathbf{C}}$  + o-nutrophenol (11);  $\tilde{\mathbf{C}}$  + m-nitrophenol (11);  $\tilde{\mathbf{C}}$  + p-nitrophenol (11);  $\tilde{\mathbf{C}}$  + o-nutrobenzaldehyde (7);  $\tilde{\mathbf{C}}$  + m-nitrobenzaldehyde (7);  $\tilde{\mathbf{C}}$  + nutrophenol (7);  $\tilde{\mathbf{C}}$  + azobenzene (78);  $\tilde{\mathbf{C}}$  + ethyl carbamate (urethane) (16);  $\tilde{\mathbf{C}}$  + urea (78A).

#### BIOCHEMICAL ASPECTS OF C

[For study of toxicity of  $\bar{C}$  see (79); for study of bactericidal effect see (80) (81).]

#### PREPARATION OF C

From chloral (anhydrous). [For prepn. of  $\bar{C}$  from chloral (3:5210) by oxidn. with fumg. HNO<sub>3</sub> (82) (83) (84), with HNO<sub>2</sub> (85), with NO<sub>2</sub> at 40-60° (70% yield (86)), or with aq. chlorates + cat. see (312); for formn. of  $\bar{C}$  from chloral as by prod. of oxidn. with O<sub>2</sub> see (23).]

From chloral hydrate. [For prepn. of  $\tilde{C}$  from chloral hydrate (3:1270) by oxidn. with fumg. HNO<sub>3</sub> (63% yield (82)) (85), with KMnO<sub>4</sub> (88), with KClO<sub>3</sub> (89), with Ca(OCl)<sub>2</sub> (15), or with an chlorates + cat. (312) see indic. refs.]

From acetic acid. [For formn. (first discovery) of  $\bar{C}$  from acetic acid (1:1010) by chlorination with  $Cl_2$  in sunlight see (90).]

From tetrachloroethylene. [For form. of  $\bar{C}$  from tetrachloroethylene (3:5460) by stdg. in aq. in light for 4 months see (91) cf. (92); for many other methods see text of tetrachloroethylene (3:5460) under oxidation.]

From miscellaneous sources. [For form. of  $\bar{C}$  from pentachloroethyl chloroformate [Beil. III-13, III<sub>I</sub>-(6)] with aq. on htg. (93), but yield is small (94) owing to other modes of reaction (94); from pentachloroethyl trichloroacetate [Beil. II-210] with aq. (95); from trichloroacetyl chloride (3:5420) (96) or from trichloroacetic acid anhydride (3:6575) (97) (98) with aq.; from  $\beta,\beta,\beta$ -trichloroethyl alcohol (3:5775) by oxidn. with fumg. HNO<sub>3</sub> (210), see indic. refs.]

#### CHEMICAL BEHAVIOR OF C

#### Pyrolysis of C

(See also below under decarboxylation.) Pure  $\bar{\bf C}$  shows no tendency to decompose at its b.p. (99). — [However,  $\bar{\bf C}$  in presence of pumice begins to decompose about 180° giving (99) HCl, COCl<sub>2</sub> (3:5000), CO + CO<sub>2</sub>. —  $\bar{\bf C}$  in presence of ThO<sub>2</sub> begins to decompose at 160–165° giving (99) the same products, although  $\bar{\bf C}$  in presence of ThO<sub>2</sub> above 210° (100) or in presence of kaolin above 230° (100) gives CHCl<sub>3</sub> (3:5050), tetrachloroethylene (3:5460), hexachloroethane (3:4835), HCl, CO + CO<sub>2</sub>. —  $\bar{\bf C}$  in presence of animal charcoal at 135° gives (99) CHCl<sub>3</sub> (3:5050) + CO<sub>2</sub>, but at 200–300° these are accompanied (100) by a little tetrachloroethylene (3:5460), hexachloroethane (3:4835), HCl, and CO. —  $\bar{\bf C}$  at 300° in s.t. for 4 hrs. gives (101) trichloroacetyl chloride (3:5420), CO, CO<sub>2</sub> + HCl.

#### REDUCTION OF C

[ $\bar{C}$  on partial reduction with Zn + aq. (102), with Cu pwdr. in aq. (103), with Cu pwdr. in C<sub>6</sub>H<sub>6</sub> + aniline (104) cf. (105), or  $\bar{C}$  on electrolytic reduction (106) gives (yields: 80% (103) (106), 75-85% (104)) dichloroacetic acid (3:6208).]

[C on complete reduction with H1 at 100° (87), or in aq. soln. with K/Hg (107) (84), or by electrolytic reduction with Pt, Cu, or Pb electrodes (108) gives acetic acid (1:1010).]

 $[\bar{C} \text{ in aq. alc. KOH with H}_2/Pd \text{ gives up all its chlorine as HCl (109) presumably yielding AcOH (1:1010).]}$ 

#### REACTIONS INVOLVING THE —COOH GROUP OF C

#### Decarboxulation of $\bar{C}$

 $\bar{C}$  in aq., in aq. alkalies, or in aniline or other organic bases undergoes cleavage into CHCl<sub>3</sub> (3:5050) + CO<sub>2</sub>; for this decompn. presence of the trichloroacetate ion appears

necessary since in relatively nonbasic solvents it does not occur [e.g.,  $\bar{C}$  does not decompose at 25° in  $C_6H_6$  (110), toluene (111), CHCl<sub>3</sub> (110) (111), CCl<sub>4</sub> (110), CS<sub>2</sub> (110), isoamyl alc. (117), acetone (110), ether (110), ethyl acetate (117), ethyl benzoate (110), acetic acid (117), nitrobenzene (110), or 6 N H<sub>2</sub>SO<sub>4</sub> (117); in MeOH (111) and in EtOH (111) (112) the only reaction is esterification (see below)].

The decompn. of  $\bar{C}$  into CHCl<sub>3</sub> + CO<sub>2</sub> by boiling with aq. or aq. alk. has long been known (90) (113) (114) (115), and KCN behaves similarly (116). — [For studies on kinetics of decompn. of  $\bar{C}$  in aq. at various temps. see (4) (118) (119) (103) cf. (120); note that rate of decompn. is catalyzed by light (111) (119) (121) (122). — For studies of decompn. of aq. solns. of various salts (117) (123) (124) (125) and influence of light (126) (127) or of presence of various other inorganic salts (128) see indic. refs. — For studies of decompn. of  $\bar{C}$  in aqueous dioxane see (129). — Note that  $\bar{C}$  with Ca(OH)<sub>2</sub> on htg. gives CHCl<sub>3</sub> and that this reaction has been patented (134).]

[For study of decompn. of  $\bar{C}$  in aniline (117) (111) (130) (131) including influence of supersonic waves (132) see indic. refs.; for decompn. of  $\bar{C}$  in tertiary bases such as dimethylaniline see (133) but note in  $\bar{C}$  does not decompose in pyridine (111).]

[ $\overline{C}$  on htg. in resorcinol or cresol gives (135) CHCl<sub>3</sub> + CO<sub>2</sub>, but  $\overline{C}$  on htg. in phenol or thymol decomposes differently yielding (135) (136) phosgene (3:5000) + HCl + CO.]

[Note that, as a consequence of the decompn. of  $\bar{C}$  into CHCl<sub>3</sub> + CO<sub>2</sub>, it has been employed in Reimer-Tiemann types of condensation: e.g.,  $\bar{C}$  with phenol + aq. NaOH gives o-hydroxybenzaldehyde (1:0205) + p-hydroxybenzaldehyde (1:0060) (137) (138); many other phenols have also been studied (137) (138).]

#### Acid Strength of C

 $\bar{C}$  in aq. soln. behaves as an exceedingly strong monobasic acid; Neut. Eq. = 163.4 (found 164.6 (91)). — [Ionization constant of  $\bar{C}$  in aq. soln. at 25° is about 1.2 (139) cf. (140), but because of strength of  $\bar{C}$  and its tendency to decompn. (see above) no accurate value is available (143). — For discussion of resonance and acid strength of  $\bar{C}$  see (141) (142) (143). — For studies of electrical conductivity of  $\bar{C}$  in aq. solns. at various temps. see (144) (145) (146) (147) (30).]

[Studies of acid strength of  $\tilde{C}$  in nonaqueous solvents include the following: in EtOH (148) (149), in n-BuOH (150) (13), in ether (151), in CHCl<sub>3</sub> (151), in formamide (152), in C<sub>6</sub>H<sub>6</sub> (153), in chlorobenzene (154), or in dioxane (155). — For study of electrometric titration of  $\tilde{C}$  in C<sub>6</sub>H<sub>6</sub> (156), in ethylene glycol monomethyl ether ("methylcellosolve") (157), in anisole-n butyl alc. (157), see indic. refs. — For titration of  $\tilde{C}$  in Ac<sub>2</sub>O soln. with NaOAc see (158) cf. (310). — For study of behavior of  $\tilde{C}$  with indicators in C<sub>6</sub>H<sub>6</sub> soln. see (159) (160).]

#### Catalytic Effect of C on Various Reactions

The catalytic influence of  $\tilde{C}$  upon diversified types of chem. reactions has been extensively examined; although this matter cannot be recorded exhaustively, the following examples are cited.

[For studies on catalytic effect of  $\bar{C}$  upon the inversion of *l*-menthone to *d*-isomenthone in  $C_6H_6$  (161) (162) or in chlorobenzene (163); upon racemization of methyl-phenyl-acetophenone and of isobutyl-phenyl-acetophenone in various solvents (164); of isopulegone to pulegone in nonaqueous solvents (165); or on hydrogen disproportionation of *d*-limonene (311), see indic. refs.]

[For studies of catalytic effect of  $\bar{C}$  upon the hydrolysis of EtOAc (144) or of sucrose (166) (167) see indic. refs.]

[For studies of catalytic effect of C upon forms. of ether from EtOH (168); upon rate

of esterification of various org. acids in MeOH (169) or in EtOH (170); upon nitration of toluene (171) cf. (172); upon decompn. of ethyl diazoacetate in  $C_6H_6$  (162) or other solvents (173) (174) (175); upon decompn. of nitramide in 180-AmOH (176); upon rearr. of N-chloroacetanilide (177); upon rearr. of N-bromoacetanilide in chlorobenzene (178) (179) or in other solvents (179); upon rearr. of N-bromobenzanilide in chlorobenzene (180); upon chromate or perchlorate oxidn. of EtOH (181); upon addition of HBr to 3-methylbutene-1 (182), see indic. refs.

#### Salts of C

This topic cannot here be treated exhaustively but the following examples are cited. Salts with inorganic bases. [NH<sub>4</sub>Ā, prepn. (183); NH<sub>4</sub>Ā.Ĉ (184) (185); 2NH<sub>4</sub>Ā.5H<sub>2</sub>O (186) — Hydroxylamine salt, HONH<sub>3</sub>Ā, cryst. from dry ether by pptn. with lgr., m.p. 133-134° (187).]

[Li $\bar{A}$ ,  $n_D^{18}$  of aq. solns. (8), nonhygroscopic cpds. with betaine or pyridine betaine (188); Li $\bar{A}$ .2H<sub>2</sub>O (189), conductivity of aq. solns. (190). — Na $\bar{A}$  (198), effect of dry distillation (191), conductivity in aq. (190) (192), in dry MeOH (193), in dry EtOH (194);  $n_D^{18}$  of aq. solns. (8); Na $\bar{A}$ .3H<sub>2</sub>O (196). — K $\bar{A}$ .H<sub>2</sub>O (189) (198), solubility and decompn. (197); K $\bar{A}$ .C (184) (185).

[AgĀ, spar. sol. aq., darkens in air; on dry htg. decomposes above 80° (199) yielding (198) AgCl, CO, CO<sub>2</sub>, and trichloroacetic acid anhydride (3:6575); with boilg. aq. AgĀ yields (198) AgCl, CO, CO<sub>2</sub>, CHCl<sub>3</sub> (3:5050), and  $\bar{C}$ ; for behavior of AgĀ with I<sub>2</sub> in C<sub>6</sub>H<sub>6</sub> see (200). — HgĀ, ndls. from aq. in which it is spar. sol. (201) (202) (203) (209) (note that it soluble in C<sub>6</sub>H<sub>6</sub> (202)). — HgĀ<sub>2</sub>, attempts to prepare this mercuric salt have been unsuccessful (201) (204); aq. solns. of  $\bar{C}$  react with HgO long after theoretical amt. has been used (201), and CO, CO<sub>2</sub>, and CHCl<sub>3</sub> are also formed (205).]

[Mg $\bar{A}_2.4H_2O$  (189). — Ca $\bar{A}_2.6H_2O$  (196); Ca $\bar{A}_2.3I_2H_2O$ , cas. sol. (198). — Sr $\bar{A}_2.6H_2O$  (196). — Ba $\bar{A}_2.6H_2O$  (196); Ba $\bar{A}_2.2H_2O$  (206). — Pe $\bar{A}_2.2H_2O$  (207) (206) — Cd $\bar{A}_2$  (208); Cd $\bar{A}_2.1I_2H_2O$  (217). — Zn $\bar{A}_2.6H_2O$  (209). — Pb $\bar{A}_2.I_2H_2O$  (210); Pb $\bar{A}_2.H_2O$  (83). — Cu $\bar{A}_2.6H_2O$  (83) (could not be confirmed (201) (211)); Cu $\bar{A}_2.4H_2O$  (211); Cu $\bar{A}_2.3H_2O$  (201) (complexes with benzylamine (212)); Cu $\bar{A}_2.2H_2O$  (complexes with various amines (213)); Cu $\bar{A}_2$  (201) (complexes with various amines (213)); electrolysis (215), electrometric titration (216).]

[Mn $\bar{A}_2$ .3½ H<sub>2</sub>O (217). — Co $\bar{A}_2$ .4H<sub>2</sub>O (218) (complexes with various amines (218) (219)); Co $\bar{A}_2$ .3½H<sub>2</sub>O (217). — Ni $\bar{A}_2$ .4H<sub>2</sub>O (189) (218) (complexes with NH<sub>3</sub> (211) and various amines (220)).]

Salts with organic bases. [Antline trichloroacetate, from  $\bar{\mathbb{C}}$  (1 mole) + aniline (1 mole) in  $C_6H_6$  (223) (224), or without solvent (225), or in aq. (226); this salt has no true m.p. (224) although various values ranging from 145° (226) to 163° (225) have been reported. — Note that, although action of heat would be expected to cause loss of  $H_2O$  giving  $\omega,\omega,\omega$ -trichloroacetanilide (see below), no actual study has been reported. — Note that  $\bar{\mathbb{C}}$  + aniline + Cu powder in  $C_6H_6$  soln. gives dichloroacetic acid (3:6208) (75–85% yield (223) cf. (227)). — Note finally the existence of an acid salt of  $\bar{\mathbb{C}}$  with aniline, m.p. 107–108° (224), from  $\bar{\mathbb{C}}$  (2 moles) with aniline (1 mole). — o-Toluidine trichloroacetate; the prepn. of this salt, m.p. 167–168° dec. (225), has been claimed (225) but could not be confirmed (224) (228); no other record of it can be found. — p-Toluidine trichloroacetate; the prepn. of this salt, m.p. 135° dec. (225), has been claimed (225) but could not be confirmed (224) (228); no other record of it can be found. — N-Methylandine trichloroacetate: m.p. 97° (228).]

 $\alpha$ -Phenylethylamine trichloroacetate: unreported. — Benzylamine trichloroacetate: from  $\ddot{\mathbf{C}}$  + benzylamine in EtOAc, m.p. 118.8-119.8° u.c., 120.3-121.3° cor. (229) (note that this

m.p. is practically identical with corresp. benzylamine salt of chloroacetic acid (3:1370) q.v.). — Piperazine bis-(trichloroacetate), m.p. 121.0-121.5° cor. (230). — Semicarbazide trichloroacetate: m.p. 154° dec. (231).

[Phenylhydrazine trichloroacetate from  $\bar{C}$  with phenylhydrazine in  $C_6H_6$ , mp. 123° (232). (Note that this product is definitely the salt since on titration with alk it gives Neut. Eq. 204.7 as against a calcd value of 202 6 (232); this salt upon htg. would be expected to lose  $H_2O$  giving trichloroacetophenylhydrazide, but this product is unreported.)]

[For salts of  $\bar{C}$  with o-, m-, and p-phenylenediamines see (233).]

#### Behavior of $\bar{C}$ with Metals

[ $\bar{C}$  with aq. + Zn wool (102), or  $\bar{C}$  with Cu powder in aq. or C<sub>6</sub>H<sub>6</sub> (223) (103) (227), gives dichloroacetic acid (3:6208) q v —  $\bar{C}$  in conc. NH<sub>4</sub>OH dissolves Cu, Zn, or Cd with strong evoln, of ht. but does not attack Ag (234) ]

#### Esterification of $\bar{C}$

This book includes the following esters of C under their own individual numbers, q.v.: methyl trichloroacetate (3:5800), ethyl trichloroacetate (3:5950), n-propyl trichloroacetate (3:5975), n-butyl trichloroacetate (3:6315), isobutyl trichloroacetate (3:6140), sec-butyl trichloroacetate (3:9372), ter-butyl trichloroacetate (3:0138), n-amyl trichloroacetate (3:6560), isoamyl trichloroacetate (3:6490), ter-amyl trichloroacetate (3:6510), and  $\beta$ -methoxyethyl trichloroacetate (3:9250).

[For studies on esterification of  $\bar{C}$  under various conditions with MeOH (1:6120) (235) (236), with EtOH (1:6130) (235) (237) (238) (239) (240) (241) (242) (243) (244) (20), with n-propyl alc. (1:6150) (245), with isopropyl alc. (1:6135) (245) (246) (238), with n-butyl alc. (1:6180) (247) (248), with isobutyl alc. (1:6165) (247) (248) (83), with sec -butyl alc. (1:6155) (247), with ter-butyl alc. (1:6140) (238), with n-amyl alc. (1:6205) (248), with pentanol-2 (1:6185) (248), with pentanol-3 (1:6175) (248), with ter-amyl alc. (1:6160) (248), with neopentyl alc. (1:5812) (249), with methyl-vinyl-carbinol (250), with benzyl alc. (1:6480) (238) (251), with diphenylcarbinol (1:5960) (238), with triphenylcarbinol (1:5985) (238), see indic. refs [

[For study of equilibrium of transesterification with MeOAc (1:3005) or with EtOAc (1:3015) at 30° see (21).]

#### Addition Reactions of $\bar{C}$ with Organic Compounds

Addition to unsaturated linkages.  $\bar{C}$  in pres. of suitable catalysts adds to unsatd, linkages giving the corresp. esters [e.g.,  $\bar{C}$  with propylene + BF<sub>3</sub> gives (48.8% yield (246)) isopropyl trichloroacetate (3:5975);  $\bar{C}$  with trimethylethylene (2-methylbutene-2) (1:8220) gives both *ter*-amyl trichloroacetate (3:6185) and methyl-isopropyl-carbinyl trichloroacetate (for extensive studies of this reaction see (252) (253) (254) (255) (256) (257) (258) (259) (260))].

[ $\bar{C}$  with acetylene + HgSO<sub>4</sub> at 60-80° gives (261) vinyl trichloroacetate [Beil. II<sub>1</sub>-(94)], b.p. 149° at 760 mm.]

Addition to epoxy compounds. [ $\bar{C}$  with ethylene oxide (1:6105) in cold gives (28% yield (262)) (263) (264) ethylene glycol (mono)trichloroacetate ( $\beta$ -hydroxyethyl trichloroacetate) (3:9099). — For behavior of  $\bar{C}$  with 3-chloro-1,2-epoxypropane (epichlorohydrin) (3:5358) see (264).]

#### Conversion of C to Corresponding Acid Halides

[The corresponding trichloroacetyl fluoride is unreported.]

[ $\bar{C}$  with PCl<sub>3</sub> (266) (268) (269), with PCl<sub>3</sub> + ZnCl<sub>2</sub> (25% yield (270)), with SOCl<sub>2</sub> (yield 12% (270), 30% (271)) in C<sub>6</sub>H<sub>6</sub> (60% yield (272)) or in pyridine (90% yield (273)), with P<sub>2</sub>O<sub>5</sub> + HCl gas (274), with benzotrichloride (3·6540) + ZnCl<sub>2</sub> at 100° (77% yield (275)), or with benzoyl chloride (3:6240) (51-56% yield (276)) gives trichloroacetyl chloride (3:5420). — Note also that  $\bar{C}$  on pyrolysis at 300° decomposes (100) with formn. of CO<sub>2</sub> + CO<sub>2</sub> + trichloroacetyl chloride (3:5420) + HCl.]

[ $\bar{C}$  with PBr<sub>3</sub> gives (265) (266) trichloroacetyl bromide, b.p. 143° (266), 139.5-140° (265); this product is also obtd. from trichloroacetyl chloride (3:5420) with HBr gas at -5° (70% yield (267)).]

[ $\bar{C}$  with PI<sub>3</sub> (266) (or better trichloroacetyl chloride (3:5420) with HI at  $-5^{\circ}$  (277)) gives (71.5% yield (277)) trichloroacetyl todide, b.p. 74 0-74 2° at 30 mm. (277).]

#### Conversion of $\bar{C}$ to Corresponding Auhydride

[ $\bar{C}$  with P<sub>2</sub>O<sub>5</sub> at 200–215° (278) (279), or Na $\bar{A}$  with SO<sub>2</sub>Cl<sub>2</sub> (or SO<sub>2</sub> + Cl<sub>2</sub>) in EtOAc (280), or  $\bar{C}$  with trichloroacetyl chloride (3·5420) and PCl<sub>3</sub> (281), P<sub>2</sub>O<sub>5</sub> (282), or AlCl<sub>3</sub> (283) gives (yields. 90–95% (280), 80% (278)) trichloroacetic acid anhydride (3:6575).]

- P Color test with NH<sub>4</sub>OH/Cu<sub>2</sub>Cl<sub>2</sub> reagent.  $\bar{C}$  on shaking in filled stoppered bottle with conc. aq. NH<sub>4</sub>OH cont<sub>5</sub> Cu<sub>2</sub>Cl<sub>2</sub> gives dark blue color instantly (284); note, however, that very similar behavior is shown by dichloroacetic acid (3:6208).
- Methyl trichloroacetate: oil, b p 153° (see 3.5800).
- Ethyl trichloroacetate: oil, b p. 167° (see 3:5950).
- Phenyl trichloroacetate: oil, b.p. 254-255° dec. (135). [From trichloroacetyl chloride (3:5420) with sodium phenolate in pet other (135).] [Note that the isomeric 4-(trichloroacetyl)phenol, m.p. 99-0-99-5° has been prepd. indirectly from trichloroacetonitile ¬- phenol + AlCl<sub>3</sub> (285)]
- --- o-Tolyl trichloroacetate: unreported. [Note, however, that the isomeric 4-(tri-chloroacetyl)-2-methylphenol, mp. 90-91°, has been obtd. indirectly (285).]
- —— m-Tolyl trichloroacetate: unreported. [Note, however, that both the isomers, viz., 4-(trichloroacetyl)-3-methylphenol, mp. 83-87°, and 6-(trichloroacetyl)-3-methylphenol, oil, have been obtd. indirectly (285)]
- p-Tolyl trichloroacetate: mp 68 69° (285) [Obtd only by indirect means (285).] Benzyl trichloroacetate: oil, b p 178 5° at 50 mm (286), 448-149° at 15 mm. (264),  $D_4^4 = 1.3887$  (286),  $n_5^{18.8} = 1.5288$  (286). [From  $\bar{\text{C}}$  with benzyl alc. (1:6480) + HCl gas at 100° (286), or from trichloroacetyl chloride (3:5420) with benzyl alc
- (1.6480) ] p-Nitrobenzyl trichloroacetate. mp about 80° cf. (287). [Unsuitable as ① (287).]
- Phenacyl trichloroacetate: unreported.
- --- p-Chlorophenacyl trichloroacetate: unreported.
- --- p-Bromophenacyl trichloroacetate: unreported.
- —— p-Iodophenacyl trichloroacetate: unreported.
- --- p-Phenylphenacyl trichloroacetate: unreported.
- ⑤ S-Benzylthiuronium trichloroacetate: mp 148-149° (288). [Note that for corresp. salts from chloroacetic acid (3:1370) and from dichloroacetic acid (3:6208) m.p. values are respectively 159-160° and 178-179° (288) ]
- S-(p-Chlorobenzyl)thiuronium trichloroacetate: m.p. 148° cor. (289). [From C
   (as NaA) with S-(p-chlorobenzyl)thiuronium chloride (289) (m.p. 197°) in alc. (289);
   note that corresp. deriv. of chloroacetic acid (3:1370) has m.p. 158° cor. (289).]

- S-(p-Bromobenzyl)thiuronium trichloroacetate: m.p. 146° cor. (290). [From C (as NaA) with S-(p-bromobenzyl)thiuronium bromide (290) (m.p. 213°) in alc. (290); note that corresp. deriv. of chloroacetic acid (3:1370) has m.p. 154° cor. (290).]
- Φ ω,ω,ω-Trichloroacetamide: m p. 142° (291), 141° (91) (235) (292), 140.5° (293), 137° (294), 136° (300). [From ethyl trichloroacetate (3.5950) with conc. aq. NH<sub>4</sub>OH in cold (293) (295) (299) (300), from trichloroacetyl chloride (3.5420) with dry NH<sub>3</sub> gas in C<sub>6</sub>H<sub>6</sub> (293), from trichloroacetonitrile with alk H<sub>2</sub>O<sub>2</sub> (294), and also from other sources ] [For studies on taste of this amide see (296); note also that trichloroacetamide with P<sub>2</sub>O<sub>5</sub> on htg gives (85% yield (297)) trichloroacetonitrile, b.p. 83-84° (300).]
- Φ ω,ω,ω-Trichloroacetanilide: m p. 95-97° (302), 94-95° (304), 94° (301) (303) (305).
  [From C by conversion to trichloroacetyl chloride (3:5420) and reaction with aniline directly (301) or in dry ether (83), C<sub>6</sub>H<sub>6</sub> (302), or pyridine (303).]
- ω,ω,ω-Trichloroaceto-o-toluidide: m.p. 96° (305). [From ethyl trichloroacetate (3:5950) with o-CH<sub>3</sub>.C<sub>6</sub>H<sub>4</sub>.NH-MgI (305).]
- $\mathfrak{D}$   $\omega, \omega, \omega$ -Trichloroaceto-p-toluidide: m.p. 113° (306). [From  $\overline{\mathbf{C}}$  via conversion to trichloroacetyl chloride (3:5420) and reaction with p-toluidine (306).]
- ω,ω,ω-Trichloroacet-N-benzylamide: m p. 92.8-93.6° u.c. (307), 93-6-94 4° cor. (307), 90-91° (308). [From \(\tilde{\Color}\) by conversion to ethyl trichloroacetate (3:3950) and reaction with aq. benzylamine on shaking in cold (307) of (309); note, however, that the corresp. derives from chloroacetic acid (3:1370) have m p's of 93-0-93.6° cor. and 94.8-95.6° cor., respectively (307); also that simple salt of \(\tilde{\Color}\) with benzylamine has m.p. 120-3-121.3° cor. (229).]
- Kendall, Gross, J. Am Chem Soc. 43, 1429-1436 (1921) (2) Kendull, Brakeley, J. Am. Chem. Soc. 43, 1826 1834 (1921). (3) Pickering, J. Chem. Soc. 67, 675-684 (1895).
   Johnson, Moelwyn-Hughes, Proc. Roy. Soc. London A-175, 118-131 (1940). (5) Kendall, Booge, J. Am. Chem. Soc. 38, 1719-1733 (1916). (6) Puschin, Dezelic, Monatsh 60, 432 (1932).
   Kendall, Gibbons, J. Am. Chem. Soc. 37, 152-159 (1915). (8) Schremet, Z. physik Chem. 133, 423-424 (1928). (9) Jaeger, Z. anory. allyem. Chem. 101, 65 (1917) (10) Kendall, Carpenter, J. Am. Chem. Soc. 36, 2505 (1914).
- (11) Kendall, J. Am. Chem. Soc. 38, 1312-1316 (1916) (12) Redfield, King, J. Phys. Chem. 40, 921-922 (1936). (13) Wooten, Hammett, J. Am. Chem. Soc. 57, 2289-2296 (1935). (14) Puschin, Rikovski, Ann. 516, 286-295 (1935); Bull. soc. chim roy Youyoslav. 5, 123–134 (1934); Cent. 1936, I 2737; C.A. 29, 3650-3651 (1935). (15) Ssuknewitsch, Tschilingarjan, Ber. 68, 1215 (1935). (16) Puschin, Rikovsky, Monatsh. 60, 446 (1932). (17) Walden, Ric trav chim. 48, 880-884 (1929). (18) Rabinowitsch, Z. physik. Chem. 119, 65 (1926) (19) Walden, Z. physik. Chem. 70, 577 (1910). (20) Sudborough, Lloyd, J. Chem. Soc. 75, 476 (1899). (21) Sudborough, Karve, J. Indian Inst. Sci. 5, 1-21 (1922), Cent. 1923, I 295, C.A. 17, 665
- (21) Sudborough, Karve, J. Indian Inst. Sci. 5, 1-21 (1922), Cent. 1923, 1 295, CA. 17, 665 (1923). (22) Winkler, Arch. Pharm. 266, 49 (1928). (23) Moureu, Dufraisse, Berchet, Bull. soc. chim. (4) 43, 949 (1928). (24) Clermont, Ann. chim. (6) 6, 135-139 (1885). (25) Lecat, Rec. trav. chim. 47, 17 (1928). (26) Lecat, Ann. soc. sci. Bruxelles 47, I 24, 154 (1927). (27) Perkin, J. Chem. Soc. 65, 422 (1894). (28) Landee, Johns, J. Am. Chem. Soc 63, 2892 (1941). (29) Kohrausch, Koppl, Pongratz, Z. physik. Chem. B-21, 255 (1933). (30) Mameli, Gazz. chim. ital. 41, I 309-311 (1911).
- (31) Hantzsch, Durigen, Z. physik. Chem. 136, 14 (1928). (32) Brand, Wirsing, Ber. 45, 1768 (1912). (33) LeFevre, Vine, J. Chem. Soc. 1938, 1795-1801. (34) Bell, Arnold, J. Chem. Soc. 1935, 1432-1435. (35) Fredenhagen, Cadenbach, Z. physik. Chem. A-164, 206 (1933). (36) Klatt, Z. anorg. allgem. Chem. 222, 294 (1935). (37) Robertson, J. Chem. Soc. 83, 1428 (1903). (38) Berthelot, Ann. chim. (6) 28, 136-137 (1893). (39) Berthelot, Matignon, Ann. chim. (6) 28, 567-571 (1893). (40) Schjamberg, Svensk. Kem. Tid. 44, 227-231 (1932), Cent. 1932, II 3685, C.A. 27, 3133 (1933).
- (41) Kharasch, J. Research Natl Bur. Standards 2, 418 (1929).
  (42) Bell, Baughan, Vaughan-Jackson, J. Chem. Soc. 1934, 1969-1972.
  (43) Cohn, Urey, J. Am. Chem. Soc. 69, 679-687 (1938).
  (44) Ockrent, J. Chem. Soc. 1932, 613-630.
  (45) Ockrent, J. Chem. Soc. 1932, 1864-1875.
  (46) Swearingen, Dickinson, J. Phys. Chem. 36, 534-545 (1932).
  (47) Sabaltschka, Pharm. Zig. 74, 382-384 (1929); Cent. 1929, I 2288, C.A. 23, 2627 (1929).
  (48) Namasivayan, J. Indian.

- Chem. Soc. 4, 449-458 (1927). (49) Kolthoff, Rec. trav. chim. 46, 557-558 (1927). (50) Makruschin, Kryloff, Kolloid-Z. 43, 388 (1927).
- (51) Kubelka, Taussig, Kollord-Berhefte 22, 150-190 (1926). (52) Brass, Frei, Kollord-Z. 45, 248 249 (1928). (53) S. S. Bhatnagar, A. N. Kapur, M. S. Bhatnagar, J. Indian Chem. Soc. 17, 367 (1940). (54) Sen, J. Phys. Chem. 31, 526 (1927). (55) Ghosh, J. Chem. Soc. 1928, 3035. (56) Bimolenko, Ginzburg, Collord J. (U.S.S.R.) 5, 263-270 (1939); Cent. 1939, II 3556; C.A. 33, 8469 (1939). (57) Griffin, Richardson, Robertson, J. Chem. Soc. 1928, 2705-2709. (58) Dermer, Markham, Trimble, J. Am. Chem. Soc. 63, 3524-3525 (1941). (59) Smith, J. Phys. Chem. 25, 610, 616, 624 (1921). (60) Nernst, Hohmann, Z. physik. Chem. 11, 370 (1893).
- (61) Schilow, Lepin, Z. physik. Chem. 101, 377-378 (1922). (62) Andreasov, Ukrainskii Khem. Zhur. 3, Sci. Pt., 463-465 (1928), Cent. 1929, II 550; C.A. 23, 3145 (1929). (63) von Georgievics, Monatsh. 36, 400-401 (1915), Z. physik. Chem. 90, 55 (1915). (64) Kolosovskii, Kulikov, Z. physik. Chem. A-169, 459-471 (1934). (65) Bodansky, Meigs, J. Phys. Chem. 36, 816 (1932). (66) Smith, J. Phys. Chem. 25, 734 (1921). (67) Andreasov, Trans. Inst. Chem. Kharkov Univ. 4, No. 13, 107-130 (1938); C.A. 34, 3156 (1940). (68) Kolosovskii, Kulikov, J. Gen. Chem. (U.S.S.R.) 4, 1370-1377 (1934), Cent. 1936, II 1511; C.A. 29, 3898 (1935). (69) Kolosovskii, Kulikov, J. Gen. Chem. (U.S.S.R.) 5, 63-68 (1935); Cent. 1936, II 2880; C.A. 29, 4652 (1935). (70) Colles, J. Chem. Soc. 89, 1253 (1906).
- (71) Drucker, Z. physik. Chem. 52, 652 (1905). (72) Zeechini, Gazz. chim. ital. 35, II 73-74 (1905). (73) Frivold, Ruud, Avhandl. Norske Videnskaps-Akad. Oslo Mat.-Naturv. Klasse 1932, No. 12, 1-19, Cent. 1933, I 1747; C.A. 27, 5619 (1933). (74) Kendall, J. Am. Chem. Soc. 36, 1722-1734 (1914). (75) "International Critical Tables," IV, 101 (1928). (76) Brooks, Humphrey, J. Am. Chem. Soc. 40, 845 (1918). (77) Tsakalotos, Guye, J. chim. phys. 8, 348 (1910). (78) Kiemann, Zechnei, Monatsh 46, 175-176 (1925). (78A) Puschin, Konig, Monatsh. 49, 75-76 (1928). (79) Woodward, Lange, Nelson, Calvery, J. Ind. Hyg. Toxicol. 23, 78-82 (1941). (80) Tetsumoto, J. Agr. Chem. Soc. Japan 12, 22-26 (1936), Cent. 1936, II 817; Japan. J. Expll Med. 15, 1-8 (1937), C.A. 31, 5010 (1937).
- (81) Sabalitschka, Durmann, Pharm. Ztg. 81, 335-337 (1936), Cent. 1936, II 504; C.A. 36, 3942 (1936).
  (82) Clermont, Ann. 161, 128 (1872); Compt. rend. 73, 113 (1871).
  (83) Judson, Ber. 3, 782-784 (1870).
  (84) Kolbe, Ann. 54, 183-185 (1845).
  (85) Wallach, Ber. 5, 256 (1872).
  (86) Khotinskn, Aleksandrova, Proc. Kharkov State Univ. 4, 59-61 (1936), C.A. 31, 6615 (1937).
  (87) Clermont, Ann. clam. (6) 6, 135-139 (1885).
  (88) Clermont, Ann. 166, 64 (1873); Compt. rand. 74, 1492 (1872).
  (89) Seubert, Ber. 18, 3336-3339 (1885).
  (90) Dumas, Ann. chim. (2) 73, 77-90 (1840); Ann. 32, 106-113 (1839).
- (91) Bailey, Hickson, J. Chem. Soc. 1941, 145.
  (92) Kolbe, Ann. 54, 182 (1845).
  (93) Cloez, Ann. chim. (3) 17, 300 (1846); Ann. 60, 260 (1846).
  (94) Muller, Ann. 258, 63-64 (1890).
  (95) Leblanc, Ann. chim. (3) 10, 205 (1844).
  (96) Malaguti, Ann. chim. (3) 16, 10 (1846); Ann. 56, 270 (1845).
  (97) Buckney, Thomsen, Ber. 10, 698-699 (1877).
  (98) Fichter, Fritsch, Muller, Helv. Chim. Acta. 6, 503-504 (1923).
  (99) Senderens, Compt. rend. 172, 155-157 (1921).
- (101) Engler, Steude, Ber. 26, 1444-1145 (1893). (102) Doughty, Lacoss, J. Am. Chem. Soc. 51, 852-855 (1929). (103) Doughty, Derge, J. Am. Chem. Soc. 53, 1594-1596 (1931). (104) Doughty, Black, J. Am. Chem. Soc. 47, 1091-1094 (1925). (105) Doughty, Freeman, J. Am. Chem. Soc. 44, 640-645 (1922). (106) Brand, Ger. 246,661, May 6, 1912, Cent. 1912, I 1742, C.A. 6, 2496 (1912). (107) Melsens, Ann. 42, 111-112 (1842). (108) Sandonnini, Borghello, Att. accad. Lancer 21, 30-35 (1935), C.A. 29, 4679 (1935). (109) Busch, Stove, Ber. 49, 1063-1071 (1916). (110) Timofeev, J. chim. Ukraine 1, 102-106 (1925), Cent. 1925, II 1651-1652; C.A. 20, 2820 (1926).
- (111) Pearce, Nelson, Proc. Iowa Acad. Sci. 36, 251-260 (1929); C.A. 25, 1147 (1931). (112) Lichty, Am. Chem. J. 18, 597 (1896). (113) Beckurts, Otto, Ber. 14, 589-590 (1881). (114) Seubert, Ber. 18, 339-3343 (1885). (115) Lossen, Ann. 342, 122-123 (1905). (116) Bourgoin, Bull. soc. chim. (2) 37, 403 (1882). (117) Verhoek, J. Am. Chem. 56, 571-577 (1934). (118) Kappanna, Z. physik. Chem. A-158, 355-364 (1932). (119) Banei ii, Dhar, Z. auorg. allgem. Chem. 134, 172-174 (1924). (120) Petrenko-Kritschenko, Opotzky, Ber. 59, 2137 (1926).
- (121) Bhattacharya, Dhar, Z. anory allycm. Chem. 209, 123-125 (1932). (122) Kailan, Kunze, Monatsh. 71, 373-423 (1938). (123) Benrath, Ann. 382, 224 (1911). (124) Fairclough, J. Chem. Soc. 1938, 1186-1190. (125) Drushel, Simpson, J. Am. Chem. Soc. 39, 2459 (1917). (126) Jaeger, J. Chem. Soc. 119, 2072-2073 (1921). (127) Jaeger, Berger, Rec. trav. chim. 41, 73-74 (1921). (128) Jander, Immig, Ber. 69, 1291-1292 (1936). (129) Salmi, Korte, Ann. Acad. Sci. Fennicae A-54, No. 10, 22 pp. (1940); Cent. 1942, I 328; C.A. 37, 2642 (1943). (130) Patwardham, Kappanna, Z. physik. Chem. A-166, 51-58 (1933).

(131) Goldschmidt, Brauer, Ber. 39, 109-112 (1906). (132) Urazovskii, Polotskii, J. Gen. Chem. (U.S.S.R.) 10, 812-818 (1940), Cent. 1940, II 3583, C.A. 35, 1298 (1941). (133) Silberstein, Ber. 17, 2663-2664 (1884). (134) Strosacker (to Dow Chemical Co.) U.S. 1,801,887, April 21, 1931, Cent. 1931, II 120, C.A. 25, 3362 (1931). (135) Anselmino, Ber. deut. pharm. Ges. 16, 390-393 (1906), Cent. 1907, I 339. (136) Bistizycki, von Siemiradzki, Ber. 41, 1671 (1908). (137) Armstrong, Richardson, J. Chem Soc 1933, 496-500. (138) van Alphen, Rec. trav. chim. 46, 144-149 (1927). (139) Ostwald, Z. physik. Chem. 3, 177-178 (1889). (140) Bhagwat, J. Indian Chem. Soc. 16, 236 (1939).

(141) Jenkins, Nature 145, 625 (1940). (142) Bell, Nature 146, 166-167 (1940). (143) Banghan, Nature 146, 461 (1940). (144) Kendall, King, J. Chem Soc. 127, 1784-1789 (1925). (145) Schreiner, Z. physik. Chem. 133, 427 (1928). (146) Wightman, Jones, Am. Chem. J. 46, 71-72 (1910), 48, 327 (1912). (147) Dawson, Crann, J. Chem. Soc. 109, 1265 (1916). (148) Devrup, J. Am. Chem. Soc. 56, 60-64 (1934). (149) Welcher, Briscoe, Proc. Indiana Acad. Sci. 43, 142-153 (1934), C.A. 28, 7116 (1934). (150) Mason, Kilpatrick, J. Am. Chem. Soc. 59, 572-578 (1937). w (151) Hantzsch, Voigt, Bcr. 62, 975-984 (1929). (152) Verhoek, J. Am. Chem. Soc. 58, 2577-

2584 (1936). (153) Bronsted, Ber. 61, 2062 (1928). (154) Griffiths, J. Chem. Soc. 1938, 818-823. (155) Gemant, J. Chem. Phys 12, 83-84 (1944) (156) Rabinovich, Trav. inst. chim. Kharkov 1, 99-107 (1935); CA. 32, 4085 (1938) (157) Ruehle, Ind. Eng. Chem., Anal. Ed. 10, 130-131 (1938). (158) Usanovich, Vatsimirskii, J. Gen. Chem. (U S S R) 11, 957-958 (1941), C.A. 36, 6444 (1942). (159) LaMer, Downes, J. Am. Chem. Soc. 55, 1840–1864 (1933) (160) Weissberger, Fasold, Z. physik. Chem. A-157, 6595 (1931)

(161) Weissberger, J. Am. Chem. Soc. 65, 242–245 (1943). (162) Weissberger, J. Am. Chem. Soc. 65, 245-246 (1943). (163) Bell, Caldin, J. Chem Soc. 1938, 382-389. (164) Bell, Lidwell, Wright, J. Chem. Soc. 1938, 1861-1865. (165) Kon, Naigund, J. Chem. Soc. 1934, 624. (166) Ostwald, J. prakt. Chem. (2) 29, 396 (1884) (167) Hantzsch, Weissberger, Z. physik. Chem. 125, 254-255 (1927). (168) van Alphen, Rec. trav. chim. 49, 754-761 (1930) (169) Goldschmidt, Marum, Thomas, Z. physik. Chem. 129, 233-240 (1927) (170) Goldschmidt, Z. physik. Chem. 94, 237 (1920).

(171) Usanovich, Glukhov, J. Gen. Chem. (U.S.S.R.) 10, 227-229 (1940), C.A. 34, 7285 (1940). (172) Usanovich, J. Gen. Chem. (U.S.S.R.) 10, 219-222 (1940), C.A. 34, 7285 (1940). (173) Weissberger, Högen, Z. physik Chem. A-156, 321-351 (1931). (174) Braune, Z. physik. Chem. 85, 170-210 (1913). (175) Bredig, Z. Elektrochem 18, 536 (1912). (176) Bronsted, Vance, Z. physik. Chem. A-163, 240-256 (1933). (177) Rivett, Z. physik. Chem. 82, 211 (1913). (178) Bell, Levinge, Proc. Roy. Soc. (London) A-151, 211-219 (1935). (179) Bell, Proc. Roy. Soc. (London) A-143, 377-399 (1934). (180) Bell, Lidwell, J. Chem. Soc. 1939, 1096-1099.

(181) Bobtolsky, Cohn, Z. anorg. allgem. Chem. 210, 227-231 (1933). (182) Michael, Weiner, J. Org. Chem. 5, 396, 399 (1940). (183) Bateman, Hoel, J. Am. Chem. Soc. 36, 2518 (1914). (184) Jaeger, Cent. 1911, II 1852-1854, not in C.A. (185) Jaeger, Z. Krist. 50, 242-256 (1912), C.A. 6, 1870 (1912). (186) Rivals, Ann. chim. (7) 12, 508-510 (1897). (187) Jones, Werner, J. Am. Chem. Soc. 39, 418-419 (1917). (188) Jungmann (to Kali-chemie), Ger 647,057, June 1937; Cent. 1937, II 1895; CA. 31, 6833 (1937). (189) Clermont, Compt. rend. 74, 942-944

(1872). (190) Ostwald, Z. physik. Chem. 1, 103-104 (1887).

(191) Henry, Ber. 12, 1844-1848 (1879). (192) Wightman, Jones, Am. Chem. J. 46, 66 (1911). (193) Goldschmidt, Aarflot, Z. physik. Chem. 117, 317-319 (1925) (194) Lloyd, Pardee, Carnege Inst. Wash. Pub. 260, 110 (1918). (195) Gold-chmudt, Z. physik. Chem. 91, 54-57 (1916). (196) Clermont, Compt. rend. 73, 501-502 (1871). (197) Scubert, Ber. 18, 3339 3342 (1885). (198) Beckurts, Otto, Ber. 14, 588-591 (1881). (199) Wieland, Fischer, Ann. 446, 63 (1926). (200) Birckenbach, Mcisenheimer, Ber. 69, 723-729 (1936).

(201) Bateman, Conrad, J. Am. Chem. Soc. 37, 2553-2559 (1915). (202) Davidson, Sutton, J. Chem. Soc. 1942, 565-567. (203) Rosenthaler, Mikrochemie 12, 101 (1933). (204) Kharasch. Staveley, J. Am. Chem. Soc. 45, 2963 (1923). (205) Braud, J. prakt. Chem. (2) 88, 342-357 (1913). (206) Sirucek, Collection Czechoslov. Chem. Commun 10, 117-128 (1938). (207) Parsons, Sargent, J. Am. Chem. Soc. 31, 1205-1206 (1909). (208) Kertesz, J. chim. phys. 35, 371 (1938). (209) Clermont, Compt. rend. 76, 774-775 (1873). (210) Garzarolli-Thurnlackh, Ann. 210,

(211) Grossmann, Jaeger, Z. anorg. allgem. Chem. 73, 51-52 (1911). (212) Ablov, Bull. soc. chim. (5) 3, 1915 (1936). (213) King, J. Chem. Soc. 1930, 2307-2319. (214) Costachescu. Ablov, Ann. sci univ Jassy 17, 149-172 (1933); Cent. 1933, I 3038; C.A. 27, 2647 (1933). (215) Kravtzoff, Compt. rend. 197, 137-140 (1933) (216) Beebe, J. Phys. Chem. 35, 3677-3683 (1931). (217) Fogel, Rubinsztein, Taumann, Roczniki Chem. 9, 348-353 (1929); Cent. 1930, II 227; C.A. 23, 3900 (1929). (218) Reitzenstein, Z. anorg. allgem. Chem. 32, 302-303, 307-308 (1902).

(219) Ablov, Bull. soc. chim. (5) 3, 1673-1678 (1936). (220) Ablov, Bull. soc. chim. (5) 1, 731-738 (1934).

(221) Ablov, Bull. soc. chim. (5) 1, 1489-1494 (1934). (222) Ablov, Bull. soc. chim. (5) 2, 1724-1736 (1935). (223) Doughty, Black, J. Am. Chem. Soc. 47, 1091-1092 (1925). (224) Doughty, J. Am. Chem. Soc. 47, 1096 (1925). (225) Wheeler, Smith, J. Am. Chem. Soc. 48, 1994-1998 (1923). (226) Beamer, Clarke, Ber. 12, 1067 (1879). (227) Doughty, Freeman, J. Am. Chem. Soc. 44, 639-645 (1922). (228) Wheeler, Jennings, J. Am. Chem. Soc. 49, 1091-1093 (1927). (229) Buehler, Carson, Edds, J. Am. Chem. Soc. 57, 2181-2182 (1935). (230) Pollard, Adelson, Bain, J. Am. Chem. Soc. 56, 1759-1760 (1934).

(231) Michael, J. Am. Chem. Soc. 41, 415 (1919).
(232) Stempel, Schaffel, J. Am. Chem. Soc. 64, 470-471 (1942).
(233) Feigl, Popp-Halpern, Monatsh. 59, 137, 140-141 (1932).
(234) Doughty, Freeman, J. Am. Chem. Soc. 43, 702 (1921).
(235) Toole, Sowa, J. Am. Chem. Soc. 59, 1971-1973 (1937).
(236) Sudborough, Turner, J. Chem. Soc. 101, 237-240 (1912).
(237) Hinshelwood, Legard, J. Chem. Soc. 1935, 1588-1591.
(238) Petrenko-Kritschenko, Bogatsky, Lubman, Z. physik. Chem. 115, 289 302 (1925).
(239) Prager, J. Ann. Chem. Soc. 30, 1911-1912
(1008) J. Zabard, Chem. 68, 207 (1908).
(1008) J. Market, Chem. 68, 207 (1908).
(1008) J. Market, Chem. 68, 207 (1908).

(1908); Z. physik. Chem. 66, 297 (1909). (240) Kailan, Monatsh 29, 799-844 (1908).

(241) Goldschmidt, Udby, Z. physik. Chem. 60, 748-749 (1907) (242) Goldschmidt, Sunde, Ber. 39, 714-715 (1906). (243) Lichty, Am. Chem. J. 18, 590-600 (1896). (244) Clermont, Ann. chem. (6) 6, 241-249 (1885). (245) Gayler, Waddle, J. Am. Chem. Soc. 63, 3358-3359 (1941). (246) Dorris, Sowa, Nieuwland, J. Am. Chem. Soc. 56, 2689-2690 (1934). (247) Waddle, Adkins, J. Am. Chem. Soc. 61, 3361-3364 (1940) (248) Liston, Dehn, J. Am. Chem. Soc. 60, 1264-1265 (1938). (249) Quayle, Norton, J. Am. Chem. Soc. 62, 1170-1171 (1940). (250) Burton, J. Chem. Soc. 1930, 250-251.

(251) Hanshelwood, Legard, J. Chem Soc 1935, 587 596. (252) Clark, Univ. Microfilms (Ann Arbor, Mich), Pub. 138, 78 pp.; Microfilm Abstracts 2, No. 1, 1–2 (1939), [C.A. 35, 2060 (1941)]. (253) Andreasov, Ukrainskii Khem Zhur, Sci. Pt. 4, 143–148 (1929), Cent. 1929, II 2875, C.A. 24, 1014 (1930); 4, 89 92 (1929), Cent. 1929, II 2433; C.A. 23, 4439 (1929); 3, 467–470 (1928); Cent. 1929, I 3084, C.A. 23, 322 (1929). (254) Timofeev, Israilevich, Chaskes, J. chim. Ukraine 1, 576–580 (1925); Cent. 1926, I 565, C.A. 20, 2820 (1926). (255) Timofeev, Andreasov, J. chim. Ukraine 1, 107–110 (1925); Cent. 1925, II 1652, C.A. 20, 2820 (1926). (255) Timofeev, Kravizov, J. Russ. Phys.-Chem. Soc. 48, 985–993 (1916), Cent. 1923, III 831, C.A. 11, 788 (1917). (257) Timofeev, Andreasov, J. Russ. Phys.-Chem. Soc. 47, 838–818 (1915), Cent. 1916, I 1015, C.A. 9, 2896–2897 (1915). (258) Konowalov, J. Russ. Phys.-Chem. Soc. 39, 825–841 (1907), Cent. 1908, I 98 100, not in C.A. (259) Konowalov, Z. physik. Chem. 2, 380–389 (1888). (260) Nernst, Hokmann, Z. physik. Chem. 11, 357–362 (1893)

(261) Chem Fabrik Grieshem-Elektron, Ger. 271,381, March 13, 1914; Cent. 1914, I 1316, [C A. 9, 356 (1915)] (262) Meerwein, Hinz, Ann. 484, 16 (1930). (263) Meerwein, Sonke, J. prakt. Chem. (2) 137, 308 (1933). (264) Hibbert, Greig, Can. J. Research 4, 254-263 (1931). (265) Hofferiehter, J. piakt. Chem. (2) 20, 196 (1870). (266) Gal, Compt. rend. 76, 1020 (1873); Bill. soc. chim. (2) 20, 11-13 (1873). (267) Simons, Sloat, Meumer, J. Am. Chem. Soc 61, 436 (1939). (268) Delacre, Bull. acad. roy. Bill. 1902, 189 202; Cent. 1902, I 1197. (269) Thorpe, J. Chem. Soc. 37, 189-190 (1880). (270) Clark, Bell. Trans. Roy. soc. Can. (3) 27, HI 97-103 (1933).

(271) Boeseken, Rec. trav. chrm. 29, 100, 112 (1910). (272) Leimu, Ber. 70, 1049 (1937). (273) Carré, Libermann, Compt. rend. 199, 1422-1423 (1934). (274) Friederica, Ber. 11, 1971 (1878). (275) Rabcewicz-Zubkowski, Roczinki Chem. 9, 528 (1929), Cent. 1929, II 2677, C.A. 24, 61 (1930). (276) Brown, J. Am. Chem. Soc. 60, 1325-1328 (1938). (277) Gustus, Stevens, J. Am. Chem. Soc. 55, 374-377 (1933). (278) Swaitz, Bull soc. chim. (3) 13, 992 (1895). (279) Fichter, Fritsch, Muller, Helv. Chim. Acta 6, 503-504 (1923). (280) I.G., French 703,816, May 6, 1931; Cent. 1931, II 1347, [C.A. 25, 4559 (1931)].

(281) Buckney, Thomsen, Ber 10, 698-699 (1877). (282) Cleimont, Compt. rend. 86, 337 (1878); Bull. soc. chim. (2) 30, 505 (1878). (283) Strosacker, Schwegler (to Dow Chem. Co.), U.S. 1,713,104, May 14, 1929, Cent. 1929, II 1215, C A. 23, 3234 (1929). (284) Doughty, J. Am. Chem. Soc. 41, 1130-1131 (1919). (285) Houben, Fischer, J. makt Chem. (2) 123, 266-275 (1929). (286) Seubert, Ber. 21, 283-281 (1888). (287) Lyons, Reid, J. Am. Chem. Soc. 39, 1742 (1917). (288) Veibel, Ottung, Bull. soc. chim (5) 6, 1434-1435 (1939). (289) Dewey, Sperry, J. Am. Chem. Soc. 61, 3251-3252 (1939). (290) Dewey, Shasky, J. Am. Chem. Soc. 63, 3256-3257 (1941).

(291) Wittek, Z. physik. Chem. B-51, 106 (1942). (292) Zincke, Kegel, Ber. 23, 241 (1890).
(293) Calvet, J. chim. phys. 30, 159 (1933) (294) McMaster, Langreck, J. Am. Chem. Soc. 39, 108 (1917). (295) Cleimont, Compt. rend. 133, 737-739 (1901). (296) Giacolone, Collesano, Gazz. chim. ital. 65, 129-131 (1935). (297) Houben, Fischer, Ber. 60, 1765 (1927). (298)

Steinkopf. Ber. 41, 2541 (1908). (299) Bauer, Ann. 229, 165-167 (1885). (300) Bisschopinck, Ber. 6, 731-734 (1873).

(301) Tommasi, Meldola, Bull. soc. chim. (2) 21, 398-399 (1874). (302) Votocek, Burda, Ber. 48, 1006-1007 (1915). (303) Shah, Deshpande, J. Univ. Bombay 2, No. 2, 125-127 (1933); Cent. 1934, II 3110; C.A. 28, 6127 (1934). (304) Anschutz, Haslam, Ann. 253, 129 (1889). (305) Bodroux, Compt. rend. 140, 1598 (1905); Bull soc. chim. (3) 33, 834 (1905). (306) Heller, Ann. 332, 264-265 (1904). (307) Buehler, Mackenzie, J. Am. Chem. Soc. 59, 421-422 (1937). (308) von Braun, Jostes, Munch, Ann. 453, 143 (1927). (309) Dermer, King, J. Org. Chem. 8, 168-173 (1943). (310) Usanovich, Vatsimirskii, J. Gen. Chem. (U.S.S.R.) 11, 954-956 (1941); C.A. 39, 4540 (1945).

(311) Ipatieff, Pines, Olberg, J. Am. Chem. Soc. 67, 694-695 (1945). (312) Plump (to Pennsylvania Salt Mfg. Co.), U.S. 2,370,577, Feb. 27, 1945, C.A. 39, 4085 (1945).

3: 1160 2,3,6-TRICHLOROPHENOL OH 
$$C_6H_3OCl_3$$
 Beil. VI - 190  $VI_1$ —  $VI_2$ -(180) M.P. 58° (1) (2) B.P. 252-253° u.c. (5)

55° (4) 248.5-249.5° (6) 53-54° (5) (6)

Ndls. (from alc.) with intense and persistent phenolic odor. - Somewhat sol. in hot aq.; volatile with steam. - Eas. sol. alc., ether, lgr, AcOH; sol. hot C6H6 but ppts. on cooling.

[For prepn. from 2,3,6-trichloro-4-aminophenol via diazo reactn. sec (3).]

 $\bar{C}$  is strongly acidic; ionization const. at 25° is 7.3  $\times$  10<sup>-7</sup> (2);  $\bar{C}$  dissolves in Na<sub>2</sub>CO<sub>3</sub> or NaOH (5);  $\bar{C}$  can be titrated with N/10 alk.; Neut Eq. = 197.5 (1) (4)

C in AcOH, treated with 1.4 moles Br2, poured into aq. yields 4-bromo-2,3,6-trichlorophenol, ndls. from AcOH, m.p. 80° (3). [The methyl ether of this prod has m p. 69-70°; the benzoate, m.p. 110° (3).]

C treated with 1.5 moles Br2 without solvent yields (3) 4,5-dibromo-2,3,6-trichlorophenol, ndls. from dil. AcOH, m.p. 205° (3). [The methyl ether of this prod. has m.p. 130°; the benzoate, m.p. 153° (3).1

 $\bar{C}$  treated with  $(CH_3)_2SO_4 + 20\%$  KOH at 100° for an hour yields its own methyl ether. 2,3,6-trichloroanisole, b.p. 227-229° at 756 mm.; pr. from alc., m.p. 45° (3).

**D** 2,3,6-Trichlorophenyl benzoate: from  $\bar{C}$  + BzCl + 10% KOH; cryst. from pet. ether/lgr., m.p. 92-93° (3); from alc., m.p. 90° (4).

3:1160 (1) Tiessens, Rec. trav. chim. 50, 113-114 (1931). (2) Tiessens, Rec. trav. chim. 48, 1066-1068 (1929). (3) Kohn, Fink, Monatsh. 56, 139-141 (1930). (4) Holleman, Rec. trav. chim. 39, 742-743 (1920). (5) Lampert, J. prakt. Chem. (2) 33, 376-378 (1886). (6) Hirsch, Ber. 13, 1908 (1880).

Cryst. (from pet. eth. (3)). — C mixed with 2,5-dichlorophenol (3:1190), m.p. 57°,

56-57° (2) (3)

depresses m.p. (2). — C is extraordinarily volatile; if dried in vac. this leads to substantial

losses; the volatility and intense odor of  $\tilde{C}$  differentiate this dichlorophenol from its isomerides (2). — Odor resembles that of o-chlorophenol and iodoform (3). —  $\tilde{C}$  is volatile with steam (3).

[For prepn. from 3-amino-2-chlorophenol via Sandmeyer method see (2) (4); from 2,3-dichloroanline via diazo reaction see (3); from barium 2,3-dichlorophenol-4,6-disulfonate by hydrolysis of sulfonic acid groups with steam (70% yield) see (1).]

[For data on dissociation constant see (5).]

C on direct bromination (1) yields 4,6-dibromo-2,3-dichlorophenol, colorless ndls. (rapidly becoming opaque) from AcOH (1), or colorless feathery ndls. from alc. (4), m.p. 90° (1) (4). [The methyl ether of this product, 4,6-dibromo-2,3-dichloroanisole, long needle-like pr. from alc., has m.p 82° (1).]

 $\bar{C}$  dislyd. in aq. NaOH and shaken with (CH<sub>3</sub>)<sub>2</sub>SO<sub>4</sub> yields (3) the methyl ether, 2,3-dichloroanisole, m.p. 31° (3).

3:1175 (1) Hodgson, Kershaw, J. Chem. Soc. 1930, 1423. (2) Henley, Turner, J. Chem. Soc. 1930, 940 (3) Holleman, Rec trav. chim. 37, 101 104 (1918) (4) Hodgson, Smith, J. Chem. Soc. 1931, 2271. (5) Murray, Gordon, J. Am. Chem. Soc. 57, 110-111 (1935).

3:1190 2,5-DICHLOROPHENOL

Cryst with strong and persistent phenolic odor. — Spar. sol. aq., eas. sol. alc., ether,  $C_6H_6$ . — Volatile with steam.

[For prepn. from 2,5-dichloroaniline [Beil. XII-625] via diazo reaction (90% yield (1); 86% yield (6); 70% yield (5)) see (1) (6) (5) (2); from 1,2,4-trichlorobenzene + NaOCH<sub>3</sub> in MeOH at 180° see (7) ]

C in dil. alc. reddens blue litmus, dec. on boilg, with Na<sub>2</sub>CO<sub>3</sub> Gives only faint color with FeCl<sub>3</sub> (1). [For study of ionization const see (11).]

Č dislyd. in 3 pts. CHCl<sub>3</sub> and shaken with conc. HNO<sub>3</sub> gives on cooling CHCl<sub>3</sub> 80% yield of 2,5-dichloro-4-nitrophenol [Beil. VI-241], colorless ndls. from pet ether, m.p. 117° (8). [Further nitration yields 2,5-dichloro-4,6-dinitrophenol, yel. pr, mp. 146° (8).]—
Č htd. with conc. H<sub>2</sub>SO<sub>4</sub> + fumg. H<sub>2</sub>SO<sub>4</sub>, then nitrated as specified (9), yields 2,5-dichloro-6-nitrophenol, volatile with steam, yel pr. from pet. eth, mp. 70° (9).

 $\bar{C}$  in AcOH treated with 2 moles Br<sub>2</sub>, poured into aq., gives (100% yield (6)) 2,5-di-chloro-4,6-dibromophenol, ndls. from dil. AcOH, m.p. 100.5° (6), 99-100° (10). [This dibromo compd. results also from  $\bar{C}$  in AcOH + NaOAc + 1 mole Br<sub>2</sub> on htg. at 100° (10).]  $[\bar{C}$  with Fe + excess Br<sub>2</sub> gives (100% yield (6)) 2,5-dichloro-3,4,5-tribromophenol, ndls. from AcOH, m.p. 206° (6).]

 $\ddot{C}$  dislyd in KOH and shaken with  $(CH_3)_2SO_4$  yields the methyl ether, 2,5-dichloroanisole, b.p. 225-227° u.c. at 752 mm. (6), b.p. 140° at 40 mm. (2), m.p. 24° (5) (2).

② 2,5-Dichlorophenyl benzoate: from C + aq. KOH + BzCl, ndls. from 96% alc.,
m.p. 69° (6).

3:1190 (1) Noelting, Kopp, Ber. 38, 3510 (1905). (2) Holleman, Rec. trav. chim. 37, 101-104 (1918). (3) Kohlrausch, Stockmair, Ypsilanti, Monatsh. 67, 90 (1936). (4) Ger. 349,794, March 9, 1922; Cent. 1922, IV 45. (5) de Crauw, Rec. trav. chim. 50, 770 (1931). (6) Kohn, Fink, Monatsh. 58, 78-83 (1931). (7) Holleman, Rec. trav. chim. 37, 201 (1918). (8) Fries, Ann. 454,

247 (1927). (9) Hodgson, Kershaw, J. Chem. Soc. 1929, 2922-2923. (10) Fox, Turner, J. Chem. Soc. 1930, 1860.

(11) Murray, Gordon, J. Am. Chem. Soc. 57, 110-111 (1935).

3:1200 2,4,6-TRICHLOROBENZALDEHYDE Cl 
$$C_7H_3OCl_3$$
 Beil. VII -238  $Cl$   $Cl$   $Cl$   $Cl$ 

M.P. 58-59° (1) (2)

Cryst. from lgr.

[For prepn. of  $\bar{C}$  from 2,4,6-trichlorobenzal (di)chloride (3:0142) by hydrolysis with fumg. H<sub>2</sub>SO<sub>4</sub> (94% yield) see (1), for prepn. of  $\bar{C}$  from 4-amino-2,6-dichlorobenzaldehyde by diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reaction see (1).]

[C on oxidn. with KMnO<sub>4</sub> should yield 2,4,6-trichlorobenzoic acid (3:4545), m.p. 164°, but this reaction is not actually reported in the literature.]

 $\bar{C}$  with 50% aq. KOH or 50% aq. NaOH at 100° undergoes cleavage of the aldehyde group giving (yields: 89% and 74% respectively) 1,3,5-trichlorobenzene (3:1400), m.p. 63°, accompanied by the corresp potassium formate (1)

[Č with McMgI in dry ether, followed by usual hydrolysis, gives (93% yield (3)) methyl-2,4,6-trichlorophenyl-carbinol, ndls. from lgr., m p. 76.5°, b.p. 158-163° cor. at 17 nm.]

- ---- 2,4,6-Trichlorobenzaldoxime: unreported.
- --- 2,4,6-Trichlorobenzaldehyde phenylhydrazone: unreported.
- --- 2,4,6-Trichlorobenzaldehyde p-nitrophenylhydrazone: unreported.
- 2,4,6-Trichlorobenzaldehyde 2,4-dinitrophenylhydrazone: unreported.

**3:1200** (1) Lock, Ber **66**, 1532 (1933). (2) Geigy & Co. Ger. 199,943, July 4, 1908; Cent. **1908**, II 363-364, [C.A. **2**, 3000 (1908)]. (3) Lock, Bock, Ber. **70**, 924 (1937).

3:1205 2,4-DICHLORO-3-METHYLPHENOL OH 
$$C_7H_6OCl_2$$
 Beil. VI —  $Cl_2$   $VI_1$ —  $VI_2$ —  $VI_2$ —  $VI_2$ —  $VI_2$ —  $VI_2$ —  $VI_2$ —  $VI_3$ —  $VI_3$ —  $VI_4$ —

Note that the products of m.p.  $44^{\circ}$  (3),  $45^{\circ}$  (4), and  $46^{\circ}$  (5) formerly supposed to have been  $\tilde{C}$  are now regarded (1) as 2,4,6-truchloro-3-methylphenol (3:0618).

[For prepn. of  $\bar{\mathbb{C}}$  from 2-chloro-3-methylphenol (3.1055) or from 4-chloro-3-methylphenol (3:1535) in cold CHCl<sub>3</sub> with Cl<sub>2</sub> see (1), from 3-methylphenol (m-cresol) (1:1730) in CHCl<sub>3</sub> with 2 moles Cl<sub>2</sub> (other isomers are also formed) see (1); from 3-methylphenol-sulfonic acid-4 (2) in nitrobenzene solution with Cl<sub>2</sub> (other products are also formed) see (2).

 $\bar{\mathbb{C}}$  in CHCl<sub>3</sub> gives with Cl<sub>2</sub> (1 mole) alm. quant. yield (1) 2,4,6-trichloro-3-methylphenol (3:0618), m.p. 46° (1).

 $\bar{C}$  in CHCl<sub>3</sub> gives with Br<sub>2</sub> (1 mole) (1) 2,4-dichloro-6-bromo-3-methylphenol, m.p. 58-59° (1).

**D 2,4-dichloro-3-methylphenyl benzoate:** fine plates from alc., m.p. 78-78.5° (1) [From  $\ddot{\mathbf{C}}$  with BzCl in pyridine (1).]

- ② 2,4-Dichloro-3-methylphenyl benzenesulfonate: fine ndl.-like pl. from alc., m.p. 69.5° (1). [From C with benzenesulfonyl chloride in pyridine (1).] [Note the proximity of the m.p. of this deriv. to that of the corresp. deriv. of 2,6-dichloro-3-methylphenol (3:0618).]
- 2,4-Dichloro-3-methylphenyl p-toluenesulfonate: shiny pl. from alc., m.p. 100-101°
   (1). [From C with p-toluenesulfonyl chloride in pyridine (1).]

3:1205 (1) Huston, Chen, J. Am Chem Soc. 55, 4216-4218 (1933).
(2) Huston, Neely, J. Am Chem. Soc. 57, 2178 (1935).
(3) Tanaka, Morekawa, Sakamoto, J. Chem. Soc. Japan 51, 275-277 (1930); C.A 26, 706-707 (1932).
(4) Datta, Mitter, J. Am. Chem. Soc. 41, 2033 (1919).
(5) Claus, Schweitzer, Ber. 19, 930 (1886).

3:1212 PHENACYL CHLORIDE C—C—CH<sub>2</sub> C<sub>8</sub>H<sub>7</sub>OCl Beil. VII - 282 (
$$\alpha$$
-Chloroacetophenone, Cl VII<sub>1</sub>-(151) chloromethyl phenyl ketone)

| M.P. | [60°<br>59°   | (1)]<br>(2)     | B.P. | 244-245°<br>244° | u.c.      | (6)<br>(37) |
|------|---------------|-----------------|------|------------------|-----------|-------------|
|      | 58-59°        | (3) (4) (5) (6) |      | 241-242°         |           | (36)        |
|      | 58.8°         | (7)             |      | 140°             | at 15 mm. | (1)         |
|      | 58.5°         | (8)             |      | 139-141°         | at 14 mm. | (3)         |
|      | <b>57-58°</b> | (9) (71)        |      | 120.0-120.2°     | at 10 mm. | (12)        |
|      | <b>57°</b>    | (10) (11)       |      | 120-125°         | at 4 mm.  | (15)        |
|      | 56.5-56.8°    | (12)            |      |                  |           | m -         |
|      | 56.5°         | (13) (14)       |      |                  |           |             |
|      | 56-57°        | (15) (64)       |      |                  |           |             |
|      | <b>56°</b>    | (16) (36)       |      |                  |           |             |
|      | 55-55.5°      | (17)            |      |                  |           |             |
|      | <b>55°</b>    | (37)            |      | ، برگر<br>برگری  |           |             |
|      | <b>54.5°</b>  | (18) (154)      |      | ,54°             |           |             |
|      | <b>54°</b>    | (31)            |      |                  |           |             |

Colorless tbls. from dil. alc. or lgr. — Vapors of  $\bar{\mathbf{C}}$  are very strongly lachrymatory (see also below). —  $\bar{\mathbf{C}}$  is insol. aq. but volatile with steam;  $\bar{\mathbf{C}}$  is eas sol. alc., ether, or  $\mathbf{C_6H_6}$ .

[For study of soly. of  $\bar{\mathbf{C}}$  in EtOH,  $C_6H_6$ ,  $CCl_4$ , or acctophenone over range  $-23.5^\circ$  to  $53.5^\circ$  see (19): note that  $\bar{\mathbf{C}}$  with  $C_6H_6$  (1·7400) gives (19) a eutectic, m.p.  $-1.6^\circ$ , contg. 76 wt. %  $\bar{\mathbf{C}}$ ;  $\bar{\mathbf{C}}$  with acetophenone (1:5515) gives a eutectic, m.p.  $+5.9^\circ$ , contg. 70 wt. %  $\bar{\mathbf{C}}$  (19).]

#### USES OF C

In addn. to its uses as a chem. intermediate,  $\bar{C}$  because of its irritant and lachrymatory properties has been much studied as a chemical warfare agent and tear gas under the arbitrary designation "CN."

[For general surveys from this viewpoint see (20) (21). —  $\bar{C}$  is sol. in many org. solvents and is frequently loaded into grenades and shells in such solutions of which three common examples are "CNB" (consisting of  $\bar{C} + C_6H_6 + CCl_4$ ), "CND" (consisting of  $\bar{C} + Chylene dichloride (3:5130)), and "CNS" (consisting of <math>\bar{C} + Chylene + Chylene$ 

[For dispensing apparatus for  $\tilde{C}$  (29) or for mill for disintegration of  $\tilde{C}$  (30) see indic. refs.]

[For m.p. /compn. diagram of system  $\bar{C}$  + "Adamsite" (10-chloro-9,10-dihydrophenars-azine), eutectic, m.p. 50°, contg. 90 mole %  $\bar{C}$ , see (31).]

[For studies of effect of  $\bar{C}$  on skin see (32) (33) (34); for contamination of food by  $\bar{C}$  see (35).]

#### PREPARATION OF C

From chloroacetyl chloride with benzene. [For prepn. of  $\bar{C}$  from chloroacetyl chloride (3:5235) with  $C_6H_6 + AlCl_3$  (yield 85-88% (15) (64)) (2) (14) (36) (71) see indic. refs.]

From acetophenone. [For prepn. of  $\bar{C}$  from acetophenone (1:5515) with  $Cl_2$  in AcOH (4) (18), in  $CS_2$  (85% yield (37)), in lgr. (38) or directly without solvent (yields 65% (6) (37)) (39) see indic. refs.; from acetophenone (1:5515) by electrolysis of its soln. in HCl (40), or by chlorination with aq. N-chlorourea (41), see indic. refs.]

From benzoyl chloride with diazomethane. [For formn. of  $\bar{C}$  from benzoyl chloride (3:6240) with diazomethane in ether (72% yield) see (3); note, however, that this procedure has subsequently been much disputed, and for discussion see also (42) (43) (44) (45) (46) (47) (48).]

From miscellaneous sources. [For prepn. of  $\bar{\mathbb{C}}$  from N- $(\alpha,\beta$ -dichlorovinyl)diethylamine (yield 92.6% (49)), from chloroacetonitrile (50), or for possible forms. from chloroacetic acid (3:1370) (51), all with  $C_6H_5MgBr$ , see indic. refs.; for forms. of  $\bar{\mathbb{C}}$  from phenyl copper (52), from phenyldichloroarsine (yields: 58.5% (53), 55% (54)) (55), all with chloroacetyl chloride (3:5235), see indic. refs.; for forms. of  $\bar{\mathbb{C}}$  from 1-chloro-2-phenylpropanol-2 (styrene chlorohydrin) (3:9570) by oxidn. with  $K_2Cr_2O_7/H_2SO_4$  (1) or from diphenacyltelluride dichloride by oxidn with KMnO<sub>4</sub> (5) see indic. refs; for forms. of  $\bar{\mathbb{C}}$  from benzalacetophenone (chalcone) (1:5155) by acts. of  $Cl_2$  in ter-butyl alc. (other prods. are also formed) see (17).]

# CHEMICAL BEHAVIOR OF C

#### REDUCTION

No authentic studies on reduction of C appear to be reported.

#### OXIDATION

 $\tilde{C}$  on oxidn. with CrO<sub>3</sub> (39), or  $K_2Cr_2O_7 + H_2SO_4$  (58) (13) gives benzoic acid (1:0715). —  $\tilde{C}$  also reduces NH<sub>4</sub>OH/AgNO<sub>3</sub> (13) [perhaps because of some hydrolysis to  $\omega$ -hydroxy-acetophenone (1:5180)].

#### HALOGENATION

Chlorination. [ $\bar{C}$  on further chlorination under conditions favoring side-chain substitution would be expected to yield  $\omega, \omega$ -dichloroacetophenone (3:6835) and ultimately  $\omega, \omega, \omega$ -trichloroacetophenone (3:6874), but no authentic record that this has actually been achieved can be found.]

Bromination. [ $\bar{C}$  with Br<sub>2</sub> under suitable conditions gives (56)  $\omega$ -bromo- $\omega$ -chloroaceto-phenone, m.p. 37-37.5°, b.p. 133-134° at 7.5 mm. (56). —  $\bar{C}$  in AcOH + NaOAc with Br<sub>2</sub> as directed (57) gives a mixt. consisting of 30%  $\omega$ , $\omega$ -dibromo- $\omega$ -chloroacetophenone + 70%  $\omega$ , $\omega$ , $\omega$ -tribromoacetophenone.]

Nitration.  $\bar{C}$  in conc.  $H_2SO_4$  at  $-20^\circ$  treated as directed (9) with a mixt. of fumg. HNO<sub>3</sub> (D=1.50) + conc.  $H_2SO_4$  gives (77% yield (9)) m-nitrophenacyl chloride, m.p.  $103^\circ$  (59),  $102-103^\circ$  (16),  $100.5-102^\circ$  (9). — [Note that the other two isomeric mononitrophenacyl chlorides, viz., o-nitrophenacyl chloride, m.p.  $66-67^\circ$  (60) (61), and p-nitrophenacyl chloride, m.p.  $107^\circ$  (62), are also known, but prepd. indirectly; note also that no dinitration prods. of  $\bar{C}$  are known.]

# BEHAVIOR OF Č WITH OTHER INORGANIC REACTANTS

With water. [ $\bar{C}$  does not readily hydrolyze with aq. but on protracted boilg. (e.g., 20 hrs. (63)) with a large vol. of aq. gives  $\omega$ -hydroxyacetophenone (1:5180).]

With nitrous acid.  $\bar{C}$  with  $\bar{H}NO_2$  (from *n*-butyl nitrite + HCl gas) in dry ether gives (yields: 85.6% (64), 82-86% (15))  $\omega$ -chloro- $\omega$ -isonitrosoacetophenone (phenylglyoxylohydroxamyl chloride) [Beil. X-662, X<sub>1</sub>-(315)], white ndls. from CCl<sub>4</sub> (64) or from CCl<sub>4</sub> + C<sub>6</sub>H<sub>6</sub> (3:1) (15), m.p. 132-133° (15) (64).

With PCl<sub>5</sub>. [ $\tilde{C}$  with PCl<sub>5</sub> on distn. gives (65)  $\alpha,\beta$ -dichlorovinylbenzene ( $\alpha,\beta$ -dichlorostyrene) [Beil. V-477, V<sub>2</sub>-(367)], b.p. 221°.]

With various salts of inorganic acids. [ $\bar{C}$  with KI (66) (67) or better NaI (38) in alc. gives  $\omega$ -iodoacetophenone (phenacyl iodide) [Beil. VII-286], m.p. 30°; for study of rate of reactn. of  $\bar{C}$  with KI in acetone at 0° (11) or with NaI or LiI in acetone at 0° or  $-10^{\circ}$  (10) see indic. refs.]

 $\bar{C}$  does not add NaHSO<sub>3</sub> (37). —  $\bar{C}$  in alc. with Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> (2 moles) in aq. refluxed 20 hrs. gives sodium phenacylthiosulfate which with HCl gives (73% yield (69))  $\omega$ -mercaptoacetophenone (phenacyl mercaptan). —  $\bar{C}$  with Na<sub>2</sub>S in alc. at 60° gives (70) diphenacyl sulfide [Beil. VIII-94, VIII<sub>1</sub>-(541)], m.p. 76.5-77.2° (70), 76° (147); for use of this reactn. in detn. of  $\bar{C}$  see (14).

With ammonia. [ $\bar{C}$  with NH<sub>3</sub> (1 mole) would be expected to give  $\omega$ -aminoacetophenone (phenacylamine) [Beil. XIV-49, XIV<sub>1</sub>-(368)], but such direct result has never been reported; note, however, that  $\bar{C}$  (1 mole) with hexamethylenetetramine (1 mole) in CHCl<sub>3</sub> at room temp. for 12 hrs. gives (60% yield (68)) a 1:1 addn. cpd., m.p. 145°, which upon alcoholysis with conc. HCl in alc. 3 days in cold gives (63-74% yield (68)) phenacylamine hydrochloride.

[Č with alc. NH<sub>3</sub> in s.t. at 100° as directed (2) gives a mixt. contg. diphenacylamine hydrochloride [Beil. XIV-53, XIV<sub>1</sub>-(371)], m.p. 235°, together with the hydrochlorides of 2,5-diphenylpyrazine and 2,6-diphenylpyrazine; for discussion of mechanism see (2).]

#### BEHAVIOR OF C WITH ORGANIC REACTANTS

# With Hydrocarbons (+ AlCl<sub>3</sub>)

 $\tilde{C}$  with  $C_6H_6+AlCl_3$  in s.t. at 100° failed to react (71). —  $\tilde{C}$  with toluene (1:7405) +  $AlCl_3$  under reflux gives (71) a prod., m.p. 84–85°, which is presumably  $\omega$ -(p-tolyl)acetophenone [Beil. VII-448], although this prod. obtd. by other methods has different consts.

#### With Organic Hydroxy (or Mercapto) Compounds

With alcohols. [C with NaOMe might be expected to yield ω-methoxyacetophenone, b.p. 228–230° at 760 mm. (72) (73), b.p. 118–120° at 15 mm. (72) (73), m.p. 7-7.5° (73) (corresp. semicarbazone, m.p. 85° (72), 129° (73) (note disagreement); corresp. 2,4-dinitrophenylhydrazone, m.p. 191–192° (73)); note, however, that no record of this reaction has been reported and the ω-methoxyacetophenone is best prepd. (71–78% yield (74)) from methoxyacetonitrile with C<sub>6</sub>H<sub>5</sub>MgBr; note also that C with alk. reagts. such as NaOMe reacts in an unexpectedly complex manner yielding (153) cyclic "halogen-diphenacyls."]

[ $\bar{C}$  with NaOEt would be expected to yield  $\omega$ -ethoxyacetophenone [Beil. VIII-90], b.p. 134-136° at 21 mm. (75), 130° at 15 mm. (76), 120-122° at 15 mm. (77),  $D_1^{20} = 1.0552$  (77),  $D_2^{20} = 1.5250$  (77) (corresp. oxime, m.p. 55° (75); corresp. semicarbazone, m.p. 128° (75)); note, however, that no record of this reactn. has been reported and the  $\omega$ -ethoxyacetophenone is best prepd. (68% yield (77)) cf. (75) (76) from ethoxyacetonitrile with

C<sub>6</sub>H<sub>5</sub>MgBr; note also that C with alk. reagts. such as NaOEt reacts in an unexpectedly complex manner yielding (153) cyclic "halogen diphenacyls."

[ $\bar{C}$  (1 mole) with ethylene glycol (1:6465) (1 mole) in  $C_6H_6$  contg. trace of benzenesulfonic acid gives on htg (95% yield (81)) the corresp. cyclic ketal, viz., 2-(chloromethyl)-2-phenyl-1,3-dioxolane, mp. 67°, b.p. 144-146° at 15 mm. (81).]

With phenois. [ $\bar{C}$  with dry sodium phenolate (78) gives  $\omega$ -phenoxyacetophenone [Beil. VIII-91], m.p. 74° cor. (79), b.p. 255-257° (78), 187° cor. at 9 mm. (79) (corresp. semi-carbazone, m.p. 187.0-187.5° cor. (79)); note, however, that this prod. is best prepd. (45% yield (79)) from phenoxyacetonitrile with  $C_6H_5MgBr$ , or from phenoxyacetyl chloride +  $C_6H_6$  + AlCl<sub>3</sub> cf. (80).]

With mercaptans. [C with *n*-BuSH in alc. NaOH gives (82) phenacyl *n*-butyl sulfide, b.p. 140° at 3 mm.,  $D_{25}^{25} = 1.0589$ ,  $n_{10}^{20} = 1.5050$ .]

[ $\bar{\mathbf{C}}$  with sodium p-nitrothiophenate in aq. alc. on htg. gives (98% yield (83)) phenacyl p-nitrophenyl sulfide, yel. pl. from 50–80% AcOH, m.p. 118°. —  $\bar{\mathbf{C}}$  (1 mole) with sodium p-thiocresolate (1 mole) in MeOH boiled several hrs. does not give the expected phenacyl p-tolyl sulfide, m.p. 37° cf. (101); distillation of the reaction prod. gives (58 5% yield (84)) phenacyl p-tolyl sulfoxide, b p. 182–184° at 5 mm., m.p. 46° accompanied by acetophenone; note that with  $\mathbf{H}_2\mathbf{O}_2$  this sulfoxide oxidizes to phenacyl p-tolyl sulfone, m.p. 110° (see also below).]

#### Behavior with Carbonyl Compounds

With aromatic aldehydes. [ $\bar{C}$  (1 mole) with benzaldehyde (1½ moles) in alc. with alc. NaOEt (1 mole) in cold condenses with loss of HCl giving (80% yield (85))  $\alpha$ -benzoyl- $\alpha$ -phenyl-othylene oxide (benzalacetophenone oxide) [Bul. XVII<sub>1</sub>-(196)], colorless cryst. from alc. (85) or from cold acctone by addn. of pct. ether (86), mp. 89-90° (85) (86); note that this prod. can also be obtd. in other ways, notably from benzalacetophenone (chalcone) (1:5155) with Na<sub>2</sub>O<sub>2</sub> + HCl in cold (85% yield (86)) or with H<sub>2</sub>O<sub>2</sub> in alk. soln. (90% yield (88)) (87) (89); although *cis* and *trans* stereoisomers are possible, only one form is known.]

[ $\bar{C}$  with o-nitrobenzaldehyde in alc. NaOEt (although this particular pair has not actually been reported) should yield similarly  $\alpha$ -benzoyl- $\alpha'$ -(o-nitrophenyl)ethylene oxide [Beil. XVII<sub>1</sub>-(197)] since phenacyl bromide behaves (90) in this fashion; note that for this prod. the two expected geom. stereoisomers are both formed, one with m.p. 175°, the other with m.p. 110°.]

 $[\bar{C}]$  with m-nitrobenzaldehyde ir alc. NaOEt (although this particular pair has not actually been reported) should give similarly  $\alpha$ -benzoyl- $\alpha'$ -(m-nitrophenyl)ethylene oxide [Beil. XVII<sub>1</sub>-(197)] since phenacyl bromide behaves in this manner (80% yield (91)); one stereoisomer is known, m.p. 118° (91). — Note, however, that  $\bar{C}$  (1 mole) with m-nitrobenzaldehyde (1 mole) in AcOH satd. with HCl gas and stood 24 hrs. reacts differently giving (92) m-nitrobenzalacetophenone dichloride [Beil. VII<sub>1</sub>-(238)], m.p. 148°,

[ $\bar{\mathbb{C}}$  (1 mole) with p-methoxybenzaldehyde (anisaldehyde) (1:0240) (1 mole) in alc. NaOEt gives (93)  $\alpha$ -benzoyl- $\alpha'$ -(p-methoxyphenyl)ethylene oxide, m p. 87° (93) (89); also obtd. from p-methoxybenzalacetophenone (1:9011) with alk. H<sub>2</sub>O<sub>2</sub> (89).]

[ $\bar{C}$  (1 mole) + o-nitrobenzalacetophenone (1 mole) in acetone/diovane with alg. NaOEt (1 mole) gives in 15 min. but yield not stated (93) 1,2-dibenzoyl-3-(o-nitrophenyl)cyclopropane, m.p. 177° (93).]

#### Behavior of C with Salts of Organic Acids

Č with salts of organic acids gives in general the corresp. phenacyl esters although when the latter are to be prepd. as means of identification of the acids the more reactive phenacyl bromide is usually employed; for m.p.'s of the phenacyl esters of various acids of Order I see Vol. I, p. 650.

[ $\bar{C}$  with KCN in dil. alc. on htg. gives (47% yield (94))  $\omega$ -cyanoacetophenone (benzoylacetonitrile) [Beil. X-680, X<sub>1</sub>-(322)], m.p. 83° (94), 80-81° (95) (96); this prod. may also be prepd. by other means, e.g., from phenacyl bromide with dil. alc. KCN (60% yield (97)), or from ethyl benzoate with acetonitrile + NaOEt (yields: 60% (96), 56% (95)).]

[Č with KSCN in MeOH (98) or EtOH (65) gives  $\omega$ -thiocyanoacetophenone (phenacyl thiocyanate) [Beil. VIII-94], m.p. 74.1-76.6° cor. (98), 74° (99).]

[ $\tilde{C}$  with sodium *p*-toluenesulfinate in boilg, alc. gives (100) cf. (101) phenacyl *p*-tolyl sulfone ( $\omega$ -(*p*-toluenesulfonyl)acetophenone), m.p. 110° (100) (see also above for formn. of this prod. from  $\tilde{C}$  + sodium thio-*p*-cresolate).]

# Behavior of $\bar{C}$ with RMgX Compounds

[ $\bar{\mathbf{C}}$  (1 mole) with EtMgBr (1 mole) in dry ether gives an addn. prod. which after evapn. of ether, htg. at 130–140°, and hydrolysis gives (yield not stated {102}) benzyl ethyl ketone (1-phenylbutanone-2) [Beil VII-314, VII<sub>1</sub>-(167)], b.p. 222–227° (103), 221–223° (102), 110° at 13 mm. (104) (corresp. semicarbazone, m.p. 156–156.5° cor. (105), 150–153° (103), 153° (106),  $\beta$ -form 152°,  $\alpha$ -form 146° (104), 146° (102); corresp. 2,4-dimtrophenylhydrazone, m.p. 140–141° (103)); not rearr. in formn of this prod. by this method.]

[Č with n-hexyn-1-yl MgBr in dry ether adds normally and on hydrolysis gives (107) the expected 1-chloro-2-phenylnonyn-3-ol-2.

# Behavior of C with Amines

With primary aliphatic amines. [C (1 mole) with MeNII<sub>2</sub> (2.5 moles) in alc. for 5-6 hrs. in cold gives (108)  $\omega$ -(methylamino)acetopherone [Beil. XIV-50, XIV<sub>1</sub>-(369)] (corresp. B.HCl (23% yield (108)), m.p. 219° (108)). — C with n-BuNH<sub>2</sub> similarly gives (35% yield (108))  $\omega$ -(n-butylamino)acetopherone hydrochloride, m.p. 214-215° (108).]

[ $\bar{C}$  with  $\beta$ -ammoethanol (ethanolamine) readily gives (109) N-( $\beta$ -hydroxyethyl)phenacylamine, m.p. 144° (109).]

With primary aromatic amines. [C with aniline should yield N-(phenacyl)aniline [Beil. XIV-51, XIV<sub>1</sub>-(369)], m.p. 98-99° (110) (corresp. oxime, m.p. 105-106° (111); corresp. semicarbazone, m.p. 171° (110)); however, although the rate of this reaction in abs. alc. at 40° (38) and in 90% alc. at 30.5° (16) cf. (112) has been studied, the usual method of prepn. of N-(phenacyl)aniline is from phenacyl bromide + amline. — Pure N-(phenacyl)aniline, contrary to earlier statements, is remarkably stable and can be exposed to air at room temp. for 18 months or distilled under reduced press. (b.p. 208-210° at 12 mm.) without change (113); for important study of mechanism of conversion of N-(phenacyl)aniline to 2-phenylindole see (113) (114).]

[The behavior of  $\bar{C}$  with the three toluidines has not itself been studied but should be similar to that of phenacyl bromide which with o-toluidine gives (115) (116) N-(phenacyl)o-toluidine [Beil. XIV-52, XIV<sub>1</sub>-(370)], m.p. 91° (116), 89° (115) (corresp. oxime, m.p. 92° (116)); with m-toluidine gives N-(phenacyl)-m-toluidine, m.p. 110° (117); with p-toluidine gives N-(phenacyl)-p-toluidine [Beil. XIV-52, XIV<sub>1</sub>-(370)], m.p. 134° (118), 127° (115) (corresp. oxime in two geom. stereoisomers of m.p. 97° and 92°, resp. (111)).]

With secondary aliphatic amines. [ $\bar{C}$  with Me<sub>2</sub>NH should yield  $\omega$ -(dimethylamino)-acetophenone (phenacyl dimethylamine) [Bell. XIV-50], b.p. 126-128° at 18 mm. (119), 122-123° at 14 mm. (120) (corresp.  $\bar{B}$ .HCl, m.p. 174° (120), corresp.  $\bar{B}$ .HBr, m.p. 184-186° (121), corresp.  $\bar{B}$ .PkOH, m.p. 150° (119), 143° (122), 141° (123)); note, however,

that this particular combination of reactants has not actually been reported and that the  $\omega$ -(dimethylamino)acetophenone is usually obtd. from phenacyl bromide with Me<sub>2</sub>NH (119) (121), or from dimethylaminoacet-N,N-dimethylamide with C<sub>6</sub>H<sub>5</sub>MgBr (80% yield (120) (125)).]

[ $\bar{C}$  (1 mole) with Et<sub>2</sub>NH (2 moles) in C<sub>6</sub>H<sub>6</sub> stood 2 days at room temp. ppts. Et<sub>2</sub>NH.HCl and gives (65% yield {125})  $\omega$ -(diethylamino)acetophenone, b.p. 148-152° at 30 mm. {125},  $n_{13}^{25} = 1.5180$  (125).]

 $[\bar{C} + bis-(\beta-hydroxyethyl)amine (diethanolamine) in C<sub>6</sub>H<sub>6</sub> on long boilg. gives (109) N-phenacyl-N,N-bis-(\beta-hydroxyethyl)amine, m.p. 44° (109).]$ 

With secondary heterocyclic amines. [Č with piperidine in dry ether splits out HCl and yields (126)  $\omega$ -(piperidine)acetophenone (N-(phenacyl)piperidine) [Beil. XX-42], b.p. 180-181° cor. at 26 mm. (127), 157° at 15 mm. (128), 163-164° at 13 mm. (126),  $D_2^{21.2} = 1.0430$  (126),  $n_D^{22.4} = 1.5408$  (126) (corresp. B.HCl, mp 226-227° (129), corresp. B.HBr, m.p. 227-228° (135), corresp. oxime, m.p. 112-115° (130)).]

[Č with morpholine in dry ether ppts. morpholine HCl and yields (131)  $\omega$ -(morpholino)-acetophenone (N-(phenacyl)morpholine), m.p. 50-52° (132) (corresp. B.HCl, m.p. 222-223° cor. (133), 219-223° (134), 213-214° dec. (131), 212-214° (132); corresp. B.PkOH, m.p. 156-157° (132)).]

[ $\bar{C}$  (1 mole) with N'-phenylpiperazine (2 moles) in dry ether at room temp. for several hrs. (136) or  $\bar{C}$  (1 mole) with N'-phenylpiperazine (1 mole) + slight excess anhydr. Na<sub>2</sub>CO<sub>3</sub> in alc. refluxed ½ hr. (136) gives 80-85% yield N-phenacyl-N'-phenylpiperazine, m.p. 106-108° cor. (136) (corresp. B.HCl, m.p. 210-212° cor.; corresp. oxime, m.p. 157-158° cor. (136)).]

[Note, however, that  $\bar{C}$  with 3-carbethoxy-2-methylpyrrole + AlCl<sub>3</sub> in CS<sub>2</sub> does not acylate the nitrogen but gives Friedel-Crafts type reaction yielding (137) 3-carbethoxy-2-methyl-5-phenacylpyrrole, m.p. 205°.]

With tertiary aliphatic amines. [Direct addn. of  $\ddot{C}$  to Me<sub>3</sub>N appears not to have been reported; the quaternary salt to be expected, viz, phenacyl-trimethyl-ammonium chloride, m.p. 204° dec. (138), 202° (121), has been prepd. indirectly.]

With tertiary aromatic amines. [The quaternary salt, viz., dimethyl-phenyl-phenacyl-ammonium chloride, to be expected from C + dimethylaniline is unreported.]

With tertiary heterocyclic amines. (See also below under O's.)

[ $\bar{C}$  (1 mole) with pyridine (1+ moles) in dry  $C_6H_6$  on warming gives (25% yield (139)) phenacyl-pyridinium chloride, mp. 109-110° (139), 113° (140); note that this prod. with aq. 20% NaOH at room temp. undergoes cleavage giving (96% yield (141)) benzoic acid (1:0715) and (30% yield (141)) N-methylpyridone-2 [Beil. XXI-268, XXI<sub>1</sub>-(278)], b.p. 127° at 12 mm. (141). — For study of rate of addn. of  $\bar{C}$  to pyridine in alc. soln. at 55.6° (142) or in 90% alc. at 30.5° (16) cf. (112) see indic. refs.]

# Behavior of C with Arylhydrazines

(See also below under  $\mathbb{O}$ 's.) —  $\overline{\mathbb{C}}$  with many arylhydrazines does *not* yield the corresp. arylhydrazones because the reaction takes a different course.

Č (2 g.) with phenylhydrazine (1.4 g.) in warm EtOH (20 ml.) contg. NaOAc.3H<sub>2</sub>O in aq. (10 ml.) ppts. (14) a yellow solid, m.p. 137° dec. (14), regarded as 1,3-diphenyl-(1,2-diazacyclobutene-2). — Similarly, Č with o-tolylhydrazine gives (14) 1-(o-tolyl)-3-phenyl-(1,2-diazacyclobutene-2), m.p. 147.2° (14); Č with p-tolylhydrazine gives (14) 1-(p-tolyl)-3-phenyl-(1,2-diazacyclobutene-2), m.p. 159.8° dec. (14); Č with p-nitrophenyl-hydrazine gives (14) 1-(p-nitrophenyl)-3-phenyl-(1,2-diazacyclobutene-2), m.p. 173° dec. (14). — [For further discussion of structures of these prods. see also (143).]

# Behavior of C with Other Miscellaneous Nitrogeneous Reactants

Č with diazomethane in dry ether + MeOH for 12 hrs. gives (88% yield (144)) 3-chloro-2-phenyl-1.2-epoxypropane ( $\alpha$ -chloromethyl- $\alpha$ -phenyl-ethylene oxide), b.p. 135-137° at 17 mm. (144).

- © Chloromethyl phenyl ketoxime: cryst. from CS<sub>2</sub>, m.p. 88.5-89° (4), 88-89° (17). [From C (1 mole) + hydroxylamine hydrochloride (3 moles) in dil. MeOH stood overnight, prod. pptd. by addn. of aq. (4); note that this oxime on Beckmann rearr. with PCl<sub>5</sub> gives (4) ω-chloroacetanilide, m.p. 134.5° (5).]
- © Chloromethyl phenyl ketone 2,4-dinitrophenylhydrazone: orange cryst., m.p. 212° cor. (145). [See above for behavior of  $\tilde{C}$  with various other arythydrazines.]
- © Chloromethyl phenyl ketone semicarbazone: m.p. 160° on "Maquenne bloc" (1), 156° (146), 149° (147). [From Č (3.1 g.) in alc. (25 ml.) with semicarbazide hydrochloride (2.2 g.) in aq. (12.5 ml.) at 40° on addn. of NaHCO<sub>3</sub> (1.7 g.) in small increments; yield 71% (147); for study of chem. behavior of this prod. see (147).]
- N-(Phenacyl)phthalimide (ω-phthalimidoacetophenone) [Beil. XXI-479]: m.p. 167° u.c. (148), 166° (149). [This prod. has never been reported from C + K phthalimide but has been prepd. indirectly. However, for its prepn. from phenacyl bromide with K phthalimide see (150).]
- N-(Phenacyl)tetrachlorophthalimide ( $\omega$ -(tetrachlorophthalimido)acetophenone): pl. from CHCl<sub>3</sub> on pouring into MeOH, m.p. 258-259° (151). [From  $\bar{C}$  (?) or phenacyl bromide with K tetrachlorophthalimide (151).]
- © Condensation prod. from  $\tilde{C}$  with N-methyl- $\beta$ -(carbohydrazido)pyridinium p-toluenesulfonate: cryst. from EtOH/ether 1:1, m.p. 120° cor. (152). [From  $\tilde{C}$  + the quatsalt of nicotinic acid hydrazide with methyl p-toluenesulfonate (152).]
- 3:1212 (1) Detoeuf, Bull. soc. chim. (4) 31, 177 (1922). (2) Tutin, J. Chem. Soc. 97, 2495-2503 (1910). (3) Clibbens, Nierenstein, J. Chem. Soc. 107, 1491-1492 (1915). (4) Korten, Scholl, Ber. 34, 1902-1907 (1901). (5) Rust, Ber. 30, 2833 (1897). (6) Staedel, Ber. 10, 1830-1835 (1877). (7) Mohler, Sorge, Helv. Chim. Acta 21, 70 (1938). (8) Mohler, Polya, Helv. Chim. Acta 19, 1238 (1936). (9) Barkenbus, Clements, J. Am. Chem. Soc. 56, 1369-1370 (1934). (10) Conant, Hussey, J. Am. Chem. Soc. 47, 486 (1925).
- (11) Conant, Kirner, J. Am. Chem. Soc. 46, 239, 250 (1924). (12) Kohlrausch, Pongratz, Monatsh. 64, 379 (1934). (13) Dijkstra, Chem. Weekblad 34, 354-355 (1937). (14) Hoogeveen, Rec. trav. chim. 50, 669-678 (1931). (15) Levin, Hartung, Org. Syntheses 24, 25-28 (1944). (16) Baker, J. Chem. Soc. 1932, 1148-1157. (17) Jackson, Pasiut, J. Am. Chem. Soc. 49, 2078-2079 (1927). (18) Nathan, Watson, J. Chem. Soc. 1933, 895. (13) Kireev, Kaplan, Vasneva, J. Phys. Chem. (U.S.S.R.) 5, 739-741 (1934); Cent. 1935, II 2043 [C.A. 29, 2424 (1935)]. (20) Prentiss, "Chemicals in War," McGraw-Hill Book Co. N.Y., 1st ed., pp. 142-144 (1937).
- (21) Sadtler, Chem. Industries 40, 584-586 (1937). (22) Barker, Danner (to Secretary of War, U.S.A.), U.S. 2,146,715, Feb. 14, 1939; Cent. 1939, I 5100; C.A. 33, 3920 (1939). (23) von Frantzius (to Hercules Gas Munitions Corp), U.S. 2,068,159, Jan. 19, 1937; Cent. 1937, I 3442; C.A. 31, 2010 (1937). (24) Kobe, U.S. 1,993,610, March 5, 1935; Cent. 1935, I 3750; C.A. 29, 2631 (1935). (25) Oglesby, Ehrenfeld (to Federal Laboratories, Inc.), U.S. 1,864,754, June 28, 1932; Cent. 1932, II 2912; C.A. 26, 4393 (1932). (26) Bradner, U.S. 1,805,755, May 19, 1931; Cent. 1931, II 3076; C.A. 25, 3745 (1931). (27) Goss (to Lake Erie Chem Co), U.S. 1,792,010, Feb. 10, 1931; Cent. 1932, I 168; C.A. 25, 2000 (1931). (28) I.G., Ger. 494,463, March 24, 1930; Cent. 1930, II 1430; C.A. 24, 2849 (1930). (29) Anthony, Chem. Warfare Bull. 28, 187 (1942); C.A. 37, 196 (1943). (30) McBride, U.S. 2,269,466, Jan. 13, 1942; C.A. 36, 2765 (1942).
- (31) Pusin, Hrustanovic, Ber. 71, 802-803 (1938). (32) Linton, J. Franklin Inst. 235, 642-643 (1943). (33) Dietel, Med. Klin. 29, 1208 (1933); Cent. 1933, II 2026; not in C.A. (34) Hanzlik, Tarr, et al., J. Pharmacol. 14, 221-229 (1919); Cent. 1920, I 510; C.A. 14, 1161 (1920). (35) Plücker, Z. Untersuch. Lebensm. 68, 313-320 (1934). (36) Friedel, Crafts, Ann. chim. (6) 1, 507-508 (1884). (37) Gautier, Ann. chim. (6) 14, 377-381 (1888). (38) Matheson, Humphries, J. Chem. Soc. 1931, 2514-2516. (39) Graebe, Ber. 4, 34-35 (1871). (40) Szper, Bull. soc. chim. (4) 51, 655-656 (1932).

(41) Behal, Detoeuf, Compt. rend. 153, 1231 (1911).
(42) Bradley, Robinson, J. Chem. Soc. 1928, 1310-1318.
(43) Bradley, Schwarzenbach, J. Chem. Soc. 1928, 2904-2912.
(44) Nierenstein, Nature 121, 940-941 (1928).
(45) Bradley, Robinson, Nature 122, 130-131 (1928).
(46) Nierenstein, Nature 122, 313 (1928).
(47) Malkin, Nierenstein, J. Am. Chem. Soc. 52, 1504-1508 (1930).
(48) Bradley, Robinson, J. Am. Chem. Soc. 52, 1558-1565 (1930).
(49) Ott, Dittus, Weissenburger, Ber. 76, 86 (1943).
(50) Mathus, Bull. soc. chim. Belg. 34, 285-289 (1925).

(51) Peters, Griffith, Briggs, French, J. Am. Chem. Soc. 47, 453-454 (1925). (52) Bolth, Whaley, Starkey, J. Am. Chem. Soc. 65, 1457 (1943). (53) Malinovskii, J. Gen. Chem. (U.S.S.R.) 5, 1355-1358 (1935); Cent. 1936, II 1528; C.A. 30, 2182 (1936). (54) Malinovskii, Sci. Records Gorky State Univ. 7, 34-47 (1939); C.A. 35, 444 (1941). (55) Gibson, Johnson, Vining, Rectrav. chim. 49, 1035 (1930). (56) Rabcewicz-Zubkowski, Roczniki Chem. 9, 532-537 (1929); Cent. 1929, II 2773; C.A. 24, 92 (1930). (57) Aston, Newkirk, Dorsky, Jenkins, J. Am. Chem. Soc. 64, 1415-1416 (1942). (58) Hoogeveen, Chemistry & Industry 59, 550 (1940). (59) Baker,

J. Chem. Soc. 1931, 2420. (60) Arndt, Eistert, Partale, Ber. 60, 1369 (1927).

(61) Ruggli, Reichwein, Helv. Chim. Acta 20, 917 (1937). (62) Dale, Nierenstein, Ber. 60, 1027 (1927). (63) Weidenhagen, Herrmann, Ber. 68, 1955 (1935). (64) Levin, Hartung, J. Org. Chem. 7, 411-412 (1942). (65) Dyckerhoff, Ber. 10, 119-121 (1877). (66) Collet, Compt. rend. 128, 312 (1899). (67) Paal, Stern, Ber. 32, 532-533 (1899). (68) Mannich, Hahn, Ber. 44, 1544-1546 (1911). (69) Kretov, Panchenko, Konovalchk, J. Gen. Chem. (U.S.S.R.) 1, 396-400 (1931); Cent. 1932, I 2835; C.A. 26, 2442 (1932). (70) Chrzasczewska, Chwalinski, Roczniki Chem. 7, 67-73 (1927); Cent. 1927, II 415, C.A. 22, 1339 (1928).

(71) Collet, Bull. soc. chim. (3) 17, 506-507 (1897).
(72) Pratt, Robinson, J. Chem. Soc. 123, 748 (1923).
(73) Allen, Scarrow, Can. J. Rescarch 11, 400 (1934).
(74) Moffett, Shriner, Org. Syntheses 21, 79-80 (1941).
(75) Sommelet, Ann. chim. (8) 9, 521-522 (1906); Bull. soc. chim.
(4) 1, 389-390 (1907), Compt. rend. 138, 91 (1904).
(76) Pratt, Robinson, J. Chem. Soc. 121, 1580 (1922).
(77) Rigler, Henze, J. Am. Chem. Soc. 58, 475 (1936).
(78) Vandevelde, Bull. acad. roy. Belg. 1899, 204-211; Cent. 1899, II 91-92.
(79) Whitney, Henze, J. Am. Chem. Soc. 60, 1149-1150 (1938).
(80) Ramart-Lucas, Hoch, Bull. soc. chim. (4) 51, 826, 835-836 (1932).

(81) Kuhn, J. prakt. Chem. (2) 156, 119-121 (1940). (82) Whitner, Reid, J. Am. Chem. Soc. 43, 639 (1921). (83) Waldron, Reid, J. Am. Chem. Soc. 45, 2401-2402 (1923). (84) Kohler, Potter, J. Am. Chem. Soc. 58, 2168 (1936). (85) Widman, Ber. 49, 478 (1916). (86) Kohler, Richtmyer, Hester, J. Am. Chem. Soc. 53, 213 (1931). (87) Weitz, Ger. 395,435, May 19, 1924; Cent. 1924, II 1404, not in C.A. (88) Moureu, Ann. chim. (10) 14, 339-340 (1930). (89) Weitz, Scheffer, Ber. 54, 2338-2340 (1921). (90) Bodforss, Ber. 51, 195 (1918).

(91) Bodforss, Ber. 49, 2796–2797 (1916). (92) Bodforss, Ber. 55, 144 (1919); Ber. 55, 3581 (1922). (93) Bodforss, Ann. 534, 227–229, 241–243 (1938). (94) Arndt, Loewe, Ber. 71, 1630 (1938). (95) Dorsch, McElvain, J. Am. Chem. Soc. 54, 2962 (1932). (96) Rehberg, Henze, J. Am. Chem. Soc. 63, 2787, Note 10 (1941). (97) Gabriel, Eschenbach, Ber. 30, 1127–1128 (1897). (98) Rabeewicz-Zubkowski, Kaflinska, Roczniki Chem. 10, 555–569 (1930); Cent. 1930, 11 3274; not in C.A. (99) Arapides, Ann. 249, 10–12 (1888). (100) Arndt, Martius, Ann. 499, 281 (1932).

(101) Gilman, King, J. Am. Chem. Soc. 37, 1140 (1925). (102) Tiffeneau, Ann. chim. (8) 10, 368-369 (1907). (103) Thomson, Stevens, J. Chem. Soc. 1932, 2611. (104) Levy, Dvoleitzka-Gombinska, Bull. soc. chim. (4) 49, 1770 (1931). (105) Tiffeneau, Cahnmann, Bull. soc. chim. (5) 2, 1882 (1935). (106) Tiffeneau, Fourneau, Compt. rend. 146, 699 (1908). (107) Tiffeneau, Deux, Compt. rend. 213, 753-758 (1941); Cent. 1942, II 1558, C.A. 37, 4049 (1943). (108) Hyde, Browning, Adams, J. Am. Chem. Soc. 50, 2290-2291 (1928). (109) Brighton, Reid, J. Am. Chem. Soc. 65, 479 (1943). (110) Busch, Hefele, J. prakt. Chem. (2) 83, 431-432 (1911).

(111) Busch, Kammerer, Ber. 63, 652-653, 658 (1930). (112) Baker, J. Chem. Soc. 1933, 1128-1133. (113) Crowther, Mann, Purdie, J. Chem. Soc. 1943, 58-68. (114) Verkade, Janetzky, Rec. trav. chim. 62, 763-774 (1943); C.A. 38, 6284 (1944). (115) Bischler, Ber. 25, 2865-2867 (1892). (116) Busch, Stratz, J. prakt. Chem. (2) 150, 27 (1937). (117) Cooper, Campbell, J. Chem. Soc. 1935, 1210. (118) Lellmann, Donner, Ber. 23, 167-168 (1890). (119) von Braun, Weissbach, Ber. 62, 2425 (1929). (120) Eidebenz, Arch. Pharm. 280, 49-63 (1942); Cent. 1942, II 1227; C.A. 38, 4927 (1944).

(121) Rumpel, Arch. Pharm. 237, 223, 234-235 (1899). (122) Thomson, Stevens, J. Chem. Soc. 1932, 2610. (123) Stevens, Cowan, MacKinnon, J. Chem. Soc. 1931, 2572. (124) Eidebenz (to Chem. Werke Albert), Ger. 681,849, Oct. 3, 1939; Cent. 1939, II 4281; C.A. 37, 2376 (1942); Ger. 651,543, Oct. 16, 1937; Cent. 1938, I 658; C.A. 32, 588 (1938). (125) Marvel, du Vigneaud, J. Am. Chem. Soc. 46, 2098 (1924). (126) DuFraisse, Moureu, Bull. soc. chim. (4) 41, 472-473 (1927). (127) Rabe, Schneider, Ber. 41, 874-875 (1908). (128) Wegler, Frank, Ber. 79.

1283 (1937). {129} Cromwell, J. Am. Chem. Soc. 63, 838 (1941). {130} Cromwell, Caughlan, Gilbert, J. Am. Chem. Soc. 66, 403 (1944).

(131) Eidebenz (Chem. Werke Albert), Ger. 667,356, Nov. 9, 1938; Cent. 1939, I 1410; C.A. 33, 2287 (1939). (132) Mason, Ross, J. Am. Chem. Soc. 62, 2883 (1940). (133) Rubin, Day, J. Org. Chem. 5, 57 (1940). (134) Cromwell, J. Am. Chem. Soc. 62, 2899 (1940). (135) Dunn, Stevens, J. Chem. Soc. 1934, 281. (136) Hampton, Pollard, J. Am. Chem. Soc. 59, 2446-2447 (1937). (137) Fischer, Barat, Ann. 512, 238 (1934). (138) Algar, Hickey, Sherry, Proc. Roy. Irish Acad. 49-B, 109-119 (1943); C.A. 37, 6659 (1943). (139) Babcock, Nakamura, Fuson, J. Am. Chem. Soc. 54, 4408-4409 (1932). (140) Marvel, Scott, Amstutz, J. Am. Chem. Soc. 51, 3639 (1929).

(141) Babcock, Fuson, J. Am. Chem. Soc. 55, 2946-2947 (1933). (142) Clarke, J. Chem. Soc. 97, 427 (1910). (143) Bodforss, Ber. 72, 468-482 (1939). (144) Adamson, Kenner, J. Chem. Soc. 1939, 185. (145) Allen, Richmond, J. Ory Chem. 2, 224 (1937). (146) Knopfer, Monatsh. 31, 108 (1910). (147) Hoogeveen, van Hoogstraten, Rec. trav. chim. 52, 378-384 (1933). (148) Gabriel, Ber. 41, 242, Note 1 (1908). (149) Wanag, Veinbergs, Ber. 75, 1562 (1942). (150) Gabriel, Ber. 41, 1132 (1908).

(151) Allen, Nicholls, J. Am. Chem. Soc. 56, 1409-1410 (1934). (152) Allen, Gates, J. Org. Chem. 6, 596-601 (1941). (153) Widman, Ann. 400, 86-130 (1913).

## 3:1220 1,2,3,4,5,6-HEXACHLOROHEXENE-3

Beil. S.N. 11

M.P. 58-59° (1) B.P. 110-112° at 2 mm. (1)

Colorless cryst. from pet. ether.

[For prepn. from hexadiene-2,5-yne-3 (divinylacetylene) (2) with excess Cl<sub>2</sub> in CCl<sub>4</sub> for 12 hrs. (10% yield (1)) see (1)]

C fails to react with Cl<sub>2</sub> even at elevated temperatures in light, and is unaffected by hot HNO<sub>3</sub> or by O<sub>3</sub>; alk. KMnO<sub>4</sub> causes complete decomposition (1).

**3:1220** (1) Coffman, Carothers, J. Am. Chem. Soc. **55**, 2040-2047 (1933). (2) Nieuwland, Calcott, Downing, Carter, J. Am. Chem. Soc. **53**, 4200-4202 (1931).

# 3: 1265 1,1,1,2,3-PENTACHLORO-2- $CH_3$ $C_4H_5Cl_5$ Beil. S.N. 10 $CICH_2$ —C— $CCl_3$

M.P. 59.5° (1)

[For prepn. of  $\bar{C}$  from 1,1,3-trichloro-2-methylpropene-1 (3:5025) with  $Cl_2$  see (1).] 3:1265 (1) Jacob, Bull. soc. chim. (5) 7, 581-586 (1940).

46-47°

46°

(12)

(13)

[See also anhydrous chloral (3:5210) and chloral ethylalcoholate (3:0860)]

The m.p. of  $\bar{C}$  is profoundly affected by mode of heating and by pressure (1) (2) but when taken in test tube in ord. m.p. apparatus is claimed to be consistently  $59-60^{\circ}$  (2). — [For especially extensive studies on the m p. of  $\bar{C}$  see (1) (2) (6) (10) ]

 $\bar{C}$  undergoes a transition point at 32° detectable by dilatometric methods (15). Furthermore,  $\bar{C}$  on heating dissociates into anhydrous chloral and  $H_2O$ ; the temperature at which dissocn. begins is unknown, but dissocn. is complete at 78° (15).

Ordinary, definitely the monohydrate, but other hydrates of chloral (3:5210) have been claimed (6). However, the suggestion (16) that C may exist in two modifications appears to be discredited (6) (10).

[For study of crystal structure of  $\bar{C}$  see (18); for density and refractive index of various solns. of  $\bar{C}$  in aq., EtOH, or toluene see (12); for study of toxicity of  $\bar{C}$  see (19)]

Note that  $\tilde{C}$  on htg. does *not* give inflammable vapor (diff. from chloral ethylalcoholate (3:0860).

 $\bar{C}$  is eas. sol. in aq. or alc.; much less sol. in CHCl<sub>3</sub> or toluene. [E.g., 1 pt. aq. dissolves following parts  $\bar{C}$  at indic. temps.: at 0°, 2.4; at 5°, 2.9; at 10°, 3.8; at 15°, 4.9; at 20°, 6.6; at 25°, 8.3; at 30°, 10.1; at 35°, 12.1; at 40°, 14.3 pts.  $\bar{C}$  (20).] — Aq. solns. of  $\bar{C}$  are frequently designated as chloral sirup; for study of stability of such solns. see (21).

#### CHEMICAL BEHAVIOR OF Č

Important note. The chemistry of chloral hydrate ( $\bar{\mathbb{C}}$ ) on one hand and that of anhydrous chloral (3:5210) on the other is so closely interwoven that the division of material between them in this book is necessarily arbitrary. Most of the definite chemical reactions of chloral hydrate have been associated with the text of anhydrous chloral (3:5210), which should always be consulted. Certain methods for the detection and for determination of chloral and chloral hydrate, however, are brought together here under the latter.

#### DETERMINATION OF C

For the quantitative detn. of  $\tilde{\mathbf{C}}$  several different principles have been employed as further explained below.

By behavior with alkali. This method is based upon the fact that  $\bar{C}$  with aq. alkali undergoes hydrolytic cleavage to CHCl<sub>3</sub> (3:5050) and formic acid (1:1005); since the

latter is neutralized 1 equivalent of alkali is used up for each mole of formic acid produced and therefore for each mole of  $\tilde{C}$  originally present. Since on the one hand the CHCl<sub>3</sub> produced is readily volatile and since on the other it is itself attacked by the excess alkali, some standardization of conditions is required. The process usually involves use of a known amount (excess) of standard alkali followed by back titration with standard acid.

[For especially valuable summaries and discussion of this method see (22) (23); for additional material on characteristics of this method see (24) (25) (26) (27) (28) (29) (31) (32) (33) (34) (35) (41); for discussion of detn. of the formate produced see (22).]

If the sample contains other substances which independently react with alkali and thus interfere with the above method,  $\bar{C}$  may be determined by reduction to acetaldehyde (1:0100) and characterization of the latter. E.g.,  $\bar{C}$  with Zn + strong HCl (36) (37), or with Zn + dil. H<sub>2</sub>SO<sub>4</sub> (37) (38) (27) cf. (42), gives acetaldehyde (1:0100); this may be detd. as p-nitrophenylhydrazone (36) (or otherwise) or if H<sub>2</sub>SO<sub>4</sub> was used total chloride ion may be determined (42). This reduction to acetaldehyde is of value in detn. of  $\bar{C}$  in presence of CHCl<sub>3</sub> (3:5050) or of  $\alpha,\alpha,\beta$ -trichloro-n-butyraldehyde ("butyrchloral") (3:5910) (38).

By determination of total chlorine as chloride ion. In addition to the reduction methods (mentioned in the preceding paragraph) for conversion of all the chlorine of C to chloride ion, this may also be effected by complete hydrolysis with alkali (usually alcoholic alkali best in pressure bottle (39)) (40) (41); for extensive review of methods based on this principle see (22); the total chloride ion is afterward detd. by conventional methods.

By oxidation methods. By appropriate reagents  $\bar{C}$  can be oxidized to trichloroacetic acid (3:1150); by use of a known amount (excess) of standard soln. of oxidant followed by back titration to determine residual oxidant, the amount corresp. to oxidn. of  $\bar{C}$  can be detd. For studies of this method using  $I_2$  (22) (42) (34) (43), Br<sub>2</sub> (42), KMnO<sub>4</sub> (42), or (NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (44) see indic. refs.

#### DETECTION OF C BY VARIOUS COLOR REACTIONS

With various phenols. [For color tests with resorcinol (1:1530) + aq. alk. (45), with pyrogallol (1:1555) + 66% H<sub>2</sub>SO<sub>4</sub> (use in distinction from "butyrchloral" (3:5910) (46)), with phloroglucinol (1:1620) + aq. alkali (47) (49) see indic. refs.]

[For behavior of  $\bar{C}$  with resorcinol (1:1530) + KBr + conc. H<sub>2</sub>SO<sub>4</sub> see (52).]

With pyridine + aq. alk. Since  $\bar{C}$  with aq. alk. on warming gives CHCl<sub>3</sub> (3:5050), detection of the latter by means of the pink to red color produced with pyridine in pres. of conc. aq. alkali (Fujiwara reaction) may be used as indirect test for  $\bar{C}$  (48) (51). Note, however, that the test is not specific since it is given by various other-trihalogen compounds. [For further information on the Fujiwara reaction see also under trichloroethylene (3:5170).]

With fuchsin-aldehyde reagent. Note that  $\bar{C}$  (unlike chloral (3:5210)) does not give color with fuchsin-aldehyde reagent (50).

① 1,1,1-Trichloro-2-methylpropanol-2 ("Chloretone"): M.p. 96°. Convert Č with aq. alk. to CHCl<sub>3</sub> (3:5050) and derivatize the latter by combination with acetone to "chloretone" (3:2662).

3:1270 (1) Banchetti, Ann. chim. applicata 31, 422-429 (1941); Cent. 1942, II 1779; C.A. 38, 2313 (1944). (2) Banchetti, Ann. chim. applicata 31, 463-466 (1941); Cent. 1942, II 2577; C.A. 38, 2314 (1944). (3) Ingold, J. Chem. Soc. 125, 1536-1537 (1924). (4) Meyer, Dulk, Ann. 171, 74-76 (1874). (5) Petrikaln, Hochberg, Z. physik. Chem. B-4, 306 (1929). (6) van Rossem, Z. physik. Chem. 62, 681-712 (1908). (7) Tsakalotos, Bull. soc. chim. (4) 13, 282-283 (1913). (8) Bellucci, Gazz. chim. ital. 43, I 527 (1913). (9) Ramsay, Young, Phil. Trans. 177, I 77 (1886). (10) Wolf, J. Phys. Chem. 4, 21-32 (1900).

(11) Jacobsen, Ann. 157, 243-248 (1871). (12) Rudolfi, Z. physik. Chem. 37, 426-447 (1901).

(13) Personne, Compt. rend. 69, 1363 (1869). (14) Berthelot, Ann. chim. (5) 12, 536 (1877). (15) Mounfield, Wood, J. Chem. Soc. 1926, 498-499. (16) Pope, J. Chem. Soc. 75, 455-460 (1899). (17) Kurnakow, Efremov, Z. physik. Chem. 85, 401-418 (1913). (18) Elliott, Z. Krist. 98, 180 (1937); Cent. 1938, I 1104; C.A. 32, 1998 (1938). (19) Adams, J. Pharmacol. 78, 340-345 (1943); C.A. 37, 6035 (1943). (20) Speyers, Am. J. Sci. (4) 14, 294 (1902).

(21) Danckworth, Arch. Pharm. 280, 197-205 (1942); C.A. 37, 2516 (1943). (22) Watson, Am. J. Pharm. 102, 506-525 (1930). (23) Weston, Ellis, Chem. News 95, 210-211 (1907). (24) Meyer, Haffter, Ber. 6, 600-601 (1873). (25) Khait, Ukraın Gosudarst. Inst. Eksptl. Farm. (Kharkov) 1939, No. 3, 80-81; C.A. 36, 2812 (1942). (26) Goretskii, Farmatsiya 1949, No. 6, 31-33; C.A. 35, 2678 (1941). (27) Meillere, J. pharm. chim. (8) 11, 145-147 (1930); Cent. 1930, I 3221; C.A. 24, 4586 (1930). (28) Andron, J. pharm. chim. (8) 8, 453-455 (1928); Cent. 1929, I 1845; C.A. 23, 3775 (1929). (29) Andron, Bull. soc. pharm. Bordeaux 64, 199-201 (1926): Cent. 1927, I 1874; C.A. 21, 2045-2046 (1927). (30) Fleury, Malmy, J. pharm. chim. (8) 8, 537-542 (1928), Cent. 1929, I 2092; C.A. 23, 3775 (1929).

(31) Francois, J. pharm. chim. (8) 7, 54-57 (1928); Cent. 1928, I 1898, C.A. 22, 1652 (1928). (32) Brugeas, Bull. soc. pharm. Bordeaux 66, 12-17 (1928), Cent. 1928, I 1986; CA. 23, 4014 (1929). (33) Self, Pharm. J. (4) 25, 4-7 (1907); Cent. 1907, II 1019; C.A. 2, 448 (1908). (34) Kolthoff, Pharm. Weekblad 60, 2 (1923), cf. Z. anal. Chem. 64, 454 (1924). (35) Garnier, Bull. sci. pharmacol. 15, 77-82 (1908); Cent. 1908, I 1492; C.A. 4, 234 (1910), cf. Z. anal. Chem. 49, 249 (1910). (36) Griebel, Weiss, Z. Untersuch. Lebensm. **56**, 163 (1928) (37) Personne, Ann. **157**, 113-115 (1871). (38) Jona, Giorn. farm. chim. **61**, 57-59 (1912); Cent. **1912**, 1 1148, C.A. **6**, 1337-1338 (1912). (39) Wallis, Pharm. J. (4) 22, 162-163 (1906); Cent. 1906, I 1053. (40) Lormand, J. pharm. chim.

(8) 9, 151-153 (1929), Cent. 1929, I 2909; C.A. 23, 3775 (1929).

(41) Brugeas, Bull. soc. pharm. Bordeaux 66, 78-83 (1928), Cent. 1928, II 591; not in C.A. (42) Schwicker, Z. anal. Chem. 110, 161-165 (1937). (43) Rupp, Arch. Pharm. 241, 326-328 (1903); see also correction Pharm. Zentralhalle 64, 151, Cent. 1923, IV 483. (44) Rogers, Trans. Roy. Soc. Canada (3) 17, III 164 (1923), Cent. 1924, II 515, not in CA. (45) Ware, Chemist and Druggist, 123, 282 (1935), Cent. 1936, I 1667. (46) Gabutti, Boll. chim farm. 42, 777-778 (1903); Cent. 1904, I 480-481. (47) Jaworowski, Z. anal. chem. 37, 60 61 (1898) (48) Ross, J. Biol. Chem. **58**, 641–642 (1923/24). (49) Kul'berg, Presman, Farm. Zhur. **13**, No. 3, 12–14 (1940); Cent. **1942**, I 1531–1532, C A. **37**, 2883 (1943) (50) Schmidt, Ber. **13**, 2343, Note (1880). (51) Adams, J. Pharmacol. **74**, 11–17 (1942); C.A. **36**, 1343 (1942). (52) Pesez, J. pharm. chim.

(8) 22, 68-69 (1935); Cent. 1936, I 1050, C.A. 30, 1517-1518 (1936).

3: 1275 
$$\alpha_1\alpha_2\beta$$
-TRICHLOROPROPIONIC ACID  $C_3H_3O_2Cl_3$  Beil. II —  $Cl$   $II_1$ —  $II_2$ —(228)

M.P. [65-66° (4)] 60° (1) 50-52° (2)

Colorless very hygroscopic cryst.; note that m.p. is rapidly lowered by exposure to moist air (1). — Eas. sol. aq., alc., C<sub>6</sub>H<sub>6</sub>; best crystd. from CS<sub>2</sub>.

[For prepn. of  $\tilde{C}$  from  $\alpha, \alpha, \beta$ -trichloropropional dehyde (3:9033) by oxidn, with fumg. HNO<sub>3</sub> (2) (1) or by aq. acid solns. of chlorates + cat. (4) see indic. refs.; from 1,2,2,3tetrachlorobutene-3 (3:9060) by oxidn. with excess aq. KMnO<sub>4</sub> see (3).]

C titrates readily as monobasic acid; Neut. Eq., calcd. 177.5; found, 176.6 (2).

[C in abs. alc. contg. a little H2SO4, refluxed 1 hr. gives (2) ethyl 1,1,2-trichloropropionate, b.p. 121° at 55 mm.,  $D_{-}^{25} = 1.36$ ,  $n_{-}^{25} = 1.458$  (2).]

[For conversion of  $\tilde{C}$  to acid chloride with SOCl<sub>2</sub> or S<sub>2</sub>O<sub>2</sub> + Cl<sub>2</sub> + cat. see (5).]

3:1275 (1) Muskat, Becker, J. Am. Chem. Soc. 52, 817-818 (1930). (2) Berlande, Bull. soc. chim. (4) 37, 1392 (1925). (3) Berchet, Carothers, J. Am. Chem. Soc. 55, 2008 (1933). (4) Plump (to Pennsylvania Salt Mfg. Co.), U.S. 2,370,577, Feb. 27, 1945; C.A. 39, 4085 (1945). (5) Lichty (to Wingfoot Corp.), U.S. 2,361,552, Oct. 31, 1944; C.A. 39, 2297 (1945).

M.P. 60° (1) B.P. 236-238° (3) 57.9° (2)

Colorless hygroscopic lfts. or ndls. from pet. ether; deliquesces in moist air to yield an oil sol. in 20-25 pts. aq. (4). [New comml. prod. (1942) in U.S A.]

[For prepn. (100% yield (5)) from  $\alpha,\alpha,\beta$ -trichloro-n-butyraldehyde hydrate (n-butyr-chloral hydrate) (3:1905) via actn. of 2 pts. fumg. HNO<sub>3</sub> (D=1.504) at 30° (5) (6) or with aq. acid solns. of chlorates + cat. (8) see indic. refs.; for prepn. from  $\alpha$ -chloro-crotonic acid (3:2760) or  $\alpha$ -chloro-isocrotonic acid (3:1615) by addn. of Cl<sub>2</sub> see (4).

 $\bar{C}$  with Zn dust and aq. gives excellent yield (5) of  $\alpha$ -chlorocrotome acid (3:2760), m.p. 99-100° (5).

Na $\overline{A}$  on warming (4) or boilg. (3) with aq. dec. into CO<sub>2</sub> and 1,1-dichloropropene-1 (3:5120), b.p. 78°. — Pb $\overline{A}_2$  (7) or Pb $\overline{A}_2$ .2H<sub>2</sub>O (3) is insol. cold aq., spar. sol. hot aq., but eas. sol. in alc. or ether.

 $\tilde{C}$  with PCl<sub>3</sub> (3) yields  $\alpha, \alpha, \beta$ -trichloro-n-butyryl chloride, b.p. 162-166° (3).

- Methyl  $\alpha, \alpha, \beta$ -trichloro-n-butyrate: unreported.
- Ethyl  $\alpha,\alpha,\beta$ -trichloro-n-butyrate: b.p. 212° (see 3:6380).
- α,α,β-Trichloro-n-butyramide: scales from alc., m.p. 96° (3). [From α,α,β-trichloro-n-butyryl chloride (above) with conc. aq. NH<sub>4</sub>OH (3).]
- ----  $\alpha,\alpha,\beta$ -Trichloro-n-butyranilide: unreported

3:1285 2-CHLORONAPHTHALENE

 $\alpha,\alpha,\beta$ -Trichloro-n-butyr- $\alpha$ -naphthalide: unreported.

3:1280 (1) Kahlbaum, Ber 12, 2337 (1879). (2) Kendall, J. Am Chem Soc. 36, 1231 (1914). (3) Judson, Ber. 3, 785-788 (1870). (4) Valentin, Ber. 28, 2661-2663 (1895). (5) Roberts, J. Chem. Soc. 1938, 779. (6) Knamer, Pinner, Ber. 3, 389 (1870). (7) Garzarolli-Thurnlack, Ann. 182, 184 (1876). (8) Plump (to Pennsylvania Salt Mfg. Co.), U.S. 2,370,577, Feb. 27, 1945; C.A. 39, 4085 (1945).

C<sub>10</sub>H<sub>7</sub>Cl

Beil. V - 541

#### V1-(262) V<sub>2</sub>-(445) M.P. B.P. 61° 256.5° cor. $n_{\rm D}^{70.7} = 1.60787 (12)$ (20) (1) 60° (2) 256° (2) $(D_4^{20} = 1.178)$ (12) 59.5-60° (3) 255.6° cor. at 752 mm. (10) 58.6-59.8° (4) 264-266° cor. at 751 mm. (13) $(n_D^{20} = 1.631)$ (12) 59° (5) 251-252° (18)58.6° (6) 121-122° at 12 mm. (12) 58.5° 119.6-119.8° at 11 mm. (4) (7) 58-59° (8) 58° (9) 57.4-57.8° (10)56.7° (11) 56.5° (18)56° (12) (13) (14) (21) (27) 55° (15)

[For 1-chloronaphthalene see 3:6878.]

Colorless lfts. from alc.; eas. sol. alc., ether, C<sub>6</sub>H<sub>6</sub>, CHCl<sub>3</sub>, CS<sub>2</sub>. — Volatile with steam.

[For prepn. from  $\beta$ -naphthylamine [Beil. XII-1265, XIII<sub>1</sub>-(532)] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reaction (yields: 90-95% (17), 82% (15), 75-80% (16)) (3) or even on boilg. diazonium salt soln. with conc. HCl (1) (18), or from diazonium/ZnCl<sub>2</sub> cpd. on addn. to phenol at 60° (44%  $\bar{C}$  + 35% hydroxybiphenyl + 13% diphenyl ether (39)), see indic. refs.; from  $\beta$ -naphthol (1:1540) with PCl<sub>5</sub> at 135-140° for 24 hrs. as directed (30% yield (19)) (20) (13) cf. (16) or from trs-( $\beta$ -naphthyl)phosphoric acid dichloride by htg. at 310° (21) or from sodium  $\beta$ -naphtholate with PCl<sub>3</sub> in toluene (55% yield (22)) see indic. refs.; from sodium  $\beta$ -naphthalenesulfonate with PCl<sub>5</sub> via conv. to  $\beta$ -naphthalenesulfonyl chloride and distn. of latter with a second mole of PCl<sub>5</sub> see (13); from mercury bis-( $\beta$ -naphthyl) with SOCl<sub>2</sub> see (2); from di- $\beta$ -naphthyl sulfone with PCl<sub>5</sub> see (23); from  $\beta$ -chloronaphthole acid-1 (3:4845) by decarboxylation in quinoline at 225° in pres. of copper chromite cat. see (8); for formn. of  $\bar{C}$  ir small proportion from 1-chloronaphthalene (3:6878) by htg. with AlCl<sub>3</sub> (9) or from naphthalene dichloride by actn. of alkali (24) see indic. refs.]

[For sepn. of  $\bar{C}$  from 1-chloronaphthalene (3:6878) by fractional freezing of appropriate solutions see (25).]

[For thermal anal. of systems of  $\bar{C}$  with SbCl<sub>3</sub> (14) (26) or SbBr<sub>3</sub> (14) see indic. refs.; with  $\beta$ -naphthol (1:1540), with  $\beta$ -naphthylamine, or with 2-methylnaphthalene (1:7605) see (5), with PkOH see (11).]

[Č with even twice calcd. amt. 5% Na/Hg in alc. for 22 hrs. is not reduced but can be recovered almost quant. (27).]

[Č with Li in dry ether subsequently treated with Me<sub>2</sub>SO<sub>4</sub> gives (43% yield (28)) 2-methylnaphthalene (1:7605). — Č with chlorobenzene + Na in xylene refluxed 12 hrs. gives small yield (38) 2-phenylnaphthalene [Beil. V-687], m.p. 101.5° (38).]

[ $\bar{C}$  with strong alc. KOH in s.t. at 220° is unchanged (13), but  $\bar{C}$  with 5 moles 3-25% aq. NaOH htd. under press. 1 hr. at 350-360° in pres. of Cu gives (29) a mixt. of  $\beta$ -naphthol (1:1540) +  $\alpha$ -naphthol (1:1500) cf. (30)]

[Č on mononitration as directed (31) gives 2-chloro-8-nitronaphthalene [Beil. V-556], yel. ndls. from alc., m.p. 116° (31) (of the other theoretically possible mononitro Č isomers only the following are known, and these have been prepd. indirectly: viz, 1-nitro-2-chloronaphthalene, m.p. 99-100° (32), 3-nitro-2-chloronaphthalene, m.p. 105° (33), 4-nitro-2-chloronaphthalene, m.p. 79° (34), 5-nitro-2-chloronaphthalene, m.p. 100.5° (37).]

[C on dinitration with fumg. HNO<sub>3</sub> (17) is claimed to yield 2-chloro-1,6(?)dinitronaphthalene, pale yel. ndls. from alc., m.p. 174° (17); in the pres. of H<sub>2</sub>SO<sub>4</sub>, however, the same author (17) regards the prod. as 2-chloro-1,8-dinitronaphthalene, pale yel. ndls. from AcOH, m.p. 175° (17), and no later work appears to be recorded as to whether these are the same and if so which.]

[ $\bar{\mathbf{C}}$  on trinitration, e.g., by soln. in 8 pts. abs. HNO<sub>3</sub> at 0°, or better (38% yield (15)) by addn. of  $\bar{\mathbf{C}}$  (2 g.) to a mixt. of abs. HNO<sub>3</sub> (16 ml.) + conc. H<sub>2</sub>SO<sub>4</sub> (8 ml.) at 0°, followed by warming as directed, gives 2-chloro-1,6,8-trinitronaphthalene, pale yel. cryst. from AcOH, m.p. 193°, white ndls. from C<sub>6</sub>H<sub>6</sub>, m.p. 194° (15).]

[ $\tilde{C}$  on cat. oxidn. with air at 250-300° gives (35) 53% phthalic anhydride (1:0725) + 47% 4-chlorophthalic anhydride (3:2725).]

[For chloromethylation of  $\bar{C}$  with paraformaldehyde + HCl gas in AcOH see (40).]

- D 2-Chloronaphthalenesulfonamide-8 (7-chloronaphthalenesulfonamide-1): cryst. from dil. alc., m.p. 231-232° u.c. (36). [From \(\bar{C}\) with chlorosulfonic acid as directed, followed by conversion of the intermediate 2-chloronaphthalenesulfonyl chloride-8, m.p. 124-126° u.c., with (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> to desired sulfonamide (36).]
- --- 2-Chloronaphthalene picrate: m.p. 81.5° (by thermal anal. (11)).

Liebermann, Palm, Ann. 183, 270 (1876). (2) Heumann, Köchlin, Ber. 16, 1627 (1883). (3) Hampson, Weissberger, J. Chem. Soc. 1936, 394. (4) Gockel, Z. physik. Chem. B-29, 86 (1935). (5) Grimm, Ganther, Titus, Z. physik. Chem. B-14, 195, 199, 202 (1931). (6) Parts, Z. physik. Chem. B-10, 265 (1930). (7) L. Klemm, W. Klemm, Schiemann, Z. physik. Chem. A-165, 384 (1933). (8) Price, Chapin, Goldman, Krebs, Shafer, J. Am. Chem. Soc. 63, 1861 (1941). (9) Roux, Ann. chim. (6) 12, 349 (1888). (10) Zil'berman, Rashevskaya, Martyntseva, J. Applied Chem. (U.S.S.R.) 9, 1832-1840 (1936), Cent. 1937, I 4786; C.A. 31, 2597 (1937).

(11) Jefremov, J. Russ. Phys.-Chem. Soc. 50, 381 (1918); Cent. 1923, III 380. (12) von Auwers, Frthling, Ann. 422, 194, 200, 202 (1921). (13) Rimarenko, J. Russ. Phys.-Chem. Soc. 8, 139 (1876), Ber. 9, 663-666 (1876). (14) Menschutkin, J. Russ. Phys.-Chem. Soc. 44, 1084 (1912); Cent. 1912, II 1436. (15) van der Kam, Rec. trav. chim. 45, 568-569 (1926). (16) Chattaway, Lewis, J. Chem. Soc. 65, 875-877 (1894). (17) Scheid, Ber. 34, 1813-1815 (1901). (18) Gasiorowski, Wayss, Ber. 18, 1940 (1885). (19) Berger, Bull. soc. chim. (3) 35, 30-32 (1906). (20)

Cleve, Juhlin-Dannfelt, Bull. soc. chim. (2) 25, 258-259 (1876).

(21) Autemieth, Geyer, Ber. 41, 158 (1908). (22) Darzens, Berger, Bull. soc. chim. (4) 5, 785-787 (1909). (23) Cleve, Bull. soc. chim. (2) 25, 257 (1876). (24) Armstrong, Wynne, Chem. News 61, 284 (1890); Ber. 24, Referate, 713 (1891). (25) Britton, Reed (to Dow Chem. Co.), U.S. 1,917,822, July 11, 1933; Cent. 1933, II 2194; C.A. 27, 4547 (1933). (26) Vasil'ev, J. Russ. Phys.-Chem. Soc. 49, 428-431 (1917); Cent. 1923, III 668; C.A. 18, 1418 (1924). (27) Franzen, Stauble, J. prakt. Chem. (2) 103, 389 (1921/22). (28) Vesely, Stursa, Collection Czechoslov. Chem. Commun. 4, 142 (1932); Cent. 1932, I 3060 (29) Britton, Stearns (to Dow Chem. Co.), U.S. 1,996,745, April 9, 1935; Cent. 1935, II 2126; C.A. 29, 3354 (1935). (30) Hale, Britton (to Dow Chem. Co.), U.S. 1,882,824, 1,882,825, 1,882,826, Oct. 18, 1932; Cent. 1933, I 309; C.A. 27, 731 (1933).

(31) Armstrong, Wynne, Chem. News 59, 225 (1889). (32) Hodgson, Leigh, J. Chem. Soc. 1937, 1352-1353. (33) Hodgson, Elliott, J. Chem. Soc. 1934, 1705-1706. (34) Hodgson, Elliott, J. Chem. Soc. 1936, 1153. (35) Pongratz, Bassi, Fuchs, Suss, Wustner, Schober, Angew. Chem. 54, 22-26 (1941); C.A. 35, 3248 (1941). (36) Huntress, Carten, J. Am. Chem. Soc. 62, 511-514 (1940). (37) Hodgson, Turner, J. Chem. Soc. 1942, 723-725; C.A. 37, 879 (1943). (38) Chattaway, Lewis, J. Chem. Soc. 65, 871-872 (1894). (39) Hodgson, Foster, J. Chem. Soc. 1942, 582-583. (40) Horn, Warren, J. Chem. Soc. 1946, 144.

[See also p-chlorocarvacrol (3:0480).]

Note that  $\tilde{C}$  is also known as 4-chlorothymol (Beilstein) and as 6-chlorothymol (C.A.) according to differing methods of numbering the thymol nucleus.

#### PREPARATION OF C

From thymol. [For prepn. of  $\tilde{C}$  from thymol (1:1430) by chlorination with  $Cl_2$  in aq.  $Na_2CO_3$  (80% yield (10)), with  $Cl_2$  in AcOH (50% yield (8)), or with  $SO_2Cl_2$  (1) (9) in CHCl<sub>3</sub> (5) see indic. refs.]

From 4-chloro-3-methylphenol (4-chloro-m-cresol). [For prepn. of C from 4-chloro-3-methylphenol (3:1535) by conversion with isopropyl alcohol or isopropyl chloride

(3:7025) (11) or with propylene (3) to 4-chloro-3-methylphenyl isopropyl ether and subsequent rearr. (11) (3), e.g., with H<sub>2</sub>SO<sub>4</sub>/AcOH (6), to C, see indic. refs.]

From other sources. [For prepn. of C from 4-amino-2-isopropyl-5-methylphenol via diazotization and use of CuCl<sub>2</sub>/ZnSO<sub>4</sub> see (4).]

#### BIOCHEMICAL ASPECTS AND USES OF C

 $\bar{C}$  as a halogenated phenol has been widely considered as an antiseptic, bactericide, disinfectant, germicide, fungicide, etc.; while this aspect cannot here be recorded in detail, the following examples may serve as leading references.

[For general and technical articles on bactericidal (12) (13) (14) (15) (16) (17) (18), fungicidal (12) (19) (20) (21), or anthelmintic (22) action of  $\bar{C}$  see indic. refs.; for patents on various means of improving the aqueous solubility of  $\bar{C}$  for use as germicide see (23) (24) (25) (26) (27) (28) (2) (29); for patent on use of  $\bar{C}$  in mouthwash see (30); for use as disinfectant of a mixt. of  $\bar{C}$  (2 pt.) with camphor (1 pt.) (which mixt. is *liquid* above 5°) see (31).]

#### CHEMICAL BEHAVIOR OF C

**Reduction.** [ $\bar{C}$  in aq. alk. with  $H_2$  + cat. at 180° and 30 atm. (32), or  $\bar{C}$  in aq. alk. with Fe filings at 170° or at 200° under pressure (33) gives (100% yield (32)) thymol (1:1430), m.p. 51.5°.]

Oxidation.  $\bar{C}$  on oxidation with CrO<sub>3</sub> (8) or with MnO<sub>2</sub> in ice-cold conc. H<sub>2</sub>SO<sub>4</sub> (1) gives thymoquinone (1:9003), m p. 45.5°.

# Reactions Involving Nuclear Substitution of C

Bromination. [C with Br2 in AcOH gives (8) a mixt. of products ]

Nitration. [ $\bar{C}$  in lt. pet. floated on an aqueous soln. of nitrous acid (from NaNO<sub>2</sub> + HCl) for a week gave (8) 4-chloro-2-isopropyl-5-methyl-6-nitrophenol [Beil. VI-542, VI<sub>1</sub>-(267)], pale yel. ndls. from alc., m.p. 116° (8) (34). — Note that attempts to effect direct nitration of  $\bar{C}$  with HNO<sub>3</sub> in AcOH below 20° (8) give a mixt. of products; also that  $\bar{C}$  in dry CHCl<sub>3</sub> at — 20° with NO<sub>2</sub> (from htg. dry Pb(NO<sub>3</sub>)<sub>2</sub>) gives (8) 4-chloro-3,4,6-trinitro-2-isopropyl-5 methyl-cyclohexadien-2,5-one-1 [Beil. VII<sub>1</sub>-(100)], yel. cryst., m.p. about 105° dec. (8).]

**Mercuration.** [For patents on mercuration of  $\bar{C}$  see (35) (36).]

Miscellaneous nuclear substitutions. [Note that NaĀ with benzyl chloride (3:8535) in toluene at 110° for 4 hrs. gives (by nuclear benzylation) (37) 4-chloro-6-benzyl-2-iso-propyl-3-methylphenol, b.p. 180° at 3 mm. (37).]

[C with SCl<sub>2</sub> in CS<sub>2</sub> gives (65% yield (5)) a sulfide, C<sub>20</sub>H<sub>24</sub>O<sub>2</sub>Cl<sub>2</sub>S, m.p. 110-111°, of undetermined structure.]

# Reactions Involving the Phenolic Group of $\bar{C}$

(See also below under @'s.)

[ $\bar{C}$  with PCl<sub>5</sub> at 180–200° for 2 hrs. gives (9) 2,5-dichloro-p-cymene [Beil. V-423, V<sub>2</sub>-(326)], b.p. 240–243°; this prod. on oxidn. with dil. HNO<sub>3</sub> (D=1.15) in s.t. at 180° for 10 hrs. gives (38) 2,5-dichloroterephthalic acid [Beil. IX-847], m.p. 305° (38) (corresp. dimethyl ester, m.p. 136° (38)).]

[For behavior of  $\bar{C}$  with POCl<sub>3</sub> giving compds, of types ROPOCl<sub>2</sub> and (RO)<sub>2</sub>POCl (R = p-chlorothymyl) see (39); for clinical tests of sodium salt of p-chlorothymylphosphoric acid "thymophogen") with tuberculosis see (40), for prepn. of such salt see (41),

— p-Chlorothymyl methyl ether: oil, b.p. 251° cor. at 760 mm. (1). [From Č with MeI + KOH (1) or from thymyl methyl ether with SO<sub>2</sub>Cl<sub>2</sub> (42).]

- --- p-Chlorothymyl ethyl ether: unreported.
- p-Chlorothymyl acetate: oil, b.p. 112-114° at 2 mm. (43). [From C with Ac<sub>2</sub>O (9) or AcCl (44); for Fries rearr. to the corresp. acetophenone deriv. see (44) cf. (43).]
- p-Chlorothymyl benzoate: m.p. 71-73° (9). [From C with BzCl in aq. KOH (9).]
- D p-Chlorothymyl benzyl ether: m.p. 55° (7).
- D p-Chlorothymyl o-nitrobenzyl ether: m.p. 117° (7).
- --- p-Chlorothymyl p-nitrobenzyl ether; unreported.
- p-Chlorothymoxyacetic acid: unreported.

3:1293 (1) Peratoner, Condorelli, Gazz. chim. ital. 28, I 214-215 (1898). (2) Raschig, Ger. 579,897, July 4, 1933; Cent. 1933, II 1553; C.A. 28, 1142 (1934): U.S. 1,816,297, July 28, 1931; Cent. 1931, II 3638; C.A. 25, 5514 (1931). (3) Schöllkopf (to Rheinisches Kampfer Fabrik) U.S. 2,115,884, May 3, 1938; Cent. 1938, II 2180; C.A. 32, 4606 (1938). Brit. 319,205, Aug. 8, 1929; Cent. 1930, I 736; C.A. 24, 2468: Ger. 638,756, Nov. 21, 1936; not in Cent.; C.A. 31, 3064 (1937). French 681,049, May 8, 1930, Cent. 1930, II 1132; C.A. 24, 4051 (1930). (4) Skraup, Steinruck (to Rheinische Kampfer Fabrik) Ger. 431,513, July 10, 1926; Cent. 1926, II 1462; not in C.A. (5) Lesser, Gad, Ber. 56, 977 (1923). (6) Niederl, Natelson, J. Am. Chem. Soc. 54, 1068-1069 (1932). (7) Jones, J. Chem. Soc. 1941, 364. (8) Robertson, Briscoe, J. Chem. Soc. 101, 1968-1971 (1912). (9) Bocchi, Gazz. chim. ital 26, II 403-406 (1896). (10) Tischenko, J. Russ. Phys.-Chem. Soc. 60, 153-162 (1928), Cent. 1928, II 767; C.A. 22, 3397 (1928).

(11) Raschig, U.S. 1,769,648, July 1, 1930, Cent. 1930, II 3462; C.A. 24, 4524 (1930): Brit. 270,283, June 22, 1928, Cent. 1929, I 439; C.A. 22, 1366 (1928). Ger. 555,904, July 30, 1932; Cent. 1932, II 1693; C.A. 26, 5972 (1932): Ger. 531,774, April 30, 1926, not in Cent.; C.A. 26, 157 (1932): French 633,067, Jan. 20, 1928; Cent. 1929, I 439; [C.A. 22, 3418 (1928)]: Swiss 127,035, Aug. 16, 1928; Cent. 1929, I 439, C.A. 23, 1142 (1929). (12) Law, J. Soc. Chem. Ind. 60, No. 3, 66-67 (1941). (13) Alchin, Chem. Products 2, 93 95 (1939); C.A. 33, 7961 (1939). (14) Roeg, Am. J. Pharm. 110, 72-75 (1938). (15) Heading, Pharm. J. 138, 321-322 (1937); Chemist and Druggist 126, 392-393 (1937), Cent. 1937, II 2208; C.A. 31, 8119 (1937). (16) Etinger-Tulczynska, Ulrich, Z. Hyg. Infektionskrankh. 113, 437-444 (1932); Cent. 1932, II 77; C.A. 26, 2551 (1932). (17) Lockemann, Ulrich, Z. Hyg. Infektionskrankh. 113, 475-481 (1932), Cent. 1932, II 99; C.A. 26, 2551 (1932). (18) Malcolm, J. Bact. 22, 403-425 (1931); Cent. 1932, I. 2974; C.A. 26, 1932). (19) Eastwood, Scance 100, 10-11 (1044). (20) Woodward, Kingery, Williams, J. Lab. Clin. Med. 20, 950-953 (1935); Cent. 1936, I. 93, C.A. 29, 5025 (1935).

(21) Woodward, Kingery, Williams, J. Lab. Clnn. Med. 19, 1216-1223 (1934), Cent. 1935, I 256; C.A. 28, 6849 (1934). (22) Oclkers, Rathje, Arch. exptl. Path. Pharmakol. 198, 317-337 (1941); Trop. Discases Bull. 39, 767-768 (1942); C.A. 37, 1507 (1943). (23) Hueter, Engelbrecht (to Unichem.), U.S. 2,267,101, Dec. 23, 1941; C.A. 36, 2376 (1942). (24) Schering, A.G., French 870,574, March 16, 1942; Cent. 1942, II 1374; not in C.A. (25) Deutsche Hydrierwerke, A.G., French 823,289, Jan. 18, 1938; Cent. 1938, I 2587; C.A. 32, 5582 (1938). (26) Gelinsky, Ger. 649,126, Aug. 16, 1937; Cent. 1937, II 3627; C.A. 31, 8838 (1937). (27) Goedrich, U.S. 2,073,057, March 9, 1937; Cent. 1937, I 4830; C.A. 31, 3214 (1937). (28) Goedrich (to Goedrich Chem. Co.) U.S. 1,930,474, Nov. 17, 1935; Cent. 1934, I 2314, C.A. 28, 263 (1934). (29) Raschig, Ger. 580,880, July 17, 1933; Cent. 1933, II 2294; C.A. 28, 1142 (1934). (30) Pepsodent Co., French 693,083, Nov. 14, 1930; Cent. 1931, I 1481; C.A. 25, 1640 (1931).

(31) Raschig, Ger. 433,293, Aug. 23, 1926; Cent. 1926, II 2205, not in C.A. (32) Schöllkopf (to Rheinisches Kampfer Fabrik), Ger. 432,802, Aug. 11, 1926; Cent. 1926, II 1693; not in C.A. (33) Raschig, Ger. 396,454, June 6, 1924, Cent. 1924, II 1275; not in C.A. (34) Kehrmann. Schön, Ann. 310, 106-107 (1900). (35) Christiansen (to Squibb and Sons), U.S. 2,252,705, Aug. 19, 1941; C.A. 35, 7657 (1941). (36) Christiansen, Moness (to Squibb and Sons), U.S. 2,137,236, Nov. 22, 1938; C.A. 33, 1886 (1939). (37) Klarmann, Gates (to Lehn, Fink, Inc.), U.S. 1,926,874, Sept. 12, 1933; Cent. 1934, 1 83, [C.A. 27, 5896 (1933)]. (38) Wheeler, Giles, J. Am. Chem. Soc. 44, 2611 (1922). (39) Rosenmund, Vogt, Arch. Pharm. 281, 317-327 (1943); C.A. 38, 5804-5805 (1944). (40) Hisasi, Bettr. Klin. Tuberk. 92, 52-57 (1938); C.A. 33, 8794 (1939).

(41) Ayukawa, Japanese 93,182, Oct. 9, 1931; C.A. 27, 1452 (1933). (42) Peratoner, Ortoleva, Gazz. chim. ital. 28, I 228 (1898). (43) Klarmann, Shternov, Gates, J. Am. Chem. Soc. 55, 2586–2587 (1933). (44) Klarmann, Gates (to Lehn, Fink, Inc.), U.S. 1,938,912, Dec. 12, 1935; Cent. 1934, I 2006; C.A. 28, 1472 (1934): Brit. 432,955, Sept. 5, 1935; Cent. 1936, I 809–810; [C.A. 39, 575 (1936)].

3:1300 
$$\beta$$
-CHLOROISOCROTONIC ACID  $C_4H_5O_2Cl$   $C_4H_5O_$ 

[See also β-chlorocrotonic acid (3:2625).]

(11) (17)

**59.5°** 

Cryst. from aq. or pet. ether. —  $\bar{C}$  is somewhat less sol. in aq. than its stereoisomer (3:2625); e.g.,  $\bar{C}$  is sol. in 52.4 pts. aq. at 19° (12), in 79 pts. aq. at 7° (11). —  $\bar{C}$  is very easily volatile with steam (11) (dif. from  $\beta$ -chlorocrotonic acid (3:2625). —  $\bar{C}$  in either cis- $\alpha,\beta$ -dichloroethylene (3:5028) is very much more sol. than the stereoisomeric  $\beta$ -chlorocrotonic acid (3:2625) (13). —  $\bar{C}$  sublimes even at room temp. (11).

For f.p./compn. data and diagram of system  $\bar{C}$  + the stereoisomeric  $\beta$ -chlorocrotonic acid (3:2625) (eutectic, m.p. 38.9° contg. 66.8 mole %  $\bar{C}$ ) see (14).

Preparation. [The most frequently used method of prepn. of  $\bar{C}$  is that from ethyl acetoacetate (1:1710) with PCl<sub>5</sub>; this treatment leads to the formn. of a mixt. of the acid chlorides of  $\bar{C}$  and the stereoisomeric  $\beta$ -chlorocrotonic acid (3:2625) which upon hydrolysis with aq. gives a mixt. of the two acids; from this mixture  $\bar{C}$  is removed (together with any unreacted ethyl acetoacetate) by distillation with steam; the yield of mixed acids is variously reported, e.g., 43.7% (3), 36.5% (9); the yield of  $\bar{C}$  is relatively small, e.g., 26.8% (3), 13% (1). — The PCl<sub>5</sub> reactn. has often been carried out in dry  $C_6H_6$  (8) (15) (9) (3), but its use is regarded (1) as disadvantageous. — For many important details of procedure see indic. refs.]

[For form. of  $\bar{C}$  from  $\alpha,\beta,\beta$ -trichloro-n-butyric acid (3:0925) by removal of the  $\alpha$ - and one  $\beta$ -chlorine atom with Zn see (16); from the stereoisomeric  $\beta$ -chlorocrotonic acid (3:2625) by htg. at 150-160° for 20 hrs. (17) or at 130° in s.t. (18) see indic. refs.]

Chemical behavior. [ $\bar{C}$  in alc. or in aq. NaOH with  $H_2 + Pd/BasO_4(4)$ , or  $\bar{C}$  (as NaA) with  $2\frac{1}{2}\%$  Na/Hg in aq. (19), yields mainly isocrotonic acid (1:1045) together with some crotonic acid (1:0425) and tetrolic acid,  $CH_3-C \equiv C-COOH$ ; note that  $\bar{C}$  is thus dehalogenated more rapidly (4) than the stereoisomeric  $\beta$ -chlorocrotonic acid (3:2625), and that with excess  $H_2$  the products are further reduced to n-butyric acid (1:1035).]

 $\bar{\mathbb{C}}$  on oxidn. with aq. KMnO<sub>4</sub> yields (20) only AcOH (1:1010) and oxalic acid (1:0445).  $\bar{\mathbb{C}}$  with Cl<sub>2</sub> in CS<sub>2</sub> soln. adds 1 mole halogen yielding (16)  $\alpha,\beta,\beta$ -trichloro-n-butyric acid (3:0925), m.p. 52°;  $\bar{\mathbb{C}}$  undoubtedly adds 1 Br<sub>2</sub> to yield  $\beta$ -chloro- $\alpha,\beta$ -dibromo-n-butyric acid but the latter has never been reported.

 $\tilde{C}$  behaves as a monobasic acid; dissociation const. at  $25^\circ = 9.47 \times 10^{-5}$  (21). —  $\tilde{C}$  on neutralization with cold dil. alk. gives Neut. Eq. 120.5. — Note, however, that with strong aq. KOH  $\tilde{C}$  is somewhat more resistant than its stereoisomer (3:2625); e.g.,  $\tilde{C}$  with 3-4 N KOH at 115-120° (16) cf. (22) gives acetone (1:5400) +  $K_2CO_3$  + KCl; with 7-8% KOH at 125-130° same + some tetrolic acid.

Salts. [NH<sub>4</sub>HA.H<sub>2</sub>O (11): NaA. $\frac{1}{2}$ H<sub>2</sub>O, very sol. aq. or alc. (11): KA.H<sub>2</sub>O, sol. in 13.2 pts. alc. at 14° (24): AgA, alm. insol. cold aq.; on htg. with aq. in s.t. at 170° dec. much more readily (24) than its stereoisomer (3:2625) into CO<sub>2</sub> + propadiene (allylene):

 $Mg\bar{A}_2.5H_2O$ ,  $Ca\bar{A}_2.3H_2O$ ,  $Ba\bar{A}_2.2H_2O$ ,  $Zn\bar{A}_2.2J_2'H_2O$ ,  $Mn\bar{A}_2.2H_2O$ ,  $Co\bar{A}_2.6H_2O$ ,  $Ni\bar{A}_2.6H_2O$ , all sol. aq. (11):  $Pb\bar{A}_2.4H_2O$ , spar. sol. aq. (11).]

Č with PCl<sub>5</sub> (25) or with SOCl<sub>2</sub> (26) gives (yield 90% (26)) (29)  $\beta$ -chloroisocrotonyl chloride, b.p. 135–136° at 760 mm.; see also comments under  $\beta$ -chlorocrotonic acid (3:2625).

[ $\bar{C}$  (as  $K\bar{A}$ ) with alc. NaOEt on htg. gives after acidification (17)  $\beta$ -ethoxycrotonic acid [Beil. III-371, III<sub>1</sub>-(135)], m.p. 137-138° (17), 141° (27); note that during reactn. isomerization has occurred and that this prod. is the same as is similarly obtd. from  $\beta$ -chlorocrotonic acid (3:2625). —  $\bar{C}$  (as Na $\bar{A}$ ) with Na benzylate on htg. gives after acidification (28)  $\beta$ -benzyloxycrotonic acid, m.p. 121-122° (28), the same as does the stereoisomer. —  $\bar{C}$  (as Na $\bar{A}$ ) with Na salt of benzyl mercaptan in alc. on htg. gives after acidification (28)  $\beta$ -benzylmercaptoisocrotonic acid, m.p. 130°; note that here isomerization does not occur.]

[For behavior of  $\tilde{C}$  (as NH<sub>4</sub> $\tilde{A}$ ) with (NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub> yielding  $\beta$ -sulfocrotonic acid (3), or of  $\tilde{C}$  (as K $\tilde{A}$ ) with K<sub>2</sub>AsO<sub>3</sub> yielding (10)  $\beta$ -arsonocrotonic acid, see indic. refs.; note that in both cases the products are identical with those obtd. by similar treatment of  $\beta$ -chlorocrotonic acid (3:2625).]

- Methyl β-chloroisocrotonate: b.p. 142°. See 3:8028. [For rate of esterification of C with MeOH see (30).]
- Ethyl  $\beta$ -chloroisocrotonate: b.p. 165°. See 3:8325.
- β-Chloroisocrotonamide: lfts. from aq., m.p. 109-110° (25). [From β-chloroisocrotonyl chloride (see above) with conc. aq. NH<sub>4</sub>OH (25).] [For study of solubility in cis-1,2-dichloroethylene (3:5042) and in trans-1,2-dichloroethylene (3:5028) see (13).]
- β-Chloroisocrotonanilide: ndls. from alc., m.p. 106° (25). [From β-chloroisocrotonyl chloride (see above) with aniline + excess cold dil. aq. NaOH in 100% yield (25).]
- β-Chloroisocroton-α-naphthalide: ndls. from alc., m.p. 155° (25). [From β-chloroisocrotonyl chloride (see above) with α-naphthylamine + excess cold dil. aq. NaOH in 100% yield (25).]
- 3:1300 (1) Dadieu, Pongratz, Kohlrausch, Monatsh. 60, 211-212 (1932); Sitzber. Akad. Wiss. Wien, Math. naturw. Klasse, Abt. II-a, 140, 359-360 (1931). (2) Stelling, Z. physik. Chem. B-24, 423 (1934). (3) Backer, Beute, Rec. trav. chm 54, 552-553, 559-560 (1933). (4) Paal, Schiedewitz, Rauscher, Ber. 64, 1521-1530 (1931). (5) Bruylants, Castille, Bull. soc. chim. Belg. 34, 277 (1925). (6) von Auwers, Wissebach, Ber. 56, 724 (1923). (7) von Auwers, Ber. 45, 2807 (1912). (8) Michael, Schulthess, J. prakt. Chem. (2) 46, 236-237 (1892). (9) Skau, Saxton, J. Am. Chem. Soc. 50, 2693-2701 (1928). (10) Backer, van Oosten, Rec. trav. chim. 59, 50 (1940).
- (11) Geuther, Frölich, Zeit. Chem. 1869, 270-271. (12) Michael, Brown, Am. Chem. J. 9, 284 (1887). (13) Lebrun, Bull. soc. chim. 39, 429-430 (1930). (14) Skau, Saxton, J. phys. Chem. 37, 183-186 (1933). (15) Scheibler, Voss, Ber. 53, 381-382 (1920). (16) Szenic, Taggesell, Ber. 28, 2665-2667 (1895). (17) Friederich, Ann. 219, 327-346, 363 (1883). (18) Michael, Schulthess, J. prakt. Chem. (2) 46, 264-266 (1892). (19) Michael, Schulthess, J. prakt. Chem. (2) 46, 250-251 (1892). (20) Kondakow, J. Russ. Phys.-Chem. Soc. 24, 511 (1892).
- (21) Ostwald, Z. physik. Chem. 3, 245 (1889). (22) Michael, J. prakt. Chem. (2) 38, 9-10 (1888). (23) Michael, Schulthess, J. prakt. Chem. (2) 46, 254-255 (1892). (24) Michael, Clark, J. prakt. Chem. (2) 52, 326-329 (1895). (25) Autenrieth, Ber. 29, 1665-1670 (1896). (26) Scheibler, Topouzada, Schulze, J. prakt. Chem. (2) 124, 16 (1930). (27) Nef, Ann. 276, 234 (1893). (28) Autenrieth, Ber. 29, 1646-1648 (1896). (29) Scheibler, Voss, Ber. 53, 382 (1920). (30) Sudborough, Roberts, J. Chem. Soc. 87, 1846 (1905).

(31) Michael, Oechslin, Ber. 42, 322 (1909).

# 3:1310 1,3-DICHLORONAPHTHALENE

$$\begin{array}{c|c} Cl & C_{10}H_6Cl_2 & & Beil. \ V - 542 \\ \hline & V_{1^-}(262) \\ \hline & V_{2^-}(445) \\ \end{array}$$

Colorless ndls. from alc. — Volatile with steam (4).

[For prepn. of  $\bar{C}$  from 1-amino-2,4-dichloronaphthalene via diazotization and subsequent warming with alc. see (4) (5) (6) (1); similarly from 1-amino-5,7-dichloronaphthalene see (7); from 4-nitronaphthalene-sulfonyl chloride-2 by htg. with excess  $PCl_5$  see (3) (8); from naphthalene-1,3-bis-(sulfonyl chloride) by distn. with  $PCl_5$  see (2); from naphthalene-tetrachloride-1,2,3,4 (3:4750) with alc. KOH see (9) (10) (4) (11).]

[C in CHCl<sub>3</sub>, satd. with Cl<sub>2</sub> at ord. temp. yields (4) 1,2,4-trichloronaphthalene (3:2490), m.p. 92° (4).]

[C on nitration yields (4) a mixt. of two dinitro cpds., m.p. 150° and 158° respectively.]

[C̄ in CS<sub>2</sub> treated with ClSO<sub>3</sub>H (12) yields a mixt. of 1,3-dichloronaphthalenesulfonic acid-5 [Beil. XI-163] (corresp. sulfonyl chloride, m.p. 148.5°, corresp. sulfonamide, m.p. 272° (12)) and 1,3-dichloronaphthalenesulfonic acid-7 [Beil. XI-183] (corresp. sulfonyl chloride, m.p. 121°, corresp. sulfonamide, m.p. 228° (12)).]

 $\bar{C}$  on oxidn. with CrO<sub>3</sub> in AcOH yields (4) phthalic acid (1:0820) + 2-chloronaphtho-quinone-1,4 (3:3580), m.p. 115° (4). —  $\bar{C}$  on oxidn. in s.t. with conc. HNO<sub>3</sub> yields (5) phthalic acid (1:0820).

3:1310 (1) Weissberger, Sängewald, Hampson, Trans. Faraday Soc. 30, 890 (1934). (2) Armstrong, Wynne, Chem. News 61, 93 (1890) (3) Cleve, Ber. 19, 2181 (1886). (4) Cleve, Ber. 23, 954-955 (1890). (5) Cleve, Ber. 20, 449 (1887). (6) Fridmann, Ann. 275, 260-261 (1893). (7) Erdmann, Ber. 21, 3445 (1888). (8) Cleve, Ber. 21, 3274 (1888). (9) Faust, Saame, Ann. 160, 69 (1871). (10) Widman, Ber. 15, 2161-2162 (1882).

(11) Armstrong, Wynne, Chem. News 58, 264-265 (1888). (12) Armstrong, Wynne, Chem. News 61, 274, 284 (1890).

Pr. from pet. eth. or MeOH.

[For prepn. of C from o-chloroiodobenzene [Beil. V-220, V<sub>1</sub>-(119)] by htg. with Cu powder under various conditions (yield: 40% (1), 20% (11), 10% (2)) see indic. refs.; from 2,2'-dinitrobiphenyl [Beil. V-583, V<sub>1</sub>-(273)] with SOCl<sub>2</sub> in s.t. at 200-210° for 10 hrs. see (7); from 2,2'-diaminobiphenyl [Beil. XIII-210, XIII<sub>1</sub>-(57)] via tetrazotization and reaction with Cu<sub>2</sub>Cl<sub>2</sub> (6) or by decomp. of HgCl<sub>2</sub> complex (80% yield (3)) see indic. refs.; for dis-

cussion of forms. from chlorobenzene (3:7903) during preps. of phenol by alk. fusion see (12).]

 $\bar{C}$  on dinitration with mixt. of conc. HNO<sub>3</sub> and conc. H<sub>2</sub>SO<sub>4</sub> as directed (13) (9) gives (41% yield (13)) 2,2'-dichloro-5,5'-dinitrobiphenyl, cryst. from acetone, m.p. 203-204° (13), 205° (9) (a small amt. of an isomer, m.p. 128-129°, is also formed (13));  $\bar{C}$  on tetranitration by htg. with mixt. of 5 pts. fumg HNO<sub>3</sub> (D=16) + 20 pts. conc. H<sub>2</sub>SO<sub>4</sub> at 100° for 2 hrs. (13) (4) gives (38% yield (13)) 2,2'-dichloro-3,5,3',5'-tetranitrobiphenyl, cryst. from dioxane, m.p. 307-308° (13) (this prod. after melting is converted to higher-melting form, m.p. 316°, recrystn. of which from alc. restores the lower-melting variety (9)).

3:1325 (1) Hampson, Weissberger, J. Am. Chem. Soc. 58, 2117 (1936). (2) Weissberger, Sängewald, Z. physik. Chem. B-20, 155 (1933). (3) Schwechten, Ber. 65, 1607 (1932). (4) van Alphen, Rec. trav. chim. 51, 454-455 (1932). (5) Williamson, Rodebush, J. Am. Chem. Soc. 63, 3019 (1941). (6) Dobbie, Fox, Gauge, J. Chem. Soc. 99, 1619 (1911). (7) Mascarelli, Gatti, Gazz. chim. ital. 59, 868 (1929). (8) Mascarelli, Gatti, Gazz. chim. ital. 63, 664 (1933). (9) Mascarelli, Gatti, Gazz. chim. ital. 65, 24 (1935).

(11) Bretscher, Helv. Phys. Acta 2, 266-267 (1929). (12) Hale, Britton, Ind. Eng. Chem. 20,

122 (1923). (13) Case, Schock, J. Am. Chem. Soc. 65, 2086-2087 (1943).

Cryst. from pet. ether. — Insol. cold aq.; spar. sol. hot aq.; eas. sol. alc., ether. — In small quantities can (with caution) be sublimed (2).

[For prepn. of  $\bar{C}$  from  $\alpha,\alpha,\beta$ -trichloro-n-butyraldehyde (butyrchloral) (3:5910) with fused Al(OEt)<sub>3</sub> in boilg. abs. alc. under H<sub>2</sub> or N<sub>2</sub> for 14 hrs. (92% yield (1)), or with fused Al(OEt)<sub>3</sub> + AlCl<sub>3</sub> in boilg abs. alc. under H<sub>2</sub> or N<sub>2</sub> for 14 hrs. (3), or with C<sub>2</sub>H<sub>5</sub>OMgBr in dry ether followed by aq. (5), or by treatment with diethylzine (60–70% yield (8)) (2), di-n-propylzine (6), or di-isobutylzine (6) followed by aq. see indic. refs.; for form. of  $\bar{C}$  from urobutyrchloralic acid (see below) by hydrolysis see (4).] [Note that dextrorotatory  $\bar{C}$ , m.p. 62°, is obtd. (7) from butyrchloral hydrate (3:1905) by action of fermenting yeast.]

[ $\bar{C}$  with Zn + very dil. HCl gives (2) 2-chlorobuten-2-ol-1 (3:8240), b.p. 158°. —  $\bar{C}$  reduces Fehling soln. on warming.]

 $\ddot{\mathbf{C}}$  on oxidn. with conc. HNO<sub>3</sub> gives  $\alpha, \alpha, \beta$ -trichloro-n-butyric acid (3:1280).

C with PCl<sub>5</sub> on htg. gives (30-40% yield (8)) (2) 1,2,2,3-tetrachlorobutane (3:9078) (volatile with steam) accompanied by much (non-volatile) *tris*-(2,2,3-trichloro-*n*-butyl)-phosphate, colorless ndls. from alc., m.p. 85.3-85.4° (8).

[ $\bar{C}$  is sol. in conc. H<sub>2</sub>SO<sub>4</sub> on slight warming but readily decomposes if htg. is excessive (2).  $\bar{C}$  does not react with PCl<sub>3</sub>, or with fumg. HBr even at 110° (2).]

C on administration to dogs is excreted in the urine as urobutyrochloralic acid [Beil. I-664] (4).

—— 2,2,3-Trichloro-n-butyl acetate: b.p. 217.5° at 730 mm., 131-132° at 70 mm. (2). [From C with AcCl in s.t. at 110° for several hrs. (2).]

3:1336-3:1355

3:1336 (1) Meerwein, Schmidt, Ann. 444, 233-234 (1925). (2) Garsarolli-Thurnlackh, Ann. 213, 369-379 (1882). (3) Meerwein (to F. Bayer and Co.), U.S. 1,572,742, Feb. 9, 1926; Cent. 1926, I 3627: Brit. 251,890, June 3, 1926, Cent. 1926, II 1097. (4) Mering, Z. physiol. Chem. 6, 491-496 (1882). (5) I.G., Brit. 384,156, Dec. 22, 1932; Cent. 1933, I 1351. (6) Garsarolli-Thurnlackh, Papper, Ann. 223, 166-169 (1884). (7) Rosenfeld, Biochem. Z. 156, 54-57 (1925); Cent. 1925, I 2301; C.A. 19, 2683 (1925). (8) Norton, Noyes, Am. Chem. J. 10, 432 (1888).

# 3:1340 2,3,5-TRICHLOROPHENOL

$$\begin{array}{c|c} \mathrm{OH} & \mathrm{C_6H_3OCl_3} & \quad \textbf{Beil. VI} -\\ & & \quad \text{VI}_1-\\ & \quad \text{VI}_2\text{-}(\textbf{180}) \end{array}$$

172

M.P. 62° (1) (2) (3)

Č when dislyd in hot solvents and cooled gives gels; e.g., a very dil hot aq. soln set on cooling to an almost solid translucent gel, partly fibrous and partly crystalline (1). When a soln of  $K_2CrO_4$  is poured on such a gel contg. AgNO<sub>3</sub>, distinct but not well-defined Liesegang rings are produced in the gel (1) cf. (4).

 $\bar{C}$  is volatile with steam. — Ionization const. at 23° is  $5.0 \times 10^{-8}$  (3);  $\bar{C}$  can be titrated with N/10 alk. using phenolphthalein; Neut. Eq. 197.5 (2).

[For prepn. from 2,3,5-trichloroaniline via diazo reaction see (1) (70% yield) or (2) (57% yield).]

 $\bar{C}$  (1.5 g.) dislyd. in 20% aq. NaOH (20 ml.) and shaken with  $(CH_3)_2SO_4$  (5 g.) ppts. (1) methyl ether (1.5 g. = 94% yield), 2,3,5-trichloroanisole, ndls. from alc., m.p. 84° (1), cryst. from acetone, m.p. 82° (4).

D 2,3,5-Trichlorophenyl benzoate: from  $\ddot{C}$  + BzCl + aq. NaOH, ndls. from alc., m.p. 101° (4), from lgr., m.p. 103° (4).

**3:1340** (1) Hodgson, Kershaw, J. Chem. Soc. **1929**, 2919–2921. (2) Tiessens, Rec. trav. chim. **50**, 114 (1931). (3) Tiessens, Rec. trav. chim. **48**, 1066–1068 (1929). (4) Holleman, Rec. trav. chim. **39**, 739–740 (1920).

# 3: 1355 2,4-DIMETHYLPHENACYL CHLORIDE $C_{10}H_{11}OCl$ Beil. VII - 324 $(\omega$ -Chloro-2,4-dimethyl-acetophenone) $CH_3$ $CO.CH_2Cl$ $VII_1$ -(172)

M.P. 62°

Long wh. lfts. (from alc.). [For prepn. from m-xylene, chloroacetyl chloride (3:5235) + AlCl<sub>3</sub> see {1) (3}.]

Č on oxida. with aqueous NaOBr soln. for 3 hrs. (2) yields 2,4-dimethylbenzoic ac. [Beil. IX-531], cryst. from dil. MeOH, m.p. 126°. With a large excess of NaOBr and longer time (20 hrs.) Č yields 5-bromo-2,4-dimethylbenzoic acid. [Beil. IX-533], m.p. 180-181° (2).

C on oxidn. with alk. KMnO<sub>4</sub> soln. gives (3) 2-methylterephthalic acid [Beil. IX-863], m.p. 325-330°, whose dimethyl ester has m.p. 73-74° (4).

Č treated with nicotinic acid hydrazide metho-p-toluenesulfonate in alc. gives corresp. hydrazone, cryst. from 1:1 EtOH/ether, m.p. 196° cor. (5).

3:1355 (1) Kunckell, Ber. 30, 579 (1897). (2) Fisher, Grant, J. Am. Chem. Soc. 57, 718-719 (1935). (3) Jörlander, Ber. 50, 1460 (1917). (4) Lacourt, Bull. soc. chim. Belg. 39, 136-138 (1930). (5) Allen, Gates, J. Org. Chem. 6, 596-601 (1941).

See 3:2240 under trans-β-chloroacrylic acid.

3: 1364 DIETHYL 
$$meso-\alpha,\alpha'$$
-  $COOC_2H_5$   $C_8H_{12}O_4Cl_2$  Beil. II - 619  $II_1 II_2-$  (558)  $H-C-Cl$   $II_2 II_2 II$ 

M.P. 63° (1) B.P. 125.5° cor. at 12.5 mm. (1) 
$$D_4^{99} = 1.1490$$
 (1) 61.75–62° (2)  $n_D^{64.5} = 1.4266$  (1) 57° (3)

Ndls. from dil. alc.; very eas. sol. alc., ether. — Volatile with steam.

[For prepn. of  $\bar{C}$  from  $meso-\alpha,\alpha'$ -dichlorosuccinic acid (3:4930) in EtOH with HCl gas see (2) (1); from diethyl fumarate with HOCl see (3) ]

3:1364 (1) Kuhn, Wagner-Jauregg, Ber. 61, 485-486, 504 (1928). (2) Kirchhoff, Ann. 286, 214-215 (1894). (3) Henry, Bull. acad. roy. Belg. (3) 36, 31-54 (1898); Cent. 1898, II 663.

3:1370 CHLOROACETIC ACID H<sub>2</sub>C—COOH C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>Cl Beil. II - 194 II<sub>1</sub>-( 87) II<sub>2</sub>-(187)

| M.P. α-form   |         | <b>M</b> .P. β | -form | <b>M.P.</b> γ- | -form | B.P.        |              |                |
|---------------|---------|----------------|-------|----------------|-------|-------------|--------------|----------------|
| 63°           | (1)(2)  | 56.68°         | (99)  | 52.5°          | (10)  | 189.35°     | at 760 mm.   | (27) (90) (92) |
| (3) (4)       | (5) (6) | <b>56.6°</b>   | (16)  | 51°            | (25)  | 189°        | at 771 mm.   | (28)           |
| 62.80°        | (7)     |                | (17)  | 50.65°         | (7)   | 189°        |              | (12)           |
| <b>62.53°</b> | (8)     | <b>56.3°</b>   | (7)   | 50.2°          | (22)  | 188.8-189.4 | •            | (29)           |
| 62.5-63.      | 2° (9)  | (21)           | (99)  | 50.05°         | (23)  | 188.6-189.4 | •            | (30)           |
| <b>62.5°</b>  | (36)    | <b>56.18°</b>  | (22)  | <b>50°</b>     | (20)  | 188.5-189.5 | ° cor.       | (31)           |
| <b>62.3°</b>  | (10)    | 56.01°         | (23)  |                |       | 187.8°      | at 755.7 mm. | (32)           |
|               | (11)    | <b>56°</b>     | (2)   | (25)           |       | 186°        | at 760 mm.   | (33)           |
| 62.0-62.      | 5° (9)  | 55°            | (20)  |                |       | 149°        | at 207 mm.   | (34)           |
| 62°           | (12)    | (13)           |       |                |       | 145.2°      | at 180 mm.   | (34)           |
|               | (14)    | (15)           |       |                |       | 140.5°      | at 152 mm.   | (34)           |
| 61.86°        | (99)    |                |       |                |       | 139.0°      | at 141 mm.   | (34)           |
| 61.8°         | (16)    | (17)           |       |                |       | 135°        | at 122 mm.   | (34)           |
| 61.7°         | (18)    | (103)          |       |                |       | 130.1°      | at 101 mm.   | (34)           |
| 61.65°        | (99)    |                |       |                |       | 122°        | at 71 mm.    | (34)           |
| 61.5°         | (19)    | (20)           |       |                |       | 108°        | at 36 mm.    | (34)           |
|               | (21)    |                |       |                |       | 102.5°      | at 27 mm.    | (34)           |
| 61.4°         | (100)   |                |       |                |       | 104-105°    | at 20 mm.    | (1)            |
|               | (102)   | (104)          |       |                |       | 101°        | at 20 mm.    | (36)           |
| 61.30°        | (22)    |                |       |                |       | 93°         | at 18 mm.    | (34)           |
| 61.18°        | (23)    |                |       |                |       | 94°         | at 11 mm.    | (35)           |
| 61-62°        | (24)    |                |       |                |       | 85-86°      | at 11 mm.    | (2)            |
| 61°           | (19)    | (25)           |       |                |       |             |              |                |
| 60-61°        | (26)    |                |       |                |       |             |              |                |

[See also dichloroacetic acid (3:6208) and trichloroacetic acid (3:1150).]

# MISCELLANEOUS PHYSICAL PROPERTIES OF C

Polymorphism of  $\bar{C}$ .  $\bar{C}$  is known definitely in the above three  $\alpha$ ,  $\beta$ , and  $\gamma$  forms and perhaps also in a fourth  $\delta$  form, m.p. 43.75° (23), although last could not be confirmed (22) cf. (7). — The stable ( $\alpha$ ) form results from rapid condensation of vapor (23), by crystallization of  $\bar{C}$  from aq. soln. (23), or from rapid cooling of fused  $\bar{C}$  (37), although last method could not be confirmed (25); it is also obtained from the  $\beta$  form by seeding with  $\alpha$  (9) or from  $\gamma$  form by spontaneous transformation (20), or from either  $\beta$  or  $\gamma$  forms at  $-20^{\circ}$  (22).

The  $\beta$  form results from cooling fused  $\bar{C}$  especially if melt is first htd. above 67° cf. (9) (23), or from  $\gamma$  form on stirring (23) (20) (37) (22) cf. (25) (7).

The  $\gamma$  form results from fused  $\bar{C}$  on cooling without stirring (23) (20) (37) (25) (7).

[For study of transformation points of  $\alpha$  and  $\beta$  forms see (21); for studies of effect of pressure on m.p. of  $\bar{C}$  see (38) (39) (25) (8).]

Density and refractive index for fused  $\overline{C}$ . [Values for these constants are *not* in good accord, viz.,  $D_A^{65.4} = 1.3978$  (40),  $D_A^{65} = 1.3703$  (41);  $n_D^{65.4} = 1.4301$  (40),  $n_D^{65} = 1.4297$  (41). — For  $D_A^t$  over range 80°-176° see (36).]

Vapor characteristics. [For study of vapor pressure of  $\bar{C}$  over range 85-180° see (42).—For study of volatility with steam see (43).]

Cryoscopic constant. [Molal f.p. constant for  $\bar{C}$  is 5.2° (for 1000 g.  $\bar{C}$ ) (44) (37); for studies on use of  $\bar{C}$  as cryoscopic solvent see (44) (45) (46) (47).]

Association of  $\bar{C}$ . [For studies on extent of association of  $\bar{C}$  in  $C_6H_6$  soln. at 30° (11), in *p*-chlorotoluene (3:8287) (48), in liquid HF (49), in ether (33), or in water (1-9.7%  $\bar{C}$ ) (50) see indic. refs.]

Heat of combustion. [For studies on heat of combustion of  $\bar{C}$  see (51) (52) (53) (54) cf. (55).]

Exchange reactions. [For study of behavior of  $\bar{C}$  with  $D_2O$  see (56); with  $H_2O^{18}$  see (57).]

Adsorption of  $\overline{C}$  by various adsorbents. [For studies on adsorption of  $\overline{C}$  from aqueous solns, by various forms of carbon (58) (59) (60) (61) (62) (63) (64), by silica gel (60), by synthetic resins (65), by aniline black (66), by filter paper (67), by hide powder (68), by viscose (69), by  $Zr(OH)_2$  (70), or by  $Fe(OH)_3$  (71) see indic. refs ]

[For studies on adsorption of  $\bar{C}$  from nonaqueous solvents by wood charcoal (72) or from aqueous alc. by charcoal (73) or by casein (74) see indic. refs.]

Distribution of  $\overline{C}$  between solvents. [For data on distribution of  $\overline{C}$  between aq. and ether at 18° (75) or at 25° (76) (77) cf. (81); between aq. and benzene at 25° (78) or at an unstated temp. (79); between aq. and toluene at 25° (78) (80); between aq. and isobutyl alcohol at 25° (80); between aq. and n-amyl alcohol at 25° (80); between aq. and isoamyl alcohol at 25° (80); between aq. and di-n-butyl ether at 25° (5); between aq. and olive oil at 25° and 37.5° (82) see indic. refs.]

[For data on distribution of  $\bar{C}$  between aq. and nitrobenzene at 25° (80); between aq. and mixts. of benzene + nitrobenzene (83); between aq. and o-nitrotoluene at 25° (80) (84) see indic. refs.]

[For data on distribution of  $\bar{C}$  between aq. and  $CHCl_3$  (3:5050) at 25° (80) (85) (86); between aq. and  $CCl_4$  (3:5100) at 25° (80) (87) (85); between aq. and EtBr at 25° (80) (77); between aq. and  $CHBr_3$  at 25° (85); between aq. and MeI at 25° (80) (87) see indic. refs.]

[For data on distribution of  $\bar{C}$  between aq. and  $CS_2$  at 25° (85); between aq.  $MgSO_4$  or  $K_2SO_1$  solns. and di-n-butyl ether at 25° (88) (5); between acetone and glycerol at 25° (89) see indic. refs.]

#### BINARY SYSTEMS CONTAINING C

Azeotropic systems. [\$\bar{C}\$ with mesitylene (1:7455) forms \$\mathbf{z}\$ const.-boilg. mixt., b.p. 162° at 760 mm., contg. 17 wt. % \$\bar{C}\$ (90); \$\bar{C}\$ with naphthalene (1:7200) forms a const.-boilg. mixt., b.p. 187.1° at 760 mm., contg. 78 wt. % \$\bar{C}\$ (91); \$\bar{C}\$ with o-cresol (1:1400) forms a const.-boilg. mixt., b.p. 187.5° at 760 mm., contg. 54 wt. % \$\bar{C}\$ (91).]

[C with 1,1,2,2-tetrachloroethane (acetylene tetrachloride) (3:5750) forms a const.-boilg. mixt., b.p. 146.25° at 760 mm., contg. 1.8 wt. % C (91); C with pentachloroethane (3:5880) forms a const.-boilg. mixt, b.p. 158.65° at 760 mm., contg. 9.9 wt. % C (91); C with hexachloroethane (3:4835) forms a const-boilg. mixt., b.p. 171.2° at 760 mm., contg. 25 wt. % C (27); C with 1,2,3-trichloropropane (3:5840) forms a const.-boilg. mixt., b.p. 154.5° at 760 mm., contg. 10 wt. % (92).]

[ $\bar{C}$  with p-dichlorobenzene (3:0980) forms a const.-boilg. mixt., b.p. 167.55° at 760 mm., contg. 24.5 wt. %  $\bar{C}$  (27);  $\bar{C}$  with benzal (dr)chloride (3:6327) forms a const.-boilg. mixt., b.p. 189.1° at 760 mm., contg. 97 wt. %  $\bar{C}$  (93).]

[ $\bar{C}$  with bromobenzene forms a const.-boilg. mixt., b.p. 154.3° at 760 mm., contg. 11 wt.%  $\bar{C}$  (90);  $\bar{C}$  with p-dibromobenzene forms a const.-boilg. mixt., b.p. 186.3° at 760 mm., contg. 75 wt. %  $\bar{C}$  (93)]

#### OTHER PHYSICAL DATA ON BINARY SYSTEMS CONTAINING Č

 $\ddot{\mathbf{C}}$  + aq. [ $\ddot{\mathbf{C}}$  is very eas. sol. aq. (32); for study of hydration at low temps. see (94); for f.p./compn. data see (23). — Data on density of aq.  $\ddot{\mathbf{C}}$  is fragmentary but for  $D_{20}^{20}$  (40),  $D_{25}^{25}$  (95), and  $D_{35}^{35}$  (95) for certain conens see indic. refs. (cf. (96) (97) (98)). — For refractive indices of aq. solns. of  $\ddot{\mathbf{C}}$  see (20) (40). — For study of soly. of aq. in  $\ddot{\mathbf{C}}$  +  $\mathbf{C}_{6}\mathbf{H}_{5}$  see (105).]

 $\bar{C}$  +  $H_2SO_4$ . [For densities, viscosities, and elec. conductivity at 20°, 40°, and 60° over whole compn. range see (12); for f.p./compn. data over range 46–100%  $\bar{C}$  (no compound is formed) see (18).]

 $\ddot{\mathbf{C}}$  + acetic acid. (1.1010) [For f p /compn. data and diag., eutectic m.p.  $-4.0^{\circ}$ , contg. 22 mole %  $\ddot{\mathbf{C}}$ , see (99) cf. (100) (103).]

 $\ddot{\mathbf{C}}$  + dichloroacetic acid (3:6208). [For f p./compn. data (100), eutectic m.p.  $-10.5^{\circ}$  contg. 30.7 mole %  $\ddot{\mathbf{C}}$  (101), see indic. refs.]

 $\ddot{\mathbf{C}}$  + trichloroacetic acid (3:1150). [For f.p./compn. data (100), eutectic m.p. 17.5° contg. 48.5 mole %  $\ddot{\mathbf{C}}$  (101), see indic. refs.]

 $\ddot{\mathbf{C}}$  + miscellaneous organic compds. of Order 1. [For f.p./compn. data on following systems see indic. refs:  $\ddot{C} + C_6H_6$  (1:7400) (103);  $\ddot{C}$  + naphthalene (1:7200) (99) (17) (20);  $\ddot{C}$  + phenol (1:1420) (17) (16) (102);  $\ddot{C}$  + o-cresol (1:1400) (16) (102);  $\ddot{C}$  + m-cresol (1:1300) (16);  $\ddot{C}$  + p-cresol (1:1410) (16);  $\ddot{C}$  +  $\alpha$ -naphthol (1:1500) (16);  $\ddot{C}$  +  $\beta$ -naphthol (1:1540) (16);  $\ddot{C}$  + thymol (1:1430) (16);  $\ddot{C}$  + guaracol (1:1405) (16);  $\ddot{C}$  + cetyl alc. (1:5945) (99);  $\ddot{C}$  + meso-erythritol (1:5825) (14);  $\ddot{C}$  + benzoic acid (1:0715) (100);  $\ddot{C}$  + o-toluic acid (1:0690) (100);  $\ddot{C}$  + m-toluic acid (1:0705) (100);  $\ddot{C}$  + p-toluic acid (1:0795) (100);  $\ddot{C}$  + phenylacetic acid (1:0665) (100),  $\ddot{C}$  + cinnamic acid (1:0735) (100);  $\ddot{C}$  + crotonic acid (1:0425) (100);  $\ddot{C}$  + dimethyl oxalate (1:0415) (103);  $\ddot{C}$  + dimethyl succinate (1:3556) (103);  $\ddot{C}$  + methyl cinnamate (1:2090) (103);  $\ddot{C}$  + phenyl salicylate ("Salol") (1:1415) (99);  $\ddot{C}$  + piperonal (1:0010) (99) (104);  $\ddot{C}$  + vanillin (1:0050) (104);  $\ddot{C}$  + acetophenone (1:5515) (104);  $\ddot{C}$  + benzil (1:9015) (104);  $\ddot{C}$  + dibenzalacetone (1:9024) (104).

 $\ddot{\mathbf{C}}$  + miscellaneous compounds of Order 2. [For f.p./compn. data on following system see indic. refs.:  $\ddot{\mathbf{C}}$  + urea (19);  $\ddot{\mathbf{C}}$  + ethyl carbamate (urethane) (19).]

#### TERNARY SYSTEMS CONTAINING C

[For f.p./compn. data and diag. of following systems see indic. refs.:  $\tilde{C}$  ( $\alpha$ -form) + phenol (1:1420) + naphthalene (1:7200) (17);  $\tilde{C}$  ( $\beta$  form) + phenol (1:1420) + naphthalene (1:7200) (17).]

#### USE OF C IN FOODS AND BEVERAGES

General. [For discussion of use of  $\bar{C}$  as fermentation and oxidn. inhibitor or stabilizer in fruit juices, carbonated beverages, etc. (sometimes as "Esterex" (106)), see (106) (107) (108) (109) (110); for study of persistence of  $\bar{C}$  in such use see (111); for patents on such use see (112); for studies of bactericidal action (113) or fungistatic props. (114) of  $\bar{C}$  see indic. refs.]

Toxicity of  $\overline{C}$ . [For studies on toxicity of  $\overline{C}$  see (115) (116).]

Detection and determination of  $\overline{C}$  in foods and beverages. [For studies on detection and detn. of  $\overline{C}$  in commercial preservatives (624), in non-alc. beverages (117) (118) or in wines (119) (120) cf. (117) see indic. refs.: for identification of  $\overline{C}$  as Ba $\overline{A}_2$  (optical and crystallographic props.) see (121) (623).]

#### PREPARATION OF C

From acetic acid. [For prepn. of  $\overline{C}$  from acetic acid (1:1010) by chlorination at 250-500° without cat. (625), with  $Cl_2$  in sunlight (32), in light from Hg quartz lamp (122), in silent electric discharge (123), or more usually in presence of catalysts (123) (124) (125) especially sulfur (124) (126) (127) (128) (129), red P (123) (124) (130), iodine (124), mixtures of red P +  $PCl_5$  +  $I_2$  (123) (124) (125) (131) (132) (133) (134), or in acetic anhydride (138) (139) at  $100^\circ$  or in vapor phase over  $NiCl_2$  at  $350^\circ$  (140) see indic. refs.]

[For prepn. of  $\bar{C}$  from acetic acid (1:1010) by chlorination with SO<sub>2</sub>Cl<sub>2</sub> at 115–120° and 4–5 atm. press. (135) or in pres. of a little acetyl chloride (136) or in presence of dibenzoyl peroxide in CCl<sub>4</sub> (70% yield (137)) see indic. refs.; for formn. of  $\bar{C}$  from AcOH + HCl on electrolysis see (141).

From trichloroethylene. [For prepn. of  $\tilde{C}$  from trichloroethylene (3:5170) with conc.  $H_2SO_4$  at 190–195° see (142) (143) (144) (145) (146); for patents on this process see (147) (148) (149) (150) (151) (152) (153) (154). — Note also that  $H_2SO_4$  may be replaced by arom. sulfonic acids such as benzenesulfonic acid see (155). — Note also that a very similar process (156) starting from unsym.-tetrachloroethane (3:5555) doubtless first involves loss of HCl to trichloroethylene.]

From other chloro-compounds.  $\bar{C}$  is also formed by appropriate oxidation of many suitably constituted chloro-compounds [e.g., for formn. of  $\bar{C}$  from 1,2-dichloroethane (ethylene (di)chloride) (3:5130) with dry  $O_2$  in u.v. light see (157)].

[For formn. of Č by oxidation of unsaturated chloro-compds. see the following examples: 1,2-dichlorobutene-2, low-boilg. isomer (3:5360), high-boilg. isomer (3:5615) with KMnO<sub>4</sub> in acetone (158); 1,4-dichlorobutene-2 (3:5725) with KMnO<sub>4</sub> or O<sub>3</sub> (159); 1,2,4-trichlorobutene-2 (3:9062) with aq. KMnO<sub>4</sub> (160); 1,4-dichloro-2-methylbutene-2 (3:9204) with O<sub>3</sub> followed by KMnO<sub>4</sub> (161); 4-chlorobutadiene-1,2 (3:7225) with aq. alk. KMnO<sub>4</sub> (162); 1,3-dichlorohexadiene-2,4 (3:9310) with aq. KMnO<sub>4</sub> (163); 3,3,6-trichlorohexadiene-1,4 (3:9308) with aq. KMnO<sub>4</sub> (164); 1,3,4,6-tetrachlorohexadiene-2,4 (3:9306) with aq. KMnO<sub>4</sub> (164); 3,6-dichlorohexatriene-1,3,4 (3:9304) with aq. KMnO<sub>4</sub> (164); 1-chloro-5-methoxypentadiene-2,3 with aq. KMnO<sub>4</sub> (165); ethyl 5-chloropenten-3-oate with aq. KMnO<sub>4</sub> (166); 1-chloro-5-methoxy-5-phenylpentene-2 with KMnO<sub>4</sub> in acetone (35); chloroacetylene (3:7000) with NaOCl (167).]

[For formn. of C from ethylene chlorohydrin (3:5552) by oxidn. with CrO<sub>3</sub> (168); from

1-chloropropanol-2 (propylene  $\alpha$ -chlorohydrin) (3:7747) by oxidn. with HNO<sub>3</sub>; from 1,3-dichloropropanol-2 (" $\alpha$ -dichlorohydrin") (3:5985) by oxidn. with conc. HNO<sub>3</sub> (169) cf. (170) see indic. refs.]

[For form. of  $\tilde{C}$  from chloroacetaldehyde (3:7212) by oxidn. with conc. HNO<sub>3</sub> (171) cf. (172), AgOH (172) or dil. H<sub>2</sub>O<sub>2</sub> (173); from chloroacetone (3:5425) by oxidn. with KMnO<sub>4</sub> (161) (174), CrO<sub>3</sub> (174), HNO<sub>3</sub> (174), (175); from 1-chlorobutanone-2 (3:8012) by oxidn. with HNO<sub>3</sub> (176) (177) see indic. refs.]

From aminoacetic acid (glycine). [For formn. of  $\bar{C}$  from glycine with nitrous acid (40% yield (178)), with conc. HCl + conc. HNO<sub>3</sub> (179), or from glycine hydrochloride with satd. aq. MgCl<sub>2</sub>, CaCl<sub>2</sub>, or ZnCl<sub>2</sub> + NaNO<sub>2</sub> (180), see indic. refs.]

From miscellaneous sources. [For prepn. of  $\tilde{C}$  from ketene with Cl<sub>2</sub> in gas phase, CCl<sub>4</sub>, or dry ether, followed by aq. (181); from ketene with aq. Ca(OCl)<sub>2</sub> (182); from formaldehyde + CO + HCl gas at 180° and 800-900 atm. (183); for formn. of  $\tilde{C}$  from atrioxymethylene with SO<sub>2</sub>Cl<sub>2</sub> in pres. of ZnCl<sub>2</sub> or AlCl<sub>3</sub> in s.t. at 150° for 12 hrs. (2); from methyl formate (1:1000) with SO<sub>2</sub>Cl<sub>2</sub> in s.t. at 165-170° (2); from ethylene with ClO<sub>2</sub> (184); from mtro-trichloromethane ("chlorpicrin") in AcOH on exposure to light (185) cf. (186) (187) (188).]

[For form. of  $\tilde{C}$  from  $\alpha,\beta$ -dichlorovinyl ethyl ether (3:5540) on boilg, with excess aq. see (189) (note, however, that with calcd. amt. aq. ethyl chloroacetate (3:5700) results (190)); for formn of  $\tilde{C}$  from unsym.-tetrachloroacetone (3:6085) by hydrolytic cleavage with aq. KOH see (191).]

[For formation of  $\bar{C}$  from its own derivatives, e.g., chloroacetyl chloride (3:5235), chloroacetic acid anhydride (3:0730), methyl chloroacetate (3:5585), ethyl chloroacetate (3:5700), or other exters, etc., see these compds.]

### CHEMICAL BEHAVIOR OF C

#### Pyrolysis of C

[ $\bar{C}$  on distn. through a red-hot tube decomposes giving (192) HCl + CO + CH<sub>2</sub>O (1:0145) + sym.-dichlorodimethyl ether (3:5245). —  $\bar{C}$  at 250-340° over ThO<sub>2</sub>, kaolin, or animal charcoal gives (193) HCl + CO + CO<sub>2</sub>, but  $\bar{C}$  merely boiled with activated carbon undergoes no decomposition (194).]

[ $\ddot{\mathbf{C}}$  on htg. in tertiary bases such as dimethylaniline (195) or pyridine (196) decomposes into  $\mathrm{CO}_2$  + MeCl (3:7005), undoubtedly by way of forms. and decomps. of intermediate quaternary ammonium compds. (betaines) (196).]

[ $\bar{C}$  in dry ether or  $C_6H_6$  soln. on exposure to ultra-violet light decomposes giving (197) HCl + fumaric acid (1:0895) + a substance which on shaking with aq. yields glycolide (1:0667).]

#### REDUCTION OF C

[ $\tilde{\mathbb{C}}$  on reduction in aq. or aq. alc. alk. with  $H_2$  in pres. of Pd or Ni (198) (199) (200), or  $\tilde{\mathbb{C}}$  with chromous sulfate (201), or  $\tilde{\mathbb{C}}$  with finely divided Fe (202), or  $\tilde{\mathbb{C}}$  in aq. EtOH in ultra-violet light (203), or  $\tilde{\mathbb{C}}$  on electrolytic reduction (204) gives acetic acid (1:1010). — Note, however, that attempts to effect bimolecular hydrogenation of  $\tilde{\mathbb{C}}$  to succinic acid have been unsuccessful (205).]

#### OXIDATION OF C

[ $\overline{C}$  on oxidn. with  $K_2S_2O_8$  gives (206) methylene (di)chloride (3:5020); for study of oxidn. of  $\overline{C}$  to  $CO_2$  with  $K_2S_2O_8$  see (207). —  $\overline{C}$  (as Na $\overline{A}$ ) on electrolysis gives (208) cf. (209) methylene (di)chloride (3:5020), chloromethyl chloroacetate [Beil. II-198, II<sub>2</sub>-

(193)], and other prods. — For study of photochemical oxidn. of  $\bar{C}$  with KMnO<sub>4</sub> in pres. of uranyl salts see (210).]

#### REACTIONS INVOLVING SUBSTITUTION OF H ATOMS OF ALKYL RADICAL OF C

**Fluorination.** The behavior of  $\bar{C}$  with  $F_2$  appears not to have been studied: chloro-fluoroacetic acid is unknown; chloro-difluoroacetic acid [Beil. II-201] although known has been prepd. from difluoroacetic acid by chlorination.

Chlorination. [Č with Cl<sub>2</sub> (211) in pres. of I<sub>2</sub> (212) gives dichloroacetic acid (3:6208) very likely accompanied by some trichloroacetic acid (3:1150).]

Bromination. [ $\bar{C}$  with Br<sub>2</sub> at 160° is claimed (213) to give chloro-bromo-acetic acid [Beil. II-217, II<sub>2</sub>-(204)], but this is best prepared by other means, e.g., from  $\alpha,\beta$ -dichloro-vinyl ethyl ether (3:5540) by addn. of Br<sub>2</sub>, conversion by distn. to chloro-bromo-acetyl chloride, and hydrolysis (214) (41) (215) (216). — Note that although dibromination of  $\bar{C}$  to chloro-dibromo-acetic acid [Beil. II-220] appears unreported, yet this product is obtd. by other means cf. (217)

Sulfonation. [ $\bar{C}$  with ClSO<sub>3</sub>H on warming (218) or  $\bar{C}$  with SO<sub>3</sub> finally at 70° (219) cf. (220) gives sulfo-chloroacetic acid [Beil. III-598, III<sub>1</sub>-(208), III<sub>2</sub>-(387)], hygroscopic ndls. of monohydrate from aq., m.p. 83° (219) (corresp. bis-acid chloride, oil, b.p. 70° at 3 mm.,  $D_{-}^{15}$  = 1.669,  $n_{D}^{23}$  = 1.4920 (121); corresp. N,N,N',N'-tetraphenyldiamide, m.p. 210° (121)), accompanied (218) (220) by some chloromethanedisulfonic acid (chloromethionic acid) [Beil. II-25]. — For resolution of d,l-sulfochloroacetic acid see (219).]

Miscellaneous substitution reactions. [ $\bar{C}$  (as  $K\bar{A}$ ) on boilg, with aq. gives (222) the salt of chloromercuri-chloroacetic acid which with either acid or alk, gives glycolic acid (1:0430).]

#### REACTIONS INVOLVING THE —COOH GROUP OF C

## Acidic Strength of $\bar{C}$

 $\bar{\mathbf{C}}$  behaves as a very strong monobasic acid; Neut. Eq. = 94.5. — [Ionization const. of  $\bar{\mathbf{C}}$  in aq. at 25° is  $1.55 \times 10^{-3}$  (223) (224),  $1.51 \times 10^{-3}$  (224) (225),  $1.396 \times 10^{-3}$  (226),  $1.378 \times 10^{-3}$  (227). — For examples of other studies of ioniz. const. of  $\bar{\mathbf{C}}$  in aq. see (228) (229); for study of temp. variation of ioniz. const. in aq. over range 0-40° see (227) (230); for H+ conc. of  $\bar{\mathbf{C}}$  in aq. solns. (75), in aq. solns. of KCl or NaCl (231) (234), or in buffer mixts. of  $\bar{\mathbf{C}}$  + Na $\bar{\mathbf{A}}$  (232) (233); for studies of elec. conductivity of  $\bar{\mathbf{C}}$  in aq. soln. at 0° (235), at 60° (236), at 62.5° (45), or over range 0-78° (4) see indic. refs. — For discussion of resonance and acid strength of  $\bar{\mathbf{C}}$  see (237) (238) (239). — For study of "sourness" of  $\bar{\mathbf{C}}$  from taste aspect see (252).]

[Studies of acid strength of  $\bar{C}$  in other solvents include the following: in EtOH (240) (241), in n-BuOH (242), in 60% methyl "cellosolve" (ethylene glycol monomethyl ether) (243), in m-cresol (242), in ether (244), in formamide (245), in acetonitrile (246), in  $C_6H_6$  (247), in chlorobenzene (248), or in CHCl<sub>3</sub> (244). — For studies on electrometric titration of  $\bar{C}$  in  $C_6H_6$  (249), or use of indicators with  $\bar{C}$  in  $C_6H_6$  soln. (250), see indic. refs. — For studies of elec. conductivity of  $\bar{C}$  in MeOH, EtOH, BuOH, acetone see (251).]

# Catalytic Effect of Cupon Various Reactions

The catalytic influence of C upon diversified types of chem. reaction has been extensively examined; although this matter cannot be recorded exhaustively, the following examples are cited.

[For studies of catalytic effect of  $\bar{C}$  upon the inversion of *l*-menthone to *d*-isomenthone in  $C_6H_6$  (253) or in chlorobenzene (254); upon racemization of methyl-phenyl-acetophenone

and of isobutyl-phenyl-acetophenone in various solvents (255); upon  $I_2$ /acetone reaction (224) (234) (256) (257) (232); upon hydrogen disproportionation of limonene (622) see indic. refs.]

[For studies of catalytic effect of Č upon the hydrolysis of ethyl formate in neutral salt solns. at 25° (258); of EtOAc (259) (235) in pres. of NaĀ or NaCl (259) (225); of sucrose (260) (261) see indic. refs.]

[For studies of catalytic effect of  $\bar{C}$  upon forms. of ether from ethyl alcohol (262); upon depolymerization of paraldehyde (273) or of dimeric dihydroxyacetone (263); upon bromination of ethyl acetoacetate (264) see indic. refs.]

[For studies on catalytic effect of  $\bar{C}$  upon nitration of toluene (265) (266); upon decompn. of ethyl diazoacetate in  $C_6H_6$  (253) (267); upon decompn. of nitramide (268); upon rearr. of N-chloroacetanilide in chlorobenzene soln. at 100° (269); upon rearr. of N-bromoacetanilide in chlorobenzene,  $C_6H_6$ , or ethylene (di)chloride (270); upon rearr. of N-iodoformanilide in anisole (271); upon rearr. of N-bromobenzanilide in chlorobenzene at 25° (272) see indic. refs.]

#### Salts of C

This topic cannot be exhaustively treated here but following examples are cited.

Salts with inorganic bases. [NH<sub>4</sub> $\bar{A}$ , from  $\bar{C}$  in abs. alc. with dry NH<sub>3</sub> gas (274). — Hydroxylamine salt, HONH<sub>3</sub> $\bar{A}$ , cryst. from boilg. alc., m.p. 124-125° (275).]

[Na\(\tilde{A}\) on electrolysis gives (208) (209) methylene (di)chloride (3:5020), chloromethyl chloroacetate [Beil. II-198, II<sub>2</sub>-(193)], and other prods.; on htg. gives (276) polyglycolid, for rate of decompn. by aq. see (277). — K\(\tilde{A}\), 3H<sub>2</sub>O (32); K\(\tilde{A}\).1½H<sub>2</sub>O (32) (277) (for study of rate of decompn. by aq. see (277)); K\(\tilde{A}\).\(\tilde{C}\), sparingly sol. aq. (32). — Ag\(\tilde{A}\), spar. sol. cold aq., more readily in hot aq. (32); for soly. in HNO<sub>3</sub> see (278); dry htg. gives (279) AgCl + polyglycolid; on htg. with a little aq. gives (279) AgCl + glycolic acid; for prepn. and study of activity coefficient in pres. of electrolytes see (280); for sensitivity to light see (281).]

[Be $\bar{A}_2$ , see (293); Mg $\bar{A}_2$ .2H<sub>2</sub>O, very sol. aq. or alc. (277); Ca $\bar{A}_2$ .H<sub>2</sub>O, very sol. aq. or alc. (277) (for use in eel worm control in soil see (282)); Sr $\bar{A}_2$ , spar. sol. aq. alc. (277); Ba $\bar{A}_2$ .H<sub>2</sub>O (32) (277) (293) (for use in detn. of  $\bar{C}$  see (121) (623)); Cu $\bar{A}_2$ , 4H<sub>2</sub>O (274), Cu $\bar{A}_2$ .3H<sub>2</sub>O (283), Cu $\bar{A}_2$  (274) cf. (284); for study of electrolysis see (285); for dissoc. see (288); for various complexes with NH<sub>3</sub> and amines see (286) (287). — Zn $\bar{A}_2$ .2(4?)H<sub>2</sub>O (274). — Cd $\bar{A}_2$ .6H<sub>2</sub>O, for prepn. (289), crystallography (290), dissociation (288), and conductivity (291) see indic. refs. — Pb $\bar{A}_2$ , spar. sol. cold aq. (274). — Hg $\bar{A}_2$ , spar. sol. aq. (292). — Hg $_2\bar{A}_2$ , spar. sol. aq. (292).]

[Al $\bar{A}_3$ , see (293). — Mn $\bar{A}_2$ . $\bar{C}$ .H<sub>2</sub>O (274); Mn $\bar{A}_2$ . $\bar{C}$ .2H<sub>2</sub>O (274); Mn $\bar{A}_2$ .1.5H<sub>2</sub>O (289). — Co $\bar{A}_2$ .6H<sub>2</sub>O, m.p. 68-69° (289), for study of complexes with pyridine see (294). — Ni $\bar{A}_2$ , 3H<sub>2</sub>O (274), for complexes with various amines see (295). — For studies on complexes of  $\bar{C}$  with iron salts see (274) (296) (297).]

Salts with organic bases (amines). [Aniline chloroacetate, m.p. 88° (298) (best from  $\bar{C}$  in dry ether treated dropwise with aniline in dry ether with cooling (299); note that this salt with  $P_2O_5$  on stdg. gives (299)  $\omega$ -chloroacetanilide, m.p. 136° cor.). — o-Toluidine chloroacetate, m.p. 95° (300). — p-Toluidine chloroacetate, m.p. 97.5° (300) (note that this salt at 80-90° for 2 hrs. (301) or with  $P_2O_5$  (302) gives chloroaceto-p-toluidide, m.p. 164° (302)).]

α-Phenylethylamine chloroacetate, from Č + base in EtOAc, m.p. 93.6-94.4° u.c., 94.7-95.5° cor. (303). — Benzylamine chloracetate, from Č + base in EtOAc, m.p. 118.4-119.4° u.c., 119.9-120.9° cor. (303) (note that this m.p. is practically identical with corresp. benzylamine salt of trichloroacetic acid (3:1150) q.v.). — Piperazine bis-(chloroacetate), m.p. 145-146° cor. (304). — Semicarbazide chloroacetate, m.p. 111-112° (305).

Phenylhydrazine chloroacetate, from  $\bar{C}$  with phenylhydrazine in  $C_6H_6$ , m.p. 111° (306) (note that this product is definitely the salt since on titration with alk. it gives Neut. Eq. 204.7 as against calcd. value of 202.6 (306); however, during detn. of m.p. it is undoubtedly converted to chloroaceto-phenylhydrazide, m.p. 115° (307), directly obtd. from chloroacetyl chloride (3:5235) with phenylhydrazine in ether (307)).

#### Behavior of Acidic Hydrogen of C with Metals

[For study of rate of soln. of Mg in aq. solns. of  $\tilde{C}$  see (308); for behavior of  $\tilde{C}$  with Zn see (309); for study of 20% aq. solns. of  $\tilde{C}$  on silver see (310).]

#### Esterification of C

This book includes the following esters of  $\bar{C}$  under their own individual numbers q.v.: methyl chloroacetate (3:5585), ethyl chloroacetate (3:5700), n-propyl chloroacetate (3:0565), isopropyl chloroacetate (3:8160), n-butyl chloroacetate (3:8330), isobutyl chloroacetate (3:8375) sec-butyl chloroacetate (3:8350), ter-butyl chloroacetate (3:8220), ethylene glycol (mono)-chloroacetate (3:6780), ethylene glycol bis-(chloroacetate) (3:0720),  $\beta$ -methoxyethyl chloroacetate (3:9285), diethylene glycol (mono)chloroacetate (3:9390), triethylene glycol (mono)-chloroacetate (3:9588), and phenyl chloroacetate (3:0565).

[For studies of rate of esterification of  $\bar{C}$  under various conditions with MeOH (1:6120) (311) (312) (313) (314) (315), with EtOH (1:6130) (312) (313) (1) (316) (317) (318), with isobutyl alc. (1:6165) (319) (320), with amyl alc. (313), or with neopentyl alc. (1:5812) (321) see indic. refs. — For studies on esterification of  $\bar{C}$  with alcohols by BF<sub>3</sub> method (312) (322) or without cat. (328) see indic. refs.]

[For patents involving esterification of  $\bar{C}$  with alcs. (323) by use of  $Cl_2$  (324) see indic. refs.]

[For study of use of  $\bar{C}$  in esterification of various carbohydrate derivs. (325) or of cellulose (326) cf. (327). — Note that the chemistry of poly (vinyl chloroacetate) cannot be considered here.]

#### Addition Reactions of C with Organic Compounds

Addition to unsaturated linkages.  $\bar{C}$  in presence of suitable cat. adds to unsaturated linkages giving the corresp. esters [e.g.,  $\bar{C}$  with propylene + BF<sub>3</sub> at 60-70° gives (34.2% yield (329)) isopropyl chloroacetate (3:8160);  $\bar{C}$  with butene-2 + ZnCl<sub>2</sub> at 100° for 8 hrs. gives (330) sec-butyl chloroacetate (3:8350); similarly  $\bar{C}$  with pentene-2 (1:8215) gives (330) diethylcarbinyl chloroacetate, b.p. 177-178°. — Note, however, that no record can be found of reaction of  $\bar{C}$  with ethylene to give ethyl chloroacetate (3:5700)].

[Č with *n*-butylacetylene (hexyne-1) (1:8055) in pres. of HgO + MeOH + BF<sub>3</sub>.Et<sub>2</sub>O gives (68% yield (331)) 2-(chloroacetoxy)hexene-1, b.p. 100-101° at 20 mm.,  $D_{-}^{26} = 1.017$ ,  $n_{-}^{25} = 1.4453$  (331). (For addition of Br<sub>2</sub> to this prod. giving 67% yield 1-bromohexanone-2 + 21% yield chloroacetyl bromide see (334)).]

Addition to epoxy compounds. [Č with ethylene oxide (1:6105) in dry ether at 0° for 4 days (332) or at 50° under press. for 6 days (333) gives ethylene glycol mono (chloroacetate) (3:6780).]

#### Conversion of C to Corresponding Acyl Halides

Conversion of  $\bar{C}$  to chloroacetyl fluoride. [ $\bar{C}$  on distn. with fluorosulfonic acid (335) or  $\bar{C}$  with KF + benzoyl chloride (3:6240) (336) gives (yields: 30% (336), 15% (335)) chloroacetyl fluoride, b.p. 74° (335), 74-76° (336).]

Conversion of C to chloroacetyl chloride. [C can by numerous methods be converted

to chloroacetyl chloride (3:5235) q.v. — Note also, however, that  $\bar{C}$  with large excess  $PCl_5$  (4 moles) gives (337) tetrachloroethylene (3:5460) and other products.]

Conversion of  $\overline{C}$  to chloroacetyl bromide. [ $\overline{C}$  with Br<sub>2</sub> + red P (338) (339) or with PBr<sub>3</sub> (340) gives chloroacetyl bromide, b.p. 127° (338) (340),  $D_{-}^{0}$  = 1.840 (340).]

# Conversion of C to Corresponding Anhydride

C can by numerous methods be converted to chloroacetic acid anhydride (3:0730) q.v.

#### REACTIONS INVOLVING THE CHLORINE ATOM OF C

#### Reduction of $\bar{C}$

See above as second heading under chemical behavior of  $\bar{C}$ .

## Hydrolysis of $\bar{C}$ (or its salts)

Hydrolysis of C to glycolic (hydroxyacetic) acid (1:0430) together with the formaunder certain conditions of diglycolic acid (1:0495) has been very extensively studied.

Hydrolysis of  $\overline{C}$  (or its salts) with aq.  $\overline{C}$  on protracted boilg, with aq. (341) (342) (343) or  $\overline{C}$  (as Na $\overline{A}$  or K $\overline{A}$ ) on boiling with aq. (32) (344) (277) or C with aq. BaCO<sub>3</sub> (followed by pptn. of barium with H<sub>2</sub>SO<sub>4</sub> (345)) gives (88.7% yield (345)) glycolic acid (1:0430).

[For studies on rate of hydrolysis of  $\bar{C}$  by aq. under various conditions (626) (342) (343) (346) (347) (348) (359) (351); for study of influence of ultra-violet light (352) (353) (354) (355); for influence of temperature (356); for study of ord. and in heavy aq. (357); for heat of hydrolysis with aq. (358); for study of abnormalities of hydrolysis of salts (359); for study of induction period of hydrolysis (360) (383); for acceleration of hydrolysis by colloidal Ag, Ag<sub>2</sub>O, or CuO (349) see indic. refs.]

[For studies of quantum yields of hydrolysis of  $\bar{C}$  and use as standard see (361) (362) (363) (364) (365) (366) (367) (353).]

Hydrolysis of  $\overline{C}$  (or its salts) with alkalies.  $\overline{C}$  on hydrolysis with aq. alkalies also gives glycolic acid (1:0430) [for studies of this reaction see (368) (342) (346) (369) (370) (350) (371) (351) (372) (373); for studies of hydrol. of Na $\overline{A}$  by salts of weak acids (374), for study of basic catalysts (375), for effect of high press. (376) see indic. refs.]

[For patents on conversion of  $\bar{C}$  to glycolic acid (1:0430) by alkaline hydrolysis see (377) (378); note, however, that the glycolic acid so formed may be converted (379) to glycolid (1:0667).]

Note also that under the influence of the alkaline medium some of the glycolic acid first formed may condense with unreacted  $\bar{C}$  to give diglycolic acid (1:0495): for studies of this aspect of the reaction see (380) (381) (382).

# Behavior of C with NaSH or Its Relatives

[ $\bar{C}$  with aq. 15% KSH (384) or with freshly prepd. aq. 15% NaSH (385) at 95° for 1 hr., subsequently acidified with H<sub>2</sub>SO<sub>4</sub> and extracted with ether, gives (99% yield (385)) mercaptoacetic acid (thioglycolic acid) [Beil. III-244, III<sub>1</sub>-(95), III<sub>2</sub>-(175)], b.p. 107-108° at 16 mm. (384) (385), m.p. =  $-16.5^{\circ}$  (384),  $D_{20}^{20} = 1.3253$  (384). — Note that this prod. is also preparable by many other methods some of which are cited below.]

[ $\bar{C}$  (2 moles) as Na $\bar{A}$  with NaSH as directed (386) (387) (388), or as K $\bar{A}$  with KSH (389) (390), or as Na $\bar{A}$  with potassium sulfantimonite (391) or sodium sulfostannate (391), or as Ca $\bar{A}_2$  with excess Ca(SH)<sub>2</sub> + H<sub>2</sub>S (381) gives (84% yield (387)) thiodiglycolic acid (thiodiacetic acid), S(CH<sub>2</sub>COOH)<sub>2</sub> [Beil. III-253, III<sub>1</sub>-(97), III<sub>2</sub>-(178)], cryst. from AcOEt/C<sub>6</sub>H<sub>6</sub> (1:9) (388) m.p. 130° (388), 129° (387) (386).]

[Č (2 moles) as NaĀ with aq. Na<sub>2</sub>S<sub>2</sub> (392) (393) (394), with alk. or alk.-earth polysulfides (402), with sodium sulfantimonate Na<sub>3</sub>SbS<sub>4</sub> (391) or sodium sulfarsenate Na<sub>3</sub>AsS<sub>4</sub> (391) gives dithiodiglycolic acid, HOOC.CH<sub>2</sub>—S—S—CH<sub>2</sub>COOH [Beil. III-254, III<sub>1</sub>-(97), III<sub>2</sub>-(179)], lfts. from AcOEt/C<sub>6</sub>H<sub>6</sub> (1:9) (388) 108-109° (391), 106° (388). — Note that this prod. on reduction gives mercaptoacetic acid (above): e.g., for reduction with Sn + HCl (395), with Zn + H<sub>2</sub>SO<sub>4</sub> (393) (396) (401) (402), with Na/Hg (397), by electrolytic reduction in H<sub>2</sub>SO<sub>4</sub> soln. using Pb electrodes (398), by shaking soln. of sodium salt with Fe powder at 38° under N<sub>2</sub> (399), or by shaking with alanine or phenylalanine in 1% soln. in pres. of active carbon at 38° under N<sub>2</sub> (400) see indic. refs.]

# Behavior of C with Various Salts of Inorganic Acids

(For behavior with NaCN, etc., see further below.)

With halides. [ $\bar{C}$  with HBr.5H<sub>2</sub>O in s.t. at 150° gives (403) bromoacetic acid [Beil. II-213, II<sub>1</sub>-(95), II<sub>2</sub>-(201)], m.p. 49-50°, b p. 208°; however,  $\bar{C}$  in aq. KBr at 50° shows only very slight tendency to form. of bromoacetic acid (for study of equilibrium see (404)).]

[ $\bar{C}$  with aq. KI at 50° (405) (406), or  $\bar{C}$  with NaI in acctone at room temp. (407) (or in ethyl methyl ketone, diethyl ketone, or AcOEt (407) but not in EtOH (408)) gives iodoacetic acid, cryst. from much pet. ether (405) (409), m.p. 83° (405), 82° (406); for study of equilibrium of  $\bar{C}$  with KI in aq. at 50° see (404); of  $\bar{C}$  with KI or NaI in acctone (ionic reaction) see (410).]

With salts of inorganic sulfur, nitrogen, or phosphorus acids. [ $\bar{C}$  with aq. Na<sub>2</sub>SO<sub>3</sub> gives (41) (412) salts of sulfoacetic acid [Beil. IV-21, IV<sub>1</sub>-(312), IV<sub>2</sub>-(531)]; for study of rate of reaction of K $\bar{A}$  with Na<sub>2</sub>SO<sub>3</sub>, K<sub>2</sub>SO<sub>3</sub>, or (NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub> under various conditions see (214) (413).]

[The salts of  $\bar{C}$  with aq. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> give the corresp. salts of "glycolic acid thiosulfate" (carboxymethyl hydrogen sulfate) [Beil. III-235, III<sub>1</sub>-(97), III<sub>2</sub>-(171)]; for studies of this reaction see (414) (415) (416) (417) (418).]

The alkali salts of  $\bar{C}$  with aq. alkali nitrites give the corresp. alkali salts of nitroacetic acid; in fact from a conc. aq. soln. of the potassium nitroacetate, treatment with the calcd. amt. of conc. HCl and extraction with much ether gives (70% yield (419)) (420) free nitroacetic acid [Beil. II-225, II<sub>1</sub>-(99), II<sub>2</sub>-(207)], m.p. 87-89° dec. (420). — However, even aq. solns. of the alkali salts of nitroacetic acid on warming readily lose  $CO_2$  yielding nitromethane [Beil. I-74, I<sub>1</sub>-(19), I<sub>2</sub>-(40)], b.p. 100.80-100.86° at 760 mm. (421), f.p. -29.2°,  $D_4^{25} = 1.1322$  (421),  $n_D^{22} = 1.38056$  (421), and although this product is now commercially available from other sources, the reaction is of considerable interest in connection with  $\bar{C}$ . — [For studies on the prepn. of nitromethane from  $K\bar{A} + KNO_2$  (yield 47% (422)) (423) (424) or from  $Na\bar{A} + NaNO_2$  (yields: 70% (428), 58% (426), 53% (429) (430) (431), 35-38% (425)) see indic. refs. — For studies on rate of decompn. of nitroacetic acid in aq. soln. at 20° (432), in HCl, or in acetate buffered solns. at 17.84° and 9.78° (433) cf. (434) (435) (436) see indic. refs.]

[The behavior of  $\bar{C}$  with NaN<sub>3</sub> appears to be unreported; note, however, that ethyl chloroacetate (3:5700) with NaN<sub>3</sub> gives (437) ethyl azidoacetate [Beil. II-229, II<sub>1</sub>-(101), II<sub>2</sub>-(208)], which upon hydrolysis with aq. KOH gives (437) azidoacetic acid.]

[For behavior of C with aq. Na<sub>3</sub>PO<sub>4</sub> at 85° see (438).]

#### Behavior of C with Hydrocarbons

Č with certain aromatic hydrocarbons or their halogen derivs. at elevated temp. but without cat. condenses with elimination of HCl to give arylated acetic acids [e.g., Č with

naphthalene (1:7200) at  $180-185^{\circ}$  for 48 hrs. gives (439)  $\alpha$ -naphthylacetic acid (1:0728);  $\bar{C}$  with 1-chloronaphthalene (3:6878) in generally similar fashion gives (439) 1-chloronaphthalene-?-acetic acid, m.p.  $124^{\circ}$ : for generally analogous behavior of  $\bar{C}$  with acenaphthene, anthracene, fluorene, and even certain phenols and amines see (439).]

#### Behavior of Chlorine Atom of C with Organic OH and SH Reactants

With alkoxides.  $\bar{C}$  with excess alkali alkoxides condenses with elimination of alkali chloride to give the corresponding alkoxyacetic acids [e.g.,  $\bar{C}$  with MeOH/NaOMe (440) (441) or probably also MeOH/Ba(OMe)<sub>2</sub> cf. (442) gives methoxyacetic acid (1:1065);  $\bar{C}$  with abs. EtOH/NaOEt (2 moles) gives (yields: 93% (441), 90% (443), 74% (444)) ethoxyacetic acid (1:1070);  $\bar{C}$  with NaO-n-Pr in n-PrOH gives (64% yield (445)) n-propoxyacetic acid [Beil. III-233, III<sub>1</sub>-(90), III<sub>2</sub>-(170)], b.p. 123° at 26 mm. (446), 108° at 10 mm. (445),  $D_4^{20} = 1.0518$  (446),  $n_D^{22} = 1.42249$  (446);  $\bar{C}$  with NaO-n-Bu gives (84% yield (445)) (447) n-butoxyacetic acid [Beil. III<sub>1</sub>-(90), III<sub>2</sub>-(170)], b.p. 115-116° at 10 mm. (445), 113-114° at 9-10 mm. (447),  $D_4^{20} = 1.0243$  (447),  $n_D^{20} = 1.42634$  (447);  $\bar{C}$  with Na isobutylate gives (441) isobutoxyacetic acid [Beil. III-233, III<sub>1</sub>-(90)], b.p. 118° at 18 mm. (441), 114° at 9 mm. (447),  $D_4^{20} = 1.0074$  (447),  $n_D^{20} = 1.42004$  (445); for analogous behavior of  $\bar{C}$  with sodium derivs. of n-amyl alc. (1:6255) (445), n-hexyl alc. (1:6230) (445), n-heptyl alc. (1:6240) (445) (448), n-octyl alc. (1:6255) (445), n-hexyl alc. (1:6245) (448) cf. (449), geraniol (1:6270) (448), 1-menthol (1:5940) giving (yields: 78-84% (450), 78% (451), 75% (452)) 1-menthoxyacetic acid [Beil. VI<sub>1</sub>-(25)], m.p. 53-54° (452); benzyl alc. (1:6480) giving (75% yield (453)) (448) benzyloxyacetic acid; etc., see indic. refs.]

With alkali salts of mercaptans. C with alkali salts of mercaptans should give the corresp, alkylthioacetic acids, but for the most part these have been prepd, by alkylation of mercaptoacetic (thioglycolic acid). - [C (as NaA) with NaSMe should give methylmercaptoacetic acid [Beil. III<sub>2</sub>-(177)], b.p. 130-131° at 27 mm. (454), 122-123° at 20 mm. (455),  $D_{20}^{20} = 1.223$  (454),  $n_{\rm D}^{20} = 1.495$  (454), but this prepr. has not been reported, the product having generally been obtd. (454) (455) from sodium thioglycolate by methylation]. — C (as NaA) with NaSEt in conc. aq. soln. followed by acidification gives (456) ethylmercaptoacetic acid [Beil. III-248, III<sub>1</sub>-(95)], b.p. 117-118° at 11 mm. (456), 118-119° at 10 mm. (455), m.p.  $-8.7^{\circ}$  (456),  $D_4^{20} = 1.1497$  (456). — Note that n-propylmercaptoacetic acid, b.p.  $136.5-137^{\circ}$  at 18 mm. (455),  $132^{\circ}$  at 15 mm. (454),  $D_{20}^{20} = 1.109$  (454),  $n_{D}^{20} = 1.109$ 1.483 (454), and isopropylmercaptoacetic acid, b.p. 128° at 13 mm. (454), 124-125° at 9 mm. (455), have been reported only by alkylation of thioglycolic acid. — However, C (as NaA) with Na-S-n-C<sub>4</sub>H<sub>9</sub> in aq. soln. gives (yields: 90% (457), 87% (458)) n-butylmercaptoacetic acid, b.p. 144-145° at 14 mm. (455) (corresp. p-bromophenacyl ester, m.p. 95° (458)); for constants on the isomeric isobutyl (455) (459), sec.-butyl (455), and terbutyl (460) mercaptoacetic acids prepd. by other means see indic. refs. — C (as NaA) with NaS-n-C7H15 gives (461) n-heptylmercaptoacetic acid.]

With phenols.  $\bar{C}$  (as Na $\bar{A}$ ) with salts of phenols, or often  $\bar{C}$  with phenols in aq. alk. soln., reacts to give the corresp. aryloxyacetic acids; this procedure comprises a valuable tool for derivatization in the identification (462) of phenols. Although the products of reaction of  $\bar{C}$  with all possible phenols cannot be recorded here, attention is directed to the 44 aryloxyacetic acids derived from phenols of Order 1 comprising the summary on page 641 of the "Tables of Order 1" (464), and to analogous aryl oxyacetic acids occurring in this present book as follows: o-chlorophenoxyacetic acid (3:4260); m-chlorophenoxyacetic acid (3:3325); p-chlorophenoxyacetic acid (3:4375); 2,4-dichlorophenoxyacetic acid (3:4095); 2,4,5-trichlorophenoxyacetic acid (3:4335). Many other individual cases which cannot be mentioned here may be found by the usual search methods.

#### Behavior of C with Salts of Organic Acids

With NaCN, KCN, etc. [ $\bar{C}$  on conversion to Na $\bar{A}$  and reaction with aq. NaCN (465) (466) (475) (476) or KCN (467) (468) (469) gives (yields: 75% (469), 70% (468)) cyanoacetic acid (malonic acid mononitrile) [Beil. II-583, II<sub>1</sub>-(253), II<sub>2</sub>-(530)], m.p. 69-70° (468), 69° (470), 66.1-66.4° cor. (467), 65-66° (471), 65° (472) (473); for use of this reaction in prepn. of malonic acid (1:0480) see (476).]

Note, however, that the behavior of  $\bar{C}$  or its salts with KSCN, NH<sub>4</sub>SeN, alkali xanthates, etc., is both complex and disputed and cannot be detailed here.

#### Behavior of C with NH3

 $\tilde{\mathbf{C}}$  with NH<sub>3</sub> under various conditions gives aminoacetic acid (glycine) [Beil. IV-333, IV<sub>1</sub>-(462), IV<sub>2</sub>-(771)].

[For behavior of  $\bar{C}$  with conc. aq. NH<sub>4</sub>OH as method of prepn. of glycine (yields: 66-69% (477), 64-65% (478), 54% (479), 50% (480)) (481) (482) (486) (for numerous older refs. see Beilstein) see indic. refs.: for extensive studies on influence of conditions on this reaction see (483) (477); for study of rate of ammonolysis of  $\bar{C}$  see (484) (485). — For behavior of  $\bar{C}$  with liq. NH<sub>3</sub> see (487), note that  $\bar{C}$  in liq. NH<sub>3</sub> with Na splits out calcd. amt. NaCl and that no cyanide is formed (488). — For behavior of  $\bar{C}$  with (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> see (483) (477) (489).]

[Note that reaction of  $\bar{C}$  with NH<sub>3</sub> does not stop with formn. of aminoacetic acid (glycine) but that unchanged  $\bar{C}$  reacts with the latter to give (489) (490) (480) iminodiacetic acid ("diglycolamidic acid") HN(CH<sub>2</sub>COOH)<sub>2</sub> [Beil. IV-365, IV<sub>1</sub>-(481), IV<sub>2</sub>-(800)], and/or trimethylamine- $\alpha,\alpha',\alpha''$ -tricarboxylic acid ("triglycolamidic acid") [Beil. IV-369, IV<sub>1</sub>-(482), IV<sub>2</sub>-(801)], also obtd. from  $\bar{C}$  on fusion with ZnCl<sub>2</sub>/NH<sub>3</sub> (492).]

#### Behavior of $\bar{C}$ with Organic Amines

With primary aliphatic amines. [C with MeNH<sub>2</sub> as directed (497) gives (methylamino)-acetic acid (N-methylglycine = sarcosine) [Beil. IV-345, IV<sub>1</sub>-(468), IV<sub>2</sub>-(784)], but this prod. is usually prepd. in other ways. — Note, however, that C (2 moles) with MeNH<sub>2</sub> (1 mole) + excess aq. NaOH gives (63-71% yield (493)) (494) methyliminodiacetic acid, CH<sub>3</sub>N(CH<sub>2</sub>COOH)<sub>2</sub> [Beil. IV-367, IV<sub>2</sub>-(800)], cryst. from aq. MeOH, m.p. 226-227° dec. (495), 226° dec. (496).]

[Č with excess aq. EtNH<sub>2</sub> as directed (498) gives ethylaminoacetic acid (N-ethylglycine) [Beil. IV-349, IV<sub>2</sub>-(787)], m.p. 180-182° dec. (499), 181.5° dec. (500). — The homologous N-alkylglycines appear never to have been prepared from similar reaction of C with alkylamines, but for prepn. of N-(n-propyl)glycine [Beil. IV-352], m.p. 196-198° dec. (499), N-(isopropyl)glycine [Beil. IV<sub>2</sub>-(787)], N-(n-butyl)glycine, m.p. 192° (501), N-(isobutyl)glycine, m.p. 188° (501), or N-(n-amyl)glycine, m.p. 201° (501), by other methods see indic. refs.]

With secondary aliphatic amines. [C with aq. Me<sub>2</sub>NH (502) (29) for 4 hrs. at 55° under press. (503) or with aq. NaOH (504) as directed gives (yield Na salt 53% (504)) dimethylaminoacetic acid (N,N-dimethylglycine) [Beil. IV-346, IV<sub>1</sub>-(469), IV<sub>2</sub>-(785)], m.p. 177-182° (29), 176-178° (503) (for prepn. of this prod. from glycine with formic acid + formaldehyde see (505)). — C with Et<sub>2</sub>NH similarly gives (506) N,N-diethylglycine [Beil. IV-350, IV<sub>1</sub>-(472)].]

With tertiary aliphatic amines. [C with Me<sub>3</sub>N (507) or C (as NaA) with Me<sub>3</sub>N (508) gives betaine hydrochloride (CH<sub>3</sub>)<sub>3</sub>N (Cl).CH<sub>2</sub>COOH [Beil. IV-347, IV<sub>1</sub>-(470), IV<sub>2</sub>-(786)].]

With primary aromatic amines. (See also below under D's.) [ $\ddot{\textbf{C}}$  with aniline in a little ether boiled with a large volume of aq. (509), cf. (511), or  $\ddot{\textbf{C}}$  with aniline (3 moles) boiled with aq. and subsequently made alkaline (510), or best  $\ddot{\textbf{C}}$  with aq. aniline heated in presence

of an acid acceptor such as aq. NaOH (512), aq. NaOAc (573) cf. (514), or other alkali or alkaline-earth hydroxides or carbonates (515) (516) (517) (518) (519) gives (yields: 100% (514), 90% (510), 86% (512)) phenylaminoacetic acid (N-phenylglycine) [Beil. XII-468, XII<sub>1</sub>-(263)], m.p. 127° (note that if htd. at 200°, however, bimolecular condensation occurs with elimination of 2H<sub>2</sub>O and formn. (520) (521) of N,N'-diphenyl-2,5-diketopiperazine, m.p. 263° (520) (521) while distn. causes loss of CO<sub>2</sub> giving (522) N-methylaniline). — Note also that reaction of C with 2 moles aniline (523), or further reaction of C with N-phenylglycine (above) in aq. alk. (524) (525) (514) (526), gives (yields: 80–85% (526), 50–60% (525)) phenylimino-diacetic acid, C<sub>6</sub>H<sub>6</sub>N(CH<sub>2</sub>COOH)<sub>2</sub> [Beil. XII-480, XII<sub>1</sub>-(265)], m.p. 152–155° dec. (526). — Note also that reaction of C with aniline in pres. of NaOAc gives (525) much N-phenylglycine anilide, C<sub>6</sub>H<sub>6</sub>NHCH<sub>2</sub>CONH.C<sub>6</sub>H<sub>6</sub> [Beil. XII-556], m.p. 112°\_]

[Note that C with many other primary aromatic amines reacts in analogous fashion, but details cannot be included here because of lack of space.]

With primary aromatic diamines. [ $\overline{C}$  with o-phenylenediamine in dry ether forms (327) a 1:1 cpd. presumably to be regarded as salt. — However,  $\overline{C}$  (1 mole) with o-phenylenediamine (1 mole) in 4 N HCl refluxed (528) for 45 min. and allowed to stand overnight (529) (530) gives (yields: 80-85% (529), 78-86% (530)) 2-(chloromethyl)benzimidazole, ndls. from EtOH/AcOEt (528), pr. from dioxane (529) or dry acctone (530), m.p.  $165^{\circ}$  (529),  $160-161^{\circ}$  (528),  $159-160^{\circ}$  cor. (530); note that value is sensitive to rate of htg. (529) (530). — For studies of behavior of this product with many amines (529) (530), with aq. (530), KI in acctone (530) (531) see indic. refs. — For general study of ortho condensations leading to benzimidazole formn. see (532).]

With hydrazines. [ $\ddot{C}$  (1 mole) with phenylhydrazine (2 moles) in boilg. aq. alc. K<sub>2</sub>CO<sub>3</sub> (½ mole) gives (533) (534) a mixt. of both ( $\alpha$ -phenylhydrazine)acetic acid, C<sub>6</sub>H<sub>6</sub>N(NH<sub>2</sub>)-CH<sub>2</sub>COOH [Beil. XV-316], tbls. from abs. EtOH, m.p. 168° (533), 167° deo. (535), and ( $\beta$ -phenylhydrazino)acetic acid, C<sub>6</sub>H<sub>6</sub>NH.NHCH<sub>2</sub>COOH [Beil. XV-321], lfts. from alc., m.p. 153° (536), 152–153° (537); for separation of these isomers see (533).]

[For behavior of  $\bar{C}$  with N,N-diphenylhydrazine in aq. Na<sub>2</sub>CO<sub>3</sub> or NaOAc see (538).]

With aromatic primary amines also containing other functional groups. With aminophenols. [Č with p-aminophenol on htg. in aq. soln. (539) (540) (541) (542) contg. also NaOAc (543) (544) gives (yields 45% (544), 35% (539) N-(p-hydroxyphenyl)glycine [Beil. XIII-488, XIII<sub>1</sub>-(171)] (this product has considerable interest as a photographic developer); for its purification see (540) (545); for pat. on its decompn. at 160-170° in ketone solvents as method of prepn. of N-methyl-p-aminophenol [Beil. XIII-441, XIII<sub>1</sub>-(149)] see (546). — Note also that in above reaction of Č with p-aminophenol some N-(p-hydroxyphenyl)iminodiacetic acid (542) is also formed.]

With amino acids. [ $\bar{C}$  with o-aminobenzoic (anthranilic) acid in aq. soln. (547) preferably also contg. Na<sub>2</sub>CO<sub>3</sub> (548) (559) (550) gives (yields: 85–89% (550), 70–80% (549)) N-(o-carboxyphenyl)glycine (phenylglycine-o-carboxylic acid) [Beil. XIV-348, XIV<sub>1</sub>-(544)], ndls. from MeOH, m.p. about 215° dec. (551); this product upon htg. loses CO<sub>2</sub> giving indoxyl and is therefore an important intermediate in mfg. of indigo; for use of this reaction for detection of  $\bar{C}$  in wine by conversion to indigo see (120) cf. (117). — Note also that in above reaction of  $\bar{C}$  with anthranilic acid some N-(o-carboxyphenyl)minodiacetic acid [Beil. XIV-354, XIV<sub>1</sub>-(545)], m.p. 216° dec. (551), is also produced (551); although both phenylglycine-o-carboxylic acid (Neut. Eq. 97.5) and N-(o-carboxyphenyl)-iminodiacetic acid (Neut. Eq. 84.3) thus melt at same temp., their mixture melts at about 200° (551).]

With secondary aromatic amines. [C with N-methylaniline on htg. (552) or better in aq. NaOH on 4-hr. reflux (553) gives (74% yield (553)) N-methyl-N-phenylglycine [Beil. XII-473, XII<sub>1</sub>-(264)], oil (B.HCl, m.p. 215-216° dec. (553)). — C with N-ethylaniline on

htg. gives (554) N-ethyl-N-phenylglycine [Beil. XII-475], oil. —  $\bar{C}$  with diphenylamine at 180-200° for 40-50 hrs. gives (5-10% yield (555)) N,N-diphenylglycine [Beil. XII<sub>1</sub>-(264)].]

With tertiary aromatic amines. [C with dimethylaniline at 100° (556) for 12-18 hrs. (557) gives dimethyl-phenylbetaine hydrochloride [Beil. XII-474], m.p. 194-196° (556), from which silver oxide liberates (557) (558) free dimethyl-phenyl-betaine, m.p. 124-126° (557), 123-124° (558). — For corresp. betaine from N,N-diethylaniline see (559).]

With tertiary heterocyclic amines. [C with pyridine on htg. (560) (561) (194) cf. (556) at 60° for 5 hrs. (557) gives N-(carboxymethyl) pyridinium chloride (pyridinebetaine hydrochloride) [Beil. XX-226], m.p. 202-205° dec. (560) (thought by (194) to be typographical error for 102-105° dec.). — For behavior of C with quinoline see (556).]

# Behavior of C with Amides, Thioamides, etc.

This topic cannot here be treated in full, but the following cases are reported as examples. With urea. [C] with carbamide (urea) might be expected under appropriate conditions to condense with elimination of HCl and formn. of ureidoacetic acid (hydantoic acid), NH<sub>2</sub>CONH.CH<sub>2</sub>COOH [Beil. IV-359, IV<sub>1</sub>-(477), IV<sub>2</sub>-(792)], m.p. 169-170° (562) (563), 160-161° (564), 160° (565), or its ring-closure product hydantoin [Beil. XXIV-242, XXIV<sub>1</sub>-(287)], m.p. 220°; no report of the chemical behavior of C with urea can be found, however, the two above-mentioned expected products having been prepared by other means.—Note that f.p./compn. data on system C + urea have been recorded (19).]

With thiourea. [Č with thiourea (the latter reacting in its isothiourea mode) gives according to conditions either isothiohydantoic acid, H<sub>2</sub>N—C(=NH)—S—CH<sub>2</sub>COOH [Beil. III-251, III<sub>1</sub>-(97)] (566) (567), or pseudothiohydantoin [Beil. XXVII-233, XXVII<sub>1</sub>-(303)], (568) (569) (570) (571) (572) (573).]

With substituted thioureas. The behavior of  $\tilde{C}$  with substituted thioureas cannot be treated in full, but the following examples are cited (for reaction of  $\tilde{C}$  with various monosubstituted thioureas see (573) (574), with various disubstituted thioureas see (575) (576) (577)].

- --- Methyl chloroacetate: oil, b.p. 131° (see 3:5585).
- --- Ethyl chloroacetate: oil, b.p. 144° (see 3:5700).
- --- Phenyl chloroacetate: m.p. 44-45° (see 3.0565).
- —— o-Tolyl chloroacetate: oil, b.p. 127-127.6° at 10 mm. (578). [From C with o-cresol (1:1400) + POCl<sub>3</sub> in pyridine (574), or from chloroacetyl chloride (3:5235) with o-cresol (1:1400) at 130° for 4 hrs. (578); note that this prod. with AlCl<sub>3</sub> at 140° undergoes Fries rearr. giving (578) both 2-hydroxy-3-methylphenacyl chloride [Beil. VIII<sub>1</sub>-(549)], m.p. 67°, and 4-hydroxy-3-methylphenacyl chloride [Beil. VIII<sub>1</sub>-(550)], m.p. 144-145°.]
- m-Tolyl chloroacetate: oil, b.p. 153° at 30 mm. (580). [From chloroacetyl chloride (3:5235) with m-cresol (1:1730) (579) (580); note that this prod. with AlCl<sub>3</sub> at 150° gives (50% yield (580)) 2-hydroxy-4-methylphenacyl chloride [Beil. VIII-113, VIII<sub>1</sub>-(550)], m.p. 101°.]
- p-Tolyl chloroacetate: m.p.  $32^{\circ}$  (580),  $29-30^{\circ}$  (579); b.p.  $162^{\circ}$  at 45 mm. (580);  $D_4^{35} = 1.1840$  (41),  $n_2^{35} = 1.5150$  (41). [From  $\bar{C}$  with p-cresol (1:1410) + POCl<sub>3</sub> in pyridine (579), or from chloroacetyl chloride (3:5235) with p-cresol (1:1410) at 135° (580); note that this prod. with AlCl<sub>3</sub> at 140° gives (580) 2-hydroxy-5-methyl-phenacyl chloride [Beil. VIII-111], m.p. 65° (580).]
- Benzyl chloroacetate: oil, b.p.  $147.5^{\circ}$  at 9 mm.,  $D_4^4 = 1.2223$ ,  $n_D^{18} = 1.5246$  (581). [From  $\bar{C}$  with benzyl alc. (1:6480) + HCl gas at  $100^{\circ}$  (581).]

- --- p-Nitrobenzyl chloroacetate: oil, unsuitable as (582).
- --- Phenacyl chloroacetate: unreported.
- --- p-Chlorophenacyl chloroacetate: unreported.
- D p-Bromophenacyl chloroacetate: m.p. 103.7° cor. (583).
- --- p-Iodophenacyl chloroacetate: unreported.
- (584). [From Č (as NaĀ) with p-phenylphenacyl bromide (584) (m.p. 124.5-125.5°) in aq. alc. on htg. (584).]
- © S-Benzylthiuronium chloroacetate: m.p. 159-160° (585). [Note that for corresp. salts from dichloroacetic acid (3:6208) and trichloroacetic acid (3:1150) m.p. values are respectively 178-179° and 148-149° (585).]
- S-(p-Chlorobenzyl)thiuronium chloroacetate: m.p. 158° cor. (586). [From C (as NaA) with S-(p-chlorobenzyl)thiuronium chloride (586) (m.p. 197°) in alc. (586); note that corresp. deriv. of trichloroacetic acid (3:1150) has m.p. 148° cor.]
- S-(p-Bromobenzyl)thiuronium chloroacetate: m.p. 154° cor. (587). [From C (as NaA) with S-(p-bromobenzyl)thiuronium bromide (587) (m.p. 213°) in alc. (587); note that corresp. deriv. of trichloroacetic acid (3:1150) has m.p. 146° cor. (587).]
- ω-Chloroacetamide: m.p. 120.5-121.5° (588), 120° (589), 119-120° (590), 119.5° (591), 118-120° (165), 118° (312), 116.4-116.9° (620). [From methyl chloroacetate (3:5585) (588) (593) or ethyl chloroacetate (3:5700) (590) (589) (592) (594) (595) (596) (597) with cold conc. NH<sub>4</sub>OH (78-84% yield (590)), or from chloroacetyl chloride (3:5235) with dry NH<sub>3</sub> (597).]
- Φ-Chloroacetanilide: eryst. from hot aq. or 50% alc, m.p. 138° cor. (598), 136–137° (599), 136° cor. (600), 135° (601), 134–135° (602) (166), 134.5° (603) (604), 134° (605) (606), 133–134° (610). [From  $\bar{\mathbb{C}}$  with aniline (606) in presence of  $P_2O_5$  (600) (605), from  $\bar{\mathbb{C}}$  with aniline salts + PCl<sub>5</sub> or SOCl<sub>2</sub> (607), from chloroacetyl chloride (3:5235) with aniline (2 moles) in ether (608) (603),  $C_6H_6$  (602) (601), or AcOH/NaOAc (599) or with aniline (1 mole) + aq. NaOH in  $C_6H_6$  or toluene (609), or from chloroacetic acid anhydride (3:0730) with aniline +  $P_2O_5$  (610) | Note that this ω-chloroacetanilide with AlCl<sub>3</sub> (not more than 1.8 pts. (611)) at 225° (611) (612) loses HCl with ring closure giving (85% yield (611) (612)) oxindole [Beil. XXI-282, XXI<sub>1</sub>-(289)]; also that ω-chloroacetanilide with alc. KOH undergoes bimolecular condensation giving (613) N,N'-diphenyl-2,5-diketopiperazine, m.p. 263°.]
- Φ ω-Chloroacet-o-toluidide: cryst. from dil. alc., m.p. 111-112° (614) (604), 111° (615). [From  $\bar{C}$  + o-toluidine +  $P_2O_5$  (615), or from chloroacetyl chloride (3:5235) with o-toluidine (2 moles) in dry ether (616) or  $C_6H_6$  (614).] [Note that this prod. with AlCl<sub>3</sub> at 225° loses HCl with ring closure giving (612) 7-methyloxindole, m.p. 200°; also that with alc. KOH it undergoes bimolecular condensation giving (614) N,N'-di-o-tolyl-2,5-diketopiperazine.]
- ω-Chloroacet-p-toluidide: m.p. 164° (615), 162° (608) (617), 161.5° (603). [From  $\bar{C}$  (2 moles) with p-toluidine (1 mole) at 80-90° (617) in presence of  $P_2O_5$  (615), or from chloroacetyl chloride (3:5235) with p-toluidine (2 moles) (608) in ether (603).] [Note that this prod. with AlCl<sub>3</sub> at 230° for 2 hrs. loses HCl with ring closure giving (612) 5-methyloxindole [Beil. XXI-291], m.p. 168° (612).]
- ω-Chloroacet-N-benzylamide: cryst. from C<sub>6</sub>H<sub>6</sub> or lgr., m.p. 93.5-94.5° cor. (618), 93.0-93.6° cor. (619), 92.2-92.8° u.c. (619). [From ethyl chloroacetate (3:5700) with aq. benzylamine on shaking in cold (619) cf. (621), or from chloroacetyl chloride (3:5235) with benzylamine + aq. KOH (618); note, however, that the corresp. derivs. from dichloroacetic acid (3:6208) and from trichloroacetic acid (3:150) have almost the same m.p.'s, viz., 93.8-95.6° cor. and 93.6-94.4° cor. respectively (619); note also that the simple salt of C with benzylamine has m.p. 119.9-120.9° cor. (304).]

3:1370 (1) Sudborough, Lloyd, J. Chem. Soc. 75, 476 (1899).
(2) Fuchs, Katscher, Ber. 57, 1257 (1924).
(3) Benrath, Hertel, Z. wiss. Phot. 23, 34 (1925).
(4) Rabinowitsch, Z. physik. Chem. 119, 65 (1926); J. Russ. Phys.-Chem. Soc. 58, 231 (1926).
(5) Randall, Failey, Chem. Ress. 4, 301-318 (1927).
(6) Dezelic, Ann. 520, 290-300 (1935).
(7) Michel, Bull. soc. chim. Belg. 48, 127-129 (1939).
(8) Bridgman, Phys. Rev. (2) 3, 189 (1914).
(9) Tollens, Ber. 17, 665 (1884).
(10) Grinakovskii, J. Russ. Phys.-Chem. Soc. 45, 1236 (1913), Cent. 1913, II 2076; [C.A. 8, 287 (1914)].

(11) Pohl, Hobbs, Gross, J. Chem. Phys. 9, 408-414 (1941). (12) Tartakovskaya, Bondarenko, Emel'yahova, Acta Physicochim. (U.S.S.R.), 6, 609-624 (1937); Cent. 1938, I 293; [C.A., 32, 4401 (1938)]; J. Phys. Chem. (U.S.S.R.) 9, 407-416 (1937); [Cent. 1938, I 3889]; C.A. 31, 6955 (1937). (13) Westheimer, J. Am. Chem. Soc. 56, 1962-1963 (1934). (14) Puschin, Dezelic, Monatsh. 60, 432, 435-436 (1932). (15) Piutti, Badolato, Atti accad. Lincei (5) 33, I 476 (1924); Cent. 1924, II 1893. (16) Mameli, Cocconi, Gazz. chim. ital. 53, 149-158 (1923). (17) Mameli, Mannessier-Mameli, Gazz. chim. ital. 63, 12-16 (1933). (18) Kendall, Carpenter, J. Am. Chem. Soc. 36, 2505 (1914). (19) Puschin, Rikovsky, Monatsh. 60, 438-448 (1932). (20) Miers, Isaac, Cent. 1909, II 116; Proc. Roy. Soc. (London), 82, 184-187 (1909).

(21) Schenck, Z. physik. Chem. 33, 451-452 (1900). (22) Müeller, Z. physik. Chem. 86, 196-201 (1914). (23) Pickering, J. Chem. Soc. 67, 664-684 (1895). (24) Wooten, Hamnett, J. Am. Chem. Soc. 57, 2289-2296 (1935). (25) Steiner, Johnston, J. Phys. Chem. 32, 935 (1932). (26) Coffmann, J. Am. Chem. Soc. 58, 1983 (1935). (27) Lecat, Ann soc. sci Bruxelles 45, I 290 (1926). (22) Walden, Z. physik. Chem. 70, 577 (1910). (29) Kahovec, Kohlrausch, Monatsh. 68, 371-372 (1936). (30) Kohlrausch, Koppl, Pongratz, Z. physik. Chem. B-21, 254 (1933).

(31) Perkin, J. Chem. Soc. 65, 421 (1894). (32) Hoffmann, Ann. 102, 1-20 (1857). (33) Landee, Johns, J. Am. Chem. Soc. 63, 2892-2894 (1941). (34) Patterson, Ber. 38, 212 (1905). (35) Straus, Thiel, Ann. 525, 166 (1936). (36) Jaeger, Z. anorg. allgem. Chem. 101, 64 (1917). (37) Mameli, Mannessier, Gazz. chim. ital. 42, II, 571-576 (1912). (38) Hulett, Z. physik. Chem. 28, 668-669 (1899). (39) Korber, Z. physik. Chem. 82, 52-55 (1913). (40) Hantzsch, Dürigen, Z. physik. Chem. 136, 15 (1928).

(41) Vanderstichele, J. Chem. Soc. 123, 1226-1228 (1923).
(42) Kireev, Popov, J. Gen. Chem. (U.S.S.R.) 5, 1399-1401 (1935); Cent. 1937, I 3127, C.A. 30, 2441 (1936).
(43) Virtanen, Pulkki, J. Am. Chem. Soc. 50, 3144 (1928).
(44) Mameli, Gazz. chim. ital. 38, II 579-586 (1909).
(45) Walden, Z. angew. Chem. 38, 812-813 (1925).
(46) Walden, Z. physik. Chem., Bodenstein Festband, 28 (1931).
(47) Walden, Z. physik. Chem. A-162, 1-8 (1932).
(48) Bell, Baughan, Vaughan-Jackson, J. Chem. Soc. 1934, 1969-1972.
(49) Klatt, Z. anorg allgem Chem. 222, 293-294 (1935).
(50) Frankel, Biochem. Z. 227, 304-318 (1930); Cent. 1931, I 1060; C.A. 25, 451 (1931).

(51) Berthelot, Ann. chim. (6) 28, 136-137 (1893). (52) Berthelot, Matignon, Ann. chim. (6) 28, 565-567 (1893). (53) Schjanberg, Svensk Kem. Tid. 44, 227-231 (1932); Cent. 1932, II 3685; C.A. 27, 3133 (1933). (54) Schjanberg, Z. physik. Chem. A-172, 228 (1935). (55) Kharasch, J. Research Natl. Bur. Standards, 2, 418 (1929). (56) Munzberg, Z. physik. Chem B-31, 18-22 (1936). (57) Cohn, Urey, J. Am. Chem. Soc. 60, 679-687 (1938). (58) Ockrent, J. Chem. Soc. 1932, 613-630. (59) Ockrent, J. Chem. Soc. 1932, 1864-1875. (60) Swearingen, Dickinson, J. Phys. Chem. 36, 534-545 (1932).

(61) Sabalitschka, Pharm. Zty. 74, 382-384 (1929); Cent. 1929, I 2288; C.A. 23, 2627 (1929). (62) Namasivayan, J. Indian Chem. Soc. 4, 449-458 (1927). (63) Schilow, Nekrassow, Z. physik. Chem. 130, 68 (1927). (67) Traube, Somogyi, Biochem. Z. 120, 95 (1921). (65) S. S. Bhatnagar, A. N. Kapur, M. S. Bhatnagar, J. Indian Chem. Soc. 17, 367 (1940). (66) Stadnikow, Kolloid-Z. 35, 233 (1924). (67) Mokruschin, Kryloff, Kolloid-Z. 43, 389 (1927). (68) Kubelka, Taussig, Kolloid-Beihefte 22, 150-190 (1926). (69) Brass, Frei, Kolloid-Z. 45, 248-249 (1928). (70) Chakravarty, Sen, Z. anorg. allgem. Chem. 186, 360 (1930).

(71) Sen, J. Phys. Chem. 31, 526 (1927).
(72) Ermolenko, Ginzburg, Colloid J. (U.S.S.R.)
5, 263-270 (1939); Cent. 1939, II 3556; C.A. 33, 8469 (1939).
(73) Griffin, Richardson, Robertson, J. Chem. Soc. 1928, 2705-2709.
(74) von Euler, Bucht, Z. anorg. allgem. Chem. 126, 269-277 (1923).
(75) Schreiner, Z. anorg. allgem. Chem. 122, 203-204 (1922).
(76) Dermer, Markham, Trimble, J. Am. Chem. Soc. 63, 3524-3525 (1941).
(77) Smith, J. Phys. Chem. 25, 620 (1921).
(78) Herz, Fischer, Ber. 38, 1141 (1905).
(79) von Georgievics, Monatsh. 36, 400-401 (1915); Z. physik. Chem. 90, 54 (1915).
(80) Kolosovskii, Kulikov, Z. physik. Chem. A-169, 459-471 (1934).

(81) Hantzsch, Vagt, Z. physik. Chem. 38, 741 (1901).
(82) Bodansky, Meigs, J. Phys. Chem. 36, 816 (1932).
(83) Andreasov, Davydova, Trans. Inst. Chem. Kharkov Univ. 4, No. 13, 131-136 (1940).
(84) Kolosovskii, Kulikov, J. Gen. Chem. (U.S.S.R.) 4, 1370-1377 (1934); Cent. 1936, II 1511; C.A. 29, 3898 (1935).
(85) Herz, Levy, Z. Elektrochem.

- 11, 819 (1905). (86) Smith, J. Phys. Chem. 25, 618 (1921). (87) Kolosovskii, Kulikov, J. Gen. Chem. (U.S.S.R.) 5, 63-68 (1935); Cent. 1936, II 2880; C.A. 29, 4652 (1935). (88) Randall, Failey, J. Am. Chem. Soc. 49, 2678-2681 (1927). (89) Smith, J. Phys. Chem. 25, 730 (1921). (90) Lecat, Rec. trav. chim. 46, 243 (1927).
- (91) Lecat, Ann. soc. sci. Bruxelles 47, I 25, 151 (1927). (92) Lecat, Rec. trav. chim. 47, 17 (1928). (93) Lecat, Ann. soc. sci. Bruxelles 48, I 15, 120 (1928). (94) Colles, J. Chem. Soc. 89, 1253 (1906). (95) Drucker, Z. physik. Chem. 52, 648 (1905). (96) LeBlanc, Z. physik. Chem. 4, 557 (1889). (97) LeBlanc, Rohland, Z. physik. Chem. 19, 265 (1896). (98) Polowzow, Z. physik. Chem. 75, 518 (1911). (99) Mameli, Mannessier, Gazz. chim. ital. 43, II 586-609 (1913). (100) Kendall, J. Am. Chem. Soc. 36, 1722-1734 (1914).
- Kendall, J. Am. Chem. Soc. 36, 1722-1734 (1914).

  (101) "Int. Crit. Tables," IV, 101, 105 (1928). (102) Kendall, J. Am. Chem. Soc. 38, 1313, 1321-1322 (1916). (103) Kendall, Booge, J. Am. Chem. Soc. 38, 1727, 1733-1734 (1916). (104) Kendall, Gibbons, J. Am. Chem. Soc. 37, 155-159 (1915). (105) Bell, Z. physik. Chem. A-159, 20-30 (1935). (106) Walker, Canner 92, No. 15, 20-21 (1941); C.A. 36, 3858 (1942). (107) Fabian, Bloom, Fruit Products J. 21, 292-296 (1942); C.A. 37, 2834 (1943). (108) Joslyn, Cruess, Food Industries 14, No. 9, 110-111 (1942); C.A. 36, 6256 (1942). (109) Morrison, Leake, Univ. Cal. Pub. Pharmacol. 1, 397-421 (1941); C.A. 35, 8125 (1941). (110) Leake, Food Industries 14, No. 6, 102-104 (1942); C.A. 36, 4917 (1942).
- (111) Wilson, J. Assoc. Official Agr. Chem. 27, 195-200 (1944). (112) Schapiro, U.S. 2,157,632, 2,157,633, May 9, 1939, Cent. 1939, II 1990; C.A. 33, 6469 (1939). (113) Tetsumoto, J. Agr.-Chem. Soc. Japan 12, 22-26, 184-190 (1936); Cent. 1936, II 817; C.A. 30, 4530 (1936); Japan. J. Expll. Med. 15, 1-8 (1937); C.A. 31, 5010 (1937). (114) Hoffmann, Schweitzer, Daley, J. Am. Chem. Soc. 62, 988-989 (1940). (115) Woodard, Lange, Nelson, Calvery, J. Ind. Hyg. Toxicol. 23, 78-82 (1941). (116) Genevois, Briscoe, Compt. rend. soc. biol. 112, 1389-1390 (1933); C.A. 27, 3750 (1933). (117) Wilson, J. Assoc. Official Agr. Chem. 27, 339-340 (1944); 25, 145-153 (1942). (118) Jahn, Mitt. Lebensm. Hyg. 33, 272-275 (1942); Cent. 1943, I 1832; C.A. 38, 3740 (1944). (119) Wilson, J. Assoc. Official Agr. Chem. 26, 477-478 (1943). (120) Mallory, Love, Ind. Eng. Chem., Anal. Ed. 15, 207-209 (1943).
- (121) Wilson, Kennan, J. Assoc Official Agr. Chem. 27, 445-447 (1944). (122) Benrath, Hertel, Z. viss. Phot. 23, 33-35 (1925). (123) Isomura, Bull. Chem. Soc. Japan 14, 258-270 (1939); J. Electrochem. Assoc. Japan 7, 251-260 (1939), Cent. 1939, II 3399. (124) Brückner, Z. angev. Chem. 41, 226 229 (1928); 40, 973-974 (1927). (125) Magidson, Zilberg, Preobrazhenskii, J. Chem. Ind. (Moscow) 5, 528-529 (1928); Cent. 1928, II 2234; C.A. 22, 4105 (1928), (126) Auger, Béhal, Bull. soc. chim. (3) 2, 145 (1889). (127) Germuth, Maryland Acad. Sci. Bull. 8, 3 (1929); C.A. 24, 61 (1930). (128) Horsley and United Alkali Co., British 6031 (1910); C.A. 5, 2918 (1911). (129) Strosacker (to Dow Chem. Co.) U.S. 1,757,100, May 6, 1930; Cent. 1930, II 981; C.A. 24, 3250 (1930). (130) Russanow, J. Russ. Phys.-Chem. Soc. 23, 222-223 (1891); Ber. 25, Referate 334 (1892).
- (131) Lyubarskii, Zhur. Priklad. Khim. 2, 621-627 (1929); C.A. 24, 827 (1930). (132) Lyubarskii, Ber. ukrain. wiss. Forsch.-Inst. physik. Chem. 3, 85-91 (1934); C.A. 29, 2509 (1935). (133) Shilov, J. Chem. Ind. (Moscow) 6, 538-540 (1929); Cent. 1929, II 2658; C.A. 24, 827-828 (1930). (134) Bruckner, Ger. 506,280, Sept. 1, 1930; Cent. 1930, II 2830; C.A. 25, 304 (1931). (135) Wohl, Ger. 146,796, Nov. 12, 1903; Cent. 1903, II 1299. (136) Blank, Ger. 157,816, Jan. 18, 1905; Cent. 1905, I 414. (137) Kharasch, Brown, J. Am. Chem. Soc. 62, 925-929 (1940). (138) Gruber, Kauffer, Moldenhauer (to Wacker Soc. Elektrochem. Ind.), Ger. 638,117, Nov. 10, 1936; Cent. 1937, I 1015, C.A. 31, 1044 (1937). (139) Hentschel, Ber. 17, 1286 (1884). (140) Akashi, Bull. Inst. Phys. Chem. Research (Tokyo) 12, 329-340 (1933); Sci. Papers Inst. Phys. Chem. Research (Tokyo) 20, 411-413 (1933); Cent. 1933, I 3066; C.A. 27, 3447 (1933).
- (141) Youtz, J. Am. Chem. Soc. 46, 549 (1924). (142) Klebanskii, Gosudarst. Inst. Priklad. Khim., Sbornik Staten, 1919-1939, 359-383 (1939); C.A. 36, 2521 (1942). (143) Shagalov, Trans. & Mendeleev Congr. Theoret. Applied Chem. 1932, 2, Pt. 1, 730-737 (1935); Cent. 1936, II 2226; [C.A. 30, 1893 (1936)]. (144) Suknevich, Shagalov, Dobromil'skaya, Trans. State Inst. Applied Chem. (U.S.S.R.), 24, 89-96 (1935), not in Cent., [C.A. 29, 7272 (1935)]. (145) Torres, Socias, Anales soc. españ. fis. quim. 28, 490-494 (1930); C.A. 24, 3755 (1930). (146) Simon, Chavanne, Compt. rend. 176, 309-311 (1923), Bull. soc. chim. Belg. 32, 285-287 (1923); Cent 1923, III 1212; C.A. 18, 1112 (1924). (147) Simon, Chavanne, U.S. 1,304,108, May 20, 1919; C.A. 13, 2039 (1919); Brit. 129,301, May 21, 1917; C.A. 13, 2878 (1919); French 22,304, June 30, 1921; Cent. 1922, II 1172; not in C.A. (148) Guyot, U.S. 1,322,898, Nov. 25, 1919; C.A. 14, 287 (1920). (149) Comp. Prod. Chim. d'Alais, etc., Ger. 359,910, Sept. 28, 1922; Cent. 1923, II 404; not in C.A. (150) Comp. Prod. Chim. d'Alais, etc., Ger. 377,524, June 21, 1923; Cent. 1923, IV 536; not in C.A.
  - (151) Comp. Prod. Chim. d'Alais, etc., Ger. 383,029, Oct. 9, 1923; [Cent. 1924, I 1712]; not in

C.A.: Austrian 88,199, Aug. 10, 1932; Cent. 1923, IV 591; not in C.A. (152) Comp. Prod. Chim. d'Alais, etc., French 602,395, March 17, 1926; Cent. 1928, I 1710; not in C.A. (153) A. Wacker Soc. Elektrochem. Ind., French 705,905, June 16, 1931; Ger. 531,580, March 1, 1930; Cent. 1931, II 1489; C.A. 26,154 (1932). (154) Ikawa, Isikawa, Japan 95,415, April 11, 1932; C.A. 27, 2695 (1933). (155) Comp. Prod. Chim. d'Alais, etc., Ger. 377,411, June 19, 1923; [Cent. 1923, IV 591]; not in C.A.: French 519,813, June 16, 1921; Cent. 1921, IV 653; not in C.A. (156) Comp. Prod. Chim. d'Alais, French 774,172, Dec. 3, 1934; Cent. 1935, I 2895; C.A. 29, 2179 (1935): Ger. 610,318, March 7, 1935; [C.A. 29, 3691 (1935)]; not in Cent. (157) Muller, Ehrmann, Ber. 69, 2208-2209 (1936). (158) Tishchenko, J. Gen. Chem. (U.S.S.R.) 7, 658-662 (1937); Cent. 1937, II 371; C.A. 31, 5754 (1937). (159) Muskat, Northrup, J. Am. Chem. Soc. 53, 4043-4055 (1930). (160) Carothers, Berchet, J. Am. Chem. Soc. 55, 1628-1631 (1933).

(161) Jones, Williams, J. Chem. Soc. 1934, 829-834. (162) Carothers, Berchet, Collins, J. Am. Chem. Soc. 54, 4066-4070 (1932). (163) Coffman, Nieuwland, Carothers, J. Am. Chem. Soc. 55, 2048-2051 (1933). (164) Coffman, Carothers, J. Am. Chem. Soc. 55, 2040-2047 (1933). (165) Dykstra, J. Am. Chem. Soc. 58, 1749 (1936). (166) Coffman, J. Am. Chem. Soc. 57, 1983 (1935). (167) Ingold, J. Chem. Soc. 125, 1536-1537 (1924). (168) Kriwaxin, Zeit. Chemre

1871, 265. (169) Aschan, Ber. 23, 1831 (1890). (170) Claus, Ber. 5, 355 (1872).

(171) Natterer, Monatsh. 3, 457-458 (1882). (172) Reisse, Ann. 257, 334-336 (1890). (173) Filachione, J. Am. Chem. Soc. 61, 1706 (1939). (174) N.V. de Bataafsche Petroleum Maatschappij, French 797,943, May 6, 1936; Cent. 1936, II 865; C.A. 30, 7124 (1936). (175) deSimo, Allen (to Shell Development Co.), U.S. 2,051,470, Aug. 18, 1936; Cent. 1936, II 3469; [C.A. 30, 6764 (1936)]. (176) van Reymenant, Bull. acad. roy. Belg. 1900, 724-742; Cent. 1901, I 95-96. (177) Henry, Bull. acad. roy. Belg. 1900, 57-63; Cent. 1900, I 1123. (178) Jochem, Z. physiol. Chem. 31, 123 (1900). (179) Chem. Fabrik Flora, Ger. 348,671, Feb. 14, 1922; [Cent. 1922, II 873]; not in C.A.: Dutch, 6121, Sept. 15, 1921; Cent. 1921, IV 1140; Ich. ont in C.A. (180) Kuhn, Eichenberger, French 663,236, Aug. 19, 1929; Cent. 1929, II 3069; [C.A. 24, 627 (1930)].

(181) Matsukov, Trudy Leningrad. Inst. Sovet Torglovi 1939, No. 2, 30-4, C.A. 37, 3054 (1943). (182) Dashkevich, Russ. 56,513, Feb. 29, 1940; C.A. 36, 2869 (1942). (183) Loder (to du Pont Co.), U.S. 2,298,138, Oct. 6, 1942; C.A. 37, 1449 (1943). (184) Fürst, Ann. 206, 78-82 (1880). (185) Piutti, Badolato, Atti accad. Lincei (5) 33, I 475-479 (1924); Cent. 1924, II 1893. (186) Piutti, Atti congr. naz. chim. pura applicata 1923, 437-438; Cent. 1924, I 514, C.A. 18, 3007 (1924). (187) Piutti, Gazz. chim. ital. 51, I 145-146 (1921). (188) Piutti, Mazza, Gazz. chim. ital. 57, 610-614 (1927). (189) Imbert and Consortium für Elektrochem. Ind., Ger. 216,716, Nov. 30, 1909; Cent. 1910, I 214; C.A. 4, 152 (1910). (190) Imbert, Consortium für Elektrochem. Ind., Ger. 209,268, April 27, 1909; Cent. 1909, I 1785; C.A. 3, 2203 (1909).

(191) Brochet, Bull. soc. chim. (3) 13, 119 (1895); Ann. chim. (7) 10, 138-139 (1897). (192) Grassi-Cristaldi, Gazz. chim. ital. 27, II 502-505 (1897). (193) Senderens, Compt. rend. 172, 155-157 (1921). (194) Senderens, Compt. rend. 204, 211 (1937). (195) Silberstein, Ber. 17, 2660-2661 (1884). (196) Bezzi, Atti ist. Veneto Sci., Pt. II, 94, 167-182 (1935); Cent. 1937, II 3605; C.A. 33, 6311 (1939). (197) von Euler, Ber. 49, 1366-1371 (1916). (198) Kelber, Ber. 49, 1366-1371 (1916). (198) Kelber, Ber. 49, 1368-1371 (1916).

1071 (1916).

(201) Traube, Lange, Ber. 58, 2776 (1925). (202) Calcott (to du Pont Co.), U.S. 1,547,201, July 28, 1925; Cent. 1925, II 2295; [C.A. 19, 283 (1925)]. (203) Cassel, Z. physik. Chem. 92, 119-120 (1917). (204) Hood, Imes, J. Phys. Chem. 36, 927-929 (1932). (205) Busch, Weber, J. prdkt. Chem. (2) 146, 54 (1936). (206) Panizzon, Helv. Chim. Acta 15, 1191-1192 (1932). (207) Osburn, Weikman, Ind. Eng. Chem., Anal. Ed. 4, 421-423 (1932). (208) Kaufler, Herzog, Ber. 42, 3864-3868 (1909). (209) Troeger, Ewers, J. prakt. Chem. (2) 58, 127-128 (1898). (210) Ghosh, Ray, J. Indian Chem. Soc. 13, 1-10 (1936).

(211) Maumene, Ann. 133, 154-156 (1865); Bull. soc. chim. (2) 1, 417-420 (1864). (212) Müller, Ann. 133, 156-161 (1865). (213) Cech, Steiner, Ber. 8, 1174 (1875). (214) Racker, van Mels, Rec. trav. chim. 49, 177-194 (1930). (215) Crompton, Triffitt, J. Chem. Soc. 119, 1874-1875 (1921). (216) Crompton, Vanderstichele, J. Chem. Soc. 117, 691-693 (1920). (217) Sutherland, Aston, J. Am. Chem. Soc. 61, 243 (1939). (218) Andreasch, Monatsh. 7, 159-167 171-175 (1886). (219) Backer, Burgers, J. Chem. Soc. 127, 233-237 (1925). (220) Backer, Rec. trav. chim. 49, 729-734 (1930).

(221) Vieillefosse, Bull. soc. chim. (5) 5, 808 (1938). (222) Hofmann, Ber. 32, 880 (1899). (223) Ostwald, Z. physik. Chem. 3, 176-177 (1889). (224) Dawson, Hall, Key, J. Chem. Soc. 1928, 2844-2853. (225) Dawson, Lowson, J. Chem. Soc. 1929, 1219, 1223. (226) Saxton, Lange, J. Am. Chem. Soc. 55, 3638-3645 (1933). (227) Wright, J. Am. Chem. Soc. 56, 314-317 (1934). (228) Bhagwat, J. Indian Chem. Soc. 16, 235-236 (1939). (229) Grove, J. Am. Chem. Soc. 52, 1404-1407 (1930). (230) Harned, Embree, J. Am. Chem. Soc. 56, 1050-1053 (1934).

(231) Larsson, Adell, Z. physik. Chem. A-157, 347-348, 354-355 (1931). (232) Dawson, Carter, J. Chem. Soc. 1926, 2282-2296. (233) Cray, Westrip, Trans. Faraday Soc. 21, 331 (1925/6). (234) Dawson, Key, J. Chem. Soc. 1928, 1239-1248. (235) Kendall, King, J. Chem. Soc. 127, 1784, 1789 (1925). (236) Kendall, Gross, J. Am. Chem. Soc. 43, 1428, 1434-1435 (1921). (237) Jenkins, Nature 145, 625 (1940). (238) Bell, Nature 146, 166-167 (1940). (239) Baughan, Nature 146, 461 (1940). (240) Deyrup, J. Am. Chem. Soc. 56, 60-64 (1934).

(241) Welcher, Briscoe, Proc. Indiana Acad. Sci. 43, 142-153 (1934); C.A. 28, 7116 (1934). (242) Mason, Kilpatrick, J. Am. Chem. Soc. 59, 572-578 (1937). (243) Westheimer, J. Am. Chem. Soc. 56, 1962-1965 (1934). (244) Hantzsch, Voigt, Ber. 62, 975-984 (1929). (245) Verhoek, J. Am. Chem. Soc. 58, 2577-2584 (1936). (246) Martin Kilpatrick, Mary Kilpatrick, Chem. Revs. 13, 131-137 (1933). (247) Bronsted, Ber. 61, 2062 (1928). (248) Griffiths, J. Chem. Soc. 1938, 818-823. (249) Rabinovich, Trav. inst. chim. Kharkov. 1, 99-107 (1935); C.A. 32, 4085 (1938). (250) La Mer, Downes, J. Am. Chem. Soc. 55, 1840-1864 (1933).

(251) Hunt, Briscoe, J. Phys. Chem. 33, 190-199, 1495-1513 (1929). (252) Beatty, Cragg, J. Am. Chem. Soc. 57, 2347-2351 (1935). (253) Weissberger, J. Am. Chem. Soc. 65, 245-246 (1943). (254) Bell, Caldin, J. Chem. Soc. 1938, 382-389. (255) Bell, Lidwell, Wright, J. Chem. Soc. 1938, 1861-1865. (256) Dawson, J. Chem. Soc. 1927, 221. (257) Dawson, Carter, J. Chem. Soc. 1926, 2872-2878. (258) Harned, Hawkins, J. Am. Chem. Soc. 50, 85-93 (1928). (259) Dawson, Lowson, J. Chem. Soc. 1929, 393-401. (260) Ostwald, J. prakt. Chem. (2) 29. 396 (1884).

(261) Hantzsch, Weissberger, Z. physik. Chem. 125, 255 (1927). (262) van Alphen, Rec. trav. chim. 49, 754-761 (1930). (263) Bell, Baughan, J. Chem. Soc. 1937, 1947-1953. (264) Pedersen, J. Phys. Chem. 38, 610-611 (1934). (265) Usanovich, Sushkevich, J. Gen. Chem. (U.S.S.R.) 10, 230-232 (1940); C.A. 34, 7285 (1940). (266) Usanovich, J. Gen. Chem. (U.S.S.R.) 10, 219-222 (1940), C.A. 34, 7285 (1940). (267) Bronsted, Bell, J. Am. Chem. Soc. 53, 2478-2498 (1931). (268) Baughan, Bell, Proc. Roy. Soc. (London) A-158, 464-478 (1937). (269) Bell, Danckwerts, J. Chem. Soc. 1939, 1774-1776. (270) Bell, Proc. Roy. Soc. (London) A-143, 377-399 (1934).

(271) Bell, Brown, J. Chem. Soc. 1936, 1520-1524. (272) Bell, Lidwell, J. Chem. Soc. 1939. 1096-1099. (273) Bell, Lidwell, Vaughan-Jackson, J. Chem. Soc. 1936, 1792-1799. (274) Bateman, Hoel, J. Am. Chem. Soc. 36, 2517-2521 (1914). (275) Jones, Werner, J. Am. Chem. Soc. 39, 417-418 (1917). (276) Bischoff, Walden, Ann. 279, 46 (1894). (277) Kastle, Kaiser, Am. Chem. J. 15, 471-493 (1893). (278) Hill, Simmons, J. Am. Chem. Soc. 31, 825-826 (1909); Z. physik. Chem. 67, 599, 606 (1909). (279) Beckurts, Otto, Ber. 14, 577-578 (1881). (280) MacDougall, Rehner, J. Am. Chem. Soc. 56, 368-372 (1934).

(281) Schaum, Scheld, Z. wiss. Phot. 36, 135, 138 (1937). (282) Lean, Armstrong (to Imperial Chem. Ind.), U.S. 2,282,732, May 12, 1942; C.A. 36, 5947 (1942). (283) Grossmann, Jager. Z. anorg. allgem. Chem. 73, 50 (1911). (284) Sidgwick, Tizard, J. Chem. Soc. 93, 191 (1908). (285) Kraytzoff, Compt. rend. 187, 137-140 (1933); Cent. 1933, II 3542; C A. 27, 4817 (1933). (286) Ablov, Ann. sci. Univ. Jassy 18, 297-317 (1933); Cent. 1934, I 2708; not in C.A. (287) Costachescu, Ablov, Ann. sci. Univ. Jassy 17, 149-172 (1933); Cent. 1933, I 3038; not in C.A. (288) Ferrell, Ridgion, Riley, J. Chem. Soc. 1934, 1440-1443. (289) Fogel, Rubinsztein, Tauman, Roczniki Chem. 9, 348-353 (1929), Cent. 1930, II 227; C.A. 23, 3900 (1929). (290) Luszkiewicz, Arch. minéral soc. sci. Varsonie 6, 119-136 (1930); C.A. 26, 4518 (1932).

(291) Kertesz, J. chim. phys. 35, 395-406 (1938). (292) Bateman, Conrad, J. Am. Chem. Soc. 37, 2557-2559 (1915). (293) Sirucek, Collection Czechoslov. Chem. Commun. 10, 117-128 (1938): Cent. 1938, I 1971; C.A. 32, 5782 (1938). (294) Costacheschu, Ablov, Ann. sci. Univ. Jassy 25, 385-394 (1939); Cent. 1939, I 2546; C.A. 33, 9180 (1939). (295) Ablov, Bull. soc. chim. (5) 1, 1489-1494 (1934). (296) Treadwell, Wettstein, Helv. Chim. Acta 18, 200-210 (1935). (297) Treadwell, Fisch, Helv. Chim. Acta 13, 1219-1227 (1930). (298) Beamer, Clarke, Ber. 12, 1067 (1879). (299) Derick, Bornmann, J. Am. Chem. Soc. 35, 1285 (1913). (300) Bischoff, Suchin, Bcr. 21, 1259-1260 (1888).

(301) Eckenroth, Donner, Ber 23, 3287-3288 (1890). (302) Grothe, Arch. Pharm. 238 588-589 (1900). (303) Buehler, Carson, Edds, J. Am. Chem. Soc. 57, 2181-2182 (1935). (304) Pollard, Adelson, Bain, J. Am. Chem. Soc. 56, 1759-1760 (1934). (305) Michael, J. Am. Chem. Soc. 41, 415 (1919). (306) Stempel, Schaffel, J. Am. Chem. Soc. 64, 470-471 (1942). (307) Gattermann, Johnson, Holzle, Ber. 25, 1080-1081 (1892). (308) Kilpatrick, Rushton, J. Phys. Chem. 34, 2180-2186 (1930); 38, 269-306 (1934). (309) Doughty, Lacoss, J. Am. Chem. Soc. 51, 852-855 (1929). (310) Butts, Giacobbe, Chem. Met. Eng. 48, No. 12, 76-79 (1941); C.A. 36, 997 (1942).

(311) Palomaa, Ber. 75, 336-339 (1942). (312) Toole, Sowa, J. Am. Chem. Soc., 59, 1971-1973 (1937). (313) Akoyan, J. Gen. Chem. (U.S.S.R.) 7, 1687-1689 (1937); Cent. 1937, II 3594; [C.A. 31, 8504 (1937)]. (314) Sudborough, Turner, J. Chem. Soc. 101, 238 (1912). (315) Gyr,

Ber. 41, 4316 (1908). (316) Prager, J. Am. Chem. Soc. 30, 1910-1911 (1908); Z. physik. Chem. 66, 296 (1909). (317) Goldschmidt, Udby, Z. physik. Chem. 60, 747 (1907). (318) Lichty, Am. Chem. J. 18, 590-600 (1896). (319) Goldschmidt, Z. physik. Chem. 124, 30 (1926). (320) Goldschmidt, Z. Elektrochem. 15, 7 (1909).

(321) Quayle, Norton, J. Am. Chem. Soc. 62, 1170-1171 (1940). (322) Meerwein, Ber. 66, 412-413 (1933). (323) Bannister (to Comml. Solvents Corp.), U.S. 1,695,449, Dec. 18, 1928; Cent. 1929, I 1505; [C.A. 23, 846 (1929)]. (324) Chem. Fabrik Stockhausen et Cie, Ger. 564,591, Nov. 21, 1932; Cent. 1933, I 673; [C.A. 27, 997 (1933)]. (325) Brass, Kurz, Ber. 66, 442-446 (1933). (326) Rudy, Cellulosechem. 13, 49-58 (1932); Cent. 1932, II 199, C.A. 26, 5203 (1932). (327) Soc. des Usines Chim. Rhone-Poulenc, French 672,220, Dec. 24, 1929; Cent. 1930, I 1876; [C.A. 24, 2290 (1930)]. (328) Liston, Dehn, J. Am. Chem. Soc. 60, 1264-1265 (1938). (329) Dorris, Sowa, Nieuwland, J. Am. Chem. Soc. 56, 2689-2690 (1934). (330) Aldoschin, J. Gen. Chem. (U.S.S.R.) 8, 1385-1389 (1938); Cent. 1939, II 2223; C.A. 33, 4194 (1939).

(331) Hennion, Nieuwland, J. Am. Chem. Soc. 56, 1802-1803 (1934). (332) Allen, Hibbert, J. Am. Chem. Soc. 56, 1399 (1934). (333) Meerwein, Sönke, J. prakt. Chem. (2) 137, 316-317 (1933). (334) Slanina, Hennion, Nieuwland, J. Am. Chem. Soc. 58, 891 (1936). (335) Traube, Krahmer, Ber. 52, 1297-1298 (1919). (336) Nesmeyanov, Kahn, Ber. 67, 372 (1934); J. Gen. Chem. (U.S.S.R.) 4, 1247-1249 (1936); Cent. 1936, I 4288; not in C.A. (337) Michael, Am. Chem. J 9, 215-216 (1887); J. prakt. Chem. (2) 35, 95-96 (1887). (338) de Wilde, Ann. 132, 180 (1864). (340) Aschan, Ber. 46, 2199-2170 (1913).

(341) Heintz, Ann. Physik 115, 462-464 (1862). (342) Buchanan, Ber. 4, 340-342, 863 (1871). (343) Fittig, Thomson, Ann. 200, 75-79 (1879). (344) Kekulé, Ann. 105, 288-292 (1858). (345) Witzemann, J. Am. Chem. Soc. 39, 109-112 (1917). (346) Lossen, Eichloff, Ann. 342, 115-122 (1905). (347) Senter, J. Chem. Soc. 91, 460-474 (1907); Z. physik. Chem. 70, 511-518 (1910). (348) Drushel, Simpson, J. Am. Chem. Soc. 39, 2453-2460 (1917). (349) von Euler, Fahlander, Z. physik. Chem. 100, 171-181 (1922). (350) Petrenko-Kritschenko, Opotzky, Ber. 59, 2137-2138 (1926).

(351) Matuura, Bull. Chem. Soc. Japan 8, 113-120 (1933). (352) Kailan, Kunze, Monatsh. 71, 373-423 (1938). (353) Rudberg, Z. Physik 24, 247-263 (1924). (354) Euler, Cassel, Z. Physik. Chem. 84, 371-379 (1913). (355) Benrath, Ann. 382, 223, 234 (1911). (356) Kunze, Merkader, Z. physik. Chem. A-187, 285-288 (1940). (357) Reitz, Z. physik. Chem. A-177, 85-94 (1936). (358) Moelwyn-Hughes, J. Chem. Soc. 1932, 101-102. (359) Tian, Bull. soc. chim. (5) 1, 115-119 (1934). (360) Dawson, Lowson, Proc. Leeds Phil. Lit. Soc., Sci. Sect. 2, 435-439 (1933); Cent. 1934, I 176; C.A. 27, 5622 (1933).

(361) Thomas, J. Am. Chem. Soc. 62, 1879-1880 (1940). (362) R. N. Smith, P. A. Leighton, W. G. Leighton, J. Am. Chem. Soc. 61, 2299-2301 (1939). (363) Kuchler, Pick, Z. physik. Chem. B-45, 116-120 (1939). (364) W. G. Leighton, R. N. Smith, P. A. Leighton, J. Am. Chem. Soc. 60, 2566 (1938). (365) Harris, Kaminksy, J. Am. Chem. Soc. 57, 1158 (1935). (366) Dain, Pusenkin, Ber. ukrain. wiss. Forsch.-Inst. physik. Chem. 4, 75-81 (1934); Cent. 1934, II 2660; C.A. 29, 2451-2452 (1935); J. Phys. Chem. (U.S.S.R.) 4, 478-482 (1933); Cent. 1934, II 2660; not in C.A. (367) Farkas, Z. physik. Chem. B-23, 90-93 (1933). (368) Hentz, Ann. Physik. 199, 475 (1860); 112, 87, (1861). (369) Johansson, Z. physik. Chem. 79, 632-637 (1912). (370) Redelius, Z. physik. Chem. 96, 348-349, 359-361 (1920).

(371) Abderhalden, Zeisset, Fermentforschung 11, 170-182 (1930); Cent. 1931, I 2862; C.A. 24, 1622 (1930). (372) Dawson, Pycock, J. Chem. Soc. 1934, 778-783. (373) Dawson, Pycock, J. Chem. Soc. 1936, 153-158. (374) Dawson, Pycock, Smith, J. Chem. Soc. 1943, 517-520. (375) Smith, J. Chem. Soc. 1943, 521-523. (376) Williams, Perrin, Gibson, Proc. Roy. Soc. (London) A-154, 686-687 (1936). (377) Grether, DuVall (to Dow Chem. Co.), U.S. 2,028,064, Jan. 14, 1936; Cent. 1936, I 3013; C.A. 30, 1394 (1936). (378) Wacker Soc. Elektrochem. Ind., Ger. 463,139, July 23, 1928; Cent. 1929, I 1046; C.A. 22, 4131 (1928). (379) Deutsche Goldund Silber-Scheide-Anstalt vorm. Rössler, Ger. 379,752, Aug. 28, 1923; Cent. 1924, I 1101; not in C.A. (380) Heintz, Ann. 144, 91-94 (1867).

(381) Schreiber, J. prakt. Chem. (2) 13, 436-475 (1876). (382) Darapsky, Stauber, J. prakt. Chem. (2) 146, 211-212 (1936). (383) Bevan, Proc. Cambridge Philos. Soc. 13, 269-281; Cent. 1996, II 106. (384) Klason, Carlson, Ber. 39, 732-738 (1906). (385) Schutz, Angew. Chem. 46, 780-781 (1933). (386) Dey, Dutt, J. Indian Chem. Soc. 5, 640 (1928). (387) Loven, Ber. 27, 3059-3060 (1894); Ber. 17, 2818 (1884). (388) Adell, Z. physic. Chem. A-185, 166 (1939). (389) Claesson, Ann. 187, 114-115 (1877). (390) Andreasch, Ber. 12, 1390-1391 (1879).

(389) Claesson, Ann. 187, 114-115 (1877).
(390) Andreasch, Ber. 12, 1390-1391 (1879).
(391) Holmberg, Z. anorg. Chem. 56, 385-390 (1907).
(392) Blanksma, Rec. trav. chim. 20, 136 (1901).
(393) Friedländer, Chwala, Monatsh. 28, 250-251 (1907).
(394) Friedländer, Ber. 39, 1066 (1906).
(395) Ginsburg, Bondzynski, Ber. 19, 117 (1886).
(396) Klason, Ber. 14, 409-411 (1881).
(397) Larsson, Z. anorg. allgem. Chem. 172, 379 (1928).
(398) Larsson, Ber.

61, 1439-1443 (1928); Svensk Kem. Tid. 40, 149-150 (1928); Cent. 1928, II 234; C.A. 22, 4469-4470 (1928). (399) Wieland, Franke, Ann. 469, 305 (1929). (400) Wieland, Bergel, Ann. 439, 205 (1924).

(401) Holmberg, Mattisson, Ann. 353, 124 (1907). (402) Kalle and Co., Ger. 180,875, Feb. 19, 1907; Cent. 1907; I 856; C.A. 1, 1656 (1907). (403) Demole, Ber. 9, 561 (1876). (404) Hannerz, Svensk Kem. Tud. 46, 233-250 (1934); Cent. 1935, II 675-676; C.A. 29, 2913-2914 (1935). (405) Abderhalden, Guggenheim, Ber. 41, 2853 (1908). (406) Kailan, Jungermann, Monatsh. 64, 213 (1934). (407) Knoll und Co., Ger. 230,172, Jan. 16, 1911; Cent. 1911, I 359; C.A. 5, 2699 (1911). (408) McMath, Read, J. Chem. Soc. 1927, 539. (409) Abderhalden, Wybert Rev. 49, 2456 (1916). (410) Duttoit Demierra Lehim splus A 565-575 (1906)

Wybert, Ber. 49, 2456 (1916). (410) Dutoit, Demierre, J. chim. phys. 4, 565-575 (1906). (411) Collmann, Ann. 148, 109-110 (1868). (412) Stillich, J. prakt. Chem. (2) 73, 538-544 (1906). (413) Bacher, van Mels, Rec. trav. chim. 49, 363-380 (1930). (414) Purgotti, Gazz. chim. ital. 22, I 422-423 (1892). (415) Slator, J. Chem. Soc. 87, 487 (1905). (416) Krapiwin, J. chim. phys. 10, 289-305 (1912). (417) Kappana, J. Indian Chem. Soc. 5, 293-298 (1928). (418) Bekier, Zelazna, Roczniki Chem. 14, 994-1003 (1934); Cent. 1936, I 952; C.A. 29, 6130 (1935). (419) Steinkopf, Supan, Ber. 43, 3249 (1910). (420) Steinkopf, Ber. 42, 3928-3929 (1909).

(421) Williams, J. Am. Chem. Soc. 47, 2644-2652 (1925). (422) Steinkopf, Ber. 41, 4457-4458 (1908). (423) Preibische, J. prakt. Chem. (2) 8, 310-311 (1873). (424) Kolbe, J. prakt. Chem. (2) 5, 427-432 (1872). (425) F. C. Whitmore, M. G. Whitmore, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 401-403 (1941), (1st ed.), 393-395 (1932); 3, 83-85 (1923). (426) Wang, Tseng, Sci. Repts. Natl. Central Univ. A-1, 27-38 (1930); C.A. 25, 681 (1931). (427) Hirano, J. Pharm. Soc. Japan 56, 869-871 (1930); C.A. 25, 69 (1931). (428) Pritzl, Adkins, J. Am. Chem. Soc. 53, 234-237 (1931). (429) Wahl, Bull. soc. chim. (4) 5, 180-182 (1909). (430) Steinkopf, Kirchhoff, Ber. 42, 3438-3440 (1909).

(431) Auger, Bull. soc. chim. (3) 23, 333 (1900). (432) Pedersen, J. Am. Chem. Soc. 49, 2688 (1927). (433) Pedersen, J. Phys. Chem. 38, 559-571 (1934). (434) Heuberger, Svensk Kem. Trd. 38, 340-344 (1926); Cent. 1927, I 834; [C.A. 21, 2591 (1927)]. (435) Heuberger, Svensk Kem. Trd. 38, 378-384 (1926); Cent. 1927, I 1259; C.A. 21, 1580 (1927). (436) Pedersen, Trans. Faraday Soc. 23, 316-328 (1927); Cent. 1927, II 1230; C.A. 22, 1068 (1928). (437) Forster, Fierz, J. Chem. Soc. 93, 76-80 (1908). (438) Bailly, Ann. chim. (9) 6, 153-154 (1916). (439) Wolfram, Schörnig, Hausdorfer (to I.G.), Brit. 330,916, July 17, 1930; Cent. 1930, II 2054; C.A. 24, 6031 (1930): French 688,964, Sept. 1, 1930, Cent. 1931, I 2677; [C.A. 25, 971 (1931)]: Ger. 562,391, Nov. 1, 1932; Cent. 1933, I 849; C.A. 27, 734-735 (1933). (440) Heintz, Ann. Physik. 109, 305 (1860).

(441) Rothstein, Bull. soc. chim. (4) 51, 838-845 (1932). (442) Malm, Nadeau (to E.K.C.), U.S. 1,987,121, Jan. 8, 1935; Cent. 1935, I 2732; C.A. 29, 1437 (1935). (443) Sommelet, Bull. soc. chim. (4) 1, 366-367 (1907); Ann. chim. (8) 9, 489-490 (1906). (444) Fuson, Wojcik, Org. Syntheses, Coll. Vol. 2 (1st ed.), 260-262 (1943); 13, 42-44 (1933). (445) Rule, Hay, Paul, J. Chem. Soc. 1928, 1355-1357. (446) Karvonen, Ann. Acad. Sci. Fennicae A-10, No. 7, 1-7 (1916); [Cent. 1919, III 987]; [C.A. 14, 3594 (1920)]. (447) Palomaa, Ann. Acad. Sci. Fennicae A-3, No. 2, 1-34 (1911); Cent. 1912, II 595-597; not in C.A. (448) Rothstein, Bull. soc. chim. (4) 51, 691-696 (1932). (449) Bruson (to Resinous Products and Chem. Co.), U.S. 1,920,137, July 25, 1933; Cent. 1933, II 2595; C.A. 27, 4817 (1933). (450) Leffler, Calkins, Org. Syntheses 23, 52-54 (1943).

(451) Rule, Todd, J. Chem. Soc. 1931, 1932. (452) Frankland, O'Sullivan, J. Chem. Soc. 29, 2329-2331 (1911). (453) Fischer, Gohlke, Helv. Chim. Acta 16, 1132 (1933). (454) Larrson, Ber. 63, 1349-1351 (1930). (455) Hellström, Z. physik. Chem. A-177, 339-340 (1936). (456) Ramberg, Ber. 40, 2588-2589 (1907). (457) Pomerantz, Connor, J. Am. Chem. Soc. 61, 3144 (1939). (458) Uyeda, Reid, J. Am. Chem. Soc. 42, 2385-2389 (1920). (459) Kharasch, Read, Mayo, Chemistry & Industry 57, 752 (1938). (460) Hellström, Lauritzson, Ber. 69, 2004-2005 (1936).

(461) Urquhart, Connor, J. Am. Chem. Soc. 63, 1483 (1941). (462) Koelsch, J. Am. Chem. Soc. 53, 304-305 (1931). (463) Steinkopf, Höpner, J. prakt. Chem. (2) 113, 140-141, 153-154 (1926). (464) Huntress, Mulliken, "Tables of Data on Selected Compounds of Order 1" (1941), John Wiley & Sons, New York. (465) Inglis, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 254-256 (1941); Coll. Vol. 1 (1st ed.), 249-251 (1932); 8, 74-76 (1928). (466) Kohler, Allen, Org. Syntheses 3, 53-56 (1923). (467) Phelps, Tillotson, Am. J. Sci. (4) 26, 275-280 (1908). (468) Fiquet, Ann. chim. (6) 29, 439-442 (1893). (469) Grimaux, Tcherniak, Bull. soc. chim. (3) 31, 338 (1904). (470) Meisenheimer, Schwarz, Ber. 39, 2551 (1906).

(471) Henry, Compt. rend. 194, 1621 (1887). (472) Wightman, Jones, Am. Chem. J. 46, 472 (1911). (473) Guinchant, Ann. chim. (9) 9, 85 (1918). (474) Claesson, Ber. 18, 1347 (1877).

(475) Lapworth, Baker, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 181 (1941); Coll. Vol. 1 (1st ed.), 175 (1932); 7, 20 (1927). (476) Weiner, Org. Syntheses, Coll. Vol. 2 (1st ed.), 376-378 (1943); 18, 50-53 (1938). (477) Cheronis, Spitzmueller, J. Org. Chem. 6, 349-375 (1941). (478) Orten, Hill, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 300-301 (1941); Coll. Vol. 1 (1st ed.), 293-295 (1932); J. Am. Chem. Soc. 53, 2797-2799 (1931). (479) Boutwell, Kuisk, J. Am. Chem. Soc. 52, 4166-4167 (1930). (480) Robertson, J. Am. Chem. Soc. 49, 2889-2894 (1927).

(481) Contardi, Ravazzoni, Rend. 1st. lombardo sci. 66, 786-790 (1933); Cent. 1934, I 1186; C.A. 29, 3309 (1935). (482) Krause, Chem. Ztq. 55, 666 (1931); Cent. 1931, II 2596, not in C.A. (483) Dunn, Butler, Frieden, J. Phys. Chem. 45, 1123-1137 (1941). (484) Chadwick, Pacsu, J. Am. Chem. Soc. 63, 2427-2431 (1941). (485) Shaposhnikov, J. Russ. Phys.-Chem. Soc. 59, 125-136 (1927); Cent. 1927, II 1115; not in C.A. (486) Tishchenko, J. Russ. Phys.-Chem. Soc. 53, I 300-305 (1921); Cent. 1923, III 1001; C.A. 18, 2328 (1924). (487) Sisler, Cheronis, J. Org. Chem. 6, 467-478 (1941). (488) Dains, Brewster, J. Am. Chem. Soc. 42, 1575, 1578 (1920). (489) Nencki, Ber. 16, 2827-2828 (1883). (490) Heintz, Ann. 122, 257-276 (1862); Ann. 124, 297-310 (1862); Ann. 136, 213-223 (1865).

(491) Heintz, Ann. 145, 49-53 (1868).
(492) Curtius, J. prakt. Chem. (2) 96, 213-214 (1918).
(493) Berchet, Org. Syntheses, Coll. Vol. 2 (1st ed.), 397-399 (1943); 18, 56-58 (1938).
(494) Schubert, J. Biol. Chem. 116, 442 (1936).
(495) Eschweiler, Ann. 279, 41 (1894).
(496) Fichter, Schmid, Helv. Chim. Acta 3, 710, Note 1 (1920).
(497) Abderhalden, Schwab, Valdecasas, Fermentforschung 13, 396-407 (1932); Cent. 1933, I 2420; C.A. 27, 106 (1933).
(498) Heintz, Ann. 129, 33-39 (1864); 132, 2-6 (1864).
(499) Cocker, J. Chem. Soc. 1937, 1695-1696.

(501) Cocker, Harris, J. Chem. Soc. 1940, 1292-1293. (502) Friedman, Beitr. Chem. Physiol. Path. 11, 194-195 (1908); Cent. 1908, I 971, C.A. 2, 2097 (1908). (503) Anslow, Kıng, Buchem. J. 22, 1257-1258 (1928). (504) Michaelis, Schubert, J. Biol. Chem. 116, 221-222 (1936). (505) Clark, Gillespie, Weisshaus, J. Am. Chem. Soc. 55, 4579 (1933). (506) Heintz, Ann. 140, 217-225 (1866). (507) Liebrich, Ber. 2, 13 (1869). (508) A.G.F.A., Ger. 269,701, Jan. 28, 1914; Cent. 1914, I 592; not in C.A. (509) Rebuffat, Gazz. chim. ital. 17, 233-234 (1887); 20, 122-123 (1890). (510) Strosacker (to Dow Chem. Co.), U.S. 1,442,743, Jan. 16, 1923; Cent. 1925, II 1805; [C.A. 17, 1029 (1923)].

(511) Schwebel, Ber. 10, 2046-2047 (1877). (512) Houben, Ber. 46, 3988 (1913). (513) Mai, Ber. 35, 579-580 (1902). (514) Hausdörfer, Ber. 22, 1799 (1889). (515) Wohl, Blank, Ger. 167,698, Feb. 8, 1906; Cent. 1906, I 1069. (516) M.L.B. Ger. 177,491, Oct. 30, 1906; Cent. 1906, II 1746. (517) Chem. Fabr. Griesheim-Elektron, Ger. 244,603, March 11, 1912; Cent. 1912, I 1065; [C.A. 6, 2294 (1912)]. (518) Chem. Fabrik Weiler ter Meer, Ger. 244,825, March 16, 1912; Cent. 1912, I 1163; [C.A. 6, 2294 (1912)]. (519) Cone (to Dow Chem. Co.), U.S. 1,419,-720, June 13, 1922; Cent. 1923, IV 1004; C.A. 16, 2695 (1922). (520) Read, Hendry, Ber. 71, 2552 (1938).

(521) Meyer, Ber. 10, 1967 (1877). (522) Bischoff, Hausdörfer, Ber. 25, 2271 (1892). (523)
Meyer, Ber. 14, 1325-1326 (1881). (524) Vorlander, Mumme, Ber. 34, 1647 (1901). (525)
Bischoff, Hausdorfer, Ber. 23, 1990 (1890). (526) Johnson, Bengis, J. Am. Chem. Soc. 33, 749-750 (1911). (527) Feigl, Popp-Halpern, Monatsh. 59, 137, 139 (1932). (528) Hughes, Lions, J. Proc. Roy. Soc. N.S. Wales 71, 209 222 (1938); Cent. 1938, II 1597; C.A. 32, 5830 (1938).
(529) Bloom, Day, J. Org. Chem. 4, 16-19 (1939). (530) Skolnik, Miller, Day, J. Am. Chem. Soc. 65, 1856-1858 (1943).

(531) Skolnik, Day, Miller, J. Am. Chem. Soc. 65, 1858-1862 (1943). (532) McCoy, Day, J. Am. Chem. Soc. 65, 2159-2162 (1943). (533) Busch, Schneider, Walter, Ber. 36, 3879-3883 (1903). (534) Busch, Meussdörffer, J. prakt. Chem. (2) 75, 124-125 (1907). (535) Harries, Ber. 28, 1225-1226 (1895). (536) Steyrer, Seng, Monatsh. 17, 631 (1896). (537) Ghosh, Guha, J. Indian Inst. Sci. A-16, 103-112 (1933); Cent. 1934, I 3050; C.A. 28, 2692 (1934). (538) Vorländer, Bittins, Ber. 68, 2274-2275 (1935). (539) Vater, J. prakt. Chem. (2) 29, 289-292 (1884). (540) Teronteev, Chernin, Khim. Farm. Prom. 1933, 18-19; Cent. 1934, I 2824-2825; C.A. 27, 3459 (1933).

(541) Gillice (to Eastman Kodak Co.), U.S. 1,933,799, Nov. 7, 1933; Cent. 1934, I 614; C.A. 28, 494 (1934). (542) Galatis, Helv. Chim. Acta 4, 574-579 (1921). (543) Meldola, Foster, Brightman, J. Chem. Soc. 111, 552 (1917). (544) Kulikov, Zepalova-Michailova, J. Gen. Chem. (U.S.S.R.) 2, 730-735 (1932); Cent. 1933, II 1960; C.A. 27, 2641 (1933). (545) Bulgatsch, Russ. 43,004, May 31, 1935; Cent. 1936, I 1506; not in C.A. (546) Norman (to Industrial Dyestuff Co.), U.S. 2,101,749 and 2,101,750, Dec. 7, 1937; Cent. 1938, 2060; C.A. 32, 958 (1938). (547) B.A.S.F., Ger. 56,273, Feb. 18, 1891, Friedlander 3, 281 (1896). (548) Heumann, Ber. 23, 3431-3433 (1890). (549) Mauthner, Suida, Monatsh. 9, 728-732 (1888). (550) Haller, J. Ind. Eng. Chem. 14, 1040-1044 (1922).

- (551) Jackson, Kenner, J. Chem. Soc. 1928, 579-580. (552) St. Warunis, Sacks, Ber. 37, 2637 (1904). (553) Houben, Ber. 46, 3993 (1913). (554) Heumann, Ber. 24, 978 (1891). (555) Stollé, J. prakt. Chem. (2) 90, 273-275 (1914). (556) Reitzenstein, Ann. 326, 322-327 (1903). (557) Edsall, Wyman, J. Am. Chem. Soc. 57, 1964-1965 (1935). (558) Willstätter, Kahn, Ber. 37, 415-416 (1904). (559) Guaisnet, Rilaud, Compt. rend. 198, 1520-1522 (1934). (560) von Gerichten, Ber. 15, 1251-1253 (1882).
- (561) Krüger, J. prakt. Chem. (2) 43, 287-293 (1891). (562) Zief, Edsall, J. Am. Chem. Soc. 59, 2245 (1937). (563) McMeekin, Cohn, Weare, J. Am. Chem. Soc. 57, 627 (1935). (564) Davis, Blanchard, J. Am. Chem. Soc. 51, 1797-1798 (1929). (565) Sah, Liu, Science Repts. Natl. Tsing Hua Univ. A-4, 31-33 (1937), Cent. 1937, II 2349; C.A. 31, 6203 (1937). (566) Maly, Ann. 189, 380-384 (1877). (567) Ray, Fernandes, J. Chem. Soc. 105, 2159-2160 (1914). (568) Maly, Ann. 168, 133-137 (1873). (569) Volhard, Ann. 166, 383-384 (1873); J. prakt. Chem. (2) 9, 6-10 (1874). (570) Andreasch, Monatsh. 8, 424 (1887).
- (571) Mulder, Ber. 8, 1264 (1875). (572) Schmidt, Arch. Pharm. 258, 229-230 (1920). (573) Desai, Hunter, Koppar, Rec. trav. chim. 54, 118-121 (1935). (574) Eberly, Dains, J. Am. Chem. Soc. 58, 2545 (1936). (575) Chowdhury, Desai, Hunter, Solang, Rec. trav. chim. 52, 857-861 (1933). (576) Markely, Reid, J. Am. Chem. Soc. 52, 2137-2141 (1930). (577) Dains, Irvin, Harrel, J. Am. Chem. Soc. 43, 613-618 (1921). (578) von Auwers, Ber. 49, 812-813 (1916). (579) Einhorn, Hutz, Arch. Pharm. 240, 634-635 (1902). (580) Fries, Finck, Ber. 41, 4276-4278 (1908).
- (581) Seubert, Ber. 21, 281-283 (1888). (582) Lyons, Reid, J. Am. Chem. Soc. 39, 1742 (1917). (583) Lund, Langvad, J. Am. Chem. Soc. 54, 4107 (1932). (584) Drake, Bronitsky, J. Am. Chem. Soc. 52, 3719 (1930). (585) Veibel, Ottung, Bull. soc. chim. (5) 6, 1435 (1939). (586) Dewey, Sperry, J. Am. Chem. Soc. 61, 3251-3252 (1939). (587) Dewey, Shasky, J. Am. Chem. Soc. 63, 3526-3527 (1941). (588) Steinkopf, Malinowski, Ber. 44, 2901 (1911). (589). Curtius, J. prakt. Chem. (2) 38, 429 (1888). (590) Jacobs, Heidelberger, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 153-154 (1941); (1st ed.), 147-148 (1932); 7, 16-17 (1927).
- (591) Menschutkin, Jermolajew, Z. fur Chemie, 1871, 5. (592) Hellström, Z. physik. Chem. A-187, 246 (1931). (593) Henry, Rec. trav. chim. 24, 165, Note 3 (1905). (594) Tröger, Hille, J. prakt. Chem. (2) 71, 204, Note (1905). (595) Scholl, Ber. 29, 2417, Note (1896). (596) Bauer, Ann. 229, 165 (1885). (597) Willim, Ann. 102, 109-111 (1857). (598) Abderhalden, Brockman, Fermentforschung 10, 159-172 (1928); Cent. 1929, I 2314, C.A. 23, 1112 (1929). (599) Jacobs, Heidelberger, J. Am. Chem. Soc. 39, 1441 (1917). (600) Derick, Bornmann, J. Am. Chem. Soc. 35, 1285 (1913).
- (601) Votocek, Burda, Ber. 48, 1003-1004 (1915). (602) Holmberg, Psilanderhielm, J. prakt. Chem. (2) 82, 442 (1910). (603) Meyer, Ber. 8, 1152-1158 (1875). (604) Motylewski, Bull. intern. acad. polon. Sci. 1926-A, 93-101; Cent. 1926, II 392; [C.A. 21, 1801 (1927)]. (605) Cech, Ber. 10, 1376-1378 (1877). (606) Zincke, Kegel, Ber. 23, 244 (1890). (607) von Janson, Ger. 175,586, Nov. 16, 1906; Cent. 1906, II 1694. (608) Tommasi, Bull. soc. chim. (2) 19, 400-401 (1873). (609) Jacobs, Heidelberger, J. Biol. Chem. 21, 104 (1915). (610) Dubsky, Gränächer, Ber. 50, 1693 (1917).
- (611) Sugasawa, Satoda, Yanagisawa, J. Pharm. Soc. Japan 58, 29-31 (1938); Cent. 1938, II 1410; [C.A. 32, 4161 (1938)]. (612) Stollé, et al., J. prakt. Chem. (2) 128, 1-2 (1930). (613) Abenius, J. prakt. Chem. (2) 40, 426 (1889). (614) Abenius, Widman, J. prakt. Chem. (2) 38, 299 (1888). (615) Grothe, Arch. Pharm. 238, 588-589 (1900). (616) von Euler, Erdtman, Ann. 520, 6 (1935). (617) Eckenroth, Donner, Ber. 23, 3287-3288 (1890). (618) Jacobs, Heidelberger, J. Biol. Chem. 20, 686 (1915). (619) Buehler, Mackenzie, J. Am. Chem. Soc. 59, 421-422 (1937). (620) Vandewijer, Bull. soc. chim. Belg. 45, 254-255 (1936).
- (621) Dermer, King, J. Org. Chem. 8, 168-173 (1943). (622) Ipatieff, Pines, Alberg, J. Am. Chem. Soc. 67, 694-695 (1945). (623) Eisenberg, J. Assoc Official Agr. Chem. 28, 427-428 (1945); C.A. 39, 4028 (1945). (624) Wilson, J. Assoc. Official Agr. Chem. 28, 302-304 (1945); C.A. 39, 3854 (1945). (625) Spence, Haas (to Rohm and Haas Co.), U.S. 2,379,759, July 3, 1945; C.A. 39, 4621 (1945). (626) Cristol, Benezech, Merzer, Bull. soc. chim. (5) 11, 58-63 (1944); C.A. 39, 696 (1945).

3:1375 
$$\alpha,\beta$$
-DICHLORO- $n$ -BUTYRIC  $C_4H_6O_2Cl_2$  Beil. II - 279 ACID (low-melting isomer) H H H II\_1-(124) (Crotonic acid dichloride)  $CH_3$ -C-COOH  $II_2$ -

196

[See also  $\alpha,\beta$ -dichloro-n-butyric acid (high-melting isomer) (isocrotonic acid dichloride) (3:1903).]

Colorless cryst. from pet. ether, lgr. or dry ether. —  $\bar{C}$  is eas. sol. alc.,  $C_6H_6$ , CHCl<sub>3</sub>, or CS<sub>2</sub>; spar. sol. cold lgr.; at 10.5° 3.28 pts.  $\bar{C}$  are sol. in 1 part dry ether. —  $\bar{C}$  deliquesces with a little aq. (5);  $\bar{C}$  with 1 mole  $H_2O$  forms (4) an oil, probably a monohydrate (ortho acid), which in much aq. gives an emulsion gradually separating into two clear layers; note, however, that  $\bar{C}$  has later (11) been claimed to be nonhygroscopic.

[For prepn. of  $\overline{C}$  from crotonic acid (1:0425) with  $Cl_2$  in  $CS_2$  (1) (2) (3) (4) (11) or in  $CCl_4 + CS_2$  (6) in cold see indic. refs.; for form. of  $\overline{C}$  from isocrotonic acid (1:1045) with  $Cl_2$  in  $CHCl_3$ ,  $CCl_4$ , or  $CS_2$  see (6) (4); for prepn. of  $\overline{C}$  from its corresp. acid chloride (see below) by hydrolysis with aq. NaHCO<sub>3</sub> see (5) (9).]

Č boils at 212-216° under ord. press. with some loss of HCl (4).

[C with 6 pts. conc. aq. HCl (satd. at 0°) in s.t. at 100° for 50 hrs. (1) is partially isomerized to the high-melting stereoisomer (isocrotonic acid dichloride) (3:1903).]

 $\tilde{\mathbf{C}}$  behaves as a fairly strong monobasic acid of ionization const.  $K = 8.2 \times 10^{-3}$  (1);  $\tilde{\mathbf{C}}$  with dil. aq. AgNO<sub>3</sub> ppts. the spar. sol. AgĀ<sub>2</sub> (5); no other salts, however, appear to have been reported.

 $\tilde{\mathbf{C}}$  with aq. NaOH in cold is neutralized without serious decomposition (4); Neut. Eq. = 157 (11); however, if to the resulting soln. further conc. aq. NaOH is added (4) (7), or if  $\tilde{\mathbf{C}}$  in alc. is treated with alc. KOH (6) (2), 1 HCl is split away and the corresp. salt of  $\alpha$ -chloroisocrotonic acid (3:1615) (accompanied by the salt of its isomeric  $\alpha$ -chlorocrotonic acid (3:2760)) is formed.

Č with aq. Na<sub>2</sub>CO<sub>3</sub> at ord. temp. is neutralized without decompn. (4); however, Č with excess aq. Na<sub>2</sub>CO<sub>3</sub> above 80° also is further attacked giving (4) (25–30% yield (4)) 1-chloropropene-1 (3:7030), accompanied by some propional dehyde (1:0110), α-chlorocrotonic acid (3:2760), α-chloroisocrotonic acid (3:1615), and other products.

 $\ddot{C}$  in pyridine at 100° for 3 hrs. loses HCl giving (yield not reported (8))  $\alpha$ -chlorocrotonic acid (3:2760), m.p. 99.5° (8).

[ $\bar{\mathbf{C}}$  with PCl<sub>5</sub> or SOCl<sub>2</sub>, although not actually reported, would be expected to yield the corresp. acid chloride; this  $\alpha,\beta$ -dichloro-n-butyryl chloride, b.p. 163.3-164.3° cor. at 747 mm. (5), 67.5-71° at 30 mm. (5), has, however, been prepd. indirectly from crotonic acid (1:0425) with PCl<sub>5</sub> (2 moles) at 160° for 2 hrs. (9) or from crotonaldehyde (1:0150) with Cl<sub>2</sub> at 0° in dark (5).]

Methyl  $\alpha,\beta$ -dichloro-n-butyrate: b.p. 174–180° sl. dec. at ord. press. (5), 82.7–85.7° cor. at 28 mm. (5);  $D_4^{18.3} = 1.2614$  (5). [From the above  $\alpha,\beta$ -dichloro-n-butyryl chloride with MeOH (5).]

- Ethyl α,β-dichloro-n-butyrate: b.p. 180-200° at 760 mm. (10), 97° at 35 mm. (10), 96° at 35 mm. (2). [From Č in abs. EtOH with dry HCl (2), or indirectly from butyr-chloral hydrate (3:1905) (1 mole) in EtOH with dry KCN (1 mole) below 15° (10); note, however, that this ester loses HCl with great ease even at ord. temp. giving ethyl α-chlorocrotonate (3:8523) and this dehydrohalogenation is greatly accelerated by KCN (10).]
- —— α,β-Dichloro-n-butyramide: unreported. [Note that the amide from the higher-melting stereoisomer of C

  (3:1903) has m.p. 121°.]

3:1375 (1) Michael, Bunge, Ber. 41, 2910-2912 (1908). (2) Michael, Browne, Am. Chem. J. 9, 281-287 (1887). (3) Michael, Browne, J. prakt Chem. (2) 36, 174-176 (1887). (4) Wislicenus, Ann. 248, 281-301 (1888) (5) Zeisel, Monatsh. 7, 360-370 (1886). (6) Michael, Schulthess, J. prakt. Chem. (2) 46, 238-240, 255-259 (1892). (7) Wislicenus, Ber. 20, 1008-1010 (1887). (8) Pfeiffer, Ber. 43, 3041-3042 (1910). (9) Clarke, J. Chem. Soc. 97, 898 (1910). (10) Chattaway, Irvine, J. Chem. Soc. 1929, 1043-1044.

(11) Stelling, Z. physik. Chem. B-24, 427 (1934).



61° (11) 60° (12) 59.5-60° (13) 58° (14)

[See also trans-1,2-dichloro-1,2-diphenulethulene (3:4210).]

Colorless ndls. —  $\bar{C}$  is much less sol. in alc. than its higher-melting stereoisomer (3:4210); 100 pts. abs. alc. at 24.4° dis. 10.51 pts.  $\bar{C}$  (14). —  $\bar{C}$  like its isomer is very sol. in ether.

Note that  $\bar{C}$  (the lower-melting tolane dichloride) has now been shown (12) to have the css configuration, many earlier reports to the contrary notwithstanding.

Note also that  $\bar{C}$  (2 moles) with (1 mole) diphenylacetylene (tolane) [Beil. V-656, V<sub>1</sub>-(319), V<sub>2</sub>-(568)], m.p. 60°, gives (12) a 2:1 molecular cpd., m.p. 67-69° (12).

 $\tilde{C}$  on distn. is partially transformed (32% (14)) into its higher-melting trans stereoisomer (3:4210) q.v.

Since the methods of prepn. and the chemical behavior of  $\ddot{\mathbf{C}}$  are the same as those given in detail under its stereoisomer (3:4210) q.v. they are not repeated here.

3:1380 (1) Fuson, Ross, J. Am. Chem. Soc. 55, 723 (1933). (2) Davidson, J. Am. Chem. Soc. 40, 397-399 (1918). (3) Sudborough, J. Chem. Soc. 71, 221-222 (1897). (4) Lachowics, Ber. 17, 1165 (1884). (5) Blank, Ann. 248, 17-25, 33-34 (1888). (6) Liebermann, Homeyer, Ber. 12, 1973-1974 (1879). (7) Limpricht, Schwanert, Ber. 4, 379 (1871). (8) Zinin, Ber. 4, 289 (1871). (9) Staudinger, Ber. 49, 1971-1972 (1916). (10) Onufrowicz, Ber. 17, 835 (1884).

(11) Busch, Weber, J. prakt. Chem. (2) 146, 50-52 (1936). (12) Bergmann, J. Chem. Soc. 1936, 403, 405. (13) Stelling, Z. physik. Chem. B-24, 425 (1934). (14) Eiloart, Am. Chem. J. 12, 221, 232 (1936).

**12,** 231–253 (1890).

3:1385 1,7-DICHLORONAPHTHALENE Cl 
$$C_{10}H_6Cl_2$$
 Beil. V - 543 (2,8-Dichloronaphthalene)  $Cl$   $V_{1}$ -(263)  $V_{2}$ -(446)

M.P. 
$$64^{\circ}$$
 (19) B.P.  $286^{\circ}$  u.c. (5)  $D_{4}^{99.5} = 1.2611$  (19)  $63.5-64.5^{\circ}$  (1)  $285-286^{\circ}$  (2)  $n_{D}^{99.5} = 1.60921$  (19)  $62.5^{\circ}$  (3) (18)  $61.5^{\circ}$  u.c. (4) (5) (9) (12) (13)  $61^{\circ}$  (8) (12)

Lfts. from hot dil. alc.; cryst. from alc , other,  $C_6H_6$ , or AcOH. — Sublimes readily. — Volatile with steam.

[For prepn. of C̄ from 7-chloronaphthalenesulfonyl chloride-1 [Beil. XI-161] (4), from 7-bromonaphthalenesulfonyl chloride-1 [Beil. XI-166] (6), from 1-chloronaphthalenesulfonyl chloride-7 [Beil. XI-181] (2), from 7-chloro-1-nitronaphthalene [Beil V-556] (poor yield (2)) (7), from 1-nitronaphthalenesulfonyl chloride-7 [Beil. XI-187] (8) (9) (10) (11), from 7-chloronaphthol-1 [Beil. VI-612, VI<sub>1</sub>-(308)] (12), from K or Na naphthol-2-sulfonate-8 [Beil. XI-286, XI<sub>1</sub>-(67)] (5) (13), or from naphthalene-1,7-bis-(sulfonyl chloride) [Beil. XI-215] (14) on htg. with PCl<sub>5</sub> as directed see indic. refs: from α-chloronaphthalene (3:6878) with SO<sub>2</sub>Cl<sub>2</sub> at 100–180° see (15); from K 4,5-dichloronaphthalenesulfonate-2 [Beil. XI-182] or from K 4,6-dichloronaphthalenesulfonate-2 [Beil. XI-182] on hydrolysis in H<sub>2</sub>SO<sub>4</sub> or H<sub>3</sub>PO<sub>4</sub> with superhtd. steam see (16); from 4,6-dichloronaphthalene-2-sulfonyl chloride [Beil. XI-182] on htg with cone. HCl in s.t. at 290° see (16); from 7-chloronaphthylamine-1 [Beil. XII-1256] via diazotization and htg. with Cu<sub>2</sub>Cl<sub>2</sub> see (12); from 8-sulfonaphthylamine-2 [Beil. XIV-750, XIV<sub>1</sub>-(733)] via diazotization and htg. the diazonium salt with PCl<sub>5</sub> in PCl<sub>3</sub> see (2); from 1,7-diaminonaphthalene [Beil. XIII-204] via tetrazotization and treatment with Cu pdr. see (17)]

- Č (1 g.) in AcOH (5 ml.) with highest conen. HNO<sub>3</sub> (2 ml.) yields (3) 1,7-dichloro-x-nitronaphthalene [Beil. V-556], ndls. from McOH, m.p. 138-139° (3).
- [C with ClSO<sub>3</sub>H yields (1) (18) 1,7-dichloronaphthalenesulfonic acid-4 [Beil. XI-162] (corresp. sulfonyl chloride, m.p. 118° (1) (18), corresp. sulfonamide, m.p. 226° (18))
- 3:1385 (1) Hampson, Weissberger, J. Chem. Soc. 1936, 394. (2) Armstrong, Wynne, Chem. News 59, 189 (1889). (3) Erdmann, Ann. 275, 257 (1893). (4) Arnell, Bull. soc. chim. (2) 45, 184 (1886). (5) Claus, Volz, Ber. 18, 3157 (1885). (6) Sindall, Chem. News 60, 58 (1889). (7) Armstrong, Wynne, Chem. News 59, 225 (1889). (8) Palmaer, Ber. 21, 3261 (1888). (9) Cleve, Bull. soc. chim. (2) 29, 415 (1878). (10) Armstrong, Wynne, Chem. News 59, 94 (1889).
- (11) Erdmann, Suvern, Ann. 275, 252 (1893). (12) Erdmann, Kirchhoff, Ann. 247, 379 (1888). (13) Forsling, Ber. 20, 2102 (1887). (14) Armstrong, Wynne, Chem. News 62, 162 (1890). (15) Armstrong, Rossiter, Chem. News 68, 189 (1892). (16) Armstrong, Wynne, Chem. News 76, 69-70 (1897). (17) Friedlander, Szymanski, Ber. 25, 2083 (1892). (18) Armstrong, Wynne, Chem. News 61, 274-275 (1890). (19) Krollpfeiffer, Ann. 430, 198, 204 (1923).

Colorless cryst.; cas. sol. ether,  $C_6H_6$ , lgr.,  $CS_2$ ; spar. sol. cold alc. or 50% AcOH; volatile with steam. [For thermal anal. of mixts. of  $\bar{C}$  with 1,2,4-trichlorobenzene (3:6420) or for m.p./compn. data on ternary system of  $\bar{C}$  with 1,2,3-trichlorobenzene (3:0990) and 1,2,4-trichlorobenzene (3:6420) see (9)]

[For use of  $\bar{C}$  in mfg. of electric insulating material see (12) (13).]

[For prepn. of  $\bar{C}$  from 2,4,6-trichloroaniline [Beil. XII-627, XII<sub>1</sub>-(312)] via diazotization and reaction with alc. (yield: 92% (14), 90% (15), 72.6% (8), 67% (33)) (4) (1) (16) (17), or from 2,4,6-tribromoaniline [Beil. XII-663, XII<sub>1</sub>-(329)] via diazotization and subsequent treatment with HCl gas in alc. (18), see indic. refs.; from 3,5-dichloroaniline [Beil. XII-626, XII<sub>1</sub>-(312)] via diazotization and reaction with Cu<sub>2</sub>Cl<sub>2</sub> or Cu (yield 58% (5), 40-50% (9)) (4) see indic. refs.; from chlorobenzene-3,5-disulfonyl chloride with 4 moles PCl<sub>5</sub> in s.t. at 200-210° for 4 hrs. (60% yield (6)) or similarly from bromobenzene-3,5-disulfonyl chloride (7) see indic. refs [

[For formn. of  $\bar{\mathbb{C}}$  from 2,4,6-trichloroiodobenzene with alc. NaOEt see (19); from 1,3,5-trinitrobenzene with conc. HCl in s.t. at 260° see (20); from 2,4,6-trichloroacetophenone on fusion with KOH (10) or from 2,4,6-trichlorobenzaldehyde on warming with 50% NaOH or KOH (3) see indic. refs.; from chloroacetylene (3:7000) by polymerization in light see (21); for formn. of  $\bar{\mathbb{C}}$  from  $\mathbb{C}_6\mathbb{H}_6$  or chlorobenzene (3:7903) with  $\mathbb{C}_2$  at 400–700° (22), or from mixt. of m- and p-dichlorobenzenes with  $\mathbb{C}_2$  +  $\mathbb{A}\mathbb{C}_3$  (23) cf. (24), or from hexachlorobenzene (3:4939) by cat. hydrogenation (25) see indic. refs.; from  $\alpha$ -benzene-hexachloride (3:4410) with alc. KOH, pyridine, or quinoline (9) from  $\beta$ - or  $\gamma$ -benzene-hexachlorides with alc. KOH see (9) cf. (26).]

[ $\tilde{C}$  with Cl<sub>2</sub> in pres. of Al/Hg yields (27) 1,2,3,5-tetrachlorobenzene (3:0915); for behavior of  $\tilde{C}$  with liq. Cl<sub>2</sub> yielding addn. products see (28) ]

[C with MeOH/NaOMe in s.t. at 180° yields mainly (29) 3,5-dichloroanisole, m.p. 39° (29), accompanied by some 3,5-dichlorophenol (3:1670).]

 $[\bar{C}$  on hydrolysis with steam at 550-800° over cat. yields (30) phloroglucinol (1:1620); for behavior of  $\bar{C}$  with  $F_2$  see (31); for behavior of  $\bar{C}$  with NH<sub>3</sub> at 700-800° see (32).]

 $\bar{C}$  on mononitration, e.g., by warming  $\bar{C}$  (1 g.) with 5 ml. fumg. HNO<sub>3</sub> (D=1.49) at 100° for 15 min., then pouring onto ice (38), gives (2) (8) (100% yield (38)) 1,3,5-trichloro-2-nitrobenzene [Beil. V-247], ndls. from alc., m.p. 69° (8), 67-68° (38). —  $\bar{C}$  on dinitration, e.g., by refluxing for 1 hr. a soln. of  $\bar{C}$  (1 g.) in 5 ml. fumg. HNO<sub>3</sub> (D=1.49) + 5 ml. conc. H<sub>2</sub>SO<sub>4</sub> (38), gives (yield: 100% (38) (34), 82% (35), 80% (15)) (14) (33) 1,3,5-trichloro-2,4-dinitrobenzene [Beil. V-265], m.p. 131-131.5° (35) (36), 129-130° (34), 129.5° (14) (15) (3), 128.5° (38) (this prod. on htg. with 5 pts. aniline yields (38) 1,3,5-trianilino-2,4-dinitrobenzene, m.p. 179-180° (38)). —  $\bar{C}$  on trinitration, e.g., by boilg. 2 days with mixt. of

fumg. HNO<sub>3</sub> and fumg. H<sub>2</sub>SO<sub>4</sub> as directed (37) (39), yields (37) (33) (17) 1,3,5-trichloro-2,4,6-trinitrobenzene [Beil. V-275], m.p. 187° (33), 193° (15), 192-193° (39).

Č with conc. H<sub>2</sub>SO<sub>4</sub> is unchanged even after htg. 56 hrs. at 100° and is only partially sulfonated on htg. 6 hrs. at 100° with fumg. H<sub>2</sub>SO<sub>4</sub> (12% SO<sub>3</sub>) (16); however, Č with 3 pts. fumg. H<sub>2</sub>SO<sub>4</sub> (SO<sub>3</sub> = 72%) htd. at 100° for 15 hrs. completely sulfonates yielding (16) 1,3,5-trichlorobenzene-2,4-disulfonic acid (corresp. disulfonyl chloride, m.p. 161.5° (16), corresp. disulfonamide, m.p. 248° (16)).

Č with chlorosulfonic acid in CHCl<sub>3</sub> (38) gives 1,3,5-trichlorobenzenesulfonyl chloride, m.p. 35-40° u.c. (38); this prod. with (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> readily yields (38) 1,3,5-trichlorobenzenesulfonamide, m.p. 210-212° u.c. dec. (38).

3:1400 (1) Dadieu, Pongratz, Kohlrausch, Monatsh. 61, 432-433 (1932). (2) Beilstein, Kurbatow, Ann. 192, 232-233 (1878). (3) Lock, Ber. 66, 1532 (1933). (4) Körner, Gazz. chim. ital. 4, 411-412 (1874). (5) Holleman, Rec. trav. chim. 37, 197-198 (1918). (6) Olivier, Rec. trav. chim. 37, 313 (1918). (7) Olivier, de Kleermaeker, Rec. trav. chim. 39, 643 (1920). (8) Holleman, van Haeften, Rec. trav. chim. 40, 74 (1921). (9) van der Linden, Ber. 45, 231-247 (1912). (10) Lock, Böck, Ber. 70, 925 (1937).

(11) Lecat, Ann. soc. sci. Bruxelles B-49, 109-118 (1929); Cent. 1929, II 2162. (12) Ford (to Westinghouse Electric and Mfg. Co.), U.S. 2,139,945-2,139,948, Dec. 13, 1938; Cent. 1939, 2047; C.A. 33, 2253-2254 (1939). (13) Zünderwerke E. Brünn, A.G., Ger. 570,460, Feb. 16, 1933; Cent. 1933, I 2770. (14) Jackson, Lamar, Am. Chem. J. 18, 667-668 (1896). (15) Backer, van der Baan, Rec. trav. chim. 56, 1177-11478 (1937). (16) Davies, Poole, J. Chem. Soc. 1927, 1122-1123. (17) Turek, Chimie & industrie 26, 781-794 (1931). (18) Hantzsch, Ber. 39, 2351 (1897). (19) Jackson, Gazzolo, Am. Chem. J. 22, 53-54 (1899). (20) Lobry de Bruyn, van Leent, Rec. trav. chim. 15, 86 (1896).

(21) Ingold, J. Chem. Soc. 125, 1536 (1924). (22) Wibaut, van der Lande, Wallagh (to Dow Chem. Co.), U.S. 2,123,857, July 12, 1938; Cent. 1939, I 250; C.A. 32, 7058 (1938). (23) Mouneyrat, Pouret, Compt. rend. 127, 1028 (1898). (24) Olivier, Rec. trav. chim. 39, 411-413 (1920). (25) Mailhe, Cent. 1921, III 467. (26) Jungfleisch, Ann. chim. (4) 15, 301 (1868). (27) Cohen, Hartley, J. Chem. Soc. 87, 1366 (1905). (28) van der Linden, Rec. trav. chim. 55, 315-324 (1936), (29) Ref. 5, pp. 201-204. (30) Lloyd, Kennedy, U.S. 1,849,844, March 15, 1932; Cent. 1932, I 2994; C.A. 26, 2747 (1932).

(31) Bancroft, Whearty, Proc. Natl. Acad. Sci. 17, 183-186 (1931). (32) Heslinga, Rec. trav. chim. 43, 178-180 (1924). (33) Jackson, Wing, Ann. Chem. J. 9, 348-355 (1887). (34) Huffer, Rec. trav. chim. 40, 451 (1921). (35) Schlubach, Mergenthaler, Ber. 58, 2735 (1925). (36) Borsche, Trautner, Ann. 447, 6 (1926). (37) Jackson, Smith, Am. Chem. J. 32, 171-172 (1904). (38) Huntress, Carten, J. Am. Chem. Soc. 62, 512-513 (1940). (39) Schmitt, Z. ges. Schiessus. Sprengstoffw. Nitrocellulose 38, 198-199 (1943); C.A. 38, 3962 (1944).

M.P. 64° (1) (2) (3) 63-64° (5)

Colorless lfts. from alc. — 100 pts. 90–92% alc. dis. at room temp. 5.40 pts.  $\bar{C}$ ; in hot 37.28 pts.  $\bar{C}$  (4).

[For prepn. of  $\bar{C}$  from chloral (3:5210) with  $C_6H_6$  (2 moles) + conc.  $H_2SO_4$  (almost quant. yield) see (3); from chloral hydrate (3:1270) with  $C_6H_6$  + a little AlCl<sub>3</sub> at 0° see (5) cf. (2); note that both types of this same condensation take place through intermediate formn. of trichloromethyl-phenyl-carbinol [Beil. VI-476, VI<sub>1</sub>-(237)], m.p. 37°, b.p. 145° at 15 mm. (1) (corresp. acetate, m.p. 87.5° (1)) as formerly suspected (6) and subsequently confirmed (1).]

C on reduction gives various products according to conditions [e.g., C with Na/Hg in

alc. is claimed (7) to give 1,1-diphenylethane [Beil. V-605,  $V_1$ -(285),  $V_2$ -(509)], but this prod. was not obtd. in pure form and was accompanied by 1,1-dichloro-2,2-diphenylethylene (3:1938) (from  $\ddot{C}$  by loss of HCl under alk. conditions)].

[ $\tilde{\mathbf{C}}$  in boilg. 95% alc. contg. trace of CuCl<sub>2</sub> with finely powdered Al/Cu/Zn (Devarda) alloy or Cu/Mg (Arnd) alloy for 6-10 hrs. gives (13-19% yield (8)) 2,2,3,3-tetrachloro-1,1,4,4 tetraphenylbutane [Beil. V<sub>2</sub>-(676)], ndls. from AcOH, m.p. 188-190° (8), accompanied by some 2,3-dichloro-1,1,4,4-tetraphenylbutene-2 (see next paragraph).  $\tilde{\mathbf{C}}$  with Zn dust + conc. aq. NH<sub>4</sub>OH in alc. soln. gives (18) (4) stilbene (1:7250) + 1,1-diphenylethane (above).]

[ $\bar{C}$  on reduction with H<sub>2</sub> in pres. of Pd/BaCO<sub>3</sub> in alc./pyridine soln. gives (54-60% yield (9)) 2,2,3,3-tetrachloro-1,1,4,4-tetraphenylbutane (see preceding paragraph) accompanied by both high-melting (137-138°) and low-melting (108-110°) stereoisomers of 2,3-dichloro-1,1,4,4-tetraphenylbutene-2 [Beil. V<sub>2</sub>-(685)]; using Ni as cat. the same prods. result (9) in lower yield sometimes accompanied also by 1,1-dichloro2,2-diphenylethylene (3:1938) (from  $\bar{C}$  by loss of HCl).]

[ $\overline{\mathbf{C}}$  on reduction by electrolytic means in various types of solution, with various metallic electrodes, and at various temperatures gives (10) (11) numerous products including 1,1-dichloro-2,2-diphenylethane (3:1938), 1-chloro-2,2-diphenylethane [Beil. V-606, V<sub>1</sub>-(285)], 1,1,4,4-tetraphenylbutine-2 [Beil. V<sub>1</sub>-(379), V<sub>2</sub>-(694)], etc.; for details see (10) (11).]

[ $\bar{\mathbf{C}}$  with Cl<sub>2</sub> under suitable conditions should give 1,1,1,2-tetrachloro-2,2-diphenylethane [Beil. V-606], m.p. 85°, but this reaction has not actually been reported. — However,  $\bar{\mathbf{C}}$  with a very large excess (15 pts.) pure liquid Br<sub>2</sub> gives (12) 2-bromo-1,1,1-trichloro-2,2-diphenylethane, m.p. 87.5° (12) ]

[No mono- or di-nitration products derived from C have been reported.]

Č on distillation (13), or on boilg, with alc. KOH (2) (14) (for study of rate see (15)), or during course of other reactions involving alkaline conditions (see above) loses HCl giving 1,1-dichloro-2,2-diphenylethylene (3:1938). m.p. 80° (2).

[Č with NaOEt in s.t. at 180° ultimately gives (2) cf. (16) (and presumably through intermediate 1,1-dichloro-2,2-diphenylethylene (3:1938)) diphenylacetic acid (1:0765).]

 $\bar{C}$  with Na in  $C_6H_6$  refluxed 10-12 hrs. and then treated with alc. gives (17) cf. (2) trans-1,2-diphenylethylene (stilbene) (1:7250), m.p. 124°, cis-1,2-diphenylethylene (isostilbene) [Beil. V-633, V<sub>1</sub>-(303), V<sub>2</sub>-(539)], and diphenylacetylene (tolane) [Beil. V-656, V<sub>1</sub>-(319), V<sub>2</sub>-(568)]. —  $\bar{C}$  with Zn dust on dry distn. gives (13) stilbene (1:7250).

[ $\bar{C}$  in  $C_6H_6$  with AlCl<sub>3</sub> gives (10% yield (20)) 1,1,2,2-tetraphenylethane [Beil. V-739,  $V_1$ -(371),  $V_2$ -(673)], m.p. 211°.]

[For use of  $\bar{C}$  as addn. agent to improve lubricating power of mineral oils under high pressures see (19).]

3:1420 (1) Chattaway, Muir, J. Chem. Soc. 1934, 701-703. (2) Harris, Frankforter, J. Am. Chem. Soc. 48, 3144-3150 (1926). (3) Baeyer, Ber. 5, 1098-1099 (1872). (4) Elbs, J. prakt. Chem. (2) 47, 45-46, 77 (1893). (5) Frankforter, Kritchevsky, J. Am. Chem. Soc. 36, 1515-1518 (1914). (6) Dinesmann, Compt. rend. 141, 201 (1905). (7) Goldschmiedt, Ber. 6, 1502-1503 (1873). (8) Brand, Ber. 54, 1995-1996 (1921). (9) Brand, Horn, J. prakt. Chem. (2) 115, 359-362 (1926). (10) Brand, Z. Elektrochem. 16, 669 (1910); Ber. 54, 2017 (1921).

(11) Brand, Ber. 46, 2935-2942 (1913). (12) Schlenk, Ann. 493, 213 (1912). (13) Goldschmiedt, Ber. 6, 987, 990 (1873). (14) Baeyer, Ber. 6, 223 (1873). (15) Brand, Busse-Sundermann, Ber. 75, 1822 (1942). (16) Scheibley, Prutton, J. Am. Chem. Soc. 62, 840-841 (1940). (17) Harris, J. Am. Chem. Soc. 52, 3635 (1930). (18) Elbs, Forster, J. prakt. chem. (2) 39, 299 (1889). (19) Klipstein (to Calco Chem. Co.), U.S. 2,161,678, June 6, 1939; Cent. 1939, II 4634 [C.A. 33, 7556 (1939)]. (20) Fleck, Preston, Haller, J. Am. Chem. Soc. 67, 1420 (1945).

## 3:1430 1-CHLORO-2,2-bis-(p-CHLOROPHENYL)ETHYLENE

$$C_{14}H_9Cl_3$$
 Beil. S.N. 480
 $C_1$ 
 $C_2$ 
 $C_1$ 
 $C_1$ 
 $C_1$ 

## M.P. 64-65° (1)

Cryst. from lgr. — Note that  $\tilde{C}$  may occur as a minor impurity in technical grade " DDT " (3:3298).

[For prepn. of  $\bar{\mathbf{C}}$  from "p,p'-DDD" (3:3320) by elimination of 1 HCl with alc. KOH (77% yield) see (1).]

C on oxidn. with CrO3 gives (84% yield (1)) 4,4'-dichlorobenzophenone (3:4270).

3:1430 (1) Haller, Bartlett, Drake, Newman, Cristol, et al., J. Am. Chem. Soc. 67, 1600 (1945).

3:1445 
$$\alpha$$
-CHLOROACRYLIC ACID Cl C<sub>3</sub>H<sub>3</sub>O<sub>2</sub>Cl Beil. I - 401 CH<sub>2</sub>—C—COOH  $I_1$ —  $I_2$ —

Cryst. from pet. ether (2), ndls. from ether (1). — Eas. volatile, subliming even at room temp. (1) (4); volatile with steam.

[For prepn. of  $\bar{C}$  from  $\alpha,\alpha$ -dichloropropionic acid (3:6162) with alc. KOH see (4); from methyl  $\alpha,\beta$ -dichloropropionate (3:9103) with aq. Ba(OH)<sub>2</sub> (62% yield (2)) (1) or alc. KOH (5) see indic. refs.; from  $\alpha$ -chloro- $\beta$ -hydroxypropionic acid ( $\alpha$ -chlorohydracrylic acid) [Beil. III-298] by distn. with H<sub>2</sub>SO<sub>4</sub> see (6) (7); from trichloroethylene (3:5170) with formaldehyde or paraformaldehyde + H<sub>2</sub>SO<sub>4</sub> as directed see (3).]

 $\overline{C}$  on treatment with Ag<sub>2</sub>O dec. yielding (1) Ag + AgCl.

 $\tilde{C}$  with fumg. HCl in s.t. at 100° yields (5) (4)  $\alpha,\beta$ -dichloropropionic acid (3:0855), m.p. 50°.

[The esters of  $\bar{C}$  (usually prepd. from the corresp. alkyl  $\alpha,\beta$ -dichloropropionates by elimination of HCl) have assumed special importance because of their ability to polymerize to useful resins; for methyl  $\alpha$ -chloroacrylate see 3:9096; for ethyl  $\alpha$ -chloroacrylate see 3:9242; for sec-butyl  $\alpha$ -chloroacrylate, and its mechanism of polymerization, see (8) (9); for studies on the electrical properties of  $\beta$ -chloroethyl  $\alpha$ -chloroacrylate see (10).]

C readily polymerizes in ultra-violet light or in pres. of peroxides (2).

3:1445 (1) Werigo, Werner, Ann. 170, 168-171 (1874). (2) Marvel, Dec, Cooke, Cowan, J. Am. Chem. Soc. 62, 3495-3498 (1940). (3) Imperial Chem. Ind., Ltd., French 845,230, Aug. 16, 1939; C.A. 35, 1070 (1941); Brit. 528,761, Nov. 6, 1940; C.A. 35, 7975 (1941). (4) Otto, Beckurts, Ber. 18, 241-246 (1885). (5) Werigo, Melikov, Ber. 10, 1499-1500 (1877). (6) Melikov, J. prakt. Chem. (2) 61, 554-555 (1900). (7) Koelsch, J. Am. Chem. Soc. 52, 3365 (1930). (8) Marvel, Dec, Cooke, J. Am. Chem. Soc. 62, 3499-3504 (1940). (9) Price, Kell, J. Am. Chem. Soc. 63, 2798-2801 (1941). (10) Mead, Fuoss, J. Am. Chem. Soc. 64, 2389-2393 (1942).

M.P. 65° (1) (3) B.P. 253.5° at 767 mm. (2) 68° (2)

Ndls. (from  $C_6H_6$  by addn. of pet. ether (2)). — Volatile with steam (1). [For study of ionization const. see (4).]

[For prepn. from 3,4-dichloroaniline [Beil. XII-626] via diazo reaction see (2) (3) (5) (1).] [For use of  $\bar{\mathbf{C}}$  in prepn. of 2-chloro-1,4-dihydroxyanthraquinone (2-chloroquinizarin) [Beil. VIII-452] by htg. with phthalic anhydride + H<sub>2</sub>SO<sub>4</sub> + H<sub>3</sub>BO<sub>3</sub> at 195-200° see (7) (8); for use of  $\bar{\mathbf{C}}$  in prepn. of tetrachlorofluoran [Beil. XIX-148], m.p. 255°, by htg. with phthalic anhydride see (3).]

 $\bar{C}$  dis. eas. in conc.  $H_2SO_4$ ; on stdg. small pl. of 3,4-dichlorophenol-6-sulfonic acid separate; these are sol. in aq., alc., AcOH, EtOAc; insol in  $C_6H_6$ , pct eth.; spar. sol. CHCl<sub>8</sub>; cryst. from latter, m.p. 75–76° (6).

 $\bar{C}$  on htg. with mixt. of fumg H<sub>2</sub>SO<sub>4</sub> (25% SO<sub>3</sub>) + conc. H<sub>2</sub>SO<sub>4</sub>, and resultant solid treated with conc. HNO<sub>3</sub> (D=1.5) as directed (1) gives (69% yield (1)) of 3,4-dichloro-2-nitrophenol, yel. ndls., from lt. pet. ether, m p. 76° (1).

C dislyd. in 3 pts. AcOH contg. anhyd. NaOAc, treated with Cl<sub>2</sub> and the prod. pptd. by addn. of aq., yields (5) 2,3,4-trichlorophenol (3:2185).

 $\tilde{C}$  dislyd. in aq. NaOH and shaken with  $(CH_3)_2SO_4$  yields (2) the methyl ether, 3,4-dichloroanisole, m.p.  $-8^\circ$  (2).

3:1460 (1) Hodgson, Kershaw, J. Chem. Soc. 1929, 2922. (2) Holleman, Rec. trav. chim. 37, 102-104 (1918). (3) Badische Anilin- und Soda-Fabrik, Ger. 156,333, Nov. 14, 1904; Cent. 1904, II 1673. (4) Murray, Gordon, J. Am. Chem. Soc. 57, 110-111 (1935). (5) Groves, Turner, Sharp, J. Chem. Soc. 1929, 523. (6) Kraay, Rec. trav. chim. 48, 1084-1085 (1930). (7) Gubelmann, Lee (to Newport Co.), U.S. 1,655,462, Jan. 10, 1928; Cent. 1929, I 3149. (8) Gubelmann, U.S. 1,655,863, Jan. 10, 1928, C.A. 22, 966 (1928).

#### 3:1475 3,5-DICHLOROBENZALDEHYDE

C<sub>7</sub>H<sub>4</sub>OCl<sub>2</sub> Beil. S.N. 635

M.P. 65° (1) B.P. 235-240° at 748 mm. (1)

Colorless ndls. or lfts. from pet. ether or dil. MeOH (1). — Spar. sol. hot aq. but eas. volatile with steam. — Eas. sol. most organic solvents.

[For prepn. of  $\bar{C}$  from 3,5-dichlorotoluene (3:6310) via chlorination to 3,5-dichlorobenzal (di)chloride (3:0370) and subsequent hydrolysis with conc. H<sub>2</sub>SO<sub>4</sub> (70-80% overall yield) see (1) (4).]

 $\tilde{C}$  with satd. aq. NaHSO<sub>3</sub> yields a cpd.  $\tilde{C}$ .NaHSO<sub>3</sub>; this is exceptionally sol. in aq., and on htg. the soln. yields  $\tilde{C}$  (1).

 $\bar{C}$  on oxidn. with excess KMnO<sub>4</sub> at 100° gives (74% yield (1)) 3,5-dichlorobenzoic acid (3:4840), m.p. 188° (1). —  $\bar{C}$  with 50% aq. KOH for 4 hrs. at 100° gives (90% yield (1)) 3,5-dichlorobenzyl alc., cryst. from C<sub>6</sub>H<sub>6</sub>, m.p. 82° (1), and 8,5-dichlorobenzoic ac. (90% yield (1)) (3:4840).

 $\ddot{\mathbf{C}}$  with PCl<sub>5</sub> gives (80% yield (1)) 3,5-dichlorobenzal (di)chloride (3:0370) cryst. from MeOH or dil. AcOH, m.p. 36.5° (1).

Č on nitration with fumg. HNO<sub>3</sub> (D=1.48) at 0° as directed (2) gives (99% yield (2)) 3,5-dichloro-2-nitrobenzaldehyde, cryst. from AcOH or lgr., m.p. 91.5° (2), 91° (4). [This deriv. yields an oxime, m.p. 97°, a phenylhydrazone, m.p. 175°, and on oxidn. with KMnO<sub>4</sub> gives 3,5-dichloro-2-nitrobenzoic ac., m.p. 194° cor. (2).]

C htd. with NaOAc + Ac<sub>2</sub>O for 18 hrs. at 180-210° gives (76% yield (1)) 3,5-dichlorocinnamic acid, ndls. from C<sub>6</sub>H<sub>6</sub> + pet. eth. or from dil. AcOH, m.p. 176° cor. (1).

[For conversion of  $\tilde{C}$  to 3,5-dichlorostyrene (5) (6) in a reaction with MeMgI giving (yields: 69% (5), 55% (3)) 3,5-dichlorophenyl-methyl-carbinol, m.p. 46° (3), b.p. 126° at 4 mm. (5),  $n_D^{20} = 1.5573$  (5), and dehydration of latter with KHSO<sub>4</sub> (43% yield (5)) see indic. refs.]

- ② 3,5-Dichlorobenzaldoxime: cryst. from lgr., C<sub>6</sub>H<sub>6</sub> + pet. eth., or dil. AcOH, m.p. 112° (1).
  - 3,5-Dichlorobenzaldehyde phenylhydrazone: yel. ndls. from pet. eth., m.p. 106.5° (1).
  - ---- 3,5-Dichlorobenzaldehyde p-nitrophenylhydrazone: unrecorded.
  - --- 3,5-Dichlorobenzaldehyde 2,4-dinitrophenylhydrazone: unrecorded.
  - 3,5-Dichlorobenzaldehyde semicarbazone: unrecorded.

3:1475 (1) Asinger, Lock, Monatsh. 62, 344-348 (1933). (2) Asinger, Monatsh. 63, 386-387 (1934). (3) Lock, Bock, Bcr. 70, 922-923 (1937). (4) Ruggli, Zaeslin, Lang, Helv. Chim. Acta 21, 1247 (1938). (5) Marvel, Overberger, Allen, Johnston, Saunders, Young, J. Am. Chem. Soc. 68, 884 (1946). (6) Michalek, Clark, Chem. & Eng. News 22, 1559-1563 (1944)

## 3:1480 2,3-DICHLOROBENZALDEHYDE

C<sub>7</sub>H<sub>4</sub>OCl<sub>2</sub>

Beil. S.N. 635



#### M.P. 65-67° (1)

Cryst. from 1:1 aq EtOH.

[For prepn. of C from 2,3-dichlorotoluene (3:6345) by bromination at 180-200° (presumably to 2,3-dichlorobenzal (di)bromide) followed by hydrolysis with conc. H<sub>2</sub>SO<sub>4</sub> at 100-140° (71% yield) see (1).]

C with MeMgI gives (76% yield (1)) 2,3-dichlorophenyl-methyl-carbinol, m.p. 55-57°, b.p. 112-113° at 2 mm. (corresp. 3,5-dinitrobenzoate, m.p. 145-146° (1)); note that dehydration of the carbinol with KHSO<sub>4</sub> gives (44% yield (1)) 2,3-dichlorostyrene.

- ---- 2,3-Dichlorobenzaldoxime: unreported.
- ---- 2,3-Dichlorobenzaldehyde phenylhydrazone: unreported.
- ---- 2,3-Dichlorobenzaldehyde p-nitrophenylhydrazone: unreported.
- ---- 2,3-Dichlorobenzaldehyde 2,4-dinitrophenylhydrazone: unreported.
- ---- 2,3-Dichlorobenzaldehyde semicarbazone: unreported.
- 3:1480 (1) Marvel, Overberger, Allen, Johnston, Saunders, Young, J. Am. Chem. Soc. 68, 862 (1946).

3:1490 2-CHLORONAPHTHOL-1

$$\begin{array}{cccc} OH & C_{10}H_7OCl & \text{Beil. VI - 611} \\ & & \text{VI}_{1}\text{-}(308) \\ & & \text{VI}_{2}\text{-}(581) \\ \end{array}$$

Ndls. from lgr.; exceptionally easily sol. in alc., ether,  $C_6H_6$ . — More volatile with steam than the isomeric 4-chloronaphthol-1 (3:3720) (use in sepn. (2)).

[For prepn. of  $\bar{C}$  from α-naphthol (1:1500) with aq. alk. NaOCl (3) (4) (5) or with SO<sub>2</sub>Cl<sub>2</sub> in CHCl<sub>3</sub> soln. (18% yield, together with 42% yield of 4-chloronaphthol-1 (3:3720) (2)), see indic. refs.; from sodium 1-hydroxynaphthalenesulfonate-2 [Beil. XI-269, XI<sub>1</sub>-(63)] with PCl<sub>5</sub> see (6); from 2-chloro-1-hydroxynaphthalenesulfonic acid-4 (1) by hydrolysis in boilg. dil. H<sub>2</sub>SO<sub>4</sub> see (1).]

C on stdg. in aq. Na<sub>2</sub>CO<sub>2</sub> soln. gives blue flocks (7).

Č with 1 mole Br<sub>2</sub> in 20% AcOH yields alm. quant. (7) 4-bromo-2-chloro-naphthol-1, ndls., m.p. 112° (7).

[ $\bar{\mathbf{C}}$  with conc. HI (D=1 5) in boilg. AcOH for 12 hrs. reduces (4) to  $\alpha$ -naphthol (1:1500), but  $\bar{\mathbf{C}}$  is unaffected by SnCl<sub>2</sub> + HCl in alc. even after 28 hrs.' boilg. (4).]

[ $\bar{C}$  on oxidn. with p-diamines gives (3) indophenols;  $\bar{C}$  on coupling with diazonium salts gives (3) azo dyestuffs, cf. (1);  $\bar{C}$  with isatın chloride [Beil. XXI-302, XXI<sub>1</sub>-(296)] yields (5) a chloronaphthalene indolindigo.]

[C dislvd. in a little alc., made ammoniacal with conc. NH<sub>4</sub>OH, and treated at 5° with nitrosobenzene in alc. gives (84% yield (8)) 2-chloronaphthoquinone-1,4-monoanil-4 (see under 3:3580), very red ncls. from alc., m p. 112° (8).

3:1490 (1) Hodgson, Rosenberg, J. Soc. Chem. Ind. 48-T, 287-289 (1929). (2) Lesser, Gad, Ber. 56, 972-973 (1923). (3) Kalle and Co., Ger. 167,458, Jan 22, 1906; Cent. 1906, I 1067. (4) Franzen, Steuble, J. prakt. Chem. (2) 103, 383-384 (1921/2). (5) Bedzik, Friedländer, Monatsh. 29, 380-381 (1908). (6) Claus, Oehler, Ber. 15, 314 (1882). (7) Willstätter, Schuler, Ber. 61, 365 Note, 367 (1928). (8) Friedlander, Sander, Ber. 57, 646-647 (1924).

## CHAPTER V

#### DIVISION A. SOLIDS

(3:1500-3:1999)

3:1505 3.5-DICHLOROBENZOPHENONE

C<sub>13</sub>H<sub>8</sub>OCl<sub>2</sub>

Beil. S.N. 652

(3,5-Dichlorophenyl phenyl ketone)

CI C=0

M.P. 65° (1) (2)

Ndls. (from MeOH (1)).

[For prepn. from 3,5-dichloro-4-aminobenzophenone (1) by removal of amino group via diazo reaction see (1); for prepn. from 3,5-dichlorobenzohydrol by oxidn. with CrO<sub>3</sub> (75% yield) see (2).]

 $\overline{C}$  fused for 3 hrs. at 200° with a mixt. of KOH + NaOH gives (2) BzOH (1:0715) and a trace of m-dichlorobenzene (3:5960).

- ₱ 3,5-Dichlorobenzophenone oxime: from C in alc. on refluxing 8 hrs with NH<sub>2</sub>OH HCl + excess NaOH: after distilling off the alcohol, the mixt of two stereoisomeric oximes is pptd. by pouring into aq.; sepn. of the two isomers can be effected by fractnl. crystn. from dil. MeOH or dil. EtOH (1).
- α-form (less-soluble isomer), pl. or fine ndls., m.p. 137°. [With PCl<sub>5</sub> in dry ether, followed by water, this form yields quant. 3,5-dichlorobenzanilide, ndls. from dil. alc., m.p. 148° (1).]
- β-form (more-soluble isomer), constituting 70% of reaction mixt., pr. m.p. 118°. [With PCl<sub>5</sub> in dry ether, followed by water, this form yields a gummy product from which some benz-3,5-dichloroanilide, ndls. m.p. 148.5°, can be sepd. (1).]
- 3:1505 (1) Waters, J. Chem. Soc. 1929, 2108-2109. (2) Lock, Rödiger, Ber. 72, 869-870 (1939).

3:1535 4-CHLORO-3-METHYLPHENOL OH C<sub>7</sub>H<sub>7</sub>OCl Beil. VI - 381 VI<sub>1</sub>-(187) VI<sub>2</sub>-(355)

M.P. 66° (1) (11) B.P. 235° (1) 57° (2) 234–236° (11) 55.5° (3)

Note that C is often designated in the literature as "p-chloro-m-cresol" or even as "6-chloro-m-cresol"; care must be taken to avoid confusion with the isomeric 6-chloro-3methylphenol (3:0700).

Odorless cryst. (from lgr.). — Volatile with steam (3).

Both the low-melting and high-melting forms appear to be authentic; whether they are different cryst. forms has never been detd.

[For prepn. of C from 2-chloro-5-aminotoluene (4-chloro-3-methylaniline) [Beil. XII-871] via diazo reaction see (3); for comml. prepn. from m-cresol (1:1730) by chlorination with SO<sub>2</sub>Cl<sub>2</sub> see (1) (4) (84% yield (11)).]

[C on monobromination with Br2 in AcOH gives (8) 4-chloro-6-bromo-3-methylphenol, m.p. 70.0-70.5° (8); C on dibromination yields (9) 4-chloro-2,6-dibromo-3-methylphenol, m.p.  $68.5-69.5^{\circ}$  (9) (for use of latter in bromometric detn. of  $\bar{C}$  see (10)).

 $\bar{C}$  treated with  $(CH_3)_2SO_4 + aq$ . NaOH gives its methyl ether, 4-chloro-3-methylanisole, b.p. 213.5° (2). [This methyl ether on oxidn. with dil. KMnO<sub>4</sub> (6.7 hrs. for 5 g.) gave (2) 2-chloro-5-methoxybenzoic ac. [Beil. X-143], ndls. from dil. AcOH (5), m.p. 173.5° (2), 170-171° (5), Neut. Eq. 186.5.

- $\oplus$  4-Chloro-3-methylphenyl benzoate: from  $\bar{C} + BzCl + pyridine$ , pl. from alc., m.p. 86° (2) (3). [This benzoate htd. with 0.7 of its wt of AlCl3 for 10 min. at 140° gives by Fries rearrangement 100% yield (6) of 2-hydroxy-5-chloro-4-methylbenzophenone. vel. ndls. from dil. alc., m.p. 142° (6) ]
- $\odot$  4-Chloro-3-methylphenyl benzenesulfonate: from  $\ddot{C}$  + benzenesulfonyl chloride + pyridine, pl. from alc., m.p. 66° (3). [Note that this value is numerically the same as orig. C and that the deriv. must therefore be distinguished from it, e.g., by mixed m.p. or behavior with alk.l
- $\oplus$  4-Chloro-3-methylphenyl p-toluenesulfonate: from  $\bullet$  + p-toluenesulfonyl chloride + pyridine, pl. from alc. (2) (3), ndls. from lt. pet (2), m.p. 98° (2) (3). [Note that this deriv. does not distinguish C from 6-chloro-3-methylphenol (3:0700) or 2-chloro-3methylphenol (3:1055).]
- ① 4-Chloro-3-methylphenyl  $N-\alpha$ -naphthylcarbamate: from  $\ddot{C} + \alpha$ -naphthyl isocyanate in presence of trace of trimethyl- or triethyl-amine in ether; cryst. from lgr., m.p. 153-154° (7).
- 3:1535 (1) Kalle and Co., Jan. 11, 1897, Ger. 90,847, Friedländer 4, 94 (1894 /7). (2) Gibson, J. Chem. Soc. 1926, 1425-1428. (3) Huston, Chen, J. Am. Chem. Soc. 55, 4214-4218 (1933). (4) Laschinger, U.S. 1,847,566, March 1, 1932, Cent. 1932, II 1512, C.A. 26, 2471 (1932). (5) Hodgson, Beard, J. Chem. Soc. 1926, 154. (6) Rosenmund, Schnurr, Ann. 460, 86 (1928). (7) French, Wirtel, J. Am. Chem. Soc. 48, 1736-1739 (1926). (8) von Walther, Zipper, J. prakt. Chem. (2) 91, 378-379 (1915). (9) Huston, Neeley, J. Am. Chem. Soc. 57, 2178 (1935). (10) Deshusses, Mitt. Lebensm. Hyg. 32, 250-254 (1941), C.A. 37, 3023 (1943).

(11) Sah, Anderson, J. Am. Chem. Soc 63, 3165 (1941).

M.P. 66-67° (1) (2) (3)

Colorless lfts. or ndls., sol. in alc., ether, CHCl3, or C6H6. [For prepn. of C from 2,5-dimethylhexanediol-2,5 [Beil. I-492, I<sub>1</sub>-(256), I<sub>2</sub>-(557)] with fumg. HCl (1) or AcCl (1) or in AcOH with HCl gas (100% yield (3)) see (1) (3); from the ring-closed internal ether of the above diol, viz., 2,2,5,5-tetramethyltetrahydrofuran [Beil. XVII-17], with fumg. HCl see (2); for prepn. of  $\bar{C}$  from 2,5-dimethylhexadiene-2,4 (di-isocrotyl) [Beil. I-259,  $I_1$ -(122),  $I_2$ -(237)] with HCl in s.t. see (2).]

C on htg. boils at 180° with evolution of HCl (1).

[ $\bar{C}$  on slow distn. at 12-20 mm. over CO<sub>2</sub> saturated soda-lime at 255-270° gives (3) by loss of 2 HCl 2,5-dimethylhexadiene-2,4 (see above), m.p. + 6° (2).]

[For study of behavior of  $\vec{C}$  with aq. alc. N/10 NaOH see (4).]

3:1550 (1) Henry, Compt. rend. 143, 496-497 (1906). (2) Pogorzelski, J. Russ. Phys.-Chem. Soc. 30, 977-992 (1898); Cent. 1899, I 773. (3) Staudinger, Muntwyler, Ruzicka, Seibt, Helv. Chim. Acta 7, 395-396 (1924). (4) Tishchenko, J. Gen. Chem. (U.S.S.R.) 9, 1380-1388 (1939), C.A. 34, 1611 (1940).

# 3:1565 2,4'-DICHLOROBENZOPHENONE

(o-Chlorophenyl p-chlorophenyl ketone)

Co

C13H8OCl2

Beil. VII - 420 VII<sub>1</sub>---

M.P. 66.5-67.0° (1) (2) B.P. 214-215° at 22 mm. (2) 66° (3) (4) 64.2-65.2° cor. (5)

Pr. (from alc.). — [For crystallographic consts. see (3) (4).] — Sol. in most org. solv.; cryst. best from lgr. or cold dil. (60-75%) alc. (2).

[For prepn. from o-chlorobenzoyl chloride (3:6640) + chlorobenzene (3:7903) + AlCl<sub>3</sub> in CS<sub>2</sub> see (2); as by-product (besides 4,4'-dichlorobenzophenone (3:4270)) from p-chlorobenzoyl chloride (3:6550) + chlorobenzene (3:7903) + AlCl<sub>3</sub> + CS<sub>2</sub> see (3), or from p-chlorobenzoic acid (3:4940) + chlorobenzene (3:7903) + AlCl<sub>3</sub> (yield 9-12%) see (1).]

[For form. of  $\bar{C}$  from 1,1-dichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)ethylene (3:1925) by oxidn. with  $CrO_3/AcOH$  see (5).]

[Č with aq. NaOH + trace CuO in Fe bomb (or in pres. of Fe powder) at 240° for 6 hrs. both ring-closes and hydrolyzes giving (87% yield (6)) crude 3-hydroxyfluorenone, m.p. 184-192° (6).]

#### 2.4'-Dichlorobenzophenone 2.4-dinitrophenylhydrazone: m.p. 230-231° (5).

3:1565 (1) Newton, Groggins, Ind. Eng. Chem. 27, 1399 (1935). (2) Norris, Twieg, Am. Chem. J. 36, 397 (1903). (3) Montagne, Rec. trav. chim. 25, 385-387 (1906). (4) Jaeger, Z. Krist. 56, 52 (1921). (5) Haller, Bartlett, Drake, Newman, Cristol, Magerlein, Mueller, Schneider, J. Am. Chem. Soc. 67, 1599, 1602 (1945). (6) Britton, Moyle, Bryner (to Dow Chem. Co.), U.S. 2,377,751, June 5, 1945; C.A. 39, 4097 (1945).

3:1595 2,8-DICHLOROPHENOL OH C<sub>6</sub>H<sub>4</sub>OCl<sub>2</sub> Beil. VI - 190 VI<sub>1</sub>-(103) VI<sub>2</sub>-(179)

M.P. 67° (1) (2) B.P. 219–220° at 740 mm. (2) cf. (3) 66–68° (8) 80–85° at 4 mm. (2)

Cryst. from pet. eth. with penetrating odor suggesting o-chlorophenol or (if dilute) iodoform. — Misc. with alc., ether, volatile with steam.

[For prepn. from p-hydroxybenzoic ac. (1:0840) by chlorination in AcOH followed by elimin. of  $CO_2$  by htg. in quinoline see (4) (5) (8); for prepn. from phenol (1:1420) by prelim. sulfonation, subsequent chlorination in nitrobenzene, and final removal of sulfonic acid group by hydrolysis (70% yield (2)) see (2).]

C is sol. in Na<sub>2</sub>CO<sub>3</sub> soln. (1). [For study of ionization const. see (6).]

Č on nitration (no details) gives 2,6-dichloro-4-nitrophenol [Beil. VI-241], colorless ndls. from aq., m.p. 125° (7).

 $\bar{C}$  dislvd. in aq. alk. and shaken with  $(CH_3)_2SO_4$  yields (1) (2) the methyl ether, 2,6-dichloroanisole, b.p. 105-106° at 20 mm. (2), m.p. 10.1° (1).

[For study of rearr. of ethers (8) or esters (9) of C see indic. refs.]

- **2.6-Dichlorophenyl benzoate:** m.p. 74.0-74.5° (9).
- 2,6-Dichlorophenyl p-nitrobenzoate: unreported.
  - \_\_\_\_ 2,6-Dichlorophenyl 3,5-dinitrobenzoate: unreported.
- --- 2,6-Dichlorophenyl benzyl ether: m.p. 39.5-40° (10).
- **2.6-Dichlorophenyl** p-nitrobenzyl ether: unreported.
- 2,6-Dichlorophenoxyacetic acid: ndls. from aq., m.p. 134.5-135.0° cor. (9).
   Vith chloroacetic acid (3·1370) + aq. alk. (9)
- ---- 2,6-Dichlorophenyl N-phenylcarbamate: unreported.
- **2,6-Dichlorophenyl**  $N-(\alpha-naphthyl)$  carbamate: unreported.
- 2,6-Dichlorophenyl N-(β-naphthyl)carbamate: unreported.

3:1595 (1) Holleman, Rec. trav. chim. 37, 96-103 (1918). (2) Huston, Neeley, J. Am. Chem. Soc. 57, 2177 (1935). (3) Seifart, Ann. Suppl 7, 203 (1870). (4) Richardson, J. Chem. Soc. 1937, 1364. (5) Blicke, Snith, Powers, J. Am. Chem. Soc. 54, 1468 (1932). (6) Murray, Gordon. J. Am. Chem. Soc. 57, 110-111 (1935). (7) Tarugi, Gazz. chim. ital. 30, II 490-491 (1900). (8) Tarbell, Wilson, J. Am. Chem. Soc. 64, 1068-1069 (1942). (9) Tarbell, Fanta, J. Am. Chem. Soc. 65, 2172 2173 (1943). (10) Huston, Eldridge, J. Am. Chem. Soc. 53, 2262-2263 (1931).

#### 3:1610 8-CHLORONAPHTHOL-1



## M.P. 67° (1)

Ndls. from aq. — Volatile with steam.

[For formn. of C from 8-chloro-1-nitronaphthalene [Beil. V-556] by merely refluxing with aq. see (1).]

Č is sol. in aq. alk. giving orange-colored soln. which couples with solns. of diazonium salts (1).

[For reactn. of  $\bar{C}$  with benzotrichloride (3:6540) yielding 4-benzoyl-8-chloronaphthol-1, m.p. 121°, used in prepn. of triphenylmethane dyes see (2); with o-nitrophenylsulfenyl chloride see (3); for coupling of  $\bar{C}$  with diazotized 2-hydroxynaphthylamine-1 (or its relatives) yielding o-hydroxyazo cpds. see (4).]

3:1610 (1) Woroshtzow, Koslow, Ber. 69, 412-415 (1936). (2) Soc. Chem. Ind. Basel, Ger. 378,908, Aug. 7, 1923, Ger. 378,909, Aug. 11, 1923, Swiss 98,559, April 2, 1923; Cent. 1923, IV 594. (3) Akt.-Ges. Anilin-Fabrikation, Ger. 402,642; Sept. 17, 1924; Cent. 1924, II 2505. (4) Soc. Chem. Ind. Basel, Brit. 180,433, June 22, 1922; Cent. 1922, IV 841.

M.P. 67.0-67.5° (1) 66-67° (2) 67° (3) 66.2-66.5° (4) (5) 66° (6) (7)

[See also a-chlorocrotonic acid (3:2760).]

Ndls. from aq. (2) (4) (5); note, however, that from aq. solns. of salts acidification first ppts.  $\bar{C}$  as an oil. —  $\bar{C}$  is more sol. aq. than its stereoisomer; e.g.,  $\bar{C}$  is sol. in 15.3 pts. aq. at 19° (8). —  $\bar{C}$  is much more volatile with steam than its stereoisomer (3:2760) (4) (5). —  $\bar{C}$  is spar, sol. cold but eas. sol. hot lgr. (8).

**Preparation.** [For prepn. of  $\bar{C}$  from lower-melting form (m.p. 63°) of  $\alpha,\beta$ -dichloro-n-butyric acid (3:1375) with excess 10% aq. NaOH at not above 10° see (4) (5) cf. (9).]

Chemical behavior.  $\bar{C}$  on htg. in s.t. at 150-160° for 12 hrs. (10), or with pyridine hydrochloride in pyridine 7 days at room temp. or rapidly at 100° (2), or even slowly on steam distillation (11) is converted to the stereoisomeric  $\alpha$ -chlorocrotonic acid (3:2760), m.p. 99°.

Č on reduction with Na/Hg in aq. is dehalogenated yielding (12) (4) crotonic acid (1:0425), m.p. 72°; whether any isocrotonic acid (1:1045), b.p. 169°, m.p. 15°, is formed at all is uncertain.

 $\bar{C}$  with  $Cl_2$  in  $CS_2$  adds 1 mole halogen yielding (13) the same  $\alpha, \alpha, \beta$ -trichloro-n-butyric acid (3:1280), m.p. 59.5-60°, also obtd. by like treatment of  $\alpha$ -chlorocrotonic acid (3:2760). — The behavior of  $\bar{C}$  with  $Br_2$  appears to be unreported.

 $\ddot{\mathbf{C}}$  behaves as a monobasic acid; dissociation const. at 25° is 1.58  $\times$  10<sup>-3</sup> (14); Neut. Eq. 120.5.

Salts. [K $\overline{A}$ , ndls. from alc. in which it is much more sol. (viz., 1 pt K $\overline{A}$  in 22 pts. 99.5% alc. at 16.5° (4)) than its stereoisomer (use in sepn. (2) (9)), eas. sol. aq., Ba $\overline{A}_2.31/2H_2O$ , eas. sol. aq. but spar. sol. alc. (8); Pb $\overline{A}_2.H_2O$ , ppt. (8).]

[For study of rate of reactn. of C with K<sub>3</sub>AsO<sub>3</sub> see (3)]

The acid chloride of C is unreported.

- Methyl α-chloroisocrotonate: unreported. [However, for study of rate of esterification of C with MeOH see (15).]
- Ethyl α-chloroisocrotonate: oil; see 3:9368. [Note also that C in EtOH with conc. H-SO<sub>4</sub> at 100° gives only (7) the stereoisomeric ethyl α-chlorocrotonate (3:8523).]
- ---- α-Chloroisocrotonamide: unreported.
- $\alpha$ -Chloroisocrotonanilide: unreported.
- $\alpha$ -Chloroisocroton- $\alpha$ -naphthalide: unreported.

3:1615 (1) Stelling, Z. physik. Chem. B-24, 423 (1934). (2) Pfeiffer, Ber. 43, 3045 (1910). (3) Backer, van Oosten, Rec. trav. chim. 59, 57-58 (1940). (4) Wislicenus, Ann. 248, 288, 290 (1888). (5) Wislicenus, Ber. 20, 1008-1010 (1887). (6) von Auwers, Ber. 56, 724 (1923). (7) von Auwers, Ann. 432, 62 (1923). (8) Michael, Browne, Am. Chem. J. 9, 284 (1887). (9) Michael, Schulthess, J. prakt. Chem. (2) 46, 255-256 (1892). (10) Michael, Pendleton, J. prakt. Chem. (2) 38, 4 (1888).

4 (1888).
 Wislicenus, Ann. 248, 337 (1889).
 Wisling, Chem. 3, 244 (1889).
 Wisland, Z. physik. Chem. 3, 244 (1889).

Michael, Oechslin, Ber. 42, 322 (1909).

White cryst. from MeOH, EtOH, lgr., or CHCl<sub>3</sub> by addn. of lt. pet. — Note that on distillation under reduced press.  $\bar{C}$  goes over with only slight decompn. as a green vapor which condenses to a green liquid; on solidification much of this color is lost and recrystallization yields colorless  $\bar{C}$ . —  $\bar{C}$  is quite stable in dark; in sunlight, however, it turns brown and decomposes.

65.5°

 $65^{\circ}$ 

(10)

(11) (12)

## PREPARATION OF C

[For prepn. of  $\bar{C}$  from benzoin (1:5210) with SOCl<sub>2</sub> in pyridine (yield 74-79% (9)) (5) or with SOCl<sub>2</sub> directly (yield 90% (6)) (2) (3) (10) (13) see indic. refs. — Note that l-benzoin with SOCl<sub>2</sub> undergoes racemization (7) yielding  $\bar{C}$ .]

[For form. of  $\bar{C}$  from  $\alpha,\alpha$ -dichlorobenzyl phenyl ketone (ms,ms-dichlorodesoxybenzoin) [Beil. VII-436, VII<sub>1</sub>-(234)] by partial dehalogenative reduction using  $H_2$  + platinum oxide cat. (65% yield (1)) or AcOH + Fe powder at 70-80° (15) see indic. refs.; from 1,2-diphenyl-1,2-epoxyethylene (diphenyloxene) with conc. HCl in s.t. at 120° for 2 hrs. see (11); from benzoyl-phenyl-diazomethane (azibenzil) [Beil. VII<sub>1</sub>-(395)] in ether with HCl gas see (12)]

## CHEMICAL BEHAVIOR OF C WITH INORGANIC REAGENTS

Reduction. [C̄ in alc. soln. with H<sub>2</sub> + platinum oxide cat. (1), or in AcOH with Fe powder on protracted treatment (14), gives benzyl phenyl ketone (desoxybenzoin) (1:5165).]

Oxidation. [C̄ with conc. HNO<sub>3</sub> on warming gives (14) dibenzoyl (benzil) (1:9015).]

Halogenation. [C with Br<sub>2</sub> (1 mole) in AcOH at 100° for ½-hr. gives (10) α-bromo-α-chlorobenzyl phenyl ketone, m.p. 85°.]

Behavior with alkalies and alkali carbonates. (For alc. alkalies see below under organic reactants.) —  $[\bar{C}$  with powdered KOH (3 moles) in toluene refluxed 2 hrs. loses HCl and rearranges giving (20% yield (11)) 1,2-diphenyl-1,2-epoxyethylene (diphenyloxene), b.p. 174-180° at 18 mm., m.p. 52°; note, however, that two later workers (15) (29) have been unable to duplicate this report. — Note, however, that  $\bar{C}$  with powdered KOH in dry ether gives (15) a mixt. of benzoic acid (1:0715), diphenylacetic acid (1:0765), desoxybenzoin (1:5165), and benzil (1:9015).]

[C with excess ignited Na<sub>2</sub>CO<sub>3</sub> at 200° without solvent for 1 hr. gives (11) a mixt. (yield not stated) of both stereoisomeric 1,2-dibenzoyl-1,2-diphenylethylenes (dibenzoylstilbenes): higher-melting isomer [Beil. VII-844], m.p. 232°; lower-melting isomer [Beil. VII-843, VII<sub>1</sub>-(453)], m.p. 212-214°.]

[Č with NaSH in alc. soln. in cold gives (16) benzoyl-phenyl-carbinyl mercaptan (desylthiol), m.p. 42-44° (benzoyl ester, m.p. 110-112° (16)), accompanied by two forms of didesyl sulfide, one of m.p. 168-169°, the other of m.p. 128-129° (16).

Behavior with metals. [ $\bar{C}$  with Na in  $C_6H_6$  evolves  $H_2$  and on warming gives a mixt. which with aq. followed by dil. acid gives (2) a mixt. of benzoic acid (1:0715) + benzilic acid (1:0770) together with an unidentified neutral oil.]

Behavior with other inorganic reactants. [Č with moist silver oxide in ethylene glycol at 100° for 3 hrs., then boiled 2 hrs., gives (29) 1,2-dibenzoyl-1,2-diphenylethane (bidesyl) [Beil. VII-841, VII<sub>1</sub>-(452)], m.p. 254-255° (29).]

# CHEMICAL BEHAVIOR OF C WITH ORGANIC REACTANTS

Behavior with arom. hydrocarbons + AlCl<sub>3</sub>.  $[\bar{C} \text{ with } C_6H_6 (1:7400) + AlCl_3 \text{ gives } (78\% \text{ yield } (17)) (18) (19) \omega, \omega-\text{diphenylacetophenone } (ms-\text{phenyldesoxybenzoin} = \text{triphenyl-vinyl alc.})$  [Beil. VII-522, VII<sub>1</sub>-(291)], m.p. 137° (19), 135–136° (17) (18).  $-\bar{C}$  with toluene (1:7405) + AlCl<sub>3</sub> gives (77% yield (17))  $\omega$ -phenyl- $\omega$ -(p-tolyl)acetophenone ( $\alpha$ -(p-tolyl)desoxybenzoin), m.p. 97–98° (17).  $-\bar{C}$  with mesitylene (1:7455) + AlCl<sub>3</sub> in CS<sub>2</sub> gives (13)  $\omega$ -phenyl- $\omega$ -mesitylacetophenone ( $\alpha$ -mesityldesoxybenzoin), m.p. 111–112° (13).] (See also below under reactn. of  $\bar{C}$  with RMgX cpds.)

Behavior with organic hydroxy or mercapto compounds. With alcohols (or alkoxides). [Č in MeOH with MeOH/NaOMe gives (80% yield (11)) 1,2-diphenyl-1-methoxy-1,2-epoxyethane, b.p. 194–196° at 16 mm., accompanied by some cis + trans dibenzoylstilbene (see above).]

[Č in EtOH with EtOH/NaOEt gives similarly a prod., b.p. 188° at 12 mm., regarded (11) as 1,2-diphenyl-1-ethoxy-1,2-epoxypropane. — Note, however, that  $\bar{\mathbb{C}}$  in EtOH/NaOEt or with alc. NaOH at 25° gives (5) cf. (1) benzoin (1:5210) and that under certain conditions an apparently intermediate benzoin diethylacetal  $C_6H_5CH(OH).C(OC_2H_5)_2.-C_6H_5$ , m.p. 66-67°, can be isolated (5).]

With phenols (or alkali phenates). [C with phenol + anhydrous K<sub>2</sub>CO<sub>3</sub> in acetone refluxed 5 hrs. (20) or C with Na phenate (21) gives (59% yield (20)) desyl phenyl ether (the phenyl ether of benzoin), m.p. 85.5° (21), 85° (20); note that this prod. is isomeric with, but different from, ms-phenylbenzoin [Beil. VIII-211], whose m.p is almost the same; note also that desyl phenyl ether on attempted distillation at ord. press. undergoes a fission into phenol and a cpd. regarded (21) as 2,2,4,4-tetraphenylcyclobutanedione-1,3, m.p. 244-245°.]

With mercaptans.  $[\bar{C} + \alpha$ -mercaptoacetic acid (thioglycolic acid) at 100° for 6 hrs. evolves HCl and yields (22) S-desylthioglycolic acid, m.p. 105° (corresp. oxime, m.p. 123°; corresp. semicarbazone, m.p. 178° (22)). —  $\bar{C}$  with  $\beta$ -mercaptopropionic acid at 100° for 6 hrs. evolves HCl and yields (16)  $\beta$ -(desylthio)propionic acid, m.p. 108-109°.]

[Č with thiophenol in EtOH/NaOEt gives in good yield (16) desyl phenyl sulfide, m.p. 83-84° (16), 81° (23). — Č in MeOH with aq. sodium thiosalicylate gives (22) S-desylthiosalicylic acid, m.p. 189°.]

Behavior with carbonyl compounds. [For behavior of  $\bar{C}$  with cyclohexanone + sodium in di-n-butyl ether see (24).]

Behavior with organic acids (or their salts). [ $\bar{C}$  with anhydrous NaOAc in excess Ac<sub>2</sub>O refluxed 1 hr. yields (11) mainly the  $\beta$ -stereoisomer, m.p. 153°, of 1,2-diacetoxy-1,2-diphenylethylene [Beil. VI-1026, VI<sub>1</sub>-(499)], accompanied by some of the more sol.  $\alpha$ -stereoisomer, m.p. 118°.]

 $[\ddot{\mathbf{C}} + \mathbf{K}$  thiobenzoate in abs. alc. boiled 10 min. gives (100% yield (16)) desyl thiobenzoate, m.p. 110-112°.]

[C in aq. alc. KCN does not directly eliminate KCl and give the corresp. desyl cyanide

(ms-cyanodesoxybenzoin) [Beil. X-755,  $X_1$ -(360)] which might be expected although this compd., m.p. 90-92° (25), 89-90° (26), is well known and preparable (yields 60% (25), 47% (26)) from benzyl cyanide + ethyl benzoate and otherwise. — Instead Č in aq. alc. KCN loses HCl and gives (27) (28) 1-cyano-1,2-diphenyl-1,2-epoxyethane ( $\alpha$ -cyano- $\alpha$ , $\beta$ -diphenyl-ethylene oxide) which obviously can exist in two geometrically stereoisomeric forms: one has m.p. 74° (27), 77-78° (28); the other has m.p. 52° (27); for much further detail especially with reference to further reactn. prods. of these epoxynitriles see (27) (28).

Behavior of  $\tilde{C}$  with RMgBr reactants. (See also above under behavior of  $\tilde{C}$  with hydrocarbons + AlCl<sub>3</sub>.)

[ $\bar{C}$  with  $C_6H_6MgBr$  (2 moles) gives (29) (21) the prod. normally to be expected, viz., 1,1,2,2-tetraphenylethanol-1 [Beil. VI-732, VI<sub>1</sub>-(364)], m.p. 236° (21) (30), 230.5° (29); the intermediate ketone, viz., ms-phenyldesoxybenzoin (for consts. see above reference) may sometimes (21) be formed, but for discussion of possible alternative mechanisms see (21) (29).]

Č with the three tolyl MgBr reactants has been studied, but the reaction is complex and shows no tendency to go way through to the expected tetraarylethanols (only one of which has been reported by any means). — [Č with o-tolyl MgBr (2 moles) gives (29) a mixt. of prods., including the expected intermediate ketone, viz, ms-(o-tolyl)desoxybenzoin, m.p. 56-57° (32); note, however, that the 1,2-diphenyl-1,2-di-(o-tolyl)ethanol-1 which should be the end prod. is unknown. — Č with m-tolyl MgBr gives (29) similarly a mixt. of prods. including the intermediate ketone, viz., ms-(m-tolyl)desoxybenzoin, m.p. 83-84° (32), 82.5-83.5° (29), 82-83° (33), but again the ultimate 1,2-diphenyl-1,2-di-(m-tolyl)ethanol-1 is unknown. — Č with p-tolyl MgBr (2 moles) gives (31) the ketone ms-(p-tolyl)desoxybenzoin, m.p. 97-98° (17), 96-97° (31); the ultimate 1,1-diphenyl-1,2-di-(p-tolyl)ethanol-1, m.p. 195-196°, has been obtd. by other means (29).]

Behavior of  $\bar{C}$  with amines. With primary amines.  $[\bar{C}$  (1 mole) with aniline (2 moles) in alc. at room temp. for 24 hrs. gives (6) N-(desyl)aniline (benzoin anil =ms-anilinodesoxybenzoin) [Beil. XIV-103, XIV<sub>1</sub>-(395)], mp. 99°; note that  $\bar{C}$  with aniline at 140–150° for 1hr. (34) ppts. aniline hydrochloride and leaves a mixt. contg. benzoin-anil = anilide (cf. (35)) since with benzaldehyde at 150-160° for 1 hr. under  $CO_2$  it yields pentaphenyldihydroimidazole (34). —  $\bar{C}$  with p-toluidine in alc. at room temp. for 24 hrs. gives (3) similarly N-(desyl)-p-toluidine (ms-(p-toluidino)desoxybenzoin), m.p. 145°.]

[For corresp. reactns. of  $\bar{C}$  with *m*-chloroaniline, *p*-chloroaniline, *m*-bromoaniline, *p*-iodoaniline, *p*-aminophenol, *p*-phenetidine, *p*-aminoacetanilide, or ethyl *p*-aminobenzoate see (3); for study of rate of this group of reactns. see (4); note that o-toluidine, o-chloroaniline, and o-anisidine do not undergo this reactn. (3).]

With secondary amines. [C̄ with Me<sub>2</sub>NH (2-3 moles) in alc. in s.t. at 100-110° gives (36) ms-(dimethylamino)desoxybenzoin, m.p. 59-61° (36).]

[ $\overline{C}$  (1 mole) with N-methylaniline (2 moles) in alc. refluxed  $2\frac{1}{2}$  hrs. gives (47% yield (3)) ms-(N-methyl-N-phenylamino)desoxybenzoin, m.p. 100°; if reactants in alc. are stood at room temp. for 100 days, yield is 61% (3).]

[ $\bar{C}$  with piperidine at 100° for 20 min. gives (8) ms-(piperidino)desoxybenzoin [Beil. XX<sub>1</sub>-(14)], m.p. 85–86° (8).]

With phenylhydrazine. C (1 mole) with phenylhydrazine (2 moles) in abs. alc. at room temp. for 3 days ppts. phenylhydrazine hydrochloride and yields (37) benzil bis-(phenylhydrazone) = benzil-phenylosazone, m.p. 233° dec. (37) [cf. under benzil (1:9015)].

N-Desylphthalimide [Beil. XXI-480, XXI<sub>1</sub>-(374)]: pale yel. cryst. from AcOH. m.p. 157-158° (38), 155-156° (39). [From C with K phthalimide at 100° for 2 hrs, (24% yield (39)); note that C + potassium phthalimide in nitrobenzene at 150-160°

for 1½ hrs. gives a mixt. of N-desylphthalimide with the lower-melting stereoisomer of dibenzovlstilbene (1,2-dibenzovl-1,2-diphenylethylene) [Beil. VII-843, VII<sub>1</sub>-(453)], m.p. 208° (39) (see also above).

3:1618 (1) Buck, Ide, J. Am. Chem. Soc. 54, 4363 (1932). (2) Schroeter, Caspar, Ber. 42, 2348-2349 (1909). (3) Cameron, Nixon, Basterfield, Trans. Roy. Soc. Canada (3) 25, III 145-156 (1931); Cent. 1932, I 2032; C.A. 26, 3250 (1932). (4) Cameron, Nixon, Basterfield, Trans. Roy. Soc. Canada (3) 25, III 157-169 (1931), Cent. 1932, I 2033; C.A. 26, 3251 (1932). (5) Ward, J. Chem. Soc. 1929, 1541-1553. (6) Cameron, Trans. Roy. Soc. Canada (3) 23, III 53-60 (1929); Cent. 1930, I 1133, C.A. 24, 610 (1930). (7) McKenzie, Wren, J. Chem. Soc. 97, 481-482 (1910). (8) Henley, Turner, J. Chem. Soc. 1931, 1185. (9) Ward, Org. Syntheses, Coll. Vol. 2 (1st ed.) 159-160 (1943), 12, 20-21 (1932). (10) Taylor, Forscey, J. Chem. Soc. 1930, 2276.

(11) Madelung, Oberwegner, Ann. 194, 224-234 (1931). (12) Curtius, Lang, J. prakt. Chem. (2) 44, 548-549 (1891). (13) Maxwell, Adams, J. Am. Chem. Soc. 52, 2970 (1930). (14) Lachowicz, Ber. 17, 1163 (1884). (15) Richard, Compt. rend. 197, 1432-1434 (1933). (16) Schönberg, Iskander, J. Chem. Soc. 1942, 93-94. (17) Koelsch, J. Am. Chem. Soc. 54, 2051 (1932). (18)Richard, Compt. rend. 200, 754 (1935). (19) Anschutz, Forster, Ann. 368, 93-94 (1909). Bradsher, Rosher, J. Am. Chem. Soc. 61, 1525 (1939).

(21) Richard, Compt. rend. 198, 1242-1244 (1934). (22) Behaghel, Schneider, Ber. 68, 1590, 1593 (1935). (23) Mitchell, Smiles, J. Chem. Soc. 1933, 1529. (24) Allen, Can. J. Research 4, 271-272 (1931). (25) Kohler, Blatt, J. Am. Chem. Soc. 50, 507-508 (1928). (26) Howk, McElvain, J. Am. Chem. Soc. 54, 286 (1932). (27) Kohler, Brown, J. Am. Chem. Soc. 55, 4299-4304 (1933). (28) Richard, Compt. rend. 198, 943-945 (1934). (29) Roger, McGregor, J. Chem. Soc. 1934, 1850-1853. (30) Wegler, Ber. 67, 35-39 (1934).

(31) McKenzie, Roger, McKay, J. Chem. Soc. 1932, 2603. (32) Roger, McKay, J. Chem. Soc. 1933, 336. (33) Roger, McGregor, J. Chem Soc. 1932, 443. (34) Langenbeck, Hutschenreuter, Juttemann, Ann. 485, 54, 57-58 (1931). (35) Strain, J. Am. Chem. Soc. 50, 2221 (1928). (36) Thomson, Stevens, J. Chem. Soc. 1932, 1937. (37) Bodforss, Ber 71, 481 (1939). (38) Neumann, Ber. 23, 995 (1890). (39) McKenzie, Barrow, J. Chem. Soc. 103, 1333 (1913).

3:1620 2,4,5-TRICHLOROPHENOL

$$\begin{array}{c|c} \text{OH} & \text{C}_6\text{H}_3\text{OCl}_3 & \text{Beil. VI} -\\ \text{Cl} & \text{VI}_1-\\ \text{VI}_{2^-}(180) \end{array}$$

Colorless ndls. from alc. or lgr. — Volatile with steam. — Sublimes.

[For prepn. of C from 1,2,4,5-tetrachlorobenzene (3:4115) with MeOH/NaOH in s.t. at 160° for 7 hrs. (yields: 85% (5), 80% (10)) (note that by this method  $\bar{C}$  is sometimes sole product (5), at others is accompanied (7) (10) by some of its methyl ether (2,4,5trichloroanisole) (see below)) see indic. refs.; from 2,4,5-trichloroaniline via diazotization in conc. H<sub>2</sub>SO<sub>4</sub> as directed followed by htg. at 170-180° (65% yield (9)) see indic. refs.: from 2,4,5-trichloro-1-fluorobenzene with NaOMe see (6); from 3,5,6-trichloro-2-hydroxybenzoic acid by htg. with soda-lime at 185° see (3); from 2,4-dichloro-5-aminophenyl oamino-p-toluenesulfonate via diazotization, use of Cu<sub>2</sub>Cl<sub>2</sub> reactn., and subsequent hydrolysis as directed see (4); from 2,5-dichlorophenol (3:1190) with Cl<sub>2</sub> in AcOH (9) or in AcOH + NaOAc (4) see indic. refs.l

 $\bar{C}$  behaves as a weak monobasic acid (ioniz. const. at  $25^{\circ} = 4.3 \times 10^{-8}$  (2)) but can be titrated with N/10 aq. NaOH; Neut. Eq. calcd. 197.5, found 197.1 (1). — C forms a spar. sol. K salt (4). —  $\bar{C}$  in toluene treated with MeOH/NaOH yields (11) anhydrous Na salt; from aq. this prod. cryst. as pentahydrate (12). — [For prepn. of Na, K, or Li salts see (12), of Ca or Ba salts see (13), of Zn salt see (14). — For use of these salts as fungicides see (11) (12) (13) (14) (15); for use of  $\bar{C}$  with triphenyl phosphate as wood preservative see (16).]

Č with Br<sub>2</sub> in AcOH (9) or with excess Br<sub>2</sub>/aq. (17) yields 6-bromo-2,4,5-trichlorophenol, cryst. from AcOH or lt. pet., m.p. 81-82° (17), 81° (9) (corresp. benzoate, m.p. 116-117° (9)). — Č with Br<sub>2</sub> in pres. of Fe powder yields (9) 3,6-dibromo-2,4,5-trichlorophenol, ndls. from AcOH, m.p. 195° (9) (corresp benzoate, m.p. 176° (9)).

 $\bar{C}$  treated below 10° with conc. HNO<sub>3</sub> (D=1.43) in AcOII gives (90% yield (5)) 6-nitro-2,4,5-trichlorophenol, pale yel. lfts. from lgr., m.p. 92-93° (5), 81° (9).

Č dislvd. in 20% NaOH refluxed with Me<sub>2</sub>SO<sub>4</sub> gives (78.5% yield (5)) (9) corresp. methyl ether (2,4,5-trichloroanisole), ndls. from alc., m.p. 75° (5), 77.5° (9).

- ① 2,4,5-Trichlorophenyl benzoate: ndls. from alc, m.p. 92-93° (9), 91-92° (4), 89-90° (3). [From C in dil. alk. by shaking with benzoyl chloride (9).]
- ② 2,4,5-Trichlorophenoxyacetic acid: m.p. 153° (see 3:4335).

3:1620 (1) Tiessens, Rec. trav. chim. 50, 114 (1931). (2) Tiessens, Rec. trav. chim. 48, 1068 (1929). (3) Farinholf, Stuart, Twiss, J. Am chem Soc. 62, 1240 (1940). (4) Groves, Turner, Sharp, J. Chem. Soc. 1929, 516-517. (5) Harrison, Peters, Rowe, J. Chem. Soc. 1943, 235-237. (6) de Crauw, Rec. trav. chim. 48, 1064-1065 (1929). (7) Holleman, Rec. trav. chim. 39, 736-738 (1920). (8) A G F A, Ger. 349,794, March 9, 1922, Cent. 1922, IV 45. (9) Kohn, Fink, Monatsh 58, 83-86 (1931). (10) A.G F A, Ger. 411,052, March 23, 1925, Cent. 1925, I 2411.

(11) Mills (to Dow Chem Co), U.S. 1,955,080, April 17, 1934, Cent 1934, II 1991. (12) Mills (to Dow Chem Co), U.S. 1,991,329, Feb. 12, 1935, Cent. 1935, II 2430. (13) Mills (to Dow Chem Co), U.S. 2,039,431, May 5, 1936, Cent 1937, I 984 (14) Mills (to Dow Chem Co), U.S. 1,994,002, March 12, 1935, Cent 1935, II 2431 (15) Ellis (to Insulte Co.), U.S. 2,161,654, June 6, 1939, Cent 1939, II 4620 (16) Norton (to Dow Chem. Co), U.S. 2,304,013, Dec. 1, 1942, C.A. 37, 2908 (1943). (17) Fox, Turner, J. Chem. Soc. 1930, 1863

#### 3:1625 1,4,6-TRICHLORONAPHTHALENE

M.P. 69° (4)

68° (1)

65° (2) (3) (5) (7)

58° (1)

56° (2) (3) (7) (8) see text

Ndls. from alc.; spar. sol. boilg. alc. (2). — Volatile with steam. — Sublimes.

 $\bar{C}$  shows the double m.p. phenomena also exhibited by several of its isomers; if the fused  $\bar{C}$  in a m.p. tube is allowed to cool and then withdrawn from the bath it soon solidifies to a translucent mass which upon immediate reimmersion melts at 58°, but if left for a short time in the air it becomes opaque and then shows m.p. 68°; the translucent form rarely persists more than 20 min. (1).

[For prepn. of  $\bar{C}$  from 5,8-dichloronaphthylamine-2 [Beil. XII-1310] via diazotization and use of  $Cu_2Cl_2$  reactn. see (4); for prepn. of  $\bar{C}$  from 1,6-dichloro-4-nitronaphthalene [Beil. V-556] (5) (2), from 4,6-dichloronaphthalenesulfonyl chloride-1 [Beil. XI-162] (6), from 4,7-dichloronaphthalenesulfonyl chloride-1 [Beil. XI-163] (7), from 1,4-dichloronaphthalenesulfonyl chloride-7 [Beil. XI-183] (8) (6), from 1-chloro-4-nitronaphthalene-

sulfonyl chloride-6 [Beil XI-189] (9), from 1-chloro-4-nitronaphthalenesulfonyl chloride-7 [Beil. XI-188] (9), from 1-chloronaphthalene-4,6-bis-(sulfonyl chloride) [Beil. XI-215] (3), or from 1-chloronaphthalene-4,7-bis-(sulfonyl chloride) [Beil. XI-214] (2), each with PCl<sub>5</sub> as directed, see indic. refs.]

[Č treated with ClSO<sub>3</sub>H in CS<sub>2</sub> and reaction prod. converted to salts as directed (1) yields sodium 1,4,6-trichloronaphthalenesulfonate-X (corresp. sulfonyl chloride, m.p. 144° (1)).]

[C on oxidn. with dil. HNO<sub>3</sub> in s.t. at 150-160° for several days (8) yields a dichloro-nitro-phthalic acid not further characterized.]

3:1625 (1) Turner, Wynne, J. Chem. Soc. 1941, 247, 254. (2) Armstrong, Wynne, Chem. News 61, 94 (1890). (3) Armstrong, Wynne, Chem. News 62, 162-163 (1890). (4) Claus, Jack, J. prakt. Chem. (2) 57, 3-4 (1898). (5) Cleve, Bull. soc. chim. (2) 29, 500 (1878). (6) Armstrong, Wynne, Chem. News 61, 273, 275 (1890). (7) Cleve, Ber. 24, 3479 (1891). (8) Widman, Ber. 12, 962 (1879). (9) Cleve, Chem. Zig. 17, 398 (1893).

#### 3:1655 1,4-DICHLORONAPHTHALENE

$$\begin{array}{c} \text{Cl} & \text{Cl}_{10}\text{H}_6\text{Cl}_2 & \text{Beil. V - 542} \\ & & \text{V}_{1^-}(262) \\ & & \text{V}_{2^-}(445) \end{array}$$

| M.P. | 68-69°     | (1)  |      | B.P. 2 | 86-28 <b>7</b> ° | at 740 mm. | (7) |
|------|------------|------|------|--------|------------------|------------|-----|
|      | 68°        | (2)  | (14) | 14     | 47°              | at 12 mm.  | (2) |
|      |            | (16) | (22) |        |                  |            |     |
|      |            | (24) | (36) |        |                  |            |     |
|      | 67-68°     | (3)  | (30) |        |                  |            |     |
|      | 67.5°      | (15) | (33) |        |                  |            |     |
|      | 67°        | (17) |      |        |                  |            |     |
|      | 67.4-68°   | (4)  |      |        |                  |            |     |
|      | 66.6-67°   | (5)  |      |        |                  |            |     |
|      | 66.5°      | (6)  |      |        |                  |            |     |
|      | 66-67°     | (7)  | (18) |        |                  |            |     |
|      | 65.5-66.5° | (8)  |      |        |                  |            |     |
|      | 65-66°     | (9)  |      |        |                  |            |     |
|      | 63-64°     | (10) |      |        |                  |            |     |

Ndls. from alc.; spar. sol. alc., more sol. AcOH, very eas. sol. acetone.

[For sepn. of  $\bar{C}$  from mixts, with  $\alpha$ -chloronaphthalene (3:6878) via sulfonation of the latter sec (11); for use of  $\bar{C}$  as wood impregnant see (12).]

[For prepn. of  $\bar{C}$  from 1-aminonaphthalenesulfonic acid-4 (naphthionic acid) [Beil. XIV-739, XIV<sub>1</sub>-(732)] via convn. to diazonium salt and htg. with PCl<sub>5</sub> (13) in POCl<sub>3</sub> (7) (3) (6) see indic. refs.; from 1,4-dichloronaphthylamine-7 [Beil. XII-1310] via diazotization and reactn. with alc. see (14); for prepn. of  $\bar{C}$  from 4-chloronaphthalenesulfonyl chloride [Beil. XI-160] with PCl<sub>5</sub> (yields: 65–70% (5), 49% (4)) (15) (16) see indic. refs.; from K 4-bromonaphthalenesulfonate-1 [Beil. XI-164] (17), from naphthalene-1,4-bis-(sulfonyl chloride) [Beil. XI-212] (9), from 4-nitronaphthol-1 [Beil. VI-615] (18), from 1-chloro-4-nitronaphthalene [Beil. V-555, V<sub>1</sub>-(264)] (18), with PCl<sub>5</sub> as directed see indic. refs.]

[For prepn. of  $\tilde{C}$  from naphthalene (1:7200) with SOCl<sub>2</sub> in s.t. at 170-180° (10), with 2 moles SO<sub>2</sub>Cl<sub>2</sub> at 140-160° (19), with Cl<sub>2</sub> + FeCl<sub>3</sub> in CCl<sub>4</sub> at 0° (together with other products) (20), or with HOCl (8) see indic. refs.; from 1-chloronaphthalene (3:6878) with SO<sub>2</sub>Cl<sub>2</sub> at 100-180° (21) or with Cl<sub>2</sub> (together with other products) (1) see indic. refs.; for formn.

of  $\bar{C}$  from naphthalene 1,2,3,4-tetrachloride (3:4750) on htg. at b.p. (22) or by actn. of alc. KOH (23) (24) (25) (26) (33).]

[ $\tilde{C}$  with benzoyl chloride (3:6240) + AlCl<sub>3</sub> in CS<sub>2</sub> yields (27) 1,4-dichloro-8-benzoyl-naphthalene, m.p. 104–105° (27), which with alc. gives (28) isoviolanthrone; for reactn. of  $\tilde{C}$  with phthalic anhydride see (29).]

[ $\bar{C}$  on mononitration with HNO<sub>3</sub> (D=1.45) yields (30) 1,4-dichloro-8-nitronaphthalene Beil. V-556, V-1(264)], m.p. 92° (30), 93° (31); note that the isomeric 1,4-dichloro-2-nitronaphthalene, m.p. 116.5°, has been obtd. only by indirect means (32).]

[Č on monosulfonation with fumg. H<sub>2</sub>SO<sub>4</sub> at 160°, with sulfuric acid monohydrate at ord. temp. (34), or with ClSO<sub>3</sub>H in CS<sub>2</sub> (33) yields 1,4-dichloronaphthalenesulfonic acid-6 [Beil. XI-183, XI<sub>1</sub>-(41)] (corresp. sulfonyl chloride, m.p. 132° (33), corresp. sulfonamide, m.p. 244° (33)).]

 $\bar{C}$  on oxidn. with boilg. dil. HNO<sub>3</sub> (D=1.3) yields (35) 3,6-dichlorophthalic acid (3:4870);  $\bar{C}$  on oxidn. with CrO<sub>3</sub>/AcOH yields (36) 5,8-dichloronaphthoquinone-1,4 [Beil. VII-730], yel. ndls. from alc., m.p. 173-174° (36), together with 4,7-dichlorophthalide [Beil. XVII-312], m.p. 163° (36).

3:1655 (1) Turner, Wynne, J. Chem. Soc. 1941, 245. (2) von Auwers, Frühling, Ann. 422, 195 (1921). (3) Weissberger, Sangewald, Hampson, Trans. Faraday Soc. 30, 890 (1934). (4) Beattie, Whitmore, J. Am. Chem. Soc. 55, 1546-1548 (1933). (5) Zil'bermann, Rashevskaya, Martyntseva, J. Applied Chem. (U.S.S.R.) 9, 1832-1840 (1936); Cent. 1937, I 4786, C.A. 31, 2597 (1937). (6) Wahl, Vermeylen, Compt. rend. 184, 334-336 (1927). (7) Erdmann, Ann. 247, 351-352 (1888). (8) Klingstedt, Wiese, Rudback, Acta Acad. Aboensis Math. et Phys. 4, No. 2, 1-36 (1927); Cent. 1928, I 504; C.A. 23, 1309 (1929). \*(9) Ferrero, Bolliger, Helv. Chim. Acta 11, 1146-1147 (1928). (10) Meyer, Monatsh. 36, 728-729 (1915).

(11) Holscher (to Deutsche Solvay-Werke), Ger. 695,690, Aug. 1, 1940; C.A. 35, 5519 (1941). (12) Röchling'sche Eisen und Stahlwerke, Ger. 415,228, June 16, 1925, Cent. 1925, II 1239. (13) Cleve, Ber. 10, 1723-1724 (1877). (14) Claus, Philipson, J. prakt. Chem. (2) 43, 60 (1891). (15) Cleve, Bull. soc. chim. (2) 26, 242-243 (1876). (16) Cleve, Arnell, Bull. soc. chim. (2) 39, 62 (1883). (17) Cleve, Jolin, Bull. soc. chim. (2) 28, 516 (1877). (18) Atterberg, Ber. 9, 1187 (1876). (19) Farbwerke Meister Lucius Brüning, Ger. 286,489, Oct. 22, 1913, Cent. 1915, II 677, C.A. 10, 1912 (1916). (20) B.A.S.F., Ger. 234,912, May 26, 1911; Cent. 1911, II 63.

(21) Armstrong, Chem. News 66, 189 (1892).
(22) Krafft, Becker, Ber. 9, 1089 (1876).
(23) Faust, Saame, Ann. 160, 66, 70 (1871).
(24) Widman, Ber. 15, 2161 (1882).
(25) Cleve, Ber. 23, 954 (1890).
(26) Armstrong, Wynne, Chem. News 58, 264 (1888).
(27) I.G., French 664,016, Aug. 28, 1929, Cent. 1930, I 1221.
(28) I.G., Brit. 303,123, Feb. 20, 1929, Cent. 1929, I 2705.
(29) Waldmann, J. prakt. Chem. (2) 131, 80 (1931).
(30) Widman, Bull. soc. chim. (2) 28, 509 (1877).

(31) Friedlander, Karamessinis, Schenk, Ber. 55, 46, 50 (1922). (32) Hodgson, Crook, J. Chem. Soc. 1936, 1500-1503. (33) Armstrong, Wynne, Chem. News 61, 273, 284 (1890). (34) B.A.S.F., Ger. 229, 912, Jan. 11, 1911, Cent. 1911, I 358. (35) Atterberg, Bull. soc. chim. (2) 27, 409 (1877), Ber. 10, 547 (1877). (36) Guareschi, Ber. 19, 1155 (1886).

3:1670 3,5-DICHLOROPHENOL

Cryst. (from pet. eth. (1)). — Spar. sol. cold aq., fairly eas. sol. hot aq. (2). Volatile with steam (3). [For study of dissociation const. see (7).]

[For prepn. from 3,5-dichloroaniline [Beil. XII-626] via diazo reaction see (1) (2) (3) (4); for prepn. from 1,3,5-trinitrobenzene via 3-amino-5-chloroanisole see (5) or via 3,5-dichloroanisole see (6).]

 $\bar{C}$  is readily nitrated; e.g.,  $\bar{C}$  (16 g.) dislvd. in a soln. of NaNO<sub>3</sub> (12 g.) in aq. (180 ml.), treated during 1 hr. at 90–100° by grad. addn. of dil. H<sub>2</sub>SO<sub>4</sub> (1:5; 48 ml.), htd. 2 hrs. then steam-distd., gave (3) in distillate 3,5-dichloro-2-nitrophenol (5 g.), lemon-yel. ndls. from pet. ether m.p. 51°, and by repeated hot dil. HCl extraction of tarry residue 3,5-dichloro-4-nitrophenol (6 g.) pale yel. ndls. from aq., m.p. 150° (3). [This latter product also results from the action of nitrous acid (3).]

C dislyd. in 4 pts. AcOH and treated with 3 pts. fumg. HNO<sub>3</sub> for ¾ hr. at 70° (2) gives (60% yield (2)) of 3,5-dichloro-2,4,6-trinitrophenol, pale yel. pr. from AcOH, m.p. 139-140° cor. (2).

C dislyd in 5 pts. AcOH gives with Br<sub>2</sub> (as specified (4)) 100% yield of 3,5-dichloro-2,4,6-tribromophenol, cryst. from AcOH, m.p. 189° (4).

C dislyd in aq. NaOH and shaken with (CH<sub>3</sub>)<sub>2</sub>SO<sub>4</sub> gives the methyl ether, 3,5-dichloroanisole, m.p. 39° (6). [The value of 68° given in Ref. 6, p. 104, is probably erroneous.]

- ① 3,5-Dichlorophenyl acetate: m.p. 38° (5).
- (5) 3.5-Dichlorophenyl benzoate: m.p. 55° (5).

3:1670 (1) Blanksma, Rec. trav. chim. 27, 29-30 (1908). (2) Willstatter, Schudel, Ber. 51, 784-787 (1918) (3) Hodgson, Wignall, J. Chem. Soc. 1927, 2217-2218. (4) Kohn, Pfeifer, Monatsh.
 48, 237-239 (1927). (5) Hodgson, Wignall, J. Chem. Soc. 1926, 2077-2079. (6) Holleman, Rec. trav. chim. 37, 103-107, 201 (1918). (7) Murray, Gordon, J. Am. Chem. Soc. 57, 110-111 (1935).

| M.P. | 69.5°       | (1)             | B.P. 246°    | at 760 mm. (1) |
|------|-------------|-----------------|--------------|----------------|
|      | 69° u.c.    | (2)             | 245°         | (8)            |
|      | 69°         | (3) (4)         | 243.5-244.5° | (12)           |
|      | 68°         | (5) (6) (7) (8) | 242-246°     | at 748 mm. (9) |
|      | 67-68°      | (9) (10) (11)   |              |                |
|      |             | (12) (23)       |              |                |
|      | 67.0°       | (13)            |              |                |
|      | 67°         | (14)            |              |                |
|      | 66.7°       | (15)            |              |                |
|      | 66-67° cor. | (16)            |              |                |

Colorless cryst. from lgr. — Ndls. with 1 mole solvate from AcOH, latter lost over CaO (17).

 $\bar{\mathbf{C}}$  is almost insol. aq.: 1000 g. aq. at 11.2° dis. 0.51 g.  $\bar{\mathbf{C}}$  {14}; at 25.4°, 0.858 g.  $\bar{\mathbf{C}}$  {14}; at 96°, 2.43 g.  $\bar{\mathbf{C}}$  {14}. —  $\bar{\mathbf{C}}$  is volatile with steam, but not from alk. soln (difference and sepn. from o-chlorophenol (3:5980) or p-chlorophenol (3:0475) {18}). —  $\bar{\mathbf{C}}$  is eas. sol. alc. or ether.

Binary systems contg.  $\bar{C}$ . —  $\bar{C}$  + nitrobenzene: this system forms a 1:1 molecular compound, m.p. 31°; this compd. forms with  $\bar{C}$  a cutectic, m p 28 7° contg. 65 wt. %  $\bar{C}$ , and with nitrobenzene a cutectic, m p. + 2.0° contg. 15 5 wt. %  $\bar{C}$ ; for data and f p./compn. diagram see (13). —  $\bar{C}$  + diphenylamine: for partial f p./compn. data and diag. see (19). —  $\bar{C}$  + 2,4,6-tribromophenol: for f.p./compn. data and diag. see (20). —  $\bar{C}$  +  $\alpha,\alpha,\alpha,\alpha'$ -tetramethylphthalan: for study of this system see (15). —  $\bar{C}$  + 2,4,6-trinitroresorcinol (styphnic acid): forms no mol. cpd. but gives a cutectic, m.p. 60° contg. 91.8%  $\bar{C}$  (21).

#### PREPARATION OF C

From phenol. By direct action of chlorine. [For prepn. of  $\tilde{C}$  from phenol (1:1420) with  $Cl_2$  see (3) (for very old initial work of (22) (12)); with  $Cl_2$  + aq. alk. (i.e., with NaOCl) see (23) (16) (24).]

By indirect action of chlorine. [For prepn. of  $\bar{C}$  from phenol (1:1420) by chlorination with ethyl N,N-dichlorocarbamate (25), with N,N'-dichlorourea (26), with conc. HCl + 30% H<sub>2</sub>O<sub>2</sub> (27), or with HCl + KClO<sub>3</sub> (28) (29) see indic. refs ]

From other phenols or their relatives. [For formn. of  $\bar{C}$  from 2,4,6-trichloro-3-hydroxybenzaldehyde (6) by elimination of the aldehyde group with 50% aq. KOH at 60-70° for 4 hrs. (89.9% yield) see (6); from 2,4,6-trichloro-3-bromophenol (see below) or from 2,4,6-trichloro-3,5-dibromophenol (see below) by replacement of Br by H through use of Zn + AcOH see (9); from 2,4,6-tribromophenol [Beil. VI-203, VI<sub>1</sub>-(107)] by replacement of all bromine by chlorine using Cl<sub>2</sub> in AcOH see (30).]

[For form. of  $\tilde{C}$  from phenol-p-sulfonic acid [Beil. XI-241, XI<sub>1</sub>-(55)] (10) or its alkali salts (31) (32) in aq. soln. with  $Cl_2$  (100% yield (10)) see indic. refs.; from aq p-hydroxyazobenzene [Beil. XVI-96, XVI<sub>1</sub>-(233)] (75% yield (11)), from benzyl phenyl ether [Beil. YI-432, VI<sub>1</sub>-(220)] (33), from o-hydroxybenzyl alcohol (saligenin) (1:1490) (34) with  $Cl_2$  see indic. refs.; from dipotassium salt of salicylic acid (1:6780) with aq. KOCl (4 moles) see (8).

From other miscellaneous sources. [For formn. of  $\tilde{C}$  from aniline in HCl soln. with Cl<sub>2</sub> see (35); from 2,4,6-trichloroamline via diazotization and subsequent hydrolysis as directed see (7); from indigo [Beil. XXIV-417, XXIV<sub>1</sub>-(370)] in aq. suspension with Cl<sub>2</sub> see (36) (37); from benzene (1:7400) with Cl<sub>2</sub>O see (38); from 2,4,6-trichlorophenyl hypochlorite (see below) by warming with acids or alkalies see (75).]

## USES OF C (OR ITS SALTS)

Although the topic cannot here be exhaustively pursued, the bactericidal, fungicidal, and general antiseptic action of  $\bar{C}$  or its salts has attracted much attention [for examples of useful articles in this general connection, see (39) (40) (41) (42) (43) (44) (45) (46); for patents on use of  $\bar{C}$  or its salts in the indicated fields see the following: for use of  $\bar{C}$  (with triaryl phosphates) as wood preservative (47), as preservative for glue (48), as insecticide and fungicide for board-like compns. from vegetable fibers (49), as bactericide (50) (51), as Na $\bar{A}$  for anti-mildew treatment of textiles (52), as textile asst. in mercerization (53); for various complexes contg.  $\bar{C}$  and intended for use as insecticides, etc., see (54) (55) (56)].

## CHEMICAL BEHAVIOR OF C

Reduction of  $\bar{C}$ . [The catalytic hydrogenation of  $\bar{C}$  apparently has not been extensively studied, but it is said (57) to be more stable toward  $H_2 + PdCl_2$  than the corresponding 2,4,6-tribromophenol.]

Oxidation of  $\bar{C}$ .  $\bar{C}$  on oxidn. gives various products according to circumstances [e.g.,  $\bar{C}$  in 2 N H<sub>2</sub>SO<sub>4</sub> on electrolytic oxidn. gives (58) 2,6-dichlorohydroquinone (3:4600);  $\bar{C}$  on oxidn. with CrO<sub>3</sub>/AcOH (59) (60) (61) (62) (63), with cold fumg. HNO<sub>3</sub> (12) (63), with HNO<sub>3</sub>/H<sub>2</sub>SO<sub>4</sub> (64), with NO + NO<sub>2</sub> in alc. (65) (66) or AcOH (61), or with PbO<sub>2</sub> in AcOH or C<sub>6</sub>H<sub>6</sub> (61) gives (yields: 69% (59), 45% (60), 27% (61)) 2,6-dichlorobenzoquinone-1,4 (3:3750) (note that this product may be accompanied (61) by more or less 2-chloro-6-(2',4',6'-trichlorophenoxy)benzoquinone-1,4, m.p. 134-135°, and 2,6-bis-(2',4',6'-trichlorophenoxy)benzoquinone-1,4, m.p. 245°, which resemble the main prod. in appearance, composition, and behavior (61))].

[C on oxidn. with boilg. mixt. of conc. HNO<sub>3</sub> + HCl gives (16) 2,3,5-trichlorobenzoquinone-1,4 (3:4672).]

[ $\bar{C}$  on oxidn. with ClSO<sub>3</sub>H (67), with Cl<sub>2</sub> + fumg. H<sub>2</sub>SO<sub>4</sub> followed by ClSO<sub>3</sub>H (68), with aqua regia (69) (70) (72), with HCl + KClO<sub>3</sub> (28) (16), with CrO<sub>3</sub>/AcOH (71) or K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>/H<sub>2</sub>SO<sub>4</sub> (71) gives (90% yield (68)) 2,3,5,6-tetrachlorobenzoquinone-1,4 (chloranil) (3:4978).]

[For study of oxidn. potential of C see (73).]

Nuclear substitution of  $\bar{C}$ . Chlorination.  $[\bar{C}$  in HCl suspension with Cl<sub>2</sub> (74) or in AcOH soln. with Ca(OCl)<sub>2</sub> (75) gives 2,4,6-trichlorophenyl hypochlorite (2,4,4,6-tetrachlorocyclohexadien-2,5-one-1) [Beil. VII-147, VII<sub>1</sub>-(96)], scales from ether/pet. ether, m.p. 122° (75) (10), 121-122° (76), 119° (74)]

[ $\tilde{C}$  with  $Cl_2 + SbCl_5$  at not above 130° gives (77) 2,3,4,4,5,6-hexachlorocyclohexadien-2,5-one-1 ("hexachlorophenol") (3:3180), m.p. 107°.]

[ $\bar{\mathbb{C}}$  with  $\operatorname{Cl}_2$  (3) in pres. of  $\operatorname{I}_2$  at 40° (78), or  $\bar{\mathbb{C}}$  with  $\operatorname{Cl}_2$  in  $\operatorname{CCl}_4$  in pres. of FeCl<sub>3</sub> (79), or  $\bar{\mathbb{C}}$  with  $\operatorname{Cl}_2$  in pres. of SbCl<sub>3</sub>,  $\operatorname{I}_2$ , or FeCl<sub>3</sub> at 70–75° (80), gives 2,3,4,6-tetrachlorophenol (3:1687), m p. 69°.]

[C with Cl<sub>2</sub> in pres. of SbCl<sub>3</sub>, I<sub>2</sub>, or FeCl<sub>3</sub> at 135-140° gives (81) pentachlorophenol (3:4850), m.p. 190°.]

[C with FeCl<sub>3</sub> (no details) yields (14) 1,2,3,5-tetrachlorobenzene (3:0915), m.p. 51°.]

Bromination. [C with Br<sub>2</sub>/aq. KBr soln. as directed (82) (83) gives a monobromo derivative of C frequently designated as "trichlorophenol bromide"; which of the three structures 4-bromo-2,4,6-trichlorocyclohexadien-2,5-one-1, or 2,4,6-trichlorophenyl hypobromite should be assigned to this prod. has never been decisively settled (83); however, on oxidn. with fumg. HNO<sub>3</sub> it gives (82) 2,6-dichlorobenzoquinone-1,4 (3:3750) and with cone. H<sub>2</sub>SO<sub>4</sub> at 100° isomerizes (82) to 3-bromo-2,4,6-trichlorophenol, m.p. 73° (9) (corresp. benzoate, mp 117° (82))]

[C with Br<sub>2</sub> (large excess) + Fe powder at room temp. for 24 hrs. gives (100% yield (84)) cf. (85) 3,5-dibromo-2,4,6-trichlorophenol, cryst. from AcOH, m.p. 204° cor. (corresp. methyl ether, m.p. 127°; corresp. benzoate, m.p. 196° (84)).]

Nutration. [The direct nitration of  $\bar{C}$  has not been reported, presumably because nitration reagents readily oxidize free  $\bar{C}$  to 2,6-dichlorobenzoquinone-1,4 (3:3750) (see above under oxidn. of  $\bar{C}$ ). — However, both possible nitration products have been obtained by indirect means: for 3-nitro-2,4,6-trichlorophenol, m.p. 71-72°, see (86); for 3,5-dinitro-2,4,6-trichlorophenol, m.p. 165-167°, see (87).]

Sulfonation. [C with fumg. H<sub>2</sub>SO<sub>4</sub> (65% SO<sub>3</sub>) at 50° gives (93% yield (88) 2,4,6-tri-chlorophenolsulfonic acid-3.]

Miscellaneous [Č with SCl<sub>2</sub> + AlCl<sub>3</sub> in CS<sub>2</sub> or CCl<sub>4</sub> gives (89) a product, m.p. 285°, which may be 3,3'-dihydroxy-2,4,6,2',4',6'-hexachlorodiphenyl sulfide ]

Reactions of the phenolic group of C. (See also under O's below.)

Acidic character of  $\tilde{C}$ .  $\tilde{C}$  in aq. behaves as an acid and can be titrated with N/10 aq. NaOH (3); Neut. Eq. = 197 5. — [Data on dissoc. const. of  $\tilde{C}$  include the following: in aq. at 25°  $1.0 \times 10^{-7}$  (90),  $3.9 \times 10^{-7}$  (2) cf. (91) (92). — For study of acid strength of  $\tilde{C}$  in formamide see (93). — For study of exchange reaction of  $\tilde{C}$  with heavy water see (94).]

Salts of  $\bar{C}$ . [NH<sub>4</sub> $\bar{A}$ : spar. sol. cold aq., eas. sol. hot aq. (22), somewhat spar. sol. alc. (24); loses NH<sub>3</sub> in air (12). — K $\bar{A}$ , ½H<sub>2</sub>O: (24) (12). — Na $\bar{A}$ : prepn. (95), behavior with I<sub>2</sub> in various solvents (95) (96), behavior with chloroacetone (3:5425) giving acctonyl 2,4,6-trichlorophenyl ether, m.p. 75° (96).]

 $Mg\bar{A}.2H_2O$ : eas. sol. aq. (12). —  $Ba\bar{A}_2.4H_2O$ : spar. sol. aq. (12). —  $Pb\bar{A}_2$  (12).

AgA.H<sub>2</sub>O: yellow (97) [study of decompositions (98) (96) (99)].

Etherification of  $\bar{C}$ . (See also below under  $\mathbb{O}$ 's.)

[ $\bar{C}$  with 1,2-dibromoethane (ethylene dibromide) in alk. soln. gives (100)  $\beta$ -bromoethyl 2,4,6-trichlorophenyl ether, m.p. 47–48°. —  $\bar{C}$  with ethylene oxide (1:6105) in alc. NaOEt gives (101)  $\beta$ -hydroxyethyl 2,4,6-trichlorophenyl ether, m.p. 77° (101) (for study of rate of this reaction see (102)). —  $\bar{C}$  (as Na $\bar{A}$ ) with benz-o-chlorophenylimino-chloride gives (103) N-(o-chlorophenyl)benzimino 2,4,6-trichlorophenyl ether, m.p. 99–100°, which at 250–270° for 2 hrs. rearr. (103) to the N-benzoyl derivative (m.p. 131–132°) of 2,4,6,2'-tetrachloro-diphenylamine. —  $\bar{C}$  with 2,4,6-trichlorobenzyl chloride + NaOH gives (104) 2,4,6-trichlorobenzyl 2,4,6-trichlorophenyl ether, m.p. 101–103°.]

Esterification of  $\bar{C}$ . (See also below under  $\mathbb{D}$ 's.)

- [ $\bar{C}$  with SOCl<sub>2</sub> in pyridine + C<sub>6</sub>H<sub>6</sub> gives (4) bis-(2,4,6-trichlorophenyl) sulfite, cryst. from C<sub>6</sub>H<sub>6</sub>, m p. 87-88°; note, however, that this prod. is unstable and even within a few hours reverts to  $\bar{C}$ .]
- [ $\bar{C}$  with PCl<sub>5</sub> in C<sub>6</sub>H<sub>6</sub> gives (105) bis-(2,4,6-trichloropnenoxy)phosphoryl chloride, (C<sub>6</sub>H<sub>2</sub>OCl<sub>3</sub>)P(O)Cl, cryst. from C<sub>6</sub>H<sub>6</sub>, m.p. 126-129° (105). (Note that  $\bar{C}$  with PCl<sub>5</sub> in s.t. at 200-300° gives also (106) some 1,2,3,5-tetrachlorobenzene (3:0915).)  $\bar{C}$  (3 moles) with POCl<sub>3</sub> (1 mole) refluxed several days gives (107) tris-(2,4,6-trichlorophenyl) phosphate, m.p. 201° (107).]
- [ $\overline{C}$  (2 moles) with COCl<sub>2</sub> (3:5000) in aq. alk. gives (108) bis-(2,4,6-trichlorophenyl) carbonate, m.p. 153-154° (109).]
  - ② 2,4,6-Trichlorophenyl methyl ether (2,4,6-trichloroanisole) [Beil. VI-192]: cryst. from alc., m.p. 61-62° (9), 60° (110) (111), 59.5° (112); b.p. 240° cor. at 738 mm. (110) cf. (87). [From C with Me<sub>2</sub>SO<sub>4</sub> + 15% KOH (87); for crystallographic data see (82); for attempted cleavage with pyridine or piperidine see (113); for nitration see (87).]
  - 2,4,6-Trichlorophenyl ethyl ether (2,4,6-trichlorophenetole) [Beil. VI-192, VI<sub>1</sub>-(104)]:
     m.p. 43-44° (12), b.p. 246° (12). [From K\(\bar{A}\) + EtI (12) or from Ag\(\bar{A}\) + EtI (98).]
  - —— 2,4,6-Trichlorophenyl acetate: oil, b.p. 261-262° (114). [From C with AcCl (114).] D 2,4,6-Trichlorophenyl benzoate [Beil. IX-117]: m.p. 75.5° (9). 74° (115), 73-74° (6),
  - (115), 73-74 (15), 73-74 (15), 70° (14). [From C with benzoyl chloride (3:6240) in pres. of aq. NaOH (115) (9); for study of rate of benzoylation of C at 25° and 85° see (116).]
  - ---- 2,4,6-Trichlorophenyl o-nitrobenzoate: unreported.
  - 2,4,6-Trichlorophenyl m-nitrobenzoate: unreported.
  - 2,4,6-Trichlorophenyl p-nitrobenzoate: m.p. 106° (115).
  - ---- 2,4,6-Trichlorophenyl 3,5-dinitrobenzoate: unreported.
  - **D 2,4,6-Trichlorophenyl benzenesulfonate:** m.p. 66° (117). [From C with benzenesulfonyl chloride in aq. alk. (117).]
  - D 2,4,6-Trichlorophenyl o-nitrobenzenesulfonate: m.p 142° (118). [From  $\ddot{\textbf{C}}$  with o-nitrobenzenesulfonyl chloride +  $\textbf{K}_2\textbf{CO}_3$  in acetone (118)]
  - 2.4.6-Trichlorophenyl p-toluenesulfonate: unreported.
  - --- 2,4,6-Trichlorophenyl phenyl ether: unreported.
  - 2,4,6-Trichlorophenyl 2,4-dinitrophenyl ether: m.p. 136° (119). [From C with 2,4-dinitrochlorobenzene in alc. alk. (119).]
  - ---- 2,4,6-Trichlorophenyl benzyl ether: unreported.
  - 2,4,6-Trichlorophenyl p-nitrobenzyl ether: unreported.
  - 2,4,6-Trichlorophenoxyacetic acid: m.p. 177° (120).
  - 2,4,6-Trichlorophenyl N-phenylcarbamate: unreported.
  - D 2,4,6-Trichlorophenyl N-(p-bromophenyl)carbamate: pl. from C<sub>6</sub>H<sub>6</sub> + EtOAc, m.p. 162-164° cor. (121). [From C with p-bromobenzazide (121) in lgr. (121).]
  - **D** 2,4,6-Trichlorophenyl N-(p-iodophenyl)carbamate: m.p. 172-173° (122). [From  $\bar{C}$  with p-iodobenzazide (122) in lgr. (122).]

- **D 2,4,6-Trichlorophenyl** N-(m-nitrophenyl)carbamate: white rods from lgr., m.p. 165-167° u.c.; 169-170° cor. (123). [From  $\bar{C}$  with m-nitrobenzazide (123) in lgr. (123).]
- **② 2,4,6-Trichlorophenyl** N-(p-nitrophenyl) carbamate: pale yel. rods from lgr., m.p. 166° cor. (124). [From  $\bar{C}$  with p-nitrobenzazide (124) in lgr. (124).]
- ---- 2,4,6-Trichlorophenyl N-(3,5-dinitrophenyl)carbamate: unreported.
- Q 2,4,6-Trichlorophenyl N-(3,5-dinitro-4-methylphenyl)carbamate: yel. pr. from lgr. or EtOAc, m.p. 195-196° u.c., 201-202° cor. (125). [From C with 3,5-dinitro-4-methylbenzazide (125) in lgr. (125)]
- **2.4.6-Trichlorophenyl**  $N-(\alpha-naphthyl)$  carbamate: unreported.
- **D 2,4,6-Trichlorophenyl**  $N-(\beta-\text{naphthyl})$  carbamate: pr. from lgr., m.p. 157-158° u.c., 161-162° cor. (126). [From  $\bar{C}$  with  $\beta$ -naphthyl isocyanate (126) or  $\beta$ -naphthazide (126) in lgr. (126) ]
- **D 2,4,6-Trichlorophenyl** N,N-diphenylcarbamate: m.p. 143° (127). [From  $\bar{\mathbf{C}}$  with N,N-diphenylcarbamyl chloride (127).]
- 3:1673 (1) Jaeger, Z. anory. allgem. Chem. 101, 129 (1917).
   (2) Tiessens, Rec. trav. chim. 48, 1068 (1929).
   (3) Tiessens, Rec. trav. chim. 50, 115-116 (1931).
   (4) Richter, Ber. 49, 2344 (1916).
   (5) Hassel, Naeshagen, Z. physik. Chem. B-12, 86 (1931).
   (6) Lock, Monatsh. 55, 312 (1930).
   (7) Cain, Norman, J. Chem. Soc. 89, 23-24 (1906).
   (8) Lassar-Cohn, Schultze, Ber. 38, 3301 (1905).
   (9) Kohn, Fink, Monatsh. 58, 76, 87-89 (1931).
   (10) Datta, Mitter, J. Am. Chem. Soc. 41, 2032 (1919).
- (11) Schmidt, J. prakt. Chem. (2) 85, 237-238 (1912). (12) Faust, Ann. 149, 149-155 (1869). (13) Hrynakowski, Szmyt, Z. physik Chem. A-182, 111, 114-115 (1938). (14) Daccomo, Ber. 18, 1163-1164 (1885). (15) Bennett, Wain, J. Chem. Soc. 1936, 1118. (16) Leger, Compt. rend. 146, 696 (1908), Bull. soc. chim. (4) 3, 578-582 (1908). (17) van Erp, Rec. trav. chim. 30, 281 Note (1911). (18) Takagi, Ishimasa, J. Pharm. Soc. Japan 1925, No. 517, 17-18, Cent. 1926, 182; C.A. 20, 2669 (1926). (19) Giua, Cherchi, Gazz. chim. ital. 49, II 269, 282 (1919). (20) Kuster, Wurfel, Z. physik. Chem. 50, 74-80 (1904).
- (21) Efremov, Ann. inst. anal. phys-chim. (U.S.S.R.) 5, 75-141 (1931), Cent. 1934, I 3734; C.A. 27, 277 (1933). (22) Laurent, Ann. chim. (2) 63, 27-33 (1836), (3) 3, 206-211 (1841), Ann. 23, 60-71 (1837); 43, 209-212 (1842). (23) Chulkov, Parini, Statoselets, Org. Chem. Ind. (U.S.S.R.) 3, 97-101 (1937); Cent. 1938, I 1419; C.A. 31, 4967 (1937). (24) Chandelon, Bull. soc. chim. (2) 38, 116-124 (1882). (25) Chabrier de la Saulmere, Ann. chim. (11) 17, 353-370 (1942); C.A. 38, 3256 (1944); Compt. rend. 213, 400-402 (1941); C.A. 37, 2010 (1943). (26) Likhosherstov, J. Russ. Phys.-Chem. Soc. 61, 1019-1023, 1025-1028 (1929); Cent. 1930, I 1924; C.A. 24, 836 (1930). (27) Marsh, J. Chem. Soc. 1927, 3164. (28) Hofmann, Ann. 52, 57, 62 (1844). (29) Graebe, Ann. 146, 8, 12 (1868). (30) Renedikt, Schmidt, Monatsh. 4, 604 (1883).
- (31) Tanaka, Kutani, J. Pharm. Soc. Japan No. 541, 196-199 (1927), Cent. 1927, II 51, C.A. 21, 2255 (1927). (32) Vogel, J. prakt. Chem. (1) 94, 449-450 (1865). (33) Sintenis, Ann. 161, 338 (1872). (34) Piria, Ann. 56, 47 (1845). (35) Hofmann, Ann. 47, 68 (1843), 53, 8, 35 (1845). (36) Erdmann, J. prakt. Chem. (1) 19, 330, 335 (1840). (37) Laurent, Ann. chim. (3) 3, 500 (1841); J. prakt. Chem. (1) 25, 472 Note (1842). (38) Scholl, Norr, Ber. 33, 726 (1900). (39) Mel'nikov, Avetesyan, Rokitskaya, Compt. rend. acad. sci. U.R S.S. 31, 123-124 (1941); Cent. 1942, II 2055; C.A. 37, 950-951 (1943). (40) Ordal, Proc. Soc. Expt. Biol. Med. 47, 387-389 (1941); C.A. 35, 6061 (1941).
- (41) Thorburn, Vincent, J. Australian Inst. Agr. Sci. 7, 29-31 (1941); C.A. 35, 7719 (1941). (42) Lebduska, Pidra, Zent. Bakt. Parasitenk. I Abt., Orig. 145, 425-438 (1940), C.A. 35, 8008 (1941). (43) Richardson, Hide and Leather 99, No. 19, 28, 38 (1940), C.A. 34, 4605 (1940). (44) Caius, Kamat, Naidu, Indian J. Med. Research 15, 327-332 (1927); Cent. 1928, I 1538; C.A. 23, 1926 (1929). (45) Caius, Naidu, Jang, Indian J. Med. Research 15, 117-134 (1927); Cent. 1929, II 56; C.A. 21, 3922 (1927); 22, 4562 (1928). (46) Iwanowski, Turski et al., Przemysł Chem. 16, 205-221 (1932); Cent. 1933, I 867; C.A. 27, 3796 (1933). (47) Norton (to Dow Chem. Co.), U.S. 2,304,013, Dec. 1, 1942; C.A. 37, 2908 (1943). (48) Britton, Mills (to Dow Chem. Co.), U.S. 1,946,057, Feb. 6, 1934; Cent. 1934, I 3162; [C.A. 28, 2568 (1934)]. (49) Ellis (to Insulite Co.), U.S. 2,161,654, June 6, 1939; Cent. 1939, I (4620; [C.A. 33, 7568 (1939)]. (50) I.G., French 709,788, Aug. 13, 1931; Cent. 1932, I 1804; C.A. 26, 1060 (1932).
- (51) I.G., Austrian 126,151, Feb. 11, 1932; Cent. 1932, II 426; not in C.A. (52) British Dyestuff Corp., Renshaw, Fairbrother, Brit. 259,690, Nov. 11, 1926; Cent. 1927, I 667; C.A. 21, 3433

- (1927). (53) Brodersen, Waldmüller, Ger. 576,384, May 10, 1933; Cent. 1933, II 473; C.A. 27, 3833 (1933). (54) Urbschat, Heckmanns (to I.G.), Ger. 552,150, June 11, 1932; Cent. 1932, II 1500; C.A. 26, 4427 (1932). (55) Heckmanns, Urbschat (to I G.), Ger. 545,642, March 4, 1932; Cent. 1932, II 759, C.A. 26, 3610 (1932). (56) Brodersen, Ext (to I G.), Ger. 442,432, March 28, 1927, Cent. 1927, II 487; not in C.A. (57) Mladenovic, Bull. soc. chum. roy. Yougoslav. 4, 187-195 (1933), Cent. 1934, II 2354; [C.A. 28, 5426 (1934)]. (58) Fichter, Stocker, Ber. 47, 2016 (1914). (59) Conant, Fieser, J. Am. Chem. Soc. 45, 2202 (1923). (60) Hunter, Morse, J. Am. Chem. Soc. 55, 3701, 3704 (1933).
- (61) Hunter, Morse, J. Am. Chem. Soc. 48, 1615-1624 (1926). (62) Kehrmann, Tiessler, J. prakt. Chem. (2) 40, 481 (1889). (63) Ling, J. Chem. Soc. 61, 559 (1892). (64) Guareschi, Daccomo, Ber. 18, 1170 (1885). (65) Weselsky, Ber. 3, 646 (1870). (66) Lampert, J. prakt. Chem. (2) 33, 381 (1886). (67) Schuloff, Pollak, Chem. Ztq. 56, 569-570 (1932); Cent. 1932, II 1510; [C.A. 26, 5086 (1932)]. (68) Heimberg, Ger. 511,209, Nov. 7, 1930; Cent. 1931, I 1360; C.A. 25, 1266 (1931). (69) Kempf, Mochrke, Ber. 47, 2619-2620 (1914). (70) Kempf, Mochrke, Ger. 256,034, Feb. 4, 1913, Cent. 1913, I 758, C.A. 7, 2096-2097 (1913).
- (71) Levy, Schultz, Ann. 216, 160 (1881).
  (72) Datta, Chatterjee, J. Am. Chem. Soc. 38, 1819 (1916).
  (73) Fieser, J. Am. Chem. Soc. 52, 5234 (1930).
  (74) Benedikt, Monatsh. 4, 233-235 (1883).
  (75) Zincke, Schaum, Bcr. 27, 545-546 (1894).
  (76) King, McCombie, J. Chem. Soc. 103, 226 (1913).
  (77) Barral, Bull. soc. chim. (3) 11, 559-560 (1894).
  (78) Kohn, Pfeifer, Monatsh. 48, 233-244 (1927).
  (79) Michael, Buschmann, Ger. 527,393, June 19, 1931, Cent. 1931, II 2785, [C.A. 25, 4556 (1931)].
  (80) Barral, Grosfillex, Bull. soc. chim. (3) 27, 1175-1176 (1902).
- (81) Barral, Jambon, Bull. soc. chim. (3) 23, 822-825 (1900) (82) Kohn, Rabinowitsch, Monatsh. 48, 347-356 (1927). (83) Lauer, J. Am. Chem. Soc. 48, 442-451 (1926). (84) Kohn, Dömötor, Monatsh. 47, 212-214 (1926). (85) Korczynski, Reinholz, Schmidt, Roczniki Chem. 9, 731-740 (1929); Cent. 1930, I 2076, [C.A. 24, 1858 (1930)]. (86) Fox, Turner, J. Chem. Soc. 1930, 1860. (87) Kohn, Heller, Monatsh. 46, 95 (1925). (88) Weiler, Better (to I.G.), Ger. 583,055, Aug. 24, 1931, Cent. 1932, II 2370-2371; C.A. 27, 735 (1933). (89) Muth (to I.G.), Ger. 583,055, Aug. 28, 1933, Cent. 1933, II 3883, C.A. 28, 179 (1934). (90) Hantzsch, Ber. 32, 3070 (1899).
- (91) Ogston, J. Chem. Soc. 1936, 1713.
  (92) Murray, Gordon, J. Am. Chem. Soc. 57, 110-111
  (1935).
  (93) Verhoek, J. Am. Chem. Soc. 58, 2581 (1936).
  (94) Small, Wolfenden, J. Chem. Soc. 1936, 1814.
  (95) Hunter, Seyfried, J. Am. Chem. Soc. 43, 154-159 (1921).
  (96) Hunter, Whitney, J. Am. Chem. Soc. 54, 1167-1173 (1932).
  (97) Hantzsch, Scholtze, Ber. 40, 4879 (1907).
  (98) Hunter, Olson, Daniels, J. Am. Chem. Soc. 38, 1761-1771 (1916).
  (99) Hunter, Rathmann, J. Gen. Chem. 7, 2230-2234 (1937). Cent. 1938, I 3331, C. A. 32, 518 (1938).
  (100) Jacobs, Heidelberger, J. Biol. Chem. 21, 442 (1915).
- (101) Boyd, Marle, J. Chem. Soc. 105, 2136 (1914). (102) Boyd, Thomas, J. Chem. Soc. 115, 1242 (1919). (103) Chapman, J. Chem. Soc. 1929, 570 (104) Holt (to du Pont Co.), U.S. 2,073,010, March 9, 1937; Cent. 1937, I 5058; C.A. 31, 3065 (1937). (105) Anschütz, Boedeker, Ann. 454, 106-107 (1927). (106) Zeharia, Cent. 1896, I 100 (107) Breusch, Keskin, Rev. faculté sci. univ. Istanbul 7-A, 182-189 (1942), C.A. 38, 1483 (1944). (108) Barral, Morel, Bull. soc. chim. (3) 21, 724-726 (1899). (109) Barral, Compt. rend. 138, 911 (1904). (110) Hugounenq, Ann. chim. (6) 20, 521-524 (1890).
- (111) Durrans, J. Chem. Soc. 123, 1426 (1923). (112) Lock, Monatsh. 62, 185 (1933). (113) Cahn, J. Chem. Soc. 1931, 1122. (114) Fischer, Ann. Suppl. 7, 184–185 (1870). (115) Raiford, Taft, Lankelma, J. Am. Chem. Soc. 46, 2056 (1924). (116) Bernouilli, St. Goar, Helv. Chim. Acta 9, 756–757 (1926). (117) Minovici, Bul. soc sci. Bucuresci 2, 131 (1893). (118) Tozer, Smiles, J. Chem. Soc. 1938, 2056. (119) Bost, Nicholson, J. Am. Chem. Soc. 57, 2368–2369 (1935). (120) Bischoff, Ber. 33, 1605 (1900).
- (121) Sah, Cheng, Rec. trav. chim. **58**, 592-593 (1939). (122) Sah, Young, Rec. trav. chim. **59**, 357-363 (1940), C.A. **35**, 4363 (1941). (123) Sah, Woo, Rec. trav. chim. **58**, 1013-1015 (1939). (124) Sah, Cheng, Rec. trav. chim. **58**, 595-597 (1939). (125) Sah, Rec. trav. chim. **58**, 587, 589 (1939). (126) Sah, Rec. trav. chim. **58**, 454-458 (1939). (127) Korczynski, Gazz. chim. ital. **53**, 96-97 (1923).

Beil. II - 210

II1--

 $\Pi_2$ —

### 3:1676 DECACHLORODIETHYL ETHER

(bis-(Pentachloroethyl) ether; Cl<sub>3</sub>C
"Perchloroether")

M.P. 69° (1)

 $D_{-}^{14.5} = 1.900 (2)$ 

[For crystallog. data see (3).]

[For prepn. of C from abs. diethyl ether (1:6110) with excess dry Cl<sub>2</sub> in direct sunlight see (1).]

 $\bar{\mathbf{C}}$  on boilg. decomposes (2) into trichloroacetyl chloride (3:5420) and hexachloroethane (3:4835).

 $\bar{C}$  with conc. H<sub>2</sub>SO<sub>4</sub> at 240° is slowly attacked yielding (2) trichloroacetyl chloride (3:5420).

C with alc. K<sub>2</sub>S loses 2 atoms of chlorine yielding (2) di-(trichlorovinyl) ether (3:6373).

Č with metallic potassium on htg. detonates; in this behavior Č behaves toward alkali metals like many other highly halogenated compounds.

Note that all these data on  $\bar{C}$  are very old; no later studies of  $\bar{C}$  are reported in the literature.

3:1676 (1) Regnault, Ann. 34, 27-29 (1840). (2) Malaguti, Ann. chim. (3) 16, 13-28 (1846). (3) Nickles, Ann. chim. (3) 22, 29 (1848).

# 3:1685 CHLOROPROPIOLIC ACID Cl.C=C.COOH C3HO2Cl

Beil. II - 478 II<sub>1</sub>---

 $II_{2}$ -(451)

M.P. 69-70° (1)

Colorless cryst. from pet. eth.; eas. sol. ether; eas. vol. (even in desiccator). Very irritating and poisonous; salts extremely toxic (1). — Stable in dry state at room temperature.

[For prepn. from propiolic ac. [Beil. II-477] by actn. of KOH/KOCl soln. at 0° see (1) (2).]

 $\ddot{\mathbf{C}}$  on htg. with Ba(OH)<sub>2</sub> soln. yields chloroacetylene (3:7000) + BaCO<sub>3</sub> while acidification and ether extraction of the aq. layer yields malonic ac. (1:0480), m.p. 133-134° (1). [An alk, soln. of  $\ddot{\mathbf{C}}$  on stdg. is also partly converted to malonic ac. (1).]

**3:1685** (1) Straus, Kollek, Heyn, *Ber* **63**, 1876–1877 (1930). **(2)** Brit. 333,946, Sept. 18, 1930; *Cent.* **1931**, I 523.

#### 3:1687 2.3.4.6-TETRACHLOROPHENOL

 $\begin{array}{cccc} \text{OH} & \mathrm{C_6H_2OCl_4} & \text{Beil. VI - 193} \\ & & & & & & & \\ \mathrm{Cl} & & & & & & \\ \mathrm{Cl} & & & & & & \\ \mathrm{Cl} & & & & & & \\ \end{array}$ 

| M.P. | 70°           | (1) (2) (3) | B.P. | 164°   | at 23 mm. (4) |
|------|---------------|-------------|------|--------|---------------|
|      | 69-70°        | (4)         |      | 160.5° | at 21 mm. (4) |
|      | 68-69°        | (5) (6)     |      | 159°   | at 20 mm. (4) |
|      | 67.5-68°      | (7)         |      | 157°   | at 19 mm. (4) |
|      | 67-69°        | (8)         |      | 155°   | at 18 mm. (4) |
|      | 67-68°        | (9)         |      | 152.5° | at 17 mm. (4) |
|      | 67°           | (10) (11)   |      | 150°   | at 16 mm. (4) |
|      | 65.5°         | (12)        |      |        |               |
|      | <b>65–66°</b> | (13)        |      |        |               |

Ndls. from lgr., AcOH, or ether. — Almost insol. cold aq.; spar. sol. hot aq.; but volatile with steam. — Eas. sol. alc.,  $C_6H_6$ ,  $CHCl_3$ ,  $CS_2$ , lgr.; fairly sol. hot pet. eth. — Odorless at ord. temp.

#### PREPARATION OF C

[For prepn. of  $\bar{C}$  from phenol (1:1420) with Cl<sub>2</sub> at 80° for 14 days (7) or with Cl<sub>2</sub> in pres. of 2-3% I<sub>2</sub> or 4-5% SbCl<sub>3</sub> or 5-6% FeCl<sub>3</sub> for shorter periods (7), from sodium phenolate with SO<sub>2</sub>Cl<sub>2</sub> (13), or from 2,4,6-trichlorophenol (3:1673) with Cl<sub>2</sub> (1) in pres. of I<sub>2</sub> at 40° (8) or with Cl<sub>2</sub> in CCl<sub>4</sub> soln. in pres. of FeCl<sub>3</sub> (14), see indic. refs.]

[For form. of  $\tilde{C}$  from 3,5,6-trichloro-2-hydroxybenzoic acid (3,5,6-trichlorosalicylic acid) (5) with Cl<sub>2</sub> in 30% AcOH see (5); from 2,4,5,6-tetrachloro-3-hydroxybenzoic acid [Beil. X-144] (11) by htg. with lime see (11); from 2,4,5,6-tetrachloro-3-hydroxybenzalde-hyde (6) with 50% aq. KOH at 100° for 2 hrs. (the CO group being eliminated as K formate) see (6); from o-(2,4,5,6-tetrachloro-3-hydroxybenzoyl)benzoic acid (3) by cleavage with conc. H<sub>2</sub>SO<sub>4</sub> see (3).]

[For formn. of C from 1,2,4,4,5,6,6-heptachlorocyclohexen-1-one-3 [Beil. VII-51] by reduction with SnCl<sub>2</sub>/HCl/AcOH (4) or with KI/AcOH or Na<sub>2</sub>SO<sub>3</sub>/AcOH see (12); from "6-hydroxyphenylene diazosulfide" with Cl<sub>2</sub> in AcOH followed by reduction with SnCl<sub>2</sub> see (10).]

## USES OF C (OR ITS SALTS)

[For patents on use of  $\bar{C}$  (or its salts) as bactericide (15) (16) in preservation of rubber latex (17), as insecticide (18), or in triphenyl phosphate as wood preservative (19) see indic. refs.]

[For general articles on  $\bar{C}$  (or its salts) as bactericides (20), fungicides (21) (27) for paint (22) or leather (23) (24) (25) (26), or in preservation of brine samples for analysis (28) see indic. refs.]

# PHYSIOLOGICAL EFFECTS OF C (OR ITS SALTS)

[For studies on dermatitis from  $\bar{C}$  or its salts see (29) (30); for report on toxicity of  $\bar{C}$  in leather see (31).]

#### CHEMICAL BEHAVIOR OF C

Action of chlorine. [C with Cl<sub>2</sub> in AcOH gives (4) (12) 1,2,4,4,5,6,6-heptachlorocyclo-hexen-1-one-3 [Beil. VII-51].]

Action of bromine.  $\ddot{C}$  with Br<sub>2</sub> (1 mole) in pres. of Fe powder gives (8) 5-bromo-2,3,4,6-tetrachlorophenol [Beil. VI<sub>1</sub>-(106)], cryst. from AcOH, m.p. 197° (8) (32), 192° (33) (corresp. acetyl deriv., m.p. 144° (33); corresp. benzoyl deriv., m.p. 169° (33)).

Action of nitric acid. [C with fumg. HNO<sub>3</sub> (5 wt. parts) is oxidized (70% yield (4)) (12) to 2,3,5-trichlorobenzoquinone-1,4 (3:4672). — Note, however, that the mononitro deriv. of C, viz., 5-nitro-2,3,4,6-tetrachlorophenol, ndls. from C<sub>6</sub>H<sub>6</sub>, m.p. 122°, has been obtd. (8) by HBr cleavage of the corresp. methyl ether (see below).]

Behavior of  $\bar{C}$  as an acid.  $\bar{C}$  in aq. behaves as an acid, K at  $25^{\circ} = 4.2 \times 10^{-6}$  (2) cf. (34), and can be titrated with N/10 aq. NaOH (1); Neut. Eq. = 232. — [For prepn. of alk. salts of  $\bar{C}$  by neutralization in mixtures of org. solvents see (35); for uses of salts of  $\bar{C}$  see above.]

Miscellaneous reactions of C. [C (as KA) in conc. aq. soln. with COCl<sub>2</sub> (3:5000) in toluene gives (36) bis-(2,3,4,6-tetrachlorophenyl) carbonate, m.p. 155-156° (36).]

- ② 2,3,4,6-Tetrachlorophenyl methyl ether (2,3,4,6-tetrachloroanisole): ndls. from MeOH, m.p. 64-65° (4), 60° (8), b.p. 266-270° u.c. at 244 mm. (8). [From C with MeI in MeOH/NaOMe soln. (4) cf. (8).— Note that this prod. on nitration with 7-8 wt. pts. fumg. HNO<sub>3</sub> gives 5-nitro-2,3,4,6-tetrachloroanisole, m p. 58° (8).]
- 2,3,4,6-Tetrachlorophenyl ethyl ether (2,3,4,6-tetrachlorophenetole): ndls. from alc.,
   m.p. 59-60° (4), 55° (6). [From C with EtI in EtOH/NaOEt soln. (4); also indirectly (6).]
- D 2,3,4,6-Tetrachlorophenyl acetate: cryst. from alc., m.p. 66° (5), 65-66° (4), 59° (12). [From C with Accol (4) or with Accol (12).]
- **D** 2,3,4,6-Tetrachlorophenyl N-phenylcarbamate: ndls. from alc., m.p. 141-142° (4). [From  $\tilde{C}$  with phenyl isocyanate in  $C_6H_6$  24 hrs. at room temp. (4)]

3:1687 (1) Tiessens, Rec. trav. chim. 50, 116, 119 (1931). (2) Tiessens, Rec. trav. chim. 48, 1068 (1929). (3) Fries, Auffenberg, Bcr. 53, 24, 28 (1920). (4) Biltz, Giese, Bcr. 37, 4013-4017 (1904). (5) Farinholt, Stuart, Twiss, J. Am. Chem. Soc. 62, 1239, 1241 (1940). (6) Lock, Nottes, Monatsh. 67, 323 (1936). (7) Barral, Grosfillex, Bull soc. chim. (3) 27, 1174-1178 (1902) (8) Kohn, Pfeifer, Monatsh. 48, 233-236 (1927). (9) Holleman, Rec. trav. chim. 40, 318-319 (1921). (10) Fries, Vorbrodt, Siebert, Ann. 454, 190 (1927).

(11) Zincke, Walbaum, Ann. 261, 239-246 (1891). (12) Zincke, Schaum, Ber. 27, 549 (1894). (13) Durrans, J. Chum. Soc. 121, 47 (1922). (14) Michel, Buschmann (to I.G.), Ger. 527,393, June 19, 1931; Cent. 1931, II 2785; C.A. 25, 4556 (1931). (15) I.G., French 685,331, July 9, 1930, Cent. 1930, II 2732, C.A. 24, 5928 (1930). (16) I.G., French 709,788, Aug. 13, 1931, Cent. 1932, I. 1804; C.A. 26, 1060 (1932). (17) Monsanto Chem. Co., Brit. 530,836, Jan. 16, 1941, Cent. 1942, I. 2831, C.A. 36, 1207 (1942). (18) Ellis (to Insulte Co.), U.S. 2,161,654, June 6, 1939; Cent. 1939, II 4620, C.A. 33, 7568 (1939). (19) Norton (to Dow Chem. Co.) U.S. 2,304,013, Dec. 1, 1942; C.A. 37, 2908 (1943). (20) McInikor, Arctesyan, Rokitskaya, Compt. rend. acad. sci. U.R.S.S. 31, 123-124 (1941), Cent. 1942, II 2055, C.A. 37, 950-951 (1943).

(21) Mallman, Michael, Mich State Coll. Agr Expt Sta, Tech. Bull. 174 (1940); C.A. 35, 7560 (1941). (22) Partansky, Ind. Eng. Chem., Anal. Ed. 14, 527-531 (1942). (23) Richardson, Hide and Leather 99, No. 19, 28, 38 (1940); C.A. 34, 4605 (1940). (24) Richardson, Shoe Leather Reptr. 221, No. 3, 17-21 (1941), C.A. 35, 3475 (1941). (25) Itollar, J. Am. Leather Chem. Assoc. 39, 179-190 (1944); C.A. 38, 4827 (1944). (26) Greene, Lollar, J. Am. Leather Chem. Assoc. 39, 209-218 (1944; C.A. 38, 6595 (1944). (27) Wellmann, Heald, Phytopathology 30, 638-648 (1940); Cent. 1942, I 2545; C.A. 34, 8165 (1940). (28) Veldhuis, Fruit Products J. 18, 6-7 (1938), Cent. 1939, I 1091; C.A. 32, 9321 (1938). (29) Butler, Arch. Dermatol. Syphilol. 35, 251-264 (1937); Cent. 1937, II 435; C.A. 31, 5360 (1937). (30) Stingily, Southern Med. J. 33, 1268-1272 (1940); C.A. 36, 847 (1942).

(31) Lollar, J. Am. Leather Chem. Assoc. 39, 203-209 (1944), C A 38, 6594 (1944). (32) Kohn, Zandmann, Monatsh. 47, 372-373 (1926). (33) McCombie, Ward, J. Chem. Soc. 103, 2005 (1913). (34) Murray, Gordon, J. Am. Chem. Soc. 57, 110-111 (1935). (35) Mills (to Dow Chem. Co.), U.S. 1,955,080, April 17, 1934; Cent. 1934, II 1991 C.A. 28, 3743 (1934). (36) Barral, Compt. rend. 138, 981 (1904).

3:1690 2,6-DICHLOROBENZALDEHYDE  $C_7H_4OCl_2$  Beil.

$$C_7H_4OCl_2$$

$$Cl$$

$$CHO$$

$$CHO$$

$$C_1$$

$$Reil. VII - 237$$

$$VII_1-(134)$$

M.P. 71° (1) 70-71° (2) 70° (3) 69-70° (4) (5) Colorless cryst. from pet. ether (b.p. 40-60°) or lgr.

[For prepn. of  $\bar{C}$  from 2,6-dichlorotoluene (3:6270) by oxidn. with MnO<sub>2</sub> + H<sub>2</sub>SO<sub>4</sub> see (2); for prepn. of  $\bar{C}$  from 2,6-dichlorobenzaldehyde diethylacetal (see below) by hydrolysis on shaking with dil. HCl see (6).]

[Č on reduction would presumably yield 2,6-dichlorobenzyl alc., but this prod. is unreported in the literature.]

 $\bar{C}$  in alk. suspension on oxidn. with air gives (7) 2,6-dichlorobenzoic acid (3:4200), m.p.  $144^{\circ}$ .

[ $\bar{C}$  (fused) with Cl<sub>2</sub> in brilliant artificial light gives (58% yield (8)) 2,6-dichlorobenzoyl chloride, b.p. 126-128° at 18 mm. —  $\bar{C}$  with PCl<sub>5</sub> at 160° gives (90% yield (9)) (4) (5) 2,6-dichlorobenzal (di)chloride (3:9398) oil, b.p. 124-126° at 16 mm. (9), accompanied in some preparations (4) (5) by some bis-( $\alpha$ ,2,6-trichlorobenzyl) ether, m.p. 180-185° (4) (5).]

[ $\bar{C}$  with alkali sulfite (1 mole) under press, reacts at one of the two halogen atoms giving (2) 6-chlorobenzaldehydesulfonic acid-2 [Beil. XI-324] —  $\bar{C}$  with alkali sulfite (2 moles) under press, gives (2) benzaldehyde disulfonic acid-2,6 [Beil. XI-326].]

 $\bar{C}$  disslvd. in 7–8 wt. pts cone. H<sub>2</sub>SO<sub>4</sub>, and at 10–15° mononitrated with a mixt. of fumg. HNO<sub>3</sub> + cone. H<sub>2</sub>SO<sub>4</sub>, poured into aq. gives (yield not stated (10)) (2) 2,6-dichloro-3-nitrobenzaldehyde [Beil. VII-263], pl. from CS<sub>2</sub> (10) or lfts from C<sub>6</sub>H<sub>6</sub> (2), m p. 76° (10), 76–77° (2) (corresp. α-oxime, m p. 156–157° (10), β-oxime, m p. 154–155° (10); note that a mixt of the two oximes melts 128–130° (10)) — [Note that no dintro-2,6-dichlorobenzaldehyde has been reported; also that the mp.'s of certain of the isomeric mononitrodichlorobenzaldehydes are very close to the above mononitration prod.: e g., 2,4-dichloro-6-nitrobenzaldehyde (from 2,4-dichlorobenzaldehyde 3:1800) has m.p. 74–75°; 2,5-dichloro-3-nitrobenzaldehyde (from 2,5-dichlorobenzaldehyde 3:1145) has m.p. 66.5–67°; 3,4-dichloro-6-nitrobenzaldehyde (from 3,4-dichlorobenzaldehyde 3:0550) has m.p. 73°.]

[C on sulfonation gives (2) 2,6-dichlorobenzaldchydesulfonic acid-3 [Beil XI-325].]

[ $\bar{C}$  with 50% KOH at 100° for 5 hrs. under N<sub>2</sub> undergoes cleavage of the aldehyde group giving (84% yield (11)) *m*-dichlorobenzene (3:5960) q.v. and the corresp. K formate.]

 $[\bar{C}]$  with aq. alc. hydrazine sulfate gives (86% yield (18)) 2,6-dichlorobenzaldazine, m.p. 153° cor.; but this prod or  $\bar{C}$  with hydrazine hydrate refluxed 5 hrs. gives 2,6-dichlorobenzaldehyde hydrazone, m.p. 134°, which by Wolff-Kishner reduction gives (80% yield (18)) 2,6-dichlorotoluene (3:6270).]

[ $\tilde{C}$  with EtOH contg. 1½ wt. % dry HCl refluxed 24 hrs. gives (13.6% yield (6)) 2,6-dichlorobenzaldehyde dicthylacetal, oil, b.p. 142-144° at 10 mm., m.p. -1° (6); this prod. with dil HCl readily hydrolyzes back to  $\tilde{C}$  + EtOH.]

[ $\bar{C}$  with  $\beta$ -naphthol (2 moles) in AcOH with 30% HBr in AcOH at 100° for 2 hrs. or at room temp. for 24 hrs. condenses and ring-closes giving (88% yield (8)) 9-(2,6-dichlorophenyl)-1,2,7,8-dibenzoxanthane ( $C_{27}H_{16}OCl_2$ ), cryst. from lgr., m.p. 264-265° (8). — Note that  $\bar{C}$  with  $\beta$ -thionaphthol (2 moles) under similar conditions yields a prod.  $C_{27}H_{18}S_2Cl_2$ , of unknown structure.]

 $\bar{C}$  with anhydrous NaOAe + Ac<sub>2</sub>O in Perkin synthesis (12) (13) (1), or  $\bar{C}$  with malonic acid in AcOH (13) gives (yields: 81-83% (12), 80% (1), 18% (13)) 2,6-dichlorocinnamic acid [Beil. IX<sub>1</sub>-(239)], cryst. from AcOH, m.p. 196° (12), 193° (13), 183° (1); note that in this reaction some 2,6-dichlorobenzal diacetate [Beil. VII<sub>1</sub>-(134)], ndls. from lgr., m.p. 85° (1), is sometimes formed.

C appears to behave normally with RMgX reactants [e.g., C with MeMgI in dry ether followed by usual hydrolysis gives (68.6% yield (14)) 2,6-dichlorophenyl-methyl-carbinol,

m.p. 34-35°, b.p. 137-138° at 17 mm., 134-136° at 13 mm. (corresp. benzoate, m.p. 77°);  $\tilde{C}$  with  $C_6H_6MgBr$  similarly gives in good yield (1) 2,6-dichlorophenyl-phenyl-carbinol, m.p. 57° (corresp. acetate, m.p. 105°)]. [For conversion of  $\tilde{C}$  to 2,6-dichlorostyrene (16) (17) via formn. of 2,6-dichlorophenyl-methyl-carbinol (above) and dehydration of latter with KHSO<sub>4</sub> (31.5% yield (16)) see indic. refs ]

Č with aniline readily condenses yielding (1) 2,6-dichlorobenzaldehyde anil, m.p. 64-65°.

- **② 2,6-Dichlorobenzaldoxime:** colorless ndls. from  $C_6H_6$  (10) or lgr. (1), m.p.  $149-150^\circ$  (10),  $146-147^\circ$  (1). [From  $\tilde{C}$  with NH<sub>2</sub>OH.HCl + Na<sub>2</sub>CO<sub>3</sub> in dil. alc. at 100° for 5 hrs. (10) cf. (1); with cold Ac<sub>2</sub>O this prod. gives an acetyl deriv., m.p. 51° (10); with boilg. Ac<sub>2</sub>O for 5 min. the oxime loses H<sub>2</sub>O giving (1) 2,6-dichlorobenzonitrile [Beil. IX-343, IX<sub>1</sub>-(141)], ndls. from lgr. or by sublimation, m.p.  $143^\circ$  (1),  $144.5-146.5^\circ$  (15).]
- ---- 2,6-Dichlorobenzaldehyde phenylhydrazone: unreported.
- --- 2,6-Dichlorobenzaldehyde o-nitrophenylhydrazone: m p. 154° (1).
- --- 2,6-Dichlorobenzaldehyde p-nitrophenylhydrazone: unreported.
- ---- 2,6-Dichlorobenzaldehyde 2,4-dinitrophenylhydrazone: unreported.
- ---- 2,6-Dichlorobenzaldehyde p-bromophenylhydrazone: m.p. 142° (1).
- --- 2,6-Dichlorobenzaldehyde semicarbazone: unreported.

3:1696 (1) Reich, Salzmann, Kawa, Bull. soc. chim. (4) 21, 217-225 (1917). (2) Geigy and Co., Ger. 199,943, July 4, 1908; Cent. 1908, II 363-364; [C.A. 2, 3000 (1908)]. (3) Lock, Ber. 66, 1530 (1933). (4) Olivier, Weber, Rec. trav. chim. 52, 169-174 (1933). (5) Olivier, Weber, Rec. trav. chim. 53, 882 (1934). (6) Lock, Ber. 72, 303 (1939). (7) Hans (to I.G.), Ger. 506,438, Sept. 4, 1930; Cent. 1930, II 3850; C.A. 25, 304 (1931). (8) Dilthey, Quint, Heinen, J. prakt. Chem. (2) 152, 68-72 (1939). (9) Lock, Asinger, Monatsh. 59, 157 (1932). (10) Meisenheimer, Theilacker, Beisswenger, Ann. 495, 254 (1932).

(11) Lock, Ber. 66, 1530 (1933). (12) Bock, Lock, Schmidt, Monatsh. 64, 401-402, 407-408 (1934). (13) Willstadt, Ber. 64, 2692 (1931). (14) Lock, Bock, Ber. 70, 921 (1937). (15) Norris, Klemka, J. Am. Chem. Soc. 62, 1433 (1940). (16) Marvel, Overberger, Allen, Johnston, Saunders, Young, J. Am. Chem. Soc. 68, 863 (1946). (17) Michalek, Clark, Chem. & Eng. News 22, 1559-1563 (1945). (18) Lock, Stach, Ber. 76, 1252-1256 (1943).

#### Beil. VI - 648 3:1700 1-CHLORONAPHTHOL-2 C<sub>10</sub>H<sub>7</sub>OCl VI<sub>1</sub>---VI<sub>2</sub>-(603) M.P. 72° (1) 71° (2) 70-71° (3) 70° (4) (11) (20) (27) <del>68-69°</del> (5) 68° (8)

Ndls. from hot aq., ndls. from lgr., pr. from CHCl<sub>3</sub>; eas. sol. alc., AcOH, C<sub>6</sub>H<sub>6</sub>, CHCl<sub>3</sub>, boilg. lgr. — For crystallographic constants see (4). — Volatile with steam.

[For prepn. of  $\bar{C}$  from  $\beta$ -naphthol (1:1540) with  $Cl_2$  in AcOH (80% yield (21)) (3) (4) (6), with  $SO_2Cl_2$  in  $CS_2$  (7) or with  $C_6H_5ICl_2$  (84% yield (2)) see indic. refs.; from sodium  $\beta$ -naphtholate in  $CS_2$  suspension on treatment with  $Cl_2$  (8) or in cold aq. with NaOCl (84% yield (5)) (9) see indic. refs.; for formn. of  $\bar{C}$  from  $\beta$ -naphthol (1:1540) as by-prod. of its

oxidn. with FeCl<sub>3</sub> to  $\beta$ -dinaphthol (2,2'-dihydroxybinaphthyl-1,1') see (10) (11) (the proportion of  $\bar{C}$  increases with increasing acidity (11)); for formn. of  $\bar{C}$  from  $\beta$ -naphthol as by-prod. of react. with SeOCl<sub>2</sub> see (20).]

 $\bar{C}$  with 1 mole  $Cl_2$  in AcOH soln. gives (12) 1,6-dichloronaphthol-2 (3:3600), m.p. 119.5° (12);  $\bar{C}$  with 1 mole  $Br_2$  yields (7) (13) 6-bromo-2-chloronaphthol-2 [Beil. VI-651], ndls. from AcOH with 1 mole solvent, m p. 92°, anhydrous ndls. by sublimation, m.p. 101° (7). [Note, however, that  $\bar{C}$  in AcOH + NaOAc with 1 mole  $Br_2$  yields (1) "1-bromo-1-chloro-2-oxonaphthalenedihydride-1,2," pale yel. pr. from lgr., m.p. 90° when pure but on short stdg. soon becoming lower.]

[ $\bar{\mathbf{C}}$  in AcOH with conc. HI (D=1.5) boiled 5 hrs. gives (79% yield (5))  $\beta$ -naphthol (1:1540), m.p. 121° (5); note, however, that  $\bar{\mathbf{C}}$  is unaffected by SnCl<sub>2</sub> either in acid or alk. even after protracted refluxing, but in AcOH/HCl in s.t. 8 hrs. at 100° (1) reduces to  $\beta$ -naphthol.]

[C in alk. soln. treated with p-nitrobenzenediazonium chloride soln. loses its halogen atom and yields (14) (15) (16) cf. (21) 1-(p-nitrobenzeneazo)naphthol-2 ("Para Red") [Beil. XVI-165, XVI<sub>1</sub>-(255)], red ndls. from pyridine, m.p. 246-247° u.c. (14), from AcOH, m.p. 250° cor. (15). (Note, however, that as much as 40% of a light yel. by-prod., m.p. 125° dec., is also formed (16).)]

[ $\bar{C}$  melted with PCl<sub>5</sub> and then treated with aq. (4), or  $\bar{C}$  in alk. soln. shaken with POCl<sub>3</sub> (17), or sodium salt of  $\bar{C}$  shaken in xylene with POCl<sub>3</sub> (18), yields *tris*-(1-chloronaphthyl-2) phosphate, ndls. from alc., m.p. 152° (4) (note that by the second method (above) *bis*-(1-chloronaphthyl-2) phosphoric acid, ndls. from alc. + HCl, m.p. 251° (4), is also formed (4)).]

[Č (2 moles) with Na<sub>2</sub>S (1 mole) htd. in aq. under N<sub>2</sub> gives (97.5% yield (19)) bis-(2-hydroxynaphthyl-1) sulfide [Beil. VI-976, Vl<sub>1</sub>-(470)], colorless cryst. from AcOH, m.p. 226° cor. (19).]

[C on refluxing a few hrs. with aniline (best under N<sub>2</sub> (23)) yields (22) 1-anilinonaphthol-2 [Beil. XIII-678], ndls. from lgr., m.p. 153-154° (22), 155-156° (23); for corresp. reactn. with many other monamines (22) (23) and diamines (24) see indic. refs.]

Č under many circumstances yields ethers with difficulty and small yields; e.g., Č with MeOH + conc. H<sub>2</sub>SO<sub>4</sub> (25) or p-toluenesulfonic acid (26) gives only 2-7% methyl ether; however, Č in MeOH/KOH htd. with MeI in s.t. at 100° for 5 hrs. (25), or Č in 15% KOH shaken with Me<sub>2</sub>SO<sub>4</sub> for ½ hr. (91% yield (5)), gives 1-chloro-2-methoxynaphthalene, pr. from alc., m.p. 70-71° (5), 68° (25), 78° (27); this methyl ether on protracted htg. with conc. HCl in s.t. at 200-250° yields Č + MeCl (17) (27). — Č with EtOH + conc. H<sub>2</sub>SO<sub>4</sub> (25) gives only 0.5-10% ethyl ether, but Č with EtOH/KOH + EtBr htd. 3 hrs. at 100° (25) gives 1-chloro-2-ethoxynaphthalene, lfts. from alc., m.p. 58° (25).

- ① 1-Chloro-2-naphthyl acetate: tbls. from alc., m.p. 42-43° (3). [From C with AcCl (3).]
- ① 1-Chloro-2-naphthyl benzoate: lfts. from alc., m.p. 101° (27). [From C in alk. soln. by shaking with BzCl (27).]

3:1700 (1) Fries, Schimmelschmidt, Ann. 484, 293, 296-297 (1930). (2) Neu, Ber. 72, 1511 (1939). (3) Zincke, Ber. 21, 3384-3385 (1888). (4) Cleve, Ber. 21, 895-896 (1888). (5) Franzen, Stauble, J. prakt. Chem. (2) 103, 379-380 (1921/22). (6) Clifford (to Goodyear Tire and Rubber Co.), Brit. 302,147, Feb. 6, 1929; Cent. 1929, 1 1867. (7) Armstrong, Rossiter, Chem. News 59, 225 (1889), Ber. 24, Referate, 705 (1891). (8) Schall, Ber. 16, 1901 (1883). (9) Kalle and Co., Ger. 168,824, March 16, 1906; Cent. 1906, I 1307. (10) Ioffe, J. Gen. Chem. (U.S.S.R.) 7, 2715-2718 (1937); Cent. 1939, II 4475; C.A. 32, 2931 (1938). (11) Ioffe, Kuznetzov, Litovskii, J. Gen. Chem. (U.S.S.R.) 5, 1685-1686 (1935); Cent. 1937,

I 2589; C.A. 30, 3426 (1936). {12} Ruggli, Knapp, Merz, Zimmermann, Helv. Chim. Acta 12, 1051 (1929). {13} Armstrong, Rossiter, Chem. News 63, 136 (1891); Ber. 24, Referate, 719 (1891). {14} Hewitt, Mitchell, J. Chem. Soc. 89, 1172 (1906). {15} Wahl, Lantz, Bull. soc. chim. (4) 33, 103 (1923). {16} Ioffe, J. Gen. Chem. (U.S.S.R.) 7, 2637-2638 (1937); Cent. 1938, I 3042; C.A. 32, 2110 (1938). {17} Autenrieth, Ber. 30, 2379-2380 (1897). {18} Akt.-Ges. fur Anilinfabrikation, Ger. 246,871, May 11, 1912, Cent. 1912, I 1875. {19} Ringeissen, Compt. rend. 198, 2182 (1934); Cent. 1934, II 2677; C.A. 28, 5432. {20} Morgan, Burstall, J. Chem. Soc. 1928, 3269.

(21) Pollak, Gebauer-Fulnegg, Monatsh. 50, 317 (1928). (22) Wahl, Lantz, Ger. 365,367, Dec. 13, 1922; Brit. 182,084, Aug. 16, 1922, French 548,440, Jan. 15, 1923, Cent. 1923, II 997, 998. (23) Wahl, Lantz, Compt. rend. 175, 171-174 (1922); Cent. 1922, III 1294. (24) Wahl, Lantz, Compt. rend. 194, 464-467 (1932); Cent. 1932, I 2464. (25) Davis, J. Chem. Soc. 77, 33-40 (1900). (26) Fieser, Lothrop, J. Am. Chem. Soc. 57, 1460 (1935). (27) Autenrieth, Arch. Pharm. 233, 34-37 (1895).

01 01 (1000).

M.P. 71.5-72° (1) B.P. 235-236° (1)

 $\bar{C}$  is volatile with steam. — The products of m.p. 45-46° (2) and m.p. 58° (3) formerly supposed to have been  $\bar{C}$  are now regarded (1) as 2,4,6-trichloro-3-methylphenol (3:0618) and 2,4-dichloro-3-methylphenol (3:1205) respectively

[For prepn. of  $\bar{C}$  from 6-amino-4-chloro-3-methylphenol (1) via diazotization and use of  $Cu_2Cl_2$  reaction see (1); from 4,6-diamino-3-methylphenol (1) via tetrazotization and use of  $Cu_2Cl_2$  reaction see (1); for formn. of  $\bar{C}$  (together with other isomers) from 4-chloro-3-methylphenol (3:1535) or from 6-chloro-3-methylphenol (3:0700) in CHCl<sub>3</sub> with  $Cl_2$  (1 mole) see (1).]

 $\bar{C}$  in CHCl<sub>3</sub> with 1 mole Cl<sub>2</sub> gives alm. quant. yields (1) 2,4,6-trichloro-3-methylphenol (3:0618), m.p. 46° (1).

- 4,6-Dichloro-3-methylphenyl benzoate: mats of very fine ndls. from alc., m.p. 57.5°
   (1). [From C with BzCl in pyridine (1)]
- **4.6-Dichloro-3-methylphenyl benzenesulfonate:** thin lustrous plates from alc., m.p. 86° (1). [From  $\tilde{C}$  + benzenesulfonyl chloride in pyridine (1).]
- **4.6-Dichloro-3-methylphenyl** p-toluenesulfonate: very fine ndls. from alc., m.p.  $104-105^{\circ}$  (1). [From  $\tilde{C} + p$ -toluenesulfonyl chloride in pyridine (1).]

3:1745 (1) Huston, Chen, J. Am. Chem. Soc. 55, 4216-4218 (1933). (2) von Walther, Zipper, J. prakt. Chem. (2) 91, 374 (1864). (3) Tanaka, Morikowa, Sakamoto, J. Chem. Soc. Japan 51, 275-277 (1930); C.A. 26, 706-707 (1932).



72° (2) 71° (4) Ndls. from lt. pet. - Volatile with steam.

[For prepn. of  $\bar{C}$  from 6-amino-3,4-dimethylphenol (5-amino-o-4-xylenol) [Beil. XIII-629, XIII<sub>1</sub>-(244)] (1) via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reaction (yield not stated) see (1); from 3,4-dimethylphenol (o-4-xylenol) (1.1453) with SO<sub>2</sub>Cl<sub>2</sub> in CHCl<sub>3</sub> (23% yield) see (4) cf. (2) (3).]

[For studies on bactericidal action of C see (2) (3).]

C with Cl2 does not (1) give a trichloro derivative.

Č with HNO<sub>3</sub> in AcOH soln, as directed gives (5) 2-nitro-6-chloro-3,4-dimethylphenol (5-chloro-3-nitro-o-4-xylenol), yel. pl. from C<sub>6</sub>H<sub>6</sub>, m.p. 127.5° (5); note, however, that neither the isomeric mononitro deriv. nor the corresp. dinitro deriv. is known.

C does not (5) couple with benzenediazonium chloride.

[For behavior of  $\bar{C}$  with sulfur chloride + AlCl<sub>3</sub> in CS<sub>2</sub> see (6).]

- —— 6-Chloro-3,4-dimethylphenyl acetate: unreported.

  ① 6-Chloro-3,4-dimethylphenyl benzoate: m.p. 43° (1).
- 3:1754 (1) Hinkel, Collins, Ayling, J. Chem. Soc. 123, 2973 (1923). (2) Heicken, Angew. Chem. 52, 263-265 (1939). (3) Lockemann, Kunzmann, Angew Chem. 46, 296-301 (1933). (4) McClement, Smiles, J. Chem. Soc. 1937, 1019. (5) Hinkel, Ayling, Bevan, J. Chem. Soc. 1928, 2530-2531. (6) Dvorkovitz, Smiles, J. Chem. Soc. 1938, 2026.

[See also 4-chloro-2-phenylphenol (3:8980).]

Important Note. Through the year 1944 (and perhaps in some cases beyond) the chlorophenylphenol of m.p.  $72^{\circ}$  ( $\tilde{C}$ ) has been regarded as having the structure 4-chloro-2-phenylphenol = 5-chloro-2-hydroxybiphenyl = "p-chloro-o-phenylphenol." In 1945, however, this view was corrected by the paper of Weissberger and Salminen (1); in this text, therefore, expression of the facts is reported in the light of their paper. Particular care is, therefore, required in consulting reference prior to it since such material is universally expressed in the reverse sense of the present view.

[For prepn. of  $\bar{C}$  from 2-hydroxybiphenyl (1:1440) with  $Cl_2$  (note that 4-chloro-2-phenylphenol (3:8980) is also formed) see (2) (4); for prepn. of  $\bar{C}$  from 3-amino-2-hydroxybiphenyl (5) by diazotization and use of  $Cu_2Cl_2$  reaction (45% yield (1)) see indic. refs.]

 $\bar{C}$  is sol. in aq. 25% NaOH at 60°, but resultant salt is more sol. than corresp. prod. from the isomeric 4-chloro-2-phenylphenol (3:8980) (for use in sepn. of  $\bar{C}$  from the latter see (4)); note that sodium salt of  $\bar{C}$  cryst. as trihydrate, i.e., Na $\bar{A}$ .3H<sub>2</sub>O (4), and that anhydrous Na $\bar{A}$  dec. at 316° without melting (4).

The calcium salt of  $\bar{C}$  is very spar. sol. aq. (use in sepn. of  $\bar{C}$  from the isomeric 4-chloro-2-phenylphenol (3)).

[For reaction of C with methallyl chloride (3:7145) in pres. of alk. see (10).]

C on mononitration with HNO<sub>3</sub> in AcOH at 15-19° as directed gives (31% yield (1)) 3-chloro-2-hydroxy-5-nitrobiphenyl, tan needles, m.p. 130-131° (1), 129-131° (6).

[ $\tilde{C}$  (?) on condensation with formaldehyde + ethanolamine as directed (9) gives a prod., m.p. 182-183°; for similar condens. of  $\tilde{C}$  (?) with formaldehyde + morpholine see (7).]

3:1757 (1) Weissberger, Salminen, J. Am. Chem. Soc. 67, 58-60 (1945). (2) Britton, Bryner (to Dow Chem. Co.), U.S. 1,969,963, Aug. 14, 1934, C.A. 28, 6160 (1934). (3) Rittler, Heller (to Chem. Fabrik von Heyden), Ger. 615,133, June 27, 1935, Cent. 1936, I 8k4; C.A. 29, 6247 (1935). (4) Britton, Bryne (to Dow Chem. Co.), U.S. 1,921,727, Aug. 8, 1933; Cent. 1934, I 128-129, C.A. 27, 5086 (1933): Brit. 396,251, Aug. 24, 1933; Cent. 1934, I 128-129, CA. 28, 578 (1934). (5) Vorozhtsov, Troshchenko, J. Gen. Chem. (U.S.S.R.) 8, 431-437 (1938); Cent. 1940, II 2152; C.A. 32, 7907 (1938). (6) Vorozhtsov, Troshchenko, J. Gen. Chem. (U.S.S.R.) 9, 59-64 (1939), Cent. 1940, 2153-2154; C.A. 33, 6281 (1939). (7) Bruson (to Röhm and Haas Co.), U.S. 2,040,039, May 5, 1936; Cent. 1936, II 1386-1387; C.A. 30, 4177 (1936). (8) Harris, Christiansen, J. Am. Pharm. Assoc. 24, 553-557 (1935). (9) Bruson, J. Am. Chem. Soc. 58, 1743 (1936). (10) Coleman, Moore (to Dow Chem. Co.), U.S. 2,170,990, Aug. 29, 1939; Cent. 1939, II 4592; C.A. 34, 1098 (1940).

This compd. is known in two diastereoisomeric forms, one solid  $(\bar{C})$ , and one liquid (3:9082) q.v.

Č cryst. from alc. (1) or CCl4 (3) in colorless pr. with strong camphoraceous odor.

[For preparation of  $\bar{C}$  from butadiene-1,3 by treatment in cold with Cl<sub>2</sub> (4) (6) (7) in CS<sub>2</sub>, CCl<sub>4</sub>, CHCl<sub>3</sub>, or lgr. soln. (4), or with SCl<sub>2</sub> in pet. ether (1) see indic. refs.; for prepn. from 1,2,3,4-tetrahydroxybutane (erythritol) (1:5825) with PCl<sub>5</sub> in CS<sub>2</sub> see (3); for formn. from acetylene + HCl in electric discharge see (2).] [The proportion of solid ( $\bar{C}$ ) and liq. (3:9082) isomers formed varies with conditions.]

C on warming with Zn dust in alc. yields (4) butadiene-1,3, b.p. -4.8°.

Č with MeOH/KOH at 10-18° loses 2 HCl yielding (8) 2,3-dichlorobutadiene-1,3 (3:5220), b.p. 39-40° at 80 mm., and other products.

3:1760 Backer, Strating, Rec. trav. chim. 54, 55-56 (1935). (2) Losanitch, Cent. 1913, II 754. (3) Henninger, Ann. chim. (6) 7, 229 (1886). (4) Muskat, Northrup, J. Am. Chem. Soc. 52, 4053-4055 (1930). (5) Ssorokin, Bjelikow, Cent. 1926, II 801. (6) Muskat (to du Pont), U.S. 2,038,593, April 28, 1936; Cent. 1936, II 3359; C.A 30, 3912 (1936). (7) Ruys, Edwards (to Shell Development Co.), U.S. 2,099,231, Nov. 16, 1937; Cent. 1938, I 3387; C.A. 32, 190 (1938). (8) Berchet, Carothers, J. Am. Chem. Soc. 55, 2007 (1933).

#### 3:1775 3.4-DIMETHYLPHENACYL C<sub>10</sub>H<sub>11</sub>OCl Beil. VII - 323 CHLORIDE VII<sub>1</sub>-(172) CO.CH<sub>2</sub>Cl CH<sub>3</sub> (ω-Chloro-3,4-dimethyl-CH<sub>3</sub>

M.P. 73°

acetophenone)

[For prepn. from o-xylene (1:7430) + chloroacetyl chloride (3:5235) + AlCl<sub>3</sub> see (1) (2).

C on oxidn, with alk, KMnO<sub>4</sub> gives 4-methylisophthalic ac. [Beil, IX-863], m.p. 332° cor. (corresp. dimethyl ester, ndls. from MeOH, m.p. 80°).

3:1775 (1) Kunckell, Ber. 30, 1713 (1897). (2) Jörlander, Ber. 50, 1459 (1917).

White ndls. with strong odor like ordinary benzaldehyde. — Volatile with steam (1). [For prepn. of C from 2,4-dichlorotoluene (3:6290) via bromination at 180-200° to 2,4dichlorobenzal (di)bromide and hydrolysis with conc. H<sub>2</sub>SO<sub>4</sub> at 100° (92% yield) see (1); for analogous prepn. via 2,4-dichlorobenzal (di)chloride and its hydrolysis see (2) (4): for prepn. of C from 2-chloro-4-aminobenzaldehyde via diazo/CuCl reactn. see (3).

C on oxidn. with KMnO4 yields 2,4-dichlorobenzoic acid (3:4560), mp. 162°. — C on htg. with MeOH/NaOMe in s.t. at 183° for 8 hrs. undergoes Cannizzaro reactn. vielding 2,4-dichlorobenzyl alc., m.p. 58-59° (2), and 2,4-dichlorobenzoic ac. (3:4560), m.p. 161-162° (2).

C on mononitration as specified (6) yields 2,4-dichloro-6-nitrobenzaldehyde [Beil, VII-263], cryst. from lgr., m.p. 74-75° (6). [Note that 2,4-dichloro-5-nitrobenzaldehyde [Beil. VII<sub>1</sub>-(144)], m.p. 74°, has also been prepd. indirectly.]

For conversion of C to 2.4-dichlorostyrene (7) (8) via reaction with MoMgI giving (63% yield (1)) 2,4-dichlorophenyl-methyl-carbinol, b.p. 130-134° at 11 mm. (1), 127° at 7 mm. (corresp. p-nitrobenzoate, m.p. 113° (1)), and dehydration of latter with KHSO<sub>4</sub> (33% yield (7)) see indic. refs.]

- ① 2,4-Dichlorobenzaldoxime: ndls., m.p. 136-137° (4). [The oxime hydrochloride has m.p. 133.5° but on treatment with Na<sub>2</sub>CO<sub>3</sub> yields oxime (4).
- 2.4-Dichlorobenzaldehyde phenylhydrazone: unrecorded.
- 2,4-Dichlorobenzaldehyde p-nitrophenylhydrazone: unrecorded.
- 2.4-Dichlorobenzaldehyde 2.4-dinitrophenylhydrazone: unrecorded.
- ---- 2.4-Dichlorobenzaldehyde semicarbazone: unrecorded.
- 3:1800 (1) Lock, Böck, Ber. 70, 923 (1937). (2) van der Lande, Rec. trav. chim. 51, 103, 109 (1932). (3) Blanksma, Chem. Weekblad 6, 899-913 (1909), Cent. 1910, I 261. (4) Erdmann, Schwechten, Ann. 260, 68-69 (1890). (5) Seelig, Ann. 237, 169 (1887). (6) Geigy and Co., Ger. 198,909; Cent. 1908, II 214. (7) Marvel, Overberger, Allen, Johnston, Saunders, Young. J. Am. Chem. Soc. 68, 862-863 (1946). (8) Michalek, Clark, Chem. & Eng. News 22, 1559-1563 (1945).

# 3:1815 5-CHLORO-2-METHYLPHENOL OH C<sub>7</sub>H<sub>7</sub>OCl (5-Chloro-o-cresol)

$$\begin{array}{c|cccc} \text{OH} & \text{C}_7\text{H}_7\text{OCl} & \textbf{Beil. VI} - \\ & & & \text{VI}_1\text{-}(\textbf{174}) \\ & & & \text{VI}_2\text{-}(\textbf{332}) \end{array}$$

M.P. 73-74° (1) (4)

Long white hard ndls. from pet. eth.; eas. sol. alc., AcOH; less sol. pet. eth. (1). Č is eas. sol. alk. (1).

[For prepn from 5-chloro-2-methylandine [Bed. XII-835] see (1) (4)]

 $\bar{C}$  on mononitration (2) in AcOH with fumg. HNO<sub>3</sub> at 5° gives mixt. of two mononitration products: 6-nitro-5-chloro-2-methylphenol, volatile with steam, golden-yel. pr. from peteth., m.p. 54.5-55° (2), and 4-nitro-5-chloro-2-methylphenol, not volatile with steam, cryst. from aq. or  $C_6H_6$ , m.p. 144-145° (2).

 $\bar{C}$  on nitration (3) with 3 pts. HNO<sub>3</sub> (D=1 48) at 0° gives a dinitro compd., 4,6-dinitro-5-chloro-2-methylphenol [Beil. VI<sub>1</sub>-(181)], yel. ndls., from pet. eth., m.p. 146° (3); acetyl deriv., m.p. 109-110° (3).

[For action of  $HNO_2$  on  $\bar{C}$  see (4).]

D 5-Chloro-2-methylphenyl benzoate: from  $\ddot{C}+BzCl+aq.$  alk., white lfts. from alc., m.p.  $53-54^{\circ}$  (1).

3:1815 (1) Zincke, Ann. 417, 207-208 (1918). (2) von Auwers, Schornstein, Cent. 1924, II 2269. (3) Zincke, Ann. 418, 234 (1918). (4) Hodgson, Moore, J. Chem. Soc. 1926, 2037.

3:1820 1,1,1-TRICHLORO-2-(o-CHLOROPHENYL)-2-(p-CHLOROPHENYL)ETHANE ("o,p'-DDT")

 $CI \longrightarrow CII--CCl_3$  Beil. S.N. 479

**M.P. 74.0-74.5°** (4) cor. (6) **73-74°** (5)

This compound is the so-called o,p-isomer of "DDT" (3:3298). Although known to be a substantial contaminant (e.g., 18% (1) -19% (5)) of technical "DDT," very little information is at present available regarding it.

Cryst. from MeOH.

[For prepn. of  $\bar{C}$  from 2,2,2-trichloro-1-(o-chlorophenyl)ethanol (5) with chlorobenzene (3:7903) in pres. of conc.  $H_2SO_4$  at  $60^\circ$  (64% yield) see (5).]

C on dinitration with fumg. HNO<sub>3</sub> at 50° for 1 hr gives (5) a dinitro deriv., cryst. from 95% alc., m.p. 148.0-148.5° cor. (5); note that this prod. has same m.p. as corresp. deriv. from "DDT" but that m.p. of a mixt. of the two dinitro compds. is depressed.

 $\bar{C}$  on tetranitration with a mixt. (1:1 by volume) of fumg. HNO<sub>3</sub> + conc. H<sub>2</sub>SO<sub>4</sub> at 100° for 1 hr. gives (2) a prod., m.p. 229.5-230° cor.; note that the corresp. prod. from "DDT" has m.p. 223.5-224.5° cor. (2).

C with anhydrous AlCl<sub>3</sub> (1 mole) + large excess C<sub>6</sub>H<sub>6</sub> at ord. temp. evolves HCl and gives (10% yield (3)) 1,1,2,2-tetraphenylethane, m.p. 211°; in this connection see corresp. behavior of "DDT" (3:3298).

 $\tilde{C}$  with alc. KOH loses 1 HCl giving (97% yield (5)) (7) 1,1-dichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)ethylene (3:1925), accompanied by a little  $o_pp'$ -dichlorodiphenylacetic acid, m.p. 106-107.5° cor. (7), the proportion of which may be increased by reaction of  $\tilde{C}$  with Ba(OH)<sub>2</sub> in ethylene glycol at 175° (7).

3:1820 (1) Gunther, J. Chem. Education 22, 239 (1945). (2) Schechter, Haller, J. Am. Chem. Soc. 66, 2129-2130 (1944). (3) Fleck, Preston, Haller, J. Am. Chem. Soc. 67, 1419-1420 (1945). (4) Cristol, Hayes, Haller, Ind. Eng. Chem., Anal. Ed. 17, 470-473 (1945). (5) Haller, Bartlett, Drake, Newman, Cristol, et al., J. Am. Chem. Soc. 67, 1591-1602 (1945). (6) Cristol, J. Am. Chem. Soc. 67, 1498 (1945). (7) Cristol, Haller, J. Am. Chem. Soc. 67, 2222-2223 (1945).

M.P. 74-75° (1) 74° (2)

Ndls. from lgr.

[For prepn. of  $\tilde{C}$  from 2,5-dimethylphenol (p-xylenol) (1:1473) by chlorination with SOCl<sub>2</sub> in CHCl<sub>3</sub> (1) or AcOH (2) see indic. refs ]

[For studies of bactericidal action of C see (2) (3).]

[For behavior of  $\bar{C}$  with o-mitrosulfenyl chloride see (4) cf. (5); behavior of  $\bar{C}$  with sulfur chloride in CS<sub>2</sub> see (1).]

- ---- 4-Chloro-2,5-dimethylphenyl acetate: unreported.
- ---- 4-Chloro-2,5-dimethylphenyl benzoate: unreported.

3:1822 (1) Lesser, Gad, Ber. 56, 977 (1923) (2) Heicken, Angew. Chem. 52, 264-265 (1939). (3) Lockemann, Kunzmann, Angew. Chem. 46, 296-301 (1933). (4) Learmonth, Smiles, J. Chem. Soc. 1936, 327-328. (5) McClement, Smiles, J. Chem. Soc. 1937, 1019-1021.

#### M.P. 73-75° (1)

Cryst. with sharp odor suggesting chloroacetic acid. — Sol. in 20 pts. aq. —  $\tilde{\mathbf{C}}$  blisters skin. —  $\tilde{\mathbf{C}}$  in small amts. (5 g.) can (with care) be distilled, but attempts to distil larger units lead to decomposition with loss of HCl (2).

[For prepn. of  $\tilde{C}$  from  $\alpha,\alpha,\gamma$ -trichloro-n-butyraldehyde (3:9094) by odixn. with fumg.  $HNO_3$  in cold see (1).]

C does not react with Zn dust in aq. or with aq. KI even at 100° (2); C does not react with NH<sub>2</sub>OH (2).

 $\ddot{C}$  on boilg. with aq. (100 pts.) for 4 days yields (2) a soln. which is strongly acid, reduces Fehling soln. and hot NH<sub>4</sub>OH /AgNO<sub>3</sub>, and presumably conts. HOCH<sub>2</sub>.CH<sub>2</sub>.CO.COOH.

 $\tilde{C}$  with aq. Na<sub>2</sub>CO<sub>3</sub> loses one of its three chlorine atoms (probably that in  $\gamma$  position) and upon acidification gives a soln. presumably contg. a lactone; for details see (2).

The acid chloride corresp. to C is unreported.

- Methyl  $\alpha, \alpha, \gamma$ -trichloro-n-butyrate: unreported.
- Ethyl  $\alpha,\alpha,\gamma$ -trichloro-n-butyrate: unreported.
- $\alpha,\alpha,\gamma$ -Trichloro-n-butyramide: unreported.
- $\alpha,\alpha,\gamma$ -Trichloro-n-butyranilide: unreported.
- ----  $\alpha, \alpha, \gamma$ -Trichloro-n-butyr- $\alpha$ -naphthalide: unreported.

3:1831 (1) Natterer, Monatsh. 4, 551-553 (1883). (2) Natterer, Monatsh. 5, 258-265 (1884).

3:1840 
$$\alpha,\beta,\beta$$
-TRICHLOROACRYLIC Cl C<sub>3</sub>HO<sub>2</sub>Cl<sub>3</sub> Beil. II - 402  $\Pi_1$ -(187)  $\Pi_2$ -(388) M.P. 76° (1) (2) (13) B.P. 221-223° at 760 mm. (5) 74-75° (3) 133° cor. at 30 mm. (5) 73° (4) 72.9° (5)

236

Pr. from CS<sub>2</sub> or dry ether. —  $\bar{\rm C}$  is very eas. sol. hot aq. but spar. sol. cold aq.; at 25° its satd. aq. soln. conts. 6.4%  $\bar{\rm C}$  (1), at 20° 6%  $\bar{\rm C}$  (2). —  $\bar{\rm C}$  with aq. within certain limits forms two liq. layers; for thermal anal. of the system see (5); note that  $\bar{\rm C}$  with aq. forms a compd. of compn.  $\bar{\rm C}$  + 2.5 H<sub>2</sub>O, m.p. -0.6°, and that  $\bar{\rm C}$  with this compound forms a eutectic, m.p. 17° (5). —  $\bar{\rm C}$  is very sol. in alc., ether, or CHCl<sub>3</sub>.

[C is usually prepd. from hexachloropropylene (3:6370) by direct or indirect hydrolysis of its terminal —CCl<sub>3</sub> group to —COOH; for prepn. of C from hexachloropropylene by such hydrolysis with 90% H<sub>2</sub>SO<sub>4</sub> in pres. of Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> at not above 130° (5) (1) cf. (6) (7) (81% yield (13)) or with boilg. aq. susp. of BaCO<sub>3</sub> (isolated as BaĀ<sub>2</sub> in 92% yield (1)) see indic. refs.; for prepn. of C from hexachloropropylene (3:6370) via conversion with alc. NaOEt to triethyl orthotrichloroacrylate and subsequent quantitative hydrolysis with alc. KOH see (4).]

[For form. of  $\bar{C}$  from hexachlorocyclopentanedione-1,3 [Beil. VII-553] by hydrolytic cleavage with 10% NaOH (3), or from  $\beta$ -bromo- $\alpha,\beta,\beta$ -trichloropropionic acid (see below) by elimination of HBr on stdg. several days with aq. Ba(OH)<sub>2</sub> (2), see indic. refs.]

 $\bar{C}$  on reduction with  $H_2$  in pres. of Pd cat. at ord. temp. and press. absorbs 4 moles  $H_2$  yielding (8) propionic acid (1:1025).

 $\bar{C}$  with  $Cl_2$  in  $CCl_4$  soln. in sunlight adds 1 mole halogen giving (9) (8) pentachloropropionic acid (3:4895).

[ $\bar{C}$  with HBr might be expected to yield  $\beta$ -bromo- $\alpha,\beta,\beta$ -trichloropropionic acid, but this reaction is unreported although the expected prod. [Beil. II-257], m.p. 83-84° has been prepd. by other means and with Ba(OH)<sub>2</sub> loses HBr giving  $\bar{C}$  (2).]

 $\ddot{C}$  with half its wt. of PCl<sub>5</sub> at 80° loses H<sub>2</sub>O between two molecules giving (4) trichloro-acrylic acid anhydride, cryst., insol. aq., m.p. 39-40° (4) (5); this product is also formed during the distillation of  $\ddot{C}$  even at reduced press. (5).

Č with excess SOCl<sub>2</sub>, however, gives (80-90% yield (1)) (13) trichloroacryloyl chloride (3:5845) q.v.

Salts of  $\bar{C}$ . [Na $\bar{A}$  (conductivity of aq. solns.) (10); K $\bar{A}$ , spar. sol. cold aq. (2); Ag $\bar{A}$ , spar. sol. cold aq. but recryst. from hot aq. without decompn. (2) (4); Mg $\bar{A}_2$ .3½H<sub>2</sub>O, sol. aq. (10); Ca $\bar{A}_2$ .3½H<sub>2</sub>O, sol. aq. (10) (2); Sr $\bar{A}_2$ .5H<sub>2</sub>O, sol. aq. (10); Ba $\bar{A}_2$ .3½H<sub>2</sub>O, sol. aq. (10) (2) (note that this salt on htg. in atm. of H<sub>2</sub> gives (11) dichloroacetylene (3:5010)); Zn $\bar{A}_2$ .6H<sub>2</sub>O and Zn $\bar{A}_2$ .3½H<sub>2</sub>O (10); Cd $\bar{A}_2$ .2H<sub>2</sub>O (10); Hg $\bar{A}_2$  (no crystal aq.) (10).]

- Methyl  $\alpha, \beta, \beta$ -trichloroacrylate: unreported.
- Ethyl  $\alpha,\beta,\beta$ -trichloroacrylate: b.p. 192–194°; 112–114° at 50 mm.;  $D_4^{20} = 1.2183$ ;  $n_D^{20} = 1.4649$  (4). [Prepd. indirectly from triethyl orthotrichloroacrylate (itself obtd. from hexachloropropylene with NaOEt) by shaking with conc. HCl (4).]
- $\Phi$   $\alpha,\beta,\beta$ -Trichloroacrylamide: m.p. 97° (12), 96–97° (4), 96° (2). [From trichloroacryloyl chloride (3:5845) with conc. NH<sub>4</sub>OH (4) or from ethyl trichloroacrylate (above) with alc. NH<sub>3</sub> (12).]
- α,β,β-Trichloroacrylanilide: m.p. 98° (13). [From trichloroacryloyl chloride (3:5845) with aniline in CHCl<sub>3</sub> at 0° (77% yield) (13).]

3:1849 (1) Böeseken, Dujardin, Rec. trav. chim. 32, 98-101 (1913). (2) Maberry, Am. Chem. J.
 9, 3-6 (1887). (3) Zincke, Rohde, Ann. 299, 380 (1898). (4) Fritsch, Ann. 297, 315-318 (1897).
 (5) Böeseken, Carriere, Rec. trav. chim. 34, 179-186 (1915). (6) Prins, J. prakt. Chem. (2) 89, 416 (1914). (7) Prins, Ger. 261,689, July 2, 1913; Cent. 1913, II 394-395; C.A. 7, 3641 (1913).
 (8) Böeseken, van der Weide, Rec. trav. chim. 35, 272-273 (1927). (9) Boeseken, Rec. trav. chim. 46, 844-846 (1927).

(11) Bösseken, Carriere, Verslag Akad. Wetenschappen 22, 1186-1188 (1914). (12) Gilta, Bull soc. chim. Belg. 39, 587-588 (1930). (13) Bergmann, Haskelberg, J. Am. Chem. Soc. 63, 1438 (1941).

M.P. 76° (1)

Colorless cryst. from CS<sub>2</sub> + CHCl<sub>3</sub>; fairly sol. aq.

[For prepn. of  $\bar{C}$  from  $\alpha,\beta$ -dichloroacrylic acid (3:2265) in CS<sub>2</sub> with dry Cl<sub>2</sub> in sunlight see (1).]

Salts: KA; AgA (readily dec. to AgCl on warming aq. soln.); CaA2; BaA2 (1).

3:1850 (1) Maberry, Smith, Ber. 22, 2659-2660 (1889).

M.P. 76-77° (1) (2) (3) (Also see text.)

Ndls. from pet. ether or by sublimation. —  $\bar{C}$  is spar. sol. aq. but very eas. sol. ether or CHCl<sub>3</sub>. —  $\bar{C}$  on htg. above its m.p. (e.g., to 120°), then rapidly cooled to 60° or below remelts at 63-64° (2) (3); on standing, however,  $\bar{C}$  finally reverts to the form of m.p. 76-77°. —  $\bar{C}$  decomposes on attempted distn.

[For prepn. of  $\tilde{C}$  from propiolic acid (acetylene-carboxylic acid) [Beil. II-477] by conversion to chloropropiolic acid (3:1685) and subsequent addr. of 1 HCl by htg. with a large excess cone. HCl at 100° for 5 hrs. (77% overall yield from propiolic acid) see (1); for formn. from "chloralide" (3:3510) by reduction with Zn + HCl in alc. soln. see (2) (3).]

The behavior of C toward hydrogenation has not been reported.

Neither C nor its ethyl ester (see below) adds Br<sub>2</sub> (3).

 $[\bar{C} \text{ with aq. Ba}(OH)_2 \text{ on boilg. splits both HCl and CO}_2 \text{ yielding chloroacetylene (3:7000);}$  the formn. of this highly explosive substance probably accounts for the ignition and detonation sometimes observed cf. (2) (1).]

Salts:  $K\bar{A}$  (3);  $Ag\bar{A}$  (3);  $Ca\bar{A}_2.2H_2O$  (2);  $Ba\bar{A}_2.2H_2O$  (2);  $Zn\bar{A}_2.2H_2O$  (3).

 $\ddot{\mathbf{C}}$  with PCl<sub>5</sub> gives (3)  $\beta,\beta$ -dichloroacryloyl chloride, b.p. above 145°; this prod. with EtOH or  $\ddot{\mathbf{C}}$  in EtOH with dry HCl gives (3) ethyl  $\beta,\beta$ -dichloroacrylate, b.p. 173–175°.

—— β<sub>2</sub>β-Dichloroacrylamide: ndls. from CHCl<sub>3</sub>, m.p. 112-113° (3). [From the above acid chloride with dry NH<sub>3</sub> (3).]

3:1875 (1) Straus, Kollek, Heyn, Ber. 63, 1876-1877 (1930). (2) Wallach, Ann. 283, 83-94 (1880). (3) Wallach, Ann. 193, 6-8, 19-28 (1878).

Beil. S.N. 474

### 3:1890 1,1-DICHLORO-2-(o-CHLOROPHENYL)-2-(p-CHLOROPHENYL)ETHANE ("o,p-DDD")

$$\begin{array}{c|c} C_{14}H_{10}Cl_{4} \\ \hline Cl & Cl \\ C-CH \\ Cl & II & Cl \\ \end{array}$$

#### M.P. 76-78° (1)

Colorless cryst. from MeOH or from pentane. — Note that  $\tilde{C}$  is a minor impurity in technical grade "DDT" (3:3298).

[For prepn. of  $\bar{C}$  from 2,2-dichloro-1-(o-chlorophenyl)ethanol (1) with chlorobenzene (3:7903) in pres of  $H_2SO_4$  (39% yield) see (1).]

 $\bar{C}$  with alc. KOH loses 1 HCl giving (1) 1-chloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)-ethylene (not described) which upon oxidn. with  $CrO_3/AcOH$  gives (1) 2,4-dichlorobenzo-phenone (3:1565).

3:1890 (1) Haller, Bartlett, Drake, Newman, Cristol, et al., J. Am. Chem. Soc. 67, 1600 (1945).

## M.P. 77° (1) (4) B.P. 176.6° at 5 mm. (5)

 $\bar{C}$  is sol. in NaOH. [For prepn. of Na $\bar{A}$  using solns. of  $\bar{C}$  in org. solv. such as McOH, ether, or toluene see (2).]

Č htd. with NaOH/Na<sub>2</sub>CO<sub>3</sub> soln. under press for 3 hrs. at 290–300° gives 4-phenyl-pyrocatechol [Beil. VI-990], m p. 145°; diacetate, m.p. 77 5–78° (3).

C in CCl<sub>4</sub> stood 5 days with 1 mole Br<sub>2</sub> gave (44% yield) 6-bromo-2-chloro-4-phenylphenol, wh. pr. (from CHCl<sub>3</sub>), m p. 84-86° cor. (4); C in AcOH (25% yield) or in CS<sub>2</sub> (56% yield) stood 2 days with 2 moles Br<sub>2</sub> gave 6-bromo-4'-(p-bromophenyl)-2-chlorophenol, coarse wh. ndls., m.p. 143-146° cor. (4)

C in AcOH treated with 1 mole HNO<sub>3</sub> in AcOH gave 38% yield of 2-chloro-6-nitro-4-phenylphenol, thick yel. pl. (from CCl<sub>4</sub>), m.p. 89-90° cor. (5).

 $\overline{C}$  with  $(CH_3)_2SO_4 + NaOH$  (1) or  $CH_3I + aq$ . KOH (5) yields the corresp. Me ether, 2-chloro-4-phenylanisole, m.p.  $91-92^\circ$  (1),  $93^\circ$  cor. (5).

- 0 2-Chloro-4-phenyl-phenyl acetate: m.p. 68° (7). [From  $\ddot{C} + Ac_2O + NaOAc$  in 92% yield (7).]
- 2-Chloro-4-phenyl-phenyl benzoate: from C + BzCl + aq. alk. in 80% yield (4); cryst. from AcOH (4), m.p. 95-97° cor. (4), 110-111° (6).
- 2-Chloro-4-phenyl-phenyl benzenesulfonate: m.p. 59-60° (8). [From C + benzenesulfonyl chloride + aq. 10% NaOH (8).]
- ② 2-Chloro-4-phenyl 2,4-dinitrophenyl ether: from C + 2,4-dinitrochlorobenzene in conc. aq. KOH refluxed for several hrs.; yield, 70%; m.p. 109-111°C. (4).

3:1900 (1) Grether (to Dow Chem. Co.), U.S. 1,832,484, Nov. 17, 1931; Cent. 1932, I 740. (2) Mills (to Dow Chem. Co.), U.S. 1,955,080, Apr. 17, 1934, Cent. 1934, II 1991. (3) Harvey (to Squibb and Sons), U.S. 1,952,755, Mar. 27, 1934; Cent. 1934, II 1846. (4) Colbert, Meigs, Mackin, J. Am. Chem. Soc. 56, 202-204 (1934). (5) Colbert, Meigs, Stuerke, J. Am. Chem. Soc. 56, 2129 (1934). (6) Harris, Christiansen, J. Am. Pharm. Assoc. 24, 553-557 (1935). (7) Savoy, Abernathy, J. Am. Chem. Soc. 64, 2220 (1942). (8) Savoy, Abernathy, J. Am. Chem. Soc. 64, 2720 (1942).

3:1903 
$$\alpha,\beta$$
-DICHLORO- $n$ -BUTYRIC H H  $C_4H_6O_2Cl_2$  Beil. II -279 ACID (high-melting isomer) (lsocrotonic acid dichloride)  $CH_3$ — $C$ — $C$ —COOH  $II_1$ — $II_2$ —

[See also  $\alpha, \beta$ -dichloro-n-butyric acid (low-melting isomer) (crotonic acid dichloride) (3:1375).]

Colorless cryst. from pet. ether  $-\bar{C}$  is very eas. sol. alc., ether, much less sol. ag.

[For prepn. of  $\bar{C}$  from  $\alpha$ -chlorocrotonic acid (3:2760) by addn. of 1 HCl using conc. aq. HCl (satd. at 0°) in s.t. at 100° for 50 hrs. see (2) (4); from either  $\alpha$ -chloro- $\beta$ -hydroxy-n-butyric acid of m.p. 62° [Beil. III-309] (4) or from  $\beta$ -chloro- $\alpha$ -hydroxy-n-butyric acid of m.p. 125° [Beil. III-306] (3) by htg. with conc. aq. HCl (satd. at 0°) in s.t. at 100° for 40 hrs. see indic. refs.; for formn of  $\bar{C}$  by (partial) isomerization of the lower-melting isomer (crotonic acid dichloride) (3:1375) with conc. HCl in s.t. at 100° see (5); from the amide (see below) corresp. to  $\bar{C}$  with HNO<sub>2</sub> see (1)]

 $\bar{C}$  behaves as an acid but is slightly weaker than its isomer; ionization const. of  $\bar{C}$  is  $6.1 \times 10^{-3}$  (5); its reported salts include AgA, spar sol. aq (4); BaA2.3H2O (4): and ZnA2 (4).

 $\bar{C}$  with ale. KOH loses 1 mole HCl giving (2) (4) mainly  $\alpha$ -chlorocrotonic acid (3:2760) accompanied by some  $\alpha$ -chloro-isocrotonic acid (3:1615).

The acid chloride corresp to C is unreported.

- —— Methyl  $\alpha,\beta$ -dichloro-n-butyrate: unreported.
- —— Ethyl  $\alpha, \alpha$ -dichloro-n-butyrate: unreported.
- —— α,β-Dichloro-n-butyramide: m p 125° (1). [Prepd. indirectly but with HNO<sub>2</sub> gives C (1)]

3:1903 (1) Rambaud, Bull. soc. chim. (5) 1, 1339 (1934). (2) Michael, Schulthess, J. prakt. Chem. (2) 46, 259-262 (1892). (3) Melikoff, Petrenko-Kritschenko, Ann. 266, 371-374 (1891). (4) Melikoff, Ann. 234, 201-204 (1886). (5) Michael, Bunge, Ber. 41, 2911 (1908).

3:1905 
$$\alpha,\alpha,\beta$$
-TRICHLORO- $n$ -BUTYR- Cl C<sub>4</sub>H<sub>7</sub>O<sub>2</sub>Cl<sub>3</sub> Beil. I - 664   
ALDEHYDE HYDRATE | CH<sub>3</sub> CH<sub>-</sub>C-CH<sub>.</sub>OH | I<sub>1</sub>-C<sub>.</sub>(725)

[See also  $\alpha,\alpha,\beta$ -trichloro-n-butyraldehyde (butyrchloral) (3:5910).]

Lfts. from aq. or alc. — Spar. sol cold but fairly eas. sol hot aq.; very eas. sol. alc. — For crystallographic data see (3) (5). — Note that because of tendency to dissociate on htg. into butyrchloral (3:5910) + aq. the m.p. observed for  $\bar{C}$  varies according to rate of htg. (3). — Note also that  $\bar{C}$  is isomeric with chloral ethylalcoholate (3:0860) with which it must not be confused; for distinction of  $\bar{C}$  from chloral hydrate (3:1270) see (9) (10).

Č is employed in medicine as a sedative; from the body it is excreted in the urine as urobutyrochloralic acid [Beil 1-664], which upon hydrolysis yields (4) 2,2,3-trichlorobutanol-1 (3:1336) + glucuronic acid [Beil. III-884, III<sub>1</sub>-(306)].

[For prepn. of C from butyrchloral (3:5910) by reactn. with aq. see (1) (2) (6).]

 $[\bar{C}$  is reduced by fermenting yeast giving (7) dextrorotatory 2,2,3-trichlorobutanol-1, m.p. 62°; for actn. of  $\bar{C}$  on alc. fermentation see (8).

 $\tilde{\mathbf{C}}$  on oxidn. with 3 wt. pts. fumg. HNO<sub>3</sub> (D=1.504) at 30-35° for  $1\frac{1}{2}$  hrs. then stood at room temp. for 24 hrs. gives (95% yield (11))  $\alpha,\alpha,\beta$ -trichloro-n-butyric acid (3:1280).

C on distn. with half its wt. of Ac<sub>2</sub>O (12), or shaking with conc. H<sub>2</sub>SO<sub>4</sub> (13), or on distn. with CHCl<sub>3</sub> (14), or on htg. alone loses its combined aq. yielding butyrchloral (3:5910), b.p. 165°.

 $\overline{C}$  with conc. H<sub>2</sub>SO<sub>4</sub> (at least 6 wt. pts.) at room temp. for 2 days trimerizes to a mixt. (80% yield (12)) of two parabutyrchlorals: these are colorless crystn., sharp-melting solids, sol. in org. solvents, but insol. aq.; the less sol.  $\alpha$ -parabutyrchloral, rhombic cryst. from boilg. AcOH or boilg. EtOH, has m.p. 180°; the more sol.  $\beta$ -parabutyrchloral (stereoisomer?), cryst. from boilg. AcOH or boilg. EtOH, has m.p. 157°; these polymers can be distilled at 15 mm. but attempts to distill them at ord. press. result in complete dissociation to butyrchloral (3:5910).

Č with aq. KOH or NaOH evolves heat and yields (1) (15) 1,1-dichloropropene-1 (3:5120) + the salt of formic acid (1:1005).

[ $\bar{\mathbf{C}}$  with conc. aq. HCN fails (16) to react, but upon addn. of alc. and subsequent digestion (16), or  $\bar{\mathbf{C}}$  (1 mole) with aq. KCN (2 moles) at 40° (17), gives (20% yield (17))  $\alpha,\alpha,\beta$ -trichloro-n-butyraldehyde cyanohydrin [Beil. III-322, III<sub>2</sub>-(226)], pl. from aq., m.p. 101-102° (17) (18), accompanied by (61% yield (17))  $\alpha$ -chlorocrotonic acid (3:2760), m.p. 98.5-99° (17). — Note that  $\bar{\mathbf{C}}$  (1 mole) in alc. treated gradually with powdered KCN (2 moles) below 15° over a 3-4 hr. period gives (90% yield (17)) ethyl  $\alpha$ -chlorocrotonate (3:8523); in this reactn. the intermediate ethyl  $\alpha,\beta$ -dichloro-n-butyrate readily loses HCl and is generally not isolated; use of alcs. other than EtOH gives good yields of the corresp. alkyl  $\alpha$ -chlorocrotonates (17). — Note that for  $\bar{\mathbf{C}}$  with KCN in  $\mathbf{C}_6\mathbf{H}_6$  the reaction takes a different course (17). — Finally, note that  $\bar{\mathbf{C}}$  (1 mole) in cone. aq. NH<sub>4</sub>OH first dissolves, then ppts. butyrchloral-ammonia as a heavy oil; the mixt. on satn. with dry NH<sub>3</sub> gas in cold followed by treatment at 10° with powdered KCN (1 mole) evolves heat and gives (93% yield (17))  $\alpha$ -chlorocrotonamide, m.p. 113.5° (17).]

[ $\bar{\mathbf{C}}$  undergoes condensation with various org. systems: e.g.,  $\bar{\mathbf{C}}$  with phenyl isocyanide (1 mole) in ether for 4–5 days gives (53% yield (19))  $\alpha$ -hydroxy- $\beta$ ,  $\beta$ ,  $\gamma$ -trichloro-valeranilide, tbls. from alc.,  $\mathbf{C}_6\mathbf{H}_6$ , or CHCl<sub>3</sub>, m.p. 156–158° (19). —  $\bar{\mathbf{C}}$  (1 pt.) with malonic acid (1:0480) (1 pt.) in pyridine (1 pt.) at 100° for 3 hrs. evolves CO<sub>2</sub> and gives (20)  $\beta$ -hydroxy- $\gamma$ ,  $\gamma$ ,  $\delta$ -trichloro-n-caproic acid, cryst. from hot aq., m.p. 102° (20). —  $\bar{\mathbf{C}}$  (1 mole) with nitromethane (1½ moles) in dil. alc. in pres. of Na<sub>2</sub>SO<sub>3</sub> at 60° gives (100% yield (21)) 1-nitro-3,3,4-trichloropentanol-2, b.p. 156° at 4 mm., m.p. abt. 20° (21);  $\bar{\mathbf{C}}$  (1 mole) with nitroethane (1 mole) in 50% alc. in pres. of Na<sub>2</sub>SO<sub>3</sub> + K<sub>2</sub>CO<sub>3</sub> at 70° gives (22) 2-nitro-4,4,5-trichlorohexanol-3, b.p. 138° at 0.75 mm. (22).]

[ $\bar{\mathbf{C}}$  forms with various org. substances molecular cpds. of pharmaceutical interest: e.g.,  $\bar{\mathbf{C}}$  (1 mole) with quinine (base) (1 mole) in abs. alc. at 75° for 1 hr. gives 1:1 cpd., m.p. 139° (note that the corresp. cpd. from chloral (3:5210) + quinine has m.p. 149° (23}). —  $\bar{\mathbf{C}}$  (1 mole) with 2,3-dimethyl-1-phenylpyrazolone-5 ("Antipyrine") (1 mole) (m.p. 112°) rubbed together and recrystd. from aq. gives (24) 1:1 molecular cpd., colorless pr., m.p. 72° (for f.p./compn. data and diagram of this system see (24)). —  $\bar{\mathbf{C}}$  with 2,3-dimethyl-4-dimethylamino-1-phenylpyrazolone-5 ("Pyramidone") (m.p. 107.5°) on fusion or in aq. or  $\bar{\mathbf{C}}_6\mathbf{H}_6$  (25) (26) gives a 1:1 mol. cpd. ("Trigemin"), cryst. from  $\bar{\mathbf{C}}_6\mathbf{H}_6$ , m.p. 85–86° (26), long ndls. from aq., m.p. 84° (24) (for f.p./compn. data and diagram on this system see (24)); for stabilization of "Trigemin" by addn. of 5–10% hexamethylenetetramine (27) or 2% MgO (28) see indic. refs.]

[ $\bar{C}$  with various org. hydroxy acids in pres. of conc. H<sub>2</sub>SO<sub>4</sub> condenses to give prods. of the chloralide type: e.g., for reactn. of  $\bar{C}$  with citric acid (1:0505), malic acid (1:0450), or tartaric acid (1:0525) see (29); with gallic acid (1:0875) (and numerous other phenolic acids) see (30).]

 $\bar{C}$  with conc. aq. NH<sub>4</sub>OH first dissolves then ppts. a heavy oil of butyrchloral-ammonia (17); cryst. m.p. 62° (see also above for its reaction with KCN).

[Č with excess dry NH<sub>4</sub>OAc on moderate htg. for several hrs., then pouring into aq., gives (18)  $\alpha,\alpha,\beta$ -trichloro-n-butyraldimine, cryst. from C<sub>6</sub>H<sub>6</sub>, m.p. 169-170° (31), 164-165° (18); observe that this m.p. is notably close to that of the condensation prod. of butyr-chloral (3:5910) with acetamide, and that latter is readily formed from NH<sub>4</sub>OAc by dry htg.; this matter, however, seems to have received no further attention.]

 $\bar{C}$  with aq. NH<sub>2</sub>OH.HCl on htg. readily yields (32)  $\alpha,\alpha,\beta$ -trichloro-n-butyraldoxime (first separating as an oil), cryst. from lgr., m.p. 65° (32).

The reaction of  $\tilde{C}$  with arylhydrazines is of special interest and has been extensively studied. With phenylhydrazine the reaction is extremely vigorous (33) (34) and unless carefully controlled (35) may become almost explosively violent yielding only tar. With nuclear-substituted phenylhydrazines, however, the reaction is milder, and their study has shown that all arylhydrazines react in the same general pattern although this comprises several different courses according to the solvent used. The pattern will be illustrated here only by the case of 2,4-dichlorophenylhydrazine (see below); for details of the analogous reaction of  $\tilde{C}$  with phenylhydrazine (33) (34), o-, m-, and p-tolylhydrazines (34), 2,5-dichlorophenylhydrazine (35) (36), 3,5-dichlorophenylhydrazine (35), 2,4,5-trichlorophenylhydrazine (36), p-bromophenylhydrazine (37), 4,5-dibromophenylhydrazine (35), and 2,4,6-tribromophenylhydrazine (35) see indic. refs.

[The reactn. of  $\tilde{\mathbb{C}}$  (1 mole) with 2,4-dichlorophenylhydrazine hydrochloride (1 mole) first gives the expected butyrchloral 2,4-dichlorophenylhydrazone (A) which, however, cannot be isolated because of immediate further reaction in two different modes according to the solvent employed. In dil. aq. HCl contg. NaOAc (A) loses HCl in two different ways leading on one hand to  $\alpha,\beta$ -dichlorocrotonaldehyde 2,4-dichlorophenylhydrazone (B), long yel. pr. from alc. or AcOH, m.p. 112° (33), and on the other (simultaneously and with rearr. of unsatd. linkages) to the crimson 1-(2,4-dichlorobenzeneazo)-2,3-dichlorobutene-1 (C) (in most instances the last is not isolatable in pure form although it has been in the case (37) of  $\tilde{\mathbb{C}}$  with 2,4-dibromophenylhydrazine); in MeOH, EtOH, or AcOH, however, the two  $\alpha$ -chlorine atoms of the initial arylhydrazone (A) undergo hydrolysis with consequent formn. of  $\beta$ -chloro- $\alpha$ -keto-n-butyraldehyde 2,4-dichlorophenylhydrazone (D), pale yel. pr. from alc., m.p. 129° (33).]

[This last type of cpd. (D) can be caused to undergo two further important types of reaction: e.g., (D) with further 2,4-dichlorophenylhydrazine in MeOH soln. not only undergoes conventional condensation of its  $\alpha$ -keto grouping but also has the  $\beta$ -chlorine atom replaced by methoxyl so that the product obtd. is  $\beta$ -methoxy- $\alpha$ -keto-n-butyraldehyde bis-(2,4-dichlorophenyl)osazone (E), bright yel. pr. from pyridine or  $C_0H_0$ , m.p. 196° dec. (33) (this reaction occurs so readily in MeOH that from C + 2,4-dichlorophenylhydrazine hydrochloride both (D) and (E) are formed and may be separated by fractional crystn.); on the other hand, (D) with alc. NaOEt on htg. loses HCl and ring-closes (38) to 1-(2,4-dichlorophenyl)-4-hydroxy-5-methylpyrazole (F), colorless cryst. from boilg. alc., m.p. 184° (38) (this type of reactn. comprises a general synthesis of 4-hydroxypyrazoles).]

3:1905 (1) Krämer, Pinner, Ber. 3, 383-390 (1870). (2) Moureu, Murat, Tampier, Bull. soc. chim. (4) 29, 33 (1921). (3) Lieben, Zeisel, Monatsh. 4, 534-538 (1883). (4) Mering, Z. physiol. Chem. 6, 491-496 (1882). (5) von Lang, Z. Krist. 25, 521-522 (1896). (6) Pinner, Ann. 179,

26-29 (1875), (7) Rosenfeld, Biochem. Z. 156, 54-57 (1925); Cent. 1925, I 2301; C.A. 19, 2683 (1925). (8) Neuberg, Ehrlich, Biochem. Z. 101, 239-275 (1920); Cent. 1920, I 534; C.A. 14, 2007 (1920). (9) Gabutti, Boll. chim. farm. 42, 777-778 (1903); Cent. 1904, I 480. (10) Ware, Chemist and Druggist 123, 282 (1935), Cent. 1936, I 1667; C.A. 30, 983 (1936).

(11) Roberts, J. Chem. Soc. 1938, 779. (12) Chattaway, Kellett, J. Chem. Soc. 1928, 2709-2714. (13) Willcox, Brunel, J. Am. Chem. Soc. 38, 1837 (1916). (14) Engel, Moitessier, Compt. rend. 90, 1075-1077 (1880). (15) Pinner, Ann. 179, 44 (1875). (16) Pinner, Bischoff, Ann. (17) Chattaway, Irving, J. Chem. Soc. 1929, 1043-1047. (18) Pinner, **179.** 97–99 (1875) Klein, Ber. 11, 1488, 1491 (1878). (19) Passermi, Gazz chim ital. 52, 435 (1922). (20) Riedel,

Straube, Ann. 367, 44 (1909).

(21) Chattaway, Witherington, J. Chem. Soc. 1935, 1178-1179. (22) Chattaway, Drewitt, Parkes, J. Chem. Soc. 1936, 1294. (23) Chemisch-Pharmazeutische A.G., Bad Homburg, Ger. 590,312, Dec. 29, 1933, Cent 1934, I 1353. (24) Pfeiffer, Seydel, Z. physiol. Chem. 178, 102-103, 106-107 (1928). (25) Polish 13,363, May 12, 1931; Cent. 1932, II 925. (26) M L.B., Ger. 150,799, April 25, 1904; Cent. 1904, I 1379. (27) Chemisch-Phalmazeutische A.G., Bad Homburg, Ger. 438,984, Dec. 29, 1926, Cent. 1927, I 1068. (28) Altwegg (to Soc. Chim. des Usines du Rhone), Brit. 294,092, Aug. 9, 1928, Cent. 1929, I 1049. (29) Shah, J. Indian Chem. Soc. 16, 285-286 (1939). (30) Katrah, Meldrum, J. Indian Chem. Soc. 9, 121-125 (1932).

(31) Schiff, Ber 11, 2167 (1878) (32) Schiff, Tarugi, Gazz. chim. ital. 21, II 8-9 (1891). (33) Chattaway, Irving, J. Chem. Soc. 1930, 87-94. (34) Chattaway, Irving, J. Chem. Soc. 1931, 751-753. (35) Chattaway, Irving, J. Am. Chem. Soc. 54, 263-271 (1932). (36) Chattaway, Adair, J. Chem. Soc. 1933, 1488-1490. (37) Irving, J. Chem. Soc. 1940, 813-817. (38)

Chattaway, Irving, J. Chem. Soc. 1931, 786-794.



Colorless and best recrystd. from commercial n-heptane (Skellysolve "C") (1); Ifts, from aq. alc. (4). - Very spar. sol. aq., quite sol. alc. or C6H6, misc. with other. [For study of ionization const. see (3).] — [For study of fate of  $\bar{C}$  in animals see (5).]

[For prepn. of C from m-chlorobenzyl bromide (mp. 15-15.5° cor., bp. 103-105° at 8 mm.,  $D_{25}^{25} = 1.5652$  (1)) via conversion to m-Cl.C<sub>6</sub>H<sub>4</sub>.CH<sub>2</sub>MgBr and subsequent carbonation (65-75% yield) see (1); from m-aminophenylacetic acid [Beil. XIV-456, XIV<sub>1</sub>-(588)] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. (but no details reported) (5); from m-chlorophenylpyruvic acid (4) in dil. aq. NaOH with 30% H<sub>2</sub>O<sub>2</sub> (57% yield) see (4); from mchlorophenylacetonitrile, m.p. 11.5°, bp 261° at 757 mm. (2), by hydrolysis in H<sub>2</sub>SO<sub>4</sub>/ .AcOH /aq. see (2).]

[For reactn. of closely related m-Cl.C<sub>6</sub>H<sub>4</sub>.CH<sub>2</sub>.COOMgX with large excess of various RMgX cpds. see (6) and also under m-chlorobenzyl chloride (3:6445).]

[C with SOCl2 yields (5) m-chlorophenylacetyl chloride, yel.-green liq., b.p. 52° at 16 mm. (5); this prod. with aminoacetic acid (glycine) in dil. aq. NaOH yields (5) m-chlorophenylacetaminoacetic acid (m-chlorophenylaceturic acid), colorless ndls. from aq., m.p. 144-145° (5).1

[C converted to its Pb salt, latter dried at 110° and distilled, yields (2) 3,3'-dichlorodibenzyl ketone, colorless ndls. from alc., m.p. 89° (2) (corresp. oxime, m.p. 73° (2), semicarbazone, m.p. 121° (2)).]

- Methyl 3-chlorophenylacetate: unreported.
- Ethyl 3-chlorophenylacetate: unreported.
- (3-Chlorophenylacet)anilide: thin white pl. from dil. alc., m.p. 130° cor. (1). [From

Č with 1 mole aniline on htg. at 180-190° for 2 hrs. (1), or indirectly from m-chlorobenzyl phenyl ketoxime by Beckmann rearr. with PCl₅ in ether (64-82% yield (1)).]

(3-Chlorophenylacet)-m-chloroanilide: white ndls. from dil. alc., m p. 120° cor. (1). [From C with m-chloroaniline (1 mole) on htg at 180-190° for 2 hrs. (1), or indirectly from m-chlorobenzyl m-chlorophenyl ketoxime by Beckmann rearr. with PCl<sub>5</sub> in ether (64-82% yield (1)).]

3:1910 (1) Jenkins, J. Am. Chem. Soc. 55, 2898-2899 (1933). (2) Kenner, Morton, J. Chem. Soc. 1934, 679-680 (3) Dippy, Williams, J. Chem. Soc. 1934, 1888-1892. (4) Buck, Ide, J. Am. Chem. Soc. 54, 3307-3309\*(1932). (5) Muenzen, Cercedo, Sherwin, J. Biol. Chem. 68, 508-510 (1926). (6) Ivanov, Pchnénitchny, Bull. soc. chm. (5) 1, 231-232 (1934).

Colorless cryst. from alc. (0.8 ml./g. (5)); somewhat less sol in alc. than isomeric 2-chlorobiphenyl (3:0300). — Volatile with steam. — [For f p./compn. curves of systems:  $\bar{C}$  + biphenyl (1:7175),  $\bar{C}$  + 4-fluorobiphenyl, or  $\bar{C}$  + 4-bromobiphenyl, see (7)]

[For prepn. of  $\bar{C}$  from biphenyl (1:7175) with  $Cl_2$  in pres. of Fe (30% yield (5)) (14) (16) (17), or SbCl<sub>5</sub> (12), see indic. refs. (2-chlorobiphenyl (3:0300) is also formed; for use of mixt. for transformer oil see (18); for sepn. of mixt. see (19)); for prepn. of  $\bar{C}$  from p-aminobiphenyl via diazotization and use of  $Cu_2Cl_2$  reactn. see (2) (7).]

[For prepn. of  $\bar{C}$  from p-chloroaniline [Beil. XII-607, XII<sub>1</sub>-(604)] via diazotization and coupling of resultant diazonium salt with  $C_6H_6$  in aq. NaOH suspension (yields: 41% (1), 40% (6)) cf. (21) (23) or in aq. NaOAc (yield = 35% (6)), or by formn. of p-chlorobenzene-diazonium chloride/ZnCl<sub>2</sub> cpd. and reactn of latter with  $C_6H_6$  in AcOH + NaOAc (yield = 34% (20)) see indic. refs.: from N-nitroso-acet-p-chloroanilide with  $C_6H_6$  in CHCl<sub>3</sub> for a few days at room temp see (13).]

[For formn. of  $\bar{C}$  from decompn. of dibenzoyl peroxide (1:4930) in boilg. chlorobenzene see (22); from decompn. of benzoyl *p*-chlorobenzoyl peroxide see (23); from di-(*p*-chlorobenzoyl) peroxide in  $C_6H_6$  see (24)(4) (3); for formn. of  $\bar{C}$  from 4-hydroxybiphenyl (1:1585) with PCl<sub>5</sub> see (10); from *p*-xenylselenium trichloride on htg. see (25); from *p*-chloroiodobenzene + Cu powder see (2)]

[ $\bar{C}$  with aq. 15–30% NaOH at 300–400° under pressure (26) in pres. of Cu (27), or  $\bar{C}$  with aq. Na<sub>2</sub>CO<sub>3</sub> + Cu at 300° (28), or  $\bar{C}$  with aq. vapor over cat. at 525–600° (29) gives (75% yield (26)) 4-hydroxybiphenyl (1:1585) (28) (29) or its mixt. with 3-hydroxybiphenyl (1:1475) (27)]

[ $\bar{C}$  with conc. aq. NH<sub>4</sub>OH + cat. under press. as directed (30) (31) gives p-aminobiphenyl.]

[ $\bar{C}$  with Li in dry ether under N<sub>2</sub> gives (32) Li p-xenyl. —  $\bar{C}$  with Na sand in C<sub>6</sub>H<sub>6</sub> at 110–120° under press. followed by carbonation with CO<sub>2</sub> gives (65–67% yield (33)) biphenyl-4-carboxylic acid (p-phenylbenzoic acid) [Bcil. IX-671, IX<sub>1</sub>-(280)]. —  $\bar{C}$  with Na

+ diethyl carbonate (1:3150) in  $C_6H_6$  as directed gives (yields: 42% (35), 35–40% (36), 39% (37), 23% (38)) tri-(p-xenyl)carbinol (tris-p-biphenylcarbinol) [Beil. VI-738, V<sub>1</sub>-(369)], colorless cryst. from AcOH, m.p. 207–208° (36), 207° (38), 206–207° (37). — Č with Na + benzophenone (1:5150) in  $C_6H_6$  gives (67% yield (34)) diphenyl-p-xenyl-carbinol [Beil. VI-732], colorless cryst. from lgr., stable form, m.p. 135–136° (34), metastable form, m.p. 112–113° (34).]

[For reactn. of  $\bar{C}$  with Na + AsCl<sub>3</sub> giving (39) tri-(p-xenyl)arsine, with Na + SbCl<sub>3</sub> giving (40) tri-(p-xenyl)stibine, with Na + PCl<sub>3</sub> giving (41) tri-(p-xenyl)phosphine, or with Na + SiCl<sub>4</sub> giving (42) tetra-(p-xenyl)silane see indic. refs.]

[ $\bar{C}$  + stearoyl chloride (3:9960) + AlCl<sub>3</sub> in CS<sub>2</sub> gives (43) heptadecyl *p*-chloroxenyl ketone, m.p. 96-97° (43). —  $\bar{C}$  + cyclohexene (1:8070) + AlCl<sub>3</sub> gives (44) a mixt. of cyclohexyl-*p*-chlorobiphenyls.]

 $[\tilde{C} + \text{phthalic anhydride } (1:0725) + \text{AlCl}_3 \text{ as directed } (45) (46) \text{ gives } (93\% \text{ yield } (45))$   $o-[4-(p-\text{chlorophenyl})\text{benzoic acid, colorless rods from AcOH or toluene, m.p. } 251^{\circ}$ cor. (45),  $249.6-250.6^{\circ}$  (46).]

The nitration of  $\bar{C}$  does not appear to have been reported.

 $\tilde{\mathbf{C}}$  on oxidn. with CrO<sub>3</sub> in AcOH yields (10) (25) p-chlorobenzoic acid (3:4940), m.p. 237° (10) (25).

3:1912 (1) Gomberg, Bachmann, J. Am. Chem. Soc. 46, 2339-2343 (1924). (2) Weissberger, Sängewald, Z. physik. Chem. B-20, 155 (1933). (3) Fichter, Adler, Helv. Chim. Acta 9, 284-286 (1926). (4) Gelissen, Hermans, Ber. 58, 292 (1925). (5) Jenkins, McCullough, Booth, Ind. Eng. Chem. 22, 31-34 (1930). (6) Elbs, Haworth, Hey, J. Chem. Soc. 1940, 1285. (7) L. Klemm, W. Klemm, Schiemann, Z. physik. Chem. A-165, 383-384, 388 (1933). (8) Fuoss, J. Am. Chem. Soc. 63, 371 (1941). (9) Brull, Gazz. chim. ital. 65, 24 (1935). (10) Schultz, Ann. 174, 209-210 (1874).

(11) Adam, Russell, J. Chem. Soc. 1930, 205. (12) Kramers, Ann. 189, 142-145 (1877), (13) Bamberger, Ber. 53, 2315-2316, 2320 (1920). (14) Britton, Stoesser (to Dow Chem. Co.). U.S. 1.835,754, Dec. 8, 1931; Cent. 1932, I 1440. (15) Hale, J. Am. Chem. Soc. 54, 4458-4459 (1932). (16) Prahl, Mathes (to F. Raschig), Ger. 575,765, May 3, 1933; Cent. 1933, II 134; Ger. 580,512, July 13, 1933; Cent. 1933, II 1763. (17) Malowan (to Swann Research, Inc.), U.S. 1,951,577, March 20, 1934; Cent. 1934, II 3183. (18) Federal Phosphorus Co., French 702,497, April 9, 1931; Cent. 1931, II 2096. (19) Britton, Stoesser (to Dow Chem. Co.), U.S. 1,890,427, Dec. 6, 1932; Cent. 1933, II 2894. (20) Hodgson, Marsden, J. Chem. Soc. 1949, 211.

(21) Bamberger, Ber. 29, 465-466 (1896). (22) Hey, J. Chem. Soc. 1934, 1967. (23) Wieland, Rasuwajeu, Ann. 486, 168-169 (1930). (24) Böeseken, Gelissen, Rec. trav. chim. 43, 871 (1924). (25) Behaghel, Hofmann, Ber. 72, 592 (1939). (26) du Pont Co., Brit. 406,319, March 22, 1934. Cent. 1934, I 3801. (27) Britton (to Dow Chem. Co.), U.S. 1,996,744, April 9, 1935; Cent. 1935, II 1962. (28) Britton (to Dow Chem. Co.), U.S. 1,959,283, May 15, 1934; Cent. 1934, II 1688. (29) Booth (to Swann Research, Inc.), U.S. 1,925,367, Sept. 5, 1933; Cent. 1934, I 128. (30) Groggins, Sţirton, Ind. Eng. Chem. 28, 1051-1063 (1926).

(31) Booth (to Swann Research, Inc.), U.S. 1,954,469, April 10, 1934; Cent. 1934, II 1846.
(32) Müller, Töpel, Ber. 72, 285 (1939).
(33) Morton, LeFevre, Hechenbleikner, J. Am. Chem. Soc. 58, 754-755 (1936).
(34) Clapp, Morton, J. Am. Chem. Soc. 59, 2074-2075 (1937).
(35) Bachmann, Wiselogle, J. Org. Chem. 1, 371-372 (1936).
(36) Morton, Myles, Emerson, Org. Syntheses 23, 95-97 (1943).
(37) Morton, Emerson, J. Am. Chem. Soc. 59, 1948 (1937).
(38) Morton, Stevens, J. Am. Chem. Soc. 53, 4029-4030 (1931).
(39) Worrall, J. Am. Chem. Soc. 53, 666 (1930).
(40) Worrall, J. Am. Chem. Soc. 52, 2048 (1930).

(41) Worrall, J. Am. Chem. Soc. 52, 2934-2935 (1930). (42) Schumb, Ackerman, Saffer, J. Am. Chem. Soc. 60, 2487 (1938). (43) Ralston, Christensen, Ind. Eng. Chem. 29, 194-196 (1937). (44) Martin, Coleman (to Dow Chem. Co.), U.S. 1,969,984, Aug. 14, 1934; Cent. 1935, I 2258. (45) Groggins, Ind. Eng. Chem. 22, 622 (1930). (46) Groggins, U.S. 1,786,526, 1,786,528, Dec. 30, 1930; Cent. 1931, II 3157-3158 (1931).

Colorless ndls. from alc., 80% alc., or ether + alc. — Eas. sol. hot alc. but spar. sol. cold alc., eas. sol. ether, spar. sol. cold lgr. [For search for possible polymorphic forms see (4) (9) (10).]

72-73°

(8)

[For prepn. of  $\bar{\mathbb{C}}$  from benzoic acid (1:0715) + chlorobenzene (3:7903) with AlCl<sub>3</sub> (82.4% yield  $\bar{\mathbb{C}}$  + 11.9% 2-chlorobenzophenone (3:0715) (1)), or with  $P_2O_5$  at 180–200° (5), see indic. refs.; from benzoyl chloride (3:6240) + chlorobenzene (3:7903) with AlCl<sub>3</sub> (yields: 97% (37), 86% (8), 80–90% (7) (11), 45% (4), 40% (2)) (3) (some 2-chloro isomer also being formed (12)) see indic. refs.; from p-chlorobenzoyl chloride (3:6550) + benzene with AlCl<sub>3</sub> (84.6% yield) see (6); from tetra-(4-chlorophenyl)ethylene glycol bis-(magnesium iodide) in quant. yield with I<sub>2</sub> or O<sub>2</sub> see (13); from p-chlorobenzohydrylidene- $\alpha$ -phenylethylamine by hydrol. with warm dil. H<sub>2</sub>SO<sub>4</sub> see (8).]

[ $\bar{C}$  on reduction with Al/Hg in 80% alc. (3) (14) or with 3% Na/Hg (7) or on boilg. with alc. KOH for 2 days (15), or exposure to sunlight for 7 days of its soln. in isopropyl alc. contg. Na isopropylate, gives (85% yield (3) (14), 80% yield (16)) 4-chlorophenyl-phenyl-carbinol. (4-chlorobenzohydrol) [Beil. VI-680, VI<sub>1</sub>-(327)], m p. 67.5° (3) (14), 62° (7), accompanied by a little (14% (3) (14))  $\alpha,\alpha'$ -diphenyl- $\alpha,\alpha'$ -hs-(4-chlorophenyl)ethylene glycol (sym.-4,4'-dichlorobenzopinacol) [Beil. VI<sub>1</sub>-(523)], m.p. 179° (3) (14). —  $\bar{C}$  with Zn + AcOH yields 4-chlorobenzohydryl acetate (12) or a mixt. (7) of 4-chlorobenzohydrol (above) + the corresp. pinacol (see below).]

[ $\bar{C}$  with Mg + MgI<sub>2</sub> in ether + C<sub>6</sub>H<sub>6</sub> or  $\bar{C}$  in very dil. alc. soln. in sunlight (7) gives (94% yield (13)) sym.-4,4'-dichlorobenzopinacol, m.p. 172-178° (see above). —  $\bar{C}$  with Zn dust + H<sub>2</sub>SO<sub>4</sub> in aq. AcOH yields (12) sym.-4,4'-dichloro- $\alpha$ -benzopinacoline (sym.-4,4'-dichlorotetraphenylethylene oxide) [Beil. XVII<sub>1</sub>-(45)], ndls. from AcOH, m.p. 220° dec. (12). — For oxidn.-reductn. potential of  $\bar{C}$  see (35).]

[ $\bar{C}$  with conc. HI + red P in AcOH refluxed 14 hrs. gives (7) 4-chlorodiphenylmethane [Beil. V-590, V<sub>1</sub>-(278), V<sub>2</sub>-(500)], b.p. 298° at 742.5 mm. (7).]

[C with diphenylmethyl sodium (benzohydryl-sodium) followed by aq. gives (18) corresp. tertiary alc., viz., benzohydryl-p-chlorophenyl-phenyl-carbinol, m.p. 176-178° (18), which with acetyl chloride loses H<sub>2</sub>O to give 4-chlorotetraphenylethylene [Beil. V<sub>1</sub>-(376), V<sub>2</sub>-(679)], m.p. 166-167° (18). — C with MeMgI in dry ether yields (19) p-chlorophenyl-phenyl-methyl-carbinol which on loss of aq. by htg. as directed gives (66% overall yield) a-(4-chlorophenyl)-a-phenylethylene, b.p. 164° at 16 mm. (19); note that this prod. with

Br<sub>2</sub> does not add halogen but rather evolves HBr yielding (20) both solid (m.p. 94–95°) and liq. stereoisomers of  $\beta$ -(4-chlorophenyl)- $\beta$ -phenylvinyl bromide. —  $\bar{C}$  with  $\beta$ -(4-chlorophenyl)- $\beta$ -phenylvinyl MgBr as directed (23) gives 1,4-di-(p-chlorophenyl)-1,4-diphenyl-butadiene-1,3, yellowish green ndls. from amyl alc., m.p. 230° (23). —  $\bar{C}$  with triphenyl-methyl MgBr in ether +  $C_6H_6$ , followed by dil.  $\Lambda$ cOH, gives (21) 78% yield sym.-4,4-dichlorobenzopinacol (see above) + 80% yield triphenylmethyl peroxide.]

[Č with ethyl bromoacctate + Zn in dry  $C_6H_6$  gives (yields: 79% (22), 67% (24)) ethyl  $\beta$ -(4-chlorophenyl)- $\beta$ -hydroxy- $\beta$ -phenyl-propionate, m.p. 79-80.5° (22), 69° (24); this prod. on htg with 85% formic acid gives (66% yield (24)) ethyl  $\beta$ -(4-chlorophenyl)cinnamate, b.p. 210-212° at 13 mm. (24), or on hydrolysis gives (22)  $\beta$ -(4-chlorophenyl)- $\beta$ -hydroxy- $\beta$ -phenylpropionic acid, m.p. 188.5-189.° dec. (22).]

 $\bar{C}$  with PCl<sub>5</sub> at 150° gives (yields: 90% (25) (27), 88% (26) (8))  $\alpha$ ,  $\alpha$ , 4-trichlorodiphenylmethane (4-chlorobenzophenone dichloride) [Beil. V-592, V<sub>1</sub>-(279)], b.p. 191-193° at 13 mm. (8), 189-194° at 12 mm. (25).  $D_1^{20} = 1.302$  (25),  $n_D^{20} = 1.6110$  (25); this prod. with Zn dust refluxed in dry ether for 1 hr gives (12% yield (25))  $\alpha$ ,  $\beta$ -di-(p-chlorophenyl)- $\alpha$ ,  $\beta$ -di (phenyl)ethylene, ndls. from alc., m p. 202-203° (25).

 $\bar{C}$  fused with KOH/NaOH gives (28) benzoic and (66%) + p-chlorobenzoic acid (3:4940) (18%) + a little p-hydroxybenzoic acid (1:0840). —  $\bar{C}$  with 10% aq. NaOH in pres. of Cu under press. at 190° yields (29) 4-hydroxybenzophenone (1:1560).

[C with NH<sub>3</sub> in pres. of Cu cpds. at 170–300° under press. gives (30) 4-aminobenzophenone [Beil. XIV-81, XIV<sub>1</sub>-(388)], lfts. from dil. alc., mp. 123–124°. — C condensed with NaNH.C<sub>6</sub>H<sub>5</sub> as directed (31) yields 4-anilinobenzophenoneanil, m.p. 56° (for other amines and use of products as antioxidants see (31)); note, however, that by a closely similar method (36) p-chlorobenzophenoneanil, m.p. 64–64.5°, can also be obtd ]

C on dinitration with abs. HNO<sub>3</sub> gives (32) a mixt. contg. 4-chloro-3,3'-dinitrobenzophenone, cryst. from toluene, m p. 166°, 4-chloro-3,2'-dinitrobenzophenone, cryst. from alc., m.p. 123.5°, and 4-chloro-3,4'-dinitrobenzophenone, m p. 136-136.5°.

- ① 4-Chlorobenzophenone oxime: This prod. is known in two stereoisomeric forms: the higher-melting isomer, m.p. 155-156° (6) (corresp. acetate, m.p. 147-148° (6), corresp. benzyl ether, m.p. 74-75° (6)), which on Beckmann rearr. (6) (34) with PCl<sub>5</sub>, with conc. H<sub>2</sub>SO<sub>4</sub> at 100°, or with AcOH/Ac<sub>2</sub>O/HCl yields 4-chlorobenzanilide, is in the light of modern views on trans interchange regarded as the syn-(p-chlorophenyl) stereomer; the lower-melting isomer, m.p. 95° (6) (corresp. acetate, m.p. 105-106° (6), corresp. benzyl ether, m.p. 98-99° (6)), which on Beckmann rearr. with PCl<sub>5</sub> yields benz-p-chloroanilide, is now regarded as the trans-(p-chlorophenyl) stereomer. [A mixt. of these two stereoisomeric oximes contg. 56% high-melting form + 44% low-melting form (33) is obtd. from C with NH<sub>2</sub>OH.HCl + pyridine in abs. alc. (33) or from C + NH<sub>2</sub>OH.HCl + dil. alc. KOH (6); the two isomers are separated by means of their different solubilities in alc. (6) (34). Note that the lower-melting isomer is itself converted to the higher-melting form by htg. 3 hrs. at 100° (6) and also (in part) during Beckmann rearr.]
- **D** 4-Chlorobenzophenone phenylhydrazone: cryst. from ether /AcOH, m.p. 106° (34). [From  $\bar{\mathbf{C}}$  with phenylhydrazine or phenylhydrazine acetate in alc. as directed (34).]
- 4-Chlorobenzophenone p-nitrophenylhydrazone: unreported.
- **10** 4-Chlorobenzophenone, 2,4-dinitrophenylhydrazone: m.p. 184-185° (Heilbron).
- 3:1914 (1) Newton, Groggins, Ind. Eng. Chem. 27, 1398 (1935). (2) Wegerhoff, Ann. 252, 5-11 (1889). (3) Cohen, Rec. trav. chim. 38, 115, 123 (1919). (4) Schaum, Unger, Z. anorg, allgem. Chem. 132, 91-93 (1923-24). (5) Kollarits, Merz, Ber. 6, 547 (1873). (6) Demuth, Dittrich, Ber. 23, 3609-3614 (1890). (7) Montagne, Rec. trav. chim. 26, 262-267 (1907). (8)

Ingold, Wilson, J. Chem. Soc. 1933, 1502. (9) Schaum, Ann. 462, 203 (1928). (10) Schaum, Naumann, Z. anorg. allgem. Chem. 148, 222 (1925).

- (11) Gomberg, Cone, Ber. 39, 3278 (1906). (12) Montagne, Kirpal, Rec. trav. chim. 29, 138, 143, 145-147 (1910). (13) Gomberg, Bachmann, J. Am. Chem. Soc. 49, 239, 250 (1927). (14) Böeseken, Cohen, Cent. 1915, I 1376. (15) Montagne, Rec. trav. chim. 27, 334-335 (1908). (16) Bachmann, J. Am. Chem. Soc. 55, 394 (1933). (17) Cohen, Rec. trav. chim. 39, 258 (1920). (18) Bergmann, J. Chem. Soc. 1936, 412-413. (19) Bergmann, Bondi, Ber. 64, 1468 (1931). (20) Bergmann, Engel, Meyer, Ber. 65, 456 (1932).
- (21) Bachmann, J. Am. Chem Soc 53, 2762 (1931). (22) Alexander, Jacoby, Fuson, J. Am. Chem. Soc. 57, 2209 (1935). (23) Ref 24, p. 256. (24) Bergmann, Hoffmann, Meyer, J. prakt. Chem. (2) 135, 261 (1932). (25) Price, Fanta, J. Am. Chem. Soc. Soc. 64, 2726-2727 (1942). (26) Peterson, Am. Chem. J. 46, 332 (1911). (27) Morgan, J. Am. Chem. Soc. 38, 2100 (1916). (28) Lock, Rödiger, Ber. 72, 868 (1939). (29) Britton (to Dow Chem. Co.), U.S. 1,961,630, June 5, 1934; Cent. 1934, I 1846. (30) Britton (to Dow Chem. Co.), U.S. 1,946,058, Feb. 6, 1934; Cent. 1934, I 3396.
- (31) Britton, Heindel, Bryner (to Dow Chem. Co), U.S. 2,063,868, Dec 8, 1936; Cent. 1937, I 4559; C.A. 31, 705 (1937) (32) Montagne, Ber. 49, 2274-2276 (1916). (33) Bachmann, Barton, J. Org. Chem. 3, 303 305 (1938). (34) Overton, Ber. 26, 27-28 (1893). (35) Adkins, Cox, J. Am. Chem. Soc 60, 1153 (1938). (36) Britton, Bryner (to Dow Chem. Co), U.S. 1,938,890, Dec. 12, 1933; Cent. 1934, I 3801. (37) Borcherdt, Adkins, J. Am. Chem. Soc. 60, 5 (1938).

# 3:1915 DI-(TRICHLOROMETHYL) OCCl<sub>3</sub> (°<sub>3</sub>O<sub>3</sub>Cl<sub>6</sub> Beil. III - 17 CARBONATE III<sub>1</sub>-(8) Carbonate, hexachlorodimethyl carbonate)

| M.P. | 78-79° | (1)         | B.P. 203° at 760 mm., sl. dec. | (3) |
|------|--------|-------------|--------------------------------|-----|
|      | 79°    | (2) (3) (4) | 124° at 50 mm.                 | (3) |
|      |        |             | 117° at 36 mm.                 | (2) |
|      |        |             | 105° at 22 mm.                 | (2) |

Cryst. from anhydrous ether (1) (2) or pet. eth. (4). — Disagreeable penetrating odor; attacks mucous membrane.

 $\bar{C}$  on distriction dissociates slightly into phosgene (3:5000) and diphosgene (trichloromethyl chloroformate) (3:5515) (4) (5); solid  $\bar{C}$  when mixed with powdered charcoal and heated to just above m.p. rapidly decomposes to phosgene (3:5000) (5).

[For prepn. of  $\bar{C}$  from dimethyl carbonate (1:3046) by chlorination in sunlight see (1); from methyl chloroformate (3:5075) by chlorination see (2)

 $\bar{C}$  on treatment at 20° for 1 hr. with NaI in acetone evolves CO and separates iodine to 84% of amt. expressed by the reactn. Cl<sub>3</sub>C.O CO.O.CCl<sub>3</sub> + 6NaI  $\rightarrow$  3CO + 3I<sub>2</sub> + 6NaCl (6).

 $\bar{C}$  with most reagents behaves like phospene; e.g.,  $\bar{C}$  with alcohols gives ultimately dialkyl carbonates (7);  $\bar{C}$  with aniline in ether (7) or aq. (2) gives N,N-diphenylurea, m.p. 233° (7);  $\bar{C}$  with phenol + aq. NaOH gives (90% yield (7)) diphenyl carbonate (1:2335) cryst. from alc., m.p. 77.5-78° (7).

[For use of  $\bar{C}$  in prepn. of acid chlorides of carboxylic or sulfonic acids see (8); similarly  $\bar{C}$  htd. with anhydrous NaOAc yields Ac<sub>2</sub>O (9).]

3:1915 (1) Councier, Ber. 13, 1697-1699 (1880). (2) Grignard, Rivat, Urbain, Ann. chim. (9) 13, 263-265 (1920). (3) Kling, Florentin, Jacob, Ann. chim. (9) 14, 208-210 (1920). (4) Marotta, Gazz. chim. ital. 59, 959 (1929). (5) Hood, Murdock, J. Phys. Chem. 23, 508-512 (1919). (6) Perret, Biechler, Compt. rend. 203, 84-87 (1936); C.A. 30, 7423 (1936). (7) Nekrassow, Melnikov, J. prakt. Chem. (2) 126, 95-96 (1930). (8) Brit 401,643, Dec. 14, 1933; Cent. 1934, II 2133. (9) Melnikov, Sidorova, J. Gen. Chem. (U.S.S.R.) 1, 740-742 (1931); C.A. 26, 3234 (1932); Cent. 1932, II 2313.

### 3:1925 1,1-DICHLORO-2-(o-CHLOROPHENYL)-2-(p-CHLOROPHENYL)

C14H8Cl4 Beil. S.N. 480

M.P. 78.4-79.5° cor. (1)

Rectangular pl. from MeOH or EtOH.

[For prepn. of  $\bar{C}$  from 1,1,1-trichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)-thane ("o,p'-DDT") (3:1820) by elimination of 1 HCl with alc. KOH on refluxing 3 hrs. (97% yield) see (1).]

C on oxidn. with CrO<sub>3</sub>/AcOH gives (1) 2,4-dichlorobenzophenone (3:1565), m.p. 64.2-65.2° cor.

3:1925 (1) Haller, Bartlett, Drake, Newman, Cristol, et al., J. Am. Chem. Soc. 67, 1599, 1602 (1945).

#### 3:1930 1,2,5-TRICHLORONAPHTHALENE

M.P. 79° (1) 78-78.5° (2) (4) 77° (3) (See text.)

Cryst. volatile with steam. —  $\bar{C}$  if fused at 79° in cap. m.p. tube, and then allowed to cool slowly in the bath or rapidly in air, solidifies at 69° to a translucent cryst. mass which (if the temperature is immediately raised) melts at 74° but if allowed to remain at or below 69° for a few minutes becomes opaque and then melts at 79° (1).

[For prepn. of Č from 1-chloro-5-sulfonaphthylamine-2 [Beil. XIV-750] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. see (1) (4); from 1-chloro-2-nitronaphthalenesulfonic acid-5 [Beil. XI-170] (3), 2-chloro-1-nitronaphthalenesulfonyl chloride-5 [Beil. XI-169] (3), 2-chloronaphthalene-1,5-bis-(sulfonyl chloride) [Beil. XI-213] (5), or 1,2-dichloronaphthalenesulfonic acid-5 [Beil. XI-163] (2) with PCl<sub>5</sub> see indic. refs.]

[Č treated with ClSO<sub>3</sub>H in CS<sub>2</sub> and conv. to K salt as directed (1) gives a mixt. contg. 70% (less sol.) K 1,2,5-trichloronaphthalenesulfonate-X (corresp. sulfonyl chloride, m.p. 146°) and 30% (more sol.) K 1,2,5-trichloronaphthalenesulfonate-Y (corresp. sulfonyl chloride, m.p. 179°).]

3:1936 (1) Turner, Wynne, J. Chem. Soc. 1941, 247, 251-252. (2) Armstrong, Wynne, Chem. News 59, 188 (1889). (3) Cleve, Chem. Ztg. 17, 398 (1893). (4) Armstrong, Wynne, Proc. Chem. Soc. 1839, 36, 49. (5) Armstrong, Wynne, Chem. News 62, 164 (1890).

Colorless cryst. from alc.; 100 pts. 90% alc. dis. in cold 11.91 pts.  $\bar{C}$ , on boilg. 19.87 pts.  $\bar{C}$  (8). —  $\bar{C}$  is eas. sol. ether, CHCl<sub>3</sub>, or CS<sub>2</sub>; less so in alc. or C<sub>6</sub>H<sub>6</sub>.

#### PREPARATION OF C

[For prepn. of Č from 1,1,1-trichloro-2,2-diphenylethane (3:1420) by splitting out 1 HCl on distn. (9) cf. (10) (6), or with alc. KOH (2) (1) (for study of rate see (11)), or alc. NaOEt (1) see indic. refs.; from unsym.-diphenylethane [Beil. V-605, V<sub>1</sub>-(285), V<sub>2</sub>-(509)] with Cl<sub>2</sub> at 100-150° in quartz flask in light for 10 hrs. followed by distn. at ord. press. (16% yield) see (3); from unsym.-diphenylethylene [Beil. V-639, V<sub>1</sub>-(308), V<sub>2</sub>-(543)] with Cl<sub>2</sub> followed by distn. see (12).]

[For form. of  $\tilde{\mathbb{C}}$  from  $\alpha, \alpha$ -dichloro- $\beta, \beta$ -diphenylethylene sulfide ( $\mathbb{C}l_2\mathbb{C}$ — $\mathbb{C}(\mathbb{C}_6\mathbb{H}_6)_2$ ) by

htg. at 100° for 2 hrs. (or for shorter time at 160°), or by boilg. with MeOH, or htg. with Zn see (13); from  $\alpha,\alpha$ -dichloro- $\beta,\beta$ -diphenylethyl p-tolyl sulfone with PCl<sub>5</sub> at 200° for 2 hrs. see (4); for formn. of  $\tilde{C}$  during condensation of chloral (3:5210) with  $C_6H_6$  + AlCl<sub>5</sub> in CS<sub>2</sub> see (10) (6).]

#### CHEMICAL BEHAVIOR OF C

Reduction. [ $\bar{C}$  on reduction with conc. HI + P at 170-210° gives (7) unsym.-diphenylethane [Beil. V-605, V<sub>1</sub>-(285), V<sub>2</sub>-(509)] and bibenzyl (1:7149).]

Addition of halogens.  $\tilde{C}$  with  $Cl_2$  in dry CHCl<sub>3</sub> adds 1 mole halogen giving (6) (5) 1,1,1,2-tetrachloro-2,2-diphenylethane, m.p.  $S5^{\circ}$  (6). —  $\tilde{C}$  with excess  $Br_2$  htd. on aq. bath until excess reagt. evaporates gives (6) 1,2-dibromo-1,1-dichloro-2,2-diphenylethane, cryst. from alc., m.p.  $120.0-120.5^{\circ}$  (6).

Behavior with alkalies. [ $\bar{C}$  with aq. NaOH at 150°, or with alc. NaOH in s.t. at 100°, is substantially unaffected within 24 hrs. (3); however,  $\bar{C}$  with alc. KOH in stainless-steel bomb at 150° for 24 hrs. gives (73% yield (3)) diphenylacetic acid (1:0765), m.p. 147-148° cor. (3) cf. (1). — Note also that, although  $\bar{C}$  with dry NaOMe in  $C_6H_6$  does not react even in s.t. at 180° for 36 hrs. yet  $\bar{C}$  with dry NaOMe (2 moles) on direct distn. gives diphenylacetylene (tolane) and other products (15).]

[Note also that  $\tilde{C}$  with Na phenolate at 225° for 24 hrs. gives (3)  $\alpha$ -hydroxy- $\alpha$ , $\alpha$ -diphenylacetaldehyde diphenylacetal (benzilaldehyde diphenylacetal), m.p. 111.5°-112° (3).]

Behavior with  $H_2SO_4$  or  $HNO_3$ . With  $H_2SO_4$ .  $\bar{C}$  with conc.  $H_2SO_4$  on warming first becomes yellow, then dark green, later violet, and ultimately brownish red. (5) (6).

With HNO<sub>3</sub>. Č on addition to 12 pts. ice-cold fumg. HNO<sub>3</sub> and subsequently pouring onto ice gives (14) 1,1-dichloro-2,2-bis-(p-nitrophenyl)ethylene, yellowish ndls. from hot alc., m.p. 172° (14); note also that from the mother liquors of recrystn. there can also be obtd. some 4,4'-dinitrobenzophenone, m.p. 188-189°, resulting from some simultaneous oxidn. (14).

3:1938-3:1945 DIVISION A 250

Behavior with active metals. [C with Li in dry ether followed by treatment with alc. gives according to conditions (16) (17) (18) either or both 1,2,3-triphenylnaphthalene, m.p. 151-152° (16) (17) (18) (mononitro deriv., m.p. 200-201° (18)), and 1,2,3,4-tetraphenyl-butadiene-1,3, m.p. 183° (18) (17) (16); for explanation see (18).]

3:1938 (1) Harris, Frankfurter, J. Am. Chem. Soc. 48, 3147-3148 (1926). (2) Bayer, Ber. 6, 223 (1873). (3) Sheibley, Prutton, J. Am. Chem. Soc. 62, 840-841 (1940). (4) Kohler, Potter, J. Am. Chem. Soc. 57, 1321 (1935). (5) Biltz, Ann. 296, 240-241 (1887). (6) Biltz, Ber. 26, 1955-1956 (1893). (7) Redsko, J. Russ. Phys.-Chem. Soc. 21, 424 (1889). (8) Elbs, J. prakt. Chem. (2) 47, 78 (1893). (9) Goldschmiedt, Ber. 6, 987 (1873). (10) Biltz, Ann. 296, 221 (1897). (11) Brand, Busse-Sundermann, Ber. 75, 1822, 1828 (1942). (12) Hepp. Ber. 7, 1411 (1874).

(11) Brand, Busse-Sundermann, Ber. 75, 1822, 1828 (1942). (12) Hepp, Ber. 7, 1411 (1874). (13) Staudinger, Siegwart, Helv. Chim. Acta 3, 846 (1920). (14) Lange, Zufall, Ann. 272, 2-3 (1892). (15) Staudinger, Rathsam, Hclv. Chim. Acta 5, 648, 654 (1922). (16) Schlenk, Bergmann, Ann. 463, 72-75, 80-81 (1928). (17) Bergmann, Schreiber, Ann. 500, 118-120 (1933). (18) Smith, Hoehn, J. Am. Chem. Soc. 63, 1184-1187 (1941).

Colorless cryst. from alc. —  $\bar{C}$  is eas. sol. alc., ether, acetone, AcOH, lgr., or CHCl<sub>3</sub>. —  $\bar{C}$  with conc H<sub>2</sub>SO<sub>4</sub> or with AlCl<sub>3</sub> gives a red color.

[For prepn. of  $\bar{C}$  from dichloroacetaldehyde diethylacetal (3:6110) with  $C_6H_6$  + conc.  $H_2SO_4$  (1) (5) (3) (yields not reported) see indic. refs.; for formn. of  $\bar{C}$  from dichloroacetaldehyde (3:5180) with  $C_6H_6$  + AlCl<sub>3</sub> (6), or from 1,1,1-trichloro-2,2-diphenylethane (3:1420) during reduction in alc./pyridine with  $H_2$  + Ni (7) or during electrolytic reduction as specified (8) (9) (2), see indic. refs.]

 $\bar{C}$  on distn. at ord. press. (1) or with boilg. alc. KOH (1) or NaOH (2) loses HCl giving 1-chloro-1,2-diphenylethylene [Beil. V-639], m.p. 42°. — Note, however, that  $\bar{C}$  with KNH<sub>2</sub> in liq. NH<sub>3</sub> (3) (5) not only loses HCl but the resulting intermediate reacts further with rearrangement giving (91% yield) diphenylacetylene (tolane) [Beil. V-656, V<sub>1</sub>-(319), V<sub>2</sub>-(568)].

Č on boilg. with aq. is not hydrolyzed and no trace of the expected diphenylacetaldehyde results (1).

C on addition to fumg. HNO<sub>3</sub> at 0°, stdg. 24 hrs., and pouring into aq. gives (1) a dinitrobenzophenone of unknown structure (corresp. phenylhydrazone, m.p. 234° (1)).

3:1940 (1) Buttenberg, Ann. 279, 324-327 (1894). (2) Brand, Ber. 46, 2937-2941 (1913).
 (3) Coleman, Holst, Maxwell, J. Am. Chem. Soc. 58, 2312 (1936). (4) Combes, Ann. chim. (6) 12, 271 (1887). (5) Coleman, Maxwell, J. Am. Chem. Soc. 56, 132-134 (1934). (6) Delacre, Bull. soc. chim. (3) 13, 858, Note 4 (1895). (7) Brand, Horn, J. prakt. Chem. (2) 115, 353, 361 (1927). (8) Brand, Z. Elektrochem. 16, 669 (1910). (9) Brand, Ber. 54, 1987 (1921).

#### 3:1945 1,1,2,3,4,4-HEXACHLORO-BUTENE-2

(solid stereoisomer)

Cl Cl Cl Cl 
$$C_4H_2Cl_6$$
 Beil. S.N. 11
$$HC-C=C-CH$$

M.P. 80° (1)

[See also liquid stereoisomer (3:9046).]

Colorless shining lfts. (from alc.) with camphoraceous odor. Eas. sol. ether,  $C_6H_6$ , CHCl<sub>3</sub>, or CCl<sub>4</sub>.

[For prepn. of  $\bar{C}$  (100% yield (1)) from the solid stereoisomer (3:0870) of 1,2,3,4-tetra-chlorobutadiene-1,3 see (1); for formn. of  $\bar{C}$  from 1,1,2,2-tetra-chloroethane (acetylene tetra-chloride) (3:5750) by actn. of u.v. light see (1).] [Note that octa-chlorobutane (3:2000) has also been reported in same reactn.] [For formn. of  $\bar{C}$  together with its liquid stereo-isomer (3:9046) by actn. of  $Cl_2$  upon the high-boilg, fraction obtd in the prepn. of tri-chloroethylene (3:5170) from 1,1,2,2-tetra-chloroethane (acetylene tetra-chloride) (3:5750) see (1).]

Č in alc refluxed with Zn/Cu couple for 1 hr. yields (1) the solid stereoisomer of 1,2,3,4-tetrachlorobutadiene-1,3 (3:0870), m.p. 50° (1).

3:1945 (1) Müller, Huther, Ber. 64, 589-600 (1931); C.A. 25, 3956-3957 (1931).

[For prepn. of  $\bar{C}$  from piperonylic acid (1:0865) with excess SOCl<sub>2</sub> at 100° (1) or in  $C_6H_6$  (90–95% yield (4)), or with PCl<sub>5</sub> (2), see indic. refs. — Note, however, that at higher temps. the dioxymethylene group is also attacked: e g, piperonylic acid htd. in a s.t. with SOCl<sub>2</sub> at 180–200° for 8 hrs. (1) or refluxed 3 hrs. with 3 moles PCl<sub>5</sub> (1) yields  $\mu,\mu$ -dichloropiperonoyl chloride [Beil. XIX-272, XIX<sub>1</sub>-(743)], b.p. 149–150° at 12 mm. (1).]

[C with diazomethane yields (3) piperonyl diazomethyl ketone which with ammonia yields (3) homopiperonylamide, m.p. 173°; C with ethyl sodio-acetoacetate in dry ether, followed by hydrolysis (as specified (4)) of the acetyl group, yields ethyl piperonoylacetate, m.p. 42.5° (4)]

C on hydrolysis with aq. yields piperonylic acid (1:0865), m.p. 228°.

- Deperonvlamide [Beil. XIX-270]: tbls. from alc., m p. 169°.
- ① Piperonylanilide [N-phenyl-piperonylamide]: cryst. from dil. alc., m.p. 146-147° cor. (5) [From  $\tilde{C}+2$  moles aniline in  $C_6H_6$  (5).]
- D Piperonylo-p-toluidide: cryst. from dil. alc., m.p. 149-149.5° cor. (5). [Similarly using p-toluidine (5).]
- D Piperonylo-α-naphthalide: cryst. from dil. alc., m.p. 192-193° cor. (5). [Similarly using α-naphthylamine (5).]
- Dependence Piperonylo-β-naphthalide: cryst. from dil. alc., m.p. 156.5–157° cor. (5). [Similarly using β-naphthylamine (5).]

3:1960 (1) Barger, J. Chem. Soc. 93, 567-568 (1908). (2) Perkin, Robinson, Chem. News 92, 293 (1905). (3) Arndt, Eistert, Ger. 650,706, Sept. 30, 1937; Cent. 1937, II 4390; C.A. 32, 595 (1938). (4) Bruchhausen, Gerhard, Ber. 72, 835-836 (1939). (5) Gertler, Haller, J. Am. Chem. Soc. 64, 1741 (1942).

M.P. 80-81°

See 3:2662 under anhydrous product.

#### 3:1975 1,8,6-TRICHLORO-NAPHTHALENE

#### M.P. 80.5°-81° (1) (2)

[For prepn. of Č from 3,6-dichloronaphthalenesulfonyl chloride-1 (1), from 6-chloronaphthalene-1,3-bis-(sulfonyl chloride) [Beil. XI-212] (2), from 3-chloronaphthalene-1,6-bis-(sulfonyl chloride) [Beil. XI-214] (2), from 1-chloronaphthalene-3,6-bis-(sulfonyl chloride) [Beil. XI-217] (3), or from 1-nitronaphthalene-3,6-bis-(sulfonyl chloride) [Beil. XI-218] (1) (3) (4), each with PCl<sub>5</sub> as directed, see indic. refs.]

[C treated with CISO<sub>3</sub>H in CS<sub>2</sub> and prod. converted to sodium salt yields (1) sodium 1,3,6-trichloronaphthalenesulfonate-7 (corresp. sulfonyl chloride, m.p. 156° (1)).]

3:1975 (1) Turner, Wynne, J. Chem. Soc. 1941, 247, 253, 256. (2) Armstrong, Wynne, Chem. News 62, 164-165 (1890). (3) Armstrong, Wynne, Chem. News 71, 254 (1895). (4) Armstrong, Wynne, Proc. Chem. Soc. 1895, 81.

#### 3:1990 1,3-DICHLORONAPHTHOL-2

CI OH CI C<sub>10</sub>H<sub>6</sub>OCl<sub>2</sub> Beil. VI - 649

VI<sub>1</sub>---VI<sub>2</sub>-(604)

M.P. 80-81° (1) 78° (2)

Ndls. from lgr.; eas. sol. alc., ether, AcOH, or C6H6 (1).

[For prepn. see Beil. VI-649 and (2).]

 $\bar{C}$  in AcOH oxidized with conc. HNO<sub>3</sub> (D=1.42) yields mainly 3-chloronaphthoquinone-1,2 [Beil. VII-720], red ndls. from CHCl<sub>3</sub>, m.p. 172° (1).

 $\bar{C}$  in alc. boiled 15 hrs. with coppered Zn dust yields 3-chloronaphthol-2 (3:2545), m.p. 93° (4); but  $\bar{C}$  is not reduced by Na/Hg (3).

[For study of reaction of C with alkali sulfites see (5).]

① 1,3-Dichloro-2-naphthyl acetate: from  $\ddot{C} + AcCl$ ; m.p. 79-80° (1). [Note that this m.p. is close to that of original  $\ddot{C}$ .]

3:1990 (1) Zincke, Ber. 21, 3385-3387 (1888). (2) Fries, Schimmelschmidt, Ann. 484, 297 (1930). (3) Marschalk, Bull. soc. chim. (4) 43, 1361 (1928). (4) Herzberg, Spengler, Schmid (to I.G.), Ger. 431,165, June 30, 1926; Cent. 1926, 1196 (1926). (5) Marschalk, Bull. soc. chim. (4) 45, 651-662 (1929).

#### CHAPTER VI

#### DIVISION A. SOLIDS

(3:2000-3:2499)

3:2000 1,1,2,2,3,3,4,4-OCTA-CHLOROBUTANE

C<sub>4</sub>H<sub>2</sub>Cl<sub>8</sub> Beil. S.N. 10

M.P. 81° (1)

Colorless cryst. from alc. with odor resembling honey.

[For formn. of  $\bar{C}$  from 1,1,2,2-tetrachloroethane (acetylene tetrachloride) (3:5750) by protracted action of ultra-violet light see (1); considerable amts. of dichloroacetic acid (3:6208), m.p. 10.85°, and small amts. of oxalic acid (1:0445) are also formed (1), and the solid stereoisomer (3:1945) of 1,1,2,3,4,4-hexachlorobutene-2, m.p. 81° has also been reported (3) from the same reaction.]

[An octachlorobutane of m.p. 75.0-76.0° obtd. (2) from trichloroethylene (3:5170) by actn. of  $F_2$  is not regarded (2) as having the structure of  $\tilde{C}$ .]

3:2000 (1) Müller, Luber, Ber. 65, 985-987 (1932). (2) Miller, J. Am. Chem. Soc. 62, 343 (1940). (3) Müller, Hüther, Ber. 64, 599 (1931).

#### 3:2100 2,4,5-TRICHLOROTOLUENE

$$\begin{array}{cccc} CH_3 & C_7H_5Cl_3 & \textbf{Beil. V - 299} \\ & & & & & & & & \\ Cl & & & & & & & \\ Cl & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

White ndls. or lfts. from alc. [For sepn. of  $\bar{C}$  from 2,3,4-trichlorotoluene (3:0425) by sulfonation of latter under conditions not affecting  $\bar{C}$  see (2) (7).]

[For prepn. of  $\bar{C}$  from 4,5-dichloro-2-aminotoluene [Beil. XII-837] (8), or from 4,6-dichloro-3-aminotoluene [Beil. XII-872] (8) (5), or from 2,5-dichloro-4-aminotoluene [Beil. XII-990] (3), via dizactization and use of  $Cu_2Cl_2$  reactn. see indic. refs.; from toluene + AlCl<sub>3</sub> with  $SO_2Cl_2$  at 70° (40%  $\bar{C}$  + 34% 2,3,4-trichlorotoluene (3:0425) (1)) see (1).]

[For formn. of  $\bar{C}$  (together with other products) from toluene with Cl<sub>2</sub> (9) in pres. of I<sub>2</sub> (10) or MoCl<sub>5</sub> (11) or FeCl<sub>3</sub> (11) on silica gel (4), or by electrolysis in HCl/AcOH soln. (12), see indic. refs.; from o-chlorotoluene (3:8245) or p-chlorotoluene (3:8287) with Cl<sub>2</sub> in pres. of MoCl<sub>5</sub> or FeCl<sub>3</sub> see (2); from 2,4-dichlorotoluene (3:6290) in pres. of Al/Hg

(13) or Fe (6) or from 3,4-dichlorotoluene (3:6355) in pres. of Al/Hg (13) see indic. refs.; from sodium p-toluenesulfonate with  $Cl_2$  see (14).]

[ $\bar{C}$  with  $Cl_2$  yields (15) 2,4,5-trichlorobenzal dichloride (3:6910) (together with other products).]

 $\bar{C}$  on mononitration, e.g., by soln. inHNO<sub>3</sub> (D=1.52) yields (16) (2) (8) 2,4,5-trichloro-3-nitrotoluene [Beil. V-333], ndls. from alc., m.p. 92° (2), 91-92° (8), 88.5-90.5° (17), 88.5° (16) (note that the isomeric 2,4,5-trichloro-6-nitrotoluene (prepd. indirectly (18)) has m.p. 93-94° (18));  $\bar{C}$  on dinitration, e.g., on warming with a mixt. of HNO<sub>3</sub> (D=1.5) + conc. H<sub>2</sub>SO<sub>4</sub>, yields (16) (2) (8) 2,4,5-trichloro-3,6-dinitrotoluene [Beil. V-346], ndls. from alc., m.p. 227° (1) (2), 226-227° (8), 226° u.c. (18), 225° (16).

 $\ddot{C}$  on oxidn. with  $K_2Cr_2O_7 + H_2SO_4$  (19) or with dil. HNO<sub>3</sub> in s.t. at 150° (8) (6) yields 2,4,5-trichlorobenzoic acid (3:4630) q.v.

3:2100 (1) Silberrad, J. Chem. Soc. 127, 2681 (1925).
(2) Seelig, Ann. 237, 131, 140, 156 (1887).
(3) Morgan, Drew, J. Chem. Soc. 117, 789 (1920).
(4) Firth, Smith, J. Chem. Soc. 1936, 339.
(5) Musante, Fusco, Gazz chim. ital. 66, 645 (1936).
(6) Feldman, Kopeliowitsch, Arch. Pharm.
273, 493-495 (1935).
(7) Prentzell, Ann. 296, 181-182 (1897).
(8) Cohen, Dakin, J. Chem.
Soc. 81, 1332-1335 (1902).
(9) Limpricht, Ann. 139, 326 (1866).
(10) Beilstein, Kuhlberg, Ann. 146, 326 (1868).

(11) Aronheim, Dietrich, Ber. 8, 1405 (1875). (12) Fichter, Glantzstein, Ber. 49, 2481-2487 (1916). (13) Ref. 8, pp. 1340-1343. (14) British Dyestuffs Lds., Green, Chibben, Brit. 169,025, Oct. 13, 1921, Cent. 1922, IV 376. (15) Leopold Cassella Co., Ger. 363,290, Nov. 6, 1922; Cent. 1923, II 482-483. (16) Schultz, Ann. 187, 277, 280 (1877). (17) Qvist, Holmberg, Acta Acad. Aboensis Math. et Phys. 6, No. 14, 3-28 (1932), Cent. 1932, II 2815 2816, C A. 27, 5726-5727 (1933). (18) Levy, Stephen, J. Chem. Soc. 1931, 78. (19) Jannasch, Ann. 142, 301 (1867).

3:2115 5-CHLORO-2,3-DIMETHYL- OII 
$$C_8H_9OCl$$
 Beil. VI — PHENOL (5-Chloro-o-3-xylenol) CI $CH_3$  VI $_2$ -(454)

Ndls. from hot lt. pet. in which it is readily sol. hot but spar. sol. cold. — Volatile with steam.

[For prepn. of  $\bar{C}$  from 5-amino-2,3-dimethylphenol (5-amino o-3-xylenol) [Beil. XIII<sub>1</sub>-(244)] (3) via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reaction (yield not stated) see (2), for formn. of  $\bar{C}$  from 4,5-dichloro-1,1-dimethylcyclohexen-5-one-3 on htg. see (1).]

C with Cl<sub>2</sub> in lt. pet. gives (2) 4,5,6-trichloro-2,3-dimethylphenol (3:4742), m.p. 180-181°.

The nitration of  $\tilde{\mathbf{C}}$  has not been reported, and none of the products to be expected is known.

- --- 5-Chloro-2,3-dimethylphenyl acetate: unreported.
- D 5-Chloro-2,3-dimethylphenyl benzoate: pr. from alc., m p. 88° (2).

3:2115 (1) Hinkel, J. Chem. Soc. 125, 1852 (1924). (2) Hinkel, Collins, Ayling, J. Chem. Soc. 123, 2970-2971 (1923). (3) Crossley, J. Chem. Soc. 103, 2181 (1913).

3:2125 1.2.3-TRICHLORONAPHTHALENE

$$\begin{array}{c|c} Cl & C_{10}H_{\delta}Cl_{3} & \text{Beil. V - 544} \\ \hline & & V_{1}- \\ \hline & & V_{2}- \\ \end{array}$$

Pr. from ether + alc. — The behavior of  $\tilde{C}$  on fusion is characteristic: if the fused  $\tilde{C}$  in a m.p. tube is allowed to cool to 68° and then withdrawn, it immediately solidifies to a translucent mass which on swift reimmersion into the bath shows m.p. 66-67° but if left for a few seconds in the air suddenly becomes opaque forming a cylinder of m.p. 82-83°, retracted from the wall of the capillary m.p. tube. This change (although slower) also occurs in the translucent form if cooled below 66° (1).

[For prepn. of  $\bar{C}$  from 1-chloronaphthalene tetrachloride [Beil. V-493] with alc. NaOEt (61.6% yield (1)) (2) (3) see indic. refs.; from 1,3-dichloronaphthol-2 (3:1990) by distn. with PCl<sub>5</sub> see (2); from sodium 1,2,3-trichloronaphthalenesulfonate-7 (1) by hydrolysis with superhtd. steam see (1).]

- [C treated with ClSO<sub>3</sub>H in CS<sub>2</sub> and reactn. prod. conv. to sodium salt as directed (1) gives mixt. of sodium 1,2,3-trichloronaphthalenesulfonate-5 (corresp. sulfonyl chloride, m.p. 131°, corresp. sulfonamide, m.p. 249°) and sodium 1,2,3-trichloronaphthalenesulfonate-7 (corresp. sulfonyl chloride, m.p. 157°, corresp. sulfonamide, m.p. 245°) (1).]
- [Č with 7 pts. fumg. H<sub>2</sub>SO<sub>4</sub> (10% SO<sub>3</sub>) shaken 15 min. at 100° yields (1) 1,2,3-trichloro-naphthalene-5,7-disulfonic acid (corresp. bis-(sulfonyl chloride), m.p. 184° (1)).]
- 3:2125 (1) Turner, Wynne, J. Chem. Soc. 1941, 248-251. (2) Faust, Saame, Ann. 160, 71 (1871). (3) Armstrong, Wynne, Chem. News 61, 285 (1890).

3:2145 
$$\beta_1\beta_2$$
-DICHLORO- $\alpha$ -HYDROXYISO- CH<sub>3</sub> C<sub>4</sub>H<sub>6</sub>O<sub>3</sub>Cl<sub>2</sub> Beil. III - 317 BUTYRIC\_ACID Cl<sub>2</sub>CH—C—COOH III<sub>1</sub>— III<sub>2</sub>-(224)

M.P. 82-83° (1) (2) Neut. Eq. 173

Pr. from EtOH/ether (1). - Cannot be distd. without decompn. but sublimes.

[For prepn. from  $\beta,\beta$ -dichloro- $\alpha$ -hydroxyisobutyronitrile (addn. prod. from  $\alpha,\alpha$ -dichloroacetone (3:5430) + HCN) [Beil. I-317] by digestion with strong HCl at 100° see (1).]

The corresp. anilide has been prepd. indirectly by interaction of phenyl isocyanide with  $\alpha,\alpha$ -dichloroacetone (3:5430) in aq. (2); pr. from CHCl<sub>3</sub>, m.p. 132-133° (2).

3:2145 (1) Bischoff, Ber. 8, 1334 (1875). (2) Passerini, Gazz. chim. ital. 54, 540 (1924).

Microscopic ndls. from alc. (1) (6) or n-PrOH (2); spar. sol. alc. (1), pet. ether (6), eas. sol.  $C_6H_6$  (6).

[For prepn. from m-chlorobenzoyl chloride (3:6590) +  $C_6H_6$  + AlCl<sub>3</sub> (64.7% yield (2)) see (2) (1) (6) (5).]

 $\bar{C}$  on reduction with Na/Hg + alc. (100% yield (7)) or Al/Hg + 80% alc. (4) or boilg. alc. KOH (8) yields exclusively 3-chlorodiphenylcarbinol [Beil. VI<sub>1</sub>-(327)], m.p. 40° (7), 39-40° (5), 38° (4). —  $\bar{C}$  with Zn + AcOH (7) or  $\bar{C}$  in alc. on long exposure to sunlight (7) gives sym.-3,3'-dichlorobenzpinacol [Beil. VI<sub>1</sub>-(523)], cryst. from pet. eth., m.p. 137-138° (7), 135° (4).

C fused for 3 hrs. at 200° with a mixt. of KOH + NaOH gives (3) BzOH (1:0715) (80% yield (3)) and a little (5% (3)) m-chlorobenzoic acid (3:4392), m.p. 158° (3), together with chlorobenzone (3:7903) from cleavage of most of the m-chlorobenzoic acid

Č with CH<sub>3</sub>MgI yields (2) 1-(m-chlorophenyl)-1-phenylethylene, oil, b.p. 152-153° at 14 mm. (2).

- **3-Chlorobenzophenone oxime:** from  $\bar{C}$  + NH<sub>2</sub>OH.HCl + alk.; the two stereoisomers are sepd. by fractnl. pptn. of their AcOH soln. with aq. (1).
- a-form (less-sol. isomer); cryst. pdr., m p. 132-133° (1). [With PCl<sub>5</sub> in dry ether, followed by aq., this form yields m-chlorobenzanilide [Beil. XII-267], cryst. from alc., m.p. 122-125° (1).]
- β-form (more-sol. isomer); cryst. pdr., m.p. 105-106° (1). [With PCl<sub>5</sub> in dry ether, followed by aq., this forms benz-m-chloroanilide [Beil. XII-605], ndls from alc., m.p. 118° (1), accompanied by some m-chlorobenzanilide (see above) (1).]
- 3:2160 (1) Hantzsch, Ber. 24, 57-58 (1891). (2) Bergmann, Bondi, Ber 64, 1477 (1931). (3) Lock, Rödiger, Ber. 72, 867 (1939). (4) Cohen, Böeseken, Rec. trav. chim. 38, 115, 123 (1919). (5) Norris, Blake, J. Am. Chem. Soc. 50, 1812 (1928). (6) Koopal, Rec. trav. chim. 34, 153 (1915). (7) Ref. 6, pp. 160-161. (8) Montagne, van Charante, Rec. trav. chim. 31, 312 (1912)

M.P. 83° (1) B.P. 117-118° at 13 mm. (5 82° (2) 81-82° (3) (4)

White cryst., eas. sol. ether or AcOH, can be recrystallized from pet. ether (1) or from hot aq. (5). —  $\bar{C}$  distils under reduced press. without decomposition (5). — Note that m.p. 76.7-77.5° first reported (5) was later (2) found to be erroneous and same sample had actually m.p. 81-82° (2).

Note that, although  $\bar{\mathbf{C}}$  is capable of existing in two geometrically isomeric forms, only this one is known; collateral evidence (but not actual proof) indicates that  $\bar{\mathbf{C}}$  probably represents the *trans* stereoisomer.

[For prepn. of  $\tilde{C}$  from ethyl  $\gamma$ -chlorocrotonate (3:8657) by hydrolysis with Ba(OH)<sub>2</sub> below 0° (60% yield (1) (6)) (4), or less advantageously with 30% aq. KOH in alc. soln. at  $-15^{\circ}$  (40% yield (1)) (5) (note that  $\gamma$ -chlorovinylacetic acid, m.p. 10° (1), is often obtd. (1) (4) as by-prod.); for formn. of  $\tilde{C}$  from  $\beta$ - $\gamma$ -dichloro-n-butyric acid [Beil. II-280] with KOH (poor yield (5)), from trans- $\gamma$ -hydroxycrotonic acid [Beil. III-376] with SOCl<sub>2</sub> in pyridine (2), or from methyl  $\alpha$ -chloro- $\alpha$ -vinylacetate by hydrolysis (3) (7) (presumably as a result of allylic transposition of  $\alpha$ -chloro- $\alpha$ -vinylacetic acid under the influence of alkali) see indic. refs.]

Č dissolved in excess aq. 1 N NaOH and shaken with H<sub>2</sub> in pres. of Pd/activated carbon is readily dehalogenated giving (95% yield (1)) crotonic acid (1:0425); with sufficient H<sub>2</sub> this prod. ultimately reduces to n-butyric acid (1:1035).

[ $\bar{C}$  by cat. hydroxylation with BaClO<sub>3</sub>/osmic acid gives (yields: 75% (6), 78% (9)) threo- $\gamma$ -chloro- $\alpha,\beta$ -dihydroxy-n-butyric acid, m.p. 100° (9); this prod. with silver oxide as directed replaces Cl by OH giving (59% yield (6))  $d_i$ -threonic acid, m.p. 98° (6).]

 $\tilde{C}$  adds  $\tilde{B}r_2$  (1 mole) yielding (3)  $\gamma$ -chloro- $\alpha,\beta$ -dibromo-n-butyric acid, cryst. from cyclohexane, m.p. 119–120° (3).

 $\bar{C}$  with NaI in dry acetone ppts. NaCl and gives (86% yield (1))  $\gamma$ -iodocrotonic acid, yel. ndls. from lgr., m.p. 108-108.5° (1).

[C̄ on neutralization with NH<sub>4</sub>OH and htg. with (NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub> at 50° for 12 hrs. gives (4) γ-sulfocrotonic acid, very hygroscopic cryst., m.p. 94–96°.]

The acid chloride corresponding to  $\bar{\mathbf{C}}$  is unreported.

- Methyl  $\gamma$ -chlorocrotonate: unreported.
- Ethyl  $\gamma$ -chlorocrotonate: b.p. 191–193° at 760 mm. (5) (see 3:8657).
- γ-Chlorocrotonamide: cryst. from hot aq., m.p. 135.5-136° (8), 130-132° (5). [Reported only by partial hydrolysis of γ-chlorocrotononitrile (5) (8).]
- —— γ-Chlorocrotonanilide: unreported.

3:2170 (1) Braun, J. Am. Chem. Soc. 52, 3167-3176 (1930). (2) Rambaud, Bull. soc. chim. (5) 1, 1340 (1934). (3) Rambaud, Bull. soc. chim. (5) 1, 1348 (1934). (4) Backer, Benninga, Rec. trav. chim. 55, 610 (1936). (5) Lespieau, Bull. soc. chim. (3) 33, 466-467 (1905). (6) Glattfeld, Rietz, J. Am. Chem. Soc. 62, 976 (1940). (7) Rambaud, Compt. rend. 197, 769 (1933). (8) Berthet, Bull. acad. roy. Belg., Classe sci. 27, 212-228 (1941); Cent. 1942, I 2115-2116; C.A. 37, 3400 (1943). (9) Braun, J. Am. Chem. Soc. 52, 3176-3185 (1930).

# 3:2174 2,4,6-TRICHLORORESORCINOL OH C<sub>6</sub>H<sub>3</sub>O<sub>2</sub>Cl<sub>3</sub>

#### M.P. 83° (1) (2) (3) (4)

Colorless cryst. from hot aq. (2). —  $\bar{C}$  is spar. sol. cold aq.; eas. sol. alc., ether.  $\bar{C}$  sublimes but with appreciable decompn.

[For prepn. of C from resorcinol (1,3-dihydroxybenzene) (1:1530) with Cl<sub>2</sub> in aq. (4), AcOH (3) (2), or CHCl<sub>3</sub> (2), or with SO<sub>2</sub>Cl<sub>2</sub> (excess) (4) or with dichlorourea (1), see indic. refs.]

[For formn. of C from 2,4,4,6,6-pentachlorocyclohexen-1-dione-3,5 ("pentachlorore-sorcinol") [Beil. VII-572, VII<sub>1</sub>-(323)] by reduction with sulfite (2) (5) or SnCl<sub>2</sub> (2) see

indic. refs.; from 2,2,4,4,5,6,6-heptachlorocyclohexanedione-1,3 ("heptachlorodihydroresorcinol") [Beil. VII-555] by similar reduction see (6).]

[C on oxidn. with alk. K<sub>3</sub>Fe(CN)<sub>6</sub> gives (7) a yel. prod., m.p. 60°.]

C in not too dilute aq. soln. with FeCl3 gives on warming a wine-red color (4).

- --- 2,4,6-Trichlororesorcinol diethyl ether: unreported.
- 2.4.6-Trichlororesorcinol diacetate: cryst. from alc., m.p. 116° (2).
- © 2,4,6-Trichlororesorcinol dibenzoate: pr. from alc, m.p. 133° (4). [From C with BzCl on htg. (4).]

3:2174 (1) Likhosher stov, J. Gen. Chem. (U.S.S.R.) 3, 164-171 (1933); Cent. 1934, I 1876; C.A. 28, 1675 (1934). (2) Zincke, Rabinowitsch, Ber. 23, 3776-3777 (1890). (3) Benedikt, Monatsh. 4, 224-226 (1883). (4) Reinhard, J. prakt. Chem. (2) 17, 336-341 (1878). (5) Claasen, Ber. 11, 1441 (1878). (6) Zincke, Rabinowitsch, Ber. 24, 913 (1891). (7) Stenhouse, Groves, Ber. 13, 1307 (1880). (8) Ciamician, Silber, Ber. 24, 2979-2980 (1891).

# 3:2178 2,3,6-TRICHLOROBENZAL (DI)- Cl $C_7H_3Cl_5$ Beil. S.N. 466 CHLORIDE (2,3,6-Trichlorobenzylidene (di)- Cl $C_1$ Chloride)

# M.P. 83° (1) B.P. 145-150° at 12 mm. (1)

Colorless ndls. from MeOH.

[For prepn. of  $\tilde{C}$  (81% yield) from 2,3,6-trichlorobenzaldehyde (3·2287) with PCl<sub>5</sub> see (1),]

Note that C depresses the m.p. (86-87°) of the corresp. aldehyde (3:2287).

[For study of rate of hydrolysis of C see (1)]
3:2178 (1) Asinger, Lock, Monatsh. 62, 338 (1933)

# 3:2180 4-CHLORO-2,6-DIMETHYL-PHENOL

(5-Chloro-m-2-xylenol)

$$\begin{array}{cccc} & \text{OH} & \text{C}_8\text{H}_9\text{OCl} & \text{Beil. S.N. 529} \\ & & \text{CH}_3 & & & \\ & & & \text{Cl} & & & \\ \end{array}$$

M.P. 83° (1)

[For prepn. of C from 4-chloro-2,6-dimethylphenol (vic-m-xylenol) (1:1425) by chlorination with SO<sub>2</sub>Cl<sub>2</sub> in AcOH (100% yield) see (1)]

[For study of bactericidal action of C see (1)]

- ---- 4-Chloro-2,6-dimethylphenyl acetate: unreported.
- --- 4-Chloro-2,6-dimethylphenyl benzoate: unreported.

3:2180 (1) Heicken, Angew. Chem. 52, 264-265 (1939).

# 3:2182 2,4-DICHLORO-3,5-DIMETHYL- OH C<sub>8</sub>H<sub>8</sub>OCl<sub>2</sub> Beil. VI— PHENOL Cl VI<sub>1</sub>— (2,4-Dichloro-m-5-xylenol) CH<sub>3</sub> CH<sub>4</sub>

M.P. 83° (1)

Cryst. from lgr.

[For prepn. of  $\bar{C}$  from 4-chloro-3,5-dimethylphenol (2-chloro-m-5-xylenol) (3:3505) by chlorination with N-chloroacetamide see {1}.]

The nitration of C has not been reported, and the expected 6-nitro-2,4-dichloro-3,5-dimethylphenol is unknown.

[For conversion of C to various ethers see (1)]

- D 2,4-Dichloro-3,5-dimethylphenol methyl ether: m.p. 82° (1).
- 2,4-Dichloro-3,5-dimethylphenol ethyl ether: m.p. 53° (1).
- 2,4-Dichloro-3,5-dimethylphenyl p-nitrobenzyl ether: m.p. 157° (1).

3:2182 (1) Jones, J. Chem. Soc. 1941, 275.

#### 3:2185 2,3,4-TRICHLOROPHENOL

$$\begin{array}{c|c} \mathrm{OH} & \mathrm{C_6H_3OCl_3} & \quad \textbf{Beil. VI} \hfill & \quad \textbf{VI_1-} \\ \mathrm{Cl} & \quad \textbf{VI_{2-}(179)} \\ \end{array}$$

Ndls. from pet. eth. (1) (3). — Volatile with steam (1). — Ionization const. at 25° is  $2.5 \times 10^{-8}$  (6);  $\bar{C}$  is too weakly acidic to be titrated (1) although sol. in alk.

[For prepn. from 1,2,3-truchlorobenzene (3:0990) via nitration, reduction, and use of diazo reaction see (1) (4); from barium 3-chlorophenol-6-sulfonate by htg with 80%  $H_2SO_4$  see (3); by chlorination of 3,4-dichlorophenol see (2)]

C treated with Br<sub>2</sub>/aq. in excess yields on pptn. with more aq. 6-bromo-2,3,4-trichloro-phenol, pl. from lt. pet., m.p. 84-85° (5).

 $\bar{C}$  treated with  $(CH_3)_2SO_4$  + aq. NaOH yields the methyl ether, 2,3,4-trichloroanisole, pr. from alc., m.p. 69.5° (3).

#### ① 2,3,4-Trichlorophenyl benzoate: m p. 143° (2); 141° (4).

3:2185 (1) Tiessens, Rec. trav. chim. 50, 112-113 (1931). (2) Groves, Turner, Sharp, J. Chem. Soc. 1929, 523. (3) Hodgson, Kershaw, J. Chem. Soc. 1930, 1421. (4) Holleman, Rec. trav. chim. 39, 743 (1920). (5) Fox, Turner, J. Chem. Soc. 1930, 1863. (6) Tiessens, Rec. trav. chim. 48, 1068-1068 (1929).

# 3:2192 3,5-DICHLOROCATECHOL

(3,5-Dichloropyrocatechol)

$$\begin{array}{c|c} \mathrm{OH} & \mathrm{C_6H_4O_2Cl_2} & \mathbf{Beil.} \ \mathbf{VI} - \mathbf{783} \\ \mathrm{OH} & \mathbf{VI_1} - \\ \mathrm{Cl} & \mathbf{VI_2} - \end{array}$$

#### M.P. 83-84° (1)

Colorless cryst. — Very eas. sol. hot, spar. sol. cold, aq.

[For prepn. of  $\bar{C}$  from 3,5-dichloro-2-hydroxybenzaldehyde (3,5-dichlorosalicylaldehyde) (3:2637) with  $H_2O_2$  in alk. soln. see (1).]

Č reduces NH<sub>4</sub>OH/AgNO<sub>3</sub> (1).

C with FeCl<sub>3</sub> gives green color turning violet on addn. of NaHCO<sub>3</sub> (1).

- ---- 3.5-Dichloropyrocatechol diacetate: unreported.
- --- 3.5-Dichloropyrocatechol dibenzoate: unreported.

3:2192 (1) Dakin, Am. Chem. J. 42, 488-489 (1909).

Ndls. or lfts. from lgr. (1). — Vapors of C are lachrymatory and attack mucous membranes (5).

[For prepn. of  $\bar{C}$  from terephthalic acid (1:0910) with PCl<sub>5</sub> (96% yield (29)) (9) (10) (15), with PCl<sub>5</sub> + POCl<sub>3</sub> (yield: 90% (2), 85–90% (7), 83% (5)) (4) (18), with SOCl<sub>2</sub> + pyridine (alm. quant. yield (11)) or SOCl<sub>2</sub> + AlCl<sub>3</sub>, SnCl<sub>4</sub>, or SbCl<sub>5</sub> (3) (SOCl<sub>2</sub> alone fails), with acetyl chloride in s.t. at 130° (1), or with benzotrichloride + ZnCl<sub>2</sub> (12) (13) see indic. refs.; for prepn. of  $\bar{C}$  from 1,4-bis-(trichloromethyl)benzene [Beil. V-385] by partial catalytic hydrolysis see (14) cf. (30). — Note that the half acid chloride, p-carboxybenzoyl chloride, m.p. above 300°, ndls. from C<sub>6</sub>H<sub>6</sub>, is known (1); its presence may account for the numerous recorded low m.p.'s.]

C with excess MeOH yields (9) (15) (cf. also 1:0910) dimethyl terephthalate (1:2550), m.p. 140-141°; C with excess EtOH yields (15) (16) (cf. also 1:0910) diethyl terephthalate (1:2106), m.p. 44°; C with excess phenol (1:1420) yields (6) diphenyl terephthalate, ndls. from alc., m.p. 191° (6).

[C on cat. hydrogenation in xylene with Pd cat. as specified (17) (18) gives (81% yield (17)) terephthaldialdehyde [Beil. VII-675, VII<sub>1</sub>-(364)], m.p. 115-116° (dioxime, m.p. 200°; bis-(phenylhydrazone), m.p. 278° dec. (17), bis-(p-nitrophenylhydrazone), m.p. 281° dec. (17)).]

[ $\bar{C}$  with AlCl<sub>3</sub> + benzene yields (19) (20) 1,4-dibenzoylbenzene (terephthalophenone) [Beil. VII-829, VII<sub>1</sub>-(444)], m.p. 159-160° (20) (dioxime, m.p. 235° (20), monoxime, m.p. 212-213° (19)); for corresp. reactn. of  $\bar{C}$  with AlCl<sub>3</sub> + toluene see (21) (29).]

[Č treated with dry HBr at 150-160° for 30 hrs. gives alm. quant. (22) terephthalyl dibromide, pr. from pet. eth., m.p. 84-85° (22).]

[For reactions of C with various cpds. (mainly aminoanthraquinone derivs.) giving vat dves or intermediates for the prepn. of vat dyes, see (23) (24) (25) (26) (27) (28).]

C on hydrolysis yields terephthalic acid (1:0910) q.v.

3:2265 (1) Liebermann, Kardos, Ber. 46, 211-212 (1913). (2) Bogert, Nisson, Proc. Natl. Acad. Sci. 10, 423 (1924). (3) I.G., French 810,595, March 24, 1937; Cent. 1937, I 5047; C.A. 32, 592 (1938). (4) Kohlrausch, Pongratz, Stockmair, Monatsh. 67, 110 (1935). (5) Berend, Herms, J. prakt. Chem. (2) 74, 123-124 (1906). (6) Schreder, Ber. 7, 707 (1874). (7) Locher, Bull. soc. chim. (3) 11, 927 (1894). (8) Berger, Ber. 10, 1743 (1877). (9) de la Rue, Muller, Ann. 121, 90 (1862). (10) Cohen, de Pennington, J. Chem. Soc. 113, 61-62 (1918).

(11) Carré, Libermann, Compt. rend. 199, 1423 (1934). (12) Hopff (to I.G.), Ger. 680,182, Aug. 24, 1939; Cent. 1939, II 3488; C.A. 36, 1951 (1942). (13) I.G., Brit. 455,668, Nov. 19, 1936; Cent. 1937, I 2025; C.A. 31, 1824 (1937). (14) I.G., French 820,697, Nov. 16, 1937; Cent. 1938, I 1661; C.A. 32, 3422 (1938). (15) Schwanert, Ann. 133, 268-269 (1864). (16) Perkin, J. Chem. Soc. 69, 1178 (1896). (17) Rosenmund, Zetsche, Ber. 54, 2890-2892 (1921). (18) Fröschl, Maier, Monatsh. 59, 274 (1932). (19) Noelting, Kohn, Ber. 19, 147 (1886). (20) Munchmeyer, Ber. 19, 1847-1848 (1886).

(21) Connerade, Bull. soc. chim. Belg. 40, 144-157 (1931). (22) Davies, Hambly, Semmens, J. Chem. Soc. 1933, 1313. (23) Soc. Chem. Ind. Basel, Swiss 203,953, July 1, 1939; C.A. 35, 2731 (1941). (24) I.G., French 819,778, Oct. 26, 1937; Cent. 1938, I 1226; C.A. 32, 3162 (1938), (25) Gubelmann, Murphy (to du Pont Co.), U.S. 1,913,383, June 13, 1933; Cent. 1933, II 1257; Brit. 418,455, Nov. 22, 1934; Cent. 1935, I 1775. (26) Kacer (to Badische Anilin- und Sods-Fabrik), Ger. 424,030, Jan. 21, 1926; Cent. 1926, I 2849. (27) Kacer (to I.G.), Ger. 439,614, Feb. 1, 1927; Cent. 1927, I 2366. (28) B. A. & S. F., U.S. 1,459,536, June 19, 1923; Brit. 204,249, Oct. 18, 1923; Ger. 384,674, Nov. 8, 1923; Swiss 101,169, Sept. 1, 1923; Cent. 1924, I 1449. (29) Koelsch, Bryan, J. Am. Chem. Soc. 67, 2041-2042 (1945). (30) I.G., Ger. 708,149, June 5, 1941; C.A. 37, 2746 (1943).

3:2212 2,3,4-TRICHLOROBENZAL Cl CHCl2 C7H3Cl5 Beil. V - 303 V1-(153) (2,3,4-Trichlorobenzylidene (di)chloride)

M.P. 84° (1) B.P. 275–285° (1)

Cryst. from lgr.

[For prepn. of  $\tilde{C}$  from 2,3,4-trichlorotoluene (3:0425) at its b.p. with  $Cl_2$  see (1); for formn. in small amt. from trichloroethylene (3:5170) at 700° see (2).]

C with fumg. H<sub>2</sub>SO<sub>4</sub> as directed (1) (2) hydrolyzes to 2,3,4-trichlorobenzaldehyde (3:2445), m.p. 90-91°.

3:2212 (1) Seelig, Ann. 237, 146-147, 149-150 (1887). (2) Nicodemus, J. prakt. Chem. (2) 83, 319 (1911).

3:2216 2,5-DICHLORO-3,4DIMETHYLPHENOL
(3,6-Dichloro-o-4-xylenol)
Cl
CH<sub>2</sub>
OH
C<sub>8</sub>H<sub>8</sub>OCl<sub>2</sub>
Beil. VI —
VI<sub>1</sub>—
VI<sub>2</sub>-(456)

M.P. 84° (1)

Ndls. for lt. pet. - Volatile with steam.

[For prepn. of C from 2,5-dichloro-3,4-dimethylaniline (3,6-dichloro-o-4-xylidine) (2) via diazotization and hydrolysis (yield not stated) see (1).]

The nitration of  $\bar{C}$  has not been reported, and the expected 6-nitro-2,5-dichloro-3,4-dimethylphenol is unknown.

2,5-Dichloro-3,4-dimethylphenyl acetate: unreported.
 2,5-Dichloro-3,4-dimethylphenyl benzoate: m.p. 124° (1).

3:2216 (1) Hinkel, Ayling, Bevan, J. Chem. Soc. 1928, 2533. (2) Hinkel, Ayling, Bevan, J. Chem. Soc. 1928, 1878.

3:2218 4-CHLORO-2,3-DIMETHYLPHENOL OH  $C_8H_9OCl$  Beil. VI — (6-Chloro-o-3-xylenol) CH<sub>3</sub> VI<sub>1</sub>— VI<sub>2</sub>-(454)

M.P. 84.5° (1) (2)

Ndls. from lt. pet. — Sol. in most org. solvents except lt. pet. — Volatile with steam. [For prepn. of C from 4-amino-2,3-dimethylphenol (6-amino-0-3-xylenol) (1) via diasotisa-

262

tion and use of Cu<sub>2</sub>Cl<sub>2</sub> reaction (1), or from 4-chloro-2,3-dimethylanline (6-chloro-o-3-xylidine) (1) via diazotization and hydrolysis (70% yield (1)), see indic. refs.]

[For studies of bactericidal action of C see (2) (3) (4).

C with Cl2 in lt. pet. does not (1) give a trichloro derivative but is decomposed.

The nitration of C has not been reported and neither of the corresp. mononitro derivs. nor the dinitro deriv. is known.

---- 4-Chloro-2,3-dimethylphenyl acetate: unreported.

**4-Chloro-2,3-dimethylphenyl benzoate:** m.p. 102° (1).

3:2218 (1) Hinkel, Collins, Ayling, J. Chem. Soc. 123, 2971-2972 (1923). (2) Heicken, Angew. Chem. 52, 263-265 (1939). (3) Lockemann, Kunzmann, Angew. Chem. 46, 296-301 (1933). (4) Lockemann, Heicken, Zentr. Bakt., Parasitenk. I Abt., Orig. 145, 61-71 (1939), C.A. 34, 2534 (1940).

M.P. 84° (1) 83° (2)

Ndls. from alc.

[For prepn. of C from 8-chloro-1-nitronaphthalenesulfonic acid-2 [Beil XI-187] (3), from 7,8-dichloronaphthol-1 (3:2635) (2), or from 1,2-dichloronaphthalenesulfonyl chloride-8 [Beil. XI-164] (1), each with PCl<sub>5</sub>, see indic. refs.]

[C treated with ClSO<sub>3</sub>H in CS<sub>2</sub> and prod. conv. to potassium salt yields (1) potassium 1,2,8-trichloronaphthalenesulfonate-X (corresp. sulfonyl chloride, m.p. 105° (1)).]

3:2220 (1) Turner, Wynne, J. Chem. Soc. 1941, 247, 252. (2) Armstrong, Wynne, Chem. News 71, 253 (1895). (3) Cleve, Chem. Ztg. 17, 398 (1893).

3:2240 
$$\beta$$
-CHLOROACRYLIC ACID  $C_3H_3O_2Cl$  Beil. II - 400 H.C.Cl Cl.C.H II<sub>1</sub>-(186) H.C.COOH H.C.COOH

M.P. trans 85-86° (1) 84-85° (2) M.P. cis 63-64° (1)

[For prepn. of mixt. of cis and trans forms of  $\bar{\mathbf{C}}$  from propiolic acid (acetylenecarboxylic acid) [Beil. II-477, II<sub>1</sub>-(208), II<sub>2</sub>-(449)] by htg with cone HCl (yield: cis 34%, trans 18% (1)) (3) (the cis is sepd. from trans by means of the lesser soly. in alc. of its potassium salt (1)), see indic. refs.; for prepn. of trans  $\bar{\mathbf{C}}$  from  $\beta$ -chloropropionic acid (3:0460) by loss of HCl on passing its vapor over BaCl<sub>2</sub> at 280–300° see (4); from ethyl  $\beta$ , $\beta$ -dichloropropionate with 3 moles alc. KOH see (5); from chloralide (3:3510) in alc. by protracted treatment with Zn + HCl see (2) (5).]

The cis isomer of  $\bar{C}$  on htg. in a s.t. at 125° for 15 hrs. is partially conv. (1) to the trans isomer.

C (both forms) readily reduces KMnO<sub>4</sub> in the cold (1).

[ $\overline{C}$  on htg. with 5 pts. 40% HCl in s.t. at 80-85° for 35-40 hrs. yields (5)  $\alpha,\beta$ -dichloropropionic acid (3:0855), m.p. 56° (5).]

 $[\bar{C} \text{ on esterification with EtOH yields ethyl } \beta\text{-chloroacrylate, b.p. } 143-145^{\circ}$  (2), 146° (6).]

3:2240 (1) Backer, Beute, Rec. trav. chim. 54, 167-170 (1935). (2) Wallach, Ann. 193, 28-34 (1878). (3) Bandrowski, Ber. 15, 2702 (1882). (4) I.G., French 697,311, Jan. 15, 1931; Cent. 1931, I 2934. (5) Otto, Ann. 239, 261-272 (1887). (6) Pinner, Bischoff, Ann. 179, 88 (1875).

3:2265 
$$\alpha,\beta$$
-DICHLOROACRYLIC ACID  $C_3H_2O_2Cl_2$  Beil. II - 401  $CH$ =-C-COOH  $II_1$ -(186)  $II_2$ —

Monoclinic (5) pr. (from CHCl<sub>3</sub> (5)); cryst. from pet. eth. (4) or CS<sub>2</sub> (7). — Eas. sol. aq., alc., ether (2) (4), CHCl<sub>3</sub> (2); spar. sol. in cold (1) but eas. sol. in hot  $C_6H_6$ , CS<sub>2</sub> or pet. eth. (2). — Rapidly volatilizes in air (2) or on warming (4) — May be purified by melting with a little aq. (2).

Although two geom. isomers are possible only one is known.

[For prepn. from various sources see Beil. II-401, Beil. II<sub>1</sub>-(186), and (3).]

Salts: AgĀ, pptd. in fine ndls. from even dil. aq. solns. of Č on addn. of AgNO<sub>3</sub>; can be recrystd. from hot aq. (1) (2) (4) (6); Ag content = 43.54%; BaĀ<sub>2</sub>.H<sub>2</sub>O, sol. in 16 pts. cold aq. (1) (2) (4) (6); CaĀ<sub>2</sub>.3H<sub>2</sub>O, extremely sol. aq., loses cryst. aq. at 80° (1) (2); KĀ, quite sol. even in cold aq. but may be obtained in long slender anhyd. ndls. from conc. solns. (1) (2).

 $\bar{C}$  in CHCl<sub>3</sub> does not add Br<sub>2</sub> (2), but  $\bar{C}$  on htg. (in s.t.) with 1 mole Br<sub>2</sub> at 100° gives (9)  $\alpha,\beta$ -dibromo- $\alpha,\beta$ -dichloropropionic ac. [Beil. II-259], pr. from CS<sub>2</sub> or CHCl<sub>3</sub>, m.p. 94–95° (9).

C is not decomposed by excess boil. Ba(OII)<sub>2</sub> (7).

 $\bar{C}$  with thionyl chloride yields (7)  $\alpha,\beta$ -dichloroacrylyl chloride, b.p. 145–146°,  $n_D^{T}=1.5288$ , which is only slowly hydrolyzed by aq. but which on cautious addn. to conc. NH<sub>4</sub>OH yields  $\alpha,\beta$ -dichloroacrylamide, cryst. from dil. alc, m.p. 134° (7), 132° (10).

3:2265 (1) Bennett, Hill, Ber. 12, 655-657 (1879). (2) Hill, Am. Chem J. 3, 167-172 (1881/2). (3) Klebansky, Wolkenstein, Orlowa, J. prakt Chem. 145, 12-13 (1936). (4) Zincke, Ber. 24, 918 (1891). (5) Melville, Am Chem. J. 4, 174-176 (1882/3). (6) Ciamician, Silber, Ber. 16, 2392 (1883). (7) Prins, J. prakt. Chem. (2) 89, 420 (1914). (8) Prins, Rec. trav. chim. 56, 780-781 (1937). (9) Hill, Maberry, Ber. 14, 1679-1680 (1881); Am. Chem. J. 4, 267-270 (1882/3). (10) Prins, Ger. 261,689, July 2, 1913, Cent. 1913, II 394.

3:2280 3-CHLORO-2-METHYLPHENOL OH 
$$C_7H_7OCl$$
 Beil. VI - 359  $VI_1$ —  $VI_2$ —

M.P. 86° (1) (2) (3) B.P. 225° (2)

Long white ndls. (from aq.) (1). — Volatile with steam (2).

[For prepn. (75-86% yield) from 3-chloro-2-methylaniline [Beil. XII-836] see (1) (2); from 3-hydroxy-2-methylaniline [Beil. XIII-579] (45-50% yield) see (1).]

C on nitration (1) in AcOH with 100% HNO<sub>3</sub> at +10° yields mixt. of equal amts. of two mononitration products: 6-nitro-3-chloro-2-methylphenol [Beil. VI-366], volatile with steam, yel. cryst. from alc., m.p. 64.5° (1), and 4-nitro-3-chloro-2-methylphenol [Beil. VI-367], not volatile with steam, cryst. from aq., m.p. 135° (1).

 $\cdot$   $\bar{C}$  on nitration (4) with 3 pts. HNO<sub>3</sub> (D=1.48) at 0° gives a dinitro compd., 4,6-dinitro-3-chloro-2-methylphenol, long yel. ndls. from dil. alc., m.p. 82-83° (4); acetyl deriv., m.p. 95° (4).

Č in alk. soln. coupled with diazotized p-nitroaniline yields (1) 3-chloro-2-methyl-6-(p-nitrobenzene-azo-)phenol [Beil. XVI-132], cryst. from 50% alc., m.p. 230°.

Č in 3 pts. 20% NaOH shaken with 1 pt. (CH<sub>3</sub>)<sub>2</sub>SO<sub>4</sub>, distilled with steam, gives 3-chloro-2-methylanisole [Beil. VI-359], b.p. 213.5° (2).

3:2280 (1) Noelting, Ber. 37, 1019-1021 (1904). (2) Ullmann, Panchaud, Ann. 350, 112-113 (1906). (3) Zincke, Ann. 417, 207 (1918). (4) Zincke, Ann. 417, 234-235 (1918).

3:2285 2,6-DICHLOROBENZOPHENONE
(2,6-Dichlorophenyl phenyl ketone)

M.P. 86° (1)

Colorless cryst. (from alc. (1)).

C does not react with the usual ketone reagents (1).

 $\overset{\circ}{\text{C}}$  fused for 3 hrs. at 200° with a mixt. of KOH + NaOH gives (1) BzOH (1:0715)(96% yield) and m-dichlorobenzene (3:5960).

3:2285 (1) Lock, Rödiger, Ber. 72, 869 (1939).

3:2287 2,3,6-TRICHLOROBENZALDEHYDE

TDE C<sub>7</sub>H<sub>3</sub>OCl<sub>3</sub> Beil. VII - 238
Cl CHO
Cl Cl

M.P. 86-87° (1) 86° (2) (3)

Colorless ndls. from lgr.

[For prepn. of  $\vec{C}$  from 3-amino-2,6-dichlorobenzaldehyde by diazotization and use of  $Cu_2Cl_2$  reaction see (1) (2).]

 $\bar{C}$  with PCl<sub>5</sub> gives (81% yield (4)) 2,3,6-trichlorobenzal (di)chloride (3:2178), m.p. 83°; note that this prod. depresses m.p. of  $\bar{C}$ .

 $\tilde{C}$  with 50% aq. KOH at 100° for 5 hrs. under N<sub>2</sub> undergoes cleavage of the aldehyde group giving (88% yield (3)) 1,2,4-trichlorobenzene (3:6420) and the corresp. potassium formate.

Č with anhydrous NaOAc + Ac<sub>2</sub>O on htg. (Perkin synthesis) gives (64-68% yield (5)) 2,3,6-trichlorocinnamic acid, cryst. from AcOH, m.p. 189°.

[C with MeMgI in dry ether, followed by usual hydrolysis, gives (85% yield (2)) methyl-2,3,6-trichlorophenyl-carbinol, m.p. 87-88°, b.p. 149-155° at 11 mm. (corresp. benzoate, m.p. 106.5°).]

- ---- 2,3,6-Trichlorobenzaldoxime: unreported.
- ---- 2,3,6-Trichlorobenzaldehyde phenylhydrazone: unreported.
- ---- 2,3,6-Trichlorobenzaldehyde p-nitrophenylhydrazone: unreported.
- ----- 2.3.6-Trichlorobenzaldehyde 2.4-dinitrophenylhydrazone: unreported.

3:2287 (1) Geigy and Co., Ger. 199,943, July 4, 1908; Cent. 1908, II 363-364; C.A. 2, 3000 (1908); (2) Lock, Böck, Ber. 70, 924 (1937). (3) Lock, Ber. 66, 1531 (1933). (4) Asinger, Lock, Monatch. 62, 338 (1933). (5) Böck, Lock, Schmidt, Monatch. 64, 408 (1934).

#### 3:2290 PENTACHLOROBENZENE

Long colorless ndls. from alc.; volatile with steam; sublimes readily. — Almost insol. cold alc., apprec. sol. boilg. alc.; eas. sol. ether, C<sub>6</sub>H<sub>6</sub>, CHCl<sub>3</sub>, CCl<sub>4</sub>, or CS<sub>2</sub>; spar. sol. conc. HNO<sub>3</sub>.

[For prepn. of  $\bar{C}$  from nonachlorobenzophenone-o-carboxylic acid [o-(pentachlorobenzoyl)-tetrachlorobenzoic acid] [Beil. X<sub>1</sub>-(358)] by htg. with 10 pts. conc. H<sub>2</sub>SO<sub>4</sub> at 200-250° for ½ hr. (simplest prepn. of pure  $\bar{C}$ ) see (12); for formn. of  $\bar{C}$  from 2,3,4,5,6-pentachloroacetophenone (6) or 2,3,4,5,6-pentachlorobenzophenone (11) by KOH/NaOH fusion see indic. refs.; from 2,3,4,5,6-pentachlorobenzaldehyde (3:4892) (2) by htg. with 50% aq. KOH 5 hrs. at 100° (88% yield) see (2).]

[For prepn. of C from 2,3,5,6-tetrachloroaniline (7) via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. see (7); from 2,3,5-trichloro-p-phenylenediamine via tetrazotization in AcOH with nitrosylsulfuric acid and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. (80% yield) see (3).]

[For formn. of  $\bar{C}$  from benzene with  $Cl_2$  (7), or  $Cl_2 + cat$ . (20), or  $Cl_2$  in pres. of  $I_2$  (18), or  $AlCl_3$  (19) see indic. refs.; from chlorobenzene with  $Cl_2 + Cu$  at 200° see (21); from 1,3,5-trichlorobenzene (3:1400) with  $Cl_2 + Al/Hg$  see (17); from all three tetrachlorobenzenes with  $Cl_2 + Al/Hg$  see (17); from 1,2,4,5-tetrachlorobenzene (3:4115) in  $SOCl_2$  or  $CCl_4$  with  $SO_2Cl_2 + AlCl_3 + S_2Cl_2$  see (8) (note that under these circumstances p-dichlorobenzene (3:0980) gives a mixt. of tetra and hexachlorobenzenes (8) (22)); from lower chlorinated derivs. of benzene by htg. with  $FeCl_3$  see (5); from diphenyl sulfone with  $Cl_2$  in sunlight followed by treat. with alc. KOH see (13) (23); from tetrachlorobenzyl chloride with  $Cl_2$  see (16); from acet-N-nitro-2,3,5,6-tetrachloroaniline on htg. in toluene or from parent base on attempted acetylation see (15); from trichloroethylene (3:5170) at 700° see (9); from iodopentachlorobenzene with MeOH/NaOH see (1).

[For form. of  $\bar{C}$  from various chlorine addition products derived from o-dichlorobenzene (3:6055) (4), m-dichlorobenzene (3:5960) (4), p-dichlorobenzene (3:0980) (4), 1,2,4,5-tetrachlorobenzene (3:4115) (24), and even  $\bar{C}$  itself (25) see indic. refs.]

[C with liq. Cl<sub>2</sub> in s.t. in sunlight adds 2 Cl<sub>2</sub> with considerable sluggishness yielding (26) (25) a mixt. of two stereoisomeric nonachlorocyclohexenes.]

[C with fumg. H<sub>2</sub>SO<sub>4</sub> gives on protracted htg. (27) a red dyestuff, sol. in alk. with deep red color.]

[C with N/2 NaOMe in MeOH in s.t. at 180° for 7½ hrs. gives (7) 2,3,5,6-tetrachlorophenol, m.p. 115° (7) (benzoate, m.p. 136° (28)), accompanied by a small amt. 2,3,4,5-tetrachlorophenol, itself not obtd. pure but yielding (28) a benzoate of m.p. 110° (28). — [For further study of actn. of MeOH/NaOH on C see (29) (30).]

 $\bar{C}$  on nitration, e.g., with 7-8 wt. pts. HNO<sub>3</sub> (D=1.52) at 100° for 1 hr. (7), gives (7) (9) (18) (31) pentachloronitrobenzene [Beil. V-247], ndls. from alc., tbls. from CS<sub>2</sub>, m.p. 146° (9) (18) (31), 143° (7); note that since  $\bar{C}$  is spar. sol. in conc. HNO<sub>3</sub> any unchanged material may separate with the crude prod. (31). — [This pentachloronitrobenzene with

N/10 NaOMe in MeOH boiled for 8 hrs. loses NO<sub>2</sub> instead of Cl yielding (31) methyl pentachlorophenyl ether (pentachloroanisole), m.p.  $104-105^{\circ}$  (31); cf. also under pentachlorophenol (3:4850).]

3:2290 (1) van der Linden, Rec. trav. chim. 55, 285 (1936). (2) Lock, Ber. 66, 1533 (1933). (3) Schoutissen, J. Am. Chem. Soc. 55, 4539-4540 (1933). (4) van der Linden, Ber. 45, 411-418 (1912). (5) Thomas, Compt. rend 126, 1212 (1898). (6) Lock, Bock, Ber. 76, 925 (1937). (7) Holleman, van der Hoeven, Rec. trav. chim. 39, 745-746, 749 (1920). (8) Silberrad, J. Chem. Soc. 121, 1020-1021 (1922). (9) Nicodemus, J. prakt. Chem. (2) 83, 319 (1911). (10) Ladenburg, Ann. 172, 344 (1874).

(11) Lock, Rödiger, Ber. 72, 870 (1939). (12) Eckert, Steiner, Monatsh. 36, 183 (1915); Ber. 47, 2629 (1914). (13) Otto, Ann. 154, 185 (1870). (14) Dadieu, Pongratz, Kohlrausch, Monatsh. 61, 434 (1932). (15) Peters, Rowe, Stead, J. Chem. Soc. 1943, 372. (16) Beilstein, Kuhlberg, Ann. 152, 247-248 (1869). (17) Cohen, Hartley, J. Chem. Soc. 87, 1366 (1905), (18) Jungfleisch, Ann. chim. (4) 15, 283-287 (1868). (19) Mouneyrat, Pouret, Compt. rend. 127, 1028 (1898). (20) Moose, Malowan (to Swann Research, Inc.), U.S. 2,010,495, Aug. 6, 1935; Cent. 1936, 2984; C.A. 29, 6330 (1935).

(21) Tei, Komatsu, Mem. Coll. Sci., Kyoto Imp. Univ. A-10, 325-330 (1927); Cent. 1928, I 2370. (22) Roberts and Co., & Silberrad, Brit. 193,200, March 15, 1923, Cent. 1925, I 904. (23) Otto, Ostrop, Ann. 141, 107-108 (1867). (24) van der Linden, Rec. trav. chim. 55, 425-427 (1936). (25) van der Linden, Rec. trav chim. 55, 569-570 (1936). (26) van der Linden, Rec. trav. chim. 55, 322 (1936). (27) Istrati, Bull. soc. chim. (2) 48, 36-41 (1887). (28) Holleman, Rec. trav. chim. 40, 318 319 (1921). (29) de Crauw, Rec. trav. chim. 50, 787 (1931). (30) van der Linden, Rec. trav. chim. 57, 787 (1938).

(31) Berckmans, Holleman, Rec. trav. chim. 44, 857-858 (1925).

#### 3:2295 PENTACHLOROBENZOYL CHLORIDE

M.P. 87° (1)

Colorless tbls. from hot alc.

[For prepn. of C from *unsym.*-tetrachlorophthalyl (di)chloride (3,3,4,5,6,7-hexachlorophthalide) [Beil. XVIII<sub>1</sub>-(484)] on htg. at 300° in pres. of Cl<sub>2</sub> see (1)]

C during protracted htg loses CO yielding (1) hexachlorobenzene (3:4939) (this type of decompn. is generally facilitated by AlCl<sub>3</sub> although in this case this aspect has not been reported).

Č with MeOH on refluxing for 30 hrs. gives (1) methyl pentachlorobenzoate m.p. 97° (1); note that esterification is slow and that Č can be recrystallized from EtOH without change.

Č on hydrolysis with alc. KOH, followed by acidification, yields (1) pentachlorobenzoic acid (3:4910).

3:2295 (1) Kirpal, Kunze, Ber. 62, 2104-2105 (1929).

#### 3:2300 TRICHLOROPARALDEHYDE

(Chloroacetaldehyde trimer; 2,4,6-tris-(chloromethyl)trioxane-1,3,5)

C<sub>6</sub>H<sub>9</sub>O<sub>3</sub>Cl<sub>3</sub>

Beil. XIX - 386

XIX1-(807)

M.P. 87-87.5° cor. (1) B.P. 142-144° at 10 mm. (2) 140° at 10 mm. (1)

Colorless ndls. from ether; insol. aq., spar. sol. cold alc., eas. sol. hot alc. or in ether.

[For prepn. of  $\bar{C}$  from chloroacetaldehyde (3:7212) (or its hydrate) with  $\frac{1}{2}$  vol. cold conc.  $H_2SO_4$  see (1) (3) (4).]

C on distn. at ord. press. (1) (2) (3) (4) depolymerizes to monomeric chloroacetaldehyde (3:7212), b.p. 85°.

3:2300 (1) Natterer, Monatsh. 3, 459-464 (1882). (2) Späth, Monatsh. 36, 6-7 (1915). (3) Helferich, Speidel, Ber. 54, 2634-2635 (1921). (4) Lespieau, Bull. soc. chim. (4) 43, 200-201 (1928).

#### 3:2325 1,2,7-TRICHLORONAPHTHALENE

M.P. 88° also 84° (1) (2) (See Text)

C shows the double m.p. behavior indicated also for several of its isomers, e.g., 1,2,3-isomer (3:2125), 1,2,5-isomer (3:1930), 1,3,8-isomer (3:2420), 1,4,6-isomer (3:1625).

[For prepn. of C from 1-chloro-7-sulfonaphthylamine-2 [Beil. XIV-765] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. see (1) (2); from 1,2-dichloronaphthalenesulfonyl chloride-2 [Beil. XI-184] (2) (3), from 1-chloro-7-nitronaphthalenesulfonyl chloride-2 [Beil. XI-188] (4), from 2-chloro-1-nitronaphthalenesulfonyl chloride-2 [Beil. XI-189] (5) (2), or from 1-chloronaphthalene-2,7-bis-(sulfonyl chloride) [Beil. XI-217] (2), each with PCl<sub>5</sub> as directed, see indic. refs.]

[C treated with CISO<sub>3</sub>H in CS<sub>2</sub> and reactn. prod. conv. to sodium salt as directed (1) yields sodium 1,2,7-trichloronaphthalenesulfonate-X (corresp. sulfonyl chloride, m.p. 176° (1)).]

3:2325 (1) Turner, Wynne, J. Chem. Soc. 1941, 247, 252. (2) Armstrong, Wynne, Chem. News 71, 253-254 (1895). (3) Armstrong, Wynne, Chem. News 59, 189 (1889). (4) Cleve, Chem. Ztg. 17, 398 (1893). (5) Cleve, Ber. 25, 2486-2487 (1892).

#### 3:2340 2,5-DICHLOROBENZOPHENONE

(2,5-Dichlorophenyl phenyl ketone)

M.P. 88° (1) (3) 85-86° (2)

Cryst. (from alc. (1)). — C does not form a NaHSO3 cpd. (1).

[For prepn. (20% yield (1)) from p-dichlorobenzene (3:0980) + BzCl (3:6240) + AlCl<sub>3</sub> see (1) (2).]

 $\bar{C}$  fused for 3 hrs. at 200° with a mixt. of KOH + NaOH gives (3) p-dichlorobenzene (3:0980) (65% yield (3)) and BzOH (1:0715) (91% yield (3)).

C on oxidn. with KMnO4 soln. yields (1) 2,5-dichlorobenzoic ac. (3:4340), m.p. 150° (1).

D 2,5-Dichlorobenzophenone oxime: from C in alc. on htg. with NH<sub>2</sub>OH.HCl + BaCO<sub>3</sub> for 3 days (10% yield (1)); m.p. 135° (on rapid htg.), 207° (on slow htg.) (1). [This

oxime upon Beckmann rearr. with 10 pts. conc. H<sub>2</sub>SO<sub>4</sub> at 100° for 1 hr. gives benz-2,4-dichloroanilide, m.p. 122° (1).]

3:3340 (1) de Crauw, Rec. trav. chim. 50, 767-768 (1931). (2) Ganzmüller, J. prakt. Chem. 138, 311-312 (1933). (3) Lock, Rödiger, Ber. 72, 869 (1939).

3:2360 2,3,5,5,6,6-HEXACHLORO-CYCLOHEXENE-2-DIONE-1,4

M.P. 89° (1) B.P. 275-285° dec. (1) 86-87° (2) 182-185° at 45-50 mm. (1)

Cryst. (from ether/pet. ether). — Lachrymatory odor. — Eas. volatile with steam; on distn. at atm. press. dec. into chloranil (3:4978) and Cl<sub>2</sub>. — Eas. sol. ether, CHCl<sub>3</sub>; fairly eas. sol. alc., C<sub>6</sub>H<sub>6</sub>, lgr.; insol. aq.

[For prepn. from chloranil (3:4978) by treatment with  $MnO_2 + conc.$  HCl in s.t. for 10 hrs. at 180° see (1); from p-aminophenol hydrochloride in AcOH on treatment with  $Cl_2$  see (1).]

[For use of C as fungicide see (3).]

Č with KI in AcOH yields (1) chloranil (3:4978). — Č on reduction with SnCl<sub>2</sub> yields (1) tetrachlorohydroquinone (3:4941).

Č on shaking with 10% aq. NaOH slowly dissolves with decompn. into dichloromaleic acid, trichloroethylene, and HCl (1).

3:2360 (1) Zincke, Fuchs, Ann. 267, 15-24 (1892). (2) Theilacker, Ber. 71, 2069 (1938). (3) Ladd (to U.S. Rubber Co.), U.S. 2,362,565, Nov. 14, 1944; C.A. 39, 2832 (1945).

#### 3:2375 3,5-DICHLOROPHTHALIC ANHYDRIDE



M.P. 89° (1) (2)

[See also 3,5-dichlorophthalic acid (3:4580).]

Ndls. from lgr.; eas. sol. ether, C6H6, CHCl3.

[For prepn. from 3,5-dichlorophthalic acid (3:4580) by htg. alone (2), or with AcCl (1), see indic. refs.; from 3,5-disulfophthalic anhydride (2) with SOCl<sub>2</sub> in s.t. 11 hrs. at 180° see (2).]

 $\tilde{C}$  htd. with resorcinol + a drop of conc. H<sub>2</sub>SO<sub>4</sub>, then dislvd. in alk. and diluted, gives brilliant greenish fluorescence (1).

[C with hydroquinone (1:1590) + AlCl<sub>3</sub> + NaCl htd. at 200-220° for 40 min. gives (3) 5,7-dichloro-1,4-dihydroxyanthraquinone (5,7-dichloroquinizarin), red ndls. from xylene, m.p. 231-232° (3).]

[Č with steam passed over cat. at 380-420° loses CO<sub>2</sub> presumably yielding (4) 2,4-dichlorobenzoic acid (3:4560) and /or 3,5-dichlorobenzoic acid (3:4840).

Č on melting and treatment with dry NH<sub>3</sub> gas yields (1) 3,5-dichlorophthalimide [Beil. XXI-504], yel. ndls. from hot alc., m.p. 208° (1); Č on htg. with 1 mole aniline until evoln. of gas stops gives (1) 3,5-dichlorophthalanil [Beil. XXI-504], yel. ndls. from alc., m.p. 150.0-150.5° (1).

 $\tilde{C}$  is insol. in cold aq. but hydrolyzes on boilg.;  $\tilde{C}$  on sapon. with standard alk. (Sap. Eq. = 108.5) followed by acidifn. yields 3,5-dichlorophthalic acid (3:4840) q.v.

**3:2375** (1) Crossley, LeSueur, J. Chem. Soc. **81**, 1536-1537 (1902). (2) Waldmann, Schwenk, Ann. **487**, 293-294 (1931). (3) Waldmann, J. prakt. Chem. (2) **130**, 99-100 (1931). (4) Jaeger (to Selden Co.), U.S. 1,964,516, June 26, 1934; Cent. **1934**, II 3047.

# 3:2395 unsym.-o-PHTHALYL DICHLORIDE (unsym.-o-Phthaloyl dichloride; 3,3-dichlorophthalide) C C<sub>8</sub>H<sub>4</sub>O<sub>2</sub>Cl<sub>2</sub> Beil. IX - 805 XVII<sub>1</sub>-(162)

[See also sym.-o-phthalyl dichloride (3:6900).]

M.P. 89° (1) 
$$D_4^{99.6} = 1.3320$$
 (6)  $D_4^{50} = 1.351$  (5)  $D_4^{50} = 1.351$  (5)  $D_4^{50} = 1.351$  (6)  $D_4^{50} = 1.351$  (7)  $D_4^{50} = 1.351$  (8)  $D_4^{50} = 1.351$  (9)  $D_4^{50} = 1.351$  (10)  $D_4^{50} = 1.351$ 

Prisms from  $C_6H_6$  (2), cryst. from pet eth. (b.p.  $20-50^\circ$ ) (4). —  $\bar{C}$  is much less reactive but far more lachrymatory (7) than sym.-o-phthalyl dichloride (3:6900). — The m.p. of  $\bar{C}$  is not sharp because of beginning of conversion to sym. isomer (4) (5), and  $\bar{C}$  shows progressive change of density when kept at  $90^\circ$  for 1 hr. (5). —  $\bar{C}$  on distillation is converted to the sym. isomer and therefore shows b.p. of the latter; this change is accelerated by presence of AlCl<sub>3</sub> or SnCl<sub>4</sub> (1) (2) or by HCl. —  $\bar{C}$  should therefore be preserved in a desiccator over soda-lime (2). — For f.p./compn. diagram of  $\bar{C}$  with its sym. isomer see (3); the eutectic has m.p. +8° and conts 23%  $\bar{C}$ .

[For prepn. of  $\bar{C}$  from sym.-o-phthalyl dichloride by htg. with AlCl<sub>3</sub> at 100° for 8-10 hrs. (72% yield) see (4).]

 $\bar{C}$  in anhydrous formic acid reacts below 40° evolving HCl + CO (7) (the sym. isomer reacts much more readily, even below 25° (7)).

Č on shaking at 0° with 10 vols. 7% aq. NH<sub>4</sub>OH followed by acidification yields (1) (7) o-cyanobenzoic acid [Beil. IX-814, IX<sub>1</sub>-(365)], m.p. 190° dec., converted by htg. to phthalimide, m.p. 228.5° u.c. [Exactly this same result is obtd. with the sym. isomer.]

[For studies of rate of reactn. of C with MeOH or with aniline see (2) (8).]

[For differentiation of  $\bar{C}$  from its sym. isomer by use of piperidinium N-piperidyldithio-carbamate (from piperidine + aq. +  $CS_2$ ) see (6) (7).]

270

Ndls. from alc. in which it is eas. sol — Note that  $\bar{C}$  (like certain of its isomers) shows a peculiar characteristic; if the fused  $\bar{C}$  in a m.p. tube is allowed to cool and withdrawn it solidifies to a translucent form which on immediate reheating shows m.p. 84-85° but if left for a time is conv to an opaque mass which on htg. shows m.p. 89°.

[For prepn. of  $\bar{C}$  from 1-chloronaphthalene-3,8-brs-(sulfonyl chloride) [Beil. XI-214] with PCl<sub>5</sub> see (1) (3); from 1-nitronaphthalene [Beil. V-553, V<sub>1</sub>-(264)] with Cl<sub>2</sub> see (4) (2) ]

[C treated with ClSO<sub>3</sub>H in CS<sub>2</sub> and prod. conv. to sodium salt yields (1) sodium 1,3,8-trichloronaphthalenesulfonate-5 (corresp. sulfonyl chloride, m.p. 127° (1)).]

3:2420 (1) Turner, Wynne, J. Chem. Soc. 1941, 247, 254. (2) Armstrong, Wynne, Chem. News 71, 255 (1895). (3) Armstrong, Wynne, Chem. News 61, 94 (1890). (4) Atterberg, Ber. 9, 926 (1876).

Cryst. from alc. or hexane. — Volatile with steam.

[For prepn. of Č from 1,8-diaminonaphthalene [Beil. XIII-205, XIII<sub>1</sub>-(54)] via tetrazotization and htg. with Cu<sub>2</sub>Cl<sub>2</sub> (59% yield) see (1); from 8-chloronaphthylamine-1 [Beil. XII-1256] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. (52% yield (7)) (2) (6) see indic. refs.; from 1,8-dinitronaphthalene [Beil. V-559, V<sub>1</sub>-(265)] with PCl<sub>5</sub> see (5) (11); from 8-chloronaphthalenesulfonyl chloride-1 [Beil. XI-162] by htg. at 200–230° as long as SO<sub>2</sub> is evolved see (4); from 4,5-dichloronaphthalenesulfonic acid-1 [Beil. XI-162] by hydrolytic cleavage of —SO<sub>3</sub>H group at 230° see (9) (3); from K salt of 4,5-dichloronaphthalenesulfonic acid-2 [Beil. XI-182] by htg. with 1% H<sub>2</sub>SO<sub>4</sub> or 50% H<sub>3</sub>PO<sub>4</sub> in s.t. at 290° see (9).]

Č htd. with HCl in s.t. at 250-290° rearranges (9) to 1,5-dichloronaphthalene (3:3200), m.p. 107°.

[C in CS<sub>2</sub> treated with ClSO<sub>3</sub>H yields (10) 1,8-dichloronaphthalenesulfonic acid-4 [Beil. XI-162] (corresp. sulfonyl chloride, m.p. 114° (10), corresp. sulfonamide, m.p. 228° (10)).]

3:2435 (1) Hampson, Weissberger, J. Chem. Soc. 1936, 394. (2) Weissberger, Sangewald, Hampson, Trans. Faraday Soc. 36, 890 (1934). (3) Cleve, Chem. Zig. 17, 398 (1893). (4) Armstrong, Wynne, Chem. News 71, 255 (1895). (5) Atterberg, Ber. 9, 1732 (1876). (6) Atterberg, Ber. 10, 548 (1877). (7) Bergmann, Hirshberg, J. Chem. Soc. 1936, 334. (8) Krollpfeiffer, Ann. 430, 198 (1923). (9) Armstrong, Wynne, Chem. News 76, 69-70 (1897). (10) Armstrong, Wynne, Chem. News 61, 273-274 (1890).

(11) Woroshtzow, Koslow, Ber. 69, 413 (1936).

#### 3:2438 1,1-DICHLORO-2,2-bis-(p-CHLOROPHENYL)-ETHYLENE

C<sub>14</sub>H<sub>8</sub>Cl<sub>4</sub> Beil. S.N. 480

M.P. 89° (1)

88-89° (2)

86-87° (3)

Colorless cryst. from alc.

[For prepn of C from 1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane ("DDT") (3:3298) by elimination of 1 HCl with alc KOH under reflux (1) for 10 hrs. (3) or 15-20 min. (4) (yields: almost 100% (4), 81% (3)) (for study of rate see (5)), or by htg. at 110-120° with a trace of FeCl<sub>3</sub> or AlCl<sub>3</sub> (2), see indic. refs.; for prepn. of C from 1,1,1,2-tetrachloro-2,2-bis-(p-chlorophenyl)ethane (3.2477) by elimination of two adjacent chlorine atoms with Zn dust in boilg. abs. alc refluxed 8 hrs. (66% yield) see (3)

Č on oxidn. with CrO<sub>3</sub>/AeOH refluxed 4 hrs. gives (100% yield (3)) 4,4'-dichlorobenzo-phenone (3:4270), m.p. 144° (3).

 $\bar{C}$  in boilg. CHCl<sub>3</sub> contg. a little PCl<sub>3</sub> with Cl<sub>2</sub> for 3 hrs. (but without special radiation) adds 1 mole halogen giving (70% yield (3)) 1,1,1,2-tetrachloro-2,2-bis-(p-chlorophenyl)-ethane (3:2477), m.p. 91-92° (3).

 $\bar{C}$  with KOH in ethylene glycol refluxed 10–12 hrs. gives (almost 100% yield (4)) 4,4'-dichlorodiphenylmethane (3·1057) m.p. 55°; but note that  $\bar{C}$  with excess Ba(OH)<sub>2</sub>.8H<sub>2</sub>O in ethylene glycol refluxed 10–12 hrs. (4) or  $\bar{C}$  with alc KOH in st at 150–160° for 24 hrs. (7) gives (yields 57% (7), 33% (4)) di-(p-chlorophenyl)acetic acid (3:4612), m.p. 166.0–166 5° u.c. (4), 163–164° (7), this acid undoubtedly being the precursor which by loss of CO<sub>2</sub> with the above KOH gives the indicated prod.

 $\bar{C}$  with anhydrous AlCl<sub>3</sub> in large excess  $C_6H_6$  does not (6) give 1,1,2,2-tetraphenylethane (dif. from "DDT" (3:3298) q v )

3:2438 (1) Zeidler, Ber. 7, 1181 (1874).
 (2) Fleck, Haller, J. Am. Chem. Soc. 66, 2095 (1944).
 (3) Grummitt, Buck, Jenkins, J. Am. Chem. Soc. 67, 155-156 (1945).
 (4) White, Sweeney, U.S. Pub. Health Repts. 60, 66-71 (1945).
 (5) Brand, Busse-Sundermann, Ber. 75, 1828 (1942).
 (6) Fleck, Haller, J. Am. Chem. Soc. 67, 1420 (1945).
 (7) Grummitt, Buck, Stearns, J. Am. Chem. Soc. 67, 156 (1945).

#### 3:2440 3,4,5-TRICHLOROBENZALDE-HYDE

C<sub>7</sub>H<sub>3</sub>OCl<sub>3</sub> Beil. S.N. 635

Colorless ndls. from alc. — Somewhat sol. boilg. aq.; volatile with steam. — Eas. sol. in hot alc.; also in ether, acetone, C6H6, or CHCl3; fairly sol. pet ether.

[For prepn. of C from 4-amino-3,5-dichlorobenzaldehyde (1) by diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reaction (yield of crude C 80%) see (1).]

Č on oxidn. with alk. KMnO<sub>4</sub> gives (1) 3,4,5-trichlorobenzoic acid (3:4920), m.p. 210°.

C on mononitration, with abs. HNO3 in cold, gives (86% yield crude (1)) 2-nitro-3,4,5trichlorobenzaldehyde, m.p. 118.5–119° (corresp. phenylhydrazone, m.p. 229° dec.; corresp. p-nitrophenylhydrazone, m.p. 293-294° dec.; corresp. semicarbazone, m.p. 278-279° dec.).

- 3,4,5-Trichlorobenzaldoxime: unreported.
- ② 3.4.5-Trichlorobenzaldehyde phenylhydrazone: m.p. 147° (1).
- 3,4,5-Trichlorobenzaldehyde p-nitrophenylhydrazone; orange ndls. from nitrobenzene, m.p. 342° dec. (1).
- 3.4.5-Trichlorobenzaldehyde semicarbazone: cryst. from alc., m.p. 252-254° (rap. htg.), but after fusion resolidifies and remelts at 284-285° (1).
- 3:2440 (1) Van de Bunt, Rec. trav. chim. 48, 131-137 (1929).

M.P. 90° (1) [95° (2)]

Cryst. from lt. pet. — Volatile with steam.

[For prepn. of C from 5,6-dichloro-2,3-dimethylaniline (4,5-dichloro-o-3-xylidine) (3) via diazotization and hydrolysis (yield not stated) see (1); for formn. of C from 4,5,6-trichloro-1,1-dimethylcyclohexen-4-one-3 with quinoline at 170° for 30 min. (yield not stated) see (2).1

C with Cl<sub>2</sub> in CHCl<sub>3</sub> does not give the expected 4,5,6-trichloro-2,3-dimethylphenol (3:4742) but instead (2) a tetrachloro deriv. (apparently containing a chlorinated methyl group), m.p. 127.5° (2).

The nitration of C has not been reported, and the expected 4-nitro-5,6-dichloro-2,3dimethylphenol is unknown.

- 5,6-Dichloro-2,3-dimethylphenyl acetate: unreported.
- 6 5.6-Dichloro-2.3-dimethylphenyl benzoate: m.p. 133° (1), 128° (2).

3:2442 (1) Hinkel, Ayling, Bevan, J. Chem. Soc. 1928, 2533. (2) Hinkel, J. Chem. Soc. 125, 1850-1851 (1924). (3) Hinkel, Ayling, Bevan, J. Chem. Soc. 1928, 1876-1877.

M.P. 91° (1) 90° (2)

Ndls. from alc.

[For prepn. of C from 2,3,4-trichlorobenzal (di)chloride (3:2212) in 58% yield by hydrolysis with fumg. H<sub>2</sub>SO<sub>4</sub> as directed see (2).]

C on oxidn. with KMnO4 gives (1) 2,3,4-trichlorobenzoic acid (3:4810), m.p. 186-187°.

 $\bar{C}$  with anhydr. NaOAc + Ac<sub>2</sub>O on htg. (Perkin synthesis) gives (2) 2,3,4-trichloro-cinnamic acid [Beil. IX-597], m.p. 185°.

- 2,3,4-Trichlorobenzaldoxime: unreported.
- ---- 2,3,4-Trichlorobenzaldehyde phenylhydrazone: unreported.
- ---- 2,3,4-Trichlorobenzaldehyde p-nitrophenylhydrazone: unreported.
- ---- 2,3,4-Trichlorobenzaldehyde 2,4-dinitrophenylhydrazone: unreported.
- 3:2445 (1) Nicodemus, J. prakt. Chem. (2) 83, 319 (1911). (2) Seelig, Ann. 237, 149-151 (1887).

M.P. 91° (1) 90.5–91° (2) '

[For prepn. of Č from 3,6-dichloronaphthalenesulfonyl chloride-2 [Beil. XI-182] (1) (2), from 3-chloronaphthalene-2,7-bis-(sulfonyl chloride) [Beil. XI-217] (1) (3), or from 3-chloronaphthalene-2,6-bis-(sulfonyl chloride) [Beil. XI-216] (4), all with PCl<sub>5</sub>, see indic. refs. cf. (6).]

[For study of oxidn. of C with CrO<sub>3</sub>/AcOH see (5).]

[Č with ClSO<sub>3</sub>H in CS<sub>2</sub> followed by conv. to salts yields a mixt. (1) derived from 2,3,6-trichloronaphthalenesulfonic acid-8 (corresp. sulfonyl chloride, m.p. 118° (1)), and from 2,3,6-trichloronaphthalenesulfonic acid-X (corresp. sulfonyl chloride, m.p. 94° (1)).]

3:2455 (1) Turner, Wynne, J. Chem. Soc. 1941, 247, 256-257. (2) Armstrong, Wynne, Chem. News 61, 275 (1890). (3) Armstrong, Wynne, Chem. News 61, 92 (1890). (4) Armstrong, Wynne, Chem. News 62, 163 (1890). (5) Claus, Schmidt, Ber. 19, 3177-3179 (1886). (6) Franzen, Stauble, J. prakt. Chem. (2) 103, 356, 377 (1921/22).

M.P. 90-91° (1) (2)

Ndls. from lgr. or aq. — Sol. hot aq. and most organic solvents. — Volatile with steam. [For prepn. of  $\bar{C}$  from 5-chloro-2,4-dimethylaniline [Beil. XII<sub>1</sub>-(486)] via diazotization and hydrolysis see (1); for formn. of  $\bar{C}$  from 2,4-dimethylquinol (*m*-xyloquinol) [Beil. VIII-22, VIII<sub>1</sub>-(514)] by action of HCl (1) (2) in AcOH at 0° (1) (note that some of the isomeric 6-chloro-2,4-dimethylphenol (3:8784) is also formed) see indic. refs.]

The nitration of  $\bar{C}$  has not been reported, and none of its mononitro- or dmitro-derivatives is known.

Č in alc. soln. with FeCl<sub>3</sub> gives a deep olive-green color becoming blue on dilution with aq. or reddish brown on htg. (1).

- ---- 5-Chloro-2,4-dimethylphenyl acetate: unreported.
- © 5-Chloro-2,4-dimethylphenyl benzoate: m.p. 84.5-85.5° (1). [From Č with benzoyl chloride + aq. NaOH (1).]
- 5-Chloro-2.4-dimethylphenyl p-nitrobenzoate: unreported.
- --- 5-Chloro-2.4-dimethylphenyl N-phenylcarbamate: unreported.
- 3:2460 (1) Bamberger, Reber, Ber. 46, 793-803 (1913). (2) Bamberger, Reber, Ber. 46, 2268 (1907).

#### 3:2470 4-CHLOROCATECHOL (4-Chloropyrocatechol)

$$\begin{array}{ccc} C_6H_5O_2Cl & & Beil.\ VI\ -\ 783 \\ & & VI_1\ -\ (389) \\ & & VI_2\ -\ (787) \end{array}$$

Anhydrous  $\tilde{C}$  exists in two forms melting at 90-91° and 59-61° (1); after fusion of the higher-melting form the resolidified  $\tilde{C}$  melts 59-61° (1).

 $\bar{C}$  can be recrystd. from  $C_6H_6$ , CHCl<sub>3</sub> from which it separates in scaly lfts., or from CS<sub>2</sub> from which it separates in prisms. —  $\bar{C}$  cryst. from ord. ether as hemihydrate,  $\bar{C}$ . ½H<sub>2</sub>O, which loses its aq. upon distn. in vac. (1). —  $\bar{C}$  is cas. sol. aq., alc, ether,  $\Lambda$ cOH, or acetone; spar. sol. lgr. (1).

[For prepn. of  $\bar{C}$  from catechol (1:1520) by action of SOCl<sub>2</sub> see (3) (5) (1) (4); for prepn. from 5-chloro-2-hydroxybenzaldehyde (3:2800) + alk H<sub>2</sub>O<sub>2</sub> see (6); for prepn. from obenzoquinone [Beil. VII-600] by actn. of dry HCl in CHCl<sub>3</sub> see (7)]

C with FeCl<sub>3</sub> gives scarab-green color, which on addn. of Na<sub>2</sub>CO<sub>3</sub> becomes dark red, or with NaOAc turns blue (1).

 $\tilde{C}$  in AcOH treated with xanthydrol (1:5205) soon ppts. 4-chloro-5-xanthydryleatechol, cryst. from  $C_6H_6$ , mp. 224° (block) (8).

[For reaction with boric ac. see (2); for use in prepn. of dyestuffs see (9); for oxidn. with Ag<sub>2</sub>O in abs. ether to 4-chlorobenzoquinone-1,2 see (1).]

**D** 4-Chlorocatechol dibenzoate: from  $\tilde{C}$  + BzCl in pyridine; ndls. (from ether), m.p. 96-97° (1).

3:2470 (1) Willstätter, Müller, Ber. 44, 2182-2184 (1911) (2) Bocscken, Mijs, Rec. 44, 758-760 (1925). (3) Frejka, Safranek, Zik, Collection Czechoslov Chem Commun 9, 245 (1937).
(4) Peratoner, Gazz. chim. ital. 28, I 222 (1898). (5) Urede, Muhlroth, Ber. 63, 1932-1933 (1930).
(6) Dakin, Am. Chem. J. 42, 488 (1909). (7) Jackson, Koch, Am. Chem. J. 26, 28-30 (1901).
(8) Fabre, Ann. chim. (9) 18, 114-115 (1922). (9) Lehmann (to I.G.), Ger. 648,713, Aug. 6, 1937; Cent. 1938, I 187.

3:2475 1,1-DI-(
$$p$$
-CHLOROPHENYL)-  $C_{14}H_{10}Cl_2$  Beil. S.N. 480 ETHYLENE  $Cl$ 
 $C=CH_2$ 

M.P. 91° (1) 85-87° (2)

Colorless cryst. from MeOH contg. some C6H6 (1).

[For prepn. of  $\bar{C}$  from di-(p-chlorophenyl)-methyl-carbinol (itself prepared from 4,4'-dichlorobenzophenone (3:4270) with MeMgI) by dehydration see (1) (2)

C on cat. hydrogenation gives (62% yield (4)) 1,1-di-(p-chlorophenyl)ethane (3:0995), m.p. 54-55°.

Č with PCl<sub>5</sub> in C<sub>6</sub>H<sub>6</sub> stood 24 hrs. then poured into aq. gives (61% yield {1})  $\beta,\beta$ -bis-(p-chlorophenyl)vinyl-phosphinic acid, (Cl.C<sub>6</sub>H<sub>4</sub>.)<sub>2</sub>C = CH.PO.(OH)<sub>2</sub>, cryst. from AcOH, m.p. 158-159° (1).

 $\bar{C}$  with  $O_3$  in CCl<sub>4</sub> soln. in acetone/solid CO<sub>2</sub> cooling bath, subsequently decomposed with  $H_2O_2$ , gives (2) p-chlorobenzoic acid (3:4940), oxalic acid (1:0445), 4,4'-dichlorobenzophenone (3:4270), and a little 4,4'-dichlorobenzophenone peroxide, cryst. from acetone, m.p. 217.5-218.5° (2).

[For behavior of  $\bar{C}$  with  $C_6H_6 + AlCl_3$  (3 moles) in reverse Friedel-Crafts reaction see (3).]

3:2475 (1) Bergmann, Bondi, Ber. 64, 1470 (1931). (2) Marvel, Nichols, J. Org. Chem. 6, 301 (1941) (3) Alexander, Chem. Age 36, 50 (1937); Cent. 1937, I 4085; not in C.A. (4) Grummitt, Buck, Becker, J. Am. Chem. Soc. 67, 2265-2266 (1945).

#### 3:2477 1,1,1,2-TETRACHLORO-2,2-bis-(p-CHLOROPHENYL)ETHANE

Beil. S.N. 479

#### M.P. 91-92° (1)

Colorless cryst. from abs. alc.

[For prepn. of C from 1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane ("DDT") (3:3298) with Cl<sub>2</sub> in CCl<sub>4</sub> contg a little PCl<sub>3</sub> (73% yield (1)), or from 1,1-dichloro-2,2-(p-chlorophenyl)ethylene (3:2438) with Cl<sub>2</sub> in CHCl<sub>3</sub> contg. a little PCl<sub>3</sub> (70% yield (1)), see indicrefs.

Č with Zn dust in abs. alc. refluxed 8 hrs loses 2 chlorine atoms giving (66% yield (1)) 1,1-dichloro-2,2-bis-(p-chlorophenyl)cthylene (3:2438).

Despite the presence in C of one tertiary chlorine atom, C does not (1) react with 5% alc. AgNO<sub>3</sub> at room temp

 $\bar{C}$  with 5% aq. N<sub>2</sub>OH refluxed for 15 min. is appreciably hydrolyzed, but with aq. alone similar treatment gives no appreciable reaction (1).

3:2477 (1) Grummitt, Buck, Jenkins. J. Am. Chem. Soc. 67, 155-156 (1945).

#### 3:2480 2,3,4,6-TETRACHLOROTOLUENE

$$\begin{array}{cccc} CH_3 & C_7H_4Cl_4 & \text{Beil. V - } 302 \\ Cl & & & V_{1^-}(153) \\ Cl & & & V_{2^-}(234) \\ \end{array}$$

Ndls. from alc., ether, or alc. + ether.

[For prepn of  $\tilde{C}$  from 2,4,6-trichloro-3-aminotoluene [Beil. XII-873] (1) via diazotization and use of  $Cu_2Cl_2$  reactn. (yield 92% (2)) (1) see indic. refs; from toluene (1:7405) with  $Cl_2$  in pres. of anhydrous  $FeCl_3$  at 15-50° (90% yield) see (3) cf. (5); for formn. of  $\tilde{C}$  (together with other isomers) from 2,3,4-trichlorotoluene (3:0425) or 2,4,6-trichlorotoluene (3:0380) with  $Cl_2$  in  $CCl_4$  in pres. of Al/Hg (2), or from 2,4,5-trichlorotoluene (3:2100) with  $SO_2Cl_2 + AlCl_3 + S_2Cl_2$  as directed (4), see indic. refs.]

 $\bar{C}$  (1 wt. pt.) on nitration with a mixt. of 3 wt. pts. HNO<sub>3</sub> (D=1.48) + 7.4 wt. pts. conc. H<sub>2</sub>SO<sub>4</sub> (D=1.84) at 105° for ½ hr gives (4) 2,3,4,6-tetrachloro-5-nitrotoluene, cryst. from alc., m.p. 154° (4). — Note that the value of 131-134° reported previously (2) was undoubtedly (4) incorrect. — Note also that the m.p. of this nitration prod. is only

slightly lower than that (159°) for the corresp. prod. from 2,3,4,5-tetrachlorotoluene (3:2710).

3:2480 (1) Bures, Trpisovska, Časopis Českoslov. Lékárnictva 15, 179–186 (1935); Cent. 1936, I 1209; C.A. 30, 1753 (1936). (2) Cohen, Dakin, J. Chem. Soc. 85, 1280, 1282–1285 (1904). (3) Casella and Co., Ger. 282,567, April 7, 1915; Cent. 1915, I 862. (4) Silberrad, J. Chem. Soc. 127, 2682–2683 (1925). (5) Beilstein, Kuhlberg, Ann. 150, 287–290 (1869).

#### 3:2490 1.2.4-TRICHLORONAPHTHALENE

#### M.P. 92° (1) (2)

Ndls. somewhat spar. sol. in alc. or AcOH.

[For prepn. of  $\tilde{C}$  from 2,4-dichloronaphthylamine-1 [Beil. XII-1256] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. see (1) (3); from 2,4-dichloronaphthol-1 (3:3250) by htg. with PCl<sub>5</sub> see (2); from 1,3-dichloronaphthalene (3:1310) with Cl<sub>2</sub> in CHCl<sub>3</sub> see (4).]

[C treated with ClSO<sub>2</sub>H in CS<sub>2</sub> and reactn. prod. conv. to Na salt as directed (1) yields sodium 1,2,4-trichloronaphthalenesulfonate-6 (corresp. sulfonyl chloride, m.p. 158° (1)).]

3:2490 (1) Turner, Wynne, J. Chem. Soc. 1941, 247, 251. (2) Cleve, Ber. 21, 893 (1888). (3) Armstrong, Wynne, Chem. News 61, 273 (1890). (4) Cleve, Ber. 23, 954 (1890).

#### CHAPTER VII

#### DIVISION A. SOLIDS

(3:2500-3:2999)

#### 3:2515 1,2,6-TRICHLORO-NAPHTHALENE

$$\begin{array}{c|cccc} Cl & C_{10}H_{b}Cl_{3} & \textbf{Beil. V - 544} \\ & V_{1}-- & V_{2}-- & \end{array}$$

M.P. 92.5° (1)

92° (2) (8)

91° (3)

90° (4)

Ndls. from alc.; very eas. sol. CHCl<sub>3</sub>.

[For prepn. of Č from 1-chloro-6-sulfonaphthylamine-2 [Beil. XIV-763] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. see (2) (5); from 1,2-dichloronaphthalenesulfonyl chloride-6 [Beil. XI-183] (6), 2-chloro-1-nitronaphthalenesulfonyl chloride-6 [Beil. XI-188] (4), 2-chloronaphthalene-1,6-bis-(sulfonyl chloride) [Beil. XI-214] (3), or 1-chloro-6-bromonaphthol-2 [Beil. VI-651] (7) by htg. with PCl<sub>5</sub> as directed see indic. refs.: for formn. of Č from 2,6-dichloronaphthalene (3:4040) with Cl<sub>2</sub> in CHCl<sub>3</sub> (9% yield) see (8).]

[C treated with ClSO<sub>3</sub>H in CS<sub>2</sub> and prod. conv. to sodium salt yields (2) sodium 1,2,6-trichloronaphthalenesulfonate-4 (corresp. sulfonyl chloride, m.p. 184° (2)).]

3:2515 (1) Armstrong, Wynne, Chem. News 71, 255 (1895). (2) Turner, Wynne, J. Chem. Soc. 1941, 247, 252. (3) Forsling, Ber. 21, 3498 (1888). (4) Cleve, Chem. Ztg. 17, 398 (1893). (5) Armstrong, Wynne, Proc. Chem. Soc. 1869, 36, 49. (6) Armstrong, Wynne, Chem. News 59, 189 (1889); 61, 274 (1890). (7) Armstrong, Rossitter, Chem. News 63, 137 (1891). (8) Wynne, J. Chem. Soc. 1946, 61.

#### 3:2545 3-CHLORONAPHTHOL-2

OH C<sub>10</sub>H<sub>7</sub>OCl Beil, VI — VI<sub>1</sub>— VI<sub>2</sub>-(603)

M.P. 93° (1)

92° (2)

90° (2)

Colorless ndls. from pet. ether. — Spar. sol. cold aq.; sol. boilg. aq., and readily sol. org. solvents. — Volatile with steam; can also be distilled without decompn. but b.p. is not stated (2). [The identity of the product of m.p. 63-64.5° obtd. from supposed 3-chloronaphthyl-2 methyl ether by HI splitting (3) and regarded by its sponsors as  $\bar{C}$  is in doubt.] — Note that  $\bar{C}$  does not depress m.p. of  $\beta$ -naphthol (2).

[For prepn. of Č from 1,3-dichloronaphthol-2 (3:1990) with Fe(OH)<sub>2</sub> htd. under press. 8 hrs. at 120° (2) or htd. in alc. with Zn/Cu couple (1) see indic. refs.; from 3-chloronaphthalene-1,2-diazooxide with alk. SnCl<sub>2</sub> see (2); from 3-chloro-2-hydroxynaphthalenesulfonic acid-1 by htg. with 50% H<sub>2</sub>SO<sub>4</sub> see (4).]

 $\ddot{\mathbf{C}}$  is eas. sol. in aq. alk. and also in aq. Na<sub>2</sub>CO<sub>3</sub> soln. on warming (1); the alk. soln. of  $\ddot{\mathbf{C}}$  couples with diazonium salts to give azo dyestuffs; e.g.,  $\ddot{\mathbf{C}}$  with benzenediazonium chloride. soln. yields a prod., m.p. 139° (4), presumably 1-(benzeneazo)-3-chloro-2-hydroxynaphthalene.

C in dil. aq. NaOH, treated with NaNO<sub>2</sub>, chilled, and acidified dropwise with H<sub>2</sub>SO<sub>4</sub> gives (4) 3-chloro-1-nitrosonaphthol-2 (3-chloronaphthoquinone-1,2-oxime-1) [Beil. VII-721], which on hydrolysis with AcOII/HCl for 3 hrs. yields 3-chloronaphthoquinone-1,2 (3:4704), m.p. 214-215° (4).

3:2545 (1) Herzberg, Spengler, Schmid, Ger. 431,165, June 30, 1926; Cent. 1926, II 1196. (2) Marschalk, Bull. soc. chim. (4) 43, 1365–1367 (1928). (3) Jambuserwala, Holt, Mason, J. Chem. Soc. 1931, 375. (4) Marschalk, Bull. soc. chim. (4) 45, 658, 661 (1929).

3:2565 
$$\beta_1\beta'$$
-DICHLORO- $\alpha$ -HYDROXYISO-  $C_4H_6O_3Cl_2$  Beil. III - 318 BUTYRIC ACID  $CH_2Cl$  III<sub>1</sub>—  $III_2$ -(224)  $ClCH_2$ — $C$ -COOII

M.P. 93° (1) Neut. Eq. 173 (1) 91–92° (2) (3)

Deliquescent tbls, eas. sol. alc., ether; cryst from CHCl<sub>3</sub> (1); spar. sol. pet. ether. [For prepn. from  $\alpha,\alpha'$ -dichloroacetone (3:0563) + HCN, followed by hydrolysis of the resultant nitrile with HCl (overall yield alm. quant. (4)), see (3) (4)]

3:2565 (1) Smith, Z. physik Chem. A-177, 137-138 (1936). (2) Favrel, Bull. soc. chim. (5) 1, 985 (1934). (3) Grimaux, Adam, Bull. soc. chim. (2) 36, 20 (1881), Ann. chim (5) 23, 361-362 (1881). (4) Glattfeld, Schneider, J. Am. Chem. Soc. 60, 417 (1938).

3:2570 d,l-1,2-DICHLORO-1,2-DIPHENYLETHANE (d,l- $\alpha,\alpha_l$ -Dichlorobibenzyl; " $\beta$ " stilbene dichloride)

$$\begin{array}{c|c} & C_{14}H_{12}Cl_2 & \text{Beil. V - 601} \\ & V_{1}\text{-(282)} \\ & V_{2}\text{--} \\ \\ Cl\text{--}C\text{--}H & \\ & \\ \end{array}$$

[See also the isomeric meso or " $\alpha$ " stilbene dichloride (3:4854).]

Colorless tbls. or lfts. — Eas. sol. most org solvents but least in lgr. — Readily separable from the much less soluble isomeric " $\alpha$ " stilbene dichloride (3:4854) by recrystn. from alc. — Sublimes without decompn.

[For preparation of  $\bar{C}$  see text of the isomeric " $\alpha$ " stilbene dichloride (3:4854) cf. also (8), noting that many (but not all) of its methods of prepn. give more or less  $\bar{C}$ .— Note also that by reaction of the optically active forms of  $\alpha$ -amino- $\alpha'$ -hydroxybibenzyl in HCl with NOCl both of the corresp. optical antipodes of  $\bar{C}$  have been prepd. (5).]

 $\bar{C}$  on htg. above its m.p. is partially isomerized to the isomeric " $\alpha$ " stilbene dichloride (3:4854) so that m.p. gradually rises to about 160° (1).

[C with AgOAc (2 moles + 25% excess) in AcOH at 100° for 9 hrs. gives (8) mixts. of hydrobenzoin diacetate, m.p. 133-134°, and isohydrobenzoin diacetate, m.p. 114-116° (for m.p./compn. diagram of this pair see (8) (9))

 $\bar{C}$  with pyridine in s.t. at 200° for 8 hrs. loses 1 HCl giving (2) one of the two stereoisomeric  $\alpha$ -chlorostilbene's, viz., the solid stereoisomer [Beil V-633, V<sub>1</sub>-(304)], m.p. 52-54° (2); note that the isomeric " $\alpha$ " stilbene dichloride (3:4854) is inert to pyridine and does *not* show this behavior.

3:2570 (1) Zincke, Ann. 198, 129-141 (1879); Ber. 10, 999-1004 (1877). (2) Pfeiffer, Ber. 45, 1816-1817 (1912). (3) Kayser, Ann. chim. (11) 6, 220-222 (1936). (4) Weissberger, Bach, Z. physik. Chem. B-9, 140 (1930). (5) Weissberger, Bach, Ber. 64, 1095-1108 (1931). (6) Newman, Joshel, Wise, J. Am. Chem. Soc. 62, 1862 (1940). (7) Kharasch, Brown, J. Am. Chem. Soc. 61, 3434 (1939). (8) Winstein, Seymour, J. Am. Chem. Soc. 68, 119-122 (1946). (9) Böeseken, Elsen, Rec. trav. chim. 47, 696 (1928).

#### 3:2575 2,3,5,6-TETRACHLOROTOLUENE

M.P. 93-94° (1) 93° (2)

Ndls. from MeOH.

[For prepn. of  $\bar{C}$  from 2,5,6-trichloro-3-aminotoluene [Beil. XII-873] via diazotization and use of  $Cu_2Cl_2$  reactn. (80% yield) see (1); for formn. of  $\bar{C}$  (together with other isomers) from 2,3,5-trichlorotoluene (3:0610) or from 2,3,6-trichlorotoluene (3:0625) in  $CCl_4$  with  $Cl_2$  in pres. of Al/Hg see (1); for formn. of  $\bar{C}$  as by-prod. of oxidn. of tetrachloro-p-cymene see (2).

C on nitration with 10 pts. fumg. HNO<sub>3</sub> at 100° for 1½ hrs. gives (1) 2,3,5,6-tetrachloro-4-nitrotoluene, pl. from MeOH, m.p. 150-152° (1).

3:2575 (1) Cohen, Dakin, J. Chem. Soc. 85, 1280-1284 (1904). (2) Qvist, Holmberg, Acta Acad. Aboensis Math. et Phys. 6, No. 14, 3-28 (1932); Cent. 1932, II 2815-2816, C.A. 27, 5726-5727 (1933).

#### 3:2615 6-CHLORONAPHTHOL-1

$$\begin{array}{cccc} OH & C_{10}H_7OCl & \textbf{Beil.\,VI-612} \\ & & & & & & & & & \\ CI & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$$

#### M.P. 94° (1)

Long white pr. from CS2; C rapidly turns gray-violet in air.

[For prepn. of  $\tilde{C}$  from  $\gamma$ -(3-chlorophenyl)paraconic acid [Beil. XVIII-421] on distillation see (1).]

C dis. in aq. alk. and this soln. couples (1) with diazonium salts.

Č with aq. FeCl₃ gives a yellowish-white ppt. unchanged on stdg.; Č with Ca(OCl)₂ solns. gives (1) a pale violet ppt.

Č (1 mole) with PkOH (1 mole) in CHCl<sub>3</sub> yields an addn. cpd., Č.PkOH, yel.-red ndls., m.p. 165° (1).

6-Chloro-1-naphthyl acetate: tbls. from alc. + ether, m.p. 47° (1). [From C on boilg. with excess Ac<sub>2</sub>O (1).]

3:2615 (1) Erdmann, Kirchhoff, Ann. 247, 376-378 (1888).

[See also  $\beta$ -chloroisocrotonic acid (3:1300).]

Cryst. from lgr. or CS<sub>2</sub>. —  $\bar{C}$  is sol. in 35.2 pts. aq. at 19° (2), in 44.4 pts. aq. at 12° (3).— $\bar{C}$  is only slightly volatile with steam (2) (dif. from isomeric  $\beta$ -chloroisocrotonic acid (3:1300)).— $\bar{C}$  in either cis- $\alpha,\beta$ -dichloroethylene (3:5042) or  $trans-\alpha,\beta$ -dichloroethylene (3:5028) at 0° is very much less soluble than the isomeric  $\beta$ -chloroisocrotonic acid (3:1300) (11). —  $\bar{C}$  can be sublimed at 120° (1).

For f.p./compn. data and diagram of system  $\ddot{\mathbf{C}}$  + the isomeric  $\beta$ -chloroisocrotonic acid (3:1300) (eutectic, m.p. 38.9°) contg. 33.2 mole %  $\ddot{\mathbf{C}}$ ) see (12).

**Preparation.** [The most frequently used method of preparation of  $\tilde{C}$  is that from ethyl acetoacetate (1:1710) with PCl<sub>5</sub>; this treatment leads to the formation of a mixt. of the acid chlorides of  $\tilde{C}$  and of the isomeric  $\beta$ -chloroisocrotonic acid (3:1300) which upon hydrolysis with aq. gives a mixt. of the two acids; from this mixture the  $\beta$ -chloroisocrotonic acid is removed (together with any unreacted ethyl acetoacetate) by distillation with steam; the residual  $\tilde{C}$  is then further purified by recrystallization. — The yield of the mixt. of  $\tilde{C}$  with its stereoisomer is variously reported, e.g., 43.7% (4), 36.5% (10); the yield of pure  $\tilde{C}$  is relatively small; e.g., 16.9% (4), 11% (13). — The PCl<sub>5</sub> reactn. has often been carried out in dry  $C_6H_6$  (14) (15) (10) (4), but its use is regarded (1) as disadvantageous. — For many important details of procedure see indic. refs.]

[For formn. of  $\bar{C}$  from  $\alpha, \beta, \beta$ -trichloro-n-butyric acid (3:0925) by removal of the  $\alpha$  and one  $\beta$  chlorine atoms with Zn see (16); from tetrolic acid, CH<sub>3</sub>—C $\equiv$ C.COOH [Beil. II-479, II<sub>1</sub>-(208), II<sub>2</sub>-(451)] by addn. of 1 HCl from conc. aq. HCl on stdg. some weeks in s.t. at room temp. see (17); from the stereoisomeric  $\beta$ -chloroisocrotonic acid (3:1300) with conc. aq. HCl in s.t. at 100° for 6 hrs. see (18).]

Chemical behavior.  $\vec{C}$  on htg. at 150–160° for 20 hrs. (17) or at 130° in s.t. (22) is largely isomerized to  $\beta$ -chloroisocrotonic acid (3:1300).

[ $\bar{C}$  in alc. (5) or aq. (5) (19) NaOH with  $H_2 + Pd/BaSO_4$  or  $\bar{C}$  with Na/Hg (20) (2) yields crotonic acid (1:0425), m.p. 72°; note that  $\bar{C}$  is thus dehalogenated more slowly (5) than the isomeric  $\beta$ -chloroisocrotonic acid (3:1300), and that with excess  $H_2$  the crotonic acid is further reduced to n-butyric acid (1:1035).]

C on oxidn. with aq. KMnO<sub>4</sub> yields (21) only AcOH (1:1010) and oxalic acid (1:0445).

 $\bar{\mathbb{C}}$  with  $\mathrm{Cl_2}$  in  $\mathrm{CS_2}$  soln. adds 1 mole halogen yielding (16)  $\alpha,\beta,\beta$ -trichloro-n-butyric acid (3:0925), m.p. 52°;  $\bar{\mathbb{C}}$  undoubtedly also adds 1 Br<sub>2</sub> to yield  $\beta$ -chloro- $\alpha,\beta$ -dibromo-n-butyric acid, but the latter has never been reported.

 $\tilde{C}$  behaves as a monobasic acid, dissociation const. at  $25^{\circ} = 1.44 \times 10^{-4}$  (23). —  $\tilde{C}$  on neutralization with cold dilute alk. gives Neut. Eq. = 120.5, forms stable salts. — Note, however, that  $\tilde{C}$  with 6.7% aq. KOH at 70-80° (24) cf. (25) (26) splits off HCl yielding tetrolic acid, CH<sub>3</sub>.C=C—COOH;  $\tilde{C}$  with excess conc. aq. KOH (e.g., abt. 7 N) begins to decompose even below 100° yielding (24) acetone (1:5400) +  $K_2CO_3$  + KCl.

Salts. [NH<sub>4</sub> $\bar{A}$ , (27); Na $\bar{A}$ .  $\frac{1}{2}$ H<sub>2</sub>O, very sol. aq., and does not isomerize on htg. (2); Ag $\bar{A}$  on htg. with aq. in s.t. at 170° dec. yielding CO<sub>2</sub> + propadiene (allylene) but does so more slowly than the silver salt of the isomeric  $\beta$ -chloroisocrotonic acid (3:1300) (18); Ba $\bar{A}_2$ , very sol. aq. (2); Cu $\bar{A}_2$ .H<sub>2</sub>O (2).]

 $[\bar{C}]$  with PCl<sub>5</sub> yields (28) (29)  $\beta$ -chlorocrotonoyl chloride; note, however, that, although this product is presumably involved in the prepn. of  $\bar{C}$  from ethyl acetoacetate with PCl<sub>5</sub> (see above under preparation of  $\bar{C}$ ) cf. (29), yet it has never been isolated in pure form nor its properties specifically characterized (the m.p. 94° reported in various places is an error, the value referring in fact (28) to  $\bar{C}$ ); this lack of data is presumably due to its easy isomerization to the stereoisomeric  $\beta$ -chloroisocrotonoyl chloride, b.p. 135–136° at 760 mm. (30).]

[ $\bar{C}$  (as K salt) with alc. NaOEt on htg. gives after acidification (24)  $\beta$ -ethoxycrotonic acid [Beil. III-371, III<sub>1</sub>-(135)], m.p. 137-138° (24), 141° (31). —  $\bar{C}$  (as Na salt) with Na benzylate on htg. gives after acidification (32)  $\beta$ -benzyloxycrotonic acid, m.p. 121-122° (32). —  $\bar{C}$  (as Na salt) with Na salt of benzyl mercaptan in the cold gives after acidification (32) a  $\beta$ -benzylmercaptocrotonic acid, m.p. 192-194°; at 100°, however, there is also obtained (32) a stereoisomer, m.p. 130°.]

[For behavior of  $\bar{C}$  (as NH<sub>4</sub> salt) with (NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub> yielding  $\beta$ -sulfocrotonic acid (33) or of  $\bar{C}$  (as K salt) with K<sub>3</sub>AsO<sub>3</sub> yielding  $\beta$ -arsonocrotonic acid (9) see indic. refs.]

- [ $\bar{C}$  with  $C_6H_6$  + AlCl<sub>3</sub> not only undergoes Friedel-Crafts reactn. but also addition of  $C_6H_6$  to unsatd. linkage giving (35–38% yield (34))  $\beta,\beta$ -diphenyl-n-butyric acid, m.p. 102–103° (35).]
  - Methyl β-chlorocrotonate: b.p. 64-67° at 14 mm. (see 3:9244). [For study of rate of esterification of C with MeOH see (36) (37).]
  - Ethyl  $\beta$ -chlorocrotonate: b.p. 179–180° (see 3:8538).
  - $\bigcirc$   $\beta$ -Chlorocrotonamide: ndls. from ether, pr. from aq., m.p. 99-101° (28). [From  $\beta$ -chlorocrotonoyl chloride (see above) with conc. aq. NH<sub>4</sub>OH (28).]
  - β-Chlorocrotonanilide: pr. from alc., m.p. 123-124° (28). [From β-chlorocrotonoyl chloride (see above) with aniline + excess cold dil. aq. NaOH (28).]
  - ⑤ β-Chlorocroton-α-naphthalide: pr. from alc., m.p. 169-170° (28). [From β-chlorocrotonoyl chloride (see above) with α-naphthylamine + excess cold dil. aq. NaOH (100% yield (28)).]

3:2625 (1) Dadieu, Pongratz, Kohlrausch, Monatsh. 60, 211-212 (1932); Sitzber. Akad. Wiss. Wien, Math. naturw. Klasse, Abt. II-a, 140, 359-360 (1931). (2) Geuther, Zeit. Chemie 1871, 240. (3) Kahlbaum, Ber. 12, 2337-2338 (1879). (4) Backer, Beute, Rec. trav. chim. 54, 552-553 (1935). (5) Paal, Schiedewitz, Rauscher, Ber. 64, 1521-1530 (1931). (6) Bruylants, Castille, Bull. soc. chim. Belg. 34, 277 (1925). (7) von Auwers, Wissebach, Ber. 56, 724 (1923). (8) Stelling, Z. physik. Chem. B-24, 423 (1934). (9) Backer, van Oosten, Rec. trav. chim. 59, 49-50 (1940). (10) Skau, Saxton, J. Am. Chem. Soc. 50, 2693-2701 (1928).

Lebrun, Bull. soc. chim. 39, 429-430 (1930).
 Skau, Saxton, J. Phys. Chem. 37, 183-196 (1933).
 Autenrieth, Ann. 259, 358-362 (1890).
 Michael, Schulthess, J. prakt.
 Chem. (2) 46, 236-238 (1892).
 Scheibler, Voss, Ber. 53, 381-382 (1920).
 Szenic, Taggesell, Ber. 28, 2665-2667 (1895).
 Friedrich, Ann. 219, 363, 370-371 (1883).
 (18)

Michael, Clark, J. prakt. Chem. (2) 52, 326-329 (1895). (19) Rosenmund, Zetsche, Ber. 51,

583 (1918). (20) Michael, Schulthess, J. prakt. Chem. (2) 46, 248-249 (1892).

(21) Kondakow, J. Russ. Phys.-Chem. Soc. 24, 508 (1892). (22) Michael, Schulthess, J. prakt. Chem. (2) 46, 264-266 (1892). (23) Ostwald, Z. physik. Chem. 3, 245 (1889). (24) Friedrich, Ann. 219, 346-349 (1883). (25) Michael, J. prakt. Chem. (2) 38, 9-10 (1888). (26) Michael, Schulthess, J. prakt. Chem. (2) 46, 254-255 (1892). (27) McMaster, Magill, J. Am. Chem. Soc. 38, 1796-1797 (1916). (28) Autenrieth, Ber. 29, 1665-1669 (1896). (29) Shriner, Keyser, J. Am. Chem. Soc. 60, 287 (1938). (30) Scheibler, Topouzada, Schulze, J. prakt. Chem. (2) 124, 16 (1930).

(31) Nef, Ann. 276, 234 (1893). (32) Autenrieth, Ber. 29, 1646-1652 (1896). (33) Backer, Beute, Rec. trav. chim. 54, 559-560; 622-624 (1935). (34) Koelsch, Hochmann, LeClaire, J. Am. Chem. Soc. 65, 59 (1943). (35) Bergmann, Taubadel, Weiss, Ber. 64, 1501 (1931). (36) Sudborough, Roberts, J. Chem. Soc. 87, 1846 (1905). (37) Michael, Oechslin, Ber. 42, 322 (1909).

M.P. 95° (1) (2)

Ndls. from alc. (1) (2); much more sol. in lgr than isomeric 6,7-dichloronaphthol-1 (3:4315) (3).

[For prepn. from  $\beta$ -(3,4-dichlorobenzal)propnonic ac. [Beil. IX-614] by distn. see (1) (2) (3);  $\bar{C}$  is separated from the larger proportion of 6,7-dichloronaphthol-1 (3:4315) by its greater soly. in lgr (3)]

C in alk. soln. coupled with diazotized naphthionic acid (1-aminonaphthalenesulfonic acid-4) gives a dark violet color which upon acidification turns bluish cherry-red (3). [Dif. from 6,7-dichloronaphthol-1 (3:4315) q.v.]

**1)** 7,8-Dichloro-1-naphthyl acetate: cryst. from dil. alc., m.p. 87-88° (1) (2).

3:2635 (1) Armstrong, Wynne, Chem. News 71, 253 (1895). (2) Armstrong, Wynne, Proc. Chem. Soc. 11, 78-79 (1893); Bcr. 29, Referate 223-224 (1896). (3) Erdmann, Schwechten, Ann. 275, 286 (1893).

## 3: 2637 3,5-DICHLORO-2-HYDROXYBENZALDEHYDE (3,5-Dichlorosalicylaldehyde) CI CHO C<sub>7</sub>H<sub>4</sub>O<sub>2</sub>Cl<sub>2</sub> Beil. VIII - 54 VIII<sub>1</sub>—

**M.P.** 95-96° (1) 95° (2) (3) 94-95° (4)

Pale yel. scales from AcOH; insol. aq., sol. in usual org. solvents.

[For prepn. of  $\bar{C}$  from o-hydroxybenzaldehyde (salicylaldehyde) (1:0205) in AcOH or CHCl<sub>3</sub> with Cl<sub>2</sub> (2moles) (yields: 90% (3), 70% (4)) (1) see indic. refs.; for formn. from 2,4-dichlorophenol (3:0560) with hexamethylenetetramine in glycerol +  $H_3BO_3$  with  $H_2SO_4$  as directed (7% yield) see (1).]

[For study of bactericidal props. of C see (9)]

C is sol. in dil. aq. alk. or NH<sub>4</sub>OH yielding yel. solns.; C is stable toward dil. aq. acids or even hot conc. HCl but with conc. H<sub>2</sub>SO<sub>4</sub> or HNO<sub>3</sub> dec. on warming (2).

[ $\bar{C}$  in dil. aq. NaOH oxidized with dil. (3%)  $H_2O_2$  as directed yields (1) 3,5-dichloro-1,2-dihydroxybenzene (3,5-dichlorocatechol) (3:3525), pr. from cold aq., m.p. 83-84° (1).]

[C with Ac2O + NaOAc (Perkin condensation) yields (5) (6) 6,8-dichlorocoumarin.

cryst. from  $C_6H_6$ , m.p.  $160^\circ$  (5),  $157^\circ$  (6) (this prod. on reduction with Na/Hg gives (6)  $\gamma$ -(3,5-dichloro-2-hydroxyphenyl)propionic acid (3,5-dichloromelilotic acid), m.p.  $122^\circ$  (6), on soln. in aq. alk. and boilg. with HgO or Hg(OAc)<sub>2</sub> yields (7) 3,5-dichloro-2-hydroxycinnamic acid (3,5-dichloro-o-coumaric acid), cryst. from dil. alc., dec.  $242^\circ$  (7), or on oxidn. with KMnO<sub>4</sub> gives alm. quant. yield (5) of 3,5-dichlorosalcylic acid (3:4935), m.p.  $214^\circ$  (5)).] — [ $\bar{C}$  with  $\omega$ -(phenylacetyl)acetophenone (1,4-diphenylbutanedione-1,3) in abs. alc. with a little piperidine 7-11 hrs. at  $100^\circ$  condenses giving (16% yield (8)) 6,8-dichloro-3-phenylcoumarin, colorless ndls. from AcOH, m.p.  $193-195^\circ$  (8).]

[Č with EtMgBr yields corresp. ter. alc., viz., 3,5-dichloro-2-hydroxyphenyl-ethyl-carbinol, which at 16 mm. press. loses aq. at 140° giving (80% yield (4)) 2,4-dichloro-6-propenylphenol, m.p. 46-47° (4).]

- (3,5-dichloro-2-hydroxybenzaldoxime): colorless ndls. from alc./aq. (4:1) (3), m.p. 195-196° (4), 195° (2). [From  $\bar{C} + NH_2OH.HCl$  in alc. on htg. 1 hr. and pouring into aq. (alm. quant. yield) (4) [This oxime with Ac<sub>2</sub>O on boilg. 3 hrs. gives alm. quant. yield (4) of 3,5-dichloro-2-acetoxybenzonitrile, colorless ndls from alc., m.p. 78° (4).]
- D 3,5-Dichloro-2-hydroxybenzaldehyde phenylhydrazone: pale yel. tbls. from alc., m.p. 153° (4). [From C in alc. with phenylhydrazine on shaking 10 min. (4).]
- 3,5-Dichloro-2-hydroxybenzaldehyde semicarbazone: alm. colorless ndls. from AcOH, m.p. 227° dec. (4) [From C in AcOH with semicarbazide HCl in alm. quant. yield after ½ hr. boilg. (4) ]

3:2637 (1) Dakin, Am. Chem. J. 42, 488-489 (1909). (2) Duff, J. Chem. Soc. 1941, 547-549. (3) Biltz, Stepf, Ber. 37, 4027-4031 (1904). (4) Claisen, Tietze, Ann. 449, 100 (1926). (5) Dey, Row, J. Chem. Soc. 125, 560 (1924). (6) Chem. Werke Grenzach A.G., Ger. 386,619, Dec. 13, 1923; Cent. 1924, I 2633 (7) Sen, Chakravarti, J. Indian Chem. Soc. 7, 249-250 (1930). (8) Lovett, Roberts, J. Chem. Soc. 1928, 1977-1978. (9) Delauney, J. pharm. chim. (8) 25, 254-266, 545-560 (1937), (8) 26, 177-216 (1937), Cent. 1938, I 2019.

#### 3:2638 2,6-DICHLORO-3,5-DIMETHYL-PHENOL

(2,6-Dichloro-m-5-xylenol)

Beil. S.N. 529

M.P. 95-96° (1) (See also text.)

Cryst. from pet. ether. — Eas. sol. CHCl3, CCl4.

[For prepn. of  $\bar{C}$  from 3,5-dimethylphenol (m-5-xylenol) (1:1455) with SO<sub>2</sub>Cl<sub>2</sub> (2 moles) in CHCl<sub>3</sub> see (1); note, however, that structure there assigned is 2,4-dichloro-3,5-dimethylphenol (3:2182) q.v.]

The nitration of C has not been reported, and the expected 4-nitro-2,6-dichloro-3,5-dimethylphenol is unknown.

- ---- 2,6-Dichloro-3,5-dimethylphenyl acetate: unreported.
- ---- 2,6-Dichloro-3,5-dimethylphenyl benzoate: unreported.
- 3:2638 (1) Lesser, Gad, Ber. 56, 975 (1923).



284

Colorless ndls. from aq. [For study of ioniz, const. of  $\bar{C}$  see (1) (6) (9) (10) (13); for fate in animal body see (3); for studies of bacteriostatic props. see (11) (12).]

[For prepn. of  $\tilde{C}$  from o-chlorobenzyl chloride (3:6400) via conversion to o-Cl.C<sub>6</sub>H<sub>4</sub>.-CH<sub>2</sub>MgCl and subsequent carbonation with CO<sub>2</sub> see (2); from o-chlorophenylacetamide (see below) with nitrous acid see (3) (4) (6); from 2-phenyl-4-(2-chlorobenzal)oxazolone-5 (the azlactone from o-chlorobenzaldehyde + N-benzoylglycine + Ac<sub>2</sub>O (5)) [Beil. XXVII<sub>1</sub>-(298)] on boilg. with aq. NaOH and afterward treated with H<sub>2</sub>O<sub>2</sub> see (5).]

[For reactns. of closely related o-Cl.C<sub>6</sub>H<sub>4</sub> CH<sub>2</sub>.COOMgCl with large excess of isopropyl MgCl or C<sub>6</sub>H<sub>5</sub>MgBr yielding o-chlorophenylmalonic acid, cryst. from alc., m.p. 139° (7), see (7) (8).]

[For condens. of  $\ddot{C}$  with pyrene-3-aldehyde (14) or with N-ethylcarbazole-3-aldehyde (15) in prepn. of intermediates for dyes or pharmaceuticals see indic. refs.]

[Č with PCl<sub>5</sub> yields (3) 2-chlorophenylacetyl chloride, b.p. 119-121° at 12 mm., 118-120° at 10 mm.; this prod. with aminoacetic acid (glycine) in dil. aq. alk. gives (35% yield (3)) o-chlorophenylacetaminoacetic acid (o-chlorophenylaceturic acid), cryst. from hot aq., m.p. 134-135° (3).]

[C converted to Pb salt, latter dried at 110° and distilled, yields (16) 2,2'-dichlorodibenzyl ketone, ndls. from alc., m.p. 102° (16) (oxime, m.p. 112° (16), semicarbazone, m.p. 149° (16)).] [For soly. of many other salts see (4).]

- Methyl 2-chlorophenylacetate: oil, b.p. 125-128° at 23 mm. (4). [From C in MeOH with HCl gas (4); also from o-Cl.C<sub>6</sub>H<sub>4</sub>.CH<sub>2</sub>.MgCl with methyl chloroformate in ether (2); alkaline hydrolysis gives (2) C.]
- Ethyl 2-chlorophenylacetate: oil, b.p. 134° at 23 mm. (4). [From C in EtOH with HCl gas (4).]
- ② 2-Chlorophenylacetamide: lfts. from aq., m.p. 175° (4), 172-175° (3). [From 2-chlorophenylacetonitrile (o-chlorobenzyl cyanide) by partial hydrol. with H<sub>2</sub>SO<sub>4</sub> (4) (3); actn. of HNO<sub>2</sub> yields C (see above).]
- ② (2-Chlorophenylacet)anilide: white ndls. from alc., m.p. 138.5° (4). [From C + 1 mole aniline on htg. at 180-190° for ½ hr. (4).]
- ② (2-Chlorophenylacet)-m-chloroanilide: white ndls. from dil. alc., m.p. 154° cor. (17). [From  $\ddot{\mathbf{C}} + m$ -chloraniline (1 mole) on htg. at 180–190° for 2 hrs. (17); also from o-chlorobenzyl m-chlorophenyl ketoxime by Beckmann rearr. with PCl<sub>5</sub> in ether (17).]
- ① (2-Chlorophenylacet)-p-toluidide: white ndls. from dil. alc., m.p. 169.5° (4). [From Č on htg. with 1 mole p-toluidine as for the anilide (above) (4).]
- (2-Chlorophenylacet)phenylhydrazide: white lfts. from C<sub>6</sub>H<sub>6</sub>, m.p. 175° (4). [From C on htg. with 1 mole phenylhydrazine (as above) (4).]

**3:2640** (1) Dippy, Williams, J. Chem. Soc. **1934**, 1888–1892. (2) Austin, Johnson, J. Am. Chem. Soc. **54**, 657 (1932). (3) Cerecedo, Sherwin, J. Biol. Chem. **58**, 220–222 (1923/24). (4) Mehner, J. prakt. Chem. (2) **62**, 554–560 (1900). (5) Mauthner, J. prakt. Chem. (2) **95**, 61 (1917). (6)

Betti, Manzoni, Atti accad. Lincei 22, 284-287 (1935); Cent. 1936, I 3665; C.A. 36, 6349 (1936). (7) Ivanov, Spassov, Bull. soc. chim. (4) 49, 22 (1931). (8) Ivanov, Bull. soc. chim. (5) 4, 682-686 (1937). (9) Betti, Lucchi, Atti acad. Lincei 22, 367-370 (1935); Cent. 1936, I 3665; C.A. 36, 6349 (1936). (10) Lucchi, Zymologica 15, 130-134 (1938); Cent. 1939, I 4030; C.A. 34, 7703 (1940). (11) Gross, Degering, Tetrault, Proc. Indiana Acad. Sci. 49, 42-44 (1939); C.A. 35, 5337 (1941). (12) Feasley, Gwynn, Degering, Tetrault, J. Am. Pharm. Assoc. 30, 41-44 (1941); C.A. 35, 3034 (1941). (13) Betti, Lucchi, Mem. accad. sci. ist. Bologna, Classe sci. fis. 6, 37-42 (1939); Cent. 1940, II 2597; C.A. 36, 5470 (1942). (14) I.G., Brit. 469,633, Aug. 26, 1937; Cent. 1938, I 181. (15) I.G., French 807,704, Jan. 20, 1937; Cent. 1937, I 5053. (16) Kenner, Morton, J. Chem. Soc. 1934, 680. (17) Jenkins, J. Am. Chem. Soc. 55, 2898 (1933).

#### M.P. 96-97° (1)

Ndls. from dil. alc.; insol. aq., sol. hot alc.

[ $\bar{C}$  is readily obtd. by spontaneous polymerization of  $\beta$ -chloro-n-butyraldehyde (3:9110).]  $\bar{C}$  on htg. with conc. H<sub>2</sub>SO<sub>4</sub> not only depolymerizes but also loses HCl yielding (1) crotonaldehyde (1.0150).

 $\bar{C}$  on oxidn. with CrO<sub>3</sub> yields (1) acetic acid (1:1010); with conc. HNO<sub>3</sub> yields  $\beta$ -chloro-n-butyric acid (3:0035).

 $\bar{C}$  on boiling with an aq. suspension of Ag<sub>2</sub>O yields (1) silver salt of  $\beta$ -hydroxy-n-butyric acid.

3:2650 (1) Kekulé, Ann. 162, 100-102 (1872).

3:2662 1,1,1-TRICHLORO-2-METHYL- 
$$CH_3$$
  $C_4H_7OCl_3$  Beil. I - 382 PROPANOL-2  $CH_3$ — $C$ — $CCl_3$   $I_{1-}$ (192)  $I_{2-}$ (415) alcohol; acetone chloroform;  $CH_3$ — $C$ — $CCl_3$   $CH_4$ — $C$ — $CCl_3$   $CH_5$ — $C$ — $CCl_3$   $C$ — $CCl_3$   $C$ — $CCl_3$   $C$ — $CCl_3$   $C$ — $C$ — $CCl_3$   $C$ — $C$ — $CCl_3$ 

Colorless cryst. with camphoraceous odor; like camphor the cryst. rotate vigorously when placed on clean aq.

 $\bar{C}$  is spar. sol. cold aq. (1 g.  $\bar{C}$  dis. in 200 ml. aq. at 15.5°, in 125 ml. aq. at 25° (6), cf. (7) (9)). —  $\bar{C}$  is easily sol. hot aq., eas. sol. alc., ether, acetone, AcOH, or CHCl<sub>3</sub>.

 $\bar{C}$  is very easily volatile with steam (use in detection of small amts.  $\bar{C}$  in aq. soln. (8) (19)). — From hot aq.  $\bar{C}$  seps. in ndls. contg. water of hydration: this prod., m.p. 80-82° (5), 80° (6), 80-81° (9) (18) (2), 77° (11), 77.8° (6), 78.8° (6), is often regarded as (5) (18) a hemihydrate; note, however, that its aq. content may vary and the prod. may comprise a solid soln. of aq. in  $\bar{C}$  (for extensive study see (1)); in any case distillation of the hydrate

removes the aq. and yields (5) anhydrous  $\bar{\mathbb{C}}$  (for conv. of the "hemihydrate" to anhydrous  $\bar{\mathbb{C}}$  by use of CaO, CaCl<sub>2</sub>, MgCl<sub>2</sub> see (12)); note, however, that anhydrous  $\bar{\mathbb{C}}$  on stdg. in air is converted to the "hemihydrate" in less than 30 min. (11). —  $\bar{\mathbb{C}}$  readily sublimes even at room temp. and by repeated sublimation yields (18) anhydrous form.

Č has hypnotic, sedative, local anesthetic, and antiseptic characteristics and finds extensive use in medicine and in preservation of biological solns.; it has been used in treatment of nausea and seasickness, e.g., German "Nautissan" or (together with caffeine) as the British "Motherhill's Seasick Remedy" (10).

Č is also employed as a modifier for cellulose acetate (13) (14) (15) (16) or cellulose ethers (17).

[For detn. of C by complete hydrolysis with hot MeOH/KOH and subsequent detn. of chlorine by either volumetric or gravimetric methods see (3) (19).]

[For prepn. of  $\bar{C}$  from a setone (1:5400) + CHCl<sub>3</sub> (3:5050) by addn. of dry powdered KOH (0.5 mole) below 0° (5) or 2-3° (4) or KOH in alc. as directed (11) (yields: 25% (11), 23% (5)) (2) (4) see indic. refs.; note that use of NaOH lowers the yield (5) and that Ca(OH)<sub>2</sub> (11), Zn(OH)<sub>2</sub> (5), or Al(OH)<sub>3</sub> (5) yields no  $\bar{C}$ ; note also that the crude prod. contains some diacetone alcohol (1:6423) which is best removed by treatment with aq. (11) since otherwise it appears to form with  $\bar{C}$  a const.-boilg. mixt.

[For prepn. of C from trichloroacetyl chloride (3:5420) with MeMgI in ether (4) or from ethyl trichloroacetate (3:5950) with MeMgBr in ether (20) see indic. refs]

[ $\bar{C}$  with granulated Zn + conc. HCl (in pres. of a little ether) is reduced (21) to terbutyl alc. (1:6140), m.p. 25°, but  $\bar{C}$  in 70% alc. warmed with Zn dust for 5 hrs. gives (4% yield (22)) 1,1-dichloro-2-methylpropene-1 (3:5300) + 1-chloro-2-methylpropene-1 (3:7120) + isobutylene (23). —  $\bar{C}$  with granulated Zn in boilg. AcOH yields (21) terbutyl acetate (1:3057).]

[ $\bar{C}$  with Na/Hg in moist ether (21), or with aq. in s.t. at 180° for 3 hrs. (24), or  $\bar{C}$  with aq. alc. KOH (25) undergoes hydrol. of its —CCl<sub>3</sub> group yielding  $\alpha$ -hydroxy-isobutyric acid (1:0431), m.p. 79°.]

Anhydrous  $\ddot{C}$  in dry ether poured onto a lower layer of colorless fuchsin-aldehyde reagt. (Schiff's soln.) gives a purple color (26), but this behavior is not shown by the "hemi-hydrate." —  $\ddot{C}$  also reduces NH<sub>4</sub>OH/AgNO<sub>3</sub> soln. slowly in the cold (2).

[C with cold 10% aq. KOH is claimed (27) cf. (29) to yield traces of  $\alpha$ -chloroisobutyric acid (3:0235) or carbon monoxide + acetone (28), while  $\bar{C}$  with solid KOH gives (27) methacrylic acid [Beil. II-421, II<sub>2</sub>-(398)], and  $\bar{C}$  in MeOH with alk. or tertiary org. bases, or mineral acids, yields (29) methyl methacrylate [Beil. II<sub>2</sub>-(398)]

 $\ddot{C}$  with conc.  $H_2SO_4$  (10 wt. pts.) evolves  $CO + CO_2 + HCl$  (25) (26); the CO presumably results from the usual action of  $H_2SO_4$  on some  $\alpha$ -hydroxy-isobutyric acid (1:0431) first formed by hydrolysis; for the other reactions see (25).

[ $\bar{C}$  with PCl<sub>5</sub> at 100° is claimed (30) (31) (21) to yield both bis- $(\beta,\beta,\beta$ -trichloro-ter-butyl) ether [Beil. I-383, I<sub>1</sub>-(193)], b.p. 156° (30), and 1,1,1,2-tetrachloro-2-methylpropane (3:4725), m.p. and b.p. both at 167° (30), but later workers (26) could obtain no reaction at all between  $\bar{C}$  and PCl<sub>5</sub>. —  $\bar{C}$  with PBr<sub>5</sub> at 60° (not above because of dissociation of PBr<sub>5</sub>) gives (32) cf. (21) 2,3-dibromo-1,1,1-trichloro-2-methylpropane, b.p. 243° (32).]

 $\bar{\rm C}$  with P<sub>2</sub>O<sub>5</sub> in dimethylaniline (1) or quinoline (50) htd. at 200° under ord. press. gives (yield: 30-43% (50), 15% (33)) 1,1,1-trichloro-2-methylpropene-2 (3:5605), b.p. 132°, + 57% yield of its synionic isomer 1,1,3-trichloro-2-methylpropene-1 (3:5025), b.p. 45-46°, accompanied by some  $\alpha$ -chloroisobutyric acid (3:0235) cf. (50).

[Various reactions of  $\bar{C}$  have been employed in prepn. of pharmaceutical prods.:  $\bar{C}$  with adipic anhydride (see text of 1:0775) at 160-180° for 8 hrs. (35), or  $\bar{C}$  with adipic acid (1:0775) + SOCl<sub>2</sub> grad. htd. to 150-160° (36), gives  $\beta,\beta,\beta$ -trichloro-ter-butyl hydrogen

adipate, cryst. from pet. ether, m.p. 70° (35). —  $\bar{C}$  with 5-ethyl-5-phenyl-barbituric acid ("Luminal") does not (37) show evidence of molecular cpd. forms. but forms a eutectic, m.p. 70.4°, contg. 90%  $\bar{C}$ . —  $\bar{C}$  with 2,3-dimethyl-1-phenylpyrazolone-5 ("Antipyrine") does not (38) form a molecular cpd. but gives a eutectic contg. 60 mole %  $\bar{C}$ . —  $\bar{C}$  with 2,3-dimethyl-4-dimethylamino-1-phenylpyrazolone-5 ("Pyramidone") gives (39) a molecular cpd., m.p. 61-63°. —  $\bar{C}$  with chloral (3:5210) or chloral hydrate (3:1270) gives (40) a molecular cpd., m.p. 65°. — See also above (paragraph 4) and below (under  $\bar{\mathbb{Q}}$ 's).]

[For reactn. of  $\bar{C}$  + AlCl<sub>3</sub> (in Friedel-Crafts sense) with benzene, toluene, and *p*-xylene see (31); for reactn. of  $\bar{C}$  with ethyl sodio-acetoacetate see (25).]

[ $\bar{C}$  with aniline in alc. KOH gives according to conditions (41) either  $\beta$ (or  $\alpha$ )-anilinoiso-butyranilide [Beil. XII-558], cryst. from alc., m.p. 155-157° (41), or  $\beta$ -anilinoisobutyric acid [Beil. XII-497], cryst. from alc., m.p. 185° (41). — For study of reactions of  $\bar{C}$  with p-ethoxyaniline (p-phenetidine) + alc. KOH see (42); of  $\bar{C}$  with o-phenylenediamine + alc. KOH see (41).]

- Carbylamine test: 
   Ö with aniline + aq. alk. on warming gives characteristic odor of phenyl isocyanide (phenyl carbylamine).
- Dodoform reaction: C
   in aq soln. (1/200) treated with aq. NaOH + I<sub>2</sub>/KI soln. gives
   yel. ppt. of iodoform (m.p. 119°) with its characteristic odor.
- —— β<sub>1</sub>β<sub>2</sub>β-Trichloro-ter-butyl acetate: oil, b.p. 191° (21), 190–191° (4), 151–152° at 237 mm. (43). [From C̄ (1 pt.) with Ac<sub>2</sub>O (2 pts.) + anhyd. NaOAc (1 pt.) refluxed 2 hrs. (85% yield (43)), or from C̄ (1 mole) with AcCl (1 mole) under reflux (37% yield (21)).] [Note that this ester, although unaffected by 10% aq. NaOH at 100° for 20 min. (dif. from C̄ which is hydrolyzed), is rapidly saponified by boilg. with 3–4 vols. conc. HNO<sub>3</sub> for a few minutes, and upon dilution with aq ppts. C̄ (43).]
- ⑤ β,β,β-Trichloro-ter-butyl benzoate: cryst. from alc. upon addn. of aq, m.p. 34-35° (44) (45). [From C̄ with BzCl at 100° until evoln. of HCl stops (6 hrs.) (44) (45), or from C̄ + benzoic acid (1:0715) in pres. of ZnCl<sub>2</sub> (45).] [Note that this ester on boilg, with conc. HNO<sub>3</sub> is not hydrolyzed (dif. from esters of C̄ with aliphatic acids, e.g., acetate (above)), but nitrated (46) yielding mainly β,β,β-trichloro-ter-butyl m-nitrobenzoate (see below).]
- β,β,β-Trichloro-ter-butyl o-nitrobenzoate: pl. from alc., m.p. 91° (46) (47). [From C with o-nitrobenzoyl chloride on warming (46) (47).]
- $\bigoplus \beta_{,\beta,\beta}$ -Trichloro-ter-butyl p-nitrobenzoate: ndls. from alc., m.p. 145° (46) (47). [From  $\bar{C}$  with p-nitrobenzoyl chloride on warming (46) (47).]
- $\bigcirc$   $\beta,\beta,\beta$ -Trichloro-ter-butyl 3,5-dinitrobenzoate: unreported.
- β,β,β-Trichloro-ter-butyl carbamate: pl. from C<sub>6</sub>H<sub>6</sub>, m.p. 102° (48) (49). [From C with Na in C<sub>6</sub>H<sub>6</sub> at room temp. for 4 hrs., followed by conversion of the presumably resultant metal alcoholate with phosgene (3:5000) in toluene to β,β,β-trichloro-ter-butyl chloroformate (not isolated), and reaction of the latter in the C<sub>6</sub>H<sub>6</sub>/toluene soln. with dry NH<sub>3</sub> gas (55% yield (48)) (49); note that earlier attempts (26) to obtain a metal alcoholate in toluene had led to serious explosions (cf. alkali metals with CHCl<sub>3</sub>) (3:5050).]
- $\beta_1\beta_1\beta_2$ -Trichloro-ter-butyl N-phenylcarbamate: ndls. from  $C_6H_6$ , m.p. 118° (48). [From  $\bar{C}$  as in the preceding case except that aniline was used in place of NH<sub>3</sub> in last step; yield is poor (48).]
- $\beta,\beta,\beta$ -Trichloro-ter-butyl N-( $\alpha$ -naphthyl)carbamate: unreported.

3:2662 (1) Cameron, Holly, J. Phys. Chem. 2, 322-335 (1898). (2) Willgerodt, Ber. 14, 2451-2458 (1881). (3) Sinton, J. Assoc. Official Agr. Chem. 22, 730-732 (1939); 21, 557-560 (1938). (4) Taffe, Roczniki Farmacçi 2, 99-107 (1923); Cent. 1924, II 304; C.A. 18, 2328 (1924). (5) Sah, Lei, Ma, Sci. Repts. Natl. Tsing Hua Univ. A-1, 209-214 (1932). (6) Perrins, Pharm. J. 128, 265, 271 (1932); Cent. 1932, II 1039; C.A. 26, 4416 (1932). (7) Smelt, Pharm. J. 128, 493 (1932); Cent. 1932, II 3741, C A. 26, 4416 (1932). (8) Aldrich, J. Biol. Chem. 34, 263-267 (1918). (9) Hamilton, Am. J. Pharm. 91, 643-648 (1919). (10) Anon., Chem. Ztg. 52, 611 (1928); Cent. 1928, II 1588.

(11) Fisburn, Watson, J. Am. Pharm. Assoc. 28, 491-493 (1939); Cent. 1939, II 4464; C.A. 33, 9283 (1939). (12) Carpenter (to Givaudan-Delawanna, Inc.), U.S. 1,967,287, July 24, 1934; Cent. 1935, I 2256. (13) Staud, Minsk (to Eastman Kodak Co), U.S. 1,994,597, March 19, 1935; Cent. 1935, II 2605, C.A. 29, 3156 (1935). (14) Kodak-Pathé, Fiench 741,975, Feb. 24, 1933; Cent. 1934, I 2684. (15) Bader, Dickie (to Am. Cellulose and Chem. Mfg. Co.), U.S. 1,536,052, May 5, 1925, Cent. 1925, II 1926. (16) Bader, Dickie (to Brit Cellulose and Mfg. Co.), Brit. 195,849, May 3, 1923; Cent. 1923, IV 343. (17) Dreyfus, Brit. 205,195, Nov. 8, 1923; Cent. 1924, I 716. French 562,056, Nov. 3, 1923; Cent. 1924, I 599. (18) Willgerodt, Ber. 16, 1585 (1883). (19) Vastagh, Pharm. Zentralhalle 78, 497-499 (1937); Cent. 1937, II 3626; C.A. 31, 7595 (1937). (20) Henry, Compt. rend. 142, 131 (1906); Bull. soc. chrm Belg. 20, 152-156 (1906); Cent. 1906, II 1178.

(21) Willgerodt, Durr, J. prakt. Chem. (2) 39, 283-289 (1889).
(22) Bruyne, Davis, Gross, Physik. Z. 33, 720, Note 2 (1932).
(23) Iocitsch, J. Russ. Phys.-Chem. Soc. 30, 920-924 (1889).
(26) Willgerodt, Ber. 15, 2307-2308 (1882).
(25) Willgerodt, Schiff, J. prakt. Chem. (2) 41, 515-526 (1890).
(26) Wolffenstein, Loewy, Bachstez, Ber. 48, 2039-2040 (1915).
(27) Ostropiatow, J. Russ. Phys.-Chem. Soc. 28, 47-56 (1896), Ber. 29, Referate 908-909 (1896).
(28) Bressani, Segre, Gazz. chim. ital. 41, I 673-674 (1911).
(29) Thomas, Oxley (to Celanese, Ltd.), Brit. 505,103, June 1, 1939; Cent. 1939, II 3635, C.A. 33, 7821 (1939).
(30)

Willgerodt, Dürr, Ber. 20, 539-540 (1887).

(31) Willgerodt, Genieser, J. prakt. Chem. (2) 37, 365-371 (1888). (32) Swarts, Bull. soc. chim. Belg. 36, 204-205 (1927). (33) Jacob, Bull. soc. chim. (5) 7, 581-586 (1940), C.A. 36, 3507 (1942). (34) Kirrmann, Jacob, Compt. rend. 203, 1528-1529 (1936). (35) Chem. Fabrik Dr. J. Wiernik & Co., Ger. 576,002, Oct. 16, 1934; Cent. 1935, I 440, C.A. 29, 890 (1935). (36) Chem. Fabrik Dr. J. Wiernik & Co., Ger. 583,852, April 27, 1934, Cent. 1934, II 283. (37) Mossini, Boll. chim. farm. 77, 573-574 (1938); Cent. 1939, I 1530, C.A. 33, 1875 (1939). (38) Rychterowna, Wiadomości Farm. 61, 95-97 (1934); Cent. 1934, II 3647; C.A. 28, 2983 (1934). (39) Callsen (to I.G.), Ger. 442,719, April 6, 1927; Brit. 257,816, Sept. 30, 1926, Cent. 1927, I 2950. (40) Hofmann-La Roche & Co., Ger. 151,188, May 11, 1904, Cent. 1904, I 1506.

(41) Banti, Gazz. chim. ital. 59, 819-824 (1929), Cent. 1930, I 1292, C.A. 24, 1632 (1930), (42) Passerini, Ragni, Gazz. chim. ital. 64, 910-912, 916-917 (1934); Cent. 1935, II 44; C.A. 29, 3322 (1935). (43) Aldrich, J. Am. Chem. Soc. 37, 2720-2723 (1915). (44) Aldrich, J. Am. Chem. Soc. 42, 1502-1507 (1920). (45) Aldrich (to Parke, Davis & Co), U S. 1,443,552, Jan. 30, 1923; Cent. 1923, IV 802. (46) Aldrich, Blanner, J. Am. Chem. Soc. 44, 1759-1762 (1922). (47) Aldrich (to Parke, Davis & Co.), U.S. 1,451,357, April 10, 1923; Cent. 1925, II 1803. (48) Yoder, J. Am. Chem. Soc. 45, 478 (1923). (49) Dox, Yoder (to Parke, Davis & Co.), U.S. 1,658,231, Feb. 7, 1928; Cent. 1928, I 1914. (50) Price, Marshall, J. Org. Chem. 8, 532-535 (1943).

M.P. 97° (1) (2) (3) (5) B.P. 110° at 12 mm. (1) (2) 100° at 12 mm. (5)

Colorless cryst. with camphoraceous odor. — Sublimes; eas. volatile with steam. — Insol. aq.

[For prepn. of C from pentaerythritol (1:5850) with 4 moles SOCl<sub>2</sub> + 4 moles pyridine (3) cf. (4) (5) or with conc. HCl in s.t. at 150° followed by PCl<sub>3</sub> (2) or on htg. the trichlorohydrin (1) with PCl<sub>5</sub> at 150° see indic. refs. (1).] [Note that pentaerythritol (1:5850) on htg. in s.t. with conc. HCl at 120-180° gives (1) a mixt. of mono-, di-, and trichloro-

hydrins: the monochlorohydrin,  $(HOCH_2)_3C.CH_2Cl$ , m.p. 141°, b.p. 190° at 12 mm., is sol. in aq.; the dichlorohydrin,  $(HOCH_2)_2C(CH_2Cl)_2$ , m.p. 95°, b.p. 160° at 12 mm., is sol. in aq.  $+ C_6H_6$ ; the trichlorohydrin,  $HOCH_2\_CE(CH_2Cl)_3$ , m.p. 80°, b.p. 136° at 12 mm., is sol. in  $C_6H_6$  + pet. ether (1); note also that pure dichlorohydrin has recently (6) been reported as m.p. 79–80°.]

3:2675 (1) Fecht, Ber. 40, 3888-3889 (1907). (2) Wagner, Dengel, Z. physik. Chem. B-16, 384 (1932). (3) Ballaus, Wagner, Z. physik. Chem. B-45, 173 (1939). (4) Govaert, Hansens, Beyaert, Versl. gewone Vergadering Afdeel. Naturkunde 52, 135-137 (1943); Cent. 1943, II 1358; C.A. 38, 5201 (1944). (5) Mooradian, Cloke, J. Am. Chem. Soc. 67, 943 (1945). (6) Rapoport, J. Am. Chem. Soc. 68, 341 (1946).

3:2690 2-CHLORORESORCINOL OH 
$$C_6H_5O_2Cl$$
 Beil. S.N. 554 OH

[See also 4-chlororesorcinol (3:3100) and 5-chlororesorcinol (3:3530).]

Colorless cryst. purified by sublimation.

[For prepn. of  $\bar{\mathbb{C}}$  from 2,4-dihydroxy-5-nitrobenzoic acid (5-nitro- $\beta$ -resorcylic acid) [Beil. X-382, X<sub>1</sub>-(179)] via chlorination with SO<sub>2</sub>Cl<sub>2</sub> in AcOH to 3-chloro-2,4-hydroxy-5-nitrobenzoic acid, reduction of the latter with SnCl<sub>2</sub>/HCl in AcOH to 3-chloro-2,4-dihydroxy-5-aminobenzoic acid, with final removal of the amino group by diazotization and use of alk. SnCl<sub>2</sub>, see (1)

[ $\bar{C}$  is formed in small amt. together with 4-chlororesorcinol (3:3100) from resorcinol (1:1530) by actn. of N,N-dichlorourea (2).]

[Note that attempts (3) cf. (1) to prepare C from 2-aminoresorcinol [Beil. XIII-782] by diazotization and use of Sandmeyer reactn. have failed because the actn. of nitrous acid yields 4-nitroso-2-diazoresorcinol.]

[The prod., m.p. 89°, b.p. 255-256°, obtained (4) from resorcinol (1:1530) with SO<sub>2</sub>Cl<sub>2</sub> in ether may have contained  $\bar{C}$ .]

3:2696 (1) Milligan, Hope, J. Am. Chem. Soc. 63, 544 (1941). (2) Likhosherstov, J. Gen. Chem. (U.S.S.R.) 3, 164-171 (1933); Cent. 1934, I 1476; C.A. 28, 1675 (1934). (3) Likhosherstov, Zhabotinskaya, J. Gen. Chem. (U.S.S.R.) 2, 761-769 (1932); Cent. 1933, II 1180; C.A. 27, 2677 (1933). (4) Reinhard, J. prakt. Chem. (2) 17, 322-325 (1878).

M.P. 97-98° (1)

Ndls. from pet. ether. — Eas. sol. ether, C6H6, or CHCl3; spar. sol. alc. or pet. ether; insol. aq.

[For prepn. of C from 2,3,4,6-tetrachlorobenzal (di)chloride (3:6980) by hydrolysis with conc. H<sub>2</sub>SO<sub>4</sub> at 96° see {1}.]

Č with NaHSO<sub>3</sub> forms the corresp. addn. cpd.; spar. sol. cold aq. (1); for use in sepn. of Č from 2,3,4,5-tetrachlorobenzaldehyde (3:3140) see (2).

[For use of C in prepn. of dyes of the triphenylmethane series see (3).]

3:2700 (1) Cassella and Co., Ger. 290,209, Feb. 8, 1916; Cent. 1916, I 396-397, not in C.A. (2) Chem. Fabrik Griesheim Elektron, Brit. 251,511, May 27, 1926; Cent. 1926, II 2355; C.A. 21, 1361 (1927) French 603,650, April 20, 1926, Cent. 1926, II 2355, not in C.A. (3) Cassella and Co., Ger. 302,138, Nov. 28, 1917; Cent. 1918, I 250; not in C.A.

3:2705 5-CHLORO-3,4-DIMETHYLPHENOL OH 
$$C_8H_9OCl$$
 Beil. VI — VI<sub>1</sub>— VI<sub>2</sub>—(456)

M.P. 98° (1) (2)

Ndls. from lt. pet. — Volatile with steam.

[For prepn. of Č from 5-chloro-3,4-dimethylaniline (6-chloro-o-4-xylidine) (1) via diazotization and hydrolysis (yield not stated) see (1); from 6-amino-5-chloro-3,4-dimethylphenol (6-chloro-5-amino-o-4-xylenol) (2) via diazotization and elimination of original amino group using Cu<sub>2</sub>Cl<sub>2</sub> reaction (unusual) (yield not stated) see (2)]

 $\bar{C}$  with  $\bar{C}l_2$  in CHCl<sub>3</sub> gives (1) 2,5,6-truchloro-3,4-dimethylphenol (3:4747), m.p. 182.5°. The nitration of  $\bar{C}$  has not been reported, and neither of the two possible mononitro derivs. nor the corresp. dinitro deriv. is known.

Č in alk. soln. couples with benzenediazonium chloride giving (2) the corresp. azo cpd., red ndls. from alc., m.p. 143° (2).

- --- 5-Chloro-3,4-dimethylphenyl acetate: unreported.
- **D** 5-Chloro-3,4-dimethylphenyl benzoate: m.p. 42° (1).

3:2705 (1) Hinkel, J. Chem. Soc. 125, 1853 (1924). (2) Hinkel, Ayling, Bevan, J. Chem. Soc. 1928, 2532.

#### 3:2710 2,3,4,5-TETRACHLOROTOLUENE

Ndls. from MeOH.

[For prepn. of  $\bar{C}$  from 3,4,5-trichloro-2-aminotoluene (3) or from 2,4,5-trichloro-3-aminotoluene [Beil. XII-872] (2) (3) via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. see indic. refs.; from 3,4,5-trichlorotoluene (3:0580) with Cl<sub>2</sub> in pres. of Al/Hg (2) (3) or with SO<sub>2</sub>Cl<sub>2</sub> + AlCl<sub>3</sub> + S (35% yield (1)) see indic. refs.]

[C at b.p. with Cl<sub>2</sub> yields (4) 2,3,4,5-tetrachlorobenzal (di)chloride (3:9397).]

 $\bar{C}$  on nitration with 6 pts. of a mixt. of 2 pts. HNO<sub>3</sub> (D=1.48) + 4 pts. H<sub>2</sub>SO<sub>4</sub> (D=1.84) at 105° for ½ hr. (1) yields 2,3,4,5-tetrachloro-6-nitrotoluene, m.p. 159.6° cor. (1), 159° (3).

3:2710 (1) Silberrad, J. Chem. Soc. 127, 2682-2683 (1928). (2) Cohen, Dakin, J. Chem. Soc. 85, 1280, 1285 (1904). (3) Cohen, Dakin, J. Chem. Soc. 89, 1453-1455 (1906). (4) Chem. Fabrik Griesheim-Elektron, Brit. 251,511, May 27, 1926; French 603,650, April 20, 1926; Cent. 1926, II 2355.

[See also 4-chlorophthalic acid (3:4390).]

Cryst. from CCl<sub>4</sub> (5) (4), from Ac<sub>2</sub>O (2), from ether, or from alc. (For crystallographic consts. see (2).) — Eas. sol. alc., ether, CHCl<sub>3</sub>; less sol. CS<sub>2</sub>; spar. sol. lgr.

[For use of  $\bar{C}$  with glycerol or ethylene glycol in prepn. of glyptal type resins see (26).] [For prepn. of  $\bar{C}$  from 4-chlorophthalic acid (3:4390) by htg. or sublimation (6) (7) (8) (1) (9) or by htg. with AcCl (2) see indic. refs.; from NaH $\bar{A}$  with conc. H<sub>2</sub>SO<sub>4</sub> at 100° see (10); from phthalic anhydride (1:0725) with Cl<sub>2</sub> in pres. of Fe or Fe salts at 160-260° see (11) (note that crude  $\bar{C}$  obtd. by chlorination methods or from 4-chlorophthalic acid obtd. by chlorination methods may cont. dichlorophthalic anhydrides from which  $\bar{C}$  is separable by its greater soly. in toluene (4)); from 4-nitrophthalic anhydride [Beil. XVII-486, XVII<sub>1</sub>-(250)] with Cl<sub>2</sub> at 240° see (12)]

[C with Cl<sub>2</sub> in fumg. H<sub>2</sub>SO<sub>4</sub> in pres. of I<sub>2</sub> gives (13) mixt contg. much 3,4-dichlorophthalic anhydride (3:3695), m.p. 120-121°, b.p. 329°, and little 4,5-dichlorophthalic anhydride (3:4830), m.p. 187°.]

[ $\bar{C}$  with SOCl<sub>2</sub> + ZnCl<sub>2</sub> in s.t. at 240° yields (27) 4-chlorophthalyl (di)chloride [Beil. IX-817], b.p. 275-276° (6) ]

[C in MeOH satd. with dry HCl yields (6) dimethyl 4-chlorophthalate, ndls. from lgr., m.p. 38° (5), m.p. 37° (6), b.p. 186–187° at 32 mm. (5); C in EtOH similarly gives (6) diethyl 4-chlorophthalate, b.p. 173–174° at 16 mm. (14), 300–305° (6).

Č fused and treated with dry NH<sub>3</sub> gas (6) or Č htd. with urea (28) yields 4-chlorophthalimide [Beil. XXI-503, XXI<sub>1</sub>-(391)], m.p. 210-211° (6) (3). [Ring opening of this prod. with NaOCl yields (9) 3 pts. 4-chloro-2-aminobenzoic acid (4-chloroanthranilic acid) [Beil. XIV-365, XIV<sub>1</sub>-(548)], m.p. 235-236° (9), and 1 pt. 5-chloro-2-aminobenzoic acid as "anhydride," m.p. 178-179° (9).] [For use of 4-chlorophthalimide in prepn. of pigments of phthalocyanine type see (28).]

[C fused with aminoacetonitrile hydrochloride or sulfate yields (15) 4-chlorophthalimidoacetamide, ndls. from hot aq., m p. 241° (15); C htd. with methyleneaminoacetonitrile until evoln. of CH<sub>2</sub>O ceases yields (15) 4-chlorophthalimidoacetonitrile, ndls. from dil. AcOH, m.p. 146.5° (15); C htd. with glycine yields (15) 4-chlorophthalimidoacetic acid, yel. pl. from hot aq. or dil. alc., m.p. 205° (15).]

[C with 2 moles phenol htd. with ZnCl<sub>2</sub> at 115-130° for 48 hrs. as directed (2) gives 76% yield phenol (di)chlorophthalein, m.p. 214-233°, and prob. a mixt. of isomers; C with resorcinol htd. with trace conc. H<sub>2</sub>SO<sub>4</sub> yields (6) a prod. behaving as dichlorofluorescein.

— Note, however, that C with hydroquinone (1:1590) + AlCl<sub>3</sub> + NaCl htd. at 200-220°

(4) or  $\bar{C}$  with p-chlorophenol (3:0475) + fumg.  $H_2SO_4 + H_3BO_3$  htd. 20 hrs. at 175-195° gives (95% yield (4)) 6-chloro-1,4-dihydroxyanthraquinone (6-chloroquinizarin), tbls. from toluene, m.p. 188° (diacetate, m.p. 213°, dimethyl ether, m.p. 168.5° (4)).]

[C with C6H6 + AlCl3 yields (6) (3) 4-chloro-2-(benzoyl)benzoic acid [Beil. X-750, X<sub>1</sub>-(356)], cryst. from xylene, m.p. 180.5° (3), from C<sub>6</sub>H<sub>6</sub>, m.p. 170° (6) (this on ring closure with conc. H<sub>2</sub>SO<sub>4</sub> at 160-170° for 10 min. gives 2-chloroanthraquinone (3:4922), m.p. 204° (3). —  $\bar{C}$  with chlorobenzene (3:7903) + AlCl<sub>3</sub> yields (3) (17) 4-chloro-2-(pchlorobenzovl) benzoic acid [Beil.  $X_1$ -(357)], cryst. from xylene, m.p. 195.5° (3) (this on ring closure as above gives (3) 2,6-dichloroanthraquinone [Beil. VII-788, VII<sub>1</sub>-(413)], m.p. 278° (3)). — For similar condensations of  $\tilde{C}$  + AlCl<sub>3</sub> with p-dichlorobenzene see (3), with bromobenzene see (18), with naphthalene see (25) (19), with toluene see (19) (20), with perylene see (21) (22), with 2,2'-dinaphthyl see (23) ]

[For use of C in prepn. of pigments of the phthalocyanine type see (24) (28).]

C on warming with aq. readily hydrolyzes; C on saponification with standard alk. (Sap. Eq. = 91.3) followed by acidification yields 4-chlorophthalic acid (3:4390) q.v.

3:2725 (1) Miersch, Ber. 25, 2116 (1892). (2) Blicke, Smith, J. Am. Chem. Soc. 51, 1871–1872, 1874 (1929). (3) Egerer, Meyer, Monatsh. 34, 81–83, 86, 90 (1913). (4) Waldmann, J. prakt. Chem. (2) 126, 254–255 (1930). (5) Ayling, J. Chem. Soc. 1929, 255 (6) Rée, Ann. 233, 236– (6) Rée. Ann. 233, 236-240 (1886). (7) Alén, Bull soc. chim. (2) 36, 434 (1881). (8) Claus, Dehne, Ber. 15, 320 (1882). (9) Moore, Marrack, Proud, J. Chem. Soc. 119, 1788-1789 (1921). (10) Scottish Dyes, Ltd., Bangham, Thomas, Brit. 347,666, May 28, 1931; Cent. 1931, II 1195.

(11) Dvornikoff (to Monsanto Chem. Co.), U.S. 2,028,383, Jan. 21, 1936; Cent. 1936, I 2830; C.A. 30, 1394 (1936). (12) Imperial Chem. Ind., Ltd., Shaw, Thomas, Brit. 357,165, Oct. 15, 1931; Cent. 1931, II 3663. (13) Villiger, Ber. 42, 3594 (1909). (14) von Braun, Larbig, Kredel, Ber. 56, 2338 (1923). (15) Stephen, J. Chem. Soc. 1931, 871-873. (16) Scottish Dyes, Ltd., Bangham, Hooley, Thomas, Brit. 339,589, Jan. 8, 1931, Cent. 1932, I 2095, C.A. 25, 2859 (1931). (17) Muller (to I.G.), Ger. 495,447, April 7, 1930; Cent. 1931, I 1675. (18) Waldmann, J. prakt. Chem. (2) 126, 74-75 (1930). (19) B.A S.F., Ger. 234,917, May 26, 1911; Cent. 1911, II 114. (20) B.A.S.F., Ger. 211,927, July 14, 1909; Cent. 1909, II 396.

(21) Zinke, Gorbach, Shimka, Monatsh. 48, 593-598 (1927). (22) Nawiasky, Grosskinsky (to I.G.), Ger. 642,650, March 11, 1937; Cent. 1937, I 5057. (23) Neresheimer, Kacer (to I.G.). Ger. 565,425, Nov. 30, 1932; Cent. 1933, I 1358. (24) Imperial Chem. Ind., Ltd., French 808,845, Feb. 16, 1937; Brit. 464,126, April 12, 1937; Cent. 1937, II 3820; C.A. 31, 6255 (1937). (25) Schwenk, Waldmann, J. prakt. Chem. (2) 128, 320-326 (1930). (26) Kogan, Ponomarenko, Org. Chem. Ind. (U.S.S.R.) 7, 382-385 (1940); C.A. 35, 4118 (1941). (17) Kyrides (to Monsanto Chem. Co.), U.S. 1,951,364, March 20, 1934; Cent. 1934, II 333. (28) Imperial Chem. Ind., Ltd., Heilbron, Irving, Linstead, Thorpe, Brit. 410,814, June 21, 1934; French 763,993, May 12, 1934; Cent. 1935, I 1305.

(10) [See also a-chloroisocrotonic acid (3:1615).]

96°

Ndls. from aq. (4) (20) or pet. eth. (8). —  $\bar{C}$  is sol. in 47.1 pts. aq. at 19° (13); 100 pts. satd. aq. soln. at 12.5° cont. 1.97 pts.  $\bar{C}$  (9). —  $\bar{C}$  is less (9) (5) volatile with steam than the isomeric  $\alpha$ -chloroisocrotonic acid (3:1615). — Eas. sol. alc. or ether (10). — Readily sublimes (10). — Note that the m.p. of mixts. of  $\bar{C}$  with  $\beta$ -chlorocrotonic acid (3:2625) is depressed far below either (4).

[For thermal anal. of system  $\tilde{C}+2,6$ -dimethylpyrone see (12); with conc.  $H_2SO_4$  see (14).]

Preparation. For prepn. of  $\bar{C}$  from  $\alpha,\alpha,\beta$ -trichloro-n-butyric acid (3:1280) [itself readily obtd. from  $\alpha,\alpha,\beta$ -trichloro-n-butyraldehyde (butylchloral) (3:5910) by oxidn. with HNO<sub>3</sub>] by removal of two halogen atoms with Zn dust + aq (83% yield on initial butylchloral hydrate (3)) (10), or with Zn + HCl (15), see indic. refs.; from the higher-melting form of  $\alpha,\beta$ -dichloro-n-butyric acid ("isocrotonic acid dichloride") (3:1903) by splitting out HCl with alc. KOH see (17) (18); from the lower-melting form of  $\alpha,\beta$ -dichloro-n-butyric acid ("crotonic acid dichloride") (3:1375) by splitting out HCl with excess aq. NaOH (5) (18) or with pyridine at 100° for 3 hrs. (4) or with 1% Am<sub>3</sub>N refluxed at 160-180° for 16 hrs. (85% yield (28)) (note, however, that with NaOH the yield is low and much of the isomeric α-chloroisocrotonic acid (3:1615) is formed); from α-chloro-β-hydroxy-n-butyric acid [Beil., III-309, 310] by elimination of H<sub>2</sub>O with warm 80% H<sub>2</sub>SO<sub>4</sub> see (17).]

[For prepn. of  $\bar{C}$  from  $\alpha,\alpha,\beta$ -trichloro-n-butyraldehyde (butylchloral) (3:5910) by simultaneous oxidn. and elimination of HCl with aq. K<sub>4</sub>Fe(CN)<sub>6</sub> (yield 44.3% (3)) (19) see indic. refs.]

[For form. of  $\bar{C}$  from crotonic acid (1:0425) by actn. of  $Cl_2$  and distillation of product see (20); from  $\alpha$ -chloroisocrotonic acid (3:1615) by htg. in s.t. at 150–160° for 12 hrs. (21), with pyridine HCl in pyridine 7 days at room temp. (4), or to small extent even on steam distn. (22) see indic. refs.; from the methyl, ethyl, or n-propyl esters of  $\alpha$ -chloro- $\alpha$ -vinylacetic acid or from  $\alpha$ -chloro- $\alpha$ -vinylacetonitrile (or amide) on hydrolysis with alkali (note shift of double bond from  $\beta$ , $\gamma$  to  $\alpha$ , $\beta$  position) see (11); from ethyl  $\alpha$ -chlorocrotonate (3:8523) by hydrolysis with conc. HCl see (23).]

Chemical behavior. [C on reduction with Na/Hg is dehalogenated yielding (10) crotonic acid (1:0425), m.p. 72°; note, however, that C does not readily absorb H<sub>2</sub> even in pres. of Pt black (11).]

 $\bar{C}$  with  $Cl_2$  in  $CS_2$  adds 1 mole halogen yielding (24)  $\alpha, \alpha, \beta$ -trichloro-n-butyric acid (3:1280), m.p. 59.5-60°. —  $\bar{C}$  adds  $Br_2$  readily (15) yielding (10)  $\alpha, \beta$ -dibromo- $\alpha$ -chloro-n-butyric acid [Beil. II-286], m.p. 92° (10).

 $\bar{C}$  with fumg. HCl in s.t. at 100° for 5 hrs. adds 1 HCl to double bond yielding (17) (18) the higher-melting  $\alpha,\beta$ -dichloro-n-butyric acid (3:1903), m.p. 78°.

 $\bar{\rm C}$  behaves as a monobasic acid; dissociation const. at 25° is 7.2  $\times$  10<sup>-4</sup> (25); Neut. Eq. 120.5.

[Salts: NH<sub>4</sub> $\bar{A}$ , lfts. or hexag. tbls., sublimable (10); Na $\bar{A}$  (10); K $\bar{A}$ , lfts. from alc. in which it is spar. sol. (1 pt. K $\bar{A}$  in 736.4 pts. 99% alc. at 16.5° (5)) (use in sepn. of  $\bar{C}$  from the isomeric  $\alpha$ -chloroisocrotonic acid (3:1615) (4) (18) (17); Ag $\bar{A}$ , ndls., spar. sol. aq. (10) (17); Ca $\bar{A}_2$ , pr. spar. sol. cold aq. (10) (17); Ba $\bar{A}_2$ , more sol. aq. than Ca $\bar{A}_2$  (10) (17); Cu $\bar{A}_2$ , blue ndls., converted by warm aq. to a basic salt (10); Pb $\bar{A}_2$ -H<sub>2</sub>O (10).]

[ $\bar{C}$  with NaOEt is unchanged even at 215° (20), but  $\bar{C}$  with 10 N KOH at 190–200° decomposes with form. of AcOH (1:1010), oxalic acid (1:0445), CO<sub>2</sub> + H<sub>2</sub> + other prods. (20).]

[For study of rate of reactn. of C with K<sub>3</sub>AsO<sub>3</sub> see (2).]

[ $\tilde{C}$  with  $PCl_5$  on warming gives (10)  $\alpha$ -chlorocrotonoyl chloride, liq. with sharp odor, b.p. 142° (10).]

— Methyl α-chlorocrotonate: b.p. 161-162° (see 3:5870). [For study of rate of esterification of C with MeOH see (26) (27).]

294

- Ethyl  $\alpha$ -chlorocrotonate: b.p. 176° (see 3:8523).
- Φ α-Chlorocrotonamide: lfts., spar. sol. cold aq., eas. sol. alc.; m.p. 113.5° (8), 111.5-112.5° (11), 107° (10). [From α-chlorocrotonyl chloride (above) (10) or ethyl α-chlorocrotonate (11) with conc. aq. NH<sub>4</sub>OH; also by other routes such as from α,α,β-trichloro-n-butyraldehyde (3:5910) with NH<sub>4</sub>OH + KCN (93% yield (8)).]
- ---- α-Chlorocrotonanilide: unreported.
- ----  $\alpha$ -Chlorocroton- $\alpha$ -naphthalide: unreported.

3:2760 (1) Stelling, Z. physik. Chem. B-24, 423 (1934).
 (2) Backer, van Oosten, Rec. trav. chim. 59, 57-58 (1940).
 (3) Roberts, J. Chem. Soc. 1938, 779.
 (4) Pfeiffer, Ber. 43, 3041-3042.
 (5) Wislicenus, Ann. 248, 288, 293, 295 (1888).
 (6) Wislicenus, Ber. 20, 1008-1010 (1887).
 (7) von Auwers, Ber. 56, 724 (1923).
 (8) Chattaway, Irving, J. Chem. Soc. 1929, 1046.
 (9) Kahlbaum, Ber. 12, 2338-2339 (1879).
 (10) Sainow, Ann. 164, 94-105 (1872).

(11) Rambaud, Bull. soc. chim. (5) 1, 1352-1355 (1934). (12) Kendall, J. Am. Chem. Soc. 38, 1232 (1914). (13) Michael, Browne, Am. Chem. J. 9, 284 (1887). (14) Kendall, Carpenter, J. Am. Chem. Soc. 36, 2505 (1914). (15) Kramer, Pinner, Ann. 158, 51 (1871). (16) Pinner, Ber. 8, 1563 (1875). (17) Melikoff, Ann. 234, 200, 203-204 (1886). (18) Michael, Schulthess, J. prakt. Chem. (2) 46, 256, 260-262 (1892). (19) Wallach, Ber. 10, 1530 (1877). (20) Friedrich, Ann. 219, 351-356, 371-373 (1883).

(21) Michael, Pendleton, J. prakt. Chem. (2) 38, 4 (1888). (22) Wislicenus, Ann. 248, 337 (1888). (23) Wallach, Ann. 173, 301 (1874). (24) Valentin, Ber. 28, 2661-2662 (1895). (25) Ostwald, Z. physik. Chem. 3, 244 (1889). (26) Sudborough, Roberts, J. Chem. Soc. 87, 1845-1846 (1905). (27) Michael, Oechslin, Ber. 42, 322 (1909). (28) Long (to Wingfoot Corp.), U.S. 2,376,067, May 15, 1945, C.A. 39, 3550 (1945).

### 3:2800 5-CHLORO-2-HYDROXY- Cl $C_7H_5O_2Cl$ Beil. VIII\_-53 CHO CHO OH

Colorless tbls. from alc.; long flat ndls. from  $C_6H_6$  (1). — Insol. aq.; sol. alc., ether. — Sol. in alk. with yel. color.

[For prepn. of  $\bar{C}$  from salicylaldehyde (1:0205) by chlorination with Cl<sub>2</sub> (10) (11) in AcOH (2), or with SO<sub>2</sub>Cl<sub>2</sub> (1) (8), see indicated refs.; from 5-chloro-2-hydroxybenzyl alcohol by oxidn. with  $K_2Cr_2O_7 + H_2SO_4$  see (6); from 5-chlorosalicylic acid (3:4705) by reduction (poor yield) see (3); from p-chlorophenol (3:0475) via Reimer-Tiemann reactn. (4) or via hexamethylenetetramine (7) see indicated refs.]

C on reduction with Raney Ni (Al/Ni alloy) in 10% aq. alk. at 90° gives (75% yield (16)) o-cresol (1:1400).

Č on oxidn. with CrO<sub>3</sub> gives (in poor yield (1)) 5-chlorosalicylic ac. (3:4705), m.p. 172° (1).

 $\tilde{C}$  yields with satd. aq. NaHSO<sub>3</sub> soln. a cpd.  $\tilde{C}$ .NaHSO<sub>3</sub> (12) (use in purification of  $\tilde{C}$  (4)). —  $\tilde{C}$  with NH<sub>3</sub> gives 5,5',5"-trichloro-hydrosalicylamide, yel. scales from ether, m.p. unrecorded (10). —  $\tilde{C}$  in alk. gives on oxidn. with H<sub>2</sub>O<sub>2</sub> good yield (13) of 4-chloropyrocatechol (3:2470).

Č in AcOH treated with conc. HNO<sub>3</sub> as directed (14) gives 5-chloro-3(?)-nitrosalicylaldehyde, yel. ndls. from et. pet., m.p. 105-107° (14).

Č htd. with chloroacetic ac. (3:1370) and slightly more than 2 moles KOH in s.t. at 160° yields (15) 4-chlorocoumarone (oil, volatile with steam) and 5-chloro-2-formyl-phenoxyacetic ac. (not volatile with steam from alk. soln.), cryst. from aq., m.p. 169-170° (15).

- © 5-Chlorosalicylaldoxime: ndls. from aq., m.p. 128° (15) (7); 123-124° (9); 122°. (11) (6) [use in inorganic analysis (9)].
- 5-Chlorosalicylaldehyde phenylhydrazone [Beil. XV-189]: m.p. 150-152° (15), 148° (11).
- **5-Chlorosalicylaldehyde** *p*-nitrophenylhydrazone: unreported.
- --- 5-Chlorosalicylaldehyde 2,4-dinitrophenylhydrazone: unreported.
- D 5-Chlorosalicylaldehyde semicarbazone: ndls. from AcOII, m.p. 286-287° (11) (4).
- 3:2800 (1) Durrans, J. Chem. Soc. 123, 1426 (1923). (2) Bradley, Dains, Am. Chem. J. 14, 295 (1892). (3) Weil, Traun, Marcel, Ber. 55, 2665 (1922). (4) Sen, Ray, J. Indian Chem. Soc. 9, 176 (1932). (5) Hanus, J. prakt. Chem. 158, 265 (1941). (6) Visser, Arch. Pharm. 235, 547 (1897). (7) Duff, J. Chem. Soc. 1941, 547-550. (8) Peratoner, Gazz. chim ital. 28, I, 235 (1898). (9) Flagg, Furman, Ind. Eng. Chem., Anal. Ed. 12, 529-531 (1940). (10) Piria, Ann. 30, 169 (1839).
- (11) Biltz, Stepf, Ber. 37, 4024 (1904). (12) Bertagnini, Ann. 85, 196 (1853). (13) Dakin, Am. Chem. J. 42, 488 (1909). (14) Lovett, Roberts, J. Chem. Soc. 1928, 1978. (15) Stoermer, Ann. 312, 325-326 (1900). (16) Schwenk, Papa, Whitman, Ginsberg, J. Org. Chem. 9, 1-8 (1944).

3:2825 p-XYLYLENE DICHLORIDE 
$$C_8H_8Cl_2$$
 Beil. V - 384  $(\omega,\omega'\text{-Dichloro-}p\text{-xylene})$   $ClCH_2$ — $CH_2Cl$   $V_1$ -(186)  $V_2$ -(300) M.P. 100° (1) (2) B.P. 240–245° dec. (2) 98–99° (3) 135° at 16 mm. (1) 98–100° (6)

Lfts. or tbls (from alc.). — Volatile with steam.

[For prepn. from p-xylylene glycol by distn. with conc. HCl see (4); for prepn. from benzyl chloride (3:8535) + trioxymethylene + ZnCl<sub>2</sub> see (1) (42% yield (6)); for prepn. of  $\bar{C}$  from p-xylene (1:7415) with SO<sub>2</sub>Cl<sub>2</sub> + Br<sub>2</sub>O<sub>2</sub> refluxed in sunlight 4 hrs. (58% yield) see (6).]

 $\bar{C}$  on htg. with 30 pts. aq. in s.t. at 170–180° yields (1) (4) p-xylylene glycol [Beil. VI-919], ndls., very sol. aq., alc. or ether, mp 112–113°.

C boiled with Pb(NO<sub>3</sub>)<sub>2</sub> soln. yields (5) terephthalaldehyde [Beil. VII-675], fine ndls. from boilg. aq., m.p. 115°.

 $\bar{C}$  htd. with benzyl alc. (1:6480) + KOH gives good yield (1) of p-xylylene glycol dibenzyl ether, cryst. from alc., m.p. 67° (1).

3:2825 (1) Quelet, Bull. soc. chim. (4) 53, 222-229 (1934). (2) Lauth, Grimaux, Bull. soc. chim. (2) 7, 235 (1867); Ann. 145, 117-118 (1868). (3) Wishcenus, Penndorf, Ber. 43, 1838 (1910). (4) Grimaux, Ann. 155, 339-340 (1870). (5) Grimaux, Compt. rend. 83, 825 (1876). (6) Kulka, Can. J. Research 23-B, 106-110 (1945).

95-96°

[See also 2,3-dichlorohydroquinone (3:4220).]

(4)

Yel. ndls. from aq. (2) or alc. (1). — C has characteristic quinone odor.

[For prepn. of  $\tilde{C}$  from 2,3-dichlorohydroquinone (3:4220) by oxidn. with  $MnO_2+$  dil.  $H_2SO_4$  (yields: 88% (1), 60% (3)) (4), or with  $CrO_3/AcOH$  (2) see indic. refs.; for formn. of  $\tilde{C}$  from p-benzoquinone (1:9025) in HCl or  $H_3PO_4$  with  $Cl_2$  see (6).]

[For study of oxidn.-reductn. potential of system  $\bar{C} + 2,3$ -dichlorohydroquinone (3:4220) see (1) (5).]

[C with butadiene-1,3 gives an adduct which upon oxidn. yields (7) 2,3-dichloronaphthoquinone-1,4 (3:4857); similarly C with 2,3-dimethylbutadiene-1,3 gives an adduct which upon oxidn. yields (7) 2,3-dichloro-6,7-dimethylnaphthoquinone-1,4.]

[For use of C as accelerator for vulcanization of rubber see (8).]

[ $\bar{C}$  in alc. with p-nitrosodimethylaniline gives (60% yield (9)) corresp. nitrone; for condens. of  $\bar{C}$  with other nitroso cpds. and use of prods. as dye intermediates see (10).]

[Č in CHCl<sub>3</sub> with Cl<sub>2</sub> is not attacked at low temps., but at ord. temp. yields (4) tetra-chloro-p-benzoquinone (chloranil) (3:4978).]

 $\bar{C}$  on reductn. (presumably with  $SO_2+H_2O$ ) yields 2,3-dichlorohydroquinone (3:4220) q.v.

3:2855 (1) Conant, Fieser, J. Am. Chem. Soc. 45, 2204-2205 (1923). (2) Eckert, Ender, J. prakt. Chem. (2) 104, 82 (1922). (3) Peratoner, Geneo, Gazz. chim. ital. 24, II 375-396 (1894). (4) Oliveri-Tortorici, Gazz. chim. ital. 27, II 584-585 (1897). (5) Kvalnes, J. Am. Chem. Soc. 56, 668-669 (1934). (6) Chelintsev. Compt. rend. acad. sci. (U.S.S.R.) 14, 289-291 (1937); Cent. 1937, II 381; C.A. 31, 7350 (1937). (7) I.G., Brit. 324,661, Feb. 27, 1930; French 677,296, March 6, 1930; French 677,781, March 14, 1930; Cent. 1930, II 810. (8) Fisher (to Naugatuck Chem. Co.), French 740,978, Feb. 3, 1933; Cent. 1933, I 3133. (9) Gündel, Pummerer, Ann. 529, 31 (1937). (10) Gündel (to I.G.), Ger. 563,968, Nov. 11, 1932; Cent. 1933, II 619.

# 3:2885 3,4,5-TRICHLOROPHENOL OH C<sub>6</sub>H<sub>2</sub>OCl<sub>3</sub> Beil. VI — VI<sub>1</sub>— VI<sub>2</sub>-(181)

Ndls. from lgr. — Volatile with steam. — Ionization const. at 25° is  $4.5 \times 10^{-9}$  (4);  $\bar{C}$  is too weakly acidic to be titrated (1) although sol. in alk.

[For prepn. from 3,4,5-trichloroaniline via diazo react. (51% yield) see (1) (2); by cleavage of 3,4,5-trichloroanisole see (3).]

Č treated with large excess Br<sub>2</sub> yields 2,6-dibromo-3,4,5-trichlorophenol, ndls. from AcOH, m.p. 180° (3).

The methyl ether of C, 3,4,5-trichloroanisole, prepared indirectly, has m.p. 63° (3).

3,4,5-Trichlorophenyl benzoate: from Č + BzCl + 20% NaOH; ndls. from alc., m.p. 120° (3).

3:2885 (1) Tiessens, Rec. trav. chim. 50, 113 (1931). (2) Herzberg, Scharfenberg, Ger. 367,362, Jan. 20, 1923; Cent. 1923, II 1254. (3) Kohn, Kramer, Monatsh. 49, 163-165 (1928). (4) Tiessens, Rec. trav. chim. 48, 1066-1068 (1929).

3:2910 4,5-DICHLORO-2-METHYLPHENOL (4,5-Dichloro-o-cresol)

OH C<sub>7</sub>H<sub>6</sub>OCl<sub>2</sub>

Beil. VI —
VI<sub>1</sub>-(174)
VI<sub>2</sub>-(333)

#### M.P. 101° (1)

Ndls. from pet. ether; spar. sol. pet. ether, eas. sol. alc., AcOH, C6H6.

[For prepn. of C from 4-chloro-2-methylphenol (3:0780) with Cl<sub>2</sub> in CHCl<sub>3</sub> see (1).]

 $\tilde{C}$  in 2 pts. ice-cold HNO<sub>3</sub> (D=1.48) stood for 12 hrs. gives (75% yield (1)) a prod. of compn.  $C_7H_6O_8N_3Cl_2$ , white ndls. from dry ether by addn. of pet. ether, m.p. 110° dec. (1).

Č in AcOH on mononitration yields (1) 4,5-dichloro-6-nitro-2-methylphenol [Beil. VI<sub>1</sub>-(179)], yel. ndls. from pet. ether, m.p. 69° (1).

\$\text{\text{\$\text{\$\delta}\$}}\$ 4,5-Dichloro-2-methylphenyl benzoate: ndls. from \$\text{\$\text{\$C\$}\$}\$ from \$\text{\$\text{\$C\$}\$}\$ in alk. soln. on shaking with benzoyl chloride (1).]

3:2910 (1) Zincke, Ann. 417, 207, 231-233 (1918).

3:2935 2,3-DICHLORONAPHTHOL-1 OH  $C_{10}H_6OCl_2$  Beil. VI - 612  $VI_{1} VI_{2}-$ 

#### M.P. 101° (1)

Subl. in ndls.; spar. sol. cold aq., mod. sol. hot aq.; eas. sol. alc., ether, AcOH, CHCl3,  $C_6H_6$ .

[For prepn. from sodium 1-naphtholsulfonate-2 by htg. with PCl<sub>5</sub> at 100-120° see (1).]

C dis. in hot Na<sub>2</sub>CO<sub>3</sub> yielding sol. Na salt.

Č htd. with PCl<sub>5</sub> at 130-140° yields 1,2,3-trichloronaphthalene (3:2125), colorless ndls. from alc., m.p. 90° (1).

 $\bar{C}$  on oxidn. in s.t. at 200° with dil. HNO<sub>3</sub> (D=1.15) yields (1) phthalic ac. (1:0820), converted in m.p. tube to phthalic anhydride (1:0725), m.p. 128° (1).

Č on oxidn. with CrO<sub>3</sub> in AcOH or dil. H<sub>2</sub>SO<sub>4</sub> gives (although in poor yield (1)) 2,3-dichloronaphthoquinone-1,4 (3:4857), gold-yel. ndls. (from alc.), m.p. 190°.

3:2935 (1) Claus, Knyrim, Ber. 18, 2926-2929 (1885).

3:2965 8-CHLORONAPHTHOL-2

Ndls. from lgr.; very eas. sol. alc., ether, AcOH, C<sub>6</sub>H<sub>6</sub>, CHCl<sub>3</sub>; spar. sol. pet. ether. — Volatile with steam. —  $\bar{C}$  depresses m.p. of 6-chloronaphthol-2 (3:3500) to 79-88° (5).

[For prepn. of  $\bar{C}$  from sodium 2-hydroxynaphthalenesulfonate-8 [Beil. XI-286, XI<sub>1</sub>-(67)] with 2 moles PCl<sub>5</sub> at 150–160° see (1) (note that some 1,7-(2,8)dichloronaphthalene (3:1385) is also formed and that its proportion increases with more PCl<sub>5</sub> or at higher temps. (1)); from 8-aminonaphthol-2 [Beil. XIII-685] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. see (2); for formn. of  $\bar{C}$  (20% yield (3)) from  $\beta$ -naphthol (1:1540) by treatment with soln. of Na<sub>2</sub>CO<sub>3</sub> + Cl<sub>2</sub> see (3) (note that 30% of 2,2'-dhydroxybinaphthyl-1,1' [Beil. VI-1051, VI<sub>1</sub>-(519)] together with a tar is also formed (3)).]

- [C (2 pts.) with benzaldehyde (1 pt.) with 7 pts. HBr/AcOH soln. stood for 24 hrs. gives (75% yield (2)) meso-phenyl-dichlorodibenzoxanthane, colorless ndls. from acetone, m.p. 213-214.5° (2).]
- [ $\bar{C}$  (as sodium salt) treated with  $CO_2$  under press. at elevated temp. as directed gives (4) 8-chloro-2-hydroxynaphthoic acid-3, pale yel. ndls. from hot  $C_6H_6$ , m.p. 250° (4).]
  - 8-Chloro-2-naphthyl m-nitrobenzoate: citron-yel. ndls. from hot C<sub>6</sub>H<sub>6</sub> on addn. of
     4 vols. hot alc., m.p. 176° ⟨5⟩. [From C̄ in warm dil. aq. NaOH on shaking with
     m-nitrobenzoyl chloride ⟨5⟩.]

3:2965 (1) Claus, Volz, Ber. 18, 3157-3158 (1885). (2) Dilthey, Quint, Heinen, J. prakt. Chem. (2) 152, 73-75 (1939). (3) Tishchenko, J. Russ. Phys.-Chem. Soc. 60, 153-162 (1928); Cent. 1928, II 767; C.A. 22, 3397 (1928). (4) Lange, Luce, Jacobs (to I.G.), Ger. 564,128; Nov. 14, 1932; Cent. 1933, II 446. (5) Ruggli, Knupp, Metz, Zimmerman, Helv. Chem. Acta 12, 1050 (1929).

3:2990 p-CHLOROPHENACYL CHLORIDE 
$$C_8H_6OCl_2$$
 Beil. VII - 282 (Chloromethyl p-chlorophenyl ketone) Cl. CO.CH<sub>2</sub>Cl VII<sub>1</sub>-(152)

Ndls. (from alc.).

[For prepn. from p-chloroacetophenone (3:6735) by chlorination in  $CS_2$  see (1); from chloroacetyl chloride (3:5235) + chlorobenzene (3:7903) +  $CS_2$  + AlCl<sub>3</sub> see (2).]

C on oxidn. with alk. KMnO<sub>4</sub> yields p-chlorobenzoic ac. (3:4940).

C on treatment with Br<sub>2</sub> gives (3) ω-bromo-p-ω-dichloroacetophenone, cryst. from alc., m.p. 83-83.5° (3). — C with KCN yields (4) p-chlorobenzoylacetonitrile, m.p. 129.5-130° (4). — C with KSCN yields (4) p-chlorophenacyl thiocyanate, m.p. 138.6-139.2° (4). — C with Na<sub>2</sub>S at 60° gives (5) bis-(p-chlorophenacyl) sulfide, m.p. 121-121.6° (5).

 $\bar{C}$  in MeOH treated with NH<sub>2</sub>OH.HCl yields (6) corresponding oxime, chloromethyl p-chlorophenyl ketoxime, m.p. 100.5-101° (6). [Note that although this deriv. has m.p. too similar to that of original  $\bar{C}$  to be used as identification itself, upon htg. at 100° with conc. H<sub>2</sub>SO<sub>4</sub> and pouring into aq. it is converted by Beckmann rearr. to chloroaceto-p-chloroanilide [Beil. XII-612], m.p. 168° (6), ndls. from alc., m.p. 169° (7).]

- C (1 mole) in alc. gradually added to phenylhydrazine (2 moles) in alc. with cooling ppts. (8) 1-phenyl-3-chlorophenyl-Δ²-diazene-1,2, yel. ndls. from alc., m.p. 164-164.5° (8).
- 3:2990 (1) Gautier, Ann. chim. (6) 14, 395-396 (1888). (2) Collet, Compt. rend. 125, 718 (1897).
   (3) Rabcewicz-Zubkowski, Roczniki Chem. 9, 532-537 (1929); C.A. 24, 92 (1930). (4) Rabcewicz-Zubkowski, Kaflinska, Roczniki Chem. 10, 541-569 (1930); C.A. 25, 505 (1931). (5) Chrzaszczewska, Chwalinski, Roczniki Chem. 7, 67-73 (1927), Cent. 1927, II 415; C.A. 22, 1339 (1928). (6) Collet, Bull. soc. chim. (3) 27, 540 (1902). (7) Beckurts, Frerichs, Arch. Pharm. 253, 241 (1915). (8) Bodforss, Ber. 52, 1762, 1772-1773 (1919).

#### CHAPTER VIII

#### DIVISION A. SOLIDS

(3:3000-3:3499)

3:3005 5,6-DICHLORO-3,4-DIMETHYLPHENOL

(5,6-Dichloro-o-4-xylenol)

CI CH<sub>3</sub>

C<sub>8</sub>H<sub>8</sub>OCl<sub>2</sub> Beil. S.N. **529** 

M.P. 102.5° (1) 102° (2)

Cryst. from lt. pet. - Very sol. most organic solvents. - Volatile with steam.

[For prepn. of  $\bar{C}$  from 5,6-dichloro-3,4-dimethylaniline (5,6-dichloro-o-4-xylidine) (3) via diazotization and hydrolysis (yield not stated) see (1); for formn. of  $\bar{C}$  from 4,5,6-trichloro-1,1-dimethylcyclohexen-4-one-3 with conc.  $H_2SO_4$  at  $110-120^\circ$  (yield not stated) see (2).]

 $\bar{C}$  with  $Cl_2$  in lt. pet. readily gives (2) 2,5,6-trichloro-3,4-dimethylphenol (3:4747), m.p. 182°.

The nitration of C has not been reported, and the expected 2-nitro-5,6-dichloro-3,4-dimethylphenol is unknown.

- —— 5,6-Dichloro-3,4-dimethylphenyl acetate: unreported.
- **D** 5.6-Dichloro-3.4-dimethylphenyl benzoate: m.p. 97.5° (1), 94° (2).

3:3005 (1) Hinkel, Ayling, Bevan, J. Chem. Soc. 1928, 2532-2533. (2) Hinkel, J. Chem. Soc. 125, 1851 (1924). (3) Hinkel, Ayling, Bevan, J. Chem. Soc. 1928, 1877.

3:3015 1,3,5-TRICHLORONAPHTHALENE

Cl C<sub>10</sub>H<sub>s</sub>Cl<sub>3</sub> Beil. V - 545 V<sub>1</sub>-(263) V<sub>2</sub>-(446)

M.P. 103° (1) (2) (4) 102-103° (3) 94° (8)

[For prepn. of  $\tilde{C}$  from 1,3-dichloronaphthalenesulfonyl chloride-5 [Beil. XI-163] (4) (5), from 1,5-dichloronaphthalenesulfonyl chloride-3 [Beil. XI-182] (1), from 1-chloron-5-nitronaphthalenesulfonyl chloride-3 [Beil. XI-182] (6), or from 1-chloronaphthalene-3,5-bis-(sulfonyl chloride) [Beil. XI-215] (7), each with PCl<sub>5</sub> as directed, see indic. refs.; from 1,7-dichloronaphthylamine-3 (8) via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. see (8); for formn. of  $\tilde{C}$  (together with other products) from 1-nitronaphthalene [Beil. V-553, V<sub>1</sub>-(264)] with Cl<sub>2</sub>(2) in pres. of I<sub>2</sub> + FeCl<sub>3</sub> (3) see indic. refs.]

[Č treated with ClSO<sub>2</sub>H in CS<sub>2</sub> and reactn. prod. conv. to K salt as directed (1) yields potassium 1,3,5-trichloronaphthalenesulfonate-7 (corresp. sulfonyl chloride, m.p. 152° (1)).]

3:3015 (1) Turner, Wynne, J. Chem. Soc. 1941, 247, 253. (2) Atterberg, Ber. 9, 317 (1878). (3) Buffle, Corbas, Arch. sci. phys. nat. 14, 149-158 (1932); Cent. 1932, II 3394. (4) Widman, Ber. 12, 2230 (1879). (5) Armstrong, Wynne, Chem. News 61, 274 (1890). (6) Cleve, Chem. Ztg. 17, 758 (1893). (7) Armstrong, Wynne, Chem. News 62, 162 (1890). (8) Friedländer, Karamessinis, Schenk, Ber. 55, 48-49 (1922).

#### 3:3045 4-CHLORONAPHTHOL-2

C<sub>10</sub>H<sub>7</sub>OCl Beil. S.N. 538

Ndls. from lgr. or 30% aq. alc.

[For prepn. of C from 1,4-dichloronaphthol-2 (3:3840) by partial reduction with SnCl<sub>2</sub> in AcOH/HCl at 100° in s.t. for 8 hrs. (74% yield (2)) (1) see indic. refs.; from 4-chloronaphthol-2-sulfonic acid-1 (2) (see also under 3:3840) by hydrolysis of the sulfonic acid group (91% yield) see (2); from 4-chloronaphthalene-1,2-diazo-oxide (itself obtd. in 95% yield (3) from 4-chloro-2-nitronaphthylamine-1 with HNO<sub>2</sub>) on boilg. with Al powder in EtOH for 19 hrs. (84% yield (4)) or (less advantageously) with Na<sub>2</sub>SnO<sub>2</sub> (4) see indic. refs.] NaĀ is spar. sol. in cold aq. 10% NaOH (4).

[C with alc. NaOH + CHCl<sub>3</sub> (3:5050) undergoes Reimer-Tiemann reaction giving (but in very small yield (2)) 4-chloro-2-hydroxynaphthaldehyde-1, m.p. 118° (2).]

 $\bar{C}$  (in alk. soln.) with diazotized aniline gives (4) 4-chloro-1-benzeneazonaphthol-2, or -red ndls. from acetone, or crimson ndls. from chlorobenzene, m.p. 165° (4) (note that after fusion and resolidification this prod. has m.p. 151° but after a second resolidification (at about 155°) remelts on slow htg. at 165° (4)). [For use of  $\bar{C}$  in prepn. of azo dyes by coupling with o-hydroxydiazonium salts see (5).]

- 4-Chloro-2-naphthyl methyl ether: pl. from lt. petroleum, m.p.  $44-45^{\circ}$  (4). [From  $\bar{C}$  with Me<sub>2</sub>SO<sub>4</sub> + aq. NaOH (4).]
- 4-Chloro-2-naphthyl acetate: pl. from aq. MeOH or lt. petroleum, m.p. 58-59° (2),
   56° (4). [From C with excess Ac<sub>2</sub>O refluxed 30 min. (90-100% yield (2)).]
- (2).

3:3045 (1) Fries, Schimmelschmidt, Ann. 484, 293 (1930). (2) Burton, J. Chem. Soc. 1945, 280-283. (3) Hodgson, Birtwell, J. Chem. Soc. 1943, 322. (4) Hodgson, Birtwell, J. Chem. Soc. 1943, 468-469. (5) Herzberg, Wunderlich (to I.G.), Ger. 459,889, May 18, 1928; Cent. 1928, II 395; not in C.A.

3:3070 3,4-DICHLOROBENZOPHENONE (3,4-Dichlorophenyl phenyl ketone) C

C<sub>13</sub>H<sub>8</sub>OCl<sub>2</sub> Beil. S.N. 652

M.P. 104-105° (1) 102-103° (2) (3)

Cryst. (from alc. (1)).

[For prepn. (79.5% yield) from o-dichlorobenzene (3:6055) + BzOH (1:0715) + AlCl<sub>3</sub> see (1); for prepn. from o-dichlorobenzene (3:6055) + BzCl (3:6240) + AlCl<sub>3</sub> see (2) (3).]

**3,4-Dichlorobenzophenone oxime:** m.p. 153-154° (1). [This oxime upon Beckmann rearr. with H<sub>2</sub>SO<sub>4</sub> gives (1) 3,4-dichlorobenzanilide which can be hydrolyzed to 3,4dichlorobenzoic ac. (3:4925), m.p. 207-208° (1), and aniline.]

3:3070 (1) Newton, Groggins, Ind. Eng. Chem. 27, 1398 (1935). (2) Böeseken, Rec. 27, 15 (1908). (3) Kraay, Rec. trav. chim. 49, 1085 (1930).

#### 3:3100 4-CHLORORESORCINOL



302

The nature of the cpd., m.p. 89°, and formerly (3) thought to be C, is still in doubt, cf. (1).  $\bar{C}$  is very sol. in aq. and not volatile with steam (1); eas. sol. aq., alc., ether,  $C_6H_6$ , and CS<sub>2</sub> (4).

[For prepn. of C from resorcinol (1:1530) by actn. of SO<sub>2</sub>Cl<sub>2</sub> in ether (95% yield (1)) see (1) (4).1

- C with FeCl<sub>3</sub> gives a blue-violet soln. becoming brown on warming (4).
- C reduces NH<sub>4</sub>OH/AgNO<sub>3</sub> on warming (4).
- C on further chlorination with SO<sub>2</sub>Cl<sub>2</sub> (no details) gives (96% yield (1)) of 4,6-dichlororesorcinol (3:3380).
- $\tilde{C}$  (10 g.) refluxed with KHCO<sub>3</sub> (40 g.) in aq. (50 ml.) for  $1\frac{1}{2}$  hrs. gives (76% yield (5)) of 5-chloro-2,4-dihydroxybenzoic acid (6), cryst. from hot aq., m.p. 224-225° cor. (6), 215-216° (Maguenne bloc) after drying at 100-105° (5) (6).

Č in AcOH treated with xanthydrol (1:5205) yields 4-chloro-2-(?)-xanthydrylresorcinol, cryst. from C<sub>6</sub>H<sub>6</sub>, m.p. 215° (7).

[For studies on prepn. of alkyl ethers of 4-chlororesorcinol for use as antiseptics and germicides see (8); for use of  $\bar{C}$  in prepn. of purpurin (1,2,4-trihydroxyanthraquinone) by reaction with phthalic anhydride, H<sub>2</sub>SO<sub>4</sub> + H<sub>3</sub>BO<sub>3</sub>, see (9).]

[For coupling of C with diazotized aniline, p-nitroaniline, or p-toluidine see (11).]

- **4-Chlororesorcinol diacetate:** m.p. 46-47° (10).
- **D** 4-Chlororesorcinol dibenzoate: m.p. 66° (10).

3:3100 (1) Moore, Day, Suter, J. Am. Chem. Soc. 56, 2456-2458 (1934). (2) Likhosherstov, J. Gen. Chem. (U.S.S.R.) 3, 164-171 (1933); Cent. 1934, I 1476; C.A. 28, 1675 (1934). (3) Clark, (3) Clark, 1876, 1676, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1876, 1 Chem. (U.S.S.R.) 14, 203-210 (1944); C.A. 39, 2285 (1945).

(11) Petyunin, J. Gen. Chem. (U.S.S.R.) 14, 303-311 (1944); C.A. 39, 4060 (1945).

3:3130 2-CHLOROHYDROQUINONE OH 
$$C_6H_5O_2Cl$$
 Beil. VI - 849 VI<sub>1</sub>-(417) VI<sub>2</sub>-(844)

[See also 2-chlorobenzoquinone-1,4 (3:1100).]

Colorless lfts. from CHCl<sub>3</sub> in which  $\tilde{C}$  is eas. sol. hot but spar. sol. cold. — Very eas. sol. aq., alc., or ether; sol. in warm  $C_6H_6$  (dif from hydroquinone (1:1590) and use in sepn. from latter (1)). — Not sublimable (5).

[For prepn. of  $\tilde{C}$  from 2-chlorobenzoquinone-1,4 (3:1100) by reductn. with aq.  $SO_2$  (2) (9) see indic. refs. (note, however, that in dil. aq. NaOH under  $N_2$  both reductn. and sulfonation occur (10)); from benzoquinone-1,4 (1:9025) with conc. HCl (11) (2) or in CHCl<sub>3</sub> with HCl gas (100% yield (12)) (2); from sodium benzoquinonesulfonate (5) with conc. HCl below 20° (55% yield (5)) in CO<sub>2</sub> see indic. refs.; from p-benzoquinone dichloride (2,3-dichlorocyclohexen-5-dione-1,4) [Beil. VII-573] by reductn. with  $SnCl_2 + HCl$  at 0° see (4); from hydroquinone (1:1590) in CCl<sub>4</sub> with Cl<sub>2</sub> see (13).]

 $[\bar{C}]$  is used as a photographic developer under name "Adurol" (for identification of  $\bar{C}$  in developers see (1));  $\bar{C}$  forms an addn. cpd. (14) with 2 moles p-(methylamino)phenol also used as developer under name Chloranol; for use of  $\bar{C}$  as vulcanization accelerator see (15); for use of  $\bar{C}$  as antioxidant (16) and as gum inhibitor in cracked gasoline (17) or in aq. emulsion as insecticidal spray (18) see indic. refs.; for study of bactericidal actn. see (19).]

 $\bar{C}$  on oxidn. with NaClO<sub>3</sub> + H<sub>2</sub>SO<sub>4</sub> + V<sub>2</sub>O<sub>5</sub> in AcOH (92% yield (20)), with K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> + H<sub>2</sub>SO<sub>4</sub> (yield: 89% (21), 84% (8)) (2), with MnO<sub>2</sub> + dil. H<sub>2</sub>SO<sub>4</sub> (56% yield (8)), or with PbO<sub>2</sub> in C<sub>6</sub>H<sub>6</sub> (22) gives 2-chlorobenzoquinone-1,4 (3:1100). [For studies of oxidn-reductn. potential of this system and also for the intermediate quinhydrone see under the quinone (3:1100).]

[For reactn. of  $\tilde{C}$  with phthalic anhydride + conc.  $H_2SO_4$  at  $130-135^\circ$  see (2); for reactn. of  $\tilde{C}$  with naphthalene-1,2-dicarboxylic acid anhydride (23) or with naphthalene-2,3-dicarboxylic acid anhydride (24) each fused with  $AlCl_3$  + NaCl see indic. refs.]

 $\tilde{C}$  in AcOH with xanthydrol (1:5205) yields (25) 2-chloro-3-xanthydrylhydroquinone, cryst. from  $C_6H_6$ , m.p. 236-237° (25).

 $\bar{C}$  gives no effervescence with aq. 10% Na<sub>2</sub>CO<sub>3</sub> but soln. darkens on stdg. (1);  $\bar{C}$  with aq. 5% AgNO<sub>3</sub> scarcely reduces in cold but does so rapidly on warming (1);  $\bar{C}$  with 10% aq. FeCl<sub>3</sub> gives red-brown color in cold and on boilg, pronounced quinone-like odor (1).

- ② 2-Chlorohydroquinone diacetate: pr. from dil. alc., m.p. 99° (1) (26), 72° (2), 71-72° (27), 70.5° cor. (3). [From C with Ac<sub>2</sub>O (2) or AcCl (26).] [Note that a monoacetate, m.p. 62° (28) has been reported, but the reason for the wide divergence in the m.p.'s reported for the diacetate has not been explained.]
- ② 2-Chlorohydroquinone dibenzoate: fine woolly ndls. from mixt. of alc. + ether, m.p. 130° (2). [From C on refluxing with BzCl (2).]

3:3130 (1) Clarke, J. Ind. Eng. Chem. 10, 891-895 (1918). (2) Levy, Schultz, Ann. 210, 137-144 (1881). (3) van Erp, Ber. 58, 663-665 (1925). (4) Dimroth, Eber, Wehr, Ann. 446, 144 (1926). (5) Seyewetz, Compt. rend. 156, 902 (1913); Seyewetz, Paris, Bull. soc. chim. (4) 13, 490 (1913). (6) Schulz, Ber. 15, 654 (1882). (7) La Mer, Baker, J. Am. Chem. Soc. 44, 1956, 1960 (1922). (8) Conant, Fieser, J. Am. Chem. Soc. 45, 2201-2202 (1923). (9) Städeler, Ann. 69, 302-309 (1849). (10) Dodgson, J. Chem. Soc. 1939, 2498-2502.

304

(11) Wöhler, Ann. 51, 155 (1844). (12) Clark, Am. Chem. J. 14, 571 (1892). (13) von Bramer, Zabriskie (to Eastman Kodak Co.), U.S. 1,912,744, June 6, 1933; Cent. 1933, II 2090. (14) Union Phot. Ind. Étab. Lumière & Jougla Réunis, Ger. 345,471, Dec. 12, 1921; Cent. 1922, II 604. (15) Fisher (to Naugatuck Chem. Co.), French 740,978, Feb. 3, 1933; Cent. 1933, I 3134. (16) Christmann (to American Cyanamide Co.), U.S. 1,806,671, May 26, 1931; Cent. 1931, I 1207. (17) Clarke, Towne (to Texas Co.), U.S. 2,023,871, Dec. 10, 1935; Cent. 1936, I 2671; C.A. 30, 851 (1936). (18) Yates (to Shell Development Co.), U.S. 1,778,240, Oct. 14, 1930; Cent. 1931, I 2799; C.A. 24, 5928 (1930). (19) Cooper, Woodhouse, Biochem. J. 17, 600–612 (1923). (20) Underwood, Walsh, J. Am. Chem. Soc. 58, 646–647 (1936).

(21) Den Hollander, Rec. trav. chim. 39, 483-484 (1920). (22) Hunter, Northley, J. Phys. Chem. 37, 885-886 (1933). (23) Waldmann, J. prakt. Chem. (2) 131, 77 (1931). (24) Waldmann, Ber. 64, 1721 (1931). (25) Fabre, Ann. chim. (9) 18, 111-112 (1922). (26) Scheid, Ann. 218, 216-217 (1883). (27) Thiele, Winter, Ann. 311, 344 (1900). (28) Clermont, Chautard,

Compt. rend. 102, 1072 (1886).



Colorless ndls. from aq.; eas. sol. aq., alc., ether,  $C_6H_6$ . — Odor faintly like that of phenylacetic acid. — [For study of ioniz. const. of  $\bar{C}$  see (6); for fate in animal body see (13).]

[For prepn. of  $\bar{\mathbf{C}}$  from p-chlorobenzyl bromide (?) [Beil. V-307] by conversion to p-Cl.C<sub>6</sub>H<sub>4</sub>.CH<sub>2</sub>MgX and subsequent carbonation with CO<sub>2</sub> at 0° (74% yield) see (9); from p-chlorophenylacetonitrile (p-chlorobenzyl cyanide) [Beil. IX-448] by hydrolysis (80% yield (3)) with boilg. aq. KOH (6) (10) or with boilg. dil. H<sub>2</sub>SO<sub>4</sub> (8) see indic. refs.; from p-aminophenylacetic acid [Beil. XIV-456, XIV<sub>1</sub>-(589)] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. see (5) (2) (11); from 2-phenyl-4-(4-chloro-benzal)oxazolone-5 (the azlactone from p-chlorobenzaldehyde + N-benzoylglycine + Ac<sub>2</sub>O) (7) [Beil. XXVII<sub>1</sub>-(299)] on boilg. with aq. NaOH and afterwards treated with H<sub>2</sub>O<sub>2</sub> see (7); from 3-chloro-1,5-bis-(p-chlorophenyl)pentadiene-1,3 (3) in acetone soln. by oxidn. with KMnO<sub>4</sub> see (3); for formn. from phenylacetic acid (1:0665) with Cl<sub>2</sub> in sunlight see (12); from ethyl p-chlorophenylacetate (see below) by alk. hydrolysis see (19).]

[For reactions of closely related p-Cl.C<sub>6</sub>H<sub>4</sub>.CH<sub>2</sub>.COOMgCl with large excess of isopropyl MgCl or o-tolyl MgBr yielding p-chlorophenylmalonic acid (14), cryst. from alc., m.p. 163° (14), see (14); for quite dif. behavior with other RMgX cpds. see (22).]

[ $\tilde{C}$  with benzaldehyde htd. in s.t. for 20 hrs. at 300° not only condenses but also loses CO<sub>2</sub> yielding (6) 4-chlorostilbene (1-(p-chlorophenyl)-2-phenylethylene) [Beil. V-633], white lfts. from AcOH, m.p. 129° (6) (for corresp. reactns. of  $\tilde{C}$  with p-methoxybenzaldehyde (1:0240), or with salicylaldehyde (1:0205), see (6));  $\tilde{C}$  (as K salt) with o-nitrobenzaldehyde + Ac<sub>2</sub>O htd. 24 hrs. at 100° undergoes Perkin condens. yielding (45–50% yield (15))  $\alpha$ -(4-chlorophenyl)-o-nitrocinnamic acid, colorless cryst. from AcOH, m.p. 186–186.5° u.c. (190.2–190.7° cor.) (15).]

- [C on dinitration with HNO<sub>3</sub> + fumg. H<sub>2</sub>SO<sub>4</sub> yields (19) 4-chloro-2,6-dinitrophenylacetic acid, pale yel. ndls. from boilg. aq., m.p. 167° (19).]
- [Č with PCl<sub>5</sub> in CHCl<sub>5</sub> yields (2) (13) p-chlorophenylacetyl chloride, yellowish oil, b.p. 120° at 14 mm. (2); this prod. with aminoacetic acid (glycine) in dil. aq. alk. gives (65-75% yield (13)) (2) p-chlorophenylaminoacetic acid (p-chlorophenylaceturic acid), lfts. from aq., m.p. 165° u.c. (2), 164-165° (13).]
- [Č conv. to Pb salt, latter dried at 110°, and distilled yields (16) 4,4′-dichlorodibenzyl ketone, ndls. from alc., m.p. 93° (oxime, m.p. 135–136°, semicarbazone, m.p. 118° (16)).]—
  [For CaĀ<sub>2</sub>.H<sub>2</sub>O and AgĀ see (10).]
  - Methyl p-chlorophenylacetate: oil, b.p. 114-115° at 6 mm. (17). [From C in MeOH satd. with dry HCl gas (6).] [For study of rate of reactn. with NH<sub>3</sub> in MeOH at 25° see (17).]
  - Ethyl p-chlorophenylacetate: m.p. 34° (18), 32° (1) (6), b.p. 253-254° at 749 mm. (1), 260° (6). [From  $\bar{C}$  in EtOH with dry HCl gas (6).] [This ester melted and treated with sodium evolves H<sub>2</sub> and yields a pale red sodium cpd. (19); the ester with Na sand in dry ether refluxed 8 hrs., then treated with BzCl, gives (poor yield (19)) ethyl α-(4-chlorophenyl)benzoylacetate, ndls., m.p. 97-98° (19); the ester does not (19) condense with itself in pres. of NaOEt but upon treatment with isopropyl MgX gives (93% yield (9)) the desired condens. prod., viz., ethyl α,γ-(p-chlorophenyl)-acetoacetate, white cryst. from alc., m.p. 119-120° (9); for reactn. of ethyl p-chlorophenylacetate with diethyl ethoxymethylenemalonate [Beil. III-469, III<sub>1</sub>-(162), III<sub>2</sub>-(300)] yielding ethyl 7-chloronaphthol-1-dicarboxylate-2,4 (20) and α-(p-chlorophenyl)glutaconic acid (20) see (20).] [For study of rate of hydrolysis of ethyl p-chlorophenylacetate see (18).]
  - p-Chlorophenylacetamide: tbls. from alc., m.p. 175° (10). [Obtd. indirectly from p-chlorophenylacetonitrile by partial hydrolysis (10).]
  - ① (p-Chlorophenylacet)anilide: lfts. from abs. alc., m.p. 164.5° (19). [From  $\bar{C} + 1\frac{1}{2}$  moles aniline at 180–190° for  $\frac{1}{2}$  hr. (19).]
  - $\bigcirc$  (4-Chlorophenylacet)-*m*-chloroanilide: colorless ndls. from dil. alc., m.p. 137.5° cor. (21). [From  $\bar{C}$  + *m*-chloroaniline (1 mole) on htg. at 180-190° for 1 hr. (21); also from *p*-chlorobenzyl *m*-chlorophenyl ketoxime by Beckmann rearr. with PCl<sub>5</sub> in ether (21).]
  - (4-Chlorophenylacet)-p-toluidide: white ndls. from  $C_6H_6$ , m.p. 189.5° (18). [From  $\tilde{C} + p$ -toluidine htd. as for the anilide (above) (19).]
  - (4-Chlorophenylacet)hydrazide: ndls. from alc., m.p. 170° (1). [From ethyl p-chlorophenylacetate (above) with hydrazine hydrate in boilg. alc. (1); for its further condens. prods. with acetone, benzaldehyde, salicylaldehyde see (1); note also that with I<sub>2</sub> in hot alc. the (mono)hydrazine gives (1) N,N'-bis-(p-chlorophenylacetyl)-hydrazine, ndls. from alc., m.p. 255° (1).]
  - (4-Chlorophenylacet)phenylhydrazide: white ndls. from  $C_0H_0$ , m.p. 166° (19). [From  $\bar{C}$  with excess phenylhydrazine on htg. as above (19).]

3:3135 (1) Curtius, J. prakt. Chem. (2) 89, 527-530 (1914). (2) Friedmann, Maase, Biochem. Z.
 27, 107 (1910). (3) Straus, Ann. 393, 316-317 (1912). (4) Schotten, Z. physiol. Chem. 7, 27, Note (1882). (5) Dippy, Williams, J. Chem. Soc. 1934, 161-166. (6) van Walther, Wetzliich, J. prakt. Chem. (2) 61, 195-198 (1900). (7) Mauthner, J. prakt. Chem. (2) 95, 60 (1917). (8) Jackson, Field, Am. Chem. J. 2, 89-91 (1880/81). (9) Ivanov, Spassov, Bull. soc. chim. (4) 49, 376-377 (1931). (10) Beilstein, Kuhlberg, Neuhoff, Ann. 147, 347-350 (1868).

(11) Petrenko-Kritschenko, Ber. 25, 2240 (1892). (12) Radziszewski, Ber. 2, 208 (1869). (13) Cerecedo, Sherwin, J. Biol. Chem. 62, 218-221 (1924/25). (14) Ivanov, Spassov, Bull. soc. chim. (4) 49, 22 (1931). (15) Nylén, Ber. 53, 158-159 (1920). (16) Kenner, Morton, J.

Chem. Soc. 1934, 680. (17) Betts, Hammett, J. Am. Chem. Soc. 59, 1568-1572 (1937). (18) Kindler, Ann. 452, 108 (1927). (19) Mehner, J. prakt. Chem. (2) 62, 560-565 (1900). (20) Menon, J. Chem. Soc. 1936, 1775-1777.

(21) Jenkins, J. Am. Chem. Soc. 55, 2898 (1933). (22) Ivanov, Bull. soc. chim. (5) 4, 686 (1937).

#### 3:3140 2,3,4,5-TETRACHLORO-BENZALDEHYDE

C7H2OCl4 Beil. S.N. 635

#### M.P. 106-106.5° (1)

[For prepn. of  $\bar{C}$  from 2,3,4,5-tetrachlorobenzal (di)chloride (3:9397) by hydrolysis (presumably with strong  $H_2SO_4$ ) see (1).]

Č with NaHSO<sub>3</sub> forms the corresp. addn cpd. which may be used as means of sepn. of Č from 2,3,5,6-tetrachlorobenzaldehyde (3:2700).

[For use of C in prepn. of dyestuffs see (1).]

**3:3140** (1) Chem. Fabrik Griesheim-Elektron, Brit. 251,511, May 27, 1926; Cent. 1926, II 2355; [C.A. 21, 1361 (1927)]: French 603,650, April 20, 1926, Cent. 1926, II 2355; not in C.A.

#### 3:3145 6-CHLORONAPHTHO-QUINONE-1,4



Beil. S.N. 674

#### M.P. 106-107° (1)

[For prepn. of  $\bar{C}$  from benzoquinone-1,4 (1:9025) by addition of 2-chlorobutadiene-1,3 ("Chloroprene") (3:7080) and subsequent oxidation of the resulting Diels-Alder type adduct see (2); for formn. of  $\bar{C}$  by oxidation of various dichloronaphthalenes see (1).

**3:3145** (1) Kozlov, Talybov, J. Gen. Chem. **9,** 1827–1836 (1939); C.A. **34,** 4067 (1940). (2) Carothers, Collins (to du Pont Co.), U.S. 1,967,862, July 24, 1934; Cent. **1936**, I 2209; C.A. **28,** 5994–5995 (1934).

#### 3:3155 1,1,2,3,4,4-HEXACHLORO-BUTANE

#### M.P. 107° (1) (2)

[For isolation of  $\bar{C}$  from the high-boilg, fraction resulting in the preparation of trichloroethylene (3:5170) from 1,1,2,2-tetrachloroethane (acetylene tetrachloride) (3:5750) see (1) (2); long refluxing (20 days) of freshly distilled samples of the latter compound also yields (1)  $\bar{C}$ .]

C on boilg. with alc. Ca(OH)<sub>2</sub> or with alk. at room temp. loses 2 HCl yielding (1) the liquid stereoisomer (3:6150) of 1,2,3,4-tetrachlorobutadiene-1,3. [The solid stereoisomer (3:0870) was not obtained from C (1).]

3:3155 (1) Müller, Hüther, Ber. 64, 589-600 (1931); C.A. 25, 3956-3957 (1931). (2) Ghighi, Ann. chim. applicata 28, 363-368 (1938); Cent. 1939, I 86; C.A. 33, 6792 (1939).

(" Hexachlorophenol ")

Cryst. from CHCl3 or CS2; white ndls. from pet. eth. (1). — Insol. aq., spar. sol. cold alc., mod. sol. C<sub>6</sub>H<sub>6</sub>, very eas. sol. CHCl<sub>3</sub> or pet. eth. (4).

[For prepn. by various methods see Beil. VII-144 + Beil. VII<sub>1</sub>-(96); for comml. prepn. by chlorination of phenol sec (2).]

Č with aq. KI (1), or Zn dust in boil. alc. (4), or SnCl<sub>2</sub> + HCl in AcOH (100% yield) (5) (6) or even with conc. aq. or alc. KOH (4), yields pentachlorophenol (3:4850).

C (4 g.) grad. added to conc. HNO<sub>3</sub> (20 g.) with warming, and the resultant soln. poured into aq., ppt. recrystd. from nitrobenzene, yields (5) tetrachlorobenzoquinone (chloranil) (3:4978), m.p. 292° (5).

C melted with conc. H<sub>2</sub>SO<sub>4</sub>, then htd. cautiously with shaking until reaction suddenly begins, evolves HCl, and on cooling chloranil (see above) separates (5).

3:3180 (1) Buchan, McCombie, J. Chem. Soc. 1931, 144. (2) Britton, Martin, Alquist, Heindel (to Dow Chem. Co.), US. 1,969,686, Aug. 7, 1934, Cent. 1935, I 3046. (3) Langer, Ann. 215, 121 (1882). (4) Hugounenq, Ann. chim. (6) 20, 560-562 (1890). (5) Biltz, Ber. 37, 4009 (1904). (6) Biltz, Giese, Ber. 37, 4018 (1904). (7) Ter Horst (to U.S. Rubber Co.), U.S. 2,378,597, June 19, 1945; C.A. 39, 4188 (1945).

#### 3:3200 1,5-DICHLORONAPHTHALENE



M.P. 107° (1) (6) (7) (9) (10) 106.5-107° (2) 106.5° (3) (24)106-107° **(4)** 105-107° (5)

Lfts. from alc. or AcOH. — Sublimes in very broad thin pr. — [For use as wood impregnant see (22).]

[For prepn. of C from 1,5-dinitronaphthalene [Beil. V-558, V<sub>1</sub>-(264)] (6) (2), from naphthalene-1,5-bis-(sulfonyl chloride) [Beil. XI-213] (36% yield (4)) (7) (8), from 1-chloronaphthalene-5-sulfonyl chloride [Beil. XI-161] (9) (5), from 5-chloronaphthol-1 [Beil. VI-612| (10) by htg. with PCl<sub>5</sub> see indic. refs.; from 5-sulfonaphthylamine-1 [Beil. XIV-744. XIV<sub>1</sub>-(733)] by htg. corresp. diazonium salt with 2 moles PCl<sub>5</sub> see (1) (11); from 1,5dichloro-7-aminonaphthalene by replacement of -NH<sub>2</sub> by -H see (12); from 1,5-dichloronaphthalenesulfonic acid-2 [Beil. XI-181] by hydrolysis of -SO<sub>3</sub>H group see (13) (14); from 4,5-dichloronaphthalene-2-sulfonyl chloride [Beil. XI-182] or from 1,8-dichloronaphthalene (3:2435) by htg. with conc. HCl in s.t. at 290° see (15); from naphthalene (1:7200) in CCl<sub>4</sub> at -10 to 0° with Cl<sub>2</sub> in pres. of Fe (together with other products) (16) or from 1nitronaphthalene [Beil. V-553,  $V_1$ -(264)] with  $Cl_2$  (together with other products) (17) (2) see indic. refs.]

[Č in CHCl<sub>3</sub> soln. satd. with Cl<sub>2</sub> gives (25) both 1,5-dichloronaphthalene tetrachloride, m.p. 84°, and a trichloronaphthalene dichloride, m.p. 94° (separated by spar. soly. of latter in MeOH).]

[Č on mononitration yields (10) 1,5-dichloro-8-nitronaphthalene [Beil. V-556], yel. pr. from AcOH, m.p. 142° (10) (17) (23); note that the isomeric 1,5-dichloro-3-nitronaphthalene, m.p. 132°, has been reported indirectly (23) (12).]

[Č on monosulfonation (18) (13) gives chiefly 1,5-dichloronaphthalenesulfonic acid-3 [Beil. XI-183, XI<sub>1</sub>-(41)] (corresp. sulfonyl chloride, m.p. 143° (13), corresp. sulfonamide, m.p. 204° (24)) accompanied by a smaller amt. 1,5-dichloronaphthalenesulfonic acid-2 [Beil. XI-181] (corresp. sulfonyl chloride, m.p. 125° (13)).]

[C with pieric acid yields a cpd. C.PkOH, m.p. 87° (10).]

[Č on oxidn. with CrO<sub>3</sub>/AcOH yields (19) 3-chlorophthalic acid (3:4820) but on oxidn. with dil. HNO<sub>3</sub> yields (20) a nitro-chloro-phthalic acid.] [Č on cat. vapor-phase oxidn. (21) gives 80% yield 3-chlorophthalic anhydride (3:3900) + 20% phthalic anhydride (1:0725).]

3:3200 (1) Erdmann, Ann. 247, 353-354 (1888). (2) Weissberger, Sängewald, Hampson, Trans. Faraday Soc. 30, 890 (1934). (3) Krollpfeiffer, Ann. 430, 198 (1923). (4) Beattie, Whitmore, J. Am. Chem. Soc. 55, 1546-1548 (1933). (5) Ferrero, Bolliger, Helv. Chim. Acta 11, 1146-1147 (1928). (6) Atterberg, Ber. 9, 1188 (1877). (7) Armstrong, Ber. 15, 205 (1882). (8) Armstrong, Wynne, Chem. News 61, 93 (1890); 62, 163 (1890). (9) Cleve, Bull. soc. chim. (2) 26, 540 (1876). (10) Erdmann, Kirchhoff, Ann. 247, 378 (1888).

(11) Erdmann, Ber. 20, 3185-3186 (1887). (12) Kalle and Co., Ger. 343,147, Oct. 28, 1921; Cent. 1922, II 143. (13) Turner, Wynne, J. Chem. Soc. 1941, 253. (14) Cleve, Chem. Ztg. 17, 398 (1893). (15) Armstrong, Wynne, Chem. News 76, 69-70 (1897). (16) B.A.S.F., Ger. 234,912, May 26, 1911; Cent. 1911, II 63. (17) Atterberg, Ber. 9, 316-318, 926-928 (1877). (18) Armstrong, Wynne, Proc. Chem. Soc. 1890, 81. (19) Guareschi, Gazz. chim. ital. 17, 120 (1887). (20) Atterberg, Ber. 10, 547-548 (1877).

(21) Pongratz, Bassi, Fuchs, Süss, Wüstner, Schober, Angew. Chem. 54, 22-25 (1941). (22) Röchling'sche Eisen und Stahlwerke, Ger. 415,228, June 16, 1925; Cent. 1925, II 1239. (23) Friedländer, Karamessinis, Schenk, Ber. 55, 47-50 (1922). (24) Armstrong, Wynne, Chem. News 61, 274 (1890). (25) Wynne, J. Chem. Soc. 1946, 61.

### 3:3220 PARA-α-CHLORO-ISOBUTYRALDEHYDE (2,4,6-trus-(α-Chloroisopropyl)-trioxane-1,3,5) CH HC—C(CH<sub>3</sub>)<sub>2</sub> HC—C(CH<sub>3</sub>)<sub>2</sub> CH HC—C(CH<sub>3</sub>)<sub>2</sub> HC—C(CH<sub>3</sub>)<sub>2</sub>

ClC(CH<sub>8</sub>)<sub>2</sub>

#### M.P. 107° (1) (2)

Odorless tasteless ndls. (from distn. with steam); pr. (from ether); insol. aq.; sol. alc., ether, pet. ether. — Sublimes above m.p.

[For prepn. from  $\alpha$ -chloro-isobutyraldehyde (3:7235) by shaking with  $\frac{1}{2}$  vol. conc.  $H_2SO_4$  see (1) (2).]

3:3220 (1) Brochet, Ann. chim. (7) 10, 357-359 (1897). (2) Brochet, Bull. soc. chim. (3) 7, 643-644 (1892).

3:3250 2,4-DICHLORONAPHTHOL-1

Ndls. (from dil. alc. or lgr.); from AcOH  $\bar{C}$  separates in pr. with 1 mole of AcOH rapidly lost at 40-50° (1). —  $\bar{C}$  is volatile with steam; eas. sol. abs. alc. ether or  $C_6H_6$ . —  $\bar{C}$  on htg. to 180° decomposes with loss of HCl.

[For prepn. from  $\beta$ -naphthol (1:1500) (1) (2) or 4-chloronaphthol-1 (3:3720) (4) by chlorination see (1) (2) (3); from naphthalene 1,2,3,4-tetrachloride (3:4750) by oxidn. with CrO<sub>3</sub> in AcOH see (5); for other methods see Beil. VI-612.]

 $\ddot{C}$  dissolves in NaOH or Na<sub>2</sub>CO<sub>3</sub> but on warming (or even long stdg. in cold) yields (6) ultramarine flocks which impart to ether a violet, and to benzene a deep blue violet, color (6). [Same result obtd. with K<sub>3</sub>Fe(CN)<sub>6</sub> but not with pyridine (6).]

Č on boil. with dil. HNO<sub>3</sub> is oxidized (1) to phthalic ac. (1:0820); but with CrO<sub>3</sub> in AcOH yields 2-chloronaphthoquinone-1,4 (3:3580), volatile with steam, golden-yel. ndls. from aq., alc., or AcOH, m.p. 116° (1).

 $\tilde{C}$  is not affected by Sn + alc. HCl (3), or Na/Hg (3), but on htg. in AcOH with conc. HI (D=1.7) for 10 hrs. gives (3)  $\alpha$ -naphthol (1:1500).

C dislvd. in 20 pts. 15% aq. KOH and shaken with 4 pts. (CH<sub>3</sub>)<sub>2</sub>SO<sub>4</sub> gives (94% yield (3)) of the methyl ether, methyl 2,4-dichloro-1-naphthyl ether, colorless ndls. from alc., m.p. 58° (3).

D 2,4-Dichloro-1-naphthyl acetate: from C by htg. with AcCl (2); ndls. (from alc.), m.p. 74-76° (2).

3:3250 (1) Cleve, Ber. 21, 891–893 (1888). (2) Zincke, Ber. 21, 1035–1036 (1888). (3) Franzen, Stäuble, J. prakt. Chem. (2) 103, 384–385 (1921/22). (4) Reverdin, Kauffmann, Ber. 28, 3053 (1895). (5) Helbig, Ber. 28, 506 (1895). (6) Willstatter, Schuler, Ber. 61, 370 (1928).

#### 3:3275 6-CHLORO-2-METHYL-BENZOIC ACID

Beil. S.N. 941

M.P. 108°

102° (2)

[91.5° (3)]

Long slender colorless ndls. from hot aq. (2) or from HCl (1).

[For prepn. of C from 6-chloro-2-methylbenzamide (see below) (itself obtd. from 6-chloro-2-methylbenzonitrile, m.p. 82-83° (2)) by actn. of nitrous acid see (2); from 6-amino-2-methylbenzoic acid (1) via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. see (1) (3).]

Č on htg. with aniline, K<sub>2</sub>CO<sub>5</sub>, and copper powder yields (1) 3-methyldiphenylamine-carboxylic acid-2, cryst. from 50% alc., m.p. 145° dec. (1).

[C melted and treated with Br<sub>2</sub> evolves HBr, and the prod. on warming with dil. NaOH yields (3) 3-chloro-\alpha-hydroxyphthalide, colorless pl. from dil. alc., m.p. 138° (3).]

----- 6-Chloro-2-methylbenzamide: scales from boilg. aq., m.p. 167° (2). [Prepd. indirectly as above.]

3:3275 (1) Gleu, Nitzsche, J. prakt Chem. (2) 153, 213 (1939). (2) Kenner, Witham, J. Chem. Soc. 119, 1458 (1921). (3) Levy, Stephen, J. Chem. Soc. 1930, 2788.

#### 3:3295 3,4-DICHLORONAPHTHOL-2

M.P. 108° (1) (2).

Small colorless ndls. from lgr. Sol. in cold K<sub>2</sub>CO<sub>3</sub> soln. (2).

[For prepn. from  $\beta$ -naphthol (1:1540) via 1-nitrosonaphthol-2, chlorination with SO<sub>2</sub>Cl<sub>2</sub> in tetrachloroethane to 1-nitroso-3,4-dichloronaphthol-2, reduction to 1-amino-3,4-dichloronaphthol-2 and thence via diazo reaction to  $\bar{C}$  see (1); for prepn. from 1,3,4-tri-chloronaphthol-2 by reduction with FeSO<sub>4</sub> + NaOH see (2).]

Č treated with 1 mole HNO<sub>2</sub> yields 1-nitroso-3,4-dichloronaphthol-2, golden-yel. cryst. from AcOH, m.p. not given (1).

3:3295 (1) Marschalk, Bull. soc. chim. (4) 43, 1367 (1928). (2) Herzberg, Spengler, Schmidt (to I.G.), Ger. 431,165, June 30, 1926; Cent. 1926, II 1196.

M.P. 108.5-109 (26) 108-109° (1) cor. (27) (29) 108° (2) (28) 107-108° cor. (3) 107° (4) 106-107° (17) 105-106° (5) 105° (6)

[See also 1,1-dichloro-2,2-bis-(p-chlorophenyl)ethane, "DDD" (3:3320).]

Note that  $\bar{C}$  is the remarkable insecticide to which so much publicity is currently being given. Despite the general fanfare the amount of real scientific data which has been released at this writing is small, although very rapid publication is inevitable in the near future. No attempt can be made in this text to cover the utilization of  $\bar{C}$ , but attention is drawn to two bibliographies (7) (8) containing respectively 174 and 418 references, although most of these are to general and nontechnical reports. For an extensive review of chemistry of  $\bar{C}$  see (30).

[For patents on utilization of "DDT" as insecticide see (9) (10). — For studies of toxicology and pharmacology of "DDT" see (11) (12) (13) (14). — Note that  $\bar{C}$  is by rabbits in part excreted as di-(p-chlorophenyl)acetic acid (3:4612), m.p. 166-166.5° u.c. (24).]

Colorless cryst. from 95% alc. —  $\overline{C}$  is spar. sol. in 95% alc.; viz., 0.8 wt. % at 0°, 3.9 wt. % at 48° (3); spar. sol. pet. ether of b.p. 30-60° (3);  $\overline{C}$  is moderately sol. in CCl<sub>4</sub>, ether, or CHCl<sub>3</sub> (3); eas. sol. in pyridine, dioxane, C<sub>6</sub>H<sub>6</sub>, or acetone (3); for data and graph of wt. % solubility/temp. over range 0-48° see (3) cf. (25); for soly. of  $\overline{C}$  in kerosenes see (31). [For detn. of  $\overline{C}$  in technical samples, i.e., in pres. of "DDD" (3:3320), by recrystn. from satd. alc. soln. of "DDT" see (26).]

Note that technical  $\bar{C}$  may contain some of the isomeric 1,1,1-trichloro-2-(p-chlorophenyl)-2-(o-chlorophenyl)ethane (3:1820) and /or polymers of chloral (3:5210); in fact, technical  $\bar{C}$  of setting point 88° contains about 70%  $\bar{C}$  accompanied by 18% of the o-p isomer +6% of the o-p isomer (25). — For extensive report on the compn. of technical grade  $\bar{C}$  see (29).

[For optical crystallographic props. of C see (28).]

#### PREPARATION OF C

 $\bar{C}$  is universally prepd. by condensation of chloral or chloral hydrate with chlorobenzene. From chloral hydrate. [For prepn. of  $\bar{C}$  from chloral hydrate (3:1270) with chlorobenzene (3:7903) + fumg. H<sub>2</sub>SO<sub>4</sub> (8-10% SO<sub>3</sub>) (70% yield (2) (4)) or ClSO<sub>3</sub>H (77% yield (32)) see indic. refs.]

From chloral. [For prepn. of  $\bar{C}$  from anhydrous chloral (3:5210) with chlorobenzene (3:7903) + conc.  $H_2SO_4$  see (6) (15) (16)]

#### CHEMICAL BEHAVIOR OF C

Reduction of  $\tilde{C}$ .  $\tilde{C}$  on reduction with Na/alc. gives up all its chlorine quant. detn. of which comprises a method for the quant. detn. of  $\tilde{C}$  (14).

[ $\bar{C}$  on hydrogenation with  $H_2 + Pd/CaCO_3$  in various solvents on slight warming gives according to conditions (18) various products of bimolecular reduction; these include 2,2,3,3-tetrachloro-1,1,4,4-tetra-(p-chlorophenyl)butane, cryst. from AcOEt, m.p. 271.5° (28% yield (18)), both higher-melting (229°) and lower-melting (174°) stereoisomers of 2,3-dichloro-1,1,4,4-tetra-(p-chlorophenyl)butene-2 (former 36% yield, latter in traces) (18), and perhaps other products; for much further study of these reaction products see the original reference (18)]

[C on electrolytic reduction in ale. HCl soln. gives (13% yield (19)) at the cathode 1,1,4,4-tetra-(p-chlorophenyl)butyne-2, pr. from AcOEt, m.p. 174° (19); note that this prod. on oxidn. with CrO<sub>3</sub>/AcOH gives (91% yield (19)) 4,4'-dichlorobenzophenone (3:4270), m.p. 145°.]

Oxidation of C. Attempts to oxidize C with CrO<sub>3</sub>/AcOH have given (5) no identifiable products.

Dehydrochlorination of C. C under various conditions can be caused to split out 1 HCl yielding 1,1-dichloro-2,2-bis-(p-chlorophenyl)ethylene.

C with alc. KOH refluxed 10 hrs. (5) (6) or 15-20 min. (24) (for study of rate see (20) (27)) gives (yields: almost 100% (24), 81% (5)) 1,1-dichloro-bis-(p-chlorophenyl)ethylene (3:2438) [for use of this reaction by detn. of ionized chlorine as means for detn. of C in spray deposit see (21).]

 $\bar{C}$  with excess Ba(OH)<sub>2.8</sub>H<sub>2</sub>O in ethylene glycol refluxed 10-12 hrs. gives (33% yield (24)) di-(p-chlorophenyl)acetic acid (3:4612), m.p. 166-166.5° u.c.; this results by initial loss of HCl as above and further degradation.

 $\ddot{C}$  in the pres. of minute amts. (e.g., 0.01%) of FeCl<sub>3</sub> or AlCl<sub>3</sub> at 110-120° loses HCl giving (22) cf. (34) 1,1-dichloro-2,2-bis-(p-chlorophenyl)ethylene (3:2438). (See also below under behavior of  $\ddot{C}$  with AlCl<sub>3</sub> + C<sub>6</sub>H<sub>6</sub>.)

#### SUBSTITUTION REACTIONS OF C

Bromination. No study of the behavior of  $\bar{C}$  toward Br<sub>2</sub> appears yet to have been reported.

Chlorination.  $\tilde{C}$  in CCl<sub>4</sub> soln. with Cl<sub>2</sub> + trace of PCl<sub>3</sub> in light at b.p. of mixture for 3 hrs. gives (73% yield (5)) 1,2,2,2-tetrachloro-1,1-bis-(p-chlorophenyl)ethane (3:2477), m.p. 91-92° (5).

Nitration. C on introduction of two nitro groups (no details) gives (6) a prod., ndls. from alc., m.p. 148.0-148.3° (29), which is presumably 1,1,1-trichloro-1,2-bis-(4-chloro-2-nitrophenyl)ethane; note that this dinitro compd. has same m.p. as corresp. dinitro deriv. from "o,p-DDT" (3:1820) but m.p. of a mixt. of the two is depressed (29).

Č on tetranitration with a mixt. (1:1 by volume) of fumg. HNO<sub>3</sub> and conc. H<sub>2</sub>SO<sub>4</sub> at 100° for 1 hr. gives (23) 1,1,1-trichloro-2,2-bis-(4-chloro-3,5-dinitrophenyl)ethane, m.p. 223.5-224.5° cor. (23). — [Note that similar tetranitration of "DDD" (1,1-dichloro-2,2-bis-(p-chlorophenyl)ethane (3:3320) gives (23) 1,1-dichloro-2,2-bis-(4-chloro-3,5-dinitrophenyl)ethane, m.p. 224.5-225.5° cor. (23); similar tetranitration of the o-p isomer of "DDT" (viz., 1,1,1-trichloro-2-(o-chlorophenyl)ethane) (3:1820) gives a prod., m.p. 229.5-230° cor. (23). — For color reactions of these tetranitro derivs. with MeOH/NaOMe and its use in detn. of Č see {23} (33).]

Behavior with AlCl<sub>3</sub> + C<sub>6</sub>H<sub>6</sub>.  $\bar{C}$  with anhydrous AlCl<sub>3</sub> (1 mole) in large excess of C<sub>6</sub>H<sub>6</sub> reacts at room temp. evolving 2 moles HCl and giving (10% yield (1)) 1,1,2,2-tetraphenylethane [Beil. V-739, V<sub>1</sub>-(371), V<sub>2</sub>-(673)], m.p. 211°. [Note that the mechanism of this surprising result has not yet been explained; that by similar treatment the same tetraphenylethane is also obtd. in 25% yield from 1,1-dichloro-2,2-bis-(p-chlorophenyl)-ethane (3:3320), in 10% yield from 1,1,1-trichloro-2,2-diphenylethane (3:1420), and from the o-p isomer of "DDT" (viz., 1,1,1-trichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)-ethane) (3:1820), but not at all from 1,1-dichloro-2,2-bis-(p-chlorophenyl)ethylene (3:2438); and that if chlorobenzene is substituted for C<sub>6</sub>H<sub>6</sub> no tetraphenylethane results from any of them (1).]

3:3298 (1) Fleck, Preston, Haller, J. Am. Chem. Soc. 67, 1419-1420 (1945). (2) Darling, J. Chem. Education 22, 170 (1945). (3) Gunther, J. Am. Chem. Soc. 67, 189-190 (1945). (4) Iris, Leyva, Rev. inst. salubridad enfermedad tróp. (Mex.) 5, 71-74 (1944); C.A. 39, 495 (1945). (5) Grummitt, Buck, Jenkins, J. Am. Chem. Soc. 67, 155-150 (1945). (6) Zeidler, Ber. 7, 1181 (1874). (7) Roark, U.S. Dept. Agr., Bur. Entomology and Plant Quarantine, 12 pp. (June 1944). (8) Roark, U.S. Dept. Agr., Bur. Entomology and Plant Quarantine, 27 pp. (May 1945). (9) Müller (to J. R. Geigy, A.G.), U.S. 2,329,074, Sept. 7, 1944; C.A. 38, 1056 (1944). (10) Hughes (to J. R. Geigy, A.G.), Brit. 547,874, Sept. 15, 1942; C.A. 37, 6400 (1943).

(11) Draize, Woodard, Fitzhugh, Nelson, Smith, Calvery, Chem. Eng. News 22, 1503-1504 (1944). (12) Lillie, Smith, U.S. Pub. Health Repts. 59, 979-984 (1944). (13) Nelson, Draize, Woodard, Fitzhugh, Smith, U.S. Pub. Health Repts. 59, 1009-1020 (1944). (14) Smith, Stohlman, U.S. Pub. Health Repts. 59, 984-993 (1944); 60, 289-301 (1945). (15) Callaham, Chem. Met. Eng. 51, No. 10, 109-114 (Oct. 1944). (16) Breckenridge, Can. Chem. Process Ind. 28, 570 (1944). (17) Stohlman, U.S. Pub. Health Repts. 60, 350-353 (1945). (18) Brand, Bausch, J. prakt. Chem. (2) 127, 222-224, 231-233 (1930). (19) Brand, Horn, Bausch, J. prakt. Chem. (2) 127, 240-241, 244-246 (1930). (20) Brand, Busse-Sundermann, Ber. 75, 1828 (1942).

127, 240-241, 244-246 (1930). (20) Brand, Busse-Sundermann, Ber. 75, 1828 (1942).
 (21) Gunther, Ind. Eng. Chem., Anal. Ed. 17, 149-150 (1945). (22) Fleck, Haller, J. Am. Chem. Soc. 66, 2095 (1944). (23) Schechter, Haller, J. Am. Chem. Soc. 66, 2129-2130 (1944).
 (24) White, Sweeney, U.S. Pub. Health Repts. 60, 66-71 (1945). (25) Gunther, J. Chem. Education 22, 238-242 (1945). (26) Cristol, Hayes, Haller, Ind. Eng. Chem., Anal. Ed. 17, 470-473 (1945). (27) Cristol, J. Am. Chem. Soc. 67, 1494-1498 (1945). (28) Gooden, J. Am. Chem. Soc. 67, 1616-1617 (1945). (29) Haller, Bartlett, Drake, Newman, Cristol, et al., J. Am. Chem. Soc. 67, 1591-1602 (1945). (30) Cristol, Haller, Chem. Eng. News 23, 2070-2075 (1945).

(31) Fleck, Haller, Ind. Eng. Chem. 38, 177-178 (1946). (32) Rueggeberg, Torrans, Ind. Eng. Chem. 38, 211-214 (1946). (33) Schechter, Soloway, Hayes, Haller, Ind. Eng. Chem., Anal. Ed. 17, 704-709 (1945). (34) Fleck, Haller, J. Am. Chem. Soc. 68, 142-143 (1946).

#### 3:3300 2,3,5-TRICHLORO-NAPHTHALENE

#### M.P. 109.5° (1) (2)

[For prepn. of C from 2,3-dichloronaphthol-8 (3:4315) (2) or from 2,3-dichloronaphthalenesulfonyl chloride-8 [Beil. XI-164] (1) (2) (3) with PCl<sub>5</sub> see indic. refs.]

[C treated with ClSO<sub>3</sub>H in CS<sub>2</sub> and reactn. prod. conv. to salts as directed (1) gives salts of 2,3,5-trichloronaphthalenesulfonic acid-8 (corresp. sulfonyl chloride, m.p. 164° (1)).]

3:3300 (1) Turner, Wynne, J. Chem. Soc. 1941, 247, 255-256. (2) Armstrong, Wynne, Chem. News 61, 275 (1890). (3) Armstrong, Wynne, Proc. Chem. Soc. 1890, 83; 1895, 79.

This compd. is closely related to "DDT" (3:3298) and occurs (4) as minor impurity in technical grades of this compound.

[For prepn. of  $\bar{C}$  from dichloroacetaldehyde (3:5180) or from 2,2-dichloro-1-(p-chlorophenyl)ethanol (4) with chlorobenzene (3:7903) + conc.  $H_2SO_4$  + fumg.  $H_2SO_4$  (63% yield) see (4).]

C with alc. KOH refluxed 3 hrs. loses 1 HCl giving (77% yield (4)) (5) 1,1-dichloro-2,2-bis-(p-chlorophenyl)ethylene (3:1430).

C on dinitration with 10 vols. fumg. HNO<sub>3</sub> at 50° for ½ hr. gives (90% yield (4)) a dinitro deriv.; cryst. from alc., m.p. 178-179° (4).

 $\bar{C}$  on tetranitration with a mixt. (1:1 by volume) of fumg. HNO<sub>3</sub> + conc. H<sub>2</sub>SO<sub>4</sub> at 100° for 1 hr. gives (1) a prod., m.p. 224.5–225.5° cor., which presumably has the structure 1,1-dichloro-2,2-bis-(4-chloro-2,6-dinitrophenyl)ethane.

 $\bar{C}$  with anhydrous AlCl<sub>3</sub> (1 mole) + excess  $C_6H_6$  at ord. temp. evolves HCl and gives (25% yield (2)) 1,1,2,2-tetraphenylethane, m.p. 211° (2).

3:3320 (1) Schechter, Haller, J. Am. Chem. Soc. 66, 2129-2130 (1944). (2) Fleck, Preston, Haller, J. Am. Chem. Soc. 67, 1419-1420 (1945). (3) Cristol, Hayes, Haller, Ind. Eng. Chem., Anal. Ed. 17, 470-473 (1945). (4) Haller, Bartlett, Drake, Newman, Cristol, et al., J. Am. Chem. Soc. 67, 1596, 1600 (1945). (5) Cristol, J. Am. Chem. Soc. 67, 1494-1498 (1945).

[For prepn. from m-chlorophenol (3:0255) by htg. with chloroacetic ac. (3:1370) and aq. alk. see (1) (2).]

3:3325 (1) Koelsch, J. Am. Chem. Soc. 53, 304-305 (1931). (2) Hayes, Branch, J. Am. Chem. Soc. 65, 1555-1557 (1943)

Colorless ndls. from dil. AcOH (1). — Very slowly volatile with steam (1). —  $\bar{C}$  has pronounced sternutatory props. (1) (3).

[For prepn. from m-hydroxybenzaldehyde (1:0055) via direct chlorination see (2); via 4-nitro-3-hydroxybenzaldehyde, reductn. to corresp. amino cpd., and use of appropriate diazo reactn. see (1); for prepn. from o-chlorobenzaldehyde (3:6410) via nitration to 2-chloro-5-nitrobenzaldehyde, m.p. 78-79°, oximation, reduction to 2-chloro-5-aminobenzaldoxime, m.p. 159-160°, and finally diazotization and hydrolysis see (1); for prepn. from 4-chloro-3-methylphenol (3:1535) see (3); for prepn. from p-chlorophenol (3:0475) by condensation with chloral (3:5210) and subsequent alk. hydrolysis see (4)

Č in 50% AcOH mononitrated as specified (1) gives mixt. of 2-nitro and 4-nitro products eas. sepd. by volatility of latter with steam (1) 2-Nitro-6-chloro-3-hydroxybenzaldehyde: yel. ndls. from dil. AcOH, m.p. 136° (5), 138° (3). [Corresp p-nitrophenylhydrazone, deep or.-red ndls. from AcOH, m.p. 256-257° dec. (5); semicarbazone, yel. ndls. from alc., m.p. 249-250° dec. (5).] 4-Nitro-6-chloro-3-hydroxybenzaldehyde: deep yel. ndls. from AcOH, m.p. 104° (5) (3). [Corresp. p-nitrophenylhydrazone, brick-red ndls. from AcOH, m.p. 284-286° dec. (5); semicarbazone, yel. pl. from alc., m.p. 266-267° dec. (5)]

Č in aq. contg. NaHCO<sub>3</sub> treated (1) with Me<sub>2</sub>SO<sub>4</sub> yields 6-chloro-3-methoxybenzalde-hyde, m.p. 62° (1). [Corresp. oxime, ndls., m.p. 101.5° (1); p-nitrophenylhydrazone, old-gold ndls., m.p. 229° (1)] [This methyl ether on oxidn. with KMnO<sub>4</sub> (1) yields 6-chloro-3-methoxybenzoic acid, ndls. from ddl. AcOH, m.p. 170-171° (1).]

- 6-Chloro-3-hydroxybenzaldoxime: colorless ndls. of monohydrate from dil. alc., from abs. alc. in anhydrous ndls., m.p. 146-147° (1).
- --- 6-Chloro-3-hydroxybenzaldehyde phenylhydrazone: unrecorded.
- 6-Chloro-3-hydroxybenzaldehyde p-nitrophenylhydrazone: red ndls. from dil. alc., m.p. 250-251° (1).
- ---- 6-Chloro-3-hydroxybenzaldehyde 2,4-dinitrophenylhydrazone: unrecorded.
- ⑥ 6-Chloro-3-hydroxybenzaldehyde semicarbazone: pale yel. ndls., m.p. 236° (1).

**3:350** (1) Hodgson, Beard, J. Chem. Soc. **1926**, 151–154. (2) Bissell, Kranz (to National Aniline and Chem. Co.), U.S. 1,776,803, Sept. 30, 1930; Cent. **1931**, I 159; C A. **24**, 5768–5769 (1930). (3) Friedlander, Schenck, Ber. **47**, 3046–3047 (1914). (4) Haakh, Smola, Austrian **141**,159, March **25**, 1935; Cent. **1935**, II 439. (5) Hodgson, Beard, J. Chem. Soc. **1926**, 2034.

M.P. 112-113° (1) 110-111° (2)

Colorless ndls. from cone. alc. soln. (1). — Insol. boilg. aq. but volatile with steam. — Eas. sol. alc., ether, C<sub>6</sub>H<sub>6</sub>, CHCl<sub>3</sub>, CS<sub>2</sub>.

[For prepn. of  $\tilde{C}$  from 2,4,5-trichlorobenzal (di)chloride (3:6910) by hydrolysis with fumg. H<sub>2</sub>SO<sub>4</sub> (1), with warm conc. H<sub>2</sub>SO<sub>4</sub> (3), or with aq. in s.t. at 260° (2) see indic. refs.]

- [ $\bar{C}$  on oxidn. with KMnO<sub>4</sub> should yield 2,4,5-trichlorobenzoic acid (3:4630), m p. 164°, but this reaction is not actually reported in the literature; note that  $\bar{C}$  in air oxidizes only slowly (1).]
- $[\bar{C} \text{ with Na}_2SO_3 \text{ under press. gives (4) 5-chlorobenzaldehydedisulfonic acid-2,4 [Beil. XI-325].]}$
- [C with anhydrous NaOAc on htg. (Perkin synthesis) gives (1) 2,4,5-trichlorocinnamic acid, m.p. 200-201°.]

[For use of C in prepn. of dyestuffs see (5) (3).]

- ---- 2,4,5-Trichlorobenzaldoxime: unreported.
- ---- 2,4,5-Trichlorobenzaldehyde phenylhydrazone: unreported.
- 2.4.5-Trichlorobenzaldehyde p-nitrophenylhydrazone: unreported.
- ---- 2,4,5-Trichlorobenzaldehyde 2,4-dinitrophenylhydrazone: unreported.

3:3375 (1) Seelig, Ann. 237, 147-149, 151 (1887). (2) Beilstein, Kuhlberg, Ann. 152, 238-239 (1869). (3) Fischer Ger. 25,827, June 23, 1883, Friedländer 1, 42 (1877-87). (4) Geigy and Co., Ger. 198,909, June 1, 1908; Cent. 1908; II 214; [C A. 2, 2733-2734 (1908)]. (5) Perkin, Clemo (to British Dyestuffs Corp.), Brit. 165,658, July 28, 1921, C.A. 16, 835 (1922).

#### 3:3380 4,6-DICHLORORESORCINOL

Cryst. from lgr. —  $\bar{C}$  is very sol. aq. (forms hydrate, m.p. 70°) (1);  $\bar{C}$  is eas. sol. alc., ether (1). — [For bactericidal action of  $\bar{C}$  see (3).]

[For prepn. of  $\bar{C}$  from resorcinol (1:1530) with N,N'-dichlorourea see (1); from 4-chlororesorcinol (3:3100) with  $SO_2Cl_2$  (96% yield) see (3) cf. (4); (the prods. of m.p. 77°, b.p. 249° (5), and m.p. 101°, b.p. 254° (6), may have been impure samples of  $\bar{C}$ ).]

- [C with N, N'-dichlorourea + KBr gives (2) 2-bromo-4,6-dichlororesorcinol, m.p. 101°.]
- |C with N,N'-dichlorourea + KI gives (7) 2-iodo-4,6-dichlororesorcinol, m.p. 94°.
- $[\bar{C}]$  with ethyl  $\alpha$ -ethoxyacetoacetate in alc. NaOEt gives (4) 6,8-dichloro-3-acetyl-5-hydroxycoumarin, m.p. 236°.]

Note that  $\bar{C}$  does not (6) (9) condense with phthalic anhydride.

4,6-Dichlororesorcinol dimethyl ether: ndls. from alc., m.p. 118° (8), 117-118° (9), 116-117° (3). [From C with Me<sub>2</sub>SO<sub>4</sub> + aq. alk. (3) (9).]

3:3380 (1) Likhosherstov, J. Gen. Chem. (U.S.S.R.) 3, 164-171 (1933); Cent. 1934, I 1476;
 C.A. 28, 1675 (1934) (2) Likhosherstov, J. Gen. Chem. (U.S.S.R.) 3, 172-176, Cent. 1934,
 I 1476; C.A 28, 1676 (1934). (3) Moore, Day, Suter, J. Am. Chem. Soc. 56, 2458-2459 (1934).
 (4) Weiss, Kratz, Monatsh. 51, 395 (1929). (5) Reinhard, J. prakt. Chem. (2) 17, 328-329 (1878).
 (6) Mettler, Ber. 45, 802-803 (1912). (7) Likhosherstov, J. Gen. Chem. (U.S.S.R.) 3, 177-182 (1933); Cent. 1934, I 1477; C.A. 28, 1676-1677 (1934). (8) Hönig, Ber. 11, 1039-1040 (1878).
 (9) Jacobs, Heidelberger, Rolf, J. Am. Chem. Soc. 41, 463 (1919).

#### 3:3400 1.3.7-TRICHLORONAPHTHALENE

$$CI$$
 $CI$ 
 $CI$ 

C10H5Cla

Beil. V-545 V<sub>1</sub>---V<sub>2</sub>---

Ndls. from alc.

[For prepn. of  $\tilde{C}$  from 1,3-dichloronaphthalenesulfonyl chloride-7 [Beil. XI-183] (5), from 1,7-dichloronaphthalenesulfonyl chloride-3 [Beil. XI-182] (6), from 3,7-dichloronaphthalenesulfonyl chloride-1 [Beil. XI-162] (5), from 3-chloronaphthalene-1,7-bis-(sulfonyl chloride) [Beil. XI-215] (7), from 7-chloronaphthalene-1,3-bis-(sulfonyl chloride) [Beil. XI-212] (1) (3) (6) (7), from 1-nitronaphthalenedisulfonic acid-3,7 [Beil. XI-216] (3) (4), or from 7-chloro-3-naphtholsulfonic acid-1 (2), each with PCl<sub>5</sub> as directed, see indic. refs.; for formn. of  $\tilde{C}$  from  $\beta$ -chloronaphthalene tetrachloride (1,2,3,4,6-pentachlorotetralin) [Beil. V-493] with alc. KOH see (8).]

[Č treated with ClSO<sub>3</sub>H in CS<sub>2</sub> and reactn. prod. conv. to sodium salt as directed (1) yields sodium 1,3,7-trichloronaphthalenesulfonate-7 (corresp. sulfonyl chloride, m.p. 138° (1).]

3:3490 (1) Turner, Wynne, J. Chem. Soc. 1941, 247, 253-254. (2) Battegay, Silbermann, Kienzle, Bull. soc. chim. (4) 49, 718-719 (1931). (3) Armstrong, Wynne, Chem. News 61, 93 (1890). (4) Alén, Ber. 17, Referate, 437 (1884). (5) Armstrong, Wynne, Chem. News 61, 275 (1890). (6) Armstrong, Wynne, Chem. News 76, 69 (1879). (7) Armstrong, Wynne, Chem. News 62, 165 (1890). (8) Armstrong, Wynne, Chem. News 61, 285 (1890).

#### 

Colorless (12) or pale greenish-yellow (7) (8) cryst. from hexane + AcCl (1), dry ether (9), lgr. (7) (8), or dry  $C_0H_0 + \text{pet.}$  ether (12) (17). — Ord.  $\tilde{C}$  frequently conts. two kinds of crysts., white and yellow, both melting at 110-112° (13). —  $\tilde{C}$  from CCl<sub>4</sub> cryst. with

1 mole solvent;  $\bar{C}$  from acetone cryst. with  $\frac{1}{2}$  mole solvent; in both cases solvent is lost at 92° but not readily in air at ord. temp. (24). — [For study of x-ray crystallography of  $\bar{C}$  see (25).] — Note that  $\bar{C}$  cannot be recrystd. from MeOH or EtOH without more or less complete conversion to the corresp. trityl ethers (see also below under behavior of  $\bar{C}$  with alcohols).

 $\bar{C}$  may be stored satisfactorily in ord. screw-top bottles, provided they are well sealed with paraffin (7). — On long exposure to moist air, however,  $\bar{C}$  is hydrolyzed (see also below) to triphenylcarbinol (1:5985), m.p. 161-162°; for f.p./compn. diagram of system  $\bar{C}$  + triphenylcarbinol, eutectic, m.p. 100°, contg. 90%  $\bar{C}$ , see (26). — Samples of partially hydrolyzed  $\bar{C}$  may be purified by recrystn. from  $\frac{1}{2}$  wt. of  $C_6H_6$  contg. 5-25% acetyl chloride, the latter reconverting the triphenylcarbinol to  $\bar{C}$  (7).

 $\bar{C}$  is eas. sol. in other,  $C_6H_6$  (100 g.  $C_6H_6$  dis. 85.8 g.  $\bar{C}$  at 25° (35)), CCl<sub>4</sub>, CHCl<sub>5</sub>, or CS<sub>2</sub>, but is much less sol. in pet. ether (19). — Solns. of  $\bar{C}$  in acetyl chloride (27) (29), benzoyl chloride (27), hot 1,1,2,2-tetrachloroethane (acetylene tetrachloride) (27) (28), dichloroethylene (28), nitrobenzene (27), SOCl<sub>2</sub> (27), SO<sub>2</sub>Cl<sub>2</sub> (29) are yellow; for study of effect of temp. see (27). — Solns. of  $\bar{C}$  in liq. SO<sub>2</sub> are also yellow (29) and conduct electric current (30) (31) (32); for study of molecular weight of  $\bar{C}$  in liq. SO<sub>2</sub> see (33). —  $\bar{C}$  is very sparingly sol. in liq. NH<sub>3</sub> but soln. conducts elect. current (34).

[The protracted arguments on the constitution of  $\tilde{C}$  and of trityl derivatives in general (controversy over carbonium and quinonoid forms, etc.) cannot be detailed within the scope of this book; however, for leading references since 1920 see (36) (37) (38) (39) (40) (41) (42) (43) (44) (45); for earlier references see Beil. V-700.]

#### PREPARATION OF C

The two best-studied preparations of  $\bar{C}$  are those from triphenylcarbinol (1:5985) with AcCl (3:7065) in  $C_6H_6$  (93-95% yield (12)) and from CCl<sub>4</sub> (3:5100) with  $C_6H_6 + AlCl_3$  (84-86% yield on AlCl<sub>3</sub> used (7) (8)). Note, however, that many other methods have also been used as recorded below.

From triphenylcarbinol (1:5985). [For prepn. of  $\bar{C}$  from triphenylcarbinol with AcCl (3:7065) directly (79% yield (46)) or in  $C_6H_6$  soln. (93-95% yield (12)); with oxalyl (di)chloride (3:5060) (47); with HCl gas in dry  $C_6H_6$  (48) (for study of equilibrium see (49)) contg.  $C_6C_1$  (9) or in dioxane at 50° for 22 hrs. (86% yield (14)); with conc. HCl in AcOH (79% yield (50)) or in  $C_6H_6$  +  $Z_0C_1$  (85% yield (51)); with PCl<sub>6</sub> directly (52) or in lgr. (53) or in  $C_6H_6$  (29) or in  $C_6H_6$  +  $Z_0C_1$  (90% yield (51)); with PCl<sub>3</sub> +  $Z_0C_1$  in  $C_0C_1$  (92% yield (51)); with SOCl<sub>2</sub> in  $C_0C_1$  (97% yield (51)); with SiCl<sub>4</sub> in  $C_0C_1$  or lgr. at 40° (54), or with COCl<sub>2</sub> (3:5000) in  $C_0C_1$  (5) see indic. refs.]

From other triphenylcarbinol derivatives. [For prepn. of C from K triphenylcarbinolate with COCl<sub>2</sub> (3:5000) in toluene (5); from triphenylmethoxy—MgBr, ( $C_6H_5$ )<sub>3</sub>C—OMgBr (from benzophenone +  $C_6H_5$ MgBr), with AcCl in  $C_6H_6$  (37% yield (55)) or with COCl<sub>2</sub> in toluene (14% yield (55)); from triphenylcarbinol ethyl ether (see also below) with AlCl<sub>3</sub> in CS<sub>2</sub> (56) or with AcCl (46) (57) see indic. refs.]

From various other trityl derivatives and relatives. [For prepn. of  $\bar{C}$  from  $\alpha$ -bromotriphenylmethane (trityl bromide) with AgCl in  $C_6H_6$  in s.t. at 200° for several days (50% yield (57)); from  $\alpha$ -aminotriphenylmethane (tritylamine) [Beil. XII-1343, XII<sub>1</sub>-(557)] with NH<sub>4</sub>Cl in liq. NH<sub>3</sub> (34); from triphenylmethylphosphinic acid [( $C_6H_5$ )<sub>3</sub>C(PO)(OH)<sub>2</sub>] with PCl<sub>5</sub> (3 moles) at 70° (91% yield (20)); from triphenylmethane (1:7220) with PCl<sub>5</sub> at 160° for 2 hrs. (65% yield (58)) or with NOCl at 150° (59) see indic. refs.]

[For prepn. of  $\bar{C}$  from triphenylacetyl chloride [Beil. IX-713, IX<sub>1</sub>-(309)] by loss of CO on htg. at 120-150° (60) or at 170-180° (61); from bis-(triphenylmethyl) peroxide [Beil.

VI-716, VI<sub>1</sub>-(350)] with  $Cl_2 + a$  little  $I_2$  in boilg.  $CCl_4$  soln. for 3 hrs. (40% yield (23)) see indic. refs.

From benzene with various polyhalogenated methanes. [For prepn. of  $\bar{C}$  from  $C_6H_6$  (1:7400) with CCl<sub>4</sub> (3:5100) in pres. of AlCl<sub>3</sub> (84-86% yield on AlCl<sub>3</sub> used (7) (8); 70-85% yield (18)) cf. (62) (63) (64) in CS<sub>2</sub> (97% yield (19)) see indic. refs.; for use of FeCl<sub>3</sub> (31% yield against 77% with AlCl<sub>3</sub> under otherwise same conditions (10) cf. (65)) see indic. refs.]

[For prepn. of  $\bar{C}$  from  $C_6H_6$  (1:7400) with CHCl<sub>3</sub> (3:5050) + AlCl<sub>3</sub> at 50° see (22).]

[For formn, of  $\bar{C}$  from  $C_6H_6$  with dichloro-diffuoro-methane ("Freon") + AlCl<sub>3</sub> see (66).] From various chlorotoluenes. [For formn, of  $\bar{C}$  from benzotrichloride (3:6540) with  $C_6H_6$  in pres. of metallic U (67), Ti (68), Ce (69), or Cr (21) see indic. refs.; from benzal (di)chloride (3:6327) with  $C_6H_6$  + AlCl<sub>3</sub> see (22).]

From various chlorodiphenylmethanes. [For formn. of  $\bar{C}$  from  $\alpha$ -chlorodiphenylmethane (benzohydryl chloride) (3:0060) (22) or from  $\alpha,\alpha$ -dichlorodiphenylmethane (benzophenone chloride) (3:6960) (70) with  $C_6H_6+AlCl_3$  see indic. refs.]

From other miscellaneous sources. [For formn. of C from pentaphenylethane [Beil. V-755,  $V_1$ -(386),  $V_2$ -(711)] with PCl<sub>5</sub> at 170° for 2 hrs. or refluxed in C<sub>6</sub>H<sub>6</sub> (58), or (together with other products) with HCl at 150° (71) or on evapn. of soln. in SO<sub>2</sub>Cl<sub>2</sub> (72).]

#### CHEMICAL BEHAVIOR OF C

Pyrolysis of  $\bar{C}$ .  $\bar{C}$  on htg. at 200° (52) (73) or 250° (53) or at 150° in pres. of  $P_2O_5$  (74) loses HCl and yields both triphenylmethane (1:7220), m.p. 92°, and 9-phenylfluorene [Beil. V-720, V-1(355), V<sub>2</sub>-(630)], m.p. 147-148°; note that 9-phenylfluorene is also formed from  $\bar{C}$  in various other reactions such as with POCl<sub>3</sub> on distriction. (23) or with  $\frac{1}{10}$  wt. of mossy zinc refluxed in  $C_6H_6$  for 5 hrs. (75).

Reduction of  $\bar{C}$ .  $\bar{C}$  is reduced to triphenylmethane by many different types of reducing agent [e.g.,  $\bar{C}$  in anhydrous formic acid (1:1005) at 100° evolves  $CO_2$  + HCl and gives (yield: 79% in 30 min., 90% in 2 hrs (4)) triphenylmethane (1:7220);  $\bar{C}$  in EtOII treated with cone.  $H_2SO_4$  at 70–80° gives (76) (17) triphenylmethane accompanied by acetaldehyde (1:0100);  $\bar{C}$  is reduced by diethyl ether in the presence of AlCl<sub>3</sub> (56) (77), FeCl<sub>3</sub> (65), or ZnCl<sub>2</sub> (78) to triphenylmethane (1:7220), acetaldehyde (1:0100) and ethyl chloride (3:7015) also being formed; other reagents which effect reduction of  $\bar{C}$  to triphenylmethane (1:7220) include hydrazobenzene in boiling  $C_6H_6$  (79), cyclohexadiene-1,3 (dihydrobenzene) + HgCl<sub>2</sub> (80); Zn + AcOH (50) (reaction here is complex, and various other prods. may be formed according to conditions), and dry  $H_2S$  at 150° (81)].

Oxidation of  $\tilde{C}$ .  $\tilde{C}$  is not readily oxidized:  $\tilde{C}$  with silver oxide in dry  $C_6H_6$  or ether gives (78) a little fuchsone,  $(C_6H_5)_2=C_6H_4=O$  [Beil. VII-520, VII<sub>1</sub>-(290)], m.p. 168°, together with other amorphous products difficult to purify; note, however, that  $\tilde{C}$  in alcohol-free acetone with KMnO<sub>4</sub> in same solvent instantly reduces the KMnO<sub>4</sub> and gives (100% yield (85)) triphenylcarbinol (1:5985).

Hydrolysis of  $\tilde{C}$ .  $\tilde{C}$  with aq. hydrolyses to triphenylcarbinol (1:5985) + HCl: e.g.,  $\tilde{C}$  on shaking with aq. at ord. temp. is 85% hydrolysed in 48 hrs. (26) cf. (82) (83) (in this connection note m.p./compn. diagram (26) of  $\tilde{C}$  + triphenylcarbinol);  $\tilde{C}$  with boilg. aq. rapidly and completely yields only triphenylcarbinol.

[For study of hydrolysis of  $\bar{C}$  by aq. in acetone (84), in dioxane (14), or by aq. HCl (35) see indic. refs.]

 $\bar{C}$  dissolves in cold conc.  $H_2SO_4$  yielding (86) (48) (87) a golden-yellow soln. with evolution of HCl (88) (86) (48) and formn. of triphenylcarbinyl hydrogen sulfate; dilution of this soln. with aq. ppts. (99% yield (86) (48)) triphenylcarbinol (1:5985).

[C dissolves in phenol with deep brown color; on dilution of the freshly prepd. soln. with aq. it becomes colorless and both HCl and triphenylcarbinol are detectable; if, however, the phenol soln. has stood for some time prior to dilution some p-tritylphenol [Beil. VI-731, VI<sub>1</sub>-(364)], m.p. 282°, is also formed (89) (see also below under behavior of C with phenols).]

#### BEHAVIOR OF C WITH OTHER INORGANIC REACTANTS

#### WITH SALTS OF VARIOUS INORGANIC ACIDS

#### With Salts of Hydrogen Peroxide

[ $\bar{C}$  in acetone with 30% H<sub>2</sub>O<sub>2</sub> in freezing mixt. treated with 50% KOH gives (90) trityl hydroperoxide, (C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>C—O—OH (isolated as its addn. cpd. with pyridine hydrochloride, viz., (C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>C—O—OH.C<sub>5</sub>H<sub>5</sub>N HCl, cryst. from alc., m.p. 133° dec.), accompanied by some triphenylcarbinol (1:5985).]

[ $\bar{C}$  in  $C_6H_6$  with aq.  $Na_2O_2$  as directed (91) gives (5-11% yield) bis-trityl peroxide, ( $C_6H_6$ )<sub>3</sub>C—O—O—C( $C_6H_6$ )<sub>3</sub>, cryst. from hot CS<sub>2</sub>, m.p. 185-186°, accompanied by much triphenylcarbinol; the bis-trityl peroxide is also obtainable from the trityl hydroperoxide (above) by reaction with  $\bar{C}$  in  $C_6H_6$  on addn. of aq. alk. (90).]

#### With Salts of Halogen Hydrides

With alkali or alkaline-earth salts. [C with alkali fluorides seems not to have been studied; note, however, that trityl fluoride, cryst. from CCl<sub>4</sub>, m.p. 104° (6), has been prepd. by other means, viz., from triphenylcarbinol with HF (6) or with acetyl fluoride (85).]

[ $\overline{C}$  with anhydrous CaBr<sub>2</sub> in C<sub>6</sub>H<sub>6</sub> at room temp. for 5-6 hrs. (92) or  $\overline{C}$  with HBr in C<sub>6</sub>H<sub>6</sub> at room temp. for 20 hrs. (92) is largely converted to trityl bromide [Beil. V-704, V<sub>1</sub>-(348), V<sub>2</sub>-(617)], m.p. 152°.]

[For study of rate of reaction of  $\bar{C}$  with KI in dry acetone at 0° see (93); note, however, that, although trityl iodide [Beil. V-706], m.p. 132°, is doubtless formed, yet more or less sepn. of I<sub>2</sub> and formn. of triphenylmethyl (or its reaction prods.) occurs also.]

With metal chlorides.  $\bar{C}$  with many metallic chlorides forms double salts [e.g.,  $\bar{C}$  with AlCl<sub>3</sub> forms (19) (87) a cpd.,  $\bar{C}$ .AlCl<sub>3</sub>, dark-yellow very hygroscopic cryst. from nitrobenzene + CS<sub>2</sub>, dec. abt. 122-125°;  $\bar{C}$  in nitrobenzene with SnCl<sub>4</sub> gives on addn. of dry CS<sub>2</sub> or.-yel. cryst. of a cpd.,  $\bar{C}$ .SnCl<sub>4</sub> (30) (57) (87) (94);  $\bar{C}$  with SbCl<sub>5</sub> gives (57) a cpd.,  $\bar{C}$ .SbCl<sub>5</sub>, red cryst.;  $\bar{C}$  with BCl<sub>3</sub> gives a cpd.,  $\bar{C}$ .BCl<sub>3</sub> (6), etc.].

#### With Salts of Hydrogen Sulfide

[ $\bar{C}$  with alc. NaSH (from alc. NaOEt satd. with H<sub>2</sub>S) (81) cf. (95) (96), or  $\bar{C}$  with KSH in C<sub>6</sub>H<sub>6</sub> (96), gives triphenylthiocarbinol [Beil. VI<sub>1</sub>-(352)], cryst. from abs. alc. or alc. + CHCl<sub>3</sub>, m.p. 107° (81) (95). —  $\bar{C}$  with alc. Na<sub>2</sub>S as directed gives (21% yield (95)) bistrityl sulfide, m.p. 182° dec. — Note also that bis-trityl disulfide, cryst. from C<sub>6</sub>H<sub>6</sub> + pet. ether, m.p. 157° dec. (95) [Beil. VI<sub>1</sub>-(353)], is also known but prepd. indirectly (81) (95) (96).]

#### With Other Salts of Inorganic Acids

[ $\bar{C}$  with Ag<sub>2</sub>SO<sub>4</sub> in liq. SO<sub>2</sub> (23), C<sub>6</sub>H<sub>6</sub> (97), or at 120-130° for 15-20 min. (98) cf. (48) gives di-trityl sulfate [Beil. VI-717, VI<sub>1</sub>-(351)]. —  $\bar{C}$  with AgClO<sub>4</sub> in nitrobenzene + C<sub>6</sub>H<sub>6</sub> gives (99) trityl perchlorate [Beil. VI-717, VI<sub>1</sub>-(351)]. —  $\bar{C}$  with AgCrO<sub>4</sub> in C<sub>6</sub>H<sub>6</sub> gives (48) cf. (100) di-trityl chromate [Beil. VI-717]; note that this salt is also obtd. from  $\bar{C}$  with CrO<sub>3</sub> in C<sub>6</sub>H<sub>6</sub> or CCl<sub>4</sub> (101).]

[ $\bar{C}$  with NaN<sub>3</sub> in C<sub>6</sub>H<sub>6</sub> refluxed 20 hrs. gives (100% yield (102)) trityl azide [Beil. V-708, V<sub>1</sub>-(349), V<sub>2</sub>-(618)], colorless cryst., m.p. 64° (102), 65° (103). — For study of reaction of  $\bar{C}$  with silver hyponitrite and decompn. of the transient trityl hyponitrite see (104).]

#### WITH METAL OXIDES

[ $\bar{C}$  with HgO in dry  $C_6H_6$ , ether,  $CS_2$ , or CHCl<sub>3</sub> as directed (78) cf. (105) (106) gives (50-85% yield (78)) di-trityl oxide, cryst. from xylene, m.p. 237-238° (106), 235-237° (78) (105). — Note that  $\bar{C}$  with  $Ag_2O$  in  $C_6H_6$  undergoes oxidation (cf. above); note that  $\bar{C}$  with  $CrO_3$  in  $C_6H_6$  or  $CCl_4$  gives (101) di-trityl chromate [Beil. VI-717].]

#### WITH METALS

With alkali metals (or their amalgams). [ $\bar{C}$  in dry ether with 1% Na/Hg on shaking at room temp. (2) (8) (107) (108) (109) or  $\bar{C}$  with Na in liq. NH<sub>3</sub> (112) gives tritylsodium (sodium triphenylmethyl) [Beil. XVI<sub>1</sub>-(589)].  $\bar{C}$  with K in liq. NH<sub>3</sub> gives (112) tritylpotassium. —  $\bar{C}$  in dry ether with excess Li/Hg, Rb/Hg, or Cs/Hg in absence of air gives (113) corresp. trityllithium, tritylrubidium, or tritylcesium. — For behavior of  $\bar{C}$  with calcium in liq. NH<sub>3</sub> see (112). — In this connection note that  $\bar{C}$  in dry ether, C<sub>6</sub>H<sub>6</sub>, or CS<sub>2</sub> in absence of air and under CO<sub>2</sub> with molecular Ag (91) cf. (117), Hg (91), Zn (91) (114) (115), or  $\bar{C}$  with Cu bronze in C<sub>6</sub>H<sub>6</sub> + EtOAc (116) or in s.t. at 80–110° in dark (117) gives triphenylmethyl (trityl); note also that  $\bar{C}$  with Zn + AcOH in the cold gives (50) triphenylmethane (1:7220) + trityl, but the same mixture if heated gives triphenylmethane + 1-benzohydryl-4-tritylbenzene [Beil. V-761], m p. 231° (118), 230° cor. (119), the latter under certain conditions attaining as high as 70% (50) (118).]

With Zn. [ $\bar{C}$  with  $\frac{1}{10}$  wt. of mossy zinc refluxed in  $C_6H_6$  for 5 hrs. gives (75) 9-phenyl-fluorene (see also above under pyrolysis of  $\bar{C}$ ). — For behavior of  $\bar{C}$  with Zn in EtOAc see (120).]

With Mg (in dry ether).  $\bar{C}$  with Mg in dry ether in the pres. of I<sub>2</sub> as directed gives (96% yield (13)) cf. (121) of corresp. R—Mg—Cl cpd., viz., trityl—Mg—Cl [Beil. XVI-942, XVI<sub>1</sub>-(556)]. — [The former controversy as to whether this can exist in a more reactive quinonoid structure ( $\alpha$ ) or a relatively less reactive carbonium ( $\beta$ ) structure cannot be reported here (for references see above Beilstein citation), nor can space be taken for a full account of its reactions.] — Note, however, that this RMgCl cpd. with CO<sub>2</sub> gives (yields: 91% (2), 87.5% (121)) (122) (59) triphenylacetic acid [Beil. IX-712, IX<sub>1</sub>-(309)], m.p. 264-265° dec. (122); for study of adverse influence of triphenylcarbinol or of benzaldehyde see (121).

#### WITH NITROGENOUS INORGANIC REACTANTS

[ $\bar{C}$  dislvd. in  $C_6H_6$  and satd. with dry NH<sub>3</sub> gas (123) (124) repeatedly (125), or  $\bar{C}$  in naphthalene with dry NH<sub>3</sub> gas at 130° (126), gives (45% yield (126)) tritylamine (triphenylmethyl-amine) [Beil. XII-1343, XII<sub>1</sub>-(557)], pr. from abs. alc., m.p. 102° (126), 103-104° (124), 105° (127) (corresp. B.HCl, spar. sol. aq., m.p. 244° (127)).]

[ $\bar{C}$  with NH<sub>2</sub>OH (from NH<sub>2</sub>OH.HCl in MeOH/NaOMe) in C<sub>6</sub>H<sub>6</sub> gives (73–75% yield (3)) (128) cf. (129) N-tritylhydroxylamine [Beil. XV-33, XV<sub>1</sub>-(11)], pr. from C<sub>6</sub>H<sub>6</sub>/pet. ether, m.p. 130–135° (3), 124–135° u.c. (128); for study of rearr. of this prod. see (129). — For study of N-methyl ether of this prod., viz., N-trityl-N-methylhydroxylamine (similarly prepd. from  $\bar{C}$  with N-methylhydroxylamine) see (130) (131); for study of the isomeric O-methyl ether, viz., N-trityl-O-methylhydroxylamine (from  $\bar{C}$  with methoxyamine), see (132).]

[ $\bar{C}$  with hydrazine hydrate (2 moles) in alc. at ord. temp. (232) or in dry ether under reflux (233) or in dry pyridine at 45–50° (234) gives (63% yield (234)) N,N'-di-tritylhydra-

zine  $(\alpha,\alpha'$ -hydrazotriphenylmethane) [Beil. XV-582, XV<sub>I</sub>-(184)], m.p. 212° (234), 219–220° dec. (235), often accompanied (232) (233) by some N-tritylhydrazine [Beil. XV-581, XV<sub>I</sub>-(184)].

#### BEHAVIOR OF C WITH ORGANIC REACTANTS

#### WITH ORGANIC HYDROXY OR MERCAPTO COMPOUNDS

#### With Alcohols

Č with alcohols gives the corresp. ethers of triphenylcarbinol. With the lower monohydric alcs. this conversion can occur merely on solution and warming, but higher alcs. usually require htg., use of metal alcoholate, use of an acid acceptor (pyridine), etc.

With methyl alcohol.  $\bar{C}$  with MeOH (1:6120) in  $C_6H_6$  for 10 min. (133), or  $\bar{C}$  with MeOH/NaOMe refluxed 4 hrs. (134), gives (55% yield (134)) triphenylcarbinyl methyl ether ( $\alpha$ -methoxytriphenylmethane), cryst. from MeOH, m.p. 83.5-84° (133), 82.5-83° (134), 82.6-82.9° (134) (136), 82° (64); note, however, that this product exists in dimorphous forms; the lower-melting form just mentioned sometimes (134) (135) changes to a higher-melting form, m.p. 96.0-96.5° (134) (135); note also that the m.p. of this methyl ether close to that of the ethyl ether (see below) but that a mixed m.p. of the two is depressed (136). —[For studies of hydrolysis of the methyl trityl ether to triphenylmethane (1:7220) and formaldehyde (1:0145) see (134) (136); for prepn. of its addn. cpd., m.p. 90-91°, with PkOH see (138)]

With ethyl alcohol.  $\bar{C}$  with abs. EtOH (1:6130) on warming (1) (4) (5) (52) or even shaking 1 min. at ord. temp. (139), or  $\bar{C}$  with abs. EtOH/NaOEt (9) (56) (134) (139), gives (yields: 83% (138), 50% (134)) triphenylearbinyl ethyl ether (a-ethoxytriphenyl-methane), cryst. from abs. alc., ether, or pet. ether, m.p. 84° (5), 83° (1) (9), 81.2-81.8° (134), 81.3° (56), 81° (4). — Note that the m.p. of this prod. is almost identical with that of triphenylearbinyl methyl ether (above) but that a mixed m.p. of the two is depressed (137). — [For study of pyrolysis of this ethyl trityl ether yielding triphenylmethane (1:7220) and acetaldehyde see (134) (136); for study of its cleavage with AcCl (3:7065) (57) (46), with AlCl<sub>3</sub> in CS<sub>2</sub> (56), or with EtOH/HCl (26) see indic. refs.; for conversion with boilg. anhydrous formic acid to triphenylmethane (1:7220) see (4).]

With other monohydric alcs.  $|\bar{C}|$  with n-PrOH (1:6150) in dry pyridine at room temp. for 20 hrs. (140), or  $\bar{C}$  with n-PrOH/NaO n-Pr refluxed 4 hrs. (134), gives (10% yield (134)) trityl n-propyl ether, cryst. from n-PrOH/pet. ether, m.p. 55° (140), 50.5-52.5° (134). —  $\bar{C}$  with isopropyl alc. (1:6135) in dry pyridine at room temp. for 20 hrs. (140) or  $\bar{C}$  with isopropyl alc./Na isopropylate under reflux gives (50% yield (134)) trityl isopropyl ether, m.p. 113° (140), 112.9-113.8° (134), 111.7° (56). —  $\bar{C}$  with n-BuOH (1:6180) + sodium n-butylate gives (40% yield (134)) trityl n-butyl ether, oil, b.p. 196-198° at 5 mm. (134). — For prepn. of corresp. trityl ethers from sec.-butyl alc. (1:6155) (134), isobutyl alc. (1:6200) (134), cetyl alc. (1:5945) (140), allyl alc. (1:6145) (140), benzyl alc. (1:6480) (134), cyclohexanol (1:6415) (140), see indic. refs.]

[For prepn. of corresp. trityl ethers from l-menthol (1:5940) (152) (153) (154), d-borneol (1:5990) (152) (153), or cholesterol (1:5975) (152) see indic. refs.]

[Note, however, that  $\bar{C}$  with K triphenylcarbinolate does not give the expected prod. but rather (96) p-hydroxytriphenylcarbinol in the form of its anhydride fuchsone; the expected ditrityl ether has been obtd. from  $\bar{C}$  by action of HgO (see above).]

With various important substituted monohydric alcohols. [ $\bar{C}$  with  $\beta$ -methoxyethanol (methyl "cellosolve") (1:6405) in pyridine gives (80-85% yield (141)) trityl  $\beta$ -methoxyethyl ether, m.p. 105.5-106.0° u.c. (141), 104° (142). —  $\bar{C}$  with  $\beta$ -ethoxyethanol ("cellosolve") (1:6410) in pyridine at 100° for 5 hrs. gives (92% yield (141)) trityl  $\beta$ -ethoxyethyl

ether, m.p. 79.0–79.5° u.c. (141), 77–78° (143). —  $\bar{\rm C}$  with  $\beta$ -isopropoxyethyl alc. (isopropyl "cellosolve") (1:6413) in pyridine gives (50–60% yield (141)) trityl  $\beta$ -isopropoxyethyl ether, m.p. 71.0–71.5° u.c. (141). —  $\bar{\rm C}$  with  $\beta$ -benzyloxyethyl alc. (benzyl "cellosolve") (1:6533) in pyridine gives (50–70% yield (141)) trityl  $\beta$ -benzyloxyethyl ether, m.p. 76–77° u.c. (141). —  $\bar{\rm C}$  with  $\beta$ -phenoxyethyl alc. (phenyl "cellosolve") (1:6518) in pyridine gives (75–85% yield (141)) trityl  $\beta$ -phenoxyethyl ether, m.p. 123.5–124.0 u.c. (141).

[C with  $\beta$ -( $\beta$ -methoxyethoxy) ethyl alc. (methyl "carbitol") (1:6458) in pyridine gives (55-60% yield (141)) trityl  $\beta$ -( $\beta$ -methoxyethoxy) ethyl ether, m.p. 58-59° u.c. (141). — Note that the trityl ethers of  $\beta$ -( $\beta$ -ethoxyethoxy) ethyl alc. ("carbitol") (1:6470) and of  $\beta$ -( $\beta$ -n-butoxyethoxy) ethyl alc. (butyl "carbitol") (1:6517) are unreported.]

With various polyhydric alcohols. (For  $\bar{C}$  with carbohydrates see separate section below.)

[Č with ethylene glycol (1.6465) in pyridine may according to conditions (141) give either or both of the two possible ethers, viz., ethylene glycol monotrityl ether, m.p. 105-105.5° u.c. (141), 104.5-105.5° (144), 102-103° (143), 98-100° (140) (corresp. benzoyl deriv. m.p. 58.5-59.5° (144); corresp. p-nitrobenzoyl deriv., m.p. 155-156° (144)), and/or ethylene glycol ditrityl ether, m.p. 190° u c. (145), 187-188° u.c. (141), 185-186° (140).]

[C with propylene glycol (propanediol-1,2) (1:6455) in pyridine gives (146) propylene glycol ditrityl ether, m.p. 176.5-177.0° u.c. (146).]

[Č (2 moles) with diethylene glycol (1:6525) in pyridine gives (60-70% yield (141)) diethylene glycol ditrityl ether, m.p. 157.5-158.0° u.c. (141); note that corresp. diethylene glycol monotrityl ether has m.p. 112.5-113.5° u.c. (141).]

[C (2 moles) with triethylene glycol (1:6538) in pyridine gives (45-60% yield (141)) triethylene glycol ditrityl ether, mp. 142.0-142.5° u.c. (141); note that this prod. is dimorphous, and an unstable form, m.p. 130.5-131.5° u.c., sometimes obtd. can be converted to the stable higher-melting form by htg. at 125° or by grinding in acetone (141).]

[Č with glycerol (1:6540) may give mono-, di-, or tritrityl ethers acc. to conditions; glycerol  $\alpha$ -monotrityl ether, m p. 93-94° (147), 92-94° (140), but also sometimes in another form of m.p. 108-110° (147) (148), 109-110° (149); glycerol  $\alpha$ ,  $\alpha'$ -ditrityl ether, m.p. 174-177° (150), 174-176° cor. (151), 170-171° (140); glycerol  $\alpha$ ,  $\alpha'$ ,  $\beta$ -tris-trityl ether, m.p. 196-197° (147) (150). — Note that the relationships of these three ethers are subtle; e.g., the monoether at 180-190° is converted (147) into the  $\alpha$ ,  $\alpha'$ -diether; the latter in turn at 260° gives (147) the triether.]

[ $\bar{C}$  (4 moles) with pentaerythritol (1:5850) in pyridine gives (145) a tetratrityl ether m.p. above 350°.]

With carbohydrates and their relatives.  $\bar{\mathbf{C}}$  has recently been much employed as a tritylating agent for compounds of the carbohydrate group. This use started from the original (erroneous) impression that  $\bar{\mathbf{C}}$  etherified hydroxyl groups only if the latter were primary. However, although  $\bar{\mathbf{C}}$  does in general react preferentially with such primary hydroxyls, and this reaction has been proposed (155) as a means for the detection of primary alcs. in the presence of secondary and/or tertiary alcohols, yet such primary tritylation is *not* specific. Abundant evidence is already available (156) (157) (158) (159) that secondary hydroxyl groups undergo tritylation. Although the scope of this book cannot be extended to a detailed treatment of the use of  $\bar{\mathbf{C}}$  as tritylating agent in the carbohydrate group, yet a few brief citations may be of service as leading references.

With various tetrahydric alcohols. [For behavior of  $\tilde{C}$  with meso-erythritol (1:5825) and pentaerythritol (1:5850) see [145].]

With various pentahydric alcohols and pentoses. [For behavior of  $\bar{C}$  with adonitol, arabitol, xylitol, fucitol, rhamnitol, and epirhamnitol see (145); with arabinose, ribose, and xylose see (160); with various derivatives of these see (158) (167) (168).]

With various hexahydric alcohols and hexoses. [For behavior of  $\bar{C}$  with mannitol (145) (161), sorbitol (145), dulcitol (162) see indic. refs.; with d-glucose (163) (164) (165), with d-galactose (165), with fructose (160) (166); with various derivs. of these see (159) (169) (152) (170) (171) (172) (173).]

With various disaccharides. [For behavior of  $\bar{C}$  with sucrose (174), maltose (174), turanose (175) see indic. refs.]

With various polysaccharides. [For behavior of C with raffinose (174), glycogen (176), starch (177), cellulose (177), and arabogalactan (178) see indic. refs.]

With thiols (for thiophenols see below).  $\bar{C}$  with mercaptans yields the corresp. trityl thioethers [e.g.,  $\bar{C}$  with MeSH in dry ether or  $C_6H_6$  gives (179) (180) trityl methyl sulfide [Beil. VI<sub>1</sub>-(352)], lfts. from MeOH, m.p. 105° (179);  $\bar{C}$  with EtSH similarly gives (179) (180) trityl ethyl sulfide [Beil. VI<sub>1</sub>-(353)], m.p. 125° (179). —  $\bar{C}$  with Na triphenylthiocarbinolate in alc. on htg. gives (95) ditrityl sulfide, m.p. 182° dec. (also obtd. from  $\bar{C}$  + abs. alc. Na<sub>2</sub>S) — For tritylation with  $\bar{C}$  of SH groups in mercaptoacetic acid,  $\alpha$ -mercaptopropionic acid (thiolactic acid),  $\beta$ -mercaptopropionic acid (thiohydracrylic acid,  $\alpha$ -mercaptosuccinic acid (thiomalic acid) see (180)].

With phenols. Č with phenols (as with alcohols) gives in general the corresp. trityl ethers; however, with phenols there is a further complication in that either rearrangement of the trityl radical of the ether or direct nuclear alkylation by the trityl radical of Č (or both) may occur according to the conditions employed, the latter reaction being profoundly favored by dissociating solvents.

With phenol (or its salts). [Č with KOC<sub>6</sub>H<sub>6</sub> (89) (181) cf. (182) or NaOC<sub>6</sub>H<sub>5</sub> (139) (182) in dry ether gives (yields: 90% (139), 71% (181), 70% (182)) trityl phenyl ether (α-phenoxytriphenylmethane) [Beil. VI-716, VI<sub>1</sub>-(350)], mp 103° (89) (165) (181), 102° (139) accompanied by some p-tritylphenol (4-hydroxytetraphenylmethane) [Beil. VI-731, VI<sub>1</sub>-(364)], m.p. 282° (182), 280° (179); note that the latter, which under favorable circumstances may represent as much as 74% yield (182), may be separated from the former by use of "Claisen's alkali" (182), was originally (89) overlooked; note, also, that Č with phenol (1:1420) in pyridine at 100° for 3½ hrs. gave 28% yield (165) trityl phenyl ether, while Č with phenol at 130-140° for 4 hrs. gave (182) cf. (179) only 1.5% of this product and 98.5% of the isomeric p-tritylphenol.]

With the 3 cresols. [ $\bar{C}$  with o-cresol (1:1400) in pyridine at 110° for 5-6 hrs. (183) (181) (184) or  $\bar{C}$  with sodium o-cresolate in dry ether refuxed 2 hrs. (183) gives (yields: 31-53% (183) trityl o-tolyl ether, m.p. 112-113° (183) (181), 112 5° (184), accompanied by as much as 26% (183) of the isomeric nuclear tritylation prod., 4-trityl-2-methylphenol, m.p. 186° (185), 185° (181), 183° (183) (186), 182-183° (187);  $\bar{C}$  with sodium o-cresolate in excess o-cresol at 120° for  $3\frac{1}{2}$  hrs. (183) or  $\bar{C}$  with o-cresol at 180° for 5 hrs. (181) or in pres. of  $ZnCl_2$  at 180° for  $\frac{1}{2}$  hr. (181) gives (33% yield (183)) 4-trityl-2-methylphenol. — Note that this latter cryptophenol was originally (181) (183) (184) supposed to possess the structure  $\alpha$ -(o-hydroxyphenyl)- $\beta$ , $\beta$ , $\beta$ -triphenylethane, but this erroneous view has since (186) (187) cf. (188) (189) (195) been corrected.]

[ $\overline{C}$  with the sodium salt of *m*-cresol (1:1730) in dry ether under reflux 2 hrs. gives (53% yield (185)) trityl *m*-tolyl ether, m.p. 101° (185), none of the expected nuclear tritylation prod., viz., 4(or 2)-trityl-3-methylphenol being found although the latter has subsequently (190) (186) been otherwise obtained and found to have m.p. 213-214° (190), 213° (186).]

[ $\overline{C}$  with p-cresol (1:1410) in dry pyridine at 100° for 7 hrs. (181) or 5 hrs. (191) (26) or  $\overline{C}$  with sodium p-cresolate in dry ether refluxed 2 hrs. (185) gives (yields: 80% (191), 50-60% (185)) trityl p-tolyl ether, the latter being definitely trimorphous and occurring in three forms; viz., m.p. 114° (185), 113-114° (191) (192) (26); m.p. 95° (193) (194); and m.p. 81° (181) (193) (194) (note that the lower-melting forms tend to convert to the 114°

type (194)) accompanied by a trace of a cryptophenol, presumably 2-trityl-4-methylphenol, m.p. 182° (185) (190), also obtd. (64% yield (190)) from  $\bar{\rm C}$  with sodium p-cresolate in excess p-cresol at 130-140° for 3 hrs.]

With other phenols. [For further examples of nuclear tritylation of phenols by use of C with isochavibetol and isoeugenol see (196) cf. (26); with 2-hydroxynaphthoquinone-1,4 see (197). — For form. of di-trityl ethers from pyrocatechol (1:1520) (140) or from hydroquinone (1:1590) (198) see indic. refs.]

With thiophenols.  $\tilde{C}$  with thiophenol on htg. (199) or in  $C_6H_6$  soln. on refluxing  $\frac{1}{2}$  hr. (180) (179), or  $\tilde{C}$  with  $NaSC_6H_6$  in ether at ord. temp. for 18 hrs. (200) (201), gives (yield alm. quant. (199) (200), 96% (180)) trityl phenyl sulfide, m.p. 106.5° (180), 106° (201), 105–106° (199) (200), 105° (179); this prod. on oxidn. with  $CrO_3/AcOH$  gives (199) the corresp. sulfoxide, m.p. 163°, but is unaffected by  $H_2O_2$  (199) [for corresp. sulfone, m.p. 175–176° (210), see below under reaction of  $\tilde{C}$  with salts of organic acids (sodium benzene-sulfinate)].

[For corresp. sulfides from  $\bar{C}$  with o-thiocresol, p-thiocresol,  $\alpha$ -thionaphthol,  $\beta$ -thionaphthol, 2,4-dinitrothiophenol see (201).]

With enols or enolates. [For examples of reaction of  $\tilde{\mathbf{C}}$  with the enol form of diphenylacetaldehyde (202), methyl diphenylacetate (202), or with stilbenediol bis-MgI cpd. (203) see indic. refs.]

#### Behavior of C with Ethers

 $\bar{C}$  with various aliphatic ethers in the pres. of suitable catalysts yields triphenylmethane and an aldehyde [e.g.,  $\bar{C}$  with diethyl ether in the pres. of AlCl<sub>3</sub> (56) (77), FeCl<sub>3</sub> (65), or ZnCl<sub>2</sub> (78) gives triphenylmethane and acetaldehyde; although the latter is lost by polymerization the method is standard (77) for prepn. of triphenylmethane (1:7220)].

[Note, however, that with aromatic ethers nuclear tritylation occurs: e.g.,  $\bar{C}$  with anisole (1:7445) + SnCl<sub>4</sub> at 100-110° for 1 hr. gives (45% yield (204)) 4-tritylanisole, m.p. 200.5° (204).]

#### BEHAVIOR OF C WITH ORGANIC ACIDS

(For salts of organic acids see below.)

 $\bar{C}$  with AcOH even at 13° (133) (146) cf. (50) is in equilibrium with trityl acetate (see below) + HCl. —  $\bar{C}$  with thiolacetic acid (CH<sub>3</sub>COSH) gives trityl thiolacetate [Beil. VI-721, VI<sub>1</sub>-(353)], m.p. 138° (179). —  $\bar{C}$  with thiolbenzoic acid (C<sub>6</sub>H<sub>5</sub>COSH) in toluene gives (85% yield (180)) trityl thiclbenzoate [Beil. IX-422, IX<sub>1</sub>-(170)], m.p. 187.5-188° (180). —  $\bar{C}$  with free thiocyanic acid in C<sub>6</sub>H<sub>6</sub> gives (97% yield (180)) trityl thiocyanate, m.p. 139° (180) (see also below).

#### BEHAVIOR OF C WITH SALTS OF ORGANIC ACIDS

C with salts of organic acids normally reacts to yield the corresp. trityl esters.

 $\bar{C}$  with AgOAc in dry ether or  $C_6H_6$  on shaking at room temp. (57) or in  $C_6H_6$  refluxed 2 hrs. (46), or  $\bar{C}$  shaken with NH<sub>4</sub>OAc in  $C_6H_6$  at ord. temp. (205), gives trityl acetate, cryst. from AcOEt + lgr., m.p. 87-88° (46) (57). —  $\bar{C}$  with AgOBz in  $C_6H_6$  at 60° for 4 hrs. gives (96) trityl benzoate, m.p. 165-166° (96). — Note that in analogous fashion  $\bar{C}$  might be expected to react with silver salts of *p*-nitrobenzoic and 3,5-dinitrobenzoic acids to give corresp. esters, but these are unreported.

[Č with excess dry Ag<sub>2</sub>CO<sub>3</sub> in dry C<sub>6</sub>H<sub>6</sub> shaken 24 hrs. gives (60-80% yield (106)) (105) ditrityl carbonate, cryst. from xylene, m.p. 209° dec. (106), 205-210° (105); this prod. on htg. in xylene in pres. of Cu pdr. decomposes (106) (105) into CO<sub>2</sub> and ditrityl ether, m.p. 237-238° (106) (see also above under Č with HgO).]

[C with excess Hg(CN)2 at 150-170° for 1 hr. gives (alm. 100% yield (53)) on extraction

with  $C_6H_6$  (53) (206) (207) trityl cyanide (triphenylacetonitrile) [Beil. IX-714, IX<sub>1</sub>-(309)], pr. from AcOH, m.p. 129° (208), 127.5° (53).]

[C with mercury fulminate in dry C<sub>6</sub>H<sub>6</sub> under cooling gives (65% yield (208)) trityl cyanide oxide, (C<sub>6</sub>H<sub>6</sub>)<sub>3</sub>CNO, ndls. from alc., m.p. 153-154° (208).]

[Č with KSCN in dry C<sub>6</sub>H<sub>6</sub> shaken at room temp. for 2 days gives (209) trityl thiocyanate [Beil. VI-721], m.p. 137° (209) (see also above under Č with organic acids (HSCN)).]

[ $\bar{C}$  with sodium benzenesulfinate in dry ether gives (210) trityl phenyl sulfone [Beil. VI-721], lfts. from ether, m.p. 175–176° (210); note that corresp. sulfoxide (see above under behavior of  $\bar{C}$  with thiophenol) has m.p. 163°. — Similarly,  $\bar{C}$  with sodium *p*-toluenesulfinate in dry  $C_6H_6$  gives (179) trityl *p*-tolyl sulfone [Beil. VI<sub>1</sub>-(353)], m p. 173° (179).]

#### BEHAVIOR OF C WITH ORGANOMETALLIC COMPOUNDS

This topic cannot be fully expanded within the scope of this book, but the following examples will serve as leading references.

With organo-alkali compounds. [ $\bar{C}$  with L<sub>1</sub> n-butyl in pet. ether for 9 days gives (26% yield (211)) 1,1,1-triphenylpentane, m.p. 153-154° (211). —  $\bar{C}$  with Li  $C_6H_5$  gives (212) free trityl isolated in form of (20% yield) ditrityl peroxide.]

[ $\bar{C}$  with Na *n*-butyl or Na trityl in liq. NH<sub>3</sub> + toluene (112) or  $\bar{C}$  with Na trityl in dry ether (108) gives free trityl. —  $\bar{C}$  with Na + tetraphenylethylene as directed gives (213) pentaphenylethyl.]

With RMgX compounds.  $\bar{C}$  with MeMgBr (214) or  $\bar{C}$  with MeMgI (215) gives no gas (216) cf. (217) (218) but couples giving (yields: 95% (214), 70% (215)) 1,1,1-triphenylethane ( $\alpha$ -methyltriphenylmethane) [Beil. V-709, V<sub>1</sub>-(350)], cryst. from alc., m.p. 94-95° (214) (215), 94.8-950° (15); note that this prod. is also obtd. from MeMgBr with trityl acetate (61% yield (219)) or from K trityl with MeI in liq. NH<sub>3</sub> (85-94% yield (220)).

[C with EtMgBr in dry ether reacts rapidly and quant. (221) yielding (215) not only the expected 1,1,1-triphenylpropane [Beil. V-712], m.p. 51° (215), but also (215) triphenylmethane (1:7220) and ethylene]

[C with n-PrMgBr in dry ether gives (215) not only 1,1,1-triphenylbutane, m.p. 79° (215), but also considerable triphenylmethane (1:7220). — C with iso-PrMgBr in dry ether gives (215) not only 1,1,1-triphenyl-2-methylpropane, b.p. 233-234° at 21 mm. (215), but also much triphenylmethane (1:7220)]

[ $\bar{C}$  with  $C_6H_5MgBr$  in dry ether or  $C_6H_6$  gives a small yield (25-30% (222), 10-12% (139), 5-10% (215) (223)) tetraphenylmethane [Beil. V-738, V<sub>1</sub>-(371), V<sub>2</sub>-(672)], m.p. 281-282° (224) (225), b p. 431° at 760 mm. (225), but the principal product (yield: 50-77% (222), 47.4% (226)) is 4-benzohydrylbiphenyl (p-phenyltetraphenylmethane) [Beil. V-738, V<sub>2</sub>-(672)], m.p. 111° (226), 112-113° (116); for explanation and study of this reaction see (222). — Note that  $\bar{C}$  with  $C_6H_5MgI$  behaves differently giving (227) cf. (179) triphenylmethyl and biphenyl (1:7175).]

[ $\bar{C}$  in  $C_6H_6$  with benzyl MgCl in dry ether gives (100% yield (215)) (228) 1,1,1,2-tetraphenylethane [Beil. V-740, V<sub>1</sub>-(372), V<sub>2</sub>-(674)], m.p. 144° (215), 143.5-143.7° (15). —  $\bar{C}$  with benzohydryl bromide + Mg in dry ether (215) cf. (230) (or better trityl MgBr + benzohydryl bromide (229) cf. (230)) gives (90% yield (229)) pentaphenylethane [Beil. V-755, V<sub>1</sub>-(386), V<sub>2</sub>-(711)], m.p. in air 166-178° (229), in N<sub>2</sub> 182-185° (229). —  $\bar{C}$  with trityl MgCl gives (230) free trityl.]

[For behavior of C with phenylacetylenyl MgBr giving trityl-phenylacetylene or with acetylene-bis-MgBr giving di-tritylacetylene (hexaphenylbutyne-2) see (231).]

#### BEHAVIOR OF C WITH (ORGANIC) AMINES

(For  $\tilde{C}$  with NH<sub>3</sub>, NH<sub>2</sub>OH, NH<sub>2</sub>NH<sub>2</sub>, etc., see above under  $\tilde{C}$  with inorganic nitrogen compds; for  $\tilde{C}$  with arylhydrazines see below.)

#### C with Primary Amines

[Č with MeNH<sub>2</sub> in C<sub>6</sub>H<sub>6</sub> in pres. of NaOMe gives (125) trityl-N-methylamine [Beil. XII-1344, XII<sub>1</sub>-(557)], m.p. 73° (125) (236) (corresp. B.HCl, m.p. 216° (125)).]

With aromatic prim. amines.  $\bar{C}$  in  $C_6H_6$  with aniline in alc. refluxed 15 min. gives (80% yield (228)) (57) N-tritylanıline [Beil. XII-1344, XII<sub>1</sub>-(557)], cryst. from alc./ether, m.p. 149-150°, (57), 148-149° (237), 146° (228) [note that this prod. with ½ its wt. ZnCl<sub>2</sub> at 160° for 15 min. rearranges (228) to p-tritylaniline [Beil. XII-1348], ndls. from toluene or alc., m.p. 256° cor. (225), 249° (228); note also that  $\bar{C}$  is claimed to form with aniline an addn. cpd., m.p. 189-190° (34)].

[ $\bar{\mathbf{C}}$  in  $\mathbf{C}_6\mathbf{H}_6$  with o-toluidine in alc. refluxed 15 min. gives (228) N-trityl-o-toluidine, m.p. 142.5° (228), 142° (237) (238), 140–142° (57); this prod. with  $\mathbf{ZnCl_2}$  at 160° for 15 min. rearranges (82% yield (189)) (228) to 4-trityl-2-methylaniline, m.p. 216° (228), 215° (189) (not to α-(2-amino)- $\beta$ , $\beta$ , $\beta$ -triphenylethane as originally supposed (228) cf. (189)). — $\bar{\mathbf{C}}$  with m-toluidine directly has not been studied nor has the other expected product, viz., N-trityl-m-toluidine, nor its rearr. prod., been reported. — $\bar{\mathbf{C}}$  in  $\mathbf{C}_6\mathbf{H}_6$  with p-toluidine in alc. refluxed 15 min. gives (228) N-trityl-p-toluidine [Beil XII-1344], m.p. 180° (228), 177–178° (85), 177° (238), 176° (237): this product with  $\mathbf{ZnCl_2}$  at 190° for 30 min. does not (228) rearrange.]

[Č with p-aminobiphenyl (p-xenylamine) in  $C_6H_6$  on htg. gives (82% yield (239)) N-trityl-p-xenylamine, pr. from  $C_6H_6$ , m.p. 179.5-180.5° (239); note that this prod. does not rearrange ]

#### C with Secondary Amines

With aliphatic sec. amines.  $[\bar{C} \text{ with } Me_2NH \text{ in } C_6H_6 \text{ gives } (65\% \text{ yield } (240)) \text{ trityl-dimethyl-amine, cryst. from abs. alc., m.p. } 95-97^{\circ} (240), 97^{\circ} (236).]$ 

With aromatic sec. amines.  $[\bar{C}]$  with diphenylamine might first be expected to give N-trityl-diphenylamine, ndls. from toluene, m.p. 172° (241), which has actually been prepd. by other means (241) (242) (243); however,  $\bar{C}$  with diphenylamine (244) in hot  $C_6H_6$  (243) or pyridine (165) or the above N-trityl-diphenylamine with diphenylamine HCl in  $C_6H_6$  or in hot AcOH directly (243) gives the rearr. prod., viz., 4-trityl-diphenylamine (4-anilinotetraphenylmethane), m.p. 242° (243) (244), 240° (165). — For use of these and related prods. as antioxidants see (244) (245). —For analogous behavior of  $\bar{C}$  with di-p-tolylamine, di-p-amylamine, and di-(p-dimethylaminophenyl)amine see (243).]

[For behavior of  $\tilde{C}$  with N,N-diphenyl-p-phenylenediamine yielding a blue meriquinoid salt, m.p. 182-183°, see (246) (247) (248); with indole and with 2-methylindole giving N-trityl derive. see (196).]

With heterocyclic sec. amines. [C with piperidine in C<sub>6</sub>H<sub>6</sub> yields (179) N-tritylpiperidine, ndls. from alc., m.p. 153° (179).]

#### C with Tertiary Amines

With aliphatic ter-amines. [ $\bar{C}$  with Me<sub>3</sub>N in acetonitrile + CHCl<sub>3</sub> at room temp. ppts. a prod., m.p. 190–195° dec. (249), of compn.  $2(C_6H_5)_3COH$ . (CH<sub>3</sub>)<sub>3</sub> N.HCl from which extraction with aq. leaves triphenylcarbinol (1:5985), m.p. 161°, or from which extraction with C<sub>6</sub>H<sub>6</sub> leaves the trimethylamine HCl. — For analogous behavior of  $\bar{C}$  with Et<sub>3</sub>N see (249).]

With aromatic ter-amines. [C with 3 wts. dimethylaniline at 100-115° for 8 hrs. gives (42% yield (250)) 4-trityldimethylaniline (4-dimethylamino-tetraphenylmethane), cryst. from alc., m.p. 204-205° (250), 208° (251).]

With heterocyclic ter-amines. [ $\bar{C}$  with pyridine does not give a simple quaternary salt; however,  $\bar{C}$  with pyridine in nitromethane + CHCl<sub>3</sub> (249) or in EtOAc (249), or  $\bar{C}$  in dry pyridine with exactly 1 mole H<sub>2</sub>O (84) (252) (165), gives a definite prod., cryst. from acetone (249) or CHCl<sub>3</sub> (42), m.p. 176° (42), 174° (34) (253) (165), 172–174° (84), 170–175° (249); this prod. is formulated as either (C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>C.OH.C<sub>5</sub>H<sub>5</sub>N.HCl (249) or as (C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>CCl.-C<sub>5</sub>H<sub>5</sub>N.H<sub>2</sub>O (84) (252) (42).]

#### BEHAVIOR OF C WITH ARYLHYDRAZINES

With monoarylhydrazines.  $\bar{C}$  with phenylhydrazine (2 moles) in dry ether at room temp. gives (90% yield (254)) N-trityl-N-phenylhydrazine [Beil. XV-581, XV<sub>1</sub>-(184)], cryst. from boilg. abs. alc., m.p. 136-137° (254), 148° (255). [Note that this prod. is easily oxidized (dehydrogenated), e.g., with nitrous oxides (100% yield (254), 86% (256)) or Br<sub>2</sub>/aq. (100% yield (257)) giving tritylazobenzene ( $C_6H_5$ )<sub>3</sub>C—N=N— $C_6H_5$  [Beil. XVI-85], m.p. 113-114° (254), 110° (255), 110-112° (256) (for study of thermal decompn. of this prod see (258)).]

[C with p-nitrophenylhydrazine in a large vol.  $C_6H_6$  gives (257) cf. (256) N-trityl-N-(p-nitrophenyl)hydrazine, m.p. 170° (250)]

With diarylhydrazines. [ $\bar{C}$  with N,N-(unsym.)-diphenylhydrazine (2 moles) in  $C_6H_6$  refluxed 20 min. gives (259) N'-trityl-N,N-diphenylhydrazine, m.p. 136–137° (259). —  $\bar{C}$  with N,N'-diphenylhydrazine (hydrazobenzene) (2 moles) in dry ether under  $CO_2$  refluxed 16 hrs. gives (259) N'-trityl-N,N-diphenylhydrazine, m.p. 107° (259) (in this connection recall also that  $\bar{C}$  with hydrazobenzene in boilg.  $C_6H_6$  is in part reduced (79) to triphenylmethane).]

#### Behavior of C with Amides

[ $\bar{C}$  (2 moles) with urea (1 mole) in dry pyridine at 100° gives (165) cf. (179) N,N'-ditritylurea, cryst. from alc. with 2 EtOH not lost on air drying, m.p. 245° (165); note that N-tritylurea (prepd. indirectly (124)) has m.p. 234–235° dec (124). —  $\bar{C}$  (1 mole) + thiourea in pyridine at 100° for 1 hr. gives (165) cf. (179) N-tritylthiourea, cryst. from  $C_6H_6$ , m.p. 222° dec. (165), 217° (179)]

#### BEHAVIOR OF C WITH HYDRAZIDES

[C with free semicarbazide (NH<sub>2</sub>CONH.NH<sub>2</sub>) in pyridine at 0° gives (88% yield (260)) 1-tritylsemicarbazide, cryst. from abs. alc. with 1 EtOH, m.p. 186-188° dec.; the solvate alc. is lost in vac. at 110° after 6 hrs. and m.p. rises to 190-192° (260).]

[C with primary hydrazides (acylhydrazine) in general reacts to give N-trityl-N-acylhydrazines which upon suitable dehydrogenation give N-trityl-N-acyl-azo compounds; the topic cannot here be expanded but for many examples see (260) (261).]

- ① Triphenylmethane (1:7220): Ifts. from alc. [From C in anhydrous formic acid (1:1005) at 100° for 2 hrs. in 90% yield (4).]
- Triphenylcarbinol (1:5985): cryst. from C<sub>6</sub>H<sub>6</sub> or alc., m.p. 161-162°. [From C on boilg, with aq.]
- Trityl methyl ether: cryst. from MeOH, m.p. 82-83°. (See text above under behavior of C with alcohols.)
- Trityl ethyl ether: cryst. from EtOH, m.p. 83-84°. (See text above under behavior of C with alcohols.)

**D** N-Tritylphthalimide: tbls. from alc., m.p. 172° (179). [From C with K phthalimide at 200° (179).1

3:3410 (1) Nixon, Branch, J. Am. Chem. Soc. 58, 492-498 (1936). (2) Renfrow, Hauser, Org. Syntheses, Coll. Vol. 2 (1st ed.), 607-609 (1943); 19, 83-85 (1939). (3) Stieglitz, Leech, J. Am. Chem. Soc. 36, 288-289 (1914). (4) Bowden, Watkins, J. Chem. Soc. 1940, 1333-1334. (5) Bowden, J. Chem. Soc. 1939, 312-313. (6) Wiberg, Heubaum, Z. anorg. allgem. Chem. 222, 103-106 (1935). (7) Hauser, Hudson, Org. Syntheses 23, 102-107 (1943). (8) Hauser, Hudson, J. Am. Chem. Soc. 63, 3156-3157 (1941). (9) Anderson, J. Am. Chem. Soc. 50, 211 (1928). (10) Wertyporoch, Ber. 66, 1238 (1933).

(11) Smyth, Dornte, J. Am. Chem. Soc. 53, 546 (1931). (12) Bachmann, Org. Syntheses 23, 100-102 (1943). (13) Gilman, Zoellner, J. Am. Chem. Soc. 53, 3493-3496 (1929). (14) Read, Taylor, J. Chem. Soc. 1939, 478-484. (15) Smith, Andrews, J. Am. Chem. Soc. 53, 3650 (1931). (16) Bergmann, Engel, Wolff, Z physik. Chem. B-17, 89 (1932). (17) Orndorff, Gibbs, McNulty Shapiro, J. Am. Chem. Soc. 49, 1543 (1927). (18) Gomberg, Ber. 33, 3144-3149 (1900). (19)

Norris, Sanders, Am. Chem. J. 25, 54-62 (1901). (20) Hatt, J. Chem. Soc. 1929, 2421.

(21) Chakrabarty, Dutt, J. Indian Chem. Soc. 5, 516 (1928). (22) Boeseken, Rec. trav. chim. 22. 306 313 (1903). (23) Gomberg, Cone, Ber. 37, 3544-3545 (1904). (24) Norris, J. Am. Chem. Soc. 38, 711 (1916). (25) Wang, Lee, J. Am. Chem. Soc. 66, 1113-1114 (1944). (26) Funakubo, Matsui, Ber. 70, 2437-2446 (1937). (27) Hantzsch, Ber. 54, 2590-2591 (1921). (28) Hofmann, Kirmreuther, Thal, Ber. 43, 186 (1910). (29) Gomberg, Ber. 35, 2397-2408 (1902). (30) Walden, Ber. 35, 2021-2024 (1902); Z. physik. Chem. 43, 454 (1903).

(31) Gomberg, Sullivan, J. Am. Chem. Soc. 44, 1818 (1922). (32) Bowden, Thomas, J. Chem. Soc. 1940, 1246-1247. (33) Jander, Mesech, Z. physik. Chem. A-183, 292 (1939). (34) Kraus, Rosen, J. Am. Chem. Soc. 47, 2743-2745 (1925). (35) Halford, J. Am. Chem. Soc. 53, 105-112 (1931). (36) Lifschitz, Ber. 67, 1413-1417 (1934). (37) Hantzsch, Burawoy, Ber. 67, 793-798 (1934). (38) Hantzsch, Burawoy, Ber. 66, 1435-1441 (1933). (39) Hantzsch, Burawoy,

Ber. 64, 1622-1635 (1931). (40) Burawoy, Ber. 64, 1635-1646 (1931).

(41) Lifschitz, Ber. 64, 161–182 (1931). (42) Hantzsch, Burawoy, Ber. 63, 1181–1191 (1930). (43) Recsei, Ber. 60, 2378–2388 (1927). (44) Hantzsch, Ber. 54, 2569–2572 (1921). (45) Hantzsch, Ber. 54, 2573-2612 (1921). (46) Gomberg, Davis, Ber. 36, 3924-3927 (1903). Adams, Weeks, J. Am. Chem. Soc. 38, 2519 (1916). (48) Gomberg, Ber. 35, 2400-2402 (1902). (49) Halford, Reid, J. Am. Chem. Soc. 63, 1873-1878 (1941). (50) Gomberg, Ber. 36, 379-385

(51) Clark, Streight, Trans. Roy. Soc. Canada (3) 23, III, 77-89 (1929). (52) Hemilian, Ber. 7, 1207-1208 (1874). (53) E. Fischer, O. Fischer, Ann. 194, 257-261 (1878); Ber. 11, 612-613 (1878). (54) Dilthey, Ber. 36, 924 (1903). (55) Bowden, John, J. Chem. Soc. 1939, 317. (56) Norris, Young, J. Am. Chem. Soc. 46, 2580-2583 (1924). (57) Gomberg, Ber. 35, 1829, 1834-1837 (1902). (58) Cone, Robinson, Ber. 40, 2163-2166 (1907). (59) Perrot, Compt. rend. 198, 1425 (1934). (60) Schmidlin, Hodgson, Ber. 41, 442-443 (1908).

(61) Bistrzycki, Landtwing, Ber. 41, 687-688 (1908). (62) Riddell, Noller, J. Am. Chem. Soc. 54, 292 (1932). (63) Boeseken, Rec. trav. chim. 24, 209-210 (1905). (64) Friedel, Crafts. Ann. chim. (6) 1, 497-499, 501-502 (1884). (65) Meissel, Hinsberg, Ber. 32, 2422 (1899). (66) Henne, Leicester, J. Am. Chem. Soc. 60, 865 (1938). (67) Lal, Dutt, J. Indian Chem. Soc. 12. 390 (1935). (68) Sharma, Dutt, J. Indian Chem. Soc. 12, 778 (1935). (69) Lal. Dutt. J. Indian

Chem. Soc. 9, 566 (1932). (70) Boeseken, Rec. trav. chim. 23, 101-102 (1904).

(71) Tschitschibabin, Ber. 40, 368 (1907); J. Russ. Phys.-Chem. Soc. 39, 162 (1907); Cent. 1907. II, 147. (72) Norris, Thomas, Brown, Ber. 43, 2945 (1910). (73) Hemilian, Ber. 11, 837-840 (1878). (74) Lecher, Ber. 46, 2666 (1913). (75) Gilman, Kirby, Kinney, J. Am. Chem. Soc. 51, 2259 (1929). (76) Schmidlin, Garcia-Banus, Ber. 45, 3189 (1912). (77) Norris, Org. Syntheses, Coll. Vol. 1 (2nd ed), 548-550 (1941); (1st ed.), 532-534 (1932); 4, 81-83 (1925). (78) Gomberg, J. Am. Chem. Soc. 35, 202-206 (1913). (79) Aspelund, Acta Acad. Aboensis Math. et Phys. 5, No. 1, 1-119; Cent. 1929, I 2417; C.A. 24, 4033 (1930). (80) Straus, Thiel, Ann. 525, 162-163, 172-173 (1936).

(81) Vorlander, Mittag, Ber. 46, 3450-3460 (1913). (82) Straus, Dutzmann, J. prakt. Chem. (2) 103, 15, 35, 68 (1921/2). (83) Straus, Hussey, Ber. 42, 2169-2171 (1909). (84) Rebek, Kramarsic, Ber. 62, 484, 486 (1929). (85) Blicke, J. Am. Chem. Soc. 46, 1517-1518 (1924). (86) Gomberg, Am. Chem. J. 25, 328 (1901). (87) Kehrmann, Wentzel, Ber. 34, 3815-3819 (1901). (88) Norris, Am. Chem. J. 25, 119 (1901). (89) Baeyer, Ber. 42, 2624-2625 (1909). (90) Wieland, Maier, Ber. 64, 1205-1210 (1931).

(91) Gomberg, Ber. 33, 3150-3157 (1900). (92) Straus, Ann. 370, 356-358 (1909). (93) Conant, Kirner, Hussey, J. Am. Chem. Soc. 47, 498 (1925). (94) Pfeiffer, Ann. 384, 155 (1911). (95) Vorländer, Mittag, Ber. 52, 413-415 (1919).
(96) Blicke, J. Am. Chem. Soc. 45, 1967-1969 (1923).
(97) Gomberg, Ber. 40, 1849 (1907).
(98) Anderson, J. Am. Chem. Soc. 52, 4569 (1930).
(99) Gomberg, Cone. Ann. 370, 193-194 (1909).
(100) Wienbaus, Ber. 47, 322 (1914).

(99) Gomberg, Cone, Ann. 370, 193-194 (1909). (100) Wienhaus, Ber. 47, 322 (1914).
(101) Wienhaus, Trebs, Ber. 56, 1652 (1923). (102) Bergmann, Wolff, Ber. 63, 1179 (1930).
(103) Lifschitz, Girbes, Ber. 61, 1488 (1928). (104) Spielman, J. Am. Chem. Soc. 57, 1117-1119 (1935). (105) Gomberg, Ber. 46, 225-226 (1913). (106) Halford, J. Am. Chem. Soc. 51, 2157-2158 (1929). (107) Schlenk, Ochs, Ber 49, 608-610 (1916). (108) Schlenk, Marcus, Ber. 47, 1665-1667 (1914). (109) Scheibler, Schmidt, Ber. 69, 15 (1936). (110) Bachmann, Wiselogle, J. Am. Chem. Soc. 58, 1943-1945 (1936).

(111) Morton, Stevens, J. Am. Chem. Soc. 54, 1922-1924 (1932). (112) Kraus, Kawamura, J. Am. Chem. Soc. 45, 2756-2763 (1923). (113) von Grosse, Ber. 59, 2646-2654 (1926). (114) Gomberg, Ber. 34, 2726-2729 (1901). (115) Gomberg, J. Am. Chem. Soc. 23, 496-497 (1901). (116) Schlenk, Weickel, Herzenstein, Ann. 372, 17-19 (1910). (117) Morton, Peakes, J. Am. Chem. Soc. 55, 2449-2451. (1933). (118) Ullmann, Borsum, Ber. 35, 2877-2881 (1902). (119) Gomberg, Ber. 35, 3918-3919 (1902). (120) Noiris, Culver, Am. Chem. J. 29, 129-140 (1903); Gomberg, ibid. 364-371; Norris, ibid. 609-616.

(121) Kinney, Mayhue, J. Am. Chem. Soc 53, 190-199 (1931). (122) Schmidlin, Ber. 39, 634-636 (1906). (123) Stieglitz, Vosburgh, Ber. 46, 2154 (1913). (124) Brander, Rec. trav. chim. 37, 70, 83 (1918). (125) Vosburgh, J. Am. Chem. Soc. 38, 2085, 2090 (1916). (126) Nauen, Ber. 17, 442-443 (1884). (127) Elbs, Ber. 16, 1276-1277 (1883). (128) Mothwurf, Ber. 37, 3152 (1904). (129) Stieglitz, Leech, Ber. 46, 2150 (1913). (130) Stieglitz, Leech, J. Am. Chem. Soc. 36, 297-301 (1914).

(131) Stieglitz, Stagner, J. Am. Chem. Soc. 38, 2065-2067 (1916). (132) Guthmann, Stieglitz, J. Org. Chem. 1, 31-37 (1936). (133) Straus, Hussey, Ber. 42, 2175-2176 (1909) (134) Norris, Young, J. Am. Chem. Soc. 52, 755-761 (1930). (135) Hatt, J. Chem. Soc. 1938, 484. (136) Norris, Oreswell, J. Am. Chem. Soc. 55, 4946-4951 (1933). (137) Boyd, Hatt, J. Chem. Soc. 1927, 904-905. (138) Barıl, Megrdichian, J. Am. Chem. Soc. 58, 1415-1416 (1936). (139) Gomberg, Kamm, J. Am. Chem. Soc. 39, 2010-2014 (1917). (140) Helferich, Speidel, Toeldte, Ber. 56, 766-770 (1923).

(141) Seikel, Huntress, J. Am Chem. Soc. 63, 593-595 (1941). (142) Nierenstein, Ber. 69, 1821 (1927). (143) Hurd, Filachione, J. Am. Chem. Soc. 59, 1950-1951 (1937). (144) Verkade, Tollenaar, Posthumus, Rec. trav chim. 61, 373-382 (1942), Cent. 1942, II 1339; C.A. 37, 5371 (1943). (145) Valentin, Collection Czechoslov. Chem. Commun. 3, 498-511 (1931). (146) N. Green, M. W. Green, J. Am. Chem. Soc. 66, 1610-1611 (1944). (147) Hurd, Mack, Filachione, Sowden, J. Am. Chem. Soc. 59, 1952-1954 (1937). (148) Jackson, King, J. Am. Chem. Soc. 55, 679 (1933). (149) Verkade, van der Lee, Meerburg, Rec. trav. chim. 54, 721-722 (1935). (150) Verkade, van der Lee, Meerburg, Rec. trav. chim. 56, 619-622 (1937).

(151) Helferich, Sieber, Z. physik. Chem. 175, 312-313 (1928). (152) Josephson, Ann. 493, 174-180 (1932). (153) Rule, Bain, J. Chem. Soc. 1939, 1898-1899. (154) Schmidlin, Garcia-Banus, Ber. 45, 3188 (1912). (155) Sabetay, Compt. rend. 203, 1164-1166 (1936). (156) Hockett, Hudson, J. Am. Chem. Soc. 53, 4456-4457 (1931). (157) Hockett, Hudson, J. Am. Chem. Soc. 56, 945-947 (1934). (158) Hockett, Hudson, J. Am. Chem. Soc. 56, 947-949 (1934). (159) Hockett, Fletcher, Ames, J. Am. Chem. Soc. 63, 2516-2519 (1941). (160) Zeile, Kruckenberg, Ber. 75, 1135-1138 (1942).

(161) Micheel, Ber. 65, 262-265 (1932). (162) Wolfrom, Burke, Waisbrot, J. Am. Chem. Soc. 61, 1827-1829 (1939). (163) Reynolds, Evans, Org. Syntheses 22, 56-58 (1942). (164) Helferich, Klein, Ann. 456, 222 (1926). (165) Helferich, Moog, Junger, Ber. 58, 872-886 (1925). (166) Helferich, Bredereck, Ann. 465, 180-181 (1928). (167) Smith, J. Chem. Soc. 1939, 753-755. (168) Müller, Ber. 64, 1822-1823 (1931). (169) Walters, Hockett, Hudson, J. Am. Chem. Soc. 61, 1528-1530 (1939). (170) Helferich, Bigelow, J. prakt. Chem. (2) 131, 259-265 (1931).

(171) Helferich, Becker, Ann. 449, 7-8 (1924). (172) Helferich, Klein, Schafer, Ber. 59, 81 (1926). (173) Helferich, Bauerlein, Wiegand, Ann. 447, 30-34 (1926). (174) Josephson, Ann. 472, 230-240 (1929). (175) Pacsu, J. Am. Chem. Soc. 53, 3099-3104 (1931). (176) Schmid, Kotter, Monatsh. 59, 335-340 (1932). (177) Helferich, Koester, Ber. 57, 587-591 (1924). (178) Low, White, J. Am. Chem. Soc. 65, 2430-2432 (1943). (179) von Meyer, Fischer, J. prakt. Chem. (2) 82, 521-526 (1910). (180) Biilmann, Due, Bull. soc. chem. (4) 35, 384-390 (1924).

(181) van Alphen, Rec. trav. chim. 46, 287-292 (1927). (182) Busch, Knoll, Ber. 60, 2253-2254 (1927). (183) Schorigin, Ber. 59, 2502-2508 (1926). (184) Parsons, Porter, J. Am. Chem. Soc. 54, 363-365 (1932). (185) Schorigin, Ber. 60, 2369-2372 (1927). (186) Boyd, Hardy, J. Chem. Soc. 1928, 636-637. (187) Iddles, French, Mellon, J. Am. Chem. Soc. 61, 3192-3193 (1939). (188) Iddles, Miller, Powers, J. Am. Chem. Soc. 62, 71-73 (1940). (189) Iddles, Hussey, J. Am. Chem. Soc. 63, 2768-2770 (1941). (190) Schorigin, Ber. 60, 2373-2378 (1927).

(191) Schorigin, Makaroff-Semljanski, Ber. **61**, 2519–2521 (1928). (192) von Alphen, Ber. **63**, 95, Note 13 (1930). (193) van Alphen, Ber. **61**, 276-277 (1928). (194) van Alphen, Ber. **71**, 491 (1938). (185) Iddles, Minckler, J. Am. Chem. Soc. 62, 2757-2759; (1940). (196) Funakubo, Hirotani, Ber. 69, 2123-2130 (1936). (197) Fieser, J. Am. Chem. Soc. 48, 3213 (1926). (198) Schmidlin, Wohl, Thomnen, Ber. 43, 1298-1303 (1910). (199) Knoll, J. prakt. Chem. (2) 113, 44 (1926). (200) Lecher, Ber. 48, 535 (1915).

(201) Finzi, Bellavita, Gazz. chim. ital. 62, 705-708 (1932). (202) Schlenk, Hillemann, Rodloff, Ann. 487, 145, 148 (1931). (203) Gomberg, Bachmann, J. Am. Chem. Soc. 49, 2590-2591 (1927). (204) Unger, Ann. 504, 284 (1933).
(205) Schoepfle, J. Am. Chem. Soc. 47, 1469-1471 (1925).
(206) Rupe, Gisiger, Helv. Chim. Acta 8, 343 (1925).
(207) Lifschitz, Ber. 58, 2438 (1925).
(208) Wieland, Rosenfeld, Ann. 484, 239-241 (1931).
(209) Lecher, Simon, Ber. 54, 637-638

(1921). (210) Bayer, Villiger, Ber. 36, 2789 (1903).

(211) Marvel, Hager, Coffmann, J. Am. Chem. Soc. 49, 2327 (1927). (212) Wittig, Witt, Ber. 74, 1477 (1941). (213) Schlenk, Mark, Ber. 55, 2297-2298 (1922). (214) Spath, Monatsh, 34, 2012-2013 (1913). (215) Gomberg, Cone, Ber. 39, 1463-1469, 2961-2964 (1906). (216) Kuhn, Brann, Seyffert, Furter, Ber. 60, 1154-1155 (1927). (217) Fischer, Postowsky, Z. physiol. Chem. 152, 308-309 (1926). (218) Fischer, Walter, Ber. 60, 1988-1989 (1927). (219) Fieser, Heymann, J. Am. Chem. Soc. 64, 381-382 (1942). (220) Wooster, Mitchell, J. Am. Chem. Soc. **52**, 691-692 (1930).

(221) Gilman, Peterson, Rec. trav. chim. 48, 249 (1929). (222) Schoepfle, Trepp, J. Am. Chem. Soc. 58, 791-794 (1936). (223) Freund, Ber. 39, 2237-2238 (1906). (224) Wieland, Popper, Seefried, Ber. 55, 1825 (1922). (225) Ullmann, Munzhuber, Ber. 36, 407-409 (1903). (226) Gilman, Jones, J. Am. Chem. Soc. 51, 2840-2843 (1929). (227) Schmidlin, Ber. 43, 1141-1142 (1910). (228) van Alphen, Rec. trav. chim. 46, 501-505 (1927). (229) Bachmann, J. Am. Chem. Soc. 55, 2135-2138 (1933). (230) Schmidlin, Ber. 40, 2325-2327 (1907).

(231) Wieland, Kloss, Ann. 470, 211–215 (1929). (232) Wieland, Ber. 42, 3021–3026 (1909). (233) Senior, J. Am. Chem. Soc. 38, 2720-2721 (1916). (234) Pinck, J. Am. Chem. Soc. 55, 1713 (1933). (235) Stieglitz, Brown, J. Am. Chem. Soc. 44, 1276-1277 (1922). (236) Hemilian, Silberstein, Ber. 17, 745-746 (1884). (237) Goldschmidt, Wurzschmidt, Ber. 55, 3218-3219 (1922). (238) Elbs, Wittich, Ber. 17, 705-706 (1884). (239) Schoepfle, Trepp, J. Am. Chem. Soc. 54, 4065 (1932). (240) Jones, Seymour, J. Am. Chem. Soc. 50, 1153-1154 (1928).

(241) Wieland, Ann. 381, 214–216 (1911). (242) Lewis, Bigeleisen, J. Am. Chem. Soc. 64, 2808 (1942). (243) Wieland, Dolgow, Albert, Ber. 52, 895–898 (1919). (244) Campbell (to B. F. Goodrich Co.), U.S. 1,902,115, March 21, 1933; Cent. 1933, I 3637; [C.A. 27, 3358 (1933)]; U.S. 1,950,079, March 6, 1934; Cent. 1934, II 1201; C.A. 28, 3079 (1934). (245) Sloan (to B. F. Goodrich Co.), U.S. 1,975,980, Oct. 9, 1934; Cent. 1935 II 609; [C.A. 28, 7593 (1934)]. (246) Dilthey, Escherich, Ber. 66, 782-783 (1933). (247) Dilthey, Schommer, Escherich, Ber. 65, 95-97 (1932). (248) Dilthey, Ber. 64, 1284-1285 (1931). (249) Hughes, J. Chem. Soc. 1933. 75-77. (250) Hickinbottom, J. Chem. Soc. 1934, 1703.

(251) Fischer, Luckmann, Z. physiol. Chem. 115, 93 (1921). (252) Rebek, Ber. 62, 2508-2509 (1929). (253) Helferich, Dehe, Ber. 58, 1605 (1925). (254) Gomberg, Berger, Ber. 36, 1089-1090 (1903). (255) Schlenk, Mair, Bornhardt, Ber. 44, 1175-1176 (1911). (256) Gomberg, J. Am. Chem. Soc. 20, 775-776, 785 (1898). (257) Wieland, Popper, Seefried, Ber. 55, 1822-1823, 1829 (1922). (258) Wieland, Heymann, Am. 514, 154-157 (1934). (259) Goldschmidt, Nathan, Ann. 437, 224-225 (1924). (260) Wieland, Hintermaier, Dennsted, Ann. 452, 1-34 (1927).

(261) Wieland, von Hore, Borner, Ann. 446, 31-48 (1926).

#### 3:3415 3.4'-DICHLOROBENZOPHENONE C<sub>13</sub>H<sub>8</sub>OCl<sub>2</sub> Beil. S.N. 652 (m-Chlorophenyl p-chlorophenyl ketone)

#### M.P. 112.6-113.4° (1)

For prepn. of C from 1,1-dichloro-2-(m-chlorophenyl)-2-(p-chlorophenyl)ethylene (3:9863) by oxidn. with  $CrO_3$  (41% yield) see (1).]

① 3.4'-Dichlorobenzophenone 2,4-dinitrophenylhydrazone: m.p. 258-260° (1).

3:3415 (1) Haller, Bartlett, Drake, Newman, Cristol, et al., J. Am. Chem. Soc. 67, 1601-1602 (1945).

3:3420 5,8-DICHLORONAPHTHOL-1



C<sub>10</sub>H<sub>6</sub>OCl<sub>2</sub>

Beil. VI - 613 VI<sub>1</sub>---VI<sub>2</sub>---

#### M.P. 114-115° (1)

Cryst. (from CS<sub>2</sub>) (1). — Spar. sol. hot aq. (1).

[For prepn. (in very poor yield) from  $\gamma$ -(2,5-dichlorophenyl)paraconic ac. [Beil. XVIII-422] by distn. see {1}.]

Č with FeCl<sub>3</sub> gives a white turbidity, changing on warming to flocculent violet ppt. (1). Č in alk. soln. coupled with diazotized naphthionic acid (1-naphthylaminesulfonic acid-4) gives dark violet color (1).

[For use in dyestuff industry see (2) (3) (4).]

 $\oplus$  5,8-Dichloro-1-naphthyl acetate: yellowish pr. from CS<sub>2</sub> + lgr., m.p. 144-145° (1).

3:3420 (1) Erdmann, Schwechten, Ann. 275, 285 (1893).
 (2) Aktien Ges. für Anilin Fabrikation, French 517,558, May 7, 1921; Cent. 1921, IV 194.
 (3) Soc. Chem. Ind. Basel, French 593,751, Aug. 31, 1925; Cent. 1926, I 1048.
 (4) Soc. Chem. Ind. Basel, Swiss 185,148, Sept. 16, 1936; Cent. 1937, I 1561.

## 3:3432 CHLOROMALEIC ACID CI—C—COOH $C_4H_3O_4Cl$ Beil. II - 752 $\Pi_1$ — $\Pi_2$ -(646)

M.P. 115° (1) (2) 114-115° (3) (4) [108° after sintering at 95° (5) (6)]

[See also chlorofumaric acid (3:4853).]

Cryst. from AcOH/CHCl<sub>3</sub>, ether/CHCl<sub>3</sub>, ether/pet. ether, or ether alone. — Eas. sol. alc., ether, AcOH; spar. sol. CHCl<sub>3</sub> or C<sub>6</sub>H<sub>6</sub>; insol. pet. ether.

[For prepn. of  $\bar{C}$  from  $meso-\alpha,\alpha'$ -dichlorosuccinic acid (3:4930) with NaOAc/dil. AcOH on boilg. (5) (1), or from its neutral sodium salt in aq soln. on boilg. ½ hr. (4), see indic. refs.; from chloromaleic anhydride (3:0280) by hydrolysis with aq. and subsequent evapn. see (4) (5) (6) (7); from 3,5,5,5-tetrachloro-4-ketopenten-2-oic acid-1 (" $\beta$ -(trichloroacetyl)- $\beta$ -chloroacrylic acid") [Beil. III-733] on 24 hr. stdg. at room temp. of its soln. in excess 10% aq. Na<sub>2</sub>CO<sub>3</sub> see (6); from chloromaleonitrile (b.p. 185° at 753 mm., 71.0-71.5° at 10 mm.,  $D_4^{20} = 1.2293$ ,  $n_D^{20} = 1.48944$  (9)) by. hydrol. see (9).]

C on htg. at 180° loses H<sub>2</sub>O yielding (6) chloromaleic anhydride (3:0280).

Č although unchanged by conc. HCl at ord. temp. for as long as 10 days (4) is by repeated evapn, with conc. HCl (7) isomerized to chlorofumaric acid (3:4853).

 $\bar{C}$  in aq. soln. with Zn filings is dehalogenated yielding (4) fumaric acid (1:0895);  $\bar{C}$  (as Na<sub>2</sub> $\bar{A}$ ) in aq. soln. with 1% Na/Hg gives (4) mainly succinic acid (1:0530) accompanied by some fumaric acid (1:0895).

C readily reduces aq. KMnO<sub>4</sub>.

[C readily combines with Br<sub>2</sub> if heated in s.t. to 100° (7).]

Č behaves normally as a dibasic acid: cg, titration with standard dil. aq. alk. gives Neut. Eq. 75.3; for study of electrometric titration see (1).

[Salts: KHĀ, eas. sol. aq. (dif. from corresp. salt of chlorofumaric acid (3:4853)), e.g., 100 g. of its satd. aq. soln. at 15° cont. 29.2 g. of KHA (7); for crystallographic data see (7).

332

— NaH $\bar{A}$ .3H<sub>2</sub>O, eas. sol. aq. (7). — Ag<sub>2</sub> $\bar{A}$ , insol. aq. (7). — Ba $\bar{A}$ .2H<sub>2</sub>O (4) (5) (6), spar. sol. aq. — Ca $\bar{A}$ .4H<sub>2</sub>O (4). — Sr $\bar{A}$ .4½H<sub>2</sub>O, spar. sol. cold aq. (5). — Pb $\bar{A}$ , insol. aq. (4).]

[ $\bar{C}$  on stdg. at ord. temp. with slight excess 0.76 N aq. KOH gives chlorine ion only  $\frac{1}{2}$  as rapidly (4) as the isomeric chlorofumaric acid (3:4853).]

The acid chloride corresp. to  $\bar{C}$ , viz., chloromaleyl (di)chloride (3:6158) q.v., has been reported only by indirect means.

- Dimethyl chloromaleate: oil (see 3:9351).
- —— Diethyl chloromaleate: oil (see 3:6697).
- Chloromaleanii [N-phenyl-chloromaleimide]: ndls. from boilg. alc., m.p. 170° (8). [From aniline salt of C̄ (or of chlorofumaric acid) on htg. for a few minutes at 170–180° (8); note that this prod. on htg. with aniline yields (8) α-anilinosuccinanil [Beil. XXI-554, XXI<sub>1</sub>-(432)], yel. cryst. from acetone + C<sub>6</sub>H<sub>6</sub>, m.p. 232° (8), and that a little of this latter cpd. which may accompany the former is readily removed from it by washing with warm C<sub>6</sub>H<sub>6</sub> (8).]
- © Chloromaleic p-chloroanil [N-(p-chlorophenyl)chloromaleinimide]: pl. from hot alc., m.p. 175° (8). [From p-chloroaniline salt of \(\tilde{\C}\) on htg. for a few minutes at 170-180° (8).]
- © Chloromaleic p-bromoanil [N-(p-bromophenyl)chloromaleinimide]: microcrystn. powder from boilg. alc., m.p. 190° (8). [From p-bromoaniline salt of C on htg. for a few minutes at 170–180° (8).]

3:3432 (1) Ashton, Partington, Trans. Faraday Soc. 30, 602, 605 (1934). (2) Stelling, Z. physik. Chem. B-24, 410, 424 (1934). (3) Langseth, Z. physik. Chem. 118, 54 (1925). (4) Michael, Tissot, J. prakt. Chem. (2) 52, 306-308, 321, 331-334 (1895). (5) van der Riet, Ann. 280, 224-230 (1894). (6) Zincke, Fuchs, Ber. 26, 506-509 (1893). (7) Perkin, J. Chem. Soc. 53, 706-708 (1888). (8) Chattaway, Parkes, J. Chem. Soc. 125, 466 (1924). (9) Mommaerts, Bull. classe sci., Acad. roy Belg. (5) 27, 579-597 (1944); Cent. 1943, I 615-616; C.A. 38, 3621 (1944).

#### 3:3445 2.7-DICHLORONAPHTHALENE

Cryst. from alc or C6H6; sublimes under reduced press. — Eas. sol. boilg. alc.

[For prepn. of  $\bar{C}$  from naphthalene-2,7-bis-(sulfonyl chloride) [Beil. XI-217] (4) (1), from 7-chloronaphthalene-2-sulfonyl chloride [Beil. XI-181] (4) (5), from 7-bromonaphthalene-2-sulfonyl chloride [Beil. XI-184] (7), from sodium 7-hydroxynaphthalenesulfonate-2 [Beil. XI-285, XI<sub>1</sub>-(67)] (3) by htg. with PCl<sub>5</sub> as directed, see indic. refs.; from 7-sulfonaphthylamine-2 [Beil. XIV-763, XIV<sub>1</sub>-(736)] by treatment of the corresp. diazonium chloride with PCl<sub>5</sub> in POCl<sub>3</sub> see (8); from 3,6-dichloronaphthalimide or 3,6-dichloronaphthalic acid (3:4870) with HgO + aq. in s.t. 6 hrs. at 200-210° see (10).]

 $\ddot{\mathbf{C}}$  on oxidn. with dil. HNO<sub>3</sub> (D=1.21) in s.t. at 140° yields (9) 4-chlorophthalic acid (3:4390), m.p. 157°.

[C on mononitration yields (9) a prod., m.p. 141.5-142°.]

[C on treatment with chlorosulfonic acid in CS<sub>2</sub>, followed by conversion as directed (11), yields mixt. of two sulfonic acids; the major prod is 2,7-dichloronaphthalenesulfonic acid-3 (corresp. sulfonyl chloride, m.p. 166°, corresp. sulfonamide, m.p. 218° (12)), the minor prod. (10% of total) is 2,7-dichloronaphthalenesulfonic acid-4 (corresp. sulfonyl chloride, m.p. 152°) (11).]

3:3445 (1) Weissberger, Sängewald, Hampson, Trans. Faraday Soc. 30, 890 (1934). (2) Krollpfeiffer, Ann. 430, 198 (1923). (3) Bayer, Duisberg, Ber. 20, 1432 (1887). (4) Cleve, Bull. soc. chim. (2) 26, 244-245 (1876). (5) Armstrong, Chem. News 58, 295 (1888). (6) Armstrong, Wynne, Chem. News 59, 189 (1889). (7) Sindall, Chem. News 60, 58 (1889). (8) Erdmann, Ann. 275, 280 (1893). (9) Alén, Bull. soc. chim. (2) 36, 433 (1881). (10) Dziewonski, Majewicz, Schimmer, Bull. intern. acad. polon. sci., Classe scr. math. nat. 1936-A, 43-45; Cent. 1936, II 4214; C.A. 31, 3906 (1937).

(11) Turner, Wynne, J. Chem. Soc. 1941, 256. (12) Armstrong, Wynne, Chem. News 61, 274 (1890).

3:3448 3,4,5-TRICHLOROCATECHOL OH 
$$C_0H_3O_2Cl_3$$
 Beil. VI - 783 (3,4,5-Trichloropyrocatechol) OH  $VI_1$ -(389)  $VI_2$ —

M.P. 115° (1) Abt. 106-109° (2) 104-105° (3)

Note that the prod. for which the above m.p.'s are recorded is actually a monohydrate, viz.,  $\bar{C}.H_2O$ , which in vac. over  $H_2SO_4$  (3) or at  $70^\circ$  (1) loses  $\frac{1}{2}$   $H_2O$  giving a hemihydrate, pr. from  $C_6H_6$ , m.p.  $134-135^\circ$  (3) (1).

C (as monohydrate) cryst. from AcOH in colorless pr.; insol. cold aq. but sol. in alc., ether, or AcOH.

[For prepn. of  $\tilde{C}$  (as monohydrate) from catechol (1,2-dihydroxybenzene) (1:1520) in AcOH soln. with Cl<sub>2</sub> (3) or ICl (1) see indic. refs.; from 4,5-dichlorocatechol (3:3525) in AcOH soln. with Cl<sub>2</sub> see (2).]

[C with excess Cl<sub>2</sub> gives (3) 3,4,5,6-tetrachlorocatechol [Beil. VI-784, VI<sub>1</sub>-(389)], anhydrous cryst. from hot dil. alc. or lgr., m.p. 194-195° (4), 193-194° (1); trihydrate, m.p. 94° (2); 1:1 mol. cpd. with AcOH, m.p. 123-124° (2).

C with FeCl<sub>3</sub> gives (3) green coloration.

- 3,4,5-Trichlorocatechol dimethyl ether (3,4,5-trichloroveratrole): m.p. 68-69° (5). [From Č by methylation (no details) (5)] [Note that two mono methyl ethers of Č are known, one m.p. 114-115° (5), the other, m.p. 107-108° (6), both obtained indirectly.]
- --- 3,4,5-Trichlorocatechol diethyl ether: unreported.
- --- 3,4,5-Trichlorocatechol diacetate: unreported.
- --- 3.4.5-Trichlorocatechol dibenzoate: unreported.

3:3448 (1) Jackson, Boswell, Am. Chem. J. 35, 526-529 (1906). (2) Willstatter, Müller, Ber. 44, 2185-2186 (1911). (3) Cousin, Bull. soc. chm. (3) 13, 719-720 (1895); Ann. chim. (7) 13, 483-486 (1898). (4) Zincke, Küster, Ber. 21, 2729 (1888). (5) Cousin, Ann. chim. (7) 29, 60-62 (1903). (6) Peratoner, Ortoleva, Gazz. chim. ital. 28, I 230-231 (1898).

3:3460 2,3,5,6-TETRACHLOROPHENOL OH 
$$C_6H_2OCl_4$$
 Beil. VI —  $VI_1$ —  $VI_2$ -(182)

M.P. 115° (1) (2) (3)

Cryst. from pet. eth.

[For prepn. of C from 2,3,5,6-tetrachloroaniline (1) (4) via diazotization and reaction with aq. in pres. of H<sub>2</sub>SO<sub>4</sub> (1) or CuSO<sub>4</sub> (18% yield (3)) see indic. refs.; for formn. of C

from pentachlorobenzene (3:2290) with N/2 MeOH/NaOMe at 180° in s.t. for  $7\frac{1}{2}$  hrs. (note that some of the iosmeric 2,3,4,5-tetrachlorophenol (3:3523) is also formed) see (1).]

 $\overline{C}$  in aq. behaves as a fairly strong acid, K at  $25^{\circ} = 3.3 \times 10^{-6}$  (2), and can be directly titrated with N/10 aq. NaOH (3) (1), Neut. Eq = 232.

- $\bar{C}$  (1 wt. pt.) added to HNO<sub>3</sub> (D=1.5, 6 wt. pts.) in 20 pts. AcOH at 10°, and after 1 hr. poured onto ice, gives (65% yield (4)), 2,3,5,6-tetrachloro-4-nitrophenol, ndls. from AcOH, m.p. 148-149° dec. (4) (corresp. acetate, ndls. from dil. alc., m.p. 113-114° (4)).
  - 2,3,5,6-Tetrachlorophenol methyl ether (2,3,5,6-tetrachloroanisole): ndls. from alc., m.p. 88° (1). [From C with alk. + Me<sub>2</sub>SO<sub>4</sub> (1).] [Note that this prod. on nitration with 4-5 wt. pts. HNO<sub>3</sub> (D = 1.5) at 0° gives (95% yield (4)) 2,3,5,6-tetrachloro-4-nitroanisole, ndls. from dil. alc., m.p. 112-113° (4) ]

  - ---- 2,3,5,6-Tetrachlorophenyl acetate: unreported
  - **② 2,3,5,6-Tetrachlorophenyl benzoate:** m p. 136° (5). [From  $\bar{C}$  + large excess BzCl in aq. alk. (5).]
  - **2.3.5.6-Tetrachlorophenyl** N-phenyl carbamate: unreported.
- 3:3460 (1) Holleman, van der Hoeven, Rec. trav. chim. 39, 746-748 (1920). (2) Tiessens, Rec. trav. chim. 48, 1068 (1929). (3) Tiessens, Rec. trav. chim. 50, 116, 119 (1931). (4) Peters, Rowe, Stead, J. Chem. Soc. 1943, 233-235. (5) Bures, Kovarovicova, Časopis Českoslov. Lékárnictva 10, 197-202, 233-239 (1930); Cent. 1930, II 2775; C.A. 25, 1816-1817 (1931).

#### 3:3470 1,2,4,4,6,6-HEXACHLORO-CYCLOHEXEN-1-DIONE-3,5 ("Hexachlororesorcinol")

 $\begin{array}{cccc} O & & C_6O_2Cl_6 & & Beil.\,VII - 572 \\ & & & & VII_1 - \\ Cl & & & & & \\ Cl & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$ 

#### M.P. 115° (1) B.P. 159-160° at 13-15 mm. (1)

Colorless tbls. or thick pr. (from AcOH or ether/pet. ether). — Penetrating lachrymatory odor. —  $\bar{C}$  can be distd at atm. press. without decompn. — Eas. sol. ether, CHCl<sub>3</sub>, C<sub>6</sub>H<sub>6</sub>, spar. sol. pet. ether. — Readily forms supersatd solns.

[For prepn. from 3,5-dihydroxybenzoic acid [Beil. VI-404] by actn. of Cl<sub>2</sub> in AcOH see (1) ]  $\bar{C}$  with KI in AcOH liberates I<sub>2</sub> (1). —  $\bar{C}$  with SnCl<sub>2</sub> in AcOH reduces smoothly (1) to tetrachlororesorcinol (3:4135), m.p. 141° (1).

[For use as seed disinfectant see (2); for other reactions see (1).]

**3:3470** (1) Zincke, Fuchs, *Ber.* **24**, 2689-2690 (1892). (2) Bonrath, Urbschat (to I.G.), Ger 534,597, Sept. 29, 1931; *Cent.* **1931**, II 3143.

#### CHAPTER IX

#### DIVISION A. SOLIDS

(3:3500-3:3999)

3:3500 6-CHLORONAPHTHOL-2

M.P. 115° (1) (2) (3) (4)

Ndls. from hot aq (1) (2); sol. alc., ether, AcOH, C<sub>6</sub>H<sub>6</sub>, CHCl<sub>3</sub>, CS<sub>2</sub>. — Sublimes in prisms. —  $\bar{C}$  depresses m.p. of 8-chloronaphthol-2 (3:2965), m.p. 101° to 79-88° (2).

[For prepn. of  $\bar{C}$  from 1,6-dichloronaphthol-2 (3:3600) with FeSO<sub>4</sub> + NaOH see (4); from 6-chloronaphthol-2-sulfonic acid-4 (2) (3) with Na/Hg in dil. HCl see (2) (3); from K salt of 2-naphtholsulfonic acid-6 [Beil. XI-282, XI<sub>1</sub>-(66)] with 3 moles PCl<sub>5</sub> at 165° as directed see (1) (2)]

 $[\bar{C}$  (as dry sodium salt) with CO<sub>2</sub> under press and at elevated temp. yields (5) 6-chloro-2-hydroxynaphthoic acid-3, yel. lfts. from AcOH, m.p. 260° (5).]

 $\bar{C}$  on oxidn, with dil HNO<sub>3</sub> ( $D=1\,13$ ) in s.t. at 190–200° gives (6) 4-chlorophthalic acid (3:4390).

- © 6-Chloro-2-naphthyl benzoate: mp. 124-125° (3).
- **©** 6-Chloro-2-naphthyl m-nitrobenzoate: ndls. from much alc., m.p. 146-147° (2). [From  $\tilde{C}$  dislyd in 10% NaOH at 50-60° and shaken with m-nitrobenzoyl chloride (2).]

3:3500 (1) Claus, Zimmermann, Bcr 14, 1483-1485 (1881). (2) Ruggli, Knapp, Merz, Zimmermann, Helv. Chim. Acta 12, 1048-1050 (1929). (3) Battegay, Silbermann, Kienzle, Bull. soc. chim. (4) 49, 721 (1931). (4) Herzberg, Spengler, Schmid (to I.G.), Ger. 431,165, June 30, 1926; Cent 1926, II 1196. (5) Lange, Luce, Jacobs (to I.G.), Ger. 564,128, Nov. 14, 1932, Cent. 1933, II 446. (6) Claus, Dehne, Bcr 15, 321 (1882).

3:3505 4-CHLORO-3,5- OH  $C_8H_9OCl$  Beil. VI — VI<sub>1</sub>— VI<sub>2</sub>—(463)

Cryst. from benzene.

[For prepn of  $\tilde{C}$  from 3,5-dimethylphenol (m-5-xylenol = sym.-m-xylenol) (1:1455) with  $SO_2Cl_2$  (1 mole) in CHCl<sub>3</sub> (1) or with  $Cl_2$  in AcOH (66% yield (2)) or from crude coaltar fraction consisting mainly of 3,5-dimethylphenol with  $Cl_2$  or  $SO_2Cl_2$  (5) see indic. refs. (note that some 2-chloro-3,5-dimethylphenol (6-chloro-m-5-xylenol) (3:0844) is formed as a by-product (1) (5); also that 3,5-dimethylphenol in AcOH on complete saturation

with Cl<sub>2</sub> gives (2) 2,4,4,6-tetrachloro-3,5-dimethylcyclohexadien-2,5-one-1, m.p. 106-107°

(2)).]

C and its derivatives have attracted much attention as antiseptics, disinfectants, preservatives, bactericides, fungicides, etc. [e.g., for studies from various aspects of bactericidal properties of C see (4) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16); for studies on use as fungicide in leather (17) (18) including toxicity (19) see indic. refs.].

[For patents on use of C for improving wettability of materials (20), or for use with soaps, etc., as disinfectant (21), as component of mixtures for insecticides (22) see indic. refs.

[For study of fate of C in animal and human metabolism see (23).]

[For study of tests for detection of  $\bar{C}$  see (24); for studies of quant. detn. of  $\bar{C}$  (3) (25) in urine, blood, or tissue (26) see indic. refs.]

#### CHEMICAL BEHAVIOR OF C

#### NUCLEAR SUBSTITUTION

Halogenation. [C̄ with Cl<sub>2</sub> (1 mole) (used in form of N-chloroacetamide (27)) gives 2,4-dichloro-3,5-dimethylphenol (2,4-dichloro-m-5-xylenol) (3:2182), m.p. 83°; C̄ with Cl<sub>2</sub> (2 moles) should give 2,4,6-trichloro-3,5-dimethylphenol (trichloro-m-5-xylenol) (3:4713), m.p. 177°, although such prepr. of the latter is not actually reported; for action of excess Cl<sub>2</sub> in AcOH see note above under prepr. of C̄.]

C with Br<sub>2</sub> (2 moles) in AcOH gives (1) 2,6-dibromo-4-chloro-3,5-dimethylphenol, ndls., m.p. 158° (1).

Nitration.  $\bar{C}$  on mononitration with conc. HNO<sub>3</sub> in AcOH gives (28) (2) 4-chloro-2-nitro-3,5-dimethylphenol, m.p. 90° (28), 87-89° (2) (corresp. methyl ether, m.p. 166°; corresp. ethyl ether, m.p. 107° (28)). — Note that the dinitro deriv. of  $\bar{C}$ , viz., 4-chloro-2,6-dinitro-3,5-dimethylphenol, appears to be unreported.

**Mercuration.** [For study of mercuration of C see (29); for patents see (30).]

Alkylation.  $\bar{C}$  with alcs. in pres. of ZnCl<sub>2</sub> at 80° undergoes nuclear alkylation (perhaps by rearr. of intermediate ethers). [E.g.,  $\bar{C}$  with isopropyl alc. (1:6135) gives (9) (32) 4-chloro-3,5-dimethyl-2-isopropylphenol, b.p. 125° at 3 mm.,  $\bar{C}$  with diethylcarbinol (1:6175) gives (9) (32) 4-chloro-3,5-dimethyl-2-(diethylmethyl)phenol, b.p. 141–142° at 3 mm.; etc. —  $\bar{C}$  (as Na $\bar{A}$ ) with benzyl chloride (3:8535) in toluene gives (33) 4-chloro-3,5-dimethyl-2-benzylphenol (5-chloro-4,6-dimethyl-2-hydroxydiphenylmethane), m.p. 68.7°, b.p. 182–185° at 4 mm., etc.]

Other nuclear substitutions. [For behavior of  $\bar{C}$  with o-nitrophenylsulfenyl chloride see (34) (35) (36).]

[ $\tilde{\mathbf{C}}$  with hexamethylenetetramine htd. with glycerol + boric acid, then hydrolyzed with conc. H<sub>2</sub>SO<sub>4</sub>, all as directed (38), gives (27% yield) 4-chloro-3,5-dimethyl-2-aldehydophenol (5-chloro-4,6-dimethylsalicylaldehyde), m.p. 96° (corresp. oxime, m.p. 197°); note that  $\tilde{\mathbf{C}}$  with CHCl<sub>3</sub> + aq. NaOH (Reimer-Tiemann process) gives only 10% yield and prod. is dif. separable (38).]

#### OTHER REACTIONS OF C

[Č (1 mole) with ethyl acetoacetate (1 mole) + conc. H<sub>2</sub>SO<sub>4</sub> gives (35% yield (37)) 6-chloro-2,5,7-trimethylchromone, m.p. 145-146° cor.; note that the isomeric 6-chloro-4,5,7-trimethylcoumarin, m.p. 194-195.5° cor., which might be expected in the above condensation has been obtd. indirectly (37).]

<sup>—— 4-</sup>Chloro-3,5-dimethylphenol methyl ether: m.p. 22.5-23.5°, b.p. 117° at 14 mm. (2).

- ---- 4-Chloro-3,5-dimethylphenol ethyl ether: unreported.
- ① 4-Chloro-3,5-dimethylphenol benzyl ether: m.p. 57° (28). [Note that nitration of this ether gives 4-chloro-2-nitro-3,5-dimethylphenol benzyl ether, m.p. 105° (28).]
- 4-Chloro-\$\overline{3}\$,5-dimethylphenyl acetate: m.p. 48.7° (9), 48° cor. (37), b.p. 102° at 2.5 mm. (9). [From \$\overline{C}\$ + Ac<sub>2</sub>O + trace H<sub>2</sub>SO<sub>4</sub> (93% yield (37)); for study of Fries rearr. of this ester with AlCl<sub>3</sub> to 4-chloro-3,5-dimethyl-2-acetylphenol methyl ether see (37).]
- ---- 4-Chloro-3,5-dimethylphenyl benzoate: unreported.
- 3:3505 (1) Lesser, Gad, Ber. 56, 974, 976 (1923). (2) von Auwers, Mürbe, Saurwein, Fortschr. Chem. Physik. u. physik. Chem. 18, No. 2, 1-45 (1924); Cent. 1924, II 2267; C.A. 19, 2339 (1925). (3) McNicoll, Merritt, West, Analyst 64, 261-262 (1939); C.A. 33, 4160 (1939). (4) Heicken, Angew. Chem. 52, 263-265 (1939). (5) Gladden, Cocker, U.S. 2,350,677, June 6, 1944; C.A. 38, 4964 (1944), Brit. 529,070, Nov. 13, 1940; C.A. 35, 7982 (1941). (6) Lebduska, Pidra, Zentr. Bakt. Parasitenk. I Abt., Orig. 145, 425-438 (1940); C.A. 25, 8008 (1941). (7) Lockemann, Heicken, Zentr. Bakt. Parasitenk. I Abt., Orig. 145, 61-71 (1939); C.A. 34, 2534 (1940). (8) Heading, Pharm. J. 138, 321-322 (1937); Chemist and Druggist 126, 392-393 (1937); Cent. 1937, II 2208; C.A. 31, 8119 (1937). (9) Klarmann, Shternov, Gates, J. Am. Chem. Soc. 55, 2576-2589 (1933). (10) Lockemann, Kunzmann, Angew. Chem. 46, 296-301 (1933).
- (11) Rapps, J. Soc. Chem. Ind., 52-T 175-176 (1933); Cent. 1933, İI 1047, C.A. 27, 3967 (1933). (12) Lockemann, Ulrich, Z. Hyg. Infektionskrankh. 113, 475-481 (1932); Cent. 1932, II 99. (13) Etinger-Tulezynska, Ulrich, Z. Hyg. Infektionskrankh. 113, 437-444 (1932); Cent. 1932, II 77; C.A. 26, 2551 (1932). (14) Kliewe, Rabenau, Prakt. Desinfektor 31, 67-71 (1939); Cent. 1939, II 1532; C.A. 35, 3766-3767 (1941). (15) Alchin, Chem. Products 2, 93-95 (1939); C.A. 33, 7961 (1939). (16) Lum. Pharm. J. 138, 76 (1937). Cent. 1937, II 2208; C.A. 31, 8118 (1937). (17) Greene, Lollar, J. Am. Leather Chem. Assoc. 39, 209-218 (1944); C.A. 38, 6595 (1944). (18) Seldowitz, Arch. Dermatol. Syphiol. 42, 576-586 (1940); C.A. 35, 1509 (1941). (19) Lollar, J. Am. Leather Chem. Assoc. 39, 203-209 (1944); C.A. 38, 6594 (1944). (20) Chapman (to Monsanto Chem., Ltd.), U.S. 2,062,504, Dec. 1, 1936; Cent. 1937, I 2302; C.A. 31, 890 (1937); Brit. 431,645, Aug. 8, 1935, Cent. 1935, II 4001; [C.A. 28, 8258 (1935)].
- (21) Deutsche Hydriewerke, A.G., French 823,289, Jan. 18, 1938; Cent. 1938, I 2588; [C.A. 32, 5582 (1938)]. (22) Dispersoid Syndicate, Ltd., French 569,912, April 19, 1924; Cent. 1925, I 1125; not in C.A. (23) Zondek, Shapiro, Biochem. J. 37, 592-595 (1943), C.A. 38, 2393 (1944). (24) Rosenthaler, Pharm. Ztg. 78, 229-231 (1933); Cent. 1933, I 3990. (25) Merritt, West, Analyst 63, 257-261 (1938); C.A. 32, 4279 (1938). (26) Zondek, Shapiro, Hestrin, Biochem. J. 37, 589-591 (1943); C.A. 38, 2677 (1944). (27) Jones, J. Chem. Soc. 1941, 275. (28) Jones, J. Chem. Soc. 1943, 445. (29) Bordeianu, Ann. sci. univ. Jassy, Pt. I, 23, 240-264 (1937); Cent, 1938, I 61, C.A. 32, 5802 (1938). (30) Christiansen, Moness (to Squibb and Sons), U.S. 2,137,236. Nov. 22, 1938; Cent. 1939, I 5007; C.A. 33, 1886 (1939).
- (31) Christiansen (to Squibb and Sons), U.S. 2,252,705, Aug. 19, 1941; C A. 25, 7657 (1941). (32) Klarmann, Gates (to Lehn and Fink, Inc.), U.S. 1,938,912, Dec. 12, 1933; Cent. 1934, I 2006 [C.A. 28, 1472 (1934)]. Brit. 432,955, Sept. 5, 1935; Cent. 1936, I 809; [C.A. 30, 575 (1936)]. (33) Klarmann, Gates (to Lehn and Fink, Inc.), U.S. 1,926,874, Sept. 12, 1933; Cent. 1934, I 83; [C.A. 27, 5896 (1933)]. (34) Kent, Smiles, J. Chem. Soc. 1934, 424, 428. (35) Learmonth, Smiles, J. Chem. Soc. 1936, 327-328. (36) McClement, Smiles, J. Chem. Soc. 1937, 1016-1021. (37) Adams, Mecorney, J. Am. Chem. Soc. 66, 802-804 (1944). (38) Duff, J. Chem. Soc. 1941, 548-549.

[Note that, in addition to its ordinary use to designate  $\bar{C}$  specifically, the term "chloralide" is also used generically to denote a class of compounds formed by condensation of chloral (3:5210) with  $\alpha$ -hydroxy acids ]

Cryst. from alc. or ether; eas. sublimable; insol. aq; eas. sol. hot but spar. sol. cold alc.; eas. sol. ether; eas. sol. in 80% AcOH (dif. and sepn. from metachloral (1)). — For crystallographic studies see (10).

Note that m.p. of  $\bar{C}$  is almost identical with that of  $\alpha$ -parachloral, m.p. 116°, but that mixed m.p. of the two is depressed as low as 85–90° (2);  $\beta$ -parachloral, however, has m.p. 152° (2).

[For prepn. of  $\bar{\mathbb{C}}$  from chloral (3:5210) or chloral hydrate (3:1270) with cone. or fumg.  $H_2SO_4$  (yields: 61% (11), 44–51% (4) both based on chloral hydrate) see (11) (4) (8) (12) (6); for form. of  $\bar{\mathbb{C}}$  from chloral hydrate with  $H_2SO_4$  as a by-product (abt. 2% (2)) in prepn. of  $\alpha$ - and  $\beta$ -parachloral + metachloral, or from chloral by warming with AlCl<sub>3</sub> (1), see indic refs.; for formn. of  $\bar{\mathbb{C}}$  from chloral with ClsO<sub>3</sub>II as by-prod. of prepn. of octachlorodiethyl ether (3:0738) see (3); for formn. of  $\bar{\mathbb{C}}$  from chloral (excess) with  $\beta,\beta,\beta$ -trichloro- $\alpha$ -hydroxypropionic acid (trichlorolactic acid) [Beil. III-286, III<sub>1</sub>-(111), III<sub>2</sub>-(210)] in s.t. at 150–160° see (4) (13) of (17).]

[ $\bar{\mathbf{C}}$  on reduction with Zn + HCl in alc. soln. gives according to conditions very small amts. of  $\beta,\beta$ -dichloroacrylic acid (3:1875) (14) (15) (16),  $\beta$ -chloroacrylic acid (3:2240) (11), and acetaldehyde (1.0100) (15) (16).] — [ $\bar{\mathbf{C}}$  is unaffected by boilg HNO<sub>3</sub> (8).]

[ $\ddot{\mathbf{C}}$  with PCl<sub>5</sub> in s t. at 270–290° for several days gives (18) (9) 5-chloro-2,5-bis-(trichloromethyl)dioxolane-1,3-one-4 ("trichlorolactic acid-tetrachloroethylidene ether-ester") [Beil. XIX-105], oil, b p. 276° (18),  $D_4^{20}=1.7426$  (18).]

Č with boilg. alkalies undergoes hydrolytic cleavage yielding (4) (12) (6) (7) chloroform (3:5050) and salts of formic acid (1:1005).

[ $\bar{C}$  with abs. EtOH in s.t. at 140–150° gives (16) (4) chloral ethylalcoholate (3:0860) and ethyl  $\beta,\beta,\beta$ -trichlorolactate [Beil. III-287, III<sub>1</sub>-(111), III<sub>2</sub>-(210)], m.p. 66–67°.]

3:3510 (1) Böeseken, Rec. trav. chim. 29, 108 (1910). (2) Chattaway, Kellett, J. Chem. Soc. 1928, 2709–2712. (3) Fuchs, Katscher, Ber. 62, 2384–2385 (1929). (4) Wallach, Ann. 193, 4, 8, 11-19 (1878). (5) Wallach, Ber. 6, 118, Note (1873). (6) Stadeler, Ann. 61, 104–114 (1847); 106, 253–255 (1858). (7) Personne, Bull. soc chim (2) 21, 529 (1874). (8) Grabowski, Ber. 8, 1433–1437 (1875). (9) Anschutz, Haslam, Ann. 239, 297–300 (1887). (10) Wallach, Bodewig, Ann. 193, 58–59 (1878), Z. Krist. 1, 594 (1877).

(11) Otto, Ann. 239, 262-266 (1887). (12) Kekulé, Ann. 105, 293-295 (1858) (13) Wallach, Heymer, Ber. 9, 545-547 (1876). (14) Wallach, Ann. 203, 83 84 (1880). (15) Wallach, Ann. 193, 6, 20, 27 (1878). (16) Wallach, Ber. 8, 1578-1583 (1875). (17) Routala, Neovius, Ber. 57, 252, Note 4 (1924). (18) Anschutz, Haslam, Ann. 253, 121-123 (1889).

#### 3:3520 2,4,6-TRICHLORO-3-HYDROXYBENZALDEHYDE

M.P. 115.5-116.5° (1) 115-116° (6) 114° (2) 113° (3)

Colorless cryst. from 50% AcOH;  $\bar{C}$  seps. with AcOH of crystn. but this immediately effervesces in air. —  $\bar{C}$  has pronounced sternutatory props. and on moist skin produces painful blisters (2).

[For prepn. of  $\bar{C}$  from *m*-hydroxybenzaldehyde (1:0055) in AcOH with excess  $Cl_2$  see (1) (2).]

[For condens. of  $\bar{C}$  with 2,4-dichlorophenol (3:0560) see (4); with 2,4-dihydroxybenzoic acid (1:0843) and use of prod as dye intermediate see (5).]

 $\bar{C}$  in 50% aq. KOH warmed for 4 hrs at 60-70° gives (89.9% yield (3)) 2,4,6-trichlorophenol (3:1673).

NaA, pure yel. ndls., spar. sol. aq (2).

C in Na<sub>2</sub>CO<sub>3</sub> soln. with Me<sub>2</sub>SO<sub>4</sub> yields 2,4,6-trichloro-3-methoxybenzaldehyde, ndls. from alc, mp. 76° (2); on very slow oxidn. with alk. KMnO<sub>4</sub> this prod. yields 2,4,6-trichloro-3-methoxybenzoic acid, mp. 109° (2).

- 2,4,6-Trichloro-3-hydroxybenzaldoxime: ndls. from dil. alc., m.p. 174° (2), 170° (6).

  [This with boilg Ac<sub>2</sub>O yields 2,4,6-trichloro-3-acctoxybenzonitrile, lfts. from dil. AcOH, m.p. 82-83° (6)]
- ① 2,4,6-Trichloro-3-hydroxybenzaldehyde p-nitrophenylhydrazone: yel.-or. ndls., m.p. 272-273° dec. (2) [From  $\bar{C}$  in alc. with p-nitrophenylhydrazine + 1 drop aq. (2).]

3:3520 (1) Bissell, Kranz (to Nat Aniline & Chem. Co.), U.S. 1,776,803, Sept. 30, 1930; Cent. 1931, I 150, C A 24, 5769 (1930). (2) Hodgson, Beard, J. Chem. Soc 1926, 148-149, 153. (3) Lock, Monatsh. 55, 312 (1930). (4) I.G., Swiss 137,923-137,929, incl., 138,180-138,183, incl., April 16, 1930; Cent. 1930, II 1453. (5) Weiler (to F. Bayer & Co.), U.S. 1,532,790, April 7, 1925; Cent. 1925, II 352. (6) Krause, Ber. 32, 123 (1899).

#### 3:3523 2,3,4,5-TETRACHLOROPHENOL



M.P. 116-117° (1) 116° (2) (3)

[For prepn. of  $\bar{C}$  from 2,3,4,5-tetrachloroaniline [Beil. XII-630, XII<sub>1</sub>-(313)] via diazotization and reaction with aq. (65% yield) see (1); from 2-amino-3,4,5,6-tetrachlorophenol [Beil. XIII-386] (3) via diazotization and elimination of diazo group with alc. see (3); for formn of  $\bar{C}$  from pentachlorobenzene (3:2290) with N/2 MeOH/NaOMe at 180° in s.t. for 7½ hrs. as by-prod. of the isomeric 2,3,5,6-tetrachlorophenol (3:3460) see (4).]

 $\bar{C}$  in aq. behaves as an acid, K at  $25^\circ = 1.1 \times 10^{-7}$ , and can be titrated with N/10 aq. NaOH (1), Neut. Eq. = 232.

- 2,3,4,5-Tetrachlorophenol ethyl ether (2,3,4,5-tetrachlorophenetole): unreported.
   2,3,4,5-Tetrachlorophenyl acteate: unreported.
- © 2,3,4,5-Tetrachlorophenyl benzoate: m.p 110° (4) (5). [Note that this prod. depresses m.p. of corresp. benzoate from the isomeric 2,3,4,6-tetrachlorophenol (3:1687) (5).]
- 2.3.4.5-Tetrachlorophenyl N-phenylcarbamate: unreported.

3:3523 (1) Tiessens, Rec. trav. chim. 50, 115-116, 119 (1931). (2) Tiessens, Rec. trav. chim. 48, 1068 (1929). (3) Bures, Havlinova, Časopis Českoslov. Lékárnictva, 9, 101-107, 129-134, 153-157 (1929); Cent. 1929, II 1403; C.A. 24, 2998 (1930). (4) Holleman, van der Hoeven, Rec. trav. chim. 39, 748 (1920). (5) Holleman, Rec. trav. chim. 40, 318-319 (1921).

#### D1 151011

3:3525 4,5-DICHLOROCATECHOL (4,5-Dichloropyrocatechol)

Colorless pr. from CHCl<sub>3</sub> + CS<sub>2</sub> (1); ndls. from  $C_6H_6$  + pet. ether (2). —  $\bar{C}$  is eas. sol. in cold aq. from which it crystallizes as a hemihydrate (1) (it is possible that the m.p. of  $105-106^\circ$  observed by some workers may have been due to formn. of this prod.). —  $\bar{C}$  cryst. from AcOH with 1 mole of solvent, viz.,  $\bar{C}$ .AcOH (1).

[For prepn. of  $\bar{C}$  from pyrocatechol (1:1520) with SO<sub>2</sub>Cl<sub>2</sub> (2 moles) or from 4-chloropyrocatechol (3:2470) with SO<sub>2</sub>Cl<sub>2</sub> (1 mole) see (2)

[C with silver oxide in dry ether gives (1) 4,5-dichlorobenzoquinone-1,2 [Beil. VII<sub>1</sub>-(338)], m.p. 94°; note, however, that C with this prod. forms a corresp. quinhydrone, dec. abt. 85°.]

[C with Cl<sub>2</sub> in AcOH gives (1) 3,4,5-trichloropyrocatechol (3:3448) cryst. from aq. as monohydrate, m.p. abt. 106-109° (1), 104-105° (4), 115° (5).

[C with PCl<sub>5</sub> gives (2) 1,2,4,5-tetrachlorobenzene (3:4115).]

 $\bar{C}$  with N/10 aq. KOH titrates (1) as a monobasic acid, i.e., Neut. Eq. = 89.5. —  $\bar{C}$  with aq. FeCl<sub>3</sub> gives blue-green coloration becoming red on addn. of aq. Na<sub>2</sub>CO<sub>3</sub> (1).

C does not (6) condense with xanthydrol (1:5205) in AcOH (dif. from 4-chloropyrocatechol (3:2470)).

- ---- 4,5-Dichloropyrocatechol diacetate: unreported.
- 1. 4.5-Dichloropyrocatechol dibenzoate [Beil. IX<sub>1</sub>-(72)]: m.p. 140.0-140.5° (1).

3:3525 (1) Willstatter, Müller, Ber. 44, 2184-2186 (1911). (2) Peratoner, Gazz. chim. ital. 28, I 222-224 (1898). (3) Frejka, Sefranek, Zika, Collection Czechslov. Chem. Commun. 9, 243-244 (1937). (4) Cousin, Bull. soc. chim. (3) 13, 719 (1895); Ann. chim. (7) 13, 483 (1898). (5) Jackson, Boswell, Am. Chem. J. 35, 526-527 (1906). (6) Fabre, Ann. chim. (9) 18, 115 (1922). (7) Peratoner, Ortoleva, Gazz. chim. ital. 28, I, 229-232 (1898).

#### 3:3530 5-CHLORORESORCINOL

#### M.P. 117° (1)

 $\bar{C}$  cryst. from  $C_6H_6$  in colorless ndls. of monohydrate, m.p. 67° (1), which on sublimation in vac. yield anhydrous  $\bar{C}$  (1).

Č is readily sol. in all usual solvents except lt. pet.; it rapidly absorbs aq. regenerating above monohydrate, m.p. 67° (1).

Č with FeCl<sub>3</sub> gives bluish-purple color; Č reduces boilg. Fehling soln.

Č on bromination (no details (1)) yields 5-chloro-2,4-tribromoresorcinol, colorless ndls. from AcOH or dil. alc., m.p. 143° (1).

3:3530 (1) Hodgson, Wignall, J. Chem. Soc. 1926, 2827.

Colorless cryst. from alc. or pet. ether. — Insol. aq; sol. alc. or lt. pet.; freely sol. ether, acetone, benzene, or CHCl<sub>3</sub>. — [For use of  $\bar{C}$  in stimulation of action of estrogenic hormones see (7); for aq. susp. of  $\bar{C}$  for medicinal use see (9).]

[For prepn. of C from 1,1,2-triphenylethanol-1 (benzyl-diphenyl-carbinol) [Beil. VI-721, VI<sub>1</sub>-(354)] in AcOH by treatment with Cl<sub>2</sub> at 30-40°, then htg. to b.p. to remove AcOH and effect loss of HCl (87% yield), see (1); from 1,2-dichloro-1,1,2-triphenylethane (1) by htg. just above m.p. (115°) (100% yield (1)) or by refluxing 5 hrs. in pyridine (65% yield (1)) see (1); from triphenylethylene [Beil V-722, V<sub>1</sub>-(355)] in AcOH with Cl<sub>2</sub> (1), in C<sub>6</sub>H<sub>6</sub> with PCl<sub>5</sub> (4), or in CCl<sub>4</sub> with SO<sub>2</sub>Cl<sub>2</sub> in pres. of dibenzoyl peroxide (2) see indic. refs.; from ω,ω-diphenylacetophenone (1,1,2-triphenylethanone) (triphenylvinyl alcohol) [Beil. VII-522, VII<sub>1</sub>-(291)] (5) (3) or from triphenylacetaldehyde [Beil. VII<sub>1</sub>-(292)] (6) with PCl<sub>5</sub> see indic. refs.]

3:3560 (1) van de Kamp, Sletzinger, J. Am. Chem. Soc. 63, 1879-1881 (1941). (2) Tadros, Nature 148, 53 (1941). (3) Schonberg, Robson, Tadros, Fahim, J. Chem. Soc. 1940, 1328.
 (4) Bergmann, Bondi, Ber. 64, 1467-1468 (1931). (5) Gardeur, Bull. acad. roy. Belg. 34, 67-100 (1897); Cent. 1897, II 662. (6) Danniov, J. Russ. Phys.-Chem. Soc. 51, 125 (1919); Cent. 1923, III 761. (7) Robson, Schonberg, Fahim, Nature 142, 292 (1938). (8) MacPherson, Robertson, Lancet (2) 237, 1362 (1939). (9) Collie & Imperial Chem. Ind., Ltd., Brit. 543,897, March 18, 1932; C.A. 36, 6313 (1942).

#### 3:3580 2-CHLORONAPHTHO-QUINONE-1,4 (2-Chloro-α-naphthoquinone)

C<sub>10</sub>H<sub>5</sub>O<sub>2</sub>Cl Beil. VII - 729 VII<sub>1</sub>—

Yel. ndls. with pungent quinone odor from dil. alc. or dil. AcOH. — Volatile with steam. — Eas. sol. alc., C<sub>6</sub>H<sub>6</sub>; spar. sol. ether.

[For prepn. of  $\tilde{C}$  from naphthoquinone-1,4 ( $\alpha$ -naphthoquinone) (1:9040) by conversion with Cl<sub>2</sub> in AcOH to 2,3-dichloro-1,4-diketo-1,2,3,4-tetrahydronaphthalene (" $\alpha$ -naphtho-

quinone dichloride") [Beil. VII-702] and subsequent elimination of 1 HCl with NaOAc/AcOH see (4) cf. (7); from  $\alpha$ -naphthol (1:1500) by conversion with Cl<sub>2</sub> in AcOH to 2,2,4-trichloro-1-keto-1,2-dhydronaphthalene [Beil. VII-387] and subsequent hydrolysis (with rearr.?) in boilg. dil. alc. or dil. AcOH see (5).

[For prepn. of  $\bar{C}$  from 1,3-dichloronaphthalene (3:1310) by oxidn. with  $CrO_3/AcOH$  see (8); from 2,4-dichloronaphthol-1 (3:3250) by oxidn. with  $CrO_3/AcOH$  or  $HNO_3/AcOH$  see (5) (9); from 2-chloro-1,2-diaminonaphthalene (2-chloronaphthylenediamine-1,2) by oxidn. with 2% alk  $KMnO_4$  see (2); from 2-chloronaphthol-1-sulfonic acid-4 by oxidn. with  $MnO_2$  in boilg. 50%  $H_2SO_4$  see (1); from 2,4-dimitronaphthol [Beil. VI-617, VI<sub>1</sub>-(308)] by oxidn. with NaOCl in HCl soln (3) or  $HCl + KClO_3$  (10) see indic. refs; from sodium salt of 4-(p-sulfobenzeneazo)naphthol-1 ("Orange I") [Beil. XVI-275,  $XVI_1$ -(296)] by oxidn. with NaOCl in HCl soln see (3)]

[ $\bar{\mathbf{C}}$  on reduction might be expected to give 2-chloro-1,4-dihydroxynaphthalene [Beil. VI-975], m.p. 116-117°; note, however, that this reaction has not actually been reported and that this prod. is also obtained by SO<sub>2</sub> reduction of 3-chloronaphthoquinone-1,2 (3:4704). — For study of oxidn.-reductn. potential of  $\bar{\mathbf{C}}$  see {7}.]

[C with Cl2 in AcOH gives (4) (5) 2,3-dichloronaphthoqumone-1,4 (3:4857).]

[C in boilg. alc. with aq. NaN<sub>3</sub> splits out NaCl giving (90% yield (11)) 2-azidonaphtho-quinone-1,4, long yel. pr. from alc, mp. 118° dec ]

Č with aniline on htg. (5) (6) in alc. soln. (8) (9) gives 3-chloro-2-anilino-naphthoquinone-1,4 [Beil. XIV-168, XIV<sub>1</sub>-(434)], red ndls, m.p. 207-208° (10), 207° (8), 202-203° (9) (6).

 $\bar{C}$  like many other quinones is able to form Diels-Alder type adducts with many conjugated dienes [e.g.,  $\bar{C}$  with 2,3-dimethylbutadiene-1,3 (1:8050) gives an adduct which with aq. 5% NaOH and a little Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub> at 70° reduces (with loss of halogen) to 2,3-dimethyl-1,4-dihydroanthrahydroquinone which in turn upon oxidn. with air at 0° gives (12) 2,3-dimethylanthraquinone [Beil. VII-815, VII<sub>1</sub>-(425)], yel. ndls from alc or AcOH, m.p. 210° (13), 209° (14), 208-209° (15), 208° (16), 205-206° (17); note also that this 2,3-dimethylanthraquinone is also obtd. (18) from the initial adduct with pyridine in absence of air, or (18) from  $\bar{C}$  + 2,3-dimethylbutadiene-1,3 (1:8050) at 100-105° under press. — For behavior of  $\bar{C}$  with 2-methylbutadiene-1,3 (isoprene) (1:8020) and with butadiene-1,3 see (18).]

- 2-Chloronaphthoquinone-1,4-(p-nitrophenylhydrazone-4) = 4-(p-nitrobenzeneazo)-2-chloronaphthol-1: m.p. 274° dec. (1). [From  $\bar{\mathbb{C}}$  with p-nitrophenylhydrazine (1); also from 2-chloronaphthol-1 (3:1490) in alk. soln. on coupling with diazotized p-nitroaniline (1).]
- 3:3580 (1) Hodgson, Rosenberg, J. Soc. Chem. Ind. 48-T, 287-289 (1929). (2) Hodgson, Elliott, J. Chem. Soc. 1935, 1852. (3) Seyewetz, Chaix, Bull. soc. chim. (4) 41, 201, 338 (1927). (4) Zincke, Schmidt, Ber. 27, 2757 (1894). (5) Zincke, Kegel, Ber. 21, 1036-1039 (1888). (6) Russig, J. prakt. Chem. (2) 62, 41-42 (1900). (7) Conant, Fieser, J. Am. Chem. Soc. 46, 1872, 1875 (1924). (8) Cleve, Ber. 23, 955 (1890). (9) Cleve, Ber. 21, 892-893 (1888). (10) Plagemann, Ber. 15, 485, Note 1 (1882).
- Fieser, Hartwell, J. Am. Chem. Soc. 57, 1484 (1935).
   I.G., French Addition 37,684, Jan 14, 1931; Cent. 1931, II 124; C.A. 25, 4559 (1931).
   Barnett, Marrison, Ber. 64, 537 (1931).
   L. Fieser, M. Fieser, J. Am. Chem. Soc. 57, 1681 (1935).
   Fieser, Seligman, Ber. 68, 1751 (1935).
   Fairbourne, J. Chem. Soc. 119, 1578 (1921).
   Fieser, Seligman, J. Am. Chem. Soc. 56, 2695 (1934).
   Italian Chem. Soc. 56, 2695 (1934).
   Fieser, Seligman, J. Am. Chem. Soc. 57, 1681 (1935).

#### 3:3585 α-CHLORO-DIPHENYL-ACETIC ACID

(Diphenylchloroacetic acid)

M.P. 120° dec. (1) 118-119° dec. (2) (3)

[See also \alpha-chlorodiphenylacetyl chloride (3:0885).]

Tbls. from C<sub>6</sub>H<sub>6</sub>/lgr.; very eas. sol lgr.

[For prepn of  $\bar{C}$  from benzilic acid ( $\alpha$ -hydroxydiphenylacetic acid) (1:0770) with POCl<sub>3</sub> on warming (not boilg.) until red color begins to appear (65% yield (3)) (4); with PCl<sub>5</sub> (62.5% yield (1)) or PCl<sub>3</sub> (68% yield (1)) both at room temp.; with SOCl<sub>2</sub> directly at room temp. (92% yield (1)) or with SOCl<sub>2</sub> (3 moles) in CCl<sub>4</sub> at ord. temp. (5) (2) see indic. refs.; note, however, that benzilic acid (1:0770) with PCl<sub>5</sub> (2 moles) at 120–130° (6) or 100° (7) or excess PCl<sub>5</sub> (5 moles) in C<sub>6</sub>H<sub>6</sub> at room temp. (1) gives instead  $\alpha$ -chlorodiphenylacetylehloride (3:0885), m p 50°; note also that benzilic acid (1:0770) with large excess (6 moles) SOCl<sub>2</sub> refluxed for several days gives (5)  $\alpha$ -chlorodiphenylacetic acid anhydride [Beil. IX<sub>1</sub>-(228)], m.p. 129° (5)].

[For prepn. of  $\bar{C}$  from O-carbomethoxybenzilic acid (2) with SOCl<sub>2</sub> see (2); for prepn. of  $\bar{C}$  from  $\alpha$ -chlorodiphenylacetyl chloride (3:0885) by hydrolysis (even in moist air) see (8)]

Č on reduction with T<sub>1</sub>Cl<sub>3</sub> in boilg. AcOH gives (8) diphenylacetic acid (1:0765), m.p. 148°.

Č (or its sodium salt) htd. under reduced press. at 125° for 10 hrs gives (80-90% yield (9)) benzilide [Beil. XIX-187, XIX<sub>1</sub>-(700)], ndls. from alc., m p 196° (10), 194° (11) (5), 193° (12), 192-193.5° (9) [the structure of this prod. is disputed, but it is either 2,2,5,5-tetraphenyl-3,6-diketodioxane-1,4 or tetraphenyldiglycolic acid anhydride].

 $\bar{C}$  with aq. KSH (or NaSH) does not (21) give the expected  $\alpha$ -mercaptodiphenylacetic acid (diphenylthioglycolic acid) (thiobenzilic acid) [Beil.  $X_{1}$ -(154)], but rather (apparently because of alkalinity of the soln.) benzilic acid (1:0770).

[ $\bar{C}$  with NaOMe (?) gives (13)  $\alpha$ -methoxydiphenylacetic acid (benzilic acid O-methyl ether) [Beil. X<sub>1</sub>-(152)], m.p. 100° (13); note that various compounds prepd. by a wide variety of methods but all supposed to have this structure have been reported with m.p.'s as follows: 99-100° (14), 102° (15), 106° (16), 107° (17), 111-112° (18), 120-121° (9); note also that the corresp. methyl ester, viz., methyl  $\alpha$ -methoxydiphenylacetate, oil, b.p. 199-200° at 27 mm., has been prepd. (19) from  $\alpha$ -bromodiphenylacetyl bromide with MeOH.]

[C with EtOH/NaOEt gives (8) cf. (13)  $\alpha$ -ethoxydiphenylacetic acid [Beil X<sub>1</sub>-(152)], tbls. from ether, m.p. 114-115° (20) (8), 114° (13), 113-114° (14); the corresp. ethyl ester, viz., ethyl  $\alpha$ -ethoxydiphenylacetate, appears to be unreported ]

 $\tilde{C}$  with Na phenolate might be expected to give  $\alpha$ -phenoxydiphenylacetic acid, but neither this reaction nor the expected prod. is reported. — However,  $\tilde{C}$  with thiophenol in  $C_6H_6$  refluxed 2 hrs. evolves HCl and gives (22)  $\alpha$ -thiophenoxy-diphenylacetic acid, cryst. from 50% AcOH, m.p. 126-128° (22).

[ $\bar{C}$  with  $C_6H_6$  + AlCl<sub>3</sub> gives normal Friedel-Crafts type reaction giving (25% yield (3)) triphenylacetic acid [Beil. IX-712, IX<sub>1</sub>-(309)], m.p. 265°.]

 $\tilde{C}$  with various amines or amino compds. splits out HCl giving the corresp.  $\alpha$ -aminodiphenylacetic acid derivatives [e.g.,  $\tilde{C}$  with NH<sub>3</sub> gives (13)  $\alpha$ -aminodiphenylacetic acid (diphenylglycine), m.p. 245° (13);  $\tilde{C}$  with piperidine gives (13)  $\alpha$ -piperidinodiphenylacetic acid, m.p. 180° (13); for other cases see (13)].

C with benzhydrazide in C<sub>6</sub>H<sub>6</sub> splits out HCl and yields (8) α-benzhydrazido-diphenylacetic acid, m.p. 167-168° (8).

 $\bar{C}$  with excess SOCl<sub>2</sub> on warming does not give the expected  $\alpha$ -chlorodiphenylacetyl chloride (3:0885), m.p. 50°, but rather (5) α-chlorodiphenylacetic acid anhydride, m.p. 129° (5).

C in pyridine on htg. at 100° (23) evolves CO2 presumably yielding benzohydryl chloride (a-chlorodiphenylmethane) (3:0060) as its quaternary salt with pyridine.

- Methyl  $\alpha$ -chlorodiphenylacetate: oil, b.p. 196° at 16 mm. (4). [From  $\bar{C}$  in dioxane soln. with diazomethane (100% yield) (4); note also that this ester with Cu bronze refluxed in C<sub>6</sub>H<sub>6</sub> for 5 hrs. then evaporated in air gives (4) the peroxide, m.p. 151-152°, of dimethyl tetraphenylsuccinate.]
- Ethyl  $\alpha$ -chlorodiphenylacetate: cryst. from alc., m.p. 43-44° (24) (6), b.p. 185° at 14 mm. (24). [From C with EtOH + dry HCl (10) best in pres. of C<sub>6</sub>H<sub>6</sub> as directed (90% yield (25)), or from α-chlorodiphenylacetyl chloride (3:0885) with EtOH (6), or from ethyl benzilate (1:2086) with PCl<sub>5</sub> (6)]
- $\alpha$ -Chlorodiphenylacetamide: m.p. 115° (6), 111–113° (26). [From  $\alpha$ -chlorodiphenylacetyl chloride (3:0885) in ether with NH<sub>3</sub> gas (6) (13).]
- $\alpha$ -Chlorodiphenylacetanilide: m.p. 88°. [See text of  $\alpha$ -chlorodiphenylacetyl chloride (3:0885).]
- 3:3585 (1) Setlur, Nadkarny, Proc. Indian Acad. Sci. 12-A, 268 (1940); C.A. 35, 1398 (1941). (2) McKenzie, Lesslie, Ber. 61, 160-161 (1928). (3) Bistrzycki, Herbst, Ber. 36, 145-147 (1903).
- (4) Schlenk, Hillemann, Rodloff, Ann. 487, 138, 154 (1931). (5) Stollé, Ber. 43, 2471-2473 (1910).
- (6) Bickel, Ber. 22, 1537-1539 (1889). (7) Staudinger, Ann. 356, 72-73 (1907). (8) Aspelund, Acta Acad. Aboensis Math. et Phys. 6, No. 17, 17 pp. (1932); Cent. 1933, I 782-783; C.A. 28, 5441-5442 (1934). (9) Staudinger, Dyckerhoff, Klever, Ruzicka, Ber. 58, 1087 (1925). (10)

Klinger, Standke, Ber. 22, 1213-1214 (1889).

(11) Einhorn, Mettler, Ber. 35, 3642 (1902). (12) Staudinger, Ber. 44, 545-547 (1911). (13) Setlur, Kothare, Nadkarny, J. Univ. Bombay 12-A, Pt. 3, 68-70 (1943); C.A. 38, 3250, 1739 (1944). (14) Klinger, Ann. 390, 371-372 (1912). (15) Schlenk, Bergmann, Ann. 464, 38 (1928). (16) Kohler, Larsen, J. Am. Chem. Soc. 58, 1521 (1936). (17) Ziegler, Thielmann, Ber. 56, 1741, Note 8 (1923). (18) Staudinger, Bereza, Ann. 380, 271 (1911). (19) Bergmann, Fujise, Ann. 483, 76-77 (1930). (20) Salkind, Peschekerowa, J. Russ. Phys.-Chem. Soc. 46, 488 (1914); Cent. 1914, II 1269.

(21) Bistrzycki, Brenken, Helv. Chim. Acta 3, 465-466 (1920). (22) Bistrzycki, Risi, Helv. Chim. Acta 8, 585 (1925). (23) Bezzi, Atti ist. Veneto sci., Ser. II, 94, 167-182 (1935). Cent. 1937, II 3605; not in C.A. (24) Kl.nger, Ann. 389, 262-263 (1912). (25) Adickes, J. prakt. Chem. (2) 150, 91 (1938). (26) Steinkopf, Ber. 41, 3593 (1908).

#### 3:3590 PENTACHLOROBENZAL (DI)CHLORIDE

C7HCl7 Beil. V - 304  $V_{1}$ -(153)

Colorless lfts. from alc.; eas. sol. hot, spar. sol. cold, alc.

[For prepn. of C from 2,3,4,5,6-pentachlorotoluene (3:4937) with Cl<sub>2</sub> at 210-230° as directed (70-80% yield) see (3); for formn. of C from benzal (d1)chloride (3:6327) with Cl<sub>2</sub> in pres. of I<sub>2</sub> + SbCl<sub>5</sub> see (2); from "pentachloro-orcinol" [Beil. VII-576, VII<sub>1</sub>-(323)] with PCl<sub>5</sub> (2 moles) at 230° for 12-16 hrs. (together with hexachlorobenzene (3:4939)) see (1).]

C is unaffected by aq. even in s.t. at 300°; however, C on hydrolysis with conc. HoSO4

at  $60-100^{\circ}$  or with fumg.  $H_2SO_4$  at  $40-50^{\circ}$  gives (90% yield (3)) (4) pentachlorobenzaldehyde (3:4892), m.p. 202.5° (3).

**3:3590** (1) Zincke, von der Linde, Ber. **26**, 318 (1893). (2) Beilstein, Kuhlberg, Ann. **150**, 306–308 (1869). (3) Lock, Ber. **66**, 1533 (1933). (4) Bayer and Co., Ger. **243**, 416, Feb. 10, 1912; Cent. **1912**, I 618; [C.A. **6**, 2292 (1912)]: U.S. 998,140, July 18, 1911; [C.A. **5**, 2904–2905 (1911)].

3:3600 1,6-DICHLORONAPHTHOL-2 Cl 
$$C_{10}H_6OCl_2$$
 Beil. VI — VI<sub>1</sub>— VI<sub>2</sub>-(604)

M.P. 119.5° (1)

Ndls, from hot lgr.

[For prepn. from 1-chloronaphthol-2 (3:1700) by actn. of Cl<sub>2</sub> in sunlight see (1).] C on reduction with FeSO<sub>4</sub> + NaOH yields (2) 6-chloronaphthol-2 (3:3500), m.p. 115° (2).

3:3600 (1) Ruggli, Knapp, Merz, Zimmermann, Helv. Chim. Acta 12, 1050-1051 (1929). (2) Herzberg, Spengler, Schmidt (to I.G.), Ger. 431,165, June 30, 1926; Cent. 1926, II 1196.

M.P. 119-120° (1) 118.5-119° (2) 118-119° (3) 116° (4)

[See also dichloromalesc anhydride (3:3635) and dichloromaleyl (di)chloride (3:6197).]

Ndls. from lgr./ether. — Eas. sol. aq.; sol. alc.,  $\Lambda$ cOH; insol.  $C_6H_6$ ,  $CHCl_3$ ,  $CS_2$ . — Note that  $\bar{C}$  on htg. very readily loses  $H_2O$  and is converted to dichloromaleic anhydride (3:3635); the m.p.'s observed for  $\bar{C}$  are probably actually those of its anhydride.

Note also that, although the structure corresp. to Č should be capable of existing also in the geometrically isomeric *trans* configuration, no such dichlorofumatic acid or its derivatives has ever been reported.

[For prepn. of  $\bar{C}$  from furfural (1:0185) in conc. HCl soln. with Cl<sub>2</sub> (30% yield) see (5); from dichloromaleinaldehyde-acid ("mucochloric acid") [Beil. III-727] by oxidn. with fumg. HNO<sub>3</sub> on stdg. at ord. temp. for several days (100% yield (4)) (2) see indic. refs.; from  $\alpha,\beta$ -dichloro- $\beta$ -(trichloroacetyl)acrylic acid ("perchloro- $\beta$ -acetylacrylic acid") [Beil. III-733] by hydrolytic cleavage with aq. NaOH (chloroform is also formed) see (3); from hexachlorocyclohexen-1-dione-3,6 [Beil. VII-574] by hydrolytic cleavage with 10% aq. NaOH (trichloroethylene (3:5170) is also formed) see (1); from hexachlorocyclohexen-1-dione-3,5 ("hexachlororesorcinol") (3:3470) (6) or from 2,2,3,4,6,6-hepta-chlorohexen-3-one-5-acid-1 [Beil. III-735, III<sub>1</sub>-(255)] (6) with large excess dil. aq. Ca(OCl)<sub>2</sub> see indic. refs.]

[For formn. of  $\bar{C}$  from 3,4-dichlorofuroic acid [Beil. XVIII-282] by oxidn. with boilg dil. HNO<sub>3</sub> (7) or from 3,4,5-trichlorofuroic acid [Beil. XVIII-283] by oxidn. with hot dil. HNO<sub>3</sub> or cold Br<sub>2</sub>/aq. (7) see indic. refs.; from pyrrole with aq. NaOCl (other prods. are also formed) see (8).]

 $\bar{\mathbf{C}}$  behaves normally as a dibasic acid: e.g.,  $\bar{\mathbf{C}}$  on titration with standard dil. aq. alk. gives Neut. Eq. 92 5 (2).

[Salts: for Li<sub>2</sub> $\bar{A}$ , Na<sub>2</sub> $\bar{A}$ .H<sub>2</sub>O, NaH $\bar{A}$ .H<sub>2</sub>O, K<sub>2</sub> $\bar{A}$ .2H<sub>2</sub>O, K<sub>2</sub> $\bar{A}$ .H<sub>2</sub>O, Cu $\bar{A}$ .H<sub>2</sub>O, Pb $\bar{A}$ .H<sub>2</sub>O, Ni $\bar{A}$ .2H<sub>2</sub>O see (4). — Ba $\bar{A}$ .2½H<sub>2</sub>O (3). — Ag<sub>2</sub> $\bar{A}$ , white ndls. which explode on htg. (3) (8) (9).]

- Dimethyl dichloromaleate: oil, b.p. 225° (9). [From dichloromaleic anhydride (3:3635) in MeOH with HCl gas on boilg. (9). This prod. with aniline at 100° yields (4) dimethyl  $\alpha,\beta$ -dianilinomaleate, cryst. from alc., m.p. 172° (4).]
- Diethyl dichloromaleate: unreported.
- Dichloromaleinimide [Beil XXI-401] ndls. from aq., m.p. 179° (10). [From dichloromaleic anhydride (3:3635) with urea on htg. at 110-115° (10)]
- --- N-Phenyldichloromaleinimide (dichloromaleanil) [Beil. XXI-402]: colorless lfts. from MeOH. m.p. 203°. [Reported only by indirect means.]
- Dichloromaleic dianilide: see under text of dichloromaleyl (di)chloride (3:6197).
- **3:3634** (1) Zincke, Fuchs, Ann. 267, 19-22 (1892). (2) Stelling, Z physik Chem. B-24, 424 (1934). (3) Zincke, von Lohr, Ber. 25, 2230 (1892) (4) Salmony, Simonis, Ber. 38, 2588-2590, 2594-2595, 2598-2599 (1905) (5) Leder, Russ 48,297, Aug. 31, 1936; Cent. 1937, II 288. (6) Zincke, Fuchs, Ber. 26, 509 510 (1893). (7) Hill, Jackson, Am. Chem. J. 12, 43-44, 124-125 (1890). (8) Ciamician, Silber, Ber. 17, 1743-1744 (1884). (9) Kauder, J. prakt. Chem. (2) 31, 5-6 (1885). (10) Dunlap, Am. Chem. J. 18, 333-334 (1896).

M.P. 119-120° (1) (2) 119.5° (3) 119° (4) (8)

119' (4) (8) 117-118° (5)

[See also dichloromaleic acid (3:3634).]

Colorless lfts. very eas. sol. alc., ether, C6H6, or CS2; sublimable.

[For prepn. of  $\bar{C}$  from dichloromaleic acid (3:3634) by htg. see (1) (2) (10); for prepn. of  $\bar{C}$  from maleic anhydride (1:0625) with  $Cl_2$  at 130° in pres. of Fe (80% yield (7)) or from chlorofumaryl dichloride with  $Cl_2$  in pres. of Fe (8) see indic. refs.; for prepn. of  $\bar{C}$  from furoic acid (1:0475) by conv with  $MnO_2 + HCl$  to mucochloric acid, OCH.CCl= CCI.COOH [Beil. III-727] (9), and subsequent treatment with fung.  $HNO_3$  (4) (9) or from 3,4-dichlorofuran (9) by oxidin with fung.  $HNO_3$  (9) see indic. refs; for formin.  $\bar{C}$  (together with other products) from diethyl tartrate (1:4256) with  $PCl_5$  for 7-8 hrs. at 100° see (6); from either dichloromaleo(di)nitrile (m.p. 58-59°,  $D_4^{62} = 1.32501$ ,  $n_D^{62} = 1.48824$  (12)) or from dichlorofumaro(di)nitrile (m.p. 60.0-60.5°,  $D_4^{62} = 1.32543$ ,  $n_D^{62} = 1.48845$  (12)) by hydrol. see (12).]

 $\tilde{C}$  is itself spar. sol. aq. but slowly dissolves (1) (6) yielding a soln. of dichloromaleic acid (3:3634).

C with PCl<sub>5</sub> yields (8) dichloromaleyl dichloride (3:6197).

 $\bar{C}$  with 1 mole anthracene (1:7285) htd. for 10 min. at 170° gives 100% yield (4) of anthracene-9,10-endo-dichloromaleic anhydride, ndls. from acetonitrile, m.p. 235° (4).

Č with 1 mole urea htd. to 90-95° for 20 min. yields (11) dichloromaleic acid monoureide [Beil. III-68], m.p. 158° dec. (11); this prod. on fusion or the original system htd. at 110-115° yields (11) dichloromaleinimide [Beil. XXI-401], m.p. 179° (11).

 $\bar{C}$  on htg. with aniline (9) yields  $\alpha$ -chloro- $\alpha$ -anilinomalein- $\alpha'$ -isoanil [Beil. XVII-555], greenish yel. cryst. from alc., m.p. 188.7-190 2° cor. (9), 187° (10).

3:3635 (1) Ciamician, Silber, Ber. 16, 2396 (1883). (2) Zincke, Fuchs, Ann. 267, 20-22 (1892).
(3) Kauder, J. prakt. Chem. (2) 31, 4 (1885). (4) Diels, Thiele, Ber. 71, 1173-1178 (1938).
(5) Leder, J. prakt. Chem. (2) 130, 271 (1931). (6) Patterson, Todd, J. Chem. Soc. 1929, 1768-1771. (7) Leder, Russ. 43,419, June 30, 1935, Cent. 1936, I 1310, C.A. 31, 7447 (1937). (8) Vandevelde, Bull. acad. roy. Belg. (3) 37, 680-700 (1900); Cent. 1900, I 404. (9) Shepard, Winslow, Johnson, J. Am. Chem. Soc. 52, 2088-2089 (1930). (10) Salmony, Simonis, Ber. 38, 2588 (1905).

(11) Dunlap, Am. Chem. J. 18, 333-334 (1896). (12) Mommaerts, Bull. classe sci., Acad. roy. Belg. (5) 27, 579-597 (1944), Cent. 1943, I 615-616, CA. 38, 3621 (1944).

#### 3:3665 2,3-DICHLORONAPHTHALENE

Spar. sol. cold, eas. sol hot alc or ether

[For prepn. of  $\bar{C}$  from naphthalenetetrachloride-1,2,3,4 (3:4750) by htg. with Ag<sub>2</sub>O in s.t. at 200° (1) or (in small yield together with other prods.) by boilg, with alc. KOH (3) (4) see indic. refs.; from 1,2,3-trichloronaphthalene (3:2125) with Na/Hg in alc. see (4).]

[ $\ddot{\mathbf{C}}$  on monosulfonation in CS<sub>2</sub> with ClSO<sub>3</sub>H yields (4) mainly 2,3-dichloronaphthalene-sulfonic acid-8 [Beil. XI-164] (corresp. sulfonyl chloride, m.p. 142°, corresp. sulfonamide m.p. 268°) accompanied by 2,3-dichloronaphthalenesulfonic acid-6 (?) [Beil. XI-183] (corresp. sulfonyl chloride, m.p. 178°)]

3:3665 (1) Leeds, Everhart, J. Am. Chem. Soc. 2, 210-212 (1880). (2) Hampson, Weissberger, J. Chem. Soc. 1936, 394 (3) Widman, Ber. 15, 2162 (1882) (4) Armstrong, Wynne, Chem. News 61, 273-275, 284 (1890).

#### 3:3695 3,4-DICHLOROPHTHALIC ANHYDRIDE

[See also 3,4-dichlorophthalic acid (3:4880).]

Tbls. from CCl<sub>4</sub>; sol. in C<sub>6</sub>H<sub>6</sub>, toluene, CHCl<sub>3</sub>.

[For prepn. of  $\bar{C}$  from 3,4-dichlorophthalic acid (3:4880) by protracted htg. at 220° see (2); for formn. of  $\bar{C}$  (together with other isomers) from phthalic anhydride (1:0725) with  $Cl_2$  at 240° in pres. of Fe or Fe salts (3), from phthalic anhydride or 3-chlorophthalic

anhydride (3:3900) with  $\text{Cl}_2$  in fumg.  $\text{H}_2\text{SO}_4$  in pres. of  $\text{I}_2$  (4) (1), see indic. refs.] [For sepn. of  $\tilde{\text{C}}$  from isomeric dichlorophthalic anhydrides by means of salts of corresp. acids see (4) (1) (18); by means of differential hydrolysis with  $\text{H}_2\text{SO}_4$  (prods. with no  $\alpha$ -chlorine such as 4,5-dichlorophthalic anhydride require  $\text{H}_2\text{SO}_4$  of 98-100% conen.; those with one  $\alpha$ -chlorine such as  $\tilde{\text{C}}$  hydrolyze with 56-95%  $\text{H}_2\text{SO}_4$ ; those with two  $\alpha$ -chlorines such as 3,6-dichloro- or 3,4,5,6-tetrachlorophthalic anhydrides hydrolyze at  $\text{H}_2\text{SO}_4$  conens. of less than 50%) see (5).]

Č dislvd. in abs. alc. yields one of the two known acid esters, viz., 3,4-dichloro-2-car-bethoxybenzoic acid, pr. from dil. alc., m.p. 164° (6); see also under 3,4-dichlorophthalic acid (3:4880).

[ $\bar{C}$  with PCl<sub>5</sub> htd. in s.t. at 200° for 6 hrs. gives exclusively (6) pseudo-3,4-dichlorophthaloyl dichloride (3,3,6,7-tetrachlorophthalide), ndls. from C<sub>6</sub>H<sub>6</sub>, m.p. 133° (6) (this prod. shaken with abs. alc. susp. of CaCO<sub>3</sub> for 10 hrs. yields (6) 6,7-dichloro-3,3-diethoxyphthalide, pr. from pet. ether., m.p. 79° (6), which depresses m.p. of normal diethyl 3,4-dichlorophthalate, m.p. 80° (6) to 60°).]

Č with 1 mole NH<sub>2</sub>OH.HCl + Na<sub>2</sub>CO<sub>3</sub> in aq. as directed (2) yields 3,4-dichlorophthalylhydroxylamine (N-hydroxy-3,4-dichlorophthalimide) [Beil. XXI-504], ndls. from MeOH, m.p. 218-219° (2), 216-219° (7) (this prod. with boilg. aq. Na<sub>2</sub>CO<sub>3</sub> yields (2) (7) a mixt. of 3,4-dichloro-2-aminobenzoic acid (3,4-dichloroanthranilic acid) [Beil. XIV-367, XIV<sub>1</sub>-(549)] and 5,6-dichloro-2-aminobenzoic acid (5,6-dichloroanthranilic acid [Beil. XIV-368]).

[Č with steam passed over cat. at 380-420° loses CO<sub>2</sub> presumably yielding (8) 2,3-di-chlorobenzoic acid (3:4650) and/or 3,4-dichlorobenzoic acid (3:4925).]

[ $\bar{C}$  with hydroquinone (1:1590) +  $H_3BO_3$  htd. at 190° and afterward treated with hot cone.  $H_2SO_4$  (9), or  $\bar{C}$  with AlCl<sub>3</sub> + NaCl htd. at 200–220° for 45 min. (10), or  $\bar{C}$  with p-chlorophenol (3:0475) htd. with fumg.  $H_2SO_4$  +  $H_3BO_3$  (11), gives 5,6-dichloro-1,4-dihydroxyanthraquinone (5,6-dichloroquinizarin) [Beil. VIII<sub>1</sub>-(715)], red. ndls. from AcOH, m.p. 239° (10), 208° (9) (diacetate, m.p. 170° (10), 140° (9)).]

[For study of behavior of  $\bar{C}$  with o-chlorotoluene + AlCl<sub>3</sub> see (12); for use of  $\bar{C}$  with dibenzanthrone derivs. in prepn. of vat dyes see (13); for reactn. with p-cresol see (16).]

C on fusion with urea yields (14) 3,4-dichlorophthalimide, m.p. 348-351° (14) (for use in prepn. of pigments of phthalocyanine type see (14) (15)).

Č (1 pt.) dislvd. in 5 pts. boilg. AcOH and treated with 1 pt. aniline gives on cooling 97% yield 3,4-dichlorophthalanil [Beil. XXI<sub>1</sub>-(391)], cryst. from AcOH, m.p. 181-181.5° cor. (1), ndls. from alc., m.p. 179-180° (17) [note, however, that on protracted htg. with excess aniline one of the two nuclear halogens also reacts, e.g., Č (1 pt.) boiled with 3 pts. aniline for 10 hrs. gives 4-chloro-3-anilinophthalanil, cryst. from alc., m.p. 159.5-160° cor. (1); note also that under certain conditions both halogens can be removed, e.g., 3,4-dichlorophthalanil (above) on refluxing 6 hrs. with aniline + anhydrous Na<sub>2</sub>CO<sub>3</sub> + Cu gives (10% yield (17)) 3-anilinophthalanil, or.-yel. pr., m.p. 144.5-145° (17).]

 $\bar{C}$  on saponification with standard alk. (Sap. Eq. = 108.5), followed by acidification, yields 3,4-dichlorophthalic acid (3:4880) q.v.

3:3695 (1) Pratt, Perkins, J. Am. Chem. Soc. 40, 215-217 (1918). (2) Villiger, Ber. 42, 3542-3544 (1909). (3) Dvornikoff (to Monsanto Chem. Co.), U.S. 2,028,383, June 12, 1933; Cent. 1936, I 2830; C.A. 30, 1394 (1936). (4) Ref. 2, pp. 3538-3541. (5) Imperial Chem. Ind., Ltd., French 749,954, Aug. 2, 1933; Cent. 1933, II 2748-2749. (6) Kirpal, Jaluschka, Lassak, Ber. 68, 1333-1334 (1935). (7) B.A.S.F., Ger. 216,749, Dec. 6, 1909; Cent. 1910, I 310. (8) Jaeger (to Selden Co.), U.S. 1,964,516, June 26, 1934; Cent. 1934, II 3047. (9) Frey, Ber. 45, 1362-1363 (1912). (10) Waldmann, J. prakt. Chem. (2) 130, 99 (1931).

(11) Scottish Dyes, Ltd., Bangham, Hooley, Thomas, Brit. 339,589, Jan. 8, 1931; Cent. 1932,
 I 2095. (12) Keimatsu, Hirano, J. Pharm. Soc. Japan, 49, 20-26, 158-163 (1929); Cent. 1929.

I 2533; 1939, I 1303. (13) Imperial Chem. Ind., Ltd., Shaw, Thomson, Brit. 383,624, Dec. 15, 1931; Cent. 1933, I 1358. (14) Imperial Chem. Ind., Ltd., Thorpe, Linstead, Brit. 390,149, Apr. 27, 1933; French 737,392, Dec. 10, 1932; Cent. 1933, II 794. (15) Thorpe, Linstead, Thomas (to Scottish Dyes, Ltd.), Brit. 389,842, Apr. 20, 1933; Cent. 1933, II 3769. (16) Knescheck, Ullmann, Ber. 55, 306, 315 (1922). (17) Mariott, Robinson, J. Chem. Soc. 1939, 137. (18) Hodgson, J. Soc. Dyers Colourists 49, 215 (1933).

# 3:3720 4-CHLORONAPHTHOL-1 OH C<sub>10</sub>H<sub>7</sub>OCl Beil. VI - 611 VI<sub>1</sub>-(308) VI<sub>2</sub>-(582) M.P. 120-121° (1)

M.P. 120-121° (1) 120-120.5° (2) 120° (3) 116-117° (4) (26) 116° (5)

Ndls. from dil. alc. or from CHCl<sub>3</sub>. — Very eas. sol. org. solv. — Sublimes in ndls. — Volatile with steam but less so than 2-chloronaphthol-1 (3:1490) (use in sepn from latter (6)).

[For prepn. of  $\tilde{C}$  from bis-(4-chloronaphthyl-1) carbonate (itself obtd. from bis-( $\alpha$ -naphthyl) carbonate in AcOH with Cl<sub>2</sub> in pres. of SbCl<sub>3</sub> (5)) by hydrolysis with alc. KOH see (5); from 4-chloronaphthyl-1 p-toluenesulfonate (itself obtd. from  $\alpha$ -naphthyl p-toluenesulfonate in CCl<sub>4</sub> with Cl<sub>2</sub> + cat. (7)) by hydrolysis see (7); from  $\alpha$ -naphthol (1:1500) with SO<sub>2</sub>Cl<sub>2</sub> in CHCl<sub>3</sub> as directed (yields: 20–60% (1), 42% (6), 27–33% (8)) (26) (the isomeric 2-chloronaphthol-1 (3:1490) is also formed) see indic. refs.; from 1,4-dichloronaphthalene (3:1655) by htg. with MeOH/KOH in copper-lined autoclave 20 hrs. at 190–200° see (9); from 4-chloronaphthol-1-sulfonic acid-8 (10) (3) by hydrolysis (10) or reductive cleavage with Na/Hg (3) of the —SO<sub>3</sub>H group see indic. refs.; from 4-chloro-1-hydroxynaphthoic acid-2 [Beil. X<sub>1</sub>-(146)] by htg. in naphthalene or nitrobenzene in pres. of aniline (yield: 81–89%) see (2); from 4-chloronaphthyl-1 MgBr in ether by oxidn, with dry O<sub>2</sub> see (4).

 $\bar{C}$  with  $Cl_2$  in AcOH yields (4) 2,4-dichloronaphthol-1 (3:3250), m.p. 106° (4);  $\bar{C}$  with 1 mole  $Br_2$  in AcOH gives alm. quant. yield (11) 2-bromo-4-chloronaphthol-1; ndls., m.p. 96° (11).

[ $\tilde{C}$  with 0.5 mole SCl<sub>2</sub> in CHCl<sub>3</sub> gives (79% yield (12)) bis-(4-chloro-1-hydroxynaphthyl-2) sulfide, colorless ndls. from hot alc., m.p. 172° dec. (12); for reactn. of  $\tilde{C}$  with 2-hydroxynaphthalene-1-sulfenyl bromide (13) (14), or with SCl<sub>2</sub> +  $\beta$ -naphthol (15), see indic. refs.]

[ $\bar{C}$  undergoes many condensations with various types of cpds.: e.g., for condensation of  $\bar{C}$  with formaldehyde (16) (17), with 2,6-bis-(hydroxymethyl)-4-methylphenol (18), and use of prods. as mothproofing cpds. see indic. refs.; for condensation of  $\bar{C}$  with naphthalene-2,3-dicarboxylic acid anhydride [Beil. XVII<sub>1</sub>-(266)] see (19); for condensation of  $\bar{C}$  with malic acid (1:0450) or with ethyl acetoacetate (1:1710) or with ethyl methylacetoacetate (1:1712) using  $H_2SO_4$  or  $P_2O_5$  yielding naphthapyrone derivs. see (8); for condens. of  $\bar{C}$  with 2,3-dichloronaphthoquinone-1,4 (3:4857) for use in prepn. of vat dyes see (21).]

[Č with maleic anhydride (1:0625) + AlCl<sub>3</sub> + NaCl htd. ½ hr. at 210-220° gives (12% yield (20)) 10-chloro-1-hydroxyanthraquinone-4,9, dark red ndls. from C<sub>6</sub>H<sub>6</sub>, m.p. 205-206°; similarly Č with citraconic anhydride (1:1135) yields (20) both 10-chloro-1-hydroxy-2-methyl- and 10-chloro-1-hydroxy-3-methylanthraquinone-4,9]

[ $\bar{C}$  with 2,4-dinitrotoluene forms a mol. cpd., m.p. 65° (22);  $\bar{C}$  with 2,4-dinitroanisole forms a mol. cpd. (22); for use of these as fungicides see (22); for use of  $\bar{C}$  as disinfectant see (23).]

C with PkOH in CHCl<sub>3</sub> (5) forms an unstable mol. cpd., C.PkOH, or. ndls., m.p. 171° (5), 170-171° (4) (1).

Č with FeCl<sub>3</sub> or Ca(OCl)<sub>2</sub> in neutral soln. gives blue ppt. (5) (4)

- Č in alc. (10 pts.) treated with conc. HCl (5 pts.) and then with NaNO<sub>2</sub> (0.4 pt.) yields (2) 4-chloronaphthoquinone-1,2-oxime-2 [Beil. VII<sub>1</sub>-(385)], purified via the beautifully crystg. dif. sol. red sodium salt, from which HCl ppts. the free oxime, pale yel. ndls., m.p. 157° (2).
  - ① 4-Chloro-1-naphthyl acetate: cryst. from lgr., m.p. 44° (4) (26). [From C with AcCl (2)] [For Fries rearr. of this acetate to 4-chloro-1-hydroxy-2-naphthyl methyl ketone see (24).]
  - —— 4-Chloro-1-naphthyl benzoate: ndls. from alc., m.p. 100-101° (25). [Reported only by indirect means (25).]

3:3720 (1) Kast, Ber. 44, 1337 (1911). (2) Reissert, Ber. 44, 867-869 (1911). (3) Friedlander, Karamessinis, Schenk, Ber. 55, 50 (1922). (4) Bodroux, Bull. soc. chrm. (3) 31, 35-36 (1904). (5) Réverdin, Kauffmann, Ber. 28, 3051 3053 (1805). (6) Lesser, Gad, Ber. 56, 972-973 (1923) (7) Akt.-Ges. fur Anihn Fabrikation, Ger. 240,038, Oct. 26, 1911; Cent. 1911, II 1565. (8) Chakravart, Bagchi, J. Indian Chem. Soc. 13, 651-653 (1936). (9) Soc. d'exploitation des brevets O. Matter, French 807,536, Jan. 14, 1937, Cent. 1937, I 4560, C.A. 31, 5382 (1937). (10) Kalle and Co., Ger. 343,147, Oct. 28, 1921; Cent. 1922, II 114.

Willstatter, Schuler, Bcr. 61, 367 (1928).
 Christopher, Smiles, J. Chem. Soc. 101, 717 (1912).
 Italy Evenson, Smiles, J. Chem. Soc. 1930, 1744.
 Child, Smiles, J. Chem. Soc. 1926, 957.
 Lesser, Giad, Bcr. 58, 2558 (1925).
 Weller, Wenk, Stotter (to I G), U.S. 1,707,181, March 26, 1929; French 651,646, Feb. 21, 1929, Cent. 1929, II 499.
 Lustian, 124,284, Aug. 25, 1931, Cent. 1931, II 3176.
 Weller, Wenk, Stotter (to I G), Ger. 542,068, Jan. 20, 1929, Cent. 1932, I 3014.
 Kranzlein, Vollmann (to I.G.), Ger. 518,925, March 10, 1931; Cent. 1931, II 2786.
 Maennchen (to I.G.), Ger. 461,650, June 25, 1938, Cent. 1928, II 715.
 Ley I.G., Ger. 1931, Ger. 461,650, June 25, 1938, Cent. 1928, II 715.

(21) Maennchen (to I.G.), Ger. 461,650, June 25, 1938, Cent. 1928, II 715. (22) I.G., Ger. 462,151, July 6, 1928, Cent. 1929, I 2686. (23) Heading, Pharm. J. 138, 321-322 (1937); Chemist and Druggist 126, 392-393; Cent. 1937, II 2208. (24) Chakravarti, Bagchi, J. Indian Chem. Soc. 13, 692 (1936). (25) Autenrieth, Muhlinghaus, Ber. 40, 748 (1907). (26) Airan, Shah, J. Univ. Bombay 10, Pt. 5, 131-134 (1942); C.A. 37, 633 (1943).

#### 3:3750 2,6-DICHLOROBENZO-QUINONE-1,4

(m-Dichlorobenzoquinone)

[See also 2,6-dichlorohydroquinone (3:4600).]

Yellow cryst. from  $C_6H_6$  or lgr.; yellow pr. from alc. or AcOH. —  $\bar{C}$  is somewhat solboilg, aq. or cold alc.; eas. sol. hot alc.; sol. CHCl<sub>3</sub>. — Sublimes far below m.p.; volatile

with steam. — Č turns skin reddish brown. [For study of photochem. decompn. of alc. soln. see (43).]

[For prepn. of C from 2,6-dichlorohydroquinone (3:4600) with CrO<sub>3</sub> (7) or with excess aq. FeCl<sub>3</sub> soln. on warming (9) see indic. refs.; from 2,4,6-trichlorophenol (3:1673) on oxidn. with CrO<sub>3</sub> in AcOH at 30-40° (yields: 69% (3), 27% (10)) (2), with cold fumg.  $HNO_3$  (25% yield (11)) (6), with mixt. of fumg.  $HNO_3 + conc.$   $H_2SO_4$  (12), with  $PbO_2$ in AcOH or in C<sub>6</sub>H<sub>6</sub> (10) or in alc. with HNO<sub>2</sub> (13) (14) cf. (10), see indic. refs. (note that in addn. to C the crude oxidn. prod. contains also 2-chloro-6-(2',4',6'-trichlorophenoxy)benzoquinone-1,4, m.p. 134-135° (10), and 2,6-bis-(2',4',6'-trichlorophenoxy)benzoquinone-1,4, m.p. 245° (10), which resemble C in appearance, composition, and behavior); from 2.6-dichloro-4-fluorophenol (8) or its dimethyl ether (8) or from 2.6-dichloro-4-bromophenol (11) with ice-cold HNO<sub>3</sub> (D = 1.5) see indic. refs.; from 2,6-dichloro-4-nitrophenol [Beil. VI-241, VI<sub>1</sub>-(122)] on htg. above its m.p. (125°) (15) or in small amt, with mixt, of fumg, HNO<sub>3</sub> + fumg. H<sub>2</sub>SO<sub>4</sub> at ord. temp. (16); from 2,6-dichloro-4-aminophenol [Beil. XIII-512, XIII<sub>1</sub>-(183)] by oxidn. with  $K_2Cr_2O_7 + H_2SO_4$  (90% yield (1)) (17) see indic. refs.; from 3,5-dichloro-4-aminophenol [Beil. XIII-513] similarly see (18); from 2,6-dichloro-pphenylenediamine [Beil. XIII-118, XIII<sub>1</sub>-(37)] by oxidn. with dichromate see (19) (10); from 2,6-dichloro-4-bromophenol bromide (4) or from "2,4,6-trichlorophenol bromide" (2,4,6-trichloro-6-bromocyclohexadiene-1,4-one-3) [Beil. VII-145] (5) with cold fumg. HNO<sub>3</sub> see indic. refs.; from 2,6-dichlorobenzoquinone-1,4-(2,4-dinitroanil)-4 [Beil. XII-754] on hydrolysis with dil. H<sub>2</sub>SO<sub>4</sub> in s.t. at 200° see (20).]

[For study of bactericidal value of  $\bar{C}$  see (21); for use as vulcanization accelerator see (22); for condensation with  $\beta$ -naphthylamine and use of prods. as intermediates in prepn. of sulfur dyes see (23); for condensation with various amines to yield corresp. mono- and diarylaminoquinones see (24); for condensation with various aminophenols and use of prods. in prepn. of oxazine dyes see (25); for condensation of  $\bar{C}$  with  $\rho$ -aminoaryl mercaptans and use in prepn. of vat dyes see (26); for reactn. with Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> + AcOH in prepn. of sulfur dyes see (40).]

 $\bar{C}$  on reductn. with aq. SO<sub>2</sub> gives (80% yield (3)) (27) (1) 2,6-dichlorohydroquinone (3:4600) (note, however, that  $\bar{C}$  in dil. aq. NaOH under N<sub>2</sub> with SO<sub>2</sub> is in part reduced to 2,6-dichlorohydroquinone (3:4600) and in part sulfonated to mono- and disulfonic acids of  $\bar{C}$  (28)). — [For studies of the oxidn.-reductn. potential of system  $\bar{C}$  + 2,6-dichlorohydroquinone see (3) (29) (30) (42)] — [ $\bar{C}$  forms with 2,6-dichlorohydroquinone the corresp. quinhydrone, brown prismatic ndls., m.p. 135° (31), but does so less readily than the benzoquinone-1,4/hydroquinone system (3); note that this same quinhydrone is obtd. (36) from  $\bar{C}$  + ord. hydroquinone (36).]

[Č in CHCl<sub>3</sub> at low temp. does not react with Cl<sub>2</sub> but at ord. temps. gives (22) tetrachlorobenzoquinone-1,4 (chloranil) (3:4978). — Č in AcOH at 15–20° gives (11) with 2 moles Br<sub>2</sub> 2,6-dichloro-3,5-dibromobenzoquinone-1,4 [Beil. VII-642], m.p. 291° (11), accompanied by a little 2,5-dichloro-3,6-dibromobenzoquinone-1,4 [Beil. VII-642], m.p. 292° (11); but Č in boilg. AcOH with 2 moles Br<sub>2</sub> gives exclusively the latter (11) cf. (19) (33).] [Č with conc. HCl gives on boilg. (34) both 2,3,5-trichlorobenzoquinone-1,4 (3:4672) and 2,3,5,6-tetrachlorobenzoquinone-1,4 (chloranil) (3:4978).]

[C in cold alc. treated dropwise with 10% alc. KOH gives first a green soln. turning to brownish red and pptg. in poor yield (2) a potassium salt of 2-chloro-3,6-dihydroxybenzo-quinone-1,4 [Beil. VIII-378]; C in satd. alc. soln. at 50-60° with conc. NH₄OH gives a purple soln. grad. turning brownish red and pptg. (20-25% yield (2)) 2-chloro-3,6-dihydroxybenzoquinone-1,4-diimide [Beil. VIII-379], bronze-colored lfts. from AcOH, subliming at 258-260° without melting.]

 $[\bar{C} \text{ (1 pt.) in alc. (15-20 pts.)} + \text{conc. HCl (0.3-0.4 pts.)} \text{ treated with aniline (0.25 pt.)}$ 

yields mainly (35) 2,6-dichloro-3-anilinobenzoquinone-1,4 [Beil. XIV-137], blue ndls. or lfts., m.p. 154° (35), and 2,6-dichlorohydroquinone (3:4600) accompanied by small amts. of 2-chloro-3,6-dianilinobenzoquinone-1,4 (see below);  $\bar{C}$  in either alc. or AcOH with excess aniline yields (35) 2-chloro-3,6-dianilinobenzoquinone-1,4 [Beil. XIV-143], brown lfts. from AcOH, m.p. 262° (35), and 2,6-dichlorohydroquinone (3:4600).] — [Note that  $\bar{C}$  with sulfanilic acid behaves similarly: e.g.,  $\bar{C}$  with 2 moles sulfanilic acid in aq. (best in pres. of NaOAc) yields (37) 2-chloro-3,6-bis-(p-sulfoanilino)benzoquinone-1,4 together with 2,6-dichlorohydroquinone (3:4600); in aq. alc., however, 2,6-dichloro-3-(p-sulfoanilino)benzoquinone is also formed (37).]

[Č with NH<sub>2</sub>OH.HCl in alc. yields (38) 2,6-dichlorobenzoquinone-1,4-monoxime-4, pale yel. Ifts. from dil. alc., m.p. 140° (38), which with cold conc. HNO<sub>3</sub> oxidizes to 2,6-dichloro-4-nitrophenol [Beil. VI-241], colorless ndls. from aq., Ifts. from AcOH, tbls. from ether, m.p. 125° dec.; note that no dioxime can be formed ]

[Č with semicarbazide HCl in cold dil. alc. gives (39) 2,6-dichlorobenzoquinone-1,4-semicarbazone-4, in red or yel. forms acc. to conditions, but both of m.p. 218° dec. (39); note that no bis-semicarbazone can be formed.]

[C with 20% soln, of triphenylphosphine in CHCl<sub>3</sub> gives an orange-red, red, or brown color (41) (also shown by trichlorobenzoquinone and by chloranil); for other limitations and details see (41).

3:3750 (1) van Erp, Ber. 58, 664-665 (1925). (2) Kehrmann, Tiesler, J. prakt. Chem. (2) 40, 480-486 (1889). (3) Conant, Fieser, J. Am. Chem. Soc. 45, 2202-2204 (1923). (4) Kohn, Sussmann, Monatsh. 46, 586 (1925). (5) Kohn, Rabinowtsch, Monatsh. 48, 353 (1927). (6) Faust, Ann. 149, 153-155 (1869). (7) Den Hollander, Rec. trav. chem. 39, 481-482 (1920). (8) Hodgson, Nixon, J. Chem. Soc. 1930, 1868-1869. (9) Dakin, Am. Chem. J. 42, 491 (1909). (10) Hunter, Morse, J. Am. Chem. Soc. 48, 1615-1624 (1926).

(11) Ling, J. Chem. Soc. 61, 559-560, 566-567, 576-578, 580-581 (1892). (12) Guareschi, Daccomo, Ber. 18, 1170 (1885). (13) Weselsky, Ber. 3, 646-647 (1870). (14) Lampert, J. prakt. Chem. (2) 33, 381 (1886). (15) Armstrong, Ber. 7, 926 (1874). (16) Armstrong, J. Chem. Soc. 24, 1121 (1871). (17) Kollrepp, Ann. 234, 14-15 (1886). (18) Bargellini, Leone, Atti accad. Lincei 8, 399-404 (1928); Cent. 1929, I 1441. (19) Lovy, Ber. 16, 1445-1447 (1883).

(20) Reverdin, Crépieux, Bcr. 36, 3263 (1903).

(21) Morgan, Cooper, J. Soc. Chem. Ind. 43-T, 352-354 (1924). (22) Fisher (to Naugatuck Chem. Co.), French 740,978, Feb. 3, 1933; Cent. 1933, I 3133. (23) Thiess, Maennehen (to I.G.), Ger. 507,833, Sept. 20, 1930; Cent. 1930, II 8239. (24) Becke, W. Suida, H. Suida, Ger. 300,706, Dec. 19, 1919; Cent. 1920, II 537. (25) I.G., French 758,247, Jan. 12, 1934, Cent. 1934, I 2661; French 43,096, Feb. 8, 1934; Cent. 1934, II 2662. (26) Herz (to Graselli Dyestuff Corp.), U.S. 1,588,384, June 8, 1926; Cent. 1927, I 1377; C.A. 20, 2587 (1926). (27) Kohn, Marberger, Monatsh. 45, 654 (1924). (28) Dodgson, J. Chem. Soc. 1930, 2498-2502. (29) Hunter, Kvalnes, J. Am. Chem. Soc. 54, 2874-2875, 2878 (1932). (30) Kvalnes, J. Am. Chem. Soc. 56, 667-670 (1934).

(31) Ling, Baker, J. Chem. Soc. 63, 1321-1322 (1893). (32) Oliveri-Tortorici, Gazz. chim. ital. 27, II 585-586 (1897). (33) Hantzsch, Schniter, Ber. 20, 2279-2282 (1887). (34) Levy, Schultz, Ann. 210, 153 (1881). (35) Niemeyer, Ann. 228, 334-337 (1885). (36) Siegmund, J. prakt. Chem. (2) 92, 361-362 (1915). (37) H. Suida, W. Suida, Ann. 416, 136-142 (1918). (38) Kehrmann, Ber. 21, 3318 (1888). (39) Heilbron, Henderson, J. Chem. Soc. 103, 1417 (1913). (40) B.A.S.F., Ger. 175,070, Sept. 19, 1906; Cent. 1906, II 1466-1468.

(41) Schönberg, Ismail, J. Chem. Soc. 1940, 1375-1377. (42) Conant, J. Am. Chem. Soc. 49,

293-297 (1927). (43) Leighton, Dresia, J. Am. Chem. Soc. 52, 3556-3562 (1930).

### 3:3780 4-CHLORO-3-HYDROXYBENZ- ClOHO C7H5O2Cl Beil. S.N. 748 ALDEHYDE

#### M.P. 121° (1) (2)

Colorless ndls. (1).

[For prepn. of Č from m-hydroxybenzaldehyde (1:0055) via 4-nitro-3-hydroxybenzaldehyde, reduction to amino cpd., and use of appropriate diazo reactn. see (1).]

Č in 50% AcOH mononitrated as specified (2) gives mainly 4-chloro-2-nitro-3-hydroxy-benzaldehyde, spar. sol. in hot CHCl<sub>3</sub>, colorless pr. from AcOH, m.p. 175° (2) (3). [Note that this statement takes account of a very important correction (3).] [This 4-chloro-2 nitro-3-hydroxybenzaldehyde yields the following derivs.: p-nitrophenylhydrazone, deep maroon ndls. from hot AcOH, m.p. 275-276° dec.; semicarbazone, lt. or. ndls. from alc., m.p. 265-266° dec. (2).]

Č in aq. contg. NaHCO<sub>3</sub> treated with (CH<sub>8</sub>)<sub>2</sub>SO<sub>4</sub> yields (1) 4-chloro-3-methoxybenzaldehyde, m.p. 52° (1). [This prod. depresses m.p. of corresp. methyl ether of the isomeric 2-chloro-3-hydroxybenzaldehyde (3:4085), m.p. 56-57° (1); on keeping it acquires a beautiful silver-gray color (1); it yields an oxime, colorless ndls., m.p. 98-99°, and a p-nitrophenylhydrazone, old-gold ndls., m.p. 251° (1).]

- 4-Chloro-3-hydroxybenzaldoxime: colorless ndls. of hydrate, dec. 106-110° from dil. alc.; anhydrous oxime, m.p. 126° (1).
- ---- 4-Chloro-3-hydroxybenzaldehyde phenylhydrazone: unrecorded.
- 4-Chloro-3-hydroxybenzaldehyde p-nitrophenylhydrazone: violet-red ndls. from dil. alc., m.p. 226-227° (1).
- 4-Chloro-3-hydroxybenzaldehyde 2,4-dinitrophenylhydrazone: unrecorded.
- 4-Chloro-3-hydroxybenzaldehyde semicarbazone: pale yel. ndls., m.p. 238-239° (1).
   3:3780 (1) Hodgson, Beard, J. Chem. Soc. 1926, 150-154. (2) Hodgson, Beard, J. Chem. Soc. 1926, 2033-2034. (3) Hodgson, Beard, J. Chem. Soc. 1927, 2377-2378.

#### 3:3810 7-CHLORONAPHTHOL-1

#### M.P. 123° (1)

Ndls. from aq. or  $CS_2$ ; spar. sol. aq. —  $\bar{C}$  has odor suggesting that of iodoform.

[For prepn. of  $\tilde{C}$  from  $\gamma$ -(p-chlorophenyl)paraconic acid [Beil. XVIII-421] by distn. see (1).]

 $\tilde{C}$  dis. in aq. alk. from which it is repptd. by  $CO_2$ ; the alk. soln. of  $\tilde{C}$  couples with diazonium salts yielding azo dyestuffs (1).

C with aq. FeCl<sub>3</sub> gives a yellowish white ppt. which on stdg. assumes a pronounced violet color (1).

Č (1 mole) with PkOH (1 mole) in CHCl<sub>3</sub> yields an addn. cpd., Č.PkOH, or.-red. ndls. from hot CHCl<sub>3</sub>, m.p. 139° (1).

--- 7-Chloro-1-naphthyl acetate: oil.

3:3810 (1) Erdmann, Kirchhoff, Ann. 247, 374-375 (1888).

#### 3:3840 1,4-DICHLORONAPHTHOL-2

(3)

M.P. 123-124° (1)

122-123° (2)

121°

Ndls. from lgr.; eas. sol. alc., ether, or AcOH. [For prepn. of Č from 1,1-dichloro-2-keto-1,2-dihydronaphthalene, m.p. 54° (2), 48-50°

(3) (itself prepd. from naphthol-2 (1:1540) in AcOH + NaOAc soln. with Cl<sub>2</sub> (2) (3)), by shaking with satd, soln. of HCl gas in AcOH for 2-3 min. (2) (3) see indic. refs.; from 1,1,3,4-tetrachloro-2-keto-1,2,3,4-tetrahydronaphthalene [Beil. VII-371] by partial reduction with SnCl<sub>2</sub> in AcOH (poor yield) see (1); from 1-chloronaphthol-2 (3:1700) with SO<sub>2</sub>Cl<sub>2</sub> at ord. temp. (4) (note that this prepn. undoubtedly involves intermediate forms. of 1,1-dichloro-2-keto-1,2-dihydronaphthalene (above) (2)) see indic. refs.; from 1,4,5-trichloronaphthol-2 [Beil. VI-650] by partial reduction with Na/Hg see (4).]

[C in AcOH with Cl<sub>2</sub> gives (1) 1,1,4-trichloro-2-keto-1,2-dihydronaphthalene [Beil.

VII-386], m.p. 86-87°, together with other oily by-products.]

Č with SnCl<sub>2</sub>/AcOH/HCl in s.t. at 100° for 8 hrs. gives (72% yield (2)) (3) 4-chloronaphthol-2 (3:3045), mp. 103-104°.

 $\tilde{C}$  in AcOH mixed with conc. HNO<sub>3</sub> (D=1.42) and cautiously warmed until the liq. shows intense red color, then poured into aq., yields (1) 4-chloro-3-nitronaphthoquinone-1,2 [Beil. VII-724], red ndls. from AcOH, m.p. 184° (1).

 $\bar{C}$  with aq. alc. Na<sub>2</sub>SO<sub>3</sub> boiled 72 hrs. gives in poor yield (2) 4-chloronaphthol-2-sulfonic acid-1, cryst. from aq. with ½ H<sub>2</sub>O (not lost at 100° in vac.); note that this prod. on hydrolysis with H<sub>2</sub>SO<sub>4</sub> gives (91% yield (2)) 4-chloronaphthol-2 (3:3045), m.p. 103-104°.

#### (D) 1,4-Dichloro-2-naphthyl acetate: m.p. 90-91° (1). [From C with AcCl (1).]

3:3840 (1) Zincke, Kegel, Ber. 21, 3387-3389 (1888). (2) Burton, J. Chem. Soc. 1945, 280-283. (3) Fries, Schimmelschmidt, Ann. 484, 293, 295-296 (1930). (4) Armstrong, Rossiter, Chem. News 63, 136 (1891); Proc. Chem. Soc. 7, 32 (1891).

3:3860 3,3'-DICHLOROBENZOPHENONE 
$$C_{13}H_8OCl_2$$
 Beil. S.N. 652 (Di-(m-chlorophenyl) ketone)

#### M.P. 123.8-124.9° (1) B.P. 160-166° at 2 mm. (1)

[For prepn. of  $\tilde{C}$  from *m*-chlorobromobenzene [Beil. V-209, V<sub>1</sub>-(115), V<sub>2</sub>-(161)] (2) via conversion to *m*-chlorophenyl MgBr (cf. (3)) and reaction with *m*-chlorobenzonitrile [Beil. IX-339] (4), followed by hydrolysis (77% yield), see (1).]

#### (1). 3,3'-Dichlorobenzophenone 2,4-dinitrophenylhydrazone: mp. 235-238° (1).

3:3860 (1) Haller, Bartlett, Drake, Newmann, Cristol, et al., J. Am. Chem Soc. 67, 1600-1602 (1945). (2) Hartwell, Org. Syntheses 24, 22-24 (Note 5) (1944). (3) Hein, Retter, Ber. 71, 1968 (1938). (4) Korczynski, Fandrich, Compt. rend. 183, 421-423 (1926); Cent. 1926, II 1853; C.A. 21, 77 (1927).

#### 3:3900 3-CHLOROPHTHALIC ANHYDRIDE

[See also 3-chlorophthalic acid (3:4820).]

[For prepn. of  $\bar{C}$  from 3-chlorophthalic acid (3:4820) by distn. see (4) (2); from 3-nitrophthalic anhydride [Beil. XVII-486, XVII<sub>1</sub>-(256)] by htg with PCl<sub>5</sub> in s.t. 6 hrs. at 175° (5) or 9 hrs. at 220° (60% yield (1)) or with Cl<sub>2</sub> at 240° (6) see indic. refs.; from phthalic anhydride (1:0725) with Cl<sub>2</sub> at 240° in pres. of Fe or Fe salts see (7).]

[C with Cl<sub>2</sub> in fumg. H<sub>2</sub>SO<sub>4</sub> in pres. of I<sub>2</sub> gives (8) a mixt. contg. 3 pts. 3,6-dichlorophthalic anhydride (3:4860), m.p. 194° cor., and 1 pt. 3,4-dichlorophthalic anhydride (3:3695), m.p. 120-121°, b.p. 329°.]

[The neutral dimethyl and diethyl esters corresp. to  $\bar{C}$  are unreported; ethyl hydrogen 3-chlorophthalate has m p. 118-119° (3).]

[ $\tilde{C}$  with PCl<sub>5</sub> (3) or with SOCl<sub>2</sub> + ZnCl<sub>2</sub> in s.t. at 200-240° (9) yields 3-chlorophthaloyl (di)chloride, b.p. 169-171° at 16 mm. (3)]

 $\bar{C}$  with urea on fusion at 170° gives (3) 3-chlorophthalimide, cryst from AcOH, m.p. 233° (3), 236° (15). —  $\bar{C}$  with 1 mole aniline htd. at 200–220° until no more steam is evolved (14) or  $\bar{C}$  with 1 mole aniline in boilg. AcOH (14) gives quant. yield 3-chlorophthalimide (N-phenyl-3-chlorophthalimide), pale cream-colored ndls from AcOH, m.p. 189–190° (14);  $\bar{C}$  similarly treated with p-toluidine gives (80–90% yield (14)) N-(p-tolyl)-3-chlorophthalimide, colorless ndls. from AcOH, m.p. 160.5° (14).

[Č with pyrocatechol (1:1520) + AlCl<sub>3</sub> + NaCl htd. at 130-138° gives (10) an intermediate prod. (presumably 3-chloro-2-(o,m-dihydroxybenzoyl)benzoic acid), yel. cryst. from AcOH, mp. 187° (10), which with cone. H<sub>2</sub>SO<sub>4</sub> yields (10) 8-chloro-1,2-dihydroxyan-thraquinone (5-chlorohystazarin), yel. cryst. from pyridine, mp. 187° (diacetate, m.p. 193° (10)). — Č with hydroquinone (1:1590) + AlCl<sub>3</sub> + NaCl htd. at 200-220° for 40-50 min. yields (11) 8-chloro-1,4-dihydroxyanthraquinone (5-chloroquinizarin), red cryst. from xylene, m.p. 243° (diacetate, m.p. 205°, dimethyl ether, m.p. 208° (11)).]

[ $\bar{C}$  with  $C_6H_6$  + AlCl<sub>3</sub> yields (12) 6-(3?)-chloro-2-(benzoyl)benzoic acid, m.p. 233.5°, which with conc.  $H_2SO_4$  for 4 hrs. at 95° gives (59% yield (12)) 1-chloroanthraquinone (3:4480), m.p. 162° (12). —  $\bar{C}$  with p-xylene + AlCl<sub>3</sub> gives (81% yield (13)) 6-(3?)-chloro-2-(2,5-dimethylbenzoyl)benzoic acid, pr. from AcOH, m.p. 215°, which on warming with 9 pts. fumg.  $H_2SO_4$  (10%  $SO_3$ ) gives (96% yield (13)) 1-chloro-5,8-dimethylanthraquinone, yel. ndls. from AcOH, m.p. 186°.]

Č on boilg. with dil. HCl (1) or Č on saponification with standard alk. (Sap. Eq. = 91.3) followed by acidifn. gives 3-chlorophthalic acid (3:4820) q.v.

3:3900 (1) Smith, J. Chem. Soc. 1933, 1643-1644. (2) Guareschi, Gazz. chim. ital. 17, 122 (1887). (3) von Braun, Larbig, Kredel, Ber. 56, 2338 (1923). (4) Krüger, Ber. 18, 1759 (1885). (5) Bogert, Boroschek, J. Am. Chem. Soc. 23, 751-752 (1901). (6) Imperial Chem. Ind., Ltd., Shaw, Thomas, Brit. 357,165, Oct. 15, 1931; Cent. 1931, II 3603. (7) Dvornikoff (to Monsanto

Chem. Co.), U.S. 2,028,383, Jan. 21, 1936; Cent. 1936, I 2830; C.A. 30, 1394 (1936).
(8) Villiger, Ber. 42, 3549 (1909).
(9) Kyrides (to Monsanto Chem. Co.), U.S. 1,951,364, March 20, 1934; Cent. 1934, II 333.
(10) Waldmann (to I.G.), Ger. 642,719, March 12, 1937; Cent. 1937, I 5048-5049; C.A. 31, 6261 (1937).

(11) Waldmann, J. prakt. Chem. (2) 136, 100 (1931). (12) Dougherty, Cleason, J. Am. Chem. Soc. 52, 1024-1027 (1930). (13) Mayer, Heil, Ber. 55, 2163 (1922). (14) Marriott, Robinson,

J. Chem. Soc. 1939, 136-137. (15) Drew, Pearman, J. Chem. Soc. 1937, 31.

#### 3:3925 7-CHLORONAPHTHOL-2

M.P. 126.5° (1)

White lfts. from lgr.

[For prepn. of C from 7-hydrazinonaphthol-2 [Beil. XV-613] by treatment of its soln. in dil. HCl with CuSO<sub>4</sub> (19% yield) see (1).]

[ $\bar{C}$  (as sodium salt) treated with CO<sub>2</sub> at 230-250° and 45 atm. press. yields (2) 7-chloro-2-hydroxynaphthoic acid-3, yellowish lfts. from AcOH, m.p. 277-278° (2) ]

0 7-Chloro-2-naphthyl acetate: lfts. from toluene, m.p. 104.5° (1). [From  $\ddot{\textbf{C}}$  on refluxing with acetyl chloride (1).]

3:3925 (1) Franzen, Deibel, J. prakt. Chem. (2) 78, 154 (1878). (2) Lange, Luce, Jacobs (to I.G.), Ger. 564,128, Nov. 14, 1932; Cent. 1933, II 446.

#### 3:3934 p-PHENYLPHENACYL CHLORIDE

( $\omega$ -Chloro-p-phenylacetophenone; chloromethyl p-xenyl ketone; 4-(chloroacetyl)biphenyl)

M.P. 126-127° (1) 122-123° (2) (3)

Pale vel. ndls. from dil. alc.

[For prepn. of C from biphenyl (1:7175) with chloroacetyl chloride (3:5235) + AlCl<sub>3</sub> (41% yield (2)) (3), or with chloroacetic acid anhydride (3:0730) + AlCl<sub>3</sub> (77% yield (2)), see indic. refs.]

[C with chloroacetyl chloride (3:5235) + AlCl<sub>3</sub> gives (52% yield (2)) 4,4'-bis-(chloroacetyl)biphenyl, ndls. from di-n-propyl ketone or cyclohexanone, m.p. 228-229° (2), 226-227° (4); note that this prod. with excess piperidine yields (4) 4,4'-bis-(piperidinoacetyl)biphenyl, brownish yel. pdr. from acetone, m.p. 143-144° (4).

[C with piperidine has not been directly reported but should yield 4-(piperidinoacetyl)biphenyl, ndis. from abs. alc., m.p. 93-94° (4), as has been demonstrated for the analogous p-phenylphenacyl bromide.]

Č with salts of acids should yield the corresp. p-phenylphenacyl esters (for table of examples see Vol. I, p. 652) although the usual reagt. for this purpose is the more common p-phenylphenacyl bromide.

 $\tilde{C}$  with calcd. amt. of KMnO<sub>4</sub> in aq. alk. at 100° is oxidized (3) to p-phenylbenzoic acid [Beil. IX-671, IX<sub>1</sub>-(280)], m.p. 217-218° (3) (228°).

3:3934 (1) Eastman Kodak Co., List No. 34 (1944). (2) Silver, Lowy, J. Am. Chem. Soc. 56, 2429-2430 (1934). (3) Collet, Bull. soc. chim. (3) 17, 510 (1897). (4) Carpenter, Turner, J. Chem. Soc. 1934, 872.

#### 3:3945 5-CHLORONAPHTHOL-2

M.P. 128° u.c. (1)

Ndls.; sol. alc., AcOH, C<sub>6</sub>H<sub>6</sub>, CS<sub>2</sub>. — Sublimes; volatile with steam.

[For prepn. of  $\bar{C}$  from salts of 2-hydroxynaphthalenesulfonic acid-5 [Beil. XI-282] by htg. with PCl<sub>5</sub>, then distilling with steam, see (1).]

3:3945 (1) Claus, J. prakt. Chem. (2) 39, 317 (1889).

#### 3:3952 4,6-DICHLORO-3-HYDROXY-BENZALDEHYDE



M.P. 130° (1) 129° (2)

Fairly eas. sol. hot aq.; eas. sol.  $C_6H_6$ , alc.; insol. lgr. — Volatile with steam.  $\bar{C}$  has very pronounced sternutatory props. and also attacks moist skin producing painful blisters (2).

[For prepn. of  $\bar{C}$  from 4,6-dichloro-3-methylphenol (3:1745) via conv. to bis-(4,6-dichloro-3-methylphenyl) carbonate, chlorination of latter, and subsequent alk. hydrol. of the chlorination prod. see {1}; for formin. (in small amt. together with much 2,6 isomer) from 6-chloro-3-hydroxybenzaldehyde (3:3350) or from m-hydroxybenzaldehyde (1:0055) in AcOH with  $Cl_2$  see {2}.]

 $\bar{C}$  in 4 pts. AcOH + 1 pt. aq. treated grad. with 1 pt. conc. HNO<sub>3</sub> (D=1.4) yields (1) 4,6-dichloro-2-nitro-3-hydroxybenzaldehyde, m.p. 157° (1); this prod. with acetone and alk. yields (1) the corresp. indigoid, viz , 4,4,6,6-tetrachloro-7,7-dihydroxyindigo.

#### 4,6-Dichloro-3-methoxybenzaldehyde: ndls. from C<sub>6</sub>H<sub>6</sub>, m.p. 117° (1).

3:3952 (1) Friedlander, Schenck, Ber. 47, 3048, 3051 (1914). (2) Hodgson, Beard, J. Chem. Soc. 1926, 148-149, 152.

## 3:3956 o-CHLOROPHENYLPROPIOLIC C<sub>9</sub>H<sub>5</sub>O<sub>2</sub>Cl Beil. S.N. 950 ACID C=C—COOH

M.P. 131-132° (1) (2) 131° (3)

Cryst. from 50% AcOH or C6H6.

[For prepn. of C from o-chlorobenzaldehyde (3:6410) by conversion through o-chlorocinnamic acid to ethyl o-chlorocinnamate, thence by addn. of Br<sub>2</sub> to give ethyl  $\beta$ -(o-chlorophenyl)- $\alpha$ , $\beta$ -dibromopropionate, followed by elimination of 2 HBr and saponification (or vice versa) with alc. KOH, and final acidification (68% yield (1)) (2) cf. (3), see indic. refs.]

 $\bar{C}$  suspended in aq., treated with NaHCO<sub>3</sub> + CuCl<sub>2</sub>, and steam-distilled (1) or  $\bar{C}$  with Cu(OAc)<sub>2</sub> (2) loses CO<sub>2</sub> giving (66% yield) o-chlorophenylacetylene (3:9497).

3:3956 (1) Bergmann, Bondi, Ber. 66, 282-283 (1933). (2) Otto, J. Am. Chem. Soc. 56, 1393-1394 (1934). (3) Wilson, Wenzke, J. Am. Chem. Soc. 57, 1265-1267 (1935).

#### 3:3960 5-CHLORONAPHTHOL-1

#### M.P. 131.5° (1)

Ndls. from aq., lfts. from  $CS_2$ ; spar. sol. aq.  $-\bar{C}$  has characteristic odor.

[For prepn. of  $\tilde{C}$  from  $\gamma$ -(2-chlorophenyl)paraconic acid [Beil. XVIII-421] on rapid distn. see (1).]

[For condensation of C with subst. isatin chlorides in prepn of indigoid dyes see (2).]

C dis. in aq. alk. and this soln couples (1) with diazonium salts yielding azo dyestuffs.

C with aq. FeCl<sub>3</sub> gives a yellowish-white ppt. unchanged on stdg; C with Ca(OCl)<sub>2</sub> soln, gives a pale violet ppt. (1).

- Č (1 mole) in CHCl<sub>3</sub> on mixing with PkOH (1 mole) in CHCl<sub>3</sub> gives (1) ppt. of addn. epd., Č.PkOH, orange ndls. from hot CHCl<sub>3</sub>, m.p. 160° (1).
  - **5-Chloro-1-naphthyl acetate:** lfts. from alc., m.p. 53° (1). [From C on protracted boilg, with AcCl (1).]

3:3960 (1) Erdmann, Kirchhoff, Ann. 247, 372-374 (1888). (2) I.G., Brit. 318,107, Oct. 23, 1929; Cent. 1930, I 1383.

#### 3:3965 TETRACHLOROBENZO-QUINONE-1,2

(Tetrachloro-o-quinone)

 $\begin{array}{c} Cl \\ Cl \\ Cl \\ Cl \end{array}$   $\begin{array}{c} Cl \\ Cl \\ Cl \\ \end{array}$   $\begin{array}{c} Cl \\ Cl \\ \end{array}$ 

[See also tetrachloropyrocatechol (3:4875).]

Red cryst. pdr. (1), cryst. from dil. AcOH (2).

[For prepn. of C from tetrachloropyrocatechol (3:1520) by oxidn. with fumg. HNO<sub>3</sub> in AcOH (81% yield (1)) (2) (3) (4) (5) (6) see indic. refs.; from pyrocatechol (1:1520) (2) (3) or pyrocatecholsulfonic acid (7) with Cl<sub>2</sub> in AcOH see indic. refs.; from tetrachloropyrocatechol monomethyl ether (tetrachloroguaiacol) (8) or from tetrachloropyrocatechol dimethyl ether (tetrachloroveratrole) (8) by oxidn. with HNO<sub>3</sub> see indic. refs.]

[C adds 1 mole Cl<sub>2</sub> yielding (9) hexachlorocyclohexene-3-dione-1,2 [Beil. VII-575] q.v. which on reduction with SnCl<sub>2</sub> in AcOH (3) gives tetrachloropyrocatechol (3:4875).]

[C with PCl<sub>5</sub> (2 moles) htd. in s.t. at 200–210° for  $\frac{1}{2}$  hr. gives (10) hexachlorobenzene (3:4939) and other products.]

[For complex behavior of  $\bar{C}$  on htg. with aq., with cold alcs., or with aniline see Beil. VII-602, VII<sub>1</sub>-(338).]

 $\bar{\rm C}$  forms addn. cpds. with many hydrocarbons [e.g.,  $\bar{\rm C}$  with benzene gives  $\bar{\rm C}.3{\rm C}_6{\rm H}_6$ , m.p. 37-42° (11);  $\bar{\rm C}$  with toluene gives  $\bar{\rm C}.{\rm C}_7{\rm H}_8$ , m.p. 45-50° (11);  $\bar{\rm C}$  with hexamethylbenzene (1:7265) gives  $\bar{\rm C}.{\rm C}_{12}{\rm H}_{18}$ , greenish black ndls. from AcOH, m.p. 140-143° (11),

C with equiv. tetrachloropyrocatechol (3:4875) in least possible hot CHCl3 gives on

cooling the corresp. quinhydrone (6). — [For study of oxidn.-reductn. potential of system  $\bar{C}/\text{tetrachloropyrocatechol}$  see (4) (5).]

3:3965 (1) Jackson, MacLaurin, Am. Chem. J. 37, 11-12 (1907). (2) Zincke, Ber. 20, 1779 (1887). (3) Zincke, Kuster, Ber. 21, 2729-2730 (1888). (4) Conant, Fieser, J. Am. Chem. Soc. 46, 1873, 1875 (1924). (5) Kvalnes, J. Am. Chem. Soc. 56, 2487-2489 (1934). (6) Jackson, Carleton, Am. Chem. J. 39, 497 (1909). (7) Datta, Bhoumik, J. Am. Chem. Soc. 43, 313 (1921). (8) Cousin, Compt. rend. 129, 967 (1899). (9) Zincke, Kuster, Ber. 22, 487 (1889). (10) Zincke, Kuster, Ber. 24, 927-928 (1891).

(11) Pfeiffer, Ann. 412, 294-296 (1916).

#### 3:3985 5,7-DICHLORONAPHTHOL-1



#### M.P. 132° (1) (2)

Pale yel. pr. (from CS<sub>2</sub>) (1) (2). — Somewhat sol. hot aq.

[For prepn. from  $\gamma$ -(2,4-dichlorophenyl)paraconic acid [Beil. XVIII-421] by distn. see (2)

C with FeCl<sub>3</sub> gives a white ppt. which on htg. with excess reagt. colors violet (2).

Č in dil. alk, soln, couples with diazotized naphthionic ac (1-aminonaphthalenesulfonic acid-4) giving intense purple color (2).

C on distn, with Zn dust yields naphthalene (1:7200) (2) (1).

5,7-Dichloro-1-naphthyl acetate: from C on protracted refluxing with 4 pts. AcCl; pr. (from CHCl<sub>3</sub> + lgr.), m p 110° (2).

3:3985 (1) Erdmann, Schwechten, Ber. 21, 3444 (1888). (2) Erdmann, Schwechten, Ann. 275, 284–285 (1893).

#### CHAPTER X

#### DIVISION A. SOLIDS

(3:4000-3:4499)

3:4000 4-CHLORONAPHTHO-QUINONE-1,2

M.P. 132-136° dec. (1)
[188° (2) see text]

Orange-red ndls. from  $C_6H_6$  by addn. of lgr.;  $\bar{C}$  could not be further purified by recrystallization since some decompn. always occurred (1)

[For prepn. of  $\bar{C}$  from 1,4-dichloronaphthol-2 (3:3840) by conversion (59% yield) with HNO<sub>3</sub> in AcOH to 1,4-dichloro-1-nitro-2-keto-dihydronaphthalene, followed by subsequent elimination of NOCl by boiling with  $C_6H_6$  (80% yield), see (1). — Note that the prod. of m.p. 188°, maroon ndls. from alc., obtd. (2) from 4-chloro-1,2-diaminonaphthalene (4-chloronaphthylenediamine-1,2) by air oxidn., is regarded as  $\bar{C}$ ; this discrepancy is unexplained.]

Č on reductive acetylation with Ac<sub>2</sub>O + NaOAc + Zn dust loses its halogen atom giving (60% yield (1)) 1,2,4-triacetoxynaphthalene [Beil. VI-1133], m p. 134-135° (1).

[Č with 2,3-dimethylbutadiene (1:8050) in specially purified CHCl<sub>3</sub> in st. at 100° in dark for 72 hrs. undergoes a Diels-Alder type addition only very slowly (1); no intermediate addn. prod. could be isolated (difference from the isomeric 3-chloronaphthoquinone-1,2 (3:4704)), but on stdg. the soln. slowly deposits (15% yield (1)) 2,3-dimethylphenanthraquinone, mp. 237-238° u.c.; 242-243° cor. (1).]

4-Chloronaphthoquinone-1,2-oxime-2 (4-chloro-2-nitrosonaphthol-1) [Beil. VII<sub>1</sub>-(385)]: pale yel. ndls., m.p. 157°. [Prepd. indirectly.]

3:4000 (1) Fieser, Dunn, J. Am. Chem. Soc. 59, 1019-1020 (1937). (2) Hodgson, Elliott, J. Chem. Soc. 1935, 1853.

3:4005 1,4,5-TRICHLORONAPHTHALENE

M.P. 133° (1) 131° (2) (3) (4) 129° u.c. (3)

Ndls. from alc. in which Č is spar. sol. — Volatile with superheated (3) steam. [For formn. of Č from sodium 1,5-dinitronaphthalenesulfonate-4 (1) with HCl + NaClO<sub>3</sub> 360

see (1); for prepn. of Č from 1,5-dichloro-4-nitronaphthalene [Beil. V-556] (3), from 1,4-dichloro-5-nitronaphthalene [Beil. V-556, V<sub>1</sub>-(264)] (4) (3), from 4-chloro-1,5-dinitronaphthalene [Beil. V-561] (3), from 1-chloro-4,5-dinitronaphthalene [Beil. V-561] (3), from 4,5-dichloronaphthalenesulfonyl chloride-1 [Beil. XI-162] (5), from 4-chloro-5-nitronaphthalenesulfonyl chloride-1 [Beil. XI-170] (6), from 5-chloro-4-nitronaphthalenesulfonyl chloride-1 [Beil. XI-170] (6), from 1-chloro-4-nitronaphthalenesulfonyl chloride-5 [Beil. XI-170] (6), or from 4-chloronaphthalene-1,5-bis-(sulfonyl chloride) [Beil. XI-213] (7) (2), each with PCl<sub>6</sub> as directed, see indic. refs.]

[C treated with ClSO<sub>3</sub>H in CS<sub>2</sub> and reactn. prod. conv. to salts as directed (2) yields a mixt. of two sulfonates, viz., one derived from 1,4,5-trichloronaphthalenesulfonic acid-7 (corresp. sulfonyl chloride, m.p. 118° (2)) and the other derived from 1,4,5-trichloronaphthalenesulfonic acid-X (corresp. sulfonyl chloride, m.p. 178° (2)).

 $[\bar{C}$  on oxidn. with dil. HNO<sub>3</sub> in s.t. yields (3) a dichloro acid, presumably 3,6-dichlorophthalic acid (3:4870).]

3:4005 (1) Friedlander, Karamessinis, Schenk, Ber. 55, 47 (1922). (2) Turner, Wynne, J. Chem. Soc. 1941, 247, 254-255. (3) Atterberg, Ber. 9, 1187, 1733-1734 (1876). (4) Widman, Bull. soc. chim. (2) 28, 511 (1877). (5) Armstrong, Wynne, Chem. News 61, 273 (1890). (6) Cleve, Chem. Ztg. 17, 398 (1893). (7) Armstrong, Wynne, Chem. News 62, 163 (1890).

Colorless cryst. with camphoraceous odor; extremely volatile and readily sublimes; insol. aq. and volatile with steam; purified by sublimation or crystn. from boilg. MeOH.

[For prepn. of  $\bar{C}$  from 2,2,3-trimethylbutanol-3 (pentamethylethanol) [Beil. I-418, I<sub>1</sub>-(207), I<sub>2</sub>-(447)] (3) or its hydrate (1) with fumg. HCl (2) (3), with PCl<sub>5</sub> (1) or with AcCl (3:7065) (46% yield (4)) see indic. refs.; from 2,2,3-trimethylbutane ("triptane") (1:8544) with ter-butyl chloride (3:7045) + AlCl<sub>5</sub> by shaking 30-45 seconds (16% yield) see (4).]

C with alc. AgNO<sub>3</sub> ppts. AgCl even in cold (3).

 $\tilde{C}$  with Mg in dry ether gives RMgCl; this upon oxidn. with  $O_2$  and subsequent hydrolysis yields (2) 2,2,3-trimethylbutanol-2, m.p. 80° (2).

C converted to RMgCl and the latter treated with CO<sub>2</sub> yields (2) ter-butyl-methylacetic acid [Beil. II<sub>2</sub>-(150)], m p. 80° (2).

3:4020 (1) Butlerow, Ann. 177, 183-184 (1875). (2) Richard, Ann. chim. (8) 21, 356-358 (1910). (3) Henry, Compt. rend. 142, 1024 (1906); Rec. trav. chim. 26, 104 (1907). (4) Bartlett, Condon, Schneider, J. Am. Chem. Soc. 66, 1533, 1537 (1944).

#### 3:4030 2,4,6-TRICHLOROPHLORO-GLUCINOL

Cryst. from abs. alc. — Note that from aq.  $\bar{C}$  cryst. as a trihydrate (1), but on htg. this hydrate loses aq. before melting (2); note also that  $\bar{C}$  on recrystn. from toluene gives a solvated prod., m.p.  $108-109^{\circ}$  (1). [For study of crystallography of  $\bar{C}$  see (4).]

 $\bar{\mathbf{C}}$  is alm. insol. aq. or cold  $\mathbf{C}_6\mathbf{H}_6$ ; sol. alc. —  $\bar{\mathbf{C}}$  readily sublimes.

[For prepn. of  $\bar{C}$  from phloroglucinol (1,3,5-trihydroxybenzene) (1:1620) with  $Cl_2$  in  $CCl_4$  (crude yield 76% (1)) or in AcOH (5) see indic. refs.; note that attempts (6) (7) to prepare  $\bar{C}$  from phloroglucinol (1:1620) with  $Cl_2$  in aq. soln. were not effective owing to further decompn. of the prod. into dichloroacetic acid (3:6208) and/or the tetrahydrate of sym.-tetrachloroacetone (3:6050) cf. (1)

[For forms. of C from phloroglucinol (1:1620) with SO<sub>2</sub>Cl<sub>2</sub> in dry ether see (3)]

[For formn. of  $\bar{C}$  from hexachlorocyclohexanetrione-1,3,5 ("hexachlorophloroglucinol") [Beil. VII-854, VII<sub>1</sub>-(469)] by reduction with SnCl<sub>2</sub> or KI see (7)]

 $\bar{C}$  dis. in hot cone. HCl from which on cooling it separates in fine ndls;  $\bar{C}$  with warm dil. HNO<sub>3</sub> is decomposed with forms. of oxalic acid (1.0445);  $\bar{C}$  with cone. H<sub>2</sub>SO<sub>4</sub> dissolves unchanged on gentle warming, but on contd htg. HCl is evolved and soln turns deep sage-green (1).

 $\tilde{C}$  dissolves in aq alk. but is repptd. unchanged upon acidification; note, however, that alk. soln. of  $\tilde{C}$  on stdg in air develops a purple color (1)

- $[\bar{C} \text{ in AcOH} \text{ added to excess Br}_2/\text{aq.}$  undergoes ring cleavage with form. of 1,1,3,5,5-pentabromo-1,3,5-trichloropentanedione-1,4 [Beil I-786], colorless cryst. from pet. ether, m.p. 93-95°, to a turbid liq. becoming clear at 98° (8).]
- 3:4030 (1) Webster, J. Chem. Soc. 47, 423-426 (1885). (2) Zincke, Kegel, Ber. 23, 1731-1732 (1890). (3) Peratoner, Finocchiaro, Gazz. chim. stal. 24, I 243-244 (1894). (4) Déverin, Bull. soc. saud. scc. natur. 59, 417-428 (1937), Cent. 1938, II 847, C.A. 34, 4320 (1940). (5) Hazura, Benedikt, Monatsh. 6, 706-707 (1885). (6) Hlasiwetz, Habermann, Ann. 155, 132-134 (1870). (7) Zincke, Kegel, Ber. 22, 1473-1477 (1889). (8) Zincke, Kegel, Ber. 23, 1720-1721 (1890). (9) Ciamician, Silber, Ber. 24, 2980-2981 (1891).

#### 3:4040 2,6-DICHLORONAPHTHALENE

Tbls. from ether  $+ C_6H_6$ , ndls. from hot alc., pr. from AcOH. — Spar. sol. alc.; eas. sol. ether,  $C_6H_6$ , or CHCl<sub>3</sub>. — Volatile with steam.

[For prepn. of  $\tilde{C}$  from naphthalene-2,6-bis-(sulfonyl chloride) [Beil. XI-216] (8) (10), from 6-chloronaphthalene-2-sulfonyl chloride [Beil. XI-180] (45% yield (2)) (1) (9), from 6-bromonaphthalene-2-sulfonyl chloride [Beil. XI-184] (11), from salts of 2-hydroxy-naphthalenesulfonate-6 [Beil. XI-282, XI<sub>1</sub>-(66)] (59% yield (3)) (4) (5), or from 6-bromonaphthol-2 [Beil. VI-651] (55% yield (12)) with PCl<sub>5</sub> as directed, see indic. refs; from 6-sulfonaphthylamine-2 [Beil. XIV-760, XIV<sub>1</sub>-(735)] by treatment of corresp. diazonium chloride with PCl<sub>5</sub> in POCl<sub>3</sub> see (13) (14); from 2,6-diaminonaphthalene [Beil. XIII-208] via tetrazotization in HCl followed by htg. with Cu pdr see (6); from sodium β-naphthalenesulfonate [Beil. XI-171, XI<sub>1</sub>-(38)] with KClO<sub>3</sub> + boilg. dil. HCl (50% yield) see (15).] ( $\tilde{C}$  in CHCl<sub>3</sub> satd with Cl<sub>3</sub> gives (9% yield (20)), 1.2 6-triplepropaphthylana (3:2515).

 $[\tilde{C} \text{ in CHCl}_3 \text{ satd. with Cl}_2 \text{ gives } (9\% \text{ yield } \{20\}) 1,2,6-\text{trichloronaphthalene } (3:2515), m.p. 92^\circ.]$ 

 $\bar{C}$  on oxidn. with dil. HNO<sub>3</sub> (D=1.2) in s t at 150° (16) or better with dil. HNO<sub>3</sub> (D=1.13) in s t. at 190-200° (17) yields 4-chlorophthalic acid (3.4390), m.p. 148° u.c. (17). —  $\bar{C}$  on oxidn. with CrO<sub>3</sub>/AcOH yields (18) 2,6-dichloronaphthoquinone-1,4 [Beil. VII-730], bright yel. ndls., m.p. 149-149° (18), this cpd. also accompanies (18) the 4-chlorophthalic acid of the same m.p. during HNO<sub>3</sub> oxidn. (above).

[ $\overline{C}$  on mononitration yields (16) two isomers, one m.p. 139-139.5°, the other m.p. 113.5-114° (16)

[Č in CS<sub>2</sub> treated with ClSO<sub>3</sub>H yields (19) 2,6-dichloronaphthalenesulfonic acid-4 [Beil. XI-162] (corresp. sulfonyl chloride, m.p. 136°, corresp. sulfonamide, m.p. 269°).]

3:4040 (1) Forsling, Ber. 20, 80-81 (1887). (2) Beattie, Whitmore, J. Am. Chem. Soc. 55, 1548 (1933) (3) Weissberger, Sangewald, Z. physik. Chem. B-20, 146-147 (1933). (4) Claus, Zimmermann, Ber. 14, 1483-1484 (1881). (5) Pollak, Gebauer-Fulnegg, Blumenstock-Halward, Monatsh. 49, 197 (1928). (6) Veseley, Jakes, Bull. soc. chim. (4) 33, 949 (1923). (7) Tilden, Armstrong, Chem. News 58, 295 (1888). (8) Cleve, Bull. soc. chim. (2) 26, 245 (1876). (9) Arnell, Bull. soc. chim. (2) 45, 184 (1886). (10) Armstrong, Wynne, Chem. News 62, 163 (1890). (11) Sindall, Chem. News 60, 58 (1889). (12) Franzen, Stauble, J. prakt Chem. (2) 103, 370 (1921/22). (13) Erdmann, Ann. 275, 280 (1893). (14) Nakata, Ber. 64, 2067 (1931). (15) Kozlov, Talybov, J. Gen. Chem. (U.S.R.) 9, 1827-1833 (1939); C.A. 34, 4067 (1940). (16) Alén, Bull. soc. chim. (2) 36, 434 (1881). (17) Claus, Ber. 51, 320 (1882). (18) Claus, Müller, Ber. 18, 3073-3074 (1885). (19) Arinstrong, Wynne, Chem. News 61, 273-275 (1890). (20) Wynne, J. Chem. Soc. 1946, 61.

## 3:4052 2,3,5-TRICHLOROHYDROQUINONE OH $C_6H_3O_2Cl_3$ Beil. VI - 850 VI<sub>1</sub>— VI<sub>2</sub>-(846)

[See also 2,3,5-trichlorobenzoquinone-1,4 (3:4672).]

Colorless shining pr. from aq. rapidly losing their luster in air (3); transparent pr. with 1 mole AcOH from AcOH but solvated AcOH readily lost in air (5).

Č at 15° is sol. in 160 pts. aq. (6); Č is spar. sol. cold aq. but cas. sol. hot aq. in which it first melts to an oil (3); Č is eas. sol. alc. or ether.

C readily sublimes in lfts. (4); for study of sublimation press. see (7).

[For study of heat of forms. of  $\bar{C}$  see (8); for studies of heat of combustion of  $\bar{C}$  see (5) (9).]

[For detn. of chlorine in  $\bar{C}$  by hydrogenation at elevated temp. see (10); for patent on use of  $\bar{C}$  as vulcanization accelerator see (11).]

#### PREPARATION OF C

From trichlorobenzoquinone. [For prepn. of Č from 2,3,5-trichlorobenzoquinone-1,4 (3:4672) by reduction with aq. SO<sub>2</sub> (3) (4) (6) (12) in ether (1), or from "benzoquinone tetrachloride" (2,3,5,6-tetrachlorocyclohexanedione-1,4) [Beil. VII-557] with aq. SO<sub>2</sub> (13), see indic. refs.]

From other sources. [For formn. of  $\bar{C}$  (together with other products) from 2,5-dichlorobenzoquinone-1,4 (3:4470) or from 2,6-dichlorobenzoquinone-1,4 (3:3750) with boilg. conc. HCl see (14); from  $C_6H_6$  with KClO<sub>3</sub> +  $H_2SO_4$  see (16).]

#### CHEMICAL BEHAVIOR OF C

**Reduction.** [ $\bar{C}$  with Na/Hg in acid soln. is hardly affected and does *not* (3) give hydro-quinone; however, for anal. of  $\bar{C}$  by quant. detn. of chlorine with H<sub>2</sub> at elev. temp. see (10).]

Oxidation.  $\bar{C}$  on oxidn., e.g., with CrO<sub>3</sub> at 0° (5), conc. HNO<sub>3</sub> (4) (3), AgNO<sub>3</sub> (4), or FeCl<sub>3</sub> (4), gives 2,3,5-trichlorobenzoquinone-1,4 (3:4672); note, however, that with insufficient oxidizing agent the corresp. quinhydrone (see below) may separate.

[For study of oxidn -reductn. potential of system  $\bar{C} + 2,3,5$ -trichlorobenzoquinone-1,4 (3:4672) see (2) (17) (18).]

C (1 mole) with 2,3,5-trichlorobenzoquinone-1,4 (3:4672) (1 mole) in CHCl<sub>3</sub> soln. gives on evapn. (2) (19) the corresp. quinhydrone, green-black cryst., m.p. 114-115° (2), 103° (19).

[Note also that Č in aq. KOH exposed to air first turns green, then red, and finally brown (4), and this soln. on stdg. or boilg. in air gradually separates the corresp. potassium salt of chloranilic acid (3:4970) (3).]

Other reactions of  $\bar{C}$ .  $[\bar{C}$  with PCl<sub>5</sub> (2 moles) on htg. gives (3) a mixture of pentachlorobenzene (3:2290) and hexachlorobenzene (3:4939).]

- ---- Trichlorohydroquinone dimethyl ether (3,4,5-trichloro-1,4-dimethoxybenzene): unreported.
- Trichlorohydroquinone diethyl ether (3,4,5-trichloro-1,4-diethoxybenzene): ndls. from alc., m.p. 68.5° (3). [From C with C<sub>2</sub>H<sub>8</sub>I + KOH in s.t. (3).]
- Trichlorohydroquinone diacetate: ndls. by sublimation, m.p. 153° (3). [From C with AcCl under reflux (3).]
- Trichlorohydroquinone dibenzoate: ndls. from CS₂, m.p. 174° (14). [From C̄ with BzCl on htg. (14).]

3:4052 (1) Biltz, Giese, Ber. 37, 4017 (1904). (2) Conant, Fieser, J. Am. Chem. Soc. 45, 2206-2207 (1923). (3) Graebe, Ann. 146, 22-30 (1868). (4) Städeler, Ann. 69, 321-326 (1849). (5) Valeur, Ann. chim. (7) 21, 496-499 (1900). (6) Stenhouse, Ann. Suppl. 6, 218 (1868). (7) A. S. Coolidge, M. S. Coolidge, J. Am. Chem. Soc. 49, 100-104 (1927). (8) Sjöstrom, Svensk Kem. Tvd. 48, 121-124 (1936); Cent. 1937, I 58; C.A. 30, 6634 (1936). (9) Swietoslawski, Starczewska, J. chim. phys. 23, 399-401 (1925). (10) ter Meulen, Heslinga, Rec. trav. chim. 42, 1093-1096 (1923).

(11) Fisher (to Naugatuck Chem. Co.), French 740,978, Feb. 3, 1933; Cent. 1933, I 3134; C.A. 27, 2845 (1933). (12) Graebe, Ann. 263, 28 (1891). (13) Peratoner, Genco, Gazz. chim. ital. 24, II 389-390 (1894). (14) Levy, Schultz, Ann. 210, 153-154 (1881). (15) Krafft, Ber.

797-800 (1877). (16) Carius, Ann. 142, 129-138 (1867). (17) Conant, J. Am. Chem. Soc.
 293-297 (1927). (18) Kvalnes, J. Am. Chem. Soc. 56, 667-670 (1934). (19) Ling, Baker, J. Chem. Soc. 63, 1322-1323 (1893).

3:4065 3-CHLORO-4-HYDROXYBENZ- HOCHO 
$$C_7H_6O_2Cl$$
 Beil. VIII - 81 ALDEHYDE  $VIII_1-$ 

```
M.P. 139° cor. (1) B.P. 149-150° at 14 mm. (1) 132-134° (2) 127-128° (3)
```

Ndis. from aq. (1). — Very spar. sol. cold aq., eas. sol. hot aq.; spar. sol. CHCl<sub>3</sub>; eas. sol. alc., ether (1).

[For prepn. of  $\bar{\rm C}$  from p-hydroxybenzaldehyde (1:0060) with  ${\rm Cl_2}+{\rm CHCl_3}$  see (1) (2); from 3-chloro-4-hydroxybenzyl alcohol by htg. with alk. sodium m-nitrobenzenesulfonate see (3); from o-chlorophenol (3:0255) + CH<sub>2</sub>O under specified circumstances see (4) or with chloral (3:5210) see (5).]

C with FeCl<sub>3</sub> gives no coloration (3). — C forms a NaHSO<sub>3</sub> cpd. (3).

Č in EtOAc hydrogenated with H<sub>2</sub> at 40 lb./sq. in. for 45 min. in presence of Raney Ni cat. gives (2) 3-chloro-4-hydroxybenzyl alc., cryst. from C<sub>6</sub>H<sub>6</sub>, m.p. 127° (2).

- 3-Chloro-4-hydroxybenzaldoxime: ndls. from aq. or CHCl<sub>3</sub>, m p. 144-145° (1).
- --- 3-Chloro-4-hydroxybenzaldehyde phenylhydrazone: unrecorded.
- ---- 3-Chloro-4-hydroxybenzaldehyde p-nitrophenylhydrazone: unrecorded.
- 3-Chloro-4-hydroxybenzaldehyde 2,4-dinitrophenylhydrazone: unrecorded.
- 3-Chloro-4-hydroxybenzaldehyde semicarbazone: yel. ndls. from very dil. AcOH, m.p. 210° dec. (1); 212° (3).

3:4065 (1) Biltz, Ber. 37, 4031-4034 (1904). (2) Buehler, Brown, Holbert, Fulmer, Parker, J. Org. Chem. 6, 904 (1941). (3) Hanus, J. prakt. Chem. 158, 263 (1941). (4) Geigy and Co., Ger. 105,798; Cent. 1900, I 523. (5) Haakh, Smola, Austrian 151,159, March 25, 1935; Cent. 1935, I 439.

### 3:4085 2-CHLORO-3-HYDROXYBENZ- CHO $C_7H_5O_2Cl$ Beil. S.N. 745 ALDEHYDE

M.P. 139.5° (1) 139-139.5° (3) 139° cor. (4)

Colorless cryst. from dil. AcOH (1) becoming pale pink on prolonged exposure to air (1). — Č has pronounced sternutatory props. (1) (3).

[For prepn. of  $\tilde{C}$  from m-hydroxybenzaldehyde (1:0055) +  $Cl_2$  (32.6% yield (4)) see (1) (3) (4); for indirect prepn. via 2-nitro-3-hydroxybenzaldehyde, reductn., and appropriate diazo reactns. see (1).]

 $\tilde{C}$  in 50% AcOH mononitrated as directed (2) by grad. addn. of HNO<sub>3</sub> (D=1.3) then after a min. poured onto ice gives 100% yield of mixt. of 4-nitro and 6-nitro derivs.; extraction with aq. at 90° dissolves the latter leaving residue of almost pure 4-nitro deriv.; from the soln. of 6-nitro isomer a little dissolved 4-nitro cpd. is distilled out with steam (2).

4-Nitro-2-chloro-3-hydroxybenzaldehyde: pale yel. ndls. from AcOH, m.p. 166° (2). [Corresp. oxime, insol. aq., yel. ndls. from alc., m.p. 170° (2); p-nitrophenylhydrazone, deep or. ndls. from hot AcOH, m.p. 294-295° dec. (2); semicarbazone, sulfur-yel. ndls.

from hot alc., m.p. 271-272° dec. (2); methyl ether, colorless ndls. from dil. alc. or dil. AcOH, m.p. 107° (2).]

6-Nitro-2-chloro-3-hydroxybenzaldehyde: colorless ndls. from aq., m.p. 153° (2). [Corresp. oxime, exceedingly sol in aq. or alc, colorless ndls. from CHCl<sub>3</sub>, m.p. 175° (2); p-nitrophenylhydrazone, or.-red ndls. from hot dil. AcOH, m.p. 232-233° (2); semicarbazone, pale yel. ndls. from alc., m.p. 234° dec. (2); methyl ether, colorless ndls. from AcOH, m.p. 134° (2).]

Č in CHCl<sub>3</sub> treated with Br<sub>2</sub> in CHCl<sub>3</sub> as directed (5) gives (86% yield (5)) 4-bromo-2-chloro-3-hydroxybenzaldehyde, cryst. from 50% AcOH, m.p. 139-140° cor. (5). [This deriv. depresses m.p. of  $\bar{C}$  (5).] [4,6-Dibromo-2-chloro-3-hydroxybenzaldehyde has m.p. 104-105° (5).]

C with 50% KOH at 60-70° undergoes Cannizzaro reacting giving (4) 2-chloro-3-hydroxy-benzyl alc. (87% theory (4)), cryst. from toluene, mp. 132° cor (4), and 2-chloro-3-hydroxy-benzoic acid (96% theory (4)) (3:4395), cryst. from aq., mp. 156° (4)

C in aq. 20% NaOH (1) or aq. NaHCO<sub>3</sub> (1), treated with Me<sub>2</sub>S()<sub>4</sub>, yields methyl ether (2-chloro-3-methoxybenzaldehyde), volatile with steam, cryst. from dil alc., m.p. 56-57° (1). [This ether depresses m.p. of corresp. deriv. (m.p. 52°) of the isomeric 4-chloro-3-hydroxybenzaldehyde (3:3780) ] [On oxidn. with alk. KMnO<sub>4</sub> (1) this methyl ether yields 2-chloro-3-methoxybenzoic ac., m.p. 160° (1).]

- **2-Chloro-3-hydroxybenzaldoxime:** colorless ndls from dil alc., m.p. 149° (1).
- ---- 2-Chloro-3-hydroxybenz ldehyde phenylhydrazone: unrecorded.
- **② 2-Chloro-3-hydroxybenzaldehyde** *p*-nitrophenylhydrazone: or -red ndls from hot alc., m.p. 244-245° (1).
- ---- 2-Chloro-3-hydroxybenzaldehyde 2,4-dinitrophenylhydrazone: unrecorded
- **② 2-Chloro-3-hydroxybenzaldehyde semicarbazone:** pale yel ndls, mp. 236-237° (1).
- **D** 2-Chloro-3-acetoxybenzaldehyde: rhombic cryst. from alc., m p. 62° (1).
- © 2-Chloro-3-benzoxybenzaldehyde: rhombic cryst. from alc., m.p. 88° (1).

3:4085 (1) Hodgson, Beard, J. Chem. Soc. 1926, 149-155 (2) Hodgson, Beard, J. Chem. Soc. 1926, 2031-2036. (3) Bissell, Kranz (to National Amline and Chem. Co.), U.S. 1,776,803, Sept. 30, 1930; Cent. 1931, II 159, C.A. 24, 5768-5769 (1930). (4) Lock, Monatsh. 55, 309-311 (1930). (5) Lock, Monatsh. 62, 187-188 (1933).

### 3:4095 2,4-DICHLOROPHENOXYACETIC $C_8H_6O_3Cl_2$ Beil. S.N. 522 ACID Cl $OCH_2COOH$

White odorless cryst. from  $C_6H_6$ ; alm. insol. aq. — Neut. Eq. = 221.0.

[For prepn. of  $\bar{C}$  from 2,4-dichlorophenol (3:0560) with chloroacetic acid (3:1370) in aq. NaOH (87% yield) see (1).]

[For general survey of  $\overline{C}$  as plant hormone see (1) (3) cf. (4); for use of solns. of  $\overline{C}$  in polyethylene glycols for regulating growth of plants see (5); for use of  $\overline{C}$  as weed killer see (6).]

3:4095 (1) Zimmermann, Ind. Eng. Chem. 35, 596-601 (1943). (2) Pokorny, J. Am. Chem. Soc. 63, 1768 (1941). (3) Zimmermann, Hitchcock, Contrib. Boyce Thompson Inst. 12, 321-343 (1942); C.A. 36, 6199 (1942). (4) Avery. Berger, Shalvia, Botan. Gaz. 104, 281-287 (1942); C.A. 37, 1471 (1943). (5) Mitchell, Hamner, Botan. Gaz. 105, 474-483 (1944); C.A. 38, 4654 (1944). (6) Harner, Tukey, Science 100, 154-155 (1944).

3:4102 m-CHLOROPHENYLPROPIOLIC C<sub>9</sub>H<sub>5</sub>O<sub>2</sub>Cl Beil. S.N. 950 ACID ——C=C—COOH

#### M.P. 140-141° (1)

Cryst. from AcOH.

[For prepn. of  $\bar{C}$  from *m*-chlorobenzaldehyde (3:6475) by conversion through *m*-chlorocinnamic acid to ethyl *m*-chlorocinnamate, thence by addn. of Br<sub>2</sub> to give ethyl  $\beta$ -(*m*-chlorophenyl)- $\alpha$ , $\beta$ -dibromopropionate, followed by climination of 2 HBr and saponification (or vice versa) with alc. KOH, and final acidification (yield not stated), see {1}.

Č with Cu(OAc)<sub>2</sub> loses CO<sub>2</sub> yielding (1) *m*-chlorophenylacetylene (3:9500) (cf. also under o-chlorophenylpropiolic acid (3:3956)).

3:4102 (1) Otto, J. Am. Chem. Soc. 56, 1393-1394 (1934).

Ndls. from ether; cryst. from CCl<sub>4</sub>, CS<sub>2</sub>, C<sub>6</sub>H<sub>6</sub> + EtOH, or C<sub>6</sub>H<sub>6</sub> (for studies on crystal-lographic props. see (2) (8) (5) (15)). — Insol. cold and spar. sol. hot alc.; fairly sol. cold ether, C<sub>6</sub>H<sub>6</sub>, CHCl<sub>3</sub>, or CS<sub>2</sub>. —  $\bar{C}$  has penetrating and disagreeable odor. — Sublimes easily.

[For prepn. of  $\bar{C}$  from 2,4,5-trichloroaniline [Beil. XII-627] (9) or from 2,5-dichloro-p-phenylenediamme [Beil. XIII-118] (16) via diazotization and use of  $Cu_2Cl_2$  reactn. (64% yield (16)) see indic. refs; from p-dichlorobenzene (3:0980) with  $S_2Cl_2 + AlCl_3$  in  $SO_2Cl_2$  (67% yield (1)) (17) or from o-dichlorobenzene (3:6055) with  $Cl_2 + cat$ . (18) see indic. refs.]

[For formn. of  $\bar{C}$  from  $C_6H_6$  with  $Cl_2$  in pres. of  $I_2$  (5), Fe (44% yield (13)), or AlCl<sub>3</sub> (19), or Cu (20), or from chlorobenzene with  $Cl_2 + Cu$  (20), or from c-dichlorobenzene (3:6055) with  $Cl_2 + cat$ . (18) or Al/Hg (21), or from m-dichlorobenzene (3:5960) with  $Cl_2 + L$  (21) or AlCl<sub>3</sub> (4), or from p-dichlorobenzene with  $Cl_2$  in pres. of Fe (39% yield (13)), see indic. refs.; from dry  $C_6H_6$  with anhyd. AuCl<sub>3</sub> (22) or on electrol. in aq. HCl/AcOH soln. see (23); from lower chloro derivs. of  $C_6H_6$  with FeCl<sub>3</sub> see (7); from 2,4,5-trichlorotoluene (3:2100) with  $Cl_2$  see (24); from benzaldehyde (1:0195) by htg. with  $SbCl_5$  see (11).]

[For form. of  $\tilde{C}$  from 2,5-dichloro-4-nitroaniline on diazotization and treatment with  $Cu_2Cl_2$  see (25) (14) (note abnormal replacement of nitro group); from nitrobenzene with  $SO_2Cl_2 + N_2O_4$  see (10); from resorcinol 4,6-bis-(sulfonyl chloride) or hydroquinone 2,5-

bis-(sulfonyl chloride) with PCl<sub>5</sub> in s.t. at 180° see {12} (26); from 4,6-dichlorobenzene 1,3-bis-(sulfonyl chloride) (27) or from 1,3-bis-(methylmercapto)benzene-4,6-bis-(sulfonyl chloride) (28) with SOCl<sub>2</sub> at 170-200° see indic. refs.; from 2,5-dichlorobenzene-1,4-bis-(sulfonyl chloride) with PCl<sub>5</sub> in s.t. 4 hrs. at 180° see (6); from 2,3,5,6-tetrachloro-N-nitroacetanilide (39) by refluxing in toluene or xylene (other products are also formed) see (39).]

[For behavior of  $\bar{C}$  with liq. Cl<sub>2</sub> yielding addn. products see (29); for behavior with NH<sub>3</sub> at elevated temps, see (30);  $\bar{C}$  with  $S_2Cl_2 + AlCl_3 + SO_2Cl_2$  yields (17) hexachlorobenzene (3:493)).]

[C htd. with NaOMe as directed yields according to conditions (13) (31) (32) (38) 2,4,5-trichlorophenol (3:1620) or its methyl ether.]

 $\overline{C}$  on mononitration, e.g., on boilg. with 5 pts. HNO<sub>3</sub> (D=1.52) for  $\frac{1}{2}$  hr. (3) (13) (34), yields 1,2,4,5-tetrachloro-3-nitrobenzene [Beil. V-247], m.p. 99-100° (33) (35), 99° (34) (13), 98° (9), some tetrachlorobenzoquinone (chloranil) (3:4978) (insol. in pet. ether) also being formed (9) (34) (13) (33). [For studies on chem. of this mononitro cpd. see (36).]

 $\tilde{\mathbf{C}}$  on dinitration by boilg. 5-6 hrs. with mixt. of 10 pts. HNO<sub>3</sub> (D=1.52)+10 pts. fumg. H<sub>2</sub>SO<sub>4</sub> (25% SO<sub>3</sub>) gives (71% yield (33)) 1,2,4,5-tetrachloro-3,6-dinitrobenzene, cryst. from C<sub>6</sub>H<sub>6</sub> by addn. of alc., m.p. 227-228° (33), 232-233° (35).

Č with 4 pts. chlorosulfone acid refluxed for hr. gives (78% yield (37)) hexachlorobenzene (3:4939), m.p. 218-219° u.c. (37).

3:4115 (1) Silberrad, J. Chem. Soc. 121, 1020 (1922). (2) Fels, Z. Krist. 32, 365 (1900). (3) Dadieu, Pongratz, Kohlrausch, Monatsh. 61, 434 (1932). (4) Ohvier, Rec trav. chim. 39, 411-413 (1920). (5) Jungfleisch, Ann. chim. (4) 15, 277-283 (1868). (6) Gebauer-Fulnegg, Fidor, Monatsh. 48, 634 (1927). (7) Thomas, Compt. rend. 126, 1212 (1898). (8) Bodewig, Z. Krist. 3, 400 (1879). (9) Beilstein, Kurbatow, Ann. 192, 236-237 (1878). (10) Battegay, Denivelle, Bull. soc. chim. (4) 47, 609 (1930).

(11) Gnehm, Banziger, Ann. 296, 67 (1897). (12) Litvay, Riesz, Landau, Ber. 62, 1867 (1929). (13) Holleman, Rec. trav. chim. 39, 736-737, 745, 749 (1920). (14) Hodgson, J. Soc. Dyers Colourists 42, 368 (1926). (15) Groth, Chem. Krist 4, 7 (1917). (16) Schoutissen, J. Am. Chem. Soc. 55, 4538-4539 (1933). (17) Roberts and Co. & Silberrad, Brit. 193, 200, March 15, 1923; Cent. 1925, I 904. (18) Mills (to Dow Chem. Co.), U.S. 1,934,675, Nov. 7, 1933, Cent. 1934, I 1390; C.A. 28, 494 (1934). (19) Mouneyrat, Pouret, Compt. rend. 127, 1028 (1898). (20) Tei, Komatsu, Mem. Coll. Sci. Kyoto Imp. Univ. 10-A, 326-330 (1927); Cent. 1928, I 2370.

(21) Cohen, Hartley, J. Chem. Soc. 87, 1363–1365 (1905). (22) Kharasch, Isbell, J. Am. Chem. Soc. 53, 3053 (1931). (23) Fichter, Glantsstein, Ber. 49, 2475–2481 (1916). (24) Beilstein, Kuhlberg, Ann. 152, 247–248 (1869). (25) Holleman, van Haeften, Rec. trav. chim. 40, 71 (1921). (26) Quilico, Gazz. chim. ital. 57, 800–802 (1927). (27) Pollak, Wienerberger, Monatsh. 35, 1472 (1914). (28) Pollak, Monatsh. 35, 1460 (1914). (29) van der Linden, Rec. trav. chim. 55, 425–427 (1936); 57, 342–344 (1938). (30) Heslinga, Rec. trav. chim. 43, 178–180, 182 (1924).

(31) Aktien-Gesell. für Anilin-Fabr., Ger. 349,794, March 9, 1922; Cent. 1922, IV 45; Ger. 411,052, March 23, 1925; Cent. 1925, I 2411. (32) Clark, Crozier, Trans. Roy. Soc. Can. (3) 19. III 153-156 (1925). (33) Berckmans, Holleman, Rec. trav. chim. 44, 851-852 (1925). (34) Dyson, George, Hunter, J. Chem. Soc. 1926, 3044. (35) Qvist, Salo, Acta Acad. Abcensis Math. et Phys. 8, No. 4 (1934); Cent. 1934, II 595; Cent. 1936, I 540. (36) Peters, Rowe, Stead, J. Chem. Soc. 1943, 233-235. (37) Huntress, Carten, J. Am. Chem. Soc. 62, 513 (1940). (38) de Crauw, Rec. trav. chim. 50, 787 (1931). (39) Peters, Rowe, Stead, J. Chem. Soc. 1943, 372-373.

3:4135 TETRACHLORORESORCINOL

M.P. 141° (1) 140° (2) Long colorless ndls. from hot aq. — Faintly pleasant phenolic odor. [New comml. prod. (1942) in U.S.A.] — Eas. sol. alc., ether, AcOH, C<sub>6</sub>H<sub>6</sub>; fairly eas. sol. hot aq.; spar. sol. cold aq.

[For prepn. from "hexachlororesorcinol" (3:3470) by reduction with SnCl<sub>2</sub> in AcOH see (1).]

C is sol. in aq. alk. (2). — C in aq. soln. gives with FeCl<sub>3</sub> a blue color (2).

C in AcOH on treatment with Cl2 yields "hexachlororesorcinol" (3:3470), m.p. 115°.

Tetrachlororesorcinol diacetate: m.p. 145° (1), 144° (2). [Note that m.p. of this deriv. is close to that of C and should be tested by method of mixed m.p.'s.]

3:4135 (1) Zincke, Fuchs, Ber. 25, 2689-2690 (1892). (2) Fries, Hartmann, Ber. 54, 199 (1921).

# 3:4140 2,4-DICHLORO-3-HYDROXYBENZ-ALDEHYDE



# M.P. 141° (1)

Colorless cryst. from AcOH.  $\bar{C}$  has pronounced sternutatory props. and blisters moist skin. — [Note that the m.p. of a mixt. of  $\bar{C}$  with isomeric 2,6-dichloro-3-hydroxybenz-aldehyde (3:4160), m.p. 140°, is depressed to 111° (1) ]

[For prepn. of C from 4-chloro-3-hydroxybenzaldehyde (3.3780) in AcOH with Cl<sub>2</sub> at room temp. (100% yield) see (1).]

 $\tilde{C}$  (1 pt.) in AcOH (4 pts.) on nitration at 65° with 1 pt. conc. HNO<sub>3</sub> (D=1.42) yields (2) 2,4-dichloro-3-hydroxy-6-nitrobenzaldehyde (2), colorless ndls. from its deep yellow soln. in AcOH or from hot aq., m.p. 107° (2) (p-nitrophenylhydrazone, or. ndls. from AcOH, m.p. 279-280° (2), semicarbazone monohydrate, yel. ndls. from dil. alc., softens 140-150° (2)).

Č dislvd. in boilg. 10% NaOH (2 moles) and treated with Me<sub>2</sub>SO<sub>4</sub> (1.3 moles) yields (1) 2,4-dichloro-3-methoxybenzaldehyde, m.p. 82° (1) (p-nitrophenylhydrazone, old-gold ndls., m.p. 258-260° (1)), which on oxidn. yields 2,4-dichloro-3 methoxybenzoic acid, colorless ndls., m.p. 163° (1).

- © 2,4-Dichloro-3-hydroxybenzaldoxime: fine colorless ndls. from alc., m.p. 188° (1).
- **② 2,4-Dichloro-3-hydroxybenzaldehyde** *p*-nitrophenylhydrazone: or.-red ndls., m.p. 277-278° dec. (1).

3:4140 (1) Hodgson, Beard, J. Chem. Soc. 1926, 147-155. (2) Hodgson, Beard, J. Chem. Soc. 1926, 2030-2036.

C7H5O2Cl 3:4150 o-CHLOROBENZOIC ACID Beil. IX - 334 COOH  $IX_{1}$ -(138) M.P. 142° (1) (2) (3)139.9° (15)139.8-140.0° (16)141.8° (4) 139.5-140° 141° (5) (6) (7) (8) (181) (17)140-142° (9) 139.5° (38) 139-140° 140.65° (10)(18) (19)139° 140.3° (11) (29)(20) (21) (22) 138° 140.2° (23) (24) (58)  $\langle 12 \rangle$ 140° 137° (13) (14) (26) (27) (49) (25) (63) (97) (36)

Cryst. from hot aq.,  $C_6H_6$ , dioxane/ $C_6H_6$ , or alc. —  $\bar{C}$  is spar. sol. cold aq.; e.g.,  $\bar{C}$  is sol. at 0° in 881 pts. aq. (27); at 25°, 100 ml. satd. aq. soln. conts. 0.213 g  $\bar{C}$  (21) (= 0.0136 mole per liter (21) (28)) —  $\bar{C}$  is eas. sol. hot aq, alc., ether (26) — At 14–16°C 100 ml. satd. soln. of  $\bar{C}$  in acetone conts. 28.4 g.  $\bar{C}$ , in ether 17 g.  $\bar{C}$ , in EtOAc 13.2 g.  $\bar{C}$ , in 75% AcOH 6.2 g.  $\bar{C}$ ; in  $C_6H_6$  0.9 g.  $\bar{C}$ ; in  $CCl_4$  0.6 g.  $\bar{C}$ ; in  $CS_2$  0.5 g.  $\bar{C}$ ; in lgr. 0.07 g.  $\bar{C}$  (10). — For study of soly. of  $\bar{C}$  in acetone (41),  $C_6H_6$  (42), heptane (29), chlorobenzene (3: 7903) (30), o-chlorotoluene (3: 8245) (30), or m-chlorotoluene (3. 8275) (30) see indic. refs.

For study of distribution at 25° of  $\bar{C}$  between aq. + toluene (31), aq. + xylene (32), or aq. + CHCl<sub>3</sub> (31) (32) (for use of CHCl<sub>3</sub> in sepn. of  $\bar{C}$  from aq. suspension of 3-chlorophthalic acid (3:4820) (33)) see indic. refs.; for adsorption of  $\bar{C}$  on charcoal from its solns. in EtOH (34), acetone (4),  $C_6H_6$  (4), or aq. (35) see indic. refs.; for soly. of  $\bar{C}$  in aq. solns. of various salts (including Na $\bar{A}$ ) see (28) (21).

 $\bar{C}$  can be sublimed in vac. (12). —  $\bar{C}$  is but very slightly volatile with steam (for details see (11)). — For crystallographic data see (36) (37). — For purification of  $\bar{C}$  (by use of decolorizing carbon on soln. of  $\bar{C}$  in aq. Na<sub>2</sub>CO<sub>3</sub> followed by repptn. with 6 N HCl) see (38).

Binary systems contg.  $\bar{C}$ : for f.p./compn. data on system  $\bar{C} + H_2O$  see (39); for f.p./compn. data and diagram on system  $\bar{C} + BzOH$  (1:0715), euteetic, m.p. 91.1°, contg. about 41 wt. %  $\bar{C}$ , see (10) (41); for f.p./compn. data on systems  $\bar{C} + o$ -toluic acid (1:0690) (20) or  $\bar{C} + o$ -hydroxybenzoic acid (salicylic acid) (1:0780) (20) see indic. refs.

For f.p./compn. data and diagrams on systems  $\bar{C}$  + m-chlorobenzoic acid (3:4392) (eutectic, m.p. 110.7°, contg. 52-53 mole %  $\bar{C}$  (6) (40) (10) (15)) see indic. refs ; on system  $\bar{C}$  + p-chlorobenzoic acid (3:4940) (eutectic, m.p. 132°, contg. abt. 86 mole %  $\bar{C}$ ) see (10) (15).

For f.p./compn. data and diagrams on systems  $\tilde{C}+o$ -bromobenzoic acid (41),  $\tilde{C}+o$ -iodobenzoic acid (42),  $\tilde{C}+o$ -nitrobenzoic acid (43),  $\tilde{C}+m$ -nitrobenzoic acid (43) see indic. refs.

Ternary systems contg.  $\bar{\mathbf{C}}$ . [For influence of addn. of benzoic acid (6) or of p-chlorobenzoic acid (3:4940) (40) to the eutectic of  $\bar{\mathbf{C}}$  with m-chlorobenzoic acid (3:4392) see indic. refs.; for influence of addn. of  $\bar{\mathbf{C}}$  to the eutectic of benzoic acid with m-chlorobenzoic acid see (40); for data on system  $\bar{\mathbf{C}} + m$ -chlorobenzoic acid (3:4392) + p-chlorobenzoic acid (3:4940), eutectic, m.p. 104.9°, contg. respectively 48.3, 44.0, and 7.7 mole % of the three isomers, see (15).]

Miscellaneous. [For study of fate of  $\tilde{C}$  in animal organism see (44) (45); note that contrary to earlier (45) results with dogs and rabbits conjugation with glycine to yield the expected N-(o-chlorobenzoyl)glycine (o-chlorobippuric acid) [Beil. IX-336], m.p. 176° (45), does (44) occur. — For study of use of  $\tilde{C}$  (or its salts) as preservatives see (46); for detectn. of  $\tilde{C}$  in foods see (179). — For use of  $\tilde{C}$  as vulcanization regulator see (47) (48).]

Preparation. [For prepn. of  $\bar{C}$  from o-chlorotoluene (3:8245) by oxidn. with boilg aq. KMnO<sub>4</sub> (yields: 90% (14), 74–78% (18), 68–71% (24)) (49) (13), with nitrosulfonic acid (from fumg. HNO<sub>3</sub> + dry SO<sub>2</sub>) at 100° (50), with air in the pres. of various catalysts (51) (52) (53), or in aq. alk. at 260° under press. (54), see indic. refs; for formn. of  $\bar{C}$  from o-chlorophenyl benzyl ketone by auto-oxidn. in light and air see (56); for formn. of  $\bar{C}$  from o-chlorobenzaldehyde (3:6410) by oxidn. with CrO<sub>3</sub> (57), with alk. KMnO<sub>4</sub> (58), or by auto-oxidn. in Ac<sub>2</sub>O (59) see indic. refs.]

[For prepn. of  $\bar{C}$  from o-aminobenzoic acid (anthranilic acid) [Beil. XIV-312, XIV<sub>1</sub>-(529)] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> (yields: 90% (24), 87% (178)) (preferably under CO<sub>2</sub> (60)), or CuH (60% yield (61)), or Cu (62) see indic. refs.]

[For prepn. of  $\bar{C}$  from o-chlorobenzonitrile [Beil. IX-336] by hydrolysis with H<sub>2</sub>SO<sub>4</sub> (14), with dil. HCl in s.t. at 150° (63), or boilg. KOH (14) see indic. refs.; from o-chlorobenzoyl chloride (3:6640) by hydrolysis with aq. (91) or aq. alk.; from o-chlorobenzotri-

chloride (3:6880) by hydrolysis (64) (65), e.g., with aq. in s.t. at 150° (27) or by boilg. conc. HNO<sub>3</sub> (65) see indic. refs.; from o-chlorobenzal (di)chloride (3:6625) with CrO<sub>3</sub> (57) or with boilg. aq. for 20 hrs. followed by oxidn. with KMnO<sub>4</sub> (75% yield (7)); from a mixt. of o-chlorobenzotrichloride + o-chlorobenzal (di)chloride by hydrol. with 70% H<sub>2</sub>SO<sub>4</sub> or 80% AcOH or 5% NaOH at 90-100° in stream of air to effect immediate oxidn. (67); from o-chlorobenzoyl-o-chlorotriphenylmethane by hydrolytic cleavage with 20% MeOH/KOH 5 hrs. at b p. (8); from o-chlorophenylnitrolic acid by hydrolysis with boilg. aq. (19) see indic. refs.]

[For form. of  $\bar{C}$  (together with other prods.) from benzoic acid (1:0715) with KClO<sub>3</sub> + HCl (68), with NaOCl (6) (69), see indic refs.]

[For formn. of  $\bar{C}$  from o-sulfobenzoic acid imide (saccharin) [Beil. XXVII-168, XXVII<sub>1</sub>-(266)] with KClO<sub>3</sub> + HCl see (9); from 3-chlorophthalic acid (3:4820) by cat. monode-carboxylation see (70); from o-nitrotoluene [Beil. V-318, V<sub>1</sub>-(158), V<sub>2</sub>-(243)] (71), from sodium o-toluenesulfonate [Beil. XI-83, XI<sub>1</sub>-(22)] (72), or from o-toluenesulfonyl chloride [Beil. XI-86, XI<sub>1</sub>-(23)] (71) with SOCl<sub>2</sub> in s.t. at elevated temp. followed by treatment with aq. see indic refs.]

Chemical behavior. [ $\bar{C}$  (as Na $\bar{A}$ ) on reduction with Na/Hg (27) (25) (73) or  $\bar{C}$  (as K $\bar{A}$ ) on fusion with sodium formate (74) of (75) is dehalogenated yielding benzoic acid (1:0715) (for study of reduction of  $\bar{C}$  with H<sub>2</sub> + Ni in aq. alk at ord. temp. see (76)). —  $\bar{C}$  on electrolytic reduction in alc. H<sub>2</sub>SO<sub>4</sub> yields (77) o-chlorobenzyl alc. [Beil. VI-444, VI<sub>1</sub>-(222)], ndls. from aq. alc., m p. 72° (77)]

 $\bar{C}$  behaves normally as a monobasic acid: e.g.,  $\bar{C}$  on titration with standard dil. aq. alk. gives Neut. Eq. 156.5; ionization const at 25° is  $13.2 \times 10^{-4}$  (78) (79) cf. (80) (81) (21) (1). — [For study of acid strength of  $\bar{C}$  in various alcohols (82) (83) (84) (5) (85) (86) (22) or in acctonitrile (87) see indic. refs. — For solubility of  $\bar{C}$  in aq. solns. of various salts incl. Na $\bar{A}$  see (28) (21). — For sepn. of  $\bar{C}$  from p-chlorobenzoic acid (3:4940) by use of difference in their acidic strength see (88). — For use of  $\bar{C}$  as standard in alkalimetry (89) and in iodimetry (90) see indic refs ]

Salts of inorg. bases. [NH<sub>4</sub> $\bar{\Lambda}$  (91) (92) (note that this salt with benzotrichloride (3:6880) in pres. of suitable cat. yields (93) o-chlorobenzontrile). — Hydroxylamine salt: m.p.  $104.5^{\circ}$  (94). — Na $\bar{\Lambda}$  (use as preservative) (46) — K $\bar{\Lambda}$ .½H<sub>2</sub>O (91) (forms liq. cryst. on fusion (95)). — Ag $\bar{\Lambda}$ , scales from boilg aq. (25) (100) (note that this salt with I<sub>2</sub> in C<sub>6</sub>H<sub>6</sub> under reflux does not (96) yield phenyl o-chlorobenzoate, m.p. 37°, and thus differs from corresp. salt of m-chlorobenzoic acid (3:4392)). — Ca $\bar{\Lambda}_2$ .H<sub>2</sub>O (26) (97), much more sol. aq. than corresp. salts of m-chlorobenzoic acid (3:4392) or p-chlorobenzoic acid (3:4940) (97); insol. either cold or hot alc. (98); on dry distn. gives (18% yield (99)) xanthone (1:7275), m p. 174°. — Ba $\bar{\Lambda}_2$ .3H<sub>2</sub>O from spont evapn. of aq. soln. (98) (9). — Ba $\bar{\Lambda}_2$  from hot conc. aq. soln. (25) (26) (use in sepn. of  $\bar{C}$  from isomers (40)); spar. sol. aq. (100). — Note that Pb $\bar{\Lambda}_2$  (25) (100) and Cu $\bar{\Lambda}_2$  (25) (100) are spar. sol. aq., while salts of Ca, Sr, Mg, Zn, Fe, Mn, Co, Ni, and Cd are sol (100). — For sepn. of  $\bar{C}$  from BzOH (1:0715) by use of Cu salts see (6).]

Salts of organic bases.  $\bar{C}$  with equiv. amt. benzylamine in boilg. EtOAc followed by evapn. of solvent yields (101) benzylammonium o-chlorobenzoate, m.p. 148.4–149.4° u.c., 150.5–151.5° cor, Neut Eq. 263.6 (note that the m.p. of this salt is but very slightly differom that of corresp. salt of m-chlorobenzoic acid (3:4392)). —  $\bar{C}$  similarly treated with  $\alpha$ -phenylethylamine yields (101)  $\alpha$ -phenylethylammonium o-chlorobenzoate, m.p. 128.4–129.4° u.c., 130.9–131.9° cor., Neut. Eq. 277.6 (note that m.p. of this salt, although better separated from those of the isomeric acids than the preceding case, is very close to those of the corresp. salts of m-methoxybenzoic acid, p-methoxybenzoic acid, and o-nitrobenzoic acid).

Č (1 mole) in alc. mixed with codeine (1 mole), m.p. 155°, htd. several minutes, solvent evapd. and resulting sirup recrystd. from aq. yields (102) codeine o-chlorobenzoate, C<sub>18</sub>H<sub>21</sub>-O<sub>3</sub>N.Č, m.p. 134° on "Maquenne block"; note that this value although close to that of corresp. prod. from o-bromobenzoic acid is widely different from that of corresp. salts of either m-chlorobenzoic acid (3:4392) or p-chlorobenzoic acid (3:4940) which are 96° and 162° respectively. — Č (1 mole) in alc. (or CHCl<sub>3</sub>) with strychnine (1 mole) in alc., boiled for a few minutes, then cooled, yields (103) strychnine o-chlorobenzoate, C<sub>21</sub>H<sub>22</sub>-O<sub>2</sub>N<sub>2</sub>.Č, m.p. 170° u.c. on "Maquenne block"; note that this melting point is somewhat lower than that (185°) for the corresp. salt of m-chlorobenzoic acid (3:4392) and widely different from that (251°) of the corresp. salt of p-chlorobenzoic acid (3:4940).

[For optical data on cinchonine salt see (104); for salt (m.p. 108-110°) with phenylmercuric hydroxide see (105).]

 $\tilde{C}$  with alcohols gives by conventional processes the corresp. esters; for details on methyl o-chlorobenzoate (3:6695) and ethyl o-chlorobenzoate (3:6800) see these compds. — [For study of rate of esterification of  $\tilde{C}$  with MeOH (106) (111) (17) (112), with EtOH (2) (17) (113), or with cyclohexanol (1:6415) (107) see indic. refs.]

 $\bar{C}$  with  $P_2O_5$  in toluene boiled for 4 hrs. (108), or  $\bar{C}$  (109) or its sodium salt (110) refluxed with oxalyl (di)chloride (3:5060) in  $C_6H_6$ , yields o-chlorobenzoic acid anhydride, ndls. from lt. pet. (108) or alc. (109), m.p. 79.6° (108), 78-79° (109); note that  $\bar{C}$  (2 moles) with oxalyl (di)bromide refluxed in  $C_6H_6$  similarly gives good yields (110) of the above anhydride, but that Na $\bar{A}$  with oxalyl (di)bromide can also be used (110) to give o-chlorobenzoyl bromide, b.p. 143-145° at 37 mm. (110).

 $\tilde{C}$  with PCl<sub>5</sub> (114) (45) (115), or with PCl<sub>3</sub> + ZnCl<sub>2</sub> (114), or with SOCl<sub>2</sub> (114) (45) (116) (117), or with SOCl<sub>2</sub> + pyridine (118), or with o-chlorobenzotrichloride (3:6880) + ZnCl<sub>2</sub> (119) yields o-chlorobenzoyl chloride (3:6640) q v. for data on yields.

Č with KOH or NaOH on fusion (128) (27) (25), or Č with aq. piperidine in pres. of Cu powder in s.t. at 160° for 4 hrs. (121), or Č with aq. piperidine + Na<sub>2</sub>CO<sub>3</sub> + amyl alc. + Cu powder refluxed 6 hrs. (124), or Č (as KĀ) with aq. NaOAc + Cu(OAc)<sub>2</sub> in s.t. at 140–150° for 9–10 hrs. (126), or Č with aq. Ca(OH)<sub>2</sub> + Cu cpds. at 160–170° under press. (122) gives (83% yield (126)) o-hydroxybenzoic acid (salicylic acid) (1:0780), accompanied in some cases (120) by substantial amounts of m-hydroxybenzoic acid (1:0825). — For use of alk. fusion as means of detect. of Č in wine see (123). — Note that Č with aq. KOH (even in pres. of copper) (124), or Č with aq. Ba(OH)<sub>2</sub> in s.t. at 190–200° (125), does not yield salicylic acid or any chloride ion.

Reaction of C with phenols. C on suitable treatment condenses with phenols yielding σ-aryloxybenzoic acids: e.g., C (as KĀ) with Na phenolate and Cu powder at 180–190° for 5 min. (127) (128), or C (as KĀ) with phenol + Cu powder or Cu salts (129) (130), or C (as KĀ) with anhydrous KOAc/NaOAc + Cu powder at 245–255° for 5 hrs. (126) gives (90% yield (127)) σ-phenoxybenzoic acid [Beil. X-65, X<sub>1</sub>-(28)], lfts. from dil. alc., m.p. 113°; note that this prod. with conc. H<sub>2</sub>SO<sub>4</sub> on gentle warming loses H<sub>2</sub>O and ringcloses in quant. yield (131) to xanthone (1:7275), m.p. 174°. — [For analogous condensations of C with σ-cresol (1:1400) (127) (128) (60), m-cresol (1:1730) (127), p-cresol (1:1410) (127) (128), σ-anphthol (1:1500) (132), β-naphthol (1:1540) (127) (128), σ-chlorophenol (3:0495) (133), m-chlorophenol (3:0495) (133), m-nitrophenol (133), p-nitrophenol (133), including conv. to the corresp. xanthones, see indic. refs.; many other analogous cases are known but cannot be included here.

Reaction of C with amines. C (or its salts) with primary or secondary aliphatic or aromatic amines in the pres. of K<sub>2</sub>CO<sub>3</sub> and Cu powder on htg. condenses with elimination of HCl (or its equivalent) to yield products of type o-HOOC—C<sub>5</sub>H<sub>4</sub>—NHR; these products by ring closure through elimination of water yield in turn the corresponding acridones; the

reaction has been executed for countless cases of which only a few of the more important examples can be cited here; for the most comprehensive single survey see (134).

 $\tilde{C}$  (as KĀ) htd. with aq. aniline + Cu powder (134) (135), Cu salts (135), or  $\tilde{C}$  htd. with aniline + Cu powder (136) or Cr powder (137), or  $\tilde{C}$  htd. with aniline + anhydrous  $K_2CO_3$  + CuO (134) (38) gives (yields: 97% (134), 82–93% (38), 87% (137)) N-phenylanthranilic acid (diphenylamine-o-carboxylic acid) [Beil. XIV-327, XIV<sub>1</sub>-(533)], cryst. from alc., m.p. 182–183° rap. htg. (38); this prod. with conc.  $H_2SO_4$  at 100° loses aq. and ring-closes (yields: 91–96% (38)) (138) (139) to acridone [Beil. XXI-335, XXI<sub>1</sub>-(312)], sublimable yel. ndls., m p. 354° cor.

[For details on analogous reaction of C with o-toluidine (134) (135) (136) (140), m-toluidine (134) (141), p-toluidine (134) (135), α-naphthylamine (134) (135), ρ-naphthylamine (134) (135), o-aminophenol (134), o-anisidine (134), m-anisidine (134), p-anisidine (134), p-aminobenzoic acid (134), p-phenylenediamine (134), p-aminodimethylaniline (124), see indic. refs.; scores of other examples cannot be cited here.]

Substitution of nucleus of  $\bar{C}$ . — [ $\bar{C}$  in fumg.  $H_2SO_4$  or chlorosulfonic acid + a little sulfur treated with  $Br_2$  (1 mole) at  $60-70^\circ$  gives (70-75% yield (143)) 5-bromo-2-chlorobenzoic acid [Beil. IX-355], ndls., m.p. 165-167° (143).]

 $\bar{C}$  on mononitration under various conditions, e.g.,  $\bar{C}$  (2 wt. pts.) dislvd. in conc. H<sub>2</sub>SO<sub>4</sub> (15 wt. pts.) and treated below 50° with a mixt. of HNO<sub>3</sub> (D=1.5) (1 wt. pt.) in conc. H<sub>2</sub>SO<sub>4</sub> (2.5 wt pts.) (144) gives mainly (yields: 78.5% (144), 35% (145), 32–38% (146)) (147) (148) (14) (149) 2-chloro-5-nitrobenzoic acid [Beil. IX-403], ndls. from aq., m.p. 165° (149) (14) (172), 164–165° (144) (145), 164° (146) (148), accompanied by a small amt. 2-chloro-3-nitrobenzoic acid [Beil. IX-402], m.p. 185° (148), 181° (150). — [Note that both the other nitro-2-chlorobenzoic acids are known, viz., 2-chloro-4-nitrobenzoic acid [Beil. IX-404], ndls. from aq., m.p. 140° (151), 139–140° (152), and 2-chloro-6-nitrobenzoic acid, m.p. 161° (151), but are prepd. by other methods.]

Č on direct dinitration, e.g., with conc. H<sub>2</sub>SO<sub>4</sub> + KNO<sub>3</sub> at 100° (153) (154) or at 130° (155) or Č with conc. H<sub>2</sub>SO<sub>4</sub> + fumg. HNO<sub>3</sub> at 130–140° (156), gives (94% yield (155)) 2-chloro-3,5-dinitrobenzoic acid [Beil. IX-415], ndls. from aq., m.p. 199–200° (153) (154), 199° (156), 198.5° cor. (155) (for use of this prod. in detection of Č see (180)); this prod. is also obtd. by further nitration of 2-chloro-3-nitrobenzoic acid (above) with conc. H<sub>2</sub>SO<sub>4</sub> + KNO<sub>3</sub> at 170° (157). — [Note that of the 5 other isomeric dinitro-2-chlorobenzoic acids which are possible only one is known, viz, 2-chloro-4,5-dinitrobenzoic acid, m.p. 165° cor. (158), obtd. from 2-chloro-4-nitrobenzoic acid (above) by further nitration with fumg. HNO<sub>3</sub> + conc. H<sub>2</sub>SO<sub>4</sub> (80% yield (158)).]

- --- Methyl o-chlorobenzoate: oil, b.p. 234°. (See 3:6695.)
- --- Ethyl o-chlorobenzoate: oil, b.p. 243°. (See 3:6800.)
- p-Nitrobenzyl o-chlorobenzoate: m.p. 106° (159). [From C (as NaA) with p-nitrobenzyl bromide (m.p. 99°) in boilg. dil. alc. (159); note that the m.p. of this ester is almost identical with that (107°) of the corresp. prod. from m-chlorobenzoic acid (3:4392).]
- Dependent of this prod. is only slightly lower than that (87.6°) of the corresp. prod. similarly obtd. from p-chlorobenzoic acid (3:4940).
- --- p-Chlorophenacyl o-chlorobenzoate: unreported.
- p-Bromophenacyl o-chlorobenzoate: m.p. 107.0° cor. (161), 106° (23) (162). [From C (as NaA) with p-bromophenacyl bromide (m.p. 109°) in boilg. alc. (80% yield (23)).]

- ---- p-Iodophenacyl o-chlorobenzoate: unreported.
- p-Phenylphenacyl o-chlorobenzoate: m.p. 123° (163). [From C (as NaA) with p-phenylphenacyl bromide (m p. 126°) in boilg. alc. (163).]
- --- S-Benzylthiuronium o-chlorobenzoate: unreported.
- © S-(p-Chlorobenzyl)thiuronium o-chlorobenzoate: cryst. from dioxane, m.p. 159° cor. (164). [From  $\tilde{C}$  (as Na $\tilde{A}$  or K $\tilde{A}$ ) in aq. with 1 equiv of S-(p-chlorobenzyl)-thiuronium chloride, m.p. 197° (10% in alc.) (164); note that the m.p. of this prod. is closely adjacent to that (m.p. 157° cor.) of the corresp. salt of m-chlorobenzoic acid (3:4392).]
- ⑤ S-(p-Bromobenzyl)thiuronium o-chlorobenzoate: m.p. 168° cor. (165). [From Č (as KĀ or NaĀ) in aq. with 1 equiv. of S-(p-bromobenzyl)thiuronium bromide (m.p. 213°) in alc. (165); note that m.p. of this prod. is only slightly higher than that (163° cor.) for the corresp. prod. from p-chlorobenzoic acid (3:4940).]
- © o-Chlorobenzamide: cryst. from alc. or alc./ether, mp. 142.4° cor. (166), 142° (167), 141° (14), 140.5° (91), 139° (25). [From Č by refluxing with \$\text{AcOH}\$ + (\$\text{NH}\_4\$)2CO<sub>3</sub> (37-39% yield (167)), from o-chlorobenzoyl chloride (3:6640) with conc. aq. \$\text{NH}\_4\$OH (166) (14) (91) (25), or from ethyl o-chlorobenzoate (3:6800) with conc. aq. \$\text{NH}\_4\$OH (25).] [Note that o-chlorobenzamide on htg. with \$\text{AlCl}\_3\$.NaCl (large excess) gives (93% yield (168)) o-chlorobenzonitrile [Beil. IX-336], m.p. 43-44° (168), 42-43° (169), b.p. 232° (169).]
- © o-Chlorobenzhydrazide: ndls. from alc., m p. 117 118° (170), 109-110° (171). [From ethyl o-chlorobenzoate (3:6800) q.v. with hydrazine hydrate (170) (171); for use as reagt. for identification of aldehydes and ketones see (170).]
- ---- N-(o-Chlorobenzoyl) N-phenylhydrazide: unreported.
- © o-Chlorobenzanilide: ndls. from alc. or pet. ether; mp. 114° (172) (173) (174), 117-118° (175) (176). [From o-chlorobenzoyl chloride (3:6640) with excess aniline (25) (172) in pres. of a tertiary amine (80% yield (174)); also from oxime of o-chlorobenzophenone (3:0715) by Beckmann rearr. (175) (173) (176) ] [Note that this prod. must not be confused with benz-o-chloroanilide, m.p. 99-100°.]
- © o-Chlorobenz-p-toluidide: cryst. from dil alc., m.p. 131° (177). [From o-chlorobenzoyl chloride (3:6640) with p-toluidine (177).]
- o-Chlorobenz-α-naphthalide: unreported.
- ---- o-Chlorobenz-β-naphthalide: unreported.
- 3:4150 (1) Dippy, Williams, Lewis, J. Chem. Soc. 1935, 343-346. (2) Kailan, Antropp, Monalsh. 52, 297, 303-307 (1929). (3) Fels, Z. Krist. 37, 485 (1903). (4) Berger, Rec. trav. chrm. 50, 379, 389, 395 (1931). (5) Wooten, Hammett, J. Am. Chem. Soc. 57, 2289-2296 (1935). (6) Smith, J. Chem. Soc. 1934, 213-218. (7) Asinger, Lock, Monalsh. 62, 333-334 (1933). (8) Bergmann, Schuchardt, Ann. 487, 254-255 (1931). (9) P. Bertolo, A. Bertolo, Gazz. chim. ital. 62, 487-493 (1932). (10) Bornwater, Holleman, Rec. trav. chim. 31, 223. 230-236, 242-248 (1912). (11) Sidgwick, J. Chem. Soc. 117, 403-406 (1920). (12) Andrews, Lynn, Johnson, J. Am. Chem. Soc. 48, 1282 (1926). (13) Koopal, Rec. trav. chim. 34, 144 (1915). (14) Montagne, Rec. trav. Chim. 19, 50-51, 53, 56-57, 64-65, 68, 72 (1900). (15) Johnston, Jones, J. Phys. Chem. 32, 599-601 (1928). (16) Hobbs, Weith, J. Am. Chem. Soc. 65, 968 (1943). (17) Kellas, Z. physik. Chem. 24, 222, 225, 230, 240-241 (1897). (18) Clarke, Taylor, Org. Syntheses, Coll. Vol. 2 (1st ed.), 135-136 (1943); 10, 20-21 (1930). (19) Charlton, Earl, Kenner, Lucciano, J. Chem. Soc. 1932, 40. (20) Lettré, Barnbeck, Lege, Ber. 69, 1151-1154 (1936).
- (21) Osol, Kirkpatrick, J. Am. Chem. Soc. 55, 4430-4440 (1933). (22) Kuhn, Wassermann, Helv. Chim. Acta 11, 31-34, 41 (1928). (23) Kelly, Howard, J. Am. Chem. Soc. 54, 4383-4385 (1932). (24) Graebe, Ann. 276, 54-56 (1898). (25) Kekulé, Ann. 117, 152-159 (1861). (26) Limpricht, von Uslar, Ann. 102, 259-264 (1857). (27) Kolbe, Lauteman, Ann. 115, 186-187, 196 (1860). (28) Philip, Garner, J. Chem. Soc. 95, 1466-1473 (1909). (29) Sidgwick, Ewbank, J. Chem. Soc. 119, 981, 984, 988 (1921). (30) Chapus, Compt. rend. 191, 258 (1930).
  - (31) Smith, White, J. Phys. Chem. 33, 1958, 1970 (1929). (32) Smith, J. Phys. Chem. 25, 221,

- 228 (1921). (33) Jaeger (to Selden Co.), U.S. 1,685,634, Sept. 25, 1928; Cent. 1929, I 807. (34) Griffin, Richardson, Robertson, J. Chem. Soc. 1928, 2708. (35) Freundlich, Z. physik. Chem. 57, 433 (1907). (36) Steinmetz, Z. Krist. 53, 465-466 (1913). (37) Groth, Chem. Krist. 4, 463-464 (1917). (38) Allen, McKee, Org. Syntheses, Coll. Vol. 2 (1st ed.) 15-17 (1943); 19, 6-9 (1939). (39) Flaschner, Rankin, Monatsh. 31, 43 (1910). (40) Hope, Riley, J. Chem. Soc. 121, 2518-2527 (1922).
- (41) Lettré, Barnbeck, Fuhst, Hardt, Ber. 70, 1411-1412 (1937). (42) Lettré, Lehmann, Ber. 71, 416-417 (1938). (43) Lettré, Ber. 73, 386-390 (1940); C.A. 34, 5831 (1940). (44) Quick, Cooper, J. Biol. Chem. 96, 83-101 (1932). (45) Novello, Miriam, Sherwin, J. Biol. Chem. 67, 555-557 (1926). (46) Sabalitschka, Dietrich, Desinfektion 11, 67-71, 94-104 (1926); Cent. 1927, I 2670; C.A. 20, 3712 (1926). (47) Goodyear Tire and Rubber Co., French 761,220, March 14, 1934; Cent. 1934, II 854. (48) Williams (to du Pont Co.), U.S. 2,034,889, March 24, 1936, Cent. 1936, II 2457, C.A. 30, 3280 (1936). (49) Seelig, Ann. 237, 154 (1887). (50) Varma, Narayan, J. Indian Chem. Soc. 4, 285-286 (1927).
- Maxted, Dunsby, J. Chem. Soc. 1928, 1441. (52) Maxted, Coke, Brit. 237,688, Aug. 21, 1925; Cent. 1928, I 1712. (53) Charlot, Ann. chim. (11) 2, 469 (1934). (54) Schrader, Ges. Abhandl. Kenntus Kohle 4, 310-341 (1920); Cent. 1921, I 537; C.A. 15, 2850-2851 (1921). (55) This ref. deleted. (56) Jenkins, J. Am. Chem. Soc. 57, 2733 (1935). (57) Henry, Ber. 2, 136 (1869). (58) Mayer, English, Ann. 417, 78 (1918). (59) van der Beek, Rec. trav. chim. 51, 412 (1932). (60) Anschutz, Claasen, Ber. 55, 683-684 (1922).
- (61) Neogi, Mitra, J. Chem. Soc. 1928, 1332. (62) Atkinson, Holm-Hansen, Nevers, Marino, J. Am. Chem. Soc. 65, 476 (1943). (63) Henry, Ber. 2, 492-493 (1869). (64) Britton (to Dow Chem. Co.), U.S. 1,878,463, Sept. 20, 1932, Cent. 1933, I 311; C.A. 27, 308 (1933). (65) M.L.B., Ger. 229,873, Jan. 6, 1911; Cent. 1911, I 358. (56) Anschutz, Ann. 454, 99 (1927). (67) Heller (to Chem. Fabrik von Heyden), Ger. 639,578, Dec. 8, 1936, Cent. 1937, I 2025; C.A. 31, 3943 (1937). (68) Claus, Bucher, Ber. 20, 1623 (1887). (69) Lossen, Ger. 146,174, Nov. 6, 1903; Cent. 1903, II 1224. (70) Jaeger (to Selden Co.), U.S. 1,953,231 & 1,953,232, April 3, 1934; Cent. 1934, II 669, 1688.
- (71) Meyer, Monatsh. 36, 730 (1915).
  (72) M.L.B., Ger. 282,133, Feb. 15, 1915, Cent. 1915,
  I 464.
  (73) Reichenbach, Bellstein, Ann. 132, 309-311 (1864).
  (74) Meyer, Ber. 3, 363-364 (1870).
  (75) Ador, Meyer, Ber. 4, 260 (1871).
  (76) Kelber, Ber. 54, 2257-2259 (1921).
  (77) Mettler, Ber. 38, 1750 (1905).
  (78) Ostwald, Z. physik. Chem. 3, 255 (1889).
  (79) Bodforss,
  Z. physik. Chem. 102, 53 (1922).
  (80) Wightman, Jones, Am. Chem. J. 46, 92-93 (1911).
- (81) Saxton, Meier, J. Am. Chem. Soc. 56, 1918-1921 (1934).
  (82) Dippy, J. Chem. Soc. 1941, 550-552.
  (83) Elliott, Kilpatrick, J. Phys. Chem. 45, 451-465, 466-471, 472-485, 485-492 (1941).
  (84) Kilpatrick, Mears, J. Am. Chem. Soc 62, 3047-3051, 3051-3054 (1940).
  (85) Larsson, Z. physik. Chem. A-169, 207 223 (1934).
  (86) Bright, Briscoe, J. Phys. Chem. 37, 787-796 (1933).
  (87) M. Kilpatrick, M. L. Kilpatrick, Chem. Revs 13, 131-137 (1933).
  (88) Mills (to Dow Chem. Co.), U. S. 1,942,826, Jan. 9, 1934, Cent. 1934, I 2196, C. A. 28, 1719 (1934).
  (89) Murgulescu, Alexa, Z. anal. Chem. 125, 260-267 (1943); C. A. 37, 4320 (1943).
  (90) Murgulescu, Latiu, Z. anal. Chem. 125, 267-268 (1943); C. A. 37, 4320 (1943).
- (91) Rivals, Ann. chim. (7) 12, 521 525 (1897). (92) McMaster, Godlove, J. Am. Chem. Soc. 37, 2183 (1915). (93) I G., Brit. 323,948, Feb. 6, 1930; Cent 1930, I 2630 (94) Oesper, Ballard, J. Am. Chem. Soc. 47, 2424-2427 (1925). (95) Vorlander, Huth, Ber. 43, 3129 (1910). (96) Birckenbach, Meisenheimer, Ber. 69, 723-729 (1936). (97) Beilstein, Schlun, Ann. 133, 242 (1865). (98) Beilstein, Ann. 179, 288-289, Notes (1875). (99) Lawson, Perkin, Robinson, J. Chem. Soc. 125, 652 (1924). (100) Ephrann, Ber. 55, 3482 (1922).
- (101) Buehler, Carson, Edds, J. Am Chem. Soc. 57, 2181-2182 (1935). (102) Poe, Strong, J. Am. Chem. Soc. 57, 380 (1935). (103) Poe, Suchy, J. Am. Chem. Soc. 56, 1640-1641 (1934). (104) Poe, Swisher, J. Am. Chem. Soc. 57, 748-749 (1935). (105) Andersen (to Lever Bros.), U.S. 2,177,049, Oct. 24, 1939; C.A. 34, 1036 (1940). (106) Hartman, Borders, J. Am. Chem. Soc. 59, 2107-2111 (1937). (107) Hartman, Storms, Gassmann, J. Am. Chem. Soc. 61, 2167-2169 (1939). (108) Rule, Patterson, J. Chem. Soc. 125, 2161 (1924). (109) Adams, Wirth, French, J. Am. Chem. Soc. 40, 424-427 (1918). (110) Adams, Ulich, J. Am. Chem. Soc. 42, 607-609 (1920).
- (111) Michael, Oechslin, Ber. 42, 318-330 (1909). (112) Sudborough, Turner, J. Chem. Soc. 101, 237-240 (1912). (113) Wightman, Wiesel, Jones, J. Am. Chem. Soc. 36, 2254 (1914). (114) Clark, Bell, Trans Roy. Soc. Can. (3) 27, III, 97-103 (1933). (115) Emmerling, Ber. 8, 883 (1875) (116) Frankland, Carter, Adams, J. Chem. Soc. 101, 2476 (1912). (117) Meyer, Monatsh. 22, 427 (1901). (118) Norris, Bearse, J. Am. Chem. Soc. 62, 953-956 (1940). (119) Scottish Dyos, Ltd. & Bangham, Thomas, Brit. 308, 231, April 18, 1929, Cent. 1929, II 1348; C.A. 24, 129 (1930). (120) Ost, J. prakt. Chem. (2) 11, 389-391 (1875).

(121) Ullmann, Kipper, Ber. 38, 2121-2122 (1905). (122) Boehringer und Söhne, Ger. 288,116, Oct. 19, 1915; Cent. 1915, II 1269. (123) Olejnicek, Hanzelka, Chem. Obzor 16, 147-151, 168-170, 187-191, 211-215 (1934); Cent. 1936, I 1983. (124) Tuttle, J. Am. Chem. Soc. 45, 1910-1916 (1923). (125) Meyer, Beer, Lasch, Monatsh. 34, 1669 (1913). (126) Rosenmund, Harms, Ber. 53, 2229-2231 (1920). (127) Ullmann, Zlokasoff, Ber. 38, 2112-2119 (1905). (128) A.G.F.A., Ger. 158,998, March 1, 1905, Cent. 1905, I 843. (129) Ullmann, Ber. 37, 853-854 (1904). (130) A.G.F.A., Ger. 150,323, March 22, 1904; Cent. 1904, I 1043.

(131) Graebe, Ber. 21, 503 (1888). (132) Knapp, J. prakt. Chem. (2) 146, 116-117 (1936). (133) Dhar, J. Chem. Soc. 117, 1061-1062, 1067-1069 (1920). (134) Ullmann, Ann. 355, 312-358 (1907). (135) M.L.B., Ger. 145, 189, Oct. 24, 1903; Cent. 1903, II 1097. (136) Ullmann, Ber. 36, 2382-2384 (1903). (137) Chakrabarty, Dutt, J. Indian Chem. Soc. 5, 514, 518 (1928). (138) Graebe, Lagodzinski, Ber. 25, 1734-1736 (1892); Ann. 276, 45-46 (1893). (139) Matsumura, J. Am. Chem. Soc. 57, 1533 (1935). (140) Lehmstedt, Bruns, Klee, Ber. 69, 2403 (1936).

(141) Lehmstedt, Schrader, Ber. 70, 842-849 (1937). (142) Magidson, Grigorowski, Ber. 69, 404 (1936). (143) I.G., French 835,727, Dec. 29, 1938; Cent. 1939, I 2295; C.A. 33, 5004 (1939). (144) Lehmstedt, Ber. 64, 2384-2385 (1931). (145) Bogert, Hirschfelder, Lauffer, Collection Czechoslov. Chem. Commun. 2, 385-386 (1930). (146) Dey, Doraiswami, J. Indian Chem. Soc. 10, 315-316 (1933). (147) Deese (to du Pont Co.), U.S. 2,100,242, Nov. 23, 1937; Cent. 1938, I 1876; C.A. 32, 596 (1938). (148) Holleman, de Bruyn, Rec. trav. chim. 20, 207-210 (1901). (149) Hübner, Ann. 222, 195-198 (1883). (150) Kenner, Stubbings, J. Chem. Soc. 119, 598 (1921).

(151) Lehmstedt, Schrader, Ber. 70, 1536-1537 (1937). (152) Magidson, Grigorowski, Ber. 66, 869 (1933). (153) Cohn, Monatsh. 22, 386-387 (1901). (154) Kalle & Co., Ger. 106,510, Dec. 23, 1898; Cent. 1900, I 742. (155) Ullmann, Ann. 366, 82-83 (1909). (156) Purgotti, Contardi, Gazz. chim. ital. 32, I 527-528 (1902). (157) Holleman, Rec. trav. chim. 20, 235-236 (1901). (158) Goldstein, Studer, Helv. Chim. Acta 20, 1409 (1937). (159) Reid, J. Am. Chem. Soc. 39, 132 (1917). (160) Chen, Trans. Science Soc. China 7, 73-80 (1931).

(161) Lund, Langvad, J. Am. Chem. Soc. 54, 4107 (1932). (162) Chen, Shih, Trans. Science Soc. China 7, 81-87 (1931). (163) Kelly, Morisani, J. Am. Chem. Soc. 58, 1502 (1936). (164) Dewey, Sperry, J. Am. Chem. Soc. 61, 3251-3252 (1939). (165) Dewey, Shasky, J. Am. Chem. Soc. 63, 3526-3527 (1941). (166) Remsen, Reed, Am. Chem. J. 21, 289-290 (1899). (167) Kao, Ma, Science Repts. Natl. Tsing Hua Univ. A-1, 21-22 (1931). (168) Norris, Klemka, J. Am. Chem. Soc. 62, 1432-1435 (1940). (169) Henry, Ber. 2, 492-493 (1869). (170) Sun, Sah, Science Repts. Natl. Tsing Hua Univ. A-2, 359-363 (1934); Cent. 1935, I 57; C.A. 29, 466 (1935).

(171) Kalb, Gross, Ber. 59, 732 (1926). (172) Hubner, Ann. 222, 194-196 (1883). (173) Meisenheimer, Meis, Ber. 57, 295 (1924). (174) Shah, Deshpande, J. Unv. Bombay 2, No. 2, 125-127 (1933); Cent. 1934, II 3110; C.A. 28, 6127 (1934). (175) Montagne, Koopal, Rec. trav. chim. 29, 143-144 (1910). (176) Porter, Wilcox, J. Am. Chem. Soc. 56, 2688 (1934). (177) Schreib, Ber. 13, 465 (1880). (178) Bryd, Roczniki Chem. 7, 436-445 (1927), C.A. 22, 2372 (1928). (179) Fischer, Z. Untersuch. Lebensm. 67, 161-162 (1934). (180) Deshusses, Mutt. Lebensm. Hyg. 34, 211-217 (1943); C.A. 38, 2586 (1944).

(181) Herz, Wittole, Monatsh. 74, 277 (1943).

# 3:4155 5,8-DICHLORONAPHTHOL-2

$$ho$$
OH  $ho$ Cl\_0H $_6$ OCl2 Beil. S.N. 538

376

# M.P. 141-142° (1)

[For prepn. from 5,8-dichloro-2-aminonaphthalene by htg. with dil. H<sub>2</sub>SO<sub>4</sub> for 8 hrs. at 195-205° under pressure see (1) (2).]

--- 5,8-Dichloro-2-naphthyl methyl ether: m.p. 74° (2).

3:4155 (1) Soc. Chem. Ind., Basel, Swiss 202,854, May 1, 1939; Cent. 1939, II 3196. (2) Goldstein. Viaud, Helv. Chim. Acta, 27, 883-888 (1944); C.A. 39, 926 (1945).

# 3:4160 2,6-DICHLORO-3-HYDROXYBENZ-ALDEHYDE

CHO C<sub>7</sub>H<sub>4</sub>O<sub>2</sub>Cl<sub>2</sub> Beil. S.N. 74.5 Cl Cl OH

M.P. 142-142.2° (1) 140.5° cor. (2) (3) 140° (4)

Colorless cryst. from hot aq. —  $\bar{C}$  has pronounced sternutatory properties and also attacks moist skin producing painful blisters. — [ $\bar{C}$  when mixed with 2-chloro-3-hydroxy-benzaldehyde (3:4085), m.p. 139.5° (4), depresses m.p. to 116° (4).]

[For prepn. of  $\bar{C}$  from m-hydroxybenzaldehyde (1:0055) with  $Cl_2$  (2 moles) in AcOH soln. (yields: 51.5% (2) cf. (3), 38% (4)) (1) (other prods. also being formed) see indic. refs.; from 2-chloro-3-hydroxybenzaldehyde (3:4085) with  $Cl_2$  (1 mole) in AcOH see (4); from 6-chloro-3-hydroxybenzaldehyde (3:3350) with  $Cl_2$  (1 mole) in AcOH ( $\bar{C}$  is main prod. (5) but 4,6-dichloro-3-hydroxybenzaldehyde (3:3952) is also formed (4) (5)) see indic. refs.]

[For condens. of  $\bar{C}$  with p-chlorophenol (3:0475) and use of prod. as mothproofing agent see (6); for condens. of  $\bar{C}$  with 2,4-dihydroxybenzoic acid (1:0843) (7) or with o-cresotinic acid (2-hydroxy-3-methylbenzoic acid) (8) and use of products as dye intermediates see indic. refs ]

C in 50% aq. KOH at 60-70° first ppts. yel. K salt of C which grad. dissolves and is replaced by a colorless cryst. ppt.; after stdg. 4 hrs. acidification with dil. H<sub>2</sub>SO<sub>4</sub> gives (93.8% yield (2)) 2,4-dichlorophenol (3:0560), m.p. 42° (2).

 $\bar{C}$  in AcOH with Br<sub>2</sub> gives (70% yield (3)) 4-bromo-2,6-dichloro-3-hydroxybenzaldehyde, cryst. from  $C_6H_7$  + lgr., m p. 104-105° (3) (methyl ether, m.p. 82°, oxime, m.p. 193° cor. (3)).

 $\bar{\rm C}$  (1 pt.) in AcOH (4 pts.) on nitration with 1 pt. conc. HNO<sub>3</sub> (D=1.42) at 65° yields (4) 2,6-dichloro-3-hydroxy-4-nitrobenzaldehyde, bright yel. ndls. from AcOH or pl. from aq, m.p. 80° (4) (Ag salt, crimson ndls. from hot aq.; oxime, deep yel. ndls. from dil. alc., m.p. 195°; p-nitrophenylhydrazone, deep red ndls. from hot AcOH, m.p. 279-280° dec.; semicarbazone, light-yel. lfts. from hot alc., m.p. 255-256° (4)).

C dislvd. in hot aq. NaHCO<sub>3</sub> and treated with Me<sub>2</sub>SO<sub>4</sub> for 15 min. yields (4) (3) the corresp. methyl ether, viz., 2,6-dichloro-3-methoxybenzaldehyde, m.p. 103-104° (3), 102° (4) (p-nitrophenylhydrazone, old-gold ndls., m.p. 214-215° (4)); this methyl ether upon oxidn. with alk. KMnO<sub>4</sub> gives (4) 2,6-dichloro-3-methoxybenzoic acid, ndls. from dil. alc., m.p. 149.5° (4).

- ② 2,6-Dichloro-3-hydroxybenzaldoxime: ndls. from dil. alc., m.p. 174-175° (4).
- D 2,6-Dichloro-3-hydroxybenzaldehyde p-nitrophenylhydrazone: deep or.-red. ndls.,
   m.p. 205-206° (4).

3:4160 (1) Bissell, Kranz (to National Aniline and Chem. Co.), U.S. 1,776,803, Sept. 30, 1930; Cent. 1931, I 159; C.A. 24, 5768-5769 (1930). (2) Lock, Monath. 55, 311 (1930). (3) Lock, Monath. 662, 184-185, 193-194 (1933). (4) Hodgson, Beard, J. Chem. Soc. 1926, 148-149, 152-153, 155. (5) Hodgson, Beard, J. Chem. Soc. 1926, 2031, 2034-2035. (6) Weiler, Wenk, Stötter (to I.G.), Ger. 530,219, July 24, 1931; Cent. 1932, I 3012. (7) Weiler (to F. Bayer & Co.), U.S. 1,532,790, April 7, 1925; Cent. 1925, II 352. (8) I.G., Brit. 263,879, March 2, 1927; Cent. 1927, I 2364.

## 3:4170 3-CHLORONAPHTHOL-1

$$\begin{array}{c|c} OH & C_{10}H_7OCl & \textbf{Beil. VI } --\\ & & VI_{1}--\\ & & VI_{2^-}(\textbf{581}) \end{array}$$

Ndls. from lgr. (2), C<sub>6</sub>H<sub>6</sub>, alc. or 80% AcOH (1) — Volatile with steam (1).

[For prepn. of  $\bar{C}$  from 3-chloronaphthylamine-1 (1) via diazotization and hydrolysis of the diazonium salt with steam see (1); from 2,3,4-trichloronaphthol-1 [Beil. VI-613] by partial reduction with HI (D=1.7) in AcOH on boilg 7 hrs. (100% yield) see (2).]

C is sol. in aq. alk., and the result. soln. couples with solns. of diazonium salts (1).

Č with Br<sub>2</sub> aq. (and alk.?) gives 3-chloro-2,4-dibromonaphthol-1, pr. from 90% formic acid, m.p. 112° (1).

[Č in 10% aq. KOH shaken with Me<sub>2</sub>SO<sub>4</sub> for 20 min. gives (81% yield (2)) 3-chloronaphthol-1 methyl ether, oil, b.p. 162-164° at 18 mm. (2).]

- **3-Chloro-1-naphthyl acetate:** ndls. from  $\lg r$ , mp.  $69^{\circ}$  (2). [From  $\tilde{C}$  with acetyl chloride in  $C_6H_6$  on refluxing 3 hrs in  $C_6H_6$  (66% yield (2))]
- 3-Chloro-1-naphthyl benzoate: ndls. from lgr., m.p. 118-119° (2). [From C in 10% aq. KOH on shaking with BzCl (71% yield (2)).]

**3:4170** (1) Hodgson, Elliott, J. Chem. Soc. **1934**, 1707. (2) Franzen, Stauble, J. prakt. Chem. (2) **103**, 385–387 (1922).

Many recorded m.p.'s lower than these values [cf. Beil. IX-343 and (3)] were on samples now known to have been impure.

Cryst. from lgr. (1) or mixt. of  $C_6\overline{H}_6 + \text{lgr.}$  (4) (3); pr. from aq., tbls. from  $C_6H_6$ , ndls. from alc. — Can also be purified by distn. in vac. (1). — Volatile with steam (?).

[For prepn. of  $\bar{C}$  from 2,6-dichlorotoluene (3:6270) (57% yield (4)) via bromination to 2,6-dichlorobenzyl bromide, conversion to corresp. acetate, and oxidn. of latter with KMnO<sub>4</sub> see (1) (4); from 2,6-dichlorobenzaldehyde by oxidn. with KMnO<sub>4</sub> see (2); for older less satisfactory methods see Beil IX-343.]

 $\bar{C}$  on htg. begins to lose CO<sub>2</sub> at 235° (5) [ $\bar{C}$  htd. with a large excess 50% aq. KOH at 150° for 24 hrs. was recovered unchanged to extent of 90% (9)]

C on nitration under stated conditions (1) gives 94% yield 2,6-dichloro-3-nitrobenzoic acid, cryst. from toluene, m.p. 152° (1).

 $\bar{C}$  (as  $K\bar{A}$ ) htd. with anilme +  $K_2CO_3 + Cu$  in amyl alc. gives small yield of diphenylaminecarboxylic acid-2, cryst. from  $C_6H_6$ , m.p. 181° (1). [Note loss of both chlorine atoms.]

 $\bar{C}$  htd. with acetamide for 6 hrs. at 225-235° gave 93% yield (5) m-dichlorobenzene (3:5960), b.p. 172°.

 $\overline{C}$  htd. with PCl<sub>5</sub> (6) or with SOCl<sub>2</sub> + pyridine (4) yields 2,6-dichlorobenzoyl chloride, b.p. 142-143° at 21 mm. (6), 126-128° at 18 mm. (7).

- Methyl 2,6-dichlorobenzoate: from  $Ag\bar{A} + MeI$  (8); b.p. 250° (8).
- Ethyl 2,6-dichlorobenzoate: from AgĀ + EtI (8) or from Č via SOCl<sub>2</sub>, followed by EtOH (82% yield (5)); cannot be prepared by direct esterification (8); b.p. 264-265° (8). [This ester on htg. with AlCl<sub>3</sub> at 120-130° for 2½ hrs. gives EtCl (91%) and Č (92%) (5).]
- D 2,6-Dichlorobenzamide: ndls. from alc., m.p. 202° (8), 198° (7). [This amide htd. with NaCl.AlCl<sub>3</sub> over free flame evolves HCl and gives (67% yield (5)) 2,6-dichlorobenzonitrile, ndls. from lgr., m.p. 142.5-143 5° (5), 143° (9); the nitrile can be reconverted to the amide with alk. H<sub>2</sub>O<sub>2</sub> (9).]
- 2,6-Dichlorobenzanilide: unrecorded.

3:4200 (1) Lehmstedt, Schrader, Ber. 70, 1530-1531 (1937).
 (2) Davies, J. Chem. Soc. 119, 873 (1921).
 (3) Bornwater, Holleman, Rec. trav. chim. 31, 227, 230 (1912).
 (4) Norris, Bearse, J. Am. Chem. Soc. 62, 953-956 (1940).
 (5) Norris, Klemka, J. Am. Chem. Soc. 62, 1432-1435 (1940).
 (6) Cohen, Briggs, J. Chem. Soc. 83, 1213-1214 (1903).
 (7) Dilthey, Quint, Heinen, J. prakt. Chem. (2) 152, 71 (1939).
 (8) Reich, Bull. soc. chim. (4) 21, 219 (1917).
 (9) Ref. 8, pp. 222-223.
 (10) Lock, Bock, Ber. 70, 922 (1937).

[See also cis-1,2-dichloro-1,2-diphenylethylene (3:1380).]

Colorless tbls. from alc.;  $\tilde{C}$  is much less sol. in alc. than its *cis* isomer (3:1380); 100 pts. abs. alc. at 24 4° dis. 0.71 pt.  $\tilde{C}$ , but soly. of  $\tilde{C}$  is diminished by pres. of its stereoisomer (10). —  $\tilde{C}$  (like its isomer) is very sol. ether.

Note that  $\bar{\mathbb{C}}$  (the higher-melting tolane dichloride) has now been shown (4) to have the trans configuration, many earlier reports to the contrary notwithstanding.

Note also that  $\bar{\mathbb{C}}$  with 1,1,2,2-tetrachloro-1,2-diphenylethane (tolane tetrachloride) (3:4496) gives an isomorphous mixt. (2), formerly erroneously regarded as an individual cpd. designated as "ditolane hexachloride."

#### PREPARATION OF C

Note that in all processes (below) for prepn. of Č more or less of the lower-melting (cis) stereoisomer is always formed.

### FROM DINUCLEAR INITIAL MATERIALS

From diphenylacetylene (tolane). [For prepn. of  $\bar{C}$  from tolane [Beil. V-656, V<sub>1</sub>-(319), V<sub>2</sub>-(568)] with  $Cl_2$  in CHCl<sub>3</sub> see (7).]

From trans-1,2-diphenylethylene (stilbene). [For prepn. of  $\bar{C}$  from stilbene (1:7250) with PCl<sub>5</sub> (2 moles) in POCl<sub>3</sub> at 170° see {12}.]

From 1,1,2,2-tetrachloro-1,2-diphenylethane (tolane tetrachloride). [For prepn. of  $\bar{C}$  from tolane tetrachloride (3:4496) by removal of two adjacent chlorine atoms by use of Zn dust in EtOH (1) (6) (7) (10), Zn dust in AmOH (6), Fe powder in boilg. AcOH (14) (6) (note that in this method ratio of  $\bar{C}$  to lower m.p. stereomer is 1:5 (6)), or by use of excess conc. (2 N) MeMgCl (11), or with  $H_2$  + hydrazine hydrate in MeOH/KOH at b.p. for  $1\frac{1}{2}$  hrs. (3) see indic. refs.]

From benzoin. [For formn. of  $\tilde{C}$  from benzoin (1:5210) with PCl<sub>5</sub> at 0° (much benzoylphenyl-dichloromethane ("chlorobenzil") [Beil. VII-436, VII<sub>1</sub>-(234)] also being formed) see (20).]

#### From Mononuclear Initial Materials

From benzotrichloride. [For prepn. of  $\tilde{C}$  from benzotrichloride (3:6540) with Cu powder (yield of total mixed stereoisomers 68% (15), 23.5% (16) (17)), by action of excess conc. (2 N) MeMgCl (yield total mixed stereoisomers 22% (11)), by action of hydrazine hydrate + Pd in MeOH/KOH (35% yield (3)), or for formn of  $\tilde{C}$  (together with other products) by pyrolysis over hot Pt (18) see indic. refs.]

From benzal (di)chloride. [For form. of  $\tilde{C}$  (together with other prods.) from benzal (di)chloride (3:6327) by pyrolysis over hot Pt see (18).]

#### FROM MISCELLANEOUS SOURCES

[For formn. of  $\bar{C}$  from CaC<sub>2</sub> with satd. soln. of Cl<sub>2</sub> in C<sub>6</sub>H<sub>6</sub> see (13); from benzoyl-phenyl-diazomethane (azibenzil) [Beil. VII<sub>1</sub>-(395), XXIV-208] with oxalyl (di)chloride (3:5060) in C<sub>6</sub>H<sub>6</sub> (38.5% yield  $\bar{C}$ ) see (9); from 1,1,2-trichloro-1,2-diphenylethane [Beil. V-601] by elimination of HCl with alc. KOH see (19); for formn. of  $\bar{C}$  from its lower-melting stereoisomer (3:1380) by distn. (about 32% conversion to  $\bar{C}$  (10)) (12) (6) see indic. refs.]

#### CHEMICAL BEHAVIOR OF C

 $\ddot{\mathbf{C}}$  on htg. is partially transformed (6) (12) to the lower-melting isomer (3:1380); on distn. conversion is about 68% (10).

Reduction of C. C with conc. HI and red P in s.t. at 170° for 20 hrs. gives (16) (20) bibenzyl (1:7149), m.p. 52°.

Elimination of 2 chlorine atoms.  $\bar{C}$  with Na/Hg in alc. (1) (16), or  $\bar{C}$  with Zn dust in boilg. alc. (7) (10), or  $\bar{C}$  with alc. KOH in s.t. at 180° (12) gives diphenylacetylene (tolane) [Beil. V-656, V<sub>1</sub>-(319), V<sub>2</sub>-(568)], m.p. 60°.

Addn. of halogens.  $\bar{C}$  with  $Cl_2$  in  $C_6H_6$  soln. yields (13) 1,1,2,2-tetrachloro-1,2-diphenylethane (tolane tetrachloride) (3:4496). —  $\bar{C}$  does not (12) add Br<sub>2</sub>, and the expected prod. 1,2-dibromo-1,2-diphenylethane is unreported from any other source. Nitration of  $\bar{C}$ . The nitration of  $\bar{C}$  has never been studied, and neither mono nor dinitro

derivs. are reported from any other source.

3:4210 (1) Zinin, Ber. 4, 288-289 (1871). (2) Marckwald, Karczag, Ber. 40, 2994-2995 (1907). (3) Busch, Weber, J. prakl. Chem. (2) 146, 50-52 (1936). (4) Bergmann, J. Chem. Soc. 1936, 403, 405. (5) Arends, Ber. 64, 1939 (1931). (6) Blank, Ann. 248, 17-25, 33-34 (1888). (7) Liebermann, Homeyer, Ber. 12, 1973-1974 (1874). (8) Stelling, Z. physik. Chem. B-24, 425 (1934). (9) Staudinger, Ber. 49, 1971-1972 (1916). (10) Eiloart, Am. Chem. J. 12, 231-253 (1890).

(11) Fuson, Ross, J. Am. Chem. Soc. 55, 723 (1933). (12) Limpricht, Schwanert, Ber. 4, 379 (1871). (13) Davidson, J. Am. Chem. Soc. 40, 397-399 (1918). (14) Lachowicz, Ber. 17, 1165 (1884). (15) Reitzenstein, Breuning, J. prakt. Chem. (2) 83, 115-116 (1911). (16) Hanhart, Ber. 15, 899-900 (1882). (17) Onufrowicz, Ber. 17, 835 (1884). (18) Loeb, Ber. 36, 3060-3061 (1903). (19) Sudborough, J. Chem. Soc. 71, 221-222 (1897). (20) Redsko, J. Russ. Phys-Chem. Soc. 21, 426 (1889); Ber. 22 (Referate) 760 (1889).

M.P. 144-145° (1) 144° (2) (3) (5) 143° (4)

[See also 2,3-dichlorobenzoquinone-1,4 (3:2885).]

Ndls. from aq. with 2  $H_2O$  lost at  $100^\circ$  or over conc.  $H_2SO_4$  (1); eas. sol. alc., insol. cold lgr.; sublimes.

[For prepn. of  $\bar{C}$  from hydroquinone (1:1590) in ether with SO<sub>2</sub>Cl<sub>2</sub> (1) (6), in AcOH with Cl<sub>2</sub> (30% yield (4)) (7) (6), in ether with EtOCl (3), or in MeOH with Cl<sub>2</sub> (9) see indic. refs.; from chlorobenzoquinone (3:1100) in ether with HCl gas (12% yield (5)) (1) (4) (6) (yield is small (5), reaction difficult to control (4), sometimes fails (8) (6)); from p-benzoquinone dichloride (2,3-dichlorocyclohexene-5-dione-1,4) [Beil. VII-573] by reductn. with SO<sub>2</sub> (1) (6) or SnCl<sub>2</sub> + HCl (2), or with Ac<sub>2</sub>O + H<sub>2</sub>SO<sub>4</sub> followed by hydrolysis of the resultant diacetate (2).]

[For use as antioxidant and gum inhibitor in cracked gasoline see (10); in aq. petroleum emulsion as insecticidal oil spray see (11).]

C with FeCl<sub>3</sub> gives a greenish black quinhydrone (1)

C in AcOH with excess Br<sub>2</sub> yields (6) 4,5-dibromo-2,3-dichlorohydroquinone, golden-yel. lfts. from lgr., m.p. 294° (6).

 $\bar{C}$  reduces NH<sub>4</sub>OH/AgNO<sub>3</sub> and Fehling's soln. (1);  $\bar{C}$  on oxidn. with MnO<sub>2</sub> + dil. H<sub>2</sub>SO<sub>4</sub> (1) (4) (5) or with CrO<sub>3</sub>/AcOH (7) gives (yields: 88% (4), 60% (1)) 2,3-dichlorobenzo-quinone (3:2885) q.v. [For study of oxidn.-reductn. potential of  $\bar{C}$  see (4).]

- ② 2,3-Dichlorohydroquinone diacetate: colorless ndls. from dil. alc., m p. 121° (6) (2). [From  $\ddot{C} + Ac_2O$  (6), or from p-benzoquinone dichloride (see above) with  $Ac_2O + H_2SO_4$ , (2).]
- **D 2,3-Dichlorohydroquinone dibenzoate:** colorless cryst. from CS<sub>2</sub> or pet. ether, m.p. 173-174° (1). [From  $\bar{C}$  in dil. aq. alk. with BzCl (1).]
- D 2,3-Dichlorohydroquinone dimethyl ether: pinkish white ndls. from dil. alc., m.p. 124° (6). [From C in dil. alk. with Me<sub>2</sub>SO<sub>4</sub> (6)] [Note that corresp. deriv. of 2,5-dichlorohydroquinone (3:4690) has m.p. 125-127° but that a mixt. of the two derivs. is depressed to m.p. 97° (6).]

3:4220 (1) Peratoner, Genco, Gazz. chim. ital. 24, II 375-396 (1894). (2) Dimroth, Eber, Wehr, Ann. 446, 141, 144 (1926). (3) Goldschmidt, Endres, Dirsch, Ber. 58, 576 (1925). (4) Conant, Fieser, J. Am. Chem. Soc. 45, 2204-2205 (1923). (5) Oliveri-Tortorici, Gazz. chim. ital. 27, II 584-585 (1897). (6) Gebauer-Fulnegg, Malnic, Monatsh. 47, 403-404 (1926). (7) Eckert, Endler, J. prakt. Chem. (2) 104, 82 (1922). (8) Den Hollander, Rec. trav. chim. 39, 481-482 (1920). (9) Plazek, Roczniki Chem. 10, 761-776 (1930); Cent. 1931, I 1428; C.A. 25, 1504 (1931). (10) Clarke, Towne (to Texas Co.), U.S. 2,023,871, Dec. 10, 1935; Cent. 1936, I 2671; C.A. 38, 851 (1936).

(11) Yates (to Shell Development Co.), U.S. 1,778,240, Oct. 14, 1930; Cent. 1931, I 2799; C.A. 24, 5928 (1930).

Neut. Eq. 186.5

382

Wh. ndls. (from hot aq.). [For prepn. from o-chlorophenol (3:5980) by htg. with chloroacetic ac. (3:1370) and aq alk see (1) (2) (3) ]

C refluxed with 1½ pts. thionyl chloride for 1½ hrs gives (90% yield (1)) o-chlorophenoxyacetyl chloride, b p. 136° at 12 mm., m p. 184° (1)

The methyl ester (b.p. 186-188°) and the ethyl ester, ndls. (from alc.), m.p. 32°, have been prepd. from the acid chloride (1) (5).

- o-Chlorophenoxyacetamide: from the acid chloride by treatment with excess (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>; ndls. readily sol. in hot aq., alc., or C<sub>6</sub>H<sub>6</sub>, m.p. 149 5° (1).
- o-Chlorophenoxyacetanilide: from the acid chloride by action of aniline (2 moles) in C<sub>6</sub>H<sub>6</sub>; ndls. (from alc.), m.p. 121° (1).
- 3:4260 (1) Minton, Stephen, J. Chem. Soc. 121, 1599-1601 (1922). (2) Behaghel, J. prakt. Chem. 114, 297-298 (1926). (3) Koelsch, J. Am. Chem. Soc. 53, 304-305 (1931) Branch, J. Am. Chem. Soc. 65, 1555-1564 (1943). (5) Bacher, Raiford, Proc. Iowa Acad. Sci. **50**, 247-251 (1943); C.A. **38**, 2327 (1944).

[C is best prepd (nearly quant. yield (2)) by alk, hydrolysis of its acetate (see below) or by similar treatment (67% yield (3)) of its benzoate (see below) or (39% yield (3)) of its benzenesulfonate (see below); for formn. of C from 4-amino-4'-hydroxybiphenyl by diazotization, etc., see (1); from 4'-chloro-4-aminobiphenyl (2) by diazotization and hydrolysis see (2).]

C on chlorination with Cl2 in CCl4 soln. gives (92% yield (4)) 2-chloro-4-(p-chlorophenyl)phenol, m.p. 71-72° (corresp. acetate, m.p. 74.5-75°; corresp. benzoate, m.p. 125-126°: corresp. benzenesulfonate, m.p. 100-101°) (4).

- **4-(p-Chlorophenyl)phenyl acetate:** m.p. 113° (2) [From  $\bar{C}$  by acetylation, or from the acetate of 4-hydroxybiphenyl (1:1585) with Cl2 in CCl4 + trace of I2 (47% yield (2)) or similarly in AcOH (5).] [Note that the m.p. of this prod. has also been given without details of prepn. as 72° (6).
- **182°** (3). [From  $\bar{C}$  by benzoylation or from the benzoate of 4-hydroxybiphenyl (1:1585) with Cl<sub>2</sub> in CCl<sub>4</sub> soln. + trace of I<sub>2</sub> (55% vield (3)).]
- 1 4-(b-Chlorophenyl) phenyl benzenesulfonate: m.p. 74-75° (3). [From C with benzenesulfonyl chloride + aq. 10% NaOH (3), or from the benzenesulfonate ester of 4-hydroxybiphenyl (1:1585) with Cl<sub>2</sub> in CCl<sub>4</sub> soln. + trace I<sub>2</sub> (21% yield (3)).1

3:4262 (1) Angeletti, Gatti, Gazz. chim. ital. 58, 633 (1928). (2) Savoy, Abernathy, J. Am. Chem. Soc. 64, 2219-2221 (1942). (3) Savoy, Abernathy, J. Am. Chem. Soc. 64, 2719-2720 (1942). (4) Savoy, Abernathy, J. Am. Chem. Soc. 65, 1464-1465 (1943). (5) Schmidt, Savoy, Abernathy, J. Am. Chem. Soc. 65, 296-297 (1943). (6) Hodgson, J. Chem. Soc. 1942, 583.

M.P. 147 (1)

Cryst. from AcOH.

[For prepn. of  $\bar{C}$  from p-chlorobenzaldehyde (3:0765) by conversion through p-chlorocinnamic acid to ethyl p-chlorocinnamate, thence by addn. of Br<sub>2</sub> to give ethyl  $\beta$ -(p-chlorophenyl)- $\alpha$ , $\beta$ -dibromopropionate, followed by elimination of 2 HBr and saponification (or vice versa) with alc. KOH, and final acidification (yield not stated), see (1)

 $\bar{C}$  with  $Cu(OAc)_2$  loses  $CO_2$  yielding (1) p-chlorophenylacetylene (3:0590) (cf. also under o-chlorophenylpropiolic acid (3:3956))

3:4265 (1) Wilson, Wenzke, J. Am. Chem. Soc. 57, 1265-1267 (1935).

3:4270 4,4'-DICHLOROBENZOPHENONE 
$$C_{13}H_8OCl_2$$
 Beil. VII - 420 VII<sub>1</sub>-(228)

| M.P. | 148°              | (1)          | B.P. | 353° at 757 mm.  | (2) |
|------|-------------------|--------------|------|------------------|-----|
|      | 147.75°           | (2) (20)     |      | 243° at 38 mm. ( | 15) |
|      | 147°              | (19)         |      |                  |     |
|      | 146.5-147.5° cor. | (40)         |      |                  |     |
|      | 146°              | (3) (37)     |      |                  |     |
|      | 145°              | (4) (5) (6)  |      |                  |     |
|      |                   | (7) (8) (16) |      |                  |     |
|      | 144-145°          | (9) (10)     |      |                  |     |
|      | 144.5°            | (11) (14)    |      |                  |     |
|      | 144°              | (12)         |      |                  |     |
|      | 142-143°          | (13) (22)    |      |                  |     |

Colorless lits from alc; eas sol ether, acetone, AcOH, CHCl<sub>3</sub>, CS<sub>2</sub>. — [For f.p./compn. data on systems  $\bar{C}$  + benzophenone (1:5150) and  $\bar{C}$  + diphenylamine see (12).]

[For prepn. of  $\bar{C}$  from p-chlorobenzoic acid (3:4940) + chlorobenzene (3:7903) + AlCl<sub>3</sub> (82% yield (1)) or from p-chlorobenzoyl chloride (3:6550) + chlorobenzene (3:7903) + AlCl<sub>3</sub> in CS<sub>2</sub> in direct sunlight (yields: 90% (17), 75–80% (2), 36% (9)) (37) (some isomeric 2,4'-dichlorobenzophenone (3:1565) also being formed) see indic. refs.; from chlorobenzene (3:7903) + AlCl<sub>3</sub> + CO<sub>2</sub> at 80–150° and 10 atm. press. (p-chlorobenzoic acid is main prod.) see (18); from p-chlorophenyl MgCl + CO<sub>2</sub> (together with p-chlorobenzoic acid) see (8).]

[For prepn. of C from dichloro-bis-(p-chlorophenyl)methane (4,4'-dichlorobenzophenone

dichloride) (see below) by hydrolysis with boilg. dil. alc. {14} or conc. H<sub>2</sub>SO<sub>4</sub> {14} (15) (6) (19) see indic. refs.; from tetra-(p-chlorophenyl)ethylene glycol (see below) on fusion or on boilg. with AcOH see (20); from 4,4'-dibromobenzophenone with PCl<sub>5</sub> at 150° see (21); from 4,4'-dichloro-3-nitrobenzophenone (see below) via reduction to amine, diazotization, and treatment with SnCl<sub>2</sub> + NaOH see (2).]

[For formn. of  $\bar{C}$  by oxidation with  $CrO_3/AcOH$  of 4,4'-dichlorobenzilic acid (2), of bis-(p-chlorophenyl)methane (7), of tris-(p-chlorophenyl)methane (16), of 1,1,4,4-tetra-(p-chlorophenyl)butyne-2 (91% yield (4)), or of 1,1,4,4-tetra-(p-chlorophenyl)butyne-1,2,3 (94% yield (5)) see indic. refs.; from oxidn. of  $\beta$ , $\beta$ -di-(p-chlorophenyl)propionic acid with aq. KMnO<sub>4</sub> see (10); from 2,2-dimethyl-5,5-bis-(p-chlorophenyl)pentanone-3 [ $\alpha$ -(p,p'-dichlorophenyl)propiophenone] by oxidn. with alk. KMnO<sub>4</sub> see (22); from  $\beta$ , $\beta$ -di-(p-chlorophenyl)propiophenone by oxidn. with aq. KMnO<sub>4</sub> in NaOH + pyridine soln. see (13); from bis-(p-chlorophenyl)methyleneacetophenone with KMnO<sub>4</sub> in acetone (71% yield) see (3)]

[For formn. of C from 1,1-di-(p-chlorophenyl)ethane (3:0995) (39), from 1-chloro-2,2-bis-(p-chlorophenyl)ethylene (3:1430) (84% yield (40)), or from 1,1-dichloro-2,2-bis-(p-chlorophenyl)ethylene (3:2438) (40), all by oxidn. with CrO<sub>3</sub>/AcOH, see indic. refs.]

[ $\tilde{\mathbf{C}}$  on reduction with 3% Na/Hg in 90% alc. (20), with Al/Hg in 80% alc. (6) (11), with Zn dust + AcOH on boilg. (20), with Zn dust + alc. KOH (20) or NaOH (23), or simply with boilg. alc. KOH (24) gives (yields: 100% (23), 96% (6) (11) di-(p-chlorophenyl)carbinol (4,4'-dichlorobenzhydrol) [Beil. VI-680, VI<sub>1</sub>-(327)], cryst. from alc., m.p. 94° (20), 93° (24), 91.5° (23), 89-90° (6) (11) (corresp. 3,5-dinitrobenzoate, m.p. 174-176° (41)); note that in some cases this main prod. is accompanied by tetra-(p-chlorophenyl)ethylene glycol (see below). —  $\tilde{\mathbf{C}}$  on reduction with Zn dust + AcOH + dil. H<sub>2</sub>SO<sub>4</sub> (25), or in alc. in bright sunlight for 5 days (20) ef (26), gives (85% yield (20)) tetra-(p-chlorophenyl)ethylene glycol [Beil. VI-1058, VI<sub>1</sub>-(523)], m p. 180° (6) (11), 175° (20) (accompanied by smaller amts. of other prods.)

[ $\bar{C}$  with sodium phenylacetylene in dry ether gives (57% yield (3)) bis-(p-chlorophenyl)-ethynyl-carbinol, m.p. 163-164° (3);  $\bar{C}$  with diphenylmethyl sodium gives (27) bis-(p-chlorophenyl)-diphenylmethyl-carbinol, m.p. 183-184° (27);  $\bar{C}$  with McMgI in dry ether gives (39) (19) not only some bis-(p-chlorophenyl)-methyl-carbinol, m.p. 67.0-68 5° (39), but also (68% yield (19)), by loss of H<sub>2</sub>O, unsym.-di-(p-chlorophenyl)cthylene, m.p. 91°(3:2475);  $\bar{C}$  with β-(diphenylvinyl)MgBr gives (12% yield (28)) 1,1-di-(p-chlorophenyl)-3,3-diphenylpropen-2-ol-1, m.p. 85°, which on htg. at 130-150° loses H<sub>2</sub>O yielding 1,1-di-(p-chlorophenyl)-3,3-diphenylpropadiene-1,2, m.p. 93-95° (28);  $\bar{C}$  with ethyl bromoacetate + Zn in C<sub>6</sub>H<sub>6</sub> gives (30% yield (28) ethyl  $\beta$ , $\beta$ -di-(p-chlorophenyl)- $\beta$ -hydroxypropionate, m.p. 102° (28).]

[Č with PCl<sub>5</sub> at 150° gives (17) (15) (29) dichloro-di-(p-chlorophenyl)methane (4,4'-dichlorobenzophenone dichloride), m.p. 52-53° (15), 52.5° (17).]

[ $\bar{\mathbf{C}}$  on fusion with NaOH yields (7) chlorobenzene (3:7903) + p-chlorobenzoic acid (3:4940). —  $\bar{\mathbf{C}}$  with 10% aq. NaOH in pres. of Cu 5 hrs. at 190° under press. yields (30) 4,4'-dihydroxybenzophenone [Beil. VIII-317, VIII<sub>1</sub>-(641)], m.p. 214° (30).]

[C with hydrazine hydrate in isopropyl alc. in s.t. at 150–160° for 7 hrs. gives (56% yield (42)) 4,4'-dichlorobenzophenone hydrazone, m.p. 91–93°, which on Wolff-Kishner reduction gives (21% yield (42)) 4,4'-dichlorodiphenylmethane (3:1057).]

[C with aq. NH<sub>4</sub>OH in pres. of CuO + NH<sub>4</sub>NO<sub>3</sub> + KClO<sub>3</sub> under press. at 180° (1) cf. (31) gives (92% yield (1)) 4,4'-diaminobenzophenone [Beil. XIV-88, XIV<sub>1</sub>-(391)], m.p. 245-246° (1), 242.5° (31); some half reactn. prod., viz., 4-amino-4'-chlorobenzophenone, m.p. 185° (1), is also formed. — For similar reactn. of C with diethylamine leading to 4-chloro-4'-diethylaminobenzophenone see (32). — For reactn. of C with N-methyl-a-

phenylindole and use in prepn. of dyes see (33); with ethylbutyl-m-toluidine see (34); with aminoanthraquinone derivs. see (35) (36).]

- [ $\bar{\rm C}$  on nitration with 10 wt. pts. fumg. HNO<sub>3</sub> (D=1.47) in cold (37) or with 5 pts. abs. HNO<sub>3</sub> at 0° (2) gives (81% yield (37)) 4,4'-dichloro-3,3'-dinitrobenzophenone, cryst. from AcOH, m.p. 132.5° (2), 132-133° (38), 120° (37);  $\bar{\rm C}$  on trinitration at 130° with 1.8 wt. pts. conc. H<sub>2</sub>SO<sub>4</sub> contg. 2 pts. KNO<sub>3</sub> gives (37) 4,4'-dichloro-3,3',5-trinitrobenzophenone, cryst. from AcOH, m.p. 140° (37);  $\bar{\rm C}$  on tetranitration with 10 pts. fumg. H<sub>2</sub>SO<sub>4</sub> + 1 pt. KNO<sub>3</sub> at 150° gives (37) 4,4'-dichloro-3,3',5,5'-tetranitrobenzophenone, cryst. from AcOH, m.p. 202° (37).] [A mono-nitrated  $\bar{\rm C}$ , viz., 4,4'-dichloro-3-nitrobenzophenone. ndls. from alc., m.p. 87° (2), 88-89° (38) has been obtd. indirectly.]
  - 4,4'-Dichlorobenzophenone oxime: ndls. from alc., m.p. 136-136.5° (1), 136° (7), 135° (8) (9), 134° (5). [From \(\bar{C}\) with excess NH<sub>2</sub>OH in alc. at 100° (9).] [This prod. by Beckmann rearr. with conc. H<sub>2</sub>SO<sub>4</sub> yields p-chlorobenz-p-chloroanilide, m.p. 213-213.5° (1).]
  - ---- 4,4'-Dichlorobenzophenone phenylhydrazone: not reported.
  - ---- 4,4'-Dichlorobenzophenone p-nitrophenylhydrazone: not reported.
  - ---- 4,4'-Dichlorobenzophenone 2,4-dinitrophenylhydrazone: m.p. 238-240° (40).
- 3:4270 (1) Newton, Groggins, Ind. Eng. Chem. 27, 1397-1399 (1935). (2) Montagne, Rec. trav. chim. 21, 24-29 (1902). (3) Meyer, Schuster, Ber. 55, 822-823 (1922). (4) Brand, Horn, Bausch, J. prakt. Chem. (2) 127, 246-247 (1930). (5) Brand, Bausch, J. prakt. Chem. (2) 127, 235-236 (1930). (6) Cohen, Boeseken, Rec. trav. chim. 38, 115-116, 123 (1919). (7) Stephen, Short, Gladding, J. Chem. Soc. 117, 523 (1920). (8) Bodroux, Bull. soc. chim. (3) 31, 29 (1904). (9) Dittrich, Ann. 264, 175-178 (1891). (10) Fuson, Kozacık, Eaton, J. Am. Chem. Soc. 55, 3803 (1933).
- (11) Bosseken, Cohen, Cent. 1915, 1375-1376. (12) Schaum, Rosenberger, Z. anorg. allgem. Chem. 136, 335-336 (1924). (13) Eaton, Black, Fuson, J. Am Chem. Soc. 56, 688 (1934). (14) Norris, Green, Am. Chem. J. 26, 496-497 (1901). (15) Norris, Twieg, Am. Chem. J. 30, 398 (1903). (16) Fischer, Hess, Ber. 38, 337-338 (1905). (17) Montagne, Rec. trav. chim. 25, 384, 389 (1906). (18) I.G., Brit. 307,223, March 28, 1929; Cent. 1929, I 3145; Meyer, Hopff (to I.G.), Ger. 524,186, May 11, 1931; Cent. 1931, II 497. (19) Bergmann, Bondi, Ber. 64, 1469-1470 (1931). (20) Montagne, Rec. trav. chim. 24, 114-120 (1905).
- (21) Cone, Robinson, Ber. 40, 2160-2161 (1907). (22) Weinstock, Fuson, J. Am. Chem. Soc. 56, 1242 (1934). (23) Norris, Tibbetts, J. Am. Chem. Soc. 42, 2091 (1920). (24) Montagne, Moll van Charante, Rec. trav. chim. 31, 313-314 (1912). (25) Montagne, Rec. trav. chim. 25, 411-414 (1906). (26) Cohen, Boeseken, Rec. trav. chim. 39, 258 (1920). (27) Bergmann, J. Chem. Soc. 1936, 412-413. (28) Bergmann, Hoffmann, Meyer, J. prakt. Chem. 135, 255, 261 (1932). (29) Schonberg, Schutz, Ber. 62, 2331 (1929). (30) Britton (to Dow Chem. Co.), U.S. 1,961,630, June 5, 1934; Cent. 1934, II 1846; C.A. 28, 4744 (1934).
- (31) Britton, Bryner (to Dow Chem. Co.), U.S. 1,946,058, Feb. 6, 1934; Cent. 1934, I 3396; C.A 28, 2364 (1934). (32) Hammond, Harris (to Heyden Chem. Co.), U.S. 2,223,517, Dec. 3, 1940, C.A. 35, 1808 (1941). (33) Wolff (to I G.), Brit. 417,014, Oct. 25, 1934; Ger. 604,429, Oct. 20, 1934; French 761,372, March 17, 1934; Swiss 170,094, Sept. 11, 1934; Cent. 1935, I 801. (34) Wolff, Werner (to I.G.), Ger. 606,642, Dec. 3, 1934; Cent. 1935, I 1621. (35) B.A.S.F., Ger. 220,579, April 5, 1910; Cent. 1910, I 1471. (36) Kranzlein, Vollmann, Boedeker, Ger. 574,966, April 21, 1933; Cent. 1933, I 4046. (37) Consonno, Gazz. chim. ital. 34, I 376-377 (1904). (38) Maron, Fox, Ber. 47, 2781 (1914). (39) Grummitt, Buck, Becker, J. Am. Chem. Soc. 67, 2266 (1945). (40) Haller, Bartlett, Drake, Newman, Cristol, Magerlein, Mueller, Schneider, J. Am. Chem. Soc. 67, 1599, 1602 (1945).
- (41) Grummitt, Buck, J. Am. Chem. Soc. 67, 693-694 (1945). (42) Grummitt, Jenkins, J. Am. Chem. Soc. 68, 914 (1946).

# 3:4280 2-CHLORO-4-HYDROXYBENZ- $C_7H_5O_2Cl$ Beil. VIII - 81 $VIII_1$ —

Colorless ndls. from AcOH (1) or aq. (2). — Volatile with steam but much less so than the isomeric 4-chloro-2-hydroxybenzaldehyde (3:0960) (1).

[For prepn. of  $\bar{C}$  from *m*-chlorophenol (3:0255) via Reimer-Tiemann reactn. see (1); via anhyd. HCN + AiCl<sub>3</sub> + C<sub>6</sub>H<sub>6</sub> (50% yield) see (2); for prepn. (alm. 100% yield (1)) from 2-chloro-4-nitrotoluene via 2-chloro-4-aminotoluene and subsequent diazo reactn. see (1).]

C does not reduce NH<sub>4</sub>OH/AgNO<sub>3</sub> or Fehling soln. (1).

 $\bar{C}$  with aq. FeCl<sub>3</sub> gives only a slight ppt. [dif from 4-chloro-2-hydroxybenzaldehyde (3:0960)]; the copper and chromium salts are lighter green in color than those from that isomer (1).

Č on mononitration as specified (3) yields 5-nitro-2-chloro-4-hydroxybenzaldehyde, vol. with steam, colorless ndls. from alc., m.p. 125° (3). [This product yields a phenylhydrazone, silky dark purple ndls. from alc., m.p. 166° sl. dec; a p-mtrophenylhydrazone, deep or. ndls. from AcOH, m.p. 266° dec.; and a semicarbazone, light or. ndls from dil. AcOH, m.p. 266° dec. (3).]

Č on dinitration as specified (3) yields 3,5-dinitro-2-chloro-4-hydroxylenzaldehyde, not volatile with steam, pale yel. massive pr. from aq , m.p. 93° (3). [This product yields a phenylhydrazone, br.-purple ndls from alc., m.p. 210° dec.; a p-nitrophenylhydrazone, red-br. ndls. from dil. AcOH, m.p. 267° dec.; and a semicarbazone, lt. br. ndls. from dil. AcOH, m.p. 192° dec (3).]

- 2-Chloro-4-hydroxybenzaldoxime: cryst. from alc., m p 194° (2).
- --- 2-Chloro-4-hydroxybenzaldehyde phenylhydrazone: unrecorded.
- **D** 2-Chloro-4-hydroxybenzaldehyde p-nitrophenylhydrazone: dark red pl. from ale. or vermilion red cryst. from AcOH, m.p. 288° dec. (1).
  - --- 2-Chloro-4-hydroxybenzaldehyde 2,4-dinitrophenylhydrazone: unrecorded.
- 2-Chloro-4-hydroxybenzaldehyde semicarbazone: yel cryst. from alc, m.p. 214°
   (1).
- **② 2-Chloro-4-acetoxybenzaldehyde:** colorless ndls. from dil AcOH, m.p. 51 5° (1).
- ② 2-Chloro-4-benzoxybenzaldehyde: colorless ndls. from alc, m.p. 96 5° (1). [Note that this ③ does not give good distinction from isomeric 4-chloro-2-hydroxybenzaldehyde (3:0960) whose corresponding benzoate has m.p. 98.5° (1).]

**3:4280** (1) Hodgson, Jenkinson, J. Chem Soc. **1927**, 1740-1742. (2) Gattermann, Ann. **357**, 334 (1907). (3) Hodgson, Jenkinson, J. Chem. Soc. **1928**, 2274-2275.



Colorless cryst. from toluene + lt. pet. (2), from 50% AcOH (14), or from alc. (11). [For prepn. of  $\bar{\mathbf{C}}$  from 4,4'-diaminobiphenyl (benzidine) [Beil. XIII-214, XIII<sub>1</sub>-(58)] via tetrazotization and use of Cu powder (9), Cu<sub>2</sub>Cl<sub>2</sub> (3), or HgCl<sub>2</sub> complex (82% yield (10)), see indic. refs.; from biphenyl (1:7175) in AcOH with Cl<sub>2</sub> (41% yield (2)) (convenient for prepn. small amts.  $\bar{\mathbf{C}}$ ) see (2); from 4,4'-dinitrobiphenyl with SOCl<sub>2</sub> in s.t. for 10 hrs. at 200-210° see (7); from p-chloroiodobenzene [Beil. V-221, V<sub>1</sub>-(119)] with Cu powder at 200-250° (82% yield) see (15).]

[For formn. of  $\tilde{C}$  from chlorobenzene (3:7903) by pyrolysis see (16) (12) (for discussion of formn. during mfg. of phenol from chlorobenzene see (19)); from biphenyl (1:7175) with  $Cl_2$  in pres. of  $SbCl_5$  (17) or  $I_2$  (13) see indic. refs.; from 4,4'-dihydroxybiphenyl (1:1640) with  $PCl_5$  see (13); from 4,4'-dichlorobiphenyl-3,3'-diarboxylic acid on htg. see (18); from 4,4'-dichloro-3,3'-diaminobiphenyl via tetrazotization and htg. with alc. see (14); from decompn. of bis-(p-chlorobenzoyl) peroxide on htg. see (6)]

[For manuf of  $\bar{C}$  or mixts. of dichlorobiphenyls contg.  $\bar{C}$  from biphenyl with  $Cl_2$  see (20) (21) (22) (23); for use as insecticide see (24) ]

[C htd. under press with conc. aq. NH<sub>4</sub>OH in pres. of Cu<sub>2</sub>Cl<sub>2</sub> and Ca (OH)<sub>2</sub> gives (99.5% yield (25)) 4,4'-diaminobiphenyl (benzidne); C with aq. over Cu + silica gel at 525-600° gives (26) 4,4'-dihydroxybiphenyl (1:1640)]

 $\bar{C}$  on mononitration in 15 pts. AcOH with 10 pts. HNO<sub>3</sub> (D=1.46) at 100° for ½ hr. (2), or in nitrobenzene soln. with HNO<sub>3</sub> (D=1.52) as directed (2), gives alm. quant. yield of 4,4'-dichloro-2-nitrobiphenyl, cryst from alc or CCl<sub>4</sub>, m.p. 102° (2) (27). [This prod. does *not* react with piperidine (27)]

 $\bar{C}$  on dinitration by soln in 7½ pts HNO<sub>3</sub> (D=1.52) in an ice bath gives (2) mixt. contg. 81.3% 4,4'-dichloro-2,3'-dinitrobiphenyl and 18.7% 4,4'-dichloro-2,2'-dinitrobiphenyl. By recryst. from AcOII 4,4'-dichloro-2,3'-dinitrobiphenyl is obtd in ndls., m p.  $141-142^{\circ}$  (2),  $140^{\circ}$  (28), which on warming with piperidine for a few seconds yields (28) 4-chloro-4'-piperidino-2,3'-dinitrobiphenyl, or ndls from alc., m p.  $132^{\circ}$  (28) (note that the principal dinitration prod. of  $\bar{C}$  is the 2,3'-dinitro- $\bar{C}$  and not the 2,2'-isomer as formerly (29) supposed). — From the mother liq. of the above dinitration may be obtd. (2) the true 4,4'-dichloro-2,2'-dinitrobiphenyl, m.p.  $138-139^{\circ}$  (2); this does not react with piperidine

 $\bar{C}$  on trinitration with 10 pts. HNO<sub>3</sub> (D=1.52) for 2 hrs. at 100° gives (2) (30) 4,4′-dichloro-2,3′,5′-trinitrobiphenyl, ndls. from AcOH, m.p. 166-167° (2), 164-165° (30); this prod. warmed with piperidine gives 4-chloro-4′-piperidino-2,3′,5′-trinitrobiphenyl, crimson pr. from AcOH, m.p. 182° (2).

 $\bar{C}$  on oxidn. with CrO<sub>3</sub> in AcOH yields (13) p-chlorobenzoic acid (3:4940), m.p. 237° (13).

3:4300 (1) Williamson, Rodebush, J. Am. Chem. Soc. 63, 3019 (1941). (2) Shaw, Turner, J. Chem. Soc. 1932, 288-289, 294-296. (3) Brotscher, Helv. Phys. Acta 1, 358 (1928). (4) Griess, J. Chem. Soc. 20, 101 (1867). (5) Mieleitner, Z. Krist. 55, 66 (1920). (6) Fichter, Adler, Helv. Chim. Acta 9, 285 (1926). (7) Mascarelli, Gatti, Gazz. chim. ital. 59, 870 (1929). (8) Brüll, Gazz. chim. ital. 65, 24 (1935). (9) Weissberger, Williams, Z. physik. Chem. B-3, 309 (1929). (10) Schwechten, Ber. 65, 1607 (1932).

Pickett, Walter, France, J. Am. Chem. Soc. 58, 2296 (1936).
 Meyer, Hofmann, Monatsh. 38, 143 (1917).
 Schmidt, Schultz, Ann. 207, 338-344 (1881).
 Holt, J. Chem. Soc. 1934, 1432.
 Ullmann, Ann. 332, 54-55 (1904).
 Kramers, Ann. 189, 137-140 (1877).
 Kramers, Ann. 189, 142-145 (1877).
 Schultz, Rohde, Vicari, Ann. 352, 130 (1907).
 Hale, Britton, Ind. Eng. Chem. 20, 122 (1923).
 Malowan (to Swann Research, Inc.), U.S. 1,951,577, March 20, 1934; Cent. 1934, II 3183; C.A. 28, 3427 (1934).

(21) Federal Phosphorus Co, French 703,216, April 27, 1931, Cent. 1931, II 1635. (22) Britton, Stoesser (to Dow Chem. Co.), U.S. 1,835,754, Dec. 8, 1931; Cent. 1932, I 1440. (23) Prahl, Mathes (to F. Raschig), Ger. 580,512, July 13, 1933; Cent. 1933, II 1763. (24) I.G.,

Ger. 513,775, Dec. 2, 1930; Cent. 1931, I 1965. {25} Booth (to Swann Research, Inc.), U.S. 1,954,469, April 10, 1934; Cent. 1934, II 1846; C.A. 28, 3744 (1934), Federal Phosphorus Co., Brit. 370,774, May 4, 1932; Cent. 1932, II 1237. {26} Booth (to Swann Research, Inc.), U.S. 1,925,367, Sept. 5, 1933, Cent. 1934, I 128; C.A. 27, 5342 (1933). (27) LeFevre, Turner, J. Chem. Soc. 1926, 2045. (28) Dennett, Turner, J. Chem. Soc. 1926, 477, 479-480. (29) Borsche, Scholten, Ber. 56, 609 (1917). (30) Vernon, Rebernak, Ruwe, J. Am. Chem. Soc. 54, 4456-4467 (1932).

# 3:4315 6,7-DICHLORONAPHTHOL-1

M.P. 151° (1) (2) 149–150° (3)

Cryst from CHCl<sub>3</sub> (3).

[For prepn. from  $\beta$ -(3,4-dichlorobenzal)propionic ac [Beil. IX-614] by distn. see (1) (2) (3);  $\bar{C}$  is sepd. from the smaller proportion of 7,8-dichloronaphthol-1 (3:2635) by the greater soly. of the latter in lgr. (3).]

C on oxidn. with  $K_2Cr_2O_7 + dil$ .  $H_2SO_4$  yields (3) 4,5-dichlorophthalic ac (3:4890), which during m.p. detn. is converted to 4,5-dichlorophthalic anhydride (3:4830), m.p. 184-185° (3).

Č in alk. soln. coupled with diazotized naphthionic acid (1-aminonaphthalenesulfonic acid-4) gives a deep red-bluish color which upon acidification becomes dark yellow (3). [Dif. from 7,8-dichloronaphthol-1 (3:2635) q.v.]

6,7-Dichloro-1-naphthyl acetate: ndls. from dil. alc., or compact pr. from CHCl<sub>3</sub> lgr., m.p. 102-103° (3).

**3:4315** (1) Armstrong, Wynne, Chem. News **71**, 253 (1895). (2) Armstrong, Wynne, Proc. Chem. Soc. **11**, 78-79 (1895); Ber. **29**, Referate, 223-224 (1896). (3) Erdmann, Schwechten, Ann. **275**, 286-288 (1893).

# 3:4325 3,3-DICHLORO-2,2-DIMETHYLBUTANE

# M.P. 151-152° (1)

Colorless cryst. subliming readily even at ord. temp.

[For prepn of  $\bar{C}$  from ter-butyl methyl ketone (pinacolone) (1:5425) with  $PCl_5$  at 0-5° (1) (2) (3) (4) (5) (6) (7) (9) see indic. refs Note that  $\bar{C}$  (by loss of HCl) is always accompanied by more or less 3-chloro-2,2-dimethylbutene-3 (3:7340) and other prods.]

C on htg. with phenol + KOAc yields (8) 3-chloro-2,2-dimethylbutene-3 (3:7340).

 $\bar{C}$  on htg. at 150-230° with powdered KOH (moistened with alc.) gives (65% yield (6)) (9) (2) ter-butylacetylene [Beil. I-256], b.p. 37.8° at 760 mm.,  $D_0^{20} = 0.6683$ ,  $n_{\alpha}^{20} = 1.37257$  (6); note that use of NaOH instead of KOH gives by loss of 1 HCl only 3-chloro-2,2-dimethylbutene-3 (3:7340) and no ter-butylacetylene (9).

3:4325 (1) Bartlett, Rosen, J. Am. Chem. Soc. 64, 544 (1942). (2) Delacre, Bull. soc. chim. (3) 35, 343-344 (1906). (3) Favorskii, J. Russ. Phys.-Chem. Soc. 19, 425 (1887); Ber. 20, Referate 781 (1887). (4) Delacre, Bull. acad. roy. Belg. 1906, 7-41; Cent. 1906, I 1233-1234. (5) Delacre, Cent. 1906, II 496. (6) Ivitzky, Bull. soc. chim. (4) 35, 357-358 (1924). (7) Meerwein, Wortman, Ann. 435, 201, Note 4 (1924). (8) Meerwein, Wortman, Ann. 435, 194, Note 1 (1924). (9) de Graef, Bull. soc. chim. Belg. 34, 428-429 (1925).

3:4330 2-CHLORONAPHTHOIC ACID-1

M.P. 152-153° (1) 151-152° (2)

151° (4)

Cryst. from  $C_6H_6$  (2). — Sol. in 1000 pts. aq. at 20° or in 126 pts. aq. at 100°; eas. sol. alc., ether (1).

[For prepn. of  $\bar{C}$  from 2-hydroxynaphthoic acid-1 [Beil. X-328, X<sub>1</sub>-(144)] with PCl<sub>5</sub> (3 moles) in s.t. at 180-190° for 8 hrs. followed by treatment with aq. see (1) (2); from 1-chloroformylnaphthyl-2-phosphoric acid dichloride [Beil. X-329] with PCl<sub>5</sub> (2 moles) in s.t. at 180-190° followed by treatment with aq. see (1) (2); from 2-chloro-1-(chloromethyl)-naphthalene (4) by oxidn. with dil HNO<sub>3</sub> for 15 days see (4).]

 $\bar{C}$  in aq. susp. with 2% Na/Hg yields (1)  $\alpha$ -naphthoic acid (1:0785), m.p. 160° (1).

C does not esterify upon treatment in MeOH with HCl gas (3).

Salts: CaĀ<sub>2.2</sub>H<sub>2</sub>O; sol. in 150 pts. cold aq. or 75 pts. hot aq.; loses water of hydration completely at 180° (1).

- Methyl 2-chloro-1-naphthoate: pr. from alc. + toluene, m.p. 50° (1) (2), b.p. 176-180° at 18.5 mm. (2). [From AgA with MeI in s.t. at 100° (1) or from C with ethereal diazomethane (2)] [This ester is very resistant to hydrolysis (1) (2).]
- Ethyl 2-chloro-1-naphthoate: unreported.
- --- p-Bromophenacyl 2-chloro-1-naphthoate: unreported.

3:4330 (1) Rabe, Ber. 22, 394-396 (1889). (2) Bergmann, Hirshberg, J. Chem. Soc. 1936, 333-334. (3) Meyer, Ber. 28, 184 (1895). (4) Horn, Warren, J. Chem. Soc. 1946, 144.

3:4335 2,4,5-TRICHLOROPHENOXYACETIC

 $C_8H_5O_3Cl_3$ 

Beil. S.N. 522

ACID Cl Cl—OCH<sub>2</sub>.COOH

M.P. 153° (1)

Colorless cryst. from  $C_6H_6$ ; alm. insol. aq. — Neut. Eq. = 255.5.

[For prepn. of  $\bar{C}$  from 2,4,5-trichlorophenol (3:1620) with chloroacetic acid (3:1370) in aq. NaOH (85% yield) see (1).]

[For use of  $\bar{C}$  as weed killer see (2); for general survey of activity of  $\bar{C}$  as plant hormone see (4) (5)]

[For prepn. of ethylene glycol bis-(2,4,5-trichlorophenoxyacetate), m.p. 140°, and its use as plasticizer see (3).]

3:4335 (1) Pokorny, J. Am. Chem. Soc. 63, 1768 (1941) (2) Hamner, Tukey, Science 100, 154-155 (1944). (3) Grether, Shawver, DuVall (to Dow Chem. Co.), U.S. 2,121,226, June 21, 1938; C.A. 32, 6257 (1938). (4) Zimmerman, Ind. Eng. Chem. 35, 596-601 (1943). (5) Hitchcock, Zimmerman, Contrib. Boyce Thompson Inst. 14, 21-38 (1945); C.A. 39, 5289 (1945); Proc. Am. Soc. Hort. Sci. 45, 187-189 (1944); C.A. 39, 4918 (1945).

3:4340 2,5-DICHLOROBENZOIC ACID Cl 
$$C_7H_4O_2Cl_2$$
 Beil. IX - 342 COOH  $IX_1$ -(141)

Ndls. from aq. or dil. alc. — Somewhat volatile with steam. — Sol. in 1193 pts. aq. at 11° (12); in 1177 pts. at 14° (11).

[For prepn. of  $\bar{C}$  from 2,5-dichlorotoluene (3:6245) by htg. with dil. HNO<sub>3</sub> in s.t. at 140° (60% yield (4)) (5) (13) (2) (8) (7) or htg. with KMnO<sub>4</sub> (14) see indicated refs.; for prepn. of  $\bar{C}$  from 2,5-dichlorobenzaldehyde (3:1145) via Cannizzaro reactin. (84% yield (1)) see (1) (4); for prepn. (90-95% yield (9)) from 5-chloro-2-aminobenzoic acid via diazo reactin + CuCl see (9) (11); from 2,5-dichloroaniline via 2,5-dichlorobenzointrile (m.p. 130°) and its hydrolysis with fumg. HCl at 180° see (15); for prepn. of  $\bar{C}$  from benzoic acid + KClO<sub>3</sub> + HCl see (12) (21); for still other misc. methods see Beil. 1X-342, IX<sub>1</sub>-(141).

For f p./compn. data on mixtures of  $\bar{C}$  with *m*-chlorobenzoic acid, m.p. 154.4° (3:4392), and with 2,3-dichlorobenzoic acid, m.p. 154.4° (3:4650), see (2).

 $\ddot{C}$  on htg with 3 pts. conc.  $H_2SO_4+2$  pts. aq. loses  $CO_2$  at 220° yielding p-dichlorobenzene (3:0980) (5).

The direct nitration of  $\bar{C}$  is unrecorded. [However, 2,5-dichloro-3-nitrobenzoic acid, ndls. from AcOH, m.p. 220°, and 2,5-dichloro-6-nitrobenzoic acid [Beil. 1X-404], m.p. 143\_144°, have both been prepd. by oxidn. (16) of the corresp. aldehydes.]

 $\tilde{C}$  with PCl<sub>5</sub> (17) or with SOCl<sub>2</sub> (18) yields 2,5-dichlorobenzoyl chloride, b p. 137° at 15 mm. (17), 95.3-95.5° at 1 mm. (18). [For formn. in chlorination of benzoyl chloride see (2).]

- Methyl 2,5-dichlorobenzoate: unrecorded.
- Ethyl 2,5-dichlorobenzoate: b.p. 271° cor. (12). [For study of hydrolysis see (20).]
- 2.5-Dichlorobenzamide: woolly ndls. from aq., m.p. 155° (12).
- D 2,5-Dichlorobenzanilide: from 2,5-dichlorobenzoyl chloride (above) + aniline (11), pr from C<sub>6</sub>H<sub>6</sub>, m p. 240° (11).
- **D** 2,5-Dichlorobenz-3-nitroanilide: from 2,5-dichlorobenzoyl chloride (above) + m-nitroaniline (19), ndls. from aq. MeOH, m.p. 151-152° u.c. (19).

3:4340 (1) Lock, Ber. 66, 1531 (1933). (2) Hope, Riley, J. Chem. Soc. 123, 2470-2480 (1923). (3) Bornwater, Holleman, Rec. trav. chim. 31, 227-230 (1912). (4) de Crauw, Rec. trav. chim. 50, 773 (1931). (5) Lellmann, Klotz, Ann. 231, 319 (1885). (6) Gassmann, Hartmann, J. Am. Chem. Soc. 63, 2394 (1941). (7) Cohen, Dakin, J. Chem. Soc. 79, 1130 (1901). (8) Turner, Wynne, J. Chem. Soc. 1936, 712. (9) Eller, Klemm, Ber. 55, 222 (1922). (10) Twiss, Farinholt, J. Am. Chem. Soc. 58, 1564 (1936).

(11) Hühner, Ann. 222, 201-203 (1883). (12) Beilstein, Ann. 179, 290-293 (1875). (13) Feldmann, Kopeliowitsch, Arch. Pharm. 273, 491 (1935). (14) Ullmann, Wagner, Ann. 371, 388 (1910); 355, 364 (1907). (15) Noelting, Kopp. Ber. 38, 3509 (1905). (16) Hodgson, Beard, J. Chem. Soc. 1927, 2381-2382. (17) Cohen, Briggs, J. Chem. Soc. 83, 1214 (1903). (18) Norris, Ware, J. Am. Chem. Soc. 61, 1418-1420 (1939). (19) Simpson, Stephenson, J. Chem. Soc. 1942, 356. (20) Blakey, McCombie, Scarborough, J. Chem. Soc. 1926, 2863-2868.

(21) Biswas, Das-Gupta, J. Indian. Chem. Soc. 19, 497-498 (1942); CA. 37, 5709 (1943).

# 3:4355 2-CHLORO-4-METHYLBENZOIC ACID



Colorless ndls. from alc.; spar. sol. cold, more sol. hot, aq.; cas. sol. alc., ether, CHCl<sub>3</sub>, hot C<sub>6</sub>H<sub>6</sub>.

[For prepn. of  $\bar{C}$  from 3-chloro-4-isopropyl-1-methylbenzene (3-chloro-p-cymene) (3:8770) by oxidn. with 15 pts. boilg. HNO<sub>3</sub> (D=1.24-1.29) (other products are also formed) see (2); from 3-chloro-4-methylbenzomtrile, m.p. 61-62° (1), by hydrol. with boilg. aq. KOH (100% yield) see (1).]

Salts. NH<sub>4</sub> $\bar{A}$ , K $\bar{A}$ , Na $\bar{A}$  H<sub>2</sub>O, all very eas. sol. both in aq. and in alc. (1); Ca $\bar{A}_2$ .2H<sub>2</sub>O, Ba $\bar{A}_2$ .5H<sub>2</sub>O, eas. sol. hot aq. (1); Ag $\bar{A}$ , spar. sol. cold aq. but eas. sol. hot aq. (1).

[ $\tilde{C}$  on mononitration by soln. in fumg. HNO<sub>3</sub> (D=15) at ord. temp. followed by stdg. several hrs. ppts. 2-chloro-5-nitro-4-methylbenzoic acid [Beil. IX-503], cryst. from hot aq or alc., m.p. 180° u.c. (1), 180–181.5° u.c. (3), 180–181° (4) (note that the isomeric 2-chloro-3-nitro-4-methylbenzoic acid [Beil. IX-503], m.p. 192° u.c. (3), may be formed from  $\tilde{C}$  under certain conditions (3)).]

 $|\bar{C}|$  on dinitration with mixt. of 1 pt. fumg. HNO<sub>3</sub> (D=1.52) + 4 pts. conc. H<sub>2</sub>SO<sub>4</sub> gives (3) either in cold or on htg. exclusively 2-chloro-3,5-dinitro-4-methylbenzoic acid [Beil. IX-506], ndls. from alc., m.p. 233° u.c. (3) ]

- Ethyl 2-chloro-4-methylbenzoate: oil, b.p. not reported;  $D_4^{21.4} = 1.1591$  (5),  $n_{He}^{21.4} = 1.52443$  (5)
- —— 2-Chloro-4-methylbenzamide: ndls. from alc., m.p. 182° (1). [From partial alk. hydrolysis of 2-chloro-4-methylbenzonitiile (see above) (1)]

3:4355 (1) Claus, Davidsen, J. prakt Chem (2) 39, 491–496 (1889). (2) Fileti, Crosa, Gazz. chim ital. 16, 288-290 (1886). (3) Claus, Davidsen, Ann. 265, 345-346, 348-349 (1891). (4) Fileti, Crosa, Gazz. chim. ital. 18, 312 (1888). (5) von Auwers, Harres, Z. physik. Chem. A-143, 18 (1929).

Pr. (from hot aq.). - Spar. sol cold aq.

[For prepn from p-chlorophenol (3:0475) by htg. with chloroacetic ac. (3:1370) and aq. alk see (1) (4) (5) (6).]

C htd. with conc. HCl in s.t. at 150° yields p-chlorophenol (3:0475) (3).

 $\bar{C}$  refluxed with  $1\frac{1}{2}$  pts. thionyl chloride for  $1\frac{1}{2}$  hrs. gives (90% yield) p-chlorophenoxyacetyl chloride, b.p.  $142^{\circ}$  at 17 mm., m.p.  $18.8^{\circ}$  {1).

The methyl ester (b.p. 177-180°) and the ethyl ester, ndls. (from alc.), m.p. 49°, have been prepared from the acid chloride (1)

p-Chlorophenoxyacetamide: from the acid chloride by treatment with excess (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>; ndls. from alc., m.p. 133° (1).

p-Chlorophenoxyacetanilide: from the acid chloride by action of aniline (2 moles) in  $C_6H_6$ ; ndls. (from alc.), m.p. 125° (1).

3:4375 (1) Minton, Stephen, J. Chem. Soc. 121, 1599-1601 (1922). (2) Michael, Am. Chem. J. 9, 216 (1887). (3) Peratoner, Gazz. chrm. ital. 28, I 239 (1898). (4) Behaghel, J. prakt. Chem. 114, 297-298 (1926). (5) Koelsch, J. Am. Chem. Soc. 53, 304-305 (1931). (6) Hayes, Branch, J. Am. Chem. Soc. 65, 1555-1564 (1943).

# 3:4390 4-CHLOROPHTHALIC ACID



| M.P. 157°    | (1) |  |
|--------------|-----|--|
| 156°         | (2) |  |
| 151°         | (3) |  |
| 150-150.5°   | (4) |  |
| 150° in s.t. | (5) |  |
| 148° u.c.    | (6) |  |

[See also 4-chlorophthalic anhydride (3:2725).]

Ndls. from alc.; cryst from CoH6 or CCl4. — Eas. sol. aq., alc., ether, or AcOH.

[For prepn. of  $\bar{C}$  from 4-chlorophthalic anhydride (3:2725) by warming with aq. or from dimethyl 4-chlorophthalate (3) or diethyl 4-chlorophthalate (5) by hydrol with alk. see indic. refs.; from neutral sodium phthalate in aq. alk. on treatment with Cl<sub>2</sub> see (3) (7) (8) (9) (10); from 4-chloro-2-methylbenzoic acid (3:4700) (11) (12), from 5-chloro-2-methylbenzoic acid (3:4670) (11), from 4-chloro-2-methylacetophenone [Bcil. VII-306] (2), or from 7-chloro-1,2,3,4-tetrahydronaphthalene (1) by oxidn. with alk. KMnO<sub>4</sub> see indic. refs.; from 6-chloroindanone-1 [Beil. VII-361] on evapn. with hot 25% HNO<sub>3</sub> see (4); from 1,6-dichloronaphthalene (3:0810) (13), 2,6-dichloronaphthalene (3:4040) (14) (6), 2,7-dichloronaphthalene (3:3445) (14), 6-chloronaphthol-2 (3:3500) (6), or 4-chloro-2-methylbenzoic acid (above) (12) on oxidn. with dil. HNO<sub>3</sub> in s.t. as directed see indic. refs.; from the trichloride of 4-sulfophthalic acid [Beil. XI-407] with PCl<sub>5</sub> in s.t. at 220° followed by KOH hydrolysis of the 4-chlorophthalyl (di)chloride see (15); from 4-sulfophthalic anhydride (16) by htg. with HCl + NaClO<sub>3</sub> see (16)

C on htg. above m.p. gives 4-chlorophthalic anhydride (3:2725).

[ $\bar{C}$  on fusion with KOH (11) or with NaOH at 165-175° (10) gives (100% yield (10)) 4-hydroxyphthalic acid [Beil. X-499,  $X_1$ -(255)], m p. 204-205°, with conv. to corresp. anhydride, m p. 171° (note that this same prod. is also obtd. from the isomeric 3-chlorophthalic acid (3:4820)).]

[Č htd. under press. at 350° with aq. + cat. loses CO<sub>2</sub> presumably yielding (17) m-chlorobenzoic acid (3:4392) and/or p-chlorobenzoic acid (3:4940).]

 $[\bar{C} \text{ with NH}_3 \text{ gas} + \text{cat. as directed (18) yields 4-chlorophthalonitrile, m.p. 130-132° (19).}]$ 

[For use of C as softener for cellulose derivatives see (20); for reaction of C with naphthalene + AlCl<sub>3</sub> yielding intermediates for vat dyes see (21).]

 $\bar{C}$  on htg. with resorcinol + few drops conc.  $H_2SO_4$ , then dissolving in alk., gives fluorescein reactn. (2)  $-\bar{C}$  is unstable toward KMnO<sub>4</sub> (2).

Salts. BaĀ, CaĀ, dif. sol. aq.; BaĀ.H<sub>2</sub>Ā, spar. sol. even in hot aq. (11) (for table of heavy metal salts see (22)).

Esters. Dimethyl 4-chlorophthalate; from Ag<sub>2</sub>Ā with MeI (15), from 4-chlorophthalyl (di)chloride (above) with MeOH (15), or from C in MeOH with HCl gas (3); ndls. from

lgr., m.p. 38° (3), 37° (15), b.p. 186–187° at 32 mm. (3); diethyl 4-chlorophthalate; from  $\dot{C}$  in alc. with HCl gas (15) or from diethyl 4-aminophthalate via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. (70% yield (5)), b.p. 300–305° (15), 185–190° at 25 mm. (5), 173–174° at 16 mm. (1).

3:4390 (1) von Braun, Larbig, Kredel, Ber. 56, 2337-2338 (1923). (2) Mayer, Albert, Schön, Ber. 65, 1297 (1932). (3) Ayling, J. Chem. Soc. 1929, 253-256. (4) Miersch, Ber. 25, 2116 (1892). (5) Blicke, Smith, J. Am. Chem. Soc. 51, 1869 (1929). (6) Claus, Dehne, Ber. 15, 320-321 (1882). (7) Moore, Marrack, Proud, J. Chem. Soc. 119, 1788-1789 (1921). (8) Egerer, Monatsh. 34, 81-83 (1913). (9) Scottish Dyes, Ltd., Beckett, Bangham, Thomas, Brit. 348,632, June 11, 1931; Cent. 1931, II 1194. (10) Rushchinskii, Compt. rend. acad. sci. (U.R.S.S.) 1933, 118-121; Cent. 1935, I 1617.

(11) Krüger, Ber. 18, 1758-1759 (1885). (12) Claus, Stapelberg, Ann. 274, 289 (1893). (113) Cleve, Bull. soc. chim. (2) 29, 499 (1878). (14) Alén, Bull. soc. chim. (2) 36, 433-434 (1881). (15) Rée, Ann. 233, 237-238 (1886). (16) Waldmann, Schwenk, Ann. 487, 290-291 (1931). (17) Jaeger (to Selden Co.), U.S. 1,953,231, Apr. 3, 1934; Cent. 1934, II 1688. (18) Imperial Chem. Ind., Ltd., French 766,944, July 6, 1934; Cent. 1934, II 2749. (19) Soc. Chem. Ind. Basel, French 844,567, July 27, 1939; C.A. 34, 7299 (1940). (20) Dreyfus, French 749,792, July 29, 1933; Cent. 1934, I 3154.

(21) B.A.S.F., French 599,038, Dec. 31, 1925, Cent. 1926, I 2850. (22) Ephraim, Ber. 55, 3482 (1922).

| 3:4392 | m-CHLOROBE<br>ACID | NZOIC C     | Соон     | $\mathrm{C_7H_5O_2Cl}$ | Beil. IX - 337<br>IX <sub>1</sub> -(139) |
|--------|--------------------|-------------|----------|------------------------|------------------------------------------|
| M.P.   | 159°               | (105)       | 154.5°   | (11) (12)              |                                          |
|        | 158°               | (1) (2) (3) | 154.4°   | (13)                   |                                          |
|        | 157.5°             | (3) (4)     | 154.25°  | (14)                   |                                          |
|        | 157°               | (5)         | 154-155° | (15)                   |                                          |
|        | 156.2°             | (6)         | 154°     | (16) (17) (18) (60)    |                                          |
|        | 155-156° cor.      | (7)         | 153-154° | (24)                   |                                          |
|        | 156°               | (26)        | 153.5°   | (19)                   |                                          |
|        | 155°               | (8)         | 153°     | (20) (21) (26) (28)    | (35)                                     |
|        | 154.8-155.0° cor   | . (62)      |          | (70) (84)              |                                          |
|        | 154.9°             | (8)         | 152°     | (22) (47)              |                                          |
|        | 154.8-154.9°       | (9)         |          |                        |                                          |
|        | 154.8°             | (10)        |          |                        |                                          |

Pr. from hot aq., 30% AcOH or  $C_6H_6$ . —  $\tilde{C}$  is spar. sol. cold aq., e.g., 1 pt.  $\tilde{C}$  is sol. at 0° in 2840 pts. aq. (23); 100 ml. satd. aq. soln. at 25° conts. 0.0385 g.  $\tilde{C}$  (60). —  $\tilde{C}$  is eas. sol. hot aq., alc., ether. — At 14–16° C 100 ml. of satd. soln. of  $\tilde{C}$  in ether conts. 14 g.  $\tilde{C}$ ; in  $C_6H_6$ , 0.66 g.  $\tilde{C}$ ; in  $CS_2$ , 0.62 g.  $\tilde{C}$ ; in  $CCl_4$ , 0.08 g.  $\tilde{C}$  (8). — For study of soly. of  $\tilde{C}$  in m-chlorotoluene (3:8245), or in m-chlorotoluene (3:8275) see (10); in acetone or  $C_6H_6$  see (6); for soly of  $\tilde{C}$  in aq. solns. of various salts including Na $\tilde{A}$  see (60). — For distribution coefficients of  $\tilde{C}$  at 25° between aq. + toluene or between aq. and CHCl<sub>3</sub> see (102).

 $\tilde{C}$  can be sublimed under reduced press. (24) (14). —  $\tilde{C}$  is but very slightly volatile with steam (for details see (12)). — For study of adsorption of  $\tilde{C}$  by charcoal from acetone or  $C_{aHa}$  soln, see (6).

Binary systems contg.  $\bar{C}$ : [For f.p./compn. data on system  $\bar{C}$  + H<sub>2</sub>O see (25). — For f.p./compn. data and diagram of system  $\bar{C}$  + benzoic acid (1.0715) (eutectic, m.p. 96.0° (20), 95.4° (27) (8), contg. 36 wt. %  $\bar{C}$  (27) (20) (8) (28)) see indic refs. — For f.p./compn. data on systems  $\bar{C}$  + m-toluic acid (1:0705) (26),  $\bar{C}$  + m-hydroxybenzoic acid (1:0825) (26), see indic refs.]

[For f.p./compn. data on system  $\bar{C}+o$ -chlorobenzoic acid (3:4150) (eutectic, m.p. 110.7°, contg. 47–48 mole %  $\bar{C}$  (20) (27) (8) (19)) see indic. refs.; on system  $\bar{C}+p$ -chlorobenzoic acid (3:3940) (eutectic, m.p. 140.9°, contg. 80 mole %  $\bar{C}$  (8) (19) cf. (104)) see indic. refs.; on system  $\bar{C}+2$ ,5-dichlorobenzoic acid (3:4340) (eutectic, m.p. 119.7°, contg. 51–58 mole %  $\bar{C}$ ) see (13).]

[For f.p./compn. data on systems  $\bar{C} + o$ -bromobenzoic acid (28),  $\bar{C} + m$ -bromobenzoic acid (28),  $\bar{C} + p$ -bromobenzoic acid (28), m-iodobenzoic acid (29), o-nitrobenzoic acid (30), m-nitrobenzoic acid (30) see indic. refs.]

Ternary systems contg.  $\bar{C}$ : [For influence of addn. of benzoic acid (20) or of p-chlorobenzoic acid (3:4940) (27) to eutectic of  $\bar{C}$  with o-chlorobenzoic acid (3:4150) see indic. refs. — For influence of addn. of o-chlorobenzoic acid (3:4150) to eutectic of  $\bar{C}$  with benzoic acid (1:0715) see (27); for data on system  $\bar{C} + o$ -chlorobenzoic acid (3:4150) + p-chlorobenzoic acid (3:4940) see (19).]

Miscellaneous. [For study of fate of  $\bar{C}$  in animal organism see (31) cf. (102) (note that although from man  $\bar{C}$  is excreted (34) as N-(m-chlorobenzoyl)glycine (m-chlorobippuric acid) [Beil. IX-339], m.p. 143-144° (31), yet from dog and rabbit no evidence for this conjugation product has been found (31). — For study of use of  $\bar{C}$  as a preservative see (32). — For use of  $\bar{C}$  as vulcanization regulator see (33)

**Preparation.** [For prepn. of  $\bar{C}$  from benzoic acid (1:0715) by chlorination with Cl<sub>2</sub> (38) in pres. of FeCl<sub>3</sub> (70% yield (8)), with KClO<sub>3</sub> + conc. HCl (35) (36) (37) (38), with aqua regia at 100° (yield 32% (39)) (7), with SbCl<sub>5</sub> (35) (40) (84), with MnO<sub>2</sub> + conc. HCl in s.t. at 150° (41), with NaOCl soln. (20) (42), or with Ca(OCl)<sub>2</sub> soln (42) (35) (38) see indic. refs. (note that in all these cases numerous other chlorination products are also formed); from cinnamic acid (1:0735) by chlorination and oxidn with Ca(OCl)<sub>2</sub> soln. see (35) (38).]

[For prepn. of  $\bar{C}$  by oxidn. of *m*-chlorotoluene (3:8275) with  $K_2Cr_2O_7 + H_2SO_4$  (43), with 5% aq. KMnO<sub>4</sub> (75% yield (4)) (8), with dil. HNO<sub>3</sub> in s.t. at 130-140° for 8 hrs. (47), or in aq. alk. at 260° under press. with air (44) see indic. refs.; from 3-chlorobiphenyl (3:8940) or from 3,3'-dichlorobiphenyl (3:0180) by oxidn. with  $CrO_3/AcOH$  in pres of  $V_2O_5$  see (45); from *m*-chlorobenzaldehyde (3:6475) by oxidn. with alk KMnO<sub>4</sub> see (3).]

[For prepn. of C from m-chlorobenzal (di)chloride (3:6710) by hydrolysis with aq. followed by KMnO<sub>4</sub> oxidn. (7% yield (2)) or from its mixt. with m-chlorobenzotrichloride (3:6845) by hydrolysis with 70% H<sub>2</sub>SO<sub>4</sub> or 80% AcOH or 5% NaOH at 90-100° in stream of air to effect immediate oxidn. (46) see indic. refs.]

[For prepn. of  $\bar{C}$  from *m*-chlorobenzonitrile [Beil. IX-339], m.p. 40.5° (48), by hydrolysis with conc. H<sub>2</sub>SO<sub>4</sub> (3), from *N*-(*m*-chlorobenzoyl)glycine (*m*-chlorohippuric acid) by hydrolysis with HCl (35) (36), see indic. refs.]

[For prepn. of C from m-aminobenzoic acid [Beil. XIV-383, XIV<sub>1</sub>-(558)] via dizactization and use of  $Cu_2Cl_2$  reactn. (74% yield (101)) (3) (4) (49); from m,m'-diazoaminobenzoic acid (diazoaminobenzene-3,3'-dicarboxylic acid) [Beil. XVI-727] with warm conc. HCl (50) see indic. refs.]

[For form. of  $\tilde{C}$  from *m*-chloro-iodobenzene [Beil. V-220, V<sub>2</sub>-(167)] by reaction with *n*-butyllithium in ether followed by carbonation with CO<sub>2</sub> (41.5% yield (51)); from *p*-chloronitrobenzene [Beil. V-243, V<sub>1</sub>-(129), V<sub>2</sub>-(182)] with alc. KCN in s.t. at 200° (52); from 3-chlorophthalic acid (3:4820) or 4-chlorophthalic acid (3:4390) by cat. partial decarboxylation (53); from 3-chlorophthalic acid by mercuration and treatment with HCl (99) see indic. refs.]

Chemical behavior. [ $\overline{C}$  (as Na $\overline{A}$ ) on reduction in boilg. aq. soln. with Na/Hg yields (36) (54) benzoic acid (1:0715) (for study of reduction of  $\overline{C}$  with H<sub>2</sub> + Ni in aq. alk. at ord. temp. see (55));  $\overline{C}$  on electrolytic reduction in alc./H<sub>2</sub>SO<sub>4</sub> yields (56) m-chlorobenzyl

alcohol [Beil. VI-444], oil, b.p. 234° (56); note that  $\bar{C}$  with Ni/Al alloy (Raney nickel) in aq. alk. soln. at 90° gives (100% yield (106)) benzoic acid (1:0715), m.p. 121°.]

 $\bar{C}$  behaves normally as a monobasic acid: e.g,  $\bar{C}$  on titration with standard dil. aq. alk. gives Neut. Eq. 156.5; ionization const. at 25° is 1.55  $\times$  10<sup>-4</sup> (57), 1.53-1.59  $\times$  10<sup>-4</sup> (58), 1.506  $\times$  10<sup>-4</sup> (59) cf. (1) (60). — [For study of acid strength of  $\bar{C}$  in MeOH, EtOH, and various other alcs. see (61) (62) (63) (16) (64) (65) (17).]

Salts of inorganic bases. [NH<sub>4</sub> $\bar{\Lambda}$ , m.p. 203–204° dec. (39), lfts. from acetone/pet. ether (39), powder from abs. alc. (66). — Hydroxylamine salt, ndls. from xylene, m.p. 144° (72), 145–146° dec. (39). — Na $\bar{\Lambda}$  (67), K $\bar{\Lambda}$  (67) both behave as liquid cryst. on fusion. — Ag $\bar{\Lambda}$ , insol. aq. (68) (note that this salt (1 mole) with I<sub>2</sub> (2 equiv.) in dry C<sub>6</sub>H<sub>6</sub> refluxed 15–18 hrs. yields (69) phenyl *m*-chlorobenzoate, m.p. 53°, + CO<sub>2</sub> + AgI). — Ca $\bar{\Lambda}$ 2.3H<sub>2</sub>O, sol. at 12° in 82 6 pts. aq. (68) (35). — Ba $\bar{\Lambda}$ 2.4H<sub>2</sub>O, eas. sol. aq. or alc. (for use in sepn. of  $\bar{C}$  from  $\sigma$ -chlorobenzoic acid (3.4150) and  $\rho$ -chlorobenzoic acid (3:4940) see (27)). — Cd $\bar{\Lambda}$ 2.2H<sub>2</sub>O (71).]

Salts of organic bases. E.g., C with equiv. amt. benzylamine in boilg. EtOAc followed by evapn. of solvent yields (73) benzylammonium m-chlorobenzoate, m.p. 146.8-147.4° u.e., 149 2-149.8° cor. (73), Neut. Eq. 263.6 (note that the m.p. of this salt is only very slightly lower than that of the corresp. salt from o-chlorobenzoic acid (3:4150)). — C similarly treated with a-phenylethylamine yields (73) a-phenylethylammonium m-chlorobenzoate, m.p. 142.0-142.6° u.e., 144 7-145.3° cor. (73), Neut. Eq. 277.6 (note that the m.p. of this salt, although better separated from those of the isomeric acids than the preceding case, is very close to that for the corresp. deriv. of cinnamic acid (1:0735)).

 $\bar{\rm C}$  (1 mole) in alc. mixed with codeine (1 mole), m.p. 155°, in alc. htd. several minutes, solvent evaporated, and resulting syrup recrystallized from aq. yields (74) codeine m-chlorobenzoate,  ${\rm C}_{18}{\rm H}_{21}{\rm O}_3{\rm N.\bar{C}}$ , m.p. 96° on "Maquenne block"; note that this m.p. although very close to that (99°) of corresp. salt from m-bromobenzoic acid is widely different from the corresp. salts of o-chlorobenzoic acid (3:4150) and p-chlorobenzoic acid (3:4940), which are 134° and 162° respectively. —  $\bar{\rm C}$  (1 mole) in alc. (or CHCl<sub>3</sub>) with strychnine (1 mole) in alc. bouled for a few minutes then cooled yields (75) strychnine m-chlorobenzoate,  ${\rm C}_{21}{\rm H}_{22}{\rm O}_2{\rm N}_2.\bar{\rm C}$ , m.p. 185° u.c. on "Maquenne block"; note that this m.p. is somewhat higher than that (170°) of the corresp. salt from o-chlorobenzoic acid (3:4150) and widely different from that (251°) of the corresp. salt of p-chlorobenzoic acid (3:4940).

 $\bar{C}$  with alcohols gives by conventional procedures the corresp esters; for details on methyl m-chlorobenzoate (3:6670) and on ethyl m-chlorobenzoate (3:6770) see these compds. — [For study of rate of esterification of  $\bar{C}$  with MeOII (76) or with cyclohexanol (77) see indic. refs.]

 $\bar{C}$  with  $P_2O_5$  in toluene boiled for 4 hrs. (78) or  $\bar{C}$  with oxalyl (di)chloride (3:5060) refluxed in  $C_6H_6$  (79) cf. (80) yields m-chlorobenzoic acid anhydride, pl. from  $C_6H_6$  or toluene, ndls. from lt. pet. or alc., m.p. 95.5° (78), 95° (79) (note that  $\bar{C}$  (2 moles) with oxalyl (di)bromide refluxed in  $C_6H_6$  similarly gives good yields (80) of the above anhydride but  $Na\bar{A}$  with oxalyl dibromide can also be used (80) to prepare m-chlorobenzoyl bromide, oil, b.p. 143-147° at 40 mm. (80)).

 $\overline{C}$  with PCl<sub>5</sub> (31) (68) (3) or with SOCl<sub>2</sub> (81) (82) or with SOCl<sub>2</sub> + pyridine (83) gives (76% yield (31)) m-chlorobenzoyl chloride (3:6590), b.p. 225°.

[ $\tilde{C}$  with  $HN_3$  in conc.  $H_2SO_4$  in trichloroethylene (3:5170) soln. at 40° gives (75% yield (107)) m-chloroaniline.]

C fused with KOH, subsequently acidified, yields (84) m-hydroxybenzoic acid (1:0825).

C on nitration with boilg. fumg. HNO<sub>3</sub> for 10 min. (70) or with abs. HNO<sub>3</sub> at 0° or -30° (3) (24) (85) gives a mixt. of two isomeric nitro-m-chlorobenzoic acids; this mixt. consists mainly (92-93% (86) cf. (24)) of 3-chloro-6-nitrobenzoic acid [Beil. IX-401],

cryst. from HNO<sub>3</sub> (D=1.1) (24), ether, C<sub>6</sub>H<sub>6</sub>, or aq., m.p. 139° (85), 137–138° (70), 136° (3), 135–136° (24), accompanied by a little (7–8% (86)) cf. (24) 3-chloro-2-nitrobenzoic acid [Beil. IX-400], ndls. or tbls. from hot aq., m.p. 235° (70) (85), 233–234° (3) (for details on sepn. of these two isomers see (3) (70) (24) (85)). — Note that the other two possible nitro-m-chlorobenzoic acids are known but are not found in the product from nitration of  $\bar{C}$ ; they are 3-chloro-4-nitrobenzoic acid [Beil. IX-404], m.p. 185–186°, and 3-chloro-5-nitrobenzoic acid [Beil. IX-403, IX<sub>1</sub>-(165)], m.p. 147°. — [Note also that no dinitro-3-chlorobenzoic acids have ever been reported.]

- Methyl m-chlorobenzoate: b.p. 231°, m.p. 21°. (See 3:6670.)
- Ethyl m-chlorobenzoate: b.p. 245°. (See 3:6770.)
- D p-Nitrobenzyl m-chlorobenzoate: m.p. 107 2° u.c. (87). [From C (as NaA) with p-nitrobenzyl bromide (m.p. 99°) in boilg. dil. alc. (87); note that m.p. of this ester is almost identical with that (106° (88)) of the corresp. ester of o-chlorobenzoic acid (3:4150).]
- D Phenacyl m-chlorobenzoate: m.p. 118° (89), 116.4° (21). [From C (as NaA) with phenacyl bromide (m.p. 50°) in boilg. alc. (98% yield (21)).]
- --- p-Chlorophenacyl m-chlorobenzoate: unreported.
- D p-Bromophenacyl m-chlorobenzoate: m.p. 117.2° (21), 116° (90). [From C (as NaA) with p-bromophenacyl bromide (m.p. 109°) in boilg. alc. (21).]
- --- p-Iodophenacyl m-chlorobenzoate: unreported.
- p-Phenylphenacyl m-chlorobenzoate: m.p. 154° u c. (91). [From C (as NaA) with p-phenylphenacyl bromide (m.p. 126°) in boilg. alc. (91); note that the m.p. of this deriv. is only slightly lower than that (160° u.c. (91)) of the corresp. ester of p-chlorobenzoic acid (3.4940); note also that, since this ester has almost the same m.p. as the original C, care must be taken to show that the supposed ester is insol. in aq. Na<sub>2</sub>CO<sub>3</sub> (dif. and sepn. from C); note finally that the m.p. of a mixt. of C with this ester is depressed to 130-132° (91).]
- ⑤ S-(p-Chlorobenzyl)thiuronium m-chlorobenzoate: cryst. from dioxane, m.p. 157° cor. (93). [From NaĀ or KĀ in aq. with 1 equiv. of S-(p-chlorobenzyl)thiuronium chloride, m.p. 197° (10% in alc.) (93); note that the m.p. of this prod. is closely adjacent to that (m.p. 159° cor. (93)) of the corresp. salt of o-chlorobenzoic acid (3:4150), and is also almost identical with that of the original C.]
- S-(p-Bromobenzyl)thiuronium m-chlorobenzoate: m.p. 150° cor. (94). [From NaA or KA in aq. with 1 equiv. of S-(p-bromobenzyl)thiuronium bromide, m.p. 213°, in alc. (94).]
- m-Chlorobenzamide: cryst. from hot aq. or alc., m.p. 135° (100), 134.5° cor. (3), 134° u.c. (95), 132-133° (70). [From o-chlorobenzoyl chloride (3:6590) with conc. aq. NH<sub>4</sub>OH (68) (70) or from Č by refluxing with AcOH + (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> (46-50% yield (100)); note that this amide gives on fusion with HgO a mercuric deriv., m.p. 245° u.c. (95).]
- ① m-Chlorobenzhydrazide: ndls. from aq. or alc., m.p. 158° (96), 157-158° (97). [From ethyl m-chlorobenzoate (3:6770) with hydrazine hydrate in abs. alc. on 8-hr. reflux. (yield: 97% (96), 87% (97)).] [For use of m-chlorobenzhydrazide as general reagt. for identification of aldehydes and ketones see (97).]
- -----N'-(m-Chlorobenzoyl)-N-phenylhydrazide: unreported.

- —— m-Chlorobenzanilide: cryst. from alc., m.p. 122-125° (98). [Prepn. reported but only by indirect means (98).] [Note that the isomeric benz-m-chloroanilide [Beil. XII-605] has m.p. 118°.]
- ---- m-Chlorobenzo-p-toluidide: unreported.
- m-Chlorobenzo- $\alpha$ -naphthalide: unreported.
- ---- m-Chlorobenzo-β-naphthalide: unreported.
- 3:4392 (1) Dippy, Williams, Lewis, J. Chem. Soc. 1935, 343-346. (2) Asinger, Lock, Monatsh. 62, 335 (1933). (3) Montagne, Rec. trav. chim. 19, 51-59 (1900). (4) Koopal, Rec. trav. chim. 34, 144 (1915). (5) Kailan, Antropp, Monatsh. 52, 297, 307-310 (1929). (6) Berger, Rec. trav. chim. 50, 379, 389, 395 (1931). (7) Gluud, Ger. 266,577, Oct. 27, 1913; Cent. 1913, II 1783. (8) Bornwater, Holleman, Rec. trav. chim. 31, 223-225, 230-239, 242-248 (1912). (9) Brooks, Hobbs, J. Am. Chem. Soc. 62, 2851 (1940). (10) Chapas, Compt. rend. 191, 257-259 (1930).
- (11) Sidgwick, Ewbank, J. Chem. Soc. 119, 981, 984, 988 (1921). (12) Sidgwick, J. Chem. Soc. 117, 403-406 (1920). (13) Hope, Riley, J. Chem. Soc. 123, 2479 (1923). (14) Andrews, Lynn, Johnson, J. Am. Chem. Soc. 48, 1282 (1926). (15) Kellas, Z. physik. Chem. 24, 222, 230, 241, 245-246, 249, 251 (1897). (16) Wooten, Hammett, J. Am. Chem. Soc. 57, 2291 (1933). (17) Kuhn, Wassermann, Helv. Chim. Acta 11, 34 (1928). (18) Gruebe, Ann. 138, 200-202 (1866). (19) Johnston, Jones, J. Phys. Chem. 32, 599-601 (1928). (20) Smith, J. Chem. Soc. 1934, 213-218.
- (21) Kelly, Howard, J. Am. Chem. Soc. 54, 4384 (1932).
  (22) Griess, Ann. 117, 13-16 (1861).
  (23) Kolbe, Lautemann, Ann. 115, 194 (1860).
  (24) Holleman, de Bruyn, Rec. trav chim. 19, 197-203 (1900).
  (25) Flaschner, Rankin, Monatsh. 31, 43 (1910).
  (26) Lettré, Barnbeck, Lege, Ber. 69, 1153-1154 (1936).
  (27) Hope, Riley, J. Chem. Soc. 121, 2518-2527 (1922).
  (28) Lettré, Barnbeck, Fuhst, Hardt, Ber. 70, 1411-1412, 1415-1416 (1937).
  (29) Lettré, Lehmann, Ber. 71, 416 (1938).
  (30) Lettré, Ber. 73, 386-390 (1940); C.A. 34, 5831 (1940).
- (31) Novello, Miriam, Sherwin, J. Baol. Chem. 67, 557-558 (1926). (32) Sabalitschka, Dietrich, Desinfektion 11, 67-71, 94-104 (1926), Cent. 1927, I 2670; C.A. 20, 3712 (1926). (33) Goodyear Tire and Rubber Co., French 761,220, March 14, 1934; Cent. 1934, II 854. (34) Graebe, Schultzen, Ann. 142, 346-347 (1867). (35) Bellstein, Schlun, Ann. 133, 243-252 (1865). (36) Otto, Ann. 122, 142, 149-150, 157-158 (1862). (37) Field, Ann. 65, 55 (1848). (38) Stenhouse, Ann. 55, 10-11 (1845). (39) Gluud, Kempf, J. Chem. Soc. 103, 1530-1533 (1913). (40) Lössner, J. prakt. Chem. (2) 13, 427-428 (1876).
- (41) Hübner, Weiss, Ber. 6, 175 (1873). (42) Lossen, Ger. 146,174, Nov. 6, 1903; Cent. 1903, II 1224. (43) Wroblevsky, Ann. 168, 200 (1873). (44) Schrader, Ges. Abhandl. Kenntnis Kohle 4, 310-341 (1920); Cent. 1921, I 537; C.A. 15, 2850-2851 (1921). (45) Bellavita, Gazz. chim. tal. 65, 639, 641 (1935). (46) Heller (to Chem. Fabrik von Heyden), Ger. 639,578, Dec. 8, 1936; Cent. 1937, I 2025; C.A. 31, 3943 (1937). (47) Wynne, J Chem. Soc. 61, 1048-1049 (1892). (48) Korczynski, Faudrich, Compt. rend. 183, 421-423 (1926). (49) Sandmeyer, Ber. 17, 1634-1635 (1884). (50) Griess, Ann. 117, 13-16 (1861).
- (51) Gilman, Langham, Moore, J. Am. Chem. Soc. 62, 2330 (1949). (52) von Richter, Ber. 4, 463 (1871); 8, 1419 (1875). (53) Jaeger (to Selden Co), U.S. 1,953,231 and 1,953,232, April 3, 1934; Cent. 1934, II 669, 1688. (54) Reichenbach, Beilstein, Ann. 132, 311, 321 (1864). (55) Keller, Ber. 54, 2257-2259 (1921). (56) Mettler, Ber. 38, 1749-1750 (1905). (57) Ostwald, Z. physik. Chem. 3, 255 (1889). (58) Smith, Jones, Am. Chem. J. 50, 28 (1913). (59) Saxton, Meier, J. Am. Chem. Soc. 56, 1918-1921 (1934). (60) Osol, Kilpatrick, J. Am. Chem. Soc. 55, 4431-4440 (1933).
- (61) Dippy, J. Chem. Soc. 1941, 550-552. (62) Elliott, Kilpatrick, J. Phys. Chem. 45, 454-465, 466-471, 472-485, 485-492 (1941). (63) Kilpatrick, Mears, J. Am. Chem. Soc. 62, 3047-3051, 3051-3054 (1940). (64) Goodhue, Hixon, J. Am. Chem. Soc. 56, 1329-1333 (1934); 57, 1688-1691 (1935). (65) Bright, Briscoe, J. Phys. Chem. 37, 787-796 (1933). (66) McMaster, Godlove, J. Am. Chem. Soc. 37, 2183-2184 (1915). (67) Vorländer, Huth, Ber. 43, 3129 (1910). (68) Limpricht, von Uslar, Ann. 102, 260-263 (1857). (69) Birckenbach, Meisenheimer, Ber. 69, 723-729 (1936). (70) Hubner, Ann. 222, 91-99 (1883).
- (71) Pfeiffer, Nakatsuka, J. prakt. Chem. (2) 136, 247 (1933). (72) Oesper, Ballard, J. Am. Chem. Soc. 47, 2426 (1925). (73) Buehler, Carson, Edds, J. Am. Chem. Soc. 57, 2181-2182 (1935). (74) Poe, Strong, J. Am. Chem. Soc. 57, 380 (1935). (75) Poe, Suchy, J. Am. Chem. Soc. 56, 1640-1641 (1934). (76) Hartman, Borders, J. Am. Chem. Soc. 59, 2107-2112 (1937). (88) Hartman, Storms, Gassmann, J. Am. Chem. Soc. 61, 2167-2169 (1939). (78) Rule, Patterson, J. Chem. Soc. 125, 2161 (1924). (79) Adams, Wirth, French, J. Am. Chem. Soc. 49, 427 (1918). (80) Adams, Ulich, J. Am. Chem. Soc. 42, 606-607, 609 (1920).

(81) Frankland, Carter, Adams, J. Chem. Soc. 101, 2476-2477 (1912). (82) Bergmann, Bondi, Ber. 64, 1477 (1931). (83) Norris, Bearse, J. Am. Chem. Soc. 62, 953 (1940). (84) Dembey, (85) Holleman, de Bruyn, Rec. trav. chrm. 20, 212-214 (1901). Ann. 148, 222-223 (1868) (86) Holleman, Rec. trav. chim. 29, 394-402 (1910). (87) Kelly, Segura, J. Am. Chem. Soc. 56, 2497 (1934). (88) Reid, J. Am. Chem. Soc. 39, 132 (1917). (89) Chen, Trans. Science Soc. China 7, 73-80 (1931). (90) Chen, Shih, Trans. Science Soc. China 7, 81-87 (1931).

(91) Kelly, Morisani, J. Am. Chem. Soc. 58, 1502-1503 (1936). (92) Donleavy, J. Am. Chem. (93) Dewey, Sperty, J. Am. Chem. Soc. 61, 3251-3252 (1939). Soc. 58, 1004-1005 (1936) (94) Dewey, Shasky, J. Am. Chem. Soc. 63, 3526-3527 (1941). (95) Williams, Rainey, Leopold, J. Am. Chem. Soc. 64, 1738-1739 (1942). (96) Curtius, Foerster, J. prakt Chem. (2) 64, 326-327 (1901). (97) Sah, Wu, Sci Repts. Natl. Tsing-Hua Univ. A-3, 443-449 (1936); Cent. 1936, II 2130. (98) Hantzsch, Ber. 24, 58 (1891). (99) Whitmore, Culhane, J. Am Chem. Soc. 51, 604 (1929). (100) Kao, Ma, Scr. Repts Natl Tsing-Hua Univ. A-1, 21-22 (1931).

(101) Bryd, Roczniki Chem. 7, 436-445 (1927), CA. 22, 2372 (1928). (102) Smith, White, J. Phys. Chem. 33, 1958, 1970 (1929). (103) Quick, Cooper, J. Biol. Chem. 96, 83-101 (1932). (104) Holleman, Vermeulen, de Mooy, Rec. trav chim. 33, 29 30 (1914). (105) Herz, Wittek, Monatsh. 74, 277 (1943). (106) Schwenk, Papa, Whitman, Ginsberg, J. Org. Chem. 9, 1-8 (1944).

(107) Briggs, Lyttleton, J. Chem. Soc. 1943, 422.

# 3:4395 2-CHLORO-3-HYDROXYBENZOIC ACID

COOH C7H5O3Cl Beil. X - 142  $\mathbf{X}_{1}$ —

M.P. 157.5-158.5° (1) 156.5-157.5° (1) 156-157° (2) (5)156° (3) 155.0-155.5° u.c. (10)

Colorless lfts. from aq. or  $C_6H_6$ . [Ioniz. const. at  $25^\circ = 1.40 \times 10^{-3}$  (5).]

For prepn. of C from 2-chloro-3-hydroxybenzaldehyde (3:4085) with 5-6 pts. 50% KOH at 60-70° (Cannizzaro reactn.) (96% yield) see (3); from ethyl 2-chloro-3-hydroxybenzoate (see below) by hydrolysis with 35% KOH see (1) (2) cf. (4); for formn. from m-hydroxybenzoic acid (1:0825) with Cl<sub>2</sub> in McOH (6) (44% yield (10)) or AcOH (1) (together with some of the isomeric 6-chloro-3-hydroxybenzoic acid (3:4720)) see indic. refs.; for prepn. of C from 2-amino-3-hydroxybenzoic acid (1) via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn see (1).]

Salts: AgA, cryst. ppt. (2).

C in aq. soln. gives with FeCl<sub>3</sub> a violet-red color.

[C with formalin (1:0145) + conc. HCl + HCl gas at room temp, gives (87% yield (10)) 7-chloro-6-hydroxyphthalide, m.p. 290° cor. (10) ]

- Methyl 2-chloro-3-hydroxybenzoate: pr. with 1 H<sub>2</sub>O from dil. alc., m.p. 70-71° (2); anhydrous form, m.p. 62-65° (2). [From  $\bar{C}$  in MeOH with  $H_2SO_4$  (2)] — [This ester with MeI + MeOH/KOH in s.t. at 130° for several hours gives methyl 2-chloro-3-methoxybenzoate, anhydrous ndls. from dil. alc., m.p. 41-42° (2).]
- Ethyl 2-chloro-3-hydroxybenzoate: white ndls. with 1 H<sub>2</sub>O from dil. alc., m.p. 58° (2); above m.p. loses aq. giving viscous oil (2). [From ethyl m-hydroxybenzoate (1:1471) with SO<sub>2</sub>Cl<sub>2</sub> (together with the isomeric ethyl 6-chloro-3-hydroxybenzoate (2) (4)).] — [This anhydrous ester with AcCl yields ethyl 2-chloro-3-acetoxybenzoate, ndls. from dil. alc., m.p. 48-49° (2).]
- 2-Chloro-3-methoxybenzoic acid: colorless ndls. from aq., m.p. 161.5° (7), 160° (8) (9). [Prepd. indirectly from 2-chloro-3-methoxybenzaldehyde by oxidn, with KMnO<sub>4</sub> (7) (8).]

—— 2-Chloro-3-acetoxybenzoic acid: cryst. from aq. or  $C_6H_6$ , m.p. 152.5-153° u.c. (10). [From  $\tilde{C} + Ac_2O + K_2CO_3$  (10).]

3:4395 (1) Beyer, Rec. trav. chim. 40, 626-628 (1921). (2) Mazzara, Gazz. chim. ital. 29, I 380-383 (1899). (3) Lock, Monatsh. 55, 310-311 (1930). (4) Mazzara, Bertozzi, Gazz. chim. ital. 30, II 87-88 (1900). (5) Coppadoro, Gazz. chim. ital. 32, I 546 (1902). (6) Plazek, Roczniki Chem. 10, 761-776 (1930); Cent. 1931, I 1428, C.A. 25, 1504 (1931). (7) Hodgson, Rosenberg, J. Chem. Soc. 1930, 17. (8) Hodgson, Beard, J. Chem. Soc. 1926, 150. (9) Gibson, J. Chem. Soc. 1926, 1428. (10) Buehler, Harris, Shacklett, Block, J. Am. Chem. Soc. 198, 577 (1946).

# 3:4400 3,5-DICHLORO-4-HYDROXYBENZ-ALDEHYDE

Colorless odorless ndls. from dil. alc. or from CHCl<sub>3</sub>; fairly eas. sol. alc., ether, AcOH; more dif. sol. C<sub>6</sub>H<sub>6</sub>, lgr., CHCl<sub>3</sub>.

[For prepn. of  $\tilde{C}$  from p-hydroxybenzaldehyde (1:0060) in 5 pts. AcOH at 100° (2) (4) or in CHCl<sub>3</sub> with cooling (1) with Cl<sub>2</sub> see indic. refs.; from corresp. methyl ether (3,5-dichloro-4-methoxybenzaldehyde) with boilg cone HI see (3)

 $\bar{C}$  in N KOH with  $H_2O_2$  yields (4) 2,6-dichlorohydroguinone (3:4600)

[The methyl ether of  $\bar{C}$  (see above) has been obtd indirectly (3) from p-methoxybenzaldehyde (p-anisaldehyde) (1:0240) by chlorination with large excess (9 moles) SO<sub>2</sub>Cl<sub>2</sub>; bright red cryst. from alc., m.p. 61.5° (3); on oxidin. with CrO<sub>3</sub> this prod. gives (80% yield (3)) 3,5-dichloro-p-methoxybenzoic acid [Beil. X-177], m.p. 202.0-202.5° (3) ]

- ③ 3,5-Dichloro-4-hydroxybenzaldoxime: colorless ndls. from dil. alc., m.p. 185° (2). 
   [From C̄ in moderately conc. NaOH (3 moles) with NH<sub>2</sub>OH.HCl (1½ moles), subsequently acidified with AcOH (2) ] [This oxime on boilg, with Ac<sub>2</sub>O for 2 hrs. yields (2) 3,5-dichloro-4-acetoxybenzonitrile, colorless cryst. from dil. alc., m.p. 93° (2).]
- ⊕ 3,5-Dichloro-4-hydroxybenzaldehyde semicarbazone: greenish yel. ndls. from AcOH, m.p. 236-237° cor. dec (1). [From C in hot AcOH (50 pts.) by addn. of conc. aq. soln. of semicarbazide hydrochloride, followed by ½ hr. htg. (1).]

**3:4400** (1) Biltz, Ber. **37**, 4033-4034 (1904). (2) von Auwers, Reis, Ber. **29**, 2356-2358 (1896). (3) Durrans, J. Chem. Soc. **123**, 1426 (1923). (4) Dakin, Am. Chem. J. **42**, 490-491 (1909).

# 3:4410 cis-1,2,3,4,5,6-HEXACHLORO-CYCLOHEXANE

(a-Benzenehexachloride)

[See also  $\beta$ -benzenehexachloride (3:4990).]

Nine stereoisomeric configurations of benzenehexachloride are possible (cf. (4)) and four are known;  $\bar{C}$  (contrary to earlier opinion (5)) is now thought (but not unequivocally proved) to have the crs configuration; the  $\beta$ -isomer has been shown to have the trans configuration; the configurations of the  $\gamma$ -isomer, m.p. 112-113° (2), and the  $\delta$ -isomer, m.p. 129-132° (2), are unknown.

 $\bar{C}$  cryst. from 80% AcOH (3) or from alc. —  $\bar{C}$  is volatile with steam (dif. and separation from  $\beta$ -isomer). —  $\bar{C}$  is insol. aq. but sol. in 22.8 pts. CHCl<sub>3</sub> at 15.25°; in 15.4 pts. C<sub>6</sub>H<sub>6</sub> at 18.25° (5). —  $\bar{C}$  forms with the  $\beta$ -isomer a eutectic (m.p. 155.5°) contg. 79.7%  $\bar{C}$  (2).

[For manuf. of ordinary benzenehexachloride (mixt. of stereoisomers) from  $C_6H_6$  (1:7400) +  $Cl_2$  in pres. of light (6) (7) (8), X-radiation (9), or conc.  $H_2SO_4$  (10) see indic. refs.; for study of prepn. of  $\bar{C}$  (together with other stereoisomers) from  $C_6H_6$  with  $Cl_2$  in pres. of 1% aq. NaOH see (3) (2) (28), in gas phase (11) (12), in pres. of ethylene in the dark (13), in pres. of NCl<sub>3</sub> in the dark (14) or in light (15), in pres. of light (16) (17) (18) (19) (20).] [For use of  $\bar{C}$  as insecticide see (27); note, however, that insecticidal props. are thought to be due to  $\gamma$ -isomer (29).]

C on htg above its m.p. loses HCl and yields (3) (21) 1,2,4-trichlorobenzene (3:6420).

C on htg. with aq. in s.t. at 200° (19), on boilg. with MeOH/KOH (2), EtOH/KOH (2) (3) (19) (20) (22), alc. KCN (19), or pyridine (2), or on htg. with quinoline at 105–110° (2) yields mainly 1,2,4-trichlorobenzene (3:6420) together with other prods.; e.g., C on boilg. with excess 10% alc. KOH for ½ hr. (2) or C boiled with 10 pts. pyridine for 1 hr. (2) gives (yield: 75–86% (2)) 1,2,4-trichlorobenzene (3:6420).

C reacts very vigorously with boilg. aniline (19), but the prods. have not been detd.

[ $\bar{C}$  stood in s.t. with 3 pts. liq. Cl<sub>2</sub> for 11 days yields (23)  $\alpha$ -nonachlorocyclohexane, cryst. from alc., m.p. 95-96° (23) (24).]

C in alc. boiled with Zn dust yields (25) benzene (1:7400).

Č is very inert to most other reagents: e.g., Č can be recrystallized unchanged from fumg. HNO<sub>3</sub> (3), is unattacked by fumg. H<sub>2</sub>SO<sub>4</sub> (19), is unattacked by C<sub>1</sub>O<sub>3</sub> (3), is only slightly affected by aq. KMnO<sub>4</sub> even on boilg. (3), and is unaffected by conc. aq. NH<sub>4</sub>OH (3), boilg. alc. AgNO<sub>3</sub> (3), or AgOAc (26).

3:4410 (1) van de Vloed, Bull. soc. chim. Belg. 48, 255-256 (1938). (2) van der Linden, Ber. 45, 231-247 (1912). (3) Matthews, J. Chem. Soc. 59, 165-172 (1891). (4) Williams, Fogelberg, J. Am. Chem. Soc. 53, 2103 (1931). (5) Friedel, Bull. soc. chim. (3) 5, 130-138 (1891). (6) Hardie (to Imperial Chem. Ind., Ltd.), U.S. 2,218,148, Oct. 15, 1940; C.A. 35, 1071 (1941). (7) Imperial Chem. Ind., Ltd., Grant, Brit. 504,569, April 26, 1939; Cent. 1939, II 1775; C.A. 33, 7822 (1939). (8) Stephenson, Curtis, Brit. 447,058, May 7, 1936; Cent. 1936, II 3360, C.A. 30, 6766 (1936). (9) Loiseau, French, 565,356, Jan. 25, 1924; Cent. 1925, II 1227. (10) Battegay, French 641,102, July 28, 1928; Cent. 1928, II 1718.

(11) Lane, Noyes, J. Am. Chem. Soc. 54, 161-169 (1932). (12) Smith, Noyes, Hart, J. Am. Chem. Soc. 55, 4444-4459 (1933). (13) Stewart, Hanson, J. Am. Chem. Soc. 53, 1121-1128 (1931). (14) Coleman, Noyes, J. Am. Chem. Soc. 43, 2216 (1921). (15) Hentschel, Ber. 36, 1436 (1897). (16) Faraday, Ann. chim. (2) 30, 274 (1825). (17) Mitscherlich, Ann. Physik 35, 370-374 (1835). (18) Leeds, Everhart, J. Am. Chem. Soc. 2, 206 (1880). (19) Meunier, Ann. chim. (6) 10, 223-269 (1887). (20) Lesimple, Ann. 137, 122-124 (1866).

(21) Tei, Komatsu, Mem. Coll. Sci. Kyoto Imp. Univ. 10-A, 325-330 (1927); Cent. 1928, I 2370; C.A. 22, 1086 (1928). (22) Jungfleisch, Ann. chim. (4) 15, 270 (1868). (23) van der Linden, Rec. trav. chim. 57, 218-221 (1933). (24) Willgerott, J. prakt. Chem. (2) 35, 416 (1887). (25) Zinin, Zeit. für Chemie 1871, 284. (26) Griffin, Nelson, J. Am. Chem. Soc. 37, 1554 (1915). (27) Bender (to Great Western Electrochem. Co.), U.S. 2,010,841, Aug. 13, 1935; Cent. 1936, I 1112. (28) Klingstedt, Wiese, Rüdback, Acta Acad. Aboensis Math. et Phys. 4, No. 2, 1-36 (1927). (29) Taylor, Nature 155, 393-394 (1945).

# 3:4420 4,8-DICHLORONAPHTHOL-2

M.P. 158-159° (1).

Colorless ndls. from alc. — sol. in NaOH.

[For prepn. from 4,8-dichloronaphthylamine-2 via diazo reaction see (1).]

[For use in prepn. of azo dyestuffs see (2).]

Č on suitable methylation yields methyl ether, viz., methyl 2,4-dichloro-β-naphthyl ether, colorless ndls., m.p. 93° (1).

3:4420 (1) Friedlander, Karamessinis, Schenk, Ber. 55, 48-49 (1922). (2) Herzberg, Wunderlich (to I.G.), Ger. 459,989, May 18, 1928; Cent. 1928, II 395.

# 3:4430 2-CHLORO-4-HYDROXYBENZOIC ACID



### M.P. 159° (1)

Colorless ndls. from aq.

[For prepn. of  $\tilde{C}$  from 2-chloro-4-methoxybenzoic acid (see below) by cleavage with conc. HI (D=1.7) see [1].]

[The corresp methyl ether, viz., 2-chloro-4-methoxybenzoic acid (2-chloro-p-anisic acid), mp 208° (2) (3), has been obtd. indirectly from 2-chloro-4-methoxybenzaldehyde [Beil VIII-81] (2) or from 2-chloro-4-methoxytoluene [Beil. VI-402] (3) by KMnO<sub>4</sub> oxidn. (2) (3) |

3:4430 (1) Hodgson, Jenkinson, J. Chem. Soc. 1927, 1742. (2) Tiemann, Ber. 24, 712 (1891). (3) Ullmann, Wagner, Ann. 355, 368 (1907).

# 3:4435 3-CHLORO-2-METHYLBENZOIC ACID

COOH CH<sub>3</sub> C<sub>8</sub>H<sub>7</sub>O<sub>2</sub>Cl Beil. IX - 467 IX<sub>1</sub>—

M.P. 159° (1)

156° (2) 154° (3)

Colorless ndls. from alc.; eas. sol alc.

[For prepn. of  $\bar{C}$  from 3-chloro-2-methylbenzonitrile, m.p. 19° (1), by refluxing with 20% aq. KOH for 5 hrs. (98% yield) see (1); from 3-chloro-1,2-dimethylbenzone (3:8645) on oxidn. with boilg. dil. HNO<sub>3</sub> (D=1.20) see (3); from 2-methylbenzoic acid (o-toluic acid) (1:0690) in CHCl<sub>3</sub> in pres of Fe with Cl<sub>2</sub> (4) or in AcOH with Cl<sub>2</sub> (2) see indic. refs.] Salts: Ca $\bar{A}_2$ .2H<sub>2</sub>O, spar. sol. hot aq. (3).

C on oxidn. with KMnO<sub>4</sub> gives (3) 3-chlorophthalic acid (3:4820)

3:4435 (1) Noelting, Ber. 37, 1025-1026 (1904). (2) Claus, Bayer, Ann. 274, 310-311 (1893). (3) Krüger, Ber. 18, 1758 (1885). (4) Claus, Stapelberg, Ann. 274, 311 (1893).

# 3:4444 3,5,6-TRICHLORO-2-HYDROXYHYDROQUINONE

#### M.P. 160° (1)

Ndls. from  $C_6H_6$ . —  $\tilde{C}$  cryst. from  $C_6H_6$  or AcOH in solvated form.  $\tilde{C}$  is eas. sol. alc., ether; spar. sol. pet. ether.

[For prepn. of  $\bar{C}$  from 3,5,6-trichloro-2-hydroxybenzoquinone-1,4 [Beil. VIII-238] by reduction with aq.  $SO_2$  see (1).]

 $\bar{C}$  dis. in aq. yielding colorless soln. which on htg. develops violet color;  $\bar{C}$  with aq. alk. gives deep green color changing to brown (1).

- ---- 3,5,6-Trichloro-2-hydroxyhydroquinone trimethyl ether: unreported.
- ---- 3,5,6-Trichloro-2-hydroxyhydroquinone triethyl ether: unreported.
- 3,5,6-Trichloro-2-hydroxyhydroquinone triacetate: ndls from  $\lg r./C_6H_6$ , m.p. 171° (1). [From  $\bar{C}$  with  $Ac_2O + NaOAc$  on htg. (1).]

3:4444 (1) Zincke, Schaum, Ber. 27, 557-558 (1894).

#### M.P. 160°? (1) B.P. 268-269° at 734 mm. (1)

White extraordinarily pliable (2) crystals, difficult to filter with suction (because of their high vapor pressure (3)) and best purified by fractional distn (3) or slow sublimation in vac (2). — Very sol. in alc., ether, or lgr. (1).

[For prepn. of  $\bar{\mathbf{C}}$  (100% yield (3)) from 1,1,1,2,2,3,3-heptachloropropane (3:0200) by conversion with MeOH/KOH by loss of HCl to 1,1,1,2,3,3-hexachloropropenc-2 (3:6370) and subsequent treatment with Cl<sub>2</sub> below 50° in sunlight see (3) (2) [For formn from 1,2,3-trichloropropane (3:5840) or from isobutyl chloride (3:7135) with excess ICl<sub>3</sub> at 200° see (1).]

Č on htg. at 300° (1) or on htg. with AlCl<sub>3</sub> (2) splits quantitatively (2) into CCl<sub>4</sub> (3:5100) + tetrachloroethylene (3:5460).

[For fluorination of  $\bar{C}$  see (3) (4); for use of  $\bar{C}$  + Zn for production of smoke see (5) (6).]

3:4450 (1) Krafft, Merz, Ber. 8, 1296-1302 (1875). (2) Prins, J. prakt. Chem. (2) 89, 416-417 (1914). (3) Henne, Ladd, J. Am. Chem. Soc. 60, 2494 (1938). (4) Henne (to Frigidaire Corp), Brit. 378,324, Aug. 11, 1932; French 730,370, Aug. 11, 1932, Cent. 1933, II 1583, C. A. 27, 3947 (1933). (5) Métivier, Chimie & industrie, Spec. No. 179 (March. 1932); C.A. 26, 3628 (1932). (6) Métivier, French. 649,853, Dec. 28, 1928, Cent. 1931, I 3424.

#### $C_6H_2O_2Cl_2$ 3:4470 2,5-DICHLOROBENZOQUINONE-1,4 Beil. VII - 632 (p-Dichlorobenzoquinone) VII<sub>1</sub>-(346) M.P. 161-162° (1) 160.4-161.4° (2) 161° u.c. (3) 161° (4) (17) (28) 159° (5) (10)158.5° (6) 158-161° (7)

[See also 2,5-dichlorohydroquinone (3:4690).]

Dark yellow cryst. from alc. or C<sub>6</sub>H<sub>6</sub>; insol. aq.; alm. insol. cold dil. alc., eas. sol. boilg. abs. alc.; fairly eas. sol. other or CHCl<sub>3</sub>. — Volatile with steam; sublimes in vacuum.

[For prepn. of C from 2,5-dichlorohydroquinone (3:4690) by oxidn. with K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> or

 $Na_2Cr_2O_7$  + dil.  $H_2SO_4$  (2) (4) (6) (8) (9) or with conc HNO<sub>3</sub> at ord. temp. (5) see indic. refs.; from 2,5-dichlorohydroquinone dimethyl ether with fumg. HNO<sub>3</sub> in the cold see (1); from 2-chlorobenzoquinone-1,4 (3:1100) via conversion with HCl to 2,5-dichlorohydroquinone (3:4690) and subsequent oxidn. of latter see (5) (17); from 2,5-dichloroaniline [Beil. XII-625, XII<sub>1</sub>-(311)] with  $CrO_3$  (5) or from 2,5-dichloro-p-phenylenediamine [Beil. XIII-118] with  $CrO_3$  (10) or  $K_2Cr_2O_7$  + dil.  $H_2SO_4$  (28) see indic. refs.; for formn. of  $\bar{C}$  from benzoquinone-1,4 (1:9025) in  $CCl_4$  with ICl on gentle warmg. see (3); from benzene with  $ClO_2$  see (11); from copper salt of quinic acid [Beil. X-535,  $X_1$ -(270)] by oxidn. with  $MnO_2$  + NaCl +  $H_2SO_4$  see (12)]

[For study of oxidn -reductin potential of system  $\bar{C}+2.5$ -dichlorohydroquinone (3:4690) see (6) (13) (14).] — [For use as vulcanization accelerator see (15); for use in prepn. of eurhodol dyes see (16); for study of bactericidal actn. see (18).]

 $[\bar{C} \text{ is sol. in conc. } H_2SO_4 \text{ with greenish-yellow color, in dimethylaniline with deep blue color (19); <math>\bar{C} \text{ is sol. in dil. } aq. \text{ alk. } \text{with brown color and decomposition (11) (12).}]$ 

[ $\bar{C}$  with KCN in 85% MeOH gives (20) a ruby-red soln. with red fluorescence;  $\bar{C}$  with diphenylketene in ether + pet. eth. gives a compound, m.p. 180-192° dec. (21).]

Č in aq reduces with SO<sub>2</sub> (12) to 2,5-dichlorohydroquinone (3:4690) q.v. (note that the intermediate quinhydrone, dark violet pr. or greenish-black ndls. with 2 H<sub>2</sub>O (12), crystal water lost over H<sub>2</sub>SO<sub>4</sub> or on warming giving yellow anhydrous form, m.p. 140−145° (22), is known); however, Č in dil aq. NaOH (under N<sub>2</sub>) treated with SO<sub>2</sub> is in part reduced to 2,5-dichlorohydroquinone (3:4690) and in part sulfonated to mono- and disulfonic acids of Č (23).

[ $\bar{C}$  in CHCl<sub>3</sub> at low temps, does not react with Cl<sub>2</sub>; at ord, temps, however, yields tetrachlorobenzoquinone-1,4 (chloranil) (3:4978) (24). —  $\bar{C}$  in AcOH at 70–80° with 2 moles Br<sub>2</sub> gives (alm quant. yield (4)) (25) (9) 2,5-dichloro-3,6-dibromobenzoquinone-1,4 [Beil. VII-642], golden-brown tbls. from C<sub>6</sub>H<sub>6</sub>, m p. 292° (4).]

[Č with conc. HCl gives on boilg. (5) 2,3,5-trichlorobenzoquinone-1,4 (3:4672), but some tetrachlorobenzoquinone (chloranil) (3:4978) is also formed.]

 $\bar{C}$  (1 pt.) in  $\Lambda c_2 O$  (5 pts.) + AcOH (5 pts.) loses color on boilg. with Zn dust (1) and yields (by reductive acylation) 2,5-dichlorohydroquinone diacetate, cryst. from alc, m.p. 141° (1).

Č (1 pt ) in hot AcOH (40 pts.) + conc. HCl (0 4-0.5 pt ) treated with aniline (0.4-0.5 pt.) yields mainly (26) 2,5-dichloro-3-anilinobenzoquinone-1,4 [Beil. XIV-137], blue lfts., m.p. 180° (26), and 2,5-dichlorohydroquinone (3:4690) accompanied by small amts. of 2,5-dichloro-3,6-dianilinobenzoquinone-1,4 (see below); Č htd. with excess aniline yields (26) 2,5-dichloro-3,6-dianilinobenzoquinone-1,4 [Beil. XIV-144], yel.-br. tbls. from C<sub>6</sub>H<sub>6</sub>, m.p. 290° (26), and 2,5-dichlorohydroquinone (3:4690)

 $|\bar{C}|$  in  $C_6H_6$  + alc. warmed with slightly more than 1 mole  $NH_2OH.HCl$  yields (8) (27) 2,5-dichlorobenzoquinone-1,4 monoxime (2,5-dichloro-4-nitrosophenol) [Beil. VII-633], pale yel. cryst from  $C_6H_6$ , m.p. 155–160° (8) (purified by conv. with  $Ac_2O$  + NaOAc to its acetate, yel. pr from  $C_6H_6$ , m.p. 149° (8), and subsequent hydrolysis with NaOH) —  $\bar{C}$  in alc. with excess  $NH_2OH.HCl$  yields (27) 2,5-dichlorobenzoquinone-1,4 dioxime, grayish yel. cryst. from  $C_6H_6$ , m.p. not stated (27).]

3:4470 (1) Kohn, Gurewitsch, Monatsh. 56, 135–136 (1930). (2) Hammick, Hampson, Jenkins, J. Chem. Soc. 1938, 1264. (3) Jackson, Bolton, J. Am. Chem. Soc. 36, 1484 (1914). (4) Ling, J. Chem. Soc. 61, 558–559, 563–566, 572–576 (1892). (5) Levy, Schultz, Ann. 210, 150–153 (1881). (6) Conant, Fieser, J. Am. Chem. Soc. 45, 2205–2206 (1923). (7) Pfeiffer, Ann. 412, 292–293 (1916). (8) Kehrmann, Grab, Ann. 303, 12–14 (1898). (9) Hantzsch, Schniter, Ber. 20, 2279–2282 (1887). (10) Mohlau, Ber. 19, 2010 (1886).

(11) Carius, Ann. 143, 316 (1867). (12) Stadeler, Ann. 69, 309-312 (1849). (13) Hunter, Kvalnes, J. Am. Chem. Soc. 54, 2874-2875, 2878 (1932). (14) Kvalnes, J. Am. Chem. Soc. 56,

667-670 (1934). (15) Fisher (to Naugatuck Chem. Co.), French 740,978, Feb. 3, 1933; Cent. 1933, I 3133. (16) Herzberg, Hoppe (to A.G.F.A.) Ger. 368,171, Feb. 3, 1923; Cent. 1923, II 1187. (17) Den Hollander, Rec. trav. chim. 39, 482 (1920). (18) Morgan, Cooper, J. Soc. Chem. Ind. 43-T, 352-354 (1924). (19) Pfeiffer, Böttler, Ber. 51, 1828-1829 (1918). (20) Richter, Ber. 44, 3472 (1911).

(21) Staudinger, Bereza, Ann. 380, 261-262 (1911). (22) Ling, Baker, J. Chem. Soc. 63, 1319-1321 (1893). (23) Dodgson, J. Chem. Soc. 1930, 2498-2502. (24) Oliveri-Tortorici, Gazz. chim. ital. 27, II 585-586 (1897). (25) Levy, Ber. 18, 2367-2368 (1885). (26) Niemeyer, Ann. 238, 329-334 (1885). (27) Kehrmann, Ber. 21, 3319 (1888). (28) Nason, J. Am. Chem. Soc. 40, 1605 (1918).

[See also 2-chloroanthraquinone (3:4922).]

Yellow ndls. from  $C_6H_6$ , toluene, or alc.; eas. sol.  $C_6H_6$ , toluene, AcOH, nitrobenzene, or AmOH on htg.; spar. sol. alc. or lgr.

[For f.p /compn. data and diagram of system  $\tilde{C}+2$ -chloroanthraquinone (3:4922) (eutectic, m.p. 143.9–144.2°, contg about 25%  $\tilde{C}$ ) see (14).]

[For use in coloring oils, fats, and waxes see (19);  $\tilde{C}$  is very widely used as intermed. in prepn. of many dyestuffs, but no general summary can be given here although selected examples occur in the following text.]

[For prepn. of  $\bar{C}$  from potassium salt of anthraquinonesulfonic acid-1 [Beil. XI-335, XI<sub>1</sub>-(81)] by htg. with strong HCl + NaClO<sub>3</sub> (yields: 97–98% (3), 95% (4)) at 100° (3) (4) (10) (6) (8) (for use of this method in detn. of mixt. of anthraquinone- $\alpha$ - and  $\beta$ -sulfonic acids or their salts by f.p./compn. curve of resultant mixt. of  $\bar{C}$  + 2-chloroanthraquinone (3:4922) see (4)) or by actn. of Cl<sub>2</sub> at 100° (20) see indic. refs.; from anthraquinonesulfonic acid-1 (9) or its Na salt (15) in dil. HCl on exposure to light see indic. refs.; from anthraquinonecarboxylic acid-1 with HCl + KClO<sub>3</sub> in s.t. at 200° for 12 hrs. see (22); from Na salt of anthracenesulfonic acid-1 [Beil. XI-194, XI<sub>1</sub>-(44)] with HCl + NaClO<sub>3</sub> at 100° see (21); from 1-chloroanthraquinonesulfonic acid-5 by electrolysis of alk. soln. see (23); from K salt of anthraquinonesulfonic acid-1 (see above) (24) or from anthraquinonesulfonyl chloride-1 (5) by htg. in s.t. with SOCl<sub>2</sub>, or from 1-anthraquinonylarsinic acid by 10 hrs. reflux with SOCl<sub>2</sub> (67), see indic. refs.]

[For prepn. of  $\bar{C}$  from 2-benzoyl-3- (or 6)-chlorobenzoic acid by ring closure with conc.  $H_2SO_4$  see (7) (25).]

[For prepn. of C from 1-aminoanthraquinone (see below) via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. see (26); from 1-nitroanthraquinone [Beil. VII-791, VII<sub>1</sub>-(415)] with Cl<sub>2</sub> in trichlorobenzene soln. at 160-165° see (27); from 1-hydroxyanthraquinone [Beil. VIII-338, VIII<sub>2</sub>-(650)] with PCl<sub>5</sub> in boilg. nitrobenzene see (28).]

[ $\bar{C}$  on htg. with conc. H<sub>2</sub>SO<sub>4</sub> at 200-205° for 9 hrs. rearr. (29) to 2-chloroanthraquinone (3:4922).]

[C on reductn. with Zn dust + conc. aq. NH<sub>4</sub>OH under reflux yields (30) 1-chloroanthracene [Beil. V<sub>1</sub>-(324)], colorless lfts. from AcOH, m.p. 81-82° (2), 79° (30). — C on reductn. with hydrazine hydrate in MeOH/KOH at 10 atm. and 135° for 1½ hrs. in pres. of Pd/CaCO<sub>3</sub> followed by access of air to the prod. gives (87% yield (31)) anthraquinone (1:9095). — C on reductn. with Al powder + conc. H<sub>2</sub>SO<sub>4</sub> (32) (33) (6) (34) yields 1-chloroanthrone-9, yel. ndls. from CHCl<sub>3</sub> + lt. pet., m.p. 118° (32), 114° (6); C on reductn. with Sn + HCl in AcOH contg. PtCl<sub>4</sub>, however, gives the isomeric 4-chloroanthrone-9, yel. ndls. from CHCl<sub>3</sub> + lt. pet., m.p. 118° (32) (note that although these two isomeric chloroanthrones have the same m.p. yet each depresses the m.p. of the other (32) and the earlier prod. of m.p. 106° (33) may have been a mixture). — For studies of oxidn.-reductn. potential of C see (12) (17).]

[C with MeOH/KOH at 80° yields (35) 1-methoxyanthraquinone [Beil. VIII-339, VIII<sub>1</sub>-(651)], m.p. 169.5° — C with 2-hydroxyanthraquinone + NaOAc + Cu powder in boilg. nitrobenzene gives (36) 1,2'-dianthraquinonyl ether [Beil. VIII-343], but m.p. is not reported. — C with K xanthate + Cu powder boiled for 24 hrs. in AmOH or C with alk. trithiocarbonate in boilg. nitrobenzene (40) gives (64% yield (37)) di-(1-anthraquinonyl) sulfide, red pr. from pyridine, m.p. 321.5° (37) (for disulfide see below). — C with thiosalicylic acid (2-mercaptobenzone acid) + solid KOH htd. in AmOH at 150° for 7 hrs. gives (96% yield (38)) S-(1-anthraquinonyl)thiosalicylic acid [Beil. X<sub>1</sub>-(55)], or.-yel. tbls. from alc., m.p. 261° cor. (38); this prod. on htg. with PCl<sub>5</sub> in nitrobenzene gives (98% yield (38)) 3,4-phthalylthioxanthone [Beil. XVII<sub>1</sub>-(290)], or.-red lfts., m.p. 346° cor. (38).]

[ $\bar{C}$  with NaOH + glycerol htd. at 190° is claimed (39) to yield anthraquinone (1:9095). —  $\bar{C}$  on boilg. with aq. alc. Na<sub>2</sub>S (41) or Na<sub>2</sub>S<sub>x</sub> (42) yields 1-mercaptoanthraquinone [Beil. VIII<sub>1</sub>-(652)], yel. ndls. from AeOH, m.p. 187° (41); this prod. on oxidn. by air (43) or with K<sub>3</sub>Fe(CN)<sub>6</sub> (44) or FeCl<sub>3</sub> (45) readily yields di-(1,1'-dianthraquinonyl) disulfide, m.p. 359° (45), also obtd. from  $\bar{C}$  with Na<sub>2</sub>S + S in boilg. alc. (46) (43) (42) or from  $\bar{C}$  + K thiobenzoate in boilg. AmOH (80% yield (48)). —  $\bar{C}$  with K<sub>2</sub>Se in dil. alc. at 80° gives (47) 1-selenomercaptoanthraquinone, or.-red lfts. from AeOH, m.p. 212°, and also di-(1-anthraquinonyl) diselenide.]

[C with conc. aq. NH<sub>4</sub>OH in pres of Cu salts under press. at elevated temp. gives (49) (50) (57) in alm. quant. yield 1-aminoanthraquinone [Beil. XIV-177, XIV<sub>1</sub>-(436)], red ndls., m.p. 242°. — Countless other analogous combinations of C with prim. and sec. amines cannot be included here; however, note that C with 1-aminoanthraquinone (above) + NaOAc + CuCl<sub>2</sub> htd. in nitrobenzene yields (52) cf. (61) di-(1-anthraquinonyl)amine [Beil. XIV-180, XIV<sub>1</sub>-(439)], the prototype of a large group of dyes and dye intermediates (for amplification of this topic see (53)). — C with hydrazine hydrate + pyridine refluxed for ½ hr. gives (76% yield (54)) 1-hydrazinoanthraquinone [Beil. XV<sub>1</sub>-(199)], dark br. lfts. from xylene, m p. 208.5° cor. (54). — For reactn. of C with NH<sub>2</sub>OH.HCl in s.t. at 180° see (1).]

[For condens. of  $\bar{C}$  with p-aminoazobenzene (54) or with morpholine (60) and use of prods. as dyes for cellulose acetate see indic refs.; for condens. of  $\bar{C}$  with phthalonitrile in pres. of AlCl<sub>3</sub> for prepn. of dyestuffs see (55).]

[C with Cu powder at 290-300° or in boilg. nitrobenzene for 3 hrs. gives (75% yield (56)) bis-1,1'-anthraquinonyl [Beil. VII-903, VII<sub>1</sub>-(494)], yel. or yel.-br. cryst. from nitrobenzene, m.p. 435° u.c. on Maquenne block (56); note, however, that in the pres. of NaOAc anthraquinone (1:9095) results (56). — C with 4 moles C<sub>6</sub>H<sub>6</sub>MgBr in boilg. ether for 4 hrs. gives (51% yield (58)) (57) 1-chloro-9,10-diphenylanthracene, yel. powder from AcOH, m.p.

185° (57), 180-182° (58); a mixt. of this prod. with corresp. prod. (m.p. 193°) from 2-chloroanthraquinone (3:4922) has m.p. 152-160° (58).]

[For formn. of addn. cpds. of  $\bar{C}$  with SbCl<sub>5</sub> in CHCl<sub>3</sub> see (16) (18); for formn. of 1-anthra-quinonylpyridinium chloride from  $\bar{C}$  + AlCl<sub>3</sub> in pyridine see (59).]

[C on mononitration by soln. in 10 wt. pts. cone. H<sub>2</sub>SO<sub>4</sub> and addn. of HNO<sub>3</sub>/H<sub>2</sub>SO<sub>4</sub> as directed (61) (62) gives (30% yield (61)) 1-chloro-4-nitroanthraquinone [Beil. VII-792, VII<sub>1</sub>-(415)], cryst. from AcOH, m.p. 260-261° (63), 259° (61); note that 1-chloro-2-nitroanthraquinone (prepared by indirect means) has m.p. 257-258° (63). — For study of kinetics of nitration of C see (64).]

 $|\bar{C}|$  on monosulfonation, e.g., with fumg.  $H_2SO_4$  (20%  $SO_3$ ) at 160° for 4 hrs. (65) (66), yields a mixt. of about equal parts of two monosulfonic acids eas. separable via their sodium salts; viz, 1-chloroanthraquinonesulfonic acid-6 (Na salt less sol. boilg. aq, corresp. sulfonyl chloride, pale yel. pr. from lgr., m.p. 207–208° dec.) and 1-chloroanthraquinonesulfonic acid-7 (Na salt more sol. boilg. aq, corresp. sulfonyl chloride, lemon-yel. pl. from  $C_6H_6$ , m.p. 200–201° dec.); the m.p. of mixts. of the two sulfonyl chlorides is depressed below 180° (65). —  $\bar{C}$  on sulfonation in the pres. of Hg salts but otherwise as above yields, however, a different result as the principal prod. is 1-chloroanthraquinonesulfonic acid-5 (corresp. sulfonyl chloride, yel. pl. from toluene, m.p. 243–244° dec. (65) (66)), accompanied by 1-chloroanthraquinonedisulfonic acid-4,5.

3:4480 (1) French, Achenbach, Ber. 43, 3255-3256 (1910). (2) Schilling, Ber. 46, 1066-1069 (1913) (3) Scott, Allen, Org. Syntheses, Coll. Vol. 2 (1st ed.), 128-130 (1943). 18, 15-16 (1938).
 4) Ullmann, Ochsner, Ann. 381, 2-6 (1911) (5) Ullmann, Kertes, Ber 52, 547 (1919). (6) Maki, J. Soc Chem. Ind. Japan, Suppl. binding, 38, 630-636 (1935); Cent. 1936, II 468. (7) Dougherty, Gleason, J. Am. Chem. Soc. 52, 1025 (1930). (8) Schwenk, Wildmann, Z angew. Chem. 45, 19 (1932). (9) Eckert, Ber. 66, 1691 (1927). (10) Meyer, Compt. rend. 184, 610 (1927).

Keimatsu, Hirano, Tanabe, J. Pharm. Soc. Japan 49, 531-541 (1929); Cent. 1929, 11
 1536-1537; C.A. 23, 4696-4697 (1929). (12) Conant, Fieser, J. Am. Chem. Soc. 46, 1873, 1875 (1924). (13) Maki, Nagai, J. Soc. Chem. Ind. Japan, Suppl. bind. 38-B, 487-493 (1935); Cent. 1936, I 4905. (14) Coppens, Rec. trav. chim 44, 911-916 (1925). (15) Eckert, Ber. 58, 318 (1925). (16) Brass, Tengler, Ber. 64, 1660 (1931). (17) Baker, Adkins, J. Am. Chem. Soc 62, 3306 (1940). (18) Brass, Eichler, Ber. 67, 783 (1934). (19) du Pont, Brit. 432,867, Sept. 5, 1935; Cent. 1935, II 3996. (20) Bayer and Co., Ger. 205,195, Dec. 28, 1908; Cent. 1909, I 414.

(21) B.A.S.F., Ger. 228,876, Nov. 25, 1910; Cent. 1911, I 102. (22) Day, J. Chem. Soc. 1939, 318. (23) British Dyestuffs Corp. & Hailwood, Brit. 273,043, July 21, 1927, French 626,669, Sept. 16, 1927; Cent. 1928, II 2286. (21) M L.B., Ger. 267,544, Nov. 20, 1913, Cent. 1914, I 89. (25) Imperial Chem. Ind. Ltd. and Loveluck, Thomson & Thomas, Brit. 356,728, Oct. 8, 1931; French 718,333, Jan. 23, 1932. (26) Bayer and Co., Ger. 131,538, May 23, 1902; Cent. 1902, I 1342. (27) B.A.S.F., Ger. 252,578, Oct. 23, 1912; Cent. 1912, II 1708. (28) A.G.F.A., Ger. 290,879, March 21, 1916; Cent. 1916, I 686. (29) Atack, Clough, Brit. 169,732, Nov. 3, 1921; Cent. 1922, IV 377. (30) Fischer, Ziegler, J. prakt. Chem. (2) 86, 293 294 (1912).

Busch, Weber, Zink, J. prakt. Chem. (2) 155, 167 (1940).
 Barnett, Matthews, J. Chem. Soc. 123, 2552-2553 (1923).
 Bayer and Co., Ger. 229,316, Doc. 13, 1910; Cent. 1911, I 180.
 Chem. Soc. 1928, 2805.
 Buyer and Co., Ger. 229,316, Doc. 13, 1910; Cent. 1911, I 180.
 M.L.B., Ger. 216,268, Nov. 11, 1909, Cent. 1909, I 2104.
 Perkin, Sewell, J. Chem. Soc. 123, 3039-3040 (1923).
 Ullmann, Knecht, Ber. 44, 3126-3127 (1911); Ger. 238,983, Oct. 7, 1911; Cent. 1911, II 1289.
 Suppl. binding, 41, 193-195 (1938); Cent. 1939, I 1360; C.A. 32, 7447 (1938).
 Bayer and Co., Ger. 272,298, March 26, 1914; Cent. 1914, I 1387-1388.

(41) Bayer and Co., Ger. 206,536, Feb. 4, 1909; Cent. 1909, I 1059.
(42) Bayer and Co., Ger. 204,772, Dec. 3, 1908; Cent. 1909, I 601.
(43) Fries, Schurmann, Ber. 52, 2176-2177 (1919).
(44) Gattermann, Ann. 393, 137-138 (1911).
(45) Ullmann, Esser, Ber. 49, 2164 (1916).
(46) Fries, Ber. 45, 2967, Note (1912).
(47) Bayer and Co., Ger. 264,941, Sept. 25, 1913; Cent. 1913, II 1351.
(48) Ullmann, Junghans, Ann. 399, 352 (1913).
(49) Thomas, Davies, & Scottish Dyes, Ltd., Brit. 173,006, Jan. 19, 1922; Cent. 1922, IV 948.
(50) Williams (to Dow Chem. Co.), U.S. 1,775,360, Sept. 9, 1930; Cent. 1931, II 1195.

(51) Groggins, U.S. 1,892,302, Dec. 27, 1932; Cent. 1933, II 1764; C.A. 27, 1893 (1933); U.S.

1,923,618, Aug. 22, 1933; Cent. 1933, II 2894; C.A. 27, 5339 (1933). (52) Bayer and Co., Ger. 162,824; Oct. 4, 1905; Cent. 1905, II 1206. (53) Houben, Fischer "Das Anthracene und die Anthraquinone," published by G. Thieme, Lepzig, 1929, pp. 463-470. (54) Imperial Chem. Ind., Brit. 478,665, Feb. 17, 1938, Cent. 1938, I 4723, C.A. 32, 5223 (1938). (55) I.G., Brit. 466,194, June 17, 1937; French 813,180; May 27, 1937; Cent. 1937, II 4394. (56) Ullmann, Minaev, Ber. 45, 687, 689-690 (1912). (57) Barnett, Cook, Wiltshire, J. Chem. Soc. 1927, 1728. (58) E. Bergmann, O. Blum-Bergmann, J. Am. Chem. Soc. 59, 1440 (1937). (59) Miegs, Heidenreich (to I G.), Ger. 593,671, March 5, 1934; Cent. 1934, II 848. (60) Imperial Chem. Ind. Ltd., Hailwood, Tatum, Brit. 317,555, Sept. 12, 1929; Cent. 1930, I 2804.

(61) Eckert, Steiner, Monatsh 35, 1131-1132, 1138-1139 (1914). (62) Bayer and Co., Ger. 137,782, Dec. 15, 1902, Cent. 1903, I 108. (63) Kopetschni, Ger. 363,930, Nov. 15, 1922; Cent. 1923, II 1029-1030. (64) Oda, Ueda, Bull. Inst. Phys.-Chem. Research Tokyo 20, 335-342 (1941); C.A. 36, 4814-4815 (1942). (65) Goldberg, J. Chem. Soc 1931, 1773-1774, 1779-1780. (66) Thorpe, Goldberg, Brit. 373,127, June 16, 1932; Cent. 1933, II 1765-1766. (67) Steinkopf,

Schmidt, Ber. 61, 677 (1928).

3:4485 2,3,5-TRICHLOROBENZOIC Cl 
$$C_7H_3O_2Cl_3$$
 Beil. IX - 345 ACID COOH IX<sub>1</sub>—

M.P. 163° (1) 162° (2) (3)

Ndls. from hot aq. (2). — Not volatile with steam. — Very spar. sol. cold aq. but sol.

[For prepn. of C from 2,3,5-trichlorotoluene (3.0610) by oxidin with 20% HNO<sub>3</sub> in s.t. at 140° see (2); from 2,3,5-trichlorobenzaldehyde (3:1060) by oxidn, with KMnO<sub>4</sub> sec (3); for prepn. from correspondtrile by hydrolysis sec (1) ]

C on soln in warm fumg. HNO<sub>3</sub> readily yields a mononitro cpd., 2,3,5-trichloro-xnitrobenzoic acid, cryst from alc, mp. 158° (1)

C with excess PCl<sub>5</sub> yields (1) 2,3,5-trichlorobenzoyl chloride, cryst. from EtOAc, m.p. 36° (1).

- Methyl 2,3,5-trichlorobenzoate: unrecorded.
- --- Ethyl 2,3,5-trichlorobenzoate: oil. [From  $\bar{C}$  + alc. + HCl (1).]
- (D) 2,3,5-Trichlorobenzamide: from 2,3,5-trichlorobenzoyl chloride + (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>; ndls. from dil. AcOH, m p. 204-205° (1)
- ---- 2.3.5-Trichlorobenzanilide: unrecorded.

3:4485 (1) Matthews, J. Chem. Soc. 79, 43-49 (1901) (2) Cohen, Dakin, J. Chem. Soc. 81. 1331 (1902). (3) Hodgson, Beard, J. Chem. Soc. 1927, 2382.

# C<sub>10</sub>H<sub>5</sub>O<sub>2</sub>Cl Beil. S.N. 674 3:4492 5-CHLORONAPHTHOQUINONE-1,4

### M.P. 163° (1)

Yellow ndls. from alc. or lgr. — Sublimes undecomposed. — Fairly eas. sol. AcOH or lgr.; moderately sol. alc.; spar. sol. aq.

[For prepn. of C from 5-chloro-1,4-diaminonaphthalene (5-chloronaphthylenediamine-1,2) by oxidn. of its hydrochloride with FeCl<sub>3</sub> see (1).]

[C with aniline (no details) gives (1) 2(3?)-anilino-5-chloronapthoquinone-1,4, red

bronzy ndls. from AcOH, m.p. 219° (1); note also that Č with aniline boiled for 1 hr. gives (1) a halogen-free cpd., dark violet cryst. from alc., m.p. 140°, but its structure has not been determined.]

3:4492 (1) Fries, Köhler, Ber. 57, 504-505 (1924).

 $(\alpha,\alpha,\alpha',\alpha'$ -Tetrachlorobibenzyl; tolane tetrachloride)

Colorless cryst from AcOH, pet. ether,  $C_6H_6$ , or toluene. — Eas. sol. boilg.  $C_6H_6$ ; moderately sol. hot but spar. sol. cold pet. ether; spar. sol. alc. or ether.

Č with trans-tolane dichloride (3:4210) forms an isomorphous mixt. (8) formerly erroneously regarded as an individual cpd. designated as "ditolane hexachloride."

### PREPARATION OF C

#### From Dinuclear Initial Materials

[For prepn. of  $\bar{C}$  from benzil (1:9015) with excess PCl<sub>5</sub> (32% yield (10)) in s.t. at 200° for 6-7 hrs. (5), or from ms-dichlorodesoxybenzoin ("chlorobenzil") [Beil. VII-436, VII<sub>1</sub>-(234)] with PCl<sub>5</sub> in s.t. at 200° (11) in POCl<sub>3</sub> soln. (100% yield (12)) cf. (5), see indic. refs.; from diphenylacetylene (tolane) [Beil. V-656, V<sub>1</sub>-(319), V<sub>2</sub>-(568)] in CHCl<sub>3</sub> at 0° (13) or from either cis-(3:1380) or trans-(3:4210) tolane dichloride (9) with Cl<sub>2</sub> see indic. refs.]

#### From Mononuclear Initial Materials

From benzotrichloride. [For prepn. of  $\bar{C}$  from benzotrichloride (3:6540) by reduction in alc. with  $H_2$  + colloidal Pd (75% yield (4)) or  $H_2$  + Pd/BaCO<sub>3</sub> (14) in alc.-alkali, or by htg. with Cu powder at 100° (6) or in C<sub>6</sub>H<sub>6</sub> under reflux for 4 hrs. (30-36% yield (5)) (1) cf. (10), see indic. refs.; for formn. of  $\bar{C}$  from benzotrichloride (3:6540) with excess dilute (0.2 N) MeMgCl in ether (7), with EtMgBr (3) or C<sub>6</sub>H<sub>6</sub>MgBr (3), or by pyrolysis over hot Pt (15), or by htg. with Ni in atm. of CO<sub>2</sub> (16) see indic. refs.]

### CHEMICAL BEHAVIOR OF C

[ $\bar{C}$  on reduction with conc. HI + P (1) or with H<sub>2</sub> in alc.-alk. + Pd/CaCO<sub>3</sub> (14) gives bibenzyl (1:7149), m.p. 52°.]

[ $\tilde{C}$  on removal of two adjacent chlorine atoms with Fe powder in boilg. AcOH (12) cf. (5), with Cu powder at 160° (6), with excess conc. (2 N) MeMgCl in ether refluxed 4 hrs. (7), with H<sub>2</sub> + hydrazine hydrate in MeOH/KOH 1½ hrs. at b.p. (17), or with Zn dust in boilg. alc. (18) (5) (2) (10) gives either or both trans- (3:4210) and cis- (3:1380) tolane dichlorides; note that use of insufficient Zn gives (8) cf. (5) (10) the cis-tolane dichloride (3:1380) + an isomorphous mixt. of  $\tilde{C}$  + trans-tolane dichloride (3:4210).]

- [ $\bar{\mathbf{C}}$  with Na/Hg in alc. gives (11) diphenylacetylene (tolane) (see ref. above), some stilbene (1:7250) and bibenzyl (1:7149) also being formed (2).  $\bar{\mathbf{C}}$  on htg. with Zn dust gives (2) stilbene (1:7250).]
- [ $\bar{C}$  is very resistant to hydrolysis and is unattacked by  $H_2O$ , alc., or AcOH in s.t. at 200° (2); note, however, that  $\bar{C}$  with AcOH in s.t. at 230–250° or with  $H_2SO_4$  at 165° is claimed (2) to give benzil (1:9015).]
- [ $\bar{C}$  is very resistant to action of boilg. HNO<sub>3</sub> (2); note, however, that p,p'-dinitrotolane dichloride, m.p. 264–265° dec., has been prepd. indirectly (19) (from p-nitrobenzal(di)-chloride with acetone + KOH).]
- [C with anhydrous HF at 100° yields (20) 1,2-difluoro-1,2-diphenylethylene, m.p. 122-123° (20); however, C with HF in pres. of HgO gives (20) 1,2-dichloro-1,2-difluoro-1,2-diphenylethane, m.p. 128-130° (20).]
- 3:4496 (1) Hanhart, Ber. 15, 901 (1882). (2) Liebermann, Homeyer, Ber. 12, 1971–1973 (1879).
   (3) Sanna, Rend. seiminar faculta sci. univ. Caglian 5, 76–81 (1935), Cent. 1937, II 2345; C.A. 33, 5833 (1939). (4) Borsche, Heimbürger, Ber. 48, 458 (1915). (5) Blank, Ann. 248, 21–25, 33–34 (1888). (6) Onufrowicz, Ber. 17, 833–835 (1884). (7) Fuson, Ross, J. Am. Chem. Soc. 55, 722–723 (1933). (8) Marckwald, Karczag, Ber. 40, 2994–2996 (1907). (9) Davidson, J. Am. Chem. Soc. 40, 399 (1918). (10) Eiloart, Am. Chem. J. 12, 231–232 (1890).
- (11) Zinin, Compt. rend. 67, 720 (1868); Ann. 149, 375 (1869). (12) Lachowicz, Ber. 17, 1164-1165 (1884). (13) Redsko, J. Russ. Phys.-Chem. Soc. 21, 426 (1889); Ber. 22, Referate 760 (1889). (14) Busch, Stove, Ber. 49, 1067-1068 (1916). (15) Loeb, Ber. 36, 3060-3061 (1903). (16) Korczynski, Reinholz, Schmidt, Roczniki Chem. 9, 731-740 (1929); C.A. 24, 1858 (1930). (17) Busch, Weber, J. prakt Chem. (2) 146, 51-52 (1936). (18) Zinin, Ber. 4, 289 (1871). (19) Olivier, Weber, Rec. trav. chim. 53, 889-890 (1934). (20) Balon, Tinker (to du Pont Go.), U.S. 2,238,242, April 15, 1941; Cent. 1942, I 2328; [C.A. 35, 4779 (1941)].

### CHAPTER XI

### DIVISION A. SOLIDS

(3:4500-3:4999)

3:4500 2,3,6-TRICHLOROBENZOIC 
$$Cl$$
  $COOH$   $C_7H_3O_2Cl_3$  Beil. IX - 345 IX<sub>1</sub>—

M.P. 163-164° (1) 163-165° (2)

Cryst. from aq. (1).

[For prepn. of C from 2,3,6-trichlorotoluene (3:0625) by oxidn, with HNO<sub>3</sub> see (1) (2).] No further data on this compd. are recorded

3:4500 (1) Cohen, Dakin, J. Chem. Soc. 81, 1332 (1902). (2) Feldman, Kopeliowitsch, Arch. Pharm. 273, 494 (1935).

M.P. 164° (1) 160° (2) 159-160° (3)159°

162°

(2)

Colorless cryst. (from alc. (1)) with camphoraceous odor. — Readily sublimes in open tubes on htg; eas sol. alc. ether

[For prepn. of C from tetramethylethylene glycol (pinacol) (1 5805) with fumg. HCl (4) or with PCl<sub>3</sub> (5) see (4) (5); for formn. from 2,3-dimethylbutane (di-isopropyl) (1:8515) with  $Cl_2$  in pres. of  $I_2$  see (4) (6) ]

C with alc. KOH in s.t. at 130-140° gives (4) mainly 2,3-dimethylbutadiene-1,3 (1:8050), b.p. 68.7° (accompanied by unsatd. ethers, b.p. 136-146°) (4). [For study of behavior of C with aq. alc. NaOH see (3).

**3:4520** (1) Kahovec, Wagner, Z. physik. Chem. **B-47**, 53 (1940). (2) Schorlemmer, Ann. **144**, 186–187 (1867). (3) Tishchenko, J. Gen. Chem. (U.S.S.R.) **9**, 1380–1388 (1939); C.A. **34**, 1611 (1940). (4) Kondakow, J. prakt. Chem. (2) 62, 169-174 (1900). (5) Couturier, Ann. chim. (6) 26, 443-444 (1892). (6) Silva, Ber. 6, 36 (1873).

Long ndls. from hot aq. (4); cryst. from C<sub>6</sub>H<sub>6</sub> + pet. eth. — Eas. sol. alc., ether, or CHCl<sub>3</sub> (5).

[For prepn. of  $\bar{C}$  from 2,4,6-trichloroaniline [Beil. XII-627] via conversion by diazo reactn. to 2,4,6-trichlorobenzonitrile, m.p. 77.5° (1), 75° (6), thence to 2,4,6-trichlorobenzamide (see below) and hydrolysis of latter see (1) (4) (5) (2) (12), for prepn. of  $\bar{C}$  from 2,4,6-trichlorotoluene (3:0380) by oxidn. with HNO<sub>3</sub> see (3).]

C on soln. in 5 pts. conc. HNO<sub>3</sub> yields (1) 2,4,6-trichloro-3-nitrobenzoic acid [Beil. IX-405], cryst. from CHCl<sub>3</sub>, m p. 169 2° (1).

 $\bar{C}$  with PCl<sub>5</sub> (5) (73% yield (2)) or with SOCl<sub>2</sub> + pyridine (7) gives 2,4,6-trichlorobenzoyl chloride, b.p. 272° (5), 107-107.5° at 6 mm. (2), 120.1-120.4° at 3 mm. (7). — This acid chloride is very stable to aq (5) and is alleged to give no ester with MeOH (5). [Note, however, that with EtOH reactn is 99% complete in 1 min (7).] [For study of reactn. of 2,4,6-trichlorobenzoyl chloride with MeMgCl (8) or MeMgBr (12) giving (50% yield (2)) di-(2,4,6-trichlorobenzoyl)methane, m.p. 160-161°, see (8), with MeMgBr giving 2,4,6-trichloroacetophenone, m.p. 51° (8) (14), see (8); with  $C_0H_6$  + AlCl<sub>3</sub> yielding 2,4,6-trichlorobenzophenone, m.p. 103 5°, see (9)]

- Methyl 2,4,6-trichlorobenzoate: unrecorded.  $[\bar{C} + MeOH + HC]$  yields no ester (4) (10) ]
- Ethyl 2,4,6-trichlorobenzoate: unrecorded. [ $\bar{C}$  + EtOH + HCl yields no ester (5)]
- ② 2,4,6-Trichlorobenzamide: m p. 181° (1), 177° (6). [This amide has not been recorded as prepd. from the acid chloride + NH<sub>3</sub>; it has been obtd. only by partial hydrolysis (11) (6) (1) of 2,4,6-trichlorobenzonitrile (see above)] [The amide itself is only slowly hydrolyzed to C by 75% H<sub>2</sub>SO<sub>4</sub> at 160° (6), but for conversion to C via HNO<sub>2</sub> see (11) (1) (2).]
- 2,4,6-Trichlorobenzanilide: from 2,4,6-trichlorobenzoyl chloride + aniline (12), ndls., m.p. 197° (12).
- 3:4545 (1) Montagne, Rec. trav. chim. 21, 383-388 (1902). (2) Fuson, Bertetti, Ross, J. Am. Chem. Soc. 54, 4381-4382 (1932). (3) Cohen, Dakin, J. Chem. Soc. 81, 1336 (1902). (4) Meyer, Sudborough, Ber. 27, 3151-3152 (1894). (5) Sudborough, J. Chem. Soc. 65, 1030 (1894). (6) Sudborough, Jackson, Lloyd, J. Chem. Soc. 71, 231-232 (1897). (7) Norris, Ware, J. Am. Chem. Soc. 61, 1418-1420 (1939). (8) Ross, Fuson, J. Am. Chem. Soc. 59, 1508-1510 (1937). (9) Montagne, Rec. trav. chim. 26, 279-280 (1907). (10) Meyer, Ber. 28, 1259 (1895).
- (11) Sudborough, J. Chem. Soc. 67, 602 (1895)
  (12) Chapman, J. Chem. Soc. 1927, 1749.
  (13) Fuson, Van Campen, Wolf, J. Am. Chem. Soc. 60, 2269-2270 (1938).
  (14) Lock, Böck, Bor. 70, 925 (1937).

Cryst. from aq., alc. (3),  $C_6H_6$  or  $C_6H_6 + \lg r$ .—Sublimes undecomposed in ndls. (9) or lfts. (10) — Eas. sol. in boilg. aq. or org. solv. (10).

[For prepn. of  $\bar{C}$  from 2,4-dichlorotoluene (3:6290) by oxidn. with dil. HNO<sub>3</sub> at 140° (9) (7) (8) or with KMnO<sub>4</sub> (70% yield (1)) or by electrolytic oxidn. (65% yield (3)) see indic. refs.; from 2,4-dichlorobenzaldehyde (3:1800) via Cannizzaro reactn. see (5); from 2,4-dichloroaniline [Beil. VII-621] via conversion to and hydrolysis of 2,4-dichlorobenzoni-

trile see (4) (5); from 2,4-dichlorobenzotrichloride with 95%  $H_2SO_4$  see (5) (11) (12); for still other misc. methods see Beil. IX-342 + IX<sub>1</sub>-(141).]

 $\bar{C}$  warmed at 100° with a mixt. of fumg. HNO<sub>3</sub> (D=1.52) + conc. H<sub>2</sub>SO<sub>4</sub> as directed (13) yields 2,4-dichloro-3,5-dinitrobenzoic acid, pr. from dilute alc., m.p. 210-211° (13), together with a trace of 2,4-dichloro-1,3-dinitrobenzene, m.p. 103°, insol. in Na<sub>2</sub>CO<sub>3</sub>. [A mononitrated  $\bar{C}$ , viz., 2,4-dichloro-5-nitrobenzoic acid, cryst. from 30% AcOH, m.p. 161-163° (11), 162° (18), and 2,4-dichloro-6-nitrobenzoic acid, cryst. from C<sub>6</sub>H<sub>6</sub>, m.p. 189-190° (19), have been prepd. indirectly.]

C with PCl<sub>5</sub> (14) or SOCl<sub>2</sub> (15) (3) yields 2,4-dichlorobenzoyl chloride, b.p. 150° at 3-4 mm. (14), 152-155° at 30 mm. (16), 91.9-92.5° at 1 mm. (15). [For conv. of this acid chloride to 2,4,2',4'-tetrachlorodibenzoyl peroxide see (3).]

- Methyl 2,4-dichlorobenzoate: oil, b.p. 132° at 15 mm.,  $D_{20}^{20} = 1.572$  (21). [From  $\tilde{C}$  by conv. to Na $\tilde{A}$  and htg. with MeI in MeOH for 20 hrs. (73% yield (21))].
- Ethyl 2,4-dichlorobenzoate: constants unrecorded. [For study of rate of hydrolysis see (17).]
- 2,4-Dichlorobenzamide: unrecorded.
- . 2,4-Dichlorobenzanilide: unrecorded.

3:4569 (1) Bornwater, Holleman, Rec. trav. chim. 31, 226-230 (1912). (2) Lock, Bock, Ber. 76, 923 (1937). (3) Fichter, Adler, Hclv. Chim. Acta 9, 286-287 (1926). (4) Gomberg, Cone, Ann. 370, 183 (1909). (5) van der Lande, Rec. trav. chim. 51, 103 (1932). (6) Gassmann, Hartmann, J. Am. Chem. Soc. 63, 2394 (1941). (7) Wynne, J. Chem. Soc. 1936, 703. (8) Cohen, Dakin, J. Chem. Soc. 79, 1129 (1901). (9) Lellmann, Klotz, Ann. 231, 315-316 (1885). (10) Krauss, Ber. 37, 221 (1904).

(11) Villiger, Ber. 61, 2598 (1928). (12) Ger. 234,290, May 4, 1911; Cent. 1911, I 1567. (13) Borsche, Bahr, Ann. 402, 90-91 (1914). (14) Cohen, Briggs, J. Chem. Soc. 83, 1213-1214 (1903). (15) Norris, Ware, J. Am. Chem. Soc. 61, 1418 (1939). (16) B.A.S.F. Ger. 331,696, Jan. 10, 1921 [C.A. 15, 2102 (1921)]. (17) Blakey, McCombie, Sudborough, J. Chem. Soc. 1926, 2863-2868. (18) Grimm, Günther, Tittus, Z. physik. Chem. B-14, 184 (1931). (19) Ruggli, Zaeslin, Helv. Chim. Acta 19, 439 (1936). (20) Roberts, Turner, J. Chem. Soc. 1927, 1846.

(21) Samant, Ber. 75, 1011 (1942).

### 3:4580 3,5-DICHLOROPHTHALIC ACID

СООН

Beil. IX - 817 IX<sub>1</sub>—

M.P. 164° (1) 164° dec. (2)

[See also 3,5-dichlorophthalic anhydride (3:2375).]

Colorless ndls. or tbls. from aq. HCl; readily sol. in cold alc., ether, or acetone, but spar. sol. in  $C_6H_6$  or CHCl<sub>3</sub> even on boilg.

[For prepn. of  $\bar{C}$  from 3,5-dichlorophthalic anhydride (3:2375) on boilg. with aq. see (1) (2); from aq. soln. of NH<sub>4</sub>H $\bar{A}$  by passing in HCl gas see (1) (2); from 3,5-dichloro-1,2-dimethylbenzene [Beil. V-364] (itself obtd. in good yield from dimethyldihydroresorcinol ("methone") (1:0768) with PCl<sub>5</sub> in CHCl<sub>3</sub> (2) (3)) by oxidn. with dil. HNO<sub>3</sub> in s.t. at 190-200° see (2).]

Salts.  $NH_4H\bar{A}$ , spar. sol. aq., eas. prepd. by mixing aq. solns. of  $(NH_4)_2\bar{A} + \bar{C}$ ;  $Ag_2\bar{A}$ , white curdy ppt. from warm aq. soln. of  $(NH_4)_2\bar{A}$  by addn. of aq.  $Ag_3NO_3$ .

Esters. Dimethyl 3-chlorophthalate and methyl hydrogen 3-chlorophthalate are unreported: diethyl 3-chlorophthalate (from Ag<sub>2</sub>A with EtI in dry ether) is oil, b.p. 312-313° at 760 mm. (2); ethyl hydrogen phthalate is unreported.

Č on htg. alone (1) or with AcCl (2) yields 3,5-dichlorophthalic anhydride (3:2375), m.p. 89°.

3:4580 (1) Waldmann, Schwenk, Ann. 487, 293 (1931). (2) Crossley, LeSueur, J. Chem. Soc. 81, 1536-1537 (1902). (3) Crossley, LeSueur, J. Chem. Soc. 82, 826-827 (1902).

[See also 2,6-dichlorobenzoquinone-1,4 (3:3750).]

Colorless lfts. from dil. alc.; ndls. from aq. or C6H6. — Sublimes.

[For prepn. of  $\bar{C}$  from 2,6-dichlorobenzoquinone-1,4 (3:3750) by reductn. with SO<sub>2</sub> in aq. see (80% yield (5)) (6) (7) (note, however, that the quinone in dil. aq. NaOH under N<sub>2</sub> with SO<sub>2</sub> is in part reduced to  $\bar{C}$  and in part sulfonated to mono- and disulfonic acids (8)); from 2,4,6-trichlorophenol (3:1673) in 2 N H-SO<sub>4</sub> on electrolytic oxidn. see (4); from 3,5-dichloro-4-hydroxybenzaldehyde (3:4400) in N KOH with H<sub>2</sub>O<sub>2</sub> see (3); from sodium benzoquinone-1,4-sulfonate with conc. HCl above 20° in CO<sub>2</sub> (below 20° chlorohydroquinonesulfonic acid results) see (1) (9).]

[For use of  $\bar{C}$  as antioxidant and gum inhibitor in cracked gasoline see (10); for use in aq. petroleum emulsion as insecticidal oil spray see (11); for use as vulcanization accelerator see (18).]

Č on oxidn. with CrO₃ (12) or with excess aq. FeCl₃ on warming (3) yields 2,6-dichlorobenzoquinone-1,4 (3:3750) (the intermediate quinhydrone cpd., brown powder or pr. or dark ndls. (5), m.p. 135° (13), may separate with insufficient oxidant). [For studies on oxidn.-reductn. potential of system: Č + 2,6-dichlorobenzoquinone-1,4 (3:3750) see under latter.]

 $[\bar{C}$  in conc.  $H_2SO_4$  with chloral hydrate (3:1270) (2 moles) gives (64% yield (14)) 5,7-dichloro-6-hydroxy-2,4-bis-(trichloromethyl)benzdioxin-1,3, colorless pl. from boilg. alc., CHCl<sub>3</sub>,  $C_6H_6$ , or pet. eth., m.p.  $114-115^\circ$  (14).

- —— 2,6-Dichlorohydroquinone diacetate: ndls. and pr. from aq. alc., m.p. 98° (2). 85-86° on rap. htg., 111-113° on slow htg. (15), 75.5° (7), 66.5° (16). (The reasons for these divergences appear never to have been explained.) [From C with Ac<sub>2</sub>O (16) (15).]
- **D 2,6-Dichlorohydroquinone dibenzoate:** colorless ndls. from alc., m.p. 105° (16). [From  $\tilde{\mathbf{C}}$  on htg. with BzCl (16).]
- D 2,6-Dichlorohydroquinone dimethyl ether: m.p. not reported. [From C in dil. aq. alk. with Me<sub>2</sub>SO<sub>4</sub> (17); this prod. with 3-4 pts. cold fumg. HNO<sub>3</sub> nitrates yielding (17) 2,6-dichloro-3,5-dinitrohydroquinone dimethyl ether, colorless cryst. from alc., m.p. 121-123° (17).]

3:4600 (1) Seyewetz, Compt. rend. 156, 902 (1913). (2) Kehrmann, Tiesler, J. prakt. Chem. (2)-40, 481 (1889). (3) Dakin, Am. Chem. J. 42, 491 (1909). (4) Fichter, Stocker, Ber. 47, 2016 (1914). (5) Conant, Fieser, J. Am. Chem. Soc. 45, 2202-2204 (1923). (6) Faust, Ann. 149, 155 (1869). (7) van Erp, Ber. 58, 665 (1925). (8) Dodgson, J. Chem. Soc. 1930, 2498-2502. (9) Seyewetz, Paris, Bull. soc. chim. (4) 13, 489-490 (1913). (10) Clarke, Towne (to Texas Co.), U.S. 2,023,871, Dec. 10, 1935; Cent. 1936, I 2671; C.A. 30, 951 (1936).

(11) Yates (to Shell Development Co), U.S 1,778,240, Oct. 14, 1930; Cent. 1931, I 2799; C.A. 24, 5928 (1930). (12) Den Hollander, Rec. trav. chrm. 39, 481-482 (1920) (13) Ling, Baker, J. Chem. Soc. 63, 1321-1322 (1893). (14) Chattaway, Calvet, J. Chem. Soc. 1928, 2915, 2918. (15) Ling, J. Chem. Soc. 61, 560 (1892). (16) Levy, Ber. 16, 1445-1446 (1883). (17) Kohn, Marberger, Monatsh. 45, 654-656 (1924). (18) Fisher (to Naugatuck Chem. Co.), French 740,978, Feb. 3, 1933; Cent. 1933, I 3134.

## 3:4610 6-CHLORO-2-HYDROXYBENZOIC ACID

(6-Chlorosalicylic acid)



414

Beil. S.N. 952

### M.P. 166° (1)

Colorless adds. from aq., grad. turning red in air. — Sol. in aq. and most org. solvents; not volatile with steam.

[For prepn. of  $\bar{C}$  from 6-chloro-2-aminobenzon acid (6-chloroanthranilic acid) [Beil. XIV-366, XIV<sub>1</sub>-(548)] by diazotization and boilg. with aq. (*m*-chlorophenol (3:0255) is also formed) see {1}.]

C with FeCl<sub>3</sub> soln. gives violet color.

For NH<sub>4</sub> $\bar{A}$ , K $\bar{A}$ , Ba $\bar{A}_2$ , Ag $\bar{A}$ , all sol. in aq., see (1).

[The methyl ether of  $\bar{C}$ , viz., 6-chloro-2-methoxybenzoic acid, m.p. 141° (2), has been obtd. indirectly from 2-chloro-6-methoxytoluene [Beil. VI-359] by KMnO<sub>4</sub> oxidn. (2)]

[For esterification of C with glycol monoethers and use of prods. as plasticizers see (3).]

3:4610 (1) Cohn, Mitt. Technol. Gewerb -Mus. Wien. 11, 178-182, Cent. 1901, II 925. (2) Ullmann, Panchaud, Ann. 350, 113 (1906) (3) Grether, DuVall (to Dow Chem. Co.), U.S. 2,234,374 March 11, 1941; C.A. 35, 3738 (1941).

## 3:4612 DI-(p-CHLOROPHENYL)ACETIC ACID

 $\begin{array}{c} \text{Cl} \\ \text{Cl} \\ \text{Cl} \end{array}$ 

Colorless cryst. from dil. alc. Neut. Eq. = 281.

[For prepn. of Č from 1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane ("DDT") (3:3298) by action of excess Ba(OH)<sub>2</sub>.8H<sub>2</sub>O in ethylene glycol under reflux for 10-12 hrs. (33% yield) see (1); from 1,1-dichloro-2,2-bis-(p-chlorophenyl)ethylene (3:2438) by similar treatment (1) or with alc. KOH in s.t. at 150-160° for 24 hrs. (57% yield (2)) see indic. refs.; for prepn. of Č from chlorobenzene (3:7903) by condensation with glyoxylic acid monohydrate (HO)<sub>2</sub>CH.COOH in pres. of conc. + fumg. H<sub>2</sub>SO<sub>4</sub> at 20° (18.6% yield) see (1).]

C with KOH in ethylene glycol refluxed 10-12 hrs. loses CO<sub>2</sub> giving alm. 100% yields (1) of 4,4'-dichlorodiphenylmethane (3:1057), m.p. 55°.

Note that  $\tilde{C}$  is one of the metabolitic prods. obtd. from the urine after administration of "DDT" (3:3298) to rabbits,

3:4612 (1) White, Sweeney, U.S. Pub. Health Repts. 60, 66-71 (1945). (2) Grummitt, Buck, Jenkins, J. Am. Chem. Soc. 67, 156 (1945).

Colorless ndls. from aq. or alc.

[For prepn. of  $\tilde{C}$  from 6-chloro-3-methylacetophenone [Beil. VII-307] by oxidn. with KMnO<sub>4</sub> or dil. HNO<sub>3</sub> see (1); from  $\beta$ -chloroethyl 6-chloro-3-methylphenyl ketone (2) by oxidn. at 100° with mixt. of equal pts. conc. HNO<sub>3</sub> (D=1.42) and water see (2); from  $\beta$ -chlorotoluene (3.8287) in CS<sub>2</sub> with oxalyl (dr)chloride (3:5060) + AlCl<sub>3</sub> for 20 hrs. at room temp. see (3).]

[C with 6 pts SOCI<sub>2</sub> gives (alm. quant. yield (3)) 6-chloro-3-methylbenzoyl chloride, b.p. 165-167° at 85 mm. (3).]

 $\bar{C}$  on oxidn. with KMnO<sub>4</sub> yields (1) (3) 4-chlorobenzenedicarboxylic acid-1,3 (4-chlorosophthalic acid) (3:4980), m.p. 286° u.c. (1).

**3:4615** (1) Claus, J. prakt Chem. (2) **46**, 27 (1892). (2) Mayer, Muller, Ber. **60**, 2281 (1927). (3) Scholl, Meyer, Keller, Ann. **513**, 298 (1934).

Ndls. from aq. or dil. alc. — Alm. insol. cold aq., eas. sol. cold abs. alc. (4). — Sublimes in ndls. (4).

[For prepn. of  $\bar{C}$  from 1,2,4-trichlorobenzene (3:6420) via nitration, reduction, conversion via diazo reactn. to 2,4,5-trichlorobenzonitrile, m.p.  $104^{\circ}$  (1), and subsequent indirect hydrolysis see (1); from 2,4,5-trichlorotoluene (3:2100) by oxidn. with HNO<sub>3</sub> (4) (6) or CrO<sub>3</sub> (5) see (4) (5) (6), from 2,4,5-benzotrichloride via htg. with aq. in s.t. at 260° see (3); from 3,4-dichlorobenzoic acid (3.4925) + Ca(OCl)<sub>2</sub> see (3); from HNO<sub>3</sub> oxidn. of certain fractions of chlorinated isopropylbenzene (cumene) see (2).]

For salts, viz.,  $NH_4\bar{A}$ ,  $Ca\bar{A}_2.2H_2O$ ;  $Sr\bar{A}_2.4H_2O$ ;  $Ba\bar{A}_2.7H_2O$ , see (3).

 $\bar{C}$  on nitration with hot mixt. of equal vols. conc. HNO<sub>3</sub> + conc. H<sub>2</sub>SO<sub>4</sub> yields (3) 2,4,5-trichloro-x-nitrobenzoic acid, ndls. from aq., m.p. 220° (3).

Č with PCl<sub>5</sub> (3) or SOCl<sub>2</sub> (1) yields 2,4,5-trichlorobenzoyl chloride, b.p. 272° sl. dec. (3), 125° at 2 mm. (1); m.p. abt. 28° (1), 41° (3).

- ---- Methyl 2,4,5-trichlorobenzoate: unrecorded.
- Ethyl 2.4.5-trichlorobenzoate: from  $\overline{C}$  + EtOH + HCl (3): m.p. 65° (1) (3).
- D 2,4,5-Trichlorobenzamide: from 2,4,5-trichlorobenzoyl chloride + cold conc. NH<sub>4</sub>OH (3), ndls. from C<sub>6</sub>H<sub>6</sub>, m.p. 167.5° (3), 168° (1). [For conversion of this amide to C via HNO<sub>2</sub> see (1).]

3:4630 (1) Baker, Tweed, J. Chem. Soc. 1941, 800. (2) Qvist, Salo, Acta Acad. Aboensis Math. et Phys. 8, No. 4, 30 pp. (1934); Cent. 1934, II 594-595; 1936, I 538-540; C.A. 29, 6884 (1935).
 (3) Beilstein, Kuhlberg, Ann. 152, 237-240 (1869). (4) Cohen, Dakin, J. Chem. Soc. 81, 1335 (1902). (5) Jannasch, Ann. 142, 301-302 (1867). (6) Feldman, Kopeliowitsch, Arch. Pharm. 273, 494 (1935).

### 3:4650 2,3-DICHLOROBENZOIC ACID

M.P. 168.3° cor. (1) 166° (2) 164° (3) 163° (4)

Cryst. from C<sub>6</sub>H<sub>6</sub> or from 30% AcOH (1).

[For prepn. of  $\bar{C}$  from 2,3-dichlorotoluene (3:6345) with alk. KMnO<sub>4</sub> (1) (2) or with dil. HNO<sub>3</sub> in s.t. at 140° (2) (4) see (1) (2) (4); from benzoic acid (1:0715) by chlorination with KClO<sub>3</sub> + HCl (3) (6) or with Ca(OCl)<sub>2</sub> (7) see (5) (6) (7).]

For f.p./compn. data on mixts. of C with 2,5-dichlorobenzoic acid (3:4340), m.p. 154.4°, see (1).

C on htg. with lime yields (6) o-dichlorobenzene (3:6055).

 $\bar{C}$  is unaffected by conc. H<sub>2</sub>SO<sub>4</sub> at 300° (6) and scarcely affected by htg. with fumg. HNO<sub>3</sub> (10). — However,  $\bar{C}$  dislvd. in bolg. non-fumg. HNO<sub>3</sub> and treated as directed (10) with conc. H<sub>2</sub>SO<sub>4</sub> yields 2,3-dichloro-x-nitrobenzoic acid, m.p. 214-215° u.c. (10).

Č with PCl<sub>5</sub> yields (8) 2,3-dichlorobenzoyl chloride, b.p. 140° at 14 mm. (8). [This acid chloride is formed during chlorination of benzoyl chloride in presence of FeCl<sub>3</sub> where it constitutes 23% of the dichlorinated fraction (8).]

- --- Methyl 2.3-dichlorobenzoate: unrecorded.
- Ethyl 2,3-dichlorobenzoate: m.p. unrecorded. [For study of velocity of hydrolysis see (9).]
- 2.3-Dichlorobenzamide: unrecorded.
- 2,3-Dichlorobenzanilide: unrecorded.

3:4650 (1) Hope, Riley, J. Chem. Soc. 123, 2470-2480 (1923). (2) Seelig, Ann. 237, 162 (1887).
 (3) Wynne, Greeves, Proc. Chem. Soc. 11, 151 (1895). (4) Cohen, Dakin, J. Chem. Soc. 79, 1128 (1901). (5) Claus, Ber. 6, 721-723 (1873). (6) Claus, Bucher, Ber. 20, 1621-1627 (1887).
 (7) Claus, Ber. 8, 948-950 (1875). (8) Cohen, Briggs, J. Chem. Soc. 83, 1214 (1903). (9) Blakey, McCombie, Scarborough, J. Chem. Soc. 1926, 2863-2868. (10) Claus, Bucher, Ber. 20, 1624 (1887).

# 3:4670 5-CHLORO-2-METHYLBENZOIC ACID

M.P. 168.5–169.5° (1) 168° (2)

Colorless ndls. from alc.

Note that the materials of m.p. 130° (3) and 137° (4) formerly supposed to have been  $\tilde{C}$  are now believed (1) to have been mixtures of  $\tilde{C}$  with the isomeric 4-chloro-2-methylbenzoic acid, m.p. 170° (3:4700).

[For prepn. of C from 5-chloro-2-methylaniline [Beil. XII-835, XII<sub>1</sub>-(384)] via conv. to 5-chloro-2-methylbenzonitrile (1) (2), ndls. from pet. ether, m.p. 48° (2), 45-46° (1), and saponification of the latter with 70% H<sub>2</sub>SO<sub>4</sub> (2) see indic. refs.]

[ $\bar{C}$  yields (no details) an acid chloride which with  $C_6H_6+AlCl_3$  in  $CS_2$  gives (2) 5-chloro-2-methylbenzophenone, m.p. 41° (2), b.p. 191° at 12 mm. (2).]

C on oxidn. with KMnO<sub>4</sub> yields (1) 4-chlorophthalic acid (3:4390), m.p. 151° (1).

- ---- Methyl 5-chloro-2-methylbenzoate: unreported.
- Ethyl 5-chloro-2-methylbenzoate: b.p. unreported,  $D_4^{20} = 1.1628$  (1),  $n_{\rm He}^{20.0} = 1.52483$  (1).
- ---- 5-Chloro-2-methyl benzamide: unreported.

3:4670 (1) von Auwers, Harres, Z. physik. Chem. A-143, 16-18 (1929). (2) de Diesbach, Dobbelmann, Helv. Chim. Acta 14, 375 (1931). (3) Claus, Bayer, Ann. 274, 308-309 (1893). (4) Claus, Stapelberg, Ann. 274, 311 (1893).

### 3:4672 2,3,5-TRICHLOROBENZO-QUINONE-1,4

Yellow lfts. from alcohol; reddish yel. lfts. from CHCl<sub>3</sub>/lgr. — Insol. cold aq.; spar. sol. cold alc.; eas. sol. hot alc. or ether. —  $\tilde{C}$  is sublimable [for study of sublimation press see (8).]

[For studies of heat of formation see (9); for studies of heat of combustion see (10) (11).] [For studies of bactericidal actn. of  $\bar{C}$  see (12); for patent on use of  $\bar{C}$  as vulcanization accelerator see (13)]

### PREPARATION OF C

From 2,3,5-trichlorohydroquinone. [For prepn. of C from 2,3,4-trichlorohydroquinone (3:4052) by oxidn., e.g., with CrO<sub>3</sub> at 0° (10), conc. HNO<sub>3</sub> (14) (5) see indic. refs.]

From phenol or chlorinated phenols. [For prepn of  $\bar{C}$  from phenol (1:1420) via sulfonation followed by oxidn. with KClO<sub>3</sub> + HCl see (3) (15) cf. (22); note that by this method both  $\bar{C}$  and 2,3,5,6-tetrachlorobenzoquinone-1,4 ("chloranil") (3:4978) are produced; for sepn. of  $\bar{C}$  from latter see (5) (16)]

[For prepn. of  $\bar{C}$  from 2,3,5-trichlorophenol (3:1340) or from 2,3,6-trichlorophenol (3:1160) with fumg. HNO<sub>3</sub> on protracted htg. (17), or from 2,4,6-trichlorophenol (3:1673) with mixt. of conc. HNO<sub>3</sub> + conc. HCl boiled for a few minutes (2), or from 2,3,4,6-tetrachlorophenol (3:1687) by oxidn. with 5 wt. pts. fumg. HNO<sub>3</sub> (70% yield (1)), see indic. refs.]

From amines, aminophenols, etc. [For form. of  $\bar{C}$  from aniline during electrolytic oxidn. in HCl soln. see (18); from p-aminophenol hydrochloride with Ca(OCl)<sub>2</sub> soln. see (19); from 2,3,5-trichloro-4-aminophenol hydrochloride by action of Br<sub>2</sub> (20) or NaQBr

(30); from benzal p-anisidine or benzal p-phenetidine by treatment with ter-AmOCl (3:9287) followed by subsequent oxidn. with  $K_2Cr_2O_7/H_2SO_4$  see (4).]

From various derivs. of  $\bar{\mathbf{C}}$  by hydrolysis. [For form. of  $\bar{\mathbf{C}}$  from various imide derivs. of  $\bar{\mathbf{C}}$  by acid hydrolysis, e.g., from the corresp.  $N-(\rho$ -chlorophenyl)mide [Beil. XII-611] (21), N-(2,4,6-trichlorophenyl)imide [Beil. XII-628] (22) (7), or N-(2,4-dinitrophenyl)-imide [Beil. XII-754] (23), see indic. refs.]

From miscellaneous sources. [For formn. of  $\bar{C}$  from  $C_6H_6$  (1:7400) by oxidn. with  $CrO_2Cl_2/AcOH$  (24), from copper salt of quinic acid [Bell. X-535,  $X_1$ -(270)] by oxidn. with  $MnO_2/NaCl/H_2SO_4$  (14), or from benzoquinone-1,4 (1:9025) with  $Cl_2$  (25) see indic. refs.]

### CHEMICAL BEHAVIOR OF C

**Reduction.**  $\bar{C}$  with aq. SO<sub>2</sub> (5) (14) (15) (16), or  $\bar{C}$  in other soln, with aq. SO<sub>2</sub> (1) reduces to 2,3,5-trichlorohydroquinone (3:4052). [Note that this reaction is used (16) to separate  $\bar{C}$  from 2,3,5,6-tetrachlorobenzoquinone-1,4 ("chloranil") (3:4978) since the latter is but slowly reduced by aq. SO<sub>2</sub> ] [For studies of oxidin-reduction potential of system  $\bar{C}$  + 2,3,5-trichlorohydroquinone (3:4052) see (6) (26) (27).]

Oxidation.  $\bar{C}$  with strong HNO<sub>3</sub> on digestion is degraded with forms, of trichloronitromethane ("chloropierin") + CO<sub>2</sub> (15).

Chlorination. [ $\bar{C}$  with  $Cl_2$  reacts only very slowly; however,  $\bar{C}$  with  $Cl_2 + I_2 + aq.$  (15), or  $\bar{C}$  with  $Cl_2 + HCl$  (28), gives 2,3,5,6-tetrachloro-benzoquinone-1,4 ("chloranil") (3:4978).]

Reaction with HCl.  $\tilde{C}$  with conc. HCl on protracted boilg. (29) (3), or  $\tilde{C}$  with fumg. HCl in s.t. at 130° (30), gives 2,3,5,6-tetrachlorohydroquinone (3:4941).

Behavior of C with other inorganic reactants. With aq. alkali. [C with dil. aq. KOH turns green and then dis. to a red-brown soln. from which upon acidification is pptd. (5) 2,5-dichloro-3,6-dihyroxybenzoquinone-1,4 ("chloroanilic acid") (3:4970).]

With aq.  $K_2SO_3$ . [ $\bar{C}$  dis. in warm aq.  $K_2SO_3$  or KHSO<sub>3</sub> and on cooling ppts. (31) the potassium salt of 2,3,5-trichlorohydroquinonesulfonic acid-6 [Beil. XI-300]; the mother liquor conts. a cpd. which on boilg. with KOH gives (31) the salt of 2,5-dihydroxybenzo-quinone-1,4-disulfonic acid-3,6 [Beil. XI-353].]

With NH<sub>3</sub>. [C with alc. NII<sub>3</sub> leacts vigorously yielding (3) a dark soln. from which can be obtd. in small amt. 3,6-dichloro-2,5-diaminobenzoquinone-1,4 ("chloranilamide") [Beil. XIV-144].]

With  $PCl_5$ . [ $\bar{C}$  with  $PCl_5$  +  $POCl_3$  in s.t. at 180-200° gives (5) hexachlorobenzene (3:4949).]

Behavior of C with organic reactants. With phenol. C with K phenolate (2 moles) at 100° for 20 min. gives (32) 3-chloro-2,5-diphenoxybenzoquinone-1,4, or. tbls. from alc., m.p. 169-170° (32).

With 2,3,5-trichlorohydroquinone.  $\ddot{\mathbf{C}}$  (1 mole) with 2,3,5-trichlorohydroquinone (1 mole) (3:4052) in CHCl<sub>3</sub> soln. gives on evaph. (6) (33) the corresp. quinhydrone, green-black cryst., m.p. 114-115° (6), 103° (33).

With acetyl chloride. C with AcCl in s.t. at 160-180° gives (5) 2,3,5,6-tetrachlorohydro-quinone diacetate (cf. 3:4941).

With aniline. [ $\tilde{C}$  (1 mole) with aniline hydrochloride (1 mole) in AcOH on boilg. and subsequent partial evapn. (34) cf. (35) gives (66.5% yield (34)) 2,3,5-trichloro-6-anilino-benzoquinone-1,4 [Beil. XIV-137], blue lfts. from hot alc., but without def. m.p. (35).— $\tilde{C}$  with aniline (excess) in alc. (30) (35) or AcOH (35) gives, however, 2,5-dichloro-3,6-dianilinobenzoquinone-1,4 [Beil. XIV-144, XIV<sub>1</sub>-(421)], yel.-brown metallic lfts. from  $C_6H_6$ , m.p. 290° (35), 285-290° (30).]

With triphenylphosphine.  $\bar{C}$  with 20% soln. of  $(C_6H_5)_3P$  in CHCl<sub>3</sub> gives (36) wine-red color; note, however, that a very similar behavior is shown by 2,3,5,6-tetrachlorobenzo-quinone-1,4 ("chloranil").

- 3:4672 (1) Biltz, Giese, Ber. 37, 4016-4017 (1904). (2) Leger, Bull. soc. chim. (4) 3, 581-582 (1908). (3) Knapp, Schultz, Ann. 210, 174-176, 180-181 (1881). (4) Musante, Fusco, Gazz. chim. utal. 66, 647-648 (1936). (5) Graebe, Ann. 146, 22-30 (1868). (6) Conant, Fieser, J. Am. Chem. Soc. 45, 2206-2207 (1923). (7) Bradfield, Cooper, Orton, J. Chem. Soc. 1927, 2858-2859. (8) A. S. Coolidge, M. S. Coolidge, J. Am. Chem. Soc. 49, 101-104 (1927). (9) Sjoström, Svensk Kem. Tid. 48, 121-124 (1936), Cent. 1937, I 58, C.A. 30, 6634 (1936). (10) Valeur, Ann. chim. (7) 21, 496-497 (1900).
- (11) Swietoslawski, Starczewska, J. chim. phys. 22, 399-401 (1925). (12) Morgan, Cooper, J. Soc. Chem Ind. 43-T, 352-354 (1924) (13) Fisher (to Naugatuck Chem. Co) French 740,978, Feb. 3, 1933; Cent. 1933 I 3134, C A. 27, 2845 (1933). (14) Stadeler, Ann. 69, 301, 322 (1849). (15) Stonhouse, Ann. 8uppl. 6, 209-212, 216-219 (1868). (16) Graebe, Ann. 263, 28-30 (1891). (17) Lampert, J. prakt Chem. (2) 33, 382-383 (1886) (18) Erdelyi, Ber. 63, 1201-1202 (1930). (19) Schmitt, Andresen, J. prakt. Chem. (2) 23, 436-437 (1881). (20) Schmitt, Andresen, J. prakt. Chem. (2) 24, 429, 434 (1881).
- (21) Jacobson, Cent 1898, II 36. (22) Orton, Smith, J. Chem. Soc. 87, 395-396 (1905). (23) Réverdin, Crepieux, Ber. 36, 3268 (1903). (24) Carstanjen, Ber. 2, 633 (1869). (25) Woskressenski, J. prakt. Chem. (1) 18, 420 (1839). (26) Conant, J. Am. Chem. Soc. 49, 293-297 (1927). (27) Kvulnes, J. Am. Chem. Soc. 56, 667-670 (1934). (28) Schuloff, Austrian 127,813, April 25, 1932, Cent. 1932, II 924, C.A. 26, 4348 (1932). (29) Levy, Schultz, Ann. 210, 154 (1881) (30) Andresen, J. prakt. Chem. (2) 28, 422-427 (1883).
- (31) Graebe, Ann **146**, 55-59 (1868). (32) Jackson, Grindley, Am. Chem. J. **17**, 653-654 (1895). (33) Ling, Baker, J. Chem. Soc. **63**, 1322-1323 (1893). (34) Brass, Papp, Ber. **53**, 458 (1920). (35) Niemeyer, Ann. **228**, 337-338 (1885). (36) Schonberg, Ismail, J. Chem. Soc. **1940**, 1374-1378.

COOH

# 3:4675 3-CHLORO-4-HYDROXYBENZOIC C<sub>7</sub>H<sub>5</sub>O<sub>3</sub>Cl Beil. X - 175 ACID Cl Cl X<sub>1</sub>— M.P. 169-170° (1) (2) 169° (3) 165-166° (4) 164-165° (5) 164° (6)

Colorless ndls. from aq.; spar. sol. cold but eas. sol. hot aq.; eas. sol. alc., ether; very eas. sol. acetone; spar. sol. C<sub>6</sub>H<sub>6</sub>, CHCl<sub>3</sub>, lgr. — Sublimes undecomposed. [For study of ioniz. const. at 25° see (9).]

[For prepn. of  $\bar{C}$  from p-hydroxybenzoic acid (1:0840) with aq. HCl + 30% H<sub>2</sub>O<sub>2</sub> (60–90% yield (6)) or in Na<sub>2</sub>CO<sub>3</sub> soln. with Cl<sub>2</sub> (100% yield NaĀ (7)), or in AcOH with KClO<sub>3</sub> + HCl (8), or with SbCl<sub>5</sub> on warming (1), see indic. refs.; from 3-amino-4-hydroxybenzoic acid [Beil. XIV-597] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. see (4); from o-chlorophenol (3:5980) in CCl<sub>4</sub> with alc. alk. in s.t. at 125–130° see (5); from methyl 3-chloro-4-hydroxybenzoate (see below) by hydrol. with 40% KOH see (2); from 3-chloro-4-hydroxybenzonitrile (3) via hydrol. with acid see (5).]

C in aq. soln. gives with FeCl<sub>3</sub> a brown ppt. (1).

[C with PCl<sub>5</sub> (2 moles) followed by treatment of the intermediate acid chloride with aq. yields (1) 3,4-dichlorobenzoic acid (3:4925); C on warming with SbCl<sub>5</sub> (2 moles) yields (1) 3,5-dichloro-4-hydroxybenzoic acid (3:4950).]

[For studies of bactericidal actn. of C or its derivatives see (10) (11) (12) (13) (14).]

- 3:4675-3:4680 DIVISION A 420
  - Methyl 3-chloro-4-hydroxybenzoate: ndls. from dil. alc. or lgr., m.p. 107° (2), 106–107° (4). [From C in MeOH with H₂SO₄ (4) or from methyl p-hydroxybenzoate (1:1549) with SO₂Cl₂ (2).] [For reactn. of this prod. with acetobromglucose see (10); for studies of bactericidal power see (11).]

Ethyl 3-chloro-4-hydroxybenzoate: ndls. from dil. alc., m.p. 77-78° (2). [From ethyl p-hydroxybenzoate (1:1534) with SO<sub>2</sub>Cl<sub>2</sub> (2); for use as disinfectant see (14).]

- —— 3-Chloro-4-methoxybenzoic acid (3-chloroanisic acid): scales from dil. AcOH, m.p. 214-215° (16), 213° (4) (15), 212-214° (17). [Prepd. indirectly from 3-chloro-4-methoxybenzamide with HNO<sub>2</sub> (15), from 3-chloro-4-methoxytoluene by oxidn. with CrO<sub>3</sub>/AcOH (16) or alk. KMnO<sub>4</sub> (17).]
- 3:4675 (1) Lössner, J. prakt. Chem. (2) 13, 432-435 (1876). (2) Mazzara, Gazz. chim. ital. 29, I 385-387 (1899). (3) Biltz, Ber. 37, 4035-4036 (1904). (4) von Auwers, Ber. 30, 1473-1474 (1897). (5) Hasse, Ber. 10, 2192-2194 (1877). (6) Leulier, Pinet, Bull. soc. chim. (4) 41, 1364-1365 (1927). (7) Tishchenko, J. Russ. Phys.-Chem. Soc. 60, 153-162 (1928); Cent. 1928, II 768; C.A. 22, 3397 (1928). (8) Chem. Fabrik von Heyden, Ger. 69,116; Friedländer 3, 847. (9) Coppadoro, Gazz. chim. ital. 32, I 554 (1902). (10) Sabalitschka, Arch. Pharm. 267, 675-685 (1929).

(11) Sabalitschka, Dietrich, Böhn, Pharm. Ztg. 71, 834-836 (1926); Cent. 1926, II 1959; C.A. 20, 3060 (1926). (12) Sabalitschka, Dietrich, Desinfektion 11, 67-71, 94-104 (1926); Cent. 1927, I 2670-2671; C.A. 20, 3712. (13) Sabalitschka, Apoth. Ztg. 43, 670-673 (1928); Cent. 1928, II 271. (14) Sabalitschka, Bohn, Ger. 592,826, Sept. 11, 1930; Cent. 1934, I 3369. (15) Gattermann, Ber. 32, 1118, 1121 (1899). (16) Schall, Dralle, Ber. 17, 2529 (1884). (17) Peratoner, Vitale, Gazz. chim. ital. 28, I 217 (1898).

### 3:4680 8-CHLORONAPHTHOIC ACID-1

 $\begin{array}{c|c} \text{Cl} & \text{COOH} \\ \hline & & \text{C}_{11}\text{H}_7\text{O}_2\text{Cl} & \text{Beil. IX - 651} \\ \hline & & \text{IX}_{1^-}(276) \end{array}$ 

M.P. 171-171.5° (1) 170-170.5° (1) 169-170° (2) 168-169° (3) 167-168° (3) 167° (4) (5)

Cryst. from C<sub>6</sub>H<sub>6</sub> (2), scales from alc. (4). — Subl. in ndls. (4).

[For prepn. of  $\bar{C}$  from naphthalic acid (1:0890) via conv. with Hg(OAc)<sub>2</sub> to anhydro-8-hydroxymercuri-1-naphthoic acid and subsequent reactn. with Cl<sub>2</sub> in AcOH see (1) (3) (6) (7) cf. (8); from 8-aminonaphthoic acid-1 [Beil. XIV-534, XIV<sub>1</sub>-(623)] via diazotization and reactn. with CuCN see (4); from  $\alpha$ -naphthoic acid (1:0785) with Cl<sub>2</sub> in AcOH contg. I<sub>2</sub> see (4); from 8-nitronaphthoic acid-1 [Beil. IX-653] (3) with SOCl<sub>2</sub> in C<sub>6</sub>H<sub>6</sub> (some dichloronaphthostyril also being formed) see (3); from 8-chloro-1-naphthonitrile (see below) by hydrolysis see (9); from 8-chloro-1-naphthoamide (see below) by hydrolysis with AcOH/H<sub>2</sub>SO<sub>4</sub> + NaNO<sub>2</sub> see (5) (2).]

 $\tilde{C}$  with Cl<sub>2</sub> in AcOH contg. I<sub>2</sub> yields (4) (1) 5,8-dichloronaphthoic acid-1 [Beil. IX-651], scales from alc., m.p. 186-187° (4) (1).

C with PCl<sub>5</sub> yields (5) 8-chloro-1-naphthoyl chloride (props. not reported).

Č with cold red fumg. HNO<sub>3</sub> yields (10) (11) 8-chloro-5-nitronaphthoic acid-1, lfts. or ndls. from alc., m.p. 227° (10), 225-226° (11). [This prod. with Cu bronze in boilg. toluene for 3 hrs. yields (11) 5-nitronaphthoic acid-1 [Beil. IX-652], m.p. 241-242°.

Salts. CaA<sub>2</sub>.2H<sub>2</sub>O; ndls. sol. in 42 pts. cold aq. (4).

- Methyl 8-chloro-1-naphthoate: oil, b.p. 188-189° at 16.2 mm. (2). [From C with ethereal diazomethane (2).]
- —— 8-Chloro-1-naphthonitrile: ndls. from MeOH, m.p. 150-151° (9), 145-146° (2), b.p. 200° at 18 mm. (9), 242-244° at 15.5 mm. (?) (2). [From 8-chloronaphthylamine-1 [Beil. XII-1256] via diazotization and reactn. with CuCN (yields: 57% (5), 22% (2)) (9).]
- ---- 8-Chloro-1-naphthoamide: ndls. from alc., m.p. 203.5° (5). [From the nitrile (above) by hydrolysis with AcOH/H<sub>2</sub>SO<sub>4</sub> (5).]
- 3:4680 (1) Whitmore, Fox, J. Am. Chem. Soc. 51, 3363-3367 (1929). (2) Bergmann, Hirshberg, J. Chem. Soc. 1936, 334. (3) Rule, Barnett, J. Chem. Soc. 1932, 175-179. (4) Eckstrand, J. prakt. Chem. (2) 38, 150-151 (1888). (5) Kalb, Ber. 47, 1726-1728 (1914). (6) Corbellini, Barbari, Giorn. chim. ind. applicata 15, 335-337 (1933); Cent. 1933, II 2818; C.A. 27, 5737 (1933). (7) Corbellini, Ital. 332,963, May 19, 1934; Cent. 1937, I 2460 (8) Leuck, Perkins, Whitmore, J. Am. Chem. Soc. 51, 1831-1836 (1929). (9) Meisenheimer, Beisswenger, Ber. 65, 32-42 (1932). (10) Eckstrand, J. prakt. Chem. (2) 38, 253-254 (1888).
  - (11) Rule, Pursell, Brown, J. Chem. Soc. 1934, 168-171.

# 3:4690 2,5-DICHLOROHYDROQUINONE (p-Dichlorohydroquinone) CI Cl C6H4O2Cl2 Beil. VI - 850 VI<sub>1</sub>— VI<sub>2</sub>-(845)

M.P. 172° (1) (2) 170° (3) 166° (4)

[See also 2,5-dichlorobenzoquinone-1,4 (3:4470).]

Colorless ndls. from boilg. aq., tbls. from  $C_6H_6$ , moclinic pr. from acetone; spar. sol. cold aq., sol. boilg. aq., very eas. sol. alc., ether, or warm AcOH. — Sublimes in ndls.

[For prepn. of  $\bar{C}$  from 2,5-dichlorobenzoquinone-1,4 (3:4470) by reductn. with SO<sub>2</sub> see (5); from chlorobenzoquinone-1,4 (3:1100) with hot conc. HCl (83% yield (6)) (4) or in CHCl<sub>3</sub> with HCl gas (4) see indic. refs.; from hydroquinone (1:1590) with HCl + KClO<sub>3</sub> (2) (7), in AcOH or better CHCl<sub>3</sub> with Cl<sub>2</sub> (poor yield together with 2,3-isomer) (6), or in MeOH with Cl<sub>2</sub> (8) see indic. refs.; from chlorohydroquinone (3:3130) with HCl + KClO<sub>3</sub> (68% yield) see (9); from 2,5-dichloro-p-aminophenol (10) by diazotization in H<sub>2</sub>SO<sub>4</sub> + ZnSO<sub>4</sub> soln. and hydrolysis of the diazonium salt (10).]

[For use of  $\bar{C}$  as an antioxidant and gum inhibitor in cracked gasoline see (11); for use in aq. petroleum emulsion as insecticidal oil spray see (12); for use as vulcanization accelerator see (19).]

 $\tilde{C}$  on oxidn. with  $K_2Cr_2O_7$  or  $Na_2Cr_2O_7 + dil$ .  $H_2SO_4$  (7) (2) (9) (13) (14) or even with conc. HNO<sub>3</sub> at ord. temp. (4) yields 2,5-dichlorobenzoquinone-1,4 (3:4470) q.v. — [For studies of oxidn.-reductn. potential of system  $\tilde{C}$  + corresp. quinone see (9) (15) (16).]

- **D 2,5-Dichlorohydroquinone diacetate:** colorless ndls. from dil. alc., m.p. 141° (4) (17). [From  $\bar{C}$  with Ac<sub>2</sub>O (4) or from 2,5-dichlorobenzoquinone-1,4 (3:4470) in Ac<sub>2</sub>O + AcOH with Zn dust (17).]
- **② 2,5-Dichlorohydroquinone dibenzoate:** colorless wooly ndls. from CS<sub>2</sub>, m.p. 185° (4). [From  $\bar{C}$  on refluxing with BzCl (4).]
- 2,5-Dichlorohydroquinone dimethyl ether: colorless ndls., m.p. 126° u.c. (17), 125-127° (6), b.p. 261-263° u.c. at 744 mm. (16). [From \(\tilde{C}\) in dil. aq. NaOH on shaking with Me<sub>2</sub>SO<sub>4</sub> (63% yield (6)), or from hydroquinone dimethyl ether in AcOH with Cl<sub>2</sub> (17) (18).] [This prod. with fumg. HNO<sub>3</sub> in cold does not nitrate but oxidizes to 2.5-dichlorobenzoquinone-1,4 (3:4470) (17).]

3:4690 (1) Krafft, Ber. 10, 800 (1877). (2) Ling, J. Chem. Soc. 61, 558 (1892). (3) Fels, Z. Krist. 37, 481 (1903). (4) Levy, Schultz, Ann. 210, 148-150 (1881). (5) Stadler, Ann. 69, 312-318 (1849). (6) Eckert, Endler, J. prakt. Chem. (2) 104, 83-84 (1922). (7) Hammick, Hampson, Jenkins, J. Chem. Soc. 1938, 1264. (8) Plazek, Rocznki Chem. 10, 761-776 (1930), Cent. 1931, I 1428; C.A. 25, 1504 (1931). (9) Conant, Fieser, J. Am. Chem. Soc. 45, 2205-2206 (1923). (10) Skraup, Steinruck (to Rheinische Kamfer-Fabrik), Ger. 431,513, July 10, 1926; Cent. 1926, II 1462.

(11) Clarke, Towne (to Texas Co), U.S. 2,023,871, Dec. 10, 1935; Cent. 1936, I 2671; C.A. 30, 851 (1936). (12) Yates (to Shell Development Co), U.S. 1,778,240, Oct 14, 1930; Cent. 1931, 1 2799; C.A. 24, 5928 (1930). (13) Kehrmann, Grab, Ann. 303, 12-14 (1898). (14) Hantzsch, Schniter, Ber. 20, 2279-2282 (1887). (15) Hunter, Kvalnes, J. Am. Chem. Soc. 54, 2874-2875, 2878 (1932). (16) Kvalnes, J. An. Chem. Soc. 56, 667-670 (1934). (17) Kohn, Gurewitsch, Monatsh. 56, 135-136 (1930). (18) Habermann, Ber. 11, 1034-1035 (1878). (19) Fisher (to Naugatuck Chem. Co.), French 740,978, Feb. 3, 1933, Cent. 1933, II 3134

Colorless ndls. from aq. alc., dil. AcOH or  $C_6H_6$ ; eas. sol. hot aq.; eas. volatile with steam. [For prepn. of  $\bar{C}$  from 4-chloro-1,2-dimethylbenzene (3:8675) by oxidn. with boilg. dil. HNO<sub>3</sub> (D=1.20) (7) or with 20 pts. dil. HNO<sub>3</sub> (D=1.10) in s.t. at 160° for 5-6 hrs. (8) (by this method  $\bar{C}$  is always accompanied by the isomeric 5-chloro-2-methylbenzoic acid (3:4670) separable by its less sol. calcium salt (1) (8) (7)) see indic. refs.; from 4-chloro-2-methylbenzaldehyde [Beil. VII-296] by air oxidn. see (4); from chloromethyl 4-chloro-2-methylphenyl ketone (4-chloro-2-methylphenacyl chloride) [Beil. VII-306] by oxidn. with KMnO<sub>4</sub> see (2); from  $\beta$ -chloro-2-methyl 4-chloro-2-methylphenyl ketone (5) by oxidn. at 100° with mixt. of equal pts. conc. HNO<sub>3</sub> and aq. see (5); from 4-chloro-2-methylbiphenyl (3) by oxidn. with  $CrO_3/AcOH$  (8% yield) see (3); from 1-methyl-1-(trichloromethyl)cyclohexadiene-2,5-one-4 [Beil. VII-149] by treatment with PCl<sub>5</sub> giving 4-chloro-2-methylbenzotrichloride, followed by alk. hydrolysis of the latter, see (9); from 4-chloro-2-methylbenzonitrile, m.p. 67° (1) (10), by boilg. for 16 hrs. with 8% aq. KOH sec (1) (10).]

 $\bar{C}$  on oxidn. with alk. KMnO<sub>4</sub> (7) or with 10-20 pts. dil. HNO<sub>3</sub> (D=1.13) in s.t. at 180-200° for 5 hrs. (1) yields 4-chlorophthalic acid (3:4390).

Č fused with KOH yields (7) 4-hydroxy-2-methylbenzoic acid [Beil. X-215], m.p. 172-173° (7).

Salts. NH<sub>4</sub> $\bar{A}$ , cas. sol. aq.; K $\bar{A}$ .H<sub>2</sub>O, very eas. sol. aq.; Ca $\bar{A}_2$ .3H<sub>2</sub>O more sol. in aq. than corresp. salt of 5-chloro-2-methylbenzoic acid (3:4670); Ba $\bar{A}_2$ .4H<sub>2</sub>O, more eas. sol. aq. than calcium salt (for details see (1)).

- --- Methyl 4-chloro-2-methylbenzoate: unrecorded.
- Ethyl 4-chloro-2-methylbenzoate: oil, b.p. 258° (1),  $D_4^{20} = 1.1626$  (10),  $n_{\rm He}^{20} = 1.52705$  (10). [From  $\bar{\rm C}$  in EtOH with HCl gas (1) or from the amide (see below) with ethyl nitrite in s.t. at 140° for 4-5 hrs. (1).]
- —— 4-Chloro-2-methylbenzamide: colorless ndls. from hot aq., from alc. or ether, m.p. 183° (1). [Obtd. indirectly by partial sapon. of corresp. nitrile (above) (1).]
- 3:4700 (1) Claus, Stapelberg, Ann 274, 287-291 (1893).
   (2) Kunckell, Ber. 41, 2648 (1908).
   (3) Huntress, Seikel, J. Am Chem Soc. 61, 820 (1939).
   (4) von Auwers, Keil, Ber. 38, 1696 (1905).
   (5) Mayer, Muller, Ber. 60, 2281 (1927).
   (6) Mayer, Albert, Schon, Ber. 65, 1295-1299 (1932).
   (7) Kruger, Ber. 18, 1757 (1885).
   (8) Claus, Bayer, Ann. 274, 308 (1893).
   (9) von Auwers, Julicher, Ber. 55, 2167-2168, 2179-2180 (1922).
   (10) von Auwers, Harres, Z. physik. Chem. A-143, 15-16, 18 (1929).

M.P. 172° (1) B.P. 180° at 26 mm. (1) 174° (2)

[See also naphthalene tetrachloride (3:4750)]

Cryst, from AcOH.

[For prepn. of  $\bar{\mathbb{C}}$  from 1,2,3,4-tetrahydronaphthalene (tetralin) (1:7550) with  $\mathbb{C}l_2$  in pres. of  $\mathbb{I}_2$  (15% yield (2)) at 15° in diffuse daylight see (1) (2); for forms, in small amt. from tetralin during prepn. of 7-chloro-1,2,3,4-tetrahydronaphthalene ( $\beta$ -chlorotetralin) with  $\mathbb{C}l_2$  in pres. of  $\mathbb{I}_2$  at 10° see (1).]

 $\bar{C}$  with  $2Br_2$  in boilg.  $CS_2$  yields (1) 1,2-dibromo-5,6,7,8-tetrachloronaphthalene [Beil.  $V_2$ -(388)], m.p. 142° (1), which with alc. (?) NaOEt gives (alm. quant. yield (1)) 1,2,3,4-tetrachloronaphthalene [Beil.  $V_2$ -(446)], m.p. 198°.

3:4703 (1) von Braun, Ber. 56, 2337 (1923). (2) Wynne, J. Chem. Soc. 1946, 61.

3:4704 3-CHLORONAPHTHOQUINONE-1,2 (3-Chloro-β-naphthoquinone) Cl C<sub>10</sub>H<sub>5</sub>O<sub>2</sub>Cl Beil. VII-72C

M.P. 172° (1) (2) (3)

Red ndls. from CHCl3. — Sol. hot alc., AcOH, C6H6, CHCl3.

[For prepn. of  $\bar{C}$  from β-naphthol (1:1540) by conversion with Cl<sub>2</sub> in AcOH (2) to 1,1,3,4-tetrachloro-2-keto-1,2,3,4-tetrahydronaphthalene [Beil. VII-371] (lfts. of monohydrate from aq., m.p. 90-91°; anhydrous lfts. or ndls. from hot lgr., m.p. 101-103°)

followed by treatment with aq. Na<sub>2</sub>CO<sub>3</sub> (2) (3) (overall yield of  $\bar{C}$  is 56% (4)). — For prepn. of  $\bar{C}$  from naphthoquinone-1,2 (1:9062) with Cl<sub>2</sub> in AcOH (1) (5), or from 1,3-dichloronaphthol-2 (3:1990) by oxidn. with conc. HNO<sub>3</sub> in AcOH (3), see indic. refs.]

C on reduction with SO<sub>2</sub> in AcOH gives (1) 3-chloro-1,2-dihydroxynaphthalene [Beil.

VI-975], colorless ndls., m.p. 116-117° (1).

[Č on oxidn. with aq. Ca(OCl)<sub>2</sub> undergoes rupture of the quinoid ring and a subsequent series of changes (5) resulting in formation of (phthalidyl-3)-dichloroacetic acid [Beil. XVIII-419], this. of monohydrate from aq., anhydrous ndls. from C<sub>6</sub>H<sub>6</sub>, m.p. 157°, accompanied by some 2,2-dichloroindandione-1,3 [Beil. VII-696, VII<sub>1</sub>-(375)], m.p. 124-125°.]

[C although insol. in aq. Na<sub>2</sub>CO<sub>3</sub> gradually dissolves in dil. aq. alkali with conversion (1) to 3-chloro-2-hydroxy-naphthoquinone-1,4 (3-chloro-4-hydroxynaphthoquinone-1,2) [Beil. VIII-304], yel. ndls. from alc., m.p. 215°.]

[C with alc. NH<sub>3</sub> on htg. gives (1) 3-chloro-2-hydroxynaphthoquinone-1,4-imine-4 (3-chloro-4-aminonaphthoquinone-1,2) [Beil. VIII-305], m.p. abt. 260°.]

[Č with alc. aniline on htg. similarly gives (1) 3-chloro-2-hydroxynaphthoquinone-1,4-anil-4 (3-chloro-4-anilino-naphthoquinone-1,2) [Beil. XII-225], yel. ndls. from AcOH, m.p. 253°.]

Č with 2,3,-dimethylbutadiene-1,3 (1:8050) in spec. purified CHCl<sub>3</sub> in s.t. at 100° in dark for 1 hr. readily forms (70% yield (4)) a Diels-Alder type adduct C<sub>16</sub>H<sub>15</sub>O<sub>2</sub>Cl, lemonyel. ndls. from ether/pet. ether, m.p. 87-88°; this adduct is unstable even at 10° and in alc. or ether soln. on shaking with air loses HCl and is oxidized (by loss of 2 hydrogen atoms) giving (87% yield (4)) 2,3,-dimethylphenanthraquinone, m.p. 237-238° u.c., 242-243° cor. (4). — For study of reaction of Č with excess 2,3-dimethylbutadiene-1,3 (1:8050) giving 36% yield of a halogen-free prod. of m.p. 135° see (6).

**3:4764** (1) Zincke, Ber. **19,** 2497 (1886). (2) Zincke, Kegel, Ber. **21,** 3550-3552 (1888). (3) Zincke, Kegel, Ber. **21,** 3380, 3386 (1888). (4) Fieser, Dunn, J. Am. Chem. Soc. **59,** 1019-1020 (1937). (5) Zincke, Schmidt, Ber. **27,** 737-739 (1894). (6) Fieser, Dunn, J. Am. Chem. Soc. **59,** 1021-1024 (1937). (7) Zincke, Schmunk, Ann. **257,** 140-145 (1890).

# 3:4705 5-CHLORO-2-HYDROXYBENZOIC COOH $C_7H_5O_3Cl$ Beil. X - 102 X<sub>1</sub>-(47) (5-Chlorosalicylic acid)

| M.P. [176° | (1)]                             | M.P. (contd.) | 171-172.5° | (10)           |
|------------|----------------------------------|---------------|------------|----------------|
| 173°       | (2)                              |               | 170-171°   | (11)           |
| 172.5°     | (3)                              |               | 168°       | (12) (13)      |
| 172-173°   | (4)                              |               | 167.5°     | (14) (15) (16) |
| 172°       | (5) (6) (7) (8)<br>(9) (22) (27) |               | 167-168°   | (17) (18) (19) |

Colorless ndls. from aq. or alc.; sol. in 1100 pts. aq. at 20° and in 80 pts. aq. at 100° (17); eas. sol. alc., ether,  $C_6H_6$ , CHCl<sub>3</sub>, AcOH; spar. sol. lgr. — Yolatile with steam (12). — Shows sternutatory props.

[For prepn. of  $\tilde{C}$  from p-chlorophenol (3:0475) in CCl<sub>4</sub> with aq. NaOH (very small yield (15)) in pres. of Cu (19) or in CCl<sub>4</sub> with alc. KOH in s.t. at 140° for 5-6 hrs. (17) see indic. refs.; from dry sodium p-chlorophenolate with CO<sub>2</sub> at 140-150° under press. see (12) (20); from salicylic acid (1:0780) with Cl<sub>2</sub> in CS<sub>2</sub> (65% yield (38)) (3), in MeOH (21) or EtOH (22) (much 3,5-dichlorosalicylic acid (3:4935) also being formed), in AcOH (85%)

yield (4)) or in nitrobenzene at 50-60° (23), or with  $C_6H_5ICl_2$  in suitable solvents (89% yield (2)), or by htg. with  $SbCl_5$  (14), or with HCl + 30%  $H_2O_2$  (56-66% yield (6)), see indic. refs.; from mono K salicylate in aq. with  $Cl_2$  (24) or from di-potassium salicylate with KOCl (1) (much 3,5-dichlorosalicylic acid (3:4935) being also formed) see indic. refs.]

[For prepn. of  $\bar{C}$  from 5-chloro-2-aminobenzoic acid (5-chloroanthranilic acid) [Beil. XIV-365] with nitrous acid at 50° see (11); from 5-amino-2-hydroxybenzoic acid (5-amino-salicylic acid) [Beil. XIV-579, XIV<sub>1</sub>-(650)] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. (62-71% yield (16)) (25) see indic. refs.; from 5-chloro-2-hydroxybenzonitrile [Beil. X-104] by hydrolysis with H<sub>2</sub>SO<sub>4</sub> see (13); from ethyl 5-chloro-2-hydroxybenzoate (see below) by hydrolysis with KOH see (7) (25); from 5-chloro-2-methoxybenzoic acid (see below) by cleavage with conc. HI see (10); from chloral-5-chlorosalicylamide (see below) by hydrolysis with 10% NaOH see (26); from 5-chlorosalicylin by oxidn. with K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> + H<sub>2</sub>SO<sub>4</sub> (18) or with KMnO<sub>4</sub> followed by acid hydrolysis (9) see indic. refs.; from 6-chloro-2,3-dimethyl-chromone (27), 6-chloro-2,3-diphenylchromone (28), or 7-chloro-1,2,3,4-tetrahydroxanthone (5) by alk. hydrol. see indic. refs.]

[For use of various esters of  $\bar{C}$  as mothproofing agents (29), as insecticides (30), or as plasticizers (31) (32) see indic. refs.; for studies of bactericidal power of  $\bar{C}$  see (33) (34); for study of fate of  $\bar{C}$  in animal body see (35).]

[ $\bar{C}$  on electrolytic reduction in aq. alc.  $H_2SO_4$  yields (36) 5-chloro-2-hydroxybenzyl alcohol [Beil. VI-893], m.p. 93° (36);  $\bar{C}$  on reductn. with Na/Hg as directed (16) yields 5-chloro-2-hydroxybenzaldchyde (3:2800).]

[Č with PCl<sub>5</sub> (37) in lgr. (38) yields 4-chloro-2-chloroformylphenylphosphoryl dichloride, Cl.CO.C<sub>6</sub>H<sub>3</sub>Cl.O-P(O)Cl<sub>2</sub> [Beil. X-103], oil, b.p. 183-184° at 13 mm. (38); Č with PCl<sub>3</sub> yields (38) 4-chloro-2-chloroformylphenyl metaphosphite, Cl.CO.C<sub>6</sub>H<sub>3</sub>Cl.O-P:O [Beil. X-103], m.p. abt. 55-57°, b.p. 155-156° at 14 mm. (38).]

 $[\bar{C} \text{ with ClSO}_3H \text{ at } 50-70^\circ \text{ yields } (39) \text{ 3-chlorosulfonyl-5-chloro-2-hydroxybenzoic acid} [Beil. XI_1-(106)], pr. from <math>\Lambda cOH$ , m.p.  $206-207^\circ$  (39).]

[C with HNO<sub>3</sub> + conc. H<sub>2</sub>SO<sub>4</sub> at 0° (23), or C on warming with fumg. HNO<sub>3</sub> (22), or C in AcOH treated with 5 pts. fumg. HNO<sub>3</sub> in AcOH (40), yields 5-chloro-3-nitrosalicylic acid [Beil. X-120], pale yel. ndls., m.p. 162–163° (22); note that by loss of CO<sub>2</sub> and further nitration 4-chloro-2,6-dinitrophenol [Beil. VI-260, VI<sub>1</sub>-(128)], yel. ndls. from aq., m.p. 80° (22), is also formed.]

[ $\bar{C}$  in alc. with  $I_2$  + HgO gives (41) 5-chloro-x-iodo-salicylic acid, colorless ndls. from hot dil. alc., m.p. 224° sl. dec. (41);  $\bar{C}$  in alk. with  $I_2/KI$  yields (25) by loss of CO<sub>2</sub> and further iodination 4-chloro-2,6-diiodophenol [Beil. VI<sub>1</sub>-(112)], yellowish ndls. from alc., m.p. 108° (25) (ethyl ether, m.p. 69°, acetate, m.p. 127.5° (25)).]

Č in aq. soln. gives with FeCl<sub>3</sub> a violet coloration.

Salts. LiĀ, 2H<sub>2</sub>O (8); NaĀ (8) (12), KĀ (8) all eas. sol. aq.; CaĀ<sub>2</sub>.3H<sub>2</sub>O (14), BaĀ<sub>2</sub>.3H<sub>2</sub>O (11) (12) (14) (17) (18) see indic. refs.; PbĀ<sub>2</sub> (11), AgĀ (12) (18), insol. aq.

- Methyl 5-chloro-2-hydroxybenzoate (methyl 5-chlorosalicylate): ndls. from alc., m.p. 50° (1), 48° (7) (12), b.p. 249° sl. dec. (12). [From C in MeOH with HCl gas (12), or from AgA with MeI (1): also from methyl salicylate (1:1750) by chlorination with methyl N.N-dichlorocarbamate in AcOH (44).]
- Ethyl 5-chloro-2-hydroxybenzoate (ethyl 5-chlorosalicylate): ndls. from alc., m.p. 25° (7). [From ethyl salicylate (1:1755) with SO<sub>2</sub>Cl<sub>2</sub> (7).]
- 5-Chloro-2-methoxybenzoic acid: ndls. from aq., m.p. 82° (42), 81-82° (10), 80-81°
   (4). [Obtd. indirectly from 2-methoxybenzoic acid (1:0685) in AcOH with Cl<sub>2</sub> (4), or from 5-chloro-2-methoxybenzonitrile by alk. hydrolysis (43).]

- **D** 5-Chloro-2-ethoxybenzoic acid: lfts. from dil. alc., m.p. 118° (7).
- **5-Chloro-2-acetoxybenzoic acid:** cryst. from C<sub>6</sub>H<sub>6</sub>, m.p. 149° (8), 148° (42), 142° (25). [From  $\tilde{\mathbf{C}}$  with AcCl (42),]
- 5-Chloro-2-hydroxybenzamide: Ifts. from alc. or C<sub>6</sub>H<sub>6</sub>, m.p. 226-227° (26) (13), 223.5-224° (7), 222-223° (8). [From methyl or ethyl 5-chlorosalicylates (above) with alc. NH<sub>3</sub> (7).] [This amide with chloral (3:5210) gives on warming (26) chloral-5-chloro-2-hydroxybenzamide, ndls. from C<sub>6</sub>H<sub>6</sub>, m.p. 148-149° dec. (26).]
- 3:4705 (1) Lassar-Cohn, Schultze, Ber. 38, 3800 (1905). (2) Neu, Ber. 72, 1511 (1939). (3) Hübner, Brenken, Ber. 6, 174 (1873). (4) Hirwe, Rana, Gavankar, Proc. Indian Acad. Sci. A-8, 211-212 (1938). (5) Hall, Plant, J. Chem. Soc. 1933, 234. (6) Leulier, Punet, Bull. soc. chim. 44, 1363 (1927). (7) Mazzara, Gazz. chim ital. 29, I 340-347 (1899). (8) Smith, Ber. 11, 1226-1227 (1878). (9) van Wawen, Arch. Pharm. 235, 567-568 (1897). (10) Peratoner, Condorelli, Gazz. chim. ital. 28, I 211-212 (1898).

(11) Hübner, Weiss, Ber. 6, 175 (1873). (12) Varnholt, J. prakt. Chem. (2) 36, 19-22 (1887). (13) Biltz, Stepf, Ber. 37, 4026-4027 (1904). (14) Bellstein, Ber. 8, 816 (1875); Ann. 179, 285 Note 2 (1875). (15) Sen, Ray, J. Indian Chem. Soc. 9, 176 (1932). (16) Weil, Traun, Marcel, Ber. 55, 2664-2665 (1922). (17) Hasse, Ber. 10, 2190-2192 (1877). (18) Visser, Arch. Pharm. 235, 549-550 (1897). (19) Zeitner, Landau, Gor. 258,887, April 17, 1913, Cent. 1913, I 1641-1642. (20) Chem. Fabrik von Heyden, Ger. 33,635, May 10, 1885, Freedlander 1, 234 (1877)87).

(21) Plazek, Roczniki Chem 10, 761-776 (1930); Cent. 1931, I 1428, C.A. 25, 1504 (1931). (22) Smith, Peirce, Am. Chem. J. 1, 176-181 (1879/80); Ber 13, 34 36 (1880). (23) B.A.S.F., Ger. 137,118, Nov. 20, 1902, Cent. 1902, HI 1439-1140. (24) Cahours, Ann. chim. (3) 13, 108-111 (1845), Ann. 52, 341-342 (1844). (25) Brennans, Girod, Compt. rend 186, 1553-1555 (1928). (26) Hirwe, Rana, Ber. 72, 1351-1352 (1939). (27) Simonis, Schuhmann, Ber. 50, 1144-1145 (1917). (28) Wittig, Ann. 446, 190 (1925). (29) I G, Brit 274,425, Sept. 7, 1927; French 635,973, March 29, 1928, Cent. 1929, I 434 (30) I.G, French 702,768, April 16, 1931; Cent. 1931, II 3530, Austrian 125,712, Dec. 10, 1931; Cent. 1932, I 2886.

(31) Grether, DuVall (to Dow Chem. Co.), U.S. 2,198,883, April 23, 1940; C.A. 34, 5965 (1940).
(32) Grether, DuVall (to Dow Chem. Co.), U.S. 2,234,374, March 11, 1941, C.A. 35, 3738 (1941).
(33) Delauney, J. pharm. chim. (8) 25, 254-266, 545-560 (1937). (8) 26, 177-216 (1937). Cent. 1938, I 2019.
(34) Rochaix, Pinet, Bull. sci. pharmacol. 34, 486-487 (1927), Cent. 1927, II 2684; C.A. 22, 443 (1928).
(35) Girod, J. pharm. chim. (8) 9, 513-520 (1929); Cent. 1929, II 1815; C.A. 24, 163 (1930).
(36) Mettler, Ber. 39, 2939 (1906).
(37) Akt. Ges. für Anillinfabrikation, Ger. 89,556; Friedlander, 4, 156 (38) Anschutz, Anspach, Ann. 346, 318-323 (1906).
(39) Bayer and Co., Ger. 264,786, Sept. 23, 1913; Cent. 1913, II 1350.
(40) Ref. 38, pp. 338-339.

(41) Smith, Knerr, Am. Chem. J. 8, 95-96 (1886).
(42) Anschutz, Ann. 367, 263 (1999).
(43) Brand, Pabst, J. prakt. Chem. (2) 120, 207-208 (1928).
(44) Bougault, Chabrier, Compt. rend. 213, 400-402 (1941); Chabrier de la Saulniere, Ann. chim. (11) 17, 353-370 (1942); C.A. 38, 3255 (1944).

### 3:4707 3,5,6-TRICHLORO-2,4-DIMETHYL-PHENOL

(Trichloro-m-4-xylenol)

$$\begin{array}{cccc} \text{OH} & \text{C}_8\text{H}_7\text{OCl}_3 & \textbf{Beil. VI} & -\\ \text{Cl} & & \textbf{VI}_1 -\\ \text{Cl} & & \textbf{VI}_2 - (\textbf{460}) \end{array}$$

### M.P. 174° (1)

Pale yellowish ndls.

[For prepn. of C from 3,5,6-trichloro-2,4-dimethylaniline (1) via diazotization and hydrolysis (yield not stated) see (1).]

[For prepn. of basic Hg and Bi derivs. see (1).]

- **3.5,6-Trichloro-2,4-dimethylphenol methyl ether:** m.p.  $91.5^{\circ}$  (1). [From  $\bar{C}$  with  $Me_2SO_4 + aq. alk. (1).]$
- 3,5,6-Trichloro-2,4-dimethylphenol ethyl ether: m.p. 53.5° (1).
- 3,5,6-Trichloro-2,4-dimethylphenyl acetate: m.p. 86° (1).
- --- 3,5,6-Trichloro-2,4-dimethylphenyl benzoate: unreported.

3:4707 (1) Bures, Borgmann, Časopis Českoslov. Lékárnictva, 7, 270-280 (1927); Cent. 1928 I 1171, C.A. 22, 4503 (1928).

3:4709 3,4,6-TRICHLORO-2,5- OH 
$$C_8H_7OCl_3$$
 Beil. VI — VI<sub>1</sub>— VI<sub>2</sub>-(467)

### M.P. 175° (1)

Pale greenish ndls. from alc,  $\Lambda$ cOH, or pet eth. or by sublimation — Readily sol. in ether,  $C_6H_6$ , or CHCl<sub>3</sub>; less sol alc. or other org solvents; insol aq. — Volatile with steam. [For prepn. of  $\bar{C}$  from 3,4,6-trichloro-2,5-dimethylaniline (1), via diazotization and hydrolysis (yield not stated), see (1).]

[For conversion of C to basic Hg or Bi derive see (1)]

- (1) 3,4,6-Trichloro-2,5-dimethylphenol methyl ether: yellowish ndls from dil. alc. or pet. ether, m.p. 91° (1) [From C with Me<sub>2</sub>SO<sub>4</sub> + hot aq. alk (1).]
- 3,4,6-Trichloro-2,5-dimethylphenol ethyl ether: alm colorless cryst, m.p. 79° (1). [From  $\ddot{C}$  with  $Et_2SO_4$  + hot aq. alk. (1).]
- 3,4,6-Trichloro-2,5-dimethylphenyl acetate: pr. from alc. + other, m.p. 103° (1). [From  $\ddot{C}$  with  $\Lambda c_2 O$  (10 pts.) + trace of  $H_2 SO_4$  on htg (1)]
- 3,4,6-Trichloro-2,5-dimethylphenyl benzoate: hexag. pr. from alc. or pet. ether, m.p. 101° (1). [From C with benzoyl chloride + aq alk. (1).]

**3:4709** (1) Bures, Rubes, Collectron Czechoslov Chem. Commun. **1**, 648–657 (1929), C.A. **24**, 1851 (1930) also in Časopis Českoslov. Lékárnictva, **8**, 225–231, 258–264 (1928), Cent. **1929**, I 506–507; C.A. **23**, 3674 (1929).

# 3:4711 $d,l-\alpha,\alpha'$ -DICHLOROSUCCINIC COOH $C_4H_4O_4Cl_2$ Beil. II - 619 $II_1$ -(267) $II_2$ -(557) isodichlorosuccinic acid) Cl-C-H

[See also meso-\alpha,\alpha'-dichlorosuccinic acid (3:4930).]

Cryst. from ether + pet. ether. -  $\bar{C}$  is much more sol. aq. than its meso stereoisomer; e.g., 100 cc. satd aq. soln of  $\bar{C}$  at 0° conts. 64.0 g.  $\bar{C}$  (8);  $\bar{C}$  is eas. sol ether, less so in alc. [For prepn. of  $\bar{C}$  from disodium salt of fumaric acid (1:0895) with Cl<sub>2</sub> in satd. NaCl soln. in dark or diffuse daylight at 5° (yields: 75% (7), 68% (11), 30% (1)) (11) (9) see indic. refs. (note that as a side reactn. some addn. of HOCl also occurs leading to as much as 13% (9) chloromalic acid, and that under some (capricious) circumstances the reactn. yields as much as 80% (9) of the meso stereoisomer (3:4930)); from maleic anhydride (1:0625) in CCl<sub>4</sub> by addn. of Cl<sub>2</sub> in sunlight followed by hydrolysis see (12) (9); from  $d_1l$ - $d_2$ - $d_1l$ -

dichloride [Beil. VII-573] (13) or toluquinone dichloride [Beil. VII-576] (13) by oxidn. with aq. KMnO<sub>4</sub> (or BaMnO<sub>4</sub>) at 0° see (3); from  $d_1 l_{-\alpha,\alpha'}$ -dichlorosuccinyl (di)chloride (3:0395) by aq. hydrolysis see (14).]

C behaves as a normal dibasic acid: titration with standard dil. aq. alk. gives Neut. Eq. 93.5. — For study of acid strength  $(K_1 = 372.0 \times 10^{-4} \text{ at } 16^\circ; K_2 = 18.0 \times 10^{-4} \text{ at}$ 16.7° (8) cf. (15); for study of conductivity see (4).

[Salts (of metals):  $(NH_4)_2\bar{A}.2H_2O$  (10),  $K_2\bar{A}.H_2O$  (6),  $KH\bar{A}.2H_2O$  (6),  $CaA.2\frac{1}{2}H_2O$  (10), Ba7.7H<sub>2</sub>O (10), CuA.2½H<sub>2</sub>O (10), all eas. sol. aq.; SrA.7H<sub>2</sub>O (10), sol. in 15 pts. aq.;  $Pb\overline{A}.3H_2O$  (10) spar. sol. aq.]

C on boilg, with aq. (12) or with aq. KOH (7) (6) or aq. acid (6) loses 1 HCl yielding chlorofumaric acid (3:4853); for study of rate at 25° see (7) (16).

 $[K_2\bar{A}]$  in aq. soln. maintained at neutrality at 100° yields mainly (6) d<sub>i</sub>l-tartaric acid (1:0550).1

 $\bar{C}$  with PCl<sub>5</sub> (2 moles) gives (100% yield (14))  $d_i l_i - \alpha_i \alpha'$ -dichlorosuccinvl (di)chloride (3:0395), m.p. 39°.

- Dimethyl  $d_{sl}-\alpha_{s}\alpha'$ -dichlorosuccinate: m.p. 43° (see 3:0485).
- Diethyl  $d_{l}-\alpha_{l}\alpha'$ -dichlorosuccinate: oil (see 3:9578).
- Acid salt of  $\bar{C}$  with  $d_i l$ - $\alpha$ -phenylethylamine: pr. from aq., m.p. 149–150°, rap. htg. (6); satd. aq. soln. at 25° conts. 18.67 g./liter (6). [For details of resolution of  $\bar{C}$  with opt. act.  $\alpha$ -phenylethylamine see (6) (1); note incidentally that, although m.p. of C is 175°, the m.p. of each of the opt. act. stereoisomeric forms is lower, viz., 166-167° dec. (6), 168° (1).]
- 3:4711 (1) Timmermans, van Lancker, Jaffe, Bull. soc. chim. Belg. 48, 39-46, 63 (1939). (2) Kuhn, Zumstein, Ber. 59, 485 (1926). (3) Dimroth, Eber, Wehr, Ann. 446, 136-137, 145-146 (1926). (4) Michael, Bunge, Ber. 41, 2912 (1908). (5) Aminoff, Arkıv Kemi, Mineral., Geol., 7, No. 9, 5 (1918); Cent. 1919, III 319; C.A. 14, 2119 (1920). (6) Holmberg, Arkıv Kemi, Mineral., Geol. 8, No. 2, 33 (1920); Cent. 1921, I 830; C.A. 16, 2116 (1922). (7) Robinson, Lewis, J. Chem. Soc. 1933, 1260-1262. (8) Kuhn, Wagner-Jauregg, Ber. 61, 484, 487-497 (1928). (9) Kuhn, Wagner-Jauregg, Ber. 61, 501, 518-521 (1928). (10) van der Riet, Ann. 280, 219-222 (1894). (11) Terry, Eichelberger, J. Am. Chem. Soc. 47, 1068, 1076-1077 (1925). (12) Michael, Tissot, J. prakt. Chem. (2) 46, 392-393 (1892). (13) Clark, Am. Chem. J. 14, 556-557, 567-568
- (1892). (14) Lutz, J. Am. Chem. Soc. 49, 1110 (1927). (15) Holmberg, J. prakt. Chem. (2) 84, 164-165 (1911). (16) Holmberg, Z. physik. Chem. 79, 165-167 (1912).

### 3:4713 2,4,6-TRICHLORO-3,5-DIMETHYLPHENOL

(Trichloro-m-5-xylenol)

Beil. S.N. 529

C<sub>8</sub>H<sub>7</sub>OCl<sub>3</sub>

428

M.P. 177-178° 175-177° (2) (4)

Yellow ndls. from lt. pet.

[For prepn. of C from 3,5-dimethylphenol (m-5-xylenol) (1:1455) with Cl<sub>2</sub> in hot CCl<sub>4</sub> (87% yield (1)) or by action of ClSO<sub>3</sub>H + conc. HCl +  $H_2O_2$  (2) see indic. refs.: for form. of C from 3,5-dimethylphenol-2,4-bis-(sulfonyl chloride) (2) by preliminary KOH hydrolysis followed by action of conc.  $HCl + 30\% H_2O_2$  see (2) cf. (4).

C with fumg. HNO3 is oxidized (64% yield (1)) to 2,6-dichloro-3,5-dimethylbenzoquinone-1.4 (3,5-dichloro-m-xyloquinone), yel. lfts., m.p. 177-178° (1), 178° u.c. (3).

[C with NaNO<sub>2</sub> in AcOH at room temp. gives (48% yield (1)) of a mol. cpd. contg. 2 moles  $\ddot{C}+1$  mole of 2,6-dichloro-3,5-dimethylbenzoquinone-1,4 (above), crimson cubes from CCl<sub>4</sub>, becoming yellow at 118-119° without melting, but fusing slowly from 133-164° (1).]

3:4713 (1) Raiford, Kaiser, J. Org. Chem. 4, 565, 567 (1939). (2) Katscher, Lehr, Monatsh. 64, 239-240 (1934). (3) Claus, Runschke, J. prakt. Chem. (2) 42, 124 (1890). (4) Lehr, Anilin Farben-Ind. (Russ.) 4, 77-84 (1934); Cent. 1935, I 1365; not in C.A.

M.P. 178° (1)

Ndls. from dil. alc.

[For formn. of  $\bar{C}$  (in very small yield) from 5-chloro-1,3-dimethylcyclohexadiene-3,5 (5-chloro-1,2-dihydro-m-xylene) [Beil. V-119, V<sub>1</sub>-(64)] by oxidn. with boilg. 30% HNO<sub>3</sub> see (1).]

·Č on oxidn. with KMnO<sub>4</sub> gives (1) 5-chlorobenzenedicarboxylic acid-1,3 (5-chloroisophthalic acid) (3:4960), m.p. 278° (1), together with a little 5-hydroxybenzenedicarboxylic acid-1,3 (5-hydroxyisophthalic acid) [Beil. X-504, X<sub>1</sub>-(257)], m.p. 288°.

COOH

3:4715 (1) Klages, Knoevenagel, Ber. 28, 2045-2046 (1895).

# 3:4720 6-CHLORO-3-HYDROXYBENZOIC Cl C<sub>7</sub>H<sub>5</sub>O<sub>3</sub>Cl Beil. X-143 X<sub>1</sub>— M.P. 178-179° (1) 178° (2) (6) 177-178° (3) 176-177° (3) 175° (4) 169-170° (5)

Colorless cryst. from aq. [Ioniz. const. of  $\bar{C}$  at  $25^{\circ} = 1.40 \times 10^{-3}$  (6)].

[For prepn. of  $\bar{C}$  from 6-chloro-3-aminobenzoic acid [Beil. XIV-412, XIV<sub>1</sub>-(565)] via diazotization and boilg with aq. (yield: 60–70% (4) 10% (3)) see indic. refs.; from 6-amino-3-hydroxybenzoic acid [Beil. XIV-591] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> (?) see (1); from 6-chloro-3-hydroxytoluene (3:1535) via conv. with POCl<sub>3</sub> to 4-chloro-3-methylphenylphosphoric acid, oxidn. with KMnO<sub>4</sub> to 4-chloro-3-carboxyphenylphosphoric acid, and finally acid hydrolysis to  $\bar{C}$  see (3); for formn. of  $\bar{C}$  from methyl ether of  $\bar{C}$  (see below) by cleavage with HI see (5), from ethyl ester of  $\bar{C}$  (see below) by hydrolysis with 35% KOH see (2); from m-hydroxybenzoic acid (1:0825) with Cl<sub>2</sub> in MeOH (7) or in AcOH (1) see indic. refs [

- [C on distn. with Ba(OH)<sub>2</sub> yields (5) p-chlorophenol (3:0475).]
- [ $\bar{C}$  with cinnamic acid (1:0735) in conc.  $H_2SO_4$  + a few drops fumg.  $H_2SO_4$  (18%  $SO_3$ ) gives (29% yield (3)) anthracoumarin, golden-yel. ndls. from AcOH or by sublimation, m.p. 274° (3).]
  - Methyl 6-chloro-3-hydroxybenzoate: tbls. from dil. alc., m.p. 100° (2). [From C in MeOH with conc. H<sub>2</sub>SO<sub>4</sub> (2).]

- Ethyl 6-chloro-3-hydroxybenzoate: not specifically characterized. [For formn. (together with the isomeric ethyl 2-chloro-3-hydroxybenzoate) from ethyl m-hydroxybenzoate (1:1471) by actn. of SO<sub>2</sub>Cl<sub>2</sub> see (2).]
- 6-Chloro-3-methoxybenzoic acid: ndls. from AcOH, m.p. 173.5° (9), 170-171° (2) (8). [Prepd. indirectly from methyl ester (above) with McI + McOH/KOH, followed by hydrolysis with 35% KOH; also from 6-chloro-3-methoxytoluene by oxidn. with KMnO<sub>4</sub> (5), or from 6-chloro-3-methoxybenzaldehyde by oxidn. with alk. KMnO<sub>4</sub> (8).]

3:4720 (1) Beyer, Rec. trav. chim. 40, 628 (1921). (2) Mazzara, Gazz. chim. ital. 29, I 376-379 (1899). (3) Minney, Ripper, Monatsh 42, 76-80 (1921); J. Russ. Phys-Chem. Soc. 54, 673-679 (1922/23); Cent. 1924, I 905. (4) Minney, J. Russ. Phys-Chem. Soc. 58, 113-118 (1926); Cent. 1926, II 2295. (5) Peratoner, Condorell, Gazz. chim. ital. 28, I 214 (1898). (6) Coppadoro, Gazz. chim. ital. 32, I 547 (1902). (7) Plazek, Roczniki Chem. 10, 761-776 (1930); Cent. 1931, I 1428; C.A. 25, 1504 (1931). (8) Hodgson, Beard, J. Chem. Soc. 1926, 154. (9) Gibson, J. Chem. Soc. 1926, 1428.

M.P. 178.6-179.6° (1)

B.P. 192° cor. at 1175 mm. (1)

 $\bar{C}$  can be purified by sublimation or by recrystn. from alc; difficult to separate, however, from 1,2,3-trichloro-2-methylpropane (3:5885), b p 162-163 l° (1). —  $\bar{C}$  is easily volatile with steam; cas sol alc or ether.

[For formn of  $\bar{C}$  (together with other products) from 1,1,2-trichloro-2-methylpropane (3:5710) or from ter-butyl chloride (3:7045) with  $Cl_2$  see (1); for formn of  $\bar{C}$  together with other products) from  $\beta,\beta,\beta$ -trichloro-ter-butyl alcohol (" Chloretone") (3:2662) +  $PCl_5$  see (2).]

 $\overline{\mathbf{C}}$  on htg. in s.t with aq. at 180° yields (3)  $\alpha$ -chloroisobutyric acid (3:0235).

**3:4725** (1) Rogers, Nelson, J. Am. Chem. Soc. **58**, 1027-1029 (1936). (2) Willgerodt, Dürr, Ber. **20**, 539-540 (1887). (3) Willgerodt, Durr, J. prakt. Chem. (2) **39**, 284 (1889).

3:4740 1,1,1,2,3-PENTACHLOROPROPANE H 
$$C_3H_3Cl_5$$
 Beil. I-107 (unsym.-Pentachloropropane)  $ClCH_2$ — $C$ — $CCl_3$   $I_1$ — $I_2$ —

Colorless ndls. (from hot alc.) with camphoraceous odor. — Sublimes readily. — Insol. aq.; sol. org. solvents. [New comml. prod. (1942) in U.S.A.]

[For prepn. from 1,1,1-trichloropropene-2 (3:5345) by actn. of  $\operatorname{Cl}_2$  in diffuse light see (1).]

[For use as plasticizer with cellulose acetate films see (3).]

3:4740 (1) Victoria, Rec. trav. chim. 24, 282 (1905). (2) Henry, Rec. trav. chim. 24, 342 (1905). (3) Spicers, Ltd., Hand, Brit. 279,139, Nov. 17, 1927; French 125,165, Aug. 4, 1927; Cent. 1928, I 770.

M.P. 180-181° (1)

Ndls. from dil. alc. or lt. pet.

[For prepn. of  $\bar{C}$  from 5-chloro-2,3-dimethylphenol (5-chloro-o-3-xylenol) (3:2115) with  $Cl_2$  in lt. pet. ether see (1).]

4,5,6-Trichloro-2,3-dimethylphenyl acetate: unreported.
 4,5,6-Trichloro-2,3-dimethylphenyl benzoate: mp. 128-129° (1).

3:4742 (1) Hinkel, Collins, Ayling, J. Chem. Soc. 123, 2971 (1923).

Colorless ndls. from aq. or dil. alc.; 100 pts. aq. at 3.5° dis. 0.8 g.  $\bar{C}$ ; eas. sol. alc., AcOH, or CHCl<sub>3</sub>. — Volatile with steam; sublimes with slight decompn.

[For prepn. of  $\bar{C}$  from o-chlorophenol (3:5980) by treatment of dry sodium salt with  $CO_2$  at 140–150° under press. see (3); from 5-sulfo-2-hydroxybenzoic acid (5-sulfosalicylic acid) [Beil. XI-411, XI<sub>1</sub>-(106)] in AcOH with Cl<sub>2</sub> followed by hydrolysis of the resultant 3-chloro-2-hydroxy-5-sulfobenzoic acid with superheated steam (72% yield) see (1); from 6-chlorosalicylamide (see below) by hydrolysis with 10 pts boilg. 10% NaOH for 6 hrs (86% yield) see (1); for formin of  $\bar{C}$  from 7-chlorosaccharia (4) by NaOH fusion see (4); for formin from salicylic acid (1.0780) in Na<sub>2</sub>CO<sub>3</sub> soln, with Cl<sub>2</sub> (5-chloro-2-hydroxy-benzoic acid (3:4705) is also formed) see (13).]

[For reactn of  $\bar{C}$  with methylenedisaheylamide in prepn. of dye intermediates by oxidn. with NaNO<sub>2</sub> see (5)]

[ $\bar{C}$  on reductn. with Na/IIg in pres. of H<sub>3</sub>BO<sub>3</sub> yields(6) cf. (7) 3-chloro-2-hydroxybenzalde-hyde (3:1010);  $\bar{C}$  with ClSO<sub>3</sub>II at 50–70° vields (8) 5-chlorosulfonyl-3-chloro-2-hydroxybenzoic acid, cryst. from CHCl<sub>3</sub>, m p. 163–164° (8), which with Zn dust in alc. yields (9) 3,3'-dichloro-4,4'-dihydroxy-5,5'-dicarboxydiphenyl disulfide, m.p. 258–259° (9), which in turn with alk. Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub> undergoes reductive cleavage to 3-chloro-2-hydroxy-5-thiol-benzoic acid (3-chloro-5-thiolsalicyhc acid), m p. 210° (9) ]

[C with PCl<sub>5</sub> in low-boilg, pet. ether yields (2) 3-chlorosalicyloyl chloride, ndls. from pet. ether, m.p. 62-63° (2); this prod. on htg. yields (2) a mixt. of 3-chlorosalicylids: C with PCl<sub>3</sub> yields (2) 6-chloro-2-chloroformylphenyl metaphosphite Cl.CO.C<sub>6</sub>H<sub>3</sub>Cl.O.PO, m.p. abt. 65° (2).]

C in aq. soln. gives with FeCl<sub>3</sub> an intense violet color.

Salts. NaĀ (3), KĀ (1), CaĀ<sub>2</sub>.3H<sub>2</sub>O (1); BaĀ<sub>2</sub>.3H<sub>2</sub>O (3), AgĀ (1); for details see indic. refs.

- Methyl 3-chloro-2-hydroxybenzoate (methyl 3-chlorosalicylate): ndls. from MeOH, m.p. 38° (2), b.p. 259-260° sl. dec. (3). [From C in MeOH with HCl gas (3), or from 3-chlorosalicyloyl chloride (above) in MeOH (2).] [For formn. from methyl salicylate (1:1750) with chloropicrin under influence of light see (10) (11).]
- Ethyl 3-chloro-2-hydroxybenzoate (ethyl 3-chlorosalicylate): ndls. from cold alc., m.p. 21° (2), b.p 269-270° (2), 147° at 12 mm. (2). [From 3-chlorosalicyloyl chloride (above) with EtOH (2).]
- © 3-Chloro-2-methoxybenzoic acid: white ndls. from alc., m.p. 120-121° (1). [From  $\tilde{C}$  in dil. aq. KOH by shaking with Me<sub>2</sub>SO<sub>4</sub> in cold, followed by hydrol. of the intermed. ether-ester with hot aq. KOH and subsequent acidif. (1).] [For nitration with mixt. of HNO<sub>3</sub> (D=1.5) + conc. H<sub>2</sub>SO<sub>4</sub> at 20-30° giving (100% yield) 3-chloro-2-methoxy-5-nitrobenzoic acid, m.p. 155.5°, see (14).]
- ③ 3-Chloro-2-hydroxybenzamide (3-chlorosalicylamide): white ndls. from dil. alc., m.p. 174-175° (1). [From methyl 3-chlorosalicylate (above) or from 3-chlorosalicyloyl chloride (above) with conc. aq. NH₄OH in cold (1).]—[This prod. with chloral (3:5210) gives on warming (12) chloral-3-chlorosalicylamide, colorless ndls. from alc., m.p. 159-160° (12) (1), also obtd. from chloral-salicylamide in AcOH with Cl₂ (1).]
- ① 3-Chloro-2-hydroxybenzanilide (3-chlorosalicylanilide): colorless ndls. from alc., m.p. 158.5-159° (2). [From 3-chlorosalicyloyl chloride (above) with 2 moles aniline in ether soln. (2).]
- 3:4745 (1) Hirwe, Rana, Gavankar, Proc. Indian Acad Sci A-8, 208-213 (1938). (2) Anschütz, Anspach, Ann. 346, 312-317 (1906). (3) Varnholt, J. prakt. Chem. (2) 36, 22-24 (1887). (4) Reissert, Cramer, Ber. 61, 2565 (1928). (5) Durand, Huguenin, Brit. 183,123, Sept. 6, 1922; Cent. 1922, IV 1171. (6) Farbenfabriken vorm. F. Bayer & Co., Ger. 228,838, Nov. 22, 1910; Cent. 1911, I 51. (7) Farbenfabriken vorm. F. Bayer & Co., Ger. 216,305, Nov. 9, 1909; Cent. 1909, II 2107. (8) Farbenfabriken vorm. F. Bayer & Co., Ger. 264,786, Sept. 23, 1913; Cent. 1913, II 1350. (9) British Dyestuffs, Ltd., Saunders, Mendoza, Brit. 260,058, Nov. 18, 1926; Cent. 1929, I 149. (10) Piutti, Atti congr. naz. chim. pura applicata 1923, 398, 437-438; Cent. 1924, I 2514.
- (11) Piutti, Badolato, Atti accad. Lincei (5) 33, I 475-479; Cent. 1924, II 1893. (12) Hirwe, Rana, Ber. 72, 1351 (1939). (13) Tischenko, J. Russ. Phys.-Chem. Soc. 60, 153-162 (1928); Cent. 1928, II 768; C.A. 22, 3397 (1928). (14) Davies, Rubenstein, J. Chem. Soc. 123, 2851-2852 (1923).

### 3:4747 2,5,6-TRICHLORO-3,4-DIMETHYLPHENOL (Trichloro-o-4-xylenol)

$$\begin{array}{c|cccc} OH & & & & \\ Cl & Cl & C_8H_7OCl_3 & & Beil. \ VI - & & & \\ Cl & CH_3 & & & VI_{2^-}(456) \end{array}$$

M.P. 182.5° (1)

Ndls, from pet. ether.

[For prepn. of  $\bar{C}$  from 5-chloro-3,4-dimethylphenol (6-chloro-o-4-xylenol) (3:2705) with  $Cl_2$  in CHCl<sub>3</sub> see {1}.]

2,5,6-Trichloro-3,4-dimethylphenyl acetate: unreported.

D 2,5,6-Trichloro-3,4-dimethylphenyl benzoate: m.p. 120° (1)

3:4747 (1) Hinkel, J. Chem. Soc. 125, 1853 (1924).

### 3:4750 NAPHTHALENE TETRACHLORIDE

(1,2,3,4-Tetrachloro-1,2,3,4-tetrahydronaphthalene; 1,2,3,4-tetrachlorotetralin)

C<sub>10</sub>H<sub>8</sub>Cl<sub>4</sub>

Beil. V - 492 V<sub>1</sub>---V<sub>2</sub>-(386)

[See also 5,6,7,8-tetrachloro-1,2,3,4-tetrahydronaphthalene (3:4703).]

Cryst. from CHCl<sub>3</sub> or ether. — Very spar. sol. boilg alc., somewhat more sol. ether. — For data on crystallographic consts. see (4) (5); for X-ray study of cryst. structure see (6) (7). — For 2.39% soln. of  $\bar{C}$  in CHCl<sub>3</sub>,  $D_4^{23}$  = 1.48466 and  $n_D^{23}$  = 1.44883 (8).

[For prepn. of  $\bar{C}$  from naphthalene (1:7200) in equal wt.  $C_6H_6$  with 4.3 wt. pts.  $SO_2Cl_2$  refluxed 3 hrs. (15% yield) see (1); with  $Cl_2$  as directed (45% yield (9)) (10) (11) (12); with  $KClO_3$  + HCl see (13) (9); with dil. HOCl see (3); note that in all these methods numerous by-products are formed and it cannot be said that the prepn. is very satisfactory.]

Č on vigorous boilg. in small quantities evolves HCl and yields (14) 1,4-dichloronaphthalene (3:1655), m.p. 68°; with larger units numerous other prods. are also formed (14).

 $\bar{C}$  (3 pts.) with aq. (100 pts.) boiled for 48 hrs. (15) gradually dissolves and the soln. after concn. deposits (65% yield (15)) a dichloroglycol ("dichloronaphthydreneglycol") [Beil. VI-971], cryst. from alc., m.p. 155-156° (diacetate, m.p. 130-131°; dibenzoate, m.p. 148-150°) (15).

Č with alc. KOH on boilg. yields (2) (16) (17) (18) (19) (20) mainly 1,3-dichloronaphthalene (3:1310), m.p. 61-62°, accompanied by some 1,4-dichloronaphthalene (3:1655), m.p. 68°, and a little 2,3-dichloronaphthalene (3:3665), m.p. 120°: note that the prod., m.p. 38°, supposed by the earlier workers to have been 1,3-dichloronaphthalene has been shown (19) to consist of a mixt. (possible mol. cpd.) of 1,3-dichloronaphthalene and 1,4-dichloronaphthalene.

 $\bar{C}$  on oxidn. with 8.7 wt. pts. conc. HNO<sub>3</sub> (D=1.45) at 100° under reflux for  $\frac{3}{4}$  hr gives (20) 2,3-dichloronaphthoquinone-1,4 (3:4857), m.p. 196° (20); but  $\bar{C}$  on oxidn. with boilg. HNO<sub>3</sub> also yields (21) (13) (presumably by further oxidn of the above precursor) phthalic acid (1:0820) and oxalic acid (1:0445).

C on oxidn. with CrO<sub>3</sub>/AcOH yields (20) 2,4-dichloronaphthol-1 (3:3250), m.p. 106-107° (20).

[C with moist silver oxide in s t. at 200° yields (19) (9) a chloronaphthol, m.p. 130° (9), 2,3-dichloronaphthalene (3:3665), and other prods. (9).]

[ $\bar{C}$  on nitration with HNO<sub>3</sub> (D=1.5) at not above 30-35°, followed by htg. of prod. with MeOH/Na<sub>2</sub>CO<sub>3</sub> or MeOH/NaHCO<sub>3</sub> in C<sub>6</sub>H<sub>6</sub> at 130-150° (22) or with MeOH/NH<sub>3</sub> at ord. temp. (23), yields 5,8-dichloro-1-nitronaphthalene [Beil. V-556, V<sub>2</sub>-(453)], m.p. 94° (22).]

[For conversion of  $\bar{C}$  to artificial resins by htg. with metal halides such as AlCl<sub>3</sub> or FeCl<sub>3</sub> (24), or by htg. with naphthalene + a surface cat. such as fuller's earth (25), see indic. refs.]

3:4750 (1) Pongratz, Eichler, Ber. 69, 1295 (1936). (2) Faust, Saame, Ann. 160, 65-66 (1871). (3) Klingstedt, Wiese, Rudbäck, Acta Acad. Aboensis Math. et Phys. 4, No. 2, 1-36 (1927); Cent. 1928, I 504; C.A. 23, 1399 (1929). (4) Hintze, J. prakt. Chem. (2) 8, 253-255 (1873). (5)

Groth, Chem. Krystalog. 5, 368 (1919). (6) Robertson, Proc. Roy. Soc. (London) 118-A, 709-727 (1928). (7) Bragg, Z. Krist. 66, 27-32 (1927). (8) Kanonnikoff, J. prakt. Chem (2) 31, 342-343 (1885). (9) Leeds, Everhart, J. Am. Chem. Soc. 2, 207-209, 210-213 (1880). (10) Laurent, Ann. chim. (2) 52, 275-281 (1833), 59, 201-204 (1835).

(11) Paul, Depoully, Bull. soc chim (2) 4, 10-12 (1865). (12) Schwarzer, Ber. 10, 379 (1877). (13) Fischer, Ber. 11, 735-741, 1411 1412 (1878) (14) Krafft, Becker, Ber. 9, 1088-1090 (1876). (15) Grimaux, Bull soc. chim. (2) 18, 205-212 (1872); Compt. rend. 75, 352-355 (1872). (16) Widman, Ber. 15, 2161-2162 (1882). (17) Cleve, Ber. 23, 954 (1890). (18) Armstrong, Wynne, Chem. News 58, 264-265 (1888). (19) Armstrong, Wynne, Chem. News 61, 273, 284 (1890); Proc. Chem. Soc. (London) 4, 106 (1888). (20) Helbig, Ber. 28, 505-507 (1895).

(21) Laurent, Ann. chim. (2) **74**, 26-27 (1840); Ann. **35**, 292-293 (1840). (22) Matter, Ger. 317,755, Dec. 29, 1919; Cent. **1920**, II 601. (23) Matter, Ger. 348,069, Jan. 28, 1922; Cent. **1922**, IV 45. (24) A.G.F.A., Ger. 332,391, Feb. 2, 1921, Cent. **1921**, II 652, Ger. 334,710, March 17, 1921; Cent. **1921**, II 954. (25) Schering-Kahlbaum, Freund, Jordan, Ger. 461,358, June 20,

1928; Cent. 1929, I 1052, Brit 202,997, Oct. 24, 1924, Cent. 1925, I 1456.

### 3:4755 2,3,3-TRICHLORO-2-METHYLBUTANE

M.P. 182-183° (1) abt. 170° (2)

[For prepn. of  $\tilde{C}$  from 2-chloro-2-methylbutane (3:7220) or from 2,3-dichloro-2-methylbutane (3:7975) with  $Cl_2$  see (2); for formn. from 3-chloro-2-methylbutene-2 (3:7335) +  $Cl_2$  (10% yield together with other prods.) see (1) (an earlier product (3) obtd. by this latter method and to which this structure was assigned was reported as a liquid, b.p. 176°,  $D_1^{45} = 1.215$ ,  $n_D^{21} = 1.472$ ).]

C is not (2) saponified by 20% aq. K<sub>2</sub>CO<sub>3</sub>.

 $\bar{\mathbf{C}}$  on htg. with 2 moles quinoline at 195–225° gives (60% yield (2))  $\beta$ -chloroisoprene (3:7290).

**3:4755** (1) Tishchenko, J. Gen. Chem. (U S S.R.) **8,** 1232-1246 (1938); Cent. **1939,** II 4223, C.A. **33,** 4190 (1939). (2) Tishchenko, J. Gen. Chem. (U.S S.R.) **6,** 1116-1132 (1936); Cent. **1937,** I 573; C.A. **31,** 1003 (1937). (3) Brochet, Ann. chem. (7) **10,** 385 (1897).

### 3:4775 3,4-DICHLORONAPHTHO-QUINONE-1,2

Red tbls. or ndls. from AcOH,  $C_6H_6$  or CHCl<sub>3</sub>. — Spar. sol. alc., fairly eas. sol. CHCl<sub>3</sub>. — Sublimes undecomposed.

[For prepn. of  $\bar{C}$  from 1-aminonaphthol-2 hydrochloride [Beil. XIII-676, XIII<sub>1</sub>-(274)], in AcOH with Cl<sub>2</sub> (68.5% yield (3)) (2) (4), or from naphthoquinone-1,2 (1:9062) in AcOH with Cl<sub>2</sub> (2), see indic. refs.; for formn. of  $\bar{C}$  from 3,4-dichloro-naphthoquinone-1,2-oxime-1 (3,4-dichloro-1-nitroso-naphthol-2) [Beil. VII-721] on oxidn. with conc. HNO<sub>3</sub> in AcOH soln. see (5); from 3,4-dichloro-3-nitro-1,2-dioxonaphthalene tetrahydride-1,2,3,4 [Beil. VII-701] with AcCl in s.t. at 100° see (6).]

Č dis. in cold dil. aq. alk. yielding colorless soln. which upon acidification gives (90% yield (4)) 1,2-dichloro-3-hydroxyındenecarboxylic acid-3 [Beil. X-325], ndls with 1 H<sub>2</sub>O (from dil. HCl), m.p. 99–100° (4). [This prod. on oxidn. in dil. aq. or AcOH soln. with CrO<sub>3</sub> gives (34% yield (3)) (2) (4) 1,2-dichloroindene-1-one-3 ("dichloroindene") [Beil. VII-384], gold-yel. ndls. from alc. or AcOH, m p. 89–90°.] [For behavior of C̄ with Ca (OCl<sub>2</sub>) soln. see (7).]

Č with alc. NaOEt yields (8) 3-chloro-4-ethoxynaphthoquinone-1,2, [Beil. VIII-299], or.-red ndls. from alc., m.p. 149° (8).

 $\bar{C}$  in hot alc soln. on treatment with alc. NH<sub>3</sub> yields (2) 3-chloro-2-hydroxynaphtho-quinone-1,4-imide-4 (4-amino-3-chloronaphthoquinone-1,2) [Beil VIII-305], m.p. abt. 260° (2).

Č in dil. AcOH with excess SO<sub>2</sub> (2) reduces to 3,4-dichloro-1,2-dihydroxynaphthalene [Beil. VI-975], m.p. 125° (2).

[For cpd. formn. of  $\bar{C}$  with SnCl<sub>4</sub> see (9); for reactn. of  $\bar{C}$  with 2,3-dimethylbutadiene-1,3 in CHCl<sub>3</sub> see (10) ]

3:4775 (1) Zincke, Ann. 257, 146–147 (1890). (2) Zincke, Ber. 19, 2499–2500 (1886). (3) Brass, Mosl, Ber. 59, 1271 (1926). (4) Zincke, Engelhardt, Ann. 283, 347–349 (1894). (5) Zincke, Schmuuk, Ann. 257, 146–147 (1890). (6) Zincke, Scharfenberg, Ann. 268, 303–304 (1892). (7) Zincke, Schmidt, Ber. 27, 744 (1894). (8) Hirsch, Ber. 33, 2414 (1900). (9) Brass, Fengler, Ber. 64, 1663–1664 (1931). (10) Fieser, Dunn, J. Am. Chem. Soc. 59, 1020 (1937).

Ndls. with 3 H<sub>2</sub>O, m.p. 75° (1) from alc. or  $C_6H_6$  (2); this trihydrate in vac. over H<sub>2</sub>SO<sub>4</sub> loses 2 H<sub>2</sub>O, the final H<sub>2</sub>O at 110° (2). —  $\bar{C}$  is spar. sol in cold aq.,  $C_6H_6$ , CHCl<sub>3</sub>, CCl<sub>4</sub>, or CS<sub>2</sub>; eas. sol alc., ether, or hot aq.

[For prepn. of  $\bar{C}$  from pyrogallol (1,2,3-trihydroxybenzene) (1:1555) in 60% AcOH with Cl<sub>2</sub> (2), or with SO<sub>2</sub>Cl<sub>2</sub> in dry ether (3), see indic. refs.]

[For prepn. of  $\bar{C}$  from "leucogallol" [Beil VI-1078] or "mairogallol" [Beil VI-1078] by reduction with Zn dust + dil.  $H_2SO_4$  see (1); from gallie acid (1:0875) in CHCl<sub>3</sub> with Cl<sub>2</sub> see (4).

[C in CCl4 or CHCl3 prev. satd. with Cl2 gives (2) "leucogallol."]

Č in other soln, with aq. Ba(OH)<sub>2</sub> gives deep blue coloration; with aq. Na<sub>2</sub>SO<sub>3</sub> a fugitive red coloration (2).

C with aq. FeCl<sub>3</sub> gives (4) a blue coloration.

 $\bar{C}$  with conc. HNO<sub>3</sub> is oxidized and decomposed (2);  $\bar{C}$  dis. in cold conc. H<sub>2</sub>SO<sub>4</sub> without evoln. of gas but on warming decomposes (2).

C reduces NH<sub>4</sub>OH/AgNO<sub>3</sub> (1).

- --- 4,5,6-Trichloropyrogallol triethyl ether: unreported.
- —— 4,5,6-Trichloropyrogallol triacetate: ndls. from dil. AcOH, m.p. 125° (4), 122° (1). [From C on short boilg. with Ac<sub>2</sub>O (1) (4).]

436

**3:4782** (1) Hantssch, Schniter, Ber. **20,** 2034-2037 (1887). (2) Webster, J. Chem. Soc. **45,** 205-208 (1884). (3) Peratoner, Condorelli, Gazz. chim. ital. **28,** I 225-226 (1898). (4) Bietrix, Bull. soc. chim. (3) **15,** 904-906 (1896). (5) Bartolotti, Gazz. chim. ital. **27,** I 290-291 (1897).

### 3:4790 2,3,4,5-TETRACHLORO-BENZOIC ACID

M.P. 186° (1)

Ndls. from alc. — Eas. sol. alc., ether; spar sol. aq.

[For prepn. of  $\tilde{C}$  from tetrachlorophthalic acid (3:4946) by htg. with 2-3 pts. AcOH in s.t. at 300° for 3-4 hrs. see (1); by htg. with steam + H<sub>2</sub> at 200-400° over decarboxylating cat. see (2).]

 $\bar{C}$  on  $\frac{1}{2}$  hr. boilg. with mixt. of 2 pts. HNO<sub>3</sub> (D=1.48) + 1 pt. conc. H<sub>2</sub>SO<sub>4</sub> gives (100% yield (1)) 2,3,4,5-tetrachloro-2-nitrobenzoic acid [Beil. IX-405], lfts. from aq., but no m.p. has been reported.

Neither the action (if any) of PCl<sub>5</sub> or SOCl<sub>2</sub> on  $\bar{\mathbb{C}}$  nor the expected 2,3,4,5-tetrachlorobenzoyl chloride has been recorded.

- Methyl 2,3,4,5-tetrachlorobenzoate: unrecorded.
- —— Ethyl 2,3,4,5-tetrachlorobenzoate: from  $\bar{C}$  + EtOH + HCl gas; ndls. alc., m.p. 34.5° (1).
- ---- 2,3,4,5-Tetrachlorobenzamide: unrecorded.
- --- 2,3,4,5-Tetrachlorobenzanilide: unrecorded.

**3:4790** (1) Tust, Ber. **20**, 2439-2431 (1887). (2) Jaeger (to Selden Co.), U.S. 1,953,232, April 3, 1934; Cent. **1934**, II 669; C.A. **28**, 3743 (1934).

### 3:4810 2,3,4-TRICHLOROBENZOIC ACID

M.P. 186-187° (1)

Ndls. from hot aq. (1). —  $\bar{C}$  does not melt under boiling water (1).

[For prepn. from 2,3,4-trichlorotcluene (3:0425) by oxidn. with HNO<sub>3</sub> in s.t. at 150° see (1); from 2,3,4-trichlorobenzaldehyde (3:2445) by oxidn. with KMnO<sub>4</sub> see (2).] [The latter product was probably impure (1).]

No further data on C are recorded.

3:4810 (1) Cohen, Dakin, J. Chem. Soc. 81, 1328 (1902). (2) Seelig, Ann. 237, 150 (1887).

### 3:4820 3-CHLOROPHTHALIC ACID

M.P. 186-187° (1)

185-187° (2)

186° (3

184° (4) (5)

[See also 3-chlorophthalic anhydride (3:3900).]

Ndls. from aq.; eas. sol. alc.; eas. sol. ether (use in sepn. from phthalic acid (1:0820) (6). — 100 pts. aq. at 14° dis. 2.16 pts.  $\bar{C}$  (5). — [For sepn. of  $\bar{C}$  from o-chlorobenzoic acid (3:4150) by use of CHCl<sub>3</sub> see (7).]

[For prepn. of  $\bar{C}$  from 3-chlorophthalic anhydride (3:3900) by hydrolysis with boilg. dil. HCl see (3) (6); from 1,5-dichloronaphthalene (3:3200) by oxidn. with CrO<sub>3</sub>/AcOH see (5); from 5-chloro-1,2,3,4-tetrahydronaphthalene [Beil. V<sub>1</sub>-(237)] (1) by oxidn. with KMnO<sub>4</sub> see (1); from 3-chloro-2-methylbenzoic acid (3:4435) by oxidn. with KMnO<sub>4</sub> see (8).]

C on htg. above its m.p. yields (5) (8) 3-chlorophthalic anhydride (3:3900).

[ $\bar{C}$  on KOH fusion yields (8) (note rearrangement) 4-hydroxyphthalic acid [Beil. X-499,  $X_1$ -(255)], m.p. 204-205°, with conv. to corresp. anhydride, m.p. 171°.]

 $[\bar{C}$  with steam passed over cat. at 350° loses CO<sub>2</sub> presumably yielding (9) o-chlorobenzoic acid (3:4150) and/or m-chlorobenzoic acid (3:4392).]

[C htd. with Hg(OAc)<sub>2</sub> in AcOH as directed (2) gives anhydro-2-hydroxymercuri-3-chlorobenzoic acid which on htg. with aq. HCl yields m-chlorobenzoic acid (3:4392).]

Salts. Ag<sub>2</sub>Ā, ndls. from hot aq. (5); BaĀ, eas. sol. cold aq., but spar. sol. hot aq., on protracted boilg. with aq. gives monohydrate which is insol. cold aq. (8).

Esters. The neutral dimethyl and diethyl esters of  $\bar{C}$  are unreported: of the various possible acid esters only ethyl hydrogen 3-chlorophthalate, m.p. 118-119° (1), has been reported.

3:4820 (1) von Braun, Larbig, Kredel, Ber 56, 2337-2338 (1923). (2) Whitmore, Culhane, J. Am. Chem. Soc. 51, 602-605 (1929). (3) Bogert, Boroschek, J. Am. Chem. Soc. 23, 751 (1901). (4) Egerer, Meyer, Monatsh. 34, 81 (1913). (5) Guareschi, Gazz. chim. ital. 17, 120-122 (1887). (6) Smith, J. Chem. Soc. 1933, 1643-1644. (7) Jaeger (to Selden Co.), U.S. 1,685,634, Sept. 25, 1928; Cent. 1929, I 807. (8) Krüger, Ber 18, 1759 (1885). (9) Jaeger (to Selden Co.), U.S. 1,953,231, April 3, 1934; Cent. 1934, II 1688.

[See also 4.5-dichlorophthalic acid (3:4890).]

Tbls. or pr. from hot toluene or from CCl<sub>4</sub>; spar. sol. cold but eas. sol. hot C<sub>6</sub>H<sub>6</sub> or toluene; very little sol. in CCl<sub>4</sub>.

[For prepn. of  $\bar{C}$  from 4,5-dichlorophthalic acid (3:4890) by htg. at 200° (4) or by htg. with AcCl (2) see indic. refs.; for formn. of  $\bar{C}$  (together with other isomers) from phthalic anhydride (1:0725) with Cl<sub>2</sub> in pres. of Fe or Fe salts at 160-260° (5), or from phthalic anhydride (1:0725) or 3-chlorophthalic anhydride (3:3900) with Cl<sub>2</sub> in fumg. H<sub>2</sub>SO<sub>4</sub> in pres. of I<sub>2</sub> (4) (1), see indic. refs.; for formn. of  $\bar{C}$  from aq. solns. of alk. salts of phthalic acid (1:0820) with Cl<sub>2</sub> see (2) (6) (7).]

[For sepn. of C from isomeric dichlorophthalic anhydrides by means of salts of corresp.

acids, etc., see (4) (8) (1); by means of differential hydrolysis with  $H_2SO_4$  (prods. with no  $\alpha$  chlorine such as  $\bar{C}$  require  $H_2SO_4$  of 98-100% concn., those with 1  $\alpha$  chlorine such as 3,4-dichlorophthalic anhydride hydrolyze with 56-95%  $H_2SO_4$ , those with 2  $\alpha$  chlorine atoms such as 3,6-dichloro- or 3,4,5,6-tetrachlorophthalic anhydrides hydrolyze at  $H_2SO_4$  concns. of less than 50%) see (9).]

C dislyd. in abs. alc. yields (4) ethyl hydrogen 4,5-dichlorophthalate, ndls from CHCl<sub>3</sub>, m.p. 133-134° (4).

[Č with 1 mole NH<sub>2</sub>OH.HCl + Na<sub>2</sub>CO<sub>3</sub> in aq. soln as directed (4) yields 4,5-dichlorophthaloylhydroxylamine (N-hydroxy-4,5-dichlorophthalimide) [Beil XXI-504], pr from MeOH, m.p. 195–197° dec (4); this prod. on warming with aq Na<sub>2</sub>CO<sub>3</sub> gives 100% yield 4,5-dichloro-2-aminobenzoic acid (4,5-dichloroanthranilic acid) [Beil XIV-368, XIV<sub>1</sub>-(549)], m.p. 213–214° (4).]

[ $\tilde{\mathbf{C}}$  with steam passed over cat. at 380–420° loses CO<sub>2</sub> presumably yielding (10) 3,4-di-chlorobenzoic acid (3:4925)]

 $\bar{\mathbb{C}}$  with benzene + AlCl<sub>3</sub> (12) or in acetylene tetrachloride (11) gives (98% yield (12)) 4,5-dichloro-2-(o-benzoyl)benzoic acid [Beil.  $X_1$ -(357)], cryst. from  $C_6H_6$  (12) or toluene (11), m.p. 209° (12), 208° (11), which on htg. with 20 pts cone  $H_2SO_4$  at 160° for 1 hr. gives (92% yield (12)) (11) 2,3-dichloroanthraquinone [Beil. VII-788, VII<sub>1</sub>-(413)], yellowish ndls. from AcOH, m.p. 267° cor. (12), 265° (11). —  $[\bar{\mathbb{C}}$  with o-xylene + AlCl<sub>3</sub> in acetylene tetrachloride gives (80% yield (11)) 4,5-dichloro-2-(3',4'-dimethylbenzoyl)benzoic acid, cryst. from cyclohexane, m.p. 184° (11), which with 10 pts. conc.  $H_2SO_4$  at 100° gives (45% yield (11)) 6,7-dichloro-2,3-dimethylanthraquinone, cryst from xylene, m.p. 305° (11) —  $\bar{\mathbb{C}}$  with o-dichlorobenzene (3:6055) + AlCl<sub>3</sub> 4 hrs. at 100° gives (80% yield (11)) 3,4-dichloro-2-(3',4'-dichlorobenzoyl)benzoic acid, cryst. from  $C_6H_6$ , m.p. 183°, which with 12 pts. conc.  $H_2SO_4$  6 hrs. at 100° gives mainly 2,3,6,7-tetrachloroanthraquinone, cryst. from o-dichlorobenzene, m.p. 348° (11) — For analogous reactns of  $\bar{\mathbb{C}}$  with naphthalene (13), pyrene (14), or o-chlorotoluene (15) see indic. refs.]

[ $\bar{C}$  with hydroquinone (1:1590) +  $H_3BO_3$  htd at 190° and afterward treated with hot conc.  $H_2SO_4$  at 150–165° (16), or  $\bar{C}$  with  $AlCl_3$  + NaCl htd at 200–220° (17), or  $\bar{C}$  with p-chlorophenol (3:0475) htd. with fumg.  $H_2SO_4$  +  $H_3BO_3$  (18) gives (yield: 80% (17), 15% (16)) 6,7-dichloro-1,4-dihydroxyanthraquinone (6,7-dichloroquinizarin) [Beil. VIII-452, VIII<sub>1</sub>-(716)], red-br. cryst from xylene, m.p. 295.5° (17), 288° (16), (diacetate, m.p. 125° (16), dimethyl ether, m.p. 168 5° (17)) ]

[For use of  $\bar{C}$  in preparation of pigments of the copper phthalocyanine type see (19)]

 $\bar{C}$  with  $(NH_4)_2CO_3$  htd. at 250° for  $\frac{1}{2}$  hr (20) yields 4,5-dichlorophthalimide, pl from alc., m.p. 221° (20) (note that behavior of  $\bar{C}$  with cone aq.  $NH_4OH$  is different yielding (4) 4,5-dichlorophthalamic acid (not specifically characterized) which with alk. NaOCl gives 4,5-dichloro-2-aminobenzoic acid (above)). — [For behavior of  $\bar{C}$  with hydrazine hydrate in AcOH yielding corresp. cyclohydrazide see (21)]

Č (1 pt ) in boilg. AcOH (6 pts.) treated with and (1 pt.) gives (82% yield (1)) 4,5-dichlorophthalanil (N-phenyl-4,5-dichlorophthalimide) [Beil. XXI<sub>1</sub>-(391)], cryst. from AcOH, m.p. 212.5-213° cor. (1).

Č on saponification with standard alkali (Sap. Eq. = 108.5), followed by acidification, yields 4,5-dichlorophthalic acid (3:4890) q.v

3:4830 (1) Pratt, Perkins, J. Am. Chem. Soc. 40, 215-216, 218 (1918). (2) Hinkel, Ayling, Bevan, J. Chem. Soc. 1928, 1876. (3) Ayling, J. Chem. Soc. 1929, 255. (4) Villiger, Ber. 42, 3538-3539, 3546-3549 (1909). (5) Dvornikoff (to Monsanto Chem. Co.), U.S. 2,028,383, Jan. 21, 1936; Cent. 1936, I 2830; C.A. 30, 1394 (1936). (6) Rushchinskii, J. Applied Chem. (U.S.S.R.) 7, 1113-1115 (1934); Cent. 1936, II 2902. (7) Rushchinskii, Russ. 41,515, Feb. 28, 1935; Cent. 1935, II 3704; C.A. 30, 8247 (1936). (8) Hodgson, J. Soc. Dyers Colourust 49, 215 (1933).

(9) Imperial Chem. Ind., Ltd., French 749,954, Aug. 2, 1933, Cent. 1933, II 2748-2749. (10) Jaeger (to Selden Co.), U.S. 1,964,516, June 26, 1934, Cent. 1934, II 3047.

(11) Barnett, Goodway, Watson, Ber. 66, 1878-1879, 1884-1889 (1933). (12) Ullmann, Billig, Ann. 381, 27-28 (1911). (13) Waldmann, J. prakt. Chem. (2) 131, 79 (1931). (14) Verein fur Chem. und Metallurg. Produktion, Czechoslovak. 46,835, Feb. 25, 1934; Cent. 1934, II 518. (15) Keimatsu, Hirano, J. Pharm Soc. Japan 49, 20-26 (1929); Cent. 1929, I 2533. (16) Frey, Ber. 45, 1363-1364 (1912). (17) Waldmann, J. prakt. Chem. (2) 126, 253-254 (1930). (18) Scottish Dyes, Ltd., Bangham, Hooley, Thomas, Birt. 339,589, Jan. 8, 1931; Cent. 1932, I 2095. (19) Imperial Chem Ind., Ltd., French 808,845, Feb. 16, 1937; Brit. 464,126, April 12, 1937; Cent. 1937, II 3820, C A 31, 6255 (1937). (20) Drew, Pearman, J. Chem. Soc. 1937, 590.

(21) Drew, Pearman, J. Chem. Soc. 1937, 32

```
3:4835
          HEXACHLOROETHANE
                                           Cl<sub>3</sub>C-CCl<sub>3</sub>
                                                                   C_2Cl_6
                                                                                Beil. I - 87
           (Perchloroethane)
                                                                                     I_{1}-(26)
                                                                                     I_{2}-(58)
  M.P.
                                       B.P.
                                       185.5° at 776.7 mm. (7)
  189° s.t.
                               (1)
  187-188°
                        (74) (115)
                                               at 760 mm. (18)
  187.71-188.75° cor., s.t. (7)
  187° s.t.
                           (2) (3)
  187°
              (4) (5) (6) (63) (64)
  186.85-187.4° cor., s.t.
                               (7)
  186.8°
                               (8)
  186-187°
                         (9) (133)
  186°
                         (10) (75)
  185-186°
                              (11)
  185°
              (12) (13) (14) (132)
  183-184° s.t.
                              (15)
  183.0-184.0°
                              (16)
  181° s.t.
                              (17)
```

White cryst with camphoraceous odor which readily sublime without melting. — Cryst. from alc, ether, CHCl<sub>3</sub> or CS<sub>2</sub>. —  $\bar{C}$  is trumorphous: below about 46° cryst  $\bar{C}$  is orthorhombic, in range 46–71° cryst  $\bar{C}$  is truclinic; about 71° cryst  $\bar{C}$  is cubic, at these transition temps volume alterations occur which have sometimes (5) been mistaken for mp.'s. — [For details on trimorphism and these transitions see (19) (8) (20) (21) (25) (26); for influence of high press, see (22) — For crystallographic data see (20) (23) (24); for X-ray crystallog. data see (27) (28)]

 $\bar{C}$  is almost abs. insol aq. and vice versa at ord temp (29); for patents on drying of  $\bar{C}$  see (30) (31) — [For studies of vap press. of  $\bar{C}$  at various temps, see (13) (4) (7) (32). — For prevention of "caking" of cryst.  $\bar{C}$  by addn. of 1-10% paraformaldehyde see (33).]

Cryoscopic const. of  $\bar{C}$ , i.e, f.p. lowering per mole solute in 100 g.  $\bar{C}$ , is 5.6° (34). [For thermal anal. of binary systems of  $\bar{C}$  with naphthalene (1:7200) (8) (34), with phenanthrene (1:7240) (34), or with anthracene (1:7285) (34) see indic. refs.]

#### USES OF C

 $\bar{C}$  finds many uses in industry, some based on its physical characteristics and some on its chem. behavior. — [E.g., for use of  $\bar{C}$  as solvent for prepn. of solid solns. of  $I_2$  for use in place of usual tincture see (35); for use of  $\bar{C}$  as means for temporary marking of cloth removable at will by heat (sublimation) see (36).]

[For use of  $\bar{C}$  as addition agent to CCl<sub>4</sub> fire extinguishers see (37); as component of certain types of explosives (e.g., 75% nitrostarch + 20%  $\bar{C}$  + 5% NaNO<sub>3</sub>) see (38); for use of  $\bar{C}$  as mothproofing agent see (39) (40) (41) (42); for use of  $\bar{C}$  as insecticide and/or fungicide see (43) (44); for use of  $\bar{C}$  together with CS<sub>2</sub> (45) or rotenone (46) as insecticides see indic. refs.]

 $\tilde{C}$  is an important component of "HC" smoke candles or grenades used for the production of screening clouds or smokes; a mixture of  $\tilde{C}$  with powdered metal (usually Zn) once started undergoes vigorous decomposition yielding ZnCl<sub>2</sub> + C; other materials are usually added to ignite the mixture and to modify the character of the resultant smoke; for further details see (47) (48) (49). — [For use of this type of reactn. in prepn. of activated carbon see (153).]

#### PHYSIOLOGICAL ASPECTS OF C

[For studies of toxicity of  $\bar{C}$  and its ability to penetrate skin see (50) (51) (52) cf. (160); for studies of  $\bar{C}$  as anthelmintic see (53) (54); for study of antiseptic power of  $\bar{C}$  see (55).]

#### DETERMINATION OF C

For detn. of  $\tilde{C}$  by reactn. with Na + ethanolamine in dioxane followed by detn. of resultant chloride ion see (161).

#### PREPARATION (OR FORMATION) OF C

 $\bar{\mathbf{C}}$  is a by-product of the tech. prepn. of CCl<sub>4</sub> (5:5100) from CS<sub>2</sub> + Cl<sub>2</sub> (56), of prepn. of CHCl<sub>3</sub> (3:5050) and of CH<sub>2</sub>Cl<sub>2</sub> (3:5020) (57), and is found (12) (together with other by-products) in the high-boilg. fractn. ("Tri-Nachlauf") from the prepn. of trichloroethylene (3:5170) from acetylene tetrachloride (3:5750). — For quick prepn of  $\bar{\mathbf{C}}$  from CCl<sub>4</sub> (3:5100) refluxed with Al powder (80% yield (14)) or with Al/Hg (65% yield (58)) cf. (96) see indic. refs.; for prepn. of  $\bar{\mathbf{C}}$  from ethylene with Cl<sub>2</sub> over activated carbon at 300–350° (90% yield) see (59). — For many other methods of preparation, manufacture, or formation see below.

From various polychloroethanes. From 1,2-dichloroethane (ethylene dichloride) (3:5130). [For prepn. of  $\bar{C}$  from ethylene dichloride in vapor phase with  $Cl_2 + cat$ . (60) (61) or with  $Cl_2$  under press. (62) see indic. refs.; note that ethylene dichloride in liq. phase with  $Cl_2$  gives mainly (61) 1,1,2-trichloroethane (3:5085). — Note also that 1,2-dibromoethane (ethylene dibromide) refluxed with  $AlCl_3$  while treated with  $Cl_2$  (63) gives  $\bar{C}$ .]

From 1,1,2,2-tetrachloroethane (acetylene tetrachloride) (3:5750). [For formn. of C together with other prods. from acetylene tetrachloride over pumice at 700° (64), or with anhydr. FeCl<sub>3</sub> on htg. in s.t. (65), or with Cl<sub>2</sub> (66) in u.v. light at 50-60° (67) or X-radiation (68), or with Cl<sub>2</sub> over activated carbon at 300-400° (69) (70) or at 60-70° (71), or with Cl<sub>2</sub> in pres. of AlCl<sub>3</sub> at 20-100° (71) or at 120° under reflux (80% yield (72)), or with Cl<sub>2</sub> in pres. of Fe at 20-80° (71), or with Cl<sub>2</sub> in CCl<sub>4</sub> soln. (73), or even with aq. bleaching powder (71), see indic. refs. — (Note also that acetylene tetrabromide with AlCl<sub>3</sub> + Cl<sub>2</sub> under reflux yields (63) C̄).]

From pentachloroethane (3.5880). [For formn. of  $\bar{C}$  together with other prods. from pentachloroethane with dry  $Cl_2 + AlCl_3$  at 70° (74), or with  $Cl_2$  over activated carbon at 300-400° (70), or with  $Cl_2$  in u.v. light (67), or with excess  $F_2$  at 90° for 10 hrs. (16), see indic. refs. — (Note also that pentabromoethane with  $SbCl_5$  in s.t. at 160° for 2 hrs. gives (75)  $\bar{C}$ .)]

From various polychloroethylenes (or acetylenes). From trichloroethylene (3:5170). [For formn. of  $\tilde{C}$  together with other products from trichloroethylene by pyrolysis over

pumice at 700° (64), or with anhydrous FeCl<sub>3</sub> on htg. in s.t. (65), or with Cl<sub>2</sub> over act. carbon at 60-70° (98% yield (70)), see indic. refs.]

From tetrachloroethylene (3:5460). [For prepn. and/or formn. of  $\bar{C}$  from tetrachloroethylene with Cl<sub>2</sub> (162) (76) (77) in direct sunlight (78) cf. (79) (80) (106) or in pres. of suitable cat. in dark at 80-100° (81), or in CCl<sub>4</sub> soln. at 22° (82) cf. (73) or in vapor phase at 40° and low press. in light and absence of oxygen (33) see indic. refs. (note that tetrachloroethylene (3:5460) with Cl<sub>2</sub> + light in presence of O<sub>2</sub> undergoes photo-oxidation to trichloroacetyl chloride (3:5420)). — For formn. of  $\bar{C}$  from tetrachloroethylene with SO<sub>2</sub>Cl<sub>2</sub> in pres. of dibenzoyl peroxide (84), or in small amt. with dibenzoyl peroxide alone (85), or with chlorine monoxide in CCl<sub>4</sub> at  $-20^{\circ}$  (86), see indic. refs.] See also below under formn. of  $\bar{C}$  from acetylene.

From dichloroacetylene (3:5010). [For form. of  $\bar{C}$  from dichloroacetylene with  $Cl_2$  in  $CCl_4$  soln. see (2).]

From various polychloromethanes. From trichloromethane (chloroform) (3:5050). [For formn. of C together with other prods. from CHCl<sub>3</sub> by pyrolysis at 425° (87), in electric arc (6), by actn. of radium radiation (88), or by actn. of NCl<sub>3</sub> in sunlight (89) see indic. refs.]

From carbon tetrachloride (3.5100). [For formn. of  $\bar{C}$  together with other prods. from CCl<sub>4</sub> by pyrolysis at 600–1500° (90) cf. (91) (76), by actn. of electric arc (6), dark electric discharge (92), or radium radiation (88), with hydrogen at 600–650° (93), or with hydrogen over reduced Ni at 270° (94), or from CCl<sub>4</sub> in nitrogen over GeO<sub>2</sub> at 500–865° (95), see indic. refs.]

[For prepn. of  $\overline{C}$  from CCl<sub>4</sub> (3:5100) by refluxing with Al powder (80% yield (14)), Al/Hg (65% yield (58)), or Al + AlCl<sub>3</sub> (96), or by htg. with Cu powder in s.t. at 120° (97), amorphous As in s.t. at 160° (98), or molecular Ag in s.t. at 200° (99), see indic. refs.]

From various hydrocarbons. From methane. [For formn. of  $\tilde{C}$  together with other prods. from  $CH_4 + Cl_2$  in silent elec. discharge see (100).]

From ethane. [For form. of C together with other prods. from ethane with Cl<sub>2</sub> in pres. of activated carbon or other cat. at elev. temp. see (101) (102) (103).]

From ethylene. [For form. of C together with other prods. from ethylene with Cl<sub>2</sub> over act. carbon at 120-125° (104) or at 300-350° (90% yield (59)) cf. (101) (105).]

From acetylene. [For formn. of  $\bar{C}$  together with other prods. from acetylene with Cl<sub>2</sub> at 650-1000° as directed (106) or at 700-950° as directed (107), with Cl<sub>2</sub> in an inert gas such as N<sub>2</sub> or HCl over act. carbon at elev. temp. (108), or with S<sub>2</sub>Cl<sub>2</sub> in pres. of 1-2% reduced iron (109) (110) see indic. refs. — (Note that by this mode of procedure acetylene tetrachloride (see this heading above) is a probable intermediate.)]

From miscellaneous sources. C has been observed as one of the products of decomposition of many different types of compounds contg. the —CCl<sub>3</sub> group. [For example, for formn. of C (together with other prods.) from iodotrichloromethane on distn. (111), from bromotrichloromethane in ultraviolet light (112), from trichloroacetyl chloride (3:5420) at 600° (113), from trichloroacetyl bromide in s.t. at 400° (113), from trichloroacetyl iodide on distn. at ord. press. (113), from nitrosotrichloromethane with O<sub>2</sub> at 120° (114), or from nitrotrichloromethane (chloropicrin) with HCl gas over pumice at 400° (1) see indic. refs. — For formn. of C together with other prods. from trichloroacetaldehyde (chloral) (3:5210) with Cl<sub>2</sub>, Br<sub>2</sub>, or I<sub>2</sub> in pres. of AlCl<sub>3</sub> (115), from trichloroacetic acid (3:1150) by pyrolysis over ThO<sub>2</sub>, kaolin, or carbon (116), from K trichloroacetate by electrolysis of its soln. in aq. KOAc (15), from ferric trichloroacetate in aq. soln. in light (117) (118) (119), from pentachlorodimethyl ether on htg. with aq. (120), or from trichloromethyl benzoate on htg. (121) see indic. refs.]

The forms. of C has also been observed in connection with certain acid chlorides [e.g.,

for formn. of C from acetyl chloride (3:7065) with excess PCl<sub>5</sub> in s.t. at 180° (122), from pentachloropropionyl chloride (3:0470) with AlCl3 on warming (123), from dichloromalcyl (di)chloride (3:6197) with PCl<sub>5</sub> at 230° for 6 hrs. (124), or from pentachloroethyl chloroformate with AlCl<sub>3</sub> at 100° (125) see indic. refs.]

[For formn. of C from various alkanes with SbCl<sub>5</sub> + I<sub>2</sub> (126), from a mixt. of dichloropropanes or from hexachlorobutadiene (3:6425) with Cl2 at 400° and 30 atm. (127), from an electric arc between carbon electrodes in Cl<sub>2</sub> (128), from n-propyl chloride (3:7040) or isobutyl chloride (3:7135) with excess ICl<sub>3</sub> in s t. at 200° (129), from CaC<sub>2</sub> with gaseous or liq. Cl2 at 20° under press. (10), from various iodochlorides of ethylene on warming (9), from lignin on boilg. with SbCl<sub>5</sub> + I<sub>2</sub> (130), from humic acid with KClO<sub>3</sub> + HCl (131), from  $\beta, \beta'$ -dichlorodicthyl sulfide ("mustard gas") with dry Cl<sub>2</sub> at 100° (132), or from  $\alpha,\alpha,\beta,\beta,\beta,\beta'$ -hexachlorodiethyl sulfide or  $\alpha,\alpha,\beta,\beta,\beta,\alpha',\beta'$ -heptachlorodiethyl sulfide with Cl<sub>2</sub> in cold (133) see indic. refs.]

#### CHEMICAL BEHAVIOR OF C

Pyrolysis. [C passed over porcelain in hot tube gives (78) tetrachloroethylene (3:5460);  $\bar{\mathbf{C}}$  (in stream of air) pyrolyzed at 550–600° gives (57) tetrachloroethylene (3.5460) +CCl<sub>4</sub> (3:5100) in conversions of substantially 100% — Note also that C with SbCl<sub>5</sub> above 450° yields almost exclusively (126) CCl<sub>4</sub> (3:5100).]

**Reduction.** C with granulated Zn in boilg, alc. (134), with Zn + dil. H<sub>2</sub>SO<sub>4</sub> at room temp. for several days (100% yield (135)) (136) (76), with  $Z_n + aq$ . above 80° (137), with H<sub>2</sub> over Ni at 270° (138), or with alc. KSH (139) loses 2 chlorine atoms giving tetrachloroethylene (3:5460) [for other, less direct conversions of C to tetrachloroethylene see latter under preparation; also below.)]

Oxidation. C is oxidized only with considerable difficulty [e.g., for behavior of C over hot CuO see (140); for detn. of chlorine in C by cat. oxidn over Fc<sub>2</sub>O<sub>3</sub> (low results) see (141); C with CrO<sub>3</sub>/H<sub>2</sub>SO<sub>4</sub> is incompletely oxidized (142); C with SO<sub>3</sub> in s.t. at 150° (143) cf. (144) yields trichloroacetyl chloride + S<sub>2</sub>O<sub>5</sub>Cl<sub>2</sub>]

Partial replacement of chlorine by fluorine. [C with  $F_2$  gas over Cu gauze cat. at 125° (145), or with SbF<sub>3</sub>Cl<sub>2</sub> htd. under press. (146) (147) (148), or with SbF<sub>3</sub> + Cl<sub>2</sub> + SbCl<sub>3</sub> as directed (149) yields 1,1,2,2-tetrachloro-1,2-difluoromethane, mp. 24-25°, b.p. 92°, accompanied by numerous other partially fluorinated prods |

Behavior with alkalies. [C with solid KOH in s.t. at 210-220° for several days yields (150) KCl + potassium oxalate; C with alc. KOH in s.t. at 100° for a week yields (151) the same prods. accompanied by ethylene and hydrogen; C with N/10 abs EtOH/NaOH at 25° (17), with alc.-free NaOEt in other under press. htd. to 140° (152), yields tetrachloroethylene (3:5460) (for study of kinetics see (17)).]

Behavior with metals. [C with alk. or alk.-earth metals is (like many other polychloro compounds) subject to explosion by mechanical shock; for study of sensitivity of C with Li, Na, K, Mg, Ca, Sr, Ba, Al, or Tl see (154). — C with "molecular" Ag at 280° loses 2 atoms of chlorine yielding (99) tetrachloroethylene (3:5460).]

Behavior with organometallic compounds. [For behavior of C with RMgX compds. see (155) (166);  $\overline{C}$  does not (11) react with Hg di-(p-tolyl)

Behavior with NH<sub>3</sub> or organic bases. [C with NH<sub>3</sub> at 700-800° gives up its halogen quant. (157) yielding NH<sub>4</sub>Cl. — C with excess phenylhydrazine in xylene soln. on stdg. or on warming is reduced to tetrachloroethylene (3:5460), HCl, C<sub>6</sub>H<sub>6</sub>, and N<sub>2</sub> also being formed (158) (note that analogous reactns. are also shown by 1,1,2,2-tetrachloroethane (3:5750) and by pentachloroethane (3:5880)). — For kinetics of reactn. of  $\tilde{C}$  with pyridine or piperidine see (159).]

- 3:4835 (1) Silberrad, Chem. News 123, 271 (1921). (2) Straus, Kollek, Heyn, Ber. 63, 1875 (1930). (3) Schaum, Naumann, Z. anorg. allgem. Chem. 148, 217 (1925). (4) van der Lee, Z. anorg. allgem. Chem. 223, 213-216 (1935). (5) Leder, J. prakt. Chem. (2) 130, 257-258 (1931). (6) Tarczynski, Z. Elektrochem 22, 253 (1916). (7) Staedel, Ber. 11, 1735-1738 (1878). (8) Parijs, Z. anorg. allgem. Chem. 226, 425-428 (1936). (9) Howell, J. Am. Chem. Soc. 45, 186 (1923). (10) Biesalski, van Eck, Z. angew. Chem. 41, 720 (1928).
- (11) Whitmore, Thurman, J. Am. Chem. Soc. 51, 1497 (1929). (12) Müller, Huther, Ber. 64, 590 (1931). (13) Nelson, Ind. Eng. Chem. 22, 971-972 (1930). (14) Ray, Dutt, J. Indian Chem. Soc. 5, 107-108 (1928). (15) Gibson, Proc. Roy. Soc. Edinburgh 44, 140-145 (1923/4). (16) Miller, J. Am. Chem. Soc. 62, 342 (1940). (17) Taylor, Ward, J. Chem. Soc. 1934, 2003-2010. (18) Locat, Rec. trav. chim. 47, 17 (1928). (19) Wiebenga, Z. anory. allgem. Chem. 225, 38-42 (1935). (20) West, Z. Krist. 88, 195-197 (1934).
- (21) Steinmetz, Z. physik. Chem. 52, 466 (1905).
  (22) Bridgman, Proc. Am. Acad. Arts Sci. 51, 84-90 (1915/16).
  (23) Ress, Zimmermann, Z. Krist. 57, 474, 485 (1923).
  (24) Gossner Z. Krist. 38, 151 (1904).
  (25) Schwartz, Z. Krist. 68, 614 (1896).
  (26) Lehmann, Z. Krist. 6, 584-585 (1882).
  (27) Yardley, Proc. Roy. Soc. London, A-118, 449-463 (1928).
  (28) Hendricks, Chem. Revs. 7, 438 (1930).
  (29) van Arkel, Vles, Rec. trav. chim. 55, 410 (1936).
  (30) Schmidt, Funke (to Chem. Werke Aussig-Falkenau), Ger. 715,068, Dec. 16, 1941, Cent. 1942, I 2584; C.A. 38, 2051 (1944).
- (31) Myers, U.S. 1,966,456, July 17, 1934; Cent. 1935, I 3198, C.A. 28, 5554 (1934). (32) Staedel, Ber. 15, 2563 (1882). (33) Rinegardner (to du Pont Co.), U.S. 2,081,236, May 25, 1937; Cent. 1937, II 3381, C.A. 31, 5112 (1937). (34) Pascal, Compt. rend. 154, 883, 886 (1912). (35) "Chemia" Ungarische Chemische Industrie, A. G. & von Dalmady, Ger. 389,778, Feb. 7, 1924; Austrian 95,732, Jan. 25, 1924, Cent. 1924, I 2801; not in C.A. (36) Kharasch, U.S. 1,761,347, June 3, 1930; Cent. 1930, II 1451; C.A. 24, 3657 (1930). (37) Beythien (to Minimax, A.G.), Ger. 639,395, Dec. 4, 1936; Cent. 1937, I 1990, C.A. 31, 1534 (1937). (38) Snelling (to Trojan Powder Co.), U.S. 1,588,277, June 8, 1926; Cent. 1926, II 1487; C.A. 20, 2751 (1926). (39) Frey, Arb. physiol. angew. Entomol. Berlin-Dahlem 6, 189-197 (1939); Cent. 1939, II 3506; C.A. 33, 9487 (1939). (40) Gassner, Seifensuder Zig., see Cent. 1928, I 2629; not in C.A.
- (41) Chem. Fabrik Griesheim-Elektron, Ger. 353,682, May 22, 1922; Cent. 1922, IV 239; not in C.A. (42) Hase, Desinfektion 8, 1-4 (1923); Cent. 1923, II 1005; not in C.A. (43) Salzbergwerk Neu Stassfurt, French 665,930, Sept. 25, 1929; Cent. 1930, I 1996; C.A. 24, 1458 (1930). (44) B. Grether, G. Grether, W. Grether, Ger. 497,478, May 10, 1930, Cent. 1930, II 1601; C.A. 24, 3577 (1930). (45) Salzbergwerk Neu Stassfurt, Swiss 99,217, May 16, 1923; Cent. 1923, IV 916, not in C.A. (46) Akt. Ges. fur medizinische Prod., Brit. 410,364, June 7, 1934; Cent. 1935, II 3969; C.A. 28, 6260 (1934). (47) Frentiss "Chemicals in War," 1st ed., pp. 245-247 (1937). (48) Walker, Ind. Eng. Chem. 17, 1064 (1925). (49) Metivier, French 613,884, Dec. 1, 1926; Cent. 1927, I 1199; not in C.A.: French 648,853, Dec. 28, 1928, Cent. 1931, I 3424; not in C.A. (50) Schwander, Arch. Gewerbepath. Gewerbehyg. 7, 109-116 (1939); Cent. 1939, II 1331; not in C.A.
- (51) Burgi, Wien. klin. Wochechr. 49, 1545-1548 (1936); Cent. 1937, I 3515; not in C.A. (52) Barsoun, Saad, Quart. J. Pharm. Pharmacol. 7, 205-214 (1934); Cent. 1934, II 2550; C.A. 28, 6194 (1934). (53) Tomb, Helmy, J. Trop. Med. Hyg. 36, 265-270 (1933); Cent. 1934, I 728; not in C.A. (54) Hall, Cram, J. Agr. Research 30, 949-953 (1925); Cent. 1925, II 2176; not in C.A. (55) Joachimoglu, Bwchem. Z. 124, 130-136 (1921); Cent. 1922, I 363; C.A. 16, 946 (1922). (56) Meyer, Ber. 27, 3160-3161 (1894). (57) McBee, Hass, Chao, Welch, Thomas, Ind. Eng. Chem. 33, 176-181 (1941). (58) Hofmann, Sciler, Ber. 38, 3058 (1905). (59) Miller, Ind. Eng. Chem. 17, 1182-1183 (1925). (60) Schrader, Havestadt (to T. Goldschmidt, A. G.), Ger. 712,999, Oct. 2, 1941; Cent. 1942, I 2064; C.A. 37, 4748 (1943).
- (61) Hamei, Bull. Chem. Soc. Japan 9, 542-548 (1934); Cent. 1935, I 2801. (62) I.G., French 837,741, Feb. 20, 1939; Cent. 1939, II 228. (63) Mouneyrat, Bull. soc. chim. (3) 17, 799-801 (1897). (64) Nicodemus, J. prakt. Chem. (2) 83, 315-318 (1911). (65) Erdmann, J. prakt. Chem. (2) 85, 84 (1912). (66) Berthelot, Jungfleisch, Ann. Suppl. 7, 255 (1870). (67) Salzbergwerk Neu Stassfurt, Ger. 248,982, July 6, 1912; Cent. 1912, II 299; C.A. 6, 2824 (1912). (68) Loiseau, French 565,356, Jan. 25, 1924; Cent. 1925, II 1227; not in C.A. (69) Blas, Ceva, Anales fis, quim. 37, 298-315 (1941); C A. 37, 74 (1943). (70) Mkryan, Babayan, Sbornik Trudov Armyanskogo Filiala Akad. Nauk 1940, No. 2, 51-58; C.A. 37, 5694 (1943).
- (71) Kokatnur, J. Am. Chem. Soc. 41, 122-123 (1919).
  (72) Mouneyrat, Bull. soc. chim. (3)
  19, 454-455 (1898).
  (73) Gruner (to Kali-Chemie, A.G.), Ger. 712,478, Oct. 21, 1941; Cent.
  1942, I 1053; C.A. 37, 4407 (1943).
  (74) Mouneyrat, Bull. soc. chim. (3) 17, 797-799 (1897);
  (3) 19, 182-183 (1898).
  (75) Elbs, Newmann, J. prakt. Chem. (2) 58, 254 (1898).
  (76) Weiser, Wightman, J. Phys. Chem. 23, 415-439 (1919).
  (77) Fink, Bonilla, J. Phys. Chem. 37, 1141-

1144 (1933). (78) Faraday, Ann. chim. (2) 18, 53-56 (1821). (79) Fruhwirth (to Donau Chemie, I.G.), Ger. 726,713, Sept. 10, 1942; C.A. 37, 6279 (1943). (80) Rüsberg, Gruner (to Kali-Chemie, A.G.), Ger. 712,784, Oct. 25, 1941; Cent. 1942, I 1053; C.A. 37, 4407 (1943).

(81) Levine, Bond (to du Pont Co.), U.S. 2,037,419, April 14, 1936; Cent. 1936, II 864; C.A. 30, 3837 (1936). (82) Leermakers, Dickinson, J. Am. Chem. Soc. 54, 4648-4657 (1932). (83) Dickinson, Carrico, J. Am. Chem. Soc. 56, 1473-1480 (1934). (84) Kharasch, Brown, J. Am. Chem. Soc. 61, 3433 (1939). (85) Reijnhart, Bösseken, Rec. trav. chm. 46, 75 (1927). (86) Goldschmidt, Schussler, Ber 58, 568, 570 (1925). (87) Herndon, Reid, J. Am. Chem. Soc. 56, 3070, 3073 (1928). (88) Kailan, Monatsh. 38, 541, 551 (1917). (89) Hentschel, Ber. 30, 1437 (1897). (90) Strosacker, Schwegler (to Dow Chem. Co.), U.S. 1,930,350, Oct. 10, 1933; Cent. 1934, I 124; C.A. 28, 180 (1934).

(91) Kolbe, Ann. 54, 147 (1845).
(92) Besson, Fournier, Compt. rend. 150, 1119 (1910).
(93) Schwarz, Pflugmacher, J. prakt. Chem. (2) 158, 2-7 (1941).
(94) Sabatier, Mailhe, Compt. rend. 138, 409 (1904).
(95) Dede, Russ, Ber. 61, 2462 (1928).
(96) Bartlett, U.S. 1,800,371, April 14, 1931; Cent. 1931, II 629; C.A. 25, 3362 (1931).
(97) Radziszowski, Ber. 17, 834 Note (1884).
(98) Auger, Compt. rend. 145, 809 (1907).
(99) Goldschmidt, Ber. 14, 928-929 (1881).

(100) Schleede, Luckow, Ber. 55, 3717 (1922).

(101) Schrader, Havestadt (to T. Goldschmidt, A.G.), Ger. 713,000, Oct. 2, 1941; Cent. 1942, I 2064; C.A. 37, 4748 (1943). (102) Mamedaliev, Efendieva, Azerbaitzhanskoe Neftyanoe Khoz. 1936, No. 7, 60-66; Cent. 1936, II 3745; C.A. 31, 8502 (1937). (103) Jones, Allison, Ind. Eng. Chem. 11, 639-643 (1919). (104) Alexeyevskii, J. Russ. Phys.-Chem. Soc. 55, 401-425 (1924); Cent. 1932, II 642; C.A. 19, 2634 (1925). (105) Askenasy, Heller, Ger. 549,341, April 26, 1932; Cent. 1932, II 287; C.A. 26, 3807 (1932). (106) Fruhwith (to Donau A.G.), Ger. 718,888, July 25, 1942; Cent. 1942, II 2085; C.A. 37, 5082 (1943). (107) Fruhwirth (to Donau A.G.), Ger. 772,463, July 13, 1942; Cent. 1942, II 2086; C.A. 37, 5082 (1943). (108) Hennig (to I.G.), Ger. 712,579, Oct. 22, 1941; Cent. 1942, I 1809; C.A. 37, 4407 (1943). (109) Michel, Z. angew. Chem. 19, 1096-1097 (1906). (110) Salzbergwerk Neu Stassfurt, Ger. 174,068, Sept. 8, 1906; Cent. 1906, II 1297; C.A. 1, 950 (1907).

(111) Besson, Compt. rend. 115, 1079 (1892). (112) Noddack, Z. Elektrochem. 27, 361 (1921). (113) Simons, Sloat, Meunier, J. Am. Chem. Soc. 61, 436 (1939). (114) Prandtl, Sennewald, Ber. 62, 1756, 1764 (1929). (115) Mouneyrat, Bull. soc. chm. (3) 17, 794-797 (1897). (116) Senderens, Compt. rend. 172, 155-156 (1921). (117) Jacger, J. Chem. Soc. 119, 2071 (1921). (118) Jaeger, Berger, Rec. trav. chm. 41, 71-81 (1921). (119) Jaeger, Cent. 1911, II 1851-1852, 1912, I 1817. (120) Rabcewicz-Zubkowski, Chvalınski, Roczniki Chem. 10, 680-689 (1930); Cent. 1931, I 919; C.A. 25, 911-912 (1931).

(121) Gelissen, Ger. 480,362, Aug. 7, 1929, Cent. 1929, II 2831; C.A. 23, 4950 (1929) Dutch 14,663, June 15, 1926, Cent. 1929, II 2831; C.A. 20, 3576 (1926). (122) Hubner, Muller, Zeit. für Chemie 1876, 328. (123) Böeseken, Rec. trav. chim. 32, 12 (1913). (124) Leder, J. prakt. Chem. (2) 130, 278-279 (1931). (125) Müller, Ann. 258, 62-64 (1890). (126) Hartmann, Ber. 24, 1011-1026 (1891). (127) McBee, Hass, Pierson, Ind. Eng. Chem. 33, 181-185 (1941). (128) von Bolton, Z. Elektrochem. 8, 169 (1872). (129) Krafft, Merz, Ber 8, 1296-1302 (1875). (130) Tropsch, Ges. Abhandl. Kenntnis Kohle, 6, 301-302 (1921); Cent. 1923, III 1640; C.A. 18, 2332 (1924).

(131) Tropsch, Schellenberg, Ges. Abhandl. Kenntnis Kohlc, 6, 235-247 (1921); Cent. 1924, I 602; C.A. 18, 2873 (1924). (132) Mann, Pope, J. Chem. Soc. 121, 597 (1922). (133) Phillips, Davies, Mumford, J. Chem. Soc. 1929, 543, 547. (134) Bourgoin, Ann. chim. (5) 6, 142-144 (1875); Bull. soc. chim. (2) 23, 344 (1875). (135) Biltz, Ber. 35, 1529-1530 (1902). (136) Geuther, Ann. 107, 212-213 (1858). (137) Howell & Imp. Chem. Ind., Ltd., Brit. 535,026, April 24, 1941; Cent. 1942, II 2203; C.A. 36, 1336 (1942). (138) Sabatier, Mailhe, Compt. rend. 138, 409 (1904). (139) Regnault, Ann. 33, 324-325 (1840). (140) Biesalski, Z. angew. Chem. 37, 317 (1924).

(141) Heslinga, Rec. trav. chim. 43, 182 (1924). (142) Guyot, Simon, Compt. rend. 170, 736 (1920). (143) Prudhomme, Ann. 156, 342-343 (1870). (144) Armstrong, J. prakt, Chem. (2) 1, 251-252 (1870). (145) Miller, Calfee, Bigelow, J. Am. Chem. Soc. 59, 198-199 (1937). (146) Booth, Mong, Burchfield, Ind. Eng. Chem. 24, 328-331 (1932). (147) Locke, Brode, Henne, J. Am. Chem. Soc. 56, 1726-1728 (1934). (148) Henne (to General Motors Corp.), U.S. 1,978,840, Oct. 30, 1934; Cent. 1935, I 1934; C.A. 29, 178 (1935). (149) Henne (to Frigidaire Corp.), Brit. 378,324, Sept. 1, 1932; Cent. 1933, II 1583; C.A. 27, 3947 (1933): French 730,370, Aug. 11, 1932; Cent. 1933, II 1583; C.A. 27, 304 (1933). (150) Geuther, Ann. 111, 174-175 (1859). (151) Berthelot, Ann. 109, 120-121 (1859). (152) Geuther, Brockhoff, J. prakt. Chem. (2)

(151) Berthelot, Ann. 109, 120-121 (1859).
(152) Geuther, Brockhoff, J. prakt. Chem. (2)
7, 107-111 (1873).
(153) de Gibon, French 802,765, Sept. 15, 1936; Cent. 1937, I 1990; C.A. 31, 1968 (1937).
(154) Lenz, Metz, Z. ges. Schiess- u. Sprengstoffw. 27, 294 (1932); Cent. 1933.

I 1716. (155) Korshak, J. Gen. Chem. (U.S.S.R.) 9, 1153-1154 (1939); C.A. 34, 1303 (1940).
(156) Binaghi, Gazz. chim. ital. 57, 674-675 (1927); Cent. 1928, I 908; C.A. 22, 573 (1928). (157)
Heslinga, Rec. trav. chim. 43, 178-179 (1924). (158) Gowing-Scopes, Analyst, 39, 385-386 (1914).
(159) Tronow, J. Russ. Phys.-Chem. Soc. 58, 1278-1301 (1926); Cent. 1927, II 1145; not in C.A.
(160) von Oettingen, J. Ind. Hyg. Toxicol. 19, 405 (1937).

(161) Rauscher, Ind. Eng. Chem., Anal. Ed. 9, 296-299 (1937). (162) Schott, Schumacher,

Z. physik. Chem. B-49, 107-125 (1941), C.A. 38, 3551 (1944).

3:4840 3,5-DICHLOROBENZOIC ACID 
$$C_7H_4O_2Cl_2$$
 Beil. IX - 344 IX<sub>1</sub>-(141)

Ndls. from alc. — Sublimes (10). — Very eas. sol. alc., spar. sol. aq. or lgr.

[For prepn. from 3,5-dichlorotoluene (3:6310) by oxidn. with dil. HNO<sub>3</sub> at 150–170° see (8) (7); from 3,5-dichlorobenzaldehyde (3:1475) by oxidn. with KMnO<sub>4</sub> (74% yield) see (3); from 3,5-dichlorobiphenyl (3:0360) by oxidn. with CrO<sub>3</sub> + AcOH see (9): for prepn. from 3,5-diamnobenzoic ac. via diazo reactn see (1); from 4-amino-3,5-dichlorobenzoic ac. via diazo reactn. see (2); from 3,5-dichloroaniline via conv. to acid hydrolysis of the nitrile see (10); for prepn. from 5-nitro-3-sulfobenzoic acid via PCl<sub>5</sub> and subsequent boilg. with alk. see (11)

 $\bar{C}$  added to 8 pts. fumg. HNO<sub>3</sub> (D=1.48), stood 2-3 hrs. at 70°, cooled, ppts. 75% yield 2-nitro-3,5-dichlorobenzoic ac., ndls. from dil. alc, m.p. 194° cor. (5). [This prod. depresses m.p. of  $\bar{C}$  (5).]

C with PCl<sub>5</sub> yields (12) 3,5-dichlorobenzoyl chloride, b.p. 135-137° at 25 mm. (12).

- --- Methyl 3,5-dichlorobenzoate: m.p. 58° (13).
- Ethyl 3,5-dichlorobenzoate: m.p. unrecorded. [For study of velocity of hydrolysis see (14).]
- --- 3.5-Dichlorobenzamide: unrecorded.
- --- 3.5-Dichlorobenzanilide: ndls. from dil. alc., m.p. 148° (15).

3:4840 (1) Bornwater, Holleman, Rec. trav. chim 31, 229 (1912). (2) Elion, Rec. trav. chim. 42, 178 (1923). (3) Asinger, Lock, Monatsh. 62, 346 (1933). (4) Lock, Bock, Ber. 70, 923 (1937). (5) Asinger, Monatsh. 63, 390-391 (1933/34). (6) Gassmann, Hartmann, J. Am. Chem. Soc. 63, 2393-2395 (1941). (7) Cohen, Dakin, J. Chem. Soc. 79, 1112, 1134 (1901). (8) Lellmann, Klotz, Ann. 231, 324 (1885). (9) Hinkel, Hey, J. Chem. Soc. 1928, 2789. (10) Claus, Stavenhagen, Ann. 269, 225 (1892).

Franchimont, Rec. trav. chim. 29, 376 (1910). (12) Cohen, Briggs, J. Chem. Soc. 83, 1214 (1903). (13) Müller, Tietz, Ber. 74, 807-824 (1941); C.A. 35, 7953 (1941). (14) Blakey, McCombie, Scarborough, J. Chem. Soc. 1926, 2863-2868. (15) Waters, J. Chem. Soc. 1929, 2108.

3:4845 6-CHLORONAPHTHOIC ACID-1

COOH C<sub>11</sub>H<sub>7</sub>O<sub>2</sub>Cl Beil. S.N. 951

M.P. 189° cor. (4) 188-189° (1) (2) Cryst. from C6H6 or 95% alc.

[For formn. of  $\bar{C}$  from furoic acid (1:0475) + chlorobenzene (3:7903) + AlCl<sub>3</sub> (18% yield (2)) (3) or from methyl furoate (1:3452) + chlorobenzene (3:7903) + AlCl<sub>3</sub> (yield 39% (1)) see indic. refs.]

C on decarboxylation by htg. in quinoline at 225° in pres. of copper chromite cat. for 4 hrs. yields (2) 2-chloronaphthalene (3:1285), m.p. 58-59° (2).

- Methyl 6-chloro-1-naphthoate: b p. 165-170° at 2 mm. (1). [From methyl furoate (1:3452) + chlorobenzene (3:7903) + AlCl<sub>3</sub> (15% yield (1)).]
- Ethyl 6-chloro-1-naphthoate: unreported.
- D p-Bromophenacyl 6-chloro-1-naphthoate: mp. 142-143° cor. (4).

3:4845 (1) Price, Huber, J. Am. Chem. Soc. 64, 2139 (1942). (2) Price, Chapin, Goldman, Krebs, Shafer, J. Am. Chem. Soc. 63, 1857, 1861 (1941). (3) McCorkle, Turck, Proc. Iowa Acad. Sci. 43, 205-206 (1936), Cent. 1938, II 1950, C.A. 32, 4161 (1938). (4) Horn, Warren, J. Chem. Soc. 1946, 144.

#### 3:4850 PENTACHLOROPHENOL

Cryst. from alc. as monohydrate,  $\bar{C}.H_2O$ , m.p. 174°; anhydrous ndls from  $C_6H_6$ ; sublimes in long ndls. — Very insol. aq. (17), very eas. sol. alc., ether; mod. sol.  $C_6H_6$ ; spar. sol. cold lgr.; for quant data on solubility in 15 solvents at 7 temps. from 0° to 60° see (1) (17). — Odor pronounced only on htg; dust of  $\bar{C}$  causes sneezing — Slightly volatile with steam.

[For general review see (1), for use as wood preservative see (17) (19); for studies on toxicity see (20) (21); for fate of  $\bar{C}$  in organism see (22) ]

[For prepn. see Beil. VI-194, VI<sub>1</sub>-(104); for comml prepn. from hexachlorobenzene (3:4939) + NaOH + MeOH see (12) cf. (23); from chlorination of phenol or polychlorophenols in pres. of AlCl<sub>3</sub> see (13), from "hexachlorophenol" (3:3180) by reduction with SO<sub>2</sub> in alc see (18).]

 $\bar{C}$  is acidic and in alc. soln. titrates quant. using thymol-blue (Neut. Eq. = 266.5) (1). [For dissoc. const. see (2).] —  $\bar{C}$  is insol. in NH<sub>4</sub>OH (1) but slowly dis. in cold Na<sub>2</sub>CO<sub>3</sub> soln. (8). —  $\bar{C}$  in alk. soln. does not couple with diazonium salts. [For spectrophotometric detn. see (11).]

Salts. See Beil. VI-194. Na\(\bar{A}\), ndls. (from acctone + lgr), spar sol. aq. (3), Na\(\bar{A}\). H<sub>2</sub>O, loses aq. at 110°, sol. aq., alc., ether. [For comml. application as preservative see (1) (14).] — Ag\(\bar{A}\), yel. ppt. turning orange on drying. — Heavy metal salts insol. aq. and often colored (1).

 $\tilde{C}$  in alk. shaken with  $(CH_3)_2SO_4$  (6), or  $\tilde{C}$  treated with diazomethane (6), or  $\tilde{C}$  htd. in MeOH with  $CH_3I + KOH$  (15), yields its methyl ether, pentachloroanisole, ndls. from alc., m.p. 108° (6), 106.5° (6).

Dentachlorophenyl acetate: from  $\tilde{C}$  on htg. with Ac<sub>2</sub>O + NaOAc (15) or from  $\tilde{C}$  in CS<sub>2</sub> + AcCl + AlCl<sub>3</sub> (16); ndls. from alc., m.p. 149.5-150 5° (16), 147-148° (15). [This prod. is very resistant to saponification (16).]

- D Pentachlorophenyl benzoate: from C + BzCl by warming in pyridine (3); ndls. from alc., m.p. 164-165° (3), 159-160° (15), 159° (10). [Very resistant to saponification (16).]
- 3:4850 (1) Carswell, Nason, Ind. Eng. Chem. 30, 622-626 (1938). (2) Tiessens, Rec. trav. chim. 50, 116, 120 (1931). (3) Biltz, Giese, Ber 37, 4018-4020 (1904). (4) Fels, Z Krist. 32, 369 (1900). (5) Fichter, Glantzstein, Ber. 49, 2481 (1916). (6) Pollak, Gebauer-Fülnegg, Monatsh. 47, 116-117 (1926). (7) Hugounenq, Ann. chim. (6) 20, 545 (1890). (8) Merz, Weith, Ber. 5, 459 (1872). (9) Zincke, Broeg, Ann. 363, 238 (1908). (10) Brazier, McCombie, J. Chem. Soc. 101, 976-977 (1912).
- (11) Deichmann, Schafer, Ind. Eng. Chem., Anal Ed. 14, 310-312 (1942). (12) Smith, Livak (to Dow Chem. Co), U.S. 2,107,650, Feb. 8, 1938; Cent. 1938, I 3821; CA. 32, 2548 (1938). (13) Stoesser (to Dow Chem. Co.), U.S. 2,131,259, Sept. 27, 1938, Cent. 1938, II 4312; C.A. 32, 9102 (1938). (14) Carswell (to Monsanto Chem. Co.), U.S. 2,157,113, May 9, 1939; Cent. 1939, II 2720. (15) Weber, Wolff, Bcr. 18, 336 (1885). (16) Barral, Bull soc chm (3) 13, 342-343 (1895) (17) Carswell, Hatheld, Ind. Eng. Chem. 31, 1431-1435 (1939). (18) Britton, Alquist (to Dow Chem. Co.), U.S. 2,176,417, Oct. 17, 1939; C.A. 34, 1038 (1940). (19) Hatfield, Proc. Am. Wood Preserving Assoc 1944, 4765, C.A. 39, 2631 (1945). (20) Goodinght, Ind. Eng. Chem. 34, 868-872 (1942)
- (21) Deichmann, Machle, Kitamiller, Thomas, J. Pharmacol. 76, 104-117 (1942); C.A. 37, 461 (1943). (22) Machle, Deichmann, Thomas, J. Ind. Hyg. Toxicol. 25, 192-194 (1943). (23) Troitskii, Voronina, Ory. Chem. Ind. (U.S.S.R.) 7, 240-241 (1940); C.A. 35, 3989 (1941).

### 3:4853 CHLOROFUMARIC ACID Cl—C—COOH C<sub>4</sub>H<sub>3</sub>O<sub>4</sub>Cl Beil. II - 744 $\Pi_{1-}$ (302) $\Pi_{2-}$ (640)

| M.P. | 193°                  | (1)  |           |
|------|-----------------------|------|-----------|
|      | 192°                  | (2)  | (3) (4)   |
|      | 191.5-192.5° cor. (5) |      |           |
|      | 191.5°                | (6)  |           |
|      | 191-192°              | (22) |           |
|      | 191°                  | (8)  | (10) (19) |
|      | 190–191°              |      | (12)      |
|      | 189°                  | (11) |           |
|      | 188-189°              | (14) |           |

[See also chloromaleic acid (3:3432).]

Tbls from AcOH. —  $\tilde{C}$  is very cas sol aq., alc. or ether; spar. sol.  $C_6H_6$  or lgr. —  $\tilde{C}$  sublimes without forming anhydride

[For prepn of  $\bar{\rm C}$  from chloromaleic acid (3.3432) by repeated evapn, with cone. HCl see (5) (2); from  $d_i l_i - \alpha_i \alpha'_i$ -dichlorosuccime acid (3:4711) on boilg, with aq (7), or with aq. KOH (8) (9) or aq acid (9) see indic 1efs; from  $meso_i - \alpha_i \alpha'_i$ -dichlorosuccinic acid (3:4930) with aq. KOH at 0° see (7) (8) (9) (note that from this source action of acid yields (9) both  $\bar{\rm C}$  and chloromaleic acid (3:3432)); from diethyl  $d_i l_i - \alpha_i \alpha'_i$ -dichlorosuccinate (3:9578) on hydrolysis with boilg. 30% H<sub>2</sub>SO<sub>4</sub> see (1); from diethyl chlorofumarate (3:6864) by evapn, with 1°1 HCl see (6); from chlorofumaro(di)nitrile (b.p. 172° at 74 mm., 64.0–64.2° at 10 mm.,  $D_i^{20} = 1.2499$ ,  $n_i^{20} = 1.49571$  (22)), by hydrol. see (22).]

[For formn. of  $\bar{\rm C}$  from diethyl oxaloacetate [Beil. III-782, III<sub>1</sub>-(273), III<sub>2</sub>-(479)] by actn. of PCl<sub>5</sub> followed by alc. KOH see (11); from acetylenedicarboxyhc acid [Beil. II-801, II<sub>1</sub>-(317), II<sub>2</sub>-(670)] with conc. HCl on stdg. 10 days at room temp. see (12) cf. (13); from 3-chlorofuroic acid [Beil. XVIII-282] on oxidn. with dil. HNO<sub>3</sub> or from 3,5-dichlorofuroic acid [Beil. XVIII-283] or 4,5-dichlorofuroic acid [Beil. XVIII-283] on oxidn. with Br<sub>2</sub>/aq. see (14).]

 $\ddot{\mathbf{C}}$  on gentle boilg. largely decomposes into  $\mathbf{CO}+\mathbf{CO_2}+\mathbf{HCl}$  (5); but  $\ddot{\mathbf{C}}$  on vigorous boilg. splits off aq. and isomerizes (or vice versa) yielding (5) chloromaleic anhydride (3:0280). —  $\ddot{\mathbf{C}}$  with  $\mathbf{P_2O_5}$  (6) (15), or with  $\mathbf{POCl_3}$  (16) or with  $\mathbf{AcCl}$  (5), gives on distn. chloromaleic anhydride (3:0280). —  $\ddot{\mathbf{C}}$  (1 mole) with chlorofumaryl (di)chloride (3:6105) (1 mole) at 125° for 1 hr. also yields (17) chloromaleic anhydride (3:0280).

 $[\bar{C} \text{ (as } K_2\bar{A}) \text{ in aq. soln. with Na/Hg is dehalogenated and reduced yielding (18) succinic acid (1:0530).]}$ 

Č readily reduces aq. KMnO<sub>4</sub>.

[ $\bar{C}$  in aq. soln on protracted treatment with Cl<sub>2</sub> gives (19)  $\beta,\beta,\beta$ -trichloro- $\alpha,\alpha$ -dihydroxy-propionic acid ("trichloropyruvic acid hydrate") [Beil. III-623, III<sub>2</sub>-(408)], ndls. from CHCl<sub>3</sub>, m.p. 102° (19). —  $\bar{C}$  does not (5) add Br<sub>2</sub> even at 100° (dif. from chloromaleic acid (3:3432)).]

Č behaves normally as a dibasic acid: e.g., titration with standard dil. aq. alk. gives Neut. Eq. 75.3; for study of electrometric titration see (2).

[Salts. (NH<sub>4</sub>)<sub>2</sub>Ā, eas. sol. aq. (5), but spar. sol. MeOH, EtOH, and insol. in ether, acetone, AcOEt, CHCl<sub>3</sub>, or C<sub>6</sub>H<sub>6</sub> (20) see indic. refs. — KHĀ, much less sol. than corresp. prod. from chloromaleic acid, e.g., 100 g. of its satd. soln. at 15° conts. 3.843 g. KHĀ (5). — Ag<sub>2</sub>Ā (10) (12). — BaĀ.3H<sub>2</sub>O, fairly sol. aq. (10). — PbĀ.2H<sub>2</sub>O (13).]

[Č on stdg. at ord. temp. with slight excess 0.76 N aq. KOH gives chlorine ion about 40 times as fast (12) as the isomeric chloromaleic acid (3:3432).]

The acid (di)chloride corresp. to C, viz., chlorofumaryl (di)chloride (3:6105), has been reported only by indirect means.

- Dimethyl chlorofumarate: oil (see 3:6582).
- —— Diethyl chlorofumarate: oil (see 3:6864).
- **bis-(p-Nitrobenzyl)** chlorofumarate: m.p. 138.5° (21). [From Na<sub>2</sub>\bar{A} with p-nitrobenzyl bromide in 63% ale. refluxed 2 hrs. (21).]
- Chloromaleanii [N-phenyl-chloromaleinimide]: ndls. from boilg. alc., m.p. 170° (17). [From aniline salt of  $\bar{C}$  on htg. for a few minutes at 170°-180°; note that during the process isomerization occurs and therefore that the prod. is the same as similarly obtd. from chloromaleic acid (3:3432) q.v.]
- © Chlorofumaro-bis-(p-bromoanilide): faintly yel. ndls. from boilg. alc., m.p. 236° (17). [From chlorofumaryl (di)chloride (3:6105) with p-bromoaniline (4 moles) in dry ether; note that crude prod. is also accompanied by a little N-(p-bromophenyl)-chloromaleinimide, m.p. 190° (17).]

3:4853 (1) Patterson, Todd, J. Chem. Soc. 1929, 1769, 1770. (2) Ashton, Partington, Trans. Faraday Soc. 30, 602, 605-606, 608 (1934). (3) Langseth, Z. physik. Chem. 118, 54 (1925). (4) Stelling, Z. physik. Chem. B-24, 410, 424 (1934). (5) Perkin, J. Chem. Soc. 53, 697-700, 703-705 (1888). (6) von Auwers, Harres, Ber. 62, 1685-1687 (1929). (7) Michael, Tissot, J. prakt. Chem. (2) 46, 393-395 (1892). (8) Robinson, Lewis, J. Chem. Soc. 1933, 1260. (9) Holmberg, Arkiv Kemi, Mineral., Geol. 8, No. 2, 33 (1920); Cent. 1921, I 830; C.A. 16, 2116 (1922). (10) Kauder, J. prakt. Chem. (2) 31, 29-32 (1885).

(11) Nef. Ann. 276, 223-226 (1893). (12) Michael, J. prakt. Chem. (2) 52, 306-308, 321-322 (1895). (13) Bandrowski, Ber. 15, 2695 (1882). (14) Hill, Jackson, Am. Chem. J. 12, 36, 50, 115 (1890). (15) Walden, Ber. 30, 2885-2886 (1897). (16) Thomas-Mamert, Bull soc. chim. (3) 13, 847 (1895). (17) Chattaway, Parkes, J. Chem. Soc. 125, 466 (1924). (18) Perkin, Ann. 129, 373-374 (1864). (19) Büchner, Ber. 26, 656-657 (1893). (20) McMaster, Magill, J. Am. Chem. Soc. 38, 1802-1803 (1916).

(21) Lyons, Reid, J. Am. Chem. Soc. 39, 1733 (1917). (22) Mommaerts, Bull. classe sci., Acad. roy. Belg. (5) 27, 579-597 (1941); Cent. 1943, I 615-616; C.A. 38, 3621 (1944).



188-189°

[See also the isomeric d,l or " $\beta$ "-stilbene dichloride (3:2570).]

(20)

Colorless ndls. from alc., AcOH, C6H6, toluene, or lgr. — Spar. sol. hot alc., eas. sol. hot toluene. — Sublimes.

#### PREPARATION OF C

#### FROM BINUCLEAR INITIAL MATERIALS

From stilbene (trans-1,2-diphenylethylene). [For prepn. of  $\bar{C}$  from 1,2-diphenylethylene (stilbene) (1:7250) with Cl<sub>2</sub> in CHCl<sub>3</sub> (8) (16), with Cl<sub>2</sub> in ether in sunlight (17) (some " $\beta$ "-stilbene dichloride (3:2570) is also formed), with Cl<sub>2</sub> in ethane soln. (note low temp.) in sunlight (gives 34.4% yield  $\bar{C}$  + 48.7% yield diastereomer (3:2570) (15)) see indic. refs.; with PCl<sub>5</sub> (2 moles) in CHCl<sub>3</sub> soln. (6) or with PCl<sub>5</sub> in POCl<sub>3</sub> in s.t. at 170° (2) see indic. refs.; with SO<sub>2</sub>Cl<sub>2</sub> in presence of peroxides at room temp. (yield of crude mixt. is 100%; sepn. of isomers gives 45%  $\bar{C}$  + 33% diastereomer (3:2570) (7)), with nitryl chloride (CINO<sub>2</sub>) in ether (57% yield (18)), see indic. refs.]

From isostilbene (cis-1,2-diphenylethylene). [For prepn. of  $\bar{C}$  from isostilbene with PCl<sub>5</sub> in  $C_6H_6$  stood 2 days at room temp. see (6).]

From bibenzyl. [For formn. of C from bibenzyl (1:7149) with chromyl chloride (CrO<sub>2</sub>Cl<sub>2</sub>) in CS<sub>2</sub> (other prods. are also formed) see {19}.]

From  $\alpha, \alpha'$ -dibromobibenzyl (stilbene dibromide). [For formn. of  $\bar{C}$  from the higher-melting diastereomer (m.p. 236°) of stilbene dibromide [Beil. V-602, V<sub>1</sub>-(282), V<sub>2</sub>-(508)] with SnCl<sub>4</sub> in C<sub>6</sub>H<sub>6</sub> on refluxing  $\frac{1}{2}$  hr. (5) (note that at ord. temp. replacement is only

partial and yields (5) only stilbene chlorobromide, m.p. 225°) or with HgCl<sub>2</sub> in acetone/CHCl<sub>3</sub> refluxed 11 hrs. (poor yield (11)) see indic. refs.]

From 
$$\alpha,\alpha'$$
-dihydroxybibenzyl ( $C_6H_5$ — $C$  —  $C$ — $C_6H_5$ ).

From meso-hydrobenzoin. [For prepn. of  $\bar{C}$  from meso-hydrobenzoin [Beil. VI-1003, VI<sub>1</sub>-(490)] with PCl<sub>5</sub> (2 moles) (20) cf. (15) (yield 43%  $\bar{C}$  + 22% diastereomer (3:2570) (8) (16)), with PCl<sub>3</sub> (8) (16), or with SOCl<sub>2</sub> in  $C_6II_6$  + pyridine (100% yield (10)) (13) see indic. refs.]

From d,l-hydrobenzoin (isohydrobenzoin). [For prepn. of  $\bar{C}$  from isohydrobenzoin [Beil. VI-1004, VI<sub>1</sub>-(490)] with PCl<sub>5</sub> (27-32%  $\bar{C}$  + much resin (8)) (16) (20) or with PCl<sub>5</sub> (8) (16) see indic. refs.; note, also, that l-isohydrobenzoin with PCl<sub>5</sub> in CHCl<sub>3</sub> refluxed 2 hrs. gives (45% yield (1))  $\bar{C}$ .]

From  $\alpha$ -chloro- $\alpha'$ -hydroxybibenzyl. [For formn. of  $\bar{C}$  from  $\alpha$ -chloro- $\alpha'$ -hydroxybibenzyl (m.p. 77°, corresp. p-nitrobenzoate, m.p.  $103-104^{\circ}$  (3)) with SOCl<sub>2</sub> in CHCl<sub>3</sub> see (3); note that by this method  $\bar{C}$  is formed exclusively.]

From  $\alpha$ -amino- $\alpha'$ -hydroxybibenzyl. [For prepn. of  $\bar{\bf C}$  from  $d_il$ - $\alpha$ -amino- $\alpha'$ -hydroxybibenzyl with PCl<sub>5</sub> (42% yield (21)) or with NOCl (1) see indic. refs; note also that d- $\alpha$ -amino- $\alpha'$ -hydroxybibenzyl in HCl with NOCl gives (1) 13%  $\bar{\bf C}$  + 24% of l-"stilbene dichloride (3:2570) while l- $\alpha$ -amino- $\alpha'$ -hydroxybibenzyl in HCl with NOCl gives (1) 14%  $\bar{\bf C}$  + 17% d-" $\beta$ "-stilbene dichloride (3:2570).]

#### From Mononuclear Initial Materials

From benzal (di)chloride. [For formn. of  $\bar{C}$  from benzal (di)chloride (3:6327) by bimolecular reduction with  $II_2 + Pd$  in alc. soln. (22), or with  $II_2 + Pd$  in alc. soln. (22), or with  $II_2 + Pd$  in alc. soln. (22), or with  $II_2 + Pd$  in alc. soln. (22), or with  $II_2 + Pd$  in alc. soln. (22), or with  $II_2 + Pd$  in alc. soln. (22), or with  $II_2 + Pd$  in alc. soln. (22), or with  $II_2 + Pd$  in alc. soln. (22), or with  $II_2 + Pd$  in alc. soln. (23), or with excess  $II_2 + Pd$  in alc. (24), or by action of  $II_2 + Pd$  in alc. (25), soln. (25), soln. (26), all  $II_2 + Pd$  in alc. soln. (26), or with  $II_2 + Pd$  in alc. soln. (26), or with  $II_2 + Pd$  in alc. soln. (27), or with  $II_2 + Pd$  in alc. soln. (27), or with  $II_2 + Pd$  in alc. soln. (28), or with  $II_2 + Pd$  in alc. soln. (29), or with  $II_2 + Pd$  in alc. soln. (29), or with  $II_2 + Pd$  in alc. soln. (21), or with  $II_2 + Pd$  in alc. soln. (21), or with  $II_2 + Pd$  in alc. soln. (21), or with  $II_2 + Pd$  in alc. soln. (21), or with  $II_2 + Pd$  in alc. soln. (21), or with  $II_2 + Pd$  in alc. soln. (21), or with  $II_2 + Pd$  in alc. soln. (21), or with  $II_2 + Pd$  in alc. soln. (22), or with  $II_2 + Pd$  in alc. soln. (22), or with  $II_2 + Pd$  in alc. soln. (22), or with  $II_2 + Pd$  in alc. soln. (23), or with  $II_2 + Pd$  in alc. soln. (24), or with  $II_2 + Pd$  in alc. soln. (25), or with  $II_2 + Pd$  in alc. soln. (25), or with  $II_2 + Pd$  in alc. soln. (26), or with  $II_2 + Pd$  in alc. soln. (26), or with  $II_2 + Pd$  in alc. soln. (27), or with  $II_2 + Pd$  in alc. soln. (28), or with  $II_2 + Pd$  in alc. soln. (28), or with  $II_2 + Pd$  in alc. soln. (28), or with  $II_2 + Pd$  in alc. soln. (28), or with  $II_2 + Pd$  in alc. soln. (28), or with  $II_2 + Pd$  in alc. soln. (29), or with  $II_2 + Pd$  in alc. soln. (29), or with  $II_2 + Pd$  in alc. soln. (29), or with  $II_2 + Pd$  in alc. soln. (29), or with  $II_2 + Pd$  in alc. soln. (29), or with  $II_2 + Pd$  in alc. soln. (29), or with  $II_2 + Pd$  in alc. soln. (29), or with  $II_2 + Pd$  in alc. soln. (29)

From benzotrichloride. [For formn. of  $\bar{C}$  from benzotrichloride (3:6540) by actn. of Ni on htg. in atm. of  $CO_2$  see (23).]

#### From Miscellaneous Initial Materials

[For form. of  $\tilde{C}$  from diphenylace aldehyde [Beil. VII-438, VII<sub>1</sub>-(234)] with PCl<sub>5</sub> in  $C_6H_6$  under reflux 2 hrs. (41% yield) see (3) ]

#### CHEMICAL BEHAVIOR OF C

Action of heat. C on repeated htg. above its m.p. is partially isomerized to its diastereo-isomer (3:2570) as a result of which the m.p. of the sample gradually falls to about 160° but not lower (8) (16).

**Reduction.** C with Zn dust + AcOH gives good yields (24) of trans-1;2-diphenylethylene (stilbene) (1:7250), m.p. 124°.

Hydrolysis. [No study of the direct hydrolysis of C appears to be recorded. — However, C with AgOAc in boilg. AcOH gives an ester which upon hydrolysis gives (60% yield (8) (16)) almost exclusively d<sub>i</sub>l-hydrobenzoin (isohydrobenzoin), accompanied by a little

hydrobenzoin; with AgOBz, however, much more of the latter results; however, see also below.]

Other reactions.  $\bar{C}$  with alc. KOH on warming under reflux (20) or in an autoclave at 180° (2) splits out 2 HCl yielding diphenylacetylene (tolane) [Beil. V-656, V<sub>1</sub>-(319), V<sub>2</sub>-(568)], m.p. 60°. —  $\bar{C}$  with pyridine in s.t. at 200° for 8 hrs. does not (17) split out HCl (dif. from the " $\beta$ " stereoisomer (3:2570) q.v.)

[ $\bar{C}$  with LiI in alc. refluxed 2 hrs. is little affected but in s t at 200° for 3 hrs. gives (11) (presumably via halogen interchange and subsequent loss of  $l_2$ ) a little trans-1,2-diphenylethylene (stilbene) (1:7250). —  $\bar{C}$  with NaI in alc. is unchanged even at 150° in s.t.; using AcOH as solvent, however, in s.t. at 210° stilbene (1:7250) is formed (11). —  $\bar{C}$  does not (11) react with alc. NaBr.]

[C with AgOAc (2 moles + 25% excess) in AcOH at 100° for 9 hrs. gives (25) mixts. of hydrobenzoin diacetate, m.p. 133-134°, and isohydrobenzoin diacetate, m.p. 114-116° (for m.p./compn. diagram of this pair see (25) (26)).]

3:4854 (1) Weissberger, Bach, Ber. 64, 1095-1108 (1931). (2) Kayser, Ann. chim. (11) 6, 220-222 (1936). (3) Newman, Joshel, Wise, J. Am. Chem. Soc. 62, 1862 (1940). (4) Reulos, Compt. rend. 216, 775-776 (1943). (5) Pferffer, Elstert, J. pratt. Chem. (2) 124, 174-175 (1930). (6) Bergmann, Bondt, Ber 64, 1457-1458, 1468 (1931). (7) Kharasch, Brown, J. Am. Chem. Soc. 61, 3434 (1939). (8) Zincke, Ann. 198, 129-141 (1879). (9) Higasi, Bull. Chem. Soc. Japan, 13, 159 (1938). (10) Kitassto, Sone, Ber 64, 1144 (1931).

(11) Pfeiffer, Praetorius, J. prakt. Chem. (2) 137, 30-31, 37-39 (1933). (12) Busch, Weber, J. prakt. Chem. (2) 146, 49-50 (1936). (13) Cairé, Mauclere, Compt. rend. 192, 1568-1569 (1931). (14) Fuson, Ross, J. Am. Chem. Soc. 55, 720-723 (1933). (15) Weissberger, Sangewald, Z. physik. Chem. B-9, 140 (1930). (16) Zincke, Ber. 10, 999-1004 (1877). (17) Pfeiffer, Ber. 45, 1816-1817 (1912). (18) Steinkopf, Kuhnel, Ber. 75, 1327 (1942). (19) Weiler, Ber. 32, 1054 (1899). (20) Fittig, Animann, Ann. 168, 73, 74, 77-78 (1873).

(21) Darapsky, Spannagel, J. prakt. Chem. (2) 92, 293 (1915). (22) Borsche, Heimburger, Btr. 48, 457 (1915). (23) Korczynski, Reinholz, Schmidt, Roczutki Chem. 9, 731-740 (1929); Cent. 1930, I 2075, C.A. 24, 1858 (1930). (24) Meisenheimer, Heim, Ann. 356, 274 (1907). (25) Winstein, Seymour, J. Am. Chem. Soc. 68, 119-122 (1946). (26) Boeseken, Elsen, Rectrav. chm. 47, 696 (1928).

#### 3:4855 5-CHLOROBENZENETRICARBOXYLIC C<sub>9</sub>H<sub>5</sub>O<sub>6</sub>Cl Beil. S.N. 1008 ACID-1,2,4 COOH

(5-Chlorotrimellitic acid)

COOH

#### M.P. 192-194° (1)

(For prepn. of  $\tilde{C}$  from 5-chloro-1,2,4-trimethylbenzene (5-chloropseudocumene) [Beil. V-402] by oxidn. in aq. pyridine with KMnO<sub>4</sub> see (1).]

 $[\bar{\mathbf{C}}$  on suitable treatment with alk. yields (1) 5-hydroxytrimellitic acid [Beil. X-580] for use as dye intermediate.]

3:4855 (1) I.G., Brit. 495,432, Dec. 8, 1938; Cent. 1939, I 1452; C.A. 33, 2913 (1939); French 839,454, April 4, 1939, C.A. 36, 5188 (1942).

3:4857 2,3-DICHLORONAPHTHOQUINONE-1,4 C<sub>10</sub>H<sub>4</sub>O<sub>2</sub>Cl<sub>2</sub> Beil. VII - 729 VII<sub>1</sub>-(386)

Golden yellow ndls. from AcOH (contg. a little CrO<sub>3</sub> (2)) or from alc. — Sublimes (use in purification (12)). — Insol. aq. (1 in 10,000,000 (13)), spar. sol. cold alc. AcOH, CCl<sub>4</sub>, ethyleneglycol ethyl ether, gasoline, cottonseed oil, castor oil, "Nujol" (13); quite sol. (4% (13)) in xylene or o-dichlorobenzene (3:6055); fairly sol. in ether, C<sub>6</sub>H<sub>6</sub>, acetone, or dioxane (13).

[For use of C as agricultural and textile fungicide see impt. review article (13) cf. (37).] [For prepn. of C from naphthoquinone-1,4 (1:9040) in AcOH with Cl<sub>2</sub> in pres. of I<sub>2</sub> (yields: 90% (14), 80% (8)), from 2-chloronaphthoquinone-1,4 [Beil. VII-729] in AcOH with Cl<sub>2</sub> (15) (16), from naphthoquinone-1,4-N-chloromonimide [Beil. VII-726] in AcOH with 8-10 pts. conc. HCl on warming (70% yield (11)) see indic. refs.; from naphthol-1 (1:1500) with HCl + KClO<sub>3</sub> (6) or after preliminary sulfonation to naphthol-1-sulfoni acid-4 (Neville-Winther acid) followed by HCl + KClO<sub>3</sub> (yields: 83% crude (4), 47% (2), 40-47% (12)) (17) (18), from 4-nitrosonaphthol-1 (naphthoquinone-1,4-monoxime) [Beil. VII-727, VII<sub>1</sub>-(386)] in ether with HCl gas (3), from 4-aminonaphthol-1 in AcOH with Cl<sub>2</sub> (17), from 2,3-dichloronaphthol-1 (3:2935) in AcOH with CrO<sub>3</sub> (19), or from 2,4-dinitrophenol (Martius Yellow) [Beil. VI-617, VI<sub>1</sub>-(308)] with HCl + KClO<sub>3</sub> (24% yield (2)) (10) see indic. refs.]

[For formn. of  $\bar{C}$  from 1,4-dihydroxynaphthalene-3-pyridinium chloride (itself from naphthoquinone-1,4 (1:9040) + pyridine in MeOH + HCl) with SOCl<sub>2</sub> under reflux see (7); from naphthalene (1:7200) in AcOH with CrO<sub>2</sub>Cl<sub>2</sub> see (20); from 1,2,3,4-tetrachloronaphthalene [Beil. V-546, V<sub>2</sub>-(446)] in AcOH with CrO<sub>3</sub> or with conc. HNO<sub>3</sub> in s.t. at 110° see (9); from naphthalene tetrachloride-1,2,3,4 (3:4750) with conc. HNO<sub>3</sub> see (1): from 2,2,3,4,4-pentachloro-1-oxo-naphthalene tetrahydride [Beil. VII-370] with dil. alc. or dil. AcOH in s.t. at 120-130° see (15).]

[ $\tilde{C}$  on reduction by shaking ether soln. with aq. SnCl<sub>2</sub> (21), or with Sn + HCl (part of halogen is lost (10)), or by refluxing with HI + white P (10) gives 2,3-dichloro-1,4-di-hydroxynaphthalene [Beil. VI-979], colorless scales from alc., m.p. 135° (21), 135–140° (10); note that  $\tilde{C}$  is reduced by SO<sub>2</sub> + aq. only in s.t. at 130–140° (10). — Note that  $\tilde{C}$  with aq. K<sub>2</sub>SO<sub>3</sub> or aq. KHSO<sub>3</sub> soln. replaces both chlorine atoms giving (10) K salt of 4-hydroxy-2,3-disulfonaphthyl-1 sulfuric acid [Beil. XI-304].]

 $\ddot{\mathbf{C}}$  on oxidn. with boilg. HNO<sub>3</sub> (D=1.35) slowly yields (10) phthalic acid (1:0820).— $\ddot{\mathbf{C}}$  with aqua regia htd. in s.t. yields (22) phthalic (or nitrophthalic) acid accompanied by some trichloronaphthoquinone-1,4 [Beil. VII-730], yel. ndls., m.p. 250°.

 $\bar{C}$  with equal wt. MnO<sub>2</sub> + 4.8 wts. conc. HCl in s.t. at 230° for 10 hrs. (11) cf. (17) yields 2,2,3,3-tetrachloro-1,4-dioxonaphthalene tetrahydride-1,2,3,4 [Beil. VII-702], colorless pr. from ether, m.p 117° (11).

Č with PCi<sub>5</sub> (2 moles) dislvd. in POCl<sub>3</sub> htd. in s.t. at 180-200° (10), or at 200-250° for 4-5 hrs. (22) (with slow rise of temp. to avoid explosion), yields 1,2,3,4,5-pentachloronaphthalene [Beil. V-546], colorless ndls. from alc., m.p. 168.5° (10) (22).

[Č with large excess MeMgI in ether gives (45% yield (23)) (by replacement of 1 atom of chlorine and usual reactn. of the two carbonyl groups) 1,2,4-trimethyl-1,4-dihydroxy-3-chloro-1,4-dihydronaphthalene, cryst. from ether by pptn. with pet. ether, m.p. 115–117° (23); with certain other RMgX cpds., however, both chlorine atoms are replaced, e.g., Č with large excess C<sub>6</sub>H<sub>5</sub>MgBr in ether gives (34% yield (23)) 1,2,3,4-tetraphenyl-1,4-dihydroxy-1,4-dihydronaphthalene, cryst. from C<sub>6</sub>H<sub>6</sub> + alc., m.p. 241.5° (23); with still other RMgX cpds. neither halogen is affected and only the carbonyl groups react; e.g., Č with large excess α-C<sub>10</sub>H<sub>7</sub>MgBr in ether gives (75% yield (23)) 1,4-di-α-naphthyl-1,4-dihydroxy-2,3-dichloro-1,4-dihydronaphthalene, m.p. 261° dec. (23).]

[C with 2 pts. Cu powder htd. in nitrobenzene or at 240° as directed (24) gives 3% yield triphthaloylbenzene (1,2,3,4-diphthaloylanthraquinone). — C with HBr in nitrobenzene htd. in pres. of CuCl<sub>2</sub> yields (25) 2-bromo-3-chloronaphthoquinone-1,4, m.p. 206-207° (25).]

[C with 2,3-dimethylbutadiene-1,3 (1:8050) in pres. of excess 5% alc. KOH and a little sodium hydrosulfite boiled 2 hrs. and then oxidized with air gives (26) 2,3-dimethylanthraquinone [Beil. VII-815, VII<sub>1</sub>-(425)], yel. ndls. from alc., m.p. 205-206°.]

 $\bar{C}$  with bolls alc. KOH hydrolyzes 1 chlorine yielding on acidification (10) 3-chloro-2-hydroxynaphthoquinone-1,4 [Beil. VIII-304], yel. ndls. from alc., m.p. 215°; note that  $\bar{C}$  with NaOAe htd. in alc. yields (27) the corresp. acetate, viz., 3-chloro-2-acetoxynaphthoquinone-1,4, yel. ndls. from hot alc, m.p. 98° (27). — [For reactn. of  $\bar{C}$  with Na<sub>2</sub>S or with H<sub>2</sub>S leading to bimolecular condensation with formn. of dibenzothianthrene diquinone or its derivs. see (28) (8).]

 $\bar{C}$  with phenol (2 moles) + dry  $K_2CO_3$  (i.e., K phenolate) htd for 1 hr. at 100° gives (96% yield (2)) 2,3-diphenoxynaphthoquinone-1,4, or.-yel. ndls. from xylene, m.p. 205° (2). — [For reactn. of  $\bar{C}$  with pyrocatechol (1:1520) in pres. of diethylaniline (2), with pyrogallol (1:1555) in pres. of pyridine (29), or with various anthrols and pyridine in prepn. of vat dyes (30) see indic. refs.]

 $\tilde{C}$  in nitrobenzene treated with NH<sub>3</sub> gas or  $\tilde{C}$  in boilg. alc. treated dropwise with conc. NH<sub>4</sub>OH (27) gives (probably by 1,4-addition and subsequent loss of 1 HCl (31)) (80% yield (2)) 3-chloro-2-aminonaphthoquinone-1,4, yel.-br. ndls. from AcOH, m.p. 193° (2) (corresp. acetyl deriv., m.p. 219° (27)). — Similarly,  $\tilde{C}$  with aniline (2 moles) in hot alc. gives (87% yield (12)) (32) 3-chloro-2-anilinonaphthoquinone-1,4 [Beil. XIV-168, XIV<sub>1</sub>-(434)], copper-red ndls., m.p. 202° (32). — [For corresp. reactn. of  $\tilde{C}$  with many other aliphatic or arom. amines see (33), with  $\beta$ -naphthylamine see (34), with p-phenylenediamine (or its monoacetyl deriv.) see (12); with p-chloroaniline see (27); note that some amines, e.g.,  $\rho$ -nitroaniline, 2-aminoanthraquinone, and 3-chloro-2-aminonaphthoquinone do not undergo this reactn. (27). — For reactn. of  $\tilde{C}$  with pyridine see (2).]

 $\bar{C}$  on nitration, e.g., with 4 vol/pts. red fumg. HNO<sub>3</sub> (D=1.52) +  $2\frac{1}{2}$  vol./pts. pure conc. H<sub>2</sub>SO<sub>4</sub> at 100° for 6 hrs. (35) cf. (36), gives (40-45% yield (35)) 5-nitro-2,3-dichloronaphthoquinone-1,4, pale yel. cryst. from CHCl<sub>3</sub> (35), AcOH (36), or alc. (36), m.p. 175° (35) (36); this prod. with aniline (2 moles) in hot alc. yields (35) 3-chloro-2-anilino-5 (8)-nitronaphthoquinone-1,4, lfts. from nitrobenzene, m.p. 273° (35).

- 3:4857 (1) Helbig, Ber. 28, 505-506 (1895). (2) Ullmann, Ettisch, Ber. 54, 259-272 (1921).
   (3) Angeletti, Pirona, Atti accad. Torino, Classe sci. fis., mat. nat. 71, 602-606 (1926), Cent. 1937, I 1138; C.A. 31, 678 (1937). (4) Conant, Fieser, J. Am. Chem. Soc. 46, 1873, 1875 (1927).
   (5) Liebermann, Ber. 32, 264 (1899). (6) Darmstadter, Wichelhaus, Ann. 152, 301 (1869).
   (7) Koenigs, Greiner, Ber. 64, 1047 (1931). (8) Brass, Kohler, Ber. 55, 2554 (1922). (9) Claus, Mielcke, Ber. 19, 1184-1185 (1886). (10) Graebe, Ann. 149, 3-12 (1869).
   (11) Friedlander, Reinhardt, Ber. 27, 240 (1894). (12) Fries, Kerkow, Ann. 427, 286-287,
- (11) Friedlander, Reinhardt, Ber. 27, 240 (1894). (12) Fries, Kerkow, Ann. 427, 286-287, 295-296 (1922). (13) Ter Horst, Felix, Ind. Eng. Chem. 35, 1255-1259 (1943). (14) Bertheim, Ber. 34, 1554 (1901). (15) Zincke, Kegel, Ber. 21, 1039, 1045 (1888). (16) Zincke, Schmidt, Ber. 27, 2757 (1894). (17) Zincke, Cooksey, Ann. 255, 370, 372 (1889). (18) Kehrmann, Ber. 21, 1780 (1888). (19) Claus, Knyrim, Ber. 18, 2928-2929 (1885). (20) Carstanjen, Ber. 2, 633 (1869).
- (21) Claus, Ber. 19, 1142, 1144 (1886). (22) Claus, von den Lippe, Ber. 16, 1016-1017 (1883). (23) Clar, Engler, Ber. 64, 1597-1602 (1931) (24) Scholl, Wanka, Dehnert, Ber. 69, 2433 (1936). (25) I.G., Ger. 597,259, May 25, 1934, Cent. 1934, II 1688. (26) I.G., French 37,684, Jan. 14, 1931, Cent 1931, I 124. (27) Fries, Ochwat, Ber. 56, 1295-1300 (1923). (28) Brass, Kohler, Ber. 54, 594-597 (1921) (29) Ghosh, J. Chem. Soc. 107, 1595 (1915). (30) I.G., Brit. 300,407, Dec. 6, 1928, Cent. 1929, I 1622.
- (31) Lindemann, Pabst, Ann. **462**, 37 (1928). (32) Knapp, Schultz, Ann. **210**, 189–190 (1881). (33) Plagemann, Ber. **15**, 484–488 (1882). (34) Fries, Kohler, Ber. **57**, 509 (1924). (35) Fries, Pense, Peeters, Ber. **61**, 1401 (1928). (36) Stock (to I. G.), Ger 468,507, Nov. 15, 1928; Brit. 288,927, May 10, 1929; French 643,447, Sept. 17, 1928; Cent. **1929**, II 96 (37) Ter Horst (to U.S. Rubber Co.), U.S. 2,349,771–2, May 23, 1944, C.A. **39**, 1246 (1945)

#### 3:4860 3,6-DICHLOROPHTHALIC ANHYDRIDE



B.P. 339° (3)

| M.P. | 193.5-194.5° cor. (1) |         |  |
|------|-----------------------|---------|--|
|      | 191° cor.             | (2)     |  |
|      | 190-191°              | (3)     |  |
|      | 187°                  | (4)     |  |
|      | 184-186°              | (5)     |  |
|      | 185°                  | (6) (7) |  |

[See also 3.6-dichlorophthalic acid (3:4870).]

Long colorless ndls. — Sublimes.

[For prepn. of  $\bar{C}$  from 3,6-dichlorophthalic acid (3:4870) by htg. at 130-140° (2) (3) (4), at 160° (8), at 180-190° (5), by distn. under diminished press. (9), or by htg. in a current of dry air at 40° (?) (10) see indic. refs.: from ethyl hydrogen 3,6-dichlorophthalate by htg. at 200-220° see (2) (5): for formn. of  $\bar{C}$  (together with other isomers) from phthalic anhydride (1:0725) with  $Cl_2$  in pres. of Fe or Fe salts at 160-260° (11) or with  $Cl_2$  in fumg. H<sub>2</sub>SO<sub>4</sub> (12) in pres. of I<sub>2</sub> (3), or from 3-chlorophthalic anhydride (3:3900) with  $Cl_2$  in fumg. H<sub>2</sub>SO<sub>4</sub> in pres. of I<sub>2</sub> (3), see indic. refs.]

[For sepn. of  $\bar{C}$  from isomeric dichlorophthalic anhydrides by means of salts of corresp. acids, etc., see (3) (13) (1); by means of differential hydrolysis with  $H_2SO_4$  (prods. with no  $\alpha$ -chlorine such as 4,5-dichlorophthalic anhydride require  $H_2SO_4$  of 98–100% concn., those with 1  $\alpha$ -chlorine such as 3,4-dichlorophthalic anhydride hydrolyze with 56–95%  $H_2SO_4$ , those with 2  $\alpha$ -chlorine atoms such as  $\bar{C}$  or 3,4,5,6-tetrachlorophthalic anhydride hydrolyze at  $H_2SO_4$  concns. of less than 50%) see (14).]

C dislyd. in abs. EtOH yields the acid ester, viz., ethyl hydrogen 3,6-dichlorophthalate.

cryst. from CCl<sub>4</sub>, m.p. 130–131° (3), 128–130° (2), 128–129° (5); note that this ester when dislvd. in EtOH and satd. with HCl gas, then warmed, does *not* convert to the neutral ester readily, and that even with 15 pts. EtOH and 7 hr. htg. only 16% diethyl 3,6-dichlorophthalate is formed (2).

[C with 1 mole PCl<sub>5</sub> htd in s.t. at 160° for 6–7 hrs. (8) or at 200° for 6 hrs. (15) yields pseudo-3,6-dichlorophthaloyl dichloride (3,3,4,7-tetrachlorophthalide), cryst. from C<sub>6</sub>H<sub>6</sub>, m.p. 122° (15); this prod. upon htg. above its m.p., or upon solution in inert solvents, or very rapidly upon treatment of such solns, with decolorizing carbon, or slowly even in solid condition, isomerizes to sym-3,6-dichlorophthaloyl dichloride, colorless pr., m.p. 31° (15), from low-boilg pet. ether (in which the pseudo-chloride is spar sol.). — With MeOH the pseudo chloride yields the pseudo dimethyl ester (4,7-dichloro-3,3-dimethoxyphthalide, m.p. 134° (15); the neutral dimethyl 3,6-dichlorophthalate (corresp. to the sym.-chloride) has m.p. 82° (15).] — [C with 2 moles PCl<sub>5</sub> htd. in s.t. several hrs. at 200° is claimed (8) to yield a prod. C<sub>8</sub>H<sub>2</sub>OCl<sub>6</sub>, ndls. from ale, m.p. 117° (8).]

[C with 1 mole NH<sub>2</sub>OH.HCl + Na<sub>2</sub>CO<sub>3</sub> in aq. as directed (3) for 3,4-dichlorophthalic anhydride (3:4880) yields 3,6-dichlorophthalylhydroxylamine (N-hydroxy-3,6-dichlorophthalmide) [Beil. XXI-504], ndls from MeOH, m.p. 253-258° (3); the conv. of this prod. with boilg aq. Na<sub>2</sub>CO<sub>3</sub> to 3,6-dichloroanthranilic acid (analogous to the corresp. process with its isomers) has not been reported (see, however, under the imide below).]

 $[\bar{C} \text{ with steam passed over cat. at } 380-420^{\circ} \text{ loses CO}_2 \text{ presumably yielding (16) 2,5-dichlorobenzoic acid (3 4340).}]$ 

 $\bar{C}$  with AlCl<sub>3</sub> + C<sub>6</sub>H<sub>6</sub> yields (8) (17) 3,6-dichloro-2-benzoylbenzoic acid [Beil. X-750, X<sub>1</sub>-(357)], ndls. from C<sub>6</sub>H<sub>6</sub> (17) or dil. alc. (8), m.p. 168.5° (18), cor. (17), 159° (8); this prod. on ring closure by htg. with cone H<sub>2</sub>SO<sub>4</sub> (2) (17) (18) (19) yields 1,4-dichloroanthraquinone [Beil. VII<sub>1</sub>-(411)], yel. ndls. from AcOH, m.p. 187.5-188° (20), 187.5° cor. (17), 187.5° (18), 186° (19). — [For corresp. reactns. of  $\bar{C}$  + AlCl<sub>3</sub> with chlorobenzene (22), with toluene (21), with o-chlorotoluene (3:8245) (23), with p-chlorotoluene (3:8287) (24), with fluorene (25), with acenaphthene (26), with pyrene (27), or with  $\beta$ -methylbenzanthrone (28) see indic. refs.]

[ $\bar{\rm C}$  with hydroquinone (1:1590) + H<sub>3</sub>BO<sub>3</sub> htd. at 190° and afterward treated with hot conc. H<sub>2</sub>SO<sub>4</sub> (29), or htd. with AlCl<sub>3</sub> + NaCl at 200–220° for 20 min. (30), gives (yield: 30% (29), 84% (30)) 5,8-dichloro-1,4-dihydroxyanthraquinone (5,8-dichloroquinizarin) [Beil. VIII<sub>1</sub>-(715)], cryst. from xylene (30) or AcOH (29), m.p. 275.5° (30), 266° (29) (diacetate, m.p. 180° (30), 170° (29)) ] — [For reactn. of  $\bar{\rm C}$  with AlCl<sub>3</sub> + o-cresol (31), with o-cresol methyl ether (31) (19), or with p-cresol (7) see indic. refs.; for reactn. of  $\bar{\rm C}$  with  $\alpha$ -naphthol + H<sub>3</sub>BO<sub>3</sub> see (9).]

|\tilde{\mathbb{C}} \text{ in fumg } \text{H}\_2\text{SO}\_4 \text{ treated with } \text{Br}\_2 \text{ yields (33) (34) 3,6-dichloro-4,5-dibromophthalic anhydride, colorless ndls. from AcOH, m.p. 269-270° (34), 261° (33). -- \tilde{\mathbb{C}} \text{ in fumg. } \text{H}\_2\text{SO}\_4 (50\% SO\_3) \text{ htd. with } \text{I}\_2 \text{ as directed (32) gives (97\% yield) 3,6-dichloro-4,5-di-iodophthalic anhydride, yel. pr. from AcOH, m.p. 258°-258.5° \text{ cor (32).}

[For condens. of  $\bar{C}$  with substituted *m*-aminophenols in prepn. of phthalein dyestuffs see (35); for use of  $\bar{C}$  in piepn. of pigments of phthalocyanine type see (36) (37); for use of  $\bar{C}$  as plasticizer for cellulose esters see (38).]

Fused Č treated with dry NH<sub>3</sub> gas (39) or with urea (37) yields 3,6-dichlorophthalimide [Beil. XXI-504], ndls. from alc., m.p. 242° (39). [This prod. on ring opening and Hofmann degradation with aq. alk. NaOCl (3) or NaOBr (39) gives 3,6-dichloroanthranilic acid [Beil. XIV-367], ndls. from aq. or AcOH, m.p. 153° cf. (3). — [For behavior of Č with hydrazine hydrate yielding acc to conditions N-amino-3,6-dichlorophthalimide, N-(3,6-dichlorophthalimido)-3,6-dichlorophthalimide, or 3,6-dichlorocyclophthalhydrazide see (40).]

Č (1 pt.) dislvd. in 5 pts. boilg. AcOH and treated with 1 pt. aniline gives on cooling (82% yield (1)) 3,6-dichlorophthalanil [Beil. XXI<sub>1</sub>-(391)], pale yel. lfts. or ndls. from AcOH, m.p. 201° (10), 197-198° cor. (1), 194° (41), 191° (39). [Note, however, that on protracted htg. with excess aniline first one and then the other nuclear halogen also reacts yielding, respectively, 3-anilino-6-chlorophthalanil, unstable form, m.p. 141° cor. (1), stable form, m.p. 160-160.5° cor. (1), and 3,6-dianilinophthalanil, m.p. 197° (41).]

C on saponification with standard alk. (Sap. Eq. = 108.5), followed by acidification, yields 3.6-dichlorophthalic acid (3:4870) q.v.

3:4860 (1) Pratt, Perkins, J. Am. Chem. Soc. 40, 214-218 (1918). (2) Graebe, Ber. 33, 2019-2022 (1900). (3) Villiger, Ber. 42, 3538-3541, 3549 (1909). (4) Faust, Ann. 160, 64 (1871). (5) Pfeiffer, Ber. 55, 425 (1922). (6) Widman, Bull. soc. chim. (2) 28, 512 (1877). (7) Krescheck, Ullmann, Ber. 55, 308 (1922). (8) Le Royer, Ann. 238, 350-361 (1887). (9) Harrop, Norris, Weizmann, J. Chem. Soc. 95, 282-283 (1909). (10) Tingle, Bates, J. Am. Chem. Soc. 32, 1323-1325 (1910).

(11) Dvernikoff (to Monsanto Chem. Co.), U.S. 2,028,383, Jan. 21, 1936; Cent. 1936, I 2830; C.A. 36, 1394 (1936). (12) Mueller (to General Anilme Works, Inc.), U.S. 1,997,226, April 6, 1935; Cent. 1935, II 1449. (13) Hodgson, J. Soc. Dyers Colourists 49, 215 (1933). (14) Imperial Chem. Ind., Ltd., French 749,954, Aug. 2, 1933; Cent. 1933, II 2748-2749. (15) Kirpal, Galuschka, Lassak, Ber. 68, 1332-1333 (1935). (16) Jacger (to Selden Co.), U.S. 1,964,516, June 26, 1934; Cent. 1934, II 3047. (17) Ullmann, Billig, Ann. 381, 14-16 (1911). (18) Dougherty, Gleascn, J. Am. Chem. Soc. 52, 1027 (1930). (19) Walsh, Weizmann, J. Chem. Soc. 97, 687, 691 (1910). (20) Egerer, Meyer, Monatsh. 34, 90 (1913).

(21) Eckert, Endler, J. prakt. Chem. (2) 162, 334 (1921). (22) Jaroschy, Monatsh. 34, 2 (1934). (23) Keimatsu, Hirano, J. Pharm. Soc. Japan 49, 20-26 (1929), 50, 61-63 (1930); Cent. 1929, I 2533, 1930, II 1551. (24) Keimatsu, Hirano, Yoshimi, J. Pharm. Soc. Japan 50, 95-98 (1930); Cent. 1936, II 2384. (25) Barnett, Goodway, Watson, Ber. 66, 1890 (1933). (26) I.G., French 642,662, Sept. 1, 1928; Cent. 1929, I 581. (27) Kramer (to I.G.), Ger. 589,145, Dec. 2, 1933; Cent. 1934, I 771. (28) Kranzlein, Greune, Sedlmayr (to I.G.), Ger. 430,558, Aug. 13, 1926, Cent. 1926, II 2230. (29) Frey, Ber. 45, 1359 (1912). (30) Waldmann, J. prakt. Chem. (2) 126, 251-253 (1930).

(31) Mariott, Robinson, J. Chem. Soc. 1934, 1633. (32) Pratt, Perkins, J. Am. Chem. Soc. 40, 234 (1918). (33) Juvalta, Ger. 50,117, Friedlander II-93. (34) Lesser, Weiss, Ber. 46, 3945 (1913). (35) Durand, Hueguenin, S.A. Brit. 251,644, July 7, 1926; Cent. 1927, I 1228. (36) Imperial Chem. Ind., Ltd., French 808,845, Feb. 16, 1937; Cent. 1937, 11 3820. (37) Imperial Chem. Ind., Ltd., Thorpe, Linstead, Brit. 390,119, April 27, 1933; French 737,392, Dec. 10, 1932; Cent. 1933, II 794. (38) Dreyfus, French 749,792, July 29, 1933; Cent. 1934, I 3154. (39) Graebe, Gourevitz, Ber. 33, 2024-2025 (1900). (40) Drew, Pearman, J. Chem. Soc. 1937, 31-32.

(41) Mariott, Robinson, J. Chem. Soc. 1939, 137-138.

#### 3:4870 3,6-DICHLOROPHTHALIC ACID

M.P. See text.

[See also 3,6-dichlorophthalic anhydride (3:4860).]

Tbls. from aq.; eas. sol. hot aq. in which it readily gives supersatd. solns.; eas. sol. alc., ether.

 $\bar{\mathbf{C}}$  on htg. begins to lose aq. even at 100° with formn. of 3,6-dichlorophthalic anhydride (3:4860) cf. (1); this change proceeds with increasing speed as the temperature increases; for this reason no definite m.p. of  $\bar{\mathbf{C}}$  is recorded and the m.p. observed is actually that of the anhydride.

[For prepn. of C from 3,6-dichlorophthalic anhydride by hydrolysis see the anhydride

(3:4860); from ethyl hydrogen 3,6-dichlorophthalate by htg. at 200° to convert to the anhydride and hydrolysis of the latter see (1); from 1,4-dichloronaphthalene (3:1655) by boilg, with HNO<sub>3</sub> (D=1.3) see (2); from 1,4,5-trichloronaphthalene (3:4005) by htg. with HNO<sub>3</sub> in s.t. see (3); from " $\alpha$ -tetrachloronaphthalene" [Beil. V-546] by oxidn, with HNO<sub>3</sub> see (4); from 1,4-dichloronaphthalene tetrachloride (1,2,3,4,5,8-hexachlorotetralin) [Beil. V-493] by boilg, with conc. HNO<sub>3</sub> (D=1.42) see (5) (6); from 5,8-dichloronaphthylamine-2 [Beil. XII-1310] on oxidn, with dil. HNO<sub>3</sub> in s.t. at 180-200° see (7).]

[For sepn. of  $\bar{C}$  from mixts. with the isomeric 3,4- (3:4880) and 4,5- (3:4890) dichlorophthalic acids see (8) (9).] [For use of  $\bar{C}$  as softener and/or plasticizer for cellulose derive. see (10).]

Salts. NH<sub>4</sub>HĀ, NaHĀ, KHĀ, as well as  $(NH_4)_2\bar{A}$ , Na<sub>2</sub>Ā, and K<sub>2</sub>Ā, are all eas. sol. aq. (8); Ag<sub>2</sub>Ā, insol. aq. (8) (12); CaĀ, 4H<sub>2</sub>O (5) (12), spar. sol. aq. and pptd. by CaCl<sub>2</sub> from hot dil. aq. solns. of  $(NH_4)_2\bar{A}$  (8) (12); BaĀ, H<sub>2</sub>O, spar. sol. aq. (5) (12); ZnĀ, eas. sol. aq. (characteristic dif. from 3,4- and 4,5-dichlorophthalic acids and used in sepn. of  $\bar{C}$  (8)).

Esters. Dimethyl 3,6-dichlorophthalate, m.p. 82° (11) (from Ag<sub>2</sub>Ā with MeI (11)); methyl hydrogen 3,6-dichlorophthalate, unreported; diethyl 3,6-dichlorophthalate, cryst. from 50% alc., m.p. 60° (12) (13) (from Ag<sub>2</sub>Ā on htg. with EtI in s.t. at 100° (12) (13), or in very small yield from ethyl hydrogen 3,6-dichlorophthalate with EtOH (1) (14); ethyl hydrogen 3,6-dichlorophthalate, cryst. from CCl<sub>4</sub>, m.p. 130-131° (8), 128-130° (1), 128-129° (15) (from 3,6-dichlorophthalic anhydride (3:4860) with EtOH).

[For studies of ionization consts. of first (16) and second (16) (17) acid groups see indic. refs.]

3:4870 (1) Graebe, Ber. 33, 2020-2023 (1900). (2) Atterberg, Bull. soc. chim. (2) 27, 409 (1877); Ber. 10, 547 (1877). (3) Atterberg, Bull. soc. chim. (2) 27, 407 (1877); Ber. 9, 1734-1735 (1876). (4) Widman, Bull. soc. chim. (2) 28, 511-512 (1877). (5) Faust, Ann. 160, 64-65 (1871). (6) Widman, Ber. 15, 2160 (1882). (7) Claus, Philipson. J. prakt. Chem. (2) 43, 61 (1891). (8) Villiger, Ber. 42, 3538-3539 (1909). (9) Hodgson, J. Soc. Dyers Colourists 49, 215 (1933). (10) Dreyfus, French 749,792, July 29, 1933; Cent 1934, I 3154

Kırpal, Galuschka, Lassak, Ber. 68, 1332-1334 (1935).
 Le Royer, Ann. 238, 351-354 (1887)
 Graebe, Gourevitz, Ber. 33, 2024 (1900).
 Graebe, Rostowzew, Ber. 34, 2108-2109 (1901).
 Pfeiffer, Ber. 55, 425 (1922).
 Wegscheider, Monatsh. 23, 325-326 (1902).
 Berger, Helv. Chim. Acta 23, 41-44, 50-52 (1940).

M.P. 194-195° (1) 194° (2) 193-194° (3)

[See also tetrachlorobenzoquinone-1,2 (3:3965).]

Colorless anhydrous cryst. from hot dil. alc. (1), lgr. (1) or  $C_6H_6$  (2);  $\bar{C}$  from dil. AcOH seps. as monohydrate which over CaCl<sub>2</sub> loses half of its water and above 70–80° all of its aq. (3) (4);  $\bar{C}$  from AcOH seps. as a cpd.,  $\bar{C}$ .AcOH, m.p. 123–124° (4), which can be recrystd. unchanged from lgr. but in air or more rapidly over alk. loses its cryst. AcOH; the above cpd. on soln. in alc. and pptn. with much aq. yields a trihydrate,  $\bar{C}$ .3H<sub>2</sub>O, m.p. 94°, which can be recrystd. unchanged from aq., alc., or acetone but which from  $C_6H_6$  or lgr. seps.  $\bar{C}$  in anhydrous form (4).

[For prepn. of C from pyrocatechol (1:1520) with Cl<sub>2</sub> in AcOH (5) (2) (13) or with ICl

(3) see indic. refs.; from hexachlorocyclohexene-3-dione-1,2 [Beil. VII-575] by reductn. with SnCl<sub>2</sub> in AcOH see (1).]

 $\bar{\mathbf{C}}$  with std. alk. (using phenolphthalein) titrates sharply as a monohydric phenol (4) (6), i.e., Neut. Eq. 248; similarly titration of the cpd.  $\bar{\mathbf{C}}$ .AcOH (above) gives Neut. Eq. 154 (4).

 $\bar{\mathbf{C}}$  on oxidn. with fumg. HNO<sub>3</sub> in AcOH gives (81% yield (13)) (1) (5) (7) (8) tetrachloro-o-benzoquinone-1,2 (3:3965). — For study of oxidn.-reductn. potential of system:  $\bar{\mathbf{C}}$  + tetrachlorobenzoquinone-1,2 see (7) (8). —  $\bar{\mathbf{C}}$  with equiv. tetrachlorobenzoquinone-1,2 (3:3965) in least possible hot CHCl<sub>3</sub> gives on cooling the corresp. quinhydrone (14). — [For other complex prods. obtd. from  $\bar{\mathbf{C}}$  by action of conc. HNO<sub>3</sub> or N<sub>2</sub>O<sub>4</sub> (9), HNO<sub>3</sub> + H<sub>2</sub>SO<sub>4</sub> (10), or NaNO<sub>2</sub> in AcOH (2) see indic. refs.]

- **D** Tetrachloropyrocatechol diacetate: ndls. from AcOH, m.p. 190° (1). [From  $\bar{C}$  with Ac<sub>2</sub>O (1).]
- Tetrachloropyrocatechol monomethyl ether (tetrachloroguaiacol) [Beil. VI-784]: ndls. from hot aq., m.p. 185-186° (11). [Reported only by indirect means (11).]
- Tetrachloropyrocatechol dimethyl ether (tetrachloroveratrole) [Beil. VI-784]: ndls. from alc., m.p. 88° (11) (12). [Reported only by indirect means (11) (12).]
- 3:4875 (1) Zincke, Küster, Ber. 21, 2729-2730 (1888). (2) Frejka, Sefranek, Zika, Collection Czechoslov. Chem. Commun. 9, 241-242 (1937), Cent. 1937, II 1816, C.A. 31, 7046-7047 (1937). (3) Jackson, Boswell, Am. Chem. J. 35, 528-531 (1906) (4) Willstatter, Muller, Bcr. 44, 2186 (1911). (5) Zincke, Ber. 20, 1779 (1887). (6) Weissberger, Ber. 65, 1820 (1932). (7) Conant, Fieser, J. Am. Chem. Soc. 46, 1873, 1875 (1924). (8) Kvalnes, J. Am. Chem. Soc. 56, 2487-2489 (1934). (9) Zincke, Ann. 435, 161-162 (1924). (10) Zincke, Weishaupt, Ann. 437, 93-94 (1924).
- (11) Bruggemann, J. prakt. Chem. (2) 53, 251 (1896). (12) Cousin, Ann. chim. (7) 29, 87 (1903). (13) Jackson, MacLaurin, Am. Chem. J. 37, 11 (1907). (14) Jackson, Carleton, Am. Chem. J. 39, 497 (1908).

## 3:4880 3,4-DICHLOROPHTHALIC ACID CLCOOH C8H4O4Cl2 Beil. IX-817 IX<sub>1</sub>—

M.P. abt. 195° rap. htg. (1)

[See also 3,4-dichlorophthalic anhydride (3:3695).]

Rectangular tbls. from aq.; eas. sol. aq., ether. —  $\bar{C}$  can only with difficulty be separated from 4,5-dichlorophthalic acid (3:4890) by crystn. (1).

[For prepn. from 3,4-dichlorophthalic anhydride (3:3695) on boilg, with aq. see (1); from N-(hydroxy)-3,4-dichlorophthalimide (see under 3,4-dichlorophthalic anhydride) by hydrolysis with hot 10% HCl see (1)]

[For sepn. of  $\bar{C}$  from mixts, with the isomeric 3,6- (3:4870) and 4,5- (3:4890) dichlorophthalic acids see (1) (2).]

Salts. NaHĀ, Ag<sub>2</sub>Ā, CuĀ, CaĀ, BaĀ, ZnĀ all spar. sol. aq. (1).

Esters. Methyl hydrogen 3,4-dichlorophthalate and dimethyl 3,4-dichlorophthalate are both unreported: both possible ethyl hydrogen 3,4-dichlorophthalates are known, viz., ethyl 2-carboxy-3,4-dichlorophthalate (from  $\bar{C}$  + abs. EtOH + few drops conc. H<sub>2</sub>SO<sub>4</sub> refluxed 6 hrs. (3)), ndls. from dil. alc., m.p. 184° (3); and 3,4-dichloro-2-carbethoxybenzoic acid (from diethyl 3,4-dichlorophthalate by partial KOH saponification or from the anhydride with abs. EtOH (3)), pr. from dil. alc., m.p. 164° (3): diethyl 3,4-dichlorophthalate (from Ag<sub>2</sub>Ā), m.p. 80° (3). [For the pseudo diethyl ester of  $\bar{C}$  see under 3,4-dichlorophthalic anhydride (3:3695).]

 $\bar{\rm C}$  on protracted htg. at 220° loses aq. yielding 3,4-dichlorophthalic anhydride (3:3695) q.v.

3:4880 (1) Villiger, Ber. 42, 3538-3539, 3541-3542 (1909). (2) Hodgson, J. Soc. Dyers Colourists 49, 215 (1933). (3) Kirpal, Galuschka, Lassak, Ber. 68, 1333-1334 (1935).

3:4885 1-CHLORONAPHTHOIC ACID-2

M.P. 196° (1) (2) 195° (3)

Ndls. from C<sub>6</sub>H<sub>6</sub> (1) (2) or from 50% AcOH (3). — Volatile without decompn. (1).

[For prepn of C from 2-(1-chloronaphthyl)carbinol (2) by oxidn see (2); from 1-chloro-2-(trichloromethyl)naphthalene [Beil. V-568] by hydrolysis in boilg. AcOH contg. a little aq. see (1); from 1-chloro-2-naphthonitrile (see below) by hydrolysis with AcOH/H<sub>2</sub>SO<sub>4</sub>/aq. mixt. see (4); from methyl 1-chloro-2-naphthoate (see below) by hydrolysis with boilg. 15% alc. KOH (46% yield) see (3).]

 $\bar{C}$  with 2% Na/Hg in eq. reduces (1) to  $\beta$ -naphthoic acid (1:0800), m.p. 184° (1).

[The direct conv. of  $\bar{C}$  to 1-chloro-2-naphthoyl chloride is not actually reported; however, this acid chloride, m p. 59-60 5° (6), b.p. 226° at 150 mm. (6), b.p. 199-200° at 11.2 mm. (5), has been obtained (5) (3) (6) from 1-hydroxy-2-naphthoic acid [Beil. X-331,  $X_1$ -(145)] with PCl<sub>5</sub> (yield 60 7% (5)) (2).]

Salts. AgA, white flocks spar. sol. aq.; CaA2.2H2O, cryst from aq. (1).

- Methyl 1-chloro-2-naphthoate: ndls. from alc., m.p. 50° (2), cryst. from pet. eth. + acetone, m.p. 44-48° (5); b p. 189-193° at 17.5 mm. (3), 186.5-189° (but press. not given) (5). [From C in MeOH with HCl gas (2) or from the acid chloride (above) in boilg. MeOH (5) (3)] [This ester with Cu bronze + a trace of I<sub>2</sub> at 290° yields (5) dimethyl 1,1'-binaphthyl-2,2-dicarboxylate.]
- --- Ethyl 1-chloro-2-naphthoate: unreported.

3:4885 (1) Wolffenstein, Ber 21, 1190-1191 (1888). (2) Achmatowicz, Lindenfeld, Roczniki Chem. 18, 69-74 (1938), Cent 1939, II 389; not in C.A. (3) Bergmann, Hirshberg, J. Chem. Soc. 1936, 333. (4) Willstaedt, Scheiber, Ber. 67, 473-474 (1934). (5) Kuhn, Albrecht, Ann. 465, 283-285 (1928). (6) Strohbach, Ber. 34, 4161 (1901).

3:4890 4,5-DICHLOROPHTHALIC ACID

 $C_8H_4O_4Cl_2$  Beil. IX - 818 H IX<sub>1</sub>-(366)

CI COOH

M.P. 199-200° (1) 200° rap. htg. (2)

[See also 4,5-dichlorophthalic anhydride (3:4830).]

Ndls, from ac

[For prepn. of C from 4,5-dichlorophthalic anhydride (3:4830) by hydrolysis see (2)

(3); from aq. soln. of alk. salts of phthalic acid (1:0820) with  $Cl_2$  in pres. of Sb cpds. see (3) (4); from 4,5-dichloro-1,2-dimethylbenzene (1) by oxidn. with dil. HNO<sub>3</sub> (D=1.3) in s.t. at 180° for 7 hrs. see (1) cf. (5) (6).]

[For sepn. of C from mixts. with the isomeric 3,4- (3:4880) and 3,6- (3:4870) dichlorophthalic acids see (2) (8).] — [For use of C as softener for cellulose derivs. see (9).]

Salts. NH<sub>4</sub>HĀ, NaHĀ, KHĀ (all from aq. solns. of the corresp. eas. sol. neutral salts by addn. of AcOH) are spar. sol. cold aq. (2): CuĀ, CaĀ, BaĀ, ZnĀ, and Ag2Ā are all spar. sol. (2).

Esters. Dimethyl 4,5-dichlorophthalate and diethyl 4,5-dichlorophthalate are unreported; methyl hydrogen 4,5-dichlorophthalate is unreported, but ethyl hydrogen 4,5-dichlorophthalate, ndls. from CHCl<sub>3</sub>, m.p. 133–134°, is obtained from the anhydride (3:4830) with EtOH (2).

[Č on fusion with NaOH at 175–185° gives (small yield (3)) 4,5-dihydroxyphthalic acid [Beil. X-552, X<sub>1</sub>-(276)], m.p. 175°.

C on htg. loses H<sub>2</sub>O yielding (2) 4,5-dichlorophthalic anhydride (3:4830), m.p. 187°.

Di-(p-nitrobenzyl) 4,5-dichlorophthalate: cryst. from alc., m.p. 164.5° (10). [From Na<sub>2</sub>Ā with p-nitrobenzyl bromide (2 moles) htd. in alc. (10).]

3:4890 (1) Hinkel, Ayling, Bevan, J. Chem. Soc. 1928, 1876. (2) Villiger, Ber. 42, 3538-3539, 3546-3547 (1909). (3) Rushchinskii, J. Applied Chem. (U.S.S.R.) 7, 1113-1115 (1934); Cent. 1936, II 2902. (4) Rushchinskii, Russ. 41,515, Feb. 28, 1935; Cent. 1935, II 3704; C.A. 30, II 2902. (5) Claus, Kautz, Ber. 18, 1369-1370 (1885). (6) Claus, Groneweg, J. prakt. Chem. (2) 43, 253-254 (1891). (7) Ref. 2, pp. 3532-3533. (8) Hodgson, J. Soc. Dyers Colourists 49, 215 (1933). (9) Dreyfus, French 749,792, July 29, 1933; Cent. 1934, I 3154. (10) Lyons, Reid, J. Am. Chem. Soc. 39, 1741, 1744 (1917).

3:4892 PENTACHLOROBENZALDEHYDE 
$$C_7HOCl_5$$
 Beil. VII — VII<sub>1</sub>-(134)

M.P. 202.5° (1) (2) 197-199° (3)

Colorless ndls. from C<sub>6</sub>H<sub>6</sub>/alc.; eas. sol. hot C<sub>6</sub>H<sub>6</sub> or CS<sub>2</sub>; spar. sol. alc., ether, lgr.

[For prepn. of  $\bar{C}$  from pentachlorobenzal (di)chloride (3:3590) by hydrolysis with conc.  $H_2SO_4$  at 60–100° or fumg.  $H_2SO_4$  at 40–50° (90% yield (2)) (3) see indic. refs.; from pentachlorobenzaldehyde diethylacetal (see below) by acid hydrolysis see (1).]

Č with aq. alk. KMnO<sub>4</sub> refluxed 7 hrs. oxidizes to (90% yield (1)) pentachlorobenzoic acid (3:4910).

Č in C<sub>6</sub>H<sub>6</sub> shaken with satd. aq. NaHSO<sub>3</sub> soln. gives (1) the corresp. NaHSO<sub>3</sub> cpd.

Č with aq. 50% KOH at 100° for 5 hrs. suffers hydrolytic cleavage giving (88% yield (2)) pentachlorobenzene (3:2290) and potassium formate.

Č with EtOH + dry HCl gas gives (60% yield (1)) pentachlorobenzaldehyde diethylacetal, colorless cryst. from pet. ether, m.p. 45°.

[For use of C on prepn. of dyes of the triphenylmethane series see (4).]

Č reacts normally with RMgX reagents [e.g., Č with McMgBr gives (49% yield (1)) methyl-pentachlorophenyl-carbinol, colorless cryst. from alc., m.p. 126° (1); Č with C<sub>6</sub>H<sub>5</sub>-MgBr gives (1) phenyl-pentachlorophenyl-carbinol (pentachlorobenzohydrol), cryst. from C<sub>6</sub>H<sub>6</sub>, m.p. 117°.]

Č with anhydrous NaOAc + Ac<sub>2</sub>O (Perkin synthesis) at 170-180° for 60 hrs. gives (30% yield (1)) 2,3,4,5,6-pentachlorocinnamic acid, cryst. from C<sub>6</sub>H<sub>6</sub>, m.p. 233° cor. (1).

Č with aniline at 100° condenses giving (1) pentachlorobenzaldehyde anil, greenish ndls. from C<sub>6</sub>H<sub>6</sub>/alc., m.p. 187.5° cor. (1).

- D Pentachlorobenzaldoxime: colorless ndls. from C<sub>6</sub>H<sub>6</sub>, m.p. 201° cor. (1). [From C with NH<sub>2</sub>OH.HCl + Na<sub>2</sub>CO<sub>3</sub> in dil. alc. on stdg. few days (1).]
- Pentachlorobenzaldehyde phenylhydrazone: citron-yel. ndls. from alc., m.p. 152.5° cor. (1). [From \(\tilde{C}\) in hot satd. C<sub>6</sub>H<sub>6</sub> soln. with 1 mole phenylhydrazine (1).]
- —— Pentachlorobenzaldehyde p-nitrophenylhydrazone: unreported.
- ---- Pentachlorobenzaldehyde 2,4-dinitrophenylhydrazone: unreported.
- ---- Pentachlorobenzaldehyde semicarbazone: unreported,

3:4892 (1) Lock, Ber. 72, 300-304 (1939). (2) Lock, Ber. 66, 1533 (1933). (3) Bayer and Co., Ger. 243,416, Feb. 10, 1912; Cent. 1912, I 618; [C.A. 6, 2292 (1912)]. U.S. 998,140, July 18, 1911; [C.A. 5, 2904-2905 (1911)]. (4) Bayer and Co., Ger. 234,519, May 12, 1911; Cent. 1911 I 1620; [C.A. 5, 2974 (1911)].

#### 3:4893 OCTACHLORONAPHTHALENE

(Perchloronaphthalene)

M.P. B.P. 440-442° at 754 mm., dec. (2) 202° u.c. (7) 258-260° at 2.5 mm. (2) 200° (6) 246-250° at 0.5 mm. (2) 197.5-198° cor. (2) 197.3-198° cor. (3)

Ndls. from  $CCl_4 + C_6H_6$  (2); fairly eas. sol.  $C_6H_6$ , lgr., CHCl<sub>3</sub>; spar. sol. alc. or AcOH. [For prepn. of  $\bar{C}$  from naphthalene (1:7200) with  $Cl_2$  in pres. of 1% Fe powder + 0.1%  $I_2$  first at 100° then at 150° for 10-12 hrs. (90% yield (2)) or with  $Cl_2$  in pres. of SbCl<sub>5</sub> (1) (4) cf. (2) see indic. refs. (for extensive study of merits of many catalysts see (5)).]

[For prepn. of  $\bar{C}$  from mixt. of 2-hydroxynaphthalene-1,5-bis-(sulfonyl chloride) and 2-hydroxynaphthalene-1,6-bis-(sulfonyl chloride) (from  $\beta$ -naphthol with ClSO<sub>3</sub>H) with PCl<sub>5</sub> in s.t. see (6); from 1-hydroxynaphthalene-tris-(sulfonyl chloride) with PCl<sub>5</sub> in s.t. at 250° see (7); from 1-amino-3,6,8-tris-(sulfonyl chloride) with 3-4 pts. PCl<sub>5</sub> in s.t. at 200-225° for 7 hrs. (40% yield) see (2).]

[For prepn. of  $\bar{C}$  from 2,5,6,7,8-pentachloronaphthoquinone-1,4 [Beil. VII-731] with PCl<sub>5</sub> in s.t. at 250° for 6 hrs. see (8); from hexachloronaphthoquinone-1,4 (see below) with PCl<sub>5</sub> see (3).]

[For study of action of  $\bar{C}$  (from insulation material on electric wiring) in production of acne see (9); for prepn. of aq. dispersions of  $\bar{C}$  see (10); for use of  $\bar{C}$  as insecticide see (11); for use of  $\bar{C}$  in prepn. of a red mordant dyestuff (by actn. of fumg.  $H_2SO_4$ ) see (12).]

[ $\tilde{C}$  with  $H_2$  passed through a red-hot tube (4) or  $\tilde{C}$  with Na + EtOH (2) gives naphthalene (1:7200) together with other prods.]

 $\overline{C}$  on oxidn. with 10 pts. fumg. HNO<sub>3</sub> (D=1.52) in s.t. at 90° gives in good yield (2) (3) hexachloronaphthoquinone-1,4, m.p. 222.5° cor., b.p. 412-415° at 758 mm. dec., 265-267° at 14 mm., accompanied by some tetrachlorophthalic acid (3:4946).

[C̄ on htg. with SbCl<sub>5</sub> + ICl in s.t. at 350° (1) breaks down yielding (2) cf. (1) carbon tetrachloride (3:5100), hexachloroethane (3:4835), hexachlorobenzene (3:4939), and other prods.; under certain conditions (not specified in abstracts) C̄ can be broken down to decachloroindane (perchlorohydrindene) [Beil. V-487], m.p. 138° cor. (2).

 $[\bar{C}]$  with pyridine + CuO + hydrazine hydrate yields (13) a hexachloronaphthalene ndls. from chlorobenzene, m.p. 202-204° (13) (note that m.p. is close to that of  $\bar{C}$ ).]

Č is stable toward 3% aq. KOH or NaOH for 12 hrs. in cold or even 2 hrs. boilg.; Č is stable to cold 3% alc. KOH or NaOH for 24 hrs., but on htg. for 2 hrs. splits off some 25-30% chlorine and in part resimfies (2).

© Color test with SbCl<sub>5</sub> in CCl<sub>4</sub>;  $\bar{C}$  with SbCl<sub>5</sub> in CCl<sub>4</sub> gives stable cherry-red color (2). [This response is not given by carbon tetrachloride (3:5100), hexachlorocthane (3:4835), hexachlorobenzene (3.4939), or decachloroindane (2).]

3:4893 (1) Ruoff, Ber. 9, 1486-1488 (1876) (2) Shvemberg, Gordon, J. Gen. Chem. (U.S.S.R.) 2, 921-928 (1932); Cent. 1934, I 215, C.A. 27, 2439 (1933) (3) Shvemberg, Gordon, J. Gen. Chem. (U.S.S.R.) 4, 695-703 (1934); Cent. 1935, II 514, C.A. 29, 2162 (1935) (4) Berthelet, Jungfleisch, Bull. soc. chim. (2) 9, 446-455 (1868), Ann. chim. (4) 15, 330-313 (1868). (5) Shvemberg, Gordon, J. Gen. Chem. (U.S.S.R.) 4, 529-551 (1934), Cent. 1935, II 514, C.A. 29, 1804 (1935). (6) Pollak, Gebauer-Fulnegg, Blumenstock-Halward, Monatsh. 49, 199 (1928) (7) Claus, Mieleke, Ber. 19, 1186-1187 (1886). (8) Claus, Wenzlik, Ber. 19, 1169 (1886). (9) Haldin-Davis, Brit. J. Dermatol. Syphilis. 51, 380-383 (1939), C.A. 34, 1413 (1940). (10) Heckert. (50 du Pont Rayon Co.), U.S. 2,060,210, Nov. 10, 1936, Cent. 1937, 1 1604, C.A. 31, 555 (1937).

(11) Stern, Ger. 411,314, March 26, 1925, Cent. 1925, II 234 (12) B.A.S.F., Ger. 66,611, Friedländer 3, 271. (13) I.G., French 699,492, Feb. 16, 1931, Cent. 1931, 3519.

3:4895 PENTACHLORÓPROPIONIC ACID Cl 
$$C_3HO_2Cl_5$$
 Beil. II —  $II_1$ -(112)  $II_2$ -(228)

M.P. 200-215° (see text (1)).

Colorless cryst. from CCl<sub>4</sub>. — Eas sol cold aq.

[For prepn. of  $\tilde{C}$  from truchloroacrylic acid (3:1840) with  $Cl_2$  in  $CCl_4$  soln. in sunlight (yield not reported) see (1).]

 $\bar{C}$  in aq. soln. behaves as a strong acid; on titration it gives a good Neut. Eq., calcd. 246.5; found 245.8 (1).

 $\bar{\mathbf{C}}$  is very unstable: e.g.,  $\bar{\mathbf{C}}$  in aq. soln. on warming dec. (1) (with loss of HCl and  $\mathrm{CO}_2$ ) into tetrachloroethylene (3:5460); presumably this same decomposition, occurs on process of taking its m.p., and the value given above refers to rapid htg on Hg bath.

Salts. The salts of  $\bar{C}$  can be obtd. by neutralization with metal hydroxide of a cold satd. aq. soln of  $\bar{C}$  followed by evaph. to dryness at low temp.; aq. solns. of the salts are also unstable and rapidly decompose yielding metal chloride  $+ CO_2 +$  tetrachlorocthylene (3:5460) (1). [For studies of influence of light on decompn. of these salts see (2) (3) cf. (4).]

[For study of behavior of  $\bar{C}$  with  $H_2$  + colloidal Pd see (5).]

Acid chloride. Pentachloropropionyl chloride (3:0470) has been obtd. indirectly, i.e., from trichlorogeryloyl chloride with Cl<sub>2</sub> in sunlight (6); colorless cryst., m.p. 42°.

3:4895 (1) Böeseken, Rec. trav. chim 46, 841-843 (1927). (2) Jaeger, J. Chem. Soc. 119, 2070-2076 (1921). (3) Jaeger, Berger, Rec. trav. chim 41, 72 (1921). (4) Jaeger, Cent. 1912, I 1817-1818; Cent. 1911, II 1851. (5) Boeseken, Rec. trav. chim. 35, 273-274 (1915). (6) Boeseken, Hasselbach, Rec. trav. chim. 37, 11-14 (1913).



Long colorless ndls. from dil. alc.; spar. sol. hot aq.; eas. sol. cold alc.

[For prepn. of  $\bar{\rm C}$  from 2-chloro-4-isopropyl-methylbenzene (2-chloro-p-cymene) (3:8775) by oxidn. with dil. HNO<sub>3</sub> (7) of D=1.24 for 8–14 days (2) or htd. 6 hrs. with 5 pts. HNO<sub>3</sub> (D=1.39) + 5 pts. aq. (4) see indic. refs.; from 3-chloro-1,4-dimethylbenzene (2-chloro-p-xylene) (3:8600) by oxidn. with nitrosulfonic acid + fumg. HNO<sub>3</sub> see (1) (5); from 3-chloro-4-methylaecetophenone (8) by oxidn. with alk. KMnO<sub>4</sub> see (8); from 3-chloro-4-methylbenzaldehyde (5) with 50% KOII (Cannizzaro reactn.) see (5); from 3-chloro-4-methylbenzonitrile, m.p. 48–48.5° u.c. (3), 45–46° (6), by protracted boilg. with aq. KOH see (3); from 3-chloro-4-methylbenzamide (see below) on hydrolysis with 25% aq. NaOH see (6).]

Salts.  $K\bar{A}.1\frac{1}{2}H_2O$ , eas. sol. aq. (9);  $Ca\bar{A}_2.3H_2O$ ,  $Ba\bar{A}_2.4H_2O$  (7).

C on fusion with KOH yields (7) (2) 3-hydroxy-4-methylbenzoic acid [Beil. X-237].

[Č on mononitration (9) yields a mixt. of three mononitro derivs. containing 60–70% 3-chloro-4-methyl-6-mitrobenzoic acid [Beil. IX-503], ndls. from alc., m.p. 184–185° (9), 20–30% 3-chloro-4-methyl-5-nitrobenzoic acid [Beil. IX-503], ndls. from aq., m.p. 159° u.c. (9), and 5–10% 3-chloro-4-methyl-2-nitrobenzoic acid [Beil. IX-503], lfts. from aq., m.p. 211° (9).]

- Ethyl 3-chloro-4-methylbenzoate: oil, b.p. 129-130° at 9 mm.,  $D_4^{19.2} = 1.1658$ ,  $n_{He}^{19.2} = 1.52531$  (10). [Note that for the b.p. 149-150° formerly reported (3) no pressure is given.]
- 3-Chloro-4-methylbenzamide: lfts. from aq., alc., or aq. alc., m.p. 173-175° (6) [From partial hydrolysis of 3-chloro-4-methylbenzonitrile (above) with aq. alk. (3) (6); further hydrolysis yields (6)  $\bar{C}$  ]
- 3:4900 (1) Varma, Ramon, J. Indian Chem. Soc. 12, 541 (1935). (2) Vongerichten, Ber. 11, 365-368 (1878). (3) Claus, Davidsen, J. prakt Chem (2) 39, 497-498 (1889). (4) Hintikka, Ann. Acad Scs. Fennicae 19-A, No 10, 6 pp (1923); C.A. 19, 42 (1925). (5) Wahl, Compt. cred 198, 1613-1614 (1934). (6) Magidson, Trawn, Ber 69, 538 539 (1936). (7) Vongerichten, Ber. 10, 1249-1250 (1877). (8) Ganguly, LeFovre, J. Chem. Soc. 1934, 852. (9) Claus, Bocher, Ann. 265, 356-363 (1891). (10) von Auwers, Harres, Z. physik. Chem. A-143, 17-18 (1929).

200°

199.5°

199-200° u.c.

Colorless ndls. from aq.; spar. sol. aq., eas. sol. alc., C<sub>6</sub>H<sub>6</sub>, CHCl<sub>3</sub>. — Volatile with steam; sublimes with slight decomposition.

[For prepn. of  $\bar{\mathbb{C}}$  from *m*-chlorophenol (3:0255) by treatment of dry sodium salt with CO<sub>2</sub> at 140–150° under press. see (3); from 4-chloro-2-aminobenzoic acid (4-chloroanthranilic acid) [Beil. XIV-365, XIV<sub>1</sub>-(548)] via diazotzation and boilg. with aq. see (3) (5); from 7-chloro-2,3-dimethylchromone [Beil. XVII<sub>1</sub>-(177)] on boilg. with 4% aq. NaOH see (2); for formn. of  $\bar{\mathbb{C}}$  from *p*-chlorobenzoic acid (3:4940) by electrolytic oxidn. in acid soln. see (4); from 4-chloro-2-methoxybenzoic acid (see below) by cleavage with HI see (1).

C in aq. soln. gives with FeCl<sub>3</sub> a purple color.

(3)

(4)

(5)

[The methyl ether of Č, viz., 4-chloro-2-methoxybenzoic acid, cryst. from aq., m.p. 148° (1), has been obtd. from 4-chloro-2-methoxybenzaldehyde (1) by oxidn. with aq. alk. KMnO<sub>4</sub> (1).]

3:4908 (1) Hodgson, Jenkinson, J. Chem. Soc. 1927, 1741-1742. (2) Simonis, Schuhmann, Ber. 50, 1146-1147 (1917). (3) Varnholt, J. prakt. Chem. (2) 36, 27-31 (1887). (4) Fichter, Adler, Helv. Chim. Acta 9, 283 (1926). (5) Cohn, Mitt. Technol. Gewerb.-Mus. Wien, 11, 178-182; Cent. 1901, I 925.

Ndls. or pr.; sublimes in vac. with slight decomposition (6). Very sol. toluene or alc. (5). — Best recrystd. from toluene + lt. pet. ether (5). — Can be recrystd. from  $C_0H_6$  or dil. AcOH (6). — From alc.  $\tilde{C}$  (despite its high m.p.) first separates as an oil (5).

[For prepn. of  $\tilde{C}$  from pentachlorotoluene (3:4937) with conc. HNO<sub>3</sub> + Hg see (5); from pentachlorobenzaldehyde (3:4892) with KMnO<sub>4</sub> (90% yield) see (1); from asymtetrachlorophthalyl chloride + Cl<sub>2</sub> via conversion to and subsequent hydrolysis of pentachlorobenzoyl chloride (3:2295) see (3); from 2,3- (3:4650) or 3,4-dichlorobenzoic acid (3:4925) + MnO<sub>2</sub> + fumg. HCl at 180-200° see (4).]

Pentachlorobenzoyl chloride (3:2295), colorless lfts. from alc., m.p. 87° (3), has been prepd. indirectly (see above), but the reaction (if any) of either  $PCl_5$  or  $SOCl_2$  on  $\bar{C}$  has never been reported. Upon hydrolysis with alc. KOH the acid chloride yields  $\bar{C}$  (3).

- Methyl pentachlorobenzoate: pr. from MeOH, m.p. 97° (3). [Prepared from pentachlorobenzoyl chloride + MeOH by 30 hrs. reflux. (3).]
- Ethyl pentachlorobenzoate: unrecorded.
- Pentachlorobenzamide: unrecorded.
   Pentachlorobenzanilide: unrecorded.

3:4910 (1) Lock, Ber. 72, 303 (1939). (2) Steiner, Monatch. 36, 827 (1915). (3) Kirpal, Kunze, Ber. 62, 2105 (1929). (4) Claus, Bücher, Ber. 20, 1627 (1887). (5) Silberrad, J. Chem. Soc. 127, 2684 (1925). (6) Eckert, Steiner, Monatch. 36, 187 (1915).

# 3:4915 4-CHLORO-3-METHYLBENZOIC ACID C<sub>8</sub>H<sub>7</sub>O<sub>2</sub>Cl Beil. IX - 478 IX<sub>1</sub>— CH<sub>8</sub>

Colorless ndls. from hot aq.; alm. insol. cold aq.; very spar. sol. even in hot aq.

[For prepn. of  $\bar{C}$  from 4-chloro-1,3-dimethylbenzene (3:8665) by oxidn. with  $K_2Cr_2O_7$  + dil.  $H_2SO_4$  see (8) (1); from 4-chloro-1-ethyl-3-methylbenzene (6) by oxidn. with dil. HNO<sub>3</sub> (1:10) at 100° for 10 hrs. see (6); from 4-chloro-3-methylacetophenone [Beil. VII-307] by oxidn. with alk. KMnO<sub>4</sub> see (4); from 4-chloro-3-methyl- $\omega$ ,  $\omega$ ,  $\omega$ -trichloroacetophenone (3) see (3); from  $\beta$ -chloroethyl 4-chloro-3-methylphenyl ketone (5) by oxidn. with mixt. of equal pts. conc. HNO<sub>3</sub> and aq. at 100° see (5); from 1,2-bis-(4-chloro-3-methyl-benzoyl)-1,2-dibromoethane (2) by fusion with NaOH see (2); from 4-amino-3-methyl-benzoic acid [Beil. XIV-480] via diazotization and use of  $Cu_2Cl_2$  reactn. see (7).

 $\tilde{C}$  on fusion with KOH yields (1) 4-hydroxy-3-methylbenzoic acid [Beil. X-225,  $X_1$ -(97)], m.p. 173° (1), together with some 4-hydroxyisophthalic acid [Beil. X-502,  $X_1$ -(256)].

Salts.  $Ca\bar{A}_2.3H_2O$  (8);  $Ba\bar{A}_2.3H_2O$  (8); both eas. sol. aq.

Č on further oxidn. with KMnO<sub>4</sub> yields (4) 4-chlorobenzenedicarboxylic acid-1,3 (4-chloroisophthalic acid) (3:4980).

— Ethyl 4-chloro-3-methylbenzoate: oil, b.p.  $260-265^{\circ}$  (8). [From  $\bar{C}$  in alc. with HCl gas (8).]

3:4915 (1) Jacobsen, Ber. 18, 1761-1762 (1885). (2) Conant, Lutz, J. Am. Chem. Soc. 47, 891 (1925). (3) Houben, Fischer, Ber. 64, 2649 (1931). (4) Claus, J. prakt. Chem. (2) 43, 357-358 (1891). (5) Mayer, Müller, Ber. 60, 2281 (1927). (6) Mailhe, Bull. soc. chim. (4) 29, 291 (1921). (7) Beilstein, Kreusler, Ann. 144, 182 (1867). (8) Vollrath, Ann. 144, 266-267 (1867).

#### 3:4916 9,10-DICHLOROANTHRACENE

(meso-Dichloroanthracene)

$$\begin{array}{c|c} Cl & & C_{14}H_8Cl_2 & \text{Beil. V - } \mathbf{664} \\ & & V_{1^-}(\mathbf{324}) \\ & & V_{2^-}(\mathbf{575}) \end{array}$$

M.P. 210° (1)
209-210° (2) (3)
209° (4) (5) (6) (7)
(8) (9) (10) (23)
208-209° (11) (12)

Yellow ndls. from CCl<sub>4</sub> or  $C_6H_6$  or by sublimation; spar. sol. alc. or ether, eas. sol.  $C_6H_6$ . [For prepn. of  $\bar{C}$  from anthracene (1:7285) with Cl<sub>2</sub> in o-dichlorobenzene (5) (30) polychlorobenzenes of b.p. 140–170° (4), nitrobenzene (4) (5), or in acetylene tetrachloride (5) (yields: 93–94% (4), 87–88% (5)) see indic. refs. (note that numerous attempts to use this reactn. are given in earlier literature (3) (13) (14) (15) (16) (17) (18) (19) (20) but none is well adapted for pure  $\bar{C}$  owing to simultaneous formin. of more highly chlorinated cpds.); from anthracene with  $SO_2Cl_2$  in CCl<sub>4</sub> (7) (11) or in xylene (11) at ord. temp. (yields alm. quant. (7) (11)) see indic. refs. (note, however, that the results are sometimes influenced by the source of anthracene used (11)); for formin. of  $\bar{C}$  from anthracene (1:7285) with Cl<sub>2</sub>-aq. (21), with  $S_2Cl_2$  (10), or with NOCl in s.t. at 150° or at room temp. in sunlight (22) see indic. refs.; for formin. of  $\bar{C}$  from anthracene present in crude phenanthrene during treatment of latter in  $CS_2$  with  $Cl_2$  see (12).]

[For prepn. of  $\bar{C}$  from anthrone (9-hydroxyanthracene) [Beil VII-473, VII<sub>1</sub>-(256)] with 2 wt. pts. PCl<sub>5</sub> in C<sub>6</sub>H<sub>6</sub> or without solv. at 100° for 16 hrs. see (2); for formn. of  $\bar{C}$  from 9,9,10,10-tetrachloro-9,10-dihydroanthracene (9,10-dichloroanthracene dichloride-9,10) [Beil. V-641, V<sub>1</sub>-(309)] by actn. of Zn dust, Cu powder, or phenylhydrazine (3) or on boilg, with anthrone (above) in xylene (6) see indic. refs.; for formn. of  $\bar{C}$  from 1,2,3,4-tetrachloro-9,10-dichloroanthracene by htg. with hydrazine hydrate + Cu powder in pyridine (23), or from 9-benzylanthracene with SOCl<sub>2</sub> in CHCl<sub>3</sub> (24), see indic. refs.; from  $\alpha$ -[9,10-dichloroanthracene tetrabromide-1,2,3,4] (see below) by treatment with Zn dust in AcOH or with Cu powder in C<sub>6</sub>H<sub>6</sub> see (3).]

[ $\bar{\mathbf{C}}$  with Cl<sub>2</sub> in cold CHCl<sub>3</sub> or acetylene tetrachloride gives (17) 9,9,10,10-tetrachloro-9,10-dihydroanthracene (see above);  $\bar{\mathbf{C}}$  with Cl<sub>2</sub> in  $C_6H_6$  at 60° yields (17) 2,3,9,10-tetrachloro-2,3-dihydroanthracene;  $\bar{\mathbf{C}}$  in warm CHCl<sub>3</sub> or cold  $C_6H_6$  gives (17) a mixt. of these prods.: the end prod. of chlorination of  $\bar{\mathbf{C}}$  in  $C_6H_6$  at 20° appears (16) (3) to be 1,2,3,4,9,10-hexachloro-1,2,3,4-tetrahydroanthracene [Beil. V-611, V<sub>1</sub>-(287)], m.p. 205-207° (3). —  $\bar{\mathbf{C}}$  with SO<sub>2</sub>Cl<sub>2</sub> in nitrobenzene at 100° yields (25) 2,9,10-trichloroanthracene.]

C adds 2 moles Br<sub>2</sub> giving according to conditions one or the other of two isomeric addn. compds.; i.e.,  $\bar{C}$  moistened with CHCl<sub>3</sub> and treated with 2 Br<sub>2</sub> yields (3) (8)  $\alpha$ -[9,10-dichloroanthracene-1,2,3,4-tetrabromide], colorless hexag. pr. from C<sub>6</sub>H<sub>6</sub>, m.p. 141-142° (3), while  $\bar{C}$  with Br<sub>2</sub> vapor gives (3)  $\beta$ -[9,10-dichloroanthracene-1,2,3,4-tetrabromide], ndls. from C<sub>6</sub>H<sub>3</sub> (less sol. than  $\alpha$ -isomer), m.p. 178-179° (3), 178° (16) (8), 166° (15); both  $\alpha$ - and  $\beta$ -isomers with alc. KOH lose 2 HBr (the  $\alpha$ - more rapidly than the  $\beta$ -) yielding (3) (8) 2,3-dibromo-9,10-dichloroanthracene, yel. ndls., m.p. 255-256° (3), 251-252° (15) (16) (8).

[ $\bar{C}$  in CHCl<sub>3</sub> treated with NO<sub>2</sub> gas gives (26) 9,10-dichloro-9,10-dinitro-9,10-dihydro-anthracene (very unstable white cryst. on strong cooling) which in boilg. CHCl<sub>3</sub> yields anthraquinone (1:9095). —  $\bar{C}$  with conc. HNO<sub>3</sub> (D=1.43) in AcOH at 15–18° yields (27) 9,10-dichloro-9-hydroxy-10-nitro-9,10-dihydroanthracene [Beil. VII<sub>1</sub>-(258)].]

[ $\bar{C}$  with fumg. H<sub>2</sub>SO<sub>4</sub> (20% SO<sub>3</sub>) in nitrobenzene at 12-15° (4) (5) cf. (28) (30) or in benzenesulfonyl chloride below 50° (28), or  $\bar{C}$  with ClSO<sub>3</sub>H in CHCl<sub>3</sub> or H<sub>2</sub>SO<sub>4</sub> at 30° (29),

yields 9,10-dichloroanthracenesulfonic acid-2 [Beil. XI<sub>1</sub>-(44)], cryst. with 2½ H<sub>2</sub>O from alc., m.p. 158-159° (4), losing aq. in vac. at 140° to anhydrous acid, m.p. 212° cor. dec. (4) (corresp. sulfonyl chloride, m.p. 221-225° dec., corresp. sulfonamide, m.p. 279°, corresp. sulfonanilide, m.p. 247.8° cor. (4)).]—[For disulfonation of  $\bar{C}$  see (33).]

 $\bar{C}$  is unaffected (13) by boilg, alc. KOH. — [For behavior of  $\bar{C}$  with pyridine see (31). — For reactn. of  $\bar{C}$  with NaSH in alc. yielding anthranol, anthrone, dianthrone, and other prods. see (32). — For use of  $\bar{C}$  in prepn. of sulfur dyes see (34).]

C on oxidation yields (18) anthraquinone (1:9095).

 $\bar{\mathbf{C}}$  like many other anthracene derivs. adds to suitable unsatd. linkages (35) (36) (37) in Diels-Alder fashion: e.g.,  $\bar{\mathbf{C}}$  with maleic anhydride (1:0625) in nitrobenzene, boiled for 15 mm., gives on cooling (50% yield (35)) adduct, colorless pr. from xylene, m.p. 258-259°, from chlorobenzene, m.p. 253° (36), in this adduct the halogen is stable toward boilg. ale. KOH (38) (39), but the adduct with AlCl<sub>3</sub> in  $C_6H_6$  refluxed 10 min. yields (35) 9,10-diphenylanthracene [Beil. V-747, V<sub>1</sub>-(377)], cryst. from toluene, m.p. 248° (35). —  $\bar{\mathbf{C}}$  with  $\beta$ -chloropropionic acid (3:0460) (used as source of acrylic acid (1:1020) by loss of HCl) boiled for 8 hrs. in  $\sigma$ -dichlorobenzene yields an adduct, cryst. from anisole, m.p. 245° (38); the halogen of this adduct is stable toward hydrolysis and is not removed by boilg. with 10% ale. KOH for 40 min. (38). —  $\bar{\mathbf{C}}$  does not (38) form an adduct with cinnamic acid.

3:4916 (1) Krollpfeiffer, Ann. 430, 225 (1923). (2) Barnett, Cook, Matthews, J. Chem. Soc. 123, 2007 (1923). (3) Meyer, Zahn, Ann. 396, 175-176, 178 (1913). (4) Fedorov, J. Gen. Chem. (U.S.S.R.), 6, 444 454 (1936); Cent. 1936, II 1538, C.A. 30, 6360 (1936). (5) Minaev, Fedorov, Zhur. Prikladnov Khim. 3, 881-893 (1930); Rev. gén. mat. color. 34, 330-332, 376-382 (1930); Cent. 1930, II 3558; C.A. 25, 1252 (1931). (6) Clar, Muller, Ber. 63, 873 (1930). (7) Barnett, Cook Grainger, J. Chem. Soc. 121, 2068 (1922). (8) Grandmougin, Compt. rend. 173, 1176-1178 (1921); Cent. 1922, I 1336. (9) Graebe, Liebermann, Ann. 160, 137 (1871). (10) Lippmann, Pollak, Ber. 34, 2768 (1901).

(11) Iljınsky, Afremoff, Ber **69**, 1824 (1936). (12) Sandquist, Ann. **417**, 20, 30-31 (1918). (13) Graebe, Liebermann, Ann Suppl. **7**, 282-284 (1870). (14) Perkin, Bull. soc. chrm. (2) **27**, 465 (1877). (15) Schwarzer, Ber **10**, 376-379 (1877). (16) Hammerschlag, Ber. **19**, 1106-1108 (1886). (17) M.L.B., Ger. 283,106, April 9, 1915, Cent. **1915**, I 863. (18) M.L.B., Ger. 282,818, March 22, 1915; Cent. **1915**, I 772. (19) M.L.B., Ger 284,790, June 5, 1915, Cent. **1915**, II 251. (20) M.L.B., Ger. 289,133, Dec. 9, 1915; Cent. **1916**, I 193.

(21) Fedorov, Semenova, J. Applied Chem. (U.S.S.R.) 13, 1076-1084 (1940); C.A. 35, 2139 (1941).
(22) Perrot, Compt. rend. 198, 1425 (1934).
(23) I G, French 699,492, Feb. 16, 1931; Cent. 1931, I 3518.
(24) Cook, J. Chem. Soc. 1926, 2168.
(25) M L.B., Ger. 292,356, June 2, 1916; Cent. 1916, II 81.
(26) Barnett, J. Chem. Soc. 127, 2042-2043 (1925).
(27) M.L.B., Ger. 296,019, Jan. 15, 1917; Cent. 1917, I 460.
(28) M.L.B., Ger. 292,590, June 16, 1916; Cent. 1916, II 208.
(29) B.A.S.F., Ger. 260,562, May 26, 1913; Cent. 1913, II 104.
(30) Minaev, Fedorov, Russ. 31,006, July 31, 1933, Cent. 1934, I 2491.

(31) Mieg, Heidenreich (to I.G.), Ger. 593,071, March 5, 1934; Cent. 1934, II 848. (32) Heilbron, Heaton, J. Chem. Soc. 123, 175-182 (1923) (33) B.A.S.F. 288,996, Nov. 30, 1915; Cent. 1916, I 84. (34) Kalischer, Salkowski, Frister (to I.G.), Ger. 480,377, Aug. 2, 1929; Cent. 1929, II 2381-2382. (35) Clar, Ber. 64, 2199-2200 (1931). (36) Kalischer, Scheyer (to I.G.), Ger. 539,832, Dec. 2, 1931, Cent. 1932, I 1952. (37) I.G., Brit. 303,389, July 7, 1927; French 639,359; Cent. 1928, II 2286. (38) Barnett, Goodway, Weekes, J. Chem. Soc. 1935, 1102-1103. (39) Barnett, Goodway, Higgins, Lawrence, J. Chem. Soc. 1934, 1224.

#### 3:4920 3,4,5-TRICHLOROBENZOIC ACID

$$C_7H_3O_2Cl_3$$
 Beil. IX - 346
 $Cl$  IX<sub>1</sub>—
 $COOH$ 

M.P. 210-210.5° (1) 203° (2)

Ndls. from aq. alc. — Sublimes in long ndls. — Somewhat volatile with steam. — Eas.

sol. cold alc., ether, acetone; mod. sol. C<sub>6</sub>H<sub>6</sub>, CHCl<sub>3</sub>; spar. sol. CS<sub>2</sub>, pet. eth.; alm. insol. cold ac.

[For prepn. of  $\tilde{C}$  from 3,4,5-trichlorobenzaldehyde (3:2440) by oxidn. with alk. KMnO<sub>4</sub> see (1); from 3,5-dinitro-4-aminobenzoic acid (chrysanisic acid) [Beil. XIV-445] with fumg. HCl at 200° see (2); for formn. (together with other products) from benzotrichloride (3:6540) +  $Cl_2$  see (3).]

[For study of AgA, CaA2.6H2O, BaA2.4H2O see (2).]

The direct nitration of  $\bar{C}$  has not been recorded. [However, 3,4,5-trichloro-2-nitrobenzoic acid, ndls. from alc., m.p. 181-181.5° (1), and 3,4,5-trichloro-2,6-dinitrobenzoic acid, m.p. 219-221.5° (1), have both been prepared from the corresponding aldehydes.]

C with PCl<sub>5</sub> yields (2) 3,4,5-trichlorobenzoyl chloride, m.p. 36° (2).

- Methyl 3,4,5-trichlorobenzoate: unrecorded.
- Ethyl 3,4,5-trichlorobenzoate: from  $\bar{C}$  + alc. + HCl (2), ndls., m.p. 86° (2).
- **3,4,5-Trichlorobenzamide:** from 3,4,5-trichlorobenzoyl chloride + conc. aq. NH<sub>4</sub>OH at 100° (2); ndls. from C<sub>6</sub>H<sub>6</sub>, m.p. 176° (2).
- ---- 3,4,5-Trichlorobenzanilide: unrecorded.

**3:4920** (1) van de Bunt, Rec. trav. chim. **48**, 132-133 (1929). (2) Salkowski, Ann. **163**, 28-33 (1872). (3) Claus, Bücher, Ber. **20**, 1626 (1887)

#### 3:4922 2-CHLOROANTHRAQUINONE C<sub>14</sub>H<sub>7</sub>O<sub>2</sub>Cl Beil. VII - 787 VII<sub>1</sub>-(411) Ö M.P. 212.4° cor. (1) M.P. 208° (36)211.0° cor. (2) (Contd.) 207° (10) (11)210° cor. (3) 206-207° (12) (13)

205-207°

203-204°

204°

204.5-205.5°

(14)

(15)

(17)

(16) (18)

[See also 1-chloroanthraquinone (3:4480).]

208-209° (7) (8)

(4)

(9)

(5) (6)

210°

209°

209.5°

Pale yel. ndls. from C<sub>6</sub>H<sub>6</sub>, chlorobenzene, or toluene; eas. sol. boilg. C<sub>6</sub>H<sub>6</sub>, toluene, or AcOH; spar. sol. boilg. alc. — Sublimes in vac.

[For f.p./compn. data and diagram of system  $\tilde{C}+1$ -chloroanthraquinone (3:4480) (eutectic, m.p. 143.9-144.2°, contg. about 75%  $\tilde{C}$ ) see (5).]

[For use of  $\tilde{C}$  in coloring oils, fats, and waxes see (19);  $\tilde{C}$  is widely used as intermediate in prepn. of many dyestuffs, but no general summary can be given here although selected examples occur in the following text.]

[For prepn. of  $\bar{C}$  from anthraquinonesulfonic acid-2 [Beil. XI-337, XI<sub>1</sub>-(83)] or its Na salt with 25% HCl + NaClO<sub>3</sub> at 100° (11) (20) (for use of this method in detn. of mixt. of anthraquinone- $\alpha$ - and  $\beta$ -sulfonic acids or their salts by f.p./compn. curve of resultant mixt. of 1-chloroanthraquinone (3:4480) +  $\bar{C}$  see (5)) see indic. refs.; from sodium anthraquinone-2-sulfonate in dil. HCl on exposure to light see (9), from anthraquinonesulfonic acid-2 on boilg. with dil. H<sub>2</sub>SO<sub>4</sub> + NaCl + NaClO<sub>3</sub> see (21); from anthracenesulfonic

acid-2 [Beil. XI-194, XI<sub>1</sub>-(44)] with HCl + NaClO<sub>3</sub> at 100° see (22); from anthraquinone-sulfonic acid-2 or its Na salt (23) or from anthraquinone-sulfonyl chloride-2 (24) with SOCl<sub>2</sub> in s.t. at 200-230° see indic. refs.]

[For prepn. of  $\tilde{C}$  from o-(4-chlorobenzoyl)benzoic acid [Beil. X-750,  $X_1$ -(356)] by ring closure with conc.  $H_2SO_4$  at 160- $170^\circ$  (25) (16) (26) (27) (28) (4) (29) (34) (49) in pres. of AlCl<sub>3</sub> (30) see indic. refs. (for study of influence of conditions see espec. (27) (4) (31)); from o-(3-chlorobenzoyl)benzoic acid (32) or from 2-benzoyl-4-chlorobenzoic acid [Beil. X-750,  $X_1$ -(356)] (33) by similar ring closure with  $H_2SO_4$  see indic. refs.; from 4-chloro-2-benzoyl-benzoyl chloride on htg. see (33).]

[For prepn. of  $\bar{\rm C}$  from 2-chlorobutadiene-1,3 (chloroprene) (3:7080) + naphthoquinone-1,4 (1:9040) in  ${\rm C_6H_6}$  see (6); from  $\alpha$ -chlorocrotonaldehyde (3:8117) + naphthoquinone-1,4 (1:9040) in  ${\rm C_6H_6}$  with piperidine see (74); from 2-aminoanthraquinone (see below) via diazotization and rapid htg. of diazonium chloride at 150° see (8); from 2-chloroanthraquinonecarboxylic acid-4 by htg. at 286-290° (7) or from 2-chloroanthraquinonecarboxylic acid-5 by htg. in s.t. at 310-320° or by distn. of its Ba salt with BaO see (17) of (15); from 2,9,10-trichloro-9-hydroxy-10-nitro-9,10-dihydroanthracene [Beil. VII<sub>1</sub>-(258)] in  ${\rm C_6H_6}$ , nitrobenzene, or AcOH by htg. at 90-95° see (35); from 2,9,10-trichloroanthracene [Beil. V<sub>1</sub>-(325)] (36) or from 2-chloroanthrone-9 (or 10) (12) by oxidn. with CrO<sub>3</sub> see indic. refs.] [For prepn. of  $\bar{\rm C}$  from 1-chloroanthraquinone (3:4480) by htg. with conc. H<sub>2</sub>SO<sub>4</sub> at 200-205° for 9 hrs. see (37).]

[ $\bar{\rm C}$  on reductn. with Zn dust + conc. aq. NH<sub>4</sub>OH under reflux yields (18) (37) 2-chloroanthracene [Beil. V<sub>1</sub>-(324)], m.p. 217° (37), 215° (18). —  $\bar{\rm C}$  on reductn. with hydrazine hydrate in MeOH/KOH at 10 atm. and 135° for 1½ hrs. in pres. of Pd/CaCO<sub>3</sub> cat. yields (38) bis-(2,2'-anthraquinonyl) [Beil. VII<sub>1</sub>-(495)], m.p. 387-388°. —  $\bar{\rm C}$  on reductn. with Al powder + conc. H<sub>2</sub>SO<sub>4</sub> (40) or with Sn + HCl (39) yields a mixt. of 3-chloroanthrone-9, m.p. 156° (38) (corresp. acetate, m.p. 146° (41) (42)), and 2-chloroanthrone-9, m.p. 155° (41) (corresp. acetate, m.p. 143° (41)); this mixt. of chloroanthrones can be septh by acetylation with  $\Lambda$ c<sub>2</sub>O + pyridine and fractional crystn. of the resultant acetates (42). — For use of this reductn. method in prepn. of vat dyes see (43). — For study of oxidn./ reductn. potential of  $\bar{\rm C}$  see (13).]

[ $\bar{C}$  with MeOH/KOH in s.t. at 130° yields (44) 2-methoxyanthraquinone [Beil. VIII-343, VIII<sub>1</sub>-(658)], m.p. 196°. —  $\bar{C}$  with 2-hydroxyanthraquinone + NaOAc + Cu powder htd. at 250–260° for 12 hrs. gives (66% yield (45)) di-(2-anthraquinonyl) ether, pale yel. ndls. from pyridine, m.p. 324° (45). —  $\bar{C}$  with K xanthate + Cu powder boiled for 16 hrs. in AmOH gives (56% yield (45) (46) di-(2-anthraquinonyl) sulfide, cryst. from xylene, m.p. 290.5–291° (45). —  $\bar{C}$  with thiosalicylic acid (2-mercaptobenzoic acid) + solid KOH htd. in AmOH at 150° for 8 hrs. gives (77% yield (3)) S-(2-anthraquinonyl)thiosalicylic acid [Beil. X<sub>1</sub>-(56)], m.p. 278° cor. (3); this prod. on htg. with H<sub>2</sub>SO<sub>4</sub> or better with p-toluenesulfonyl chloride at 200° (3) (47) ring-closes by loss of H<sub>2</sub>O to 1,2-phthalylthioxanthone [Beil. XVII<sub>1</sub>-(291)], yel. ndls. from AcOH, m.p. 278° cor. (3).]

[Č with NaOH + glycerol htd. at 190° is claimed (48) to yield anthraquinone (1:9095).

— Č with NaOH + NaClO<sub>3</sub> htd. 28 hrs. at 195° (49) cf. (50) (51) (52) gives (95% yield (49)) 1,2-dihydroxyanthraquinone (alizarin) (1:9105). — Č with NaSH boiled in aq. alc. yields (53) 2-mercaptoanthraquinone [Beil. VIII-346, VIII<sub>1</sub>-(659)], yel. ndls. from AcOH, m.p. 206° (54). — Č with Na<sub>2</sub>Se boiled in dil. alc. yields (55) 2-selenomercaptoanthraquinone, but Č with Se + NaOAc htd. at 205–210° in a mixt. of trichlorobenzene + tetralin for 8 hrs. yields (56) di-(2-anthraquinonyl) selenide.]

[Č with conc. aq. NH<sub>4</sub>OH in pres. of Cu salts under press. and at elevated temp. (180–200°) gives (yields: 97.5% (57), 98.6% (2)) (27) (58) (59) (60) 2-aminoanthraquinone [Beil. XIV-191, XIV<sub>1</sub>-(449)], red ndls., m.p. 302° (for study of influence of conditions see

(57) (2) (27) (61) (62)). —  $\bar{C}$  with hydrazine hydrate + pyridine in s.t. at 170° for 8 hrs. gives (20% yield (63)) 2-hydrazinoanthraquinone [Beil. XV<sub>1</sub>-(200)], or.-yel. ndls. from pyridine, m.p. 228-229° (63).]

[C with 4 moles C<sub>6</sub>H<sub>5</sub>MgBr in ether yields (64) (65) 2-chloro-9,10-diphenylanthracene, yel. cryst. powder, or. ndls. from AcOH, m.p. 194° (64), 193° (66), 185° (65).]

[For formn. of addn. cpds. of  $\bar{C}$  with SbCl<sub>5</sub> in CHCl<sub>3</sub> see (10); for formn. of 2-anthra-quinonylpyridinium chloride from  $\bar{C}$  +  $\Lambda$ lCl<sub>3</sub> in pyridine see (67).]

[The direct sulfonation of  $\bar{C}$  appears not to have been reported in the scientific literature although  $\bar{C}$  with fumg.  $H_2SO_4$  at  $125-130^\circ$  in pres. of Hg salts cf. (73) as directed is claimed in a patent (68) to yield 2-chloroanthraquinonesulfonic acid-5. — Two monosulfonic acids of  $\bar{C}$  are known, however, although prepared by indirect means; these are 2-chloroanthraquinonesulfonic acid-6 (corresp. sulfonyl chloride, deep yel. ndls. from chlorobenzene, m.p.  $202^\circ$  (69), from  $C_6H_6$ , m.p.  $202-203^\circ$  (71)), and 2-chloroanthraquinonesulfonic acid-7 (corresp. sulfonyl chloride, yel. cryst. from  $C_6H_6$ , m.p.  $205^\circ$  (70),  $200-201^\circ$  (71),  $176^\circ$  (69)); note that the alkali salts of both these acids are almost completely insoluble in aq. (71) and the above anomaly in m.p. of the sulfonyl chlorides may have been due to impure material. — $\bar{C}$  on htg. with fumg.  $H_2SO_4$  (40% SO<sub>3</sub>) at  $180^\circ$  yields (72) a mixt. of sulfonated products which on alk. fusion give 1,2,6-trihydroxyanthraquinone (flavopurpurin) [Beil. VIII-513, VIII<sub>1</sub>-(741)] and 1,2,7-trihydroxyanthraquinone (anthrapurpurin) [Beil. VIII-516, VIII<sub>1</sub>-(742)].]

3:4922 (1) Phillips, Ind. Eng. Chem. 20, 874 (1928). (2) Groggins, Newton, Ind. Eng. Chem.
 21, 371-375 (1929). (3) Ullmann, Knecht, Ber. 44, 3128-3129 (1911). (4) Dougherty, Gleason,
 J. Am. Chem. Soc. 52, 1025 (1930). (5) Coppens, Rec tau chu. 44, 914-916 (1925). (6)
 Carothers, Wilhams, Collins, Kirby, J. Am. Chem. Soc. 53, 4206 (1931). (7) Keimatsu, Hırano,
 Tanabe, J. Pharm. Soc. Japan 49, 531 541 (1929). Cent. 1929, II 1536-1537, C.A. 23, 4696-4697 (1929). (8) Kaufler, Ber. 37, 62-63 (1904). (9) Eckert, Ber. 58, 318 (1925). (10) Brass,
 Eichler, Ber. 67, 783-784 (1934).

Schwenk, Waldmann, Angew. Chem. 45, 20 (1932).
 Steyermark, Gardner, J. Am. Chem. Soc. 52, 4887 (1930).
 Conant, Fieser, J. Am. Chem. Soc. 46, 1873, 1875 (1924).
 Moyer, Compt. rend 184, 609-611 (1927).
 Maki, Nagai, J. Soc. Chem. Ind. Japan, Suppl. 38-B, 487-493 (1935), Cent. 1936, I 4905, C.A. 29, 8337 (1935).
 Scholl, Seer, Ber. 55, 115 (1922).
 Schilling, Ber. 46, 1068-1069 (1913).
 du Pont, Brit. 432,867, Sept. 5, 1935; Cent. 1935, II 3996.
 Bayer and Co., Ger. 205,195, Dec. 28, 1908; Cent. 1909, I 414.

(21) Deinet (to Newport Co.), U.S. 1,761,620, June 3, 1930, Cent. 1931, I 1522, C.A. 24, 3520 (1930). (22) B.A.S.F., Ger. 228,876, Nov. 25, 1910, Cent. 1911, I 102. (23) Meyer, Monatsh. 36, 722 (1915). (24) M.L.B., Ger. 281,976, June 10, 1915, Cent. 1915, II 293. (25) M.L.B., Ger. 75,288, Freellander 3, 260. (26) Dodd, Sprent, & United Alkali Co., Brit. 204,528, Oct. 25, 1923; Cent. 1925, II 1228. (27) Phillips, Ind. Eng. Chem. 17, 721–725 (1925). (28) Scottish Dyes, Ltd. & Thomas, Brit. 248,411, April 14, 1926, Cent. 1929, I 144. (29) Imperial Chem. Ind., Ltd., & Loveluck, Thomson and Thomas, Brit. 356,728, Oct. 8, 1931; French 718,333, Jan. 23, 1932; Cent. 1933, I 3499. (30) Daniels (to National Aniline & Chem. Co.), U.S. 1,895,788, Jan. 31, 1933; Cent. 1933, II 1764.

(31) Oda, Tamura, Sci. Papers Inst. Phys Chem. 32, 263-273 (1937); Cent 1937, II 4027; C.A. 31, 8330 (1937). (32) Bailey (to Burrett Co), U.S. 1,515,325, Nov. 11, 1924, Cent. 1925, I 1014. (33) Egerer, Meyer, Monatsh. 34, 76, 84 (1913). (34) Muller, Kirchner (to I.G.), Ger. 499,587, June 10, 1930, Cent. 1931, I 1675. (35) M.L.B., Ger. 296,019, Jan. 15, 1917; Cent. 1917, I 460. (36) Liebermann, Beudet, Ber. 47, 1014-1015 (1914). (37) Atack, Clough, Brit. 169,732, Nov. 3, 1921; Cent. 1922, IV 377. (38) Busch, Weber, Zink, J. prakt. Chem. (2) 155, 166-167 (1940). (39) Barnett, Matthews, J. Chem. Soc. 123, 2550-2551, 2554-2555 (1923). (40) Eckert, Tomaschek, Monatsh. 39, 862 (1918).

(41) Barnett, Wiltshire, J. Chem. Soc. 1928, 1824. (42) Barnett, Goodway, J. Chem. Soc. 1930, 1350. (43) Bayer and Co., Ger. 203,436, Oct. 20, 1908; Cent. 1908, II 1756. (44) Bayer and Co., Ger. 229,316, Dec. 13, 1910, Cent. 1911, I 180. (45) Perkin, Sewell, J. Chem. Soc. 123, 3036-3038 (1923). (46) Ullmann-Goldberg, Ger. 255,591, Jan. 10, 1913; Cent. 1913, I 480. (47) Ullmann, Ger. 238,983, Oct. 7, 1911; Cent. 1911, II 1289. (48) Oda, Tamura, Maeda,

J. Soc. Chem. Ind. Japan 41 (Suppl. bindg.), 193-195 (1938); Cent. 1939, I 1360; C.A. 32, 7447 (1938).
(49) Karpukhin, Andinokrasochnaya Prom. 5, 317-321 (1935); Cent. 1936, I 2825; C.A. 30, 7112 (1936). (50) Davies and Scottish Dyes, Ltd., Brit. 174,101, Feb. 16, 1922; Cent. 1922, II 877.

(51) Rogers (to National Aniline and Chem Co), Brit. 181,673, Aug. 10, 1922; Cent. 1923, IV 882. (52) Scottish Dyes, Ltd, & Thomas & Hereward, Brit. 246,529, Feb. 25, 1926, French 591,489, July 4, 1925, Swiss 115,113, June 1, 1926, Cent. 1926, II 2949. (53) Bayer and Co., Ger. 206,536, Feb. 4, 1909; Cent. 1909, I 1059 (54) Gattermann, Ann. 393, 149-155 (1912). (55) Bayer and Co., Ger. 264,941, Sept. 25, 1913, Cent. 1913, II 1351. (56) Perkins (to du Pont Co.), U.S. 1,973,773, Sept. 18, 1934, Cent. 1935, I 3051. (57) Groggins, Stirton, Ind. Eng. Chem. 25, 42-49 (1933). (58) BASF, Ger. 295,624, Dec. 11, 1916, Cent. 1917, I 295. (59) Williams (to du Pont Co.), U.S. 1,775,360, Sept. 9, 1930, Cent. 1931, II 1195 (60) Groggins, U.S. 1,923,618, Aug. 22, 1933, Cent. 1933, II 2894, C.A. 27, 5339 (1933), U.S. 1,892,302, Dec. 27, 1932, Cent. 1933, II 1764; C.A. 27, 1893 (1933).

(61) Vorozhtsov, Nikitin, J. Gen. Chem. (U.S.S.R.) 7, 2080-2086 (1937), Cent. 1938, I 2355; C.A. 32, 539 (1938). (62) Vorozhtsov, Kobelev, J. Gen. Chem. (U.S.R.) 9, 1515-1516 (1939), C.A. 34, 2688 (1940). (63) Mohlau, Ber. 45, 2216 (1912). (64) Barnett, Cook, Wiltshire, J. Chem. Soc. 1927, 1728 (65) E. Bergmann, O. Blum-Bergmann, J. Am. Chem. Soc. 59, 1440 (1937). (66) Ingold, Marshall, J. Chem. Soc. 1926, 3087. (67) Miegs, Heidenreich (to I.G.), Ger. 593,671, March 5, 1934; Cent. 1934, II 848. (68) Whelen (to du Pont Co.), U.S. 2,074,306, March 16, 1937, Cent. 1937, I 1861, C.A. 31, 3508 (1937). (69) Fierz-David, Andereau, Helv. Chim. Acta 10, 225-227 (1927). (70) Jones, Mason, J. Chem. Soc. 1934, 1814. (71) Goldberg, J. Chem. Soc. 1932, 73-74, 77. (72) Bayer and Co., Ger. 217,552, Jan. 17.

(71) Goldberg, J. Chem. Soc. 1932, 73-74, 77 (72) Bayer and Co., Ger. 217,552, Jan. 17, 1910, Cent. 1910, I 700. (73) Ullmann, Ger. 223,642, June 27, 1910, Cent. 1910, II 427. (74) Nicodemus, Vollmann, Schloffer (to I G), Ger. 715,201, Dec. 16, 1941, Cent. 1942, I 1811, [C.A. 38, 2049 (1944)].

3:4925 3,4-DICHLOROBENZOIC ACID 
$$C_7H_4O_2Cl_2$$
 Beil. IX - 343 IX<sub>1</sub>-(141)

M.P. 211-212° (1) M.P. 204.1° (6)
208-209° (2) (20) (Conld.) 203° (7)
206° (3) 201-202° (8) (19)
205° (4) 201° (9)

Ndls. from aq., alc., 60% alc. (6),  $C_6H_6$  (2) (6), or 30% AcOH (4) (18). — Volatile with steam. — Appreciably more sol. in hot aq. than in cold; very cas. sol. alc.

200° cor. (10)

[For prepn. of  $\overline{C}$  from 3,4-dichlorotoluene (3.6355) by oxidin. (2) with  $CrO_3$  (8) (11), with dil. HNO<sub>3</sub> in s.t. at 130–140° (9) (3), or with KMnO<sub>4</sub> (6) see indic. refs.; for prepn. by oxidin. of 3,4-dichlorobenzyl chloride (8) (11), 3,4-dichlorobenzial chloride (3:6876) (8) (11), 3,4-dichlorobenzial chloride (3:0685) (10), or chlorinated isopropylbenzene (cumene) (5) see indic. refs.: for prepn. from benzoic acid (1:0715) by acti. of HCl + KClO<sub>3</sub> (11) (20) or  $Ca(OCl)_2$  (11) see indicated refs.: for still other misc. methods see Bell. IX-343 + IX<sub>1</sub>-(141) [

 $\bar{C}$  is scarcely affected by htg. with fumg. HNO<sub>3</sub> (13) but on soln. in latter and treatment as directed (13) with conc. H<sub>2</sub>SO<sub>4</sub> yields 3,4-dichloro-x-nitrobenzoic acid, m.p. 160° (13). [This prod. may or may not be identical with that of m.p. 165° obtd. indirectly (14).]

 $\bar{C}$  with PCl<sub>5</sub> (15) or SOCl<sub>2</sub> (16) yields 3,4-dichlorobenzoyl chloride, b.p. 242° (8), 159-160° at 42 mm. (15), 88.0-88.3° (16). [For formn. of this prod. in chlorination of BzCl see (4).]

204-205° (5)

<sup>---</sup> Methyl 3.4-dichlorobenzoate: unrecorded.

Ethyl 3,4-dichlorobenzoate: b.p. 262-263° (8). [For study of rate of hydrolysis see (17).]

- 3,4-Dichlorobenzamide: from 3,4-dichlorobenzoyl chloride + NH<sub>3</sub> (8); m.p. 133° (8); 166-168° (1), 169° (18).
- ---- 3,4-Dichlorobenzanilide: unrecorded.

3:4925 (1) Gough, King, J. Chem. Soc. 1930, 690-691. (2) Kraay, Rec. trav. chim. 49, 1086 (1930). (3) Wynne, J. Chem. Soc. 1936, 705. (4) Hope, Reilly, J. Chem. Soc. 123, 2476 (1923).
(5) Quist, Salo, Acta Acad. Aboensis Math. et Phys. 8, No. 4, 30 pp. (1934); Cent. 1934, II 594-595; 1936, I 538-540; C.A. 29, 6884 (1935). (6) Bornwater, Holleman, Rec. trav. chim. 31, 228-230 (1912). (7) Pieper, Ann. 142, 306 (1876). (8) Beilstein, Kuhlberg, Ann. 152, 224-234 (1869). (9) Lellmann, Klotz, Ann. 231, 313-314 (1885). (10) Scarborough, Waters, J. Chem. Soc. 1926, 560.

Beilstein, Ann. 179, 283 (1875).
 Gmelin, Banziger, Ber. 29, 875 (1896).
 Claus, Bucher, Ber. 20, 1624 (1887).
 Ruggli, Zaeslin, Helv. Chim. Acta 19, 434-437 (1936).
 Cohen, Briggs, J. Chem. Soc. 83, 1213 (1903).
 Onorris, Ware, J. Am. Chem. Soc. 61, 1418-1420 (1939).
 Blakey, McCombie, Scarborough, J. Chem. Soc. 1926, 2863-2868.
 Cohen, King, Strangeways, J. Chem. Soc. 1930, 3427.
 Hodgson, Beard, J. Chem. Soc. 1927, 25.
 Biswas, Das-Gupta, J. Induan Chem. Soc. 19, 497-498 (1942); C.A. 37, 5709 (1943).

M.P. 216.5° (1) 216° (2) 212-213° (3)

Cryst. from MeOH + aq. (2) or from  $C_6H_6$  (3). — Eas. sol. org. solv.

[For prepn. of  $\bar{C}$  from 3-aminonaphthoic acid-2 [Beil. XIV-535, XIV<sub>1</sub>-(623)] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. (alm. quant. yield) see (3); from the corresp. acid chloride (below) by hydrolysis with aq. see (1).]

 $\bar{C}$  with Cu bronze refluxed in nitrobenzene for 2 hrs. gives (48% yield (4))  $\beta$ -naphthoic acid (1:0800), m.p. 185° (4).

[No record can be found of direct conv. of  $\bar{C}$  to the corresp. acid chloride (3-chloro-2-naphthoyl chloride); however, this compd., m.p. 56.5° (1), b.p. 248° at 160 mm. (1), has been obtd. indirectly from 3-hydroxy-2-naphthoic acid (1:0850), with PCl<sub>5</sub> in 49% yield (1); note that 3-hydroxy-2-naphthoic acid with SOCl<sub>2</sub> gives instead 3-hydroxy-2-naphthoyl chloride, m.p. 96° (5), 94.5° (6), in 82% yield (5).

[For condens. of C with pyrazolanthrone see (8).]

- Methyl 3-chloro-2-naphthoate: cryst. from MeOH, m.p. 58-59° (3), 58° (7). [From C in MeOH with conc. H<sub>2</sub>SO<sub>4</sub> (88% yield (7)), from C with ethereal diazomethane (3), or from the acid chloride (above) with 5 pts. MeOH (3).] [For reactn. of this ester with 1-aminoanthraquinone see (7).]
- Ethyl 3-chloro-2-naphthoate: lfts. from lt. pet. or from alc., m.p. 57-59° (3), 50° (1); b.p. 218-222° at 160 mm. (1), 195-197° at 18 mm. (3), volatile with steam. [From C in EtOH with HCl gas (1) (3).]
- (1). [From the acid chloride (above) with conc. aq. NH<sub>4</sub>OH (1).]
- 3:4928 (1) Strohbach, Ber. 34, 4158-4162 (1901). (2) Hosaeus, Ber. 26, 668-671 (1893). (3) Bergmann, Hirshberg, J. Chem. Soc. 1936, 333. (4) Clemo, Spence, J. Chem. Soc. 1928, 2818. (5) Bhat, Forster, Venkataraman, J. Soc. Dyers Colourists 56, 170 (1940). (6) Abrahart, J. Chem. Soc. 1938, 426. (7) Ullmann, Dootson, Ber. 51, 22-23 (1918). (8) I.G., Brit. 298,775, Nov. 8, 1928; French 644,589, Oct. 10, 1928.

3:4930 
$$meso-\alpha,\alpha'$$
-DICHLOROSUCCINIC ACID  $C_4H_4O_4Cl_2$  Beil. II - 619  $II_{1^-}(267)$   $II_{2^-}(558)$   $II_{1^-}(267)$   $II_{2^-}(558)$   $II_{1^-}(267)$   $II_{2^-}(558)$   $II_{1^-}(267)$   $II_{2^-}(558)$   $II_{1^-}(267)$   $II_{2^-}(558)$   $II_{1^-}(267)$   $II_{2^-}(558)$   $II_{1^-}(267)$   $II_{$ 

(9) [See also  $d,l-\alpha,\alpha'$ -dichlorosuccinic acid (3:4711).]

209-213°

Hexag. pr. from aq. —  $\bar{C}$  is readily sol. aq. although less so than its d,l-isomer; e.g., 100 cc. satd. aq. soln. of  $\bar{C}$  at 0° conts. 12.0 g.  $\bar{C}$  (4);  $\bar{C}$  is eas. sol. alc., ether, acctone or CHCl3; spar. sol. C6H6 or lgr.

[For prepn. of C from disodium salt of maleic acid (1:0470) in satd. aq. NaCl soln. with  $Cl_2$  at 0° in dark or diffuse daylight (yields: 74.5% (7), 66% (10), 65% (1)) cf. (16) see indic. refs. (note that as a side reactn. some addn. of HOCl also occurs leading to as much as 7% (1) chloromalic acid): from fumaric acid (1:0895) with excess Cl<sub>2</sub> in s.t. in sunlight for 3-4 days see (6); from  $meso-\alpha,\alpha'$ -diaminosuccinic acid [Beil. IV-486, IV<sub>2</sub>-(901)] in aq. HCl with NOCl or AgNO<sub>2</sub> (75% yield) see (3); from  $meso-\alpha,\alpha'$ -dichlorosuccinyl (di)chloride (3:9087) by hydrolysis with ag. see (5).]

[For formn. of C from bis-acetyl peroxide (9) by decomposition in chloroacetic acid (3:1370) at 85-95° (CO<sub>2</sub> + CH<sub>4</sub> are also formed) see (9).]

 $\bar{\mathbf{C}}$  behaves as a normal dibasic acid: titration with standard dil. aq. alk. gives Neut. Eq. 93.5. — [For study of acid strength  $(K_1 = 361 \times 10^{-4} \text{ at } 20.2^{\circ}, K_2 = 9.4 \times 10^{-4} \text{ at}$ 17.8° (4)) see (4) (8); (18) for study of conductivity see (11).]

[Salts (of metals). Ag<sub>2</sub>A, amorphous ppt. (6) which on boilg, with aq. for 10 hrs. yields (12) both d,l-tartaric acid (1:0550) and meso-tartaric acid (1:0490); CaĀ.2H<sub>2</sub>O, eas. sol. ag. and alc. (6); SrĀ.H<sub>2</sub>O (6); BaĀ, very eas. sol. ag., insol. alc. (6); ZnĀ.3H<sub>2</sub>O (6);  $Cd\bar{A}.3H_2O$ , very eas. sol. aq., insol. alc. (6).]

C with cold aq. KOH loses 1 HCl yielding (5) (7) (14) chlorofumaric acid (3:4853); C with NaOAc/AcOH on boilg. (13) (17) or aq. soln. of Na<sub>2</sub>A on boilg. ½ hr. (12) loses 1 HCl yielding chloromaleic acid (3:3432); C on warming in dil. H<sub>2</sub>SO<sub>4</sub> gives both (14) chlorofumaric and chloromaleic acids. [For study of rate of decompn. of C by aq., acids, or alkalies see (7) (8) (15).]

K<sub>2</sub>Ā in aq. soln. maintained at neutrality at 100° dec. with formn. (14) of acetaldehyde (1:0100),  $CO_2$  + meso-tartaric acid (1:0490).

C with Ac2O at 150° yields (12) chloromaleic anhydride (3:0280).

The acid chloride (3:9087) corresp. to C is known but is usually obtd. indirectly.

- Dimethyl meso- $\alpha, \alpha'$ -dichlorosuccinate: m.p. 31.5-32° (see 3:0240).
- **Diethyl** meso- $\alpha, \alpha'$ -dichlorosuccinate: m.p. 63° (see 3:1364).
- Acid salt of C with dl,-α-dhenylethylamine: tbls. from aq., m.p. 133-134° rap. htg. (13); satd, aq. soln, at 25° conts. 81.4 g./liter (13). [For the corresp. acid salts

of  $\overline{C}$  with the two opt. act. forms of this base see (13); both have m.p. 128-129°, and their satd. aq. solns. at 25° cont. 76.1 g./liter (13).

3:4930 (1) Kuhn, Wagner-Jauregg, Ber. 61, 501-502, 518-521 (1928). (2) Aminoff, Arkiv Kemi, Mineral. Geol. 7, No. 9, 11 (1918), Cent. 1919, III 319, C.A. 14, 2119 (1920). (3) Kuhn, Zumstein, Ber. 59, 485 (1926). (4) Kuhn, Wagner-Jauregg, Ber. 61, 484, 487-498 (1928). (5) Michael, Tissot, J. prakt Chem. (2) 46, 394-395 (1892). (6) Kirchhoff, Ann. 280, 210-215 (1894). (7) Robinson, Lewis, J. Chem. Soc. 1933, 1260-1262. (8) Holmberg, J. prakt. Chem. (2) 84, 148, 152, 164 (1911). (9) Kharasch, Gladstone, J. Am. Chem. Soc. 65, 17 (1943). (10) Terry, Eichelberger, J. Am. Chem. Soc. 47, 1088, 1076-1077 (1925).
 [11] Michael, Bunge, Ber. 41, 2912 (1908). (12) Michael, Tissot, J. prakt. Chem. (2) 52,

(11) Michael, Bunge, Ber. 41, 2912 (1908). (12) Michael, Tissot, J. prakt Chem. (2) 52, 331-335 (1805). (13) van der Riet, Ann. 280, 229 (1894). (14) Holmberg, Arkiv Kemi, Mineral. Geol. 8, No. 2, 6, 32 (1920), Cent 1921, I 830, CA 16, 2116 (1922). (15) Johansson, Z. physik. Chem. 79, 625-626 (1912). (16) Timmermans, van Laucker, Jaffe, Bull. soc. chim. Belg. 48, 42 (1939). (17) Ashton, Partington, Trans Faraday Soc. 30, 602 (1934). (18) Holmberg, Svensk. Kem. Tad. 24, 105-109 (1912); Cent. 1912, II 1618, C.A. 7, 80 (1913).

#### 3:4933 4-CHLORO-3-HYDROXYBENZOIC ACID C7H5O3Cl Beil. S.N. 1068

#### M.P. 219.5-220.5° (1)

Colorless ndls from aq.

[For prepn. of  $\bar{C}$  from 4-amino-3-hydroxybenzoic acid (1) via diazotization and use of  $Cu_2Cl_2$  reactn. see (1); note that the prod. formerly [Beil X-143] supposed to have been  $\bar{C}$  is now regarded (1) as probably the 6-chlorosomer (3:4720).]

3:4933 (1) Beyer, Rec. trav. chim. 40, 627 (1921).

## 3:4935 3,5-DICHLORO-2-HYDROXYBENZOIC $C_7H_4O_3Cl_2$ Beil. X - 104 X<sub>1</sub>-(48) (3,5-Dichlorosalicylic acid) OH

M.P. 220-221° (1) 219-220° (2)

219.5° (3) (10)

219° (4) (5) (6) (7)

215° (8)

214° (9) (11) (12)

Colorless scales or ndls. from aq. alc.; very spar. sol. hot aq., eas. sol. alc., ether; sublimes with partial decomposition.

[For prepn. of  $\bar{C}$  from o-hydroxybenzoic acid (salicylic acid) (1 0780) in aq. KOH (3 moles) (11) (10), or in aq. KOH (1 mole) (14) (17), or in aq. KOH (2 moles) (15) (16), in EtOH (17), in AcOH (12) (10) (2), or in CS<sub>2</sub> susp. (17) with Cl<sub>2</sub> see indic. refs.; with 30%  $H_2O_2 + HCl$  (80% yield) see (4); by htg. with SbCl<sub>5</sub> see (13). (Note that by most of these methods 5-chloro-2-hydroxybenzoic acid (5-chlorosalicylic acid) (3:4705) may also be formed; from this  $\bar{C}$  may also be sep. via its spar. sol. Ba $\bar{A}_2$  (17).)]

[For prepn. of C from sulfosalicylic acid with Cl<sub>2</sub> in aq. see (8); from K 2,4-dichlorophenolate with CO<sub>2</sub> at 140° see (11); from 3,5-dichlorosalicylaldehyde by oxidn. with alk.

KMnO<sub>4</sub> (yield 100%) see (9); from 3,5-dichloro-2-methoxybenzoic acid with 45% HI in s.t. at 120-130° see (3); from chloral-3,5-dichlorosalicylamide by hydrolysis see (1).]

 $\bar{C}$  on htg. with CaO (17) (7) or at 200° in aniline (18) loses CO<sub>2</sub> yielding 2,4-dichlorophenol (3:0560).

Č with FeCl<sub>3</sub> gives (13) (2) a dark violet color.

[ $\ddot{C}$  in 60% fumg. H<sub>2</sub>SO<sub>4</sub> treated with Cl<sub>2</sub> at 80–90° for 15 hrs. gives (70% yield (19)) 3,5,6-trichlorosalicylic acid, white pl. from aq. alc. or aq. AcOH, m.p. 207° cor. (19); (this with Ac<sub>2</sub>O + trace H<sub>2</sub>SO<sub>4</sub> gives corresp. acetate, ndls. from lgr., m.p. 129.5° cor. (19).]

C in AcOH treated with fumg. HNO<sub>3</sub> yields (20) 4,6-dichloro-2-nitrophenol, m.p. 122° (20).

 $\bar{\mathbf{C}}$  with PCl<sub>5</sub> (1 mole) yields (5) (10) 3,5-dichloro-2-hydroxybenzoylehloride (3,5-dichlorosalicyloyl chloride), ndls. from ether + pet. eth., m.p. 79°. [For details on various phosphorus compounds also formed in this reaction see (21).] [Note also existence of anhydride of  $\bar{\mathbf{C}}$  (from the acid chloride + Ag $\bar{\mathbf{A}}$ ), cryst from CHCl<sub>3</sub>, m.p. 186-187° (5) (28).]

[ $\check{\mathbf{C}}$  in aq./alc./H<sub>2</sub>SO<sub>4</sub> gives (22) on electrolytic reduction 3,5-dichloro-2-hydroxybenzyl alcohol, ndls. from C<sub>6</sub>H<sub>6</sub>, m.p. 82° (22); for study of prepn. and thermal rearr. of allyl (23), crotyl (23), benzyl (24), and other (25) ethers of  $\check{\mathbf{C}}$  see indic. refs.]

- Methyl 3,5-dichloro-2-hydroxybenzoate: ndls. from alc. or ether, m.p. 150° (15), 147° (5) (26), 143-144° (7) (3), 142° (12). [From AgĀ + MeI in s.t. at 135° (12), from 3,5-dichlorosalicyloyl chloride (above) with McOH (5), or from methyl salicylate (1.1750) in AcOH with Cl₂ (26).] [This ester with Ac₂O yields (7) corresp. acetate, ndls. from MeOH, m.p. 57° (7)]
- **D** Ethyl 3,5-dichloro-2-hydroxybenzoate: cryst. from ether, m.p. 57° (5), 47° (12). [From Ag $\overline{\Lambda}$  + C<sub>2</sub>H<sub>5</sub>I as above (12) (3), from 3,5-dichlorosalicyloyl chloride (above) with EtOH (5), or from ethyl salicylate (1 1755) with Cl<sub>2</sub> (27).]
- --- 3,5-Dichloro-2-hydroxybenzamide: m.p. 209° (11).

3:4935 (1) Hirwe, Rana, Ber. 72, 1353 (1939) (2) Hirwe, Rana, Gavankar, Proc. Indian Acad. Sci. A-8, 211 (1938). (3) Martin, Gazz chim ital. 29, II 62-63 (1899). (4) Leuler, Pinet, Bull. soc chim (4) 41, 1363-1364 (1927) (5) Anschutz, Mehring, Ann 346, 300-311 (1906). (6) Biltz, Stepf, Ber 37, 4030 (1904) (7) Zincke, Ann 261, 252-251 (1891). (8) Datta, Mitter, J. Am. Chem. Soc 41, 2037 (1919). (9) Dey, Row, J. Chem. Soc 125, 560 (1924). (10) Earle, Jackson, J. Am. Chem. Soc 28, 109 (1906).

(11) Tarugi, Gazz. chim. stal. 30, II 487 489 (1900). (12) Smith, Ber. 11, 1225-1227 (1878). (13) Lössner, J. prakt Chem. (2) 13, 429 431 (1876). (14) Cahours, Ann chim (3) 13, 108-111 (1845); Ann 52, 341-343 (1844). (15) Lassar-Cohn, Schultze, Ber 38, 3300 (1905). (16) Ullmann, Kopetschni, Ber. 44, 428 (1911). (17) Hecht, Am. Chem. J. 12, 503-506 (1890). (18) Cazeneuve, Bull soc. chim. (3) 15, 74 (1896). (19) Farinholt, Stuart, Twiss, J. Am. Chem. Soc. 62, 1239 (1940). (20) Smith, Knerr, Am. Chem. J. 8, 98 (1886).

(21) Anschutz, Ann. 454, 81-82, 105-106 (1927)
(22) Mettler, Ber. 39, 2939 (1906).
(23) Tarbell, Wilson, J. Am. Chem. Soc. 64, 607 612 (1942)
(24) Tarbell, Wystrach, J. Am. Chem. Soc. 65, 2149-2153 (1943).
(26) Claisen, Ann. 418, 85 (1919)
(27) Cahours, Ann. chim. (3) 27, 461-462 (1849), Ann. 74, 312 (1850).
(28) Anschutz, Ber. 30, 223 (1897).

#### 3:4936 4-CHLORONAPHTHOIC ACID-1



M.P. 221-223°(2) 210° (1) Ndls. from alc.; eas. sol. alc. or AcOH; spar. sol. aq., CHCl3, ether, or hydrocarbons.

[For prepn. of Č from 4-aminonaphthoic acid-1 [Beil. XIV-533] by diazotization, conversion with CuCN to 4-chloronaphthonitrile (see below), and hydrolysis of the latter by boilg, with a mixt. of 50% AcOH (2 vols.) + conc. H<sub>2</sub>SO<sub>4</sub> (1 vol.) see (1); from 1-chloro-4-(chloromethyl)naphthalene, m.p. 78-79° (2), by oxidn. with dil. HNO<sub>3</sub> see (2); or from 1-bromo-4-chloronaphthalene [Beil. V-548, V<sub>2</sub>-(448)] by conv. to RMgBr and carbonation see (2).]

C does not react either with conc. NH<sub>4</sub>OH at 200° or with (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> at 220° (1).

Salts. The alk. salts of  $\bar{C}$  are eas. sol. aq.; the calcium, barium, and silver salts are sparingly sol. aq.; the iron, lead, and copper salts are insol. aq. (1).

- ---- Methyl 4-chloro-1-naphthoate: unreported.
- ---- Ethyl 4-chloro-1-naphthoate: unreported.
- --- 4-Chloro-1-naphthonitrile: long white ndls. from AcOH, m.p. 110° (1).
- D p-Bromophenacyl 4-chloro-1-naphthoate: m.p. 130.5-131° (2).

3:4936 (1) Friedlander, Weisberg, Ber. 28, 1840, 1842–1843 (1895). (2) Horn, Warren, J. Chem. Soc. 1946, 144.

M.P. 224.5-225.5° (1) B.P. 301° (6) 224-224.5° (2) 224° (3) 218° (4) (5) (6) (7) 217.5° u.c. (8)

White ndls. from  $C_6H_6$  or pet. eth. — Spar. sol. hot alc. or ether; spar. sol. cold  $CS_2$  but eas. sol. hot  $CS_2$ ; sol. at 17° in 22 vols. or at 87° in 3.4 vols. toluene (8). — Sublimes readily. — Closely resembles hexachlorobenzene (3:4939), and the m.p. of mixtures of the two are but very slightly depressed (7) (8); furthermore, soly. of  $\bar{C}$  in  $C_6H_6$  at 4 different temps. is alm. identical with that of hexachlorobenzene (9).

[For studies on dielectric characteristics of C see (9) (10) (11) (12).]

[For prepn. of  $\bar{\rm C}$  from toluene (1.7405) with SO<sub>2</sub>Cl<sub>2</sub> + AlCl<sub>3</sub> + S<sub>2</sub>Cl<sub>2</sub> at 100° for ½ hr. as directed (72% yield (8)), or by electrolysis in AcOH/conc. HCl in dark (7), or with Cl<sub>2</sub> in pres. of I<sub>2</sub> followed by further chlorination in pres. of SbCl<sub>5</sub> of the fraction boiling above 240° (6) see indic. refs.; for formn. of  $\bar{\rm C}$  from isopropylbenzene (cumene) (1:7440) with Cl<sub>2</sub> in pres. of I<sub>2</sub> + Fe at 0°, or from *p*-cymene (1:7505) with Cl<sub>2</sub> in pres. of I<sub>2</sub> + Fe (1), or from 2-chlorotoluenesulfonyl chloride-4 with Cl<sub>2</sub> in pres. of SbCl<sub>3</sub> at 65-70° (4), or from 2,3,4-trichlorotoluene (3:0425) or 2,4,5-trichlorotoluene (3:2100) with SO<sub>2</sub>Cl<sub>2</sub> + AlCl<sub>3</sub> + S<sub>2</sub>Cl<sub>2</sub> (8), or from 2,3,4-trichlorobenzal (di)chloride on stdg. (5) see indic. refs.]

[C on further treatment with SO<sub>2</sub>Cl<sub>2</sub> + AlCl<sub>3</sub> + S<sub>2</sub>Cl<sub>2</sub> gives (8) a prod. m.p. 272-274°. — C on fusion and treatment with Cl<sub>2</sub> at 210-230° as directed (13) gives 70-80% yield pentachlorobenzal (di)chloride (3:3590) b.p. 199° cor. at 13 mm. (13).

 $[\ddot{\mathbf{C}}$  on partial hydrolysis with caustic alk. at 130–140° under press. yields (14) tetrachlorocresol.]

 $\bar{C}$  is unaffected by boilg. fumg. HNO<sub>3</sub> (6), but  $\bar{C}$  on oxidn. with 14.2 wt. pts. conc. HNO<sub>3</sub> (D=1.42) in pres. of 0.1 pt. Hg by boilg. for 150 hrs. (8) yields pentachlorobenzoic acid (3:4910), m.p. 199.5° (8).

3:4937 (1) Qvist, Holmberg, Acta Acad. Aboensis Math. et Phys. 6, No. 14, 3-28 (1932); Cent. 1932, II 2816; C.A. 27, 5726-5727 (1933).
 Qvist Salo, Acta Acad. Aboensis Math. et Phys. 8, No. 4, 30 pp. (1934); Cent. 1936, I 540.
 White, Briggs, Morgan, J. Am. Chem. Soc. 62, 23 (1940).
 Davies, J. Chem. Soc. 119, 871 (1921).
 Riess, Berndt, Hitschmann, Monatsh. 50, 334 (1928).
 Beilstein, Kuhlberg, Ann. 150, 298-299 (1869).
 Fichter, Glantzstein, Ber. 49, 2485-2486 (1916).
 Sulbeirad, J. Chem. Soc. 127, 2682-2684 (1925).
 Smyth, Lewis, J. Am. Chem. Soc. 62, 949-952 (1940).
 Smyth, Lewis, J. Am. Chem. Soc. 62, 721-727 (1940).

K. S. Cole, R. H. Cole, J. Chem. Phys. 9, 348 (1941).
 Morgan, Yager, Ind. Eng. Chem. 32, 1526 (1940).
 Lock, Ber. 66, 1533 (1933).
 I.G., French 724,779, May 2,

1932.

#### 3:4939 HEXACHLOROBENZENE

| M.P. | 228.6-229.8°    | (1)  | B.P.     | 326°     |      |           | (13)    |
|------|-----------------|------|----------|----------|------|-----------|---------|
|      | 229.5° cor.     | (2)  |          | 322.2°   | (    | cor.      | (4)     |
|      | 228°            | (3)  |          | 309°     | at ' | 742 mm.   | (15)    |
|      | 227.6° cor.     | (4)  |          | 309-310° | at ' | 720–727 m | m. (16) |
|      | 227°            | (5)  | (6) (7)  |          |      |           |         |
|      | 226-227.5° cor. | (51) |          |          |      |           |         |
|      | 226-227°        | (8)  |          |          |      |           |         |
|      | 226°            | (9)  | (10) (11 | )        |      |           |         |
|      |                 | (12) | (13)     |          |      |           |         |
|      | 224°            | (14) |          |          |      |           |         |

(Note that  $\tilde{C}$  is *not* the same as benzenehexachloride, q.v.)

Long thin colorless pr. from CCl<sub>4</sub> or from C<sub>6</sub>H<sub>6</sub> + EtOH. — Insol. aq.; insol. cold but sl. sol. hot alc., sol. in hot C<sub>6</sub>H<sub>6</sub> (cf. {10}) or CHCl<sub>3</sub>; at 16.5° 100 ml. CS<sub>2</sub> dis. 2.0 g.  $\bar{C}$ ; spar. sol. cold CCl<sub>4</sub> or pet. ether; for soly. in *p*-cymene at various temps. see (17); insol. liq. SO<sub>2</sub> or liq. NH<sub>3</sub>. — Sublimes without melting in long needles even at ord. temp.

[For studies of cryst. structure of  $\tilde{C}$  see (18) (19). — For study of toxicity see (20). — For employment in forms, solid solns, of  $I_2$  for use in pharmacy see (21). — For use as seed disinfectant see (22). — Mol. f.p. lowering = 207.5. —  $\tilde{C}$  resists Carius anal., but for detn, of chlorine in  $\tilde{C}$  by combusion in hydrogen see (23).]

[For prepn. of C from phthalic anhydride (1:0725) with Cl<sub>2</sub> at 170–265° in pres. of FeCl<sub>3</sub> (79% yield) see (51).]

[For prepn. of  $\bar{C}$  from tetrachlorobenzoquinone-1,4 (chloranil) (3:4978) with equal wt. each of PCl<sub>5</sub> and PCl<sub>3</sub> by htg. in s.t. at 200° for 4 hrs. (95% yield) see (24); from p-dichlorobenzene (3:0980) with 20 pts. ClSO<sub>3</sub>H + 100 pts. NaCl htd. 10 hrs. at 210-220° (50% yield (5)) or treated with SO<sub>2</sub>Cl<sub>2</sub> + AlCl<sub>3</sub> + S<sub>2</sub>Cl<sub>2</sub> (25) see indic. refs.; from the mother liquor from prepn. of p-dichlorobenzene on further treatment with Cl<sub>2</sub> (94-95% yield) see (14); from 1,2,4,5-tetrachlorobenzene (3:4115) with ClSO<sub>3</sub>H (4 pts.) refluxed for 1 hr. (78% yield (26)) or with SO<sub>2</sub>Cl<sub>2</sub> + AlCl<sub>3</sub> + S<sub>2</sub>Cl<sub>2</sub> warmed for 8 hrs. (70% yield (12)) see indic. refs.]

[For form. of  $\bar{C}$  from a very large number of miscellaneous sources and reactions see Beil. refs. given in heading and also the following: from CCl<sub>4</sub> (3:5100) + H<sub>2</sub> through hot tube at 600-650° (9) or with F<sub>2</sub> as directed (27); from CHCl<sub>3</sub> (3:5050) during explosion with Na (28); from dodecachlorohexane on htg. (29); from trichloroethylene (3:5170) + AlCl<sub>3</sub> + HCl gas at 50° (30) or as by-product of htg. at 180-210° under press. in glass, porcelain, or enameled vessels (31); from C<sub>6</sub>H<sub>6</sub> + Cl<sub>2</sub> under press. (32); from nitrobenzene

+ Cl<sub>2</sub> + anhyd. FeCl<sub>3</sub> at 125° (33), cf. (34); from various addn. prods. of chlorine with trichloro- (35), tetrachloro- (36), or pentachloro- (37) benzenes usually by means of MeOH/NaOH, from 2,3,5,6-tetrachloro-N-nitroaniline, 2,3,5,6-tetrachloro-N-nitroacetanilide, or 2,3,5,6-tetrachloro-4-nitro-N-nitroaniline in boilg. AcOH + conc. HCl (8), from tetra-chlorophthalyl sym-dichloride or from pentachlorobenzoyl chloride on distn. (38).]

 $\bar{\mathbf{C}}$  with  $\mathbf{H}_2$  over Ni at 270° gives (39)  $\mathbf{C}_6\mathbf{H}_6$ , chlorobenzene, dichlorobenzene, trichlorobenzene, etc. —  $\bar{\mathbf{C}}$  in boilg. alc. with large excess of Na is completely dehalogenated (40).  $\bar{\mathbf{C}}$  is unattacked by ICl in s.t. at 300° (41) and does *not* react with MeMgI or with MeMgBr in ether even on long boilg. (42).

[ $\bar{C}$  with liq.  $Cl_2$  in s.t. in sunlight yields (37) by addn. both decachlorocyclohexane, m.p. 92°, and dodecachlorocyclohexane, m.p. in sealed cap. tube 285°. —  $\bar{C}$  with  $F_2$  in  $CCl_4$  soln. at 0° yields (43) small amts. of both hexachlorotetrafluorocyclohexane,  $C_6Cl_6F_4$ , m.p. 113–114°, and hexachlorohexafluorocyclohexane,  $C_6Cl_6F_6$ , m.p. 94–96°. —  $\bar{C}$  in vapor phase with  $F_2$  in pres. of Cu gives a mixt. of 12 individual prods. (44).]

Č with aq. NaOH at 135–138° and 11-12 atm. for 3–4 hrs. (14) or with excess 5–15% soln. of NaOH in MeOH at 135° under press. (45) or Č with NaOH in EtOH in s.t. at 150–160° (47) or in dry glycerol at 250–280° (47) gives (80% yield (14)) sodium salt of pentachlorophenol (3.4850). — Č with MeOH/NaOH in ethyl methyl ketone soln. at b.p. for ½ hr. gives (43% yield (46)) methyl pentachlorophenyl ether, ndls. from alc., m.p. 108–109°. [For studies of kinetics of reacti. of Č with MeOH/NaOH in s.t. at 151° (2), at 176° (48), at 180° (48), at 183° (49) see indic. refs.; of Č with EtOH/NaOH or with NaOEt soln. at 175° see (2).]

 $\ddot{C}$  on boilg, with mixt, of fumg. HNO<sub>4</sub> + conc. H<sub>2</sub>SO<sub>4</sub> gives (50) tetrachlorobenzoquinone-1,4 (chlorantl) (3:4978).

3:4939 (1) Dadieu, Pongratz, Kohlrausch, Monatsh. 61, 434 (1932). (2) Clark, Crozier, Trans. Roy. Canada (3) 19, 111, 153-154 (1925); Cent 1926, II 20, C.A. 20, 388 (1926). (3) Pollak, Gebauer-Fullnegg, Blumenstock, Monatsh. 46, 514 (1925). (4) Belistein, Kuhlberg, Ann 150, 309-310 (1869). (5) Gebauer-Fullnegg, Figdor, Monatsh. 48, 637 (1927). (6) Pollak, Gebauer-Füllnegg, Monatsh. 47, 552-553 (1926). (7) Fels, Z. Krist. 32, 367 (1900). (8) Peters, Rowe, Stead, J. Chem. Soc. 1943, 372-373. (9) Schwarz, Pflugmacher, J. prakt. Chem. (2) 158, 2-4 (1941). (10) Smyth, Lewis, J. Am. Chem. Soc. 62, 950 (1940).

(11) van der Linden, Rec. trav. chim. 57, 415 (1938). (12) Silberrad, J. Chem. Soc. 121, 1021 (1922). (13) Jungfleisch, Ann. chim (4) 15, 287-291 (1868). (14) Troitsku, Voronina, Org. Chem. Ind. (U.S.S. R.) 7, 240-241 (1940), C.A. 35, 3989 (1941). (15) Krafft, Ber 9, 1087 (1876). (16) Ruoff, Ber. 9, 1486 (1876). (17) Wheeler, J. Am. Chem. Soc. 42, 1844 (1920). (18) Lonsdale, Proc. Roy. Soc. London, A-133, 536-552 (1931). (19) Plummer, Phil. Mag. (6) 50, 1214-1220 (1925). (20) Cameron, Thomas, et al., J. Path. Bact. 44, 281-296 (1937).

(21) "Chemia" Ungarische Chem. Ind. & von Dalmady, Ger. 389,778, Feb. 7, 1924; Austrian 95,732, Jan. 25, 1924; Cent. 1924, I 2801. (22) I.G., French 701,032, March 10, 1931; Cent. 1931, II 618. (23) ter Meulen, Heslinga, Rec. trav. chim. 42, 1095 (1923). (24) Graebe, Ann. 263, 30 (1891). (25) Roberts Co. & Silberrad, Brit. 193,200, March 15, 1923, Cent. 1925, I 904. (26) Huntress, Carten, J. Am. Chem. Soc. 62, 513 (1940). (27) Simons, Boud, McArthur, J. Am. Chem. Soc. 62, 3478 (1940). (28) Davis, McLean, J. Am. Chem. Soc. 66, 720-722 (1938). (29) van der Linden, Rec. trav. chim. 57, 415-416 (1938). (30) Muller, Honn, J. prakt. Chem. (2) 133, 280-290 (1932).

(31) Consortium für Elektrochem. Ind., French 814,423, June 23, 1937; Cent. 1937, II 3953. (32) I.G., French 837,741, Feb 20, 1939; Cent. 1939, II 228. (33) Frezz-David, Stahelin, Hetv. Chim. Acta 20, 1458-1461 (1937). (34) van der Linden, Rec. trav. chim. 57, 342-344 (1938). (35) van der Linden, Rec. trav. chim. 55, 317-320 (1936). (36) van der Linden, Rec. trav. chim. 55, 421-430 (1936). (37) van der Linden, Rec. trav. chim. 55, 569-573 (1936). (38) Kirpal, Kunze, Ber. 62, 2104-2105 (1929). (39) Mailhe, Cent. 1921, III 467. (40) Stepanov, J. Russ. Phys.-Chem. Soc. 37, 15 (1905); Cent. 1905, I 1273.

(41) Krafft, Merz, Ber. 8, 1303 (1875).
(42) Durand, Hsun, Compt. rend. 191, 1460 (1930).
(43) Bigelow, Pearson, J. Am. Chem. Soc. 56, 2773-2774 (1934).
(44) Fukuhara, Bigelow, J. Am. Chem. Soc. 60, 427-429 (1938).
(45) Smith, Litvak (to Dow Chem. Co.), U.S. 2,107,650.

Feb. 8, 1938; Cent. 1938, I 3821; C.A. 32, 2548 (1938). (46) van der Linden, Rec. trav. chim. 57, 787-788 (1938). (47) Weber, Wolff, Ber. 18, 335-337 (1885). (48) Holleman, Rec. trav. chim. 39, 749 (1920). (49) de Crauw, Rec. trav. chim. 50, 787 (1931). (50) Istrati, Bull. soc. chim. (3) 3, 184-186 (1890).

(51) Dvornikoff, J. Am. Chem. Soc. 68, 142 (1946); Dvornikoff (to Monsanto Chem. Co.),

U.S. 2,028,383, Jan. 21, 1936; C.A. 30, 1394 (1936).

| 3:4940 p-CHLORO | BENZOIC ACID         |          | C7H5O2Cl<br>OH   | Beil. IX - 340<br>IX <sub>1</sub> -(140) |
|-----------------|----------------------|----------|------------------|------------------------------------------|
| M.P. [245°      | (160)]               | M.P.     | 238-239°         | (23) (70)                                |
| 243°            | (1) (2) (3) (4) (64) | (Contd.) | 238°             | (24)                                     |
| 243° in s.t.    | (5)                  |          | 237°             | (66) (133)                               |
| 242.5-243.5°    | ° (6) (7)            |          | 236-23 <b>7°</b> | (25) (126)                               |
| <b>241.7°</b>   | (8)                  |          | 236.5°           | (67)                                     |
| <b>241.5°</b>   | (9) (10)             |          | 236°             | (26) (27) (28) (29)                      |
| <b>241°</b>     | (11) (12)            |          |                  | (51) (54) (61) (72)                      |
| 240-241°        | (13)                 |          |                  | (77) (86) (156)                          |
| <b>240°</b>     | (14) (15) (16) (17)  |          | 235.5-236°       | (30)                                     |
|                 | (18) (38) (40)       |          | 235-236°         | (55)                                     |
| 239.7°          | (19)                 |          | 235.5°           | (31) (53)                                |
| 239° cor.       | (20)                 |          | <b>2</b> 35°     | (32) (33) (34) (36)                      |
| 239°            | (21) (22)            |          | 234-235°         | (56) (71)                                |
|                 |                      |          | 234°             | (50)                                     |
|                 |                      |          | 233-234°         | (69)                                     |

Cryst. from alc. —  $\bar{\rm C}$  is almost insol. in cold aq.; e.g., 100 ml. satd. aq. soln. at 25° conts. 0.0068 g.  $\bar{\rm C}$  (33); note that  $\bar{\rm C}$  is thus much less sol in aq. than m-chlorobenzoic acid (3:4392) and far less sol. than o-chlorobenzoic acid (3:4150). — At 14–16° 100 ml. satd. soln. of  $\bar{\rm C}$  in acctone conts. 2.6 g.  $\bar{\rm C}$ , in EtOAc 1.6 g.  $\bar{\rm C}$ , in 75% AcOH 0.3 g.  $\bar{\rm C}$ , in CCl<sub>4</sub> 0.04 g.  $\bar{\rm C}$ , in C<sub>6</sub>H<sub>6</sub> 0.017 g.  $\bar{\rm C}$ , in CS<sub>2</sub> 0.16 g.  $\bar{\rm C}$  (22). — [For study of soly. of  $\bar{\rm C}$  in acctone (8), C<sub>6</sub>H<sub>6</sub> (8) (9), heptane (9) see indic. refs.]

[For study of distribution at 25° of  $\bar{C}$  between aq. + toluene or aq. + CHCl<sub>3</sub> see (35); for adsorption of  $\bar{C}$  on charcoal from its solns. in acctone or  $C_6H_6$  see (8); for soly. of  $\bar{C}$  in aq. solns. of various salts (including Na $\bar{\Lambda}$ ) see (33).]

 $\bar{C}$  can be sublimed in vac. (19). —  $\bar{C}$  is but very slightly volatile with steam (for details see (10)). — [For crystallographic data see (36) (37).]

Binary systems contg.  $\bar{C}$ . [For f.p./compn. data on system  $\bar{C}$  + aq. see (38). — For f.p./compn. data and diagrams of system  $\bar{C}$  + BzOH (1:0715), eutectic, m.p. 115°, contg. about 10 wt. %  $\bar{C}$ , see (22) (16); for f.p./compn. data on systems  $\bar{C}$  + p-toluic acid (1:0795) (11),  $\bar{C}$  + p-hydroxybenzoic acid (1:0840) (11), or  $\bar{C}$  + p-methoxybenzoic acid (anisic acid) (1:0805) (15) see indic. refs.]

[For f.p./compn. data and diagrams on systems  $\bar{\bf C}+o$ -chlorobenzoic acid (3:4150), eutectic, m.p. 132°, contg. abt. 14 mole %  $\bar{\bf C}$ , see (22) (39); on system  $\bar{\bf C}+m$ -chlorobenzoic acid (3:4392), eutectic, m.p. 140.9°, contg. 20 mole %  $\bar{\bf C}$  (22) (39) (40), see indic. refs.]

[For f.p./compn. data and diagrams on systems  $\bar{\mathbf{C}}+m$ -bromobenzoic acid (16),  $\bar{\mathbf{C}}+p$ -bromobenzoic acid (16),  $\bar{\mathbf{C}}+p$ -nitrobenzoic acid (41),  $\bar{\mathbf{C}}+p$ -iodobenzoic acid (42) see indic. refs.]

Ternary systems contg.  $\tilde{C}$ . [For influence of addn. of  $\tilde{C}$  to the eutectic mixt. of o-chlorobenzoic acid (3:4350) with m-chlorobenzoic acid (3:4392) see (43); for data on ternary system of all three chlorobenzoic acids, eutectic m.p. 104.9°, contg. 48.3 mole % ortho + 44.0 mole % meta + 7.7 mole % para isomers, see (39).]

Miscellaneous. [For study of fate of  $\bar{C}$  in animal organism see (44) (45) (46) (47); note that conjugation with glycine to yield the expected N-(p-chlorobenzoyl)glycine (p-chlorohippuric acid) [Beil. IX-341], m.p. 143° (45), does occur. — For study of toxicology of  $\bar{C}$  see (46) (48). — Note that sodium salt of  $\bar{C}$  (see also below) is widely used under name "Mikrobin" as preservative. — For use of  $\bar{C}$  as vulcanization regulator see (49).]

**Preparation.** [For prepn. of  $\bar{C}$  from p-chlorotoluene (3:8287) by oxidn. with boilg. 5% aq. KMnO<sub>4</sub> (60% yield (51)) (22) (50) (52) (53) (133), with MnO<sub>2</sub> + H<sub>2</sub>SO<sub>4</sub> (100% yield (51)), with CrO<sub>3</sub> (54), with dil. HNO<sub>3</sub> in s.t. at 140-145° for ½ hr. (55) or at 115-120° for 5-6 hrs. (56) see indic. refs.; from p-chlorotoluene (3:8287) by oxidn. with air in the pres. of various catalysts (57), or at 235-240° and 50-60 atm. press. in pres. of FeO.OH (58), or in aq. alk. at 260° under press. (59) see indic. refs.; for formn. of  $\bar{C}$  from p-chlorotoluene (3:8287) by electrolytic oxidn. (2) (60), by action of NOCl (30), or by long exposure to  $\bar{I}_2$  + aq. in light (28) see indic. refs.]

[For prepn. of  $\bar{C}$  from p-chloroacetophenone (3:6735) by oxidn. with alk. KMnO<sub>4</sub> (61), with CrO<sub>3</sub>/AcOH/H<sub>2</sub>SO<sub>4</sub> (95% yield (7)), with Cl<sub>2</sub> + NaOH(NaOCl) in aq. MeOH (93% yield (62)), by liquid phase cat. oxidn. with air in pres. of MnO<sub>2</sub> (91% yield (6)) see indic. refs.; for formn. of  $\bar{C}$  from p-chloroacetophenone (3:6735) with NOCl see (63).]

[For form. of  $\bar{C}$  from 4-chloro-isopropylbenzene (p-chlorocumene) (3:8705) by oxidn. with HNO<sub>3</sub> (64) (23), from 2,4'-dichloro-biphenyl (3:0670) (65) or from 4,4'-dichloro-biphenyl (3:4300) (66) by oxidn. with  $CrO_3/AcOH$ , from benzal-4-chloroacetophenone (24) by oxidn. with KMnO<sub>4</sub> in pyridine (90% yield (24)) see indic. refs.]

[For form. of  $\tilde{C}$  from p-chlorobenzaldehyde (3:0765) by oxidn. with KMnO<sub>4</sub> (67) (68) (69) (70) or CrO<sub>3</sub> (67) or even slowly by air see indic. refs.; from p-chlorobenzaldehyde copper during recrystn. (presumably as a result of oxidn. by air) see (31).]

[For prepn. of  $\bar{C}$  from p-chlorobenzonitrile [Beil. IX-341, IX<sub>1</sub>-(140)] by hydrolysis with 75% H<sub>2</sub>SO<sub>4</sub> (71), from p-chlorobenzoyl chloride (3:6550) by hydrolysis with aq., from p-chlorobenzotrichloride (3:6825) by hydrolysis, e.g., with aq. in s.t. at 200° (72) or with aq. alk., alk. carbonates, or alk.-earth carbonates (73) (note also formn. of  $\bar{C}$  as by-prod. of prepn. of o-chlorobenzaldehyde from o-chlorobenzenal (di)chloride (3:6700) with CrO<sub>8</sub> (74) or on boilg. with aq. for 20 hrs. followed by oxidn. with KMnO<sub>4</sub> (85% yield (17)); from a mixt. of p-chlorobenzotrichloride + p-chlorobenzal (di)chloride by hydrol. with 70% H<sub>2</sub>SO<sub>4</sub> or 80% AcOH or 5% NaOH at 90-100° in stream of air to effect immediate oxidn. (75) see indic. refs.]

[For prepn. of  $\bar{C}$  from 2-(p-chlorobenzoyl)benzoic acid [Beil. X-750,  $X_1$ -(356)] by hydrolytic cleavage with aq. + CaO under press. at 325° (93% yield (7)), or from p-chlorobromobenzene via conversion to p-chlorophenyl lithium bromide (76) or to p-chlorophenyl magnesium bromide (77) and subsequent carbonation (90% yield (76)) or from chlorobenzene (3:7903) with AlCl<sub>3</sub> + CO<sub>2</sub> at 100° and 60 atm. press. (82) see indic. refs.]

[For formn. of C from benzoic acid (1:0715) with alk. NaOCl (20) cf. (78) or Ca(OCl)<sub>2</sub> (79) cf. (25), or from 4-chlorophthalic acid (3:4390) by cat. monodecarboxylation (80), see indic. refs.]

[For formn. of C from di-(p-chlorobenzoyl) peroxide by htg. (2) (3), from p-aminobenzoic acid via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reaction (82% yield (83)), from p,p'-diazoaminobenzoic acid (diazoaminobenzene-4,4'-dicarboxylic acid) [Beil. XVI-728] with conc. HCl (84), from p-chloroisonitrosoacetophenone with warm Ac<sub>2</sub>O (21), from p-chlorophenacyl bromide by conv. to quaternary salt with quinoline and treatment with aq. NaOH (18), from p-borobenzoic acid with hot aq. CuCl<sub>2</sub> (26), from di-(p-chlorophenzoyl)butane on pyrolysis at 255–265° for 24 hrs. (85), from ethyl p-chlorophenyl-azo-carboxylate during oxidn. with H<sub>2</sub>O<sub>2</sub> in AcOH (29), from p-hydroxybenzoic acid (1:0840) with PCl<sub>5</sub> followed by aq. (86) (87), or from treatment with aq. of the product from p-nitrotoluene with

SOCl<sub>2</sub> in s.t. at 200-220° (88), p-toluenesulfonyl chloride with SOCl<sub>2</sub> in s.t. at 230-250° (88), or sodium p-toluenesulfonate in chlorobenzene with SOCl<sub>2</sub> in s.t. at 250-260° (89) see indic. refs.]

Chemical behavior. No specific account of reduction of  $\tilde{C}$  to benzoic acid appears to be on record; note, however, detn. of chlorine in  $\tilde{C}$  by use of Na + alc. (90). —  $\tilde{C}$  on reduction with formic acid at 250–260° in pres. of TiO<sub>2</sub> gives p-chlorobenzaldehyde (3:0765) (89% yield on  $\tilde{C}$  consumed, or 41% on  $\tilde{C}$  used (91)). —  $\tilde{C}$  on electrolytic reduction in alc./  $H_2$ SO<sub>4</sub> gives (92) p-chlorobenzyl alcohol [Beil. VI-444, VI<sub>1</sub>-(222)], m.p. 73°, b.p. 234° (92); note proximity of m.p. of this prod. to that (72°) of corresp. prod. obtd. by similar reduction of o-chlorobenzoic acid (3:4150). — For study of reduction of  $\tilde{C}$  with  $H_2$  + Ni in aq. alk. at ord. temp. see (93).

[C on electrolytic oxidn. in AcOH/H<sub>2</sub>SO<sub>4</sub> gives (2) 4-chloro-2-hydroxybenzoic acid (4-chlorosalicylic acid) (3:4908).]

 $\bar{C}$  behaves normally as a monobasic acid; e.g.,  $\bar{C}$  on titration with standard dil. aq. alk. gives Neut. Eq. 156.5; ionization constant at 25° is  $0.93 \times 10^{-4}$  (94),  $0.78 \times 10^{-4}$  (95),  $1.04 \times 10^{-4}$  (96) cf. (97) (12). — [For study of acid strength of  $\bar{C}$  in various alcohols see (98) (99) (100) (13) (101) (27).—For soly. of  $\bar{C}$  in aq. solns. of various salts (including Na $\bar{A}$ ) see (33). — For sepn. of  $\bar{C}$  from o-chlorobenzoic acid (3:4150) by use of difference in acid strength see (102).]

Salts of inorganic bases. NH<sub>4</sub> $\overline{A}$  (103). — Hydroxylamine salt; m.p. 130° (104). — Na $\overline{A}$ : widely used as food preservative under name "Mikrobin"; for prepn. from  $\overline{C}$  + Na phenolate see (105); for study of influence on enzymes see (106) (107); for study of use as preservative see (108); for studies of detection and/or detn. in foods see (109) (110) (111) (112) (113) (114); forms liquid cryst. on fusion (115).

AgĀ, sol. in hot aq. (50) (1 l. satd. aq. soln. at 20° conts. 1.08 g. (118)). (Note that this salt (1 mole) with  $I_2$  (2 equivalents) in dry  $C_6H_6$  refluxed 15-18 hrs. yields (116) phenyl p-chlorobenzoate, m.p.  $100^\circ + CO_2 + AgI$ , and that analogous behavior is shown to lesser degree by corresp. salt of m-chlorobenzoic acid (3:4392) but not by corresp. salt of o-chlorobenzoic acid (3:4150).)

Ca $\bar{A}_2$ .3H<sub>2</sub>O (25), 1 l. satd. aq. soln. at 20° conts. 7.37 g. (118). — Ba $\bar{A}_2$ .3½H<sub>2</sub>O (66); Ba $\bar{A}_2$ .4H<sub>2</sub>O (34); Ba $\bar{A}_2$ .H<sub>2</sub>O (118); 1 l. satd. aq. soln. of latter at 20° conts. 1.09 g. Ba $\bar{A}_2$ .H<sub>2</sub>O (118) (for use of Ba salt in sepn. of the three isomeric chlorobenzoic acids see (43)). — Cd $\bar{A}_2$ .2H<sub>2</sub>O (117); 1 l. satd. aq. soln. at 20° conts. 7.79 g. (118). — For similar data on salts of  $\bar{C}$  with other heavy metals see (118) (119). — For study of various metal ions as precipitants for  $\bar{C}$  see (120).

Salts of organic bases.  $\bar{C}$  with equiv. amt. benzylamine in boilg. EtOAc followed by evapn. of solvent yields (121) benzylammonium p-chlorobenzoate, m.p. 157.4–158.4° u.c., 160.3–161.3° cor., Neut. Eq. 263.6. —  $\bar{C}$  similarly treated with  $\alpha$ -phenylethylamine yields (121)  $\alpha$ -phenylethylammonium p-chlorobenzoate, m.p. 150.0–151.0° u.c., 152.2–153.2° cor., Neut. Eq. 277.6.

Č (1 mole) in alc. mixed with codeine (1 mole), m.p. 155°, htd. several minutes, solvent evapd. and resultant sirup recrystd. from aq., yields (122) codeine p-chlorobenzoate, C<sub>18</sub>H<sub>21</sub>O<sub>3</sub>N.Č, m.p. 162° on "Maquenne block"; note that this value although close to that (166°) of codeine p-bromobenzoate is widely different from and higher than those for the corresp. salts of either o-chlorobenzoic acid (3:4392) which are 134° and 96° respectively. — Č (1 mole) in alc. (or CHCl₃) with strychnine (1 mole) in alc., boiled for a few minutes, then cooled, yields (123) strychnine p-chlorobenzoate, C<sub>21</sub>H<sub>22</sub>O<sub>3</sub>N<sub>2</sub>.Č, m.p. 251° on "Maquenne block"; note that the m.p. of this salt is far higher than the corresp. products from similar treatment of either the o- or m- isomers, which are 170° and 185°, respectively.

C with alcohols gives by conventional processes the corresp. esters: for details on methyl

p-chlorobenzoate (3:0535) or on ethyl p-chlorobenzoate (3:6750) see these compds. — [For study of rate of esterification of  $\bar{C}$  with MeOH (124) (125) (126), with EtOH (126) (1) (127), with cyclohexanol (128) see indic. refs.]

Č with oxalyl (di)chloride (3:5060) refluxed in C<sub>6</sub>H<sub>6</sub> (129), or NaĀ htd. with p-chlorobenzoyl chloride (3:6550) (130) gives (50% yield (130)) p-chlorobenzoic acid anhydride, ndls. from dil. acetone or C<sub>6</sub>H<sub>6</sub>, m.p. 193−194° (129) (131), 194.8° (130), 191.5° (132); note that this prod. may also form in various other reactions involving C̄, especially in pres. of tertiary bases or Na<sub>2</sub>CO<sub>3</sub> cf. (131) (132).

 $\ddot{\mathbf{C}}$  with PCl<sub>5</sub> (133) (50) (45) (132), with SOCl<sub>2</sub> (134) (135) (136), with SOCl<sub>2</sub> + AlCl<sub>3</sub> (137), or with *p*-chlorobenzotrichloride (3:6825) + ZnCl<sub>2</sub> (138) gives *p*-chlorobenzoyl chloride (3:6550).

[ $\bar{C}$  with chlorobenzene (3:7903) + AlCl<sub>3</sub> refluxed 5½ hrs. gives (98% yield (7)) a mixt. consisting mainly of 4,4'-dichlorobenzophenone (3:4270) accompanied by a small proportion of 2,4'-dichlorobenzophenone (3:1565).]

[ $\tilde{C}$  with KCN + CuCN in aq. alc. htd. in s.t. at elevated temp. (139) or  $\tilde{C}$  (as K $\tilde{A}$ ) with aq. KCN + CuCN refluxed 8-10 hrs. under H<sub>2</sub> in quartz flask exposed to ultra-violet light (140) gives (70% yield (140)) terephthalic acid (1:0910).]

Substitution of nucleus of  $\bar{C}$ .  $\bar{C}$  on mononitration, e.g., with HNO<sub>3</sub> (D=1.6) on warming until soln. occurs (141), or with 10 wt. pts. HNO<sub>3</sub> (D=1.5) at 55–60° for 10 minutes (142), or with 4 vols. HNO<sub>3</sub> (D=1.5) warmed until soln. occurs (143), followed by pouring into aq. gives (yields: 97% (141), 96% (142), 90% (143)) 4-chloro-3-nitrobenzoic acid [Beil. IX-402, IX<sub>1</sub>-(165)], cryst. from hot aq., m.p. 184° (142), 182° cor. (141), 180° (143). — [Note that boilg. conc. HNO<sub>3</sub> (D=1.42) has no action (143) on  $\bar{C}$ , that the crude mononitration prod. sometimes (143) contains a small amt. of p-chloronitrobenzoic acid [Beil. IX-401, IX<sub>1</sub>-(165)], m.p. 140°, is not formed in appreciable amt. by direct nitration of  $\bar{C}$ .]

 $\bar{\mathbf{C}}$  on dinitration, e.g., with 20 wt. pts. conc.  $H_2SO_4+3.3$  wt. pts. KNO<sub>3</sub> at 140° for  $1\frac{1}{2}$  hrs. (144), or with  $12\frac{1}{2}$  wt. pts. conc.  $H_2SO_4+2.4$  wt. pts. fumg. HNO<sub>3</sub> (D=1.5) at 135-140° for 2 hrs. (145), then poured into aq., gives (yields: 95% (144), 82% (145)) 4-chloro-3,5-dinitrobenzoic acid [Beil. IX-416], pr. from  $C_6H_6$ , m.p. 159° (144) (145). For use in detection of  $\bar{\mathbf{C}}$  see (161). — [Note that none of the three other isomeric 4-chloro-dinitrobenzoic acids has ever been reported.]

[Č on sulfonation with SO<sub>3</sub> in fumg. H<sub>2</sub>SO<sub>4</sub> (52) (146) (147) gives 4-chloro-3-sulfobenzoic acid [Beil. XI-387].]

- Methyl p-chlorobenzoate: m.p. 43° (see 3:0535).
- Ethyl p-chlorobenzoate: oil, b.p. 238° (see 3:6750).
- **p-Nitrobenzyl** p-chlorobenzoate: m.p. 130° (148). [From  $\tilde{C}$  (as Na $\tilde{A}$ ) with p-nitrobenzyl bromide (m.p. 99°) in boilg. alc. (148).]
- ◆ Phenacyl p-chlorobenzoate: m.p. 89.5° (149), 87.6° (32). [From C as (NaA) with phenacyl bromide (m.p. 50°) in boilg. alc. (98% yield (32)). Note that the m.p. of this prod. is only slightly higher than that (85.5°) of the corresp. prod. similarly obtd. from o-chlorobenzoic acid (3:4150).]
- --- p-Chlorophenacyl p-chlorobenzoate: unreported.
- **p-Bromophenacyl** p-chlorobenzoate: m.p. 126° (32). [From C (as NaA) with p-bromophenacyl bromide (m.p. 109°) in boilg. alc. (80% yield (32)).]
- --- p-Iodophenacyl p-chlorobenzoate: unreported.
- p-Phenylphenacyl p-chlorobenzoate: m.p. 160° cor. (150). [From C (as NaA) with p-phenylphenacyl bromide (m.p. 126°) in boilg. alc. (150). Note that m.p. of this prod. is only slightly higher than that (154°) of corresp. prod. similarly obtd. from m-chlorobenzoic acid (3:4392).]

- --- S-Benzylthiuronium p-chlorobenzoate: unreported.
- © S-(p-Chlorobenzyl)thiuronium p-chlorobenzoate: cryst. from dioxane, m.p. 173° cor. (151). [From Č (as NaĀ or KĀ) in aq. with 1 equiv. of S-(p-chlorobenzyl)-thiuronium chloride, m.p. 197° (10% in alc.) (151).]
- ⑤ S-(p-Bromobenzyl)thiuronium p-chlorobenzoate: m.p. 163° cor. (152). [From Č (as NaĀ or KĀ) in aq. with 1 equiv. of S-(p-bromobenzyl)thiuronium bromide (m.p. 213°) in alc. (152). Note that m.p. of this prod. is only slightly lower than that (168° cor.) of the corresp. prod. similarly obtd. from o-chlorobenzoic acid (3:4150).]
- **D** p-Chlorobenzamide: ndls. from aq. or ether, m.p. 180° (153), 179° (154), 179° (67), 178.8° cor. (155), 175° (71). [From  $\tilde{C}$  by refluxing with AcOH + (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> (yield 80% (153), 51% (154)), from p-chlorobenzoyl chloride (3:6550) with conc. aq. NH<sub>4</sub>OH (50) (155) (67), or from p-chlorobenzonitrile [Beil. IX-341, IX<sub>1</sub>-(140)] by hydrolysis with hot conc. HCl (71).]
- p-Chlorobenzhydrazide: ndls. from hot aq., m.p. 163° (157), 162-163° (156)! [From ethyl p-chlorobenzoate (3:6750) with alc. hydrazine hydrate on htg. (yield 87% (156)); for use of this prod. as reagt. for identification of aldehydes and ketones see (156).]
  - N-(p-chlorobenzoyl)-N-phenylhydrazine: unreported.
- D p-Chlorobenzanilide: ndls. from alc., m.p. 194-195° (158), 194° (50), 193° (159). [From p-chlorobenzoyl chloride (3:6550) with aniline (2 moles) (50); also from α-(4-chlorobenzophenone oxime) by Beckmann rearr. (159). Note that the m.p. of this prod. is almost the same as that (192-193°) of the isomeric benz-p-chloroanilide [Beil. XII-612, XII<sub>1</sub>-(306)].]
- p-Chlorobenz-p-toluidide: unreported.
- p-Chlorobenz-α-naphthalide: unreported.
- p-Chlorobenz-β-naphthalide: unreported
- 3:4940 (1) Kailan, Antropp, Monatsh 52, 297, 310-313 (1929). (2) Fichter, Adler, Helv. Chim. Acta 9, 281-286 (1926). (3) Gelissen, Hermans, Bcr 58, 292 (1925). (4) Fels, Z. Krist. 32, 389-391 (1900). (5) Davies, Wood, J. Chem. Soc. 1928, 1126. (6) Stubbs, Senseman, Ind. Eng. Chem. 28, 559-560 (1936). (7) Newton, Groggins, Ind. Eng. Chem. 27, 1397-1399 (1935). (8) Berger, Rec. trav. chim. 50, 379, 390, 395 (1931). (9) Sadgwick, Ewbank, J. Chem. Soc. 119, 981, 984, 988 (1921). (10) Sidgwick, J. Chem. Soc. 117, 403-404 (1920).
- Lettré, Barnbeck, Lege, Ber 69, 1151-1154 (1936) (12) Dippy, Williams, Lewis, J. Chem. Soc. 1935, 343-346. (13) Wooten, Hammett, J. Am. Chem. Soc. 57, 2289-2295 (1935).
   Brooks, Hobbs, J. Am. Chem. Soc. 62, 2851 (1940) (15) Lettré, Ber. 73, 1152 (1940).
   Lettré, Barnbeck, Fuhst, Hardt, Ber. 70, 1415 (1937). (17) Asinger, Lock, Monatsh. 62, 336 (1933). (18) Krohnke, Ber 66, 609 (1933). (19) Andrews, Lynn, Johnston, J. Am. Chem. Soc. 48, 1282 (1926) (20) Smith, J. Chem. Soc. 1934, 213-218.
- (21) Borsche, Ber 62, 1365-1366 (1929) (22) Bornwater, Holleman, Rec. trav. chim. 31, 225, 242-248 (1912). (23) Qvist, Salo, Acta Acad. Aboensis Math. et Phys. 8, No. 4, 30 pp. (1934), Cent 1936, I 540, 1934, II 595, C A 29, 6884 (1935). (24) Dilthey, J. prakt. Chem. (2) 101, 200 (1921). (25) Beilstein, Schlun, Ann 133, 243-244, 250 (1865). (26) Ainley, Challenger, J. Chem. Soc. 1930, 2176. (27) Kuhn, Wassermann, Helv. Chim. Acta 11, 34, 41 (1928). (28) Silberrad, J. Chem. Soc. 125, 2196-2197 (1924) (29) Pieroni, Giannini, Gazz. chim. ital. 54, 174-175, (1924). (30) Schwarschmidt Smolla, Ber. 57, 39 (1924)
- 174-175 (1924). (30) Schaarschmidt, Smolla, Ber. 57, 39 (1924).
  (31) Bernouilli, Schaaf, Helv. Chim Acta 5, 729 (1922). (32) Kelly, Howard, J. Am. Chem. Soc. 54, 4383-4385 (1932). (33) Osol, Kilpatrick, J. Am. Chem. Soc. 55, 4430-4440 (1933). (34) Müller, Zeit. für Chemie 1869, 137. (35) Smith, White, J. Phys. Chem. 33, 1958, 1970 (1929). (36) Steinmetz, Z. Krist. 53, 473-474 (1913) (37) Groth, Chem. Krist. 4, 466-468 (1917). (38) Flaschner, Rankin, Monatsh. 31, 44 (1910). (39) Johnston, Jones, J. Phys. Chem. 32, 599-601 (1928). (40) Holleman, Vermeulen, de Mooy, Rec. trav. chim. 33, 30 (1914).
- (41) Lettré, Ber. 73, 386-390 (1940); C.A. 34, 5831 (1940). (42) Lettré, Lehmann, Ber. 71, 416 (1938). (43) Hope, Riley, J. Chem. Soc. 121, 2518-2527 (1922). (44) Quick, Cooper, J. Biol. Chem. 96, 83-101 (1932). (45) Novello, Miriam, Sherwin, J. Biol. Chem. 67, 558-559 (1926). (46) Schubel, Manger, Arch. exptl. Path. Pharmakol. 146, 223-231 (1929). Cent. 1938, I 1650; C.A. 24, 4834 (1930). (47) Wührer, Arch. exptl. Path. Pharmakol. 161, 719-729 (1931);

Cent. 1931, II 3115; C.A. 26, 1341 (1932). (48) Schübel, Münch. med. Wochschr. 77, 13-14 (1930); Cent. 1930, I 858. (49) Goodyear Tire and Rubber Co., French 761,220, March 14, 1934; Cent. 1934, II 854. (50) Emmerling, Ber. 8, 880-883 (1875).

(51) Montagne, Rec. trav. chim. 24, 112-114 (1905). (52) Ulmann, Am. Chem. J. 16, 533-539 (1894). (53) Steinkopf, Buchheim, Ber. 54, 2968 (1921). (54) Beilstein, Geitner, Ann. 139, 336 (1866). (55) Cohen, Miller, J. Chem. Soc. 85, 174-177, 1629-1630 (1904). (56) Cohen, Dawson, Blockey, Woodmansey, J. Chem. Soc. 97, 1626 (1910). (57) Charlot, Ann. chim. (11) 2, 470 (1934). (58) I.G., Brit. 331,100, July 17, 1930, Cent. 1930, II 2186; French 676,826, Feb. 27, 1930; Cent. 1930, I 3831. (59) Schrader, Ges. Abhandl. Kenntus Kohle, 4, 310-341 (1920); Cent. 1921, I 537; C.A. 15, 2850-2851 (1921). (60) Dunbrook, Lowy, Cent. 1924, II 2838.

(61) Gautier, Ann. chim. (6) 14, 375-376 (1888). (62) Van Arendonk, Cupery, J. Am. Chem. Soc. 53, 3184-3186 (1931). (63) Rheinboldt, Schmitz-Dumont, Ann. 444, 129 (1925). (64) Meyer, Bernhauer, Monatsh. 53/54, 741 (1929). (65) de Crauw, Rec. trav. chim. 50, 776-777 (1931). (66) Schmidt, Schultz, Ann. 207, 339 (1881). (67) Montagne, Rec. trav. chim. 19, 53, 61 (1900). (68) Jackson, White, Am. Chem. J. 3, 32 (1881/82). (69) Jackson, White, Ber. 14, 1043 (1878). (70) Mayer, English, Ann. 417, 79 (1918).

(71) Van Scherpenzeel, Rec. trav. chim.: 16, 114 (1897). (72) Bellstein, Kuhlberg, Ann. 159, 295-296 (1869). (73) Britton (to Dow Chem. Co.), U.S. 1,878,463, Sept. 20, 1932; Cent. 1933, 131; C.A. 27, 308 (1933). (74) Beilstein, Kuhlberg, Ann. 146, 328 (1868). (75) Heller (to Chem. Fabrik von Heyden), Ger. 639,578, Dec. 8, 1936; Cent. 1937, I 2025; C.A. 31, 3943 (1937). (76) Gilman, Langham, Moore, J. Am. Chem. Soc. 62, 2330 (1940). (77) Bodroux, Compt. rend. 137, 711 (1903); Bull. soc. chim. (3) 31, 29 (1904). (78) Lossen, Ger. 146,174, Nov. 6, 1903; Cent. 1903, II 1224. (79) Stenhouse, Ann. 55, 9-12 (1845). (80) Jaeger (to Selden Co.), U.S. 1,953,231, 1,953,232, April 3, 1934; Cent. 1934, II 669, 1688.

(81) McEwen, Org. Syntheses, Coll. Vol. 2 (1st ed.), 133-135 (1943); 12, 12-14 (1932). (82) Meyer, Hopff (to I.G.), Ger 524,186, May 11, 1931; Cent. 1931, II 497; Brt. 307,223, March 28, 1929; Cent. 1929, I 3144. (83) Bryd, Roczniki Chem. 7, 436-445 (1927), C.A. 22, 2372 (1928). (84) Wilbrand, Beilstein, Ann. 128, 270-272 (1863). (85) Skraup, Guggenheimer, Ber. 58, 2497-2498 (1925). (86) Ladenburg, Fitz, Ann. 141, 258-259 (1867). (87) Anschütz, Moore, Ann. 239, 343-349 (1887). (88) Meyer, Monalsh. 36, 730 (1915). (89) M.L.B., Ger. 282,133, Feb. 15, 1915; Cent. 1915, I 464. (90) Iremescu, Chirnoaga, Z. anal. Chem. 125, 32-37 (1942); C.A. 37, 6212 (1943).

(91) Davies, Hodgson, J. Chem. Soc. 1943, 84-86; C.A. 37, 4360 (1943).
(92) Mettler, Ber. 38, 1750 (1905).
(93) Keller, Ber. 54, 2257-2259 (1921).
(94) Ostwald, Z. physik. Chem. 3, 256 (1889).
(95) Smith, Jones, Am. Chem. J. 50, 28 (1913).
(96) Saxton, Menet, J. Am. Chem. Soc. 56, 1918-1921 (1934).
(97) Bodforss, Z. physik. Chem. 102, 43 (1922).
(98) Ellhott, Krk-patrick, J. Phys. Chem. 45, 454-465, 466-471, 472-485, 485-492 (1941).
(99) Dippy, J. Chem. Soc. 1941, 550-552.
(100) Kilpatrick, Mears, J. Am. Chem. Soc. 62, 3047-3051, 3051-3054 (1940).

(101) Bright, Briscoe, J. Phys. Chem. 37, 787-796 (1933). (102) Mills (to Dow Chem. Co.), U.S. 1,942,826, Jan. 9, 1934; Cent. 1934, I 2196; C.A. 28, 1719 (1934). (103) McMaster, Godlove, J. Am. Chem. Soc. 37, 2184 (1915). (104) Oesper, Ballard, J. Am. Chem. Soc. 47, 2424-2427 (1925). (105) Dobmaier (to I.G.), Ger. 508,097, Sept. 24, 1930, Cent. 1931, I 159. (106) Bleyer, Diemair, Leonard, Arch. Pharm. 271, 539-552 (1933). (107) Landsteiner, van der Scheer, Proc. Soc. Expl. Biol. Med. 24, 692-693 (1927); Cent. 1929, I 2543. (108) Sabalitschka, Dietrich, Desinfektion 11, 67-71, 94-104 (1926); Cent. 1927, I 2670; C.A. 20, 3712 (1926). (109) Toth, Kardos, Z. Untersuch. Lebenem. 79, 565-567 (1940). (110) Olejnicck, Hanzelka, Z. Untersuch. Lebeneum. 84, 419-429 (1942); C.A. 37, 6401 (1943).

(111) von Fellenberg, Krauze, Mitt. Lebensm. Hyg. 23, 111-137 (1932); Cent. 1932, II 1092; C.A. 26, 5348 (1932). (112) Hostettler, Mitt. Lebensm. Hyg. 23, 65-70 (1932); Cent. 1932, II 463; C.A. 26, 4888 (1932). (113) Hostettler, Mitt. Lebensm. Hyg. 24, 247-258 (1933); Cent. 1933, II 3931; C.A. 27, 5833 (1933). (114) Weiss, Z. Untersuch. Lebensm. 67, 84-86 (1934). (115) Vorländer, Huth, Ber. 43, 3129 (1910). (116) Birckenbach, Meisenheimer, Ber. 69, 723-729 (1936). (117) Pfeiffer, Nakatsuka, J. prakt. Chem. (2) 136, 247 (1933). (118) Ephraim, Pfister, Helv. Chim. Acta 8, 370, 379-380 (1925). (119) Ephraim, Ber. 55, 3482 (1922). (120) Rosenthaler, Mikrochemie 14, 364-365 (1933) 3/4).

(121) Buehler, Carson, Edds, J. Am. Chem. Soc. 57, 2181-2182 (1935). (122) Poe, Strong, J. Am. Chem. Soc. 57, 380-381 (1935). (123) Poe, Suchy, J. Am. Chem. Soc. 56, 1640-1641 (1934). (124) Hartman, Borders, J. Am. Chem. Soc. 59, 2107-2112 (1937). (125) Michael, Oechslin, Ber. 42, 319 (1909). (126) Kellas, Z. physik. Chem. 24, 222-225, 230, 240-241 (1897), (127) Wightman, Wiesel, Jones, J. Am. Chem. Soc. 36, 2254 (1914). (128) Hartman, Storms,

Gassmann, J. Am. Chem. Soc. 61, 2167-2169 (1939). (129) Adams, Wirth, French, J. Am. Chem. Soc. 40, 426-427 (1918). (130) Rule, Paterson, J. Chem. Soc. 125, 2161 (1924).

(131) Lockemann, Ber. 43, 2229 (1910). (132) Frankland, Carter, Adams, J. Chem. Soc. 161, 2476, 2479 (1912). (133) Van Raalte, Rec. trav. chim. 18, 394-395 (1899). (134) Mayer, Monatsh. 22, 778 (1901). (135) Bergmann, Bondi, Ber. 64, 1471-1472 (1931). (136) Thompson, Norris, J. Am. Chem. Soc. 58, 1956 (1936). (137) Kissling (to I.G.), Ger. 701,953, Jan. 2, 1940; C.A. 36, 99 (1942). (138) Scottish Dyes Ltd. & Bangham & Thomas, Brit. 308,231, April 18, 1929; Cent. 1929, II 1348. (139) Rosenmund, Struck, Ber. 52, 1755 (1919). (140) Rosenmund, Luxat, Tiedemann, Ber. 56, 1950-1955 (1923).

(141) Bogert, Conklin, Collection Czechoslov. Chem. Commun. 5, 445-446 (1933). (142) Thompson, Turner, J. Chem. Soc. 1938, 35. (143) King, March, J. Chem. Soc. 127, 2646-2647 (1925). (144) Ullmann, Ann. 366, 92-93 (1909). (145) Mauthner, Ber. 39, 1341 (1906). (146) Cöllen, Ann. 193, 29-32 (1878), Ber. 9, 758-760 (1876). (147) Collen, Bottinger, Ber. 9, 1247-1251 (1876). (148) Lyons, Reid, J. Am. Chem. Soc. 39, 1734 (1917). (149) Chen. Trans. Science Soc. China 7, 73-80 (1931). (150) Kelly, Morisant, J. Am. Chem. Soc. 58, 1502-1503 (1936).

Soc. China 7, 73-80 (1931). (150) Kelly, Morisani, J. Am. Chem. Soc. 58, 1502-1503 (1936). (151) Dewey, Sperry, J. Am. Chem. Soc. 61, 3251-3252 (1939). (152) Dewey, Shasky, J. Am. Chem. Soc. 63, 3526-3527 (1941). (153) Kao, Ma, J. Chem. Soc. 1931, 443. (154) Kao, Ma, Sci. Repts. Natl. Tsing Hua Univ. A-1, 21-22 (1931). (155) Remsen, Reed, Am. Chem. J. 21, 290 (1899). (156) Shih, Sah, Sci. Repts. Natl. Tsing Hua Univ. A-2, 353-357 (1934). (157) Kahl, Cent. 1904, II 1493. (158) Bellavita, Gazz. chim. ital. 65, 894 (1935). (159) Wegerhoff, Ann. 252, 7-9 (1889). (160) Herz, Wittek, Monatsh. 74, 277 (1941).

(161) Deshusses, Mitt. Lebensm. Hyg. 35, 1-2 (1944); C.A. 39, 3595 (1945).

[See also tetrachlorobenzoguinone-1,4 (chloranil) (3:4978).]

Colorless scales or ndls. from  $C_6H_6$ ; solvated pr. from AcOH losing solvate in air (2) (8). — For crystallographic data see (9). —  $\bar{C}$  sublimes with partial decompn. (10); for study of sublimation pressure see (11).

 $\tilde{C}$  is insol. aq.; almost insol.  $C_0H_0$ ,  $CCl_4$ ,  $CS_2$ ; eas. sol. alc., ether; spar. sol. AcOH. [For study of ht. of formn. of  $\tilde{C}$  see (12); for studies of heat of combustion see (13) (14).] [For patent on use of  $\tilde{C}$  as vulcanization accelerator see (15).]

#### PREPARATION OF C

From tetrachlorobenzoquinone-1,4. For prepn. of  $\bar{C}$  from chloranil (3:4978) by reduction with various reagents see the following. [For use of aq.  $SO_2$  see (10) (16) (note, however, that this reduction is so slow that it has been used (18) as a method of sepn. of 2,3,5-trichlorobenzoquinone-1,4 (3:4672) from tetrachlorobenzoquinone-1,4 (3:4978), and also that during the process substantial amounts of trichlorohydroquinonesulfonic acid and of dichlorohydroquinone disulfonic acid are formed (19)); for use of boilg. conc. HCl (9), conc. HBr (9) (40) in AcOH (3), with conc. HI + red (18) or yellow (20) phosphorus, or

with KI or NaI in cold acetone (38) see indic. refs.; for use of  $H_2S$  (5),  $SnCl_2 + HCl$  (9) (8) (6), aq. slightly alkaline hydroxylamine (13), alc. hydrazine hydrate (21), with EtOH on exposure to direct sunlight (7) (study of quantum efficiency of the photochemical reduction (22)), or with hydroquinone (1:1590) in ether (39) see indic. refs.]

[For formn. of  $\bar{C}$  as by-product of use of tetrachlorobenzoquinone-1,4 (chloranil) (3:4978) in low-temp. dehydrogenations see (23) (24); for formn. of derivatives (ethers) of  $\bar{C}$  as by-products of reaction of chloranil (3:4978) with free radicals see (25) (26) cf. (27); for formn. of  $\bar{C}$  as by-product of reaction of chloranil (3:4978) with  $C_6H_8MgBr$  see (31).]

From 2,3,5-trichlorobenzoquinone-1,4. [For prepn. of  $\bar{C}$  from 2,3,5-trichlorobenzoquinone-1,4 (3:4672) with conc. HCl on protracted boilg. (9) (28), with fumg. HCl in s.t. at 120° for 12 hrs. (29), or in AcOH soln. with dry HCl gas (30) see indic. refs.]

From other sources. [For formn. of  $\bar{C}$  from hydroquinone (1:1590) in AcOH with Cl<sub>2</sub> (32), or from *p*-nitroaniline (or certain derivatives) with conc. HCl in s.t. at 180° (2), see indic. refs.]

#### CHEMICAL BEHAVIOR OF C

Oxidation of  $\bar{C}$ .  $\bar{C}$  on oxidation, e.g., with aq. alc. AgNO<sub>3</sub> (10), NH<sub>4</sub>OH/AgNO<sub>3</sub> (2), boilg. conc. HNO<sub>3</sub> (2) (20), etc., gives tetrachlorobenzoquinone-1,4 (chloranil) (3.4978). [For studies of oxidin-reduction potential of system  $\bar{C}$  + chloranil see (33) (34) (35) (1) (27) (6).]

[Note also that the quinhydrone to be expected from  $\bar{C}$  with 1 mole of the corresp. tetrachlorobenzoquinone-1,4 (chloranil) (3:4978) is not reported.]

[Note also that, although  $\bar{C}$  dissolves in aq. KOH without discoloration, the soln. upon exposure to air turns brown and on stdg. ppts. (16) di-potassium salt of chloranille acid (2,5-dichloro-3,6-dihydroxybenzoquinone-1,4) (3:4970).]

Other reactions of  $\tilde{\mathbf{C}}$ .  $[\tilde{\mathbf{C}}$  with PCl<sub>5</sub> (2 moles) gives (16) hexachlorobenzene (3:4939). —  $\tilde{\mathbf{C}}$  with 2,3,5-trichlorohydroquinone (3:4052) + a little aq. htd. at 100° for  $\frac{1}{2}$  hr. undergoes a redistribution reaction (28) cf. (36).]

- Tetrachlorohydroquinone dimethyl ether: m.p. 164° (37), 160° (5). [From C by action of diazomethane in ether soln. (5).]
- **D** Tetrachlorohydroquinone diethyl ether: m.p. 112° (16). [From C with EtI (2 moles) + KOH (2 moles) in alc. in s.t. at 130-140° (16).]
- (3:7065) (16) or from chloranil (3:4978) with AcCl in s.t. at 160-180° (16).
- Tetrachlorohydroquinone dibenzoate: m.p. 233° (9). [From Č with BzCl (3:6240) (9).]

3:4941 (1) Hall, Conant, J. Am. Chem. Soc. 49, 3050-3052 (1927). (2) König, J. prakt. Chem. (2) 70, 32-35 (1904). (3) Koenigs, Greiner, Ber. 64, 1047 (1931). (4) Sutkowski, Ber. 19, 2316 (1886). (5) Binz, Räth, Ber. 58, 312 (1925). (6) Conant, Fieser, J. Am. Chem. Soc. 45, 2207 2219 (1923). (7) Klinger, Ann. 382, 221 (1911). (8) Bouveault, Ann. chim. (8) 13, 144 (1908). (9) Levy, Schultz, Ann. 210, 154-156 (1891). (10) Städeler, Ann. 69, 327-329 (1849).

(9) Levy, Schultz, Ann. 210, 154-156 (1891). (10) Städeler, Ann. 69, 327-329 (1849). (11) A. S. Coolidge, M. S. Coolidge, J. Am. Chem. Soc. 49, 100-104 (1927). (12) Sjöstrom, Svensk Kem. Tid. 48, 121-124 (1936), Cent. 1937, I 58; C.A. 30, 6634 (1936). (13) Valeur, Ann. Chim. (7) 21, 501-507 (1900). (14) Swietoslawski, Starczewska, J. chim. phys. 22, 399-401 (1925). (15) Fisher (to Naugatuck Chem. Co.), French 740,978, Feb. 3, 1933; Cent. 1933, I 3134; C.A. 27, 2845 (1933). (16) Graebe, Ann. 146, 9-12, 18-21 (1868). (17) Bouveault, Compt. rend. 129, 55 (1899). (18) Graebe, Ann. 263, 28-30 (1891). (19) Dodgson, J. Chem. Soc. 1936, 2501-2502. (20) Stenhouse, Ann. Suppl. 6, 213-216 (1868).

(21) Purgotti, Gazz. chim. ital. 24, I 581-584 (1894). (22) Leighton, Dresia, J. Am. Chem. Soc. 52, 3556-3562 (1930). (23) Arnold, Collins, Zenk, J. Am. Chem. Soc. 62, 983-984 (1940). (24) Arnold, Collins, J. Am. Chem. Soc. 61, 1407-1408 (1939). (25) Ziegler, Orth, Ber. 65, 628-631 (1932). (26) Clar, John, Ber. 63, 2974-2977 (1930). (27) Conant, Small, Taylor,

J. Am. Chem. Soc. 47, 1959-1974 (1925). (28) Graebe, Ann. 263, 21-22 (1891). (29) Andresen, J. prakt. Chem. (2) 28, 425- (1883). (30) Niemeyer, Ann. 228, 324 (1885).

(31) Clar, Engler, Ber. 64, 1600 (1931) (32) Eckert, Endler, J. prakt. Chem. (2) 104, 82 (1922). (33) Wallenfels, Mohle, Ber. 76, 927, 936 (1943). (34) Kvalnes, J. Am. Chem. Soc. 56, 667-670 (1934). (35) Hunter, Kvalnes, J. Am. Chem. Soc. 54, 2869-2881 (1932). (36) Kehrmann, Ber. 31, 979 (1898); 33, 3066-3067 (1900). (37) Ciamician, Silber, Gazz. chim. ital. 22, II 60 (1892). (38) Torrey, Hunter, J. Am. Chem. Soc. 34, 714-715 (1912). (39) Siegmund, J. prakt Chem. (2) 92, 362 (1915). (40) Sarauw, Ann. 209, 125 (1881).

3:4942 7-CHLORONAPHTHOIC ACID-1

C<sub>11</sub>H<sub>7</sub>O<sub>2</sub>Cl Beil. S.N. 951

238-240° (3)

235° (3)

Cryst. from 60% alc. or by sublimation. — Very sol. alc. or AcOH; sol. ether,  $C_6H_6$ . [For prepn. of  $\bar{C}$  from 7-aminonaphthoic acid-1 (1) (2) via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. see (1); from 7-chloro-1-(chloromethyl)naphthalene, m.p. 75° (3), by oxidn. with dil. HNO<sub>3</sub> see (3); from 7-chloro-1-bromonaphthalene [Beil. V-548] via conv. to RMgBr and carbonation see (3).]

Č with PCl<sub>5</sub> or SOCl<sub>2</sub> yields (1) 7-chloro-1-naphthoyl chloride, yel. cryst. from pet. eth., m.p. 106° cor. (1).

- Methyl 7-chloro-1-naphthoate: cryst. from 60% McOH, m.p. 54° cor. (1). [From C in MeOH with conc. H<sub>2</sub>SO<sub>4</sub> (90% yield (1)).]
- Ethyl 7-chloro-1-naphthoate: unreported.
- D p-Bromophenacyl 7-chloro-1-naphthoate: m.p. 145-146° (3).
- ① 7-Chloro-1-naphthoamide: colorless ndls. from 50% alc., m.p. 237° cor. (1). [From the acid chloride (above) with 4 pts. conc. aq. NH<sub>4</sub>OH at ord. temp. for 2 hrs. (75% yield (1)).]
- **T-Chloro-1-naphthoanilide:** brownish ndls. from dil. alc., m.p. 185° cor. (1). [From the acid chloride (above) with 5 pts. aniline at 100° (80% yield (1)).]

3:4942 (1) Goldstein, Fischer, Helv Chim. Acta 21, 1519-1521 (1938). (2) Harrison, Royle, J. Chem. Soc. 1926, 87. (3) Horn, Warren, J. Chem. Soc. 1946, 144.

3:4944 5-CHLORONAPHTHOIC ACID-1

Ndls. which sublime even below m.p. — Eas. sol. alc., spar. sol. C6H6 or AcOH.

[For prepn. of  $\bar{C}$  from  $\alpha$ -naphthoic acid (1:0785) with  $Cl_2$  in AcOH contg.  $I_2$  (some of the isomeric 8-chloronaphthoic acid-1 (3:4680) also being formed) see (1); from 5-chloronaphthonitrile (see below) on hydrolysis with fumg. HCl in s.t. see (1); from 5-aminonaphthoic acid-1 [Beil. XIV-533] via diazotization and use of  $Cu_2Cl_2$  reactn. see (1); for

formn. (together with other prods.) from  $\alpha$ -naphthoic acid (1:0785) via reactn. with  $Hg(OAc)_2$  followed by treat. with  $Cl_2$  in AcOH see (3).]

488

Salts. CaĀ2.2H2O; sol. in 116 pts. aq. at ord. temp. (1).

 $\bar{C}$  on soln. in red. fumg. HNO<sub>3</sub> gives (2) on cooling 5-chloro-8-nitronaphthoic acid-1 [Beil. IX-654], ndls. from alc., m.p. 224-225° dec. (2) (ethyl ester, m.p. 121° (2)); if the soln. of  $\bar{C}$  in red fumg. HNO<sub>3</sub> be heated there is also formed (2) some 4-chloro-1,8-dinitronaphthalene [Beil. V-561], pale yel. ndls. from AcOH, m.p. 180° (3), 175° (2).

- ---- Methyl 5-chloro-1-naphthoate: unreported.
- Bthyl 5-chloro-1-naphthoate: tbls. from alc., m.p. 42° (1). [From AgA with EtI in s.t. at 100° (1).]
- ---- 5-Chloro-1-naphthonitrile: ndls. from alc., m.p. 145° (1). [From α-naphthonitrile [Beil. IX-649, IX<sub>1</sub>-(275)] with Cl<sub>2</sub> in CS<sub>2</sub> contg. I<sub>2</sub> (1).]
- ---- 5-Chloro-1-naphthoamide: lfts. or ndls. from warm alc., m.p. 239° (1). [From 5-chloro-1-naphthonitrile (above) on boilg. with alc. KOH for several hrs. (1).]

3:4944 (1) Ekstrand, J, prakt. Chem. (2) 38, 147-150 (1888). (2) Ref 1, pp 170-171. (3) Atterburg, Ber. 9, 928 (1876). (3) Whitmore, Fox, J. Am. Chem. Soc. 51, 3366-3367 (1929).

# 3:4946 TETRACHLOROPHTHALIC ACID Cl C<sub>8</sub>H<sub>2</sub>O<sub>4</sub>Cl<sub>4</sub> Beil. IX - 819 Cl COOH COOH

M.P. See text.

[See also tetrachlorophthalic anhydride (3:4947).]

Colorless lfts., tbls., or ndls. from aq. invariably contg.  $\frac{1}{2}$  H<sub>2</sub>O, and therefore giving in this form Neut. Eq. = 156.5. — This hemihydrate can be recrystd. from anhyd. ether without change. — From anhyd. acetone the acid separates in cryst. contg. combined solv. lost in stream of dry air at room temp., yielding anhyd.  $\bar{C}$ , Neut. Eq. 152, which absorbs aq. from air giving hemihydrate. —  $\bar{C}$  on htg. at 98° or above, or on attempts to recryst. from dry C<sub>8</sub>H<sub>8</sub>, CHCl<sub>3</sub>, or higher-boilg. solvents, or on long drying over P<sub>2</sub>O<sub>5</sub> in vac., is converted to tetrachlorophthalic anhydride (3:4947), for this reason the m.p. observed for  $\bar{C}$  is always actually that of the corresponding anhydride. — For purification of comml.  $\bar{C}$  see (1) (13).

 $\ddot{\mathbf{C}}$  is spar. sol. aq., e.g., 100 g. aq. at 14° dis. 0.57 g., at 99° 3.03 g. of hemihydrate (2);  $\ddot{\mathbf{C}}$  is eas. sol. alc. or ether (2); extremely sol. in acetone (1); spar. sol.  $C_6H_6$  or  $CHCl_3$  (2). —  $\ddot{\mathbf{C}}$  is sol. in hot aq.  $Na_2CO_3$  soln. (dif. from tetrachlorophthalic anhydride (3:4947)).

[For prepn. of Ĉ via hydrolysis of tetrachlorophthalic anhydride (3:4947) see that epd.; other methods include the following: from phthalic anhydride (1:0725) (3), from phthalyl dichloride (3:6900) (4), or phthalic acid (1:0820) (5) with Cl<sub>2</sub> in pres. of Fe or FeCl<sub>3</sub> see indic. refs.; from 2-(trichloroacetyl)-3,4,5,6-tetrachlorobenzoic acid [Beil. X-693], with dil. aq. NaOH see (6); from 2-(pentachlorobenzoyl)-3,4,5,6-tetrachlorobenzoic acid [Beil. X<sub>1</sub>-358], with conc. H<sub>2</sub>SO<sub>4</sub> at 200-250° (pentachlorobenzene (3:2290) is also formed) see (7); from naphthoquinone-1,2 (1:9062), anthraquinone (1:9095), 1,2,3,4,5,6,7-heptachloroanthraquinone [Beil. VII<sub>1</sub>-(414)], or 2-(pentachlorobenzoyl)-3,4,5,6-tetrachlorobenzoic acid (see above) on boilg. with excess SbCl<sub>5</sub> + a little I<sub>2</sub> see (7) (8); from 1,2,3,4,5-pentachloronaphthalene [Beil. V-546] (9) (10), 1,2,3,4,5,6,8-heptachloronaphthalene [Beil. V-547] (11), or octachloronaphthalene (3:4893) (12) by oxidn. with HNO<sub>3</sub> in s.t. as directed

see indic. refs.; from 2,5,6,7,8-pentachloronaphthoquinone-1,4 [Beil. VII-731] by oxidn. with CrO<sub>3</sub> or HNO<sub>3</sub> see (11).]

[Č with Na/Hg in dil. aq. alc. (10) (2) yields phthalic acid (1:0825), but Č in 96% alc. with Na/Hg is practically unaffected (1) (2). — Č with H<sub>2</sub> in pres. of finely divided Ni at 190° and 20 atm. press. yields (14) 4,5,6,7-tetrachlorophthalide [Beil. XVII-312], m.p. 208.5° cor. — Č with HI + P in s.t. at 230° for 6 hrs. yields (2) 4,5,6,7-tetrachlorophthalane [Beil. XVII-51], ndls. from toluene, m.p. 218° (2) (insol. in boilg. aq. NaOH), accompanied by a little 4,5,6,7-tetrachlorophthalide (above) (sol. in boilg. aq. NaOH).]

 $\bar{C}$  with CrO<sub>3</sub> oxidizes much more slowly (2) than phthalic acid (1:0825) and is very resistant toward HNO<sub>3</sub> (2); for detn. of chlorine in  $\bar{C}$  see (1) (16).

[ $\bar{C}$  with aq. KOH + KCN + CuCN htd. under press. at 180° for 8–10 hrs. gives (60% yield (15)) benzenehexacarboxylic acid (mellitic acid) [Beil. IX-1008, IX<sub>1</sub>-(443)]. —  $\bar{C}$  with HBr + H<sub>3</sub>PO<sub>4</sub> in nitrobenzene in pres. of CuCl<sub>2</sub> yields (17) mixts. of bromotrichlorophthalic acids and dibromodichlorophthalic acids. — For actn. of PCl<sub>5</sub> see under tetrachlorophthalic anhydride (3:4947). —  $\bar{C}$  with hydrazine hydrate at 150° gives only (18) N-aminotetrachlorophthalimide, colorless ndls. from AcOH, m.p. 288° dec. (18); earlier opinions (19) (20) that this prod. was tetrachlorophthalcyclohydrazide have been shown (18) to be erroneous. —  $\bar{C}$  with steam passed over cat. at 380–420° loses CO<sub>2</sub> presumably yielding (21) 2,3,4,5-tetrachlorobenzoic acid [Beil. IX-346], m.p. 186°.]

[For use of  $\bar{C}$  as softener for animal fibers see (22) (23). — For use of  $\bar{C}$  in prepn. of  $\alpha$ -borneol (1:5990) from turpentine oil (crude pinene) by htg. at 108° for 12 hrs., removal of unchanged terpenes by distn. and alc. NaOH saponification of the remaining di-bornyl tetrachlorophthalate, white cryst. from ether, m.p. 128-129° (24), see (24) (25).]

Salts. K<sub>2</sub>Ā, very sol. aq., spar. sol. alc. (2), BaĀ.2½H<sub>2</sub>O see (2); CaĀ, on htg. gives octachloroanthraquinone [Beil. VII-789] (17); CuĀ.2H<sub>2</sub>O, spar. sol. aq. (2) (earlier report (27) that on dry distn. it gives dodecachlorofi orane later seriously questioned (28)); ZnĀ, very sol. aq. (more sol. cold aq. than hot aq.) (2); Ag<sub>2</sub>Ā, spar. sol. aq.

- Dimethyl tetrachlorophthalate: cryst. from MeOH, m.p. 92° (2). [From Ag<sub>2</sub>Ā with MeI (2), from sym.-tetrachlorophthalyl (di)chloride with NaOMe (2) or from C in 10% aq. NaOH (3 moles) on warming with Me<sub>2</sub>SO<sub>4</sub> (29); note that C in MeOH satd. with HCl gas gives (30) only the half ester, methyl hydrogen tetrachlorophthalate, cryst. from C<sub>6</sub>H<sub>6</sub> on addn. of lgr., m.p. 142° (30) with elimination of MeOH and conversion to tetrachlorophthalic anhydride (3·4947) q.v.]
- ① Diethyl tetrachlorophthalate: cryst., m.p. 60-60.5° (2) (31). [From Ag<sub>2</sub>Ā + EtI (2) or from sym.-tetrachlorophthalyl (di)chloride + NaOEt (2); note that unsym.-tetrachlorophthalyl (di)chloride with abs. alc. at room temp. gives (31) pseudo-diethyl tetrachlorophthalate, tbls. from alc., m.p. 126° (19), and that this cpd. on stdg. in the reactn. mixt. is partially conv. to the normal ester of m.p. 60.5° (31).]
- **Di-(p-nitrobenzyl)** tetrachlorophthalate: ndls. from  $C_6H_6$ , or from aq. alc., m.p.  $180-181^\circ$  (32),  $179-180^\circ$  (33). [From Na<sub>2</sub> $\bar{\Lambda}$  + p-nitrobenzyl bromide on refluxing in alc. (32), or from Ag<sub>2</sub> $\bar{\Lambda}$  + p-nitrobenzyl iodide (33).]
- Di-(p-phenylphenacyl) tetrachlorophthalate: cryst. from acetone, m.p. 193° (34). [From Na<sub>2</sub>Ā with p-phenylphenacyl bromide (2 moles) on htg. in alc. (34).]

3:4946 (1) Delbridge, Am. Chem. J. 41, 393-415 (1909). (2) Graebe, Ann. 238, 318-332 (1887). (3) Zal'kind, Belikova, Simonova, Russ. 39,761, Nov. 30, 1934; Cent. 1935, II 3441; C.A. 36, 3443 (1936); Russ. 46,568, April 30, 1936; Cent. 1936, II 2798. (4) Zal'kind, Belikova, Russ. 35,188, March 31, 1934; Cent. 1935, II 1090; C.A. 30, 3443 (1936) Russ. 46,607, April 30, 1936; Cent. 1936, II 2798. (5) Zal'kind, Belikova, J. Applied Chem. (U.S.S.R.) 8, 1210-1213 (1935); Cent. 1936, II 3414; C.A. 30, 5203 (1936). (6) Zincke, Günther, Ann. 272, 266 (1892). (7) Eckert, Steiner, Monatsh. 36, 179-185 (1915); Ber. 47, 2628-2630 (1914). (8) Steiner, Monatsh.

**36**, 827 (1915). (9) Graebe, Ann. **149**, 18-20 (1869). (10) Claus, Spruck, Ber. **15**, 1402-1403 (1882).

(11) Claus, Wenzlik. Ber. 19, 1166-1167 (1886). (12) Shvemberger, Gordon, J. Gen. Chem. (U.S.S.R.) 2, 921-928 (1932), Cent. 1934, I 215; C.A. 27, 2439 (1933); J. Gen. Chem. (U.S.S.R.) 4, 695-703 (1934); Cent. 1935, II 514; C.A. 29, 2162 (1935). (13) Pratt. Perkins, J. Am. Chem. Soc. 40, 203-204 (1918). (14) M.L.B., Ger. 368,414, Feb 5, 1923, Cent. 1923, II 911. (15) Feist, Ber. 68, 1941-1943 (1935). (16) Heslinga, Rec. trav. chim. 43, 182 (1924). (17) Bruck (to I.G.), Ger. 597,259, May 25, 1934; Cent. 1934, 1688. (18) Drew, Pearman, J. Chem. Soc. 1937, 27, 32-33. (19) Phelps, Am. Chem. J. 33, 586 (1905). (20) Radulescu, Alexa, Bul. Soc. Chim. România 12, 163 (1930); C.A. 25, 4001 (1931).

(21) Jaeger (to Sciden Co.), U.S. 1,964,516, June 26, 1934; Cent. 1934, II 3047. (22) Schwen, Krzikalla (to I.G.), U.S. 1,887,958, Nov. 15, 1932; French 704,423, May 20, 1931; Cent. 1931, II 3286. (23) Dreyfus, French 749,792, July 29, 1933; Cent 1934, I 3154. (24) Haller, Compt. rend. 178, 1933-1937 (1924), Cent 1924, II 642. (25) Haller, U.S. 1,415,340, May 9, 1922; Cent. 1923, IV 946, C.A. 16, 2335 (1922); Brit. 158,533, March 3, 1921; Cent. 1921, IV 422. (26) Kircher, Ber. 17, 1170 (1884). (27) Ekely, Mattison, J. Am. Chem. Soc. 52, 3003-3004 (1930). (28) Ekely, J. Am. Chem. Soc. 54, 406 (1932). (29) Graebe, Ann. 240, 247 (1905). (30) Meyer, Sudborough, Ber. 27, 3148 3149 (1894).

(31) Kirpal, Junze, Ber. 62, 2105 (1929). (32) Lyons, Reid, J. Am. Chem. Soc. 39, 1741, 1744 (1917). (33) Meyer, Jugilewitsch, Ber. 30, 785-786 (1897). (34) Drake, Sweeney, J. Am. Chem. Soc. 54, 2059-2061 (1932).

### 3:4947 TETRACHLOROPHTHALIC ANHYDRIDE $C_8O_3Cl_4$ Beil. XVII - 484 O XVIII - (254)

[See also tetrachlorophthalic acid (3:4946).]

Colorless pr. or ndls. by sublimation. — Insol. cold aq., but sol. in boilg. aq. because of hydrolysis to tetrachlorophthalic acid (3:4946); spar. sol. ether. — Č is insol. in Na<sub>2</sub>CO<sub>3</sub> soln. (dif. from tetrachlorophthalic acid (3:4946)).

[For prepn. of  $\bar{C}$  from tetrachlorophthalic acid (3:4946) by htg. above m.p. (6), by htg. 8 hrs. at 110° (7), by htg. 120 hrs. at 100° (8) (9), by sublimation, htg. at 98°, by crystn. from hot  $C_6H_6$ , CHCl<sub>3</sub>, AcOH (2), or by protracted drying over  $P_2O_5$  in vac. (1) cf. (5) (10) see indic. refs.; from phthalic anhydride (1:0725) with  $Cl_2$  in pres. of Fe salts at 160–260° (11), or with  $Cl_2$  in pres. of SbCl<sub>5</sub> at 200° (10) (12), or with  $Cl_2$  in pres. of fumg.  $H_2SO_4$  (50–60%  $SO_3$ ) and  $I_2$  (2) (13) see indic. refs.; from naphthalene (1:7200) with  $ClSO_3H$  in s.t. at 180° see (3).]

[ $\tilde{C}$  on reduction with Zn dust + hot AcOH (10) or with  $H_2$  + Ni at 190° and 20 atm. yields (14) 4,5,6,7-tetrachlorophthalide [Beil. XVII-312], m.p. 208.5° cor.]

Č reacts with monohydric alcs. to yield corresp. half esters: e.g., Č dislvd. in excess warm MeOH, htd. 5–10 min., evapd. yields (15) methyl hydrogen tetrachlorophthalate [Beil. IX-820], cryst. from hot C<sub>6</sub>H<sub>6</sub> on addn. of lgr., m.p. 139–140° (15), 142° (16), Neut. Eq. 318; Č with abs. EtOH treated as for preceding case gives (15) ethyl hydrogen tetrachlorophthalate, m.p. 93–94° (15), 94–95° (10), Neut. Eq. 332. — [Č with ter-butyloxymagnesium

bromide in ether + dioxane at 50-55° for 1 hr. gives (54% yield (17)) ter-butyl hydrogen tetrachlorophthalate, decomposing at 142°, Neut. Eq. 360; for analogous formn. of teramyl, triethylcarbinyl, tri-n-propylcarbinyl, tri-n-butylcarbinyl and tri-n-amylcarbinyl hydrogen tetrachlorophthalates see (17).] -- [For reactn. of  $\bar{C}$  with glycerol and use in prepn. of resuns of glyptal type see (3) (18).]

[ $\bar{C}$  with 1 mole PCl<sub>5</sub> in s.t. 4 hrs. at 220° (19) cf. (10) or  $\bar{C}$  with 1 mole PCl<sub>5</sub> + POCl<sub>3</sub> refluxed 72 hrs. (20) gives (90% yield (20)) unsym.-tetrachlorophthalyl (di)chloride (3,3,4,5,6,7-hexachlorophthalide) [Beil. XVII<sub>1</sub>-(484)], cryst. from C<sub>6</sub>H<sub>6</sub> with 1 mole solvent, m.p. 118° (10) (20), 118–120° (19), but losing C<sub>6</sub>H<sub>6</sub> in air to give solvent free epd., ndls. from pet. ether, m.p. 137° (19) (20); this prod. on distn. (19) undergoes partial rearr. to sym.-tetrachlorophthalyl (di)chloride, pr. from pet. ether, m.p. 48° (19). — Note that the latter sym.-phthalyl (di)chloride (which is very soluble in most org. solvents) gradually changes even in solid form and very rapidly in solution (particularly in pres. of animal charcoal) to the unsym.-tetrachlorophthalyl (di)chloride (which is spar. sol. in most org. solvents) (19). —  $\bar{C}$  with SOCl<sub>2</sub> + ZnCl<sub>2</sub> at 200–240° yields (21) cf. (22) tetrachlorophthalyl (di)chloride but whether the unsym. or sym. forms or their mixture is not stated. — Note also that with abs. EtOH the unsym. acid chloride yields (19) pseudo diethyl tetrachlorophthalate, tbls. from alc., m.p. 126° (19), while the sym. acid chloride gives (19) sym. diethyl tetrachlorophthalate, m.p. 60.5° (19).]

[C with 2 moles PCl<sub>5</sub> in s.t. at 200° for 5-6 hrs. yields (10) a prod. (regarded as either 1,1,3,3,4,5,6,7-octachlorophthalide or 2-(trichloromethyl)-3,4,5,6-tetrachlorobenzoyl chloride), cryst. from ether, m.p. 140° (10), and practically unaffected by warm alc. KOH.]

[ $\bar{C}$  with arom. hydrocarbons + AlCl<sub>3</sub> yields corresp. o-aroyl-tetrachlorobenzoic acids: e.g.,  $\bar{C}$  with  $C_6H_6$  + AlCl<sub>3</sub> (23) (24) (25) or  $\bar{C}$  with  $C_6H_5MgBr$  (26) gives 2-benzoyl-3,4,5,6-tetrachlorobenzoic acid [Bell. X-750], ndls. from 80% AcOH or  $C_6H_6$ , m.p. 201° (24), 200° (23), 188–189° (26), which on ring closure with 20 pts. conc.  $H_2SO_4$  at 200° for 5 min. (23) gives 1,2,3,4-tetrachloroanthraquinone [Bell. VII-789], gold-yel. lfts., m.p. 191° (23). —  $\bar{C}$  with toluene + AlCl<sub>3</sub> gives (yields: 100% (27), 95% (28), 94% (29)) 2-(p-toluyl)-3,4,5,6-tetrachlorobenzoic acid, cryst. from  $C_6H_6$ , m.p. 174.5° cor. (29), 172° (28) (30) (the value of 142° (27) may be a misprint for 172°), which on ring closure with 12 pts.  $H_2SO_4.H_2O$  at 190–200° for 2 min. (27) or with 9 pts. fumg.  $H_2SO_4$  (2%  $SO_3$ ) at 120–130° for 30 min. (28) gives (21% yield (28)) 2-methyl-5,6,7,8-tetrachloroanthraquinone, yel. ndls. from toluene, m.p. 195–196° (27), or from EtOAc, m.p. 192° (28). — For corresp. reactns. of  $\bar{C}$  with o-xylene (1:7430), m-xylene (1:7420), p-xylene (1:7415), and ethylbenzene (1:7410) and use in identif. of these cpds. see (7). — For reactn. of  $\bar{C}$  with  $\alpha$ -naphthyl MgBr,  $\gamma$ -methoxyphenyl MgBr, or  $\gamma$ -bromphenyl MgBr yielding corresp. o-aroyl-tetrachlorobenzoic acids see (26).]

[ $\bar{C}$  with chlorobenzene (3:7903) + AlCl<sub>3</sub> at 140° for 3 hrs. gives (92% yield (31)) 2-(p-chlorobenzoyl)-3,4,5,6-tetrachlorobenzoic acid, cryst. from AcOH, m.p. 162-165° (31), which with conc. H<sub>2</sub>SO<sub>4</sub> at 140° for 30 min. gives 2,5,6,7,8-pentachloroanthraquinone, yel. cryst. from AcOH, m.p. 192° (31). — For corresp. reactns. of  $\bar{C}$  with p-dichlorobenzene (3:0980), with 1,2,4-trichlorobenzene (3:6420), or with nitrobenzene see (31).]

[C with phenols and appropriate condensing agents gives two different types of reactns. according to circumstances, viz., formation of corresp. o-hydroxyaroyltetrachlorobenzoic acids (cf. above) or of corresp. tetrachlorophthaleins. — E.g., C with 1 mole phenol + AlCl<sub>3</sub> in acetylene tetrachloride at 125° for 3 hrs. gives (yields: 79% (32), 82% (33)) 2-(o-hydroxybenzoyl)-3,4,5,6-tetrachlorobenzoic acid [Beil. X<sub>1</sub>-(470)], lfts. from xylene/AcOH, m.p. 216-218° cor. (32), 210° (33), which with boilg. NaOH loses HCl and ring-closes to 2,3,4-trichloroxanthonecarboxylic acid-1 [Beil. XVIII<sub>1</sub>-(499)], colorless ndls. from alc., m.p. 261-264° cor. (32), 262-265° dec. (33). — For corresp. reactns. of C with

o-cresol (1:1400) (32) (34), m-crosol (1:1730) (32), p-cresol (1:1410) (32), α-naphthol (1:1500) (38), β-naphthol (1:1540) (32), anisole (1:7445) (34) see indic. refs., with hydroquinone (1:1590) + AlCl<sub>3</sub> + NaCl at 150-155° for  $1\frac{1}{2}$  hrs. giving 82% yield 2-(2',5'-dihydroxybenzoyl)-3,4,5,6-tetrachlorobenzoic acid, m.p. 231°, or on further htg. in the above melt at 210-215° for 1 hr. ring closing to 1,4-dihydroxy-5,6,7,8-tetrachloroanthraquinone, red cryst. from xylene, m.p. 247°, see (35). — However,  $\bar{C}$  with 2 moles phenol in pres. of fumg. H<sub>2</sub>SO<sub>4</sub> (20% SO<sub>3</sub>) as directed (8) (36) gives 65% yield phenoltetrachlorophthalein [Beil. XVIII-148, XVIII<sub>1</sub>-(375)], m., 316-317° dec. (36), accompanied by about 10% (37) of 3',4',5',6'-tetrachlorofluoran [Beil. XIX-148, XIX<sub>1</sub>-(676)], colorless pr. from  $C_6H_6$ , m.p. 298° dec. (33), 290-291° (37) (for sepn. of this by-prod. from the phenoltetrachlorophthalein see (37)). — For condens. of  $\bar{C}$  with  $\sigma$ -cresol (1:1400) to  $\sigma$ -cresoltetrachlorophthalein see (45); with resorcinol (1:1530) to 3',4',5',6'-tetrachlorofluorescein [Beil. XIX-227, XIX<sub>1</sub>-(722)] see (10) (9).]

[For condens. of  $\bar{C}$  with *m*-diethylaminophenols see (39); with *N*-aryl-*m*-aminophenols in prepn. of phthalein dyes see (40); for condens. of  $\bar{C}$  with hydroxyisodibenzanthrone in prepn. of vat dyes see (41); for use of  $\bar{C}$  as textile softener see (42).]

[C with steam passed over cat. at 380-420° loses CO<sub>2</sub> presumably yielding (43) 2,3,4,5-tetrachlorobenzoic acid [Beil. IX-346], m.p. 186°.]

 $\bar{C}$  on fusion and treatment with NH<sub>3</sub> gas (10) (4), or on warming with formamide (2), or on fusion with (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> (47) gives (yields: 91% (2), 90% (47)) tetrachlorophthalimide [Beil. XXI-505, XXI<sub>1</sub>-(391)], lfts. from AcOH, dimethylaniline or nitrobenzene, m.p. 338-339° cor. (2), 336-337° (47); for reactn. of this prod. with KOMe forming K tetrachlorophthalimide and use of latter in identification of alkyl halides, etc., see (47). — [For reactn. of  $\bar{C}$  with hydrazine hydrate in dil. alc. yielding N-aminotetrachlorophthalimide, ndls. from AcOH, m.p. 288° dec., see (48); for reactn. of  $\bar{C}$  with hydroxylamine in aq. and in MeOH see (49). —  $\bar{C}$  in boilg. AcOH treated with aniline yields (2) cf. (50) N-phenyltetrachlorophthalimide (tetrachlorophthalanil) [Beil. XXI-505, XXI<sub>1</sub>-(391)], m.p. 274–275° cor. (2). — For reactn. of  $\bar{C}$  with o-phenylenediamine see (6).]

 $\bar{C}$  on warming with aq., or with aq. alk. followed by acidification, yields tetrachlorophthalic acid (3:4946) q.v. [For use of differential hydrolysis of  $\bar{C}$  in sepn. from 3,4-dichlorophthalic anhydride (3:3695), 3,6-dichlorophthalic anhydride (3:4860), or 4,5-dichlorophthalic anhydride (3:4830) see under these cpds.]

3:4947 (1) Delbridge, Am. Chem. J. 41, 400, 402, 406, 408-409, 415-416 (1909). (2) Pratt, Perkins, J. Am. Chem. Soc. 40, 204-214 (1918). (3) Walter, Monatsh. 64, 287-288 (1934). (4) Pfeiffer, Ber. 55, 421-425 (1922). (5) Graebe, Ann. 149, 18-20 (1869). (6) Bistryzycki, Lecco, Helv. Chim. Acta 4, 430-431 (1921). (7) Underwood, Walsh, J. Am. Chem. Soc. 57, 941 (1935). (8) Orndorff, Black, Am. Chem. J. 41, 359-393 (1909). (9) Orndorff, Adamson, J. Am. Chem. Soc. 40, 1239-1257 (1918). (10) Graebe, Ann. 238, 318-338 (1887).

(11) Dvornikoff (to Monsanto Chem. Co.), U.S. 2,028,383, Jan. 21, 1936; Cent. 1936, I 2830; C.A. 30, 1394 (1936). (12) Gnehm (to Soc. Chem. Ind. Basel), Ger. 32,564, Feb. 1, 1885; Fried-lander, 1, 318. (13) Juvalta, Ger. 50,177, Friedlander 2, 93. (14) M.L.B., Ger. 368,414, Feb. 5, 1923; Cent. 1923, II 911. (15) Ashdown, Monier, Ph.D. Thesis, M.I.T. (16) Meyer, Sudborough, Ber. 27, 3149 (1894). (17) Fessler, Shriner, J. Am. Chem. Soc. 58, 1384-1386 (1936). (18) Kogan, Ponomarenko, Org. Chem. Ind. (U.S.S.R.) 7, 382-385 (1940); C.A. 35, 4118 (1941). (19) Kirpal, Kunze, Ber. 62, 2102-2106 (1929). (20) Kaufmann, Voss, Ber. 56, 2511-2512 (1923).

(21) Kyrides (to Monsanto Chem. Co.), U.S. 1,951,364, March 20, 1934; Cent. 1934, II 333.
(22) Kyrides, J. Am. Chem. Soc. 59, 206-208 (1937). (23) Kircher, Ann. 238, 338-346 (1887).
(24) Meyer, Monatsh. 25, 1189-1191 (1904). (25) Müller (to I.G.), Ger. 495,447, April 7, 1930; Cent. 1931, I 1675. (26) C. Weizmann, E. Bergmann, F. Bergmann, J. Chem. Soc. 1935, 1367-1369. (27) Eckert, Endler, J. prakt. Chem. (2) 102, 335-336 (1921). (28) Ruggli, Brunner, Helv. Chim. Acta 8, 160-161 (1925). (29) Lawrance, J. Am. Chem. Soc. 43, 2580 (1921). (30) M.L.B., French 520,542, June 27, 1921; Cent. 1921, IV 804: Brit. 160,433, April 14, 1921; Cent.

1921, IV 127: Swiss 89,059, Aug. 1, 1921; Cent. 1922, II 145: Ger. 360,422, Oct. 2, 1922; Cent. 1923, II 190.

Hofmann, Monatsh. 36, 812-818 (1915). (32) Ullmann, Schmidt, Ber. 52, 2113-2118 (1919). (33) Orndorff, Parsons, J. Am. Chem. Soc. 48, 283-285 (1926). (34) Orndorff, Murray, J. Am. Chem. Soc. 39, 686-689 (1917). (35) Waldmann, J. prakt. Chem. (2) 147, 333 (1936/1937). (36) Orndorff, Kennedy, J. Am. Chem. Soc. 38, 2487 (1916). (37) Orndorff, Kennedy, J. Am. Chem. Soc. 38, 2487 (1916). (37) Orndorff, Kennedy, J. Am. Chem. Soc. 38, 286 (1909). (39) Orndorff, Rose, J. Am. Chem. Soc. 38, 2101-2119 (1916). (40) Durand, Huguenin, Brit. 251,644, July 7, 1926; Cent. 1927, I 1228.

(41) Imperial Chem. Ind., Ltd. & Shaw & Thomson, Brit. 383,624, Dec. 15, 1932; Cent. 1933, 1 1358. (42) Dreyfus, French 749,792, July 29, 1933; Cent. 1934, I 3154. (43) Jaeger (to Selden Col.), U.S. 1,964,516, June 26, 1934, Cent. 1934, II 3047. (44) Orndorff, Schade, J. Am. Chem. Soc. 48, 769-773 (1926). (45) Orndorff, Patel, J. Am. Chem. Soc. 47, 863-867 (1925). (46) Orndorff, Hitch, J. Am. Chem. Soc. 36, 680-725 (1914). (47) Allen, Nicholls, J. Am. Chem. Soc. 56, 1409-1410 (1934). (48) Drew, Pearman, J. Chem. Soc. 1937, 32-33. (49) Orndorff, Nichols, Am. Chem. J. 48, 491-499 (1912). (50) Tingle, Bates, J. Am. Chem. Soc. 32, 1325-1327 (1910).

#### 3:4948 8-CHLORONAPHTHOIC ACID-2

C<sub>11</sub>H<sub>7</sub>O<sub>2</sub>Cl

Beil. IX - 662 IX<sub>1</sub>—

#### M.P. 260° (1)

Fine ndls. best purified by sublimation (1).

[For prepn. of  $\bar{C}$  from 8-aminonaphthoic acid-2 [Beil. XIV-536] via diazotization and use of  $Cu_2Cl_2$  reactn. see (1).]

Salts. (1). CaĀ<sub>2</sub>.7H<sub>2</sub>O; BaĀ<sub>2</sub>.6H<sub>2</sub>O; both spar. sol. cold aq. but eas. sol. hot aq.

Č with Cl<sub>2</sub> in AcOH contg. I<sub>2</sub> yields (1) 5,8-dichloronaphthoic acid-2 [Beil. IX-662], ndls. from alc., m.p. 287° (1) (ethyl ester, m.p. 64-65° (1)).

- Methyl 8-chloro-2-naphthoate: unreported.
- Ethyl 8-chloro-2-naphthoate: lfts. from alc., m.p. about 29° (1). [From C in EtOH with dry HCl gas (1).]

3:4948 (1) Ekstrand, J. prakt. Chem. (2) 43, 417-418, 421 (1891).

3:4950 3,5-DICHLORO-4-HYDROXYBENZOIC C<sub>7</sub>H<sub>4</sub>O<sub>3</sub>Cl<sub>2</sub> Beil. X - 176 X<sub>1</sub>-(78)

White ndls. from dil. alc. or dil. AcOH; spar. sol. cold but more sol. hot aq.; eas. sol. alc., ether; sublimes at 250-260° (7) without appreciable decompn. (6).

[For prepn. of  $\bar{C}$  from p-hydroxybenzoic acid (1:0840) in 10% AcOH (4) or in aq. KOH (3 moles) (7) with Cl<sub>2</sub>, or on htg. with SbCl<sub>5</sub> (4 moles) (6) or with 30% H<sub>2</sub>O<sub>2</sub> + HCl as directed (80% yield (8)) see indic. refs.; from 3-sulfo-4-hydroxybenzoic acid in aq. with

Cl<sub>2</sub> see (9); from potassium 2,6-dichlorophenolate with CO<sub>2</sub> at 140° see (7); from ethyl 3,5-dichloro-4-hydroxybenzoate (see below) by hydrolysis with 35% aq. KOH (5) or with Claisen's alk. (95% yield (1)) see indic. refs.; from 3,5-dichloro-4-methoxybenzoic acid with 45% HI for 15 hrs. in s.t. at 130-140° see (3) (2).]

C on htg. with CaO (4) (7), or with dimethylaniline at 190° (78% yield (1)), or with quinoline at 190-200° (80-85% yield (10)) loses CO<sub>2</sub> giving 2,6-dichlorophenol (3:1595).

C in conc. aq. soln. gives with FeCl<sub>3</sub> a brown ppt. (4).

[ $\bar{C}$  on electrolytic reduction in aq./alc./ $H_2SO_4$  gives (11) 3,5-dichloro-4-hydroxybenzyl ethyl ether [Beil. VI-898], m.p. 86° (11); for prepn. and study of thermal rearr. of the crotyl ether of  $\bar{C}$  see (1).]

- Methyl 3,5-dichloro-4-hydroxybenzoate: ndls. from dil. alc. or lgr., m.p. 124° (3), 122° (12), 121-122° (4) (5). [From C in MeOH by satn. with HCl gas (3) (4); also from methyl p-hydroxybenzoate (1:1549) with SO₂Cl₂ (2 moles) (5).] [This prod. with acetyl chloride yields (5) corresp. acetate, lfts. from MeOH, m.p. 70-71° (5), 68-69° (4).]
- ⊕ Ethyl 3,5-dichloro-4-hydroxybenzoate: ndls. of monohydrate, m.p. 108-116° cor.

  ⟨1), 116° ⟨5⟩ from 80% alc.; after long drying in vac. over P<sub>2</sub>O<sub>5</sub> lose aq. yielding anhydrous ester, m.p. 111-112° cor. ⟨1⟩; note that this ester is extracted from ether soln. by aq. NaHCO<sub>3</sub> and is also titratable with stand. alk. (Neut. Eq. of monohydrate 253). [From ethyl p-hydroxybenzoate (1:1534) with excess SO<sub>2</sub>Cl<sub>2</sub> ⟨5⟩ in 85% yield ⟨1⟩.]

3:4950 (1) Tarbell, Wilson, J. Am. Chem. Soc. 64, 1066-1070 (1942). (2) Durrans, J. Chem. Soc. 123, 1426 (1923). (3) Bertozzi, Gazz. chim. ital. 29, II 39 (1899). (4) Zincke, Ann. 261, 250-252 (1891) (5) Mazzara, Gazz. chim. ital. 29, I 387-388 (1899) (6) Lossner, J. prakt. Chem. (2) 13, 434 (1876). (7) Tarugi, Gazz. chim. ital. 30, II 490-491 (1900). (8) Leulier, Pinet. Bull. soc. chim (4) 41, 1365-1366 (1927). (9) Datta, Mitter, J. Am. Chem. Soc. 41, 2038 (1919) (10) Blicke, Smith, Powers, J. Am. Chem. Soc. 54, 1468 (1932).

(11) Mettler, Ber. 39, 2940 (1906). (12) von Auwers, Reis, Ber. 29, 2359 (1896).

M.P. 270° cor. (1) 263° (2)

Ndls. from alc. or AcOH. — Sol. in hot alc., in  $C_6H_6$  or AcOH. — Sublimes in ndls. even below m.p.

[For prepn. of C from 5-amino-2-naphthoic acid [Beil. XIV-536] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. see (2), from 5-chloro-2-naphthonitrile (below) by hydrolysis in AcOH/H<sub>2</sub>SO<sub>4</sub>/aq. medium (alm. 100% yield (1)) or with alc. KOH (2) see indic. refs.]

 $\bar{C}$  with PCl<sub>5</sub> yields (1) 5-chloro-2-naphthoyl chloride, m.p. 89° cor., sol. in pet. eth. or  $C_6H_6$ , but only very slowly hydrolyzed by aq. even on htg. (1).

 $\bar{\mathbf{C}}$  on mononitration by soln. in excess conc. HNO<sub>3</sub> (D=1.42) yields (2) on cooling 5-chloro-x-nitronaphthoic acid-2, ndls. from AcOH, m.p. 271° (ethyl ester, m.p. 118°);  $\bar{\mathbf{C}}$  on dinitration with red fumg. HNO<sub>3</sub> + a little conc. H<sub>2</sub>SO<sub>4</sub> yields (1) 5-chloro-x,y-dinitronaphthoic acid-2, ndls. from AcOH, m.p. about 243° (ethyl ester, m.p. 132°);  $\bar{\mathbf{C}}$  on trinitration by conversion to mononitro- $\bar{\mathbf{C}}$  (above) and treatment with excess fumg. HNO<sub>3</sub> + conc. H<sub>2</sub>SO<sub>4</sub> yields (1) 5-chloro-x,y,z-trinitronaphthoic acid-2, yel. cryst. from AcOH, m.p. 260-261° dec. (ethyl ester, m.p. 188°).

Salts (2). Na $\overline{A}$ .2H<sub>2</sub>O sol. aq.; Ca $\overline{A}$ 2.3½H<sub>2</sub>O, sol. in 4430 pts. cold aq.; Ba $\overline{A}$ 2.4½H<sub>2</sub>O, very spar. sol. cold aq.

- **D** Methyl 5-chloro-2-naphthoate: m.p. 81° cor. (1). [From  $\bar{\mathbf{C}}$  in MeOH with conc.  $H_2SO_4$  (90% yield (1)).]
- D Ethyl 5-chloro-2-naphthoate: ndls. from alc., m.p. 45° (2).

- © 5-Chloro-2-naphthoanilide: m.p 202.5° cor (1). [From the acid chloride (above) with 3 pts. aniline at 100° (90% yield (1)).]

3:4952 (1) Goldstein, Matthey, Helv. Chim. Acta 21, 65-66 (1938). (2) Ekstrand, J. prakt. Chem. (2) 43, 411-417 (1891).

## 3:4960 5-CHLOROISOPHTHALIC ACID COOH $C_8H_5O_4Cl$ Beil. IX - 838 (5-Chlorobenzenedicarboxylic acid-1,3)

#### M.P. 278° (1)

 $\bar{C}$  cyrst. from aq. in ndls. which even after drying over conc.  $H_2SO_4$  cont.  $\frac{1}{2}$  mole  $H_2O$ ; this water is lost, however, on htg. at 120° (1). —  $\bar{C}$  is sol. at 15° in 3450 pts. aq. (1).

[For prepn. of  $\bar{C}$  from 5-aminobenzenedicarboxylic acid-1,3 (5-aminoisophthalic acid) [Beil. XIV-556, XIV<sub>1</sub>-(636)] via diazotization and htg. sepg. diazonium salt with strong HCl see (1), from 5-chloro-3-methylbenzoic acid (3:4715) by oxidn. with KMnO<sub>4</sub> in dil. aq. KOH see (2)]

Salts. Na<sub>2</sub> $\bar{\Lambda}$ ,  $\bar{K}_2\bar{\Lambda}$ , eas. sol. aq. or alc.; Ag<sub>2</sub> $\bar{\Lambda}$ , ndls. from aq.; Mg $\bar{\Lambda}$ , 7H<sub>2</sub>O; Ca $\bar{\Lambda}$ , 2H<sub>2</sub>O, sol. at 15° in 28 pts. aq.; Sr $\bar{\Lambda}$ , H<sub>2</sub>O, sol at 15° in 108 pts. aq.; Ba $\bar{\Lambda}$ , 2H<sub>2</sub>O sol. at 15° in 71 pts. aq.; Cd $\bar{\Lambda}$ , sol. at 15° in 330 pts. aq. (for details see (1)).

- Dimethyl 5-chloroisophthalate: unrecorded.
- Diethyl 5-chloroisophthalate: pr. from alc., m.p. 45° (1). [From C in EtOH with HCl gas (1).]

3:4960 (1) Beyer, J. prakt. Chem. (2) 25, 506-515 (1882). (2) Klages, Knoevenagel, Ber. 28, 2045-2046 (1895).

M.P. 279-281° (1) 280° u.c. (2)

Colorless ndls. from hot aq. or dil. alc.; eas. sol. alc., ether, CHCl<sub>3</sub>; insol. cold aq. [For prepn. of  $\bar{\rm C}$  from 4,6-dichloro-1,3-dimethylbenzene [Beil. V-373, V<sub>2</sub>-(291)] by

oxidn. with 20 pts. HNO<sub>3</sub> (D=1.18) in s.t. at 220° for several hrs. (2) or with CrO<sub>3</sub>/AcOH (2) see indic. refs.; from 1,3-dimethylbenzene-4,6-bis-(sulfonyl chloride) (1) with SOCl<sub>2</sub> in s.t. at 240° for 36 hrs. see (1).]

Ag2A, white ppt. (2), BaA, H2O spar. sol. cold aq. but eas. sol. hot aq. (2).

- ① Dimethyl 4,6-dichloroisophthalate: cryst. from dil. MeOH, m.p. 97-98° (1). [From Č in MeOH on htg. (1).]
- **4,6-Dichloroisophthaldianilide:** m.p. 205° (1). [From  $\bar{C}$  on htg. with aniline (1).]

3:4965 (1) Pollak, Rudich, Monatsh. 43, 221 (1922). (2) Claus, Burstert, J. prakt. Chem. (2) 41, 558-560 (1890).

3:4970 2,5-DICHLORO-3,6-DIHYDROXYBENZOQUINONE-1,4
(Chloranilic acid)

OH
O
OH
OH
OH
OH
OH
OH
OH
OH

M.P. 283-284° s.t. (1) 282-284° s.t. (2)

Lustrous red lfts. with  $2H_2O$  (3) (4) (lost at  $100^\circ$  or slowly on stdg. over conc.  $H_2SO_4$  (3) (4)). —  $\tilde{C}$  on slow heating (even in s.t.) sublimes without melting; in s.t. inserted in bath or block preheated to about  $278^\circ$ , however, melts as stated above (1).

[For prepn. of  $\bar{C}$  from chloranil (tetrachlorobenzoquinone-1,4) (3:4978) by actn. of dil. NaOH at 70-80° see (3) (2); for other methods see Beil. VIII-379.]

 $\bar{C}$  is sol. in aq. yielding violet-red solns.; at 13.5 g. 100 pts. aq. dis. 0.19 pt., at 99° 1.4 pt. anhyd.  $\bar{C}$  (3); addn. of HCl or H<sub>2</sub>SO<sub>4</sub> ppts.  $\bar{C}$  decolorizing soln. (5).

Č behaves as strong dibasic ac. forming stable Na, K, Ba, Ag salts. — Na<sub>2</sub>Ā.4H<sub>2</sub>O, dark red (7) triclinic (8) pr. sepg. on rapid cooling of warm soln. to 18° (6); loses 2H<sub>2</sub>O over H<sub>2</sub>SO<sub>4</sub> and becomes anhyd. at 110° (7). — Na<sub>2</sub>Ā.3H<sub>2</sub>O, black cryst. sepg. from soln. above 35° (6). — Na<sub>2</sub>Ā; 100 pts. aq. at 21° dis. 1.06 g., at 99° 6.19 g. (3). — Ag<sub>2</sub>Ā, red ppt. spar. sol. aq. (8a).

 $\tilde{C}$  htd. in s.t. with conc.  $H_2SO_3$  soln. for some hrs. (9) or treated with Sn + HCl (9) or Na/Hg (9) yields 3,6-dichloro-1,2,4,5-tetrahydroxybenzene (hydrochloranilic acid) [Beil. VI-1156], colorless cryst., no m.p. recorded but with AcCl in s.t. at 100° yielding tetraacetyl deriv., colorless ndls. from alc. or by subl., m.p. 235° (9). [Use of insufficient  $SO_2$  for reduction of  $\tilde{C}$  leads to pptn. of corresp. quinhydrone, fine black ndls. (9).] [For studies of oxidn.-reductn. potential of  $\tilde{C}$  see (2) (10) (11).]

 $\ddot{\mathbf{C}}$  with alk. +  $\mathbf{I_2}$  - KI soln. yields (12) iodoform, m.p. 119°.

- Φ 2,5-Dichloro-3,6-dimethoxybenzoquinone-1,4 (dimethyl chloranilate) [Beil. VIII-380]: from Ag<sub>2</sub>Ā + CH<sub>3</sub>I (13) or from anhydrous K<sub>2</sub>Ā + Me<sub>2</sub>SO<sub>4</sub> (14); red pr. from C<sub>6</sub>H<sub>6</sub> or CHCl<sub>2</sub>, m.p. 141-142° (13) (14).
- **② 2,5-Dichloro-3,6-diacetoxybenzoquinone-1,4** (chloranilic acid diacetate) [Beil. VIII-381]: from finely pdrd. Ag<sub>2</sub>Ā + AcCl in dry ether (15); yel. ndls., m.p. 182.5° (15).

3:4976 (1) Michael, Ber. 28, 1631 (1895). (2) Conant, Fieser, J. Am. Chem. Soc. 46, 1866-1867 (1924). (3) Graebe, Ann. 263, 24-27 (1891). (4) Jackson, MacLaurin, Am. Chem. J. 37, 98-100 (1907). (5) Erdmann, J. prakt. Chem. (1) 22, 285 (1841). (6) Valeur, Ann. chim. (7) 21, 510-512 (1900). (7) Hesse, Ann. 114, 304 (1860). (8) Pope, J. Chem. Soc. 61, 583-584 (1892). (8a) Erdmann, Ann. 48, 317 (1843). (9) Graebe, Ann. 146, 32-36 (1868). (10) Conant, Luts, J. Am. Chem. Soc. 46, 1257 (1924).

(11) Schwarzenbach, Suter, Helv. Chim. Acta 24, 626-628 (1941).
(12) Jackson, Torrey, Am. Chem. J. 20, 429-430 (1898).
(13) Kehrmann, J. prakt. Chem. (2) 40, 370 (1888); 43, 260 (1891).
(14) Graebe, Ann. 340, 248-249 (1905).
(15) Nef, Am. Chem. J. 12, 471-472 (1890); J. prakt. Chem. (2) 42, 169-171 (1890).

3:4975 2-CHLOROBENZENETRICAR- COOH  $C_9H_5O_6Cl$  Beil. IX - 980 BOXYLIC ACID-1,3,5 Cl IX1— (Chlorotrimesic acid)

M.P. 285° (1) (anhydrous) 278° (2) (hydrate)

Ndls. or tbls. with 1 H<sub>2</sub>O from aq. (2); very readily sol. cold aq. (1) (contrast (2)), extremely eas. sol. hot aq. (1) (2); eas. sol. alc., ether (2); insol. CHCl<sub>3</sub> (2). — Sublimes largely undecomposed (2).

[For prepn. of  $\bar{C}$  from chloromesitylene (3:8725) by oxidn. with aq. KMnO<sub>4</sub> either with or without MgSO<sub>4</sub> (63.5% yield) see (1); from 2-hydroxybenzenetricarboxylic acid-1,3,5 (hydroxytrimesic acid) [Beil. X-580] with PCl<sub>5</sub> (4 moles) followed by hydrolysis (with warm aq. or aq. alk.) of the intermediate *tris* acid chloride see (2).]

Ba<sub>3</sub> $\bar{A}_2$ .7H<sub>2</sub>O (from  $\bar{C}$  + BaCO<sub>3</sub> (2)), fairly eas. sol. cold aq. but spar. sol. in hot aq. (2). [ $\bar{C}$  on boilg. with aq. alkali does *not* give chloride ion (2) but  $\bar{C}$  with Zn + HCl (or H<sub>2</sub>SO<sub>4</sub>) or  $\bar{C}$  in 10 pts. aq. with 10 pts. 4.5% Na/Hg yields trimesic acid (1:0559) (2).]

3:4975 (1) Davies, Wood, J. Chem. Soc. 1928, 1126-1127. (2) Ost, J. prakt. Chem. (2) 15, 308-314 (1877).

#### 3:4978 2,3,5,6-TETRACHLOROBENZO-QUINONE-1,4

(Tetrachloro-p-benzoquinone; chloranil)

Cl Cl Cl Beil. VII - **636** VII<sub>1</sub>-(**347**)

[See also tetrachlorohydroquinone (3:4941).]

Golden-yellow cryst. from AcOH, acetone, C<sub>6</sub>H<sub>6</sub>, toluene, or by sublimation. — For crystallographic data see (13) (14) (15).

C on careful htg. sublimes without melting (16); for purification of C by sublimation (4) under reduced press. (17) (18) see indic. refs.; for study of sublimation press. of C see (19).

Č is insol. aq.; alm. insol. in cold alc.; sparingly sol. hot alc. but somewhat more readily in ether; Č is sparingly sol. CHCl<sub>2</sub>, CCl<sub>4</sub>, CS<sub>2</sub>; insol. lgr.

[For study of heat of formn. of C see (20); for studies of heat of combustion see (21) (22).]

[For studies of bactericidal properties of C (23) or toxicity of C (or its associated by-products or contaminants) (24) (25) (26) see indic. refs.

 $\bar{C}$  comprises the essential constituent (99% (27)) of the commercial fungicide "Spergon" [for studies on use of  $\bar{C}$  as (seed) fungicide see (27) (28) (29) (30) (31) (32); for studies on toxicity of  $\bar{C}$  in such use see (33)].

#### PREPARATION OF C

 $\bar{C}$  because of its great resistance to further oxidation is formed as the end product of the oxidation with HCl + KClO<sub>3</sub> of a very large number of aromatic organic compounds [e.g., for a list of 16 such which do and 31 which do not give  $\bar{C}$ , see (34); for extension to 130 cases which do, see (35) cf. (36).]

 $\bar{C}$  can also be prepared by a very large number of methods (see below): of these the best appear to be those from benzoquinone-1,4 (1:9025) using conc. HCl + 30% H<sub>2</sub>O<sub>2</sub> at 60° (97% yield (37)) cf. (38), and from p-aminophenol by conversion with SO<sub>2</sub>Cl<sub>2</sub> (10 moles) at 70° (6) or at 40-45° for 4 days (73% yield (1)) to N,N-dichloro-2,3,5,6-tetrachloro-4-aminophenol, m.p. 71.5° (6), and reaction of the latter with boilg. EtOH (1) (6) in pres. of an inert solvent (39) to give (80-85% overall yield from p-aminophenol (1)) of  $\bar{C}$  of exceptional purity and free from 2,3,5-trichlorobenzoquinone-1,4 (3:4672).

#### FROM VARIOUS PHENOLS

From phenol. [For prepn. of  $\bar{C}$  from phenol (1:1420) with conc.  $HNO_3 + fumg$ . HCl (i.e., with aqua regia) on htg. in open flask in direct sunlight (25% yield (17)) (40), or in fumg. HCl with  $Cl_2$  followed by htg. with conc.  $HNO_3$  at 100° for 20 hrs. (34% yield (17)) cf. (40), by electrolysis in HCl/AcOH (41), or by action of conc.  $HCl + KClO_3$  (42) (43) (note, however, that this method gives (17) (44) (45) (46) (47) a product seriously contaminated with 2,3,5-trichlorobenzoquinone-1,4 (3:4672) q.v.) see indic. refs. — For prepn. of  $\bar{C}$  from phenol-contg. industrial waste waters with  $Cl_2$  in alk. soln. followed by oxidn. with  $HNO_3$  see (48) (49) (50) (51) (52).]

From various halophenols. From 2,4,6-trichlorophenol. [For prepn. of  $\bar{C}$  from 2,4,6-trichlorophenol (3:1673) with ClSO<sub>3</sub>H (53), with Cl<sub>2</sub> + fumg. H<sub>2</sub>SO<sub>4</sub> followed by ClSO<sub>3</sub>H (90% yield (54)), with aqua regia (17) (40), with HCl + KClO<sub>3</sub> (42) (55), with CrO<sub>3</sub>/AcOH (15), or with K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>/H<sub>2</sub>SO<sub>4</sub> (15) see indic. refs. — Note also that many of the processes starting from phenol (above) doubtless pass through 2,4,6-trichlorophenol.]

From pentachlorophenol. [For prepn. of  $\tilde{C}$  from pentachlorophenol (3:4850) with ClSO<sub>3</sub>H (53) (54), with cold fumg. HNO<sub>3</sub> (56) (57) (58), or with Cl<sub>2</sub> + conc. HCl at 100° (58) see indic. refs.]

From "hexachlorophenol." [For form. of  $\bar{C}$  from "hexachlorophenol" (hexachlorocyclohexadien-1,4-one-3) (3:3180) with conc. (68) or fumg. (69) HNO<sub>3</sub>, with conc. H<sub>2</sub>SO<sub>4</sub> at 100° (68) (69), with aq. or HCl in s.t. at 160° (69), or with AlCl<sub>3</sub> ( $\frac{1}{8}$  mole) in s.t. at 160° (70) see indic. refs.]

From 2,4,6-triiodophenol. [For prepn. of  $\bar{C}$  from 2,4,6-triiodophenol with  $Cl_2$  in boilg. AcOH soln. (100% yield) see (10).]

From various nitroso- and nitro-phenols. [For prepn. of  $\bar{C}$  from p-nitrosophenol in conc. HCl at 90° with Cl<sub>2</sub> see (59).]

[For form. of  $\tilde{C}$  from o-nitrophenol (17) (40) (60), p-nitrophenol (17) (40) (60), 2,4,6-trinitrophenol (picric acid) (17) (40) (61) with aqua regia, or from picric acid with  $Cl_2$  (61) or  $Cl_2 + I_2$  (62) in hot aq. soln., or from picric acid with  $HCl + KClO_3$  (42) (47) see indic. refs.; for formn. of  $\tilde{C}$  from p-nitrophenol or 2,4-dinitrophenol with aq. NaOCl soln. see (63).]

From polyhydric phenols. From resorcinol. [For formn. of C from resorcinol (1:1530) with ClSO<sub>3</sub>H (40 wt. pts.) at 150-160° for 25 hrs. (note that much 2,3,5-trichlorobenzo-quinone-1,4 (3:4672) is also formed) see (64) cf. (54).]

From hydroquinone. [For formn. of  $\bar{C}$  from hydroquinone (1:1590) with  $Cl_2$  in AcOH (5), with  $Cl_2$  + conc. HCl at 100° (65) (53), with aqua regia (4), with  $ClSO_3H$  at 150-160° (8) see indic. refs.; for formn. of  $\bar{C}$  from hydroquinone-pyridinium chloride with SOCl<sub>2</sub> (2) or from hydroquinone-2,6-bis-(sulfonyl chloride) with  $PCl_5$  in s.t. at 140-150° for 6 hrs. (67) see indic. refs.]

From pyrogallol. [For formn. of C from pyrogallol (1:1555) with ClSO<sub>3</sub>H at elevated temp. see (66).]

From various quinones. From p-benzoquinone. [For form. of  $\bar{C}$  from benzoquinone-1,4 (1:9025) with  $Cl_2$  in conc. HCl (53) (65) with  $Cl_2$  in AcOH (71) cf. (72), or with  $HCl + KClO_3$  (42) see indic. refs.]

From the dichloro-p-benzoquinones. [For form. of C from 2,3-dichlorobenzoquinone-1,4 (3:2855), from 2,5-dichlorobenzoquinone-1,4 (3:4470), or from 2,6-dichlorobenzoquinone-1,4 (3.3750) with Cl<sub>2</sub> in CHCl<sub>3</sub> see (73).]

From trichloro-p-benzoquinone. [For formn. of  $\bar{C}$  from 2,3,5-trichlorobenzoquinone-1,4 (3:4672) with  $Cl_2 + I_2 + aq$ . (47), or with  $Cl_2 + HCl$  (65), see indic. refs.]

From various amines. [For form. of  $\bar{C}$  from aniline in 10% HCl by electrolytic oxidation (23% yield (9)) (74), with HCl + KClO<sub>3</sub> (75) (76), with Na<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> + HCl (89), or with aqua regia (60) see indic. refs. — For form. of  $\bar{C}$  from diphenylamine, 2,4-dichloroaniline, m-nitroaniline, aniline black, or phenylhydrazine with aqua regia see (60).]

[For form. of  $\bar{C}$  from p-phenylenediamine with aqua regia (60) (4), with ClSO<sub>3</sub>H (large excess) at 150-160° for 5 hrs. (77), with Cl<sub>2</sub> in AcOH (78), or with HCl + KClO<sub>3</sub> (3) see indic. refs.; from 2,6-dichloro-p-phenylenediamine with HCl + KClO<sub>3</sub> see (79).]

[For formn. of  $\bar{C}$  from o-aminobenzoic acid (anthranilic acid) (42) (80), m-aminobenzoic acid (80), p-aminobenzoic acid (80), p-tyrosine ( $\alpha$ -amino- $\beta$ -(p-hydroxyphenyl)propionic acid) (81) with HCl + KClO<sub>3</sub> see indic. refs.; from sulfanilic acid (aniline-p-sulfonic acid) with aqua regia see (60).]

[For form. of  $\tilde{C}$  from 2,3,5,6-tetrachloro-p-phenetidine by diazotization and boilg. see (82).]

From miscellaneous sources. [For formn. of  $\bar{C}$  from 1,2,4,5-tetrachlorobenzene (3:4115) as by-product of nitration with fumg. HNO<sub>3</sub> see under (3:4115), from hexachlorobenzene (3:4939) on boilg. with mixt. of fumg. HNO<sub>3</sub> + conc. H<sub>2</sub>SO<sub>4</sub> see (83); from N-nitro-2,4,6-trichloroaniline in dil. alc. or AcOH soln. with HCl or H<sub>2</sub>SO<sub>4</sub> see (84); from N-nitro-acet-2,3,5,6-tetrachloroanilide on bollg. in toluene or xylene see (85); from tetrachlorobenzo-quinone-1,4-mono-(2,4,6-trichlorophenylimide) by H<sub>2</sub>SO<sub>4</sub> hydrolysis see (86); from various azo dyes by oxidn. with NaOCl soln. at 0° see (87); from anisolesulfonic acid or phenetolesulfonic acid in aq. soln. with Cl<sub>2</sub> see (88); from nitrobenzene with ClSO<sub>3</sub>H (20 wt. parts) at 150° for 20 hrs. (95% yield) see (7).]

#### CHEMICAL BEHAVIOR OF C

#### REDUCTION OF C

C upon reduction by a wide variety of reagents gives tetrachlorohydroquinone (3:4941) the text of which should be consulted for details.

#### OXIDATION OF C

Č is extremely stable to oxidizing agents in neutral or acid soln. and is unaffected by aqua regia or hot conc. HNO<sub>3</sub>.

#### BEHAVIOR WITH CHLORINE

[C with MnO<sub>2</sub> + conc. HCl in s.t. at 180° for 10 hrs. adds 1 mole Cl<sub>2</sub> giving (45) hexachlorocyclohexen-2-dione-1.4 [Beil. VII-574], m.p. 89° (45).]

#### BEHAVIOR WITH OTHER INORGANIC REACTANTS

In many of the reactions of  $\bar{C}$  with other reagents, 2 of the chlorine atoms are often replaced by other groups as exemplified below.

With aqueous alkali.  $\bar{C}$  with dil. aq. alk. at 70-80° readily replaces 2 chlorine atoms by hydroxyls giving (16) (3) (90) (91) (92) 2,5-dichloro-3,6-dihydroxybenzoquinone-1,4 (chloranilic acid) (3:4970), m.p. 282-284° s.t. (92).

With ammonia. [C with alc. NH<sub>3</sub> on boilg, replaces 2 chlorine atoms by amino groups giving (75% yield (103)) (93) (94) 2,5-dichloro-3,6-diaminobenzoquinone-1,4 (chloroanilamide) [Beil. XIV-144]. — Note, however, that C with aqueous NH<sub>4</sub>OH gives (16) 2,5-dichloro-3-amino-6-hydroxybenzoquinone-1,4 (chloranilamic acid) [Beil. XIV-250].]

With various salts. [ $\bar{C}$  with sodium azide as directed (95) (96) gives 2,5-dichloro-3,6-bis-azidobenzoquinone-1,4. —  $\bar{C}$  with NaNO<sub>2</sub> (2 moles) in conc. aq. soln. on warming gives (97) cf. (98) 2,5-dihydroxy-3,6-dinitrobenzoquinone-1,4 (nitranilic acid) [Beil. VIII-384, VIII<sub>1</sub>-(683)]. —  $\bar{C}$  with KCN (2 moles) in 85% MeOH gives (99) 2,5-dihydroxy-3,6-dicyanobenzoquinone-1,4 (cyananilic acid) [Beil. X<sub>1</sub>-(520)].]

[ $\tilde{C}$  with warm dilute aq. acid KHSO<sub>3</sub> gives mainly (100) (101) the salt of 2,5-dichloro-3,6-disulfohydroquinone [Beil. XI-301], while with conc. solns. (100) or with neutral K<sub>2</sub>SO<sub>3</sub> (101) (102) the main prod. is the salt of thiochronic acid [Beil. XI-302, XI<sub>1</sub>-(80)], now (102) recognized as cyclohexadien-2,5-ol-4-one-1-pentasulfonic acid-2,3,4,5,6.]

With PCl<sub>5</sub>. [C with PCl<sub>5</sub> + PCl<sub>3</sub> in s.t. at 190-200° for 4 hrs. gives (95% yield (104)) cf. (43) hexachlorobenzene (3:4939); note also, however, that C with PCl<sub>5</sub> + PCl<sub>3</sub> at 135-140° followed by treatment with aq. may also yield (45) (105) mono-(pentachlorophenyl)-phosphoric acid (monohydrate), m.p. 224° (105), and other products.]

#### BEHAVIOR OF C WITH ORGANIC REACTANTS

With aromatic hydrocarbons. [C with various aromatic hydrocarbons yields addition compounds: e.g., C with 1,2,4,5-tetramethylbenzene (durene) (1:7195) in hot AcOH gives (106) (107) a red cpd. C.2 durene; C with hexamethylbenzene (1:7265) gives from hot AcOH (108) violet-brown ndls. of a 1:1 cpd., m.p. 198-202° (108) (for further study of this prod. see (109) (110)); C with acenaphthene (1:7225) gives (111) (112) from AcOH (107) a violet 1:1 addn. cpd.]

With dienes and other unsaturates.  $\bar{C}$  with many dienes and other highly unsaturated compounds forms addn. products and/or gives color reactions.

[Č with cyclopentadiene (1:8030) in C<sub>6</sub>H<sub>6</sub> in pres. of a little Me<sub>3</sub>N gives (113) a 1:1 addn. cpd., yellowish ndls. from abs. alc., m.p. 146-146.5° (113) (corresp. dibromide with Br<sub>2</sub> in CHCl<sub>3</sub> in direct sunlight, lfts. from AcOEt, m.p. 269° (113)); note that in absence of Me<sub>3</sub>N yield in 14 days is only 40%, in presence of Me<sub>3</sub>N 100% (for study of cat. influence of Me<sub>3</sub>N and of CCl<sub>3</sub>.COOH see (114)).]

[For study of color reactions of  $\bar{C}$  in CHCl<sub>3</sub> soln. with various trienes see (115) cf. (116) (117).]

[For studies of influence of  $\bar{C}$  on polymerization of styrene (1:7435) see (118) (119) (120); for study of effect of  $\bar{C}$  on polymerization or depolymerization of natural rubber see (121); for use of  $\bar{C}$  as vulcanization accelerator see (122).]

With organic OH (or SH) reactants. With alcohols. [C in boilg. MeOH gradually treated with calcd. amt. 1% MeOH/KOH gives (123) (124) a mixt. of 2,5-dichloro-3,6-

dimethoxybenzoquinone-1,4 (chloranilic acid dimethyl ether) [Beil. VIII-380], dark red pr. from C<sub>6</sub>H<sub>6</sub>, m.p. 141-142° (123), and 2,6-dichloro-3,5-dimethoxybenzoquinone-1,4 (isochloroanilic acid dimethyl ether) [Beil. VIII-387], dark red pr., m.p. 159° (125) (126), 157-158° (123), 155.5° (127). — Note, however, that  $\tilde{C}$  with MeOH/NaOMe (5-6 moles) gives 2,5-dichloro-3,6-dimethoxybenzoquinone-1,4-bis (monomethyl acetal) [Beil. VIII-381] accompanied by tetrachlorohydroquinone (3:4941).]

With phenols. [C (1 mole) with phenol (2 moles) in aq. KOH at 100° gives (128) 2,5-dichloro-3,6-diphenoxybenzoquinone-1,4 (chloranilic acid diphenyl ether) [Beil. VIII-380], dark red pr. from C<sub>6</sub>H<sub>6</sub>, m.p. 243° (128). — C (1 mole) with aq. K p-cresolate (2 moles) at 100° gives (129) 2,5-dichloro-3,6-di-(p-toloxy)benzoquinone-1,4 (chloranilic acid dip-tolyl ether) [Beil. VIII<sub>1</sub>-(681)], cryst. from toluene, m.p. 254-255° (129).]

With mercaptans. [Č (1 mole) with EtSH (4 moles) with EtOH/KOH (4 moles) as directed gives (95% yield (130)) 2,3,5,6-tetra-kis-(ethylthio)benzoquinone-1,4 [Beil. VIII-535], dark green ndls. from alc., m.p. 90-91° (131).]

With thiophenols. [Č (1 mole) with C<sub>6</sub>H<sub>5</sub>SH in alk. soln. might be expected to yield 2,3,5,6-tetra-kis-(phenylmercapto)benzoquinone-1,4, but neither this reaction nor the expected product appears to have been reported. — However, various analogous cases are known: e.g., Č (1 mole) with p-thiocresol (4 moles) in AcOH at 100° for ½ hr. gives (132) 2,3,5,6-tetra-kis-(p-tolylthio)benzoquinone-1,4, cryst. from AcOH, m.p. 203° (132). — Č (1 mole) with o-nitrothiophenol in boilg. EtOH for 1 hr. gives (96) 2,3,5,6-tetra-(o)-nitrophenylmercapto)benzoquinone-1,4, no m.p. given.]

With organic amines. General. The behavior of  $\bar{C}$  with aliphatic amines appears to have been little studied from the structural viewpoint. [However, for studies on color reactions of  $\bar{C}$  with prim., sec., and ter-amines (or their salts) (133), for use of  $\bar{C}$  (in epichlorohydrin soln.) as a test for plasmochin (134) (135), or for use of  $\bar{C}$  in detection of MeNH<sub>2</sub>, Me<sub>2</sub>NH, or Me<sub>3</sub>N and differentiation from NH<sub>3</sub> (136) (137), for use in spot test reactions of 38 different amines (147) see indic. refs.]

With primary aliphatic amines. [C with MeNH<sub>2</sub> might be expected to give 2,5-dichloro-3,6-bis-(methylamino)benzoquinone-1,4 or even 2,3,5,6-tetra-kis-(methylamino)benzoquinone-1,4, but the reaction has not been reported and neither product is known.]

With primary aromatic amines. [ $\bar{C}$  with aniline in boilg. alc. refluxed 30 min. gives (81% yield (138)) (100) (93) (139) 2,5-dichloro-3,6-dianilinobenzoquinone-1,4 [Beil. XIV-144, XIV<sub>1</sub>-(421)], yel.-br. lfts. from  $C_6H_6$  or nitrobenzene, m.p. 292-293° (138), 290° (140), 288-290° (141); note that this product serves as bases for prepn. of many complex dyestuffs which cannot be discussed here. — $\bar{C}$  with many other homologous and analogous primary aromatic amines behaves similarly.

[ $\bar{C}$  with phenylhydrazine in absol. alc. evolves  $N_2$  and gives (10) a chlorine-contg. prod., m.p. 229-230°, of undetermined structure.]

With various organometallic reactants. [ $\tilde{C}$  (1 mole) in alc. with diethyl sodiomalonate (4 moles) in  $C_6H_6$  gives (10% yield (142)) tetraethyl 2,5-dichloro-p-benzoquinone-3,6-dimalonate [Beil. X-940], yel. ndls. from alc., m.p. 132° (143).]

[For behavior of C with ethyl sodio-acetoacetate see (144) (145), Beil. X-860, and Beil. X-935.]

[For behavior of C with excess C<sub>6</sub>H<sub>5</sub>MgBr see (146).]

© Color tests for C. Of the large number of color tests shown by C with various reactants, the following have been especially employed as preliminary tests for C itself; note that for details, limitations, etc., the original references should be consulted.

With dimethylaniline. C on warming with dimethylaniline gives intense violet color (Mulliken).

With ethyl cyanoacetate. C with ethyl cyanoacetate (2-3 drops) + excess alc. NH<sub>4</sub>OH (2-3 ml. of mixt. of 1 pt. abs. EtOH + 1 pt. conc. NH<sub>4</sub>OH) gives intense bluish-violet coloration, changing to blue, green, and finally reddish brown (148). [Note that the reaction is also shown by certain other quinones, e.g., benzoquinone-1,4 (1:9025), o-toluquinone, thymoquinone, and naphthoquinone-1,4 (1:9040), but is not given by anthraquinone (1:9095), phenanthraquinone (1:9086), naphthoquinone-1,2 (1:9062), or 2,5-dichloro-3,6-diaminobenzoquinone-1,4 (chloranilamide) (148)]

With triphenylphosphine.  $\bar{C}$  with 20% soln. of  $(C_6H_5)_3P$  in CHCl<sub>3</sub> gives (149) a winered color. [Note, however, that a similar behavior is also shown by 2,3,5-trichlorobenzo-quinone-1.4 (3:4672) and certain other quinones (149).]

3:4978 (1) Eller, Lorenz, Ber. 58, 494-497 (1925). (2) Koenigs, Greiner, Ber. 64, 1047 (1931).
(3) Graebe, Ann. 263, 16-31 (1891). (4) Datta, J. Am Chem. Soc. 36, 1011-1013 (1914). (5) Datta, Bhoumik, J. Am. Chem. Soc. 43, 313 (1921). (6) Eller, Klemm, Ber. 55, 219, 223-224 (1922). (7) Pollak, Heimburg-Krauss, Katscher, Lustig, Monatsh. 55, 373 (1930). (8) Pollak, Gebauer-Fülnegg, Monatsh. 47, 115 (1926). (9) Erdélyi, Ber. 63, 1200-1201 (1930). (10) King, McCombie, J. Chem. Soc. 103, 225-226 (1913).

(11) Conant, Fieser, J. Am. Chem. Soc. 45, 2207-2218 (1923). (12) Hall, Conant, J. Am. Chem. Soc. 49, 3052 (1927). (13) Chorghade, Z. Krist. A-101, 418-424 (1939); Cent. 1939, II 2909; C.A. 33, 9078 (1939). (14) Fels, Z. Krist. 37, 477 (1903). (15) Levy, Schultz, Ann. 210, 154-155, 160 (1881). (16) Erdmann, J. prakt. Chem. (1) 22, 279-282 (1841), Ann. 48, 314-315 (1843). (17) Kempf, Moehrke, Ber. 47, 2615-2622 (1914). (18) Kempf, J. prakt. Chem. (2) 78, 236 (1908). (19) A. S. Coolidge, M. S. Coolidge, J. Am. Chem. Soc. 49, 100-104 (1927). (20) Sjöstrom, Svensk Kem. Tid. 48, 121-124 (1936), Cent. 1937, I 58; C.A. 30, 6634 (1936).

(21) Valeur, Ann. chim. (7) 21, 499-500 (1900). (22) Swietoslawski, Starczewska, J. chim. phys. 22, 399-401 (1925). (23) Hilpert, Buochem. Z. 166, 71-88 (1925), Cent. 1926 I, 2011; C.A. 20, 1861 (1926). (24) Staub, Biochem. Z. 178, 167-180 (1926), Cent. 1928, II 2576; C.A. 21, 1310 (1927). (25) Staub, Biochem. Z. 179, 125-143 (1926); Cent. 1928, II 2576, C.A. 21, 2326 (1927). (26) Staub, Biochem. Z. 179, 227-237 (1926); Cent. 1928, II 2576; C.A. 21, 2327 (1927). (27) Felix, Phytopathology, 32, 4 (1942), C.A. 36, 2674 (1942). (28) Middleton, Plant Disease Reptr. 27, 169-170 (1943); C.A. 37, 4518 (1943). (29) McNew, Science 96, 118-119 (1942). (30) Elmer, Plant Disease Reptr. 28, 44-46 (1942); C.A. 36, 3315 (1942).

(31) McNew, Farm Research (Quart. Bull. N. Y. Agr Expt. Sta) 8, No 2, 9-11 (1942); C.A. 36, 3897 (1942). (32) Horsfall, Conn. Vegetable Grovers Assoc., Proc. Ann. Meeting, 28, 72-74 (1940); C.A. 36, 2074 (1942). (33) McGavack, Boyd, Terranova, J. Ind. Hyg. Toxicol, 25, 98-110 (1943). (34) Denis, Bull. soc. chim. Belg. 35, 375-379 (1926), Cent. 1927, I 721; C.A. 21, 905 (1927). (35) Colmant, Ann. soc. sci. Bruxelles B-51, 27-39 (1931); Cent. 1931, I 3705, C.A. 25, 3323 (1931). (36) Michiels, Hinchot, Bull. acad. roy. med. Belg. (5) 5, 213-228 (1935), C.A. 19, 3260 (1925). (37) Gallotti, Ann. chim. applicata 22, 602 (1932), Cent. 1933, I 1432, C.A. 27, 278 (1933). (38) Arnold, Collins, Zenk, J. Am. Chem. Soc. 62, 983 (1940). (39) Eller, Lorenz, Ger. 390,623, Feb. 21, 1924, Cent. 1924, I 1869; not in C.A. (40) Kempf, Mochike, Ger. 256,034, Feb. 4, 1913; Cent. 1913, I 758; C.A. 7, 2096-2097 (1913).

(41) Fichter, Glantzstein, Ber. 49, 2473-2481 (1916). (42) Hofmann, Ann. 52, 57-65 (1844).
(43) Graebe, Ann. 146, 8-18 (1868). (44) Bouveault, Ann. chm. (8) 13, 142-144 (1908). (46) Zincke, Fuchs, Ann. 267, 15-19, (1892). (46) Knapp, Schultz, Ann. 210, 174-176 (1881).
(47) Stenhouse, Ann. Suppl. 6, 208-213 (1868). (48) Chulkov, Parini, Staroselets, Ory Chem. Ind. (U.S.S.R.) 3, 97-101 (1937); Cent. 1938, I 1419, C.A. 31, 4967 (1937). (49) Chulkov, Shvedova, Parini, Orp. Chem. Ind. (U.S.S.R.) 2, 539-542 (1936); Cent. 1937, I 2866; C.A. 32, 8386 (1938). (50) Chulkov, Parini, Chartova, J. Applied Chem. (U.S.S.R.) 9, 1482-1488 (1936); Cent. 1937, I 4408; C.A. 31, 2723 (1937).

(51) Chulkov, Shvedova, Staroselets, Russ. 50,439, Feb. 28, 1937; Cent. 1938, II 593; C.A. 31, 8550 (1937). (52) Chulkov, Chartova, Russ. 50,440, Feb. 28, 1937; Cent. 1938, II 177, C.A. 31, 8550 (1937). (53) Schuloff, Pollak, Chem. Ztg. 56, 569-570 (1932); Cent. 1932, II 1510; [C.A. 26, 5086 (1932)]. (54) Heimberg, Ger. 511,209, Nov. 7, 1930; Cent. 1931, I 1360, C.A. 25, 1266 (1931). (55) Leger, Compt. rend. 146, 696 (1908); Bull. soc. chim. (4) 3, 578-582 (1908). (56) Merz, Weith, Ber. 5, 460 (1872). (57) Biltz, Giese, Ber. 37, 4018 (1904). (58) Barral, Bull. soc. chim. (3) 27, 272, 275-278 (1902). (59) Holliday and Co., Ltd., Shaw, Brit. 274,700, Aug. 18, 1927; Cent. 1927, II 2227; C.A. 22, 2172 (1928). (60) Datta, Chatterjee, J. Am. Chem. Soc. 38, 1817-1821 (1916).

(61) Stenhouse, Ann. 66, 242 (1848). (62) Stenhouse, Ann. 145, 362-364 (1868). (63)

Seyewetz, Chaix, Bull. soc. chim. (4) 41, 197-199 (1927). (64) Pollak, Gebauer-Fülnegg, Monatsh. 46, 513-514 (1925). (65) Schuloff, Austrian, 127,813, April 25, 1932; Cent. 1932, II 924; C.A. 26. 4348 (1932). (66) Pollak, Gebauer-Fulnegg, Monatsh. 47, 543, 558 (1926). (67) Litvay, Riesz, Landau, Ber. 62, 1867 (1929). (68) Biltz, Ber. 37, 4009-4010 (1904). (69) Barri Bull. soc. chim. (3) 11, 705-710 (1894). (70) Barral, Bull. soc. chim. (3) 13, 345-348 (1895). (69) Barral.

(71) Chelintsev, Compt. rend. acad. sci. U.R.S.S. 14, 289-291 (1937), Cent. 1937, II 381; [C.A. 31, 7350 (1937)]. (72) Chelintsev, Compt. rend. acad. sci. U.R.S.S. 2, 244-247 (1935); Cent. 1936, I 2537, [C.A. 29, 6220 (1935).] (73) Oliveri-Tortorici, Gazz. chim. ital. 27, II 584-586 (1897). (74) Erdelyi, Magyar Chem. Folyorrat 35, 15-16 (1929), Cent. 1929, II 2177; C.A. 23, (75) Fritzsche, J. prakt. Chem. (1) 28, 203 (1843). (76) Hofmann, Ann. 4937-4938 (1929). 47, 67 (1843). (77) Lustig, Katscher, Monatsh. 48, 96 (1927). (78) Krause, Ber. 12, 52 (1879). (79) Witt, Toche-Mittler, Ber. 36, 4390-4392 (1903). (80) Widmann, Ann. 193, 234-240 (1878).

(81) Stadeler, Ann. 116, 99-102 (1860). (82) Bures, Kovarovicova, Casopis Českoslov. Lékárnictva 10, 197-202, 233-239 (1930), Cent. 1930, II 2775; [C.A. 25, 1816 (1931)]. (83) Istrati, Bull. soc. chim. (3) 3, 184-186 (1890). (84) Orton, Pearson, J. Chem. Soc. 93, 731 (1908). (85) Peters, Rowe, Stead, J. Chem. Soc. 1943, 372. (86) Bradfield, Cooper, Orton, J. Chem. Soc. 1927, 2859. (87) Seyewetz, Chaix, Bull. soc. chim. (4) 41, 333-335, 337 (1927). (88) Datta, Mitter, J. Am. Chem. Soc. 41, 2030-2032 (1919). (89) Elbs, Brunnschweiler, J. prakt. Chem. (2) 52, 560 (1895). (90) Graebe, Ann. 146, 30-32 (1868).

(91) Stenhouse, Ann. Suppl. 8, 14-18 (1872). (92) Conant, Fieser, J. Am. Chem. Soc. 46, 1866 (1924). (93) Knapp, Schultz, Ann. 210, 183 189 (1881). (94) Laurent, Ann. 52, 347-348 (1844). (95) Korczynski, Bull. soc. chim. (4) 35, 1189-1190 (1924). (96) Fries, Ochwat, Ber. 56, 1302-1304 (1923). (97) Nef, Ber. 20, 2028-2031 (1887). (98) Nef, Am. Chem. J. 11, 17-26 (1889). (99) Richter, Ber. 44, 3472-3473 (1911); 45, 1682 (1912). (100) Hesse, Ann. 114, 306, 324, 327 (1860).

(101) Graebe, Ann. 146, 36-52 (1868). (102) Jackson, Beggs, J. Am. Chem. Soc. 36, 1210-1218 (1914). (103) Fieser, Martin, J. Am. Chem. Soc. 57, 1845, 1847 (1935). (104) Graebe, Ann. 263, 30-31 (1891). (105) Barral, Bull. soc. chim. (3) 13, 419-420 (1895). (106) Pfeiffer. Ann. 404, 17-18 (1914). (107) Pfeiffer, Ber. 55, 418, 427-428 (1922). (108) Pfeiffer, Ann. 412, 293 (1916). (109) Lifschitz, Ber. 49, 2050-2054 (1916). (110) Michaelis, Granick, J. Am. Chem. Soc. 66, 1025, 1028 (1914).

(111) Haakh, Ber 42, 4595 (1909); J. prakt Chem. (2) 82, 548 (1910). (112) Dimroth, Bamberger, Ann. 438, 106-107 (1924). (113) Albrecht, Ann. 348, 45-46 (1906). (114) Wassermann, J. Chem. Soc. 1942, 618-621. (115) Kuhn, Wagner-Jauregg, Helv. Chem. Acta, 13, 11 (1930). (116) Kesting, Ber. 62, 1422-1424 (1929). (117) Skraup, Freundlich, Ann. 431, 262 (118) Price, J. Am. Chem. Soc 65, 2380-2381 (1943). (119) Breitenbach, Schneider, Ber. 76, 1089-1092 (1943). (120) Breitenbach, Taglieber, Ber. 76, 272-280 (1943).

(121) Spence, Ferry, J. Am. Chem. Soc. 59, 1648-1654 (1937). (122) Fisher (to Naugatuck Chem. Co.), French 740,978, Feb. 3, 1933; Cent. 1933, I 3134; CA. 27, 2845 (1933). (123) Kehrmann, J. prakt. Chem. (2) 40, 368-370 (1889). (124) Kehrmann, J. prakt. Chem. (2) 43, 260-267 (1891). (125) Graebe, Hess, Ann. 340, 239-240 (1905). (126) Kohn, Gurewitsch. Monatsh. 49, 186 (1928). (127) Hunter, Levine, J. Am. Chem Soc. 48, 1614 (1926). (128) Jackson, Grindley, Am. Chem. J. 17, 594-595, 602-603 (1895). (129) Torrey, Hunter, J. Am. Chem. Soc. 34, 711 (1912). (130) Sammis, J. Am. Chem. Soc. 27, 1121-1122 (1905).

(131) Grindley, Sammis, Am. Chem. J. 19, 292 (1897). (132) R. Pollak, E. Riesz, J. Riesz, Monatsh. 58, 133 (1931). (133) Sivadjian, Bull. soc. chim. (5) 2, 623-625 (1935). (134) Slvadjian, J. pharm. chim. (8) 13, 528-529 (1931); CA. 26, 2277 (1932); Cent. 1931, II 475. (135) Schuleman, Schönhöfer, Wingler, Cent. 1928, I 2193; C.A. 23, 2453 (1929). (136) Berthelot, Amoureux, Bull. soc. chim. biol. 18, 649-651 (1936); Cent 1936, II 3707; [C.A. 30, 5532 (1936)]. (137) Tsalpatani, Bul. Soc. Strinte Bucuresci 16, 167 (1907); Cent. 1908, I 299; C.A. 2, 1106 (1908). (138) Shibata, Tech. Repts. Tohoku Imp. Univ. 7, No. 2, 53-71 (1928); Cent. 1928, I 2619; [C.A. 22, 1585 (1928)]. (139) Andresen, J. prakt. Chem. (2) 28, 425-427 (1883). (140) Niemeyer, Ann. 228, 333 (1885).

(141) Schutz, Buschmann, Wissebach, Ber. 56, 1975 (1923). (142) Stieglitz, Am. Chem. J. 13, 38-42 (1891). (143) Grindley, Jackson, Ber. 26, 398 (1893). (144) Ikuta, J. prakt. Chem. (3) 45, 65-66, 71-72 (1892). (145) Graebe, Levy, Ann. 283, 246-252 (1894). (146) Clar, Engler, Ber. 64, 1600-1601 (1931). (147) Frehden, Goldschmidt, Mikrochim. Acta 1, 347-351 (1937). (148) Craven, J. Chem. Soc. 1931, 1605-1606. (149) Schönberg, Ismail, J. Chem. Soc. 1940. 1376-1377.

M.P. 295° (1) 294.5° (2) 293° (3) 290–292° (4) 286° u.c. (5)

Colorless ndls. from hot aq. in which it is very spar. sol. requiring 130 pts. for soln. (4); eas. sol. alc., spar. sol. ether, insol. C<sub>6</sub>H<sub>6</sub> or CHCl<sub>3</sub> (2).

[For prepn. of  $\bar{\mathbb{C}}$  from 4-chloro-1,3-dimethylbenzene (3:8665) by oxidn. with aq. KMnO<sub>4</sub> (1) in pres. of MgSO<sub>4</sub> (2) see indic. refs.; from 2-chloro-5-methylphenyl methyl ketone (3), 2-chloro-5-methylbenzoic acid (6) (3:4615), or  $\alpha,\beta$ -bis-(2-chloro-5-methylbenzoyl)ethylene (5) by oxidn. with KMnO<sub>4</sub> see indic. refs.; from sodium 1,3-dimethylbenzenesulfonate [Beil. XI-123, XI<sub>1</sub>-(34)] with SOCl<sub>2</sub> in s.t. at 230°, followed by treatment with aq. alk., see (7); from 4-chloroisophthaldiamide (see below) by hydrolysis with boilg. aq. KOH see (4).]

- Dimethyl 4-chloroisophthalate: unreported.
- --- Diethyl 4-chloroisophthalate: unreported.
- 4-Chloroisophthaldiamide: ndls., lfts., or pl. from 17 pts. boilg. aq., m.p. 232-233° (4). [From isophthalic acid-4-arsinic acid (1,3-dicarboxybenzenearsinic acid-4, 1,3(HOOC)<sub>2</sub>.C<sub>6</sub>H<sub>3</sub>.As(O)(OH)<sub>2</sub>, with PCl<sub>5</sub> at 110° for 3 hrs. followed by treatment in toluene soln. with NH<sub>3</sub> (4).]

3:4980 (1) Davies, Wood, J. Chem. Soc. 1928, 1126. (2) Ullmann, Uzbachian, Ber. 36, 1799 (1903). (3) Mayer, Freund, Ber. 55, 2052 (1922). (4) Gough, King, J. Chem. Soc. 1930, 690-691. (5) Conant, Lutz, J. Am. Chem. Soc. 47, 891 (1925). (6) Scholl, Meyer, Keller, Ann. 513, 298 (1934). (7) Farbwerke Meister Lucius & Brüning, Ger. 282,133, Feb. 15, 1915; Cent. 1915, I 464.

M.P. 306-306.5° (1) 305-306° cor. (2) 305° (3)

Colorless ndls. from hot aq.; sublimes on cautious gradual htg.

[For prepn. of  $\bar{\mathbb{C}}$  from 2,5-dichloro-1-methyl-4-isopropylbenzene (2,5-dichloro-p-cymene [Beil. V-423,  $V_{2}$ -(326)] by oxidn. with 20 pts.  $HNO_3$  (D=1.15) in s.t. at  $180-200^\circ$  for 10-12 hrs. (1) (3) see indic. refs.; from 2,5-dichlorocyclohexadiene-1,4-dicarboxylic acid. 1,4 (2,5-dichloro-3,6-dihydroterephthalic acid) [Beil. IX-785] in 12% yield by short boilgwith 20%  $HNO_3$  (some 2,5-dichloro-3-nitroterephthalic acid is also formed) see (4) (2); from 2,5-dichloro-1,4-bis-(trichloromethyl)benzene (5) by hydrolysis with  $H_2SO_4$  (66° B6) at  $70-80^\circ$  see (5).]

 $Ag_2\bar{A}$ , insol. aq. (2);  $Ba\bar{A}$ ,  $4H_2O$ , very eas. sol. aq. (2).

[The acid chloride corresp. to Č, viz., 2,5-dichloroterephthaloyl (di)chloride, cryst. from lgr., m.p. 80.5-81° (6), has been obtd. indirectly (6) from 2,5-dichloro-3,6-dihydroterephthalic acid (above) by actn. of PCl<sub>5</sub>.]

[A mononitro- $\bar{C}$ , viz., 2,5-dichloro-3-nitroterephthalic acid [Beil. IX-852], pale yel. ndls. from conc. aq. soln., m.p. 225-226° dec. (2) (corresp. dimethyl ester, m.p. 207-208° dec. (2)), has been obtd. indirectly as stated above.

- Dimethyl 2,5-dichloroterephthalate: lfts. from MeOH, m.p. 137-138° (7) (5), 136° (6) (3). [From C in MeOH with HCl gas (2), or from 2,5-dichloroterephthaloyl dichloride in MeOH (6).]
- --- Diethyl 2,5-dichloroterephthalate: unreported.
- 2,5-Dichloroterephthaldiamide: ndls. from aq., m.p. above 300° (6). [From 2,5-dichloroterephthaloyl dichloride in ether with NH<sub>3</sub> (6).]

3:4985 (1) Bocchi, Gazz. chim. ital. 26, II 406 (1896). (2) Levy, Andreocci, Ber. 21, 1959-1964 (1888). (3) Wheeler, Giles, J. Am. Chem. Soc. 44, 2611 (1922). (4) Levy, Andreocci, Ber. 21, 1467-1468 (1888). (5) I.G., French 663,781, Aug. 26, 1929; Cent. 1929, II 2731-2732. (6) Levy, Curchod, Ber. 22, 2109-2111 (1889). (7) Fels, Z. Krist. 32, 411 (1900).

M.P. 312° (1) 310° (2) (3) 297° (4) (5) (6)

[See also  $\alpha$ -benzenehexachloride (3:4410).]

Nine stereoisomeric configurations of benzenehexachloride are possible (cf. (2)) and four are known; of these  $\bar{C}$  has definitely been shown (7) to be the *sym.-trans* stereoisomer;  $\alpha$ -benzenehexachloride (3:4410) is probably the *sym.-cis* stereoisomer; the configurations of the  $\gamma$ -isomer, m.p. 112–113° (8), and the  $\delta$ -isomer, m.p. 129–132° (8), are unknown.

 $\bar{C}$  cryst. from  $C_6H_6$  (8), alc. (10), or xylene. —  $\bar{C}$  is not volatile with steam (dif. and sepn. (10) from  $\alpha$ -isomer) but sublimes after melting. —  $\bar{C}$  is sol. in 775 pts. CHCl<sub>8</sub> at 20° or in 213 pts.  $C_6H_6$  at 17.25° (9) (note much less soly. than for  $\alpha$ -isomer); 100 g.  $C_6H_6$  at 22° dis. 1.204 g.  $\bar{C}$  (10); 100 g. AcOH at 15.6° dis. 0.289 g.  $\bar{C}$  (10). —  $\bar{C}$  forms with the  $\alpha$ -isomer a eutectic, m.p. 155.5° (8), contg. 20.3%  $\bar{C}$  (8).

[For prepn. of  $\bar{C}$  or its mixt. with the  $\alpha$ -benzenehexachloride see the latter (3:4410).]

 $\ddot{C}$  is much more unreactive than the  $\alpha$ -isomer; e.g.,  $\ddot{C}$  is unaffected by boilg. alc. KCN (3) (10) and is only slightly attacked by boilg. pyridine (8). However,  $\ddot{C}$  on boilg. 4 hrs. with alc. KOH gives 100% yield (8) of a mixt. of trichlorobenzenes contg. 86.4% 1,2,4-trichlorobenzene (3:6420), 8.3% 1,3,5-trichlorobenzene (3:1400), and 5.3% 1,2,3-trichlorobenzene (3:0990) (8).

3:4990 (1) Klingstedt, Wiese, Rudback, Acta Acad. Aboensis Math. et Phys. 4, No. 2, 1-36 (1927); Cent. 1928, I 504; C.A. 23, 1399 (1929). (2) Williams, Fogelberg, J. Am. Chem. Soc. 53, 2096-2104 (1931). (3) Meunier, Ann. chem. (6) 16, 223-269 (1887). (4) Tei, Komatsu, Mem. Coll. Sci. Kyoto Imp. Unv. 10-A, 325-330 (1927); Cent. 1928, I 2370; C.A. 22, 1086 (1928). (5) Scholl, Nörr, Ber. 33, 726 (1900). (6) van de Vloed, Bull. soc. chem. Belg. 48, 255-256 (1938). (7) Hendrick, Bilicke, J. Am. Chem. Soc. 48, 3007-3015 (1926); 50, 764-770 (1928). (8) van der Linden, Ber. 45, 231-247 (1912). (9) Friedel, Bull. soc. chem. (3) 5, 130-138 (1891). (10) Matthews, J. Chem. Soc. 59, 165-172 (1891).



Cryst. from hot aq. (3), very dil. alc., (3) or 50% alc. (7); sol. in much hot aq., eas. sol. alc. or ether.

[For prepn. of  $\bar{\rm C}$  from 2-aminobenzenedicarboxylic acid-1,4 [Bell. XIV-558, XIV<sub>1</sub>-(637)] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. see (3); from 3-chloro-1-methyl-4-isopropyl-benzene (3-chloro-p-cymene) (3:8770) by oxidn. with 15 pts. boilg. HNO<sub>3</sub> (D=1.39) for 1 day (other prods. are also formed) see (4); from 3-chloro-4-acetylbenzoic acid (1), from 2-chloro-4-acetylbenzoic acid (2), or from 3-chloro-4-methylphenyl methyl ketone (8) by oxidn. with alk. KMnO<sub>4</sub> see indic. refs.; from 2-chloro-4-carbamidobenzoic acid (5) by hydrolysis with boilg. 25% NaOH see (5); from 2-chloro-4-methylbenzotrichloride (6) by hydrolysis with H<sub>2</sub>SO<sub>4</sub> (66° Bé) at 70-80° see (6).]

Ag<sub>2</sub>A; pptd. from soln. of (NH<sub>4</sub>)<sub>2</sub>A by addn. of AgNO<sub>3</sub> (3).

[C with PCl<sub>5</sub>(3) or with SOCl<sub>2</sub> in pres. of SbCl<sub>5</sub>, AlCl<sub>3</sub>, or SnCl<sub>4</sub>(7) yields chloroterephthaloyl (di)chloride, b.p. 154-155° at 19 mm. (7).]

[C on nitration with HNO<sub>3</sub>/H<sub>2</sub>SO<sub>4</sub> at 65° yields (7) 2-chloro-5-nitrobenzenedicarboxylic acid-1,4, cryst. from 50% alc., m.p. 265° (7), 263-264° (8) (this prod. is also obtd. from 2-chloro-4-methyl-5-nitrophenyl methyl ketone (8) by oxidn.).]

- Dimethyl chloroterephthalate: lfts. from MeOH, m.p. 60° (6) (3), 59-60° (4). [From C in MeOH with HCl gas or from Ag<sub>2</sub>Ā with MeI (3).]
- --- Diethyl chloroterephthalate: oil (3).
- ---- Chloroterephthaldiamide: cryst. from dil. alc., m.p. above 300° (3). [From chloroterephthaloyl (dı)chloride (above) with (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> (3).]

3:4995 (1) Ganguly, LeFevre, J. Chem. Soc. 1934, 851. (2) Ganguly, LeFevre, J. Chem. Soc. 1934, 854. (3) Ahrens, Ber. 19, 1637–1639 (1886). (4) Fileti, Cross, Gazz. chim. ital. 18, II 311, 313 (1888). (5) Magidson, Trawin, Ber. 69, 540 (1936). (6) I.G., French 663,791, Aug. 26, 1929; Cent. 1929, II 2731–2732. (7) I.G., French 810,595, March 24, 1937; Cent. 1937, I 5048; C.A. 32, 592 (1938). (8) Mayer, Albert, Schön, Ber. 65, 1296, 1298–1299 (1932).

#### CHAPTER XII

## DIVISION B. LIQUIDS WITH BOILING POINTS REPORTED AT ORDINARY PRESSURE

#### Section 1. $D_4^{20}$ greater than 1.1500

(3:5000-3:5499)

| 3:5000  | PHOSGI<br>(Carbony |     | oride | )       |      | •                   | COCl <sub>2</sub> | Beil. III - 13<br>III <sub>1</sub> -( 7)<br>III <sub>2</sub> -(12) |
|---------|--------------------|-----|-------|---------|------|---------------------|-------------------|--------------------------------------------------------------------|
| B.P.    |                    |     |       | F.P.    |      |                     |                   |                                                                    |
| 8.2° co | r. at 756.4        | mm. | (1)   | [-118°  | (7)] | $D_4^{186} = 1.392$ | (1)               | •                                                                  |
| 8.2°    | at 756             | mm. | (2)   | -126°   | (6)  | -                   | -                 |                                                                    |
| 8.1°    | at 756             | mm. | (3)   | -127.5° | (5)  | See Note 2.         |                   |                                                                    |
| 8.02°   | at 760             | mm. | (4)   | -128°   | (6)  |                     |                   |                                                                    |
| 7.95°   | at 760             | mm. | (5)   |         |      |                     |                   |                                                                    |
| 7.89°   | at 765.8           | mm. | (4)   |         |      |                     |                   | ,                                                                  |
| 6.96°   | at 760             | mm. | (6)   |         |      |                     |                   |                                                                    |

See Note 1.

Note 1. For studies of vap. press. of  $\bar{C}$  over range  $-96.3^\circ$  (1.1 mm.) to  $5.0^\circ$  (678 mm.) (5); over range  $-88.94^\circ$  (0.5 mm.) to  $+12.6^\circ$  (889.2 mm.) (3); over range  $-79^\circ$  (4.0 mm.) to  $+50.0^\circ$  (5.11 atm.) (6); over range  $-23.42^\circ$  (191.2 mm.) to  $+25.03^\circ$  (1410.9 mm.) (4); over ranges  $0^\circ$  (556.5 mm.) to  $+27.9^\circ$  (1540 mm.) and  $+147.6^\circ$  (35.6 atm.) to  $+182.5^\circ$  (56.4 atm.) (8) see indic. refs.

Note 2. For extensive studies on density of liquid C see (6) (4) (367).

Č at ord. temps. is a colorless gas with highly characteristic odor. It now is sold commercially in metal tanks or dissolved in an organic solvent such as toluene or CCl<sub>4</sub>. Iron containers which have been used for long periods for storage of Č may contain small amounts of liquid iron pentacarbonyl.

 $\bar{C}$  was first prepd. by John Davy in 1812 (9); for extensive history see (10). For general surveys on chemistry of  $\bar{C}$  (11) (12) from viewpoint of chemical warfare agent (13) (14) (15) (16) (17) (18) (19) see indic. refs.; for a bibliography of  $\bar{C}$  and its derivatives see (35).

#### MISCELLANEOUS PHYSICAL PROPERTIES OF C

[For studies on heat capacity from spectroscopic data (20) and other thermodynamic functions of  $\tilde{C}$  (21) (22) see indic. refs.; for studies on dipole moment (23) (24), dielectric const. (25), molecular structure (26) (27), and electron diffraction (28) of  $\tilde{C}$  see indic. refs.; for study of refractive index of  $\tilde{C}$  as gas see (29); for studies of critical temp. (181.75° (8), 183° (30), 187° (4)) and critical press. (55.3 atm. (8)) see indic. refs.]

 $\bar{C}$  is readily sol. in  $C_6H_6$ , toluene, or AcOH [for studies of solubility of  $\bar{C}$  in  $C_6H_6$  at 20° (31), toluene over range 17-31.5° (6), xylene (6), EtOAc at 20° (31), nitrobenzene (6), CCl<sub>4</sub> (3:5100) at 20° (31), 1,1,2,2-tetrachloroethane (3:5750) (6), chlorobenzene (3:7903) (6), or 1-chloronaphthalene (3:6878) (6) see indic. refs.; for soly. of  $\bar{C}$  in various org.

solvents at pressures below 1 atm. see (32) cf. (33); for patent on removal of  $\bar{C}$  from contaminated drinking water by extraction with org. solvents see (34)].

[For technical papers (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) and patents (46) on adsorption of  $\bar{C}$  by various forms of carbon see indic. refs.]

[For influence of  $\ddot{C}$  in extinction of H/O flames see (47).]

#### PHYSIOLOGICAL ASPECTS OF C

Č is more than ten times as toxic as Cl<sub>2</sub>. An atmosphere contg. 1 part by vol. of Č in 6000 may cause lung injuries in 2 min., 1 part in 30,000 is very dangerous, and 1 part in 200,000 is probably fatal for exposures of 30 min. The maximum permissible concn. for prolonged exposure is about 1 p.p.m., i.e., 0.004 mg./l. (48).

The least detectable odor of  $\bar{C}$  is 5.6 p.p.m., the least conen. that affects the throat is 3.1 p.p.m., the least conen. that causes irritation of the eyes is 4.0 p.p.m., the least conen. that causes coughing is 4.8 p.p.m. (48) (49). A conen. of 0.02-0.05% is lethal to most animals in a short time, a conen. of 0.0025% is dangerous for exposures of 30-60 min., and the maximum conen. to which animals can be exposed for several hours without serious effects is 0.0001% or 1 p.p.m. (48) (50).

[For report of industrial accidents from  $\bar{C}$  (51), for legal (British) aspects of industrial poisoning by  $\bar{C}$  (52), for toxicology and treatment of poisoning by  $\bar{C}$  (53), for immunization against  $\bar{C}$  (54), for variations in toxicity of  $\bar{C}$  for small animals with duration of exposure (55) see indic. refs.]

[For studies relating to chemical warfare aspects of C with respect to foodstuffs see (56) (57).]

#### USES OF C

Apart from the uses of  $\bar{C}$  as a chemical warfare agent (above), many chemical utilizations are indicated below under its chemical behavior. [In addition will be mentioned here a few further examples as follows: for use of mixt. of  $\bar{C}$  + HF for cracking of hydrocarbon oils see (58); for use as dehydrating agent in conversion of amides to corresp. nitriles see (59); for use in sepn. of Pt metals see (60).]

#### DETECTION OF C

Č may be detected by its characteristic odor (see above) and by various color reactions of which the following represent the more important types.

For detection of  $\tilde{C}$  by the yellow or orange color produced by reaction with Harrison's reagent (a soln. in EtOH (100 ml.) of p-dimethylaminobenzaldehyde [Beil. XIV-31, XIV<sub>1</sub>-(360)] (5 g.) (for prepn. see (61)) and of diphenylamine [Beil. XII-174, XII<sub>1</sub>-(163)] (5 g.)) see (62) (63) (64) (65) (66) (67) (68) (69) (70) (71) (83); note that this test suffers interference from HCl, Cl<sub>2</sub>, ClSO<sub>3</sub>H, TiCl<sub>4</sub>, chloromethyl chloroformate (3:5275), diphosgene (3:5515), and triphosgene (3:1915); for application of this reagent in an absorptive tube see (72) cf. (73).

For detection of C by green color imparted to a test paper impregnated with a xylene soln. of 0.5% 6-nitroso-3-dimethylaminophenol (4-dimethylamino-o-benzoquinoneoxime-1) [Beil. XIV-131] and a xylene soln. of 0.5% m-diethylaminophenol [Beil. XIII-408, XIII<sub>1</sub>-(130)] see (74) (75) (76).

For spot test detection of Č by use of phenylhydrazine cinnamate (for prepn. see (77)) in CHCl<sub>3</sub> or CCl<sub>4</sub> followed by treatment with 1% CuSO<sub>4</sub> soln. to give a red-violet color from the 1,5-diphenylcarbohydrazide [Beil. XV-292, XV<sub>1</sub>-(72)] produced see (78).

For study of detection of C with resorcinol (1:1530) or vanillin (1:0050) see (79); by

indirect use of the Gilman color test for RMgX compounds see (80) cf. (81); for study of utility of various dyestuffs in detection of  $\bar{C}$  see (82).

#### DETERMINATION OF C

Methods for the quant. detn. of C may be classified under three main types according to whether they are based upon hydrolysis, reaction with alkali iodides, or reaction with aniline.

Detn. by methods based on hydrolysis. [For studies of methods based upon alkaline hydrolysis of  $\bar{C}$  and subsequent detn. of resultant chloride ion see (83) (84) (85) (86) (87) (88) (89) (90); for especial criticism of this method see (91).]

Detn. by reaction with alkali iodide. [For studies of methods based upon reaction of  $\bar{C}$  with NaI (92) (91) or KI (93) in acetone followed by thiosulfate titration of the liberated I<sub>2</sub> see indic. refs.]

Detn. by reaction with aniline. [For study of methods based upon reaction of  $\bar{C}$  with aniline and gravimetric estn. of the resultant N,N'-diphenylurea (carbanilide) (94) (95) cf. (91) or titration of the residual aniline HCl in the filtrate (96) see indic. refs.]

Related topics. [For detn. of small amts.  $Cl_2$  in pres. of  $\tilde{C}$  (97), of HCl in  $\tilde{C}$  (98) (85), for analysis of mixts. of  $\tilde{C}$  +  $Cl_2$  + NOCl (99), for anal. of mixts. of  $\tilde{C}$  with CO, CO<sub>2</sub>, Cl<sub>2</sub>, CCl<sub>4</sub>, C<sub>2</sub>Cl<sub>6</sub> (88) (86), for anal. of industrial  $\tilde{C}$  (89), or for detn. of  $\tilde{C}$  in air by means of an ultraviolet photometer (R. + H. Tri-Per Analyzer) (100) see indic. refs.]

#### PREPARATION OR FORMATION OF C

From CO + Cl<sub>2</sub>. The photochemical reaction of CO with Cl<sub>2</sub> to yield  $\bar{C}$  was the method by which it was first prepared in 1812 (9) (for extensive history see (10)). Over the years the reaction has been very extensively studied. The more important earlier reports include those of Wilm and Wischin (101), Wildermann (102), Dyson and Hardin (103), Weigert (104), Coehn and Becker (105), Chapman and Gee (106), etc. Since 1920 the number of studies of this reaction has so greatly increased as to preclude in this text any detailed analysis; however, the following references ((107)–(134), incl.) arranged in receding chronology will be found fruitful from one viewpoint or another.

[For studies on formn. of  $\bar{C}$  from CO + Cl<sub>2</sub> in dark at 349-452° (135) in liq. medium (145), or over cat. such as Pt at 300-400° (136), activated carbon (6) (137), or AlCl<sub>3</sub> at 30-35°, or in CHCl<sub>3</sub> soln. (138) see indic. refs. — For formn. of  $\bar{C}$  from CO + NOCl over activated carbon at 100-250° see (139) cf. (137).]

[For formn. of  $\bar{C}$  from CO passed over heated AgCl (140)(141), over CuCl<sub>2</sub>, PbCl<sub>3</sub>, or NiCl<sub>2</sub> at 450-750° (141), over heated AuCl<sub>3</sub> (142), or through boilg. SbCl<sub>3</sub> (143), or over chlorides of Pt metals (144) see indic. refs.]

From various chlorinated hydrocarbons. From CCl<sub>4</sub>. [For studies on formn. of C from CCl<sub>4</sub> (3:5100) during use of latter as fire extinguisher see (146) (84) cf. (147) (368); for patents on repression of formn. of C in such use see (148) (149) (150) cf. (368); for formn. of C from CCl<sub>4</sub> fire extinguishers on Mg see (151); for phosgene content of smoke from Berger mixt. (Zn + chlorohydrocarbons) see (152).]

[For form. of  $\bar{C}$  from CCl<sub>4</sub> with O<sub>2</sub> in light of 2537 Å (153) or with atomic oxygen (154) see indic. refs.]

[For formn. of C from CCl<sub>4</sub> by chemical oxidizing agents such as O<sub>2</sub> over white-hot Pt (155), air over CuCl<sub>2</sub> or FeCl<sub>3</sub> at elev. temp. (156), GeO<sub>2</sub> (157), chromic acid (1) (158), pyrosulfuryl chloride (1 mole) + sulfuric acid monohydrate (2 moles) on warming (158) (159) (160) (161) (162) (163) see indic. refs.]

[For formn. of  $\bar{C}$  from CCl<sub>4</sub> by passing with CO<sub>2</sub> over pumice at 350° (164), by htg. with

ZnO at 200° (164), with  $P_2O_5$  at 200-220° for 2 days (165), or over gypsum at 900° (166), or even by htg. with a little aq. in s.t. at 250° (220) see indic. refs.]

From CHCl<sub>3</sub>. [For an extensive account of formn. of  $\tilde{C}$  from CHCl<sub>3</sub> (3:5050) by oxidn. in air and light see (167). Note that such oxidn. is not effected by air in absence of light, nor by light in absence of air (168). With limited air in sunlight CHCl<sub>3</sub> reacts according to equation CHCl<sub>3</sub> + O O COCl<sub>2</sub> + HCl, but with excess air in sunlight in sense 2CHCl<sub>3</sub> + O O COCl<sub>2</sub> + H2O (169). Note that CHCl<sub>3</sub> + air over dry KOH gives some C (170). For studies on photochem. oxidn. of CHCl<sub>3</sub> (171) in tropical sunlight (172) including search for possible intermediate peroxides (173) (174) see indic. refs. For studies of Cl<sub>2</sub>-sensitized photochem. oxidn. of CHCl<sub>3</sub> see (175) (176) (177). For oxidn of CHCl<sub>3</sub> by atomic oxygen see (154).]

[For formn. of  $\bar{C}$  from CHCl<sub>3</sub> (3:5050) by shaking with siloxen + excess O<sub>2</sub> (178), by action of O<sub>3</sub> (179) (180), by passing over CuO at 350-550° (181) or gypsum at 900° (166), with  $K_2Cr_2O_7 + H_2SO_4$  (1) (158), with ClSO<sub>3</sub>H at 120° (187), or during explosion of CHCl<sub>3</sub> with alkali metals (182) see indic. refs ]

From  $Cl_2C$ = $CCl_2$ . [For form of  $\bar{C}$  from tetrachloroethylene (3:5460) during  $Cl_2$ -sensitized photochem. oxidn. see (183) (184) (185)]

From  $Cl_2C$ =CHCl. [For form. of  $\tilde{C}$  from trichloroethylene (3:5170) with air or  $O_3$  see (186).]

From various compounds containing the trichloromethyl group. [For formn. of  $\tilde{C}$  from trichloroacetaldehyde (chloral) (3:5210) by Cl<sub>2</sub>-sensitized (188) or Br<sub>2</sub>-sensitized (189) photochem. oxidn. with O<sub>2</sub> at 70–90°, with Cl<sub>2</sub> in sunlight (190), or with AlCl<sub>3</sub> on warming (191) see indic. refs.]

[For formn. of  $\tilde{C}$  from trichloroacetic acid (3:1150) on htg. with ZnCl<sub>2</sub> (192), on illuminating dry acid in pres. of air (193), or on electrolysis of aq. soln. (194) see indic. refs.; from trichloroacetyl chloride (3:5420) at 600° (195); from trichloroacetonitrile in air (196); from trichloroacetyl hydrogen peroxide on warming (200); from trichlorobromomethane + Br<sub>2</sub> + O<sub>2</sub> in light (197) see indic. refs.]

[For formn. of  $\tilde{C}$  from di-(trichloromethyl) carbonate (triphosgene) (3:1915) on distn. (198), htg. at 200° in s.t. (199), or on mixing with charcoal and htg. just above m.p. (78°) (198) see indic. refs.; from trichloromethyl chloroformate (diphosgene) (3:5515) on htg. above 300° (200) (209) or on contact with activated carbon, charcoal, or iron oxide at ord. temp. (198); from methyl trichloromethyl carbonate [Beil. III-17, III<sub>I</sub>-(8), III<sub>2</sub>-(15)], b.p. 57-58° at 17 mm. (204),  $D_4^{17}=1.5228$  (204),  $n_D^{17}=1.4487$  (204), on boilg. at ord. press. (202) or on warming with AlCl<sub>3</sub> (203) (204); from ethyl trichloromethyl carbonate, b.p. 78° at 19 mm. (204),  $D_4^{20}=1.4205$  (204),  $n_D^{20}=1.4450$  (204), or from n-propyl trichloromethyl carbonate, b.p. 93° at 12 mm. (204),  $D_4^{20}=1.359$  (205),  $n_-^{20}=1.4451$  (205), on warming with AlCl<sub>3</sub> (203); from isoamyl trichloromethyl carbonate, b.p. 120° at 23 mm. (204),  $D_4^{20}=1.2644$  (204),  $n_D^{20}=1.4466$  (204), phenyl trichloromethyl carbonate [Beil. VI<sub>1</sub>-(88)], m.p. 70.5° (204), or p-tolyl trichloromethyl carbonate (206) on warming with aq. (but not with aq. NaOH) (206); from bis-(trichloromethyl) oxalate [Beil. III-17] at 350-400° (207); or from trichloromethyl perchlorate (208) see indic. refs.]

[For form. of C from trichloronitromethane (chloropicrin) [Beil. I-76, I<sub>1</sub>-(20), I<sub>2</sub>-(41)] in u.v. light (210), on boilg. (at 112°) under ord. press. (211), on passing with HCl over pumice at 400° (212), or on treatment with fuming H<sub>2</sub>SO<sub>4</sub> (20% SO<sub>3</sub>) at 100° (213) see indic. refs.]

From miscellaneous sources. [For formn. of  $\tilde{C}$  from  $CO_2 + CCl_4$  (3:5100) + cat. at elevated temp. (225), from  $CS_2$  with aqua regia (214) or  $Cl_2O$  (215); from COS with  $Cl_2$  at red heat (1); from COS over fused  $CuCl_2$  (1) or through boiling  $SbCl_5$  (1); from thiophosgene with air or  $O_2$  under various conditions (216); from anhydrous  $Na_2CO_3$  with

PCl<sub>5</sub> (217); from pentachloropropionyl chloride (3:0470) with AlCl<sub>3</sub> at 60° (218); from oxalyl (di)chloride (3:5060) at 600° or with AlCl<sub>3</sub> in CS<sub>2</sub> on warming (219) see indic. refs.]

#### CHEMICAL BEHAVIOR OF C

Pyrolysis of  $\tilde{C}$ .  $\tilde{C}$  on heating above 300° decomposes in two ways: (1) into CO + Cl<sub>2</sub> (CO equilibrium) and (2) into CO<sub>2</sub> + CCl<sub>4</sub> (CO<sub>2</sub> equilibrium). The extent of these reactions together with the influence of various factors has been extensively studied. [For a concise summary of earlier work see the review of Dyson (11); for many important details see the original references represented by (225) (221) (222) (5) (135) (6) (223) (224).]

Photochemical decompn. of  $\bar{C}$ . [ $\bar{C}$  on exposure to short-wave u.v. light decomposes yielding (105) (226) CO + Cl<sub>2</sub>; for more recent studies of this photochem. decompn. see (227) (228) (229) (230) (231); for application to problem of separation of isotopes of Cl<sub>2</sub> see (232).]

Electrolysis of C. [C or a soln. of AlCl<sub>3</sub> in C upon electrolysis gives (233) CO + Cl<sub>2</sub>.]

#### BEHAVIOR OF C WITH INORGANIC REACTANTS

Reduction of  $\bar{C}$ .  $[\bar{C} + H_2 \text{ in u.v. light at } 10^{\circ} \text{ gives CO} + \text{HCl} + \text{traces of formaldehyde} (1:0145) but at <math>80^{\circ}$  gives CO + CO<sub>2</sub> + CH<sub>4</sub> + HCl (234).  $-\bar{C}$  + H<sub>2</sub> over Pd or Ni on pumice, or over vanadium carbide, at  $300-450^{\circ}$  gives (235) cf. (236) CO + HCl + small amts. formaldehyde (1:0145) cf. (229).]

Oxidation of C. [For study of photochem. oxidn. of C see (230).]

Hydrolysis of  $\bar{C}$ . Contrary to earlier reports  $\bar{C}$  with aq. is almost instantly hydrolyzed but the rate is influenced by the manner in which contact is effected and whether the aq. is in vapor or liquid state. [For studies on the hydrol. of  $\bar{C}$  see (237) (4) (96) (238); for study of rate of hydrolysis in dioxane at 25° (239) or in toluene at 25° and at 45° (240) see indic. refs.]

Behavior of  $\bar{C}$  with metal oxides, sulfides, or phosphates. [ $\bar{C}$  with metallic oxides on htg. at 250-600° (depending upon the metal) gives the corresp. metal chloride which in some cases, e.g., FeCl<sub>3</sub>, ThCl<sub>4</sub>, readily sublimes in pure form; for examples of this reaction see (241) (242) (243); for use in prepn. of AlCl<sub>3</sub> see (249).]

[C on htg. with metal sulfides gives (246) COS [Beil. III-131, III<sub>1</sub>-(61), III<sub>2</sub>-(104)], b.p.  $-50.2^{\circ}$  (244), f.p.  $-138.2^{\circ}$  (244) (use with CdS in prepn. (245)), and the metal chloride cf. (241).]

 $[\bar{C} \text{ on htg. with certain phosphates (247) gives } CO_2 + POCl_3 + metal chloride (use in prepn. of POCl_3 (248)).]$ 

Analogs of  $\bar{C}$ . Carbonyl fluoride. [This compound, b.p.  $-83.1^{\circ}$  (250), m.p.  $-114.0^{\circ}$  (250), has been prepd. from AgF<sub>2</sub> + CO (250), F<sub>2</sub> + CO (251) cf. (250), or from acetone with F<sub>2</sub> (252), but has not been reported from  $\bar{C}$ . Note that  $\bar{C}$  with HF at 80° and 280 lb./sq. in. in Cu bomb gives (25-50% yield (253)) carbonyl chlorofluoride, COCIF, b.p.  $-42^{\circ}$ , m.p. 138° (253).]

Carbonyl bromide. [C with BBr<sub>3</sub> at 150° (254) or with AlBr<sub>3</sub> (255) gives carbonyl bromide Beil. III-20, III<sub>1</sub>-(9), III<sub>2</sub>-(7)], but this prod. is better prepd. from CBr<sub>4</sub> by oxidn. with conc. H<sub>2</sub>SO<sub>4</sub> (256) (257) (258) (for study of photochemical oxidn. see (259)); for studies of structure (26) and pyrolysis (260) (261) (262) see indic. refs.]

Carbonyl cyanide. [This compound, b.p. 65.0-65.5° (263),  $D_4^{20} = 1.124$  (263),  $n_2^{20} = 1.3919$  (263), has been prepd from acetone- $\alpha,\alpha'$ -dicarboxylic acid (1:0485) by conversion (264) to di-isonitrosoacetone [Beil. I-806, I<sub>2</sub>-(413)], thence to diacetyl-di-isonitrosoacetone (263), then acetoximinoacetyl cyanide (263) which was then pyrolyzed at 160-180° and

210-220 mm. (263) cf. (265). For formn. using propionyl (instead of acetyl) derivatives see (266).]

Behavior of  $\tilde{C}$  with inorganic acids. [ $\tilde{C}$  with HF as directed (250) (see analogs of  $\tilde{C}$  above) gives carbonyl chlorofluoride. —  $\tilde{C}$  with HBr does not react even at 200° (267). —  $\tilde{C}$  as liq. does not react with HI, but  $\tilde{C}$  as gas reacts with HI gas even at room temp. with sepn. of  $I_2$  (267).]

Behavior of  $\tilde{C}$  with inorganic salts. [ $\tilde{C}$  with KI or NaI in acetone solns, gives  $CO + I_2$  (use in detn. of  $\tilde{C}$  (91) (92) (93)).]

[The behavior of AlCl<sub>3</sub> with  $\bar{C}$  has been extensively studied; for studies of solns, of AlCl<sub>3</sub> in liq.  $\bar{C}$  from viewpoint of vapor pressure (268), density (269), and conductance (270) see indic. refs. — For general studies of liq.  $\bar{C}$  as solvent (271) (272) including studies on system  $\bar{C}$  + Cl<sub>2</sub> (273) and on phosgeno salts such as calcium phosgeno-aluminate (274) (275) and others (276) see indic. refs.]

Behavior with various inorganic nitrogen compounds. With  $NH_3$ . [ $\bar{C}$  in lgr. (277) or  $C_6H_6$  (278) gives urea, biuret, cyanuric acid, cyamelide, ammelide, etc.;  $\bar{C}$  as gas with  $NH_3$  as gas gives urea (279) cf. (280) (143), guanidine, cyanuric acid (281), and cyamelide (282). — For reaction of  $\bar{C}$  in toluene soln. with aq.  $NH_4OH$  as a source of isocyanic acid see (283). — Note also that  $\bar{C}$  with sodamide reacts in cold in sense  $COCl_2 + 3NaNH_2 \rightarrow NaNCO + 2NaCl + 2NH_3$ , but at about 250° in sense  $COCl_2 + 5NaNH_2 \rightarrow Na_2N - C = N + 2NaCl + NaOH + 3NH_3$  (284).]

[Č with NH<sub>4</sub>Cl at elevated temps., e.g., 200–400°, gives (285) (286) carbamyl chloride, NH<sub>2</sub>.CO.Cl [Beil. III-31, III<sub>1</sub>-(15)], b.p. 61–62° dec. (285). — For study of analogous carbamyl fluoride and carbamyl bromide (previously unknown) see (287).]

With hydroxylamine. [For studies on behavior of C with NH<sub>2</sub>OH see (288) (289).]

With hydrazine. [C with 1 mole hydrazine would be expected to give N-aminocarbamyl chloride, NH<sub>2</sub>.NH.CO.Cl, but this compound appears to be unknown; C with 2 moles hydrazine should yield N,N'-diaminourea (carbohydrazide) [Beil. III-121, III<sub>1</sub>-(57), III<sub>2</sub>-(96)], but this compound has not been reported as prepd by this method.]

#### BEHAVIOR OF C WITH ORGANIC REACTANTS

With hydrocarbons. [For studies on photochem. reaction of  $\bar{C}$  with alkanes (290) or with cycloalkanes (291) or with aliphatic or alicyclic acid chlorides (292) as a means of replacement of hydrocarbon H atoms by the CO.Cl group see indic. refs. — For reaction of  $\bar{C}$  with satd. nonaromatic hydrocarbons in pres. of cat. yielding ketones see (293). — Note also that  $\bar{C}$  with  $CH_4 + H_2 + CH_2$  cat. is claimed (236) to give acetaldehyde (1:0100).]

Č with aromatic hydrocarbons in pres. of a Friedel-Crafts' type cat. condenses according to conditions with either one or two moles of hydrocarbon yielding, respectively, the corresp. acid chloride or ketone. No attempt can be made here to collect the reported cases of these types since the many acid chlorides contained in this book afford numerous examples.

|C with ethylene + AlCl<sub>3</sub> in CS<sub>2</sub> adds to the unsatd. linkage giving (295) (296) (297) (298)
β-chloropropionyl chloride (3:5690) although the method has been questioned (299) (300).
- C with propylene + AlCl<sub>3</sub> as directed (301) gives β-chloroisobutyryl chloride (3:9101).]
|C with acetylene (302) or acetylene homologs (303) gives complex condensation products suitable for molding.

With alcohols.  $\bar{C}$  with alcohols reacts according to circumstances with either 1 mole alcohol giving the corresponding chloroformate (chlorocarbonate) esters, or with 2 moles alcohol giving the corresponding carbonate ester. The countless known cases cannot here be cited in detail but the following examples are given; see also the summary of Dyson (308).

Č with MeOH (1:6120) gives (304) methyl chloroformate (3:5075) q.v. and/or dimethyl carbonate (1:3046); Č with EtOH (1:6130) gives ethyl chloroformate (3:7295) q.v. and/or diethyl carbonate (1:3150); Č with n-PrOH (1:6150) gives n-propyl chloroformate (3:7540) q.v. and/or di-n-propyl carbonate (1:3373); Č with isopropyl alcohol (1:6135) gives isopropyl chloroformate (3:7405) q.v. and/or di-isopropyl carbonate (1:3261); Č with n-butyl alcohol (1:6180) gives n-butyl chloroformate (3:7980) q.v. and/or di-n-butyl carbonate (1:3626); Č with isobutyl alcohol (1:6165) gives isobutyl chloroformate (3:7760) q.v. and/or di-isobutyl carbonate (1:3501); Č with n-AmOH (1:6205) presumably gives n-amyl chloroformate (3:9380) q.v., but di-n-amyl carbonate appears to be unreported; Č with isoamyl alcohol (1:6200) gives isoamyl chloroformate (3:8215) q.v. and/or di-isoamyl carbonate (1:3937).

 $\ddot{\mathbf{C}}$  with allyl alcohol (1:6145) gives allyl chloroformate (3:7487) q.v. and/or diallyl carbonate;  $\ddot{\mathbf{C}}$  with cyclohexanol (1:6415) gives cyclohexyl chloroformate (3:5770) q.v.;  $\ddot{\mathbf{C}}$  with benzyl alcohol (1:6480) gives benzyl chloroformate (3:9565) q.v. — [For analogous reaction of  $\ddot{\mathbf{C}}$  with unsatd. monohydric alcohols such as methallyl alcohol, crotyl alcohol, etc., see (305).]

 $\bar{C}$  with monohydroxyethers gives analogous products: e.g.,  $\bar{C}$  with  $\beta$ -methoxyethanol (1:6405) gives  $\beta$ -methoxyethyl chloroformate (3:9140) q.v.;  $\bar{C}$  with  $\beta$ -ethoxyethanol (1:6410) gives  $\beta$ -ethoxyethyl chloroformate (3:9280) q.v. — [For reaction of  $\bar{C}$  with polyhydroxyethers such as diethylene glycol (1:6525), triethylene glycol (1:6538), tetra-ethylene glycol, etc., giving corresp. bis-(chloroformates), see (306).]

[For study of behavior of C toward various alkali alkoxides see (307).]

[Note that  $\tilde{C}$  as liq. reacts with enol form of acetone (1:5900) in  $\frac{1}{2}$  hr. at room temp. giving (330) isopropenyl chloroformate (3:7358).]

With phenols. The reaction of  $\bar{C}$  with phenols is more sluggish than with alcohols, and the corresp. diaryl carbonates are usually obtained from  $\bar{C}$  with 2 moles of the corresponding sodium phenolate cf. (308).

[ $\bar{C}$  (as liquid) with phenol (1:1420) in s.t. at 140–150° (309), or  $\bar{C}$  in toluene (310) or trichloroethylene (3:5170) (311) with aq. phenol (311) or aq. Na phenolate (310), or  $\bar{C}$  with Na phenolate in toluene (312), or  $\bar{C}$  with 10% aq. Na phenolate at 30° (313) gives (yields: 45% (312), 44% (313)) phenyl chloroformate [Beil. VI-159, VI<sub>1</sub>-(88), VI<sub>2</sub>-(157)], b.p. 97–98° at 25 mm. (310), 83–84° at 12 mm. (313),  $n_D^{11} = 1.5180$  (313); for use as acylating agent see (314).]

[C in toluene shaken with a soln. of o-cresol (1:1400) in aq. NaOH (310) (315) gives o-tolyl chloroformate [Beil. VI-356], b.p. 119° at 35 mm. (310), 114° at 25 mm. (310). — C in toluene shaken with a soln. of m-cresol (1:1730) in aq. NaOH (315) gives m-tolyl chloroformate [Beil. VI-379], b.p. 103° at 22 mm. (315). — C in toluene shaken with a soln. of p-cresol (1:1410) in aq. NaOH (315), or C passed as gas into aq. Na p-cresolate below 10° (316), gives (78–80% yield (316)) p-tolyl chloroformate [Beil. VI-398, Vl<sub>2</sub>-(380)], b.p. 108° at 30 mm. (315) (316).]

Countless other phenois behave with  $\tilde{\mathbf{C}}$  in generally similar fashion but cannot be detailed here.

With carboxylic and sulfonic acids. Č with carboxylic acids or sulfonic acids or their salts at elevated temps, or in pres. of tertiary bases effects conversion to the corresponding carboxylic acid chlorides or sulfonyl chlorides.

[E.g., Č with AcOH (1:1010) at 110-120° (317), or at 160° over MgCl<sub>2</sub> on diatomaceous earth (318) cf. (319) (320), or Č with NaOAc at 120° under press. (321), or Č with Ac<sub>2</sub>O (1:1015) + cat. (322) gives acetyl chloride (3:7065). — Č with chloroacetic acid (3:1370) over activated carbon at 200° gives (323) chloroacetyl chloride (3:5235). — Č with anhydrous oxalic acid (1:0535) in pres. of tertiary amines yields (324) oxalyl (di)chloride

(3:5060). —  $\bar{C}$  with cinnamic acid (1:0735) in pres. of tertiary amines yields (324) cinnamoyl chloride (3:0330). —  $\bar{C}$  with phenoxyacetic acid (1:0680) in pres. of tertiary amines yields (324) phenoxyacetyl chloride (3:8790). —  $\bar{C}$  with lauric acid (1:0605) at 140–150° gives (85–90% yield (325)) lauroyl chloride (3:9858). —  $\bar{C}$  with palmitic acid (1:0650) at 140–150° gives (70–75% yield (325)) palmitoyl chloride (3:9912). —  $\bar{C}$  with stearic acid (1:0660) at 140–150° gives (70–75% yield (325)) stearoyl chloride (3:9960). —  $\bar{C}$  with oleic acid (1:0565) gives (325) oleoyl chloride (3.9940).]

[ $\bar{C}$  with benzoic acid (1:0715) at 140-200° (326), or in pres. of tertiary bases or their salts (324), or  $\bar{C}$  with AgOBz in s.t. at 100° (327) gives benzoyl chloride (3:6240). —  $\bar{C}$  with salicylic acid (1:0780) in toluene (328) or in  $C_6H_6$  in presence of tertiary bases (324) gives salicyloyl chloride (3:0085). —  $\bar{C}$  with furoic acid (1:0475) under press. at not above 100° gives (329) furoyl chloride (3:8515).]

[Many other cases including sulfonic acids, e.g., (324), cannot be detailed here.]

With amines. With primary amines.  $\bar{C}$  with primary amines reacts in various ways according to conditions to yield N-alkyl (or aryl) carbamyl chlorides, N-alkyl (or aryl) isocyanates, or N,N'-dialkyl (or aryl) ureas. Examples of these types of reaction are included below.

 $|\bar{C}|$  with CH<sub>3</sub>NH<sub>2</sub>.HCl at 250–300° gives (285) (331) N-methylcarbamyl chloride [Beil. IV-64]; for stabilization of this prod. by formn. of insol. compds. with AlCl<sub>3</sub>, etc., see (332); note that treatment with CaO causes loss of HCl giving (285) methyl isocyanate [Beil. IV-77, IV<sub>1</sub>-(337), IV<sub>2</sub>-(578)], best prepd. by other means, e.g., from NaN<sub>3</sub> with Ac<sub>2</sub>O (333) or AcCl (334) (335). —  $\bar{C}$  with CH<sub>3</sub>NH<sub>2</sub> in C<sub>6</sub>H<sub>6</sub> + aq. alkali, however, gives N,N'-dimethylurea [Beil. IV-65, IV<sub>1</sub>-(331), IV<sub>2</sub>-(568)], m.p. 106°.]

[Č with  $C_2H_5NH_2$ .HCl at 250-300° gives (285) N-ethylcarbamyl chloride [Beil. IV-114]; note that treatment of this prod. with CaO causes loss of HCl giving (285) ethyl isocyanate [Beil. IV-122, IV<sub>1</sub>-(357), IV<sub>2</sub>-(613)], b.p. 60°.]

[Č with other primary aliphatic or cycloaliphatic amine hydrochlorides under conditions such that HCl is removed from reaction mixt. gives corresp. isocyanates (336) cf. (337).]

[C with aniline hydrochloride presumably yields N-phenylcarbamyl chloride [Beil. XII-346, XII<sub>1</sub>-(230)], m.p. 58-59°, but this compound is usually prepd. by other means (338) (339) since it readily loses HCl at 90-100° or by action of aq. or aq. alk. (340) giving phenyl isocyanate; for stabilization of N-phenylcarbamyl chloride by formn. of molecular compound with AlCl<sub>3</sub> see (332). — C in dry aniline (341) or aq. aniline (342) (96) gives N,N'-diphenylurea (carbanilide) [Beil. XII-352, XII<sub>1</sub>-(233)], m.p. 238°; for use of this reaction as method of quant. detn. of C see (94) (95) cf. (91). — C with fused aniline HCl or carbanilide (343), or C with aniline HCl in C<sub>6</sub>H<sub>6</sub> at 120° under press. (344) cf. (337), gives phenyl isocyanate [Beil. XII-437, XII<sub>1</sub>-(259)], b.p. 166°.]

 $\bar{C}$  with countless other arom. prim. amines behaves in generally similar fashion but details cannot be included here [however, for reaction of  $\bar{C}$  with p-nitroaniline in EtOAc soln. giving N-p-nitrophenylcarbamyl chloride which on recrystn. from CCl<sub>4</sub> loses HCl yielding p-nitrophenyl isocyanate see (345) (346) (347)].

With secondary amines. [ $\bar{C}$  with  $(CH_3)_2NH$  in  $C_6H_6$  at 0° (348) (349), or  $\bar{C}$  over fused  $(CH_3)_2NH$ .HCl (350) (351), gives N,N'-dimethylcarbamyl chloride [Beil. IV-73], b.p. 167°, which with dimethylamine in  $C_6H_6$  yields (349) N,N,N',N'-tetramethylurea [Beil. IV-74, IV<sub>1</sub>\_(335), IV<sub>2</sub>-(574)], liquid, b.p. 177°.]

[ $\bar{\mathbf{C}}$  with  $(\mathbf{C}_2\mathbf{H}_5)_2\mathbf{NH}$ .HCl at elev. temp. (350), or with  $(\mathbf{C}_2\mathbf{H}_5)_2\mathbf{NH}$  in  $\mathbf{C}_6\mathbf{H}_6$  (352), gives N,N-diethylcarbamyl chloride [Beil. IV-120, IV<sub>2</sub>-(611)], liquid, b.p. 186-190°, which with diethylamine gives (353) cf. (354) N,N,N',N'-tetraethylurea [Beil. IV-120, IV<sub>2</sub>-(611)], liquid, b.p. 210-215°.]

[C with piperidine HCl would be expected to give N-piperidylformyl chloride ("penta-

methylenecarbamyl chloride") [Beil. XX-54], b.p. 237-238°, but this compound has been reported only by other means.]

Č with aromatic secondary amines behaves in generally analogous fashion but cannot be detailed here.

With tertiary amines. [ $\bar{C}$  with N,N-dimethylaniline at ord. temp. is claimed (355) (356) to give 4,4'-bis-(dimethylamino)benzophenone ("Michler's ketone") [Beil. XIV-89; XIV<sub>1</sub>-(391)], m.p. 174°. However,  $\bar{C}$  passed into boilg. N,N-dimethylaniline evolves CH<sub>2</sub>Cl (3:7005) and gives (almost quant. yield (357)) N,N'-dimethyl-N,N'-diphenylurea [Beil. XII-418, XII<sub>1</sub>-(251)], m.p. 121° — Similarly,  $\bar{C}$  with boilg. N,N-diethylaniline evolves C<sub>2</sub>H<sub>5</sub>Cl (3:7015) and gives N,N'-diethyl-N,N'-diphenylurea [Beil. XII-422], m.p. 79°.]

[For use of  $\bar{C}$  in sepn. of a mixture of aniline, N-ethylaniline, and N,N-diethylaniline see (361).]

With arylhydrazines. [C in toluene added to cold ether soln of phenylhydrazine gives (358) 1,5-diphenylcarbohydrazide ("diphenylcarbazide") [Beil. XV-292, XV<sub>1</sub>-(72)], m.p. 175-175.5° u.e. when pure (359). For use of this reaction, followed by CuSO<sub>4</sub> treatment of the resultant product, as a delicate test for C see (78).]

With other nutrogenous organic reactants. [For a concise review of behavior of  $\bar{\mathbf{C}}$  with other nitrogenous classes such as amides, amidoximes, thioureas, thiosemicarbazides, etc., see the review of Dyson (360).]

With hexamethylenetetramine  $\bar{C}$  with hexamethylenetetramine in CHCl<sub>3</sub> gives (362) (363) (364) a compound of compn  $\bar{C}.2C_6H_{12}N_4$ , mp 187–190° dec., (363) 196–197° from MeOH (364). — [For use of hexamethylenetetramine in paints protective against  $\bar{C}$  see (365); for use of alumina or silica gels contg. hexamethylenetetramine as absorbents for  $\bar{C}$  see (366).]

3:5000 (1) Emmerling, Lengyel, Ann. Suppl 7, 101-107 (1870); Ber. 2, 546-548 (1869). (2) Beckmann, Z anorg. Chem. 55, 370-379 (1907). (3) Nikitin, J. Russ. Phys.-Chem. Soc. 52, 235-249 (1920); Cent. 1923, III 1557; C.A. 17, 1357 (1923). (4) Paterno, Mazzucchelli, Gazz. chim. ital. 50, 1 30-53 (1920), Cent. 1920, III 43; C.A. 14, 2921-2922 (1920). (5) Stock, Wustrow, Z. anorg. allgem. Chem. 147, 245-255 (1925). (6) Atkinson, Heycock, Pope, J. Chem. Soc. 117, 1410-1426 (1920). (7) Erdmann, Ann. 362, 148 (1908). (8) Germann, Taylor, J. Am. Chem. Soc. 48, 1154-1159 (1926). (9) Davy, Phil. Trans. Roy. Soc. 102, 144-151 (1812). (10) Dobbin, Ann. Sci. 5, 270-287 (1945), C.A. 39, 4781 (1945).

(11) Dyson, Chem. Revs. 4, 109-165 (1927). (12) Melnikov, J. Chem. Ind. (Moscow) 1932, No. 9, 20-25; [Cent. 1933, I 652]; [C.A. 27, 708 (1933)] (13) Shiver, J. Chem. Education 7, 98-100 (1930). (14) Jackson, J. Chem. Education 10, 622-626 (1933). (15) Labat, Bull. trav. soc. pharm. Bordeaux 72, 106-113 (1934); [Cent. 1934, II 2209]; not in C.A. (16) Fries, West, "Chemical Warfare," McGraw-Hill Book Co., 1921, pp. 126-136. (17) Prentiss, "Chemicals in War," McGraw-Hill Book Co., 1937, pp. 154-157. (18) Sartori, "The War Gases," D. Van Nostrand Co., 1940, pp. 59-74. (19) Jacobs, "War Gases," Interscience Publishers, 1942, pp. 48-49, 103-104. (20) Spender, Flannagan, J. Am. Chem. Soc. 64, 2511-2513 (1942).

(21) Thompson, Trans. Faraday Soc. 37, 251-260 (1941). (22) Stevenson, Beach, J. Chem. Phys. 6, 27-28, 341 (1938). (23) C. G. Le Fevre, R. J. W. Le Fevre, J. Chem. Soc. 1935, 1700-1701. (24) Smyth, McAlpine, J. Am. Chem. Soc. 56, 1697-1700 (1934). (25) Schlundt, Germann, J. Phys. Chem. 29, 353-355 (1925). (26) Dornte, J. Am. Chem. Soc. 55, 4126-4130 (1933). (27) Henri, Howell, Proc. Roy. Soc. (London) A-128, 177-189, 190-191, 192-214 (1930). (28) Brockway, Beach, Pauling, J. Am. Chem. Soc. 57, 2693-2704 (1935). (29) Lowery, Proc. Roy. Soc. (London) A-133, 195-196 (1931). (30) Hackspill, Mathieu, Bull. soc. chim. (4) 25, 482-485 (1919).

(31) Baskerville, Cohen, J. Ind. Eng. Chem. 13, 333-334 (1921). (32) Kireev, Kaplan, Vasneva, J. Gen. Chem. (U.S.S.R.) 6, 799-805 (1936); Cent. 1937, II 755; C.A. 30, 7013 (1936). (33) Kireev, Kaplan, Zlobin, J. Applied Chem. (U.S.S.R.) 8, 949-951 (1935); Cent. 1937, I 3474; C.A. 30, 5484 (1936). (34) Soc. anon. des produits chimiques du centre, French 802,573, Sept. 8, 1946; Cent. 1936, II 3750-3751, C.A. 31, 1923 (1937). (35) Berolzheimer, J. Ind. Eng. Chem. 11, 263-266 (1919). (36) Ramat, Bull. soc. chim. (5) 7, 492-495 (1940); C.A. 36, 3413 (1942).

- (37) Arii, Huzita, Bull. Inst. Phys. Chem. Research (Tokyo) 20, 209-217 (1941); C.A. 35, 3504 (1941).
  (38) Bardan, Scarlatescu, Bull. soc. chem. (5) 6, 46-55 (1939).
  (39) Bardan, Popa, Compt. rend. inst. sci. Roumanie 3, 675-682 (1939); C.A. 36, 6695 (1942).
  (40) Engelhard, Stiller, Z. Elektrochem 49, 833-836 (1934); Cent. 1935, I 3257; C.A. 29, 2046 (1935).
- (41) Remy, Hene, Kolloid-Z. 61, 313-322 (1932). (42) Nielsen, Z. ges. Schiess- u. Sprengstoffw. 27, 136-139, 170-173, 208-211, 244-248, 280-284 (1932); Cent. 1932, II 3281-3282, [C.A. 26, 4658, 6035 (1932)]. (43) Engel, Z. ges. Schiess- u. Sprengstoffw. 24, 451-454, 495-497 (1929); Cent. 1936, I 1281; C.A. 24, 1265 (1930). (44) Herbst, Biochem. Z. 118, 103-119 (1921); Cent. 1932, I 163; C.A. 15, 3009 (1921). (45) Bunbury, J. Chem. Soc. 121, 1525-1528 (1922). (46) Comp. Française de Produits Organo-chimiques, French 742,153, March 1, 1933; Cent. 1933, I 3612; C.A. 27, 3568 (1933): French addition 42,779, Oct. 10, 1933; Cent. 1934, I 537; C.A. 28, 867 (1934). (47) Valkenburg, Rec. trav. chim. 57, 1286-1289 (1938). (48) Jacobs, "Analytical Chemistry of Industrial Poisons, Hazards and Solvents," Interscience Publishers, 1941, p. 304. (49) Fieldner, Katz, Kinney, U.S. Bur. Mines, Tech. Paper 248 (1921). (50) Sayers, Dallavalle, Yant, Ind. Eng. Chem. 26, 1251-1255 (1934).
- (51) Wilkes, Matheson, Chemistry & Industry 1939, 316-323; C.A. 33, 4696 (1939). (52) Hunter, Pharm. J. 137, 514-515, 539 (1936); C.A. 31, 6582 (1937). (53) Rothlin, Schweiz. med. Wochschr. 71, 1526-1532 (1941); C.A. 36, 6244 (1942). (54) Gwan, Proc. Acad. Sci. Amsterdam 44, 205-216 (1941); C.A. 37, 464 (1943). (55) Boyland, McDonald, Rumens, Brit. J. Pharmacol. 1, 81-89 (1946); C.A. 40, 6661 (1946). (56) Plucke, Z. Untersuch. Lebensm. 68, 313-320 (1934). (57) Schoofs, J. pharm. Belg. 21, 793-802 (1939); Cent. 1943, I 1010; C.A. 38, 5984 (1944). (58) Linn, Ipatieff (to Universal Oil Products Co.), U.S. 2,381,828, Aug. 7, 1945; C.A. 39, 4748, 5465, (1945). (59) Greenhalgh and Imperial Chem. Ind., Ltd., British 488,036, June 29, 1938; C.A. 33, 178 (1939). (60) Robertson, J. S. African Chem. Inst. 12, 39-49 (1929); Cent. 1930, I 2774-2775; C.A. 25, 3282-3283 (1931).
- (61) Adams, Coleman, Org. Syntheses, Coll. Vol. 1 (2nd ed ) 214-217 (1941); (1st ed.), 208-211 (1932); 2, 17-21 (1922). (62) Fenton, J. Chem. Education 21, 488-489 (1944). (63) Zais, J. Chem. Education 21, 489-490 (1944). (64) Fenton, J. Chem. Education 20, i.64 (1943). (65) Claffin, Hickey, J. Chem. Education 20, 351-357 (1943). (66) Hoogeveen, Chemistry & Industry 1940, 550-556. (67) Vallender, Chemistry & Industry 1939, 330-333. (68) Patty, Am. J. Pub. Health 30, 1191-1198 (1940). (69) Grogg, Protar 4, 144-150, 164-170, 184-192 (1938); C.A. 33, 263 (1939). (70) Rosenthaler, Pharm. Acta Helv. 12, 6-7 (1937); C.A. 31, 2358 (1937).
- (71) Suchier, Z. anal. Chem. 79, 183-185 (1929).
  (72) Chema, Ltd., and Sigmund, Brit. 519,957, April 10, 1940; C.A. 36, 589 (1942).
  (73) Schröter (to O. H. Drager), U.S. 2, 103,187, Dec. 21, 1937; C.A. 32, 1214 (1938).
  (74) Kretov, J. Applied Chem. (U.S.S.R.) 2, 483-501 (1929); [Cent. 1929, II 2230]; C.A. 24, 313-314 (1930).
  (75) Studinger, Chemistry & Industry 56, 225-227 (1937); Mitt. Lebensm. Hyg. 27, 8-20 (1936).
  (76) Cox, Analyst 64, 807-813 (1939).
  (77) Liebermann, Ber. 24, 1106-1107 (1891).
  (78) Anger, Wang, Mikrochim. Acta 3, 24-26 (1938); C.A. 32, 3295 (1938).
  (79) Allport, Analyst 56, 706-710 (1931).
  (80) Gilman, Sweeney, Heck, J. Am. Chem. Soc. 52, 1604-1607 (1930).
- (81) Gilman, Heck, J. Am. Chem. Soc. 52, 4953 (1930). (82) Pu, Lo, J. Chinese Chem. Soc. 8, 140-142 (1941); C.A. 37, 6053 (1943). (83) Fieldner, Oberfell, Teague, Lawrence, J. Ind. Eng. Chem. 11, 523,527 (1919). (84) Fieldner, Katz, Kinney, Longfellow, J. Frankin Inst. 196, 543-565 (1920); C.A. 15, 294 (1921). (85) Delépine, et al., Bull. soc. chim. (4) 27, 283-295 (1920). (86) Bredig, von Goldberger, Gas- u. Wasserfach 67, 490-491 (1924); Cent. 1924, II 2307; C.A. 19, 1112 (1925). (87) Reeves, J. Soc. Chem. Ind. 43, 279-280T (1924); Cent. 1924, II 2065-2066; C.A. 19, 24 (1925). (88) Stock, Wustrow, Z. anorg. allgem. Chem. 195, 129-139 (1931). (89) Nenitzescu, Pana, Bul. Soc. Chim. România 15, 45-48 (1933); Cent. 1933, II 3890; C.A. 28, 73 (1934). (90) Matuszak, Ind. Eng. Chem., Anal. Ed. 6, 374-375 (1934).
- (91) Olsen, Ferguson, Sabetta, Scheflan, Ind. Eng. Chem., Anal. Ed. 3, 189-191 (1931). (92) Jahresber. der Chem.-Techn. Reichsanstatt 5, 11-20 (1926). (93) Matuszak, Ind. Eng. Chem., Anal. Ed. 6, 457-459 (1934). (94) Kling, Schmutz, Compt. rend. 168, 773,891 (1919). (95) Yant, Olsen, Storch, Littlefield, Scheflan, Ind. Eng. Chem., Anal. Ed. 8, 20-25 (1936). (96) Vles, Rec. trav. chim. 53, 962-964 (1934). (97) Martin, Oettingen, Kuhn, Z. anal. Chem. 117, 305-317 (1939); C.A. 34, 47 (1940). (98) Berthelot, Bull. soc. chim. (2) 13, 15-16 (1870). (99) Steacie, Smith, Can. J. Research 16-B, 1-5 (1938); C.A. 32, 2866 (1938). (100) Hanson, Ind. Eng. Chem., Anal. Ed. 13, 119-123 (1941).
- (101) Wilm, Wischin, Ann. 147, 150-157 (1868). (102) Wildermann, Phil. Trans. Roy. Soc. London A-199, 337-397 (1902); Z. physik. Chem. 42, 257-335 (1902). (103) Dyson, Harden, J. Chem. Soc. 83, 201-205 (1903). (104) Weigert, Ann. Physik (4) 24, 55-67, 243-266 (1907). (105) Coehn, Becker, Ber. 43, 130-133 (1910). (106) Chapman, Gee, J. Chem. Soc. 99, 1726-1739 (1911). (107) Fye, Beaver, J. Am. Chem. Soc. 63, 2395-2400 (1941). (108) Brenschede,

Z. physik. Chem. B-41, 254-286 (1938). (109) Brenschede, Z. physik. Chem. B-41, 237-253 (1938). (110) Bodenstein, Brenschede, Schumacher, Z. physik. Chem. B-49, 121-134 (1938).

(111) Franke, Schumacher, Z. physik. Chem. B-40, 115-120 (1938). (112) Bodenstein, Brenschede, Schumacher, Z. physik. Chem. B-35, 382-402 (1937). (113) Rollefson, Z. physik. Chem. B-37, 472-473 (1937). (114) Bodenstein, Brenschede, Schumacher, Z. physik. Chem. B-28, 81-94 (1935). (115) Rollefson, J. Am. Chem. Soc. 56, 579-583 (1934). (116) Rollefson, J. Am. Chem. Soc. 55, 148-152 (1933). (117) Warming, Z. physik. Chem. B-18, 156-158 (1932). (118) Rollefson, Trans. Faraday Soc. 27, 465-468 (1931). (119) Kistiakowsky, Z. angew. Chem. 44, 602-605 (1931). (120) Schumacher, Stieger, Z. physik. Chem. B-13, 169-189 (1931).

(121) Schumacher, Stieger, Z. physik. Chem. B-13, 157-168 (1931). (122) Bodenstein, Chem. Revs. 7, 225-229 (1930). (123) Schumacher, J. Am. Chem. Soc. 52, 3133-3136 (1930). (124) Alyea, Lind, J. Am. Chem. Soc. 52, 1853-1868 (1930). (125) Lenher, Rollefson, J. Am. Chem. Soc. 52, 500-506 (1930). (126) Schultze, Z. physik. Chem. B-5, 368-384 (1929). (127) Bodenstein, Lenher, Wagner, Z. physik. Chem. B-3, 459-478 (1929). (128) Bodenstein, Onoda, Z. physik. Chem. 131, 153-174 (1928). (129) Cathala, J. chim. phys. 25, 190-194 (1928). (130) Cathala, J. chim. phys., 24, 663-711 (1927).

(131) Bodenstein, Z. physik. Chem. 130, 422-448 (1927). (132) Schumacher, Z. physik. Chem. 129, 241-261 (1927). (133) Cathala, Bull. soc. chim. (4) 33, 576-581 (1923). (134) Bodenstein, Rec. trav. chim. 41, 585-591 (1921). (135) Bodenstein, Plaut, Z. physik. Chem. 110, 399-416 (1924). (136) Schutzenberger, Ann. chim. (4) 21, 350-362 (1870); Ann. Suppl. 8, 242-254 (1872). (137) Chem. Fabrik Schering, Ger. 369,369, Feb. 17, 1923; Cent. 1923, II 909; not in C.A. (138) Plotnikow, J. Russ. Phys.-Chem. Soc. 48, 457-458 (1916); Cent. 1923, I 1490; C.A. 11, 764 (1917). (139) Williams (to du Pont Ammonia Corp.), U.S. 1,746,506, Feb. 11, 1930; Cent. 1930, I 2629; [C.A. 24, 1710 (1930)]. (140) Gobel, J. prakt. Chem. (1) 6, 388 (1835).

(141) Belladen, Noli, Sommariva, Gazz. chim. ital 58, 443-449 (1928). (142) Diemer, J. Am. Chem. Soc. 35, 555 (1913). (143) Hofmann, Ann. 70, 139 (1849). (144) Manchot, Lehmann, Ber. 63, 1221-1224 (1930). (145) Martin-Wedard, French 487,617, Oct. 12, 1939; C.A. 35, 5509 (1941). (146) Hamilton, Ind Eng. Chem. 25, 539-541 (1933). (147) Fieldner, Katz, U.S. Bur. Mines, Rept. Investigations 2262 (1921). (148) Hofmann, Rohr, Ger. 571,693, April 29, 1933; Cent. 1933, I 4003; C.A. 27, 4365 (1933). (149) I.G., French 676,753, Feb. 27, 1930; Cent. 1930, I 2936; C.A. 24, 3093 (1930): Brit 319,320, Nov. 13, 1929; Cent. 1930, I 719; C.A. 24, 2849 (1930). (150) Minimax, A. G., Ger. 645,137, May 24, 1937; Cent. 1937, II 1864; C.A. 31, 6382 (1937).

(151) Pearce, Scheflan, Schienk, Ferguson, Brown, U.S. Bur. Mines, Rept. Investigations 3686 (18 pp.) (1943); C.A. 37, 2578-2579 (1943). (152) Esser, Gasschutz u. Luftschutz 8, 266-269, 297-298 (1938); C.A. 33, 777 (1939). (153) Lyons, Dickinson, J. Am. Chem. Soc. 57, 443-446 (1935). (154) Harteck, Kopsch, Z. physik. Chem. B-12, 327-347 (1931). (155) Bodenstein, Günther, Hofmeister, Z. angew. Chem. 39, 875-880 (1926). (156) Biesalski, Z. angew. Chem. 37, 315-317 (1924). (157) Dede, Russ, Ber. 61, 2462 (1928). (158) Erdmann, Ber. 26, 1990-1994 (1893). (159) Lepin, J. Russ. Phys.-Chem. Soc. 52, 1-17 (1920); Cent. 1923, III 823; C.A. 17, 1395 (1923). (160) Oddo, Sconzo, Gazz. chim. ital. 57, 91, 99-102 (1927).

(161) Armstrong, J. prakt. Chem. (2) 1, 245-248 (1870). (162) Schutzenberger, Bull. soc. chim. (2) 12, 198-200 (1869). (163) Grignard, Urbain, Compt. rend. 169, 17-20 (1919). (164) Schutzenberger, Compt. rend. 66, 748-749 (1868). (165) Gustavson, Ber. 5, 30 (1872). (166)Budnikov, Voznesenskii, J. Russ. Phys.-Chem. Soc. 56, 73-79 (1925); C.A. 19, 3148 (1925): Budnikov, Chem. Ztg. 49, 430-431 (1925); Cent. 1925, II 533-534. (167) Baskerville, Hamor, J. Ind. Eng. Chem. 4, 281-288, 362-364 (1912). (168) Schoorl, van der Berg. Pharm. Weekblad 43, 8-10 (1906); Cent. 1906, I 442. (169) Schoorl, van der Berg, Pharm. Weekblad 42, 877-888 (1905); Cent. 1905, II 1623. (170) Mossler, Monatsh. 29, 573-581 (1908).

(171) Hill, J. Am. Chem. Soc. 54, 32-40 (1932). (172) Chatterji, Dhar, Z. anorg. allgem. Chem. 191, 155-160 (1930). (173) Clover, J. Am. Chem. Soc. 45, 3133-3138 (1923). (174) Chapman,
 J. Am. Chem. Soc. 57, 419-422 (1935). (175) Chapman, J. Am. Chem. Soc. 57, 416-419 (1935). (176) Schumacher, Sundhoff, Z. physik. Chem. B-34, 300-308 (1936). (177) Schumacher, Wolff, Z. physik. Chem. B-26, 453-462 (1934). (178) Kautsky, Thiele, Z. anorg. allgem. Chem. 144, 213 (1925). (179) Harries, Ann. 343, 340 (1905). (180) Erdmann, Ann. 362, 147-148

(181) Biosalski, Z. angew. Chem. 37, 314-317 (1924). (182) Davis, McLean, J. Am. Chem. Soc. 60, 720-722 (1938). (183) Schott, Schumacher, Z. physik. Chem. B-49, 107-125 (1941); Cent. 1941, II 2549; C.A. 38, 3551 (1944). (184) Dickinson, Carrico, J. Am. Chem. Soc. 56, 1473-1480 (1934). (185) Dickinson, Leermakers, J. Am. Chem. Soc. 54, 3852-3862 (1932). (186) Erdmann, J. prakt. Chem. (2) 85, 78-89 (1912); cf. Staudinger, ibid. 330-333 (1912). (187) Dewar, Cranston, Chem. News 20, 174 (1869). (188) Alexander, Schumacher, Z. physik. Chem. B-44, 313-326 (1939). (189) Stauff, Schumacher, Z. physik. Chem. B-48, 154-175 (1941). (190) Gauthier, Bull. soc. chim. (2) 45, 86-88 (1886).

(192) Underwood, Baril, J Am. Chem. (191) Böeseken, Rec. trav. chim. 29, 104-108 (1910). Soc. 57, 2730 (1935). (193) Benrath, Ann. 382, 224 (1911). (194) Jaeger, Cent. 1912, I 1817. (195) Simons, Sloat, Meunier, J. Am. Chem. Soc. 61, 435-436 (1939). (196) Gassner, Z. hyg. Zool. Schädlingsbekämpf. 32, 225 (1940); C.A. 36, 3293 (1942). (197) Gruss, Z. Elektrochem. 29, 147 (1923). (198) Hood, Murdock, J. Phys. Chem. 23, 498-514 (1919). (199) Marotta, Gazz. chim. ital. 59, 959 (1929). (200) Hentschel, J. prakt. Chem. (2) 36, 99-113, 209-218, 305-317, 468-480 (1887).

(201) Fichter, Fritsch, Muller, Helv. Chim. Acta 6, 504-505 (1923). (202) Hentschel, J. prakt. Chem. (2) 36, 103, 314 (1887). (203) Melnikov, J. Russ. Phys.-Chem. Soc. 62, 2019-2022 (1930); Cent. 1931, I 2864; [C.A. 25, 4228 (1931)]. (204) Nekrasov, Melnikov, J. prakt. Chem. (2) 126 81-96 (1930). (205) Nekrasov, Melnikov, J. prakt. Chem. (2) 127, 210-218 (1930). Melnikov, J. Gen. Chem. (U.S.S.R.) 4, 1057-1060 (1936); Cent. 1936, I 3131; not in C.A. (207) Cahours, Ann. chim. (3) 19, 344-349 (1847); Ann. 64, 313-314 (1848). (208) Birckenbach, Goubeau, Ber. 64, 218-227 (1931). (209) Ramsperger, Waddington, J. Am. Chem. Soc. 55, 214-220 (1933). (210) Piutti, Mazza, Gazz. chim. ital. 57, 612-614 (1927); Cent. 1927, I 240; C.A. 22, 356 (1928).

(211) Gardner, Fox, J. Chem. Soc. 115, 1188-1194 (1919). (212) Silberrad, Chem. News 123, 271 (1921); Cent. 1922, I 403; C.A. 16, 1073 (1922). (213) Secareano, Bull. soc. chim. (4) 41, 630-631 (1927). (214) Berzelius, Marcet, Gilbert's Annalen 48, 161 (1814). (215) Schutzenberger, Ber. 2, 219 (1869). (216) Delépine, Bull. soc. chim. (4) 31, 775, 781-782 (1922). (217) Gustavson, Ber. 3, 990 (1870). (218) Boeseken, Rec. trav. chim. 32, 11-12 (1913). (219) Staudinger, Ber. 41, 3565-3566 (1908). (220) Goldschmidt, Ber. 14, 928-929 (1881).

(221) Stock, Wustrow, Lux, Ramser, Z. anorg. allgem. Chem. 195, 140-148 (1931). (222) Ingleson, J. Chem. Soc. 1927, 2244-2254. (223) Christiansen, Z. physik. Chem. 103, 99-138 (1922). (224) Bodenstein, Dunant, Z. physik. Chem. 61, 437-446 (1908). (225) Fink, Bonilla, J. phys. Chem. 37, 1152-1167 (1933). (226) Berthelot, Gaudchon, Compt. rend. 156, 1245 (1913). (227) Montgomery, Rollefson, J. Am. Chem. Soc. 56, 1089-1092 (1934). (228) Kassel, J. Am. Chem. Soc. 56, 243 (1934). (229) Montgomery, Rollefson, J. Am. Chem. Soc. 55, 4025-4035 (1933). (230) Rollefson, Montgomery, J. Am. Chem. Soc. 55, 142-147 (1933).

(231) Almasy, Wagner-Jauregg, Z. physik. Chem. B-19, 405-419 (1932); Naturwissenschaften 19, 270 (1931). (232) Kuhn, Martin, Z. physik. Chem. B-19, 93-137 (1933); Naturwissenschaften 20, 772 (1932). (233) Germann, Science 61, 70-71 (1925). (234) Bredig, von Goldberger, Z. physik. Chem. 110, 521-546 (1924). (235) von Wartenberg, Muchlinski, Riedler, Z. angew. Chem. 37, 458 (1924). (236) Fohlen, French 680,586, May 2, 1930, Cent 1930, II 2829; [C.A. 24, 3799 (1930)]. (237) Delépine, Douris, Ville, Bull. soc. chim. (4) 27, 286-288 (1920). (238) Rona, Z. ges. exptl. Med. 13, 16-30 (1921); Cent. 1921, III 374; C.A. 15, 1933 (1921). (239) Böhme, Ber. 74, 248-256 (1941). (240) Velasco, Anales soc. españ. fís. quím. 37, 254-262 (1941); C.A. 37, 4614 (1943).

(241) Ref. 11, pp. 128-132. (242) Chauvenet, Compt. rend. 147, 1046-1048 (1908); 152, 87, 89 (1911). (243) Matignon, Cathala, Compt. rend. 181, 1066-1068 (1925); 182, 601 (1926). (244) Stock, Kuss, Ber. 50, 161 (1917). (245) Nuricsau, Ber. 24, 2967-2974 (1891). (246) Chauvenet. Compt. rend. 152, 1250-1252 (1911). (247) Barlot, Chauvenet, Compt. rend. 157, 1153-1155 (1913). (248) Dunn, Briers (to Imperial Chem. Ind., Ltd.), Brit. 337,123, Nov. 20, 1930; Cent. 1931, I 665; C.A. 25, 1956 (1931). (249) Brode, Wursten (to I.G.), Ger. 502,884, July 18, 1930; Cent. 1930, II 1753; not in C.A. (250) Ruff, Miltschitzky, Z. anorg. allgem. Chem. 221, 154-158 (1934).

(251) Li, J. Chinese Chem. Soc. 11, 14-24 (1944); C.A. 39, 1099 (1945). (252) Fukuhara, Bigelow, J. Am. Chem. Soc. 63, 788-791 (1941). (253) Simons, Herman, Pearlson, J. Am. Chem. Soc. 68, 1672-1673 (1946). (254) Besson, Compt. rend. 120, 190-192 (1895); Bull. soc. chim. 13, 444-445 (1895). (255) von Bartal, Z. anorg. Chem. 55, 152-158 (1907). (256) Schumacher, Lenher, Ber. 61, 1671-1675 (1928). (257) von Bartal, Ann. 345, 334-353 (1906). (258) Rosenmund, Döring, Arch. Pharm. 266, 279 (1928). (259) Koblitz, Meissner, Schumacher, Ber. 70, 1080-1086 (1937). (260) Schumacher, Bergmann, Z. physik. Chem. B-13, 269-284 (1931).

(261) Lenher, Schumacher, Z. physik. Chem. 135, 85-101 (1928). (262) Reerink, Rec. trav. chim. 47, 989-999 (1928). (263) Malachowski, Jurkiewicz, Wojtowicz, Ber. 70, 1012-1016 (1937). (264) Koessler, Hanke, J. Am. Chem. Soc. 40, 1717-1718 (1918). (265) Malachowski, Ger. 666,394, Oct. 19, 1938; Cent. 1939, I 1061; C.A. 33, 2152 (1939). (266) Malachowski, Pisarska, Ber. 71, 2239-2240 (1938). (267) Staudinger, Anthes, Ber. 46, 1426 (1913). (268) Germann, McIntyre, J. Phys. Chem. 29, 102-105 (1925). (269) Germann, J. Phys. Chem. 29, 138-141 (1925). (270) Germann, J. Phys. Chem. 29, 1148-1154 (1925).

Germann, J. Phys. Chem. 28, 879-886 (1924). (272) Germann, Gagos, J. Phys. Chem.
 98, 965-972 (1924). (273) Germann, Jersey, Science 53, 582 (1921). (274) Germann, Timpany,
 J. Phys. Chem. 29, 1423-1431 (1925). (275) Germann, Timpany,
 J. Am. Chem. Soc. 47, 2275-2278 (1925). (276) Germann, Birosel,
 J. Phys. Chem. 29, 1469-1476 (1929). (277) Hantssch;
 Stuer, Ber. 38, 1042 (1905). (278) Werner, Carpenter,
 J. Chem. Soc. 113, 694-697 (1918).
 Natanson, Ann. 98, 287-291 (1856). (280) Regnault, Ann. chem. (2) 69, 180-193 (1838).

(281) Bouchardat, Compl. rend. 69, 961 (1859); Ann. 154, 354-356 (1870). (282) Stuer, Ber. 38, 2326 (1905). (283) Fosse, DeGraeve, Thomas, Compl. rend. 202, 1544-1547 (1936). (284) Ferret, Perrot, Compl. rend. 199, 955-957 (1934). (285) Gattermann, Schmidt, Ann. 244, 30-38 (1888). (286) Theis (to I.G.), U.S. 1,937,328, Nov. 28, 1933; not in Cent., [C.A. 28, 1053 (1934)]: Brit. 396,870, Aug. 17, 1933; not in Cent.; C.A. 28, 488 (1934): Ger. 580,140, July 6, 1933; not in Cent.; C.A. 27, 4887 (1933): French 746,596, June 1, 1933; Cent. 1933, II 1761; C.A. 27, 4636 (1933). (287) Linhard, Betz, Ber. 73, 177-185 (1940). (288) Hantzsch, Sauer, Ann. 299, 91-94 (1898). (289) Jones, Neuffer, J. An. Chem. Soc. 39, 657-659 (1917). (290) Brown, Record

Chem. Progress (Kresye-Hooker Sci. Lib.) 6, 15-20 (1945); [C.A. 39, 3247 (1945)].

(291) Kharasch, Brown, J. Am. Chem. Soc. 62, 454 (1940). (292) Kharasch, Eberly, Kleiman, J. Am. Chem. Soc. 64, 2975-2977 (1942). (293) Antares Trust, Registered, Swiss 165,822, Feb. 16, 1934; Cent. 1934, II 3181; C.A. 28, 2724 (1934). (294) Hochstetter, Ger 292,089, May 22, 1916; Cent. 1916, II 39; [C.A. 11, 1520 (1917)]. (295) Lippmann, Ann. 129, 85-87 (1864). (296) Pace, Gazz. chim. ital. 59, 580-582 (1929). (297) Klebanskii, Chevuichalova, J. Gen. Chem. (U.S.S.R.) 5, 535-548 (1935); Cent. 1935, II 3090, C.A. 29, 6879 (1935); Compt. rend. acad. sci. U.R.S.S. 2, 42-47 (1935); Cent. 1936, I 4895]; C.A. 29, 5814 (1935). (298) Klebanskii, Chevuichalova, Trans. State Inst. Applied Chem. 1937, No. 31, 46-62; Cent. 1938, I 1335; C.A. 34, 6222 (1940). (299) Frolich, Wiezevich, Ind. Eng. Chem. 24, 16 (1934). (300) Varshavskii, Doroganyevskaya, Gazz. chim. ital. 64, 53-59 (1934); Cent. 1934, I 3848; C.A. 28, 5043 (1934).

(301) Reid (to du Pont Co.), U.S. 2,028,012, Jan. 14, 1936, Cent. 1936, II 866; C.A. 39, 1387 (1936). (302) Armour and Co., Brit. 525,184, Aug. 22, 1940; C.A. 35, 6694 (1941). (303) Ralston (to Armour and Co.), U.S. 2,196,445, April 9, 1940, C.A. 34, 5569 (1940). (304) Izard (to du Pont Co.), U.S. 2,020,685, Nov. 12, 1935; Cent. 1936, I 2430; [C.A. 30, 485 (1936)]. (305) Muskat (to Pittsburgh Plate Glass Co.), U.S. 2,370,570, Feb. 27, 1945; C.A. 39, 4087 (1945). (306) Muskat, Strain (to Pittsburgh Plate Glass Co.), U.S. 2,370,568, Feb. 27, 1945; C.A. 39, 4087 (1945). (307) Bowden, J. Chem. Soc. 1939, 310-314. (308) Ref. 11, pp. 149-152. (309) Kempf, J. prakt Chem. (2) 1, 402-407 (1870). (310) Barral, Morel, Compt. rend. 128, 1578-1581 (1899); Bull. soc. chrm. (3) 21, 722-727 (1899).

(311) Hochstetter, Ger. 282,314, Feb. 16, 1915; Cent. 1915, I 464; C.A. 9, 2425 (1915). (312) von Auwers, Shaich, Ber. 54, 1769 (1921). (313) Hoeflake, Rec. trav. chim. 40, 517 (1921). (314) Raiford, Dudley, Proc. Iowa Acad. Sci. 51, 313-317 (1944), C.A. 40, 5179 (1946). (315) Pickard, Littlebury, J. Chem. Soc. 91, 302 (1907). (316) Copisarow, J. Chem. Soc. 1929, 253. (317) Kempf, J. prakt. Chem. (2) 1, 414 (1870). (318) Eggert, Grimm (to I.G.), Ger. 655,683, Jan. 25, 1938; Cent. 1938, I 2445; C.A. 32, 3773, 6672 (1938). (319) I.G., French 754,986, Nov. 17, 1933; Cent. 1934, I 942; C.A. 28, 1361 (1934). (320) I.G., French 755,052, Nov. 18, 1933; Cent. 1934, I 942-943; C.A. 28, 1361 (1934).

(321) Hochstetter, Ger. 284,617, May 31, 1915; Cent. 1915, II 215; C.A. 10, 94 (1916). (322) Stellmann, French 785,075, Aug. 1, 1935; Cent 1935, II 3301, C.A. 30, 490 (1936). (323) Hochstetter, Ger. 283,896, April 27, 1915; Cent. 1915, I 1190; C.A. 10, 93-94 (1916). (324) Soc. Chem. Ind. Basel, Brit. 401,643, Dec. 14, 1933; Cent. 1934, II 2133-2134, not in C.A.: French 732,078, Sept. 12, 1932; Cent. 1934, I 287; C.A. 27, 734 (1933). (325) Prat. Étienne, Bull. soc. chim. (5) 11, 30-34 (1944); C.A. 38, 6274 (1938). (326) Uvarov, Stepanov, Russian 56,693, March 31, 1940; C.A. 36, 2869 (1942). (327) Meyer, Ann. 156, 271, Note (1870). (328) Kopetschni, Karczag, Ger. 266,351, Oct. 21, 1913; Cent. 1913, II 1715; [C.A. 8, 790 (1914)]. (329) Meuser (to Dominion Rubber Co.), Canadian 373,516, May 3, 1938, Cent. 1938, II 3609; C.A. 32, 5003 (1938). (330) Matuszak, J. Am. Chem. Soc. 56, 2007 (1934).

(331) Hamilton, Simpson, J. Am. Chem. Soc. 51, 3160 (1929). (332) I.G., French 797,771, May 4, 1936; C.A. 30, 7292 (1936). (333) Colucci, Can. J. Research 23-B, 111-112 (1945); C.A. 39, 4317 (1945). (334) Pacilly, Rec. trav. chim. 55, 103 (1936). (335) Schroeter, Ber. 42, 3367-3358 (1909). (336) I.G., Brit. 462,182, April 1, 1937; Cent. 1937, I 4882; C.A. 31, 5383 (1937): French 809,233, Feb. 26, 1937; Cent. 1937, I 4882; C.A. 31, 6676 (1937). (337) Greenhalgh, Piggott, and Imperial Chem. Ind., Ltd., Brit. 483,308, May 19, 1938; Cent. 1938, II 1676-1677; C.A. 32, 7056 (1938). (338) Hentzschel, Ber. 18, 1178 (1885). (339) Lengfeld, Stiegler, Am. Chem. J. 16, 73 (1894). (340) Brady, Dunny, J. Chem. Soc. 123, 1790, 1802-1803 (1923).

(341) Hofmann, Ann. 70, 140 (1849).
 (342) Hentzschel, J. prakt. Chem. (2) 27, 499 (1883).
 (343) Hentzschel, Ber. 17, 1284-1285 (1884).
 (344) Vereinigte Chininfabriken Zimmer und Co.,

Ger. 133,760, July 29, 1902; Cent. 1902, II 553-554. {345} Shriner, Cox, J. Am. Chem. Soc. 53, 1603-1604 (1931). {346} Horne, Shriner, J. Am. Chem. Soc. 53, 3186 (1931). {347} Shriner, Horne, Cox, Org. Syntheses, Coll. Vol. 2 (1st ed.), 453-455 (1943); 14, 72-74 (1934). {348} Franchimont, Rouffser, Rec. trav. chem. 13, 333-335 (1894). (349) Michler, Escherich, Ber. 12, 1162-1164 (1879). {350} Hantzsch, Sauer, Ann. 299, 85-86, 90 (1898).

(351) Stollé, J. prakt. Chem. (2) 117, 201 (1927). (352) Lumière, Perrin, Bull. soc. chim. (3) 31, 689 (1904). (353) Wallach, Ann. 214, 275 (1882). (354) Michler, Ber. 8, 1664-1666 (1875). (355) Michler, Ber. 9, 716-718 (1876). (356) Michler, Dupertuis, Ber. 9, 1899-1901 (1876). (357) Wahl, Bull. soc. chim. (5) 1, 244-246 (1934); C.A. 28, 5430 (1934). (358) Heller, Ann. 263, 277 (1891). (359) Noller, J. Am. Chem. Soc. 52, 1132-1134 (1930). (360) Ref. 11, pp. 156-160. (361) Gershzon, Lastovskii, J. Applied Chem. (U.S.S.R.) 9, 2058-2064 (1936); C.A. 31, 2589 (1937); Russian 44,556, Oct. 31, 1935; Cent. 1936, I 3576; C.A. 32, 2955 (1938). (362) Puschin, Mittle, Ann. 532, 300-301 (1937). (363) Puschin, Zivadinovic, Bull. soc. chim. roy. Yougoslav. 6, 165-168 (1936), Cent. 1936, II 794; C.A. 30, 4422 (1936). (364) Dominikiewicz, Arch. Chem. Farm. 3, 248-254 (1937); Cent. 1938, II 321; C.A. 32, 4522 (1938). (365) Evans, Paint Manuf. 8, 153-168 (1938); C.A. 32, 5529 (1938). (366) Patrick, U.S. 2,400,709, May 21, 1946; C.A. 40, 5507 (1946). (367) Davies, J. Chem. Phys. 14, 48-49 (1946). (368) Biesalski, Angew. Chem. 47, 149-151 (1934).

B.P. 31.7° at 760 mm. (1) F.P.  $-122.1^{\circ}$  (1)  $D_4^{20} = 1.2129$  (1)  $n_D^{20} = 1.4249$  (1)

Care must be taken to avoid confusion of  $\bar{C}$  with vinyl chloride (3:7010), with 1,2-dichloroethane (ethylene (di)chloride) (3:5130), or especially with the isomeric compounds cts-1,2-dichloroethylene (3:5042), trans-1,2-dichloroethylene (3:5028), or their ordinary mixture (3:5030).

 $\bar{C}$  when pure is colorless liq. with mild and characteristic odor; note, however, that at temps. above 0° and especially in pres. of oxygen or other cat.  $\bar{C}$  polymerizes to a white powder insoluble in the monomeric  $\bar{C}$ . (For much further comment on polymerization see below.)

#### PREPARATION OF C

[For prepn. of  $\bar{C}$  from 1,1,2-trichloroethane (3:5330) by elimination of 1 HCl with alc. KOH (2) (by this process  $\bar{C}$  was initially prepared (3)), or with excess aq. Ca(OH)<sub>2</sub> at 70-80° (90% yield (4)) (5), or with aq. or alc. NH<sub>3</sub> at ord. temp. (100% yield (7)), or with Na in dry ether (36) see indic. refs.; from 1,1,1-trichloroethane (3:5085) with excess aq. Ca(OH)<sub>2</sub> at 70-80° see (4) (5); for formn. of  $\bar{C}$  (as by-product of the isomeric 1,2-dichloroethylenes (3:5030)) from trichloroethane by catalytic pyrolytic dehydrochlorination see (6).

[For prepn. of C from 1,1,1,2-tetrachloroethane (3:5555) by loss of HCl by actn. of aq. + Fe, Zn, or Cd on warming under reflux see (8); from 1-bromo-1,1,2-trichloroethane by loss of Br-Cl with Zn dust + boilg. alc. see (37).]

[For formn. of C (together with vinyl chloride) from ethyl trichloroacetate (3:5950) by actn. of Zn in alc. see (9).]

[For formn. of  $\bar{C}$  (20% yield) from 1,2-dichloroethane (ethylene (di)chloride (3:5130) with  $Cl_2$  in pres. of  $AlCl_3/NaCl/FeCl_3$  at 400-480° see (10); note that some 22% 1,2-dichloroethylenes (3:5030) + 29% trichloroethylene (3:5170) + 29% higher chlorination prods. are also formed.]

#### PURIFICATION AND STABILIZATION OF MONOMERIC C

[For purification of Č by distn. as an azeotrope with MeOH, followed by removal of the latter by extraction with aq., see (11).]

Many compds. recommended as stabilizers or polymerization inhibitors for monomeric C have been described in patents: e.g., see (12) (13) (14) (15) (16).

#### CHEMICAL BEHAVIOR OF MONOMERIC Č

 $\ddot{\mathbf{C}}$  + chlorine. [ $\ddot{\mathbf{C}}$  with Cl<sub>2</sub> at 25-35° in pres. of absence of cat. adds 1 mole halogen giving (85-92% yield (17)) 1,1,1,2-tetrachloroethane (3:5555).]

 $\ddot{\mathbf{C}}$  + bromine.  $\ddot{\mathbf{C}}$  with Br<sub>2</sub> adds 1 mole halogen yielding (18) 1,1-dichloro-1,2-dibromoethane [Beil. I-93], oil, b.p. 175° at 760 mm. decg., 65° at 13 mm., f.p. -66.85°,  $D_4^{25}$  = 2.2203,  $D_4^{20}$  = 2.2449,  $D_4^{15}$  = 2.2695,  $n_D^{15}$  = 1.55930 (18).

 $\ddot{\mathbf{C}}$  + hydrogen chloride.  $\ddot{\mathbf{C}}$  with dry HCl gas at 25-35° in pres. of AlCl<sub>3</sub> or FeCl<sub>3</sub> adds 1 mole HCl giving (85-90% yields (19) (20)) 1,1,1-trichloroethane (3:5085).

 $\ddot{\mathbf{C}}$  + hydrogen bromide. The addition to  $\ddot{\mathbf{C}}$  of HBr appears to be unreported.

Polymerization of Č. Polymerization of Č either with itself or with other cpds. (especially other substituted ethylene derivs.) leads to a large group of industrially important materials broadly designated as "vinylidene polymers." Certain plasticized and stabilized copolymer compositions have been named "Saran." [For extremely valuable comprehensive reviews of this general field see (1) (21) (22); in view of the comprehensive surveys and prior literature (including patents) references given (especially in (1)), the following text will in general include only citations since 1942.]

 $\bar{C}$  when carefully purified and free from oxygen polymerizes only very slowly; however, in the pres. of various catalysts, notably peroxides, polymerization readily occurs (for amplification see {1}).

[For patents involving polymeric  $\bar{C}$  from viewpoint of purification (23), storage of supercooled material (24), heat treatment to increase tensile strength (25), improvement of stability to light and heat (26) (27) (28) (29), or coloring (30) see indic. refs. — For studies on structure of fibers of polymeric  $\bar{C}$  see (1) (31). — For identification of common comml. plastics (including "Saran" and "Velon") see (32).]

[For review of copolymerization of  $\bar{C}$  see (1); for copolymerization with butadiene (33), with vinyl chloride or vinyl acetate (34), with styrene, acrylonitrile, various methacrylates, etc. (35), see indic. refs.]

3:5005 (1) Reinhardt, Ind. Eng. Chem. 35, 422-428 (1943). (2) Brockway, Beach, Pauling, J. Am. Chem. Soc. 57, 2695 (1935). (3) Regnault, J. prakt. Chem. (1) 18, 82-85 (1839); Ann. chim. (2) 69, 155-159 (1838). (4) I.G., Brit. 349,872, July 2, 1931, Cent. 1931, II 1191; C.A. 26, 5314 (1932): French 702,361, April 7, 1931; Cent. 1931, II 1191; C.A. 25, 4285 (1931); Ger. 529,604, July 4, 1929; not in Cent.; C.A. 25, 5178 (1931). (5) Howell (to Imperial Chem. Ind., Ltd.), Brit. 534,733, March 17, 1941; C.A. 36, 1336 (1942). (6) Hermann, Baum (to Consortium für Elektrochem. Ind.), U.S. 1,921,879, Aug. 8, 1933; not in Cent.; [C.A. 27, 5086 (1933)]: Ger. 570,954, Feb. 22, 1933; not in Cent.; C.A. 27, 4252 (1933): French 694,054, Nov. 28, 1930; Cent. 1931, I 1514; [C.A. 25, 1843 (1931)]. (7) Engel, Bull. soc. chim. (2) 48, 87 (1887). (8) Compagnie des Products Chim. d'Alais, etc., French 786,803, Sept. 10, 1935; Cent. 1936, I 175; C.A. 30, 737 (1936): Brit. 436,133 Oct. 4, 1935; C.A. 30, 1394 (1936), not in Cent. (9) Jocitsch, Favorsky, J. Russ. Phys.-Chem. Soc. 30, 998-1003 (1898); Cent. 1899, I 777-778. (10) Reifly (to Dow Chem. Co.), U.S. 2,140,548, Dec. 20, 1938; Cent. 1939, I 3625; C.A. 33, 2540 (1939).

(11) Taylor, Horsley (to Dow Chem. Co.), U.S. 2,293,317, Aug. 18, 1942; C.A. 37, 889 (1943). (12) The Distillers Co. & Galitzenstein, Brit. 551,584, March 2, 1943; C.A. 38, 2969 (1944). (13) Coleman, Zemba (to Dow Chem. Co.), U.S. 2,160,944, June 6, 1939; Cent. 1939, II 3751; C.A. 33, 7318 (1939). (14) Coleman, Zemba (to Dow Chem. Co.), U.S. 2,136,333 & 2,136,334, Nov. 8, 1938; Cent. 1939, I 1653; C.A. 33, 1346 (1939). (15) Wiley (to Dow Chem. Co.), U.S. 2,136,347, & 2,136,348 & 2,136,349, Nov. 8, 1938; Cent. 1939, I 1653; C.A. 33, 1346 (1939). (16) Britton, LeFevre (to Dow Chem. Co.), U.S. 2,121,009, & 2,121,010 & 2,121,011 & 2,121,012, Jan. 21, 1938; Cent. 1938, II 2497; C.A. 32, 5856 (1938). (17) I.G., Ger. 530,649, July 31, 1931; Cent. 1931, II 1920; C.A. 26, 155 (1932). (18) van de Walle, Bull. acad. roy. Belg. (5) 10, 99 (1924); Cent. 1924, II 303: Bull. soc. chim. Belg. 34, 10-21 (1925); C.A. 19, 1856 (1925). (19) Nutting, Huscher (to Dow Chem. Co.), U.S. 2,209,000, July 23, 1940; Cent. 1940,

II 3703; C.A. 35, 140 (1941). (20) I.G., Ger. 523,436, April 23, 1931; Cent. 1931, I 3607; C.A. 25, 3362 (1931).

(21) Goggin, Lowry, Ind. Eng. Chem. 34, 327-332 (1942). (22) Goggins, Ind. Eng. Chem., News Ed. 18, 923-924 (1940). (23) Britton, Taylor (to Dow Chem. Co.), U.S. 2,235,796, March 18, 1941; C.A. 35, 4040 (1941). (24) Wiley (to Dow Chem. Co.), U.S. 2,320,112, May 25, 1943; C.A. 37, 6378 (1943). (25) Williams (to Dow Chem. Co.), U.S. 2,309,370, Jan. 26, 1943; C.A. 37, 3860 (1943). (26) Matheson, Boyer, Stone (to Dow Chem. Co.), U.S. 2,258,188, Oct. 7, 1941; C.A. 36, 857 (1942). (27) Hanson, Goggin (to Dow Chem. Co.), U.S. 2,273,262, Feb. 17, 1941; C.A. 36, 3809 (1942). (28) Matheson, Boyer, Coleman (to Dow Chem. Co.), U.S. 2,287,189, June 23, 1942; C.A. 37, 201 (1943). (29) Boyer, Matheson, Moyle (to Dow Chem. Co.), U.S. 2,344,489, March 21, 1944; C.A. 38, 3293 (1944). (30) Hanson (to Dow Chem. Co.), U.S. 2,251,486, Aug. 5, 1941; C.A. 35, 7070 (1941).

(31) Fuller, Baker, J. Chem. Education 20, 9 (1943). (32) Nechamkin, Ind. Eng. Chem., Anal. Ed. 15, 40-41 (1943). (33) Hopff, Rautenstrauch (to I.G.), Ger. 731,982, Jan. 28, 1943; C.A. 38, 894 (1944). (34) Scott, Seymour (to Wingfoot Corp.), U.S. 2,328,748, Sept. 7, 1943; C.A. 38, 1051 (1944). (35) Arnold (to du Pont Co.), U.S. 2,278,415, April 7, 1942; C.A. 36, 4939 (1942). (36) Brunner, Brandenburg, Ber. 10, 1497-1499 (1877); 11, 61-62 (1878). (37)

Kharasch, Norton, Mayo, J. Org. Chem. 3, 53 (1933).

B.P. F.P. 32-33° at 748 mm. (1) (2) (3) 
$$-66$$
 to  $-64.2$ ° (1)  $D_4^{20} = 1.261$  (9)  $n_D^{20} = 1.42790$  (9)

Colorless oil which ignites in air and explodes even on stirring; however, its 5-10% soln. in ether is safely handled (4).

[For prepn. of  $\bar{C}$  from acetylene + aq. alk. KOCl soln. under N<sub>2</sub> see (1) (2) (3); from 1,1,2-trichloroethylene (3:5170) in N<sub>2</sub> at 130° over solid granular KOH (65% yield (4)) see (4) (5) (9); from 1,1,2,2-tetrachloroethane (acetylene tetrachloride) (3:5750) with KOH in xylene under N<sub>2</sub> (can be carried out as a lect. expt.) see (6) (9); for formn. of  $\bar{C}$  from barium salt of  $\alpha,\beta,\beta$ -trichloroacrylic acid (3:1840) by htg. in H<sub>2</sub> see (13).]

 $\bar{\mathbf{C}}$  forms with diethyl ether a molecular cpd.,  $\bar{\mathbf{C}}.\bar{\mathbf{C}}_4\mathbf{H}_6\mathbf{O}$ , eas. decomposed by aq. into its components (5); for D and n of ether solns. of  $\bar{\mathbf{C}}$  see (9).

C on combusion yields CO, CO<sub>2</sub>, COCl<sub>2</sub> (4) together with other products (5).

[For use of C in extraction of coffee see (7).]

 $\bar{C}$  in CCl<sub>4</sub> treated 9 hrs. with strong Cl<sub>2</sub>/CCl<sub>4</sub> soln. gives (1) on evapn. hexachloroethane (3:4835), m.p. 187° in s.t. (1).

 $\bar{C}$  on passing into Br<sub>2</sub>/aq. yields (1) a heavy oil which on stdg. under the excess reagt. solidifies to cryst. of 1,2-dichloro-1,1,2,2-dibromoethane; after recrystn. from alc., m.p. 209-210° dec., with yellowing at 200° (1). [Note that  $\bar{C}$  in CCl<sub>4</sub> treated with Br<sub>2</sub>/CCl<sub>4</sub> can add 1 mole Br<sub>2</sub> giving (65% yield (4)) 1,2-dichloro-1,2-dibromoethylene, b.p. 172° at 760 mm. (8),  $D_1^{45} = 2.3036$  (8),  $n_1^{15} = 1.57984$  (8), m.p. +4.40° (8), 4.9° (4).]

C with I<sub>2</sub> in ether (4) or CCl<sub>4</sub> (5) gives slowly 1,2-dichloro-1,2-dicodoethylene, cryst. from ether or pet. eth., m.p. 70° (4). [Another stereoisomer, m.p. 5-7°, is formed only to extent of 10% and is removed by the solvent (5).]

[For studies on behavior of Č on polymerization (10), and its reactions with NH<sub>3</sub> (10), amines (10) (11), alcoholates (10), diethyl sodio-malonate (10), organic Mg compds. (12), ethyl diazoacetate (12), and NO<sub>2</sub> (12) see indic. refs.]

3:5010 (1) Straus, Kollek, Heyn, Ber. 63, 1873-1876 (1930). (2) Straus, Kollek (to I.G.), Ger. 495,787, April 17, 1930; Cent. 1930, II, 1439. (3) I.G., Brit. 333, 946, Sept. 18, 1930; Cent. 1931, I 523. (4) Ott, Ottenmeyer, Packendorff, Ber. 63, 1941-1944 (1930). (5) Ott, Packendorff, Ber. 64, 1324-1329 (1931). (6) Metz, J. prakt. Chem. (2) 135, 142-144 (1932). (7)

French 725,338, May 11, 1932; Cent. 1932, II 1713. (8) van der Walle, Bull. soc. chim. Belg. 29, 307-308 (1920). (9) Ott, Ber. 75, 1517-1522 (1942). (10) Ott, Dittus, Ber. 76, 80-84 (1943). (11) Ott, Dittus, Weissenberger, Ber. 76, 84-88 (1943). (12) Ott, Bossaller, Ber. 76, 88-91 (1943). (13) Böeseken, Carriere, Verslag Akad. Wetenschappen 22, 1186-1188 (1914); C.A. 8, 3296 (1914).

```
METHYLENE (DI)CHLORIDE
3:5020
                                                                    CH<sub>2</sub>Cl<sub>2</sub>
                                                                                       Beil. I - 60
            (Dichloromethane)
                                                                                             I_{1}-(8)
                                                                                             I<sub>2</sub>-(13)
 B.P.
                                     F.P.
  41.4-42.2° at 760 mm.
                                                    (17) D_4^{30} = 1.30777 (12)
                               (1)
                                     -96.0^{\circ}
                                               (10) (18)
  41.6° cor. at 760 mm.
                                       -96.5°
                                                    (19)
                                                   (168)
  41.5°
                                     -96.7^{\circ}
                                                    (19) D_4^{25} = 1.3181
                at 760 mm.
                               (3)
                                                                               (23)
                                               (11) (20)
                                                                  1.31678 (12)
                                      -96.8° (12) (19)
                                                                              n_{\rm D}^{24.8} = 1.4220 (23)
  41.5°
                                (4)
  41.5°
                at 680 mm.
                                     -97.0° (21) (22)
                               (5)
                                                                             n_{5462}^{234} = 1.43239 (5)
                                                          D_{23}^{23}\stackrel{4}{4}=1.3612
  41.3-41.5°
                               (6)
                                                                                (5)
  40.67° cor. at 760 mm.
                               (7)
                                     Note 2. For in-
                                                           D_4^{20} = 1.3361
  40.4°-42°
                               (8)
                                     fluence of very
                                                                              (15)
  40.1-40.3° at 769 mm.
                               (9)
                                     high press. on
                                                                               (24)
                                     f.p. of C see
  40.1°
                at 760 mm. (10)
                                                                   1.326
                                                                              (25)
  40.0°
                                     (20).
                                                                  1.32578 (12)
                              (11)
                                                                               n_{\rm D}^{20} = 1.4253 \ (25)
  39.95°
                at 760 mm. (12)
  39.93-40.12° cor.
                              (13)
                                                                                       1.4249 (13)
  39.9
                at 736 mm. (14)
                                                                                       1.4237 (26)
  39.8°
                at 760 mm. (15)
                                                                                       1.4234 (15)
  39.5-40.1°
                                                          D_4^{15} = 1.33479 \quad (12)
                              (16)
                                                                       n_{\text{He(yellow)}}^{15} = 1.42721 (12)
  Note 1. For study of vap.
                                                           D_4^0 = 1.3620
  press. of \bar{C} over range -87^{\circ}
                                                                                n_{\rm D}^0 = 1.4361 (23)
  to +38^{\circ} see (7).
                                                           For D_4^t over range
                                                           t = -100^{\circ} \text{ to } +40^{\circ}
                                                           see (25); -273 to
                                                           -194° see (10).
```

#### MISCELLANEOUS PHYSICAL PROPERTIES OF C

#### VARIOUS SOLUBILITY RELATIONS

With water.  $ildе{C}$  is only slightly soluble in aq. and readily volatile with steam. E.g., 100 g. water dissolves following amts. of  $ildе{C}$ : 2.363 g. at 0° (27), 2.122 g. at 10° (27), 2.000 g. at 20° (27) (15), 1.969 g. at 30° (27). — For study of soly. of water in  $ildе{C}$  at 0°, 25°, and 30° see (28) (29); for study of reciprocal soly. of  $ildе{C}$  and water see (30) (68). —  $ildе{C}$  with H<sub>2</sub>O is claimed (35) to form a hydrate stable up to +2°.

With organic compounds. [For studies on soly. of  $\bar{C}$  in 35 org. solvents of various types see (31); for soly. of  $\bar{C}$  in cellosolve acetate (33), carbitol acetate (32) (33), diethylene glycol diethyl ether (32), tetraethylene glycol dimethyl ether (32), and tetraethylene glycol diethyl ether (33) see indic. refs.]

(4).

# BINARY SYSTEMS CONTAINING C (See also azeotropes containing C)

 $C + Cl_2$ : for f.p./compn. data and diagram (various compounds and eutectics are formed) see (21).

 $\bar{C} + C_2 H_5 Cl$  (3:7015); for f.p./compn. data and diag. (eutectic, f.p. -149.7°, conts. 31.7 wt. %  $\ddot{C}$ ) see (17). —  $\ddot{C}$  +  $CHCl_3$  (3:5050): for f.p./compn. data and diag. (eutectic, f.p.  $-108.4^{\circ}$ , conts. 70.5 wt. %  $\bar{C}$ ) see (17); for data on b.p.,  $D_4^{20}$ , and liq./vapor equilibria see (34).  $-\bar{C} + CCl_4$  (3:5100): for data on b.p.,  $D_4^{20}$ , and liq./vapor equilibria see (34).  $-\bar{C}$  $ar{C}+1$ ,1,-dichloroethane (3:5035): for f.p./compn. data see (19). —  $ar{C}+2$ ,2-dichloropropane (3:7140): for f.p./compn. data see (22).

C + isobutyl bromide: for f.p./compn. data see (19). — C + methylene (di)bromide: for f.p./compn. data see (19).

 $\ddot{C}$  + methylene (di)iodide: for f.p./compn. data see (19).

 $\bar{C}$  + dimethylaniline: for  $D_4^{25}$  and  $n_D^{24.8}$  for 0-100%  $\bar{C}$  see (23); for f.p./compn. data and diagram (eutectic, m.p.  $-97.2^{\circ}$ , conts. 91 wt %  $\overline{C}$ ) see (168).

# TERNARY SYSTEMS CONTAINING C (See also azeotropes containing C)

 $\ddot{C} + CHCl_3 + CCl_4$ : system forms ternary eutectic, f.p. -111.4°, contg. 60 wt. %  $\ddot{C}$  + 27.0 wt. % CHCl<sub>3</sub> (3:5050) + 13.0 wt. % CCl<sub>4</sub> (3:5100) (17).

### BINARY AZEOTROPES CONTAINING C

 $\vec{C} + H_2O$ :  $\vec{C}$  forms with aq. a const.-boilg. mixt., b.p. 38.1°, contg. 98.5 wt. %  $\vec{C}$  (68).  $\overline{C} + MeOH$ :  $\overline{C}$  forms with MeOH (1:6120) a const.-boilg. mixt., b.p. 39.2° (4) at 760 mm. (3), contg. 92 wt. % (3), 94 wt. % (4)  $\ddot{C}$ .  $-\ddot{C}$  + EtOH:  $\ddot{C}$  forms with EtOH (1:6130) a const.-boilg. mixt., b.p. 41.0° at 760 mm. (3), contg. 96.5 wt. % (3) C. — C forms with formaldehyde dimethylacetal (1:0105) a const.-boilg. mixt., b.p. 45.0° (36), contg. (36) 41 wt. %  $\bar{C}$ , cf. (37). —  $\bar{C}$  + acetone: note that this system forms no azeotrope; note also that C is the only known liquid which with MeOH (see above) gives a const.-boilg. mixt.

# boilg. lower than acetone and at the same time not forming a binary azeotrope with acetone TERNARY AZEOTROPES CONTAINING Č

 $C + H_2O + EtOH$ : forms no ternary azeotrope (68).

C + MeOH + acetone: this system forms no ternary azeotrope; for discussion see (4) (38).

 $\bar{C} + CHCl_8 + acetone$ : for discussion see (4).

#### OTHER PHYSICAL PROPERTIES OF C

[For study of thermal conductivity of C see (39); for studies of heat capacity of C (40) as calculated from spectroscopic data (41) see indic. refs.; for studies of critical temp. of C (7) (15) (6) and method for its microdetermination (6) see indic. refs.; for ebullioscopic const., viz., 2.6° for 1000 g. Č, see (43).]

[For studies of adsorption of C on wood charcoal at 25° and 50° (44) or on cocoanut charcoal over range -31.5° to 184° (45), on Al(OH)<sub>8</sub> gel (46), on Fe(OH)<sub>3</sub> gel (47), on Cr<sub>2</sub>O<sub>3</sub> (48) see indic. refs.; Č is preferentially adsorbed (42) by silica gel from its mixt. with CHCl<sub>3</sub> (3:5050).]

[For study of attempt to separate isotopes of Cl<sub>2</sub> by reversible fractional distn. of Č see (49).]

#### PHYSIOLOGICAL ASPECTS OF C

 $\tilde{C}$  has low toxicity compared to other chlorinated hydrocarbon solvents; the maximum allowable conc. for 8 hrs. daily exposure is 500 p.p.m. (50). [For study of relative toxicity of  $\tilde{C}$  see (51); for extensive study of industrial hygiene and toxicity of  $\tilde{C}$  (together with 12 other chlorinated solvents (52)) (53) (50) see indic. refs.; for study of  $\tilde{C}$  upon running activity of male rat see (54).]

#### USES OF C

Č is widely used as a solvent, as a fluid for refrigeration processes, and for removing water from other organic materials; examples of all these aspects are cited below.

[For study of utility of  $\bar{C}$  as solvent for the ozonization of org. compds. see (10); for use of  $\bar{C}$  as solvent for the extraction of vitamin A (55) or of soy-bean oil (56) see indic. refs.; for general studies (15) (57) (58) and patents (59) (60) (61) (62) (63) (64) (65) on use of  $\bar{C}$  in refrigerating machines and systems see indic. refs.; for use of  $\bar{C}$  in detn. of water content of liquids (66) (67) or for prepn. of abs. EtOH (68) (69) (70) see indic. refs.]

#### DETECTION OR DETERMINATION OF C

[For detection of  $\bar{C}$  in pres. of acetone (by means of Fujiwara color test with pyridine + NaOH) see (71); for distinction of  $\bar{C}$  from CHCl<sub>3</sub> (3:5050) and from CCl<sub>4</sub> (3:5100) by color tests see (72) (73) (also under  $\bigcirc$  below).]

[For detn. of  $\bar{C}$  in blood by removal through aeration, pyrolytic decompn. of  $\bar{C}$ , and alk. absorption of resultant HCl as directed see (74); for detn. of C, H, and Cl in  $\bar{C}$  by combustion see (75). Note that the R. + H. Tri-Per Analyzer, a recording ultra-violet photometer very useful for detn. of trichloroethylene (3:5170) and tetrachloroethylene (3:5460), is insensitive (76) to  $\bar{C}$ .]

#### PREPARATION OR FORMATION OF C

From methane. [The chlorination of CH<sub>4</sub> under various conditions to yield  $\bar{\mathbf{C}}$  (accompanied by more or less CH<sub>3</sub>Cl (3:7005), CHCl<sub>3</sub> (3:5050), and CCl<sub>4</sub> (3:5100)) has been extensively studied and no attempt will be made here to sift out details. For examples of leading scientific papers ((77)–(88), incl.) and patents ((89)–(96), incl.) see indic. refs.]

From methyl chloride. [The chlorination of MeCl to  $\bar{C}$  has also been extensively studied; many of the relevant data are included in the papers and patents on the chlorination of methane (see preceding paragraph), to which should be added the following patents (91) (97) (98) (99) (100). Note patent (98) on separation of MeCl (3:7005) from  $\bar{C}$  by hydrolysis of former to MeOH (1:6120) with Ca(OH)<sub>2</sub> under press.]

From chloroform. [For formn. of  $\bar{C}$  from CHCl<sub>3</sub> (3:5050) by replacement of 1 chlorine by hydrogen using Zn + alc. HCl (101), Zn + AcOH (103), Zn dust + alc. NH<sub>3</sub> (102) (8) (2), Al/Hg + aq. (103), Fe + AcOH (103), or Si<sub>3</sub>H<sub>8</sub> + AlCl<sub>3</sub> in absence of air (104) see indic. refs.]

From carbon tetrachloride. [For prepn. of C from CCl<sub>4</sub> (3:5100) using aq. FeSO<sub>4</sub> + NaOH see (105).]

From miscellaneous sources. [For prepn. or formn. of  $\bar{C}$  from  $CH_2I_2$  with  $Cl_2$  (first prepn. of  $\bar{C}$ ) (106) cf. (158); from polyoxymethylene with  $PCl_5$  in s.t. (107); from MeOH +  $S_2Cl_2$  +  $Cl_2$  (108); or from chloroacetic acid (3:1370) by electrochem. oxidn. (109) see indic. refs.]

#### CHEMICAL BEHAVIOR OF C

Oxidation of  $\tilde{C}$ . [ $\tilde{C}$  with air at ord. temps. and press. does not give inflammable mixts.; at high temps. vapor of  $\tilde{C}$  becomes inflammable and ignites at 642° in air, at 606° in  $O_2$ ;

limiting concns. of  $\bar{C}$  for inflammability in  $O_2$  are 15.5-66.4%;  $N_2$  does not greatly affect the lower limit of inflammability in  $O_2$  but greatly reduces the upper limit (110). — For study of inflammability of mixts. of  $\bar{C}$  with  $O_2+,N_2$ , air + CO, or  $O_2+N_2+$  MeBr see (111). — For effect of  $\bar{C}$  on flash point of solvents see (115).]

[C with atomic O gives (112) COCl<sub>2</sub> (3:5000), Cl<sub>2</sub>, HCl, CO<sub>2</sub> + H<sub>2</sub>O; C with air over CuO at 450° gives (113) little COCl<sub>2</sub> (3:5000); for study of Cl<sub>2</sub>-sensitized photochem. oxidn. of C see (114).]

Fluorination of  $\tilde{C}$ . [ $\tilde{C}$  with SbF<sub>3</sub> + cat. readily gives (126) (127) CH<sub>2</sub>F<sub>2</sub>, b.p. -51.6°, + CH<sub>2</sub>ClF, b.p. -9.0°.]

Chlorination of  $\tilde{C}$ . [ $\tilde{C}$  with  $Cl_2$  as directed (116) (117), or  $\tilde{C}$  with HCl gas + air over CuCl<sub>2</sub> at 440° (118), gives CHCl<sub>3</sub> (3:5050) and CCl<sub>4</sub> (3:5100).]

Bromination of  $\tilde{C}$ . [ $\tilde{C}$  with Br<sub>2</sub> cf. (158) in pres. of Al gives (128) cf. (129) CH<sub>2</sub>BrCl + CH<sub>2</sub>Br<sub>2</sub> [Beil. I-67, I<sub>1</sub>-(16), I<sub>2</sub>-(32)], b.p. 96.95° at 760 mm., f.p. -52.7°,  $D_4^{25} = 2.48417$ ,  $D_4^{20} = 2.49702$  (130). — For an alternative synthesis of CH<sub>2</sub>Br<sub>2</sub> (88–90% yield) from CHBr<sub>3</sub> with Na<sub>3</sub>AsO<sub>3</sub> + NaOH see (138).]

Hydrolysis of  $\bar{C}$ .  $\bar{C}$  on suitable hydrolysis yields formaldehyde (1:0145). [E.g.,  $\bar{C}$  with aq. in pres. of weakly alk. reacting salts such as NaHCO<sub>3</sub>, Na<sub>2</sub>HPO<sub>4</sub>, NaOAc, etc., at 165° under press. (119), or  $\bar{C} + N_2$  over dry Na<sub>2</sub>CO<sub>3</sub> at 310-320° (120),  $\bar{C}$  with steam over activated carbon at 260-270° (121),  $\bar{C}$  with aq. at 140-170° under press. (122),  $\bar{C}$  with steam at 550-850° over cat. (123), or  $\bar{C}$  with steam over tin phosphate at 460° (124) gives formaldehyde (1:0145) + HCl. Note that  $\bar{C}$  on protracted htg. with aq. at 180° gives (125) formic acid (1:1005), MeCl (3:7005), MeOH (1:6120) HCl + CO.]

Behavior with inorganic salts. [C with NaI in acetone htd. in press. bottle for 20 hrs. as directed (131), or  $\tilde{C}$  with NaI in acetone, McOH, or EtOH at 120–130° under press. (132), gives (60% yield (131)) methylene (d1)iodide [Beil. I-71, I<sub>1</sub>–(18), I<sub>2</sub>–(37)], b.p. 151–153° cor. at 330 mm. (133), 88° at 39 mm. (134), 66–67° at 11–12 mm. (24); exists in two crystn. forms, stable form, m.p. + 5.85° (135), metastable form, m.p. 40° (136);  $D_4^{25} = 3.3078$  (130);  $D_4^{20} = 3.3212$  (130);  $D_4^{15} = 3.3345$  (130);  $n_D^{15} = 1.74428$  (130). — For an alternative synthesis of CH<sub>2</sub>I<sub>2</sub> (90–97% yield) from iodoform by treatment with Na<sub>3</sub>AsO<sub>3</sub> + NaOH see (137).]

[Č with 2 moles K<sub>2</sub>SO<sub>3</sub> in aq. at 150-160° under press. gives (85% yield (139)) the dipotassium salt of methanedisulfonic acid (methionic acid) [Beil. I-579, I<sub>1</sub>-(303), I<sub>2</sub>-(644)] [Č with alc. AgNO<sub>3</sub> does *not* react even on stdg. for several days; note that while neither CHCl<sub>3</sub> (3:5050) nor CCl<sub>4</sub> (3:5100) reacts either, CH<sub>3</sub>Cl (3:7005) gives a ppt. within 3 hrs. (140).]

[For form. of polymeric prods. from reaction of  $\bar{C}$  with metal sulfides or polysulfides see (141); for study of photochem. reaction of  $\bar{C}$  with H<sub>2</sub>S see (149).]

Behavior with metals.  $\bar{C}$  (like many other polyhalogenated hydrocarbons) in presence of metallic K, Na, K/Na alloy, or even of certain other active metals explodes under the influence of mechanical or thermal shock. [For study of this characteristic (142), especially with regard to sensitivity toward Li, Na, K, Ca, Sr, Ba (143), see indic. refs.]

[Note that  $\bar{C}$  with molten sodium at 260-300° gives (144) C, H, and CH<sub>4</sub>, together with smaller amts. of ethane, ethylene, and acetylene; note that  $\bar{C}$  with Na vapor in pres. of H<sub>2</sub> gives (145) 92% CH<sub>4</sub> + 8% ethylene, while  $\bar{C}$  with Na vapor in N<sub>2</sub> gives (145) almost 100% ethylene; for further studies of behavior of  $\bar{C}$  with Na vapor see (146) (147). Note that attempts to obtain a free methylene radical (CH<sub>2</sub>) with  $\bar{C}$  + Na vapor have been unsuccessful (148).]

[For study of stability of various metals with respect to corrosion by  $\bar{C}$  under various conditions see (15).]

Behavior with various organic reactants. [C with CO + AlCl<sub>3</sub> at 260° and 800 atm. press. for 8 hrs. gives (150) chloroacetyl chloride (3:5235); but C with CO, COS, or COCl<sub>2</sub> (3:5000) + cat. at 700° gives (151) malonyl (di)chloride (3:9030).]

[ $\bar{\mathbf{C}}$  with  $\mathbf{C}_6\mathbf{H}_6$  + AlCl<sub>3</sub> gives (152) cf. (153) diphenylmethane (1:7120);  $\bar{\mathbf{C}}$  with toluene + AlCl<sub>3</sub> gives (152) di-p-tolylmethane [Beil. V-615, V<sub>1</sub>-(289), V<sub>2</sub>-(518)], m.p. 28° (154), b.p. 302° cor. at 768 mm. (154), accompanied by considerable (152) (155) 2,7-dimethylanthracene, m.p. 241° cor. (155);  $\bar{\mathbf{C}}$  with o-xylene (1:7430) + AlCl<sub>3</sub> in acetylene tetrachloride (3:5750) as solvent gives (156) 2,3,6,7-tetramethylanthracene, m.p. 299° (156); for behavior of  $\bar{\mathbf{C}}$  in pres. of AlCl<sub>3</sub> with m-xylene (1:7420) or with pseudocumene (1:7470) see (152).]

[ $\bar{\rm C}$  with CH<sub>2</sub>Br<sub>2</sub> + 5-10% KCl in pres. of moistened AlCl<sub>3</sub> at 180° in s.t. for 16 hrs. undergoes a redistribution reaction giving (157) a mixt. contg. 33%  $\bar{\rm C}$  + 18% CH<sub>2</sub>Br<sub>2</sub> + 50% ClCH<sub>2</sub>Br;  $\bar{\rm C}$  with CH<sub>2</sub>I<sub>2</sub> similarly treated at 114° for 18 hrs. gives (157) a mixt. contg. 33%  $\bar{\rm C}$  + 21% CH<sub>2</sub>I<sub>2</sub> + 46% ClCH<sub>2</sub>I.]

[ $\tilde{C}$  with NaOMe in s.t. at 100° (158), or vapor of  $\tilde{C}$  over NaOMe + pumice at 200° (37), gives formaldehyde dimethylacetal (1:0105);  $\tilde{C}$  + NaOEt in s.t. at 100° (158), or  $\tilde{C}$  with excess EtOH + calcd. amt. NaOH at 100-125° under press. (159), gives formaldehyde diethylacetal (1:0135); for analogous behavior of other alcoholates (158) (159) or phenolates (158) see indic. refs.]

[ $\tilde{C}$  with alc. NH<sub>3</sub> at 125° in s.t. gives (160) hexamethylenetetramine [Beil. I-583, I<sub>1</sub>-(306)]. —  $\tilde{C}$  with Me<sub>2</sub>NH in s.t. at 70° gives (161) bis-(dimethylamino)methane. —  $\tilde{C}$  with Me<sub>3</sub>N in 90% acctone at 55° or more slowly in ether undergoes a quaternization reaction giving trimethyl-chloromethyl-ammonium chloride (constants not detd.) (162).]

- P Beilstein test for halogen. Note that because of its low b.p. C often appears to fail in Beilstein copper gauze test for halogen compds.; in such cases use the modification described by (163) (164).
- P Hydrolysis to formaldehyde. C (2 g.) in 10% MeOH/alk. (20 ml.) boiled 20 min. under good reflux, subsequently acidified with dil. H<sub>2</sub>SO<sub>4</sub>, gives soln. containg. Cl and formaldehyde (1:0145).
- ② Color reaction with α-naphthol/cyclohexanol. C

  (1 drop) with 2 ml. of a 2% soln. of α-naphthol (1:1500) in cyclohexanol (1:6415) + 1 pellet of solid NaOH, boiled 25 seconds and cooled, gives (72) blue color; one portion of this blue soln. underlaid with equal volume 85% H<sub>2</sub>SO<sub>4</sub>, stood 1 minute and shaken, turns green-blue; a second portion of the alkaline blue soln. acidified with equal volume of AcOH (1:1010) stood 1 minute and shaken becomes yellow. [Note that the alkaline boiling also gives a blue color with CHCl<sub>3</sub> (3:5050) and with CCl<sub>4</sub> (3:5100) while other chlorinated solvents (72) give yellow-brown, gray, or brown; in the H<sub>2</sub>SO<sub>4</sub> acidification both CHCl<sub>3</sub> and CCl<sub>4</sub> give blue rather than green-blue; in the AcOH acidification CHCl<sub>3</sub> gives an orange-yellow, CCl<sub>4</sub> a red color.]
- P Color test with 2,7-dihydroxynaphthalene/cyclohexanol. C (1 drop) with 2 ml. pure cyclohexanol (1:6415) + 1 pellet NaOH + a few mgms. 2,7-dihydroxynaphthalene htd. at 197° (b.p. of ethylene glycol) for 45 seconds, decanted from undissolved NaOH, cooled, and shaken with 2 ml. AcOH + 4 ml. 96% EtOH, gives steel-blue color (73). [Note that under these conditions CHCl₃ (3:5050) gives a deep-red color while CCl₄ (3:5100) gives a pale yellow brown.]
- Color test with cyclopentanol. Č (1 drop) in cyclopentanol (1 ml.) with 1 pellet NaOH boiled 25 seconds, then shaken vigorously for 35 seconds, gives deep red color; upon addition of 4 ml. 96% EtOH and shaking color intensifies or becomes reddish brown (73). [Note that after addn. of alc. CHCl3 gives only a pale citron-yellow or

yellowish brown and that as little as 20% of  $\bar{C}$  can be detected by this means in CHCl<sub>3</sub> (73); CCl<sub>4</sub> gives (73) after addn. of alc. an intense nut-brown.]

Formaldehyde di- $\alpha$ -naphthylacetal (methylene di- $\alpha$ -naphthyl ether): unreported. Formaldehyde di- $\beta$ -naphthylacetal (methylene di- $\beta$ -naphthyl ether): m.p. 134° (165), 133-134° (166). [From CH<sub>2</sub>I<sub>2</sub> with Na  $\beta$ -naphtholate refluxed in alc. (165) (166) (167); not actually reported from  $\bar{C}$  but presumably resulting by above method if some KI be added to refluxing mixture of  $\bar{C}$  + Na  $\beta$ -naphtholate in acetone. Note that this ether fails (165) (167) to form any PkOH addition compound.]

3:5020 (1) Mathews, J. Am. Chem. Soc. 48, 569 (1926). (2) Thorpe, J. Chem. Soc. 37, 194 (1880). (3) Lecat, Rec. trav. chrm. 46, 242 (1927). (4) Ewell, Welch, Ind. Eng. Chem. 37, 1224—1231 (1937). (5) Ramaswamy, Proc. Indian Acad. Sci. A-4, 111 (1936). (6) Harand, Monatsh. 65, 153—184 (1935). (7) Perry, J. Phys. Chem. 31, 1737—1741 (1927). (8) Perkin, Chem. News 18, 106 (1868). (9) Walker, Trans. Faraday Soc. 31, 1434 (1935). (10) Biltz, Sapper, Z. anorg. allgem. Chem. 203, 283, 285 (1932).

[11] Timmermans, Bull. soc. chrm. Belg. 25, 300 (1911); Cent. 1911, II 1015. [12] Timmermans, Hanaut-Roland, J. chrm. phys. 29, 531-533 (1932). [13] Maryott, Hobbs, Gross, J. Am. Chem. Soc. 63, 660 (1941). [14] Greenwood, J. Org. Chem. 10, 414-418 (1943). [15] Carlisle, Levine, Ind. Eng. Chem. 24, 146-147 (1932). [16] Sutton, Brockway, J. Am. Chem. Soc. 57, 474 (1935). [17] Kanolt, Sci. Papers U. S. Bur. Standards 20, 619-633 (1926). [18] Stock, Stiebler, Ber. 56, 1089 (Note) (1923). [19] Timmermans, Bull. soc. chrm. Belg. 43, 631-632 (1934). [20] Bridgman, J. Chem. Phys. 9, 795 (1941); Proc. Am. Acad. Arts Scr. 74, 425-440 (1942).

Wheat, Browne, J. Am. Chem. Soc. 62, 1575-1576 (1940). (22) van de Vloed, Bull. soc. chim. Belg. 48, 260 (1939). (23) Davies, Evans, Whitehead, J. Chem. Soc. 1939, 645. (24) Patterson, Thomson, J. Chem. Soc. 93, 369-370 (1908). (25) Morgan, Lowry, J. Phys. Chem. 34, 2401-2402, 2413 (1930). (26) Gorke, Kóppe, Staiger, Ber. 41, 1163 (1908). (27) Rex, Z. physik. Chem. 55, 365 (1906). (28) Staverman, Rec. trav. chim. 60, 836-841 (1941). (29) van Arkel, Vles, Rec. trav. chim. 55, 407-411 (1936). (30) Niini, Suomen Kemistilehti 11-A 19-20 (1938); Cent. 1939, II 614; C.A. 32, 486 (1938).

(31) Copley, Zellhoefer, Marvel, J. Am. Chem. Soc. 60, 2714-2716 (1938). (32) Zellhoefer, Copley, Marvel, J. Am. Chem. Soc. 60, 1338 (1938). (33) Zellhoefer, Ind. Eng. Chem. 29, 548 (1937). (34) Kaplan, Monakhova, J. Gen. Chem. (U.S.S.R.) 7, 2499-2512 (1937), Cent. 1938, II 1572; C.A. 32, 2404 (1938). (35) Villard, Ann. chim. (7) 11, 386 (1897) (36) Lecat, Compt. rend. 222, 733-734 (1946). (37) Loberring, Fleischmann, Ber. 70, 1680-1683 (1937). (38) Ewell, Harrison, Berg, Ind. Eng. Chem. 36, 874 (1944). (39) Bates, Hazzurd, Palmer, Ind. Eng. Chem. 33, 375-376 (1941). (40) Glockler, Edgell, Ind. Eng. Chem. 34, 532-534 (1942).

(41) Vold, J. Am. Chem. Soc. 57, 1192-1195 (1935). (42) Grimm, Raudenbusch, Wolff, Z. angew. Chem. 41, 105 (1928). (43) Walden, Bull. acad. sci. Petrograd (6) 1915, 1485-1514; Cent. 1925, I 1676; C.A. 10, 2425 (1916). (44) Pearce, Reed. J. Phys. Chem. 35, 905-914 (1931). (45) Pearce, Johnstone, J. Phys. Chem. 34, 1260-1279 (1930). (46) Perry, J. Phys. Chem. 29, 1462-1468 (1925). (47) Perry, Ind. Eng. Chem. 19, 746-748 (1927). (48) Harbard, King, J. Chem. Soc. 1940, 19-29. (49) Urban, White, J. Phys. Chem. 37, 397-399 (1933). (50) Heppel, Neal, Perrin, Orr, Porterfield, J. Ind. Hyg. Toxicol. 26, 8-16 (1944).

(51) Barsoun, Saad, Quart. J. Pharm. Pharmacol. 7, 205-214 (1934); Cent. 1934, II 2550; C.A. 28, 6194 (1934). (52) Lehman, Schmidt-Kehl, Arch. Hyg. Bakt. 116, 131-268 (1936); C.A. 31, 477 (1937). (53) von Oettingen, J. Ind. Hyg. Toxicol. 19, 357-359 (1937). (54) Heppel, Neal, J. Ind. Hyg. Toxicol. 26, 17-21 (1944). (55) Tompkins, Bolomey, Ind. Eng. Chem., Anal. Ed. 15, 437-439 (1943). (56) Arnold, Proc. Iowa Acad. Sci. 51, 309-311 (1944); C.A. 40, 3009 (1946). (57) Churchill, Chem. Markets 25, 587-592 (1929). (58) Waterfill, Ind. Eng. Chem. 24, 616-619 (1932). (59) Carrier (to Carrier Eng. Corp.), U.S. 1,781,051, Nov. 11,1930; Cent. 1931, II 2192; C.A. 25, 155 (1931): Brit. 276,887, Sept. 8, 1927; Cent. 1931, II 2192; [C.A. 22, 2421 (1928)]. (60) Davenport (to Chicago Pneumatic Tool Co.), U.S. 1,803,098, April 28, 1931; Cent. 1932, I 1935; [C.A. 25, 3746 (1931)].

(61) Braun (to Sartain, Fessracht, Schwoerer), U.S. 1,966,881, July 17, 1934; Cent. 1935, II 3805; C.A. 28, 5904 (1934). (62) Davenport (to Chicago Pneumatic Tool Co.), U.S. 1,986,959, Jan. 8, 1935; Cent. 1936, II 147; C.A. 29, 1294 (1935). (63) Kenney, Jordan, Threlkeld (to General Household Utilities Co.), U.S. 2,010,547, Aug. 6, 1935; Cent. 1937, I 145; C.A. 29, 6477 (1935). (64) Kenney (to General Household Utilities Co.), U.S. 2,021,691, Nov. 19, 1935; Cent. 1937, I 145; C.A. 39, 336 (1936). (65) Ernst (to I.G.), Ger. 534,530, Sept. 26, 1931; Cent. 1932, I 428; not in C.A. (66) Bakowski, Treszczanowicz, Przemysl Chem. 21, 204-208 (1937):

Cent. 1938, I 2758; C.A. 31, 8438 (1937). (67) Bakowski, Treszczanowicz, Przemsyl Chem. 22, 239-240 (1938); Cent. 1939, I 2040; C.A. 33, 6755 (1939). (68) Bakowski, Treszczanowicz, Przemsyl Chem. 22, 211-227 (1938); Cent. 1939, I 1878; C.A. 33, 6518 (1939). (69) Bakowski, Treszczanowicz, Przemsyl Chem. 22, 266-278 (1938); Cent. 1939, II 4607; C.A. 33, 3517 (1939). (70) Bakowski, Treszczanowicz (to Chemiczny Instytut Badawczy), Polish 26,192, Apr. 14, 1938; Cent. 1939, I 1880; not in C.A.: Polish 26,769, Sept. 6, 1938; Cent. 1939, II 729; not in C.A.: French 831,536, Sept. 7, 1938; Cent. 1938, II 3996; C.A. 33, 1758 (1939).

(71) Webb, Kay, Nichol, J. Ind. Hyg. Toxicol. 27, 249-255 (1945); C.A. 40, 1116 (1946). (72) Weber, Chem. Zig. 57, 836 (1933); Cent. 1933, II 3889; C.A. 28, 727 (1934). (73) Weber, Chem. Zig. 61, 807-808 (1937); Cent. 1938, I 950; C.A. 32, 74 (1938). (74) Moran, J. Ind. Hyg. Toxicol. 25, 243-248 (1943), C.A. 39, 4110 (1945). (75) Balis, Liebhafsky, Bronk, Ind. Eng. Chem., Anal. Ed. 13, 119 (1941). (77) McBee, Hass, Neher, Strickland, Ind. Eng. Chem. 34, 296-300 (1942). (78) Padovani, Magaldi, Gron. chim. ind. applicata 15, 1-7 (1933); Cent. 1933, I 3056; C.A. 27, 3443 (1933); Inst. Ind. Chem. Fuels, Polytechnicum, Milan 4, 193-208 (1932/1933); [C.A. 29, 1229 (1935)]. (79) Mason, Wheeler, J. Chem. Soc. 1931, 2282-2293. (80) Egloff, Schaad, Lowry, Chem. Revs. 8, 6-25 (1931).

(81) Coehn, Cordes, Z. physik. Chem. B-9, 1-24 (1930).
(82) Schleede, Luckow, Ber. 55, 3710-3726 (1922).
(83) Whiston, J. Chem. Soc. 117, 183-190 (1920).
(84) Martin, Fuchs, Z. Elektrochem. 27, 150-162 (1921); C.A. 15, 2375 (1921).
(85) Jones, Allison, Meighan, U.S. Bur. Mines, Tech. Paper 255, 44 pp. (1921); C.A. 15, 1983-1984 (1921).
(86) Baskerville, Riederer, J. Ind. Eng. Chem. 5, 5-8 (1913).
(87) Bedford, Ind. Eng. Chem. 8, 1090-1094 (1916).
(88) Pfeifer, Mauthner. Reitlinger, J. prakt. Chem. (2) 39, 239-242 (1919).
(89) Martin, Lux (to Dow Chem. Co), U.S. 1,801,873, Apr. 21, 1931; Cent. 1931, II 1631; C.A. 25, 3357 (1931).
(90) McKee, Salls, U.S. 1,765,601, June 24, 1930; Cent. 1930, II 1439, C.A. 24, 4051 (1930).

(91) Carter, Coxe, to S Karpen and Bros., U.S. 1,572,513, Feb. 9, 1926; Cent. 1926, I 2838; [C.A. 20, 1243 (1926)]: Brit. 245,991, Sept. 11, 1926; Cent. 1926, I 2838; C.A. 21, 415 (1927); Ger. 472,421, Feb. 28, 1929; Cent. 1929, I 2818; [C.A. 23, 2448 (1929)]. French 597,678, Nov. 26, 1925; Cent. 1926, I 2838; not in C.A. Canadian 251,763, July 14, 1925; C.A. 19, 3272 (1925). (92) I.G., French 816,957, Aug. 21, 1937; Cent. 1937, II 3380, C.A. 32, 2142 (1938). (93) Söll, Runkel (to I.G.), Ger. 491,316, Dec. 20, 1932, Cent. 1933, I 1013; C.A. 27, 991 (1933). (94) Ernst, Wahl, Ger. 486,952, Nov. 30, 1929; Cent. 1930, I 3829; C.A. 24, 1393 (1930). (95) Pfeifer, Szarvasy, Ger. 242,570, Jan. 13, 1912; Cent. 1912, I 384, [C.A. 6, 2211 (1912)]; U.S. 1,012,149, Dec. 19, 1911; [C.A. 6, 459 (1912)]. (96) Walter, Ger. 222,919, June 9, 1910; Cent. 1910, II 255; [C.A. 4, 2866 (1910)]. (97) I.G., Brit. 283,119, Feb. 29, 1928; Cent. 1928, II 1034; C.A. 22, 3893 (1928): French 646,661, Nov. 14, 1928; Cent. 1929, I 803; [C.A. 23, 2191 (1929)]. (98) Weber, Erasmus (to T. Goldschmidt, A.G.), U.S. 1,565,345, Dec. 15, 1925, Cent. 1926, I 2051; [C.A. 20, 424 (1926)]. (99) Wheeler, Mason (to Imperial Chem. Ind., Ltd.), U.S. 1,918,624, July 18, 1933; not in Cent.; C.A. 27 4816 (1933): Brit. 342,329, Feb. 26, 1931; Cent. 1931, II 629, C.A. 25, 4890 (1931). (100) Carlisle (to du Pont Co.), U.S. 1,939,292, Dec. 12, 1933; Cent. 1934, I 1883; not in C.A.

(101) Greene, Jahresber. 1879, 490. (102) Perkin, Zett. für Chem. 1868, 714. (103) Bachrach, Oel. u. Fett. Ind. 10, No. 4, 42 (1934); Cent. 1935, II 1872; not in C.A. (104) Stock, Stiebler, Ber. 56, 1091 (1923). (105) Soc. chim. des Usines du Rhone, Ger. 416,014, July 7, 1925; French 586,006, March 13, 1925; Cent. 1925, II 1795, not in C.A. (106) Butlerow, Ann. 111, 251-252 (1859); Zett. für Chem. 1869, 276. (107) Henry, Bull. acad. roy. Belg. 1900, 48-56; Cent. 1900, I 1122. (108) Dreyfus, Brit. 341,878, Feb. 19, 1931; Cent. 1931, II 120; C.A. 25, 4890 (1931). (109) Panizzon, Helv. Chem. Acta 15, 1187-1194 (1932). (110) Huff, U.S. Bur. Mines, Rept. Investigations 3794 (1945); C.A. 39, 1291 (1945): Jones, Kennedy, Scott, U.S. Bur. Mines, Rept. Investigations 3727 (1943); C.A. 38, 487 (1944).

(111) Langen van der Valk, Rec. trav. chim. 48, 201-219 (1929). (112) Harteck, Kopsch, Z. physik. Chem. B-12, 345-347 (1931); Z. Elektrochem. 36, 714-716 (1930). (113) Biesalski, Z. angew Chem. 37, 317 (1924). (114) Brenschede, Shumacher, Z. physik. Chem. A-177, 245-262 (1936). (115) Zeidler, Meyer, Farben-Zig. 46, 464-465 (1941); Cent. 1941, II 1686; C.A. 39, 4487 (1945). (116) Levine (to du Pont Co.), U.S. 1,975,727, Oct. 2, 1934; Cent. 1935, I 1934; C.A. 28, 7268 (1934). (117) Söll, Runkel (to I.G.), Ger. 518,166, Jan. 14, 1933; Cent. 1933, I 2171; C.A. 27, 1364 (1933). (118) "Polmin" Panstwowa Fabryka Olejow Mineralnych, E. Sucharda, Polish 11,909, June 25, 1930; Cent. 1931, II 2512; not in C.A. (119) Rhenania Verein Chem. Fabriken, A.G., Ger. 362,746, Oct. 30, 1922; Cent. 1923, II 477; not in C.A. (120) Leopold, Michael (to M.L.B.), Ger. 382,391, Oct. 1, 1923; Cent. 1924, I 1710; not in C.A.

(121) M.L.B., Ger. 426,670, Mar. 17, 1926; [Cent. 1926, I 3184], not in C.A.: Brit. 189,432, Jan. 17, 1923; Cent. 1923, II 743; C.A. 17, 2428 (1923). (122) Roka (to Holzverkohlungs-Ind.,

A.G.), Austrian 94,305, Sept. 25, 1923; Cent. 1924, I 2542; not in C.A.: Ger. 467,234, Aug. 29, 1922; [Cent. 1939, I 1396]; C.A. 23, 2191 (1929). (123) Lloyd, Kennedy, U.S. 1,849,844, March 15, 1932; Cent. 1932, I 2994; [C.A. 26, 2747 (1932)]. (124) Abkin, Medvedev, J. Chem. Ind. (Moscow) 1934, No. 1, 30-34; Cent. 1935, I 2801; C.A. 28, 3051 (1934) Russian 34,551, Feb. 28, 1934: Cent. 1935, I 2894; C.A. 29, 2973 (1935). (125) André, Compt. rend. 102, 1474 (1886). (126) Henne, J. Am. Chem. Soc. 59, 1400-1401 (1937). (127) Henne, Renoll, Leicester, J. Am. Chem. Soc. 61, 938 (1939). (128) Scherer, Dostal, Dachlauer (to I.G.), U.S. 2,347,000, April 18, 1944; [C.A. 39, 89 (1945)]: Ger. 727,690, Oct. 8, 1942; C.A. 37, 6676 (1943). French 870,965, April 1, 1942; Cent. 1942, II 1180: Italian 389,972, March 18, 1941; Cent. 1942, II 2849. (129) Pouret, Compt. rend. 130, 1192 (1900); Bull. soc. chim. (3) 25, 193 (1901). (130) Timmermans, Hennaut-Roland, J. chim. phys. 29, 533-536 (1932).

(131) Perkin, Scarborough, J. Chem. Soc. 119, 1408 (1921). (132) Fragner, Czechoslovak 46,929, Mar. 10, 1934; Cent. 1934, II 331; not in C.A. (133) Perkin, J. prakt. Chem. (2) 31, 505 (1885). (134) Berthelot, Compt. rend. 130, 1095 (1900). (135) Gross, Saylor, J. Am. Chem. Soc. 53, 1749 (1931). (136) Beckmann, Z. physik. Chem. 46, 853 (1903). (137) Adams, Marvel, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 358-360 (1941); (1st ed.), 350-351 (1932); 1, 57-59 (1921). (138) Hartmann, Dreger, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 357-358 (1941); (1st ed.), 349 (1932); 9, 56-57 (1929). (139) Backer, Rcc. trav. chim. 48, 950-951 (1929). (140) Tchakıran,

Compt. rend. 196, 1026-1028 (1933).

(141) Patrick, Martin, Trans. Faraday Soc. 32, 347-358 (1936). (142) Staudinger, Z. Elektrochem. 31, 549-552 (1932). (143) Lenze, Metz, Z. ges. Schress-u. Sprengstoffw. 27, 294, 337 (1932). (144) Saffer, Davis, J. Am. Chem. Soc. 67, 641-645 (1945). (145) Bawn, Milstead, Trans. Faraday Soc. 35, 894 (1938). (146) von Hartel, Meer, Polanyi, Z. physik. Chem B-19, 139-163. (1932). (147) Haresnape, Stevels, Warhurst, Trans. Faraday Soc. 36, 465-472 (1940). (148) Paneth, Lausch, J. Chem. Soc. 1935, 380-383. (149) Avery, Forbes, J. Am. Chem. Soc. 60, 1005-1011 (1938). (150) Theobald (to du Pont Co.), U.S. 2,378,048, June 12, 1945; C.A. 39, 4085 (1945).

(151) Wiezevich, Fröhlich (to Standard Oil Development Co.), U.S. 2,062,344, Dec. 1, 1936; Cent. 1937, I 4863, C.A. 31, 708 (1937). (152) Friedel, Crafts, Bull. soc. chm. (2) 41, 322-327 (1884); Ann. chim. (6) 11, 263-277 (1887). (153) Schwarz, Ber. 14, 1576 (1881). (154) Sommelet, Compt. rend. 180, 1349-1350 (1925). (155) Morgan, Coulson, J. Chem. Scc. 1929, 2205-2208, 2212-2213. (156) Barnett, Goodway, Watson, Ber. 66, 1879, 1887 (1933). (157) Forbes Anderson, J. Am. Chem. Soc. 67, 1912 (1945). (158) Arnhold, Ann 240, 197-208 (1887). (159) Carter (to S. Karpen and Bros.), U.S. 1,566,819, Dec. 22, 1925, Cent. 1926, I 2510; C.A. 20, 423 (1926): Brit. 249,039, Oct. 23, 1925; not in Cent., C.A. 21, 745 (1927): Ger. 495,020, April 3, 1930; Cent. 1930, I 3485; [C.A. 24, 3251 (1930)]. (160) Delepine, Bull. soc. chim. (3) 11, 556-557 (1894); Ann. chim. (7) 15, 476-477 (1898).

(161) Jones, Whalen, J. Am. Chem. Soc. 47, 1351 (1925). (162) Davies, Evans, Hulbert, J. Chem. Soc. 1939, 416. (163) Piccard, de Montmollin, Helv. Chim. Acta 6, 1020 (1923). (164) Ruigh, Ind. Eng. Chem., Anal. Ed. 11, 250 (1939). (165) Wang, J. Chinese Chem. Soc. 1, 61-62 (1933). (166) Koelle, Ber. 13, 1953 (1880). (167) V. H. Dermer, O. C. Dermer, J. Org. Chem. 3, 289-293 (1939). (168) Hrynakowski, Szmyt, Z. physik. Chem. A-182, 405-408 (1938).

3:5025 1,1,3-TRICHLORO-2-METHYLPROPENE-1  $C_4H_5Cl_3$ Beil. S.N. 11 CH<sub>2</sub> ClCH<sub>2</sub>—C=CCl<sub>2</sub>

B.P. 45-46° (1)

Note: C readily undergoes allyl transposition so that in reactions of C products derived from the isomeric 1,1,1-trichloro-2-methylpropene-2 (3:5605) may be expected (1) (2) (3) [For prepn. of  $\bar{C}$  (57% yield (1)) from  $\beta,\beta,\beta$ -trichloro-ter-butyl alc. ("Chloretone") (3:2662) by htg. to 200° with P2O5 and dimethylaniline see (1).] [A 15% yield of the isomeric 1,1,1-trichloro-2-methylpropene-2 (3:5605) together with some  $\alpha$ -chloroisobutyric acid (3:0235) are separated from  $\bar{C}$  by redistillation (1).

C on hydrolysis by boilg. 2 days with AgOH at 100° under pressure gives (22% yield (2)) 3,3-dichloro-2-methylpropen-2-ol-1, b.p. 78-79°,  $D_{-}^{20} = 1.298$ ,  $n_{-}^{20} = 1.493$ . [The corresp. ether, b.p. 129° at 11 mm.,  $D_{-}^{20} = 1.330$ ,  $n_{-}^{20} = 1.5108$ , is also formed in 22% yield (2).] The alc. may be characterized by its p-nitrobenzoate, m.p. 91°, or its N-phenylcarbamate, m.p. 64° (2).

 $\bar{\mathbf{C}}$  on htg. with NaOAc + AcOH gives (2) 3,3-dichloro-2-methylpropen-2-yl acetate, b.p. 79° at 12 mm.,  $D_{-}^{20} = 1.257$ ,  $n_{-}^{20} = 1.4718$  (2). [With boilg. NaOH this ester regenerates the corresp. alc. (2).]

 $\bar{C}$  with NaOEt gives in the cold 70% yield (2) of 3,3-dichloro-2-methylpropen-2-yl ethyl ether, b.p. 56° at 12 mm.,  $D_{-}^{20} = 1.1285$ ,  $n_{-}^{20} = 1.4610$  (2).

 $\bar{C}$  in CHCl<sub>3</sub>, treated with O<sub>3</sub>, then hydrolyzed gives  $\alpha$ -chloroacetone (3:5425), b.p. 60-62° at 50 mm. (1).

[For reactns. of C with CaI2 and with CH3MgBr see (2).]

- D 1,1,1,2,3-Pentachloro-2-methylpropane (3·1265): m.p. 59.5° (2). [From  $\ddot{\textbf{C}}$  by direct treatment with Cl<sub>2</sub> (2).]
- (2). [From C on warming 1 day with excess Br<sub>2</sub>, then distg. at 12 mm. (2).]
- 3,3-Dichloro-2-methylpropen-2-yl p-nitrobenzoate: m.p. 91° (2). [From C on boilg. with dil. alc. soln. of K p-nitrobenzoate (2).]

3:5025 (1) Jacob, Bull. soc. chim. (5) 7, 581-586 (1940). (2) Kirrmann, Jacob, Bull. soc. chim. (5) 7, 586-593 (1940). (3) Kirrmann, Jacob, Compt. rend. 203, 1528-1529 (1936).

3:5028 trans-1,2-DICHLOROETHYLENE 
$$Cl-C-H$$
  $C_2H_2Cl_2$  Beil. I — (trans-Acetylene dichloride)  $H-C-Cl$   $I_1-(78)$   $I_2-(159)$ 

B.P. 
$$[48.8-50.2^{\circ}]$$
  $(35)]$   $-53.1^{\circ}$   $(34)$   $D_{4}^{25} = 1.2489$   $(1)$   $48.8^{\circ}]$  at 763 mm.  $(1)$   $-53.0^{\circ}$   $(12)$   $n_{D}^{25} = 1.43969$   $(7)$   $48.4-49.4^{\circ}]$  at 741 mm.  $(2)$   $-50.0^{\circ}$   $(13)$   $D_{4}^{20} = 1.2569$   $(1)$   $48.35^{\circ}]$  at 760 mm.  $(3)$   $(4)$   $(13)$   $n_{D}^{18} = 1.44662$   $(6)$   $48.2-48.4^{\circ}]$  at 769 mm.  $(6)$   $47.85-47.87^{\circ}$  at 769.5 mm.  $(7)$   $(7)$   $(8)$   $(7)$   $(7)$   $(8)$   $(7)$   $(8)$   $(7)$   $(8)$   $(7)$   $(8)$   $(7)$   $(8)$   $(9)$   $(10)$   $(10)$   $(10)$   $(10)$   $(10)$   $(11)$   $(10)$   $(11)$   $(11)$   $(11)$   $(11)$   $(12)$   $(12)$   $(13)$   $(13)$   $(14)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$   $(15)$ 

See also both cis-1,2-dichloroethylene (3:5042) and ordinary (mixt. of cis and trans) 1,2-dichloroethylene (3:5030); the following text is restricted to studies on substantially pure trans stereoisomer.

Note carefully that 1,2-dichloroethylene is not the same as ethylene (di)chloride (3:5130) (there are an almost incredible number of errors in the literature involving this point); neither is it the same as the now very important 1,1-dichloroethylene (vinylidene (di)chloride) (3:5005).

#### GENERAL DATA ON C

Note that substantially pure  $\bar{C}$  is comml. solvent in U.S.A. under designation "Di 48" (referring to the two chlorine atoms and the b.p.). [For study of thermal conductivity and for tabulation of constants of comml.  $\bar{C}$  see (14). — For toxicity of  $\bar{C}$  see (36) (15). — For use of  $\bar{C}$  in extraction of caffeine from coffee see (16).]

[For data on vap. press. of C over range 23-48.8° see (1).]

Binary systems contg.  $\bar{\mathbf{C}}$ . (See also below under azeotropes.) —  $[\bar{\mathbf{C}} + cis-1,2\text{-dichloro-ethylene} (3:5042);$  for use of  $n_D^{25}$  in detn. of compn. of mixt. see (7); for f.p./compn. data (eutectic, f.p.  $-91^{\circ}$  contg. about 29%  $\bar{\mathbf{C}}$ ) see (12). — For f.p./compn. data on binary systems  $\bar{\mathbf{C}}$  + ethylene dichloride (3:5130),  $\bar{\mathbf{C}}$  + 1,1,2,2-tetrachloroethane (acetylene tetrachloride) (3:5750), or  $\bar{\mathbf{C}}$  + ethylene dibromide see (12). — For f.p./compn. data on system  $\bar{\mathbf{C}}$  +  $\mathbf{C}_6\mathbf{H}_6$  (1:7400) see (34). — For study of soly. of various other cis-trans isomers in  $\bar{\mathbf{C}}$  see (5).]

Azeotropes contg. Č. Binary azeotropes. Č with aq. forms a const.-boilg. mixt., b.p. 45.3°, contg. 98.1% Č (38) (39). — Č with EtOH (1:6130) forms a const.-boilg. mixt., b.p. 46.5° at 760 mm. (17) (38) (39), contg. 94.5% (38) (39) 88.2 mole % (17) Č.

Ternary azeotropes.  $\tilde{C}$  with EtOH (1:6130) + aq. forms a const.-boilg. mixt., b.p. 44.4°, contg. 94.5%  $\tilde{C}$  + 4.4% EtOH + 1.1% aq. (38) (39).

#### PREPARATION OF C

Pure  $\tilde{C}$  is usually obtd. by careful fractional distillation at ord. press. of the mixt. of the cis and trans stereoisomers comprising ord. 1,2-dichloroethylene (3:5030) [for brief comments on this mode of sepn. see (1) (2) (3) (5) (6) (7) (8) (9) (11); note that some workers (11) recommend distn. in atmosphere of  $CO_2$ . — For detn. of % compn. of mixts. of  $\tilde{C}$  with its stereoisomer by means of  $n_2^{D_5}$  see (7); by means of dielectric constant see (7) (19).] [For study of possibility of sepn. of  $\tilde{C}$  from its stereoisomer by differential adsorption

[For study of possibility of sepn. of C from its stereoisomer by differential adsorption on silica gel see (18).]

[For prepn. of  $\tilde{C}$  from 1,1,2,2-tetrachloroethane (acetylene tetrachloride) (3:5750) by splitting out 2 adjacent chlorine atoms with Zn + EtOH (followed by fractionation of crude  $\tilde{C}$ ) see (19); for prepn. of  $\tilde{C}$  from 3,4-dichloro-2-methylbuten-3-ol-2 by slow addn. to 85% KOH at 175-180° (acetone is also formed) see (37).]

[For patents on prepn. of almost pure  $\bar{C}$  from acetylene with  $Cl_2$  by controlled reaction over pumice contg.  $CuCl_2$  at 200–240° (20) or over activated carbon at 40° (21) see indic. refs.]

#### ISOMERIZATION OF C

 $\bar{\rm C}$  under the influence of heat, light, or various catalysts in part isomerizes to cis-1,2-dichloroethylene (3:5042). — [For study of thermal isomerization of  $\bar{\rm C}$  in vapor phase at 185–275° (22), up to 350° (19), up to 975° (23), in liq. phase or in various solns. (11) see indic. refs.; note that the equilibrium mixt. at 300° conts. 39.2  $\pm$  0.7%  $\bar{\rm C}$ , at 350° conts. 40.6  $\pm$  0.3%  $\bar{\rm C}$  (19), at 975° conts. 47.7%  $\bar{\rm C}$  (23). — For study of kinetics of thermal isomerization of  $\bar{\rm C}$  see (7) (24).]

[For patent on isomerization of pure  $\tilde{C}$  to a mixt. contg. 65-70% of the *cis* stereoisomer (3:5042) by means of a small amt. Br<sub>2</sub> at 30° or above in pres. of cat. or in vapor phase at not over 300° see (25) cf. (7). — For patent on thermal isomerization of  $\tilde{C}$  see (26).]

#### CHEMICAL BEHAVIOR OF C

Reactions with inorganic compds.  $\tilde{C}$  (in vapor phase at 80–95° in light of 4360 Å (27)) with  $Cl_2$  adds 1 mole halogen yielding 1,1,2,2-tetrachloroethane (acetylene tetrachloride) (3:5750).

Č with Br<sub>2</sub> in light adds 1 mole halogen yielding (28) (3) (29) 1,2-dibromo-1,2-dichloro-ethane [Beil. I-93, I<sub>2</sub>-(29), I<sub>2</sub>-(64)], b.p. 195° at 760 mm. (13) (30), b.p. 79.0-79.5° at 15 mm. (3). — [For extensive study of the resultant equilibrium see (28); for study of influence of O<sub>2</sub> and other factors see (28); for study of kinetics in CCl<sub>4</sub> soln. see (31) (32).

— Note that rate of addn. of  $Br_2$  either directly or in CCl<sub>4</sub> soln. is twice as great for  $\tilde{C}$  as for the stereoisomeric cis form (3:5042) (3).]

[ $\bar{C}$  with alc. KOH splits out 1 HCl yielding chloroacetylene (3:7000); note, however, that rate of reactn. with  $\bar{C}$  is only about  $\frac{1}{20}$  as fast as for its cis stereoisomer (3:5042) (3).]

 $\bar{C}$  with aq. NaOH/Hg(CN)<sub>2</sub> behaves quite differently from its *cis* stereoisomer (3:5042): on shaking at room temp. with specified (8) concns. of reagt.  $\bar{C}$  shows signs of reactn. only after 3 hrs. (instead of  $\frac{1}{2}$  hr. as for the stereoisomer) and suffers replacement of 1 H atom per mole by mercury forming mercury *bis*-( $\alpha$ , $\beta$ -dichloroethylenide) Hg(CCl = CHCl)<sub>2</sub>, m.p. 50.3°, insol. aq., but very sol. CHCl<sub>3</sub>, ether, or acetone, together with other, more complex derivatives. — Cf. the entirely different behavior of the *cis* stereoisomer (3:5042).

Č with PtCl<sub>4</sub> in C<sub>6</sub>H<sub>6</sub> at 40-50° for 3 hrs. evolves HCl and on cooling separates amber cryst. of trans-1,2-dichloroethylene platinous chloride, Cl.CH = CH.Cl.PtCl<sub>2</sub>, m.p. 155-160° (33); note that the cis stereoisomer by similar treatment gives only gums (33).

Reactions with organic compds. [ $\bar{C}$  with  $C_6H_6+Al/Hg$  at 0° gives same prods. as does the ord. (mixture) 1,2-dichlorocthylene (3:5030) (presumably indicating partial isomerization of  $\bar{C}$ ); these prods. include dibenzyl, triphenylethane, tetraphenylethane, etc. (6).]

3:5028 (1) Herz, Rathmann, Chem. Ztg. 37, 622 (1913). (2) Walker, Trans. Fara ay Soc. 31, 1434 (1935). (3) Chavanne, Compt. rend. 154, 776-777 (1912), Cent. 1912, I 1539; Bull. soc. chim. Belg. 26, 289-294 (1912); Cent. 1912, II 1006; Bull. soc. chim. Belg. 28, 234-240 (1914); Cent. 1914, II 1144. (4) Bonino, Bruhl, Gazz. chim. ital. 59, 648-649 (1929); Z. Physik 58, 195 (1929). (5) Lebrun, Bull. soc. chim. Belg. 39, 423-433 (1930). (6) Böeseken, Bastet, Rec. trav. chim. 32, 197-203 (1913). (7) Jones, Taylor, J. Am. Chem. Soc. 62, 3480-3485 (1940). (8) FitzGibbon, J. Chem. Soc. 1938, 1218-1222. (9) Ebert, Bull, Z. physik. Chem. A-152, 451-452 (1931). (10) Mahncke, Noyes, J. Chem. Phys. 3, 536 (1935).

(11) Wood, Dickinson, J. Am. Chem. Soc. 61, 3259-3263 (1939). (12) Timmermans, Bull. soc. chim. Belg. 36 184-187 (1927). (13) Timmermans, Bull. soc. chim. Belg. 27, 334-343 (1913); Cent. 1914, I 618 (14) Bates, Hazzard, Palmer, Ind. Eng. Chem. 33, 375-376 (1941). (15) Ferguson, Nature 137, 361-362 (1936). (16) Coffex, A. G., Swiss 162,725, Sept. 1, 1933; Cent. 1933, II 3636. (17) Lecat, "L'Azeotropism," Brussels, 1918, Lecat No. 339. (18) Hesse, Tschachotin, Naturwissenschaften 30, 387-392 (1942); Cent. 1942, II 1325; C.A. 37, 6211 (1943). (19) Olson, Maroney, J. Am. Chem. Soc. 56, 1320-1322 (1934). (20) Consortium für Elektrochem. Ind., Brit. 366,348, Feb. 25, 1932; French 714,995, Nov. 23, 1931; Cent. 1932, I 3345; C.A. 26, 1624 (1932); Ger. 555,373, May 10, 1930; C.A. 26, 5106 (1932).

(21) Ruppert, Fischer, Voigt, Hennig (to I G), U.S. 1,868,077, July 19, 1932; C.A. 26, 5106 (1932); Brit. 310,964, June 26, 1929; Cent. 1930, II 2957; Ger. 553,149, Sept. 30, 1932; Cent. 1932, II 3303. French 674,254, Jan. 27, 1930; Cent. 1930, I 3829; Swiss 141,529; Cent. 1931, 1823. (22) Wood, Stevenson, J. Am. Chem. Soc. 63, 1650-1653 (1941). (23) Maroney, J. Am. Chem. Soc. 57, 2397-2398 (1935). (24) Tamamuri, Akiyama, Z. Elektrochem. 47, 340-345 (1941); C.A. 35, 6859 (1941). (25) Mugdan, Rost (to Consortium für Elektrochem. Ind.), Ger. 595,464, April 11, 1934; Cent. 1935, I 2599; C.A. 28, 4072 (1934). (26) Fertsch (to I.G.), Ger. 510,576, Oct. 20, 1930; Cent. 1931, I 151; C.A. 25, 965 (1931). (27) Muller, Schumacher, Z. physik. Chem. B-35, 285-297 (1935). (28) Müller, Schumacher, Z. physik. Chem. B-42, 327-345 (1939). (29) Verhoogen, Bull. soc. chim. Belg. 34, 434-456 (1925). (30) van der Walle, Bull. soc. chim. Belg. 28, 307 (1914).

(31) Herz, Rathmann, Ber. 46, 2589 (1913). (32) Bruner, Fischler, Z. Elektrochem. 20, 84 (1914). (33) Kharasch, Asford, J. Am. Chem. Soc. 58, 1737-1738 (1936). (34) Band, Jay, Compt. rend. 150, 1687-1690 (1910); Bull. soc. chim. (4) 9, 119 (1911); Ann. chim. (8) 27, 96 (1912). (35) Awberry, Griffiths, Proc. Phys. Soc. (London) 48, 379 (1936). (36) Lehman, Schmidt-Kehl, Arch. Hyg. Bakt. 116, 131-268 (1936); C.A. 31, 477 (1937); not in Cent. (37) Petrov, J. Gen. Chem. (U.S.S.R.) 13, 331-338 (1943); C.A. 38, 1468 (1944). (38) Chavanne, Bull. soc. chim. Belg. 27, 205-209 (1913); Cent. 1913, II 1376; C.A. 8, 1105 (1914). (39) Gowing-Scopes. Analyst 39, 6 (1914).

3:5030 1,2-DICHLOROETHYLENE ord. 
$$C_2H_2Cl_2$$
 Beil. I - 187 (Acetylene dichloride) mixt.  $HC-Cl + Cl-C-H + Cl$   $I_1-(77)$   $I_2-(158)$   $HC-Cl + H-C-Cl$   $Cis trans$  (3:5042) (3:5028)

The text under this heading refers to the ordinary mixt. of the two individual stereoisomeric forms, viz., cis-1,2-dichloroethylene (3:5042) and trans-1,2-dichloroethylene (3:5028). Since the proportion of the two stereoisomers differs according to conditions and previous treatment no definite physical constants can be given, and those for each pure stereoisomer should be consulted.

Note carefully that 1,2-dichloroethylene is *not* the same as ethylene (di)chloride (3:5130) (there are an almost incredible number of errors in the literature involving this point); neither is it the same as 1,1-dichloroethylene (vinylidene (di)chloride) (3:5005).

Furthermore note that some confusion exists in the literature on the relationship between the two isomers; the high-boilg. stereoisomer (3:5042) is now definitely regarded as the cis form and the lower-boilg. stereoisomer (3:5028) as the trans; however, some records (including "International Critical Tables") have inverted these designations.

#### PHYSICAL DATA ON Č

General. Ordinary comml.  $\bar{C}$  consists of a mixt. of the two stereoisomers; by careful fractional distn. the two stereoisomers can be separated (for references see text of the two pure stereoisomers). — An equilibrium mixt. contg. about 20% of the lower-boilg. (trans) (3:5028) and 80% of the higher-boilg. (cis) (3:5042) forms can be obtd. from either by treatment at ord. temp. in sunlight with 1-2% Br<sub>2</sub> (for data on thermal isomerization see text of both individual stereoisomers). — Note also that the two pure stereoisomers (q.v.) form a eutectic. f.p.  $-91^{\circ}$ , contg. about 29% trans +71% cis forms.

Solubility relationships of  $\tilde{C}$ . Soly, of  $\tilde{C}$  in aq. is 0.8 ml. per 100 ml. aq. at ord, temp. (1). — [For soly, of  $I_2$  in  $\tilde{C}$  over range  $11-25^\circ$  (2) and use of such solns, in detn.  $I_2$  number of oils and fats (3) (4) see indic. refs. — For solv, power of  $\tilde{C}$  for various org. epds. see (5) (6).

Inflammability of  $\bar{C}$ .  $\bar{C}$  with air forms explosive mixt. in range contg. 3.3–15.3%  $\bar{C}$  (7); 9.7–12.8%  $\bar{C}$  (8). [For studies of influence of vapors of  $\bar{C}$  on mixts. of air with CH<sub>4</sub> (8), acetylene (10), CO (10) (12), or H<sub>2</sub> (10) see indic. refs.]

Miscellaneous data. [Ebullioscopic const. of  $\tilde{C}$  (for 1 mole solute in 100 g.  $\tilde{C}$ ) = 29.6 (14).]

#### USES OF C

[For use of  $\bar{C}$  as solv. for fats and oils (15), as refrigerating liquids (16) (17) (18) (19) (20) (21), for extraction of caffeine from coffee (22), for dehydration (concentration) of propionic acid from aq. solns. (23), for sepn. of o- and p-isomers of various phenols (24), in dewaxing of mineral lubricating oils (25), for pretreatment in dyeing of cellulose esters and ethers (26) see indic. refs.]

#### PHYSIOLOGICAL BEHAVIOR OF C

Č acts as an anesthetic and narcotic, but full treatment of this aspect is beyond the scope of this work; for lead references, however, see below.

Toxicity of C. [For studies on toxicity of C see (27) (28) (29) (30) (31); for studies of narcotic action (31) (33) (34) (35) (36) see indic. refs.]

Antiseptic and disinfectant props. of  $\tilde{C}$ . [For studies of  $\tilde{C}$  from this viewpoint see (37) (38) (1).]

#### DETERMINATION OF C

Č is detd. by conversion of its halogen by pyrolytic or by chem. means completely to chloride ion followed by either volumetric or gravimetric detn. of the latter.

[For detn. of  $\bar{C}$  by methods involving pyrolytic decompn. of  $\bar{C}$  see (39) (40) cf. (41).] [For detn. of  $\bar{C}$  by methods involving decompn. of  $\bar{C}$  with Na + ethanolamine in dioxane see (42) cf. (43).]

[For detn. of Č by means of HgSO<sub>4</sub> catalyzed addn. of Br<sub>2</sub> (from bromide/bromate soln.) to its unsatd. linkage see (44).]

#### PREPARATION OF C

From various polychloroethanes. From 1,1,2,2-tetrachloroethane (acetylene tetrachloride) (3:5750). [For prepn. of  $\bar{C}$  from acetylene tetrachloride by removal of 2 chlorine atoms with  $H_2$  over Ni at 300-320° (45), with Fe or Al + aq. (46) (47) or Zn + aq. (47) (48), with acetylene over hydrogenating cat. (such as Ni) on activated carbon at 350° (49) preferably in pres. of aq. vapor (50), or by electrolytic reduction in pres. of ZnCl<sub>2</sub> (51) cf. (52) see indic. refs. — Note that  $\bar{C}$  is also one of the prods. of pyrolysis of acetylene tetrachloride over pumice at 700° (53).]

From 1,1,1,2-tetrachloroethane (3:5555). [For prepn. of Č from unsym.-tetrachloroethane with acetylene over hydrogenating cat. (such as Ni) on activated carbon at 350° (49) preferably in pres. of aq. vapor (50) see indic. refs.; note that mechanism yielding this result is unknown.]

From 1,1,2-trichloroethane (3:5330). [For prepn. of C from 1,1,2-trichloroethane (by loss of HCl) over CuCl<sub>2</sub> on pumice at 400° (54) or with MeOH over Al<sub>2</sub>O<sub>3</sub> at 290° (MeCl (3:7005) is also formed) (55) see indic. refs.]

From 1,2-dichloroethane (3:5130). [For formn. of  $\bar{C}$  (22% yield) together with other prods. from ethylene (dı)chloride with Cl<sub>2</sub> in pres. of AlCl<sub>3</sub>/NaCl/FeCl<sub>3</sub> at 400–480° see (56).]

From various mixed-halogenated ethanes. [For formn. of  $\tilde{C}$  from 1,2-dibromo-1,2-dichloroethane [Beil. I-93, I<sub>1</sub>-(29), I<sub>2</sub>-(64)] by removal of 2 Br with Zn in alc. (57) or with H<sub>2</sub> over Ni at 300-320° (45) see indic. refs.; from 2-bromo-1,1,2-trichloroethane (by elimination of Br-Cl) with Zn dust in boilg. alc. (58) (59) or from 2-iodo-1,1,2-trichloroethane on distn. at atm. press. (60) see indic. refs.]

From acetylene. With chlorine. [Starting from acetylene the addition of 1 mole of  $Cl_2$  yields  $\bar{C}$  to which further addn. of  $Cl_2$  gives 1,1,2,2-tetrachloroethane (acetylene tetrachloride) (3:5750); for this reason most of the processes for prepn. of the latter cpd. by this method yield (or may be made to yield)  $\bar{C}$  as a by-product. Since the patents on the addn. of chlorine to acetylene have been extensively cited under the text of 1,1,2,2-tetrachloroethane (3:5750) (prepn. from acetylene), refer to that compound; however, see also (61) (62) (63).]

With other reagents. [For formn. of  $\bar{C}$  from acetylene with SbCl<sub>5</sub> (64) (65) cf. (57), with SbCl<sub>5</sub> + SbCl<sub>3</sub> (66), or with aq. ICl soln. (57), see indic. refs.]

#### CHEMICAL BEHAVIOR OF C

Pyrolysis of C. [C in s.t. at 360° for 10 hrs. is completely decomposed (64) into carbon + HCl.] (See also above under detn. of C.)

Oxidation of C. [C with O<sub>2</sub> in pres. of suitable cat. (e.g., Br<sub>2</sub> or H<sub>2</sub>SO<sub>4</sub>) gives (67)

chloroacetyl chloride (3:5235). —  $\ddot{C}$  with  $O_2 + N_2$  in ultra-violet light evolves HCl but yields (68) only resinous (perhaps polymerization) products.]

[For study of rate of reactn. of C (in AcOH) with O3 see (69).]

[Note that C with NH<sub>3</sub> + air over Pt/Rh cat. at 820-850° gives (70) HCN.]

[C with air over (strongly chlorinated) CuO at 450° gives (76) much phosgene (3:5000).]

Stabilization of  $\bar{C}$ . [For stabilization of  $\bar{C}$  by addn. of small amts. of alc. NH<sub>3</sub> (71), with Et<sub>3</sub>N (72), or with various phenols, amines, and aminophenols (73), see indic. refs.] (See also under corresp. subtopic of 1,1,2-trichloroethylene (3:5170).)

Polymerization of C. [C in the pres. of dibenzoyl peroxide (or other org. peroxides) on htg. under press. reacts with itself yielding mainly (74) a dimer, viz., 1,3,4,4-tetra-chlorobutene-1 (3:9058), accompanied by other prods.]

[For study of influence of radiation of 1980-1860 Å (from Al arc) and accompanying polymerization see (75).]

Reaction with halogens. Behavior of  $\bar{C}$  with  $Cl_2$ . [ $\bar{C}$  adds 1 mole  $Cl_2$  giving (69% yield (58)) 1,1,2,2-tetrachloroethane (3:5750); for study of this reactn. in light of 4360  $\bar{A}$  see (77).] (See also under the individual cis- (3:5042) and trans- (3:5028) stereoisomers.)

Behavior with  $Br_2$ . [ $\bar{C}$  adds 1 mole  $Br_2$  giving (60) (57) 1,2-dibromo-1,2-dichloroethane [Beil. I-93,  $I_{1}$ -(29),  $I_{2}$ -(64)], b.p. 195° at 760 mm. (78) (59), b.p. 79.0-79.5° at 15 mm. (79); for study of photochem. addn. of  $Br_2$  in gas phase (80) (81) and in  $CCl_4$  soln. (81) (82) in sunlight (83) (84) see indic. refs.]

Behavior with 1Cl. [ $\bar{C}$  in CHCl<sub>3</sub> adds ICl in sunlight yielding (60) 2-iodo-1,1,2-trichloro-ethane, b.p. 77° at 9 mm.,  $D_1^{15} = 2.2760$  (60).]

Reaction with halogen hydrides. Reaction with HCl. [C in the absence of cat. does not add dry HCl; C with dry HCl in the pres. of small amts. AlCl<sub>3</sub> at 30-40° gives (87% yield (86)) (85) (104) 1,1,2-trichloroethane (3:5330) accompanied (85) by 1,1,2,3,4-pentachlorobutane (3:0750); this latter prod. and doubtless various others appear to be formed in the pres. of the AlCl<sub>3</sub> by various condensations among the various organic materials (see below).]

Reaction with  $H_2SO_4$ . [ $\bar{C}$  is only slightly attacked at 20° by either 85% or 96%  $H_2SO_4$  and no polymerization occurs (87); on running the  $H_2SO_4$  layer into 10 vols. of cold aqual. evidence of formn. of chloroacetaldehyde (3:7212) was obtd. (87). —  $\bar{C}$  with conc.  $H_2SO_4$  is unchanged up to 120° but at higher temps. carbonizes without evidence of formn. of chloroacetaldehyde (88).]

[However,  $\bar{C}$  with fuming H<sub>2</sub>SO<sub>4</sub> (50% SO<sub>3</sub>) or  $\bar{C}$  with SO<sub>3</sub> followed by aq. gives (88) (89) chloroacetaldehydesulfonic acid from which htg. with 80% H<sub>2</sub>SO<sub>4</sub> gives (88) (89) chloroacetaldehyde (3:7212).]

Behavior with alkali. [C with alc. KOH (90) (91) loses 1 HCl yielding chloroacetylene (3:7000); this prod. sometimes (92) (93) causes spontaneous ignition of the system especially when its alc. soln. comes in contact with air in cleaning the reaction flask (91).] (See also under the individual cis- (3:5042) and trans- (3:5028) stereoisomers.)

[Note that C with alc. NaSH does not react even after 6 hrs. reflux. (92).]

Behavior with NH<sub>3</sub>. [Č with liq. NH<sub>3</sub> under high press. reacts only very slightly although a small amt. of chloroacetylene (3:7000) (from loss of HCl) is formed (94).]

Behavior with metals. [For study of corrosion of common metals by C see (5).]

Behavior with other inorganic reactants. [C with liq. nitryl chloride (ClNO<sub>2</sub>) in s.t. at 100° for 3 hrs. gives by addn. to unsatd. linkage (67% yield (95)) 2-nitro-1,1,2-trichloroethane, pale yel. oil, b.p. 63° at 13 mm. — C cautiously added to 4 vols. of a mixt. of conc. + fumg. HNO<sub>3</sub> and warmed gives (96) a small amt. of nitro-trichloromethane (chloropicrin). — C with liq. N<sub>2</sub>O<sub>4</sub> at ord. temp. for 24 hrs. in an unsealed tube (use of sealed tube leads to serious explosions) reacts (96) to give a little oxalic acid dihydrate (1:0445) together with an unidentified lachrymatory oil.]

#### BEHAVIOR WITH ORGANIC REACTANTS

With hydrocarbons. [ $\bar{C}$  (1 mole) with cyclopentadiene (1 mole) (1:8030) in s.t. at 180-190° for 15 hrs. yields (97) two Diels-Alder type adducts. — For reactn. of  $\bar{C}$  with  $C_6H_6+Al/Hg$  see under individual cis- (3:5042) and trans- (3:5028) stereoisomers.]

With other chlorinated hydrocarbons. (For reaction of C with itself see above under polymerization.)

With methylene (di)chloride (3:5020). [ $\bar{C}$  (1 wt. pt.) with CH<sub>2</sub>Cl<sub>2</sub> (3 wt. pts.) + AlCl<sub>3</sub> (0.3 wt. pt.) at 40° for 8 hrs. gives (24% yield (98)) 1,1,2,3-tetrachloropropane (3:6035)].

With chloroform (3:5050).  $[\bar{C}$  (1 wt. pt.) with CHCl<sub>3</sub> (3 wt. pts.) + AlCl<sub>3</sub> (0.25 wt. pt.) stirred with sand for 20 hrs. at 30° (99) cf. (100) (101) (102) gives (yields: 63% (99), 70-75% at 50° (100), 46% at 17° in 22 hrs. (100)) 1,1,2,3,3-pentachloropropane (3:6280).]

With carbon tetrachloride (3:5100). [C with CCl<sub>4</sub> + AlCl<sub>3</sub> gives (101) (102) cf. (103) 1,1,1,2,3,3-hexachloropropane (3:6460); for reactn. of this system yielding heptachloropentenes see (103).]

With 1,1,2-trichloroethane (3:5330). [C with 1,1,2-trichloroethane + AlCl<sub>3</sub> (1%) at 35-40° for 5 days gives (104) two diastereoisomeric 1,1,2,3,4-pentachlorobutanes, viz., liq. (3:9068) and solid (3:0750).]

With 1,1,2,2-tetrachloroethane (acetylene tetrachloride) (3:5750). [C with acetylene tetrachloride + AlCl<sub>3</sub> gives a mixt. from which can be isolated only (104) solid 1,1,2,3,4-pentachlorobutane (3:0750).]

With 1,1,1,2-tetrachloroethane (3:5555). [C with unsym.-tetrachloroethane + AlCl<sub>3</sub> at 40° for 10 days gives (104) 1,1,1,4,4-pentachlorobutene-2 (3:9054).]

With pentachloroethane (3:5880). [Č with pentachloroethane + AlCl<sub>3</sub> at 40° for 12 days presumably first forms both 1,1,2,2,3,4,4-heptachlorobutane (3:9056) and 1,1,1,2,3,4,4-heptachlorobutane, but the latter loses HCl and by further reaction and/or resinification is lost in the accompanying resins (104); the HCl thus split out adds (in the pres. of AlCl<sub>3</sub>) to Č yielding 1,1,2-trichloroethane which then condenses with more Č as stated above (104).]

With hexachloropropene (3:6370). [ $\bar{C}$  with hexachloropropene + AlCl<sub>3</sub> in CH<sub>2</sub>Cl<sub>2</sub> soln. yields (105) a single 1,1,2,3,3,4,5,5-octachloropentene-1, b.p. 145-147° at 11 mm., 113-113.5° at 2 mm.,  $D_{21}^{21} = 1.749$ ,  $n_{21}^{20} = 1.5607$  (105). This prod. with conc. H<sub>2</sub>SO<sub>4</sub> gives (80% yield (105)) a mixt. of pentachlorobutenecarboxylic acids (105).]

Behavior with organic OH or SH derivs. [ $\bar{C}$  (1 mole) with  $C_2H_6SH$  (2 moles) in alc. KOH (2.6 moles) refluxed  $\frac{1}{2}$  hr. gives (yield not stated (106)) 1,2-bis-(ethylthio)ethylene, b.p. 170° at 13 mm.]

[C (1 mole) with benzyl mercaptan (2 moles) in alc. KOH refluxed 7 hrs. gives (yield not stated (106)) 1,2-bis-(benzylthio)ethylene, white ndls. from alc. or AcOH, m.p. 61°; this prod. in CS<sub>2</sub> adds 1 Br<sub>2</sub> giving 1,2-dibromo-1,2-bis-(benzylthio)ethane, ndls. from ether, m.p. 73-74°.]

[Č (1 mole) with thiophenol (2 moles) in alc. NaOEt (2 moles) refluxed 24 hrs., poured into aq., gives (yield not stated (108)) 1,2-bis-(phenylthio)ethylene, b.p. 235-242° at 760 mm., pl. from lt. pet., m.p. 62°.]

Č (1 mole) with p-tolylmercaptan (2 moles) in 7% alc. KOH refluxed 3 hrs. gives (90% yield (107)) 1,2-bis-(p-tolylthio)ethylene, ndls. from alc., m.p. 93°; this prod. in CHCl<sub>3</sub> adds 1 mole Br<sub>2</sub> giving (100% yield) 1,2-dibromo-1,2-bis-(p-tolylthio)ethane, cryst. from pet. ether, m.p. 72° (107).

[For analogous reactn. with  $\bar{C}$  of o-nitrothiophenol or p-nitrothiophenol see (106).]

[C (1 mole) with an alk. salt of thiosalicylic acid (o-mercaptobenzoic acid) reacts similarly giving (109) (110) cf. (111) (112) 1,2-bis-(o-carboxyphenylthio)ethylene ("S,S-vinylene-

bis-thiosalicylic acid") [Beil. X-128,  $X_1$ -(55)]; this prod. with KOH/NaOH at 220-230° gives (113) 3-hydroxythionaphthene (thioindoxyl) [Beil. XVII-119, XVII<sub>1</sub>-(60)], or by actn. of acid condensing agents (e.g., fuming  $H_2SO_4$ ,  $ClSO_3H$ , etc.) yields (114) the important dyestuff thioindigo [Beil. XIX-177, XIX<sub>1</sub>-(690).] — Note that the corresp. condens. of  $\bar{C}$  with salicylic acid (o-hydroxybenzoic acid) or with anthranilic acid (o-aminobenzoic acid) cannot be effected (112).]

Behavior with other misc. organic reactants. [ $\tilde{C}$  with paraformaldehyde (1:0080) + conc. H<sub>2</sub>SO<sub>4</sub> gives (115) a resin (cf. behavior of 1,1,2-trichloroethylene (3:5170)).]

[ $\bar{C}$  (1 mole) with EtMgBr (2 moles) yields (116)  $C_2H_6$  + BrMgC=C-MgBr + MgCl<sub>2</sub>.] [ $\bar{C}$  does not (117) react with acetyl iodide even after 150 days at 25°.]

#### COLOR TESTS FOR C

- © Color test with α-naphthol/cyclohexanol. C

  (1 drop) with 2 ml. of a 2% soln. of α-naphthol (1:1500) in cyclohexanol (1:6415) + 2 pellets solid NaOH boiled 25 seconds, cooled, gives after acidification with AcOH or 85% H<sub>2</sub>SO<sub>4</sub>, stdg. 1 min., and shaking a violet or red-violet color (118). [Note that under these conditions the response given by methylene (di)chloride (3:5020) is green-blue; by both CHCl<sub>3</sub> (3:5050) and CCl<sub>4</sub> (3:5100) is intense blue; by 1,2-dichloroethane (ethylene dichloride) (3:5130) is colorless to pale green; by 1,1,2-tertachloroethane (acetylene tetrachloride) (3:5750) is intense green-blue; by pentachloroethane (3:5880) is gray-green; by 1,1,2-trichloroethylene (3:5170) is intense green-blue; and by tetrachloroethylene (3:5460) is green (118).]
- Mercury bis-(chloroacetylide)  $Hg(-C \equiv C Cl)_2$ . Shining white pl. from hot CHCl<sub>3</sub>; although reported to melt at 185° (119) (120) (121) has also been found (122) to explode with great violence well below that temperature, i.e., 174–175° (122). [From  $\bar{C}$  with aq.  $Hg(CN)_2 + KOH$  on shaking at room temp. (91) (123) for 48 hrs. (119), or from  $\bar{C}$  in alc. run into a stirred aq. soln. of  $HgCl_2 + NaCN + KOH$  (120), or from  $\bar{C}$  shaken with an aq. soln. of HgO + NaCN + NaOH (122). Note, however, that in fact this prod. results only from the higher-boilg. (cis) stereoisomer of  $\bar{C}$  (3:5042) and that the lower-boilg. (trans) stereoisomer (3:5028) reacts much more slowly and quite differently to yield mercury bis-( $\alpha$ , $\beta$ -dichloroethylenide), m.p. 50.3° (122). Note further that by the above treatment 1,1,2-trichloroethylene (3:5170) gives mercury bis-(trichloroethylenide), m.p. 83°, but this prod. is much more sol. in CHCl<sub>3</sub> than the analogous material from  $\bar{C}$  (for use in detect. of  $\bar{C}$  in pres. of 1,1,2-trichloroethylene see (123)).]
- 3:5030 (1) Salkowski, Brochem. Z. 107, 191-201 (1920); Cent. 1920, IV 515. (2) Margosches, Hinner, Friedmann, Z. anorg. allgem. Chem. 137, 81-90 (1924). (3) Margosches, Baru, J. prakt. Chem. (2) 103, 216-226 (1921/2). (4) Margosches, Hinner, Z. deut. Öl. u. Fett-Ind. 44, 97-100 (1924); Cent. 1924, I 2648; C.A. 18, 3731 (1924). (5) Gowing-Scopes, Analyst 39, 4-20 (1914). (6) Webster, Pharm. Weekblad 51, 1443-1446 (1914); Cent. 1915, I 248; not in C.A. (7) Jorissen, Chem. Weekblad 25, 228-230 (1928); Cent. 1928, I 2854. (8) Coward, Jones, Ind. Eng. Chem. 18, 970-974 (1926). (9) Jorrissen, Ind. Eng. Chem. 19, 430-431 (1927). (10) Jorissen, Meuwissen, Rec. trav. chim. 44, 132-140 (1925).
- (11) Jorissen, Velisek, Rec. trav. chim. 43, 85 (1924). (12) Langen van der Valk, Rec. trav. chim. 48, 206-207 (1929). (13) Jorissen, Langen van der Valk, Rec. trav. chim. 44, 810-813 (1925). (14) Michael, Hibbert, Ann. 396, 83 (1912). (15) Chem. Fabrik Griesheim-Elektron, Chem. Ztg. 32, 256 (1908). (16) Churchill, Chem. Markets, 25, 587-592 (1929). (17) Waterfill, Ind. Eng. Chem. 24, 616-619 (1932). (18) Davenport, (to Chicago Pneumatic Tool Co.), U.S. 1,818,117, Aug. 11, 1931; Cent. 1932, I 559; C.A. 25, 5481 (1931). U.S. 1,803,098, April 28, 1931; Cent. 1935, C.A. 25, 3746 (1931). (19) Klein, Ger. 406,029, Nov. 13, 1924; Cent. 1925, I 46; not in C.A.: cf. Ger. 404,960, Oct. 24, 1924; Cent. 1925, I 146; not in C.A. (20) Carrier (to Carrier Eng. Corpn.), Brit. 237,949, Aug. 28, 1925; [Cent. 1926, I 751]; C.A. 20, 1876 (1926):

French 580,060, Oct. 29, 1924; Cent. 1925, I 1780; not in C.A.: Can. 257,007, Jan. 5, 1926; Cent. 1926, II 1563; not in C.A.

(21) Carrier (to Carrier Eng. Corpn.), Brit. 283,263, April 9, 1924; C.A. 20, 2036 (1926); not in Cent. French 580,095, Oct. 29, 1924; Cent. 1925, I 1780; not in C.A. (22) Ramus, French 707,106, July 3, 1931; Cent. 1931, II 1779; not in C.A. (23) I.G., French 663,845, Aug. 26, 1929; Cent. 1929, II 2261; C.A. 24, 628 (1930). (24) Mann, Chem. Zig. 56, 452 (1932); Cent. 1932, II 2851; C.A. 26, 4392 (1932). (25) Standard Oil Development Co., French 790,852, Nov. 28, 1935; Cent. 1936, I 2672; C.A. 30, 3223 (1936). (26) Mellor, Bingham, Pool (to British Celanese, Ltd.), Brit. 470,333; Sept. 9, 1937; Cent. 1937, II 3957; C.A. 32, 806 (1938). (27) von Oettingen, J. Ind. Hyg. Toz. 19, 409-411 (1937). (28) Bonino, Mascherpa, Arch. idal. sci. farmacol. Vol. giubilare A. Benedicenti 15, 22 pp. (1937); Cent. 1938, I 4687; C.A. 32, 4662 (1938). (29) Barsoum, Saad, Quart. J. Pharm. Pharmakol. 7, 205-214 (1934); Cent. 1934, II 2550; C.A. 28, 6194 (1934). (30) Beck, Susstrunk, Arch. Gewerbepath. Gewerbehyg. 2, 81-91 (1931); Cent. 1931, I 468; C.A. 26, 1666-1667 (1932).

(31) Muller, Arch. exptl. Pathol. Pharmakol. 109, 276-294 (1925); Cent. 1926, I 1448; C.A. 20, 455 (1926). (32) Lehmann, Arch. Hyg. 74, 1-60 (1911); Cent. 1911, II 885; C.A. 6, 3125 (1912). (33) Albrecht, Wien. klin. Wochschr. 39, 65-68 (1926); 37, 685-687 (1924); Cent. 1926, I 1842; Cent. 1924, II 709; neither in C.A. (34) Meyer, Gottlieb-Billroth, Z. physiol. Chem. 112, 55-79 (1921). (35) Joachimoglu, Biochem. Z. 120, 203-211 (1921); Cent. 1921, III 1212; C.A. 16, 3686 (1921). (36) Wittgenstein, Arch. exptl. Path. Pharmakol. 83, 235-247 (1918); Cent. 1918, II 1054; C.A. 12, 2378 (1918). (37) Gabbano, Z. Hyg. Infektionskrankh. 109, 183-193, 194-200 (1928); Cent. 1928, II 2667-2668; not in C.A. (38) Joachimoglu, Biochem. Z. 124, 130-136 (1921); Cent. 1922, I 363; C.A. 16, 946 (1922). (39) Winteringham, J. Soc. Chem. Ind. 61, 190-192 (1942). (40) Smyth, Ind. Eng. Chem., Anal. Ed. 8, 379 (1936).

(41) Berl, Bitter, Ber. 57, 99 (1924). (42) Winteringham, J. Soc. Chem. Ind. 61, 187-190 (1942). (43) Rauscher, Ind. Eng. Chem., Anal. Ed. 9, 296-299 (1937). (44) Lucas, Pressman, Ind. Eng. Chem., Anal. Ed. 10, 140-142 (1938). (45) Mailhe, Compt. rend. 172, 1583 (1921); Bull. soc. chim. (4) 29, 535-539 (1921). (46) Consortium fur Elektrochem. Ind., Ger. 216,070, Nov. 11, 1909; Cent. 1909, II 2103; C.A. 4, 812 (1910). (47) Kaufler (to A. Wacker Soc. Elektrochem. Ind.), U.S. 1,419,969, June 20, 1922; [Cent. 1923, II 1152]; C.A. 16, 2695 (1922): Ger. 345,259, Dec. 8, 1921; [Cent. 1922, II 443]; not in C.A.: Brit. 156,080, Jan. 27, 1921; Cent. 1921, II 1061; C.A. 15, 1535 (1921). (48) Consortium fur Elektrochem. Ind., Ger. 217,554, Jan. 17, 1910; Cent. 1910, I 700; C.A. 4, 1651 (1911). (49) Wiegand (to Chem. Fabrik von Heyden), Ger. 566,034, Dec. 14, 1932; Cent. 1933, I 1350; C.A. 27, 1012 (1933). (50) Wiegand (to Chem. Fabrik von Heyden), Ger. 567,272, Dec. 31, 1932; Cent. 1933, I 1842; C.A. 27, 1365 (1933).

(51) Askenasy, Vogelsohn, Z. Elektrochem. 15, 773 (1909). (52) Aten, Chem. Weekblad 19, 352 (1922); Cent. 1922, III 984; (C.A. 16, 3593 (1922)]. (53) Nicodemus, J. prakt. Chem. (2) 83, 312-317 (1911). (54) I.G., French 805,563, Nov. 24, 1936; Cent. 1937, I 2258; C.A. 31, 4345 (1937). (55) Hermann, Baum (to Consortium fur Elektrochem. Ind.) U.S. 1,921,879, Aug. 8, 1933; C.A. 27, 5086 (1933): Brit. 348,346, April 20, 1929; C.A. 26, 5106; not in Cent.: Ger. 570,954, Feb. 22, 1933; C.A. 27, 4222 (1933); not in Cent.: French 694,054, Nov. 28, 1930; Cent. 1931, I 1514; C.A. 25, 1843 (1931). (56) Reilly (to Dow Chem. Co.), U.S. 2,140,548, Dec. 20, 1938; Cent. 1939, I 3625; C.A. 33, 2540 (1939). (57) Sabanajev, Ann. 216, 261-262 (1882). (58) Kharasch, Norton, Mayo, J. Org. Chem. 3, 53-54 (1938). (59) van der Walle, Bull. soc. chim. Belg. 28, 305-307 (1914). (60) van der Walle, Henne, Bull. sci. acad. roy. Belg. (5) 11, 781-793 (1925); Cent. 1926, I 3136; C.A. 20, 1787 (1926).

(61) Chem. Fabrik Griesheim Elektron, Ger. 254,069, Nov. 22, 1912; Cent. 1913, I 83; C.A. 7, 869 (1913): Ger. 264,006, Sept. 10, 1913; Cent. 1913, II 1178; C.A. 8, 211 (1914). (62) Klein (to Ruhr Chemie, A.G.), Ger. 613,607, May 23, 1935; Cent. 1935, II 1256; C.A. 29, 8007 (1935). (63) I.G., Swiss 213,747, June 3, 1941; Cent. 1942, I 2706; not in C.A. (64) Berthelot, Jungfleisch, Compt. rend. 69, 542 (1869); Ann. Suppl. 7, 253-254 (1870). (65) Langguth, Chimie & industrie 25, 22-25 (1931). (66) Tompkins, Ger. 196,324, March 19, 1908; C.A. 2, 2289 (1908). (67) Consortium für Elektrochem. Ind., Ger. 340,872, Sept. 19, 1921; Cent. 1921, IV 1101; C.A. 16, 2867 (1922). (68) Müller, Ehrmann, Ber. 69, 2209 (1936). (69) Noller, Carson, Martin, Hawkins, J. Am. Chem. Soc. 58, 25 (1936). (70) I.G., French 42,610, Aug. 23, 1933; Cent. 1933, II 2748; C.A. 28, 1144 (1934).

(71) Dietrich, Lohrengel (to Reichsmonopolverwaltung für Branntwein), Ger. 649,118, Sept. 13, 1937; Cent. 1937; II 4102; C.A. 32, 951 (1938). (72) Imperial Chem. Ind., Ltd., French 744,128, April 12, 1933; Cent. 1933, II 605; C.A. 27, 3941 (1933). (73) Roessler-Hasslacher Chem. Co., French 732,569, Sept. 22, 1932; Cent. 1932, II 3785; C.A. 27, 304 (1933); Ger. 573,105, March 3, 1932; [C.A. 27, 2961 (1933)]; not in Cent. (74) Bauer, U.S. 2,267,712, Dec. 30, 1941; C.A. 36, 2564 (1942): Rohm, Hass, Brit. 517,195, Jan. 23, 1940; [C.A. 35, 6699 (1941)]; not in

3:5035 1.1-DICHLOROETHANE

at 743 mm. (9)

56.7-56.9°

Cont.: French 840,867, May 5, 1939; Cent. 1939, II 4349; C.A. 34, 1781 (1940). (75) Mahncke, Noyes, J. Am. Chem. Soc. 58, 932-933 (1936). (76) Biesalski, Z. angew. Chem. 37, 317 (1924). (77) Müller, Schumacher, Z. Elektrochem. 43, 807-808 (1937). (78) Timmermans, Bull. soc. chim. Belg. 27, 334-343 (1913), Cent. 1914, I 618. (79) Chavanne, Bull. soc. chim. Belg. 26, 280-294 (1912); 28, 234-240 (1914); Cent. 1912, I1 1006; 1914, II 1144. (80) Ghosh, Bhattacheryys, Murthi, J. Indian Chem. Soc. 14, 425-434 (1937).

(81) Ghosh, S. K. Bhattacharyya, S. C. Bhattacharyya, Z. physik. Chem. B-32, 145-157 (1936).
(82) Hofmann, Kirmreuther, Ber. 42, 4483 (1909).
(83) Herz, Rathmann, Ber. 46, 2589 (1913).
(84) Bruner, Fischler, Z. Elektrochem. 26, 84 (1884).
(85) Müller, Honn, J. prakt. Chem. (2)
133, 290 (1932).
(86) Prins, Rec. trav. chim. 45, 80-81 (1926).
(87) Brooks, Humphrey, J. Am. Chem. Soc. 40, 843-844.
(88) Lepouse, Bull. soc. chim. Belg. 34, 133-142 (1925).
(89) Ott (to Chem. Fabrik vorm. Weiler-ter-Meer, Ger. 362,744, Oct. 31, 1922; Cent. 1923, II 1246; C.A. 18, 1129 (1924).
(90) Klimont, Chem. Zig. 46, 521-522 (1922).

(91) Hofmann, Kirmreuther, Ber. 42, 4233-4234 (1909).
(92) Thron, Chem. Ztg. 48, 142 (1924).
(93) Fromm, Landmann, Ber. 56, 2292 (1923).
(94) Stahler, Ber. 47, 912 (1914).
(95) Steinkopf, Huhner, Ber. 75, 1326-1327 (1942).
(96) Burrows, Hunter, J. Chem. Soc. 1932, 1358-1359.
(97) Alder, Rickert, Ann. 543, 10-11, 26-27 (1940).
(98) Lehmann (to I.G.), Ger. 715,069, Dec. 16, 1941; Cent. 1942, I 2534; C.A. 38, 2051 (1944).
(99) Heilbron, Heslop, Irving, J. Chem. Soc. 1936, 782-783.
(100) Prins, Engelhard, Rec. trav. chim. 54, 307-312 (1935).

(101) Prins, J. prakt. Chem. (2) 89, 415, 417, 421 (1914). (102) Prins, Ger. 261,689, July 2, 1913; Cent. 1913, II 394, [C.A. 7, 3641 (1913)]. (103) Kirkbride (to Imperial Chem. Ind., Ltd.), U.S. 2,297,564, Sopt. 29, 1942; C.A. 37, 1450 (1943). (104) Prins, Rec. trav. chim. 56, 119-125 (1937). (105) Prins, Rec. trav. chim. 56, 779-784 (1937). (106) Fromm, Benzinger, Schafer, Ann. 394, 325-334 (1912). (107) Fromm, Siebert, Ber. 55, 1021 (1922). (108) Cusa, McCombie, J. Chem. Soc. 1937, 769. (109) Munch, Chem. Zlg. 32, 811 (1908); Z. angew Chem. 21, 2059 (1908). (110) B.A.S.F., Ger. 237,773, Sept. 18, 1911; Cent. 1911, 1079; C.A. 6, 1659 (1912).

(111) Bohn, Ber. 43, 994-995 (1910). (112) Ioffe, Mazel, J. Russ. Phys.-Chem. Soc. 62, 2001-2012 (1930); Cent. 1931, I 2879; C.A. 25, 4129 (1931). (113) B.A.S.F., Ger. 221,465, April 23, 1910; Cent. 1916, I 1767; C.A. 4, 2740 (1910). (114) B.A.S.F., Ger. 205,324, Dec. 24, 1908; Cent. 1909, I 605; C.A. 3, 1694 (1909). (115) Prins, Rec. trav. chim. 51, 471 (1932). (116) Binaghi, Gazz. chim. ital. 57, 672-673 (1927). (117) Stevens, J. Am. Chem. Soc. 56, 450-452 (1934). (118) Weber, Chem. Zig. 57, 836 (1933); Cent. 1933, II 3889; C.A. 28, 727 (1934). (119) Bashford, Emeleus, Briscoe, J. Chem. Soc. 1938, 1358. (120) Ingold, J. Chem. Soc. 125, 1535 (1924).

(121) Hofmann, Kirmreuther, Ber. 41, 316 (1908). (122) FitzGibbon, J. Chem. Soc. 1938, 1218-1222. (123) Schmalfuss, Werner, Z. anal. Chem. 97, 314-317 (1934).

CH<sub>2</sub>.CHCl<sub>2</sub>

C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub>

Beil, I - 83

| 0.000  | (Ethylidene (di)ch |             | 022310      |     | 02114012             | I <sub>1</sub> -(23) |
|--------|--------------------|-------------|-------------|-----|----------------------|----------------------|
|        | unsymdichloroeth   | ,           |             |     |                      | $I_{2}$ -(52)        |
| B.P.   |                    |             | F.P.        |     |                      |                      |
| 57.30° | at 760 mm.         | (1)(2)      | - 96.6°     | (1) | $D_4^{25} = 1.16790$ | (1)                  |
| 57.28  | -57.34° cor.       | (3)         | -96.7°      | (2) | $D_4^{20} = 1.17570$ | (1)                  |
| 57.25° | at 760 mm.         | (4)         | 97.4°       | (8) |                      | (8)                  |
| 57.0-5 | 57.1°              | (5) (6) (7) | <b>-99°</b> | (9) | $D_4^{15} = 1.18350$ | (1)                  |
| 57.1°  | at 760 mm.         | (8)         |             |     | $n_{\rm D}^{20} =$   | = 1.41638 (8)        |

Liquid. — [For b.p. at various press. from 70-277 mm. see (11).] — Alm. insol. aq. [for precise data see (5) (6) (7) (11).] — [For f.p./compn. data of mixts. with 2,2-dichloropropane (3:7140) see (10).] — [For use as dry cleaning fluid see (12); for use as corrosion inhibitor for alk. on tinned metal see (13).]

Č forms with EtOH (1:6130), b.p. 78.3°, a const.-boilg. mixt., b.p. 54.6°, contg. 88.5 wt. % Č (4); Č forms with isopropyl alc. (1:6135), b.p. 82.45°, a const.-boilg. mixt., b.p. 56.6°, contg. 82 wt. % Č (4); Č forms with ter-butyl alc. (1:6140), b.p. 82.5°, a const.-boilg. mixt., b.p. 57.1°, contg. 94 wt. % Č (14); Č forms with acetone (1:5400), b.p. 56°, a const.-boilg. mixt., b.p. 57.55°, contg. 70 wt. % Č (14); Č forms with CS<sub>2</sub>, b.p. 46.3°,

const.-boilg. mixt., b.p. 44.75°, contg. about 28 wt. %  $\bar{C}$  (14). [For study of b.p., D, and vapor-liq. equil. of binary mixts. of  $\bar{C}$  with CHCl<sub>3</sub> (3:5050), CCl<sub>4</sub> (3:5100), or with 1,2-dichloroethane (3:5130) see (27).]

[For soly. of aq. in  $\bar{C}$  see (29); for adsorption of  $\bar{C}$  by activated carbon at various temps. see (30).)

[For prepn. of  $\tilde{C}$  from acetaldehyde (1:0100) with PCl<sub>5</sub> see (15) (16) (17); from vinyl chloride (3:7010) by catalyzed addn. of HCl see (18) (19) (20) (note that in absence of catalyst addn. of HCl to vinyl chloride is very slow (21)); for formn. of  $\tilde{C}$  (22.6%) together with other products from ethane with Cl<sub>2</sub> above 290° in pres. of ethylene see (28).

Č on passing over pumice at dark red heat yields (22) (23) vinyl chloride (3:7010) + HCl.

[For reactn. of  $\tilde{C}$  + AlCl<sub>3</sub> with 1,2-dichloroethylene (3:5030) or with trichloroethylene (3:5170) yielding polychlorobutanes see (24); for reactn. of  $\tilde{C}$  with amylidene disodium see (25).]

 $\bar{C}$  on htg. in s.t. at 120° with aq. alc. soln. of 2 moles Na (or K)  $\alpha$ -naphtholate yields (26) acetaldehyde di- $\alpha$ -naphthylacetal, ndls., m.p. 117° (26).

3:5035 (1) Timmermans, Martin, J. chim. phys. 23, 770-771 (1926). (2) Timmermans, Bull. soc. chim. Belg. 25, 300-327 (1911); Cent. 1911, II 1015. (3) Maryott, Hobbs, Gross, J. Am. Chem. Soc. 63, 660 (1941). (4) Lecat, Rec. trav. chim. 46, 242 (1927). (5) Gross, Physik. Z. 32, 589 (1931). (6) Gross, Z. physik. Chem. B-6, 215-220 (1929). (7) Gross, J. Am. Chem. Soc. 51, 2362-2365 (1929). (8) Henne, Hubbard, J. Am. Chem. Soc. 58, 404 (1936). (9) Schiff, Ann. 220, 96 (1883). (10) van de Vloed, Bull. soc. chim. Belg. 48, 260 (1939).

(11) Rex, Z. physik. Chem. 55, 358 (1906). (12) Parkhurst (to Stand. Oil of Cal.), U.S. 1,948,045, Feb. 20, 1934; Cent. 1934, II 863; C.A. 28, 2924 (1934). (13) Nitti (to E. R. Squibb and Sons), U.S. 2,152,658, Apr. 4, 1939; Cent 1939, II 2473; C.A. 33, 4956 (1939). (14) Lecat, Ann. soc. sci. Bruxelles, 49, 110 (1929). (15) Geuther, Ann. 105, 323-324 (1858). (16) Wurts, Frapoli, Ann. 108, 223-224 (1858). (17) Beilstein, Ann. 113, 110-112 (1860). (18) Nutting, Petrie, Huscher (to Dow Chem Co.), U.S. 2,007,144, July 2, 1935, Cent. 1935, II 3829, C.A. 29, 5460 (1935). (19) Wilbaut, van Dalfsen (to Dow Chem. Co.), U.S. 1,990,968, Feb. 12, 1935; Cent. 1935, II 2580; C.A. 29, 2178 (1935). (20) Coleman (to Dow Chem. Co.), U.S. 1,900,276, March 7, 1933; Cent. 1933, I 3364; C.A. 27, 2965 (1933).

(21) Kharasch, Hannum, J. Am. Chem. Soc. 56, 712-714 (1934). (22) Biltz, Ber. 35, 3524-3525 (1902). (23) Biltz, Küppers, Ber. 37, 2398-2423 (1904). (24) Consortium für Elektrochemische Ind., Brit. 453,414, Oct. 8, 1936; Cent. 1937, I 1012. (25) Morton, Massengale, J. Am. Chem. Soc. 62, 120-123 (1940). (26) Fosse, Bull. soc. chim. (3) 23, 516 (1900). (27) Kaplan, Monakhova, J. Gen. Chem. (U.S.S.R.) 7, 2499-2512 (1937); Cent. 1938, II 1572; C.A. 32, 2404 (1938). (28) Vaughan, Rust, J. Org. Chem. 5, 466-467 (1940). (29) Staverman, Rec. trav. chim. 69, 836-841 (1941); Cent. 1942, I 1352; C.A. 37, 2638 (1943). (30) Pearce, Eversole, J. Phys. Chem. 38, 383-393 (1934).

See also both trans-1,2-dichloroethylene (3:5028) and ordinary (mixt. of cis and trans) 1,2-dichloroethylene (3:5030); the following text is restricted to studies on substantially pure cis-stereoisomer.

Note carefully that 1,2-dichloroethylene is *not* the same as ethylene (di)chloride (3:5130) (there are an almost incredible number of errors in the literature involving this point); neither is it the same as the now very important 1,1-dichloroethylene (vinylidene (di)chloride) (3:5005).

#### GENERAL DATA ON C

Note that substantially pure  $\bar{C}$  is commercial solvent in U.S.A. under designation "Di-60" (referring to the two chlorine atoms and the b.p.) [for study of thermal conductivity and for tabulation of constants of comml.  $\bar{C}$  see (18). — For toxicity of  $\bar{C}$  see (40) (23). — For use of  $\bar{C}$  in extraction of caffeine from coffee see (24)].

[For data on vap. press. of  $\bar{C}$  over temp. range 27-59.8° see (12). — For data on flammability of  $\bar{C}$  see (19). — For ebullioscopic constant of  $\bar{C}$ , viz., 34.4° (for 1 mole solute in 100 g.  $\bar{C}$ ), see (20).]

Binary systems contg.  $\bar{\mathbf{C}}$ . (See also below under azeotropes.) —  $[\bar{\mathbf{C}} + trans-1,2-dichloroethylene (3:5028):$  for use of  $n_D^{25}$  in detn. of composition of mixt. see (11); for f.p./compn. data (cutectic, f.p.  $-91^\circ$ , contg. about 71%  $\bar{\mathbf{C}}$ ) see (17). — For f.p./compn. data on binary systems  $\bar{\mathbf{C}} + ethylene$  (di)chloride (3:5130),  $\bar{\mathbf{C}} + 1,1,2,2$ -tetrachloroethane (acetylene tetrachloride) (3:5750), or  $\bar{\mathbf{C}} + ethylene$  (di)bromide see (17). — For study of soly. of various other cis/trans isomers in  $\bar{\mathbf{C}}$  see (5).]

Quaternary systems contg.  $\bar{C}$ . [For study of system contg.  $\bar{C}$  + CHCl<sub>3</sub> (3:5050) + trichloroethylene (3:5170) + EtBr (eutectic, f.p. -139.1°, contg. 13.8 wt. %  $\bar{C}$  + 19.7 wt. % CHCl<sub>3</sub> + 21.6 wt. % trichloroethylene + 44.9 wt. % EtBr recommended as a non-inflammable mixt. for low-temp. cryostats) see (22); for mixt. of the above four compds. + methylene dichloride (3:5020) (similarly recommended) see (22).]

Azeotropes contg.  $\bar{\mathbf{C}}$ . Binary azeotropes —  $\bar{\mathbf{C}}$  with aq. forms a const.-boilg. mixt., b.p. 55.3°, contg. 96.65%  $\bar{\mathbf{C}}$  (41) (42). —  $\bar{\mathbf{C}}$  with EtOH (1:6130) forms a const.-boilg. mixt., b.p. 57.7° at 760 mm. (21) (41) (42), contg. 90.20%  $\bar{\mathbf{C}}$  (41) (42) = 81.4 mole %  $\bar{\mathbf{C}}$  (21).

Ternary azeotropes.  $\bar{C}$  with EtOH (1:6130) + aq. forms a const.-boilg. mixt., b.p. 53.8°, contg. 90.50%  $\bar{C}$  + 6.65% EtOH + 2.85% aq. (41) (42).

#### PREPARATION OF C

Pure  $\tilde{C}$  is usually obtd. by careful fractional distillation at ord. press. of the mixt. of cis and trans stereoisomers comprising ord. 1,2-dichloroethylene (3:5030) [for brief comments on this mode of sepn. see (1) (2) (6) (7) (8) (9) (10) (11) (13) (15) (27); note that some workers (13) recommend distn. in atmosphere of  $CO_2$ . — For detn. of the % compn. of mixts. of  $\tilde{C}$  with its stereoisomer by means of  $n_D^{25}$  see (11); by means of dielectric const. see (13) (27)].

[For study of possibility of sepn. of  $\tilde{C}$  from its stereoisomer by differential adsorption on silica gel see (25).]

[For prepn. of  $\bar{C}$  from pure trans stereoisomer (3:5028) by isomerization with 6 wt. % Br<sub>2</sub> in dark for 24 hrs. followed by subsequent fractionation of the resultant mixt. see (11).]

#### ISOMERIZATION OF C

 $\bar{C}$  under the influence of heat, light, or various catalysts in part isomerizes to trans-1,2-dichloroethylene (3:5028). — [For study of thermal isomerization of  $\bar{C}$  in vapor phase at 185–275° (26), up to 350° (27), up to 975° (28), in liquid phase or in various solutions (13) see indic. refs.; note that the equilibrium mixt. at 300° conts.  $60.8 \pm 0.7\%$   $\bar{C}$ , at 350° conts.  $59.4 \pm 0.3\%$   $\bar{C}$  (27), at 975° conts. 52.3%  $\bar{C}$  (28). — For study of kinetics of thermal isomerization see (29).]

[For patent on isomerization of pure  $\tilde{C}$  to a mixt. contg. 18% trans stereoisomer by means of a small amt. Br<sub>2</sub> at 30° or above in pres. of cat. or in vapor phase at not over 300° see (30).]

## CHEMICAL BEHAVIOR OF C

Reactions with inorganic compds.  $\tilde{C}$  (in vapor phase at 95° in light of 4360 Å (31)) with Cl<sub>2</sub> (in absence of O<sub>2</sub>), or  $\tilde{C}$  as liquid with SO<sub>2</sub>Cl<sub>2</sub> (1½ moles) in pres. of trace of dibenzoyl peroxide refluxed 3 hrs. in dark (8), adds 1 mole halogen giving (85% yield (8)) 1,1,2,2-tetrachloroethane (acetylene tetrachloride) (3:5750).

 $\tilde{C}$  with Br<sub>2</sub> in sunlight adds 1 mole halogen yielding (2) (32) 1,2-dibromo-1,2-dichloro-ethane [Beil. I-93, I<sub>1</sub>-(29), I<sub>2</sub>-(64)], b.p. 195° at 760 mm. (3) (33), b.p. 79.0-79.5° at 15 mm. (2). — [For extensive study of influence of O<sub>2</sub> and other factors see (32); for study of kinetics in CCl<sub>4</sub> soln. see (2) (34) (35); note that rate of addn. of Br<sub>2</sub> either directly or in CCl<sub>4</sub> is half as great as for the stereoisomeric trans form (3:5028) but that it is increased in pres. of SbBr<sub>3</sub> (35).]

 $\tilde{C}$  in the absence of AlCl<sub>3</sub> or other cat. does not add dry HCl; satn. of  $\tilde{C}$  with dry HCl changes  $n_D^{25}$  by an amount corresp. to only 2% change in compn. (11).

[Č with alc. KOH splits out 1 HCl yielding chloroacetylene (3:7000); note that this reactn. is about 20 times as fast for Č as for its trans stereoisomer (2).]

Č with aq. NaOH/Hg(CN)<sub>2</sub>behaves quite differently from its trans stereoisomer (3:5028): on shaking at room temp. with specified conens. (16) Č begins to react within 30 min., losing 1 HCl and pptg. mercuric bis-(chloroacetylide), Hg(—C≡C—Cl)<sub>2</sub>; this prod. cryst. from CHCl<sub>3</sub> (36) (37) (38) in white shining pl. with characteristic acetylene-like odor and although alleged to melt at 185° (36) (37) has also been found to explode with great violence well below that temp., i.e., 174–175° (16).

Reactions with organic compds. [ $\bar{C}$  with  $C_6H_6+Al/Hg$  at 0° gives same prods. as does the ordinary (mixture) 1,2-dichloroethylene (3:5030) (presumably indicating partial isomerization of  $\bar{C}$ ); these prods. include dibenzyl, triphenylethane, tetraphenylethane, etc. (15).]

3:5042 (1) Maryott, Hobbs, Gross, J. Am. Chem. Soc. 63, 660 (1941). (2) Chavanne, Compt. rend. 154, 776-777 (1912); Cent. 1912, I 1539; Bull. soc. chim. Belg. 26, 289-294 (1912); Cent. 1913, II 1006; Bull. soc. chim. Belg. 28, 234-240 (1914); Cent. 1914, II 1144. (3) Timmermans, Bull. soc. chim. Belg. 27, 334-343 (1913); Cent. 1914, I 618. (4) Bonino, Brühl, Gazz. chim. idl. 59, 648-649 (1929); Z. Physik 58, 195 (1929). (5) Lebrun, Bull. soc. chim. Belg. 39, 423-433 (1930). (6) Ebert, Bull. Z. physik. Chem. A-152, 451-452 (1931). (7) Mahncke, Noyes, J. Chem. Phys. 3, 536 (1935). (8) Kharasch, Brown, J. Am. Chem. Soc. 61, 3433 (1939). (9) Sachsse, Physik. Z. 36, 365 Note (1935). (10) Walker, Trans. Faraday Soc. 31, 1434 (1935).

(11) Jones, Taylor, J. Am. Chem. Soc. 62, 3480-3485 (1940). (12) Herz, Rathmann, Chem. Ztg. 37, 622 (1913). (13) Wood, Dickinson, J. Am. Chem. Soc. 61, 3259-3263 (1939). (14) Bonino, Gazz. chim. ital. 55, 342 (1925). (15) Bäeseken, Bastet, Rec. trav. chim. 32, 197-203 (1913). (16) FitzGibbon, J. Chem. Soc. 1938, 1218-1222. (17) Timmermans, Bull. soc. chim. Belg. 36, 184-187 (1927). (18) Bates, Hazzard, Palmer, Ind. Eng. Chem. 33, 375-376 (1941). (19) Huff, U.S. Bur. Mines, Repts. Investigations 3490, 36 pp. (1940); C.A. 34, 5661 (1940). (20) Walden, Zastrow, Roudolf, Ann. Acad. Sci. Fennicae, A-29, No. 23 (Komppa Festschrift), 26 pp. (1927); Cent. 1928, I 166; C.A. 22, 1515 (1928).

26 pp. (1927); Cent. 1928, I 166; C.A. 22, 1515 (1928).

(21) Lecat, "L'Azeotropisme," Brussels 1918, Lecat No. 345. (22) Kanolt, Natl. Bur. Standards (U.S.) Sci. Papers S-520, Vol. 20, 619-633 (1926). (23) Ferguson, Nature 137, 361-362 (1936). (24) Brunner, Swiss 167,162, April 16, 1934; Cent. 1934, II 2617; C.A. 28, 5552 (1934). (25) Hesse, Tschachotin, Naturwissenschaften 30, 387-392 (1942), Cent. 1942, II 1325; C.A. 37, 6211 (1943). (26) Wood, Stevenson, J. Am. Chem. Soc. 63, 1650-1653 (1941). (27) Olson, Maroney, J. Am. Chem. Soc. 56, 1320-1322 (1934). (28) Maroney, J. Am. Chem. Soc. 57, 2397-2398 (1935). (29) Tamamusi, Akiyama, Isii, Z. Elektrochem. 47, 340-345 (1941); C.A. 35, 6859 (1941). (30) Mugdan, Rost (to Consortium fur Elektrochem. Ind.), Ger. 595,464, April 11, 1934; Cent. 1935, I 2599.

(31) Müller, Schumacher, Z. physik. Chem. B-35, 455-457 (1937). (32) Verhoogen, Bull. soc. chim. Belg. 34, 434-456 (1925). (33) van de Walle, Bull. soc. chim. Belg. 28, 307 (1914). (34) Herz, Rathmann, Ber. 46, 2589 (1913). (35) Bruner, Fischler, Z. Elektrochem. 20, 84 (1914). (36) Bashford, Emeléus, Briscoe, J. Chem. Soc. 1938, 1358. (37) Ingold, J. Chem. Soc. 125, 1535 (1924). (38) Hofmann, Kirmreuther, Ber. 42, 4233-4234 (1909). (39) Awberry, Griffiths, Proc. Phys. Soc. (London) 48, 378 (1936). (40) Lehman, Schmidt-Kehl, Arch. Hyg. Bakt. 116, 131-268 (1936); C.A. 31, 477 (1937); not in Cent.

(41) Chavanne, Bull. soc. chim. Belg. 27, 205-209 (1913); Cent. 1913, II 1376; C.A. 8, 1105 (1914). (42) Gowing-Scopes, Analyst 39, 6 (1914).

```
3:5050 CHLOROFORM
                                                                 CHCl<sub>3</sub>
                                                                                 Beil. I - 61
           (Trichloromethane)
                                                                                      I_{1}-(9)
                                                                                      I_{2}-(14)
  B.P.
                                       F.P.
                                                          D_4^{30} = 1.47060 (12)
 [62.0°
                  at 760
                                  (2)1
                                        -63.0^{\circ}
                                                    (27)
                           mm.
                                                                       n_{\rm D}^{254} = 1.44295 (49)
                                               (28) (61)
                                                          D_4^{25} = 1.47988 \ (12)
 [61.97°
                  at 760
                                  (3)]
                                       -63.2^{\circ}
                                                    (29)
                           mm.
                                                    (26)
                                                                  1.47972 (20)
 [61.64°
                  at 760
                                  (4)
                                        -63.3°
                                                    (30)
                                                                  1.47955 (45)
                           mm.
                                  (1)]
                                        -63.41°
                                                    (31)
                                                                  1.4794
                                                                             (43)
 [61.40°
                  at 758
                           mm.
                                  (5)
                                       -63.495^{\circ}
                                                    (32)
                                                                  1.4793
                                                                             (44)
61.36-61.38° at 763.9 mm.
                                 (6)
                                       -63.5^{\circ}
                                                    (33)
                                                                  1.4791
                                                                             (21)
                                          (34) (35) (36)
                                                                  1.4789
                                                                             (19)
                                          (37) (12) (38)
                                                                  1.4702
                                                                             (46)
 61.33-61.38° at 760
                           mm.
                                 (7)
                                       -63.57^{\circ}
                                                   (17)
                                                                        n_{\rm D}^{25} = 1.44460 (50)
 61.3° u.c.
                  at 759
                                       -63.6°
                                 (8)
                                                    (39)
                           mm.
                                                                               1.4433 (51)
 61.28°
                  at 761
                           mm.
                                 (9)
                                       -63.7°
                                                    (40)
                                                                               1.4431
                                                                                         (19)
 61.20-61.25° at 760
                                       -64.19°
                           mm. (10)
                                                   (41)
                                                                               1.44309 (52)
 61.21°
                 at 760
                           mm. (11)
                                       -66.5° .
                                                   (42)
                                                                               1.4424
                                                                                         (44)
 61.20°
                 at 760
                           mm. (12)
                                                                              = 1.4437
                       (1) (15) (16)
                                      See Note 2.
                                                                             = 1.44500 (53)
```

1.4458

(7)

 $\{17\}$ 

```
B.P. (contd.)
61.152°
                at 760
                                                       D_4^{20} = 1.48921 (13)
                         mm. (13)
61.15°
                at 760
                         mm. (14)
                                                               1.48917 (12)
61.09°
                at 760
                         mm. (17)
                                                              1.48913 (13)
61.07-61.09° at 760
                         mm. (18)
                                                              1.48901 (13)
61.05-61.10° at 760
                         mm. (50)
                                                              1.4890
                                                                         (47)
61.05-61.10° at 758
                        mm. (19)
                                                              1.4889
                                                                         (10)
61.0°
                              (20)
                                                                         (48)
61.0°
                at 755
                         mm. (21)
                                                              1.4817
                                                                         (62)
60.94-60.96° at 755
                        mm. (22)
                                                                     n_{\rm D}^{20} = 1.44637 (10)
60.93°
                at 744.2 mm. (4)
60.9°
                at 754.3 mm. (23)
                                                                            1.446
                                                       D_{4}^{18.85} = 1.4828 (54)
60.9°
                at 732 mm. (24)
                                                                  n_{\rm D}^{18.85} = 1.44572 (54)
60.7°
                at 743.8 mm. (25)
                                                       D_4^{15} = 1.49845 \quad (12)
60.39°
                at 735.6 mm. (4)
56.0°
                at 664
                        mm. (21)
                                                              1.4963 (21)
                                                                     n_{\rm D}^{15} = 1.44858 \,(12)
55.10°
                at 632.8 mm. (26)
53.8°
                at 616
                        mm. (21)
                                                                            1.4466 (55)
                                                                    n_{\rm D}^{12.5} = 1.4506 \quad (56)
50.5°
                at 550
                        mm. (21)
47.0°
                at 481
                        mm. (21)
                                                       See Note 3.
42.8°
                at 416
                        mm. (21)
                                         Note 1. For b.p. of C at various pressures
40.40°
                at 371.8 mm. (26)
38.0°
                                      from 355-2347 mm. see (13); for vap. press. of
                at 342
                        mm. (21)
                                      \bar{C} over range -62.1^{\circ} to 0^{\circ} (57) or -64.2^{\circ} to
33.0°
                at 287
                        mm. (21)
28.115°
                at 221.8 mm. (26)
                                       -10.7° (58) see indic. refs.
27.0°
                at 223 mm. (21)
```

See Note 1.

Note 2. For influence of high press. on m.p.

of C see (33); for study of rate of solidification see (35). Note 3. For  $D_t^t$  over range  $-61.3^{\circ}$  to  $+59.8^{\circ}$ 

see (59). [For extraordinarily comprehensive reviews of the history and general chemistry of C see

[See also methylene (di)chloride (3:5020) and carbon tetrachloride (3:5100).]

#### MISCELLANEOUS PHYSICAL PROPERTIES OF C

(1) (60).

#### VARIOUS SOLUBILITY RELATIONS

With water. C is only very slightly sol. aq. and is eas. volat. with steam; e.g., 100 g. aq. at 15° dissolves 0.852 g. C (18); water satd. with C conts. at 20° 0.8% C (63) cf. (64). For studies of soly. of aq. in C at 0° (65), 20° (63), 25° (65), and 30° (65) see indic. refs.; note that at 20°  $\bar{C}$  satd. with aq. conts. 99.8%  $\bar{C}$  and has  $D_4^{20} = 1.486$  (63).

With various inorganic compounds. [For data on soly. in C of H<sub>2</sub> (66), O<sub>2</sub> (78), HCl (67) (68) (69) (79), HBr (68) (69), H<sub>2</sub>S (67), NH<sub>3</sub> (67), CO<sub>2</sub> (70) (80) (81), N<sub>2</sub>O (81), and NO<sub>2</sub> (70) see indic. refs. — For data on soly. of I<sub>2</sub> in  $\bar{\mathbb{C}}$  see (71) (72) (73) (74); for study of nature of I<sub>2</sub> solns. in C see (75); for soly. of I<sub>2</sub> in vapor of C see (76).]

With organic materials. [For study of absorption of vapor of C by kerosene see (77).]

# BINARY SYSTEMS CONTAINING C

# (See also azeotropes containing C)

 $\tilde{C}$  with various inorganic compounds.  $\tilde{C} + aq.$ : for soly. data and diag. see (64); note that a previously described (82) hydrate of  $\tilde{C}$  could not be confirmed (64).  $-\tilde{C} + Cl_2$ : for f.p./compn. data and diag. (note that 4 different compounds are formed) see (34).  $-\tilde{C} + Br_2$ : for f.p./compn. data and diag. see (34) (36) (note that no compds. are formed and that eutectic has m.p.  $-72^{\circ}$  (34) with about 86 mole  $\tilde{C}$ ).

 $\tilde{\mathbf{C}}$  with org. cpds. of Order 1.  $\tilde{C}$  + n-hexane (1:8530): for f.p./compn. data see (83); for densities over range  $-90^{\circ}$  to  $+60^{\circ}$  see (85).  $-\tilde{C}$  +  $C_6H_6$  (1:7400): for f.p./compn. data and diag. see (38); for  $D_{25}^{25}$ /compn. data over entire range see (19); for  $D_{25}^{25}$ /compn. data see (18); for liq. vapor equil. see (19) (117) (112) (124).  $-\tilde{C}$  + toluene (1:7405): for f.p./compn. data see (83); for data on specific gravity of system from 15-25° see (86); for study of liq-vapor equil. see (123).  $-\tilde{C}$  + cyclohexane (1:8405): for f.p./compn. data see (83); for  $D_{40}^{20}$  compn. see (47).

 $\bar{C} + MeOH$  (1:6120): for f.p./compn. data see (37) (84); for  $D_D^{25}$ /compn. and  $n_D^{25}$ /compn. see (44).  $-\bar{C} + EtOH$  (1:6130): for  $D_4^{25}$ /compn. data see (45) (46).  $-\bar{C} + benzyl$  alc. (1:6480): for density/compn. data over entire range see (87).

 $\bar{C}$  + diethyl ether (1:6110): for f.p./compn data and diag. see (42) (88); for  $D_4^{20}$ /compn. see (47). —  $\bar{C}$  + disopropyl ether (1:6125): for  $D_4^{20}$ /compn. see (47). —  $\bar{C}$  + dioxane-1,4 (1:6400): for  $D_4^{20}$ /compn. see (47). —  $\bar{C}$  + ethylene glycol dimethyl ether (1:6141): for study of heat of mixing see (89). —  $\bar{C}$  + tetraethylene glycol dimethyl ether: for study of heat of mixing see (89).

 $\ddot{C}$  + dimethyl carbonate (1:3046): for  $D_4^{25}$ /compn. data see (20). —  $\ddot{C}$  + diethyl carbonate (1:3150): for  $D_4^{25}$ /compn. data see (20).

 $\bar{C}$  + acetone (1:5400): for f p./compn. data see (27); for  $D_2^{20}$ /compn. (47),  $D_2^{25}$ /compn. (19) (46),  $n_D^{25}$ /compn. (19), and  $n_D^{25}$ /compn. (49) data see indic. refs.; for refractive index/compn. for light of various wave lengths see (52).

With org. cpds. of Order 2.  $\ddot{C}$  + nutrobenzene: for f.p./compn. data and diag. (eutectic, f.p.  $-71.0^{\circ}$  conts. 81.5 wt. %  $\ddot{C}$ ) see (61).  $-\ddot{C}$  + anulune: for f.p./compn. data and diag. see (27).  $-\ddot{C}$  + N,N-dimethylandine: for  $D_{4}^{25}$ ,  $D_{4}^{40}$ ,  $n_{D}^{248}$ , and  $n_{D}^{39.5}$  over entire range of composition see (43).  $-\ddot{C}$  + quinoline: for  $D_{4}^{20}$ /compn. data see (47).

With org. cpds. of Order 3.  $\bar{C}+CH_2Cl_2$  (3:5020): for f p./compn. data and diag. (eutectic, f.p.  $-108.4^{\circ}$  conts. 29.5 wt. %  $\bar{C}$ ) see (39); for data on b.p.,  $D_4^{20}$ , and liq.-vapor equil. see (90).  $-\bar{C}+CCl_4$  (3:5050): for f.p./compn. data and diag. (eutectic, f.p.  $-81.4^{\circ}$  conts. 50.6 wt. %  $\bar{C}$  (39)) (36) (83) (91) see indic. refs.; for  $D_4^{20}$ /compn. (48) (90),  $D_{25}^{25}$ /compn. (8), b.p. and liq.-vapor equil. (90) see indic. refs.  $-\bar{C}+1,1$ -dichloroethane (3:5035): for b.p.,  $D_4^{20}$ , and liq.-vapor equil. see (90).  $-\bar{C}+1,2$ -dichloroethane (3:5130): for data on vap. press. (92) and liq.-vap. equil. (93) see indic. refs.  $-\bar{C}+1,1,1$ -trichloroethane (3:5058): for f.p./compn. data see (94).  $-\bar{C}+1,1,2$ -trichloroethylene (3:5170): for f.p./compn. data and diag. (eutectic, f.p.  $-100.2^{\circ}$ , conts. 31.2 wt. %  $\bar{C}$ ) see (39).  $-\bar{C}+\beta,\beta'$ -dichlorodiethyl ether (3:6025): for  $D_4^{20}$ /compn. data see (47).

With org. cpds. of higher orders.  $\bar{C}+1,2$ -dibromoethane: for  $D_4^{20}$ /compn. data see (47).  $-\bar{C}+CBr_4$ : for f.p./compn. data and diag. see (91).  $-\bar{C}+CHI_3$ : for vap. press. data see (95).  $-\bar{C}+CS_2$ : for f.p./compn. data see (83); for  $D_{15}^{15}$  compn. (96) or  $D_{25}^{25}$ /compn. (8) see indic. refs.; for liq.-vapor equil. data see (97).

# TERNARY SYSTEMS CONTAINING C (See also azeotropes containing C)

 $\ddot{C}$  + acetone (1:5400) +  $H_2O$ : for studies of liq. equil. at 25° see (98) (99) (100) (101) (102). —  $\ddot{C}$  + acetone (1:5400) + MeOH (1:6120): for ternary b.p. diag. see (103). —  $\ddot{C}$  + acetone (1:5400) + diethyl ether (1:6110): for data on refraction see (104). —  $\ddot{C}$  + acetone (1:5400) + disopropyl ether (1:6125): for ternary b.p. diag. see (103).

 $\bar{C}$  + acetone (1:5400) +  $\bar{C}_6H_6$  (1:7400): for ternary b.p. diag. see (103) (19) (105); for refractive data see (104).

 $\bar{C}$  + acetone (1:5400) +  $CH_2Cl_2$  (3:5020): for ternary b.p. diag. see (103).

 $\bar{C}$  + acetic acid (1:1010) + aq.: for studies of liq. equil. at 25° see (104) (106) cf. (99). —  $\bar{C}$  + acetic acid + lubricating oil: for studies of liq. equil. at 25° see (107).

 $\bar{C} + CH_2Cl_2$  (3:5020) +  $CCl_4$  (3:5100): eutectic, f.p. -111.4°, conts. 27 wt. %  $\bar{C}$  + 60 wt. %  $CH_2Cl_2$  + 13 wt. %  $CCl_4$  (39).

#### QUATERNARY SYSTEMS CONTAINING C

 $\bar{C}$  + acetone (1:5400) + AcOH (1:1010) + aq.: for study of liq. equil. at 25° see (100); for study of use of system in mixed solv. extraction of lubricating oils see (107) (108). —  $\bar{C}$  + trans-1,2-dichloroethylene (3:5028) + 1,1,2-truchloroethylene (3:5170) +  $C_2H_5Br$ : eutectic, f.p. -139.1°, conts. 17.7 wt. %  $\bar{C}$  + 13.8 wt. % trans-1,2-dichloroethylene + 21.6 wt. % trichloroethylene + 44.9 wt. %  $C_2H_5Br$  (39).

#### BINARY AZEOTROPES CONTAINING C

 $\overline{C} + H_2O$ :  $\overline{C}$  forms with aq. a const.-boilg. mixt., b.p. 56.1°, contg. 97.5 wt. %  $\overline{C}$  (14). C + MeOH (1:6120): C forms with MeOH a const.-boilg. mixt., b.p. 53.5° (103) (109), contg. 87.5 wt. % (103) = 65 mole % (109)  $\ddot{C}$ , cf also (110) (111) (4) (112) (113).  $-\ddot{C}$  + EtOH (1:6130): C forms with EtOH a const.-boilg. mixt., b.p. 59.3° at 760 mm. (111), 59.35° at 760 mm. (14), contg. 93.2 wt. %  $\bar{C}$  (111) cf. (14) = 84 mole %  $\bar{C}$  (111) (see also (4) (110)) of  $D_{15}^{15} = 1.4112$  (14); for thermodynamic study of this system see (114); for study of liq.-vap. equil. see (45). —  $\ddot{C}$  + isopropyl alc. (1:6135):  $\ddot{C}$  forms with isopropyl alc. a const.-boilg. mixt., b.p.  $60.8^{\circ}$  at 760 mm. (111), contg. 95.5 wt. %  $\overline{C}$  (111) = 92 mole %  $\bar{C}$  (111). —  $\bar{C}$  + formic acid (1:1005):  $\bar{C}$  forms with formic acid a const.-boilg. mixt., b.p.  $59.15^{\circ}$  at 760 mm. (115), contg. 85 wt. % C (115). — C + ethyl formate (1:3000): C forms with ethyl formate a const.-boilg. mixt., b.p. 62.8° (116), 62.7° (111) at 760 mm., contg. 87 wt. %  $\bar{C}$ . —  $\bar{C}$  + methyl acetate (1:3005):  $\bar{C}$  forms with methyl acetate a const.boilg. mixt., b.p. 64.8° at 760 mm. (111), contg. 77 wt. % C (111); b p. 63.0° at 726.3 mm. contg. 50 wt. % C (117); b.p. 62.6° at 717.5 mm. contg. 56 wt. % C (117); for study of constant evapn. system see (125). —  $\bar{C}$  + disopropyl ether (1:6125):  $\bar{C}$  forms with diisopropyl ether a const.-boilg. mixt., b.p. 70.5°, contg. 36.5% wt. %  $\bar{C}$  (103). —  $\bar{C}$  + acetone (1:5400): Č forms with acetone a const.-boilg. mixt., b.p. 64.5° at 760 mm. (109) (103) (19) (105) (111), contg. 79.5 wt. % Č (111) (103), 78 wt. % Č (19) (105), 65.5 mole % Č (109); b.p. 62.4° at 732.0 mm. contg. 80 wt. % C (117); b.p. 62.25° at 719 mm. contg. 86 wt. % C (117) cf. also (112); b.p. 61.95° at 716.5 mm. contg. 85 wt. % C (117): for studies of liq.-vapor equil. of  $\bar{C}$  + acetone see (19) (105) (117) (112), for study of vap. press. see (26) (49) (118) (119) (120) (121); for study of distn. of  $\bar{C}$  + acetone in wetted wall column see (122).

#### TERNARY AZEOTROPES CONTAINING C

 $\bar{C}$  + EtOH (1:6130) + aq.:  $\bar{C}$  forms with EtOH + aq. a ternary const.-boilg. mixt., b.p. 55.4-55.5° at 760 mm., contg. about 92.5 wt. %  $\bar{C}$  + 4.0 wt. % EtOH + 3.5 wt. % aq. (14).

## OTHER SELECTED PHYSICAL CHARACTERISTICS OF C

[For study of thermal conductivity of  $\bar{C}$  (126) (127) see indic. refs.; for studies of heat capacity of  $\bar{C}$  (17) as calcd. from spectroscopic data (128) (129) see indic. refs.; for study of critical temp. of  $\bar{C}$  and its microdetn. see (130); for studies on value of ebullioscopic const., viz., 3.766° per mole solute in 100 g.  $\bar{C}$  (131), and review of prior work see (131).]

[For studies of adsorption of C on various carbons (132) (135) (155), animal charcoal (133) (134), wood or cocoanut charcoal (136) (137) (138) (139) (140) (141) (142), glass wood (143) (144), glass powder (145), alumina gel (146) (147), silica gel (148), vitreous silica (149), Fe(OH)<sub>3</sub> gel (150), Cr(OH)<sub>3</sub> gel (151) cf. (152), TiO<sub>2</sub> gel (153) (154), see indic. refs.]

### PHYSIOLOGICAL ASPECTS OF C

 $\tilde{C}$  was first prepared in 1831 by three independent workers, viz., Liebig, Souberain, and Guthrie (for amplification see (1)).  $\tilde{C}$  has long been used in medicine especially as an anesthetic but a detailed account of this aspect is beyond the scope of this book. [For history and clinical use of  $\tilde{C}$  see (156); for report of 3000 cases of anesthesia with  $\tilde{C}$  see (157). For examples of articles commemorative of the centenary of the discovery of  $\tilde{C}$  and its use in anesthesia see (158) (159) (160) (161).]

The vapor of  $\tilde{C}$  in conens. of 6.8-8.2% by volume in air will kill most animals in a short time; a conen. of 1.4% by volume is dangerous to life after 30-60 min exposure; the max. conen. tolerable for 60-min. exposure without serious disturbances is 0.5-0.6% by volume; the max. conen. tolerable for several hrs. or for prolonged exposure with but slight symptoms is 0.2% by volume (163).

[For impt. study of toxicity of C including its effect upon various organs see (164).]

### USES OF C

 $\ddot{C}$  is widely used as solvent and chemical reactant and any detailed survey of this aspect is beyond the scope of this book. [However, for use of  $\ddot{C}$  as solvent for ozonization reactions (24), as means of dehydration of EtOH (165), in mixt. with 100% HNO<sub>3</sub> + Ac<sub>2</sub>O as nitrating or nitroesterifying reagent (166), in colorimetric detn. of I<sub>2</sub> (167), or in prepn. of AlCl<sub>3</sub> from Al + Br<sub>2</sub> +  $\ddot{C}$  (168) see indic. refs.]

### DETECTION OR DETERMINATION OF C

Detection of C. [For study of isolation of C from very dil. solns. by distn. see (169).] Note that many of the tests for C may be given by other haloforms (e.g., CHBr<sub>3</sub>, CHI<sub>3</sub>, etc.) or by trichloroderivatives which under particular test conditions yield CHCl<sub>3</sub> by cleavage (e.g., chloral (3:5210), chloral hydrate (3:1270), 1,1,1-trichloro-2-methyl-propanol-2 = "chloretone" (3:2662), loss of CO<sub>2</sub> (trichloroacetic acid (3:1150)) or other decompns.

[For study of detectn. of  $\bar{C}$  by color reaction with pyridine + alk. (Fujiwara reaction) see (170); note also further references to this test under detn. of  $\bar{C}$  (below) and under trichloroethylene (3:5170).]

[For detectn. of C by reaction with aq. NaOH + NH<sub>4</sub>OH to give NaCN and after acidification detectn. of resultant HCN by drop test methods see (171).]

[For color reactions of  $\bar{C}$  with phenols under various circumstances, e.g.,  $\bar{C}$  with resorcinol (1:1530) + NaOH (172) (173), with  $\alpha$ -naphthol (1:1500) + cyclohexanol (1:6415) (174), with 2,7-dihydroxynaphthalene (1:1594) + cyclohexanol (175), see indic. refs. For use of last two methods in distinction of  $\bar{C}$  from CH<sub>2</sub>Cl<sub>2</sub> (3:5020) and from CCl<sub>4</sub> (3:5100) see (173) (174); also at end of text of this compound under  $\mathfrak{P}$ .]

[For distinction of Č from CCl<sub>4</sub> (3:5100) by its greater solvent power for papaverine hydrochloride (176) or quinine sulfate (177) see indic. refs.]

Note that C reduces Fehling's soln. on htg. whereas CCl<sub>4</sub> does not (177).

Note also that Č with aniline + alc. alk. on htg. gives characteristic odor of phenyl isocyanide (carbylamine test) (178).

Determination of C. Methods for the quant. detn. of C may be classified into two groups: (1) those depending upon total conversion of the chlorine to the ionized form followed by its determination by conventional methods; and (2) methods based upon color reactions.

[For studies of methods of the first type involving decomposition of  $\tilde{C}$  by combustion in air (179) (187) or  $H_2$  flame (180), by combined combustion and hydrolysis in moist air at 1000–1100°C. (181) cf. (182), by alkaline hydrolysis (183) (185), by reduction using Na + triethanolamine (184) see indic. refs. For automatic apparatus for detn. of small conens. of  $\tilde{C}$  in air see (186); for detn. of  $\tilde{C}$  in mixtures contg. nonvolatile chlorides see (188) (189) (190) (191).]

[For studies on use of color reaction with pyridine and alkali (Fujiwara reaction) as means for quant. detn. of  $\bar{C}$  in air, soil, blood, tissue, etc., see (170) (192) (193) (194) (195) (196) (197) (198) (199). — For use of color reaction of  $\bar{C}$  with  $\alpha$ -naphthol (1:1500) or  $\beta$ -naphthol (1:1540) in alc. KOH as colorimetric method for detn. of  $\bar{C}$  see (200).]

#### DETECTION OF OTHER COMPOUNDS IN C

[For studies on detn. of EtOH (1:6130) in  $\bar{C}$  see (201) (202) (203); on detection of acetone (1:5400) in  $\bar{C}$  see (204) (205); on detection of aldehydes in  $\bar{C}$  see (206); on detection of CCl<sub>4</sub> (3:5100) in  $\bar{C}$  see (175) (207) (208) (209); on detection of COCl<sub>2</sub> (3:5000) in  $\bar{C}$  see (210) (211) (212) (213) and also under phosgene (3:5000).]

### PREPARATION OR FORMATION OF C

From methane. The formation of  $\bar{C}$  together with CH<sub>3</sub>Cl (3:7005), CH<sub>2</sub>Cl<sub>2</sub> (3:5020), CCl<sub>4</sub> (3:5100), and other products has been very extensively studied from many viewpoints. The literature of this reaction, however, is so extensive and diffuse that no complete survey can be detailed in this book. For concise reviews of the older literature see (1) (214); for additional references see text of methylene (di)chloride (3:5020) under its formation from methane.

From carbon tetrachloride. [For prepn. of  $\bar{C}$  from CCl<sub>4</sub> (3:5100) by reduction using Zn + H<sub>2</sub>SO<sub>4</sub> (215) (216) cf. (1) (214), finely divided Fe + aq. (217) + cat. (218) (219), Fe(OH)<sub>2</sub> + aq. alk. (220), or electrolytic reduction (221) see indic. refs.]

From other halogenated hydrocarbons. [For formn. of  $\tilde{C}$  from mixts. of CH<sub>2</sub>Cl (3:7005) + CH<sub>2</sub>Cl<sub>2</sub> (3:5020) with Cl<sub>2</sub> + cat. at 400-650° (223), from CHCl<sub>2</sub>F + AlCl<sub>3</sub> as directed (CHClF<sub>2</sub> is also formed) (224), from CCl<sub>3</sub>Br with boilg. alk. Na<sub>2</sub>AsO<sub>3</sub> (225), from 1.1,2,2-tetrachloroethane (3:5750) or its dehydrochlorination prod. trichloroethylene (3:5170) by pyrolysis at 700° (226), from 1,1,1,2,2,3,3-heptachloropropane (3:0200) over Cu<sub>2</sub>Cl<sub>2</sub> below 250° (227) see indic. refs.]

From various carbonyl compounds. [For prepn. of  $\bar{C}$  from acetaldehyde (1:0100) with alkaline hypochlorite soln. at 70-80° (228) (229) cf. (1) (214) see indic. refs. For prepn. of  $\bar{C}$  from trichloroacetaldehyde (chloral) (3:5210) or from chloral hydrate (3:1270) by warming with alkalies or alkaline reagents see texts of these compounds.]

[For prepn. of C from acetone (1:5400) with alkaline hypochlorite solns. (228) (230) (231) cf. (1) (214) or by electrolysis of alkali chloride in aq. acetone (232) (233) (234) see

indic. refs. For formn. of C from various chlorinated ketones by action of alkali hypochlorites (haloform reaction) see (235) (236).]

From alcohols. [For concise reviews of prepn. of  $\bar{C}$  from EtOH (1:6130) by action of alkaline hypochlorite solns. see (1) (214); for formn. of  $\bar{C}$  from various other primary and secondary alcohols in similar fashion see (237).]

From miscellaneous sources. [For prepn. of  $\bar{C}$  from trichloroacetic acid (3:1150) by loss of  $CO_2$  under a wide variety of conditions see text of that compound under decarboxylation; from dichloroacetyl chloride (3:5290) on warming with AlCl<sub>3</sub> see text of that compound; from mixtures of salts of fatty acids with inorganic chlorides by electrolysis see (238); from lignin with alkali hypochlorite see (239).]

[For prepn. of trichlorodeuteriomethane (deuteriochloroform) (CDCl<sub>3</sub>) from chloral deuterate + NaOD (443) or from chloral (3:5210) + D<sub>2</sub>O + CaO (444) see indic. refs.; for rate of isotopic exchange between  $\bar{C}$  and D<sub>2</sub>O see (445).]

### CHEMICAL BEHAVIOR OF C

Pyrolysis of Č. [C̄ passed at red heat over asbestos (240), over Pt wire at 1000° (241), with 1% I<sub>2</sub> over pumice at red heat (242) cf. (243), or in electric arc (249) undergoes decomposition, and various proportions of carbon, HCl, hexachloroethane (3:4835), hexachlorobenzene (3:4939), tetrachloroethylene (3:5460), pentachloroethane (3:5880), and other products are claimed to result. C̄ over htd. TiO<sub>2</sub> gives (245) HCl + CO + hexachlorobenzene (3:4939) + TiCl<sub>4</sub>. For other studies of pyrolysis of C̄ at 368-400° (246), at 425° (247), and at 512° (248) see indic. refs.]

Oxidation of C. C is readily oxidized to carbonyl chloride (phosgene) (3:5000) by air, oxygen, ozone, or chemical oxidizing agents. In view of the extremely toxic character of phosgene, and of the extensive use of C in anesthesia, this aspect is of great importance and has been very extensively studied.

By air or oxygen. [For an extensive account of the earlier literature on the oxidation of  $\bar{\mathbb{C}}$  in air and light see (250). Note that such oxidation is not effected by air in absence of light, nor by light in absence of air (251).  $\bar{\mathbb{C}}$  with limited air in sunlight reacts according to the following equation:  $\mathrm{CHCl_3} + \mathrm{O} \to \mathrm{COCl_2}$  (3:5000) + HCl (252) but with excess air in sunlight in sense  $\mathrm{2CHCl_3} + \mathrm{5O} \to \mathrm{2CO_2} + \mathrm{3Cl_2} + \mathrm{H_2O}$  (252). Note that  $\bar{\mathbb{C}}$  + air over dry KOH gives (253) some phosgene (3:5000). For later studies on the photochemical oxidation of  $\bar{\mathbb{C}}$  (254) in tropical sunlight (255), including search for possible intermediate peroxides (256) (257), see indic. refs. For studies on chlorine-sensitized photochem. oxidn. of  $\bar{\mathbb{C}}$  see (258) (259) (260). For oxidn. of  $\bar{\mathbb{C}}$  by atomic oxygen see (261). The photochem. oxidn. of  $\bar{\mathbb{C}}$  is repressed by various inhibitors of which EtOH has been most extensively studied (262).]

By ozone. [ $\bar{C}$  dissolves ozone yielding a blue soln. in which some  $\bar{C}$  is gradually oxidized (270) (271) to phospene; for study of  $\bar{C}$  as ozonization solvent see (24).]

By other chemical means. [ $\bar{C}$  with ClSO<sub>3</sub>H at 120° (263), with K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> + H<sub>2</sub>SO<sub>4</sub> (264), or with air over CuO at 350-550° (265) gives phosgene (3:5000). Note, however, that  $\bar{C}$  with conc. H<sub>2</sub>SO<sub>4</sub> above 200° gives (266) (267) CO + CO<sub>2</sub> + HCl + SO<sub>2</sub> while  $\bar{C}$  with an equimolal mixt. of H<sub>2</sub>S<sub>2</sub>O<sub>7</sub> + SO<sub>3</sub> at 55-60° as directed (268) cf. (269) reacts in sense CHCl<sub>3</sub> + H<sub>2</sub>S<sub>2</sub>O<sub>7</sub> + SO<sub>3</sub>  $\rightarrow$  CO + 3ClSO<sub>3</sub>H with S<sub>2</sub>O<sub>5</sub>Cl<sub>2</sub> (pyrosulfuryl chloride) being formed using more SO<sub>3</sub>, and H<sub>2</sub>SO<sub>4</sub> using less SO<sub>3</sub>.]

Inflammability of  $\tilde{C}$ . [For studies of inflammability of  $\tilde{C}$  in air, oxygen, or  $O_2/N_2O$  mixts. see (272) cf. (273).]

Reduction of  $\tilde{C}$ . [ $\tilde{C}$  with Zn + alc. HCl (274), Zn + AcOH (275), Zn dust + alc. NH<sub>3</sub> (276) (277) (278), Al/Hg + aq. (275), Fe + AcOH (275), or Si<sub>3</sub>H<sub>3</sub> + AlCl<sub>3</sub> in abs. of air

(279) gives  $CH_2Cl_2$  (3:5020) or further reduction products, e.g.,  $CH_3Cl$  (3:7005) or  $CH_4$  (280);  $\bar{C}$  with conc. HI on htg. gives (281)  $CH_2I_2$  [Beil. I-71,  $I_1$ -(18),  $I_2$ -(37)];  $\bar{C}$  with atomic hydrogen gives (282)  $CH_3Cl$  (3:7005) + HCl.]

Substitution of C. Note that the text of this section refers only to replacement of the single hydrogen atom of CHCl<sub>3</sub>.

Fluorination. [The product of replacement of the H atom of  $\bar{C}$  by F (289), viz., trichlorofluoromethane, CCl<sub>3</sub>F [Beil. I-64], is usually prepd. by indirect means from sources other than  $\bar{C}$ , e.g., from CCl<sub>4</sub> (3:5100) + F<sub>2</sub> in pres. of As + Br<sub>2</sub> (283). However, beyond noting a few leading articles on its physical consts., including b.p. = 23.66° (284), 23.77° (285) at 760 mm., m.p. = -110.48° (284), vapor press. (284) (285), liquid density (286), and P/V/T relationships (287), no complete review of CCl<sub>3</sub>F and its relatives (cf. (288)) can be given here.]

Chlorination.  $\bar{C}$  on suitable chlorination yields CCl<sub>4</sub> (3:5100). [E.g.,  $\bar{C}$  with Cl<sub>2</sub> in sunlight (290) or u.v. light (291) (292) (293) (294), at 260-320° (295), or in pres. of FeCl<sub>3</sub> (296) or of aq. (297), or  $\bar{C}$  with ICl at 165° (298), or  $\bar{C}$  with aq. NaOCl (reaction very slow and incomplete (299)) gives CCl<sub>4</sub> (3:5100). Note, however, that  $\bar{C}$  is not chlorinated with SO<sub>2</sub>Cl<sub>2</sub> even in presence of organic peroxides (200).

Bromination.  $\bar{C}$  on suitable bromination gives bromotrichloromethane. [E.g.,  $\bar{C}$  with Br<sub>2</sub> in s.t. (301) (298) at 225-275° for 14 hrs. as directed (302), or  $\bar{C}$  with Br<sub>2</sub> in light of 5460 Å (303) or 2650 Å in pres. of O<sub>2</sub> (304), or over carbon at 180-350° (305), or  $\bar{C}$  with aq. NaOBr (299), gives CCl<sub>3</sub>Br [Beil. I-67, I<sub>2</sub>-(31)], b.p. 105° (302), 104.2-104.35° at 758.5 mm. (308), m.p. -21° (302). For prepn. of CCl<sub>3</sub>Br from trichloroacetyl bromide by pyrolysis at 400° at ord. press. see (306); for studies of behavior of CCl<sub>3</sub>Br with Cl<sub>2</sub> in light (307) (308) or of its halogen-sensitized photochem. oxidn. (309) see indic. refs.]

Iodination. [C with aq. NaOI (299) gives iodotrichloromethane, CCl<sub>3</sub>I [Beil. I-71], b.p. 142° (299) (310); for prepn. of this prod. from CCl<sub>4</sub> (3:5100) with AlI<sub>3</sub> in CS<sub>2</sub> (310) or from trichloroacetyl iodide by distn. at ord. press. (306) see indic. refs.]

Nitration. [ $\bar{C}$  with HNO<sub>3</sub> in s.t. at 90–100° for 120 hrs. (311) or in boilg. acetyl nitrate (312) gives nitrotrichloromethane (chloropicrin) [Beil. I-76, I<sub>1</sub>-(20), I<sub>2</sub>-(41)], b.p. 111–112°, but this product is usually prepd. by other means, e.g., from calcium picrate with Ca (OCl)<sub>2</sub> (313) (314).]

Nitrosation. [No record can be found of any reaction between chloroform and nitrous acid. However, nitrosotrichloromethane [Beil. I<sub>2</sub>-(39)] has been obtd. indirectly from sodium trichloromethane sulfinate, CCl<sub>3</sub>-SOONa, by the action of HNO<sub>3</sub> (315) (316). It is a dark blue liq., b.p. 5.0-5.5° at 70 mm. (315), but decomposing on distn. at ord. press. The compound is of considerable interest because on reduction with H<sub>2</sub>S (315), Al/Hg (315), SnCl<sub>2</sub> (316), or SO<sub>2</sub> (316) it yields dichloroformaldoxime, Cl<sub>2</sub>C—NOH, a chemical warfare agent with especially terrifying characteristics.]

Hydrolysis of  $\tilde{C}$ .  $\tilde{C}$  on hydrolysis gives formic acid (1:1005) in such a form that the reaction mixt. is able to reduce Fehling soln. or NH<sub>4</sub>OH/AgNO<sub>3</sub> even at room temp. or more rapidly on warming (dif. from CCl<sub>4</sub> (3:5100), 1,2-dichloroethane (3:5130), 1,1,2,2-tetrachloroethane (3:5750) and hexachloroethane (3:4835)). Note that, although some CO has been detected, yet formaldehyde (1:0145) is not produced (317).

[ $\bar{C}$  with aq. on protracted htg. in s.t. at 225° gives (318) HCOOH (1:1005) + CO + HCl. —  $\bar{C}$  with aq. caustic alkali on htg. gives salts of HCOOH (1:1005) (319) accompanied by CO (320) (321) (322); for studies on kinetics of hydrolysis of  $\bar{C}$  in aq. alc. in light from Hg vapor lamp see (323).]

 $[\bar{C}]$  is also hydrolyzed in alc. alk. solns. even more readily than CCl<sub>4</sub> (3:5100) (324) (191); for use of this principle in estimation of  $\bar{C}$  see above under determination of  $\bar{C}$ . For study of kinetics of hydrolysis of  $\bar{C}$  with alc. KOH (325), with N/10 KOH in 95% alc. at 90°

(326) cf. (327), or with Ba(OH)<sub>2</sub> or TiOH in 50% alc. (328) (327) see indic. refs. Note that Č with alc. KOH is also claimed by one worker (253) to give ethylene.]

[For further details on ability of C to reduce Fehling soln. see (317) (329) (330).]

Behavior of  $\tilde{C}$  with inorganic salts. [ $\tilde{C}$  with AlCl<sub>3</sub> gives a gummy hygroscopic addn. prod. which with aq. regenerates  $\tilde{C}$  (331), but  $\tilde{C}$  with AlBr<sub>3</sub> is more or less (yields: 58–90% (332), 100% (333)) converted to bromoform [Beil. I-68, I<sub>1</sub>-(16), I<sub>2</sub>-(33)], b.p. 149.55° at 760 mm. (334), m.p. 8.05° (334),  $D_4^{25} = 2.87757$  (334),  $D_4^{20} = 2.89054$  (334),  $D_4^{15} = 2.90350$  (334),  $n_5^{15} = 1.60088$  (334).]

[ $\bar{C}$  with CaI<sub>2</sub> in s.t. at 100° is partially converted (335) to CHI<sub>3</sub>, but  $\bar{C}$  with aq. KI even in pres. of Cu decomposes yielding (336) CH<sub>4</sub> + H<sub>2</sub> + CO + CO<sub>2</sub>.]

[For leading reference on behavior of C with various metal fluorides see (337).]

Behavior of  $\tilde{C}$  with metals. [ $\tilde{C}$  with alkali or even alkaline-earth metals undergoes explosive decompn. on htg. or even at room temp. if subjected to sufficient mechanical shock. For studies of the explosion of  $\tilde{C}$  with alkali metals see (338) (339) (340); for further data on explosions of  $\tilde{C}$  with Li, Na, K, Ca, Sr, Ba, and Mg, especially with reference to sensitivity to mechanical shock, see (341).  $\tilde{C}$  with molten Na at 260-370° as directed (342) gives  $\tilde{C} + H_2 + CH_4$  with smaller amts. of  $C_2H_6$ ,  $C_2H_4$ , and  $C_2H_2$ ; for study of  $\tilde{C}$  with Na vapor see (343).]

[For study of hazards of behavior of CHCl<sub>3</sub>/CCl<sub>4</sub> mixts. with Al or Mg see (344); for extensive study of corrosion of metals by C see (345).]

[Note that C with Mg in boilg. ether does not react, even in pres. of various catalysts (346).]

Behavior of  $\bar{C}$  with various organic reactants. With carbon monoxide.  $[\bar{C}$  with CO + water vapor above 200° in pres. of suitable cat. as directed is claimed (347) to give acetic acid (1:1010);  $\bar{C}$  with CO + AlCl<sub>3</sub> at 150° and 900 atm. for 6 hrs. gives (21% yield (348)) dichloroacetyl chloride (3:5290).]

With hydrocarbons. [Č (excess) with octene-1 (1:8375) in pres. of small amts. (0.02 mole) of dibenzoyl peroxide (or diacetyl peroxide) adds to unsatd. linkage giving (349) 1,1,1-trichlorononane; under similar conditions Č adds to one of the unsatd. linkages of diallyl (1:8045) giving 8,8,8-trichloroheptene-1. — (For other addns. of Č to unsatd. linkages see below).]

[C with C<sub>6</sub>H<sub>6</sub> (excess) in pres. of AlCl<sub>3</sub> (350) (351) (352) (353), FeCl<sub>3</sub> (354), chromium powder (355), or Al powder (356) gives triphenylmethane (1:7220); other aromatic hydrocarbons presumably give analogous results but cannot be detailed here.]

With saturated halohydrocarbons. [ $\tilde{C}$  (1.2 moles) with EtBr (3.8 moles) + AlCl<sub>3</sub> (0.07 mole) on htg. as directed (357) gives EtCl (3:7015) + 90% yield CHBr<sub>3</sub> (for physical constants see above under behavior of  $\tilde{C}$  with inorganic salts (AlBr<sub>3</sub>)). —  $\tilde{C}$  (1 mole) with MeI (3 moles) + AlCl<sub>3</sub> (0.04 mole) on similar treatment gives MeCl (3:7005) + (95% yield (357)) iodoform, m.p. 119°. —  $\tilde{C}$  with CHBr<sub>3</sub> + 5-10% KCl in pres. of moistened AlCl<sub>3</sub> under CO<sub>2</sub> in s.t. at 135° for 14 hrs. undergoes a redistribution reaction giving (358) 17%  $\tilde{C}$  + 43% CHCl<sub>2</sub>Br + 31% CHClBr<sub>2</sub> + 9% CHBr<sub>3</sub>.]

With unsaturated halohydrocarbons. [ $\bar{C}$  (3 wt. pts.) with ord. 1,2-dichloroethylene (3:5030) + AlCl<sub>3</sub> (0.25 wt. pt.) stirred with sand for 20 hrs. at 30° (359) cf. (360) (361) (362) gives (yields: 63% (359), 70-75% at 50° (360), 46% at 17° in 22 hrs. (360)) 1,1,2,3,3-pentachloropropane (3:6280).]

[ $\bar{C}$  with 1,1,2-trichloroethylene (3:5170) + AlCl<sub>3</sub> at 20° gives (361) (362) 1,1,1,2,3,3-hexachloropropane (3:6460); note that at higher temp., e.g., 50-60°, yield is greatly diminished and several other prods. (361) are formed.]

[ $\bar{C}$  (2 moles) with 1,1,2,2-tetrachloroethylene (3:5460) + AlCl<sub>3</sub> (0.2 mole) refluxed 15-20 hrs. gives (85-93% yield (363)) (364) (365) (366) (367) (368) (369) 1,1,1,2,2,3,3-

heptachloropropane (3:0200); for study of equil. of system  $\tilde{\mathbf{C}}$  + tetrachloroethylene (3:5460) + unsym.-heptachloropropane (3:0200) see (370).]

With unsaturated nitriles. [ $\bar{C}$  with acrylonitrile (vinyl cyanide) in pres. of trimethylbenzyl-ammonium hydroxide at 0-5° for 24 hrs. or solid KOH at 0-5° for 4 hrs. adds to unsatd. linkage giving (11-12% yield (371)) (372)  $\gamma, \gamma, \gamma$ -trichloro-n-butyronitrile, m.p. 41°, b.p. 214-216° at 760 mm., 90-95° at 12 mm. (371) (372).]

With alcohols or alcoholates. [Č with MeOH over cat. at 200-350° gives (373) MeCl (3:7005); Č with EtOH under similar conditions gives (373) EtCl (3:7015).]

[C with Na alcoholates gives the corresp. trialkyl orthoformates. E.g., C with NaOCH<sub>3</sub> gives (374) (375) trimethyl orthoformate (1:3087); C with NaOC<sub>2</sub>H<sub>5</sub> gives (27-31% yield (376), 36% (377)) (374) (375) triethyl orthoformate (1:3241); orthoformate esters of higher ales. are similarly prepd. cf. (374) (377). For study of behavior of C with mixts. of sodium alcoholates see (378); for treatise on chemistry of aliphatic orthoesters see (379).]

With mercaptans or mercaptides. [ $\bar{C}$  with NaSCH<sub>3</sub> should yield trimethyl trithioorthoformate [Beil. II<sub>1</sub>-(39)], m.p. 16° (380), b.p. 220° dec. (380), 103-104° at 12 mm. (381), 96° at 9 mm. (380),  $n_D^{15}$  = 1.5696 (381), but this prod. has been reported only by other means, e.g., from CCl<sub>4</sub> (3:5100) with NaSCH<sub>3</sub> (381) and from anhydrous HCOOH (1:1005) with CH<sub>3</sub>SH in s.t. at ord. temp. (380).]

[ $\bar{C}$  with NaSC<sub>2</sub>H<sub>5</sub> gives (382) (383) (386) triethyl trithioorthoformate [Beil. II-95, II<sub>1</sub>-(39)], b.p. 235° dec. (380), 174° at 760 mm. (384), 136.5° at 23 mm. (385), 133° at 21 mm. (386), 126.5-128° at 12 mm. (381), 127-128° cor. at 12 mm. (387),  $D_4^{20} = 1.053$  (386),  $n_D^{15} = 1.5410$  (381), but this product is usually prepd. by indirect means, e.g., from anhydrous HCOOH (1:1005) with C<sub>2</sub>H<sub>5</sub>SH in pres. of dry HCl (384) (385) or from CCl<sub>4</sub> (3:5100) with NaSC<sub>2</sub>H<sub>5</sub> (381).]

With phenols or phenolates.  $\vec{C}$  with phenols (or with substituted phenols having at least one free ortho or para position) in presence of aq. alk. condenses with eventual introduction of the formyl radical and formn. of phenolic aldehydes (Reimer-Tiemann reaction (388)). The countless recorded examples of this reaction cannot be detailed here but the following leading references will be found useful. [For modern studies of the Reimer-Tiemann reaction see (389) (390); for studies of influence of substituents in the phenolic component see (391) (392) (393) (394) (395); for extension of the Reimer-Tiemann reaction to other classes such as substituted indoles (396), thiazoles (397) see indic. refs.; for application to  $\beta$ -naphthol (1:1540) giving (38-48% yield (398)) 2-hydroxy-1-naphthaldehyde, m.p. 79-80°, to  $\beta$ -tetralol (5,6,7,8-tetrahydronaphthol-2) (399) see indic. refs.; for studies on theory of Reimer-Tiemann reaction see (400) (401) (402).

[ $\bar{C}$  with dry KOC<sub>6</sub>H<sub>5</sub> at 110° for 4 hrs. under N<sub>2</sub> gives (15% yield (403)) triphenyl orthoformate [Beil. VI-152, VI<sub>2</sub>-(153)], ndls. from alc., m.p. 76-77° (404), 75° (403), 71.5° (405); note that this prod. is also formed (405) in the Reimer-Tiemann reaction of. (390).]

With aldehydes or ketones.  $\bar{C}$  with aromatic (but not aliphatic (406)) aldehydes in pres. of aq. KOH undergoes addition yielding trichloromethyl-aryl-carbinols. [E.g.,  $\bar{C}$  with benzaldehyde (1:0195) + aq. KOH gives (16% yield (406)) (407) cf. (408) trichloromethylphenyl-carbinol [Beil. VI-476, VI<sub>1</sub>-(237), VI<sub>2</sub>-(447)], m.p. 37° (409), b.p. 145° at 15 mm. (409) cf. (406) (corresp. acetate, m.p. 87.5° (409); corresp. benzoate, m.p. 97.5° (409); corresp. p-nitrobenzoate, m.p. 109° (410)). For analogous behavior of  $\bar{C}$  + alkali with o-chlorobenzaldehyde (3:6410) (411), m-chlorobenzaldehyde (3:6475) (412), p-chlorobenzaldehyde (3:0765) (413), p-tolualdehyde (1:0215) (412), and furfural (1:0185) (406) see indic. refs. Note that trichloromethyl-aryl-carbinols are also obtd. by reaction of arom. hydrocarbons with chloral (3:5210) q.v.]

[ $\overline{C}$  with acetone (1:5400) in pres. of dry powdered KOH (0.5 mole) below 0° (414) or 2-3° (415), or KOH in alc. as directed (416), or even NaNH<sub>2</sub> (418) gives (yields: 25% (416),

23% (414)) (417) (415) 1,1,1-trichloro-2-methylpropanol-2  $(\beta,\beta,\beta$ -trichloro-ter-butyl alcohol = "Chloretone") (3:2662) q.v.; note that use of NaOH lowers the yield (414) and that Ca(OH)<sub>2</sub> (416), Zn(OH)<sub>2</sub> (414), or Al(OH)<sub>3</sub> (414) yields no such product; note also that the crude prod. contains some diacetone alcohol (1:6423) best removed by treatment with aq. (416) since otherwise it forms with the "Chloretone" a const.-boilg. mixt.]

[ $\ddot{\mathbf{C}}$  (2 moles) with ethyl methyl ketone (1:5405) in pres. of dry powdered KOH (419) or of NaNH<sub>2</sub> (418) gives (13.5% yield (419)) by addition 1,1,1-trichloro-2-methylbutanol-2 [Beil. I<sub>2</sub>-(424)], b.p. 162-165° (418), 110-113° dec. at 620 mm. (419),  $D_4^{20} = 1.2128$  (419),  $D_D^{20} = 1.4460$  (419). Note, however, that analogous addition of  $\ddot{\mathbf{C}}$  does not occur with diethyl ketone (1:5420) (420), di-n-propyl ketone (1:5447) (420), ethyl n-propyl ketone (420), methyl isobutyl ketone (1:5430) (420), or methyl phenyl ketone (acetophenone) (1:5515) (419), but will occur to a very small extent with cyclopentanone (1:5446) (421) or cyclohexanone (1:5465) (421) cf. (418).]

With amines. C with primary amines in pres. of alc. caustic alkali condenses with loss of 3 HCl giving the corresp. isocyanides whose extremely characteristic odor has caused this general procedure to be used as a test (422) for primary amines. The reaction has, however, been very little studied in the aliphatic series.

[ $\bar{C}$  with CH<sub>3</sub>NH<sub>2</sub> + alc. NaOH should give methyl isocyanide (methyl carbylamine) [Beil. IV-56, IV<sub>1</sub>-(328), IV<sub>2</sub>-(561)], b.p. 59.6° at 760 mm. (423), 59-60° (424),  $D_4^{20} = 0.734$  (424),  $D_4^{20} = 0.7464$  (425),  $n_{He}^{20} = 1.343$  (424), but this highly explosive (425) (426) (427) substance has been reported only by other means, e.g., from MeI with dry AgCN (425) (423), CuCN (428), or CH<sub>3</sub>HgI (429). —  $\bar{C}$  with C<sub>2</sub>H<sub>5</sub>NH<sub>2</sub> + alc. NaOH gives (430) ethyl isocyanide (ethyl carbylamine) [Beil. IV-107, IV<sub>1</sub>-(351), IV<sub>2</sub>-(600)], b.p. 78.1° at 760 mm. (431), 78° (424),  $D_4^{20} = 0.747$  (424),  $D_4^{20} = 0.7405$  (425),  $n_{He}^{20} = 1.362$  (424), but this less explosive prod. (427) is usually obtd. by other means, e.g., from EtI with AgCN (425) (431), etc. —  $\bar{C}$  with n-BuNH<sub>2</sub> + aq. NaOH gives (only 5% yield (432)) n-butyl isocyanide (n-butyl carbylamine) which is better obtd. (40% yield (432)) from n-BuI + AgCN.]

[Č with aniline in alc. KOH (433) (435) cf. (438) or in  $C_6H_6$  + NaNH<sub>2</sub> (436), or better in MeOH/NaOH (50% yield (434)) or powdered KOH without solvent (35–40% yield (437)) cf. (438), gives phenyl isocyanide (phenyl carbylamine) [Beil. XII-191, XII<sub>1</sub>-(168)], b.p. 165–166° at ord. press. with partial polymerization (435), 78° at 40 mm. (435), 64° at 20 mm. (435),  $D_4^{18.1} = 0.9823$  (424),  $n_{\rm He}^{13.1} = 1.52828$  (424). — For analogous reactions of Č with  $\rho$ -toluidine giving  $\rho$ -tolyl isocyanide [Beil. XII-788], b.p. 183–184° cor. at 753 mm. (439), with  $\rho$ -toluidine giving (440) (441)  $\rho$ -tolyl isocyanide [Beil. XII-903], b.p. 99° at 32 mm. (441), 94° at 25 mm. (434), m.p. 21° (441), 19.5° (434), with  $\rho$ -methoxyaniline ( $\rho$ -anisidine) giving  $\rho$ -methoxyphenyl isocyanide, b.p. 112° at 16 mm. (438), with  $\rho$ -phenylenediamine to give (442) either  $\rho$ -aminophenyl isocyanide, m.p. 74°, or  $\rho$ -phenylenediisocyanide see indic. refs. — Many other isocyanides are known but cannot be detailed here.]

Color reaction with α-naphthol/cyclohexanol. A. C (1'drop) with 2 ml. of a 2% soln. of α-naphthol (1:1500) in cyclohexanol (1:6415) + 1 pellet of solid NaOH, boiled 25 seconds and cooled, gives (174) blue color; one portion of this blue soln. underlaid with equal vol. of 85% H<sub>2</sub>SO<sub>4</sub>, stood 1 minute and shaken turns intensely blue; a second portion of the alkaline blue soln. acidified with equal vol. of AcOH (1:1010) stood 1 minute and shaken becomes orange-yellow. [Note that the alkaline boiling also gives a blue color with CH<sub>2</sub>Cl<sub>2</sub> (3:5020) and with CCl<sub>4</sub> (3:5100) while other chlorinated solvents (174) give yellow-brown, gray, or brown; in the H<sub>2</sub>SO<sub>4</sub> treatment CH<sub>2</sub>Cl<sub>2</sub> (3:5020) gives greenish-blue and CCl<sub>4</sub> (3:5100) a red, color.]

- B. C (1 drop) with 2 ml. cyclohexanol (1:6415) + a few mgms.  $\alpha$ -naphthol (1:1500) + 2 ml. 20% aq. KOH boiled 15 seconds with vigorous shaking gives (175) blue color in upper layer. [Neither CH2Cl2 (3:5020) nor CCl4 (3:5100) gives any color, and this form of the test may be used to detect as little as  $1\%\ \bar{\mathrm{C}}$  in either of the other two.]
- P Color test with 2,7-dihydroxynaphthalene/cyclohexanol. C (1 drop) with 2 ml. pure cyclohexanol (1:6415) + 1 pellet NaOH + a few mgms. 2,7-dihydroxynaphthalene htd. at 197° (b.p. of ethylene glycol) for 45 seconds, decanted from undissolved NaOH, cooled, and shaken with 2 ml. AcOH + 4 ml. 96% EtOH, gives deep red color (175). [Note that under these conditions CH<sub>2</sub>Cl<sub>2</sub> (3:5020) gives a steel-blue color while CCl<sub>4</sub> (3:5100) gives pale yellow-brown color (175).]
- **P** Color test with cyclopentanol.  $\tilde{C}$  (1 drop) in 1 ml. cyclopentanol (1:6412) + 1 pellet NaOH boiled for 25 seconds, then shaken vigorously for 35 seconds, then treated with 4 ml. 96% EtOH and shaken, gives with C only a pale citron-yellow color (175). [Note that in this test CH<sub>2</sub>Cl<sub>2</sub> (3:5020) gives a deep red color which intensifies or turns reddish-brown upon addition of EtOH; CCl4 (3:5100) gives an intense brown color.l
- 3:5050 (1) Baskerville, Hamor, J. Ind. Eng. Chem. 4, 212-220, 278-288, 362-372, 422-429, 499-506, 571-578 (1912). (2) Perkin, J. Chem. Soc. 45, 530 (1884). (3) Pettit, J. Phys. Chem. 3, 351 (1899). (4) Thayer, J. Phys. Chem. 3, 36-40 (1899). (5) Tyrer, J. Chem. Soc. 99, 1643 (1911). (6) Turner, J. Chem. Soc. 97, 1188 (1910). (7) Maryott, Hobbs, Gross, J. Am. Chem. Soc. 63, 660 (1941). (8) Linebarger, Am. Chem. J. 18, 439, 442, 447 (1896). (9) Biltz, Sapper, Z. anorg. allgem. Chem. 203, 283 (1932). (10) Mathews, J. Am. Chem. Soc. 48, 570 (1926).
- (11) Tyrer, J. Chem. Soc. 105, 2538 (1914). (12) Timmermans, Martin, J. chim. phys. 23. 763-765 (1926). (13) Zmaczynski, J. chm. phys. 27, 503-517 (1930). (14) Wade, Finnemore, J. Chem. Soc. 85, 938-947 (1904). (15) Beckmann, Liesche, Z. physik. Chem. 88, 29 (1914). (16) Thorpe, J. Chem. Soc 37, 196 (1880). (17) Stull, J. Am. Chem. Soc. 59, 2729 (1927). (18) Gross, Saylor, J. Am. Chem. Soc. 53, 1744-1751 (1931). (19) Reinders, de Minjer, Rec. trav. chim. 59, 371-391 (1940). (20) Bowden, Butler, J. Chem. Soc. 1939, 79-83.
- (21) Herz, Rathmann, Chem. Ztg. 36, 1417 (1912). (22) Cauwood, Turner, J. Chem. Soc. 167, 280 (1915). (23) Schiff, Ann. 220, 95 (1883). (24) Greenwood, J. Org. Chem. 10, 414-418 (1945). (25) Arbusow, Z. physik. Chem. 131, 58 (1928). (26) Beckmann, Faust, Z. physik. Chem. 89, 235-246 (1915). (27) Tsakalatos, Guye, J. chim. phys. 8, 348-350 (1910). (28) Eucken, Lindenberg, Ber. 75, 1961-1962 (1942). (29) Archibald, McIntosh, J. Am. Chem. Soc. 26. 305-306 (1904). (30) Timmermans, Bull. soc. chim. Belg. 25, 300-327 (1911); Cent. 1911, II 1015.
- (31) Skau, J. Phys. Chem. 37, 609-614 (1933). (32) Timmermans, van der Horst, Kamerlingh-Onnes, Cent. 1923, IV 377. (33) Bridgman, J. Chem. Phys. 9, 795 (1941); Proc. Am. Acad. Arts Sci. 74, 399-424 (1942). (34) Wheat, Browne, J. Am. Chem. Soc. 58, 2410-2413 (1936). (35) Michel, Bull. soc. chim. Belg. 48, 138 (1939). (36) Sameshima, Hiramatsu, Bull. Chem. Soc. Japan 9, 260-262 (1934). (37) Sapgir, Bull. soc. chim. Belg. 38, 401-402 (1929). (38) Wroczynski, Guye, J. chim. phys. 8, 201-203 (1910). (39) Kanolt, Sci. Papers U.S. Bur. Standards 20, 619-633 (1926). (40) Henning, Ann. Physik (4) 43, 292-294 (1914).
- (41) Keyes, Townshend, Young, J. Math. Phys. 1, 306, 310 (1922). (42) Smits, Berckmans. Proc. Acad. Sci. Amsterdam 21, 401-404 (1919); C.A. 13, 1175 (1919). (43) Davies, Evans, Whitehead, J. Chem. Soc. 1939, 645. (44) Conrad, Hall, J. Am. Chem. Soc. 57, 863-866 (1935). (45) Scatchard, Raymond, J. Am. Chem. Soc. 60, 1279 (1938). (46) Graffinder, Heymann, Z. Physik 72, 756 (1931). (47) Earp, Glasstone, J. Chem. Soc. 1935, 1709-1723. (48) Goss, J. Chem. Soc. 1940, 758. (49) Zawidski, Z. physik. Chem. 35, 147 (1900). (50) Williams, Daniels, J. Am. Chem. Soc. 46, 907 (1924).
- (51) Harris, J. Chem. Soc. 127, 1063-1064 (1925). (52) Hubbard, Z. physik. Chem. 74, 221-224 (1910). (53) Kanonnikoff, J. prakt. Chem. (2) 31, 352-353 (1885). (54) Brühl, Schröder, 224 (1910). (53) Kanonnkon, J. prakt. Chem. (2) 31, 352-353 (1885). (54) Brull, Schröder, Z. physik. Chem. 51, 520 (1905). (55) Beythien, Hennicke, Pharm. Zentralhalle 48, 1006 (1907). (56) Gladstone, J. Chem. Soc. 59, 293 (1891). (57) Stock, Stiebler, Ber. 56, 1089 (1923). (58) Drucker, Jiméno, Kangro, Z. physik. Chem. 90, 529 (1915). (59) Smyth, Morgan, J. Am. Chem. Soc. 50, 1554 (1928). (60) Gillo, Ann. chim. (11) 12, 303-326 (1939). (61) Hrynakowski, Szmyt, Z. physik. Chem. A-182, 405-412 (1938). (62) Grünert, Z. anorg. allgem. Chem. 164, 257 (1927). (63) Evans, Ind. Eng. Chem., Anal. Ed. 8, 206-208 (1936). (64) Gibby, Hall, J. Chem. Soc. 1931, 691-693. (65) Staverman, Rec. trav. chim. 60, 836-841 (1941).
- (66) Maxted, Moon, Trans. Faraday Soc. 32, 769-775 (1936). (67) Bell, J. Chem. Soc. 1931,

1376-1377. (68) Hamai, Science Repts. Tohoku Imp. Univ. (1) 25, 357-363 (1936); Cent. 1936, II 3784. (69) Howland, Miller, Willard, J. Am. Chem. Soc. 63, 2807-2811 (1941). (70) Hamai, Science Repts. Tohoku Imp. Univ. (1) 25, 344-356 (1936); Cent. 1936, II 3783.

(71) Grimbert, Malmy, Poirot, J. pharm. chim. (7) 29, 5-9 (1924); C.A. 18, 1413 (1924). (72) Malmy, J. pharm. chim. (8) 4, 111-114 (1926); C.A. 20, 3599 (1926). (73) Arctowski, Z. anorg. Chem. 11, 276 (1896). (74) Margosches, Hinner, Friedmann, Z. anorg. allgem. Chem. 137, 81-90 (1924). (75) Eugen Chirnoaga, Eugenia Chirnoaga, Z. anorg. allgem. Chem. 218, 273-300 (1934). (76) Brull, Ellerbrock, Z. anorg. allgem. Chem. 217, 353-366 (1933). (77) Gross, Simmons, Trans. Am. Inst. Chem. Engrs. 40, 121-141 (1944); C.A. 38, 3166 (1944). (78) Fischer, Pfleiderer, Z. anorg. allgem. Chem. 124, 61-69 (1922); Ges. Abhandl. Kenntnis Kohle, 5, 569-575 (1920). (79) Williams, Chem. News 122, 62 (1921); C.A. 15, 1113 (1921). (80) Just, Z. physik. Chem. 37, 354 (1901).

(81) Kunerth, Phys. Rev. (2) 19, 517 (1922).
(82) Chancel, Parmentier, Compt. rend. 100, 25 (1885).
(83) Timmermans, Bull. soc. chim. Belg. 37, 413-420 (1928).
(84) Wyatt, Trans. Faraday Soc. 25, 43-48 (1929).
(85) Smyth, Morgan, J. Am. Chem. Soc. 50, 1555 (1928).
(86) Leslie, Geniesse, Ind. Eng. Chem. 18, 590-596 (1926).
(87) Gordon, J. Am. Pharm. Assoc. 20, 15-17 (1930); C.A. 25, 4358 (1931).
(88) Wyatt, Trans. Faraday Soc. 25, 48-53 (1929).
(89) Zellhoefer, Copley, Marvel, J. Am. Chem. Soc. 60, 1343-1345 (1938).
(90) Kaplan, Monakhova, J. Gen. Chem. (U.S.S.R.), 7, 2499-2512 (1937); Cent. 1938, II 1572; C.A. 32, 2404 (1938).

(91) Verstraete, Bull. soc. chim. Belg. 43, 520-527 (1934).
(92) Kireev, Skvortsova, J. Phys. Chem. (U.S.S.R.) 7, 63-70 (1936); Cent. 1937, II 755; C.A. 31, 25 (1937).
(93) Kireev, Monakhova, J. Phys. Chem. (U.S.S.R.) 7, 71-76 (1936); Cent. 1937, II 755; C.A. 31, 25 (1937).
(94) van de Vloed, Bull. soc. chim. Belg. 48, 259 (1939).
(95) Litvinov, J. Phys. Chem. (U.S.S.R.)
14, 782-788 (1940); C.A. 36, 3998 (1942).
(96) van Klooster, J. Am. Chem. Soc. 35, 147 (1913).
(97) Hirshberg, Bull. soc. chim. Belg. 41, 182-184 (1932).
(98) Hand, J. Phys. Chem. 34, 1961-2000 (1931).
(99) Tarasenkov, Paulsen, Acta Physicochim. (U.R.S.S.) 11, 75-86 (1939).
(100) Brancker, Hunter, Nash, J. Phys. Chem. 44, 683-698 (1940).

(101) Bancroft, Hubard, J. Am. Chem. Soc. 64, 347-353 (1942). (102) Treybal, Ind. Eng. Chem. 36, 875-881 (1944). (103) Ewell, Welch, Ind. Eng. Chem. 37, 1224-1231 (1945). (104) Litvinov, Kozakevich, Zavodskaya Lab. 10, 43-46 (1941); C.A. 35, 5009-5010 (1941). (105) Reinders, de Minjer, Rec. trav. chrm. 59, 392-406 (1940). (106) Wright, Thompson, Leon Proc. Roy. Soc. (London) 49, 183-190 (1891). (107) Brancker, Hunter, Nash, Ind. Eng. Chem. 33, 880-884 (1941). (108) Hunter, Ind. Eng. Chem. 34, 963-970 (1942). (109) Ewell, Harrison, Berg, Ind. Eng. Chem. 36, 871-875 (1944). (110) Ryland, Am. Chem. J. 22, 390 (1899).

(111) Lecat, "L'Azeotropisme" (1918).
(112) Tyrer, J. Chem. Soc. 101, 1104-1113 (1912).
(113) Kireev, Sitnikov, J. Phys. Chem. (U.S.S.R.) 15, 492-499 (1941); C.A. 36, 6404 (1942).
(114) Redlich, Schutz, J. Am. Chem. Soc. 66, 1007-1011 (1944).
(115) Lecat, Ann. soc. sci. Bruzelles 48-B, I 54 (1928); Cent. 1928, II 854.
(116) de Kolossowsky, Alimow, Bull. soc. chim.
(5) 2, 688 (1935).
(117) Soday, Bennett, J. Chem. Education 7, 1336-1340 (1930).
(118) Lewis, Murphree, J. Am. Chem. Soc. 46, 7 (1924).
(119) de Landsberg, Bull. soc. chim. Belg. 49, 72-76 (1940); C.A. 35, 1283 (1941).
(120) Litvinov, J. Phys. Chem. (U.S.S.R.) 14, 562-570 (1940); C.A. 35, 2046 (1941).

(121) Levy, Ind. Eng. Chem. 33, 931 (1941). (122) Johnston, Pigford, Trans. Am. Inst. Chem. Engrs. 38, 25-51 (1942); C.A. 36, 1809 (1942). (123) Rosanoff, Bacon, White, J. Am. Chem. Soc. 36, 1814, 1822 (1914). (124) Miller, Bull. soc. chim. Belg. 53, 97-106 (1944); C.A. 40, 4565 (1946). (125) Robinson, Wright, Bennett, J. Phys. Chem. 36, 658-663 (1932). (126) Bates, Hazzard, Palmer, Ind. Eng. Chem. 33, 374-375 (1941). (127) Hutchinson, Trans. Faraday Soc. 41, 87-90 (1945). (128) Spencer, Flannagan, J. Am. Chem. Soc. 64, 2511-2513 (1942). (129) Vold, J. Am. Chem. Soc. 57, 1192-1195 (1935). (130) Harand, Monatsh. 65, 153-184 (1935).

(131) Centnerszwer, Lazniewski, Z. physik. Chem. A-169, 263-265 (1932). (132) Driver, Firth, J. Chem. Soc. 121, 2409-2414 (1922). (133) Alekseevskii, Zhur. Prikladnoi Khun. 1, 182-184 (1928); Cent. 1929, II 708; C.A. 23, 4390 (1929). (134) Alekseevskii, J. Russ. Phys. Chem. Soc. 55, 403-432 (1924); Cent. 1925, II 642; C.A. 20, 2609 (1926). (135) Alekseevskii, Musin, J. Applied Chem. (U.S.S.R.) 12, 704-719 (1939); C.A. 34, 2652 (1940). (136) Pearce, Reed, J. Phys. Chem. 35, 905-914 (1931). (137) Pearce, Johnstone, J. Phys. Chem. 34, 1260-1279 (1930). (138) Pearce, McKinley, J. Phys. Chem. 32, 360-379 (1938). (139) Tryhorn, Wyatt, Trans. Faraday Soc. 22, 134-138 (1926); Cent. 1926, II 1518; C.A. 20, 1545 (1926). (140) Coolidge, J. Am. Chem. Soc. 48, 596-627 (1924).

(141) Lamb, Coolidge, J. Am. Chem. Soc. 42, 1146-1170 (1920). (142) Migal, J. Gen. Chem. (U.S.S.R.) 5, 197-210 (1935); Cent. 1936, I 1590; C.A. 29, 5006 (1935). (143) Drucker, Ullmann, Z. physik. Chem. 74, 593-594 (1910). (144) Drucker, Z. Elektrochem. 16, 697 (1910). (145) Isselstein, Physik. Z. 29, 877 (1928). (146) Perry, J. Phys. Chem. 29, 1462-1468 (1925). (147)

Munro, Johnson, Ind. Eng. Chem. 17, 88-92 (1925). (148) Grimm, Raudenbusch, Wolff. Z. angew. Chem. 41, 106 (1928). (149) Palmer, Clark, Proc. Roy. Soc. (London) A-149, 375 (1935). (150) Perry, Ind. Eng. Chem. 19, 746-748 (1927).

(151) Chambers, King, J. Chem. Soc. 1940, 162. (152) Harbard, King, J. Chem. Soc. 1940, 19-29. (153) Higuti, Bull. Inst. Phys. Chem. Research (Tokyo) 18, 675-684 (1939); C.A. 34, 4959 (1940). (154) Nikitin, Yur'ev, J. Russ. Phys.-Chem. Soc. 61, 1029-1034 (1929); Cent. 1936, I 347; C.A. 24, 539 (1930). (155) Engel, Coull, Trans. Am. Inst. Chem. Engrs. 38, 947-965 (1942); C.A. 37, 16 (1943). (156) Stewart, Anesthesiology 2, 635-640 (1941); C.A. 36, 865 (1942). (157) Thelander, Med. J. Australia 27, 683-688 (1940). (158) Kunnemann, Deut. tierdrztl. Wochschr. 39, 621-622 (1931); Cent. 1931, II 3074. (159) Speter, Schmerz, Narkose-Anaesthesie 4, 261-264 (1931); Cent. 1932, I 2922. (160) Speter, Chem. Ztg. 55, 781-782 (1931); 56, 742-743 (1932): Pharm. Zentralhalle 72, 628-630 (1931).

(161) Cohen, Pharm. Weekblad 69, 363-368 (1932). (162) Liberalli, Rev. soc. brasil. chim. 2 379-384 (1931). (163) Sayers, Dalla Valle, Yant, Ind. Eng. Chem. 26, 1251-1255 (1934). (164) von Oettingen, J. Ind. Hyg. Toxicol. 19, 360-371 (1937). (165) Pestemer, Gubitz, Naturwissenschaften 22, 504-509 (1934). (166) Darzens, Mém. poudres 25, 437-439 (1932/33); Cent. 1934, II 2925; C.A. 28, 5671 (1934). (167) Malyaroff, Matskiewitsch, Mikrochemie 13, 85-90 (1933). (168) L. Givaudan and Cie, French 801,532, Aug. 6, 1936; Cent. 1936, II 3455; C.A. 31, 511 (1937). (169) Benedetti-Pichler, Schneider, Z. anal. Chem. 86, 69-80 (1931). (170) Webb, Kay, Nichol, J. Ind. Hyg. Toxicol. 27, 249-255 (1945).

(171) Frehden, Fürst, Mikrochim. Acta 3, 133-135 (1938). (172) Ware, Chemist and Druggist 123, 282 (1935); C.A. 30, 983 (1936). (173) Schwarz, Z. anal. Chem. 27, 668-669 (1888). (174) Weber, Chem. Zig. 57, 836 (1933); Cent. 1933, II 3889; C.A. 28, 727 (1934). (175) Weber, Chem. Ztg. 61, 807-808 (1937); Cent. 1938, I 950; C.A. 32, 74 (1938). (176) Rozeboom, Pharm. Weekblad 72, 689 (1935); Cent. 1935, II 2096; C.A. 29, 5386 (1935). (177) Schoorl, Pharm. Weekblad 72, 751 (1935); Cent. 1935, II 3954; [C.A. 29, 5986 (1935)]. (178) Hofmann, Ber. 3, 767 (1870). (179) Beyer, Biochem. Z. 302, 287-293 (1939), C.A. 34, 3203 (1940). (180) Treadwell, Zurcher, Helv. Chim. Acta 22, 1371-1380 (1939).

(181) Smyth, Ind. Eng. Chem., Anal. Ed. 8, 379 (1936). (182) Olsen, Smyth, Ferguson, Scheflan, Ind. Eng. Chem., Anal. Ed. 8, 260-263 (1936). (183) 'Official and Tentative Methods of Analysis of the Association of Official Agricultural Chemists," 6th Ed., 710-711 (1945). (184) Winteringham, J. Soc. Chem. Ind. 61, 186-187 (1942); C.A. 37, 1951 (1943). (185) Fabre, Ann. pharm. franc. 2, 108-115 (1944); C.A. 40, 5087 (1946). (186) Thomas, Ivie, Abersold, Hendricks, Ind. Eng. Chem., Anal. Ed. 15, 287-290 (1943). (187) Winteringham, J. Soc. Chem. Ind. 61, 190-192 (1942); C.A. 37, 1951 (1943). (188) Matchett, J. Assoc. Official Agr. Chem. 22, 761-764 (1939). (189) Roberts, Murray, Am. J. Pharm. 101, 654-657 (1929); C.A. 24, 916-917 (1930). (190) Matchett, J. Assoc. Official Agr. Chem. 14, 360-367 (1931).

(191) Kunke, J. Assoc. Official Agr. Chem. 12, 264-276 (1929). (192) Kulkarni, Indian J. Med. Research 32, 189-195 (1944); C.A. 40, 4101 (1946). (193) Kulkarni, Current Sci. 12, 324-325 (1943); C.A. 38, 5244 (1944). (194) Habgood, Powell, Brit. J. Ind. Med. 2, 39-40 (1945): C.A. 39, 5273 (1945). (195) Ussing, Acta Physiol. Scand. 9, 214-220 (1945); C.A. 39, 5272 (1945). (196) Adams, J. Pharmacol. 74, 11-17 (1942); C.A. 36, 1343 (1942). (197) Daroga, Pollard, J. Soc. Chem. Ind. 60, 218-222 (1941); C.A. 35, 7882 (1941). (198) Gettler, Blume, Arch. Path. 11, 554-560 (1931); Cent. 1931, II 2189; C.A. 25, 4935 (1931). (199) Cole, J. Biol. Chem. 71,

173-180 (1927). (200) Moffitt, Analyst 58, 2-4 (1933).

(201) Thouvenin, Ann. chim. anal. 26, 72 (1944); C.A. 40, 1117 (1946). (202) Fabre, Brard, J. pharm. chim. (8) 19, 5-14 (1934); Cent. 1934, I 3627; C.A. 28, 3841 (1934). (203) Francois, J. pharm. chim. (8) 19, 383-385 (1934); Cent. 1934, II 1502; C.A. 28, 4537 (1934). (204) Caron, Raquet, Flouquet, Produits pharm. 1, 224-226 (1946); C.A. 40, 5877 (1946). (205) Beal, Szalkowski, J. Am. Pharm. Assoc. 22, 223-227 (1933); Cent. 1933, I 3753; C.A. 27, 3897 (1933). (206) de Carvalho, Rev. quim. farm. 1, 136-137 (1936); Cent. 1937, II 1617; not in C.A. (207) Höst-Madsen, J. pharm. chim. (8) 21, 246-247 (1935); Cent. 1935, II 1216; C.A. 29, 4899 (1935). (208) Ciogolea, J. pharm. chim. (8) 19, 377-383 (1934); Cent. 1934, II 1502; C.A. 28, 4537 (1934). (209) Sivadjian, J. pharm. chim. (8) 9, 434-437 (1929); Cent. 1929, II 1830; C.A. 23, 5544 (1929). (210) Anger, Wang, Mikrochim. Acta 3, 24-26 (1938).

(211) Rosenthaler, Pharm. Acta Helv. 12, 6-7 (1937); Cent. 1937, I 3828; C.A. 31, 2358 (1927). (212) Allport, Analyst 56, 706-710 (1931). (213) Olsen, Ferguson, Sabetta, Scheffan, Ind. Eng. Chem., Anal. Ed. 3, 189-191 (1931). (214) Ullmann, "Enzyklopädie der technischen Chemie," 2nd revised ed. 3, 361-370 (1929). (215) Geuther, Ann. 107, 214-217 (1858). (216) Coupin, J. pharm. chim. (6) 3, 314-315 (1896); Cent. 1896, II 15; cf. Cent. 1896, I 362. (217) Smith, U.S. 753,325, March 1, 1904; not in either Cent. or C.A. (218) Coleman, Hadler (to Dow Chem. Co.), U.S. 2,095,240, Oct. 12, 1937; Cent. 1938, I 1218; C.A. 31, 8549 (1937). (219) Coleman, Hadler, Zuckermandel (to Dow Chem. Co.), U.S. 2,104,703, Jan. 4, 1938; Cent. 1938, I 3387; C.A. 32, 1718 (1938). (220) Soc. Chim. des Usines du Rhône, Ger. 416,014, July 7, 1925: French 586,006, Mar. 13, 1925; Cent. 1925, II 1795; not in C.A.

(221) Byers, van Ardsel, U.S. 1,534,027, April 21, 1925; Cent. 1925, II 91; [C.A. 19, 1667 (1925)]. (222) Richter, van Ardsel (to Brown Co.), U.S. 1,535,378, April 28, 1925; Cent. 1925, II 1223-1224; [C.A. 19, 1825 (1925)]. (223) Levine (to du Pont Co.), U.S. 1,975,727, Oct. 2, 1934; Cent. 1935, I 1934; [C.A. 28, 7268 (1934)]. (224) Croco (to Kinetic Chemicals, Inc.), U.S. 1,994,035, March 12, 1935; Cent. 1935, II 2580, [C.A. 29, 2974 (1935)]. (225) Griffith, Hunter, J. Chem. Soc. 125, 463 (1924). (226) Nicodemus, J. prakt. Chem. (2) 83, 312-322 (1911). (227) Böesseken, van der Scheer, de Voogt, Rec. trav. chim. 34, 78-95 (1915). (228) Carlisle (to du Pont Co.), U.S. 1,915,354, June 27, 1933; Cent. 1933, II 2503; C.A. 27, 4252 (1933). (229) Consortium für Elektrochemische Industrie, Ger. 339,914, Aug. 19, 1921; Cent. 1921, IV 910; not in C.A.: Ger. 347,460, Jan. 18, 1922; Cent. 1922, II 1110; not in C.A. (230) Orndorff, Jessel, Am. Chem. J. 10, 363-367 (1888).

(231) Baril, J. Chem. Education 17, 565-566 (1940). (232) Teeple, J. Am. Chem. Soc. 26, 536-543 (1904). (233) Tscherbakow, Russ. 7181, Dec. 31, 1928; Cent. 1930, II 132; not in C.A. (234) Feyer, Z. Elektrochem. 25, 115 (1919). (235) Fuson, Bull, Chem. Revs. 15, 275-309 (1934). (236) Aston, Newkirk, Dorsky, Jenkins, J. Am. Chem. Soc. 64, 1413-1416 (1942). (237) Ssuknewitsch, Tschilingarjan, Ber. 68, 1210-1216 (1935); 69, 1537-1542 (1936). (238) Fichter, Ruegg, Helv. Chim. Acta 20, 1578-1590 (1937). (239) Harris, Sherrard, Mitchell, J. Am. Chem. Soc. 56, 892 (1934). (240) Ramsay, Young, Jahresber. 1886, 620.

(241) Löb, Z. Elektrochem. 7, 903-921 (1901). (242) Joist, Lob, Z. Elektrochem. 11, 938-944 (1905). (243) Besson, Compt. rend. 116, 102-103 (1893). (244) Conduché, Compt. rend. 158, 1182 (1914). (245) Renz, Ber. 39, 249-250 (1906). (246) Lessig, J. Phys. Chem. 36, 2325-2337 (1932). (247) Herndon, Reid, J. Am. Chem. Soc. 50, 3070, 3073 (1928). (248) Verhoek, Trans. Faraday Soc. 31, 1525-1526 (1935). (249) Tarczynski, Z. Elektrochem. 22, 252-254 (1916). (250) Ref. 1, pp. 281-288, 362-364.

(251) Schoorl, van den Berg, Pharm. Weekblad 43, 8-10 (1906); Cent. 1906, I 442. (252) Schoorl, van den Berg, Pharm. Weekblad 42, 877-888 (1905); Cent. 1905, II 1623. (253) Moosler, Monatsh. 29, 573-581 (1908). (254) Hill, J. Am. Chem. Soc. 54, 32-40 (1932). (255) Chatterji, Dhar, Z. anorg. allgem. Chem. 191, 155-160 (1930). (256) Clover, J. Am. Chem. Soc. 45, 3133-3138 (1923). (257) Chapman, J. Am. Chem. Soc. 57, 419-422 (1935). (258) Chapman, J. Am. Chem. Soc. 57, 416-419 (1935). (259) Schumacher, Sundhoff, Z. physik. Chem. B-34, 300-308, (1936). (260) Schumacher, Wolff, Z. physik. Chem. B-26, 453-462 (1934).

(261) Harteck, Kopsch, Z. physik. Chem. B-12, 345-346 (1931). (262) Ref. 1, pp. 364-370. (263) Dewar, Cranston, Zeit. fur Chemie 1869, 734. (264) Emmerling, Lengyel, Ann. Suppl. 7, 101-103 (1870). (265) Biesalski, Z. angew. Chem. 37, 314-317 (1924). (266) Senderons, Aboulenc, Compt. rend. 202, 1548-1550 (1936). (267) Milbauer, Chem. Obzor 12, 57-62 (1937), Cent. 1937, II 1507; C.A. 31, 6093 (1937). (268) Mazurs, Z. anorg. allgem. Chem. 249, 278-280 (1942). (269) Armstrong, Ber. 2, 712-713 (1869); 3, 731 (1870); J. prakt. Chem. (2) 1, 249-250 (1870). (270) Harries, Ann. 343, 340 (1905).

(271) Erdmann, Ann. 362, 147-148 (1908). (272) Huff, U.S. Bur. Mines, Rept. Investigations 3794 (1945); C.A. 39, 1293 (1945). (273) Jorissen, Ongkiehong, Rec. trav. chim. 45, 636-637 (1926). (274) Greene, Jahresber. 1879, 490. (275) Bachrach, Oel-u. Fett- Ind. 10, No. 4, 42 (1934); Cent. 1935, II 1872; not in C.A. (276) Perkin, Zent. für Chemie 1868, 714. (277) Perkin, Chem. News 18, 106 (1868). (278) Thorpe, J. Chem. Soc. 37, 194 (1880). (279) Stock, Stiebler, Ber. 56, 1091 (1923). (280) Sabanejew, Ber. 9, 1810 (1876).

(281) Lieben, Zeit. für Chemie 1868, 712. (282) Fromherz, Schneller, Z. physik. Chem. B-26, 158-160 (1933). (283) Simons, Bond, McArthur, J. Am. Chem. Soc. 62, 3478-3479 (1940). (284) Osborne, Garner, Doescher, Yost, J. Am. Chem. Soc. 63, 3486-3499 (1941). (285) Benning, McHarness, Ind. Eng. Chem. 32, 497-499 (1940). (286) Benning, McHarness, Ind. Eng. Chem. 32, 814-816, 980 (1932). (287) Benning, McHarness, Ind. Eng. Chem. 32, 698-701 (1932). (288) Seger, Die Chemie 1942, 58-59. (289) Miller, J. Am. Chem. Soc. 62, 341-344 (1940). (290) Regnault, Ann. 33, 332-334 (1840).

(291) Gault, Truffault, Compl. rend. 179, 467 (1924). (292) Schumacher, Wolff, Z. physik. Chem. B-25, 161-176 (1934). (293) Schwab, Heyde, Z. physik. Chem. B-8, 147-158 (1930). (294) Schwab, Heyde, J. Phys. Chem. (U.S.S.R.) 2, 460-467 (1931); Cent. 1933, 1 20; not in C.A. (295) Taylor, Hanson, J. Chem. Phys. 7, 418-425 (1939). (296) S. S. Bhatnagar, N. A. Yajnik, P. L. Kapur, A. S. Bhatnagar, J. Indian Chem. Soc. 18, 350-358 (1941). (297) Aschan, Cent. 1919, I 220; C.A. 13, 2868 (1919). (298) Friedel, Silva, Bull. soc. chim. (2) 17, 537-539 (1872). (299) Dehn, J. Am. Chem. Soc. 31, 1225-1226 (1909). (300) Kharasch, Brown, J. Am. Chem. Soc. 51, 2144-2145 (1939).

(301) Paterno, Bull. soc. chim. (2) 17, 212 (1872). (302) LeCompte, Volkringer, Tchakirian, Compt. rend. 204, 1927-1928 (1937). (303) Braunwarth, Schumacher, Kolloid-Z. 89, 184-194 (1939); C.A. 34, 942 (1940). (304) Willard, Daniels, J. Am. Chem. Soc. 57, 2240-2245 (1935). (305) Schwab, Lober, Z. physik. Chem. A-186, 321-331 (1940). (306) Simons, Sloat, Meunier, J. Am. Chem. Soc. 61, 435-436 (1939). (307) Schumacher, Z. physik. Chem. B-42, 324-326 (1939). (308) Vesper, Rollefson, J. Am. Chem. Soc. 56, 1455-1461 (1934). (309) Franke, Schumacher, Z. physik. Chem. B-42, 297-323 (1939). (310) Besson, Bull. soc. chim. (3) 9, 174-175 (1880).

(311) Mills, J. Chem. Soc. 9, 641-642 (1871); Ann. 160, 117-120 (1871). (312) Pictet, Khotinsky, Ber. 40, 1165 (1907). (313) Trumbull, Sohl, Burt, Seaton, J. Ind. Eng. Chem. 12, 1068 (1920). (314) Trumbull, Seaton, Durham, J. Ind. Eng. Chem. 12, 1068-1069 (1920). (315) Prandtl, Sennewald, Ber. 62, 1754-1768 (1929). (316) Prandtl, Dollfus, Ber. 65, 754-759 (1932). (317) Vorlander, Guthke, Ber. 62, 549-554 (1929). (318) André, Jahresber. 1886, 627. (319)

Dumas, Ann. chim. (2) 56, 120 (1834). (320) Geuther, Ann. 123, 121-122 (1862).

(321) Desgrez, Compt. rend. 125, 780 (1897). (322) Thiele, Dent. Ann. 302, 273-274 (1898). (323) Benrath, Ann. 382, 232-233 (1911). (324) Matuszak, Ind. Eng. Chem., Anal. Ed. 6, 374-375 (1934). (325) Saunders, J. Phys Chem. 4, 660-674 (1900). (326) P. Petrenko-Kritschenko, D. Talmud, B. Talmud, W. Butmy-de-Katzman, A. Gandleman, Z. physik. Chem. 116, 313-318 (1925). (327) Petrenko-Kritschenko, Opotzky, Ber. 59, 2132 (1926). (328) Petrenko-Kritschenko, Ber. 61, 847, Note 3 (1928). (329) Raikov, Z. angew. Chem. 30, 278-280 (1917). (330)

Kippenberger, Arch. Pharm. 238, 85-87 (1900).

(331) Böeseken, Rec. trav. chim. 22, 306-307 (1903). (332) Pouret, Compt. rend. 130, 1191 (1900); Bull. soc. chim. (3) 25, 191-193 (1901). (333) Harlow, Ross (to Dow Chem. Co.), U.S. 1,891,415, Dec 20, 1932; Cent. 1933, I 1683; [C.A. 27, 1890 (1933)]. (334) Timmermans, Martin, J. chim. phys. 25, 416-417 (1928). (335) Spindler, Ann. 231, 263-264 (1885) (336) Berthelot. Ann. chm. (3) 51, 57 (1857). (337) Ruff, Ber. 69, 301-303 (1936). (338) Davis, McLean J. Am. Chem. Soc. 60, 720-722 (1938). (339) Staudinger, Z. Elektrochem. 31, 549-552 (1925). (340) Staudinger, Z. angew. Chem. 35, 658-659 (1922).

(341) Lenze, Metz, Z. ges. Schiess- u. Sprengstoffw. 27, 255-258, 293-296, 337-340, 373-376 (1932). (342) Saffer, Davis, J. Am. Chem. Soc. 67, 641-645 (1945) (343) von Hartel, Meer, Polanyi, Z. physik. Chem. B-19, 139-163 (1932). (344) Clogston, Underwriter's Lab., Bull. Research No. 34, 5-15 (1945), C.A. 40, 210 (1946). (345) Staub, Ann. chim. (12) 1, 105-156 (1946). (346) Tseng, Natl. Cent. Univ. (Nanking) Sci. Repts. A-1, No. 2, 1-4 (1931); Cent. 1938, 1 53; C.A. 26, 2166 (1932). Trans. Sci. Soc. China 7, 233-237 (1932). (347) Dieterle, Eschenbach, Ger. 537,610, Nov. 6, 1931; Cent. 1932, I 1155-1156; [C.A. 26, 1300 (1932)]. (348) Theobald (to du Pont Co.), U.S. 2,378,048, June 12, 1945; C.A. 39, 4085 (1945). (349) Kharasch, Jensen. Urry, Science 102, 128 (1945). (350) Schwarz, Ber. 14, 1516-1520 (1881).

(351) Friedel, Crafts, Ann. chim. (6) 1, 489-497 (1884); Bull. soc. chim. (2) 37, 6-11 (1882). (352) Allen, Kölliker, Ann. 227, 107-109 (1885). (353) Biltz, Ber. 26, 1960-1962 (1893). (354) Meissel, Bcr. 32, 2422-2423 (1899). (355) Chakrabarty, Dutt, J. Indian Chem. Soc. 5, 516 (1928).

(356) Ray, Dutt, J. Indian Chem. Soc. 5, 108 (1928). (357) Soroos, Hinkamp, J. Am. Chem. Soc. 67, 1642 (1945). (358) Forbes, Anderson, J. Am. Chem. Soc. 67, 1911-1914 (1945). (359) Heilbron, Hislop, Irving, J. Chem. Soc. 1936, 782-783. (360) Prins, Engelhaid, Rec. trav. chim.

**54**, 307-312 (1935).

(361) Prins, J. prakt. Chem. (2) 89, 415, 417, 421 (1914). (362) Prins, Ger. 261,689, July 2, 1913; Cent. 1913, II 394, [C.A. 7, 3641 (1913)]. (363) Farlow, Org. Syntheses Coll. Vol. 2 (1st ed.), 312-313 (1943); 17, 58-59 (1937). (364) Prins, Rec. trav. chim. 54, 249-252 (1935). (365) Ref. 361, pp. 414-415, 424 (1914). (366) Henne, Ladd, J. Am. Chem. Soc. 60, 2494 (1938). (367) Prins, Rec. trav. chim. 57, 659, 662, Note (1938). (368) Boeseken, Prins, Cent. 1911, I 466. (369) Prins, Rec. trav. chim. 51, 1065-1080 (1932). (370) Böeseken, van der Scheer, de Voogt, Rec. trav. chim. 34, 78-95 (1915).

(371) Bruson, Niederhauser, Riener, Hester, J. Am. Chem. Soc. 67, 601 (1945). (372) Niederhauser, Bruson (to Resinous Products and Chem. Co.), U.S. 2,379,097, June 26, 1945, C.A. 39. 4618 (1945). (373) I.G., French 793,731, Jan. 30, 1936; Cent. 1936, I 4074; [C.A. 30, 4514 (1936)]. (374) Sah, Ma, J. Am. Chem. Soc. 54, 2964-2966 (1932). (375) Deutsch, Ber. 12, 115-119 (1879). (376) Kaufmann, Dreger, Org. Syntheses Coll. Vol. 1 (2nd ed.), 258-261 (1941); (1st ed.), 253-256 (1932); 5, 55-58 (1925). (377) Chu, Shen, J. Chinese Chem. Soc. 10, 124-125 (1943); C.A. 38, 2930 (1944). (378) Post, Erickson, J. Am. Chem. Soc. 55, 3851-3854 (1933). (379) Post, "The Chemistry of Aliphatic Orthoesters," A.C.S. Monograph Series, No. 92 (1943). (380) Houben, Schultze, Ber. 44, 3235-3241 (1911).

(381) Backer, Stedehouder, Rec. trav. chim. 52, 440 (1933). (382) Gabriel, Ber. 10, 185-187 (1877). (383) Claesson, J. prakt. Chem. (2) 15, 176 (1877). (384) Post, J. Org. Chem. 5, 247 (1940). (385) Holmberg, Ber. 45, 364-365 (1912). (386) Holmberg, Ber. 40, 1740-1743 (1907).
(387) Houben, Ber. 45, 2942-2946 (1912). (388) Reimer, Tiemann, Ber. 9, 824-828, 1268-1278 (1876). (389) Sen, Ray, J. Indian Chem. Soc. 9, 173-179 (1932). (390) Armstrong, Richardson, J. Chem. Soc. 1933, 496-500.

(391) Hodgson, Jenkinson, J. Chem. Soc. 1927, 1740-1742. (392) Hodgson, Jenkinson, J. Chem. Soc. 1927, 3041-3044. (393) Hodgson, Jenkinson, J. Chem. Soc. 1929, 469-471. (394) Hodgson, Nixon, J. Chem. Soc. 1929, 1632-1639. (395) Hodgson, Jenkinson, J. Chem. Soc. 1929, 1639-1642. (396) Blume, Lindwall, J. Org. Chem. 10, 255-258 (1945). (397) Ochiai, Nagasawa, Ber. 72, 1470-1476 (1939). (398) Russell, Lockhart, Org. Syntheses 22, 63-64 (1942) (399) Arnold, Zaugg, Sprung, J. Am. Chem. Soc. 63, 1314-1316 (1941). (400) Auwers, Keil, Ber. 36, 1861-1867 (1903).

(401) Hodgson, J. Soc. Dyers Colourists 46, 39-44 (1930). (402) Gilman, Arntzen, J. Org. Chem. 10, 374-379 (1945). (403) Baines, Driver, J. Chem. Soc. 125, 907-908 (1924). (404) Auwers, Ber. 18, 2656-2657 (1885). (405) Tiemann, Ber. 15, 2685-2687 (1882). (406) Howard, J. Am. Chem. Soc. 47, 455-456 (1925). (407) Iozitsch, J. Russ. Phys.-Chem. Soc. 29, 97-103 (1897); Cent. 1897, I 1013-1014. (408) Rapson, Saunders, Stewart, J. Chem. Soc. 1944, 74-75. (409) Chattaway, Muir, J. Chem. Soc. 1934, 701-703. (410) Florence, Bull. soc. chm. (4) 49, 926-927 (1931).

(411) Howard, Castles, J. Am. Chem. Soc. 57, 376-377 (1935). (412) Howard, Stephens, J. Am. Chem. Soc. 60, 228-229 (1938). (413) Howard, J. Am. Chem. Soc. 57, 2317-2318 (1935). (414) Sah, Lei, Ma, Sci. Repts. Natl. Tsing Hua Univ. A-1, 209-214 (1932); Cent. 1932, II 3543-3544; C.A. 26, 5907 (1932). (415) Taffe, Roczniki Farm. 2, 99-107 (1923); Cent. 1924, II 304; C.A. 18, 2328 (1924). (416) Fisburn, Watson, J. Am. Pharm. Assoc. 28, 491-493 (1939); Cent. 1939, II 4464; C.A. 33, 9283 (1939). (417) Willgerodt, Ber. 14, 2451-2458 (1881). (418) Heilner (to Chem. Fabrik Dr. J. Wiernik and Co.), Ger. 515,539, Jan. 13, 1931; Cent. 1931, I 2394; C.A. 25, 2436 (1931). (419) Ekeley, Klemme, J. Am. Chem. Soc. 46, 1252-1254 (1924). (420) Howard, J. Am. Chem. Soc. 48, 774 (1926).

(421) Garland, Welch, J. Am. Chem. Soc. 53, 2414-2415 (1931). (422) Hofmann, Ber. 3, 767-768 (1870). (423) Gautier, Ann. chm. (4) 17, 215-233 (1869). (424) von Auwers, Ber. 66, 2125, 2138 (1927). (425) Lowry, Henderson, Proc. Roy. Soc. (London) A-136, 485-486 (1932). (426) Wöhler, Roth, Chem. Ztg. 50, 761-763, 781-782 (1926); Cent. 1926, Il 2704; [C.A. 21, 496-497 (1927)]. (427) Lemoult, Compt. rend. 143, 902 (1906), 148, 1603 (1909). (428) Hartley, J. Chem. Soc. 1928, 780-781. (425) Coates, Hinkel, Angel, J. Chem. Soc. 1928, 543. (430) Hofmann, Ann. 106, 109 (1868).

(431) Gauthier, Ann. chim. (4) 17, 233-248 (1869). (432) Davis, Yelland, J. Am. Chem. Soc. 59, 1998 (1937). (433) Hofmann, Ann. 144, 117-120 (1867). (434) Hammick, New, Sidgwick, Sutton, J. Chem. Soc. 1930, 1876-1878. (435) Nef, Ann. 270, 274-277 (1892). (436) Meunier, Desparmet, Compt. rend. 144, 274 (1907); Bull. soc. chim. (4) 1, 343 (1907). (437) Biddle, Goldberg, Ann. 310, 7 (1900). (438) Lindemann, Wiegrebe, Ber. 63, 1656-1657 (1930). (439) Nef, Ann. 270, 309-320 (1892). (440) Nef, Ann. 270, 320-322 (1892).

(441) Smith, Am. Chem. J. 16, 373-375 (1894). (442) New, Sutton, J. Chem. Soc. 1932, 1416-1419. (443) Breuer, J. Am. Chem. Soc. 57, 2236-2237 (1935). (444) Truchet, Compt. rend. 202, 1997-1998 (1936). (445) Horiuti, Sakamoto, Bull. Chem. Soc. Japan 11, 627-628 (1936); Cent. 1937, I 562; C.A. 31, 4189 (1937).

3:5060 OXALYL (DI)CHLORIDE 
$$O=C-C1$$
  $C_2O_2Cl_2$  Beil. II - 542  $II_1$ -(234)  $II_2$ -(508)

B.P. M.P. 
$$-10.0^{\circ}$$
 (3)  $D_4^{20} = 1.4785$  (3)  $n_D^{20} = 1.4316$  (3)  $62.1-62.3^{\circ}$  (2)  $-12.0^{\circ}$  (1)  $1.480$  (4)  $1.4301$  (4)  $61.1^{\circ}$  at 743 mm. (3)  $D_4^{13.4} = 1.4484$  (4)  $D_4^{12.9} = 1.4888$  (4)  $n_D^{12.9} = 1.43445$  (4)  $1.43395$  (4)  $1.43395$  (4)

[See also ethoxalyl chloride (3:5625).]

Colorless liq. whose vapors strongly attack respiratory passages. — Solns. of  $\bar{C}$  in ether, CHCl<sub>3</sub>, or alkanes are colorless, but those in phenol, anisole, thioethers, piperonal, and dipentene are yellow (5). — Note that the presence in samples of  $\bar{C}$  of phosphorous compds.

(such as might remain from the reagts, used in its prepn.) increases the refractive index (4); such contaminants may be removed by treatment with  $Cl_2$  and subsequent fractionation (4) (7). —  $\bar{C}$  is stable to fumg.  $H_2SO_4$ .

 $\bar{C}$  is an important reagent in organic synthesis; its reactions may conveniently be classified under four main types, viz.: (A) those in which it reacts as an acid chloride (either one or both groups being involved); (B) those in which it acts like a mixture of  $COCl_2$  (3:5000) + CO; (C) those in which it acts as a chlorinating agent; and (D) those in which it acts as a dehydrating agent. Examples of all these types will be found in the subsequent text, but naturally combinations of the distinctive types may occur simultaneously.

 $\bar{\mathbf{C}}$  is also employed in the preparation of various dyestuffs although these cannot be discussed here. [For toxicity of  $\bar{\mathbf{C}}$  see (6); for protection of stopcocks from action of  $\bar{\mathbf{C}}$  see (16).]

Preparation. [For prepn. of  $\bar{C}$  from anhydrous oxalic acid (1:0535) with PCl<sub>5</sub> (2 moles) (yields: 70% (8), 45–50% (1)) in pres. of an inert solid or liq. diluent (9) and even in units as much as 5 times the original (10), or with PCl<sub>3</sub> in POCl<sub>3</sub> in stream of Cl<sub>2</sub> (11), or with COCl<sub>2</sub> (3:5000) in pres. of tertiary amines (14) see indic. refs.; from dicthyl oxalate (1:1055) with PCl<sub>5</sub> (poor yields) see (12) (1) (13).]

[For prepn. of  $\bar{C}$  from COCl<sub>2</sub> (3:5000) + CO, or from CO + Cl<sub>2</sub> over suitable cat. at 200-400° and 200 atm. press., see (15).]

[For form. of  $\tilde{C}$  (19% yield (1)) from ethoxalyl chloride (3:5625) with PCl<sub>5</sub> in s.t. at 170° see (1).]

Pyrolysis or decomposition of  $\bar{C}$ .  $[\bar{C}$  on passing through tube at 600° (1) or on htg. at 340° for 70 hrs. in an evacuated s.t. (7) dec. quant. into COCl<sub>2</sub> (3:5000) and CO; note, however, that at 200°  $\bar{C}$  shows no trace of phospene even after 18 hrs. (7) and at ordinary temp. (when protected from light and moisture) can be preserved indefinitely.]

 $\overline{C}$  (1 mole) on slight warming with AlCl<sub>3</sub> (2 moles) in CS<sub>2</sub> dec. quant. (1) into phosgene (3:5000) + CO and may thus serve as a source of COCl<sub>2</sub> in Friedel-Crafts reactns. (see below).

C when exposed to light of any wave length below 3800 Å slowly dec., the final prods. being COCl<sub>2</sub> (3:5000) + CO although the initial prods. appear to include Cl<sub>2</sub> and CO (16); this photochemical decn. plays an important part in its use as a reagent for introduction of the —CO.Cl group (chloroformylation) (see below).

Behavior of  $\tilde{C}$  with inorganic reactants.  $\tilde{C}$  with liq. aq. or dil. aq. alk. yields quant. (1) CO + CO<sub>2</sub> + HCl, no trace of oxalic acid (1:0445) or of its semi-acid chloride being formed; however,  $\tilde{C}$  as vapor on treatment with steam does yield also some oxalic acid crystals (1).

 $[\bar{C}]$  in ether on treatment with dry H<sub>2</sub>S for several hrs. is unchanged, but if quinoline (2 moles) is added, vigorous reactn, occurs (1) with evolution of gaseous CO + COS.]

[ $\bar{C}$  on treatment with HBr gas for 12 hrs. gives (85% yield (7)) (17) (18) oxalyl (di)bromide [Beil. II<sub>1</sub>-(236), II<sub>2</sub>-(509)], b.p. 106° (18), 102-103° at 720 mm., 16-17° at 10 mm., f.p. -19.5° (7) (for study of thermal and photochemical decn. of this prod. see (18)). —  $\bar{C}$  with HI is reduced (7) yielding CO + I<sub>2</sub> (cf. phosgene (3:5000)).]

 $\bar{C}$  with 2 NaI in dry acetone yields quant. (41) CO + I<sub>2</sub> + 2NACl but  $\bar{C}$  with aq. NaI does not set free iodine giving instead the usual aqueous hydrolysis with formn. of CO + CO<sub>2</sub> + 2HCl (41).

[ $\overline{C}$  (2 moles) with As<sub>2</sub>O<sub>3</sub> (1 mole) gives (95% yield {19}) AsCl<sub>3</sub>, b.p. 130°; similarly  $\overline{C}$  with dry CrO<sub>3</sub> refluxed 5 hrs. gives (80% yield {19}) chromyl chloride, CrO<sub>2</sub>Cl<sub>2</sub>, b.p. 114–116° at 748 mm.]

 $[\tilde{C} \text{ in } C_6H_6 \text{ with } H_2 \text{ in pres. of Pd/BaSO}_4 \text{ cat. gives only gaseous products, no trace of glyoxal or glyoxylic acid being formed (20).]}$ 

 $\ddot{\mathbf{C}}$  in  $\mathbf{C_6H_6}$  with NH<sub>3</sub> gas in cold reacts vigorously yielding (21) oxalic acid diamide (oxamide) [Beil. II-545, II<sub>1</sub>-(237), II<sub>2</sub>-(509)], m.p. above 400° (and therefore useless as derivative for identification), + NH<sub>4</sub>Cl. —  $\ddot{\mathbf{C}}$  with hydrazine hydrate (excess) presumably yields oxalic acid dihydrazide ("oxalhydrazide") [Beil. II-559, II<sub>1</sub>-(243), II<sub>2</sub>-(514)], m.p. 244° dec., although this method of prepn. seems to be unreported.

 $[\bar{C} \text{ with K/Na alloy is (like many halogen compds.) sensitive to detonation by mechanical shock (GREAT DANGER) cf. (22). — For behavior of <math>\bar{C}$  with other metals see (7).]

Behavior of  $\bar{C}$  with organic reactants. Reaction of  $\bar{C}$  with alkanes and cycloalkanes. [C with satd. aliphatic hydrocarbons and with cycloparaffins in pres. of light and peroxides reacts to replace 1 H atom by the —CO.Cl group (22) (10); since this group represents the radical corresponding to the unisolatable acid chloride of formic acid, the process might well be designated as "chloroformylation"; however, since the resultant prods. may readily be hydrolyzed to the corresp. carboxylic acids, the process has also (unfortunately) been designated as "carboxylation." - E.g., C (1 mole) with cyclohexane (1:8405) (2 moles) + dibenzoyl peroxide (0.005 mole) refluxed for 24 hrs. in light from low-press. Hg vapor lamp (10) or 300-watt tungsten lamp (23) gives (yields: 85% (23), 65% (10)) cyclohexanecarboxylic acid chloride (hexahydrobenzoyl chloride) (3:8580). — Note that neither simple olefins such as 2-methylbutene-2 (1:8220), octene-1 (1:8375), hexadecene-1 (cetene) (1:7000), nor cycloalkenes such as cyclohexene (1:8070) undergo this type of reactn. (24), although phenylethylene (styrene) (1:7435) gives cinnamoyl chloride (3:0330) (9% yield of cinnamic ac. after hydrolysis (24)) and phenylacetylene (1:7425) gives  $\beta$ -chlorocinnamoyl chloride (16% yield of  $\beta$ -chlorocinnamic acid after hydrolysis (24)). — Note also that C under similar conditions with aralkyl hydrocarbons chloroformylates the side chain but yields are very low (5-10%) (25)

Reactions of  $\tilde{C}$  with aromatic hydrocarbons. [ $\tilde{C}$  with aromatic hydrocarbons (R.H.) in pres. of AlCl<sub>3</sub> shows both (A) and (B) types of reactn. mentioned above in 2nd paragraph; on one hand (A)  $\tilde{C}$  reacts like phosgene yielding R.CO.Cl (which during the usual subsequent treatment is hydrolyzed to the corresp. acid) and ketones of the type R<sub>2</sub>CO; on the other (B)  $\tilde{C}$  reacts with 2 PH as a bifunctional acid chloride yielding the corresp. 1,2-diketones, which with some of the polycyclic hydrocarbons comprise new cyclic systems of the quinone type. Examples of these various combinations are listed below.]

[ $\bar{C}$  with  $C_6H_6+AlCl_3$  in  $CS_2$  gives according to mode of procedure either (1) 100% yield benzoyl chloride (3:6240) or 89% yield diphenyl ketone (benzophenone) (1:5150); note that no benzil (dibenzoyl) (1:9015) is formed here although it has been obtd. (in small proportion) together with benzophenone from oxalyl (di)bromide with  $C_6H_6+AlBr_3$  in  $CS_2$  (17). — $\bar{C}$  with toluene + AlCl<sub>3</sub> in  $CS_2$  gives (65% yield (26)) p-toluic acid (1:0795). — $\bar{C}$  with o-xylene (1:7430) + AlCl<sub>3</sub> in  $CS_2$  gives (75–80% yield (27)) (26) 3,4-dimethylbenzoic acid [Beil. IX-535, IX<sub>1</sub>-(210)], m.p. 166°, accompanied by some 3,4,3',4'-tetramethylbenzil (4,4'-o-xylil), m.p. 128.5° cor. (27);  $\bar{C}$  with m-xylene (1:7420) similarly gives (40–50% yield (26)) 2,4-dimethylbenzoic acid [Beil. IX-531, IX<sub>1</sub>-(290)], m.p. 126°;  $\bar{C}$  similarly with p-xylene (1:7415) gives (100% yield (26)) 2,5-dimethylbenzoic acid [Beil. IX-534, IX<sub>1</sub>-(210)], m.p. 132°. — $\bar{C}$  with ethylbenzone (1:7410) gives (29) p-ethylbenzoic acid [Beil. IX-529], m.p. 112°.]

[ $\bar{C}$  with arom. hydrocarbons contg. two uncondensed benzene nuclei shows a distinct tendency to yield dicarboxylic acids despite the fact that the first member is exceptional. E.g.,  $\bar{C}$  with biphenyl (1:7175) + AlCl<sub>3</sub> in CS<sub>2</sub> gives (30) 40% yield di-p-xenyl ketone, m.p. 236°, + 25% p-xenil, m.p. 140-141°, although the formation in 75% yield of p-phenyl-benzoic acid (p-xenoic acid) [Beil. IX-671, IX<sub>1</sub>-(280)], m.p. 224°, has also been reported (31); for examples of dicarboxylic acid formn. from  $\bar{C}$  + AlCl<sub>3</sub> with 2,2'-dimethylbiphenyl (26), diphenylmethane (32), phenyl p-tolylmethane (26), di-p-tolylmethane (26),  $\alpha,\beta$ -

diphenylethane (bibenzyl) (32),  $\alpha,\beta$ -diphenylethylene (stilbene) (32), triphenylmethane (32), see indic. refs.]

[ $\bar{\mathbf{C}}$  with polycyclic arom. hydrocarbons frequently, but not always, also gives polycyclic quinones; e.g.,  $\bar{\mathbf{C}}$  with naphthalene (1:7200) + AlCl<sub>3</sub> in CS<sub>2</sub> gives (35) a mixt. of  $\alpha$ -naphthoic acid (1:0785) +  $\beta$ -naphthoic acid (1:0800);  $\bar{\mathbf{C}}$  with 2-methylnaphthalene (1:7605) + AlCl<sub>3</sub> in CS<sub>2</sub> gives (33) a mixt. of acids + 2,2'-dimethylnaphthil + 3-methylacenaphthene-quinone-1,2; for analogous results with 1,6-, 2,6-, and 2,7-dimethylnaphthalenes see (33) (34);  $\bar{\mathbf{C}}$  with anthracene + AlCl<sub>3</sub> in CS<sub>2</sub> gives (70% yield (35)) aceanthrenequinone (1,9-oxalylanthracene) [Beil. VII<sub>1</sub>-(436)], red pr. from C<sub>6</sub>H<sub>6</sub>, m.p. 270°, accompanied by some anthracene-9-carboxylic acid (meso-anthroic acid).]

[For behavior of  $\bar{C}$  + AlCl<sub>3</sub> with 2-methylanthracene (36) (38), 1,2-dibenzanthracene (37), retene or dihydroretene (39), or fluoranthene (40) see indic. refs.; many analogous cases are known but cannot be included here.]

Reaction of  $\bar{C}$  with alcohols and thiols. [ $\bar{C}$  with 2 moles primary alcs. especially in pressof pyridine yields corresp. neutral esters: e.g.,  $\bar{C}$  with MeOH (1:6120) (2 moles) gives dimethyl oxalate (1:0415), m.p. 54°;  $\bar{C}$  with EtOH (1:6130) (2 moles) gives diethyl oxalate (1:1055), b.p. 185°; for analogous behavior of  $\bar{C}$  with n-propyl alc. (1:6150) yielding di-n-propyl oxalate (1:3726), with isobutyl alc. (1:6165) yielding di-isobutyl oxalate (1:3897), with isoamyl alc. (1:6200) yielding disoamyl oxalate (1:4181) all in 100% yield see (42). — $\bar{C}$  with secondary alcs. (2 moles) also yields (42) (50) the corresp. neutral esters, but yields are less satisfactory and the ability of  $\bar{C}$  to act as a dehydrating agent begins to become evident (42); c.g.,  $\bar{C}$  with methyl-phenyl-carbinol (1:6475) yields no ester, but only phenylethylene (styrene) (1:7435). — $\bar{C}$  with tertiary alcs. replaces OH by Cl; e.g.,  $\bar{C}$  with ter-butyl alc. (1:6140) gives ter-butyl chloride (3:7045);  $\bar{C}$  with triphenylcarbinol (1:5985) gives chlorotriphenylmethane (3:3410) (42).]

[Note that  $\bar{C}$  with only 1 mole of primary alcs. yields the corresponding half esterification prods.; e.g.,  $\bar{C}$  (1 mole) with EtOH (1:6130) (1 mole) gives (60% yield (43)) ethoxalyl chloride (3.5625); for other examples together with use of such oxalic ester chlorides in prepn. of cellulose esters see (43).]

[C with ethylene glycol (1:6465) (1 mole) directly (42) or in pyridine (44) or in dry ether (45) gives (57% yield (45)) monomeric ethylene glycol oxalate (2,3-dioxodioxane-1,4) [Beil. XIX-153, XIX<sub>1</sub>-(679)], m.p. 143° (45), 149° (44), 153° (42); for relationships of this monomer to the polymeric forms see (46).]

[ $\bar{C}$  with CH<sub>3</sub>SH (2 moles) (13) in dry ether (47) gives dimethyl dithioloxalate [Beil. II-565, II<sub>2</sub>-(514)], yel. cryst. from ether or lgr., m.p. 82.5-83.5° (13), 80° (47), b.p. 218° at 760 mm. (47). —  $\bar{C}$  with EtSH (2 moles) (13) (48) in dry ether (1) gives diethyldithioloxalate [Beil. II-565, II<sub>1</sub>-(244)], m.p. 27-27.5° (13), 24-25° (1), b.p. 238-240° at 757 mm. (1), 235° (13).]

Behavior of  $\bar{C}$  with phenols and thiophenols. [ $\bar{C}$  (1 mole) with phenol (2 moles) in dry ether with metallic Na (2 moles) gives (21% yield (49)) diphenyl oxalate [Beil. VI-155, VI<sub>1</sub>-(87)], m.p. 134° u.c. (49). — $\bar{C}$  (1 mole) with  $\sigma$ -cresol (1:1400) (2 moles) + Na similarly gives (49) di- $\sigma$ -otolyl oxalate [Beil. VI-355], ndls. from alc., m.p. 90-91° u.c. (49);  $\bar{C}$  with  $\sigma$ -cresol (1:1730) similarly gives (49) di- $\sigma$ -tolyl oxalate [Beil. VI-379, VI<sub>1</sub>-(187)], ndls. from alc., m.p. 105° u.c. (49);  $\bar{C}$  with  $\sigma$ -cresol (1:1410) similarly (49) or in pyridine (51) gives di- $\sigma$ -tolyl oxalate [Beil. VI-398, VI<sub>1</sub>-(201)], pl. from alc. + ether, m.p. 148° (49), 147° (51); for similar behavior of still other phenols see (51).]

[Note, however, that  $\tilde{C}$  (1 mole) with phenols (1 mole) in pres. of AlCl<sub>3</sub> leads to monoesterification followed by elimination of HCl and ring closure; e.g.,  $\tilde{C}$  (1 mole) with  $\beta$ -naphthol (1:1540) + AlCl<sub>3</sub> in CS<sub>2</sub> gives (85% yield (52) (53)) 4,5-benzocumarandione-2,3 [Beil. XVII<sub>1</sub>-(267)], orange ndls. from AcOH, m.p. 180-181° (52).]

[For behavior of  $\bar{C}$  with resorcinol (1:1530) + Na or K in moist ether see (54).]

[ $\bar{C}$  with  $\beta$ -thionaphthol (2-mercaptonaphthalene) + AlCl<sub>3</sub> in CS<sub>2</sub> esterifies and ringcloses with loss of HCl yielding (55) 4,5-benzothiocumarandione-2,3 (4,5-benzothionaphthenequinone-2,3), red pdr., m.p. 153°. — For extension of this type of reactn. to prepn. of halogenated thionaphthisatins from  $\bar{C}$  with halogenated 1- or 2-mercaptonaphthalenes + AlCl<sub>3</sub> see (56+.]

[For behavior of C with dithiopyrocatechol (o-dimercaptobenzene) see (57).]

[For study of a series of molecular cpds. of C with various hydroxy-azo compds. see (58). Behavior of C with phenol ethers. [C with mononuclear phenol ethers + AlCl3 reacts in general according to types A and B of paragraph 2 (above) so that after aqueous treatment involved in destroying the AlCl<sub>3</sub> there results either a diketone or a carboxylic acid; which of these is formed or their proportion varies with nature of components and with conditions. E.g., C (1 mole) with ansole (methyl phenyl ether) (1:7445) (2 moles) + AlCl<sub>3</sub> (2 moles) in CS<sub>2</sub> gives (yields: 90% (59), 80% (60), 76% (17)) anisil (4,4'-dimethoxybenzil) [Beil. VIII-428, VIII<sub>1</sub>-(705)], golden-yel. ndls. from alc., m.p. 133° (60), 132° (59); C (1 mole) with phenetole (ethyl phenyl ether) (1:7485) (2 moles) + AlCl<sub>3</sub> in CS<sub>2</sub> gives (80% yield (29)) phenetil (4,4'-diethoxybenzil), pr. from ether + alc., m.p. 149°;  $\overline{C}$  similarly with o-cresol methyl ether (1:7480) + AlCl<sub>3</sub> in CS<sub>2</sub> gives (76% yield (61)) (59) 4,4'-dimethoxy-3,3'-dimethylbenzil, pale yel. ndls. from AcOH, toluene, or pyridine, m.p. 177° (61), 174° (59). — Note, however, that  $\bar{C}$  with m-cresol methyl ether (1:7510) + AlCl<sub>3</sub> in CS<sub>2</sub> yields no diketone, but only (59) 2-hydroxy-6-methylbenzoic acid (6-methylsalicylic acid) [Beil. X-217, X<sub>1</sub>-(95)], m.p. 168°; C with p-cresol methyl ether (1:7495) gives no diketone but only (12% yield (59)) 2-hydroxy-5-methylbenzoic acid (5-methylsalicylic acid) [Beil. X-227, X<sub>1</sub>-(98)], m.p. 149° (59). — Many analogous cases of each type are known but cannot be included here.]

[ $\bar{C}$  with pyrocatechol dimethyl ether (veratrole) (1:7560) + AlCl<sub>3</sub> gives (60) 2,3,2',3'-tetramethoxybenzophenone;  $\bar{C}$  with resorcinol dimethyl ether (1:7570) gives (60) 2,4,2',4'-tetramethoxybenzophenone;  $\bar{C}$  with hydroquinone dimethyl ether (1:7160) gives (60) 2,5,2',5'-tetramethoxybenzophenone, but  $\bar{C}$  with orcinol dimethyl ether (3,5-dimethoxytoluene) + AlCl<sub>3</sub> gives (29) by ring closure 6-methoxy-4-methylcoumarandione-2,3, m.p. 165° (29).]

Behavior of  $\bar{C}$  with organic acids or their derivatives. [ $\bar{C}$  with silver oxalate in dry ether does not yield the unknown oxalic anhydride but instead immediately evolves CO + CO<sub>2</sub> until all the salt has disappeared (1).]

[C with organic acids, their salts, or their anhydrides, gives the corresp. acid chlorides in good yield (19); furthermore under appropriate conditions C with aromatic acids gives good yields (50) of the corresp. arom. anhydrides; for numerous examples see indic. refs.]

Behavior of C with amines or their derivatives. C with primary or secondary amines (2 moles) reacts normally as a bifunctional acid chloride yielding corresp. N-substituted oxamides (see also below under D's).

[Note, however, that with amine salts reaction takes a different course. — E.g.,  $\bar{C}$  with aniline hydrochloride at 15° evolves HCl and gives (100% yield (62)) oxanilyl chloride,  $C_6H_5.NH.CO.CO.Cl$  [Beil. XII-283, XII<sub>1</sub>-(206)], pr. from pet. ether, m.p. 82.5°;  $\bar{C}$  with  $\alpha$ -naphthylamine.HCl in chlorobenzene at 15° similarly yields (12) N-( $\alpha$ -naphthyl)oxamidyl chloride,  $C_{10}H_7.NH.CO.CO.Cl$ , m.p. 86° (62);  $\bar{C}$  with  $\beta$ -naphthylamine.HCl similarly yields (62) N-( $\beta$ -naphthyl)oxamidyl chloride, ndls. from  $C_6H_6$ , m.p. 114–115° dec. (62). — Note that these prods. with condensing agents such as AlCl<sub>3</sub>.FeCl<sub>3</sub> or  $H_2SO_4$  ring-close with loss of HCl to yield homologs of isatin: e.g., N-( $\alpha$ -naphthyl)oxamidyl chloride + AlCl<sub>3</sub> at 80–85° for 8 hrs. gives (63) 6,7-benzoisatin [Beil. XXI-524, XXI<sub>1</sub>-(414)] ("1,2-naphthisatin"), red ndls., m.p. 255°; N-( $\beta$ -naphthyl)oxamidyl chloride with AlCl<sub>3</sub> in

nitrobenzene at 80° gives (75-80% yield (63)) 4,5-benzoisatin ("2,1-naphthisatin") [Beil. XXI-525, XXI<sub>1</sub>-(415)], m.p. 252-253°.]

[Note, furthermore, that the above general synthesis of isatin homologs can be carried out starting with N-acylated arom. amines: e.g.,  $\bar{C}$  with Na salt of N-(p-toluenesulfonyl)-p-toluidide in CS<sub>2</sub> splits out NaCl giving (64) N-(p-toluenesulfonyl)-N-(p-tolyl)oxamidyl chloride, cryst. from C<sub>6</sub>H<sub>6</sub>, m.p. 91–93° (64); this prod. on htg. with AlCl<sub>3</sub> loses HCl and ring-closes to N-(p-toluenesulfonyl)-5-methylisatin, cryst. from AcOH or C<sub>6</sub>H<sub>6</sub>, m.p. 202–205°, hydrolysis of which by stdg. 1 day with conc. H<sub>2</sub>SO<sub>4</sub> yields (64) 5-methylisatin [Beil. XXI-509, XXI<sub>1</sub>-(401)], red ndls. from aq. or alc., m.p. 187°.]

[For analogous reactn. of  $\tilde{C}$  with secondary arom, amines and ring closure to N-substituted isatins see (65).]

·[C with N,N-dimethylaniline gives various prods. according to conditions: C (1 mole) with dimethylaniline (2 moles) in dry ether in cold gives (100% yield (66)) (p-dimethylaminobenzoyl) formyl chloride, (CH<sub>3</sub>)<sub>2</sub>N.C<sub>6</sub>H<sub>4</sub>.CO.CO.Cl, stable only in soln. and on treatment with aq. giving (80% yield (66)) (p-dimethylaminobenzoyl) formic acid, golden-yel. Ifts. from AcOH or MeOH, m.p. 186–187° dec.; C (1 mole) with dimethylaniline (4 moles) in C<sub>6</sub>H<sub>6</sub>, stood 15 hrs. in cold, then heated gives tetramethyldiaminobenzil + the carbinol base of "Crystal Violet" (for many further details see (66)); for use of C in prepn. of "Crystal Violet" see (67).]

[C with o-aminothiophenol (80) or with its Zn salt (68) at 60-80° until reactn. begins, then htd. at 100° for 1 hr., gives (60% yield (68)) bis-2,2'-benzothiazolyl [Beil. XXVII-744, XXVII<sub>1</sub>-(626)], m.p. 300.5° u.c. (68), 304° (80); similarly C with Zn salt of o-amino-selenophenol gives (69) bis-2,2'-benzoselenazolyl, m.p. 314° u.c. (69).]

Behavior of  $\bar{C}$  with certain amides. [ $\bar{C}$  with urea directly or in ether gives (8) (21) parabanic acid (N,N')-oxalylurea) [Beil. XXIV-449, XXIV<sub>1</sub>-(401)], cryst. from alc., m.p. 244°, accompanied by more or less oxaldiureide, insol.. m.p. 270-275° dec. (8). —  $\bar{C}$  with N,N'-dimethylurea gives (70% yield (8)) N,N'-dimethylparabanic acid [Beil. XXIV-453, XXIV<sub>1</sub>-(404)], m.p. 154° (8). —  $\bar{C}$  with N-phenylurea in ether refluxed 3 hrs. gives (88% yield (8)) N-phenylparabanic acid [Beil. XXIV-454, XXIV<sub>1</sub>-(405)], lfts. from alc., m.p. 213-214° cor., after sintering at 208° (8). —  $\bar{C}$  with N,N'-diphenylurea in ether gives (100% yield (8)) N,N'-diphenylparabanic acid [Beil. XXIV-455, XXIV<sub>1</sub>-(405)], ndls. from alc., m.p. 202° cor., after prelim. sintering (8).]

[For examples of condensation of  $\bar{C}$  with various other amides see (21) (70) (71) (73); with various amino acids see (72).]

Behavior of  $\bar{C}$  with carbonyl compounds. [ $\bar{C}$  with ketones often acts like PCl<sub>5</sub> by replacing the oxygen with 2 chlorine atoms with evolution of CO + CO<sub>2</sub>: for many specific examples see (74); also note that  $\bar{C}$  with xanthone (1:7275) gives (75) (76) xanthone dichloride;  $\bar{C}$  with N-methyl- or N-phenylacridone gives (77) dichlorides.]

Behavior of  $\bar{C}$  with organometallic compounds. .[ $\bar{C}$  with nickel carbonyl reacts according to equation Ni(CO)<sub>4</sub> + (CO.Cl)<sub>2</sub>  $\rightarrow$  NiCl<sub>2</sub> + 6CO (13). — $\bar{C}$  with Et<sub>2</sub>Cd (from C<sub>2</sub>H<sub>5</sub>MgBr + CdCl<sub>2</sub>) gives (27% yield (77)) 3-ethylhexanol-3-one-4 (diethyl-propionyl-carbinol) [Beil. I-841, I<sub>2</sub>-(881)], b.p. ·178-179° (78). — For interference of  $\bar{C}$  with the Michler's ketone test for RMgX cpds. see (79).]

② Oxalyl (di)chloride/1,4-dioxane mol. cpd.: ndls. or pr. from pet. ether, m.p. 67-68° (81). [From C with 5 wt. pts. dioxane-1,4 (1:6400) in 25 vols. pet. ether at −5° in stream of dry air or N₂; the 1:1 mol. cpd. ppts. in 71-78% yield (81). — Note that this prod. may with aniline be converted to oxanilide (see below) or may be dislyd. in excess stand. alk. and titrated back with stand. acid; furthermore, on stdg. in moist air, it is quant. converted to oxalic acid dihydrate (1:0445). — Note also that

- under same conditions no ppt. results with acetyl chloride (3:7065), benzoyl chloride (3:6240), malonyl (di)chloride (3:9030), succinyl (di)chloride (3:6200), fumaryl (di)chloride (3:5875), sym.-phthaloyl (di)chloride (3:6900), unsym.-phthaloyl (di)chloride (3:2395) or terephthaloyl (di)chloride (3:2205) (81).]
- Oxanilide (oxalic acid dianilide): pl. from C<sub>6</sub>H<sub>6</sub> or nitrobenzene m.p. 254° (21) 252-253° (71). [From C̄ + aniline in cold ether or from C̄ + aniline hydrochloride in boilg. C<sub>6</sub>H<sub>6</sub> (21); note that by virtue of the relative insolubility of oxanilide and its easy quantitative formn. it is often employed as means for quant. detn. of C̄ cf. (1). Note also that the half reactn. prod. oxanilyl chloride m.p. 82.5° has been mentioned above in main text.]
- —— Oxal-bis-(p-toluidide): m.p. 268° (cf. 1:0445).
- —— Oxal-bis-( $\alpha$ -naphthalide): m.p. 234°.
- Oxal-bis-( $\beta$ -naphthalide): m.p. 275°.
- **© Oxal-bis-(phenylhydrazide):** cryst. from alc. or AcOH m.p. 278° (82). [From  $\bar{C}$  (1 mole) in  $C_6H_6$  with phenylhydrazine (4 moles) in dry ether (82).]
- --- Oxal-bis-(p-nitrophenylhydrazide): unreported.
- —— Oxal-bis-(2,4-dinitrophenylhydrazide); yel. cryst. from alc. m.p. 292° after darkening at about 270°. [Prepd. indirectly.]
- 3:5060 (1) Staudinger, Ber. 41, 3558-3566 (1908). (2) Kohlrausch, Pongratz, Ber. 67, 986 (1934). (3) Martin, Partington, J. Chem. Soc. 1936, 1181 (4) von Auwers, Schmidt, Ber. 46, 476-477 (1913). (5) Purvis, Jones, Tasker, J. Chem. Soc. 97, 2296 (1910). (6) Gerbis, Zentr. Gewerbehyg. Unfallverhut, 16, 293-294 (1929); Cent. 1930, I 1016; not in C.A. (7) Staudinger, Anthes, Ber. 46, 1431-1436 (1913). (8) Biltz, Topp, Ber. 46, 1392-1404 (1913). (9) Staudinger, Ger. 216,918, 216,919, Dec. 11, 1909; Cent. 1910, I 307. (10) Kharasch, Brown, J. Am. Chem. Soc. 64, 329-333 (1942).
- (11) Shtokman, Russ. 52,894, March 31, 1938; Cent. 1939, I 797; C.A. 34, 5468 (1940). (12) Fauconnier, Compt. rend. 114, 122 (1892). (13) Jones, Tasker, J. Chem. Soc. 95, 1904–1909 (1909). (14) Soc. Chem. Ind. Busel, Brit. 401,643, Dec. 14, 1933; Cent. 1934, II 2134; French 732,078, Sept. 12, 1932; Cent. 1934, I 287. (15) Wiezevich (to Standard Oil Development Co.), U.S. 2,055,617, Sept. 29, 1936; Cent. 1937, I 429; C.A. 30, 7586 (1936). (16) Krauskopf, Rollefson, J. Am. Chem. Soc. 58, 443–448 (1936). (17) Staudinger, Ber. 45, 1594–1596 (1912). (18) Tuttle, Rollefson, J. Am. Chem. Soc. 63, 1525–1530 (1941). (19) Adams, Ulich, J. Am. Chem. Soc. 42, 599–611 (1920). (20) Froschl, Maier, Monatsh. 59, 260–261, 268–269 (1932).
- (21) Bornwater, Rec. trav. chim. 31, 105-141 (1912). (22) Staudinger, Z. angew. Chem. 35, 658 (1922). (23) Kharasch, Brown, J. Am. Chem. Soc. 62, 454 (1940). (24) Kharasch, Kane, Brown, J. Am. Chem. Soc. 64, 333-334 (1942). (25) Kharasch, Kane, Brown, J. Am. Chem. Soc. 64, 1621-1624 (1942). (26) Liebermann, Rahts, Ber. 45, 1204-1207 (1912). (27) Coffey, Rec. trav. chim. 42, 426-428 (1923). (28) Scholl, Meyer, Keller, Ann. 513, 298 (1934). (29) Schonberg, Kraemer, Ber. 55, 1186, 1189-1193 (1922). (30) Silver, Lowy, J. Am. Chem. Soc. 56, 2429-2430 (1934).
- (31) Liebermann, Zsuffa, Ber. 44, 857 (1911). (32) Liebermann, Mitter, Ber. 45, 1207-1213 (1912). (33) Lesser, Gad, Ber. 60, 242-245 (1927). (34) Lesser, Gad (to I.G.), Ger. 470,277, Jan. 14, 1929; Cent. 1929, I 3037. (35) Liebermann, Zsuffa, Ber. 44, 202-210 (1911). (36) Dansi, Semproni, Gazz. chim. utal. 66, 182-186 (1936); Cent. 1937, II 1158; C.A. 31, 1022 (1937). (37) Dansi, Gazz. chim. utal. 67, 85-88 (1937); Cent. 1937, II 1368; C A. 31, 6227 (1937). (38) Butescu, Bull. soc. chim. (4) 43, 1269-1272 (1928). (39) Nyman, Ann. Acad. Sci. Fennicae A-41, No. 5, 80 pp. (1934); Cent. 1937, I 2348; C.A. 30, 2958 (1936). (40) von Braun, Manz, Ann. 496, 178-179 (1932).
- (41) Perret, Perrot, Bull. soc. chim. (5) 1, 1543 (1934). (42) Adams, Weeks, J. Am. Chem. Soc. 38, 2514-2519 (1916). (43) von Frank, Caro, Ber. 63, 1532-1543 (1930). (44) Ghosh, J. Chem. Soc. 167, 1593 (1915). (45) Bergmann, Wolff, J. prakt. Chem. (2) 128, 232 (1930). (46) Carothers, Arvin, Dorough, J. Am. Chem. Soc. 52, 322-3300 (1930). (47) Arndt, Milde, Eckert, Ber. 56, 1982 (1923). (48) Fairhall, J. Ind. Hyg. 8, 528-533 (1926); Cent. 1927, I 774-775; C.A. 21, 874 (1927). (49) Miksic, Pinterovic, J. prakt. Chem. (2) 119, 231-234 (1928). (50) Adams, Wirth, French, J. Am. Chem. Soc. 40, 424-431 (1918).
- (51) Adams, Gilman, J. Am. Chem. Soc. 37, 2716-2720 (1915). (52) Giua, Franciscis, Gazz. chim. ital. 54, 509-516 (1924); C.A. 19, 64 (1925). (53) Giua, Atti. congr. naz. chim. ind. 1924,

266; Cent. 1925, I 2309. (54) Miksic, J. prakt. Chem. (2) 119, 218-230 (1928). (55) Soc. Chem. Ind. Basel, Brit. 186,859, Nov. 2, 1922; Cent. 1923, II 998; Ger. 402,994, Sept. 19, 1924; Cent. 1925, I 303; Staudinger, Swiss 92,688, Jan. 16, 1922, 93,486, Mar. 16, 1922, 93,487, 93,488, 93,489, March 1, 1922; Cent. 1923, II 573. (56) Soc. Chem. Ind. Basel, Swiss 102,033, Jan. 16, 1924, + Swiss 104,921-104,928, May 16, 1924, + Swiss 106,135, Nov. 1, 1924; all in Cent. 1925, II 774-775. (57) Hurtley, Smiles, J. Chem. Soc. 1926, 2268-2270. (58) Fischer, Taurinisch, Ber. 64, 236-239 (1931). (59) Mitter, Mukherjee, J. Indian Chem. Soc. 16, 393-395 (1939). (60) Staudinger, Schlenker, Goldstein, Helv. Chim. Acta 4, 334-342 (1921).

(61) Schapiro, Ber. 66, 1370-1372 (1933). (62) Haller (to I.G.), Ger. 463,140, July 23, 1928; Brit. 282,891, Jan. 26, 1928; Cent. 19 8, II 1615-1616. (63) Haller (to I.G.), Ger. 448,946, Sept. 1, 1927; Cent. 1927, II 2228-2229. (64) I.G., Brit. 265,224, March 30, 1927; French 627,939, Oct. 15, 1927; Swiss, 125,475, April 16, 1928; 126,719, 126,720, 126,721, July 2, 1928; Cent. 1929, II 2104-2105. (65) Stollé, Ber. 46, 3915-3916 (1913); J. prakt. Chem. (2) 105, 142-148 (1923). (66) Staudinger, Stockmann, Ber. 42, 3485-3496 (1909). (67) Postowski, Cent. 1927, II 2183. (68) Bogert, Stull, J. Am. Chem. Soc. 48, 250 (1926). (69) Bogert, Stull, J. Am. Chem. Soc. 49, 2014 (1927). (70) Bornwater, Rec. trav. chim. 32, 334-339 (1913); 35, 124-129 (1915); 36, 250-257 (1916).

(71) Figee, Rec. trav. chim. 34, 289-325 (1915). (72) Meijeringh, Rec. trav. chim. 32, 140-157 (1913). (73) Stollé, Luther, Ber. 53, 314-317 (1920). (74) Staudinger, Ber. 42, 3966-3985 (1909). (75) Schonberg, Schütz, Ann. 454, 51 (1927). (76) Schönberg, Schütz, Bruckner, Peter, Ber. 62, 2560 (1929). (77) Gleu, Nitsche, Schubert, Ber. 72, 1094-1095, 1099 (1939). (78) Gilman, Nelson, Rec. trav. chim. 55, 527 (1936). (79) Gilman, Heck, J. Am. Chem. Soc. 52, 4952-4953 (1930). (80) Walter, Hubsch, Pollak, Monatsh. 63, 187, 196-197 (1933).

(81) Varvoglis, Ber. 71, 32-34 (1938). (82) Folymers, Rec. trav. chim. 34, 46-47 (1915).

```
3:5075 METHYL CHLOROFORMATE Cl.COOCH<sub>3</sub> C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>Cl Beil. III - 9
(" Methyl chlorocarbonate") III<sub>1</sub>-(5)
III<sub>2</sub>-(9)
```

B.P. 
$$72-73^{\circ}$$
 at 767 mm. (1)  $D_4^{20} = 1.2231$  (1)  $n_D^{20} = 1.38675$  (1)  $71.4-72.4^{\circ}$  (2)  $71.2-71.5^{\circ}$  at 733 mm. (3)  $D_4^{16 \ 9} = 1.2240$  (6)  $71.4^{\circ}$  cor. (4)  $71.0-71.5^{\circ}$  at 750 mm. (7)  $71-71.5^{\circ}$  (20)  $69^{\circ}$  at 720 mm. (5)

[See also ethyl chlorocarbonate (3:7295).]

C is colorless liquid with penetrating odor and strong lachrymatory properties.

[For prepn. of  $\tilde{C}$  from carbonyl chloride (phosgene)(3:5000) with MeOH see (8) (9) (7) (4) (10) (20) (21); from methyl formate (1:1000) with Cl<sub>2</sub> see (11) (12) (chloromethyl chloroformate (3:5275) is also formed); from pentachloroethyl chloroformate [Beil. III-13, III<sub>1</sub>-(6)] (13) or from bis-(trichloromethyl) oxalate [Beil. III-17] (14) or from methyl trichloromethyl carbonate [Beil. III-17] III<sub>1</sub>-(8) III<sub>2</sub>-(15)] (15) with MeOH see indic. refs.]

Pyrolysis of  $\tilde{C}$ . Unlike the case of ethyl chloroformate (3:7295) the pyrolysis of  $\tilde{C}$  appears to have been little studied: in quinoline the decomposition temp. is given (16) (17) as 36°; presumably the decomposition yields MeCl (3:7005) + CO<sub>2</sub>.

Reactions of the —COOMe group of  $\bar{C}$ .  $\bar{C}$  is not readily decomposed by cold aq. (4) (11) (18) and can even be washed to remove alc.;  $\bar{C}$  on boilg, with aq. or dil. acid or dil. alk., however, is readily hydrolyzed yielding MeOH (1:6120) +  $CO_2$  + HCl.

[Č with Cl<sub>2</sub> under various conditions (19) (20) (21) (22) (23) yields successively chloromethyl chloroformate (3:5275) dichloromethyl chloroformate (3:5315) and ultimately trichloromethyl chloroformate ("diphosgene") (3:5515).]

[C (10% excess) with MeHSO<sub>4</sub> at 100° under reflux for 6-8 hrs. gives (100% yield (24))

 $Me_2SO_4 + HCl + CO_2$ ;  $\bar{C}$  (10% excess) with ClSO<sub>3</sub>H carefully mixed finally refluxed gives (80% yield (25) (26)) methyl chlorosulfonate.]

Reactions of the chlorine atom of C. [C with thallous fluoride 6 hrs. in ice bath followed by reflux at 50° gives (24% yield (27)) methyl fluoroformate b.p. 40° (27).]

 $\bar{C}$  with solid dry NaI gives (100% yield (20)) MeI + CO<sub>2</sub> + NaCl; note that  $\bar{C}$  with KI in acetone does not (28) liberate free iodine (dif. from carbonyl chloride (phosgene) (3:5000), chloromethyl chloroformate (3:5275), dichloromethyl chloroformate (3:5315), trichloromethyl chloroformate (diphosgene) (3:5515), or bis-(trichloromethyl) carbonate (triphosgene) (3:1915)).

[Č with solid NaCN (contg. 0.2-7.0% moisture) at not above 90° gives (29) methyl cyanoformate [Beil. II-547, II<sub>1</sub>-(238), II<sub>2</sub>-(510)], b.p. 97°.]

Č as carbomethoxylating agent. Č is widely employed as a means of introducing the —COOMe group into other organic molecules by reactn. of the chlorine atom with the H of alcoholic, phenolic, or enolic OH group (or their metallic alcoholates, phenolates, enolates, etc.); cf. ethyl chloroformate (3:7295), but this topic cannot be expanded here.

[ $\bar{C}$  with dimethyl malonate (1:3457) + Na in xylene (30) or  $\bar{C}$  with dimethyl sodio-malonate in  $C_6H_6$  (31) or toluene (32) gives (yields: 59% (32), 40-42% (30) 30-35% (31)) trimethyl methanetricarboxylate (tri(carbomethoxy)methane) [Beil. II<sub>1</sub>-(320), II<sub>2</sub>-(680)], pr. from MeOH, m.p. 46°. —  $\bar{C}$  with dimethyl phenylmalonate + Na in ether gives (40% yield (33)) trimethyl phenylmethanetricarboxylate (phenyl-tri(carbomethoxy)methane), cryst. from least possible hot CHCl<sub>3</sub> by addn. of hot lgr., m.p. 84.5° (33).]

Č also reacts readily with NH<sub>3</sub>, with primary and secondary amines, with amino acids, etc., to replace one of the H's attached to N by the —COOMe group (see also below and under **①**).

[ $\tilde{C}$  in  $C_6H_6$  with dry NH<sub>3</sub> gives methyl carbamate (urethylan) [Beil. III-21, III<sub>1</sub>-(9), III<sub>2</sub>-(18)], extremely sol. in aq. (217 g. in 100 g. aq. at 11°), m.p. 54°, b.p. 177°. —  $\tilde{C}$  with 33% aq. MeNH<sub>2</sub> (34) or  $\tilde{C}$  with equiv. conc. aq. CH<sub>3</sub>NH<sub>2</sub>.HCl followed by addn. of strong aq. KOH (35) gives methyl N-methylcarbamate [Beil. III-64, III<sub>1</sub>-(330), III<sub>2</sub>-(567)], oil, sol. aq. but very sol. ether, b.p. 158° at 766 mm. — Countless analogous reactns. cannot be listed here.]

Č in MeOH with hydrazine hydrate in alc. + ether ppts. hydrazine HCl and on evapn. of filtrate gives (98% yield (36)) dimethyl sym.-hydrazinedicarboxylate (sym.-di-(carbomethoxy)hydrazine) [Beil. III<sub>1</sub>-(46), III<sub>2</sub>-(78)], cryst. from ether/alc., m.p. 132° (36) (note that the half-reactn. prod. viz., methyl hydrazine-monocarboxylate (methyl hydrazinoformate) (methyl carbazinate), m.p. 73°, is also known (37)). — Č (1 mole) with urea (2 moles) refluxed for 2-3 hrs. gives (75% yield (38)) methyl allophanate (N-carbomethoxy) urea [Beil. III-69, III<sub>1</sub>-(31), III<sub>2</sub>-(55)], spar. sol. hot aq., cryst. from dil. alc. or acetone, m.p. 216°.

 $\bar{C}$  (1 mole) with phenylhydrazine (2 moles) in ether gives (39) methyl ω-phenylcarbazinate (β-carbomethoxyphenylhydrazine) [Beil. XV-286], pr. from aq., m.p. 115–117° (39). —  $\bar{C}$  with p-nitrophenylhydrazine in pyridine gives (40) β-carbomethoxy-p-nitrophenylhydrazine, m.p. 180° (40). —  $\bar{C}$  with 2,4-dinitrophenylhydrazine in pyridine gives (40) β-carbomethoxy-2,4-dinitrophenylhydrazine, pr. from aq. alc., m.p. 138° (40)

- Methyl N-phenylcarbamate (methyl carbanilate): lfts. from alc., m.p. 47° (41), 46° (42). [From C with aq. aniline (slight excess) (41) (18); also indirectly (42).]
   Methyl N-(p-tolyl)carbamate: unreported.
- N,N'-bis-(Benzyl)urea: ndls. from alc., m.p. 167.5-169° cor. (43). [From Č (1 ml.) with benzylamine (3 ml.) + trace NH<sub>4</sub>Cl refluxed 1 hr. (43); note that in this react. the reagent amine not only reacts with the chlorine atom of Č but also ammonolyzes

the carbomethoxy group; the prod. is therefore a disubstituted urea rather than methyl N-benzylcarbamate, ndls. from pet. ether, m.p. 64-65° (44), which has been reported indirectly (44).]

- —— N-(Carbomethoxy)phthalimide: unreported.
- ---- N-(Carbomethoxy)-3-nitrophthalimide: unreported.
- ---- N-(Carbomethoxyl)-tetrachlorophthalimide: unreported. [Note that C with K tetrachlorophthalimide fails to react under reflux and explodes on htg. in s.t. (45).]
- with thiourea (1 mole) in conc. aq. soln. on treatment with NaHCO<sub>3</sub> in slight excess evolves CO<sub>2</sub> and ppts. S-(carbomethoxy)isothiourea bicarbonate, bulky white ppt., m.p. 62.5-63.5°; this ppt. dissolves readily in cold dil. HCl and upon addn. of PkOH ppts. the corresponding picrate; note, however, that the above bicarbonate on stdg. with aq. for 2 days changes spontaneously to N,N-dicarbomethoxythiourea, insol. aq., m.p. 117-118°, and thiourea (extractable with aq.) (46). Note, however, that Č (1 g.) with thiourea (1 g.) in EtOH (10 ml.) refluxed for 30 min., then treated with PkOH (1 g.), does not yield the above prod. but instead (47) S-methylisothiourea picrate, m.p. 224° (47).]
- 3:5075 (1) Karvonen, Ann. Acad. Sci. Fennicae A-10, No. 4, p. 18; Cent. 1919, III 808. (2) Mizushima, Kubo, Bull. Chem. Soc. Japan 13, 178 (1938). (3) Mohler, Helv. Chim. Acta 21, 787 (1938). (4) Rose, Ann. 205, 227-229 (1880). (5) Mohler, Polya, Helv. Chim. Acta 19, 1238 (1936). (6) von Auwers, Ber. 60, 2140 (1927). (7) Klepl, J. prakt. Chem. (2) 26, 447-448 (1882). (8) Cappelli, Gazz. chim. ıtal. 50, II 8-12 (1920); C.A. 15, 524 (1921). (9) Hentschel, Ber. 18, 1177 (1885). (10) Dumas, Peligot, Ann. chim. (2) 58, 52-54 (1835); Ann. 15, 39-40 (1835).
- (11) Hentschel, J. prakt. Chem. (2) 36, 210-213 (1887). (12) Bayer & Co., Ger. 297,933, Feb. 7, 1921; Cent. 1921, II 803. (13) Cloez, Ann. chim. (3) 17, 302-304 (1846); Ann. 60, 260-261 (1846). (14) Cahours, Ann. chim. (3) 19, 349-351 (1847); Ann. 64, 314-315 (1848). (15) Kling, Florentin, Jacob, Ann. chim. (9) 14, 203 (1920). (16) Carré, Bull. soc. chim. (5) 3, 1069 (1936). (17) Carré, Passedouet, Compt. rend. 200, 1767-1769 (1935). (18) Vles, Rec. trav. chim. 53, 964-966 (1934). (19) Hentschel, J. prakt. Chem. (2) 36, 99-113, 305-309 (1887). (20) Kling, Florentin, Lassieur, Schmutz, Ann. chim. (9) 13, 46-53 (1920).
- (21) Grignard, Rivat, Urbain, Ann. chm. (9) 13, 230-244 (1920). (22) Hood, Murdock, J. Phys. Chem. 23, 509 (1919). (23) Pomilio, Salvatore, Italian 338,820, Jan. 16, 1936; Cent. 1937, I 4689; not in C.A. (24) Kraft, Lyutina, J. Gen. Chem. (U.S.S.R.) 1, 190-192 (1931); Cent. 1931, II 3197; C.A. 26, 2167 (1932). (25) Kraft, Alekseev, J. Gen. Chem. (U.S.S.R.) 2, 726-729 (1932); Cent. 1933, II 1666; C.A. 27, 2426 (1933). (26) Kraft, Alekseev, Obsh. Chim. (U.S.S.R.) 2, 726-729 (1942); Chem. Prods. 6, 69-71 (1943); C.A. 38, 720 (1944). (27) Goswami, Sarkar, J. Indian Chem. Soc. 10, 537-539 (1933). (28) Perret, Biechler, Bull. soc. chim. (5) 3, 957-958 (1936). (29) Gluud, Nüssler, Keller (to Gesellschaft für Kohlentechnik), Ger. 592,539, Feb. 17, 1934; Cent. 1934, II 3437; C.A. 28, 3417 (1934). (30) Corson, Sayre, Org. Syntheses, Coll. Yol. 2 (1st ed.), 596-597 (1943); 13, 100-101 (1933).
- (31) Scholl, Egerer, Ann. 397, 355-357 (1913). (32) Backer, Lolkema, Rec. trav. chim. 57, 1237-1238 (1938). (33) Adickes, J. prakt. Chem. (2) 145, 240-241 (1936). (34) Franchimont, Klobbie, Rec. trav. chim. 7, 353 (1888). (35) Biltz, Jeltsch, Ber. 56, 1916 (1923). (36) Diels, Paquin, Ber. 46, 2007 (1913). (37) Diels, Fritsche, Ber. 44, 3022-3023 (1911). (38) Dains, Wertheim, J. Am. Chem. Soc. 42, 2307 (1920). (38) Heller, Ann. 263, 281 (1891). (40) Longo, Gazz. chim. ital. 63, 466-468 (1933); Cent. 1933, II 3415; C.A. 28, 122 (1934).
- (41) Heller, Ber. 18, 978 (1885). (42) Nekrassow, Melnikow, J. prakt. Chem. (2) 126, 91 (1930). (43) Dermer, King, J. Org. Chem. 8, 168-173 (1943). (44) Weerman, Jongkees, Rectrav. chim. 25, 243 (1906). (45) Allen, Nicholls, J. Am. Chem. Soc. 56, 1409 (1934). (46) Dixon, Kennedy, J. Chem. Soc. 117, 84-85 (1920). (47) Levy, Campbell, J. Chem. Soc. 1339, 1443.

Liquid. — [For f.p./compn. data on mixts. of  $\bar{C}$  with 2,2-dichloropropane (3:7140) or with pentachloroethane (3:5880) see (8); for extensive study of vap. press., heat capacity, and other thermodynamic props. see (21); for soly. of aq. in  $\bar{C}$  see (22).] [For use of  $\bar{C}$  as dry cleaning fluid see (10); for use of  $\bar{C}$  in dewaxing of oils see (11).] [For detn. of  $\bar{C}$  in air by thermal decompn. method see (23).]

[For prepn. of  $\bar{C}$  from 1,1-dichloroethane (ethylidene dichloride) (3:5035) by actn. of  $Cl_2$  see (12) (13) (7); for manufacture of  $\bar{C}$  from 1,1-dichloroethylene (vinylidene dichloride) (3:5005) by cat. addn. of HCl see (14) (15).]

C with Ca(OH)<sub>2</sub> at ord. temp. loses HCl yielding (16) 1,1-dichloroethylene (3:5005).

Č with aq. under specified conditions and catalyst hydrolyzes to yield (17) (18) AcOH, AcCl, or Ac<sub>2</sub>O.

[For study of actn. of fluorine on C sec (19).]

 $\ddot{\mathbf{C}}$  with phenol + aq. NaOH gives (20) small yield of a mixt. of o-hydroxyacetophenone (1:1746) and p-hydroxyacetophenone (1:1527). [For impt. clarification of previous misapprehension of this reactn. see (20).]

- 3:5085 (1) Wiswall, Smyth, J. Chem. Phys. 9, 357 (1941). (2) Pierre, Ann. 80, 127 (1851).
   (3) Staedel, Ber. 15, 2563 (1882). (4) Henne, Hubbard, J. Am. Chem. Soc. 58, 404-406 (1936).
   (5) Maryott, Hobbs, Gross, J. Am. Chem. Soc. 63, 660 (1941). (6) Kohlrausch, Köppl, Monatsh.
   (6) Kohlrausch, Köppl, Monatsh.
   (7) Sutton, Proc. Roy. Soc. A-133, 673-674 (1931). (8) van de Vloed, Bull. soc. chim. Belg. 48, 259, 262 (1939). (9) Turkevich, Smyth, J. Am. Chem. Soc. 62, 2469 (1940). (10) Parkhurst (to Stand. Oil of Cal.), U.S. 1,948,045, Feb. 20, 1934; Cent. 1934, II 863; C.A. 28, 2924 (1934).
- (11) Sharples Specialty Co., French 801,583, Aug. 7, 1936; Cent. 1937, I 263. (12) Regnault, Ann. 33, 317-319 (1840). (13) Staedel, Ann. 195, 183-185 (1879). (14) I.G., Ger. 523,436, April 23, 1931; Cent. 1931, I 3607. (15) Nutting, Huscher (to Dow Chem. Co.), U.S. 2,209,000, July 23, 1940; C.A. 35, 140 (1941). (16) I.G., Brit. 349,872, July 2, 1931; French 702,361, July 7, 1931; Cent. 1931, II 1191. (17) Lloyd, Kennedy, U.S. 1,849,844, March 15, 1932; Cent. 1932, I 2994; C.A. 26, 2747 (1932). (18) Britton, Reed (to Dow Chem. Co.), U.S. 1,870,601, Aug. 9, 1932; Cent. 1932, II 3305. (19) Henne, Renoll, J. Am. Chem. Soc. 58, 889-890 (1936). (20) Cope, J. Am. Chem. Soc. 57, 572-574 (1935).
- (21) Rubin, Levedahl, Yost, J. Am. Chem. Soc. 66, 279-282 (1944). (22) Staverman, Rec. trav. chim. 60, 836-841 (1941); Cent. 1942, I 1352; C.A. 37, 2638 (1943). (23) Smyth, Ind. Eng. Chem. Anal. Ed. 8, 379 (1936).

```
3:5100 CARBON TETRACHLORIDE
                                                              CCL
                                                                              Beil. I - 64
           (Tetrachloromethane)
                                                                                    I_{1}-(12)
                                                                                    I_{2}-(22)
  B.P.
                                         F.P.
                                                            D_4^{30} = 1.57480 \quad (7)
  77.4°
                  at
                       774 mm.
                                  (1)
                                         -22° (28) (51)
                                                                   n_{\rm D}^{25.2} = 1.45767
  77.2°
                       766 mm.
                  at
                                  (2)
                                         -22.3^{\circ}
                                                     (52)
                                                                                       (65)
  76.9°
                  at
                       760 mm.
                                  (3)
                                         -22.5^{\circ}
                                                     (17)
                                                                           1.45707
                                                                                       (65)
                                                            D_{\perp}^{25} = 1.5850 \quad (54)
                                 (20)
                                                     (29)
                       749 mm. (4)
  76.87°
                 at
                                         -22.6^{\circ}
                                                    (30)
                                                                   1.58472 (55)
  76.83°
                  at
                       760 mm. (83)
                                                    (83)
                                                                   1.58469 (22)
  76.8°
                             (5)(87)
                                         -22.7^{\circ}
                                                     (31)
                                                                   1.58447 (5)
  76.75°
                 at
                       760 mm.
                                         -22.81°
                                  (6)
                                                                   1.58445 (13)
                                                     (15)
                              (7) (19)
                                         -22.83^{\circ}
                                                     (32)
                                                                   1.58443 (7)
  76.74°
                 at
                       760 mm.
                                  (8)
                                         -22.86^{\circ}
                                                     (33)
                                                                   1.58434 (56)
                                  (9)
                                                     (34)
                                                                   1.58426 (57)
  76.71°
                 at
                       760 mm. (10)
                                         -22.87^{\circ}
                                                    (35)
                                                                   1.58414 (58)
  76.70-76.74° at
                       760 mm. (11)
                                                                   1.5835 (23)(59)(166)
                                                     (36)
  76.7° u.c.
                 at
                       754 mm. (12)
                                         -22.89^{\circ}
                                                    (37)
                                                                    n_{\rm D}^{25} = 1.45930
                                                                                      (21)
  76.69°
                 at
                       760 mm. (55)
                                         -22.9°
                                                    (38)
                                                                           1.45759
                                                                                       (13)
  76.686°
                 at
                       760 mm. (13)
                                               (39)(53)
                                                                            1.4574
                                                                                       (66)
                       760 mm. (14)
                                         -22.95^{\circ}
  76.685°
                 at
                                                     (7)
                                                                           1.45732
                                                                                       (67)
                       760 mm. (15)
  76.66°
                 at
                                           (40) (41) (42)
                                                                           1.45724 (166)
  76.6°
                       760 mm. (48)
                 at
                                         -22.968° (87)
                                                                           1.4549
                                                                                       (68)
                                                                   n_{\rm D}^{23.8} = 1.45786
  76.58-76.60° at
                       761 mm. (16)
                                         -23.0(43)(44)
                                                                                       (69)
                       760 mm. (49)
                                                            D_4^{20} = 1.59472 (60)
  76.52°
                 at
                                              (45) (153)
                       759 mm. (17)
  76.5°
                 at
                                         -23.4°
                                                    (46)
                                                                   1.5944
                                                                             (11)
                       760 mm. (19)
  76.5° (18)
                                        -23.5^{\circ}
                 at
                                                    (47)
                                                                   1.5942
                                                                             (61)
  76.45-76.50° at
                       760 mm. (21)
                                                                   1.59407
                                                                               (7)
  76.4°
                            (50) (73)
                                        See also Notes
                                                                   1.5940 (61)
  76.22-76.38° at
                       741 mm. (22)
                                        4, 5, and 6.
                                                                         (62) (63)
 76.2°
                      745 mm. (56)
                                                                   1.5924 (64)
 76.1°
                      743 mm. (23)
                 at
                                                                   1.46023 (50)
 76°
                 at
                      733 mm. (24)
                                                                     n_{\rm D}^{20} = 1.4630
                                                                                       (70)
                      760 mm. (19)
  75.55°
                 at
                                                                           1.461
                                                                                       (15)
 75.4°
                 at
                      760 mm. (25)
                                                                           1.46048
                                                                                      (11)
                                (19)
                                                                           1.46044
                                                                                       (13)
 75.3-75.4°
                 at
                      729 mm. (56)
                                                                           1.46041
                                                                                       (10)
                 at 751.4 mm. (26)
 75.2°
                                                                           1.46040
                                                                                       (55)
 74.95°
                 at
                      720 mm. (10)
                                                                           1.46026 (165)
                      709 mm. (30)
 74.4-74.5°
                 at
                                                                           1.46023
 73.50°
                 at
                      687 mm. (27)
                                                           D_4^{15} = 1.60370 \quad (7)
 72.0°
                 at 643.2 mm. (2)
                                                                   1.6011
                                                                             (23)
                      663 mm. (23)
 71.0°
                 at
                                                           See also Note 7.
                                                                  n_{\rm D}^{19.68} = 1.46094 (10)
 65.0°
                 at
                      559 mm. (23)
                      506 mm. (23)
 62.0°
                 at
                                                                  n_{\rm D}^{16.80} = 1.46266 (10)
 60.0°
                 at
                      415 mm.
                                (2)
                      443 mm. (23)
 58.5°
                 at
 59.5°
                 at 398.85 mm.
                                (2)
                                                                    n_D^{15} = 1.46325 (168)
                      386 mm. (23)
 54.8°
                 at
                                                                           1.46305
                                                                                        (7)
 50.0°
                 at
                      328 mm. (23)
                                                                           1.4629 (167)
```

| <b>B.P.</b> (Cont.) |      |           |      |                             |      |
|---------------------|------|-----------|------|-----------------------------|------|
| 46.3°               | at   | 282 mm.   | (23) | $n_{\rm D}^{12.3}=1.4656$   | (71) |
| <b>42.0°</b>        | at   | 236 mm.   | (23) |                             |      |
| 36.0°               | at 1 | 70.95 mm. | (2)  | $n_{\rm D}^{12} = 1.4674$   | (71) |
| 31.0°               | at   | 149 mm.   | (23) |                             |      |
| 25.0°               | at   | 116 mm.   | (23) | $n_{\rm D}^{11.19}=1.46589$ | (10) |
|                     |      |           |      | $n_{\rm D}^{10.5} = 1.4661$ | (10) |

See also Notes 1, 2, and 3.

Note 1. For studies of vap. press. of  $\bar{C}$  over range  $-20^{\circ}$  to  $+283^{\circ}$  (72) and range +19.2 to  $76.4^{\circ}$  (73) see indic. refs.

Note 2. For studies of effect on b.p., vap. press., vapor density of very intensive drying see (74) (75) (76) (77) (79) (80).

Note 3. For study of detn. of b.p. range of  $\bar{C}$  as method of estimation of impurities see (81).

Note 4. For studies on effect of prior history of sample on detn. of f.p. of  $\bar{C}$  see (82) (52) (51).

Note 5. For studies of influence of high press. of f.p. see (41) (83).

Note 6. Solid  $\bar{C}$  has a transition point variously determined as follows:  $-47^{\circ}$  (85) cf. (17),  $-47.55^{\circ}$  (33),  $-47.63^{\circ}$  (15),  $-47.66^{\circ}$  (32) (36),  $-47.84^{\circ}$  (39),  $-48.1^{\circ}$  (47),  $-48.5^{\circ}$  (86),  $-48.54^{\circ}$  (87).

Note 7. For studies of density of  $\overline{C}$  over ranges  $-186^{\circ}$  to  $-80^{\circ}$  (88),  $0^{\circ}$  to  $283^{\circ}$  (crit. temp.) (72), and  $-18^{\circ}$  to  $+60^{\circ}$  (89) see indic. refs.

[See also methylene (di)chloride (3:5020) and chloroform (3:5050).]

## MISCELLANEOUS PHYSICAL PROPERTIES OF C VARIOUS SOLUBILITY RELATIONS

With water.  $\bar{C}$  is only very slightly sol. aq. and is eas. volatile with steam; e.g., 100 g. aq. at 0° dis. 0.097 g.  $\bar{C}$  (91), at 10° 0.083 g. (91), at 15° 0.081 g. (8), at 20° 0.080 g. (91), at 30° 0.077 g. (8), 0.085 g. (91); for study of salting-out effect of KCl or MgSO<sub>4</sub> see (92). — For studies of soly. of aq. in  $\bar{C}$  at 0° (93), 10° (94), 20° (94), 25° (93), and 30° (93) (94) see indic. refs.; for study of reciprocal soly. of  $\bar{C}$  + aq. see (95).

With various inorganic compounds. [For data on soly. in  $\bar{C}$  of  $H_2$  (96),  $O_2$  (97) (98),  $O_3$  (99) (100), air (96),  $N_2$  (at high pressure) (101), NO (107),  $NO_2$  (102),  $N_2O$  (96),  $NH_3$  (103),  $H_2S$  (103),  $SO_2$  (96) (116), HCl (103) (104) (105) (106), HBr (106),  $Cl_2$  (108) (109) (110), or  $CO_2$  (111) (112) see indic. refs. — For data on soly. of  $I_2$  in  $\bar{C}$  see (113) (121) (122) (123) (124) (125); for study of nature of  $I_2$  solns. in  $\bar{C}$  see (114); for soly. of  $I_2$  in  $CCl_4$  vapor see (115). — For data on soly. of sulfur in  $\bar{C}$  see (128) (129) (130). — For data on soly. of  $AlCl_3$  in  $\bar{C}$  see (135).]

With various organic compounds. [For data on soly. in  $\bar{C}$  of ethane (116), ethylene (116) under high press. (101), acetylene (116), dimethyl ether (117), CH<sub>3</sub>Cl (117) (118), COCl<sub>2</sub> (119) (120) see indic. refs.]

# Binary Systems Containing Č

## (See also azeotropes containing C)

 $\tilde{C}$  with various inorganic compounds.  $\tilde{C} + Cl_2$ : for f.p./compn. data and diag. (note that 5 different cpds. are formed) see (29) cf. (17) (126).  $- \tilde{C} + Br_2$ : for f.p./compn. data and diag. (eutectic has f.p. about  $-47.6^\circ$  and conts. about 82.7 mole %  $\tilde{C}$  (38)) see (38) cf. (125).  $- \tilde{C} + I_2$ : see above under soly. of  $I_2$  in  $\tilde{C}$ .  $- \tilde{C}$  + I - Cl: for f.p./compn. data and

diag. (series of solid solns.) see (31) cf. (127). —  $\bar{C} + SO_2$ : for f.p./compn. data and diag. see (131). —  $\bar{C} + H_2S$ : for f.p./compn. diag. see (132). —  $\bar{C} + N_2O_4$ : for f.p./compn. data and diag. see (133). —  $\bar{C} + PCl_5$ : for formn. of compd. 2PCl<sub>5</sub>·CCl<sub>4</sub> see (134). —  $\bar{C} + PBr_5$ : for formn. of 2 cpds. see (134). —  $\bar{C} + TiCl_4$ : for f.p./compn. data and diag. see (53); for b.p. and liq. vapor compn. see (48).

 $\bar{C}$  with org. cpds. of Order 1.  $\bar{C}$  + n-heptane (1:8575): for study of ht. of mixing see (136); for  $n_D^{20}$ /compn. see (165). —  $\bar{C}$  +  $C_6H_6$  (1:7400): for f.p./compn. data and diag. see (137) (138) (90); for data on  $D_{20}^{20}$  (12),  $D_{23}^{22}$  (12),  $D_{25}^{22}$  (12),  $D_{25}^{25}$  (57) (140) (166), and  $D_{30}^{30}$  (141) versus compn. see indic. refs.; for  $n_D^{1.8}$  (142),  $n_D^{20}$  (10), or  $n_D^{25}$  (65) (68) (166) versus compn. see indic refs.; for refractive indices at various wave lengths see (67); for data on b.p. at 720 mm. (10), vap. press. (2) (58) (10) (65) (143) (163), heat of mixing (141) (144), liq-vapor equil. (145), or study of distn. through packed column (139) see indic. refs. —  $\bar{C}$  + toluene (1:7405): for data on vap. press. (4) (143),  $D_{20}^{20}$  (12) cf. (4),  $D_4^{25}$  (166),  $n_D^{18}$  (146), and  $n_D^{25}$  (4) (166) see indic refs. —  $\bar{C}$  + cyclohexane (1:8405): for f.p./compn. data (147),  $D_4^{20}$  (62),  $D_4^{25}$  (140) (58),  $n_D^{25}$  (140) see indic. refs.

 $\bar{C} + MeOH$  (1:6120): for  $D_4^{25}$  and  $n_4^{25}$ /compn. see (151).  $-\bar{C} + EtOH$  (1:6130): for vap. press. data/compn. see (148) (149); for  $D_4^{25}$  (59) (166) and  $n_D^{15}$  (167) or  $n_D^{25}$  (166) see indic. refs.  $-\bar{C} + n\text{-}PrOH$  (1:6150): for  $n_D^{25}$ /compn. see (66).  $-\bar{C} + n\text{-}BuOH$  (1:6180): for  $n_D^{20}$ /compn. see (165).  $-\bar{C} + isoAmOH$  (1:6200): for  $D_4^{25}$  and  $n_4^{25}$  versus compn. see (166).  $-\bar{C} + cyclohexanol$  (1:6415): for f.p./compn. data see (150)

 $\bar{C}$  + dicthyl ether (1:6110): for data on f.p./compn. (152),  $D_4^{20}$  (62),  $D_4^{25}$  (166), and  $n_D^{25}$  (166) see indic. refs. —  $\bar{C}$  + disopropyl ether (1:6125): for  $D_2^{20}$ /compn. see (62). —  $\bar{C}$  + disoane-1,4 (1:6400): for  $D_4^{20}$ /compn. see (62). —  $\bar{C}$  + anisole (1:7445): for f.p./compn. data and diag see (153). —  $\bar{C}$  + diphenyl ether (1:7125): for f.p./compn. data and diag. see (153).

 $\bar{C}$  + acctone (1:5400): for f.p./compn. data and diags. see (90) (147); for  $D_4^{20}$  (62),  $D_4^{25}$  (59), and  $n_D^{25}$  (166) versus compn. see indic refs.

 $\bar{C} + MeOAc$  (1:3005): for  $D_4^{25}$  and  $n_D^{25}$  versus compn. see (166). —  $\bar{C} + EtOAc$  (1:3015): for f.p./compn. data and diag. see (152); for data on vap. press. (65) (192),  $D_4^{25}$  (166),  $n_D^{20}$  (27),  $n_D^{25}$  (166) cf. (65) versus compn. see indic. refs. —  $\bar{C} + EtOBz$  (1:3721): for  $D_4^{20}$  compn. see (61). —  $\bar{C} + diethyl$  carbonate (1:3150): for  $D_D^{25}$ /compn. see (5).

 $\tilde{\mathbf{C}}$  with org. cpds. of Order 2.  $\tilde{C}$  + nitrobenzene: for f.p./compn. data and diag. (eutectic, f.p.  $-34.5^{\circ}$ , conts. 84.5 wt. %  $\tilde{\mathbf{C}}$  (44)) see (44) cf. (138); for  $D_{-}^{20}$ ,  $D_{-}^{44}$ , and  $n_{D}^{20}$  versus compn. see (154). —  $\tilde{C}$  + aniline: for f.p./compn. data (147) and  $D_{-}^{25}$ /compn. (155) see indic. refs. —  $\tilde{C}$  + quinoline: for  $D_{-}^{20}$ /compn. see (62).

 $ar{C}$  with org. cpds. of Order 3.  $ar{C}+CH_2Cl_2$  (3:5020): for data on b.p.,  $D_4^{20}$ , and liqvapor equilibria see (156).  $-ar{C}+CHCl_3$  (3:5050): for f.p./compn. data and diag. (eutectic, f.p. -81.4°, conts. 49.4 wt. %  $ar{C}$  (46)) (38) (147) (157) cf. (125) see indic. refs.; for  $D_4^{20}$ /compn. see (156) (158) cf. (12); for  $n_D^{25}$  compn. see (166); for b.p. and liq.-vapor equil. see (156).  $-ar{C}+1$ ,1-dichloroethane (3:5035): for b.p.,  $D_4^{20}$ , and liq.-vapor equil. see (156).  $-ar{C}+1$ ,2-dichloroethane (3:5130): for data on b.p. (49) (159), liq.-vapor equil. (49) (159) (160),  $D_2^{20}$ /compn. (49) see indic. refs.  $-ar{C}+p$ entachloroethane (3:5880): for f.p./compn. data and diag. see (157).  $-ar{C}+1$ ,1,2,2-tetrachloroethylene (3:5460): for f.p./compn. data (45), vap. press. (3) and liq.-vapor equil. (3) see indic. refs.  $-ar{C}+2$ ,2-dichloropropane (3:7140): for f.p./compn. data see (45).  $-ar{C}+t$ er-butyl chloride (3:7045): for f.p./compn. data and diags. (complete series of solid solns.) see (47) (161).  $-ar{C}+c$ hlorobenzene (3:7903): for  $D_4^{20}$ /compn. see (61).

 $\tilde{C}$  with org. cpds. of higher orders.  $\tilde{C}+CBr_4$ : for extensive study of this system see (162); for  $D_4^{25}$ /compn. see (54). —  $\tilde{C}+C_2H_5Br$ : for  $D_4^{20}$ /compn. see (158). —  $\tilde{C}+1$ ,2-dibromoethane: for f.p./compn. data and diag. see (138).

 $\ddot{C}+CHI_3$ : for f.p./compn. data see (45). —  $\ddot{C}+EtI$ : for vap. press., liq.-vapor equil., and  $n_0^{25.2}$  see (65).

 $\bar{C}$  +  $CS_2$ : for f.p./compn. data (147), study of distn. (164) (168),  $D_{20}^{20}$ /compn. (164),  $D_{25}^{25}$ /compn. (12), and  $n_D^{15}$ /compn. (168) see indic. refs.

## TERNARY SYSTEMS CONTAINING C (See also azeotropes containing C)

 $\bar{C}$  + MeOH (1:6120) + aq.: for studies of phase relations (169) cf. (170) and colloidal character (171) see indic. refs.  $-\bar{C}$  + EtOH (1:6130) + aq.: for data on soly. relations incl. density and refractive indices see (173) cf. (170).  $-\bar{C}$  + EtOH (1:6130) +  $C_6H_6$  (1:7400): for data on vap. press. see (148).  $-\bar{C}$  + EtOH (1:6130) + glycerol (1:6540): for study of soly. relations see (172).  $-\bar{C}$  + n-PrOH (1:6150) + aq.: for data and diags. of soly. relations at 20°, and  $n_D^{25}$ /compn, see (66) cf. (170).  $-\bar{C}$  + AcOH (1:1010) +  $C_6H_6$  (1:7400): for data on density and  $n_D^{25}$  see (68); for vap. press. data see (2).  $-\bar{C}$  + toluene (1:7405) + 1,2-dibromoethane: for extensive study see (4) (174).  $-\bar{C}$  +  $Cl_2Cl_2$  (3:5020) +  $CHCl_3$  (3:5050): for f.p./compn. data (ternary cutectic, f.p.  $-111.4^\circ$ , conts. 13 wt. %  $\bar{C}$  + 60 wt. % CH<sub>2</sub>Cl<sub>2</sub> + 27 wt. % CHCl<sub>3</sub>) see (46).

### BINARY AZEOTROPES CONTAINING C

 $\overline{C} + MeOH$  (1:6120):  $\overline{C}$  forms with MeOH a const.-boilg. mixt., b.p. 55.70° at 760 mm., contg. 79.44 wt. % = 44.5 mole %  $\bar{C}$  (175), b.p. 54.4° at 734 mm., contg. 77 wt. %  $\bar{C}$  (176), b.p. 54.2° at 718 mm., contg. 79 wt. %  $\bar{C}$  (176); cf. also (177) (178).  $-\bar{C} + EtOH$  (1:6130); C forms with EtOH a const.-boilg mixt, b p. 64.95° (175), 65 08° (179) at 760 mm., contg. 84.15 wt. % = 61.3 mole % (175)  $\overline{C}$ ; cf. also (180) (181); for effect of press. on this azeotrope see (182).  $-\bar{C} + n\text{-}PrOH$  (1:6150):  $\bar{C}$  forms with n-PrOH a const-boilg. mixt., b.p. 72.8° (175), 73.1° (179) at 760 mm., contg. 88.5 wt. % = 75 mole % (175)  $\overline{C}$ ; cf. also (183). —  $\bar{C}$  + isoPrOH (1:6135):  $\bar{C}$  forms with isopropyl alc. a const.-boilg. mixt., b.p. 67.5° (175), 68.95° (184), contg. about 82 wt. % (175) (184) = 64 mole %  $\bar{C}$ ; cf. also (183)  $-\bar{C}$  + n-BuOH (1:6180): C forms with n-butyl alc. a const.-boilg. mixt., b.p. 76.55° at 760 mm., contg. 97.5 wt. %  $\bar{C}$  (179). —  $\bar{C} + isoBuOH$  (1:6165):  $\bar{C}$  forms with isobutyl alc. a const.boilg. mixt., b.p. 75.8° at 760 mm., contg. 94 5 wt. % = 89 mole % C (175) cf. (183) (186). —  $\ddot{C}$  + ter-BuOH (1:6140):  $\ddot{C}$  forms with ter-butyl alc. a const.-boilg mixt., b.p. 69 5° (175), 70.5° (185) at 760 mm., contg. 83 wt. % (175), 76 wt. % (185)  $\overline{C}$ .  $\overline{C}$  + ter-AmOH (1:6160): C forms with dimethyl-ethyl-carbinol a const.-boilg. mixt., b.p. about 76° at 760 mm., contg. about 95 wt. % C (185). —  $\ddot{C}$  + allyl alcohol (1:6145):  $\ddot{C}$  forms with allyl alc. a const.-boilg. mixt., b.p. 72.5°, contg. 79.5 mole % C (187).

 $\bar{C}$  + acetone (1:5400):  $\bar{C}$  forms with acetone a const.-boilg. mixt, b.p. 55.9° at 763 mm. (188), about 56° at 760 mm. (185), contg. about 11.5 wt. % (185)  $\bar{C}$ . —  $\bar{C}$  + methyl ethyl ketone (1:5405):  $\bar{C}$  with methyl ethyl ketone forms a const.-boilg. mixt., b.p. 73.8° at 760 mm., contg. 71 wt. % = 53.4 mole % (175)  $\bar{C}$ .

 $\bar{C} + AcOH$  (1:1010):  $\bar{C}$  forms with AcOH a const.-boilg. mixt., b.p. about 77° at 760 mm., contg. about 97 wt. %  $\bar{C}$  (189).

 $\ddot{C}$  + EtOAc (1:3015):  $\ddot{C}$  forms with ethyl acetate a const.-boilg. mixt., b.p. 74.75° at 760 mm. (175) (190), contg. 57 wt. %  $\ddot{C}$  (190); b.p. 76.15° at 789.2 mm. contg. 55.6 mole %  $\ddot{C}$  (191); b.p. 71.56° at 685.0 mm. contg. 58.2 mole %  $\ddot{C}$  (27); b.p. 66.72° at 583.7 mm. contg. 60.75 mole %  $\ddot{C}$  (191); b.p. 61.32° at 484.5 mm. contg. 63.75 mole %  $\ddot{C}$  (191); b.p. 55.22° at 385.2 mm. contg. 67.75 mole %  $\ddot{C}$  (191); b.p. 47.36° at 285.7 mm. contg. 72.6 mole %  $\ddot{C}$  (191): for study of thermodynamics of system see (193). —  $\ddot{C}$  + methyl propionate (1:3020):  $\ddot{C}$  forms with methyl propionate a const.-boilg. mixt., b.p. 75.5° at 760 mm.,

contg. 60 wt. % = 46 mole % (175); b.p. 76° at 760 mm. contg. about 75 wt. % (194)  $\overline{C}$ . —  $\overline{C}$  + n-Pr formate (1:3030):  $\overline{C}$  forms with n-propyl formate a const.-boilg. mixt., b.p. 74.6° at 760 mm., contg. about 69 wt. %  $\overline{C}$  (184).

 $\bar{C}$  + nitromethane:  $\bar{C}$  forms with nitromethane a const.-boilg. mixt., b.p. 71.3° at 760 mm., contg. about 83 wt. %  $\bar{C}$  (184). —  $\bar{C}$  + 1,2-dichloroethane (3:5130):  $\bar{C}$  forms with ethylene dichloride a const.-boilg. mixt., b.p. 75.30° at 760 mm., contg. about 70 mole %  $\bar{C}$  (49) cf. (159); b.p. about 76° at 760 mm. contg. 79 wt. %  $\bar{C}$  (185).

### TERNARY AZEOTROPES CONTAINING Č

 $\bar{C} + EtOH~(1:6130) + aq.$ : this system forms a ternary two-phase const.-boilg. mixt., b.p. 61.8° at 760 mm. (181) (175), contg. 86.3 wt. % = 57.6 mole %  $\bar{C} + 10.3$  wt. % = 23.0 mole % EtOH~+ 3.4 wt. % = 19.4 mole % aq.; for use of this azeotrope in detn. of water content of wood see (195).  $-\bar{C} + n-PrOH~(1:6150) + aq$ : this system forms a ternary two-phase const.-boilg. mixt., b.p. 54 4° at 760 mm , contg. 54 4 mole %  $\bar{C} + 18.0$  mole % n-propyl alc. + 27.6 mole % aq. (175).  $-\bar{C} + allyl~alc.~(1:6145) + aq.$ : this system forms a const.-boilg. mixt., b.p. 65.4° at 760 mm., contg. 90.43 wt. % = 64.5 mole %  $\bar{C} + 5.44$  wt. % = 10 4 mole % allyl alc. + 4.13 wt. % = 25.1 mole % aq. (187); b.p. 65.15° at 760 mm. contg. 53 8 mole %  $\bar{C} + 18.7$  mole % allyl alc. + 27.5 mole % aq. (175).  $-\bar{C} + ter-BuOH~(1:6140) + aq$ : this system forms a const.-boilg. mixt., b.p. 64.7° at 768 mm., contg. about 85 wt. %  $\bar{C} + 11.9$  wt. % ter-BuOH + 3.1 wt. % aq. (188).

 $\ddot{C}$  + methyl ethyl ketone (1:5405) + aq: this system gives a const.-boilg. mixt., b.p. 65.7° at 760 mm, contg. 76 9 wt. %  $\ddot{C}$  + 20.1 wt. % methyl ethyl ketone + 3.0 wt. % aq. (188); for use of this azeotrope in detn. of water in wood see (195).

#### OTHER SELECTED PHYSICAL CHARACTERISTICS OF C

[For studies of thermal conductivity of  $\bar{C}$  see (196) (197) (198); for studies of heat capacity of  $\bar{C}$  (39) (15) (183) as calcd. from spectroscopic data (199) (200) see indic. refs.; for studies of specific heat of  $\bar{C}$  see (21); for studies of heat of fusion and/or of transition see (39) (15) (36) (86) (157); for studies on ebullioscopic const. of  $\bar{C}$ , viz., 4.88° (201), 4.68° (202) per mole solute in 1000 g.  $\bar{C}$ , see indic. refs.; for studies on cryoscopic const. of  $\bar{C}$ , viz., 29.9° (203), 29.8° (204) per mole solute in 1000 g.  $\bar{C}$ , see indic. refs.]

[For studies of adsorption of  $\bar{C}$  on various carbons (205) (206) (207) (208) (209) (210) (211) (212) (213) at low press. (214) (215), animal charcoal (216), wood or cocoanut charcoal (217) (218) (219) (220) (221) (222) (223) (224), alumina gel (225) (226), silica gel (227) (224) (228), Fe (OH)<sub>3</sub> gel (229) (230), Cr (OH)<sub>3</sub> gel (231), TiO<sub>2</sub> gel (232), or mica (233) see indic. refs.]

### PHYSIOLOGICAL ASPECTS OF C

 $\bar{C}$  (as vapor) does not cause acute poisoning until exposure for 30 min. to concns. of 1000–1500 p.p.m. (234) but constant exposure to concns. above 100 p.p.m. (234) (235) or even 50 p.p.m. (236) will cause serious physiological disturbances. The least concn. of  $\bar{C}$  in air detectable by odor is 71.8 p.p.m. (237). For further studies of toxicity and industrial hygiene of  $\bar{C}$  see (238) (239) (240); for study of comparative toxicity of  $\bar{C}$  and 1,1,2-trichloroethylene (3:5170) see (241).

## USES OF C

 $\bar{C}$  is widely used as solvent, fire extinguisher, fumigant, anthelmintic, etc.; although any detailed survey of these aspects is beyond the scope of this book, a few special uses are cited. [For study of use of  $\bar{C}$  as solvent for ozonization see (24); for use in concn. of HNO<sub>3</sub> (242)

or AcOH (243) or in drying of higher alcs. (244) see indic. refs.; for use of molecular compound (245) of  $\tilde{C}$  with rotenone in extraction (245) and detn. (246) (247) (248) of rotenone see indic. refs.]

# DETECTION OR DETERMINATION OF C

**Detection of \bar{\mathbb{C}}.** [For detection of  $\bar{\mathbb{C}}$  in pres. of CHCl<sub>3</sub> (3:5050) q.v. by methods based on differences in aq. soly. (249), or on solv. power for papaverine HCl (250) or quinine sulfate (251), or on color reactions with pyrocatechol (1:1520) (252) (253),  $\alpha$ -naphthol (1:1500) (254) cf. (255), or 2,7-dihydroxynaphthalene (255) cf. (254) (for further details on last two see at end of text of this compd. under  $\mathfrak{P}$ ), see indic. refs. For review of literature of tests for  $\bar{\mathbb{C}}$  see (256).]

Note that C does not (251) reduce Fehling soln. [dif. from CHCl<sub>3</sub> (3:5050)].

Determination of  $\bar{C}$ . Methods for the detn. of  $\bar{C}$  are based upon both physical and chemical procedures or combinations of the two.

Physical methods include those based upon adsorption of  $\bar{C}$ , e.g., on activated carbon (257) or silica gel (258); by thermal conductivity of vapor of  $\bar{C}$  (259); by measurement of vapor press. (260); or on interference refractrometry (234).

Chemical methods include those based upon decompn. of  $\bar{C}$  by combustion and/or hydrolysis followed by detn. of HCl or of chloride ion, or those based upon color reactions. [For examples of methods based upon combustion followed by detn. of HCl (261) (262) (263) (264) (265) (266) (267) (268) (279) (for combustion in  $H_2$  see (269)); methods based upon hydrolysis with alc. alk. (270) (271) (272) or reduction with Na + ethanolamine (273) (274) followed by detn. of chloride ion; or methods based upon use of color (Fujiwara) reaction with pyridine + alkali (275) (276) (277) (278) see indic. rcfs.]

### DETECTION OF OTHER COMPOUNDS IN C

[For studies on removal of CHCl<sub>3</sub> (3:5050) from  $\bar{C}$  by digestion with Fehling soln. at 60-70° for several hrs. (280); on detection in  $\bar{C}$  of CS<sub>2</sub> by addn. of MeOH (1:6120) and formn. of CS<sub>2</sub>/MeOH azeotrope of b.p. 37.1° at 751 mm. (188) or by use of xanthate reaction (281); on removal of CS<sub>2</sub> from  $\bar{C}$  by use of alc. hydrazine hydrate (282) see indic. refs.; for detection in  $\bar{C}$  of carbonyl chloride see (283) (284) (285) (286) and also under phosgene (3:5000).]

### PREPARATION OR FORMATION OF C

The principal methods of prepn. of  $\tilde{C}$  are those involving chlorination of  $CS_2$  or of hydrocarbons, but many other procedures have been studied as exemplified below.

From carbon disulfide. [Prepn. of  $\tilde{C}$  from  $CS_2$  by action of  $Cl_2$  was first effected (287) by passage through red-hot tube; in subsequent development of this method use of various catalysts has been found to reduce the required temperature. The overall reaction is believed to occur in two stages, viz., (1)  $CS_2 + 3Cl_2 \rightarrow CCl_4 + S_2Cl_2$  and (2)  $CS_2 + 2S_2Cl_2 \rightarrow CCl_4 + 6S$ . The resultant sulfur may be recovered and used again in prepn. of  $CS_2$ .]

[For an extensive account of prepn. of  $\bar{C}$  prior to 1906 see monograph of Margosches (288); for longer summary as of 1938 see (289); for still later patents and articles on use of Cl<sub>2</sub> (290) (291) (292) (293) (294) (295) or various sulfur chlorides (296) (297) (298) (299) see indic refs.]

[For studies on use of various catalysts, e.g., Br<sub>2</sub> (300), I<sub>2</sub> (301), I<sub>2</sub> + Fe (302), MoCl<sub>5</sub> (303), SbCl<sub>5</sub> (304), or FeCl<sub>3</sub> (304), see indic. refs.; note that CS<sub>2</sub> reacts with SbCl<sub>5</sub> even without addn. of Cl<sub>2</sub> to give  $\bar{C}$  (305).]

[Note that in chlorination of CS<sub>2</sub> with restricted amts. Cl<sub>2</sub> various intermediate carbon chlorosulfides have been detected (306) (307).]

From methane. The formation of  $\bar{C}$ , together with CH<sub>3</sub>Cl (3:7005), CH<sub>2</sub>Cl<sub>2</sub> (3:5020), CHCl<sub>3</sub> (3:5050), and other products, has been very extensively studied from many viewpoints. The literature of this reaction is diffuse and interlocked with that of methane and of the various other chlorination products. For this reason and because detailed treatment of this topic is beyond the scope of this book, the following citations must be regarded only as leading references.

[The form. of  $\bar{C}$  from  $CH_4$  by action of  $Cl_2$  was first discovered in 1840 by Dumas (308). For examples of more recent technical papers ((309)–(317), incl.) and patents ((318)–(332), incl.) see indic. refs.]

From other hydrocarbons. [For examples of patents on prepn. of  $\tilde{C}$  from aliph. hydrocarbons higher than methane (including in some cases also their halogen derivatives) see (313) (333) (334) (335) (336) (337). — For prepn. of  $\tilde{C}$  from acetylene +  $Cl_2$  + cat. at 100-200° (338) or with  $Cl_2$  + eutectic of  $AlCl_3/NaCl/FeCl_3$  at 175-200° (339) see indic. refs. (see also below under prepn. of  $\tilde{C}$  from tetrachloroethylene). — For prepn. of  $\tilde{C}$  from naphthalene by destructive chlorination see (340).]

From various chloro and polychloro compounds. [For technical papers on prepn. of Č from chlorinolysis of various chloro and polychloroparaffins (341) or chloropentanes (342) see indic. refs.]

[For patents on prepn. of  $\bar{C}$  from tetrachloroethylene (3:5460) with  $Cl_2$  at 700-800° (343) or with  $Cl_2$  over activated carbon at 600-650° (337) see indic. refs.; for study of this reaction see (344). For formn. of  $\bar{C}$  from hexachloroethane (3:4835) pyrolyzed in air at 550-600° see (342).]

[For prepn. of  $\bar{C}$  from CHCl<sub>3</sub> (3:5050) by chlorination with Cl<sub>2</sub> in sunlight (first prepn. of  $\bar{C}$ ) (345) or u.v. light (346) (347) (348) (349), at 260-300° (350), or in pres. of FeCl<sub>3</sub> (351) or of aq. (352), or from CHCl<sub>3</sub> with ICl at 165° (353), or with NaOCl (reaction very slow and incomplete (354)), see indic. refs.]

[For formn. of C from CFCl<sub>3</sub> with AlCl<sub>3</sub> see (355); from CBrCl<sub>3</sub> with Cl<sub>2</sub> in dark at 100° (356) or in light (357) (358) see indic. refs.]

From miscellaneous sources. [For formn. of C from charcoal or other form of carbon + Cl<sub>2</sub> see patents (359) (361) and technical papers (344) (360); from trichloroacetyl chloride (3:5420) on htg. with AlCl<sub>3</sub> (362) or pyrolysis through glass tube at 600° (363), from trichloromethyl chloroformate (3:5515) on htg. with AlCl<sub>3</sub> (364), from chloral (3:5210) with Cl<sub>2</sub> in sunlight (365), or from acetone (1:5400) with NaOCl soln. (366) cf. (354), or from phosgene (3:5000) on htg. with cat. (344) cf. (372), see indic. refs.]

[For formn. of  $\bar{C}$  from dimethyl sulfide [Beil. I-288, I<sub>1</sub>-(144), I<sub>2</sub>-(276)] with Cl<sub>2</sub> + I<sub>2</sub> at 100-120° in daylight see (367) (368) (369); from trichloromethyl sulfur chloride ("perchloromethyl mercaptan") [Beil. III-135, III<sub>1</sub>-(63), III<sub>2</sub>-(106)] on htg. with Fe filings or ZnF<sub>2</sub> (370) cf. (307) (371) or with Cl<sub>2</sub> + I<sub>2</sub> in sunlight (370) see indic. refs.; from thiophosgene [Beil. III-134, III<sub>1</sub>-(63), III<sub>2</sub>-(105)] with Fe at 37° for many months or from "trichloromethyl dithiochloroformate" [Beil. III-215, III<sub>2</sub>-(155)] with Fe in s.t. at 100° see (307).]

## CHEMICAL BEHAVIOR OF C

Pyrolysis of Č. [C̄ on pyrolysis at 600-1500° (373) (374) cf. (344) (375) (376) gives tetrachloroethylene (3:5460) (80% yield (374)), hexachloroethane (3:4835), and other products. C̄ by action of electric arc (377) cf. (378), dark electric discharge (in H<sub>2</sub>) (379), radium emanation (380), gives hexachloroethane (3:4835) and various other products.]

[Note also that  $\bar{C}$  in X-radiation (381) (382) or ultrasonic radiation (383) splits off some Cl<sub>2</sub>. For action of X-radiation on mixts. of  $\bar{C}$  with aq., CHCl<sub>3</sub>, CHI<sub>3</sub>, lgr., or cyclohexane see (381) (384); for decompn. of  $\bar{C}$  in u.v. light below 2750 Å see (385).]

Oxidation of C. C under various oxidizing conditions yields phosgene and other products. [E.g., C with O<sub>2</sub> in light of 2537 Å (386) or with atomic oxygen (387) gives carbonyl chloride (3:5000); C with O<sub>2</sub> over white-hot Pt (375), or with air over CuCl<sub>2</sub> or FeCl<sub>3</sub> at elev. temp. (388), or C over GeO<sub>2</sub> (389), or C with pyrosulfuryl chloride (1 mole) + sulfuric acid monohydrate (2 moles) on warming (390) (391) (392) (393) gives phosgene (3:5000). For formn. of phosgene (3:5000) q.v. during thermal decompn. of C (as in use as fire extinguisher) see (394), also below under behavior of C with metals.] [Note that C, unlike CHCl<sub>3</sub> (3:5050), is not oxidized by Fehling soln.]

**Reduction of C.** [ $\bar{C}$  with K/Hg + aq. gives (395) methane;  $\bar{C}$  with Fe(OH)<sub>2</sub> + aq. alk. gives (396) CH<sub>2</sub>Cl<sub>2</sub> (3:5020) + CHCl<sub>3</sub> (3:5050);  $\bar{C}$  with Zn + H<sub>2</sub>SO<sub>4</sub> (397) (398), finely divided Fe + aq. (399) + cat. (400) (401), or on electrolytic reduction (402) gives CHCl<sub>3</sub> (3:5050). For behavior of  $\bar{C}$  with atomic hydrogen see (403).]

[Note that  $\tilde{C} + H_2$  over pumice in hot tube gives (404) CHCl<sub>3</sub> (3:5050), CH<sub>2</sub>Cl<sub>2</sub> (3:5020), tetrachloroethylene (3:5460) + hexachloroethane (3:4835), and at red heat (395) methane and ethylene.  $\tilde{C}$  with excess  $H_2$  over reduced Ni at 270° gives (405) hexachloroethane (3:4835) + HCl.]

Substitution of  $\bar{C}$ .  $\bar{C}$  by reaction with  $F_2$ , metallic fluorides, or HF, etc., each in the presence of appropriate catalysts, undergoes replacement of one or more of its chlorine atoms by fluorine and consequent formation of mixed derivatives such as  $CCl_3F$ ,  $CCl_2F_2$  ("Freon" = "Freon-12" "F-12"),  $CClF_3$ , etc., to whose properties as refrigerants, etc., much attention is currently being given. [Detailed analysis of the conversion of  $\bar{C}$  to these materials is far beyond the scope of this book, but for examples of leading technical papers (406) (407) (408) (409) (410) (411) and patents ((412)-(429)) see indic. refs.] (See also below under behavior of  $\bar{C}$  with inorganic salts.)

Hydrolysis of  $\tilde{C}$ . [ $\tilde{C}$  with aq. on long exposure (e.g., 7 months (430)) to sunlight gives  $CO_2 + HCl$ ;  $\tilde{C}$  with large excess of aq. in s.t. at 250° also gives  $CO_2 + HCl$ , but  $\tilde{C}$  with very small proportion of aq. under same conditions gives (431) some phosgene (3:5000). At ord. temp. hydrolysis of  $\tilde{C}$  by pure aq. is scarcely perceptible, but in presence of Fe, Cu, acid, or alkali, hydrolysis is strongly accelerated especially at higher temperatures (432).  $\tilde{C}$  is hydrolyzed by aq. + reduced Fe but not by aq. NaHCO<sub>3</sub> (342) under reflux.]

[ $\bar{C}$  with boilg. alc. alk. is eventually completely hydrolyzed (use in detn. of  $\bar{C}$  by estimation of resultant chloride ion (see above)); however, reaction is slow and with N aq. or alc. KOH or NaOEt at 60° is very slight in 2 hrs. (433). For study of rate of hydrolysis of  $\bar{C}$  with KOH in 95% alc. (434) cf. (435), or with Ba(OH)<sub>2</sub> or TlOH in 50% alc. (436), see indic. refs.]

Behavior of  $\bar{C}$  with inorganic salts. [ $\bar{C}$  with AlBr<sub>3</sub> at room temp. for 3 days gives (358) CBrCl<sub>3</sub> [Beil. I-67, I<sub>2</sub>-(31)], b.p. 104.2-104.35° at 758.5 mm. (358), but  $\bar{C}$  with AlBr<sub>3</sub> at 60° gives (437) cf. (438) CBr<sub>4</sub> [Beil. I-68, I<sub>1</sub>-(17), I<sub>2</sub>-(35)], m.p. 94°, b.p. 189.5° at 760 mm. with slight decompn. (439).]

[ $\bar{C}$  with AlI<sub>3</sub> (440), Al + I<sub>2</sub> in CS<sub>2</sub> (441), CaI<sub>2</sub> + 2H<sub>2</sub>O or LiI + 1.5H<sub>2</sub>O in evacuated s.t. at 90-92° for 5 days (50-55% yield (442)) (443), with BI<sub>3</sub> (444), or  $\bar{C}$  (1 mole) + C<sub>2</sub>H<sub>5</sub>I (4 moles) + AlCl<sub>3</sub> (0.1 mole) (445), or best  $\bar{C}$  (0.7 mole) with CH<sub>3</sub>I (2.94 moles) + AlCl<sub>3</sub> (0.015 mole) at 40° (92% yield (446)) gives carbon tetraiodide, CI<sub>4</sub> [Beil. I-74, I<sub>1</sub>-(19), I<sub>2</sub>-(39)].]

Č with alc. AgNO<sub>3</sub> does not react even after several days; note that in this respect Č behaves like CH<sub>2</sub>Cl<sub>2</sub> (3:5020) and CHCl<sub>3</sub> (3:5050) while CH<sub>3</sub>Cl (3:7005) gives a ppt. within 3 hrs. (446).

Behavior of  $\tilde{\mathbb{C}}$  with metals.  $\tilde{\mathbb{C}}$  with alkali or even alkaline-earth metals undergoes explosive decompn. on htg. or even at room temp. if subjected to sufficient mechanical shock. [For studies on the explosion of  $\tilde{\mathbb{C}}$  with alkali metals see (477) (448); for further studies on explosion of  $\tilde{\mathbb{C}}$  with Li, Na, K, Ca, Sr, Ba, Mg, Al, and Tl, expecially with reference to sensitivity to mechanical shock, see (449). — For behavior of  $\tilde{\mathbb{C}}$  with Na vapor see (450); for rate of reaction of  $\tilde{\mathbb{C}}$  with Na atoms see (451); for study of  $\tilde{\mathbb{C}}$  + Na/Hg as means of sepn. of isotopes of chlorine see (452) cf. (453).]

[For study of hazards of behavior of  $CCl_4/CHCl_3$  mixts. with Mg (454) (455) or Al (454) see indic. refs.; note also that  $\bar{C}$  refluxed with Al powder (456) or Al/Hg (457), or  $\bar{C}$  with Al + AlCl<sub>3</sub> at 60-75° (458), or  $\bar{C}$  with Cu powder at 120° (458) or molecular Ag at 200° (431) gives (yields: 80% (456), 65% (457)) hexachloroethane (3:4835).]

Note that C with Mg in boilg, ether does not react, even in the presence of various catalysts (459).

[For extensive study of corrosion of metals by  $\tilde{C}$  (460) cf. (461) (462) (463) (432) see indic. refs.]

Behavior of  $\bar{C}$  with other inorganic reactants. [ $\bar{C}$  is claimed to be unaffected by conc.  $H_2SO_4$  at 237° (464) although over  $H_2SO_4$  on pumice at 150°  $\bar{C}$  is reported (465) to give HCl,  $SO_2$ ,  $COCl_2 + CO_2$ .]

[For study of photochem. reaction of  $\tilde{C}$  with  $H_2S$  giving hexachloroethane (3:4835) + S +  $CCl_3SH$  see (466); for studies on photochem. decompn. of  $Cl_2O$  in  $\tilde{C}$  see (467) (468) (469) (470) cf. (471); for behavior of  $\tilde{C}$  with  $Br_2O$  giving phosgene (3:5000) +  $Cl_2$  +  $Br_2$  see (472).]

[ $\bar{C}$  with NH<sub>3</sub> under high press. in pres. of Cu + I<sub>2</sub> at 140° for 17 hrs. gives (35–40% yield (473)) guanidine hydrochloride [Beil. III 82, III<sub>1</sub>-(39), III<sub>2</sub>-(69)]. —  $\bar{C}$  with hydrazine hydrate in stream of NH<sub>3</sub> refluxed for several days gives (poor yield (474)) N,N',N''-triaminoguanidine [Beil. III-122, III<sub>1</sub>-(57), III<sub>2</sub>-(97)], as monohydrochloride, m.p. 228° dec.]

Behavior of  $\bar{C}$  with organic reactants. With carbon monoxide.  $[\bar{C}$  with CO + AlCl<sub>3</sub> at 200° and 250 atm. for 6 hrs. gives (37% yield (475)) trichloroacetyl chloride (3:5420).]

With hydrocarbons. [Č (excess) with octene-1 (1.8375) in pres. of small amts. (0.02 mole) of dibenzoyl peroxide (or diacetyl peroxide) adds to unsatd. linkage giving (476) 1,1,1,3-tetrachlorononane; under similar conditions C adds to one of the unsatd. linkages of diallyl (1:8045) giving 5,7,7,7-tetrachloroheptene-1 or to both giving 1,1,1,3,6,8,8,8-octachloro-octane. — For other addns of C to olefin linkages see below.]

[ $\bar{C}$  with  $C_6H_6$  in pres. of AlCl<sub>3</sub> gives according to conditions triphenylchloromethane (3:3410) (477), triphenylmethane (1:7220) (478), or benzophenone (1:5150) (479). Other arom, hydrocarbons and aryl halides behave similarly but cannot be detailed here.]

With saturated halohydrocarbons. Č (0.7 mole) with MeI (2.94 moles) + AlCl<sub>3</sub> (0.015 mole) at 40° gives (92% yield (446)) carbon tetraiodide (see also above under behavior of Č with inorganic salts). — Č with CBr<sub>4</sub> in pres. of slightly moistened AlCl<sub>3</sub> at 170° for 7 hrs. undergoes a redistribution reaction giving (480) an equil. mixt. of CCl<sub>4</sub>, CCl<sub>3</sub>Br, CCl<sub>2</sub>Br<sub>2</sub>, CClBr<sub>3</sub>, and CBr<sub>4</sub>.]

With unsaturated halohydrocarbons. [C with ord. 1,2-dichloroethylene (3:5030) + AlCl<sub>3</sub> gives (481) (482) cf. (483) 1,1,1,2,3,3-hexachloropropane (3:6460); for reaction of this system yielding heptachloropentenes see (483).]

[ $\bar{C}$  with trichloroethylene (3:5170) + AlCl<sub>3</sub> at 20-30° for 48 hrs. gives (49% yield (484)) (481) (482) 1,1,1,2,3,3,3-heptachloropropane (3:6860).]

With alcohols or alcoholates. [C with MeOH over cat. at 200-350° gives (485) MeCl (3:7005); C with EtOH under similar circumstances gives EtCl (3:7015).]

[C with NaOCH<sub>3</sub> would be expected to yield tetramethyl orthocarbonate [Beil. III<sub>2</sub>-(4)],

b.p. 112-113° at 724 mm. (486),  $n_D^{19} = 1.3841$  (486), but this reaction is unreported, the expected prod. having been made only by other methods. —  $\bar{C}$  with NaOC<sub>2</sub>H<sub>5</sub> would be expected to yield tetraethyl orthocarbonate [Beil. III-5, III<sub>1</sub>-(4), III<sub>2</sub>-(5)], b.p. 157-158° (487), 59.6-60° at 14 mm. (486),  $D_4^{18.5} = 0.9197$  (488),  $n^{18.5} = 1.39354$  (488), but this reaction is unreported cf. (505); however, the prod. has been prepd. from CBr<sub>4</sub> with NaOEt in dry ether in s.t. at 170° (487), from "thiocarbonyl tetrachloride," CSCl<sub>4</sub> cf. (489) refluxed in dry ether with NaOEt, and in other ways ]

With mercaptans or mercaptides. [ $\bar{C}$  with NaSCH<sub>3</sub> might be expected to give tetramethyl tetrathioorthocarbonate, C(SCH<sub>3</sub>)<sub>4</sub>, but this appears to be unreported;  $\bar{C}$  with NaSCH<sub>3</sub> has been found (492) to react differently giving trimethyl trithioorthoformate [Beil. II<sub>1</sub>-(39)], m.p. 16° (493), b.p. 220° dec. (493), 103–104° at 12 mm. (492), 96° at 9 mm. (493),  $n_D^{15} = 1.5696$  (492), and dimethyl disulfide, b.p. 39–41° at 18 mm. (492). —  $\bar{C}$  with NaSC<sub>2</sub>H<sub>5</sub> is claimed (491) to give the expected homologous tetracthyl tetrathioorthocarbonate C(SC<sub>2</sub>H<sub>5</sub>)<sub>4</sub>, but this material was not well characterized, and  $\bar{C}$  with NaSC<sub>2</sub>H<sub>5</sub> has subsequently (492) been found to give triethyl trithioorthoformate [Beil. II-95, II<sub>1</sub>-(39)], b.p. 235° dec. (493), 174° at 760 mm. (494),  $D_D^{20} = 1.053$  (495),  $n_D^{15} = 1.5410$  (492). — For behavior of  $\bar{C}$  with salts of n-propyl, n-butyl, and ter-butyl mercaptans see (492).]

With phenols or phenolates. [ $\bar{C}$  with phenol (1:1420) in pres. of  $ZnCl_2 + ZnO$  at 120° gives (496) diphenyl carbonate (1:2335), various dihydroxybenzophenones, and other products; for analogous study of  $\bar{C}$  with o-cresol (1:1400) see (497).

[C with K phenolate at 170° gives mainly (498) aurin (pararosolic acid) (4',4''-dihydroxy-fuchsone) [Beil. VIII-361, VIII<sub>1</sub>-(671)]; for analogous behavior of C with K o-cresolate and K m-cresolate see (498).]

With diacyl peroxides. [C refluxed with di-n-butyryl peroxide for 17 hrs. gives (499) n-propyl chloride (3:7040) + hexachloroethane (3:4835) + ethyl n-butyrate (1:3127); C refluxed similarly with di-n-isobutyryl peroxide gives (499) isopropyl chloride (3:7025) + hexachloroethane (3:4835) + ethyl isobutyrate (1:3095).]

[ $\bar{\mathbf{C}}$  with di- $\alpha$ -naphthyl peroxide under reflux gives (500) CO<sub>2</sub>,  $\alpha$ -chloronaphthalene (3:6878),  $\alpha$ -naphthoic acid (1:0785), and other products;  $\bar{\mathbf{C}}$  with di- $\beta$ -naphthyl peroxide under reflux gives (500) CO<sub>2</sub>,  $\beta$ -chloronaphthalene (3:1285),  $\beta$ -naphthoic acid (1:0800), and other products.]

[Č with dibenzoyl peroxide under reflux gives (501) (502) (503) 4-(trichloromethyl)-benzoic acid, hexachloroethane (3:4835), phosgene (3:5000), chlorobenzene (3:7903), and other products; for study of kinetics of reaction see (504).]

With salts of enolic esters. [ $\bar{C}$  with diethyl sodio-malonate (505) (507) or with diethyl disodio-malonate (506) (507) (508) (509) gives the Na enolate of tetraethyl  $\alpha,\gamma$ -dicarboxy-glutaconate, (C<sub>2</sub>H<sub>5</sub>OOC)<sub>2</sub>C=CH—CH(COOC<sub>2</sub>H<sub>5</sub>)<sub>2</sub> [Beil. II-876, II<sub>1</sub>-(336), II<sub>2</sub>-(710)], b.p. 208-210° at 23 mm. (510), 200-204° at 18 mm. (510); note that this product is also obtd. from CHCl<sub>3</sub> (3:5050) with diethyl sodio-malonate (505) (511) (512) (513) (514) (515) (516) (517).]

[C with 4 moles of Na enolate of ethyl cyanoacetate in alc. at 100° gives (505) cf. (508) the sodium enolate of diethyl  $\alpha$ , $\gamma$ -dicyanoglutaconate,  $C_2H_5OOC$ —C(CN)—CH—CH- $(CN)COOC_2H_5$  [Beil. II-878, II<sub>2</sub>-(712)], also obtd. from  $CHCl_3$  (3:5050) with the Na enolate of ethyl cyanoacetate (518) (519) (520).]

With amines. The behavior of  $\bar{C}$  with amines has been little studied. [For studies on the behavior of  $\bar{C}$  with aniline (521) and also with other aromatic amines in pres. of Cu powder (522) or I<sub>2</sub> (523) see indic. refs.]

Color reaction with α-naphthol/cyclohexanol. C
 (1 drop) with 2 ml. of a 2% soln. of α-naphthol (1:1500) in cyclohexanol (1:6415) + 1 pellet of solid NaOH, boiled

- 25 seconds and cooled, gives (254) blue color; one portion of this blue solution underlaid with equal volume 85%  $\rm H_2SO_4$ , stood 1 min. and shaken, remains blue; a second portion of the alkaline blue soln. acidified with equal vol. AcOH (1:1010), stood 1 min. and shaken, becomes red. [Note that the alkaline boilg. also gives a blue color with  $\rm CH_2Cl_2$  (3:5020) and with CHCl<sub>3</sub> (3:5050), while other chlorinated solvents (254) give yellow-brown, gray, or brown; in the  $\rm H_2SO_4$  acidification  $\rm CH_2Cl_2$  (3:5020) gives greenish blue, while both CHCl<sub>3</sub> (3:5050) and  $\rm \bar C$  give intense blue; in the AcOH acidification  $\rm CH_2Cl_2$  (3:5020) gives yellow while CHCl<sub>3</sub> (3:5050) gives an orange-yellow color.]
- ② Color test with 2,7-dihydroxynaphthalene/cyclohexanol. C

  ☐ (1 drop) with 2 ml. pure cyclohexanol (1:6415) + 1 pellet NaOH + a few mgms. 2,7-dihydroxynaphthalene htd. at 197° (b.p. of ethylene glycol) for 45 seconds, decanted from undissolved NaOH, cooled, and shaken with 2 ml. AcOH + 4 ml. 96% EtOH, gives a pale yellow-brown color (255). [Note that under these conditions CH₂Cl₂ (3:5020) gives a steel-blue color while CHCl₃ (3:5050) gives a deep red color.]
- ② Color test with cyclopentanol. C (1 drop) in 1 ml. cyclopentanol (1:6412) + 1 pellet NaOH boiled 25 seconds, then shaken vigorously for 35 seconds, and treated with 4 ml. 96% EtOH and shaken, gives an intense brown color (255). [Note that, after addition of alc., CH₂Cl₂ (3:5020) gives a more intense red or becomes reddish brown while CHCl₃ (3:5050) gives only a pale citron-yellow. By comparing with authentic known samples, this test is claimed (255) to be able to detect as little as 5% C in CHCl₃.]
- 3:5100 (1) Biltz, Sapper, Z. anorg. allgem. Chem. 203, 283, 285 (1932). (2) McMillan, McDonald, J. Phys. Chem. 49, 10-20 (1945). (3) McMillan, McDonald, Ind. Eng. Chem. 36, 1175-1176 (1944). (4) Schultze, J. Am. Chem. Soc. 36, 498-513 (1914). (5) Bowden, Butler, J. Chem. Soc. 1939, 79-83. (6) Timmermans, Bull. soc. chim. Belg. 24, 244-269 (1910); Cent. 1910, II 442. (7) Timmermans, Martin, J. chim. phys. 23, 766-768 (1926). (8) Gross, Saylor, J. Am. Chem. Soc. 53, 1747-1748 (1931). (9) Thorpe, J. Chem. Soc. 37, 199 (1880). (10) Grimm, Z. physik. Chem. A-140, 326-329 (1929).
- (11) Mathews, J. Am. Chem. Soc. 48, 570 (1926). (12) Linebarger, Am. Chem. J. 18, 439-442 (1896). (13) Zmaczynski, Roczniki Chem. 16, 486-501 (1936); C.A. 31, 3355 (1937): Svensk Kem. Tid. 48, 268-273 (1936); Cent. 1937, I 2762; [C.A. 31, 2056 (1937)]. (14) Wcjciechowski, Nature 138, 1096 (1936). (15) Stull, J. Am. Chem. Soc. 59, 2726-2733 (1937). (16) Wood, J. Am. Chem. Soc. 59, 5151 (1937). (17) Biltz, Meinecke, Z. anorg. allgem. Chem. 131, 1-21 (1923). (18) Earp, Glasstone, J. Chem. Soc. 1935, 1711. (19) Young, J. Chem. Soc. 59, 912 (1891). (20) Perkin, J. Chem. Soc. 45, 532 (1884).
- (21) Williams, Daniels, J. Am. Chem. Soc. 46, 903-917, 1569-1577 (1924). (22) Hartung, Chem. News 116, 274 (1917). (23) Herz, Rathmann, Chem. Zig. 36, 1417 (1912). (24) Greenwood, J. Org. Chem. 10, 414-418 (1945). (25) Pawlewski, Ber. 16, 2633 (1883). (26) Schiff, Ann. 223, 72 (1884). (27) Schutz, J. Am. Chem. Soc. 61, 2691-2693 (1939). (28) Wald, Z. physik. Chem. 88, 141 (1914). (29) Wheat, Browne, J. Am. Chem. Soc. 60, 371-372 (1938). (30) Moles, Gomez, Z. physik. Chem. 80, 526 (1912).
- (31) Cornog, Olson, J. Am. Chem. Soc. 62, 3328-3330 (1940); Proc. Iowa Acad. Sci. 46, 198 (1939). (32) Phipps, Reedy, J. Phys. Chem. 40, 97-98 (1936). (33) Skau, Meier, J. Am. Chem. Soc. 51, 3517-3519 (1929). (34) Skau, J. Phys. Chem. 37, 612 (1933). (35) Keyes, Townshend, Young, J. Math. Phys. 1, 305, 310 (1922). (36) Johnston, Long, J. Am. Chem. Soc. 56, 31-35 (1934). (37) Timmermans, van der Horst, Onnes, Cent. 1923, IV 377. (38) Sameshima, Hiramatsu, Bull. Chem. Soc. Japan 9, 260-262 (1934). (39) Hicks, Hooley, Stephenson, J. Am. Chem. Soc. 66, 1064-1067 (1944). (40) Timmermans, Bull. soc. chim. Belg. 25, 300-327 (1911), Cent. 1911, II 1015.
- (41) Deffet, Bull. soc. chim. Belg. 44, 62-63 (1935). (42) Michel, Bull. soc. chim. Belg. 48, 138 (1939). (43) Linard, Bull. soc. chim. Belg. 34, 369, 371 (1925). (44) Hrynakowski, Szmyt, Z. physik. Chem. A-182, 405-412 (1938). (45) van de Vloed, Bull. soc. chim. Belg. 48, 260, 262 (1939). (46) Kanolt, Sci. Papers U.S. Bur. Standards 20, 619-633 (1926). (47) Turkevich, Smyth, J. Am. Chem. Soc. 62, 2468-2474 (1940). (48) Nasu, Bull. Chem. Soc. Japan 8, 392-399 (1933); Science Repts. Tohoku Imp. Univ. (1) 22, 987-996 (1933). (49) Young, Nelson, Ind. Eng. Chem., Anal. Ed. 4, 67-69 (1932). (50) Stearn, Smyth, J. Am. Chem. Soc. 56, 1667 (1934).

(51) Brüll, Z. Electrochem. 38, 601-611 (1932).
(52) Nieuwenhuis, Z. Elektrochem. 39, 727-731 (1933).
(53) Nasu, Bull. Chem. Soc. Japan 8, 195-207 (1933); Science Repts. Tohoku Imp. Univ. (1) 22, 972-986 (1933).
(54) Hammick, Wilmut, J. Chem. Soc. 1934, 33.
(55) Grimm, Z. physik. Chem. B-2, 184-188 (1929).
(56) Kailan, Z. physik. Chem. 88, 86 (1914).
(57) Seatchard, Wood, Mochel, J. Am. Chem. Soc. 62, 712-716 (1940).
(58) Scatchard, Wood, Mochel, J. Am. Chem. Soc. 61, 3206-3210 (1939).
(59) Graffinder, Heymann, Z. Physik. 72, 755 (1932).
(60) Patterson, Thomson, J. Chem. Soc. 93, 371 (1908).

(61) Goss, J. Chem. Soc. 1937, 1920.
(62) Earp, Glasstone, J. Chem. Soc. 1935, 1709-1723.
(63) Biron, J. Russ. Phys.-Chem. Soc. 42, 169 (1910); Cent. 1910, I 1913.
(64) Grunert, Z. anorg. allgem. Chem. 164, 257 (1927).
(65) Zawidski, Z. physk. Chem. 35, 129-203 (1900).
(66) Denzler, J. Phys. Chem. 49, 358-365 (1945).
(67) Hubbard, Z. physk. Chem. 74, 228-229 (1910).
(68) McMillan, McDonald, Ind. Eng. Chem., Anal. Ed. 15, 114-116 (1943).
(69) Schwers, Bull. acad. roy. Belg., Classe des sci. 1912, 629; Cent. 1913, I 211.
(70) Beythien, Hennicke,

Pharm. Zentralhalle 48, 1006 (1907).

(71) Gladstone, J. Chem. Soc. 59 292-293 (1891).
(72) Young, Sci. Proc. Roy. Dublin Soc. 12, 427 (1909/10); C.A. 5, 406 (1911).
(73) Smyth, Engel, J. Am. Chem. Soc. 51, 2649 (1929).
(74) Baker, J. Chem. Soc. 121, 569-574 (1922); 1927, 949-958; 1928, 1051-1055; 1929, 1661-1664; J. Am. Chem. Soc. 53, 1810 (1931).
(75) Mali, Z. anoro. allgem. Chem. 149, 150-156 (1925).
(76) Balarew, J. prakt. Chem. (2) 116, 57-58 (1925).
(77) Lenher, Daniels, Proc. Natl. Acad. Sci. U.S. 14, 606-609 (1928).
(78) Lenher, J. Am. Chem. Soc. 51, 2948-2550 (1929).
(79) Lenher, J. Phys. Chem. 33, 1579-1582 (1929).
(80) Greer, J. Am. Chem. Soc. 52, 4191-4201 (1930).

(81) Williams, Ind. Eng. Chem., Anal. Ed. 18, 157-160 (1946). (82) Brull, Z. Elektrochem. 40, 8-10 (1934). (83) Brudgman, Phys. Ren. (2) 3, 175-180 (1914). (84) Bugarszky, Z. physik. Chem. 71, 710 (1910). (85) Wahl, Z. physik. Chem. 88, 141 (1914). (86) Latimer, J. Am. Chem. Soc. 44, 93 (1922). (87) McCullough, Phipps, J. Am. Chem. Soc. 50, 2213-2216 (1928). (88) Isnardi, Z. Physik 9, 158, 171-173 (1922). (89) Stranathan, Phys. Rev. (2) 31, 664 (1928).

(90) Wyatt, Trans. Faraday Soc. 25, 48-53 (1929).

(91) Rex, Z. physik. Chem. 55, 363, 365 (1906).
(92) Gross, Z. physik. Chem. B-6, 215-220 (1930).
(93) Staverman, Rec. trav. chim. 60, 836-841 (1941).
(94) Rosenbaum, Walton, J. Am. Chem. Soc. 52, 3568-3573 (1930).
(95) Niini, Suomen Kemistlehti II-A, 19-20 (1938); Cent. 1939, II 614; C.A. 32, 4861 (1938).
(96) Horiuchi, Bull. Inst. Phys. Chem. Research (Tokyo) 7, 119-172 (1928); English Ed. 1, 11-17 (1928); Cent. 1928, I 2770; C.A. 22, 3332 (1928), cf. ibid. 17, 125-256 (1931); C.A. 26, 2104-2105 (1932).
(97) Fischer, Pfleiderer, Z. anorg. allgem. Chem. 124, 68 (1922).
(98) Metschl, J. Phys. Chem. 28, 426, 428 (1924).
(99) von Wartenberg, von Podjaski, Z. anorg. allgem. Chem. 148, 395 (1925).
(100) Fischer, Tropsch, Ber. 50 765-767, (1917).

(101) Frölich, Tauch, Hogan, Ind. Eng. Chem. 23, 548-550 (1931). (102) Hamai, Science Repts. Tohoku Imp. Univ. (1) 25, 344-356 (1936); Cent. 1936, II 3784. (103) Bell, J. Chem. Soc. 1931, 1376-1377. (104) Hamai, Science Repts. Tohoku Imp. Univ. (1) 25, 357-363 (1936); Cent. 1936, II 3784. (105) Hamai, Bull. Chem. Soc. Japan 10, 5-16 (1935). (106) Howland, Miller, Willard, J. Am. Chem. Soc. 63, 2807-2811 (1941). (107) Klemenc, Spitzer-Neumann, Monatsh. 53/54, 417 (1929). (108) Jones, J. Chem. Soc. 99, 399 (1911). (109) Taylor, Hildebrand, J. Am. Chem. Soc. 45, 683 (1923). (110) Schwab, Hantko, Z. physik. Chem. 114, 251-256 (1925).

(111) Just, Z. physik. Chem. 37, 354 (1901). (112) Kunerth, Phys. Rev. (2) 19, 520 (1922). (113) Hildebrand, J. Phys. Chem. 43, 109-112 (1939). (114) Eugen Chirnoaga, Eugenia Chirnoaga, Z. anorg. allgem. Chem. 218, 273-300 (1934). (115) Brull, Ellerbrock, Z. anorg. allgem. Chem. 218, 273-300 (1934). (115) Brull, Ellerbrock, Z. anorg. allgem. Chem. 216, 353-366 (1934). (116) Horiuchi, Bull. Inst. Phys. Chem. Research (Tokyo) 9, 697-730 (1930); Abstracts, 69-75 (in English); C.A. 25, 3543 (1931). (117) Horiuchi, Bull. Inst. Phys. Chem. Research (Tokyo) 10, 374-401 (1931); Abstracts 41 (in English); C.A. 25, 5609 (1931). (118) Mamedaliev, Musakhanly, J. Applied Chem. (U.S.S.R.) 13, 735-737 (1940); C.A. 35, 314 (1941). (119) Baskerville, Cohen, J. Ind. Eng. Chem. 13, 333-334 (1921). (120) Kireev, Kaplan, Vasneva, J. Gen. Chem. (U.S.S.R.) 6, 799-805 (1936); Cent. 1937, II 755; C.A. 30, 7013 (1936).

(121) Jakowkin, Z. physik. Chem. 18, 590 (1895). (122) Hildebrand, Jenks, J. Am. Chem. Soc. 42, 2185 (1920). (123) Andre, Bull. soc. chim. (4) 33, 1643 (1923). (124) Margosches, Hinner, Friedmann, Z. anorg. allgem. Chem. 137, 81-90 (1924). (125) Biltz, Jeep, Z. anorg. allgem. Chem. 162, 44-45 (1927). (126) Waentig, McIntosh, Trans. Roy. Soc. Can. 9, III 203-209 (1916). (127) Oddo, Gazz. chim. ital. 32, II 149 (1901). (128) Hofmann, Kirmreuther, Thal, Ber. 43, 188 (1910). (129) Delaplace, J. pharm. chim. 26, 139-140 (1922); C.A. 16, 4110 (1922). (130) Hildebrand, Jenks, J. Am. Chem. Soc. 43, 2172-2175 (1921).

(131) Bond, Beach, J. Am. Chem. Soc. 48, 352-353 (1926); Proc. Iowa Acad. Sci. 32, 328 (1925). (132) Bilts, Bräutigam, Z. anorg. allgem. Chem. 162, 55-56 (1927). (133) Pascal, Bull. soc. chim.

(4) 33, 539-543 (1923). (134) Krakowiecki, Roczniki Chem. 10, 197-198 (1930); Cent. 1930, I 3424; C.A. 24, 2686 (1930). (135) Lloyd, J. Phys. Chem. 22, 302 (1918). (136) Bykov, J. Phys. Chem. (U.S.S.R.) 13, 1013-1019 (1939); C.A. 34, 4653 (1940). (137) Baud, Ann. chim. (8) 29, 135-138 (1913). (138) Linard, Bull. soc. chim. Belg. 34, 382-391 (1925). (139) Duncan, Koffolt, Withrow, Trans. Am. Inst. Chem. Engrs. 38, 259-281 (1942); C.A. 36, 3399 (1942). (140) Pesce, Tuozzi, Evdokimoff, Gazz. chim. ital. 70, 721-723 (1940); C.A. 35, 5367 (1941).

(141) Wood, Brusie, J. Am. Chem. Soc. 65, 1891-1895 (1943). (142) Anasov, Ann. secteur anal. phys. chim., Inst. chim. gén. (U.S.S.R.) 9, 255-270 (1936); Cent. 1937, I 3942; C.A. 30, 7994 (1936). (143) Schmidt, Z. physik. Chem. 121, 239, 240, 243 (1926). (144) Boissonnas, Cruchaud, Hels. Chim. Acta 27, 994-1006 (1944). (145) Stage, Schultze, Oel u. Kohle 40, 90-95 (1944); C.A. 38, 6134 (1944). (146) Lehfeldt, Phil. Mag. (5) 46, 42-59 (1898). (147) Timmermans, Bull. soc. chim. Belg. 37, 415-419 (1928). (148) Schreinemakers, Z. physik. Chem. 47, 446-470 (1904). (149) Ishikawa, Yamaguchi, Bull. Inst. Phys. Chem. Research (Tokyo) 17, 246-255 (1938); Cent. 1938, II 517; C.A. 32, 7807 (1938). (150) Wilson, Heron, J. Soc. Chem. Ind. 69, 168-171 (1941); C.A. 35, 7269 (1941).

(151) Pesce, Evdokimoff, Gazz. chim. ital. 70, 723-725 (1940); C.A. 35, 5367 (1941). (152) Wystt, Trans. Faraday Soc. 25, 43-48 (1929). (153) Sisler, Cory, J. Am. Chem. Soc. 69, 1515-1519 (1947). (154) Soucek, Collectron Czechoslov. Chem. Commun. 10, 459-465 (1938). (155) Hartung, Trans. Faraday Soc. 12, 66-85 (1916). (156) Kaplan, Monakhova, J. Gen. Chem. (U.S.S.R.) 7, 2499-2512 (1937); Cent. 1938, II 1572; C.A. 32, 2404 (1938). (157) Verstraete, Bull. soc. chim. Belg. 43, 521-527, 530 (1934). (158) Goss, J. Chem. Soc. 1940, 758. (159) Kireev, Monakhova, J. Phys. Chem. (U.S.S.R.) 7, 71-76 (1936); Cent. 1937, II 755, C.A. 31, 25 (1937). (160) Kireev, Skvortsova, J. Phys. Chem. (U.S.S.R.) 7, 63-70 (1936); Cent. 1937, II 755, C.A. 31, 25 (1937).

(161) Conner, Smyth, J. Am. Chem. Soc. 63, 3424-3428 (1941). (162) Sohier, Bull. soc. chim. Belg. 40, 403-426 (1931). (163) Schulze, Z. physik. Chem. 86, 317-323 (1914). (164) Brown, J. Chem. Soc. 33, 304-319 (1881). (165) Smyth, Engel, Wilson, J. Am. Chem. Soc. 61, 1736-1744 (1929). (166) Krchma, Williams, J. Am. Chem. Soc. 49, 2408-2416 (1927). (167) Grimm, Z. angew. Chem. 41, 99 (1928). (168) Pahlavouni, Bull. soc. chim. Belg. 36, 542 (1927). (169) Showalter, Trans. Roy. Soc. Cam. (3) 27, III 183-185 (1933); Cent. 1934, I 2874; C.A. 28, 2983 (1934). (170) Bonner, J. Phys. Chem. 14, 738-789 (1910).

(171) Sata, Niwase, Bull. Chem. Soc. Japan 12, 90-95 (1937); Cent. 1937, II 1527; C.A. 31, 3760 (1937). (172) McDonald, Kluender, Lane, J. Phys. Chem. 46, 946-948 (1942). (173) Curtis, Titus, J. Phys. Chem. 19, 739-752 (1915). (174) Rosanoff, Schulze, Dunphy, J. Am. Chem. Soc. 36, 2480-2495 (1914). (175) Lecat, "L'Azeotropisme" (1918). (176) Soday, Bennett, J. Chem. Education 7, 1336-1340 (1930). (177) Young, J. Chem. Soc. 83, 77-83 (1903). (178) Brown, J. Chem. Soc. 35, 544-547 (1879). (179) Lecat, Rec. trav. chim. 47, 15 (1928). (180) Tyrer, J. Chem. Soc. 101, 1104-1113 (1912).

(181) Hill, J. Chem. Soc. 101, 2467-2470 (1912). (182) Prigogine, Bull. soc. chim. Belg. 52, 95-99 (1943); C.A. 40, 4576 (1946). (183) Zhdanov, J. Gen. Chem. (U.S.S.R.) 11, 471-482 (1941); C.A. 35, 7275 (1941). (184) Lecat, Rec. trav. chim. 45, 623-624 (1926). (185) Lecat, Ann. soc. sct. Bruxelles 47, I 66, I 10, I I (1927). (186) Zhdanov, J. Gen. Chem. (U.S.S.R.) 11, 483-492 (1941); C.A. 36, 961 (1942). (187) Hands, Norman, Ind. Chemist 21, 307-315 (1945). (C.A. 39, 4273 (1945). (188) Atkins, J. Chem. Soc. 117, 218-220 (1920). (189) Lecat, Ann. soc. sci. Bruxelles 49, I 10 (1929). (190) de Kolossowsky, Alimow, Bull. soc. chim. (5) 2, 688 (1935).

sci. Bruxelles 49, 110 (1929). (190) de Kolossowsky, Alimow, Bull. soc. chim. (5) 2, 688 (1935). (191) Schutz, Mallonee, J. Am. Chem. Soc. 62, 1491-1492 (1940). (192) Litvinov, J. Phys. Chem. (U.S.S.R.) 14, 562-570 (1940); 13, 119-123 (1939); C.A. 35, 2046 (1941); 34, 299 (1940). (193) Redlich, Schutz, J. Am. Chem. Soc. 66, 1007-1011 (1944). (194) Lecat, Rec. trav. chim. 46, 243 (1927). (195) Atkins, Nature 151, 449 (1943). (196) Bates, Hazzard, Palmer, Ind. Eng. Chem. 33, 375-376 (1941). (197) Hutchinson, Trans. Faraday Soc. 41, 87-90 (1945). (198) Davis, Phyl. Mag. (6) 47, 972-975 (1924). (199) Vold, J. Am. Chem. Soc. 57, 1192-1195 (1935). (200) Spencer, Flanagan, J. Am. Chem. Soc. 64, 2511-2513 (1942).

(201) Beckmann, Z. physik. Chem. 58, 555-556, 559 (1907). (202) Carroll, Rollefson, Mathews, J. Am. Chem. Soc. 47, 1798 (1925). (203) Waentig, Z. physik. Chem. 68, 547 (1909). (204) Beckmann, Waentig, Z. anorg. allgem. Chem. 67, 30-31 (1910). (205) Patryn, Pilat, Caoutchouc and Rubber (U.S.S.R.) 1940, No. 10, 14-16; C.A. 35, 2029 (1941). (206) Alekseevski, Musin, J. Applied Chem. (U.S.S.R.) 12, 704-719 (1939); C.A. 34, 2652 (1940). (207) Alekseevski, Vaskovskii, J. Applied Chem. (U.S.S.R.) 8, 779-801 (1935); Cent. 1936, I 2982; [C.A. 39, 4375 (1936)]. (208) Swietoslawski, Ann. chim. (10) 16, 269 (1931). (209) Lemcke, Hofmann, Angew. Chem. 47, 37-43 (1934). (210) Burrage, Trans. Faraday Soc. 29, 445-457, 458-476, 564-569, 570-576, 665-672, 673-676 (1933); 30, 317-325 (1934).

(211) Burrage, J. Phys. Chem. 37, 33-39 (1933). (212) Allmand, Burrage, Chaplin, Trans.

Faraday Soc. 28, 218-226 (1932). (213) Allmand, Burrage, J. Phys. Chem. 35, 1692-1703 (1931).
(214) Allmand, Puttick, Proc. Roy. Soc. (London) A-130, 197-209 (1930). (215) Allmand, Chaplin, Proc. Roy. Soc. (London) A-129, 235-251, 252-266 (1930). (216) Driver, Firth, J. Chem. Soc. 121, 2409-2414 (1922). (217) Pearce, Reed, J. Phys. Chem. 35, 905-914 (1931). (218) Pearce, Johnstone, J. Phys. Chem. 34, 1260-1279 (1930). (219) Pearce, McKinley, J. Phys. Chem. 32, 360-379 (1928). (220) Coolidge, J. Am. Chem. Soc. 46, 596-627 (1924).

(221) Lamb, Coolidge, J. Am. Chem. Soc. 42, 1146-1170 (1920). (222) Migal, J. Gen. Chem. (U.S.S.R.) 5, 197-210 (1935); Cent. 1936, I 1590; C.A. 29, 5006 (1935). (223) Baughan, Razouk, Trans. Faraday Soc. 33, 1463-1472 (1937). (224) Chambers, King, J. Chem. Soc. 1949, 156-166. (225) Perry, J. Phys. Chem. 29, 1462-1468 (1925). (226) Munro, Johnson, Ind. Eng. Chem. 17, 88-92 (1925). (227) Grimm, Raudenbusch, Wolff, Z. angew. Chem. 41, 106 (1928). (228) Rao, J. Phys. Chem. 45, 517-521 (1941). (229) Perry, Ind. Eng. Chem. 19, 746-748 (1927). (230)

Rao, J. Phys. Chem. 45, 522-531 (1941).

(231) Habard, King, J. Chem. Soc. 1940, 19-29. (232) Higuti, Bull. Inst. Phys. Chem. Research (Tokyo) 18, 675-684 (1939); C.A. 34, 4959 (1940). (233) Bangham, Mosallam, Proc. Roy. Soc. (London) A-165, 565-567 (1938); A-166, 564 (1938). (234) H. F. Smyth, H. F. Smyth, Jr., C. F. Carpenter, J. Ind. Hyg. Toxicol. 18, 277-298 (1936). (235) Davis, J. Am. Med. Assoc. 103, 962-966 (1934). (236) Elkins, J. Ind. Hyg. Toxicol. 24, 233-234 (1942). (237) Sayers, Dallavalle, Ind. Eng. Chem. 26, 1251 (1934). (238) von Oettingen. J. Ind. Hyg. Toxicol. 19, 374-384 (1937). (239) Hammes, J. Ind. Hyg. Toxicol. 23, 111-117 (1941). (240) Lehman, Schmidt, Kehl, Arch. Hyg. Bakt. 116, 131-268 (1936), [C.A. 31, 477 (1937)].

(241) Barrett, MacLean, Cunningham, J. Ind. Hyg. Toxicol. 20, 360-379 (1938). (242) Ernst (to A. Wacker Soc. Elektrochem. Ind.), Ger. 639,623, Dec. 10, 1936; Cent. 1937, I 1502; C.A. 21, 4064 (1937). (243) Clarke, Othmer (to Eastman Kodak Co.), U.S. 1,861,841, June 7, 1932; Cent. 1933, II 2192; [C.A. 26, 4067 (1932)]. (244) Taylor, J. Soc. Chem. Ind. 53, 193-1947 (1934); Cent. 1935, I 3127; C.A. 28, 5400 (1934). (245) Jones, U.S. 1,942,104, Jan. 2, 1934; Cent. 1934, I 2185; [C.A. 28, 1810 (1934)]. (246) Worsley, J. Soc. Chem. Ind. 55, 349-3577 (1936); Cent. 1937, I 1744; C.A. 21, 1729 (1937). (247) Begtrup, Dansk. Tids. Farm. 11, 6-12 (1937); Cent. 1937, I 1744; C.A. 31, 2342 (1937). (248) "Official and Tentative Methods of Analysis of the Association of Official Agricultural Chemists," 6th ed., 74-76 (1945). (249) Höst-Madsen, J. pharm. chim. (8) 21, 246-247 (1935); Cent. 1935, II 1216; C.A. 29, 4899 (1935). (250) Rozeboom, Pharm. Weekblad 72, 689 (1935); Cent. 1935, II 2096, C.A. 29, 5386 (1935).

(251) Schoorl, Pharm. Weekblad 72, 751 (1935); Cent. 1935, II 3954; [C.A. 29, 5986 (1935)]. (252) Sivadjian, J. pharm. chim. (8) 9, 434-437 (1929); Cent. 1929, II 1830, C.A. 23, 5544 (1929). (253) Ciogolea, J. pharm. chim. (8) 19, 377-383 (1934); Cent. 1934, II 1502; C.A. 28, 4537 (1934). (254) Weber, Chem. Ztj. 57, 836 (1933); Cent. 1933, II 3889; C.A. 28, 727 (1934). (255) Weber, Chem. Ztj. 61, 807-808 (1937); Cent. 1938, I 950; C.A. 32, 74 (1938). (256) Ciaravino, Boll. chim. farm. 74, 741-748 (1935); Cent. 1936, I 2156; [C.A. 30, 409 (1936)]. (257) Fieldner, Katz, Kinney, Longfellow, J. Franklin Inst. 190, 543-565 (1920). (258) L. V. Cralley, T. E. Shea, L. J. Cralley, J. Ind. Hyg. Toxicol. 25, 172-173 (1943). (259) Robbins, Lamson, J. Pharmacol., Proc. 31, 220 (1927); [C.A. 21, 3978 (1927)]. (260) Nuckolls et al., Underwriter's Labs., Miscellaneous Hazards No. 2375, 118 pp. (1933); C.A. 28, 2079 (1934).

(261) Schayer, Ackerman, J. Ind. Hyg. Toxicol. 28, 237-240 (1946). (262) Thomas, Ivie, Abersold, Hendricks, Ind. Eng. Chem., Anal. Ed. 15, 287-290 (1943). (263) Moran, J. Ind. Hyg. Toxicol. 25, 243-248 (1943). (264) Olsen, Smyth, Ferguson, Scheflan, Ind. Eng. Chem., Anal. Ed. 8, 260-263 (1936). (265) Smyth, Ind. Eng. Chem., Anal. Ed. 8, 379 (1936). (266) Winteringham, J. Soc. Chem. Ind. 61, 190-192 (1942); C.A. 37, 1951 (1943). (267) Tebbens, J. Ind. Hyg. Toxicol. 19, 204-211 (1937). (268) Dudley, U.S. Pub. Health Repts. 56, 1021-1027 (1941); C.A. 35, 4637 (1941). (269) Treadwell, Zürcher, Hetr. Chim. Acta 23, 1371-1380 (1939). (270) "Official and Tentative Methods of Analysis of the Association of Official Agricultural Chemists," 6th ed., 710-711 (1945).

(271) Matchett, J. Assoc. Official Agr. Chem. 14, 360-367 (1931). (272) Kunke, J. Assoc. Official Agr. Chem. 12, 264-276 (1929). (273) Rauscher, Ind. Eng. Chem., Anal. Ed. 9, 296-299 (1937). (274) Winteringham, J. Soc. Chem. Ind. 61, 186-187 (1942); C.A. 37, 1950 (1943). (275) Webb, Kay, Nichol, J. Ind. Hyg. Toxicol. 27, 249-255 (1945). (276) Barrett, Cunningham, Johnston, J. Ind. Hyg. Toxicol. 21, 487-488 (1939). (277) Habgood, Powell, Brit. J. Ind. Med. 2, 39-40 (1945); C.A. 39, 5273 (1945). (278) Daroga, Pollard, J. Soc. Chem. Ind. 60, 218-222 (1941); C.A. 35, 7882 (1941). (279) Kohn-Abrest, Ann. chim. anal. chim. appl. 15, 199-207 (1933); Cent. 1933, II 580-581; [C.A. 27, 3193 (1933)]. (280) C. J. H. Staverman-Pekelder, A. J. Staverman, Rec. trav. chim. 59, 1084 (1940).

(281) Bishop, Wallace, Ind. Eng. Chem., Anal. Ed. 17, 563-564 (1945). (282) Davidis (to

E. Davidis and O. Adler), Ger. 702,889, date unreported; C.A. 36, 786 (1942). (283) Anger, Wang, Mikrochim. Acta 3, 24-26 (1938). (284) Yant, Olsen, Storch, Littlefield, Schefian, Ind. Eng. Chem., Anal. Ed. 8, 20-25 (1936). (285) Matuszak, Ind. Eng. Chem., Anal. Ed. 6, 374-375 (1934). (286) Olsen, Ferguson, Sabetta, Schefian, Ind. Eng. Chem., Anal. Ed. 3, 189-191 (1931). (287) Kolbe, Ann. 45, 41-46 (1843), 54, 146 (1845). (288) Margosches, Ahrens' Sammlung chemischer und chem.-techn. Vortrage 16, 243-358 (1906). (289) Roffey, "Thorpo's Dictionary of Applied Chemistry," 4th ed. II, 353-356 (1938). (290) Beanblossom (to Hooker Electrochemical Co.), U. S. 2,287,225, June 23, 1942; C.A. 37, 143 (1943).

(291) Hennig (to General Aniline and Film Corp.), U.S. 2,223,448, Dec. 3, 1940; C.A. 35, 1708 (1941). (292) Nichols (to Westvaco Chlorine Products, Inc.), U.S. 2,016,804, Oct. 8, 1935; Cent. 1936, I 2206; C.A. 29, 8005 (1935). (293) Firma Stabilimenti di Rumianca, Ger. 604,347, Oct. 19, 1934; Cent. 1935, I 307; C.A. 29, 817 (1935). (294) Izgaryshev, Polikarpov, Compt. rend. acad. sci. U.R.S.S. 27, 950-955 (1940); C.A. 35, 2798 (1941). (295) Elmanovich, Maiofis, Shusterovich, Trans. State Inst. Applied Chem. (Leningrad) No. 15, 8-36 (1932); Cent. 1933, I 503; [C.A. 27, 3038 (1933)]. (296) Beanblossom, Scott (to Hooker Electrochemical Co.), U.S. 2,316,736, April 13, 1943; C.A. 37, 5737 (1943). (297) Reilly (to Dow Chem. Co.), U.S. 2,110,174, March 8, 1938; Cent. 1938, II 174; C.A. 32, 3422 (1938): Brit. 484,888, June 9, 1938, Cent. 1938, II 3157; [C.A. 32, 7480 (1938)]. (298) Petrov, Russ. 48,232, Aug. 31, 1936, Cent. 1937, II 119; not in C.A. (299) Brallier, Dunlap, Muggleton (to Niagara Smelting Corp.), U.S. 1,817,123, Aug. 4, 1931; Cent. 1932, I 1827; C.A. 25, 5522 (1931). (300) Crump, Chem. News 14, 154,216 (1866).

(301) Morel, Compt. rend. 84, 1460 (1877). (302) Serra, Gazz. chim. ital. 29, II 353-354 (1899). (303) Aronheim, Ber. 9, 1788-1789 (1876). (304) Ochi, J. Chem. Ind. (Tokyo) 22, 877-890 (1919); C.A. 14, 1671 (1920). (305) Hofmann, Ann. 115, 264-267 (1860). (306) Klason, Ber. 20, 2376-2383 (1887). (307) Delépine, Giron, Bull. soc. chim. (4) 33, 1785-1792 (1923). (308) Dumas, Ann. 33, 187-191 (1840). (309) McBee, Hass, Neher, Strickland, Ind. Eng. Chem. 34, 296-300 (1942). (310) Padovani, Magaldi, Giorn. chim. ind. applicata 15, 1-7 (1933); Cent. 1933, 13056; C.A. 27, 3443 (1933): Inst. Ind. Chem. Fuels, Polytechnicum, Milan 4, 193-208 (1932/1933); (C.A. 29, 1229 (1935)].

(311) Kiprianov, Kusner, J. Applied Chem. (U.S.S.R.) 8, 673-684 (1935); Cent. 1936, I 3907; C.A. 30, 1735 (1936). (312) Tomasık, Przemsyl Chem. 18, 598-605 (1934); Cent. 1935, I 2156; C.A. 29, 6206 (1935). (313) Boswell, McLaughlin, Can. J. Research 1, 240-254 (1929); Cent. 1930, I 358; [C.A. 24, 53 (1930)]. (314) Jones, Allison, Ind. Eng. Chem. 11, 639-643 (1919). (315) Bedford, J. Ind. Eng. Chem. 8, 1090-1094 (1916). (316) Jones, Allison, Meighan, U.S. Bur. Mines, Tech. Paper 255, 44 pp. (1921); C.A. 15, 1983-1984 (1921). (317) Baskerville, Riederer, J. Ind. Eng. Chem. 5, 5-8 (1913). (318) Pie (to Darco Corpn.), U.S. 2,280,928, April 28, 1942; C.A. 36, 5484 (1942). (319) Bender (to Dow Chem. Co.), U.S. 2,170,801, Aug. 29, 1939; C.A. 34, 117 (1940). (320) Bender (to Great Western Electro-Chemical Co.), U.S. 2,089,937, Aug. 17, 1937; Cent. 1937, II 3494; C.A. 31, 6936 (1937).

(321) I.G., French 816,990, Aug. 21, 1937; Cent. 1937, II 3380, C.A. 32, 2142 (1938). (322) I.G., French 816,957, Aug. 21, 1937; Cent. 1937, II 3380; C.A. 32, 2142 (1938). (323) Soil, Runkel (to I.G.), Ger. 491,316, Dec. 20, 1932; Cent. 1933, I 1013; C.A. 27, 991-992 (1933). (324) Imperial Chem. Ind. Ltd., Wheeler, Mason, U.S. 1,918,624, July 18, 1933; not in Cent.; C.A. 27, 4816 (1933): Brit. 342,329, Feb. 26, 1931; Cent. 1931, II 629; C.A. 25, 4890 (1931). (325) McKee, Salls, U.S. 1,765,601, June 24, 1930; Cent. 1930, II 1439, C.A. 24, 4051 (1930). (326) Boswell, McLaughlin, Canadian 301,542; July 1, 1930; Cent. 1933, II 2454; C.A. 24, 4127 (1930). (327) Ayres (to B.A.S. Co.), U.S. 1,717,136, June 11, 1929; Cent. 1939, I 3237; C.A. 23. 3713 (1929): French 657,518, May 23, 1929; Cent. 1930, I 285; [C.A. 23, 4228 (1929)]. Tizard, Chapman, Taylor, Brit. 214,293, Dec. 14, 1922; C.A. 18, 2523 (1924); not in Cent. Carter, Coxe (to S. Karpen and Bros., U.S. 1,572,513, Feb. 9, 1926; Cent. 1926, I 2838; C.A. 20, 1243 (1926): Brit. 245,991, Sept. 11, 1926; Cent. 1926, I 2838; C.A. 21, 415 (1927): Ger. 472,421, Feb. 28, 1929; Cent. 1929, I 2818; [C.A. 23, 2448 (1929)]: French 597,678, Nov. 26, 1925; Cent. 1926, I 2838; not in C.A.; Canadian 251,763, July 14, 1925; not in Cent.; C.A. 19, 3272 (1925). (330) Ernst, Wahl (to I.G.), Ger. 486,952, Nov. 30, 1929; Cent. 1930, I 3829; C.A. 24, 1393 (1930). (331) Polish 11,909 and 11,910, June 25, 1930; Cent. 1931, II 2512. (332) Polish 10,462

Sept. 25, 1929; Cent. 1939, II 1642. (333) Bender (to Dow Chem. Co.), U.S. 2,200,254 and 2,200,255, May 14, 1940; C.A. 34, 5854 (1940). (334) Hass, McBee (to Purdue Research Foundation), U.S. 2,105,733, Jan. 18, 1938; Cent. 1938, I 4533; C.A. 32, 2142 (1938). (335) Grebe, Reilly, Wiley, U.S. 2,034,292, March 17, 1936; Cent. 1936, II 2611; [C.A. 30, 3178 (1936)]. (336) Hennig (to I.G.), Ger. 712,492, Sept. 25, 1941; C.A. 37, 4407 (1943). (337) I.G., Brit. 513,235, Oct. 6, 1939; [C.A. 35, 1808 (1941)]: French 836,979, Jan. 31, 1939; Cent. 1939, II 226; C.A. 33, 5869 (1939). (338) Klein (to Ruhrchemie, A. G.), Ger. 613,607, May 23, 1935; Cent. 1935, II

1256; [C.A. 29, 8007 (1935)]. (339) Reilly (to Dow Chem. Co.), U.S. 2,140,551, Dec. 20, 1938; Cent. 1939, I 3625; C.A. 33, 2540 (1939). (340) Shvemberger, Gordon, J. Gen. Chem. (U.S.S.R.) 8, 1353-1360 (1938); Cent. 1939, II 3690; C.A. 33, 4232 (1939).

(341) McBee, Hass, Bordenca, Ind. Eng. Chem. 35, 317-320 (1943). (342) McBee, Hass, Chao, Welch, Thomas, Ind. Eng. Chem. 33, 176-181 (1941). (343) Mugdan, Wimmer (to Consortium für Elektrocheni. Ind.), U.S. 2,305,821, Dec. 22, 1942; C.A. 37, 3108 (1943): Brit. 519,220, March 19, 1940; C.A. 35, 7981 (1941): Ger. 680,659, Sept. 9, 1939; Cent. 1939, II 3486; [C.A. 36, 1951 (1942)]: French 844,300, July 21, 1939; C.A. 34, 7300 (1940). (344) Fink, Bonilla, J. Phys. Chem. 37, 1141-1145 (1933). (345) Regnault, Ann. 33, 332-334 (1840). (346) Gault, Truffault, Compt. rend. 179, 467 (1924). (347) Schumacher, Wolff, Z. physik. Chem. B-25, 161–176 (1934). (348) Schwab, Heyde, Z. physik. Chem. B-8, 147–158 (1930). (349) Schwab, Heyde, J. Phys. Chem. (U.S.S.R.) 2, 460-467 (1931); Cent. 1933, I 20; not in C.A. (350) Taylor,

Hanson, J. Chem Phys. 7, 418-425 (1939).

(351) S. S. Bhatnagar, N. A. Yajnik, P. L. Kapur, A. S. Bhatnagar, J. Indian Chem. Soc. 18, 350-358 (1941). (352) Aschan, Cent. 1919, I 220, C.A. 13, 2868 (1919). (353) Friedel, Silva, Bull. soc. chim. (2) 17, 537-539 (1872). (354) Dehn, J. Am. Chem. Soc. 31, 1225-1226 (1909). (355) Croco (to Kinetic Chemicals, Inc.), U.S. 1,994,035, March 12, 1935; Cent. 1935, II 2580; [C.A. 29, 2974 (1935)]. (356) von Ranke, Z. Elektrochem. 27, 365-367 (1921); Cent. 1921, III 917-918; C.A. 15, 3256 (1921). (357) Nernst, Physik. Z. 21, 602-605 (1920). (358) Vesper, Rollefson, J. Am. Chem. Soc. 56, 1455-1461 (1934). (359) Hennig (to I.G.), Ger. 693,414, June 13, 1940; [C.A. 35, 4693 (1941)]: French 826,875, April 12, 1938; Cent. 1938, II 411-412; C.A. 32, 8088 (1938). (360) Stock, Lux, Wustrow, Z. anorg. allgem. Chem. 195, 149-157 (1931). (361) A. C. Combes, P. R. Combes, Ger. 204,942, Dec. 17, 1908; Cent. 1909, 326-327; C.A. 3, 1450 (1909). (362) Boeseken, Rec. trav. chim. 29, 112 (1910). (363) Simons, Sloat, Meunier. J. Am. Chem. Soc. 61, 435-436 (1939). (364) Hentschel, J. prakt. Chem. (2) 36, 308-309 (1887). (365) Gautier, Compt. rend. 101, 1161 (1885); Bull. Soc. chim. (2) 45, 86-88 (1886). (366) Robineau, Rollin, Ber. 27, Referate 396-397 (1894). (367) Hallstein (to Chem. Fabrik Schering), Ger. 416,603, July 21, 1925; Cent. 1925, II 1795-1796; not in C.A. (368) Hallstein (to Chem. Fabrik Schering), Ger. 417,970, Aug. 20, 1925, Cent. 1926, I 226; not in C.A. (369) Hallstein (to Chem. Fabrik Schering), Ger. 432,849, Aug. 14, 1926, Cent. 1926, II 1688; not in C.A. (370) Helfrich, Reid, J. Am. Chem. Soc. 43, 591-594 (1921).

(371) Frankland, Garner, Challenger, Webster, J. Soc. Chem. Ind. 39, 313-315T (1920); Cent. 1921, I 937; C.A. 15, 509 (1921). (372) Stock, Wustrow, Z. anorg. allgem. Chem. 195, 129-139 (1931). (373) Strosacker, Schwegler (to Dow Chem. Co.), U.S. 1,930,350, Oct. 10, 1933; Cent. 1934, I 124; [C.A. 28, 180 (1934)]. (374) Weiser, Wightman, J. Phys. Chem. 23, 415-439 (1919). (375) Bodenstein, Günther, Hofmeister, Z. angew. Chem. 39, 875-880 (1926). (376) Bodenstein, Gunther, Nagai, Z. angew. Chem. 43, 423-425 (1930). (377) Tarczynskki, Z. Elektrochem. 22, 252-254 (1916). (378) Urbain, Scal, Compt. rend. 168, 887 (1919). (379) Besson,

Fournier, Compt. rend. 150, 1119 (1910). (380) Kailan, Monatsh. 38, 543-549 (1917).

(381) Gunther, van der Horst, Cronheim, Z. Elchtrochem. 34, 619 (1928). (382) Roffo, Correa, Strahlentherapie 33, 537-541 (1929); Cent. 1929, II 2019; C.A. 24, 4525 (1930). (383) Schmitt, Johnson, Olson, J. Am. Chem. Soc. 51, 372 (1929). (384) Gunther, Z. angew. Chem. 41, 1360 (1928). (385) Gillam, Morton, J. Soc. Chem. Ind. 46, 419-T (1927); Cent. 1928, I 96; C.A. 22, 1540 (1928). (386) Lyons, Dickinson, J. Am. Chem. Soc. 57, 443-446 (1935). (387) Harteck, Kopsch, Z. physik. Chem. B-12, 327-347 (1931). (388) Biesalski, Z. angew. Chem. 37, 315-317 (1924). (389) Dede, Russ, Ber. 61, 2462 (1928). (390) Lepin, J. Russ. Phys.-Chem. Soc. 52, 1-17 (1920); Cent. 1923, III 823; C.A. 17, 1395 (1923).

(391) Oddo, Sconzo, Gazz. chim. ital. 57, 91, 99-102 (1927). (392) Erdmann, Ber. 26, 1993-1994 (1893). (393) Armstrong, J. prakt. Chem. (2) 1, 245-248 (1870). (394) Hamilton, Ind. Eng. Chem. 25, 539-541 (1933). (395) Berthelot, Ann. chim. (3) 51, 48-50 (1857). (396) Soc. Chim. des Usines du Rhone, Ger. 416,014, July 7, 1925; French 586,006, March 13, 1925, Cent. 1925, II 1795; not in C.A. (397) Geuther, Ann. 107, 214-217 (1858). (398) Coupin, J. pharm. chim. (6) 3, 314-315 (1896); Cent. 1896, II 15; cf. Cent. 1896, I 362. (399) Smith, U.S. 753,325, March 1, 1904; not in either Cent. or C.A. (400) Coleman, Hadler (to Dow Chem. Co.), U.S. 2,095,240, Oct. 12, 1937; Cent. 1938, I 1218; C.A. 31, 8549 (1937).

(401) Coleman, Hadler, Zuckermandel (to Dow Chem. Co.), U.S. 2,104,703, Jan. 4, 1938; Cent. 1938, I 3387, C.A. 32, 1718 (1938). (402) Byers, van Ardsel, U.S. 1,534,027, April 21, 1925; Cent. 1925, II 91; [C.A. 19, 1667 (1925)]. (403) Smyser, Smallwood, J. Am. Chem. Soc. 55, 3498-3499 (1933). (404) Besson, Compt. rend. 118, 1347 (1894). (405) Sabatier, Mailhe, Compt. rend. 138, 409 (1904). (406) McBee, Hass, Frost, Welch, Ind. Eng. Chem. 39, 404-409 (1947). (407) Simons, Bond, McArthur, J. Am. Chem. Soc. 62, 3477-3480 (1940). (408) Booth, Swinehart, J. Am. Chem. Soc. 54, 4751-4753 (1932). (409) Bigelow, Pearson, Cook, Miller, J. Am. Chem. Soc. 55, 4616 (1933). (410) Ruff, Keim, Z. anorg. allgem. Chem. 201, 245-258 (1931).

(411) Thompson, Ind. Eng. Chem. 24, 620-623 (1932). (412) Leicester (to Imperial Chem. Ind. Ltd.), U.S. 2,110,369, March 8, 1938; Cent. 1938, II 174; C.A. 32, 3422 (1938); Brit. 468.447. Aug. 5, 1937; Cent. 1937, II 2900, C.A. 32, 587 (1938) (413) Daudt, Youker (to Kinetic Chemicals, Inc.), U.S. 2,062,743, Dec. 1, 1936; Cent. 1937, I 4557; C.A. 31, 700 (1937). (414) Daudt, Youker, Reynolds (to Kinetic Chemicals, Inc.), U.S. 2,024,095, Dec. 10, 1935; Cent. 1936, I 4212; C.A. 30, 1067 (1936). (415) Daudt, Youker (to Kinetic Chemicals, Inc.), U.S. 2,005,710. June 18. 1935; Cent. 1936, I 1501; C.A. 29, 5123 (1935). (416) Daudt, Youker (to Kinetic Chemicals, Inc.), U.S. 2,005,709, June 18, 1935; Cent. 1936, I 2630; C.A. 29, 5123 (1935). (417) Daudt. Youker (to Kinetic Chemicals, Inc.), U.S. 2,005,707, June 18, 1935; Cent. 1936, I 876; C.A. 29, 5123 (1935). (418) Daudt, Youker (to Kinetic Chemicals, Inc.), U.S. 2,005,706; June 18, 1935; not in Cent.; C.A. 29, 5123 (1935). French addition 43,972, Sept. 25, 1934; Cent. 1935, I 2255; C.A. 29, 1593 (1935): Brit. 428,445, May 7, 1935, not in Cent.; C.A. 29, 6901 (1935). (419) Daudt, Youker (to Kinetic Chemicals, Inc.), U.S. 2,005,705, June 18, 1935; not in Cent., C.A. 29, 5123 (1935): Brit. 391,168, not in Cent.; C.A. 27, 4813 (1933): Ger. 552,919, June 21, 1932; Cent. 1932. II 1832; [C.A. 26, 5967 (1932)]: French 720,474, Feb. 19, 1932; Cent. 1932, II 1832; [C.A. 26, 3805 (1932)] French addition, 46,349, April 30, 1936; Cent. 1936, II 3358; C.A. 30, 7290 (1936). (420) Daudt, Youker, Jones (to Kinetic Chemicals, Inc.), U.S. 2,004,932, June 18, 1935; Cent. 1936, I 875-876; C.A. 29, 5123 (1935).

(421) Daudt, Mattison (to Kinetic Chemicals, Inc.), U.S. 2,004,931, June 18, 1935; Cent. 1936. I 875; C.A. 29, 5123 (1935). (422) Henne (to General Motors Corp.), U.S. 1,990,692, Feb. 12, 1935; Cent. 1935, II 435-436; C.A. 29, 2174 (1935). (423) Henne (to General Motors Corp.), U.S. 1,978,840, Oct. 30, 1934, Cent. 1935, I 1934, C.A. 29, 175 (1935). (424) Henne (to General Motors Corp.), U.S. 1,973,069, Sept. 11, 1934; Cent. 1935, I 790-791; C.A. 28, 6723 (1934). (425) Nutting, Petrie (to Dow Chem. Co), U.S. 1,961,622, June 5, 1934; Cent. 1934, II 2284; C.A. 28, 4746 (1934). (426) Midgely, Henne, McNary (to Frigidaire Corp.), U.S. 1,930,129; Oct. 10, 1933; not in Cent.; C.A. 28, 179 (1934). (427) Lacy (to du Pont Co.), U.S. 1,914,135, June 13, 1933; not in Cent.; C.A. 27, 4252 (1933): French 730,874, Aug. 25, 1932; Cent. 1933, II 605; C.A. 27. 304 (1933): Canadian 330,907, March 14, 1933, C.A. 27, 3485 (1933). (428) I.G., Brit. 370,356, April 28, 1932; Cent. 1932, II 612; C.A. 27, 2966 (1933): French 727,952, Dec. 7, 1931; not in Cent.; C.A. 26, 5574 (1932). (429) Frigidaire Corp., French 701,324, March 14, 1931; Cent. 1931. II 120; C.A. 25, 4011 (1931). (430) Benrath, Ann. 382, 223-224 (1911).

(431) Goldschmidt, Ber. 14, 928 (1881). (432) Doughty, J. Am. Chem. Soc. 39, 2685-2691 (1917). (433) Treadwell, Kohl, Helv. Chim. Acta 9, 689 (1926). (434) P. Petrenko-Kritschenko. D. Talmud, B. Talmud, W. Butmy-de-Katzman, A. Gandelman, Z. physik. Chem. 116, 313-318 (1925). (435) Petrenko-Kritschenko, Opotzky, Ber. 59, 2132 (1926). (436) Petrenko-Kritschenko, Ber. 61, 847, Note 3 (1928). (437) Harlow, Ross (to Dow Chem. Co.), U.S. 1,891,415, Dec. 20, 1932; Cent. 1933, I 1683, C.A. 27, 1890 (1933). (438) Gustavson, J. Russ. Phys.-Chem. Soc. 13, 286 (1881). (439) Bolas, Groves, J. Chem. Soc. 24, 780 (1871). (440) Gustavson, Ann. **172**, 173-176 (1874).

(441) Biltz, Sapper, Z. anorg. allgem. Chem. 203, 279-280 (1932). (442) Lantenois. Compt. rend. 156, 1385 (1913): J. pharm. chim. (7) 10, 185-190 (1914); Cent. 1915, I 652-653; C.A. 9, 953 (1915). (443) Spindler, Ann. 231, 264-265 (1885). (444) Moissan, Compt. rend. 113, 20 (1891). (445) Walker, J. Chem. Soc. 85, 1090 (1904). (446) Tchakiran, Compt. rend. 196, 1026-1028 (1933). (447) Staudinger, Z. Elektrochem. 31, 549-552 (1925). (448) Staudinger, Z. angew. Chem. 35, 658-659 (1922). (449) Lenze, Metz, Z. ges. Schiess- u. Sprengstoffw. 27, 255-258, 293-296, 337-340, 373-376 (1932). (450) von Hartel, Meer, Polanyi, Z. physik. Chem. **B-19**, 139-163 (1932).

(451) Haresnape, Stevels, Warhurst, Trans. Faraday Soc. 36, 465-472 (1940). (452) Bradley, Nature 137, 403-404 (1936). (453) Stedman, Can. J. Research 13-B, 114-121 (1935); Cent. 1936, I 269: C.A. 30, 337 (1936). (454) Clogston, Underwriters' Lab., Bull. Research No. 34, 5-15 (1945); C.A. 40, 210 (1946). (455) Pearce, Scheflan, Schrenk, Ferguson, Brown, U.S. Bur. Mines, Rept. Investigations 3686, 18 pp. (1943); C.A. 37, 2578 (1943). (456) Ray, Dutt, J. Indian Chem. Soc. 5, 107-108 (1928). (457) Hofmann, Seiler, Ber. 38, 3058 (1905). (458) Bartlett, U.S. 1,800,371, April 14, 1931; Cent. 1931, II 629; C.A. 25, 3362 (1931). (459) Tseng, Natl. Cent. Univ. (Nanking) Sci. Repts. A-1, No. 2, 1-4 (1931); Cent. 1938, I 53; C.A. 26, 2166 (1932): Trans. Sci. Soc. China 7, 233-237 (1932). (460) Staub, Ann. chim. (12) 1, 105-156 (1946).

(461) Formanek, Chem. Obzor 5, 57-59 (1930); Cent. 1930, II 976; C.A. 24, 4492 (1930). (462) Milbauer, Collection Czechoslov. Chem. Commun. 3, 73-75 (1931). (463) Dubrisay, Arditti, Compt. rend. 204, 1568-1570 (1937). (464) Milbauer, Chem. Obzor 12, 57-62 (1937); Cent. 1937, II 1507; C.A. 31, 6093 (1937). (465) Senderens, Aboulenc, Compt. rend. 202, 1548-1550 (1936). (466) Avery, Forbes, J. Am. Chem. Soc. 60, 1005-1011 (1938). (467) Schumacher, Wagner, Z. physik. Chem. B-5, 199-208 (1929). (468) Dickinson, Jeffreys, J. Am. Chem. Soc. 53, 4288-

Beil. I - 199

4297 (1930). (469) Moelwyn-Hughes, Hinshelwood, Proc. Roy. Soc. (London) A-131, 177-186

(1931). (470) Nagai, Goodhue, Trans. Faraday Soc. 27, 508-513 (1931).

(471) Yost, Felt, J. Am. Chem. Soc. 56, 68-69 (1934). (472) Brenschede, Schumacher, Z. anorg. allgem. Chem., 226, 370-384 (1936). (473) Stähler, Ber. 47, 909-910 (1914). (474) Stöllé, Ber. 37, 3548 (1904). (475) Theobald (to du Pont Co.), U.S. 2,378,048, June 12, 1945; C.A. 38, 4085 (1945). (476) Kharasch, Jensen, Urry, Science 102, 128 (1945). (477) Hauser, Hudson, Org. Syntheses 23, 102-107 (1943). (478) Norris, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 548-550 (1941); (1st ed.), 532-534 (1932); 4, 81-83 (1925). (479) Marvel, Sperry, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 95-98 (1941); (1st ed.), 89-92 (1932); 8, 26-29 (1928). (480) Forbes, Anderson, J. Am. Chem. Soc. 66, 931-933 (1944).

(481) Prins, J. prakt. Chem. (2) 89, 415, 417, 421 (1914). (482) Prins, Ger. 261,689, July 2, 1913; Cent. 1913, II 394; [C.A. 7, 3641 (1913)]. (483) Kirkbride (to Imperial Chem. Ind., Ltd.), U.S. 2,297,564, Sept. 29, 1942; C.A. 37, 1450 (1943). (484) Henne, Ladd, J. Am. Chem. Soc. 60, 2494-2495 (1938). (485) I.G., French 793,731, Jan. 30, 1936; Cent. 1936, I 4074; [C.A. 30, 4514 (1936)]. (486) Reitz, Sabathy, Z. physik. Chem. B-41, 156 (1938). (487) Ponzio, Gazz. chim. ital. 36, II 149 (1906). (488) Brühl, Ber. 30, 159 (1897). (489) Connolly, Dyson, J. Chem. Soc.

1934, 822. (490) Connolly, Dyson, J. Chem. Soc. 1937, 828.

(491) Claesson, J. prakt. Chem. (2) 15, 212-213 (1877). (492) Backer, Stedehouder, Rec. trav. chim. 52, 438-443 (1933). (493) Houben, Schultze, Ber. 44, 3235-3241 (1911). (494) Post, J. Org. Chem. 5, 247 (1940). (495) Holmberg, Ber. 40, 1740-1743 (1907). (496) Gomberg, Snow, J. Am. Chem. Soc. 47, 198-211 (1925). (497) Gomberg, Anderson, J. Am. Chem. Soc. 47, 2022-2033 (1925). (498) Baines, Driver, J. Chem. Soc. 123, 1214-1218 (1923). (499) Kharasch, Kane, Brown, J. Am. Chem. Soc. 63, 526-528 (1941). (500) Kharasch, Dannley, J. Org. Chem. 10, 406-413 (1945).

(501) Böeseken, Gelissen, Rec. trav. chim. 43, 869-871 (1924). (502) Gelissen, Hermans, Ber.,
58, 286, Note 7 (1925). (503) Gelissen, Ger. 480,362, Aug. 7, 1929; Cent. 1929, II 2831-2832;
[C.A. 23, 4950 (1929)]. (504) Nozaki, Bartlett, J. Am. Chem. Soc. 68, 1686-1692 (1946). (505)
Ingold, Powell, J. Chem. Soc. 119, 1222-1231 (1921). (506) Zelinski, Doroschewski, Ber. 27, 3374-3376 (1894). (507) Bischoff, Ber. 28, 2829-2832 (1895). (508) Dimroth, Ber. 35, 2881-2884 (1902). (509) Dimroth, Feuchter, Ber. 36, 2239, Note 5 (1903). (510) Stobbe, Wildensee, J. prakt. Chem. (2) 115, 177 (1927).

(511) Faltis, Pirsch, Ber. 60, 1623-1625 (1927). (512) Faltis, Ruiz de Roxas, Monatsh. 42, 461 (1921). (513) Ingold, Perren, J. Chem. Soc. 119, 1591 (1921). (514) Mereshkowski, J. Russ. Phys.-Chem. Soc. 46, 521 (1914); Cent. 1914, II 1266. (515) Guttzeit, Hartmann, J. prakt. Chem. (2) 81, 347-348 (1910). (516) Coutelle, J. prakt. Chem. (2) 73, 49-100 (1906). (517) Conrad, Guthzeit, Ber. 15, 2841-2844 (1882); Ann. 222, 249-262 (1883). (518) Urushibara, Bull. Chem. Soc. Japan 2, 26-36, 236-241 (1927); Cent. 1927, I 2061; Cent. 1927, II 2278. (519) Ruhemann, Browning, J. Chem. Soc. 73, 282-284 (1898). (520) Errera, Gazz. chim. ital. 27, II 393-397 (1897); Ber. 31, 1241-1242 (1898).

(521) Hartung, J. Chem. Soc. 113, 163-168 (1918). (522) Shah, J. Indian Inst. Sci. 7, 205-223, (1924); Cent. 1925, I 659-661; [C.A. 19, 645-646 (1925)]. (523) Desai, J. Indian Inst. Sci. 7, 235-251 (1925); Cent. 1925, I 1297-1298; [C.A. 19, 2645-2646 (1925)].

[See also the higher-boilg. stereoisomer (3:5150).]

3:5110 1,2-DICHLOROPROPENE-1

[For prepn. of C from 1,2,2-trichloropropane (3:5475) with MeOH/NaOMe or EtOH NaOEt at ord. temp. (55-58% yield (1)), or with alc. KOH (2) or with aq. on htg. in s.t. (3), see indic. refs.]

 $\tilde{C}$  with abs. MeOH (1:6120) forms a const.-boilg. mixt., b.p. 56.5-56.8° at 760 mm.,  $n_D^{25} = 1.4030$ , contg. 75 wt. %  $\tilde{C}$  (1).

 $\tilde{C}$  with Cl<sub>2</sub> at 0° in strong light adds 1 mole halogen giving (1) 1,1,2,2-tetrachloropropane (3:5825).

Č with Br<sub>2</sub> at 0° slowly adds 1 mole halogen giving (1) (3) 1,2-dibromo-1,2-dichloro-propane, b.p. 190° (3).

 $\ddot{\mathbf{C}}$  with  $O_3$  in CCl<sub>4</sub> at  $-15^\circ$  followed by aq. gives (1) acetic acid (1:1010) and formic acid (1:1005).

3:5110 (1) Huntress, Sanchez-Nieva, unpublished work. (2) Friedel, Silva, Bull. soc. chim. (2) 17, 386 (1872); Jahresber, 1872, 322; Compt. rend. 74, 805-809 (1872); 75, 81-85 (1872). (3) Friedel, Silva, Jahresber, 1871, 322, 329.

| 3:5120 1,1-DICE                                  | LOROPROPENE-1                                 | CH <sub>3</sub> .CH=CCl <sub>2</sub> | $\mathrm{C_{8}H_{4}Cl_{2}}$      | Beil. I - 199<br>I <sub>1</sub> |
|--------------------------------------------------|-----------------------------------------------|--------------------------------------|----------------------------------|---------------------------------|
| B.P. 79–80°<br>78°<br>77.15–77.3<br>77°<br>76.5° | (1)<br>(2) (3) (4) (5)<br>5 (6)<br>(7)<br>(8) |                                      | $D_0^{19.5} = 1.1$ $D_0^0 = 1.2$ | I <sub>2</sub>                  |

Colorless oil insol. in aq.

[For prepn. of  $\bar{C}$  from 1,1,1-trichloropropanol-2 (3:0846) with Zn dust + AcOH see (6) (5); from corresp. acetate with Zn dust + alc. see (8); from butylchloral  $(\alpha,\alpha,\beta$ -trichloro-n-butyraldehyde) (3:5910) (1) (2) (9) or its alcoholate (10) with KOH see indic. refs.; from Ag 2,2,3-trichlorobutyrate on boilg. with aq. (3) or Na 2,2,3-trichlorobutyrate on distn. (4) see (3) (4); for prepn. from 1,1,2-trichloropropane (3:5630) + aq. or alc. alk. or aq. Ca(OH)<sub>2</sub> see (11) (14).]

 $\ddot{\mathbf{C}}$  on oxidn. with  $K_2Cr_2O_7 + H_2SO_4$  gives (7) AcOH (1:1010).

 $\ddot{\mathbf{C}}$  adds  $\mathbf{Br_2}$  very easily giving (9) 1,1-dichloro-1,2-dibromopropane [Beil. I-111], b.p. 188° (9). —  $\ddot{\mathbf{C}}$  with  $\mathbf{Cl_2}$  at 0-30° yields (12) 1,1,1,2-tetrachloropropane (3:5270), b.p. 153°.

 $\tilde{C}$  with HCl + AlCl<sub>3</sub> at 5-10° yields (13) (14) 1,1,1-trichloropropane (ethylchloroform) (3:5270), b.p. 106-107°.

3:5120 (1) Kramer, Pinner, Ber. 3, 388-389 (1870). (2) Kramer, Pinner, Ann. 158, 47-49 (1871). (3) Judson, Ber. 3, 789 (1870). (4) Valentin, Ber. 28, 2663 (1895). (5) Wohl, Roth, Ber. 40, 215 (1907). (6) Bruyne, Davis, Gross, Physik. Z. 33, 720 (1932). (7) Lieben, Zeisel, Monatsh. 4, 536 (1883). (8) Faworski, Jozitsch, J. Russ. Phys.-Chem. Soc. 30, 998-1003 (1898); Cent. 1899, I 778. (9) Pinner, Ann. 179, 44-45 (1875). (10) Freundler, Bull. soc. chim. (4) 1, 501-503 (1907).

(11) Cass (to du Pont), U.S. 2,134,102, Oct. 25, 1938; Brit. 471,186, Sept. 30, 1937. (12) Cass (to du Pont) U.S. 2,097,442, Nov. 2, 1937; Brit. 471,187, Sept. 30, 1937, Cent. 1938, 1218. (13) Levine, Cass (to du Pont), U.S. 2,179,218, Nov. 7, 1939; Brit. 503,615, May 11, 1939; Cent. 1939, II 1572. (14) Henne, Whaley, J. Am. Chem. Soc. 64, 1157 (1942).

```
CH2-CH2
                                                               C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub>
                                                                             Beil. I - 84
3:5130 1,2-DICHLOROETHANE
          (Ethylene (di)chloride;
                                                                                   I_{1}-(24)
                                                  Ċī
                                           ĊL
                                                                                   I_{2}-(52)
          sym.-dichloroethane)
 B.P.
                             F.P.
  84.1° cor. at 760 mm. (1) [-32.5^{\circ} (28)] D_4^{25} = 1.2525
                                                                     n_{\rm D}^{25} = 1.4430
                                                              (40)
                                                                                      (47)
  84.08°
                              -35.3° (35)
                                                    1.2463
                                                              (41)
                                                                           1.4427
                                                                                      (91)
        cor. at 760 mm.(2)
  84° at 760 mm.
                                                                           1.4423
                        (3)
                                36°
                                      (11)
                                                    1.24571 (44)
                                                                                      (14)
  83.9° at 766 mm.
                                                                           1.44118 (48)
                        (4)
                             -35.5° (23)
                                                    1.24554 (23)
  83.8°
                    (5)(6)
                                                    1.2455
                                                              (42)
                                       (5)
                             -35.8° (24)
  83.75° at 760 mm.
                        (7)
                                                    1.2445
                                                              (43)
  83.7-84.3°
                             -35.9^{\circ} (37)
                        (8)
                                                    1.2444
                                                              (4)
  83.7-83.9°
                             -36.0° (34)
        cor. at 772 mm.(9)
                                      (38)
                                             D_4^{20} = 1.2569
                                                                     n_{\rm D}^{20} = 1.44507 (49)
  83.7° at 760 mm.
                       (10)
                                                              (10)
      (11) (12) (111) (112) [-42.0^{\circ} (39)]
                                                         (22) (34)
                                                                           1.44505 (50)
  83.65-83.70° at 760 mm. (13)
                                                    1.2541
                                                              (12)
                                                                           1.44476 (18)
  83.65°
                 at 760 mm. (14)
                                                    1.25295 (44)
                                                                                 (19)(20)
                                                    1.25277 (23)
  83.6-83.8°
                             (15) (16) (17)
                                                                           1.4447
                                                                                      (51)
 83.5-83.7°
                             (18) (19) (20)
                                                    1.2521
                                                              (45)
                                                                           1.4446
                                                                                      (52)
 83.5°
                 at 760 mm. (21)
                                                    1.252
                                                              (3)
                                                                                      (79)
                   (22) (23) (34)
                                                    1.2515
                                                              (4)
                                                                           1.4444
                                                                                      (53)
 83.5°
                             (24)
                                                   1.2501
                                                              (46)
                                                                           1.44439 (46)
 83.481° cor.
                 at 760 mm. (25)
                                                                           1.44432 (45)
 83.45°
                 at 760 mm. (26)
                                                                           1.4443 (201)
 83.43-83.48°
                             (27)
                                                                           1.4440
                                                                                      (54)
 83.4-83.6°
                             (28)
                                                                           1.444
                                                                                      (34)
 83.3°
                 at 749 mm. (29)
                                                                           1.44268 (13)
 83°
                             (30)
                                            D_4^{15} = 1.26000 (23) n_D^{15} = 1.44759 (23)
 82.85°
                 at 760 mm.(100)
 82.6-82.8°
                 at 743 mm. (31)
                                                                            See note 3.
 82.4°
                 at 747 mm. (32)
 82.3-82.6°
                             (33)
 81.47° cor.
                 at 700 mm. (2)
 79.325° cor.
                at660.8mm.(25)
 76.63° cor.
                at 600 mm. (2)
                at 500 mm. (2)
 75.05° cor.
 64.73° cor.
                at 400 mm. (2)
 See also Notes 1 and 2.
```

Note 1. For b.p. of Č at press. 660-860 mm. (25), 400-1080 mm. (2), see indic. refs.; Č has b.p. 84.9-85.5° at 777 mm. (53).

Note 2. For vap. press. of  $\bar{C}$  over range -30 to  $100^{\circ}$  (1), or  $0-30^{\circ}$  (8), or  $0-25^{\circ}$  (55) see indic. refs.; for relation between vap. press. and temp. see (56) (25).

Note 3. For values of  $n^{18}$  at 14 different wave lengths see (57).

Care must be taken to avoid confusion of  $\bar{\mathbf{C}}$  with either cis (3:5042) or trans (3:5028) 1,2-dichloroethylene.

## MISCELLANEOUS PHYSICAL PROPERTIES

Various solubility relations.  $\bar{C}$  is almost insol. aq., but easily volatile with steam (see under azeotropes); soly. of  $\bar{C}$  in 100 g. aq. at 0° is 0.873 g. (58), 0.922 g. (8); at 10° = 0.885 g. (8); at 15° = 0.872 g. (59); at 20° = 0.869 g. (8), 0.849 g. (58); at 25° = 0.865 g. (15); at 30° = 0.90 g. (59), 0.894 g. (8); at 35° = 0.895 g. (58); at 56° = 1.030 g. (58). — [For influence of added salts in diminishing soly. of  $\bar{C}$  in aq. see (16). — Note that  $\bar{C}$  with aquander press. forms a solid hydrate which can be maintained up to +18° under 100 atm. but which at ord. press. decomposes below 0° (60). — For soly. of aq. in  $\bar{C}$  at 0°, 25°, and 30° (as detd. by Karl Fischer reagt.) see (61).]

[For soly. in  $\tilde{C}$  of NH<sub>3</sub> at 20° and 1 atm. (62), of H<sub>2</sub>S at 20° and 1 atm. (62), of HCl at various temps. and press. (62) (63), of ethylene at 0-40° (4), or of chlorine at -9° to +40° (4) see indic. refs.]

[For soly. in  $\bar{C}$  of  $I_2$  over range 11-25° (and comparison with other chlorinated solvents) see (64).]

[For study of industrial recovery of  $\bar{C}$  by countercurrent absorption in kerosene see (65).] Adsorption of  $\bar{C}$  by solids. [For studies on adsorption of  $\bar{C}$  by activated carbon (66) (67) (68) (69) (70), by silica gel (67), or by alumina gel (71) see indic. refs. — For patent on sepn. of  $\bar{C}$  from other solvents by adsorption on carbon see (72).]

Other properties. [For study of thermal conductivity of  $\bar{C}$  see (73); for study of diffusion of vapors of  $\bar{C}$  through films of various cellulose esters see (74).]

Binary systems contg. C. (See also azeotropes (below).)

 $\bar{C}$  with hydrocarbons —  $\bar{C}$  + n-heptane (1:8575): use in testing of distg. columns (detn. of number of theoret. plates) see (75). —  $\bar{C}$  + cyclohexane (1:8405): for values of  $D_0^{20}$  and  $n_D^{20}$  (49), for use in detn. of number of theoret. plates in distg. columns (75), or for sepn. of  $\bar{C}$  from system by forming azeotrope of cyclohexane with McOH (76), see indic. refs. (see also below under azeotropes).

 $\ddot{C}$  + benzene (1:7400): note that because of the proximity of the b.p.'s of the components, because of the importance of both as industrial solvents, and because they are not readily separable by chemical means (such as  $H_2SO_4$ , etc.) a great deal of study has been given to the system from various viewpoints.

For f.p./compn. data on system  $\ddot{\mathbf{C}}$  +  $\mathbf{C}_6\mathbf{H}_6$ , eutectic, f.p.  $-54.2^\circ$ , contg. about 67 mole %  $\ddot{\mathbf{C}}$  see (24) cf. (77); for  $D_{20}^{20}$  (78) (79),  $n_D^{20}$  (78) (79) (49), or  $n_D^{25}$  (80) (89) cf. (81) see indic. refs. — For use of this system as test liq. for studying efficiency of distn. columns see (81) (78) (79) (82); for study of distn. of the system see (78) (79) (81) (82) (83) (84) (85); for use in detn. number of theoret. plates see (75) (78); for data on vap. press. of system, vapor liq. compn., etc., see (86) (87) (88) (80) (49) (89) (90).

 $\bar{C}$  + toluene (1:7405): for  $n_D^{25}$  for system see (91) (92); for vapor-liq. equil. data and study of distn. of system see (83) (91) (92) (93).

 $\bar{C}$  with other cpds. of Order I.  $\bar{C}$  + acetic acid (1:1010): for values of D and n for the system see (94); for vapor-liq. equil. see (95); see also under uses of  $\bar{C}$  (below). —  $\bar{C}$  + phenol (1:1420): for vap. press. of system see (96). —  $\bar{C}$  + acetime (1:5400): for D and  $n_D^{2D}$  see (49) (94), for vapor-liquid equil. see (49). —  $\bar{C}$  + diethyl ether (1:6110): for f.p./compn. data and diag. see (24); for  $D_0^t$  over range 0-40° see (97). —  $\bar{C}$  + ethylene axide (1:6105): for soly. and vap. press. (98) and vapor-liq. equil. (106) see indic. refs.

 $\bar{C}$  with cpds. of Order III.  $\bar{C}+CHCl_3$  (3:5050): for b.p./compn. diag. see (99). —  $\bar{C}+CCl_4$  (3:5100): for  $D_{20}^{20}$  (100) and vapor-liq. compn. data and diagrams (100) (99) (88) (see also below under azeotropes).

 $\ddot{C}+1,1$ -dichloroethane (3:5035): for b.p. at 760 mm.,  $D_4^{20}$ , and vapor-liq. equil. data see (101).  $-\ddot{C}+1,1,2$ -trichloroethane (3:5330): for f.p./compn. data, eutectic f.p.  $-79^{\circ}$ 

(102), and for D and vapor-liq. equil. (4) see indic. refs.  $-\bar{C}+1,1,2,2$ -tetrachloroethane (acetylene tetrachloride) (3:5750): this system forms a 1:1 cpd., m.p. abt. -31.3° (102); for f.p./compn. data and diagrams see (102); for  $n_{\rm H\alpha}^{25}$ /compn. and  $n_{\rm H\alpha}^{t}$  for range  $t=14-27^{\circ}$  see (30).  $-\bar{C}+p$ entachloroethane (3:5880): for f.p./compn. data, eutectic, f.p. -62°, see (102).

 $\bar{C}$  + cis-dichloroethylene (3:5042): for f.p./compn. data see (103). —  $\bar{C}$  + trans-dichloro-

ethylene (3:5028): for f.p./compn. data see (103).

 $\bar{C}+1,2,4,5$ -tetrachlorobenzene (3:4115): for f.p./compn. data see (35). —  $\bar{C}+carbonyl$  chloride (phosgene) (3:5000): for soly. relations at 20°, 0°, and  $-15^\circ$  (104) and b.p., vaporliq. equil. (105) see indic. refs. —  $\bar{C}+2$ -chloroethanol-1 (ethylene chlorohydrin) (3:5552): for D and liq.-vapor equil. data and diag. see (106).

 $\bar{C}$  with miscellaneous cpds. of orders other than I or III.  $\bar{C}$  + ethylene dibromide: for f.p./compn. data (the two form solid solns.) see (103) (102) cf. (107); for  $D_{25}^{25}$  and  $n_{D}^{25}$  for system see (48) cf. (108).  $-\bar{C}+1,1,2,2$ -tetrabromoethane (sym.-acetylene tetrabromide): for f.p./compn. data see (102).  $-\bar{C}+c$  carbon disulfide: for f.p./compn. data and diag. see (28).  $-\bar{C}+s$  succino(di)nitrile: for f.p./compn. data, eutectic at  $-48^{\circ}$ , see (102), cf. (109).

Azeotropes (const.-boilg. mixts.) contg.  $\bar{C}$ .  $\bar{C}$  with aq. forms a heterogeneous const.-boilg. mixt., b.p. 72°, contg. 80.5 wt. %  $\bar{C}$  (110).

Azeotropes with hydrocarbons.  $\bar{C}$  with cyclohexane (1:8405) forms a const.-boilg. mixt., b.p. 74.4° at 760 mm.,  $n_0^{20} = 1.42879$ , contg. 45.5 wt. %  $\bar{C}$  (49).

Azeotropes with other chlorohydrocarbons.  $\bar{C}$  with  $CCl_4$  (3:5100) forms a const.-boilg. mixt., b.p. 75.6° at 760 mm. (7), 75.3° at 760 mm. (100), contg. 21 wt. % (7) or 30 mole % (100)  $\bar{C}$ .  $-\bar{C}$  with trichloroethylene (3:5170) forms a const.-boilg. mixt., b.p. 82.9° at 760 mm., contg. 82 wt. %  $\bar{C}$  (7).

Azeotropes with alcohols.  $\bar{C}$  with MeOH (1:6120) forms a const.-boilg. mixt., b.p. 60.95° at 760 mm., contg. 68 wt. %  $\bar{C}$  (111).  $-\bar{C}$  with EtOH (1:6130) forms a const.-boil. mixt., b.p. 70.5° at 760 mm., contg. 63 wt. %  $\bar{C}$  (111).  $-\bar{C}$  with n-propyl alc. (1:6150) forms a const.-boilg. mixt., b.p. 80.65° at 760 mm., contg. abt. 81 wt. %  $\bar{C}$  (111).  $-\bar{C}$  with isopropyl alc. (1:6135) forms a const.-boilg. mixt., b.p. 74.7° at 760 mm., contg. 56.5 wt. %  $\bar{C}$  (111).  $-\bar{C}$  with isobutyl alc. (1:6165) forms a const.-boilg. mixt., b.p. 83.45° at 760 mm., contg. 93.5 wt. %  $\bar{C}$  (112).  $-\bar{C}$  with ter-amyl alc. (1:6160) forms a const.-boilg. mixt., b.p. 83° at 760 mm., contg. 94 wt. %  $\bar{C}$  (113).

Azeotropes with acids.  $\bar{C}$  with formic acid (1:1005) forms a const.-boilg. mixt., b.p. 77.4° at 760 mm., contg. 86 wt. %  $\bar{C}$  (114). [Note that no data on any azeotrope of  $\bar{C}$  with AcOH can be found; however, for use of  $\bar{C}$  in dehydration or concn. of AcOH see below under uses of  $\bar{C}$ .]

### USES OF C

Because of its valuable solvent props. and high volatility  $\tilde{C}$  is widely used in a great many different connections, some of which involve its mixture with one or more other organic compounds. — Although no review of its uses could hope to be complete, the following examples are intended to be helpful in suggesting typical cases.

[For general reviews which include uses see (115) (34) (116); for an important annotated and indexed bibliography contg. 469 titles see (117).]

References on the use of  $\tilde{C}$  (or of its mixts, with CCl<sub>4</sub>) as a furnigant for grain or as an insecticide or fungicide are beyond the scope of this work; however, a few citations on some aspects of this use are given as lead articles.—[E.g., for general articles on this aspect see (118) (119) (120) (121) (122); for study of combustibility of  $\tilde{C}/CCl_4$  mixts, used

for fumigation (123), for study of extinction of flames from  $\ddot{C}$  with CO<sub>2</sub> (124), for effect of  $\ddot{C}/CCl_4$  on metals during its use for fumigation (125).]

[For use of  $\bar{C}$  in concn. (dehydration) of AcOH see (126) (127) (128) (129) (130); for similar use with propionic acid, butyric acid, and valeric acid see (131), for use in dehydration of EtOH see (132).]

[For use of system  $\bar{C}$  (40%) + CCl<sub>4</sub> (3:5100) (60%) as dry cleaner's solvent (133) and removal of scavenged impurities with carbon (134) see indic. refs.; for use of system  $\bar{C}$  (75%) + trichloroethylene (3:5170) (25%) as dry cleaner and metal degreesing solvent see (135) (136) (137).]

[For use of  $\tilde{C}$  in extraction of oils (138) (139) (140) (141) (142) (143), in purifn. of vitamincontg. oils (144), in extractn. of soybean oil (incl.  $n_D^{25}$  for system) (47), in wool degreasing (145) (146) see indic. refs.]

[For use of C in lacquer and varnish industry see (147) (148) (149).]

[For study of  $\bar{C}$  as solvent for cellulose acetates see (150) (151), for use of  $\bar{C}$  + EtOH as solv. for cellulose acetate see (152); for use of  $\bar{C}$  in sepn. of simple from mixed cellulose esters see (153); for use of a mixt. of  $\bar{C}$  (90–40%) + an alc. (10–60%) (154) or a mixt. of  $\bar{C}$  (40–50%) + an alkyl acetate (60–50%) (155) as solv. for cellulose ethers see indic. refs.]

[For use of  $\tilde{C}$  in dewaxing of mineral oil (156) (157), as solvent for rubber (158), for removal of caffeine from coffee (159), as component of refrigerant liq. (160), in purifn. of triphenyl phosphate (161), in dentrifices (162), in hair-wash (163) see indic. refs.]

[For use of C in sepn. of olefins and diolefins from alkanes see (164).]

[For patents on sepn. of mixts. of  $\bar{C}+1,2$ -dichloropropane (3:5200) + n-butyl alc. (1:6180) (165), or of  $\bar{C}+aq$ . sol. alcs. and /or ketones (166), see indic. refs.]

 $\bar{C}$  also serves as a raw material for the comml. manufacture of other prods.; this topic cannot be fully explored here, but attention is called to two important examples. — For use of  $\bar{C}$  as starting point for the prepn. of elastothiomers (167) such as "Thiokol A" (168) (169) (170) (from  $\bar{C}$  + alkali polysulfide) or elastoplastics (167) of the polyarylethylene type such as AXF (171) (172) (from  $\bar{C}$  + aromatic hydrocarbons + AlCl<sub>3</sub>) see indic. refs. (and also below under chem. behavior of  $\bar{C}$ ). — For use of  $\bar{C}$  as starting point for prepn. of ethylene glycol (1:6465) by hydrolysis, ethylenediamine by ammonation, or vinyl chloride by dehydrohalogenation see below under chem. behavior of  $\bar{C}$ .

### TOXICITY AND PHYSIOLOGICAL ACTION OF C

Full treatment of this topic is beyond the scope of this work; however, for lead references on toxicity of  $\bar{C}$  see (390) (391) + (173)-(180) incl. (references earlier than 1934 will be found in the cited articles).

[For study of  $\bar{C}$  as anthelmintic see (181) (182); for antiseptic and disinfectant actn. see (183) (184); for actn. of  $\bar{C}$  on yeast see (185).]

#### DETERMINATION OF C

Some methods for detn. of  $\bar{C}$  involve conversion of all of its halogen to chloride ion and subsequent volumetric or gravimetric detn. of the latter: e.g., for methods based on initial pyrolytic decompn. see (186), for methods involving initial combustion of  $\bar{C}$  with MnO<sub>2</sub> at 300° (187), with air (188), in a modified sulfur lamp (189), or (for high conens.) by an explosion pipet method (190) see indic. refs. — For methods based on conversion of halogen to chloride ion by reactn. with Na + ethanolamine in dioxane (191) (192) (latter discussed application to mixts. of  $\bar{C}$  with CCl<sub>4</sub> (3:5100) and with tetrachloroethylene (3:5460)), or with alc. NaOEt (193) (194) (195) (note that this method gives CH<sub>2</sub>=CHCl + NaCl), see indic. refs.

Note that oxidn. of  $\bar{C}$  with  $CrO_3/H_2SO_4$  in pres. of Hg yields  $CO_2$  quantitatively (196) (dif. from many polychloro cpds.). — Note also that  $\bar{C}$  does *not* respond to the R + H "Tri-Per Analyzer" (a recording ultra-violet photometer) (197).

For detn. of C in organs and tissues see (198).

## PREPARATION OF C

The most-studied method for prepn. and manufacture of  $\bar{C}$  is that from ethylene by addn. of chlorine; this method is also of historical interest as leading to the discovery of  $\bar{C}$  in 1795 (199) and its initial designation as "oil of the four Dutch chemists." — Various other modes of forms, of  $\bar{C}$  have since been discovered and will be indicated below.

Preparation from ethylene. By use of chlorine. Ethylene with chlorine under certain conditions adds chlorine quant. yielding only  $\bar{C}$ ; under other conditions, however, the system gives 1,1,2-trichloroethane (3:5330) + HCl. — In the absence of catalysts, the substitution reactn. is avoided by use of very low temperatures; in the presence of catalysts addition (rather than substitution) is facilitated even at the higher temperatures (e.g., 120°) resulting from heat of reactn.

For general articles discussing the various factors involved see (200) (201) (53) (202) (203) (204) (205) (69); for articles discussing the reaction from the viewpoint of utilization of the ethylene of industrial gases see (206)–(214) incl.; for patents on prepn. of  $\bar{C}$  from ethylene +  $Cl_2$  see (215)–(236) incl. [For prepn. of "heavy"  $\bar{C}$  contg. one  $C^{13}$  atom see below under miscell. prepns.]

By use of HOCl ( $Cl_2 + H_2O$ , etc.). Although ethylene with HOCl solns, gives mainly ethylene chlorohydrin (3:5552) nevertheless some  $\bar{C}$  is formed; for studies of this reactn. see (237) (238) (239) (240) (241).

By other miscellaneous reagts. [For formn. of  $\tilde{C}$  (together with other prods.) from ethylene with  $Cl_2$  in AcOH or Ac<sub>2</sub>O soln. (242), with HCl + air over pumice contg. CuCl<sub>2</sub> at 300° (243), with aq. ICl (244), with NCl<sub>3</sub> in CCl<sub>4</sub> soln. at 20-25° for 7 days (245), with nitryl chloride (ClNO<sub>2</sub>) (246), with SbCl<sub>5</sub> or CuCl<sub>2</sub> (247), or with N-chlorourea (253) see indic. refs.]

Formation of  $\tilde{C}$  from ethane or acetylene. [For formn. of  $\tilde{C}$  from ethane with NOCl at 300° (248) or with  $Cl_2 + O_2 + cat.$  at 300-650° (249) see indic. refs.; for formn. of  $\tilde{C}$  (together with other prods.) from acetylene with HCl gas in pres. of NO<sub>2</sub> (250), or with  $Cl_2$  in pres. of  $CCl_4 + AlCl_3/NaCl/FeCl_3$  at 175-250° (251) cf. (252), see indic. refs.]

Formation of C from miscellaneous sources and by various methods. [For formn. of C (together with other prods.) from methyl chloride (3:7005) in dark elec. discharge (254); from ethyl chloride (3:7015) with Cl<sub>2</sub> in light (255), with NCl<sub>3</sub> (256), or with SbCl<sub>5</sub> in s.t. at 100° (257); from 1,2-dibromoethane (ethylene dibromide) (1 mole) with SbCl<sub>5</sub> (2 moles) (note that use of only 1 mole SbCl<sub>5</sub> yields ethylene chlorobromide) (258); from 1-chloro-2-iodoethane (ethylene chloro-iodide) with finely divided Ag at 160° (259) see indic. refs.]

[For formn. of  $\tilde{C}$  (together with other prods.) from ethylene glycol (1:6465) with excess fumg. HCl in s.t. at 100° (260), with PCl<sub>3</sub> + ZnCl<sub>2</sub> (57% yield (261)), with PCl<sub>5</sub> (262), or PCl<sub>5</sub> + ZnCl<sub>2</sub> (37% yield (261)), with SOCl<sub>2</sub> + pyridine (62% yield (261)) see indic. refs.; from ethylene oxide (1:6105) with S<sub>2</sub>Cl<sub>2</sub> (263); from 1,4-dioxane (1:6400) with Zn + acid chlorides (264); from 2-chloroethanol-1 (ethylene chlorohydrin) (3:5552) by disproportionation in s.t. at 184° for 10 hrs. (265) or during reactn. with HBr (266); from bis-( $\beta$ -chloroethyl) sulfate with Cl<sub>2</sub> (267); from bis-( $\beta$ -chloroethyl) sulfate with conc. aq. HCl (268) or with alk. chloride + dil. HCl (269) see indic. refs.]

[For form. of C (together with other prods.) from diazomethane with ZnCl<sub>2</sub> in ether (270), from ethylenediamine with NOCl in xylene (271), see indic. refs.]

[For prepn. of "heavy"  $\bar{C}$  contg. 1  $C^{13}$  atom (from NaC<sup>13</sup>N via CH<sub>3</sub>C<sup>13</sup>N, CH<sub>3</sub>.C<sup>13</sup>-H<sub>2</sub>NH<sub>2</sub>, CH<sub>3</sub>.C<sup>13</sup>H<sub>2</sub>N(CH<sub>3</sub>)<sub>3</sub>OH, CH<sub>2</sub>=C<sup>13</sup>H<sub>2</sub>) and its reactn. with Cl<sub>2</sub> see (272).]

#### CHEMICAL BEHAVIOR OF C

Pyrolysis of C. C on suitable htg. especially in pres. of dehydrohalogenating cat. loses 1 mole HCl yielding vinyl chloride (3:7010) [e.g., C over activated carbon at 230-250° (273), or with aq. vapor over cat. at 800-1000° (274), or over pumice at 600° (275) cf. (276) (277), or over alumina at low red heat (278) yields vinyl chloride (3:7010)].

### BEHAVIOR OF C WITH INORGANIC REACTANTS

Reaction of C with Cl<sub>2</sub>. C with Cl<sub>2</sub> gives according to the conditions chlorinated derivatives either of the ethylene or ethane series.

[E.g.,  $\bar{C}$  with Cl<sub>2</sub> in pres. of AlCl<sub>3</sub>/NaCl/FeCl<sub>3</sub> at 400–480° gives (279) a mixt. contg. 20% 1,1-dichloroethylene (3:5005) + 22% 1,2-dichloroethylene (3:5030) + 29% trichloroethylene (3:5170) + 29% higher chlorination prods.;  $\bar{C}$  with Cl<sub>2</sub> over suitable cat. at 300–500° gives (280) tetrachloroethylene (3:5460).]

[On the other hand,  $\tilde{C}$  with  $Cl_2$  in ultra-violet light at 50° (281) (282), or 25° (283), or  $\tilde{C}$  with  $Cl_2$  + suitable cat. at not above 60° (284), or  $\tilde{C}$  (as liquid) with  $Cl_2$  (285), or  $\tilde{C}$  with  $Cl_2$  in pres. of  $AlCl_3/NaCl/FeCl_3$  at 300–425° as directed (279), or  $\tilde{C}$  with  $SO_2Cl_2$  + trace of dibenzoyl peroxide refluxed 2 hrs. in dark (286) gives (yields: 80% (284), 70% (283) (286), 50% (279)) 1,1,2-trichloroethane (3:5330). — Furthermore,  $\tilde{C}$  with  $Cl_2$  as directed (287) (288) or  $Cl_2$  +  $AlCl_3$  at 70–80° (289) (327) gives 1,1,2,2-tetrachloroethane (acetylene tetrachloride) (3:5750). — Finally  $\tilde{C}$  (in vapor phase) with  $Cl_2$  + cat. (290) cf. (285) or  $\tilde{C}$  with  $Cl_2$  at elev. temp. and press. (291) yields hexachloroethane (3:4835).]

Reaction of  $\bar{C}$  with alkalies.  $\bar{C}$  with alkalies or substances behaving as such may according to circumstances undergo either (or both) of two reactions: on the one hand  $\bar{C}$  may lose HCl (1 mole) (dehydrohalogenation) yielding vinyl chloride (3:7010); on the other  $\bar{C}$  may be hydrolyzed to ethylene glycol (1:6465).

Dehydrohalogenation. C with aq. alk. at elev. temp. and press. (292) especially in press of tetramethylene glycol, etc. (293), or C with MeOH/alk. (294), or EtOH/alk. (53) (295), loses HCl giving (91-93% yield (53)) vinyl chloride (3·7010). — [For study of rate of reactn. of C with KOH in 95% EtOH at 90° and 100° (296) (297), with NaOEt or KOEt in 95% EtOH or 48% EtOH at 90° (296) (297), or with MeOH/NaOMe at 17-19° (298) see indic. refs. — Note that C with alc. NaOEt at 100° under press. gives 90% yield (299) ethyl vinyl ether (1:7810).]

Hydrolysis. C under appropriate conditions hydrolyses to ethylene glycol (1:6465); for general articles from this viewpoint see (110) (214) (314).

[For hydrolysis of  $\bar{C}$  to ethylene glycol with aq. vapor over cat. at 550-850° (300), with aq. at 200° under press. in absence of any acid acceptor (301), or with aq. at 120° under press. (302) see indic. refs. cf. (110).]

[For hydrolysis of  $\bar{C}$  to ethylene glycol with aq. KOH at elevated temp. and press. see (110). — For study of use of Na<sub>2</sub>CO<sub>3</sub> and/or NaHCO<sub>3</sub> in aq. (214) (303) (304) (305) (306) or in 85% EtOH (307) cf. (214) see indic. refs. — For use of aq. CaCO<sub>3</sub> in pres. of NH<sub>4</sub> salts (308) (309), or aq. BaCO<sub>3</sub> (310) at elev. temp. and press., see indic. refs. — For use of sodium formate in MeOH at 165° under press. (311) cf. (214), aq. + PbO in s.t. at 170° (312), or Fe<sub>2</sub>O<sub>3</sub> (?) (313) see indic. refs.]

For use of hydrolysis with alk. followed by KMnO<sub>4</sub> oxidn. of resultant ethylene glycol to oxalic acid as means of distinction between  $\bar{C}$  and the isomeric 1,1-dichloroethane (3:5035) see (256).

Reaction of  $\tilde{C}$  with alk. sulfides or polysulfides, etc. [ $\tilde{C}$  with aq. NaSH at 100° under press. gives (65% yield (315)) 1,2-dimercaptoethane ("ethylene dimercaptan") [Beil. I-471,  $I_1$ -(244),  $I_2$ -(529)].]

C with aq. (316) or boilg. alc. (317) Na<sub>2</sub>S yields 1,4-dithiane [Beil. XIX-3, XIX<sub>1</sub>-(609)],

cryst. from hot alc., m.p. 110-111° (318).

[C with alk. or alk.-earth tetrasulfides yields elastothiomers (167) such as "Thiokol A" (168) (169) (170); for very important compact survey of this reactn. and field see (319); for lecture experiment illustrating prepn. of "Thiokol A" see (320).]

Reaction of  $\bar{C}$  with metals. [For studies of  $\bar{C}$  from viewpoint of corrosion of metals see (321) (322) (323). —  $\bar{C}$  on warming with K loses HCl yielding (295) vinyl chloride (3:7010) and  $H_2$ ; note, however, that  $\bar{C}$  with Na or K or their alloys, or even with alkaline-earth metals, may (like many other polychloro cpds.) explode under certain conditions; for extensive studies of this behavior including sensitivity to mechanical shock see (324).]

[C with Na in liq. NH<sub>3</sub> loses both atoms of chlorine yielding (325) (326) ethylene +

NaCl; note that little, if any, (325) ethylenediamine is formed.]

Reaction of Č with various metal salts (of inorganic acids). [Č with anhydrous AlCl<sub>3</sub> at 45-55° loses 1 HCl yielding (53) polymerization prods. of vinyl chloride; at 80-85° the reactn. involves loss of 2 HCl yielding (327) some acetylene.]

[ $\bar{\mathbf{C}}$  with anhydrous AlBr<sub>3</sub> yields (328) ethylene dibromide (see also below under reactn. of  $\bar{\mathbf{C}}$  with organic cods.).]

Č with boilg. conc. aq. KI gives a little ethylene (329) (dıf. from ethylene dibromide which reacts quant.).

[ $\bar{C}$  with aq. alc. Na<sub>2</sub>SO<sub>3</sub> refluxed in Cu vessel gives (80-85% yield (330)) of the sodium salt of 2-chloroethanesulfonic acid-1. — For reactn. of  $\bar{C}$  with boilg. aq./alc. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> see (331).]

C with alc. AgNO<sub>3</sub> reacts slowly (332); for study of rate see (297).

Reaction of  $\tilde{C}$  with misc. non-nitrogenous inorganic reagts. [ $\tilde{C}$  with air over CuO at 450° gives (333) phosgene (3:5000). —  $\tilde{C}$  with fumg. H<sub>2</sub>SO<sub>4</sub> (65–80% SO<sub>3</sub>) with or without HgSO<sub>4</sub> yields (334)  $\beta$ -chloroethyl chlorosulfonate + a little bis-( $\beta$ -chloroethyl) sulfate. —  $\tilde{C}$  with dry O<sub>2</sub> in ultra-violet light yields (335) chloroacetic acid (3:1370).]

Reaction of  $\bar{C}$  with NH<sub>3</sub> (for reactn. with amines see below).  $[\bar{C}$  with conc. aq. NH<sub>3</sub> (336) (337) (338) (339) under press. (340) (341) (342) in pres. of cat. (343) (for use of glass-stoppered press. vessels see (344)), or  $\bar{C}$  with dry NH<sub>3</sub> under high press. (345), or  $\bar{C}$  with liq. NH<sub>3</sub> (346), yields ethylenediamine [Beil. IV-230, IV<sub>1</sub>-(398), IV<sub>2</sub>-(676)] always accompanied by higher condens. prods. such as diethylenetriamine, triethylenetetramine, etc. — For rate of reactn. of  $\bar{C}$  with NH<sub>3</sub> in 95% EtOH see (296).]

#### BEHAVIOR OF C WITH ORGANIC REACTANTS

Reactn. of  $\tilde{C}$  with aromatic hydrocarbons, aryl halides, or aromatic ethers. [ $\tilde{C}$  with aromatic hydrocarbons in the pres. of AlCl<sub>3</sub> leads to various elastoplastics (167) of the polyarylethylene type: e.g., for use in prepn. of AXF type plastics see (171) (172) (347) (348). — For analogous reactn. of  $\tilde{C}$  + AlCl<sub>3</sub> with various polychlorobenzenes (249), with xylene (350), with naphthalene (1:7200) (351), or with diphenyl ether (1:7125) (352) see indic. refs.]

Reactn. of  $\tilde{C}$  with alcohols, mercaptans, or phenols.  $\tilde{C}$  with Na phenolate (271), or with aq. K phenolate refluxed 48 hrs. (353), gives (70-85% yield (353)) ethylene glycol diphenyl ether (1:7235), lfts. from alc., m.p. 98°; note, however, that reactn. of only 1 of the 2 chlorine atoms may (354) lead to  $\beta$ -chloroethyl phenyl ether (3:0165), m.p. 28°, b.p. 217-220° at 760 mm. (355); also that under certain conditions, e.g.,  $\tilde{C}$  with alc. NaOH + phenol in s.t. at 180-200° for 5 hrs. (356), gives 80% yield phenyl vinyl ether, b.p. 155-

156° (356). — [For reactn. of  $\tilde{C}$  with aq. 2,4-dichlorophenol (3:0560) or with 2,4,6-trichlorophenol (3:1673) at 73-98° for 24-66 hrs. giving respectively 1,2-bis-(2,4-dichlorophenoxy)ethane, m.p. 132-133°, and 1,2-bis-(2,4,6-trichlorophenoxy)ethane, m.p. 167-167.5°, see (357).]

[For reactn. of C with 50% NaOH + cellulose see (358). — C with MeOH over Al<sub>2</sub>O<sub>8</sub> at 280° loses HCl yielding (359) vinyl chloride (3:7010) + MeCl (3:7005).]

[For reactn. of "heavy" C, viz., ClCH<sub>2</sub>.Cl<sup>3</sup>H<sub>2</sub>Cl, with "heavy" benzyl mercaptan, viz., C<sub>6</sub>H<sub>5</sub>.CH<sub>2</sub>.S<sup>34</sup>H, see (272).]

Reaction of  $\bar{C}$  with salts of organic acids.  $\bar{C}$  with salts of acids yields the corresp. ethylene glycol esters; note, however, that reactn. of only 1 chlorine atom can lead to  $\beta$ -chloroethyl esters and that loss of HCl and subsequent formn. of vinyl esters (or their polymers) can sometimes occur.

[E.g., Č with NaCN yields (360) succino (di)nitrile [Beil. II-615, II<sub>1</sub>-(265), II<sub>2</sub>-(554)], m.p. 53-54° (for rate of reactn. of Č with alc. KCN see (296)). — Č with anhydrous alkali or alk.-earth acetate at 230° in glycol diacetate (361) or monoacetate (364), or in alc. at 160-180° under press. (362), or in pres. of an amine salt as cat. at 175-225° (363), yields ethylene glycol diacetate (1:3511), b.p. 190°.]

Reaction of  $\tilde{C}$  with miscellaneous non-nitrogenous org. cpds. [For reactn. of  $\tilde{C}$  + AlCl<sub>3</sub> (in CCl<sub>4</sub>) with CO at 60-70° and 60-70° atm. press. yielding a mixt. of acid chlorides, ketones, etc., see (365). — For reactn. of  $\tilde{C}$  with CS<sub>2</sub> + aq. KOH yielding ethylene glycol trithiocarbonate see (366).]

[ $\bar{\rm C}$  (0.5 mole) + ethylene dibromide (0.5 mole) + AlCl<sub>3</sub> (0.015 mole) refluxed 2 hrs. (367) or stood at 25° for 35 hrs. (368) undergoes a redistribution reaction giving a prod. contg. 49.8 mole % 1-bromo-2-chloroethane (ethylene chlorobromide) [Beil. I-89, I<sub>1</sub>-(28), I<sub>2</sub>-(61)], b.p. 107-108°,  $n_D^{2D}=1.4908$  (369). — Similarly  $\bar{\rm C}$  (1 mole) + ethyl bromide (2 moles) + AlCl<sub>3</sub> (3%) in steel bomb at 25° for 14 days gives a mixt. contg. five prods. in mole % as follows:  $\bar{\rm C}$  9%, EtCl 34%, ethylene chlorobromide 18%, ethylene dibromide 10%, and EtBr 29% (367).]

[For reactn. of  $\bar{C}$  with diethyl sodio-malonate leading to tetraethyl butane-1,1,4,4-tetracarboxylate [Beil. II-862, II<sub>1</sub>-(333), II<sub>2</sub>-(702)] together with various other prods. see (370) (371).]

Reactn. of  $\bar{C}$  with amines.  $\bar{C}$  with aniline (4 moles) boiled ¾ hr. yields (372) N,N'-diphenyl-ethylenediamine (1,2-bis-(phenylaminoethane)) [Beil. XII-543, XII<sub>1</sub>-(282)], m.p. 64° (373) (corresp. bis-acetyl deriv. m.p. 158°), probably accompanied by some N,N'-diphenylpiperazine [Beil. XXIII-8, XXIII<sub>1</sub>-(5)], m.p. 164°. [For nitration of 1,2-bis-(phenylaminoethane) see (372) (373); for nitration of N,N'-diphenylpiperazine see (374). — Note that  $\bar{C}$  with NaNHC<sub>6</sub>H<sub>5</sub> (from aniline + NaNH<sub>2</sub> in dry ether) loses 2 HCl yielding (375) acetylene.]

[ $\bar{C}$  with 33% abs. alc. Me<sub>3</sub>N stood 10 days gives (22.5% yield (376)) the corresp. monoquaternary salt,  $\beta$ -chloroethyl-trimethyl-ammonium chloride ("choline dichloride"); for study of rate of reactn. of  $\bar{C}$  with Me<sub>3</sub>N in 90% acctone at 55° see (377). — For studies of rate of reactn. of  $\bar{C}$  with other amines, e.g., with benzylamine (296) (297), piperidine (296) (297) (298), pyridine (298) (378), see indic. refs.]

# COLOR REACTIONS OF C

With Weber reagent. Č (2 drops) with 2% soln. of phenolphthalein in cyclohexanol (2 ml.) + trace solid NaOH htd. 5 min. at 190-200° (preferably in bath as directed (379)), then cooled and acidified with AcOH (1 ml.) gives lilac color. [Note that acetylene tetrachloride (3:5750) with this reagt. gives a somewhat similar result.]

Comment on NH<sub>4</sub>OH/CuCl reagt. Note that  $\bar{C}$  with NH<sub>4</sub>OH/CuCl does not (380) give any color (dif. from 1,1-dichloroethane (ethylidene (di)chloride) (3:5035) which in 10 min. gives cloudy amethyst coloration (380)).

Comment on Fehling's soln. Note that  $\bar{C}$  does not reduce Fehling's soln. even on htg. (dif. from ethylidene (di)chloride (3:5035)).

- **1,2-Diphenoxyethane** (ethylene glycol diphenyl ether) (1:7235). Lfts. from alc., m.p. 98°. [From  $\bar{C}$  with aq. K phenolate refluxed 48 hrs. (70-85% yield (353)); note, however, that if only one of the two chlorine atoms reacts some  $\beta$ -chloroethyl phenyl ether, m.p. 28°, b.p. 217-220° at 760 mm. (355), may be formed.]
- 1,2-Di- $\alpha$ -naphthoxyethane (ethylene glycol di- $\alpha$ -naphthyl ether) [Beil. VI-607]. Lfts. from alc., m.p. 127.5° (381). [From  $\tilde{C} + \alpha$ -naphthol + aq. NaOH at 120° in s.t. for 8 hrs. (381). Note that the half reactn. prod.,  $\beta$ -chloroethyl  $\alpha$ -naphthyl ether, has m.p. 28° (355).]
- —— 1,2-Di- $\beta$ -naphthoxyethane (ethylene glycol di- $\beta$ -naphthyl ether) [Beil. VI-642]. Lfts. from C<sub>6</sub>H<sub>6</sub>, m.p. 217° (381). [From  $\ddot{C} + \beta$ -naphthol + aq. NaOH at 120° in s.t. for 8 hrs. (381). Note that the half reactn. prod.,  $\beta$ -chloroethyl  $\beta$ -naphthyl ether, has m.p. 83° (355).]
- DEthylene 1,2-bis-(isothiourea picrate): ndls. from alc., m.p. 260° (382), 259° (332). [From C with thiourea refluxed in alc. and subsequently treated with PkOH (332).]
- D 1,2-Diphthalimidoethane (ethylene diphthalimide) [Beil. XXI-492, XXI<sub>1</sub>-(384)]. Ndls. from AcOH, dil. AcOH or alc., m.p. 236° (383), 232-233° (384), 232° (385). [From C + K phthalimide (2 moles) in s.t. at 200° (386); note that C in very large excess with K phthalimide in s.t. at 180-190° for 3 hrs. gives (387) the half reactn. prod., N-(β-chloroethyl)phthalimide, cryst. from CS<sub>2</sub> or alc., m.p. 81° (388), 79-81° (387) (389).]
- 1,2-Disaccharinoethane: m.p. 253-254° (392). [Not reported from C̄ itself, but obtd. (20% yield) from ethylene (di)bromide with sodium saccharin in aq. butylcarbitol (1:6517) contg. KI on refluxing for 3 hrs.; note that with shorter reflux (1 hr.) some half reactn. prod., viz., N-(β-bromoethyl)saccharin, m.p. 99°, is formed (392).]
- S:5130 (1) Pearce, Peters, J. Phys. Chem. 33, 873-878 (1929). (2) Staedel, Ber. 15, 2563 (1882).
   Mumford, Phillips, J. Chem. Soc. 1928, 159. (4) Partnov, Seferovich, Trans. State Inst. Applied Chem. (U.S.S.R.) 24, 81-89 (1935); C.A. 29, 7272 (1935). (5) Railing, J. Am. Chem. Soc. 61, 3349-3353 (1939). (6) White, Morgan, J. Chem. Phys. 5, 656 (1937). (7) Lecat, Ann. soc. soc. Bruxelles 47-B, I, 110 (1927); Cent. 1927, II 1677; not in C.A. (8) Rex, Z. physik. Chem. 55, 358, 364-365 (1906). (9) Bloom, Sutton, J. Chem. Soc. 1941, 729. (10) Richards, Mathews, J. Am. Chem. Soc. 30, 10 (1908); Z. physik. Chem. 61, 452 (1907).
- (11) Timmermans, Bull. soc. chim. Belg. 25, 310 (1911). (12) Timmermans, Bull. soc. chim. Belg. 24, 244 (1910); Cent. 1910, II 442. (13) Mathews, J. Am. Chem. Soc. 48, 569 (1926). (14) Jones, Schoenborn, Colburn, Ind. Eng. Chem. 35, 666-672 (1935). (15) Gross, J. Am. Chem. Soc. 51, 2362-2364 (1929). (16) Gross, Z. physik. Chem. B-6, 215-220 (1929). (17) Gross, Physik. Z. 32, 588 (1931). (18) Smyth, Dornte, Wilson, J. Am. Chem. Soc. 53, 4252 (1931). (19) Smyth, Hitchcock, J. Am. Chem. Soc. 54, 4634 (1932). (20) Stearn, Smyth, J. Am. Chem. Soc. 56, 1667 (1934).
- (21) Thorpe, J. Chem. Soc. 37, 182 (1880). (22) Curme, Chem. & Met. Eng. 25, 999-1000 (1921). (23) Timmermans, Martin, J. chim. phys. 25, 420-422 (1928). (24) Huettig, Smyth, J. Am. Chem. Soc. 57, 1523-1526 (1935). (25) Smith, Matheson, J. Research Natl. Bur. Standards 20, 641-650 (1938). (26) Tyrer, J. Chem. Soc. 105, 2538 (1914). (27) Sunier, Rosenblum, J. Phys. Chem. 32, 1052-1053 (1928). (28) Hammick, Howard, J. Chem. Soc. 1932, 2915-2916. (29) Schiff. Ann. 220, 96 (1883). (30) Hamai, Bull. Chem. Soc. Japan 8, 297-306 (1933).
- Key, Chem. 32, 1052-1053 (1928). (28) Hammick, Howard, J. Chem. Soc. 1832, 2915-2916.
   Schiff, Ann. 220, 96 (1883). (30) Hammick, Howard, J. Chem. Soc. 1832, 2915-2916.
   Fairbrother, J. Chem. Soc. 1933, 1541. (32) Kraus, Fuoss, J. Am. Chem. Soc. 55, 23 (1933). (33) Greene, Williams, Phys. Rev. (2) 42, 133 (1932). (34) Fife, Reid, Ind. Eng. Chem. 27, 513-514 (1930). (35) Timmermans, Bull. soc. chim. Belg. 43, 632 (1934). (36) Seward, J. Am. Chem. Soc. 56, 2610 (1934). (37) Pitzer, J. Am. Chem. Soc. 62, 332 (1940). (38) Schneider,

Z. physik. Chem. 19, 157 (1896). (39) Haase, Ber. 26, 1053 (1893). (40) Dunstan, Hilditch, Thole, J. Chem. Soc. 103, 137 (1913).

(41) Jaeger, Z. anorg. allgem. Chem. 101, 58 (1917). (42) Walden, Busch, Z. physik. Chem. A-140, 92 (1929). (43) Sugden, J. Chem. Soc. 1933, 772. (44) Götz, Z. physik. Chem. 94, 193 (1920). (45) Brühl, Ann. 203, 10 (1880). (46) Weegmann, Z. physik. Chem. 2, 231 (1888). (47) Johnstone, Spoor, Goss, Ind. Eng. Chem. 32, 834 (1940). (48) McFarlane, Wright, J. Chem. Soc. 1933, 116. (49) Pahlavouin, Bull. soc. chim. Belg. 36, 538, 542-545 (1927). (50) Davies, Phil. Mag. (7) 21, 1022-1025 (1936).

(51) Bragg, Richards, Ind. Eng. Chem. 34, 1088-1091 (1935). (52) Gallaugher, Hibbert, J. Am. Chem. Soc. 58, 815 (1936). (53) Waterman, Leendertse, Colthoff, Chem. Weekblad 32, 550-551 (1935). (54) Hoyt, J. Chem. Education 8, 538 (1931). (55) Radulescu, Alexa, Bul. Soc. Chim. România 20-A, 89-113 (1938); C.A. 34, 934 (1940). (56) Gallaugher, Hibbert, J. Am. Chem. Soc. 59, 2523 (1937). (57) Beynon, Phil. Mag. (7) 28, 558 (1939). (58) van Ackel, Vles, Rec. trav. chim. 55, 410 (1936). (59) Gross, Saylor, J. Am. Chem. Soc. 53, 1744-1751 (1931). (60) Villard, Ann. chim. (7) 11, 388 (1897).

(61) Staverman, Rec. trav. chim. 60, 836-841 (1941); Cent. 1942, I 1352; C.A. 37, 2638 (1943). (62) Bell, J. Chem. Soc. 1931, 1375-1377. (63) Hamai, Bull. Chem. Soc. Japan 10, 5-16 (1935). (64) Margosches, Hinner, Friedmann, Z. anorg. allgem. Chem. 137, 83-90 (1924). (65) Osborne, Simmons, Ind. Eng. Chem. 26, 856-857 (1934). (66) Alekseevskii, Musin, J. Applied Chem. (U.S.S.R.) 12, 704-718 (1939); C.A. 34, 2652 (1940). (67) Pokrovskii, Org. Chem. Ind. (U.S.S.R.) 2, 473-476 (1936); Cent. 1937, II 1242; C.A. 31, 2366 (1937). (68) Pearce, Eversole, J. Phys. Chem. 38, 383-393 (1934). (69) Alekseevskii, J. Russ. Phys.-Chem. Soc. 55, 403-432 (1924); Cent. 1925, II 642; C.A. 20, 2609 (1926); cf. C.A. 19, 2634 (1925). (70) Alekseevskii, J. Applied Chem. (U.S.S.R.) 1, 182-184 (1928); Cent. 1929, II 708; C.A. 23, 4390 (1929).

(71) Perry, J. Phys. Chem. 29, 1462-1468 (1925). (72) Malm, Nadeau (to Eastman Kodak Co.), U.S. 2,203,690, June 11, 1940; C.A. 34, 6860 (1940). (73) Bates, Hazzard, Palmer, Ind. Eng. Chem. 33, 375-376 (1941). (74) Pakshuer, Mankash, J. Phys. Chem. (U.S.S.R.) 11, 400-409 (1938); Cent. 1939, II 2410; C.A. 33, 4106 (1939). (75) Stage, Schultze, Oel u. Kohle 40, 90-95 (1944); C.A. 38, 6134 (1944). (76) Fisher (to Eastman Kodak Co.), U.S. 2,341,433, Feb. 8, 1944; C.A. 38, 4268 (1944). (77) Bury, Jenkins, J. Chem. Soc. 1934, 688-696. (78) Bragg, Richards, Ind. Eng. Chem. 34, 1088-1091 (1942). (79) Bragg, Ind. Eng. Chem., Anal. Ed. 11, 283-287 (1939). (80) Rosanoff, Easley, J. An. Chem. Soc. 31, 970, 979-981 (1909).

(81) Bruun, Shicktanz, J. Research Natl. Bur. Standards 7, 878-882 (1931). (82) Carlson, Colburn & Richards, Bragg, Ind. Eng. Chem. 34, 1533 (1942). (83) Johnstone, Pigford, Trans. Am. Inst. Chem. Engrs. 38, 25-51 (1942). (84) Bragg, Trans. Am. Inst. Chem. Engrs. 37, 19-50 (1941). (85) Bragg, Ind. Eng. Chem. 33, 279-282 (1941). (86) Litvinov, J. Phys. Chem. (U.S.S.R.) 13, 119-123 (1939); 14, 562-570 (1940); C.A. 34, 299 (1940), 35, 2046 (1941), respt. (87) Smoker, Rose, Trans. Am. Inst. Chem. Engrs. 36, 285-293 (1940). (88) Kircev, Skvortsova, J. Phys. Chem. (U.S.S.R.) 7, 63-70 (1936); Cent. 1937, II 755; C.A. 31, 25 (1937). (89) von Zawidzki, Z. physik. Chem. 35, 145, 148 (1900). (90) Schulze, Hock, Z. physik. Chem. 86, 446-449 (1914).

(91) Colburn, Stearns, Trans. Am. Inst. Chem. Engrs. 37, 291-309 (1941). (92) Jones, Schoenborn, Colburn, Ind. Eng. Chem. 35, 666-672 (1943). (93) Colburn, Schoenborn, Shilling, Ind. Eng. Chem. 35, 1250-1254 (1943). (94) Schwers, Bull. acad. roy. Belg., Classe sci. 1912, 610-654; Cent. 1913, I 211; C.A. 7, 2896-2897 (1913). (95) Othmer, Ind. Eng. Chem. 35, 614-620 (1943). (96) Neissenberger, Schuster, Zack, Z. angew. Chem. 39, 270-271 (1926). (97) Götz, Z. physik. Chem. 94, 192-198 (1920). (98) Kaplan, Reformatskaya, J. Gen. Chem. (U.S.S.R.) 7, 545-549 (1937); Cent. 1937, II 2332; C.A. 31, 4554 (1937). (99) Kireev, Monakhova, J. Phys. Chem. (U.S.S.R.) 7, 71-76 (1936); Cent. 1937, II 755; C.A. 31, 25 (1937). (100) Young, Nelson, Ind. Eng. Chem., Anal. Ed. 4, 67-69 (1932). (101) Kaplan, Monakhova, J. Gen. Chem. (U.S.S.R.) 7, 2499-2512 (1937); Cent. 1938, II

(101) Kaplan, Monakhova, J. Gen. Chem. (U.S.S.R.) 7, 2499-2512 (1937); Cent. 1938, II
1572; C.A. 32, 2404 (1938). (102) Timmermans, Vesselovsky, Bull. soc. chim. Belg. 48, 505-512 (1931). (103) Timmermans, Bull. soc. chim. Belg. 36, 184-186 (1927). (104) Kireev, Kaplan, Vasneva, J. Gen. Chem. (U.S.S.R.) 6, 799-805 (1936); Cent. 1937, II 755; C.A. 36, 7013 (1936). (105) Kireev, Kaplan, Zlobin, J. Applied Chem. (U.S.S.R.) 8, 949-951 (1935); Cent. 1937, I 3474; C.A. 36, 5484 (1936). (106) Kaplan, Grishin, Skvortsova, J. Gen. Chem. (U.S.S.R.) 7, 538-544 (1937); Cent. 1937, II 2332; C.A. 31, 4554 (1937). (107) Bruni, Gazz. chim. ital. 28, I 277-283 (1898). (108) Biron, J. Russ. Phys.-Chem. Soc. 41, 569-586 (1909); Cent. 1908, II 608; C.A. 5, 608 (1911). (109) Bruni, Manuelli, Z. Elektrochem. 11, 860-862 (1905). (110) Bahr, Zieler, Z. angew. Chem. 43, 286-289 (1930).

(111) Lecat, Rec. trav. chim. 45, 623-624 (1926). (112) Lecat, Rec. trav. chim. 47, 15 (1928). (113) Lecat, Ann. soc. sci. Bruxelles 47, I 152 (1927). (114) Lecat, Ann. soc. sci. Bruxelles 48-B,

I 56 (1928). (115) Killefer, Ind. Eng. Chem. 19, 636-639 (1927). (116) Putikov, Zimakov, J. Chem. Ind. (Moscow) 1932, No. 6, 36-44; Cent. 1933, I 2607; C.A. 26, 5290 (1932). (117) Gersdorff, U. S. Dept. Agr., Misc. Pub. 117 (1932). (118) Winteringham, J. Soc. Chem. Ind. 63, 144-150 (1944); C.A. 38, 5013 (1944). (119) Sherrard, U. S. Pub. Health Repts. 57, 753-759 (1942); C.A. 36, 4245 (1942). (120) Russ, Ind. Eng. Chem. 22, 844-847 (1930).

(121) Hoyt, Ind. Eng. Chem. 20, 835-837, 931-932 (1928). (122) Cotton, Roark, J. Econ. Entomol. 20, 636-639 (1927); C.A. 21, 3416 (1927). (123) Popov, Bezub, Trans. Sci. Inst. Fertilizers Insectofungicides (U.S.S.R.), No. 135, 98-102 (1939); C.A. 34, 5663 (1940). (124) Jones, Kennedy, Ind. Eng. Chem. 22, 963-964 (1930). (125) Popov, Lebedeva, Trans. Sci. Inst. Fertilizers Insectofungicides (U.S.S.R.) No. 135, 102-104 (1939); C.A. 34, 6210 (1940). (126) Rutkovskii, Gorbunova, Org. Chem. Ind. (U.S.S.R.) 3, 686-693 (1937); Cent. 1938 II 410; C.A. 31, 6926 (1937). (127) Othmer (to Eastman Kodak Co.), U.S. 1,917,391, July 11, 1933; Cent. 1933, II 2192; C.A. 27, 4544 (1933). (128) Kodak-Pathé, French 667,559, Oct. 18, 1929; Cent. 1930, I 435; C.A. 24, 123 (1930). (129) Eastman Kodak Co., Brit. 327,444, May 1, 1930; Cent. 1930, II 306; C.A. 24, 5045 (1930). (130) Holzverkohlungs Ind. A.-G., Ger. 472,399, Feb. 27, 1929; Cent. 1929, I 2819; C.A. 23, 2449 (1929).

(131) Stone (to Eastman Kodak Co.), U.S. 1,939,237, Dec. 12, 1933; Cent. 1934, I 1245; C.A. 28, 1363 (1934). (132) Kodak-Pathé, French 701,355, March 16, 1931; Cent. 1931, II 925; C.A. 25, 4084 (1931). (133) Mohn (to Rhodes-Perry-Martin, Inc.), U.S. 1,940,688, Dec. 26, 1933; Cent. 1934, I 2214; C.A. 28, 1552 (1934). (134) Stout, Tillmann, Ind. Eng. Chem. 28, 22-25 (1936). (135) Schmidt, Deutsch. Färber-Zig. 72, 159-160 (1936); Cent. 1936, II 394. (136) Compagnie des Prod. Chim. d'Alais, French 785,864, Aug. 21, 1935; Cent. 1935, II 3859; not in C.A. (137) Reid (to Union Carbide and Chem. Corp.), U.S. 2,070,962, Feb. 16, 1937; Cent. 1937, I 4040; C.A. 31, 2716 (1937). (138) Rapoport, Sbornik Dikhloretan 1939, 52-91; C.A. 37, 4225 (1942). (139) Rapoport, Sherstyanoe Delo 1939, No. 12, 20-22; C.A. 36, 6018 (1942). (140) Chernukhin, Maslobolno Zhirovoe Delo 13, No. 3, 7-8 (1937); Cent. 1938, I 769; C.A. 31, 8967 (1937).

(141) Bauer, Lauth, Chem. Umschau Fette, Oele, Wachse, Harze 35, 82-86 (1928); Cent. 1928, I 2675; C.A. 22, 2221 (1928). (142) Hassel, Seifensieder Zy. 56, 370-372 (1929); Cent. 1929, II 3077; C.A. 24, 982 (1930). (143) I.G., French 645,497, Oct. 26, 1928; Cent. 1929, II 234; C.A. 23, 2057 (1929). (144) Buxton (to Natl. Oil Prod. Co.), Brit. 535,014, March 24, 1941; Cent. 1942, II 2655; C.A. 36, 1442 (1942). (145) Matetskii, Rapoport, Garlinskaya, Tarnovskaya, Sherstyanoe Delo 19, No. 3/4, 14 (1940); Cent. 1940, II 2701; C.A. 37, 2583 (1943); C.A. 36, 5656 (1942). (146) Rapoport, Sherstyanoe Delo 18, No. 12, 20-22 (1939); Cent. 1940, II 1092; C.A. 36, 5656 (1942). (147) Frazier, Reid, Ind. Eng. Chem. 22, 604-608 (1930). (148) Zhebrovskii, Chistova, Org. Chem. Ind. (U.S.S.R.) 1, No. 1, 28-31 (1936); Cent. 1937, I 1290; C.A. 30, 4023 (1936). (149) Nemirovskaya, Sbornuk Dikhloretan 1939, 100-103; C.A. 36, 3974 (1942). (150) Papkov, Kargin, Rogovin, J. Phys. Chem. (U.S.S.R.) 10, 607-619 (1937); Cent. 1939, II 4206; C.A. 32, 5682 (1928).

(151) Rogovin, Kargin, Papkov, J. Phys. Chem. (U.S.S.R.) 10, 793-797 (1937); Cent. 1939, II 4206; C.A. 32, 8132 (1938). (152) Lindsay, U.S. 1,027,614, May 28, 1912; [C.A. 6, 1989 (1912)]. (153) Malm, Fisher (to Eastman Kodak Co.), U.S. 1,966,302, July 10, 1934; Cent. 1935, II 462; C.A. 28, :667 (1934). (154) Carroll (to Eastman Kodak Co.), U.S. 1,429,188, Sept. 12, 1922; Cent. 1922, IV 1183; C.A. 16, 3758 (1922). (155) Carroll (to Eastman Kodak Co.) U.S. 1,461,170, Aug. 7, 1923; Cent. 1923, IV 809; C.A. 17, 3253 (1923). (156) Goldberg, Abezguz, Margolis, Azerbaudzhanskoe Neftyanoe Khoz. 1935, No. 3, 74-81; Cent. 1935, II 3859; C.A. 29, 6411 (1935). (157) Standard Oil Development Co., French 790,852, Nov. 28, 1935; Cent. 1936, I 2672; C.A. 30, 3223 (1936). (158) Provorov, Caoutchouc and Rubber (U.S.S.R.) 1939, No. 11, 24-27; C.A. 34, 3133 (1940). (159) Coffex, A.G., Swiss 157,021, Nov. 16, 1932; Cent. 1933, I 2758; not in C.A. (160) Davenport (to Chicago Pneumatic Tool Co.), U.S. 1,803,098, April 28, 1931; Cent. 1932, I 1935; [C.A. 25, 3746 (1931)].

(161) Reid (to Eastman Kodak Co.), Ü.S. 2,053,532, Sept. 8, 1936; Cent. 1937, I 4427; C.A. 39, 7127 (1936). (162) Brounlee, U.S. 1,645,791-1,645,793, incl., Oct. 18, 1927; Cent. 1928, I 225; C.A. 22, 141 (1928). (163) Cathala, French 598,518, Dec. 18, 1925; Cent. 1926, I 2752; not in C.A. (164) Young, Perkins (to Carbide and Carbon Chem. Corp.), U.S. 1,948,777, Feb. 27, 1934; Cent. 1935, I 1807; [C.A. 28, 2723 (1934)]; Canadian 328,052, Nov. 29, 1932; Cent. 1935, I 1807; C.A. 27, 991 (1933). (165) Bright, Fisher (to Eastman Kodak Co.), U.S. 2,350,719, June 6, 1944; C.A. 38, 4960 (1944). (166) Fisher, Shearon (to Eastman Kodak Co.), U.S. 2,327,779, Aug. 24, 1943; C.A. 38, 665 (1944). (167) Fisher, Ind. Eng. Chem. 31, 942 (1939). (168) Martin, Patrick, Ind. Eng. Chem. 28, 1144-1149 (1936). (169) Patrick, Trans. Faraday Soc. 32, 347-358 (1936). (170) Patrick, U.S. 1,890,191, Dec. 6, 1932; Cent. 1933, I 1857; C.A. 27, 1724 (1933): French 719,212, June 27, 1931; C.A. 28, 3344 (1932).

(171) Shinkle, Brooks, Cady, Ind. Eng. Chem. 28, 275-280 (1936). (172) Shinkle (to U.S. Rubber Co.), U.S. 2,016,027, Oct. 1, 1935; Cent. 1936, II 3030; C.A. 29, 8176 (1935); U.S. 2,016,-026, Oct. 1, 1935; C.A. 29, 8175 (1935); French 43,916, Sept. 19, 1934; Cent. 1935, I 2100; not in C.A. (173) Rozenbaum, Sbornik Dikhloretan 1939, 109-119; C.A. 36, 2956 (1942). (174) Smyth, N. Y. State Med. J. 42, 1072-1079 (1942); C.A. 36, 4626 (1942). (175) McNally, Fostved T. Ind. Med. 19, 373-374 (1941); C.A. 36, 4627 (1942). (176) McCawley, Unr. Calif. Pub. Pharmacol. 2, 89-97 (1942); C.A. 36, 4911 (1942). (177) Wirtschaften, Schwartz, J. Ind. Hyg. Toxicol. 21, 128-131 (1939). (178) von Oettingen, J. Ind. Hyg. Toxicol. 19, 394-396 (1937). (179) Hueper, Smith, Am. J. Med. Sci. 189, 778-784 (1935); Cent. 1935, II 1059; not in C.A. (180) Barsoum, Saad, Quart. J. Pharm. Pharmacol. 7, 205-214 (1934); Cent. 1934, II 2550; C.A. 28, 6194 (1934).

(181) Tomb, Helmy, J. Trop. Med. Hyg. 36, 265-270 (1933); Cent. 1934, I 728; not in C.A. (182) Hall, Shillinger, J. Agr. Research 29, 313-332 (1924). (183) Gabbano, Z. Hyg. Infections-krankh. 109, 183-193, 194-200 (1928); Cent. 1928, II 2667-8; not in C.A. (184) Joachimoglu, Biochem. Z. 124, 130-136 (1921); Cent. 1922, I 363; C.A. 16, 946 (1922). (185) Plagge, Brochem. Z. 118, 129-143 (1921); Cent. 1922, I 52; C.A. 15, 2894 (1921). (186) Winteringham, J. Soc. Chem. Ind. 61, 190-192 (1942); C.A. 37, 1951. (187) Bogatkov, Zavodskaya Lab. 10, 319 (1941); Cent. 1942, II 1943; C.A. 35, 7318 (1941). (188) Van Winkle, Smith, J. Am. Chem. Soc. 42, 342 (1920). (189) Elkins, Hobby, Fuller, J. Ind. Hyg. Toxcool. 19, 474-485 (1937). (190)

Jones, Ind. Eng. Chem. 20, 367-370 (1928).

(191) Rauscher, Ind. Eng. Chem., Anal. Ed. 9, 296-299 (1937). (192) Winteringham, J. Soc. Chem. Ind. 61, 190-192 (1942); C.A. 37, 1951 (1943). (193) Mel'nikov, Senilov, Lab. Prakt. (U.S.S.R.), No. 9/10, 18-20 (1939); C.A. 34, 2286 (1940). (194) Rozenbaum, Sbornk Dikhloretan 1939, 109-119; C.A. 36, 2956 (1942). (195) Ginzburg, Zavodskaya Lab. 7, 1438 (1938); C.A. 33, 4909 (1939). (196) Guyot, Simon, Compt. rend. 170, 736 (1920). (197) Hanson, Ind. Eng. Chem., Anal. Ed. 13, 119-123 (1941). (198) Gettler, Siegel, Arch. Path. 19, 208-212 (1935); C.A. 29, 4786 (1935). (199) Crell's Chem. Ann. 2, 195-205, 310-316, 430-440 (1795). (200) Gayat. Ber. 76, 1115-1118 (1943).

(201) Conn, Kistiakowsky, Smith, J. Am. Chem. Soc. 60, 2764-2771 (1938). (202) Bahr, Zieler, Z. angev. Chem. 43, 233-236 (1930). (203) Sherman, Sun, J. Am. Chem. Soc. 56, 1096-1101 (1934). (204) Stewart, Smith, J. Am. Chem. Soc. 51, 3082-3095 (1929). (205) Schmitz, Schumacher, Jager, Z. physik. Chem. B-51, 281-305 (1942). (206) Kinumaki, et al., J. Chem. Soc. Japan 53, 398-403 (1932); 54, 142-150 (1933); 54, 150-152 (1933); C.A. 26, 4231 (1932); 27, 2369 (1933); 27, 2369 (1933), respt. (207) Kukushkin, Brodovich, Krasnovskaya, Coke and Chem. (U.S.S.R.) 1949, No. 4/5, 32-37; C.A. 37, 1245 (1943). (208) Golev, Sbornik Dikhloretan 1939, 18-20, 21-24; C.A. 36, 2523 (1942). (209) Rudenko, Sbornik Dikhloretan 1939, 14-17; C.A. 36, 2522 (1942). (210) Mamedaliev, Azerbaidzhanskoe Neftyanoe Khoz. 1935,

No. 3, 67-74; Cent. 1935, I 3915; C.A. 29, 6205 (1935).

(211) Dobryanskii, Gutner, Shchigel'skaya, Trans. State Inst. Applied Chem. (U.S.S.R.) 24, 21-31 (1935); C.A. 29, 7271 (1935); not in Cent. (212) Dobryanskii, Khomutin, Trans. State Inst. Applied Chem. (U.S.S.R.) 24, 32-47 (1935); C.A. 29, 7271 (1935); not in Cent. (213) Doroganevskaya, J. Chem. Ind. (Moscow) 8, 857-860 (1931); Cent. 1931, II 2385; C.A. 26, 79-80 (1932). (214) Smolenski, Przemysl Chem. 11, 146-182 (1927); Cent. 1927, II 1640; C.A. 23, 2930 (1929). (215) Groll, Hearne, LaFrance (to Shell Development Co.), U.S. 2,245,776, June 17, 1941; C.A. 35, 5913 (1941). (216) Ruys, Edwards (to Shell Dev. Co.), U.S. 2,099,231, Nov. 16, 1937; Cent. 1938, I 3387; C.A. 32, 190 (1938). (217) Reynhart (to Shell Dev. Co.), U.S. 2,043,932, June 9, 1936; C.A. 30, 5235 (1936); N.V. de Bataafsche Petroleum Maatschappij, Brit. 446,411, May 28, 1936; Cent. 1936, II 2611; C.A. 39, 6757 (1936). (218) Dow (Dow Chem. Co.), U.S. 1,841,279, Jan. 12, 1932; Cent. 1933, II 3046; C.A. 26, 1615 (1932). (219) Askensay, Heller, U.S. 1,851,970, April 5, 1932; Cent. 1932, II 1366; C.A. 26, 2989 (1932). (220) Curme, U.S. 1,315,545, Sept. 9, 1919; C.A. 13, 2883 (1919); not in Cent.

(221) Brooks, Smith, U.S. 1,231,123, June 26, 1917; C.A. 11, 2405 (1917). (222) Johannsen, Berger (to Röchlingsche Eisen u. Stahlwerke), Ger. 678,427, July 17, 1939; Cent. 1939, II 3487; C.A. 23, 7822 (1939). (223) Maier, Ger. 529,524, July 14, 1931; Cent. 1931, II 1921; C.A. 25, 5178 (1931): French 653,434, March 21, 1929; Cent. 1929, I 3141; C.A. 23, 3718 (1929). (224) Askenasy, Heller, Ger. 549,341, April 26, 1932; Cent. 1932, II 287; C.A. 26, 3807 (1932). (225) Engelhardt (to I.G.), Ger. 442,342, March 30, 1927; Cent. 1927, I 2685; not in C.A.: Brit. 177,362, April 20, 1922; Cent. 1923, II 476; C.A. 16, 3093 (1922): French 532,735, Feb. 10, 1922; Cent. 1923, IV 476; not in C.A. (226) Union Carbide Co., Ger. 437,000, Nov. 12, 1926; Cent. 1927, I 354; not in C.A.: Swiss 92,115, Dec. 16, 1921; Cent. 1923, II 475; not in C.A. (227) Wietzel, Dierksen (B.A.S.F.), Ger. 420,500, Oct. 24, 1925; Cent. 1926, I 2245; not in C.A. (228) Matter (to T. Goldschmidt A. G.), Ger. 298,931, Jan. 26, 1922; Cent. 1922, II 1170; not in C.A.: French

533,295, Feb. 27, 1922; Cent. 1922, II 1171; not in C.A. (229) I.G., French 770,943, Sept. 24, 1934; Cent. 1935, I 2255; C.A. 29, 817 (1935). (230) Maier, French 655,930, April 25, 1929; Cent. 1929, II 1347; C.A. 23, 3931 (1929).

(231) Damiens, de Loisy, Piette, French 535,210, April 11, 1922; Cent. 1923, II 741; not in C.A. (232) T. Goldschmidt, A. G., French 533,296, Feb. 27, 1922; Cent. 1922, IV 393; not in C.A.: Brit. 147,909, Nov. 3, 1921; Cent. 1922, IV 393-394; C.A. 15, 97 (1921). (233) Goldschmidt, Arnold, Brit. 158,836, March 10, 1921; Cent. 1921, II 1060; C.A. 15, 1953 (1921). (234) Marks, Brit. 136,489, July 2, 1919; C.A. 14, 1122 (1920), not in Cent. (235) Harding, Brit. 126,511, June 11, 1918; C.A. 13, 2375 (1919); not in Cent. (236) Gosudarstvennui Trest Rezinovoi Promuishlennosti & Matisen, Russian 24,877, Jan. 31, 1932; Cent. 1933, I 672; C.A. 30, 1808 (1936); also 26, 3513 (1932). (237) Gomberg, J. Am. Chem. Soc. 41, 1414-1431 (1919). (238) Shilov, Kanyaev, Domina, Ionina, J. Phys. Chem. (U.S.S.R.) 13, 1242-1248 (1939); C.A. 35, 371 (1941). (239) Shilov, Solodushenkov, Kurakin, J. Phys. Chem. (U.S.S.R.) 13, 759-766 (1939); C.A. 34, 7708 (1940). (240) Soc. Anon. Ind. Chim. Barzaghi, Italian 337,801, May 20, 1935; Cent. 1937, I 3548; not in C.A.

(241) Irvine, Haworth (to Carbide and Carbon Chem. Corp.), U.S. 1,496,675, June 3, 1924; Cent. 1924, II 1511; [C.A. 18, 2345 (1924)]. (242) Weber, Hennion, Vogt, J. Am. Chem. Soc. 61, 1457–1458 (1939). (243) Ernst, Wahl (to I. G.), Ger. 430,539, June 23, 1926; Cent. 1926, II 1189; not in C.A. (244) Vorhees, Skinner, J. Am. Chem. Soc. 47, 1127 (1925). (245) Coleman, Mullins, Pickering, J. Am. Chem. Soc. 50, 2739–2741 (1928). (246) Steinkopf, Kühnel, Ber. 75, 1323 (1942). (247) Wohler, Ann. Physik. 13, 297 (1825/9). (248) Moyer (to Solvay Process Co.), U.S. 2,152,357, March 28, 1939; Cent. 1939, II 1775; C.A. 33, 5001 (1939). (249) Gremli, Austrian 108,421, 108,424, Dec. 27, 1927, Cent. 1928, I 1229; not in C.A. (250) Bauer (to Rohm, Haas, A.G.), U.S. 1,540,748, June 9, 1925; Cent. 1925, II 1563; not in C.A.

(251) Reilly (to Dow Chem. Co.), U.S. 2,140,551, Dec. 20, 1938; Cent. 1939, I 3625; C.A. 33, 2540 (1939). (252) Mouneyrat, Bull. soc. chrm. (3) 19, 448-452 (1898). (253) Likhosherstov, Alekseev, J. Applied Chem. (U.S.S.R.) 7, 127-133 (1934); Cent. 1935, I 3915; C.A. 29, 452 (1935). (254) Besson, Fournier, Compt. rend. 150, 1120 (1910). (255) D'Ans, Kautzsch, J. prakt. Chem. (2) 80, 307-314 (1909). (256) Coleman, Noyes, J. Am. Chem. Soc. 43, 2214-2215 (1921). (257) Meyer, Muller, Ber. 24, 4249 (1891); J. prakt. Chem. (2) 46, 173-174 (1892). (258) Lossner, J. prakt. Chem. (2) 13, 421-423 (1876). (259) Friedel, Silva, Bull. soc. chim. (2) 17, 242 (1872). (260) Schorlemmer, J. Chem. Soc. 39, 143-144 (1881).

(261) Clark, Streight, Trans. Roy. Soc. Canada (3) 23, III 77-89 (1929). (262) Wurtz, Compt. rend. 45, 228 (1857); Ann. 104, 174-175 (1857); Ann. chim. (3) 55, 419-421 (1859). (263) Malinovskii, J. Gen. Chem. (U.S.S.R.) 9, 832-839 (1939); C.A. 34, 375 (1940). (264) Varvoglis, Praktika Akad. Athenon 13, 42-48 (1938); Cent. 1938, II 1394; C.A. 34, 5050 (1940). (265) Krassuski, J. Russ. Phys.-Chem. Soc. 34, 287-315 (1902); Cent. 1902, II 20. (266) Demole, Ber. 9, 560 (1876). (267) Levaillant, Compt. rend. 189, 466 (1929). (268) Suter, Evans, J. Am. Chem. Soc. 60, 536 (1938). (269) Levaillant, Compt. rend. 187, 732 (1928). (270) Caronna, Sansone, Atti congr. intern. chim. 10th Congr. Rome 1938 3, 77-81 (1939); Cent. 1939, II 3974; C.A. 34, 980 (1940).

(271) Ssolonina, J. Russ. Phys.-Chem. Soc. 30, 606-632 (1898); Cent. 1899, I 25. (272) Kilmer, du Vigneaud, J. Buol Chem. 154, 247-253 (1944). (273) I.G., Ger. 585,793, Oct. 9, 1933; Cent. 1934, I 124; C.A. 28, 1361 (1934). (274) Baxter, Edwards, Winter (to Imperial Chem. Ind., Ltd.), Brit. 363,009, Jan. 7, 1932; Cent. 1932, I 3497; [C.A. 27, 1365 (1933)]; French 721,808, Aug. 20, 1931; C.A. 26, 4067 (1932). (275) Boeseken, Bastet, Rec. trav. chim. 32, 187-188 (1913). (276) Biltz, Ber. 35, 3525 (1902). (277) Biltz, Kuppers, Ber. 37, 2398-2423 (1904). (278) Senderens, Compt. rend. 146, 1213 (1908); Bull. soc. chim. (4) 3, 828 (1908). (279) Reilly (to Dow Chem. Co.), U.S. 2,140,548, 2,140,549, Dec. 20, 1938; Cent. 1939, I 3625; C.A. 33, 2540 (1939). (280) Reilly (to Dow Chem. Co.), U.S. 1,947,491, Feb. 20, 1934; Cent. 1935, I 3345; C.A. 28, 2371 (1934).

(281) Compagnie des Prod. Chim. d'Alais, etc., French 804,491, Oct. 24, 1936; Cent. 1937, I 1545; C.A. 31, 3509 (1937). (282) Coleman, Moore (to Dow Chem. Co.), U.S. 2,174,737, Oct. 3, 1939; C.A. 34, 779 (1940). (283) Maier, Ger. 522,959, April 20, 1931; [Cent. 1931, I 3607; C.A. 25, 3670: French 655,930, April 25, 1929; Cent. 1929, II 1347; C.A. 23, 3931 (1929). (284) Jung, Zimmermann (to I. G.), Ger. 545,993, March 8, 1932; Cent. 1932, I 2893; C.A. 26, 3520 (1932). (285) Hamai, Bull. Chem. Soc. Japan 9, 542-548 (1934). (286) Kharasch, Brown, J. Am. Chem. Soc. 61, 2145 (1939). (287) Levine (to du Pont Co.), Can. 395,846, April 15, 1941; C.A. 35, 4782 (1941): Brit. 505,196, June 1, 1939; Cent. 1939, II 2712; C.A. 33, 7814 (1939). (288) Rodebush (to U.S. Ind. Alc. Co.), U.S. 1,402,318, Jan. 3, 1922; Cent. 1923, II 960; [C.A. 16, 935 (1922)]. (289) Tzyurikh, Trans. State Inst. Applied Chem. (U.S.S.R.) 24, 70-80 (1935);

C.A. 29, 7271 (1935); not in Cent. (290) Schrader, Havestadt (to T. Goldschmidt, A.G.), Ger. 712,999, Oct. 29, 1941; Cent. 1942, I 2064; C.A. 37, 4748 (1943).

(291) I.G., French 837,741, Feb. 20, 1939; Cent. 1939, II 228; [C.A. 33, 5865 (1939)]. (292) Young (to Carbide and Carbon Chem. Corp.), U.S. 1,752,049, March 25, 1930; Cent. 1930, II 1280; [C.A. 24, 2468 (1930)]. (293) Strosacker, Amstutz (to Dow Chem. Co.), U.S. 2,322,258, June 22, 1943, C.A. 38, 114 (1944). (294) I.G., French 694,575, Dec. 5, 1930; Cent. 1931, I 2112; C.A. 25, 1845 (1931). (295) Regnault, Ann. 14, 30, 37 Note (1835); Engel, Compt. rend. 164, 1621-1624 (1887). (296) Petrenko-Kritschenko, et al., Z. physik. Chem. 116, 317 (1925). (297) Petrenko-Kritschenko, Opotzky, Ber. 59, 2131-2140 (1926). (298) Tronov, Laduigina, J. Russ. Phys.-Chem. Soc. 62, 2165-2171 (1930); Cent. 1931, II 408; C.A. 25, 3957 (1931). (299) I.G., French 38,910, Aug. 10, 1931; Cent. 1932, I 1438; [C.A. 26, 1616 (1932)]; Brit. 341,074, Feb. 5, 1931; Cent. 1932, I 2994; [C.A. 25, 4891 (1931). (300) Lloyd, Kennedy, U.S. 1,849,844, March 15, 1932; Cent. 1932, I 2994; [C.A. 26, 2747 (1932)].

(301) Bauer (to Rohm, Haas, A. G.), Ger. 574,064, April 8, 1933; Cent. 1933, I 3629; C.A. 27, 3486, 4546 (1933); French 629,204, Nov. 7, 1927; Cent. 1928, I 845; not in C.A. (302) Maier, French 656,651, May 11, 1929; Cent. 1929, II 649; C.A. 23, 4231 (1929). (303) Klebanskii, Dolgol'skii, J. Applied Chem. (U.S.S.R.) 7, 790-806 (1934); Cent. 1935, I 3915; C.A. 29, 2509 (1935): Russ. 42,071, March 31, 1935; Cent. 1936, I 435; C.A. 30, 8240 (1936). (304) Contardi, Ciocca, Ricerca sci. 16, II, 9-16 (1938); Cent. 1938, II 4310; C.A. 33, 9283 (1938). (305) Zeller, Hufner, J. prakt. Chem. (2) 11, 232 (1875). (306) Matter, Ger. 299,074, Feb. 24, 1920; Cent. 1920, IV 14; not in C.A.: Brit. 147,906, 147,907, Doc. 8, 1921; Cent. 1922, II 1079; C.A. 15, 97 (1921). (307) Rodebush (to U. S. Industrial Alc. Co.), U.S. 1,402,317, Jan. 3, 1922; Cent. 1923, II 960; C.A. 16, 934 (1922). (308) Ferrero, Vandendries, Congr. chem. and 15th Congr. Brussels (1935) 1936, 250-256; Cent. 1936, II 1896; C.A. 30, 5556 (1936). (309) Soc. Carbochim, Ger. 695,997, Aug. 8, 1940; [C.A. 35, 5914 (1941)]. French 774,186, Dec. 3, 1934, Cent. 1935, II 437; [C.A. 29, 4381 (1935)]. (310) Askenasy, Heller, U. S. 1,928,240, Sept. 26, 1933; Cent. 1934, I 463; C.A. 27, 5756 (1933).

(311) Brooks, Humphrey, J. Ind. Eng. Chem. 9, 750-751 (1917). (312) Jeltekow, Ber. 6, 558 (1873). (313) Hough, U.S. 1,206,222, Nov. 28, 1916; C.A. 11, 187 (1917). (314) Wada, Sato, J. Soc. Chem. Ind. Japan 38, Suppl. bindg. 497-500 (1935); Cent. 1936, I 1960, C.A. 38, 1028 (1936). (315) Tucker, Reid, J. Am. Chem. Soc. 55, 780 (1933). (316) Gomberg, J. Am. Chem. Soc. 41, 1430 (1919). (317) Davies, J. Chem. Soc. 117, 299 (1920). (318) Bouknight, Smith, J. Am. Chem. Soc. 61, 29 (1939). (319) Barron, "Modern Synthetic Rubbers," Van Nostrand Co., 2nd ed., 1943, pp. 272-289. (320) Baker, J. Chem. Education 20, 427 (1943).

(321) Golev, Sbornik Dıkhlaretan 1939, 11-13; C.A. 36, 2042 (1942). (322) Isskra, J. Chem. Ind. (Moscow) 12, 947-953 (1935); Cent. 1936, I 2823; not in C.A. (323) S.S. Drozdov, N.S. Drozdov, J. Chem. Ind. (Moscow), 1934, No. 2, 53-54; Cent. 1934, II 2745; C.A. 28, 3704 (1934). (324) Lenze, Metz, Z. ges. Schiess-u. Sprengstoffw. 27, 255-258, 293-296, 337-340, 373-376 (1932). (325) Kraus, White, J. Am. Chem. Soc. 45, 773 (1923). (326) Chablay, Compt. rend. 142, 93-94 (1906); Ann. chrm. (9) 1, 502-503 (1914). (327) Mouneyrat, Bull. soc. chim. (3) 19, 445-448 (1898). (328) Harlow, Ross (to Dow Chem. Co.), U.S. 1,891,415 Dec. 20, 1932, Cent. 1933, I 1683; C.A. 27, 1890 (1933). (329) Patterson, Robinson, J. Chem. Soc. 125, 1527 (1924). (330) I.G., French 701,505, March 17, 1931; Cent. 1931, II 1488; C.A. 25, 4012 (1931).

(331) Slator, J. Chem. Soc. 85, 1297 (1904). (332) Agruss, Ayers, Schindler, Ind. Eng. Chem., Anal. Ed. 13, 69-70 (1941). (333) Biesalski, Z. angev. Chem. 37, 317 (1924). (334) Ott (to Chem. Fabrik. Weiler-ter-Meer), Ger. 374,141, April 20, 1923; Cent. 1923, IV 720; C.A. 18, 2176 (1924). (335) Müller, Ehrmann, Ber. 69, 2207-2210 (1936). (336) Fargher, J. Chem. Soc. 117, 1351-1356 (1920). (337) Darzens, Congr. chim. ind. Nancy, 18, I 414-417 (1938); Cent. 1939, II 3060; not in C.A. (338) Kraut, Ann. 212, 251-256 (1882). (339) Hofmann, Ber. 23, 3297-3303; 3711-3718 (1890). (340) Mnookin, U.S. 2,049,467, Aug. 4, 1936; Cent. 1937, I 1792; C A. 30, 6389 (1936).

(341) Curme, Lommon (to Carbide and Carbon Chem. Corp.), U.S. 1,832,534, Nov. 17, 1931; Cent. 1932, I 581; C.A. 26, 999 (1932). (342) Barbieri, U.S. 2,078,555, April 27, 1937; Cent. 1937, II 857; C.A. 31, 4341 (1937). (343) Goodyear Tire and Rubber Co., French 739,317, Jan. 9, 1933; Cent. 1933, II 132; C.A. 27, 2159 (1933). (344) Krauss, J. Am. Chem. Soc. 39, 1512-1513 (1917). (345) Stähler, Ber. 47, 911-912 (1914). (346) von Braun, Dengel, Arnold, Ber. 70, 992 (1937). (347) Klebanskii, Mironenko, J. Applied Chem. (U.S.S.R.) 14, 618-631 (1941); C.A. 36, 3500 (1942). (348) Sisido, Kato, J. Soc. Chem. Ind. Japan 43, Suppl. bindg. 232-233 (1940); 44, 25-27 (1941); Cent. 1942, I 2199, 2200; C.A. 35, 1026, 4369 (1941). (349) Clark, Kuts (to General Electric Co.), U.S. 2,033,612, March 10, 1936; Cent. 1936, II 1036; C.A. 30, 2991 (1936). (350) B.A.S.F., Ger. 326,729, Sept. 29, 1920; Cent. 1921, II 51; not in C.A.

(351) Homer, J. Chem. Soc. 97, 1144-1145 (1910); Bodroux, Bull. soc. chim. (3) 25, 491-497 (1901). (352) Coleman, Hadler (to Dow Chem. Co.), U.S. 2,079,279, May 4, 1937; Cent. 1937, II 1267; C.A. 31, 4416 (1937). (353) Cope, J. Am. Chem. Soc. 57, 574 (1935). (354) Wohl, Berthold, Ber. 43, 2179 (1910). (355) Clemo, Perkin, J. Chem. Soc. 121, 644-646 (1922). (356) Ernst, Berndt (to I.G.), Ger. 525,188, May 20, 1931; Cent. 1931, II 1055; C.A. 25, 4284 (1931). (357) Coleman, Stratton (to Dow Chem. Co.), U.S. 2,130,990, Sept. 20, 1938; Cent. 1939, I 2295; C.A. 32, 9098 (1938). (358) Dreyfus, Brit. 166,767, Aug. 18, 1921; Cent. 1921, IV 1140; C.A. 16, 830 (1922). (359) I.G., French 805,563, Nov. 24, 1936; Cent. 1937, I 2258; [C.A. 31, 4345 (1937)]. (360) Wheeler (to Imperial Chem. Ind., Ltd.), Brit. 333,989, Sept. 18, 1930; Cent. 1930, II 3638; C.A. 25, 709 (1931).

(361) Meyer, Ger. 332,677, Feb. 7, 1921; Cent. 1921, II 646; not in C.A. (362) Rodebush (to U.S. Industrial Alc. Co.), U.S. 1,430,324, Sept. 26, 1922; Cent. 1924, II 1511; C.A. 16, 3903 (1922). (363) Coleman, Moore (to Dow Chem. Co.), U.S. 2,021,852, Nov. 19, 1935; Cent. 1936, I 1505; C.A. 30, 485 (1936). (364) Engelhardt (to Bayer and Co.), Ger. 404,999, Oct. 25, 1924; Cent. 1925, I 1530; not in C.A. (365) I.G., French 669,739, Nov. 20, 1929; Cent. 1930, I 3237; [C.A. 24, 1866 (1930)]. (366) N. V. de Bataafsche Petroleum Maatschappij, Brit. 496,290, Dec. 29, 1938; Cent. 1939, I 2294; C.A. 33, 2912 (1939). (367) Calingaert, Soroos, Hnizda, Shapiro, J. Am. Chem. Soc. 62, 1545-1547 (1940). Calingaert, Beatty, Neal, J. Am. Chem. Soc. 61, 2756 (1939). (368) Dougherty, J. Am. Chem. Soc. 51, 579-580 (1929). (369) Kharasch, Hannum, J. Am. Chem. Soc. 56, 714 (1934). (370) Lean, Lees, J. Chem. Soc. 71, 1062-1068 (1897).

(371) Perkin, J. Chem. Soc. 65, 578-589 (1893). (372) Bennett, J. Chem. Soc. 115, 577 (1919). (373) Schouten, Rec. trav chim. 56, 542-543 (1937). (374) Schouten, Rec. trav. chim. 56, 870-871 (1937). (375) Bodroux, Compt. rend. 208, 1023 (1939). (376) Frankel, Nussbaum, Biochem. Z. 182, 424-433 (1927); Cent. 1927, II 1340; not in C.A. (377) Davies, Evans, Hulbert, J. Chem. Soc. 1939, 416. (378) Tronov, J. Russ. Phys.-Chem. Soc. 58, 1278-1301 (1926); Cent. 1927, II 1145. (379) Weber, Chem. Ztg. 57, 836 (1933); Cent. 1933, II 3889; C.A. 28, 727 (1934). (380) Doughty, J. Am. Chem. Soc. 41, 1130-1131 (1919).

(381) Dahlen, Black, Foohey (to du Pont Co.), U.S. 1,979,144, Oct. 30, 1934; Cent. 1935, I 3051; [C.A. 29, 177 (1935)]. (382) Levy, Campbell, J. Chem. Soc. 1939, 1443. (383) Wanag, Ber. 75, 725 (1942). (384) Bistrzycki, Schmutz, Ann. 415, 22 (1918). (385) Gabriel, Ber. 20, 2226 (1887). (386) Gabriel, Ber. 21, 574 (1888). (387) Seitz, Ber. 24, 2626 (1891). (388) Wenker, J. Am. Chem. Soc. 59, 422 (1937). (389) Clemo, Walton, J. Chem. Soc. 1928, 728. (390) Heppel, Neal, Daft, Endicott, Orr, Porterfield, J. Ind. Hyg. Toxicol 27, 15-21 (1945).

(391) Lehman, Schmidt, Kehl, Arch. Hyg. Bakt. 116, 131-268 (1936), C.A. 31, 477 (1937) not in Cent. (392) Merritt, Levey, Cutter, J. Am. Chem. Soc. 61, 15-16 (1939).

3:5140 3,3-DICHLOROPROPENE-1 
$$(1,1-Dichloropropene-2;$$
 allylidene (di)chloride; "acrolein dichloride")  $CH_2$ — $CH$ — $CH$ — $CH$ — $CH$ — $I_2$ — $I_2$ — $I_3$ — $I_4$ — $I_4$ — $I_5$ — $I_5$ — $I_5$ — $I_5$ — $I_5$ — $I_6$ —

[See also 1,3-dichloropropene-1 (3:5280).]

85°

Note that C represents the synionic mesomer of 1,3-dichloropropene-1 (3:5280); reactions of either mesomer may under certain conditions lead to derivatives of the other: however, in practice the tendency appears to be strongly in the direction of 1.3-dichloropropene-1 (3:5280) so that most of the known reactions of C yield the same products as does the mesomer; the rate of reaction, however, is generally very much slower with C.

[For prepn. of C from acrolein (1:0115) with PCl<sub>5</sub> (16% yield C accompanied by 32% 1,3-dichloropropene-1 and some 1,1,3-trichloropropane (3:5660) (3)) (1) (4), or from 1.1.3-trichloropropane (3:5660) with alc. KOH (5) (other products are also formed), see indic. refs.]

[C with Cl2 adds 1 mole halogen giving (4) 1,1,2,3-tetrachloropropane (3:6035), b.p. 179-180° at 756.6 mm. (4).]

[C with conc. HCl in s.t. at 100° for 10 hrs. (4) isomerizes to 1,3-dichloropropene-1 (3:5280).]

[ $\bar{C}$  with NaOEt reacts much more slowly than its mesomer; however, after 15 hrs. refluxing with large excess NaOEt,  $\bar{C}$  gives 1-chloro-3-ethoxypropene [Beil. I-439], b.p.  $126-127^{\circ}$ ,  $D_{-}^{16}=1.018$ ,  $n_{-}^{16}=1.438$  (3), i.e., the same product as from the mesomer.]

[ $\tilde{C}$  with Na phenolate in abs. alc. refluxed for 4 hrs. gives (3)  $\omega$ -chloroallyl phenyl ether, the same prod. as correspondingly obtd. in  $\frac{1}{2}$  hr. from the mesomer, q.v.]

[ $\bar{C}$  with Et<sub>2</sub>NH in dry ether for 20 days gives (3) only a slight ppt. of diethylamine hydrochloride and but very small yield of  $N_iN$ -diethyl- $\gamma$ -chloroallylamine (cf. the mesomer).

[C with NaOAc (3), CaBr<sub>2</sub> (3), CaI<sub>2</sub> (3) cf. (6), or C<sub>6</sub>H<sub>5</sub>MgBr (3) gives more slowly and in poor yields the same products as are formed readily from the mesomeric 1,3-dichloropropene-1 (3:5280), q.v.]

3:5140 (1) Hübner, Geuther, Ann. 114, 36-43 (1860). (2) Kirrmann, Grard, Compt. rend. 196, 876-878 (1930); Cent. 1930, II 29; C.A. 24, 3750 (1930); Bull. soc. chim. (4) 47, 834-847 (1930). (3) Kirrmann, Pacaud, Dosque, Bull. soc. chim. (5) 1, 860-871 (1934). (4) van Romburgh, Bull. soc. chim. (2) 36, 549-557 (1881). (5) van Romburgh, Bull. soc. chim. (2) 37, 98-103 (1882). (6) van Romburgh, Rec. trav. chim. 1, 234-237 (1882).

3:5150 1,2-DICHLOROPROPENE-1 
$$CH_3$$
— $C=CH$   $C_3H_4Cl_2$  Beil. I - 199 (high-boilg. stereoisomer)  $I_1$ — $I_2$ — $I_3$ — $I_4$ 

### B.P. 84-86° (1)

[See also the lower-boilg. stereoisomer (3:5110).]

[For prepn. of  $\bar{C}$  from  $\alpha,\beta,\beta$ -trichloro-n-butyric acid (3.0925) by soln. in aq. Na<sub>2</sub>CO<sub>3</sub> and subsequent decompn. to  $\bar{C}$  (65% yield) by protracted boilg, see {1}.]

 $\bar{C}$  with  $Cl_2$  adds 1 mole halogen giving (1) 1,1,2,2-tetrachloropropane (3:5825), b.p. 153-154° (1).

3:5150 (1) Szenic, Taggesell, Ber. 28, 2667-2668 (1895).

3:5160 
$$\alpha$$
-CHLOROPROPIONALDEHYDE H  $C_3H_5OCl$  Beil. I - 632  $I_1$ -(334)  $I_2$ —  $Cl$ 

**B.P.** 86° (1) 
$$D_4^{15} = 1.182$$
 (1)  $n_D^{17} = 1.431$  (1)

Oil, spar. sol. aq.; misc. with ether, AcOH, or  $C_6H_6$ . —  $\bar{C}$  with aq. yields a hydrate, b.p. 80.5-81° (2).

C polymerizes in air to a white solid which upon htg. at 170-200° regenerates C (2).

[For prepn. from n-propyl alc. (1:6150) by actn. of Cl<sub>2</sub> at 45-50° in presence of catalysts such as AlCl<sub>3</sub>, CrO<sub>2</sub>Cl<sub>2</sub>, or Mg turnings see (3); for formn. (together with other products) from propylene oxide (1:6115) + S<sub>2</sub>Cl<sub>2</sub> see (4); for other modes of formn. see Beil. I-632 and I<sub>1</sub>-(334).]

 $\tilde{C}$  on oxidn. with excess alk. KMnO<sub>4</sub> yields acetic acid ac. (1:1010) (1) (2). —  $\tilde{C}$  reduces NH<sub>4</sub>OH/AgNO<sub>3</sub> in the cold and Fehling's soln. on htg. —  $\tilde{C}$  gives positive fuchsin ald. test and yields a NaHSO<sub>3</sub> cpd. (1).

3:5160 (1) Brochet, Ann. chim. (7) 10, 341-344 (1897). (2) Oddo, Cusmano, Gazz. chim. ital. 41, II 232-234 (1911). (3) Bowman, Proc. S. Dakota Acad. Sci. 19, 112-114 (1939); C.A. 34, 2786 (1940). (4) Malinovski, J. Gen. Chem. (U.S.S.R.) 9, 832-839 (1939); C.A. 34, 375 (1940).

3:5170 1,1,2-TRICHLOROETHYLENE | HC==C-Cl | C<sub>2</sub>HCl<sub>3</sub> | Beil. I - 187 | I<sub>1</sub>-(78) | I<sub>2</sub>-(159) |

B.P. F.P. 87.55° at 765 mm. (1) [-73° (14]] 
$$D_4^{25} = 1.4597$$
 (9)  $n_D^{25} = 1.4759$  (18) 88° at 760 mm. (2)  $-83°$  (12) 1.4542 (5) 1.47488 (10) 87.0-87.3° at 753 mm. (3)  $-86.4°$  (15) 1.4540 (17) 1.47458 (19) 87.0-87.2° at 760 mm. (4)  $-86.9°$  (16) 1.454 (10) 1.4744 (8) 87.15° at 760 mm. (5)  $-88°$  (9) 1.4742 (8) 86.95° at 760 mm. (6) (7) (15)  $D_4^{20} = 1.4777$  (2)  $n_D^{20} = 1.47820$  (20) 86.9° (3) 1.4679 (9) 1.47758 (4) 1.4775 (21) 86.60° at 758 mm. (10) 1.4649 (12) 86.0-87.5° at 760 mm. (11) 85.8-86.0° at 760 mm. (12) 85.9-86.0° (32) 83° at 680 mm. (13) 77.0° at 562 mm. (5) 65.0° at 385 mm. (5) 51.0° at 234 mm. (5) 45.0° at 183 mm. (5) 44.15° at 177 mm. (5) 38.20° at 139 mm. (5) 30.0° at 92 mm. (5) Note 2. For  $D_4^T$  over range 17.6°-75° see (5). 25.0° at 73 mm. (5)

Note 1. For vap. press. over range 0°-86.7° see (9).

Colorless mobile liquid with sweetish odor suggesting chloroform. —  $\bar{C}$  as such is not inflammable (see below).

#### MISCELLANEOUS PHYSICAL PROPERTIES

Various solubility relationships.  $\bar{C}$  is pract. insol. aq. and eas. volatile with steam: soly. of  $\bar{C}$  in aq. at  $16^\circ = 0.081$  wt. % (23), at  $18^\circ = 0.025$  wt. % (23), 0.18 ml. in 100 ml. aq. (24). — Soly. of aq. in  $\bar{C}$  at  $-30^\circ = 0.0025$  wt. %, at  $-20^\circ = 0.0050$  wt. %, at  $-8^\circ = 0.0075$  wt. %, at  $0^\circ = 0.0100$  wt. %, at  $6^\circ = 0.0125$  wt. %, at  $10^\circ = 0.0170$  wt. %, at  $20^\circ = 0.0250$  wt. %, at  $25^\circ = 0.0325$  wt. % (9).

[For data on soly. in  $\bar{C}$  of 248 org. cpds. see (25); for solv. actn. of  $\bar{C}$  on various dyes (in connection with use of  $\bar{C}$  as dry cleaning fluid) see (26) (see also below under uses of  $\bar{C}$ ).] [For soly. of  $I_2$  in  $\bar{C}$  over range 11-25° see (27); for use of such solns. in detn. of  $I_2$  No. of oils and fats see (28). — For distrib. of  $I_2$  between  $\bar{C}$  and aq. at 25° see (30) cf. (31).]

[For soly. in  $\tilde{C}$  at 20° of HCl or H<sub>2</sub>S at 1 atm. see (32).]

[For absorption of vapors of C by kerosene see (33).]

Effect of  $\bar{C}$  on explosive range of various gases. Air satd. with  $\bar{C}$  at 14° conts. 5.7 vol. (?) %  $\bar{C}$  (34).

[Vapor of C does not form inflammable mixts. with air at ord. temp. and press.; below

25.5°  $\bar{\rm C}$  has insufficient vap. press. to produce inflam. mixts. at total press. of 1 atm. or above even in mixts. contg. high concns. of  $O_2$ . — At high temps. vapor of  $\bar{\rm C}$  is inflammable in air, igniting at 463°; in oxygen at 419° (18). — Limits of inflammability of mixts. of  $\bar{\rm C}$  with  $O_2$  are 10.30–64.5 vol. %  $\bar{\rm C}$  (35); for study of limits of inflam. of system  $\bar{\rm C}/O_2/N_2$  see (18) (35).]

[For study of influence of vapors of  $\tilde{C}$  upon explosive regions of mixts. of air with hydrogen (36) (37), with acetylene (36), with methane (38) (39) (36) (40) (41) (42), or with carbon monoxide (34) (36) (43) see indic. refs.]

Adsorption of  $\tilde{C}$  by various materials. [For study of adsorption of  $\tilde{C}$  on charcoal at 20° (44) and use in detn. of  $\tilde{C}$  (45) see indic. refs.; on MnO<sub>2</sub> see (46); on dehydrated Al(OH)<sub>3</sub> gel at 10–40° and desorption at 90–150° as means of recovery of  $\tilde{C}$  see (47).]

Other physical properties. [For study of evapn. rate of  $\bar{C}$  see (48); for study of thermal conductivity of  $\bar{C}$  see (11).]

Binary systems contg.  $\tilde{C}$  (see also below under azeotropes).  $\tilde{C}$  + MeOH (1:6120): for diag. of b.p./vapor-liq. compn., D/compn., and n/compn. see (49).  $-\tilde{C}$  + EtOH (1:6130): for diag. of b.p./vap.-liq. compn., D/compn., and n/compn. see (49).  $-\tilde{C}$  + acetone (1:5400): for data on  $D_4^{25}$ /compn. and  $n_D^{25}$ /compn. see (10).

 $\bar{C}$  + nicotine: for study of distrib. of nicotine between  $\bar{C}$  and aq. at 17° see (23).

 $\ddot{C} + CHCl_3$  (3:5050): for f.p./compn. diag., eutectic, f.p.  $-100.2^{\circ}$ , contg. 68.6 wt. %  $\ddot{C}$  see (16).  $-\ddot{C} + pentachloroethane$  (3:5880): for  $D_4^{25}$ /compn. data see (17) cf. (50).

Ternary systems contg.  $\tilde{C}$  (see also below under azeotropes).  $\tilde{C}+MeOH$  (1:6120) + EtOH (1:6130): for D/compn. and n/compn. diags. see (49b). —  $\tilde{C}+EtOH$  (1:6130) +  $H_2O$ : for soly./compn. diagram in wt. % at 25° and  $n_D^{25}/compn$ . diagram in wt. % see (8) cf. (51).

Azeotropic systems contg.  $\tilde{C}$ . Binary azeotropes.  $\tilde{C} + H_2O$ : gives a two-phase constbolig. mixt. (heteroazeotrope), b.p. 73°, contg. 65 mole %  $\tilde{C}$  (8).

C + MeOH (1:6120): forms a const.-boilg. mixt., b.p. 60.2° at 760 mm.,  $D_4^0 = 1.1643$ (52a) contg. 64 wt. %  $\bar{C}$  (52a) = 30 mole %  $\bar{C}$  (52a) = 51 vol. %  $\bar{C}$  (53). —  $\bar{C}$  + EtOH (1:6130): forms a const.-boilg. mixt., b.p. 70.9° at 760 mm.,  $D_4^0 = 1.212$ , contg. 73 wt. %  $\bar{C} = abt. 48.7 \text{ mole } \% \bar{C} (52b) \text{ cf. } (53) (54). - \bar{C} + n\text{-}propyl alc. } (1:6150): \text{ forms a const.-}$ boilg. mixt., b.p. 81.75° at 760 mm.,  $D_4^0 = 1.3283$ , contg. 83 wt. %  $\bar{C} = 69$  mole %  $\bar{C}$ (52c).  $-\bar{C}$  + isopropyl alc. (1:6135): forms a const.-boilg. mixt., b.p. 75.5° (7), abt. 74° at 760 mm. (52d),  $D_4^0 = 1.22$ , contg. abt. 72 wt.  $\% \bar{C}$  (70 wt.  $\% \bar{C}$  (7)) = 54 mole  $\% \bar{C}$ (52d). —  $\bar{C} + n$ -butyl alc. (1:6180): gives a const.-boilg. mixt., b.p. 86.85° at 760 mm., contg. 97.5 wt. %  $\bar{C}$  (55). —  $\bar{C}$  + isobutyl alc. (1:6165): forms const.-boilg. mixt., b.p. 85.4° at 760 mm.,  $D_4^0 = 1.396$ , contg. 91 wt.  $\% \bar{C} = 86$  mole  $\% \bar{C}$  (52e).  $-\bar{C} + ter-butyl$ alc. (1:6140): forms const.-boilg. mixt., b.p. 75.8° (6), 75° (52f) at 760 mm.,  $D_4^0 = 1.326$ (52f), contg. 67 wt. %  $\bar{C}$  (6) (84 wt. %  $\bar{C}$  (52f) = 74 mole %  $\bar{C}$  (52f)).  $-\bar{C}$  + ter-amyl alc. (1:6160): forms const.-boilg. mixt., b.p. 84.5° (6), 84° (52g),  $D_4^0 = 1.372$  (52g), contg. 86 wt. %  $\bar{C}$  (6) (88 wt. %  $\bar{C}$  = 83 mole %  $\bar{C}$  (52g)). —  $\bar{C}$  + allyl alc. (1:6145): forms const. boilg. mixt., b.p. 80.95° at 760 mm.,  $D_4^0 = 1.335$ , contg. 84 wt.  $\% \bar{C} = 70$  mole  $\% \bar{C}$  (52h).  $\bar{C} + AcOH$  (1010): forms const.-boilg. mixt., b.p. 86.5° at 760 mm., contg. 96.2 wt. % Č (6).

 $\bar{C}+1,2$ -dichloroethane (ethylene dichloride) (3:5130); forms a const.-boilg. mixt., b.p. 82.9° at 760 mm., contg. abt. 18 wt. %  $\bar{C}$  (6).

Ternary azeotropes.  $\ddot{C} + EtOH$  (1:6130) + H<sub>2</sub>O: forms a ternary heteroazeotrope, b.p. 67.25° at 760 mm., contg. 38.4 mole %  $\ddot{C}$  + 41.2 mole % EtOH + 20.4 mole % H<sub>2</sub>O (56a): note that this azeotrope conts. 69.4 vol. %  $\ddot{C}$  + 23.8 vol. % EtOH + 6.8 vol. % H<sub>2</sub>O (53), and that upon condensation at 15° it separates into two layers, the upper having the composition 0.8 vol. %  $\ddot{C}$  + 7.2 vol. % EtOH + 5 vol. % H<sub>2</sub>O (total upper layer = 13

vol. %), the lower having the composition 68.6 vol. %  $\overline{C}$  + 16.6 vol. % EtOH + 1.8 vol. % H<sub>2</sub>O (total lower layer = 87%) (53). — For further discussion and data see also (8) (49).

 $\ddot{C}$  + n-propyl alc. (1:6150) +  $H_2O$ : forms a ternary heteroazeotrope, b.p. 71.55° at 760 mm., contg. 51.1 mole %  $\ddot{C}$  + 16.6 mole % n-propyl alc. + 32.3 mole %  $H_2O$  (566).

 $\ddot{C}$  + allyl alc. (1:6145) +  $H_2O$ : forms a ternary heteroazeotrope, b.p. 71.4° at 760 mm., contg. 49.2 mole %  $\ddot{C}$  + 17.3 mole % allyl alc. + 33.5 mole %  $H_2O$  (56c).

## USES OF C

Most of the utility of  $\bar{C}$  in industry depends upon its physical properties especially as a solvent; these applications include the dehydration of alcohols and acids, degreasing of metal, wool, and leather, dry cleaning of fabrics, extracting of oils from seeds, etc.; dewaxing of mineral lubricating oils, use as fumigant and insecticide, refrigerant, etc. [For an excellent brief survey of these uses see (57) (58); for further and more recent examples see below.]

Use in dehydration of alcohols. [For use of  $\tilde{C}$  in dehydration of EtOH (or MeOH) by azeotropic distn. (Drawinol process) see (8) (49) (53) (59) (60) (61) (62); for patents on this method see (63). — For use of  $\tilde{C}$  in denaturing alc. see (64).]

Use in dehydration of acids. [For use of  $\bar{C}$  in concn. of AcOH (1:1010) see patents (65) (66). — For sepn. of AcOH (1:1010) from formic acid (1:1005) by distn. of mixt. with  $\bar{C}$ , the condensate sepg. into an upper layer of an azeotropic mixt. of  $\bar{C}$  + formic acid, the lower layer being  $\bar{C}$  see (67).]

Use of  $\bar{C}$  for degreasing of metal. [For patents on use as metal degreaser of mixts. of  $\bar{C}$  + an alc. + soap (68),  $\bar{C}$  + oleic acid (69),  $\bar{C}$  + ethylene dichloride (3:5130) (70) (71), or  $\bar{C}$  (72) (73) see indic. refs. — For use of  $\bar{C}$  + rosin + boiled linseed oil in cleaning and leaving coating preparatory to etching see (74). — Because of great toxicity of  $\bar{C}$  (see below) special attention (75) must be given to ventilation of degreasers using it.]

Use of  $\tilde{C}$  in dry cleaning of fabrics. Because of its solvent power supported by its low b.p. and non-inflammability  $\tilde{C}$  is widely used as dry cleaner's solvent [for general articles from this viewpoint see (76) (77) (78); for patent see (79); for solv. actn. of  $\tilde{C}$  on dyes see (26)].

Use of  $\bar{C}$  in extraction of fats and oils. [For use of  $\bar{C}$  as solv. for extraction see (81) (82) (83). — For use of  $\bar{C}$  for extraction of soybean oil (84) including  $n_D^{25}$  and D in g/cc. at 77°, 100°, and 122° F. (19) see indic. refs. — For study of losses of  $\bar{C}$  in extr. of fats see (85).]

[For use of  $\bar{C}$  in detn. of fats in foods (butter, margarine, etc.) see (86) (87).]

[For use of C in detn. of aq. in fats and oils see (88); cf. use of acetylene tetrachloride (3:5750) for this purpose.]

Use of C in dewaxing of mineral lubricating oils. [For articles including use of C for this purpose see (89) (90); for patents see (91).]

Use of  $\bar{C}$  as fumigant, insecticide, etc. [For comparative tests of  $\bar{C}$  see (92); for patents on such use of  $\bar{C}$  (93) or mixts. contg.  $\bar{C}$  (94) see indic. refs.]

Use of  $\bar{C}$  as component of refrigerating liquids. [For use of  $\bar{C}$  with dichloroethylene (3:5030) see (95) cf. (96); for use of  $\bar{C}$  or its mixts. in low-temp. cryostats see (16).]

Miscellaneous uses of  $\bar{C}$ . [For use of  $\bar{C}$  with MeBr (97) or with CCl<sub>4</sub> (98) as fire extinguishing compn. see indic. refs.; for use of  $\bar{C}$  as boiler or radiator cleaner (99) or as rust-retarder (100) see indic. refs.; for use of  $\bar{C}$  as weed-killer see (101); for addition to liq. HCN to diminish inflammability see (102); in prepn. of starch see (103); in recrystn. of T.N.T. see (104); for use as solv. in ebullioscopy (K = 44.3 per 100 g. solv.) see (105); to replace xylene in histological technique see (106) (107) (108).]

## PHYSIOLOGICAL BEHAVIOR OF C

 $\bar{C}$  is one of the more toxic of the group of chlorinated solvents; it is absorbable into the body not only by inhalation but also through the skin (109). — Although full detailed treatment of this aspect of  $\bar{C}$  is beyond the scope of this work, yet the following citations will be found useful as lead references for further information.

Toxicity of  $\tilde{C}$ . [For important surveys of physiological properties (110), toxicity (111), comparative toxicity of  $\tilde{C}$  and  $CCl_4$  (112) see indic. refs.]

[For studies of liver injury by  $\bar{C}$  (113), of anemia from  $\bar{C}$  (114), of American cases since 1932 of industrial poisoning by  $\bar{C}$  (115), or role of impurities in toxicity of  $\bar{C}$  (116), of industrial hazards of  $\bar{C}$  (117) (118) (119), of relation between toxicity and b.p. (120) see indic. refs. — For other studies of toxicity or of poisoning by  $\bar{C}$  see (121)-(130), incl.]

 $\bar{C}$  as narcotic, anesthetic, analgesic, etc.  $[\bar{C}]$  has very important use in treatment of trigeminal neuralgia (131) (132) (133); for toxic effects of  $\bar{C}$  after long use as antineuralgic see (134); for chem. exam. of  $\bar{C}$  for medical use see (21).]

[For use of  $\bar{C}$  as an esthetic see (135) (136) (137); for use of  $\bar{C}$  in treatment of migraine see (138); for effect on pain threshold see (139); for neural depressing effect (140) and narcotic actn. of  $\bar{C}$  (141) (142) (143) (144) see indic. refs.]

[For studies of antiseptic and disinfectant actn. of C see (145) (146) (147) (148) (149) (150) (24).]

Miscellaneous related topics. [From dogs after inhalation anesthesia with  $\bar{C}$  from 5-8% of initial  $\bar{C}$  is excreted (151) as trichloroacetic acid (3:1150). — For study of anthelmintic actn. of  $\bar{C}$  see (152). — For actn. of  $\bar{C}$  on alc. fermentation see (153).]

## DETERMINATION OF C

By physical methods. For detn. of  $\tilde{C}$  (as vapor) by use of the R + H "Tri-Per-Analyzer" (a recording ultra-violet photometer (154)) see (155); this instrument will measure  $\tilde{C}$  in conens. of 10–2000 p.p.m. and is insensitive to methyl chloride (3:7005), methylene (di)chloride (3:5020), CHCl<sub>3</sub> (3:5050), CCl<sub>4</sub> (3:5100), vinyl chloride (3:7010), ethylene (di)chloride (3:5130), acetylene tetrachloride (3:5750), and to many (but not all) common non-chlorinated solvents such as methyl, ethyl, and amyl alcohols, ethyl acetate, etc.; for details see (155). — For detn. of  $\tilde{C}$  in air by adsorption on charcoal see (45).

By chemical methods. Those involving decomposition of  $\bar{C}$  and subsequent detn. of resultant chloride ion. One class of these methods involves pyrolytic decomposition of  $\bar{C}$  by appropriate htg. (156) (157) cf. (158) (159) cf. (127); note that  $\bar{C}$  with air at 900–1000° gives exclusively  $CO_2 + HCl$ , provided that concn. of  $\bar{C}$  is not more than 12 mg. per liter; above this amt. from 2–20% of the total carbon and chlorine are converted to  $CO + Cl_2$ , but  $COCl_2$  (3:5000) is not found up to concns. of 100 mg.  $\bar{C}$  per liter (159). — For variation of the pyrolytic method involving burning of  $\bar{C}$  (or solns. of  $\bar{C}$ ) in a lamp see (160) (161) (162) (163) (164).

A second class involves decomposition of  $\bar{C}$  by chem. means, e.g., by use of Na + ethanolamine in dioxane (165) (166), or by complete hydrolysis of  $\bar{C}$  with excess aq. 25% KOH in s.t. at 150° for 1 hr. (167).

Note that C on oxidn. with CrO<sub>3</sub>/H<sub>2</sub>SO<sub>4</sub> as directed (168) gives quant. CO<sub>2</sub>.

Detn. of  $\bar{C}$  by conversion to mercuric trichloroethylenide Hg (CCl = CCl<sub>2</sub>)<sub>2</sub>.  $\bar{C}$  with aq. KOH soln. of Hg(CN)<sub>2</sub> on shaking 24 hrs. at room temp. ppts. (169) Hg(CCl = CCl<sub>2</sub>)<sub>2</sub> (for amplification see below under behavior of  $\bar{C}$  with inorganic reacts.). — For use of this method in detn. of  $\bar{C}$  even in pres. of methylene (di)chloride (3:5020), CHCl<sub>3</sub> (3:5050), CCl<sub>4</sub> (3:5100), 1,2-dichloroethylene (3:5030), or tetrachloroethylene (3:5460) see (169).

Detn. of  $\bar{C}$  colorimetrically by use of Fujiwara reaction with pyridine + alkali.  $\bar{C}$  with pyridine + aq. alk. gives on short warming a red coloration (similar to but recognizably different from the red-violet color obtd. with CHCl<sub>3</sub>) which on further warming changes to orange; for use of this color in detn. of  $\bar{C}$  in air (accuracy  $\pm 11\%$  except that at conciss of  $\bar{C}$  as low as 20 p.p.m. error may be as much as 50%) see (170) cf. (111) (127); for use in detn. of  $\bar{C}$  in animal tissue see (171); for table of sensitivity of this test under comparable conditions from  $\bar{C}$  as compared with CHCl<sub>3</sub> (3:5050), CCl<sub>4</sub> (3:5100), 1,1,2-trichloroethane (3:5320), 1,1,2,2-tetrachloroethane (acetylene tetrachloride) (3:5750), and tetrachloroethylene (3:5460) see (151).

#### PREPARATION OF C

The principal method of preparation or manufacture of  $\bar{C}$  is from 1,1,2,2-tetrachloro-ethane (acetylene tetrachloride) (3:5750) by elimination of 1 HCl (see below), but it is formed as a by-product from various other reactions (see below). — [For general reviews of prepn. of  $\bar{C}$  and its relationships with other "chlorinated solvents" see (31) (172).]

From 1,1,2,2-tetrachloroethane (acetylene tetrachloride) (3:5750). By pyrolytic loss of HCl (dehydrochlorination). [For prepn. of  $\tilde{C}$  from acetylene tetrachloride in s.t. at 300° for 15 hrs. (173), over pumice at 700° (174) or 400-500° (175), over pumice + cat. at 500° (176), over pumice contg.  $Cu_3(PO_4)_2$  at 450-500° (177), over  $ThO_2$  below 390° (178), over  $BaCl_2$  at 300° (179), over bone char at 300-310° (180), over activated carbon at 200-300° (181), 260° (182), or 500° (176) see indic. refs. — Note claim (183) that forms. of  $\tilde{C}$  by dehydrochlorination of acetylene tetrachloride over charcoal at 250-300° is not effective and yield of  $\tilde{C}$  diminishes with increase of temp.]

By pyrolytic loss of HCl in pres. of an org. acceptor. [For prepn. of  $\bar{C}$  from acetylene tetrachloride (3:5750) or pentachloroethane (3:5880) or 1,1,1,2-tetrachloroethane (3:5555) with acetylene over cat. at 250° (181) cf. (184) or with MeOH over  $Al_2O_3$  at 280° (185) see indic. refs.]

By loss of HCl in pres. of an inorganic acceptor. [For prepn. of  $\bar{C}$  from acetylene tetrachloride (3:5750) by htg. with aq. alk. or alk. carbonates (186) in pres. of tetraethylene glycol, etc., as promoter (187), or with aq. Ca(OH)<sub>2</sub> or alk. carbonates (186) (188) (192) (193) (for test of Ger. 171,900 (186) see (190) (191)), or with alc. KOH (194) (195) cf. (173), or with alc. NaOEt (194) see indic. refs.]

[For prepn. of  $\bar{C}$  from acetylene tetrachloride (3:5750) by elimination of 1 HCl with excess NH<sub>3</sub> gas in pres. of aq. at 60-70° (196), with conc. aq. NH<sub>4</sub>OH at 160-170° (196) (191) (for test of Ger. 351,463 (196) see (191)), with liq. NH<sub>3</sub> at -40° (13) (197), or by refluxing with dry pyridine (198), or by action of  $C_6H_5MgBr$  (199) see indic. refs.]

Note on impurities in  $\bar{C}$ . Note that tech.  $\bar{C}$  obtained from 1,1,2,2-tetrachloroethane (acetylene tetrachloride) (3:5750) by elimination of HCl often contains in its high-boilg. fractions ("Tri-Nachlauf" and "Tetra-Nachlauf") other chlorinated materials such as 1,1,2,3,4,4-hexachlorobutane (3:3155), 1,1,2,3,4,4-hexachlorobutene-2 (3:1945), solid 1,2,3,4-tetrachlorobutadiene-1,3 (3:6150), and hexachloroethane (3:4835), (207). — [For use of these "Nachlaufe" as insecticides and weed-killers see (268).]

From other halogenated ethanes. [For formn. of C from 1,2-dichloroethane (ethylene dichloride) (3:5130) as by-product (29% yield) of action of Cl<sub>2</sub> in pres. of AlCl<sub>3</sub>/NaCl/FeCl<sub>3</sub> at 400-480° (200), or as by-product of actn. of Cl<sub>2</sub> in u.v. light (201), see indic. refs.]

[For formn. of  $\bar{C}$  from 1-bromo-1,1,2-trichloroethane by elimination of HBr with hot alc. Na phenolate (60% yield) see (245).]

[For formn. of  $\bar{C}$  from pentachloroethane (3:5880) with acetylene over cat. at 250° (181), or with  $H_2$  over Ni at 270° (22) (note that  $\bar{C}$  resists further hydrogenation; also

that pentachloroethane over NiCl<sub>2</sub> without H<sub>2</sub> yields (22) tetrachloroethylene (3:5460)), or by actn. of MeMgI (203) see indic. refs. — For formn. of  $\bar{C}$  from 1,1,2-trichloro-1,2-dibromoethane with H<sub>2</sub> over NI at 300° or without H<sub>2</sub> over BaCl<sub>2</sub> at 400° see (202).]

From miscellaneous sources.  $\bar{C}$  is formed as a by-product of actn. of acetylene with Cl<sub>2</sub> but no citations will be given here [for formn. of  $\bar{C}$  from chloral (3:5210) with P<sub>2</sub>S<sub>5</sub> at 160-170° (204) or from di- or tri-thioparachloral on dry distn. (205), or from 2-(tri-chloroacryloyl)-3-sulfamidobenzoic acid by alk. hydrolytic cleavage (206), see indic. refs.].

#### CHEMICAL BEHAVIOR OF C

Pyrolysis of Č. [Č passed over pumice at 700° decomposes yielding (174) methylene (di)chloride (3:5020), CHCl<sub>3</sub> (3:5050), CCl<sub>4</sub> (3:5100), 1,1,1,2-tetrachloroethane (3:5555), pentachloroethane (3:5880), hexachloroethane (3:4835), 1,2-dichloroethylene (3:5030), tetrachloroethylene (3:5460), pentachlorobenzene (3:2290), hexachlorobenzene (3:4939), and other prods.]

Hydrogenation. [ $\bar{C}$  resists hydrogenation even with H<sub>2</sub> over Ni at 270° (22). — Note, however, that  $\bar{C}$  with HI in sunlight for 2 weeks in absence of air at room temp. is partially (25% (245)) reduced to 1,1,2-trichloroethane (3:5330).]

Oxidation.  $\tilde{C}$  on total oxidation with  $CrO_3/H_2SO_4$  as directed (168) gives quant.  $CO_2$ . —  $\tilde{C}$  over chlorinated CuO at 450° gives  $CO_2 + H_2O$  accompanied (209) by some phosgene (3:5000).

[ $\tilde{C}$  with  $O_2$  in ultra-violet light (210) (198) (211) or in pres. of cat. (e.g., Br<sub>2</sub>, I<sub>2</sub>, H<sub>2</sub>SO<sub>4</sub>, HNO<sub>3</sub>, etc.) (212) (213) (214) yields dichloroacetyl chloride (3:5290). — Note that  $\tilde{C}$  in absence of  $O_2$  is not decomposed either by direct or diffused sunlight (9).]

[For study of auto-oxidn. of  $\bar{C}$  see (215); for study of acidity developed from  $\bar{C}$  with air or oxygen over range  $-23^{\circ}$  to  $150^{\circ}$  see (9).]

 $[\bar{C} \text{ with } O_3 \text{ gives (215) a very unstable ozonide which decomposes into phosgene (3:5000), CO, HCl, and oxides of chlorine.]$ 

Stabilization. Since in the presence of  $O_2$  (air)  $\overline{C}$  has a definite tendency toward oxidation (see above), much study has been given to the problem of its stabilization by addn. of small amts. of other materials. — [For general study of the stability of  $\overline{C}$  under a wide variety of conditions see (9); for study of method of testing stability and the efficacy of various stabilizers see (216); for use of 2-3% of EtOH (1:6130) or of cyclohexane (1:8405) as stabilizers see (217).]

For stabilization of  $\tilde{C}$  a wide variety of compds. have been recommended in the patent literature [e.g., for use of 0.01% or less of hydroquinone monomethyl ether (1:1435) or hydroquinone monobenzyl ether (1:1539) see (218); for use of 0.1% or less of *p-ter*-butylphenol (1:1510) or *p-ter*-amylphenol (1:1495) see (219); for use of 0.001% *n*-hexylresorcinol (1:1465) see (220); for use of oil-sol. azo dyes contg. phenolic groups see (221); for use of various phenols, amines, and aminophenols see (222) (235); for use of very small amts. alc. NH<sub>3</sub> see (223); for use of trimethylamine (228) di-isopropylamine (224), triethylamine (225) (226), or other alkylamines (226), various nitrogenous cpds. such as dialkylated cyanamides, allylthiourea, hexamethylenetetramine, propionitrile, etc. (227), pyridine (228), caffeine (229), see indic. refs.].

[For stabilization of C with mercaptans, e.g., n-butyl mercaptan (230), with amylene (231) cf. (222), with gasoline (232), with alk. oleate (233), with fatty acids or soaps (234) see indic. refs.]

Polymerization.  $\bar{C}$  under certain conditions reacts with itself forming dimeric, trimeric, and prob. polymeric products [e.g.,  $\bar{C}$  in glass, porcelain, or enameled vessels at 180-210° under press. (236) and in pres. of small amts. of various antioxidants (237) gives a dimer, a hexachlorobutene (b.p. 200° at 710 mm.) of undetermined structure, accompanied by

higher polymers and by hexachlorobenzene (3:4939);  $\tilde{C}$  at elev. temp. and press. or under reflux in pres. of peroxides (such as  $Bz_2O_2$ ) gives (238) (239) mainly dimer, accompanied by some trimer and polymer;  $\tilde{C}$  with  $AlCl_3$  gives on refluxing (240) a mixt. of resinous polymers suitable (especially in mixts. with trichlorobenzene) for use as electric-insulating material].

[For copolymerization of  $\bar{C}$  with various dienes (such as chloroprene (3:7080), etc.) see (241).]

Reaction with halogens. Behavior with fluorine. [ $\bar{C}$  with  $F_2$  at 0° for 10 hrs. gives (242) by addition 1,2-diffuoro-1,2,2-trichloroethane, b.p. 72.3-72.6°,  $D_4^{20} = 1.5555$ ,  $n_D^{20} = 1.3967$ , accompanied by other prods. such as 1-fluoro-1,2-dichloroethylene, and a hexachlorobutene (3:9050), m.p. 9.5-11.0°, b.p. 125.5° at 25 mm.,  $D_4^{20} = 1.6880$ ,  $n_D^{20} = 1.5442$ , which, however, is not 1,1,2,3,4,4-hexachlorobutene-2 (3:1945), etc.]

Behavior with chlorine.  $\bar{C}$  under appropriate circumstances adds 1 mole Cl<sub>2</sub> giving pentachloroethane (3:5880) [e.g., for study of addn. of Cl<sub>2</sub> at 80°, 95°, and 115° in light of 4360 Å see (243), note, however, that reaction may go further and that  $\bar{C}$  with Cl<sub>2</sub> over activated charcoal at 60-70° either in light or in dark gives (98% yield (244)) hexachloroethane (3:4835)].

Behavior with bromine.  $\tilde{C}$  readily adds 1 mole Br<sub>2</sub> (245) (even when used as Br<sub>2</sub> aq. (202)) yielding 1,2-dibromo-1,1,2-trichloroethane, b.p. 204° dec. at 760 mm. (245), 125–126° at 85 mm. (202), 116.5° at 50 mm. (245),  $n_D^{20} = 1.5710$  (245). [For study of rate of addn. to  $\tilde{C}$  of Br<sub>2</sub> in CCl<sub>4</sub> see (246).]

Behavior with iodine or thiocyanogen. C does not add I<sub>2</sub> (Wijs method) or (SCN)<sub>2</sub> (Kaufmann method) (167).

Behavior with halogen hydrides. Reactn. of  $\bar{C}$  with dry HCl.  $\bar{C}$  (1 mole) with dry HCl gas (1.57 moles) in pres. of anhydr. FeCl<sub>3</sub> (0.003 mole) in dark 6 days at room temp in abs. of air or peroxides, or  $\bar{C}$  (1 mole) with dry HCl gas (1.62 moles) in pres. of AlCl<sub>3</sub> (0.004 mole) in dark 3 days at 0° in abs. of air or peroxides gives exclusively (245) (yields: 49% and 22%, respectively) 1,1,1,2-tetrachloroethane (3:5555). [Note that  $\bar{C}$  with dry HCl in pres. of 5-10% AlCl<sub>3</sub> at 30-40° gives (86-88% (247)) 1,1,1,2-tetrachloroethane (3:5555), but that  $\bar{C}$  + AlCl<sub>3</sub> with dry HCl at 50° gives also (248) the sym.-1,1,2,2-tetrachloroethane (3:5750), two pentachlorobutadienes (cf. (249)), and hexachlorobenzene (3:4939).

Reaction of  $\bar{C}$  with dry HBr.  $\bar{C}$  in the pres. of an anti-oxidant does not react with HBr even after several days at  $100^{\circ}$  or after 30 days in sunlight (245).

However,  $\bar{C}$  in the pres. of suitable cat. adds HBr readily, but the mode of addn. differs according to conditions: e.g.,  $\bar{C}$  + HBr in pres. of small amts. FeCl<sub>3</sub> or AlCl<sub>3</sub> gives exclusively in yields up to 81% (245) 1-bromo-1,1,2-trichloroethane, b.p. 152° at 760 mm., b.p. 54° at 20 mm.,  $n_D^{20} = 1.5217$  (245); but  $\bar{C}$  with HBr in pres. of air and/or peroxides gives exclusively in yields up to 91% 2-bromo-1,1,2-trichloroethane, b.p. 171° at 760 mm., b.p. 68.9° at 20 mm.,  $n_D^{20} = 1.5302$ ,  $n_D^{14.5} = 1.5326$  (245).

Behavior of  $\tilde{C}$  with dry HI.  $\tilde{C}$  does not add HI even after 4 days at room temp. in dark and abs. of air; on exposure of the system for 2 weeks in sunlight 25% of  $\tilde{C}$  was reduced to 1,1,2-trichloroethane (3:5330) (245).

Behavior with oxygenated mineral acids. Reaction of  $\bar{C}$  with  $H_2SO_4$ .  $[\bar{C}$  with strong  $H_2SO_4$  at elev. temp. undergoes reactns. leading ultimately (250) (189) to high yields of chloroacetic acid (3:1370). — For patents exemplifying various conditions see (251) (252) (253) (254) (255) (256). — Note also that the  $H_2SO_4$  may be replaced by arom. sulfonic acids such as benzenesulfonic acid, etc. (257).]

[Č with fumg.  $H_2SO_4$  (10%  $SO_3$ ) shaken at 88° for  $\frac{3}{4}$  hrs. gives (258) cf. (255) (259)  $\alpha$ -chloro- $\alpha$ -sulfoacetic acid.]

Reaction of  $\bar{C}$  with  $HNO_3$ . [ $\bar{C}$  with conc.  $HNO_3$  (D=1.42, 4 vols.) refluxed 3 hrs. gives mainly (260) cf. (258) dichlorodinitromethane [Beil. I-78, I<sub>1</sub>-(21), I<sub>2</sub>-(44)], accompanied by some trichloronitromethane (chloropicrin); for behavior of  $\bar{C}$  with  $N_2O_5$  in s.t. at 50° for 6 hrs. see (260).]

Behavior with alkali.  $\check{C}$  in either aq. susp. or alc. soln. does not neutralize N/10 aq. alk. (261) (for contrary earlier claim see (262)), but  $\check{C}$  with excess 2 N MeOH/KOH in s.t. at 100° for 30 min. uses alk. corresp. to 2 moles, i.e., apparent Sap. Eq. = M.W./2 = 65.8.  $[\check{C}$  with aq. alk. or alk.-earth hydroxides at 175° under press. in pres. of copper salts is

claimed (263) to yield salts of glycolic acid (1:0430).]

[ $\bar{C}$  with ether passed as vapor with N<sub>2</sub> over solid KOH + CaO at 130° loses HCl giving (84–90% yield (264)) dichloroacetylene (3:5010) in the form of its mol. cpd. (1:1) with ether; for earlier work in which  $\bar{C}$  alone over solid granular KOH at 130° gives (65% yield (265)) dichloroacetylene (266) see indic. refs.]

[ $\bar{C}$  with EtOH/NaOEt at 60-75° condenses with elimination of NaCl giving (yields: 81% (267), 70% (268)) (269) (204)  $\alpha,\beta$ -dichlorovinyl ethyl ether (3:5540). — Note that reaction of  $\bar{C}$  with alc. NaOEt has been accompanied by spontaneous explosions or ignition (270) (271) (272), presumably because of some formn. of either chloroacetylene (3:7000) or dichloroacetylene (3:5010) or both cf. (273).]

[For study of stability of  $\tilde{C}$  toward water under various conditions see (9); note that carefully purified  $\tilde{C}$  is more stable toward aq. than ord. tech. product (274).]

Behavior with metals. [For study of corrosive actn. of  $\bar{C}$  on soft steel, copper, brass, lead, aluminum, etc., at temps. 50-150° under various conditions see (9) (275) (276) (277) (278) (279) (280) (281). — For study of sensitivity to mechanical shock of  $\bar{C}$  with Li, Na, K, Ca, Sr, Ba see (282).]

Behavior with inorganic metal salts. With  $AlCl_3$ . [ $\bar{C}$  with  $AlCl_3$  (4-5%) on refluxing several hours (249) or  $\bar{C}$  at 225-230° under press. in pres. of Fe cpds. (284) undergoes bimolecular condensation with elimination of HCl and forms. of pentachlorobutadienes; see also comments above on reaction of  $\bar{C}$  with HCl and remarks below on reaction of  $\bar{C}$  with other org. chlorine cpds.]

With AlBr<sub>3</sub>. [C with AlBr<sub>3</sub> as directed (283) undergoes halogen interchange giving 1,1,2-tribromoethylene [Beil. I-191, I<sub>1</sub>-(81), I<sub>2</sub>-(164)], b.p. 163-164°.]

With FeCl<sub>3</sub>. [C with anhydr. FeCl<sub>3</sub> in s.t. at 85° yields (215) pentachloroethane (3:5880), but various side reactions result also in some hexachloroethane (3:4835) and tetrachloroethylene (3:5460).]

Behavior with other miscellaneous inorganic reactants. [ $\bar{C}$  with excess Cl<sub>2</sub>O in CCl<sub>4</sub> at  $-20^{\circ}$  gives (285) pentachloroethane (3:5880), chloral (3:5210), and octachlorodiethyl ether (3:0738). —  $\bar{C}$  with nitryl chloride (ClNO<sub>2</sub>) in s.t. at 100° for 3 hrs. gives (286) by addn. 1,1,1,2-tetrachloro-2-nitroethane, colorless oil, b.p. 76° at 18 mm. (286). —  $\bar{C}$  with S<sub>2</sub>Cl<sub>2</sub> in s.t. at 140–150° for some hours (no reaction in open tube) gives mainly (287) pentachloroethane (3:5880).]

[For an attempt to react C with hydrazine hydrate in pres. of solid KOH see (288).]

## BEHAVIOR OF C WITH ORGANIC REACTANTS

(See also above under C with alkali.)

Behavior with hydrocarbons. [ $\bar{C}$  with  $C_6H_6$  in pres. of Al/Hg yields (289) both 1,1-diphenylethane [Beil. V-605, V<sub>1</sub>-(285), V<sub>2</sub>-(511)] and 1,1,2,2-tetraphenylethane [Beil. V-739, V<sub>1</sub>-(371), V<sub>2</sub>-(673)]. —  $\bar{C}$  (1 mole) with cyclopentadiene (2 moles) at 175-185° under press. yields (309) a Diels-Alder type adduct, b.p. 158-160° at 11 mm., which with phenyl azide gives (309) a hydrotriazole, m.p. 225-226°.]

Behavior with other halogenated hydrocarbons (for reaction of  $\bar{\mathbf{C}}$  with itself see above under polymerization).

With CHCl<sub>3</sub> (3:5050). [C in the pres. of AlCl<sub>3</sub> at 20° adds CHCl<sub>3</sub> to its unsatd. linkage yielding (290) (291) 1,1,1,2,3,3-hexachloropropane (3:6460); note that at higher temp., e.g., 50-60°, yield is greatly diminished and several other prods. (290) are formed.]

With CCl<sub>4</sub> (3:5100). [Č in the pres. of AlCl<sub>3</sub> adds CCl<sub>4</sub> to its unsatd. linkage giving at 20-30° for 48 hrs. (49% yield (292)) (290) (291) 1,1,1,2,3,3,3-heptachloropropane (3:6860).] With 1,1,2-trichloroethane (3:5330). [Č in the pres. of AlCl<sub>3</sub> adds 1,1,2-trichloroethane to its unsatd. linkage, then loses HCl, giving after 7 days at 40° a small yield (293) of 1,1,1,4,4-pentachlorobutene-2 (3:9054) accompanied by much resin.]

With hexachloropropene (3:6370).  $[\bar{C}\ (1\ mole)\ with\ AlCl<sub>3</sub> + hexachloropropene (1 mole) in CH<sub>2</sub>Cl<sub>2</sub> (3:5020) or CHCl<sub>3</sub> (3:5050) at 30-37° gives (82% yield (294)) 1,1,2,3,3,-4,5,5,5-nonachloropentene-1, colorless liq. with cedar-like odor, b.p. 128° at 2-3 mm., 86° at 0.2 mm., <math>D_{20}^{20} = 1.812$ ,  $n_{20}^{20} = 1.5703$  (294):  $\bar{C}\ (2\ moles)\ with\ AlCl<sub>3</sub> + hexachloropropene (1 mole) as directed gives in 5 hrs. at 20° a mixt. of two dodecachloroheptenes (C<sub>7</sub>H<sub>2</sub>Cl<sub>12</sub>), one m.p. 94-96°, the other m.p. 58-62° (294).]$ 

Behavior with paraformaldehyde (1:0080). [ $\bar{C}$  with paraformaldehyde in the pres. of conc. H<sub>2</sub>SO<sub>4</sub>at 20–25°, followed by treatment with aq., yields (295) O=(CH<sub>2</sub>.CHCl.COOH)<sub>2</sub>; note, however, that  $\bar{C}$  with paraformaldehyde + conc. H<sub>2</sub>SO<sub>4</sub> + an alkyl hydrogen sulfate (296) or an alcohol (297) (to yield the alkyl hydrogen sulfate) gives the corresp. alkyl esters of  $\alpha$ -chloroacrylic acid (3:1445).]

Behavior with organic OH or SH cpds. [ $\bar{C}$  with alc. NaOEt (see above under behavior of  $\bar{C}$  with alkali) at 60-75° gives (yields: 81% (267), 70% (268)) (269) (204)  $\alpha,\beta$ -dichlorovinyl ethyl ether (3:5540).]

[Č (1 mole) with sodium salt of  $C_2H_5SH$  (1 mole) in abs. alc. refluxed 2 hrs. gives (298) both  $\alpha,\beta$ -dichlorovinyl ethyl thioether, b.p. 77–80° at 30 mm., and  $C_2H_5S.CH=C(SC_2H_5)_2$ , b.p. 135–140° at 20 mm.]

[ $\tilde{C}$  (1 mole) with sodium salt of  $C_6H_5SH$  (either 1 mole or excess) in abs. alc. refluxed 24 hrs. gives  $\alpha,\beta$ -dichlorovinyl phenyl thioether, b.p. 145–150° at 22 mm. (298).]

Behavior of Č with aromatic amines. With aniline. C (1 mole) with aniline (3 moles) + aq. 15% NaOH (3 moles) refluxed for 40 hrs., and any unreacted components then removed by steam distn., gives (crude yield 64% (288)) N-phenylglycine-(N,N-diphenylamidine), C<sub>6</sub>H<sub>5</sub>NH.CH<sub>2</sub>.C (=N.C<sub>6</sub>H<sub>5</sub>).NHC<sub>6</sub>H<sub>5</sub> [Beil. XII-557] (also known as "Sabanejev's base"), colorless cryst. from AcOEt or by rapid crystn. from hot alc., m.p. 189–190° (288). — [Note that this Sabanejev's base may be hydrolyzed in two distinct stages: e.g., on protracted refluxing with EtOH (288) it splits off 1 mole aniline leaving N-phenylglycine anilide = C<sub>6</sub>H<sub>5</sub>NH.CH<sub>2</sub>.CO.NHC<sub>6</sub>H<sub>5</sub> [Beil. XII-556], cryst. from dil. alc., m.p. 112-113° (288); on the other hand the Sabanejev's base (or the N-phenylglycine anilide) on more vigorous treatment, e.g. with boiling aq. Ca(OH)<sub>2</sub>, etc., hydrolyzes further yielding N-phenylglycine (N-phenylaminoacetic acid) [Beil. XII-468, XII<sub>1</sub>-(263)], m.p. 127-128° (an important starting point for prepn. of indigo). — For patents on the prepn. of N-phenylglycine from C by reactn. with aniline in the pres. of aq. Ca(OH)<sub>2</sub> at 170-180° under press. see (299) (300).]

[The reactn. of  $\bar{C}$  with aniline + aq. alk. to form Sabanejev's base (above) is also accompanied by various side reactions, including formn. (29% yield (301)) of 1,1,2-tri-(anilino)ethylene, m.p. 147° dec. (301); for further details on this and other by-products see (301) (302).]

With other aromatic amines. [For analogous behavior of  $\bar{C}$  with other aromatic prim. amines in the pres. of aq. alk., e.g., with p-toluidine (288) (302) (303) (note that o-toluidine behaves abnormally while m-toluidine does not react (288)),  $\beta$ -naphthylamine (302) cf.

(288), p-anisidine (288), p-phenetidine (288), p-aminobiphenyl (288), and many others (288) see indic. refs.

#### COLOR TESTS FOR C

- **P** Color test with  $\alpha$ -naphthol (1:1500).  $\bar{C}$  with a few drops 2% alc.  $\alpha$ -naphthol + conc.  $H_2SO_4$  (2 ml.), shaken, diluted with aq. (1-2 ml.), gives red-peach color (304). [This test was devised especially for detection of  $\bar{C}$  in oils or melted fats (2-ml. samples); in olive oil  $\bar{C}$  can be detected in 1/2000, and can also be noted in presence of castor oil, grapeseed oil, raw linseed oil, lard, etc. Note, however, that test fails with oils which have been subjected to oxidn., e.g., boiled linseed oil, and its sensitivity is improved by the pres. of reducing agts., e.g., by a trace of Zn dust (304).]
- P Color test with cyclopentanol (1:6412). C (1 drop) with cyclopentanol (2 ml.) + trace solid NaOH, boiled 25 secs., cooled, acidified with AcOH or 85% H<sub>2</sub>SO<sub>4</sub>, stood 1 min., and shaken gives (305) green color. [Note that this same response is also shown by 1,1,2,2-tetrachloroethane (acetylene tetrachloride) (3:5750) but not by methylene dichloride (3:5020), CHCl<sub>3</sub> (3:5050), CCl<sub>4</sub> (3:5100), ethylene dichloride (3:5130), pentachloroethane (3.5880), cis (3:5042) or trans (3:5028)-1,2-dichloroethylene, or tetrachloroethylene (3.5460); for sensitivity for C see (305).]
- ② Color test with pyridine and aq. alk. (Fujiwara reaction). See above under detn. of
  C.
- Comment on behavior of C with NH<sub>4</sub>OH/CuCl. Note that C with NH<sub>4</sub>OH/CuCl does not give blue color within 5 min. (306) (diff. from pentachloroethane (3:5880) q.v.
- Mercury bis-(trichloroethylenide), Hg(—CCl=CCl₂)₂ (see also above under detn. of C̄). C̄ with aq. KOH soln. of Hg(CN)₂ on shaking 24 hrs. at room temp. (169), or C̄ with HgO + NaOEt + KCN in alc. shaken 1 hr. at 40-60° (not higher) (307) (308) cf. (273), gives (yields: 100% (169), 90% (307)) mercury bis-(trichloroethylenide), cryst. from ether or CHCl₃, m.p. 83° (169) (273), 82-83° (242) (note that after recrystn. from alc. a m.p. of 141° (307) has been reported). [For behavior of ordinary 1,2-dichloroethylene with aq. alk. Hg(CN)₂ solns. yielding mercury bis-(chloroactylide) Hg(—C≡CCl)₂, m.p. 185°, see text of that cpd. (3:5030).]
- 3:5170 (1) Veley, Proc. Roy Soc (London) 82-B, 219-220 (1910). (2) Mumford, Phillips, J. Chem. Soc. 1928, 159. (3) Bonino, Gazz. chim. ital. 55, 342 (1925). (4) Mathews, J. Am. Chem. Soc. 48, 569 (1926). (5) Herz, Rathmann, Chem. Zig. 36, 1417 (1912). (6) Lecat, Ann. soc. sci. Bruxelles 49, 110-111 (1929). (7) Lecat, Rec. trav. chim. 46, 242 (1927). (8) Colburn, Phillips, Trans. Am. Soc Chem. Engrs. 40, 333-359 (1944). (9) Carlisle, Levine, Ind. Eng. Chem. 24, 1164-1168 (1932). (10) Trew, Watkins, Trans. Faraday Soc 29, 1310-1318 (1933).
- (11) Bates, Hazzard, Palmer, Ind. Eng. Chem. 33, 375-376 (1941). (12) Erdmann, J. prakt. Chem. (2) 85, 78-89 (1912). (13) Mkryan, Sbornik Irudov Armyanskogo Filiala Akad. Nauk. 1940, No. 2, 36-41; C.A. 37, 5694 (1943). (14) Horz, Rathmann, Chem. Zig. 37, 621 (1913). (15) Timmermans, Bull. soc. chim Belg. 27, 334-343 (1913); Cent. 1914, I 618. (16) Kanolt, U.S. Bur. Standards, Sci. Paper 520; 20, 619-633 (1924/6). (17) Herz, Rathmann, Z. Elektrochem. 19, 589 (1913). (18) Jones, Scott, U.S. Bur. of Mines, Repts. Investigations 3666 (1942). (19) Johnstone, Spoor, Ind. Eng. Chem. 32, 832-835 (1940). (20) Eckart, Brennstoff-Chem. 4, 24-25 (1923); C.A. 17, 2356 (1923).
- (21) Tschentke, Ind. Eng. Chem., Anal. Ed. 6, 21-22 (1934). (22) Mailhe, Sabrou, Bull. soc. chim. (4) 47, 349-350 (1930). (23) Reilly, Kelly, O'Connor, J. Chem. Soc. 1941, 275-278. (24) Salkowski, Biochem. Z. 107, 191-201, 319 (1920); Cent. 1920, IV 515. (25) Gowing-Scopes, Analyst 39, 4-20 (1914). (26) Bird, J. Soc. Dyers Colourists 49, 379-380 (1933). (27) Margosches, Hinner, Friedmann, Z. anorg. allgem. Chem. 137, 81-90 (1924). (28) Margosches, Baru, J. prakt. Chem. (2) 103, 216-226 (1921/2). (29) Margosches, Hinner, Z. deut. Öl- u. Fett-Ind. 44, 97-100 (1924); Cent. 1924, I 2648; C.A. 18, 3731 (1924). (30) Herz, Rathmann, Z. Elektrochem. 19, 552-555 (1913).
- (31) Herrero, Ann. soc. españ. fís. quím. 31, 416-421 (1933); Cent. 1933, II 1132; not in C.A. (32) Bell, J. Chem. Soc. 1931, 1373, 1377. (33) Gross, Simmons, Trans. Am. Inst. Chem. Engrs.

(34) Langen van der Valk, Rec. trav. chim. 48, 206 (1929). (35) Huff, **49,** 121–141 (1944). U.S. Bur. Mines, Rept. Investigations 3745 (1944). (36) Jorissen, Meuwissen, Rec. trav. chim. 44, 132-140 (1925). (37) Jorissen, Ongkiehong, Rec. trav. chim. 44, 814-817 (1925). (38) Jorissen, Velisek, Rec. trav. chim. 43, 80-86 (1924). (39) Jorissen, Meuwissen, Rec. trav. chim. 43, 591-597 (1924). (40) Coward, Jones, Ind. Eng. Chem. 18, 970-974 (1926).

(41) Jorissen, Chem. Weekblad 23, 441-444 (1926); Cent. 1927, I 863. (42) Jorissen, Ind. Eng. Chem. 19, 430-431 (1927). (43) Jorissen, Langen van der Valk, Rec. trav. chim. 44, 812-813 (1925). (44) Alekseevski, Musin, J. Applied Chem. (U.S.S.R.) 12, 704-718 (1939); C.A. 34, 2652 (1940). (45) Cook, Coleman, J. Ind. Hyg. Toxicol. 18, 194-210 (1936). (46) Alekseevskii, Gol'braith, J. Gen. Chem. (U.S.S.R.) 4, 936-947 (1934); Cent. 1935, II 3750; C.A. 29, 3587 (1935). (47) Carlisle, Ward (to Roessler & Hasslacher Chem. Co.), U.S. 1,905,900, April 24, 1933; Cent. 1934, II 2870; C.A. 27, 3486 (1933). (48) Pasquill, Proc. Roy. Soc. (London), A-182, 75-95 (1943). (49) (a) Fritzweiler, Dietrich, Angew. Chem. 46, 241-243 (1933); (b) Beiheft. Z. Ver.

deut. Chem. No. 4 (1933). (50) Herz, Z. anorg. allgem. Chem. 104, 49 (1918).

(51) Mesamer, Sweeney, Proc. Iowa Acad. Sci. 47, 207-211 (1940); C.A. 35, 7254 (1941). (52) Lecat "L'Azeotropisme," 1918; (a) p. 82, No. 321; (b) p. 83, No. 355; (c) p. 85, No. 410; (d) p. 84, No. 380; (e) p. 86, No. 434; (f) p. 84, No. 389; (g) p. 85, No. 426; (h) p. 84, No. 396. (53) Fritzweiler, Dietrich, Angew. Chem. 45, 605-611 (1932).
 (54) Sastry, J. Soc. Chem. Ind.
 35, 450-452 (1916).
 (55) Lecat, Ann. soc. sci. Bruxelles, 47, I 152 (1928).
 (56) Lecat, "L'-Azeotropisme," 1918; (a) p. 186, No. 2251; (b) p. 186, No. 2266; (c) p. 186, No. 2260. (57) Thorpe "Dictionary of Applied Chemistry," 4th ed., 1937, I, 99-104. (58) Carlisle, Coyle, Chem. Markets 29, 243-248 (1931). (59) Dietrich, Z. Spiritusind. 57, 25-27 (1934); Cent. 1934, I 2051; C.A. 28, 3830 (1934). (60) Lithder, Z. Spiritusind. 57, 252 (1934); Cent. 1934, II 4031; C.A. 29, 3453 (1935).

(61) Fritzweiler, Dietrich, Intern. Sugar J. 35, 29-32, 71-74, 146 (1933); Cent. 1933, I 3254; C.A. 27, 5883 (1933). (62) Guinot, Compt. rend. 176, 1623-1626 (1923); C.A. 17, 2758 (1923). (63) Fritzweiler, Dietrich (to Reichsmonopolverwaltung für Branntwein), Ger. 585,065, Dec. 8. 1933; Cent. 1934, I 1123; [C.A. 28, 1464 (1934)]: French 742,666, March 14, 1933; Cent. 1933, II 147; C.A. 27, 3481 (1933). (64) Bozel-Maletra (Soc. ind. prod. Chim.), French 786,510, Sept. 5, 1935; Cent. 1936, II 714; C.A. 30, 810 (1936). (65) Clarke, Othmer (to Eastman Kodak Co.), U.S. 1,908,508, May 9, 1933; Cent. 1933, II 444; C.A. 27, 3723 (1933). (66) I.G., French 663,845, Aug. 26, 1929; Cent. 1929, II 2261; C.A. 24, 628 (1930). (67) I.G., Brit. 305,594, April 4, 1929; Cent. 1929, II 650; C.A. 23, 4711 (1929). (68) Hargreaves, Tudor, Hood (to Imperial Chem. Ind. Ltd.), Brit. 498,517, Feb. 9, 1939; Cent. 1939, I 3255; C.A. 33, 4575 (1939); French 838,993, March 21, 1939; Cent. 1939, I 4841; C.A. 33, 6790 (1939). (69) Levine (to du Pont Co.), U.S. 2,153,577, April 11, 1939; Cent. 1939, II 225; C.A. 33, 5353 (1939); du Pont Co., Brit. 471,756, Oct. 7, 1937; Cent. 1938, I 429; C.A. 32, 1238 (1938). (70) Reid (to Carbide and Carbon Chem. Corp.), U.S. 2,070,962, Feb. 16, 1937; Cent. 1937, I 4040; C.A. 31, 2716 (1937).

(71) Compagnie prod. chim. d'Alais, etc., French 785,864, Aug. 21, 1935; Cent. 1935, II 3859; C.A. 30, 629 (1936). (72) Gebruder Fessler, Ger. 480,389, Aug. 1, 1929; Cent. 1929, II 3184; C.A. 23, 4923 (1929). (73) Heller, Ger. 331,535, Jan. 11, 1921; Cent. 1921, II 644; not in C.A. (74) Swift (to United Carr Fastener Co.), U.S. 2,123,856, July 12, 1938; Cent. 1938, II 4126; C.A. 32, 7012 (1938). (75) Witheridge, Walworth, J. Ind. Hyg. Toxicol. 22, 175-187 (1940). (76) Brown, Bird, J. Soc. Dyers Colourists 50, 72-76 (1934). (77) Brown, J. Soc. Dyers Colourists 49. 42-45 (1933). (78) Brown, Dyer 68, 568-569 (1932); Cent. 1933, I 863: Dyer 68, 79-80 (1932); Cent. 1932, II 1547; C.A. 26, 5425 (1932): Dyer 67, 414-415, 463-465 (1932); Cent. 1932, II 943; C.A. 26, 3931 (1932); Chem. Age 27, 165-166 (1932). (79) Fluss, U.S. 1,947,522, Feb. 20, 1934; Cent. 1934, II 2318; C.A. 28, 2550 (1934). (80) Consortium für Elektrochem. Ind., Chem. Ztg. 31, 1095-1096 (1907); 32, 529-530 (1908).

(81) Hassel, Chem. Ztg. 49, 293-295 (1925). (82) Hassel, Seifensieder Ztg. 56, 370-372 (1929); Cent. 1929, II 3077; C.A. 24, 982 (1930). (83) Jahn, Brit. 413,041, Aug. 2, 1934; Cent. 1935. II 1989; C.A. 29, 630 (1935). (84) Measmer, Iowa State Coll. J. Sci. 17, 100-102 (1942); C.A. (85) Kiseleva, Kolodezhnaya, Myasnaya Ind. 1939, No. 11/12, 38-40; C.A. **37.** 3288 (1943). 36, 6027 (1942). (86) Sutthoff, Veltman, Z. Untersuch. Nahr. u. Genussm. 47, 146-147 (1924). (87) Grossfeld, Z. Untersuch. Nahr. u. Genussm. 44, 193-203 (1922): 45, 147-152 (1923); 46, 63-73 (1923): 47, 420-432 (1924): 49, 286-289 (1925); Chem. Zig. 51, 617-618 (1927); Rec. trav. chim. 43, 457-462 (1924). (88) Heiduschka, Chem. Ztg. 54, 271-272 (1930). (89) Backlund, J. Inst. Petroleum Tech. 19, 1-25 (1933). (90) (a) Poole, Ind. Eng. Chem. 21, 1098-1102 (1929); (b) Poole and collaborators, Ind. Eng. Chem. 23, 170-177 (1931); (c) Poole, Mangelsdorf, Ind. Eng. Chem. 24, 1215-1218 (1932).

(91) Stand. Oil Development Co., French 790,852, Nov. 28, 1935; Cent. 1936, I 2672; C.A. 30, 3223 (1936). (92) Hoyt, Ind. Eng. Chem. 20, 835-837 (1928). (93) Balzacs, Jugoslav 12,078, Feb. 1, 1936; Cent. 1936, I 4794. (94) Balzacs, Austrian 146,204, June 25, 1936; Cent. 1936, II 3351. (95) Anciens Estab. Brissoneau et Lotz, French 825,044, Feb. 22, 1938; Cent. 1938, II 903; C.A. 32, 5267 (1938). (96) Churchill, Chem. Markets 25, 592 (1929). (97) Malzac, French 789,462, Oct. 29, 1935; Cent. 1936, I 3878; C.A. 30, 1905 (1936). (98) Beythien (to Minimax, A.G.), Ger. 639,395, Dec. 4, 1936; Cent. 1937, I 1990; C.A. 31, 1534 (1937). (99) Bizzoni, Lent, U.S. 1,917,489, July 11, 1933; Cent. 1933, II 2342; C.A. 27, 4604 (1933). (100) Hampe, Ger. 369,968, Feb. 24, 1923; Cent. 1923, II,906; not in C.A.

(101) Ressler (to du Pont Co.), U.S. 2,110,842, March 8, 1938; Cent. 1938, I 4710; C.A. 32, 3546 (1938). (102) Kirschbaum (to Roessler & Hasslacher Chem. Co.), U.S. 1,591,842, July 6, 1926; Cent. 1926, II 2143; C.A. 20, 3213 (1926): Brit. 254,747, Sept. 8, 1925; Cent. 1926, II 3114; C.A. 21, 2763 (1927). (103) Bode (to Corn Products Refining Co.), Ger. 716,073, Jan. 13, 1942; Cent. 1942, I 2075; not in C.A. (104) Sprengstoff A. G. Carbonite, Ger. 299,015, May 22, 1920; Cent. 1920, IV 309; C.A. 14, 2989 (1920). (105) Walden, Ann. Acad. Sci. Fennicae A.29, No. 23 (Komppa Festschrift) (1927); Cent. 1928, I 166; C.A. 22, 1515 (1928). (106) Oltman, Stain Technol. 10, 23-24 (1935). (107) Saphier, Münch. med. Wochschr. 67, 133 (1920); Cent. 1920, II 579; not in C.A. (108) Bruch, Münch. med. Wochschr. 67, 1354-1355 (1920); Cent. 1921, II 155; not in C.A. (109) McCord, J. Am. Med. Assoc. 99, 409 (1932). (110) Taylor, J. Ind. Hyg. Toxicol. 18, 175-183 (1936).

(111) von Oettingen, J. Ind. Hyg. Toxicol. 19, 411-423 (1937). (112) Barrett, MacLean, Cunningham, J. Ind. Hyg. Toxicol. 20, 360-379 (1938). (113) Seifter, J. Ind. Hyg. Toxicol. 28, 250-253 (1944). (114) Browning, J. Ind. Hyg. Toxicol 25, 127 (1943). (115) Quadland, Ind. Med. 13, 45-50 (1944); C.A. 38, 4061 (1944). (116) Matruchot, Ber. 8 intern. Kongr. Unfallmed. u. Berufskrankh. 2, 910 (1939); C.A. 36, 3548 (1942). (117) Tupholine, Chem. Industries 39, 24-26 (1936). (118) Frietag, Rayon Textile Monthly 18, 543-545 (1937). (119) Lutz, Z. angew. Chem. 43, 805-808 (1930). (120) Ferguson, Nature 137, 361-362 (1936).

(121) Isenschm d, Schweiz. Arch. Neurol. 44, 288 (1939); C.A. 36, 3552 (1942). (122) Derville, Nun, Casts, Ber. 8 intern. Kongr. Unfallmed. u. Berufskrankh. 2, 903 (1939); C.A. 36, 3548 (1942). (123) Schwander, Arch. Gewerbepathol. Gewerbehyg. 7, 109-116 (1936); Cent. 1939, II 1331; not in C.A. (124) Jensenius, Samml. Vergitungsfüllen 9-A, 95-96 (1938); Cent. 1939, II 1717; not in C.A. (125) Jordi, Schweiz. med. Wochschr. 67, 1238-1240 (1937); Cent. 1938, I 1823; not in C.A. (126) Luce, Arch. Gewerbepathol. Gewerbehyg. 7, 437-451 (1936); Cent. 1937, I 1726; not in C.A. (127) Gasq, Bull. trav. soc. pharm. Bordeaux 75, 87-101 (1937); Cent. 1937, I 5006; C.A. 32, 3047 (1938). (128) Schütz, Arch. Gewerbepath. Gewerbehyg. 7, 452-467 (1936); Cent. 1937, I 1726; not in C.A. (129) Barsoum, Saad, Quart. J. Pharm. Pharmacol. 7, 205-214 (1934); Cent. 1934, II 2550; C.A. 28, 6194 (1934). (130) Lewin, Z. deut. Öl- u. Fett-Ind. 40, 421-425, 439-441 (1920); Cent. 1921, I 924; C.A. 14, 3163 (1920).

(131) Glasser, J. Am. Med Assoc. 96, 916-920 (1931). (132) Kramer, Berlin. klin. Wochschr. 58, 149-150 (1921); Cent. 1921, I 583; not in C.A. (133) Magunna, Klnn. Wochschr. 1, 618-619 (1922); Cent. 1922, I 1086; C.A. 17, 827 (1923). (134) Eichert, J. Am. Med. Assoc. 106, 1652-1654 (1936). (135) Hewer, Proc. Roy. Soc. Med. 35, 463-468 (1942); C.A. 38, 5594 (1944). (136) Hewer, Brit. Med. J. 1, 924-927 (1941). (137) Jackson, Anesthesia and Analgesia 13, 198-204 (1934); Cent. 1934, II 3404; C.A. 29, 1501 (1935). (138) Rubinstein, Arch. Neurol. Psychiatry 37, 638-640 (1937); Cent. 1937, I 4260; not in C.A. (139) Wolff, Hardy, Goodell, J. Clin. Investigation 29, 63-80 (1941); C.A. 35, 3713 (1941). (140) Rubinstein, Painter, Harne, J. Lab. Clin. Med. 24, 1238-1241 (1939); C.A. 33, 8819 (1939).

(141) Krantz, Carr, Musser, J. Am. Pharm. Assoc. 24, 754-756 (1935). (142) Lazarev, Arch. exptl. Pathol. Pharmakol. 141, 19-24 (1929); Cent. 1929, II 451; C.A. 25, 3074 (1931). (143) Joachimoglu, Biochem. Z. 120, 203-211 (1921); Cent. 1921, III 1212; C.A. 15, 3686 (1921). (144) Joachimoglu, Berlin. klin. Wochschr. 58, 147-149 (1921); Cent. 1921, I 583; not in C.A. (145) Trumper, Jones, Taylor, Lancet 231, 1390-1391 (1936); Cent. 1937, I 923; not in C.A. (146) Rimpau, Plochmann, Schneider, Arch. Hyg. 107, 268-276 (1932); Cent. 1937, II 389; C.A. 26, 4624 (1932). (147) Rimpau, Z. Hyg. Infektionskrankh. 112, 208-221 (1931); Cent. 1931, I 2900; C.A. 25, 3432 (1931). (148) Gabbano, Z. Hyg. Infektionskrankh. 109, 183-193, 194-200 (1928); Cent. 1928, II 2668; not in C.A. (149) Stoye, Z. Hyg. Infektionskrankh. 103, 97-105 (1922); Cent. 1924, II 1215; not in C.A. (150) Joachimoglu, Biochem. Z. 124, 130-136 (1921); Cent. 1922, I 363; C.A. 16, 946 (1922).

(151) Barrett, Cunningham, Johnston, J. Ind. Hyg. Toxicol. 21, 479-490 (1939). (152)
Wright, Schaffer, Am. J. Hyg. 16, 383-388 (1932). (153) Plagge, Biochem. Z. 118, 129-143 (1921); Cent. 1922, I 52; C.A. 15, 2894 (1921). (154) Hanson (to du Pont Co.), U.S. 2,286,985, June 16, 1942; C.A. 36, 6845 (1942). (155) Hanson, Ind. Eng. Chem., Anal. Ed. 13, 119-123 (1941). (156) Winteringham, J. Soc. Chem. Ind. 61, 190-192 (1942); C.A. 37, 1951 (1943). (157) Smyth, Ind. Eng. Chem., Anal. Ed. 8, 379 (1936). (158) Olsen, Smyth, Ferguson, Scheffan,

Ind. Eng. Chem., Anal. Ed. 8, 260-263 (1936). (159) Kohn-Abrest, Mafi, Ann. hyg. publ., ind. sociale 1937, 373-384; Cent. 1937, II 3446; C.A. 1937, II 3446; C.A. 31, 8441 (1937). (160)

Dargie, Analyst 62, 730 (1937).

(161) Elkins, Hobby, Fuller, J. Ind. Hyg. Toxicol. 19, 474-485 (1937). (162) Malisoff, Ind. Eng. Chem., Anal. Ed. 7, 428 (1935). (163) Wirth, Stross, Ind. Eng. Chem., Anal. Ed. 5, 85-87 (1933). (164) Kuz'mina, Sbornik Rabot Sanit.-Khim. Inst. Higney Truda i Profzabolevani Leningrad Gorzdravotdela 1940, 50-55; cf. Peregud, ibid. 41-49; C.A. 37, 5926 (1943). (165) Winteringham, J. Soc. Chem. Ind. 61, 186-187 (1942). (166) Rauscher, Ind. Eng. Chem., Anal. Ed. 9, 296-299 (1937). (167) Kelly, O'Connor, Relly, Analyst 66, 489-490 (1941). (168) Guyot, Simon, Compt. rend. 170, 734-736 (1920); Cent. 1920, II 792; C.A. 14, 2145 (1920). (169) Schmalfuss, Werner, Z. anal. Chem. 97, 314-317 (1934). (170) Barrett, J. Ind. Hyg. Toxicol. 18, 341-348 (1936).

(171) Bruning, Schnetka, Arch. Gewerbepath. Gewerbehyg. 4, 740-747 (1933); Cent. 1935, I 3961; C.A. 28, 991 (1941). (172) Converse, Chemistry & Industry 57, 1068-1072 (1938); Canadian Chem. Process Ind. 22, 361-364 (1938). (173) Berthelot, Jungfleisch, Ann. Suppl. 7, 254-255 (1870). (174) Nicodemus, J. prakt. Chem. (2) 83, 312-322 (1911). (175) Tompkins (to Clayton Anilline Co.), Ger. 222,622, June 2, 1910; Cent. 1910, II 121, C.A. 4, 2866 (1910): Brit. 23,780, Oct. 25, 1906; C.A. 1, 2520 (1907). (176) Consortium für Elektrochem. Ind., Brit. 302,321, Feb. 6, 1929; Cent. 1929; Cent. 1929, II 794; C.A. 23, 4231 (1929). (177) Schering-Kahlbaum, A. G., Brit. 374,949, July 14, 1932; Cent. 1932, II 2107; not in C.A. (178) Chem. Fabrik. Buckau, Ger. 274,782, May 27, 1914; Cent. 1914, II 95, C.A. 8, 3350 (1914). (179) Chem. Fabrik. Griesheim-Elektron, Ger. 263,457, Aug. 8, 1913; Cept. 1913, II 829; C.A. 7, 4048 (1913). (180) Körner, Suchy (to A. Wacker Soc. Elektrochem. Ind.), Ger. 464,320, Aug. 21, 1928; Cent. 1929, I 1044; C.A. 22, 4132 (1928).

(181) A. Wacker Soc. Elektrochem. Ind., Brit. 480,568, March 24, 1938; Cent. 1938, I 4236; C.A. 32, 5857 (1938). (182) Bozel-Maletra (to Soc. Ind. Prod. Chim.), French 715,421, Dec. 3, 1931; Cent. 1932, I 3345; C.A. 26, 1946 (1932). (183) Yamaguchi, J. Chem. Soc. Japan 55, 1227-1231; 1232-1235 (1934); C.A. 29, 4326 (1935). (184) Wiegand (to Chem. Fabrik von Heyden), Ger. 566,034, Dec. 14, 1932; Cent. 1933, I 1351; [C.A. 27, 1012 (1933)]. (185) Andrusov (to I.G.), Ger. 634,549, Aug. 29, 1936; Cent. 1936, II 4048; C.A. 31, 419 (1937). French 805,563, Nov. 24, 1936; Cent. 1937, I 2258, C.A. 31, 4345 (1937). (186) Consortum für Elektrochem. Ind., Ger. 171,900, June 18, 1906; Cent. 1906, II 571; not in C.A: Ger. 208,834, April 8, 1909; Cent. 1909, I 1785; C.A. 3, 2210 (1909). (187) Strosacker, Amstutz (to Dow Chem. Co.), U.S. 2,322,258, June 22, 1943; C.A. 38, 114 (1944). (188) MacMillan (to Niagara Alkali Co.), U.S. 1,397,134, Nov. 15, 1921; Cent. 1922, IV 941; C.A. 16, 565 (1922). (189) Klebanskii, Gosudarst vennyl Inst. Prikladnoi, Khim., Sbornik Statei 1919-1939, 359-383 (1939); C.A. 36, 2521 (1942). (190) Shagalov, Dobromil'skaya, Trans. State Inst. Applied Chem. (U.S.S.R.) 24, 67-77 (1935); C.A. 29, 7272 (1935).

(191) Valyashko, Kosenko, Ukrain Khem. Zhur. 7, No. 1, Sci Pt. 12-35 (1932); Cent. 1933, 13554; C.A. 27, 1611 (1933). (192) Igi, J. Chem. Ind. Japan 23, 1217-1237 (1920); C.A. 15, 2273 (1921). (193) Miloslavski, Postovski, J. Chem. Ind. (U.S.R.) 7, 1414-1419 (1930); Cent. 1931, I 1164; [C.A. 25, 5391 (1931)]. (194) Sastry, J. Soc. Chem. Ind. 35, 450-452 (1916); Cent. 1916, II 306; C.A. 10, 1942 (1916). (195) Langguth, Chume & industrie, 25, 22-25 (1931). (196) Guyot, U.S. 1,343,716, June 15, 1920; C.A. 14, 2344 (1920); Comp. Prod. Chim. d'Alais, Ger. 351,463, April 7, 1922; Cent. 1922, IV 154; not in C.A.: Brit. 132,755, May 14, 1919; C.A. 14, 285 (1920). (197) Pogosyan, Mkryan, Russ. 50,533, Feb. 28, 1937; Cent. 1938, II 412; C.A. 31, 8549 (1937). (198) Müller, Ehrmann, Ber. 69, 2207-2210 (1936). (199) Swarts, Bull. soc. chim. (4) 25, 169 (1919). (200) Reilly (to Dow Chem. Co.), U.S. 2,140,548, Dec. 20, 1938; Cent. 1939, I 3625; C.A. 33, 2540 (1939).

(201) Rodebush (to U.S. Ind. Alc. Co.), U.S. 1,402,318, Jan. 3, 1922; Cent. 1923, II 960; [C.A. 16, 935 (1922)]. (202) Mailhe, Bull. soc. chim. (4) 29, 538-539 (1921). (203) Rebek, Mandrino, Oesterr. Chem. Ztg. 41, 363-364 (1938); Cent. 1939, I 919; C.A. 33, 1266 (1939). (204) Paterno, Oglialoro, Ber. 7, 81 (1874). (205) Chattaway, Kellett, J. Chem. Soc. 1939, 2914. (206) Zincke, Ann. 416, 69, 71, 81 (1918). (207) Müller, Hüther, Ber. 61, 589-600 (1931). (208) Kaufler, Schwaebel (to A. Wacker Soc. Elektrochem. Ind.), Ger. 465,178, Sept. 8, 1928; Cent. 1929, I 1044; not in C.A. (209) Biesalski, Z. angew. Chem. 37, 317 (1924). (210) Müller, Schumacher, Z. physik. Chem. B-37, 365-373 (1937).

(211) Kirkbride (to Imperial Chem. Ind., Ltd.), U.S. 2,292,129, Aug. 4, 1942; C.A. 37, 656 (1943): Brit. 523,555, July 17, 1940; C.A. 35, 6267 (1941): Belg. 438,987, Aug. 23, 1941; Cent. 1942, I 928. (212) Mugdan, Wimmer (to Consortium für Elektrochem. Ind.), French 706,320, June 23, 1931; Cent. 1931, II 1489; C.A. 26, 1302 (1932); Ger. 531,579, Dec. 8, 1929; C.A. 26, 1302 (1932); not in Cent. (213) Deutsch (to Consortium für Elektrochem. Ind.), Ger. 391,674.

March 10, 1924; Cent. 1924, II 888; not in C.A. (214) Consortium für Elektrochem. Ind., Ger. 340,872, Sept. 19, 1921; Cent. 1921, IV 1101; C.A. 16, 2867 (1922). (215) Erdmann, J. prakt. Chem. (2) 85, 78-89 (1912); cf. Staudinger, ibid. 330-333 (1912). (216) Dietrich, Lohrengel, Angew. Chem. 47, 830-832 (1934). (217) Taketomi, Waseda Applied Chem. Soc. Bull. 17, No. 3, 95-99 (1940); C.A. 35, 4731 (1941); not in Cent. (218) Pitman (to Westvaco Chlorine Prods. Co.), U.S. 2,319,261, May 18, 1943; C.A. 37, 6372 (1943). (219) Levine, Cass (to du Pont Co.), U.S. 2,155,723, April 25, 1939; Cent. 1939, II 946; C.A. 33, 5869 (1939). (220) Pitman (to Westvaco Chlorine Prod. Co.), U.S. 1,910,962, May 23, 1933; Cent. 1933, II 1927; C.A. 27, 3951 (1933).

(221) Zuckermandel (to Bow Chem. Co.), U.S. 1,891,585, Aug. 18, 1931; Cent. 1931, II 2657; C.A. 25, 5678 (1931). (222) Roessler & Hasslacher Chem. Co., French 732,569, Sept. 22, 1932; Cent. 1932, II 3785, C.A. 27, 304 (1933); Ger. 573,105; March 3, 1932; [C.A. 27, 2961 (1933)]; not in Cent. (223) Dietrich, Lohrengel (to Reichsmonopolverwaltung fur Branntwein), Ger. 649,118, Sept. 13, 1937, Cent. 1937, II 4102; C.A. 32, 951 (1938). (224) Levine, Cass (to du Pont Co.), Can. 396,353, May 6, 1941, Cent. 1942, II 1180; not in C.A. (225) Pitman (to du Pont Co.), U.S. 1,925,602, Sept. 5, 1933, Cent. 1933, II 3192; C.A. 27, 5445 (1933). (226) Imperial Chem. Ind. Ltd., French 744,128, April 12, 1933; Cent. 1933, II 605; C.A. 27, 3941 (1933). (227) Missbach (to Stauffer Chem. Co.), U.S. 2,043,257-2,043,260, incl., June 9, 1936; Cent. 1936, II 3845, C.A. 30, 5240 (1936). (228) Consortium fur Elektrochem. Ind., French 726,362, May 27, 1932; Cent. 1932, II 1363, CA. 26, 4829 (1932). (229) Calisle (to du Pont Co.), U.S. 1,996,717, April 2, 1935; Cent. 1935, II 920; C.A. 29, 3353 (1935). (230) Stewart, DePree (to Dow Chem. Co.), U.S. 1,917,073, July 4, 1933; C.A. 27, 4539 (1933).

(231) Roessler & Hasslacher Chem. Co., Ger. 562,820, March 3, 1932; C.A. 27, 992 (1933). (232) Dangelmajer (to Roessler & Hasslacher Chem. Co.), U.S. 1,816,895, Aug. 4, 1931; Cent. 1931, II 2656; C.A. 25, 5436 (1931). Can. 303,663, Sept. 2, 1930; C.A. 24, 5309 (1930). (233) Levine (Can. Ind., Ltd.), Can. 343,747, Aug. 7, 1934, Cent. 1936, I 176; C.A. 28, 7383 (1934). (234) Savage, Pitter (to Imperial Chem. Ind., Ltd.), Brit. 378,084, Sept. 1, 1932; Cent. 1932, II 3013; C.A. 27, 3941 (1933). (235) Carlsle, Harris (to Can. Ind., Ltd.), Can. 341,792, May 22, 1934; C.A. 28, 5076 (1934). (236) Consortum für Elektrochem. Ind., French 814,423, June 23, 1937; Cent. 1937, II 3953, C.A. 32, 957 (1938): French 51,288, Feb. 18, 1942; Cent. 1942, II 1180: Ger. 721,380, April 30, 1942, [C.A. 37, 4748 (1943)]. (237) Mugdan, Wimmer (Consortum für Elektrochem. Ind.), U.S. 2,338,297, Jan. 4, 1944; C.A. 38, 3668 (1944); Ger. 736,232, April 29, 1943; C.A. 38, 2972 (1944). (238) Consortium für Elektrochem. Ind., Ger. 718,057, Feb. 28, 1942; Cent. 1942, II 99, C.A. 38, 2343 (1944). (239) Rohm, Haas, A. G., French 841,728, May 25, 1939; Cent. 1939, II 4376; C.A. 34, 4395 (1940): Brit. 517,213, Jan. 23, 1940; [C.A. 35, 6599 (1941)]. (240) Clark, Kutz (to Gen. Flec. Co.), U.S. 1,998,309, April 16, 1935; Cent. 1935, II 1619; C.A. 29, 3751 (1935).

(241) Hopff, Rautenstrauch (to I G.), Ger. 719,914, April 21, 1942; Cent. 1942, II 721; C.A. 37, 2104 (1943). (242) Miller, J. Am. Chem. Soc. 62, 342-343 (1940). (243) Muller, Schumacher, Z. physik. Chem. B-35, 458-462 (1937); Z. Elektrochem. 43, 807-808 (1937). (244) Mkryan, Babayan, Sbornik Trudov Armyanskogo Fılıala Akad. Nauk. 1940, No 2, 51-58; C.A. 37, 5694 (1943). (245) Kharasch, Norton, Mayo, J. Ory Chem. 3, 48-54 (1938). (246) Hofmann, Kirmreuther, Ber. 42, 4484-4485 (1909) (247) Prins, Rec. trav. chim. 45, 80-81 (1926). (248) Muller, Hönn, J. prakt. Chem. (2) 133, 289-290 (1932). (249) Kaufler, Ann. 433, 48-51 (1923). (250) Simon, Chavanne, Compt. rend. 176, 309-311 (1923), Bull. soc. chim. Belg. 32, 285-287 (1923); Cent. 1923, III 1212; C.A. 18, 1112 (1924).

(251) Simon, Chavanne, U.S. 1,304,108, May 20, 1919; C.A. 13, 2039 (1919): Brit. 129,301, May 21, 1917; C.A. 13, 2878 (1919): French 22,304, June 30, 1921; Cent. 1922, II 1172. (252) Comp. Prod. Chim. d'Alais, etc., Ger. 359,910, Sept. 28, 1922; Cent. 1923, II 404; not in C.A. (253) Comp. Prod. Chim. d'Alais, etc., Ger. 377,524, June 21, 1923; Cent. 1923, IV 536; not in C.A. (254) Comp. Prod. Chim. d'Alais, etc., Ger. 383,029, Oct. 9, 1923; [Cent. 1924, I 1712]; not in C.A.: Austrian 88,199, Aug. 10, 1932, Cent. 1923, IV 591; not in C.A. (255) Comp. Prod. Chim. d'Alais, French 602,395, March 17, 1926; Cent. 1928, I 1710; not in C.A. (256) A. Wacker Soc. Elektrochem. Ind., French 705,905, June 16, 1931; Ger. 531,580, March 1, 1930; Cent. 1931, II 1489; C.A. 26, 154 (1932). (257) Comp. Prod. Chim. d'Alais, etc., Ger. 377,411, June 19, 1923; [Cent. 1923, IV 591]; not in C.A.: French 519,813, June 16, 1921; Cent. 1921, IV 653; not in C.A. (258) Böeseken, Rec. trav. chim. 32, 15-22 (1913). (259) Gunther, Hetzer (to I.G), U.S. 2,037,229, April 14, 1936; Cent. 1936, II 3382; C.A. 30, 3836 (1936). (260) Burrows, Hunter, J. Chem. Soc. 1932, 1357-1360.

(261) Hershberg, Ph.D. Thesis, M.I.T. (262) Ward, J. Chem. Soc. 1930, 2146. (263) Consortium für Elektrochem. Ind., Ger. 257,878, March 22, 1913; Cent. 1913, I 1373; C.A. 7, 2836 (1913). (264) Ott, Ber. 75, 1517-1522 (1942). (265) Ott, Ottemeyer, Packendorff, Ber. 63, 1941-1944 (1931). (266) Mets, J. prakt. Chem. (2) 135, 142-144 (1932). (267) Stephens,

J. Soc. Chem. Ind. 43, 314-315 (T) (1924). (268) Crompton, Vanderstichele, J. Chem. Soc. 117, 691-692 (1920). (269) Imbert (to Consortium für Elektrochem. Ind.), Ger. 216,940, Dec. 13, 1909; Cent. 1910, I 308; C.A. 4, 1087 (1910). (270) Thron, Chem. Ztg. 48, 142 (1924).

(271) Fritz, Chem. Zig. 48, 293 (1924). (272) Welwart, Sevensieder Zig. 56, 26 (1929); Cent. 1929, I 1523; C.A. 23, 3361 (1929). (273) Hofmann, Kirmreuther, Ber. 41, 315-317 (1908). (274) Consortium für Elektrochem. Ind., Ger. 345,868, Dec. 19, 1921; Cent. 1922, II 807; not in C.A. (275) Gowing-Scopes, Analyst 39, 6-7 (1914). (276) Sastry, J. Soc. Chem. Ind. 35, 94-95 (1916). (277) Crudes, Industria y quim. 13, 265-266 (1916); C.A. 11, 544 (1917); not in Cent. (278) Griesheim-Elektron A.G., Chem. Zig. 35, 256 (1911). (279) Elsner, Chem. Zig. 41, 901-902 (1917). (280) Formanek, Chem. Obzor 5, 57-59 (1930); Cent. 1930, II 976; C.A. 24, 4492 (1930).

(281) Imperial Chem. Industries, Chem. Trade J. 93, 227-229 (1933); Cent. 1933, II 3612. (282) Lenze, Metz, Z. ges. Schiess- u. Sprengstoffw. 27, 294 (1932). (283) Harlow, Ross (to Dow Chem. Co.), U.S. 1,891,415, Dec. 20, 1932; Cent. 1933, I 1683; C.A. 27, 1890 (1933). (284) Consortium für Elektrochem. Ind., Swiss 215,655, Oct. 1, 1941; Cent. 1942, I 2064; not in C.A.: Italian 377,536, Oct. 2, 1939; Cent. 1942, I 2195; not in C.A. (285) Goldschmidt, Schüssler, Ber. 58, 566-570 (1925). (286) Steinkopf, Kühnel, Ber. 75, 1327 (1942). (287) Pope, Smith, J. Chem. Soc. 119, 396 (1921). (288) Ruggli, Marszak, Helv. Chim. Acta 11, 180-196 (1928), (289) Böeseken, Bastet, Rec. trav. chim. 32, 203-205 (1913). (290) Prins, J. prakt. Chem. (2) 89, 415, 417, 421 (1914).

(291) Prins, Ger. 261,689, July 2, 1913; Cent. 1913, II 294; C.A. 7, 3641 (1913). (292) Henne, Ladd, J. Am. Chem. Soc. 66, 2494-2495 (1938). (293) Prins, Rec. trav. chim. 56, 120, 123 (1937). (294) Prins, Rec. trav. chim. 57, 659-666 (1938). (295) Prins, Rec. trav. chim. 51, 469-474 (1932). (296) Mead (to Imperial Chem. Ind., Ltd.), Brit. 550,853, Jan. 27, 1943; C.A. 38, 1751 (1944). (297) Roberts (to Imperial Chem. Ind., Ltd.), Brit. 550,854, Jan. 27, 1943; C.A. 38, 1751 (1944). (298) Cusa, McCombie, J. Chem. Soc. 1937, 769-770. (299) Levinstein, Imbert (to British Dyestuffs Corpn.), Brit. 173,540, Feb. 2, 1922; Cent. 1922, IV 760; C.A. 16, 1435 (1922): Ger. 436,620, Nov. 5, 1926; [Cent. 1927, I 181]; not in C.A.: French 527,554, Oct. 27, 1921; Swiss 93,576, March 16, 1922; Cent. 1922, IV 761]; not in C.A. (300) Wyler (to British Dyestuffs Corpn.), Brit. 188,933, Dec. 14, 1922; Cent. 1923, IV 663; C.A. 17, 1646 (1923): Ger. 437,409, Nov. 16, 1926; [Cent. 1927, I 3228]; not in C.A.

(301) Shibata, Tech. Repts. Tohoku Imp. Univ. 8, 21-25, 491-495 (1929); Cent. 1930, I 1291; C.A. 24, 834 (1930). (302) Shibata, Nishi, J. Soc. Chem. Ind. Japan 36, Suppl. bindg. 625-630 (1933); Cent. 1934, I 1039; C.A. 28, 748 (1934). (303) Shibata, Nishi, J. Soc. Chem. Ind. Japan 36, Suppl. bindg. 538-540 (1933); Cent. 1934, I 382; [C.A. 28, 475 (1934)]. (304) Testoni, Ann. chim. applicata 27, 497-499 (1937); Cent. 1938, I 4734; C.A. 32, 6178 (1938). (305) Weber, Chem. Ztg. 57, 836 (1933); Cent. 1933, II 3889; C.A. 28, 727 (1934). (306) Doughty, J. Am. Chem. Soc. 41, 1130-1131 (1919). (307) Fitzgibbon, J. Chem. Soc. 1938, 1218-1222. (308) Parker (to Imperial Chem. Ind., Ltd.), Brit. 427,979, May 30, 1935; Cent. 1936, I 642; C.A. 29, 6608 (1935). (309) Diels, Rickert, Ann. 543, 27 (1940).

# 3:5180 DICHLOROACETALDEHYDE Cl $C_2H_2OCl_2$ Beil. I - 613 $I_1$ -(328) $I_2$ -(677)

Anhydrous Č is strongly lachrymatory liq.; in s.t. Č can be kept but in open containers it gradually changes to an amorphous polymer, insol. alc. but from which Č can be regenerated at 120° (2) cf. (6).

[For prepn. of  $\bar{C}$  from dichloroacetaldehyde diethylacetal (3:6110) by distn. with conc.  $H_2SO_4$  (1) (2) (7) or with benzoic anhydride (1:0595) + a little conc.  $H_2SO_4$  (3) (yield: 81% (5), 78% (8)) see indic. refs.; for prepn. of  $\bar{C}$  from chloral hydrate (3:1270) with Al/Hg see (9); for manufacture of  $\bar{C}$  from chloroform + formaldehyde with  $SO_2Cl_2$  at 300° (10) or with heat, pressure, and cat. (11) see indic. refs.]

[For formn. of  $\tilde{C}$  from  $\alpha,\beta,\beta$ -trichloroethyl ethyl ether (1),  $\beta,\beta$ -dichlorovinyl methyl (12) or ethyl (1) ethers on htg. with acids; from  $\beta,\beta,\beta$ -trichlorolactic acid or its sodium salt by htg. in  $CO_2$  (13) or warming aq. soln. (14) (22), or from its acetate with ethereal Et<sub>2</sub>N followed by warming with aq. (13) (15); from ethyl  $\alpha$ -ethoxy- $\beta,\beta$ -dichloroacrylate on warming with aq. (16); from dichloropyruvic acid by htg. with aq. (15) see indic. refs.]

[For form. of  $\bar{C}$  from acetylene with HOCl (17) or from chloroacetylene (3:7000) with NaOCl (18) see indic. refs.]

 $\bar{C}$  in pres. of conc.  $H_2SO_4$  polymerizes (19) to a cryst. tri (?) mer paradichloroacetaldehyde, m.p.  $129-130^\circ$  (19), and eas. sol. alc.; this prod. on htg. in a s.t. at  $240-245^\circ$  or with conc.  $H_2SO_4$  at  $120-130^\circ$  regenerates  $\bar{C}$ . [For use of  $\bar{C}$  and this polymer as insecticides see (20).]

Č with 1 mole aq. and cooling yields (1) dichloroacetaldehyde hydrate (3:1085), m.p. 56°.

Č with abs. EtOH yields (1) dichloroacetaldehyde monoethylacetal (dichloroacetaldehyde ethyl alcoholate) (3:5310). [For dichloroacetaldehyde diethylacetal, b.p. 184° see 3:6110.]

 $\bar{C}$  reduces NH<sub>4</sub>OH/AgNO<sub>3</sub>. —  $\bar{C}$  on oxidn. with fumg. HNO<sub>3</sub> yields (21) dichloroacetic acid (3:6208).

[Č with PCl<sub>5</sub> yields (22) 1,1,2,2-tetrachloroethane (acetylene tetrachloride) (3:5750) (which if much HCl is present may be accompanied by  $\alpha,\beta,\beta,\alpha',\beta',\beta'$ -hexachlorodiethyl ether (22)).]

 $\bar{C}$  with 1 mole NH<sub>2</sub>OH.HCl in aq. soln. yields (23) a liquid oxime, b.p. 67-69° at 17 mm., 40-44° at 2-3 mm. dec.; however, with excess NH<sub>2</sub>OH.HCl + Na<sub>2</sub>CO<sub>3</sub>  $\bar{C}$  yields (14) (16) glyoxal dioxime [Beil. I-761, I<sub>1</sub>-(394), I<sub>2</sub>-(818), m.p. 177-178° (16), 173° (14).

Č with excess phenylhydrazine yields (24) (25) glyoxal bis-phenylosazone, pale yel. pl. from boilg. alc., m.p. 169-171° (25), 170° (24).

 $\bar{C}$  with 1 mole semicarbazide in alc. yields (26) dichloroacetaldehyde semicarbazone, m.p. 155-156° (26);  $\bar{C}$  with 2 moles semicarbazide in aq. soln. gives on boilg. (26) glyoxal bis-semicarbazone, insol. in usual solvents and not melting below 270° (27).

- 3:5180 (1) Oddo, Mameli, Gazz. chim. ital. 33, II 388-412 (1903). (2) Paterno, Zeit. für Chemie 1868, 667. (3) Wohl, Roth, Ber. 40, 217 (1907). (4) Cheng, Z. physik. Chem. B-26, 295 (1934). (5) van der Walle, Bull. soc. chim. Belg. 28, 308-309 (1914/1919). (6) Friedrich, Ann. 206, 252 (1880). (7) Grimaux, Adam, Bull. soc. chim. (2) 34, 29 (1880). (8) Boeseken, Tellegen, Plusje, Rec. trav. chim. 57, 75 (1938). (9) Deodhar, J. Indian Chem. Soc. 11, 84-85 (1934). (10) Standard Oil Development Co., Ger. 629,897, May 26, 1936; Cent. 1936, II 2448; C.A. 30, 6006 (1936).
- (11) Frolich, Wiezevich (to Standard Oil Development Co.), U.S. 2,042,303, May 26, 1936; Cent. 1936, II 3193; C.A. 30, 4871 (1936). (12) Denaro, Gazz. chim. ital. 14, 119 (1884). (13) Koetz, J. prakt. Chem. (2) 90, 312-314 (1914). (14) Reisse, Ann. 257, 331-333 (1890). (15) Koetz, Otto, J. prakt. Chem. (2) 88, 551-552 (1913). (16) Koetz, J. prakt. Chem. (2) 103, 235 (1921/22). (17) Wittorf, J. Russ Phys.-Chem. Soc. 32, 88-117 (1900); Cent. 1900, II 29. (18) Ingold, J. Chem. Soc. 125, 1536-1537 (1924). (19) Jacobsen, Ber. 8, 87-88 (1875). (20) Ger. 528,194, June 26, 1931; Cent. 1931, II 1910.
- Paterno, Zeil. für Chemie 1869, 394. (22) Paterno, Pisati, Gazz. chim. ital 1, 463 (1871).
   Routala, Neovius, Ber. 57, 252-254 (1924). (24) Oddo, Cusmano, Gazz chim. ital. 41, II
   (25) (1911). (25) Chattaway, Farinholt, J. Chem. Soc. 1830, 96. (26) Kling, Bull. soc. chim.
   (4) 5, 414-415 (1909). (27) Harries, Temme, Ber. 40, 171 (1907).

3:5190 2,3-DICHLOROPROPENE-1 Cl Cl C<sub>3</sub>H<sub>4</sub>Cl<sub>2</sub> Beil. I - 199 (
$$\beta$$
-Chloroallyl chloride)  $CH_2 = C$   $CH_2$   $I_1 - I_2 - C$ 

**B.P.** 94-94.5° (1) (6) 
$$D_{25}^{25} = 1.204$$
 (3)  $n_{D}^{21} = 1.4600$  (5) 94° (2) (3) 92.5° (4)

Colorless oil, insol. aq., sol. alc., ether.

[For prepn. of  $\tilde{C}$  from 1,2,3-trichloropropane (3:5840) + aq. alk. (yield 80% (5), 87% (4), 70% (1)) or alc. alk. (4) see indic. refs.; for other misc. methods of forms. see Beil. I-199.]

C shaken with 6-7 pts. conc. H<sub>2</sub>SO<sub>4</sub>, poured into aq., and distd. yields (7) chloroacetone (3:5425), b.p. 118°.

C adds Br<sub>2</sub> giving (3) 2,3-dichloro-1,2-dibromopropane [Beil. I-112], b.p. 205° (3).

Č htd. with fumg. HCl in s.t. at 100° yields (3) 1,2,2-trichloropropane (3:5475), b.p. 123°. [For study of addn. of HF see (4).]

[For use of C in prepn. of cellulose ethers with unsatd. linkages see (8).]

3:5190 (1) Bon, Uchenye Zapiski Leningrad. Gosudarst. Univ, Ser. Khim. Nauk 3, 3-37 (1938); Cent. 1939, II 366. (2) Kirmann, Bull. soc. chim. (5) 6, 846 (1939). (3) Friedel, Silva, Jahresber. 1871, 404; 1872, 322-323. (4) Henne, Haeckl, J. Am Chem. Soc 63, 2692-2694 (1941). (5) Hurd, Webb, J. Am. Chem. Soc. 58, 2191 (1936). (6) Claus, Ann. 170, 126 (1874). (7) Henry, Ber. 5, 190-191 (1872). (8) du Pont Co., Brit. 429,949, July 11, 1935, Cent. 1936, I 4098.

B.P. 
$$96.8^{\circ}$$
 at 760 mm. (1) (2)  $D_{4}^{20} = 1.1545$  (6)  $n_{D}^{20} = 1.4388$  (9)  $96.4^{\circ} = 1.60$  mm. (6)  $95.2^{\circ} = 1.4388$  (9)  $D_{4}^{20} = 1.1545$  (6)  $D_{4}^{20} = 1.4388$  (9)  $D_{4}^{20} = 1.4388$ 

Colorless oil. — For b.p.'s at various pressures from 33-847 mm. see (6) (10). — Almost insol. in aq.; for precise data see (3) (4) (5). — [For use as technical solvent see (11); for use in conen. of AcOH by forms, with aq. of const.-boilg. mixt., b.p. 96° see (12).]

[For prepn. of  $\bar{C}$  from corresp. alc., propanediol-1,2 (propylene glycol) (1:6455), with PCl<sub>3</sub> + ZnCl<sub>2</sub> (13% yield {13}), or PCl<sub>5</sub> + ZnCl<sub>2</sub> (11% yield {13}), or SOCl<sub>2</sub> (15% yield {13}), or SOCl<sub>2</sub> + pyridine (28% yield {13}), see {13}; for prepn. of  $\bar{C}$  from propylene by addn. of Cl<sub>2</sub> (88% yield (9)) see {9} {14} (30); for formn. of  $\bar{C}$  (35.6% {15}) together with other products by chlorination of propane (15) (16) (17) see indic. refs.; for formn. of  $\bar{C}$  (60% (18)) together with 1,3-dichloropropane (3:5450) (40% {18}) from 1-chloropropane (3:7040) with SO<sub>2</sub>Cl<sub>2</sub> see {18}; for other misc. methods see Beil. I-105.]

[For study of limits of inflammability (3.4%-14.5%) by volume) of  $\bar{C}$  in air see (19); for study of thermal conductivity of  $\bar{C}$  see (20); for adsorption of  $\bar{C}$  by activated carbon at various temps, see (31).]

Č on further chlorination with SO<sub>2</sub>Cl<sub>2</sub> yields (18) cf. (32) 48% 1,2,2-trichloropropane (3:5475), 37% 1,2,3-trichloropropane (3:5840) cf. (21), and 15% 1,1,2-trichloropropane (3:5630).

[For reactn. of  $\tilde{C}$  with salts of lower aliphatic acids yielding esters of d,l-propylene glycol (1:6455) see (24); with conc. aq. NH<sub>4</sub>OH at 78-80° giving (92% yield (25)) propylenediamine dihydrochloride and other products (26) see indic. refs.]

 $\bar{C}$  htd. with aq. + PbO in s.t. at 150° is said [Beil. I-105] to yield d,l-propylene glycol (1:6455), but  $\bar{C}$  htd. with 20 vols. aq. in s.t. at 210-220° yields (2) from the glycol a mixt. of propionaldehyde (1:0110) and acetone (1:5400). — [For behavior of  $\bar{C}$  with boilg. aq. + trace of NaHCO<sub>3</sub>, or with boilg. aq. + Fe, see (15).]

- 1,2-Diphenoxypropane: m.p. 32°, b.p. 175-178° at 12 mm. (27). [From 1-bromo-2-phenoxypropane with 25% alc. NaOC<sub>6</sub>H<sub>5</sub> (27); it has not, however, been reported direct from C.]
- ---- 1,2-Di( $\alpha$ -naphthoxy)propane: unrecorded.
- 3:5200 (1) Hass, McBee, Weber, Ind. Eng. Chem. 28, 338 (1936). (2) Linnemann, Ann. 161, 62-64 (1872). (3) Gross, Physik. Z. 32, 589 (1931). (4) Gross, Z. physik. Chem. B-6, 215-220 (1929). (5) Gross, J. Am. Chem. Soc. 51, 2362-2366 (1929). (6) Nelson, Young, J. Am. Chem. Soc. 55, 2429-2433 (1933). (7) Kahovec, Wagner, Z. physik. Chem. B-47, 52 (1940). (8) Kohlrausch, Ypsilanti, Z. physik. Chem. B-32, 416 (1936). (9) Goudet, Schenker, Helv. Chim. Acta 10, 132-137 (1927). (10) Kireev, Nikiforova, J. Gen. Chem. (U.S.S.R.) 6, 75-77 (1936); Cent. 1937, I 4219, C.A. 30, 7427 (1936).
- (11) Durrans, "Solvents," 4th ed., London, 1938, p. 182. (12) Othmer (to Eastman Kodak Co.), U.S. 2,021,852, Nov. 19, 1935; Cent. 1936, I 1505. (13) Clark, Streight, Trans. Roy. Soc. Can. (3) 23, III 77-89 (1929). (14) Union Carbide Co., Ger. Pat. 363,269, Nov. 6, 1922; Cent. 1923, II 475-476. (15) McBee, Hass, Chao, Welch, Thomas, Ind. Eng. Chem. 33, 176-181 (1941). (16) Hass, McBee (to Purdue Research Foundation), U.S. 2,004,073, June 4, 1935; Cent. 1936, I 1500. (17) Hass, McBee (to Purdue Research Foundation), U.S. 2,105,733, Jan. 18, 1938; Cent. 1938, I 4533. (18) Kharasch, Brown, J. Am. Chem. Soc. 61, 2142-2149 (1939). (19) Jones, Miller, Seaman, Ind. Eng. Chem., 25, 771-773 (1933). (20) Bates, Hazzard, Palmer, Ind. Eng. Chem. 33, 375-376 (1941).
- (21) Klebanskii, Vol'kenshtein, J. Applied Chem. (U.S.S.R.) 8, 106-116 (1935); Cent. 1935, II 3298. (22) Essex, Ward, U.S. 1,477,047, Dec. 11, 1923; C.A. 18, 537 (1924). (23) Young (to Carbide and Carbon Chem. Corp.), U.S. 1,752,049, March 25, 1930; Cent. 1936, II 1280. (24) Coleman, Moore (to Dow Chem. Co), U.S. 2,021,852, Nov. 19, 1935; Cent. 1936, I 1505. (25) Darzens, Compt. rend. 208, 1503-1504 (1939); C.A. 33, 6243 (1939). (26) Mnookin, U.S. 2,049,467, August 4, 1936, Cent. 1937, I 1792. (27) Gilta, Bull. soc. chim. Belg. 31, 249 (1922) (28) Reboul, Ann. chim. (5) 14, 462-464 (1878). (29) Dahlen, Black, Foohey (to du Pont Co.), U.S. 1,979,144; Oct. 30, 1934; Cent. 1935 I 3051; [C.A. 29, 177 (1935)]. (30) Gavat, Ber. 76, 1115-1118 (1943).
- (31) Pearce, Eversole, J. Phys. Chem. 38, 383-393 (1934). (32) Zellner (to Tide Water Associated Oil Co.), U.S. 2,370,342, Feb. 27, 1945; C.A. 39 3534 (1945).

| :5210            | TRICHLOROACI<br>(Chloral) | ETALDEHYDE     | Cl <sub>8</sub> C.CHO                           | C <sub>2</sub> HOCl <sub>8</sub> | Beil. I - 616<br>I <sub>1</sub> -(328)<br>I <sub>2</sub> -(677) |
|------------------|---------------------------|----------------|-------------------------------------------------|----------------------------------|-----------------------------------------------------------------|
| B.P.             |                           | F.P.           |                                                 |                                  | (,                                                              |
| 97.8-9           | 98.1°                     | (1) -57.5° (9) | $D_4^{25} = 1.50$                               | 060 (1) cf. (                    | 19)                                                             |
| 97.75            | at 760 mm.                |                |                                                 | <b>)49 (</b> 15) (19             |                                                                 |
| 97.73            | at 760 mm.                | (3)            | 1.50                                            | 030 (9) cf. (                    | 19)                                                             |
| 97.7°            |                           | (4)            | 1.47                                            | 30 (5)                           |                                                                 |
| 97.4-8           | 7.6° at 768 mm.           | (5) (19)       | $D_4^{21.4} = 1.50$                             | $059 (16) n_1^2$                 | $\frac{21.4}{16} = 1.45412 (16)$                                |
| 97.2°            | cor. at 760 mm.           | (6)            | -                                               |                                  | <del>- v</del>                                                  |
|                  |                           |                | $D_4^{20} = 1.51$                               | 21 (10) n                        | $_{\rm D}^{20} = 1.4568 $ (17)                                  |
| 97.2°            | at 731.3 mm               | . (7)          |                                                 |                                  | 1.4559 (14)                                                     |
| 97°              | at 747 mm.                | (8)            | 1.50                                            | 66 (14)                          | 1.45572 (10)                                                    |
| 97°              | at 740 mm.                | (9)            | See also Note                                   | e <b>2.</b>                      |                                                                 |
| 96-97            | ° at 750 mm.              | (10)           |                                                 | $n_1^2$                          | $\frac{10}{10} = 1.4548  (16)$                                  |
| 96.5-9           | 6.9°                      | (11)           |                                                 | _                                |                                                                 |
| 96.5°            |                           | (12) (13)      | Note 1. For                                     | vapor press                      | of C between 0°                                                 |
| 96.4°            | at 749 mm.                | (14)           |                                                 | 30° see (18).                    |                                                                 |
| See also Note 1. |                           |                | Note 2. For $D_4^t$ over range 25-85° see (15). |                                  |                                                                 |

[See also chloral hydrate (3:1270) and chloral ethylalcoholate (3:0860).]

Important note: The chemistry of anhydrous chloral on one hand and that of chloral hydrate on the other is so closely interwoven that the division of material between them in this book is necessarily arbitrary. For instance, there are many reactions actually employing chloral hydrate as the starting point, which by virtue of the simultaneous use of conc.  $H_2SO_4$  are undoubtedly in effect reactions of anhydrous chloral In such cases the allocation of text between the two entries has been influenced by the nature and magnitude of the context. Although cross references have been liberally employed, the texts of both anhydrous chloral and of chloral hydrate should be compared.

#### MISCELLANEOUS PHYSICAL PROPERTIES

Binary systems contg.  $\tilde{C}$ .  $\tilde{C}$  with  $H_2O$  combines to give chloral hydrate (3:1270) q.v. (for use in this reaction of  $\tilde{C}$  in effecting drying of halogen compounds used in fire extinguishers see (20)); for extensive study of system  $\tilde{C}$  + aq. see (9).

Č with EtOH (1:6130) combines to give chloral ethylalcoholate (3:0860) q.v.— For analogous reactions of Č with other alcs. see below under chemical behavior of Č.

Azeotropic mixtures containing  $\bar{\mathbb{C}}$ . A few such systems are known including the following:  $\bar{\mathbb{C}}$  with methylcyclohexane (hexahydrotoluene) (1:8410) gives a const.-boilg. mixt., b.p. 94.45° at 760 mm., contg. 57%  $\bar{\mathbb{C}}$  (2);  $\bar{\mathbb{C}}$  with isobutyl formate (1:3065) gives a const.-boilg. mixt., b.p. 100.1° at 760 mm., contg. 60%  $\bar{\mathbb{C}}$  (21);  $\bar{\mathbb{C}}$  with *n*-propyl acetate (1:3075) gives a const.-boilg. mixt., b.p. 102.55° at 760 mm., contg. 50.5%  $\bar{\mathbb{C}}$  (21);  $\bar{\mathbb{C}}$  with nitromethane gives a const -boilg. mixt., b.p. 93° at 760 mm., contg. 65%  $\bar{\mathbb{C}}$  (20).

# PREPARATION OF C

#### FROM HALOGEN-FREE STARTING POINTS

From ethyl alcohol. [ $\bar{C}$  was first prepared (22) from EtOH (1:6130) by action of Cl<sub>2</sub>; for discussion of mechanism of reaction see (23) (24); note that various by-products (25) (26) such as 1,1-dichloroethane (3:5035), 1,2-dichloroethane (3:5130), 1,1,2-trichloroethane (3:5330),  $\beta,\beta,\beta$ -trichloroethanol (3:5775), ethyl dichloroacetate (3:5850), and chloroform

(3:5050) have been detected; for patents on prepn. of  $\tilde{C}$  (or its hydrate) from EtOH with Cl<sub>2</sub> see (27) (28); for use of Cl<sub>2</sub> in pres. of FeCl<sub>3</sub> see (29).]

From acetaldehyde. [For prepn. of C from acetaldehyde (1:0100) with Cl<sub>2</sub> see (30) (31).]

From other non-halogenated materials. [For formation of  $\tilde{C}$  from ethyl formate (1:3000) with  $SO_2Cl_2$  in s.t. at 170° (32) or from starch or sucrose by distn. with  $MnO_2 + HCl$  (33) see indic. refs.]

#### From Halogenated Starting Materials

From chloro-unsaturates. [For formn. of  $\bar{C}$  from 1,1,2-trichloroethylene (3:5170) with large excess Cl<sub>2</sub>O in CCl<sub>4</sub> at  $-20^{\circ}$  (34) or on oxidn. in pres. of FeCl<sub>3</sub>, AlCl<sub>3</sub>, TiCl<sub>4</sub>, or SbCl<sub>3</sub> as directed (35) see indic. refs.; from chloroacetylene (3:7000) with aq. 30% NaOCl + H<sub>3</sub>BO<sub>3</sub> see (36).]

From carbon tetrachloride. [For prepn. of  $\tilde{C}$  from CCl<sub>4</sub> (3:5100) with formaldehyde + SO<sub>2</sub>Cl<sub>2</sub> + cat. at high temp. (200-500°) and high press. (20-200 atm.) see (404).]

From various chloral derivatives. [For prepn. of  $\tilde{C}$  from chloral hydrate (3:1270) by dehydration with conc.  $H_2SO_4$  (note that  $\tilde{C}$  is appreciably soluble in conc.  $H_2SO_4$  (9)) or with  $CaC_2$  slowly in cold but rapidly at 100° (37); from chloral ethylalcoholate (3:0860) (or other chloral alcoholates) with conc.  $H_2SO_4$ ; from chloral polymers such as "metachloral" by htg. at 180-200° (38); from trichloroacetaldehyde diethylacetal ("trichloroacetal") (3:6317) above 200° (39) or on distn. with conc.  $H_2SO_4$  (39) (40); from dichloroacetaldehyde diethylacetal ("dichloroacetal") (3:6110) with  $Cl_2$  at 60-70° (41) see indic. refs.]

# CHEMICAL BEHAVIOR OF C WITH INORGANIC REACTANTS

GENERAL

[For review of chemistry of  $\bar{C}$  and its hydrate (3:1270) see (42).]

# REDUCTION OF C

According to the nature of the reagent and the conditions,  $\bar{C}$  (or its hydrate) may undergo reduction either at its —CCl<sub>3</sub> group or at its —CHO group.

Reduction at —CCl<sub>3</sub> group [ $\bar{C}$  with H<sub>2</sub> + Pd in alc. KOH (43) or with H<sub>2</sub> + Ni + aq. alk. (44) splits off all its halogen as HCl. —  $\bar{C}$  with Zn + AcOH (45) (46), with Al + AcOH (75), with Zn + strong HCl (47) (48), with Zn + dil. H<sub>2</sub>SO<sub>4</sub> (49) (50), reduces to acetaldehyde (1:0100); because of easy volatility of this product the reaction may be used for the identification and detection of  $\bar{C}$  (47) (49) (50), or for detection of  $\bar{C}$  in presence of CHCl<sub>3</sub> (3:5050) or of  $\alpha,\alpha,\beta$ -trichloro-n-butyraldehyde ("butyrchloral") (3:5910) (49). — Note that  $\bar{C}$  with aq. Zn or Fe powder especially on warming gives (51) CH<sub>4</sub> + MeCl (3:7005) + CH<sub>2</sub>Cl<sub>2</sub> (3:5020).]

[ $\ddot{\mathbf{C}}$  in aq. with Al/Hg gives (52) dichloroacetaldehyde hydrate (3:1085), while C (as hydrate) on electrolytic reduction (53) gives dichloroacetaldehyde (3:5180) + chloroacetaldehyde (3:7212) + acetaldehyde (1:0100).]

Reduction at —CHO group. [Č with Al(OEt)<sub>3</sub> in abs. EtOH gives (yields: 85% (54), 84% (55), 80% (56)) (57) (58) (59) cf. (60) 2,2,2-trichloroethanol-1 (3:5775); for reduction of Č to this same product using Al isopropylate in isopropyl alc. (61) in pres. of acetaldehyde (yield 72–87% (62)), C<sub>2</sub>H<sub>5</sub>OMgBr (63), (CH<sub>3</sub>)<sub>2</sub>CHOMgBr (63), or other metallic isopropylates (64), ZnEt<sub>2</sub> (65) (66), AlEt<sub>3</sub> compd. with ether (88.5% yield (67)) (note, however, that SnEt<sub>4</sub> is not effective (67)), or fermenting yeast (68) (69), see indic. refs.—For formn. of 2,2,2-trichloroethanol-1 (3:5775) during reaction of Č with various RMgX compounds see below under behavior of Č with RMgX cpds.]

# OXIDATION OF C

Č or its hydrate (3:1270) on oxidation under appropriate conditions gives trichloroacetic acid (3:1150); under some circumstances extensive decompn. also occurs (see below).

[ $\bar{\mathbf{C}}$  on oxidn. with fumg. HNO<sub>3</sub> (70) cf. (71), with HNO<sub>2</sub> (72), with NO<sub>2</sub> at 40-60° (70% yield (73)) or with aq. chlorates + cat. (74) gives trichloroacetic acid (3:1150); for formn. of latter as by-product of action of  $\bar{\mathbf{C}}$  with O<sub>2</sub> including comments on inhibitors, etc., see (38) (75).]

[Chloral hydrate (3:1270) on oxidn. with fumg. HNO<sub>3</sub> (63% yield (76)) cf. (72), with KMnO<sub>4</sub> (77) (80), with KClO<sub>3</sub> (78), with aq. chlorates + cat. (74), or with Ca(OCl)<sub>2</sub> (79) gives trichloroacetic acid (3:1150).]

Chloral hydrate (3:1270) reduces NH<sub>4</sub>OH/AgNO<sub>3</sub> (81) or Fehling's soln. (for study of sensitivity of this reaction see (82) [for oxidn. of chloral hydrate by HgO, KMnO<sub>4</sub>, or CrO<sub>3</sub> see (83); for reduction by chloral hydrate of AgCl, AgBr, AgI, or AgSCN to metallic silver (84) or of alkaline solns. of Au, Ag, Bi, and Cu salts (85) see indic. refs.].

[C in dry C<sub>6</sub>H<sub>6</sub> is but slowly attached by silver oxide (86).]

#### REACTIONS INVOLVING DECOMPOSITION OF C

(See also below under behavior of C with alkalies.)

[ $\bar{C}$  with aq. HIO<sub>3</sub> at 100° decomposes yielding (87) CHCl<sub>3</sub> (3:5050) + CO<sub>2</sub> + ICl<sub>3</sub> + I<sub>2</sub>.  $-\bar{C}$  on chlorine-sensitized (88) or bromine-sensitized (12) photochemical oxidn. with O<sub>2</sub> at 70-90° decomposes yielding (88) (12) COCl<sub>2</sub> (3:5000) + CO + HCl.]

[ $\overline{C}$  on thermal decompn. at about 440°C. especially if catalyzed by  $I_2$  (89) or NO (89) (90) gives CHCl<sub>3</sub> (3:5050) + CO.]

[Č with AlCl<sub>3</sub> on htg. gives various products according to conditions; these include tetrachloroethylene (3:5460) (91) (92), pentachloroethane (3:5880) (93),  $\alpha,\alpha,\beta,\beta,\gamma,\gamma,\gamma$ heptachloro-n-butyraldehyde ("perchlorobutanal") (94), chloral polymers (especially metachloral (91) (92) (95)), chloralide (3:3510) (92) (94), and others.]

# BEHAVIOR OF C WITH HALOGENS

With chlorine. [ $\bar{C}$  with  $Cl_2$  in sunlight decomposes giving (96)  $CCl_4$  (3:5100) +  $CCl_2$  (3:5000) +  $CCl_2$  (3:5000) +  $CCl_2$  at 70-90° giving  $CCl_4$  (3:5100) +  $CCl_2$  +  $CCl_2$  +  $CCl_2$  with  $Cl_2$  at 70-90° giving  $CCl_4$  (3:5100) +  $CCl_2$  +  $CCl_2$  +  $CCl_2$  +  $CCl_2$  with  $Cl_2$ ,  $CCl_2$  (3:5100) +  $CCl_2$  +  $CCl_2$  with  $CCl_2$  +  $CCl_2$  (3:5100) +  $CCl_2$  +  $CCl_2$  with  $CCl_2$  +  $CCl_2$  with  $CCl_2$  +  $CCl_2$  (3:5100) +  $CCl_2$  +  $CCl_2$  with  $CCl_2$  with  $CCl_2$  +  $CCl_2$  with  $CCl_2$  with  $CCl_2$  +  $CCl_2$  +

With bromine. [ $\ddot{C}$  with Br<sub>2</sub> at 150° gives (99) trichloroacetyl bromide + bromotrichloromethane + CO + HBr; for extensive study of photochem. reaction of  $\ddot{C}$  with Br<sub>2</sub> at 70-90° giving bromotrichloromethane, CHCl<sub>3</sub> (3:5050), COBr<sub>2</sub>, CO + HBr see (13).]

# BEHAVIOR OF C WITH INORGANIC ACIDS

Č with inorganic acids reacts in various ways according to circumstances; e.g., by formn. of addn. products, by decomposition, by formation of chloralide, by polymerization (see also its own heading below), or by combinations of these reactions.

With HCl. [ $\bar{C}$  with HCl gas at -15 to  $-75^{\circ}$  yields (100) (113) an addn. product  $\bar{C}$ .HCl commonly designated as chloral hydrochloride; this crystn. product with aq. dissociates giving  $\bar{C}$  (as hydrate) + HCl; note that little, if any, polymerization occurs (100).]

With HBr. [C with HBr gas at -15° yields (100) an addn. prod.; C.HBr, similar in behavior to that of the preceding HCl addn. product.]

With HNO<sub>3</sub>. [Č with HNO<sub>3</sub> at 20° yields (101) an addition prod., C.HNO<sub>3</sub>.]

With  $H_2SO_4$ . [ $\bar{C}$  with fumg.  $H_2SO_4$  contg. 2%  $SO_3$  gives on warming substantially 100% yields (102) of chloralide (3:3510); note, however, that  $\bar{C}$  with fumg.  $H_2SO_4$  contg.

10% SO<sub>2</sub> gives at 0° an addn. prod. of the type  $C_m$ .(SO<sub>3</sub>)<sub>n</sub>.(H<sub>2</sub>O)<sub>p</sub> which on warming dec. giving  $COCl_2$  (3:5000) + SO<sub>2</sub>Cl<sub>2</sub> + SO<sub>2</sub> + CO<sub>2</sub> + CO + HCl (102); for other (older) refs. on conversion of  $\bar{C}$  with fumg. H<sub>2</sub>SO<sub>4</sub> to chloralide (3:3510) see (61) (81) (103) (104); for conversion of chloral hydrate (3:1270) with fumg. H<sub>2</sub>SO<sub>4</sub> to chloralide (3:3510) (yields: 61% (105), 44-51% (106)) see indic. refs. — Note, however, that within a narrow range of strength (best about 79.8%) H<sub>2</sub>SO<sub>4</sub> appears to give with  $\bar{C}$  or its hydrate certain unstable addition products of type  $CCl_3.CH(OH).SO_2OH.H_2O$  (148).]

With CISO<sub>3</sub>H. [ $\bar{C}$  with chlorosulfonic acid at 50° for several days gives (65% yield (107)) bis- $(\alpha,\beta,\beta,\beta$ -tetrachloroethyl) ether (3:0738); note that even at -50° for 10–12 hrs. yield of this prod. may be as high as 50%; also that various other products including chloralide (3:3510) are also formed; and finally that  $\bar{C}$  with FSO<sub>3</sub>H behaves similarly (107).]

# POLYMERIZATION OF C

 $\bar{C}$  is known to give at least three polymers; the oldest and most common polymer is that designated as "metachloral"; in addition two isomeric  $\alpha$ - and  $\beta$ -"parachlorals" (possibly comprising a pair of cis-trans stereomers) have also been reported (108).

Metachloral. [ $\bar{C}$  in presence of H<sub>2</sub>SO<sub>4</sub> below 0° (108) (sometimes suddenly cf. (109)), fumg. H<sub>2</sub>SO<sub>4</sub> (18), pyridine (18), or AlCl<sub>3</sub> as directed (18) (92) (110) gives metachloral [Beil. I-618, I<sub>1</sub>-(329), I<sub>2</sub>-(680)], a white amorphous polymer of unknown mol. wt. or structure. This polymer is insol. aq., alc., ether, or acids but dissolves in aq. Na<sub>2</sub>CO<sub>3</sub> forming chloral hydrate (3:1270), on distn. at 180° regenerates  $\bar{C}$ , oxidizes with HNO<sub>3</sub> to trichloroacetic acid, with alkalies behaves like  $\bar{C}$  (see also below), and with ClSO<sub>3</sub>H at 50° gives (107) bis-( $\alpha,\beta,\beta,\beta$ -tetrachloroethyl) ether (3:0738).]

Parachloral. [ $\bar{C}$  with a large excess conc.  $H_2SO_4$  at 15–20°, carefully dissolved and stood 3 days at 15–20°, gives in addn. to metachloral (above) and chloralide (3:3510) small amts. of two isomeric trimers, viz.,  $\alpha$ -parachloral, rhombs from hot alc., m.p. 116°, b.p. 223° at 760 mm., and  $\beta$ -parachloral, pr. from alc., m.p. 152°, b.p. 250°. Note that yield of parachloral is only about 1% of original  $\bar{C}$ , that both are more sol. in hot alc. than the main prod. metachloral, that neither form is convertible to the other or to metachloral, and that both on distn. at ord. press. dissociate to  $\bar{C}$ .]

Mixed polymers. [ $\bar{C}$  (1 mole) with acetaldehyde (3 moles) + HCl gas at 0° for 15-20 hrs. gives (78% yield (111)) 2,4-dimethyl-6-(trichloromethyl)-1,3,5-trioxane, b.p. 97° at 13 mm.,  $D_4^{16} = 1.3915$ ,  $n_D^{16} = 1.4708$ . Similar mixed polymers (presumably analogous to the preceding case) are similarly formed (112) from  $\bar{C}$  with trimethylacetaldehyde (1:0133),  $\bar{C}$  with propionaldehyde (1:0110), and  $\bar{C}$  with isobutyraldehyde (1:0120).]

Behavior of  $\tilde{C}$  with alkalies.  $\tilde{C}$  with conc. aq. alkalies (even in cold (22)), or  $\tilde{C}$  on distn. with aq. alkalies or alk. earths (22) (114) (115), undergoes cleavage into CHCl<sub>3</sub> (3:5050) + the corresp. salt of formic acid (1:1005); this cleavage is claimed to occur also even with conc. NH<sub>4</sub>OH (114) or aq. amines (114) and may also produce some CO (114) and chloride ion. — [For extensive studies of kinetics of this cleavage see (116) (117) (118) (119) (120) (121) (122) (126).]

Note that  $\tilde{C}$  is very stable toward hydrolysis by aq. (126) (even in s.t. at 190-200° for 2 hrs. (118)) or by dilute acid (even in s.t. at 150° (118)); however,  $\tilde{C}$  with aq. in sunlight is claimed (123) to give formaldehyde (1:0145) +  $CO_2$  + HCl (presumably by formn. and decompn. of OCH.C(OH)<sub>3</sub>), and C with aq. is claimed (124) to undergo slight formn. of dichloroacetic acid (3:6208) + HCl.

 $\overline{C}$  with alc. KOH gives (125) CHCl<sub>3</sub> (3:5050) + ethyl formate (1:3000).

[Note that chloral deuterate,  $CCl_2CH(OD)_2$  (from  $\tilde{C}+D_2O$ ), with NaOD (17) or Ca-(OD)<sub>2</sub> (127) in D<sub>2</sub>O gives deuteriochloroform, CDCl<sub>3</sub>, b.p. 0.5° higher than ord. CHCl<sub>3</sub>

(3:5050), m.p. -64.69 to  $-64.15^{\circ}$ ,  $D_4^{20} = 1.5004$  (higher than 1.4888 for CHCl<sub>3</sub>),  $n_D^{20} = 1.4450$  (same as CHCl<sub>3</sub>) (17).]

# BEHAVIOR OF C WITH AMMONIA, HYDROXYLAMINE, HYDRAZINE, ETC.

With NH<sub>3</sub>. [C̄ with dry NH<sub>3</sub> gas (81) (48) in dry CHCl<sub>3</sub> (128) (129) or chloral hydrate (3:1270) with NH<sub>3</sub> in dry ether (129) gives a white solid, m.p. 72-74° (129), 62-64° (128), originally (81) (48) (128) regarded as chloralammonia CCl<sub>3</sub>.CH(OH).NH<sub>2</sub> but later (on discovery of double the expected mol. wt. (129) cf. (130)) thought to have structure CCl<sub>3</sub>.CH(OH).NH.CH(NH<sub>2</sub>).CCl<sub>3</sub>.H<sub>2</sub>O. — The prod. with KCN in conc. aq. NH<sub>4</sub>OH gives (93% yield (131)) dichloroacetamide, m.p. 98.5-99.0° (131).]

[Note that chloral hydrate (3:1270) with NH<sub>4</sub>OAc at 100° gives (132) a prod., cryst. from alc., m.p. 97°, regarded as a dimeric form [Beil. XXIII-15] of chloralimide, CCl<sub>5</sub>—CH=NH; this dimer is also accompanied (132) cf. (133) by two stereoisomeric trimers [Beil. XXVI-9-10] of chloralimide.]

With hydroxylamine. The behavior of C with hydroxylamine differs according to the circumstances employed.

[Č as chloral hydrate (3:1270) with large excess NH<sub>2</sub>OH.HCl (4 moles) in a little aq. (134) or with NH<sub>2</sub>OH.HCl (1 mole) in pres. of conc. aq. CaCl<sub>2</sub> (2 moles) at 50-60° (135) gives trichloroacetaldoxime, m.p. 56° (135), 39-40° (134), b.p. 85° at 20 mm. (135).]

[C as chloral hydrate (3:1270) with NH<sub>2</sub>OH.HCl (3 moles) in aq. Na<sub>2</sub>CO<sub>3</sub>/aq. NaOH as directed (136) (137) gives (yields: 50% (137), 40% (136) (138)) the alkali-stable form of chloro-oximino-acetaldehyde oxime ("chloroamphiglyoxime") [Beil. III-605, III<sub>1</sub>-(216), III<sub>2</sub>-(393)], ndls. of monohydrate from boilg. aq., m.p. 114° (136) (138) cf. (137); note that this prod. in dry ether with HCl gas (136) or with fumg. HCl (138) isomerizes to the acid-stable form ("chloroantiglyoxime") [Beil. III-606, III<sub>1</sub>-(216), III<sub>2</sub>-(393)], m.p. 161° (138), 161° dec. (136).]

[Note, however, that chloral hydrate (3:1270) (1 mole) with NH<sub>2</sub>OH.HCl (2 moles) powdered with dry Na<sub>2</sub>CO<sub>3</sub> (1 mole), allowed to stand in a desiccator some hours, then dissolved in aq. and extracted with ether gives (139) an addition product, cryst. from ether, CHCl<sub>3</sub>, or C<sub>6</sub>H<sub>6</sub>, m.p. 98°, regarded as chloralhydroxylamine, CCl<sub>3</sub>.CH(OH).NH.OH.]

[For behavior of  $\tilde{C}$  with NH<sub>2</sub>OH.HCl + aniline giving isatin see below under reaction of  $\tilde{C}$  with primary aromatic amines.]

# WITH HYDRAZINE

[C as chloral hydrate (3:1270) with hydrazine hydrate in aq. (140), ether (141), or AcOH (142), or merely fused with hydrazine hydrochloride or sulfate (143), appears to give first the expected addition product, viz., chloralhydrazine, CCl<sub>3</sub>.CH(OH).NH.NH<sub>2</sub>, ndls. from alc., m.p. 100° (141), 85° dec. (140); note, however, that this structure is not certain and that the material readily changes to a compound C<sub>4</sub>H<sub>2</sub>ON<sub>2</sub>Cl<sub>5</sub>, m.p. 187° cf. (140) (141) (142) (143).]

BEHAVIOR OF C WITH MISCELLANEOUS INORGANIC REACTANTS

With various compounds of phosphorus. [Č with PCl<sub>5</sub> in acetone gives a product regarded (144) cf. (145) as CCl<sub>3</sub>.CH OPCl<sub>3</sub>, b.p. 238-242°, accompanied by tetrachloroethylene (3:5460) and pentachloroethane (3:5880).]

[Č with PCl<sub>3</sub>Br<sub>2</sub> is claimed (146) to give 1,1-dibromo-2,2,2-trichloroethane [Beil. I-93,  $I_{2}$ -(65)], b.p. 93-95° at 14-15 mm.,  $D_{4}^{19.5} = 2.295$ ,  $D_{5}^{26.7} = 1.52991$  (146).]

[ $\tilde{C}$  with  $P_2S_5$  in s.t. at 160-170° gives (147) a complicated reaction mixture from which only trichloroethylene (3:5170) has been identified.]

With various salts of inorganic acids (for KCN see further below).

With alkali bisulfites (or sulfites). [C or its hydrate (3:1270) with aq. alk. bisulfites (81) (149) reacts readily; for discussion of products see (81) (150) (151).]

With hydrogen peroxide. [ $\bar{C}$  with  $H_2O_2$  in ether (151), or  $\bar{C}$  with  $K_2S_2O_8 + H_2SO_4$  at ord. temp., gives (152) "dichloral peroxide hydrate," viz., CCl<sub>3</sub>.CH(OH)—O.O.CH(OH).-CCl<sub>3</sub>, cryst. from  $C_6H_6$  or CHCl<sub>3</sub>, m.p. 122° dec.]

# CHEMICAL BEHAVIOR OF C WITH ORGANIC REACTANTS

# BEHAVIOR OF C WITH HYDROCARBONS

With alkanes. [C with aliphatic hydrocarbons in presence of AlCl<sub>3</sub> reacts violently, but no definite products have been isolated (153).]

With aromatic hydrocarbons.  $\bar{C}$  with aromatic hydrocarbons in presence of  $H_2SO_4$  or other condensing agent (note that, when  $H_2SO_4$  is present in large excess, chloral hydrate (3:1270) is frequently substituted for  $\bar{C}$ ) reacts in either or both of two modes:  $\bar{C}$  with 1 mole of hydrocarbon giving trichloromethyl-aryl-carbinols,  $\bar{C}$  with 2 moles of hydrocarbon giving 1,1,1-trichloro-2,2-diarylethanes. Although reaction of  $\bar{C}$  with hydrocarbons cannot here be summarized for all possible cases, yet the following examples will exemplify both modes of reaction.

[C with  $C_6H_6$  + AlCl<sub>3</sub> (154) (156) or chloral hydrate (3:1270) with  $C_6H_6$  + AlCl<sub>3</sub> (153) cf. (158) (162) or with  $C_6H_6$  + conc.  $H_2SO_4$  (155) gives trichloromethyl-phenyl-carbinol [Beil. VI-476, VI<sub>1</sub>-(237)], m.p. 37° (155), b.p. 145° at 15 mm. (155) (corresp. acetate, m.p. 87.5° (155); corresp. benzoate, m.p. 97.5° (155); corresp. p-nitrobenzoate, m.p. 109° (156)) accompanied (155) by 1,1,1-trichloro-2,2-diphenylethane (3:1420), the latter also obtainable from  $C + C_6H_6$  with conc.  $H_2SO_4$  (157) or with AlCl<sub>3</sub> in  $CS_2$  (80% yield (162)).]

[ $\bar{C}$  with toluene + AlCl<sub>3</sub> (154) or chloral hydrate (3:1270) (3 moles) with toluene (1 mole) + conc. H<sub>2</sub>SO<sub>4</sub> (155) gives trichloromethyl-p-tolylcarbinol [Beil. VI-508, VI<sub>1</sub>-(255)], m.p. 63-64° (154), 63° (155), 61.5-62.5° (159), 58-59° (160); b.p. 155° at 13.5 mm. (155), 154-156° at 13.5 mm. (154) (corresp. acetate, m.p. 107.5° (155), 105-106° (160); corresp. benzoate, m.p. 100.5° (155), 94-95° (160)). — On the other hand  $\bar{C}$  with toluene (2 moles) in pres. of H<sub>2</sub>SO<sub>4</sub> (161), or AlCl<sub>3</sub> (153) in CS<sub>2</sub> at 0° (162) gives (80% yield (162)) 1,1,1-trichloro-2,2-b1s-(p-tolyl)ethane [Beil. V-619, V<sub>1</sub>-(292), V<sub>2</sub>-(522)], m.p. 89° (161) (162) (155), also obtained as by-product of the above carbinol (155); for study of loss of HCl with alc. KOH yielding 1,1-dichloro-2,2-di-(p-tolyl)ethylene [Beil. V-648, V<sub>2</sub>-(559)], m.p. 92° (161), 85° (162) see (161) (162) (163).]

[For generally analogous behavior of  $\bar{C}$  with other aromatic hydrocarbons such as terbutylbenzene (405), m-xylene (153) (163), ethylbenzene (155), naphthalene (164), anthracene (164), or phenanthrene (164) in presence of condensing agents see indic. refs.]

# BEHAVIOR OF C WITH ARYL HALIDES

With chlorobenzene. [That  $\ddot{C}$  with chlorobenzene (3:7903) (1 mole) + conc. H<sub>2</sub>SO<sub>4</sub> gives the expected trichloromethyl-p-chlorophenyl-carbinol, b.p. 187-188° at 26 mm. (165) (corresp. acetate, m.p. 120-121° (165); corresp. benzoate, m.p. 128-129° (165)), has never been reported, this prod. having been obtd. only by condensation of p-chlorobenzaldehyde (3:0765) with CHCl<sub>3</sub> (3:5050) in pres. of KOH (23.5% yield (165)).

However, C or chloral hydrate with chlorobenzene (2 moles) + conc. H<sub>2</sub>SO<sub>4</sub> gives the

extremely important 1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane ("DDT") (3:3298) whose text should be consulted for further details.

With bromobenzene. [That  $\bar{C}$  with bromobenzene (1 mole) + conc.  $H_2SO_4$  gives the expected trichloromethyl-p-bromophenyl-carbinol, b.p. 183-187° at 18 mm. (166) (corresp. acetate, m.p. 145-147° (166)), has never been reported, this product having been obtd. (29% yield (166)) only by reaction of  $\bar{C}$  with p-Br.C<sub>6</sub>H<sub>4</sub>.MgCl.]

[However,  $\bar{C}$  or chloral hydrate (3:1270) with bromobenzene (2 moles) + conc. H<sub>2</sub>SO<sub>4</sub> + fumg. H<sub>2</sub>SO<sub>4</sub> gives (167) (168) 1,1,1-trichloro-2,2-bis-(p-bromophenyl)ethane, m.p. 144° (167), 139-141° (168); note that this prod. with alc. KOH loses HCl, giving (82% yield (167) (168)) 1,1-dichloro-2,2-bis-(p-bromophenyl)ethylene, m.p. 123.5° (167), 119-120° (168).]

With iodobenzene. [The carbinol to be expected from  $\bar{C}$  with iodobenzene (1 mole) + conc. H<sub>2</sub>SO<sub>4</sub> has not been reported.]

[However,  $\tilde{C}$  with iodobenzene (2 moles) + conc. H<sub>2</sub>SO<sub>4</sub> gives (155) 1,1,1-trichloro-2,2-bis-(p-iodophenyl)ethane, m.p. 172° (155).]

#### BEHAVIOR OF C WITH ORGANIC HYDROXY COMPOUNDS

#### With Alcohols

General. Since  $\bar{C}$  is an aldehyde, it may be expected (at least with the assistance of a condensing agent such as dry HCl) to react with 1 mole of an alcohol to yield the corresponding hemiacetal, CCl<sub>3</sub>.CH(OH)R, with 2 moles of an alcohol to give the corresponding acetal, CCl<sub>3</sub>.CH(OR)<sub>2</sub>, particularly since both these types of products are well known.

However, the special influence of the —CCl<sub>3</sub> group becomes apparent in this reaction and only the first type (hemiacetals) are usually obtained by direct condensation, the latter (acetals) being obtained indirectly. Moreover, members of the first group (hemiacetals) are formed with extreme ease (even in absence of condensing agents) so that, by analogy to the combination of chloral with water to give chloral hydrate (3:1270), they are generically designated as chloral alcoholates; e.g., chloral methylalcoholate, chloral ethylalcoholate, etc. Corresponding reaction of several molecules of chloral with multihydric alcohols can also occur as illustrated below.

The formation of these chloralalcoholates is profoundly influenced by conditions (especially the solvent (169)); furthermore, they readily dissociate into their original components on heating and, therefore, on heating in other alcohols (170) (171) or orthoformate esters of other alcohols (170) suffer reactions involving redistribution of the various alkyl radicals.

With monohydric alcohols. Although reaction of  $\bar{C}$  with all possible monohydric alcohols obviously cannot be included here, the following examples will serve to exemplify the reaction.

With methyl alcohol. [C with MeOH (1:6120) (1 mole) gives (171) (172) (173) (174), trichloroacetaldehyde monomethylacetal (chloral methylalcoholate), hygroscopic ndls., m.p. abt. 50° (172), 38° (171), b.p. 116° (173), 106° (172), 98° (174) (corresp. carbamate, m.p. 121° (175)). — Note that trichloroacetaldehyde dimethylacetal, CCl<sub>3</sub>.CH(OCH<sub>3</sub>)<sub>2</sub> [Beil. I-621, I<sub>2</sub>-(681)], b.p. 183.2° cor. (176), 68-69° at 10 mm. (177), is obtd. by indirect means; note incidentally that this acetal is isomeric with butyrchloral hydrate (3:1905) and with chloral ethylalcoholate (3:0860).]

With ethyl alcohol. [Č with EtOH (1:6130) gives trichloroacetaldehyde monoethylacetal (chloral ethylalcoholate) (3:0860), q.v. for details. For the corresp. acetal, viz., trichloroacetaldehyde diethylacetal, CCl<sub>3</sub>.CH(OC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, b.p. 204°, see its own text as 3:6317.

With n-propyl alcohol. [ $\bar{C}$  with n-PrOH (1:6150) (178) (171) (170), or with NaO-n-Pr (179) or chloral hydrate (3:1270) with n-PrOH (1:6150) (170) gives (yields: 90% (178), 77-90% (170)) trichloroacetaldehyde n-propylhemiacetal (chloral n-propylalcoholate), liquid, b.p. 119-121° at 742.4 mm. (170), 120-122° (178),  $D_4^{25.7} = 1.2996$  (170),  $D_5^{25} = 1.4622$ . (Note that the corresp. trichloroacetaldehyde di-n-propylacetal is unreported.)]

With isopropyl alcohol. [C with iso-PrOH (1:6135) (178) (171) gives trichloroacetaldehyde isopropylhemiacetal (chloral isopropylalcoholate), m.p. 47° (178), 45° (171); b.p. 108° (178) (note that the corresp. trichloroacetaldehyde di-isopropylacetal is unreported).]

With n-butyl alcohol. [C with n-BuOH (1:6180) gives (171) (179) (170) trichloro-acetaldehyde n-butylhemiacetal (chloroal n-butylalcoholate) (3:0843), m.p. 49-50° (180), 49° (171) (170); b.p. 129-130° at 742 mm. (170) (note that corresp. trichloroacetaldehyde di-n-butylacetal is unreported).]

With isobutyl alcohol. [C with iso-BuOH (1:6165) gives (180) trichloroacetaldehyde isobutylhemiacetal (chloral isobutylalcoholate), liquid, b.p. 122° without decompn. (180); note that trichloroacetaldehyde df-isobutylacetal, b.p. 241.8° at 760 mm. (181), has been prepared indirectly).]

With sec-butyl alcohol. [Č with butanol-2 (1:6155) gives (180) (171) trichloroacetaldehyde sec-butylhemiacetal (chloral sec-butylalcoholate), m.p. 12° (171), b.p. 120-121° (180); note that the corresp. trichloroacetaldehyde di-sec-butylacetal is unreported.]

With ter-butyl alcohol. [C with ter-butyl alc. (1:6140) gives (171) trichloroacetaldehyde ter-butylhemiacetal (chloral ter-butylalcoholate), m.p. 43° (171) (note that the corresp. trichloroacetaldehyde di-ter-butylacetal is unreported).]

With other monohydric alcohols. [For analogous forms, of hemiacetals from  $\bar{C}$  with isoamyl alc. (1:6200) (180), with ter-AmOH (1:6160) (171), with allyl alc. (1:6145) (99), with n-octyl alc. (1:6255) (171), with benzyl alc. (1:6480) (171), with cinnamyl alc. (1:5920) (171), with methyl-neopentyl-carbinol (182), or with  $\beta,\beta,\beta$ -trichloro-ter-butyl alcohol ("Chloretone") (3:2662) (183) see indic. refs.]

With dihydric alcohols. With ethylene glycol. [ $\bar{C}$  (1 mole) with ethylene glycol (1:6465) (1 mole) at 0° for 2 weeks gives (184) cf. (185) trichloroacetaldehyde ( $\beta$ -hydroxyethyl)-hemiacetal ("chloral ethyleneglycolate"), m.p. 50–51° (184), 42° (185); note that this product with conc. H<sub>2</sub>SO<sub>4</sub> on stdg. or htg. loses 1 H<sub>2</sub>O with ring closure to the cyclic acetal, 2-(trichloromethyl)-1,3-dioxolane, m.p. 40° (184). — However,  $\bar{C}$  (2 moles) with ethylene glycol (1:6465) (1 mole) gives (186) cf. (185) ethylene glycol 1,2-bis-( $\beta$ , $\beta$ , $\beta$ -trichloro-methyl)-1,3-dioxolane, m.p. 42° (186).]

With polyhydric alcohols. With glycerol. [For behavior of  $\bar{C}$  with glycerol (1:6540) see (186) (184).]

With erythritol. [For behavior of C with erythritol (1:5825) see (186).]

With various carbohydrates. C combines with various polyhydroxy compounds of the carbohydrate type to give products collectively designated as chloraloses. Such combinations can be effected with pentoses or hexoses, with various stereoisomers within any such group, and more than one molecule of chloral per mole of carbohydrate is sometimes involved. In the light of modern work these chloraloses are probably cyclic acetals. Although space cannot here be taken for an extensive record, the following comments will serve as starting points for further exploration.

The most important chloralose is that derived from d-glucose and often indexed as glucochloralose. Two forms of this compound are known, viz.,  $\alpha$ -glucochloralose and  $\beta$ -glucochloralose; for important studies of their structures see (187) (188). For study of  $\beta$ -xylochloralose see (189).

For important (but older) factual data on chloraloses see (190) (191) (192).

Although the biochemical and physiological aspects of the chloraloses cannot be treated here, attention is called to several recent papers (193) (194) (195) (196) relative to their detection and determination, especially in body fluids.

#### WITH PHENOLS

Because in phenois there is involved not only the H of the OH group but also reactive H of the aromatic nucleus, their condensation with Č may lead to various products according to circumstances.

With monohydric phenols. With phenol. [ $\bar{C}$  (1 mole) with phenol (1:1420) (1 mole) + small amt. dry  $K_2CO_3$  in CHCl<sub>3</sub> gives (7.5% yield (148)) trichloroacetaldehyde phenylhemiacetal, m.p. 15-18°, and rather unstable (148); note that the corresp. trichloroacetaldehyde diphenylacetal is unreported. — However,  $\bar{C}$  with phenol + dry  $K_2CO_3$  as directed (197) (198), or chloral hydrate (3:1270) with phenol + dry  $K_2CO_3$  on fusion and long stdg. (199), gives trichloromethyl-(p-hydroxyphenyl)-carbinol (corresp. diacetate, m.p. 155° (198), corresp. dibenzoate, m.p. 132° (198)).]

[Č (1 mole) with phenol (1:1420) (2 moles) in AcOH/H<sub>2</sub>SO<sub>4</sub> (200) cf. (199) or in pres. of AlCl<sub>3</sub> (153), or chloral hydrate (3:1270) (1 mole) with phenol (1:1420) (2 moles) + conc. H<sub>2</sub>SO<sub>4</sub> (201) (202), gives (80% yield (201)) 1,1,1-trichloro-2,2-bis-(p-hydroxyphenyl)-cthane [Beil. VI-1006, VI<sub>1</sub>-(491)], m.p. 212° (153), 202° (201) (199), 202° dec. (200), 199–200° (202).]

[For different behavior of  $\tilde{C}$  in large excess with phenol (1:1420) + conc. H<sub>2</sub>SO<sub>4</sub> see (207).]

With p-cresol. [ $\bar{C}$  (1 mole) with p-cresol (1:1410) (1 mole) + dry K<sub>2</sub>CO<sub>3</sub> in CHCl<sub>3</sub> gives (35% yield (148)) cf. (203) trichloroacetaldehyde p-tolyhemiacetal, m.p. 52-56° (203), 46-47° (48); note, however, that the corresp. trichloroacetaldehyde di-p-tolylacetal is unreported. — However,  $\bar{C}$  (1 mole) with p-cresol (1:1410) (1 mole) + dry K<sub>2</sub>CO<sub>3</sub> as directed (197) (198) (199), or chloral hydrate (3:1270) + p-cresol + dry HCl (148), gives trichloromethyl-(2-hydroxy-5-methylphenyl)-carbinol, m.p. 147-148° (197) (199) (148) (corresp. diacetate, m.p. 106° (198) 104.5° (148); corresp. dibenzoate, m.p. 139° (198)).]

[Note that chloral hydrate (3:1270) with o-cresol (1:1400) or with m-cresol (1:1730) + conc. H<sub>2</sub>SO<sub>4</sub> gives (202) products presumably to be regarded respectively as 1,1,1-trichloro-2,2-bis-(4-hydroxy-3-methylphenyl)ethane, m.p. 121-122°, and as 1,1,1-trichloro-2,2-bis-(4-hydroxy-2-methylphenyl)ethane, m.p. 162-163°, although no other record of these compounds is reported.]

With other monohydric phenols. [For hemiacetal formn. in pres. of  $K_2CO_3$  or  $N_{a_2}CO_3$  from  $\tilde{C}$  + other phenols, such as o-methoxyphenol (guaiacol) (1:1405) (197) (198) (199) o-ethoxyphenol (1:1745) (204), 2,6-dimethoxyphenol (205) (206), o-chlorophenol (3:5980) (197), p-chlorophenol (3:0475) (197), see indic. refs.]

With polyhydric phenols: [For hemiacetal formns. in pres. of  $K_2CO_3$  from  $\bar{C}$  with polyhydric phenols, such as pyrocatechol (1:1520) (198) (199), resorcinol (1:1530) (198) (199), see indic. refs.]

# BEHAVIOR OF C WITH ORGANIC SH COMPOUNDS (MERCAPTANS AND THIOPHENOLS)

 $\ddot{C}$  with RSH compds. in pres. of dry HCl combines mole for mole yielding monothiohemiacetals of the type CCl<sub>8</sub>.CH(OH).SR. [e.g., for behavior of  $\ddot{C}$  in dry C<sub>6</sub>H<sub>6</sub> + dry HCl with ethyl, *n*-butyl, and benzyl mercaptans, or with thiophenol, *p*-chlorothiophenol or *p*-thiocresol, see (8); for study of vapor-phase reaction of  $\ddot{C}$  + mercaptans see (208).]

# BEHAVIOR OF C WITH PHENOL ETHERS

# With Ethers of Monohydric Phenols

With phenyl methyl ether (anisole). [ $\bar{C}$  with 2 moles anisole (1:7445) + conc. H<sub>2</sub>SO<sub>4</sub> or AlCl<sub>8</sub> (153) (162) or chloral hydrate (3:1270) with 2 moles anisole (1:7445) in AcOH/H<sub>2</sub>SO<sub>4</sub> (201) gives (yields: 94% (162), 90% (201)) 1,1,1-trichloro-2,2-bis-(p-methoxyphenyl)ethane [Beil. VI-1007, VI<sub>1</sub>-(491)], m.p. 94° (162), 92° (201), 89° (209), 78° (153). — Note that neither trichloroacetaldehyde p-methoxyphenylhemiacetal nor trichloroacetaldehyde di-(p-methoxyphenyl)acetal is reported.]

With phenyl ethyl ether (phenetole). [ $\bar{C}$  with 2 moles phenetole (1:7485) + conc. H<sub>2</sub>SO<sub>4</sub> or AlCl<sub>3</sub> (153) (162) or chloral hydrate (3:1270) with 2 moles phenetole (1:7485) in AcOH/H<sub>2</sub>SO<sub>4</sub> (209) gives (91% yield (162)) 1,1,1-trichloro-2,2-bis-(p-ethoxyphenyl)-ethane [Beil. VI-1007, VI<sub>1</sub>-(491)], m.p. 105.3° (162), 105° (209). — Note that neither trichloroacetaldehyde p-ethoxyphenylhemiacetal nor trichloroacetaldehyde di-(p-ethoxyphenyl)acetal is reported.]

With ethers of other monohydric phenols. [For analogous prepn. of other 1,1,1-trichloro-2,2-di(alkoxyaryl)ethanes from  $\bar{C}$  with p-cresol methyl ether (1:7495) (162), p-cresol ethyl ether (1:7535) (162), ethyl  $\alpha$ -naphthyl ether (1:7635) (201), and ethyl  $\beta$ -naphthyl ether (1:7135) (201) see indic. refs.]

# With Ethers of Dihydric Phenols

With pyrocatechol dimethyl ether (veratrole). [For behavior of chloral hydrate (3:1270) with veratrole (1:7560) + conc. H<sub>2</sub>SO<sub>4</sub> yielding (210) 1,1,1-trichloro-2,2-bis-(3,4-dimethoxyphenyl)ethane [Beil. VI-1172], m.p. 116-119° (211), see indic. refs.]

With hydroquinone dimethyl ether. [Č with hydroquinone dimethyl ether (1:7160) in AcOH/H<sub>2</sub>SO<sub>4</sub> gives (212) 1,1,1-trichloro-2,2-bis-(2,5-dimethoxyphenyl)ethane [Beil. VI-1172], m.p. 123° (212).]

# BEHAVIOR OF C WITH ALDEHYDES

# With Formaldehyde

[Chloral hydrate (3:1270) (2 parts) with 40% aq. formaldehyde (formalin) (1:0145) (1 part) + conc. H<sub>2</sub>SO<sub>4</sub> as directed (213) gives both 2,4-bis-(trichloromethyl)-1,3,5-trioxane ("hexachlorodimethyltrioxin") [Beil. XIX-384], m.p. 129°, and 2,6-bis-(trichloromethyl)-tetramethylenetetroxide-1,3,5,7 ("hexachlorodimethyltetroxan") [Beil. XIX-434], m.p. 189°.]

#### BEHAVIOR WITH KETONES

[C with acetone (1:5400) in AcOH in s.t. at 100-150° for 15 hrs. (398) (399) cf. (400) (401) gives by addition the corresp. carbinol, viz., trichloromethyl-acetonyl-carbinol ("chloralacetone") [Beil. I-831, I<sub>2</sub>-(872)], cryst. from lgr., m.p. 75-76° (398) (399) (401) (corresp. oxime, m.p. 104-106° (399), 95-105° (402)).]

[C with methyl phenyl ketone (acetophenone) (1:5515) in AcOH refluxed 20 hrs. (398) (402) or at 135° (399) gives (45% yield (400)) by addition the corresp. carbinol, viz., trichloromethyl-phenacyl-carbinol ("chloralacetophenone") [Beil. VIII-116], m.p. 76-77° (398), 76° (399), 68-70° (400) (corresp. oxime, m.p. 135-137° (402), 131-132° (399)).]

[For behavior of chloral hydrate (3:1270) with acetophenone (1:5515) or benzophenone (1:5150) in pres. of AlCl<sub>3</sub> see (153).]

#### BEHAVIOR WITH KETENES

[For reaction of C with diphenylketene in s.t. at 130° for 12 hrs. see (214).]

#### BEHAVIOR WITH ORGANIC ACIDS

# With Acids Containing No Other Functional Group

[For behavior of  $\bar{C}$  with AcOH in pres. of AlCl<sub>3</sub> see (153); with Hg(OAc)<sub>2</sub> + ethylene in alc. soln. giving a prod. possibly having the structure CCl<sub>3</sub>.CH(OC<sub>2</sub>H<sub>5</sub>) (OCH<sub>2</sub>CH<sub>2</sub>-HgOAc) see (215).]

[Note that  $\tilde{C}$  is able to add to its carbonyl group a reactive H atom derived from certain acids [e.g.,  $\tilde{C}$  with malonic acid (1:0480) in AcOH at 100° for 40 hrs. (216) cf. (217), or in pyridine at 100° for 2 hrs. (67.5% yield (218)) cf. (219), or chloral hydrate (3:1270) + malonic acid (1:0480) + pyridine at 100° (220) gives (note loss of  $CO_2$ )  $\gamma,\gamma,\gamma$ -trichloro- $\beta$ -hydroxy-n-butyric acid [Beil. III-310, III<sub>1</sub>-(117), III<sub>2</sub>-(221)], m.p. 118-119° (217) (218), 118.5° (216) (note hydrate, m.p. 52-54° (218)); note also that by further elimination of H<sub>2</sub>O (e.g., with Ac<sub>2</sub>O + NaOAc (217)) this prod. yields  $\gamma,\gamma,\gamma$ -trichlorocrotonic acid [Beil. II-418, II<sub>1</sub>-(190), II<sub>2</sub>-(397)], m.p. 113-114° (217).]

[Similarly,  $\bar{C}$  adds one of the  $\alpha$  H atoms from succinic acid (1:0530): e.g.,  $\bar{C}$  with disodium succinate + Ac<sub>2</sub>O yields an intangible intermediate which suffers two types of further change, on one hand losing H<sub>2</sub>O to give trichloromethylparaconic acid ( $\beta$ -carboxy- $\gamma$ -trichloromethyl- $\gamma$ -butyrolactone) [Beil. XVIII-372], and on the other suffering hydrolysis of its —CCl<sub>3</sub> group to give isocitric acid ( $\alpha$ -hydroxypropane- $\alpha$ , $\beta$ , $\gamma$ -tricarboxylic acid) [Beil. III-555, III<sub>2</sub>-(359)]; for details of execution of these reactions see (221).]

# With a-Hydroxy Acids

Condensation of  $\bar{C}$  (or its hydrate) with acids containing an  $\alpha$ -hydroxy group leads to the formation of products generically designated as "chloralides"; these are ether-esters comprising position-5 substitution products of the true parent 2-(trichloromethyl)-1,3-dioxolanone-4 (from  $\alpha$ -hydroxyacetic acid) and are not to be confused with the specific compound "chloralide" (3:3510) obtd. from  $\bar{C}$  with H<sub>2</sub>SO<sub>4</sub>. With true chloralides above the initial parent, two geometrically isomeric forms are possible.

With  $\alpha$ -hydroxyacetic acid. [ $\bar{C}$  with glycolic acid (1:0430) in s.t. at 120–130° for 2 days gives (224) 2-(trichloromethyl)-1,3-dioxolanone-4 ("glycolic acid chloralide") [Beil. XIX-103], m.p. 41–42°.]

With lactic acid. [ $\overline{C}$  with anhydrous lactic acid (1:0400) in s.t. at 150-160° (225) (224) or better chloral hydrate (3:1270) with lactic acid (1:0400) + conc. H<sub>2</sub>SO<sub>4</sub> (226) (227) (228) (229) gives 2-(trichloromethyl)-5-methyl-1,3-dioxolanone-4 ("lactic acid chloralide") [Beil. XIX-105], m.p. 45° (226) (227), b.p. 222-224° (224) (225), 218-220° at 714 mm. (226); note, however, that two geom. isomers, cis, m.p. 56°, and trans, b.p. 210-212°, are claimed (229).]

With malic acid. [ $\bar{C}$  with l-malic acid (1:0450) at 120-130° for 20 hrs. (224), or chloral hydrate (3:1270) with l-malic acid (1:0450) + conc.  $H_2SO_4$  (230) (228), gives 2-(trichloromethyl)-5-(carboxymethyl)-1,3-dioxolanone-4 ("1-malic acid chloralide"), m.p. 141° (230), 139-140° (224) (228): note, however, that chloral hydrate (3:1270) + d,l-malic acid + conc.  $H_2SO_4$  at room temperature overnight gives (59% yield (231)), m.p. 180-181°.]

With citric acid. [Chloral hydrate (3:1270) with citric acid (1:0455) + conc.  $H_2SO_4$  gives (228) (231) 2-(trichloromethyl)-5,5-bis-(carboxymethyl)1,3-dioxolanone-4 ( $C_8H_8O_7$ - $Cl_8$ ), m.p. 164° (231), 161° (228).]

With mandelic acid. [ $\bar{C}$  with d,l-mandelic acid (1:0465) at 120° (224) cf. (227), or chloral hydrate (3:1270) with d,l-mandelic acid (1:0465) + conc. H<sub>2</sub>SO<sub>4</sub> (228) (231), gives 2-(trichloromethyl)-5-phenyl-1,3-dioxolanone-4 [Beil. XIX-129], m.p. 82-83° (224)

(228), 70-71° (231), 59-60° (227); note that this disagreement of m.p.'s may be due to mixtures of possible cis-trans stereoisomers.]

With benzilic acid. [ $\bar{C}$  with benzilic acid (1:0770) in s.t. at 160-165° for 5 hrs. gives (231) 2-(trichloromethyl)-5,5-diphenyl-1,3-dioxolanone-4 ("benzilic acid chloralide"), m.p. 70°. Note that an analogous prod. has been reported (232) from chloral hydrate (3:1270) with thiobenzilic acid, ( $C_6H_6$ )<sub>2</sub>C(SH)COOH in AcOH + HCl gas.]

With tartaric acid. [Since this acid is twice an  $\alpha$ -hydroxy acid it reacts with 2 moles of  $\bar{C}$  forming a dichloralide of compn.  $C_8H_4O_6Cl_6$ : e.g.,  $\bar{C}$  with d-tartaric acid (1:0525) at 150° (224), or chloral hydrate (3:1270) with d-tartaric acid (1:0525) (227) (228) (230) (231) or d,l-tartaric acid (1:0550) (227) (228) gives "tartaric acid dichloralide" [Beil. XIX-449], m.p. 213-215° (229); 164-166° (227), 161-162° (231), 161° (229), 160° (228), 159-161° (227); 128-130° (228), 122-124° (224), 116-118° (227). Note that this product should exist in three stereoisomeric forms (230), and the three groups of m.p.'s above given may represent this expectation.]

With mucic acid. This acid combines with 3 moles of chloral hydrate to give a prod. commonly called a "trichloralide"; note, however, that it is undoubtedly a dichloralide which has further condensed at its two free OH groups with a third molecule of chloral [e.g., chloral hydrate (3:1270) with mucic acid (1:0845) + H<sub>2</sub>SO<sub>4</sub> gives (228) (229) a "trichloralide," m.p. 200-201° (228), 198° (229), 174-175° (229); doubtless these represent at least two stereoisomeric forms].

# With Phenolic Acids (or Their Ethers)

In condensation of  $\bar{C}$  (or its hydrate) with phenolic acids, the latter behave like carboxy-substituted phenols; two series of products result according to whether *one* or *two* moles of carboxy-phenol are involved per mole of chloral. To assist in recognizing this analogy, the several products are here named as substituted carbinols or ethanes just as was done above in the behavior of  $\bar{C}$  with phenols (q.v.). Since the methyl ethers of these phenolic acids in general behave similarly, they are associated below with the corresponding phenolic acids.

With o-phenolic acids. With o-hydroxybenzoic acid. [Chloral hydrate (3:1270) with salicylic acid (1:0780) + conc. H<sub>2</sub>SO<sub>4</sub> gives (233) cf. (234) some 1,1,1-trichloromethyl-(4-hydroxy-3-carboxyphenyl)-carbinol, m.p. 180–182° (233), but main prod. is 1,1,1-trichloro-2,2-bis-(4-hydroxy-3-carboxyphenyl)ethane, m.p. 290–292° (corresp. diacetate, m.p. 207–209° (233)).]

With o-methoxybenzoic acid. [Chloral hydrate (3:1270) with o-methoxybenzoic acid (1:0685) + conc. H<sub>2</sub>SO<sub>4</sub> gives (yields: 45% (234), 25% (235)) 1,1,1-trichloro-(4-methoxy-3-carboxyphenyl)-carbinol, m.p. 224° (234), 216° (235), some sulfonation also occurring (235).]

With 2-hydroxy-3-methylbenzoic acid. [Chloral hydrate (3:1270) with o-cresotic acid [Beil. X-220,  $X_1$ -(96)] + conc.  $H_2$ SO<sub>4</sub> gives (236) 1,1,1-trichloro-2,2-bis-(4-hydroxy-3-methyl-5-carboxyphenyl)ethane, m.p.  $283-285^{\circ}$  (236): note that the corresp. carbinol to be expected from chloral hydrate + 1 mole o-cresotic acid is unreported.]

With 2-hydroxy-4-methylbenzoic acid. [Chloral hydrate (3:1270) with m-cresotic acid [Beil. X-233, X<sub>1</sub>-(100)] is complex and disputed; for discussion see (236) (237) (238) (239). — For behavior of  $\ddot{\mathbf{C}}$  with 2-methoxy-4-methylbenzoic acid see also (241).

With 2-hydroxy-5-methylbenzoic acid. [Chloral hydrate (3:1270) with p-cresotic acid [Beil. X-227,  $X_1$ -(98)] + conc.  $H_2SO_4$  gives (236) a prod. of compn.  $C_{12}H_8O_4Cl_6$  (2,4-bis-(trichloromethyl)-6-methyl-1,3-benzdioxin-8-carboxylic acid), m.p. 285-286° dec., derived from 2 moles chloral hydrate + 1 mole p-cresotic acid.]

With 2-hydroxy-3-naphthoic acid. [For behavior of chloral hydrate (3:1270) with 2-hydroxy-3-naphthoic acid (1:0850) + conc.  $H_2SO_4$  see (242).]

With m-phenolic acids (or their ethers). Condensation of  $\bar{\mathbf{C}}$  or its hydrate with m-phenolic acids leads generally to substituted phthalides.

With m-hydroxybenzoic acid. [Chloral hydrate (3:1270) with m-hydroxybenzoic acid (1:0825) + conc. H<sub>2</sub>SO<sub>4</sub> gives (243) (244) 3-(trichloromethyl)-6-hydroxyphthalide [Beil. XVIII-20], m.p. 199-200° (244), 197-198° (243). — Note that chloral hydrate (3:1270) with ethyl m-methoxybenzoate (1:4131) + conc. H<sub>2</sub>SO<sub>4</sub> gives (243) (245) 3-(trichloromethyl)-6-methoxyphthalide [Beil. XVIII-20], m.p. 135° (243) (245), which by alk. hydrol. of the —CCl<sub>3</sub> group gives (243) (245) 6-methoxyphthalide-3-carboxylic acid [Beil. XVIII-525], m.p. 170° (245), 169-170° (243).]

With 2-chloro-3-hydroxybenzoic acid. [Chloral hydrate (3:1270) with 2-chloro-3-hydroxybenzoic acid (3:4395) + conc. H<sub>2</sub>SO<sub>4</sub> gives (246) 3-(trichloromethyl)-7-chloro-6-hydroxyphthalide, m.p. 195.5-196°.]

With 4-methyl-3-hydroxybenzoic acid. [Chloral hydrate (3:1270) with 4-methyl-3-hydroxybenzoic acid [Beil. X-237] + conc. H<sub>2</sub>SO<sub>4</sub> gives (247) 3-(trichloromethyl)-5-methyl-6-hydroxyphthalide, m.p. 232° (247). — Similarly, chloral hydrate (3:1270) with 4-methyl-3-methoxybenzoic acid + conc. H<sub>2</sub>SO<sub>4</sub> gives (247) 3-(trichloromethyl)-5-methyl-6-methoxyphthalide, m.p. 132° (247).]

With 3,4,5-trihydroxybenzoic acid. [Chloral hydrate (3:1270) with gallic acid (1:0875) + conc. H<sub>2</sub>SO<sub>4</sub> gives (236) according to conditions three different products: with excess of gallic acid prod. is 3-(trichloromethyl)-4,5,6-trihydroxyphthalide, m.p. 210-212° (236), for further reactions of which see (236) (248); with excess chloral, however, the reaction gives two other materials (236). — Note that chloral hydrate (3:1270) with 3,4,5-trimethoxybenzoic acid (gallic acid trimethyl ether) [Beil. X-481, X<sub>1</sub>-(240)] + conc. H<sub>2</sub>SO<sub>4</sub> (249) (250) (251), or with methyl 3,4,5-trimethoxybenzoate (methyl gallate trimethyl) ether) [Beil. X-484, X<sub>1</sub>-(242)] (252), gives (56% yield (249)) 3-(trichloromethyl)-4,5,6-trimethoxyphthalide [Beil. XVIII<sub>1</sub>-(389)], m.p. 76-77° (249), 71-72° (250), 70-71° (252) (note also that during condensation some demethylation may occur (253), avoided by (251)); this prod. by hydrolysis of the trichloromethyl group yields 4,5,6-trimethoxyphthalide-3-carboxylic acid [Beil. XVIII<sub>1</sub>-(544)], m.p. 147-149° (249), 147-148° (250), 147° (251), 146-149° (254), 142-143° (252).]

With p-phenolic acids (or their ethers). With p-hydroxybenzoic acid. [Chloral hydrate (3:1270) (3 moles) with p-hydroxybenzoic acid (1:0840) (1 mole) + conc. H<sub>2</sub>SO<sub>4</sub> at room temp. for 3 days condenses giving (31% yield on the acid (255)) 2,4-bis-(trichloromethyl)benzodioxin-1,3-carboxylic acid-6, m.p. 225.5-226.5° (255); for further related reactions of this prod. see (256); for further generally similar work in benzodioxin series see (257) (258); note that neither the substituted carbinol nor the substituted ethane corresp. to the behavior of o-hydroxybenzoic acid (see above) under similar conditions is reported.]

With p-methoxybenzoic acid. [Chloral hydrate (3:1270) with p-anisic acid (1:0805) + conc. H<sub>2</sub>SO<sub>4</sub> reacts in a 1:1 ratio (note difference from 2:1 ratio in preceding paragraph) giving (259) cf. (235) trichloromethyl-(2-methoxy-5-carboxyphenyl)-carbinol, m.p. 198-199° (259); note that the earlier product (235) was impure.]

With 4-hydroxy-3,5-dimethoxybenzoic acid. [Chloral hydrate (3:1270) with syringic acid (1:0830) + conc. H<sub>2</sub>SO<sub>4</sub> gives (86% yield (253)) 3-(trichloromethyl)-5-hydroxy-4,6-dimethoxyphthalide, m.p. 172-173° (253).]

With keto acids (see also below under behavior with esters of organic acids).

With levulinic acid. [ $\ddot{C}$  (1 mole) with  $\beta$ -acetopropionic acid (levulinic acid) (1:0405)

in pres. of NaOAc refluxed 4 hrs. gives (30% yield (271))  $\alpha$ -(trichloroethylidene)- $\beta$ -aceto-propionic acid, m.p. 113.5° (271).]

# BEHAVIOR WITH ESTERS OF ORGANIC ACIDS

[Note that  $\bar{C}$  does not (170) react with orthoformates (difference from chloral hydrate (3:1270) q.v. — Note that  $\bar{C}$  with esters of  $\alpha$ -ketoacids on htg. gives (260) 5-substituted-2-(trichloro)-1,3-dioxolanone-4's, such esters reacting in their enolic forms as esters of  $\alpha$ -hydroxy unsaturated acids; for such products from ethyl acetopyruvate [Beil. III-747, III<sub>1</sub>-(261), III<sub>2</sub>-(465)] (261) or from ethyl benzoylpyruvate [Beil. X-815, X<sub>1</sub>-(395)] see (260). —  $\bar{C}$  with ethyl acetoacetate (1:1710) in pyridine at 25–30° for 5 days gives (262) by addn. the corresp. carbinol, viz., ethyl  $\alpha$ -(2,2,2-trichloro-1-hydroxyethyl)acetoacetate.]

#### BEHAVIOR WITH ACID CHLORIDES

(See also behavior with anhydrides below.)

[ $\ddot{C}$  with acetyl chloride (3:7065) (263) (264) in pres. of conc. H<sub>2</sub>SO<sub>4</sub> (265), or chloral hydrate (3:1270) with acetyl chloride (3:7065) (263) gives  $\alpha,\beta,\beta,\beta$ -tetrachloroethyl acetate ("chloral-acetyl chloride"), b.p. 193° (264), 185° (263).]

[For analogous behavior of  $\bar{C}$  with propionyl chloride (3:7170) (265), with *n*-butyryl chloride (3:7370) (265), with acetyl bromide (266), or with acetyl iodide (266) see indic. refs.]

[For behavior of  $\bar{C}$  with carbonyl chloride (3:5000) in pres. of tertiary amines (except pyridine) giving  $\alpha,\beta,\beta,\beta$ -tetrachloroethyl chloroformate [Beil. III-12] or bis-( $\alpha,\beta,\beta,\beta$ -tetrachloroethyl)carbonate [Beil. III-8] see (267).]

#### BEHAVIOR WITH ACID ANHYDRIDES

[ $\bar{C}$  with acetic anhydride (1:1015) at 150° (263) or in pres. of  $H_2SO_4$  at 5° (268) or chloral hydrate (3:1270) with  $Ac_2O$  (1:1015) +  $H_2SO_4$  (269) gives trichloroethylidene diacetate,  $CCl_3.CH(OAc)_2$  [Beil. II-153, II<sub>1</sub>-(71), II<sub>2</sub>-(167)], b.p. 221-222° (263), 221° at 751 mm. (269), 111-113° at 10 mm. (268): for study of pyrolysis of this prod. see (270).]

# Behavior involving Condensation of C with Reactive C-H of various Organic Compounds

(See also above under acids.)

With various alkylated pyridines. With 2-methylpyridine. [ $\bar{C}$  with 2-methylpyridine (α-picoline) [Beil. XX-234, XX<sub>1</sub>-(82)] in iso-AmOAc refluxed 10-12 hrs. (272) (273) (274) (275) (276) (277) (278), or without solvent at 100° for 10 hrs. (279) or 112° for 36-40 hrs. (280), gives (yields: 67% (280), 47% (278), 40-47% (276)) trichloromethyl-α-picolyl-carbinol = 1-(trichloromethyl)-2-(α-picolyl)ethanol [Beil. XXI-46], m.p. 86-87° (272) (273) (279), 86° (278), 85-86° (280), 82° (277) (corresp. B.HCl, m.p. 201-202° (272), 199-200° (274); corresp. B.PkOH, m.p. 167° (274)). — For studies on dehydrative hydrolysis of this prod. to β-(α-pyridyl)acrylic acid [Beil. XXII-55], m.p. 202-203° (272), 200° dec. (274) (corresp. hydrochloride, m.p. 220° dec. (273)), see (280) (275) (273) (274) (272); for studies on its reduction see (281) (275) (274).]

With 4-methylpyridine. [C with 4-methylpyridine ( $\gamma$ -picoline) [Beil. XX-240, XX<sub>1</sub>-(85)] at 100° for 15 hrs. (282), or in pres. of ZnCl<sub>2</sub> in s.t. at 85-90° (283) (284) or at 34° for 24 hrs. then at 100° for 2 hrs. (285) (286), gives (yields: 42% (286), 16-18% (285), 8-9% (284)) trichloromethyl- $\gamma$ -picolyl-carbinol = 1-(trichloromethyl)-2-( $\gamma$ -picolyl)-ethanol [Beil. XXI-57, XXI<sub>1</sub>-(204)], m.p. 168° cor. (286), 166-167° cor. (285), 166° cor. (283), 160° (282). — For studies on dehydrative hydrolysis (yields: 73% (285), 70% (283))

of this prod. to  $\beta$ -( $\gamma$ -pyridyl)acrylic acid [Beil. XXII<sub>1</sub>-(505)], m.p. 296° cor. dec. (283), 293–295° cor. (285), see indic. refs.]

With other alkylated pyridines. [For corresp. condensations of  $\bar{C}$  with 3-ethyl-4-methylpyridine (" $\beta$ -collidine") [Beil. XX-250, XX<sub>1</sub>-(87)] (287) (288), with 5-ethyl-2-methylpyridine [Beil. XX-248, XX<sub>1</sub>-(86)] (290), with 2,4,6-trimethylpyridine ("collidine") [Beil. XX-250, XX<sub>1</sub>-(87)] (289) (291) see indic. refs.]

With various alkylated quinolines. [For corresp. condensations of  $\bar{C}$  with 2-methyl-quinoline (quinaldine) [Beil. XX-387, XX<sub>1</sub>-(148)] (285) (292) (293) (294) (295), or with 4-methylquinoline ("lepidine") [Beil. XX-395, XX<sub>1</sub>-(150)] (296) (297) (295), see indic. refs.]

With nitroparaffins. C in aq. mildly alk. soln. also adds 1 reactive hydrogen atom from nitroalkanes yielding the corresp. substituted alcohols.

With nitromethane. [Chloral hydrate (3:1270) (1 mole) with nitromethane (1 mole) in aq. Na<sub>2</sub>SO<sub>3</sub> at 70° gives (100% yield (298)) the corresp. carbinol, viz., 1,1,1-trichloro-3-nitropropanol-2 [Beil. I-366], m.p. 48-49° (299), 45-46° (298), 42-43° (300); b.p. 119° at 3 mm. (298) (corresp. acetate, m.p. 61-62°, b.p. 160° at 25 mm., 148° at 16 mm. (298)); note that other mildly alk. salts such as K<sub>2</sub>CO<sub>3</sub> (298) (300), NaOAc (298), or Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub> (298) may be used although Na<sub>2</sub>SO<sub>3</sub> is best (298); note also that this prod. does not (298) react further with chloral. — For studies of the behavior of this prod. or its esters with diazonium salts (299) (301), with various amines (302) (303), or reducing agents (304) see indic. refs.]

With nitroethane. [Chloral hydrate (3:1270) with nitroethane in aq. Na<sub>2</sub>SO<sub>3</sub> + K<sub>2</sub>CO<sub>3</sub> gives (80% yield (305)) the corresp. carbinol, viz., 1,1,1-truchloro-3-nitrobutanol-2, oil, b.p. 115° at 2 mm. (corresp. acetate, b.p. 125° at 2 mm., 98° at 0.05 mm. (305)).]

With phenyl-nitromethane. [Chloral hydrate (3:1270) with phenyl-nitromethane in aq. K<sub>2</sub>CO<sub>3</sub> at 80° gives (305) 1,1,1-trichloro-3-phenyl-3-nitropropanol-2, m.p. 109° (corresp. acetate, m.p. 98° (305)).]

#### BEHAVIOR WITH GRIGNARD REAGENTS

Č with RMgX reagents may react in either or both of two modes: on the one hand normal addition may occur leading to the corresp. carbinols; on the other, reduction at the expense of the RMgX cpd. may occur leading to formn. of 2,2,2-trichloroethanol-1 (3:5775). Of these two types the former occurs when the RMgX cpd. is not easily dehydrogenated.

With aliphatic RMgX compounds. With MeMgX. [C with MeMgBr (306) (307) cf. (308) or MeMgI (307) (166) cf. (308) in ether gives (yields: 40% (306) (307)) 1,1,1-trichloropropanol-2 (3:0846); note, however, that yield is profoundly influenced by press of certain metal salts (306), that some reduction of C to 2,2,2-trichloroethanol-1 (3:5775) probably occurs, and that this latter is favored by use of EtOMgBr, etc. (see 3:5775).]

With EtMgX. [C with EtMgBr (309) (310) (311) or with EtMgI (166) gives both addition and reduction leading respectively to 1,1,1-trichlorobutanol-2 (3:5955) q.v. and 2,2,2-trichloroethanol-1 (3:5775) q.v.]

With n-PrMgX. [ $\bar{C}$  with n-PrMgBr in ether gives (21-23% yield (310)) the carbinol from addition, viz., 1,1,1-trichloropentanol-2 [Beil. I<sub>2</sub>-419], b.p. 115° at 686 mm. (310),  $D_{20}^{20} = 1.481$  (310) (corresp. acetate, b.p. 168-169° at 686 mm., corresp. benzoate, b.p. 197-198° at 686 mm. (310)) but whether the material still unaccounted for represents 2,2,2-trichloroethanol (3:5775) from reduction of  $\bar{C}$  has not been reported.]

With iso-PrMgX. [C with iso-PrMgBr in ether gives (31-33% yield (312)) the carbinol from addition, viz., 1,1,1-trichloro-3-methylbutanol-2 [Beil. I-392, I<sub>2</sub>-(425)], b.p. 105° at

674 mm.,  $D_{20}^{20} = 1.402$  (312) (corresp. acetate, b.p. 156-157° at 685 mm.; corresp. benzoate b.p. 180-181° at 685 mm. (312)), but whether the material still unaccounted for represents 2,2,2-trichloroethanol-1 (3:5775) from reduction of  $\bar{\mathbf{C}}$  has not been reported.]

With n-BuMgX. [ $\bar{C}$  with n-BuMgBr in ether gives (34-36% yield (312)) the carbinol from addition, viz., 1,1,1-trichlorohexanol-2 [Beil. I<sub>2</sub>-(438)], b.p. 108° at 673 mm.,  $D_{20}=1.327$  (312) (corresp. acetate, b.p. 157-158° at 684 mm.; corresp. benzoate, b.p. 182-183° at 684 mm. (312)), but whether the material still unaccounted for represents 2,2,2-trichloroethanol-1 (3:5775) from reduction of  $\bar{C}$  has never been reported.]

With higher alkyl MgX cpds. [Č with n-AmMgBr (313) or with n-HexMgBr (313) in ether gives (yields respectively 50-61% and 56-69%) the reduction product, 2,2,2-tri-chloroethanol-1 (3:5775); the corresponding carbinols to be expected by addition are unreported.]

With aromatic RMgX compounds. With  $C_6H_5MgX$ . [ $\bar{C}$  with  $C_6H_5MgBr$  in ether gives (70% yield (314)) (315) the expected truchloromethyl-phenyl-carbinol [Beil. VI-476, VI<sub>1</sub>-(237)], m.p. 37° (155), b.p. 145° at 15 mm. (155) (corresp. acetate, m.p. 87.5° (155); corresp. benzoate, m.p. 97.5° (155); corresp. p-nitrobenzoate, m.p. 109° (156)).]

With alkaryl MgX compounds. With  $C_6H_5CH_2MgX$  cpds. [C with  $C_6H_5CH_2MgCl$  (309) (310) or  $C_6H_5CH_2MgBr$  (166) gives both addition (309) (310) (166) and reduction (309) yielding from the former trichloromethyl-benzyl-carbinol, b.p. 158-160° at 18 mm. (166) (corresp. acetate, m.p. 110-111° (166), 109-110° (309)), together with a very small amount (309) of 2,2,2-trichloroethanol-1 (3:5775).]

With cyclohexyl MgX cpds. [ $\bar{C}$  with cyclohexyl MgBr (314) (316) in ether is claimed to give (30% yield (316)) trichloromethyl-cyclohexyl-carbinol, b.p. 119-121° at 15 mm.,  $D_{20}^{20} = 1.2839$ ,  $n_{20}^{25} = 1.4820$  (corresp. acetate, b.p. 173° at 680 mm.; corresp. benzoate, b.p. 210° at 683.3 mm.), and also (42% yield (314)) 2,2,2-trichloroethanol-1 (3:5775).]

With various other cases. [For behavior of  $\tilde{C}$  with the RMgX cpds. from  $\beta$ -phenylethyl bromide,  $\gamma$ -phenylpropyl bromide, and  $\delta$ -phenylbutyl bromide where the reaction appears to be mainly reduction of  $\tilde{C}$  see (317).]

# BEHAVIOR WITH HCN (OR ITS SALTS)

Behavior with HCN. [ $\bar{C}$  with strong aq. HCN refluxed several days (318) or chloral hydrate (3:1270) with aq. 10-12% HCN (319) (320) or with aq. 15% HCN in s.t. at 100° for 4 hrs. (321) cf. (322) gives (71% yield (321))  $\beta,\beta,\beta$ -trichloro- $\alpha$ -hydroxypropionitrile = trichlorolactonitrile = chloral cyanohydrin [Beil. III-288, III<sub>1</sub>-(111), III<sub>2</sub>-(210)], m.p. 60-61° (318), 58-61° (321) (corresp. benzoate, m.p. 40-41° (323)); this prod. upon partial hydrolysis in AcOH/H<sub>2</sub>SO<sub>4</sub> gives (324) trichlorolactamide [Beil. III-288, III<sub>1</sub>-(111), III<sub>2</sub>-(210)], m.p. 95-96° (324), or on complete hydrolysis with conc. HCl (321) (318) (320) gives trichlorolactic acid [Beil. III-286, III<sub>1</sub>-(111), III<sub>2</sub>-(210)], very sol. aq., but cryst. from ether, m.p. 118-119° (321).]

Behavior with KCN. [C with MeOH/KCN gives within 1 min. (84% yield (131)) methyl dichloroacetate (3:5655); C with EtOH/KCN similarly gives (88% yield (131)) ethyl dichloroacetate (3:5850); C with n-propyl alc./KCN similarly gives (70% yield (131)) n-propyl dichloroacetate (3:6000); for extensive discussion of this reaction see (131) (325) (329).]

[For discussion of behavior of chloral hydrate (3:1270) with KCN in C<sub>6</sub>H<sub>6</sub> see (326): note that chloral hydrate (3:1270) with NaCN + CaCO<sub>3</sub> as directed (328) is an important method of prepn. (88-92% yield) of dichloroacetic acid (3:6208) q.v.: note also that chloral hydrate (3:1270) + NH<sub>4</sub>OH + KCN in ether as directed (329) gives (65-78% yield) dichloroacetamide (see under the acid (3:6208).]

# BEHAVIOR WITH DIAZOMETHANE

[Č (309) (330) (331) or chloral hydrate (3:1270) (332) gives (yields: 64% (330), 48% (309), 47.5% (332)) 3,3,3-trichloro-1,2-epoxypropane (3:5760) q.v.]

#### BEHAVIOR WITH AMINES

With primary aromatic amines. With aniline. [ $\bar{C}$  with aniline (333) (334), or chloral hydrate (3:1270) with aniline in aq. (334), gives 1,1,1-trichloro-2,2-dianilinoethane ( $\theta,\theta,\beta$ -trichloroethylidene)di-aniline [Beil. XII-187, XII<sub>1</sub>-(168)], pr. from ether/alc., m.p. 107-108° (335), 107.5° (334), 100-101° (333). — Note that the addition product to be expected from 1 mole  $\bar{C}$  with 1 mole aniline has not itself been isolated (except as a molecular compound with chloral hydrate (336)) since it appears to react immediately with a second mole of aniline to give the above-indicated prod.]

With aniline + hydroxylamine. [Chloral hydrate (3:1270) (1 mole) with aniline (1 mole) + NH<sub>2</sub>OH.HCl (3 moles) + HCl + Na<sub>2</sub>SO<sub>4</sub> in aq. soln. as directed gives (80-91%) yield (337) cf. (338) (339) isonitrosoacetanilide [Beil. XII<sub>1</sub>-(275)], m p. 175° dec. (337) (338) (339). — Note that this product with conc. H<sub>2</sub>SO<sub>4</sub> (337) (340) gives (71-78%) yield (337)) indigo; for extension of the method to use of other amines (and ultimately substituted indigos) see (338) (341) (345).]

With other primary aromatic amines. The condensation of  $\bar{C}$  or of chloral hydrate (3:1270) with many other primary aromatic amines and diamines has been studied but cannot be detailed here [for extensive review and discussion see (336) (334) (335) (342) (343) (344) (403)].

With secondary aromatic amines. With N-alkylanilines. [Chloral hydrate (3:1270) with N-methylaniline on warming gives (346) trichloromethyl-(p-methylaminophenyl)-carbinol [Beil. XIII-628], m.p. 112° dec.; sımılarly, chloral hydrate (3:1270) with N-ethylaniline on warming gives (346) trichloromethyl-(p-ethylaminophenyl)-carbinol [Beil. XIII-628], m.p. 98°.]

With N-alkyl-o-toluidines. [Chloral hydrate (3:1270) with N-methyl-o-toluidine + ZnCl<sub>2</sub> gives (347) trichloromethyl-(4-methylamino-3-methylphenyl)-carbinol, m.p. 104-105°; similarly, chloral hydrate (3:1270) with N-ethyl-o-toluidine + ZnCl<sub>2</sub> gives (349) trichloromethyl-(4-ethylamino-3-methylphenyl)-carbinol, m.p. 107° (for studies of nitration (348) and bromination (349) of these two products see indic. refs.).]

With tertiary aromatic amines. With N,N-dralkylanthnes. [C with N,N-dimethylaniline in phenol at room temp. (350) or chloral hydrate with N,N-dimethylaniline + ZnCl<sub>2</sub> on stdg. (351) (352) gives trichloromethyl-(p-dimethylaminophenyl)-carbinol [Beil. XIII-628], m.p. 111° dec. (352) (corresp. carbinyl acetate, m.p. 84-85° (352)) (for study of nitration of this prod. see (348)).]

#### BEHAVIOR WITH ARYLHYDRAZINES

With phenylhydrazine. [Č with phenylhydrazine or chloral hydrate (3:1270) with aq. phenylhydrazine salts reacts (353) vigorously, but the products formed have not been unambiguously characterized (see also below).]

With p-nitrophenylhydrazine. [Chloral hydrate (3:1270) (large excess) with p-nitrophenylhydrazine in AcOH at 100° for 10 min. undergoes a series of reactions resulting (354) in a chlorine-free prod., m.p. 228°, regarded (354) as 1-(p-nitrophenyl)-3,5-dihydroxy-pyrazolone-4-(p-nitrophenylhydrazone).]

With 2,4-dinitrophenylhydrazine. [Chloral hydrate (3:1270) with 2,4-dinitrophenylhydrazine gives according to conditions either or both (355) glyoxylic acid p-nitrophenyl-

hydrazone, dihydrate from aq., m.p. 191° (355); anhydrous, m.p. 194-195° (355), 190° (356), or chloroglyoxal bis-(2,4-dinitrophenylhydrazone), m.p. 278° (355).]

With various halogenated hydrazines. Owing to the violence with which the product initially formed decomposes, the behavior of  $\tilde{C}$  with phenylhydrazine (see also above) has been little studied. With halogenated phenylhydrazines the decomposition is more moderate and has been extensively examined. The nature of the products has been found to depend mainly upon the solvent medium: thus in alcohols the principal product is the corresponding substituted phenylhydrazone of the appropriate alkyl glyoxylate; in water or AcOH, however, loss of both  $H_2O$  and HCl occurs leading to formation of the corresponding  $\alpha,\alpha$ -dichloro- $\beta$ -arylazoethylenes.

[Chloral hydrate (1 mole) (3:1270) with 2,4-dichlorophenylhydrazine in ethyl alc. at 60° gives (100% yield (357)) ethyl glyoxylate 2,4-dichlorophenylhydrazone, yellow pr., m.p. 121.5°; note that other alcs. (357) give corresp. esters. — However, chloral hydrate (1 mole) (3:1270) with 2,4-dichlorophenylhydrazine (1 mole) in AcOH at 80° (or in presence of NaOAc at 60°) gives (357)  $\alpha,\alpha$ -dichloro- $\beta$ -(2,4-dichlorobenzeneazo)ethylene, red pr. from alc., m.p. 84.5°.]

[For completely analogous behavior of chloral hydrate (3:1270) with other halogenated phenylhydrazines, such as 2,5-dichlorophenylhydrazine (358), 2,4,5-trichlorophenylhydrazine (358), 2,4,6-tribromophenylhydrazine (359), 3-bromo-4-methylphenylhydrazine (360), or 3,5-dibromo-4-methylphenylhydrazine (360), see indic. refs. — Note that a generally analogous behavior toward halogenated arylhydrazines is shown by butyrchloral (3:5910) q.v. and by tribromoacetaldehyde (bromal).]

#### BEHAVIOR WITH AMIDES

Č with compounds of the amide type readily undergoes an addition reaction leading to products of the general form CCl<sub>3</sub>.CH(OH).NH.CO.R.

# With Aliphatic Monamides

With formamide. [ $\bar{C}$  (1 mole) with formamide (1 mole) on stdg. gives (361) (362) an addition prod., chloralformamide, CCl<sub>3</sub>.CH(OH).NH.CHO [Beil. II-27, II<sub>1</sub>-(21), II<sub>2</sub>-(37)], m.p. 124–126° (363), 118° (362), 115–116° (361); note that this product has in the literature often been confused with the isomeric  $\beta,\beta,\beta$ -trichloroethyl carbamate, CCl<sub>3</sub>-CH<sub>2</sub>O.CO.NH<sub>2</sub> ("Voluntal") [see also under  $\beta,\beta,\beta$ -trichloroethyl alcohol (3:5775)]. Note also that chloralformamide with aq. NaOH + Ac<sub>2</sub>O (362) or with aq. NaOH + BzCl (364) cf. (362) undergoes bimolecular condensation with loss of H<sub>2</sub>O giving anhydrochloralformamide [CCl<sub>3</sub>.CH(NH.CHO)]<sub>2</sub>O, m.p. 194.5–195° (362), 193° (364).]

With acetamide. [C (1 mole) with acetamide (1 mole) (72) (172), or chloral hydrate (3:1270) (1 mole) with acetamide (1 mole), or chloralammonia with AcCl or Ac<sub>2</sub>O (128) gives chloralacetamide [Beil. II-179, II<sub>1</sub>-(81)], m.p. 158-159° (362), 158° (172), 156°-157° (72), 156° (128); this prod. with aq. NaOH + Ac<sub>2</sub>O undergoes bimolecular loss of aq. yielding (362) cf. (369) anhydrochloralacetamide, [CCl<sub>3</sub>.CH(NH.CO.CH<sub>3</sub>)]<sub>2</sub>O, m.p. 212-213° (362), 207° (364). — For study of reduction of chloralacetamide see (365) (366).]

With higher monoamides. [For analogous condensation of  $\tilde{C}$  with propionamide, isobutyramide, n-valeramide, n-caproamide, n-caprylamide, and phenylacetamide together with study of reduction of the several products see (367) cf. (369).]

#### With Aromatic Monoamides

With benzamide. [C (1 mole) with benzamide (1 mole) (172) (362) cf. (369), or chloral hydrate (3:1270) with benzonitrile + dry HCl (368) gives chloralbenzamide [Beil. IX-

209, IX<sub>1</sub>-(101)], m.p. 150-151° (72), 150° (362), 146° (172) (368); this product with aq. NaOH + BzCl or  $Ac_2O$  gives (362) by dehydrative bimolecular condensation anhydrochloralbenzamide, known (362) in two forms, higher-melting form, m.p. 199-200°, and lower-melting form, m.p. 137-138°. — For study of reduction of chloralbenzamide see (366) cf. (369).]

With toluamides. [For condensation of  $\tilde{C}$  with o-, m-, and p-toluamides see (370); for the behavior of the products with PCl<sub>5</sub> see (371).]

With salicylamide. [C with salicylamide on warming directly (372) or in CHCl<sub>3</sub> (373) gives chloralsalicylamide, sintering at 117° and melting about 10° higher (372); for the corresp. anhydro compound (cf. above), m.p. 174–175°, see (369); for studies of chloral-salicylamide on chlorination (374), bromination (375), or nitration (375) see indic. refs.]

With amides of various substituted salicylic acids. [For behavior of  $\bar{C}$  with the amides of 3-chlorosalicylic acid (3:4745), 5-chlorosalicylic acid (3:4705), and 3,5-dichlorosalicylic acid (3:4935) see (374) (376) (377); for behavior of  $\bar{C}$  with amides of various nitrosalicylic acids (378) or various aminosalicylic acids (379) see indic. refs.]

With o-aminobenzamide (anthranilamide). [For behavior of  $\tilde{C}$  with anthranilamide and its relatives see (380).]

# With Amides of Dibasic Acids

Note that two series of products are formed.

With urea. [Chloral hydrate (3:1270) (1 mole) with urea (2 moles) in aq. soln. on stdg. 3 days at room temp. gives (66% yield (381)) (382) cf. (172) chloralurea, N-( $\beta$ , $\beta$ , $\beta$ -trichloro- $\alpha$ -hydroxyethyl)urea [Beil. III-59, III<sub>1</sub>-(27)], cryst. from MeOH/C<sub>6</sub>H<sub>6</sub> (381) or EtOH/C<sub>6</sub>H<sub>6</sub> 1:3 (382), m.p. 150° dec. (381) (382). — However, chloral hydrate (3:1270) (2 moles) with urea (1 mole) in aq. HCl at room temp. for 3 days gives (71% yield (381)) (382) cf. (383) dichloralurea [Beil. III-60, III<sub>1</sub>-(27), III<sub>2</sub>-(49)], cryst. from aq. alc., m.p. 196° (381), 194° dec. (382), 190° (172).]

With thiourea. [For behavior of C with thiourea see (383).]

With various substituted ureas. With monosubstituted ureas. [Chloral hydrate (3:1270) (2 moles) with N-methylurea (1 mole) in aq. soln. at room temp. gives (384) N-methyl-N'-( $\beta,\beta,\beta$ -trichloro- $\alpha$ -hydroxyethyl) urea, m.p. 140° dec. (384). — Chloral hydrate (3:1270) with N-ethylurea behaves in analogous fashion (384). — Chloral hydrate (3:1270) (2)½ moles) with N-phenylurea in aq. HCl gives (84% yield (382)) N-phenyl-N'-( $\beta,\beta,\beta$ -trichloro- $\alpha$ -hydroxyethyl)urea, m.p. 142° dec. (382). — For corresp. behavior of chloral hydrate (3:1270) with N-o-tolylurea, N-p-tolylurea, N-m-nitrophenylurea, and N-p-nitrophenylurea see (385).]

With disubstituted ureas. [Chloral hydrate (3:1270) with N,N-dimethylurea gives (384) cf. (386) N,N-dimethyl-N'-( $\beta,\beta,\beta$ -trichloro- $\alpha$ -hydroxyethyl)urea, cryst. from aq. as monohydrate, m.p. 74° dec. (384) (386), which becomes anhydrous on stdg., cryst. from alc., m.p. 157° dec. (384), 156° (386). — For analogous behavior of  $\bar{C}$  with N,N-diethylurea giving prod., m.p. 146° dec. (384), 142° (386), see indic. refs. —  $\bar{C}$  with N,N-diphenylurea gives analogous prod., m.p. 170° dec. (384).]

With amides of other dibasic acids. [For generally analogous behavior of C with oxamide (384), malonamide (384) (369), succinamide (369), and their relatives see indic. refs.]

#### With Urethanes

With ethyl carbamate. [ $\bar{C}$  with ethyl carbamate ("urethane") in conc. HCl gives (387) (388) ethyl  $N-(\beta,\beta,\beta-\text{trichloro-}\alpha-\text{hydroxyethyl})$ carbamate ("chloralurethane") [Beil. III-24, III<sub>1</sub>-(12), III<sub>2</sub>-(22)], m.p. 103° (362) (388). — This product on htg. alone or

in aq. at 100° regenerates (388) chloral and ethyl carbamate. — With AcCl under reflux it gives (80% yield (387)) the corresp. acetate, m.p. 47-49°, b.p. 165° at 15 mm. (387). — With aq. NaOH + Ac<sub>2</sub>O (362) (387) or with aq. KOH + BzCl (364) chloralurethane undergoes dehydrative bimolecular condensation yielding anhydro-chloralurethane [Beil. III<sub>1</sub>-12], which exists in both high-melting (161-162°) and low-melting (149-150°) forms (362).]

With other alkyl carbamates. [For generally analogous behavior of  $\bar{C}$  with methyl carbamate (362), n-propyl carbamate (389), isobutyl carbamate (389), isoamyl carbamate (362), and menthyl carbamate (362) see indic. refs.]

- Preliminary tests for Č: Owing to the length of the text of this compound, a brief summary of the tests most significant as preliminary indications is given here; for details refer back as indicated and also see chloral hydrate (3:1270).
- C reduces NH<sub>3</sub>/AgNO<sub>3</sub> and Fehling's soln. but only on warming (see above under oxidn. of C̄). C̄ gives fuchsin-aldehyde test with Schiff's reagent (but chloral hydrate (3:1270) does not). C̄ with conc. H<sub>2</sub>SO<sub>4</sub> readily polymerizes (see above under polymerization of C̄). C̄ with aq. or alc. alkali on warming undergoes hydrolytic cleavage to CHCl<sub>3</sub> (3:5050) + alkali formate (see above under behavior of C̄ with alkalies); therefore, C̄ with alc. alkali + annline gives characteristic odor of phenyl isocyanide.
- Trichloroacetaldioxime: m.p. 56° (135). [See above under behavior of  $\bar{\mathbf{C}}$  with hydroxylamine.]
- Trichloroacetaldehyde phenylhydrazone: unreported. [See above under behavior of C with arylhydrazines.]
- Trichloroacetaldehyde p-nitrophenylhydrazone: unreported. [See above under behavior of C with arylhydrazines.]
- —— Trichloroacetaldehyde 2,4-dinitrophenylhydrazone: a prod. of m.p. 131° has been claimed (390) but could not be confirmed (391). [See also above under behavior of C with arythydrazines.]
- Trichloroacetaldehyde semicarbazone: unreported. [Note that chloral hydrate (3:1270) with semicarbazide in aq. (392) (394) cf. (393) or chloral ethylalcoholate (3:0860) with semicarbazide in alc. (392) gives an addn. prod., m.p. 90°, which on boilg. with aq. yields (392) glyoxylic acid semicarbazone [Beil. III-600, III<sub>1</sub>-(209) III<sub>2</sub>-(389)], m.p. 235-236° (392), 235-238° (393), 207° (395), 206-208° dec. (396), 202-203° (397), 202° dec. (394) (note that these results may represent two stereoisomeric forms (397)).]
- 3:5210 (1) Perkin, J. Chem. Soc. 51, 808-819 (1887). (2) Lecat, Rec. trav chim. 45, 623 (1926). (3) Passavant, J. Chem. Soc. 39, 53-57 (1881). (4) Goslawski, Marchlewski, Bull. intern. acad. Polonaise, 1931A, 383-391; Cent. 1932, I 1491; [C.A. 27, 231 (1933)]. (5) Jefremov, J. Russ. Phys.-Chem. Soc. 56, 361 (1918); Cent. 1923, III 826; not in C.A. (6) Thorpe, J. Chem. Soc., 37, 191-192 (1880). (7) Friend, Hargreaves, Phil. Mag (7) 35, 626 (1944). (8) Johns, Hixon, J. Am. Chem. Soc. 56, 1333-1336 (1934). (9) van Rossem, Z. physik. Chem. 62, 681-712 (1908). (10) Brühl, Ann. 203, 11-12 (1880).
- (11) Cheng, Z. physik. Chem. B-26, 295 (1934). (12) Stauff, Schumacher, Z. physik. Chem. B-48, 1 4-175 (1941). (13) Klug, Schumacher, Z. physik. Chem. B-47, 67-92 (1940). (14) Coomber, Partington, J. Chem. Soc. 1938, 1450 (15) Jefremov, Ann. inst. anal. physico-chim. Leningrad, 4, 118-159 (1 28); Cent. 1929, I 729-730; not in C.A. (16) von Auwers, Ber. 62, 1319 (1929). (17) Breuer, J. Am. Chem. Soc. 57, 2236-2237 (1935). (18) Böeseken, Schimmel, Rec. trav. chim. 32, 112-127 (1913). (19) Kurnakow, Efremov, Z. physik. Chem. 85, 401-413 (1913). (20) Excelsior Feuerlöschgerate, A. G., Ger. 554,521, Sept. 9, 1932; Cent. 1932, II 1335; C.A. 26, 6083 (1932).
- (21) Lecat, Ann. soc. sci. Bruxelles 45, I 175 (1926). (22) Liebig, Ann. 1, 189-198 (1832). (23) Brochet, Bull. soc. chim. (3) 17, 228-230 (1897); Ann. chim. (7) 10, 332-335 (1897). (24)

Trillat, Bull. soc. chim. (3) 17, 230-234 (1897). (25) Kraemer, Ber. 3, 257-262 (1870). (26) Altschul, Meyer, Ber. 26, 2756-2759 (1893). (27) Besson, Ger. 133,021, July 31, 1902; Cent. 1902 II 553. (28) Ohse (to Chem. Fabrik von Heyden), Ger. 734,723, March 25, 1943; C.A. 38, (29) Page, Ann. 225, 209-211 (1884). (30) Pinner, Ber. 4, 256-257 (1871). 3671 (1944).

(31) Pinner, Ann. 179, 24-29 (1875). (32) Fuchs, Katscher, Ber. 57, 1258 (1924). (33) Städeler, Ann. 61, 101-121 (1847). (34) Goldschmidt, Schüssler, Ber. 58, 569-570 (1925). (35) Consortium für Elektrochem. Ind., French 706,320, June 23, 1931, Cent. 1931, II 1489; [C.A. 28, 1302 (1932)]. (36) Ingold, J. Chem. Soc. 125, 1536-1537 (1924). (37) Mason, J. Chem. Soc. 97, 866-867 (1910). (38) Moruen, Dufraisse, Berchet, Bull. soc. chim. (4) 43, 942-957 (1928). (39) Byasson, Compt. rend. 87, 26 (1878); Bull. soc. chim. (2) 32, 304-305 (1879). (40) Paterno, Ann. 150, 256 (1869).

(41) Reichert, Bailey, Nieuwland, J. Am. Chem. Soc. 45, 1556-1557 (1923). (42) Hirwe, J. Univ. Bombay, 6, Pt. II, 182-198 (1937); Cent. 1938, I 4031. (43) Busch, Stöve, Ber. 49, 1068 (1916). (44) Kelber, Ber. 50, 308 (1917). (45) Self, Pharm. J. (4) 25, 4-7 (1907); Cent. 1907, II 1019. (46) Vogt, Arch. exptl. Path. Pharmakol. 178, 628-638 (1935); Cent. 1936, I 801; [C.A. 29, 6945 (1935)]. (47) Griebel, Weiss, Z. Untersuch. Lebensm. 56, 163 (1928). (48) Personne, Ann. 157, 113-115 (1871). (49) Jona, Giorn. farm. chim. 61, 57-59 (1912); Cent. 1912, I 1148; C.A. 6, 1337-1338 (1912). (50) Meillere, J. pharm. chim. (8) 11, 145-147 (1930); Cent. 1930, I 3221; C.A. 24, 4586 (1930).

(51) Cotton, Bull. soc. chim. (2) 42, 622-625 (1884). (52) Deodhar, J. Indian Chem. Soc. 11, 83-86 (1934). (53) Sandonnini, Borghello, Att. accad. Lincei (6) 21, 30-35 (1935); Cent. 1935, II 1860; C.A. 29, 4679 (1935). (54) Meerwein, Schmidt, Ann. 444, 234 (1925). (55) Chalmers, Org. Syntheses, Coll. Vol. 1 (1st ed.) 598-601 (1943); 15, 80-84 (1935). (56) Boeseken, Tellegen, Plusje, Rec. trav. chim. 57, 74-75 (1938). (57) Callsen (to Winthrop-Chem. Co.), U.S. 1,725,054, Aug. 20, 1929; [Cent. 1936, I 434]; C.A. 23, 4709 (1929): Ger. 437,160, Nov. 18, 1926; Cent. 1927, I 802; not in C.A.: Brit. 286,797, April 5, 1928; Cent. 1928, I 2750; C.A. 23, 395 (1929). (58) Nagai, Biochem. Z. 152, 272 (1924); Cent. 1925, I 637; [C.A. 19, 2807 (1925)]. (59) Meerwein (to Bayer and Co.), U.S. 1,572,742, Feb. 9, 1926; Cent. 1926 I 3627, [C.A. 20, 1243 (1926)]; Brit. 235,584, June 27, 1926; [Cent. 1926, II 1097]; C.A. 20, 917 (1926). (60) Dworzak, Monatsh. **47.** 12–13 (1926).

(61) Callsen (to I.G.), Ger. 489,281, Jan. 15, 1930; Cent 1930, I 3104; [C.A. 24, 2140 (1930)]: Swiss 126,293, July 16, 1928, Cent. 1929, I 1741; C.A. 23, 852 (1929). (62) Nord, Ger. 434,726, Oct. 5, 1926; Cent. 1926, II 2845; not in C.A. (63) Callsen (to I.G.), Ger. 565,157, Nov. 26, 1932; Cent. 1933, I 1514; C.A. 27, 992 (1933): Brit. 384,156, Dec. 22, 1932; Cent. 1933, I 1351; [C.A. 27, 4240 (1933)]. (64) I.G., Brit. 370,490, May 5, 1932; Cent. 1932, II 3303-3304; C.A. 27. 2961 (1933). (65) Garzarolli-Thurnlackh, Ann. 210, 64-68 (1881). (66) Delacre, Bull. soc. chim. (2) 48, 784-788 (1887). (67) Meerwein, Hinz, Majert, Sonke, J. prakt. Chem. (2) 147, 236, 243 (1936). (68) Willstätter, Duisberg, Ber. 56, 2284-2285 (1923). (69) Lintner, Lüers, Z. physiol. Chem. 88, 122-123 (1913). (70) Judson, Ber. 3, 782-784 (1870).

(71) Kolbe, Ann. 54, 183-185 (1845). (72) Wallach, Ber. 5, 254-256 (1872). (73) Khotinskii, Aleksandrova, Proc. Kharkov State Univ. 4, 59-61 (1936); C.A. 31, 6615 (1937). (74) Plump (to Pennsylvania Salt Mfg. Co.) U.S. 2,370,577, Feb. 27, 1945; C.A. 39, 4085 (1945). (75) Moureu, Dufraisse, J. Soc. Chem. Ind. 47, 819-828, 849-854 (1928). (76) Clermont, Ann. 161, 128 (1872); Compt. rend. 73, 113 (1871). (77) Clermont, Ann. 166, 64 (1873); Compt. rend. 74, 1492 (1872). (78) Seubert, Ber. 18, 3336-3339 (1885). (79) Ssuknewitsch, Tschilingarjan, Ber. 68, 1215 (1935). (80) Bhatnagar, Mathur, Kapur, Phil. Mag. (7) 8, 466-467 (1929).

(81) Städeler, Ann. 106, 253 (1858). (82) Karaoglanov, Z. anal. Chem 121, 206-207 (1941). (83) Cotton, Bull. soc. chim. (2) 43, 420-423 (1885). (84) Vanino, Z. anal. Chem. 79, 369-371 (1930). (85) Hartwagner, Z. anal. Chem. 52, 19-20 (1913). (86) Wieland, Ber. 45, 2610 (1912). (87) Amato, Jahresber. 1875, 473. (88) Alexander, Schumacher, Z. physik. Chem. B-44, 313-(89) Verhoek, Hinshelwood, Proc. Roy. Soc. London, A-146, 327-333, 334-344 326 (1939). (1934). (90) Verhoek, Trans. Faraday Soc. 31, 1521-1524 (1935).

(91) Combes, Ann. chim. (6) 12, 267-271 (1887). (92) Böeseken, Rec. trav. chim. 29, 95-96, 104-108 (1910). (93) Mouneyrat, Bull. soc. chim. (3) 19, 260-261 (1898). (94) Böeseken, Schimmel, Rec. trav. chim. 32, 128-133 (1913). (95) Boeseken, Schimmel, Rec. trav. chim. 32. 112-127 (1913). (96) Gauthier, Bull. soc. chim. (2) 45, 86-88 (1886). (97) Alexander, Schumacher, Z. physik. Chem. B-44, 57-68 (1939). [98] Mouneyrat, Bull. soc. chim. (3) 17, 794-797 (1897). (99) Oglialoro, Ber. 7, 1461-1462 (1874). (100) Vorländer, Ann. 341, 21-22 (1905).

(101) Gaathaug, Norwegian 54,575, Nov. 5, 1934; Cent. 1935, I 1617; not in C.A. (102) Böeseken, Chem. Weekblad 7, 121-132 (1910); Cent. 1910, I 1002; C.A. 5, 1419 (1911). (103) Grabowski, Ber. 8, 1433-1437 (1875). (104) Kekulé, Ann. 105, 293-295 (1858). (105) Otto, Ann. 239, 262-263 (1887). (106) Wallach, Ann. 193, 4, 8, 11-19 (1878). (107) Fuchs, Katscher, Ber. 62, 2381-2386 (1929). (108) Chattaway, Kellett, J. Chem. Soc. 1928, 2709-2714. (109) Mallett, Am. Chem. J. 19, 809-810 (1897). (110) Erdmann, Ger. 139,392, March 4, 1903: Cent. 1903, I 743.

(111) Helferich, Besler, Ber. 57, 1279-1280 (1924). (112) Hibbert, Gillespie, Montonna. J. Am. Chem. Soc. 50, 1953-1955 (1928). (113) Mulder, Rec. trav. chim. 7, 322-323 (1888). (114) Belohoubek, Cent. 1898, I 558. (115) Rosenthaler, Reis, Cent. 1907, II 891. (116) Reicher, Rec. trav. chim. 4, 347-350 (1885). (117) Bottger, Kotz, J. prakt. Chem. (2) 65, 481-499 (1902). (118) Werner, J. Chem. Soc. 85, 1376-1381 (1904). (119) Enklaar, Rec. trav. chim. 23, 419-438 (1904). (120) Enklaar, Rec. trav. chim. 24, 419-443 (1905).

(121) Enklaar, Rec. trav. chim. 25, 297-310 (1906). (122) Enklaar, Rec. trav. chim. 29, 173-184 (1910). (123) Benrath, Ann. 382, 225 (1911). (124) Kotz, Cent. 1909, II, 2136. (125) Kekulé, Ann. 119, 187-189 (1861). (126) Arenson, Roller, Brown, J. Phys. Chem. 36, 623-625 (1926). (127) Truchet, Compt. rend. 202, 1997-1998 (1936). (128) Schiff, Ber. 10, 166-168 (129) Aschan, Ber. 48, 880-882, 889-891 (1915). (130) Délepine, Bull. soc. chim. (3)

19, 171-173 (1898).

(131) Chattaway, Irving, J. Chem. Soc. 1929, 1038-1048. (132) Schiff, Gazz. chim. ital. 21, 490-497 (1891). (133) Béhal, Choay, Ann. chim. (6) 26, 5-12, 59-60 (1892). (134) Meyer, Ann. 264, 118-121 (1891). (135) Palazzo, Egidi, Gazz. chim. ital. 43, I 57-68 (1913). (136) Hantzsch, Ber. 25, 705-712 (1892). (137) Ponzio, Baldracco, Gazz. chim. ital. 60, 415-429 (1930). (138) Houben, Kaufmann, Ber. 46, 2824-2825 (1913). (139) Hantzsch, Ber. 25, 701-705 (1892).

(140) Knopfer, Monatsh. 32, 768-769 (1911).

(141) Stollé, Helwerth, J. prakt. Chem. (2) 88, 315-318 (1913). (142) Knopfer, Monatch. 37, 357, 364 (1916). (143) Knopfer, Monatsh. 34, 769-776 (1913). (144) Giolitti, Gazz. chim. ital. 34, I, 247-253 (1904). (145) Paterno, Ann. 151, 116-121 (1869). (146) Paterno, Gazz. chim. tal. 1, 590-592 (1871). (147) Paterno, Oghaloro, Ber. 7, 81 (1874). (148) Balfe, Webber, J. Chem. Soc. 1942, 719-720. (149) Kerp, Bauer, Cent. 1907, II 270. (150) Rathke, Ann. 161. 154-166 (1872).

(151) Backer, Rec. trav. chim. 48, 571-574 (1929). (152) Bayer, Villiger, Ber. 33, 2481-2484 (1900). (153) Frankforter, Kritchevsky, J. Am. Chem. Soc. 36, 1511-1529 (1914). (154) Dinesmann, Compt. rend. 141, 201 (1905). (155) Chattaway, Muir, J. Chem. Soc. 1934, 701-703. (156) Florence, Bull. soc. chim. (4) 49, 926-927 (1931). (157) Baeyer, Ber. 5, 1098-1099 (1872). (158) van Laer, Bull. soc. chim. 28, 346-350 (1919). (159) Iozitsch, J. Russ. Phys.-Chem. Soc. 34, 97 (1902). (160) Howard, Stephens, J. Am. Chem. Soc. 60, 228 (1938).

(161) Fischer, Ber. 7, 1191 (1874). (162) Harris, Frankforter, J. Am. Chem. Soc. 48, 3144-3147 (1926). (163) Brand, Busse-Sundermann, Ber. 75, 1819-1829 (1942). (164) Frankforter, Kritchevsky, J. Am. Chem. Soc. 37, 385-392 (1915). (165) Howard, J. Am. Chem. Soc. 57, 2317-2318 (1935). (166) Hebert, Bull. soc. chim. (4) 27, 49, 53-54 (1920). (167) Brand, Krucke-Amelung, Ber. 72, 1031-1032 (1939). (168) Zeidler, Ber. 7, 1180-1181 (1874). (169) Grabowsky, Herold, Z. physik. Chem. B-28, 290-302 (1935). (170) Post, J. Org. Chem. 6, 830-836 (1941).

(171) Kuntze, Arch. Pharm. 246, 97-110 (1908). (172) Jacobsen, Ann. 157, 243-248 (1871). (173) Houben, Fischer, Ber. 64, 243 (1931). (174) Martius, Mendelssohn-Bartholdy, Ber. 3, 443-445 (1870). (175) Sprongerts (to Kalle and Co.), Ger. 430,732, June 19, 1926; Cent. 1926, II 1160-1161; not in C.A. (176) Magnanni, Gazz. chim. ital. 16, 332 (1886). (177) Meerwein, Bersin, Burneleit, Ber. 62, 1007 (1929). (178) Gabutti, Gazz. chim. ital. 31, I 86-89 (1901). (179) Vitoria, Bull. acad. roy. Belg. 1904, 1087-1123 (1904); Cent. 1905, I 345. (180) Fourneau. Florence, Bull. soc. chim. (4) 47, 350-356 (1930).

(181) Perganni, Gazz. chim. ital 26, II 470-472 (1896). (182) Whitmore, Homeyer. J. Am. Chem. Soc. 55, 4195 (1933). (183) Hoffmann-LaRoche and Co., Ger. 151,188, May 11, 1904; Cent. 1904, I 1506. (184) Hibbert, Morazain, Paquet, Can. J. Research 2, 131-143 (1930); [Cent. 1930, I 3770]; [C.A. 24, 2109 (1930)]. (185) de Forcrand, Bull. soc. chim. (3) 2, 256 (1889). (186) Meldrum, Vad, J. Indian Chem. Soc. 13, 118-122 (1936). (187) White, Hixon, J. Am. Chem. Soc. 55, 2438-2444 (1933). (188) Coles, Goodhue, Hixon, J. Am. Chem. Soc. 51, 519-524 (1929). (189) Goodhue, White, Hixon, J. Am. Chem. Soc. 52, 3191-3195 (1930). (190) Hanriot, Kling. Ann. chim. (9) 12, 129-150 (1919).

(191) Hanriot, Ann. chim. (8) 18, 466-502 (1909). (192) Hanriot, Bull. soc. chim. (4) 5, 819-826 (1909). (193) Genot, J. pharm. chim. Belg. 8, 407-410 (1926); Cent. 1926, II 803; C.A. 21, 3706 (1927). (194) Cheramy, J. pharm. chim. (9) 1, 233-234 (1940); Cent. 1941, I 2837; cf. C.A. 34, 2878 (1940). (195) Lespagnol, Paris, Merville, Bull. soc. chim. biol. 24, 117-119 (1942); Cent. 1943, II 1742; C.A. 38, 5863 (1944). (196) Truffert, Bull. soc. chim. biol. 24, 195-199 (1942); Cent. 1944, I 303; C.A. 39, 1820-1821 (1945). (197) Haakh, Smola, Austrian 141,159, March 25, 1935; Cent. 1935, II 439; C.A. 29, 4021 (1935). (198) Meldrum, Lonkar, J. Univ. Bombay 6, Pt. II, 116-119 (1937); Cent. 1938, I 4034; C.A. 32, 3760 (1938). (199) Pauly, Schanz, Ber. 56, 981-985 (1923). (200) ter Meer, Ber. 7, 1201-1202 (1874).

(201) Elbs, J. prakt. Chem. (2) 47, 59-79 (1893). (202) Harden, Reid, J. Am. Chem. Soc. 54, 4333-4334 (1932). (203) Mazzara, Gazz. chim. ital. 13, 271-272 (1883). (204) Spengler, Pfanenstiehl (to Winthrop Chem. Co.), U.S. 1,819,132, Aug. 18, 1931; Cent. 1932, II 1381; C.A. 25, 5678 (1931). (205) Pauly, Strassberger, Ber. 62, 2279 (1929). (206) Mauthner, J. prakt. Chem. (2) 119, 128 (1925). (207) Chattaway, Morris, J. Chem. Soc. 1927, 2013-2017. (208) Moore, Iowa State Coll. J. Sci. 16, 99-102 (1941); C.A. 36, 4396 (1942). (209) Fritsch, Feldmann, Ann. 366, 77-79 (1899). (210) Feuerstein, Ber. 34, 415 (1901).

(211) Erdtman, Ann. 505, 199 Note (1933). (212) Kaufmann, Burr, Ber. 40, 2359 (1907). (213) Pinner, Ber. 31, 1926–1938 (1898); cf. Ber. 33, 1432–1433 (1900). (214) Staudinger, Kon, Ann. 384, 87 (1911). (215) Schering-Kahlbaum, Brit. 459,462, Feb. 4, 1937; Cent. 1937, I 3518; C.A. 31, 3942 (1937): Swiss 187,423, Feb. 1, 1937; Cent. 1937, II 626; not in C.A. (216) Garsarolli-Thurnlackh, Monatsh. 12, 556–565 (1891). (217) von Auwers, Schmidt, Ber. 46, 487–494 (1913). (218) McKenzie, Plenderleith, J. Chem. Soc. 123, 1092–1093 (1923). (219) Kurien, Pandya, Surange, J. Indian Chem. Soc. 11, 826 (1934). (220) von Auwers, Wissebach, Ber. 56, 735 (1923).

(221) Nelson, J. Am. Chem. Soc. 52, 2929-2933 (1930). (222) Fittig, Miller, Ann. 255, 43-51 (1889). (223) Wislicenus, Nassauer, Ann. 285, 7-10 (1895). (224) Wallach, Ann. 193, 35-47 (1878). (225) Wallach, Heymer, Ber. 9, 545-547 (1876). (226) Nencki, J. prakt. Chem. (2) 17, 239-240 (1878). (227) Boescken, Blok, Cent. 1927, I 2987; not in C.A. (228) Meldrum, Bhatt, J. Univ. Bombay, 3, 149-152 (1934); Cent. 1935, I 3128; C.A. 29, 4734 (1935). (229) Shah, Alimchandani, J. Univ. Bombay 5, Pt. 2, 132-136 (1936); Cent. 1938, I 57; C.A. 31, 3002 (1937). (230) Yorston, Rec. trav. chim. 46, 711-714 (1927).

(231) Shah, Alimchandani, J. Indian Chem. Soc. 11, 545-550 (1934). (232) Bistrzycki, Brenken, Helv. Chim. Acta 3, 455 (1920). (233) Calvet, Mejuto, J. Chem. Soc. 1936, 554-556; Anales soc. españ. fis. quím. 34, 641-649 (1936); Cent. 1938, I 586; C.A. 31, 5756 (1937). (234) Shah, Alimchandani, J. Indian Chem. Soc. 13, 475-477 (1936). (235) Hurry, Meldrum, J. Indian Chem. Soc. 11, 535-538 (1934). (236) Alimchandani, Meldrum, J. Chem. Soc. 11, 201-209 (1921). (237) Shah, Alimchandani, J. Indian Chem. Soc. 11, 467-469 (1934). (238) Shah, Alimchandani, J. Indian Chem. Soc. 11, 467-469 (1934). (238) Indian Chem. Soc. 2, 1-9 (1925). (240) Schleussner, Voswinckel, Ann. 422, 111-133 (1921).

(241) Meldrum, Chandani, J. Indian Chem. Soc. 6, 253-258 (1929). (242) Brass, Fiedler, Ber. 65, 1655, 1657 (1932). (243) Fritsch, Ann. 296, 344-345, 350-352 (1897). (244) Chattaway, Calvet, Anales soc. españ. Its. quím. 26, 75-91 (1928); Cent. 1928, I 2618; C.A. 22, 1965 (1928). (245) Chakravarti, Perkin, J. Chem. Soc. 1929, 196-201. (246) Buehler, Block, J. Am. Chem. Soc. 68, 532-533 (1946). (247) Meldrum, Kapadia, J. Indian Chem. Soc. 9, 483-491 (1932). (248) Meldrum, Parikh, Proc. Indian Acad. Sci. A-1, 431-436 (1935). (249) Alimchandani, J. Chem. Soc. 125, 539-543 (1924). (250) Feist, Dschu, Festschrift A. Tschirch 1926, 23-29; Cent. 1927, II 58; C.A. 22, 3405 (1928).

(251) Chopra, Ray, J. Indian Chem. Soc. 13, 480 (1936). (252) Bargellini, Molina, Gazz. Chim. ital. 42, II 403-408 (1912). (253) Alimchandani, Meldrum, J. Chem. Soc. 117, 964-970 (1920). (254) Horzig, Ann. 421, 283-289 (1921). (255) Chattaway, Calvet, J. Chem. Soc. 1927, 685-692. (256) Meldrum, Tata, J. Univ. Bombay 6, Pt. II, 120-122 (1937); Cent. 1938, I 4035; C.A. 32, 3761 (1938). (257) Chattaway, Irving, J. Chem. Soc. 1934, 325-330. (258) Irving, Curtis, J. Chem. Soc. 1943, 319-321. (259) Chattaway, Calvet, J. Chem. Soc. 1928, 2913-2918; Anales soc. españ. fis. quím. 26, 320-326 (1928); Cent. 1929, I 528; C.A. 23, 599 (1929). (260) Schiff, Ber. 31, 1304-1306 (1898).

(261) Marvel, Dreger, Org. Syntheses, Coll. Vol. 1 (2nd ed.) 238-240 (1941); (1st ed.) 233-235 (1932); 6, 40-42 (1926). (262) Kulkarni, Shah, J. Univ. Bombay 10, Pt. 3, 120-121 (1941); C.A. 36, 3795 (1942). (263) Meyer, Dulk, Ann. 171, 65-78 (1874). (264) Delacre, Bull. soc. chim. (2) 48, 716 (1887). (265) Deodhar, J. Indian Chem. Soc. 11, 83-86 (1934). (266) Gabutti, Bargellini, Gazz. chim. ital. 31, I 82-85 (1901). (267) Bayer and Co., Ger. 121,223, June 3, 1901; Cent. 1901, II 69. (268) Spath, Monatsh. 36, 37 (1915). (269) Wegscheider, Spath, Monatsh. 36, 847 (1909). (270) Parlee, Dacey, Coffin, Can. J. Research 15-B, 254-259 (1937) Cent. 1938, I 4307; C.A. 31, 6538 (1937).

(271) Coles, J. Am. Pharm. Assoc. 27, 477-480 (1938); Cent. 1939, I 96; C.A. 32, 7671 (1938).
(272) Einhorn, Ann. 265, 209-238 (1891).
(273) Einhorn, Liebrecht, Ber. 20, 1592-1594 (1887).
(274) Feist, Arch. Pharm. 240, 180-184 (1902).
(275) Löffler, Kaim, Ber. 42, 96-97 (1909).
(276) Koller, Monatsh. 47, 394 (1926).
(277) Clemo, Ramage, J. Chem. Soc. 1932, 2972.
(278) Winterfeld, Holschneider, Arch. Pharm. 277, 198, 200-201 (1939).
(279) Boehringer and Sons,

Ger. 42,987, May 27, 1887; Friedländer 1, 194 (1888). (280) Tulloch, McElvain, J. Am. Chem. Soc. 61, 963 (1939).

(281) Brand, Reuter, Ber. 72, 1668-1678 (1939). (282) Düring, Ber. 38, 167 (1905). (283) Rabe, Kindler, Ber. 52, 1847-1850 (1919). (284) Rabe, Kindler, Wagner, Ber. 55, 535-536 (1922). (285) Alberts, Bachman, J. Am. Chem. Soc. 57, 1285-1286 (1935). (286) Webb, Corwin, J. Am. Chem. Soc. 66, 1458 (1944). (287) Rabe, Huntenberg, Schultze, Volger, Ber. 64, 2493-2496 (1931). (288) Koenigs, Ottmann, Ber. 54, 1345-1347 (1921). (289) Takahaski, J. Pharm. Soc. Japan, 49, 168-170 (1929); Cent. 1930, I 1308; C.A. 24, 1380 (1930). (290) Schubert, Ber. 27, 86-90 (1894).

(291) Koenigs, Mengel, Ber. 37, 1335-1337 (1904). (292) Kondo, Matsumo, J. Pharm. Soc. Japan 49, 79-83 (1929); Cent. 1929, II 1006; C.A. 23, 4218 (1929). (293) Gerngross, Ber. 42, 400-401 (1909). (294) Einhorn, Ber. 18, 3465-3468 (1885); 19, 904-911 (1886). (295) von Miller, Spady, Ber. 18, 3402-3405 (1885); 19, 130-134 (1886). (296) Clemo, Hoggarth, J. Chem. Soc. 1939, 1242. (297) Koenigs, Muller, Ber. 37, 1337-1340 (1904). (298) Chattaway, Witherington, J. Chem. Soc. 1935, 1178-1179. (299) Jones, Kenner, J. Chem. Soc. 1939, 927. (300) Henry, Bull. acad. roy. Belg. (3) 32, 17-32 (1896); Bull. soc. chim. (3) 15, 1223 (1896); Compt. rend. 120, 1262 (1895).

(301) Chattaway, Drewitt, Parkes, J. Chem. Soc. 1936, 1693-1694. (302) Irving, J. Chem. Soc. 1936, 797-801. (303) Chattaway, Drewitt, Parkes, J. Chem. Soc. 1936, 1530-1532. (304) Chattaway, Witherington, J. Chem. Soc. 1935, 1623-1624. (305) Chattaway, Drewitt, Parkes, J. Chem. Soc. 1936, 1294-1295. (306) Khaiasch, Kleiger, Martin, Mayo, J. Am. Chem. Soc. 63, 2305-2307 (1941). (307) Victoria, Rec. trav. chim. 24, 268-271 (1905); Bull. acad. roy. Belg. 1904, 1087-1123; Cent. 1905, I 344-345. (308) Bayer and Co., Ger. 151,545, May 20, 1904; Cent. 1904, I 1586. (309) Gilman, Abbott, J. Org. Chem. 8, 224-229 (1943). (310) Howard, J.

Am. Chem. Soc. 48, 774-775 (1926).

(311) Iotsitch, J. Russ. Phys.-Chem. Soc. 36, 445 (1904); Bull. soc. chim. (3) 34, 329 (1905). (312) Howard, J. Am. Chem. Soc. 49, 1068-1069 (1927). (313) Floutz, J. Am. Chem. Soc. 67. 1615-1616 (1945). (314) Floutz, J. Am. Chem. Soc. 65, 2255 (1943). (315) Iotsitch, J. Russ. Phys.-Chem. Soc. 34, 96 (1902). (316) Howard, Brown, J. Am. Chem. Soc. 58, 1657 (1936). (317) Dean, Wolf, J. Am. Chem. Soc. 58, 332 (1936). (318) Pinner, Bischoff, Ann. 179, 77-85 (1875). (319) Pinner, Ber. 17, 1997 (1884). (320) Bischoff, Pinner, Ber. 5, 208-212 (1872).

(321) Behrend, Kolln, Ann. 416, 231-233 (1918). (322) Hagemann, Ber. 5, 151-152 (1872). (323) Francis, Davis, J. Chem. Soc. 95, 1407 (1909). (324) Pinner, Fuchs, Ber. 10, 1061 (1877). (325) Cocker, Lapworth, Peters, J. Chem. Soc. 1931, 1382-1391. (326) Crowther, McCombie, Reade, J. Chem. Soc. 105, 933-947 (1914). (327) Wallach, Ann. 173, 288-302 (1874). (328) Cope, Clarke, Connor, Org. Syntheses, Coll. Vol. 2 (1st ed.), 181-183 (1943); 19, 38-39 (1939). (329) Clarke, Shibe, Connor, Org. Syntheses 20, 37-39 (1940). (330) Arndt, Eistert, Ber. 61, 1121 (1928).

(331) Schlotterbeck, Ber. 42, 2561 (1909). (332) Meerwein, Bersin, Burneleit, Ber. 62, 1006-1007 (1929). (333) Wallach, Ann. 173, 274-284 (1874); Ber. 5, 251-256 (1872); 4, 668-669 (1871). (334) Eibner, Ann. 302, 335-370 (1898). (335) Jordan, J. Am. Chem. Soc. 32, 973-977 (1910). (336) Rugheimer, Ber. 39, 1653-1664 (1906). (337) Marvel, Hiers, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 327-330 (1941); (1st ed.) 321-324 (1932); 5, 71-74 (1925). (338) Sandmeyer, Helv. Chim. Acta 2, 234-242 (1919). (339) Geigy A.G., Ger. 313,725, July 21, 1919; Cent. 1919, IV 665; not in C.A.: Brit. 128,122 [C.A. 13, 2375 (1919)]. (340) Wibaut, Geerling. Rec. trav. chim. 50, 41-43 (1931).

(341) Geigy A.G., Ger. 320,647, April 26, 1920; Cent. 1920, IV 223; not in C.A. (342) Wheeler, Weller, J. Am. Chem. Soc. 24, 1063-1066 (1902). (343) Wheeler, J. Am. Chem. Soc. 30, 136-142 (1910). (344) Wheeler, Jordan, J. Am. Chem. Soc. 31, 937-943 (1909). (345) Gulland, Robinson, Scott, Thornley, J. Chem. Soc. 1929, 2924-2941. (346) Boessneck, Ber. 21, 782-784 (1888). (347) Meldrum, Advani, J. Indran Chem. Soc. 10, 107-110 (1933). (348) Advani, Wheeler, Rec. trav. chim. 52, 257-266 (1933). (349) Advani, J. Indian Chem. Soc. 10, 621-624 (1933). (350) Zierold, Ger. 61,551, Feb. 10, 1892; Friedlander 3, 109 (1896).

(351) Knöfler, Boessneck, Ber. 20, 3193-3196 (1887). (352) Boessneck, Ber. 18, 1516-1521 (1885). (353) Causse, Bull. soc. chim. (3) 17, 547-553 (1897). (354) Stepanow, Kusin, Ber. 65, 1239-1241 (1932). (355) Torres, Brosa, Anales soc. españ. fis. quim. 32, 509-518 (1934): Cent. 1935, I 382; C.A. 28, 6104 (1934). (356) Brady, J. Chem. Soc. 1931, 756-759. (357) Chattaway, Bennett, J. Chem. Soc. 1927, 2850-2853. (358) Chattaway, Adair, J. Chem. Soc. 1933, 1488-1490. (359) Chattaway, Daldy, J. Chem. Soc. 1928, 2756-2762. (360) Chattaway. Browne, J. Chem. Soc. 1931, 1088-1092.

(361) Chem. Fabrik Schering, Ger. 50,586, Dec. 18, 1889; Friedländer 2, 524 (1891). (362)

Feist, Ber. 45, 945-962 (1912). (363) Bennett, Campbell, Quart. J. Pharm. Pharmacol. 8, 398-400 (1935); Cent. 1936, I 1916; C.A. 30, 813 (1936). (364) Moscheles, Ber. 24, 1803-1805 (1891). (365) Meldrum, Vad, J. Indian Chem. Soc. 13, 117-118 (1936). (366) Yelburgi, Wheeler, J. Indian Chem. Soc. 11, 217-223 (1934). (367) Meldrum, Bhajraj, J. Indian Chem. Soc. 13, 185-186 (1936). (368) Pinner, Klein, Ber. 11, 10-11 (1878). (369) Meldrum, Deodhar, J. Indian Chem. Soc. 11, 529-533 (1934). (370) Hirwe, Deshpande, Proc Indian Acad. Sci. A-13, 275-276 (1941).

(371) Hirwe, Deshpande, Proc. Indian Acad. Sci. A-13, 277-280 (1941). (372) Kaufmann, Arch. Pharm. 265, 237-238 (1927). (373) Ritsert (to Goedecke and Co.), Ger. 498,432, May 28, 1930; Cent. 1930, II 584; C.A. 24, 3861 (1930). (374) Hirwe, Rana, Ber. 72, 1346-1350 (1939). (375) Hirwe, Gavankar, Patil, Proc. Indian Acad. Sci. A-11, 512-516 (1940). (376) Hirwe, Rana, J. Indian Chem. Soc. 16, 677-680 (1939). (377) Hirwe, Rana, J. Univ. Bombay 7, Pt. III, 174-177 (1938); Cent. 1939, II 383; C.A. 33, 3778 (1939). (378) Hirwe, Gavankar, J. Univ. Bombay 6, Pt. II, 123-126 (1937); Cent. 1938, I 4172; C.A. 32, 3762 (1938). (379) Rana, J. Indian Chem. Soc. 19, 299-302 (1942). (380) Hirwe, Kulkarni, Proc. Indian Acad. Sci. A-13, 49-52 (1941).

(381) Coppin, Titherly, J. Chem. Soc. 105, 32-36 (1914). (382) Chattaway, James, Proc. Roy. Soc. (London), A-134, 372-384 (1931). (383) Feist, Ber. 47, 1188-1193 (1914). (384) Chattaway, James, J. Chem. Soc. 1934, 109-113. (385) Chattaway, Kerr, Lawrence, J. Chem. Soc. 1933, 30-32. (386) van der Zande, Rec. trav. chim. 8, 238-241 (1889). (387) Diels, Seib, Ber. 42, 4062-4072 (1909). (388) Bischoff, Ber. 7, 631-632 (1874). (389) Meldrum, Pandya, J. Univ. Bombay, 6, Pt. II, 114-115 (1937); Cent. 1938, I 3462; C.A. 32, 3760 (1938). (390)

Roduta, Quibilan, Rev. filipina med. farm. 27, 123-130 (1936); C.A. 31, 98 (1937).

(391) Allen, Richmond, J. Org. Chem. 2, 225 (1937). (392) Kling, Bull. soc. chim. (4) 5, 412-414 (1909); Compt. rend. 148, 569 (1909). (393) Knopfer, Monatch. 32, 768-771 (1911). (394) Darapsky, Prabhakar, Ber. 45, 2624-2625 (1912). (395) Müller, Ber. 47, 3021 (1915). (396) Sah, Kao, Chang, J. Chinese Chem. Soc. 2, 236 (1934). (397) Busch, Achterfeldt, Seufert, J. prakt. Chem. (2) 92, 24 (1915). (398) Koenigs. Ber. 25, 794-797 (1892). (399) Wislicenus, Kircheisen, Sattler, Ber. 26, 908-915 (1893). (400) Sen, Barat, J. Indian Chem. Soc. 2, 403-414 (1926).

(401) Uschakoff, J. Russ. Phys.-Chem. Soc. 29, 113-118 (1897); Cent. 1897, I 1019. (402) Koenigs, Wagstaffe, Ber. 26, 554-556 (1893). (403) Sumerford, Dalton, J. Org. Chem. 9, 81-84 (1944). (404) Frolich, Wiezevich (to Standard Oil Dev. Co.), U.S. 2,042,303, May 26, 1936; Cent. 1936, II 3193; C.A. 39, 4871 (1936); Ger. 629,897, May 26, 1936; Cent. 1936, II 2448; C.A. 30, 6006 (1936). (405) Cristol, Hayes, Haller, J. Am. Chem. Soc. 68, 913-914 (1946).

3:5220 2,3-DICHLOROBUTADIENE-1,3 Cl Cl 
$$C_4H_4Cl_2$$
 Beil. S.N. 12  $H_2C=C-C=CH_2$ 

**B.P.** 98° at 760 mm. (1) (2) 
$$D_4^{20} = 1.1829$$
 (1)  $n_D^{20} = 1.4890$  (1)  $41-43^\circ$  at 85 mm. (1)  $40-43^\circ$  at 85 mm. (3)

[For prepn. of  $\overline{C}$  (86% yield (1)) from 1,2,3-trichlorobutene-3 (2,3,4-trichlorobutene-1) (3:9064) with excess MeOH/KOH at 10-15° see (1) (2); for formn. (together with other products) from 1,2,3,4-tetrachlorobutane (3:1760) with MeOH/KOH at 10-18° see (1) (2); from chloroprene (3:7080) by addn. of ICl followed by treatment with alc. KOH (3),

Č polymerizes completely within 24 hrs. at room temp., in about 40 min. at 85–90°; this is about 10 times as fast as chloroprene (3:7080) and 7000 times as fast as isoprene (1:8020). The polymer is a white opaque tough hard mass, non-plastic and lacking extensibility. It is insol. in and separates from liquid Č but is partly soluble in CHCl<sub>3</sub> (1). The polymerization is inhibited by hydroquinone and accelerated by benzoyl peroxide (2).

C does not (1) react with maleic anhydride (1:0625) or with 1,4-naphthoguinone (1:9040).

3:5220 (1) Carothers, Berchet, J. Am. Chem. Soc. 55, 2004-2008 (1933). (2) Carothers, Berchet, U.S. 1,965,319, July 3, 1934; Cent. 1935, I 3724; C.A. 28, 5716 (1934). (3) Petrov, J. Gen. Chem. (U.S.S.R.) 13, 155-158 (1943); C.A. 38, 1466-1467 (1944).

3:5225-3:5235

3:5225 METHOXYACETYL CHLORIDE 
$$C_3H_5O_2Cl$$
 Beil. S.N. 220  $CH_3OCH_2$ — $C$ =O  $Cl$ 

B.P. 99° (1) 
$$D_4^{20} = 1.1871$$
  $n_D^{20} = 1.41945$  (2) 50-51° at 69 mm. (2)

[For prepn. of C from methoxyacetic acid (1:1065) with SOCl<sub>2</sub> (yields: 70% (1), 45% (2)) see indic. refs. (note that best yield is obtd. with 10% less than 1 mole SOCl<sub>2</sub> (1) since cleavage of the methoxy group is thus minimized); from methoxyacetic acid anhydride [Beil. III<sub>1</sub>-(92)] with COCl<sub>2</sub> (3:5000) at 160° under reduced press. over CaCl<sub>2</sub> on pumice see (3); from chloromethyl methyl ether (3:7085) contg. 4.67% dislvd. ZnCl<sub>2</sub> on shaking with CO at 25-50° and 275-625 pounds press. for 8 hrs. see (4).

 $[\bar{C}]$  with alcs. + pyridine in CHCl<sub>3</sub> soln. gives (1) corresp. esters; for reactn. of  $\bar{C}$  with benzyl alc. (1:6480), with  $\beta$ -phenylethyl a c. (1:6505), citronellol, or geraniol (1:6270) see (1); with menthol (1:5940) see (5); for study of rate of reactn. of  $\bar{C}$  with benzyl alc. (1:6480), cyclohexanol (1:6415), or ethylene chlorohydrin (3:5552) in dioxane soln, see (2).]

Č on hydrolysis yields methoxyacetic acid (1:1065); for the amide, anilide, and other derivs. corresp. to C see methoxyacetic acid (1:1065).

3:5225 (1) Rothstein, Bull. soc. chim. (4) 51, 840 (1932). (2) Leimu, Ber. 70, 1044, 1050 (1937). (3) Stellmann, French 785,075, Aug. 1, 1935; Cent. 1935, II 3301. (4) Scott (to du Pont Co.). U.S. 2,084,284, June 15, 1937; Cent. 1937, II 2261; C.A. 31, 5383 (1937). (5) Rule, Smith, J. Chem. Soc. 127, 2191 (1925).

#### 3:5230 1,2,3-TRICHLORO-2-(CHLOROMETHYL)-C<sub>5</sub>H<sub>8</sub>Cl<sub>4</sub> Beil. S.N. 10 BUTANE

[For prepn. of C from 3-chloro-2-(chloromethyl)butene-1 (3:9206) with Cl<sub>2</sub> + NaHCO<sub>3</sub> at 0° (90% yield) see (1); for formn. from other sources see (2).]

[Č with alc. KOH gives (2) (by loss of 1 HCl) 1,3-dichloro-2-(chloromethyl)butene-1 (3:9201) and (by further loss of 1 HCl or perhaps 2 HCl from C) also 1-chloro-2-(chloromethyl)butadiene-1,3 (3:9195).]

 $\bar{C}$  on hydrolysis with aq.  $K_2CO_3 + KOH$  yields (2) an alcohol.

3:5230 (1) Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1232-1246 (1938); Cent. 1939, II 4222; C.A. 33, 4190 (1939). (2) Tishchenko, J. Gen. Chem. (U.S.S.R.) 6, 1116-1132 (1936); Cent. 1937, I 573; C.A. 31, 1003 (1937).

B.P. 
$$105.0^{\circ}$$
 at 750 mm. (1)  $D_4^{20} = 1.4202$  (1);  $n_D^{20} = 1.4541$  (1)  $104.7-105.2^{\circ}$  (2)  $1.4177$  (4)  $1.4535$  (4)  $103-106^{\circ}$  at 750 mm. (3)

[For prepn. of  $\tilde{C}$  from chloroacetic acid (3:1370) with PCl<sub>3</sub> (5) (40), or in HCl atm. under press. at 150° (6), or with ZnCl<sub>2</sub> (67% yield (7)) see indic. refs.; with P<sub>2</sub>O<sub>5</sub> + HCl gas at 200° see (8); with SOCl<sub>2</sub> (yields: 95% (9), 55% (10), 50% (7)) (11) see indic. refs.; with benzoyl chloride (3:6240) (yield 71-76%) see (12); with oxalyl dichloride (3:5060) (80% yield) see (3); with physical properties (3:5000) over activated carbon at 200° see (13); with benzotrichloride (3:6540) + ZnCl<sub>2</sub> at 80-90° (80% yield) see (14); with Cl<sub>2</sub> + S<sub>2</sub>Cl<sub>2</sub> (95% yield (15)) or Cl<sub>2</sub> + lower chlorides of sulfur + FeCl<sub>3</sub>, SnCl<sub>4</sub>, etc., at 50-60° (82% yield (16)) see indic. refs.]

[For prepn. of  $\tilde{C}$  from chloroacetic acid anhydride (3:0730) with oxalyl dichloride (3:5060) see (3); from ketene with NOCl see (17); from  $\alpha,\beta$ -dichlorovinyl ethyl ether (3:5540) + HCl gas see (18); from  $\alpha,\beta$ -dichloroethylene + O<sub>2</sub> in pres. of Br<sub>2</sub> or conc. H<sub>2</sub>SO<sub>4</sub> see (19); from acetyl chloride (3:7065) with Cl<sub>2</sub> in sunlight (20) or in CCl<sub>4</sub> in u.v. light (21) or in pres. of I<sub>2</sub> (22) see indic. refs.; from  $\alpha$ -chloroethyl chloroacetate on htg. with 0.02% ZnCl<sub>2</sub> see (23); from 2-(chloroacetoxy)hexene-1 with HCl gas see (24), from CH<sub>2</sub>Cl<sub>2</sub> (3:5020) + AlCl<sub>3</sub> + CO gas at 200° and 900 atm. see (41).

Č on htg. with Na<sub>2</sub>CO<sub>3</sub> (25) or with KNO<sub>3</sub> (81% yield (26)) gives chloroacetic acid anhydride (3:0730) q.v., m.p. 46°. — Č treated at −5° with HI gas gives (68% yield (27)) chloroacetyl iodide, b.p. 36.5° at 4 mm. (27). [For behavior of C with HBr gas see (40).]

Č with MeOH yields (28) methyl chloroacetate (3:5585), b.p. 131°; Č with EtOH (29) or with triethyl orthoformate (1:3241) at 100-110° (90% yield (30)) gives ethyl chloroacetate (3:5700), b.p. 144°.

[ $\bar{\mathbf{C}}$  with ethylene + AlCl<sub>3</sub> gives (small yield (31)) 1,4-dichlorobutanone 2, b.p. 63-65° at 3 mm. (31). — $\bar{\mathbf{C}}$  with C<sub>6</sub>H<sub>6</sub> + AlCl<sub>3</sub> gives (32) ω-chloroacetophenone (phenacyl chloride) (3:1212);  $\bar{\mathbf{C}}$  with m-dichlorobenzene (3:5960) + AlCl<sub>3</sub> gives (33) 2,4-dichlorophenacyl chloride [Beil. VII-283], m.p. 57° (33);  $\bar{\mathbf{C}}$  with biphenyl + AlCl<sub>3</sub> gives (77% yield (34)) p-phenylphenacyl chloride (3:3934), m.p. 122-123° (34);  $\bar{\mathbf{C}}$  with naphthalene + AlCl<sub>3</sub> in CS<sub>2</sub> gives (35) cf. (36) chloromethyl β-naphthyl ketone.]

[ $\bar{C}$  with large excess (4 moles) MeMgBr or MeMgI gives (48-51% yield (37)) (38) 2-methylbutanol-3 (1:6170);  $\bar{C}$  with large excess  $C_6H_5MgBr$  in ether gives (31% yield (39)) 1,2,2-triphenylethanol-1 [Beil. VI-721], m.p. 87.5-88.5° (39); note that the isomeric 1,1,2-triphenylethanol-1 [Beil. VI<sub>1</sub>-(354)] has almost same m.p., viz., 89°.]

Č hydrolyzes with aq. yielding chloroacetic acid (3:1370) q.v. — For the amide, anilide, p-toluidide, and other derivs. corresp. to Č see chloroacetic acid (3:1370).

3:5235 (1) Martin, Partington, J. Chem. Soc. 1936, 162. (2) Cheng, Z. physik. Chem. B-26, 295 (1934). (3) Adams, Ulich, J. Am. Chem. Soc. 42, 604, 606 (1920). (4) Vanderstichele, J. Chem. Soc. 123, 1228 (1923). (5) de Wilde, Ann. 130, 372-373 (1864). (6) Scheuble, Ger. 251,806, Oct. 8, 1912; Cent. 1912, II 1503-1504. (7) Clark, Bell, Trans. Roy. Soc. Canada (3) 27, III 97-103 (1933). (8) Frankland, Patterson, J. Chem. Soc. 73, 190 (1898). (9) Barnett, Chem. News 122, 220-221 (1921); Cent. 1921, III 463. (10) McMaster, Ahmann, J. Am. Chem. Soc. 50, 146 (1928).

(11) Böeseken, Rec. trav. chim. 32, 5 (1913). (12) Brown, J. Am. Chem. Soc. 60, 1325-1328 (1938). (13) Hochstetter, Ger. 283,896, April 27, 1915; Cent. 1915, I 1190. (14) Raboewicz-Zubkowski, Roczniki Chem. 9, 526-527 (1929); Cent. 1929, II 2767; CA. 24, 61 (1930). (15) Read, J. Am. Chem. Soc. 44, 1751 Note (1922). (16) Britton (to Dow Chem. Co.), U.S. 1,805,162, May 12, 1931; Cent. 1931, II 631; C.A. 25, 3670 (1931). (17) Deakin, Wilsmore, J. Chem. Soc. 97, 1977 (1910). (18) Consortium für Elektrochem. Ind., Ger. 222,194, May 19, 1910; Cent. 1910, I 1999. (19) Consortium für Elektrochem. Ind., Ger. 340,872, Sept. 19, 1921; Cent. 1921, IV 1101. (20) Wurtz, Ann. chim. (3) 49, 60 (1857).

Benrath, Hertel, Z. wiss. Phot. 23, 35 (1924).
 Jazukowitsch, Zeit. für Chemie 1868, 234.
 Soc. Usines Chimiques Rhone-Poulenc, Brit. 329,721, June 19, 1930; Cent. 1930, II
 Janina, Hennion, J. Am. Chem. Soc. 59, 856 (1937).
 Patterson, Ber. 38, 211-212 (1905).
 Diels, Okada, Ber. 44, 3335 (1911).
 Gustus, Stevens, J. Am. Chem.

Soc. 55, 375 (1933). (28) Meyer, Ber. 8, 1152-1158 (1875). (29) Willm, Ann. 102, 109-111

(1857). (30) Levaillant, Compt. rend. 195, 882 (1932).

(31) Carroll, Smith, J. Am. Chem. Soc. 55, 372-373 (1933). (32) Friedel, Crafts, Ann. chim. (6) 1, 507 (1884). (33) Kunckell, Ber. 40, 1702-1703 (1907) (34) Silver, Lowy, J. Am. Chem. Soc. 56, 2429-2431 (1934). (35) Morgan, Stanley, J. Soc. Chem. Ind. 44, 494-T (1925). (36) Widman, Ber. 51, 911 (1918). (37) Duston, Jackson, Spero, J. Am. Chem. Soc. 63, 1459-1460 (1941). (38) Henry, Compt. rend. 145, 24 (1907). (39) Boyle, McKenzie, Mitchell, Ber. 76, 2159 (1937). (40) Aschan, Ber. 46, 2168 (1913).

(41) Theobald (to du Pont Co.) U.S. 2,378,048, June 12, 1945; C.A. 39, 4085 (1945).

B.P. 
$$105^{\circ}$$
 (1) (2) (8)  $D_{20}^{20} = 1.315$  (1)  $n_{\rm D}^{21} = 1.435$  (2)  $104-106^{\circ}$  (3)  $D_{4}^{15} = 1.328$  (2)

Liq. fumg. in moist air.

 $\ddot{C}$  dis. slowly in cold and rapidly in warm aq. owing to hydrolysis to formaldehyde (1:0145) + HCl. [For quant. study see (5).]

[For prepn. from formalin (1:0145), paraformaldehyde (1:0080) (95% yield (6)), or hexamethylenetetramine + chlorosulfonic ac. + conc.  $H_2SO_4$  see (6) (7); from paraformaldehyde (1:0080) + conc.  $H_2SO_4$  + HCl gas (85% yield (8)) see (8); for prepn. from dimethyl other by chlorination see (9) (10).]

[For use in production of halogenated higher ethers by addn. to olefins see (11).]

3:5245 (1) Regnault, Ann. 34, 31 (1840). (2) Brochet, Ann. chim. (7) 10, 297 (1897). (3) Grassi, Maselli, Gazz. chim. ital. 28, II 485 (1898). (4) Litterschied, Ann. 330, 116 (1903). (5) Bohme, Ber. 74, 248-256 (1941); C.A. 35, 3972-3973 (1941). (6) Stephen, Short, Gladding, J. Chem. Soc. 117, 513-515 (1920). (7) Carr, J. Soc. Chem. Ind. 38, 468R (1919). (8) Schneider, Angew. Chem. 51, 274 (1938). (9) Salzberg, Werntz (to du Pont, U.S. 2,065,400, Dec. 22, 1936; C.A. 31, 1046 (1937); Cent. 1937, I 3715. (10) Booth (to Westinghouse Electric Co.), U.S. 2,066,905, Jan. 5, 1937; C.A. 31, 1037 (1937); Cent. 1937, I 3529.

(11) Scott (to du Pont), U.S. 2,024,749, Dec. 17, 1935, Brit. 423,520; C.A. 30, 1067 (1936); C.A. 29, 4374 (1935).

3:5270 1,1,1-TRICHLOROPROPANE CH<sub>3</sub>.CH<sub>2</sub>.CCl<sub>3</sub> C<sub>3</sub>H<sub>5</sub>Cl<sub>3</sub> Beil. S.N. 10 ("Ethylchloroform")

**B.P.** 
$$106.5 - 108.5^{\circ}$$
 (4)  $D_4^{23} = 1.287$  (1)  $106 - 107^{\circ}$  (1) (2)

[For prepn. from 1,1-dichloropropene-1 (3:5120) + HCl + AlCl<sub>3</sub> at 5-10° see (1) (2) (4).]

[The compd. listed in Beil. I-106 as C is erroneous (1) (3).]

3:5270 (1) Levine, Cass (to du Pont), British 503,615, May 11, 1939; Cent. 1339, II 1572. (2) Levine, Cass (to du Pont), U.S. 2,179,218, Nov. 7, 1939; C.A. 34, 1336 (1940). (3) Van Arkel, Rec. trav. chim. 51, 1101 (1932). (4) Henne, Whaley, J. Am. Chem. Soc. 64, 1157 (1942).

3:5275 CHLOROMETHYL CHLOROFORMATE 
$$C_2H_2O_2Cl_2$$
 Beil. III — (Chloromethyl chlorocarbonate)  $ClCH_2-O-C=O$   $III_{1^-}(6)$   $III_{2^-}(11)$  B.P. 106.5-107° at 760 mm. (1)  $D_-^{15} = 1.465$  (1)  $n_D^{22} = 1.4286$  (2) 106.5° (2)

 $D_{-}^{14} = 1.456 (2)$ 

See also text.

104-107°

52.5-53°

[See also dichloromethyl chloroformate (3:5315).]

at 100 mm. (1)

(3)

Coloriess lachrymatory oil. — Note that  $\tilde{C}$  cannot by distillation be completely separated from dichloromethyl chloroformate (3:5315); the constants listed above are on samples contg. (1) about 9% of the latter, or (3) about 7% of dichloromethyl chloroformate + 2% dimethyl carbonate.

A mixt. of  $\bar{C}$  with dichloromethyl chloroformate (3:5315) has been employed as a chem. warfare agent under the names "K-Stoff," "Palite" (6). — [For studies of physiological action see (4) (5); for action on plant tissue see (7).]

[For prepn. of  $\tilde{C}$  from methyl chloroformate (3:5075) or from methyl formate (1:1000) with  $Cl_2$  under various conditions see (1) (2) cf. (6) (8) (9).]

 $\bar{C}$  with aq. at ord. temp. or more rapidly on boilg. or  $\bar{C}$  with aq. alk. in çold undergoes hydrolysis (1) yielding formaldehyde (1:0145) + 2 HCl + CO<sub>2</sub>; by detn. via oxidn. with  $I_2$  + NaOH of the formaldehyde so produced  $\bar{C}$  may be quant. estimated cf. (10) (6); note also that this hydrolysis to formaldehyde distinguishes  $\bar{C}$  from various other closely related compounds, e.g., methyl chloroformate (3:5075), dichloromethyl chloroformate (3:5315), trichloromethyl chloroformate ("Diphosgene") (3:5515), trichloromethyl trichloroacetate (3:0290), bis-(trichloromethyl) carbonate ("Triphosgene") (3:1915), or phosgene (3:5000).

 $\bar{C}$  (1 mole) with NaI (2 moles) in dry acetone at 20° (11) liberates I<sub>2</sub> also yielding formal-dehyde (1:0145) + CO, but the reaction is *not* quantitative proceeding only to about 70% theoretical (11); but  $\bar{C}$  with dry NaI at 90-100° gives (1) CO + CO<sub>2</sub>. Note that  $\bar{C}$  with LiBr in dry acetone does *not* (11) liberate bromine; in this respect  $\bar{C}$  is like methyl chloroformate (3:5075) but different from dichloromethyl chloroformate (3:5315) and trichloromethyl chloroformate ("Diphosgene") (3:5515).

[Č with FeCl<sub>3</sub> or AlCl<sub>3</sub> dec. rapidly at 70° (1) (12) yielding phosgene (3:5000) and formaldehyde (1:0145).]

[ $\ddot{\mathbf{C}}$  with methyl hydrogen sulfate gives (13) methyl chlorosulfonate, formaldehyde,  $\mathbf{CO_2} + \mathbf{HCl}$ ;  $\ddot{\mathbf{C}}$  with chlorosulfonic acid at 100° for 4 hrs. gives (13) chloromethyl chlorosulfonate +  $\mathbf{CO_2} + \mathbf{HCl}$ ;  $\ddot{\mathbf{C}}$  with dimethyl sulfate gives (78% yield (13)) methyl chlorosulfonate.]

[ $\tilde{C}$  with alcohols or  $\tilde{C}$  with alkali salts of phenols reacts as an acid chlorine yielding (6) the corresp. alkyl or anyl chloromethyl carbonates (1).]

[Č with K phenylcyanamide also reacts as an acid chloride giving (14) chloromethyl N-cyano-N-phenylcarbamate, m.p. 48°.]

3:5275 (1) Kling, Florentin, Lassieur, Schmuts, Compt. rend. 169, 1046-1047 (1919); Ann. chim. (9) 13, 44-59 (1920). (2) Grignard, Rivat, Urbain, Compt. rend. 169, 1074-1077 (1919); Ann. chim. (9) 13, 246-248 (1920). (3) Herbst, Kolloidchem. Beihefte, 23, 330-331 (1927). (4) van Nieuwenberg, Chem. Weekblad 19, 328 (1922). (5) Fegler, Compt. rend. soc. biol. 160, 222-224

(1929); Cent. 1929, I 3114; C.A. 24, 5373 (1930). (6) Sartori, "The War Gases," pp. 104-109, 123-124, D. Van Nostrand Co., Inc., New York City, 1940. (7) Guerin, Lormand, Compt. rend. 176, 401-403 (1920). (8) Hood, Murdock, J. Phys. Chem. 23, 509-511 (1919). (9) Hentschel, J. prakt. Chem. (2) 36, 104-107, 212 (1887). (10) Delépine, Bull. soc. chim. (4) 27, 39-45 (1920).

(11) Perret, Biechler, Bull. soc. chim. (5) 3, 957-958 (1936); Compt. rend. 283, 84-87 (1936). (12) Kling, Florentin, Compt. rend. 169, 1166 (1919). (13) Kraft, Alekseev, J. Gen. Chem. (U.S.S.R.) 2, 726-729 (1932); Cent. 1933, II 1666; C.A. 27, 2426-2427 (1933). (14) Perret, Biechler, Bull. soc. ind. Mulhouse, 103, 168-173 (1937); Cent. 1937, II 374; [C.A. 32, 2087 (1938)].

3:5280 1,8-DICHLOROPROPENE-1 CH<sub>2</sub>—CH=CH C<sub>8</sub>H<sub>4</sub>Cl<sub>2</sub> Beil. I-(199) 
$$(\alpha,\gamma$$
-Dichloropropylene;  $Cl$   $Cl$   $Cl$   $I_1$ —  $I_2$ -(170) Higher-boilg. B.P. 112.0° (1)  $D_4^{20} = 1.217$  (1)  $n_D^{20} = 1.4730$  (1) stereoisomer Lower-boilg. B.P. 104.3° (1)  $D_4^{20} = 1.224$  (1)  $n_D^{20} = 1.4682$  (1) stereoisomer Ordinary  $\bar{C}$  B.P. 110° (14)  $D_2^{25} = 1.218$  (5) 109–110° (2) 109° (3)  $D_2^{22} = 1.222$  (2)  $n_D^{22} = 1.4735$  (2) 107–108° (31) 106° (5) 105.5–106° at 730 mm. (7)

[See also 3,3-dichloropropene-1 (3:5140).]

Note that  $\bar{C}$  has frequently been given the extremely unfortunate designation " $\beta$ -chloroallyl chloride," a practice which has often led to confusion with 2,3-dichloropropene-1 (3:5190). — Note furthermore that, in addition to existing in *cis* and *trans*-configurations, the structure  $\bar{C}$  also represents the synionic mesomer of 3,3-dichloropropene-1 (3:5140); reactions of either mesomer may under certain conditions lead also to derivatives of the other. — Finally note further that in all reports prior to 1944 the material designated as  $\bar{C}$  was in all probability a mixture of the two geometrical stereoisomers.

C is a colorless oil with odor suggesting chloroform (4).

[For prepn. of the two geometrical stereoisomers by careful fractional distillation of a higher-boilg fraction obtd. from the chlorination of propylene in the semi-comml. prepn. of allyl chloride (and contg. abt.  $60\% \ \bar{C} + 30\% \ 1,2$ -dichloropropane (3:5200)) see (1).]

[For prepn. of ord.  $\bar{C}$  from 1,3-dichloropropanol-2 ( $\beta$ , $\beta'$ -dichloroisopropyl alc.) ("glycerol  $\alpha$ -dichlorohydrin") (3:5985) by elimination of H<sub>2</sub>O with POCl<sub>3</sub> (yields: 75% (4), 54% (7), 34–39% (8)) (5) or with P<sub>2</sub>O<sub>5</sub> (3) (5) (10) (14) in C<sub>5</sub>H<sub>6</sub> (30–40% yield (4)) see indic. refs.; note that none of the other conventional dehydrating agents (such as 85% H<sub>3</sub>PO<sub>4</sub> conc. H<sub>2</sub>SO<sub>4</sub>, KHSO<sub>4</sub>, SOCl<sub>2</sub>, PCl<sub>5</sub> (11), PCl<sub>3</sub>, ZnCl<sub>2</sub>, I<sub>2</sub>, B<sub>2</sub>O<sub>3</sub> or anhydrous oxalic acid) gives satisfactory results (4); for prepn. of  $\bar{C}$  from  $\beta$ , $\beta'$ -dichloroisopropyl benzenesulfonate by htg. at 240–250° (77% yield) see (9).]

[For formn. of ord. C from 3-chloropropen-2-ol-1 (3:5820) with PCl<sub>3</sub> see {12}; from 1,2,3-trichloropropane (3:5840) with NaOH (yielding (6) 12% C accompanied by 70% 2,3-dichloropropene-1 (3:5190)) cf. {13} (5); from acrolein (1:0115) with PCl<sub>5</sub> (yield 32% C accompanied by 16% of the mesomeric 1,1-dichloropropene-2 (3:5140) and also some 1,1,3-trichloropropane (3:5660) (12)) cf. (14); from 3,3-dichloropropene-1 (3:5140) by isomerization with conc. HCl in s.t. at 100° (14) see indic. refs.]

[For use as soil disinfectant of the mixt. of  $\bar{C}$  with 1,2-dichloropropene obtd. in manufacture of allyl chloride by chlorination of propylene see (15); for use of  $\bar{C}$  in prepn. of cellulose ethers see (16).]

**Reactions involving unsaturated linkage of Č.** [Č with Cl<sub>2</sub> adds 1 mole halogen yielding (14) 1,1,2,3-tetrachloropropane (3:6035), b.p. 179–180° cor. at 756.6 mm. (14).] — Č with Br<sub>2</sub> adds 1 mole halogen giving (72.7% yield (9)) (5) (3) (17) 1,2-dibromo-1,3-dichloropropane [Beil. I-112], b.p. 212° (3), 215–217° (9), 220–221° (17), 220–225° (5).

[C with fumg. HCl in s.t. at 150° blackens but does not add HCl (5).]

Reactions involving the one reactive chlorine atom of  $\bar{C}$ . Note that the 2 chlorine atoms in  $\bar{C}$  possess very different reactivities; that attached to the carbon directly connected with the double bond is inert, while the chlorine attached to the carbon in  $\beta$ -relationship to the unsaturated linkage is extremely reactive.

[ $\bar{C}$  with aq. KOH (1 mole) boiled for 30 hrs. {14}, or boiled with 10% aq. Na<sub>2</sub>CO<sub>3</sub> (slight excess) for 2 hrs. {1}, or shaken with aq. silver oxide at room temp. for 24 hrs. (small yield (12)) gives 3-chloropropen-2-ol-1 (1-chloropropen-1-ol-3) ( $\gamma$ -chloroallyl alcohol) (3:5820); note that the high-boilg, stereoisomer of  $\bar{C}$  gives (76% yield (1)) the high-boilg, stereoisomer of the resultant alc., while the low-boilg, stereoisomer of  $\bar{C}$  gives (81% yield (1)) the low-boilg, stereoisomer of the resultant alc.; note also that aq. NaOH effects from the resultant  $\gamma$ -chloroallyl alc. the removal of HCl and also causes polymerization (1) so that use of hydrolytic conditions as mild as possible is desirable.] — [For reactn. of  $\bar{C}$  with NaSH or Na<sub>2</sub>S see (18).].

[ $\bar{\mathbf{C}}$  with Na alcoholates, NaOR, replaces the reactive chlorine atom by the alkoxy residue yielding  $\omega$ -chloroallyl alkyl ethers of general formula RO—CH<sub>2</sub>—CH = CHCl: e.g.,  $\bar{\mathbf{C}}$  with NaOMe refluxed 4 hrs. gives (12) 1-chloro-3-methoxypropene-1, b.p. 107-108°,  $D^{27}=1.032,\ n^{27}=1.431$  (12) (note proximity of b.p. to that of ord.  $\bar{\mathbf{C}}$ ) (for study of kinetics of this reactn. see (19));  $\bar{\mathbf{C}}$  with NaOEt refluxed for 4 hrs. (12) or  $\bar{\mathbf{C}}$  with alc. KOH (5) yields 1-chloro-3-ethoxypropene-1 [Beil. I-439], b.p. 126-127°,  $D^{16}=1.018,\ n^{16}=1.438$  (12); for corresp. reactns. of  $\bar{\mathbf{C}}$  with Na derivs. of benzyl alc. (1:6480),  $\beta$ -phenylethyl alc. (1:6505),  $\gamma$ -phenyl-n-propyl alc. (1:6520), and cinnamyl alc. (1:5920) together with physical consts. of prods. see (20).]

[C with alkali metal phenolates replaces the reactive chlorine atom by the aryloxy residue yielding ω-chloroallyl aryl ethers of general formula RO.CH<sub>2</sub>.CH = CHCl; e.g.,  $\bar{\mathbf{C}}$  with Na phenolate in abs. alc. refluxed  $\frac{1}{2}$  hr. (21), or  $\bar{\mathbf{C}}$  with phenol (1:1420) + dry K<sub>2</sub>CO<sub>3</sub> in boilg. acetone (8), gives (yields: 75% (21), 72% (8)) ω-chloroallyl phenyl ether, b.p. 120-121° at 20 mm. (21), 122-127° at 27 mm. (8),  $D_4^{15} = 1.146$  (21),  $n_D^{20} = 1.5421$ (8),  $n_D^{15} = 1.5447$  (21); for corresp. reactn. with salts of o-cresol (1:1400) (21), m-cresol (1:1730) (21), p-cresol (1:1410) (21) (8), carvacrol (1:1760) (21), thymol (1:1430) (21),  $\beta$ -naphthol (1:1540) (21), hydroquinone (1:1590) (21), and several other phenols (21) see indic. refs. — Note that these ω-chloroallyl aryl ethers upon treatment with Br<sub>2</sub> do not add halogen to the unsatd. linkage but instead undergo cleavage: e.g., w-chloroallyl phenyl ether (above) in CHCl<sub>3</sub> with Br<sub>2</sub> (1 mole) at 0° yields (22) phenol (1:1420) + p-bromophenol + 3-bromo-1-chloropropene-1 (see below) +  $\omega$ -chloroallyl p-bromophenyl ether, b.p. 153° at 13 mm.,  $D_4^{11} = 1.521$ ,  $n_D^{11} = 1.5785$  (22). — Note furthermore that these ω-chloroallyl aryl ethers with HBr or HI do not add hydrogen halide to the unsaturated side chain but instead undergo cleavage similar to that with halogens: e.g.,  $\omega$ -chloroallyl phenyl ether in AcOH with HBr gas (1 mole) gives (70% yield (23)) 3-bromo-1-chloropropene-1, lachrymatory oil, b.p. 130° at 760 mm.,  $D_4^{9.5} = 1.670$ ,  $n_D^{9.5} = 1.5255$  (23); similarly action of HI yields (23) 1-chloro-3-iodopropene-1, lachrymatory oil, b.p. 162° at 760 mm. sl. dec., 58° at 19 mm.,  $D_4^{9.5} = 2.029$ ,  $n_D^{9.5} = 1.5993$  (23).]

[C with phenols under suitable conditions can also react to effect direct nuclear alkenyla-

tion: e.g.,  $\bar{C}$  with phenol (1:1420) + Na in  $C_6H_6$  refluxed for 17 hrs. gives (17% yield (8)) o-( $\gamma$ -chloroallyl)phenol, b.p. 151-156° at 31 mm.,  $n_2^{23} = 1.5638$  (8) (soluble in alk.), accompanied by some  $\omega$ -chloroallyl phenyl ether (insol. alk.) (see above).]

[ $\bar{\mathbf{C}}$  with phenol ethers undergoes Friedel-Crafts reactn. of the reactive halogen atom with resultant introduction of the  $\omega$ -chloroallyl group into the aromatic nucleus: e.g.,  $\bar{\mathbf{C}}$  (1 mole) with anisole (1:7445) (10 moles) + AlCl<sub>3</sub> gives (70% yield (24)) 1-( $\omega$ -chloroallyl)-4-methoxybenzene, b.p. 126° at 15 mm. (24);  $\bar{\mathbf{C}}$  (1 mole) with pyrocatechol dimethyl ether (veratrole) (1:7560) (2 moles) + Zn dust (1 g.) (AlCl<sub>3</sub> unsuitable) gives 1-( $\omega$ -chloroallyl)-3,4-dimethoxybenzene, b.p. 162° at 15 mm.,  $D_4^{14}$  = 1.168,  $n_D^{14}$  = 1.551 (24);  $\bar{\mathbf{C}}$  with pyrogallol trimethyl ether (1:7145) similarly yields 1-( $\omega$ -chloroallyl)3,4,5-trimethoxybenzene, b.p. 174° at 15 mm.,  $D_4^{18}$  = 1.176,  $n_D^{18}$  = 1.539 (24). — Note that such  $\omega$ -chloroallyl arylethers (1 mole) upon treatment with KOH (3 moles) in an alcohol R'.OH (5 moles) give (by reactn. of the  $\omega$ -chlorine and rearr. or vice versa) substituted cinnamyl ethers of the type RO.C<sub>6</sub>H<sub>4</sub>.CH = CH.CH<sub>2</sub>OR', used for prepn. of various natural prods. (24).]

[ $\bar{C}$  with aromatic hydrocarbons undergoes Friedel-Crafts reactn. of the reactive halogen atom with resultant introduction of the  $\omega$ -chloroallyl group into the aromatic nucleus e.g.,  $\bar{C}$  with  $C_6H_6+AlCl_3$  yields (25) γ-chloroallylbenzene (1-chloro-3-phenylpropene-1) (3:8737) (see below); for analogous reactions of  $\bar{C}$  with toluene (1:7405),  $\rho$ -xylene (1:7430), m-xylene (1:7420), p-xylene (1:7415), ethylbenzene (1:7410), cumene (1:7440), pseudocumene (1:7470), mesitylene (1:7455), p-cymene (1:7505), etc., see (25). — Note that the resultant  $\gamma$ -chloroallyl hydrocarbons add Br<sub>2</sub> normally (26) to the unsatd. linkage (diff. from  $\omega$ -chloroallyl aryl ethers (above) which undergo cleavage); e.g.,  $\gamma$ -chloroallylbenzene (above) with Br<sub>2</sub> gives  $\gamma$ -chloro- $\beta$ , $\gamma$ -dibromo- $\eta$ -propylbenzene, b.p. 160° at 12 mm.,  $D_4^{10} = 1.727$ ,  $n_{10}^{10} = 1.611$  (26) (for use of this prod. in prepn. of hydrocinnamaldehyde (1:0225) see (35).)]

[The direct actn. of  $\tilde{C}$  with NH<sub>3</sub> appears to be unreported; however,  $\tilde{C}$  with KSCN followed by alk. hydrolytic cleavage is claimed (27) to yield the expected  $\gamma$ -chloroallylamine. —  $\tilde{C}$  with methylamine (3 moles) in  $C_6H_6$  gives (53% yield (28)) N-methyl- $\gamma$ -chloroallylamine [Beil. IV<sub>2</sub>-(668)], b.p. 125° (B.PkOH, m.p. 91° (28)), accompanied by a little N-methyl-bis-( $\gamma$ -chloroallylamine [Beil. IV<sub>2</sub>-(668)], b.p. 88° at 16 mm. (28). —  $\tilde{C}$  with diethylamine reacts vigorously and on making alkaline gives (75% yield (29)) (12) N,N-diethyl- $\gamma$ -chloroallylamine [Beil. IV<sub>2</sub>-(668)], b.p. 57-58° at 17 mm. (12), 55° at 9 mm. (29) (B.HCl, pl. from acetone, m.p. 221° (29); B.PkOH, ndls. from aq., m.p. 78° (29), 91° (12); B.H<sub>2</sub>PtCl<sub>6</sub>, m.p. 169-170° (12)). — For reactns. of  $\tilde{C}$  with tertiary amines, e.g., with Mc<sub>3</sub>N (29), Et<sub>3</sub>N (29), or pyridine (19), see indic. refs.]

[ $\bar{C}$  (1 mole) with aniline (2 moles) in  $C_6H_6$  under reflux ppts. aniline hydrochloride and from the solvent gives (68% yield (30)) N-phenyl- $\gamma$ -chloroallylamine, b.p. 137° at 13 mm.,  $D_4^{13} = 1.1456$ ,  $n_D^{13} = 1.590$  (30); for analogous reactns. of  $\bar{C}$  with o-toluidine and m-toluidine see (30).]

[ $\bar{C}$  with excess CaBr<sub>2</sub> refluxed for 40 hrs. (12) or actn. of HBr on  $\omega$ -chloroallyl aryl ethers (23) (discussed above) gives (58% yield (12)) 3-bromo-1-chloropropene-1 (consts. given above); similarly  $\bar{C}$  with excess powdered CaI<sub>2</sub> shaken at room temp. for 20 hrs. gives (65% yield (12)) (14) 1-chloro-3-iodopropene-1 (consts. given above).]

[ $\bar{C}$  with NaOAc in AcOH at 110° for 16 hrs. ppts. NaCl (70% theory (12)) and gives (50% yield (12))  $\gamma$ -chloroallyl acetate [Beil. II-136], b.p. 156-159° (10), b.p. 57° at 15 mm.,  $D_{-}^{17} = 1.140, n_{-}^{17} = 1.444$  (12).]

 $\bar{C}$  reacts very slowly if at all with most metals: e.g.,  $\bar{C}$  with Zn dust in boilg. acetone or C with Mg in dry ether (even in pres. of  $I_2$ , EtBr, or HgCl<sub>2</sub>) is inert (12); however,  $\bar{C}$  with Na in tetralin (1:7550) reacts violently giving only gaseous products (12), possibly including allene (propadiene-1,2) cf. (3) (31).

[ $\bar{\mathbf{C}}$  reacts readily with aryl MgBr cpds., with replacement of its active halogen atom by the aryl radical: e.g.,  $\bar{\mathbf{C}}$  with  $C_0H_5Mg$ Br in toluene (26) or ether (32) gives (alm. 100% yield (26))  $\gamma$ -chloroallylbenzene (1-chloro-3-phenyl-propene-1 (3:8737), b.p. 76° at 13 mm. (32),  $D_4^{14} = 1.073$  (26),  $n_D^{15} = 1.545$  (26). — For analogous reactns. of  $\bar{\mathbf{C}}$  with o-tolyl-, p-tolyl-, p-cumyl-, 2-cymyl-, p-bromophenyl-, and p-methoxyphenyl-MgX cpds. see (26); for corresp. reactn. of  $\bar{\mathbf{C}}$  with  $\alpha$ -naphthyl MgBr see (34). — For reactn. of  $\bar{\mathbf{C}}$  with n-propyl MgBr see (2).]

[For reactn. of Č with diethyl sodiomalonate giving (26% yield (4)) diethyl γ-chloroallylmalonate, with diethyl disodiomalonate giving (32% yield (4)) diethyl bis-(γ-chloroallyl)malonate, or with diethyl sodio-ethyl-malonate giving (20% yield (4)) diethyl γchloroallyl-ethyl-malonate see indic. refs.]

3:5280 (1) Hatch, Moore, J. Am. Chem. Soc. 66, 285-287 (1944). (2) Kirrmann, Grard, Compt. rend. 190, 876-878 (1930). (3) Hartenstein, J. prakt. Chem. (2) 7, 308-314 (1873). (4) Hill, Fischer, J. Am. Chem. Soc. 44, 2582-2595 (1922). (5) Friedel, Silva, Compt. rend. 75, 81-85 (1872). (6) Bon, Uchenye Zapiski Leningrad Gosudarst Univ., Ser. Khim. Nauk. 3, 3-37 (1938); Cent. 1939, II 366; C.A. 33, 3755 (1939). (7) Bert, Dorier, Bull. soc. chim. (4) 39, 1573-1575 (1926). (8) Hurd, Webb, J. Am. Chem. Soc. 58, 2191-2193 (1936). (9) Foldi, Ber. 60, 659-660 (1927). (10) Martinoff, Ber. 8, 1318-1319 (1875).

(11) Berthelot, Luca, Ann. chim. (3) 52, 437-438 (1858). (12) Kirrmann, Pačaud, Dosque, Bull. soc. chim. (5) 1, 860-871 (1934). (13) Reboul, Ann. chim. (3) 60, 37-38 (1860). (14) van Romburgh, Bull. soc. chim. (2) 36, 549-557 (1881); (2) 37, 98-103 (1882). (15) Carter, Science 97, 383-384 (1943). (16) du Pont Co., Brit. 429,949, July 11, 1935; Cent. 1936, I 4098; C.A. 29, 7073 (1935). (17) Reboul, Ann. Suppl. 1, 231 (1861). (18) Lilienfeld, French 758,359, Jan. 15, 1934; Cent. 1934, I 3653. (19) Tronow, Gerschewitsch, J. Russ. Phys.-Chem. Soc. 59, 727-739 (1927); Cent. 1928, I 2924. (20) Dorier, Compt. rend. 196, 1325-1327 (1933).

(21) Bert, Compt. rend. 192, 1565-1567 (1931); Cent. 1931, II 2318. (22) Bert, Andor, Compt. rend. 194, 1079-1081. (1932); Cent. 1932, I 3429. (23) Bert, Andor, Compt. rend. 194, 722-724. (1932); Cent. 1932, I 2447. (24) Bert, Compt. rend. 213, 797-798 (1941); Cent. 1942, II 1564; C.A. 67, 4710 (1943). (25) Bert, Compt. rend. 213, 619-620 (1941), Cent. 1942, II 30, C.A. 37, 4373 (1943). (26) Bert, Bull. soc. chim. (4) 37, 879-881 (1925); Compt. rend. 180, 1504-1506 (1925). (27) I.G., Dutch 52,449, May 15, 1942; Cent. 1942, II 1180. (28) von Braun, Kühn, Weismantel, Ann. 449, 254-265 (1926). (29) Ingold, Rothstein, J. Chem. Soc. 1929, 11-12. (30) Dorier, Compt. rend. 196, 1677-1678 (1933); Cent. 1933, II 1020; C.A. 27, 4222 (1933).

(31) Béhal, Ann. chim. (6) 16, 363-366 (1889). (32) von Braun, Kuhn, Ber. 58, 2171 (1925). (33) Bert, Dorier, Compt. rend. 191, 332-333 (1930); Cent. 1930, II 2376; C.A. 24, 5739 (1930). (34) Bert, Dorier, Bull. soc. chim. (4) 37, 1600-1602 (1925). (35) Bert, Compt. rend. 215, 356-357 (1942); C.A. 38, 3633 (1944).

B.P. 108° (1) 107-108° (2) 105-107° (3) (4) 106.1-107.1° at 739 mm. (5)

Oil with penetrating odor; fumes in moist air.

[For prepn. of  $\tilde{C}$  from dichloroacetic acid (3:6208) with PCl<sub>3</sub> (2), with HCl gas +  $P_2O_5$  (7), with SOCl<sub>2</sub> (poor yield apparently because of much formation (9) of dichloro-acetic anhydride (3:6430)) (8) (9) (10) (11), with benzoyl chloride (3:6240) (73% yield (4)), or with benzotrichloride (3:6540) (12) (13) see indic. refs.; for prepn. of  $\tilde{C}$  from trichloroethylene (3:5170) by photochemical oxidn. (14) (15) (16) (3) (17) see indic. refs.; for prepn. of  $\tilde{C}$  from pentachloroethane (3:5880) with fumg.  $H_2SO_4$  at 50-60° see (18); for prepn. of  $\tilde{C}$  from  $\alpha,\beta$ -dichlorovinyl ethyl ether (3:5540) by actn. of  $Cl_2$  see (19) (20).]

 $[\bar{C}$  with alcohols gives corresp. esters (for studies of rate of alcoholysis see (1) (21)); for reactn. of  $\bar{C}$  with various carbohydrates (22) and with cellulose (23) see indic. refs.;  $\bar{C}$  + phenol yields (20) phenyl dichloroacetate, m.p. 48°, b.p. 247.5° cor. (20);  $\bar{C}$  with  $\beta$ -naphthol yields (20)  $\beta$ -naphthyl dichloroacetate, m.p. 92-93° (20).]

[Č on warming with AlCl<sub>3</sub> yields (24) (25) 1,1,1,2,2,3,3-heptachloropropane (3:0200) + chloroform (3:5050) + CO + HCl.]

[ $\tilde{\mathbf{C}}$  treated with dry HI gas at  $-5^{\circ}$  gives (58% yield (5)) dichloroacetyl iodide, b.p. 54-54.5° at 15 mm. (5).]

Č with aq. hydrolyzes very rapidly yielding dichloroacetic acid (3:6208) q.v.; for the amide, anilide, p-toluidide, and other derivs. corresp. to Č see dichloroacetic acid (3:6208).

3:5290 (1) Branch, Nixon, J. Am. Chem. Soc. 58, 2499-2504 (1936). (2) Otto, Beckurts, Ber. 14, 1618-1619 (1881). (3) Erdmann, J. prakt. Chem. (2) 85, 78-89 (1912). (4) Brown, J. Am. Chem. Soc. 60, 1325-1328 (1938). (5) Gustus, Stevens, J. Am. Chem. Soc. 55, 374-377 (1933). (6) Vanderstichele, J. Chem. Soc. 123, 1228 (1923). (7) Frankland, Patterson, J. Chem. Soc. 73, 187 (1898). (8) Böeseken, Rec. trav. chim. 29, 99-100 (1910). (9) Blaise, Bull. soc. chim. (4) 15, 729 (1914). (10) Carré, Libermann, Compt. rend. 199, 1423 (1934).

(11) Clark, Bell, Trans. Roy. Soc. Can. (3) 27, III 97-103 (1933). (12) Mills (to Dow Chem. Co.), U.S. 1,921,767, Aug. 8, 1933; Cent. 1933, II 2595; C.A. 27, 5085 (1933). (13) Mills (to Dow Chem. Co.), U.S. 1,965,565, July 3, 1934; Cent. 1934, II 2899; C.A. 28, 5474 (1934). (14) Müller, Ehrmann, Ber. 69, 2207-2210 (1936). (15) Muller, Schumacher, Z. physik. Chem. B-37, 365-373 (1937). (16) Müller, Schumacher, Z. Elektrochem. 43, 807-808 (1937). (17) Consortium für Elektrochem. Ind., Ger. 391,674, Mar. 3, 1924, Cent. 1924, II 887; Ger. 340,872, Sept. 19, 1921; Cent. 1921, IV 1101; French 706,320, June 23, 1931; Cent. 1931, II 1489. (18) Chem. Fabrik Weiler-ter-Meer, Ger. 362,748, Oct. 31, 1922; Cent. 1923, II 405. (19) McKie, J. Chem. Soc. 123, 2214-2215 (1923). (20) Crompton, Triffett, J. Chem. Soc. 119, 1874-1875 (1921).

(21) Leimu, Ber. 70, 1046 (1937). (22) Bell, J. Chem. Soc. 1935, 1180-1182. (23) Barnett, J. Soc. Chem. Ind. 40, T-253-256, 274 (1921). (24) Ref. 8, p. 108. (25) Boeseken, Prins, Cent. 1911, I 466.

3:5300 1,1-DICHLORO-2-METHYLPROPENE-1 CH<sub>3</sub> C<sub>4</sub>H<sub>6</sub>Cl<sub>2</sub> Beil. I-209 
$$(\alpha,\alpha$$
-Dichloroisobutylene)  $H_3$ C—C=CCl<sub>2</sub>  $I_1$ —  $I_2$ —

B.P. 
$$108.7-109.1^{\circ}$$
 (1)  $D_0^{20} = 1.449$  (3)  $108-109^{\circ}$  (2)  $107.5-108.5^{\circ}$  (3)

Note:  $\ddot{\mathbf{C}}$  by virtue of allylic transposition may yield derivatives of its synionic isomer 1,3-dichloro-2-methylpropene-1 (3:5590) q.v.

[For prepn. of  $\bar{C}$  from  $\beta,\beta,\beta$ -trichloro-ter-butyl acetate (3:6180) (85% yield (3) (2)) or from  $\beta,\beta,\beta$ -trichloro-ter-butyl alcohol ("Chloretone") (3:2662) (very poor yield (1)) with Zn dust in alc. see (1) (2) (3); for prepn. of  $\bar{C}$  from 1,1,1-trichloro-2-bromo-2-methyl-propane by htg. in quinoline (2), or from 1,1,1,2-tetrachloro-2-methyl-propane (3:4725) by htg. with K in tetralin (5% yield (2)), see (2).]

C with Br<sub>2</sub> yields (2) 1,2-dibromo-1,1-dichloro-2-methylpropane, m.p. 209° (s.t.) (2).

3:5300 (1) Bruyne, Davis, Gross, Physik. Z. 33, 720 (1932). (2) Jacob, Bull. soc. chim. (5) 7, 581-586 (1940); C.A. 36, 3507 (1942). (3) Favorskii, Jozitsch, Cent. 1899, I 778. (4) Jozitsch, Cent. 1899, I 606.

3:5310 DICHLOROACETALDEHYDE ETHYL 
$$C_4H_8O_2Cl_2$$
 Beil. I - 614 ALCOHOLATE  $C_1$  OH  $I_1$ —  $I_2$ —(677) hemiacetal)  $C_1$   $C_1$   $C_2$ — $C_2H_5$   $C_1$   $C_2$ — $C_3$ — $C_4$ — $C_4$ — $C_5$ — $C_5$ — $C_5$ — $C_5$ — $C_6$ — $C_7$ —

Oil, spar. sol. aq. or lgr. but misc. with alc., C6H6, CHCl3.

[For prepn. of  $\bar{C}$  from dichloroacetaldehyde (3:5180) with a limited amt. abs. EtOH see (1).]

C readily changes to dichloroacetaldehyde diethylacetal (3:6110), b.p. 184°, and dichloroacetaldehyde hydrate (3:1085), m.p. 56°.

Č with boilg, aq. HCl yields (1) 2,2-dichloroethanol-1 (3:5745) + acetaldehyde (1:0100).

Č with powdered KCN (1 mole) in EtOH at 20° for 5 mm., then poured into aq., gives (38% yield (2)) ethyl chloroacetate (3:5700), b.p. 144°.

[For condensations of  $\bar{C}$  with phenol (3), p-nitrophenol (3), p-hydroxybenzoic acid (4), or p-methoxybenzoic acid (6) to yield substituted benzdioxins see indic. refs.]

Č in AcOH on warming with 2 moles phenylhydrazine yields (5) glyoxal bis-phenylosazone, yel. pl. from boilg. alc., m.p. 169-171° (5).

3:5310 (1) Oddo, Mameli, Gazz. chim ital 33, II 399-408 (1903). (2) Chattaway, Irving, J. Chem. Soc. 1929, 1042-1043. (3) Chattaway, Morris, J. Chem. Soc. 1928, 3241-3246. (4) Chattaway, Farinholt, J. Chem. Soc. 1931, 1737-1740. (5) Chattaway, Farinholt, J. Chem. Soc. 1931, 1828-1834.

3:5315 DICHLOROMETHYL CHLOROFORMATE 
$$C_2HO_2Cl_3$$
 Beil. III — (Dichloromethyl chlorocarbonate)  $Cl_2CH$ — $C$ — $C$   $III_1$ -(6)  $III_2$ -(11)

**B.P.** 110-111° at 760 mm. (1) 
$$D_{-}^{17} = 1.558$$
 (2)  $n_{D}^{22} = 1.44322$  (2) 111° (2) 114° (4)  $D_{-}^{15} = 1.560$  (1) 54-55° at 100 mm. (1) 46° at 62 mm. (2)

See also text.

[See also chloromethyl chloroformate (3:5275).]

Colorless lachrymatory oil. — Note that  $\bar{C}$  cannot by distillation be completely separated from chloromethyl chloroformate (3:5275); the constants listed above from (2) represent preprs. contg. about 2.5% chloromethyl chloroformate (3:5275).

A mixt. of  $\bar{C}$  with chloromethyl chloroformate (3:5275) has been employed as a chem. warfare agent under the names "K-Stoff" or "Palite" (3).

[For prepn. of C from methyl chloroformate (3:5075) or from methyl formate (1:1000) with Cl<sub>2</sub> under various conditions see (1) (2) cf. (3) (4).]

 $\bar{C}$  with aq. at ord. temp. or more rapidly on boilg., or  $\bar{C}$  with aq. alk. in cold, undergoes hydrolysis (1) yielding quantitatively CO + CO<sub>2</sub> + 3HCl; note that formaldehyde is not formed [dif. from chloromethyl chloroformate (3:5275)].

 $\tilde{C}$  (1 mole) with NaI (2 moles) in dry acctone at 20° (5) liberates both I<sub>2</sub> and CO quant. according to the equation  $2\tilde{C} \rightarrow I_2 + 2CO + 2NaCl + HCl$  [compare behavior of methyl

chloroformate (3:5075) which gives no  $I_2$  and that of chloromethyl chloroformate (3:5275) trichloromethyl chloroformate ("diphosgene") (3:5515), and bis-(trichloromethyl)-carbonate ("triphosgene") (3:1915) all of which also give  $I_2$ ]. —  $\bar{C}$  with NaBr or LiBr in dry acetone behaves in analogous fashion (5) setting free Br<sub>2</sub>; in this respect  $\bar{C}$  is like trichloromethyl chloroformate ("diphosgene") (3:5515) but unlike methyl chloroformate (3:5075) or chloromethyl chloroformate (3:5275).

[C with FeCl<sub>3</sub> or AlCl<sub>3</sub> dec. even in cold or rapidly at 80° giving (1) phosgene (3:5000) + CO + HCl.]

[Č with aq. sodium phenolate reacts as an acid chloride giving (1) dichloromethyl phenyl carbonate, b.p. 124-125° at 14 mm., m.p. 14.5° (1).]

 $[\bar{C}]$  with aniline in aq. or  $C_6H_6$  gives (1) both N,N-diphenylures and formanilide.

3:5315 (1) Kling, Florentin, Lassieur, Schmutz, Compt. rend. 169, 1046-1047 (1919); Ann. chim. (9) 13, 44-59 (1920). (2) Grignard, Rıvat, Urbain, Compt. rend. 169, 1074-1077 (1919); Ann. chim. (9) 13, 248-251 (1920). (3) Sartori, "The War Gasses," pp. 104-109, 123-124, D. Van. Nostrand Co, Inc., New York City, 1940. (4) Hood, Murdock, J. Phys. Chem. 23, 509-511 (1919). (5) Perret, Biechler, Compt. rend. 203, 86 (1936) Bull. soc. chim. (5) 3, 350 (1936).

3:5320 
$$d,l$$
- $\alpha$ -CHLOROPROPIONYL CHLORIDE Cl C<sub>3</sub>H<sub>4</sub>OCl<sub>2</sub> Beil. II - 249 CH<sub>3</sub>-C C=O II<sub>1</sub>- II<sub>2</sub>- II<sub>2</sub>-

B.P. 
$$110.7-111.2^{\circ}$$
 at 760 mm. (1)  $D_4^{20}=1.2851$  (1)  $n_D^{20}=1.43965$  (1)  $109-110^{\circ}$  at 744 mm. (2)  $107-110^{\circ}$  (3)

[For prepn. of  $\bar{C}$  from  $\alpha$ -chloropropionic acid (3:6125) with SOCl<sub>2</sub> see (1); from propionic acid (1:1025) with SO<sub>2</sub>Cl<sub>2</sub> + I<sub>2</sub> (4) (no  $\beta$ -chloropropionyl chloride being formed) or with SO<sub>2</sub>Cl<sub>2</sub> + Bz<sub>2</sub>O<sub>2</sub> in CCl<sub>4</sub> (45% yield  $\bar{C}$  + 55% yield  $\beta$ -chloropropionyl chloride (3:5690)) see (4); from propionyl chloride (3:7170) with Cl<sub>2</sub> + I<sub>2</sub> (45% yield (3)) (5) see indic. refs.; from calcium lactate (6) or anhydrous lactic acid (1:0400) (7) with PCl<sub>5</sub> see indic. refs.]

 $\bar{C}$  on hydrolysis with aq. yields  $\alpha$ -chloropropionic acid (3:6125); for the amide, anilide, p-toluidide, and other derivs. corresp. to  $\bar{C}$  see 3:6125.

3:5320 (1) Leimu, Ber. 70, 1049 (1937). (2) Henry, Compt. rend. 100, 116 (1885); J. prakt. Chem. (2) 31, 127 (1885). (3) Wolffenstein, Rolle, Ber. 41, 735 (1908). (4) Kharasch, Brown, J. Am. Chem. Soc. 62, 927-928 (1940). (5) Michael, Ber. 34, 4035, 4037 (1901). (6) Wurts, Ann. 107, 194 (1858). (7) Bruhl, Ber. 9, 35 (1876).

3:5330 1,1,2-TRICHLOROETHANE (unsym.-Trichloroethane, chloroethylidene (di)chloride)

F.P.

[114.2° at 757.7 mm. (1)] 
$$-37.4^{\circ}$$
 (8)

114° at 760 mm. (2)  $-35.5^{\circ}$  (5)

113.65° at 760 mm. (4)

113.5° at 760 mm. (8)

113.3° cor. at 760 mm. (8)

113.2° (9)

112.5-113° (10)

Care must be taken to avoid confusion of  $\tilde{C}$  with the isomeric 1,1,1-trichloroethane (3:5085).  $\tilde{C}$  is now comml. prod. in U.S. (14).

# MISCELLANEOUS PHYSICAL PROPERTIES

Various solubility relationships.  $\bar{C}$  is almost insol. aq.: e.g., 100 g. aq. at 0° dis. 0.466 g.  $\bar{C}$ , at 20° 0.436 g.  $\bar{C}$ , at 35° 0.458 g.  $\bar{C}$ , at 55° 0.532 g.  $\bar{C}$  (15). — [For soly. of aq. in  $\bar{C}$  at 0°, 25°, and 30° (as detd. by Karl Fischer reagt.) see {16}.]

[For solv. of HCl gas in C at various temps. and press. see (10).]

[For soly. of  $I_2$  in  $\bar{C}$  see (17).]

Binary systems contg.  $\bar{C}$ . (See also below under uses of  $\bar{C}$ .)  $\bar{C}$  + 1,2-dichloroethane (ethylene dichloride) (3:5130): for f.p./compn. data, eutectic f.p. -79° (11), and for D and vapor/liq. equil. (13), see indic. refs.

Azeotropes contg. C. C with EtOH (1:6130) forms a const.-boilg. mixt., b.p. 77.8° (4), 77.3° (6) at 760 mm., contg. 35 (6), 30 (4) wt. % C.

Other physical props. [For study of thermal conductivity of  $\bar{C}$  sec (18).]

#### USES OF C

 $\bar{C}$  is now widely used as industrial solvent and in other ways [e.g., for use of  $\bar{C}$  (40%) 1,1,1-trichloroethane (3:5085) + 20% pet. hydrocarbons as dry-cleaners' solv. see (19); for use of  $\bar{C}$  + ethylene dichloride (3:5130) as hair wash see (20); for use of  $\bar{C}$  + n-heptane (1:8575),  $\bar{C}$  + cyclohexane (1:8405), or  $\bar{C}$  +  $C_6H_6$  (1:7400) as test mixts. for detn. of number of theoret. pl. in fractionating columns see (21); for use of  $\bar{C}$  in dewaxing of oils see (22)].

#### PHYSIOLOGICAL ACTION AND TOXICITY

Full treatment of this topic is beyond the scope of this work [however, for lead references see (23) (24) (25) (26) (27) (67). — For study of Č as anthelmintic see (28)].

#### PREPARATION OF C

From vinyl chloride (3:7010). (See also below under acetylene.) [For prepn. of Č from vinyl chloride with Cl<sub>2</sub> at 0-80° in light or at 180-250° in absence of light or solv. see (29) (30) (31) cf. (32); for study of photochemical addn. of Cl<sub>2</sub> to vinyl chloride yielding Č see (33).]

From 1,2-dichloroethylene (3:5030). [For prepn. of  $\tilde{C}$  from 1,2-dichloroethylene by addn. of HCl gas at 30-40° in pres. of AlCl<sub>3</sub> (88% yield) see (34) (37) (note that 1,1,2,3,4-pentachlorobutane (3:0750) is also obtd. as a by-product (35)).]

From 1,1-dichloroethane (ethylidene (di)chloride) (3:5035). [For formn. of C from ethylidene (di)chloride with SbCl<sub>5</sub> (3 wt. parts) on refluxing see (36).]

From 1,2-dichloroethane (ethylene (di)chloride) (3:5130). [For prepn. of  $\bar{C}$  from ethylene (di)chloride with Cl<sub>2</sub> in ultra-violet light at 50° (38) (39) or 25° (40), or with Cl<sub>2</sub> + suitable cat. at not above 60° (41), or  $\bar{C}$  (as liquid) with Cl<sub>2</sub> (7), or with Cl<sub>2</sub> in pres. of AlCl<sub>3</sub>/NaCl/FeCl<sub>3</sub> at 300-425° as directed (42), or with SO<sub>2</sub>Cl<sub>2</sub> + trace dibenzoyl peroxide refluxed 2 hrs. in dark (12) (yields: 80% (41), 70% (40) (12), 50% (42)), see indic. refs.]

From ethylene. [For prepn. or formn. of  $\tilde{C}$  from ethylene with  $Cl_2$  + cat. see (43) (44) (45) (46) (47).]

From acetylene. [For prepn. of  $\bar{C}$  from acetylene with  $HCl + Cl_2 + cat$ . (doubtless via formn. of vinyl chloride (and subsequent addn. of  $Cl_2$  as above) see (48) (30).]

From other sources. [For formn. of  $\bar{C}$  as by-prod. of prepn. of chloral (3:5210) see (49); for prepn. of  $\bar{C}$  from 2,2-dichloroethanol-1 (3:5745) with PCl<sub>5</sub> (50), or from  $\alpha,\beta$ -dichloroethyl chloroformate by loss of CO under influence of AlCl<sub>3</sub> (51), see indic. refs.; for formn. of  $\bar{C}$  from trichloroethylene (3:5170) with HI for 2 weeks in sunlight see (68).]

#### CHEMICAL BEHAVIOR OF C

Dehydrochlorination.  $\bar{C}$  under suitable conditions may lose HCl in either or both of two modes yielding either or both 1,1-dichloroethylene (vinylidene (di)chloride) (3:5005) or a mixt. of the stereoisomeric 1,2-dichloroethylenes (3:5030). — [E.g.,  $\bar{C}$  with alc. KOH (52) (53) (54), or with excess aq. Ca(OH)<sub>2</sub> at 70-80° (55) (56), or with aq. or alc. NH<sub>3</sub> (57), or even with Na in ether (58) gives (yields: 100% (57), 90% (55) (56)) 1,1-dichloroethylene (3:5005). — On the other hand,  $\bar{C}$  pyrolyzed at 400° over pumice contg. CuCl<sub>2</sub> (59) is claimed to give mainly 1,2-dichloroethylene (3:5030). — Note also that  $\bar{C}$  with MeOH over Al<sub>2</sub>O<sub>3</sub> at 290° gives (60) a mixt. of both prods. together with MeCl (3:7005).]

[Note in this connection that  $\bar{C}$  with aq. + Zn, Fe, or Al at 100–120° under press. yields (61) vinyl chloride (3:7010); perhaps this occurs by way of the above dichloroethylenes as intermediate.]

Halogenation of  $\bar{C}$ . Chlorination.  $[\bar{C} \text{ with } Cl_2 + AlCl_3 \text{ at } 70-80^{\circ} \text{ yields (62) } 1,1,2,2-$ tetrachloroethane (acetylene tetrachloride) (3:5750).]

Fluorination. [ $\bar{C}$  with HgF<sub>2</sub> under press. at 140° gives (63) 50% 1,2-dichloro-1-fluoro-ethane + 10% 2-chloro-1,1-difluoroethane; for behavior of  $\bar{C}$  with SbF<sub>3</sub> + Br<sub>2</sub> at 160°, with SbF<sub>3</sub> + SbCl<sub>5</sub>, or with SbF<sub>3</sub>Cl<sub>2</sub> see (63).]

Behavior of C with other inorganic reactants. [C with alkali hydroxide on fusion at 250-300° yields (64) salts of glycolic acid (1:0430).]

Behavior of  $\tilde{C}$  with organic reactants. [ $\tilde{C}$  with 1,2-dichloroethylene (3:5030) + 1% AlCl<sub>3</sub> at 35-40° for 5 days yields (37) a mixt. of two stereoisomeric 1,1,2,3,4-pentachlorobutanes, viz., the liq. isomer (3:9068) and the solid isomer (3:0750). —  $\tilde{C}$  + trichloroethylene (3:5170) + 1-2% AlCl<sub>3</sub> at 40° for 7 days yields (37) 1,1,1,4,4-pentachlorobutene-2 (3:9054).]

[ $\bar{C}$  with  $C_6H_6$  + AlCl<sub>3</sub> gives (31% yield (65)) 1,1,2-triphenylethane, b.p. 211° at 14 mm., accompanied by diphenylmethane and 1,2-diphenylethylene (stilbene).]

[C with C6H5MgBr in toluene does not react even at 100° (66).]

Comment on Fujiwara reaction. Č does not respond to Fujiwara reactn. (pyridine + NaOH) (23).

3:5330 (1) Pierre, Ann. 80, 127 (1851). (2) Mumford, Phillips, J. Chem. Soc. 1928, 159. (3) Staedel, Ber. 15, 2563 (1882). (4) Lecat, Ann. soc. sci. Bruxelles 47, I, 112 (1927); Cent. 1927, II 1677. (5) Timmermans, Bull. soc. chim. Belg. 27, 334-343 (1913); Cent. 1914, I 618. (6)

Lecat, "L'Azeotropisme," 1918, p. 84. (7) Hamai, Bull. Chem. Soc. Japan 9, 542-548 (1934).
(8) Henne, Hubbard, J. Am. Chem. Soc. 58, 404 (1936). (9) Köhlrausch, Koppl, Monatsh. 65, 197 (1935). (10) Hamai, Bull. Chem. Soc. Japan 10, 207-211 (1935).

(11) Timmermans, Vesselovsky, Bull. soc. chim. Belg. 40, 505 (1931). (12) Kharasch, Brown, J. Am. Chem. Soc. 61, 2145 (1939). (13) Portnov, Seferovich, Trans. State Inst. Applied Chem. (U.S.S.R.) 24, 81-89 (1935); not in Cent.; C.A. 29, 7272 (1935). (14) McLure, Chem. Eng. News 22, 421 (1944). (15) van Arkel, Vles, Rec. trav. chim. 50, 836-841 (1941); Cent. 1942, I 1352; C.A. 37, 2638 (1943). (16) Staverman, Rec. trav. chim. 60, 836-841 (1941); Cent. 1942, I 1352; C.A. 37, 2638 (1943). (17) Margosches, Hinner, Friedmann, Z. anorg. allgem. Chem. 137, 87-90 (1924). (18) Bates, Hazzard, Palmer, Ind. Eng. Chem. 33, 375-376 (1941). (19) Parkhurst (to Standard Oil of California), U.S. 1,948,045, Feb. 20, 1934; Cent. 1934, II 863; C.A. 28, 2924 (1934). (20) Cathala, French 598,518, Dec. 18, 1925; Cent. 1926, I 2752; not in C.A.

(21) Stage, Schultze, Oel u. Kohle 40, 90-95 (1944); C.A. 38, 6134 (1944). (22) Sharples Specialty Co., French 801,583; Aug. 7, 1936; Cent. 1937, I 263; C.A. 31, 535 (1937). (23) Barrett, Cunningham, Johnston, J. Ind. Hyg. Toxicol. 21, 479-480 (1939). (24) von Oettingen, J. Ind. Hyg. Toxicol. 21, 479-480 (1939). (24) von Oettingen, J. Ind. Hyg. Toxicol. 39, 398-399 (1937). (25) Schwander, Arch. Gewerbepathol. Gewerbehyg. 7, 109-116 (1939); Cent. 1938, II 1331; not in C.A. (26) Barsoun, Saad, Quart. J. Pharm. Pharmacol. 7, 205-214 (1934); Cent. 1934, II 2550; C.A. 28, 6194 (1934). (27) Lazarev, Arch. expll. Path. Pharmakol. 141, 19-24 (1929); Cent. 1929, II 451; C.A. 25, 3074 (1931). (28) Wright, Schaffer, Am. J. Hyg. 16, 372-374 (1932). (29) Ernst, Lange (to I G.), U.S. 1,833,358, 1,833,393, Nov. 24, 1931; C.A. 26, 1301 (1932): Ger. 489,454, Jan. 17, 1930, [Cent. 1930, I 3829; C.A. 24, 2145 (1930)]: Brit. 298,084, Nov. 28, 1928; Cent. 1929, I 1396, C.A. 23, 2724 (1929). (30) I.Ç., French 690,655, Sept. 24, 1930; Cent. 1931, I 1164; C.A. 25, 1264 (1931): Brit. 349,097, March 11, 1029; C.A. 26, 5314 (1932); not in Cent.

(31) Consortium fur Elektrochem. Ind., French 690,767, Sept. 25, 1930; Cent. 1931, I 1164; C.A. 25, 1264 (1931). (32) Biltz, Ber. 35, 3526-3527 (1902). (33) Schmitz, Schumacher, Z. physik. Chem. B-52, 73-80 (1942). (34) Prins, Rec. trav. chim. 45, 80-81 (1926). (35) Muller, Hönn, J. prakt. Chem. (2) 133, 289-290 (1932). (36) Moyer, Muller, J. prakt. Chem. (2) 46, 174-175 (1892). (37) Prins, Rec. trav. chim. 56, 119-125 (1937). (38) Coleman, Moore (to Dow Chem. Co.), U.S. 2,174,737, Oct. 3, 1939; C.A. 34, 779 (1940). (39) Compagnie des Prod. Chim. d'Alais, etc., French 804,491, Oct. 24, 1936; Cent. 1937, I 1545; C.A. 31, 3509 (1937). (40) Maier, Ger. 522,959, April 20, 1931, [Cent. 1931, I 3607]; C.A. 25, 3670 (1931). French 655,930, April 25, 1929; Cent. 1929, II 1347; C.A. 23, 3931 (1929).

(41) Jung, Zimmermann, Ger. 545,993, March 8, 1932; Cent. 1932, I 2893; C.A. 26, 3520 (1932). (42) Reilly (to Dow Chem. Co.), U.S. 2,140,549, Dec. 20, 1938, Cent. 1939, I 3625, C.A. 33, 2540 (1939). (43) Gavat, Ber. 76, 1115-1118 (1943); C.A. 38, 4901 (1944). (44) Golev, Sbornik Dikhloretan 1939, 18-20; C.A. 36, 2523 (1942). (45) Bahr, Zieler, Z. angew. Chem. 43, 233-236 (1930). (46) Stewart, Smith, J. Am. Chem. Soc. 51, 3082-3095 (1929). (47) Askenasy, Heller, Ger. 549,341, April 26, 1932; Cent. 1932, II 286; C.A. 26, 3807 (1932). (48) I.G., French 687,307, Aug. 7, 1930; Cent. 1930, II 3637; C.A. 25, 715 (1931); Brit 344,592, Jan. 31, 1929; C.A. 26, 155 (1932); not in Cent. (49) Kraemer, Ber. 3, 261 (1870). (50) Delacre, Compt. rend. 104, 1186 (1887).

(51) Muller, Ann. 258, 58 (1890). (52) Brockway, Beach, Pauling, J. Am. Chem. Soc. 57, 2695 (1935). (53) Regnault, J. prakt. Chem. (1) 18, 82-85 (1839); Ann. chim. (2) 69, 155-159 (1838). (54) Klimont, Chem. Ztg. 46, 521 (1922). (55) I.G., Brit. 349,872, July 2, 1931; Cent. 1931, II 1191; C.A. 26, 5314 (1932); French 702,361, April 7, 1931; Cent. 1931, II 1191; C.A. 25, 4285 (1931); Ger. 529,604, July 4, 1929; C.A. 25, 5178 (1931); not in Cent. (56) Howell (to Imp. Chem. Ind., Ltd.), Brit. 534,733, March 17, 1941; C.A. 36, 1336 (1942). (57) Engel, Bull. soc. chim. (2) 48, 97 (1887). (58) Brunner, Brandenburg, Ber. 10, 1497-1499 (1877); 11, 61-62 (1878). (59) Hermann, Baum (to Consortium für Elektrochem. Ind.), U.S. 1,921,879, Aug. 8, 1933; (C.A. 27, 5086 (1933)), not in Cent.: Ger. 570,954, Feb. 22, 1933; C.A. 27, 4252 (1933); not in Cent.: French 694,054, Nov. 28, 1930; Cent. 1931, I 1514, [C.A. 25, 1843 (1931)]. (60) I.G., French 805,563, Nov. 24, 1936; Cent. 1937, I 2258; [C.A. 31, 4345 (1937)].

(61) I.G., Ger. 525,309, May 21, 1931; Cent. 1931, II 1055; C.A. 25, 4012 (1931): French 703,767, May 6, 1931; Cent. 1931, II 1055; [C.A. 25, 4557 (1931)]. (62) Tzurikh, Trans. State Inst. Applied Chem. (U.S.S.R.) 24, 77-80 (1935); C.A. 29, 7272 (1935); not in Cent. (63) Henne, Renoll, J. Am. Chem. Soc. 58, 889-890 (1936). (64) Strosacker, Pelton (to Dow Chem. Co.), U.S. 1,884,354, Oct. 25, 1932; Cent. 1933, I 307; [C.A. 27, 1006 (1933)]. (65) Bert, Compt. rend. 213, 792-793 (1941); Cent. 1942, II 1785; C.A. 37, 4065 (1943). (66) Bert, Bull. soc. chim. (4) 41, 1173 (1927). (67) Lehman, Schmidt-Kehl, Arch. Hyg. Bakt. 116, 131-268 (1936); C.A. 31, 477 (1937); not in C.A. (68) Kharasch, Norton, Mayo, J. Org. Chem. 3, 49-50 (1938).

3:5345-3:5350

3:5345 3,3,3-TRICHLOROPROPENE-1 
$$Cl_3C$$
— $CH$ — $CH_2$   $C_3H_3Cl_3$  Beil. I-200 (1,1,1-Trichloropropene-2)  $I_1$ — $I_0$ —

B.P. M.P. 114-115° at 760 mm. (1) 
$$-30^{\circ}$$
 (2)  $D_{20}^{20} = 1.369$  (1)  $n_{\rm D}^{20} = 1.4827$  (3) 114-115° at 757 mm. (2)  $-55--50^{\circ}$  (1) (5) (5) (5)  $D_{3}^{13} = 1.359$  (2)

Liquid with penetrating odor suggesting aldehydes. [For use in dewaxing of mineral oil see (4).]

[For prepn. of  $\overline{C}$  from 1,1,1-trichloropropanol-2 (3:0846) (84% yield (3)) with  $P_2O_5$  (3) (2) (1), with  $PCl_3$  (5) (1), or with  $PCl_5$  (5) (1) see indic. refs.]

Č in cold and in diffused light adds Cl<sub>2</sub> yielding (2) 1,1,1,2,3-pentachloropropane (3:4740), m.p. 179-180° (2). — Č adds Br<sub>2</sub> readily yielding (2) 1,1,1-trichloro-2,3-dibromopropane [Beil. I-112], cryst. from alc., m.p. 210° (2).

 $\tilde{C}$  with HCl + FeCl<sub>3</sub> at 50° for 50-100 hrs. gives (20% yield (3)) 1,1,1,2-tetrachloro-propane (3:5785). — [For study of addn. to  $\tilde{C}$  of HBr see (3).]

3:5345 (1) Henry, Bull. acad. roy. Belg. 1905, 101-121; Cent. 1905, I 1697. (2) Victoria, Rec. trav. chim 24, 280-283 (1905). (3) Kharasch, Rossin, Fields, J. Am. Chem. Soc. 63, 2558-2560 (1941). (4) Standard Oil Development Co, French 790,852, Nov. 28, 1935; Cent. 1936, I 2672; C.A. 30, 3223 (1936). (5) Henry, Rec. trav. chim. 24, 336-344 (1905).

B.P. 
$$115^{\circ}$$
 (1)  $n_{\rm D}^{30.5} = 1.4550$  (1)  $45-45.5^{\circ}$  at 40 mm. (1)

[For prepn. of  $\tilde{C}$  (together with other products) from butadiene-1,3 with  $Cl_2$ , either directly or in CHCl<sub>3</sub>,  $CS_2$  or lgr. soln., see (1) (2); the process can be controlled so as to yield little or no 1,2,3,4-tetrachlorobutane but rather a mixt. of  $\tilde{C}$  and 1,4-dichlorobutene-2 (3:5725) in the ratio 2:1 (1) (2).]

C does not (1) rearr. to 1,4-dichlorobutene-2 (3:5725) even on htg. at 90° in a s.t. — However, C in the presence of a metal halide cat. (3) such as AlCl<sub>3</sub> (4) rearr. by allylic transposition to 1,4-dichlorobutene-2.

Č on htg. at 90° with 2 pts. solid KOH loses HCl yielding (1) (2) 1-chlorobutadiene-1,3 (3:7210), b.p. 85° (1) (2); under certain conditions, however, Č with KOH loses HCl to yield (5) 2-chlorobutadiene-1,3 (chloroprene) (3:7080).

Č on htg. in alc. with Zn dust yields (1) butadiene-1,3.

 $\tilde{\mathbf{C}}$  with  $\mathbf{Cl}_2$  yields solely (1) the liq, isomer of 1,2,3,4-tetrachlorobutane (3:9082).

 $\bar{C}$  treated directly with  $O_3$  at  $0^\circ$ , then with aq., yields (1)  $\alpha,\beta$ -dichloropropionaldehyde (3:9034), b.p. 73° at 50 mm. (1), + formaldehyde (1:0145). —  $\bar{C}$  on oxidn. with dil. alc. KMnO<sub>4</sub> gives (1)  $\alpha,\beta$ -dichloropropionic acid (3:0855), m.p. 50° (1).

3:5350 (1) Muskat, Northrup, J. Am. Chem. Soc. 52, 4043-4055 (1930). (2) Muskat (to du Pont), U.S. 2,038,593, Apr. 28, 1936; Cent. 1936, II 3358; C.A. 30, 3912 (1936). (3) I.G. Farbenindustrie, Brit. 505,573, May 12, 1939; Cent. 1939, II 1572; C.A. 33, 7822 (1939). (4) Nicodemus (to I.G.), U.S. 2,242,084, May 13, 1941; C.A. 35, 5134 (1941). (5) Carothers (to du Pont), U.S. 2,038,538, Apr. 28, 1936; Cent. 1936, II 3358; C.A. 30, 3838 (1936).

3:5356 CHLOROMETHYL ACETATE CH<sub>3</sub>.CO.O.CH<sub>2</sub>Cl C<sub>3</sub>H<sub>5</sub>O<sub>2</sub>Cl Beil. II - 152

п<sub>1</sub>---П<sub>2</sub>-(166)

```
B.P. 115-116^{\circ} at 757 mm. (1) D_{14,2}^{14,2}=1.1953 (1) (13) 115^{\circ} at 757 mm. (13) 115^{\circ} (5) 113-115^{\circ} (2) (12) 110-112^{\circ} (3) 58-62^{\circ} at 290 mm. (4)
```

Colorless liq. with penetrating odor. — Insol. cold aq.; sol. alc., ether. — Sol. in cold conc.  $H_2SO_4$  with evolu. of HCl (1) (13).

[For prepn. of  $\bar{C}$  from methyl acetate (1:3005) with Cl<sub>2</sub> in cold (1) (5) and in sunlight (2) (6), or with  $SO_2Cl_2$  in sunlight (6), see indic. refs.; from polyoxymethylene with AcCl (3:7065) in s.t. at 100° (6) or by htg. in pres. of  $ZnCl_2$  (61% yield on AcCl (4)) cf. (7) (8) (note that crude  $\bar{C}$  may be more or less contaminated with bis-(chloromethyl ether) (3:5245), b.p. 105°, and Ac<sub>2</sub>O (1:1015), b.p. 140°, apparently produced by disproportionation of  $\bar{C}$  itself during the htg. (7).]

C on slight warming with aq. readily dissolves by virtue of hydrolysis, yielding (1) (5) (3) formaldehyde (1:0145), AcOH (1:1010), and HCl.

[Č with alcs. or Na alcoholates (10) presumably first yields alkoxymethylacetates: e.g., Č with Na benzylate in C<sub>6</sub>H<sub>6</sub> refluxed for 4 hrs. gives (15% yield 4)) benzyloxymethyl acetate, b.p. 152-155° at 29 mm. (4); however, the usual type of prod. consists of a mixture of formaldehyde dialkylacetal and alkyl acetate (perhaps formed by interchange of radicals between the initial product and the alcohol (9)): e.g., Č with benzyl alc. (1:6480) gives (9) (10) (13) formaldehyde dibenzylacetal, b.p. 188-190° at 13 mm., + benzyl acetate (1:3751), b.p. 217°; Č with n-propyl alc. (1:6150) gives (9) (13) formaldehyde din-propylacetal [Beil. I-575, I<sub>1</sub>-(301), I<sub>2</sub>-(639)], b.p. 137° at 760 mm., + n-propyl acetate (1:3075), b.p. 101.6°; for analogous behavior of Č with MeOH (1:6120) and EtOH (1:6130) see (10).]

[C with Na phenolate does not yield phenoxymethyl acetate but instead (45% yield (11)) phenyl acetate (1:3571); this may be accounted for in a fashion completely analogous to that suggested above in the case of alcs., but no attempt was made (11) to verify the pres. of formaldehyde diphenylacetal (diphenoxymethane) although the latter [Beil. VI-150] is well known.]

 $\bar{\mathbf{C}}$  with NH<sub>3</sub> in dry ether gives {12} {13} acetamide, NH<sub>4</sub>Cl + formaldehyde (often in the form of hexamethylenetetramine {13}). —  $\bar{\mathbf{C}}$  with aniline (1.5 moles) in dry ether gives (80% yield {12}) acetanilide, m.p. 114–115°, + 1,3,5-triphenyltrimethylenetriamine ("anhydroformaldehydeaniline") [Beil. XXVI-3], yel. pr., m.p. 140–141° (produced by actn. of the liberated formaldehyde upon the excess of aniline). —  $[\bar{\mathbf{C}}$  (1 mole) with N,N-dimethylaniline (2 moles) + ZnCl<sub>2</sub> at 110–120° gives (5) salt of 4,4'-bis-(dimethylamino)-diphenylmethane [Beil. XIII-239, XIII<sub>1</sub>-(71)], m.p. 91°.]

Č with pyridine forms an unstable addn. cpd. (12); Č with quinoline forms (12) an addn. cpd., m.p. 214-216° dec., eas. sol. in abs. alc. but easily pptd. with dry ether (12).

[Č with N-potassiopyrrole in dry ether gives (18% yield (14)) N-pyrrylmethyl acetate, b.p. 59-63.5° at 3 mm.,  $D_{\rm s}^{20} = 1.0916$ ,  $n_{\rm D}^{20} = 1.4907$  (14).]

[For study of rate of reactn. of C with KI in acetone at 20° and 25° see (2).]

3:5356 (1) Henry, Ber. 6, 740-741 (1873). (2) Conant, Kirner, Hussey, J. Am. Chem. Soc. 47, 497, 499 (1925). (3) Descude, Compt. rend. 132, 1568 (1901). (4) Gupta, Kaushal, Deshapande, J. Indian Chem. Soc. 18, 638-640 (1941). (5) Censi, Bull. soc. ind. Mulhouse 76, 311-

313 (1899); Cent. 1906, I 594-595. (6) Henry, Bull. acad. roy. Belg. 1906, 48-56; Cent. 1906, I 1122-1123. (7) Descude, Bull. soc. chim. (3) 27, 867-869 (1902); Compt. rend. 132, 1568 (1901). (8) Henry, Compt. rend. 133, 97 (1901). (9) Descude, Bull. soc. chim. (3) 27, 47-48 (1903). (10) Descude, Bull. soc. chim. (3) 27, 1215-1219 (1902).

(11) Kirner, J. Am. Chem. Soc. 48, 2748 (1926). (12) Ulich, Adams, J. Am. Chem. Soc. 43, 663, 665-666 (1921). (13) Descude, Ann. chim. (7) 29, 504-508 (1903). (14) Taggart, Richter, J. Am. Chem. Soc. 56, 1386 (1934).

3:5358 3-CHLORO-1,2-EPOXYPROPANE ("Epichlorohydrin"; 
$$\gamma$$
-chloropropylene oxide; (chloromethyl)ethylene oxide) CH<sub>2</sub>Cl  $C_3H_5OCl$  Beil. XVII - 6 XVII<sub>1</sub>-(4)

| B.P           |               |         | M.P.             |      |                                |      |
|---------------|---------------|---------|------------------|------|--------------------------------|------|
| [118-119°     | (1            | (50)]   | -48°             | (10) | $D_4^{25} = 1.17495 (23)$      |      |
| 117°          | (2) (3) (     | 4) (5)  |                  |      | 1.1723 (24)                    |      |
| 116.5-117.5°  | at 765 mm.    | (6)     |                  |      | $n_{\rm D}^{25} = 1.43585$     | (23) |
| 116.75-117.00 | ° at 762.2 mm | . (7)   |                  |      | $D_4^{20} = 1.184 \qquad (26)$ |      |
| 116.56°       | at 760 mm.    | (7)     |                  |      | 1.1812 (10)                    |      |
| 116.5°        | at 761 mm.    | (8)     |                  |      | 1.181 (17)                     |      |
| 116.45°       | at 760 mm.    | (9)     |                  |      | 1.1801 (25)                    |      |
| 117°          | at 758 mm.    | (10)    |                  |      | 1.18 (18)                      |      |
| 117° cor.     | at 755 mm.    | (11)    |                  |      | $n_{\rm D}^{20}=1.4382$        | (26) |
| 116-118°      |               | (12)    |                  |      | 1.438                          | (17) |
| 116-117°      | at 760 mm.    | (13)    |                  |      | $D_4^{16.1} = 1.1848 (25)$     |      |
| 116°          |               | (14) (1 | .5)              |      | $n_{\rm D}^{161}=1.43969$      | (25) |
| 115-117°      |               | (16)    |                  |      | $D_4^{11.5} = 1.1928 (26)$     |      |
| 115-116°      |               | (17) (1 | l8) <b>(4</b> 8) |      | $n_{\rm D}^{11.5}=1.44195$     | (26) |
| 115.4°        | at 764 mm.    | (19)    |                  |      |                                |      |
| 115° cor.     | at 740 mm.    | (20)    |                  |      |                                |      |
|               |               | (21)    |                  |      |                                |      |
| 60-61°        | at 100 mm.    | (17)    |                  |      |                                |      |
| 30-32°        | at 10 mm.     | (22)    |                  |      |                                |      |

 $\bar{\mathbf{C}}$  is also sometimes designated as " $\alpha$ -epichlorohydrin" to distinguish it from the less common " $\beta$ -epichlorohydrin" =  $\beta$ -chlorotrimethylene oxide.

 $\ddot{\mathbf{C}}$  is liq. with odor suggesting chloroform. —  $\ddot{\mathbf{C}}$  is spar. sol. aq. (see also below) but misc. with alc. or ether.

#### MISCELLANEOUS PHYSICAL PROPERTIES

Solubility relations.  $\tilde{C}$  with aq. forms two layers: the lower layer conts. the following no. of g.'s  $\tilde{C}$  per 100 g. satd. soln.: at 25° 98.48 g., at 45° 97.43 g., at 70° 95.82 g., at 80.4° 94.17 g.; the upper layer conts. per 100 g. satd. soln.: at 30.2° 6.60 g., at 52.0° 7.53 g., at 65.0° 8.45 g., at 72.0° 9.34 g., at 80.2° 10.43 g. (5).

Binary azeotropes contg.  $\bar{C}$ .  $\bar{C}$  with aq. forms a homogeneous const. boilg. mixt., b.p. 88°, contg. 75%  $\bar{C}$ ; at 25° this azeotrope seps. into two layers contg. respectively 98%  $\bar{C}$  and 7%  $\bar{C}$  (17).

[ $\bar{\mathbf{C}}$  with AcOH (1:1010) forms (9a) a const.-boilg. mixt., b.p. 115.05° at 760 mm., contg. 65.5 wt. %  $\bar{\mathbf{C}}$ ;  $\bar{\mathbf{C}}$  with tetrachloroethylene (3:5460) forms (9b) a const.-boilg. mixt., b.p. 110.12° at 760 mm., contg. 51.5 wt. %  $\bar{\mathbf{C}}$ .]

[Note that  $\bar{C}$  with EtOH (1:6130) (9c) or with formic acid (1:1005) (9d) forms no azeotropes.]

**Ternary systems contg.**  $\bar{C}$ . [For extensive study of system  $\bar{C} + AcOH + aq. see (5).]$ 

# MISCELLANEOUS PHYSIOLOGICAL AND BIOCHEMICAL BEHAVIOR OF Č

[For study of toxicity of  $\tilde{C}$  see (27); for effect on proteins see (28); for effect on wire worms see (29).]

#### USES OF C

The uses of  $\bar{C}$  both as solvent and as chemical intermediate (see below) are manifold and cannot here be reviewed in detail [however, for use of  $\bar{C}$  in stabilization of nitrate esters (30), in refining of mineral oil (31), or in treatment of cellulose fibers to improve dyeing with acid dyes (32) see indic. refs.].

#### PREPARATION OF C

[For prepn. of  $\bar{C}$  from 1,3-dichloropropanol-2 (" $\alpha$ -dichlorohydrin") (3:5985) with aq. Ca(OH)<sub>2</sub> (22) (16) (33), with aq. NaOH (4) (13) (17) (34) (37) cf. (35), with alc. NaOH (36), with ether + NaOH (38), with solid NaOH (39), or with aq. KOH (2) (1) (yields: 95% (33), 92.5% (36), 90% (13) (16) (34),85% (17),79% (2),76-81% (38),67-72% (22),70% (17),60% (4)) see indic. refs.; for patents on prepn. of  $\bar{C}$  from this source by use of various alk. materials see (40) (41) (33) (37), note that during this type of prepn. of  $\bar{C}$  some glycerol (1:6540) is also formed (38) (44).]

[For prepn. of  $\tilde{C}$  from 2,3-dichloropropanol-1 (" $\beta$ -dichlorohydrin") (3:6060) with aq. alk. see (42) (for studies of kinetics of this loss of HCl see (43)).]

[For form. of  $\bar{C}$  from glycerol (1:6540) with PCl<sub>3</sub> (45), with HCl (1) (50), or S<sub>2</sub>Cl<sub>2</sub> (50) see indic. refs.]

[For form. of  $\tilde{C}$  from sodium salt of  $\gamma$ -chloro- $\beta$ -hydroxy-n-propyl hydrogen sulfite (itself obtd. from  $\tilde{C}$  + NaHSO<sub>3</sub>) on treatment with NaOH see (46).]

[For formn. of C from 1-bromo-3-chloropropanol-2 (see below) by loss of HBr by actn. of conc. KOH see (1).]

#### CHEMICAL BEHAVIOR OF C WITH INORGANIC REACTANTS

Reduction of C. [C with Na/Hg in moist ether is very slowly attacked and some allyl alc. (1:6145) (together with other prods.) is formed (47). — Note, however, that reactn. of C with Na in ether is very complicated and the prods. and mode of their formn. are disputed (48) (49) (44) (50) (51).] — (For behavior of C with HI see below.)

Oxidation of  $\tilde{C}$ . [ $\tilde{C}$  on oxidn. with HNO<sub>3</sub> (D=1.38) gives (52)  $\beta$ -chloro- $\alpha$ -hydroxy-propionic acid ( $\beta$ -chlorolactic acid) [Beil. III-286, III<sub>1</sub>-(110), III<sub>2</sub>-(209)], eas. sol. aq., alc., ether, cryst. from  $C_6H_6$  (53), m.p. 77° (53), 77-78° (52) (for resolution of this prod. into opt. act. forms, d-form, m.p. 91.5°, see (54)). — Note that this prod. is also obtd. by oxidn. of 3-chloropropanediol-1,2 (" $\alpha$ -monochlorohydrin") (3:9038) q.v.]

**Halogenation of Č.** [ $\bar{\mathbf{C}}$  with Cl<sub>2</sub> in diffuse light gives (55)  $\gamma, \gamma$ -dichloropropylene oxide [Beil. XVII-9], oil, b.p. 170°. —  $\bar{\mathbf{C}}$  with Br<sub>2</sub> at 100° gives (56) (57) x, x, x-tribromo- $\gamma$ -chloropropylene oxide [Beil. XVII-9], oil, which on shaking with aq. forms a crystn. tetrahydrate, m.p. 55° (56).]

Behavior of  $\tilde{C}$  with water (or dil. acids). [ $\tilde{C}$  with aq. at 100° (6) in s.t. (1) cf. (60) or on boilg, for 14 hrs. (58) adds H<sub>2</sub>O giving (80% yield (58)) 3-chloropropanediol-1,2 ( $\alpha$ -

monochlorohydrin) (3:9038). This process is greatly facilitated by the pres. of dil. acids: e.g., for use of dil.  $H_2SO_4$  (yields: 85-90% (34) cf. (59), 80% (36)) or formic acid (66% yield (212)) see indic. refs.; for study of kinetics of this reactn. incl. influence of various acids and salts see (6) (19) (61) (62); for patent on use of dil. acids or acid-reacting salts see (63). — Note, however, that  $\bar{C}$  with aq. contg. 3-20%  $H_2SO_4$  at  $100-250^\circ$  under press. gives (72) acrolein (1:0115).]

Behavior of  $\bar{C}$  with halogen hydracids (HX). With HF. [ $\bar{C}$  with 30% HF soln. reacts vigorously yielding (64a) 3-chloropropanediol-1,2 (" $\alpha$ -monochlorohydrin") (3:9038) and other prods.; note that  $\bar{C}$  with HF under some circumstances appears to yield (64b) polymers.]

With HCl. [ $\bar{C}$  with conc. HCl shaken several hrs. at room temp. (3) (4) cf. (19) (65), or  $\bar{C}$  with HCl gas (51) in AcOH (11), gives (80% yield (4)) 1,3-dichloropropanol-2 (" $\alpha$ -dichlorohydrin") (3:5985).]

With  $\dot{H}Br$ . [ $\ddot{C}$  with const.-boilg. HBr (D=1.48) as directed (66) cf. (1) gives alm. quant. yield 1-bromo-3-chloropropanol-2 [Beil. I-365, I<sub>1</sub>-(185), I<sub>2</sub>-(385)], b.p. 197° at 760 mm. (66), 92° at 20 mm. (66),  $D_4^{20}=1.726$  (67),  $n_D^{25}=1.5140$  (67) (corresp. bis-(N-phenylcarbamate), m.p. 73° (68)).] (See below under reactn. of  $\ddot{C}$  with metal bromides.) With HI. [ $\ddot{C}$  with 66% HI (69) cf. (66) (1) gives 3-chloro-1-iodopropanol-2 [Beil. I-366, I<sub>1</sub>-(186), I<sub>2</sub>-(386)], b.p. 226° (1), 107° at 19 mm. (66), 110° at 9 mm. (69).] (See also below under behavior of  $\ddot{C}$  with metal iodides.)

Behavior of  $\tilde{C}$  with oxygenated inorganic acids. [ $\tilde{C}$  with conc.  $H_2SO_4$  (70) or 84%  $H_2SO_4$  in cold (71) gives a corresp. mono (acid sulfate) ester [Beil. I-474,  $I_2$ -(538)], but whether this  $HSO_4$  group is attached through oxygen to the first or second carbon atoms of  $\tilde{C}$  is unknown.]

[ $\bar{C}$  with HNO<sub>3</sub> at not above 20° as directed (73) gives 42% yield of a mononitrate ester of 3-chloropropanediol-1,2 (" $\alpha$ -monochlorohydrin");  $\bar{C}$  with fumg. HNO<sub>3</sub> at 0° gives (74)  $\gamma$ -chloropropylene glycol dinitrate [Beil. I-474];  $\bar{C}$  with mixed HNO<sub>3</sub> + H<sub>2</sub>SO<sub>4</sub> gives (75) a mixed nitrous/nitric ester [Beil. I-474] of 3-chloropropanediol-1,2 (3:9038).]

[For analogous reactns. of  $\bar{C}$  with  $H_3PO_4$  (71) (89) or with  $HClO_4$  in ether (76) see indic. refs.; for behavior of  $\bar{C}$  toward HOCl see (77).]

Behavior of C with salts of inorganic acids. (For behavior with NaCN, etc., see below under organic reactants.)

With metal chlorides. [ $\bar{C}$  in dry ether adds anhydrous ZnCl<sub>2</sub> giving (78) ClCH<sub>2</sub>CH-(OZnCl).CH<sub>2</sub>Cl; $\bar{C}$  in dry ether adds anhydrous MgCl<sub>2</sub>giving (78) ClCH<sub>2</sub>CH (OMgCl)CH<sub>2</sub>Cl; both these cpds. on hydrolysis yield (78) 1,3-dichloropropanol-2 (" $\alpha$ -dichlorohydrin") (3:5985). — Note also that  $\bar{C}$  (2 g.) with MgCl<sub>2</sub> (1 g.) + aq. (2 ml.) + abs. alc. (5 ml.) in st. at 125° for 6 hrs. (79) cf. (11) gives Mg(OH)<sub>2</sub> + 1,3-dichloropropanol (above);  $\bar{C}$  with alc. FeCl<sub>3</sub> gives (11) Fe(OH)<sub>3</sub> + 1,3-dichloropropanol-2 (above).] (See also below under reactn. of  $\bar{C}$  with RMgX cpds.)

With metal bromides. [C (1 mole) with MgBr<sub>2</sub> (1 mole) in dry ether gives (80) similarly ClCH<sub>2</sub>.CH(OMgBr).CH<sub>2</sub>Br which on hydrolysis yields (80) 1-bromo-3-chloropropanol-2 (props. given above under reactn. of C with HBr).] (See also below under reactn. of C with RMgX cpds.)

With metal iodides. [C with dry KI in st. at 100° for several days (1), or C with KI (2 moles) in abs. alc. at 80-85° for 11 hrs. (81), or C with NaI (1 mole) in acctone refluxed 21 hrs. (82), gives (40% yield (82)) 3-iodo-1,2-epoxypropane ("α-epiiodohydrin") [Beil. XVII-10], b.p. 167° (1), 64° at 24 mm. (82), 62° at 24 mm. (81).]

 $[\bar{C}$  with conc. aq. MgI<sub>2</sub> soln. gives alm. quant. yield (170) 3-chloro-1-iodopropanol-2 for whose constants see above under behavior of  $\bar{C}$  with HI.]

With alkali sulfides. [For patents on behavior of C with aq. Na<sub>2</sub>S see (83) (84).] (See also below.)

With alkali sulfites. [C with NaHSO<sub>3</sub> in s.t. at 100° (11) or htd. under reflux (85) (86) or in cold (87) gives sodium salt of 3-chloro-2-hydroxy-n-propyl hydrogen sulfite [Beil. I-474, I<sub>2</sub>-(538)].]

[ $\bar{C}$  (1 mole) with conc. aq. Na<sub>2</sub>SO<sub>3</sub> (2 moles) htd. under reflux 1½-2 hrs. (46) or  $\bar{C}$  with conc. aq. K<sub>2</sub>SO<sub>3</sub> (85) gives corresp. salts of "glycerol disulfonic acid."]

[For behavior of C with Na<sub>3</sub>PO<sub>4</sub> (15), with Na<sub>2</sub>HPO<sub>4</sub> (88), or with Na<sub>3</sub>AsO<sub>3</sub> (90) see indic. refs.]

Behavior of  $\bar{C}$  with other non-nitrogenous inorganic reactants.  $[\bar{C}$  with PCl<sub>3</sub> gives an addition prod. (91) which with aq. regenerates  $\bar{C}$  and also forms  $H_3PO_3$ . —  $\bar{C}$  with PCl<sub>5</sub> yields (1) 1,2,3-trichloropropane (3:5840) + POCl<sub>3</sub>.

[ $\bar{\mathbf{C}}$  with S<sub>2</sub>Cl<sub>2</sub> gives (92) 67% 1,3-dichloropropanol-2 (" $\alpha$ -dichlorohydrin") (3:5985) + 33%  $\alpha$ , $\alpha$ '-dichloroacetone (3:0563). —  $\bar{\mathbf{C}}$  with SO<sub>2</sub>Cl<sub>2</sub> + AlCl<sub>3</sub> in CCl<sub>4</sub> gives (93)  $\beta$ , $\beta$ '-dichloroisopropyl chlorosulfonate.]

[ $\bar{C}$  in alk, soln. treated with H<sub>2</sub>S at 0° gives (94)  $\beta$ -chloro- $\alpha$ -hydroxy-n-propyl mercaptan, b.p. 60° at 1.3 mm.,  $D_{-}^{20} = 1.2981$ ,  $n_{D}^{20} = 1.5257$  (94); at 50°, however, further loss of HCl occurs yielding by ring closure (94)  $\beta$ -hydroxytrimethylene sulfide, b.p. 57° at 1.3 mm.,  $D_{-}^{20} = 1.2130$ ,  $n_{D}^{20} = 1.5433$  (94). — Note, however, that  $\bar{C}$  treated directly at 125° with H<sub>2</sub>S gives (95) bis-( $\beta$ -chloro- $\alpha$ -hydroxy-n-propyl) sulfide, oil, undistillable without decn. even at 2 mm. (95).]

[ $\bar{\mathbf{C}}$  with AcCl<sub>3</sub> gives (96) tris- $(\beta,\beta'$ -dichloroisopropyl)arsine, b.p. 88–93° at 10 mm.,  $D_4^{10} = 2.145$  (96).]

Behavior of  $\bar{\mathbf{C}}$  with NH<sub>3</sub> and other inorganic nitrogen cpds.  $[\bar{\mathbf{C}}$  satd. repeatedly with NH<sub>3</sub> gas as directed (97) gives tris-( $\beta$ -chloro- $\alpha$ -hydroxy-n-propyl)amine [Beil. IV-291], m.p. 92-93° (corresp.  $\bar{\mathbf{B}}$ .HCl, m.p. 173° (97)); note that from the reactn. prod. of  $\bar{\mathbf{C}}$  with ethyl acetoacetate treatment with excess alc. NH<sub>3</sub> gives (98) 3-chloro-2-(1?)-aminopropanol-1(2?) [Beil. IV-291].]

[Č in alc. with NH<sub>3</sub> gas or Č in alc. with NaNH<sub>2</sub>, or Č with aq. NH<sub>4</sub>OH (11) (99) gives a reactn. prod. of undetermined constitution, useful in productn. (100) of vat dye printing pastes.]

[Č with hydrazine hydrate at 100° for 30 min. or in alc. under reflux for 5 hrs. gives (101)  $\gamma$ -hydrazinoepihydrin which with ZnCl<sub>2</sub> at 100° gives (101) pyrazole [Beil. XXIII-39, XXIII<sub>1</sub>-(15)], m.p. 69.5-70° (101).]

[For behavior of  $\bar{C}$  with basic potassium iminodisulfonate,  $KN(SO_3K)_2$ , leading to dipotassium epihydrin-N,N-disulfonate (102) (103), or with basic potassium hydroxylaminedisulfonate,  $KON(SO_3K)_2$ , leading to dipotassium epihydrinhydroxylamine-N,N-disulfonate (104), see indic. refs.]

# CHEMICAL BEHAVIOR OF C WITH ORGANIC REACTANTS

# BEHAVIOR OF C WITH HYDROXY AND MERCAPTO COMPOUNDS

With monohydric alcohols.  $\bar{C}$  with alcohols reacts to give by opening of the oxide ring the corresp. primary ethers of 3-chloropropanediol-1,2(" $\alpha$ -monochlorohydrin") (3:9038).  $[\bar{C}$  with MeOH (1:6120) in pres. of  $H_2SO_4$  (105) (66) (106) (107), or  $\bar{C}$  with MeOH at elev. temp. under press. (108), or  $\bar{C}$  with MeOH + BF<sub>3</sub> (109), gives (yields: 88–90% (105), 89% (106), 74.5% (109))  $\gamma$ -chloro- $\beta$ -hydroxy-n-propyl methyl ether ("chloromethylin") [Beil.  $I_2$ -(538)], b.p. 173° at 752 mm. (105), 172° (106), 170.5–171.5° (109), 95° at 20 mm. (106),  $D_4^{20} = 1.1648$  (109),  $n_2^{20} = 1.4474$  (109). — Note, however, that  $\bar{C}$  with MeOH in pres. of KOH gives (110) (111) glycerol  $\alpha$ ,  $\alpha'$ -dimethyl ether ( $\beta$ ,  $\beta'$ -dimethoxy-isopropyl alc.)

[Beil. I-512, I<sub>2</sub>-(590)], b.p. 167-168° at 760 mm., 65.5-66.0° cor. at 9 mm. (113),  $D_4^{20} = 1.0085$  (113),  $D_4^{25} = 1.012$  (111),  $n_D^{25} = 1.4183$  (111),  $n_D^{20} = 1.4192$  (113) (corresp. p-nitrobenzoate, m.p. 43° (112)).]

[ $\bar{\mathbf{C}}$  with EtOH (1:6130) in pres. of H<sub>2</sub>SO<sub>4</sub> refluxed 6 hrs. (17) or 20 hrs. (106) gives (yields: 80% (106), 76% (17))  $\gamma$ -chloro- $\beta$ -hydroxy-n-propyl ethyl ether ("chloroethylin") [Beil. I-474, I<sub>2</sub>-(538)], b.p. 183–184° (106), 104–106° at 60 mm. (17), 95–100° at 20 mm. (106),  $D_4^{25} = 1.107$  (17),  $n_D^{25} = 1.442$  (17). — Note, however, that  $\bar{\mathbf{C}}$  with EtOH + KOH gives (110) glycerol  $\alpha$ , $\alpha'$ -diethyl ether ( $\beta$ , $\beta'$ -diethoxyisopropyl alc.) [Beil. I-512], b.p. 191° at 760 mm. (13) (111), 108–109° at 60 mm. (111), 61.5–62.0° cor. at 2 mm. (113),  $D_4^{25} = 0.952$  (111) (13),  $D_4^{20} = 0.9514$  (113),  $n_D^{25} = 1.419$  (111) (13),  $n_D^{20} = 1.4200$  (113).]

[For corresp. behavior of  $\tilde{C}$  with *n*-butyl alc. (1:6180) + H<sub>2</sub>SO<sub>4</sub> (106), with isoamyl alc. (1:6200) + H<sub>2</sub>SO<sub>4</sub> (106), see indic. refs. —  $\tilde{C}$  with dodecanol-1 (lauryl alc.) (1:5900) + FeCl<sub>3</sub> in s.t. at 160° for 18 hrs. (39% yield (114)) or with H<sub>2</sub>SO<sub>4</sub> (115) gives  $\gamma$ -chloro- $\beta$ -hydroxy-n-propyl n-dodecyl ether, b.p. 157° at 1 mm. (114),  $n_D^{25} = 1.4525$  (114). — (For attempts to effect analogous reactn. between  $\tilde{C}$  and ter-butyl alcohol (1:6140) in pres. of H<sub>2</sub>SO<sub>4</sub> and for physical constants on higher members of di(alkoxy)isopropyl alc. series see (113).)]

[ $\bar{C}$  with ethylene chlorohydrin (3:5552) + H<sub>2</sub>SO<sub>4</sub> gives (70% yield (116))  $\gamma$ -chloro- $\beta$ -hydroxy-n-propyl  $\beta$ -chloroethyl ether, b.p. 123-125° at 18 mm. (116).]

With polyhydric alcohols. [ $\bar{C}$  with ethylene glycol (1:6465) +  $\bar{H}_2SO_4$  gives (56% yield (117))  $\gamma$ -chloro- $\beta$ -hydroxy-n-propyl  $\beta$ -hydroxyethyl ether, b.p. 135–139° (117).]

[For presumably analogous behavior of  $\bar{C}$  with glycerol + H<sub>2</sub>SO<sub>4</sub> see (118); for behavior of  $\bar{C}$  with cellulose + 50% NaOH see (119).]

With mercaptans.  $\tilde{C}$  with mercaptans behaves in general analogously to  $\tilde{C}$  with monohydric alcs. + H<sub>2</sub>SO<sub>4</sub>.

[E.g.,  $\bar{C}$  with McSH is unreported. —  $\bar{C}$  with EtSH at 50° for 4 hrs. gives (90% yield (95))  $\gamma$ -chloro- $\beta$ -hydroxy-n-propyl ethyl sulfide, b.p. 114–115° at 16 mm.; note, however, that  $\bar{C}$  with EtSH in aq. KOH (i.e., KSEt) reacts differently yielding (95) 1,2-epoxy-n-propyl ethyl sulfide, b.p. 67–68° at 15 mm.,  $D_4^{22}=1.0196,\ n_D^{22}=1.4789.$  —  $\bar{C}$  with n-PrSH + activated carbon at 90° for 7 hrs. gives (95)  $\gamma$ -chloro- $\beta$ -hydroxy-n-propyl sulfide, b.p. 95° at 4 mm.]

[ $\ddot{C}$  (1 mole) with benzyl mercaptan (1 mole) at 130° for 7 hrs. gives (95)  $\gamma$ -chloro- $\beta$ -hydroxy-n-propyl benzyl sulfide, b.p. 154–156° at 4 mm.; note, however, that  $\ddot{C}$  (1 mole) with benzyl mercaptan (2 moles) in alc. NaOH gives (46) bis- $(\beta,\beta'$ -dibenzylmercapto)-isopropyl alc., m.p. 59°.]

[ $\bar{C}$  with thiophenol at 130° for 5 hrs. gives (95)  $\gamma$ -chloro- $\beta$ -hydroxy-n-propyl phenyl sulfide, b.p. 141° at 4 mm.]

With monohydric phenols. Č with monohydric phenols reacts to give by opening of the oxide ring the corresp. primary aryl ethers of 3-chloropropanediol-1,2("a-mono-chlorohydrin") (3:9038).

[ $\ddot{\mathbf{C}}$  with phenol (1:1420) (2 moles) at 110° for 10 hrs. (17), or at 150–160° under press. (120) (121) cf. (122), gives (86% yield (17))  $\gamma$ -chloro- $\beta$ -hydroxy-n-propyl phenyl ether (" $\alpha$ -monochlorohydrin  $\gamma$ -phenyl ether") [Beil. VI-147, VI<sub>I</sub>-(85)], b.p. 155–156° at 16 mm. (123), 152–153° at 12 mm. (121), 125–126° at 2 mm. (17),  $D_4^{25}$  = 1.209 (17),  $n_D^{25}$  = 1.540 (17) (this prod. is also formed even in pres. of a very little NaOH (123)). —  $\ddot{\mathbf{C}}$  (1 mole) with phenol (1:1420) (1 mole) + aq. NaOH (1½ moles) at ord. temp. for 24 hrs. gives (40% yield (17) (125)) (124) 3-phenoxy-1,2-epoxypropane (glycidol phenyl ether) [Beil. XVII-105, XVII<sub>1</sub>-(50)], b.p. 243–244° cor. (124), 133° at 23 mm. (124), 115–116° at 3–4 mm. (17),  $D_4^{25}$  = 1.10 (17); this reactn. occurs so readily that this prod. has formerly been mistaken for glycerol  $\alpha$ - $\gamma$ -diphenyl ether (see following). —  $\ddot{\mathbf{C}}$  with phenol (1:1420) +

alc. NaOEt under reflux {120} cf. (124) (127) yields glycerol  $\alpha, \alpha'$ -di(phenyl) ether ( $\beta, \beta'$ -diphenoxyisopropyl alc.) [Beil. VI-149, VI<sub>1</sub>-(86)], lfts. from alc., m.p. 82° (120) (127), 81-82° (124), 80-81° (17).]

 $\bar{C}$  (1 mole) with p-nitrophenol (1 mole) + aq. NaOH (1½ moles) at ord. temp. for some days gives (126) 3-(p-nitrophenoxy)-1,2-epoxypropane (glycidol p-nitrophenyl ether) [Beil. XVII<sub>1</sub>-(51)], m.p. 67° cor. (126), 69° (127). —  $\bar{C}$  (1 mole) with 2,4-dinitrophenol (1 mole) in aq. KOH (1 mole) refluxed several days, or  $\bar{C}$  with Ag 2,4-dinitrophenolate in alc., gives (42-47% yield) (note that  $\bar{C}$  is in excess (128)) glycerol  $\alpha,\alpha'$ -bis-(2,4-dinitrophenyl)ether, m.p. 79° (128).]

[C (1 mole) with o-cresol (1:1400) (1 mole) + very dil. aq. NaOH at ord. temp. 9 days gives (30% yield (123)) γ-chloro-β-hydroxy-n-propyl o-tolyl ether ("α-monochlorohydrin  $\gamma$ -(o-tolyl) ether) [Beil. VI<sub>1</sub>-(201)], oil, b.p. 165° at 14 mm. (corresp. N-phenylcarbamate, m.p. 113-114°); C (1 mole) with o-cresol (1 mole) + excess aq. NaOH at ord. temp. 4 days gives (131) 3-(o-toloxy)-1,2-epoxypropane (glycidol o-cresyl ether) [Beil. XVII-105], oil, b.p. 134.5° at 14 mm. (131); note, however, that C (1 mole) with Na o-cresolate (2 moles) in alc. refluxed 24 hrs. gives (37% yield (129)) cf. (130) glycerol  $\alpha,\alpha'$ -bis-(o-tolyl)ether [Beil. VI-354], m.p. 36-37°, b.p. 226° at 13 mm. (129) (130). — C (1 mole) with m-cresol (1:1730) (1 mole) + 20% aq. NaOH (1/40 mole) at ord. temp. for 56 days gives (67.5%) yield (126)) γ-chloro-β-hydroxy-n-propyl m-tolyl ether ("α-monochlorohydrin" γ-(mtolyl) ether) [Beil. VI<sub>1</sub>-(186)], b.p. 167.5° cor. at 13 mm. (corresp. N-phenylcarbamate, m.p. 108-108.5° cor.);  $\bar{C}$  (1 mole) with m-cresol (1 mole) + excess aq. NaOH at ord. temp. gives (126) 3-(m-toloxy)-1,2-epoxypropane (glycidol m-tolyl ether) [Beil. XVII<sub>1</sub>-(51)], b.p. 139.5-140° cor. at 15 mm.; note, however, that  $\tilde{C}$  (1 mole) with Na m-cresolate (2 moles) in alc. refluxed several days gives (23% yield (129)) (130) glycerol  $\alpha, \alpha'$ -bis-(m-tolyl) ether [Beil. VI-378], b.p. 232° at 13 mm. (129) (130). —  $\bar{C}$  (1 mole) with p-cresol (1:1410) (1 mole) + 20% aq. NaOH ( $\frac{1}{20}$  mole) at ord. temp. for 8 days gives (47% yield (123))  $\gamma$ -chloro- $\beta$ -hydroxy-n-propyl p-tolyl ether (" $\alpha$ -monochlorohydrin"  $\gamma$ -(p-tolyl) ether) [Beil. VI<sub>1</sub>-(201)], oil, b.p. 165° at 14 mm. (corresp. N-phenylcarbamate, m.p. 113-114°);  $\bar{C}$  (1 mole) with p-cresol (1 mole) + excess aq. NaOH at ord. temp. gives (124) cf. (120) 3-(p-toloxy)-1,2-epoxypropane, (glycidol p-cresyl ether) [Bul. XVII-105, XVII<sub>1</sub>-(51)], b.p. 136° at 17 mm. (124); note, however, that C (1 mole) with Na p-cresolate in alc. under reflux gives (120) (124) glycerol  $\alpha,\alpha'$ -bis-(p-tolyl) ether [Beil. VI-395], m.p. 88° (120) (124).]

[The analogous behavior of  $\bar{C}$  with other monohydric phenols cannot be detailed here; however, for  $\bar{C}$  with  $\alpha$ -naphthol (1:1500) (120) (126) (132),  $\beta$ -naphthol (1:1540) (126) (127) (132), carvaerol (1:1760) (126), thymol (1:1430) (126), guaiacol (1:1405) (126) (127) see indic. refs.]

With dihydric phenols. [C (1 mole) with pyrocatechol (1:1520) (1 mole) + KOH (1 mole) condenses with ring closure yielding (133) (134) 5-(hydroxymethyl)-2,3-benzo-dioxane-1,4, m.p. 96°, b.p. 160° at 17 mm. (133) (134).]

[For behavior of  $\bar{C}$  with 4-acetylresorcinol (resacetophenone) see (135).]

# BEHAVIOR OF C WITH ETHERS

[ $\bar{C}$  with dimethyl ether + BF<sub>3</sub> at -35° after reactn. and distn. gives (86.6% yield (136)) tris-(β-chloro-β'-methoxy-isopropyl) borate, accompanied by a little  $\gamma$ -chloro-β-hydroxy-n-propyl methyl ether (for constants see above under behavior of  $\bar{C}$  with monohydric alcs.). — $\bar{C}$  with diethyl ether + BF<sub>3</sub> at 20-25° overnight followed by treatment with aq. 2N Na<sub>2</sub>CO<sub>3</sub> gives mainly (136)  $\gamma$ -chloro-β-hydroxy-n-propyl ethyl ether (for constants see above under behavior of  $\bar{C}$  with monohydric alcs.) accompanied by ethyl alcohol (1:6130); direct distillation of the reaction mixt. without Na<sub>2</sub>CO<sub>3</sub> treatment, however,

gives (136) tris-( $\beta$ -chloro- $\beta$ -ethoxyisopropyl) borate, b.p. 210-216° at 12 mm.,  $D_4^{22}$  = 1.148 (126).]

[ $\bar{C}$  with  $\alpha$ -halogen-methyl alkyl ethers in pres. of HgCl<sub>2</sub> gives (137) (105) (by ring opening and addn.) mixed formals; e.g.,  $\bar{C}$  with chloromethyl methyl ether (3:7085) + HgCl<sub>2</sub> gives formaldehyde  $\beta$ , $\beta'$ -dichloroisopropyl methyl acetal, etc.]

# BEHAVIOR OF C WITH CARBONYL COMPOUNDS

With aldehydes. [ $\bar{C}$  with aldehydes condenses to yield the corresp. 2-alkyl-4-(chloromethyl)-1,3-dioxolanes; (however, the prod. to be expected from  $\bar{C}$  with formaldehyde (1:0145), viz., 4-(chloromethyl)-1,3-dioxolane [Beil. XIX-8, XIX<sub>1</sub>-(610)], b.p. 126° at 750 mm. (138), has not been so reported, but rather from 3-chloropropanediol-1,2 (" $\alpha$ -monochlorohydrin")(3:9038)); for behavior of this prod. with solid KOH at 110° involving loss of HCl and formn. (94% yield (139)) (140) of the formal of propen-1-diol-2,3, b.p. 93-95° at 758 mm. (139),  $n_{20}^{20} = 1.4336$  (139), see indic. refs.]

[ $\bar{C}$  with acetaldehyde (1:0100) + SnCl<sub>4</sub> in CCl<sub>4</sub> at 18–25° gives (45% yield (141)) 4-(chloromethyl)-2-methyl-1,3-dioxolane ("acetaldehyde  $\gamma$ -chloropropylene acetal") [Beil. XIX<sub>1</sub>-(610)], b.p. 158–162° at 760 mm. (141).— $\bar{C}$  with propionaldehyde (1:0110) + SnCl<sub>4</sub> in CCl<sub>4</sub> gives (64% yield (141)) (142) 4-(chloromethyl)-2-ethyl-1,3-dioxolane, b.p. 65–70° at 18 mm. (142). — For analogous reactions of  $\bar{C}$  with n-butyraldehyde, octanal-1, decanal-1, and dodecanal-1 see (142); with crotonaldehyde see (141).]

With ketones.  $\bar{\mathbb{C}}$  with ketones condenses in completely analogous fashion to yield the corresp. 2,2-dialkyl-1,3-dioxolanes. [E.g.,  $\bar{\mathbb{C}}$  (converted to 3-chloropropanediol-1,2 (" $\alpha$ -monochlorohydrin") (3:9038) although this may be unnecessary) gives (60% yield (58)) 4-(chloromethyl)-2,2-dimethyl-1,3-dioxolane ("acetone-glycerol  $\alpha$ -chlorohydrin"), b.p. 157° at 767 mm.,  $D_4^{20}=1.1079,\,n_D^{15}=1.43750$  (58). —  $\bar{\mathbb{C}}$  with benzophenone (1:5150) + SnCl<sub>4</sub> in CCl<sub>4</sub> at 13-25° gives (73% yield (141)) 4-(chloromethyl)-2,2-diphenyl-1,3-dioxolane, m.p. 44.5°, b.p. 159-167° at 2-3 mm. (141). — For analogous behavior of  $\bar{\mathbb{C}}$  with phenacyl bromide, camphor, and cyclopentadecanone see (141).

#### BEHAVIOR OF C WITH ORGANIC ACIDS

(For salts, acid chlorides, acid anhydrides, see below.)

With aliphatic monobasic acids. [ $\bar{\mathbb{C}}$  with AcOH (1:1010) in s.t. at 180° for 24 hrs. (143) cf. (1) gives a mixt. of both glycerol  $\alpha$ -chlorohydrin  $\alpha'$ -acetate (3:6775) and glycerol  $\alpha$ -chlorohydrin  $\beta$ -acetate (3:6517);  $\bar{\mathbb{C}}$  with AcOH + a little FcCl<sub>3</sub> at room temp. for 24 hrs. gives (90% yield (144)) a prod. supposed originally (144) to be glycerol  $\alpha$ -chlorohydrin  $\alpha'$ -acetate (3:6775); note, however, that later workers (36) could obtain only 25% yield unless mixt. stood 15 days at room temp. or 2 days at 80° and regarded the product as glycerol  $\alpha$ -chlorohydrin  $\beta$ -acetate (3:6517).  $\bar{\mathbb{C}}$  with aliphatic monobasic acids contg. at least 4 carbon atoms + AlCl<sub>3</sub> (145) or  $\bar{\mathbb{C}}$  with aliphatic, alicyclic, or aromatic acids (contg. no sulfonic acid groups) + pyridine (146) gives corresp. mono esters (probably mixt. of  $\alpha$ - and  $\beta$ -) of 3-chloropropanediol-1,2 (3:9038).]

[ $\bar{C}$  with trichloroacetic acid (3:1150) undergoes ring closure (similar to that of  $\bar{C}$  with carbonyl cpds. above) giving (147) 4-(chloromethyl)-2-hydroxy-2-(trichloromethyl)-1,3-dioxolane, b.p. 99-101° at 0.11 mm.,  $n_D^{23} = 1.4892$ .]

[ $\bar{\mathbf{C}}$  with thiolacetic acid (CH<sub>3</sub>.CO.SH) at 60° for 12 hrs. gives (76% yield {148})  $\gamma$ -chloro- $\beta$ -hydroxy-n-propyl thiolacetate, b.p. 100–101° at 1 mm.,  $D_{-}^{20}=1.2806$ ,  $n_{D}^{20}=1.5186$ ; on longer htg., e.g., 35 hrs. at 60°, or even at ord. temp. on 2 weeks stgd. in diffuse light, largely rearr. to  $\beta$ -chloro- $\beta$ -mercapto-isopropyl acetate, b.p. 69–70° at 1 mm.,  $D_{-}^{20}=1.2308$ ,  $n_{D}^{20}=1.4855$  {148}.]

With HCN (or its salts). [ $\bar{C}$  with excess anhydrous HCN in s.t. at 75–85° for 90 hrs. (149) (150) cf. (151) (152), or  $\bar{C}$  with anhydrous HCN + some solid KCN in s.t. at ord. temp. for 3–4 days (153), or  $\bar{C}$  with aq. Ca(CN)<sub>2</sub> (154), gives (yields: 85% (153), 72% (150), 70% (151), 65% (149)) γ-chloro-β-hydroxy-n-butyronitrile [Beil. III-310], b.p. 250° dec. (151), 140° at 20 mm. (151), 134–135° at 15 mm. (153), 110–111° at 2 mm. (151),  $D_{-}^{15}$  = 1.233 (153),  $n_{D}^{15}$  = 1.4735 (153). — Note, however, that  $\bar{C}$  with aq. or alc. KCN splits out KCl giving (155) (85) 3-cyano-1,2-epoxypropane ("epicyanhydrin") [Beil. XVIII-261], m.p. 162°.]

# BEHAVIOR OF C WITH SALTS OF ORGANIC ACIDS

[C with dry KOAc first at 110°, later at 150° (156) cf. (157), or at 120-135°, later 150° (18) (158), gives 3-acetoxy-1,2-epoxypropane (glycidyl acetate) [Beil. XVII-106], b.p. 168-169° (157), 167-168° (143), 162-164° at 750 mm. (158), accompanied by other prods. (for study of polymerization of this prod. see (18) (158)).]

Č with aq. K cyanate on boilg. (159) (160) or C with free isocyanic acid (from htg. cyanuric acid) in cold (160) adds yielding 5-(chloromethyl)oxazolidone-2 [Beil. XXVII-145, XXVII-(260)], pr. from aq., C₀H₀, or Ac₂O, m.p. 106° (161) (159), 105° (159).

[For behavior of C with disodium methyl phosphate (162) or with disodium glycerophosphate (163) see indic. refs.]

# BEHAVIOR OF C WITH ACID CHLORIDES

 $\ddot{\mathbf{C}}$  with acid chlorides yields corresp. esters of  $\beta,\beta'$ -dichloroisopropyl alc. ("glycerol  $\alpha$ -dichlorohydrin") (3:5985) as exemplified by the following illustrations.

With aliphatic acid chlorides. [ $\bar{\mathbb{C}}$  with AcCl (3:7065) (164) in s.t. at 100° for 2 hrs. (165) or 30 hrs. (166) gives (73% yield (164))  $\beta$ , $\beta'$ -dichloroisopropylacetate (3:6318). —  $\bar{\mathbb{C}}$  with propionyl chloride (3:7170) in s.t. at 135° for 3 hrs. gives (167)  $\beta$ , $\beta'$ -dichloroisopropyl propionate [Beil. II<sub>2</sub>-(221)], b.p. 208°,  $D_{20}^{20}=1.2222$  (167). —  $\bar{\mathbb{C}}$  with *n*-butyryl chloride (3:7370) in s.t. at 100° (166) or with exclusion of aq. in flask at 75° for 8 hrs. (167) gives  $\beta$ , $\beta'$ -dichloroisopropyl *n*-butyrate [Beil II-271, II<sub>2</sub>-(246)], b.p. 226-227° at 738 mm. (166), 223.5° (167),  $D_{20}^{20}=1.1792$  (167),  $n_{10}^{20}=1.4540$  (167). —  $\bar{\mathbb{C}}$  with isovaleryl chloride (3:7560) gives (166) (168)  $\beta$ , $\beta'$ -dichloroisopropyl isovalerate [Beil. II-312, II<sub>2</sub>-(275)], b.p. 245° at 737 mm. (166), 127-140° at 36 mm. (168),  $D_{20}^{20}=1.444$  (168),  $n_{10}^{20}=1.450$  (168). —  $\bar{\mathbb{C}}$  with stearoyl chloride (3:9960) in s.t. at 130° for  $3\frac{1}{2}$  hrs. gives (167)  $\beta$ , $\beta'$ -dichloroisopropyl stearate [Beil. II<sub>2</sub>-(352)], m.p. 39.5°.]

# BEHAVIOR OF C WITH ACID ANHYDRIDES

With anhydrides of aliphatic acids. [ $\bar{C}$  with Ac<sub>2</sub>O (1:1015) in s.t. at 180° for 4 hrs. (166) or  $\bar{C}$  with Ac<sub>2</sub>O + FeCl<sub>3</sub> at ord. temp. for 24 hrs. (144) gives (90% yield (144))  $\beta,\beta'$ -dichloroisopropyl acetate (3:6318).]

With anhydrides of aromatic acids. [Č with phthalic anhydride (1:0725) + dimethylaniline at 100° is claimed (169) to give the monomolecular neutral phthalate [Beil. XIX-165] of 3-chloropropanediol-1,2.]

# BEHAVIOR OF C WITH ORGANOMETALLIC COMPOUNDS (OR THEIR EQUIVALENTS)

Behavior with Grignard compounds. With RMgX cpds. from alkyl or alkaryl halides [Č with MeMgI in dry ether evolves gas (CH<sub>4</sub>?) and after acidification yields (171) 3-chloro-1-iodopropanol-2 (for constants see above under behavior of Č with HI).]

[The reactn. of C with EtMgBr may give three different prods. (or mixtures of them) according to circumstances: the first of these is 1-bromo-3-chloropropanol-2 (for constants

see above under behavior of  $\tilde{C}$  with HBr); the second is the expected 1-chloropentanol-2 (3:8225); the third is cyclopropanol, b.p.  $100-103^\circ$  (80) (172),  $D_{20}^{20}=0.9110$  (80),  $n_{0}^{20}=1.4129$  (80) (corresp. p-nitrobenzoate, m.p.  $72.0-72.5^\circ$ ; 3,5-dinitrobenzoate, m.p.  $108-109^\circ$ ; N-phenylcarbamate, m.p.  $101.5-102.0^\circ$ ; N-(p-nitrophenyl)carbamate, m.p.  $159-160^\circ$ ; N-(q-naphthyl)carbamate, m.p.  $100.5-101.5^\circ$  (172)). — Note that  $\tilde{C}$  with EtMgBr gives (16-19% yield (67) (173)) 1-chloropentanol-2 (3:8225), while  $\tilde{C}$  with MgEt<sub>2</sub> gives 70-83% yield (80). — For review of earlier work on this rather complex system see (80) (173) (67).] [For behavior of  $\tilde{C}$  with 15 other RMgX cpds. leading in general to chlorohydrins of type RCH<sub>2</sub>CH(OH)CH<sub>2</sub>Cl see (173).]

With RMgX cpds. from aryl haldes. [ $\bar{C}$  with C<sub>6</sub>H<sub>5</sub>MgBr gives (18% yield (173)) (132) (174) (175) 3-chloro-1-phenyl-propanol-2 [Beil. VI-503], b.p. 254-257° (174), 153-154° at 28 mm. (174) (175), 142-144° at 23 mm. (173),  $D_{25}^{25} = 1.1528$  (173),  $n_{D}^{25} = 1.5470$  (173) (corresp. 3,5-dinitrobenzoate, m.p. 120-121° (173)). — For analogous behavior of  $\bar{C}$  with RMgX cpds. from  $\alpha$ -bromonaphthalene and from p-bromanisole (p-bromophenyl methyl ether) see (132).]

Behavior with various sodio derivatives. [ $\bar{C}$  with diethyl sodiomalonate in abs. alc. at 50° does not split out NaCl but rather by ring opening, addn. of reactant, and elimination of EtOH ppts. (176) (177) cf. (178) the monosodium enolate (m.p. 172° dec. (176)) of  $\alpha$ -carbethoxy- $\delta$ -chloro-n-valero- $\gamma$ -lactone [Beil. XVIII-373, XVIII<sub>1</sub>-(478)], set free (yields: 78% (177), 50% (176)) by acidification as an oil, b.p. 180–182° at 12 mm. (176), 175–180° at 12 mm. (177). — Note that this lactone with excess alc. NH<sub>3</sub> gives on evapn. (176) (179)  $\gamma$ -chloro- $\beta$ -hydroxy-n-propylmalondiamide [Beil. III-450], m.p. 117–118°.]

[C with ethyl sodioacetoacetate in abs. alc. at 50° does not split out NaCl but rather by ring opening, etc., as in preceding case gives after acidification (yields: 80% (176), 74% (177)) α-aceto-δ-chloro-n-valero-γ-lactone [Beil. XVII-421, XVII<sub>1</sub>-(230)], b.p. 168° at 16 mm. (177), 163° at 12 mm. (176).]

[ $\ddot{\mathbf{C}}$  with ethyl sodio-benzoylacetate in abs. alc. behaves in analogous fashion yielding after acidification (180)  $\alpha$ -benzoyl- $\delta$ -chloro-n-valero- $\gamma$ -lactone [Beil. XVII-497], m.p. 105-106°.]

# BEHAVIOR OF C WITH AMINES

With primary amines. With aliphatic primary amines. This reacts. appears not to to have been thoroughly studied [however, for reacts. of C with MeNH<sub>2</sub> (181) and use of prod. in preps. of vat dye printing pastes (182) see indic. refs.].

With alicyclic primary amines. [ $\bar{C}$  (1 mole) with cyclohexylamine (3½ moles) under reflux gives (18% yield (82))  $\beta,\beta'$ -bis-(cyclohexylamino)isopropyl alc., m.p. 72-73°.]

With aromatic primary amines. [ $\bar{C}$  (1 mole) with aniline (2 moles) in toluene refluxed 95 hrs. gives (yield not stated (71)) 3-(phenylamino)-1,2-epoxypropane ("glycidanilide"). — $\bar{C}$  (1 mole) with aniline (3 moles) at 140° is claimed (183) to yield  $\beta,\beta'$ -bis-(phenylamino)isopropyl alc. [Beil. XII-553], m.p. 53-54°, but later workers could obtain only viscid oils (184) or a further reactn. prod. supposed (185) to be  $\beta$ -(phenylamino)- $\beta'$ -(diphenylamino)isopropyl alc., m.p. 350° dec. (185).]

[ $\bar{C}$  (1 mole) with p-toluidine (2 moles) might be expected to yield 3-(p-tolylamino)-1,2-epoxypropane, but no such cpd. appears to have been recorded. — However,  $\bar{C}$  (1 mole) with p-toluidine (1 mole) in dil. alc. (186) (184) (82) (but not in  $C_6H_6$  (184)) opens ring to yield by addn.  $\beta$ -chloro- $\beta'$ -(p-tolylamino)isopropyl alc., m.p. 85° (184), 81-82° (186); this prod. on htg. with p-toluidine (184) or  $\bar{C}$  (1 mole) with p-toluidine (2 moles) at 155° (186) gives  $\beta,\beta'$ -bis-(p-tolylamino)isopropyl alc., m.p. 116° (184), 113.5° (186).]

[Č with p-phenetidine hydrochloride in aq. soln. at ord. temp. especially in sunlight gives (40% yield (187)) cf. (188) N,N-bis- $(\gamma$ -chloro- $\beta$ -hydroxy-n-propyl)phenetidine.]

[For behavior of  $\bar{C}$  with  $\beta$ -naphthylamine in xylene under reflux (189), with arsanilic acid (190), or with p-aminophenol (or its ethers) (191) see indic. refs.]

With heterocyclic primary amines. [C with  $\alpha$ -aminopyridine gives (63% yield (192)) by addn. to oxide ring and subsequent ring closure a prod., m.p. 190°, regarded as "1,2-divinylene-5-hydroxytetrahydropyrimidine."]

With phenylhydrazine. [ $\bar{C}$  with  $1\frac{1}{2}$  pts. phenylhydrazine in ether at not above 15° for 10 days ppts. phenylhydrazine hydrochloride and leaves in the other 4-hydroxy-1-phenyl-pyrazolidine [Beil. XXIII-348], m.p.  $103-104^{\circ}$  (193); this prod. with phenylhydrazine hydrochloride on warming in  $C_6H_6$  (193) or  $\bar{C}$  with 2 pts. phenylhydrazine in  $C_6H_6$  refluxed 8-9 hrs. (194) gives (58% yield (194)) 1-phenylpyrazole [Beil. XXIII-40, XXIII<sub>1</sub>-(15)], b.p. 246.5° cor. at 765.4 mm. (194), m.p.  $11-11.5^{\circ}$  (194),  $D_4^{20} = 1.1127$  (195),  $n_D^{20} = 1.5966$  (195).]

With secondary amines. With aliphatic secondary amines. [ $\bar{C}$  with Me<sub>2</sub>NH presumably gives (196)  $\beta$ -chloro- $\beta'$ -(dimethylamino)isopropyl alc., but no constants are reported in the literature, either for it or for its ring-closure derivative, 3-(dimethylamino)-1,2-epoxypropane, cf. (196); note further that the prod. to be expected from  $\bar{C} + 2$  Me<sub>2</sub>NH, viz.,  $\beta,\beta'$ -bis-(dimethylamino)isopropyl alc. [Beil. IV-290] (197), although known, has not been prepd. from  $\bar{C}$ , but only by other means.]

[Č with aq. Et<sub>2</sub>NH gives (196) (198) cf. (199) 3-(diethylamino)-1,2-epoxypropane [Beil. XVIII-583], b.p. 155–159 at 760 mm. (198), 55–60° at 15 mm. (196), 40–50° at 8 mm. (198),  $D_4^{15} = 0.8876$  (196). — Č (1 vol.) with Et<sub>2</sub>NH (3½ vols.) refluxed 2–3 hrs. gives (82% yield (200))  $\beta$ , $\beta$ '-bis-(diethylamino)isopropyl alc., b.p. 114° at 9 mm. (corresp. B.2PkOH, m.p. 163° (200).]

[Č with di-n-propylamine (2 moles) gives (70% yield (215)) 1,3-bis-(di-n-propylamino)-propanol-2, b.p. 99-101° at 3 mm.,  $D_4^{20} = 0.8624$ ,  $n_D^{20} = 1.4483$  (215).]

With aromatic secondary amines. [ $\bar{C}$  with N-methylaniline gives (198) cf. (199) 3-(N-methylanilino)-1,2-epoxypropane, b.p. 160-162° at 30 mm. (198), 132-135° at 8 mm. (198); note, however, that  $\bar{C}$  (1 mole) with N-methylaniline (1 mole) at 100° for 4 hrs. (82) gave none of the preceding cpd. but a very small yield (2%) of  $\beta$ , $\beta$ '-bis-(N-methylanilino)isopropyl alc., m.p. 82°, accompanied by other prods.]

[Č with diphenylamine at 160–170° under press. splits out HCl and ring-closes with loss of H<sub>2</sub>O yielding (201) 1-phenyl-3-hydroxy-1,2,3,4-tetrahydroquinoline [Beil. XXI<sub>1</sub>-(205)], m.p. 79°, b.p. 200° at 5 mm.]

With heterocyclic secondary amines. [ $\bar{C}$  with piperidine gives (196) (198) by elimination of HCl 3-(piperidino)-1,2-epoxypropane, b.p. 86.5-88° at 15 mm. (196), 72-77° at 8 mm. (198),  $D_4^{16} = 0.9669$  (196).]

With tertiary amines. Č with tertiary amines gives quaternary salts, but this reactn. is often followed by opening of the oxide ring and addn. of reactant.

With aliphatic tertiary ammes. [ $\bar{C}$  with alc. Et<sub>3</sub>N (1 mole) in s.t. at 100° gives (202) a little of the corresp. quat. salt, viz., triethyl- $(\beta, \gamma$ -epoxy-n-propyl)ammonium chloride [Beil. XVIII-583]; note, however, that  $\bar{C}$  with alc. Et<sub>3</sub>N (1 mole) in s.t. at 100° for 6 hrs. gives also (202) (203) 2-hydroxytrimethylene-1,3-bis-(triethyl-ammonium chloride) [Beil. IV-290] together with other prods.]

[For behavior of  $\bar{C}$  with N,N-dimethyl-"stenyl" amine see (204).]

With heterocyclic tertiary amines. [For study of behavior of C with pyridine see (205) (206); with quinoline see (207).]

#### BEHAVIOR OF C WITH OTHER NITROGENOUS REACTANTS

(Note that in the following examples reaction occurs by opening of the oxide ring and that elimination of chlorine, if it occurs at all, is effected only in a subsequent ring closure.)

- [ $\bar{C}$  (1 mole) with disodium cyanamide (1 mole) in aq. soln. at ord. temp. for 24 hrs. presumably first yields the sodium deriv. of  $N-(\gamma-\text{chloro}-\beta-\text{hydroxy}-n-\text{propyl})$ cyanamide, but this immediately ring-closes giving (33% yield (208)) 5-(chloromethyl)-2-amino-oxazoline, m.p. 142°.]
- $\bar{C}$  (1 mole) with p-toluenesulfonanilide (1 mole) + a few drops pyridine at 120° reacts vigorously giving (86% yield (209)) N-(γ-chloro-β-hydroxy-n-propyl)-N-phenyl-p-toluenesulfonamide, m.p. 96-97°; note that this prod. in boilg. alc. on treatment with NaOH loses HCl and ring-closes (92% yield (209)) to the corresp. N-(β,γ-epoxy-n-propyl)-N-phenyl-p-toluenesulfonamide, m.p. 77°.
- [Č (1 wt. pt.) with phthalimide (1 wt. pt.) at 140–150° for 3 hrs. gives (35% yield on phthalimide (210)) cf. (211) (212) N-( $\gamma$ -chloro- $\beta$ -hydroxy-n-propyl)phthalimide [Beil. XXI<sub>1</sub>-(369)], m.p. 95.0–96.5° (210), 96–97° (213). Note that N-[( $\beta$ , $\gamma$ -epoxy)-n-propyl]phthalimide ("phthalimidoepihydrin"), m.p. 93–94° (213), has been prepd. (75% yield (213)) from 3-bromo-1,2-epoxypropane ("epibromohydrin") with K phthalimide, and in CHCl<sub>3</sub> with HCl gas or even directly with conc. HCl opens the oxide ring to give (213) the above N-( $\gamma$ -chloro- $\beta$ -hydroxy-n-propyl)-phthalimide, m.p. 96–97° (213).]

# COLOR REACTION OF C

Color reaction with pyridine (and pyridine bases).  $\bar{C}$  in MeOH with pyridine and/or various "pyridine bases" gives specific color reactions; these can be used for detection of "pyridine bases," e.g., in denatured alcohol and probably vice versa; for detailed study see (214).

- 3:5358 (1) Reboul, Ann. chrm. (3) 60, 17-38 (1860), Ann Suppl. 1, 221-227 (1861). (2) Drozdov, Cherntzov, J. Gen. Chem. (U.S.S.R.) 4, 1305-1309 (1934); Cent. 1936, I 4549; C.A. 29, 3306 (1935). (3) Hibbert, Whelen, J. Am. Chem. Soc. 51, 1945 (1929). (4) Hill, Fischer, J. Am. Chem. Soc. 44, 2587-2588 (1922). (5) Leone, Benelli, Gazz. chrm. ttal. 52, II 75-86 (1922). (6) Brönsted, Mary Kilpatrick, Martin Kilpatrick, J. Am. Chem. Soc. 51, 430 (1929). (7) Thorpe, J. Chem. Soc. 37, 206 (1880). (8) Walden, Z. physik. Chem. 70, 581 (1910). (9) Lecat "L'Azeotropisme," 1918 (a) p. 70, No. 95; (b) p. 132, No. 1210; (c) p. 89, No. 485; (d) p. 70, No. 94. (10) Jaeger, Z. anorg. allgem. Chem. 101, 156 (1917).
- (11) Darmstaedter, Ann. 148, 119-131 (1868). (12) Fauconnier, Bull. soc. chim. (2) 50, 213 (1888). (13) Fairbourne, Gibson, Stephens, J. Soc. Chem. Ind. 49, 1021-1033 (1930). (14) Müller, Griengl, Mollang, Monatsh. 47, 87 (1926). (15) Bailly, Bull. soc. chim. (4) 31 848-849 (1922). (16) Braun, J. Am. Chem. Soc. 54, 1248-1250 (1932) (17) Fairbourne, Gibson, Stephens, J. Chem. Soc. 1932, 1965-1972. (18) Levene, Walti, J. Biol. Chem. 77, 685-696 (1928). (19) Smith, Z. physik. Chem. 81, 356 (1912); 92, 723 (1919). (20) Sugden, Wilkins, J. Chem. Soc. 1927, 143.
- (21) Yajnik, Sobti, J. Am. Chem. Soc. 45, 3138-3139 (1923). (22) Braun, Org. Syntheses, Coll. Vol. 2 (1st ed.), 256-258 (1943); 16, 30-32 (1936). (23) Walden, Z. physik. Chem. 59, 401 (1907). (24) Walden, Z. physik. Chem. 55, 230 (1906). (25) Bruhl, Ber. 24, 661 (1891). (26) VON Auwers, Ann. 415, 146 (1918). (27) Freuder, Leake, Univ. Calif. Pub. Pharmacol. 2, 69-77 (1921); C.A. 35, 8104 (1941). (28) Fraenkel-Conrat, J. Biol. Chem. 154, 227-238 (1944). (29) Lehman, J. Econ. Entom. 26, 1042-1051 (1933); Cent. 1934, I 1867; C.A. 28, 6917 (1934). (30) McGill (to du Pont Co.), U.S. 1,817,456, Aug. 4, 1931; Cent. 1932, I 613; C.A. 25, 5434 (1931).
- (31) Ferris (to Atlantic Refining Co.), U.S. 2,072,104, March 2, 1937; Cent. 1937, I 4719; C.A. 31, 2810 (1937). (32) I.G., Brit. 471,880, Oct. 14, 1937; Cent. 1938, I 185; not in C.A. (33) Chem. Fabrik. Griesheim-Elektron., Ger. 246,242, April 25, 1912; Cent. 1912, I 1677; C.A. 6, 2496 (1912). (34) Fourneau, Ribas y Marques, Bull. soc. chim. (4) 39, 699-700 (1926). (35) Nivière, Bull. soc. chim. (4) 13, 969-970 (1913); Compt. rend. 156, 1628 (1913). (36) Delaby, Dubois, Bull. soc. chim. (4) 47, 569-573 (1930). (37) F. Bayer & Co., Ger. 239,077, Oct. 9, 1911; Cent. 1911, II 1393. (38) Clarke, Hartmann, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 233-234 (1941); (1st ed.), 228-229 (1932); 3, 47-49 (1923). (39) Prevost, J. prakt. Chem. (2) 12, 160 (1875). (40) Engs. Fairbairn (to Shell Development Co.), U.S. 2,177,419, Oct. 24, 1939; Cent. 1940, II 689; C.A. 34, 1034 (1939).

(41) Stein, Flemming, U.S. 2,227,948, Jan. 7, 1941; C.A. 35, 2534 (1941): Ger. 735,477, April 15, 1943; C.A. 38, 2666 (1944); Brit. 496,709, Dec. 29, 1938; Cent. 1939, I 4117; C.A. 33, 3398 (1939): French 843,841, July 11, 1939; [C.A. 34, 6948 (1940)]. (42) Münder, Tollens, Zeit. für Chemie 1871, 252. (43) Smith, Z. Physik. Chem. 92, 739-740 (1917); 93, 83-85 (1919). (44) Claus; Ber. 10, 556-559 (1877). (45) Berthelot, Luca, Ann. chim. (3) 48, 305 (1856); Ann. 101, 67-68 (1857). (46) Fromm, Kapeller, Taubmann, Ber. 61, 1354, 1356 (1928). (47) Tornöe, Ber. 21, 1290 (1888). (48) Kishner, Ber. 25, Referate 506 (1892). (49) Tornöe, Ber. 24, 2676-2677 (1891). (50) Bigot, Ann. chim. (6) 22, 434-442 (1891).

(51) Hubner, Miller, Ann. 159, 184-187 (1871). (52) von Richter, J. prakt. Chem. (2) 20, 193-195 (1879). (53) Koelsch, J. Am. Chem. Soc. 52, 1106 (1930). (54) Tsunoo, Ber. 68, 1342 (1935). (55) Cloez, Ann. chim. (6) 9, 170 (1886). (56) Grimaux, Adam, Bull. soc. chim. (2) 33, 257-259 (1880). (57) Cloez, Ann. chim. (6) 9, 206 (1886). (58) Fischer, Pfahler, Ber. 53, 1608 (1920). (59) Boeseken, Hermans, Bull. soc. chim. (4) 39, 1254 (1926). (60) Hanriot,

Ann. chim. (5) 17, 75 (1879).

(61) Banerjee, Sen, J. Indian Chem. Soc. 9, 509-518 (1932). (62) Smith, Wode, Widhe, Z. physik. Chem. 130, 157-162 (1927). (63) Groll, Hearne (to Shell Development Co.), U.S. 2,086,077, July 6, 1937; Cent. 1937, II 2433; C.A. 31, 5813 (1937). (64) (a) Swarts, Cent. 1903, 12; (b) Paterno, Oliveri, Gazz. chim. ital. 24, I 305-309 (1894), Paterno, Gazz. chim. ital. 24, II 541-544 (1894). (65) Markownikow, Ann. 208, 352-353 (1881). (66) Blanchard, Bull. soc. chim. (4) 41, 825-826 (1927). (67) Koelsch, McElvain, J. Am. Chem. Soc. 51, 3390-3394 (1929). (68) Johnson, Langley, Am. Chem. J. 44, 358 (1910). (69) Ingold, Rothstein, J. Chem. Soc. 1931, 1671-1672. (70) Oppenheim, Ber. 3, 736 (1870). (72) Groll, Hearne (to Shell (71) Zetsche, Aeschlimann, Helv. Chim. Acta 9, 711-714 (1926). (72) Groll, Hearne (to Shell

(71) Zetsche, Aeschlimann, Helv. Chim. Acta 9, 711-714 (1926). (72) Groll, Hearne (to Shell Development Co.), U.S. 2,106,347, Jan. 25, 1938; Cent. 1938, II 1676; C.A. 32, 2542-2543 (1938). (73) I.G., French 846,575, Sept. 20, 1939; C.A. 35, 1071 (1941). (74) Henry, Ann. 155, 166, 168-169 (1870). (75) Henry, Ber. 4, 703 (1871). (76) Hofmann, Zedwitz, Wagner, Ber. 42, 4391 (1909). (77) Carius, Ann. 134, 73-75 (1865). (78) Ribas, Tapia, Anales soc. españ. fis. quím. 28, 636-644 (1930); Cent. 1932, II 3862; C.A. 24, 4265 (1930). (79) Delaby, Ann. chim.

(9) 20, 67-68 (1923). (80) Magrane, Cottle, J. Am. Chem. Soc. 64, 484-487 (1942).

(81) Nef. Ann. 335, 237-238 (1904). (82) Wedekind, Bruch, Ann. 471, 78, 94, 95, 97 (1929). (83) Lilienfeld, Ger. 253,753, Nov. 15, 1912, Cent. 1913, I 82, [C.A. 7, 808 (1913)]: French 436,088, Nov. 8, 1911; C.A. 6, 2494 (1912). (84) Blumfeld (to Röhm and Haas, A.G.), Brit. 314,440, Aug. 21, 1929; [Cent. 1930, II 480]; C.A. 24, 1524 (1930): French 677,431, March 7, 1930; Cent. 1930, I 3252; [C.A. 24, 3092 (1930)]. (85) Pazschke, J. prakt. Chem. (2) 1, 86-99 (1870). (86) Cohen, J. pharmacol. 46, 283 (1932); Cent. 1933, I 1109; C.A. 27, 166 (1933). (87) Lumière, French 548,343, Jan. 12, 1923; Cent. 1925, I 1010; not in C.A. (88) Bailly, Bull. soc. chim. (4) 29, 274-280 (1921). (89) Cavalier, Ann. chim. (7) 18, 482-483 (1899). (90) Oechslin (to Etab. Poulenc Frères), Brit. 191,028, Feb. 14, 1923; Cent. 1923, IV 721; C.A. 17, 2887 (1923); French 556,366, July 19, 1923; Cent. 1923, IV 721; not in C.A.

(91) Hanriot, Bull. soc. chim. (2) 22, 550-552 (1879). (92) Malinovskii, J. Gen. Chem. (U.S.S.R.) 9, 832-839 (1939); C.A. 34, 375 (1940). (93) Blanchard, Bull. soc. chim. (4) 43, 1203 (1928). (94) Sjoberg, Svensk Kem. Tid. 50, 250-254 (1938); Cent. 1939, I 2756; C.A. 33, 2106 (1939). (95) Nenitzescu, Scarlatescu, Ber. 68, 587-591 (1935). (96) Malinovskii, J. Gen. Chem. (U.S.S.R.) 10, 1918-1922 (1940); C.A. 35, 4736 (1941). (97) Fauconnier, Compt. rend. 107, 115-117 (1887); Ber. 21, Referate 646 (1888). (98) Schiff, Gazz. chim. ital. 21, II 1-6 (1891). (99) Stallmann (to du Pont Co.), U.S. 1,977,251, Oct. 16, 1934; Cent. 1935, I 2603; C.A. 29, 352 (1935). (100) Stallman (to du Pont Co.), U.S. 1,977,250, Oct. 16, 1934; Cent. 1935, I 1619;

C.A. 29, 352 (1935).

(101) Balbiano, Ber. 23, 1103-1106 (1890); Gazz. chim. ital. 20, 460-465 (1890). (102) Traube, Wolff, Ber. 53, 1498 (1920). (103) F. Bayer & Co., Ger. 330,801, Dec. 17, 1920; Cent. 1921, II 601; not in C.A. (104) Traube, Ohlendorff, Ber. 53, 1488 (1920). (105) Blanchard, Bull. soc. chim. (4) 39, 1263-1265 (1926). (106) Fourneau, Ribas, Bull. soc. chim. (4) 39, 1504-1589 (1926). (107) I.G., Brit. 271,169, June 16, 1927; Cent. 1927, II 2110; C.A. 22, 1596 (1928). (108) I.G., French 697,786, Jan. 22, 1931; Cent. 1931, I 2394; [C.A. 25, 3013 (1931)]. (109) Petrov, J. Gen. Chem. (U.S.S.R.) 10, 1918-1922 (1940); C.A. 35, 3603 (1941). (110) Zunino, Atti accad. Lincei (5) 6, II 348 (1897).

(111) Fairbourne, Gibson, Stephens, J. Chem. Soc. 1931, 450, 454. (112) Fairbourne, J. Chem. Soc. 1929, 1151-1152. (113) Henze, Rogers, J. Am. Chem. Soc. 61, 434-435 (1939). (114) Grummitt, Hall, J. Am. Chem. Soc. 66, 1229 (1944). (115) Henkel et Cie, French 744,749, April 26, 1933; Cent. 1933, II 2210; C.A. 27, 4242 (1933). (116) Fourneau, Ribas, Bull. soc. chim. (4) 41, 1053 (1927). (117) Kharasch, Nudenberg, J. Org. Chem. 8, 189 (1943). (118) Loehr (to I.G.), Ger. 510,422, Oct. 18, 1930; Cent. 1931, I 154; [C.A. 25, 964 (1931)]. (119) Dreyfus,

Brit. 166,767, Aug. 18, 1921; Cent. 1921, IV 1140; C.A. 16, 830 (1922). (120) Lindeman, Ber. **24.** 2146–2148 (1891).

(121) Fischer, Krämer, Ber. 41, 2730 (1908). (122) Fourneau, J. pharm. chim. (7) 1, 58 (1910); Cent. 1910, I 1134; C.A. 4, 3070 (1910). (123) Boyd, Marle, J. Chem. Soc. 97, 1788-1790 (1910). (124) Boyd, Marle, J. Chem. Soc. 93, 839-841 (1908). (125) Böeseken, Rec. trav. chim. 34, 102 (1915). (126) Marle, J. Chem. Soc. 101, 305-317 (1912). (127) Fourneau (to Etab. Poulence Frères), Ger. 228,205, Nov. 7, 1910; Cent. 1910, II 1790-1791; [C.A. 28, 2155 (1911)]. (128) Brenans, Bull. soc. chim. (4) 13, 529-530 (1913). (129) Boyd, J. Chem. Soc. 83, 1137-1138 (1903). (130) Boyd, Marle, J. Chem. Soc. 95, 1807-1808 (1909).

(131) Boyd, Knowlton, J. Chem. Soc. 95, 1803 (1909). (132) Fourneau, Trefouel, Bull. soc. chim. (4) 43, 454-458 (1928). (133) Fourneau, Maderin, LeStrange, J. pharm. chim. (8) 18, 185-191 (1933); Cent. 1934, I 391; C.A. 27, 5738 (1933). (134) Soc. Usines Chim. des Rhone-Poulenc, Brit. 420,978, Dec. 20, 1924; Cent. 1935, I 2216; [C.A. 29, 3468 (1935)]: French 770,485, Sept. 14, 1934; Cent. 1935, I 2216; C.A. 29, 477 (1935). (135) Nadkarni, Wheeler, J. Chem. Soc. 1936, 589-591. (136) Meerwein, Hinz, Hofmann, Kroning, Pfeil, J. prakt. Chem. (2) 147, 258-260, 268-273 (1936/7). (137) Blanchard, Bull. soc. chim. (4) 49, 281-289 (1931). (138) Bull. soc. chim. (3) 21, 276-277 (1899). (139) Fischer, Baer, Reldmann, Ber. 63, 1738-1739 (1930). (140) Fischer, Baer, Pollock, Nidecker, Helv. Chim. Acta 20, 1214 (1937).

(141) Willfang, Ber. 74, 145-153 (1941). (142) Bersin, Willfang, Ber. 70, 2167-2173 (1937). (143) Bigot. Ann. chim. (6) 22, 491, 493 (1891). (144) Knoevenagel, Ann. 402, 134-138 (1914). (145) Stein (to General Aniline and Film Corpn.), U.S. 2,224,026, Dec. 3, 1940; C.A. 35, 1802 (1941): Brit. 509,072, Aug. 10, 1939; Cent. 1939, II 4351; C.A. 34, 2862 (1940): French 850,709, Dec. 23, 1939; C.A. 36, 1947 (1942). (146) Stein (to I.G.), Ger. 708,463, June 12, 1941; C.A. 37, 3105 (1943): French 853,647, March 23, 1940; C.A. 36, 2565 (1942). (147) Hibbert, Greig, Can. J. Research 4, 262 (1931). (148) Sjoberg, Ber. 74, 64-65, 69-70 (1941). (149) Braun, J. Am. Chem. Soc. 52, 3170 (1930). (150) Linneweh, Z. physiol. Chem. 176, 217 (1928).

(151) Lespieau, Bull. soc. chim. (3) 33, 462-463 (1905); Compt. rend. 127, 965 (1898), 129, 225 (1899). (152) Hormann, Ber. 12, 23-24 (1879). (153) Rambaud, Bull. soc. chim. (5) 3, 138-139 (1936). (154) I.G., Brit. 348,134, June 4, 1931; Cent. 1931, II 1193; [C.A. 26, 2748 (1932)]: French 702,023, March 27, 1931; Cent. 1931, II 1193; C.A. 25, 4012 (1931). (155) Hartenstein, J. prakt. Chem. (2) 7, 297-298 (1873). (156) Breslauer, J. prakt. Chem. (2) 20, 188-193 (1879). (157) de Gegerfelt, Bull. soc. chim. (2) 23, 160-161 (1871). (158) Levene, Walti, J. Biol. Chem. 79, 363-376 (1928). (159) Thomsen, Ber. 11, 2136-2137 (1878). (160) Paterno, Cingolani, Gazz. chim. ital. 38, I 243-247 (1908).

(161) Johnson, Guest, Am. Chem. J. 44, 453, 460 (1910). (162) Bailly, Gaumé, Compt. rend. (164) 198, 1932-1934 (1934). (163) Bailly, Gaumé, Bull. soc. chim. (4) 39, 1420-1428 (1926). Sjoberg, Svensk Kem. Tid. 53, 454-457 (1941); Cent. 1942, II 25; C.A. 37, 4363 (1943). (165)Abderhalden, Weill, Fermentforschung 4, 84 (1920). (166) Truchot, Ann. 138, 297-299 (1866); 140, 244-246 (1866). (167) Whitby, J. Chem. Soc. 1926, 1460. (168) Humnicki, Bull. soc. chim. (4) 45, 281 (1929). (169) Weinschenk, Chem. Ztg. 29, 1311 (1905). (170) Grignard, Bull. soc. chim. (3) 29, 944, note 2 (1903).

(171) Kling, Compt. rend. 137, 756 (1903); Bull. soc. chim. (3) 31, 14-16 (1904). (172) Stahl. Cottle, J. Am. Chem. Soc. 65, 1782-1783 (1943). (173) Koelsch, McElvain, J. Am. Chem. Soc. 52, 1164-1169 (1930). (174) Fourneau, Tiffeneau, Bull. soc. chim. (4) 1, 1227-1233 (1907). (175) J. D. Riedel, A.G., Ger. 183,361, April 10, 1907; Cent. 1907, I 1607; [C.A. 1, 2336 (1907)]. (176) Traube, Lehman, Ber. 34, 1972–1980 (1901). (177) Leuchs, Ber. 44, 1509–1511 (1911). (178) Michael, Weiner, J. Am. Chem. Soc. 58, 1000, 1002 (1936); 56, 2012-2013 (1934). (179) Traube, Lehman, Ber. 32, 721 (1899). (180) Haller, Bull. soc. chim. (3) 31, 367-369 (1904); (3) 21, 564 (1899).

(181) Stallmann (to du Pont Co.), U.S. 1,977,253, Oct. 16, 1934; Cent. 1935, I 2603; C.A. 29, 352 (1935). (182) Stallman (to du Pont Co.), U.S. 1,977,252, Oct. 16, 1934; Cent. 1935, I 1620; C.A. 29, 352 (1935). (183) Fauconnier, Compt. rend. 106, 605 (1888); 107, 250 (1888). (184) Dains, Brewster, Blair, Thompson, J. Am. Chem. Soc. 44, 2641-2642 (1922). (185) Fukagawa, Ber. 68, 1344-1346 (1935). (186) Cohn, Friedländer, Ber. 37, 3034-3035 (1901). (187) Strukov, Khim. Farm. Prom. 1934. No. 2, 11; Cent. 1935, I 2806; C.A. 28, 5421 (1934). (188) Fourneau. Ranedo, Anales soc. españ fís. quím. (2) 18, 133-139 (1920); Cent. 1921, III 781; C.A. 15, 1885 (1921). (189) Dreyfus, French 702,553, April 11, 1931; Cent. 1931, II 2058; C.A. 25, 4284 (190) Lewis (to Parke-Davis Co.), U.S. 1,664,123, March 27, 1928; Cent. 1929, I 1047; C.A. 22, 1595 (1928).

(191) Kolshorn, Ger. 346,385, Dec. 29, 1921; Cent. 1922, II 574; not in C.A.: Brit. 155,575, 155,576, Jan. 13, 1921; Cent. 1921, II 601-602; C.A. 15, 1535 (1921). French 519,129, June 4, 1921: Cent. 1921, IV 803; not in C.A. (192) Knunyantz, Ber. 68, 397-399 (1935): Compt. rend. acad. sci. (U.R.S.S.) 1935, I 501-506; Cent. 1936, II 2915; not in C.A. (193) Gerhardt, Ber. 24, 352-357 (1891). (194) Balbiano, Gazz. chim. ital. 17, 177 (1887); 18, 356-357, 375 (1888); 19, 128 (1889). (195) Rosanov, J. Russ. Phys.-Chem. Soc. 48, 1227 (1916); Cent. 1923, III 1080; not in C.A. (196) Drozdov, Cherntzov, J. Gen. Chem. (U.S.S.R.) 4, 969-974 (1934); Cent. 1936, I 42; C.A. 29, 2148 (1935). (197) Gibson, Harley-Mason, Litherland, Mann, J. Chem. Soc. 1942, 172. (198) Eisleb (to I.G.), Ger. 473,219, March 13, 1929; Cent. 1929, II 350; [C.A. 23, 2987 (1929)]; Brit. 275,622, Sept. 28, 1927; Cent. 1929, II 350; C.A. 22, 2171 (1928). (199) Eisleb (to Winthrop Chem. Co.), U.S. 1,845,403, Feb. 16, 1932; Cent. 1932, I 3112; C.A. 26, 2199 (1932). (200) Ingold, Rothstein, J. Chem. Soc. 1931, 1672-1673.

(201) M.L.B., Ger. 284,291, May 19, 1915; Cent. 1915, I 110; [C.A. 10, 94 (1916)]. (202) Reboul, Compt. rend. 93, 423 (1881). (203) Schmidt, Ann. 337, 116-121 (1904). (204) du Pont Co., Brit. 477,981, Feb. 10, 1938; Cent. 1938, II 183, not in C.A. (205) Tronov, Gershevich, J. Russ. Phys.-Chem. Soc. 58, 727-739 (1927); Cent. 1928, I 2924; C.A. 22, 3389-3390 (1928). (206) Tronov, J. Russ. Phys.-Chem. Soc. 58, 1278-1301 (1926); Cent. 1927, II 1145; C.A. 22, 2737 (1928). (207) Giua, Gazz. chim. ital. 52, I 349-351 (1922). (208) Fromm, Ann. 442, 133-134, 142 (1925). (209) Ohle, Haeseler, Ber. 69, 2325 (1936). (210) Gabriel, Ohle, Ber. 50, 820-821 (1917).

(211) Tomita, Z. physiol. Chem. 158, 42-57 (1926). (212) den Otter, Rec. trav. chim. 57, 18-20 (1938). (213) Weizmann, Malkowa, Bull. soc. chim. (4) 47, 357-358 (1930); Compt. rend. 190, 495-496 (1930). (214) Lohmann, J. prakt. Chem. (2) 153, 57-64 (1939). (215) Bachman, Mayhew, J. Org. Chem. 10, 250, 253 (1945).

3:5360 1,2-DICHLOROBUTENE-2 
$$Cl$$
  $Cl$   $C_4H_6Cl_2$  Beil. S.N. 11 (low-boilg. stereoisomer)  $CH_3-CH=C-CH_2$ 

B.P. 
$$116-118^{\circ}$$
 at 765 mm. (2)  $D_4^{20} = 1.1544$  (2)  $n_D^{20} = 1.4642$  (2)  $111.5-112.5^{\circ}$  at 742 mm. (1)  $D_4^{18} = 1.1550$  (2)  $n_C^{18} = 1.4576$  (2)  $D_4^{16} = 1.1488$  (1)  $n_C^{16} = 1.45513$  (1)

[See also high-boilg. stereoisomer (3:5615).]

[For prepn. of  $\bar{C}$  (together with its stereoisomer (3:5615)) from 1,2,3-trichlorobutane (3:5935) with KOH at 150° (2), or from 2,2-dichlorobutane (3:7415) or 2,3-dichlorobutane (3:7615) with alc. KOH (5), see indic. refs.; for formn. of  $\bar{C}$  (together with its stereoisomer and also 2,4-dichlorobutene-2 (3:5550)) from 2-chlorobutene-2 (3:7105) by actn. of  $Cl_2$  at 350° see (3).]

 $\bar{C}$  with 1 mole Cl<sub>2</sub> + 1.5 moles NaHCO<sub>3</sub> at 0° gives (100% yield (4)) 1,2,2,3-tetrachlorobutane (3:9078).

C on hydrolysis by htg. with 2 pts. aq. + 1 mole powdered CaCO₃ at 70° for 4 hrs. gives (1) a mixt. of about equal parts of 2-chlorobuten-2-ol-1 (3:8240) and (by allylic transposition) 3-chlorobuten-3-ol-2 (3:9115).

 $\tilde{C}$  on oxidn. with KMnO<sub>4</sub> in acetone gives (1) chloroacetic acid (3:1370) + AcOH (1:1010) + HCl. —  $\tilde{C}$  in CCl<sub>4</sub> at -17° treated with O<sub>3</sub> followed by aq. gives acetaldehyde (1:0100).

3:5360 (1) Tishchenko, J. Gen. Chem. (U.S.S.R.) 7, 658-662 (1937); Cent. 1937, II 371; C.A. 31, 5754 (1937). (2) Tishchenko, Churbakov, J. Gen. Chem. (U.S.S.R.) 6, 1553-1558 (1936); Cent. 1937, I 3786; C.A. 31, 2165 (1937). (3) N. V. Bataafsche Petroleum Maatschappij, Brit. 468,016, July 22, 1937; French 810,112, March 15, 1937; Cent. 1937, II 4102. (4) Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1232-1246 (1938); Cent. 1939, II 4222; C.A. 33, 4190 (1939). (5) Tishchenko, Churbakov, J. Gen. Chem. (U.S.S.R.) 7, 663-666 (1937); Cent. 1937, II 371; C.A. 31, 5754 (1937).

3:5372 
$$\alpha,\alpha$$
-DICHLOROPROPIONYL CHLORIDE  $C_3H_3$ OCl<sub>3</sub> Beil. II - 251  $H_1$ —  $CH_3$ —  $C$ —  $C$ =O

B.P. 117.4-117.8° at 753 mm. (1) 
$$D_4^{20} = 1.4062$$
 (1)  $n_D^{20} = 1.45240$  (1)  $110-115^{\circ}$  (2)  $68-73^{\circ}$  at 88-90 mm. (3)

Colorless lachrymatory liq. with penetrating odor.

[For prepn. of  $\bar{C}$  from  $\alpha,\alpha$ -dichloropropionic acid (3:6162) with SOCl<sub>2</sub> under reflux for 10 hrs. (1) or with PCl<sub>3</sub> (2) see indic. refs.; from pyruvic acid (CH<sub>3</sub>CO.COOH) (1:1040) with PCl<sub>5</sub> see (2) (4).]

[For study of rate of reaction of  $\tilde{C}$  in dioxane with  $\beta$ -chloroethanol (3:5552) see (1).]  $\tilde{C}$  with aq. readily hydrolyzes to  $\alpha,\alpha$ -dichloropropionic acid (3:6162) q.v.

- α,α-Dichloropropionamide: Ifts. from dil. alc., m.p. 117-118° (3) (5), 116-117° (2), 116° (4). [From C with conc. aq. NH<sub>4</sub>OH (2); for other ways see under α,α-dichloropropionic acid (3:6162).]
- α,α-Dichloropropion-N-ethylamide: m.p. 51-52° (3). [From C with EtNH<sub>2</sub> (3).]
   α,α-Dichloropropionanilide: m.p. 101° (3). [Reported only by indirect means (3).]
   α,α-Dichloropropion-p-toluidide: m.p. 84-86° (6). [Reported only by indirect means (6).]
- 3:5372 (1) Leimu, Ber. 70, 1046, 1050 (1937). (2) Beckurts, Otto, Ber. 11, 386-391 (1878). (3) von Braun, Jostes, Münch, Ann. 453, 126, 135 (1927). (4) Klimenko, Ber. 3, 465-468 (1870). (5) Otto, Ann. 132, 183 (1864). (6) Bischoff, Walden, Ann. 279, 93 (1894).

3:5385 
$$\alpha$$
-CHLORO-ISOBUTYRYL CHLORIDE  $\begin{array}{c} C_4H_6OCl_2 \\ Cl \\ II_1-\\ CH_3-C-C=O \\ CH_3 \end{array}$  Beil. II - 295 II\_1- II\_2-(263)

The b.p. of 125-126° given by (3) is incorrect (1).

113-114° (2)

[For prepn. of  $\bar{C}$  from isobutyryl chloride (3:7270) with Cl<sub>2</sub> (3) (4) (5) or with SO<sub>2</sub>Cl<sub>2</sub> + dibenzoyl peroxide in CCl<sub>4</sub> (20%  $\bar{C}$  + 80%  $\beta$ -chloro isomer (1)) see indic. refs.; for prepn. of  $\bar{C}$  from  $\alpha$ -hydroxyisobutyric acid (1:0431) with SOCl<sub>2</sub> (together with other products) see (2).]

[For reactn. of  $\tilde{C}$  with MeOH yielding methyl  $\alpha$ -chloro-isobutyrate (3:7918) see (5).]  $\tilde{C}$  on hydrolysis with aq. yields  $\alpha$ -chloro-isobutyric acid (3:0235) q.v.

3:5385 (1) Kharasch, Brown, J. Am. Chem. Soc. 62, 925-929 (1940). (2) Blaise, Montagne, Compt. rend. 174, 1555 (1922). (3) Michael, Garner, Ber. 34, 4054-4055 (1901). (4) Henry, Compt. rend. 142, 1024 (1906); Bull. acad. roy. Belg. 1906, 206-226; Cent. 1906, II 227. (5) du Pont Co. & Loder, Brit. 428,223, May 9, 1935; Cent. 1936, I 179; C.A. 29, 6607 (1935).

3:5395 1,1,2-TRICHLOROPROPENE-1 Cl 
$$C_3H_3Cl_3$$
 Beil. I - 200  $CH_3$ — $C=CCl_2$   $I_1$ — $I_2$ — B.P. 118° (1)  $D_{14}^{14}=1.387$  (3)  $D_{14}^{14}=1.387$  (3)

[For prepn. of  $\bar{C}$  from 1,1,1,2-tetrachloropropane (3:5785) in 93% yield by htg. with aq. or alc. alk. for 3 hrs. at 95° see (1); for prepn. of  $\bar{C}$  from 1,1,2,2-tetrachloropropane (3:5825) with alc. KOH or alc. NH<sub>4</sub>OH see (2) (3).]

[For use of  $\tilde{C}$  as dry cleaner and spot remover (4) or in degreasing of metals (5); for use in dewaxing of mineral oils see (6).]

C with Cl<sub>2</sub> yields (3) 1,1,1,2,3-pentachloropropane (3:4740), m.p. 179°.

3:5395 (1) du Pont Co. and Cass, Brit. 469,051, July 19, 1937; Cent. 1938, I 1218; C.A. 32, 596 (1938). (2) Szenic, Taggesell, Ber. 28, 2668 (1895). (3) Borsche, Fittig, Ann. 133, 117-119 (1865). (4) Levine (to du Pont Co.), U.S. 2,116,437, May 3, 1938; Cent. 1938, II 796; C.A. 32, 5233 (1938). (5) Levine (to du Pont Co.), U.S. 2,116,438, May 3, 1938; Cent. 1938, II 947; C.A. 32, 4936 (1938). (6) Standard Oil Development Co., French 790,852, Nov. 28, 1935; Cent. 1936, I 2672; C.A. 30, 3323 (1936).

B.P. 
$$118^{\circ}$$
 cor. (1) (8)  $D_4^{20} = 1.6202$  (3);  $n_D^{20} = 1.4701$  (5);  $117-118^{\circ}$  at 760 mm. (2)  $1.6179$  (5)  $1.46949$  (3)  $116.3-118.5^{\circ}$  (4)  $116.4^{\circ}$  at 755 mm. (5)  $116-117^{\circ}$  at 726 mm. (6)

[For prepn. of  $\bar{C}$  from trichloroacetic acid (3:1150) with PCl<sub>3</sub> (1) (7) (8), with PCl<sub>3</sub> + ZnCl<sub>2</sub> (25% yield (9)), with SOCl<sub>2</sub> (yield: 12% (9), 30% (23)) in C<sub>6</sub>H<sub>8</sub> (60% yield (3)) or in pyridine (90% yield (10)), with P<sub>2</sub>O<sub>5</sub> + HCl gas (11), with benzotrichloride (3:6540) + ZnCl<sub>2</sub> at 100° (77% yield (12)), with benzoyl chloride (3:6240) (51-56% yield (13)) see indic. refs.]

[For formn. of  $\bar{\rm C}$  from trichloroacetic acid at 300° (together with CO, CO<sub>2</sub> + HCl) see (14); from acetyl chloride (3:7065) with 3 moles PCl<sub>5</sub> see (11); from hexachloroethane (3:4835) with SO<sub>3</sub> at 150° see (15); from pentachloroethane (3:5880) or sym.-tetrachloroethane (3:5750) in ultra-violet light and O<sub>2</sub> see (16); from tetrachloroethylene (3:5460) with SO<sub>3</sub> (15), with H<sub>2</sub>SO<sub>4</sub> + HNO<sub>3</sub> (together with other products) (17), with ozone (18) (19), with oxygen in pres. of Br<sub>2</sub> or conc. HNO<sub>3</sub> (20), with oxygen by chlorine sensitized photo-oxidation (21) cf. (30) (31), or with oxygen in ultra-violet light (16) see indic. refs.; from diethyl ether on protracted chlorination in sunlight, from decachlorodiethyl ether (3:1676) on distn. see (22), or from distn. of pentachloroethyl trichloroacetate see (22), from CCl<sub>4</sub> (3:5100) + AlCl<sub>3</sub> + CO gas at 200° and 250 atm. (37% yield) see (32).]

[C on htg. (13) or on htg. with AlCl<sub>3</sub> (23) yields carbon tetrachloride (3:5100) + CO; C on htg. at 600° yields (24) carbon tetrachloride (3:5100) + hexachloroethane (3:4835) + CO + phosgene (3:5000).]

[ $\bar{C}$  on treatment at  $-5^{\circ}$  with dry HBr gas gives (70% yield (24)) trichloroacetyl bromide, b.p. 143°;  $\bar{C}$  similarly treated with dry HI gas gives (71.5% yield (6)) trichloroacetyl iodide, b.p. 74-74.2° at 30 mm. (6).]

[C with MeOH should yield readily methyl trichloroacetate (3:5800), b.p. 153.8°; C with EtOH yields (1) ethyl trichloroacetate (3:5950), b.p. 168°. (For study of rate of reactn. see (2)).]

[ $\bar{C}$  with pure freshly distilled AlCl<sub>3</sub> + C<sub>6</sub>H<sub>6</sub> yields (25) (26) triphenylvinyl alcohol ( $\omega$ ,  $\omega$ -diphenylacetophenone) [Beil. VII-522, VII<sub>1</sub>-(291)], m.p. 137°; with moist AlCl<sub>3</sub> + C<sub>6</sub>H<sub>6</sub>, however,  $\bar{C}$  gives instead (25) (27) (28)  $\omega$ ,  $\omega$ ,  $\omega$ -trichloroacetophenone (3:6874), b.p. 256-257° (25). —  $\bar{C}$  with Me<sub>2</sub>Zn yields (29) pentamethylethyl alcohol [Beil. I-418, I<sub>1</sub>-(207), I<sub>2</sub>-(447)]. —  $\bar{C}$  with EtMgBr in ether at 10° gives (33) 1,1,1-trichlorobutanol-2 (3:5955).]

Č hydrolyzes readily with aq. yielding trichloroacetic acid (3:1150); for the amide, anilide, p-toluidide, and other derivs. corresp. to Č see trichloroacetic acid (3:1150).

3:5420 (1) Gal, Bull. soc. chim. (2) 20, 11-13 (1873). (2) Branch, Nixon, J. Am. Chem. Soc. 58, 2499-2504 (1936). (3) Leimu, Ber. 70, 1049 (1937). (4) Cheng, Z. physik. Chem. B-26, 295 (1934). (5) Martin, Partington, J. Chem. Soc. 1936, 162. (6) Gustus, Stevens, J. Am. Chem. Soc. 55, 376 (1933). (7) Delacre, Bull. acad. roy. Belg. 1902, 189-202; Cent. 1902, I 1197. (8) Thorpe, J. Chem. Soc. 37, 189-190 (1880). (9) Clark, Bell, Trans. Roy. Soc. Can. (3) 27, III 97-103 (1933). (10) Carré, Libermann, Compt. rend. 199, 1422-1423 (1934).

(11) Friederici, Ber. 11, 1971 (1878). (12) Rabcewicz-Zubkowski, Roczniki Chem. 9, 528 (1929); Cent. 1929, II 2767; C.A. 24, 61 (1930). (13) Brown, J. Am. Chem. Soc. 66, 1325-1328 (1938). (14) Engler, Steude, Ber. 26, 1443-1444 (1893). (15) Pud'homme, Compt. rend. 76, 1138 (1870). (16) Müller, Ehrmann, Ber. 69, 2207-2210 (1936). (17) Biltz, Ber. 35, 1535-1536 (1902). (18) Besson, Compt. rend. 118, 1348 (1894); 121, 125 (1895). (19) Swarts, Bull. acad. roy. Belg. (3) 36, 532-552 (1898); Cent. 1898, I 588-589. (20) Consortium für Elektrochem. Ind., Ger. 340,872, Sept. 19, 1921; Cent. 1921, IV 1101.

(21) Dickinson, Carrico, J. Am. Chem. Soc. 56, 1473-1480 (1934). (22) Malaguti, Ann. chim. (3) 16, 5-28, 64 (1846). (23) Boeseken, Rec. trav. chim. 29, 100, 112 (1910). (24) Simons, Sloat, Meunier, J. Am. Chem. Soc. 61, 435-436 (1939). (25) Biltz, J. prakt. Chem. (2) 142, 196-197 (1935). (26) Biltz, Ber. 32, 654-655 (1899). (27) Staudinger, Kon, Ann. 384, 112 (1911). (28) Gautier, Ann. chim. (6) 14, 398-402 (1888). (29) Bogomolez, Ann. 209, 78-82 (1881). (30) Schott, Schumacher, Z. physik. Chem. B-49, 107-125 (1941); Cent. 1941, II 2549; C.A. 38, 3551 (1944).

(31) Kirkbride (to Imperial Chem. Ind., Ltd.), U.S. 2,321,823, June 15, 1943; C.A. 37, 6676 (1943): Brit. 534,732, March 17, 1941; C.A. 38, 1330 (1942): Brit. 546,561, July 20, 1942; C.A. 37, 4746 (1943). (32) Theobald (to du Pont Co.), U.S. 2,378,048, June 12, 1945; C.A. 39, 4085 (1945). (33) Jacob, Bull. soc. chim. (5) 7, 581-586 (1940); C.A. 36, 3507 (1942).

| B.P.                  | B.P. (contd.)         |                                     |
|-----------------------|-----------------------|-------------------------------------|
| 119-120° (1) (20)     | 60-62° at 50 mm. (10) | $D_4^{25} = 1.123 (189)$            |
| 119.7° at 760 mm. (2) | 46° at 46 mm. (3)     | $D_{-}^{20} = 1.170  (11)$          |
| 119.5° (3)            | 35° at 29 mm. (6)     | $D_{15}^{17} = 1.164  (12)$         |
| 119.3° (4)            | 20° at 12 mm. (6)     |                                     |
| 118.8-119.4° (5)      |                       | $D_{16}^{16} = 1.162$ (7) cf. (189) |
| 119° at 760 mm. (6)   |                       |                                     |
| 119° at 735 mm. (7)   |                       | $D_{13}^{13} = 1.158$ (9) cf. (189) |
| 118° at 723 mm. (8)   |                       |                                     |
| 117-118° (9)          |                       | $D_4^{15} = 1.135 (189)$            |

 $\bar{C}$  when pure is colorless liq. —  $\bar{C}$  turns dark on exposure to light. —  $\bar{C}$  on long exposure to light, acids, or metals resinifies to a dark mass, m.p. above 350°, which fumes in air and dis. in fumg. HNO<sub>3</sub>, but does not react with fumg. H<sub>2</sub>SO<sub>4</sub>, NH<sub>2</sub>OH, or phenylhydrazine

nor hydrolyze with 50% KOH (13). — [For stabilization of  $\bar{C}$  by means of addn. of 1% CaCO<sub>3</sub> (14) or 0.1% aq. (15) see indic. refs.]

Č is sol. in 10 pts. aq. (7) but does *not* form crystn. hydrates with it (9) (for prepn. of anhydrous Č using CaSO<sub>4</sub> see (16)); Č is volatile with steam (9); sol. in alc., ether, CHCl<sub>8</sub>. Č has very pronounced lachrymatory properties; for studies of this property see (17) (18).

 $\bar{\bf C}$  forms azeotropes with several org. liqs. (19); e.g.,  $\bar{\bf C}$  with toluene (1:7405) forms a const.-boilg. mixt., b.p. 109.2° at 760 mm., contg. 28.5%  $\bar{\bf C}$ ;  $\bar{\bf C}$  with isobutyl alc. (1:6165) forms a const.-boilg. mixt., b.p. 105.8° at 760 mm., contg. 36%  $\bar{\bf C}$ ;  $\bar{\bf C}$  with ethyl *n*-butyrate (1:3127) forms a const.-boilg. mixt., b.p. 117.2° at 760 mm., contg. 53%  $\bar{\bf C}$ ;  $\bar{\bf C}$  with isobutyl acetate (1:3115) forms a const.-boilg. mixt., b.p. 116.7°, contg. 30%  $\bar{\bf C}$ .

[For prepn. of  $\bar{\mathbb{C}}$  from acetone (1:5400) with  $\mathrm{Cl}_2$  (188) (9) (20) (21) (22) (23) (24) (25) (yield is poor and contaminated with higher chlorination prods. especially 1,1-dichloropropanone-2 (unsym.-dichloroacetone) (3:5430) whose b.p. is very close to that of  $\bar{\mathbb{C}}$ ); with  $\mathrm{Cl}_2$  in pres. of  $\mathrm{CaCO}_3$  (yield 82% (3)) (26) (27) (28); with  $\mathrm{Cl}_2$  in vapor-phase chlorination (29) (30) (21) in pres. of  $\mathrm{NiCl}_2$  (38); by electrolysis in HCl (97% yield (32)) (36) using Pt electrodes (with graphite or lead electrodes resultant  $\bar{\mathbb{C}}$  is reduced) even using alternating current (35% yield (33)); with  $\mathrm{Cl}_2\mathrm{O}$  (34); with HOCl (22) (27) (35); with EtOCl (3:7022) (1); with N-chlorourea in aq. soln. (37); or with  $\mathrm{SO}_2\mathrm{Cl}_2$  (72% yield (189)) see indic. refs.]

[For prepn. of C from acctone (1:5400) with benzenediazonium chloride (solid) in pres. of CaCO<sub>3</sub> (39) (40), or with aq. solns. of other diazonium chlorides (especially those with negative substituents such as those from p-nitroaniline, p-chloroaniline, or 2,4-dichloroaniline) in pres. of CuCl<sub>2</sub> + NaOAc (41), see indic. refs.]

[For prepn. of  $\bar{C}$  from 1-chloropropanol-2 (propylene  $\alpha$ -chlorohydrin) (3:7747) by oxidn. with  $K_2Cr_2O_7 + H_2SO_4$  (42) (43) (44) (45),  $CrO_3 + dil$ .  $H_2SO_4$  (43),  $H_2SO_4$  (44),  $H_2SO_4$  (45),  $H_2SO_4$  (46), or  $G_3 + dil$ .  $G_3 +$ 

[For prepn. of  $\tilde{C}$  from ethyl  $\gamma$ -chloroacetoacetate (3:6375) (50) or from  $\alpha$ -chloroacetoacetanilide (51) by hydrolytic cleavage with HCl see indic. refs.; from 1,3-dichloropropene-2 (3:5280) by soln. in conc. H<sub>2</sub>SO<sub>4</sub> and distn. with aq. see (52); from allyl chloride (3:7035) with HgO + HOCl see (53); from 1,2-epoxypropane (propylene oxide) (1:6115) with Cl<sub>2</sub> at 0° see (54); from diketene + Cl<sub>2</sub> in cold followed by treatment with aq. see (55).]

[For use of  $\bar{C}$  in refining of mineral oils see (56); in prepn. of photosensitizing cyanine dyes see (57).]

Pyrolysis. [C passed through tube at 450° pyrolyzes into acetaldehyde (1:0100), acetone (1:5400), crotonaldehyde (1:0150) + HCl (58).]

**Reduction.** [ $\tilde{C}$  on reduction with Zn + HCl (7) or on electrolysis in HCl soln. using graphite or lead electrodes (32) yields acetone (1:5400);  $\tilde{C}$  on reduction with AlEt<sub>3</sub> etherate as directed (59) gives (70% yield) 1-chloropropanol-2 (3:7747), b.p. 78-81° at 80 mm. (59);  $\tilde{C}$  on phytochemical reduction using yeast (60) gives (25% yield) 1-chloropropanol-2 (3:7747); for polarographic study of oxidn.-reductn. potential of  $\tilde{C}$  see (61).]

Oxidation.  $\bar{C}$  on oxidn. with KMnO<sub>4</sub> (49) (62), HNO<sub>8</sub>, CrO<sub>3</sub>, etc. (62), yields chloroacetic acid (3:1370) and AcOH (1:1010). —  $\bar{C}$  with moist silver oxide yields (7) glycolic acid (1:0430), acetic acid (1:1010), and formic acid (1:1005).

Halogenation. [C with Cl<sub>2</sub> even in cold gives (26) more highly chlorinated acetones; e.g., C with Cl<sub>2</sub> at 30-40° yields (63) 1,1,3-trichloropropanone-2 (3:5957) and 1,1,1-trichloropropanone-2 (3:5620); C with Cl<sub>2</sub> at 50-70° yields (63) cf. (64) sym.-tetrachloro-

acetone (3:6050), unsym.-tetrachloroacetone (3:6085), and pentachloroacetone (3:6205);  $\bar{C}$  with Cl<sub>2</sub> at 50-100° in light (63) (65) or under press. (66) yields hexachloroacetone (3:6312). — Note that  $\bar{C}$  with Ca(OCl)<sub>2</sub> undergoes both chlorination and subsequent cleavage yielding (46) CHCl<sub>3</sub> (3:5050).]

 $[\bar{C} \text{ with } Br_2 \text{ (3 moles) at } 100^\circ \text{ yields (67) } 3,3,3-\text{tribromo-1-chloropropanone-2 [Beil. I-658], b.p. 215°; 13.0° at 25 mm.]}$ 

Reactions of the halogen atom of  $\bar{C}$  (see also further below under formn. of heterocyclic systems).  $\bar{C}$  with excess aq. alkali presumably yields propanone-2-ol-1 (acetol) (1:5455) and therefore reduces Fehling's soln.; the halogen atom of  $\bar{C}$  is so reactive that  $\bar{C}$  slowly neutralizes 1 equiv. alk. (68);  $\bar{C}$  with NaOEt in abs. alc. yields acetol ethyl ether (ethoxyacetone) [Beil. I-822, I<sub>1</sub>-(418), I<sub>2</sub>-(867)], b.p. 128° at 760 mm. (for study of rate of reaction see (69)).

[ $\bar{C}$  with phenol (1:1420) + anhydrous  $K_2CO_3$  in acetone stirred 24 hrs. at room temp. or refluxed 3 hrs. (70) (note that in pres. of KI yield jumps to 92.5% (191)), or  $\bar{C}$  with sodium phenolate in phenol (71) (72) or in toluene (73), gives (yields: 21-23% (70), 16% (73)) phenoxyacetone (1:5534), b.p. 117-124° at 19 mm. (70) (note that  $\bar{C}$  + phenol + aq. NaOH gives only black resin (73)) (for application of this type of reactn. to other monohydric phenols such as tetralol-2 (5,6,7,8-tetrahydronaphthol-2) (74) (75) or p-terbutyl)phenol (1:1510) (75) or  $\beta$ -naphthol (1:1540) (191) see indic. refs.). — Note that  $\bar{C}$  with phenol (3 moles) + fumg. HCl at 100° reacts in a dif. sense to give (50% yield (76)) a tris-(hydroxyphenyl)propane of undetd. struct.; for formn. of resins from  $\bar{C}$  + phenol see (77) (78).]

[ $\bar{C}$  with KI in aq. MeOH (79) (80) or in acetone (5) gives (75% yield (80)) iodoacetone [Beil. I-660, I<sub>1</sub>-(345), I<sub>2</sub>-(719)], oil, b.p. 58.4° at 11 mm. (79) (oxime, pr. from pet. eth., m.p. 64.5° (79)); for study of rate of this reactn. in acetone at 0° and 10° see (5). —  $\bar{C}$  with K<sub>2</sub>SO<sub>3</sub> (or Na<sub>2</sub>SO<sub>3</sub>) yields (81) salts of acetonesulfonic acid [Beil. IV-19, IV<sub>2</sub>-(530)]. — For study of rate of reactn. of  $\bar{C}$  with aq. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> see (82). —  $\bar{C}$  with Na<sub>2</sub>S in acetone yields (83) (84) bis-(acetonyl) sulfide, m.p. 49° (83), b.p. 126° at 14 mm. (83), 125° at 18 mm. (84) (earlier work (85) using alc. as solvent could not be checked (83) (84).)]

[C with aq. NaSCN.stirred 10 hrs. at 25° (86), or C with Ba(SCN)<sub>2</sub> directly (87) or in alc. (88) (89) cf. (90), gives (95% yield (86)) thiocyanoacetone (acetonyl thiocyanate) [Beil. III-179, III<sub>1</sub>-(72), III<sub>2</sub>-(125)], oil, b.p. 73.5-74.5° at 1 mm. (86), D<sub>15</sub> = 1.1892 (86) (for use of this prod. as anti-oxidant for rubber (91), as stabilizer for cellulose (92), or as 1% soln. in petroleum as insecticide (93) see indic. refs.); note that thiocyanacetone, at though insensitive to dil. aq. HCl (87), with HCl gas in cold (86) or conc. HCl on boilg. (89) adds 1 mole HCl and ring-closes to 2-chloro-4-methylthiazole, oil, b.p. 167-167.5° at 754.4 mm., 69° at 14 mm. (86); note also that thiocyanoacetone with aq. NaHCO<sub>3</sub> (94) (or C + aq. KSCN + NaHCO<sub>3</sub> (86)) yields 2-hydroxy-4-methylthiazole (4-methylthiazolone-2) ("α-methylrhodime") [Beil. XXVII-158, XXVII<sub>1</sub>-(264)], ndls. from aq. or ether, m.p. 105-106° (94), 102-103° (86).]

[ $\bar{C}$  with Na salts of sulfinic acids gives the corresp. alkyl- (or aryl)sulfonylacetones: e.g.,  $\bar{C}$  with Na methanesulfinate gives (95) methanesulfonylacetone, m.p. 54° (95) (96);  $\bar{C}$  with Na benzensulfinate in alc. gives on refluxing (95% yield (97)) benzenesulfonylacetone [Beil. VI-307, VI<sub>1</sub>-(145)], lfts. from alc., m.p. 57° (97);  $\bar{C}$  with Na p-toluenesulfinate yields (97) p-toluenesulfonylacetone [Beil. VI-421, VI<sub>1</sub>-(210)], m.p. 51° (97) (98); many other analogous cases are known.]

 $[\bar{C}]$  with tertiary amines gives the corresp. quaternary ammonium chloride salts: e.g.,  $\bar{C}$  with dry Me<sub>3</sub>N in abs. ether (99) or abs. alc. (100) (101) yields trimethyl-acetonyl-ammonium chloride [Beil. IV-315, IV<sub>2</sub>-(763)], very hygroscopic white solid;  $\bar{C}$  with pyridine gives corresp. salt (for study of rate in abs. alc. at 55.6° see (102)). —  $\bar{C}$  with triphenyl-

phosphine in  $C_6H_6$  at 75-80° for 15 hrs. yields (103) triphenyl-acetonyl-phosphonium chloride, m.p. 234° dec. (103). —  $\bar{C}$  with hexamethylenetetramine in CHCl<sub>3</sub> grad. ppts. an addn. prod. (poor yield (104)), ndls., m.p. 122° (104).]

[C with dry NH<sub>3</sub> may yield (9) a little aminoacetone (acetonylamine) [Beil. IV-314, IV<sub>1</sub>-(450), IV<sub>2</sub>-(763)], but the reactn. is unsatisfactory and other methods (105) are preferred for prepn. of the latter; C (in excess) with aq. soln. (30%) of Me<sub>2</sub>NH yields (106) dimethylaminoacetone [Beil. IV-314], misc. with aq., alc., ether, b.p. 123° (106); C (1 mole) with Et<sub>2</sub>NH (2 moles) in ether yields (106) diethylaminoacetone [Beil. IV-316], b.p. 155-156° (106). — Many analogous cases are recorded.]

Reactions of  $\bar{\mathbb{C}}$  involving the H atoms of its —CH<sub>2</sub>Cl grouping.  $\bar{\mathbb{C}}$  with salicylaldehyde (1:0205) in alc. KOH refluxed for 15 min. (107) (108), or in alc. NaOH refluxed 2 hrs. (109), or  $\bar{\mathbb{C}}$  + Na salt of salicylaldehyde in dry  $\mathbb{C}_6H_6$  under reflux (110), gives (yields: 60–85% (107), 75% (109), 60% (108)) 2-(acetyl)coumarone (2-acetobenzofuran) [Beil. XVII-338], colorless lfts. from alc., m.p. 76° (107), 75–76° (109), 74–75° (108) (110) (corresp. oxime, ndls. from dil. alc., m.p. 150° (111), phenylhydrazone, cryst. from alc., m.p. 153–154° (107), semicarbazone, ndls. from dil. alc., m.p. 217° (107)). —  $\bar{\mathbb{C}}$  with p-dimethylaminobenzal)acetone, yel. lfts. from alc., m.p. 115° (112) (corresp. phenylhydrazone, m.p. 206–208° (112), semicarbazone, m.p. 202–203° (112)), accompanied by a little  $\alpha$ -chloro- $\alpha$ ,  $\alpha$ -bis-(p-dimethylaminobenzal)acetone, cryst. from 1:1 abs. alc. +  $\mathbb{C}_6H_6$ , m.p. 225° (112). —  $\bar{\mathbb{C}}$  with diazotized aniline in pres. of NaOAc at 0° yields (113) (49) cf. (114) 1-(benzeneazo)1-chloroacetone [Beil. XV-342], yel. ndls. from boilg. alc., m.p. 136–137° (113), 135–136° (49).

Reactions of Č involving the keto group.  $\bar{C}$  with satd. aq. NaHSO<sub>3</sub> soln. yields (51) a crystn. NaHSO<sub>3</sub> cpd. cf. (7).

[Č with HCN as directed gives (yields: 94% (119), 87–90% (192)) (21) (115) (116)  $\beta$ -chloro- $\alpha$ -hydroxyisobutyronitrile (chloroacetone cyanohydrin) [Beil. III-317], oil, b.p. 110° at 22 mm. (117) 108–110° at 20 mm. (192), 103–104° at 16 mm. (115),  $D_{-}^{15} = 1.2027$  (117),  $n_D^{20} = 1.4520$  (192),  $n_D^{11} = 1.45362$  (117); this prod. on distillation at ord. press. or even on stdg. in the air readily dissociates into the original components; on saponification with HCl, however, it gives (62% yield (192)) (5) (115)  $\beta$ -chloro- $\alpha$ -hydroxyisobutyric acid [Beil. III-317, III<sub>1</sub>-(120), III<sub>2</sub>-(224)], ndls. from  $C_6H_6$ , m.p. 110° (118) 109–110° (192). — Č (1 mole) with aq. KCN (1 mole) gives 43% yield (119) of a cpd.,  $C_8H_{10}O_2N_2$ , m.p. 183°, formerly supposed to be  $\alpha$ -aceto- $\beta$ -hydroxy- $\beta$ -methylglutaro (di)nitrile·[Beil. III-883] but now (119) regarded as 2,4-dicyano-2,5-dimethyl-5-hydroxytetrahydrofuran (for mechanism of its formn. and review of earlier literature see (119)).]

[ $\tilde{C}$  forms acetals or similar cpds.: e.g.,  $\tilde{C}$  with triethyl orthoformate (1:3241) in EtOH + a drop of H<sub>2</sub>SO<sub>4</sub> gives (yields: 90% (120), 87% (80)) cf. (190) chloroacetone diethylacetal [Beil. I-654, I<sub>2</sub>-(718)], b.p. 161-162° u.c. (120) 81-82° at 50 mm. (190), 52-53° at 14 mm. (80),  $D_0^{14} = 1.002$  (120); for acetals from  $\tilde{C}$  with glycerol (1:6540) (121) or pyrocatechol (1:1520) (122) see indic. refs.]

[ $\ddot{\mathbf{C}}$  with phenyl isocyanide + AcOH in ether gives (123)  $\alpha$ -acetoxy- $\beta$ -chloroisobutyranilide;  $\ddot{\mathbf{C}}$  with phenyl isocyanide + BzOH in ether gives (123)  $\alpha$ -benzoyloxy- $\beta$ -chloro-isobutyranilide.]

[Č with RMgX cpds. (1 mole) in ether in general reacts normally with the ketonic group to give addn. prods. which with aq. yields the corresp. tertiary alcs.: e.g., Č with MeMgBr gives (38% yield (124)) (125) 1-chloro-2-methylpropanol-2 (\$\alpha\$-isobutylene chlorohydrin) (3:7752) (accompanied as a result of reactn. of a second MeMgBr and rearr. (126) (127) by some 2-methylbutanol-2 (1:6160)); for corresp. reactn. of Č with EtMgBr yielding

1-chloro-2-methylbutanol-2 (3:8175) see (128); for corresp. reactn. of  $\tilde{C}$  with n- $C_4H_7MgBr$ , n- $C_4H_9MgBr$ , iso- $C_5H_{11}MgBr$ , n- $C_6H_{13}MgBr$ , and n- $C_7H_{15}MgBr$  see (129); for corresp. reactn. of  $\tilde{C}$  with ter-butylethynyl MgBr (130), with n-amylethynyl MgBr (131), or with ethynyl bis-(MgBr) (132) see indic. refs. —  $\tilde{C}$  with  $C_6H_5MgBr$  yields (133) 1-chloro-2-phenylpropanol-2 [Beil. VI-507]; note, however, that if the initial addn. cpd. is htd. at 130–140° prior to hydrolysis rearr. occurs and the prod. then (134) is phenylacetone (1:5118). — For reactn. of  $\tilde{C}$  with o-xenyl MgI see (70).]

[C with abs. diazomethane (free from MeOH) in dry ether yields (135) 1-chloro-2-methyl-2,3-epoxybutane, b.p. 124° (135).]

Condensation reactions of C (usually yielding heterocyclic compounds). [Č with acetal-dehyde (1:0100) + NH<sub>4</sub>OH in pres. of Cu(OAc)<sub>2</sub> gives (49% yield (136)) 2,4-(or 5)-dimethylimidazole [Beil. XXIII-79, XXIII<sub>1</sub>-(25)], b.p. 266° at 733 mm., m.p. 92° (136) (B.HCl, m.p. 205, B.PkOH, m.p. 142-143° (136)).]

[ $\bar{\mathbb{C}}$  with methyl acetoacetate (1:1705) + NH<sub>4</sub>OH at  $-1^{\circ}$  gives (16% yield (137)) 3-carbomethoxy-2,5-dimethylpyrrole [Beil. XXII-29], cryst. from alc., m.p. 119.5°;  $\bar{\mathbb{C}}$  with ethyl acetoacetate (1:1710) + excess conc. aq. NH<sub>4</sub>OH (138) (140) or in ether with NH<sub>3</sub> gas (139) gives (yields: 44% (139), 20% (138)) 3-carbethoxy-2,5-dimethylpyrrole [Beil XXII-29, XXII<sub>1</sub>-(496)], m.p. 116-117° (138) (other by-prods. also being formed (139));  $\bar{\mathbb{C}}$  with ethyl acetoacetate (1:1710) + prim. amines similarly gives N-substituted analogs; e.g., use of aq. MeNH<sub>2</sub> gives (141) 3-carbethoxy-1,2,5-trimethylpyrrole [Beil. XXII-29, XXII<sub>1</sub>-(496)], m.p. 48° (141); use of aniline gives (139) (141) 3-carbethoxy-2,5-dimethyl-1 phenylpyrrole [Beil. XXII-30, XXII<sub>1</sub>-(496)], m.p. 43°, b.p. 225° at 40 mm.; for corresp. use of p-toluidine see (141).]

[Č with ethyl oxaloacetate [Beil. III-780, III<sub>1</sub>-(273), III<sub>2</sub>-(479)] in other treated with NH<sub>3</sub> gas yields (139) 4-carbethoxy-5,6-dihydroxy-2(or 3)-methylpyridine [Beil. XXII-259], m.p. 223° (139) (much oxamide and other by-prods. also being formed).]

[ $\bar{C}$  with diethyl acetonedicarboxylate (1:1772) in ether (142) (143) (139) or  $C_6H_6$  (144) with dry NH<sub>3</sub> gas gives (yields: 49% (143), 38% (142)) ethyl (3-carbethoxy-4-methyl-furyl-2)acetate [Beil. XVIII-333], oil, b.p. 168° at 20 mm. (139).]

[C htd. with amides yields corresp. oxazoles: e.g., C with acetamide htd. 8-10 hrs. at 120° under reflux gives (7% yield (145)) (146) 2,4-dimethyloxazole [Beil. XXVII-17], liq. with odor like pyridine, very sol. aq., b.p. 108° (145) (146); C with benzamide + powdered CaCO<sub>3</sub> at 115-120° for 8 hrs. gives (15% yield (147)) (148) 2-phenyl-4-methyloxazole [Beil. XXVII-58], b.p. 238-241° (148), 92-95° at 5 mm. (147) (B.HCl, m.p. 72°, B.PkOH, m.p. 111° (147)); for corresp. reactn. of C with m-nitrobenzamide see (147).]

[Č with thioamides yields corresp. thiazoles: e.g., Č with thioformamide in abs. alc. refluxed for 1 hr. (149) or Č with formamide  $+ P_2S_5$  (150) gives (35–47% yield (149)) 4-methylthiazole [Beil. XXVII-16], b.p. 131° (150), 130° (149), 70–71° at 59 mm. (151) (B.PkOH, m.p. 181° (151); B.EtI, m.p. 144.5° (149)); Č with thioacetamide without solvent (152) (153) in aq. or alc. (152) (149) or Č with acetamide  $+ P_2S_5$  (150) yields 2,4-dimethylthiazole [Beil. XXVII-18], b.p. 144–145.5° cor. at 719 mm. (152), 143–144° at 762 mm. (153), 143° (150) (154),  $D_4^{20} = 1.0562$  (B.PkOH, m.p. 137–138° (152), B.EtI, m.p. 212° dec. (149)); Č with thiobenzamide in alc. gives (155) (147) 4-methyl-2-phenylthiazole [Beil. XXVII-58], m.p. 29.5° (156), b.p. 282° at 762 mm. (156), 275–277° at 750 mm. (147), 111° at 6 mm. (147); many other analogous cases are recorded.]

[Č with aq. thiourea (157) (158) (159) or Č with NH<sub>4</sub>SCN (160) (161) or Č with NH<sub>4</sub>SCN + NH<sub>4</sub>OH (162) (86) gives (70-75% yield (157)) 2-amino-4-methylthiazole [Beil. XXVII-159], m.p. 44-45° (157), 42° (159), b.p. 231-232° sl. dec. (162), 130-133° at 18 mm. (157), 117-120° at 8 mm. (157); Č with N-methylthiourea gives (163) (164) (158) 2-(methyl-

amino)-4-methyl-thiazole [Beil. XXVII-159], pr. from alc., m.p. 71.5-72.5° cor. (163), 64° (164) (B.HCl, m.p. 228° cor. (163)); Č with phenylthiourea gives (158) (164) 2-(anilino)-4-methylthiazole [Beil. XXVII-159], ndls. from alc., m.p. 117-118° (164), 115° (158).]

[Č with O-methyl thiocarbamate on warming gives (89) 2-methoxy-4-methylthiazole, b.p. 59-60° at 18 mm. (89) (B.HCl, m.p. 78°; B.HgCl<sub>2</sub>, m.p. 123-124° (89)) (accompanied by its dimer); Č with O-ethyl thiocarbamate + KOAc yields (89) 2-ethoxy-4-ethylthiazole, b.p. 71-72° at 15 mm. (89).]

[Č with solid ammonium dithiocarbamate in abs. alc. stood at room temp. for 12 hrs. then refluxed 1 hr. gives (85% yield (151)) 2-mercapto-4-methylthiazole [Beil. XXVII-161], cryst. from isopropyl ether/alc. or dil. alc., m.p. 89-90° (165), 88.0-88.5° (151); note that in ether these reactants yield (166) an intermediate S-acetonyl dithiocarbamate, m.p. 80-82° (166), which on stdg. changes to the above 2-mercapto-4-methyl-thiazole; for use of the latter (or its metal salts) as vulcanization accelerators see (167).]

[C with 1-phenylthiosemicarbazide in abs. alc. readily dis. at room temp. yielding on addn. of pyridine (168) 2-(phenylhydrazino) 4-methylthiazole, m.p. 179° (acetyl deriv., m.p. 179° (168)); for analogous reactions of C with the three 1-(tolyl)thiosemicarbazides (169), the three 1-(nitrophenyl)thiosemicarbazides (170), see indic. refs.]

[C with acetone thiosemicarbazone in CHCl<sub>3</sub> gives on warming (171) the corresp. deriv. of 4 methylthiazolone 2, viz., 2-keto-4-methyl-2,3-dihydrothiazole-2-isopropylidenehydrazone; for analogous reactn. of C with acetophenone thiosemicarbazone and benzaldehyde thiosemicarbazone see (171).

- Color reactn. with KOH: C with excess very cone. aq. KOH gives crimson red color (5) (22).
- Acetonyl acetate (acetal acetate) (acetoxyacetone) [Beil. II-155, II<sub>1</sub>-(72), II<sub>2</sub>-(168)]: b.p. 174-175° at 760 mm. (172), 137-138° at 230 mm. (172),  $D_4^{20} = 1.0749$ ,  $n_D^{20} = 1.4150$  (Beil.). [From  $\bar{C}$  + KOAc in MeOH (173) or abs. EtOH (172) after 2 hrs. reflux (82% yield (173)).]
- —— Acetonyl benzoate (acetol benzoate) (benzoyloxyacetone) [Beil. IX-148]: m.p. 23.5-24° (174), 25° (175); b.p. 188-190° at 60 mm. (176). [From C with KOBz on htg. together (54% yield (176)) or in alc. soln. (174).]
- **D** 1-( $\beta$ -Naphthoxy)acetone (acetonyl  $\beta$ -naphthyl ether): cryst. from alc., m.p. 78.4° cor. (177), 78° (178), 69-73° (191), 69-72° (70). [From  $\dot{C}$  + Na  $\beta$ -naphtholate on htg. in  $\beta$ -naphthol (178) or from  $\dot{C}$  +  $\beta$ -naphthol (1:1540) + dry K<sub>2</sub>CO<sub>3</sub> refluxed in acetone (21% yield (70)) (note that by addn. of KI yield jumps to 85% (191)).]
- ① 1-(N-phthalimido)acetone (N-acetonylphthalimide) [Beil. XXI-477, XXI<sub>1</sub>-(371)]: lfts or ndls. from aq., m.p. 124° (105). [From  $\ddot{C} + K$  phthalimide at 120° for 20 min. (179) or refluxed 1 hr. in xylene (67% yield (180)).]
- 1-(N-3-nitrophthalimido)acetone (N-(acetonyl)-3-nitrophthalimide: ndls. from alc., m.p. 152-153° (181). [From C with K 3-nitrophthalimide on htg. (181).]
- Methylglyoxal dioxime (methylglyoxime) [Beil. I-764, I₁-(396), I₂-(822)]: pr. from alc., m.p. 156° (182). [From C with aq. soln. contg. NH₂OH.HCl (3 moles) + Na₂CO₃ (2 moles) followed by acidification and ether extraction (182); note that by careful regulation of conditions chloroacetone oxime has been obtd. (82% yield (183)), but since it is an oil, b.p. 171° at 727 mm. with slight decompn., it has no value as a for C̄.]
- 1-(β-Phenylhydrazino)acetone phenylhydrazone [Beil. XV-412]: yel. cryst. from MeOH, m.p. 162.5° (184). [From C with phenylhydrazine (3 moles) in abs. alc. at -16 to -18° (184).]
- © Chloroacetone o-nitrophenylhydrazone: m.p. 83° (135).

- ♠ Chloroacetone 2,4-dinitrophenylhydrazone: yel. ndls. from alc., m.p. 124.0-125.5° (185) (51), 124° (39). [From C (0.5 g.) with 2,4-dinitrophenylhydrazine (1.0 g.) in alc. (12 ml.) + conc. HCl (1.5 g.) under reflux (185); note that this prod. on protracted (13 hrs.) boilg. in alc. disproportionates yielding (185) C + 2,4-dinitrophenylhydrazine (both sol. hot alc.) accompanied by the spar. sol. methylglyoxal-bis-(2,4-dinitrophenyl)-osazone, cryst. from pyridine, m.p. 298° (185); for various other reactans, see (185).]
- © Chloroacetone semicarbazone: m.p. 147-148° dec. (39), 141-142° (47), 136-137° (48), 165° (50), 163-165° (44). [From C with aq. semicarbazide HCl on addn. of solid NaHCO3 at room temp. (186); note that this prod. is reactive and on boilg. with aq. dissolves to a bright yel. soln. which soon becomes colorless and ppts. hydrazine dicarboxylic acid diamide leaving in the filtrate hydroxypropanone semicarbazone, m.p. abt. 192° dec. (186); these changes (which doubtless occur slowly even on standing in water at room temp.) probably account for the divergent values of m.p. reported above.]
- © Condensation prod. ( $C_{17}H_{20}O_4N_3SC1$ ) of  $\tilde{C}$  with N-methyl- $\beta$ -carbohydrazidopyridinium p-toluenesulfonate: cryst. from 1:1 alc./ether, m.p. 135° cor. (187). [From  $\tilde{C}$  + indicated react. in abs. alc. on refluxing 15 min. (187).]
- 3:5425 (1) Goldschmidt, Endres, Dirsch, Ber. 58, 576 (1925). (2) Lecat, Rec. trav. chim. 46, 245 (1927). (3) Justoni, Chimica e industria (Italy) 24, 89-94 (1942); Cent. 1943, I 383. (4) Cheng, Z. physik. Chem. B-26, 296 (1934). (5) Conant, Kirner, Hussey, J. Am. Chem. Soc. 47, 497 (1925). (6) Herbst, Kollondchem. Benhefte 23, 330-331 (1927). (7) Linnemann, Ann. 134, 170-175 (1865). (8) Mohler, Helv. Chim. Acta 21, 69 (1938). (9) Cloèz, Ann. chim. (6) 9, 156-161 (1886). (10) Jacob, Bull. soc. chim. (5) 7, 581-586 (1940), C.A. 36, 3508 (1942).
- (11) Harkins, Clark, Roberts, J. Am. Chem. Soc. 42, 703 (1920) (12) Dobrosserdow, J. Russ. Phys.-Chem. Soc. 43, 129 (1911); Cent. 1911, I 955. (13) Giua, Racciu, Atti accad. sci. Torino, Classe sci. fis. mat. at. 67, 409-412 (1932); Cent. 1933, I 3919; C.A. 27, 5719 (1933). (14) Rahrs (to Eastiman Kodak Co.), U.S. 2,263,010, Nov. 18, 1940; C.A. 36, 1331 (1942). (15) Morey (to Commerical Solvents Corp.), U.S. 2,229,625, Jan. 21, 1941; C.A. 35, 2904 (1941). (16) Wallis, Falck (to I.G.), Ger. 584,776, Oct. 1, 1934; Cent. 1935, I 156. (17) Bertrand, Compt. rend. 171, 965-967 (1920); Cent. 1921, I 779. (18) Dufraisse, Bongrand, Compt. rend. 172, 817-819 (1920); Cent. 1921, I 1006. (19) Lecat, Ann. soc. sci. Bruxelles, 41, 21-27 (1927); Cent. 1927, II 226. (20) Glutz, Fischer, J. prakt. Chem. (2) 4, 52-53 (1871).
- (21) Bischoff, Ber. 5, 863-867, 963-964 (1872). (22) Mulder, Ber. 5, 1009-1010 (1872). (23) Bischoff, Ber. 8, 1330 (1875). (24) Barbagha, Ber. 7, 467 469 (1874). (25) Tcherniac, Ber. 25, 2629-2632 (1892). (26) Fritsch, Ber. 26, 597-598 (1893); Ann. 279, 310-319 (1894). (27) Kling, Bull. soc. chm. (3) 33, 322-324 (1905); Ann. chm. (8) 5, 474-480 (1905). (28) Ger. 69,039, April 19, 1893, Friedländer 3, 9. (29) Justoni, Chimica e industria (Italy) 24, 195-201 (1942); Cent. 1943, I 1659. (30) I.G., French 813,131, May 26, 1937; Cent. 1937, II 2071.
- (31) Rahrs (to Eastman Kodak Co.), U.S. 2,235,562, March 18, 1941; C.A. 35, 4040 (1941). (32) Szper, Bull. soc. chim. (4) 51, 653-654 (1932). (33) Shipley, Rogers, Can. J. Research 17-B 147-158 (1939); Cent. 1939, II 3056; C.A. 33, 6727 (1939). (34) Goldschmidt, Schissler, Ber. 58, 567 (1925). (35) Richard, Compt. rend. 133, 878 (1901). (36) Riche, Ann. 112, 321-324 (1859). (37) Behal, Detoeuf, Compt. rend. 153, 1229 (1911). (38) Akashi, Bull. Inst. Phys.-Chem. Research (Tokyo) 12, 329-340 (1933); Cent. 1933, I 3066; C.A. 27, 3447 (1933). (39) Waters, J. Chem. Soc. 1937, 2011-2012. (40) Waters, Nature 140, 466-467 (1937).
- Chem. Rescator (Polygo 12), 3201-2012. (40) Waters, Nature 140, 466-467 (1937).
  (41) Meerwein, Büchner, van Emster, J. prakt. Chem. (2) 152, 248-251 (1939). (42) Markownikoff, Ann. 153, 254-255 (1870). (43) Morley, Green, J. Chem. Soc. 47, 133 (1885); Ber. 18, 24-25 (1885). (44) Michael, J. prakt. Chem. (2) 60, 455-457 (1899); Ber. 39, 2787 (1996). (45) Henry, Rec! trav. chim. 22, 337-338 (1903); Bull. acad. roy. Belg. 1903, 397-431; Cent. 1908, II 486. (46) Ssuknewitsch, Tschilingarjan, Ber. 69, 1539 (1936). (47) Gutner, Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1062-1067 (1938); Cent. 1939, II 4221. (48) Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1232-1246 (1938); Cent. 1939, II 4223. (49) Jones, Williams, J. Chem. Soc. 1934, 834. (50) Hamel. Bull. soc. chim. (4) 29, 399 (1921).
- 1934, 834. (50) Hamel, Bull. soc. chim. (4) 29, 399 (1921).
  (51) Bülow, King, Ann. 439, 213 (1924). (52) Henry, Ber. 5, 190-191, 966 (1872). (53)
  Linnemann, Ann. 138, 123-125 (1866). (54) Dobryanskii, Davydova, Papkina, J. Gen. Chem. (U.S.S.R.) 7, 291-297 (1937); Cent. 1937, II 1998; C.A. 31, 4645 (1937). (55) Boses (to Carbide and Carbon Chem. Corp.), U.S. 2,209,683, July 30, 1940; C.A. 35, 139 (1941). (56) Ferris

(to Atlantic Refining Co.), U.S. 2,062,872, Dec. 1, 1936; Cent. 1937, I 3578; C.A. 31, 849 (1937). [57] Kodak, Ltd., Brit. 405,028, Feb. 22, 1934; French 757,767, Jan. 4, 1934; Cent. 1934, II 1250. (58) Nef, Ann. 335, 278 (1904). (59) Meerwein, Hinz, Majert, Sonke, J. prakt. Chem. (2) 147, 236 (1936). (60) Sen, J. Indian Chem. Soc. 1, 7 (1925).

 (61) Winkel, Proske, Ber. 69, 700 (1936).
 (62) N. V. de Bataafsche Petroleum Maatschappij,
 French 797,943, May 6, 1936; Cent. 1936, II 865; C.A. 30, 7124 (1936).
 (63) I.G., French 816,956, Aug. 21, 1937; Cent. 1938, I 2216. (64) Edwards, Evans, Watson, J. Chem. Soc. 1937, 1944–1945. (65) Heisel, Hendschel (to I.G.), U.S. 2,199,934, May 7, 1940; C.A. 34, 5855 (1940). (66) I.G., French 837,741, Feb. 20, 1939; Cent. 1939, II 228. (67) Cloëz, Ann. chim. (6) 9, 207-209 (1886). (68) Astruc, Munro, Compt. rend. 131, 944 (1900). (69) Hedelius, Z. physik. Chem. 96, 356-358, 364-365 (1920). (70) Bradsher, Tess, J. Am. Chem. Soc. 61, 2184-2185 (1939).

(71) Stoermer, Ber. 28, 1253-1254 (1895); Ann. 312, 273 (1900). (72) Stoermer, Wehln Ber. 35, 3553, Note (1902). (73) Whitney, Henze, J. Am. Chem. Soc. 60, 1149 (1938). (74) Thoms, Kross, Arch. Pharm. 265, 342-343 (1927). (75) Sabetay, Bull. soc. chim. (4) 45, 534-537 (1929). (76) Lippmann, Ber. 45, 2489-2491 (1912). (77) Dachlauer, Thomsen (to I.G.), Ger. 453,430, Dec. 7, 1937; French 612,035, Oct. 15, 1926; Cent. 1928, I 2456. (78) I.G., French 666,086, Sept. 26, 1929; Cent. 1930, II 1145. (79) Scholl, Matthaiopoulos, Ber. 29, 1558 (1896). (80) Evlampiev, Ber. 62, 2387-2388 (1929).

(81) Mazak, Suszko, Roczniki Chem. 9, 431-443 (1929); Cent. 1929, II 1918; C.A. 23, 4187 (1929). (82) Slator, Twiss, J. Chem. Soc. 95, 96 (1909). (83) Bohme, Pfeifer, Schneider, Ber. 75, 903-904, 908 (1942). (84) van Zuydewijn, Boeseken, Rec. trav. chim. 53, 673-674 (1934). (85) Matthaiopoulus, Zaganjaris, J. prakt. Chem. (2) 123, 333-335 (1930). (86) Tcherniac, J. Chem. Soc. 115, 1071-1076 (1919). (87) Tcherniac, Ber. 25, 2623-2628 (1892). (88) Hellon, Tcherniac, Ber. 16, 348-350 (1883). (89) Hantzsch, Ber. 60, 2541-2543 (1927); Ber. 61, 1780, 1784 (1928). (90) Tcherniac, Ber. 61, 575-577 (1928).

(91) Cadwell, Meuser (to Naugatuck Chem. Co.), U.S. 1,839,950, Jan. 5, 1932; Cent. 1932, I 3356. (92) du Pont Co., Brit. 466,877, July 8, 1937; Cent. 1937, II 3108. (93) Heckert (to Röhm and Haas Co.), U.S. 1,808,893, June 9, 1931; Cent. 1932, I 123. (94) Tcherniac, Ber. 25, 3648-3652 (1892). (95) Corvie, Gibson, J. Chem. Soc. 1934, 48. (96) Bohme, Fischer, Ber. 76, 99-106 (1943); C.A. 37, 5026 (1943). (97) R. Otto, W. Otto, J. prakt. Chem. (2) 36, 402-405, 426 (1887). (98) Arndt, Martius, Ann. 499, 280 (1932). (99) Niemilowicz, Monatsh. 7, 242-249 (1886). (100) Furnée, Arch. Pharm. 236, 343-346 (1898).

(101) Brabant, Arch. intern. pharmacodynamie 25, 295-320 (1920); Ccnt. 1921, III 124. (102) Clarke, J. Chem. Soc. 97, 427 (1910). (103) Mel'nikov, Kretov, Mel'tser, J. Gen. Chem. (U.S.S.R.) 7, 461-463 (1937); Cent. 1937, II 1564; C.A. 31, 4289 (1937). (104) Mannich, Hahn, Ber. 44, 1552 (1911). (105) Gabriel, Pinkus, Ber. 26, 2197-2202 (1893). (106) Stoermer, Dzimski, Ber. 28, 2220-2227 (1895). (107) Stoermer, Chydenius, Schinn, Ber. 57, 74-75 (1924). (108) Shriner, Anderson, J. Am. Chem. Soc. 61, 2706 (1939). (109) Stoermer, Schäffer, Ber. 36,

2864-2865 (1903). (110) Stoermer, Ber. 30, 1711-1712 (1897).

(111) Stoermer, Calov, Ber. 34, 775 (1901). (112) Bauer, Werner, Ber. 55, 2498 (1922). (113) Favrel, Bull. soc. chim. (4) 41, 1494-1497 (1927). (114) Favrel, Bull. soc. chim. (5) 1, 981-990 (1934). (115) Fourneau, Bull. soc. chim. (4) 5, 229-231 (1909). (116) Poulenc Frères et Fourneau, Ger. 198,306, May 12, 1908; Cent. 1908, I 1956. (117) Ultée, Ber. 39, 1858 (1906): Rec. trav. chim. 28, 17-19 (1909). (118) Fourneau, Tiffeneau, Bull. soc. chim. (4) 15, 24 (1914). (119) Justoni, Gazz. chim. ital. 71, 41-53 (1941); C.A. 36, 1016-1017 (1942). (120) Arbusow, Ber. 40, 3304 (1907); J. Russ. Phys.-Chem. Soc. 40, 637-652 (1908); Cent. 1908, II 1340.

(121) Evlampiev, J. Gen. Chem. (U.S.S.R.) 7, 2941-2944 (1937); Cent. 1939, I 1747; C.A. 32, 5377 (1938). (122) Druey, Bull. soc. chim. (5) 2, 2261-2264 (1935). (123) Passerini, Gazz. chim. ital. 54, 532-533, 536-537 (1924). (124) Dersin, Ber. 54, 3158-3159 (1921). (125) Honry, Compt. rend. 142, 131, 494, Note (1906); Bull. acad. roy. Belg. 1906, 523-557; Cent. 1906, II 1551; Rec. trav. chim. 26, 149 (1907). (126) Henry, Compt. rend. 145, 24 (1907). (127) Fourneau, Tiffeneau, Compt. rend. 145, 438 (1907). (128) Seyer, Chalmers, Trans. Roy. Soc. Can. (3) III 20, 337-341 (1926); Cent. 1927, II 1811. (129) Fourneau, Samdahl, Bull. soc. chim. (4) 47, 1005-1010 (1930). (130) Favorskii, Tikhomolov, Compt. rend. 203, 726-727 (1936); Cent. 1937, I 577; C.A. 31, 6188 (1937).

(131) Tiffeneau, Deux, Compt. rend. 213, 753-758 (1941); Cent. 1942, II 1557; C.A. 37, 4049 (1943). (132) Zaboev, J. Gen. Chem. (U.S.S.R.) 1, 143-149 (1931); Cent. 1931, II 1122; C.A. 25, 4525 (1931). (133) Tiffeneau, Compt. rend. 134, 775 (1902); Ann. chim. (8) 10, 176-179 (1907). (134) Tiffeneau, Compt. rend. 137, 990 (1903); Ann. chim. (8) 10, 367-368 (1907). (135) Arndt, Amende, Ender, Monatsh. 59, 206-207, 213 (1932). (136) Weidenhagen, Herrmann, Ber. 68, 1960-1961 (1935). (137) Korschun, Ber. 37, 2196-2197 (1904). (138) Hantzsch, Ber. 25, 1474-1476 (1890). (139) Feist, Ber. 35, 1539-1552 (1902). (140) Küster, Willig, Z.

physiol. Chem. 121, 144-145 (1922); Cent. 1922, III 1087.

(141) Fischer, Smeykal, Ber. 56, 2372-2374 (1923). (142) Reichstein, Zschokke, Helv. Chim. Acta 14, 1271-1272 (1931). (143) Feist, Molz, Ber. 32, 1766-1769 (1899). (144) Rinkes, Rec. trav. chim. 56, 1127-1129 (1931). (145) Oesterreich, Ber. 30, 2255 (1897). (146) Schuftan, Ber. 28, 3070-3072 (1895). (147) Friedman, Sparks, Adams, J. Am. Chem. Soc. 59, 2262-2263 (1937). (148) Lewy, Ber. 21, 2193-2194 (1888). (149) Clarke, Gurin, J. Am. Chem. Soc. 57, 1879 (1935). (150) Hromatka (to E. Merck), Ger. 670,131, Jan. 12, 1939; Cent. 1939, I 2296.

(151) Buchman, Reims, Sargent, J. Org. Chem. 6, 767-768 (1941). (152) Hantssch, Ann. 256, 265-268 (1888). (153) Dyson, Hunter, Jones, Styles, J. Indian Chem. Soc. 8, 176-177 (1931). (154) von Auwers, Ernst, Z. physik. Chem. A-122, 232, 246 (1926). (155) Hubacher, Ann. 259, 236 (1890). (156) Mills, Smith, J. Chem. Soc. 121, 2736 (1922). (157) Byers, Dickey, Org. Syntheses, Coll. Vol. 2 (1st ed.), 31-32 (1943); 19, 10-11 (1939). (158) Traumann, Ann. 249, 37-38, 43-45, 47 (1888). (159) Bogert, Chertoff, J. Am. Chem. Soc. 48, 2866 (1924). (160) Hantzsch, Traumann, Ber. 21, 938-939 (1888).

(161) Hantzsch, Weber, Ber. 20, 3121 (1887). (162) Tscherniac, Norton, Ber. 16, 345-347 (1883). (163) Burtles, Pyman, Roylance, J. Chem. Soc. 127, 589 (1925). (164) Young, Crookes, J. Chem. Soc. 89, 64, 68 (1906). (165) Miolati, Gazz chim. ital. 23, I 578-579 (1893). (166) Levi, Gazz chim. ital. 61, 721-722 (1931); Cent. 1932, I 1097; C.A. 26, 1602 (1932). (167) Bruni, Romani, Atti accad. Lincei (5) 31, I 86-88 (1922); Cent. 1922, III 676; C.A. 16, 4093 (1922). (168) Bose, J. Indian Chem. Soc. 4, 336 (1927). (169) Bose, Sen. J. Indian Chem. Soc. 5, 650, 653, 655 (1928). (170) Das-Gupta, Bose, J. Indian Chem. Soc. 6, 499, 501-502, 504.

(171) McLean, Wilson, J. Chem. Soc. 1937, 556-559. (172) Perkin, J. Chem. Soc. 59, 788-789 (1891). (173) Madelung, Oberwegner, Ber. 65, 940 (1932). (174) Breuer, Zincke, Ber. 13,

639 (1880). (175) Van Romburgh, Rec. trav. chim. 1, 53-54 (1882). (176) Kling, Ann. chim. (8) 5, 484-485 (1905). (177) Calaway, Henze, J. Am. Chem. Soc. 61, 1356 (1939). (178) Stoermer, Ann. 312, 311-312 (1900). (179) Goedeckemeyer, Ber. 21, 2684 (1888). (180)

Gabriel, Colman, Ber. 35, 3806 (1902).

(181) Sah, Ma, Ber. 65, 1630-1633 (1932). (182) Hantzsch, Wild, Ann. 290, 292 (1896). (183) Scholl, Matthaiopoulos, Ber. 29, 1552-1554 (1896). (184) Bodforss, Ber. 52, 1770-1771, 1775 (1919). (185) Bulow, Seidel, Ann. 439, 48-58 (1924). (186) Hoogeveen, Jansen, Rec. trav. chim. 51, 260-264 (1932). (187) Allen, Gates, J. Org. Chem. 6, 596-601 (1941). (188) Shilor, Kubinskaye, J. Applied Chem. (U.S.S.R.) 13, 121-126 (1945); C.A. 39, 5250 (1945). (189) Buchman, Sargent, J. Am. Chem. Soc. 67, 401-402 (1945). (190) Morey (to Commerical Solvents Corp.). U.S. 2,374,494, April 25, 1945; C.A. 39, 3545 (1945).

(191) Hurd, Perletz, J. Am. Chem. Soc. 68, 38-39 (1946). (192) Hurd, Rector, J. Org. Chem.

**10,** 443 (1945).

3:5430 1,1-DICHLOROPROPANONE-2 
$$C_3H_4OCl_2$$
 Beil. I - 654  $(\alpha,\alpha$ -Dichloroacetone;  $CH_3$ —C—CHCl<sub>2</sub>  $I_1$ -(344)  $I_2$ -(718) dichloromethyl methyl ketone)

B.P. 120-121° (1) (25)  $D_2^{21} = 1.236$  (5) 120° (2) (10) (11) (14) 119.8-120° (3)  $D_-^{20} = 1.236$  (6) 119-120° (7) 115-116° (4)  $D_-^{15} = 1.234$  (1)

Colorless oil which rapidly turns yellow on expos. to light; spar. sol. aq.; eas. sol. alc., ether. —  $\bar{\mathbf{C}}$  has penetrating odor, is lachrymatory, and blisters skin. — Note that b.p. of  $\bar{\mathbf{C}}$  is very close to that of chloroacetone (3:5425) and that the latter is a frequent impurity in ord. samples of  $\bar{\mathbf{C}}$ .

[For prepn. of  $\tilde{C}$  from acetone (1:5400) with  $Cl_2$  under various conds. see (2) (5) (7) (8) (9) (1); from acetone at b.p. with  $Cl_2$  in pres. of  $I_2$ ,  $FeCl_3$ , or  $SbCl_5$  (yield: 48.6%  $\tilde{C}$  accompanied by 28% sym.-dichloroacetone (3:0563) (12)) or at 70° in pres. of NiCl<sub>2</sub> (13)

(other prods. are also formed) or by electrolysis in HCl (9) see indic. refs.; from ethyl  $\alpha,\alpha$ -dichloroacetoacetate [Beil. III-663, III<sub>1</sub>-(233), III<sub>2</sub>-(427)] by ketonic cleavage with dil. HCl in s.t. at 170-180° for 4-6 hrs. (14) or by refluxing 4-5 hrs. with HCl (15) cf. (4) see indic. refs.; for formn. of  $\bar{C}$  from isopropyl alc. (1:6135) with Cl<sub>2</sub> see (16); from methylacetylene with HOCl (42% yield) see (17); from 1,1-dichloro-2-methylpropene-2 (3:7480) with O<sub>2</sub> see (18); from homoaspartic acid [Beil. IV-494, IV<sub>1</sub>-(541), IV<sub>2</sub>-(912)] by oxidn. with sodium N-chloro-p-toluenesulfonamide see (19).

[Č on reduction with Al(OEt)<sub>3</sub> + anhydrous acetaldehyde in dry ether gives (45% yield (20)) 1,1-dichloropropanol-2 (3:5755), b.p. 146-148°. — Č on reduction by yeast gives (54% yield (21)) levorotatory 1,1-dichloropropanol-2.]

 $\bar{C}$  on oxidn. with conc. HNO<sub>3</sub>, CrO<sub>3</sub>, or KMnO<sub>4</sub> yields (22) dichloroacetic acid (3:6208). [ $\bar{C}$  with Br<sub>2</sub> (1 mole) (1) yields 3-bromo-1,1-dichloropropanone-2 [Beil. I-657], b.p. 111° at 25 mm. (1);  $\bar{C}$  with excess Br<sub>2</sub> at 100° yields (1) 3,3-dibromo-1,1-dichloropropanone-2 [Beil. I-658], b.p. 120° at 25 mm. (1); for study of rate of bromination of  $\bar{C}$  and influence of catalysts thereon see (4).]

 $\{\bar{C} \text{ with PCl}_5 \text{ htd. at b.p. of mixt. for 2 days yields (2) 1,1,2,2-tetrachloropropane (3:5825), b.p. 153°.\}$ 

 $[\bar{C}]$  with aq. in s.t. at 200° for 6 hrs. yields (23) lactic acid (1:0400). —  $\bar{C}$  with aq. alk. yields (presumably via cleavage of the expected methylglyoxal) acetic acid (1:1010) and formic acid (1:1005); by virtue of this result  $\bar{C}$  readily reduces Fehling's soln. (24). —  $\bar{C}$  with aq. 10%  $K_2CO_3$  on boilg. loses HCl yielding (25) acrylic acid (1:1020).]

 $\bar{C}$  with satd. aq. NaHSO<sub>3</sub> soln. readily yields (1) (5) an addn. prod. crystg. as a trihydrate. [ $\bar{C}$  with conc. aq. HCN slowly dis. on protracted refluxing yielding (10) the corresp. cyanohydrin ( $\beta,\beta$ -dichloro- $\alpha$ -hydroxy-isobutyronitrile) [Beil. III-318], an oil, which on htg. dissociates into its components; this prod., however, on hydrolysis with strong HCl yields (10) the corresp. acid,  $\beta,\beta$ -dichloro- $\alpha$ -hydroxyisobutyric acid (3:2145), pr. from alc./ether or cryst. from C<sub>6</sub>H<sub>6</sub>, m.p. 82-83° (10) (26). — Note also that  $\bar{C}$  with phenylisocyanide + aq. on stdg. yields (26)  $\beta,\beta$ -dichloro- $\alpha$ -hydroxy-isobutyranilide, pr. from CHCl<sub>3</sub>, m.p. 132-133° (26).]

[C in excess McOH (5 moles) with ethyl iminoformate hydrochloride (1½ moles) 4-8 days at room temp. yields (27) unsym.-dichloroacetone dimethylacetal, b.p. 170-171° at 767 mm., 63° at 9 mm. — C in excess EtOH with ethyl iminoformate as above yields (27) unsym.-dichloroacetone diethylacetal, b.p. 183-184° at 767 mm., 76° at 8 mm.]

[ $\bar{C}$  with o-nitrobenzaldehyde in alc. treated dropwise with aq. 5% NaOH condenses yielding (28)  $\omega$ ,  $\omega$ -dichloro-o-nitrobenzalacetone, pptd. as oil by addn. of aq., colorless pr. from  $C_6H_6$ , m.p. 106–107° (28). — By similar procedure  $\bar{C}$  with m-nitrobenzaldehyde gives (28)  $\omega$ ,  $\omega$ -dichloro-m-nitrobenzalacetone, colorless pr. from  $C_6H_6$ , m.p. 116–117°;  $\bar{C}$  with p-nitrobenzaldehyde similarly gives (30% yield (28))  $\omega$ ,  $\omega$ -dichloro-p-nitrobenzalacetone, colorless pr. from  $C_6H_6$  or ether, m.p. 125°.]

[ $\bar{\mathbf{C}}$  with diazotized aniline in pres. of NaOAc yields (29) dichloro-bis-(benzeneazo)-methane, yel.-or. cryst. from hot alc., m.p. 81-82°;  $\bar{\mathbf{C}}$  with diazotized p-toluidine in pres. of NaOAc yields (29) dichloro-bis-(p-tolueneazo)methane, or. cryst. from C<sub>6</sub>H<sub>6</sub>, m.p. 159-160°.

 $\ddot{C}$  (1 mole) treated with aq. soln. of excess NH<sub>2</sub>OH.HCl (6 moles) + Na<sub>2</sub>CO<sub>3</sub> (3 moles), stood 24 hrs., and acidified yields (15) methylglyoxal dioxime (methylglyoxime) [Beil. I-764, I<sub>1</sub>-(396), I<sub>2</sub>-(822)], pr. from alc. or aq., m.p. 157°, 153° (15) (30); the same prod. also results if a satd. soln. hydroxylamine sulfate is used (30) in place of free hydroxylamine.

Č (1 g.) in abs. alc. (20 g.) with phenylhydrazine (2.5 g.) stood for 1½ days, then warmed with aq. (100 ml.), yields (31) as insol. residue (1 g.) methylglyoxal bis-(phenyl)osazone [Beil. XV-156, XV<sub>1</sub>-(38)], yel. ndls. from dil. alc., m.p. 148° (31).

- ₱ 1,1-Dichloropropanone-2 semicarbazone: m.p. 163° (32). [From C in alc. with aq. semicarbazide.HCl (1 mole) without addn. of NaOAc, the semicarbazone pptg. immediately; note, however, that on stdg. the filtrate ppts. a small amt. of methylglyoxal bis-semicarbazone, m.p. 254°, also formed (together with equiv. C) on boilg. the semicarbazone with aq. (32).]
- 3:5430 (1) Cloéz, Ann. chim. (6) 9, 164-165, 175-176, 211-213 (1886). (2) Borsche, Fittig, Ann. 133, 112-117, 124 (1865). (3) Cheng, Z. physik. Chem. B-26, 296 (1934). (4) Bell, Lidwell, Proc. Roy. Soc. London, A-176, 104-106 (1940). (5) Fittig, Ann. 110, 38-43 (1859). (6) Harkins, Clark, Roberts, J. Am. Chem. Soc. 42, 703 (1920). (7) Glutz, Fischer, J. prakt. Chem. (2) 4, 53 (1871). (8) Mulder, Ber 5, 1007-1009 (1872). (9) Theegarten, Ber. 6, 897-898 (1873). (10) Bischoff, Ber. 8, 1330-1336 (1875).
- (11) Grabowski, Ber. 8, 1438-1442 (1875). (12) Consortium fur Elektrochem. Ind., French 707,852, July 16, 1931; Cent. 1931, II 2056. (13) Akashi, Bull. Inst. Phys.-Chem. Research (Tokyo) 12, 329-340 (1933); Cent. 1933, I 3066; C.A. 27, 3447 (1933), (14) Conrad, Ann. 186, 235-236 (1877). (15) Meyer, Janny, Ber. 15, 1165-1166 (1882). (16) Buc (to Standard Oil Co.), U.S. 1,391,757, Sept. 27, 1921; Cent. 1922, IV 942. (17) Wittorf, J. Russ. Phys.-Chem. Soc 32, 88-117 (1900); Cent. 1900, II 29-30. (18) Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1232-1236 (1938); Cent. 1939, II 4223. (19) Dakin, Biochem. J. 11, 91 (1917). (20) Nord, Ger. 434,728, Oct. 5, 1926; Cent. 1926, II 2845.
- (21) Sen, J. Indian Chem. Soc. 1, 1-8 (1924/25); Cent. 1925, I 537; C.A. 19, 816 (1925); Biochem. Z. 151, 51-53 (1924); Cent. 1924, II 2272; C.A. 19, 3277 (1925). (22) N. V. de Bataafsche Petroleum Mattschappij, French 797,943, May 6, 1936; Cent. 1936, II 865. (23) Linnemann, Zotta, Ann. 159, 248-251 (1871). (24) Klmont, Chem. Ztg. 69, 521 (1922). (25) Faworsky, J. prakt. Chem. (2) 51, 555-557 (1895). (26) Passerini, Gazz. chim. ital. 54, 540 (1924). (27) Wohl, Ber. 41, 3605-3606 (1908). (28) Heller, Lauth, Buchwaldt, Ber. 55, 485-486 (1922). (29) Favrel, Bull. soc. chim. (5) 1, 988-989 (1934). (30) Treadwell, Westenberger, Ber. 15, 2786-2787 (1882).
  - (31) Heller, Ann. 375, 287-288 (1910). (32) Knopfer, Monatsh. 32, 765-766 (1911).

```
B.P.
                                  -99.5^{\circ} (8) D_4^{25} = 1.1770 (11) n_D^{25} = 1.4362 (12)
120.5–120.6° (1) (2) (3) (4)
120.4°
                at 760 mm. (5)
                                              D_4^{17.6} = 1.1896 (13) \quad n_D^{20} = 1.452
                         (6) (7)
                                                                                         (9)
120.3-120.5° at 760 mm. (8)
                                                                             1.44867 (28)
120.2°
                at 750 mm. (28)
119.2°
                at 740 mm. (9)
119°
                at 740 mm. (10)
```

Colorless oil. — Note that b.p. of 125° given in I.C.T. is too high (4). — Almost insol. in aq. [for precise data see (1) (2) (3) (4)].

[For prepn. from propanediol-1,3 (trimethylene glycol) (1:6490) with fumg. HCl in s.t. at 100° (13) (10) (20–25% yield (14)) but always accompanied by 3-chloropropanol-1 (trimethylene chlorohydrin) (3:8285) see indic. refs.; with PCl<sub>3</sub> + ZnCl<sub>2</sub> (21% yield (15)), or PCl<sub>5</sub> + ZnCl<sub>2</sub> (31% yield (15)), or SOCl<sub>2</sub> (50% yield (15)) see (15): for prepn. of  $\tilde{C}$  from 1,3-dibromopropane (trimethylene dibromide) + HgCl<sub>2</sub> (8) (10) or 1,3-diiodopropane + AgCl (16) see indic. refs.: for prepn. of  $\tilde{C}$  from  $\gamma$ -chloropropyl p-toluenesulfonate with various RMgX cpds. see (12); for formn. of  $\tilde{C}$  (19.3% (7) together with other products) by chlorination of propane (17) (18) (19) or n-propyl chloride (3:7040) (17) (18) see indic. refs.]

[ $\bar{C}$  with Zn dust in aq. alc. (20) (21) or better in a high-boilg. solvent (7) (22) yields cyclopropane, b.p.  $-34^{\circ}$ .]

Č with alc. KOH yields allyl chloride (3:7035), b.p. 46°, which then reacts with the KOEt yielding (10) allyl ethyl ether (1:7850), b.p. 66-67° at 742 mm.

- 1,8-Diphenoxypropane (1:7170) q.v.: lfts. from alc., m.p. 61° (23), 60-61° (24), 59-60° (25); b.p. 338-340° cor. at 762 mm. (26). [From C (26) (or trimethylene dibromide (24) or trimethylene diiodide (25)) with sodium phenolate.]
- **1,3-Di-**(α-naphthoxy)propane [Beil. VI-607]: ndls. from alc., m.p. 103-104° (27).
- **1,3-Di-**(β-naphthoxy)propane [Beil. VI-642]: lfts. from AcOH, m.p. 148-149° (27).
- 3:5450 (1) Gross, Saylor, Gorman, J. Am. Chem. Soc. 55, 651 (1933). (2) Gross, Physik. Z. 32, 589 (1931). (3) Gross, Z. physik. Chem. B-6, 215-220 (1929). (4) Gross, J. Am. Chem. Soc. 51, 2362-2366 (1929). (5) Hass, J. Chem. Education, 13, 493 (1936). (6) Hass, McBee, Weber, Ind. Eng. Chem. 28, 338 (1936). (7) Hass, McBee, Hinds, Gluesenhamp, Ind. Eng. Chem. 28, 1178-1181 (1936). (8) Serwy, Bull. soc. chim. Belg. 42, 485, 488 (1933). (9) Kohlrausch, Ypsilanti, Z. physik. Chem. B-32, 414 (1936). (10) Reboul, Ann. chim. (5) 14, 460-462, 493 (1878).
- (11) Dunstan, Hilditch, Thole, J. Chem. Soc. 163, 137 (1913). (12) Rossander, Marvel, J. Am. Chem. Soc. 0, 1491-1496 (1928). (13) Freund, Monatsh. 2, 638-639 (1881). (14) Rojahn, Ber. 54, 3116 (1921). (15) Clark, Streight, Trans. Roy. Soc. Can. (3) 23, III 77-89, (1929). (16) Hersfelder, Ber. 26, 2434 (1893). (17) Hass, McBee (to Purdue Research Foundation), Canadian 374,242, June 7, 1938; Cent. 1938, II 3005; C.A. 32, 5856 (1938). (18) Hass, McBee (to Purdue Research Foundation), U.S. 2,105,733, Jan. 18, 1938; Cent. 1938, I 4533. (19) Hass, McBee (to Purdue Research Foundation), U.S. 2,004,073, June 4, 1935; Cent. 1936, I 1500. (20) Lott, Christiansen, Schackell, J. Am. Pharm. Assoc. 27, 125-120 (1938).
- (21) Lott (to E. R. Squibb and Sons), U.S. 2,261,168, Nov. 4, 1941; C.A. 36, 1049 (1942). (22) Hass, Hinds (to Purdue Research Foundation), U.S. 2,098,239, Nov. 9, 1937; Cent. 1938, I 4237. (23) Lohmann, Ber. 24, 2632 (1891). (24) Ramart-Lucus, Hoch, Bull. soc. chim. (4) 51, 837 (1932). (25) Bell, Bennett, Hock, J. Chem. Soc. 1927, 1807. (26) Henry, Bull. soc. chim. (3) 15, 1224 (1896). (27) Gattermann, Ann. 357, 378-380 (1907). (28) Smyth, McAlpine, J. Am. Chem. Soc. 57, 979 (1935).

3:5460 TETRACHLOROETHYLENE (Perchloroethylene) CI—C=C—Cl C<sub>2</sub>Cl<sub>4</sub> Beil. I - 187 (Perchloroethylene) Cl Cl Cl Cl I<sub>1-</sub>(79) I<sub>2-</sub>(161) B.P. F.P. 121.20° at 760 mm. 
$$\{1\}$$
 -23.5°  $\{16\}$   $D_4^{25}$  = 1.61463  $\{1\}$   $n_D^{25}$  = 1.4993  $\{22\}$  121.1° at 765 mm.  $\{2\}$  -23°  $\{17\}$   $\{3\}$   $\{4\}$  121° at 765 mm.  $\{5\}$  -22.35°  $\{1\}$   $D_4^{20}$  = 1.6230  $\{13\}$   $n_D^{20}$  = 1.5058  $\{13\}$  121° at 760 mm.  $\{6\}$   $\{8\}$  1.623  $\{6\}$  1.50566  $\{2\}$  121°  $\{7\}$  -22.4°  $\{18\}$  1.62286  $\{1\}$  1.50547  $\{20\}$  120.8° at 760 mm.  $\{8\}$  -19°  $\{19\}$  1.6226  $\{20\}$  120.74°  $\{9\}$  1.6207  $\{2\}$  120.5-120.8° at 770 mm.  $\{10\}$  1.9 1.6239  $\{11\}$   $n_D^{15}$  = 1.50812  $\{1\}$  119.0-120.0° u.c.  $\{11\}$  1.6239  $\{14\}$  1.50831  $\{1\}$  119-120° at 753 mm.  $\{12\}$  1.50899  $\{1\}$  118.0-118.1° at 740 mm.  $\{15\}$  3.2° at 30 mm.  $\{14\}$  See also Note 2.

Note 1. For vap. press. of  $\bar{\mathbf{C}}$  from 33–118° see (14). Note 2. For  $D_4^t$  over range  $t=15-90^\circ$  see (14).

Colorless liq. widely used as solvent, etc. (see also below). —  $\tilde{C}$  is pract. insol. aq., but detailed studies do not appear to be recorded. —  $\tilde{C}$  is miscible with alc., ether, CHCl<sub>3</sub>, C<sub>6</sub>H<sub>6</sub>, and many other org. solvents.

#### GENERAL

[For study of  $\tilde{C}$  as solvent for detn. of mol. wts. by raising of b.p. (ebullioscopic const. = 55.0° per mole solute/100 g.  $\tilde{C}$ ) see (23). — For study of thermal conductivity see (24). — For soly. in  $\tilde{C}$  of gaseous HCl, H<sub>2</sub>S, or NH<sub>3</sub> see (11). — For study of influence of  $\tilde{C}$  upon inflammability of mixts. of air with CH<sub>4</sub> (25) (10) (26) (27), with CO (10) (28), with H<sub>2</sub> (10), or acetylene (10) see indic. refs.]

Binary systems contg.  $\bar{C}$ . [System  $\bar{C}+CCl_4$ : for f.p./compn. data see (18); for  $n_D^{25}$ /compn. and use in anal. of the system see (22); for vap. press. and liq./vapor compn. of system see (29). — System  $\bar{C}+1,1,2,2$ -tetrachloroethane (3:5750): for f.p./compn. data see (17). — System  $\bar{C}+p$  pentachloroethane (3:5880): for f.p./compn. data (eutectic, f.p. -54.8° contg. 58.4 wt. %  $\bar{C}$ ) see (18). — System  $\bar{C}+i$  sopropyl alc. (1:6135); for  $D_{23}^{25}$ /compn. and  $n_D^{25}$ /compn. data see (30).]

Č forms binary azeotropes with many alcohols [e.g.,  $\bar{C}$  with MeOH (1:6120) forms a const.-boilg. mixt., b.p. 63.75° at 760 mm., contg. 36.5 wt. %  $\bar{C}$  (3);  $\bar{C}$  with EtOH (1:6130) forms a const.-boilg. mixt., b.p. 76.75° at 760 mm., contg. 37 wt. %  $\bar{C}$  (3);  $\bar{C}$  with n-propyl alc. (1:6150) forms a const.-boilg. mixt., b.p. 94.05° at 760 mm., contg. 52 wt. %  $\bar{C}$  (31);  $\bar{C}$  with isopropyl alc. (1:6135) forms a const.-boilg. mixt., b.p. 81.7° at 760 mm., contg. 30 wt. %  $\bar{C}$  (31);  $\bar{C}$  with n-butyl alc. (1:6180) forms a const.-boilg. mixt., b.p. 108.95° at 760 mm., contg. 71 wt. %  $\bar{C}$  (3);  $\bar{C}$  with isoamyl alc. (1:6200) forms a const.-boilg. mixt., b.p. 116.1° at 760 mm., contg. 80 wt. %  $\bar{C}$  (31);  $\bar{C}$  with ethylene glycol (1:6465) forms a const.-boilg. mixt., b.p. 119.1° at 760 mm., contg. 94 wt. %  $\bar{C}$ ].

 $\bar{\mathbf{C}}$  forms binary azeotropes with many other org. cpds. [e.g.,  $\bar{\mathbf{C}}$  with formic acid (1:1005) forms a const.-boilg. mixt., b.p. 88.15° at 760 mm., contg. 50 wt. %  $\bar{\mathbf{C}}$  (32);  $\bar{\mathbf{C}}$  with  $\mathbf{AcOH}$  (1:1010) forms a const.-boilg. mixt., b.p. 107.35° at 760 mm., contg. 61.5 wt. %  $\bar{\mathbf{C}}$  (218);  $\bar{\mathbf{C}}$  with propionic acid (1:1025) forms a const.-boilg. mixt., b.p. 119.15° at 760 mm., contg. 91.5 wt. %  $\bar{\mathbf{C}}$  (4);  $\bar{\mathbf{C}}$  with isobutyric acid (1:1030) forms a const.-boilg. mixt., b.p. 120.5°, contg. 97 wt. %  $\bar{\mathbf{C}}$  (33)].

Uses of  $\bar{C}$ .  $\bar{C}$  because of its solvent properties, b.p., uninflammability, and immiscibility with aq., etc., finds wide use. — [Other examples of its utility include the following: for use as dry-cleaning solvent see (34), cf. (35) (36) (222); for use with lower aliph. alcs. as solv. for cellulose ethers see (37); for use in dewaxing of lubricating oil see (38); for use in liq. HCN to diminish inflammability and explosiveness see (39); for use as a component of comml. tear-gas mixts. see (40).]

[For study of use of  $\bar{C}$  as an anesthetic (41), as fumigation agt. (with CCl<sub>4</sub>) for grain or flour (42), for sterilization of surgical catgut (43), of antiseptic action (compared with CHCl<sub>3</sub> (44)) (45) see indic. refs.]

[For examples of studies of use of  $\bar{C}$  as anthelmintic especially with reference to hookworm and similar parasites see (46)–(57) incl.; for comparison of anthelmintic action of  $\bar{C}$  with that of CCl<sub>4</sub> (58) (59) or of chenopodium oil (60) see indic. refs.; for patent prepn. of  $\bar{C}$  for use as anthelmintic see (61).] (For toxicity see below.)

[For use of  $\bar{C}$  as the "booster" liquid in detn. of aq. by distn. especially in molasses and other sugar industry products see (62) (63) (64) (65) (66) (67). — For use of  $\bar{C}$  in prepn. of anhydrous Na<sub>2</sub>O<sub>2</sub> by removal of moisture by distn. see (68).]

[For brief general surveys of  $\bar{C}$  see (69) (70).]

Physiological actn. and/or toxicity of C. [For studies from various viewpoints on toxicity of C see (57), (71)-(82) incl., also especially (219) (220) (224).]

Determination of C. C is usually detd. by some form of deen. followed by volumetric or gravimetric detn. of resultant chloride ion [e.g., for methods involving deen. of C with Na + AmOH in xylene (83) (84), with Na + ethanolamine in dioxane soln. (85) (223), or with Na in liq. NH<sub>3</sub> (86) (note that some cyanide forms. occurs) see indic. refs.; for methods involving thermal deen. see (87) (215)].

[For detn. of  $\tilde{C}$  by means of a recording ultra-violet photometer (the R. + H. Tri-Per Analyzer) see (88).]

### PREPARATION OF C

From various polychloroethanes or polychloroethylenes. [For prepn. of  $\bar{\mathbb{C}}$  from hexachloroethane (3:4835) by pyrolysis at 565° (89–94% conversion (89)), by passing over porcelain chips in hot tube (90) (note that CCl<sub>4</sub> (3:5100) is also formed), or by passing with  $H_2$  over Ni at 270° (91) see indic. refs.; for prepn. of  $\bar{\mathbb{C}}$  from hexachloroethane (3:4835) by treatment with granulated Zn in boilg. alc. (7), with Zn + dil.  $H_2$ SO<sub>4</sub> at room temp. for several days (100% yield (5)) (92) (116), or even with Zn + aq. above 80° (93), with alc. KSH (94), with molecular Ag at 280° in s.t. (95), with SbF<sub>3</sub> at 300–325° under press. (96), with acetylene over activated carbon at 200–400° (97) cf. (123), with aniline at 170° at ord. press. (7), with N/10 abs. EtOH/NaOH at 25° (216), or with alc. free NaOEt in ether under press. at 140° (217) see indic. refs.]

[For prepn. of  $\tilde{C}$  from pentachloroethane (3:5880) by elimination of 1 HCl in various ways: e.g., by passing over bone char at 280° (98), or over N<sub>1</sub>Cl<sub>2</sub> at 330° (99), by htg. with AlCl<sub>3</sub> at 70-100° (100% yield (101)) (100) or under reflux (102), with liq. NH<sub>3</sub> at -18 to -34° under reduced press. (103) (104), with MeOH over Al<sub>2</sub>O<sub>3</sub> at 290° (MeCl (3:7005) is also formed) (105), with acetylene over cat. at 200-300° (vinyl chloride (3:7010) is also formed) (106), with alc. KOH (107) (108), or in alc. with 2 N aq. NaOH in cold (98% yield) (109) see indic. refs.]

[For prepn. of C from 1,1,2,2-tetrachloroethane (acetylene tetrachloride) (3:5750) (see also below under prepn. of C from acetylene) on pyrolysis at 700° (110), with air over pumice + CuCl<sub>2</sub> at 430-450° (111), or with Cl<sub>2</sub> over activated carbon contg. 30% CuCl<sub>2</sub> at 300-320° (112) see indic. refs.]

[For prepn. of  $\tilde{C}$  from 1,2-dichloroethane (ethylene dichloride) (3:5130) with  $Cl_2$  over cat. at 300-500° see (113); from ethane or its chloro derivs. with  $Cl_2$  + fused metal chlorides such as  $AlCl_3$ , etc., at 250-500° see (114).]

[For formn. of  $\tilde{C}$  from trichloroethylene (3:5170) on pyrolysis at 700° (110) or with anhyd. FeCl<sub>3</sub> on htg. see (115).]

From various polychloromethanes. [For prepn. of  $\tilde{C}$  from CCl<sub>4</sub> (3:5100) through tube at 1300-1400° see (116) (117); for formn. of  $\tilde{C}$  (together with other prods.) from CCl<sub>4</sub> + H<sub>2</sub> through hot tube over pumice at low red heat (118) or through tube at 600-650° (119), or in dark electric discharge (120), see indic. refs. — Note also that  $\tilde{C}$  has been found (121) as a by-prod. of prepn. of CCl<sub>4</sub> (3:5100) by actn. of Cl<sub>2</sub> on CS<sub>2</sub>.]

[For form. of C from CHCl<sub>3</sub> (3:5050) +  $H_2$  in dark electric discharge see (120).]

From acetylene with  $Cl_2$  (see also above under prepn. of  $\bar{C}$  from 1,1,2,2-tetrachloroethane (acetylene tetrachloride)). [For prepn. of  $\bar{C}$  from acetylene with  $Cl_2$  + inert gas over cat. at 250-400° see (122) (123) (124) (125); from acetylene with  $Cl_2$  at 700-900° in absence of extraneous substances (126); from acetylene with  $Cl_2$  see (127) (128); from acetylene with  $Cl_2$  in halogenated solv. at 175-260° + AlCl<sub>3</sub>, etc., see (129).]

From miscellaneous sources. [For prepn. of  $\bar{C}$  from CO + HCl over cat. at 230-240° under high press. (CHCl<sub>3</sub> is also formed) see (130); from unsym.-heptachloropropane (3:0200) by dissociation into  $\bar{C}$  + CHCl<sub>3</sub> over Cu<sub>2</sub>Cl<sub>2</sub> at 250° see (131); from chloral (3:5210) by long boilg, with AlCl<sub>3</sub> see (132) cf. (133) (134); from tetrachloroethyl chloro-

formate with AlCl<sub>3</sub> see (135); from trichloroacetic acid (3:1150) over ThO<sub>2</sub> + kaolin at 230-250° see (136); from pentachloropropionic acid (3:4895) on htg. in aq. (137), or from its ferric salt in light (139) cf. (140), or from pentachloropropionyl chloride (3:0470) with AlCl<sub>3</sub> (1 mole) at  $60^{\circ}$  (138) see indic. refs.]

# PURIFICATION OF C

Comml.  $\bar{C}$  conts. some impurity which readily chlorinates (15); note also that  $\bar{C}$ , especially if exposed to light and air, may contain phosgene (3:5000), trichloroacetyl chloride (3:5420), trichloroacetic acid (3·1150), and other prods.; cf. below under oxidation of  $\bar{C}$ . — [For purification of  $\bar{C}$  by treatment with  $Cl_2$  followed by illumination (15), by treatment with aq. alk. at elev. temp. (for removal of 1,1,2-trichloroethane (3:5330) or 1,1,1,2-trichloroethane (3:5555)) (141), by refluxing with finely divided metals + dil. acid (142) or with 1% Al or AlCl<sub>3</sub> (143), or by passing vapor over kaolin at 250° (144), see indic. refs.]

### STABILIZATION OF C

To increase the resistance of  $\bar{\mathbf{C}}$  to photooxidation (see below) and other changes, the addition of very small amts. of various stabilizers has been recommended. — [For example, for study of control of photooxidation of  $\bar{\mathbf{C}}$  by use of inhibitors such as thymol (1:1430), ether, alcohol, thiourea, etc., see (145). — For stabilization of  $\bar{\mathbf{C}}$  by addn. of small amts. of paraffin hydrocarbons (e.g., gasoline) (146), various phenols (such as hydroquinone monomethyl or monobenzyl ether) (147), oil-sol. azo dyes contg. phenolic groups (148), mercaptans (such as n-butyl mercaptan) (149), various org. tertiary amines such as triethylamine (150) or picoline (151), various phenols, amines, and aminophenols (152), or a wide variety of org. N cpds. (221) see indic. refs.]

# CHEMICAL BEHAVIOR OF C

Pyrolysis. [ $\check{C}$  on pyrolysis over heated Pt wire gives (153) (154) hexachloroethane (3:4835) + hexachlorobenzene (3:4939) + Cl<sub>2</sub>.]

Hydrogenation. [Note that  $\bar{C}$  does not add  $H_2$  even in pres. of Ni at 300-350° (99);  $\bar{C}$  with excess  $H_2$  over Ni at 220° dec. (163) to carbon + HCl.]

Oxidation.  $\bar{C}$  can be oxidized especially in the presence of light and moisture giving according to conditions truchloroacetyl chloride (3:5420), phosgene (3:5000), trichloroacetic acid (3:1150), or various mixtures of these prods.; for inhibition of this oxidation see above under stabilization of  $\bar{C}$ 

[For extensive studies of photochem. oxidn. of  $\bar{\rm C}$  giving 87% trichloroacetyl chloride accompanied by phosgene see (15) (155) (156); for oxidn. of  $\bar{\rm C}$  on stdg. with aq. in light for 4 months yielding trichloroacetic acid see (157) cf. (158); for oxidn. of  $\bar{\rm C}$  to trichloroacetyl chloride with O<sub>3</sub> (159) (160), with peracetic acid (acetyl hydrogen peroxide) (161), with conc. HNO<sub>3</sub> + conc. H<sub>2</sub>SO<sub>4</sub> in freezing mixt. (162), with SO<sub>3</sub> at 150° (164), or with N<sub>2</sub>O<sub>5</sub> (194) see indic. refs.; for patents on photochem. oxidn. of  $\bar{\rm C}$  to trichloroacetyl chloride (3:5420) see (165) (166).]

[ $\bar{C}$  on oxidn. with  $K_2Cr_2O_7/H_2SO_4$  is completely converted to  $CO_2 + H_2O + HCl$  (167);  $\bar{C}$  passed with air over CuO at 450° gives only traces (168) of phosgene.]

Reaction with halogens. [ $\bar{C}$  dislyd. in dichlorodifluoromethane ("Freon") with F<sub>2</sub> at  $-80^{\circ}$  (169), or  $\bar{C}$  with F<sub>2</sub> at 0° directly (170) but not in CCl<sub>4</sub> soln. (169) cf. (172), or  $\bar{C}$  in vapor phase at 130° with F<sub>2</sub> diluted with N<sub>2</sub> (171), gives (20% yield (171)) 1,2-difluoro-1,1,2,2-tetrachloroethane, m.p. 26.5° (96) (169), accompanied by various other prods. such as fluoropentachloroethane, m.p. 99.0-99.5° (in s.t.), b.p. 136-138° (170), and 1,4-difluoro-octachlorobutane (170) (169), m.p. 4-5° (170), b.p. 152.2° at 20 mm.,  $D_4^{20} = 1.9272$ ,  $n_D^{20} = 1.5256$  (170).]

[Č with dry Cl<sub>2</sub> in direct sunlight (90), or Č in CCl<sub>4</sub> at 22° (173) or in vapor phase at 40° and low press. (155) in light and absence of O<sub>2</sub>, or Č with SO<sub>2</sub>Cl<sub>2</sub> in pres. of dibenzoyl peroxide (174) adds Cl<sub>2</sub> yielding hexachloroethane (3:4835) q.v.; note, however, that Č + Cl<sub>2</sub> + light in pres. of O<sub>2</sub> undergoes photooxidation to trichloroacetyl chloride (see above under oxidation of Č). — Č with Cl<sub>2</sub> at 700–800° (175), or Č with Cl<sub>2</sub> over act. carbon at 600–650° (176), undergoes cleavage of C—C bond yielding CCl<sub>4</sub> (3:5100); for study of this reactn. see (177).]

[Č with Br<sub>2</sub> in sunlight adds 1 mole Br<sub>2</sub> yielding (178) (179) (110) 1,2-dibromo-1,1,2,2-tetrachloroethane, m.p. 197.5° dec. (in s. cap. tube) (180), 200-205° dec. (110), 190° dec. (138). — Note, however, that this photochem. addn. is inhibited by its reactn. prod. (181), that, although accelerated by *small* amts. O<sub>2</sub>, pres. of large amts. O<sub>2</sub> lead to a halogen catalyzed photooxidation (181), that in CCl<sub>4</sub> soln. resultant equilibrium mixt. conts. only 30% addn. prod. (182). — For extensive study of this reactn. see (181); for studies of its rate see (183) (184); for extensive study of photochem. dissoc. of prod. see (179). — For study of reactn. of C with radio-bromine see (185).]

[ $\bar{C}$  does not add  $I_2$ . — For soly. of  $I_2$  in  $\bar{C}$  see (186); for use of such solns. in detn. of iodine number of unsatd. oils and fats see (187) (188).]

Behavior of  $\tilde{C}$  with other inorganic materials. [ $\tilde{C}$  with  $Cl_2O$  in  $CCl_4$  at  $-20^\circ$  gives (189) hexachloroethane (3:4835).]

[ $\overline{C}$  with NO<sub>2</sub> in s.t. at 100–120° for 3 hrs. (190), or at 100–110° for 3 hrs. (5), or at 80° for 3 hrs. or 60° for 6 hrs. (191), or at 10–12 atm. press. at 60–80° for 3–6 hrs. (191), or  $\overline{C}$  with fumg. HNO<sub>3</sub> at ord. temp. stood several days (5) cf. (192), adds 2 moles NO<sub>2</sub> yielding 1,2-dinitro-1,1,2,2-tetrachloroethane [Beil. I-102, I<sub>1</sub>-(33)], cryst. from alc., m.p. 142–143° (s. cap. tube) (5).]

[Č with nitryl chloride (ClNO<sub>2</sub>) yields (193) 1-nitro-1,1,2,2,2-pentachloroethane, lfts. from alc., m.p. 192° (s. cap. tube) (193).]

[ $\bar{C}$  with N<sub>2</sub>O<sub>5</sub> undergoes vigorous oxidn. (presumably to trichloroacetyl chloride) (194).] [ $\bar{C}$  with NH<sub>3</sub> at 700-800° splits off all its halogen as NH<sub>4</sub>Cl (195) cf. (196).]

[For behavior of  $\bar{C}$  with various common metals see (197); note that  $\bar{C}$  is not attacked by molecular Ag even at 300° (95); note that  $\bar{C}$  with Na or K or their mixture may (like many other polychloro compds.) explode under certain conditions (for an extensive study see (198)).]

Behavior of  $\bar{C}$  with organic reactants. [ $\bar{C}$  (1 mole) with CHCl<sub>3</sub> (2 moles) + AlCl<sub>3</sub> (0.2 mole) refluxed 15-20 hrs. gives (85-93% yield (199)) (101) (16) (200) (201) (202) (214) unsym.-heptachloropropane (3:0200); for study of equilibrium of system  $\bar{C}$  + CHCl<sub>3</sub> + unsym.-heptachloropropane see (131).]

[ $\ddot{\mathbf{C}}$  with 1,1,2,3,3-pentachloropropene-1 (3:6075) + AlCl<sub>3</sub> gives (201) cf. (214) 1,1,3,4,5,-5,6,6,6-nonachloropentene-1.]

[ $\bar{C}$  with NaOEt at 100-120° yields (203) ethyl dichloroacetate (3:5850) + Na diethoxyacetate + other prods., presumably via ethyl  $\alpha,\beta,\beta$ -trichlorovinyl ether,  $\alpha,\alpha$ -dichloro- $\beta,\beta$ -diethoxyethylene, triethyl dichloroorthoacetate, etc., cf. (204).]

[Č (1 mole) with NaSC<sub>6</sub>H<sub>5</sub> (2 moles) in alc., refluxed 48 hrs., gives (yield not stated (205))  $\alpha,\beta$ -dichloro- $\alpha,\beta$ -bis-(thiophenyl)ethylene, ndls. from alc., m.p. 71-72° (205). — Č with disodium salt of dithiopyrocatechol in alc. at 110-120° in s.t. for 7 hrs. gives small

yield (206) of 
$$C_6H_4$$
 C=C  $C_6H_4$ , golden ndls., m.p. 234° (206).]

[Č with paraformaldehyde (1:0080) + conc. H<sub>2</sub>SO<sub>4</sub> as directed (207) gives  $\alpha,\alpha$ -dichloro- $\beta$ -hydroxypropionic acid, m.p. 88–89° (s. cap. tube).]

[C with dibenzoyl peroxide on refluxing either with or without AlCl<sub>3</sub> gives (40% yield

(208))  $\alpha,\alpha,\beta$ -trichloro- $\beta$ -phenylethylene ( $\alpha,\alpha,\beta$ -trichlorostyrene) [Beil. V-477, V<sub>2</sub>-(367)], b.p. 87-89° at 3 mm.,  $D_{-}^{25} = 1.40$ ,  $n_{D}^{25} = 1.5758$  (208), accompanied by chlorobenzene (3:7903), CO<sub>2</sub>, and under certain conditions by hexachloroethane (3:4835).]

[Č with large excess EtMgBr in boilg. ether evolves ethylene and on subsequent treatment with aq. gives a mixt. of ethylene + acetylene; for explanation see (209). — Č with *n*-butyllithium in pet. eth. gives violent explosion (210).]

[For study of reactn. of C with pyridine or piperidine at 16-18° see (211).]

- ② Color test with NH₄OH/Cu₂Cl₂: C

  (1-2 drops) in small glass-stoppered bottle filled with conc. aq. NH₄OH, treated with powdered Cu₂Cl₂, stopper quickly inserted (to force out air and excess liquid), shaken, and allowed to stand, gives in 3 days a pale amethyst color (212); note, however, that C

  on stdg. with metallic Cu + conc. aq. NH₄OH develops rich port-wine red color in aq. layer and brown coating on the copper (213). Note also that neither of these tests should be regarded as conclusive (see (212) (213)).
- 3:5460 (1) Timmermans, Hennaut-Roland, J. chim. phys. 27, 405-407 (1930). (2) Mathews, J. Am. Chem. Soc. 48, 572 (1926). (3) Lecat, Rec. trav. chim. 47, 15, 17 (1928). (4) Lecat, Ann. soc. sci. Bruxelles 49, 110 (1929). (5) Biltz, Ber. 35, 1529-1530 (1902). (6) Mumford, Phillips, J. Chem. Soc. 1928, 159. (7) Bourgoin, Ann. chim. (5) 6, 142-144 (1875); Bull. soc. chim. (2) 23, 344 (1875). (8) Timmermans, Bull. soc. chim. Belg. 27, 334-343 (1914); Cent. 1914, I 618. (9) Thorpe, Rodger, Phil. Trans. Roy. Soc. A-185, 495 (1894). (10) Jorissen, Meuwissen, Rec. trav. chim. 44, 132-140 (1925).
- (11) Bell, J. Chem. Soc. 1931, 1373, 1376-1377. (12) Bonino, Gazz. chim. ital. 55, 342 (1925). (13) Britton, Coleman, Zemba (to Dow Chem. Co.), U.S. 2,084,937, June 22, 1937; Cent. 1937, II 3813; C.A. 31, 5817 (1937). (14) Herz, Rathmann, Chem. Zig. 36, 1417 (1912). (15) Dickinson, Leermakers, J. Am. Chem. Soc. 54, 3852-3862 (1932). (16) Prins, J. prakt. Chem. (2) 89, 414-415, 424 (1914). (17) Timmermans, Vesselovsky, Bull. soc. chim. Belg. 40, 506 (1931). (18) van de Vloed, Bull. soc. chim. Belg. 48, 260 (1939). (19) Herz, Rathmann, Chem. Zig. 37, 621 (1913). (20) Bruhl, Ann. 200, 173 (1879).
- (21) Gladstone, J. Chem. Soc. 59, 293 (1891). (22) MacMillan, McDonald, Ind. Eng. Chem., Anal. Ed. 15, 114-116 (1943). (23) Walden, Zastrow, Roudolf, Ann. Acad. Sci. Fennicae, A-29, No. 23 (Komppa Festschrift) 26 pp. (1927); Cent. 1928, I 166; C.A. 22, 1515 (1928). (24) Bates, Hazzard, Palmer, Ind. Eng. Chem. 33, 375-376 (1941). (25) Coward, Jones, Ind. Eng. Chem. 18, 970-974 (1926). (26) Jorissen, Velisek, Rec. trav. chim. 43, 80-86 (1924). (27) Jorissen, Ind. Eng. Chem. 19, 430-431 (1927). (28) Langen van der Valk, Rec. trav. chim. 48, 207 (1929). (29) McDonald, McMillan, Ind. Eng. Chem. 36, 1175-1176 (1944). (30) Bergelin, Lockhart, Brown, Trans. Am. Inst. Chem. Engrs. 39, 173-200 (1943).
- (31) Lecat, Ann. soc. sci. Bruxelles 47, I 152 (1927). (32) Lecat, Ann. soc. sci. Bruxelles 48, I 116, 121, 122 (1928). (33) Lecat, Ann. soc. sci. Bruxelles, 49, I8 (1929). (34) Brown, Dyer, Calico Printer, Bleacher, Finisher Text. Rev. 68, 568-569 (1932); Cent. 1933, I 863. (35) Brown, J. Soc. Dyers Colourists 49, 42-45 (1933). (36) Brown, J. Soc. Dyers Colourists 59, 72-76 (1934). (37) Caroll (to Eastman Kodak Co.), U.S. 1,450,714, April 3, 1923; Cent. 1923, IV 164. (38) Standard Oil Development Co., French 790,852, Nov. 28, 1935; Cent. 1936, I 2672; C.A. 39, 3223 (1936). (39) Kershbaum (to Roessler & Hasslacher Chem. Works), U.S. 1,591,842, July 6, 1926; Cent. 1926, II 2493. (40) Dow (to Dow Chem. Co.), U.S. 1,411,422, April 4, 1922; Cent. 1922, IV 126; C.A. 16, 1998 (1922).
- (41) Foot, Bishop, Apgar, Anesthiology 4, 283-292 (1943); C.A. 37, 4133 (1943). (42) Hymas, Food 12, 207-209, 215 (1943); C.A. 37, 6043 (1943). (43) Small, Med. J. Australia 28, 407-414 (1941); C.A. 36, 868 (1942). (44) Joachimoglu, Biochem. Z. 124, 130-136 (1921); Cent. 1922, I 363. (45) Gabbano, Z. Hyg. Infectionskrankh. 109, 183-193 (1928); Cent. 1928, II 2667; not in C.A. (46) Oelkers, Rathje, Arch. expt. Path. Pharmakol. 198, 317-337 (1941); Trop. Diseases Bull. 39, 767-768 (1942); C.A. 37, 1506-1507 (1943). (47) Mönnig, Ortlepp, Onderstepoort J. Vet. Sci. Animal Ind. 13, 193-197 (1939); C.A. 35, 270 (1941). (48) Ortlepp, Mönnig, Onderstepoort J. Vet. Sci. Animal Ind. 7, 399-417 (1936); Cent. 1936, II 4096; C.A. 31, 7116 (1937). (49) Maplestone, Mukerji, Indian Med. Gaz. 72, 650-652 (1937); Cent. 1939, I 2818; C.A. 32, 2223 (1939); 68, 617-620 (1933); Cent. 1934, I 567; not in C.A.; 64, 424-426 (1929). (50) Fernando, D'Silva, Stork, Sinnatamby, Indian J. Med. Research 26, 759-783 (1939); Cent. 1939, I 2015; C.A. 33, 8818 (1939).

(51) Wright, Bozicevich, Jordon, J. Am. Med. Assoc. 109, 570-573 (1937); Cent. 1938, I 1397. (52) Schlingman, J. Am. Vet. Med. Assoc. 75, 74-85 (1929); C.A. 24, 3277 (1930). (53) Hall, Augustine, Am. J. Hyg. 9, 584-628 (1929); Cent. 1929, II 452; not in C.A. (54) Hall, Cram, J. Agr. Research 30, 949-953 (1925); Cent. 1925, II 2177; not in C.A. (55) Hall, Shillinger, Am. J. Trop. Med. 5, 229-237 (1925); C.A. 19, 2710 (1925). (56) Hanson, J. Agr. Research 34, 129-136 (1927); Cent. 1927, II 457; not in C.A. (57) Lamson, Robbins, Ward, Am. J. Hyg. 9, 430-444 (1929); Cent. 1929, I 3119; C.A. 24, 3273 (1930). (58) Rawson, Indian J. Vet. Sci. 3, 294-297 (1933); Cent. 1934, I 1519; not in C.A. (59) Rawson, J. Am. Vet. Med. Assoc. 33, 600-603 (1932); C.A. 26, 3576 (1932). (60) Manson, Indian Med. Gaz. 69, 500-507 (1934); Cent. 1935, I 3444; not in C.A.

(61) Anderson (to Parke, Davis & Co.), U.S. 1,703,377, Feb. 26, 1929; Cent. 1929, I 2444; C.A. 23, 1996 (1929). (62) Thiolepape, Fulde, Z. Writschaftsgruppe Zuckerind., Tech. Teil 87, 333-342, 488-489 (1937), Cent. 1937, II 2758, 3542; C.A. 32, 4371 (1938). (63) David, Z. Writschaftsgruppe Zuckerind., Tech. Teil 87, 482-487 (1937); Cent. 1937, II 3542, and in C.A. (64) David, Centr. Zuckerind. 44, 927-931, 945-947 (1936), 45, 99-100 (1937); C.A. 31, 3318 (1937). (65) Thielpape, Fulde, Z. Ver. deut. Zucker-Ind. 81, 567-579 (1931); Cent. 1932, I 301; C.A. 26, 1470 (1932). (66) Thielpape, Fulde, Z. Ver. deut. Zucker-Ind. 82, 665-673 (1932); Cent. 1932, II 2251; C.A. 26, 5783 (1932). (67) Schimon, Chem. Zig. 55, 982-983 (1931), Cent. 1932, I 1270; C.A. 26, 940 (1932). (68) Dragerwerk H. & B. Drager, Ger. 310,671, Nov. 15, 1920; Cent. 1921, II 166; not-in C.A. (69) Converse, Chemistry & Industry 57, 1068-1072 (1938); Can. Chem. Process Ind. 22, 361-364 (1938). (70) Imperial Chem. Ind., Ltd., Chem. Age (London) 18, 606-607 (1928).

(71) Jacobs, "Analytical Chemistry of Industrial Poisons, Hazards and Solvents," Interscience Publishers, Inc., N Y. 1941, pp. 430-432, 460, 627. (72) Smyth, N. Y. State Med. J. 42, 1072-1079 (1942), C.A. 36, 4626 (1942). (73) Carpenter, J. Ind. Hyg. Toxicol. 19, 323-326 (1937); Cent. 1938, I 123; C.A. 31, 8681 (1937). (74) Figuson, Nature 137, 361-362 (1936). (75) Barsoun, Sand, Quart. J. Pharm. Pharmacol. 7, 205-214 (1934), Cent. 1934, II 2550, C.A. 23, 6194 (1934). (76) Tomb, Helmy, J. Trop. Med. 36, 265-270 (1933); Cent. 1934, I 728; not in C.A. (77) Christensen, Lynch, J. Pharmacol. 48, 311-316 (1933); Cent. 1934, I 1075, C.A. 28, 212 (1934). (78) Maplestone, Chopra, Indian Med. Gaz. 68, 554-555 (1933); Cent. 1934, I 3492; C.A. 28, 6196 (1934). (79) Sharp, J. Trop. Med. Hyg. 33, 336-339 (1930); Cent. 1931, II 741; C.A. 25, 739 (1931). (80) Lazarev, Arch. exptl. Path. Pharmakol. 141, 19-24 (1929); Cent. 1929, II 451; C.A. 25, 3074 (1931).

(81) Schlingman, Gruhzeit, J. Am. Vet. Med. Assoc. 71, 188-209 (1927); C.A. 21, 3968 (1927).
(82) Lehmann, et al., Arch. Hyg. 74, 1-60 (1911); Cent. 1911, II 885-886; C.A. 6, 3125 (1912).
(83) "Official and Tentative Methods of Analysis," Assoc Official Agr. Chem. 5th ed., 604 (1940); J. Assoc. Official Agr. Chem. 17, 78-79 (1934). (84) Johnson, J. Assoc. Official Agr. Chem. 18, 84-85, 519-520 (1935). (85) Winteringham, J. Soc. Chem. Ind. 61, 186-187 (1942); C.A. 37, 1951 (1943). (86) Dains, Brewster, J. Am. Chem. Soc. 42, 1573-1579 (1920). (87) Winteringham, J. Soc. Chem. Ind. 61, 190-192 (1942); C.A. 37, 1951 (1943). (88) Hanson, Ind. Eng. Chem., Anal. Ed. 13, 119-123 (1941). (89) McBee, Hass, Chao, Welch, Thomas, Ind. Eng. Chem. 33, 179-180 (1941). (90) Faraday, Ann. chim. (2) 18, 53-56 (1821).

(91) Sabatter, Mailhe, Compt. rend. 138, 409 (1904).
(92) Geuther, Ann. 107, 212-213 (1858).
(93) Howell & Impetial Chem. Ind., Ltd., Brit. 535,026, April 24, 1941; Cent. 1942, II 2203; C.A. 36, 1336 (1942).
(94) Regnault, Ann. 33, 324-325 (1840).
(95) Goldschmidt, Ber. 14, 929 (1881).
(96) Booth, Mong, Burchfeld, Ind. Eng. Chem. 24, 328-329 (1932).
(97) Basel, Schaeffer (to A. Wacker Soc. Chem. Ind.), U.S. 2,178,622, Nov. 7, 1939; C.A. 34, 1336 (1940).
(88) Körner, Suchy (to A. Wacker Soc. Chem. Ind.), Ger. 464,320, Aug. 21, 1928; Cent. 1929, I 1044.
(99) Mailhe, Sabrou, Bull. soc. chim. (4) 47, 350 (1930).
(100) Mouncyrat, Bull. soc. chim. (3) 17, 799 (1897); (3) 19, 182-183 (1898).

(101) Prins, Rec. trav. chim. 54, 249-252 (1935). (102) Mugdan, Wimmer (to Consortium für Elektrochem. Ind.), U.S. 2,249,512, July 15, 1941; C.A. 35, 6601 (1941): Brit. 500,176, March 2, 1939; Cent. 1939, I 3798; C.A. 33, 5417 (1939): Ger. 694,884, July 11, 1940; C.A. 35, 5134 (1941): French 841,962, June 2, 1939; Cent. 1939, II 2280; C.A. 34, 4395 (1940). (103) Mkryan, Sbornik Trudov Armyanskogo Fuicala Akad. Nauk. 1940, No. 2, 36-41; C.A. 37, 5694 (1943). (104) Pogossjan, Mkyran, Russ. 50,533, Feb. 28, 1937; Cent. 1938, II 412. (105) I.G., French 805,563, Nov. 24, 1936; Cent. 1937, I 2258. (106) A. Wacker Soc. Chem. Ind., Brit. 480,568, March 24, 1938; Cent. 1938, I 4236; C.A. 32, 5858 (1938). (107) Pierre, J. prakt. Chem. (1) 43, 301-307 (1848). (108) Sastry, J. Soc. Chem. Ind. 35, 450-452 (1916); Cent. 1916, II 306. (109) Taylor, Ward, J. Chem. Soc. 1934, 2007. (110) Nicodemus, J. prakt. Chem. (2) 83, 315-318 (1911).

(111) Kali-Chemie, A.G., Italian 383,229, June 4, 1940; Cent. 1942, I 3143. (112) A. Wacker

Soc. Chem. Ind., Brit. 468,921, Aug. 12, 1937; Cent. 1937, II 3813; C.A. 32, 596 (1938). (113) Reilly (to Dow Chem. Co.), U.S. 1,947,491, Feb. 20, 1934; Cent. 1935, I 3345; C.A. 28, 2371 (1934). (114) Grebe, Reilly, Wiley (to Dow Chem. Co.), U.S. 2,034,292, March 17, 1936; Cent. 1936, II 2611; C.A. 30, 3178 (1936). (115) Erdmann, J. prakt. Chem. (2) 85, 84 (1912). (116) Weiser, Wightman, J. Phys. Chem. 23, 415-439 (1919). (117) Strosacker, Schuegler (to Dow Chem. Co.), U.S. 1,930,350, Oct. 10, 1933; Cent. 1934, I 124; C.A. 28, 180 (1934). (118) Besson, Compt. rend. 118, 1347 (1894) (119) Schwarz, Pflugmacher, J. prakt. Chem. (2) 158, 2-7 (1941). (120) Besson, Fournier, Compt. rend. 150, 1118 (1910).

(121) Meyer, Ber. 27, 3160-3161 (1894). (122) Basel, Schaeffer (to A. Wacker Soc. Electrochem. Ind.), U.S. 2,255,752, Sept. 16, 1941, C.A. 36, 100 (1942). (123) Basel, Schaeffer (to A. Wacker Soc. Electrochem. Ind.), U.S. 2,222,931, Nov. 26, 1940; C.A. 35, 1807 (1941). (124) Basel, Schaeffer (to A. Wacker Soc. Electrochem. Ind.), Ger. 725,276, C.A. 37, 5736 (1943); French S32,750, Oct. 3, 1938, C.A. 33, 2540 (1939). (125) Hennig (to I.G.), Ger. 712,579, Oct. 22, 1941, Cent. 1942, I 1809; C.A. 37, 4407 (1943); Swiss 213,747, June 3, 1941; Cent. 1942, I 2706; not in C.A. (126) Fruhwirth (to Donau-Chemic, A.G.), Ger. 718,888, July 13, 1942; Cent. 1942, II 2086, C.A. 37, 5082 (1943). (127) Tramm (to Ruhrchemie A.G.), U.S. 2,016,658, Oct. 8, 1935; Cent. 1936, I 875, C.A. 29, 8005 (1935). (128) Klein (to Ruhrchemie A.G.), Ger. 613,307, May 23, 1935, Cent. 1935, II 1256; not in C.A. (129) Reilly (to Dow Chem. Co.), U.S. 2,140,551, Dec. 20, 1938; Cent. 1939, I 3625, C.A. 33, 2540 (1939). (130) Thurm, U.S. 1,590,265, June 29, 1926; Cent. 1926, II 1190; C.A. 20, 3015 (1926).

(131) Böeseken, van der Scheer, de Voogt, Rec. trav. chrm. 34, 78-95 (1915). (132) Böeseken, Rec. trav. chrm. 29, 104-111 (1910). (133) Boeseken, Schimmel, Rec. trav. chrm. 32, 128-133 (1913). (134) Combes, Ann. chrm. (6) 12, 269-270 (1897). (135) Müller, Ann. 258, 60-61 (1890). (136) Senderens, Compt. rend. 172, 156 (1921), Cent. 1921, 656-657 (1921). (137) Boeseken, Rec. trav. chrm. 46, 841-843 (1927). (138) Boeseken, Ilasselbach, Rec. trav. chrm. 32, 11-12 (1913). (139) Jaeger, Cent. 1912, I 1817. (140) Jaeger, Bergei, Rec. trav. chrm. 41,

71-72 (1921); Jaeger, J. Chem. Soc 119, 2071 (1921).

(141) Cass (to du Pont Co.), U.S. 2,280,794, April 28, 1942, C.A. 36, 5484 (1942). (142) Hanson (to Dow Chem. Co.), U.S. 2,120,668, June 14, 1938, Cent. 1938, II 2349; C.A. 32, 5857 (1938) (143) Coleman (to Dow Chem. Co.), U.S. 2,000,781, May 7, 1935, Cent. 1936, I 1108; C.A. 29, 4029 (1935). (144) Britton, Coleman, Zemba (to Dow Chem. Co.), U.S. 2,084,937, June 22, 1937; Cent 1937, II 3813; C.A. 31, 5817 (1937) (145) Bailey, J. Chem. Soc. 1939, 767-769 (1939). (146) Zuckermandel (to Dow Chem. Co.), U.S. 1,835,682, Dec. 8, 1931; Cent. 1932, I 1153, C.A. 26, 999 (1932). (147) Pitman (to Westvaco Chlorine Prods. Co.), U.S. 2,319,261, May 18, 1943, C.A. 37, 6372 (1943) (148) Zuckermandel (to Dow Chem. Co.), U.S. 1,819,585, Aug. 18, 1931; Cent. 1931, II 2657, C.A. 25, 5678 (1931). (149) Stewart, DePree (to Dow Chem. Co.), U.S. 1,917,073, July 4, 1933, Cent. 1933, II 1927, C.A. 27, 4539 (1933). (150) Pitman (to du Pont Co.), U.S. 1,925,602, Sept. 5, 1933; Cent. 1933, II 3192; C.A. 27, 5445 (1933) Imperial Chem. Ind., Ltd., French 744,128, March 12, 1933, Cent. 1933, II 605.

(151) Crawford, Duncan, & Imperial Chem. Ind., Ltd., Brit. 493,875, Nov. 10, 1938; Cent. 1939, I 1252; C.A. 33, 2540 (1939). (152) Roessler & Hasslacher Chem. Co., French 732,569, Sept. 22, 1932, Cent. 1932, II 3785; C.A. 27, 304 (1933); Ger. 573, 105, March 3, 1932, C.A. 27, 2901 (1933). (153) Lob, Z. Elektrochem. 7, 903-921 (1901), Cent. 1901, II 1042. (154) Joist, Lob, Z. Elektrochem. 11, 938-944 (1905); Cent. 1906, I 223. (155) Dickinson, Carrico, J. Am. Chem. Soc. 56, 1473-1480 (1934). (156) Muller, Ehrmann, Ber. 69, 2207-2210 (1936). (157) Balley, Hickson, J. Chem. Soc. 1941, 145. (158) Kobe, Ann. 54, 182 (1845). (159) Besson, Compt. rend. 118, 1347 (1894); Bull. soc. chem. (3) 11, 918-919 (1894). (160) Swarts, Bull.

acad. roy. Belg. (3) 36, 532-552 (1898), Cent. 1898, I 588-589.

(161) E. Prilezhaeva, N. Prilezhaeva, J. Gen. Chem. (U.S.S.R.), 9, 1766-1773 (1939); C.A. 34, 3672 (1939). (162) Biltz, Ber. 35, 1533-1536 (1902). (163) Sabatier, Mailhe, Compt. rend. 138, 409 (1904). (164) Prud'homme, Compt. rend. 70, 1137 (1870); Ann. 156, 342-343 (1870). (165) Kirkbride (to Imperial Chem. Ind., Ltd.), U.S. 2,321,823, June 15, 1943; C.A. 37, 6676 (1943). Brit. 534,732, March 17, 1941; C.A. 36, 1330 (1942): Belg. 439,293, Sept. 13, 1940; Cent. 1942, I. 2706. (166) Consortium fur Elektrochem. Ind., Ger. 340,872, Sept. 19, 1921; Cent. 1921, IV 1101. (167) Guyot, Simon, Compt. rend. 170, 734-736 (1920). (168) Biesalski, Z. angew. Chem. 37, 317 (1924). (169) Bockemuller, Ann. 506, 29-33, 50-52 (1933). (170) Miller, J. Am. Chem. Soc. 62, 342 (1940).

(171) Miller, Calfee, Bigelow, J. Am. Chem. Soc. 59, 198-199 (1937). (172) Humiston, J. Phys. Chem. 23, 576-577 (1919). (173) Leermakers, Dickinson, J. Am. Chem. Soc. 54, 4648-4657 (1932). (174) Kharasch, Brown, J. Am. Chem. Soc. 61, 3433 (1939). (175) Mugdan, Wimmer (to Consortium fur Elektrochem. Ind.), Ger. 680,659, Sept. 9, 1939, Cent. 1939, II 3486; C.A. 36, 1951 (1942): French 844,300, July 21, 1939; C.A. 34, 7300 (1940). (176) I.G.,

French 836,979, Jan. 31, 1939; Cent. 1939, II 226; C.A. 33, 5869 (1939). (177) Fink, Bonilla, J. Phys. Chem. 37, 1141-1145 (1933). (178) Bourgoin, Bull. soc. chim. (2) 24, 114 (1875). (179) Carrico, Dickinson, J. Am. Chem. Soc. 57, 1343-1348 (1935). (180) Yardley, Proc. Roy. Soc. (London), A-118, 463 (1928).

(181) Willard, Daniels, J. Am. Chem. Soc. 57, 2240-2245 (1935). (182) Bauer, J. prakt. Chem. (2) 73, 208-210 (1905). (183) Herz, Rathmann, Ber. 46, 2590 (1913). (184) Hofmann, Kirmreuther, Ber. 42, 4483-4484 (1909). (185) Bohlman, Willard, J. Am. Chem. Soc. 64, 1342-1346 (1942). (186) Margosches, Hinner, Friedmann, Z. anorg. allg. Chem. 137, 81-90 (1924). (187) Margosches, Hinner, Z. deut. Öl- u. Fett-Ind. 44, 97-100 (1924); Cent. 1924, I 2648; C.A. 18, 3731 (1924). (188) Margosches, Baru, J. prakt. Chem. (2) 103, 216-226 (1922/3). (189) Goldeshwitz Schüssler, Ber. 58, 588, 573 (1925). (190) (190) (190) (190) (1889)

Goldschmidt, Schussler, Ber. 58, 568, 570 (1925). (190) Kolbe, Ber. 2, 326-329 (1869). (191) Argo, James, Donnelly, J. Phys. Chem. 23, 578-585 (1919). (192) Burrows, Hunter, J. Chem. Soc. 1932, 1357-1360. (193) Steinkopf, Kühnel, Ber. 75, 1327 (1942). (194) Haines, Adkins, J. Am. Chem. Soc. 47, 1422-1423 (1925). (195) Heslinga, Rec. trav. chim. 43, 179 (1924). (196) Stähler, Ber. 47, 912 (1914). (197) Gowing-Scopes, Analyst 39, 7 (1914). (198) Lenze, Z. ges. Schiess- u. Sprengstoffw. 27, 255-258, 293-296, 337-340, 373-376 (1932); Cent. 1933, I 1716; C.A. 27, 844 (1933). (199) Farlow, Org. Syntheses, Coll. Vol. 2 (1st ed.), 312-313 (1943); 17, 58-59 (1937). (200) Henne, Ladd, J. Am. Chem. Soc. 60, 2494 (1938).

(201) Prins, Rec. trav. chim. 57, 659, 662, Note (1938). (202) Boeseken, Prins, Cent. 1911, I 466. (203) Geuther, Fischer, Jahresber. 1864, 316. (204) Geuther, Brockhoff, Jahresber. 1873, 314. (205) Cusa, McCombie, J. Chem. Soc. 1937, 770. (206) Hurtley, Smiles, J. Chem. Soc. 1926, 2269-2270. (207) Prins, Rec. trav. chim. 51, 473-474 (1932). (208) Reijnhart, Rec. trav. chim. 46, 74-76 (1927). (209) Binaghi, Gazz. chim. tal. 57, 671-672, 674 (1927); Cent. 1928, I 908; C.A. 22, 574 (1928). (210) Marvel, Hager, Coffman, J. Am. Chem. Soc. 49, 2328 (1927).

(211) Tronow, J. Russ. Phys.-Chem. Soc. 58, 1287, 1289 (1926); Cent. 1927, II 1145; C.A. 22, 2737 (1928). (212) Doughty, J. Am. Chem. Soc. 41, 1131 (1919). (213) Doughty, J. Am. Chem. Soc. 41, 1131 (1919). (213) Doughty, J. Am. Chem. Soc. 39, 2690 (1917). (214) Prins, Rec. trav. chsm. 51, 1065-1080 (1932). (215) Smyth, Ind. Eng. Chem. 8, 379 (1936). (216) Taylor, Ward, J. Chem. Soc. 1934, 2003-2010. (217) Geuther, Brockhoff, J. prakt. Chem. (2) 7, 107-111 (1873). (218) Lecat, "L'Azeotropisme," 1918, p. 68. (219) von Oettinger, J. Ind. Hyg. Toxicol. 19, 423-424 (1937). (220) Carpenter, J. Ind. Hyg. Toxicol. 19, 323-336 (1937).

(221) Missbach (to Stauffer Chem. Co.), U.S. 2,043,257-2,043,260 incl., June 9, 1936; Cent. 1936, II 3845; C.A. 30, 5240 (1936). (222) Grebe, Stoesser, Mills (to Dow Chem. Co.), U.S. 1,989,478, Jan. 29, 1935; Cent. 1935, II 3859; C.A. 29, 2000 (1935). (223) Rauscher, Ind. Eng. Chem. Anal. Ed. 9, 296-299 (1937). (224) Lehman, Schmidt-Kehl, Arch. Hyg. Bakt. 116, 131-268 (1936); C.A. 31, 477 (1937).

# 3:5475 1,2,2-TRICHLOROPROPANE

$$\begin{array}{ccccc} Cl & C_3H_5Cl_3 & \textbf{Beil. I - 106} \\ CH_3-C-CH_2 & \textbf{I}_1-\\ Cl & Cl & \textbf{I}_2-\\ \end{array}$$

 $D_{25}^{25}=1.318$ 

[For prepn. as a by-product of the chlorination of propane see (2); for formn. of  $\bar{C}$  (47%) in chlorination of 1,2-dichloropropane (3:5200) see (3).]

Č with alc. KOH splits out HCl and gives two stereoisomeric 1,2-dichloropropenes, viz., 3:5110 and 3:5150.

3:5475 (1) Hersfelder, Ber. 26, 2435 (1893). (2) Hass, McBee (to Purdue Research Foundation), U.S. 2,004,073, June 4, 1935; Cent. 1935, I 1500. (3) Zellner (to Tide Water Associated Oil Co.), U.S. 2,370,342, Feb. 27, 1945, C.A. 39, 3534 (1945).

### CHAPTER XIII

# DIVISION B. LIQUIDS WITH BOILING POINTS REPORTED AT ORDINARY PRESSURE

# Section 1. $D_4^{20}$ greater than 1.1500

(3:5500-3:5999)

3:5500 cis-2,3-DICHLOROBUTENE-2 Cl Cl 
$$C_4H_6Cl_2$$
 Beil. S.N. 11  $CH_3-C-CH_3$ 

B.P. 124-126° at 758 mm. (1)  $D_4^{20} = 1.1618$  (1)  $n_D^{20} = 1.4590$  (1)  $D_4^{18} = 1.1620$  (1)  $n_C^{18} = 1.4616$  (1)

[See also trans stereoisomer (3:7395).]

[For prepn. of  $\bar{C}$  (accompanied by its *trans* stereoisomer (3:7395)) from 2,2,3-trichlorobutane (3:5680) with solid KOH (1 mole) at 135-140° see (1).]

C on oxidn. with 3% aq. KMnO<sub>4</sub> yields (1) acetic acid (1:1010).

 $\bar{C}$  in CCl<sub>4</sub> at  $-20^{\circ}$  treated with 7% O<sub>3</sub>, then hydrolyzed, yields (1) acetic acid (1:1010) + acetaldehyde (1:0100).

3:5500 (1) Tishchenko, Churbakov, J. Gen. Chem. (U.S.S.R.) 6, 1553-1558 (1936); Cent. 1937, I 3785; C.A. 31, 2165 (1937).

| B.P.       |             |     | M.P. |                       |       | •                          |     |
|------------|-------------|-----|------|-----------------------|-------|----------------------------|-----|
| 127.5-128° | (1) cor.    | (2) | -57° | $D_{21}^{21}=1.632$   | 2 (7) | $n_{\rm D}^{26} = 1.456$   | (1) |
| 127°       | at 760 mm.  | (3) |      |                       |       |                            |     |
| 126-127°   | at 745 mm.  | (4) |      | $D_{15}^{15} = 1.658$ | 5 (3) | $n_{\rm D}^{22} = 1.45664$ | (8) |
|            |             | (5) |      |                       |       |                            |     |
| 127.2°     | at 725 mm.  | (6) |      |                       |       |                            |     |
| <b>49°</b> | at 50 mm.   | (3) |      |                       |       |                            |     |
| 45°        | at 26 mm.   | (7) |      |                       |       |                            |     |
| 20°        | at 10.3 mm. | (1) |      |                       |       |                            |     |
| 0°         | at 2-4 mm.  | (1) |      |                       |       |                            |     |
|            |             |     |      |                       |       |                            |     |

Colorless oily liq. with irritating and suffocating odor, but (when pure) not especially lachrymatory. — Ord. samples may cont. triphosgene (3:1915).

[For prepn. from methyl formate (1:1000) or methyl chloroformate (3:5075) by chlorination see (8) (3) (9) (2) (1); for prepn. from bis-(trichloromethyl) carbonate (triphosgene) (3:1915) see (1); for German prepn. in World War I see (10).]

 $\bar{C}$  (when pure) boils with no decompn. (1); however, above 300° (2) or on contact with activated carbon, charcoal, or iron oxide at ord. temp. (1)  $\bar{C}$  decomposes to phospene

(3:5000). — C on contact with alumina (1), AlCl<sub>3</sub> (5), or FeCl<sub>3</sub> (3) decomposes in a different mode yielding  $CCl_4$  (3:5100) +  $CO_2$ .

 $\bar{ extsf{C}}$  with aq. hydrolyzes slowly in the cold but rapidly at 100° yielding only HCl + CO<sub>2</sub>

(1) (3); C on warming with aq. Na<sub>2</sub>CO<sub>3</sub> yields NaCl + CO<sub>2</sub> (3).

C on treatment at 20° for 5 min. with NaI in acctone evolves CO and separates I2 to 98.8% of amt. expressed by reaction:  $Cl_3C.O.CO.Cl + 2NaI \rightarrow 2CO + 4NaCl + I_2$  (11) [cf. chloromethyl chloroformate (3:5275), dichloromethyl chloroformate (3:5315), and triphosgene (3:1915)].

 $\bar{\mathbf{C}}$  with aq. NH<sub>4</sub>OH reacts vigorously yielding urea + NH<sub>4</sub>Cl.  $-\bar{\mathbf{C}}$  with excess aniline in either aq. or non.-aq. soln. is converted to N,N'-diphenylurea (carbanilide), m.p. 233°,+ aniline hydrochloride (3). [Note that with insufficient amline a mixt. of phenyl isocyanate + N-phenylcarbamyl chloride may form (3).]

Č on addn. in cold to conc. soln. of phenol (1 mole) in aq. NaOII separates an oil (which soon solidifies) of phenyl trichloromethyl carbonate [Beil. VI<sub>1</sub>-(88)], ndls. from ether, m.p. 70.5° (12), 66° (3); this product upon warming with aq. sodium phenolate (or C warmed with excess sodium phenolate in one operation) yields diphenyl carbonate (1:2335), cryst. from alc., m.p. 78° (12). [For corresponding reactions with p-crossle (1:1410),  $\beta$ -naphthol (1:1540), p-chlorophenol (3:0475), and p-nitrophenol see (13).

 $\bar{\mathbf{C}}$  with pyridine yields a yel. double quaternary ammonium salt  $C_5H_5N(Cl).CO(Cl)$ -

 $N.C_5H_5$  which by aq. is decomposed to pyridine hydrochloride  $+ CO_2$  (14).

[For use of C in prepn. of acid chlorides of carboxylic or sulfonic acids see (15); similarly  $\tilde{C}$  htd. with anhydrous NaOAc gives  $Ac_2O + NaCl + CO_2$  (2); for actn. on methyl hydrogen sulfate yielding methyl chlorosulfonate + phosgene +  $CO_2$  see (16).]

[For use of C for introduction of a second—CO.Cl group into acid chlorides see (17).]

3:5515 (1) Hood, Murdock, J. Phys. Chem. 23, 498-514 (1919). (2) Hentschel, J. prakt. Chem. (2) 36, 99-113 (1887). (3) Kling, Florentin, Lassieur, Schmitz, Ann. chim. (9) 13, 44 49 (1920). (4) Nekrassow, Melnikow, J. prakt. Chem. (2) 126, 81-96 (1930) (5), Ramsperger, Waddington, J. Am. Chem. Soc. 55, 214-220 (1932).
 Mohler, Helv. Chim. Acta 21, 788 (1938).
 Mohler, Polya, Helv. Chim. Acta 19, 1238 (1936).
 Grignard, Rivat, Urbain, Ann. chim. (9) 13, 228-265 (1920). (9) Hentschel, J. prakt. Chem. (2) 36, 209-215 (1887). (10) Norris, Ind Eng. Chem. 11, 822-824 (1919).

(11) Perret, Biechler, Compt. rend 203, 84-87 (1936); C.A. 30, 7423 (1936). (12) Ref. 4, pp. 93-95. (13) Melnikow, J. prakt. Chem. 128, 233-235 (1930). (11) Ger. 109,933, May 27, 1898; Cent. 1900, II 460. (15) Brit. 401,643, Dec. 14, 1933; Cent. 1934, II 2133. (16) Kraft, Alekseev. J. Gen. Chem. (U.S.S.R.) 2, 726-729 (1932); C.A. 27, 2426 (1933); Cent. 1933, II 1666. (17) Kharasch, Eberly, Kleiman, J. Am. Chem. Soc. 64, 2975-2977 (1942).

3:5540 
$$\alpha,\beta$$
-Dichloro- $\alpha$ -ethoxyethylene) CH=CH—O—CH<sub>2</sub>CH<sub>3</sub> I<sub>1</sub>-(377) I<sub>2</sub>-(780) Cl Cl Cl Cl D45-2 I<sub>1</sub>-(377) I<sub>2</sub>-(780) B.P. 128.2° cor. (1)  $D_4^{25} = 1.1972$  (3)  $D_4^{20} = 1.2037$  (3)  $D_D^{20} = 1.2037$  (3)  $D_D^{20} = 1.45584$  (3)

Č has the possibility of existing in two geometrically isomeric forms, but only this one has as yet been recognized.

[For prepn. of C from trichloroethylene (3:5170) with alc. KOH (4), with alc. NaOEt (yield: 81% (5), 70% (2)), or with alc. NaOH + CaO (6) see indic. refs.; from 1.1.1.2tetrachloroethane (3:5555) with NaOEt see (1).]

[C with calcd. amt. aq. (7), or with conc. HCl (8) yields ethyl chloroacetate (3:5700);

C on boilg. with aq. to complete soln. yields (9) chloroacetic acid (3:1370); C on htg. with aq. in s.t. at 180° yields (1) glycolic acid (1:0430), EtCl (3:7015) + HCl.]

[C with HCl gas yields (10) an addn. prod. which on htg. decomposes to chloroacetyl chloride (3:5235) + EtCl (3:7015); C with monobasic org. acids yields (2) on htg. ethyl chloroacetate (3:5700) + corresp. acid chloride; with succinic acid the products are (2) ethyl chloroacetate (3:5700) + succinic anhydride (1:0710).]

[ $\bar{C}$  with alcohols yields mainly (2) (11) the corresp. alkyl chloroacetate + EtCl (some ethyl chloroacetate + alkyl chloride are also formed (2));  $\bar{C}$  htd. with excess NaOEt yields (1) sodium salt of ethoxyacetic acid (1:1070).]

 $[\bar{C}]$  with phenols yields exclusively (2) the corresp. aryl chloroacetate + EtCl; e.g.,  $\bar{C}$  with  $\beta$ -naphthol (1:1540) yields (2)  $\beta$ -naphthyl chloroacetate, m.p. 95° (2).]

Č with aniline in aq. or aq. alc. soln. yields (12) ethyl N-phenylaminoacetate (90%) [Beil. XII-470, XII<sub>1</sub>-(263)], m.p. 58°, and phenylaminoacetanilide (10%) [Beil. XII-556, XII<sub>1</sub>-(285)], m.p. 112°.

[ $\tilde{C}$  readily absorbs Cl<sub>2</sub> at ord. temp.; if moisture is carefully excluded, the prod. breaks up (13) (14) on keeping or on htg. into dichloroacetyl chloride (3:5290) + EtCl (3:7015); if, however, moisture is given access or aq. added, then on keeping or htg. the prod. breaks up (13) (14) and on distn. gives alm. theoretical yield of ethyl dichloroacetate (3:5850) + HCl.]

[ $\bar{C}$  readily absorbs Br<sub>2</sub>; with complete exclusion of aq. the products are (13) (14) bromochloro-acctyl chloride, b.p. 138–139° (13), and EtBr; in pres. of aq. the products are ethyl chloro-bromo-acctate, b.p. 174°,  $D_4^{22}=1.5890$  (13), + HCl + HBr; some bromo-chloro-acctyl bromide, b.p. 158–160°, 47–49° at 15 mm. (15), and C<sub>2</sub>H<sub>5</sub>Cl (3:7015) are also (15) formed. —  $\bar{C}$  on treatment with Br<sub>2</sub> in the cold, then immediately followed by alc. KOH, gives good yield (3) of  $\beta$ -bromo- $\alpha$ , $\beta$ -dichlorovinyl ethyl ether, b.p. 177° at 754 mm.,  $D_4^{20}=1.6565$ ,  $n_3^{17}=1.50427$  (3).]

[C treated with ICl, stood 30 min. (17), filtered from I<sub>2</sub>, then htd. to 50° to expel C<sub>2</sub>H<sub>6</sub>Cl gives (16) (17) chloro-iodo-acetyl chloride; addn. of aq. to latter yields by hydrolysis (16) (17) chloro-iodo-acetic acid, colorless lfts. from lt. pet., m.p. 90° (16).]

3:5540 (1) Geuther, Brockhoff, J. prakt. Chem. (2) 7, 111-117 (1873). (2) Crompton, Vanderstichele, J. Chem. Soc. 117, 691-693 (1920). (3) Smith, J. Chem. Soc. 1927, 1099-1102. (4) Paterno, Oglaloro, Ber. 7, 80-81 (1874). (5) Stephens, J. Soc. Chem. Ind. 43, T313-314, 327-328 (1924); Cent. 1925, I 357. (6) Imbert, Consortium fur Elektrochem. Ind., Ger. 216,940, Dec. 13, 1909; Cent. 1910, I 308. (7) Imbert, Consortium fur Elektrochem. Ind., Ger. 209,268, April 27, 1909; Cent. 1909, I 1785. (8) Imbert, Consortium fur Elektrochem. Ind., Ger. 210,502, June 7, 1909, Cent. 1909, II 78. (9) Imbert, Consortium fur Elektrochem. Ind., Ger. 216,716; Nov. 30, 1909; Cent. 1910, I 214. (10) Consortium fur Elektrochem. Ind., Ger. 222,194, May 19, 1910; Cent. 1910, I 1999.

(11) Imbert, Consortium für Elektrochem. Ind., Ger. 212,592, Sept. 6, 1909; Cent. 1909, I 1024. (12) Imbert, Consortium für Elektrochem. Ind., Ger. 199,624, June 24, 1908; Cent. 1908, II 358. (13) Crompton, Triffitt, J. Chem.! Soc. 119, 1874-1875. (14) McKie, J. Chem. Soc. 123, 2213-2217 (1923). (15) Backer, Mook, J. Chem. Soc. 1928, 2126. (16) Crompton, Carter, J. Chem. Soc. 123, 576-577 (1923). (17) McMath, Read, J. Chem. Soc. 1927, 538-539.

3:5550 1,3-DICHLOROBUTENE-2 Cl Cl C<sub>4</sub>H<sub>6</sub>Cl<sub>2</sub> Beil. S.N. 11 (2,4-Dichlorobutene-2) 
$$CH_3-C=CH-CH_2$$

B.P. 127-129° at 756 mm. (1)  $D_4^{20} = 1.1591$  (1) (3)  $n_{\rm D}^{20} = 1.47239$  (1) 127-128.5° at 753 mm. (2) 1.1582 (2) 1.4695 (2) 61-63° at 70 mm. (1) 56-57° at 55 mm. (3)  $n_{\rm C}^{20} = 1.46988$  (1) 53-54° at 55 mm. (2) 1.4694 (3) 53-54° at 50 mm. (1)

Colorless liq. with characteristic odor (1). —  $\tilde{C}$  is formed (5–10% (4) (5) (1)) cf. (10) in synthesis of chloroprene (3:7080). — [For use in mfg. of unsatd. cellulose ethers see (6); in mfg. of unsatd. ethers of alcohols and phenols for use as solvents, disinfectants, etc., see (7) (8).]

[For prepn. of  $\tilde{C}$  readily and in quantity (1) from vinylacetylene by shaking with an excess (4 moles) of HCl contg. CuCl see (1): from methyl vinyl ketone in 33% yield (together with other products) with PCl<sub>5</sub> at  $-10^{\circ}$  see (2), from 2-chlorobutene-2 (3:7105) (together with other products) by actn. of Cl<sub>2</sub> at 350° see (9); for formn. of  $\tilde{C}$  (together with other products) from trimethylethylene + Cl<sub>2</sub> see (11).]

Č passed over silica gel or clay at 245-275° loses HCl yielding (4) 17-18% 3-chloro-butadiene-1.3 ("Chloroprene") (3:7080).

 $\bar{C}$  on hydrolysis with steam (12), or aq. alk. (5) (12), or aq.  $K_2CO_3$  (2), aq.  $Na_2CO_3$  (70-80% yield (4)) or  $CaCO_3$  (3) gives 3-chlorobuten-2-ol-1 (3:8207) q.v., b.p. 161-162°. — [Note that  $\bar{C}$  with alc. alk. does not hydrolyze or lose HCl but instead gives the corresp. ethers (see details under 3-chlorobuten-2-ol-1 (3:8207)).]

Č with Cl<sub>2</sub> yields (13) (14) (15) a mixt. of 2,3,4-trichlorobutene-1 (3:9064), 1,2,3,3-tetrachlorobutane (3:9080), and 1,2,2,3,4-pentachlorobutane (3:9070).

35550 (1) Carothers, Berchet, Collins, J. Am. Chem. Soc. 54, 4066-4070 (1932). (2) Churbakov. J. Gen. Chem. (U.S.S.R.) 10, 977-980 (1940); C.A. 35, 2469 (1941). (3) Tishchenko, J. Gen. Chem. (U.S.S.R.) 7, 658-662 (1937); Cent. 1937, II 371; C.A. 31, 5754 (1937). (4) Klebanskii, Chevuichalova, Sintet. Kauchuk 1935, No. 6, 16-21; Cent. 1936, I 1975; C.A. 30, 1024 (1936). (5) Klebanskii, Tzyurikh, Dolgopol'skii, Bull. acad. sci. U.R.S.S. 1935, No. 2, 189-226; Cent. 1935, II 3844; C.A. 30, 1259 (1936) (full English translation in Rubber Chem. Tech. 9, 383-408 (1936). (6) du Pont Co., Brit. 429,949, June 11, 1935; Cent. 1936, I 4098; C.A. 29, 7073 (1935). (7) Berchet (to du Pont), U.S. 2,079,758, May 11, 1937; Cent. 1937, II 2597; C.A. 31, 4676 (1937). (8) Deichsel (to I.G.). Brit. 443,113, Feb. 20, 1936; Cent. 1937, I 383-384; C.A. 30, 4873 (1936). (9) N. V. de Bataafsche Petroleum Maatschappij, Brit. 468,016, June 28, 1937; French 810,112, Mar. 15, 1937; Cent. 1933, II 4102; C.A. 31, 8543 (1937). (10) du Pont Co., Brit. 395,131, Aug. 3, 1933; Cent. 1933, 2455; Brit. 387,325; Cent. 1933, I 4525; French 721,532, Mar. 4, 1932; Cent. 1932, II 2107.

(11) Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1232-1246 (1938); Cent. 1939, I 4223; C.A. 33, 4190 (1939). (12) Collins (to du Pont), U.S. 2,192,299, March 5, 1940; C.A. 34, 4392 (1940). (13) Carothers, Berchet, J. Am. Chem. Soc. 55, 1628-1631 (1933). (14) Coffman (to du Pont), U.S. 1,964,720, July 3, 1934, Cent. 1934, II 3180; C.A. 28, 5080 (1934). (15) Carothers, Berchet (to du Pont), U.S. 1,965,369, July 3, 1934; Cent. 1935, I 3725; C.A. 28, 5716 (1934).

| 3:5552     | 2-CHLOROETH (Ethylene chloro β-chloroethanol, β-chloroethyl alce "glycol chlorohy | hydrin,<br>ohol, | Cl         | СН₂ОН        | C₂H₅OCl               | Beil. I - 337<br>I <sub>1</sub> -(170)<br>I <sub>2</sub> -(333) |
|------------|-----------------------------------------------------------------------------------|------------------|------------|--------------|-----------------------|-----------------------------------------------------------------|
| B.P.       |                                                                                   |                  | F.P.       |              |                       |                                                                 |
| [132°      | at 761 mm                                                                         | . (1)]           | -67.5° (7) | $D_4^{25}=1$ | 1.1972 (14)           | $n_{\rm D}^{25} = 1.44123 (22)$                                 |
| [132.0°    |                                                                                   | (2)]             | (8)        |              | L.19654 (8)           |                                                                 |
| [130-13    | 31° at 760 mm                                                                     | . (3)]           | -69.0°     | 1            | 1.1961 (10)           | 1.44012 (9)                                                     |
|            |                                                                                   |                  | (21)       | 1            | 1.1947 (9)            | •                                                               |
| 129.46     | s° at 761.1 m                                                                     | m. (4)           |            |              |                       |                                                                 |
| 128.7-     | 128.8° at 764 mm                                                                  | . (5)            |            |              |                       |                                                                 |
| 128.66     | s° at 760 mm                                                                      | . (6)            |            |              |                       | $n_{\rm D}^{24} = 1.4402 (10)$                                  |
| 128.60     | ° at 760 mm                                                                       | . (7)            |            |              |                       |                                                                 |
| 128.6°     | at 760 mm                                                                         | . (8)            |            | $D_4^{20}=1$ | 1.2022 (13)           | $n_{\rm D}^{20} = 1.44212 \ (22)$                               |
| 128.1-     | 128.2° at 752 mm                                                                  | . (9)            |            | 1            | 1.20190 (8)           | 1.4421 (23)                                                     |
| 128.05     | o° at 744 mm                                                                      | . (6)            |            | 1            | 1.20027 (6)           | 1.44208 (13)                                                    |
| 128.0°     | at 760 mm                                                                         | . (10)           |            | 1            | L.1988 (4)            | (9)                                                             |
| 128°       | (1                                                                                | 1)(12)           |            | 1            | 1.1981 (22)           | 1.44197 (6)                                                     |
| 127.9-     | 128.1° at 761 mm                                                                  | . (13)           |            |              |                       | 1.44189 (24)                                                    |
| 127.9      | 128.1° at 741 mm                                                                  | . (14)           |            |              |                       | 1.44163 (25)                                                    |
| 127.6-     | 128.6°                                                                            | (15)             |            |              |                       |                                                                 |
| 127.1-     | 128.1° cor.                                                                       | (16)             |            | $D_4^{15}=1$ | L. <b>20720 (</b> 13) | $n_{\rm D}^{15} = 1.44382(22)$                                  |
| 127-12     | 27.5°                                                                             | (17)             |            |              |                       | 1.44380 (8)                                                     |
| 126.5-     | 126.7° at 729 mm                                                                  | . (18)           |            |              |                       |                                                                 |
| 51-52°     | at 22 mm                                                                          | . (1)            |            |              |                       |                                                                 |
| <b>44°</b> | at 20 mm                                                                          | . (19)           |            |              |                       |                                                                 |
| 43°        | at 3–4 mm                                                                         | . (20)           |            |              |                       |                                                                 |

Colorless liq. — miscible with aq. (see also below) and most org. solv.

# MISCELLANEOUS PHYSICAL PROPERTIES

# BINARY SYSTEMS CONTAINING C

 $\bar{C}$  + water. For values of  $D_4^{20}$  and  $n_D^{20}$  (also  $n_C^{20}$ ,  $n_F^{20}$ ,  $n_G^{20}$ ) over whole range 0-100%  $\bar{C}$  see (6) cf. (22) (23); for thermal anal. of systems see (26). — For study of salting-out of  $\bar{C}$  from its aq. solns. (11) or its isolation by ether extraction of aq. solns. satd. with NaCl or Na<sub>2</sub>CO<sub>3</sub> (27) see indic. refs. — For concn. of  $\bar{C}$ , i.e., dehydration of its aq. solns. by distn. of the water with C<sub>6</sub>H<sub>6</sub> (28), with 1,2-dichloroethane (ethylene dichloride) (3:5130) (29), or with cyclohexanol (1:6415) (30) see indic. refs. — See also below under azeotropes.

Note that boilg. aq. solns. of Č undergo slow decompn., e.g., about 10% in 8 hrs. (23), 50% in 5 hrs. (107) cf. (11) (presumably by loss of HCl and evoln. of ethylene oxide (1:6105), b.p. 10.7°, and/or (38) acetaldehyde (1:0100), b.p. 20.2°.

 $\ddot{C}$  with hydrocarbons.  $\ddot{C}$  with  $C_6H_6$  (1:7400): for b.p., vapor-liq. equil., and  $n_D^{25}$  see (10). —  $\ddot{C}$  with toluene (1:7405): for b.p., vapor-liq. equil., and  $n_D^{25}$  see (10) (see also below under azeotropes).

 $\bar{C}$  with alcohols.  $\bar{C}$  with butanol-1 (1:6180): for b.p., vapor-liq. equil., and  $n_D^{25}$  see (10). —  $\bar{C}$  with isobutyl alc. (1:6165): for b.p., vapor-liq. equil., and  $n_D^{25}$  see (10).

C with ethers. C with di-isopropyl ether (1:6125): for b.p., vapor-liq. equil., and

 $n_{\rm D}^{25}$  see (10). —  $\bar{C}$  with di-n-butyl ether (1:7950): for b.p., vapor-liq. equil., and  $n_{\rm D}^{25}$  see (10). —  $\bar{C}$  with  $\beta,\beta'$ -dichloro-diethyl ether (3:6025): for b.p., vapor-liq. equil., and  $n_{\rm D}^{25}$  see (10) (see below under azeotropes).

 $\tilde{\mathbf{C}}$  with chlorinated hydrocarbons.  $\tilde{\mathbf{C}}$  with 1,2-dichloroethane (ethylene dichloride (3:5130): for b.p., vapor-liq. equil., and D see (31) (see also below under azeotropes). (For use of ethylene dichloride in dehydration of  $\tilde{\mathbf{C}}$  see (30).)

# AZEOTROPES CONTAINING C

Binary azeotropes.  $\bar{C}$  with water forms a const.-boilg. mixt., b.p. 97.85° at 760 mm. (26) (8), 97.8° at 760 mm. (23) (32), contg. 45.8 wt. % (8), 43.5 wt. % = 14.7 mole % (32)  $\bar{C}$ : constants for this azeotropic mixt. at other press. include the following: at 771 mm., b.p. 96-96.2° (26); at 735 mm., b.p. = 95.8° (33) (11), contg. 42.5 wt. %  $\bar{C}$  (33) (11); at 504 mm., b.p. = 86.4° (23); at 400 mm., b.p. = 80.55°, contg. 40.5 wt. %  $\bar{C}$  (23). — Note that compn. changes only slightly (23) with press. — For study of influence of NaCl (11) (23) or of HCl (11) see indic. refs.

 $\bar{\mathbf{C}}$  with toluene (1:7405) gives a const.-boilg. mixt., b.p. 106.9°, contg. 27 mole %  $\bar{\mathbf{C}}$  (10). —  $\bar{\mathbf{C}}$  with di-n-butyl ether (1:7950) gives a const.-boilg. mixt., b.p. 123.0°, contg. 68 mole %  $\bar{\mathbf{C}}$  (10). —  $\bar{\mathbf{C}}$  with  $\beta,\beta'$ -dichlorodiethyl ether (3:6025) gives a const.-boilg. mixt., b.p. 128.2°, contg. 91.8 mole %  $\bar{\mathbf{C}}$  (10).

Ternary azeotropes:  $\bar{C}$  with aq. +  $C_6H_6$  (1:7400) gives a const.-boilg. mixt., b.p. 67.0-67.3° (29). -  $\bar{C}$  with aq. + ethylene dichloride (3:5130) gives a const.-boilg. mixt., b.p. 69.6° (29). -  $\bar{C}$  with aq. + 1,1,2-trichloroethylene (3:5170) gives a const.-boilg. mixt., b.p. 70.8-71.5° (29).

# MISCELLANEOUS PHYSICAL PROPERTIES OF C

[For sepn. of  $\bar{C}$  from gas mixts. by adsorption (?) on  $Mg(ClO_4)_2$  or other perchlorates see (34).]

### USES OF C

The manifold uses of  $\bar{C}$ , based upon both its physical and its chemical characteristics, cannot here be reviewed in detail; however, some examples include the following.

[For use in sepn. of butadiene from hydrocarbon mixts. (35), in dewaxing and removing naphthenes from mineral lubricating oils (36), in refining of rosin (37), in extraction of pine lignin (38) (39), as solv. for various resins (40), as solv. for cellulose acetate (41) or cellulose ethers (42), for addn. to rayon spinning baths (43) see indic. refs.]

# PHYSIOLOGICAL AND BIOCHEM. BEHAVIOR OF C

[For study of pharmacol. of  $\bar{C}$  (or its phosphoric esters, etc.) see (44); for reports of poisoning by  $\bar{C}$  see (45) (46); for study of toxicity of vapor of  $\bar{C}$  see (403).]

[For effect of  $\bar{C}$  upon amylase (47) (48) or lipase (49) see indic. refs.; for use of  $\bar{C}$  in prod. of yeast of depressed enzymatic activity see (50).]

# DETERMINATION OF C

[For colorimetric detn. of  $\tilde{C}$  by reactn. with diazotized sulfanilic acid in alk. soln. at 25° see (106) (note that method involves oxidn. of  $\tilde{C}$  by the reagt. to chloroacetaldehyde (3:7212) and color formn. with latter); for detn. of  $\tilde{C}$  in aq. solns. by refractometry see (11) (25) (6) (23).]

## PREPARATION OF C

From ethylene. With hypochlorous acid, e.g., from  $Cl_2 + aq$ .  $-\bar{C}$  is usually prepd. from ethylene by addn. of HOCl, the HOCl may be obtained by use of  $Cl_2 + aq$ . (sometimes in the pres. of alk. acceptors for the simultaneously formed HCl), by use of organic hypochlorites, or other org. cpds. which hydrolyze to give HOCl.

[For scientific papers discussing prepn. of  $\tilde{C}$  from ethylene + HOCl (Cl<sub>2</sub> + aq.) see (401) (11) (51) (52) (53) (54) (55) (56) (57) (58) (59); for very old work see (60); for examples of patents employing this method see citations (61)-(82) cf. (402), inclusive; for study of metal-corrosion problems involved in this method of prepn. of  $\tilde{C}$  see (83).]

With organic hypochlorites (e.g., ter-butyl hypochlorite (3:7165)). [For patents on prepn. of  $\bar{C}$  from ethylene + ter-butyl hypochlorite see (84) (85).]

With N-chlorourea. [For prepn. of  $\bar{C}$  from ethylene with N-chlorourea in 5% H<sub>2</sub>SO<sub>4</sub> contg. CuCl<sub>2</sub> at 0° (yield: 60-70%  $\bar{C}$  accompanied by 2% ethylene dichloride (3:5130)) see (86).]

From ethylene glycol (1:6465). [For prepn. of  $\tilde{C}$  from ethylene glycol satd. with HCl gas and htd. in s.t. (12) (90), or treated at 160° (87) (4) or 180° (88) with stream of HCl (yields: 70-80% (88), 60% (87)), see indic. refs.; note that ethylene glycol with excess conc. HCl in s.t. at 100° gives no  $\tilde{C}$  (89) but only ethylene dichloride (3:5130), while mere distn. with conc. HCl (9 moles) gives (15) only 12%  $\tilde{C}$ .)]

[For prepn. of  $\bar{C}$  from ethylene glycol with  $S_2Cl_2$  (2.5 wt. pts. (91)) on refluxing (yields: 82.5% (92), 72.8% (91)) (93) (94) (95) see indic. refs.: for forms. of  $\bar{C}$  from glycol with SiCl<sub>4</sub> see (96).]

From ethylene glycol esters. [For patents on prepn. of  $\tilde{C}$  from ethylene glycol diformate (1:3402) with HCl gas at 100° via formn. of  $\beta$ -chloroethyl formate and subsequent alcoholysis of latter with MeOH/HCl (97), or from ethylene glycol diacetate (1:3511) with EtOH + HCl at 125–135° under press. (EtOAc is also formed) (98), see indic. refs.]

From ethylene oxide (1:6105). [For formn of  $\bar{C}$  from ethylene oxide with liq. HCl (99) or with  $S_2Cl_2$  (100) (other prods. are also formed) see indic. refs.]

From other miscellaneous sources. [For formn. of  $\tilde{C}$  from 1,2-dichloroethane (ethylene dichloride) (3:5130) by conversion with SO<sub>3</sub> below 45° to  $\beta$ -chloroethyl chlorosulfonate (see below) and subsequent hydrolysis to  $\tilde{C}$  (101); from bis-( $\beta$ -chloroethyl) sulfate (see below) by refluxing with aq. (102); from  $\beta$ -chloroethyl trichloroacetate (3:6410) by shaking with aq. (103); from  $\beta$ -chloroethyl vinyl ether (3:7464) on distn. with aq. + trace of HCl (acetaldehyde is also formed) (104); from chloroacetaldehyde (3:7212) by reduction of carbonyl group with EtOMgBr (105) see indic. refs.]

### CHEMICAL BEHAVIOR OF C

Pyrolysis of  $\bar{C}$ .  $[\bar{C}$  in s.t. at 184° for 10 hrs. yields (107) 1,2-dichloroethane (ethylene dichloride) (3:5130) and acetaldehyde (1:0100) (the latter partially as aldehyde resin); for study of rate of decompn. of  $\bar{C}$  at 368° see (108).]

### BEHAVIOR WITH INORGANIC REACTANTS

Reduction of C. [C with Na/Hg + aq. (109), or C in aq. soln. in pres. of alk. with H<sub>2</sub> at atm. press. + cat. (110), yields ethyl alcohol (1:6130); in latter method reduction is facilitated by NaOH, less so by Ca(OH)<sub>2</sub> or CaCO<sub>3</sub>; using Pd/CaCO<sub>3</sub> yield of EtOH is 91%; using Ni yield of EtOH is 80% accompanied by 20% ethylene glycol (1:6465) (110).]

Oxidation of C. C on oxidn. with CrO<sub>3</sub> yields (111) chloroacetic acid (3:1370).

Behavior with  $H_2O$ .  $\tilde{C}$  on boilg. with aq. undergoes gradual decomposition: e.g., 10% in 8 hrs. (23), 50% in 5 hrs. (107) cf. (11), presumably by loss of HCl and formation of ethylene oxide (1:6105), acetaldehyde (1:0100) etc. — [Note that  $\tilde{C}$  with aq. vapor over  $ZnCl_2 + ZnO$  at  $250-255^\circ$  yields (112) acetaldehyde (1:0100).]

Behavior with inorganic acids. (See also below under behavior with salts of inorganic acids.)

With  $H_2SO_4$ .  $\bar{C}$  with conc.  $H_2SO_4$  readily dissolves and according to conditions yields either  $\beta$ -chloroethyl hydrogen sulfate or bis- $(\beta$ -chloroethyl) ether. (Note that  $\bar{C}$  with  $SO_2Cl_2$  (see below) gives bis- $(\beta$ -chloroethyl) sulfate.)

[For study of rate and extent of formn. of  $\beta$ -chloroethyl HSO<sub>4</sub> with conc. or fumg. H<sub>2</sub>SO<sub>4</sub> at 25° see (14); for reactn. of barium salt of this prod. with aniline see (113).]

 $\ddot{\mathbf{C}}$  with conc.  $\mathrm{H}_2\mathrm{SO}_4$  (17% by wt. of  $\ddot{\mathbf{C}}$ ) refluxed 6 hrs. gives (114) bis-( $\beta$ -chloroethyl) ether (3:6025).

With  $HNO_3$ . [ $\bar{C}$  with  $HNO_3/H_2SO_4$  (115) (116) gives (92% yield (115))  $\beta$ -chloroethyl nitrate,  $ClCH_2CH_2ONO_2$ , b.p.  $149-150^\circ$ ; for use of this prod. in explosives see (115) (117); for use as ignition accelerator in Diesel engine fuels see (118) (119) (120).]

With  $HNO_2$ . [C with  $HNO_2$  (from  $NaNO_2 + HCl$ ) at  $-5^\circ$  gives (70% yield (121)) (122) (123)  $\beta$ -chloroethyl nitrite  $ClCH_2CH_2ONO$ , b.p. 90-91° (121), 89-89.5° (122),  $D_2^{20} = 1.212$  (122),  $n_D^{20} = 1.4125$  (122). (This prod. is not to be confused with the isomeric chloro-nitro-ethanes Beil. I-101.)]

Behavior with salts of inorganic acids. (For behavior with NaCN, anhyd. Na<sub>2</sub>CO<sub>3</sub>, NaSCN, etc., see further below under organic reactants; for behavior with NaSH see further below under alkali reactants.)

With alkali iodides.  $\bar{C}$  with NaI in hot alc. (124) (125) or boiling acetone (126) for 16 hrs. (127) (better 4 hrs. (20)), or with KI in alc. at room temp. for 24 hrs. (128) gives (95% yield (127))  $\beta$ -iodoethanol (ethylene glycol iodohydrin), b.p. 176-177° dec. (124), 86-87° at 25 mm. (20), 85-88° at 25 mm. (127), 85° at 25 mm. (124), 61° at 7 mm. (4),  $D_{4}^{20} = 2.1968$  (4),  $n_{D}^{20} = 1.57134$  (24). [For study of rate of reaction of  $\bar{C}$  with KI in dry acetone at 50° and 60° see (16).]

With alkali sulfides (for alkali sulfhydrates, e.g., NaSH, see below). —  $[\bar{C}$  with aq. K<sub>2</sub>S (129) or with aq. Na<sub>2</sub>S (11) (130) (131) (132) at 30–35° for 1 hr. (33) splits out 2 NaCl giving (yields: 90–95% (11), 79–86% (33)) bis-(β-hydroxyethyl) sulfide ("thiodiglycol") [Beil. I-470, I<sub>1</sub>-(244), I<sub>2</sub>-(525)], b.p. 164–166° at 20 mm. (33), 130° at 2 mm. (131), 104° at 0.005 mm. (132), f.p. =  $-16^{\circ}$  (132),  $D_2^{20} = 1.1821$  (132), 1.1819 (132),  $n_D^{20} = 1.52031$  (132), misc. with aq., readily sol. alc., acetone, EtOAc, or CHCl<sub>3</sub>, but spar. sol. ether, C<sub>6</sub>H<sub>6</sub>, or CCl<sub>4</sub> (131) (corresp. dibenzoate, m.p. 65° (133), di-(p-nitrobenzoate), m.p. 107.7° (134), bis-(N-phenylcarbamate), m.p. 128.5–129.5° (131)). — Note that this prod. ("thiodiglycol") with  $\bar{C}$  at 100° for 13 hrs. (131) adds to form tris-(β-hydroxyethyl)sulfonium chloride (HOCH<sub>2</sub>CH<sub>2</sub>)<sub>3</sub>SCl, non-hygroscopic ndls., m.p. 126–127° (132), 125–126° (131). Note also that  $\bar{C}$  (1 mole) + Na<sub>2</sub>S + 1-chloropropanol-2 (propylene chlorohydrin) (3:7747) yields (135) a mixed deriv., viz., β-hydroxyethyl β-hydroxy-n-propyl sulfide.]

With alkali selenide. [ $\bar{C}$  with aq. Na<sub>2</sub>Se yields (136) bis-( $\beta$ -hydroxyethyl) selenide.]

With alkali disulfide. [Č with aq. Na<sub>2</sub>S + S gives (46% yield (137)) (138) bis-( $\beta$ -hydroxyethyl) disulfide [Beil. I-471, I<sub>2</sub>-(528)], b.p. 155° at 30 mm.,  $D_4^{20} = 1.3375$  (137).]

With NaHSO<sub>3</sub>. [C with solid NaHSO<sub>3</sub> in s.t. at 170-180° for several hrs. gives (139) the salt of 2-hydroxyethanesulfonic acid-1 ("isethionic acid").]

With  $Na_3PO_4$ . [Č with satd. aq.  $Na_4PO_4$  as directed (140) cf. (3) gives (30% yield (140)) di-sodium  $\beta$ -hydroxyethyl phosphate, cryst. from aq. alc. as hexahydrate, m.p. 61° (140).]

With Na<sub>2</sub>AsO<sub>3</sub>. [ $\bar{C}$  with aq. alk. Na<sub>3</sub>AsO<sub>3</sub> (from As<sub>2</sub>O<sub>3</sub> in aq. alk.) as directed (141) (142) (143) cf. (144) (145) gives  $\beta$ -hydroxyethylarsonic acid (also known as  $\beta$ -hydroxyethylarsinic acid) = HOCH<sub>2</sub>CH<sub>2</sub>AsO(OH)<sub>2</sub>, very sol. aq. but forming spar. sol. monohydrated calcium salt (141).]

With  $Na_2SnO_2$ . [Č with aq. alk.  $Na_2SnO_2$  (from  $SnCl_2 + aq$ . NaOH) gives (146) salt of  $\beta$ -hydroxyethylstannonic acid =  $HOCH_2CH_2.SnO(OH)$ .]

Behavior with acid halides of inorganic acids. With thionyl chloride (SOCl<sub>2</sub>). [Č with SOCl<sub>2</sub> (small excess) in cold gives (83% yield (147))  $\beta$ -chloroethylsulfinyl chloride = ClCH<sub>2</sub>CH<sub>2</sub>OS(O)Cl, b.p. 93-95° at 40 mm., 84-85° at 20 mm.,  $D_4^{20} = 1.5010$ , which upon attempted distn. at ord. press. dec. into SO<sub>2</sub> + ethylene (di)chloride (3:5130) (147). — However, Č (excess) with SOCl<sub>2</sub> at elevated temp. (147) or Č (1 mole) with SOCl<sub>2</sub> (1 mole) in cold (148) gives (75% yield (148)) cf. (156) bis- ( $\beta$ -chloroethyl) sulfite = (ClCH<sub>2</sub>CH<sub>2</sub>O)<sub>2</sub>SO, b.p. 133° at 12 mm. (148), 117.5-118° at 4 mm. (147),  $D_0^{20} = 1.422$ ,  $n_0^{20} = 1.481$  (148).]

With sulfuryl chloride ( $SO_2Cl_2$ ). [Č with  $SO_2Cl_2$  in cold gives (149) (70% yield (122))  $\beta$ -chloroethyl chlorosulfonate = ClCH<sub>2</sub>CH<sub>2</sub>O.SO<sub>2</sub>Cl [Beil. I<sub>2</sub>-(336)], b.p. 101° at 23 mm.,  $D_-^{20.5} = 1.552$ ,  $n_D^{18.3} = 1.4587$  (122). — However, Č with  $SO_2Cl_2$  under reflux (121) (or  $\beta$ -chloroethyl chlorosulfonate +  $\beta$ -chloroethyl nitrite (above) (122)) gives (50% yield (121)) bis-( $\beta$ -chloroethyl) sulfate = (ClCH<sub>2</sub>CH<sub>2</sub>O)<sub>2</sub>SO<sub>2</sub> [Beil. I<sub>2</sub>-(336)], b.p. 154-154.5° at 8 mm. (121), 130° at 3.5 mm. (122), m.p. + 11° (121),  $D_4^{20} = 1.4801$  (121),  $n_D^{20} = 1.4622$  (121), 1.4620 (122).]

With phosphoryl chloride (POCl<sub>3</sub>). [ $\bar{C}$  with POCl<sub>3</sub> at 0° (150) or in CCl<sub>4</sub> at room temp. (151) gives (46–47% yield (151))  $\beta$ -chloroethylphosphoryl dichloride = ClCH<sub>2</sub>CH<sub>2</sub>OP-(O)Cl<sub>2</sub> [Beil. I<sub>2</sub>-(337)], b.p. 108–110° at 15 mm. (151). — $\bar{C}$  with POCl<sub>3</sub> in pyridine at -20° gives (140) the salt of mono-( $\beta$ -chloroethyl)phosphoric acid = ClCH<sub>2</sub>CH<sub>2</sub>OP(O)-(OH)<sub>2</sub> [Beil. I<sub>1</sub>-(170), I<sub>2</sub>-(336)]. — $\bar{C}$  with POCl<sub>3</sub> in CCl<sub>4</sub> refluxed 16 hrs. gives (60% yield (152) cf. (140)) tri-( $\beta$ -chloroethyl) phosphate = (ClCH<sub>2</sub>CH<sub>2</sub>O)<sub>3</sub>PO [Beil. I<sub>2</sub>-(337)], b.p. 180–182° at 2–3 mm.,  $D_{20}^{20}$  = 1.428 (152). — For patent on reaction of  $\bar{C}$  with POCl<sub>3</sub> see (153).]

With boron trifluoride (BF<sub>3</sub>). [Č with BF<sub>3</sub> forms a molecular compound (154) BF<sub>3</sub>.2Č which can be distilled in vac. without decompn.; b.p. 59° at 2 mm.,  $D_4^{20} = 1.4009$ ,  $n_{\rm He}^{174} = 1.40841$  (154).]

With silicon tetrachloride (SiCl<sub>4</sub>). [ $\bar{C}$  (4 moles) with SiCl<sub>4</sub> (1 mole) yields (155) (96) tetra-( $\beta$ -chloroethyl) orthosilicate, (ClCH<sub>2</sub>CH<sub>2</sub>O)<sub>4</sub>Si [Beil. I-337, I<sub>2</sub>-(337)], b.p. 195-200° at 15 mm. (156), 170-180° at 8 mm. (96) (also obtd. (156) from SiCl<sub>4</sub> +  $\beta$ -chloroethyl nitrite (above)).]

Behavior with alkalies.  $\bar{C}$  with alkalies (or appropriate acid acceptors) loses HCl to yield according to conditions either ethylene glycol (1:6465) or ethylene oxide (1:6105).

[E.g.,  $\bar{C}$  with aq. NaOH on htg. hydrolyzes to ethylene glycol (1:6465); for general articles on this process see (54) (157) (158) (22); for studies of kinetics of the reaction see (404) (18) (159) (160) (161); for examples of patents on hydrolysis of  $\bar{C}$  to ethylene glycol by use of aq. alkali or alkaline-earth hydroxides, carbonates, or bicarbonates see (162) (163) (63) (164) (165) (166) (167).]

[ $\overline{C}$  added dropwise to 70% aq. NaOH (168) (169) or hot CaO (170) gives ethylene oxide (1:6105), b.p. +10.7°; for patents on this conversion see (171) (172) (173) (174) (175).]

Behavior with alkali sulfhydrate. [ $\bar{C}$  with NaSH (from Na<sub>2</sub>S.9H<sub>2</sub>O satd. with H<sub>2</sub>S (137)) at 55-65° (137) (176) or  $\bar{C}$  with NaSH in alc. for 36 hrs. at room temp. (177) gives (yields: 55% (176), 50-55% (137), 26-30% (177))  $\beta$ -hydroxyethyl mercaptan ("monothioethylene glycol") = HOCH<sub>2</sub>CH<sub>2</sub>SH [Beil. I-470, I<sub>2</sub>-(523)], b.p. 157-158° dec. at 742

mm. (178), 61° at 18 mm. (179), 58° at 18 mm. (137), 55° at 13 mm. (178), 52° at 12 mm. (177);  $D_4^{20} = 1.1143$  (178);  $n_D^{20} = 1.4996$  (178) (corresp. bis-(N-phenyl)carbamate, m.p. 146° (178); corresp. metallic mercaptide derivs. many of which have m.p.'s (178).]

Behavior with ammonia (for amines see below under behavior with organic reactants). [Č with aq. NH<sub>4</sub>OH gives (180) a mixt. of three hydroxyamines, viz., β-hydroxyethylamine (2-aminoethanol-1) [Beil. IV-274, IV<sub>1</sub>-(424), IV<sub>2</sub>-(717)]; bis-(β-hydroxyethyl)amine ("diethanolamine") [Beil. IV-283, IV<sub>2</sub>-(729)]; and tris-(β-hydroxyethyl)amine ("triethanolamine") [Beil. IV-285, IV<sub>2</sub>-(729)]. — Although all three of these products are now extremely important industrial compounds, they are usually manufactured from ethylene oxide with NH<sub>3</sub> and details lie beyond the scope of this text. — However, for a useful monograph see (181).]

Behavior with hydrazine (NH<sub>2</sub>.NH<sub>2</sub>). [ $\bar{C}$  with 1 mole hydrazine loses HCl yielding (182)  $\beta$ -hydroxyethylhydrazine + hydrazine hydrochloride;  $\bar{C}$  with 2-3 moles hydrazine yields (182) ethylene oxide accompanied by a little N,N-bis- $(\beta$ -hydroxyethyl)hydrazine.]

## BEHAVIOR OF C WITH ORGANIC REACTANTS

Behavior with hydrocarbons.  $[\bar{C} \text{ with } C_6H_6 + \text{AlCl}_3 \text{ (followed by aq.)} \text{ is claimed } (183) \text{ to yield } \beta\text{-phenylethyl alc. } (1:6505), \text{ but this has subsequently been denied } (184) \text{ where } 1,2\text{-diphenylethane (bibenzyl) } (1:7149) \text{ and resin were the only prods. obtd. } (See also below under behavior of <math>\bar{C}$  with organometallic cpds.)]

Behavior with organic hydroxyl compounds. With alcohols (see also below under carbohydrates).  $\bar{C}$  (anhydrous) with sodium alkoxides (from prim. or sec. aliphatic or aromales. + Na) on htg. splits out NaCl giving the corresp. mono ethers of ethylene glycol.

[E.g.,  $\bar{\mathbf{C}}$  with NaOMe gives (35% yield (185))  $\beta$ -hydroxyethyl methyl ether (1:6405) q.v.;  $\bar{\mathbf{C}}$  with NaOEt gives (60% yield (185))  $\beta$ -hydroxyethyl ethyl ether (1:6410) q.v.;  $\bar{\mathbf{C}}$  with NaOPr gives (40% yield (185))  $\beta$ -hydroxyethyl n-propyl ether (1:6414) q.v.;  $\bar{\mathbf{C}}$  with NaOisoPr gives (25% yield (185))  $\beta$ -hydroxyethyl n-porpyl ether (1:6430) q.v.;  $\bar{\mathbf{C}}$  with NaOBu gives (30% yield (185))  $\beta$ -hydroxyethyl n-butyl ether (1:6430) q.v.;  $\bar{\mathbf{C}}$  with NaOiso-Bu gives (36% yield (185))  $\beta$ -hydroxyethyl n-amyl ether, b.p. 181° at 745 mm. (185).]  $\bar{\mathbf{C}}$  with NaOCH<sub>2</sub>C<sub>6</sub>H<sub>5</sub> similarly gives (186) (187) ethylene glycol monobenzyl ether

(1:6533) q.v.] With carbohydrates (or their relatives). [ $\bar{C}$  with d-glucose + HCl yields (188) cf. (189)

2-chloroethyl-d-glucoside.] [ $\bar{C}$  with "acetobromglucose" + Ag<sub>2</sub>CO<sub>3</sub> (190) (193) in C<sub>6</sub>H<sub>6</sub> (189) (191) gives (yields: 69% (189), 45–50% (190)) tetra-acetyl- $\beta$ -d-( $\beta$ -chloroethyl)glucoside (tetra-acetyl- $\beta$ -d-glucosido-ethylene chlorohydrin), m.p. 119–120° (192), 118.5–119.5° (189), 114° cor. (190) (191). — For isomerization of this prod. (in boilg. CHCl<sub>3</sub> for 6½ hrs.) to tetra-acetyl- $\alpha$ -d-( $\beta$ -chloroethyl)glucoside, m.p. 82–83°, see (194).]

[ $\bar{C}$  with "acetobromogalactose" + Ag<sub>2</sub>CO<sub>3</sub> (190) (194) in C<sub>6</sub>H<sub>6</sub> (191) gives (77% yield (194)) tetra-acetyl- $\beta$ -d-( $\beta$ -chloroethyl)galactoside, m.p. 117° cor. (190) (191), 115.5–116.5° (194).]

[For analogous prepn. from  $\tilde{C}$  of triacetyl- $\beta$ -d-( $\beta$ -chloroethyl)xyloside, m.p. 137° cor., or of hepta-acetyl- $\beta$ -d-( $\beta$ -chloroethyl)lactoside, m.p. 78–80°, see (190) (191).]

[For condens. of  $\overline{C}$  with mannitol (1:5830) or sorbitol (1:5820) see (195).]

[For use of  $\bar{C}$  in degradation ("depolymerization") of cellulose or starch see (196) (197); for use of  $\bar{C}$  + NaOH in introduction of  $\beta$ -hydroxyethyl groups into cellulose see (198).]

With aliphatic mercaptans. C with salts of alkyl or alkaryl mercaptans gives the corresp. S-monoethers of monothioethylene glycol.

[E.g., C with NaSMe in abs. alc. (199) (200) or ether (201) (202) or less advantageously

 $\bar{C}$  with KSMe in aq. alc. (201) gives (yields 74–82% (199), 78% (201), 40% (199)) β-hydroxyethyl methyl sulfide (β-methylmercaptoethanol) [Beil. I<sub>2</sub>-(524)], b.p. 80.5–81° at 30 mm. (201), 68–70° at 20 mm. (199),  $D_{20}^{20} = 1.0640$  (201),  $n_{D}^{20} = 1.4867$  (201); this prod. with MeI in dry ether gives on stdg. in cold the corresp. dimethyl-β-hydroxyethylsulfonium iodide, hygroscop. cryst. from MeOH/ether, m.p. 60–62° (202). —  $\bar{C}$  with EtSH in alc./NaOEt (203), in alc. KOH (132), or even in conc. aq. KOH (204) gives (yield 70–74% (203)) β-hydroxyethyl ethyl sulfide [Beil. I-470, I<sub>2</sub>-(525)], b.p. 184° (204) (132), 182–184° u.c. (203),  $D_{4}^{20} = 1.0166$  (132),  $n_{D}^{20} = 1.48669$  (132).]

[ $\bar{C}$  with n-BuSH in hot aq. NaOH refluxed 1 hr. gives (81% yield (205))  $\beta$ -hydroxyethyl n-butyl sulfide [Beil. I<sub>2</sub>-(525)], b.p. 92-93° at 3 mm.,  $D_{25}^{25} = 0.9693$ ,  $n_D^{20} = 1.4800$  (205). —  $\bar{C}$  with allyl mercaptan in conc. aq. KOH gives (50% yield (206))  $\beta$ -hydroxyethyl allyl sulfide [Beil. I<sub>2</sub>-(525)], b.p. 91° at 12 mm.,  $D_{20}^{20} = 1.0283$  (206). —  $\bar{C}$  with NaSCH<sub>2</sub>C<sub>6</sub>H<sub>5</sub> in aq. soln. gives (100% yield (179))  $\beta$ -hydroxyethyl benzyl sulfide, b.p. 169° at 18 mm.]

[C with ethylene dithioglycol (HSCH<sub>2</sub>CH<sub>2</sub>SH) + powdered NaOH htd. 1 hr. gives (177) ethylene dithioglycol bis-(β-hydroxyethyl ether) = HOCH<sub>2</sub>CH<sub>2</sub>—S—CH<sub>2</sub>CH<sub>2</sub>—S—CH<sub>2</sub>CH<sub>2</sub>OH [Beil. I<sub>2</sub>-(533)], lfts., m.p. 62-63°.]

With phenols. [ $\bar{C}$  with phenol (1:1420) in aq. NaOH (207) or alc. NaOEt (208), or  $\bar{C}$  with NaOC<sub>6</sub>H<sub>5</sub> on htg. (17) (209), or  $\bar{C}$  with KOC<sub>6</sub>H<sub>5</sub> at 150° for 6 hrs. (210), or  $\bar{C}$  with phenol salt refluxed 8 hrs. (211) gives (yields: 84% (17), 79% (207), 55–62% (211), 50% (209)) β-hydroxyethyl phenyl ether (β-phenoxyethanol) (1:6518) q.v., b.p. at 80 mm. = 165° (211), 163–166° (208), 163–167° (210), b.p. 128–130° at 20 mm. (17), 134–135° at 18 mm. (209). — (Note that  $\bar{C}$  with NaOC<sub>6</sub>H<sub>5</sub> in pres. of Et<sub>3</sub>N gave only 12.5% yield (212) of β-phenoxyethanol.)]

[Similarly  $\bar{\mathbb{C}}$  with aq. sodium o-nitrophenolate in s.t. at 125° for 20 hrs. gives (213)  $\beta$ -(o-nitrophenoxy)ethanol, oil, b.p. 180–182° at 4 mm., m.p. 35–36° (215) (corresp. acetate, oil; corresp. benzoate, m.p. 75–76° (213));  $\bar{\mathbb{C}}$  with m-nitrophenol with 40% aq. KOH at 100° for 2 hrs. (213), or with 2 N NaOH reflux d 4 hrs. (214), gives  $\beta$ -(m-nitrophenoxy)ethanol, m.p. 90–91° (213), 88° (214), 87–88° (215);  $\bar{\mathbb{C}}$  with sodium p-nitrophenolate in 50% alc. in s.t. at 120° for 23 hrs. (213), or in boilg. AmOH (216) (217), gives  $\beta$ -(p-nitrophenoxy)ethanol, m.p. 101–102° (213), 94–95° (216), 92–94° (215) (corresp. acetate, m.p. 85–87°; corresp. benzoate, m.p. 116° (213).]

[Analogous condensations of  $\bar{C}$  with other monohydric phenols include the following: for  $\bar{C}$  with o-cresol (1:1400) (218), with  $\beta$ -naphthol (1:1540) (218), with m-methoxyphenol (1:1765) (219) (220) (221), with methyl p-hydroxybenzoate (1:1549) (222), with p-bromophenol (218), with p-acetylaminophenol (213), with m-diethylaminophenol (212), with 8-hydroxyquinoline (212) see indic. refs.]

[Analogous condensations of  $\bar{C}$  with polyhydric phenols include the following: with pyrocatechol (1:1520) (223), resorcinol (1:1530) (224) (218), 4-acetylresorcinol (219), 4-ethylresorcinol (219) see indic. refs.]

With throphenols. [ $\bar{C}$  with throphenol in alc. NaOEt (225) (203) or in 10% aq. KOH (226) gives (76% yield (203))  $\beta$ -hydroxyethyl phenyl sulfide, b.p. 245° (203), 144.5° at 26 mm. (203), 134-135° at 7 mm. (225), 115-116° at 2 mm. (226),  $D_4^{20} = 1.1431$  (226),  $n_D^{25} = 1.5897$  (225),  $n_D^{20} = 1.5917$  (226).  $-\bar{C}$  with p-toly mercaptan in conc. aq. NaOH at 100° for 2 hrs. gives (83% yield (133)) (227)  $\beta$ -hydroxyethyl p-tolyl sulfide, b.p. 282-283° dec., 174° at 30 mm. (133).]

[For analogous condens. of  $\bar{C}$  with o-nitrophenyl mercaptan (228), m-nitrophenyl mercaptan (228), p-nitrophenylmercaptan (228) (229), o-carboxythiophenol (230), and many other thiophenols (231) see indic. refs.]

Behavior of  $\tilde{C}$  with organic ethers (or epoxy cpds.). [ $\tilde{C}$  with ethylene oxide (1:6105) + conc. H<sub>2</sub>SO<sub>4</sub> gives (30-35% yield (232)) 2-( $\beta$ -chloroethoxy)ethanol-1 (3:9185) accompanied

by other prods.: for behavior of  $\bar{C}$  with epichlorohydrin (3:5358) or with  $\alpha$ -ethyl- $\alpha$ -methyl-ethylene oxide see (232). —  $\bar{C}$  with  $\alpha,\beta'$ -dichlorodiethyl ether (3:9150) stood 24 hrs. at room temp., then htd. 1 hr., gives (27% yield (233)) acetaldehyde bis-( $\beta$ -chloroethyl) acetal. (see below). —  $\bar{C}$  with bis-( $\alpha$ -chloroethyl) sulfide gives (234)  $\beta$ -trithioacetaldehyde, m.p. 125°. — For behavior of  $\bar{C}$  with 2,3-dichlorodioxane (3:9105) see (235); with 1,4-dithiane see (131).]

Behavior of  $\tilde{C}$  with carbonyl compounds.  $\tilde{C}$  with aldehydes or their polymers. [ $\tilde{C}$  with paraformaldehyde (1:0080) + dry HCl gas gives (yields: 65% (237), 55% (236)) (238) (239) chloromethyl  $\beta$ -chloroethyl ether [Beil. I-581, I<sub>2</sub>-(645)], b.p. 145-147° (237), 46° at 10 mm. (236);  $D_4^{20} = 1.2817$  (237), 1.2814 (236);  $n_2^{20} = 1.4578$  (236), 1.4592 (237). — Note that this prod. with  $\tilde{C}$  (239), or  $\tilde{C}$  (8 wt. pts.) + paraformaldehyde (1 wt. pt.) + CaCl<sub>2</sub> + HCl gas refluxed 5 min. (38) gives formaldehyde bis-( $\beta$ -chloroethyl)acetal [Beil. I-575], b.p. 218-219° (239), 218.1° at 760 mm. (240), b.p. 93-94° at 11 mm. (38), now an industrial prod. in U.S. because of its use in manufact. of self-sealing gasoline tanks (240).]

[ $\bar{\mathbf{C}}$  with acetaldehyde (1:0100) (241) (20) (233) or paraldehyde (1:0170) (236) + HCl gas gives according to circumstances either  $\alpha$ -chloroethyl  $\beta$ -chloroethyl ether (3:9150) q.v. or acetaldehyde bis-( $\beta$ -chloroethyl)acetal, b.p. 194-196° dec. (233), 109-110° at 30 mm. (20), 106° at 17 mm.,  $D_{-}^{19} = 1.1712$ ,  $n_{D}^{16} = 1.4532$  (233).]

[C with propional dehyde (1:0110) + HCl gas gives (51% yield (236))  $\beta$ -chloroethyl  $\alpha$ -chloro-n-propyl ether, b.p. 60° at 10 mm.,  $D_4^{20} = 1.1399$ ,  $n_D^{20} = 1.4496$  (236).]

[Č with *n*-butyraldehyde (1:0130) + HCl gas gives (70% yield (236))  $\beta$ -chloroethyl  $\alpha$ -chloro-*n*-butyl ether, b.p. 71° at 10 mm.,  $D_4^{20} = 1.1009$ ,  $n_D^{20} = 1.4471$  (236).]

 $\bar{C}$  with diketene. [ $\bar{C}$  with diketene (242) gives (243)  $\beta$ -chloroethyl acetoacetate.]

Behavior of  $\bar{C}$  with organic acids.  $\bar{C}$  with organic acids under appropriate conditions behaves conventionally as a substituted ethyl alcohol yielding the corresponding  $\beta$ -chloroethyl esters. Since the number of possibilities is enormous, no attempt can be made here to list all such cases; only a few typical examples must suffice. Note, moreover, that, because during ordinary esterification hydrolysis of the chlorine atom of  $\bar{C}$  may occur, many esters of  $\bar{C}$  are best made from its reaction with acyl halides q.v.

[ $\bar{\mathbf{C}}$  with anhydrous formic acid (1:1005) in pres. of anhydr. Na<sub>2</sub>SO<sub>4</sub> (244) or of HCl gas (245) gives  $\beta$ -chloroethyl formate, b.p. 132° at 764 mm. (245), 127-129° at 768 mm. (244),  $D_4^{20} = 1.2214$  (244); for study of rate of esterification of  $\bar{\mathbf{C}}$  by formic acid under various circumstances see (246).]

[C with anhydr. oxalic acid (1:0535 on satn. with HCl gas and htg. at 100° gives (245) di-(β-chloroethyl) oxalate (3:0572), m.p. 45°.]

[ $\bar{C}$  with 2-hydroxy-5-methylbenzoic acid (*p*-cresotinic acid) + conc. H<sub>2</sub>SO<sub>4</sub> gives  $\beta$ -chloroethyl *p*-cresotinate, b.p. 136-139° at 10 mm. (247).]

[ $\ddot{\mathbf{C}}$  with p-aminobenzoic acid + conc. H<sub>2</sub>SO<sub>4</sub> gives (248) (249)  $\beta$ -chloroethyl p-aminobenzoate.]

Behavior of  $\tilde{C}$  with salts of organic acids.  $\tilde{C}$  with sodium salts of organic acids on htg. eliminates NaCl yielding the corresp.  $\beta$ -hydroxyethyl esters; however, not infrequently secondary reactions of this product then occur or can readily be caused to occur, such as loss of water, ring closure, etc.

[ $\bar{C}$  with aq. NaCN at 45–50° for 5 hrs. (250) (251), or with alc. NaCN at 100° for 6 hrs. (88) (27), or with KCN in 50% alc. (252) or boilg. alc. (253) (254), gives (yields: 86% (27), 85–95% (251), 79–80% (250), 71% (253))  $\beta$ -hydroxyethyl cyanide ( $\beta$ -hydroxypropionitrile = hydracrylonitrile = ethylene cyanohydrin) [Beil. III-298, III<sub>1</sub>-(113), III<sub>2</sub>-(213)], b.p. 116–118° at 20 mm. (250), 110° at 15 mm. (27) (253), 107–109° at 12 mm. (250).]

[C (1 mole) with NaHCO<sub>3</sub> (1 mole solid) or with Na<sub>2</sub>CO<sub>3</sub> (½ mole solid) as directed (255) is claimed to give (80% yield) monomeric ethylene glycol carbonate (CH<sub>2</sub>)<sub>2</sub>O<sub>2</sub>CO<sub>-</sub>]

[ $\ddot{\mathbf{C}}$  (1 mole) with KSCN (1 mole) in excess  $\ddot{\mathbf{C}}$  (1.5 moles as solv.) on warming does not yield the expected  $\beta$ -hydroxyethyl thiocyanate, since this prod. spontaneously undergoes bimolecular self-condensation evolving COS and producing (45% yield (256)) 1-( $\beta$ -hydroxyethyl)imidazolidthione-2, m.p. 167-168° dec.; for behavior of this prod. with ethereal HCl see (257).]

[Č with NaOBz at 145° (258) or Č with NaOBz + a little Et<sub>2</sub>NH at 130° for 4 hrs. (259), or Č with KOBz as directed (260), gives (yields: 85% (259), 33% (260)) ethylene glycol monobenzoate ( $\beta$ -hydroxyethyl benzoate), m.p. 36.5-37.5° (261), 36-37° (260) cf. (259); b.p. 173° at 21 mm. (259), 156° at 14 mm. (260), 150-151° at 10 mm. (261) (corresp. p-toluenesulfonate, m.p. 74-75° (262)).]

[Č with Na p-nitrobenzoate + a little Et<sub>2</sub>NH at 130° for 4 hrs. (259), or  $\tilde{C}$  with K p-nitrobenzoate in C<sub>6</sub>H<sub>6</sub> in s.t. at 100° (263), gives (yields: 83% (259), 60% (263)) ethylene glycol mono-(p-nitrobenzoate), m.p. 77-78° (263), 77° (259).]

[For analogous behavior of  $\tilde{C}$  with sodium salicylate (259), sodium sorbate (264), sodium methylarsenite (265), sodium p-toluenesulfinate (133), or sodium naphthenate (266) see indic. refs.]

Behavior of  $\tilde{C}$  with acid chlorides of organic acids.  $\tilde{C}$  with acid chlorides of organic acids behaves as a substituted primary alcohol splitting out H from its OH with Cl from the acid chloride to yield the corresp.  $\beta$ -chloroethyl esters. No attempt can be made here to list all possible cases, but the following text will furnish ample illustrative examples.

With acid chlorides of aliphatic acids. [ $\bar{C}$  with acetyl chloride (3:7065) gives (yields: 90% (267), 82% (248)) (268)  $\beta$ -chloroethyl acetate (3:5735) q.v. —  $\bar{C}$  with trichloroacetyl chloride (3:5420) + pyridine in ether gives (45% yield (103)) (275)  $\beta$ -chloroethyl trichloroacetate (3:6510) q.v. —  $\bar{C}$  with sorbyl chloride (CH<sub>3</sub>CH = CH — CH = CH — CO.Cl) [Beil. I-484, I<sub>2</sub>-(453)] gives alm. quant. (269)  $\beta$ -chloroethyl sorbate, b.p. 115° at 15 mm. (269). — For studies of rate of reactn. of  $\bar{C}$  with various acyl chlorides in dioxane soln. at 15°, 25°, and 35° see (270). —  $\bar{C}$  with malonyl (di)chloride (3:9030) gives bis-( $\beta$ -chloroethyl) malonate, b.p. 164° at 15 mm. (271).]

With various chloroformates.  $\bar{C}$  with carbonyl chloride (phosgene) (3:5000) at room temp. gives (272) (121) (273) (125) only (yield 82% (273), 78% (121))  $\beta$ -chloroethyl chloroformate (3:5780) q.v.: note that no bis-( $\beta$ -chloroethyl) carbonate (see below) is formed.]

[ $\bar{C}$  with trichloromethyl chloroformate ("diphosgene") (3:5515) gives (61% yield (274))  $\beta$ -chloroethyl trichloromethyl carbonate = ClCH<sub>2</sub>CH<sub>2</sub>O.CO.O.CCl<sub>3</sub>, b.p. 115° at 16 mm., 110° at 12 mm.,  $D_4^{20} = 1.5664$ ,  $n_D^{20} = 1.4748$  (274).]

[ $\bar{C}$  with  $\beta$ -chloroethyl chloroformate (3:5780) gives (70% yield (121)) di-( $\beta$ -chloroethyl) carbonate (3:6790) q.v.]

With acid chlorides of aromatic acids. [C with benzoyl chloride on htg. gives (yields: 90% (276), 84.5% (277), 55% (263))  $\beta$ -chloroethyl benzoate (3:8860) q.v.]

Behavior of  $\tilde{C}$  with organic esters of inorganic acids. [ $\tilde{C}$  with Me<sub>2</sub>SO<sub>4</sub> at 120° as directed gives (60% yield (126))  $\beta$ -chloroethyl methyl ether ( $\beta$ -methoxyethyl chloride) (3:7265) q.v.]

[ $\bar{C}$  with Et<sub>2</sub>SO<sub>4</sub> + solid NaOH on htg. gives (278) ethylene glycol monoethyl ether ("Cellosolve") (1:6410); note, however, that  $\bar{C}$  with EtOH + conc. H<sub>2</sub>SO<sub>4</sub> at 145° gives (279)  $\beta$ -chloroethyl ethyl ether (3:7463).]

[ $\ddot{\mathbf{C}}$  (1 mole) with ethyl metaphosphate (1 mole) stood 4 days at room temp. (280) cf. (281) gives  $\beta$ -chloroethyl ethyl hydrogen phosphate (isolated as barium salt); however,  $\ddot{\mathbf{C}}$  + ethyl metaphosphate in CHCl<sub>3</sub> refluxed 3 hrs. gives (140)  $\beta$ -chloroethyl dihydrogen phosphate (isolated as barium salt).]

 $\bar{C}$  with organic hypochlorites (or mixtures which yield them) gives ethers [e.g.,  $\bar{C}$  with ter-butyl hypochlorite (3:7165) + ethylene gives (60.8% yield (282))  $\beta,\beta'$ -dichlorodiethyl

ether (3:6025). —  $\bar{C}$  with N,N-dichlorobenzenesulfonamide + butene-1 in CHCl<sub>3</sub> at -15° gives (283) (probably via formn. and addn. of  $\beta$ -chloroethyl hypochlorite) 1-chloro-2-( $\beta$ -chloroethoxy)butane, b.p. 195.5°,  $D_4^{20}=1.1223$ ,  $n_D^{20}=1.453$ ; the use of butene-2 or of 2-methylpropene (isobutylene) gives analogous products (283) cf. (284).]

Behavior of C with organometallic compounds (or their equivalents). [C with  $KC_6H_5$  splits out KCl yielding (285)  $\beta$ -phenylethyl alc. (1:6505).]

 $\bar{\mathbf{C}}$  with arom. RMgX cpds. reacts in analogous fashion yielding the corresp. alcohols [e.g.,  $\bar{\mathbf{C}}$  with  $C_6H_6MgBr$  (287) (288) or  $C_6H_6MgCl$  (289) gives (95% yield (286))  $\beta$ -phenylethyl alc. (1:6505);  $\bar{\mathbf{C}}$  with o-tolyl MgBr gives (20–24% yield (290)) (287)  $\beta$ -(o-tolyl)ethanol;  $\bar{\mathbf{C}}$  with m-tolyl MgBr gives (20–24% yield (290))  $\beta$ -(m-tolyl)ethanol;  $\bar{\mathbf{C}}$  with p-tolyl MgBr gives (yields: 80% (291), 20–24% (290)) (287)  $\beta$ -(p-tolyl) ethanol; many other analogous cases are known].

[Note that  $\tilde{C}$  with  $C_2H_5MgBr$  gives (292) ClCH<sub>2</sub>CH<sub>2</sub>OMgBr which may then be reacted with RMgBr types as above (292).]

[ $\bar{\mathbf{C}}$  with diethyl malonate in alc. NaOEt (i.e., diethyl disodiomalonate) might be expected to yield diethyl bis- $(\beta$ -hydroxyethyl)malonate; this compd., however, is unknown since it loses 2 EtOH, ring-closing to (271) the spiro-dilactone of bis- $(\beta$ -hydroxyethyl)malonic acid [Beil. XIX<sub>1</sub>-(680)], m.p. 109-110°.] — [Note also that  $\bar{\mathbf{C}}$  (1 mole) with diethyl malonate (1 mole) + 1% HCl gas undergoes transesterification yielding (405) both  $\beta$ -chloroethyl ethyl malonate, b.p. 105-106° at 3 mm., and bis- $(\beta$ -chloroethyl) malonate, b.p. 142-143° at 3 mm.]

[C with ethyl acetoacetate + alc. NaOEt (i.e., ethyl sodio-acetoacetate) boiled 5 hrs. gives a prod. (probably lactone of  $\alpha$ -( $\beta$ -hydroxyethylacetoacetic acid) which with 10% HCl after 5 hrs. boiling gives (40% yield (293)) pentanone-4-ol-1 (γ-aceto-n-propyl alc.) [Beil. I-831, I<sub>I</sub>-(422), I<sub>2</sub>-(873)], b.p. 115-116° at 20 mm. (294),  $D_4^{20}$  = 1.0071 (295),  $n_D^{20}$  = 1.439 (294) (corresp. semicarbazone, m.p. 167-168° (296)): note that this prod. (which is an important intermediate in the prepn. of the antimalarial "Atabrine" (297)) is best prepd. from ethylene oxide + ethyl sodioacetoacetate which gives first (60% yield (294)) the lactone of  $\alpha$ -( $\beta$ -hydroxyethyl)acetoacetic acid, b.p. 142-143° at 30 mm.,  $n_D^{20}$  = 1.4562, which with warm HCl ring-opens and splits off AcOH giving (96% yield (294)) desired γ-aceto-n-propyl alc. (above).]

[ $\bar{C}$  + sodium phenobarbital (Na deriv. of 5-ethyl-5-phenylbarbituric acid) gives (60% yield (298)) 1-( $\beta$ -hydroxyethyl)phenobarbital, m.p. 145.0-145.5° cor. (note that this prod. is not obtd. from  $\bar{C}$  + Ag salt of phenobarbital). —  $\bar{C}$  with theobromine (3,7-dimethylxanthine) in aq. NaOH in s.t. at 125° for 6 hrs. gives (47-57% yield (366)) (367) 1-( $\beta$ -hydroxyethyl)theobromine, m.p. 194° (367), 193° (366).]

Behavior of  $\bar{C}$  with amines. With primary aliphatic amines.  $[\bar{C}]$  (1 mole) with aq. MeNH<sub>2</sub> (1 mole) at 110° for 12–24 hrs. gives (80% yield (299)),  $\beta$ -(methylamino)ethanol [Beil. IV-276, IV<sub>2</sub>-(718)], b.p. 159° (300) (301), 155–156° at 760 mm. (273) (corresp. 3,5-dinitrobenzoate, m.p. 195–196.5° (302); corresp.  $\bar{B}$ .PkOH, 148° (303); corresp. reaction prod. with  $\alpha$ -naphthyl isothiocyanate, viz., N-( $\beta$ -hydroxyethyl)-N-methyl-N-( $\alpha$ -naphthyl) thiourea, m.p. 125° (303)). —  $\bar{C}$  with excess aq. MeNH<sub>2</sub> on standing in s.t. at 100° for several hrs. (304) or  $\bar{C}$  with  $\beta$ -(methylamino)ethanol (above) in aq. at 120° (299) gives methyl-bis-( $\beta$ -hydroxyethyl)amine (N-methyl-diethanolamine) [Beil. IV-284, IV<sub>2</sub>-(729)], b.p. 115° at 5 mm. (240) (note that this prod. is new commercial chem. in U.S. (240)).]

[Č with EtNH<sub>2</sub> as above should give β-(ethylamino)ethanol [Beil. IV-282, IV<sub>2</sub>-(727)], b.p. 167-169° cor. at 751 mm.,  $D_4^{20} = 0.914$ ,  $n_D^{20} = 1.444$ , and (305) ethyl-bis-(β-hydroxy-ethyl)amine (N-ethyldiethanolamine) [Beil. IV-284], although both these prods. are usually prepd. from ethylene oxide.]

[For analogous reactn. of  $\bar{C}$  with *n*-heptadecylamine yielding N-( $\beta$ -hydroxyethyl)-n-

heptadecylamine see (306) (307); with cyclohexylamine yielding N-( $\beta$ -hydroxyethyl)-cyclohexylamine see (308).]

With primary aromatic amines. [ $\bar{\mathbb{C}}$  (1 mole) with aniline (1 mole) refluxed a short time (299) (309) (310) (311) (312) (313) gives (yields: 70% (309), 40% (311)) N-( $\beta$ -hydroxyethyl)amiline ( $\beta$ -phenylaminoethanol) [Beil. XII-182], b.p. 286° cor. (299),  $n_D^{20} = 1.5749$  (317) (note that by reactn. of a second mole of  $\bar{\mathbb{C}}$  some N,N-bis-( $\beta$ -hydroxyethyl)aniline (see below) may also form, and that some N,N'-diphenylethylenediamine, m.p. 63.4-64.2°, may also appear (311)); note also that N-( $\beta$ -hydroxyethyl)aniline on dehydration, e.g., by htg. in xylene with  $P_2O_5$  (310), reacts bimolecularly giving in small yield N,N'-diphenylpiperazine, m.p. 160–162° (310). —  $\bar{\mathbb{C}}$  (2 moles) with aniline (1 mole) especially in pres. of anhydr. Na<sub>2</sub>CO<sub>3</sub> (310) or NaOH (314) or aq. at 110° (299) gives N,N-bis-( $\beta$ -hydroxyethyl)aniline (N-phenyldiethanolamine) [Beil. XII-183, XII<sub>1</sub>-(167)], m.p. 58° (315), 53.5-54° (310): note that this prod. on htg. at 200° under reduced press. (314) or htg. with  $P_2O_5$  in xylene (310) or htg. with 70% H<sub>2</sub>SO<sub>4</sub> at 160° (316) loses water and ring-closes to N-phenylmorpholine [Beil. XXVII-6], m.p. 53° (299), 52° (310).]

[Č (1 mole) with o-toluidine (2 moles) at 120–130° for several hrs. (318) (313) gives  $\beta$ -(o-tolylamino)ethanol, b.p. 172° at 12 mm. (318), 145–150° at 3 mm. (317),  $n_D^{20} = 1.5675$  (317); note that in pres. of Na<sub>2</sub>CO<sub>3</sub> the main (318) prod. (because of bimolecular condens. of this prod.) is N,N'-di-o-tolylpiperazine [Beil. XXIII-8], m.p. 174°. — Č with p-toluidine on htg. gives (319)  $\beta$ -(p-tolylamino)ethanol [Beil. XIII-907], b.p. 177–178° at 14 mm. (319), m.p. 42–43° (317); note, however, that analogous bimolecular ring closure of this prod. readily occurs on htg. yielding (320) N,N'-di(p-tolyl)piperazine [Beil. XXIII-9], m.p. 190°.]

[ $\bar{C}$  with o-methoxyaniline (o-anisidine) at 100° for 48 hrs. gives (75–80% yield (321)) (299)  $\beta$ -(o-methoxyphenylamino)ethanol [Beil. XIII-367], b.p. 305° cor. (299) (corresp.  $\bar{B}$ .HCl, m.p. 134°;  $\bar{B}$ .PkOH, m.p. 140° (321)); note that this prod. with 5 pts. conc. HCl in s.t. at 160–180° gives by a remarkable elimination of MeOH and monomolecular ring closure (38% yield (321)) (299) "phenmorpholine" [Beil. XXVII-34], b.p. 268° cor. (299), 127–128° at 12 mm. (321). — $\bar{C}$  with p-ethoxyaniline (p-phenetidine) gives on htg. (319)  $\beta$ -(p-ethoxyphenylamino)ethanol, m.p. 67°, b.p. 190° at 11 mm. (319) cf. (322).]

Many other cases, analogous to the above examples, are also known but cannot be included here.

With secondary aliphatic amines. Because of the great importance of  $\beta$ -(dialkylamino)-ethanols in the prepn. and study of physiologically active compounds, much study has been given to their prepn. from  $\tilde{C}$  (and otherwise). From the resulting mass of data, the following examples are cited.

[ $\bar{C}$  with Me<sub>2</sub>NH gives (323)  $\beta$ -(dimethylamino)ethanol [Beil. IV-276, IV<sub>1</sub>-(425), IV<sub>2</sub>-(719)], b.p. 135° cor. at 758 mm.,  $D_4^{20}=0.8866$ ,  $n_D^{20}=1.4300$  (324) (corresp. p-nitrobenzoyl ester, m.p. 58° (325)). —  $\bar{C}$  with Et<sub>2</sub>NH on htg. (326) under reflux for 8 hrs. (327) or in pres. of NaOH under press. at 160° for 3 hrs. (328) gives (yields: 83% (328), 68–70% (327))  $\beta$ -(diethylamino)ethanol [Beil. IV-282, IV<sub>2</sub>-(727)], b.p. 163° at 760 mm. (329), 160° at 741 mm., 100° at 80 mm., 96° at 73 mm., 55° at 10 mm. (330), 42–44° at 8 mm. (329);  $D_{25}^{25}=0.8601$  (329);  $n_D^{25}=1.4400$  (329), 1.4389 (330) (corresp. N-(p-nitrophenyl)carbamate, m.p. 59–60° cor. (329)).]

[ $\bar{C}$  with di-n-propylamine under reflux gives (70% yield (331))  $\beta$ -(di-n-propylamino)-ethanol [Beil. IV-282], b.p. 90-92° at 22 mm. (331) (corresp. p-nitrobenzoyl ester hydrochloride, m.p. 133.5-134.5° (325)). —  $\bar{C}$  with di-n-butylamine on htg. gives (332) (333)  $\beta$ -(di-n-butylamino)ethanol, b.p. 225-230° at 760 mm., sl. dec. (332), 226-228° at 738 mm. (325), 90-94° at 7 mm. (333);  $D_{20}^{20} = 0.8624$  (325);  $n_{20}^{20} = 1.4444$  (325) (corresp. p-nitrobenzoyl ester hydrochloride, m.p. 92.5-93.5° (325) (332)). —  $\bar{C}$  with di-(isobutyl)amine

at 120° gives (60% yield (331))  $\beta$ -(di-isobutylamino)ethanol [Beil. IV-283, IV<sub>1</sub>-(430)], b.p. 203-206° (334), 96-98° at 15 mm. (331) (corresp. p-nitrobenzoyl ester hydrochloride, m.p. 160-161° (334)). —  $\bar{C}$  with di-(eec-butyl)amine gives (335)  $\beta$ -(di-sec-butylamino)ethanol, b.p. 225-226° cor. at 760 mm. (335), 224-226° at 745 mm. (325),  $D_{20}^{20} = 0.8780$  (325),  $n_{20}^{20} = 1.4475$  (325) (corresp. p-nitrobenzoyl ester, m.p. 51.0-51.5° (325)). —  $\bar{C}$  with discoamylamine on htg. gives (60% yield (331)) (334)  $\beta$ -(discoamylamino)ethanol [Beil. IV-283, IV<sub>1</sub>-(430)], b.p. 126-128° at 15 mm. (331) (corresp. p-nitrobenzoyl ester hydrochloride, m.p. 123-124° (334) (325)).]

 $\bar{C}$  with alicyclic secondary amines.  $[\bar{C}$  with di-(cyclohexyl)amine gives (336)  $\beta$ -(dicyclohexylamino)ethanol, b.p. 145-150° at 4 mm. (336).  $-\bar{C}$  with ac-tetrahydro- $\beta$ -naphthylamine (2 moles) in xylene at 110-115° for 3 hrs. (under N<sub>2</sub>) gives (80-85% yield (337))  $\beta$ -(ac-tetrahydro- $\beta$ -naphthylamino)ethanol hydrochloride, m.p. 183.8-184.8° cor. (337).

 $\bar{C}$  with aromatic secondary amines.  $[\bar{C}$  with N-methylaniline in s.t. at 100° for 35 hrs. gives (65% yield (338)) cf. (339)  $\beta$ -(N-methylanilino)ethanol [Beil. XII-182], b.p. 218–219° at 110 mm. (338), 148–150° at 13 mm. (340); note, however, the claim (341) that  $\bar{C}$  (1 mole) with N-methylaniline (1.5 moles) refluxed 10–12 hrs. gives (14% yield (341)) N,N'-diphenylpiperazine, m.p. 164–165°. —  $\bar{C}$  with N-ethylaniline on htg. without solv. (338) or in aq. (313) gives  $\beta$ -(N-ethylanilino)ethanol [Beil. XII-183], b.p. 269–271° at 750 mm. (340), 267–268.5° (338).]

 $\bar{C}$  with heterocyclic secondary amines. [ $\bar{C}$  with piperidine at 100° (326), or  $\bar{C}$  with piperidine (2 moles) in acetone overnight at room temp. (342), gives  $\beta$ -(N-piperidine) ethanol (N-( $\beta$ -hydroxyethyl)piperidine) [Beil. XX-25], b.p. 199° (326), 89-91° at 20 mm. (343), 90° at 12 mm. (342),  $D_{25}^{25} = 0.9732$  (343),  $n_{D_1}^{25} = 1.4749$  (343) (corresp.  $\bar{B}$ .HCl, m.p. 122-124° (343), 120° (344), 64-65° (342)) (note unexplained disagreement);  $\bar{B}$ .PkOH, m.p. 100° (345), benzoyl ester hydrochloride, m.p. 176° (346), 175-176° (347), 173-174° (348), 171-172° (345), 167-168° (342); p-nitrobenzoyl ester hydrochloride, m.p. 175-176° (342)).]

[ $\bar{\mathbf{C}}$  with morpholine would be expected to yield N-( $\beta$ -hydroxyethyl)morpholine (4-morpholineëthanol) although only vague reference (351) is reported; this prod. can, however, be prepd. indirectly from  $\bar{\mathbf{C}}$  by ring closure of tris-( $\beta$ -hydroxyethylamine)(triethanolamine) with 70% H<sub>2</sub>SO<sub>4</sub> at 160-170° (349) (316), or from triethanolamine hydrochloride at 200-205° under pressure (40 mm.) for 14 hrs. (46% yield (350)); 4-morpholineëthanol [Beil. XXVII-7] is now comml. prod. in U.S. (351): b.p. 227° cor. at 757 mm. (349), 118-120° at 24 mm. (350);  $D_4^{25} = 1.0681$  (350),  $n_D^{25} = 1.4770$  (350) (corresp. benzoyl ester hydrochloride, m.p. 205° (346), 204.6-205.8° (350); corresp. p-nitrobenzoyl ester hydrochloride, m.p. 214.6-215.4° (350)).]

With tertiary amines.  $\bar{C}$  with tertiary amines behaves as an alkyl halide giving by addition to the tertiary amine nitrogen the corresp. quaternary ammonium salt. [E.g.,  $\bar{C}$  (1 mole) with pyridine (1 mole) at 135° for 1 hr. (343) (352) cf. (344) (353) gives (100% yield (343))  $\beta$ -hydroxyethyl-pyridinium chloride [Beil. XX-220, XX<sub>1</sub>-(75)], hygroscopic flakes from abs. EtOH by addn. of dry ether, m.p. 124-125° (343).]

[ $\check{\mathbf{C}}$  with 3-carbomethoxypyridine (methyl nicotinate) 1 hr. at 120° gives (343)  $\beta$ -hydroxyethyl-3-carbomethoxypyridinium chloride. —  $\check{\mathbf{C}}$  with N,N-dimethyl-n-dodecylamine (354), or  $\check{\mathbf{C}}$  with N,N-dimethyl-n-octadecylamine (354), or  $\check{\mathbf{C}}$  with N-(n-heptadecylbenzimidazole) (355) gives corresp. quat. salts.]

Behavior of  $\tilde{C}$  with amides and sulfonamides. [For use of  $\tilde{C}$  as means of introduction of  $\beta$ -hydroxyethyl group into amides, diamides, ureas, etc., see (356).]

 $\{\bar{C} \text{ with sodium } p\text{-toluenesulfonamide at } 120^{\circ} \text{ for } 6 \text{ hrs. under press. } (357) \text{ gives } N\text{-}(\beta\text{-hydroxyethyl})-p\text{-toluenesulfonamide; this prod. on conversion to its sodio deriv. and further similar treatment with <math>\bar{C}$  (357) or  $\bar{C}$  with p-toluenesulfonamide + NaOH (358)

gives N,N-bis- $(\beta$ -hydroxyethyl)-p-toluenesulfonamide, cryst. from acetone, m.p. 101° (357); note that this last prod. upon ring closure with 100% H<sub>2</sub>SO<sub>4</sub> at 160-170° gives N-(p-toluenesulfonyl)morpholine, hydrolysis of which yields (358) morpholine.]

[ $\bar{C}$  with the di-sodium deriv. of N,N' bis-(p-toluenesulfonyl)ethylenediamine at 100–110° for 10 hrs under press. gives (359) N,N'-bis-(p-toluenesulfonyl)ethylenediamine,

m.p. 144°.]

[Č (1 mole) with thiourea (1 mole) at not above 135° for 30 min. yields (360) S-(\$\beta\$-hydroxyethyl)isothiouronium chloride, m.p. 111° (360).]

Behavior of  $\tilde{C}$  with other miscellaneous nitrogen compounds (see also under  $\tilde{C}$  + organometallic cpds. above). [ $\tilde{C}$  with ethereal diazomethane undergoes conventional methylation of the hydroxyl group yielding (361)  $\beta$ -chloroethyl methyl ether (3:7265).]

[ $\bar{C}$  with aq. Na<sub>2</sub>N.CN in cold (362) cf. (363) or with CaNCN on warming (362) gives a soln. of the monosodium deriv. of  $\beta$ -(cyanamido)ethanol, HOCH<sub>2</sub>CH<sub>2</sub>—NH—CN or HOCH<sub>2</sub>CH<sub>2</sub>—N=C=NH; although the parent cannot be isolated the soln. of its Na salt gives with acyl halides derivatives which can: e.g., with benzoyl chloride (2 moles) + aq. NaOH the soln. gives (362) the corresp. dibenzoyl deriv., m.p. 165°; with p-toluenesulfonyl chloride + [aq. NaOH the soln. gives (362) a mono-(p-toluenesulfonyl) deriv., m.p. 128° (which undoubtedly has the ring-closed structure of 3-(p-toluenesulfonyl-(1,3-oxazolidone-2)imide).]

[ $\bar{C}$  with acetyl isocyanate adds as an alcohol yielding (364)  $\beta$ -chloroethyl N-acetyl-carbamate, m.p. 73–74°. —  $\bar{C}$  with benzoyl isothiocyanate adds as an alc. at ord. temp. yielding (365)  $\beta$ -chloroethyl N-benzoylthioncarbamate, m.p. 179–180°.]

- $\beta$ -Chloroethyl acetate: b.p. 145° (see 3:5735).
- ——  $\beta$ -Chloroethyl benzoate: b.p. 256° (see 3:8860).
- ①  $\beta$ -Chloroethyl p-nitrobenzoate [Beil. IX-390, IX<sub>1</sub>-(158)]: ndls. from dil. alc., m.p. 56° (368) (369) (370), 55-56° cor. (371), 54.5-55.5° (103), 54-55° (372). [From  $\bar{C}$  with p-nitrobenzoyl chloride on warming (368) (371) (370); also from ethylene glycol (1:6465) + p-nitrobenzoic acid + HCl gas at 110° (372).]
- $\oplus$   $\beta$ -Chloroethyl 3,5-dinitrobenzoate: m.p. 92° (373). [From  $\bar{C}$  with 3,5-dinitrobenzoyl chloride on htg. (373).]
- --- β-Chloroethyl hydrogen 3-nitrophthalate: unreported.
- $\bigcirc$   $\beta$ -Chloroethyl hydrogen 4-nitrophthalate: m.p. 97-98° (374). [From  $\stackrel{\circ}{C}$  with 4-nitrophthalic anhydride in  $C_6H_6$  under reflux for 1 hr. (374).]
- β-Chloroethyl benzenesulfonate: oil, b.p. 184° u.c. at 9 mm. (375), 184° at 8-11 mm. (376),  $D_4^{15} = 1.353$  (375). [From  $\bar{C}$  with benzenesulfonyl chloride under reflux for 3 hrs. (68% yield (377)) or on shaking with aq. NaOH in cold (68% yield (375)) (276); for study of decompn. into vinyl chloride (3:7010), acetaldehyde (1:0100), etc., on htg. see (378).]
- —— β-Chloroethyl p-toluenesulfonate: oil, b.p. 210° at 21 mm. (379) (380) (383), 192° at 15 mm. (386), 140° at 1.5 mm. (381),  $n_D^{25} = 1.5280$  (381), m.p. +22.5° (381). [From  $\bar{C}$  with p-toluenesulfonyl chloride on refluxing 3 hrs. (87% yield (379)) (383) (382) or on shaking with aq. NaOH in cold (376); for reactions of this ester with RMgX cpds. see (384) (385) (386).]
- —— β-Chloroethyl carbamate [Beil. III-24, III<sub>2</sub>-(21)]: m.p. 76° (125) (272) (387) (388). [Prepd. indirectly.]
- —— β-Chloroethyl N-phenylcarbamate [Beil. XII-320]: m.p. 51° (272) (389), 49.5–50.5° (103) (for data on optical props. see (389)); b.p. 133-135° at 2 mm. (390). [Note that this prod. has never been reported as prepd. by direct actn. of C with phenyl

- isocyanate but always by indirect means; note also that on short boilg. with aq. or alc. alk. it loses HCl and by ring closure yields 3-phenyloxazolidone [Beil. XXVII-136], lfts. from alc., m.p. 124° (272), 122° (309).]
- $\odot$   $\beta$ -Chloroethyl N-(p-bromophenyl)carbamate: pl. from lgr., m.p. 88–89° (400). [From  $\odot$  with p-bromobenzazide (400).]
- Φ β-Chloroethyl N-(α-naphthyl)carbamate [Beil. XII-1236]: m.p. 102-103° (373), 101° (391) (93), 100-101° (309). [From C with α-naphthyl isocyanate (391) (373); also from β-chloroethyl chloroformate (3:5780) with α-naphthylamine (309): note also that with dil. KOH (309) this prod. loses HCl ring-closing to 3-(α-naphthyl)-oxazolidone-2 [Beil. XXVII-136], m.p. 125° (309), while with conc. KOH it merely undergoes hydrolysis of chlorine yielding N-(β-hydroxyethyl)-α-naphthylamine, m.p. 52° (309).]
- —— β-Chloroethyl N-(β-naphthyl)carbamate [Beil. XII-1292]: m.p. 98° (309). [Prepd. indirectly from β-chloroethyl chloroformate (3:5780) with β-naphthylamine (309); for behavior with dil. and conc. KOH analogous to preceding case see (309).]
- β-Chloroethyl N-carbamidocarbamate (β-chloroethyl allophanate) [Beil. III<sub>2</sub>-(56)]:
   m.p. 182.5° (392), 181–182° (388). [From C with vapors of isocyanic acid (392) or
   from β-chloroethyl chloroformate (3:5780) with urea (388).]
- --- N-( $\beta$ -hydroxyethyl)phthalimide = ( $\beta$ -(N-phthalimido)ethanol) [Beil. XXI-469, XXI<sub>1</sub>-(368)]: m.p. 129.5° cor. (394), 127-128° (395), 126.5-127.5° (357), 126-127° (396), 125-126° (397) (note that m.p. given by (393) is incorrect). [From  $\bar{C}$  with K phthalimide in s.t. at 150° for 4 hrs. (393): note that the m.p. of 88-89° reported by the only worker (393) using this method is not far from that (81° (395)) of N-( $\beta$ -chloroethyl)phthalimide leaving some question as to which prod. was really obtd.]
- N-(β-hydroxyethyl)tetrachlorophthalimide: m.p. 208-209° (398). [From C with
   K tetrachlorophthalimide in s.t. at 200° for 6 hrs. (398).]
- ——  $\beta$ -Chloroethyl triphenylmethyl ether: m.p. 132° (399). [From  $\bar{C}$  with  $\alpha$ -bromotriphenylmethane (399).]
- 3:5552 (1) Henry, Jahresber. 1889, 1321. (2) Grimm, Patrick, J. Am. Chem. Soc. 45, 2799 (1924). (3) Bailly, Gaume, Bull. soc. chim. (4) 35, 590-597 (1924); Compt. rend. 178, 1191 (1924). (4) Karvonen, Acad. Sci. Fennicae 3-A, 1-103; Cent. 1912, II 1270; C.A. 14, 2176 (1920). (5) De Laszlo. J. Am. Chem. Soc. 49, 2107 (1927). (6) Matejka, Jelinek, J. chim. phys. 34, 611-614 (1937). (7) Timmermans, Bull. soc. chim. Belg. 36, 507 (1927). (8) Timmermans, Martin, J. chim. phys. 25, 444-445 (1928). (9) Smyth, Walls, J. Am. Chem. Soc. 54, 2263, 2266 (1932). (10) Snyder, Gilbert, Ind. Eng. Chem. 34, 1519-1521 (1942).
- (11) Gomberg, J. Am. Chem. Soc. 41, 1414-1431 (1919). (12) Wurtz, Ann. 110, 125-128 (1859). (13) Mathews, J. Am. Chem. Soc. 48, 570 (1926). (14) Suter, Oberg, J. Am. Chem. Soc. 56, 677-679 (1934). (15) Norris, Mulliken, J. Am. Chem. Soc. 42, 2095 (1920). (16) Smith, Boord, Adams, Pease, J. Am. Chem. Soc. 49, 1338 (1927). (17) Kirner, J. Am. Chem. Soc. 48, 2747-2753 (1926). (18) Winstrom, Warner, J. Am. Chem. Soc. 61, 1205-1210 (1939). (19) Forster, Newman, J. Chem. Soc. 97, 2573 (1910). (20) Street, Adkins, J. Am. Chem. Soc. 59, 162-167 (1928).
- (21) Timmermans, Mataar, Bull. soc. chim. Belg. 30, 216 (1921). (22) Radulescu, Muresanu, Bull. Soc. Stirnte Cluy 7, 129-153 (1932); Cent. 1933, I 3156; C.A. 27, 2085 (1933). (23) Bozza, Gallarati, Ciorn. chim. ind. applicata 13, 163-173 (1931); Cent. 1931, II 409; C.A. 25, [3962 (1931). (24) Karvonen, Acad. Sci. Fennicae 5-A, No. 6, 1-139 (1914); Cent. 1919, III 807; C.A. 14, 2176 (1920). (25) Berry, J. Soc. Chem. Ind. 38-T, 145-150 (1909). (26) Bancelin, Rivat, Bull. soc. chim. (4) 25, 552-560 (1909). (27) Moureu, Brown, Bull. soc. chim. (4) 27, 902-903 (1920). (28) Kirst (to Dow Chem. Co.), U.S. 1,386,118, Aug. 2, 1921; Cent. 1921, IV 1065; C.A. 15, 3851 (1921). (29) Ernst, Kaufler (to A. Wacker Soc. Elektrochem. Ind.), [Ger. 486,492, Nov. 25, 1929; Cent. 1930, I 2005; C.A. 24, 1869 (1930). (30) Soc. Anon. des Distilleries des Deux Sèvres, Czechoslov. 34,718, Jan. 10, 1931; Cent. 1932, II 2107; not in C.A.; Brit. 305,528, April 4, 1929; Cent. 1929, II 485; C.A. 23, 4712 (1929).
- (31) Kaplan, Grishin, Skvortsova, J. Gen. Chem. (U.S.S.R.) 7, 538-544 (1937); Cent. 1937, II 2332; C.A. 31, 4554 (1937). (32) Kireev, Kaplan, Zlobin, J. Applied Chem. (U.S.S.R.) 7,

1333-1338 (1934); Cent. 1936, I 4286; C.A. 29, 5712 (1935). (33) Faber, Miller, Org. Syntheses, Coll. Vol. 2, 576-578 (1943); 12, 68-70 (1932). (34) Forrester, U.S. 2,049,608, Aug. 4, 1936; Cent. 1937, I 182; C.A. 30, 6245 (1936). (35) Schmidt, Grossinsky (to I.G.), U.S. 1,882,978, Oct. 18, 1932; Cent. 1933, I 2312; C.A. 27, 737 (1933); Brit. 309,025, Oct. 10, 1929; Cent. 1936, II 304; C.A. 24, 2468 (1930); French 650,972, Feb. 13, 1929; Cent. 1933, I 2312; C.A. 23, 2321 (1929). (36) Ferris (to Atlantic Refining Co.), U.S. 2,072,104, March 2, 1937; Cent. 1937, I 4719; C.A. 31, 2810 (1937). (37) Humphrey (to Hercules Powder Co.), U.S. 1,715,086, May 28, 1929; Cent. 1930, I 294; [C.A. 23, 3588 (1929)]; Canadian 284,988, Nov. 20, 1928; C.A. 23, 1001 (1929); not in Cent. (38) Freudenberg, Acker, Ber. 71, 1400-1406 (1941). (39) Schutz, Cellulosechem. 19, 33-38 (1941); C.A. 36, 5008 (1942). (40) B.A.S.F., Ger. 393,566, April 5, 1924; Cent. 1924, II 120; not in C.A.

(41) Rosenthal (to F. Bayer Co.), Ger. 383,699, Oct. 16, 1923, Cent. 1924, I 252; not in C.A. (42) Webb (to Eastman Kodak Co.), U.S. 1,444,406, Feb. 6, 1923, Cent. 1923, IV 342; C.A. 17, 1329 (1923). (43) F. Bayer Co., Brit. 209,333; Sept. 10, 1924, Cent. 1924, II 2715; not in C.A. (44) Smith, Natl. Inst. Health Bull. 165, 11-29 (1936); Cent. 1938, I 2016; C.A. 30, 4565 (1936). (45) Fratt, Nature 126, 995 (1930). (46) Koelsch, Zentr. Gewerbehyg. Unfallverhüt. 14, 316-325 (1927); Cent. 1927, II 2467. (47) Clark, Edwards, Trans Roy. Soc. Can. (3) 28, III 107-125 (1934); Cent. 1935, I 2548; C.A. 29, 1112 (1935). (48) Clark, Fowler, Black, Trans. Roy. Soc. Can. (3) 25, III 99-105 (1931); Cent. 1933, I 2708; C.A. 26, 2755 (1932). (49) Clark, Archibald, Trans. Roy. Soc. Can. (3) 26, III 87-92 (1932); Cent. 1933, I 3951, C.A. 27, 1649 (1933). (50) Schultz, Frey (to Standard Brands, Inc.), U.S. 1,893,152, Jan. 3, 1933; Cent. 1933, I 1862; C.A. 27, 2249 (1933).

(51) Mourea, Dodé, Bull. soc. chim. (5) 4, 281-295 (1937); Compt. rend. 203, 802-804 (1936). (52) Frahm, Rec. trav. chim. 50, 261-267 (1931). (53) Bozza, Mamoli, Guorn. chim. ind. applicata 12, 283-292 (1930); Cent. 1930, II 1854; C.A. 24, 5021 (1930). (54) Brooks, Chem. Met. Eng. 22, 629-633 (1920). (55) Shilov, Kanyaev, Domina, Ionina, J. Phys. Chem. (U.S.S.R.) 13, 1242-1248 (1939), C.A. 35, 371 (1941). (56) Zimakov, Gripich, Org. Chem. Ind. (U.S.S.R.) 1, 396-404 (1936), Cent. 1937, I 1012; C.A. 30, 6705 (1936) (57) Tropsch, Kassler, Mitt. Kohlenforsch. Inst. Prag. 1931, No. 1, 16-42; Cent. 1932, I 2159; C.A. 26, 1242 (1932). (58) Zapadinskii, J. Chem. Ind. (Moscow) 5, 1273-1276 (1928); C.A. 23, 3208 (1929); not in Cent. (59) Shilov, J. Chem. Ind. (Moscow) 5, 1273-1276 (1928); Cent. 1929, II 1646, C.A. 23, 2937 (1929). (60) Carius, Ann. 126, 195-199 (1865); Butlerow, Ann. 144, 40-42 (1867).

(61) Britton, Nutting, Huscher (to Dow Chem Co.), U.S. 2,130,226, Sept. 13, 1938; Cent. 1939, I 1856; C A. 32, 9096 (1938). (62) Youtz (to Standard Oil Co.), U.S. 1,875,309, Aug. 30, 1932; Cent. 1933, II 2053, C.A. 26, 5971 (1932). (63) Essex, Ward (to du Pont Co.), U.S. 1,626,398, April 26, 1927; Cent. 1928, I 410; C.A. 21, 2136 (1927). (64) Essex, Ward (to du Pont Co.), U.S. 1,594,608, Aug. 3, 1926; Cent. 1926, II 1693, C.A. 20, 3170 (1926). (65) McElroy, U.S. 1,510,790, Oct. 7, 1924, C.A. 19, 77 (1925); not in Cent. (66) Brooks, 1,498,781, 1,498,782, June 24, 1924; Cent. 1924, II 1631; C.A. 18, 2606 (1924). (67) Irvine, Haworth (to Carbide and Carbon Chem. Corpn.), U.S. 1,496,675, June 3, 1924; Cent. 1924, II 1510; C.A. 18, 2345 (1924). (68) Young, U.S. 1,456,959, May 29, 1923; C.A. 17, 2428 (1923); not in Cent. (69) Curme, Young, U.S. 1,456,916, May 29, 1923; C.A. 17, 2428; not in Cent. (70) Eldred, U.S. 1,456,900, May 29, 1923, C.A. 17, 2428; not in Cent. (70) Eldred, U.S. 1,456,900, May 29, 1923, C.A. 17, 2428; not in Cent. (70) Eldred, U.S. 1,456,900, May 29, 1923, C.A. 17, 2428; not in Cent.

(71) Brooks (to Chateloid Chem. Co.), U.S. 1,394,664, Oct. 25, 1921; Cent. 1922, IV 941; C.A. 16, 423 (1922). (72) Finkelstein (to I.G.), Canadian 285,920, Dec. 25, 1928; Cent. 1932, I 1153; C.A. 23, 1138 (1929). (73) Curme, Young, Canadian 238,729, March 18, 1924; Cent. 1925, I 1129; not in C.A. (74) Kennedy, Barker (to Shawinigan Chem., Ltd.), Brit. 552,319, April 1, 1943; C.A. 38, 3992 (1944). (75) Soc. Carbochim., Brit. 445,011, April 30, 1936; Cent. 1936, II 1244; [C.A. 30, 6390 (1936)]: French 795,804, March 23, 1936; C.A. 30, 5592 (1936); not in Cent. (76) Tropsch, Kassler, Brit. 377,595, Aug. 18, 1932; Cent. 1932, II 2724; [C.A. 27] 3944 (1933)]: French 732,106, Feb. 17, 1932; C.A. 27, 732 (1933); not in Cent. (77) Long, Willson, Wheeler, Brit. 265,269, March 3, 1927; Cent. 1927, II 2350, C.A. 22, 244 (1928). (78) Marks (to Carbide and Carbon Chem. Corpn.), Brit. 235,044, July 2, 1925; Cent. 1928, II 711; C.A. 20, 917 (1926): Ger. 527,940, June 24, 1931; Cent. 1931, II 1753; [C.A. 25, 5177 (1931)]. (79) T. Goldschmidt, A.G., Ger. 538,915, July 12, 1927, C.A. 26, 2198 (1932); not in Cent.: Belgian 352,582, Jan. 8, 1929, Cent. 1931, I 2932; not in C.A.: French 656,947, May 15, 1929; Cent. 1929, II 648; [C.A. 23, 4231 (1929)]: Brit. 293,754, July 11, 1927; C.A. 23, 1651 (1929); not in Cent. (80) Union Chem. Belg., French 829,493, June 28, 1938; Cent. 1938, II 3316; C.A. 33, 993 (1939). (81) Comp. Prod. Chim. d'Alais, etc., French 785,170, Aug. 3, 1935; Cent. 1936, I 1309; C.A. 39, 492 (1936). (82) Damiens, de Loisy, Piette, French 535,210, April 11, 1922; Cent. 1923,

II 741; not in C.A. (83) Iskra, J. Chem. Ind. (Moscow) 12, 947-953 (1935); Cent. 1936, I 2823; C.A. 30, 711 (1936). (84) Harford (to A. D. Little, Inc.), U.S. 2,107,789, Feb. 8, 1938; Cent.

1938, I 4718; C.A. 32, 2543 (1938). (85) Langedijk (to Shell Development Co.), U.S. 2,106,353, Jan. 25, 1938; C.A. 32, 2543 (1938); not in Cent.: N. V. de Bataafsche Petroleum Maatschappij, French 740,350, Jan. 24, 1933; Cent. 1933, I 2870-2871; C.A. 27, 2160 (1933). (86) Likhosherstov, Alekseev, J. Applied Chem. (U.S.S.R.), 7, 127-133 (1934); Cent. 1935, I 3915; C.A. 29, 452 (1935). (87) Ladenburg, Ber. 16, 1407-1408 (1883). (88) van der Burg, Rec. trav. chim. 41, 21-23 (1921). (89) Schorlemmer, J. Chem. Soc. 39, 143-144 (1881). (90) Dreyfus, Brit. 404, 938, Feb. 22, 1934; Cent. 1934, I 3395; C.A. 28, 4432 (1934).

(91) Fittig, Chanlaroff, Ann. 226, 325-329 (1884). (92) Fittig, Ström, Ann. 267, 191-194 (1892). (93) Bennett, Heathcoat, J. Chem. Soc. 1929, 268-270. (94) Carius, Ann. 124, 257-260 (1862). (95) Wietzel, Dierksen (to B.A.S.F.), Ger. 420,500, Oct. 24, 1925; Cent. 1926, I 2245; not in C.A. (96) Taurke, Ber. 38, 1668 (1905). (97) von Bichowsky, U.S. 1,488,571, April 1, 1924; Cent. 1925, I 896; C.A. 18, 1837 (1924). (98) Britton, Coleman, Moore (to Dow Chem. Co.), U.S. 1,987,227, Jan. 8, 1935; Cent. 1935, II 594; C.A. 29, 1432 (1935). (99) Gebauer-Fuelnegg, Moffatt, J. Am. Chem. Soc. 56, 2009 (1934). (100) Malinovskii, J. Gen. Chem.

(U.S.S.R.) 9, 832-839 (1939); C.A. 34, 375 (1940).

(101) Isham, Spring (to Doherty Research Co.), U.S. 1,918,967, July 18, 1933; Cent. 1933, II 2053; C.A. 27, 4815 (1933). (102) Suter, Evans, J. Am. Chem. Soc. 60, 536 (1938). (103) Meerwein, Sonke, Ber. 64, 2380 (1931). (104) Cretcher, Koch, Pittenger, J. Am. Chem. Soc. 47, 1176 (1925). (105) Callsen (to I.G.), Brit. 384,156, Dec. 22, 1932; Cent. 1933, I 1351; [C.A. 27, 4240 (1933)]: Ger. 565,157, Nov. 26, 1932; Cent. 1933, I 1514; C.A. 27, 992 (1933). (106) Zapadinski, Z. anal. Chem. 74, 273-275 (1928); J. Russ. Phys.-Chem. Soc. 60, 695-697 (1928), Cent. 1930, I 3583; C.A. 22, 3864 (1928). (107) Krassuski, J. Russ. Phys.-Chem. Soc. 34, 287-315 (1902); Cent. 1902, II 19-20. (108) Lessig, J. Phys. Chem. 36, 2335 (1932). (109) Lourenco, Ann. 120, 92-93 (1861). (110) Ushakov, Mikhailov, J. Gen. Chem. (U.S.S.R.) 7, 249-252 (1937); Cent. 1937, II 1546; C.A. 31, 4645 (1937).

(111) Kriwaxin, Zeit. für Chemie 1871, 265. (112) Dreyfus (to Celanese Corpn. of America), U.S. 2,340,371, Feb. 1, 1944, C.A. 38, 3991 (1944). (113) Saunders, J. Chem. Soc. 121, 2669, 2672 (1922). (114) Kamm, Waldo, J. Am. Chem. Soc. 43, 2225 (1921). (115) Trautzl, Z. ges. Schiess-u. Sprengstoffw. 37, 146-148 (1942); C.A. 37, 5591 (1943). (116) Henry, Ann. chim. (4) 27, 257-258 (1872). (117) Schweizer Sprengstoff Fabrik, A.G., Swiss 155,125, Sept. 16, 1932; Cent. 1933, I 356; C.A. 27, 1177 (1933): Swiss 156,455, Nov. 16, 1932, Cent. 1933, I 2902; not in C.A. (118) Heinze, Marder, Veidt, Oel Kohle, 37, 422-430 (1941); C.A. 36, 4993 (1942). (119) Woodbury, Lawson (to du Pont Co.), U.S. 2,066,506, Jan. 5, 1937; Cent. 1937, I 3264; C.A. 31, 1183 (1937). (120) Bristow, Buist, Brit. 461,320, March 11, 1937; Cent. 1937, I 5087; C.A. 31, 5542 (1937).

(121) Nekrassow, Komissarow, J. prakt. Chem. (2) 123, 160-168 (1929). (122) Levaillant, Compt. rend. 187, 731-732 (1928). (123) Henry, Rec. trav. chim. 22, 249 (1903). (124) Henry, Bull. acad. roy. Belg. (3) 18, 182-186 (1889); Ber. 24 Referate, 75 (1891). (125) Kuroda, J. Pharm. Soc. Japan 539, 44-47 (1927); Cent. 1927, II 243, C.A. 22, 4469 (1928). (126) Jones, Powers, J. Am. Chem. Soc. 46, 2531-2532 (1924). (127) Wieland, Sakellarios, Ber. 53, 208 (1920). (128) Butlerow, Ossokin, Ann. 144, 42-45 (1867). (129) Meyer, Ber. 19, 3259-3260 (1886). (130) Clarke, J. Chem. Soc. 101, 1585 (1912).

(131) Davies, Oxford, J. Chem. Soc. 1931, 228-229, 231. (132) Ettel, Kohlik, Collection Czechosłov. Chem. Commun. 3, 588-589 (1931). (133) Fromm, Kohn, Ber. 54, 320-323 (1921). (134) Major, Bull. soc. chim. (4) 41, 635 (1927). (135) M. L. B., Brit. 185,403, Oct. 25, 1922; Cent. 1923, II 684; C.A. 17, 110 (1923). (136) Poggi, Speroni, Gazz. chim. ital. 64, 498-499 (1934); Cent. 1934, II 3749; C.A. 29, 1060 (1935). (137) Bennett, J. Chem. Soc. 119, 423-424 (1921). (138) Thiess, Müller (to M. L. B.), Ger. 405,384, Oct. 31, 1924; Cent. 1935, I 1527; not in C.A. (139) Collmann, Ann. 148, 107-109 (1868). (140) Plimmer, Burch, J. Chem. Soc. 1929, 284-287.

(141) Gough, King, J. Chem. Soc. 1928, 2432-2433. (142) Edee, J. Am. Chem. Soc. 50, 1395-1396 (1928). (143) Scherlin, Epstein, Ber. 61, 1821-1825 (1928). (144) Quick, Adams, J. Am. Chem. Soc. 44, 811 (1922). (145) Oechslin (to Étab. Poulenc Frères), Brit. 191,028, Feb. 14, 1923; Cent. 1923, IV 721; C.A. 17, 2887 (1923); French 556,366, July 19, 1923; Cent. 1923, IV 721; not in C.A. (146) Oechslin (to Étab. Poulenc Frères), U.S. 1,573,738, Feb. 16, 1926; Cent. 1926, I 3362; C.A. 20, 1415 (1926): French 582,412, Dec. 18, 1924; Cent. 1926, I 3362; not in C.A. (147) Komissarov, J. Gen. Chem. (U.S.S.R.) 3, 309-312 (1933); Cent. 1934, II 40; C.A. 28, 2324 (1934). (148) Levaillant, Compt. rend. 189, 465-467 (1929). (149) Steinkopf, Mieg, Herold, Ber. 53, 1145 (1920). (150) Grün, Stiasny Festschrift 1937, 88-98; Cent. 1938, II 1937; C.A. 32, 8358 (1938).

(151) Renshaw, Hopkins, J. Am. Chem. Soc. 51, 953 (1929).
 (152) Jackson, J. Am. Chem.
 Soc. 57, 1904 (1935).
 (153) Schönberg, Wick (to I.G.), Ger. 571,521, March 1, 1933; Cent. 1933,

I 3243; C.A. 27, 4244 (1933). {154} Meerwein, Ber. 66, 412 (1933). {155} Dearing, Reid, J. Am. Chem. Soc. 50, 3060 (1928). {166} Bolzani (to I.G.), Ger. 459,738, May 15, 1928; Cent. 1928, II 1716; not in C.A. {157} Schrader, Z. angew. Chem. 42, 542-543 (1929). {158} Wada, Sato, J. Soc. Chem. Ind. Japan 38, Suppl. bindg. 497-500 (1935); Cent. 1936, I 1960; C.A. 39, 1028 (1936). {159} Porret, Helv. Chim. Acta 24, 80-85E (1941). {160} Smith, Z. physik. Chem. A-152, 153-156 (1930/1).

(161) Smith, Z. physik. Chem. 81, 346-349 (1912); 92, 725-726 (1917). (162) Lewis (to du Pont Co.), U.S. 1,895,517, Jan. 31, 1933; Cent. 1933, I 2870; C.A. 27, 2445 (1933). (163) Saunders, Wignall (to British Dyestuffs Corpn.), U.S. 1,737,545, Nov. 26, 1929; [Cent. 1930, I 2005]; [C.A. 24, 630 (1930)]: Brit. 286,850, April 5, 1928; Cent. 1928, I 2750; C.A. 23, 397 (1929). (164) Dunstan, Birch (to Anglo-Persian Oil Co.), Brit. 365,589, Feb. 18, 1932; Cent. 1932, II 613; C.A. 27, 1896 (1933): French 725,150, Sept. 14, 1931; C.A. 26, 4827 (1932); not in Cent. (165) Curme (to Carbide & Carbon Chem. Corpn.), Brit. 264,124, March 2, 1927; Cent. 1927, II 1077; C.A. 22, 92 (1928): French 619,190, March 28, 1927; Cent. 1927, II 1077; not in C.A. (166) Oehme (to Chem. Fabrik Kalk), French 612,825, Nov. 2, 1926; Cent. 1927, II 2571; not in C.A. (167) Soc. Anon. d'Explosifs Prod. Chim., French 458,733, Aug. 13, 1912; C.A. 8, 3099 (1914). (168) Maas, Boomer, J. Am. Chem. Soc. 44, 1710 (1922). (169) Wurtz, Ann. chim. (3) 69, 317–318 (1863). (170) Dominik, Bartkiewiczowna, Przemysl Chem. 18, 373-375 (1934); Cent. 1935, I 2810; C.A. 29, 5815 (1935).

(171) Britton, Nutting, Petrie (to Dow Chem. Co.), U.S. 1,996,638, April 2, 1935; Cent. 1935, II 3833; C.A. 29, 3350 (1935). (172) Thole, Birch, Scott (to Anglo-Persian Oil Co.), Brit. 374,864, July 14, 1932; Cent. 1932, II 2723; C.A. 27, 3952 (1933). (173) Burdick (to Carbide & Carbon Chem. Corpn.), Brit. 236,379, July 20, 1925; Cent. 1926, I 490; C.A. 20, 917 (1926): Canadian 245,153, Dec. 9, 1924; Cent. 1926, I 490; C.A. 19, 657 (1925). (174) Oehme (to Chem. Fabrik Kalk), Ger. 403,643, Sept. 20, 1924; Cent. 1925, I 1531; not in C.A. (175) B.A.S.F., Ger. 299,682, March 3, 1920; Cent. 1920, IV 16; not in C.A. (176) Rojahn, Lemme, Arch. Pharm. 263, 613-614 (1925). (177) Rosen, Reid, J. Am. Chem. Soc. 44, 634-636 (1922). (178) Bennett, J. Chem. Soc. 121, 2139-2146 (1922). (179) Fromm, Jorg, Ber. 58, 304-306 (1925). (180) Knorr, Ber. 30, 909-915 (1897).

(181) Fischer, "Triathanolamine und anderere Äthanolamine," 3rd ed., 213 pp., 1942 (republished by Edwards Brothers, Ann Arbor, Michigan, 1944). (182) Plisov, Ukrain. Khem. Zhur. 3, No. 1, Sci. Pt., 125-131 (1928); Cent. 1930, I 2867; C.A. 22, 3392 (1928). (183) I.G., French 716,604, Dec. 24, 1931; Cent. 1932, I 3226, [C.A. 26, 2198 (1932)]. (184) Ishikawa, Maeda, Science Repts. Tokyo Bunrika Daigaku A-3, 157-164 (1937); Cent. 1938, I 302; C.A. 31, 7860 (1937). (185) Cretcher, Pittenger, J. Am. Chem. Soc. 46, 1503-1504 (1924). (186) Kayser, Schranz (to Winthrop Chem. Co.), U.S. 1,651,458, Dec. 6, 1927; Cent. 1928, I 2457; C.A. 22, 845 (1928). (187) I.G., French 655,871, April 24, 1929; Cent. 1929, II 351; C.A. 23, 3931 (1929). (188) Schroeter, Strassburger, Biochem. Z. 232, 454 (1931). (189) Jackson, J. Am. Chem. Soc. 60, 722-723 (1938). (190) Coles, Dodds, Bergeim, J. Am. Chem. Soc. 60, 1020-1022 (1938).

(191) Coles, Dodds (to E. R. Squibb and Sons), U.S. 2,252,706, Aug. 19, 1941; C.A. 35, 4717 (1941). (192) Helferich, Lutzmann, Ann. 541, 8-9 (1939). (193) Schoeller, Allardt (to Schering-Kahlbaum), Ger. 527,036, June 24, 1931; Cent. 1931, II 1452; [C.A. 25, 4664 (1931)]. (194) Helferich, Werner, Ber. 75, 1449, 1451 (1942). (195) Schmidt, Meyer (to I G.), U.S. 1,922,459, Aug. 15, 1933; C.A. 27, 5082 (1933); not in Cent.: Brit. 317,770, Sept. 19, 1929; Cent. 1939, I 129; C.A. 24, 2141 (1930). (196) Lange (to I.G), U.S. 1,714,565, May 28, 1929; [Cent. 1928, II 1747]; [C.A. 23, 3543 (1929)]: Brit. 290,377, June 14, 1928; Cent. 1928, II 1818; C.A. 23, 981 (1929). (197) Leuchs (to F. Bayeer Co.), Ger. 408,714, Jan. 23, 1925; Cent. 1925, I 1820; not in C.A. (198) Dreyfus, Brit. 166,767, Aug. 18, 1921; Cent. 1921, IV 1140; C.A. 16, 830 (1922). (199) Windus, Schildneck, Org. Syntheses, Coll. Vol. 2, 345-346 (1943); 14, 54-56 (1934). (200) Windus, Marvel, J. Am. Chem. Soc. 53, 2576 (1930).

(201) Kirner, J. Am. Chem. Soc. 50, 2451-2452 (1928). (202) von Braun, Anton, Weissbach, Ber. 63, 2859 (1930). (203) Steinkopf, Herold, Stöhr, Ber. 53, 1010, 1012 (1920). (204) Demuth, Meyer, Ann. 240, 310 (1887). (205) Whitner, Reid, J. Am. Chem. Soc. 43, 637 (1921). (206) Scherlin, Wasilewsky, J. prakt. Chem. (2) 123, 174-175 (1929). (207) Peacock, Tha, J. Chem. Soc. 1928, 2304-2305. (208) Bentley, Haworth, Perkin, J. Chem. Soc. 69, 164-165 (1896). (209) Rindfusz, J. Am. Chem. Soc. 41, 669 (1919). (210) Smith, Niederl, J. Am. Chem. Soc. 53, 808 (1931).

(211) Smith, J. Am. Chem. Soc. 62, 994 (1940). (212) Butler, Renfrew, J. Am. Chem. Soc. 60, 1583-1584 (1938). (213) Katrak, J. Indian Chem. Soc. 13, 334-336 (1936). (214) Binkley, Hamilton, J. Am. Chem. Soc. 59, 1717 (1937). (215) Boyd, Marle, J. Chem. Soc. 105, 2138 (1914). (216) Boedecker, Rosenbusch, Ber. pharm. Ges. 30, 251-258; Cent. 1920, III 239. (217)
J. D. Riedel, A.G., Ger. 232,298, July 17, 1920; Cent. 1920, IV 436; not in C.A. (218) Rindfuss,

Jennings, Harnack, J. Am. Chem. Soc. 42, 161-165 (1920). (219) Motwani, Wheeler, J. Chem. Soc. 1935, 1098-1101. (220) Perkin, Ray, Robinson, J. Chem. Soc. 1926, 945-946.

(221) Sonn, Patschke, Ber. 58, 96-97 (1925). (222) Lautenschlager, Bockemuhl, Schwarz (to M. L. B.), Ger. 412,699, April 25, 1925; Cent. 1925, II 613; not in C.A. (223) Chem. Werke Grenzbach, A.G., Ger. 352,983, May 10, 1922; Cent. 1922, IV 206; not in C.A. (224) Motwani, Wheeler J. Univ. Bombay 4, 104-105 (1935); Cent. 1936, I 4560; C.A. 30, 5197 (1936). (225) Amstutz, J. Org. Chem. 9, 315 (1944). (226) Kirner, Richter, J. Am. Chem. Soc. 51, 3413-3414 (1929). (227) Thiess, Muller, Hopker (to M. L. B.), Ger. 391,007, Feb. 28, 1924; Cent. 1924, I 2012; not in C.A. (228) Bennett, Berry, J. Chem. Soc. 1927, 1666-1676. (229) Waldron, Reid, J. Am. Chem. Soc. 45, 2402 (1923). (230) Galbraith, Smiles, J. Chem. Soc. 1935, 1237.

(231) Baddeley, Bennett, J. Chem. Soc. 1933, 46-48. (232) Fourneau, Ribas, Bull. soc. chim. (4) 41, 1046-1056 (1927). (233) Grignard, Purdy, Compt. rend. 175, 201-202 (1922); Bull soc. chim. (4) 31, 982-987 (1922). (234) Bales, Nickelson, J. Chem. Soc. 123, 2489 (1923). (235) Böeseken, Tellegen, Plusje, Rec. trav. chim. 57, 77-78 (1938). (236) Lingo, Henze, J. Am. Chem. Soc. 61, 1574-1576 (1939). (237) Farren, Fife, Clark, Garland, J. Am. Chem. Soc. 47, 2421 (1925). (238) Litterscheid, Ann. 330, 120, 126 (1903). (239) Henry, Bull. soc. chim. (3) 13, 592 (1895); Ber. 28, Referate, 851 (1895). (240) McLure, Chem. & Eng. News 22, 420-421 (1944). (241) Minné, Adkins, J. Am. Chem. Soc. 55, 300 (1933). (242) Boese, Ind. Eng. Chem. 32, 16-22 (1940). (243) Boese (to Carthide & Carthon Chem. Corpn.) U.S. 2 167 168, July 25, 1939

16-22 (1940). (243) Boese (to Carbide & Carbon Chem. Corpn.), U.S. 2,167,168, July 25, 1939; Cent. 1939, II 4591; C.A. 33, 8626 (1939). (244) Palomaa, Herna, Ber. 66, 309-310 (1933). (245) Contardi, Ercoli, Atti IX congr. intern. chim. Madrid 5, 163-173 (1934); Cent. 1936, II 3904; C.A. 31, 1764 (1937). (246) Kailan, Rosenblatt, Monatch. 68, 109-170 (1936). (247) M. L. B., Ger. 360,491, Oct 3, 1922, Cent. 1923, II 479; C.A. 18, 841 (1924). (248) Blicke, Blake, J. Am. Chem. Soc. 53, 1008, 1020 (1931). (249) M.L.B., Ger. 194,748, Jan. 15, 1905, C.A. 2, 1894 (1908). (250) Kendall, McKenzie, Org. Syntheses, Coll. Vol. 1, 256-258 (1941); 3, 57-59 (1923).

(251) Bauer (to Röhm & Haas Co.), U.S. 1,388,016, Aug. 16, 1921; Cent. 1921, IV 1222; C.A. 15, 4011 (1921): Ger. 365,350, Dec. 8, 1922, [Cent. 1923, II 251], not in C.A.: French 525,539, Sept. 23, 1920; Cent. 1921, IV 1222; not in C.A.: Swiss 90,695, Sept. 16, 1921; [Cent. 1922, II 324]; not in C.A. (252) Erlenmeyer, Ann. 191, 268 (1878). (253) Jacobs, Heidelberger, J. Am. Chem. Soc. 39, 1465-1466 (1917). (254) Moureu, Bull. soc. chim. (3) 9, 426 (1893); Ann. chim. (7) 2, 191 (1894). (255) Steimmig, Witter (to I.G.), Ger. 516,281, Jan. 22, 1931; Cent. 1931, I 2114; C.A. 25, 1840 (1931). Brit. 321,894, Dec. 12, 1929; Cent. 1930, I 1368; C.A. 24, 2756 (1930). (256) Sergeev, Kolychev, Kondrat'ev, J. Gen. Chem. (U.S.S.R.) 7, 2600-2604 (1937); Cent. 1938, II 2587; C.A. 32, 2534 (1938). (257) P. C. Sergeev, B. S. Kolychev, V. S. Kolychev, J. Gen. Chem. (U.S.S.R.) 7, 2863-2867 (1937); Cent. 1938, II 2931; C.A. 32, 2940 (1938). (258) F. Baeyer & Co., Ger. 245,532, April 13, 1912, Cent. 1912, I 1407; C.A. 6, 2494 (1912). (259) Cretcher, Pittenger, J. Am. Chem. Soc. 47, 2561 (1925). (260) Halasz, Rovira, Bull. soc. chim. (5) 8, 185-198 (1941); Cent. 1942, I 1942.

(261) Verkade, Tollenaar, Posthumus, Rec. trav. chim. 61, 373-382 (1942); Cent. 1942, II 1339, C.A. 37, 5372 (1943). (262) Butler, Nelson, Renfiew, Cretcher, J. Am. Chem. Soc. 57, 577 (1935). (263) Jones, Major, J. Am. Chem. Soc. 49, 1535-1536 (1927). (264) Rosenthal (to F. Baeyer & Co.), Ger. 389,086, Jan. 25, 1924; Cent. 1924, I 1717; not in C.A. (265) Oechslin (to Étab. Poulene Frères), French 585,970, March 12, 1925; Cent. 1926, II 1583; not in C.A. (266) Zernik (to Erdol-u. Kohle-Verwertung. A.G.), Ger. 373,849, April 16, 1923; Ger. 402,992, Sept. 19, 1924; Cent. 1925, I 410; not in C.A. (267) Bogert, Slocum, J. Am. Chem. Soc. 46, 766 (1924). (268) Henry, Ber. 7, 70 (1874). (269) Wagner-Jauregg, Helmert, Ber. 71, 2538 (1938). (270) Palomaa, Leimu, Ber. 66, 813-815 (1933); Leimu, Ber. 70, 1040-1053 (1937).

(271) Bennett, J. Chem. Soc. 127, 1277-1282 (1925). (272) Nemirowsky, J. prakt. Chem. (2)
31, 173-175 (1885). (273) Schotte, Priewe, Roescheisen, Z. physiol. Chem. 174, 142 (1928).
(274) Nekrassov, Melnikov, J. prakt. Chem. (2) 127, 214 (1930). (275) Delacre, Bull. soc. chim.
(2) 48, 708 (1887). (276) Zaki, J. Chem. Soc. 1930, 2271-2272. (277) Kirner, J. Am. Chem.
Soc. 48, 2751 (1926). (278) Davidson (to Carbide & Carbon Chem. Corp.), U.S. 1,732,356,
Oct. 22, 1929; Cent. 1930, I 2005; C.A. 24, 127 (1930). (279) Swallen, Boord, J. Am. Chem. Soc.
52, 653 (1930). (280) McMeekin, J. Am. Chem. Soc. 59, 2383 (1937).

(281) Langheld, Ber. 44, 2082 (1911). (282) Irwin, Hennion, J. Am. Chem. Soc. 63, 859 (1941). (283) Likhosherstov, Zhabotinskaya, Pavlovskaya, Ponomarenko, J. Gen. Chem. (U.S.S.R.) 8, 997-1007 (1938); Cent. 1939, I 1960; C.A. 33, 3761 (1939). (284) Likhosherstov, Shalaeva, J. Gen. Chem. (U.S.S.R.) 8, 370-379 (1938); Cent. 1939, II 66-67; C.A. 32, 5369 (1938). (285) Dorrer, Hopff (to I.G.), Ger. 596,523, May 14, 1934; Cent. 1934, II 1845; C.A. 28, 5077 (1934). (286) Grignard, Compt. rend. 141, 44-45 (1905); Ann. chim. (8) 10, 23-31 (1907). (287) Grignard, Ger. 164,883, Nov. 16, 1905; Cent. 1905, II 1751-1752. (288) I.G., French

682,142, May 23, 1930; Cent. 1930, II 3082; C.A. 24, 4304 (1930). (289) Shoruigin, Isagulyantz, Guseva, Poliakov, Ossipova, French 738,277, Dec. 23, 1932; Cent. 1933, I 3630; C.A. 27, 1638 (1933). (290) Shoesmith, Connor, J. Chem. Soc. 1927, 1770.

(291) von Braun, Wirz, Ber. 60, 106 (1927). (292) Chichibabine, Elgasine, Lengold, Bull. soc. chim. (4) 43, 238-242 (1928). (293) Bennett, Phillip, J. Chem. Soc. 1928, 1937-1938. (294). Knunyantz, Chelintzev, Osetrova, Compt. rend. acad. sci. U.R.S.S. N.S. 1, 312-317 (1934); Cent. 1934, II 2381; C.A. 28, 4382-4383 (1934). (295) Filipov, J. prakt. Chem. (2) 93, 176 (1916). (296) Paul, Bull. soc. chim. (5) 2, 753 (1935). (297) Knunyantz, Chelintzev, Benevolenska, Osetrova, Kursanova, Bull. acad. sci. U.R.S.S., Classe sci. math. nat. 1934, 165-176; Cent. 1935, I 1896—1897; C.A. 28, 4837 (1934). (298) Henze, Spurlock, J. Am. Chem. Soc. 63, 3360-3361 (1941). (299) Knorr, Ber. 22, 2088-2095 (1889). (300) Slotta, Behnisch, J. prakt. Chem. (2) 135, 234 (1932).

(301) Goldberg, Whitmore, J. Am. Chem. Soc. 59, 2280-2282 (1937). (302) Schlittler, Helv. Chim. Acta 24, 327-328E (1941). (303) Blount, Openshaw, Todd, J. Chem. Soc. 1940, 289. (304) Morley, Ber. 13, 222-223 (1880). (305) Ladenburg, Ber. 14, 1878 (1881). (306) I.G., Brit. 361,261, Dec. 10, 1931; Cent. 1932, I, 1438; C.A. 27, 1112 (1933): French 716,560, Dec. 23, 1931; Cent. 1932, I 1438, C.A. 26, 2288 (1932). (307) I.G., Brit. 358,114, Oct. 29, 1931; Cent. 1932, I 449; C.A. 26, 4926 (1932). (308) I.G., Brit. 297,484, Oct. 18, 1928; Cent. 1929, I 1863; C.A. 23, 2722 (1929); French 638,023, May 14, 1928; Cent. 1928, II 834; C.A. 23, 248 (1929). (309) Otto, J. prakt. Chem. (2) 44, 17-18 (1891). (310) Rindfusz, Harnack, J. Am. Chem. Soc. 42, 1724 (1920).

(311) Shoruigin, Smirnov, J. Gen. Chem. (U.S.S.R.) 4, 830-833 (1934); Cent. 1935, II 3763; C.A. 29, 2155 (1935). (312) Bergmann, Ger. 382,693, Oct. 5, 1923; Cent. 1924, I 1594; not in C.A. (313) B.A. S.F., Ger. 163,043, Sept. 16, 1905, Cent. 1905, II 1062. (314) Adkıns, Simington, J. Am. Chem. Soc. 47, 1687-1688 (1925). (315) Gabel, Ber. 58, 577-579 (1925). (316) Knorr, Ger. 95,854, March 30, 1897; Cent. 1898, I 813. (317) Adams, Segur, J. Am. Chem. Soc. 45, 788 (1923). (318) Dains, Brewster, Blair, Thompson, J. Am. Chem. Soc. 44, 2639 (1922). (319) Muller (to J. D. Riedel, A.C.), Ger. 414,259, June 2, 1925, Cent. 1925, II 765; not in C.A. (320) Wurtz, Compt. rend. 68, 1506 (1869); Ann. Suppl. 7, 94-95 (1870).

Von Braun, Seemann, Ber. 55, 3821 (1922). (322) Bergmann, Ulpts, Camacho, Ber. 55, 2810-2812 (1922). (323) Ladenburg, Ber. 14, 2408-2409 (1881). (324) Knorr, Mathes, Ber. 34, 3482-3484 (1901). (325) Burnett, Jenkins, Peet, Dreyer, Adams, J. Am. Chem. Soc. 59, 2250 (1937). (326) Ladenburg, Ber. 14, 1877-1879 (1881). (327) Hartmann, Org. Syntheses, Coll. Vol. 2, 183-184 (1943); 14, 28-29 (1934). (328) Soderman, Johnson, J. Am. Chem. Soc. 47, 1393-1394 (1925). (329) Horne, Shriner, J. Am. Chem. Soc. 54, 2928 (1932). (330) Headlee, Collett, Lazzell, J. Am. Chem. Soc. 55, 1067 (1933).

(331) Samdahl, Weider, Bull. soc. chim. (5) 2, 2014-2016 (1935). (332) Adams, Kamm, Volwiler (to Abbott Laboratories, Inc.), U.S. 1,358,750, Nov. 16, 1920; Cenl. 1921, II 804; C.A. 15, 412 (1921). (333) Soc. Chem. Ind. Basel, Brit. 451,925, Sept. 10, 1936; Cenl. 1937, I 662; C.A. 31, 416 (1937). Brit. 448,181, July 2, 1936; Cenl. 1937, I 662; C.A. 30, 7124 (1936). (334) Einhorn, Fiedler, Ladisch, Uhlfelder, Ann. 371, 146-148 (1909). (335) Adams, Jenkins, Volwiler (to Abbott Laboratories, Inc.), U.S. 1,513,730, Nov. 4, 1924, Cenl. 1925, I 1133; C.A. 19, 153 (1925). (336) Bockmuhl, Kross, Ehrhart (to I G.), Ger. 593,192, March 8, 1934; Cent. 1934, I 3770; C.A. 28, 4540 (1934): Brit. 404,674, Feb. 15, 1934; Cent. 1934, I 3770; C.A. 28, 4178 (1934): Swiss 161,737, + 161,738, July 17, 1933; Cenl. 1933, II 3597; not in C.A. (337) Coles, Lott, J. Am. Chem. Soc. 58, 1989 (1936). (338) Laun, Ber 17, 676-677 (1884). (339) Slotta, Behnisch, Ann. 497, 174 (1932). (340) Gabel, Bull. soc. chim (4) 41, 936-940 (1927).

(341) Wedekind, Bruch, Ann. 471, 76-77, 88-89 (1929). (342) Vassiliades, Bull. soc. chim. (5) 4, 1132-1133 (1937). (343) Barnes, Adams, J. Am. Chem. Soc. 49, 1310-1312 (1927). (344) Roithner, Monatsh. 15, 667-668 (1894). (345) von Braun, Braunsdorff, Rath, Ber. 55, 1674 (1922). (346) Leffler, Brill, J. Am. Chem. Soc. 55, 367 (1931). (347) Pyman, J. Chem. Soc. 97, 1801 (1908). (348) D'Ianni, Adkins, J. Am. Chem. Soc. 61, 1679 (1939). (349) Knorr. Ann. 301, 9 (1898). (350) Gardner, Maenni, J. Am. Chem. Soc. 53, 2765-2766 (1931).

(351) Wilson, Ind. Eng. Chem. 27, 871 (1935). (352) Litterscheid. Arch. Pharm. 249, 78 (1902). (353) Coppola, Gazz. chim. ital. 15, 331-332 (1885). (354) du Poñt Co., Brit. 477,981, Feb. 10, 1938; Cent. 1938, II 183; not in C.A. (355) Soc. Chem. Ind. Basel, French 784,869, July 27, 1935; Cent. 1935, II 3864; [C.A. 30, 487 (1936)]; Swiss 175,026, April 16, 1935; Cent. 1935, II 2156; C.A. 30, 304 (1936). (356) Dreyfus, Brit. 482,126, April 21, 1938; Cent. 1938, II 1484; C.A. 32, 6258 (1938). (357) Peacock, Dutta, J. Chem. Soc. 1934, 1303-1304. (358) Payman, Piggott (to Imperial Chem. Ind.), U.S. 1,859,527, May 24, 1932; C.A. 26, 3808 (1932); not in Cent.: Brit. 298,336, Nov. 1, 1928, Cent. 1929, I 1616; C.A. 23, 2723 (1929). (359) Peacock, Givan, J. Chem. Soc. 1937, 1470. (360) Olin, Dains, J. Am. Chem. Soc. 52, 3322 (1930).

(361) Meerwein, Hinz, Ann. 484, 17, 22-23 (1930). (362) Fromm, Honold, Ber. 55, 906-909 (1922). (363) Fromm, Ann. 442, 139-140 (1925). (364) Ercoli, Ann. chim. applicata 25, 263-273 (1935); Cent. 1935, II 3090; C.A. 30, 1028 (1936). (365) Yang, Johnson, J. Am. Chem. Soc. 54, 2071 (1932). (366) Rojahn, Fegeler, Arch. Pharm. 268, 568-569 (1930). (367) Béhal (to Étab. Poulenc Frères), French 569,463, April 12, 1924; 27,349, June 6, 1924; Cent. 1925, I 1537; not in C.A. (368) Einhorn, Uhlfelder, Ann. 371, 133 (1910). (369) Altwegg, Landrivon, U.S. 1,393,191, Nov. 11, 1921; Cent. 1922, IV 947; C.A. 16, 422 (1922). (370) M.L.B., Ger. 194,748, Jan. 21, 1908; Cent. 1908, I 1004; [C.A. 2, 1894 (1908)]; Ger. 179,627, Dec. 11, 1906; Cent. 1907. I 1364; [C.A. 1, 2056 (1907)].

(371) Cope, McElvain, J. Am. Chem. Soc. 53, 1590 (1931). (372) Rosenzeneig, Legerlotz, Austrian 101,671, Nov. 25, 1925; Cent. 1926, II 1585; not in C.A. (373) Jones, Burns, J. Am. Chem. Soc. 47, 2973 (1925). (374) Blicke, Castro, J. Am. Chem. Soc. 63, 2438 (1941). (375) Földi, Ber. 53, 1837 (1920). (376) von Kereszty, Wolf, Ger. 353,195, May 12, 1922; Cent. 1922, IV 156; C.A. 17, 1243 (1923). (377) Gilman, Perkins, J. Am. Chem. Soc. 47, 251 (1925). (378) Földi, Ber. 60, 659 (1927). (379) Clemo, Perkin, J. Chem. Soc. 121, 644 (1922). (380) Clemo,

Tenniswood, J. Chem. Soc. 1931, 2550.

(381) Tipson, Cretcher, J. Am. Chem. Soc. 64, 1162 (1942). (382) Gilman, Beaber, J. Am. Chem. Soc. 45, 841 (1923). (383) Perkin, Clemo (to British Dyestuffs Corp.), Brit. 193,618, March 22, 1923; Cent. 1925, I 899; C.A. 17, 3510 (1923). (384) Ashworth, Burkhardt, J. Chem. Soc. 1928, 1798. (385) Johnson, Schwartz, Jacobs, J. Am. Chem. Soc. 60, 1883 (1938). (386) Bert, Compt. rend. 213, 1015-1016 (1941); C.A. 37, 4049 (1943). (387) Puyal, Montagne, Bull. soc. chim. (4) 27, 862 (1924). (388) von Kereszty, Wolf, Ger. 387,963, Jan. 7, 1924, Cent. 1924, Il 403; not in C.A. (389) Dewey, Witt, Ind. Eng. Chem., Anal. Ed. 14, 648 (1942). (390) Sprinson, J. Am. Chem. Soc. 63, 2250 (1941).

(391) Bickel, French, J. Am. Chem. Soc. 48, 749 (1926). (392) Grandière, Bull. soc. chim. (4) 35, 189 (1924). (393) Dersin, Ber. 54, 3158 (1921). (394) Smith, Platon, Ber. 55, 3151 (1922). (395) Wenker, J. Am. Chem. Soc. 59, 422 (1937). (396) Billman, Parker, J. Am. Chem. Soc. 65, 762 (1943). (397) Garelli, Racciu, Atti accad. scr. Torino, Classe scr. fis. mat. nat. 69, I 358-363 (1934); Cent. 1934, II 2823; [C.A. 29, 6223 (1934)]. (398) Allen, Nicholls, J. Am. Chem. Soc. 56, 1409-1410 (1934). (399) Bennett, Reynolds, J. Chem. Soc. 1935, 140-141. (400) Sah, Tao, Rec. trav. chim. 58, 14-15 (1939).

(401) Murray, J. Council Sci. Ind. Research 17, 213-221 (1944); C.A. 39, 2283 (1945).
(402) Reed (to C. L. Horn) U.S. 2,378,104, June 12, 1945; C.A. 39, 4088 (1945).
(403) Goldblatt, Chiesman, Brit. J. Ind. Med. 1, 207-213 (1944): Goldblatt, Brit. J. Ind. Med. 1, 213-223 (1944): C.A. 39, 5359 (1945).
(404) Porret, Helv. Chim. Acta, 27, 1321-1328 (1944); C.A. 39, 4789 (1945).
(405) Michael, Weiner, J. Am. Chem. Soc. 58, 1003 (1936).

B.P. F.P. 129.2° cor. at 760 mm. (1) (2)  $-68.1^{\circ}$  (1)  $D_4^{20} = 1.5532$  (1)  $n_D^{20} = 1.48211$  (1) 129–129.7° at 760 mm. (3) 1.4828 (2) 129–130° (4) (5) 35–36° at 20 mm. (3)

Volatile with steam. — [Earlier b.p.'s around 135° were probably on impure material.] [For use of  $\tilde{C}$  as dry cleaning fluid see (6); in manufacture of low-luster rayon see (7).]

[For prepn. of  $\bar{C}$  from 1,1,1-trichloroethane (3:5085) by actn. of  $Cl_2$  in sunlight (8) (45% yield (1)) or by chlorination of ethyl chloride (3:7015) (1), ethylene dichloride (3:5130) (9), 1,1-dichloroethylene (3:5005) (10), or 1,1-diiodoethylene (11) see indic. refs.: for formn. of  $\bar{C}$  from 1,1,2,2-tetrachloroethane (3:5750) + AlCl<sub>3</sub> (12) (13) or with aq. Ca(OCl)<sub>2</sub> (13) see (12) (13): from trichloroethylene (3:5170) over pumice at 700° (5) or by cat. addn. of HCl (2) see (5) (2): from 1,2-dichloroethylene (3:5030) + HCl + AlCl<sub>3</sub> see (14).]

[For formation of  $\bar{C}$  together with other products by actn. of  $Cl_2$  on  $\beta,\beta'$ -dichlorodiethyl sulfide (" mustard gas") see (3) (4).]

[For reactn. of  $\tilde{C}$  with acetylene + cat. to yield 1,2-dichloroethylene (3:5030) with 1,1,2-trichloroethylene as by-product see (15); for reactn. of  $\tilde{C}$  with 1,2-dichloroethylene + AlCl<sub>3</sub> to yield a pentachlorobutane, b.p. 76-77.9° at 10 mm.,  $D_{22}^{22} = 1.611$ ,  $n_{D}^{22} = 1.5548$ , see (16); for reactn. of  $\tilde{C}$  with  $C_6H_5MgBr$  in toluene see (17).]

3:5555 (1) Henne, Hubbard, J. Am. Chem. Soc. 58, 404-406 (1936). (2) Kharasch, Norton, Mayo, J. Org. Chem. 3, 48-54 (1938). (3) Phillips, Davies, Mumford, J. Chem. Soc. 1929, 548. (4) Mann, Pope, J. Chem. Soc. 121, 597 (1922). (5) Nicodemus, J. prakt. Chem. (2) 83, 318 (1911). (6) Parkhurst (to Stand. Oil Cal.), U.S. 1,948,045, Feb. 20, 1934; Cent. 1934, II 863; C.A. 28, 2924 (1934). (7) Kline (to du Pont Rayon), U.S. 2,042,944, June 2, 1936; Cent. 1937, I 478; C.A. 30, 5038 (1936). (8) Regnault, Ann. chim. (2) 69, 162 (1838). (9) Laurent, Ann. 22, 292-305 (1857). (10) I.G., Ger. 530,649, July 31, 1931; Cent. 1931, II 1920.

(11) Kaufmann, Ber. 55, 258 (1922). (12) Mouneyrat, Bull. soc. chim. (3) 19, 499-500 (1898). (13) Kokatnur, J. Am. Chem. Soc. 41, 122-123 (1919). (14) Prins, Rec. trav. chim. 45, 80-81 (1926). (15) Wiegand (to Chem. Fabrik von Heyden), Ger. 566,034, Dec. 14, 1932; Cent. 1933, I 1350: Ger. 567,272, Dec. 30, 1932; Cent. 1933, I 1842. (16) Prins, Rec. trav. chim. 56, 123-124

(1937). (17) Bert, Bull. soc. chim. (4) 41, 1173-1174 (1927).

3:5570 
$$d$$
, $l$ - $\alpha$ -CHLORO- $n$ -BUTYRYL CHLORIDE  $C_4H_6OCl_2$  Beil. II - 277 CH<sub>3</sub>.CH<sub>2</sub>.CH.C=O II<sub>1</sub>-(123) II<sub>2</sub>--

B.P. 129–132° (1)  $D_-^{17} = 1.257$  (1) 62–63° at 70 mm. (2) 51–52° at 41 mm. (2)

[For prepn. of  $\bar{C}$  from  $\alpha$ -chloro-n-butyric acid (3:9130) with SOCl<sub>2</sub> see (2); for formn. of  $\bar{C}$  from n-butyryl chloride (3:7370) with SO<sub>2</sub>Cl<sub>2</sub> + dibenzoyl peroxide in CCl<sub>4</sub> (15%  $\bar{C}$  + 55%  $\beta$ - and 30%  $\gamma$ -isomers) see (3).]

 $\bar{C}$  on hydrolysis with aq. yields  $\alpha$ -chloro-n-butyric acid (3:9130) q.v.

3:5570 (1) Markownikow, Ann. 153, 241 (1870). (2) Blaise, Bull. soc. chim. (4) 15, 668 (1914). (3) Kharasch, Brown, J. Am. Chem. Soc. 62, 925-929 (1940).

3:5576 
$$\beta$$
-CHLOROPROPIONALDEHYDE C<sub>3</sub>H<sub>5</sub>OCl Beil. I - 632 (3-Chloropropanal-1; CH<sub>2</sub>.CH<sub>2</sub>.CHO I<sub>1</sub>— I<sub>2</sub>-(690)

B.P. 130–131° (1)  $D_{-}^{15} = 1.268$  (1)  $n_{-}^{15} = 1.475$  (1) 125–130° (2) 50° at 60 mm. (3) 40–44° at 18 mm. (4) 40° at 19 mm. (1) 40–50° at 10 mm. (2)

Liquid; insol. aq.; sol. alc. or ether. — C readily polymerizes (see below).

#### PREPARATION OF C

[For prepn. of  $\bar{C}$  from acrolein (1:0115) with dry HCl gas at -10 to  $-15^{\circ}$  (yields: 87% (5), 65% (4)) (6) (7) (8) (9) (10) see indic. refs.; note that since HCl is present much of the prod. may appear as the trimer (see below); for prepn. of  $\bar{C}$  from its trimer (see below) by distillation at ord. press. see (1); for prepn. of  $\bar{C}$  from 1,3-dichloropropene-1 (3:5280) by cat. vapor-phase hydration see (20).]

# CHEMICAL BEHAVIOR OF C

Polymerization.  $\bar{C}$  in the pres. of even traces of HCl readily polymerizes to a trimer (2), white cryst. from abs. EtOH (6) or MeOH at  $-10^{\circ}$  (1), very sol. in ether, acetone, AcOH, CHCl<sub>3</sub>, pet. ether, or C<sub>6</sub>H<sub>6</sub> (1); m.p. 36° (1), 35.5° (6), 34.5-35.5° (11), 33.5° (2), 32° (10); b.p. (without depolymerization) 170-175° at 12-15 mm. (2); note that this trimer on distillation at ord. press. depolymerizes into  $\bar{C}$  (1).

Oxidation.  $\tilde{C}$  on oxidn. with fumg. HNO<sub>3</sub> (5) (6) (7) (8) (9) (12) or with conc. HNO<sub>3</sub> (13) gives (yields: 65-70% (7), 60-65% (8), 50% (6))  $\beta$ -chloropropionic acid (3:0460). —  $\tilde{C}$  readily reduces AgNO<sub>3</sub> or Fehling's soln.

Behavior with other inorganic reactants.  $\bar{C}$  adds NaHSO<sub>3</sub>, but the resultant compd. with dil. H<sub>2</sub>SO<sub>4</sub> does *not* regenerate  $\bar{C}$  [for formn. of the KHSO<sub>3</sub> epd. of  $\bar{C}$  from  $\beta$ -chloropropionaldehyde diethylacetal (3:9490) see {14}].

[C with solid KOH on htg. gives (10) a polymer of acrolein (metaacrolein).]

[C with PCl<sub>5</sub> gives (15) (16) 1,1,3-trichloropropane (3:5660).]

Behavior with organic reactants. Acetal formation. [ $\bar{C}$  in MeOH with HCl gas presumably would yield  $\beta$ -chloropropionaldehyde dimethylacetal [Beil. I<sub>1</sub>-335, I<sub>2</sub>-(690)], b.p. 86° at 100 mm. (17), 51° at 19 mm. (1), 45° at 12 mm (18),  $D_{-}^{20} = 1.059$  (18),  $D_{-}^{15} = 1.064$  (1),  $n_{-}^{20} = 1.41631$  (18),  $n_{-}^{15} = 1.427$  (1), although such direct prepin. has not actually been reported; the prod. is usually obtd. from acrolem (1:0115) in MeOH with dry HCl gas (1) (17) (18) cf. (19). — Note, however, that in this process there is also formed some  $\alpha,\gamma$ -dichloro-n-propyl methyl ether [Beil. I<sub>2</sub>-(690)] (1), b.p. 55° at 19 mm. (1), 45° at 12 mm. (18),  $D_{-}^{15} = 1.186$  (1),  $n_{-}^{20} = 1.4478$  (18),  $n_{-}^{15} = 1.450$  (1).]

[C in EtOH with HCl gas presumably would yield similarly β-chloropropionaldehyde diethylacetal (3:9490) q.v., although such direct forms. has not actually been reported.] Behavior with NaOAc/AcOH. [C with NaOAc/AcOH on htg. ppts. NaCl and gives (1) (by loss of HCl) some acrolein (1:0115) and (as a result of the HCl) some trimer (see above).

Behavior with acetic anhydride. [C with Ac<sub>2</sub>O (1:1015) refluxed several hrs. gives (1) a mixt. of prods. including  $\alpha$ -chloroallyl acetate, allylidene diacetate,  $\beta$ -chloropropylidene diacetate, m.p. 43°, and the trimer of  $\tilde{C}$ .]

Behavior with RMgX reactants. [C with RMgX cpds. in ether, followed by hydrolysis, reacts normally by addn. to the aldehyde group; e.g., C with EtMgBr gives (3) 1-chloropentanol-3 [Beil. I<sub>1</sub>-(184), I<sub>2</sub>-(421)], b.p. 173° at 760 mm., C with excess n-AmMgBr gives (43% yield (4)) 1-chloro-octanol-3, b.p. 110-115° at 14 mm. (4)

3:5576 (1) Kirrmann, Goudard, Chahidzadeh, Bull. soc chim. (5) 2, 2147-2150 (1935). (2) Grimaux, Adam, Bull. soc. chim. (2) 36, 22-24 (1881). (3) Fourneau, Ramart-Lucas, Bull. soc. chim. (4) 25, 366 (1919). (4) Shriner, Rendleman, Berger, J. Org. Chem 4, 104 (1939). (5) Moureu, Bull. soc. chim. (3) 9, 387-388 (1893); Ann. chim. (7) 2, 156-158 (1894). (6) Moureu, Murat, Tampier, Ann. chim. (9) 15, 222-224 (1921); Compt. rend. 172, 1267 (1921). (7) Moureu, Chaux, Bull. soc. chim. (4) 35, 1362-1364 (1924). (8) Moureu, Chaux, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 166-168 (1941), (1st Ed.) 160-162 (1932); 8, 54-56 (1928). (9) Wohlk, J. prakt. Chem. (2) 61, 205-209 (1900). (10) Geuther, Cartmell, Ann. 112, 3-6 (1859).

(11) Krestownikoff, J. Russ. Phys.-Chem. Soc. 11, 248 (1879); Jahresber. 1879, 552. (12) Arndt, Ber. 56, 1276-1277, Note (1923). (13) Rohm & Haas Co., Brit. 526,122, Sept. 11, 1940; C.A. 35, 6981 (1940). (14) Crawford, Kenyon, J. Chem. Soc. 1927, 399-400. (15) van Romburgh, Bull. soc. chim. (2) 37, 103 (1882). (16) Geuther, Zeit. für Chemie 1865, 29. (17) Wohl, Momber, Ber. 47, 3348-3349 (1914). (18) Dulière, Bull. soc. chim. (4) 33, 1651 (1923). (19) Voet, Bull. soc. chim. (4) 41, 1308-1314 (1927). (20) Anderson, Stager, McAllister (to Shell Development Co.) U.S. 2,359,459, Oct. 3, 1944; C.A. 39, 708 (1945).

3:5585 METHYL CHLOROACETATE CH<sub>2</sub>.COOCH<sub>3</sub> C<sub>3</sub>H<sub>5</sub>O<sub>2</sub>Cl Beil. II - 197 
$$H_{1-}$$
(88)  $H_{2-}$ (191) B.P. F.P. 131.5° (1)  $-32.65$ ° (1)  $D_{4}^{20} = 1.2358$  (6);  $n_{D}^{20} = 1.42207$  (6) 131° (2) 1.2340 (8) (8) 130.8° (3) 130.0° at 760 mm. (4) 130.0° at 740 mm. (5) 129.6–129.8° at 756 mm. (6) 129° (7)

[For prepn. of  $\bar{C}$  from chloroacetic acid (3:1370) with MeOH (43-45% yield (2)), with MeOH + HCl (68.5% yield (2)) (5) (9), with MeOH + BF<sub>3</sub>.Et<sub>2</sub>O (65% yield (2)), or with Me<sub>2</sub>SO<sub>4</sub> in s.t. at 200° (10) see indic. refs.; from chloroacetyl chloride (3:5235) + MeOH see (7); from chloroacetamide + MeOH +BF<sub>3</sub> (64% yield) see (2); from  $\alpha,\beta$ -dichlorovinyl ethyl ether (3:5540) with MeOH see (11) (12).]

[For constant-boilg. mixts. of  $\bar{C}$  with various org. cpds. see Beil. II<sub>2</sub>-(191) or (13) (14).]  $\bar{C}$  on shaking with 2 vols. cold conc. NH<sub>4</sub>OH yields (7) (16) (more readily (15) than ethyl chloroacetate (3:5700)) chloroacetamide, m.p. 121° (16). —  $\bar{C}$  on htg. with 2 moles aniline at 100°, extracted with aq. to remove aniline hydrochloride, yields an oil which on steam distillation gives in the distillate (7) methyl anilinoacetate (phenylglycine methyl ester) [Beil. XII-470, XII<sub>1</sub>-(263)], m.p. 48° (7). [This prod. on boilg. with excess aniline yields (7) anilinoacetanilide (phenylglycine anilide) [Beil. XII-556], m.p. 110-111° (7).

 $\bar{C}$  on hydrolysis (probably best with N/10 Ba(OH)<sub>2</sub> cf. (17)) yields methyl alc. (1:6120) and chloroacetic acid (3:1370). [For studies of hydrolysis under various conditions see (18) (19); for study of alcoholysis of  $\bar{C}$  with EtOH + HCl see (20).]

3:5585 (1) Timmermans, Bull. soc. chim. Belg. 31, 392 (1922). (2) Toole, Sowa, J. Am. Chem. Soc. 59, 1971-1973 (1937). (3) Cheng, Z. physik. Chem. B-24, 305 (1934). (4) Lecat, Ann. soc. sci. Bruxelles 47, I 112 (1927). (5) Schreiner, Ann. 197, 7-8 (1879). (6) Karvonen, Ann. Acad. Sci. Fennicae A-10, No. 4, 20 (1916); Cent. 1919, III, 808. (7) Meyer, Ber. 8, 1152-1158 (1875). (8) Schjanberg, Z. physik. Chem. A-172, 228 (1935). (9) Henry, Ber. 6, 742 (1873). (10) Simon, Compt. rend. 176, 585 (1923).

(11) Crompton, Vanderstichele, J. Chem. Soc. 117, 692 (1920). (12) Imbert, Consortium für Elektrochem. Ind., Ger. 212,592, Sept. 6, 1909; Cent. 1909, II 1024. (13) Lecat, Rec. trav. chim. 45, 622 (1926), 46, 243 (1927). (14) Lecat, Ann. soc sci. Rruxelles 47, I 25, I12 (1927). (15) Henry, Rec. trav. chim. 24, 165 Note 3 (1905). (16) Steinkopf, Malinowski, Ber. 44, 2901 (1911). (17) Newitt, Linstead, Sapiro, Boorman, J. Chem. Soc. 1937, 882. (18) Drushel, Hill, Am. J. Sci. (4) 30, 72-78 (1910), Cent. 1916, II 967; C.A. 4, 2438 (1910). (19) Palomaa, Ber. 74, 1866-1870 (1941). (20) Kolhatkar, J. Chem. Soc. 107, 931 (1915).

3:5590 1,3-DICHLORO-2-METHYLPROPENE-1 
$$C_4H_6Cl_2$$
 Beil. I -209  $(\alpha,\gamma$ -Dichloroisobutylene)  $Cl$   $CH_3$   $Cl$   $I_1$ —  $I_2$ —  $CH_2$ —  $CH$   $I_3$ —  $I_4$ —  $I_4$ —  $I_5$ 

Note:  $\bar{C}$  by virtue of allylic transposition may frequently yield derivatives of its synionic isomer, 1,1-dichloro-2-methylpropene-2 (3:7480) q.v. The products (and/or their deriva-

tives) formerly (4) regarded as cis and trans stereoisomers of C may very probably be C and its synionic isomer (3:7480).

[For prepn. of  $\bar{C}$  from 1,2,3-trichloro-2-methylpropane (3:5885) by dehydrochlorination with quinoline (73-85% yield) see (7).]

[For prepn. of  $\tilde{C}$  from 1,1-dichloro-2-methylpropene-2 (3:7480) by htg. under reflux see (2): for formn. of  $\tilde{C}$  (together with other products) from 2-methylpropene-1 (isobutylene) (60% yield (5)) (1) + Cl<sub>2</sub>, or from 3-chloro-2-methylpropene-1 (isobutenyl chloride) (3:7145) with Cl<sub>2</sub> (1 mole) + NaHCO<sub>3</sub> (1.5 moles) at 0° (2) see indic. refs.; for formn. of  $\tilde{C}$  (20% yield (6)) (together with other products) from 1,3-dichloro-2-methylpropanol-2 (3:5977) + strong oxygen acids see (6); for formn. of  $\tilde{C}$  (46% yield (3)) from 1,3-dichloro-2-methylpropanol-2 (3:5977) by htg. with P<sub>2</sub>O<sub>5</sub> for 2 hrs. at 110-115° see (3).]

 $\bar{C}$  on hydrolysis with aq. + CaCO<sub>3</sub> (2) (4) or aq. + MgO (4) gives (2) (3) (46% yield (4)) 1-chloro-2-methylpropen-1-ol-3 (3-chloro-2-methylallyl alc.) (3:8340) q.v.

C with O<sub>3</sub> followed by hydrolysis yields (2) (3) (5) chloroacetone (3:5425).

C treated with Cl<sub>2</sub> in the dark at 0° for 37 hrs. yields (4) 1,1,2,3-tetrachloro-2-methyl-propane (3:6165) + other products.

 $\bar{C}$  with cuprous cyanide refluxed 9-10 hrs. gives (67% yield (7)) 4-chloro-3-methylbuten-3-nitrile-1, b.p. 70-73° at 10 mm.,  $D_4^{20}=1.0856$ ,  $n_D^{20}=1.4643$  (7); this product on hydrolysis with hot conc. HCl for 2 hrs. gives (7) 4-chloro-3-methylbuten-3-oic acid-1, m.p. 35° (corresp. phenylhydrazide, m.p. 147-148°).

3:5590 (1) Pogorshelski, J. Russ. Phys.-Chem. Soc. 36, 1129-1184 (1904); Cent. 1905, I 668, (2) Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1232-1246 (1938); Cent. 1939, II 4223; C.A. 33, 4190 (1939). (3) D'yakonov, J. Gen. Chem. (U.S.S.R.) 10, 402-413 (1940); C.A. 34, 7861 (1940). (4) Rogers, Nelson, J. Am. Chem. Soc. 58, 1029-1031 (1936). (5) D'yakonov, Tishchenko, J. Gen. Chem. (U.S.S.R.) 9, 1258-1264 (1939); C.A. 34, 710 (1940). (6) Groll, Burgin (to Shell Development Co.), U.S. 2,042,223, 2,042,222, May 26, 1936; Cent. 1937, 1274; C.A. 30, 4875 (1936). (7) Mooradian, Cloke, J. Am. Chem. Soc. 68, 785-789 (1946).

3:5605 3,3,3-TRICHLORO-2-METHYLPROPENE-1  $C_4H_5Cl_3$  Beil. S.N. 11 (1,1,1-Trichloro-2-methylpropene-2)  $H_2C=C-CCl_3$ 

**B.P.** 132° (1)  $D_{-}^{20} = 1.293$  (1)  $n_{-}^{20} = 1.479$  (1)

Note:  $\tilde{C}$  readily undergoes allylic transposition so that in reactns. of  $\tilde{C}$  products derived from the isomeric 1,1,3-trichloro-2-methylpropene-1 (3:5025) may be expected (1) (2) (3) (4).

[For prepn. of  $\bar{\rm C}$  (yield: 30–43% (4), 15% (1)) from  $\beta,\beta,\beta$ -trichloro-ter-butyl alc. ("Chlore-tone") (3:2662) by htg. to 200° with P<sub>2</sub>O<sub>5</sub> and dimethylaniline (1) or quinoline (4) see indic. refs.] [A 57% yield of the isomeric 1,1,3-trichloro-2-methylpropene-1 (3:5025) together with some  $\alpha$ -chloroisobutyric acid (3:0235) is separated from  $\bar{\rm C}$  by redistillation (1).]

 $\bar{C}$  on hydrolysis by boilg. 1 day with aq. Na<sub>3</sub>PO<sub>4</sub> gives (60% yield (2)) 3,3-dichloro-2-methylpropen-2-ol-1, b.p. 78-79°,  $D_{-}^{20}=1.298, n_{-}^{20}=1.493$  (p-nitrobenzoate, m.p. 91°, N-phenylcarbamate, m.p. 64° (2)).

 $\bar{C}$  on htg. with NaOAc + AcOH gives (2) 3,3-dichloro-2-methylpropen-2-yl acetate, b.p. 79° at 12 mm.,  $D_{-}^{20}$  = 1.257,  $n_{-}^{20}$  = 1.4718 (2). [With boilg. NaOH this regenerates the corresp. alc. (2).]

Č with NaOEt gives in the cold 70% yield (2) of 3,3-dichloro-2-methylpropen-2-yl ethyl ether, b.p. 56° at 12 mm.,  $D_{-}^{20} = 1.1285$ ,  $n_{-}^{20} = 1.4610$  (2).

 $\bar{C}$  in AcOH treated with O<sub>3</sub>, then hydrolyzed, gives (70% yield)  $\alpha,\alpha,\alpha$ -trichloroscetone (3:5620), b.p. 133-134<sup>5</sup> (1).

[For behavior of C with PCl<sub>5</sub>, with HF, or with HF + anisole see (4).]

- ② 2,3-Dibromo-1,1,1-trichloro-2-methylpropane: m.p. 34° (1). [From  $\ddot{C} + Br_2$  without solvent; crude prod. recrystd. from alc. at  $-10^{\circ}$  (1); cf., however, (4).]
- 3,3-Dichloro-2-methylpropen-2-yl p-nitrobenzoate: m.p. 91° (2). [From C on boilg. with dil. alc. soln. of K p-nitrobenzoate (2).]
- 3:5605 (1) Jacob, Bull. soc. chim. (5) 7, 581-586 (1940). (2) Kirrmann, Jacob, Bull. soc. chim. (5) 7, 586-593 (1940). (3) Kirrmann, Jacob, Compt. rend. 203, 1528-1529 (1936). (4) Price, Marshall, J. Org. Chem. 8, 532-535 (1943).

3:5615 1,2-DICHLOROBUTENE-2 Cl Cl 
$$C_4H_6Cl_2$$
 Beil. S.N. 11 (high-boilg stereoisomer)  $CH_3$ — $CH$ = $C$ — $CH_2$ 

B.P. 132-134° at 752 mm. (1) 
$$D_4^{20} = 1.1597$$
 (2)  $n_D^{20} = 1.4590$  (2)  $125-127^{\circ}$  (2)  $D_4^{18} = 1.1601$  (2)  $n_C^{18} = 1.4635$  (2)  $D_4^{16} = 1.1771$  (1)  $n_C^{16} = 1.4710$  (1)

[See also low-boilg. stereoisomer (3:5360).]

[For prepn. of  $\tilde{C}$  (together with its stereoisomer (3:5360)) from 1,2,3-trichlorobutane (3:5935) with KOH at 150° (2), or from 2,2-dichlorobutane (3:7415) or 2,3-dichlorobutane (3:7615) with alc. KOH (5), see indic. refs.; for formn. of  $\tilde{C}$  (together with its stereoisomer and also 2,4-dichlorobutene-2 (3:5550)) from 2-chlorobutene-2 (3:7105) by actn. of Cl<sub>2</sub> at 350° see (3).]

 $\ddot{C}$  with 1 mole Cl<sub>2</sub> + 1.5 moles NaHCO<sub>5</sub> at 0° gives (100% yield (4)) 1,2,2,3-tetrachlorobutane (3:9078).

C on hydrolysis by htg. with 2 pts aq. + 1 mole powdered CaCO<sub>3</sub> at 70° for 4 hrs. gives (1) a mixt. of about equal parts of 2-chlorobuten-2-ol-1 (3:8240) and (by allylic transposition) 3-chlorobuten-3-ol-2 (3:9115).

 $\bar{\rm C}$  on oxidn. with KMnO<sub>4</sub> in acetone gives (1) chloroacetic acid (3:1370) + AcOH (1:1010) + HCl. —  $\bar{\rm C}$  in CCl<sub>4</sub> at -17° treated with O<sub>3</sub> followed by aq. gives acetaldehyde (1:0100).

3:5615 (1) Tishchenko, J. Gen. Chem. (U.S.S.R.) 7, 658-662 (1937); Cent. 1937, II 371; C.A. 31, 5754 (1937). (2) Tishchenko, Churbakov, J. Gen. Chem. (U.S.S.R.) 6, 1553-1558 (1936); Cent. 1937, I 3786; C.A. 31, 2165 (1937). (3) N. V. Bataafsche Petroleum Maatschappi, Brit. 468,016, July 22, 1937; French 810,112, Mar. 15, 1937, Cent. 1937, II 4102. (4) Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1232-1246 (1938); Cent. 1939, II 4222; C.A. 33, 4190 (1939). (5) Tishchenko, Churbakov, J. Gen. Chem. (U.S.S.R.) 7, 663-666 (1937); Cent. 1937, II 371; C.A. 31, 5754 (1937).

3:5620 1,1,1-TRICHLOROPROPANONE-2 
$$C_3H_3OCl_3$$
 Beil. I - 655  $(\alpha,\alpha,\alpha$ -Trichloroacetone;  $CH_3$ -C-CCl<sub>3</sub>  $I_1$ -(344) methyl trichloromethyl ketone)  $I_2$ -(719)

B.P. 
$$134^{\circ}$$
 (1) (3)  $D_4^{20} = 1.435$  (3)  $n_{\alpha}^{20} = 1.4592$  (3)  $60^{\circ}$  at 54 mm. (1)  $D_4^{17.1} = 1.4389$  (3)  $D_4^{17.1} = 1.4389$  (3)

Limpid colorless liq. with faintly camphoraceous odor. — Insol. aq., but volatile with steam (3). —  $\bar{C}$  is not lachrymatory.

[For prepn. from 1,1,1-trichloro-2-methylpropene-2 (3:5605) with O<sub>3</sub> in AcOH, followed by hydrolysis (70% yield) see (2); from corresp. alc., 1,1,1-trichloropropanol-2 (3:0846), by oxidn. with K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>/H<sub>2</sub>SO<sub>4</sub> see (3); from 2-trichloromethyl-2,4,4-trimethyl-1,3-dioxolone-5 [Beil. XIX<sub>1</sub>-(656)] by hydrolytic cleavage with AcOH/HCl (60% yield) see (1): for formn. of C (together with other prods.) from propanol-2 (1:6135) with Cl<sub>2</sub> (4), from chloroacetone (3:5425) with Cl<sub>2</sub> at 30-40° (5), or from trichloroacetyl chloride (3:5420) with MeZnI (1) see indic. refs. - Note that the prod. from chloral + diazomethane, formerly supposed (6) to have been C, has since been shown (7) (8) to be 3,3,3-trichloro-1,2-epoxypropane (3:5760) (" $\gamma,\gamma,\gamma$ -trichloropropylene oxide").]

 $(\bar{C} \text{ on reduction with } Al(C_2H_5)_3.Et_2O \text{ in ether (9) or with fused } Al(OEt)_3 \text{ in abs. alc.}$ under H<sub>2</sub> or N<sub>2</sub> (10) gives (yields: 67% (10), 65% (9)) 1,1,1-trichloropropanol-2 (3:0846).]

[C resists further chlorination; e.g., C with SO<sub>2</sub>Cl<sub>2</sub> (1 mole) on protracted htg. at 180° yields (3) 1,1,1,3-tetrachloropropanone-2 (3:6085), b.p. 71-72° at 13 mm., hydrate, m.p. 65° (3).]

[C with diazomethane in dry ether gives (83% yield (3)) 1,1,1-trichloro-2-methyl-2,3epoxypropane, b.p. 51° at 10 mm., m.p. 53-54° (3).]

- (2) (P) Cleavage with aq. alkali: C with aq. alk. even in cold splits almost instantly into chloroform (3:5050) and acetic acid (1:1010).
- (1) 1,1,1-Trichloropropanone-2 semicarbazone: m.p. 140° dec. (on Hg bath) (1) (11). [From C with semicarbazide HCl in pres. of NaOAc, or with free semicarbazide (11).]

3:5620 (1) Blaise, Bull. soc. chim. (4) 15, 734-737 (1914); Compt. rend. 155, 1253 (1912). (2) Jacob, Bull. soc. chim. (5) 7, 581-586 (1940); C.A. 36, 3508 (1942). (3) Arndt, Amende, Ender, Monatsh. 59, 214-216 (1932). (4) Buc (to Standard Oil Co.), U.S. 1,391,757, Sept. 27, 1921; Cent. 1922, IV 942. (5) I.G., French 816,956, Aug. 21, 1937; Cent. 1938, I 2216. (6) Schlotterbeck, Ber. 42, 2561-2562 (1909). (7) Arndt, Eistert, Ber. 51, 1118-1122 (1928). (8) Arndt, Z. angew. Chem. 40, 1099-1100 (1927). (9) Meerwein, Hinz, Majert, Sonke, J. prakt. Chem. (2) 147, 236-237 (1936). (10) Meerwein, Schmidt, Ann. 444, 233-234 (1925).

(11) Blaise, Bull. soc. chim. (4) 17, 428 (1915); Compt. rend. 156, 1551 (1913)

**B.P.** 134–135° at 742 mm. (1) 
$$D_{20}^{20} = 1.3932$$
 (1)  $n_D^{25} = 1.4920$  (1)

[For prepn. of C from 1,1,1-trichlorobutanol-2 (3:5955) with conc. HCl + ZnCl<sub>2</sub> on stdg. at room temp. 1 hr. (yield not stated) see (1).]

3:5622 (1) Gilman, Abbott, J. Org. Chem. 8, 228 (1943).

at 10 mm. (2)

3:5625 ETHOXALYL CHLORIDE 
$$\begin{array}{c} \text{CO.OC}_2\text{H}_5 \\ \text{CO.Cl} \end{array}$$
  $\begin{array}{c} \text{C}_4\text{H}_5\text{O}_3\text{Cl} \\ \text{II}_1\text{-}(234) \\ \text{II}_2\text{-}(508) \end{array}$  B.P. 136–138° (1)  $D_4^{20} = 1.2234$  (2) 1.35–136° (2) 1.2226 (3) 1.34–135° (4) 1.33–135° at 760 mm. (14) 30° at 10 mm. (2)

Colorless mobile liq. with penetrating odor. — C fumes in air and gradually deposits hydrated oxalic acid (1:0445) (17). — C as such is insol. in aq. but rapidly hydrolyzes with formn. of HCl and ethyl hydrogen oxalate, the latter in turn being converted to oxalic acid (1:0445) + EtOH.

[For prepn. of C from diethyl oxalate (1:1055) with PCl<sub>5</sub> (yields: 80–90% (5), 84% (6), 80% (7)) (8) (9) (10) (11) (34) see indic. refs.; note that this mode of prepn. has been shown (4) to comprise two distinct and successive reactions: first the formn. of ethyl  $\alpha,\alpha$ -dichloro- $\alpha$ -ethoxyacetate, Cl<sub>2</sub>C (OEt).COOEt [Beil. II-543, II<sub>1</sub>-(236)], b.p. abt. 85° at 10 mm.,  $D_4^{20} = 1.23155$  (2); and second, the pyrolysis of this product by repeated distillation (13) or increased temp. (especially in the pres. of catalysts such as salts of Fe or Pt (5) (12)) yielding  $\tilde{C}$  + ethyl chloride (3:7015).]

[For prepn. of  $\bar{C}$  from ethyl hydrogen oxalate [Beil. II-535, II<sub>1</sub>-(232), II<sub>2</sub>-(504)] with SOCl<sub>2</sub> (yields: 78% (14), 72% (15)) or with PCl<sub>5</sub> (3) see indic. refs. (note that the initial ethyl hydrogen oxalate is readily obtd. from anhydrous oxalic acid (1:0535) with diethyl oxalate (1:1055) by htg. 3 hrs. (32% yield (15)) (18) or by distn. with EtOH and CCl<sub>4</sub> as directed (61% yield (16))); for prepn. of  $\bar{C}$  from K ethyl oxalate with POCl<sub>5</sub> or PCl<sub>5</sub> (17) (3) or with SOCl<sub>2</sub> (60-70% yield (24)) see indic. refs. (note that K ethyl oxalate can readily be prepd. in 95-97% yield from diethyl oxalate (1:1055) by digestion with aq. KOAc (24).)

[For prepn. of  $\tilde{C}$  from oxalyl (di)chloride (3:5060) with EtOH (1:6130) by reactn. of one acid chloride group but not the other (60% yield) see (25).]

[ $\bar{C}$  on passing through tube at 200° loses CO yielding (19) ethyl chloroformate (3:7295).] [ $\bar{C}$  with EtOH (1:6130) reacts normally yielding (17) diethyl oxalate (1:1055); for reactn. of  $\bar{C}$  with cellulose see (25).]

[C with diethyl sodiomalonate in ether gives (20) (12) a mixt. of triethyl oxalomalonate [Beil. III-850, III<sub>1</sub>-(292)] and tetraethyl dioxalomalonate [Beil. III<sub>2</sub>-(199)]; C with ethyl sodio-cyanoacetate in ether gives (21) (22) diethyl oxalo-cyanoacetate [Beil. III-850], m.p. 98° (22), 96° (21); C with diethyl methyl sodio-malonate gives (23) diethyl oxalomethyl-malonate; many other analogous condensations cannot be included here.]

 $|\bar{C}|$  with aromatic hydrocarbons in the pres. of AlCl<sub>3</sub> undergoes reactn. of the Friedel-Crafts type, and this procedure has been widely studied as a means of introduction of the —CO.COOEt group: e.g.,  $\bar{C}$  with  $C_6H_6$  + AlCl<sub>3</sub> in nitrobenzene + CS<sub>2</sub> gives (26) ethyl benzoylformate (ethyl phenylglyoxylate) [Beil. X-657, X<sub>1</sub>-(314)], b.p. 256-257°; for corresp. analogous reactn. with toluene (1:7405) (27), m-xylene (1:7420) (27), cumene (1:7440) (9), pseudocumene (1:7470) (27), or mesitylene (1:7455) (27) (1) see indic. refs.]

Č with NH<sub>3</sub> in alc. gives (17) ethyl oxamate, NH<sub>2</sub>.CO.CO.OC<sub>2</sub>H<sub>5</sub> [Beil. II-544, II<sub>1</sub>-(236), II<sub>2</sub>-(509)], lfts. from hot alc., m.p. 114°. — Similarly Č with aniline should yield ethyl oxanilate, C<sub>6</sub>H<sub>5</sub>.NH.CO.CO.OC<sub>2</sub>H<sub>5</sub> [Beil. XII-282, XII<sub>1</sub>-(206)], tbls. or pr. from alc., ndls. from hot aq., m.p. 66-67°; Č with phenylhydrazine should yield β-(ethoxalyl)-phenylhydrazine, C<sub>6</sub>H<sub>5</sub>.NH.NH.CO.CO.OC<sub>2</sub>H<sub>5</sub> [Beil. XV-264], lfts. from alc., m.p. 119°.

Č with urea (2 moles) reacts vigorously at room temp. as a normal acid chloride yielding (28) ethyl oxalurate, NH<sub>2</sub>·CO.NH.CO.CO.OC<sub>2</sub>H<sub>5</sub> [Beil. III-65, III<sub>2</sub>-(54)], ndls. from ether, m.p. 184–185°.— Note, however, that Č with N-phenylurea on htg. evolves CO + C<sub>2</sub>H<sub>5</sub>Cl (3:7015) and yields (29) a mixt. of ethyl ω-phenylallophanate, C<sub>6</sub>H<sub>5</sub>·NH.CO.NH.-COOC<sub>2</sub>H<sub>5</sub> [Beil. XII-359, XII<sub>1</sub>-(234)], ndls. from boilg. alc., m.p. 106° (30), and N-phenyl-parabanic acid (oxalyl N-phenylurea) [Beil. XXIV-454, XXIV<sub>1</sub>-(405)], lfts. from alc., m.p. 208° (29).— Č with N,N'-diphenylurea in C<sub>6</sub>H<sub>6</sub> on htg. evolves C<sub>2</sub>H<sub>5</sub>Cl (3:7015) and yields (29) N,N'-diphenylparabanic acid (oxalyl N,N'-diphenylurea) [Beil. XXIV-455, XXIV<sub>1</sub>-(405)], ndls. from alc., m.p. 204°.— Č with N,N'-dimethylurea (2 moles)

reacts vigorously giving (80% yield (31)) N,N'-dimethylparabanic acid [Beil. XXIV-453, XXIV<sub>1</sub>-(404)], m,p. 154°.

[Č with RMgX cpds. gives (32) disubstituted glycolic acids ( $R_2C(OH)COOH$ ) and/or ethoxalyl esters of disubstituted ethyl glycolates,  $R_2C(O.CO.COOC_2H_5)$ ; similarly  $\bar{C}$  with diethylcadmium gives (63% yields (33)) ethyl  $\alpha$ -ethyl- $\alpha$ -hydroxy-n-butyrate (ethyl  $\alpha$ , $\alpha$ -diethylglycolate).]

3:5625 (1) Wenzel, Monatsh. 35, 948 (1914). (2) Anschutz, Ann. 254, 20, 27 (1889). (3) Mol, Rec. trav. chim. 26, 381-384 (1907). (4) Anschutz, Ber. 19, 2158-2160 (1886). (5) Blaise, Bull. soc. chim. (4) 19, 12 (1916). (6) Barré, Bull. soc. chim. (4) 41, 47-49 (1927). (7) Bert, Bull. soc. chim. (4) 41, 1165-1166 (1927). (8) Anschutz, Ber. 19, 2158-2160 (1886). (9) Bert, Bull. soc. chim. (4) 37, 1401-1405 (1925). (10) Kurrein, Monatsh. 26, 373-378 (1905).

(11) Peratoner, Struzzeri, Gazz. chim. ital. 21, 301-302 (1891). (12) Scholl, Egerer, Ann. 397, 318-320, 345-355 (1913). (13) van Alphen, Rec. trav. chim. 47, 678 (1928). (14) Diels, Nawiasky, Ber. 37, 3678-3679 (1904). (15) Fourneau, Sabetay, Bull. soc. chim. (4) 41, 537-540 (1927). (16) Contzen-Crewet, Bull. soc. chim. Belg. 35, 167-170 (1926). (17) Henry, Ber. 4, 599-601 (1871). (18) Fourneau, Sabetay, Bull. soc. chim. (4) 43, 860 (1928). (19) Grassi, Gazz. chim. ital. 27, I 31-32 (1897). (20) von Auwers, Auffenberg, Ber. 51, 1103-1106 (1918).

(21) Trimbach, Bull. soc. chim. (3) 33, 372-375 (1905). (22) Bertini, Gazz. chim. ital. 31, I 586-588 (1901). (23) Farmer, Ghosal, Kon, J. Chem. Soc. 1936, 1809. (24) Adickos, Brunnert, Lücker, J. prakt. Chem. (2) 130, 168-170 (1931). (25) von Frank, Caro, Ber. 63, 1532-1543 (1930). (26) Bouveault, Bull. soc. chim. (3) 15, 1017 (1897); (3) 17, 363-366 (1897). (27) Bouveault, Bull. soc. chim. (3) 17, 366-372 (1897). (28) Henry, Ber. 4, 644-646 (1871). (29) von Stojentin, J. prakt. Chem. (2) 32, 18-23 (1885). (30) Folin, Am. Chem. J. 19, 345-346 (1897). (31) Biltz, Topp, Ber. 46, 1396 (1913). (32) Grignard, Bull. soc. chim. (3) 29, 948-953 (1903). (33) Gilman, Nelson, Rec. trav. chim. 55, 521, 527 (1936). (34) Kindler, Ger. 728,532, Oct. 29, 1942; C.A. 38, 378 (1944).

3:5630 1,1,2-TRICHLOROPROPANE 
$$CH_3.CH(Cl).CHCl_2$$
  $C_3H_5Cl_3$  Beil. I-106 ( $\alpha$ -Chloropropylidene (di)-chloride) I<sub>1</sub>—I<sub>2</sub>—

**B.P.** 135–137° (1) cf. (2) 
$$D_{-}^{16} = 1.353$$
 (1) 132° (3)

[For prepn. from 1,2-dichloropropane (propylene dichloride) (3:5200) by chlorination in presence of iron and ultra-violet light at  $10-40^{\circ}$ , or without ultra-violet light above 50°, see (4), or with  $SO_2Cl_2$  in pres. of organic peroxides see (6) (7).]

Č htd. with aq. or alc. alk. splits out HCl yielding (5) 1,1-dichloropropene-1 (3:5120), b.p. 78°.

3:5630 (1) Mouneyrat, Bull. soc. chim. (3) 21, 620 (1899). (2) Van Arkel, Rec. trav. chim. 51, 1101 (1932). (3) Herzfelder, Ber. 26, 1258 (1893). (4) Levine, Cass (to du Pont), Brit. 471,188, Sept. 30, 1937; Cent. 1938, I 1218. (5) Levine, Cass (to du Pont), Brit. 471,186, Sept. 30, 1937; Cent. 1938, I 3110. (6) Kharasch, Brown, J. Am. Chem. Soc. 61, 2145 (1939). (7) Zellner (to Tide Water Associated Oil Co.) U.S. 2,370,342, Feb. 27, 1945; C.A. 39, 3535 (1945).

3:5633 3-CHLORO-2-(CHLOROMETHYL)- 
$$C_4H_6Cl_2$$
 Beil. I — PROPENE-1  $Cl$  CH<sub>2</sub>Cl  $I_1$ —  $I_1$ —  $I_2$ —(1-Chloro-2-(chloromethyl)propene-2;  $I_2$ — $I_2$ — $I_2$ — $I_2$ —(181)

B.P. M.P. 138-138.3° (9) 
$$-15^{\circ}$$
 to  $-13^{\circ}$  (9)  $D_4^{20} = 1.1782$  (9)  $n_D^{20} = 1.4754$  (9) 30-31° at 9 mm. (1)

Colorless oil with faintly halogen-like odor (1).

[For prepn. of Č from tris-(chloromethyl)acetic acid (itself obtd. in quant. yield by conc. HNO<sub>3</sub> oxidn. (9) of 3-chloro-2,2-bis-(chloromethyl)propanol-1 = pentaerythrityl trichlorohydrin (9)) by combine decarboxylation and dehydrochlorination in boilg. quinoline (75-85% yield) see (9).]

[For formn. of  $\bar{C}$  (40% yield (2) together with other products (2) (3)) from 2-methyl-propene-1 (isobutylene) with Cl<sub>2</sub> (2) (3) or from 3-chloro-2-methylpropene-1 (isobutenyl chloride) (3:7145) with Cl<sub>2</sub> (1 mole) + NaHCO<sub>3</sub> (1.5 moles) at 0° see (2) (4) see indic. refs.; for formn. of  $\bar{C}$  (together with other products) from 1,2,3-trichloro-2-methylpropane (3:5885) by pyrolysis at 450-550° see (5); for formn. of  $\bar{C}$  (together with 1,3-dichloro-2-(chloromethyl)propene-1 (3:9066)) from 1,3-dichloro-2-nitro-2-(chloromethyl)propane with Na/Hg see (1); for prepn. of  $\bar{C}$  (80% yield (6) together with 20% yield 1,3-dichloro-2-methylpropene-1 (3:5590)) from 1,3-dichloro-2-methylpropanol-2 (3:5977) by actn. of strong oxygen acids see (6).]

 $\bar{C}$  on cat. hydrogenation using Pt black yields (1) 1,3-dichloro-2-methylpropane (3:7960), but  $\bar{C}$  in alc. on boilg, with Zn dust gives (75% yield (3)) isobutylene, b.p.  $-6^{\circ}$ .

 $\bar{C}$  with  $O_3$  gives (2)  $\alpha, \alpha'$ -dichloroacetone (3:0563).

 $\bar{C}$  treated with  $Cl_2$  in the dark at 0° yields (5) 1,2,3-trichloro-2-chloromethylpropane (3:6335). —  $\bar{C}$  treated with  $Br_2$  in CHCl<sub>3</sub> yields (1) 1,2-dibromo-3-chloro-2-(chloromethyl)-propane, colorless odorless oil, b.p. 140° at 10 mm. (1); note, however, failure to react with  $Br_2$  recorded later (9).

Č with aq. alk. as specified (7) yields 2,3-epoxy-2-chloromethylpropanol-1, b.p. 85° at 1 mm. (7). [For similar reactns. cf. (8).]

 $\tilde{C}$  on hydrolysis with aq. CaCO<sub>3</sub> refluxed 2 hrs. gives (36% yield (9)) 2-(hydroxymethyl) propen-2-ol-1, b.p. 125-126° at 18 mm.,  $D_4^{20} = 1.0791$ ,  $n_D^{20} = 1.4758$  (9).

3:5633 (1) Kleinfeller, Ber. 62, 1595 (1929). (2) D'yakonov, Tishchenko, J. Gen. Chem. (U.S.S.R.) 9, 1258-1264 (1939); C.A. 34, 710 (1940). (3) D'yakonov, J. Gen. Chem. (U.S.S.R.) 10, 402-413 (1940); C.A. 34, 7861 (1940). (4) Engs, Groll, Fairbairn (to Shell Development Co.), U.S. 2,189,890, Feb. 13, 1940; C.A. 34, 4079 (1940). (5) Rogers, Nelson, J. Am. Chem. Soc. 58, 1029-1031 (1936). (6) Groll, Burgin (to Shell Development Co.), U.S. 2,042,223, U.S. 2,042,222, May 26, 1936; Cent. 1937, I 1274; C.A. 30, 4875 (1936). (7) Groll, Hearne (to Shell Development Co.), U.S. 2,070,990, Feb. 16, 1937; Cent. 1937, II 2433; C.A. 31, 2612 (1937). (8) Hearne, de Jong, Ind. Eng. Chem. 33, 940-943 (1941). (9) Mooradian, Cloke, J. Am. Chem. Soc. 67, 942-944 (1945).

3:5635 2-CHLOROPROPEN-2-OL-1 
$$CH_2 = C - CH_2$$
  $C_8H_5OCl$  Beil. I-439 (2-Chloropropen-1-ol-3;  $Cl$   $OH$   $I_1 - I_2$ 

B.P. 136-140° cor. (1)  $D_-^{-} = 1.164$  (2)

Note that  $\bar{C}$  is the true  $\beta$ -chloroallyl alcohol; care must be taken to avoid confusion with 3-chloropropen-2-ol-1 ( $\gamma$ -chloroallyl alcohol) (3:5820) whose derivatives have often been designated in the literature as  $\beta$ -chloroallyl derivatives; see also the warning note under  $\gamma$ -chloroallyl chloride (3:5280).

[For prepn. of  $\bar{C}$  from 2,3-dichloropropene-1 (3:5190) by hydrolysis of the reactive halogen atom with hot dil. aq. alk. see (2); from 2-chloro-3-iodopropene-1 by hydrolysis of the iodine atom with hot dil. aq. KOH or with silver oxide see (1); from butadiene-1,2-(allene) with HOCl see (3).]

Colorless liq. with faint odor;  $\bar{C}$  does not have the violent vesicant action on skin shown by the isomeric  $\gamma$ -chloroallyl alc. (3:5820).

 $\tilde{C}$  readily dissolves in conc.  $H_2SO_4$  with evolution of HCl gas; after pouring onto ice and distilling acetol (hydroxyacetone) (1:5455) is obtd. (2).

[ $\bar{C}$  with PBr<sub>3</sub> yields (2) 3-bromo-2-chloropropene-1 ( $\beta$ -chloroallyl bromide) [Beil. I-201, I<sub>1</sub>-(171)], b.p. 121° (2), 119-120° (4).]

[ $\overline{C}$  yields by suitable treatment (no details (2))  $\beta$ -chloroallyl acetate [Beil. II-136], b.p. 145° (2). — For esters of  $\overline{C}$  with monocarboxylic acids (5), saturated polycarboxylic acids (6), and halogenated acids (7), and for copolymerization of certain esters of  $\overline{C}$  with styrene (8) see indic. refs.]

3:5635 (1) van Romburgh, Rec. trav. chim. 1, 238 (1882). (2) Henry, Bull. soc. chim. (2) 39, 526 (1883). (3) Smirnov, J. Russ. Phys.-Chem. Soc. 35, 854-872 (1903); Cent. 1904, I 576. (4) von Braun, Kühn, Weismantel, Ann. 449, 256 (1926). (5) Coleman, Hadler (to Dow Chem. Co.), U.S. 2,208,960, July 23, 1940; C.A. 35, 136 (1941). (6) Coleman, Hadler (to Dow Chem. Co., U.S. 2,159,008, May 23, 1939; Cent. 1939, II 2163; C.A. 33, 6876 (1939). (7) Taylor (to Dow Chem. Co.), U.S. 2,221,275, Nov. 12, 1940; C.A. 35, 1802 (1941). (8) Britton, Coleman, Zemba (to Dow Chem. Co.), U.S. 2,025,390, June 25, 1940, C.A. 34, 7039 (1940).

# 3:5640 $\alpha,\beta$ -Dichloroethyl ethyl ether) $C_4H_8OCl_2$ Beil. I - 612 $I_1$ -(328) $I_2$ -(676)

B.P. 
$$140-145^{\circ}$$
 (1) (2)  $D_{23}^{23} = 1.174$  (1)  $132-133^{\circ}$  at  $725$  mm. (3)  $66-69^{\circ}$  at  $45$  mm. (4)  $36-37^{\circ}$  at  $15$  mm. (3)

Colorless liq. with sharp odor.

[For prepn. from diethyl ether (1:6110) by chlorination see (4) (1).]

Č with cold aq. rapidly hydrolyzes yielding chloroacetaldehyde hydrate (3:7212), ethyl alc. (1:6130), and HCl; for study of rate at 20° see (6).

 $\tilde{C}$  in dil. alc. htd. some hrs. at 60° with NH<sub>2</sub>OH.HCl (3 moles) + KOH (5 moles) soln. evapd., acidified with dil. H<sub>2</sub>SO<sub>4</sub>, extracted with ether, ether soln. dried with CaCl<sub>2</sub>, evapd. gives (40% yield (5)) glyoxal dioxime (glyoxime) [Beil. I-761], sepd. from oil, recrystallized from hot aq., m.p. 178° (5).

3:5640 (1) Lieben, Ann. 146, 181-186 (1868). (2) Natterer, Monatsh. 5, 496-497 (1884). (3) Mohler, Sorge, Helv. Chim. Acta 23, 1209 (1940). (4) Wildman, Gray, J. Am. Chem. Soc. 41, 1122-1123 (1919). (5) Hantzsch, Wild, Ann. 289, 293 (1896). (6) Mohler, Hartnagel, Helv. Chim. Acta 25, 859-863 (1942); C.A. 37, 1799 (1943).

3:5650 1,2,3-TRICHLOROPROPENE-1 Cl C<sub>3</sub>H<sub>3</sub>Cl<sub>3</sub> Beil. I - 200 
$$I_1$$
—ClCH<sub>2</sub>—C=CHCl  $I_2$ — $I_2$ —B.P. 142° (1)  $D_{20}^{20} = 1.414$  (1)

Liq., insol. aq., eas. sol. alc., ether. [Two geom. stereoisomers are possible but unrecorded.]

[For prepn. of C from 1,2,2,3-tetrachloropropane (3:5895) with alc. alk. see (1).]

[For use in prepn. of unsatd. cellulose ethers see (2); for use in dewaxing mineral oils see (3).]

3:5650 (1) Pfeffer, Fittig, Ann. 135, 361-363 (1865). (2) du Pont Co., Brit. 429,949, June 11, 1935; Cent. 1936, I 4098; C.A. 29, 7073 (1935). (3) Standard Oil Development Co., French 790,852, Nov. 28, 1935; Cent. 1936, I 2672; C.A. 30, 3223 (1936).

3:5655 METHYL DICHLOROACETATE  $C_3H_4O_2Cl_2$  Beil. II - 203  $II_1- II_{2-}(196)$ 

B.P. 143.3° at 764.5 mm. (1) 
$$D_{19.2}^{19.2} = 1.3808$$
 (6) 143.2° (2) 143° (3) (8) 142-144° (4) 49.8-50° at 20 mm. (5)

[For prepn. of  $\bar{C}$  from dichloroacetic acid (3:6208) with MeOH + HCl gas (72% yield (3)) (7), with MeOH +  $Et_2O.BF_3$  complex (70% yield (3)), with MeOH +  $H_2SO_4$  (71.3% yield (3)), or with MeOH itself without any cat. (47-61% yield (3)), or with Me<sub>2</sub>SO<sub>4</sub> in s.t. at 200° (8) see indic. refs.; for prepn. of  $\bar{C}$  from dichloroacetamide with BF<sub>3</sub> in MeOH (57% yield) see (3); for prepn. of  $\bar{C}$  from chloral (3:5210) (84% yield (9)), chloral hydrate (3:1270) (4), or chloral hydrate diacetate (76% yield (9)) with KCN in MeOH see indic. refs.]

[For reactn. of  $\bar{C}$  with dimethyl sodio-malonate in MeOH yielding (10) 1,1,2,3,3-penta-(carbomethoxy)propane [Beil. II-880], tbls. from MeOH + aq., m.p. 85-86° see (10).]

 $\ddot{\mathbf{C}}$  on hydrolysis yields dichloroacetic acid (3:6208) q.v. + MeOH (1:6120). [For studies of rate of hydrolysis under various circumstances see (5) (11).]

3:5655 (1) Schiff, Z. physik. Chem. 1, 378 (1887). (2) Cheng, Z. physik. Chem. B-24, 305 (1934). (3) Toole, Sowa, J. Am. Chem. Soc. 59, 1971-1973 (1937). (4) Wallach, Ann. 173, 299 (1874). (5) Skrabal, Monatsh. 71, 298-308 (1938). (6) Henry, Compt. rend. 101, 251 (1885). (7) Müller, Ann. 133, 160 (1865). (8) Simon, Compt. rend. 176, 585 (1923). (9) Chattaway, Irving, J. Chem. Soc. 1929, 1042, 1047. (10) Anschutz, Deschauer, Ann. 347, 6-7 (1906). (11) Skrabal, Ruckert, Monatsh. 50, 369-384 (1928).

3:5660 1,1,3-TRICHLOROPROPANE  $ClCH_2.CH_2.CHCl_2$   $C_3H_5Cl_3$  Beil. I - 106 (\$\beta-Chloropropylidene (di)-chloride) I\_1—I\_2—

B.P. 143-144° (1) 
$$D_{-1}^{18} = 1.351$$
 (1)  $n_{-}^{18} = 1.474$  (1)  $146-148$ ° (2) (3)  $D_{15}^{15} = 1.362$  (3)

Č with alc. KOH splits out HCl yielding (2) (3) 3,3-dichloropropene-1 (3:5140), b.p. 84°, together with a little 1,3-dichloropropene-1 (3:5280), b.p. 107°.

3:5660 (1) Kirrmann, Pacaud, Dosque, Bull. soc. chim. (5) 1, 866 (1934). (2) Gustavson, J. prakt. Chem. (2) 50, 381-382 (1894) (3) van Romburgh, Bull. soc. chim. (2) 37, 100-102 (1882).

3: 5670 
$$d$$
,  $l$ - $\alpha$ -CHLORO- $\alpha$ -METHYL- $n$ - CH<sub>3</sub> C<sub>5</sub>H<sub>8</sub>OCl<sub>2</sub> Beil. II -307 BUTYRYL CHLORIDE CH<sub>3</sub>. CH<sub>2</sub>—C=O II<sub>1</sub>— II<sub>2</sub>— II<sub>2</sub>— B.P. 143–144° at 749 mm. (1)  $D_{-}^{14} = 1.187$  (1)

[For prepn. of  $\tilde{C}$  from  $\alpha$ -chloro- $\alpha$ -methyl-n-butyric acid (3:8718) with PCl<sub>3</sub> see (1).]  $\tilde{C}$  on hydrolysis with aq. yields (1)  $\alpha$ -chloro- $\alpha$ -methyl-n-butyric acid (3:8718) q.v.

3:5670 (1) Servais, Rec. trav. chim. 20, 59 (1901).

**B.P.** 143-145° (2) 
$$D_4^{20} = 1.2699$$
 (1)  $n_D^{20} = 1.4645$  (1) 141-143° (1)  $D_4^{18} = 1.2630$  (2)  $n_C^{18} = 1.4637$  (2) 77-84° at 15 mm. (2)  $D_4^{12} = 1.33$  (2)  $n_C^{12} = 1.4975$  (2)

[For prepn. of C (45% yield (2)) from 2-chlorobutene-2 (3:7105) (together with 55% 2,3-dichlorobutene-1 (3:9074)) with Cl<sub>2</sub> + NaHCO<sub>3</sub> at 0° (2) (3) or with Cl<sub>2</sub> + SnCl<sub>4</sub> in dark (4) see indic. refs.; for formn. of  $\bar{C}$  (28% yield (1)) from 1,2-dichlorobutane (3:7680) + sl. excess Cl<sub>2</sub> in dark at  $-17^{\circ}$  (together with 19% 1,2,3-trichlorobutane) (3:5935) see (1); for formn. of C (18% yield (1)) from 2,3-dichlorobutane (3:7615) + sl. excess Cl<sub>2</sub> in dark at  $-17^{\circ}$  (together with 36.5% 1,2,3-trichlorobutane (3:5935)) see (1).]

Č with solid KOH at 140° loses HCl yielding (1) mixt. of crs-2,3-dichlorobutene-2(3:5500), and trans 2,3-dichlorobutene-2 (3:7395).

3:5680 (1) Tishchenko, Churbakov. J. Gen. Chem. (U.S.S.R.) 6, 1553-1558 (1936); C.A. 31, 2165 (1937); Cent. 1937, I 3786. (2) Tishchenko, J. Gen Chem. (U.S.S.R.) 8, 1232-1246 (1938); C.A. 33, 4190 (1939); Cent. 1939, II 4222. (3) du Pont Co., Brit. 535,586, April 15, 1941; C.A. 36, 1337 (1942). (4) Levine, Cass (to du Pont Co.) U.S. 2,323,227, June 29, 1943; C.A. 38, 119 (1944).

B.P. 144.5° (1) 
$$D_{-}^{13} = 1.3307$$
 (3) 144° (2) 143–145° at 763 mm. (3) 82–82.5° cor. at 102 mm. (4) 87° at 95 mm. (5) 53° at 23 mm. (5)

Pale yel, liq. with pungent odor, sol. alc., ether, acetone, CHCl<sub>3</sub> (1).

[For prepn. from  $\beta$ -chloropropionic ac. (3:0460) with PCl<sub>3</sub> (3) or SOCl<sub>2</sub> (96% yield (5)) see (3) (2) (5); from propional chloride (3:7170) +  $Cl_2$  see (4) (9); from phosgene (3:5000) + ethylene + AlCl<sub>3</sub> see (1) (this method questioned by (6) (7)).

 $\overline{C}$  over Al<sub>2</sub>O<sub>3</sub> at 250° loses 1 HCl giving (35% yield (10)) (11) acryloyl chloride (3:7153).

- D β-Chloropropionic acid (3:0460): Ifts. from lgr. or pet. ether, m.p. 42°. [From C on boilg, with aq. (1).]
- $\mathfrak{D}$   $\beta$ -Chloropropionamide: unrecorded.
- $\bigcirc$   $\beta$ -Chloropropionanilide: cryst. from aq. or MeOH, m.p. 119° (8). [From  $\overline{C}$  + aniline in acetone; 90% yield (8).]
- **Φ** β-Chloropropion-p-toluidide: cryst. from MeOH, m.p. 121° (8) (2).

3:5690 (1) Pace, Gazz. chim. ital. 59, 580-582 (1929). (2) Wolffenstein, Rolle, Ber. 41, 736 (1908). (3) Henry, Compt. rend. 100, 115 (1885); J. prakt. Chem. (2) 31, 127 (1885). (4) Michael, Ber. 34, 4047-4048 (1901). (5) Fieser, Seligman, J. Am. Chem. Soc. 58, 2484 (1936). (6) Frolich, Wiezevich, Ind. Eng. Chem. 24, 16 (1932). (7) Varshavskii, Doroganyevskaya, Gazz. chim. ital. 64, 53-59 (1934). (8) Mayer, van Zütphen, Philipps, Ber. 58, 860 (1927); Mayer, Ger. 415,096, June 13, 1925; Cent. 1925, II 1094. (9) Schmidt, Schloffer (to I.G.) Ger. 738,398, July 15, 1943; C.A. 38, 3992 (1944). (10) Mowry, J. Am. Chem. Soc. 66, 371 (1944).

(11) Fikentscher (to I.G.), U.S. 2,050,752, Aug. 11, 1936; C.A. 30, 6762 (1936); Brit. 333,079,

Aug. 28, 1930; Cent. 1930, II 2830; C.A. 25, 524 (1931).

```
3:5700 ETHYL CHLOROACETATE CH<sub>2</sub>.COOC<sub>2</sub>H<sub>5</sub> C<sub>4</sub>H<sub>7</sub>O<sub>2</sub>Cl Beil. II - 197
II<sub>1</sub>-(88)
II<sub>2</sub>-(191)
```

|              |              |      |           |                             |                    |         | ,    |
|--------------|--------------|------|-----------|-----------------------------|--------------------|---------|------|
| B.P.         |              |      | F.P.      |                             |                    |         |      |
| 144.5-144.9° | at 754.2 mm. | (1)  | -26° (13) | $D_4^{20} = 1.1561 (11$     | $n_{\rm D}^{20} =$ | 1.42162 | (8)  |
| 143.8-144.2° |              | (2)  |           | 1.1520 (8                   | <b>)</b>           | 1.4205  | (14) |
| 143.7-144.2° | cor.         | (3)  |           | 1.1498 (14                  | 1)                 | 1.4203  | (11) |
| 143.6°       | at 760 mm.   | (4)  |           |                             |                    |         |      |
| 143.5°       | at 758 mm.   | (5)  |           | $D_{20}^{20} = 1.1573  (3)$ | 3)                 |         |      |
| 143°         | at 756 mm.   | (6)  |           |                             |                    |         |      |
| 142.8°       |              | (7)  |           |                             |                    |         |      |
| 142.6-143.0° | at 750 mm.   | (8)  |           |                             |                    |         |      |
| 142.0-142.3° | at 743 mm.   | (9)  |           |                             |                    |         |      |
| 141-142.5°   | at 738 mm.   | (10) |           |                             |                    |         |      |
| 140-142°     | at 735 mm.   | (11) |           |                             |                    |         |      |
| 52°          | at 20 mm.    | (12) |           |                             |                    |         |      |
|              |              |      |           |                             |                    |         |      |

Colorless liq.; for constant-boilg. mixt. of  $\bar{C}$  with various org. cpds. see Beil. II<sub>2</sub>-(191) or (4) (15) (16). — [For insecticidal actn. see (17); for use in refining of mineral oil see (18).]

[For prepn. of  $\bar{C}$  from chloroacetic acid (3:1370) with EtOH + dry HCl gas (10) cf. (72.5% yield '(22)) or H<sub>2</sub>SO<sub>4</sub> (70% yield (23)) (19) or anhydrous MgCl<sub>2</sub> (20) see indic. refs.; from chloroacetyl chloride (3:5235) with EtOH (5) or with triethyl orthoformate (1:3241) at 100-110° (90% yield (21)) see indic. refs.; from  $\alpha,\beta$ -dichlorovinyl ethyl ether (3:5540) with org. acids see (24) (25).]

[For formn. of  $\bar{C}$  from ethyl hydroxyacetate (ethyl glycolate) with PCl<sub>5</sub> see (26); from ethyl ammoacetate hydrochloride with NaNO<sub>2</sub> + excess HCl see (27); from ethyl diazoacetate with HCl (27) (28) or with HgCl<sub>2</sub> (70% yield (11)) see indic. refs.; from dichloroacetaldehyde monoethyl hemiacetal (3:5310) with alc. KCN at 20° (38% yield) see (29); from ethyl  $\alpha$ -chloroacetoacetate (3:6207) with diethyl sodiomalonate see (30).]

 $\bar{C}$  refluxed with KF yields KCl + ethyl hydroxyacetate (+ some ethyl fluoroacetate) (31);  $\bar{C}$  with MgI<sub>2</sub> in ether (32) or KI in alc. (3) (34) or in acetone at ord. temp. (35) yields ethyl iodoacetate, b.p. 180°. [For studies on rate of reactn. of  $\bar{C}$  with KI in acetone see (36) (37) (38); with NaI or LiI in acetone see (38).]

[ $\tilde{C}$  with Al/Hg + a trace of alc. (39) or with Mg + trace of I<sub>2</sub> in ether (40) or  $\tilde{C}$  with Mg + trace HgCl<sub>2</sub> in ether (41) yields ethyl  $\gamma$ -chloroacetoacetate (3:6375), b.p. 205°;  $\tilde{C}$  with NaCN (25) or KCN (42) yields ethyl cyanoacetate;  $\tilde{C}$  with ethyl sodioacetoacetate gives (56-62% yield (23)) diethyl acetosuccinate.]

[Č with 2 moles MeMgBr (but not MeMgI) in ether gives (yield: 60% (43), 38% (44)) 1-chloro-2-methylpropanol-2 (3:7752) (note, however, that Č with a large excess MeMgBr (4 moles) gives (40% yield (45)) 2-methylbutanol-3 (1:6170) (3,5-dinitrobenzoate, m.p. 74-75°)): for reactn. of Č with EtMgBr yielding (46) 3-(chloromethyl)-pentanol-3 [Beil. I-412], with isopropyl MgCl (47), or with phenyl MgBr (3 moles) yielding (48) chloromethyl-diphenyl-carbinol [Beil. VI-685] see indic. refs.]

[For use of  $\tilde{C}$  with Zn (or Zn + Cu (49)) + ketones to give by Reformatsky reactn. (50)  $\beta$ -hydroxy-esters see indic. refs.]

 $\tilde{C}$  treated with aq. benzenediazonium chloride + NaOAc gives (15% yield (6)) ethyl  $\gamma$ -chloro- $\beta$ -phenylhydrazono-acetoacetate, m.p. 92-93° (6).

Č with Me<sub>3</sub>N in abs. alc. followed by treatment with 100% hydrazine hydrate as directed (51) (52) gives 83–89% yield (51) betaine hydrazide hydrochloride, (CH<sub>3</sub>)<sub>3</sub>N(Cl).CH<sub>3</sub>--

CO.NH.NH<sub>2</sub> (Girard's reagent for ketones), m.p. 192°. [For corresp. reactn. using pyridine instead of Me<sub>2</sub>N see (52).]

Č shaken in cold with 2 vols. conc. aq. NH<sub>4</sub>OH gives (53) (54) (28) (29) (78-84% yield (55)) chloroacetamide, cryst. from aq., m.p. 119-120° (55), 120° (28). — Č htd. at 100° for ½ hr. with 2 moles aniline, cooled, aniline hydrochloride extracted with aq. gives (100% yield (56)) (57) (58) ethyl anilinoacetate (phenylglycine ethyl ester) [Beil. XII-470, XII<sub>1</sub>-(263)], cryst. from dil. alc. (56) (57) or lgr. (58), m.p. 58° (58), 57-58° (57), 57° (56). [This prod. on boilg. with excess aniline yields (57) anilinoacetanilide (phenylglycine anilide) [Beil. XII-556], m.p. 110-111° (57).] — Č htd. with aq. benzylamine yields (59) chloroacet-N-benzylamide, m.p. 93.0-93.6° cor. (59).

[Č with ethyl carbamate ("urethane") + Na in dry ether as directed gives (51-57% yield (66)) triethyl N-tricarboxylate = N(COOC<sub>2</sub>H<sub>5</sub>)<sub>3</sub> [Beil. III-28], b.p. 146-147° at 12 mm. (66).]

C h.d. as directed (60) with K tetrachlorophthalimide yields N-(carbethoxymethyl)-tetrachlorophthalimide, ndls. from CHCl<sub>3</sub> on pouring into 2 vols. MeOH, m.p. 180-181° (60); C with Na phthalimide yields (61) N-(carbethoxymethyl)phthalimide, m.p. 112-113° (61); C with K 3-nitrophthalimide yields (62) N-(carbethoxymethyl)-3-nitrophthalimide, ndls. from alc., m.p. 79-80° (62).

 $\bar{C}$  on hydrolysis (e.g., by boilg. 10 min. with N/10 aq. Ba(OH)<sub>2</sub> (14)) yields ethyl alcohol (1:6130) and chloroacetic acid (3:1370). [For studies on the kinetics of hydrolysis of  $\bar{C}$  under various conditions see Beil. II<sub>2</sub>-(191-192) and (2) (14) (63) (64) (65).]

3:5700 (1) Schiff, Ann. 220, 108 (1883). (2) Timm, Hinshelwood, J. Chem. Soc. 1938, 862-869. (3) Perkin, J. Chem. Soc. 65, 423 (1894). (4) Lecat, Ann. soc. sci. Bruxelles 45, I 175, 291 (1926). (5) Willm, Ann. 102, 109-111 (1857). (6) Favrel, Bull. soc. chim. (4) 41, 1601-1603 (1927). (7) Cheng, Z. physik. Chem. B-24, 306 (1934). (8) Karvonen, Ann. Acad. Sci. Fennicae, A-10, No. 4, 20 (1916). (9) Oddo, Casalino, Gazz. chim. ital. 57, 61 (1927). (10) Pribham, Handl, Monatsh. 2, 696 (1881).

(11) Nesmeyanov, Powch, Ber. 67, 971-974 (1934). (12) Forster, Newman, J. Chem. Soc. 97, 2573 (1910). (13) Timmermans, Bull. soc. chim. Belg. 36, 507 (1927). (14) Newitt, Linstead, Sapiro, Boorman, J. Chem. Soc. 1937, 876-883. (15) Lecat, Rec. trav. chim. 45, 622 (1926). (16) Lecat, Ann. soc. sci. Bruxelles 47, I 152 (1927). (17) Roark, Cotton, Ind. Eng. Chem. 20, 512-514 (1928). (18) Ferris (to Atlantic Refining Co.), U.S. 2,062,872, Dec. 1, 1936; Cent. 1937, I 3578; C.A. 31, 849 (1937). (19) Conrad, Ann. 188, 218 (1877). (20) Petyanin, J. Gen. Chem. (U.S.S.R.) 10, 35-38 (1940); C.A. 34, 4726 (1940).

(21) Levaillant, Compt. rend. 195, 882 (1932). (22) Toole, Sowa, J. Am. Chem. Soc. 59, 1972 (1937). (23) Adkins, Isbell, Wojick, Org. Syntheses Coll. Vol. 2, (1st ed.), 262-263 (1943); 14, 38-39 (1934). (24) Crompton, Vanderstichele, J. Chem. Soc. 117, 691-693 (1920). (25) Stephens, J. Soc. Chem. Ind. 43, 313-314T, 327-328T (1924). (26) Henry, Ann. 156, 176 (1870). (27) Skinner, J. Am. Chem. Soc. 46, 736-738 (1924). (28) Curtius, J. prakt. Chem. (2) 38, 429 (1888). (29) Chattaway, Irving, J. Chem. Soc. 1929, 1042-1043. (30) Gault. Klees, Bull. soc. chim. (4) 39, 891 (1926).

(31) Swarts, Cent. 1903, I 14. (32) Bodroux, Bull. soc. chim. (3) 33, 833 (1905). (33) Kekulé, Ann. 131, 223 (1864). (34) Tiemann, Ber. 31, 825 (1898). (35) Knoll & Co., Ger. 230,172, Jan. 16, 1911; Cent. 1911, I 359. (36) Conant, Kirner, J. Am. Chem. Soc. 46, 249 (1924). (37) Conant, Kirner, Hussey, J. Am. Chem. Soc. 47, 489, 588 (1925). (38) Conant, Hussey, J. Am. Chem. Soc. 47, 482, 486 (1925). (39) Picka, Doht, Weisl, Monatsh. 27, 1245-1249 (1906). (40) Alexandrow, Ber. 46, 1022 (1913).

(41) Hamel, Bull. soc. chim. (4) 29, 396-400 (1921). (42) Henry, Bull. soc. chim. (2) 46, 62 (1886); Muller, Ann. 131, 351 (1864). (43) Henry, Compt. rend. 142, 944 (1906); Rec. trav. chim. 26, 149 (1907). (44) Dersin, Ber. 54, 3158-3159 (1921). (45) Huston, Jackson, Spero, J. Am. Chem. Soc. 63, 1459-1460 (1941). (46) Susskind, Ber. 39, 225-226 (1906). (47) Ivanov, Spassov, Bull. soc. chim. (5) 1, 1419-1424 (1934). (48) Klages, Kessler, Ber. 39, 1754 (1906). (49) Nieuwland, Daly, J. Am. Chem. Soc. 53, 1842-1846 (1931). (50) Shriner, Org. Reactions, I, 1-38 (1942).

(51) Girard, Org. Syntheses, Coll. Vol. 2 (1st ed.), 85-86 (1943); 18, 10-12 (1938). (52) Girard, Sandulesco, Helv. Chim. Acta 19, 1095-1107 (1936). (53) Scholl, Ber. 29, 2417 Note (1896).

(54) Tröger, Hille, J. prakt. Chem. (2) 71, 204 Note (1905).
(55) Jacobs, Heidelberger, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 153-154 (1941); (1st ed.), 147-148 (1932); 7, 16-17 (1927)
(56) Gault, Bull. soc. chim. (4) 3, 370 (1908).
(57) Meyer, Ber. 8, 1156-1158 (1875).
(58) Bischoff, Hausdorfer, Ber. 25, 2270 (1892).
(59) Buehler, Mackenzie, J. Am. Chem. Soc. 59, 421-422 (1937).
(60) Allen, Nicholls, J. Am. Chem. Soc. 56, 1409-1410 (1934).

(61) Weisz, Lanyi, Magyar Chem. Folyoirat, 39, 153-155 (1933); Cent. 1934, I 2746; C.A. 28, 5815 (1934). (62) Sah, Ma, Ber. 65, 1630-1633 (1932). (63) Sapazhinikova, J. Phys. Chem. (U.S.S.R.) 13, 174-185 (1939); C.A. 34, 311 (1940). (64) Anantakrishnan, Krishnamurti, Proc. Indian Acad. Sci. 14-A, 270-278, 279-288 (1941); C.A. 36, 1837 (1942). (65) Newling, Hinshelwood, J. Chem. Soc. 1936, 1357-1361. (66) Allen, Bell, Org. Syntheses, 24, 60-61 (1944).

3:5710 1,1,2-TRICHLORO-2-METHYLPROPANE CH<sub>3</sub> 
$$C_4H_7Cl_3$$
 Beil. I - 126  $CH_3$   $CH_5$   $CH_5$   $CH_5$   $CH_5$   $CH_7$   $CH_7$ 

B.P. M.P. 
$$-6.5$$
 to  $-6.0^{\circ}$  (1)  $D_4^{25} = 1.2712$  (1)  $145-146^{\circ}$  at 762 mm. (2)  $n_D^{20} = 1.4666$  (1)  $n_D^{20} = 1.4666$  (1)

[For prepn. (together with other products) from ter-butyl chloride (3:7045) +  $Cl_2$  see (1); for formn. (32%) (together with 68% 3,3-dichloro-2-methylpropene-1) from 1-chloro-2-methylpropene-1 (3:7120) with  $Cl_2$  + NaHCO<sub>4</sub> at 0° see (2).] [The product described in Beil. I-126 was very impure (1).]

Č on further chlorination yields (1) 1,1,1,2-tetrachloro-2-methylpropane (3:4725), m.p. 179°.

Č on prolonged refluxing with dil. NaOH loses ½ of its chlorine (1) but the reactn. products were not characterized.

3:5710 (1) Rogers, Nelson, J. Am. Chem. Soc. 58, 1027-1029 (1936). (2) Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1232-1246 (1938); C.A. 33, 4190 (1939); Cent. 1939, II 4222.

3:5725 1,4-DICHLOROBUTENE-2 Cl Cl C<sub>4</sub>H<sub>6</sub>Cl<sub>2</sub> Beil. S.N. 12 H<sub>2</sub>C—CH=CH—CH<sub>2</sub>
B.P. 145° (1) 
$$n_{\rm D}^{30.5} = 1.4745$$
 (1) 75-76° at 40 mm. (1)

For this structure two geom, stereoisomers are theoretically possible but only Č (configuration undetermined) is known.

[For prepn. of  $\bar{C}$  together with other products) from butadiene-1,3 with  $Cl_2$ , either directly or in CHCl<sub>3</sub>,  $CS_2$ , or lgr. soln. see (1) (2); the process can be controlled so as to yield little or no 1,2,3,4-tetrachlorobutane but rather a mixt. of  $\bar{C}$  and 1,2-dichlorobutene-3 (3:5350) in the ratio 1:2 (1) (2): for prepn. of  $\bar{C}$  from 1,2-dichlorobutene-3 (3:5350) via allylic transposition in pres. of metal halide cat. (3) such as AlCl<sub>3</sub> (4) see (3) (4).]

Č does not (1) rearr. to 1,2-dichlorobutene-3 (3:5350) even on htg. at 90° in a s.t.

C on htg. at 90° with 2 pts. solid KOH loses HCl yielding (1) 1-chlorobutadiene-1,3 (3:7210), b.p. 85° (1).

C on htg. in alc. with Zn dust yields (1) butadiene-1,3.

 $\bar{C}$  with  $Cl_2$  yields mainly (1) the solid form (m.p.  $72^\circ$ ) of 1,2,3,4-tetrachlorobutane (3:1760).

 $\ddot{C}$  on oxidn. with dil. alc. KMnO<sub>4</sub> or with O<sub>3</sub> followed by aq. gives (1) chloroacetic acid (3:1370).

3:5725 (1) Muskat, Northrup, J. Am. Chem. Soc. 52, 4043-4055 (1930). (2) Muskat (to du Pont), U.S. 2,038,593, Apr. 28, 1936; Cent. 1936, II 3358; C.A. 30, 3912 (1936). (3) I. G. Farbenindustrie, Brit. 505,573, May 12, 1939; Cent. 1939, II 1572; C.A. 33, 7822 (1939); Nicodemus, Schmidt (to I.G.), Ger. 716,961, Jan. 15, 1942; [C.A. 38, 2350 (1944)]. (4) Nicodemus (to I.G.), U.S. 2,242,084, May 13, 1941; C.A. 35, 5134 (1941).

B.P. 145° (1) 
$$D_{27}^{27} = 1.1455$$
 (2)  $n_D^{20} = 1.4234$  (2) (3) 142-144° at 743 mm. (2) 142.4-143.8° at 733 mm. (3)

Colorless oil, insol. aq.

140-145° (2)

[For prepn. from  $\beta$ -chloroethanol (3:5552) by actn. of AcCl (90% yield (4), 82% yield (5)) see (4) (5) (6); by actn. of Ac<sub>2</sub>O at 110° see (7); for prepn. from ethylene oxide (1:6105) + AcCl see (3) (8); for prepn. from ethylene glycol diacetate (1:3511) + HCl + ht. + pressure see (9); for prepn. from ethylene + Cl<sub>2</sub> + Ac<sub>2</sub>O see (2) (10); for prepn. (95.5% yield (11)) from di-( $\beta$ -chloroethyl) sulfate + NaOAc + AcOH see (11); for still other misc. methods see Beil. II-128.]

[For study of reactivity toward KI in acetone at 50° and 60° see (12); for study of pyrolysis (to vinyl chloride) see (13); for conversion to ethylene oxide (1:6105) by treatment with alk. see (14) (15).]

 $\overline{C}$  htd. at 100° for 5 hrs. with thiourea (1 mole) gives 100% yield of S-( $\beta$ -acetoxyethyl)-isothiourea hydrochloride, cryst. from mixt. of alc. + acetone, m.p. 136-137° (17).

Č on hydrolysis yields  $\beta$ -chloroethanol (3:5552) + AcOH. [For study of hydrolysis by N/10 HCl see (16).]

N-(β-Acetoxyethyl)tetrachlorophthalimide: pl. from CHCl<sub>3</sub> poured into 2 vols.
 MeOH, m.p. 168-169° (18). [From C + K tetrachlorophthalimide (18).]

3:5735 (1) Simpson, Ann. 112, 149 (1859). (2) Baum, Vogt, Hennion, J. Am. Chem. Soc. 61, 1458 (1939). (3) Gustus, Stevens, J. Am. Chem. Soc. 55, 383 (1933). (4) Bogert, Slocum, J. Am. Chem. Soc. 46, 766 (1924). (5) Blicke, Blake, J. Am. Chem. Soc. 53, 1018 (1931). (6) Henry, Ber. 7, 70 (1874). (7) Ladenburg, Demole, Ber. 6, 1024 (1873). (8) Altwegg, Landrivon, U.S. 1,393, 191, Nov. 11, 1921; Cent. 1922, IV 947. (9) Britton, Coleman (to Dow Chem. Co.), U.S. 2,038,074, April 21, 1936; C.A. 30, 3837 (1936). (10) Brit. 460,720, Feb. 3, 1937; C.A. 31, 4675 (1937).

Suter, Evans, J. Am. Chem. Soc. 60, 537 (1938).
 Conant, Kirner, Hussey, J. Am. Chem. Soc. 47, 498 (1925).
 Bilger, Hibbert, J. Am. Chem. Soc. 58, 825 (1936).
 Britton, Coleman, Mate (to Dow Chem. Co.), U.S. 2,022,182, Nov. 26, 1935; C.A. 30, 737 (1936); Cent. 1936, I 3015.
 Simpson, Ann. 113, 116 (1860).
 Drushel, Bancroft, Am. J. Sci. (4) 44, 371-380 (1917); C.A. 12, 148 (1918).
 Sprague, Johnson, J. Am. Chem. Soc. 59, 2440 (1937).
 Allen, Nicholls, J. Am. Chem. Soc. 56, 1409-1410 (1934).

Colorless liq.; sparingly sol. aq., sol. alc. or ether; volatile with steam.

80.0°

62.0°

55°

at 89 mm. (12)

at 45 mm. (12)

at 17 mm. (12)

55.5-56.3° at 31 mm. (16)

[For prepn. of  $\bar{C}$  from  $\beta,\beta$ -dichloroacetaldehyde (3:5180) with Al(OEt)<sub>3</sub> in abs. alc. (2) or with diethylzinc followed by aq. (1) see indic. refs.]

 $\tilde{C}$  reduces NH<sub>4</sub>OH/AgNO<sub>3</sub> (1) (2).

C on oxidn. with HNO3 yields (1) dichloroacetic acid (3:6208).

3:5745 (1) Delacre, Jahresber. 1887, 1247. (2) Böeseken, Tellegen, Plusje, Rec. trav. chim. 57, 75-76 (1938).

```
1,1,2,2-TETRACHLOROETHANE Cl<sub>2</sub>CH—CHCl<sub>2</sub> C<sub>2</sub>H<sub>2</sub>Cl<sub>4</sub>
3:5750
                                                                                     Beil. I - 86
            (Acetylene tetrachloride;
                                                                                           I_{1}-(25)
           sym.-tetrachloroethane)
                                                                                           I_{2}-(55)
  B.P.
                                   F.P.
                                    -44^{\circ} (17) D_4^{25} = 1.5881 (12)
  147° cor.
                                   -43.8^{\circ} (4)
  146.2-146.8°
                                                          1.5869 (19)
               at 760 mm.
                              (2)
                                              (5)
                                                                    (20)
                                   -43.5° (18)
                              (3)
  146.35°
                                                          1.58658 (5)
                                    -42.5° (6)
                                                                           n_{\rm D}^{24} = 1.501
  146.3°
               at 758 mm. (17)
                                                                                               (21)
  146.25°
                                            (18)
                             \langle 4 \rangle
                                                                           n_{\rm D}^{20} = 1.49509
  146.2-146.7° cor.
                                                       = 1.5966 (2)
                                                                                              (22)
               at 756 mm. (20)
                                                          1.59457 (5)
                                                                                  1.4947
                                                                                              (13)
  146.20°
               at 760 mm. (5) (6)
                                                          1.5943
                                                                   (9)
                                                                                  1.49419
                                                                                                (8)
  145.6°
                             (7)
                                                                                  1.49415
                                                                                                (2)
  145.2°
               at 748 mm.
                             (8)
                                                                                  1.4940
                                                                                                (9)
  145.2°
               at 737 mm.
                            (9)
                                                                           n_D^{18.5} = 1.49490 (23)
  145-146°
               at 753 mm. (10)
  145.0°
                            (11)
  144.7°
                                                                           n_{\rm D}^{17} = 1.49559 \quad (24)
               at 751 mm. (12)
  144.5°
                            (13)
                                                  D_4^{15} = 1.60255 (5)
                                                                           n_{\rm D}^{15} = 1.49678
  144.0-144.8°
                            (14)
                                                                                               (5)
  143.5-144°
                            (15)
                                                          1.6015 (12)
  140.6°
               at 675 mm. (12)
                                                  For D_4^l from -21^\circ
                                                                           For n_{\alpha}^{l} from 13-25°
  136.0°
               at 594 mm. (12)
                                                  to 128° see (17).
               at 502 mm (12)
  130.0°
                                                                           see (11).
  125.3°
               at 435 mm. (12)
  120.5°
               at 372 mm. (12)
  115.0°
               at 313 mm. (12)
  108.0°
               at 252 mm. (12)
               at 203 mm. (12)
  102.0°
  90.0°
               at 132 mm. (12)
```

Note: Care must be taken not to confuse  $\bar{C}$  with tetrachloroethylene (3:5460) or with 1,1,1,2-tetrachloroethane (unsym.-acetylene tetrachloride (3:5555)).

Colorless liq. with odor similar to that of chloroform. — [For vapor press. of C at intervals over range 20–145° see (25); for study of thermal conductivity see (26).]

 $\tilde{C}$  is very spar. sol. aq.: e.g., 100 g.  $H_2O$  at 20° dis. 0.288 g.  $\tilde{C}$ ; at 55-56° dis. 0.336 g.  $\tilde{C}$  (27); 1 g.  $\tilde{C}$  is sol. at 25° in 350 g. aq. (101); for soly. of  $H_2O$  in  $\tilde{C}$  at 0°, 25°, and 30° as

detd. by Karl Fischer reagt. see (28). —  $\bar{C}$  is easily volatile with steam (for use in detn. of H<sub>2</sub>O see below).

#### MISCELLANEOUS PHYSICAL PROPERTIES

[For soly. in  $\bar{C}$  of dry gaseous HCl (14) (15), H<sub>2</sub>S (14), or O<sub>2</sub> (29) see indic. refs.; for soly. in  $\bar{C}$  at 11-25° of I<sub>2</sub> (30) and use of such solns. in detn. of iodine number (31) see indic. refs.; for adsorption by activated carbon of I<sub>2</sub> from solns. in  $\bar{C}$  see (32).]

[For study of influence of vapors of  $\bar{C}$  on the explosion limits of mixtures of air with hydrogen (33), acetylene (33), methane (33) (34) (35), or carbon monoxide (33) (36) see indic. refs.]

[For prepn. of and comparison with  $\bar{C}$  of sym.-dideuteroiotetrachloroethane,  $Cl_2C(D)$ .- $C(D)Cl_2$ , see {9}.]

Binary systems contg.  $\bar{\mathbb{C}}$ . [For f.p./compn. data and/or diagrams on systems  $\bar{\mathbb{C}}$  + 1,2-dichloroethane (ethylene dichloride) (3:5130) (18);  $\bar{\mathbb{C}}$  + 1,1,2-trichloroethane (3:5330) (18);  $\bar{\mathbb{C}}$  + pentachloroethane (3:5880), eutectic, f.p. -73°, contg. 40.1%  $\bar{\mathbb{C}}$  (18);  $\bar{\mathbb{C}}$  + cis-dichloroethylene (3:5042) (37);  $\bar{\mathbb{C}}$  + trans-dichloroethylene (3:5028) (37);  $\bar{\mathbb{C}}$  + p-dichlorobenzene (3:0980) (38);  $\bar{\mathbb{C}}$  + 1,2-dibromoethane (ethylene dibromide) (18);  $\bar{\mathbb{C}}$  + 1,1,2,2-tetrabromoethane (acetylene tetrabromide) (18);  $\bar{\mathbb{C}}$  + succinonitrile (18); or  $\bar{\mathbb{C}}$  + succinic acid (1:0530) (18) see indic. refs. — For study of system  $\bar{\mathbb{C}}$  + naphthalene (1:7200) at 30° under press. up to 1000 atm. see (39).]

 $\bar{C}$  with various org. cpds. forms binary azeotropes [e.g.,  $\bar{C}$  with anhydrous formic acid (1:1005) forms a const.-boilg. mixt., b.p. 99.25° at 760 mm., contg. 32 wt. %  $\bar{C}$  (40): note that  $\bar{C}$  with AcOH (1:1010) does not form a const.-boilg. mixt. (41) (the data listed by "Int. Crit. Tables" for such an azeotrope is actually for the mixt. AcOH + tetrachloroethylene);  $\bar{C}$  with propionic acid (1:1025) forms a const.-boilg. mixt., b.p. 140.4° at 760 mm., contg. abt. 40 wt. %  $\bar{C}$  (12); for other azeotropes see Beil. II<sub>2</sub>-(56). — Note that no record of forms. of azeotropes of  $\bar{C}$  with MeOH or EtOH can be found.]

Ternary systems contg.  $\tilde{C}$ . [For soly. data and diagrams of system  $\tilde{C}$  + acetone (1:5400) + aq. see (43).]

## USES OF C

Č is widely used in industry as a solvent and as an intermediate in the manufacture of various other chlorinated solvents, notably trichloroethylene (3:5170); for additional examples of special uses see also below.

 $\bar{\mathbf{C}}$  is frequently employed as solvent in certain types of Friedel-Crafts reactions or phthalic anhydride condensations [for study of use of  $\bar{\mathbf{C}}$  as solvent in Friedel-Crafts condensation of phenol with high-mol.-wt. acyl chlorides see (44)].

[For use of  $\tilde{C}$  as swelling agent for rubber (45), in prod. of films from rubber hydrochloride (46), in prod. of cellulose acetate by pptn. from  $\tilde{C}$  with hydrocarbons (47) (note that acetylcelluloses give with  $\tilde{C}$  crystalline addition prods. (48)), together with aliphatic monohydric alcs. as solv. for cellulose alkyl ethers (49), in prepn. of transparent cellulose acetate plastics (50) see indic. refs. — For soly. of various polymers in  $\tilde{C}$  see (56).]

[For use of  $\bar{C}$  as catalyst in condensation of phenol with formaldehyde (51) or furfural (52) see indic. refs.]

[For use of  $\bar{C}$  with petroleum naphtha as a dry-cleaning fluid (53), for use of  $\bar{C}$  as a rust remover (54), as means of removing mud barriers in oil wells (55), or as an immersion fluid in opt. crystallog. (21) see indic. refs.]

[For use of  $\bar{C}$  (57) (58) or stable aq. emulsions of  $\bar{C}$  (59) as weed killers see indic. refs.] [For studies of use of  $\bar{C}$  in detn. of the observation in cacao see (60) (61) (62) (63).] [For use of  $\bar{C}$  as anti-moth prod. (64), as a component of insecticides (65), together with

CS<sub>2</sub> and chlorobenzene (3:7903) as insecticide (66), or together with 20% trichloroethylene (3:5170) as a fumigant and insecticide (67) see indic. refs.]

[For studies on antiseptic, bactericidal, and disinfectant action of C see (68) (69) (70).]

 $\bar{C}$  is also employed for the detn. of  $H_2O$  by distillation; note that besides being non-inflammable  $\bar{C}$  is also much denser than water which for some applications of this method is advantageous. — [For general discussion and examples of this procedure see (226) (70) (71) (72) (73) (74) (75); for comparison of results with those obtd. by oven drying see (76); for application to detn. of  $H_2O$  in liquid and solid fuels (77) (78), in glycerol (79) (80), in liquid glue (81), in cereal (82), in dried apples (83), in cooking salt (84) see indic. refs.]

## TOXICITY AND PHYSIOLOGICAL ACTION OF C

 $\bar{C}$  is the most toxic of the group of chlorinated hydrocarbons (85) and produces marked pathological alterations in gastrointestinal tract, liver, and kidneys. — [Detailed discussion of this aspect of  $\bar{C}$  is beyond the scope of this treatment except to cite references (229) (227) (232) and (85)-(99), incl. (note that articles on this topic prior to 1930 are omitted).] [For discussion of fate of  $\bar{C}$  in body see (100). — Note also that  $\bar{C}$  (in sharp contrast to

the closely related tetrachloroethylene (3:5460)) has no efficacy as anthelmintic for hook-worms (101).]

[For actn. of C on alc. fermentation see (102) (103); for actn. on invertase see (104).]

#### DETERMINATION OF C

Some methods for the detn. of  $\bar{C}$  involve conversion of all of its halogen to chloride ion and subsequent volumetric or gravimetric detn. of the latter; e.g., for methods based on initial pyrolytic decomposition see (105) (89) (106) (107); for methods based on dehalogenation of  $\bar{C}$  with Na + ethanolamine in dioxane see (108) (230) (note that use of Na in liq. NH<sub>3</sub> causes some cyanide formn. (109)). — For detn. of  $\bar{C}$  by means of elimination of 1 HCl with cold alc. KOH see (110). — For detn. of  $\bar{C}$  by means of the Fujiwara color reactn. with NaOH/pyridine see (111). — Note that  $\bar{C}$  does not respond to the R + H "Tri-Per-Analyzer" (a recording ultra-violet photometer) (112). — For further comments on detection of  $\bar{C}$  see below under color tests.

## PREPARATION OF C

 $\bar{\mathbf{C}}$  is one of a large family of "chlorinated solvents" now available from industrial sources. — The most-studied method of prepn. is that from acetylene by controlled addition of chlorine, although variants of this method are employed and other starting prods. (see below) are sometimes used. —  $\bar{\mathbf{C}}$  is also obtained as a by-prod. of the manufacture of the comml. mixt. (3:5030) of the two stereoisomeric 1,2-dichloroethylenes, cis (3:5042) and trans (3:5028), 1,1,2-trichloroethane (3:5330), etc.

From acetylene by addition of chlorine. Under suitable controls to avoid explosion and with the assistance of a wide variety of catalysts  $\bar{C}$  is manufactured from acetylene by reaction with Cl<sub>2</sub>. — [For a concise review of the general nature and difficulties of this general method see (113).]

[For important general articles on this synthesis see (114)-(122) incl. — For examples of patents employing this method see refs. (123)-(138) incl.; for special test of Ger. 204,833 (131) see (118) (120); for test of Ger. 154,677 (133) see (119) (120).]

From acetylene by other means. [For prepn. of  $\bar{C}$  from acetylene with excess SbCl<sub>5</sub> (139) (234) with SbCl<sub>3</sub> + SbCl<sub>5</sub> (140), with NOCl (4 moles) at 350° (141), with aq. NaOCl soln. (142), with S<sub>2</sub>Cl<sub>2</sub> + Fe powder in cold (143) (144) see indic. refs.]

From ethylene. [For formn. of  $\bar{C}$  from ethylene + Cl<sub>2</sub> (as by-prod. of prepn. of ethylene chlorohydrin (3:5552)) (145), from ethylene + Cl<sub>2</sub> (as by-product of prepn. of 1,1,2-trichloroethane (3:5330)) (146) (147), from ethylene + Cl<sub>2</sub> (as by-prod. of a three-part process for combined prepn. of  $\bar{C}$  + ethyl chloride) (198) see indic. refs.

From dichloroethylenes. [For prepn. of C from cis-dichloroethylene (3:5042) in vapor phase at 95° in light of 4360 Å with Cl<sub>2</sub> (in absence of O<sub>2</sub>) (149), or in liq. phase with SO<sub>2</sub>Cl<sub>2</sub> (1½ moles) in pres. of trace of dibenzoyl peroxide refluxed 3 hrs. in dark (85% yield (150)), see indic. refs.]

[For prepn. of  $\bar{C}$  from trans-dichloroethylene (3:5028) in vapor phase at 80-95° in light of 4358 Å with Cl<sub>2</sub> see (151).]

[For prepn. of  $\bar{C}$  from ord. mixt. (3:5030) of both stereoisomeric dichloroethylenes with Cl<sub>2</sub> (13) in light of 4360 Å (152) see indic. refs.]

From trichloroethylene. [For formn. of  $\bar{C}$  (together with other prods.) from trichloroethylene (3:5170) + AlCl<sub>3</sub> + HCl gas at 50° see (153).]

From 1,2-dichloroethane (ethylene (di)chloride). [For prepn. of  $\bar{C}$  from ethylene (di)chloride (3:5130) with Cl<sub>2</sub> (148) in u.v. light see (154).]

From miscellaneous starting points. [For formn. of  $\bar{C}$  usually together with other prods. from dichloroacetaldehyde (3:5180) with PCl<sub>5</sub> (1), from " $\beta$ -chlorovinyl iodochloride" (ClCH—CH.ICl<sub>2</sub>) on warming (16), from 1,1,2-trichloro-2-iodoethane on distn. at ord. press. (155), from 1,2-di-iodoethylene with Cl<sub>2</sub> (156), or from 1,1,2-trichloroethane (3:5330) with Cl<sub>2</sub> + AlCl<sub>3</sub> at 70-80° (231) see indic. refs.]

## STABILIZATION OF C

[For patents on stabilization of  $\bar{C}$  by addition of small amts. of phenols, aminophenols, etc. (157), or by addn. of less than 0.1% alkylamines (158) see indic. refs.]

## CHEMICAL BEHAVIOR OF C

Pyrolysis without catalyst.  $\bar{C}$  on protracted reflux (20 days (159)) or techn.  $\bar{C}$  on repeated distn. (160) leaves a residual high-boilg. fraction ("Tetranachlauf") consistings mainly of 1,1,2,3,4,4-hexachlorobutane (3:3155), ndls. from alc., m.p. 107° (159) (160), presumably formed by elimination of 1 Cl atom from each of 2 moles of  $\bar{C}$ .— $[\bar{C}$  htd. in s.t. at 300° for 15 hrs. yields (139) trichloroethylene (3:5170);  $\bar{C}$  in s.t. at 360° for 100 hrs. yields (139) hexachlorobenzene (3:4939).]

Pyrolysis in pres. of various catalysts or HCl acceptors.  $\bar{C}$  on suitable htg. particularly in the pres. of dehydrohalogenating catalysts or acceptors of the hydrogen chloride formed loses 1 mole HCl yielding trichloroethylene (3:5170). (For elimination of HCl by chemical means such as alk., NH<sub>3</sub>, etc., see below.)

[E.g.,  $\bar{C}$  over pumice at 700° (161), over pumice contg. Cu<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> at 450-500° (162), over ThO<sub>2</sub> below 390° (163) cf. (164), over BaCl<sub>2</sub> at 300° (165), over bone char at 300-310° (166), over activated carbon at 200-300° (167), 260° (168) (note yield diminishes with increasing temp. (233)) or 500° (169), or over suitable cat. (148) loses HCl yielding trichloroethylene (3:5170). — Note also that pure  $\bar{C}$  on long exposure to u.v. light loses HCl bimolecularly yielding (159) 1,1,2,3,4,4-hexachlorobutene-2 (3:1945), m.p. 80°.]

[ $\bar{C}$  + acetylene over cat. at 250° loses HCl yielding (167) trichloroethylene (3:5170) + vinyl chloride (3:7010);  $\bar{C}$  with MeOH over Al<sub>2</sub>O<sub>3</sub> at 280° loses HCl yielding (170) trichloroethylene (3:5170) + methyl chloride (3:7005).]

Dehydrogenation. [C with air over pumice contg. CuCl<sub>2</sub> at 430-450° (171), or with Cl<sub>2</sub> over activated carbon contg. CuCl<sub>2</sub> at 300-320° (172), or with hexachloroethane (3:4835) over cat. at 200-400° (173) loses its two hydrogenations yielding tetrachloroethylene (3:5460).]

(Partial) dehalogenation. [ $\tilde{C}$  with  $H_2$  over Ni at 300-320° (174), or  $\tilde{C}$  with Fe or Al + aq. (175) (176) or Zn + aq. (176) (177), or  $\tilde{C}$  with acetylene over hydrogenating cat. (such as Ni) on activated carbon at 350° (178) preferably in pres. of aq. vapor (179) or on electrolytic reductn. in pres. of ZnCl<sub>2</sub> (235) (236) loses 1 chlorine from each carbon atom yielding a mixt. (3:5030) of the two stereoisomeric 1,2-dichloroethylenes. — Note that  $\tilde{C}$  with Zn in alc. yields (180) acetylene.]

Oxidation. [C with air in ultra-violet light yields (181) (182) dichloroacetyl chloride (3:5290) (or in pres. of aq. dichloroacetic acid (3:6208)), accompanied by small amts. of oxalic acid and an octachlorobutane, m.p. 81°. (Note also that pure C on long exposure to u.v. light loses HCl bimolecularly yielding (159) 1,1,2,3,4,4-hexachlorobutene-2 (3:1945), m.p. 80°.)]

[For behavior of C with CrO<sub>3</sub>/H<sub>2</sub>SO<sub>4</sub> (183) or over hot CuO (184) see indic. refs.]

## BEHAVIOR WITH HALOGENS

Fluorination. [ $\bar{\mathbf{C}}$  with F<sub>2</sub> gas at 50° for 14 hrs. gives (185) 1-fluoro-1,1,2,2-tetrachloro-ethane, b.p. 115.5-116.5°,  $D_4^{20}=1.6218$ ,  $D_D^{20}=1.4487$ , and 1,2-difluoro-1,1,2,2-tetrachloro-ethane, b.p. 92-93°, m.p. 24-25°, together with various other prods. — For fluorination of  $\bar{\mathbf{C}}$  with SbF<sub>3</sub> + SbCl<sub>5</sub> see (186)).]

Chlorination. [ $\bar{C}$  with Cl<sub>2</sub> (139) in CCl<sub>4</sub> soln. (187), in u.v. light (188) or X-radiation (189), or over activated carbon at 300-400° (190) (191), or in liq. phase at 60-70° (192), or with Fe at 20-80° (192), or with AlCl<sub>3</sub> at 20-100° (192), or under reflux at 120° (80% yield (193)), or  $\bar{C}$  with anhydr. FeCl<sub>3</sub> on htg. in s.t. (194), or even  $\bar{C}$  with aq. bleaching powder (192) yields hexachloroethane (3:4835).]

## BEHAVIOR WITH H2SO4

Č with fumg. H<sub>2</sub>SO<sub>4</sub> (65% SO<sub>3</sub>) in pres. of H<sub>2</sub>SO<sub>4</sub> at 50-60° readily gives (198) (yields: 70-73% (195), 32% (196), 30% (197)) glyoxal sulfate, O<sub>2</sub>SO<sub>2</sub>CH—CHO<sub>2</sub>SO<sub>2</sub>, [Beil. I<sub>2</sub>-(818)], ndls. from ClSO<sub>3</sub>H, m.p. 176-177° (198), ndls. with 1 AcOH, m.p. 121-122° from AcOH, the solv. of crystn. being lost completely in vac. over NaOH (199).

#### BEHAVIOR WITH ALKALINE REACTANTS

 $\bar{C}$  under influence of many alk. reactants loses 1 mole HCl; this reacta. is used for the manufacture of trichloroethylene (3:5170) (see also above under pyrolysis of  $\bar{C}$ ) and also by titration of the HCl or estimation of chloride ion formed as a diagnostic test for  $\bar{C}$  (see below).

Č on htg. with aq. alk. or alk. carbonates (200) in pres. of tetraethylene glycol as promoter (228) or with aq. Ca(OH)<sub>2</sub> or alk. carbonates (200) (201) (234) (114) (for test of Ger. 171,900 (200) see (202) (120)), or Č with alc. KOH (203) cf. (122) or alc. NaOEt (203), loses 1 mole HCl yielding trichloroethylene (3:5170); note that in use of alc. alkali, distn. gives the const.-boilg. mixt. of EtOH with trichloroethylene, b.p. 70-71°, from which latter is separated by washing with aq. and subsequent drying over CaCl<sub>2</sub> (203).

Č with EtOH/NaOH or EtOH/NaOEt (204) cf. (205), or Č with 1 N EtOH/KOH in xylene (110), instantly and quant. splits out 1 HCl at room temp.; note that this does not occur with cis-dichloroethylene (3:5042), trans-dichloroethylene (3:5028), trichloroethylene (3:5170) or tetrachloroethylene (3:5460), chloroform (3:5050), or carbon tetrachloride (3:5100), but does occur in analogous fashion with pentachloroethane (3:5880) (110).—
[For rate of reactn. of Č with KOH in 95% EtOH at 90° see (206).]

Note, however, that C in acetone with excess standard alk. refluxed 3 hrs., then residual alk. titrated back, uses 5 equivalents of alk. (207); this surprising result is presumably to

be attributed to hydrolysis of  $\bar{C}$  to glyoxal followed by disproportionation of latter to sodium glycolate: cf. (208).

Č with solid KOH on htg. yields (203) dichloroethylene (3:5030), trichloroethylene (3:5170), tetrachloroethylene (3:5460), together with a spontaneously inflammable gas which may be chloroacetylene (3:7000). — Č with anhyd. KOH in xylene at 80° under N<sub>2</sub> gives (209) a little dichloroacetylene (3:5010) (may be carried out as a lecture experiment (209)).

## BEHAVIOR OF C WITH NH3 AND AMINES

[ $\overline{C}$  with excess NH<sub>3</sub> gas in pres. of aq. (210), or with aq. NH<sub>4</sub>OH htd. under press. (210) (120), or with liq. NH<sub>3</sub> at  $-40^{\circ}$  (211) (212), or with dry pyridine on reflux (182) loses HCl giving (yields: 92% (211) 92-96% (210)) trichloroethylene (3:5170).]

[ $\bar{C}$  htd. with aniline + aq. Ca(OH)<sub>2</sub> at 140-190° under press. yields (213) a mixt. of the calcium salt of N-phenylglycine and N-phenylglycine anilide, cf. (122); since this reaction really involves conversion of  $\bar{C}$  by loss of HCl to 1,1,2-trichloroethylene (3:5170) and reactn. of latter with aniline see 3:5170 for details.]

 $\bar{C}$  with excess phenylhydrazine on stdg. at ord. temp. evolves N<sub>2</sub>, ppts. phenylhydrazine hydrochloride, and yields C<sub>6</sub>H<sub>6</sub> (110); the full mechanism of this behavior seems never to have been established, but the same three prods. are also similarly obtd. from pentachloroethane (3:5880) and hexachloroethane (3:4835).

[For rate of reactn. of Č with piperidine in 95% EtOH at 90° see (206).]

## BEHAVIOR OF C WITH METALS

[For survey of action of  $\bar{C}$  on various common metals (214) (215) in pres. of moisture (223) see indic. refs.]

Č with Na or K or their alloys may (like many other polychloro compounds) explode under certain conditions [for extensive studies of this behavior including sensitivity to mechanical shock see (216) (217)].

## BEHAVIOR OF C WITH METAL SALTS

[C with AlCl<sub>3</sub> at 110° undergoes partial rearr. (218) to the isomeric 1,1,1,2-tetrachloroethane (3:5555). — C with freshly prepared anhyd. AlBr<sub>3</sub> on htg. below b.p. of C yields (219) 1,1,2,2-tetrabromoethane (acetylene tetrabromide) [Beil. I-94, I<sub>1</sub>-(30), I<sub>2</sub>-(66)].

C with N/15 AgNO<sub>3</sub> in 95% EtOH shows no reactn. even after 12 hrs. at 90° (206) cf. (80).

## MISCELLANEOUS

[ $\bar{C}$  does not react with excess Hg di-p-tolyl (220). —  $\bar{C}$  with excess  $C_6H_5MgBr$  yields 1,1,2,2-tetraphenylethane [Beil. V-739,  $V_1$ -(371),  $V_2$ -(673)] (221) cf. (222).]

#### COLOR REACTIONS OF C

With cyclopentanol (1:6412). Č (1 drop) with cyclopentanol (2 ml.) + trace solid NaOH, boiled 25 secs., cooled, acidified with AcOH or 85% H₂SO₄, stood 1 min., shaken gives (224) green color. [Note that this same response is also shown by 1,1,2-trichloroethylene (3:5170) but not by methylene dichloride (3:5020), CHCl₃ (3:5050), CCl₄ (3:5100), ethylene dichloride (3:5130), pentachloroethane (3:5880), cis-(3:5042) or trans- (3:5028) 1,2-dichloroethylene, or tetrachloroethylene (3:5460); for sensitivity for C see (224).]

With pyridine + NaOH (Fujiwara reagt.) [For detn. of  $\bar{C}$  with Fujiwara reagt. see (111); for relative sensitivity of Fujiwara reagt. to  $\bar{C}$  as compared to CHCl<sub>3</sub> (3:5050),

CCl<sub>4</sub> (3:5100), 1,1,2-trichloroethane (3:5330), trichloroethylene (3:5170), and tetrachloroethylene (3:5460) see (100).

With NH<sub>4</sub>OH/CuCl. Note that C with NH<sub>4</sub>OH/CuCl does not give blue color within 5 min. (225) (dif. from pentachloroethane (3:5880) q.v.).

3:5750 (1) Paterno, Pisati, Gazz. chim. ital. 1, 463-464 (1871); J. prakt. Chem. (2) 4, 175-178 (1871). (2) Mathews, J. Am. Chem. Soc. 48, 569 (1926). (3) Lecat, Rec. trav. chim. 45, 624. 625, Note 28 (1926). (4) Timmermans, Bull. soc. chim. Belg. 27, 334-343 (1914); Cent. 1914, I 618. (5) Timmermans, Martin, J. chim. phys. 23, 773-774 (1926). (6) Timmermans, Bull. soc. chim. Belg. 36, 504 (1927). (7) Walden, Werner, Z. physik. Chem. 111, 469 (1924). (8) Smyth, McAlpine, J. Am. Chem. Soc. 57, 979 (1935). (9) Breuer, J. Am. Chem. Soc. 58, 1290 (1936). (10) Bonino, Gazz. chim. ital. 55, 342 (1925).

(11) Hamai, Bull. Chem. Soc. Japan 8, 297-306 (1933). (12) Herz, Rathmann. Chem. Ztg. 36, 1417 (1912). (13) Kharasch, Norton, Mayo, J. Org. Chem. 3, 53 (1938). (14) Bell. J. Chem. Soc. 1931, 1373-1377. (15) Hamai, Bull. Chem. Soc. Japan 10, 5-16 (1935). (16) Howell. J. Am. Chem. Soc. 45, 185-187 (1923). (17) Jaeger, Z. anorg. allgem. Chem. 161, 59 (1917). (18) Timmermans, Vesselovsky, Bull. soc. chim. Belg. 40, 506-507 (1931). (19) Walden, Gloy, physik. Chem. A-144, 406 (1929). (20) Walden, Swinne, Z. physik. Chem. 82, 281 (1913).
 Emmons, Am. Mineral. 14, 482-483 (1929). (22) Eckart, Brennstoff-Chem. 4, 24-25

(1923); C.A. 17, 2356 (1923). (23) Cotton, Mouton, Ann. chim. (8) 28, 236 (1913). (24) Veley, Proc. Roy. Soc. London, B-82, 217-225 (1910). (25) Nelson, Ind. Eng. Chem. 22, 971 (1930). (26) Bates, Hazzard, Palmer, Ind. Eng. Chem. 33, 375-376 (1941). (27) van Arkel, Vles, Rec. trav. chim. 55, 410 (1936). (28) Staverman, Rec. trav. chim. 60, 836-841 (1941); Cent. 1942, I 1352; C.A. 37, 2638 (1943). (29) Fischer, Pfleiderer, Z. anorg. allgem. Chem. 124, 68 (1922). (30) Margosches, Hinner, Friedmann, Z. anorg. allgem. Chem. 137, 87-90 (1924).

(31) Margosches, Baru, J. prakt. Chem. (2) 103, 219 (1921/2). (32) Trividic, Rev. gén. collordes 7, 67-73 (1929); Cent. 1929, I 2862. (33) Jorissen, Meuwissen, Rec. trav. chim. 44, 132-140 (1925). (34) Coward, Jones, Ind. Eng. Chem. 18, 970-974 (1926). (35) Jorissen, Velisek, Rec. trav. chim. 43, 85-86 (1924). (36) Langen van der Valk. Rec. trav. chim. 48, 201-219 (1929). (37) Timmermans, Bull. soc. chim. Belg. 36, 187 (1927). (38) Timmermans, Bull. soc. chim. Belg. 43, 633 (1934). (39) Cohen, deMeester, Moesveld, Z. physik. Chem. 114, 321-333 (1924); 108, 104-107 (1924); Rec. trav. chim. 42, 779-783 (1923). (40) Lecat, Ann. soc. sci. Bruxelles 48, I, 119, 122 (1928).

(41) Lecat, "L'Azeotropism," 1918, p. 68. (42) Lecat, Ann. soc. sci. Bruxelles 49, 21 (1929). (43) Othmer, White, Trueger, Ind. Eng. Chem. 33, 1242-1247 (1911). (44) Ralston, Ingle, McCorkle, J. Org. Chem. 7, 457-461 (1942). (45) Dubosc, Caoutchouc & gutta-percha 16, 9815-9819, 9999-10003 (1919); Cent. 1919, IV 413-414; C.A. 14, 868 (1920). (46) Bradley, Mc-Gavack (to Naugatuck Chem. Co.), U.S. 1,519,659, Dec. 16, 1924; Cent. 1925, I 1459; C.A. 19, 446 (1925). (47) Mork, Coffin (to Lustron Co), U.S. 1,551,112, Aug. 25, 1925; Cent. 1925, II 2331; C.A. 20, 115 (1926). (48) Hess, Z. angew. Chem. 37, 998-999 (1924). (49) Stinchfield (to Eastman Kodak Co.), U.S. 1,432,364, Oct. 17, 1922; Cent. 1923, II 358; C.A. 17, 341 (1923). (50) Malone, Carroll (to Eastman Kodak Co.), U.S. 1,575,778, March 9, 1926; Cent. 1926. II 137; C.A. 20, 1522 (1926).

(51) Steindorff, Balle (to M.L.B.), Ger. 365,286, Dec. 14, 1922; Cent. 1923, II 922; not in C.A. (52) Bakelite Gesellschaft, Austrian 86,764, Dec. 27, 1921; Cent. 1922, IV 714; not in C.A. (53) Youtz (to Standard Oil Co.), U.S. 2,031,145, Feb. 18, 1936; Cent. 1936, II 898; C.A. 30, 2408 (1936). (54) Boynton, U.S. 1,715,589, June 4, 1929; C.A. 23, 3783 (1929): French 675,567, Feb. 12, 1930; Cent. 1930, I 2967; [C.A. 24, 2849 (1930)]. (55) Bertness, Johnston, Newton (to Socony-Vacuum Oil Co.), U.S. 2,278,909, April 7, 1942; C.A. 36, 5997 (1942). (56) Marvel, Dietz, Copley, J. Am. Chem. Soc. 62, 2273-2275 (1940). (57) Ressler (to du Pont Co.). U.S. 2,110,842, March 8, 1938; Cent. 1938, I 4710; C.A. 32, 3546 (1938). (58) Bakke, J. Am. Chem. Soc. Agron. 33, 759-761 (1941); C.A. 35, 7637 (1941). (59) Elston (to du Pont Co.), U.S. 2,140,519, Dec. 20, 1938; Cent. 1939, I 3247; C.A. 33, 2648 (1939). (60) Humphries, Ann. Rept. Cacao Research 8, 38-39 (1938); Cent. 1939, II 3355; C.A. 34, 588 (1940).

(61) McDonald, 6th Ann. Rept. Cacao Research 1936, 43-44; Cent. 1937, II 3253; C.A. 32, 969 (1938). (62) Wadsworth, Analyst 47, 152-163 (1922); Cent. 1922, IV 174; C.A. 16, 1995 (1922). (63) Wadsworth, Analyst 46, 32-37 (1921); Cent. 1921, II 907; C.A. 15, 1170 (1921). (64) Burgess, J. Soc. Dyers Colourists 51, 88 (1935). (65) Mosely, U.S. 1,395,860, Nov. 1, 1921; Cent. 1922, IV 934; [C.A. 16, 610 (1922)]. (66) Salzbergwerke Neu-Stassfurt, Austrian 94,342, Sept. 25, 1923; Cent. 1924, I 1585; not in C.A. (67) Balaze, Austrian 146,204, June 25, 1936; Cent. 1936, II 3351; not in C.A.: Jugoslav. 12,078; Cent. 1936, I 4794. (68) Rimpau, Plochmann, Schneider, Arch. Hyg. 107, 268-276 (1932); Cent. 1932, II 389; C.A. 26, 4624 (1932). (69) Gabbano, Z. Hyg. Infectionskrankh. 109, 183-193 (1928); Cent. 1928, II 2668; not in C.A. Joachimoglu, Biochem. Z. 124, 130-136 (1921); Cent. 1922, I 363; C.A. 16, 946 (1922).

(71) Tausz, Rumm, Z. angew. Chem. 39, 155-156 (1926). (72) Pritzker, Jungkunz, Chem. Ztg. 53, 603 (1929). (73) van der Werth, Chem. Ztg. 52, 23-24 (1928). (74) Lepper, Z. Untersuch. Lebensm. 59, 79-81 (1930). (75) Lundin, Chem. Ztg. 55, 762-763 (1931). (76) Metzger, Landw. Jahrb. Schweiz 45, 625-632 (1931); Cent. 1932, I 1287; C.A. 28, 4006 (1934). (77) Tausz, Rumm, Gas u. Wasserfach, 71, 417-420 (1928); Cent. 1928, I 3019; C.A. 22, 2651 (1928). (78) Friedrichs, Chem. Ztg. 53, 287 (1929). (79) Berth, Chem. Ztg. 51, 975-976 (1927). (80) Riesener, Kessen, Chem. Ztg. 52, 243-244 (1928); Cent. 1928, II 1052.

(81) Kingman, Ind. Eng. Chem. 18, 93-94 (1926). (82) Tucker, Burke, Analyst 60, 663-667 (1935). (83) Pritzker, Jungkunz, Z. Untersuch. Lebensm. 57, 520-524 (1929). (84) Pritzker, Jungkunz, Mitt. Lebensm. Hyg. 20, 65-69 (1929); Cent. 1929, II 609; C.A. 24, 1315 (1930). (85) McConnell, J. Am. Med. Assoc. 109, 762 (1937). (86) Forbes, Brt. Med. J. 1943, I 348-350; C.A. 37, 435 (1943). (87) Schwander, Arch. Gewerbepath. Gewerbehyg. 7, 109-116 (1939); Cent. 1939, II 1331; not in C.A. (88) Freitag, Rayon Text. Monthly 18, 543-545 (1937); Cent. 1937, II 3928; not in C.A. (89) Gasg, Bull. trav. soc. pharm. Bordeaux 75, 87-101 (1937); Cent. 1937, I 5006; C.A. 32, 3047 (1938). (90) Burgi, Wien. klin. Wochschr. 49, 1545-1548 (1936); Cent. **1937.** I 3515; not in C.A.

(91) Barsoum, Saad, Quart. J. Pharmacol. 7, 205-214 (1934); Cent. 1934, II 2550; C.A. 28, 6194 (1934). (92) Zangger, Sammlung Verguftungsfällen 5, Part A, 195-196 (1934); Cent. 1935, I 1415; not in C.A. (93) Lejeune, Arch. Gewerbepath. Gewerbehyg. 5, 274-285 (1934); Cent. 1934, II 279; not in C.A. (94) Muller, Arch. Gewerbepath. Gewerbehyg. 2, 326-329 (1931); Cent. 1931, II 1449; not in C.A. (95) Zöllinger, Arch. Gewerbepath. Gewerbehyg. 2, 298-325 (1931); Cent. 1931, II 1450; not in C.A. (96) Lutz, Arch. Gewerbepath. Gewerbehyg. 1, 740-748 (1931); Cent. 1931, I 2639; not in C.A. (97) Zangger, Schweiz. med. Wochschr. 1930, 193-201; C.A. 25, 4071 (1931); not in Cent. (98) Zangger, Schwerz. med. Wochschr. 61, 748-761 (1931); C.A. 26, 3050 (1932); not in Cent. (99) Lutz, Z. angew. Chem. 43, 807 (1930). (100) Barrett, Cunningham, Johnston, J. Ind. Hyg. Toxicol. 21, 479-490 (1939).

(101) Wright, Schaffer, Am. J. Hug. 16, 374-380 (1932). (102) Mameli, Mossini, Giorn. chim. ind. applicata 14, 450-455 (1932); Cent. 1933, I 2883, [CA. 27, 805 (1933)]. (103) Plagge, Biochem. Z. 118, 129-143 (1921); C.A. 15, 2894 (1921); not in C.A. (104) Bonino, Mazzucchetti, Arch. biol. 2, 71-80 (1926); Ber. ges. Physiol. 37, 883-884 (1926); Cent. 1927, I 2084; not in C.A. (105) Winteringham, J. Soc. Chem. Ind. 61, 190-192 (1942); C.A. 37, 1951 (1943). (106) Smyth, Ind. Eng. Chem., Anal. Ed. 8, 379 (1936). (107) Elkins, Hobby, Fuller, J. Ind. Hyg. Toxicol. 19, 474-485 (1937). (108) Winteringham, J. Soc. Chem. Ind. 61, 186-187 (1942); C.A. 37, 1951 (1943). (109) Dains, Brewster, J. Am. Chem. Soc. 42, 1576 (1920). (110) Gowing-Scopes,

Analyst 39, 385-388 (1914).

(111) Barrett, J. Ind. Hyg. Toxicol. 18, 341 (1936). (112) Hanson, Ind. Eng. Chem., Anal. Ed. 13, 119-123 (1941). (113) Thorpe, Whitely, "Dictionary of Applied Chemistry," 4th ed. (1937), 1, 98-99. (114) Klebanskii, Gosudarst. Inst. Prikladnoi Khim., Sbornik Statei 1919-1939, 359-383 (1939); C.A. 36, 2521 (1942). (115) Favorskii, Margules, Davuidova, Trans. State Inst. Applied Chem. (U.S.S.R.) 24, 47-54 (1935); C.A. 29, 7271 (1935). (116) Suknevich, Khomutin, Trans. State Inst. Applied Chem. (U.S.S.R.) 24, 54-66 (1935); C.A. 29, 7271 (1935). (117) Shagalov, Trans. Mendeleev Congr. Theor. Applied Chem. 6th Congr. 1932, II Pt. 1, 730-737 (1935); Cent. 1936, II 2226, [C.A. 30, 1893 (1936)]. (118) Miloslavskii, Postovskii, J. Chem. Ind. (U.S.S.R.) 7, 1414-1419 (0930); Cent. 1931, II 1164; C.A. 25, 5391 (1931). (119) Kraft, Alekseev, J. Chem. Ind. (U.S.S.R.) 8, 861-863 (1931); Cent. 1931, II 2385; C.A. 26, 79 (1932). (120) Valyashko, Kosenko, Ukrain. Khem. Zhur. 7, No. 1, Sci. Pt. 12-35 (1932); Cent. 1933, I 3554; C.A. 27, 1611 (1933).

(121) Peters, Neumann, Z. angew. Chem. 45, 261-266 (1932). (122) Langguth, Chimie & industrie 25, 22-25 (1931). (123) Tramm (to Ruhrchemie, A.G.), U.S. 2,016,658, Oct. 8, 1935; Cent. 1936, I 875; C.A. 29, 8005 (1935): French 743,778, April 6, 1933; Cent. 1933, II 605; C.A. 27, 3941 (1933). (124) Ruppert, Fischer, Vogt, Hennig (to I.G.), U.S. 1,868,077, July 19, 1932; C.A. 26, 5106 (1932): Brit. 310,964, June 26, 1929; Cent. 1930, II 2957; C.A. 24, 630 (1930): Ger. 553,149, Sept. 30, 1932; Cent. 1932, II 3303; [C.A. 27, 736 (1933)]: Swiss 141,529, Oct. 1, 1930; Cent. 1931, I 1823: French 739,183, Jan. 6, 1933; Cent. 1933, I 2312; C.A. 27, 1894 (1933). (125) Dow, U.S. 1,437,636, Dec. 5, 1922; C.A. 17, 770 (1923). (126) Roka (to Holzverkohlungs Ind., A.G.), U.S. 1,418,882, June 6, 1922; [Cent. 1923, II 1152], C.A. 16, 2695 (1922): Brit. 174,-635, March 29, 1922; Cent. 1922, IV 941; C.A. 16, 1779 (1922): Ger. 387,452, Dec. 28, 1923; [Cent. 1924, I 1867]. (127) Consortium für Elektrochem. Ind., Brit. 366,348, Feb. 25, 1932; French 714,995, Nov. 23, 1931; Cent. 1932, I 3345; C.A. 26, 1624 (1932). (128) A. Wacker Soc. Chem. Ind., Ger. 733,750, March 4, 1943; C.A. 38, 980 (1944). (129) Mugdan, Sixt (to Consortium für Elektrochem. Ind.), Ger. 659,434, May 3, 1938; Cent. 1938, II 3005; C.A. 32, 5857 (1938). (130) Compagnie des Prod. Chim. d'Alais et de la Camargue, Ger. 410,529, March 11, 1925; [Cent. 1925, I 2185], not in C.A.: Austrian 93,604, July 25, 1923; Cent. 1924, I 1866; not in C.A.

(131) Chem. Fabrik Griesheim-Elektron, Ger. 204,883, Dec. 12, 1908; Cent. 1909, I 325; C.A. 3, 1457 (1909). (132) Ornstein, Ger. 241,559, Dec. 5, 1911; Cent. 1912, I 174; C.A. 6, 2291 (1912). (133) Consortium für Elektrochem. Ind., Ger. 154,677, Oct. 7, 1904; Cent. 1904, II 1177; not in C.A. (134) Lidholm, Ger. 204,516, Nov. 25, 1908; Cent. 1909, I 114; C.A. 3, 1457 (1909). (135) Lidholm, Ger. 201,705, Sept. 9, 1908; Cent. 1908, II 1071; C.A. 3, 359 (1909). (136) Hilpert, Ger. 368,892, Feb. 10, 1923; Cent. 1923, II 907; not in C.A. (137) Compagnie des Prod. Chim. d'Alais et de la Camargue, French 744,359, April 19, 1933; Cent. 1933, II 935; C.A. 27, 3951 (1933). (138) I.G., French 687,307, Aug. 7, 1930; Cent. 1939, II 3637; C.A. 25, 715 (1931). (139) Berthelot, Jungfleisch, Ann. Suppl. 7, 254-255 (1870). (140) Tompkins, Ger. 196,324, March 19, 1908; Cent. 1908, I 1504; C.A. 2, 2289 (1908).

(141) Moyer (to Solvay Process Co.), U.S. 2,152,357, March 28, 1939; Cent. 1939, II 1775; C.A. 33, 5001 (1939). (142) Maze, U.S. 1,425,669, Aug. 15, 1922; C.A. 16, 3314 (1923). (143) Michel, Z. angew. Chem. 19, 1096 (1906). (144) Salzbergwerk Neu-Stassfurt, Ger. 174,068, Sept. 8, 1906; Cent. 1906, II 1297; C.A. 1, 950 (1907). (145) Irvine, Haworth (to Carbide and Carbon Chem. Co.), U.S. 1,496,675, June 3, 1924; Cent. 1924, II 1511; [C.A. 18, 2345 (1924)]. (146) Askenasy, Heller, Ger. 549,341, April 26, 1932; Cent. 1932, II 287; C.A. 26, 3807 (1932). (147) Maier, French 655,930, April 25, 1929; Cent. 1929, II 1347; C.A. 23, 3931 (1929). (148) Levine (to du Pont Co.), Can. 395,846, April 15, 1941; C.A. 35, 4482 (1941); Brit. 505,196, June 1, 1939; Cent. 1939, II 2712; C.A. 33, 7814 (1939). (149) Müller, Schumacher, Z. physik. Chem. B-35, 455-457 (1937). (150) Kharasch, Brown, J. Am. Chem. Soc. 61, 3433 (1939).

(151) Müller, Schumacher, Z. physik. Chem. B-35, 285-297 (1935). (152) Müller, Schumacher, Z. Elektrochem. 43, 807-808 (1937); Cent. 1938, I 3453. (153) Müller, Hönn, J. prakt. Chem. (2) 133, 289-290 (1932). (154) Rodebush (to U.S. Industrial Alc. Co.), U.S. 1,402,318, Jan. 3, 1922; Cent. 1923, II 960; [C.A. 16, 935 (1922)]. (155) van de Walle, Henne, Bull. acad. roy. Belg. (5) 11, 793 (1925); Cent. 1926, I 3136. (156) E. Erdmann, H. Erdmann, Ber. 38, 239 (1905). (157) Roesslacher and Hasslacher Chem. Co., French 732,569, Sept. 22, 1932; Cent. 1932, II 3785; C.A. 27, 304 (1933): Ger. 573,105, March 3, 1932; [C.A. 27, 2961 (1933)]. (158) Imperial Chem. Ind., Ltd., French 744,128, April 12, 1933; Cent. 1933, II 605. (159) Müller, Huther, Ber. 64, 593, 599 (1931). (160) Ghighi, Ann. chim. applicata 28, 363-368 (1938); Cent. 1938, I 86; C.A. 33, 6792 (1939).

(161) Nicodemus, J. prakt. Chem. (2) 83, 312-317 (1911). (162) Schering-Kahlbaum, A.G., Brit. 374,949, July 14, 1932; Cent. 1932, II 2107; not in C.A. (163) Chem. Fabrik Buckau, Ger. 274,782, May 27, 1914; Cent. 1914, II 95; C.A. 8, 3350 (1914). (164) Tompkins (to Clayton Aniline Co.), Ger. 222,622, June 2, 1910; Cent. 1910, II 121; C.A. 4, 2866 (1910). (165) Chem. Fabrik. Griesheim Elektron, Ger. 263,457, Aug. 8, 1913; Cent. 1913, II 829; C.A. 7, 4048 (1913). (166) Körner, Suchy (to A. Wacker Soc. Elektrochem. Ind.), Ger. 464,320, Aug. 21, 1928; Cent. 1929, I 1044; C.A. 22, 4132 (1928). (167) A. Wacker Soc. Elektrochem. Ind., Brit. 480,568, March 24, 1938; Cent. 1938, I 4236; C.A. 32, 5857 (1938). (168) Bozel-Maletra (to Soc. Ind. Prod. Chim.), French 715,421, Dec. 3, 1931; Cent. 1932, I 3345; C.A. 26, 1946 (1932). (169) Consortium für Elektrochem. Ind., Brit. 302,321, Feb. 6, 1929; Cent. 1929, II 794; C.A. 23, 4231 (1929). (170) Andrusov (to I.G.), Ger. 634,549, Aug. 29, 1936; Cent. 1936, II 4048; C.A. 31, 419 (1937): French 805,563, Nov. 24, 1936; Cent. 1937, I 2255; C.A. 31, 4345 (1937).

(171) Kali-Chemie, A.G., Italian 383,229, June 4, 1940; Cent. 1942, I 3143. (172) A. Wacker Soc. Elektrochem. Ind., Brit. 468,921, Aug. 12, 1937; Cent. 1937, II 3813; C.A. 32, 596 (1938). (173) A. Wacker Soc. Elektrochem. Ind., French 832,749, Oct. 3, 1938; Cent. 1938, II 4126; C.A. 33, 2540 (1939). (174) Mailhe, Compt. rend. 172, 1583 (1921); Bull. soc. chim. (4) 29, 535-536 (1921). (175) Consortium für Elektrochem. Ind., Ger. 216,070, Nov. 11, 1909; Cent. 1909, II 2103; C.A. 4, 812 (1910). (176) A. Wacker Soc. Elektrochem. Ind., Ger. 345,259, Dec. 8, 1921; [Cent. 1922, II 443]; not in C.A.: Brit. 156,080, Jan. 27, 1921, Cent. 1921, II 1061; C.A. 15, 1535 (1921). (077) Consortium für Elektrochem. Ind., Ger. 217,554, Jan. 17, 1910; Cent. 1910, I 700; C.A. 4, 1651 (1911). (178) Wiegand (to Chem. Fabrik von Heyden), Ger. 566,034, Dec. 14, 1932; Cent. 1933, I 1350; C.A. 27, 1012 (1933). (179) Wiegand (to Chem. Fabrik von Heyden), Ger. 567,272, Dec. 31, 1932; Cent. 1933, I 1842; C.A. 27, 1365 (1933). (180) Sebanejev, Ann. 216, 262 (1882).

(181) Müller, Lüber, Ber. 65, 985-987 (1932). (182) Müller, Ehrmann, Ber. 69, 2207-2210 (1936). (183) Guyot, Simon, Compt. rend. 170, 736 (1920). (184) Bisealski, Z. angew. Chem. 37, 307 (1924). (185) Müller, J. Am. Chem. Soc. 62, 341-342 (1940). (186) Swarts, Cent. 1903, I 13. (187) Gruner (to Kali-Chemie, A.G.), Ger. 712,478, Oct. 21, 1941; Cent. 1942, I 1053;

C.A. 37, 4407 (1943). (188) Salsbergwerk Neu-Stassfurt, Ger. 248,982, July 6, 1912; Cent.
1912, II 299; C.A. 6, 2824 (1912). (189) Loiseau, French 565,356, Jan. 25, 1924; Cent. 1926,
II 1227; not in C.A. (190) Mkryan, Babayan, Sbornik Trudov Armyanskogo Filiala Akad.
Nauk 1946, No. 2, 51-58; C.A. 37, 5694 (1943).

(191) Blas, Cervas, Anales fis. quim. 37, 298-315 (1941); C.A. 37, 74 (1943). (192) Kokatnur, J. Am. Chem. Soc. 41, 120-124 (1919). (193) Mouneyrat, Bull. soc. chim. (3) 19, 454-455 (1898). (194) Erdmann, J. prakt. Chem. (2) 85, 84 (1912). (195) Perkins (to du Pont Co.), U.S. 1,999,995, April 30, 1935; C.A. 29, 4026 (1935); Brit. 447,135, June 11, 1936; Cent. 1936, II 2448; [C.A. 36, 6763 (1936)]. (196) Ruggli, Henze, Helv. Chrm. Acta 12, 362-364 (1929). (197) Grangaard, Purves, J. Am. Chem. Soc. 61, 428-429, 755 (1939). (198) Ott (to Chem. Fabrik Weilerter-Meer), Ger. 362,743, Nov. 2, 1922; Cent. 1923, II 743; C.A. 18, 991 (1924). (199) Fischer, Taube, Ber. 59, 850-856 (1926). (200) Consortum für Elektrochem. Ind., Ger. 171,900, June 18, 1906; Cent. 1906, II 571; Ger. 208,834, April 8, 1909; Cent. 1909, I 1785; C.A. 3, 2210 (1909).

(201) MacMillan (to Niagara Alkali Co.), U.S. 1,397,134, Nov. 15, 1921; Cent. 1922, IV 941; C.A. 16,565 (1922). (202) Shagalov, Dobromil'skaya, Trans. State Inst. Applied Chem. (U.S.S.R.) 24, 67-77 (1935); C.A. 29, 7272 (1935). (203) Sastry, J. Soc. Chem. Ind. 35, 450-452 (1916); Cent. 1916, II 306; C.A. 10, 1942 (1916). (204) Ward, J. Chem. Soc. 1930, 2144. (205) Taylor, Ward, J. Chem. Soc. 1934, 2003. (206) Petrenko-Kritschenko, Ber. 61, 853 (1928). (207) Huntress, Hershberg, unpublished results. (208) Consortium für Elektrochem. Ind. Ger. 257,878, March 22, 1913; Cent. 1913, I 1373; C.A. 7, 2836 (1913). (209) Metx, J. prakt. Chem. (2) 135, 142-144 (1932). (210) Compagnie des Products Chimiques d'Alais et de la Camargue, Ger. 351,463, April 7, 1922; Cent. 1922, IV 154; not in C.A.; Brit. 132,755, May 14, 1919, C.A. 14, 285 (1920). Guyot, U.S. 1,343,716, June 15, 1920; C.A. 14, 2344 (1920).

(211) Mkryan, Sbornik Trudov Armyanskogo Filiala Akad. Nauk 1940, No. 2, 36-41; C A. 37, 5694 (1943). (212) Pogosyan, Mkryan, Russ. 50,533, Feb. 28, 1937; Cent. 1938, II 412; C.A. 31, 8549 (1937). (213) British Dyestuffs Corp., Levinstein, Imbert, Brit. 173,540, Feb. 2, 1922; French 527,554, Oct. 27, 1921; Swiss 93,576, March 16, 1922, Cent. 1922, IV 761; C.A. 16, 1435 (1922). (214) Gowing-Scopes, Analyst 39, 7 (1914). (215) Formanek, Chem. Obzor 5, 57-59 (1922): Cent. 1930. II 976: C.A. 24, 4492 (1930). (216) Staudinger, Z. angew. Chem. 35, 668-

(1922); Cent. 1930, II 976; C.A. 24, 4492 (1930). (216) Staudinger, Z. angew. Chem. 35, 658-659 (1922). (217) Lenze, Metz, Z. ges. Schress-u. Sprengstoff. 27, 255-258, 293-296, 337-340, 373-376 (1932). (218) Mouneyrat, Bull. soc. chim. (3) 19, 499-500 (1898). (219) Harlow, Ross (to Dow Chem. Co.), U.S. 1,891,415, Dec. 20, 1932; Cent. 1933, I 1682; C.A. 27, 1890 (1933).

(220) Whitmore, Thurman, J. Am. Chem. Soc. 51, 1497 (1929).

(221) Binaghi, Gazz. chim. ital. 57, 670, 675 (1927); Cent. 1928, I 908-909; C.A. 22, 573-574 (1928). (222) Swarts, Bull. soc. chim. (4) 25, 146,168-170 (1919). (223) Sastry, J. Soc. Chem. Ind. 35, 94-95 (1916). (224) Weber, Chem. Zlg. 57, 836 (1933); Cent. 1933, II 3889, C.A. 28, 727 (1934). (225) Doughty, J. Am. Chem. Soc. 41, 1129-1131 (1919). (226) Phillips, Enas, J. Assoc. Official Agr. Chem. 27, 442-446 (1944). (227) Coyer, Hahnemannian Monthly 79, 230-241 (1944); C.A. 38, 3358 (1944). (228) Strosacker, Amstutz (to Dow Chem. Co.), U.S. 2,322,258, June 22, 1943; C.A. 38, 114 (1944). (229) von Oettingen, J. Ind. Hyg. Toxicol. 19, 399-403 (1937). (230) Rauscher, Ind. Eng. Chem., Anal. Ed. 9, 296-299 (1937).

(231) Tzurikh, Trans. State Inst. Applied Chem. (U.S.S.R.) 24, 77-80 (1935); C.A. 29, 7272 (1935); not in Cent. (232) Lehman, Schmidt-Kchl, Arch. Hyg Bakt. 116, 131-268 (1936); C.A. 31, 477 (1937); not in Cent. (233) Yamaguchi, J. Chem. Soc. Japan 55, 1227-1231, 1232-1235 (1934); C.A. 29, 4326 (1935). (234) Igi, J. Chem. Ind. Japan 23, 1217-1237 (1920); C.A. 15, 2273 (1921). (235) Askenssy, Vogelsohn, Z. Elektrochem. 15, 773 (1909). (236) Aten, Chem. Weekblad 19, 352 (1922); Cent. 1922, III 984; C.A. 16, 3593 (1922).

## 3:5755 1,1-DICHLOROPROPANOL-2 $C_3H_6OCl_2$ Beil. I - 363 $(\beta,\beta$ -Dichloroisopropyl alcohol; $CH_3$ —CH— $CHCl_2$ $I_1$ — dichloromethyl methyl-carbinol) OH $I_2$ -(383)

## B.P. 146-148° at 765 mm. (1) $D_{22}^{22} = 1.3334$ (1)

Moderately sol. aq., very sol. alc., ether.

[For prepn. of  $\tilde{C}$  from dichloroacetaldehyde (3:5180) with MeMgBr in dry ether (57.4% yield) see (1); from 1,1-dichloropropanone-2 (unsym.-dichloroacetone) (3:5430) with anhydrous acetaldehyde + Al(OEt)<sub>3</sub> in dry ether (45% yield) see (2).] — [Note that the levorotatory stereoisomer of  $\tilde{C}$ , b.p. 146-148°,  $[\alpha]_D^- = -9^\circ$ , has been obtd. (54% yield) from unsym.-dichloroacetone (3:5430) by reduction with yeast (3).]

[For behavior of C with NaOEt in alc. or ether see (4).]

- [Č with paraformaldehyde +  $ZnCl_2$  gives (23.5% yield (5)) formaldehyde bis-( $\beta,\beta$ -dichloroisopropyl)acetal [Beil. I-575], b.p. 81° at 0.2 mm. (4).]
  - —— β,β-Dichloroisopropyl benzoate: oil, b.p. 92-94° at 0.15-0.17 mm. (4). [From C with BzCl refluxed 4 hrs. at 150° (80% yield (4)).]
  - —— β,β-Dichloroisopropyl carbamate: unreported. [Note, however, that the corresp. deriv. of levorotatory C (obtd. with carbamyl chloride in ether) has m.p. 61-63° (3).]
- 3:5755 (1) Wohl, Roth, Ber. 40, 217-218 (1907). (2) Nord, Ger. 434,728, Oct. 5, 1926; Cent. 1926, II 2845. (3) Sen. J. Indian Chem. Soc. 1, 1-8 (1924/25); Cent. 1925, I 537; C.A. 19, 816 (1925); Biochem. Z. 151, 51-53 (1924); Cent. 1924, II 2272; C.A. 19, 3277 (1925). (4) Wohl, Ber. 41, 3606-3608 (1908).

3:5760 3,3,3-TRICHLORO-1,2-EPOXYPROPANE 
$$C_3H_3OCl_3$$
 Beil. S.N. 2362  $(\omega,\omega,\omega$ -Trichloropropylene oxide)  $Cl_3C$ — $CH$ — $CH_2$ 

B.P. 
$$149^{\circ}$$
 at 764 mm. (1)  $D_{25}^{25} = 1.4921$  (4)  $n_{\rm D}^{25} = 1.4737$  (4)  $149^{\circ}$  at 750 mm. (2)  $49^{\circ}$  at 11 mm. (1)  $D_{4}^{20} = 1.495$  (5)  $n_{\rm He}^{20} = 1.4768$  (5)  $44-45^{\circ}$  at 13 mm. (2)  $41-42^{\circ}$  at 10 mm. (3)  $D_{4}^{19} = 1.4962$  (5)  $39-40^{\circ}$  at 11 mm. (4)

Colorless mobile liq. with sweetish not unpleasant odor suggesting epichlorohydrin (3:5358). [Note that  $\bar{C}$  was at first (1) erroneously supposed to be 1,1,1-trichloroacetone (3:5620).]

[For prepn. of  $\bar{C}$  from chloral (3:5210) (1) (2) (4) or chloral hydrate (3:1270) (3) with diazomethane in ether (yields: 64% (2), 48% (4), 47.5% (3)) see indic. refs.]

C does not (2) react with aq. o-nitrophenylhydrazine HCl or with aq. semicarbazide.

[ $\bar{C}$  with 5 pts. conc. aq. HCl evolves heat and by opening of epoxy ring yields (2) 1,1,1,3-tetrachloropropanol-2 (3:9036), b.p. 95-96° at 17 mm. (2). —  $\bar{C}$  with Ac<sub>2</sub>O + trace sublimed FeCl<sub>3</sub> gives (2) in analogous fashion 3,3,3-trichloro 1,3-diacetoxypropane, b.p. 126-128° at 16 mm. (2).]

[C with alcohols gives (3) corresp. alkoxymethyl-hemiacetals of chloral.]

[ $\bar{C}$  with MeMgI in dry ether at  $-15^{\circ}$  gives (59% yield (4)) 1,1,1-trichloro-3-iodopropanol-2, ndls. from pet. ether, m.p. 54-55° (4). —  $\bar{C}$  with MeLi in dry ether at  $-75^{\circ}$  gives (85% yield (4)) 1,1,1-trichlorobutanol-2 (3:5955).]

3:5760 (1) Schlotterbeck, Ber. 42, 2561 (1909). (2) Arndt, Amende, Ber. 61, 1121-1122 (1928). (3) Meerwein, Bersin, Burneleit, Ber. 62, 1002-1003, 1006-1009 (1929). (4) Gilman, Abbott, J Org. Chem. 8, 227-228 (1943). (5) von Auwers, Ber. 62, 1319 (1929).

3:5765 METHYL 
$$\beta$$
-CHLOROPROPIONATE C<sub>4</sub>H<sub>7</sub>O<sub>2</sub>Cl Beil. II - 250 ClCH<sub>2</sub>.CH<sub>2</sub>.CO.O.CH<sub>3</sub> II<sub>1</sub>— II<sub>2</sub>-(227)

B.P. 148-150° at 760 mm. (1) 
$$D_4^{20} = 1.1634$$
 (7)  $n_D^{20} = 1.4265$  (7) 148° (2)  $40-42^\circ$  at 10 mm. (3)  $D_4^{12} = 1.1874$  (1)  $n_D^{12} = 1.4319$  (1)

[For prepn. of  $\bar{C}$  from  $\beta$ -chloropropionic ac. (3:0460) by esterification with MeOH + HCl see (2) (3); from acrylic acid chloride (3:7153) + MeOH see (2) (4), from methyl

acrylate (1:3025) by addn. of HCl see (1), from acrylonitrile + HCl to  $\beta$ -chloropropionitrile followed by reactn. with MeOH (96% yield (5)) see (5).]

[Note that the b.p. of 155-157° reported by (4) has been characterized as erroneous (2) (1).]

C on htg. with diethylaniline at abt. 200° gives (1) (78% yield (3)) methyl acrylate (1:3025), b.p. 80° (1).

[For study of acid hydrolysis of C see (6).]

3:5765 (1) Moureu, Murat, Tampier, Ann. chim. (9) 15, 244 (1921). (2) Moureu, Ann. chim. (7) 2, 170-171 (1894). (3) Spath, Spitzy, Ber. 58, 2276 (1925). (4) Henry, Compt. rend. 106, 116 (1885); J. prakt. Chem. (2) 31, 127 (1885). (5) British (to I.G.) 352,802, Aug. 6, 1931; Cent. 1931, II 2658. (6) Palomaa, Ber. 74, 1866-1870 (1941); C.A. 36, 5413 (1942). (7) Schjanberg, Z. physik. Chem. A-172, 231 (1935).

B.P. abt. 150° dec. (1) 
$$D_{20}^{20} = 1.1259$$
 (1) 87.5° at 27 mm. (1) 78-83° at 12 mm. (2)

[For prepn. from cyclohexanol (1:6415) + phosgene (3:5000) see (1); for application in prepn. of textile auxiliaries see (3).]

© Cyclohexyl carbamate: from C + conc. aq. NH<sub>4</sub>OH; m.p. 110° (2).

3:5770 (1) Kretov, Bakakina, Zhur. Priklad. Khim. 2, 809-816 (1929); C.A. 24, 1998 (1930); Cent. 1930, I 2876. (2) Puyal, Montagne, Bull. soc. chim (4) 27, 862 (1920). (3) French 731,405, Sept. 2, 1932; Cent. 1933, I 313.

B.P. M.P. 
$$+8^{\circ}$$
 (4)  $D_{4}^{19} = 1.2363$  (4)  $n_{D}^{19} = 1.4598$  (4)  $150.5^{\circ}$  at 760 mm. (2)  $143.5^{\circ}$  (3)  $D_{4}^{0} = 1.2507$  (4)  $143.5^{\circ}$  at 10 mm. (4)  $143.5^{\circ}$  at 5 mm. (4)

[See also the isomeric 1,3-dichloro-2-methylpropanol-2 (3:5977).]

#### PREPARATION OF C

[For prepn. of  $\bar{C}$  from 1-chloro-2-methylpropene-1 ( $\beta,\beta$ -dimethylvinyl chloride = "isocrotyl chloride") (3:7120) by addn. of HOCl with  $Cl_2$  + aq., aq. HOCl, or even alkyl or alkaryl hypochlorites as directed see (2) cf. (5) (3).]

[For prepn. of  $\bar{C}$  from  $\alpha,\alpha$ -dichloroacetone (3:5430) with MeMgBr in ether see (1).]

[For prepn. of C from ethyl dichloroacetate (3:5850) with MeMgBr (74% yield (4)) or MeMgI (63% yield (6)) cf. (4) or from methyl dichloroacetate (3:5655) with MeMgBr (7) see indic. refs.]

## CHEMICAL BEHAVIOR OF C

With inorganic reagents. C does not (1) react with aq. HCl. — C cannot (4) be hydrolyzed to the corresp. aldehyde, viz., α-hydroxyisobutyraldehyde [Beil. I-829, I<sub>2</sub>-(871)], either by aq., aq. Na<sub>2</sub>CO<sub>3</sub>, aq. CaCO<sub>3</sub>, or aq. PbO.

 $[\ddot{\mathbf{C}}$  with 5 N abs. alc. NH<sub>3</sub> in s.t. at 100° as directed gives (8) 2,2,5,5-tetramethyldihydropyrazine, m.p. 83-84° (8) (9).]

With organic reactants. [For behavior of  $\tilde{C}$  with MeNH<sub>2</sub> yielding a prod. of compn.  $C_{16}H_{32}N_4$  see (8).]

[Č with Me<sub>2</sub>NH in C<sub>6</sub>H<sub>6</sub> in s.t. at 130° not only introduces the dimethylamino group for one chlorine but also ring-closes with loss of HCl giving (52% yield (8)) 1-(dimethylamino)-2-methyl-1,2-epoxypropane ( $\alpha,\alpha$ -dimethyl- $\alpha'$ -(dimethylamino)ethylene oxide), b.p. 28-30° at 13 mm.,  $D_{-}^{22.5} = 0.8725$ ,  $n_{-}^{22.5} = 1.4216$  (8).]

- ——  $\alpha$ -Hydroxyisobutyraldehyde di- $\beta$ -naphthylacetal [(CH<sub>3</sub>)<sub>2</sub>-C(OH)CH(O.C<sub>10</sub>H<sub>7</sub>)<sub>2</sub>]: [This cpd. which might be expected from  $\bar{C}$  with sodium  $\beta$ -naphtholate is unreported; note that 1,3-dichloro-2-methylpropanol-2 (3:5977) with sodium  $\beta$ -naphtholate gives the corresp. di- $\beta$ -naphthyl ether, m.p. 151–152°.]
- ---- unsym.-Dichloro-ter-butyl acetate: unreported.
- ---- unsym.-Dichloro-ter-butyl benzoate: unreported.
- ---- unsym.-Dichloro-ter-butyl p-nitrobenzoate: unreported.
- ---- unsym.-Dichloro-ter-butyl 3,5-dinitrobenzoate: unreported.
- unsym.-Dichloro-ter-butyl carbamate: m.p. 122° (7). [Prepd. from unsym.-dichloro-ter-butoxy MgBr by treatment with phosgene (3:5000) followed by NH<sub>4</sub>OH (7).]

3:5772 (1) Henry, Compt. rend. 142, 131, Note 1 (1906); Bull. soc. chim. Belg. 29, 152-156 (1906); Cent. 1906, II 1178-1179. (2) Groll, Hearne (to Shell Development Co), U.S. 2,060,303, Nov. 10, 1936; Cent. 1937, I 4155; [C.A. 31, 419 (1937)]: N. V. de Bataafsche Petroleum Maatschapij, Brit. 437,573, Oct. 31, 1935; Cent. 1936, II 2227; [C.A. 30, 2199 (1936)]: French 787,529, March 19, 1935; Cent. 1936, II 2227, C.A. 30, 1067 (1936). (3) Oeconomides, Compt. rend. 92, 1237 (1881). (4) Avy, Bull. soc. chim. (4) 49, 12-18 (1931). (5) Burgin, Hearne, Rust, Ind. Eng. Chem. 33, 385-388 (1941). (6) Iositch, J. Russ. Phys.-Chem. Soc. 36, 1551 (1906). (7) Yoder, J. Am. Chem. Soc. 45, 478-479 (1923). (8) Avy, Bull. soc. chim. (4) 49, 514-522 (1931). (9) Conant, Aston, J. Am. Chem. Soc. 50, 2788 (1928).

## 3:5775 2,2,2-TRICHLOROETHANOL-1 $Cl_3C.CH_2OH$ $C_2H_3OCl_3$ Beil. I - 338 $(\beta,\beta,\beta$ -Trichloroethyl alcohol) I<sub>1</sub>-(170) I<sub>2</sub>-(337)

| B.P.        |               |             | M.P.    |                                |
|-------------|---------------|-------------|---------|--------------------------------|
| 151°        | cor.          | (1)         | 18° (5) | $D_{23.5}^{23.5} = 1.5500 (2)$ |
| 151°        | at 737 mm.    | (2)         | 17° (6) |                                |
| 151°        | sl. dec.      | (3)         |         |                                |
| 149.5-150.5 | s° at 765 mm. | (4)         |         |                                |
| 149-150°    | at 760 mm.    | (4)         |         |                                |
| 148-150°    | at 720 mm.    | (5)         |         |                                |
| 111°        | at 170 mm.    | (6)         |         |                                |
| 94-97°      | at 125 mm.    | (3)         |         |                                |
| 67-68°      | at 25 mm.     | (7)         |         |                                |
| 58-60°      | at 16 mm.     | (8)         |         |                                |
| 55-56°      | at 11 mm.     | (9)         |         |                                |
| 52-54°      | at 10 mm. (1  | l <b>0)</b> |         |                                |

Colorless when pure, but slightly brown if distilled at ord. press. — Sol. in 12 pts. aq., vol. with steam; miscible with alc. or ether. — Solid is very hygroscopic.

Č is an important pharmaceutical. — [Although full consideration of its pharmacology is beyond the scope of this text, for studies and reviews of this aspect see (11) (12) (13) (14) (40).] — Č in the organism is in part excreted (15) (16) as urochloralic acid [Beil. I-620].

## PREPARATION OF C

Č is readily obtd. from trichloroacetaldehyde (chloral) (3:5210) by various types of reducing actions which are able to effect reduction of the aldehyde group without serious interference with the halogen atoms.

By use of various alcoholates. [For prepn. of  $\bar{C}$  from chloral (3:5210) with Al(OEt)<sub>3</sub> in abs. EtOH (yields: 85% (17), 84% (3), 80% (18)) (6) (10) (19) cf. (23) see indic. refs.; with Al isopropylate in isopropyl alc. (20) in pres. of acetaldehyde (yield 72-87% (21)) see indic. refs.; with  $C_2H_5OMgBr$  (9), (CH<sub>3</sub>)<sub>2</sub>CHOMgBr (9), or other metallic isopropylates (22) see indic. refs.]

By use of RMgX. [For form. of Č from chloral (3.5210) during reaction with MeMgBr (24), with EtMgBr (25) (4), with iso-AmMgBr (4), with cyclohexyl MgBr (26), and various other RMgBr cpds. (7) (25) (yields: 65% (25), 50-60% (4), 42-52% (26)) see indic. refs.]

By use of metal alkyls. [For formn. of  $\tilde{C}$  from chloral (3:5210) by use of ZnEt<sub>2</sub> (2) (27) or AlEt<sub>3</sub> cpd. with ether (88.5% yield (8)) see indic. refs.; note, however, that SnEt<sub>4</sub> is not (8) effective.]

By phytochemical agents. [For prepn. of  $\tilde{C}$  from chloral (3:5210) by reduction with fermenting yeast see (28) (5).]

By misc. methods. [For form. of  $\bar{C}$  from urochlorate acid [Beil. 1-620] by hydrolysis with dil. mineral acid see (1); for form. of  $\bar{C}$  in small amts, from EtOH +  $Cl_2$  see (29).]

#### CHEMICAL BEHAVIOR OF C

## WITH INORGANIC REACTANTS

Oxidation.  $\bar{C}$  reduces Fehling's soln. on warming (2). —  $\bar{C}$  with fumg. HNO<sub>3</sub> is oxidized to trichloroacetic acid (1) (2).

Behavior with alkalies. [ $\bar{C}$  in conc. aq. NaOH first dissolves then gives a white ppt. of Na deriv. (33). —  $\bar{C}$  with aq. KOH dissolves and soon afterward reacts vigorously yielding (2) various prods. including chloroacetic acid (3:1370),  $\beta,\beta,\beta$ -trichloroethoxyacetic acid [Beil. III-233], m.p. 69.5° (2), and formic acid (1:1005).]

Behavior with inorganic acid chlorides. [ $\bar{\mathbb{C}}$  with PCl<sub>3</sub> evolves HCl and yields (27) tris- $(\beta,\beta,\beta$ -trichloroethyl) phosphite, b.p. 263°, no formation of 1,1,1,2-tetrachloroethane (3:5555) being evident. —  $\bar{\mathbb{C}}$  with PCl<sub>5</sub> at 140° evolves HCl yielding (27) tris- $(\beta,\beta,\beta$ -trichloroethyl) phosphate, m.p. 73–74° (sublimes without decn.) accompanied by a trace of 1,1,1,2-tetrachloroethane (3:5555).]

[Č with SOCl<sub>2</sub> gives (30) bis- $(\beta,\beta,\beta$ -trichloroethyl) sulfite, b.p. 139.5-140° at 5 mm., m.p. 6-7°. — Č with SO<sub>2</sub>Cl<sub>2</sub> in pyridine at 100° gives (30) bis- $(\beta,\beta,\beta$ -trichloroethyl) sulfate, m.p. 118.5-119.5° cor., also obtd. (30) by oxidn. of the preceding sulfite with acid KMnO<sub>4</sub> in acetone.]

Behavior with AlBr<sub>3</sub>. [ $\tilde{C}$  with AlBr<sub>3</sub> in CS<sub>2</sub> (31) (32) undergoes replacement of chlorine by bromine yielding acc. to conditions  $\beta$ -bromo- $\beta$ , $\beta$ -dichloroethanol, m.p. 17.5 (32), m.p. 17.5° (32), or  $\beta$ , $\beta$ -dibromo- $\beta$ -chloroethanol, m.p. 50°, b.p. 80° at 8 mm. (32).]

### WITH ORGANIC REACTANTS

(See also below under derivatives.) — [ $\bar{C}$  with diazomethane in heptane (33), n-BuOH (34), or acetone (33) (but not in ether (33)), yields  $\beta,\beta,\beta$ -trichloroethyl methyl ether, b.p. 35-36° at 16 mm. (33).]

[Č with 2,3-dichlorodioxane-1,4 (3:9105) gives (50% yield (18)) 2-chloro-3- $(\beta,\beta,\beta$ -trichloroethoxy)dioxane-1,4, m.p. 77-78°.]

[ $\ddot{C}$  with BEt<sub>3</sub> at 150° evolves C<sub>2</sub>H<sub>6</sub> and gives (44% yield (8))  $\beta,\beta,\beta$ -trichloroethyl diethylborate, CCl<sub>3</sub>CH<sub>2</sub>OB(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, b.p. 78-79° at 12 mm. (8).]

- $\beta,\beta,\beta$ -Trichloroethyl acetate: oil, b.p. 167° sl. dec. at 736 mm. (2), 71° at 18.3 mm. (2), 88–91° (35),  $D_D^{28} = 1.4239$  (35),  $n_D^{28} = 1.4691$  (35). [From  $\bar{C}$  with AcCl in s.t. at 130° for several hrs. (2).]
- —— β,β,β-Trichloroethyl benzoate: oil (29). [Note, however, that no constants are reported in the literature.]
- $\mathfrak{D}$   $\beta,\beta,\beta$ -Trichloroethyl *m*-nitrobenzoate: m.p. 75° (29) (26). [From  $\tilde{\mathbb{C}}$  + *m*-nitrobenzoyl chloride + aq. alk. (29).]
- $\mathfrak{D}$   $\beta,\beta,\beta$ -Trichloroethyl p-nitrobenzoate: m.p. 71° (28) (25). [From  $\tilde{C}+p$ -nitrobenzoyl chloride + aq. alk. (28).]
- $\mathfrak{D}$   $\beta,\beta,\beta$ -Trichloroethyl 3.5-dinitrobenzoate: m.p. 142-143° (25).
- $\[ \widehat{\mathbf{D}} \]$   $\beta,\beta,\beta$ -Trichloroethyl carbamate: m.p. 64-65° (28) (36) (37) (38), 64° (39). [From  $\[\widehat{\mathbf{C}}\]$  (1 mole) with carbamyl chloride (1 mole) in dry ether (28) (note that  $\[\widehat{\mathbf{C}}\]$  with excess of carbamyl chloride gives (28)  $\beta,\beta,\beta$ -trichloroethyl allophanate, m.p. 182-183°), or from  $\[\widehat{\mathbf{C}}\]$  by treatment with phosgene (3:5000) followed by NH<sub>3</sub> (37). Note that this prod. comprises the hypnotic pharmaceutical known as "Voluntal." It also forms molecular cpds. with various other pharmaceuticals; e.g., "Voluntal," m.p. 64-65° + pyramidone (2,3-dimethyl-4-dimethylamino-1-phenyl-pyrazolone-5) [Beil. XXV-452, XXV<sub>1</sub>-(672)], m.p. 108°, give a 1:1 mol. cpd., m.p. 75-76°, known as "Compral"; for f.p./compn. data and diagrams on this (and similar systems) see (39).]
- $\beta,\beta,\beta$ -Trichloroethyl N-phenylcarbamate: m.p. 87° (39). [For f.p./compn. data and diagrams of this prod. (also known as N-phenylvoluntal) with antipyrine, etc., see (39).]
- $\oplus$   $\beta,\beta,\beta$ -Trichloroethyl N-( $\alpha$ -naphthyl)carbamate: m.p. 120° (7), 119° (26). [From  $\bar{C} + \alpha$ -naphthyl isocyanate at 120–135° for 2 hrs. (7).]

3:5775 (1) von Mering, Z. physiol. Chem. 6, 487 (1882). (2) Garsarolli-Thurnlackh, Ann. 210, 64-68 (1881). (3) Chalmers, Org. Syntheses, Coll. Vol. 2 (1st ed.), 598-601 (1943); 15, 80-84 (1935). (4) Jotsitch, J. Russ. Phys.-Chem. Soc. 36, 443-446 (1904); Bull. soc. chim. (3) 34, 329-330 (1905). (5) Lintner, Luers, Z. physiol. Chem. 88, 122-123 (1913). (6) Callen (to Winthrop Chem. Co.), U.S. 1,725,054, Aug. 20, 1929; [Cent. 1930, I 434]; C.A. 23, 4709 (1929); Ger. 437,160, Nov. 18, 1926; Cent. 1927, I 802; not in C.A.: Brit. 286,797, April 5, 1928; Cent. 1928, I 2750; C.A. 23, 395 (1929). (7) Dean, Wolf, J. Am. Chem. Soc. 58, 332-333 (1936). (8) Meerwein, Hinz, Majert, Sonke, J. prakt. Chem. (2) 147, 236, 243 (1936). (9) Callsen (to I.G.), Ger. 565,157, Nov. 26, 1932; Cent. 1933, I 1514; C.A. 27, 992 (1933): Brit. 384,156, Dec. 22, 1932; Cent. 1933, I 1351; [C.A. 27, 4240 (1933)]. (10) Nakai, Biochem. Z. 152, 272 (1924); Cent. 1925, I 637; [C.A. 19, 2807 (1925)].

(11) Case, Anesthesiology 4, 523-527 (1943); C.A. 38, 3352 (1944). (12) Lehmann, Knight, Am. J. Med. Sci. 197, 639-646 (1939); C.A. 34, 3365 (1940). (13) Lehmann, Knight, J. Pharmacol. 63, 453-465 (1938); C.A. 33, 4321 (1939). (14) Molitor, Robinson, Anesthesia and Analgesia 17, 258-263 (1938); C.A. 32, 9269 (1938). (15) Akamatsu, Wasmuth, Arch. exptl. Pathol. Pharmakol. 99, 108-116 (1923); Cent. 1923, III 1185; C.A. 18, 112 (1924). (16) Külts, Z. Biol. 20, 161. (17) Meerwein, Schmidt, Ann. 444, 221-234 (1925). (18) Böeseken, Tellegen, Plusje, Rec. trav. chim. 57, 74-75 (1938). (19) Meerwein (to F. Bayer Co.), U.S. 1,572,742, Feb. 9, 1926; Cent. 1926, I 3627; [C.A. 26, 1243 (1926)]: Brit. 235,584, June 27, 1926; [Cent. 1926, I

1097]; C.A. 20, 917 (1926). (20) Callsen (to I.G.), Ger. 489,281, Jan. 15, 1930; Cent. 1930, I 3104; [C.A. 24, 2140 (1930)]; Swiss 126,963, July 16, 1928; Cent. 1929, I 1741; C.A. 23, 852 (1929). (21) Nord, Ger. 434,728, Oct. 5, 1926; Cent. 1926, II 2845; not in C.A. (22) I.G., Brit. 370,490, May 5, 1932; Cent. 1932, II 3303-3304; C.A. 27, 2961 (1933). (23) Dworzak, Monatsh. 47, 12-13 (1926). (24) Kharasch, Kleiger, Martin, Mayo, J. Am. Chem. Soc. 63, 2306-2307 (1941). (25) Gilman, Abbott, J. Org. Chem. 8, 224-229 (1943). (26) Floutz, J. Am. Chem. Soc. 65, 2255 (1943). (27) Delacre, Bull. soc. chim. (2) 48, 784-788 (1887). (28) Willstatter, Duisberg, Ber. 56, 2284-2285 (1923). (29) Altschul, Meyer, Ber. 26, 2758 (1893). (30) Sporzynski, Arch. Chem. Farm. 2, 243-247 (1935); Cent. 1935, II 2941; C.A. 30, 5938 (1936).

(31) Muller (to Winthrop Chem. Co.), U.S. 2,057,964, Oct. 20, 1936; C.A. 31, 112 (1937); not in Cent.: Brit. 366,581, March 3, 1932; Cent. 1932, II 770; [C.A. 27, 1893 (1933)]. (32) Schranz, Göth, Kuhn, Kayser, Ger. 600,769, July 31, 1934; Cent. 1934, II 2285; [C.A. 28, 7429 (1934)]. (33) Meerwein, Bersin, Burneleit, Ber. 62, 1006-1007 (1929). (34) Meerwein, Hinz, Ann. 484, 23 (1930). (35) Baum, Vogt, Hennion, J. Am. Chem. Soc. 61, 1458 (1939). (36) Willstätter, Straub, Hauptmann, Munch. med. Wochschr. 69, 1651-1654 (1922); Cent. 1923, I 1196, not in C.A. (37) F. Bayer & Co., Ger. 358,125, Sept. 4, 1922; Cent. 1922, IV 888; C.A. 17, 2172 (1923). (38) Mentzel, Pharm. Zentralhalle 63, 579-580 (1922); 64, 10-11 (1923); Cent. 1923, II 549. (39) Pfeiffer, Seydel, Z. physiol. Chem. 178, 81-96 (1928). (40) Burtner, Lehmann, J. Pharmacol. 63, 183-192 (1938); C.A. 32, 6741 (1938).

3:5780  $\beta$ -CHLOROETHYL CHLOROFORMATE  $C_3H_4O_2Cl_2$  Beil. III - 11  $(\beta$ -Chloroethyl chlorocarbonate) ClCH<sub>2</sub>.CH<sub>2</sub>.O.CO.Cl III<sub>1</sub>— III<sub>2</sub>-(10)

B.P. 152.5° at 752 mm. (1)  $D_4^{20} = 1.3825$  (1)  $n_D^{20} = 1.4465$  (1)

Colorless lachrymatory liq. which fumes in air. — Insol. aq., eas. sol. alc., ether. [For prepn. from  $\beta$ -chloroethanol (ethylene chlorohydrin) (3:5552) + phosgene (3:5000) see (1).]

 $\bar{\mathbf{C}}$  on slight warming with quinoline dec. at  $41-42^{\circ}$  into ethylene dichloride (3:5130) +  $\mathbf{CO}_{2}$  (2).

 $\tilde{C}$  is readily hydrolyzed by warm aq. or dil. alk. to  $\beta$ -chloroethanol (3:5552) + CO<sub>2</sub> + HCl (1).

- $\oplus$   $\beta$ -Chloroethyl carbamate: from  $\ddot{C}+2$  moles conc. aq. NH<sub>4</sub>OH; m.p. 76° (3) (4) (5). [The value of 115° given in Beil. III-11 is wrong (5).]
- Φ β-Chloroethyl N-phenylcarbamate: from C in C<sub>6</sub>H<sub>6</sub> added to C<sub>6</sub>H<sub>6</sub> soln. of aniline (2 moles); after filtering off the pptd. aniline hydrochloride, the C<sub>6</sub>H<sub>6</sub> is evapd. (6); white ndls., m.p. 51° (3). [This deriv. on short boilg. with dil. aq. or alc. alk. loses HCl and by ring closure yields 3-phenyloxazolidone-2 [Beil. XXVII-136], lfts. from alc., m.p. 124° (3), 122° (7).]
- Φ β-Chloroethyl N-p-tolycarbamate: white ndls. from C<sub>6</sub>H<sub>6</sub>, m.p. 45° (6). [On treatment with alk. this gives 3-(p-tolyl)oxazolidone-2, white ndls. from alc., m.p. 91° (6).]
- $\mathfrak{D}$   $\beta$ -Chloroethyl phenylcarbazate: from  $\tilde{\mathbb{C}}$  on treatment with 1 mole phenylhydrazine in aq. pyridine; the red oil initially formed soon solidifies and is recrystd. from  $\mathbb{C}_0H_6$ ; white ndls., m.p. 89° (8).

3:5780 (1) Nekrassow, Komissarow, J. prakt. Chem. (2) 123, 163 (1929). (2) Carré, Bull. soc. chim. (5) 3, 1069 (1936). (3) Nemirowsky, J. prakt. Chem. (2) 31, 174-175 (1885). (4) Ger. 387,963, Jan. 1, 1924; Cent. 1924, II 403. (5) Kuroda, Cent. 1927, II 243. (6) Adams, Segur, J. Am. Chem. Soc. 45, 787-789 (1923). (7) Otto, J. prakt. Chem. (2) 44, 17 (1891). (8) Dox, J. Am. Chem. Soc. 48, 1952 (1926).

3:5785 1,1,1,2-TETRACHLOROPROPANE Cl 
$$(\beta,\beta,\beta$$
-Trichloroisopropyl chloride) CH<sub>3</sub>—C—CCl<sub>3</sub>  $I_1$ —107  $I_2$ —

B.P. F.P. 152-153° cor. at 760 mm. (1) 
$$-65^{\circ}$$
 (1)  $D_{22}^{22} = 1.4695$  (6)  $n_{D}^{20} = 1.4855$  (6) 150-151° at 751 mm. (6)  $-64^{\circ}$  (6)  $D_{20}^{20} = 1.473$  (1)  $n_{-}^{-} = 1.4867$  (1) 87-88° at 104 mm. (6)

Colorless liq. insol. aq. [For use as dry-cleaning solvent see (2).]

[For prepn. of  $\bar{C}$  from 1,1,1-trichloropropanol-2 (3:0846) via reactn. with PCl<sub>3</sub> and action of Cl<sub>2</sub> on this product see (1); for prepn. of  $\bar{C}$  with 1,1-dichloropropene-1 (3:5120) + Cl<sub>2</sub> + cat. at 0-30° in absence of light see (3) (4); from 3,3,3-trichloropropene-1 (3:5345) by addn. of HCl in pres. of 3% FeCl<sub>3</sub> in s.t. at 50° for 50-100 hrs. see (6).]

C with aq. or alc. NaOH or KOH for 3 hrs. at 95° gives (93% yield (5)) 1,1,2-trichloro-propene-1 (3:5395), b.p. 118° (5).

3:5785 (1) Henry, Rec. trav. chim. 24, 333-334 (1905). (2) Sharp, U.S. 2,010,038, Aug. 6, 1935; Cent. 1935, II 3859; C.A. 29, 6440 (1935). (3) Cass (to du Pont), U.S. 2,097,442, Nov. 2, 1937; Cent. 1938, I 1218; C.A. 32, 194 (1938). (4) du Pont Co. & Cass, Brit. 471,187, Aug. 30, 1937; Cent. 1938, I 1218; C.A. 32, 958 (1938). (5) du Pont Co. & Cass, Brit. 469,051, July 19, 1937; Cent. 1938, I 1218; C.A. 32, 596 (1938). (6) Kharasch, Rossin, Fields, J. Am. Chem. Soc. 63, 2558-2560 (1941).

3:5800 METHYL TRICHLOROACETATE  $C_3H_3O_2Cl_3$  Beil. II - 208  $Cl_3C.COOCH_3$  II<sub>1</sub>— II<sub>2</sub>-(199)

| B.P.                          | F.P.                                        |                               |
|-------------------------------|---------------------------------------------|-------------------------------|
| 153.8° at 760 mm. (1)         | $-17.5^{\circ}$ (1) $D_4^{20} = 1.4874$ (8) | $n_{\rm D}^{20}=1.4572 \ (8)$ |
| 153° (2)                      | 1.4864 (7)                                  | 1.45717(7)                    |
| 152.3-152.5° at 765.3 mm. (3) |                                             |                               |
| 150.0-150.5° at 679 mm. (4)   |                                             |                               |
| 52-54° at 12 mm. (5)          |                                             |                               |
| 44.5-44.6° at 12 mm. (6)      |                                             |                               |
| 46.5-47.0° at 11 mm. (7)      |                                             |                               |

[For prepn. of  $\bar{C}$  from trichloroacetic acid (3:1150) with MeOH at 60° (50-66% yield (2)), with MeOH + Hcl at 50° (74.6% yield (2)), with MeOH + H<sub>2</sub>SO<sub>4</sub> (9), with MeOH + BF<sub>3</sub>.Et<sub>2</sub>O at 64° (73% yield (2)), or with Me<sub>2</sub>SO<sub>4</sub> in s.t. at 200° (10) see indic. refs.; from trichloroacetamide + MeOH + BF<sub>3</sub> (53% yield) see (2); from "tetrachloroethylidene trichlorolactate" [Beil. XIX-105] with MeOH see (5).]

[For studies on hydrolysis of  $\ddot{C}$  under various circumstances see (11) (6) (7) (12).] [For speed of reactn, with pyridine at  $18-20^{\circ}$  see (13).]

3:5800 (1) Timmermans, Bull. soc. chim. Belg. 31, 392 (1922). (2) Toole, Sowa, J. Am. Chem. Soc. 59, 1971-1973 (1937). (3) Schiff, Z. physik. Chem. 1, 379 (1887). (4) Sudborough, Karve, J. Indian Inst. Soc. 5, 16 (1922); Cent. 1923, I 295; C.A. 17, 665 (1923). (5) Anschütz, Haslam, Ann. 253, 124 (1889). (6) Skrabal, Monatsh. 71, 298-308 (1938). (7) Palomaa, Salmi, Korte, Ber. 72, 790-797 (1939). (8) Schjanberg, Z. physik. Chem. A-172, 229 (1935). (9) Dumaa, Ann. 32, 111 (1839). (10) Simon, Compt. rend. 176, 585 (1923).

(11) Olivier, Berger, Rec. trav. chim. 41, 642 (1921); 44, 643, 647-648 (1925). (12) Salmi, Suonpaä, Ber. 73, 1126-1131 (1940). (13) Tronov, Akivis, Orlova, J. Russ. Phys.-Chem. Soc. 61, 345-353 (1929); Cent. 1929, II 2550; C.A. 24, 590 (1930).

3:5820 3-CHLOROPROPEN-2-OL-1 CH=CH—CH<sub>2</sub> C<sub>3</sub>H<sub>5</sub>OCl 
$$I_1$$
— $I_2$ —

High-boiling stereoisomer

B.P. 153.6° at 756 mm. (1)  $D_4^{35} = 1.1582$  (1)  $n_D^{35} = 1.4600$  (1)  $D_4^{26} = 1.1681$  (1)  $n_D^{25} = 1.4641$  (1)  $D_4^{20} = 1.1729$  (1)  $n_D^{20} = 1.4664$  (1)

Low-boiling b.P. 146.3° at 746 mm. (1)  $D_4^{25} = 1.1623$  (1)  $n_D^{35} = 1.4573$  (1)  $D_4^{25} = 1.1720$  (1)  $n_D^{25} = 1.4617$  (1)  $D_4^{20} = 1.1769$  (1)  $n_D^{20} = 1.4638$  (1)

Colorless liquids; both stereoisomers possess a delayed vesicant actn., and care should be taken in handling them.

[For prepn. of  $\bar{C}$  from 1,3-dichloropropene-1 ( $\gamma$ -chloroallyl chloride) (3:5280) by hydrolysis for 2 hrs. under reflux with aq. 10% Na<sub>2</sub>CO<sub>3</sub> (10% excess over 1 equiv.) see (1); note that the high-boiling stereoisomer of  $\gamma$ -chloroallyl chloride gives (76% yield) of the high-boiling  $\bar{C}$ , and that the lower-boilg. stereoisomer of  $\gamma$ -chloroallyl chloride gives (81% yield) the lower-boiling stereoisomer of  $\bar{C}$  (1).—Note that from  $\gamma$ -chloroallyl acetate (which was presumably a mixture of the acetates of both stereoisomers of  $\bar{C}$ ) by hydrolysis with cold aq. NaOH  $\bar{C}$  (presumably a mixt. of stereoisomers) has been reported (2).]

The two stereoisomers of  $\tilde{C}$  behave differently with hot aq. NaOH (1): the higher-boilg, stereoisomer fails to give any propargyl alcohol but some acetylene and sodium formate are formed; the lower-boiling stereomer on refluxing with aq. 12.5% NaOH (10% excess) for 3 hrs. gives (by dehydrochlorination) 69% yield of propargyl alcohol (propyne-1-ol-3) [Beil. I-454], b.p. 114-115° (for study of influence of NaOH concn. and time see (1)).

 $\mathfrak{D}$   $\gamma$ -Chloroallyl N-phenylcarbamate: ndls. from pet. ether, m.p. 75° (2). [From  $\tilde{\mathbb{C}}$  + phenyl isocyanate (note, however, that the  $\tilde{\mathbb{C}}$  employed very probably was a mixt. of the two stereoisomers (2).]

3:5820 (1) Hatch, Moore, J. Am. Chem. Soc. 66, 285-287 (1944). (2) Kirrmann, Pacaud, Dosque, Bull. soc. chim. (5) 1, 868 (1934).

3:5825 1,1,2,2-TETRACHLOROPROPANE Cl 
$$C_3H_4Cl_4$$
 Beil. I - 107  $CH_3$ — $C$ — $CHCl_2$   $I_1$ — $I_2$ —

B.P. 153-154° (1)  $D_{13}^{13} = 1.47$  (1) 153° (3)

Liquid; misc. with alc. or ether; insol. aq.

[For prepn. of  $\tilde{C}$  from  $\alpha,\alpha$ -dichloroacetone (3:5430) + PCl<sub>5</sub> see (3); from 1,2-dichloropropene-1 (3:5150) by addn. of Cl<sub>2</sub> see (1); for formn. of  $\tilde{C}$  in small amt. as by-product of actn. of Cl<sub>2</sub> on propylene see (2).]

 $\ddot{C}$  with warm alc. KOH, or with alc. NH<sub>3</sub> at 140° splits off HCl yielding (3) (1) 1,1,2(?)-trichloropropene-1, (3:5395), b.p. 115° (3), 116-117° (1).

3:5825 (1) Szenic, Taggesell, Ber. 28, 2667-2668 (1895). (2) Goudet, Schenker, Helv. Chim. Acta 10, 136 (1927). (3) Borsche, Fittig, Ann. 133, 114-117 (1865).

B.P. M.P. 155° at 760 mm. (1) (6) 
$$-38.7^{\circ}$$
 (4)  $D_4^{20} = 1.1598$  (2)  $n_D^{20} = 1.4566$  (2) 74.7° at 50 mm. (2) 53-58° at 12 mm. (3)

The b.p. of 163° (3) is erroneous (1).

[For prepn. from N-benzoylpyrrolidine [Beil. XX-5] + PCl<sub>5</sub> see (3); from N,N'-dibenzoyltetramethylenediamine + PCl<sub>5</sub> see (5); from butanediol-1,4 (tetramethylene glycol) (1:6516) + SOCl<sub>2</sub> see (10); from 1-chlorobutane by chlorination in light (together with other products) see (2) (7) (8) (9); from tetrahydrofuran [Beil. XVII-10, XVII<sub>1</sub>-(5)] with HCl gas in pres. of 50% ZnCl<sub>2</sub> (59% yield) see (15) [note that in absence of ZnCl<sub>2</sub> only 4-chlorobutanol-1 (3:9170) is formed (15) (16).]]

- [ $\bar{C}$  on passing over alkali (NaOH,  $K_2CO_3$ , soda-lime, etc.) at elevated temperatures (e.g., 700-750°) yields butadiene-1,3.] [For studies of this reaction see (7) (8) (9).]
- C can be hydrolyzed to tetramethylene glycol (1:6516) only very slowly (6).
- C htd. with p-toluidine (3 moles) at 100° for 10 hrs. gives (70% yield (11)) N-p-tolyl-pyrrolidine, b.p. 120° at 8 mm., cryst. from dil. alc., m.p. 42° (11). [For corresp. behavior with aniline yielding N-phenylpyrrolidine see (12).]
  - ---- 1,4-Diphthalimidobutane: obtd. indirectly (13) and as by-product (14) of prepn. of N-(δ-chloro-n-butyl)phthalimide; pr. from AcOH, m.p. 219° (43).
- 3:5835 (1) Hass, J. Chem. Education 13, 493 (1936). (2) Tishchenko, Churbakov, J. Gen. Chem. (U.S.S.R.) 7, 893-896 (1937); C.A. 31, 5755 (1937); Cent. 1938, II 2575. (3) von Braun, Beschke, Ber. 39, 4361 (1906). (4) Timmermans, Bull. soc. chrm. Belg. 31, 390 (1922). (5) von Braun, Lemke, Ber. 55, 3530 (1922). (6) Tishchenko, J. Gen. Chem. (U.S.S.R.) 9, 1380-1388 (1939); C.A. 34, 1611 (1940). (7) Muskat, Northrup, J. Am. Chem. Soc. 52, 4050-4052 (1930). (8) Carothers (to du Pont), U.S. 2,038,593, April 28, 1936; Cent. 1936, II 3358; C.A. 36, 3912 (1936). (9) Muskat (to du Pont), U.S. 2,070,609, Feb. 16, 1937, Cent. 1937, II 2597; C.A. 31, 2236 (1937). (10) Schmidt, Manchen (to General Aniline and Film Corp), U.S. 2,222,302, Nov. 19, 1941; C.A. 35, 1806 (1941).
- (11) Craig, Hixon, J. Am. Chem. Soc. 53, 189 (1931). (12) Craig, Hixon, J. Am. Chem. Soc. 52, 807 (1930). (13) Langenbeck, Waltersdorf, Blachnitzky, Ber. 72, 671-672 (1939). (14) Keil, Ber. 63, 1614-1615 (1930). (15) Fried, Kleene, J. Am. Chem. Soc. 63, 2691 (1941). (16) Starr, Hixon, J. Am. Chem. Soc. 56, 1596 (1934).

B.P. F.P. [158° (1)] -14.7° (2) 
$$D_{-}^{20} = 1.394$$
 (7)  $n_{\rm D}^{20} = 1.4858$  (5) 157° (6) 156.85° (2)  $D_{-}^{15} = 1.417$  (8) 154-156° (4) 154.6-155.6° at 788 mm. (5)

[For prepn. of  $\tilde{C}$  from glycerol (1:6540) with 3 moles SOCl<sub>2</sub> + 3 moles pyridine at 110–120° (78% yield) see (9); from either 1,3-dichloropropanol-2 (glycerol  $\alpha$ -dichloropydrin) (3:5985) or 2,3-dichloropropanol-1 (glycerol  $\beta$ -dichlorohydrin) (3:6060) with PCl<sub>5</sub> see

(10) (11); from 1,3-dichloropropanol-2 (see above) with POCl<sub>3</sub> at 180° (but only as byprod.) see (12), or with SOCl<sub>2</sub> + diethylaniline see (13); from allyl chloride (3:7035) with Cl<sub>2</sub> (6) or with SO<sub>2</sub>Cl<sub>2</sub> (80-90% yield (14)) see indic. refs.; from allyl iodide (15) or isopropyl iodide (8) (16) with Cl<sub>2</sub> see indic. refs.; from propane + Cl<sub>2</sub> see (17) (16); from 1,2-dichloropropane (propylene dichloride) (3:5200) with Cl<sub>2</sub> + Fe in ultra-violet light at -18° (18) (19) or with SO<sub>2</sub>Cl<sub>2</sub> in pres. of org. peroxides (26) cf. (27) see indic refs.; from propylene with Cl<sub>2</sub> in gas phase in dark in absence of Fe see (20).

C on htg. with 20 pts. aq. in s.t. at 160° (11) or with aq. NaHCO<sub>3</sub> + Cu under press. at 130° for 5-6 hrs. (21) or with steam over cat. at 550-850° (25) yields glycerol (1:6540).

Č on warming with solid KOH loses HCl yielding (22) mainly 2,3-dichloropropene-1 (3:5190) together with some 1,3-dichloropropene-1 (3:5280).

[C with alc. KSH yields (23) trithioglycerol [Beil. I-519] cf. (24).]

[C with SbCl<sub>5</sub> at 190° yields (6) 1,1,2,3-tetrachloropropane (3:6035).]

3:5849 (1) Carius, Ann. 124, 223 (1862). (2) Timmermans, Bull. soc. chim. Belg. 30, 67 (1921). (3) Gibson, J. Soc. Chem. Ind. 50, 950 (1931). (4) Herzfelder, Ber. 26, 1259 (1893). (5) Kohlrausch, Ypsilanti, Z. physik. Chem. B-32, 416 (1936). (6) Herzfelder, Ber. 26, 2435 (1893). (7) Blanchard, Bull. soc. chim. (4) 43, 1198 (1928). (8) Linneman, Ann. 136, 48 (1865). (9) Carré, Mauclere, Bull. soc. chim. (4) 49, 1152 (1931). (10) Fittig, Pfeffer, Ann. 135, 359 (1865).

(11) Berthelot, Luca, Jahresber. 1857, 477. (12) Hill, Fischer, J. Am. Chem. Soc. 44, 2588 (1922). (13) Darzens, Compt. rend. 152, 1314 (1911). (14) Kharasch, Brown, J. Am. Chem. Soc. 61, 3432-3434 (1939). (15) Oppenheim, Ann. 133, 383-384 (1865). (16) Berthelot, Ann. 155, 108 (1870). (17) Schorlemmer, Ann. 152, 159-163 (1869). (18) Cass, Levine (to du Pont. Co.) Brit. 471,188, Sept. 30, 1937; Cent. 1938, I 1218; C.A. 32, 957 (1938). (19) Friedel, Silva, Zeit. für. Chemie 1871, 683. (20) Laughlin, Brown (to Standard Oil Development Co.), U.S. 2,300,159, Oct. 27, 1942; C.A. 37, 1725 (1943).

(21) Matter, Ger. 369,502, Feb. 20, 1923; Cent. 1923, II 742. (22) Reboul, Ann. chim. (3) 66, 38-40 (1860). (23) Ref. 1, pp. 236-240. (25) Lillienfeld, Brit. 385,980, Feb. 2, 1933; Cent. 1933, 1928. (25) Lloyd, Kennedy, U.S. 1,849,844, March 15, 1932; Cent. 1932, I 2994. (26) Kharasch, Brown, J. Am. Chem. Soc. 61, 2145 (1939). (27) Zellner (to Tide Water Associated Oil Co.) U.S. 2,370,342, Feb. 27, 1945; C.A. 39, 3535 (1945).

3:5845 TRICHLOROACRYLOYL CHLORIDE Cl C<sub>3</sub>OCl<sub>4</sub> Beil. II — 
$$II_{1}$$
-(187)  $II_{2}$ —  $II_{2}$ —  $II_{2}$ —  $II_{2}$ —  $II_{2}$ —  $II_{2}$ —  $II_{3}$  B.P. 158° at 760 mm. (1) (2)  $II_{2}$   $II_{3}$   $II_{2}$   $II_{3}$   $II_{4}$   $II_{2}$ 

[For prepn. of  $\bar{C}$  from trichloroacrylic acid (3:1840) with SOCl<sub>2</sub> (2½ moles) refluxed for 12 hrs. (80-90% yield) see (2) cf. (6).]

Č with AlCl<sub>2</sub> in CS<sub>2</sub> gives (1) a very stable 1:1 addn. prod.; on htg. it does not lose CO but ultimately decomposes giving (1) trichloroacetic acid (3:1150).

 $\tilde{C}$  with  $C_6H_6$  + AlCl<sub>3</sub> gives (100% yield (1)) (3) phenyl  $\alpha,\beta,\beta$ -trichlorovinyl ketone [Beil. VII<sub>1</sub>-(190)], oil, b.p. 138° at 2 mm. (2),  $D_4^{25} = 1.3902$  (2);  $n_2^{25} = 1.5798$  (2); for analogous behavior of  $\tilde{C}$  with toluene + many other arom. hydrocarbons + AlCl<sub>3</sub> see (2).

[Č with 3%  $\rm H_2O_2$  + 25% aq. NaOH at -3° to 0° gives (69% yield (3)) cis-(trichloro-acryloyl) peroxide, cryst. from alc., m.p. 49°.]

- Trichloroacrylic acid amide: m.p. 97° (4), 96-97° (5), 96° (2). [From  $\bar{C}$  with conc. aq. NH<sub>4</sub>OH (5) or from ethyl trichloroacrylate with alc. NH<sub>3</sub> (4).] [For crystallographic study see (4).]
- ---- Trichloroacrylic anilide: ndls. from pet. ether, m.p. 98° (6). [From C (1 mole) with aniline (2 moles) in CHCl<sub>3</sub> at 0° (77% yield (6)).]
- --- Trichloroacrylic p-toluidide: unreported.

3:5845 (1) Böeseken, Hasselbach, Rec. trav. chim. 32, 10-11 (1913). (2) Böeseken, Dujardin, Rec. trav. chim. 32, 101-111 (1913). (3) Böeseken, Gelissen, Rec. trav. chim. 43, 266-268 (1924). (4) Gilta, Bull. soc. chim. Belg. 39, 587-588 (1930). (5) Fritsch, Ann. 297, 317-318 (1897). (6) Bergmann, Haskelberg, J. Am. Chem. Soc. 63, 1438 (1941).

| 3:5850 | ETHYL DICHLOROACETATE | $C_4H_6O_2Cl_2$    | Beil. II - 203   |  |  |
|--------|-----------------------|--------------------|------------------|--|--|
|        | Cl <sub>2</sub> CH.Co | $Cl_2CH.COOC_2H_5$ |                  |  |  |
|        |                       |                    | $\Pi_{2}$ -(196) |  |  |

B.P. 158.3-158.7° (1) 158-158.2° cor. (2) 157.7° at 754.6 mm. (3) 157° (4) 156° at 738.2 mm. (5) 154-155° at 749.5 mm. (6)

[For prepn. of  $\tilde{C}$  from dichloroacetic acid (3:6208) with EtOH + HCl see (7) (8); from chloral (3:5210) or chloral hydrate diacetate with EtOH/KCN (88% and 80% yield, respectively) see (4); from chloral cyanohydrin with abs. EtOH + conc. KOH (8) or abs. EtOH + anhyd. NaOAc (9) see indic. refs.; from tetrachloroethylene (3:5460) with NaOEt in s.t. at 100-120° see (10); from  $\alpha,\beta$ -dichlorovinyl ethyl ether (3:5540) with Cl<sub>2</sub> followed by aq. see (11); from  $\beta,\beta$ -dichloro- $\alpha$ -acetoxyacrylonitrile with EtOH in s.t. at 150° see (12); for formn. of  $\tilde{C}$  in reactn. of EtOH with Cl<sub>2</sub> see (13).]

Č on boilg. with alc. KOH yields (14) glycolic acid (1:0430) and oxalic acid (1:0445); Č on htg. with NaOEt in abs. alc. yields (15) a small amt. ethyl diethoxyacetate together with larger amts. of diethyl oxalo-chloroacetate diethylacetal on its decn. products.

[ $\ddot{\mathbf{C}}$  on boilg. with EtOH + KCN yields (16) K dichloroacetate, AcOH, and oxalic acid;  $\ddot{\mathbf{C}}$  on boilg. with EtOH + KF yields (17) KCl, SiF<sub>4</sub> + ethyl glyoxylate.]

[C in ether treated with Na or htd. with Ag yields (18) diethyl maleate (1:3791).]

Č on shaking with aq. + benzylamine yields (19) N-benzyl-dichloroacetamide, m.p. 94.8-95.6° cor. (19), 95-96° (20).

C on hydrolysis with acid yields EtOH (1:6130) + dichloroacetic acid (3:6208). [For study of kinetics of this hydrolysis see (21) (22) (23).]

3:5850 (1) Cheng, Z. physik. Chem. B-24, 306 (1934). (2) Perkin, J. Chem. Soc. 65, 423 (1894). (3) Schiff, Ann. 220, 108 (1883). (4) Chattaway, Irving, J. Chem. Soc. 1929, 1042, 1047. (5) Brühl, Ann. 203, 22 (1880). (6) Zincke, Kegel, Ber. 22, 1475 (1889). (7) Müller, Ann. 133, 160 (1865). (8) Wallach, Ber. 10, 1525-1527 (1877). (9) Wallach, Ber. 10, 2121-2124 (1877). (10) Fischer, Geuther, Jahresber. 1864, 316.

(11) Crompton, Triffitt, J. Chem Soc. 119, 1874-1875 (1921). (12) Kötz, J. prakt. Chem. (2) 103, 232 (1921/22). (13) Altschul, Meyer, Ber. 26, 2757 (1893). (14) Claus, Ber. 14, 1066 (1881). (15) Cope, J. Am. Chem. Soc. 58, 570-572 (1936). (16) Claus, Ber. 11, 496-498; 1043-1044 (1878). (17) Swarts, Cent. 1903, I 14. (18) Tanatar, Ber. 12, 1564 (1879). (19) Buehler, Mackenzie, J. Am. Chem. Soc. 59, 421-422 (1937). (20) Mannich, Kuphal, Arch. Pharm. 256, 544 (1912).

(21) Newling, Hinshelwood, J. Chem. Soc. 1936, 1357-1361. (22) Timm, Hinshelwood, J. Chem. Soc. 1938, 862-869. (23) Salmi, Suonpaä, Ber. 73, 1126-1131 (1940).

3:5860 
$$d$$
, $l$ - $\alpha$ -CHLORO- $n$ -VALERYL CHLORIDE  $C_5H_8$ OCl<sub>2</sub> Beil. II - 302 CH<sub>3</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>-</sub>C=O II<sub>1</sub>- II<sub>2</sub>- Cl Cl

B.P. 155-157° at 763 mm. (1)  $D_{-}^{-} = 1.246 (1)$ 

[For prepn. of  $\tilde{C}$  from  $\alpha$ -chloro-n-valeric acid (3:8783) with PCl<sub>3</sub> at 70-80° see (1).]

Beil. II - 414

 $\bar{C}$  on hydrolysis with eq. yields (1)  $\alpha$ -chloro-n-valeric acid (3:8783), b.p. 222°.

3:5860 (1) Servais, Rec. trav. chim. 20, 46-47 (1901).

3:5870 METHYL α-CHLOROCROTONATE

B.P. 161.8° at 774 mm.

M.P. 50°

See 3:0846. Division A: Solids.

3:5870 METHYL 
$$\alpha$$
-CHLOROCROTONATE  $C_bH_7O_2Cl$  Beil. II - 414  $CH_3$ —C—H  $II_1$ -(189)  $II_2$ -(395) Cl—C—COOCH<sub>3</sub>

B.P. 161-162° (1)  $D_4^{23.7} = 1.1570$  (1)  $D_2^{23.1} = 1.1575$  (1)  $n_D^{23.1} = 1.45689$  (1) 161° (3)

161° (3)  
160.8° (4) 
$$D_4^{22.6} = 1.1587$$
 (2)  $n_D^{22.6} = 1.45634$  (2)  
158-159° (5)  $D_2^{10} = 1.160$  (1)  
59.0-59.5° at 16 mm. (5)  $D_-^{10} = 1.166$  (5)  $n_-^{19} = 1.455$  (5)

Note that the stereoisomeric methyl  $\alpha$ -chloroisocrotonate is unreported.

[For prepn. of C from α-chlorocrotonic acid (3:2760) in MeOH with HCl gas (65% vield (5)) (1) (4); from  $\alpha, \alpha, \beta$ -trichloro-n-butyraldehyde (butylchloral) (3:1905) (as hydrate) in MeOH below 15° with KCN (2 moles) (85% yield (3)); or from methyl α-chloro-αvinylacetate (5) by isomerization with NaOAc/AcOH on refluxing 30-40 hrs. (5) see indic. refs.]

 $\ddot{\mathbf{C}}$  is unaffected by AgOH (dif. from methyl  $\alpha$ -chloro- $\alpha$ -vinylacetate (5)).

3:5870 (1) von Auwers, Ber. 45, 2806 (1912). (2) Eisenlohr, Ber. 42, 3208 (1911). (3) Chattaway, Irving, J. Chem. Soc. 1929, 1045. (4) Kahlbaum, Ber. 12, 343-344 (1879). (5) Rambaud, Bull. soc. chim. (5) 1, 1353-1354 (1934).

3:5875 FUMARYL (DI)CHLORIDE 
$$H-C-C=O$$
  $H_2O_2Cl_2$  Beil. II - 743  $II_{1-}(302)$   $II_{2-}(639)$   $O=C-C-H$ 

B.P. 
$$161-164^{\circ}$$
 (1)  $D_4^{20} = 1.408$  (3)  $n_D^{18.1} = 1.50038$  (3)  $160^{\circ}$  (2)  $D_4^{16.8} = 1.4117$  (3)  $D_4^{16.8} = 1.4117$  (4)  $D_4^{16.8} = 1.4117$  (5)  $D_4^{16.8} = 1.4117$  (7)  $D_4^{16.8} = 1.4117$  (8)  $D_4^{16.8} = 1.4117$ 

[For prepn. of C from fumaric acid (1:0895) with PCl<sub>b</sub> (1) (2) (3), with SOCl<sub>2</sub> (8) (10) (cf. (9) (11)), with phthalyl dichloride (3:6900) (12) (9) (10), or with benzotrichloride (3:6540) at 170° (27) see indic. refs.; from maleic anhydride (1:0625) by htg. 2 hrs. at 130-135° with phthaloyl dichloride (3:6900) + ZnCl<sub>2</sub> (82-95% yield (7)) or with PCl<sub>5</sub> (13) (6): for formn. of Č from succinyl dichloride (3:6200) with Cl<sub>2</sub> see (14), from calcium malate with PCl<sub>5</sub> see (15).]

Č on htg. with fumaric acid (1:0895) at 175° (9) (16) or with silver fumarate (13) is largely converted to maleic anhydride (1:0625), b.p. 197-199°, m.p. 52°.

 $\bar{C}$  with  $Cl_2$  in  $CCl_4$  in sunlight adds halogen almost quant. (19) yielding (17) (18) (20) meso- $\alpha,\alpha'$ -dichlorosuccinyl dichloride (3:9087). —  $\bar{C}$  adds  $Br_2$  at 150° (2) or in  $CCl_4$  in sunlight (20) yielding alm. quant. (19) meso- $\alpha,\alpha'$ -dibromosuccinyl dichloride, b.p. 113° at 18 mm. (20) (this prod. hydrolyzes with aq. to meso- $\alpha,\alpha'$ -dibromosuccinic acid, m.p. 257-258° in s.t. (20).

[Č with 1,4-diphenylbutadiene-1,3 yields (10) 3,6-diphenyltetrahydrophthaloyl dichloride, colorless ndls. from lgr., m.p. 143-144° cor. (10); this prod. on long bollg. (7½ hrs.) with aq. alc. NaOH gives (10) on acidif. 3,6-diphenyltetrahydrophthalic acid, ndls. from AcOH, m.p. 230-231° cor. dec. (10).]—[For color reactns. of C with various polyenes see (21).]

[ $\bar{C}$  on htg. at 100° with AlCl<sub>3</sub> is partially conv. to maleyl dichloride accompanied by evolution of HCl + CO (22). —  $\bar{C}$  with AlCl<sub>3</sub> + C<sub>6</sub>H<sub>6</sub> gives (yield: 78-83% (23), 74% (24)) trans-α,β-dibenzoylethylene (1,4-diphenybuten-2-dione-1,4), cryst. from C<sub>6</sub>H<sub>6</sub> by addn. of alc., pale yel. ndls., m.p. 109-110° (23).] [For corresp. reactn. of  $\bar{C}$  + AlCl<sub>3</sub> with toluene (24) (25), chlorobenzene (24), mesitylene (24), anisole (24), m-xylene (25), and biphenyl (25) see indic. refs.]

 $\bar{C}$  with excess MeOH yields (8) dimethyl fumarate (1.2415), m.p. 101.7°. (Note, however, that  $\bar{C}$  with 1 equiv. MeOH in  $C_6H_6$  stood 5 hrs. at room temp. (5) or in ether (26) yields fumaric methyl ester chloride, b.p. 83° at 17 mm. (26), 76° at 22 mm. (5), m.p. 16° (5); this on shaking with aq. gives alm. quant. (5) methyl hydrogen fumarate, cryst. from  $C_6H_6$ , m.p. 144.5° cor. (5).

 $\bar{C}$  with phenol (6) or with sodium phenolate in  $C_6H_6$  (28) yields diphenyl fumarate, ndls. from alc., m.p.  $161-162^\circ$  (6); note, however, that the half ester, phenyl hydrogen fumarate, has m.p.  $130^\circ$  (28).

Č with aq. readily hydrolyzes yielding fumaric acid (1:0895), m.p. abt. 293-295° subl.; for the diamide, dianilide, and other derivs. corresp. to Č see fumaric acid (1:0895).

3:5875 (1) Perkin, J. Chem. Soc. 53, 575 (1888). (2) Kekulé, Ann. Suppl. 2, 86-87 (1862/63). (3) von Auwers, Schmidt, Ber. 46, 480 (1913). (4) Wassermann, Ann. 488, 225 (1931). (5) Lutz, J. Am. Chem. Soc. 52, 3430 (1930). (6) Anschutz, Wirtz, Ber. 18, 1947-1949 (1885). (7) Kyrides, Org. Syntheses, 20, 51-54 (1940). (8) Meyer, Monatsh. 22, 421-422 (1901). (9) W. A. van Dorp, G. C. A. van Dorp, Rec. trav. chim. 25, 96-99 (1906). (10) Kuhn, Wagner-Jauregg, Ber. 63, 2664, 2678-2679 (1930).

(11) McMaster, Ahmann, J. Am. Chem. Soc. 50, 147 (1928). (12) Kyrides, J. Am. Chem. Soc. 59, 208 (1937). (13) Perkin, Ber. 14, 2545-2549 (1881). (14) Kauder, J. prakt. Chem. (2) 31, 24-25 (1885). (15) Perkin, Duppa, Ann. 112, 24-26 (1859). (16) G. C. A. van Dorp, P. J. Montagne, Rec. trav. chim. 37, 295 (1918). (17) Michael, Tissot, J. prakt. Chem. (2) 43, 394-395 (1892). (18) Holmberg, J. prakt. Chem. (2) 84, 148 (1911). (19) Lutz, J. Am. Chem. Soc. 49, 1109-1110 (1927). (20) Michael, J. prakt. Chem. (2) 52, 295 (1895).

(21) Kuhn, Wagner-Jauregg, Helv. Chim. Acta 13, 11 (1930). (22) Ott, Ann. 392, 272-273 (1912). (23) Lutz, Org. Syntheses 20, 29-32 (1940). (24) Conant, Lutz, J. Am. Chem. Soc. 45, 1303-1307 (1923). (25) Oddy, J. Am. Chem. Soc. 45, 2156-2160 (1923). (26) Anschütz, Ann. 461, 188-189 (1928). (27) Faber (to Turnbull), U.S. 1,793,917, Feb. 24, 1931; Cent. 1931, II 155. (28) Bischoff, von Hedenström, Ber. 35, 4086-4088 (1902).

Beil. I - 87

C2HCl5

See also Note 1.

Colorless liquid with odor suggesting chloroform. — C is widely used in industry as solvent, degreasing agent, dry cleaner, component of insecticides, etc. - Note that comml. Č is likely to contain other prods., notably tetrachloroethylene (3:5460) q.v.

Č is very spar. sol. aq.; e.g., 1 g. Č requires for soln. at 25° 2900 g. aq. (19): for study of soly. of C in aq. at 20° see (20); for study of soly. of aq. in C at 0°, 25°, and 30° as detd. by Karl Fischer reagt. see (21).

Binary systems contg.  $\bar{C}$ . For f.p./compn. data on systems  $\bar{C} + 1.2$ -dichloroethane (ethylene dichloride) (3:5130), eutectic, f.p.  $-62^{\circ}$ , contg. about 56 wt. %  $\overline{C}$  (22);  $\overline{C}$  + 1,1,1-trichloroethane (methylchloroform) (3:5085), eutectic, f.p. -69.0° contg. 72.3%  $\ddot{C}$  (14);  $\ddot{C} + 1,1,2,2$ -tetrachloroethane (acetylene tetrachloride) (3:5750), eutectic, f.p.  $-73^{\circ}$ . contg. 59.9 wt. %  $\bar{C}$  (22);  $\bar{C}$  + tetrachloroethylene (3:5460), eutectic, f.p.  $-54.8^{\circ}$ , contg. 41.6%  $\bar{C}$  (14);  $\bar{C}$  +  $CCl_4$  (3:5100), eutectic, f.p.  $-68^{\circ}$  (82),  $\bar{C}$  +  $CBr_4$  (82) see indic. refs.

C forms binary azeotropes with various org. cpds.; e.g., C with chloroacetic acid (3:1370) forms a const.-boilg. mixt., b.p. 158.65° at 760 mm., contg. 90.1 wt. %  $\bar{\mathrm{C}}$  (23);  $\bar{\mathrm{C}}$  with trichloroacetic acid (3:1150) forms a const.-boilg. mixt., b.p. 161.8° at 760 mm., contg. 96.5 wt. % C (24). — For other examples see Beil. I<sub>2</sub>-(57).

Č either as liquid or vapor is extremely toxic; for further details see (83) (25) (26) (27) (28) (29); for extensive study of anthelmintic action see (19).

[For study of soly. in C of gaseous HCl (30) (11), H<sub>2</sub>S (30), or NH<sub>3</sub> (30) see indic. refs.: for study of thermal conductivity of C see (31); for study of influence of vapors of C on

the explosion limits of mixtures of air with hydrogen, carbon monoxide, methane, acetylene, etc., see (32) (33) (34) (35).]

Preparation of C. [For prepn. of C from chloral (3:5210) with PCl<sub>5</sub> (7) (37) or with AlCl<sub>3</sub> (38) see indic. refs.; note that in latter case (38) presence of AlCl<sub>3</sub> also facilitates loss of HCl from C with consequent formn. of tetrachloroethylene (3:5460); from triehloroethylene (3:5170) by addn. of Cl<sub>2</sub> in aq. (39) or under influence of ultra-violet light (40) (41) (note that O<sub>2</sub> retards addition of halogen (41)), or with S<sub>2</sub>Cl<sub>2</sub> in s.t. at 140-150° (42), see indic. refs.]

[For form. of  $\bar{C}$  (together with various other by-products) from ethyl chloride (3:7015) (43) or from 1,2-dichloroethane (ethylene dichloride) (3:5130) (44) with Cl<sub>2</sub> see indic. refs.; from chloroform (3:5050) in electric arc (45) or in dark electric discharge (46) see indic. refs.; from CCl<sub>4</sub> in dark elec. discharge see (46); from 1,1,2,2-tetrachloroethane (acetylene tetrachloride) (3:5750) or from trichloroethylene (3:5170) with Cl<sub>2</sub> at 80°, 95°, or 115° in ultra-violet light (41), over pumice at 700° (47), or with FeCl<sub>3</sub> on htg. in s.t. (48) see indic. refs.; from trichloroethylene (3:5170) with large excess Cl<sub>2</sub>O in CCl<sub>4</sub> at  $-20^{\circ}$  see (10); from  $\beta,\beta'$ -dichlorodiethyl sulfide ("mustard gas") with dry Cl<sub>2</sub> at 100° see (49).]

[For stabilization of  $\bar{C}$  by addn. of not over 0.1% alkyl amines such as Et<sub>3</sub>N (50) or with a wide variety of other org. N cpds. (81) see indic. refs.]

[For studies of detn. of  $\tilde{C}$  by reactn. with Na + ethanolamine in dioxane (51) followed by volumetric (51) or gravimetric (71) detn. of resultant chloride ion see indic. refs. (note that use of Stepanov's method (Na + EtOH) for detn. of Cl in  $\tilde{C}$  gives low results unless after addn. of Na mixt. is refluxed at least 20 hrs. (12)); for detn. of  $\tilde{C}$  by thermal decn. and subsequent detn. of chlorine see (52).]

Chemical behavior of  $\bar{C}$ .  $[\bar{C}$  with dry Cl<sub>2</sub> at 70° in diffuse light does not react and even after 30 hrs. no HCl is formed (52); however,  $\bar{C}$  with dry Cl<sub>2</sub> + AlCl<sub>3</sub> at 70° (53), or  $\bar{C}$  + Cl<sub>2</sub> over activated charcoal at 300-400° (54), yields hexachloroethane (3:4835).]

[ $\bar{C}$  with  $F_2$  at 90° over a 10-hr. period yields (8) a mixt. of prods. contg. fluoropenta-chloroethane, m.p. 99.8–110° (in s.t.) (b.p. 137–139°), hexachloroethane (3:4835), tetra-chloroethylene (3:5460), sym.-difluorotetrachloroethane, b.p. 91–92°, together with other materials. — For behavior of  $\bar{C}$  with SbF<sub>3</sub> see (55).]

 $\bar{C}$  with  $K_2Cr_2O_7/H_2SO_4$  is only partially oxidized to  $CO_2$  (56). — [ $\bar{C}$  on photochem. oxidn. with  $O_2$  in ultra-violet light (57) (58) gives a mixt. consisting of 80% trichloroacetyl chloride (3:5420) + 20% phosgene (3:5000). —  $\bar{C}$  with fumg.  $H_2SO_4$  (60%  $SO_3$ ) at 50–60° yields (59) dichloroacetyl chloride (3:5290).]

Č under various circumstances loses HCl yielding tetrachloroethylene (3:5460) [e.g., Ĉ over bone char at 280° (60) or over NiCl₂ at 330° (61), or with AlCl₃ at 70° (53) or under reflux (95% yield (72)) (62), or with liq. NH₃ at −18 to −34° under reduced press. (63) (64), or with prim. or sec. aliph. amines (84), or with MeOH over Al₂O₃ at 290° (methyl chloride (3:7005) is also formed) (65), or with acetylene over cat. at 200–300° (vinyl chloride (3:7010) is also formed) (68), or with alc. KOH (44) (66), or in alc. with 2 N aqueous NaOH in cold (98% yield (12)) gives tetrachloroethylene (3:5460). — For detn. of Č by titration of chloride ion thus split off see (67); for study of kinetics of reactn. of Č with EtOH/NaOH see (12).]

Č under certain conditions yields trichloroethylene (3:5170) [e.g., Č with H<sub>2</sub> over Ni at 270° (61), or Č on electrolysis at Pb cathode (69), or Č with MeMgI (70) gives trichloroethylene (3:5170).]

[Č with CHCl<sub>3</sub> (3:5050) + AlCl<sub>3</sub> gives (72) (73) (74) (75) unsym.-heptachloropropane (3:0200); note that this reactn. first involves loss of HCl under influence of AlCl<sub>3</sub> (see also above) and subsequent condensation of the resultant tetrachloroethylene (3:5460)

with CHCl<sub>3</sub>. —  $\tilde{C}$  (1 mole) + 1,2-dichloroethylene (presumably mixt. of cis (3:5042) and trans (3:5028) stereoisomers) + AlCl<sub>3</sub> (1% of sum of wts. of reactants) stood 12 days at 40° gives (76) (in addition to a residue a fraction volatile with steam which consists of 1,1,2,2,3,4,4-heptachlorobutane (3:9056)), two stereoisomeric 1,1,2,3,4-pentachlorobutanes, viz., the solid isomer (3:0750) and the liquid isomer (3:9068); for genesis of these compds. see (76).]

[For survey of actn. of  $\bar{C}$  on various common metals see (77). —  $\bar{C}$  with Na or K or their alloys may (like many other polychloro compds.) explode under certain conditions; for an extensive study of this behavior including sensitivity to mechanical shock see (78).]

- Č with excess phenylhydrazine on stdg. at ord. temp. evolves N<sub>2</sub>, ppts. phenylhydrazine hydrochloride, and yields benzene (67); the full mechanism of this behavior seems never to have been established, but these same three prods. are similarly obtd. from hexachlorocthane (3:4835) and to a lesser degree from 1,1,2,2-tetrachlorocthane (3:5750).
  - D Color test with NH<sub>4</sub>OH/Cu<sub>2</sub>Cl<sub>2</sub>.  $\bar{C}$  (1-2 drops) in small glass-stoppered bottle filled with conc. aq. NH<sub>4</sub>OH treated with powdered Cu<sub>2</sub>Cl<sub>2</sub>, stopper quickly inserted (to force out air and excess liq.) and shaken, gives within 5 mins. a blue color which rapidly darkens; note that this test is not specific for  $\bar{C}$  and is also shown by other cpds. contg. the —CCl<sub>3</sub> group such as trichloroacetic acid (3:1150), ethyl trichloroacetate (3:5950) CHCl<sub>3</sub> (3:5050), CCl<sub>4</sub> (3:5100), although hexachloroethane (3:4835) develops color at surface only after several hours; for further details see {79}.
- 3:5880 (1) Timmermans, Martin, J. chim. phys. 23, 775-776 (1926). (2) Timmermans, Bull. soc. chim. Belg. 27, 334-343 (1914), Cent. 1914, I 618. (3) Lecat, Rec. trav. chim. 46, 244 (1927). (4) Staedel, Ber. 15, 2563 (1882). (5) Earp, Glasstone, J. Chem. Soc. 1935, 1712. (6) Kanonni-koff, J. prakt. Chem. (2) 32, 520 (1885). (7) Thorpe, J. Chem. Soc. 37, 192-194 (1880). (8) Miller, J. Am. Chem. Soc. 62, 342 (1940). (9) Bonino, Gazz. chim. ital. 55, 342 (1925). (10) Goldschmidt, Schüssler, Ber. 58, 569-570 (1925).
- (11) Hamai, Bull. Chem. Soc. Japan 10, 207-211 (1935). (12) Taylor, Ward, J. Chem. Soc. 1934, 2003-2010. (13) Herz, Rathmann, Chem. Zty. 36, 1417 (1912). (14) Van de Vloed, Bull. soc. chim. Belg. 48, 259-260 (1939). (15) Deffet, Bull. soc. chim. Belg. 44, 63 (1935). (16) Herz, Rathmann, Chem. Zty. 37, 621 (1913). (17) Emmons, Am. Mineral. 14, 482-483 (1929). (18) Nelson, Ind. Eng. Chem. 22, 972 (1930). (19) Wright, Schaffer, Am. J. Hyg. 16, 325-428 (1932). (20) van Arkel, Vles, Rec. trav. chim. 55, 410 (1936).
- (21) Staverman, Rec. trav. chim. 60, 836-841 (1941); Cent. 1942, I 1352; C.A. 37, 2638 (1943). (22) Timmermans, Veselovsky, Bull. soc. chim. Belg. 40, 506 (1931). (22) Lecat, Ann. soc. sci. Bruxelles 47, I 25 (1927). (24) Lecat, Rec. trav. chim. 47, 17 (1923). (25) Jacobs, "The Analytical Chemistry of Industrial Poisons, Hazards and Solvents," Interscience Publishers, Inc., New York (1941). (26) Smyth, N. Y. State J. Med. 42, 1072-1079 (1942); C.A. 36, 4626 (1942). (27) Barsoun, Saad, Quart. J. Pharm. Pharmacol. 7, 205-214 (1934); Cent. 1934, II 2550; C.A. 28, 6194 (1934). (28) Lazarev, Arch. exptl. Path. Pharmakol. 141, 19-24 (1929); Cent. 1929, II 451; C.A. 25, 3074 (1931). (29) Lehmann, et al., Arch. Hyg. 74, 1-60 (1911); Cent. 1911, II 885-886; C.A. 6, 3125 (1912). (30) Bell, J. Chem. Soc. 1931, 1376-1377.
- (31) Bates, Hazzard, Palmer, Ind. Eng. Chem. 33, 375-376 (1941). (32) Langen van der Valk, Rec. trav. chim. 48, 201-219 (1929). (33) Jorissen, Ind. Eng. Chem. 19, 430-431 (1927). (34) Coward, Jones, Ind. Eng. Chem. 18, 970-974 (1926). (35) Jorissen, Meuwissen, Rec. trav. chim. 44, 132-140 (1925). (36) Jorissen, Velisek, Rec. trav. chim. 43, 80-86 (1924). (37) Paterno, Ann. 151, 116-121 (1869). (38) Mouneyrat, Bull. soc. chim. (3) 19, 260-261 (1898). (39) Groll, Hearne (to N. V. de Bataafsche Petroleum Maatschappij), Brit. 436,357, Nov. 7, 1935; French 789,290, Nov. 25, 1935; Cent. 1936, II 865; C.A. 39, 1812 (1936). (40) Salzberg Neustassfurt und Theilnehmer, Ger. 248,982, July 6, 1912; Cent. 1912, II 299; [C.A. 6, 2824 (1912)].
- (41) Müller, Schumacher, Z. physik. Chem. B-35, 458-462 (1937); Z. Elektrochem. 43, 807-808 (1937).
  (4) Pope, Smith, J. Chem. Soc. 119, 396 (1920).
  (43) Regnault, Ann. 33, 321-323 (1840).
  (44) Pierre, J. prakt. Chem. (1) 43, 301-307 (1848).
  (45) Tarczynski, Z. Elektrochem.
  22, 254 (1916).
  (46) Berson, Fournier, Compt. rend. 156, 1119 (1910).
  (47) Nicodemus, J. prakt. Chem. (2) 83, 315-322 (1911).
  (48) Erdmann, J. prakt. Chem. (2) 85, 84 (1912).
  (49) Mann, Pope, J. Chem. Soc. 121, 597 (1922).
  (50) Imperial Chem. Ind., Ltd., French 744,128; Cent. 1933, II 605.

(51) Winteringham, J. Soc. Chem. Ind. 61, 186-187 (1942); C.A. 37, 1951 (1943). (52) Winteringham, J. Soc. Chem. Ind. 61, 190-192 (1942); C.A. 37, 1951 (1943). (53) Mouneyrat, Bull. soc. chim. (3) 17, 797-799 (1897); (3) 19, 182-183 (1898). (54) Mkryan, Babayan, Sbornik Trudov. Armyanskogo Filiala Akad. Nauk 1940, No. 2, 51-58; C.A. 37, 5694 (1943). (55) Henne, Ladd, J. Am. Chem. Soc. 58, 402-403 (1936). (56) Guyot, Simon, Compt. rend. 170, 736 (1920). (57) Schumacher, Thirauf, Z. physik. Chem. A-189, 183-199 (1941); Cent. 1942, I 1485; C.A. 38, 4418 (1942). (58) Muller, Ehrmann, Ber. 69, 2207-2210 (1936). (59) Chem. Fabrik. Weilerter-Meer, Ger. 362,748, Oct. 31, 1922; Cent. 1923, II 405. (60) Körner, Suchy (to Dr. A. Wacker Soc. Chem. Ind.), Ger. 464,320, Aug. 21, 1928; Cent. 1929, I 1044.

(61) Mailhe, Sabrou, Bull. soc. chim. (4) 47, 349-350 (1930). (62) Mugdan, Wimmer (to Consortium fur Elektrochem. Ind.), U.S. 2,249,512, July 15, 1941; C.A. 35, 6601 (1941): Brit. 500,176, March 2, 1939; Cent. 1939, I 3798; C.A. 33, 5417 (1939): Ger. 694,884, July 11, 1910, C.A. 35, 5134 (1941): French 841,962, June 2, 1939; Cent. 1939, II 2280; C.A. 34, 4395 (1940). (63) Mkryan, Sbornik Trudov Armyanskogo Filiala Akad. Nauk 1940, No. 2, 36-41; C.A. 37, 5694 (1943). (64) Pogossjan, Mkryan, Russ. 50,533, Feb. 28, 1937; Cent. 1938, II 412. (65) I.G., French 805,563, Nov. 24, 1936; Cent. 1937, I 2258. (66) Sastry, J. Soc. Chem. Ind. 35, 450-452 (1916). (67) Gowing-Scopes, Analyst 39, 385-388 (1914). (68) Dr. A. Wacker Soc. Chem. Ind. Brit. 480,568, March 24, 1938; Cent. 1938, I 4236; C.A. 32, 5857 (1938). (69) Sandonnini, Borghello, Atti accad. Lincei (6) 20, 334-340 (1934); Cent. 1935, I 3654. (70) Rebek, Mandrino, Oesterr. Chem. Ztg. 41, 363-384 (1938); Cent. 1939, I 900; C.A. 33, 1266 (1939).

(71) Rauscher, Ind. Eng. Chem., Anal. Ed. 9, 296-299 (1937). (72) Prins, Rec. trav. chim. 54, 250 (1935). (73) Böeseken, Prins, Verhandl. Akad. Wetenschappen 1911, 776-778, Cent. 1911, 1466; C.A. 5, 2845 (1911). (74) Prins, J. prakt. Chem. (2) 89, 415 (1914). (75) Farlow, Org. Syntheses, Coll. Vol. 2 (1st ed.), 312-313 (1943); 17, 58-59 (1937). (76) Prins, Rec. trav. chim. 56, 119-120, 124-125 (1937). (77) Gowing-Scopes, Analyst 39, 7 (1914). (78) Lenze, Mets, Z. ges. Schiess-u. Sprengstoffu. 27, 255-258, 293-296, 337-340, 373-376 (1932); Cent. 1933, I 1716; C.A. 27, 844 (1933). (79) Doughty, J. Am. Chem. Soc. 41, 1129-1131 (1919). (80) Eckart, Brennstof-Chem. 4, 24-25 (1923); C.A. 17, 2356 (1923).

(81) Missbach (to Stauffer Chem. Co.), U.S. 2,043,257-2,043,260, incl., June 9, 1936; Cent. 1936, II 3845; C.A. 30, 5240 (1936). (82) Verstraete, Bull. soc. chim. Belg. 43, 523-527 (1934).

(83) Lehman, Schmidt-Kehl, Arch. Hyg. Bakt. 116, 131-268 (1936); C.A. 31, 477 (1937); not in Cent. (84) Rueggeberg, Falkof, J. Am. Chem. Soc. 67, 2052 (1945).

3:5885 1,2,3-TRICHLORO-2-METHYLPROPANE C4H7Cl3 Beil. S.N. 10

B.P.  $162.0-163.1^{\circ}$  cor. (1)  $D_4^{25} = 1.3020$  (1)  $n_D^{20} = 1.4765$  (1)

[For prepn. of  $\bar{C}$  from ter-butyl chloride (3:7045) + Cl<sub>2</sub> see (1), for formn. of  $\bar{C}$  (5%) from 3-chloro-2-methylpropene-1 (methallyl chloride) (3:7145) by addn. of Cl<sub>2</sub> with Cl<sub>2</sub>/aq. at 30° (main prod. is 1,3-dichloropropanol-2 (3:5985) in 70% yield) (2), or better with SO<sub>2</sub>Cl<sub>2</sub> (83% yield (4)) see indic. refs.; from 1,3-dichloro-2-methylpropane (3:7960) with Cl<sub>2</sub>, or with SO<sub>2</sub>Cl<sub>2</sub> + Bz<sub>2</sub>O<sub>2</sub> (73% yield) see (4).]

Č on pyrolysis at 450-550° gives (3) three isomeric dichloroisobutenes, viz., cis and trans 1,3-dichloro-2-methylpropene (3:5590) and 3-chloro-2-(chloromethyl)propene-1 (3:5633).

[Č on dehydrohalogenation with equimolal proportion of quinoline at b.p. 1½ hrs. gives (73-83% yield (4)) 1,3-dichloro-2-methylpropene-1 (3:5590).]

 $\ddot{C}$  on hydrolysis with excess 5% aq. NaOH gives (84% yield (3)) a mixt. of *cis* and *trans* stereoisomers of  $\gamma$ -chloro- $\beta$ -methyl-allyl alcohol (3:8340).

3:5885 (1) Rogers, Nelson, J. Am. Chem. Soc. 58, 1027-1029 (1936). (2) Burgin, Hearne, Rust, Ind. Eng. Chem. 33, 387 (1941). (3) Rogers, Nelson, J. Am. Chem. Soc. 58, 1029-1031 (1936). (4) Mooradian, Cloke, J. Am. Chem. Soc. 68, 787 (1946).

3:5890 ISOPROPYL DICHLOROACETATE  $C_5H_8O_2Cl_2$  Beil. S.N. 160 (CH<sub>3</sub>)<sub>2</sub>CH.O.CO.CHCl<sub>2</sub>

**B.P.** 163.8–164.8° (1) 
$$D_4^{25} = 1.1989$$
 (2)  $n_D^{25} = 1.4306$  (2) 164.0° at 747 mm. (2)  $D_4^{20} = 1.2053$  (3)  $n_D^{20} = 1.4328$  (3)

[For prepn. (48.6% yield (2)) from isopropyl alc. (1:6135) + dichloroacetic ac. (3:6208) see (2); for prepn. (39.5% yield (2)) from propylene and dichloroacetic ac. (3:6208) see (2).

[For study of hydrolysis of C see (3).]

3:5890 (1) Cheng, Z. physik. Chem. B-24, 310 (1934). (2) Dorris, Sowa, Nieuwland, J. Am. Chem. Soc. 56, 2689-2790 (1934). (3) Schianberg, Z. physik. Chem. A-172, 229 (1935).

Colorless liq. with characteristic penetrating ethereal odor. — Insol. in aq.; eas. sol. alc., ether.

[For prepn. of  $\bar{C}$  from 2,3-dichloropropene-1 (3:5190) with  $Cl_2$  see (1); from 1,2,2-tri-chloropropane (3:5475) with  $SbCl_5$  at  $100^\circ$  see (2).]

C with alc. KOH splits out HCl yielding (1) 1,2,3-trichloropropene-1 (3:5650), b.p. 142°.

3:5895 (1) Pfeffer, Fittig, Ann. 135, 360-361 (1865). (2) Herzfelder, Ber. 26, 2436 (1893).

3:5900 1,3-DICHLOROBUTANONE-2 H 
$$C_4H_6OCl_2$$
 Beil. I - 670 ( $\alpha$ -Chloroethyl chloromethyl ketone) Cl.CH<sub>2</sub>.CO—C—CH<sub>3</sub> I<sub>1</sub>-(348) I<sub>2</sub>—

**B.P.** 165° (2) at 753 mm. (1) 
$$D_4^{20} = 1.3116$$
 (3)  $n_D^{20} = 1.4686$  (3) 65° at 17 mm. (2)  $D_4^{15} = 1.3189$  (3)  $n_D^{15} = 1.4702$  (3) 55–55.5° at 10 mm. (3)

Colorless liq. when freshly distd. but gradually turns red. — Strong lachrymator and nasal irritant (1). — Insol. aq.; sol. alc., ether, and most org. solvents.

[For prepn. from ethyl methyl ketone (1:5405) by actn. of Cl<sub>2</sub> (1), from 1,3-dichlorobutanol-2 (3:9145) by oxidn. (3); from 3-chloro-2-(chloromethyl)butene-1 (3:9206) with  $O_3$  (4) see indic. refs.]

 $\ddot{C}$  with satd. aq. NaHSO<sub>3</sub> soln. yields cryst. NaHSO<sub>3</sub> cpd. (1). —  $\ddot{C}$  with Zn dust + AcOH yields (1) (3) ethyl methyl ketone (1:5405).

#### 1.3-Dichlorobutanone-2 semicarbazone: m.p. 114° (2), 107-108° (4).

3:590 (1) Démètre-Vladesco, Bull. soc. chim. (3) 6, 829-830 (1891). (2) Blaisé, Bull. soc. chim. (4) 15, 733 (1914); Compt. rend. 156, 794 (1913). (3) Petrov, J. Gen. Chem. (U.S.S.R.) 11, 713-721 (1941); C.A. 36, 404 (1941). (4) Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1232-1246 (1938); Cent. 1939, II 4223; [C.A. 33, 4190 (1939)].

3:5910 
$$\alpha,\alpha,\beta$$
-TRICHLORO- $n$ -BUTYRALDEHYDE  $C_4H_8$ OCl<sub>3</sub> Beil. I - 664 ("Butyrchloral"; "Butylchloral"; Cl I<sub>1</sub>-(346) I<sub>2</sub>-(725) CH<sub>3</sub>.CH.C.CHO Cl Cl Cl Cl B.P. 164.5-165.5° at 760 mm. (1)  $D_4^{20} = 1.3956$  (4)  $n_D^{20} = 1.47554$  (4) 165° (2)

 $D_{15}^{18.8} = 1.4237 (5)$ 

[See also "Butyrchloral hydrate" (3:1905).]

at 750 mm. (3) (4)

(6)

Oily liq.

164-165°

163-164°

[For prepn. of  $\bar{C}$  from acetaldehyde (1:0100) (3) (7) or paraldehyde (1:0170) (7) (8) with  $Cl_2$  see indic. refs.; from  $\alpha$ -chlorocrotonaldehyde (3:8117) by addn. of  $Cl_2$  (6) (10) (36) in  $CCl_4$  soln. (9); from crotonaldehyde (1:0150) by satn. with HCl gas followed by treatment with  $Cl_2$  see (11) cf. (37).]

[For prepn. of  $\tilde{C}$  from its polymers (see below) by distn. at atmospheric press. (2), or from its hydrate (3:1905) by distn. with half its wt. of Ac<sub>2</sub>O (2), or shaking with conc. H<sub>2</sub>SO<sub>4</sub> (1) cf. (2), see indic. refs.]

 $[\bar{C}$  on reduction with fused Al(OEt)<sub>3</sub> in boilg. abs. alc. under H<sub>2</sub> or N<sub>2</sub> for 14 hrs. (12) or with fused Al(OEt)<sub>3</sub> + AlCl<sub>3</sub> in boilg. abs. alc. under H<sub>2</sub> or N<sub>2</sub> for 14 hrs. (13), or with C<sub>2</sub>H<sub>5</sub>OMgBr in dry ether followed by aq. (19), or by treatment with diethylzinc (14), di-n-propylzinc (15), or di-isobutylzinc (15) (followed by aq.) gives (92% yield (12)) 2,2,3-trichlorobutanol-1 (3:1336), m.p. 62°.—Note that  $\bar{C}$  (as hydrate) (3:1905) is reduced by fermenting yeast (16) to dextrorotatory 2,2,3-trichlorobutanol-1, m.p. 62°.]

[ $\bar{C}$  with Zn + HCl or Zn + aq. (17) is dehalogenated to a mixt. of  $\alpha$ -chlorocrotonaldehyde (3:8117) + crotonaldehyde (1:0150);  $\bar{C}$  with Fe filings + AcOH at room temp. for 8 days (18) dehalogenates to a mixt. of n-butyraldehyde (1:0130) + n-butyl alc. (1:6180) + crotonyl alc. [Beil. I-442, I<sub>1</sub>-(227), I<sub>2</sub>-(480)].]

 $\bar{C}$  on oxidn. with 2 pts. fumg. HNO<sub>3</sub> stood overnight at ord. temp. yields (3)  $\alpha,\alpha,\beta$ -trichloro-n-butyric acid (3:1280) (cf. corresp. behavior of butyrchloral hydrate (3:1905)). —  $\bar{C}$  on oxidn. with boilg. aq. K<sub>4</sub>Fe(CN)<sub>5</sub> also loses 2 atoms of chlorine giving (41% yield (29))  $\alpha$ -chlorocrotonic acid (3:2760).

 $\bar{C}$  (1 mole) with  $H_2O$  (1 mole) readily combines with evolution of heat yielding (3) (9) crystn. butyrchloral hydrate (3:1905). — Similarly,  $\bar{C}$  combines with equiv. amt. of alcohols giving the corresp. alcoholates: e.g.,  $\bar{C}$  with EtOH yields (20) butyrchloral-ethylalcoholate [Beil. I-665,  $I_1$ -(346)];  $\bar{C}$  with butanol-2 yields (1) butyrchloral-sec-butylalcoholate, etc. — Note that butyrchloral-ethylalcoholate in excess EtOH on satn. with dry HCl gas gives (50% yield (21))  $\alpha,\alpha,\beta$ -trichloro-n-butyraldehyde diethylacetal, b.p. 232-233°, 135° at 30 mm. (21). — [For study of dissociation of addn. cpds. of  $\bar{C}$  with various prim., sec., and ter. alcohols see (22).]

 $\tilde{C}$  or its hydrate (3:1905) q.v. in pres. of conc.  $H_2SO_4$  or pyridine at ord. temp. can be trimerized to a mixt. of two parabutyrchlorals (2); these are colorless, crystalline, sharp melting solids, sol. in org. solvents but insol. in aq.; the less sol.  $\alpha$ -parabutyrchloral, rhombic cryst. from boilg. AcOH or boilg. EtOH, has m.p. 180°; the more soluble  $\beta$ -parabutyrchloral (stereoisomer?), cryst. from boilg. AcOH or boilg. EtOH, has m.p. 157°; these polymers can be distilled at 15 mm., but attempts to distill them at ord. press. result in complete dissociation to  $\tilde{C}$  (2).

[Č with anhydrous acetaldehyde (1:0100) (2 moles) with dry HCl gas at 0° for 15–20 hrs. condenses to give (67% yield (23)) 2,4-dimethyl-6- $(\alpha,\alpha,\beta$ -trichloro-n-propyl)trioxane-1,3,5, b.p. 118° at 13 mm. (23).]

[Č in CHCl<sub>8</sub> with H<sub>2</sub>S gives (24) bis- $(\alpha$ -hydroxy- $\beta$ , $\beta$ , $\gamma$ -trichloro-n-butyl)sulfide ("butyr-chloralsulfhydrate"), m.p. 85° (24).]

[C with PCl<sub>5</sub> (1.4 wt. pts.) at 110-120° apparently has its oxygen replaced by equivalent chlorine but also loses 1 HCl yielding (25) a cpd. of compn. C<sub>4</sub>H<sub>2</sub>Cl<sub>4</sub>, presumably 1,1,2,3-tetrachlorobutene-2, although no other report of this cpd. can be found.]

[Č with aq. HCN gives only butyrchloral hydrate (3:1905) since this prod. is too spar. sol. aq. to enter further reaction, but upon addn. of alc. and subsequent digestion this system yields (26) (27)  $\alpha,\alpha,\beta$ -trichloro-n-butyraldehyde cyanohydrin [Beil. III-322, III<sub>2</sub>-(226)], pl. from aq., m.p. 101-102° (27) (28), also obtd. from butyrchloral hydrate with aq. KCN (2 moles) at 40° (28). — See also further comments under butyrchloral hydrate (3:1905).]

[ $\bar{C}$  with ethyl diazoacetate gives (71% yield (30)) ethyl  $\beta$ -keto- $\gamma,\gamma$ -trichloro-n-caproate [Beil. III-684], b.p. 149° at 20 mm. (30).]

Č in CHCl<sub>3</sub> with NH<sub>3</sub> gas gives on evapn. of solvent (31) butyrchloralammonia, cryst., m.p. 62° [see also under butyrchloral hydrate (3:1905)].

Č also readily adds amides yielding cpds. of type CH<sub>3</sub>.CHCl.CH<sub>2</sub>CH (OH).NH.CO.R; e.g., Č with acetamide (1 mole) gives on htg. (31) (32) (33) (34) butyrchloralacetamide, obtd. by these workers in two isomeric forms one of m.p. 170° (spar. sol. hot alc.) (32) (33) (34), the other m.p. 158° (readily sol. in hot 50% alc.) (31) (32) (33); note, however, that butyrchloral hydrate (3:1905) with acetamide (1 mole) htd. at 100° until solidification occurs gives only (21) a prod. m.p. 208−210°; Č with benzamide (1 mole) gives on htg. butyrchloralbenzamide, obtd. in two isomeric forms, one of m.p. 146° (32) (33) cf. (34), the other of m.p. 132° (31) (32) (33); note, however, that butyrchloral hydrate (3:1905) with benzamide yields only (21) a prod. m.p. 176°.

Č (3.5 g.) with urea (1.2 g.) htd. at 100°, cooled, powdered and recrystd. from alc., gives (yield not stated (35)) butyrchloralurea, m.p. 156°.

3:5910 (1) Willcox, Brunel, J. Am. Chem. Soc. 38, 1837 (1916). (2) Chattaway, Kellett, J. Chem. Soc. 1928, 2709-2714. (3) Krämer, Pinner, Ber. 3, 383-390 (1870). (4) Brühl, Ann. 203, 20 (1880). (5) Dobrosserdow, Cent. 1911, I 955. (6) Pinner, Ber. 8, 1564-1566 (1875). (7) Pinner, Ann. 179, 24-30 (1875). (8) Freundler, Bull. soc. chim. (4) 1, 68-69 (1907). (9) Moureu, Murat, Tampier, Bull. soc. chim. (4) 29, 33 (1921). (10) Lieben, Zeisel, Monatsh. 4, 533-536 (1883).

(11) High (to Udylite Corp.), U.S. 2,280,290, April 21, 1942; C.A. 36, 5482 (1942). (12) Meerwein, Schmidt, Ann. 444, 233-234 (1925). (13) Meerwein (to F. Bayer & Co.), U.S. 1,572,742, Feb. 9, 1926; Cent. 1926, I 3627: Brit. 251,890, June 3, 1926; Cent. 1926, II 1097. (14) Garsarolli-Thurnlackh, Ann. 213, 369-372 (1882). (15) Garzarolli-Thurnlackh, Papper, Ann. 223, 166-169 (1884). (16) Rosenfeld, Brochem. Z. 156, 54-57 (1925); Cent. 1925, I 2301; C.A. 19, 2683 (1925). (17) Sarnow, Ann. 164, 108 (1872). (18) Lieben, Zeisel, Monatsh. 1, 840-843 (1880). (19) I.G., Brit. 384,156, Dec. 22, 1932; Cent. 1933, I 1351. (20) Pinner, Ann. 179, 38-42 (1875).

(21) Freundler, Bull. soc. chim. (4) 1, 201, 203-204 (1907); Compt. rend. 143, 684 (1906). (22) Willcox, Brunel, J. Am. Chem. Soc. 38, 2533-2535 (1916). (23) Helferich, Besler, Ber. 57, 1279-1280 (1924). (24) Voswinkel, Ger. 233,857, April 24, 1911; Cent. 1911, I 1467. (25) Judson, Ber. 3, 790 (1870). (26) Pinner, Bischoff, Ann. 179, 97-99 (1875). (27) Pinner, Klein, Ber. 11, 1488 (1878). (28) Chattaway, Irving, J. Chem. Soc. 1929, 1043-1046. (29) Wallach, Ber. 10, 1530 (1877). (30) Schlotterbeck, Ber. 42, 2572 (1909).

(31) Schiff, Tassinari, Ber. 10, 1784-1786 (1877). (32) Schiff, Ber. 25, 1690-1691 (1892). (33) Tarugi, Gazz. chim. ital. 24, I 230-236 (1894). (34) Pinner, Ann. 179, 39-40 (1875). (35) Feist, Kublinski, Arch. Pharm. 274, 430, 434 (1936). (36) Chem. Fabrik vorm. Weiler ter-Meer, Ger. 351,137, April 3, 1922; Cent. 1922, IV 155. (37) Brown, Plump (to Pennsylvania Salt Mfg. Co.), U.S. 2,351,000, June 13, 1944; C.A. 38, 5226 (1944).

B.P. 
$$165^{\circ}$$
 (1)  $D_4^{34} = 1.5274$  (1)  $n_D^{18} = 1.5272$  (1)  $165-167^{\circ}$  (2)

Colorless oil.

[For prepn. (70% yield (2)) from sym.-pentachloropropane (3:6280) by actn. of alc. KOH (1 mole) see (2).]

C with conc. H<sub>2</sub>SO<sub>4</sub> at 30-40° gives quant. yield of chloromalondialdehyde [Beil. I-765].

3:5920 (1) Prins, J. prakt. Chem. (2) 89, 421-422 (1914). (2) Heilbron, Heslop, Irving, J. Chem. Soc. 1936, 783.

3:5935 1,2,3-TRICHLOROBUTANE 
$$Cl\ Cl\ Cl\ C_4H_7Cl_3$$
 Beil. I - 119  $CH_3-C-CH_2$   $I_{1-1}$   $I_{2-1}$   $I_{2-1}$  (82)

B.P. 
$$165-167^{\circ}$$
 at 759 mm. (1)  $D_4^{20}=1.3164$  (1)  $n_D^{20}=1.4790$  (1)  $165-168^{\circ}$  at 725 mm. (2)  $79-80^{\circ}$  at 32 mm. (3)  $D_4^{18}=1.3172$  (1)  $D_0^{0}=1.3241$  (3)

Insol. aq., sol. alc., ether, CHCl<sub>3</sub>.

[For formn. of  $\bar{C}$  (36.5%) from 2,3-dichlorobutane (3:7615) + sl. excess Cl<sub>2</sub> in dark at -17° (together with 18% 2,2,3-trichlorobutane (3:5680)) see (1); for formn. of  $\bar{C}$  (19%) from 1,2-dichlorobutane (3:7680) + sl. excess Cl<sub>2</sub> in dark at -17° (together with 28% 2,2,3-trichlorobutane (3:5680) see (1); for formn. of  $\bar{C}$  from 1-chlorobutene-2 (3:7205) + Cl<sub>2</sub> in CHCl<sub>3</sub> see (3); for formn. of  $\bar{C}$  from butene-1 with Cl<sub>2</sub>/aq. (together with 1,2-dichlorobutane (3:7680)) see (2).]

Č with solid KOH at 150° loses HCl yielding (1) mixt. of cis-1,2-dichlorobutene-2 (3:5615), b.p. 125-127°), and trans-1,2-dichlorobutene-2 (3:5360), b.p. 116-118° at 765 mm. (1).

3:5935 (1) Tishchenko, Churbakov, J. Gen. Chem. (U.S.S.R.) 6, 1553-1558 (1936); C.A. 31, 2165 (1937); Cent. 1937, I 3786. (2) de Montmollin, Matile, Helv. Chim. Acta 7, 108 (1924). (3) Charon, Ann. chim. (7) 17, 230-231 (1899).

B.P. 167° M.P. 96-97°

See 3:2662. Division A: Solids.

```
3:5950 ETHYL TRICHLOROACETATE
                                                            C4H5O2Cl3
                                                                              Beil. II - 209
                                                                                    II1-( 94)
                                             Cl<sub>2</sub>C.COOC<sub>2</sub>H<sub>5</sub>
                                                                                    II_{2}-(200)
                                                 D_4^{20} = 1.3826 \quad (8)
                                                                        n_{\rm D}^{20} = 1.45068  (8)
  B.P. 167.5-168.0° cor.
                                        (1)
       167.5°
                                        (2)
                                                         1.3823 (10)
                                                                               1.45046 (10)
       166.7-167.1° at 754.8 mm.
                                       (3)
       167°
                                       (4)
       166°
                                       (13)
                       at 738.2 mm.
       166°
                                       (8)
       164-166°
                                       (5)
       164°
                                       (6)
       163.0-163.5° at
                            682 mm.
                                       (7)
       74°
                             28 mm.
                                       (9)
                       at
       58.0-59.0°
                             13 mm. (10)
                       at
       62°
                             12 mm. (11)
                       at
       60-61°
                             12 mm. (12)
                       at
```

[For prepn. of  $\tilde{C}$  from trichloroacetic acid (3:1150) with abs. EtOH + dry HCl (yield: 90% (13), 53% (16)) or with H<sub>2</sub>SO<sub>4</sub> (50-60% yield (13)) (14) (15), or with Twitchell's reagt. (62.6% yield (5)) see indic. refs.; from trichloroacetyl chloride (3:5420) with ethyl orthoformate (1:3241) see (17); from "tetrachloroethylidene trichlorolactate" [Beil. XIX-105] with EtOH see (12); for formn. of  $\tilde{C}$  from chloral (3:5210) with Al(OEt)<sub>3</sub> in C<sub>6</sub>H<sub>6</sub> (11), or with acetaldehyde + Al(OEt)<sub>3</sub> or Mg(OMe)<sub>2</sub> in dry ether (18), see indic. refs.]

[ $\tilde{\mathbf{C}}$  on warming with KCN in abs. alc. dec. (6) into chloroform (3:5050) + CO<sub>2</sub>;  $\tilde{\mathbf{C}}$  with NaOEt gives on warming (19) triethyl orthoformate (1:3241) + Na ethyl carbonate + NaCl.]

[ $\overline{C}$  with excess H<sub>2</sub> over Ni at 320° gives {14} ethyl dichloroacetate (3:5850) + ethyl chloroacetate (3:5700) + EtOAc (1:3015) + acetaldehyde (1:0100).]

Č with Cu<sub>2</sub>Cl<sub>2</sub> in conc. aq. NH<sub>4</sub>OH gives dark blue color within 2 min. (21); also shown by chloral hydrate (3:1270) and trichloroacetic acid (3:1150) (the latter, however, acting instantly); for further limitations see (21). [Č htd. at 100° with Cu powder for 6-8 hrs. (22) gives diethyl tetrachlorosuccinate, b.p. 156° at 13 mm. (22).]

Č with conc. aq. NH<sub>4</sub>OH gives in the cold (14) trichloroacetamide, spar. sol. aq., cryst. from hot aq. or dil. alc., m.p. 141°. — Č on shaking with aq. benzylamine gives in the cold (23) trichloroacet-N-benzylamide, cryst. from lgr., m.p. 93.6-94.4° cor. (23). [Note, however, that the corresp. dichloroacet-N-benzylamide (from ethyl dichloroacetate (3:5850) has almost the same m.p., viz., 94.8-95.6° cor. (23), while chloro-acet-N-benzylamide (from ethyl chloroacetate (3:5700)) has m.p. 93.0-93.6° cor. (23).]

Č hydrolyzes very readily (5) yielding ethyl alcohol (1:6130) and trichloroacetic acid (3:1150). [For kinetic studies of hydrolysis of Č under various conditions (including very high pressure (9)) see (10) (2) (24); for kinetic study of alcoholysis of Č with MeOH+HCl see (25).]

Sesso (1) Perkin, J. Chem. Soc. 65, 423 (1894).
 Timm, Hinshelwood, J. Chem. Soc. 1938, 862-869.
 Schiff, Ann. 229, 108 (1883); Z. physik. Chem. 1, 379 (1887).
 Cheng, Z. physik. Chem. B-24, 306 (1934).
 Zaganiaris, Varvogles, Ber. 69, 2280 (1936).
 Claus, Ann. 191, 58-63 (1878).
 Sudborough, Karne, J. Indian Inst. Sci. 5, 7 (1922); Cent. 1923, I 295; C.A. 17, 665 (1923).
 Brühl, Ann. 263, 22-23 (1880).
 Newitt, Linstead, Sapiro, Boorman, J. Chem. Soc. 1937, 876-883.
 Palomaa, Salmi, Korte, Ber. 72, 790-797 (1939).
 Dworsak, Monatsh. 47, 11-15 (1926).
 Anschütz, Haslam, Ann. 253, 125 (1889).
 Ly Spiegel, P. Spiegel, Ber. 46, 1734 (1907).
 Clermont, Compt. rend. 133, 737-738

(1901). (15) Dumas, Ann. 32, 112 (1839). (16) Toole, Sowa, J. Am. Chem. Soc. 59, 1972 (1937).
(17) Levaillant, Compt. rend. 195, 882 (1932). (18) Nakai, Biochem. Z. 152, 269-273 (1924).
(19) Klein, Jahresber. 1876, 521. (20) Sabatier, Mailhe, Compt. rend. 169, 760 (1919).

(21) Doughty, J. Am. Chem. Soc. 41, 1129-1131 (1919). (22) Doughty, Freeman, J. Am. Chem. Soc. 44, 638-639 (1922). (23) Buehler, Mackenzie, J. Am. Chem. Soc. 59, 421-422 (1937).
(24) Berger, Rec. trav. chim. 43, 168, 173 (1924). (25) Kolhatkar, J. Chem. Soc. 107, 930 (1915).

3:5955 
$$d,l-1,1,1$$
-TRICHLOROBUTANOL-2  $C_4H_7OCl_3$  Beil. I — (Ethyl-trichloromethyl-carbinol)  $H$   $Cl$   $I_1$ —  $I_2$ -(403)  $CH_3$ .  $CH_2$ —  $C$ —  $Cl$   $OH$   $Cl$   $I_2$ -(403)  $I_2$ -(403)  $I_3$ —  $I_4$ -(403)  $I_4$ -(403)  $I_5$ -(

Oil. — Eas. sol. MeOH, EtOH, ether, acetone, C<sub>6</sub>H<sub>6</sub>, CHCl<sub>3</sub>, CCl<sub>4</sub>, CS<sub>2</sub>. [Note that b.p. of 99° at 680 mm. (4) may be a typographical error (1).]

[For prepn. of  $\bar{C}$  from chloral (3:5210) via conversion with diazomethane to 3,3,3-trichloro-1,2-epoxypropane (3:1336) and reactn. of latter with 1 N LiMe in dry ether at  $-75^{\circ}$  (yield 85%) see (1); from chloral (3:5210) with EtMgBr (4) (5) or EtMgI (2) in ether (yields: 44% (4), 16% (2), 15% (5)) see indic. refs. (note, however, that by virtue of reducing acta. of EtMgX large amounts of 2,2,2-trichloroethanol-1 (3:5775) are also formed (5) (2) (1)); from chloral (3:5210) with PbEt<sub>4</sub> (20% yield (6)) (note, however, that this could not be confirmed (1)), from trichloroacetyl chloride (3:5420) with EtMgBr at 10° see (3).]

 $\bar{C}$  with conc. HCl + ZnCl<sub>2</sub> (Lucas' reagent) stood for 1 hr. at room temp. gives (1) 1.1.1,2-tetrachlorobutane (3:5622).

 $\tilde{C}$  with 5% soln. of Na<sub>2</sub>CO<sub>3</sub> in 50% aq. alc. refluxed for 10 hrs. (1) or  $\tilde{C}$  with aq. KOH, NaOH, Na<sub>2</sub>CO<sub>3</sub>, Ba(OH)<sub>2</sub>, Mg(OH)<sub>2</sub>, CaCO<sub>3</sub>, etc., (2) undergoes both hydrolysis and hydrolytic cleavage giving respectively  $\alpha$ -hydroxy-n-butyric acid [Beil. III-302, III<sub>1</sub>-(114), III<sub>2</sub>-(216)] (yields: 46% (1), 21% (2)), m.p. 43°, and propionaldehyde (1:0110) (29% yield (2)).

- Ethyl-trichloromethyl-carbinyl acetate: b.p. 164-165° at 680 mm. (4). [From C with Ac<sub>2</sub>O at 130-135° for 2 hrs. (4). Note that in light of subsequent work (1) the identity of this prod. has been questioned.]
- Ethyl-trimethyl-carbinyl benzoate: b.p. 217-218° at 680 mm. (4). [From  $\bar{\mathbf{C}}$  with BzCl + cold dil. aq. alk. (4). Note that in light of subsequent work (1) the identity of this prod. has been questioned.]
- Ethyl-trimethyl-carbinyl p-nitrobenzoate: cryst. from pet. ether, m.p. 70-71.5° (1).
   [Note that this m.p. is identical with that of the p-nitrobenzoate of 2,2,2-trichloroethanol-1 (3:5775); although each appears to be authentic, whether their mixture shows depression of m.p. is not reported.]

3:5955 (1) Gilman, Abbott, J. Org. Chem. 8, 224-229 (1943). (2) Hébert, Bull. soc. chim. (4) 27, 49, 55 (1920). (3) Jacob, Bull. soc. chim. (5) 7, 581-586 (1940); C.A. 36, 3507 (1942). (4) Howard, J. Am. Chem. Soc. 48, 774-775 (1926). (5) Iotsich, J. Russ. Phys.-Chem. Soc. 38, 445 (1904); Bull. soc. chim. (3) 34, 329 (1905). (6) Meerwein, Hins, Majert, Sönke, J. prakt. Chem. (2) 147, 234, Note 1 (1936).

3:5957 1,1,3-TRICHLOROPROPANONE-2 
$$C_1H_3OCl_3$$
 Beil. I - 655  $(\alpha,\alpha,\gamma$ -Trichloroscetone)  $CH_2$ — $C$ — $CHCl_2$   $I_1$ — $I_2$ —

B.P. 172° (1)

[For prepn. of  $\bar{C}$  from 1,1-dichloro-3-bromopropanone-2 (1) with alc. HgCl<sub>2</sub> see (1); for formn. from acetone (1:5400) with Cl<sub>2</sub> in pres. of NiCl<sub>2</sub> at 70° (together with other prods.) see (2).]

C with aq. or alc. NH<sub>4</sub>OH fails (1) to give chloroform; C with KOH + aniline fails (1) to give phenylisocyanide. [Dif. from isomeric 1,1,1-trichloropropanone-2 (3:5620).]

[Č with diazotized aniline in pres. of NaOAc couples (3) to yield a cpd. having composition  $C_9H_7ON_2Cl_3$  (and presumably structure  $C_6H_5.NH.N=C(Cl).CO.CHCl_2$ ), cryst from pet. ether, m.p. 115-116° (3).]

**3:5957 (1)** Cloëz, Ann. chim. (6) **9,** 176 (1886). **(2)** Akashi, Bull. Inst. Phys.-Chem. Research (Tokyo) **12,** 329-340 (1933); Cent. **1933,** I 3066; C.A. **27,** 3447 (1933). **(3)** Favrel, Bull. soc. chim. (5) **1,** 986-987, 989 (1934).

3:5960 
$$m$$
-DICHLOROBENZENE  $Cl$   $C_0H_4Cl_2$  Beil. V - 202  $V_1$ -(111)  $V_2$ -(154)

B.P. F.P. (1) 
$$-24^{\circ}$$
 (6)  $D_4^{20 \, 9} = 1.2879 \, \{11\}$   $n_D^{20 \, 9} = 1.5470 \, (11)$  172.0-172.6° (2)  $-24.1^{\circ}$  (12) 172-173° (7)  $-24.2^{\circ}$  (12)  $D_4^{20} = 1.2881$  (8) 172° cor. at 766 mm. (3)  $-24.4^{\circ}$  (8) 1.289 (11) 172.1° at742.4 mm. (4)  $-24.8^{\circ}$  (7) 1.287 (1) 169-170° at 755 mm. (5)  $-25^{\circ}$  (5)  $n_D^{17 \, 3} = 1.5472 \, \{8\}$  170° cor. at 744 mm. (6)  $-26.25^{\circ}$  (9)  $n_D^{15} = 1.5480 \, \{7\}$  (66° at 20 mm. (7) (10)  $D_4^{15} = 1.2937 \, \{8\}$ 

Č when pure is colorless oil, volatile with steam.

[For f.p./compn. data and diagram of system  $\bar{C}+o$ -dichlorobenzene (3:6055) (eutectic, m.p. -45.9°, contg. 51.3%  $\bar{C}$ ) see (12); on system  $\bar{C}+p$ -dichlorobenzene (3:0980) (eutectic, m.p. -29.9°, contg. 88.0%  $\bar{C}$ ) see (12); for f.p./compn. data on ternary system of all three dichlorobenzenes see (7); for f.p./compn. data on systems:  $\bar{C}+f$  fluorobenzene,  $\bar{C}+c$  chlorobenzene (3:7903),  $\bar{C}+c$  bromobenzene, and  $\bar{C}+c$ -chlorotoluene (3:8245) see (9).]

[For data on densities of solns. of  $\bar{C}$  in  $C_6H_6$  (1:7400) and in *n*-hevane (1:8530) see (13).] [ $\bar{C}$  is very spar. sol. aq. (for study of this over range 20-60° see (14)).]

[For prepn. of C from m-chloroaniline [Beil. XII-602, XII<sub>1</sub>-(300)] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. (yields: 80% (15), 70% (16)) (7) (17) or by pptn. of the diazonium chloroplatinate and htg. of latter with Na<sub>2</sub>CO<sub>3</sub> (4) see indic. refs.; from 2,4-dichloroaniline [Beil. XII-621, XII<sub>1</sub>-(309)] via diazotization in alc. (18) (17) (3) (4) or isoamyl alc. (19) followed by replacement of orig. amino group by H by actn. of the alc. (60% yield (15)) or with hypophosphorous acid (50% yield (19)) (use of alk. SnCl<sub>2</sub> or oxidn. of the corresp. 2,4-dichlorophenylhydrazine with CuSO<sub>4</sub> gave only very low yields (15)) see indic. refs.; from m-phenylenediamine [Beil. XIII-33, XIII<sub>1</sub>-(10)] via tetrazotization in AcOH with

nitrosylsulfuric acid followed by use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. (70.4% yield (20)) (21) see indic. refs.]

[For prepn. of  $\tilde{C}$  from *m*-chloronitrobenzene [Beil. V-243, V<sub>1</sub>-(129)] with SOCl<sub>2</sub> in s.t. at 190-200° for 12 hrs. (71% yield (22)), from *m*-nitrobenzenesulfonic acid [Beil. XI-68, XI<sub>1</sub>-(21)] with SOCl<sub>2</sub> in s.t. at 180-200° (23), from *m*-bromonitrobenzene [Beil. V-248, V<sub>1</sub>-(131)] with PCl<sub>5</sub> in s.t. at 180° (24), from 2,6-dichlorobenzoic acid (3:4200) by htg. in acetamide at 225-235° for 6 hrs. (93% yield (25)), or from 2,6-dichlorobenzaldehyde (3:1690) with 50% KOH under N<sub>2</sub> at 100° for 5 hrs. (84% yield (6)) see indic. refs.]

[For formn. of  $\bar{C}$  from 2,6-dichloroacetophenone (5), 2,4-dichlorobenzophenone (3:0825) (26), 2,6-dichlorobenzophenone (3:1285) (26), or 3,5-dichlorobenzophenone (3:1505) (26) by fusion with KOH/NaOH see indic. refs.; for formn. of  $\bar{C}$  from 1,3-dichlorocyclohexadiene-1,3 [Beil. V-114] with PCl<sub>5</sub> or with Br<sub>2</sub> in CHCl<sub>3</sub> see (27).]

[For formn. of  $\bar{C}$  from  $C_6H_6$  (1:7400) or chlorobenzene (3:7903) with  $Cl_2$  + cat. at 400-700° (50-60% yield (12)) (28) or with  $Cl_2$  in pres. of AlCl<sub>3</sub> (29) cf. (30) see indic. refs.] [ $\bar{C}$  with  $Cl_2$  + Al/Hg (31) or with  $Cl_2$  + AlCl<sub>3</sub> (30) cf. (29) gives mainly 1,2,4-trichlorobenzene (3:6420). —  $\bar{C}$  suspended in 1% aq. NaOH adds 3  $Cl_2$  in sunlight giving (32) m-dichlorobenzene hexachloride, cryst. from alc., m.p. 81.8° (32). — For study of photochemical chlorination of  $\bar{C}$  see (33).]

[ $\bar{C}$  with Mg (1 mole) +  $I_2$  (0.25 equiv.) gave (34) after 3 days 62.5% *m*-chlorophenyl MgCl.]

 $[\bar{C} \text{ with CHCl}_3 + \text{AlCl}_3 \text{ at } 65^\circ \text{ for } 14 \text{ hrs. as directed gives } (18\% \text{ yield } (35)) \text{ tris-}(2,4-\text{dichlorophenyl}) \text{methane, white cryst. from hot acetone, m.p. } 227-228.5^\circ (35). — <math>\bar{C}$  with CCl<sub>4</sub> + AlCl<sub>3</sub> as directed gives (60% yield (35)) 2,4,2',4'-tetrachlorobenzophenone dichloride, white pl. from hot acetone, m.p.  $139.0-140.5^\circ$  (35),  $140^\circ$  (36); hydrolysis of this prod. with AcOH/H<sub>2</sub>SO<sub>4</sub> yields (37) 2,4,2',4'-tetrachlorobenzophenone, m.p.  $78^\circ$  (37), accompanied by some 2,4-dichlorobenzoic acid (3:4560), m.p.  $161^\circ$  (37).]

[ $\bar{C}$  with acetyl chloride (3:7065) + AlCl<sub>3</sub> gives (15% yield (38)) 2,4-dichloroacetophenone, b.p. 140-150° at 15 mm. (38), m.p. 33-34° (38). —  $\bar{C}$  with chloroacetyl chloride (3:5235) + AlCl<sub>3</sub> in CS<sub>2</sub> yields (39) 2,4-dichlorophenacyl chloride (2,4, $\omega$ -trichloroacetophenone), pr. from lgr., m.p. 57° (39). —  $\bar{C}$  with  $\beta$ -chloro-n-butyric acid (3:0035) + AlCl<sub>3</sub> or conc. H<sub>2</sub>SO<sub>4</sub> yields (40) by condens. and subsequent ring closure 4,6-dichloro-3-methylindanone-1, m.p. 67-70° (40). —  $\bar{C}$  with  $\sigma$ -bromobenzoyl chloride + AlCl<sub>3</sub> in CS<sub>2</sub> gives (43% yield (41)) 2-bromo-2',4'-dichlorobenzophenone, b.p. 227-228.5°, m.p. 33-34°.]

[C with phthalic anhydride + AlCl<sub>3</sub> at 100-110° for 7 hrs. gives (17% yield on the anhydride (42)) (43) o-(2,4-dichlorobenzoyl)benzoic acid, white cubes from C<sub>6</sub>H<sub>6</sub> or CHCl<sub>3</sub>, m.p. 106-107° (42), 100-101° (43), accompanied (44) (especially if acetylene tetrachloride is used as solvent) by 3,3-bis-(2',4'-dichlorophenyl)phthalide, m.p. 176° (44); the above o-(2,4-dichlorobenzoyl)benzoic acid with fumg. H<sub>2</sub>SO<sub>4</sub> at 155-160° ring-closes (90% yield (42)) to 1,3-dichloroanthraquinone [Beil. VII-787, VII<sub>1</sub>-(411)], yel. ndls. from AcOH, m.p. 209-210° (42).]

[C on hydrolysis with steam + cat. at 550-850° yields (45) m-chlorophenol (3:0255) and/or resorcinol (1:1530). — For studies of reactn. of C with NaOMe/MeOH see (46) (47) (48).]

[ $\bar{C}$  with conc. aq. NH<sub>4</sub>OH in pres. of CuO under press. at 150-200° (49) cf. (50) (51) yields m-phenylenediamine. —  $\bar{C}$  with K diphenylamine gives on htg. (16) (52) N,N,N',N'-tetraphenyl-m-phenylenediamine [Beil. XIII-42], m.p. 137.5-138° (16) (52) (note that this same prod. is similarly obtd. from o-dichlorobenzene (3:6055) and in part also from p-dichlorobenzene (3:0980).]

[ $\bar{C}$  on mononitration, e.g., by soln. in 4.5 moles HNO<sub>3</sub> (D=1.5) in cold followed by 10 min. htg. at 70° (53) or with 5 pts. fumg. HNO<sub>3</sub> (D=1.52) at 0° (90% yield (54)) cf.

(3). (27) (17) gives 1,3-dichloro-4-nitrobenzene [Beil. V-245,  $V_{1}$ -(131)], cryst. from alc., m.p. 34° (55), 33–34° (27), 33° (53) (3), accompanied by a little (2.6% at  $-30^{\circ}$ , 4% at  $0^{\circ}$  (17)) 1,3-dichloro-2-nitrobenzene [Beil. V-246,  $V_{1}$ -(131)], m.p. 70.5° (55), 70° (56) (reactn. prod. with piperidine is 3-chloro-2-nitro-1-piperidinobenzene, m.p. 63° (57)).]—[The only other possible mononitro-m-dichlorobenzene, viz., 1,3-dichloro-5-nitrobenzene [Beil. V-246,  $V_{1}$ -(131)], m.p. 65° (55), has been prepd. indirectly.]

C on dinitration, e.g., with 3.4 wt. pts. HNO<sub>3</sub> (D = 1.54) + 6.8 wt. pts. conc. H<sub>2</sub>SO<sub>4</sub> at 99° for 1 hr. (56) (cf. (22) (58) (27) (59) (60) (61)) gives (85% yield (56)) 1,3-dichloro-4,6-dinitrobenzene [Beil. V-265, V<sub>1</sub>-(138)], cryst. from alc., m.p. 103° (22) (60), 102-103° (58), 102° (27), 101° (56), accompanied by 15% yield (56) of 1,3-dichloro-2,4-dinitrobenzene [Beil. V-265], m.p. 68° (56). — For f.p./compn. data and diagram for these two cpds. (eutectic, m.p. 48.1°, contg. 38% of the former) see (56). — Note that 1,3-dichloro-4,6-dinitrobenzene with piperidine in alc. boiled for 10 min. replaces 1 chlorine yielding (62) 1-chloro-4,6-dinitro-3-piperidinobenzene, yel. cryst. from alc., m.p. 119° (62); with piperidine in pyridine (requires cooling) it replaces both chlorine atoms yielding (62) 4,6-dinitro-1,3-dipiperidinobenzene, yel. lfts. from AcOH, m.p. 130-131° (62). — [Both of the other two possible dinitro-m-dichlorobenzenes are known, viz., 1,3-dichloro-2,5-dinitrobenzene [Beil. V₁-(138)], m.p. 114°, and 1,3-dichloro-4,5-dinitrobenzene [Beil. V-264], m.p. 98°, but have been prepd. indirectly.]

[The direct trinitration of C has not been reported; of the four possible trinitro-m-dichlorobenzenes only one, viz., 1,3-dichloro-2,4,6-trinitrobenzene [Beil. V-275], m.p. 128°, is known.]

[ $\bar{C}$  on monosulfonation with fumg.  $H_2SO_4$  at 230° (3) or with fumg.  $H_2SO_4$  (7%  $SO_3$ ) at 100° (7) or with fumg.  $H_2SO_4$  (12%  $SO_3$ ) (54) gives (82% yield (54)) 1,3-dichlorobenzene-sulfonic acid-4 [Beil. XI-55, XI<sub>1</sub>-(15)], m.p. 86° (54) (corresp. sulfonyl chloride, m.p. 54.6° (7), corresp. sulfonamide, m.p. 182° (7) (see also below)), both  $\bar{C}$  and its *ortho* isomer (3:6055) sulfonate with about equal case, both much more readily than p-dichlorobenzene (3:0980) (use in sepns. from latter).]

[C on disulfonation with fumg. H<sub>2</sub>SO<sub>4</sub> (45% SO<sub>3</sub>) at 140-150° for 5 hrs. (63) gives 1,3-dichlorobenzenedisulfonic acid-4,6 (corresp. bis-(sulfonyl chloride), m.p. 122-123° (63) (64), corresp. bis-(sulfonamide), m.p. 276° (63); unlike the corresp. 1,3-dichloro-4,6-dinitrobenzene the halogen in this disulfonic acid is unreactive (63).]

[For study of kinetics of sulfonation of C see (66).]

① 1,3-Dichlorobenzenesulfonamide-4 (2,4-dichlorobenzenesulfonamide-1): cryst. from dil. alc., m.p. 179-180° u.c. (65). [From C on treatment as directed (65) with Cl.SO<sub>3</sub>H followed by conv. of the intermediate 1,3-dichlorobenzenesulfonyl chloride-4, m.p. 52-53° u.c. (65), to the sulfonamide by means of (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>.] — [Note that although the m.p. of this sulfonamide is practically identical with that from p-dichlorobenzenesulfonyl chlorides, viz., 52-53° for C, 38° for the p-isomer, may also serve to distinguish them (65).]

3:5960 (1) Groves, Sugden, J. Chem. Soc. 1937, 1783. (2) Dadieu, Pongratz, Kohlrausch, Monatsh. 61, 431 (1932). (3) Beilstein, Kurbatow, Ann. 182, 97-98 (1876). (4) Koerner, Gazz. chim. ital. 4, 341 (1874). (5) Lock, Bock, Ber. 70, 922 (1937). (6) Lock, Ber. 66, 1530 (1933). (7) Holleman, van der Linden, Rec. trav. chim. 30, 305-341 (1911). (8) Narbutt, Ber. 52, 1031 (1919). (9) Timmermans, Bull. soc. chim. Belg. 43, 632-634 (1934). (10) Timmermans, Bull. soc. chim. Belg. 30, 67 (1921).

(11) von Auwers, Ann. 422, 164, 168 (1921).
(12) Wibaut, van der Lande, Wallagh, Rec. trav. chim. 56, 65-70 (1937).
(13) Smyth, Morgan, Boyce, J. Am. Chem. Soc. 50, 1542 (1928).
(14) Klemenc, Löw, Rec. trav. chim. 49, 637 (1930).
(15) Borsche, Bahr, Ann. 402, 88-90 (1914).

(16) Haeussermann, Ber. 33, 940-941 (1900). (17) Holleman, Reiding, Rec. trav. chim. 23,

359-360, 369-379 (1904). (18) Chattaway, Evans, J. Chem. Soc. 69, 850-851 (1896). (19) Raiford, Oberst, Am. J. Pharm. 107, 242-244 (1935). (20) Hodgson, Walker, J. Chem. Soc. 1935, 530.

(21) Sandmeyer, Ber. 17, 2652 (1884). (22) Davies, Hickox, J. Chem. Soc. 121, 2648-2649 (1922). (23) Kinzlberger and Co., Ger. 280,379, Nov. 26, 1914; Cent. 1915, I 104. (24) Schmidt, Wagner, Ann. 387, 164-165 (1911). (25) Norris, Klemka, J. Am. Chem. Soc. 62, 1434 (1940). (26) Lock, Rodiger, Ber. 72, 868-870 (1939). (27) Crossley, Haas, J. Chem. Soc. 83, 502-503 (1903). (28) Wibaut, van der Lande, Wallagh (to Dow Chem. Co.), U.S. 2,123,857, July 12, 1938; Cent. 1939, I 250; C.A. 32, 7058 (1938). (29) Mouneyrat, Pouret, Compt. rend. 127, 1027 (1898). (30) Olivier, Rec. trav. chim. 39, 411-413 (1920).

(31) Cohen, Hartley, J. Chem. Soc. 87, 1364 (1905). (32) von der Linden, Ber. 45, 415-416 (1912). (33) Fisk, Noyes, J. Am. Chem. Soc. 58, 1707-1714 (1936). (34) E. L. St. John, N. B. St. John, Rec. trav. chim. 55, 587 (1936). (35) Wilson, Cheng, J. Org. Chem. 5, 223-226 (1940). (36) Jaeger, Z. anorg. allgem. Chem. 101, 143-144 (1917). (37) Boeseken, Rec. trav. chim. 27, 8-9 (1908). (38) Roberts, Turner, J. Chem. Soc. 1927, 1846. (39) Kunckell, Ber. 40, 1702-1703 (1907). (40) I.G., Swiss 126,404, June 16, 1928; 127,692-127,703, Sept. 1, 1928; 128,366,

Oct. 16, 1928; Cent. 1929, I 1271-1272.

(41) Meisenheimer, Hanssen, Wächterowitz, J. prakt. Chem. (2) 119, 350-355 (1928). (42) Goldberg, J. Chem. Soc. 1931, 2829-2830. (43) Gubelmann, Weiland, Stallmann (to Newport Co.), U.S. 1,711,144, April 30, 1929; Cent. 1929, II 796; Brit. 288,884; Cent. 1928, II 1821. (44) Barnett, Goodway, Wilson, Ber. 66, 1876, 1881 (1933). (45) Lloyd, Kennedy, U.S. 1,849,844, March 15, 1932; Cent. 1932, I 2994. (46) Holleman, de Mooy, Rec. trav. chim. 35, 27-28 (1915). (47) Holleman, Rec. trav. chim. 37, 203 (1917). (48) Clark, Crozier, Trans. Roy. Soc. Can. (3) 19, III 153-154 (1925); Cent. 1926, II 20; C.A. 20, 388 (1926). (49) Williams (to Dow Chem. Co.), U.S. 1,775,360, Sept. 9, 1930; Cent. 1931, II 1195. (50) Federal Phosphorus Co., Brit. 370,774, May 5, 1932; Cent. 1932, II 1237.

(51) Booth (to Swann Research, Inc.), U.S. 1,954,469, April 10, 1934; Cent. 1934, II 1846. (52) Haeussermann, Ber. 34, 38-40 (1901). (53) Roberts, Turner, J. Chem. Soc. 127, 2011 (1925). (54) van de Lande, Rec. trav. chim. 51, 98-99 (1932). (55) Kremer, Bendich, J. Am. Chem. Soc. 61, 2659-2660 (1939). (56) Dann, J. Chem. Soc. 1929, 2460-2462. (57) Loudon, J. Chem. Soc. 1940, 1526. (58) Jois, Manjunath, Half-Yearly J. Mysore Univ. 4, 239-240 (1930); Cent. 1930, I 1124; C.A. 25, 2981 (1931). (59) Holleman, den Hollander, Rec. trav. chim. 39, 437 (1920). (60) Hodgson, J. Soc. Dyers Colourists 42, 367 (1926).

(61) Zincke, Ann. 370, 302, Note (1909).
(62) LeFevre, Turner, J. Chem. Soc. 1927, 1118.
(63) Davies, Poole, J. Chem. Soc. 1927, 1122-1123.
(64) Pollak, Wienerberger, Monatsh. 35, 1472 (1914).
(65) Huntress, Carten, J. Am. Chem. Soc. 62, 511-514 (1940).
(66) Dresel, Hinshelwood, J. Chem. Soc. 1944, 649-652.

B.P. 173° M.P. 44°

See 3:0563. Division A: Solids.

3:5970 
$$\gamma$$
-CHLORO- $n$ -BUTYRYL CHLORIDE C<sub>4</sub>H<sub>6</sub>OCl<sub>2</sub> Beil. II - 278 CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.C=O II<sub>1</sub>-(124) II<sub>2</sub>-(254) B.P. 173-174° (1)  $D_4^{20} = 1.2581$  (5)  $n_D^{20} = 1.4631$  (2) 83-85° at 40 mm. (2) 68° at 15 mm. (3) 60-61° at 12 mm. (4) 55-56° at 12 mm. (5) 59-60° at 11 mm. (6)

[For prepn. of  $\bar{C}$  from  $\gamma$ -chloro-n-butyric acid (3:0020) with SOCl<sub>2</sub> (82% yield (4)) (3) in pet. eth. (6), or with PCl<sub>5</sub> (1) (3), see indic. refs.: from n-butyryl chloride (3:7370) with Cl<sub>2</sub> (7) or with SO<sub>2</sub>Cl<sub>2</sub> + dibenzoyl peroxide in CCl<sub>4</sub> (30%  $\bar{C}$  + 15%  $\alpha$ - and 55%  $\beta$ -isomers (2)) see indic. refs.]

[ $\bar{\mathbf{C}}$  with EtZnI at -15 to -20° yields (3)  $\gamma$ -chloro-n-propyl ethyl ketone (6-chlorohexanone-3) [Beil. I<sub>1</sub>-(355), I<sub>2</sub>-(747)], b.p. 182-183° at 761 mm. (8) (semicarbazone, m.p. 98-99° (8), 118° (3); p-nitrophenylhydrazone, m.p. 106-107° (3)), but above 0° the reactn. yields  $\gamma$ -chloro-n-propyl-ethyl-carbinyl  $\gamma$ -chloroacetate, b.p. 172-174° at 19 mm. (3).]

 $\ddot{\mathbf{C}}$  on hydrolysis with aq. yields  $\gamma$ -chloro-n-butyric acid (3:0020).

For the amide, anilide, p-toluidide, and other derivs. corresp. to  $\bar{\mathbf{C}}$  see  $\gamma$ -chloro-n-butyric acid (3:0020).

3:5970 (1) Henry, Bull. soc. chim. (2) 45, 341 (1886). (2) Kharasch, Brown, J. Am. Chem. Soc. 62, 925-929 (1940). (3) Wohlgemuth, Ann. chim. (9) 2, 307, 405-408 (1914). (4) Blicke, Wright, Zienty, J. Am. Chem. Soc. 63, 2489 (1941). (5) Leimu, Ber. 70, 1050 (1937). (6) Lipp, Caspers, Ber. 58, 1012-1013 (1925). (7) Michael, Ber. 34, 4051-4053 (1901). (8) Boosere, Bull. soc. chim. Belg. 32, 29 (1923).

## 3:5975 ISOPROPYL TRICHLOROACETATE $C_5H_7O_2Cl_3$ Beil. S.N. 160 $(CH_3)_2CH.O.CO.CCl_3$

B.P.

173.9-174.9° (1) 
$$D_4^{25} = 1.2911$$
 (2)  $n_D^{25} = 1.4409$  (2) 173.5° at 747 mm. (2)  $D_4^{20} = 1.3034$  (3)  $n_D^{20} = 1.44355$  (3) cf. (5) 65.5-67.0° at 15 mm. (3) 65° at 10 mm. (4)  $D_4^{15} = 1.2987$  (4)  $n_D^{15} = 1.4440$  (4)

[For prepn. from isopropyl alc. (1:6135) + trichloroacetic ac. (3:1150) (57.8% yield (2) (3)) see (2) (3); for prepn. from propylene + trichloroacetic ac. (3:1150) + BF<sub>3</sub> (48.8% yield (2)) see (2).]

[For study of chlorination of  $\bar{C}$  see (4); for reaction with  $C_6H_6+BF_3$  yielding ethylbenzene (1:7410) see (6).]

[For study of hydrolysis of C see (3).]

3:5975 (1) Cheng, Z. physik. Chem. B-24, 310 (1934). (2) Dorris, Sowa, Nieuwland, J. Am. Chem. Soc. 56, 2689-2690 (1934). (3) Paloma, Salmi, Korte, Ber. 72, 797 (1939). (4) Gayler, Waddle, J. Am. Chem. Soc. 63, 3358-3359 (1942). (5) Schjanberg, Z. physik. Chem. A-172, 229 (1935). (6) McKenna, Sowa, J. Am. Chem. Soc. 59, 1204-1205 (1937).

# --- p-DICHLOROBENZENE Cl $C_0H_4Cl_2$ Beil. V - 203 $V_1$ -(111) $V_2$ -(154)

B.P. 174° at 764 mm.

M.P. 53°

See 3:0980. Division A: Solids.

3:5977 1,3-DICHLORO-2-METHYLPROPANOL-2 
$$C_4H_8OCl_2$$
 Beil. I-382  $(sym.\text{-Dichloro-}ter\text{-butyl alcohol})$   $CH_3$   $I_1$ —  $I_2$ —  $CH_2$   $CH_2$ 

[See also the isomeric 1,1-dichloro-2-methylpropanol-2 (3:5772).]

Č with aq. forms a const.-boilg. mixt., b.p. 98.3°, contg. 35.2% Č (8). — Soly. of Č in aq. at 20° is 9.4 g. Č in 100 g. aq., soly. of aq. in Č at 20° is 10.8 g. aq. in 100 g. Č (8).

#### PREPARATION OF C

[For prepn. of  $\bar{\mathbb{C}}$  from 1-chloro-2-methylpropene-2 (methallyl chloride = isobutenyl chloride) (3:7145) by addn. of HOCl with HOCl (yields: 33% (4), 32% (3)) (7), with Cl<sub>2</sub>/aq. (70% yield (8)), or with organic hypochlorites (7) see indic. refs.; note that if the initial methallyl chloride conts.  $\beta$ , $\beta$ -dimethylvinyl chloride (isocrotyl chloride) (3:7120) the crude HOCl addn. prod. will contain 1,1-dichloro-2-methylpropanol-2 (3:5772), but this can be separated from  $\bar{\mathbb{C}}$  by fractional distillation.]

[For prepn. of  $\bar{C}$  from  $\alpha, \alpha'$ -dichloroacetone (3:0563) with MeMgBr (yields: 80-85% (6), 40% (5)) (1) see indic. refs.; from chloroacetone (3:5425) with diazomethane via  $\beta$ -methyl epichlorohydrin (3-chloro-2-methyl-1,2-epoxypropane) (3:7657) and subsequent ring opening with conc. HCl see (2).

#### CHEMICAL BEHAVIOR OF C

#### WITH INORGANIC REACTANTS

Dehydration. [ $\bar{C}$  is difficult to dehydrate but on twice htg. with equal wt.  $P_2O_5$  at 110-195° for 2 hrs. gives (46% yield (6)) 1,3-dichloro-2-methylpropene-1 (3:5590). —  $\bar{C}$  with strong  $H_2SO_4$  loses  $H_2O$  giving (9) 80% 3-chloro-2-(chloromethyl)propene-1 (3:5633) + 20% 1,3-dichloro-2-methylpropene-1 (3:5590).]

Dehydrohalogenation.  $\tilde{C}$  with aq.  $Ca(OH)_2$  loses 1 HCl giving (93% yield (10) (11)) 3-chloro-2-methyl-1,2-epoxypropane ( $\beta$ -methylepichlorohydrin) (3:7657) which distils as its azeotrope, b.p. 89.8°, contg. 25.6% aq. (10). — Note that, if alk. is added in excess, reactn. is complete in a few seconds at room temp. and the process can even be used as a method for detn. of  $\tilde{C}$  in aq. soln. [For use of  $\tilde{C}$  in comml. prepn. of  $\beta$ -methylepichlorohydrin (3:7657),  $\beta$ -methylglycerol monochlorohydrin,  $\beta$ -methylglycidol, and  $\beta$ -methylglycerol see (10).]

Behavior with sodium sulfite. [C (1 mole) with aq. Na<sub>2</sub>SO<sub>3</sub> (2 moles) at 70-90° for 2 hrs. yields (3) the salt of 2-methylpropanol-2-disulfonic acid-1,3; this prod. with PCl<sub>5</sub> not only is converted to the bis (acid chloride) but simultaneously loses H<sub>2</sub>O yielding (3) 2-methylpropen-1,3-bis-(sulfonyl chloride), long ndls. from CCl<sub>4</sub>, C<sub>5</sub>H<sub>5</sub>, or pet. ether, m.p.

79.2-79.8° (3) (corresp. bis-(sulfonamide), m.p. 152.5-154° (3); corresp. bis-(anilide), m.p. 171.5-172.5° (3)).]

#### BEHAVIOR WITH ORGANIC REACTANTS

[Č with KCN (2 moles) yields (4) 1,3-dicyano-2-methylpropanol-2; note, however, that attempts to purify this prod. by vacuum distn. lead only to decomposition and polymerization (4).]

- **D 1,3-Di-**( $\beta$ -naphthoxy)-2-methylpropanol-2 (2-methylglycerol  $\alpha,\alpha'$ -di( $\beta$ -naphthyl ether): colorless cryst. from alc., m.p. 151–152° (5). [From  $\bar{C}$  with sodium  $\beta$ -naphtholate in boilg. alc. (5).]
- ---- sym.-Dichloro-ter-butyl acetate: unreported.
- ---- sym.-Dichloro-ter-butyl benzoate: unreported.
- ---- sym.-Dichloro-ter-butyl p-nitrobenzoate: unreported.
- ----- sym.-Dichloro-ter-butyl 3,5-dinitrobenzoate: unreported.
- ---- 1,3-bis-Phthalimido-2-methylpropanol-2: unreported.

3:5977 (1) Henry, Compt. rend. 142, 132 (1901); Bull. soc. chim. Belg. 20, 152-156 (1906). (2) Arndt, Amende, Ender, Monatsh. 59, 213-214 (1932). (3) Suter, Malkemus, J. Am. Chem. Soc. 63, 980-981 (1941). (4) Hurd, Abernethy, J. Am. Chem. Soc. 63, 976-977 (1941). (5) Gibson, Harley-Mason, Litherland, Mann, J. Chem. Soc. 1942, 171. (6) D'yaknov, J. Gen. Chem. (U.S.S.R.) 10, 402-413 (1940); C.A. 34, 7861 (1940). (7) Groll, Hearne (to Shell Development Co.), U.S. 2,067,392, Jan. 12, 1937; C.A. 31, 1432; not in Cent.: (to N. V. de Bataafsche Petroleum Mastschapij), Brit. 435,096, Oct. 10, 1935; Cent. 1936, II 865; C.A. 30, 1067 (1936): French 789,289, Oct. 25, 1935; Cent. 1936, II 865; C.A. 30, 1812 (1936). (8) Burgin, Hearne, Rust, Ind. Eng. Chem. 33, 386-388 (1941). (9) Groll, Burgin (to Shell Development Co.), U.S. 2,042,-223, May 26, 1936; Cent. 1937, I 1274; C.A. 30, 4875 (1936). (10) Hearne, de Jong, Ind. Eng. Chem. 33, 940-943 (1941).

(11) Groll, Hearne (to Shell Development Co.), U.S. 2,061,377, Nov. 17, 1936; Cent. 1937, I 4862; C.A. 31, 704 (1937).

### 3:5980 o-CHLOROPHENOL

| B.P.<br>175–176° c<br>175.4–176.<br>175°                           |                                                                                                       | 8.7° (9) $D_4^{25} = 1.2456$<br>8.0° (10) 1.2573<br>(3) (20) |                                      |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------|
| 174–175°<br>174.5°<br>174.3°<br>90°<br>62.4–62.6°<br>64°<br>52–54° | at 753 mm. (5)<br>at 749 mm. (6)<br>at 50 mm. (114)<br>at 14 mm. (2)<br>at 13 mm. (7)<br>at 7 mm. (8) | $D_4^{20} = 1.2512$                                          | (3) $n_{\rm D}^{16.5} = 1.5612 (12)$ |

[See also p-chlorophenol (3:0475).]

Č has disagreeable and persistent odor (13) suggesting iodoform (14) (for study of strength of odor in aq. soln. see (14)). — Č is spar. sol. in aq. at ord. temp. (for details see (15)). Č is sol. alc. or ether. — Č is volatile with steam even from soln. in equiv. aq. NaOH (dif. and sepn. from 2.4-dichlorophenol (3:0560) (27)).

The cryoscopic const. of  $\bar{C}$  is 77.2 (16), but the m.p. of  $\bar{C}$  is not always a good criterion of its purity; e.g., the pres. of as much as 20% phenol (1:1420) lowers f.p. of  $\bar{C}$  only 1.7% (17) (see also below). — [For removal of phenol from  $\bar{C}$  by means of treatment of mixt. with 10% aq.  $K_2CO_3$ , extraction of the phenol with ether, etc., see (18).]

Selected data on binary systems contg.  $\bar{C}$ :  $\bar{C} + aq.$ ; for soly./temp. data see (15):  $\bar{C} + C_6H_6$ ; for f.p./compn. data see (15); for  $n_D^{16}$  5 compn. data see (12):  $\bar{C} + acetone$ ; these two substances form a mol. epd., C.C<sub>3</sub>H<sub>6</sub>O, m.p. -39.8° (19), this mol. epd. forms with acetone a eutectic, m.p. -97.1°, contg. 7.2 mol. %  $\bar{C}$ , and with  $\bar{C}$  another eutectic, m.p. -47.6°, contg. 62.4 mol. %  $\bar{C}$  (19); for the  $D_4^t$  of mixts. of  $\bar{C}$  + acetone for t = 0-50° see (3):  $\bar{C}$  + phenol; for anal. of this mixt. by bromometric methods see (17).

- $\ddot{\mathbf{C}}$  + aniline; these two substances form a mol. cpd.,  $\ddot{\mathbf{C}}.\mathbf{C}_6\mathbf{H}_5\mathbf{NH}_2$ , m.p. 29.4° (19); this mol. cpd. forms with aniline a eutectic, m.p.  $-12^\circ$ , contg. 9.7 mol %  $\ddot{\mathbf{C}}$ , and with  $\ddot{\mathbf{C}}$  another eutectic, m.p.  $-1.75^\circ$ , contg.  $\dot{\mathbf{S}}3.8$  mol %  $\ddot{\mathbf{C}}$  (19); for  $D_4^t$  of mixts. of  $\ddot{\mathbf{C}}$  + aniline for  $t=10-150^\circ$  see (3) (21);  $\ddot{\mathbf{C}}$  + p-toluidine: these two substances form a mol. cpd.,  $\ddot{\mathbf{C}}.\mathbf{C}_3\mathbf{H}_4$ -NH<sub>2</sub>, m.p. 38.9° (20); this mol. cpd. forms with p-toluidine a eutectic, m.p. 25.2°, contg. 24 mol %  $\ddot{\mathbf{C}}$ , and with  $\ddot{\mathbf{C}}$  another eutectic, m.p. 3.6°, contg. 83.6 mol %  $\ddot{\mathbf{C}}$  (20); for  $n_D^{\rm co}/\mathbf{C}$  compn. data and diagram of the system see (20):  $\ddot{C}$  + phenylhydrazine; for  $D_2^{\rm co}/\mathbf{C}$  compn. data see (21).
- $\bar{\mathbb{C}}$  + dimethylaniline: these two substances form a mol. cpd.,  $\bar{\mathbb{C}}.\mathbb{C}_6H_5N$  (CH<sub>3</sub>)<sub>2</sub>, m.p. 16.7° (19); this mol. cpd. forms with dimethylaniline a eutectic, m.p.  $-4.0^\circ$ , contg. 11 mol. %  $\bar{\mathbb{C}}$ , and with  $\bar{\mathbb{C}}$  another eutectic, m.p. abt.  $-3^\circ$ , contg. abt. 84 mol. %  $\bar{\mathbb{C}}$  (19); for  $D_4^t$  of mixts. of  $\bar{\mathbb{C}}$  + dimethylaniline for  $t=0-80^\circ$  see (3):  $\bar{\mathbb{C}}$  + pyridine; these two substances form a mol. cpd.,  $\bar{\mathbb{C}}.\mathbb{C}_5H_5N$ , m.p.  $-21.6^\circ$  (19); this mol. cpd. forms with pyridine a eutectic, m.p.  $-36.9^\circ$ , contg. 23.1 mol. %  $\bar{\mathbb{C}}$ , and with  $\bar{\mathbb{C}}$  another eutectic, m.p.  $-36.9^\circ$ , contg. 66.1 mol. %  $\bar{\mathbb{C}}$  (19); for  $D_4^t$  of mixts. of  $\bar{\mathbb{C}}$  with pyridine for  $t=0-110^\circ$  see (3); for data on  $n_D^{25}$  and  $n_D^{25}$  for this system see (11):  $\bar{\mathbb{C}}$  + quinoline: these two subst. form a mol. cpd.,  $\bar{\mathbb{C}}.\mathbb{C}_5H_7N$ , m.p. 47.4° (19); this mol. cpd. forms with quinoline a eutectic, m.p.  $-27.6^\circ$ , contg. 9.6 mol. %  $\bar{\mathbb{C}}$ , and with  $\bar{\mathbb{C}}$  another eutectic, m.p.  $-10.9^\circ$ , contg. 79.1 mol. %  $\bar{\mathbb{C}}$  (19); for  $D_4^t$  of mixts. of  $\bar{\mathbb{C}}$  with quinoline for  $t=0-110^\circ$  see (3):  $\bar{\mathbb{C}}$  + N-methyldiphenylamine: this system does not form a mol. cpd. but shows a eutectic, m.p.  $-29.1^\circ$ , contg. 43.6 mol. %  $\bar{\mathbb{C}}$  (19); for  $D_4^t$  of mixts. of  $\bar{\mathbb{C}}$  with N-methyldiphenylamine for  $t=0-80^\circ$  see (3).
- $\ddot{\mathbf{C}}$  + p-chlorophenol (3:0475): this system has eutectic, m.p. about  $-20.5^{\circ}$ , contg. abt. 61.5 mol. %  $\ddot{\mathbf{C}}$  (9), for sepn. or detn. of  $\ddot{\mathbf{C}}$  see (27):  $\ddot{\mathbf{C}}$  + p-dichlorobenzene (3:0980); this system has eutectic, m.p.  $-0.4^{\circ}$ , contg. 80 wt. %  $\ddot{\mathbf{C}}$  (10).

[For prepn. of C from o-chloroaniline [Beil. XII-597, XII<sub>1</sub>-(297)] via diazotization in dil. H<sub>2</sub>SO<sub>4</sub> and subsequent warming of soln. (22) or adding dropwise to strong H<sub>2</sub>SO<sub>4</sub> at 140° (65% yield (9)) see indic. refs.: from o-aminophenol [Beil. XIII-354, XIII<sub>1</sub>-(108)] via diazotization, conv. to corresp. PtCl<sub>4</sub> double salt, and subsequent dry distn. (23), or from o-aminophenol hydrochloride via diazotization and distn. with Cu<sub>2</sub>Cl<sub>2</sub> soln. (32% yield (24)) see indic. refs.]

[For prepn. of  $\bar{C}$  from phenol (1:1420) with  $Cl_2$  without solvent at 40-155° (9) (13) (25) (26) (note that an approximately equal amt. of p-chlorophenol is also formed and that the proportion is not much affected by temp. (9) (27)) see indic. refs; from phenol with  $Cl_2$  in pres. of aq. NaOH (28), aq. Na<sub>2</sub>CO<sub>3</sub> (29), or in CCl<sub>4</sub> soln. (30) (31) see indic. refs.; from phenol with N,N'-dichlorourea (32), with ethyl hypochlorite (3:7022) (33), or with SO<sub>2</sub>Cl<sub>2</sub> (34) see indic. refs.]

[For prepn. from 2-chlorophenolsulfonic acid-4 [Beil. XI-244] by htg. with aq. at 180-200° under press. (35) or from 2-chlorophenoldisulfonic acid-4,6 [Beil. XI<sub>1</sub>-(58)] by distn. with steam at 120° (81% yield (36)), from phenol-p-sulfonic acid [Beil. XI-241, XI<sub>1</sub>-(55)] in nitrobenzene at 55° with Cl<sub>2</sub> (72% yield (37)) see indic. refs.]

[For prepn. of Č from o-dichlorobenzene (3:6055) by partial hydrol. with aq. MeOH or EtOH alk., alk. earths, or alk. carbonates in pres. of Cu or Cu salts at elevated temps. under press. see (38)-(46) incl.]

[ $\bar{C}$  in excess dil. aq. KOH with H<sub>2</sub> in pres. of Ni absorbs 1 mole H<sub>2</sub> (47) but more slowly than m-chlorophenol (3:0255) or p-chlorophenol (3:0475). —  $\bar{C}$  is not reduced with HI in AcOH at 25° (48).]

[Č on oxidn. with 35% peracetic acid at 25° gives slowly (17 days) in small yield (49) a-chloromuconic acid (2-chlorobutadiene-1,3-dicarboxylic acid-1,4), m.p. 190° (49), + 5-chlorohexadiene-2,4-al-6-oic acid-1, m.p. 145° (49).]

[ $\tilde{\mathbf{C}}$  with  $\mathbf{Cl_2}$  (2 moles) in AcOH gives (80% yield (50)) 2,4-dichlorophenol (3:0560);  $\tilde{\mathbf{C}}$  with  $\mathbf{Cl_2}$  (3 moles) undoubtedly gives 2,4,6-trichlorophenol (3:1673). — For study of chlorination of  $\tilde{\mathbf{C}}$  with HOCl see (51).]

Č with Br<sub>2</sub> (1 mole) in CCl<sub>4</sub> gives (87% yield (52)) 4-bromo-2-chlorophenol, ndls. from lgr., m.p. 48-49° (52), 49-50° (53), 50-51° (54). — Č with Br<sub>2</sub> (2 moles) in aq. KBr soln. gives (55) 2-chloro-4,6-dibromophenol [Beil. VI-203], ndls. from alc., m.p. 76° cor. (55), 75-76° (56). — Č with large excess Br<sub>2</sub> in pres. of Fe powder gives (57) 2-chloro-3,4,5,6-tetrabromophenol, ndls. from alc. or AcOH, m.p. 224° (57).

[ $\bar{C}$  in aq. alk. with  $I_2/KI$  soln. as directed (55) gives 2-chloro-4,6-di-iodophenol, ndls. from alc., m.p. 96° (55). — For study of iodination of  $\bar{C}$  see (58).]

[C on nitrosation as directed (59) (60) gives (96% yield (60)) 2-chloro-4-nitrosophenol (2-chlorobenzoquinone-1,4-oxime-4) [Beil. VII-631, VII<sub>1</sub>-(346)], pale yel. ndls. from  $C_6H_6$ , m.p. 145° (60), 142° (59); for discussion of tautomerism of this cpd. see also (61) (62) (63).]

[ $\bar{\mathbf{C}}$  on mononitration, e.g., with cold mixt. of equal pts. HNO<sub>3</sub> (D=1.36) + aq. (13), with HNO<sub>3</sub> in MeOH (64), or with HNO<sub>3</sub> (D=1.5) in AcOH (65), gives a mixt. of 2-chloro-4-nitrophenol [Beil. VI-240], ndls. from aq., m.p. 110-111°, and (32% (65)) 2-chloro-6-nitrophenol [Beil. VI-239], ndls. from aq., m.p. 70-71°; of these only the latter is volatile with steam (use in detn. of  $\bar{\mathbf{C}}$  in mixts. with 4-chlorophenol (3:0475) (27)). — Both of the other mononitro-o-chlorophenols are known but have been obtd. only by indirect means; e.g., 2-chloro-3-nitrophenol, m.p. 120.5° (66), 120° (67), and 2-chloro-5-nitrophenol, m.p. 119.5° (66).]

 $\tilde{\mathbf{C}}$  on dinitration, e.g., by soln. in HNO<sub>3</sub> (D=1.36) and subsequent warming yields (68) 2-chloro-4,6-dinitrophenol [Beil. VI-259, VI<sub>1</sub>-(128)], cryst. from alc., m.p. 113° (68); this prod. (unlike picric acid) is volatile with steam from H<sub>2</sub>SO<sub>4</sub> soln. (use in anal. of mixts. of  $\tilde{\mathbf{C}}$  with phenol (17)).

[Č in alk. soln. couples with diazotized aniline giving (70% yield (69) (70) (71)) 3-chloro-4-hydroxyazobenzene (2-chlorobenzoquinone phenylhydrazone-4) [Beil. XVI-120], yel. pr. from aq. alc., m.p. 88.5° (69), 88° (70), 86° (71). — For study of corresp. coupling of C with diazotized p-nitroaniline see (72).]

[For mercuration of  $\bar{C}$  and use of products as seed disinfectants, etc., see (73); for condens. prods. of  $\bar{C}$  with  $C_6H_5$ .Hg.OH see (74).]

[ $\bar{C}$  over pumice in a silica tube at dull red heat (75) or K salt of  $\bar{C}$  + K phenolate at 250° for 8 hrs. (81) yields diphenylene dioxide [Beil. XIX-44, XIX<sub>1</sub>-(618)], ndls. from MeOH, m.p. 119°, readily identified by dinitration with fumg. HNO<sub>3</sub> in AcOH (75) to dinitrodiphenylene dioxide, ndls. from pyridine, m.p. 257° (75).]

Condensation reactions involving nuclear hydrogens. [ $\bar{C}$  with formalin (1:0145) in pres. of conc. HCl treated with HCl gas as directed (76) gives 3-chloro-4-hydroxybenzyl chloride, m.p. 92-93° (76). —  $\bar{C}$  with formalin + H<sub>2</sub>SO<sub>4</sub> (60%) at 60-65° for 16 hrs. gives (76) 3,3'-dichloro-4,4'-dihydroxydiphenylmethane, m.p. 103-104° (76). —  $\bar{C}$  with formalin (1:0145) + aq. 10% NaOH as directed (77) yieds acc. to conditions 3-chloro-4-hydroxybenzyl alc., pl. from  $C_6H_6$ , m.p. 123.5-124°, and/or 3-chloro-4-hydroxy-5-(hydroxymethyl)-

benzyl alc., ndls. from CHCl<sub>3</sub>, m.p. 117.5-119°. — For condens. of Č with formalin in prepn. of synthetic tanning agents see (78).]

[ $\bar{\mathbb{C}}$  with CHCl<sub>3</sub> or CHBr<sub>3</sub> (79) in pres. of aq. NaOH undergoes Reimer-Tiemann reaction yielding both 3-chloro-2-hydroxybenzaldehyde (3:1010) and 3-chloro-4-hydroxybenzaldehyde (3:4065). —  $\bar{\mathbb{C}}$  with CCl<sub>4</sub> in alc. alk. in s.t. at 125–136° yields (80) 3-chloro-4-hydroxybenzoic acid (3:4675). —  $\bar{\mathbb{C}}$  with  $\alpha,\alpha$ -dichlorodiphenylmethane (3:6960) + AlCl<sub>3</sub> in cold CS<sub>2</sub> gives (31) 3-chloro-4-hydroxyphenyl-diphenyl-carbinol, from 60% AcOH as deep orange pl. of quinonoid desmotrope, m.p. 118°, but from alc. colorless crysts. of benzenoid desmotrope (contg. ½ mole solvent), m.p. 70–72° (31); note that in hot C<sub>6</sub>H<sub>6</sub>, however, this reaction takes a different course yielding (31)  $\alpha,\alpha$ -bis-(o-chlorophenoxy)diphenylmethane, cryst. from hot alc., m.p. 191–192° (31). —  $\bar{\mathbb{C}}$  with chloral hydrate (3:1270) in pres. of alk. salts condenses (82) to 3-chloro-4-hydroxyphenyl-trichloromethyl-carbinol which on hydrolysis with NaOH yields 3-chloro-4-hydroxybenzaldehyde (3:4065).]

[ $\bar{C}$  with SOCl<sub>2</sub> + AlCl<sub>3</sub> in CS<sub>2</sub> gives (85% yield (83)) bis-(3-chloro-4-hydroxyphenyl) sulfoxide [Beil. VI<sub>1</sub>-(422)], ndls. from dll. alc. contg. HCl, m.p. 195°. —  $\bar{C}$  with mixt. of conc. H<sub>2</sub>SO<sub>4</sub> + fumg. H<sub>2</sub>SO<sub>4</sub> (25% SO<sub>3</sub>) at 100° for 6 hrs. disulfonates to 2-chloro-4,6-disulfophenol which undergoes bimolecular condensation to the corresp. internal ester (for details see (84)).]

[ $\bar{C}$  with phthalic anhydride (1:0725) with AlCl<sub>3</sub> in acetylene tetrachloride (3:5750) (85) (86) (87), or with AlCl<sub>3</sub> + NaCl at 150° (88), gives (yields: 96% (85) (86), 87% (88)) 2-(3'-chloro-4'-hydroxybenzoyl)benzoic acid, cryst. from MeOH, m.p. 224-225° (85), cryst. from AcOH, m.p. 219.5-220° (86), 219° (88); this prod. on ring closure with 15 pts. conc. H<sub>2</sub>SO<sub>4</sub> at 150° for 1 hr. (88), or with 10 pts. conc. H<sub>2</sub>SO<sub>4</sub> + 1 pt. ZnCl<sub>2</sub> at 130° for 5½ hrs. (85), or with 16 pts. 100% H<sub>2</sub>SO<sub>4</sub> + 1 pt. H<sub>3</sub>BO<sub>3</sub> at 195° for 1½ hrs. (86), gives (yields: 80% (85), 76% (88), 53.5% (86)) 3-chloro-2-hydroxyanthraquinone, yel. ndls. from AcOH, nitrobenzene + AcOH, or xylene, m.p. 267-268° (85), 266.5-267° (86), 266° (88). —Note that by slight variations other products are also formed; e.g.,  $\bar{C}$  + phthalic anhydride + fumg. H<sub>2</sub>SO<sub>4</sub> + H<sub>3</sub>BO<sub>3</sub> at 170-200° for 10 hrs. gives (89) both chloro-hydroxy-anthraquinone and dhydroxyanthraquinone (. (90) and at 255° gives (91) 1,2,4-trihydroxyanthraquinone (purpurin). — Note that  $\bar{C}$  (2 moles) with phthalic anhydride (1 mole) at 125° for 6 hrs. gives (75% yield (92)) dichlorophenolphthalein, m.p. 98°.]

Reactions of nuclear halogen of  $\tilde{C}$ . [ $\tilde{C}$  on hydrolysis with aq. alk., alk. carbonates, or alkaline earths in pres. of cat. such as Cu or Cu salts at elevated temps. and under press. yields (93) (94) (95) (96) (97) (98) pyrocatechol (1:1520) cf. (43). —  $\tilde{C}$  on fusion with KOH yields (13) pyrocatechol but some resorcinol (1:1530) is also formed (98) (99). —  $\tilde{C}$  with aq. Na<sub>2</sub>S + NaOH at 210–215° for 24 hrs. yields (100) 2-mercaptophenol [Beil. VI-793], b.p. 216–217° cor., m.p. +5°.]

Reactions of the phenolic group of  $\bar{C}$  (see also under  $\oplus$ , below).  $\bar{C}$  behaves as a weak acid; e.g.,  $\bar{C}$  dis. in conc. aq. Na<sub>2</sub>CO<sub>3</sub> soln. on shaking at room temp. (dif. and sepn. from phenol (18)) and is repptd. by treatment with CO<sub>2</sub> (18). — Dissoc. const. of  $\bar{C}$  in aq. =  $32 \times 10^{-10}$  (101); for studies of dissoc. const. in 50% MeOH at 20° (7) (101) (102), in 25% EtOH at 25° (103), in 30% EtOH at 25° (4) (102) see indic. refs.

 $\overline{C}$  has bactericidal (104) (105) (106) (107) (108) (109) and fungicidal (110) properties.

[C with alkali metals gives corresp. alk. o-chlorophenolates; for use of these as antioxidants in motor fuels see {111}. — Dry Na o-chlorophenolate with CO<sub>2</sub> at 140-150° under press. yields (25) 3-chloro-2-hydroxybenzoic acid (3-chlorosalicylic acid) (3:4745).]

[C in MeOH/KOH with MeI in s.t. at 130° (112), or C with aq. KOH + Me2SO<sub>4</sub> at ord. temp. (113), yields o-chlorophenyl methyl ether (o-chloroanisole) (3:6255). — C in abs. alc. + NaOEt with EtI yields (115) o-chlorophenyl ethyl ether (o-chlorophenetole) (3:8735). — C with allyl bromide in acetone + aq. + NaOH gives (90% yield (146))

allyl o-chlorophenyl ether; b.p.  $108-110^{\circ}$  at 15 mm.,  $D_{25}^{25}=1.132$ ,  $n_{25}^{25}=1.5388$ ; this prod. on reflux. 10 min. gives by Claisen rearr. (89% yield (146)) 2-chloro-6-allylphenol, b.p.  $61-63^{\circ}$  at 1 mm.,  $n_{25}^{25}=1.5447$ .]

[ $\bar{\mathbf{C}}$  with POCl<sub>3</sub> refluxed for 8-11 hrs., POCl<sub>3</sub> distd. off, and crude product saponified yields (117) bis-(o-chlorophenyl)phosphoric acid, m.p. 105-106° cor. — For condens. of  $\bar{\mathbf{C}}$  with triphenylphosphine oxide and use of prod. as seed disinfectant see (118); for use of  $\bar{\mathbf{C}}$  in prepn. of triaryl phosphates (119) or of mixed triaryl thiophosphates (120) and use as plasticizers see indic. refs. —  $\bar{\mathbf{C}}$  with PCl<sub>5</sub> gives on htg. (22) o-dichlorobenzene (3:6055).]

 $[\bar{C}]$  with malic acid (1:0450) + conc.  $H_2SO_4$  fails (121) to give the expected von Pechmann synthesis of 8-chlorocoumarin; however,  $\bar{C}$  with  $\alpha$ -substituted acetoacetic esters +  $P_2O_5$  condenses to corresp. chromones; e.g.,  $\bar{C}$  with ethyl  $\alpha$ -methylacetoacetate (1:1712) +  $P_2O_5$  gives (27% yield (122)) 8-chloro-2,3-dimethylchromone [Beil. XVII<sub>1</sub>-(177)], pale yel. ndls. from dil. alc., m.p. 108°; for further examples see (123). —  $\bar{C}$  (as sodium salt) + diethyl fumarate (1:3761) refluxed in xylene yields (124) diethyl  $\alpha$ -( $\alpha$ -chlorophenoxy)-fumarate which on subsequent hydrolysis to the acid, ring closure with conc.  $H_2SO_4$ , and decarboxylation gives 8-chlorochromone, colorless ndls., m.p. 114-115° (124).]

Č with AlCl<sub>3</sub> evolves HCl and yields (125) Cl.C<sub>6</sub>H<sub>4</sub>.O.AlCl<sub>2</sub>, insol. CS<sub>2</sub>, but sol. in alc. and hydrolyzed by aq., m.p. 207-210° (125). — Č in 50% alc. with satd. soln. of PkOH in 50% alc. yields (126) a mol. cpd., Č.PkOH, pale yel. ndls., m.p. 81-82° (126).

- P FeCl<sub>3</sub> color reaction: C in aq. soln. with very dil. FeCl<sub>3</sub> gives violet coloration; C in alc. with very dilute aq. FeCl<sub>3</sub> gives greenish-blue.
- ---- o-Chlorophenyl benzoate [Beil. IX-117]: oil, b.p. 314-316° (?) (127), 212-213° at 745 mm. (127), 155-157° at 3 mm. (127). [From C + benzoyl chloride + aq. NaOH (127) (for study of rate see (129)).] [Note also that C + BzCl + AlCl₃ in acetylene tetrachloride yields (128) the Fries rearr. prods. to be expected from o-chlorophenyl benzoate, viz., 3-chloro-4-hydroxybenzophenone, cryst. from alc. or C₀H₀, m.p. 180-181° (128), and 3-chloro-2-hydroxybenzophenone, pale yel. cryst. from alc., m.p. 92.5-93° (128).]
- O o-Chlorophenyl m-nitrobenzoate: pr. from lgr., m.p. 98° (18). [From C with m-nitrobenzoyl chloride on shaking with 10% aq. NaOH at 35-50° (18).]
- **o-Chlorophenyl** p-nitrobenzoate: ndls. from 85% alc., m.p. 114.5-114.8°. [From  $\ddot{\mathbf{C}} + p$ -nitrobenzoyl chloride in pyridine (unpublished work).]
- ---- o-Chlorophenyl 3,5-dinitrobenzoate: ndls. from 85% alc., m.p. 143.1-143.4°. [From C + 3,5-dinitrobenzoyl chloride in pyridine (unpublished work).]
- --- o-Chlorophenyl benzenesulfonate: unrecorded.
- --- o-Chlorophenyl p-toluenesulfonate: m.p. 74° (4).
- —— o-Chlorophenyl benzyl ether: oil, b.p. 138-140° at 3 mm. (130). [From C (as Na salt) + benzyl chloride but in very poor yield (7.5% (130)); note that the products elsewhere (131) (132) seem to be questionable.]
- —— o-Chlorophenyl p-nitrobenzyl ether: m.p. 100° (133). [From Č (as Na salt) with p-nitrobenzyl bromide refluxed in aq. alc. (133).]
- **O** o-Chlorophenyl 2,4-dinitrophenyl ether: greenish-yel. ndls. from alc., m.p. 99° (134). [From  $\bar{C}$  in equiv. amt. aq. NaOH refluxed with alc. 2,4-dinitrochlorobenzene (134). Note that the m.p. of 75-76° reported earlier (135) for this compd. is identical with that given later (134) for the corresp. deriv. of m-chlorophenol (3:0255).]
- © o-Chlorophenoxyacetic acid (3:4375): m.p. 145-146° (136) (137), 143-145° (138); Neut. Eq. 186.5. [From Č in aq. NaOH (2 equivs.) with chloroacetic acid (1 equiv.) refluxed for 1 hr., then acidified (138) cf. (136) (137).]

- $\odot$  o-Chlorophenyl N-(phenyl)carbamate: cryst. from C<sub>6</sub>H<sub>6</sub>, m.p. 120-121° (139). [From  $\ddot{C}$  + phenyl isocyanate in dry ether (139).]
- ⊕ o-Chlorophenyl N-(p-iodophenyl)carbamate: m.p. 156-157° (147). [From C̄ + p-iodobenzazide in hot lgr. (147).]
- $\odot$  o-Chlorophenyl N-(p-bromophenyl)carbamate: pr. from EtOAc, m.p. 141-143° cor. (140). [From  $\ddot{C}$  + p-bromobenzazide in lgr. (140).]
- © o-Chlorophenyl N-(m-nitrophenyl)carbamate: m.p. 114° u.c., 116° cor. (148). [From C + m-nitrophenyl isocyanate (148) in lgr. (148).]
- © o-Chlorophenyl N-(p-nitrophenyl)carbamate: ndls. from lgr., m.p. 143° cor. {141}. [From C + p-nitrobenzazide in lgr. {141}.] [Note that corresp. deriv. of m-chlorophenol (3:0255) has m.p. 144° cor. (141).]
- $\bigcirc$  o-Chlorophenyl N-(3,5-dinitrophenyl)carbamate: pl. from C<sub>6</sub>H<sub>6</sub>, m.p. 182-183° (142). [From  $\ddot{\rm C}$  + 3,5-dinitrophenylazide htd. in dry toluene (142).]
- © o-Chlorophenyl N-(3,5-dinitro-4-methylphenyl)carbamate: yel. pl. from lgr. or EtOAc, m.p. 175-176°, u.c., 180-181° cor. (143). [From C + 3,5-dinitro-4-methylbenzazide in lgr. (143).]
- $\odot$  o-Chlorophenyl N-( $\alpha$ -naphthyl)carbamate: cryst. from lgr., m.p. 120° (144). [From  $\ddot{C} + \alpha$ -naphthyl isocyanate in lgr. (144).]
- **D** o-Chlorophenyl N-( $\beta$ -naphthyl)carbamate: pl. from lgr., m.p. 133-134° u.c., 136-137° cor. (145). [From  $C + \beta$ -naphthyl isocyanate (or azide) in lgr. (145).]
- --- o-Chlorophenyl N,N-diphenylcarbamate: unreported.
- 3:5980 (1) Kramers, Ann. 173, 331 (1874). (2) Kohlrausch, Pongratz, Monatsh. 65, 201 (1935). (3) Bramley, J. Chem. Soc. 109, 436, 445-457 (1916). (4) Bennett, Brooks, Glasstone, J. Chem. Soc. 1935, 1823, 1826. (5) Linke, Z. physik. Chem. B-46, 261 (1940). (6) Zumwalt, Badger, J. Am. Chem. Soc. 62, 306 (1940). (7) Kuhn, Wassermann, Helv. Chim. Acta 11, 8, 11, 14, 26 (1928). (8) Williams, Fogelberg, J. Am. Chem. Soc. 52, 1358 (1930). (9) Holleman, Rinkes, Rec. trav. chim. 30, 79-81, 84-86, 86-92 (1911). (10) Glass, Madgin, Hunter, J. Chem. Soc. 1934, 263.
- (11) Puschin, Matavulj, Z. physik. Chem. A-164, 81 (1933). (12) Puschin, Matavulj, Z. physik. Chem. A-162, 417 (1932). (13) Faust, Müller, Ann. 173, 303-306 (1874); Ber. 5, 777-779 (1872). (14) Holleman, Rec. trav. chim. 37, 105-106 (1918). (15) Sidgwick, Turner, J. Chem. Soc. 121, 2256-2259 (1922). (16) Jona, Gazz. chim. idal. 39, II 300-301, 309 (1909). (17) Rashevskaya, Zil'berman, Chernyavskaya, Skvirskaya, J. Applied Chem. (U.S.S.R.) 10, 499-505 (1937); Cent. 1938, I 58; C.A. 31, 6212 (1937). (18) Wohleben, Ber. 42, 4369-4373 (1909). (19) Bramley, J. Chem. Soc. 103, 480-483, 486-492 (1916). (20) Burnham, Madgin, J. Chem. Soc. 1936, 789, 791.
- (21) Thole, Mussell, Dunstan, J. Chem. Soc. 103, 1114-1115 (1913).
  (22) Beilstein, Kurbatow Ann. 176, 39-40 (1875).
  (23) Schmitt, Cook, Ber. 1, 67-68 (1868).
  (24) Sandmeyer, Ber. 17, 2651-2652 (1884); Ber. 23, 1880-1881 (1890).
  (25) Varnholt, J. prakt. Chem. (2) 36, 22-23 (1887).
  (26) Merck, Ger. 76,597, Frieddinder 3, 845.
  (27) Takagi, Tanaka, J. Pharm. Soc. Japan 1925, No. 517, 253-260; Cent. 1926, I 182; C.A. 20, 2669 (1926).
  (28) Chulkov, Parini, Staroselets, Org. Chem. Ind. (U.S.S.R.) 3, 97-101 (1937); Cent. 1938, I 1419; C.A. 31, 4967 (1937).
  (29) Tishchenko, J. Russ. Phys.-Chem. Soc. 60, 152-162 (1928); Cent. 1928, II 767; C.A. 23, 3397 (1928).
  (30) Lossen, Ger. 155,631, Oct. 26, 1904; Cent. 1904, II 1486.
- (31) Gomberg, van Stone, J. Am. Chem. Soc. 38, 1601-1603 (1916). (32) Likhosherstov, J. Russ. Phys.-Chem. Soc. 61, 1019-1023; 1025-1028 (1929); Cent. 1936, I 1294; C.A. 24, 836 (1930). (33) Goldschmidt, Endres, Dirsch, Ber. 58, 576 (1925). (34) Steinkopf, Mieg, Herold, Ber. 53, 1145 (1920). (35) Hazard-Flamand, Ger. 141,751, May 13, 1903; Cent. 1935, I 1324. (36) Takagi, Kutani, J. Pharm. Soc. Japan 1925, No. 517, 260-266; Cent. 1926, I 62; C.A. 26, 2669 (1926). (37) Huston, Neeley, J. Am. Chem. Soc. 57, 2176-2178 (1935). (38) Lofton, Burroughs (to Pennsylvania Coal Prod. Co.), U.S. 2,126,648, Aug. 9, 1938; Cent. 1938, II 3006; C.A. 32, 7925 (1938). (39) Bertsch (to Monsanto Chem. Co.), U.S. 1,966,281, July 10, 1934; Cent. 1935, I 959; C.A. 28, 5471 (1934). (40) Lloyd, Kennedy, U.S. 1,849,844, March 15, 1932; Cent. 1932, I 2994.
- (41) Vorozhtzov, Karlash, Compt. rend. acad. sci. U.R.S.S. 1933, 221-223; Cent. 1935, I 55;
  C.A. 28, 1991 (1934). (42) Vorozhtzov, Karlash, Russ. 30,690, June 30, 1933; Cent. 1934, I
  767. (43) Kipriyanov, Suich, Ukrain. Kehm. Zhur. 7, (Wiss-Tech. Abt.), 94-100 (1932); Cent.

1933, II 1339; C.A. 27, 3824 (1933). (44) Chemische Werke Ichendorf, Ger. 281,175, Dec. 15, 1914; Cent. 1915, I 180. (45) Boehringer und Sohne, Ger. 284,533, May 29, 1915; Cent. 1915, II 168; Ger. 286,266, July 30, 1915; Cent. 1915, II 566. (46) Holleman, de Mooy, Rec. trav. chim. 35, 18, 27 (1915). (47) Kelber, Ber. 54, 2259 (1921). (48) Shoesmith, Hetherington, Slater, J. Chem. Soc. 125, 1308 (1924). (49) Boeseken, Metz, Rec. trav. chim. 54, 350-351 (1935). (50) Groves, Turner, Sharp, J. Chem. Soc. 1929, 516.

(51) Soper, Smith, J. Chem. Soc. 1926, 1582-1591. (52) Raiford, Miller, J. Am. Chem. Soc. 55, 2127 (1933). (53) Lock, Monatsh. 67, 324 (1935/36). (54) Fox, Turner, J. Chem. Soc. 1963, 1858. (55) Kohn, Rabinowitsch, Monatsh. 48, 354, 358 (1927). (56) Lock, Monatsh. 62, 192 (1933). (57) Kohn, Domotor, Monatsh. 47, 235 (1926). (58) Aldoshin, Chalykh'yan, J. Gen. Chem. (U.S.S.R.) 9, 748-752 (1939); Cent. 1939, II 3397, C.A. 34, 397 (1940). (59) Hodgson, J. Chem. Soc. 1932, 866-869. (60) Hodgson, Nicholson, J. Chem. Soc. 1940, 811.

(61) Hodgson, J. Chem. Soc. 1932, 1395-1398. (62) Anderson, Yanke, J. Am. Chem. Soc. 56, 732-735 (1934). (63) Hodgson, J. Chem Soc. 1937, 520-527. (64) Plazek, Roczniki Chem. 10, 761-776 (1930); Cent. 1931, I 1428. (65) Chien, Adams, J. Am. Chem. Soc. 56, 1790 (1934). (66) van Erp, J. prakt. Chem. (2) 127, 22-38 (0930); (2) 129, 327-336 (1931). (67) Henley, Turner, J. Chem. Soc. 1930, 940. (68) van Alphen, Rec. trav. chim. 51, 451 (1932). (69) Hunter, Barnes, J. Chem. Soc. 1928, 2064. (70) Farmer, Hantzsch, Ber. 32, 3098 (1899).

(71) McPherson, Dubois, J. Am. Chem. Soc. 30, 818-821 (1908). (72) Richardson, J. Chem. Soc. 1937, 1363-1364. (73) Engelmann (to du Pont Co), US. 1,748,331, Feb. 25, 1930; Cent. 1939, II 802; U.S. 1,890,774, Dec. 13, 1932; Cent. 1933, I 1501; French 609,478, Aug. 16, 1926; Cent. 1927, I 347. (74) I.G., Brit. 329,987, June 26, 1930; Cent. 1930, II 1760. (75) Bell, J. Chem. Soc. 1936, 1244. (76) Buehler, Brown, Holbert, Fulmer, Parker, J. Org. Chem. 6, 902-907 (1941). (77) Hanus, J. prakt. Chem. (2) 158, 260, 262 (1941). (78) Monsanto Chem. Co. & Gladden, Brit. 464,766, May 30, 1937; Cent. 1937, II 911. (79) Hodgson, Jenkinson, J. Chem. Soc. 1929, 469-471, 1641. (80) Hasse, Ber. 10, 2192-2193 (1877).

(81) Cullinane, Davies, Rec. trav. chim. 55, 882-883 (1936). (82) Haakh, Smola, Austrian, 141,159, March 25, 1935; Cent. 1935, II 439. (83) Gazdar, Smiles, J. Chem. Soc. 97, 2252-2253 (1910). (84) Schoepfle, Van Natta, Clarkson, J. Am. Chem. Soc. 50, 1173-1174 (1928). Goldberg, J. Chem. Soc. 1931, 1776, 1787. (86) Hayashi, J. Chem. Soc. 1930, 1522-1523. Scottish Dyes, Ltd. & Tonkin & Thomas, Brit. 345,204, April 16, 1931; Cent. 1931, II 1493. (88) Waldmann, Wider, J. prakt. Chem. (2) 150, 110-111 (1938). (89) Orelup, U.S. 1,790,510, Jan. 27, 1931; Cent. 1932, I 2238. (90) Scottish Dyes, Ltd. & Thomas & Hooley, Brit. 234,533, June 25, 1925; Cent. 1926, I 245.

(91) M. Tanaka, N. Tanaka, Bull. Chem. Soc. Japan 3, 287 (1928). (92) Consonno, Apostolo, Gazz. chim. ital. 51, 63 (1921). (93) Burroughs (to Pennsylvania Coal Prod. Co.), U.S. 2,041,-592 + 2,041,593, Oct. 11, 1934; Cent. 1937, I 1016. (94) Marx, Wesche, Bittner, Saenger, Ger. 593,193, Feb. 22, 1934; Cent. 1934, I 3395. (95) Boehringer und Sohne, Gei. 269,544, Jan. 22, 1914; Cent. 1914, I 591. (96) Bayer and Co., Ger. 249,939, Aug 1, 1912; Cent. 1912, II 655. (97) Merck, Ger. 84,828, Dec. 2, 1895, Friedlander 4, 114 (1894-1897). (98) Tijmstra, Chem. Weekblad 5, 96-101 (1908); Cent. 1908, I 1051. (99) Blanksma, Chem. Weekblad 5, 93-95 (1908); Cent. 1998, I 1051. (100) Imp. Chem. Ind., Ltd. & Palmer, But. 381,237, Oct. 27, 1932; Cent. 1933, I 675.

(101) Murray, Gordon, J. Am. Chem. Soc. 57, 110-111 (1935). (102) Jenkins, J. Chem. Soc. 1939, 1139. (103) Branch, Yabroff, Bettman, J. Am. Chem. Soc. 56, 938, 941 (1934). (104) Ordal, Proc. Soc. Exptl. Biol. Med. 47, 387-389 (1941). (105) Klarmann, Shternov, Gates, J. Lab. Clin. Med. 20, 40-47 (1934); Cent. 1935, I 2199; CA. 29, 1848 (1935). (106) Kuroda, Arch. exptl. Path. Pharmakol. 112, 60-64 (1926); Cent. 1926, I 3610; C.A. 20, 2705 (1926). (107)Kuroda, Biochem. Z. 169, 281-291 (1926); Cent. 1926, I 3068; C.A. 20, 3315 (1926). (108)Cooper, Forstner, Biochem. J. 18, 941-947 (1924); Cent. 1925, I 104, C.A 19, 311 (1925). Cooper, Woodhouse, Biochem. J. 17, 600-612 (1923); Cent. 1923, III 1625; C.A 18, 403 (1923). (110) Woodward, Kingery, Williams, J. Lab. Clin. Med. 19, 1216-1223 (1934); Cent. 1935, I 256; C.A. 28, 6849 (1934).

(111) Benedict (to Universal Oil Products Co.), U.S. 2,051,814, Aug. 25, 1926; Cent. 1937, I 495. (112) Fischli, Ber. 11, 1463 (1878). (113) Kohn, Sussmann, Monatsh. 48, 196 (1927). (114) Anziletti, Curran, J. Am. Chem. Soc. 65, 609 (1943). (115) Goldsworthy, J. Chem. Soc. 1926, 1254-1256. (116) Swarts, J. chim. phys. 20, 76 (1923). (117) Zetsche, Nachmann, Helv. Chim. Acta 9, 426-427 (1926). (118) I.G., Brit. 326,137, April 3, 1930; Cent. 1930, II 801. (119) Moyle (to Dow Chem. Co.), U.S. 2,220,113, Nov. 5, 1940; C.A. 35, 1898 (1941). (120) Moyle (to Dow Chem. Co.), U.S. 2,250,049, July 22, 1941; C.A. 35, 7062 (1941).

(121) Clayton, J. Chem. Soc. 93, 2018 (1908). (122) Simonis, Schuhmann, Ber. 50, 1144-1145 (1917). (123) Chakravarti, J. Indian Chem. Soc. 9, 27-28 (1932). (124) Ruhemann,

Beil. I - 364

3:5985

70-73°

69°

Ber. 54, 916-918 (1921). {125} Perrier, Bull. soc. chim. (2) 15, 1183 (1896). {126} von Goedike,
Ber. 26, 3046 (1893). {127} Autenrieth, Arch. Pharm. 233, 41-42 (1895). {128} Hayashi, J. prakt. Chem. (2) 123, 295-297 (1929). {129} Bernouilli, St. Goar, Helv. Chim. Acta 9, 754-755, 763 (1926). {130} Huston, Guile, Chen, Headley, Warren, Baur, Mate, J. Am. Chem. Soc. 55, 4642 (1933).

(131) Ewing, Ladd, J. Am. Chem. Soc. 58, 2455 (1936). (132) Baw, J. Indian Chem. Soc. 3, 104 (1926). (133) Lyman, Reid, J. Am. Chem. Soc. 42, 615-617 (1920). (134) Bost, Nicholson, J. Am. Chem. Soc. 57, 2368-2369 (1935). (135) Fox, Turner, J. Chem. Soc. 1939, 1121. (136) Minton, Stephen, J. Chem. Soc. 121, 1600 (1922). (137) Behaghel, J. prakt. Chem. (2) 114, 297 (1926). (138) Koelsch, J. Am. Chem. Soc. 53, 304-305 (1931). (139) Michael, Cobb, Ann. 363, 91-92 (1908). (140) Sah, Cheng, Rec. trav. chim. 58, 592-593 (1939).

(141) Sah, Cheng, Rec. trav. chim. 58, 596-599 (1939). (142) Sah, Ma, J. Chinese Chem. Soc. 2, 229-233 (1934). (143) Sah, Rec. trav. chim. 58, 587-588 (1939). (144) French, Wirtel, J. Am. Chem. Soc. 48, 1737-1739 (1926). (145) Sah, Rec. trav. chim. 58, 454-458 (1939). (146) Tarbell, Wilson, J. Am. Chem. Soc. 64, 1070 (1942). (147) Sah, Young, Rec. trav. chim. 59, 357-363 (1940); C.A. 35, 4363 (1941). (148) Sah, Woo, Rec. trav. chim. 58, 1014-1015 (1939).

1,3-DICHLOROPROPANOL-2

at 14 mm. (10)

at 12 mm. (45)

CH<sub>2</sub>Cl

C<sub>3</sub>H<sub>6</sub>OCl<sub>2</sub>

(
$$\beta$$
,  $\beta'$ -Dichloroisopropyl alcohol; glycerol  $\alpha$ ,  $\alpha'$ -dichlorohydrin; '' $\alpha$ -dichlorohydrin'')  $CH_2Cl$   $I_{1-}(185)$   $I_{2-}(383)$   $I_{2-}$ 

Note: Because of the great magnitude of the literature of C only the most important citations can be included here; for much additional data prior to 1930, the appropriate volume of Beilstein should also be consulted.

 $\bar{C}$  dis. at 19° in 9 pts. aq.; at 72° in 6 pts. aq.; misc. with ether. [For recovery of  $\bar{C}$  from aq. solns. by extraction with immiscible solvents (12) (13) (14) or by steam distillation (12) (15) see indic\_refs.]

[For prepn. of  $\bar{C}$  from glycerol (1:6540) by actn. of HCl gas at 100-110° (yield: 87% (11), 82% (6), 55-57% (10)) (12) see indic. refs.; for prepn. of  $\bar{C}$  from 3-chloro-1,2-epoxy-propane (epichlorohydrin) (3:5358) with fumg. HCl (yield 80% (11)) (16) (17) (1) (18), with MgCl<sub>2</sub> in dil. alc. at 125° (19), or with S<sub>2</sub>Cl<sub>2</sub> (67% yield (40)) see indic. refs.; for formn. of  $\bar{C}$  (together with other prods.) from glycerol (1:6540) with SOCl<sub>2</sub> + pyridine see (20); from corresp. acetate (3:6318) by alcoholysis with MeOH + HCl see (21) (45); from  $\alpha,\alpha'$ -dichloroacetone (3:0563) reductn. with yeast see (22).]

Č with aq. alk. rapidly loses HCl giving 3-chloro-1,2-epoxypropane (epichlorohydrin) (3:5358) (yield: 90% (6), 80-90% (23), 76-81% (24-B), 67-72% (24-A), 85% (25), 79% (26)).

 $\ddot{C}$  on oxidn. with Na<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> + H<sub>2</sub>SO<sub>4</sub> gives (68–75% yield (27))  $\alpha,\alpha'$ -dichloroacetone (3:0563). [Overoxidn. of this prod. or  $\ddot{C}$  on oxidn. with conc. HNO<sub>3</sub> (28) gives chloroacetic acid (3:1370).]

[ $\tilde{C}$  on reductn. with Na/Hg in moist ether gives various products including allyl alc. (1:6145), isopropyl alc. (1:6135), propylene together with epichlorohydrin (for refs. see Beil. I-364);  $\tilde{C}$  htd. with HI + P in s.t. at 180° gives (29) isopropyl iodide.]

[For behavior of Č with NaSH yielding 1,3-dithioglycerol (Hg deriv. m.p. 185°, Pb deriv. m.p. 175-180° dec.) see (41).]

 $\overline{C}$  on htg. with  $P_2O_5$  (31) or  $POCl_3$  (11) (30) yields 1,3-dichloropropene-1 (3:5280).

 $\tilde{C}$  on htg. with excess EtOH + NaOH yields (by a series of definite intermediate stages (25)) (6) 1,3-diethoxypropanol-2 (glycerol  $\alpha,\gamma$ -diethyl ether) b.p. 108-111° at 60 mm.,  $D_4^{25} = 0.953$ ,  $n_D^{25} = 1.420$  (19) (6); similarly  $\tilde{C}$  on htg. with excess phenol + aq. NaOH as specified (19) gives 80% yield 1,3-diphenoxypropanol-2 (glycerol  $\alpha,\gamma$ -diphenyl ether), cryst. from alc., m.p. 80-81° (19).

- $----\beta, \beta'$ -Dichloroisopropyl acetate: b.p. 205° (see 3:6318).
- ----  $\beta_{\beta}$ '-Dichloroisopropyl benzoate: b.p. 296° sl. dec. (42); 171-173° at 19 mm. (43), 157-160° at 12 mm. (44). [From  $\bar{C}$  + benzoyl chloride on htg. (42) or with pyridine (44).]
- Φ β,β'-Dichloroisopropyl p-nitrobenzoate: m.p. 59-60° (32), 58-59° (33). [From C + p-nitrobenzoyl chloride with pyridine (94% yield) (33) or with quinoline in CHCl<sub>3</sub> (100% yield) (32).]
- $\Phi$   $\beta,\beta'$ -Dichloroisopropyl 3,5-dinitrobenzoate: m.p. 129° (32). [From  $\tilde{C}+3,5$ -dinitrobenzoyl chloride + quinoline in CHCl<sub>3</sub> in 100% yield (32).]
- Φ β,β'-Dichloroisopropyl benzenesulfonate: long colorless ndls. from C<sub>6</sub>H<sub>6</sub>, m.p. 50°
  (34). [From C̄ + benzenesulfonyl chloride + conc. aq. NaOH (34); for study of pyrolysis see (35).]
- Φ β,β'-Dichloroisopropyl N-(phenyl)carbamate: m.p. 73-74° (20) (38), 73° (39). [From C with phenyl isocyanate (20) (39); also indirectly from C by conv. to corresp. chloroformate and reacting with aq. aniline (38).] [This prod. htd. a few min. with conc. aq. KOH loses HCl and ring-closes alm. quant. to 5-chloromethyl-3-phenyloxazolidone-2, pr. from hot alc., m.p. 104-105° (39).]
- β,β'-Dichloroisopropyl N-(α-naphthyl)carbamate: m.p. 115° (38). [Prepd. indirectly from C by conv. to corresp. chloroformate and reacting with aq. annline (38).] [This prod. with conc. aq. alk. loses HCl and ring-closes to 5-chloromethyl-3-(α-naphthyl)-oxazolidone-2, m.p. 118° (38).]
- Φ β,β'-Dichloroisopropyl N-(β-naphthyl)carbamate: m.p. 101° (38). [Prepd. indirectly from Č by conv. to corresp. chloroformate and reacting with aq. aniline (38).] [This prod. with conc. aq. alk. loses HCl and ring-closes to 5-chloromethyl-3-(β-naphthyl)-oxazolidone-2, m.p. 107° (38).]

3:5985 (1) Markownikow, Ann. 208, 352-359 (1881). (2) Gibson, J. Soc. Chem. Ind. 50, 949-954; 970-975 (1931). (3) Lecat, Rec. trav. chim. 45, 622 (1926). (4) Gilchrist, Purves, J. Chem. Soc. 127, 2743 (1925). (5) Tornõe, Ber. 21, 1285 (1888). (6) Fairbourne, Gibson, Stephens, J. Soc. Chem. Ind. 49, 1021-1023; 1069-1070 (1930). (7) Timmerman, Bull. soc. chim. Belg. 30, 69 (1921). (8) Brash, J. Soc. Chem. Ind. 46, 481T (1927). (9) Posner, Rohde, Ber. 42, 3240 (1909). (10) Conant, Quayle, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 292-294 (1941); (1st. ed.) 286-288 (1932); 3, 29-31 (1922).

(11) Hill, Fischer, J. Am. Chem. Soc. 44, 2586-2588 (1922). (12) Britton, Heindel (to Dow Chem. Co.), U.S. 2,144,612, Jan. 24, 1939; Cent. 1939, II 525; C.A. 33, 2914 (1939). (13) Britton, Slagh (to Dow Chem. Co.), U.S. 2,198,600, April 30, 1940; C.A. 34, 5860 (1940). (14) Britton, Slagh (to Dow Chem. Co.), U.S. 2,279,509, April 14, 1942; C.A. 36, 5188 (1942). (15) I.G., French 844,375, July 24, 1939; Cent. 1939, II 4589; C.A. 34, 7297 (1940). (16) Reboul, Ann. Suppl. 1, 224-225 (1861). (17) Hübner, Müller, Ann. 159, 176 (1871). (18) Smith, Z. physik.

Chem. 81, 356-357 (1912); 92, 737-738 (1917). (19) Delaby, Ann. chim. (9) 26, 67-68 (1923). (20) Carré, Mauclere, Bull. soc. chim. (4) 49, 1151-1152 (1931); Compt. rend. 192, 1567-1569 (1931).

- (21) Delaby, Dubois, Bull. soc. chim. (4) 47, 573 (1930). (22) Sen, Barat, J. Indian Chem. Soc. 2, 79-81 (1925). (23) Braun, J. Am. Chem. Soc. 54, 1248-1250 (1932). (24A) Braun, Org. Syntheses, Coll. Vol. 2 (1st ed.) 256-258 (1943); 16, 30-32 (1936). (24B) Clarke, Hartmann, Org. Syntheses, Coll. Vol. 1 (1st ed.) 228-229 (1932); 3, 47-49 (1923). (25) Fairbourne, Gibson, Stephens, J. Chem. Soc. 1932, 1965-1972. (26) Drozdov, Cherntsov, J. Gen. Chem. (U.S.S.R.) 4, 1305-1309 (1936); Cent. 1936, I 4549. (27) Conant, Quayle, Org. Syntheses, Coll. Vol. 1 (2nd ed.) 211-213 (1943); (1st ed.) 206-208 (1932); 2, 13-15 (1922). (28) Aschan, Ber. 23, 1831 (1890). (29) Tornöe, Ber. 24, 2672 (1891). (30) Bert, Dorier, Bull. soc. chim. (4) 33, 1573-1575 (1926).
- (31) Hartenstein, J. prakt. Chem. (2) 7, 310-312 (1873). (32) Fairbourne, Foster, J. Chem. Soc. 1926, 3150-3151. (33) Conant, Quayle, J. Am. Chem. Soc. 45, 2771-2772 (1923). (34) Földi, Ber. 53, 1838-1839 (1920). (35) Földi, Ber. 60, 659-660 (1927). (36) Blanchard, Bull. soc. chim. (4) 41, 832 (1927). (37) Luttringhaus, Nawiasky, Ehrhardt (to I.G.), Ger. 451,122, Oct. 21, 1927; Cent. 1928, I 261. (38) Otto, J. prakt. Chem. (2) 44, 20 (1891). (39) Johnson, Langley, Am. Chem. J. 44, 357 (1910). (40) Malinovskii, J. Gen. Chem. (U.S.S.R.) 9, 832-839 (1939); C.A. 34, 375 (1940).
- (41) Rheinboldt, Tetsch, Ber. 70, 677-678 (1937). (42) Guth, Z. Biol. 44, 99; Beil. IX-112. (43) Fritsch, Ber. 24, 777 (1891). (44) Sabalitschka, Jeglinski, Arch. Pharm. 269, 241 (1931). (45) Sjöberg, Svensk Kem. Tud. 53, 454-457 (1941); Cent. 1942 II 25; C.A. 37, 4363 (1943).

#### CHAPTER XIV

# DIVISION B. LIQUIDS WITH BOILING POINTS REPORTED AT ORDINARY PRESSURE

## Section 1. $D_4^{20}$ greater than 1.1500

(3:6000-3:6499)

3:6000 n-PROPYL DICHLOROACETATE 
$$C_5H_8O_2Cl_2$$
 Beil. II - 204  $n_-C_3H_7.O.CO.CHCl_2$  II $_1$ — II $_2$ -(196)

B.P. 176.7-177° at 771 mm. (1) 
$$D_4^{25} = 1.2006$$
 (4)  $n_D^{25} = 1.4360$  (4)  $176.0$ -176.6° (2)  $D_4^{20} = 1.2240$  (5)  $n_D^{20} = 1.4398$  (5) 176°

[For prepn. (70% yield (3)) from anhydrous chloral (3:5210) in n-propyl alc. by treatment with 1.2 moles powdered KCN see (3); for prepn. (59% yield (4)) from cyclopropane + dichloroacetic ac. (3:6208) + BF<sub>3</sub> see (4).]

3:6600 (1) Schiff, Z. physik Chem. 1, 379 (1887)
(2) Cheng, Z. physik. Chem. B-24, 307 (1934).
(3) Chattaway, Irving, J. Chem. Soc. 1929, 1042.
(4) Dorris, Sowa, J. Am. Chem. Soc. 60, 358 (1938).
(5) Schjanberg, Z. physik. Chem. A-172, 229 (1935).

3:6010 
$$\gamma$$
-CHLORO- $n$ -PROPYL CHLOROFORMATE  $C_4H_6O_2Cl_2$  Beil. S.N. 199  $(\gamma$ -Chloro- $n$ -propyl chlorocarbonate)  $CH_2$   $CH_2$   $CH_2$   $CH_2$   $O$ -CO  $Cl$ 

**B.P.** 177° (1) 
$$D_{20}^{25} = 1.2946$$
 (1)  $n_{\rm D}^{20} = 1.4456$  (1) 175–176° at 736 mm. (2)

Colorless liq.; insol. in aq. toward which it is relatively stable.

[For prepn. of Č from 3-chloropropanol-1 (trimethylene chlorohydrin) (3:8285) with phosgene (3:5000) in 80% yield see (1) (2).]

 $\ddot{C}$  in quinoline begins to decompose into 1,3-dichloropropane (trimethylene (di)chloride) (3:5450) +  $CO_2$  even at 35° (3) (for discussion see (4)).

 $\bar{C}$  with primary arom. amines reacts as an acyl chloride yielding the corresp.  $\gamma$ -chloro-n-propyl N-arylcarbamates [e.g.,  $\bar{C}$  with p-aminobenzenearsonic acid (arsanilic acid) gi res (92% yield (5))  $\gamma$ -chloro-n-propyl N-(p-arsonophenyl)carbamate, m.p. 245-246° (5) cf. (6); for analogous reactions of  $\bar{C}$  with o-aminobenzenearsonic acid (5) (6), o-toluidine-5-arsonic acid (5), p-phenetidine (1), p-aminobenzoic acid (1), o-chloroaniline (1), or p-chloroaniline (1) see indic. refs.]; for simpler cases see below.

- —— γ-Chloro-n-propyl N-phenylcarbamate: pr. from alc., m.p. 38° (2), 35–36° (1). [From Č with aniline (2 moles) both diluted with dry ether (3 vols.) slowly mixed in flask surrounded by ice water, ether evaporated and prod. distilled, b.p. 160–170° at 5 mm. (2); this prod. in alc. on addn. of 1 N aq. NaOH ring-closes with loss of HCl giving (84% yield (2)) (1) 3-phenyl-tetrahydro-2-keto-1,3-oxazine, m.p. 96° (2), 94.0–94.5° (1).]
- $\bigcirc$   $\gamma$ -Chloro-n-propyl N-(o-tolyl)carbamate: ndls. from alc., m.p. 49° (2), 46.0–46.5° (1). [From  $\bar{\mathrm{C}}$  with o-toluidine in dry ether as for preceding case (69% yield (2)); this prod. in alc. on addn. of 1 N aq. NaOH ring-closes with loss of HCl giving (60% yield (2)) (1) 3-(o-tolyl)-tetrahydro-2-keto-1,3-oxazine, m.p. 89° (1), 87.0–87.5° (2).]
  - $\gamma$ -Chloro-n-propyl N-(p-tolyl)carbamate: oil, b.p. 188° at 4.5 mm.,  $D_{20}^{20} = 1.186$ ,  $n_{D}^{18} = 1.494$  (1). [This prod. with alc. KOH (1 mole) refluxed 2 hrs. ring-closes with loss of HCl giving (1) 3-(p-tolyl)-tetrahydro-2-keto-1,3-dioxazine, m.p. 127.5-128° (1).]
- ①  $\gamma$ -Chloro-n-propyl N'-anilinocarbamate ( $\gamma$ -chloro-n-propyl N-phenylcarbazate): cryst. from  $C_6H_6$ , m.p. 72° (7). [From  $\tilde{C}$  with phenylhydrazine (1 mole) in aqueous pyridine (62% yield (7)).]
- 3:8010 (1) Pierce, Adams, J. Am. Chem. Soc. 45, 791-794 (1923). (2) Dox, Yoder, J. Am. Chem. Soc. 45, 725-726 (1923). (3) Carré, Passedouet, Compt. rend. 201, 899 (1935). (4) Carré, Passedouet, Bull. soc. chm. (5) 3, 1073-1082 (1936). (5) Rodewald, Adams, J. Am. Chem. Soc. 45, 3102-3105 (1923). (6) Adams, Rodewald (to Abbott Laboratories), Brit. 255,971, Aug. 26. 1926, Cent. 1927, I 1744; C.A. 21, 2908 (1927) Cam. 254,983, Oct. 27, 1925; Cent. 1927, I 1744; C.A. 20, 424 (1926). (7) Dox, J. Am. Chem. Soc. 48, 1952 (1926).

3:6025 
$$\beta,\beta'$$
-DICHLORODIETHYL ETHER  $C_4H_8OCl_2$  Beil. I — (bis-( $\beta$ -Chloroethyl) ether; ClCH $_2$ CH $_2$  O  $I_1$ —  $I_2$ -(335)

B.P. 177-178° cor. (1) M.P. 
$$-24.5^{\circ}$$
 (2)  $D_4^{20} = 1.2095$  (3)  $n_D^{20} = 1.457$  (1)  $80-82^{\circ}$  at  $20-22$  mm. (3)  $D_{20}^{20} = 1.213$  (1)  $70^{\circ}$  at  $15$  mm. (2)  $66^{\circ}$  at  $12$  mm. (2)

Colorless oil with pleasant ethereal odor. — [For data on surface tension and parachor see (4); for vapor-press. data see (5).]

[For prepn. from ethylene chlorohydrin (3:5552) see (1); for use in prepn. of di-( $\theta$ -chloroethyl) sulfate see (12).] [Note that  $\bar{C}$  forms with ethylene chlorohydrin (3:5552) a constboilg. mixt., b.p. 128.2°, contg. 8.2 mole %  $\bar{C}$  (15).]

The halogen atoms of  $\tilde{C}$  are very unreactive to most reagents;  $\tilde{C}$  is extremely resistant to hydrolysis, gives no Friedel-Crafts reaction with  $C_6H_6+AlCl_3$ , no reaction with KCN, and is unaffected by NaOH + As<sub>2</sub>O<sub>3</sub> (2).

 $\tilde{C}$  on htg. with solid KOH yields (6) (7) (9) (3) divinyl ether (1:7800) (accompanied by some  $\beta$ -chloroethyl vinyl ether (3:7464) q.v.), but  $\tilde{C}$  on htg. with dimethylaniline or quinoline fails to react at all, even to form quaternary salts (6).

 $\tilde{C}$  on htg. with excess sodium alcoholates for 3-15 hrs. gives 36-45% yields of the corresponding liquid bis ethers (8);  $\tilde{C}$  in alc. refluxed overnight with an excess of Na phenolates yields corresponding bis ethers (9); e.g.,  $\tilde{C}$  with Na  $\alpha$ -naphtholate gives 52% yield bis  $[\beta(\alpha$ -naphthoxy)ethyl] ether, m.p. 87° (9);  $\tilde{C}$  with Na  $\beta$ -naphtholate gives 56% yield bis- $[\beta$ -( $\beta$ -naphthoxy)ethyl] ether, m.p. 122° (9).

 $\tilde{C}$  on htg. with aniline (3 moles) for 2 hrs. at 200° gives (65% yield (9)) 4-phenylmorpholine, white flakes from 50% alc., m.p. 57-58° (1). [The crude prod. may also cont. bis-(\$\beta\$-anilinoethyl) ether, pl. from alc., m.p. 115.5° (9).] [For similar prepn. (77% yield (9)) of N-(\$p\$-tolyl)morpholine, m.p. 51° (8); N-(\$\alpha\$-naphthyl)morpholine (68% yield (9)), m.p. 83° (8); N-(\$\beta\$-naphthyl)morpholine (72% yield (9)), m.p. 90° (8), see (8) (9).] [For corresp. reaction of  $\tilde{C}$  with phenylhydrazine, p-phenylenediamine, and benzidine see (10); with ethylenediamine see (11).]

- $\beta_i \beta'$ -bis-( $\alpha$ -Naphthoxy)diethyl ether: m.p. 87° (16). [From  $\ddot{C} + \alpha$ -naphthol (1:1500) + aq. NaOH in s.t. at 120° for 8 hrs. (16).]
- $\beta,\beta'$ -bis- $(\beta$ -Naphthoxy)diethyl ether: m.p. 122° (16). [From  $\tilde{C} + \beta$ -naphthol (1:1540) + aq. NaOH in s.t. at 120° for 8 hrs. (16).]
- bis-(β-Phthalimidoethyl) ether [Beil. XXI-470]: from C̄ on refluxing 3 hrs. with phthalimide + K<sub>2</sub>CO<sub>3</sub> (13) or from C̄ + K phthalimide (2 moles) + trace of diethylamine on htg. 4 hrs. at 135-140° (55% yield) (9), cryst. from alc. (14), ndls. from 50% AcOH (13), m.p. 159° (9), 157° (13), 156.5° (14). [The half reaction prod., β-chloro-β-phthalimidodiethyl ether, ndls. from lt. pet., m.p. 72° (13), 69° (9), may be sepd. from the above bis-ether by its much greater solubility in pet. eth. (13).]
- 3:8025 (1) Kamm, Waldo, J. Am. Chem. Soc. 43, 2223-2227 (1921). (2) Gibson, Johnson, J. Chem. Soc. 1930, 2525-2530. (3) Gulyaeva, Dauguleva, Caoutchouc and Rubber (U.S.S.R.) 1937, No. 1, 49-52, Cent. 1937, II 558; C.A. 32, 3756 (1938). (4) Gallaugher, Hibbert, J. Am. Chem. Soc. 59, 2515 (1937). (5) Gallaugher, Hibbert, J. Am. Chem. Soc. 59, 2523 (1937). (6) Ruigh, Major, J. Am. Chem. Soc. 53, 2662-2271 (1931). (7) Lott, Smith, Christiansen, J. Am. Pharm. Assoc. 26, 203-208 (1937). (8) Cretcher, Pittenger, J. Am. Chem. Soc. 47, 163-166 (1925). (9) Cretcher, Koch, Pittenger, J. Am. Chem. Soc. 47, 1173-1177 (1925) (10) Axe, Freeman, J. Am. Chem. Soc. 56, 478-479 (1934).

(11) Hultquist, Northey, J. Am. Chem. Soc. 62, 447-448 (1940). (12) Suter, Evans, J. Am. Chem. Soc. 60, 536-537 (1938). (13) Baldwin, Robinson, J. Chem. Soc. 1934, 1266. (14) Gabriel, Ber. 38, 3413 (1905). (15) Snyder, Gilbert, Ind. Eng. Chem. 34, 1519-1521 (1942). (16) Dahlen, Black, Foohey (to du Pont Co.), U.S. 1,979,144, Oct. 30, 1934; Cent. 1935, I 3051; [C.A. 29, 177 (1935)].

3:6035 1,1,2,3-TETRACHLOROPROPANE H 
$$C_3H_4Cl_4$$
 Beil. I - 107  $ClCH_2$ — $C$ — $CHCl_2$   $I_1$ — $I_2$ — $I_3$ — $I_4$ — $I_5$ — $I_5$ —1.522 (1) 179° (3)

[For prepn. of  $\bar{C}$  from 1,2,3-trichloropropane (3:5840) + SbCl<sub>5</sub> at 150-190° see (2); from 1,1,2-trichloropropane (3:5630) + Cl<sub>2</sub> + AlCl<sub>3</sub> see (3); from 1,3-dichloropropene-1 (3:5280) + Cl<sub>2</sub> see (4); from 3,3-dichloropropene-1 (3:5140) + Cl<sub>2</sub> see (1); from ordinary 1,2-dichloroethylene (3:5030) with CH<sub>2</sub>Cl<sub>2</sub> (3:5020) + AlCl<sub>3</sub> at 40° for 8 hrs. (24% yield) see (5).

3:6035 (1) Romburgh, Bull. soc. chim. (2) 36, 553-557 (1881). (2) Herzfelder, Ber. 26, 2435 (1893). (3) Mouneyrat, Bull. soc. chim. (3) 21, 621-623 (1899). (4) Hartenstein, J. prakt. Chem. (2) 7, 312-313 (1873). (5) Lehmann, Bayer (to I.G.), Ger. 715,069, Dec. 16, 1941; Cent. 1942, I 2584; C.A. 38, 2051 (1944).

B.P. 180-182° cor. at 718 mm. (1) 179-181° (3)

[See also 1,1,1,3-tetrachloropropanone-2 (unsym.-tetrachloroacetone) (3:6085).]

Colorless liq. with penetrating odor; produces blisters on skin. — Eas. sol. cold aq., alc., ether,  $C_6H_6$ .

Č with aq. readily yields a crystn. tetrahydrate, m.p.  $48-49^{\circ}$  (1) (6),  $48^{\circ}$  (2),  $47-48^{\circ}$  (3) (4) (for crystallographic data see (2), for polymorphism see (5)); this tetrahydrate loses its aq. on distn., on stdg. over  $H_2SO_4$ , or by actn. of dry HCl gas.

[For prepn. of C from phloroglucinol (1:1620) via conversion in AcOH with Cl<sub>2</sub> to 1,1,-3,3,6,6-hexachloro-2,4,6-triketocyclohexane ("hexachlorophloroglucinol") [Beil. VII-854, VII<sub>1</sub>-(469)], and treatment of latter with water (yield is almost quant.) (dichloroacetic acid (3:6208) is also formed) see (6); from 2,4,6-triaminophenol [Beil. XIII-569, XIII<sub>1</sub>-(211)] (2), from chloroanilic acid (3:4970) (1) (7), from 3,3,5-trichlorocyclopentanetrione-1,2,4 [Beil. VII-852] (4), or from 2,2,5-trichlorocyclopentanedione-3,4-ol-1-carboxylic acid-1 [Beil. X-985] (4) by oxidn. with KClO<sub>3</sub> + HCl (other by-products are also formed and yield is low, e.g., 7% (7)) see indic. refs.; for formn. of C from isopropyl alc. (1:6135) with Cl<sub>2</sub> (8), from chloroacetone (3:5425) with Cl<sub>2</sub> at 50-70° in light (9), or from 1,1-dibromo-3,3-dichloropropanone-2 [Beil. I-658] with alc. HgCl<sub>2</sub> in s.t. at 100° for several hours (3) see indic. refs.]

[ $\tilde{C}$  (as tetrahydrate) on reduction with Zn + H<sub>2</sub>SO<sub>4</sub> yields (1) acetone (1:5400);  $\tilde{C}$  on reduction with Al(OEt)<sub>3</sub>, Mg(OEt)<sub>2</sub>, or EtOMgCl yields (10) 1,1,3,3-tetrachloropropanol-2 (3:9037).]

C with satd. aq. NaHSO3 readily yields a NaHSO3 cpd. (3).

Č with aq. alk. does not (3) yield chloroform; Č with alk. + aniline does not (3) give phenylisocyanide (carbylamine test). [Dif. from the isomeric unsym.-tetrachloroacetone (3:6085).]

 $\bar{C}$  in abs. ether with dry NH<sub>3</sub> gas adds 1 NH<sub>3</sub> giving (92% yield (2)) 1,1,3,3-tetrachloro-2-aminopropanol-2 [Beil. I-656], ndls. from C<sub>6</sub>H<sub>6</sub>, m.p. 110-111° dec. with prev. sublimation; this prod. is eas. sol. in cold aq. but on warming the soln. dissociates into its components. — [The action of  $\bar{C}$  with aq. NH<sub>4</sub>OH or with aniline has not been clarified cf. (3).]

[ $\bar{C}$  with excess conc. aq. HCN warmed at 50-60° soon dissolves and after 12 hrs. warming (2) ppts.  $\beta,\beta,\beta',\beta'$ -tetrachloro- $\alpha$ -hydroxyisobutyronitrile [Beil. III-318], cryst. from C<sub>6</sub>H<sub>6</sub>, m.p. 112-114° (2); this prod. with AcOH/H<sub>2</sub>SO<sub>4</sub> as directed (2) yields the corresp.  $\beta,\beta,\beta',\beta'$ -tetrachloro- $\alpha$ -hydroxyisobutyramide, cryst. from C<sub>6</sub>H<sub>6</sub>, m.p. 156° (2).]

C with PCl<sub>5</sub> on htg. gives (2) mainly 1,1,2,2,3,3-hexachloropropane (3:6525) accompanied by some 1,1,2,3,3-pentachloropropene-1 (3:6075).

[ $\tilde{C}$  with diazotized aniline (4 moles) in pres. of NaOAc yields (11) dichloro-bis-(benzene-azo)methane, yel.-or. cryst. from hot alc., m.p.  $81-82^{\circ}$  (11);  $\tilde{C}$  with diazotized p-toluidine (4 moles) in pres. of NaOAc yields (11) dichloro-bis-(p-tolueneazo)methane, orange cryst. from  $C_0H_6$ , m.p.  $159-160^{\circ}$  (11).] [These prods. are also similarly obtd. (11) from unsymdichloroacetone (3:6085).]

4-(Benzeneazo)-1-phenylpyrazole [Beil. XXV-535]: golden-yel. lfts. from dil. alc. or lgr., ndls. from AcOH, m.p. 126-127° cor. (2), 126° (6). [From Č in abs. alc. (2) or AcOH (6) with excess phenylhydrazine, refluxed for 5 min.]

3:8050 (1) Levy, Jedlicka, Ann. 249, 89-95 (1888). (2) Levy, Curchod, Ann. 252, 330-349 (1889). (3) Cloëz, Ann. chim. (6) 9, 182-186 (1886). (4) Hantzsch, Ber. 21, 2438 (1888). (5) Schaum, Schalling, Klausing, Ann. 411, 192 (1916). (6) Zincke, Kegel, Ber. 22, 1467-1477; 1478-1482 (1889). (7) Levy, Witte, Ann. 254, 86-88 (1889). (8) Buc (to Standard Oil Co.), U.S. 1,391,757, Sept. 27, 1921; Cent. 1922, IV 942. (9) I.G., French 816,956, Aug. 21, 1937; Cent. 1938, I 2216. (10) Meerwein, von Bock, Kirschnick, Lenz, Migge, J. prakt. Chem. (2) 147, 212, 225 (1936).

(11) Favrel, Bull. soc. chim. (5) 1, 988-989 (1934).

3:6055 o-DICHLOROBENZENE C| 
$$C_6H_4Cl_2$$
 Bell. V - 201  $V_{1^-}(111)$   $V_{2^-}(153)$ 

B.P. F.P. 180.3° at 760 mm. (1) -16.7° (1)  $D_4^{25} = 1.2965$  (3) 1.2934 (13) 180.2° at 757.4 mm. (1) -17.5° (10)  $n_D^{25} = 1.5486$  (2) 1.5476 (13) 179-181° at 755 mm. (3)  $n_D^{20} = 1.5518$  (1) 179.9-180.6° (4) -17.6° (10)  $D_4^{20} = 1.3048$  (12) 179.5° at 745.2 mm. (1)  $D_4^{20} = 1.3048$  (12) 179.5° at 745.2 mm. (1)  $D_4^{20} = 1.5513$  (2) 1.549 (14) 179° cor. (7)  $D_4^{20} = 1.5532$  (10) 178° at 762.5 mm. (8) 1.5524 (12) 178° at 758 mm. (8a)  $D_4^{15} = 1.3104$  (12) 86° at 18 mm. (8)  $D_4^{15} = 1.3104$  (12)  $D_2^{20} = 1.3085$  (14)  $D_{15}^{15} = 1.3112$  (1)

 $\bar{C}$  when pure is colorless oil, volatile with steam. — Ord. comml.  $\bar{C}$  conts. also the isomeric p-dichlorobenzene (3:0980), even as much as 25% (16); and a comml. prod. sold as insecticide conts. 40%  $\bar{C}$  + 30% p-dichlorobenzene (3:0980) + 30% trichlorobenzene (17).

[For f.p./compn. data and diagram of system  $\bar{C}+p$ -dichlorobenzene (3:0980) (cutectic, m.p.  $-23.4^{\circ}$ , contg. 86.7%  $\bar{C}$ ) see (10) (11); for f.p./compn. data and diagram of system  $\bar{C}+m$ -dichlorobenzene (3:5960) (cutectic, m.p.  $-45.9^{\circ}$ , contg. 48.7%  $\bar{C}$ ) see (11); for f.p./compn. data on ternary system of all three dichlorobenzenes see (10).]

[For data on densities of solns. of  $\bar{C}$  in  $C_6H_6$  (1:6400) and in *n*-hexane (1:8530) see (18); for data on  $D_{20}^{20}$  and  $n_{20}^{20}$  on system  $\bar{C}$  + diethylbenzene (and use of the mixt. in testing fractionating columns) see (19).]

[Č is very spar. sol. aq. (for study of this soly. over range 20-60° see (20).]

[For study and use of  $\bar{C}$  as cleaner for metals see (21); for use as solvent for fats and oils (16) and for detn. of oils in seeds (by use of density of resultant extract (22) see indic. refs.; for use for removal of tar or pitch from surfaces coated with cellulose esters see (23); for use as solv. in purification of anthraquinone see (24); for study of toxicity of  $\bar{C}$  see (25).]

[For prepn. of Č from o-chloroaniline [Beil. XII-597, XII<sub>1</sub>-(297)] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. (yields: 70% (26), 25% (27)) (1) (8) (28) see indic. refs.; from o-phenylenediamine [Beil. XIII-6, XIII<sub>1</sub>-(5)] via tetrazotization in AcOH with nitrosylsulfuric acid followed by use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. (70.1% yield) see (29); from 1,2-dichlorobenzenesulfonic acid-4 (see below) by distn. from strong H<sub>2</sub>SO<sub>4</sub> with superheated steam at 200-240° see (30).]

[For formn. of  $\bar{\mathbf{C}}$  from 2-chlorophenol (3:5980) by htg. with PCl<sub>5</sub> (20% yield) see (7); from o-bromonitrobenzene [Beil. V-247, V<sub>1</sub>-(131)] with PCl<sub>5</sub> in s.t. at 180° (31) or with NH<sub>4</sub>Cl in s.t. at 320° (32) see indic. refs.; from o-dinitrobenzene [Beil. V-257, V<sub>1</sub>-(135)] with conc. HCl in s.t. at 250-270° see (33).]

[For formn. of  $\bar{\mathbf{C}}$  (together with m- and p-isomers in some cases) from  $\mathbf{C}_0\mathbf{H}_0$  with  $\mathbf{Cl}_2$  in pres. of  $\mathbf{I}_2$  (7), AlCl<sub>3</sub> (34) (35), or SnCl<sub>4</sub> (36) see indic. refs.; from chlorobenzene (3:7903) with  $\mathbf{Cl}_2$  + cat. at 600° (11) cf. (37) or with  $\mathbf{Cl}_2$  in pres. of Al/Hg (38), AlCl<sub>3</sub> (gives 30%  $\bar{\mathbf{C}}$  (11)) (34), FeCl<sub>3</sub> (gives 39%  $\bar{\mathbf{C}}$  (11)), or with  $\mathbf{Al}_2\mathbf{S}_2\mathbf{Cl}_3$  (i.e., 2AlCl<sub>3</sub> +  $\mathbf{S}_2\mathbf{Cl}_2$ ) + SO<sub>2</sub>Cl<sub>2</sub> (8a) see indic. refs.]

[C with Cl<sub>2</sub> in pres. of Al/Hg (38) or FeCl<sub>3</sub> (39) (40) (41) gives mainly 1,2,4-trichlorobenzene (3:6420), but 1,2,3-trichlorobenzene (3:0990) is also formed (41). — C with Cl<sub>2</sub> in s.t. at room temp. in sunlight as directed (42) adds 3Cl<sub>2</sub> yielding o-dichlorobenzene-hexachloride, m.p. 149° (42).] — [For study of photochem. chlorination of C see (43).]

[ $\bar{C}$  with Mg in dry ether does not react (44).] — [ $\bar{C}$  with CO + cat. at elev. temps. gives (45) benzoic acid, presumably through intermediate forms. of o-phthalic acid and subsequent loss of CO<sub>2</sub>.]

[ $\bar{C}$  with isopropyl alc. (1:6135) + BF<sub>3</sub> + P<sub>2</sub>O<sub>5</sub> under reflux gives (53% yield (87)) 3,4-dichlorocumene (3,4-dichloro-isopropylbenzene) (87).]

[ $\bar{C}$  with CH<sub>3</sub>Cl (3:7005) + AlCl<sub>3</sub> yields (30) hexamethylbenzene (1:7265) + esotrichloromesitylene (3:8725). —  $\bar{C}$  (3+ moles) with CHCl<sub>3</sub> (1 mole) + AlCl<sub>3</sub> without solv. at 55° for 8 hrs. gives (15% yield on the CHCl<sub>3</sub> (46)) tris-(3,4-dichlorophenyl)methane, white pl., m.p. 160.5-162° (46). —  $\bar{C}$  with CCl<sub>4</sub> + AlCl<sub>3</sub> presumably yields 3,4,3',4'-tetrachlorobenzophenone dichloride (not isolated) since the reaction prod. with 95% alc. (46) or AcOH/H<sub>2</sub>SO<sub>4</sub> (47) gives 3,4,3',4'-tetrachlorobenzophenone, cryst. from hot alc. or hot acetone, m.p. 141-142° (46), 142° (47) (accompanied in latter case (H<sub>2</sub>SO<sub>4</sub>) by some 3,4-dichlorobenzoic acid (3:4925), m.p. 203° (47).]

[ $\bar{C}$  with acetyl Cl (3:7065) + AlCl<sub>3</sub> gives (yields: 70% (49), 40% (48)) 3,4-dichloro-acetophenone, b.p. 135° at 12 mm. (48), m.p. 76° (48), 74° (49) (corresp. oxime, m.p. 107° (50)). —  $\bar{C}$  with chloroacetyl chloride (3:5235) + AlCl<sub>3</sub> gives (50) (85) 3,4-dichloro-phenacyl chloride (3,4, $\omega$ -trichloroacetophenone), m.p. 43° (50), 44° (85). —  $\bar{C}$  with  $\beta$ -chloro-n-butyric acid (3:0035) + AlCl<sub>3</sub> or cone. H<sub>2</sub>SO<sub>4</sub> yields (51) by condens. and subsequent ring closure a mixt. of x,y-dichloro-3-methylindanone-1 cpds.]

[C with phthalic anhydride (1:0725) + AlCl<sub>3</sub> gives (yields: 80% (5), 73% (52) (53), 35% (54)) (55) o-(3,4-dichlorobenzoyl)benzoic acid, m.p. 194.5° cor. (54), 192.5° (5), 191.2° cor. (52), 190° (55); this prod. on ring closure with conc. H<sub>2</sub>SO<sub>4</sub> gives a mixt. of two dichloroanthraquinones consisting of 87% (54) (5) 2,3-dichloroanthraquinone [Beil. VII<sub>1</sub>-(413)], m.p. 271° cor. (54), 268° (5), and 13% (54) (5) 1,2-dichloroanthraquinone [Beil. VII<sub>1</sub>-(411)], m.p. 196.5° cor. (54), 194.5° (5). Note that C reacts with phthalic anhydride much more readily than p-dichlorobenzene (3:0980); after making reactn. mixt. alk. any p-dichlorobenzene (as from use of crude  $\tilde{C}$ ) may be distilled out with steam (use in sepn. of p-dichlorobenzene from C (86)); note also the claim (86) that under certain conditions C with phthalic anhydride + AlCl<sub>3</sub> is claimed to replace 1 chlorine atom by hydrogen so that an o-(x-chlorobenzoyl) benzoic acid results which on ring closure with 100% H<sub>2</sub>SO<sub>4</sub> gives 80% yield 2-chloroanthraquinone (3:4922). — C with 4,5-dichlorophthalic anhydride (3:4830) + AlCl<sub>3</sub> gives (80% yield (56)) 2-(3,4-dichlorobenzoyl)4,5dichlorobenzoic acid, cryst. from C<sub>6</sub>H<sub>6</sub>, m.p. 183° (56); this prod. with conc. H<sub>2</sub>SO<sub>4</sub> ringcloses giving mainly 2,3,6,7-tetrachloroanthraquinone, m.p. 348° (56), accompanied by a little 1,2,6,7-tetrachloroanthraquinone, m.p. 242° (56).]

[Č on partial hydrol. with aq. MeOH alk., alk. carbonates, or best alk. earths in pres. of Cu or Cu salts at elevated temps. under press. gives in excellent yields (57) (58) (59) (60)

(61) (62) (63) (64) (65) o-chlorophenol (3:5980) (some phenol (1:1420) is also formed (62)); if the hydrolysis of  $\tilde{C}$  is carried further, especially by use of aq. alk. in pres. of Ba or Sr salts and a reducing agt. (66), pyrocatechol (1:1520) is obtd. cf. (59) (61) (64).] — [For study of kinetics of reactn. of  $\tilde{C}$  with NaOMe/MeOH at 175° see (67) (68) (69).]

 $[\bar{C}$  with anhyd. NH<sub>3</sub> in alc. in pres. of CuCl<sub>2</sub> + Cu at 200° under press. yields (70) o-chloroaniline;  $\bar{C}$  with conc. aq. NH<sub>4</sub>OH in pres. of CuO under press. at 150-200° (71) (72) or with Na in liq. NH<sub>3</sub> (73) gives o-phenylenediamine.] —  $[\bar{C}$  with K diphenylamine gives by rearr. on htg. (74) (75) N,N,N',N'-tetraphenyl-m-phenylenediamine [Beil. XIII-42], m.p. 137.5-138° (74) (75).]

[ $\bar{C}$  on mononitration, e.g., at 0° with a mixt. of HNO<sub>3</sub> (D=1.52) + conc. H<sub>2</sub>SO<sub>4</sub> (75) cf. (15) (4), gives (yields: 95% (15), 67% (75)) (7) (8) (76) mainly 1,2-dichloro-4-nitro-benzene [Beil. V-246, V<sub>1</sub>-(131)], cryst. from alc., m.p. 43° (7) (8), 42.5° (4) (reactn. prod. with piperidine is 2-chloro-4-nitropiperidinobenzene, m.p. 47-48° (78)), accompanied by a little (5.2% at -30°, 7.2% at 0° (8)) 1,2-dichloro-4,5-dinitrobenzene (see below).] — [The only other possible mononitro-isomer, viz., 1,2-dichloro-3-nitrobenzene [Beil. V-245, V<sub>1</sub>-(130)], m.p. 61°, has been obtd. only by indirect means (77) (76) although prob. present (4) in the oil from the main mononitration product.]

[ $\tilde{C}$  on dinitration, e.g., with 4 wt. pts. HNO<sub>3</sub> (D=1.52) + 6 wt. pts. conc. H<sub>2</sub>SO<sub>4</sub> at 100° for 1 hr. (79) (28) cf. (80) (or the above 1,2-dichloro-4-nitrobenzene with HNO<sub>3</sub> (D=1.5) + fumg. H<sub>2</sub>SO<sub>4</sub> (20% SO<sub>3</sub>) 2 hrs. at 100° (78), gives 1,2-dichloro-4,5-dinitrobenzene [Beil. V-265], cryst. from dil. AcOH, m.p. 109-110° (78), 110° (28) (79) (reactn. prod. with piperidine is 1,2-dichloro-4-nitro-5-piperidinobenzene, m.p. 62-64° (78), accompanied (28) by a little 1,2-dichloro-3,5-dinitrobenzene [Beil. V<sub>1</sub>-(138)], m.p. 56° (28).] – [All the other possible isomeric  $\sigma$ -dichlorodinitro cpds. are known but have been obtd. only by indirect means: 1,2-dichloro-3,4-dinitrobenzene [Beil. V-264], m.p. 53-55°, 1,2-dichloro-3,6-dinitrobenzene, m.p. 60°, and 1,2-dichloro-4,6-dinitrobenzene, m.p. 56°.]

[None of the four possible 1,2-dichloro-trinitrobenzenes appears to have been reported.] [ $\bar{C}$  on monosulfonation, e.g., with fumg.  $H_2SO_4$  in s.t. at 210° for 8 hrs. (7), or at room temp. (30), or at 100° (10), or with  $H_2SO_4$ . $H_2O$  + fumg.  $H_2SO_4$  (60%  $SO_3$ ) in pres. of Hg at 100° for 1 hr. (81), gives mainly 1,2-dichlorobenzenesulfonic acid-4 [Beil. XI-55, XI<sub>1</sub>-(16)] (Na salt less sol. aq. (81)) accompanied by a lesser amt. of 1,2-dichlorobenzenesulfonic acid-3 (Na salt more sol. aq. (81)) (some bis-(dichlorobenyl) sulfone, m.p. 173° (30), may also be formed during sulfonation).] — [ $\bar{C}$  sulfonates much more readily than p-dichlorobenzene (3:0980); for use in sepn. see (7) (30); for removal of chlorobenzene from mixt. with dichlorobenzenes via sulfonation of former with 95%  $H_2SO_4$  see (11).]

₱ 1,2-Dichlorobenzenesulfonamide-4 (3,4-dichlorobenzenesulfonamide-1): cryst. from dil. alc., m.p. 134-135° u.c. (83). [From C by treatment as directed (83) with ClSO₂H followed by conv. of the intermediate 1,2-dichlorobenzenesulfonyl chloride-4, m.p. 18-19° (83), with (NH₄)₂CO₃ to the desired sulfonamide.] — [For formn. of 3,4-dichlorobenzenesulfonyl chloride with ClSO₃H and use in sepn. of C̄ from p-dichlorobenzene see (82); for prepn. of the sulfonamide and use as plasticizer see (84).]

3:6055 (1) Carswell, Ind. Eng. Chem. 20, 728 (1928). (2) Hurdis, Smyth, J. Am. Chem. Soc. 64, 2213 (1942). (3) Groves, Sugden, J. Chem. Soc. 1937, 1783. (4) Ruhoff, J. Am. Chem. Soc. 55, 3470-3471 (1933). (5) Groggins, Newton, Ind. Eng. Chem. 25, 1030-1033 (1933). (6) Dadieu, Pongratz, Kohlrausch, Monatsh. 61, 431 (1932). (7) Beilstein, Kurbatow, Ann. 176, 40-43 (1875); 182, 94-95 (1876). (8) Holleman, Reiding, Rec. trav. chim. 23, 358-359, 370-379 (1904). (8a) Silberrad, J. Chem. Soc. 121, 1019 (1922). (9) Bergmann, Engel, Sandor, Z. physik. Chem. B-10, 117 (1930). (10) Holleman, van der Linden, Rec. trav. chim. 30, 315-334 (1911).

(11) Wibaut, van de Lande, Wallagh, Rec. trav. chim. **56**, 65-70 (1937). (12) Narbutt, Ber. **52**, 1030-1031, 1034 (1919). (13) Philip, J. Chem. Soc. **101**, 1868 (1912). (14) von Auwers, Ann. **422**, 164, 168 (1921). (15) McMaster, Magill, J. Am. Chem. Soc. **50**, 3038-3041 (1928). (16)

Ehrlich, Oil & Fat Industries 8, No. 1, 19-20 (1931); C.A. 25, 1401 (1931). (17) Lipp, J. Econ. Entomol. 22, 268 (1929); C.A. 23, 3294 (1929). (18) Smyth, Morgan, Boyce, J. Am. Chem. Soc. 59, 1542 (1928). (19) Bragg, Richards, Ind. Eng. Chem. 34, 1088-1091 (1942). (20) Klemenc, Löw, Rec. trav. chrm. 49, 637 (1930).

(21) Groggins, Scholl, Ind. Eng. Chem. 19, 1029-1030 (1927). (22) Schwarz, Oil & Fat Industries 7, 335-336, 347 (1930); C.A. 24, 5519 (1930). (23) Soc. Chem. Ind. Basel, Flench 42,825, Nov. 4, 1933; Cent. 1934, I 1580. (24) Lewis (to National Aniline Co.), U.S. 1,429,514, Sept. 19, 1922; Cent. 1924, I 2824. (25) Cameron, Thomas, et al., J. Path. Bact. 44, 281-296 (1937); C.A. 31, 4399 (1937). (26) Haeussermann, Ber. 33, 939, Note (1900). (27) Haeussermann, Ber. 32, 1914-1915 (1899). (28) Holleman, Rec. trav. chim. 39, 446, 450-452 (1920). (29) Hodgson, Walker, J. Chem. Soc. 1935, 530. (30) Friedel, Crafts, Ann. chim. (6) 10, 413-424 (1887).

(31) Schmidt, Wagner, Ann. 387, 164-165 (1911). (32) Schmidt, Ladner, Bcr. 37, 4403-4404 (1904). (33) Lobry de Bruyn, van Leent, Rec. trav. chim. 15, 86 (1896). (34) Mouneyrat, Pouret, Compt. rend. 127, 1027 (1898). (35) Meunier, Bull. soc. chim. (4) 27, 696-697 (1920). (36) Marcs (to Monsanto Chem. Co.), U.S. 2,111,866, March 22, 1938, Cent. 1938, I 4719. (37) Imperial Chem. Ind. & Wheeler, Brit. 388,818, March 30, 1933; Cent. 1933, I 4037. (38) Cohen, Hartley, J. Chem. Soc. 87, 1361-1364 (1905). (39) Zil'bermann, Slobodnik, J. Applied Chem. (U.S.S.R.) 10, 1080-1085 (1937); Cent. 1938, II 1580; C.A. 32, 1664 (1938). (40) Slobodnik, Zil'bermann, Russ. 48,285, Aug. 31, 1936; Cent. 1937, II 288.

(41) Britton (to Dow Chem. Co.), U.S. 1,923,419, Aug. 22, 1933; Cent. 1933, II 3049; C.A. 27, 5086 (1933). (42) van der Linden, Ber. 45, 414-415 (1912). (43) Fisk, Noyes, J. Am. Chem. Soc. 58, 1707-1714 (1936). (44) E. L. St. John, N. B. St. John, Rec. trav. chrm. 55, 587 (1936). (45) Dieterle, Eschenbach, Arch. Pharm. 265, 192-193 (1927). (46) Wilson, Cheng, J. Org. Chem. 5, 223-226 (1940). (47) Böeseken, Rec. trav. chim. 27, 9 (1908). (48) Roberts, Turner, J. Chem. Soc. 1927, 1855. (49) Florence, Bull. sci. pharmacol. 40, 325-336 (1933); Cent. 1933, II 2123; C.A. 27, 4225 (1933). (50) Jastrzebski, Suszko, Roczniki Chem. 13, 293-297 (1933); Cent. 1933, II 1516; C.A. 27, 4531 (1933).

(51) I.G., Swiss, 126,404, June 16, 1928; 127,692-127,703, Sept. 1, 1928; 128,366, Oct. 16, 1928; Cent. 1929, I 1271-1272. (52) Phillips, J. Am. Chem. Soc. 49, 474-478 (1927). (53) Phillips, J. Am. Chem. Soc. 49, 2334 (1927). (54) Fierz-David, J. Am. Chem. Soc. 49, 2334 (1927). (55) M. Tanaka, N. Tanaka, Bull. Chem. Soc. Japan 3, 286-287 (1928); Cent. 1929, I 752, C.A. 23, 1408 (1929). (56) Barnett, Goodway, Watson, Ber. 66, 1884-1885 (1933). (57) Chemische Werke Ichendorf, Ger. 281,175, Dec. 15, 1914; Cent. 1915, I 180. (58) Boehringer und Söhne, Ger. 284,533, May 29, 1915; Cent. 1915, II 168. (59) Boehringer und Sohne, Ger. 286,266, July 30, 1915; Cent. 1915, II 566. (60) Lloyd. Kennedy, U.S. 1,849,844, March 15, 1932; Cent.

1932, I 2994.

(61) Vorozhtzov, Karlash, Russ. 30,690, June 30, 1933; Cent. 1934, I 767. (62) Vorozhtzov, Karlash, Compt. rend. acad. sci. U.R.S. 1933, 221-223; Cent. 1935, I 55; C.A. 28, 1991 (1934). (63) Bertsch (to Monsanto Chem. Co.), U.S. 1,966,281, July 10, 1934; Cent. 1935, I 959; C.A. 28, 5471 (1934). (64) Kiprianov, Ssytsch, Ukraine Chem. J. 7 (Wiss. Teil), 94-100 (1932); Cent. 1933, II 1339. (65) Lofton, Burroughs (to Pennsylvania Coal Prod Co.), U.S. 2,126,648, Aug. 9, 1938; Cent. 1938, II 3006; C.A. 32, 7925 (1938). (66) Downing, Clarkson (to du Pont Co.), U.S. 1,969,732, 1,970,363, Aug. 14, 1934; Cent. 1935, I 792-793; C.A. 28, 6160 (1934). (67) Holleman, de Mooy, Rec. trav. chim. 35, 27-28 (1915). (68) Holleman, Rec. trav. chim. 37, 203 (1917). (69) Clark, Crozier, Trans. Roy. Soc. Can., (3) 19, III, 153-154 (1925); Cent. 1926, C.A. 20, 388 (1926). (70) Hale, Cheney (to Dow Chem. Co.), U.S. 1,729,775, Oct. 1, 1929; Cent. 1930, I 2007; C.A. 23, 5474 (1929).

(71) Williams (to Dow Chem. Co.), U.S. 1,775,360, Sept. 9, 1930; Cent. 1931, II 1195. (72) Federal Phosphorus Co., Brit. 370,774, May 5, 1932; Cent. 1932, II 1237. (73) Kraus, White, J. Am. Chem. Soc. 45, 774 (1923). (74) Haeussermann, Bauer, Ber. 32, 1914-1915 (1899); Haeussermann, Ber. 33, 939-941 (1900); Ber. 34, 38-40 (1901). (75) Hodgson, Kershaw, J. Chem. Soc. 1929, 2922. (76) Kiprianov, Mikhailenko, Ukrain. Khem. Zhur. 5, Tech. Part, 225-239 (1930); Cent. 1931, II 425; C.A. 25, 5033 (1931). (77) Kremer, Bendich, J. Am. Chem. Soc. 61, 2659-2660 (1939). (78) LeFevre, Turner, J. Chem. Soc. 1927, 1117, 1119. (79) Blanksman, Rec. tran. chim. 21, 419 (1902). (80) Hartley, Cohen. J. Chem. Soc. 85, 867 (1904).

ma, Rec. trav. chim. 21, 419 (1902). (80) Hartley, Cohen, J. Chem. Soc. 85, 867 (1904). (81) Lauer, J. prakt. Chem. (2) 138, 89-90 (1933). (82) Imperial Chem. Ind. & Bennet, Brit. 440,205, Jan. 23, 1936; Cent. 1936, I 4367. (83) Huntress, Carten, J. Am. Chem. Soc. 63, 511-514 (1940). (84) Kyrides (to Monsanto Chem. Co.), U.S. 1,993,722, March 5, 1935; Cent. 1935, II 1446; C.A. 29, 2546 (1935). (85) Glynn, Linnell, Quart. J. Pharm. Pharmacol. 5, 480-485 (1932); Cent. 1933, I 605; C.A. 27, 1355 (1933). (86) Dodd, Sprent, & The United Alkali Co., Ltd., Brit. 204,528, Oct. 25, 1923; Cent. 1925, II 1228. (87) Vermillion, Hill, J. Am. Chem. Soc. 67, 2209 (1945).

3:6060 d,l-2,3-DICHLOROPROPANOL-1 
$$CH_2Cl$$
  $C_3H_6OCl_2$  Beil. I - 356 (Glycerol  $\alpha,\beta$ -dichlorohydrin;  $H-C-Cl$   $I_1-(181)$  alcohol dichloride)  $CH_2OH$ 

B.P. 182° at 760 mm. (1) 
$$D_4^{20} = 1.3534$$
 (5) 182° (2) (3) (8) 179–181° sl. dec. (4)  $D_0^{18} = 1.345$  (4)  $n_D^{18} = 1.4875$  (4) 81–81.5° at 13.5 mm. (5) 75–77° at 15 mm. (6)

Colorless visc. liq.; spar. sol. cold aq., pet. ether; misc. with alc., ether, acetone,  $C_6H_6$ . [For prepn. of  $\bar{C}$  from glycerol (1:6540) (together with other prods.) see (1); for prepn. from allyl alcohol (1:6145) with  $Cl_2$  + aq. (2) (7) (8) (5) (20% yield) or with  $Cl_2$  in  $CS_2$  (40% yield (9)) see indic. refs.; from allyl chloride (3:7035) by addition of HOCl see (10) (11) (12); from the corresp. acetate ( $\beta$ , $\gamma$ -dichloro-n-propyl acetate) (3:6220) by alcoholysis using MeOH + HCl (33% yield (4)) (6); from vinyl chloride (3:7004) by reactn. with formaldehyde (30% soln.) + HCl + CaCl<sub>2</sub> see (13).]

 $\bar{C}$  with aq. alk. loses HCl yielding (14) 3-chloro-1,2-epoxypropane (epichlorohydrin) (3:5358). [For studies of kinetics of this loss of HCl with aq. alk. see (15); for use of Ba(OH)<sub>2</sub> hydrol. as means of detn. of  $\bar{C}$  in pres. of 1,3-dichloropropanol-2 (" $\alpha$ -dichlorohydrin") (3:5985) see (16).]

Č with sodium phenolate does *not* give the expected 2,3-diphenoxypropanol-1 but instead (4) (presumably by intermediate formation of epichlorohydrin (3:5358)) the isomeric 1,3-diphenoxypropanol-2, [Beil. VI-149, VI<sub>1</sub>-(86)], m.p. 79° (4).

 $\bar{C}$  on oxidn. with conc. HNO<sub>3</sub> (D=1.47) yields (12) (17) (6) (18)  $\alpha,\beta$ -dichloropropionic acid (3:0855), m.p. 50°. [ $\bar{C}$  on reductn. with P + HI at 180° yields (8) isopropyl iodide + isopropyl chloride.]

[ $\bar{C}$  with SOCl<sub>2</sub> at 100° gives (85% yield (19)) bis-( $\beta,\gamma$ -dichloro-n-propyl) sulfite, b.p. 175° at 4 mm.,  $D_0^{23}$  7 = 1.501,  $n_D^{23}$  = 1.509 (19);  $\bar{C}$  with SO<sub>2</sub>Cl<sub>2</sub> gives (75% yield (19)) 2,3-dichloropropane-sulfonyl chloride-1, b.p. 122-123° at 15 mm.,  $D_0^{20.5}$  = 1.582,  $n_D^{23}$  = 1.457 (19).]

[ $\bar{C}$  with PCl<sub>5</sub> yields (7) 1,2,3-trichloropropane (3:5840);  $\bar{C}$  with NaCN gives (20) (presumably by formation and subsequent reaction of epichlorohydrin) 25% yield  $\gamma$ -chloro- $\beta$ -hydroxy-n-butyronitrile; for reactn. of  $\bar{C}$  with NH<sub>3</sub> see (21); for reactn. of  $\bar{C}$  with Na<sub>2</sub>S, NaSH, etc., yielding thioglycerols see (22).]

- —— β,γ-Dichloro-n-propyl acetate: b.p. 192° (see 3:6220). [For general study of kinetics of esterification of C̄ see (3).]
- ----  $\beta_{,\gamma}$ -Dichloro-n-propyl benzoate: oil, b.p. 180-183° at 24 mm. (4).
- $\mathfrak{D}$   $\beta,\gamma$ -Dichloro-n-propyl p-nitrobenzoate: m.p. 37-38° (4), 35.5-37° (23). [From  $\tilde{\mathbf{C}}$  + p-nitrobenzoyl chloride + pyridine (23).]
- ——  $\beta_{,\gamma}$ -Dichloro-n-propyl 3,5-dinitrobenzoate: unreported.
- $\beta_{,\gamma}$ -Dichloro-n-propyl benzenesulfonate: unreported.
- ----  $\beta_{,\gamma}$ -Dichloro-n-propyl p-toluenesulfonate: unreported.
- $\mathfrak{G}_{,\gamma}$ -Dichloro-n-propyl N-phenylcarbamate: cryst. from lgr., m.p. 72-73° (24), 73-74° (25). [From  $\ddot{\mathbf{C}}$  + phenyl isocyanate at 90° (24) or indirectly from  $\beta_{,\gamma}$ -dichloro-n-propyl chloroformate with aniline (25).]
- $\Phi$   $\beta_{\gamma\gamma}$ -Dichloro-n-propyl  $N-(\alpha$ -naphthyl)carbamate: ndls. from alc., m.p. 93° (25).

[Prepd. indirectly from  $\beta, \gamma$ -dichloro-n-propyl chloroformate with  $\alpha$ -naphthylamine

①  $\beta,\gamma$ -Dichloro-n-propyl N-( $\beta$ -naphthyl)carbamate: lfts. from alc., m.p. 99° (25). [Prepd. indirectly from  $\beta, \gamma$ -dichloro-n-propyl chloroformate with  $\beta$ -naphthylamine

3:6060 (1) Gibson, J. Soc. Chem. Ind. 50, 949-954; 970-975 (1931). (2) Tollens, Ann. 156, 164-166 (1870). (3) Kailan, Rosenblatt, Monatsh. 68, 109-170 (1936). (4) Delaby, Dubois, 164-166 (1870). (3) Kallan, Rosenblatt, Monatsh. 68, 109-170 (1936). (4) Delaby, Dubois, Bull. soc. chim. (4) 47, 572-573 (1930). (5) Read, Hurst, J. Chem. Soc. 121, 989-999 (1922). (6) Bockemuller, Hoffmann, Ann. 519, 189-190 (1935). (7) Hubner, Müller, Ann. 159, 179-183 (1871). (8) Tornoe, Ber. 24, 2672 (1891). (9) King, Pyman, J. Chem. Soc. 165, 1257 (1914). (10) von Gegerfelt, Ann. 154, 247-249 (1870); Ber. 6, 720-721 (1873). (11) Henry, Ber. 3, 352 (1870). (12) Henry, Ber. 7, 414 (1874). (13) I.G., Brit. 465,467, May 3, 1937; Cent. 1937, II 1445; C.A. 31, 7067; French 812,292, May 4, 1937; Cent. 1937, II

1445; C.A. 32, 952 (1938). (14) Münder, Tollens, Zeit. für Chemie 1871, 252. (15) Smith, Z. physik. Chem. 92, 739-740 (1917); 93, 83-85 (1919). (16) Smith, Z. physik. Chem. 95, 83-88 (1920). (17) Werigo, Melikoff, Ber. 10, 1499-1500 (1877). (18) Koelsch, J. Am. Chem. Soc. 52, 3365 (1930). (19) Levaillant, Compt. rend. 197, 335-337 (1933). (20) Braun, J. Am. Chem. Soc. 52, 3170 (1930).

(21) Lillienfeld, Brit. 390,516, Brit. 390,523, May 4, 1933; French 739,699, Jan. 16, 1933; Cent. 1933, II 1443. (22) Lillienfeld, Brit. 385,980, Feb. 2, 1933, Cent. 1933, II 1928; French 758,359, Jan. 15, 1934; Cent. 1934, I 3653. (23) Conant, Quayle, J. Am. Chem. Soc. 45, 2772 (1923). (24) Johnson, Langley, Am. Chem. J. 44, 360 (1910). (25) Otto, J. prakt. Chem. (2) 44, 21-22 (1891).

3:6075 1,1,2,3,3-PENTACHLOROPROPENE-1 Cl 
$$C_3HCl_5$$
 Beil. I - 200  $Cl_2C$ —C.CHCl<sub>2</sub>  $I_1$ -( 83)  $I_2$ —B.P. 183° (1)  $D_4^{34} = 1.6317$  (1)  $n_D^{20} = 1.5313$  (1) 116° at 9 mm. (1)

 $\ddot{C} + Br_2$  in sunlight gives (1) 1,2-dibromo-1,1,2,3,3-pentachloropropane, m.p. 71° (1). Č with powdered KOH in toluene at 100° yields (1) a prod. C<sub>6</sub>Cl<sub>8</sub>, colorless ndls., m.p. 93-94° (1).

Č shaken with conc.  $H_2SO_4$ , poured onto ice, yields 2,3,3-trichloropropen-2-al-1  $(\alpha,\beta,\beta$ trichloroacrolein) [Beil. I<sub>1</sub>-(378)], b.p. 164° (1), m.p. 10° (1). [Oxime, m.p. 101°, converted on fusion into stereoisomer, m.p. 132° (1); phenylhydrazone, yel.-br. ndls., m.p. 97-98° dec. (1).

 $\bar{C}$  with conc. H<sub>2</sub>SO<sub>4</sub> for a longer time at 40-50°, poured onto ice, ppts. (1)  $\alpha,\beta$ -dichloroacrylic ac. (3:2265), m.p. 86° (1).

3:6075 (1) Prins, J. prakt. Chem. (2) 89, 419-420 (1914).

3: 6085 1,1,1,3-TETRACHLOROPROPANONE-2 
$$C_3H_2OCl_4$$
 Beil. I - 656 (unsym.-Tetrachloroacetone)  $CH_2$ — $C$ — $CCl_3$  I<sub>1</sub>— I<sub>2</sub>— B.P. 183° (1)  $D_4^{15} = 1.624$  (1)  $n_D^{18} = 1.497$  (1) 180–182° (2) 71–72° at 13 mm. (3)

[See also 1,1,3,3-tetrachloropropanone-2 (3:6050).]

Colorless limpid liq.; odor faint by itself but on warming or on dilution with ether shows

lachrymatory props. —  $\tilde{C}$  with aq. readily yields (1) (2) (3) (4) a crystn. tetrahydrate, m.p. 46° (1), 39° (2), 65° (3).

[For prepn. of C from isopropyl alc. (propanol-2) (1:6135) with Cl<sub>2</sub> in cold see (1); from acetone (1:5400) with Cl<sub>2</sub> see (2) (4) (5); from chloroacetone (3:5425) with Cl<sub>2</sub> at 50-70° in light see (6); from 1,1,1-trichloropropanone-2 (3:5620) with SOCl<sub>2</sub> at 180° see (3).]

Č reduces NH<sub>4</sub>OH/AgNO<sub>3</sub>, Fehling's soln., or aq. KMnO<sub>4</sub> instantly in cold (1) but does not give fuchsin-aldehyde test (1).

 $\ddot{\mathbf{C}}$  with NH<sub>4</sub>OH (1) yields chloroform (3:5050) and chloroacetamide [Beil. II-199, II<sub>1</sub>-(90), II<sub>2</sub>-(193)], m.p. 116-117°.

C with aq. KOH yields (1) chloroform (3:5050) together with the salts of both chloroacetic acid (3:1370) and trichloroacetic acid (3:1150). [Dif. from the isomeric sym.tetrachloroacetone (3:6050).]

 $\ddot{\mathbf{C}}$  with aq. KOH + aniline yields (5) phenyl isocyanide (carbylamine reaction). [Dif. from the isomeric sym.-tetrachloroacetone (3:6050).]

3:685 (1) Brochet, Bull. soc. chim. (3) 13, 117-120 (1895); Ann. chim. (7) 10, 134-141 (1897); Compt. rend. 119, 1271 (1894). (2) Cloëz, Ann. chim. (6) 9, 180-182 (1886). (3) Arndt, Amende, Ender, Monatsh. 59, 215 (1932). (4) Bouis, Ann. 64, 316-319 (1848). (5) Bischoff, Ber. 8, 1340-1341 (1875). (6) I.G., French 816,956, Aug. 21, 1937; Cent. 1938, I 2216.

3:6090 ETHYL 
$$d$$
, $l$ - $\alpha$ , $\beta$ -DICHLOROPROPIONATE  $C_5H_8O_2Cl_2$  Beil. II - 252  $CH_2$ — $CH$ — $COOC_2H_5$  II -  $II_2$ — $Cl$   $Cl$ 

**B.P.** 183-184° (1) 
$$D_4^{20} = 1.2461$$
 (3)  $n_D^{20} = 1.44815$  (3) 182-185° (3) 76-77° at 15 mm, (2)

[For prepn. of  $\bar{C}$  from  $\alpha,\beta$ -dichloropropionic acid (3:0855) with abs. EtOH + dry HCl at 0° (74-78% yield (2)) (1) see indic. refs.; from  $\alpha,\beta$ -dichloropropionyl chloride (3:9034) with EtOH see (4) (3) (5).]

 $\ddot{\mathbf{C}}$  is difficult to keep and readily loses HCl (3). —  $\ddot{\mathbf{C}}$  on htg. with dimethylaniline, quinoline, or quinaldine at 100° for 10 min. under N<sub>2</sub> loses HCl yielding (4) ethyl  $\alpha$ -chloro-acrylate (3:9242).

 $\tilde{C}$  with Ba(OH)<sub>2</sub> both saponifies and loses HCl yielding (5) (6)  $\alpha$ -chloroacrylic acid (3:1445), m.p. 65°.

Č reacts easily with alc. KCN, and after boilg. the resulting soln. with KOH yields (7) furnaric acid (1:0895) and d,l-malic acid.

 $\ddot{\mathbf{C}}$  on boilg. with 20% HCl hydrolyzes (4) yielding EtOH (1:6130) and  $\alpha,\beta$ -dichloropropionic acid (3:0855) q.v.

**3:6000** (1) Werigo, Melikov, Ber. **10**, 1500 (1877). (2) Yarnall, Wallis, J. Org. Chem. **4**, 287 (1939). (3) Brühl, Ann. **203**, 25 (1880). (4) Marvel, Dec, Cooke, Cowan, J. Am. Chem. Soc. **62**, 3495-3498 (1940). (5) Werigo, Werner, Ann. **170**, 167 (1873). (6) Otto, Beckurts, Ber. **18**, 243 (1885). (7) Werigo, Tanatar, Ann. **174**, 367-372 (1874).

B.P. 183-185° at 762 mm. (1) 
$$D_4^{20} = 1.2527$$
 (1)  $n_{20}^{20} = 1.4769$  (1)  $n_{30}^{20} = 1.4865$  (1)  $n_{30}^{20} = 1.4855$  (1)  $n_{30}^{20} = 1.4855$  (1)  $n_{30}^{20} = 1.4855$  (2)  $n_{30}^{20} = 1.4753$  (2)

[For formn. of  $\bar{C}$  from 3-chloro-2-methylbutene-1 (3:7300) +  $Cl_2$  + NaHCO<sub>3</sub> at 0° (30% yield  $\bar{C}$  + 40% 3-chloro-2-(chloromethyl)butene-1 (3:9210) + 25% 1,3-dichloro-2-methylbutene-2 (3:8170) (2)) or from 2-chloro-2-methylbutane (3:7220) or 2,3-dichloro-2-methylbutane (3:7975) +  $Cl_2$  (1) (together with other prods.) see (1) (2).]

Č on distn. over KOH gives (1) 1,3-dichloro-2-methylbutene-2 (3:8170) + other prods. Č with 2 moles quinoline at 185-225° gives (30% yield (1)) 1-chloro-2-methylbutadiene-1.3 (3:9200).

3:6100 (1) Tishchenko, J. Gen. Chem. (U.S.S.R.) 6, 1116-1132 (1936); Cent. 1937, I 573; C.A. 31, 1003 (1937). (2) Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1232-1246 (1938); Cent. 1939, II 4222; C.A. 33, 4190 (1939).

3:6105 CHLOROFUMARYL (DI)CHLORIDE 
$$C_4$$
HO<sub>2</sub>Cl<sub>3</sub> Beil. II - 745 Cl—C—CO.Cl II<sub>1</sub>-(303) II<sub>2</sub>-(640)

| (7) |
|-----|
| •   |
| (8) |
| (4) |
|     |
| (4) |
| -   |
|     |
|     |
|     |
|     |

[See also chloromaleyl (di)chloride (3:6158).]

Pale green oil (2).

[For prepn. of  $\bar{C}$  from  $d_il$ -tartaric acid (1:0550) or (less advantageously) d-tartaric acid (1:0525) with PCl<sub>5</sub> (large excess) at 100° (yield from  $d_il$ -tartaric acid 80% (1), from d-tartaric acid 48% (9)) (10) (11) (12) (3) see indic. refs. (note that care must be taken to ensure removal of all traces of phosphorus chlorides (9)); from acetylenedicarboxylic acid [Beil. II-801, II<sub>1</sub>-(317), II<sub>2</sub>-(670)] with PCl<sub>5</sub> in AcCl in s.t. shaken at room temp. for 45 hrs. (yield not stated (6)) or with PCl<sub>5</sub> directly (41% yield (5)) see indic. refs.]

[For formn. of  $\bar{C}$  to small extent from chloromaleyl (di)chloride (3:6158) on protracted boilg. see (2); for formn. of  $\bar{C}$  from succinyl (di)chloride (3:6200) during actn. of  $Cl_2$  see (13); for formn. of  $\bar{C}$  (as an inseparable mixt. with BzCl) from dibenzoyl-d-tartaric anhydride with PCl<sub>5</sub> see (14).]

[Č with Cl<sub>2</sub> in pres. of Fe gives (16) dichloromaleyl (di)chloride (3:6197) q.v. — Č with Br<sub>2</sub> in dark does not react, but in direct sunlight for 5 hrs. adds 82% of theoretical amt. yielding (2)  $\alpha$ -chloro- $\alpha$ , $\beta$ -dibromosuccinyl (di)chloride, b.p. 116–118° at 10 mm. (2), which on hydrolysis with aq. gives (2)  $\alpha$ -chloro- $\alpha$ , $\beta$ -dibromosuccinic acid, hydrated pr. from HCl, m.p. 65–75°, which after drying over conc. H<sub>2</sub>SO<sub>4</sub> gives anhydrous form, m.p. 139–140° (2).]

[ $\bar{C}$  with 3 N EtOH/KOH (large excess) in freezing mixt. loses HCl and hydrolyzes (or vice versa) and after acidification as directed gives K H acetylenedicarboxylate which with aq. at 100° for 1 hr. loses CO<sub>2</sub> giving (39% yield from  $\bar{C}$  (12)) propiolic acid [Beil. II-477, II<sub>1</sub>-(208), II<sub>2</sub>-(449).]

[C with MeOH under reflux yields (13) dimethyl chlorofumarate (3:6582); C with EtOH yields (1) (9) (15) diethyl chlorofumarate (3:6864); note that C reacts with MeOH or with aniline much more rapidly than the isomeric chloromaleyl (di)chloride (3:6158) (for details and graphs see (2)).]

C (1 mole) with chlorofumaric acid (3:4853) (1 mole) at 125° for 1 hr. gives (11) chloromaleic anhydride (3:0280), m.p. 33°.

[Č with AlCl<sub>3</sub> combines yielding a viscous oil, solidifying in freezing mixt. to yel. cryst., m.p. about 50°; this prod. with water regenerates Č but if first htd. at 100° for several hrs. and then treated with aq. gives (85-87% yield (2)) (3) chloromaleyl (di)chloride (3:6158).]

 $\ddot{\mathbf{C}}$  with excess conc. aq. NH<sub>4</sub>OH reacts vigorously yielding (1) (11) chlorofumaric acid diamide, ndls. from alc., m.p. 187° (11).

[ $\tilde{C}$  in aq. AcOH (1:4) with hydrazine hydrate as directed gives hydrazine salt of N,N-bis ( $\alpha$ -chloro- $\beta$ -carboxyacryloyl)hydrazine (?), m.p. 218° (9); note that  $\tilde{C}$  with NH<sub>2</sub>.NH<sub>2</sub>.H<sub>2</sub>O in ether, pet. eth., or AcOH gives only (9) resinous or amorphous yel. prods.]

Č (1 mole) with p-chloroaniline (4 moles) in dry ether reacts vigorously giving mainly (11) chlorofumaro-di-p-chloroanilide, pale yel. ndls. from alc., m.p. 223° (11), accompanied by a little N-(p-chlorophenyl)chloromaleimide, pl. from alc. mother liquor, m.p. 175° (11). Č on hydrolysis with aq. yields chlorofumaric acid (3:4853), m.p. 193°.

3:6165 (1) Perkin, J. Chem. Soc. 53, 695-697, 700 (1888). (2) Ott, Ann. 392, 258-259, 263-264, 278-285 (1912). (3) Dann, Davies, Hambly, Paul, Semmens, J. Chem. Soc. 1933, 15-21. (4) von Auwers, Schmidt, Ber. 46, 481 (1913). (5) Ruggli, Helv. Chrm. Acta 3, 569 (1920). (6) Diels, Thiele, Ber. 71, 1174-1175 (1938). (7) Gladstone, J. Chem. Soc. 59, 293 (1891). (8) von Auwers, Harres, Ber. 62, 1679 (1929). (9) Ruggli, Hartmann, Helv. Chrm. Acta 3, 512-514 (1920). (10) Perkin, Duppa, Ann 115, 105-107 (1860).

(11) Chattaway, Parkes, J. Chem. Soc. 125, 466-468 (1924). (12) Ingold, J. Chem. Soc. 127, 1202-1203 (1925). (13) Kauder, J. prakt. Chem. (2) 31, 24-38 (1885). (14) Zetsche, Hubacher, Helv. Chim. Acta 9, 292-293 (1926). (15) Claus, Ann. 191, 80-93 (1878). (16) Vandevelde, Bull. acad. roy. Belg. (3) 37, 680-700 (1899); Cent. 1900, I 404.

| 3:6110 | DICHLOROACETALDEHYDI |                | $\mathbf{YDE} \qquad \qquad \mathbf{C_6H_{12}O_2Cl_2}$ | Beil. I - 614         |
|--------|----------------------|----------------|--------------------------------------------------------|-----------------------|
|        | DIETH                | YLACETAL       | $Cl_2.CH.CH(OC_2H_5)_2$                                | I <sub>1</sub> -(328) |
|        | (" Dichloroacetal ") |                |                                                        | I <sub>2</sub> -(677) |
| B.P. 1 | 85-186°              | (1)            | $D_{14}^{14} = 1.1383 \ (6$                            | <b>;</b> )            |
| 1      | 83-184°              | (2)            |                                                        |                       |
| 1      | 82-184°              | (3)            | •                                                      | •                     |
| 1      | 81-184°              | (4)            |                                                        |                       |
| 1      | 78-181°              | at 760 mm. (5) |                                                        |                       |
| 6      | 6-71°                | at 12 mm. (5)  |                                                        |                       |

Č undergoes sl. decompn. on stdg. or distn. — [For use as insecticide see (7) (8).] [For prepn. of Č from acetaldehyde diethylacetal (1:0156) by actn. of Cl<sub>2</sub> (37% yield (5)) see (5) (17); from ethyl alcohol (1:6130) by actn. of Cl<sub>2</sub> (yield 75% (1), 40% (10),

Beil. II - 248

0% (5)) see (1) (10) (5) (6) (11); from  $\alpha,\beta,\beta$ -trichlorodiethyl ether + Zn (78% yield (4)), or abs. alc. (3), or NaOEt (12), or even water (3); from  $\alpha,\beta,\beta,\beta$ -tetrachlorodiethyl ether with Zn + abs. alc. (13).]

 $\overline{C}$  on warming with conc.  $H_2SO_4$  (14) (2) or on htg. at 150° with conc. HCl (15) or on htg. with benzoic anhydride + a little conc.  $H_2SO_4$  gives (yield 81% (1), 78% (10), 71% (16)) dichloroacetaldehyde (3:5180), b.p. 90-91°.

 $\bar{C}$  on htg. with alc. NaOH at 160–180° yields (17) glyoxal tetraethylacetal [Beil. I-760], b.p. 180° (17). —  $\bar{C}$  with K ter-butylate loses HCl yielding (5) chloroketene diethylacetal, b.p. 166° at 732–740 mm.,  $D_{15}^{15}=1.0534, n_{D}^{25}=1.4375$  (5).

C with PCl<sub>5</sub> yields (15) α,β,β-trichlorodiethyl ether [Beil. I-615].

3:6125 d,l-α-CHLOROPROPIONIC ACID

3:6110 (1) van de Walle, Bull. soc. chrm. Belg. 28, 308-309 (1914/18). (2) Pinner, Ann. 179, 33-34 (1875). (3) Oddo, Mameli, Gazz. chrm. vtal. 33, II 412-414 (1903). (4) Neher, Fleece, J. Am. Chem. Soc. 48, 2422-2423 (1926). (5) Magnani, McElvain, J. Am. Chem. Soc. 69, 2210-2213 (1938). (6) Lieben, Ann. 104, 114-115 (1857). (7) I.G., French 814,435, June 23, 1937; Cent. 1937, II 3066; C.A. 32, 1390 (1938). (8) Ger. 528,194, June 26, 1931, Cent. 1931, II 1910. (9) Fritsch, Ann. 279, 300 (1894). (10) Böeseken, Tellegen, Plusje, Rec. trav. chrm. 57, 75 (1938). (11) Chattaway, Backeberg, J. Chem. Soc. 125, 1101 (1924). (12) Jacobsen, Ber. 4, 217 (1871). (13) Neher, Foster, J. Am. Chem. Soc. 31, 414 (1909). (14) Paterno, Ann. 149, 373 (1869). (15) Krey, Jahresber. 1876, 475. (16) Wohl, Roth, Ber. 40, 217 (1907). (17) Pinner, Ber. 5, 148-151 (1872).

(2-Chloropropanoic acid) 
$$CH_3$$
—CH.COOH  $II_{1-}$ (110)  $II_{2-}$ (226)  $II_{2-}$ (227)  $II_{2-}$ (228)  $II_{2-}$ (228)  $II_{2-}$ (228)  $II_{2-}$ (239)  $II_{2-}$ (24)  $II_{2-}$ (25)  $II_{2-}$ (26)  $II_{2-}$ (27)  $II_{2-}$ (28)  $II_{2-}$ (29)  $II_{2-}$ (29)  $II_{2-}$ (29)  $II_{2-}$ (20)  $II_$ 

C<sub>8</sub>H<sub>5</sub>O<sub>2</sub>Cl

Colorless liq. with weak odor suggestive both of acetic acid and butyric acid; misc. with aq. alc. or ether; volatile with steam; blisters skin.

[For prepn. of  $\bar{C}$  from propionic acid (1:1025) with  $Cl_2$  (7) (8) or with  $SO_2Cl_2$  + dibenzoyl peroxide in  $CCl_4$  (9) see indic. refs.; from  $\alpha$ -chloropropionyl chloride (3:5320) by hydrolysis (1) (10) (11) (12) with water see indic. refs.; from  $\alpha$ -chloropropionitrile by hydrolysis with conc. HCl see (5); from 2-chloropropanol-1 (3:7917) (4) or from 3-chlorobutanone-2 ( $\alpha$ -chloroethyl methyl ketone) (3:7598) (13) (14) by oxidn. with HNO<sub>3</sub> or other oxidn. agts. see indic. refs.]

[ $\bar{C}$  on treatment with Cl<sub>2</sub> as specified (15) yields  $\alpha,\beta$ -dichloropropionic acid (3:0855);  $\bar{C}$  with SOCl<sub>2</sub> yields (16)  $\alpha$ -chloropropionyl chloride (3:5320), b.p. 111°;  $\bar{C}$  on reduction with Zn + HCl yields (10) propionic acid (1:1025) [for study of catalytic hydrogenation of  $\bar{C}$  or its salts see (17)];  $\bar{C}$  with SO<sub>3</sub> at 170° yields (18)  $\alpha$ -chloro- $\alpha$ -sulfopropionic acid [for reactn. of  $\bar{C}$  with sulfites see (2)];  $\bar{C}$  with conc. aq. NH<sub>4</sub>OH gives (43-46% yield (19)) d<sub>3</sub>l-alanine ( $\alpha$ -aminopropionic acid) [for behavior of  $\bar{C}$  with liq. NH<sub>3</sub> see (20) (21)].]

 $\bar{C}$  on alk. hydrolysis gives (10) (22) lactic acid (1:0400) [for study of rate of hydrolysis of  $\bar{C}$  (23) or its sodium salt (24) see indic. refs.].

[C on htg. with pyridine at 100° loses CO<sub>2</sub> and yields (25) ethylpyridinium chloride.]

Č on conversion to salt, treatment with KCN, and subsequent acidification yields (26) methylmalonic acid, m.p. 132° (has been used for ident. of Č (26)).

 $\tilde{C}$  with o-phenylenediamine in 5 N HCl refluxed 3 hrs. gives (yields: 61-64% (35), 55-60% (36)) 2 ( $\alpha$ -chloroethyl)benzimidazole, ndls. from hot  $C_6H_6$ , m.p. 134.7-135.4° cor. (35) 134-135° cor. (36).

- Methyl  $\alpha$ -chloropropionate: b.p. 132°. (See 3:7908.)
- Ethyl α-chloropropionate: b.p. 147°. (See 3:8125.)
- Φ α-Chloropropionamide: m.p. 80° (27). [From ethyl α-chloropropionate (3:8125) with conc. aq. NH<sub>4</sub>OH (27).]
- α-Chloropropion-anilide: lfts. from lgr., m.p. 92° (28) (9). [From α-chloropropionyl chloride (3:5320) + aniline in CHCl<sub>3</sub> (28).] [Note that the reactn. prod. of this compd. with more aniline, viz., α-anilinopropionanilide [Beil. XII-558], has m.p. 126°.]
- **D** Phenylhydrazine  $\alpha$ -chloropropionate: m.p. 95° (30). [From  $\bar{C}$  + phenylhydrazine (30).]
- $\bigcirc$   $\alpha$ -Phenoxypropionic acid: ndls. from aq., m.p. 115-116° (31), 115° (32). [From sodium  $\alpha$ -chloropropionate + sodium phenolate on htg. and evapn. (33).] [Note that the opt. act. forms of this deriv. melt at 87° (32).]
- 3:6125 (1) Buchanan, Ann. 148, 170 (1868). (2) Backer, von Mels, Rec. trav. chim. 49, 177-194, 363-380 (1930). (3) Burkard, Kahovec, Monatsh. 71, 340 (1938). (4) Henry, Bull. acad. roy. Belg. 1903, 397-431; Cent. 1903, II 486. (5) Michael, Ber. 34, 4049-4050 (1901). (6) Schjanberg, Z. physik. Chem. A-172, 230 (1935). (7) Bass, Burlew (to Dow Chem. Co.), U.S. 1,993,713, March 5, 1935; Cent. 1935, II 1257; C.A. 29, 2550 (1935). (8) Bass (to Dow Chem. Co.), U.S. 2,010,685, Aug. 6, 1935; Cent. 1936, I 880; C.A. 29, 6608 (1935). (9) Kharasch, Brown, J. Am. Chem. Soc. 62, 925-929 (1940). (10) Ulrich, Ann. 109, 269-271 (1859).
- (11) Mazzara, Gazz. chim. ital. 12, 261 (1882). (12) Lovén, J. prakt. Chem. (2) 29, 367 (1884). (13) DeSimo, Allen (to Shell Development Co.), U.S. 2,051,470, Aug. 18, 1936; Cent. 1936, II 3468; C.A. 30, 6764 (1936). (14) N. V. de Bataafsche Petroleum Maatschappij, Brit. 447,876, May 27, 1936; French, 797,943, May 6, 1936; Cent. 1936, II 866; C.A. 30, 7124 (1936). (15) Röhm, Haas, Ger. 579,654, June 29, 1933; Cent. 1933, II 1587. (16) Leimu, Ber. 70, 1049 (1937). (17) Paal, Müller-Lobeck, Ber. 64, 2143-2147 (1931). (18) Backer, Mook, Bull. soc. chim. (4) 43, 544 (1928). (19) Tobie, Ayres, J. Am. Chem. Soc. 59, 850 (1937). (20) Cheronis, Spitzmueller, J. Org. Chem. 6, 349-375 (1941).
- (21) Sisler, Cheronis, J. Org. Chem. 6, 467-478 (1941). (22) Wichelhaus, Ann. 143, 4-5 (1867). (23) Kailan, Kunze, Monatsh. 71, 386 (1938). (24) Simpson, J. Am. Chem. Soc. 49, 678 (1918). (25) von Walther, Weinhagen, J. prakt. Chem. (2) 96, 53-54 (1917). (26) Bloomfeld, Farmer, J. Chem. Soc. 1932, 2076-2078. (27) Beckurts, Otto, Ber. 9, 1592 (1876). (28) Bischoff, Walden, Ann. 279, 80, 92 (1894). (29) Wolffenstein, Rolle, Ber. 41, 736 (1908). (30) Stempel, Schaffel, J. Am. Chem. Soc. 64, 470-471 (1942).
- (31) Bischoff, Ber. 33, 925-926 (1900). (32) Fourneau, Sandulesco, Bull. soc. chim. (4) 31, 992 (1922). (33) Saarbach, J. prakt. Chem. (2) 21, 152-153 (1880). (34) Vandewijer, Bull. soc. chim. Belg. 45, 255 (1936). (35) Roeder, Day, J. Org. Chem. 6, 31-35 (1941). (36) Skolnik, Miller, Day, J. Am. Chem. Soc. 65, 1856 (1943).

3:6135-3:6150

3:6135 n-PROPYL TRICHLOROACETATE 
$$C_5H_7O_2Cl_3$$
 Beil. II - 209  $n^-C_3H_7O.CO.CCl_3$  II\_1—  $II_2$ — B.P. 186.9–187.1° (1)  $D_4^{20}=1.3221$  (6)  $n_D^{20}=1.4501$  (6) 186.5–187° at 763 mm. (2) 1.3213 (5) 1.4507 (5) 187° (3)  $D_4^{15}=1.3170$  (4)  $n_D^{15}=1.4508$  (4) 117–117.3° at 130 mm. (1) 69° at 10 mm. (4) 65.0–65.5° at 5 mm. (5)

[For prepn. (57% yield (4)) from *n*-propyl alc. (1:6150) + trichloroacetic ac. (3:1150) see (4).]

[For study of chlorination of  $\bar{C}$  see (4).]

For study of hydrolysis of C see (5).

3:6135 (1) Cheng, Z. physik. Chem. B-24, 307 (1934). (2) Schiff, Z. physik. Chem. 1, 379 (1887). (3) Clermont, Bull. soc. chrm. (2) 40, 302 (1883). (4) Gayler, Waddle, J. Am. Chem. Soc. 63, 3358-3359 (1942). (5) Palomaa, Salmi, Korte, Ber. 72, 797 (1939). (6) Schjanberg, Z. physik. Chem. A-172, 229 (1935).

3:6140 ISOBUTYL TRICHLOROACETATE 
$$C_8H_9O_2Cl_8$$
 Beil. II - 209 (CH<sub>3</sub>)<sub>2</sub>CH.CH<sub>2</sub>.O.CO.CCl<sub>3</sub> II<sub>1</sub>— II<sub>2</sub>—

B.P. 
$$187-189^{\circ}$$
 (1)  $D_4^{25} = 1.255$  (2)  $n_D^{25} = 1.4456$  (2)  $93-94^{\circ}$  at 24 mm. (2)  $D_4^{20} = 1.2636$  (3)  $n_D^{20} = 1.4483$  (3)

Colorless liq. of agreeable odor (1).

[For prepn. (82-89% yield (2)) from isobutyl alc. (1:6165) + trichloroacetic ac. (3:1150) see (2) (1).]

[For study of chlorination of C see (2).]

3:6140 (1) Judson, Ber. 3, 784 (1870). (2) Waddle, Adkins, J. Am. Chem. Soc. 61, 3361-3364 (1939). (3) Schlanberg, Z. physik. Chem. A-172, 229 (1935).

3:6150 1,2,3,4-TETRACHLOROBUTADIENE-1,3 
$$C_4H_2Cl_4$$
 Beil. S.N. 12 (Liquid stereoisomer)  $HC = C - C = CH$ 

$$Cl Cl Cl Cl$$

B.P. 
$$188^{\circ}$$
 (1)  $D_{15}^{15} = 1.516$  (1)  $67-68^{\circ}$  at 10 mm. (1)  $43^{\circ}$  at 1 mm. (1)

[See also the solid stereoisomer (3:0870), m.p. 50°.]

Colorless strongly refractive liq. with agreeable honey-like odor; on stdg. turns brown and evolves HCl.

[For isolation of  $\bar{C}$  from the high-boilg, fractn. resulting in the preparation of trichloroethylene (3:5170) from 1,1,2,2-tetrachloroethane (acetylene tetrachloride) (3:5750) see {1}; for prepn. of  $\bar{C}$  from 1,1,2,3,4,4-hexachlorobutane (3:3155) with alc. KOH at room temp. see {1}.

C on saturation with Cl2 yields (1) the liquid stereoisomer of 1,1,2,3,4,4-hexachlorobutene-

2 (3:9046), b.p.  $97^{\circ}$  at 10 mm. (1). [Note that  $\tilde{C}$  does not (1) yield octachlorobutane (3:2000).]

C with Br<sub>2</sub> yields 1,4-dibromo-1,2,3,4-tetrachlorobutene-2, long colorless doubly refracting ndls., m.p. 105° (1).

C does not react with conc. HNO<sub>3</sub>, but with fumg. HNO<sub>3</sub> or even with NO<sub>2</sub> gas C reacts vigorously pptg. 1,4-dinitro-1,2,3,4-tetrachlorobutene-2, colorless cryst. from AcOH, m.p. 131° (1). [Note that this prod. cannot be recryst. from alc. since it reacts yielding ethyl nitrite and a yel. viscous oil (1).]

3:6150 (1) Muller, Huther, Ber. 64, 589-600 (1931); C.A. 25, 3956 (1931).

B.P. M.P. 189.3° at 760 mm. (1) 12.7° (1) 
$$D_4^{20} = 1.602$$
 (3)  $n_D^{20} = 1.5126$  (3) 186.3° at 760 mm. (1) 11-12° (2) 185.2° at 730 mm. (1)  $D_4^{18} = 1.6049$  (3)  $n_D^{18} = 1.51362$  (3) 104.0-105° at 50 mm. (2) 82.2-82.5° at 26 mm. (3)  $D_4^{17} = 1.6044$  (3)  $n_D^{17} = 1.51375$  (3) 71.5° at 10 mm. (1)

[See also chlorofumaryl (di)chloride (3:6105).]

Č is generally formulated in the unsymmetrical structure shown above (for discussion see (1) (2)); note, however, that the position of the chlorine atom attached to the carbon bearing the double bond is frankly assumed and may be on the other such carbon.

Note also that  $\bar{C}$  appears to exist also in a labile form, m.p. 4.8° (1), which readily changes to the higher-melting (stable) variety;  $\bar{C}$  on supercooling and inoculation with the labile form cryst, in the latter.

Č from pet. ether cryst. as needles; Č has disagreeable odor (1) and is far more lachrymatory than the isomeric chlorofumaryl (di)chloride (3:6105) (2).

[For prepn. of  $\tilde{C}$  from chlorofumaryl (di)chloride (3:6105) by combination with AlCl<sub>3</sub>, htg. at 100° for several hrs., and subsequently decomposing with ice water (yield as high as 85-87% but varies according to nature of AlCl<sub>3</sub> used) see (1) (2).]

[C on hydrogenation in dry ether in pres. of Pt black yields (4) n-butyric acid (1:1035) and other prods.]

[ $\tilde{C}$  with AlCl<sub>3</sub> gives a cpd., red-brown ndls., m.p. abt. 100° (1); on htg. at 180-225° this prod. decomposes yielding (1)  $\alpha,\beta$ -dichloroacryloyl chloride (see under 3:2265), b.p. 147.3° at 733 mm., phosgene (3:5000), CO, HCl, and other prods.]

C on protracted boilg. is converted (1) to chlorofumaryl (di)chloride (3:6105).

[Č reacts with MeOH and with aniline much more slowly than the isomeric chlorofumaryl (di)chloride (3:6105) (for details and graphs see (1) cf. (2)).]

3:6158 (1) Ott, Ann. 392, 256-265, 278-285 (1912). (2) Dann, Davies, Hambly, Paul, Semmens, J. Chem. Soc. 1933, 15-21. (3) von Auwers, Schmidt, Ber. 46, 482 (1913). (4) Ott., Ber. 46, 2173-2175 (1913).

3:6162 
$$\alpha,\alpha$$
-DICHLOROPROPIONIC ACID Cl  $C_3H_4O_2Cl_2$  Beil. II - 250  $II_1$ —  $II_2$ -(228)  $Cl_3$ —C—COOH  $II_1$ —  $II_2$ -(228)  $Cl_3$ —C  $C$ 

Colorless liq. — Very eas. sol. aq. or alc.; from aq. solns. can be salted out with NaCl. — Volatile with steam without hydrolysis. — Insol. conc. HCl.

[For prepn. of  $\bar{C}$  from corresp. acid chloride, viz.,  $\alpha,\alpha$ -dichloropropionyl chloride (3:5372), by hydrolysis see (3); from  $\alpha,\alpha$ -dichloropropionitrile monomer [Beil. II-251] (1) (4) (19),  $\alpha,\alpha$ -dichloropropionitrile dimer [Beil. II-252] (5), or  $\alpha,\alpha$ -dichloropropionitrile trimer [Beil. XXVI-38] (6) (7) by hydrolysis with H<sub>2</sub>SO<sub>4</sub> see indic. refs.; from  $\alpha,\alpha$ -dichloropropionanilide (see below) by hydrolysis with conc. HCl in s.t. at 140° see (2); for formn. of  $\bar{C}$  from propionic acid with Cl<sub>2</sub> under certain conditions see (26).]

 $\overline{C}$  is reduced by Zn + dil.  $H_2SO_4$  giving (1) propionic acid (1:1025).

 $\bar{C}$  on keeping gradually splits off some HCl (2). —  $\bar{C}$  with alc. KOH on boilg. either loses HCl giving (8)  $\alpha$ -chloroacrylic acid (3:1445) or by some obscure mechanism gives (9) cf. (10) (11)  $\beta$ -ethoxyacrylic acid [Beil. III-369], m.p. 110°.

 $\bar{C}$  as a monobasic acid forms corresp. salts; e.g., NH<sub>4</sub> $\bar{A}$  (1); KA.6H<sub>2</sub>O (1); Ca $\bar{A}_2$ .3H<sub>2</sub>O (1); Ba $\bar{A}_2$ .H<sub>2</sub>O (1); Zn $\bar{A}_2$ .H<sub>2</sub>O (1) (12); Ag $\bar{A}_3$ , spar. sol. aq. (1); note that this dry Ag $\bar{A}_3$  at 60° decomposes violently giving (12) AgCl and a mixed anhydride of  $\bar{C}$  with pyruvic acid, viz., CH<sub>3</sub>.C(Cl<sub>2</sub>).CO.O.CO.CO.CO.H<sub>3</sub>; however, Ag $\bar{A}_3$  on warming with aq. gives (12) AgCl + pyruvic acid (1:1040) and/or (1)  $\alpha$ -chloroacrylic acid (3:1445).

 $\tilde{C}$  with aq. Ag<sub>2</sub>O or Ag<sub>2</sub>CO<sub>3</sub> on protracted htg. gives (13) (12) pyruvic acid (1:1040), but use of excess Ag<sub>2</sub>O (14) (1) cf. (15) leads to AcOH (1:1010) + CO<sub>2</sub> + H<sub>2</sub>O. —  $\tilde{C}$  with aq. Ba (OH)<sub>2</sub> on boilg. or  $\tilde{C}$  with aq. in s.t. at 120–150° gives (14) (16) pyruvic acid (1:1040).

[ $\bar{C}$  with finely divided Ag in  $C_6H_6$  on refluxing 40–70 hrs. gives (17) (18) (19)  $\alpha,\alpha'$ -dimethylmaleic anhydride [Beil. XVII-445], m.p. 95°, and  $\alpha,\alpha'$ -dichloro- $\alpha,\alpha'$ -dimethylsuccinic acid [Beil. II-668], m.p. 185°.]

[ $\bar{\mathbb{C}}$  (3 moles) with PCl<sub>3</sub> (1 mole) gives (3) (20)  $\alpha,\alpha$ -dichloropropionic acid anhydride [Beil. II-251], b.p. 196-200° (20), 190-192° (3). —  $\bar{\mathbb{C}}$  (3 moles) with PCl<sub>3</sub> (2 moles) (3) or with SOCl<sub>2</sub> refluxed for 10 hrs. (21) gives  $\alpha,\alpha$ -dichloropropionyl chloride (3:5372).

C with alcohols in pres. of dry HCl gives (1) the corresp. esters (see also below).

- Methyl α,α-dichloropropionate: b.p. 144-146° (7), 143-144 u.c. (1). [From C with MeOH + dry HCl (1) (7); for study of kinetics of hydrolysis see (22).]
- Ethyl α,α-dichloropropionate: b.p. 160° (23), 156-157° (1) (6), 83-85° at 53 mm. (2).
  [From C with EtOH + dry HCl (1) or from α,α-dichloropropionyl chloride (3:5372) with EtOH (23); note that this ester with aq. in s.t. at 130° gives (16) (14) undergoes hydrolysis yielding pyruvic acid (1:1040) and ethyl pyruvate (1:3308) or with aq. Ag<sub>2</sub>O gives (15) Ag acetate.]
- Φ α,α-Dichloropropionamide: lfts. from dil. alc., m.p. 117-118° (2) (24), 117° (12), 116-117° (3), 116° (23) (5) (20), 115-116° (4) (6) (7). [From ethyl α,α-dichloropropionate (above) (3) (23), from methyl α,α-dichloropropionate (above) (7), or from α,α-dichloropropionyl chloride (3:5372) (3) with conc. aq. NH<sub>4</sub>OH.]
- D α.α-Dichloropropion-N-ethylamide: m.p. 51-52° (2). [From C with EtNH<sub>2</sub>.]
- α,α-Dichloropropionanilide: m.p. 101° (2). [Reported only by indirect means (2).]
   α,α-Dichloropropion-p-toluidide: m.p. 84-86° (25). [Reported only by indirect means (25).]

3:6162 (1) Beckurts, Otto, Ber. 9, 1876-1881 (1876). (2) von Braun, Jostes, Münch, Ann. 453, 134-135 (1927). (3) Beckurts, Otto, Ber. 11, 386-391 (1878). (4) Beckurts, Otto, Ber. 9, 1593-1594 (1876). (5) Tróger, J. prakt. Chem. (2) 46, 362-363 (1892). (6) Beckurts, Otto, Ber. 10, 263-264 (1877). (7) Otto, Voigt, J. prakt. Chem. (2) 36, 84-85 (1887). (8) Otto, Beckurts, Ber. 18, 241-242 (1885). (9) Otto, Ber. 23, 1108-1110 (1890). (10) Claisen, Ber. 31, 1020 (1898).

(11) Tschitschibabin, J. prakt. Chem. (2) 73, 335 (1906). (12) Beckurts, Otto, Ber. 18, 228-235 (1885). (13) Beckurts, Otto, Ber. 10, 265-266 (1877). (14) Beckurts, Otto, Ber. 10, 2037-2039 (1877). (15) Klimenko, Ber. 7, 1405-1406 (1874). (16) Klimenko, Ber. 5, 477 (1872). (17) Beckurts, Otto, Ber. 10, 1503-1504 (1877). (18) Otto, Beckurts, Ber. 18, 826-830, 836, 847 (1885). (19) Otto, Holst, J. prakt. Chem. (2) 42, 78 (1890). (20) Otto, Holst, J. prakt. Chem. (2) 42, 78 (1890).

(21) Leimu, Ber. 70, 1050 (1937). (22) Burki, Helv. Chim. Acta 1, 244-245 (1918). (23) Klithenko, Ber. 3, 466-467 (1870). (24) Otto, Ann. 132, 183 (1864). (25) Bischoff, Walden, Ann. 279, 93 (1894). (26) Röhm and Haas, A.G., Ger. 579,654, June 29, 1933; Cent. 1933 II 1587; [C.A. 28, 1056 (1934)].

3:6165 1,1,2,3-TETRACHLORO-2-METHYLPROPANE C4H6Cl4 Beil. S.N. 10

**B.P. M.P.** 190.6-191.3° cor. (1)  $D_4^{25} = 1.4393$  (1)  $n_D^{20} = 1.4963$  (1)

[For form. of  $\bar{C}$  (together with other products) from ter-butyl chloride (3:7045) or from 1,3-dichloro-2-methylpropane (3:7960) +  $Cl_2$  see (1).]

3:6165 (1) Rogers, Nelson, J. Am. Chem. Soc. 58, 1027-1029 (1936).

3:6180  $\beta,\beta,\beta$ -TRICHLORO-ter-BUTYL ACETATE  $C_0H_9O_2Cl_3$  Beil. II - 131 ("Acetone-chloroform" acetate;  $CH_3$  II<sub>1</sub>- (59) II<sub>2</sub>-  $CCl_3$  CCl<sub>3</sub>-  $CCl_3$  CCl<sub>4</sub>-  $CCl_3$  CCl<sub>5</sub>-  $CCl_5$  CCl<sub>6</sub>-  $CCl_5$  CCl<sub>7</sub>-  $CCl_5$  CCl<sub>8</sub>-  $CCl_5$  CCl<sub>8</sub>-  $CCl_5$  CCl<sub>8</sub>-  $CCl_5$  CCl<sub>9</sub>-  $CCl_5$ -  $CCl_5$ 

B.P. 191° (1) 190–191° (2) 151–152° at 237 mm. (3)

Colorless mobile liq. with agreeable odor (1). Insol. aq.; eas. sol. alc., ether, acetone,  $CHCl_3$ ,  $C_6H_6$  (3). — Volatile with steam (3).

 $\bar{C}$  on boilg. with 3-4 vols. conc. HNO<sub>3</sub> is rapidly hydrolyzed; after boilg. only a few min. addn. of aq. ppts.  $\beta,\beta,\beta$ -trichloro-ter-butyl alc. (3:2662), m.p. 78° (3).  $[\bar{C}$  hydrolyzes only very slowly (108 hrs.) on boilg. with aq. alone; in pres. of dil. H<sub>2</sub>SO<sub>4</sub> hydrolysis is more rapid (7 hrs.) and  $\beta,\beta,\beta$ -trichloro-ter-butyl alc. (chloretone) sublimes into condenser (3).

[For prepn. from  $\beta,\beta,\beta$ -trichloro-ter-butyl alc. (3:2662) + Ac<sub>2</sub>O (1) or Ac<sub>2</sub>O + NaOAc (3) see (1) (3).]

3:6180 (1) Willgerodt, Dürr, J. prakt. Chem. (2) 39, 285 (1889). (2) Taffe, Roczniki Farm. 2, 99-107 (1923); Cent. 1924, II 304. (3) Aldrich, J. Am. Chem. Soc. 37, 2720-2723 (1915).

3:6185-3:6195

B.P. 191° at 756 mm. (1) 
$$D_{20}^{20} = 1.2505$$
 (1) 105° at 30 mm. (1)

 $\bar{C}$  on distn. tends to decompose into 2-methylbutene-2 (1:8220) + trichloroscetic acid (3:1150) (1).

[For studies on prepn. from 2-methylbutene-2 (1:8220) + trichloroacetic acid (3:1150) see (2) (3) (4) (5) (6); for prepn. (84% yield (1)) from ter-amyl alc. (1:6160) and trichloroacetic ac. (3:1150) see (1).]

3:6185 (1) Liston, Dehn, J. Am. Chem. Soc. 60, 1264-1265 (1938). (2) Timofeev, Andreasov, J. chim. Ukraine 1, 107-110 (1925); C.A. 20, 2820 (1926). (3) Timofeev, Israilevich, Chaskes, J. chim. Ukraine 1, 576-580 (1925); C.A. 20, 2820 (1926). (4) Andreasov, Ukrain. Khem. Zhur. 3, Sci. pt. 209-218 (1928); C.A. 23, 322 (1929); Cent. 1929, I 3084. (5) Andreasov, Ukrain. Khem. Zhur. 3, Sci. pt. 467-470 (1928); C.A. 23, 3207 (1929); Cent. 1929, I 3084. (6) Andreasov, Ukrain. Khem. Zhur. 4, Sci. pt. 89-92 (1929); C.A. 23, 4439 (1929); Cent. 1929. II 2433.

# TRICHLOROMETHYL TRICHLOROACETATE Cl<sub>3</sub>C.COOCCl<sub>3</sub> Beil. III - 17

B.P. 191-192°

M.P. 34°

 $D_4^{35} = 1.67331$ 

See 3:0290. Division A: Solids.

3:6195 m-CHLOROANISOLE (m-Chlorophenyl methyl ether)

B.P. 193-194° (1)

$$D_{1}^{12.0} = 1.1759 (4)$$
 $C_{7}H_{7}OCl$ 

Beil. VI - 185

VI<sub>1</sub>-(100)

193° (2) 191–192° at 728 mm. (3)

Oil. — Volatile with steam (3). — Odor like anisole (5). — Sol. alc., ether.

[For prepn. of  $\bar{C}$  from m-chlorophenol (3:0255) by htg. with KOH + MeI in MeOH (1) or Me<sub>2</sub>SO<sub>4</sub> + alk. (7) see (1) (7); from m-chloroaniline by diazotization and warming with MeOH see (2); from m-aminophenyl methyl ether by diazotization and reactn. with CuCl see (3).]

 $\bar{C}$  on nitration with 1 pt. fumg. HNO<sub>3</sub> (D=1.52) at -10 to  $+25^{\circ}$  yields (6) a product, m.p. 81° (6), which may have been an impure form of the trinitro epd., 2,4,6-trinitro-3-chloroanisole, m.p. 86°, obtd. (61% yield (7)) by use of 5 pts. fumg. HNO<sub>3</sub> (D=1.51) + 5 pts. conc. H<sub>2</sub>SO<sub>4</sub> at  $-15^{\circ}$ . [The numerous possible mono- and di-nitration products of  $\bar{C}$  cannot be discussed here and, in any case, have not been reported by direct nitration of  $\bar{C}$ .]

[For a study of the reactn. kinetics of the splitting of C in acid soln. see (8).]

3:6195 (1) Gattermann, Ann. 357, 349 (1907). (2) Cameron, Am. Chem. J. 26, 238 (1898).
 (3) Reverdin, Eckhard, Ber. 32, 2626 (1899). (4) von Auwers, Z. physik. Chem. A-158, 418 (1932). (5) Holleman, Rec. trav. chim. 37, 104 (1918). (6) Reverdin, Phillip. Ber. 38, 3776 (1905); Bull. soc. chim. (3) 33, 1322 (1905). (7) Schlubach, Mergenthaler, Ber. 58, 2734 (1925).
 (8) Ghaswalla, Donnan, J. Chem. Soc. 1936, 1341-1346.

| B.P.                 | unsym.                      |                                  |
|----------------------|-----------------------------|----------------------------------|
| <b>192–194°</b> (1)  | (B) $D_4^{20} = 1.7091 (2)$ | $n_{\rm He}^{20} = 1.51947  (2)$ |
| 190° at 743 mm. (2)  | sym.                        |                                  |
| 86-89° at 11 mm. (3) | (A) $D_4^{20} = 1.6723$ (2) | $n_{\rm Hc}^{20} = 1.51572 (2)$  |

[See also dichloromaleic acid (3:3634) and dichloromaleic anhydride (3:3635).]

Colorless mobile lachrymatory liq. with penetrating camphoraceous odor but *not* fumg. in moist air. — Insol. aq. but volatile with steam without hydrolysis. — Soluble in org. solvents.

Although C has not been separated into the completely pure desmotropic forms (A) and (B), their presence is clearly evidenced (2). The relative proportion of the two forms varies with the age of the sample and other conditions, but the above data on density and refraction indicate the extremes so far realized (for much further detail see (2)).

[For prepn. of ord.  $\bar{C}$  (mixt. of (A) and (B)) from succinyl (di)chloride (3:6200) with Cl<sub>2</sub> at 145° in pres. of Fe (81% yield) see (2) (note that some dichloromaleic anhydride (3:3635) is also formed, that in absence of Fe the reactn. is very slow, and that use of I<sub>2</sub> in place of Fe lowers yield of  $\bar{C}$  to 54% (2)); from chlorofumaryl (di)chloride (3:6105) with Cl<sub>2</sub> in pres. of Fe see (1); from dichloromaleic anhydride (3:3635) with PCl<sub>5</sub> see (1); from dibromofumaryl (di)chloride [Beil. II<sub>1</sub>-(303)] with AlCl<sub>3</sub> at 100° see (3).]

Ord. Č with 60% of its wt. of AlCl<sub>3</sub> spontaneously evolves ht.; after further htg. at 100° and pouring into aq. the ethereal extract yields (2) a prod. which reacts as substantially pure *unsym*. form (B).

Ord.  $\bar{C}$  is not affected by ord. treatment with boilg. aq. or boilg. aq. KOH (2), although it is attacked by alc. KOH (1). —  $\bar{C}$  on very protracted (168 hrs.) boilg. with aq. slowly dissolves giving (2) an acidic soln. which on extraction with ether followed by drying and evapn. of this solvent gives (80% yield) dichloromaleic anhydride (3:3635).

[For study of rate of reactn. of C with MeOH or with aniline see (2).]

[For condens. of  $\bar{C}$  with 1-aminoanthraquinone in prepn. of dyestuffs see (2) (4).]

Ord.  $\bar{C}$  (2 g.) in  $C_6H_6$  (150 ml.) treated with 4 moles aniline (3.4 g.) in  $C_6H_6$  (30 ml.) immediately ppts. aniline hydrochloride; after stdg. for  $\frac{1}{2}$  hr., then removing this ppt., the filtrate leaves on evapn. a mixt. (m.p. 165-185°; yield 67-83% (2)) of two different dianilides, which can be separated by recrystn. from hot alc.: the dianilide from the sym. dichloride (A) is white, has m.p. 193°, and with alc. KOH is much more slowly hydrolyzed than its isomer and during such hydrolysis shows no transient color; the dianilide from the unsym. dichloride (B) is yellow, has m.p. 170°, and with hot 8% alc. KOH readily hydrolyzes with development of a transient cherry-red coloration. — Note that, although the white dianilide is somewhat more readily sol. in hot alc. than the yellow isomer, it also separates first on slow cooling; note also that on hydrolysis of the anilides with alc. KOH the presence of aniline is readily detected but (presumably because of further attack by the alkali) no dichloromaleic acid can be recovered in either case.

**3:6197** (1) Vandevelde, Bull. acad. roy. Belg. (3) **37**, 680-700 (1899); Cent. **1900**, I 404. (2) Leder, J. prakt. Chem. (2) **130**, 255-288 (1931). (3) Ott, Ann. **392**, 271 (1912). (4) Leder, Ger. 558,248, Sept. 3, 1932; Cent. **1932**, II 3789.

Note that  $\tilde{C}$  may react in either sym. (above) or unsym. form acc. to circumstances. [For discussion of structure see (1) (5) (7) (9) (10); in the liquid only the sym. form ( $\tilde{C}$ ) exists (9).] —  $\tilde{C}$  is sol. in  $C_6H_6$ , but insol. in pet. ether (7).

[For prepn. of  $\bar{\mathbb{C}}$  from succinic acid (1.0530) with PCl<sub>5</sub> (yield: 85% (8) (12)) (13) (14) (4) (5) see indic. refs. (note that neither PCl<sub>3</sub> + ZnCl<sub>2</sub> (8) nor SOCl<sub>2</sub> (16) give  $\bar{\mathbb{C}}$ ); for prepn. of  $\bar{\mathbb{C}}$  from succinic anhydride (1.0710) with PCl<sub>5</sub> (4) (6), with PCl<sub>3</sub> + Cl<sub>2</sub> (17), or with SOCl<sub>2</sub> + ZnCl<sub>2</sub> at 200-240° (18) (35) see indic. refs.; for formn. of  $\bar{\mathbb{C}}$  from the trimer of  $\beta$ -aldehydopropionic acid with PCl<sub>5</sub> see (19).]

 $[\bar{C} \text{ with } Cl_2$  + Fe at 145° gives (81% yield (20)) dichloromaleyl dichloride (3:6197) cf. (21);  $\bar{C}$  with Br<sub>2</sub> yields (22) (23) mixt. of  $d_{\nu}$  and  $meso-\alpha_{\nu}\alpha'$ -dibromosuccinyl dichlorides;  $\bar{C}$  with Br<sub>2</sub> + Fe yields (24) dibromomaleic anhydride [Beil. XVII-435, XVII<sub>1</sub>-(233)], m.p. 118°.]

[ $\bar{C}$  on reduction with Na/Hg + AcOH in ether (25) or with H<sub>2</sub> + Pd (26) (15) gives (54% yield (26))  $\gamma$ -butyrolactone (1:5070), b.p. 206°.]

[ $\bar{C}$  with AlCl<sub>3</sub> + C<sub>6</sub>II<sub>6</sub> yields (27)  $\gamma$ , $\gamma$ -diphenyl- $\gamma$ -butyrolactone [Beil. XVII-367], m.p. 90° (arising from reactn. of  $\bar{C}$  in the *unsym*. form), 1,2-dibenzoylethane [Beil. VII-773, VII<sub>1</sub>-(401)], m.p. 144° (arising from reactn. of the *sym*. form), and  $\beta$ -benzoylpropionic acid [Beil. X-696, X<sub>1</sub>-(330)], m.p. 116°.]

[ $\bar{C}$  on distn. or htg. with succinic acid (1:0530) (30) (31), or on htg. (31) with anhydrous oxalic acid (1:0535) or on protracted boiling with Na in xylene (32), or on htg. with diethyl succinate (1:3756) +  $ZnCl_2$  (33), yields succinic anhydride (1:0710), m.p. 120°.]

 $\ddot{C}$  with conc. aq. NH<sub>4</sub>OH (7) or with NH<sub>3</sub> gas in C<sub>6</sub>H<sub>6</sub> reacts mainly in the *unsym*. form (7) yielding the hygroscopic *unsym*. succindiamide [Beil. XVII-410] with at most 5% of sym.-succindiamide, m.p. 260°;  $\ddot{C}$  with aniline in C<sub>6</sub>H<sub>6</sub> (7) (34), however, gives 90% yield (7) sym.-succindianilide, m.p. 230°.

[For behavior of C with diethyl sodio-malonate see (35) (36).]

Č on hydrolysis yields succinic acid (1:0530) q.v., m.p. 185°.

3:6200 (1) Ott, Ann. 382, 277 (1912). (2) Perkin, J. Chem. Soc. 53, 563-564 (1888). (3) Dann, Davies, Hambly, Paul, Semmens, J. Chem. Soc. 1933, 18. (4) Vorlander, Ann. 280, 183-184

(1894). (5) Garner, Sugden, J. Chem. Soc. 1927, 2878-2880. (6) von Auwers, Schmidt, Ber. 48, 478 (1913). (7) Morrell, J. Chem. Soc. 105, 1736-1739 (1914). (8) Clark, Bell, Trans. Roy. Soc. Can. (3) 27, III 97-103 (1933). (9) Martin, Partington, J. Chem. Soc. 1936, 1179-1181. (10) Purvis, Jones, Tasker, J. Chem. Soc. 97, 2289 (1910).

(11) Vorlander, Ber. 30, 2268-2269, Note (1897). (12) Curtius, Hechtenberg, J. prakt. Chem. (2) 105, 302, Note (1923). (13) Gerhardt, Chiosza, Ann. 87, 293-294 (1853). (14) Möller, J. prakt. Chem. (2) 22, 208 (1880). (15) Fröschl, Maier, Monatsh. 59, 264-268 (1932). (16) McMaster, Ahmann, J. Am. Chem. Soc. 50, 146 (1928). (17) Clemmensen, Miller (to Monsanto Chemical Co.), U.S. 1,974,845, Sept. 25, 1934; Cent. 1935, I 960; C.A. 28, 7265 (1934). (18) Kyrides (to Monsanto Chem. Co.), U.S. 1,951,364, March 20, 1934; Cent. 1934, II 333. (19) Carrière, Ann. chim. (9) 17, 91 (1922). (20) Leder, J. prakt. Chem. (2) 130, 269-271 (1931).

(21) Kauder, J. prakt. Chem. (2) 31, 1-36 (1895). (22) Ing, Perkin, J. Chem. Soc. 125, 1815, 1822 (1924). (23) Meyer, Marx, Ber. 41, 2465 (1908). (24) Vandevelde, Bull. acad. roy. Belg. 37, 680-700; Cent. 1900, I 404. (25) Saytzeff, Ann. 171, 261-272 (1874). (26) Fröschl, Danoff, J. prakt. Chem. (2) 144, 222 (1936). (27) Lutz, J. Am. Chem. Soc. 49, 1111 (1927). (28) Borsche, Ann. 526, 17 (1936). (29) Auger, Ann. chim. (6) 22, 312-317 (1891); Bull. soc. chim. (2) 49, 345-348 (1888). (30) Anschutz, Ber. 10, 1883 (1877).

(31) Anschütz, Ann. 226, 6, 16-17 (1884). (32) Pearl, Evans, Dehn, J. Am. Chem. Soc. 60, 2479 (1938). (33) Kyrides, Dvornikoff, J. Am. Chem. Soc. 55, 4630 (1933). (34) Dunlap, Cummer, J. Am. Chem. Soc. 25, 621 (1903). (35) Ruggli, Maeder, Helv. Chim. Acta 26, 1476-1498 (1943); C.A. 38, 2934 (1944). (36) Ruggli, Maeder, Helv. Chim. Acta 26, 1499-1511 (1943); C.A. 38, 2935 (1944).

3:6205 PENTACHLOROPROPANONE-2 
$$C_3HOCl_5$$
 Beil. I - 656 (Pentachloroacetone)  $Cl_2CH$ —C—CCl<sub>3</sub>  $I_1$ —  $I_2$ —

B.P. F.P. 192° at 753 mm. (1) +2.1° (2)  $D_{15}^{15} = 1.69$  (3) 97.5–98.5° at 40 mm. (2)  $D_{-}^{14} = 1.576$  (1)

[See also hexachloropropanone-2 (3:6312).]

Colorless oil with odor suggesting chloral (3:5210); slightly sol. cold aq. (aq. at 0° dis. 0.1 vol.  $\bar{C}$  (1)) but on warming to 50-60° the soln. becomes turbid. —  $\bar{C}$  with aq. at 0° forms (1) (4) a crystn. tetrahydrate, m.p. 15-17° (4), 15° dec. (1). —  $\bar{C}$  is volatile with steam.

[For prepn. of  $\bar{C}$  from acetone (1:5400) with  $Cl_2$  in sunlight see (1); from chloroacetone (3:5425) with  $Cl_2$  at 50-70° in light see (5) cf. (3); from citric acid (1:0455) in aq. soln. at 100° with  $Cl_2$  see (1); from chloranilic acid (3:4970) in aq. with  $Cl_2$  in pres. of  $I_2$  see (6); from isopropyl alcohol (1:6135) at 65° with  $Cl_2$  see (7); for formn. of  $\bar{C}$  from citric acid, gallic acid, quinic acid, salicylic acid, indigo, etc., by distn. with  $HCl + KClO_3$  see (4); note that in prepn. of  $\bar{C}$  some hexachloroacetone (3:6312) is frequently also obtd.]

 $\bar{C}$  with PCl<sub>5</sub> in s.t. at 180° for 6–8 hrs. yields (8) 1,1,1,2,2,3,3-heptachloropropane (3:0200) b.p. 247–248°, m.p. 30°.

Č with dil. aq. KOH undergoes hydrolytic cleavage yielding (1) (3) chloroform (3:5050) and the K salt of dichloroacetic acid (3:6208).

Č with aniline in dil. AcOH yields (1) (3) chloroform (3:5050) and dichloroacetanilide [Beil. XII-244, XII<sub>1</sub>-(193)], cryst. from aq., C<sub>6</sub>H<sub>6</sub>, or ether/alc., m.p. 117°. — Č with alc. NH<sub>4</sub>OH yields (1) chloroform (3:5050) and dichloroacetamide [Beil. II-205, II<sub>1</sub>-(92), II<sub>2</sub>-(196)], cryst., m.p. 98°.

3:6265 (1) Closs, Ann. chim. (6) 9, 187-194 (1886). (2) Edwards, Evans, Watson, J. Chem. Soc. 1937, 1944-1945. (3) Fritsch, Ber. 26, 598 (1893); Ann. 279, 317-318 (1894). (4) Städeler, Ann. 11, 293-301 (1859). (5) I.G., French 816,956, Aug. 21, 1937; Cent. 1938, I 2216. (6) Levy, Jedlicka, Ann. 249, 87-89 (1888). (7) Buc (to Standard Oil. Co. of N.J.), U.S. 1,391,757, Sept. 27, 1921; Cent. 1932, IV 942. (8) Fritsch, Ann. 297, 314 (1897).

86-89° at 12 mm. (7) 88-89° at 11 mm. (1) 58° at 2.5 mm. (3)

105-110° at

[See also ethyl  $\gamma$ -chloroacetoacetate (3:6375).]

30 mm. (6)

Colorless oil with penetrating odor; vapor is strong lachrymator. —  $\bar{C}$  can be preserved for some time but on very long stdg. (several years) decomposes (8) with formn. of oxalic acid (1:0445). —  $\bar{C}$  is spar. sol. aq., eas. sol. alc., ether.

[For prepn. of  $\bar{C}$  from ethyl acetoacetate (1:1710) with SO<sub>2</sub>Cl<sub>2</sub> (yields: 85% (7), 55% (6)) (2) or with Cl<sub>2</sub> in diffused light at room temp. (75% yield (9)) or in gas phase at 76–102° and 7 mm. press. (68% yield (40)) see indic. refs.; from the copper enolate of ethyl acetoacetate in CHCl<sub>3</sub> with Cl<sub>2</sub> (67% yield (10)) cf. (11); from ethyl sodioacetoacetate with *p*-toluenesulfonyl chloride in dry ether or lgr. (12); or from ethyl  $\beta$ -(chlorimino)-*n*-butyrate [Beil. III-656] on distillation with dil. H<sub>2</sub>SO<sub>4</sub> (13) see indic. refs.]

[ $\bar{C}$  can be further chlorinated: e.g.,  $\bar{C}$  (1 mole) with SO<sub>2</sub>Cl<sub>2</sub> (1 mole) gives (1) (2) ethyl  $\alpha,\alpha$ -dichloroacetoacetate [Beil. III-663, III<sub>1</sub>-(233), III<sub>2</sub>-(427)], b.p. 205-207° at 726 mm., 91° at 11 mm. (1),  $D_{16,5}^{16} = 1.293$  (14),  $n_{17}^{17} = 1.4492$  (1).]

 $\bar{C}$  on hydrolysis with boilg. dil.  $H_2SO_4$  undergoes ketonic splitting yielding (15) chloro-acetone (3:5425) +  $CO_2$  + EtOH (note that this does not distinguish  $\bar{C}$  from ethyl  $\gamma$ -chloro-acetoacetate (3:6375) which yields same prods.)

[ $\bar{C}$  with alc. NaOC<sub>2</sub>H<sub>5</sub> yields (9) ethyl acetate (1:3015), ethyl  $\alpha$ -ethoxyacetoacetate, and traces of ethyl chloroacetate (3:5700);  $\bar{C}$  with sodium phenolate (free from alc. or aq.) on htg. gives (16) ethyl  $\alpha$ -phenoxyacetoacetate (not further described) which in cold conc. H<sub>2</sub>SO<sub>4</sub> loses H<sub>2</sub>O and ring-closes to 2-carbethoxy-3-methylcoumarone [Beil. XVIII-309], tbls. from C<sub>6</sub>H<sub>6</sub>, m.p. 51°, b.p. 290° (16); note dif. in behavior of  $\bar{C}$  with these reagents as compared with ethyl  $\gamma$ -chloroacetoacetate (3:6375).]

[ $\ddot{\mathbf{C}}$  with diethyl sodiomalonate yields in alc. (7) ethyl acetate (1:3015), ethyl chloroacetate (3:5700), triethyl ethane-1,1,2-tricarboxylate [Beil. II-813, II<sub>1</sub>-(321), II<sub>2</sub>-(681)], and tetraethyl propane-1,2,2,3-tetracarboxylate [Beil. II-862, II<sub>1</sub>-(333), II<sub>2</sub>-(701)] but in toluene yields (7) triethyl 3-hydroxybuten-2-tricarboxylate-1,1,2 [Beil. III<sub>2</sub>-(509)]; note dif. from behavior of ethyl  $\gamma$ -chloroacetoacetate (3:6375).]

[For behavior of Cwith KCN see (4); with ethyl sodiocyanoacetate see (17); with NH<sub>3</sub> in dry ether see (18).]

Note that  $\tilde{C}$  is capable of displaying keto enol tautomerism as is shown in the following reactions.

C with FeCl<sub>3</sub> soln. gives intense violet coloration (10) (4).

Č forms a series of metallic salts of the enolic form; these are in general insol. aq. but sol. in org. solvents: e.g., Č in ether on shaking with aq. Cu(OAc)<sub>2</sub> (19) or NH<sub>4</sub>OH/CuSO<sub>4</sub> (20) gives Cu(C<sub>6</sub>H<sub>3</sub>O<sub>2</sub>Cl)<sub>2</sub>, green tbls. from C<sub>6</sub>H<sub>6</sub>, m.p. 169-170° (19) (note that this m.p. is

alm. ident. with corresp. deriv. from the isomeric ethyl  $\gamma$ -chloroacetoacetate (3:6375)); for corresp. Mg, Cu, or Ni enolates see (20).

[ $\bar{\mathbf{C}}$  with phenols in pres. of conc.  $\mathbf{H}_2\mathbf{SO}_4$  or  $\mathbf{P}_2\mathbf{O}_5$  undergoes condensation and ring closure with loss of  $\mathbf{H}_2\mathbf{O}$  giving the corresp. substituted coumarins: e.g.,  $\bar{\mathbf{C}}$  with *m*-cresol (1:1730) in conc.  $\mathbf{H}_2\mathbf{SO}_4$  at 0° gives (6) 3-chloro-4,7-dimethylcoumarin, ndls. from alc., m.p. 135° (6);  $\bar{\mathbf{C}}$  with *p*-cresol (1:1410) similarly (6) (or m small yield (21) with  $\mathbf{P}_2\mathbf{O}_5$ ) gives 3-chloro-4,6-dimethylcoumarin, ndls. from AcOH, m.p. 160° (6), 158° (21): for corresp. reactn. of  $\bar{\mathbf{C}}$  with  $\alpha$ -naphthol (1:1500) (22) (6), with  $\beta$ -naphthol (1:1540) (23), with 6-chloro-m-cresol (4-chloro-3-methylphenol) (3:1535) (24) see indic. refs. — This type of condensation also occurs with polyhydric phenols: e.g.,  $\bar{\mathbf{C}}$  with resorcinol (1:1530) + conc.  $\mathbf{H}_2\mathbf{SO}_4$  at 0° (25) or with  $\mathbf{P}_2\mathbf{O}_5$  in alc. (26) gives 3-chloro-7-hydroxy-4-methylcoumarin, cryst. from alc. with  $\mathbf{P}_2\mathbf{V}_5$  in alc. (26) gives 3-chloro-7-hydroxy-4-methylcoumarin, cryst. from alc. with  $\mathbf{P}_2\mathbf{V}_5$  in alc. (26) gives 3-chloro-7-hydroxy-4-methylcoumarin, cryst. from alc. with  $\mathbf{P}_2\mathbf{V}_5$  in alc. (26) gives 3-chloro-7-hydroxy-4-methylcoumarin, cryst. from alc. with  $\mathbf{P}_2\mathbf{V}_5$  in corresp. behavior of  $\bar{\mathbf{C}}$  with orcinol (1:1525) (22) (25), with pyrogallol (1:1555) (22) (25), see indic. refs.; many other cases are known. — Note, however, with particular care that  $\bar{\mathbf{C}}$  with sodium salts of these phenols reacts in a different manner yielding substituted coumarone derivs. (cf. case of sodium phenolate in fifth paragraph).]

 $\bar{C}$  with aq. solns. of diazonium salts behaves quite differently from the isomeric ethyl  $\gamma$ -chloroacetoacetate (3:6375): e.g.,  $\bar{C}$  in alc. with aq. benzenediazonium sulfate in pres. of NaOAc (2 moles) yields (27) (28) (4) ethyl  $\alpha$ -chloro- $\alpha$ -(phenylhydrazono)acetate [Beil. XV-270], yel. lfts. or pl. from alc., m.p. 80-81° (28) (4), 70-71° (27) (for use of this reactn. on mixts. of  $\bar{C}$  with the isomer see (4)).

 $\tilde{C}$  with excess hydrazine hydrate is reduced with evolution of N<sub>2</sub> (1);  $\tilde{C}$  with phenylhydrazine (2 moles) condenses and ring-closes yielding (29) (30) 4-(benzeneazo)-3-methyl-1-phenylpyrazolone-5 [Beil. XXIV-328, XXIV<sub>1</sub>-(319)], or.-red. ndls. from alc., AcOH, or CHCl<sub>3</sub>, m.p. 156-157° (note, however, that in pres. of other the reactn. with phenylhydrazine takes a different course yielding (31) ethyl  $\beta$ -(benzeneazo)-crotonate [Beil. XVI-27], red ndls. from alc., m.p. 50-51°).

[ $\bar{C}$  with thioacetamide on warming yields (32) 5-carbethoxy-2,4-dimethylthiazole [Beil. XXVII-318], cryst. from ether, m.p. 50-51° (32). —  $\bar{C}$  with NH<sub>4</sub>SCN (33) or better Ba-(SCN)<sub>2</sub> (34) in alc. gives (55% yield (34)) 5-carbethoxy-2-hydroxy-4-methylthiazole [Beil. XXVII-338], lfts. from alc., m.p. 128° (33), 127-129° (34); note that this prod. may be regarded as merely the isomeric ethyl  $\alpha$ -(thiocyano)acetoacetate (35). —  $\bar{C}$  with NH<sub>4</sub>dithiocarbamate (from NH<sub>4</sub>OH + CS<sub>2</sub>) in alc. eliminates NH<sub>4</sub>Cl giving an intermediate, m.p. 115-121°, according to mode of htg. (38) but which on fusion ring-closes with loss of aq. to 5-carbethoxy-2-mercapto-4-methylthiazole [Beil. XXVII-339], ndls. from alc., m.p. 150° (38), 141° (39).]

[Č with urea in alc. contg. a little aq. HCl gives on stdg. 5 months (36) 5-carbethoxy-2-hydroxy-4-methylimidazole [Beil. XXV-216], ndls. from aq. or tbls. from alc., m.p. 218° (36). — Č (1 mole) with thiourea (1 mole) at 90° reacts vigorously eliminating H<sub>2</sub>O and giving (alm. quant. yield (37)) as the hydrochloride 2-amino-5-carbethoxy-4-methylthiazole [Beil. XXVII-338]; addn. of alk. sets free the base, ndls. from ether/alc., m.p. 175° (37) (13).]

3:6267 (1) Macbeth, J. Chem. Soc. 123, 1125 (1923). (2) Allihn, Ber. 11, 567-570 (1878). (3) Milone, Gazz. chim. idal. 65, 342 (1935). (4) Favrel, Prevost, Bull. soc. chim. (4) 49, 243-261 (1931). (5) Haller, Held, Bull. soc. chim. (2) 65, 888-892 (1887). (6) Dey, J. Chem. Soc. 107, 1646 (1915). (7) Gault, Klees, Bull. soc. chim. (4) 39, 889-905 (1926); Compt. rend. 179, 600 (1924). (8) von Konek-Norwall, Ber. 51, 393-398 (1918). (9) Mewes, Ann. 245, 58-60, 66-69 (1888). (10) Schönbrodt, Ann. 253, 170-174 (1889).

Michael, Carlson, J. Am. Chem. Soc. 58, 353-364 (1936).
 yon Meyer, von Findeisen, J. prakt. Chem. (2) 65, 529-532 (1902).
 Behrend, Schreiber, Ann. 318, 381 (1901).
 Conrad, Ann. 186, 234 (1877).
 Peratoner, Gazz. chim. ital. 22, II 40-41 (1892).
 Hantssch, Ber. 19, 1292-1293 (1886).
 Chassagne, Bull. soc. chim. (4) 1, 914-916 (1907).

(18) Genvresse, Ann. chim. (6) 24, 64-65 (1891). (19) Wislicenus, Stoeber, Ber. 35, 542-543 (1902). (20) Allihn, Ber. 12, 1298-1300 (1879).

(21) Robertson, Sandrock, J. Chem. Soc. 1932, 1180, 1183-1184. (22) Chakravarti, J. Indian Chem. Soc. 8, 407-411 (1931). (23) Dey, J. Chem. Soc. 107, 1629 (1915). (24) Dey, Dalal, J. Chem. Soc. 123, 3390 (1923). (25) von Pechmann, Hanke, Ber. 34, 357-360 (1901). (26) Chakravarti, J. Indian Chem. Soc. 8, 136 (1931). (27) Bowack, Lapworth, J. Chem. Soc. 87, 1859 (1905). (28) Favrel, Compt. rend. 134, 1313 (1902). (29) Schönbrodt, Ann. 253, 188-193 (1889). (30) Buchka, Sprague, Ber. 22, 2548-2550 (1889).

(31) Bender, Ber. 20, 2747-2752 (1887). (32) Hantzsch, Ann. 250, 269 (1888). (33) Hantzsch, Weber, Ber. 20, 3131-3132 (1887). (34) Zürcher, Ann. 250, 282-283 (1888). (35) Wohmann, Ann. 259, 298 (1890). (36) Behrend, Ann. 229, 16 (1885). (37) Zürcher, Ann. 250, 289-290 (1888). (38) Levi, Gazz chim. ital. 61, 723-724 (1931). (39) Miolati, Gazz. chim. ital. 23, I 577 (1893). (40) Ubaldini, Chimica e industria (Italy) 25, 113-114 (1943); Cent. 1943, II 1951; C.A. 38, 5799 (1944).

```
3:6208 DICHLOROACETIC ACID
                                                          C_2H_2O_2Cl_2
                                                                            Beil. II - 202
                                                                                 II<sub>1</sub>-( 90)
                                           нс—соон
                                                                                 \Pi_{2}-(194)
  B.P.
                                  M.P.
  195°
                         (1) (62) 13.25° (17)
                                               D_4^{25} = 1.5579 (28)
  194.5-195°
                                  13.00° (18)
                         (2)
                                  12.15° (17)
                                               D_{25}^{25} = 1.5604 (4)
  194.42° at 760 mm.
                         (3)
  194.0-194.5° cor.
                                  11°(19) (20)
                         (4)
                         (5) (6) 10.85^{\circ} (21) D_{22}^{22} = 1.5594 (14) n_{\rm D}^{22} = 1.4659
  194°
  193.5-193.9°
                         (7)
                                  10.8° (22)
                                                D_4^{20} = 1.5648 (28) n_D^{20} = 1.46582 (27)
  192.5° at 763 mm. (28)
                                  10°
                                          (23)
                                                        1.5642 (27)
                                          (28)
  192-193° cor., dec. (8)
                                                        1.5634 (8)
                                          (24)
                                          (25)
  191°
           at 760 mm. (9)
                                  5–6°
                                          (14)
                                   -4.1° (24)
                                                D_{20}^{20} = 1.5666 (8)
  190°
                        (10)
  189-191°
                                  -4°
                                          (26)
                        (11)
                                                D_4^{19} = 1.5691 (29) n_D^{19} = 1.4667 (29)
                                  See Note 2.
                                                D_4^{\bar{1}5} = 1.5717 (28)
                                                 D_{15}^{15} = 1.5707 (27)
  144°
                                                See Note 3.
                                                                      See Note 3.
           at 164 mm. (12)
  140°
            at 142 mm. (12)
  129°
            at 88 mm. (12)
                                    Note 1. The b.p. of C at normal press. is not very
  125°
            at 71 mm. (12)
  111.5°
                                  significant, some decompn. to dichloroacetyl chloride
            at 36 mm. (12)
  105°
            at 25 mm. (13)
                                  (3:5290), phosgene (3:5000), and tarry products always
           at 24 mm. (12)
                                  occurring (8).
  102.5°
  99°
            at 21 mm. (12)
                                    Note 2. C apparently can exist in at least two crystn.
  102° cor. at 20 mm. (8) (14) modifications (24); no clear-cut study of the matter, how-
  102°u.c. at 20 mm. (16)
                                  ever, has been reported.
                                    Note 3. For values of D_{20}^{20} and n_{\rm D}^{20} for ag. solns. of
  95-96° at 17 mm. (8)
  91-92° at 12 mm. (15)
                                  Č see (27).
```

[See also chloroacetic acid (3:1370) and trichloroacetic acid (3:1150).]

See Note 1.

C when pure is a colorless liq. which does not fume in moist air and which dissolves in

aq. without opalescence. — Ordinary comml. samples of Č may contain also chloroacetic acid (3:1370) and trichloroacetic acid (3:1150) as well as decompn. products from these or from Č itself, cf. (30) (31).

## MISCELLANEOUS PHYSICAL PROPERTIES OF C

Adsorption of  $\tilde{C}$ . [For studies of adsorption of  $\tilde{C}$  by activated carbon, charcoal, etc., see (32) (33) (34) (35) (36) (39); by silica gel see (33); by cellulose (viscose) see (37); by hide powder see (38).]

Distribution of  $\tilde{C}$  between solvents. [For studies and data on distribution of  $\tilde{C}$  between aq. + ether at 25° (40) (41);  $aq. + C_6H_6$  at 15° (42) (43) (44) (45); aq. + nitrobenzene (43); aq. + toluene (43); aq. + c-nitrotoluene (43) (47);  $aq. + CHCl_3$  (3:5050) (43);  $aq. + CCl_4$  (3:5100) (43) (46); aq. + EtBr (43) (46); aq. (contg.  $MgSO_4$ ) + di-n-butyl ether (1:7950) (48); aq. + clive oil (49); acetone + glycerol (50) see indic. refs.]

Binary systems contg.  $\tilde{C}$ . [For f.p./compn. data on systems  $\tilde{C}$  + trichloroacetic acid (3:1150) (25);  $\tilde{C}$  + AcOH (1:1010) (25);  $\tilde{C}$  + crotonic acid (1:0425) (25);  $\tilde{C}$  + benzoic acid (1:0715) (25);  $\tilde{C}$  + o-toluic acid (1:0690) (25);  $\tilde{C}$  + m-toluic acid (1:0705) (25);  $\tilde{C}$  + p-toluic acid (1:0705) (25);  $\tilde{C}$  + phenylacetic acid (1:0665) (25);  $\tilde{C}$  + cinnamic acid (1:0735) (25);  $\tilde{C}$  + 2,6-dimethylpyrone (24);  $\tilde{C}$  + azobenzene (19);  $\tilde{C}$  + urea (51);  $\tilde{C}$  + ethyl carbamate (urethane) (51) see indic. refs.]

## PHYSIOLOGICAL BEHAVIOR OF C

[For study of toxicity of C see (52); for action of C on human skin see (53) (54).]

### PREPARATION OF C

### FROM VARIOUS CHLORO COMPOUNDS

From chloral hydrate. [For prepn. of  $\bar{C}$  from chloral hydrate (3:1270) with aq. NaCN + CaCO<sub>3</sub> (yields: 88–92% (55), 90% (15)) or with aq. NaCN (60–65% yield (16)) or with K<sub>3</sub>Fe (CN)<sub>6</sub> (63) see indic. refs.; cf. also (56) (57); note here also the closely related matter of conversion of anhydrous chloral (3:5210) with alcohols + KCN (58) to the corresponding alkyl dichloroacetates, e.g., with MeOH to methyl dichloroacetate (3:5655) or with EtOH to ethyl dichloroacetate (3:5850), etc.; also conversion of chloral hydrate (3:1270) in ether with KCN + conc. aq. NH<sub>4</sub>OH to (65–78% yield (59)) cf. (58)  $\alpha,\alpha$ -dichloroacetamide (see also below).]

From trichloroacetic acid. [For prepn. of  $\bar{C}$  from trichloroacetic acid (3:1150) by partial reduction with Zn + aq. (13), with Cu powder in aq. (80% yield (14)) or  $C_6H_6$  + aniline (75-85% yield (8)) cf. (60), or by electrolytic reduction (80% yield (61)) see indic. refs.]

From chloroacetic acid. [For prepn. of  $\bar{C}$  from chloroacetic acid (3:1370) with  $Cl_2$  (1), or  $Cl_2$  in pres. of  $I_2$  (62), see indic. refs.]

From dichloroacetaldehyde. [For prepn. of C from dichloroacetaldehyde (3:5180) by oxidn. with HNO<sub>3</sub> see (2).]

From other misc. chloro compounds. [For formn. of  $\bar{C}$  from ethyl dichloroacetate (3:5850) with HCl gas (100% yield (11)); from dichloroacetyl chloride (3:5290) by hydrolysis or by disproportionation with AcOH (acetyl chloride (3:7065) also being formed (64)); from  $\beta,\beta,\beta$ -trichloro- $\alpha$ -hydroxypropionic acid (trichlorolactic acid) [Beil. III-286, III<sub>1</sub>-(111), III<sub>2</sub>-(210)] or its ethyl ester with excess aq. Ba(OH)<sub>2</sub> (65); from  $\beta,\beta$ -dichloro- $\alpha$ -acetoxyacrylonitrile [Beil. III<sub>1</sub>-(135), III<sub>2</sub>-(254)] with boilg. aq. (66) or from  $\alpha,\beta,\beta$ -trichloro- $\alpha$ -acetoxypropionitrile [Beil. III-288, III<sub>1</sub>-(112)] with 33% H<sub>2</sub>SO<sub>4</sub> (66); from 2,2,4,4,6,6-hexachlorocyclohexantrione-1,3,5 (hexachlorophloroglucinol) [Beil. VII-854,

 $VII_1$ -(469)] with aq. (sym.-tetrachloroacetone (3:6050) is also formed) (67); from unsym.-dichloroacetone (3:5430) by oxidn. with HNO<sub>3</sub> + air (68); from 1,1,2,2-tetrachloroethane (acetylene tetrachloride) (3:5750) with air in ultra-violet light in pres. of water (21) cf. (69); from pentachloroethane (3:5880) by partial hydrolysis with 88-97%  $\rm H_2SO_4$  at 168° (90% yield (70)) see indic. refs.]

From miscellaneous non-chlorinated compounds. [For formn. of  $\tilde{C}$  from AcOH with Cl<sub>2</sub> (71) in presence of  $I_2$  (62) see indic. refs.; from acetylene with HOCl at 75-80° see (72); from ethyl acetoacetate (1:1710) with aq. bleaching powder (yield 60%) see (73); from phloroglucinol (1:1620) with aq. Cl<sub>2</sub> see (74) (75); from pyrrole with NaOCl see (76).]

## CHEMICAL BEHAVIOR OF C

### BEHAVIOR AS AN ACID

Acid strength of  $\bar{\mathbf{C}}$ .  $\bar{\mathbf{C}}$  in aq. soln. is a strong acid (ionization const. at 25° is  $K=5.14\times 10^{-2}$  (77) cf. (78) (18), at 18°  $K=5.15\times 10^{-2}$  (45); for studies of activity coefficient of  $\bar{\mathbf{C}}$  in aq. and in salt solns, see (18) (48). — For tests on corrosion of metals by  $\bar{\mathbf{C}}$  see (16)].

[Studies of acid strength of  $\tilde{C}$  in other solvents include the following: in aq. MeOH (79) (81), in aq. EtOH (79) (80), in abs. EtOH (82), in n-BuOH (5) (83), in C<sub>6</sub>H<sub>6</sub> (84), in chlorobenzene (85), in formamide (86), in acetonutrile (87).]

 $\bar{C}$  on titration gives Neut. Eq. = 129.

Salts of C. This topic cannot be exhaustively treated here but following examples are cited.

Salts with inorganic bases. [NH<sub>4</sub> $\bar{A}$  (88); hydroxylamine salt, HONH<sub>3</sub> $\bar{A}$ , cryst. from C<sub>6</sub>H<sub>6</sub>/EtOH, m.p. 116.0–116.5° (89); Na $\bar{A}$  (on electrolysis gives (90) H<sub>2</sub>, CO<sub>2</sub>, CO, and also (91) dichloromethyl dichloroacetate; K $\bar{A}$ , lfts. from alc. (11), on dry distn. gives (92)  $\bar{C}$  + KCl + CO<sub>2</sub> + carbon; Ca $\bar{A}$ <sub>2</sub>, ndls. from abs. alc. (93); Ca $\bar{A}$ <sub>2</sub>.3H<sub>2</sub>O (93); Cu $\bar{A}$ <sub>2</sub> (88); Cu $\bar{A}$ <sub>2</sub>.4H<sub>2</sub>O (88); Cd $\bar{A}$ <sub>2</sub>.H<sub>2</sub>O (94); Mn $\bar{A}$ <sub>2</sub>.1½ H<sub>2</sub>O (94); Co $\bar{A}$ <sub>2</sub>.3H<sub>2</sub>O (94); note that all the foregoing salts are sol. aq.]

[Inorg. salts of  $\bar{C}$  which are sparingly sol. aq. include the following: AgA (93); Th(OH)<sub>2</sub> $\bar{A}_2$  (96); (UO) $\bar{A}_2$ .2H<sub>2</sub>O (97).]

Salts with organic bases (amines). [Aniline dichloroacetate, m.p. 122-123° (8) (98) cf. (30) (159) (note that this prod. or its components at 140° for 24 hrs. gives (98) dichloroacetanilide, m.p. 118°). — o-Toluidine dichloroacetate, m.p. 132.5° (98), 140° (99) (note that this prod. or its components at 140° for 18 hrs. gives (98) dichloroaceto-o-toluidide, m.p. 133°, but depressing m.p. of the salt to as low as 112°). — p-Toluidine dichloroacetate, m.p. 138° (98) (note that this prod. or its components on htg. gives (98) dichloroaceto-p-toluidide, m.p. 154°). — Piperazine bis-(dichloroacetate), m.p. 181° cor. (100). — Semicarbazide dichloroacetate, m.p. 108° (101). — For salts of C with other org. amines see (30) (99).]

Esterification of  $\tilde{C}$ . [For this see the text of methyl dichloroacetate (3:5655), ethyl dichloroacetate (3:5850), n-propyl dichloroacetate (3:6000), isopropyl dichloroacetate (3:5890); for study of direct esterification of  $\tilde{C}$  with various butyl and amyl alcs. without cat. see (102).]

Conversion of  $\tilde{C}$  to corresp. acid chloride.  $\tilde{C}$  with PCl<sub>3</sub> (103), with HCl gas +  $P_2O_5$  (104), with SOCl<sub>2</sub> (poor yield apparently due to much forms. of dichloroacetic acid anhydride (3:6430) (105) (106) (107) (108), with BzCl (3:6240) (73% yield (111)), or with benzotrichloride (3:6540) (109) (110) gives dichloroacetyl chloride (3:5290), b.p. 108°.

Addition reactions of  $\tilde{C}$  with org. cpds.  $\tilde{C}$  in pres. of suitable cat. adds to olefins yielding corresp. esters [e.g.,  $\tilde{C}$  with propylene + BF<sub>3</sub> as directed gives (39.5% yield (112)) isopropyl dichloroacetate (3:5890);  $\tilde{C}$  with 2-methylbutene-2 (trimethylethylene) (1:8220) at 18°

shows slight tendency toward forms. of corresp. ester in C<sub>6</sub>H<sub>6</sub>, CHCl<sub>3</sub> or CS<sub>2</sub> but none in alc. or ether (113)].

[ $\bar{C}$  with ethylene oxide (1:6105) in dry ether at 0° gives (15% yield (114)) cf. (115)  $\beta$ -hydroxythyl dichloroacetate (3:9107).]

# BEHAVIOR OF C AS DICHLORO COMPOUND

**Reduction.** [ $\tilde{C}$  in alc. KOH soln. with  $H_2 + Pd/CaCO_3$  splits off all its halogen as HCl (116). —  $\tilde{C}$  with Zn + water on htg. is slowly reduced to chloroacetic acid (3:1370) but reaction is much less energetic than that of trichloroacetic acid (3:1150) under same conditions (13).]

Hydrolysis of halogen atoms of  $\bar{C}$  or its salts. [ $\bar{C}$  with aq. in s.t. at 100° is slowly or in pres. of NaOH or Ba(OH)<sub>2</sub> rapidly decomposed (93) cf. (117). — For study of kinetics of hydrolysis of  $\bar{C}$  see (118) (119). — Note, however, that Ag $\bar{A}$  on htg. with aq. (93), or  $\bar{C}$  (or its salts) on hydrolysis at elevated temp. and press. (120), or salts of  $\bar{C}$  htd. with aq. solns. of NaOAc or NaOBz (121), gives glyoxylic acid, OHC—COOH [Beil. III-594, III<sub>1</sub>-207, III<sub>2</sub>-(385)], m.p. 98°, very sol. aq. — For a method of detn. of  $\bar{C}$  in pres. of chloroacetic acid (3:1370) and trichloroacetic acid (3:1350) based on this hydrolysis see (1221.)

Behavior of  $\tilde{C}$  with alkoxides.  $[\tilde{C} \text{ (as KA)}]$  with excess MeOH/NaOMe refluxed under H<sub>2</sub>, and the solution then further esterified with MeOH/HCl, gives (62% yield (123)) cf. (124) methyl dimethoxyacetate, b.p. 60-61° at 12 mm.,  $D_4^{18} = 1.0962$ ,  $n_D^{18} = 1.4045$  (124); this ester upon alk. hydrolysis gives (85.7% yield (124)) dimethyoxyacetic acid (glyoxylic acid dimethylacetal) as a sirup.]

[C with excess EtOH/NaOEt under reflux followed by acidification and esterification as above gives (50% yield (125)) (126) ethyl diethoxyacetate [Beil. III-601, III<sub>1</sub>-(210), III<sub>2</sub>-(389)], b.p. 199° (127), 94-98° at 19 mm. (125), 83-85° at 13 mm. (125).]

[Č in excess EtOH/NaOEt with Na phenolate refluxed 14 hrs., then acidified and esterified as above, gives (61% yield (128)) ethyl diphenoxyacetate [Beil. VI-170], oil, b.p. 240° at 53 mm. (129), 166-168° at 0.8 mm. (128). — However, Č with phenol in aq. NaOH on htg. and acidification gives (130) (131) diphenoxyacetic acid, ndls. from pet. ether or aq. AcOH, m.p. 91° (129) (130).]

Condensation with hydrocarbons.  $\bar{C}$  with aromatic hydrocarbons on htg. condenses with elimination of 2 HCl giving diarylacetic acids [e.g.,  $\bar{C}$  with naphthalene at 180° for 60–100 hrs. gives {132} di-(α-naphthyl)acetic acid [Beil. IX-720, IX<sub>1</sub>-(313)], cryst. from CCl<sub>4</sub>, m.p. 224° (133), 223° u.c. (134); for analogous behavior of  $\bar{C}$  with other hydrocarbons see {132}].

Behavior of  $\tilde{C}$  with RMgX compounds. [ $\tilde{C}$  with  $C_6H_6MgBr$  (large excess) in ether soln. followed by usual hydrolysis gives (34% yield (135))  $\alpha,\alpha,\beta$ -triphenylethylene glycol, ndls. from  $C_6H_6$ , m.p. 163° (135).]

Behavior of  $\tilde{C}$  with hydroxylamine. [ $\tilde{C}$  (1 mole) with NH<sub>2</sub>OH.HCl (1 mole) + aq. KOH (4 moles) at 60° for 4 hrs. gives (136) isonitrosoacetic acid (glyoxylic acid oxime) [Beil. III-599, III<sub>1</sub>-(208), III<sub>2</sub>-(389)], cryst. from dry ether, m.p. 138° (136) (note that this prod. forms with water a monohydrate, m.p. about 70° (137)).]

Behavior of C with aromatic amines. (See also salt formation above.)

With aniline. The products of reaction of  $\bar{C}$  on htg. with aniline are disputed [on one hand  $\bar{C}$  (1 mole) with aniline (4 moles) at 100°, then evapd. with NaOAc, is claimed (138) (139) to give 4,4'-diaminodiphenylacetic acid [Beil. XIV-540, XIV<sub>1</sub>-(625)], m.p. about 195° (140); on the other hand, the prod. is regarded by some (141) (142) as a mixt. of two stereoisomeric forms of 2,2'(?)-diaminostilbene- $\alpha$ , $\alpha$ '-dicarboxylic acids [Beil. XIV-573]].

With o-toluidine. [C (1 mole) with o-toluidine (4 moles) at 100° gives (140) (143) 4,4′-diamino-3,3′-dimethyldiphenylacetic acid [Beil. XIV-543, XIV<sub>1</sub>-(627)], ndls. from alc.,

m.p. 239-240° (143) dec. (140), accompanied by some 7-methylisatin-3-(o-tolylimide) [Beil. XXI-512], yel. lfts. from alc., m.p. about 225° dec. (138).]

With p-toluidine. [Č (1 mole) with p-toluidine (4 moles) at 100° in aq. or alc. soln. gives (144) (145) 5-methylisatin-3-(p-tolylimide) [Beil. XXI-510, XXI<sub>1</sub>-(401)], goldenyel. ndls. or lfts. from alc., m.p. 259° (144) (145).]

Behavior of  $\tilde{C}$  with urea.  $\tilde{C}$  with urea (2 moles) in pres. of NaOEt condenses to give (146) 5-ureidohydantoin (allantoin) [Beil. XXV-474, XXV<sub>1</sub>-(692)], m.p. by ord. htg. in cap. tube is 228-230° (147), by rap. htg. in bath already at 228° is 233-234° (147).

Behavior of  $\bar{C}$  with arythydrazines.  $\bar{C}$  with arythydrazines in alc. KOH yields a mixt. of the two stereoisomeric arythydrazones of glyoxylic acid [e.g.,  $\bar{C}$  with phenylhydrazone in dil. alc. KOH refluxed 2 hrs. gives (148) a mixt. of the  $\alpha$ -glyoxylic acid phenylhydrazone, m.p. abt. 138° with decompn. at 142–143°, and the  $\beta$ -glyoxylic acid phenylhydrazone, m.p. 128–129° dec. (rap. htg.) (148); for analogous behavior of  $\bar{C}$  with other arythydrazines see (148)].

- Color test with NH<sub>4</sub>OH/Cu<sub>2</sub>Cl<sub>2</sub> reagent. 
   C on shaking in filled stoppered bottle with conc. aq. NH<sub>4</sub>OH contg. Cu<sub>2</sub>Cl<sub>2</sub> gives dark blue color within 3 min. (149); note, however, that the same behavior is shown by trichloroacetic acid (3:1150).
- Methyl dichloroacetate: oil, b.p. 143° (see 3:5655).
- --- Ethyl dichloroacetate: oil, b.p. 158° (see 3:5850).
- Benzyl dichloroacetate: oil, b.p. 179° at 60 mm. (150). [From C with benzyl alcohol (1:6480) with HCl gas (150).]
- —— Phenyl dichloroacetate [Beil. VI-153, VI<sub>1</sub>-(87)]: m.p. 48° (151), b.p. 247.5° cor. (151). [From dichloroacetyl chloride (3:5290) + AlCl<sub>3</sub> in CS<sub>2</sub> (prod. m.p. 33° was probably impure (152)).]
- ---- p-Tolyl dichloroacetate: m.p. 58° (151). [Prepd. indirectly from α,β-dichlorovinyl ethyl ether (3:5440) with p-cresol (1:1410) (151).]
- --- p-Nitrobenzyl dichloroacetate: oil, unsuitable as (160) (161).
- ---- Phenacyl dichloroacetate: oil (153).
- --- p-Chlorophenacyl dichloroacetate: m.p. 93.0-93.8° (153).
- --- p-Bromophenacyl dichloroacetate: m.p. 98.2-99.3° (153).
- --- p-Iodophenacyl dichloroacetate: unreported.
- --- p-Phenylphenacyl dichloroacetate: unreported.
- © S-Benzylthiuronium dichloroacetate: m.p. 178-179° (154). [Note that for corresp. salts from chloroacetic acid (3:1370) and from trichloroacetic acid (3:1150) the values are respectively 159-160° and 148-149° (154).]
- S-(p-Chlorobenzyl)thiuronium dichloroacetate: unreported.
- --- S-(p-Bromobenzyl)thiuronium dichloroacetate: unreported.
- α,α-Dichloroacetamide: cryst. from C<sub>6</sub>H<sub>6</sub>, m.p. 99.4° (155), 98.5-99° (58), 98.5° (156), 97.5-99.5° (59). [From ethyl dichloroacetate (3:5850) with aq. NH<sub>4</sub>OH (155) or in other indirect ways, e.g., from chloralammonia with KCN + aq. NH<sub>4</sub>OH (93% yield (58)), or from chloral hydrate (3:1270) with KCN + aq. NH<sub>4</sub>OH (65-78% yield (59)).] [Note that dichloroacetamide forms with bromo-chloro-acetamide or with chloro-iodo-acetamide an unbroken series of mixed crystals.]
- $\bigcirc$  α,α-Dichloroacetanilide: colorless ndls. from alc. or by sublimation, m.p. 118° (98), 117.7° (156). [From  $\ddot{C}$  with aniline at 140° for 24 hrs. (98) or from dichloroacetyl chloride (3:5290) with aniline in  $C_6H_6$  (157) or acetone (157).] [Note that this prod. forms with α-bromo-α-chloroacetanilide, m.p. 116.8° (157), a series of mixed cryst. and with α-chloro-α-iodoacetanilide, m.p. 142.3°, a cutectic, m.p. 105.2° (157).] [Note also that aniline dichloroacetate (see also above) has m.p. 122–123° (98).]

- $\bigcirc$   $\alpha, \alpha$ -Dichloroacet-o-toluidide: cryst. from 50% alc. or by sublimation, m.p. 133° (98). [From  $\ddot{C}$  + o-toluidine at 140° for 18 hrs. (98); note that the salt o-toluidine dichloroacetate has same m.p. 132.5° as the  $\alpha, \alpha$ -dichloroacet-o-toluidide but that the m.p. of a mixture of the two compds. is depressed to below 112° (98).]
- α,α-Dichloroacet-p-toluidide: pl. from alc. or by sublimation, m.p. 154° (98).
  [From C + p-toluidine at 148° for 18 hrs. (98); note that the corresp. salt, p-toluidine dichloroacetate, has m.p. 138° (98).]
- ---- α,α-Dichloroacet-N-benzylamide: m.p. 96.2° (156), 94.8-95.6° cor. (158), 94.2-95.0° u.c. (158). [From ethyl dichloroacetate (3:5850) (158) cf. (162) or dichloroacetyl chloride (3:5290) (156) with benzylamine; note, however, that the corresp. derivs. from chloroacetic acid (3:1370) and from trichloroacetic acid (3:1150) have almost the same m.p.'s, viz., 93.0-93.6° cor. and 93.6-94.4° cor., respectively (158).]
- 3:6208 (1) Maumené, Ann. 133, 154-156 (1865); Bull. soc. chim. (2) 1, 417-422 (1864); Compt. rend. 59, 84 (1864). (2) Paterno, Gazz. chim. ital. 49, II, 348-350 (1919). (3) Louginine, Ann. chim. (7) 27, 117-118 (1902). (4) Perkin, J. Chem. Soc. 65, 422 (1894). (5) Wooten, Hammett, J. Am. Chem. Soc. 57, 2291 (1935). (6) Backer, van Mels, Rec. trav. chim. 49, 183, 189-190, (1930). (7) Kohlrausch, Kóppl, Pongratz, Z. physik. Chem. B-21, 254-255 (1933). (8) Doughty, Black, J. Am. Chem. Soc. 47, 1091-1094 (1925). (9) Landee, Johns, J. Am. Chem. Soc. 63, 2892 (1941). (10) Senderens, Compt. rend. 204, 211 (1937).
- (11) Wallach, Ber. 9, 1213 (1876). (12) Patterson, Ber. 38, 213 (1905). (13) Doughty, Lacoss, J. Am. Chem. Soc. 51, 852-855 (1929). (14) Doughty, Derge, J. Am. Chem. Soc. 53, 1594-1596 (1931). (15) Délepine, Bull. soc. chim. (4) 45, 827-833 (1929). (16) Pucher, J. Am. Chem. Soc. 42, 2251-2259 (1920). (17) Schreiner, Z. anorg. allgem. Chem. 122, 206 (1922). (18) Randall, Failey, Chem. Revs. 4, 302-318 (1927). (19) Kremann, Zechner, Monatsh. 46, 171-172. 175 (1925). (20) yon Auwers, Wissebach. Ber. 56, 733 (1923).
- 171-172, 175 (1925). (20) von Auwers, Wissebach, Ber. 56, 733 (1923).
   (21) Müller, Luber, Ber. 65, 985-987 (1932). (22) Pickering, J. Chem. Soc. 67, 675, 677 (1895).
   (23) Rabinowitsch, Z. physik. Chem. 119, 64 (1926). (24) Kendall, J. Am. Chem. Soc. 36, 1230 (1914).
   (25) Kendall, J. Am. Chem. Soc. 36, 1727-1728 (1914).
   (26) Ciamician, Silber, Ber. 18, 1764 (1885). (27) Hantzsch, Dürigen, Z. physik. Chem. 136, 15 (1928). (28) Jaeger, Z. anorg. allgem. Chem. 101, 65 (1917). (29) Vanderstichele, J. Chem. Soc. 123, 1228 (1923). (30) Wheeler, Jennings, J. Am. Chem. Soc. 49, 1091-1093 (1927).
- (31) Rugely, Johnson, J. Am. Chem. Soc. 47, 2998 (1925). (32) Jermolenko, Ginsburg, Colloid J. (U.S.S.R.) 5, 263-270 (1939); Cent. 1939 II 3556; not in C.A. (33) Swearingen, Dickinson, J. Phys. Chem. 36, 534-545 (1932). (34) Sabalitschka, Pharm. Ztg. 74, 382-384 (1929); Cent. 1929, I 2288; C.A. 23, 2627 (1920). (35) Namasivayam, J. Indian Chem. Soc. 4, 449-458 (1927). (36) Alekseevski, J. Russ. Phys.-Chem. Soc. 55, 401-432 (1924); Cent. 1925, II 642; C.A. 19, 2634 (1925). (37) Brass, Frei, Kolloid-Z. 45, 248-249 (1928). (38) Kubelka, Taussig, Kolloid-Beihefte, 22, 150-190 (1926). (39) Freundlich, Z. physik. Chem. 57, 433 (1907). (40) Dermer, Markham, Trimble, J. Am. Chem. Soc. 63, 3524-3525 (1941).
- (41) Smith, J. Phys. Chem. 25, 621 (1921). (42) Bell, Z. physik. Chem. A-150, 24-25 (1930). (43) Kolossowsky, Kulikow, Z. physik. Chem. A-169, 462-464 (1934). (44) von Georgievics, Z. physik. Chem. 90, 55 (1915); Monatsh. 36, 400-401 (1915). (45) Drucker, Z. physik. Chem. 49, 567, 578-579 (1904). (46) Kolosovski, Kulikov, J. Gen. Chem. (U.S.S.R.) 5, 63-68 (1935); Cent. 1936, II 2880; C.A. 29, 4652 (1935). (47) Kolosovskii, Kulikov, J. Gen. Chem. (U.S.S.R.) 4, 1370-1377 (1934); Cent. 1936, II 1511; C.A. 29, 3898 (1935). (48) Randall, Failey, J. Am. Chem. Soc. 49, 2679 (1927). (49) Bodansky, Meigs, J. Phys. Chem. 36, 816 (1932). (50) Smith, J. Phys. Chem. 25, 730 (1921).
- (51) Puschin, Rikovsky, Monatsh. 60, 441-442, 446 (1932). (52) Woodard, Lange, Nelson, Calvery, J. Ind. Hyg. Toxicol. 23, 78-82 (1941). (53) Roberts, Brit. J. Dermatology, Syphilis, 38, 323-334; 375-391 (1926); Ber. ges. Physiol. expll. Pharmakol. 40, 847-848; Cent. 1927, II 2207; not in C.A. (54) Menschel, Arch. expll. Pathol. Pharmakol. 110, 1-45 (1925); Cent. 1926, II 50; C.A. 20, 1090-1091 (1926). (55) Cope, Clark, Connor, Org. Syntheses, Coll. Vol. 2 (1st ed.), 181-183 (1943); 19, 38-39 (1939). (56) Wallach, Ber. 10, 2120-2128 (1877). (57) Wallach, Ann. 173, 288-302 (1874). (58) Chattawsy, Irving, J. Chem. Soc. 1929, 1038-1048. (59) Clark, Shibe, Connor, Org. Syntheses 20, 37-39 (1940). (60) Doughty, Freeman, J. Am. Chem. Soc. 44, 640-645 (1922).
- (61) Brand, Ger. 246,661, May 6, 1912; Cent. 1912, I 1742; C.A. 6, 2496 (1912). (62) Müller, Ann. 133, 156-161 (1865). (63) Wallach, Ber. 10, 1526-1527 (1877). (64) Mugdan, Wimmer

(to Consortium für Elektrochem. Ind.), Ger. 549,725, April 30, 1932; Cent. 1932, II 122; [C.A. 26, 4828 (1932)]. (65) Pinner, Ber. 18, 757-758 (1885). (66) Kötz, J. prakt. Chem. (2) 103, 231-232, 237-238 (1921/22). (67) Zincke, Kegel, Ber. 22, 1470-1475 (1880). (68) deSimo, Allen (to Shell Development Co.), U.S. 2,051,470, Aug. 18, 1936; Cent. 1936, II 3469; [C.A. 30, 6764 (1936)]. (69) Muller, Ehrmann, Ber. 69, 2207-2210 (1936). (70) Compagnie Produit Chim. Metallurg. Alais, Froges, Camargue, U.S. 2,036,137, March 31, 1936; [C.A. 30, 3442 (1936)]; not in Cent.: Brit. 424,047, Feb. 13, 1935; [C.A. 29, 4380 (1935)]; not in Cent.; Ger. 610,317, March 7, 1935; [C.A. 29, 3691 (1935)]; not in Cent.: French 773,623, Nov. 22, 1934; Cent. 1935, I 2895, C.A. 29, 1437 (1935).

Amstutz (to Dow Chem. Co.), U.S. 1,921,717, Aug. 8, 1933; Cent. 1933, II 2455; C.A. 27, 5084 (1933).
 Wittorf, J. Russ. Phys.-Chem. Soc. 32, 112 (1900); Cent. 1960, II 30.
 Hurd, Thomas, J. Am. Chem. Soc. 55, 1648 (1933).
 Hasiwetz, Habermann, Ann. 155, 132-135 (1870).
 Zincke, Kegel, Ber. 22, 1470-1477 (1889).
 Ciamician, Silber, Ber. 18, 1763-1764 (1885).
 Otamician, Silber, Ber. 18, 1763-1764 (1886).
 Otamician, Silber, Ber. 19, 1764 (1886).
 Otamician, Silber, Silb

(81) Goldschmidt, Aas, Z. physik. Chem. 112, 434-436 (1924).
(82) Larsson, Z. physik. Chem. A-169, 209 (1934).
(83) Mason, Kilpatrick, J. Am. Chem. Soc. 59, 572-578 (1937).
(84) LaMer, Downes, J. Am. Chem. Soc. 55, 1840-1864 (1933).
(85) Griffiths, J. Chem. Soc. 1938, 818-823.
(86) Verhoek, J. Am. Chem. Soc. 58, 2577-2584 (1936).
(87) M. Kilpatrick, M. L. Kilpatrick, Chem. Revs., 13, 131-137 (1933).
(88) Bateman, Comad, J. Am. Chem. Soc. 37, 2553-2560 (1915).
(89) Jones, Werner, J. Am. Chem. Soc. 39, 418 (1917).
(90) Troeger, Ewers, J. prakt. Chem. (2) 58, 125-127 (1898).

(91) Kaufler, Herzog, Ber. 42, 3870 (1909). (92) Friedrich, Ann. 206, 254-256 (1880). (93) Beckurts, Otto, Ber. 14, 578-583, 585 (1881). (94) Fogel, Rubinsztein, Tauman, Roczniki Chem. 9, 348-353 (1929); Cent. 1930, II 227; C.A. 23, 3900 (1929). (95) Morgan, Cahen, J. Chem. Soc. 91, 477-478 (1907). (96) Karl, Z. anorg. allgem. Chem. 68, 59 (1910); Ber. 43, 2070 (1910). (97) Lobanow, Roczniki Chem. 5, 444 (1925); Cent. 1926, II 1390; C.A. 20, 3139 (1926). (98) Doughty, J.; Am. Chem. Soc. 47, 1095-1098 (1925). (99) Wheeler, Smith, J. Am. Chem. Soc. 45, 1994-1998 (1923). (100) Adelson, Pollard, J. Am. Chem. Soc. 58, 532 (1936).

(101) Michael, J. Am. Chem. Soc. 41, 415 (1919). (102) Liston, Dehn, J. Am. Chem. Soc. 60, 1264-1265 (1938). (103) Otto, Beckurts, Ber. 14, 1618-1619 (1881). (104) Frankland, Patterson, J. Chem. Soc. 73, 187 (1898). (105) Bösseken, Rec. trav. chim. 29, 99-100 (1910). (106) Blaise, Bull. soc. chim. (4) 15, 729 (1914). (107) Carré, Libermann, Compt. rend. 199, 1423 (1934). (108) Clark, Bell, Trans. Roy. Soc. Can. (3) 27, III, 97-103 (1933). (109) Mills (to Dow Chem. Co.), U.S. 1,921,767, Aug. 8, 1933; Cent. 1933, II 2595; C.A. 27, 5085 (1933). (110) Mills (to Dow Chem. Co.), U.S. 1,965,556, July 3, 1934; Cent. 1934, II 2899; C.A. 28, 5474 (1934).

(111) Brown, J. Am. Chem. Soc. 60, 1325-1328 (1938). (112) Dorris, Sowa, Nieuwland, J. Am. Chem. Soc. 56, 2689-2690 (1934). (113) Andreasov, Ukrain. Khem. Zhur. 4, Sci. pt. 93-94 (1929); Cent. 1929, II 2175; C.A. 23, 4438 (1929). (114) Allen, Hibbert, J. Am. Chem. Soc. 56, 1399 (1934). (115) Hibbert, Greig, Can. J. Research, 4, 254-263 (1931). (116) Busch, Stöve, Ber. 49, 1063-1068 (1916). (117) Petrenko-Kritschenko, Opotzky, Ber. 59, 2137 (1926). (118) Kailan, Kunze, Monatsh. 71, 379-380 (1938). (119) Kunze, Z. physik. Chem. A-188, 99-108 (1941). (120) Mugdan, Wimmer (to Consortium für Elektrochem. Ind.), Ger. 672,481, March 4, 1939; Cent. 1939, II 228; C.A. 33, 3817 (1939).

(121) I.G., French 772,860, Nov. 7, 1934; Cent. 1935, I 3850; C.A. 29, 1437 (1935). (122) Pool, Pharm. Weekblad 42, 165-168 (1904); Cent. 1905, I 1006. (123) Helferich, Russe, Ber. 56, 762 (1923). (124) Scheibler, Schmidt, Ber. 69, 14 (1936). (125) Johnson, Cretcher, J. Am. Chem. Soc. 37, 2147-2148 (1915). (126) Wohl, Lange, Ber. 41, 3612-3614 (1908). (127) Traube, Ber. 40, 4949 (1907). (128) Scheibler, Baumann, Ber. 62, 2060 (1929). (129) Auwers, Haymann, Ber. 27, 2795-2796 (1894). (130) van Alphen, Rec. trav. chim. 46, 148 (1927). (131) Philipp (to Chem. Fabrik von Heyden), Ger. 561,281, Oct. 12, 1932; Cent. 1933, I 2280;

(131) Philipp (to Chem. Fabrik von Heyden), Ger. 501,281, Oct. 12, 1932; Cent. 1938, I 2280; [C.A. 27, 1008 (1933)]. (132) Wolfram, Schörnig, Hausdorfer (to I.G.), Ger. 562,391, Nov. 1, 1932; Cent. 1933, I 849; C.A. 27, 734 (1933); Brit. 330,916, July 17, 1930; Cent. 1930, II 2054; [C.A. 24, 6031 (1930)]; French 688,964, Sept. 1, 1930; Cent. 1931, I 2677; [C.A. 25, 971 (1931)]. (133) Burtner, Cusic, J. Am. Chem. Soc. 65, 265 (1943). (134) Schmidlin, Massini, Ber. 42, 2386 (1909). (135) Boyle, McKenzie, Mitchell, Ber. 70, 2159 (1937). (136) Hantssch, Wild, Ann. 289, 294–295 (1896). (137) Inglis, Knight, J. Chem. Soc. 93, 1596 (1908). (138) Ostromyslensky, Ber. 40, 4978–4979 (1907). (139) Ostromysslensky, Ber. 41, 3022–3026 (1908). (140) Heller, Ann. 375, 262–284 (1910).

(141) Heller, Ann. 332, 268-275 (1904). (142) Heller, Ann. 358, 349-373 (1908). (143) Meyer, Ber. 16, 924-926 (1883). (144) Meyer, Ber. 16, 2262-2264 (1883). (145) Duisberg,

Ber. 18, 190-193 (1885). (146) Zeller, Stevens (to Merck and Co., Inc.), U.S. 2,158,098, May 16, 1939; Cent. 1939, II 4355; [C.A. 33, 6350 (1939)]. (147) Hartmann, Moffett, Dickey, Org. Syntheses, Coll. Vol. 2 (1st ed.), 22 (1943); 13, 3 (1933). (148) Busch, Achterfeldt, Seufert, J. prakt. Chem. 92, 1-40 (1915). (149) Doughty, J. Am. Chem. Soc. 41, 1130 (1919). (150) Seubert, Ber. 21, 283 (1888).

(151) Crompton, Triffitt, J. Chem. Soc. 119, 1875 (1921). (152) Kunckell, Johannsen, Ber. 31, 171 (1898). (153) Lundqvist, J. Am. Chem. Soc. 60, 2000 (1938). (154) Veibel, Ottung, Bull. soc. chim. (5) 6, 1435 (1939). (155) Taylor, Forscey, J. Chem. Soc. 1930, 2276. (156) McKie, J. Chem. Soc. 123, 2214-2217 (1923); 125, 1076-1079 (1924). (157) Votocek, Burda, Ber. 48, 1005-1006 (1915). (158) Buehler, Mackenzie, J. Am. Chem. Soc. 59, 421-422 (1937). (159) Beamer, Clarke, Ber. 12, 1067 (1879). (160) Lyons, Reid, J. Am. Chem. Soc. 39, 1742 (1917).

(161) Lundqvist, J. Am. Chem. Soc. 60, 2000 (1938). (162) Dermer, King, J. Org. Chem. 8,

168-173 (1943).

----- TRICHLOROACETIC ACID Cl<sub>3</sub>C.COOH C<sub>2</sub>HO<sub>2</sub>Cl<sub>3</sub> Beil. II - 206 II<sub>1</sub>-( 92) II<sub>2</sub>-(196)

B.P. 196°

M.P. 57°

See 3:1150. Division A: Solids.

3:6210 ACETALDEHYDE bis- $(\beta$ -  $C_6H_{12}O_2Cl_2$  Beil. S.N. 79 CHLOROETHYL)ACETAL  $CH_3.CH(O.CH_2.CH_2Cl)_2$   $(\alpha,\alpha$ -bis- $(\beta$ -Chloroethoxy)ethane)

B.P. 194-196° dec. (2)  $D_{19}^{19} = 1.1712$  (2)  $n_{D}^{10.2} = 1.4532$  (2) 109-110° at 30 mm. (1)

106-108° at 17 mm. (2)

106-107° at 14 mm. (3)

Colorless liq. with odor resembling dichloroacetal dehyde diethylacetal (3:6110). [For prepn. of  $\tilde{\mathbf{C}}$  from ethylene chlorohydrin (3:5552) with a cetaldehyde (1:0100) +

[For prepn. of C from ethylene chlorohydrin (3.5552) with acetaldchyde (1:0100) + dry HCl (36% yield (2)) see (2) (1); with acetylene + BF<sub>3</sub> (71% yield) see (3).]

3:6210 (1) Street, Adkins, J. Am. Chem. Soc. 50, 162-167 (1928). (2) Grignard, Purdy, Bull. soc. chim. (4) 31, 985-986 (1922). (3) Nieuwland, Vogt, Foohey, J. Am. Chem. Soc. 52, 1018-1024 (1930).

3:6215 2-CHLORO-4-METHYLPHENOL OH C<sub>7</sub>H<sub>7</sub>OCl Beil. VI - 402 (2-Chloro-p-cresol) Cl VI<sub>1</sub>— VI<sub>2</sub>-(383)

B.P. 195-196° at 760 mm. (2)  $D_2^{47} = 1.1785$  (10)  $n_D^{27} = 1.5200$  (10) 197-198° at 738 mm.  $D_{25}^{25} = 1.2106$  (1) . . .

Clear odorless liq. with characteristic disagreeable persistent odor. — Slightly sol. aq.; sol. alc., ether,  $C_6H_6$ .

[For prepn. from 2-chloro-4-methylaniline via diazo reaction see (3); from sodium p-cresolate in CS<sub>2</sub> see (1); from p-cresol with Cl<sub>2</sub> in CCl<sub>4</sub> (4) or with SO<sub>2</sub>Cl<sub>2</sub> (77% yield (10)) see indic. refs.]

 $\bar{C}$  in 5 pts. AcOH and treated with 2 pts. conc. HNO<sub>3</sub> (D=1.4), or  $\bar{C}$  dislyd. in 10 pts.

AcOH and grad. treated with powd. NaNO<sub>2</sub> (5), yields on pptn. with aq. 2-chloro-4-methyl-6-nitrophenol [Beil. VI-413], golden-yel. ndls. from dil. alc. or dil. AcOH, m.p. 65° (5). [Note that addition of  $\tilde{\mathbf{C}}$  to fumg. HNO<sub>3</sub> (D=1.5) leads to its oxidn. (evoln. of nitrous fumes), nitration, and wandering of methyl group (6).]

The methyl ether of  $\bar{\mathbb{C}}$  [Beil. VI-403], 2-chloro-4-methylanisole, b.p. 215-218° cor. at 760 mm., has been prepd. only indirectly.

- ② 2-Chloro-4-methylphenyl benzoate: pl. from pet. eth., m.p. 71-72° (7). [This benzoate htd. with 0.7 of its wt. of AlCl₃ for 10 min. at 140° gives by Fries rearrangement 92% yield (8) of 2-hydroxy-3-chloro-5-methylbenzophenone, yel. lfts. from MeOH, m.p. 71° (8) cf. (9).]
- S:6215 (1) Schall, Dralle, Ber. 17, 2528-2529 (1884). (2) Klarmann, Shternov, Gates, J. Am. Chem. Soc. 55, 2585 (1933). (3) Cain, Norman, J. Chem. Soc. 89, 24 (1906). (4) Zincke, Ann. 328, 277 (1903). (5) Zincke, Ann. 328, 311-312 (1903). (6) Zincke, Ann. 328, 314 (1903). (7) von Auwers, Ber. 44, 801 (1911). (8) Rosenmund, Schnurr, Ann. 460, 86 (1928). (9) von Auwers, Mauss, Ann. 464, 310 (1928). (10) Sah, Anderson, J. Am. Chem. Soc. 63, 3165 (1941).

3:6220 
$$\beta, \gamma$$
-DICHLORO- $n$ -PROPYL ACETATE (Glycerol  $\alpha, \beta$ -dichlorohydrin (GH<sub>2</sub>Cl) (

[For prepn. of  $\bar{C}$  from 2,3-dichloropropanol-1 (" $\beta$ -dichlorohydrin") (3:6060) with Ac<sub>2</sub>O see (3); from glycerol  $\alpha,\alpha'$ -diacetate with PCl<sub>5</sub> or S<sub>2</sub>Cl<sub>2</sub> see (2); from allyl chloride (3:7035) with acetyl hypochlorite see (6).]

 $\bar{C}$  on keeping decomposes, perhaps by hydrolysis (2). [For study of hydrolysis with N/10 HCl see (1).] —  $\bar{C}$  with MeOH + trace HCl gives by alcoholysis (5) (6) 2,3-dichloropropanol-1 (3:6060) + MeOAc.

3:6220 (1) Bancroft, J. Am. Chem. Soc. 41, 425 (1919) (2) Wegscheider, Zmerzlikar, Monatsh. 34, 1074-1079 (1913). (3) de la Acena, Compt. rend. 139, 868 (1904). (4) Gibson, J. Soc. Chem. Ind. 50, 950 (1931). (5) Delaby, Dubois, Bull. soc. chim. (4) 47, 572 (1930). (6) Bockemüller, Hoffmann, Ann. 519, 189-190 (1935).

```
3:6230 \beta-CHLOROETHYL CHLOROACETATE C_4H_6O_2Cl_2 Beil. II -198 II_1— II_2—

B.P. 197–198° (1) D^- = 1.317 (1)
```

94-95° at 12 mm. (3)

[For prepn. from ethylene chlorohydrin (3:5552) + chloroacetyl chloride (3:5235) see (1); for prepn. from ethylene oxide (1:6105) + chloroacetyl chloride see (3).]

 $\bar{C}$  on boiling with aq. hydrolyzes to  $\beta$ -chloroethanol (3:5552) and chloroacetic ac. (3:1370).

3:6230 (1) Henry, Bull. soc. chim. (2) 42, 260 (1884). (2) Mulder, Bremer, Ber., 11, 1960 (1878). (3) Altwegg, Landrivon, U.S. 1,393,161, Oct. 11, 1921; Cent. 1922, IV 947.

## MISCELLANEOUS PHYSICAL PROPERTIES OF C

### BINARY SYSTEMS CONTAINING C

 $\ddot{\mathbf{C}}$  + inorganic compounds.  $\ddot{C}$  +  $AlCl_3$ : m.p. 93° (22), 95° (26); for prepn. from  $\ddot{\mathbf{C}}$  +  $AlCl_3$  in CS<sub>2</sub> see (26); for thermal anal. (eutectic with  $\ddot{\mathbf{C}}$  has m.p. -7.5° and conts. 87.3 wt. %  $\ddot{\mathbf{C}}$ ) see (22); for conductivity of AlCl<sub>3</sub> in  $\ddot{\mathbf{C}}$  see (27); for study of mol. wt. in C<sub>6</sub>H<sub>6</sub> see (28).

 $\bar{C} + AlBr_3$ : m.p. 90° (22); for thermal anal. (eutectic with  $\bar{C}$  has m.p. -5° and conts. 77.8 wt. %  $\bar{C}$  while eutectic with AlBr<sub>3</sub> has m.p. abt. 7–8° and conts. 21 wt. %  $\bar{C}$ ) see (22); see also (30).

 $-\bar{C} + FeCl_3$ : scarlet red hygroscopic ndls. (31); for conductivity see (28).

 $\ddot{C} + SbCl_3$ : for thermal anal. (eutectic with  $\ddot{C}$  has m.p.  $-23^{\circ}$  and conts. 55 wt. %  $\ddot{C}$ ) see (32).

 $\bar{C} + SbCl_5$ : for prepn. see (34); for conductivity in liq. SO<sub>2</sub> see (33).

 $\bar{C} + SbBr_3$ : for thermal anal. (eutectic with  $\bar{C}$  has m.p.  $-6^{\circ}$  and conts. 68 wt. %  $\bar{C}$ ) see (32).

 $\ddot{\mathbf{C}}$  + organic compounds.  $\ddot{C}$  +  $C_6H_6$ : for thermal anal. (eutectic has m.p. -26.8° and conts. 63.6 wt. %  $\ddot{\mathbf{C}}$ ) see (35). —  $\ddot{C}$  + p-xylene: for thermal anal. (eutectic has m.p. -18.5° and conts. 67.2 wt. %  $\ddot{\mathbf{C}}$ ) see (35). —  $\ddot{C}$  + mesitylene: for thermal anal. (eutectic has m.p. abt. -70° and conts. abt. 20 wt. %  $\ddot{\mathbf{C}}$ ) see (35). —  $\ddot{C}$  + biphenyl: for thermal anal. (eutectic has m.p. -8° and conts. 81.8 wt. %  $\ddot{\mathbf{C}}$ ) see (35). —  $\ddot{C}$  + diphenylmethane: for thermal anal. (eutectic has m.p. -15° and conts. 66.7 wt. %  $\ddot{\mathbf{C}}$ ) see (35).

 $\ddot{C}$  + chlorobenzene: for thermal anal. (eutectic has m.p.  $-54.2^{\circ}$  and conts. 19.3 wt. %  $\ddot{C}$ ) see (35).  $-\ddot{C}$  + nitrobenzene: for thermal anal. (eutectic has m.p.  $-20.5^{\circ}$  and conts. 50 wt. %  $\ddot{C}$ ) see (35).

## PREPARATION OF C

Note that comml.  $\bar{C}$  is often contaminated with various chlorobenzoyl chlorides (e.g., o-chlorobenzoyl chloride (3:6540), m-chlorobenzoyl chloride (3:6550), p-chlorobenzoyl chloride (3:6550), etc.), with traces of benzaldehyde (1:0195), or with benzoic acid (1:0715) + HCl from hydrolysis. For removal of BzOH + HCl from  $\bar{C}$  by shaking its  $C_6H_6$  soln. with cold aq. 5% NaHCO<sub>3</sub> see (12); by treatment with metallic oxides or carbonates see (36).

From benzoic acid. [For prepn. of  $\tilde{C}$  from benzoic acid (1:0715) with PCl<sub>5</sub> (70% yield (37)) (10) (38), with PCl<sub>3</sub> (39) (40) in pres. of ZnCl<sub>2</sub> (77% yield (37)) or in pres. of a little aq. at 100° under press. (41), with SOCl<sub>2</sub> (90% yield (37)) (42), with SCl<sub>2</sub> in CS<sub>2</sub> (43), with SiCl<sub>4</sub> directly (23% yield (44)) or in C<sub>6</sub>H<sub>6</sub> (77% yield (44)), with POCl<sub>3</sub> + alkali chloride at elev. temp. (45), or with dry HCl + P<sub>2</sub>O<sub>5</sub> at 200° (46) see indic. refs.]

[For prepn. of  $\bar{C}$  from benzoic acid (1:0715) with NaCl + Na or K pyrosulfate at 200° (47), or with Na chlorosulfonate (48) cf. (49), see indic. refs.]

[For prepn. of  $\bar{C}$  from benzoic acid (1:0715) with other organic acyl chlorides such as carbonyl chloride (phosgene) (3:5000) at 140-200° (50) or in pres. of tertiary bases (such as pyridine) or their salts (51), with oxalyl (di)chloride (3:5060) (98% yield (15)), with p-toluenesulfonyl chloride in pyridine (52), or with  $\alpha,\beta$ -dichloroethyl ethyl ether (3:5640) (53), see indic. refs.]

From salts of benzoic acid. Note that with salts of benzoic acid more or less forms. of benzoic anhydride (1:0595) may occur.

[For prepn. of  $\bar{C}$  from NaOBz with POCl<sub>3</sub> (2) (54), with SCl<sub>2</sub> at room temp. (55) cf. (43), with SO<sub>2</sub> + Cl<sub>2</sub> (56), with Na chlorosulfonate (48) cf. (49), or with benzenesulfonyl chloride (57) see indic. refs.]

[For prepn. of C from AgOBz with carbonyl chloride (3:5000) in s.t. at 100° see (58).]

From dibenzoyl peroxide. [For prepn. of  $\bar{C}$  from dibenzoyl peroxide (1:4930) with oxalyl (di)chloride (3:5060) refluxed in dark for 24 hrs. (70% yield (59)), with PCl<sub>5</sub> in pet. ether (60), with AlCl<sub>3</sub> in CHCl<sub>3</sub> at 0° (61) or in C<sub>6</sub>H<sub>6</sub> at 100° (62), or with FeCl<sub>3</sub> in C<sub>6</sub>H<sub>6</sub> at 100° (62) see indic. refs.]

From other benzoic acid derivatives. [For formn. of  $\bar{C}$  from benzamide with dry HCl or AcCl at 140° see (63); from methyl benzoate (1:3586) with PCl<sub>5</sub> at 160-180° (64) or from ethyl benzoate (1:3721) with PCl<sub>5</sub> in s.t. at 140° (65) see indic. refs.; from  $\alpha,\beta$ -dichloroethyl benzoate or from  $\alpha$ -chloroethyl benzoate on htg. in pres. of traces of ZnCl<sub>2</sub> see (66); from benzoic anhydride (1:0595) with PCl<sub>3</sub> + Cl<sub>2</sub> (67) or with carbonyl chloride (3:5000) (68) see indic. refs.]

From benzaldehyde. [For formn. of  $\bar{C}$  from benzaldehyde (1:0195) with SO<sub>2</sub>Cl<sub>2</sub> (5 moles) on distn. (69), with S<sub>2</sub>Cl<sub>2</sub> in s.t. at 150° (107), with POCl<sub>3</sub> in C<sub>6</sub>H<sub>6</sub> (70), with NOCl (71), with EtOCl (3:7022) (72), with ter-AmOCl (3:9287) (8.5% soln. in CCl<sub>4</sub>) at room temp. for 15 hrs. (73), or with Cl<sub>2</sub> (91) (105) (106) see indic. refs.]

From benzotrichloride. [For prepn. of  $\bar{C}$  from benzotrichloride (3:6540) by partial hydrolysis with limited amt. of aq. in pres. of H<sub>2</sub>SO<sub>4</sub> or FeCl<sub>3</sub> (74), with aq. vapor over tin phosphate at 240° (75), with ord. comml. ZnCl<sub>2</sub> at 120° (76) in pres. of limited aq. (77) (note that pure ZnCl<sub>2</sub> fails to react but addn. of 1 mole aq. or initial use of tech. ZnCl<sub>2</sub> gives  $\bar{C}$  (76)), with pure ZnO at 100° (76), with BzOH in boilg. nitrobenzene (78) or in pres. of ZnCl<sub>2</sub> (80), with NH<sub>4</sub>OBz at 200–210° as directed (79), or with EtOH in pres. of FeCl<sub>3</sub> or Fe (81) see indic. refs.]

Note that benzotrichloride (3:6540) on heating with carboxylic acids or anhydrides, especially in pres. of ZnCl<sub>2</sub>, is often employed to prepare a mixture of  $\bar{C}$  with the acid chloride corresponding to the acid or anhydride so employed, particularly in cases where the two acyl chlorides are readily separable. [E.g., note that benzotrichloride (3:6540) with phthalic anhydride (1:0725) (81) (82) or phthalic acid (1:0820) (83) + ZnCl<sub>2</sub> at 110-120° gives (96% yield (82))  $\bar{C}$  + (93% yield (82)) sym.-phthalyl (di)chloride (3:6900); benzotrichloride with AcOH (1:1010) in pres. of an acid cat. gives (84) (85) (86) (87)  $\bar{C}$  + acetyl chloride (3:5295), for other examples see under chloroacetyl chloride (3:5235), dichloroacetyl chloride (3:5290), trichloroacetyl chloride (3:5235), fumaryl (di)chloride (3:575), and terephthalyl (di)chloride (3:2205). Similarly, benzotrichloride (3:6540) with salts of sulfonic acids yields  $\bar{C}$  + the corresp. arylsulfonyl chlorides; e.g., benzotrichloride with sodium  $\beta$ -naphthalenesulfonate gives (88) 90% yield  $\bar{C}$  + 80% yield  $\beta$ -naphthalenesulfonyl chloride.]

From benzal (di)chloride. [For formn. of  $\tilde{C}$  from benzal (di)chloride (3:6327) with  $O_2$  in u.v. light (89), with air in pres. of Ni at 160° (90), or with BzOH (1:0715) +  $Cl_2$  at 125-175° (91) see indic. refs.]

From miscellaneous sources. [For formn. of  $\bar{C}$  from benzyl alc. (1:6480) with Cl<sub>2</sub> (92) or with SOCl<sub>2</sub> at 180° (103), from benzyl acetate (1:3751) with Cl<sub>2</sub> at 150–170° (104), from thiobenzoyl chloride + O<sub>2</sub> at 100–120° (93), from benzonitrile with NOCl at 180° (94), from tolan (diphenylacetylene) with NOCl at 150–200° (95), from dibenzoyltartaric anhydride + PCl<sub>5</sub> (3 moles) in s.t. at 130° for 3 hrs. (note that chlorofumaryl dichloride is also formed) (96), from N,N-dibenzoylaniline (dibenzanilide) with dry HCl at 250–270° (note that benzanilide is also formed) (97), from  $\alpha$ -chloro- $\alpha$ -nitro-phenylacetamide on dry htg. (98), from phthalic anhydride (1:0725) + HCl gas + CrCl<sub>3</sub> or ZnCl<sub>2</sub> at 290–300° under press. (99), or from C<sub>6</sub>H<sub>6</sub> (1:7400) with carbonyl chloride (phosgene) (3:5000) + AlCl<sub>3</sub> (100) (101), or with oxalyl (di)chloride (3:5060) + AlCl<sub>3</sub> (102) see indic. refs.]

# CHEMICAL BEHAVIOR OF C

Pyrolysis. [ $\bar{C}$  in N<sub>2</sub> through porcelain tube at 550-600° (108) or over Ni at 420° (109) cf. (110) gives CO, chlorobenzene (3:7903), and other products;  $\bar{C}$  over finely divided Cu at 420-450° gives (110) benzoic anhydride (1:0595) + HCl;  $\bar{C}$  over BaCl<sub>2</sub> at 420-450° gives (110) benzoic anhydride (1:0595) and other products. For study of effect of radium radiation at 2-12° over 7-8 month period see (13).]

Reduction. [C with  $H_2$  in boilg. xylene in pres. of  $PtO_2$  + trace of thiourea (111),  $Pd/BaSO_4$  (112), or powd. Ni (112), or  $\tilde{C}$  over Pd at 200-230° (113) cf. (114) gives (yields: 96% (111), 87-89% (113)) benzaldehyde (1:0195); for study of purification of xylene as solvent for cat. reduction of  $\tilde{C}$  see (115); for study of influence of various other solvents see (116) (112).]

[ $\bar{C}$  with  $H_2$  in pres. of NiCl<sub>2</sub> at 270-280° gives (110) benzene, toluene, biphenyl + HCl;  $\bar{C}$  with copper hydride is claimed (117) to yield benzaldehyde but this could not be confirmed (118).  $\bar{C}$  with chromous acetate in 50% KOH gives (very small yield (119)), benzyl alc. (1:6480), while  $\bar{C}$  with LiH in high-boilg. pet. ether at 130° gives (presumably by subsequent condensation of the intermediate benzaldehyde) 65% yield (120) benzyl benzoate (1:4422).]

[ $\tilde{\mathbf{C}}$  with Na/Hg + stream of dry HCl gives (121) benzyl alc. (1:6480);  $\tilde{\mathbf{C}}$  with Na/Hg in dry ether gives (122) (123) (124) benzyl alc. (1:6480), benzoic acid (1:0715), benzil (1:9015),  $\alpha,\alpha'$ -dibenzoxystilbene ("isobenzil") [Beil. IX-138], and  $\alpha,\alpha'$ -dibenzoxydibenzyl [Beil. IX-136];  $\tilde{\mathbf{C}}$  with Na in moist ether gives (125) benzyl alc. (1:6480), benzoic acid (1:0715), and benzyl benzoate (1:4422).]

Oxidation. [C on oxidn in pres. of hydrocarbon peroxides and various oxidn cat. is claimed (126) to give dibenzoyl peroxide (1:4930); see also below under behavior of C with Na<sub>2</sub>O<sub>2</sub>.

Chlorination. [ $\bar{C}$  on monochlorination with Cl<sub>2</sub> at 35° in pres. of FeCl<sub>3</sub> gives (10) cf. (127) mainly a mixt. of chlorobenzoyl chlorides [83.5% m- (3:6590) + 14.5% o- (3:6640) + 2.0% p- (3:6550)] accompanied by a small amt. of dichlorobenzoyl chlorides; for extensive study of effect of using higher proportion of Cl<sub>2</sub> under otherwise same conditions see (128). Note, however, that  $\bar{C}$  with 3 moles Cl<sub>2</sub> in s.t. gives (129) (130) a mixt. of addn. products, such as 1,2,3,4,5,6-hexachlorohexahydrobenzoyl chloride, substitution products, and materials formed by both addition and substitution (130).]

Sulfonation. [C cannot be sulfonated without accompanying hydrolysis of the acyl chloride function (131) (132) (133) (134) (137); the end prod. of these sulfonation processes is, therefore, not m-sulfobenzoyl chloride (apparently still unknown cf. (135)) but rather m-sulfobenzoic acid [Beil. XI-384, XI<sub>1</sub>-(98)]. However, C added to conc. H<sub>2</sub>SO<sub>4</sub> at 0-40° gives (136) a cryst. addn. prod. C.H<sub>2</sub>SO<sub>4</sub> which on stdg. loses HCl forming benzoyl hydrogen sulfate [Beil. IX<sub>1</sub>-(94)] but shows no transformation into m-sulfobenzoic acid even after 6 months over dry alkali even though HCl is lost completely (136). At 100° conversion of benzoyl hydrogen sulfate occurred very slowly and the prod. consisted of o-sulfobenzoic acid (not meta) (136).]

# BEHAVIOR OF C WITH OTHER INORGANIC REAGENTS

 $\bar{C}$  with HF. [ $\bar{C}$  with HF as directed (138) (139) or with dry KHF<sub>2</sub> in Cu retort (140) (141) (142), with ZnF<sub>2</sub> at 195° (11) (143), with AgF in s.t. at 190° for 6 hrs. (144), or with 3 moles SbF<sub>3</sub> (145) gives (yields: 67-80% (140), 76% (145), 69% (11)) benzoyl fluoride, b.p. 161.5° at 745 mm. (142), 159° (139), 156° (146), 155-156° at 760 mm. (11), 155° (138), 154-155° (143), 151° u.c. at 736 mm. (141), 145° (144). Note, however, that  $\bar{C}$  with KF in anhydrous formic acid gives (147) formyl fluoride, b.p. 26° at 750 mm. (147), while  $\bar{C}$  with KF in AcOH gives (147) acetyl fluoride, b.p. 20-22° (147).]

 $\ddot{\mathbf{C}}$  with HBr. [ $\ddot{\mathbf{C}}$  with dry HBr gas at 100° gives (148) benzoyl bromide [Beil. IX-195, IX<sub>1</sub>-(95)], b.p. 218-219° cor. at 760 mm. (149), 215.0° at 741 mm. (150), 90-91° at 12 mm. (16), m.p. +8.1° (150),  $D_{2}^{40}=1.5461$  (150),  $n_{D}^{20}=1.5900$  (150).]

 $\bar{C}$  with HI. [ $\bar{C}$  with excess HI at ord. temp. (148) (16), or  $\bar{C}$  with Mg + I<sub>2</sub> in dry ether (151), gives benzoyl iodide [Beil. IX-195, IX<sub>1</sub>-(95)], b.p. 109-109.5° at 10 mm. (148) cf. (16). Note that  $\bar{C}$  with KI does not (152) give benzoyl iodide.]

 $\bar{C}$  with metals.  $[\bar{C}$  with Na in dry ether stood 10 days at room temp. gives (86% yield (153)) (154) ethyl benzoate (1:3721) but  $\bar{C}$  with Na/Hg in dry ether causes the reaction to take a more complicated course (see above under reduction of  $\bar{C}$ ).  $\bar{C}$  with Na vapor gives (155) cf. (154) benzil (1:9015).  $\bar{C}$  with K in xylene refluxed 2 days gives (153) benzoic anhydride (1:0595).]

[For behavior of  $\bar{C}$  with Zn in dry ether or in di-isoamyl ether at 20–32° see (156). For behavior of  $\bar{C}$  with finely divided Cu or Ni at elevated temps. see above under pyrolysis of  $\bar{C}$ .]

# C WITH VARIOUS METAL OXIDES OR SALTS

 $\bar{C}$  with Na<sub>2</sub>O<sub>2</sub>. [ $\bar{C}$  with Na<sub>2</sub>O<sub>2</sub> in water at 5° (157) cf. (159) or  $\bar{C}$  with 30% H<sub>2</sub>O<sub>2</sub> + aq. NaOH (158) cf. (159) gives (yields: 91% (157), 60–70% (158)) benzoyl hydrogen peroxide

(perbenzoic acid) [Beil. IX-178, IX<sub>1</sub>-(93)], m.p. 42°. For other methods for prepn. of perbenzoic acid such as from dibenzoyl peroxide with NaOCH<sub>3</sub> in MeOH/CHCl<sub>3</sub> (160) or with NaOC<sub>2</sub>H<sub>5</sub> in EtOH/toluene (161), or from benzaldehyde in acetone with air (162), see indic. refs. For study of Na perbenzoate (157) and its use in purification (163) of perbenzoic acid see indic. refs.]

[Č with Na<sub>2</sub>O<sub>2</sub> in aq. at 0° (164) (165) or in aq. acetone (166), or  $\tilde{C}$  with aq. H<sub>2</sub>O<sub>2</sub> + NaOH (167) or aq. H<sub>2</sub>O<sub>2</sub> + iron-free Ca(OH)<sub>2</sub> (168), or  $\tilde{C}$  with aq. BaO<sub>2</sub>.8H<sub>2</sub>O (169) (170) (171), or  $\tilde{C}$  with perbenzoic acid (see preceding paragraph) + aq. NaHCO<sub>3</sub> (172) gives dibenzoyl peroxide [Beil. IX-179, IX<sub>1</sub>-(93)], m.p. 105°. For review of prepn. and properties of this prod. see also (173).]

 $\bar{C}$  with misc. salts.  $\bar{C}$  on warming with various inorganic salts yields benzoic anhydride. [E.g.,  $\bar{C}$  with NaNO<sub>2</sub> (174) cf. (175) (176), with KNO<sub>3</sub> (177), with Pb (NO<sub>3</sub>)<sub>2</sub> (178), with nitrates of other heavy metals (179), with Na<sub>3</sub>PO<sub>4</sub>.12H<sub>2</sub>O in aq. soln. at 60° (180), with K<sub>2</sub>S<sub>2</sub>O<sub>5</sub> in pyridine (181), with Na<sub>2</sub>SO<sub>3</sub> in pyridine (183) in pres. of C<sub>6</sub>H<sub>6</sub> (181) cf. (182), or with BaO at 140–150° (184) gives benzoic anhydride (1:0595), m.p. 42°. For other methods of conversion of  $\bar{C}$  to benzoic anhydride see above under pyrolysis of  $\bar{C}$  and below under behavior of  $\bar{C}$  with organic acids and their salts.]

 $\tilde{\mathbf{C}}$  with NaN<sub>3</sub>. [ $\tilde{\mathbf{C}}$  with NaN<sub>3</sub> in aq. acetone at 0° (185), or in dry ether (186), gives (54.6% yield (185)) benzoyl azide (benzazide) [Beil. IX-332], m.p. 32° (185). Note that although this prod. readily explodes on htg. (187) (188) yet in inert solvents such as  $C_6H_6$  (194) it smoothly decomposes into N<sub>2</sub> and phenyl isocyanate (for study of mechanism see (189)); under certain circumstances the latter may be hydrolytically split to aniline cf. (190). For studies on decomposition of benzoyl azide by ultrasonic waves see (185) (193).]

## Hydrolysis of C

 $\bar{C}$  with cold aq. is slowly and with warm aq. rapidly hydrolyzed (105) to benzoic acid (1:0715) and HCl. [For study of rate of hydrolysis of  $\bar{C}$  in ether with aq. at 20-22° (195) or at 0° (148), in 50% aq. acetone at 0° in pres. of H<sub>2</sub>SO<sub>4</sub> (196) cf. (198), in various other organic solvents immiscible with aq. (197) or with BaBr<sub>2</sub>.2H<sub>2</sub>O at 158° (199) see indic. refs.]

 $\bar{C}$  with aq. alkali on warming readily yields (105) alkali benzoate + alkali chloride. Note that  $\bar{C}$  in 50% aq. pyridine hydrolyzes much faster than in aq. NaOH or aq. Na<sub>2</sub>CO<sub>3</sub> (39) (use in determination of atomic weight of carbon by hydrolysis of  $\bar{C}$  and pptn. of AgCl (39)). Note that rate of hydrolysis of  $\bar{C}$  is 2000 times as fast (200) as that of benzyl chloride (3:8535).

[Note that  $\tilde{C}$  in Ac<sub>2</sub>O soln. behaves as an acid (201) and can be titrated (202) with NaOAc in Ac<sub>2</sub>O.]

## BEHAVIOR OF C WITH VARIOUS INORGANIC SULFUR COMPOUNDS

With  $H_2S$ . [The behavior of  $\bar{C}$  with  $H_2S$  is disputed; on one hand  $\bar{C}$  in dry pyridine treated with  $H_2S$  at 5° and subsequently acidified is claimed (203) to give thiolbenzoic acid,  $C_6H_6$ .CO.SH [Beil. IX-419, IX<sub>1</sub>-(169)] (see next paragraph); on the other hand  $\bar{C}$  refluxed in dry pyridine in stream of  $H_2S$  is claimed (204) to yield dithiobenzoyl oxide ( $C_6H_6$ .CS)<sub>2</sub>O, colorless cryst. from hot alc., m.p. 112°.]

With KSH. [Č with cold alc. KSH (from satn. of alc. KOH with  $H_2S$ ) gives (205) (206) (207) (209) (8) salt of thiolbenzoic acid,  $C_0H_5$ .CO.SH [Beil. IX-419, IX<sub>1</sub>-(169)], m.p. 24° (207) (208), b.p. 98.0–98.6° at 11–12 mm. (8), 61.0–61.3° at 0.05 mm. (8). Note, however, that this product is readily oxidized (dehydrogenated) to dibenzoyl disulfide (see below) by air or mild oxidizing agents, e.g., I<sub>2</sub> (209).  $\ddot{C}$  with NaSH (35% aq. soln.) in stream of air followed by  $H_2O_2$  as directed (210) (211), with alc. Na<sub>2</sub>S<sub>2</sub> at 5–10° (212), with  $K_2S.5H_2O$ 

in acetone followed by  $I_2/KI$  oxidn. (213), or with HSMgBr followed by air oxidn. (208) gives (65-70% yield (210)) dibenzoyl disulfide [Beil. IX-424], cryst. from 1,2-dichloroethane (3:5130) (210) (211) (212), m.p. 128-129° (210) (211) (212); this prod. has considerable pharmaceutical interest as an antipruritic; for hydrolysis to benzoic acid as method of detn. see (210) (214).]

# Behavior of C with Various Inorganic Nitrogen Compounds

With NH<sub>3</sub>. [C̄ with conc. aq. NH<sub>4</sub>OH (215), with dry NH<sub>3</sub> (105), with liq. NH<sub>3</sub> (216), with solid (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> (217), or with KNH<sub>2</sub> in dry ether (218) gives benzamide [Beil. IX-195, IX<sub>1</sub>-(96)], m.p. 130°; note that either the (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> (219) or KNH<sub>2</sub> (218) methods may give also small amounts of N-benzoylbenzamide (dibenzamide) [Beil. IX-213, IX<sub>1</sub>-(104)], m.p. 148°, and/or N,N-dibenzoylbenzamide (tribenzamide) [Beil. IX-214, IX<sub>1</sub>-(104)], m.p. 207-208°. However, C̄ with NH<sub>3</sub> gas over Al<sub>2</sub>O<sub>3</sub> at 490-500° gives (220) benzonitrile [Beil. IX-275, IX<sub>1</sub>-(121)], b.p. 191°, m.p. -13°.]

With NH<sub>2</sub>OH. [C in C<sub>6</sub>H<sub>6</sub> with free NH<sub>2</sub>OH (221), or C in C<sub>6</sub>H<sub>6</sub> with NH<sub>2</sub>OH.HCl + pyridine (221), or C in ether with NH<sub>2</sub>OH.HCl + Na<sub>2</sub>CO<sub>3</sub> (221), gives benzohydroxamic acid (N-benzoylhydroxylamine) [Beil. IX-301, IX<sub>1</sub>-(128)], cryst. from EtOAc, m.p. 128°. Note that C with aq. NH<sub>2</sub>OH solns. (222) also gives side reactions which diminish yield and increase difficulty of purification of prod.; also that C with NH<sub>2</sub>OH.HCl in toluene gives (222) benzohydroxamic acid benzoate (dibenzohydroxamic acid) [Beil. IX-303, IX<sub>1</sub>-(128)] and other products. For alternative method of prepn. of benzohydroxamic acid from ethyl benzoate (1:3721) with NH<sub>2</sub>OH.HCl + MeOH/KOH see (223); for review of utility of hydroxamic acids in org. qual. anal. see (224); for study of formn. of benzohydroxamic acid and its FeCl<sub>3</sub> color reaction as method of detn. of hydroxylamine see (230).]

With NH<sub>2</sub>.NH<sub>2</sub>. [ $\ddot{C}$  (1 mole) with N<sub>2</sub>H<sub>4</sub>.H<sub>2</sub>O (2 moles) in ether gives (225) benzhydrazide (N-benzoylhydrazine) [Beil. IX-319, IX<sub>1</sub>-(129)], m.p. 112°, but this prod. is usually better obtd. from reaction of N<sub>2</sub>H<sub>4</sub>.H<sub>2</sub>O with MeOBz (1:3586) (226) or EtOBz (1:3721) (227) (225).  $\ddot{C}$  (1 mole) with N<sub>2</sub>H<sub>4</sub>.H<sub>2</sub>SO<sub>4</sub> (0.5 mole) + aq. NaOH (2.3 moles) as directed gives (66-75% yield (228)) N,N'-dibenzoylhydrazine [Beil. IX-324, IX<sub>1</sub>-(131)], ndls. from AcOH (228) or EtOH (229), m.p. 237-238° (229).]

## BEHAVIOR OF C WITH ORGANIC REACTANTS

# BEHAVIOR OF C WITH HYDROCARBONS

With cycloalkanes. [ $\bar{C}$  with cyclohexane (1:8405) + AlCl<sub>3</sub> gives (19% yield (231)) phenyl 2-methylcyclopentyl ketone, b.p. 160-162° at 36 mm.,  $D_4^{18} = 1.0255$ ,  $n_D^{18} = 1.5380$ , accompanied by much benzaldehyde (1:0195) presumably formed from  $\bar{C}$  by the hydrogen corresp. to coupling of 2 moles of cyclohexane.]

With alkenes. [ $\bar{C}$  with ethylene + AlCl<sub>3</sub> in special apparatus as directed gives (87–92% yield (232)) phenyl  $\beta$ -chloroethyl ketone ( $\beta$ -chloropropiophenone) (3:1115); cf. also (233).]

With cycloalkenes. [ $\bar{C}$  with cyclohexene (1:8070) + AlCl<sub>3</sub> in CS<sub>2</sub> gives by addition phenyl 2-chlorocyclohexyl ketone (234), which on dehydrochlorination in the pres. of AlCl<sub>3</sub> (234) or with alc. KOH (235) gives (40% yield (235)) phenyl cyclohexenyl ketone (tetrahydrobenzophenone), b.p. 147° at 8 mm.,  $D_{42}^{22} = 1.070$ ,  $n_{D}^{22} = 1.5595$  (235).]

With alkynes. [For behavior of C with heptyne-1 (1:8085) in pres. of AlCl<sub>3</sub>, ZnCl<sub>2</sub>, SnCl<sub>4</sub>, BF<sub>3</sub>, etc., see (236).]

With aromatic hydrocarbons. [ $\bar{C}$  with  $C_6H_6$  in pres. of AlCl<sub>3</sub> gives (yields: 74% (237), 71–74% (238)) (240) (241) (242) (243) (244) (245) benzophenone (1:5150), but best (239) prepn. of latter is from  $C_6H_6+CCl_4$  (3:5100) + AlCl<sub>3</sub>. — For studies of substitution for

AlCl<sub>3</sub> of FeCl<sub>3</sub> (237) (238) (246) (247) (248), FeCl<sub>3</sub> + AlCl<sub>3</sub> (249), GaCl<sub>3</sub> (250), TlCl<sub>3</sub> (251), WCl<sub>6</sub> (252), UCl<sub>4</sub> (252), ZrCl<sub>4</sub> (253), Cr powder (254), ZnCl<sub>2</sub> (238), SbCl<sub>3</sub> (255) (256), or SbBr<sub>3</sub> (257) see indic. refs. —  $\bar{C}$  with C<sub>6</sub>H<sub>6</sub> in liq. HCl at 200° and 250 pounds press. (258) or in pres. of P<sub>2</sub>O<sub>5</sub> in s.t. at 180-200° (259) (260) gives small yield of benzophenone (1:5150). —  $\bar{C}$  with C<sub>6</sub>D<sub>6</sub> + AlCl<sub>3</sub> in CS<sub>2</sub> gives (261) phenyl pentadeuterophenyl ketone, b.p. 160° at 15 mm. (corresp. oxime, m.p. 140°, does *not* depress m.p. of ordinary benzophenone oxime).]

[C with toluene in pres. of AlCl<sub>3</sub> gives (262) (263) (264) mainly phenyl p-tolyl ketone (1:5160) together with some phenyl o-tolyl ketone [Beil. VII-439, VII<sub>1</sub>-(234)]. For studies of substitution for AlCl<sub>3</sub> of FeCl<sub>3</sub> (263), FeCl<sub>3</sub> + AlCl<sub>3</sub> (265), or SbCl<sub>3</sub> (255) (256) see indic. refs.]

[For reaction of C in pres. of AlCl<sub>3</sub> with o-xylene (1:7430) (262), m-xylene (1:7420) (262) (266) (267), p-xylene (1:7415) (262), ethylbenzene (268) (266) (269), see indic. refs.] [Č with biphenyl (1:7175) in pres. of AlCl<sub>3</sub> gives (yields: 75% (270), 60% (271)) (272) (273) (274) (275) (276) (242) phenyl p-xenyl ketone (p-phenylbenzophenone) [Beil. VII-521, VII<sub>1</sub>-(290)], scales from alc., m.p. 106° cor. (270), 106° (272) (273), 102-103° (275), 102° (271), 101-102° (242), 101° (276); b.p. 413° at 758 mm. (271), 419-420° at 744 mm. (274), 258° at 10 mm. (276) (corresp. oxime exists in two stereoisomeric forms (277), m.p. 200° and 173°, usual mixt. having m.p. 193-194° (278), 186-187° (271); corresp. 2,4-dinitrophenylhydrazone, m.p. 217-217.5° (271); for use of P<sub>2</sub>O<sub>5</sub> (instead of AlCl<sub>3</sub>) in prepn. of p-phenylbenzophenone (above) see (279). Note that the isomeric o-phenylbenzophenone, m.p. 86-87°, has been prepared indirectly (280)]

[ $\bar{C}$  with naphthalene (1:7200) in pres. of AlCl<sub>3</sub> in CS<sub>2</sub> (281) (282) (283) (284) (285) (286) or without solvent at 150° (286), or in liq. SO<sub>2</sub> (287), or  $\bar{C}$  with naphthalene in pres. of ZnCl<sub>2</sub> at 125° (286) cf. (288) (289) or of P<sub>2</sub>O<sub>5</sub> (289) (279) (259) (260), gives (yields: 85% (282), 52% (287)) mainly phenyl  $\alpha$ -naphthyl ketone (1-benzoylnaphthalene) [Beil. VII-510, VII<sub>1</sub>-(283)], pr. from alc., m.p. 75.5-76° (276), 75.5° (282), 75-76° (281), 75° (283), b.p. 386° at 764 mm. (284), 222° at 8 mm. (276); note that this prod. is usually accompanied by some phenyl  $\beta$ -naphthyl ketone (2-benzoylnaphthalene) [Beil. VII-511, VII<sub>1</sub>-(283)], ndls. from alc., m.p. 82° (276) (289), 81-83° (281), b.p. 398° at 754 mm. (284), 225° at 8 mm. (276).]

[For reaction of  $\tilde{C}$  with anthracene (1:7285) + AlCl<sub>3</sub> in CS<sub>2</sub> (277) (290) (291) (292) (293), or in nitrobenzene at  $-10^\circ$  (294), or without AlCl<sub>3</sub> in boiling nitrobenzene (295) giving (yields: 85% (277), 78% (290)) 9-benzoylanthracene ( $\alpha$ -anthraphenone) [Beil. VII-538], cryst. from EtOAc, m.p. 145.5-146° (277), see indic. refs.; note, however, that for prepn. of this prod. use of benzoic anhydride (1:0595) (rather than  $\tilde{C}$ ) is preferred (296). — For reaction of  $\tilde{C}$  with phenanthrene (1:7240) + AlCl<sub>3</sub> in CS<sub>2</sub> (297) (298) or in nitrobenzene (298) see indic. refs.]

With heterocyclic parent nuclei. The behavior of  $\tilde{C}$  with furan (1:8015) in the pres. of Friedel-Crafts cat. has apparently not been reported [however, the prod. to be expected, viz., phenyl  $\alpha$ -furyl ketone [Beil. XVII-348, XVII<sub>1</sub>-(186)], b.p. 285° at 759 mm. (299), 186° at 46 mm. (299), 164° at 19 mm. (299),  $D_{-}^{20} = 1.1732$  (300),  $D_{10}^{19} = 1.1839$  (299),  $D_{-}^{20} = 1.6055$  (299), 1.5798 (300), has been obtd. (49% yield (301)) from benzoic anhydride (1:0595) with furan (1:8015) + SnCl<sub>4</sub> in C<sub>6</sub>H<sub>6</sub>, and from furoyl chloride (3:8515) with C<sub>6</sub>H<sub>6</sub> in pres. of AlCl<sub>3</sub> (299).]

[Č with thiophene in pres. of AlCl<sub>3</sub> (302), SnCl<sub>4</sub> (303) (304),  $P_2O_5$  (305), or  $\alpha$ -thienyl-mercuric chloride (306) cf. (307) (308) gives (yields: 89-90% (302), 82.5% (304)) phenyl  $\alpha$ -thienyl ketone [Beil. XVII-348, XVII<sub>1</sub>-(187)], m.p. 56° (305) (307), 55.5-56° (306), 55-56° (302), 55° (303) (304).]

# BEHAVIOR OF C WITH ORGANIC HYDROXYL COMPOUNDS

Č with organic OH or SH compounds (or their metallic salts) gives in general the corresponding benzoates. With phenols, however, there is also the additional possibility (according to the conditions employed) of either direct nuclear benzoylation or Fries rearrangement of the benzoate esters to give phenolic ketones.

Esterification of alcohols or phenols with  $\bar{C}$  in presence of aqueous alkali comprises a general procedure first discovered by Lossen (309) and later developed and extended by Schotten, Baumann, and others. The reaction is not restricted to the use of benzoyl chloride but covers acid haldes in general, e.g., acetyl chloride, p-nitrobenzoyl chloride, 3,5-dinitrobenzoyl chloride, benzenesulfonyl chloride, etc.

For detailed quantitative study of the influence of conditions on the Schotten-Baumann reaction see (310); for study of its application to p-nitrobenzoyl chloride (311) or of 3,5-dinitrobenzoyl chloride (312) in the derivatization of alcohols in dilute aqueous solution see indic. refs.; for study of substitution of the acyl halide by the corresponding anhydride see (313).

Note that in general the yield of ester is improved by use of low temperature (0°-25°) (310), by use of relatively concentrated solutions of both the hydroxyl compound and the alkali (310), and sometimes by additions of NaOAc or other salts. (311).

With monohydric alcohols. C with monohydric alcs. gives the corresponding alkyl benzoates.

[E.g.,  $\bar{C}$  with MeOH (1:6120) gives methyl benzoate (1:3586), b.p. 199.6°, m.p.  $-12.5^\circ$  (for study of rate of reaction at 0° and 25° see (18)).  $-\bar{C}$  with EtOH (1:6130) gives ethyl benzoate (1:3721), b.p. 213.2°, m.p.  $-34.2^\circ$  (for study of rate of esterification at 0° (17) or at 25° in various solvents (314) see indic. refs.  $-\bar{C}$  with n-PrOH (1:6150) gives n-propyl benzoate (3:3917), b.p. 231°.  $-\bar{C}$  with isopropyl alc. (1:6135) gives isopropyl benzoate (1:3766), b.p. 218.5° (for study of rate of esterification at 25° (6) or at 30° (11) (315) see indic. refs.).

[Č with n-BuOH (1:6180) gives n-butyl benzoate (1:4104), b.p. 250.3°, m.p.  $-22.4^\circ$ . — Č with isobutyl alc. (1:6165) gives isobutyl benzoate (1:4006), b.p. 242.2° cor. — Č with sec-BuOH (1:6155) gives (yields: 75% (316), 66% (317), 20% (318)) sec-butyl benzoate [Beil. IX-112, IX<sub>1</sub>-(63)], b.p. 234.5–235.5° cor. at 757 mm. (317), 148–151° at 50 mm. (317), 115–117° at 20° (319), 112–116° at 14 mm. (318),  $D_4^{25} = 0.9945$  (°17),  $D_1^{21.3} = 1.4933$  (319). — Č with ter-BuOH (1:6140) in pres. of pyridine gives (yields. 86% (320), 80% (321) (322)) ter-butyl benzoate [Beil. IX<sub>1</sub>-(64)], b.p. 112° at 18 mm. (321), 91–92° at 8 mm. (323), 91.3° at 7.5 mm. (320), 96° at 2 mm. (322);  $D_4^{25} = 0.9928$  (322);  $D_2^{25} = 1.4896$  (322) (321),  $D_2^{25} = 1.4910$  (320).]

[ $\tilde{\mathbf{C}}$  with n-AmOH (1:6205) gives n-amyl benzoate [Beil. IX<sub>1</sub>-(64)], b.p. 138-139° at 15 mm. (316), 137-138° at 15 mm. (324). —  $\tilde{\mathbf{C}}$  with isoamyl alc. (1:6200) gives isoamyl benzoate (1·4166), b.p. 262.3° cor. at 760 mm. —  $\tilde{\mathbf{C}}$  with neopentyl alc. (1:5812) gives (325) neopentyl benzoate, b.p. 235-237° at 740 mm., 110-111° at 10 mm.,  $D_{25}^{25} = 0.9817$ ,  $n_{D}^{25} = 1.4875$  (325).]

C reacts with other alcohols and thiols similarly, but details cannot be tabulated here.

With phenols.  $\bar{C}$  can react with phenols in either or both of two modes; on one hand it can benzoylate the phenolic OH yielding the corresponding phenol benzoates (a list of the melting points of 88 phenols of Order 1 is given on page 638 of Vol. I of this series (326); for study of effect of structure on rate of benzoylation of various monohydric phenols see (329)); on the other hand  $\bar{C}$  may under certain conditions effect the direct nuclear benzoylation of phenols. Since the phenolic ketones thus formed may also be more or less readily obtained by catalyzed rearrangement of the phenol benzoates, the chemistry of the phenol

benzoates and their rearrangement products is so voluminous that it cannot here be given detailed discussion. [For extensive reviews of the Fries rearrangement (327) (328) of phenol esters (including the benzoates) see indic. refs.]

With enols (or their metallic derivatives). With methyl acetoacetate. [ $\bar{C}$  with the Na enolate of methyl acetoacetate (1:1705) gives (330) methyl  $\alpha$ -benzoylacetoacetate, b.p. 136-137° at 2 mm. (corresp. Cu enolate, blue-green ndls. from dioxane, m.p. 226-228°; corresp. semicarbazone, prepd. by indirect means, m.p. 166° (331)).]

With ethyl acetoacetate. [ $\bar{C}$  with the Na enolate of ethyl acetoacetate (1:1710) gives (yields: 74.8% (332), 67% (333), 63–75% (334) cf. (335) (337) ethyl  $\alpha$ -benzoylacetoacetate [Beil. X-817, X<sub>1</sub>-(396)], b.p. 202° at 50 mm. (335), 177–181° at 20 mm. (334), 175–176° sl. dec. at 12 mm. (337), 169° sl. dec. at 11 mm. (338), 165–167° at 10 mm. (333) (corresp. Cu enolate, m.p. 224° (336), 221–222° (339)). Note that this prod. upon cleavage of the acetyl group, e.g., with aq. NH<sub>4</sub>OH + NH<sub>4</sub>Cl, gives (77–78% yield (334)) (332) ethyl benzoylacetate (1:1778), for alternative prepn. of which see (340). — Note, however, that two forms of the isomeric ethyl O-benzoylacetoacetate are known (341); a liq. form, b.p. 153–155° at 3 mm., prepd. from ethyl acetoacetate (1:1710) with  $\bar{C}$  + pyridine, and a solid form, m.p. 42°, prepd. from the Cu enolate of ethyl acetoacetate (1:1710) with  $\bar{C}$  in ether (for much further detail see (341)).]

With acetylacetone. [C with the Na enolate (342) or K enolate (343) of acetylacetone (1:1700) in ether gives (50% yield (343)) C-benzoylacetylacetone ( $\alpha$ -benzoyl- $\alpha$ -acetylacetone) [Beil. VII-865, VII<sub>1</sub>-(474)], m.p. 35° (342), 34-35° (343), b p. 167° at 22 mm. (342), accompanied by some of the higher-melting form, m.p. 103° (342), 102-103° (343), of its benzoate [Beil. IX-156]; note that the lower-melting form, m.p. 66-67° (344), is obtd from  $\alpha$ -benzoyl- $\alpha$ -acetylacetone (above) with  $\bar{C}$  in pyridine (344).]

With benzoylacetone. [Č with Na enolate of benzoylacetone (1:1450) under various conditions gives (345) (346) (347) cf. (348)  $\alpha,\alpha$ -dibenzoylacetone [Beil. VII-872, VII<sub>1</sub>-(480)] (q.v. for constants of various enol and keto forms) and/or the corresp. benzoate [Beil. IX-157], m.p. 87-88° (349).]

With dibenzoylmethane. [C with Na enolate of dibenzoylmethane (1:1480) gives (45% yield (350)) (351) (352) (353) tribenzoylmethane [Beil. VII-877, VII<sub>1</sub>-(485)] (q.v. for constants of various forms) and/or the corresp. benzoate [Beil. IX-158], m.p. 121-122° (351).]

# BEHAVIOR OF C WITH ETHERS

With aliphatic ethers. Acyl chlorides with aliphatic ethers do not react even at elevated temperatures (354) although acid bromides (e.g., acetyl bromide (355)) or acyl iodides (e.g., benzoyl iodide (356)) are able to effect cleavage into alkyl halides and alkyl esters. However, when acyl chlorides are heated with aliphatic ethers in the presence of certain metallic salts, cleavage of the ethers is more or less readily effected. Although the topic cannot here be pursued exhaustively, several examples are cited in the following text.

[Č with diethyl ether (1:6110) on htg. in pres. of ZnCl<sub>2</sub> (354) (357) (358) (359) (360), SnCl<sub>4</sub> (358), ZrCl<sub>4</sub> (358), TiCl<sub>4</sub> (358) (362), SbCl<sub>5</sub> (358), FeCl<sub>3</sub> (358) (361), AlCl<sub>3</sub> (358) (362), or SbCl<sub>5</sub> (358) gives ethyl benzoate (1:3721); note, however, that use of BF<sub>3</sub>, CuCl<sub>2</sub>, and SnCl<sub>2</sub> gives only traces while SiCl<sub>4</sub>, PCl<sub>5</sub>, PCl<sub>5</sub>, BCl<sub>3</sub>, AsCl<sub>3</sub>, or MgCl<sub>2</sub> achieves no cleavage (358) of the ether. Note that by extension of the ZnCl<sub>2</sub> method to use of 3,5-dinitrobenzoyl chloride a procedure for the identif. of ethers as the corresp. alkyl 3,5-dinitrobenzoates has been described (363) cf. (364).]

With phenol ethers. With phenol ethers where no phenolic OH remains to interfere, C reacts in the pres. of suitable cat. in the Friedel-Crafts sense. Although the topic cannot here be pursued exhaustively, several examples are cited in the following text.

[ $\bar{C}$  with methyl phenyl ether (anisole) (1:7445) + AlCl<sub>3</sub> in CS<sub>2</sub> solution (81% yield (365)) (366) (367) cf. (368) (360) or without other solvent (369) gives mainly p-anisyl phenyl ketone (p-methoxybenzophenone) (1:5170), m.p. 62° (366) (367) (370), 61-62° (365) (369), 61° (371), b.p. 354-355° at 729 mm. (371); this prod. is accompanied by some o-anisyl phenyl ketone (o-methoxybenzophenone) (1:5142), m.p. 39°, which is separable from the main prod. only by repeated recrystallization from lgr. (b.p. 40-60°) and alc. (369).]

[ $\bar{C}$  with ethyl phenyl ether (phenetole) (1:7485) + AlCl<sub>3</sub> in CS<sub>2</sub> soln. (yields: 83% (372), 73% (374)) (369) (366) (373) or without other solvent (369) gives mainly p-phenetyl phenyl ketone (p-ethoxybenzophenone) [Beil. VIII-159, VIII<sub>1</sub>-(569)], m.p. 47-48° (374), 47° (369) (372), 46.5° (373), 38-39° (366), b.p. 245-250° at 25 mm. (374), 227° at 21 mm. (373), 215-225° at 15 mm. (373) (corresp. oxime, m.p. 135-136° (374)), accompanied by some o-phenetyl phenyl ketone (o-ethoxybenzophenone) which (although not further characterized) is liq. and readily separable.]

[ $\bar{C}$  with diphenyl ether (1:7125) + AlCl<sub>3</sub> in CS<sub>2</sub> (375) (376) (374), or  $\bar{C}$  with diphenyl ether (1:7125) + HgCl<sub>2</sub> at 150–160° (377) (27% yield), or  $\bar{C}$  with phenyl 4-chloromercuriphenyl ether at 150° (377), gives (yields: 97% (375), 95% (374), 70% (377)) p-phenoxy-benzophenone [Beil. VIII-159], m.p. 71° cor. (375), 70–71° (374), 66° (377) (corresp. oxime, m.p. 124° (374)); for further benzoylation of this prod. to bis-(p-benzoylphenyl) ether, m.p. 163–164°, see (376).]

[Č with methyl  $\alpha$ -naphthyl ether (1:7630) + AlCl<sub>3</sub> in CS<sub>2</sub> (378) or in nitrobenzene (379) gives (84% yield (379)) 4-benzoyl-1-methoxynaphthalene, m.p. 82–83° (378), 81–82° (379); for high-press. hydrogenation of this prod. giving (84–86% yield) 4-benzyl-1-methoxynaphthalene, m.p. 83–84°, see (379). — Č with methyl  $\beta$ -naphthyl ether (1:7180) + AlCl<sub>3</sub> in CS<sub>2</sub> gives (85% yield (380)) 1-benzoyl-2-methoxynaphthalene, m.p. 125° cor.; not that use of 1,1,2,2-tetrachloroethane as solvent is much less satisfactory (381). — Č with ethyl  $\alpha$ -naphthyl ether (1:7635) + AlCl<sub>3</sub> in CS<sub>2</sub> gives (366) (382) 4-benzoyl-1-ethoxynaphthalene [Beil. VIII-207, VIII<sub>1</sub>-(586)], m.p. 74–75° (366), accompanied (383) by some 4-benzoylnaphthol-1 and other products. — The presumably analogous reaction of Č with ethyl  $\beta$ -naphthyl ether (1:7135) + AlCl<sub>3</sub> appears not to have been studied, and the expected 1-benzoyl-2-ethoxynaphthalene is unreported.]

# Behavior of $\bar{C}$ with Acids (or Their Salts)

With sodium formate. [C with NaOOCH on htg. (384) gives BzOH (1:0715), CO, + HCl.]

With acetic acid. [ $\bar{C}$  with AcOH (1:1010) refluxed in pres. of charcoal (385), or in pres. of a tertiary base (386) even at ord. temp., or  $\bar{C}$  with NaOAc on warming (387) cf. (388) (389) gives the mixed anhydride, CH<sub>3</sub>.CO.O.CO.C<sub>6</sub>H<sub>5</sub> [Beil. IX-163], accompanied by various other products. Note, however, that  $\bar{C}$  with AcOH (1:1010) at 100° for 3 hrs. gives (70% yield (147)) acetyl chloride (3:7065) while  $\bar{C}$  with Ac<sub>2</sub>O (1:1015) at 100° for 1 hr. gives (77% yield (147)) acetyl chloride (3:7065) accompanied by benzoic anhydride (1:0595). For prepn. of acetic-benzoic anhydride by other means, e.g., from benzoic acid (1:0715) with ketene (390), and for study of its use in Friedel-Crafts type reactions (391), see indic. refs.]

With benzoic acid. [C with benzoic acid (1:0715) in s.t. at 160-200° for 12 hrs. (392), or at 220° under reduced press. (397), or with pyridine (389) (393), or C with NaOBz shaken with aq. (394) or htd. at 130° (395), gives benzoic anhydride (1:0595), m.p. 42°, b.p. 360°; for other modes of formn. of this prod. from C see above under behavior of C with various inorganic salts; for prepn. (72-74% yield) of benzoic anhydride (1:0595) from benzoic acid (1:0715) by use of acetic anhydride (1:1015) see (396).]

With HCN. [Č with dry HCN in pyridine + ether (398) (399) cf. (406), or Č with HgCN (400) (401) (403) (404), AgCN (402), or CuCN (12), gives (yields: 78% (399), 60-65% (12)) benzoyl cyanide (phenylglyoxylic acid nitrile) [Beil. X-659, X<sub>1</sub>-(314)], m.p. 34° (401), 32.5-34° (403), 32-33° (12), b.p. 208-209° at 745 mm. (12), 207-210° (402), 206-208° (404), 123° at 42 mm. (401), 99° at 19 mm. (405). Note that by the HCN/pyridine method (398) (399) (406) or by reaction of Č with aq. KCN (402) dimeric benzoyl cyanide [Beil. XIX-362], m.p. 99-100° (402), 95-96° (406), is also formed; further that benzoyl bromide with AgCN gives (402) a trimeric benzoyl cyanide, m.p. 195°.]

With cyanate or thiocyanate salts. [ $\bar{C}$  with K cyanate (407), KSCN (408), or NH<sub>4</sub>SCN (409) gives benzonitrile [Beil. IX-275, IX<sub>1</sub>-(121)],  $\bar{B}$ .p. 191.3° at 760 mm., but  $\bar{C}$  with Pb(SCN)<sub>2</sub> at 160° (410), at 120° (413), or refluxed in C<sub>6</sub>H<sub>6</sub> (411) (412) gives benzoyl isothiocyanate [Beil. IX-222, IX<sub>1</sub>-107], b.p. 119° at 10 mm. (412),  $D_4^{18.3} = 1.2142$  (412),  $n_B^{18.5} = 1.6382$  (412).]

## BEHAVIOR OF C WITH ORGANIC NITROGEN COMPOUNDS

Č reacts with primary and secondary amines to replace one of the amino hydrogen atoms by the benzoyl radical. The molecule of HCl thus split out will, of course, convert a second molecule of amine to its hydrochloride. In order to avoid this waste of amine, the benzoylation may be effected in the presence of aqueous alkali (Schotten-Baumann reaction) or of pyridine (Einhorn reaction). Since the number of amino compounds which undergoes benzoylation is legion, the present text will be restricted to a relatively few important cases.

With aliphatic primary amines. [C with aq. CH<sub>3</sub>NH<sub>2</sub> (414) in pres. of alk. (415) gives N-methylbenzamide [Beil. IX-201, IX<sub>1</sub>-(97)], cryst. from alc. (416), aq. (417), or  $\lg r./C_6H_6$ (418), m.p. 82° (416), 80-81° (418) (419), 79.8° (417), 79° (414), 78° (415), b.p. 291° at 765 mm. (419), 167° at 11 mm. (420). —  $\bar{C}$  with aq.  $C_2H_5NH_2$  (414) gives N-ethylbenzamide [Beil. IX-202, IX<sub>1</sub>-(97)], ndls. from aq., m.p. 71° (419), 70° (421), 69° (417), 68-69° (414), 67° (420), b.p. 285° at 745 mm. (419). —  $\bar{C}$  with  $n-C_3H_7NH_2$  presumably yields  $N-(n-C_3H_7NH_2)$ propyl)benzamide [Beil. IX-203, IX<sub>1</sub>-(97)], cryst. from alc. or C<sub>6</sub>H<sub>6</sub>, m.p. 84.5° (419), 83° (422), b.p. 294-295° sl. dec. (422), but this product has been reported only by other methods (419) (422). —  $\bar{C}$  with  $n-C_4H_9NH_2$  presumably gives N-(n-buty) benzamide but this product has been characterized only as an oil cf. (423). — C with isobutylamine + aq. NaOH (416) cf. (424) gives N-(isobutyl) benzamide [Beil. IX-203, IX<sub>1</sub>-(97)], ndls. from  $C_6H_6$ , CHCl<sub>3</sub>, alc., or lgr.), m.p. 57-58° (416), 57° (419), 55° (424), 54° (422), b.p. 295-296° sl. dec. at 760 mm. (419), 173-178° at 13 mm. (416). — C with sec-C<sub>4</sub>H<sub>9</sub>NH<sub>2</sub> should give N-(secbutyl)benzamide but the d,l-form of this product is unreported; note that its dextrorotatory form has been reported as m.p. 92° (425) or 86-88° (426); the levorotatory form as m.p. 88-89° (425). —  $\bar{C}$  with  $ter-C_4H_9NH_2$  in other (427) (428) gives N-(ter-butyl) benzamide [Beil. IX<sub>1</sub>-(97)], ndls. from ether/ $C_6H_6$ , m.p. 136.5° (428), 135.5° (427), 134-135° (429), 134° (430). Note that dibenzoylation does not occur and that N-methyldibenzamide [Beil. IX<sub>1</sub>-(104), m.p. 94-95° (435), and N-ethyldibenzamide [Beil. IX-214], m.p. 101-102° (436), have been prepared only by indirect means.

With aliphatic secondary amines. [ $\bar{C}$  with  $(CH_3)_2NH$  in ether (431), in aq. (414), or in aq. NaOH (405) gives N,N-dimethylbenzamide [Beil. IX-201, IX<sub>1</sub>-(97)], cryst. from CS<sub>2</sub>/pet. ether (405), m.p. 43° (405), 41-42° (431), 41° (414), b.p. 272-273° (420), 265-266° (432), 132-133° at 15 mm. (432). —  $\bar{C}$  with  $(C_2H_5)_2NH$  in ether (431) gives N,N-diethylbenzamide [Beil. IX-202], liquid, b.p. 280-282° cor. (431), 278-282° (433), 173-175° at 35 mm. (434). — Note that the analogous N,N-dialkylbenzamides to be expected from reaction of  $\bar{C}$  with di-n-propylamine, di-isopropylamine, di-n-butylamine, di-isobutylamine, di-sec-butylamine, and di-n-butylamine have not been characterized.]

With aromatic primary amines. See below under @'s.

With aromatic secondary amines.  $\bar{C}$  with aromatic secondary amines gives the corresponding N-benzoyl derivatives but note that these same products are frequently also obtained by reaction of  $\bar{C}$  with the appropriate tertiary amines.

[Č with N-methylaniline (437), or Č with N,N-dimethylaniline at 190° (438), gives N-benzoyl-N-methylaniline (N-methylbenzanilide) [Beil. XII-269], scales from lgr., m.p. 63° (438), 59° (437), b.p. 331-332° (439). — Č with N-ethylaniline (not actually reported) or Č with N,N-diethylaniline at 200° (438) gives N-benzoyl-N-ethylaniline (N-ethylbenzanilide) [Beil. XII-270], cryst. from ether + lgr., m.p. 54° (440), 52° (441), 60° (438).]

[ $\bar{C}$  with N-methyl-o-toluidine should yield N-benzoyl-N-methyl-o-toluidine (N-methyl-benzo-o-toluidide) [Beil. XII-796], pr. from ether/lgr., m.p. 65-66°, and  $\bar{C}$  with N-ethyl-o-toluidine should yield N-benzoyl-N-ethyl-o-toluidine (N-ethyl-benzo-o-toluidide) [Beil. XII-796], pr. from ether/lgr., m.p. 71-72°, but both these products have been reported only by indirect means (442). — The analogous products to be expected from  $\bar{C}$  with N-methyl (or N-ethyl)-m-toluidine, or  $\bar{C}$  with N-methyl (or N-ethyl)-p-toluidine, have not been characterized in the literature.]

[ $\bar{\mathbf{C}}$  with N-methyl-α-naphthylamine should yield N-benzoyl-N-methyl-α-naphthylamine [Beil. XII-1234], cryst. from  $\mathbf{C_6H_6/lgr.}$ , m.p. 121°, but this prod. has actually been reported only from  $\bar{\mathbf{C}}$  with N,N-dimethyl-α-naphthylamine at 170–190° (438). — Similarly,  $\bar{\mathbf{C}}$  with N-methyl-β-naphthylamine + aq. alk. yields (443) N-benzoyl-N-methyl-β-naphthylamine [Beil. XII-1287, XII<sub>1</sub>-(539)], ndls. from pet. eth., m.p. 84° (443); this prod. is also claimed (438) from N,N-dimethyl-β-naphthylamine at 170–180° but the m.p. of 169° is not in accord with the later work under mild conditions and presumably represents an isomeric material. — The analogous benzoyl derivatives of N-ethyl-α-naphthylamine and of N-ethyl-β-naphthylamine are unreported.]

[C with diphenylamine on warming (444) in ether soln. (445) gives N-benzoyldiphenylamine (N,N-diphenylbenzamide) [Beil. XII-270, XII<sub>1</sub>-(201)], cryst. from alc., m.p. 180° (435), 179-180° (446), 177° (447).]

 $\bar{\mathbf{C}}$  with heterocyclic secondary amines.  $\bar{\mathbf{C}}$  with piperidine [Beil. XX-6, XX<sub>1</sub>-(5)] directly (536) or better in aq. NaOH (537) (538) (539) gives (87-91% yield (537)) N-benzoyl-piperidine [Beil. XX-46, XX<sub>1</sub>-(15)], m.p. 49° (540), 48° (538), 44° (537); b.p. 320-321° (541), 240-244° at 130 mm. (537), 195° at 25 mm. (541), 180-184° at 20 mm. (537), 172-174° at 12 mm. (537); not volatile with steam (538). [Note that this prod. with PBr<sub>5</sub> (542) (543) (544) (545) (546), with PBr<sub>3</sub> + Br<sub>2</sub> (547), or with PCl<sub>3</sub> + Br<sub>2</sub> (548) comprises an important method of preparation of pentamethylene dibromide (1,5-dibromopentane).]

Č with morpholine [Beil. XXVII-5] in ether gives (549) N-benzoylmorpholine, eas. sol. aq., pr. from dry ether, m.p. 74-75° (549).

Č with aromatic diamines. [Č with o-phenylenediamine [Beil. XIII-6, XIII<sub>1</sub>-(5)] in aq. NaOH (448), or Č with o-phenylenediamine hydrochloride in aq. soln. (449), gives N,N'-dibenzoyl-o-phenylenediamine [Beil. XIII-21, XIII<sub>1</sub>-(8)], ndls. from AcOH, m.p. 301° (450), about 300° dec. (451). — Note that this prod. on htg. above m.p. (450), or on htg. with conc. HCl in s.t. at 200° (449), gives 2-phenylbenzimidazole [Beil. XXIII-230, XXIII<sub>1</sub>-(61)], m.p. variously reported around 290°, which latter, although stable toward Č at 260° (452), yet with Č + aq. NaOH in cold (450) reverts to N,N'-dibenzoyl-o-phenylenediamine (above). — Note that N-benzoyl-o-phenylenediamine [Beil. XIII-20, XIII<sub>1</sub>-(8)], m.p. 140° (453), has been reported only by indirect means (453) (454); on htg. 2 hrs. at 140° followed by a few minutes at 280° (455) it gives 2-phenylbenzimidazole (see above). — Note finally that 1-benzoylbenzimidazole [Beil. XXIII-133, XXIII<sub>1</sub>-(35)], m.p. 93-94° (456), 91-92° (450), on htg. with Č (457), or benzimidazole itself with Č + aq. NaOH (450), both give N,N'-dibenzoyl-o-phenylenediamine (above).]

[C with hydrochloride of m-phenylenediamine [Beil. XIII-33, XIII<sub>1</sub>-(10)] on htg. gives

(458) N, N'-dibenzoyl-m-phenylenediamine [Beil. XIII-46], ndls. from AcOH, m.p. 240° (458) (460); for behavior of this prod. with PCl<sub>5</sub> see (459). — Note that N-benzoyl-m-phenylenediamine (benz-m-aminoanilide) [Beil. XIII-46], m.p. 125°, has been reported only by indirect means (461) (462) (464).]

[Č with p-phenylenediamine [Beil. XIII-61, XIII<sub>1</sub>-(18)] + aq. NaOH (448) cf. (463) gives N,N'-dibenzoyl-p-phenylenediamine [Beil. XIII-98], m.p. above 300° (448) cf. (460); for behavior of this prod. with PCl<sub>5</sub> see (459). — Note that N-benzoyl-p-phenylenediamine (benz-p-aminoanilide) [Beil. XIII-98, XIII<sub>1</sub>-(31)], m.p. 128° (452) (464), has been reported only by indirect means (452) (464).]

Č with aminophenols. Č with o-aminophenol [Beil. XIII-354, XIII<sub>1</sub>-(108)] gives according to circumstances one of the two possible monobenzoyl derivatives, viz., o-(benzoylamino)phenol [Beil. XIII-372, XIII<sub>1</sub>-(115)] (or its ring-closure product, 2-phenylbenzoxazole-1,3 [Beil. XXVII-72, XXVII<sub>1</sub>-(235)]), or the dibenzoyl derivative, viz., o-benzoylaminophenyl benzoate [Beil. XIII-373], as more fully described below. Note, however, that the other monobenzoyl derivative of o-aminophenol, viz., O-benzoyl-o-aminophenol or o-aminophenyl benzoate, known only as its hydrochloride, m.p. 149° (465), has been prepared only by indirect means (465) viz., from O,N-(dibenzoyl)-o-aminophenol, and on heating, or even on recrystn., loses HCl giving (465) 2-phenylbenzoxazole-1,3.

[ $\bar{\mathbb{C}}$  (1 mole) with o-aminophenol (2 moles) in dry ether (466) gives o-(benzoylamino)-phenol (N-benzoyl-o-aminophenol), tbls. from MeOH (465), lfts. from  $\mathbb{C}_6\mathbb{H}_6$ , m.p. 169–171° u.c. (465), 169° (467), 167° (468) (corresp. acetate, m.p. abt. 140° (469) cf. (470); corresp. benzoate, m.p. 182° (470) (also below); corresp. benzenesulfonate, m.p. 90.5–91.0 (471)). — Note that this prod. on htg. above m.p. loses  $\mathbb{H}_2\mathbb{O}$  with ring closure yielding (468) 2-phenyl-benzoxazole-1,3, m.p. 103° (see below). — Note also that o-(benzoylamino)phenyl benzoate (above) with  $\bar{\mathbb{C}}$  in nitrobenzene refluxed 12 hrs. gives (479) o-(dibenzoylamino)phenyl benzoate, m.p. 170.5–171.5° (479).]

[C with o-aminophenol on warming, followed by distn. of reaction product (472), or C with o-aminophenol hydrochloride (468) (473) gives 2-phenylbenzoxazole-1,3, ndls. from dil. alc., lfts. from dil. HCl or dil. H<sub>2</sub>SO<sub>4</sub>, m.p. 103° (468) (472) (473) (474), volatile with steam, b.p. 314-317° (472) (corresp. B.PkOH, m.p. 104° (477), corresp. MeI quaternary salt, m.p. 196° dec. (478)).

[ $\ddot{\mathbf{C}}$  (2 pts.) with o-aminophenol in aq. NaOH (448) or in pyridine + CHCl<sub>3</sub> (465), or  $\ddot{\mathbf{C}}$  with o-aminophenol hydrochloride in  $\mathbf{C}_6\mathbf{H}_6$  at 100° (468), or  $\ddot{\mathbf{C}}$  + aq. NaOH with o-formylaminophenol (480), o-(acetylamino)phenol (481), or o-(benzoylamino)phenol (467), gives O,N-dibenzoyl-o-aminophenol (o-benzoylaminophenyl benzoate), ndls. from alc. (480) or EtOAc (465), m.p. 185° (467), 183–184.5° (480), 182–183° (482), 181–182° (476), 180° (481), 179° u.c. (465). — Note that this prod. on boilg. with aq. BaCO<sub>3</sub> (468) or for 2 days with alc. HCl (483) hydrolyzes at the ester leakage giving o-(benzoylamino)phenol, m.p. 169° (above).]

[Č with m-aminophenol [Beil. XIII-401, XIII<sub>1</sub>-(128)] in pyridine + ether (484) cf. (485) gives m-(benzoylamino)phenol [Beil. XIII-416], ndls. from toluene, m.p. 174° (485) (486), 173° (484). — Note that the isomeric G-benzoyl-m-aminophenol (m-aminophenyl benzoate) is unreported. — Č with m-aminophenol in aq. NaOH gives (486) O,N-dibenzoyl-m-aminophenol (m-(benzoylamino)phenyl benzoate) [Beil. XIII-416], pr. from C<sub>0</sub>H<sub>6</sub> or scales from abs. alc., m.p. 153° (486); this product with boilg. alc. KOH splits at the ester linkage giving (486) m-(benzoylamino)phenol (above), m.p. 174°.]

[C with p-aminophenol [Beil. XIII-427, XIII<sub>1</sub>-(143)] in aq. NaOH (487), in pyridine (488), in alc. (489), or in ether + aq. NaOH (490) gives p-(benzoylamino)phenol (N-benzoyl-p-aminophenol) [Beil. XIII-469, XIII<sub>1</sub>-(165)], cryst. from AcOH, m.p. 216-217° (487), 214-215° (489) (for review of earlier confusion see (487)). — Note that the isomeric O-

benzoyl-p-aminophenol (p-aminophenyl benzoate) [Beil. XIII-440], m.p. 153-154° (491) (492), 148° (465), has been reported only by indirect means. — Č with p-aminophenol on htg. (472), or in aq. NaOH (448) (487) (488) or in pyridine (488), or Č with p-aminophenol hydrochloride (489) gives O,N-dibenzoyl-p-aminophenol (p-(benzoylamino)phenyl benzoate) [Beil. XIII-470, XIII<sub>1</sub>-(165)], cryst. from MeOH, EtOH, AcOH, or xylene, m.p. 235° (487) (467), 233-234° (489), 231° (472).]

The acylation of aminophenols (especially of the ortho series) and the relationships of the various multiple and mixed acyl derivatives have been extensively studied by Raiford ((493)-(511), incl.), Nelson ((512)-(517), incl.), and Bell (518) (519); the cited papers are arranged in chronological sequence for each worker.

Č with tertiary amines. Č with certain tertiary amines especially in dry ether solution (520) forms addition products; these are presumably quaternary ammonium salts but have been very inadequately studied cf. (524).

[ $\bar{C}$  with Me<sub>2</sub>N in ether at 0° or in C<sub>6</sub>H<sub>6</sub> at 80° fails to react (525). —  $\bar{C}$  with Et<sub>2</sub>N in dry ether gives an immediate ppt. which increases on stdg. but appears to be a mixture of the expected addn. prod.,  $\bar{C}$ . Et<sub>2</sub>N, with triethylamine hydrochloride (520). —  $\bar{C}$  with triamylamine in dry ether after stdg. 2 months yields (520) long needles, m.p. 117°, whose analysis is in accord with "nearly pure" addn. prod.,  $\bar{C}$ . (C<sub>5</sub>H<sub>11</sub>)<sub>2</sub>N.]

[ $\bar{C}$  with N,N-dimethylaniline in dry ether in sunlight gives gradually hygroscopic crystals probably comprising the expected addn. prod.,  $\bar{C}.C_8H_{11}N$ , (520). —  $\bar{C}$  with N,N-diethylaniline in dry ether gives (520) a crystn. prod. containing 71% of the expected  $\bar{C}.C_{10}H_{16}N$ .]

[ $\bar{C}$  with pyridine in dry ether gives (520) a ppt. apparently contg. only 31% of the expected addn. prod.,  $\bar{C}.C_5H_5N.-\bar{C}$  with pyridine in  $C_6H_6$  gives (521) pyridine hydrochloride, m.p. 144°. — For study of  $\bar{C}$  with pyridine in pres. of Zn dust giving the free radical N-benzoylpyridinium see (522); for study of  $\bar{C}$  with pyridine + N,N-dimethylaniline + Cu powder at 100° for 5 hrs. giving 4-(p-dimethylaminophenyl)pyridine see (523).]

Note that  $\bar{C}$  with pyridine in pres. of various inorganic salts gives benzoic anhydride; for further details see text above under behavior of  $\bar{C}$  with miscellaneous inorganic salts.

 $\bar{\mathbf{C}}$  with arylhydrazines.  $\bar{\mathbf{C}}$  (1 mole) with phenylhydrazine (2 moles) [Beil. XV-67, XV<sub>1</sub>-(23)] in dry ether gives (526) N'-benzoyl-N-phenylhydrazine (also known as sym.-benzoyl-phenylhydrazine or β-benzoylphenylhydrazine) [Beil. XV-255, XV<sub>1</sub>-(67)], pr. from alc., m.p. 168° (526) (527). [Note that the isomeric N-benzoyl-N-phenylhydrazine (also known as asym.-benzoyl-phenylhydrazine or α-benzoyl-phenylhydrazine) [Beil. XV-250, XV<sub>1</sub>-(65)], m.p. 70°, has been obtained only by indirect means, e.g., from  $\bar{\mathbf{C}}$  with sodio-phenylhydrazine (528) or from N-chlorobenzanilide with NaNH<sub>2</sub> (529). However,  $\bar{\mathbf{C}}$  with phenylhydrazine hydrochloride in boilg.  $C_6H_6$  (530) (531), or  $\bar{\mathbf{C}}$  with dry K phenylhydrazine-β-sulfonate on htg. (526), or  $\bar{\mathbf{C}}$  with α-benzoyl-phenylhydrazine in ether (532), or  $\bar{\mathbf{C}}$  with β-benzoyl-phenylhydrazine on htg. (526), gives N,N'-dibenzoyl-N-phenylhydrazine (also called α,β-dibenzoyl-phenylhydrazine) [Beil. XV-261, XV<sub>1</sub>-(68)], pr. from alc., m.p. 177–178° (526) (530); note that this prod. on hydrolysis with alc. NaOH gives (533) β-benzoyl-phenylhydrazine (above).]

 $\tilde{C}$  with p-nitrophenylhydrazine [Beil. XV-468, XV<sub>1</sub>-(130)] presumably gives N'-benzoyl-N-(p-nitrophenyl)-hydrazine [Beil. XV-479, XV<sub>1</sub>-(140)], ndls. from alc., m.p. 193° (534), although this prod. is actually reported (534) only from benzoic anhydride (1:0595) with p-nitro-phenylhydrazine.

Č with 2,4-dinitrophenylhydrazine [Beil. XV-489, XV<sub>1</sub>-(146)] in alc. suspension on warming gives (535) N'-benzoyl-N-(2,4-dinitrophenyl)-hydrazine [Beil. XV-492], or.-red lfts. from alc., m.p. 206-207° (535).

 $\tilde{C}$  with diazomethane. [ $\tilde{C}$  added slowly to excess CH<sub>2</sub>N<sub>2</sub> in ether at 0° gives (550) (551) (552) (553)  $\omega$ -diazoacetophenone [Beil. VII-362, XXIV-142]; this product may be caused

to undergo the Wolff rearrangement giving (554) phenylacetoacetic acid derivs. (e.g., amide or anilide (554)), or may be caused to react with HCl to give phenacyl chloride (3:1212): for comprehensive survey and review of the behavior of acyl halides with diazomethane see (555).]

Č with miscellaneous nitrogen compounds. [For studies on the behavior of Č with indigo see (556) (557) (558) (559) (560) (561) (562) (563).]

# BEHAVIOR OF C WITH ORGANOMETALLIC COMPOUNDS

Behavior of Č with Grignard reagents. Č with excess RMgX compounds in ether reacts in general to give the corresponding tertiary alcohols. Although extensive discussion of this reaction is manifestly infeasible here, the following examples are cited.

[C̄ with excess MeMgI gives (564) dimethyl-phenyl-carbinol [Beil. VI-506, VI<sub>2</sub>-(477)]. — C̄ with EtMgI gives (93% yield (565)) diethyl-phenyl-carbinol [Beil. VI-548, VI<sub>1</sub>-(269), VI<sub>2</sub>-(506)]. — C̄ with n-PrMgBr gives (81% yield (565)) di-n-propyl-phenyl-carbinol [Beil. VI<sub>1</sub>-(273), VI<sub>2</sub>-(513)]. — C̄ with C<sub>6</sub>H<sub>5</sub>MgBr as directed gives (91.5% yield (565)) triphenylcarbinol [Beil. VI-713, VI<sub>1</sub>-(349), VI<sub>2</sub>-(686)] (1:5985) accompanied by (7% yield (565)) biphenyl (1:7175); for study of limiting reaction of C̄ with C<sub>6</sub>H<sub>5</sub>MgBr to formation of diphenyl ketone (benzophenone) (1:5150) see (566); note also that C̄ with C<sub>6</sub>H<sub>5</sub>MgBr in presence of CoCl<sub>2</sub> takes a different course yielding (567) benzoic acid, ethyl benzoate, biphenyl, benzophenone, phenylbenzoin, tetraphenylethylene oxide, and stilbene dibenzoate.]

[For interference of C with the Gilman color test for RMgX compounds see (568).]

[For study of relative reactivity of  $\bar{C}$  as compared with various other organic compounds in competition for  $C_6H_5MgBr$  see (569).]

Behavior of  $\tilde{C}$  with other miscellaneous organometallic compounds. This topic cannot be treated extensively, but the following examples, mainly from the recent literature, will serve as lead references.

- [ $\bar{\mathbf{C}}$  with  $\mathbf{C_6H_5Li}$  gives (570) no benzophenone and only 42% yield triphenylcarbinol (1:5985).  $\bar{\mathbf{C}}$  with Na phenylacetylene (571) (572) or Ag phenylacetylene (572) gives (74% yield (571)) phenyl phenylethynyl ketone (benzoyl-phenylacetylene) [Beil. VII\_498, VII\_1-(275)].]
- $[\bar{C} + \text{EtCu} (573)]$  in ether gives (22% yield (573)) ethyl phenyl ketone (propiophenone) (1:5525).  $\bar{C}$  with  $C_6H_5Cu$  (573) in ether gives (55% yield (573)) benzophenone (1:5150).]
- $[\bar{C} + Et_2Hg \text{ gives (small yield (574)) propiophenone (1.5525).} --\bar{C} \text{ with ($C_6H_6$)_2Hg}$  in  $C_6H_6$  gives (575) benzophenone (1:5150). -- $\bar{C}$  with excess di-p-tolyl mercury in CCl<sub>4</sub> fails (576) to react.]
- [ $\bar{C}$  with Me<sub>2</sub>Be gives (577) dimethyl-phenyl-carbinol [Bed. VI-506, VI<sub>2</sub>-(477)].  $\bar{C}$  with Me<sub>2</sub>Cd gives (85% yield (578)) methyl phenyl ketone (acetophenone) (1:5515).  $\bar{C}$  with Et<sub>2</sub>Cd gives (50% yield (578)) ethyl phenyl ketone (propiophenone) (1:5525).  $\bar{C}$  with (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>Cd gives (57% yield (578)) diphenyl ketone (bezophenone) (1:5150).  $\bar{C}$  with Me<sub>2</sub>Zn gives (579) methyl phenyl ketone (acetophenone) (1:5515).  $\bar{C}$  with Et<sub>2</sub>Zn (580) (581) or with EtZnI (582) gives ethyl phenyl ketone (propiophenone) (1:5525).]
  - **D** Benzamide: cryst. from hot aq., m.p. 130°. [For methods of prepn. see above text under behavior of  $\tilde{C}$  with various inorganic nitrogen compounds.]
  - Benzanilide: lfts. from alc., m.p. 160°. [From C with aniline directly (583), in ether contg. dry K<sub>2</sub>CO<sub>3</sub> (584), in C<sub>6</sub>H<sub>6</sub> (585), in toluene (586), in pyridine (or other tertiary amines) (587), in dil. aq. HCl (588), in AcOH/aq. NaOAc (589), or aq. NaOH. For study of rate of reaction of C with aniline in aq. at various temperatures 0-60° (590),

- in  $C_6H_6$  at 25° (591) cf. (585), in hexane at 25° (592), or in CCl<sub>4</sub> at 25° (592) see indic. refs. Note that  $\bar{C}$  with aniline hydrochloride in boilg.  $C_6H_6$  gives almost quant yield (530) benzanilide.]
- Benz-o-toluidide: ndls. from AcOEt/acetone, m.p. 145-146° (594) (595), 144.3-144.6° cor. (586), 142-143° (593), 142° (587). [From C with o-toluidine (593) (594) in pres. of dil. (4%) aq. NaOH (595), or in pyridine (or other tertiary bases) (75% yield (587)), or in boilg. toluene (586).]
- Benz-m-toluidide: cryst. from dil. alc., m.p. 126° (587), 124.3-124.7° cor. (586), 125° (596). [From C with m-toluidine (596) in pyridine (or other tertiary bases) (80% yield (587)) or in boilg. toluene (586).]
- Benz-p-toluidide: ndls. from alc., m.p. 158° (597), 157.7-158.2° cor. (586), 157° (587).
  [From C with p-toluidine (598) (599) in pyridine (or other tertiary bases) (85% yield (587)) or in boilg. toluene (586).]
- Benz-α-naphthalide: ndls. from alc. or AcOH, m.p. 161-162° (600), 159-160° (601) cor. (608), 159° (587), 156° (602), 155-156° (603). [From C with α-naphthylamine (604) (602) in aq. NaOH (603), pyridine (or other tertiary bases) (80% yield (587)), or in AcOH/aq. NaOAc (589). For mol. cpd. of benz-α-naphthalide with 1,3,5-trinitrobenzene, viz., C. C<sub>6</sub>H<sub>3</sub>(NO<sub>2</sub>)<sub>3</sub>, yel. ndls. from alc. soln. of components, m.p. 131-132° (605); see indic. refs. For behavior of C with α-naphthylamine in pres. of ZnCl<sub>2</sub> at 175-180° yielding 1-benzoylamino-4-benzoylamphthalene, m.p. 178°, 1-benzoylamino-2,4-dibenzoylnaphthalene, m.p. 224-226°, etc., see (606) (607).]
- D Benz-β-naphthalide: ndls. from  $C_6H_6$  or AcOH, m.p. 162–163° (609), 162° (587), 161° (612), 157° (610), 156.5–157° cor. (608). [From  $\bar{C}$  with β-naphthylamine (611) (610) in ether + K<sub>2</sub>CO<sub>3</sub> (612), in pyridine (or other tertiary bases) (80% yield (587)), or in AcOH/ag. NaOAc (589).]
- Benzhydrazide: m.p. 112°. [See above text under behavior of C with various inorganic nitrogen compounds, specifically with NH<sub>2</sub>.NH<sub>2</sub>.]
- β-Benzoylphenylhydrazine (N-Anilinobenzhydrazide): pr. from alc., m.p. 168°.

  [See above text under behavior of C with organic nitrogen compounds, specifically with arylhydrazines.]
- —— β-Benzoyl-p-nitrophenylhydrazine (N-(p-nitroanilino)benzhydrazide): ndls. from alc., m.p. 193°. See above text under behavior of C̄ with organic nitrogen compounds, specifically with arythydrazines.
- 3:6240 (1) Herbst, Kolloidchem. Beihefte 23, 334 335 (1927). (2) Kopp, Ann. 95, 341-342 (1855) (3) Kamerling, Smyth, J. Am. Chem. Soc. 55, 463 (1933). (4) Martin, Partington, J. Chem. Soc. 1936, 1177. (5) von Rechenburg, J. prakt. Chem. (2) 101, 117 (1921). (6) Norris, Gregory, J. Am. Chem. Soc. 50, 1813-1816 (1928). (7) Perkin, J. Chem. Soc. 69, 1205 (1896) (8) Kohlrausch, Pongratz, Monatsh. 64, 379-380 (1934). (9) Koehl, Wenzke, J. Am. Chem. Soc. 59, 1418 (1937). (10) Hope, Riley, J. Chem. Soc. 121, 2511-2527 (1922). (11) Dann, Davies, Hambly, Paul, Semmens, J. Chem. Soc. 1933, 18, 20. (12) Oakwood, Weissgerber, Org. Syntheses 24, 14-16 (1944). (13) Kailan, Monatsh. 53/54, 159-164 (1929).
- (11) Dann, Davies, Hambly, Paul, Semmens, J. Chem. Soc. 1933, 18, 20. (12) Oakwood,
  Weissgerber, Org. Syntheses 24, 14-16 (1944). (13) Kailan, Monatsh. 53/54, 159-164 (1929).
  (14) Bruhl, Ann. 235, 10-11 (1886). (15) Adams, Uhlich, J. Am. Chem. Soc. 42, 604 (1920).
  (16) Herz, Kahovec, Kohlrausch, Monatsh. 74, 267-270 (1943). (17) Norris, Fasce, Staud, J. Am. Chem. Soc. 57, 1420 (1935). (18) Norris, Young, J. Am. Chem. Soc. 57, 1420-1424 (1935).
  (19) Thompson, Norris, J. Am. Chem. Soc. 58, 1955 (1936). (20) Kadesch, Weller, J. Am. Chem. Soc. 63, 1311 (1941).
- (21) Kahlbaum, Z. physik. Chem. 26, 611-612 (1898). (22) Menschutkin, J. Russ. Phys.-Chem. Soc. 42, 1311 (1910); Cent. 1911, 1481. (23) Lieben, Ann. 178, 43 (1875). (24) von Auwers, Schmidt, Ber. 46, 482 (1913). (25) Lumsden, J. Chem. Soc. 87, 94 (1905) (26) Nespital, Z. physik. Chem. B-16, 170-171 (1932). (27) Wertyporoch, Firla, Z. physik. Chem. A-162, 405-407

(1932). (28) Ulich, Z. physik. Chem., Bodenstein-Festband, 429-430 (1931). (29) Wertyporoch, Kowalski, Z. physik. Chem. A-166, 213-218 (1933). (30) Kohler, Am. Chem. J. 24, 393, 395 (1900). (31) Bösseken, Rec. trav. chim. 22, 315-317 (1903). (32) Menschutkin, J. Russ. Phys.-Chem. Soc. 43, 1794 (1911); Cent. 1912, I 806. (33) Seel, Z. anorg. allgem. Chem. 252, 24-41 (1943). (34) Meerwein, Maier-Hüser, J. prakt. Chem. (2) 134, 69 (1932). (35) Menschutkin, J. Russ. Phys.-Chem. Soc. 45, 1701 (1913); Cent. 1914, I 463. (36) Monsanto Chem. Works, Brit. 397,775, Sept. 21, 1933; Cent. 1933, II 3194; C.A. 28, 1053 (1934). (37) Clark, Bell, Trans. Roy. Soc. Can. (3) 27, III 97-104 (1933). (38) Cahours, Ann. chim. (3) 23, 334-339 (1848); Ann. 79, 41-42 (1849). (39) Scott, Hurley, J. Am. Chem. Soc. 59, 1906, 1908 (1937). (40) Bechamp, J. prakt.

(41) Scheuble, Ger. 251,806, Oct. 8, 1912; Cent. 1912, II 1503; [C.A. 7, 401 (1913)]. (42) Heumann, Köchlin, Ber. 16, 1627 (1883). (43) Carius, Ann. 106, 300-303 (1858). (44) Montonna, J. Am. Chem. Soc. 49, 2115 (1927). (45) Kissling (to I.G.), Ger. 642,519, March 10, 1937; Cent. 1937, I 3874; C.A. 31, 5816 (1937). (46) Friedel, Compt. rend. 68, 1559 (1869); Ber. 2, 80 (1869). (47) Beketow, Ann. 109, 256 (1859). (48) B.A.S.F., Ger. 146,690, Dec. 1,1903; Cent. 1904, I 65. (49) Heumann, Köchlin, Ber. 15, 1116 (1882). (50) Uvarov, Stepanov, Russ. 56,693,

Mar. 31, 1940; C.A. 36, 2869 (1942).

Chem. (1) 68, 492 (1856); Compt. rend. 42, 227 (1856).

(51) Soc. Chem. Ind. Basel, French 732,078, Sept. 13, 1932; Cent. 1934, I 287; C.A. 27, 734] (1933): Brit. 401,643, Dec. 14, 1933; Cent. 1934, II 2133; not in C.A. (52) Ullmann, Nadai, Ber. 41, 1871 (1908). (53) Crompton, Vanderstichele, J. Chem. Soc. 117, 692 (1920). (54) Gerhardt, Ann. chim. (3) 37, 291-294 (1853); Ann. 87, 63-66 (1853). (55) Heintz, Ann. Physik (1) 98, 473 (1856). (56) M.L.B., Ger. 210,805, June 16, 1909; Cent. 1909, I 79. (57) Chem. Fabrik von Heyden, A.G., Ger. 123,052, July 29, 1901; Cent. 1901, II 518. (58) Meyer, Ann. 156, 271, Note (1870). (59) Kharasch, Brown, J. Am. Chem. Soc. 64, 332 (1942). (60) Reynhart, Rec. trav. chim. 46, 63-64 (1927).

(61) Reynhart, Rec. trav: chim. 46, 72-74 (1927). (62) Gelissen, Hermans, Ber. 58, 479-481 (1925). (63) Titherly, Holden, J. Chem. Soc. 101, 1878, 1881 (1912). (64) Autenrieth, Muhlinghaus, Ber. 40, 751 (1907). (65) Michael, Am. Chem. J. 9, 213 (1887). (66) Soc. des Usines Chim. Rhone-Poulenc, Ger. 527,874, June 22, 1931; Cent. 1931, II 1350; [C.A. 25, 5175 (1931)]: Brit. 329,721, June 19, 1930; Cent. 1930, II 1611; C.A. 24, 5767 (1930): Brit. 330,511, July 10, 1930; Cent. 1930, II 2184; C.A. 24, 5767 (1930). (67) Clemmensen, Miller (to Monsanto Chem. Co.), U.S. 1,974,845, Sept. 25, 1934; Cent. 1935, I 960; [C.A. 28, 7265 (1934)]. (68) Stellmann, French 785,075, Aug. 1, 1935; Cent. 1935, II 3301; C.A. 30, 490 (1936). (69) Durrans J. Chem. Soc. 121, 45-46 (1922). (70) Bockes, Compt. rend. 196, 1674-1675 (1933).

(71) Lee, Lynn, J. Am. Pharm. Assoc. 21, 125-128 (1932); Cent. 1932, I 3403; [C.A. 26, 5064 (1932)]. (72) Goldschmidt, Endres, Dirsch, Ber. 58, 576 (1925). (73) Musante, Fusco, Gazz. Chim. ital. 66, 640, 648 (1936). (74) B.A.S.F., Ger. 331,696, Jan. 10, 1921; Cent. 1921, II 558. (75) Abkin, Medvedev, J. Chem. Ind. (Moscow) 1934, No. 1, 30-34; Cent. 1935, I 2801; C.A. 28, 3051 (1934); Russ. 34,551, Feb. 28, 1934; C.A. 29, 2973 (1935). (76) Davies, Dick, J. Chem. Soc. 1932, 2808-2809. (77) George (to Mathieson Alkali Works), U.S. 1,557,154, Oct. 13, 1925; Cent. 1926, I 1716-1717. (78) British Dyestuff Corp. and Bunberg and Shepherdson, Brit. 293,924, Aug. 9, 1928; Cent. 1929, I 1614; [C.A. 23, 1650 (1929)]. (79) Hopff (to I.G.), Ger. 524,715, May 11, 1931; Cent. 1931, II 497; [C.A. 25, 4284 (1931)]. (80) Blankshtein, Anilino-krasochnaya Prom. 4, 195-200 (1934); Cent. 1934, II 3112; C.A. 28, 5425 (1934).

(81) Verein fur Chem. Metal. Produktion, Ger. 472,422, Feb. 28, 1929; Cent. 1929, I 2823; [C.A. 23, 2448 (1929)]. (82) Kyrides, J. Am. Chem. Soc. 59, 207-208 (1937). (83) Kyrides (to Monsanto Chem. Co.), U.S. 1,963,748 and 1,963,749, June 19, 1934; Cent. 1934, II 2900; [C.A. 28, 5079 (1934)]. (84) Mills (to Dow Chem. Co.), U.S. 1,921,767, Aug. 8, 1933; Cent. 1933, II 2595; C.A. 27, 5085 (1933). (85) Mills (to Dow Chem. Co.), U.S. 1,965,556, July 3, 1934; Cent. 1934, II 2899; C.A. 28, 5474 (1934). (86) Raboewicz-Zubkowski, Roczniki Chem. 9, 523-551 (1929); Cent. 1929, II 2766; C.A. 24, 61 (1930). (87) Nesmeyanov, Kahn. Ber. 57, 372 (1934). (88) Kränzlein, Hopff (to I.G.), Ger. 574,836, April 20, 1933; Cent. 1933, II 1430; [C.A. 27, 4543 (1933)]: Brit. 384,722, Jan. 5, 1933; Cent. 1933, II 1430; C.A. 27, 4251 (1933): French 739,290, Jan. 9, 1933, Cent. 1933, I 2173; [C.A. 27, 1894 (1933)]. (89) Müller, Ehrmann, Ber. 69, 2209 (1936). (90) Korczynski, Reinholz, Schmidt, Roczniki Chem. 9, 731-740 (1929); Cent. 1936, I 2075; [C.A. 24, 1858 (1930)].

(91) Bennett, Dodd, Sprent and Imperial Chem. Ind., Ltd., Brit. 310,910, May 29, 1929;
 Cent. 1929, II 1217; [C.A. 24, 631 (1930)].
 (92) Henderson, Percival and Imperial Chem. Ind.,
 Ltd., Brit. 310,909, May 29, 1929; Cent. 1929, II 1217; C.A. 24, 631 (1930).
 (93) Staudinger,
 Slegwart, Helv. Chim. Acta 3, 832 (1920).
 (94) Perrot, Compt. rend. 199, 586-587 (1934).
 (95) Perrot, Compt. rend. 206, 1577 (1938).
 (96) Zetsche, Hubacher, Helv. Chim. Acta 9, 292-293 (1926).
 (97) Chapman, J. Chem. Soc. 127, 2818-2819 (1925).
 (98) van Peski, Rec. trav. chim.

41. 689, 695-697 (1921). (99) Conover (to Monsanto Chem. Co.), U.S. 2,006,335, July 2, 1935; Cent. 1935, II 2446; C.A. 29, 5460 (1935). (100) Norris, Fuller, U.S. 1,542,264, June 16, 1925; Cent. 1925, II 1802-1803; [C.A. 19, 2345 (1925)]: Ind. Eng. Chem. 14, 406-409 (1922).

(101) Friedel, Crafts, Ador, Ber. 10, 1857-1858 (1877); Ann. chim. (6) 1, 520-521 (1884). (102) Staudinger, Ber. 41, 3566 (1908). (103) Barger, J. Chem. Soc. 93, 567 (1908). Seelig, J. prakt. Chem. (2) 39, 168 (1889). (105) Wohler, Liebig, Ann. 3, 262-268 (1832). (106) Gauthier, Ann. chim. (6) 14, 362-363 (1888). (107) Loth, Michaelis, Ber. 27, 2548 (1894). (108) Erlenmeyer, Leo, Helv. Chim. Acta 16, 903 (1933). (109) Mailhe, Compt. rend. 180, 1111-1113 (1925); Cent. 1925, I 2554; C.A. 19, 2033 (1925). (110) Mailhe, de Godon, Bull. soc. chim. (4) **19,** 449-452 (1916).

(111) Weygand, Meusel, Ber. 76, 503-504 (1943). (112) Rosenmund, Ber. 51, 590-591 (1918). (113) Froschl, Danoff, J. prakt. Chem. (2) 144, 222-223 (1936). (114) Saytzeff, J. prakt. Chem. (2) 6, 130-132 (1872). (115) Zetsche, Arnd, Helv. Chim. Acta 9, 173-177 (1926). (116) Zetsche, Enderlin, Flutsch, Menzi, Helv. Chim. Acta 9, 177-181 (1926). (117) Chiozza, Compt. rend. 63, 632 (1852); Ann. 85, 232-233 (1853). (118) Neunhoeffer, Nerdel, J. prakt. Chem. (2) 144, 63-66 (1936). (119) Graf, J. prakt. Chem. (2) 146, 199 (1936). (120) Hadaghian, Levaillant, Compt. rend. 194, 2059-2061 (1932).

(121) Lippmann, Bull. soc. chim. (2) 4, 249-250 (1865); Ann. 137, 252-254 (1866). (122) Brigel, Ann. 135, 172–175 (1865). (123) Klinger, Ber. 16, 994–997 (1883). (124) Klinger, Standke, Ber. 24, 1264–1266 (1891). (125) Klinger, Schmitz, Ber. 24, 1276–1277 (1891). (126) N. V. de Bataafsche Petroleum Maatschappij, Brit. 540,370, Oct. 15, 1941; C.A. 36, 4226 (1942). (127) Gauthier, Ann. chim. (6) 14, 363-368 (1888). (128) Hope, Riley, J. Chem. Soc. 123, 2470-2480 (1923). (129) Bornwater, Holleman, Rec. trav. chim. 31, 239-242 (1912). (130) van den Linden, Rec. trav. chim. 52, 703-714 (1934).

(131) Engelhardt, Z. Chem. 1864, 43. (132) Oppenheim, Ber. 3, 735-738 (1870). (133) Kammerer, Carius, Ann. 131, 156 (1864). (134) Kammerer, Ber. 4, 219-220 (1871). (135)Moore, Thomas, J. Am. Chem. Soc. 44, 368 (1922). (136) Elliott, Kleist, Wilkins, Webb, J. Chem. Soc. 1926, 1220-1221. (137) I.G., Swiss 214,609, Aug. 1, 1941; Cent. 1942, I 1055; not in C.A. (138) Daudt, Youker (to Kinetic Chemicals, Inc.), U.S. 2,005,710, June 18, 1935; Cent. 1936, I 1501; [C.A. 29, 5123 (1935)]: U. S. 2,062,743, Dec. 1, 1936; Cent. 1937, I 4557; [C.A. 31, 700 (1937)]. (139) Fredenhagen, Cadenbach, Z. physik. Chem. A-164, 206 (1933). (140) Tseng, Mai, J. Chinese Chem. Soc. 4, 22-26 (1936); Cent. 1936, II 3297; C.A. 30, 2943 (1936).

(141) Enternanu, Johnson, J. Am. Chem. Soc. 55, 2902 (1933). (142) Borodine, Compt. rend. 55, 555 (1862); Ann. 126, 60-62 (1863). (143) Meslans, Girardet, Bull. soc. chim. (3) 15, 878-879 (1896). (144) Guénez, Bull. soc. chim. (3) 5, 886-887 (1891). (145) Voznesenskii, J. Gen. Chem. (U.S.S.R) 9, 2148-2152 (1939); CA. 34, 4053-4054 (1940). (146) Traube, Krahmer, Ber. 52, 1296 (1919). (147) Nesmeyanov, Kahn, Ber. 67, 372-373 (1934); J. Gen. Chem. (U.S.S.R.) 4, 1243-1246 (1936); Cent. 1936, I 4288. (148) Staudinger, Anthes, Ber. 46, 1421-1424 (1913). (149) Claisen, Ber. 14, 2474 (1881). (150) Martin, Partington, J. Chem. Soc. 1936, 1177.

(151) Kishner, J. Russ. Phys.-Chem. Soc. 41, 654 (1909); Cent. 1909, II 1132. (152) Thiele, Haakh, Ann. 369, 146-147 (1909). (153) Pearl, Evans, Dehn., J. Am. Chem. Soc. 60, 2479 (1938). (154) Kharasch, Nudenberg, Archer, J. Am. Chem. Soc. 65, 495-496 (1943). (155) Hartel, Trans. Faraday Soc. 30, 189 (1934). (156) Varvoglis, Ber. 70, 2391-2395 (1937). (157) B. T. Brooks, W. B. Brooks, J. Am. Chem. Soc. 55, 4309-4311 (1933). (158) Bergel, Widmann, Ann. 467, 86 (1928). (159) Bergmann, Witte, Ger. 409,779, Feb. 11, 1925; Cent. 1925, I 1911; not in C.A. (160) Braun, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 431-434 (1941).

(161) Pummerer, Reindel, Ber. 66, 336-337 (1933). (162) Swern, Findley, Scanlan. J. Am. Chem. Soc. 66, 1926 (1944). (163) Lewin, J. prakt. Chem. (2) 127, 81-82 (1930). (164) Prilezhaev, J. Russ. Phys.-Chem. Soc. 42, 1395 (1910); Cent. 1911, I 1279; not in C.A. (165) Nencki, Zaleski, Z. physiol. Chem. 27, 493 (1899). (166) Gambarjan, Ber. 42, 4008 (1909). (167) von Pechmann, Vanino, Ber. 27, 1511 (1894). (168) Kroeber, Ger. 441,808, March 14, 1927; Cent. 1927, II 505; not in C.A. (169) Brodie, Ann. 108, 80-81 (1858). (170) Sonnenschein, Monatsh. 7, 522, Note 3 (1886).

(171) Orndorff, White, Z. physik. Chem. 12, 64 (1893). (172) Baeyer, Villiger, Ber. 33, 1581 (1900). (173) Vanino, Herzer, Arch. Pharm. 263, 426-440 (1915). (174) Minunni, Caberti, Gazz. chim. ital. 20, 655-656 (1890). (175) Francesconi, Cialdea, Gazz. chim. ital. 34, I 444-446 (1904). (176) Ferrario, Gazz. chim. ital. 40, II 99-100 (1910). (177) Diels, Okada, Ber. 44, 3335 (1911). (178) Lachowicz, Ber. 17, 1282-1283 (1884). (179) Lachowicz, Ber. 18, 2992 (1885). (180) Gray, Murray (to Eastman Kodak Co.), U.S. 2,087,030, July 13, 1937; Cent. 1937, II 2261; C.A. 31, 6260 (1937).

(181) Gazopulos, Praktika Akad. Athenon, 6, 154-162 (1931); Cent. 1931, II 1700; C.A. 26, 4318 (1932). (182) Deninger, J. prakt. Chem. (2) 50, 479-480 (1894). (183) Binz, Marx, Ber. 40. 3857-3859 (1907). (184) Gal, Compt. rend. 56, 361 (1863); Ann. 128, 127 (1863). (185) Barrett, Porter, J. Am. Chem. Soc. 63, 3434-3435 (1941). (186) Stollé, Ber. 55, 1292, Note (1922). (187) Wieland, Z. angew Chem. 39, 900 (1926). (188) Bergel, Z. angew. Chem. 49, 974 (1927). (189) Powell, J. Am. Chem. Soc. 51, 2436-2439 (1929). (190) Nelles, Ber. 65, 1345-1347 (1932).

(191) Labruto, Landi, Gazz. chrm. ital. 67, 213-216 (1937); Cent. 1937, II 2523; C.A. 31, 8517 (1937). (192) Naegell, Grüntuch, Lendorff, Helv. Chrm. Acta 12, 256-260 (1929). (193) Porter, Young, J. Am. Chem. Soc. 69, 1497-1500 (1938). (194) Schroeter, Ber. 42, 3359 (1909). (195) Straus, Hüssy, Ber. 42, 2169, 2171 (1909). (196) Olivier, Berger, Rec. trav. chim. 46, 618 (1927). (197) Karvé, Dolé, J. Indian Chem. Soc. 12, 733-739 (1935). (198) Dunstan, Mussell, J. Chem. Soc. 99, 570-571 (1911). (199) Menschutkin, J. Russ. Phys.-Chem. Soc. 47, 1870 (1915); Cent. 1916, II 315. (200) Olivier, Berger, Rec. trav. chrm. 46, 861 (1927).

(201) Usanovich, Yatsimirskii, J. Gen. Chem. (U.S.S.R.) 11, 954-956 (1941); C.A. 39, 4540 (1945). (202) Usanovich, Yatsimirskii, J. Gen. Chem. (U.S.S.R.) 11, 957-958 (1941); C.A. 36, 6444 (1942). (203) Sunner, Nilson, Svensk Kem. Tul. 54, 163-167 (1942); Cent. 1943, I 829; C.A. 38, 3249 (1944). (204) Lewis, J. Chem. Soc. 1940, 831-832. (205) Kym, Ber. 32, 3533, Note (1899). (206) Kitamura, J. Pharm. Soc. Japan 57, 2937 (1937), Cent. 1937, II 374; [C.A. 31, 3871 (1937)]. (207) Engelhardt, Latschinow, Malyschew, Zeit. fur Cheme. 1868, 354. (208) Mingois, Gazz. Chrm. vtal. 55, 717-718 (1925). (209) Moness, Lott, Christiansen, J. Am. Assoc. 25, 397-402 (1936); Cent. 1937, I 851; C.A. 30, 5198 (1936). (210) Shelton, Rider, J. Am.

Chem. Soc. 58, 1282-1284 (1936).

(211) Rider, Shelton (to W. S. Merrell Co.), U.S. 2,028,246, Jan. 21, 1936; Cent. 1936, I 3217; C.A. 30, 1811 (1936). (212) Braker (to E. R. Squibb and Sons), U.S. 2,154,488, April 18, 1939; Cent. 1939, II 229; [C.A. 33, 5415 (1939)]. (213) Szperl, Wasilewska, Rocznki Chem. 16, 207-212 (1936); Cent. 1936, II 2342-2343; [C.A. 30, 8189 (1936)]. (214) Cook, Bambach, J. Am. Pharm. Assoc. 27, 758-760 (1938); Cent. 1939, I 744, C.A. 32, 9060 (1938). (215) Lehmann, Z. physiol. Chem. 17, 406 (1893). (216) Govaert, Natuurw. Tydschr. 15, 149-153 (1933); Cent. 1934, I 1471; C.A. 28, 740 (1934). (217) Gerhardt, Chiozza, Compt. rend. 37, 88 (1853), Ann. chrm. (3) 46, 135 (1856). (218) Baumert, Landolt, Ann. 111, 5-8 (1859). (219) Jaffé, Ber. 25, 3120-3121 (1892). (220) Mailhe, Bull. soc. chim. (4) 23, 380-381 (1918); Ann. chim. (9) 13, 211 (1920).

(221) Jones, Hurd, J. Am. Chem. Soc. 43, 2446-2447 (1921). (222) Lossen, Ann. 161, 347-362 (1872). (223) Hauser, Renfrow, Org. Syntheses, Coll. Vol. 2 (1st ed.), 67-68 (1943), 19, 15-17 (1939). (224) Davidson, J. Chem. Education, 17, 81-84 (1940). (225) Curtius, Struve, J. prakt. Chem. (2) 50, 295-296 (1894). (226) Frey, Gilbert, J. Am. Chem. Soc. 59, 1345 (1937). (227) Stollé, J. prakt. Chem. (2) 69, 154 (1904). (228) Hatt, Org. Syntheses, Coll. Vol. 2 (1st ed.), 208-209 (1943); 16, 18-21 (1936). (229) Anderson, Gilbert, J. Am. Chem. Soc. 64, 2369 (1942).

(230) Pucher, Day, J. Am. Chem. Soc. 48, 672-676 (1926).

(231) Nenitzescu, Ionescu, Ann. 491, 199-202, 209-210 (1931). (232) Allen, Cressmann, Bell, Can. J. Research 8, 440-446 (1933). (233) Norris, Couch, J. Am. Chem. Soc. 42, 2329-2332 (1920). (234) Wieland, Bettag, Ber. 55, 2252-2255 (1922). (235) Christ, Fuson, J. Am. Chem. Soc. 59, 895 (1937). (236) Nelles, Bayer (to I.G.), Ger. 642,147, Feb. 25, 1937; Cent. 1937, II 2597; C.A. 31, 3501 (1937): Brit. 461,080, March 11, 1937; Cent. 1937, II 2597; C.A. 31, 4676 (1937). (237) Wertyporoch, Ber. 66, 1237-1238 (1933). (238) Gangloff, Henderson, J. Am. Chem. Soc. 39, 1425-1427 (1917). (239) Marvel, Sperry, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 95-98 (1941); (1st ed.), 89-92 (1932); 8, 26-29 (1928). (240) Friedel, Crafts, Ann. chm. (6) 1, 510 (1884).

(241) Böeseken, Rec. trav. chim. 19, 20-21 (1900). (242) Norris, Thomas, Brown, Ber. 43, 2959 (1910). (243) Rubidge, Qua, J. Am. Chem. Soc. 36, 735-736 (1914). (244) Olivier, Rec. trav. chim. 37, 205-215 (1918). (245) Ulich, Heyne, Z. Elektrochem. 41, 509-514 (1935); Cent. 1935, II 2652; C.A. 29, 7768 (1935). (246) Hencki, Stoeber, Ber. 30, 1768 (1897). (247) Böeseken, Rec. trav. chim. 22, 315-317 (1903). (248) Nencki, Ber. 32, 2414-2416 (1899). (249) Riddell, Noller, J. Am. Chem. Soc. 52, 4365-4369 (1930). (250) Ulich, Die Chemie 55, 37-38 (1942); Cent. 1942, I 2233; C.A. 37, 2521 (1943).

(251) Kashtanov, J. Gen. Chem. (U.S.S.R.) 2, 515-523 (1932); Cent. 1933, I 600; C.A. 27, 975 (1933). (252) Kashtanov, J. Gen. Chem. (U.S.S.R.) 3, 229-233 (1933); Cent. 1933, II 2512; C.A. 28, 1687 (1934). (253) Krishnamurti, J. Madras Univ. 1928, 5 pp. (reprint); Cent. 1929, I 2156; C.A. 28, 2164 (1929). (254) Chakrabarty, Dutt, J. Indian Chem. Soc. 5, 513-517 (1928). (255) Comstock, Am. Chem. J. 18, 550-551 (1896). (256) Menschutkin, J. Russ. Phys.-Chem. Soc. 45, 1710-1739 (1913); Cent. 1914, I 463; C.A. 8, 910 (1914); J. chim. phys. 12, 193-205 (1914). (257) Menschutkin, J. Russ. Phys.-Chem. Soc. 46, 259-283 (1913); Cent. 1914, I 2161-2162; C.A. 8, 2551 (1914). (258) Simons, Hart, J. Am. Chem. Soc. 66, 1310 (1944). (259) Lecher, Ber. 46, 2667-2668 (1913). (260) Lecher, Ger. 281,802, Jan. 27, 1914; Cent. 1915, I 281; C.A. 9, 2292 (1915).

(261) Clemo, McQuillen, J. Chem. Soc. 1936, 808-809. (262) Elbs, J. prakt. Chem. (2) 35,

466-472 (1887). (263) Steele, J. Chem. Soc. 83, 1470-1490 (1903). (264) Blakey, Scarborough, J. Chem. Soc. 1928, 2492. (265) Martin, Pizzolato, McWaters, J. Am. Chem. Soc. 57, 2584-2589 (1935). (266) Sdilscher, Ber. 15, 1682 (1882). (267) AGFA, Ger. 267,271, Nov. 12, 1913; Cent. 1913, II 2015; [C.A. 8, 791 (1914)]. (268) Norris, Blake, J. Am. Chem. Soc. 50, 1811 (1928). (269) Smith, Ber. 24, 4029 (1891). (270) Long, Henze, J. Am. Chem. Soc. 63, 1939-1940 (1941).

(271) Hsu, Ingold, Wilson, J. Chem. Soc. 1935, 1784–1785. (272) Wolf, Ber. 14, 2031 (1881). (273) Perrier, Compt. rend. 116, 1299 (1893). (274) Montagne, Rec. trav. chim. 27, 357–358 (1908). (275) Staudinger, Kon, Ann. 384, 97 (1911). (276) Cohen, Rec. trav. chim. 38, 121 (1919). (277) Bachmann, Barton, J. Org. Chem. 3, 300–311 (1938). (278) Koller, Monatsh. 12, 502 (1891). (279) Cannoni de Degiori, Anales asoc. quim. argentina 21, 135–141 (1933); Cent. 1934, II 603; C.A. 28, 2704–2705 (1934). (280) Bradsher, J. Am. Chem. Soc. 66, 45–46 (1944).

(281) Olifson, J. Gen. Chem. (U.S.S.R.) 9, 36-40 (1939); Cent. 1939, II 4473; C.A. 33, 6291 (1939). (282) Garcia-Banus, Monche, Anales soc. españ. Is. quím. 33, 655-679 (1935); Cent. 1936, II 2131; [C.A. 30, 457 (1936)]. (283) Perrier, Caille, Compt. rend. 146, 749 (1908); Bull. soc. chim. (4) 3, 654-656 (1908). (284) Montagne, Rec. trav. chim. 26, 281-283 (1907). (285) Elbs, J. prakt. Chem. (2) 35, 502-504 (1887). (286) Roux, Ann. chim. (6) 12, 338-341 (1887). (287) Ross, Percy, Brandt, Gebhart, Mitchell, Yolles, Ind. Eng. Chem. 34, 924-926 (1942). (288) Grucarevic, Merz, Ber. 6, 1238, 1240 (1873). (289) de Fazi, Gazz. chim. ital. 49, I 247 (1919). (290) Lippmann, Pollak, Ber. 34, 2766 (1901).

(291) Lippmann, Keppich, Ber. 33, 3087-3089 (1900). (292) Lippmann, Fleissner, Ber. 32, 2249-2251 (1899). (293) Perrier, Ber. 33, 816 (1900). (294) Krollpfeiffer, Ber. 36, 2364 (1923). (295) Nenitzescu, Isacescu, Ionescu, Ann. 491, 218 (1931). (296) Cook, J. Chem. Soc. 1926, 1284-1285. (297) Willgerodt, Albert, J. prakt. Chem. (2) 84, 392-393 (1911). (298) Bachmann, J. Am. Chem. Soc. 57, 555-559 (1935); 56, 1363 (1936). (299) Marquis, Compt. rend. 129, 111 (1899); Bull. soc. chim. (3) 23, 32-34 (1900); Ann. chim. (8) 4, 275-277 (1905). (300) Asahina, Muravama. Arch. Pharm. 252, 448 (1914).

(301) Gol'dfarb, Smorgonskii, J. Gen. Chem. (U.S.S.R.) 8, 1523-1526 (1938); Cent. 1939, II 424; C.A. 33, 4593 (1939). (302) Minnis, Org. Syntheses, Coll. Vol. 2 (1st ed.), 520-521 (1943); 12, 62-63 (1932). (303) Stadnikoff, Rakowsky. Ber. 61, 269 (1928). (304) Gol'dfarb, J. Russ. Phys.-Chem. Soc. 62, 1073-1082 (1930); C.A. 25, 2719 (1931). (305) Steinkopf, Ann. 413, 349 (1917). (306) Steinkopf, Bauermeister, Ann. 403, 70 (1914). (307) Volhard, Ann. 267, 179-180 (1892). (308) Steinkopf, Killingstad, Ann. 532, 291 (1937). (309) Lossen, Ann. 161, 347-362 (1872); 265, 129-178 (1891). (310) Menalda, Rec. trav. chim. 49, 967-995 (1930).

(311) Henstock, J. Chem. Soc. 1933, 216. (312) Lipscomb, Baker, J. Am. Chem. Soc. 64, 179–180 (1942). (313) Autenrieth, Thomae, Ber. 57, 1002–1008 (1924). (314) Norris, Haines, J. Am. Chem. Soc. 57, 1425 (1935). (315) Davies, Hambly, Semmens, J. Chem. Soc. 1933, 1313–1314. (316) Zaki, J. Chem. Soc. 1928, 988–989. (317) Norris, Green, Am. Chem. J. 26, 312 (1901). (318) Spassow, Ber. 70, 1929 (1937). (319) Kenyon, Phillips, Pittman, J. Chem. Soc. 1935, 1080. (320) Cohen, J. Am. Chem. Soc. 66, 1396 (1944).

(321) Cohen, Schneider, J. Am. Chem. Soc. 63, 3386 (1941). (322) Norris, Rigby, J. Am. Chem. Soc. 54, 2098 (1932). (323) Vavon, Barbier, Thiebaut, Bull. soc. chim. (5) 1, 812 (1934). (324) Blaise, Picard, Ann. chim. (8) 25, 261 (1912). (325) Magnani, McElvain, J. Am. Chem. Soc. 69, 817 (1938). (326) Huntress, Mulliken, "Tables of Data of Selected Compounds of Order I," John Wiley & Sons, Inc. (1941). (327) Blatt, Chem. Revs. 27, 413-436 (1940). (328) Blatt, Org. Reactions, 1, 342-369 (1942). (329) Bernouilli, St. Goar, Helv. Chim. Acta 9, 730-765 (1926). (330) Michael, Weiner, J. Org. Chem. 3, 374, 382 (1938).

(331) Michael, Ross, J. Am. Chem. Soc. 53, 2401-2402, 2410 (1931). (332) Shriner, Schmidt, J. Am. Chem. Soc. 51, 3636-3638 (1929). (333) Isbell, Wojcik, Adkins, J. Am. Chem. Soc. 54, 3685 (1932). (334) Shriner, Schmidt, Roll, Org. Syntheses, Coll. Vol. 2 (1st ed.), 266-267 (1943); 18, 33-35 (1938). (335) Michael, Carlson, J. Am. Chem. Soc. 57, 167, 172 (1935). (336) von Pechmann, Ber. 25, 1046 (1892). (337) Claisen, Ann. 391, 65-70 (1896). (338) Michael, Hibbert, Ber. 40, 4384-4385 (1907). (339) Spassow, Ber. 76, 2385 (1937). (340) McElvain, Weber, Org. Syntheses 23, 35-37 (1943).

(341) Michael, Carlson, J. Am. Chem. Soc. 58, 353-364 (1936). (342) Nef, Ann. 277, 68-70 (1893). (343) Claisen, Ann. 277, 200-203 (1893). (344) Claisen, Ann. 291, 106-111 (1896). (345) Fischer, Bulow, Ber. 18, 2133 (1885). (346) Claisen, Ann. 277, 188-200 (1893). (347) Claisen, Ann. 291, 56-59, 62-63 (1896). (348) Michael, Ann. 390, 54 (1912). (349) Claisen, Ann. 291, 100 (1896). (350) Weygand, Forkel, Bischoff, Ber. 61, 688 (1928).

(351) Claisen, Ann. 291, 92-93, 102-105 (1896). (352) Abell, J. Chem. Scc. 101, 998 (1912). (353) Perkin, J. Chem. Soc. 47, 252-253 (1885). (354) Descudé, Compt. rend. 133, 1129-1131 (1901). (355) Lydén, Finska Kemistamfindets Medd. 35, 19-36; Cent. 1927, I 1813; C.A. 23, 3880 (1928): ibid. 37, 53-75 (1928); Cent. 1928, II 2133; C.A. 23, 1868 (1929): ibid. 38, 19-46;

Cent. 1930, I 2379; C.A. 24, 335 (1930): ibid. 38, 72-84 (1929); Cent. 1930, I 3171; C.A. 24, 1628 (1930). (356) Kishner, J. Russ. Phys.-Chem. Soc. 41, 651-659 (1909); Cent. 1909, II 1132; C.A. 5, 883 (1911). (357) Underwood, Wakeman, J. Am. Chem. Soc. 52, 387-391 (1930). (358) Meerwein, Maier-Hüser, J. prakt. Chem. (2) 134, 51-53, 77-80 (1932). (359) Kyrides, J. Am. Chem. Soc. 55, 1209-1212 (1933). (360) Kaufmann, Fuchs, Arch. Pharm. 262, 122-125 (1924).

(361) Wedekind, Haeussermann, Ber. 34, 2081–2082 (1901). (362) Kozlov, Bogdanovskaya, Sologub, J. Gen. Chem. (U.S.S.R.) 6, 315-317 (1936); Cent. 1936, II 1896; C.A. 30, 4813 (1936). (363) Underwood, Baril, Toone, J. Am. Chem. Soc. 52, 4087-4092 (1930). (364) Underwood, Toone, J. Am. Chem. Soc. **52**, 391-394 (1930). (365) Hell, Stockmayer, Ber. **37**, 225-226 (1904). (366) Gattermann, Ehrhardt, Maisch, Ber. **23**, 1204-1206, 1209 (1890). (367) Peterson, Am. Chem. J. 46, 335-336 (1911). (368) Gattermann, Ber. 22, 1129-1130 (1889). (369) Jones, J. Chem. Soc. 1936, 1860-1861. (370) van Alphen, Rec. trav. chim. 49, 384 (1930).

(371) Ullmann, Goldberg, Ber. 35, 2814 (1902). (372) Bachmann, Ferguson, J. Am. Chem. Soc. 56, 2082 (1934). (373) Montagne, Rec. trav. chim. 39, 344 (1920). (374) Torres y Gonzales, Bull. soc. chim. (4) 37, 1593-1594 (1925): Anales soc. españ. fís. quím. 24, 82-90 (1926); Cent. 1926, I 21; C.A. 20, 2159 (1926). (375) Kipper, Ber. 38, 2492 (1905). (376) Dilthey, Bach, Grutering, Hausdörfer, J. prakt. Chem. (2) 117, 353 (1927). (377) Schroeder, Brewster, J. Am. Chem. Soc. 60, 751-753 (1938). (378) Fierz-David, Jaccard, Helv. Chim. Acta 11, 1042-1047 (1928). (379) Fieser, Bradsher, J. Am. Chem. Soc. 61, 420-421 (1939). (380) Ray, Moomaw,

J. Am. Chem. Soc. 55, 3835 (1933).

(381) Fieser, J. Am. Chem. Soc. 53, 3558 (1931). (382) Seer, Scholl, Ann. 398, 85 (1913). (383) Popov, J. Gen. Chem. (U.S.S.R.) 5, 986-992 (1935); Cent. 1936, I 2933; C.A. 30, 1049 (1936). (384) Gerhardt, Ann. chim. (3) 37, 321 (1853); Ann. 87, 157-158 (1853). (385) Béhal, Compt. rend. 148, 649 (1909). (386) Knöll and Co., Ger. 117, 267, Jan. 24, 1901; Cent. 1901, I 347. (387) Béhal, Compt. rend. 129, 683 (1899); Bull. soc. chim. (3) 23, 73-75 (1900); Ann. chim. (7) 19, 277-279 (1900). (388) Loir, Bull. soc. chim. (2) 32, 168-169 (1879). (389) Tschitchibabin, J. Russ. Phys.-Chem. Soc. 33, 404-410 (1901); Cent. 1901, II 543. (390) Hurd, Dull, J. Am. Chem. Soc. 54, 3429-3430 (1932).

(391) Williams, Dickert, Krynitsky, J. Am. Chem. Soc. 63, 2511 (1941). (392) Anschutz, Ann. 226, 5 (1884). (393) Minunni, Gazz. chim. ital. 22, II 214-215 (1892). (394) Wedekind, Ber. 34, 2072 (1901). (395) Gerbardt, Ann. chim. (3) 37, 299-203 (1853); Ann. 87, 73-76 (1853). (396) Clarke, Rahrs, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 91-94 (1941); (1st ed.), 85-87 (1932); 3, 21-24 (1932). (397) Dvornikoff (to Monsanto Chem. Co.), U.S. 1,948,342, Feb. 20, 1934; C.A. 28, 2730 (1934). (398) Claisen, Ber. 31, 1024 (1898). (399) Jander, Scholz, Z. physik. Chem. 192, 199-201 (1943); C.A. 38, 2549 (1944). (400) Wöhler, Liebig, Ann. 3, 267-268 (1832).

(401) Guinchant, Ann. chim. (9) 9, 86 (1918). (402) Nef, Ann. 287, 303-307 (1895). (403) Claisen, Ber. 10, 430 (1877). (404) Kolbe, Strecker, Ann. 90, 62-63 (1854). (405) Staudinger, Kon, Ann. 384, 114, 116 (1911). (406) Diels, Pillow, Ber. 41, 1896 (1908). (407) Schiff, Ann. 101, 93 (1857). (408) Limpricht, Ann. 99, 117 (1856). (409) Benson, Hillyer, Am. Chem. J. 26, 373-377 (1901). (410) Miguel, Ann. chim. (5) 11, 300-302 (1877).

(411) Dixon, J. Chem. Soc. 75, 379 (1899). (412) Dixon, Taylor, J. Chem. Soc. 93, 692 (1908). (413) Johnson, Chernoff, J. Am. Chem. Soc. 34, 167 (1912). (414) van Romburgh, Rec. trav. chim. 4, 384, 388 (1885). (415) Beckmann, Ann. 365, 208 (1909). (416) Wheeler, Am. Chem. J. 23, 139, 142 (1900). (417) Reid, Am. Chem. J. 45, 43 (1911). (418) Bodendorf, J. prakt. Chem. (2) 126, 239 (1930). (419) Titherly, J. Chem. Soc. 79, 403-406 (1901). (420) von Braun, Ber. 37, 2814-2815 (1904).

(421) Oliveri-Mandala, Gazz. chim. ital. 44, I 669 (1914). (422) Descudé, Compt. rend. 135, 973-974 (1902). (423) Coleman, Howells, J. Am. Chem. Soc. 45, 3088 (1923). (424) Mitter, Ray, J. Indian. Chem. Soc. 14, 424 (1937). (425) Kenyon, Phillips. Pittman, J. Chem. Soc. 1935, (426) Levene, Rothen, Kuna, J. Biol. Chem. 120, 767, 769 (1937). (427) Schroeter, Ber.
 1205 (1911). (428) Brander, Rec. trav. chim. 37, 77 (1918). (429) K. N. Campbell, A. H. Sommers, B. K. Campbell. J. Am. Chem. Soc. 68, 140 (1946). (430) Brown, Jones, J. Chem. Soc. 1936, 782.

(431) Hallmann, Ber. 9, 846 (1876). (432) von Braun, Ber. 36, 3525 (1903). (433) French, Adams, J. Am. Chem. Soc. 43, 657 (1921). (434) Ulich, Adams, J. Am. Chem. Soc. 43, 665 (1921), (435) Mumm, Hesse, Volquartz, Ber. 48, 387-388 (1915). (436) Wheeler, Walden, Metcalf, Am. Chem. J. 20, 73 (1898). (437) Hepp, Ber. 10, 329 (1877). (438) Hess, Ber. 18, 685-688 (1885). (439) von Braun, Ber. 37, 2681 (1904). (440) Mills, Harris, Lambourne, J. Chem. Soc. 119, 1298 (1921)

(441) Abrahart, J. Chem. Soc. 1936, 1274. (442) Lander, J. Chem. Soc. 83, 408 (1903). Morgan, Evens, J. Chem. Soc. 115, 1144 (1919). (444) Hofmann, Ann. 132, 166 (1864). Bernthsen, Ann. 224, 12, Note (1884). (446) Herzog, Hancu, Ber. 41, 636 (1908). (447) Johnson, Levy, Am. Chem. J. 38, 460 (1907). (448) Hinsberg, Adranszky, Ann. 254, 254-256 (1889). (449) Walther, von Pulawski, J. prakt. Chem. (2) 59, 250-252 (1899). (450) Bamberger. Berlé. Ann. 273, 343-347, 360-361 (1893).

(451) Bistrzycki, Ulffers, Ber. 23, 1876-1878 (1890). (452) Hübner, Ann. 208, 295, 307 (1881). (453) Mixter, Am. Chem. J. 6, 27 (1884/85). (454) Witt, Ber. 45, 2381-2382 (1912). Galimberti, Gazz. chim. ital. 63, 98 (1933). (456) Gerngross, Ber. 46, 1912 (1913). (457) Oddo, Raffa, Gazz. chim. stal. 67, 541-542 (1937); Cent. 1938, I 1581; C.A. 32, 1697 (1938). (458) Ruhemann, Ber. 14, 2652 (1881). (459) Rao, Wheeler, J. Chem. Soc. 1937, 1644. (460) Major, J. Am. Chem. Soc. 53, 4375 (1931).

(461) Bell, Ber. 7, 498 (1874). (462) Sachs, Goldmann, Ber. 35, 3342 (1902). (463) Dreyfus, Brit. 363,986, 364,040, Jan. 28, 1932; Cent. 1932, II 1723; [C.A. 27, 1639 (1933)]: French 719,596, Feb. 8, 1932; Cent. 1932, II 1723; [C.A. 26, 3920 (1932)]. (464) Rivier, Zeltner, Helv. Chim. Acta 20, 699 (1937). (465) Bergmann, Ulpts, Camacho, Ber. 55, 2801–2807 (1922). (466) Ransom, Ber. 31, 1062 (1898); Am. Chem. J. 23, 17 (1900). (467) Ciamician, Silber, Ber. 38, 1181 (1905); Gazz. chim. ital. 36, II 193, 198 (1906). (468) Hubner, Ann. 210, 385-388 (1881). (469) Bell, J. Chem. Soc. 1931, 2966. (470) Raiford, J. Am. Chem. Soc. 41, 2078-2080 (1919).

 (471) Pollard, Amundsen, J. Am. Chem. Soc. 57 358 (1935).
 (472) Ladenburg, Ber. 9, 1526, 1529 (1876).
 (473) Hubner, Morse, Ber. 7, 1319 (1874).
 (474) Wheeler, Am. Chem. J. 17, 399 (1895). (475) Nelson, Matchett, Tindall, J. Am. Chem. Soc. 50, 922 (1928). (476) Knowles, Watt, J. Org. Chem. 7, 56 (1942). (477) Fischer, J. prakt. Chem. (2) 73, 438 (1906). (478) Clark, J. Chem. Soc. 1926, 235. (479) Amundsen, Pollard, J. Am. Chem. Soc. 57, 1536 (1935).

(480) Bamberger, Ber. 36, 2051 (1903).

(481) Tingle, Williams, Am. Chem. J. 37, 58-59 (1907). (482) Skraup, Ann. 419, 68 (1919). (483) Einhorn, Ann. 311, 41 (1900). (484) Fierz-David, Meister, Helv. Chim. Acta 22, 580 (1939). (485) Meyer, Sundmacher, Ber. 32, 2124 (1899). (486) Ikuta, Am. Chem. J. 15, 43 (1893). (487) Hewitt, Ratcliffe, J. Chem. Soc. 101, 1769 (1912). (488) von Auwers, Sonnenstuhl, Ber. 37, 3940, 3941 (1904). (489) Reverdin, Dresel, Ber. 37, 4453 (1904); Bull. soc. chim. (3) 31, 1269 (1904). (490) Smith, Ber. 24, 4042 (1891).

(491) Hubner, Ann. 210, 379 (1881). (492) Reddelien, Danilot, Ber. 54, 3140 (1921). (493) Raiford, J. Am. Chem. Soc. 41, 2068-2080 (1919). (494) Raiford, Couture, J. Am. Chem. Soc. 44, 1792-1798 (1922). (495) Raiford, Iddles, J. Am. Chem. Soc. 45, 469-475 (1923). (496) Raiford, Clark, J. Am. Chem. Soc. 45, 1738-1743 (19.3). (497) Raiford, Greider, J. Am. Chem. Soc. 46, 430-437 (1924). (498) Raiford, Taft, Lankelma, J. Am. Chem. Soc. 46, 2051-2057 (1924). (499) Raiford, Woolfolk, J. Am. Chem. Soc. 46, 2246-2255 (1924). (500) Raiford, Couture, J. Am. Chem. Soc. 46, 2305-2318 (1924).

(501) Raiford, Lankelma, J. Am. Chem. Soc. 47, 1111-1123 (1925). (502) Raiford, Colbert, J. Am. Chem. Soc. 47, 1454-1458 (1925). (503) Raiford, Clark, J. Am. Chem. Soc. 48, 483-489 (1926). (504) Raiford, Talbot, J. Am. Chem. Soc. 49, 559-561 (1927). (505) Raiford, Mortenson, J. Am. Chem. Soc. 50, 1201-1204 (1928). (506) Raiford, Grosz, J. Am. Chem. Soc. 53, 3420-3426 (1931). (507) Raiford, Inman, J. Am. Chem Soc. 56, 1586-1590 (1934). (508) Raiford, Shelton, J. Org. Chem. 4, 207-219 (1939). (509) Raiford, Alexander, J. Org. Chem. 5, 300-312 (1940). (510) Bacher, Raiford, Proc. Iowa Acad. Sci. 50, 247-251 (1943). C.A. 38, 2327 (1944).

(511) Raiford, Crounse, J. Am. Chem. Soc. 66, 1240-1241 (1944). (512) Ransom, Wilson, J. Am. Chem. Soc. 36, 390-393 (1914). (513) Nelson, Davis, J. Am. Chem. Soc. 48, 1677-1679 (1926). (514) Nelson, Aitkenhead, J. Am. Chem. Soc. 48, 1680-1683 (1926). (515) Nelson, Shock, Sowers, J. Am. Chem. Soc. 49, 3129-3131 (1927). (516) Nelson, Matchett, Tindall, J. Am. Chem. Soc. 50, 919-923 (1928). (517) Nelson, Rothrock, J. Am. Chem. Soc. 51, 2761-2764 (1929). (518) Bell, J. Chem. Soc. 1930, 1981-1987. (519) Bell, J. Chem. Soc. 1931, 2962-2967. (520) Dehn, Ball, J. Am. Chem. Soc. 36, 2100-2101 (1914).

(521) Prey, Ber. 75, 543 (1942). (522) Weitz, Roth, Nelken, Ann. 425, 161-186 (1921). Koenigs, Ruppelt, Ann. 509, 142-158 (1934). (524) Lewis, J. Chem. Soc. 1940, 831. (525) Jones, Whalen, J. Am. Chem. Soc. 47, 1344 (1925). (526) Fischer, Ann. 190, 125-129 (1877). (527) Autenrieth, Thomae, Ber. 57, 436 (1924). (528) Michaelis, Schmidt, Ann. 252, 310-317 (1889). (529) Short, J. Chem. Soc. 119, 1447 (1921). (530) Franzen, Ber. 42, 2466-2467 (1909).
(531) Pellizzari, Gazz. chim. ital. 42, II 38 (1911). (532) Michaelis, Schmidt, Ber. 29, 46-47.

1713 (1887). (533) von Auwers, Mauss, J. prakt. Chem. (2) 117, 314 (1927). (534) Hyde, Ber. 32, 1811 (1899). (535) Curtius, Mayer, J. prakt. Chem. (2) 76, 381 (1907). (536) Cahours, Ann. chim. (3) 38, 87-88 (1853). (537) Marvel, Lazier, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 99-101 (1941); (1st ed.), 93-95 (1932); 9, 16-19 (1929). (538) Schotten, Ber. 21, 2238 (1888). (539) Schotten, Ber. 17, 2545 (1884). (540) Autenrieth, Thomae, Ber. 57, 1006 (1924).

(541) von Braun, Ber. 36, 3524, Note (1903). (542) von Braun, Ber. 37, 3210-3213 (1904). (543) von Braun, Steindorff, Ber. 38, 2338-2339 (1905). (544) Merck, Ger. 164,365, Oct. 28, 1905; Cent. 1905, II 1563. (545) Lespieau, Bull. soc. chim. (4) 37, 422 (1925). (546) Johnson, J. Chem. Soc. 1933, 1531. (547) von Braun, Org. Syntheses, Coll. Vol. I (2nd ed.), 428-430 (1941); (1st ed.), 419-420 (1932); 9, 70-71 (1929). (548) von Braun, Irmisch, Ber. 65, 882 (1932). (549) Knorr, Ann. 301, 7 (1898). (550) Arndt, Amende, Ber. 61, 1122-1124 (1928).

(551) Arndt, Eistert, Amende, Ber. 61, 1949-1952 (1928). (552) Bradley, Robinson, J. Chem. Soc. 1928, 1310-1318. (553) Bradley, Schwarzenbach, J. Chem. Soc. 1928, 2904-2912. (554) Arndt, Eistert, Ber. 68, 206 (1935). (555) Bachmann, Struve, Org. Reactions 1, 38-62 (1942). (556) Posner, Ber. 59, 1804-1805, 1815-1817 (1926). (557) de Diesbach, Lempen, Helv. Chim. Acta 16, 148-154 (1933). (558) de Diesbach, de Bie, Rubli, Helv. Chim. Acta 17, 113-128 (1934). (559) de Diesbach, Dobbelman, Helv. Chim. Acta 19, 1213-1222 (1936). (560) de Diesbach, Moser, Helv. Chim. Acta 20, 132-141 (1937).

(561) de Diesbach, Jacobi, Taddei, Helv. Chim. Acta 23, 469-484 (1940). (562) de Diesbach, Klement, Helv. Chim. Acta 24, 158-173 (1941). (563) de Diesbach, Rey-Bellet, Kiang, Helv. Chim. Acta 26, 1869-1885 (1943). (564) Tissier, Grignard, Compt. rend. 132, 684 (1901). (565) Gilman, Fothergill, Parker, Rec. trav. chim., 48, 748-751 (1929). (566) Gilman, Mayhue, Rec. trav. chim. 51, 47-50 (1932). (567) Kharasch, Nudenberg, Archer, J. Am. Chem. Soc. 65, 495-498 (1943). (568) Gilman, Heck, J. Am. Chem. Soc. 52, 4949-4954 (1930). (569) Entemann, Johnson, J. Am. Chem. Soc. 55, 2900-2903 (1933). (570) Gilman, Van Ess, J. Am. Chem. Soc. 55, 1260 (1933).

(571) Hurd, Cohen, J. Am. Chem. Soc. 53, 1071 (1931).
(572) Nef, Ann. 308, 275-276 (1899).
(573) Gilman, Straley, Rec. trav. chem. 55, 823, 825 (1936).
(574) Mel'nikov, Rokitskaya, J. Gen. Chem. (U.S.S.R.)
(7, 464-466 (1937); Cent. 1937, II 1557; C.A. 31, 4266 (1937).
(575) Calvery, J. Am. Chem. Soc. 48, 1011-1012 (1926).
(576) Whitmore, Thurman, J. Am. Chem. Soc. 51, 1496-1497 (1929).
(577) Gilman, Schulze, J. Chem. Soc. 1927, 2668.
(578) Gilman, Nelson, Rec. trav. chim. 55, 518-530 (1936).
(579) Popoff, Ber. 4, 720 (1871).
(580) Freund, Ann. 118, 20-21 (1861).

(581) Kalle, Ann. 119, 165-168 (1861). (582) Michael, Am. Chem. J. 25, 423 (1901). (583) Gerhardt, Ann. chim. (3) 14, 124-125 (1845); Ann. 60, 311-312 (1846). (584) Claisen, Ber. 27, 3182-3183 (1894). (585) Ott, Ber. 55, 2122 (1922). (586) Lukashevich, Amlinokrasochnaya Prom. 5, 193-196 (1935); Cent. 1936, I 1858; [C.A. 30, 7108 (1936)]. (587) Shah, Deshpande, J. Univ. Bombay 2, Pt. 2, 125-127 (1933); Cent. 1934, II 3109; C.A. 28, 6127 (1934). (588) Biehringer, Busch, Ber. 36, 137 (1903). (589) Jacobs, Heidelberger, J. Am. Chem. Soc. 39, 1446 (1917). (590) Vles, Rec. trav. chim. 53, 962 (1934).

(591) Williams, Hinshelwood, J. Chem. Soc. 1934, 1079-1084. (592) Grant, Hinshelwood, J. Chem. Soc. 1933, 1351-1357. (593) Bruckner, Ann. 205, 127-130 (1880). (594) Jacobsen, Huber, Ber. 41, 663 (1908). (595) von Auwers, Ber. 52, 1335 (1919). (596) Just, Ber. 19, 983 (1886). (597) Wallach, Ann. 214, 217 (1882). (598) Jailland, Compt. rend. 60, 1097 (1865). (599) Hübner, Kelbe, Meyer, Ann. 208, 310-311 (1881). (600) Kuhn, Ber. 18, 1477 (1885).

(601) Hofmann, Ber. 20, 1798 (1887). (602) Hubner, Ebell, Ann. 208, 334 (1881). (603) Berlingozzi, Barni, Gazz. chim. ital. 50, I 219 (1920). (604) Church, Chem. News 5, 324 (1862). (605) Hibbert, Sudborough, J. Chem. Soc. 83, 1340-1341 (1903). (606) Dziewonski, Sternbach, Bull. intern. acad. polon. sci. Classe sci. math. nat. 1933-A, 416-431, [Cent. 1934, II 1621]; C.A. 28, 2717 (1934); Roceniki Chem. 13, 704-719 (1933); Cent. 1934, I 2590-2592; not in C.A. (607) Dziewonski, Sternbach, Bull. intern. acad. polon. sci. Classe sci. math. nat. 1935-A, 327-332, Cent. 1936, I 2093; C.A. 30, 2971 (1936). (608) Loovenich, Loeser, Ber. 60, 322-323 (1927). (609) Young, Clark, J. Chem. Soc. 71, 1203 (1897). (610) Klopsch, Ber. 18, 1585 (1885). (611) Cosiner, Ber. 14, 59 (1881). (612) Ley, Ber. 34, 2629-2630 (1901).

\_\_\_\_

#### 

B.P. M.P.  $D_{20}^{20} = 1.2535 (6)$ (2) (3) 200° at 770 mm. (1) 4-5° (6) 199° at 761 mm. (2) 198-200° at 760 mm. (3) 197.7-198.1° at 760 mm. (4) 196-198° at 756 mm. (5) 194° at 745 mm. (6) 82.5-82.8° at 15 mm. (4)

[For prepn. of  $\bar{C}$  from 5-chloro-2-aminotoluene [Beil. XII-835] via diazotization and use of  $Cu_2Cl_2$  reaction (yield: 87.6% (1), 70% (3) (7)) (4) (6) (2) see indic. refs.; from K (1) or Na (5) salt of 2,5-dichlorotoluenesulfonic acid-6 by hydrolysis in conc.  $H_2SO_4$  with superheated steam see (1) (5); for formn. of  $\bar{C}$  (together with other isomers) from toluene with  $Cl_2$  in pres. of FeCl<sub>3</sub> or MoCl<sub>5</sub> see (8), from o-chlorotoluene (3:8245) or m-chlorotoluene (3:8275) with  $Cl_2$  in pres. of Al/Hg see (9).]

[ $\ddot{C}$  with Cl<sub>2</sub> in pres. of Al/Hg yields (10) both 2,3,6-trichlorotoluene (3:0625) and 2,4,5-trichlorotoluene (3:2100).]

 $\bar{C}$  on mononitration in cold with mixt. of  $1\frac{1}{2}$  pts. conc. HNO<sub>3</sub> (D=1.4) and 3 pts. conc. H<sub>2</sub>SO<sub>4</sub> yields (3) (11) 2,5-dichloro-4-nitrotoluene [Beil. V-332], ndls. from alc. + ether, m.p. 50-51° (3);  $\bar{C}$  on dinitration with mixt. of 7 pts. fumg. HNO<sub>3</sub> (D=1.5) and  $3\frac{1}{2}$  pts. conc. H<sub>2</sub>SO<sub>4</sub> at 100° yields (3) (11) 2,5-dichloro-4,6-dinitrotoluene [Beil. V-345], cryst. from AcOH, m.p. 100-101° (3).

C on oxidn. with dil. HNO<sub>3</sub> in s.t. at 120-150° gives (yield: 82% (7), 60% (2)) (3) (5) (6) 2,5-dichlorobenzoic acid (3:4340), m.p. 154°.

 $\bar{C}$  on sulfonation with fumg. H<sub>2</sub>SO<sub>4</sub> yields (1) (3) (12) 2,5-dichlorotoluenesulfonic acid-4 (corresp. sulfonyl chloride, m.p. 43° (1) (12), corresp. sulfonamide, m.p. 191-192° (1) (3) (12)).

[For behavior of C with NaOMe see (2).]

3:6245 (1) Wynne, J. Chem. Soc. 61, 1049-1053 (1892). (2) de Crauw, Rec. trav. chim. 50, 773, 783, 788 (1931). (3) Cohen, Dakin, J. Chem. Soc. 79, 1130-1131 (1901). (4) Kohlrausch, Stockmair, Ypsilanti, Monatsh. 67, 90 (1935). (5) Turner, Wynne, J. Chem. Soc. 1936, 712. (6) Lellmann, Klotz, Ann. 231, 318-319 (1885). (7) Feldman, Kopeliowitsch, Arch. Pharm. 273, 491 (1935). (8) Wynne, Proc. Chem. Soc. 17, 116 (1901). (9) Ref. 3, pp. 1117-1118. (10) Cohen, Dakin, J. Chem. Soc. 81, 1342 (1902).

(11) Cohen, Dakin, J. Chem. Soc. 81, 1347 (1902). (12) Silvester, Wynne, J. Chem. Soc. 1936, 692.

3:6255 o-CHLOROANISOLE 
$$C_7H_7OCl$$
 Beil. VI - 184  $VI_{1}$  (o-Chlorophenyl methyl cther)  $OCH_3$   $VI_{2}$  (171)

B.P. 
$$198.5-199.5^{\circ}$$
 (1)  $D_{4}^{25} = 1.1865$  (18)  $n_{D}^{25} = 1.5433$  (18)  $195-196^{\circ}$  (2)  $D_{4}^{12.6} = 1.1978$  (6)  $n_{He}^{12.6} = 1.54786$  (6)  $194-200^{\circ}$  u.c. at 751 mm. (3)  $192-100^{\circ}$  at 20 mm. (18)  $100^{\circ}$  at 16 mm. (4)  $100^{\circ}$  at 13 mm. (5)  $100^{\circ}$  at 10 mm. (1)

Oil with odor like acetophenone (7). — Volatile with steam.

[For prepn. of  $\bar{C}$  from o-chlorophenol (3:5980) by methylation with Me<sub>2</sub>SO<sub>4</sub> + KOH (3) or with MeI + KOH in MeOH in s.t. at 130° (8) see (3) (8); from o-aminoanisole via diazo and Sandemeyer reactns. see (9) (2); from guaiacol (1:1405) with PCl<sub>5</sub> see (8); from o-nitroanisole with SOCl<sub>2</sub> at 180-200° see (10).]

 $\bar{C}$  on mononitration with fumg. HNO<sub>3</sub> (8) (11) (12) or with HNO<sub>3</sub> (D=1.5) in Ac<sub>2</sub>O (5) yields a mixt. of all 4 possible mononitro products from which the 3-nitro- and 5-nitro isomers are removed by refluxing with 5% NaOH for 1 hr. (5); the unaffected residue extracted by ether consists of 2-chloro-4-nitro-anisole, m.p. 94° (5), and 2-chloro-6-nitro-anisole, m.p. 53° (5); for f.p./compn. data on this system see (5). [2-Chloro-4,6-dinitro-anisole [Beil. VI-260] has m.p. 36° (16), 37° (17).]

[For a study of the reactn. kinetics of the splitting of C in acid soln. see (15).]

3-Chloro-4-methoxybenzenesulfonamide: cryst. from dil. alc., m.p. 130-131° u.c. (13), 130° cor. (14). [From Č + chlorosulfonic acid followed by conversion of the resultant sulfonyl chloride, m.p. 77-80° (14), to sulfonamide with (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>; 85% yield (13).] [A by-product, 3,3'-dichloro-4,4'-dimethoxydiphenyl sulfone, m.p. 165-166° cor. (14) (but unlike the sulfonamide insol. in alk.), has also been observed (14).]

3:8255 (1) Reitz, Ypsilanti, Monatsh. 66, 304 (1935). (2) Gattermann, J. prakt. Chem. (2) 59, 583 (1899). (3) Kohn, Sussmann, Monatsh. 48, 196-197 (1927). (4) Hayashi, J. prakt. Chem. (2) 123, 293 (1929). (5) Ingold, Smith, J. Chem. Soc. 1927, 1690-1695. (6) von Auwers, Z. physik. Chem. A-158, 418 (1932). (7) Holleman, Rec. trav. chim. 37, 104 (1918). (8) Fischli, Ber. 11, 1463 (1878). (9) Wallach, Heusler, Ann. 243, 237-238 (1888). (10) Meyer, Monatsh. 36, 726 (1915).

(11) Reverdin, Ber. 29, 2598 (1896). (12) Reverdin, Eckhard, Ber. 32, 2622 (1899). (13) Huntress, Carten, J. Am. Chem. Soc. 62, 603-604 (1940). (14) Child, J. Chem. Soc. 1932, 718. (15) Ghaswalla, Donnan, J. Chem. Soc. 1936, 1341-1346. (16) Schouten, Rec trav. chim. 56, 550 (1937). (17) van de Vliet, Rec. trav. chim. 43, 623-624 (1924). (18) Anzillotti, Curran, J. Am. Chem. Soc. 65, 609 (1943).

--- 
$$d$$
, $l$ -2,2,3-TRICHLOROBUTANOL-1 H Cl C<sub>4</sub>H<sub>7</sub>OCl<sub>3</sub> Beil. I - 369  
CH<sub>3</sub>--C --- CH<sub>2</sub>OH  $I_1$ ---  $I_2$ -(398)

B.P. 199-200°

M.P. 62°

See 3:1336. Division A: Solids.

3:6270 2,6-DICHLOROTOLUENE

B.P. 199-200° at 760 mm. (13) (1) 
$$D_4^{20} = 1.2686$$
 (5)  $n_D^{20} = 1.5510$  (5) 198-200° (2) 198° at 760 mm. (3) 197-199° at 757 mm. (4) 54-56° at 8 mm. (5)

[For prepn. of  $\bar{C}$  from 6-chloro-2-aminotoluene [Beil. XII-836, XII<sub>1</sub>-(389)] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. (70% yield (2)) (1) (3) see indic. refs.; from 2,6-dichlorotoluenesulfonic acid-4 (itself obtd. by chlorination of p-toluenesulfonyl chloride and subsequent hydrolysis) by hydrolysis in conc. H<sub>2</sub>SO<sub>4</sub> with superheated steam (yield 42-50% (5)) (4) (6) together with 2,3,6-trichlorotoluene (3:0625) as by-product (5) (6) see indic. refs.; for formn. of  $\bar{C}$  (together with other isomers) from toluene with Cl<sub>2</sub> in pres. of MoCl<sub>5</sub> (7) (8) (9), from o-chlorotoluene (3:8245) with Cl<sub>2</sub> in pres. of Fe (9) or Al/Hg (10), or from 2,6-dichlorobenzaldehyde hydrazone by Wolff-Kishner reduction (32-80% yield (19)) see indic. refs.]

\[C\] with Cl<sub>2</sub> in pres. of Al/Hg yields (11) 2,3,6-trichlorotoluene (3:0625); C\] at its b.p. in u.v. light treated with Cl<sub>2</sub> yields (5) 2,6-dichlorobenzyl chloride (3:0410) cryst. from lgr. or ether, m.p. 39-40° (5).]

[C with Br<sub>2</sub> at 170° in sunlight (2) yields (2) (12) 2,6-dichlorobenzyl bromide which on oxidn. with alk. KMnO<sub>4</sub> yields (2) (12) 2,6-dichlorobenzoic acid (3:4200), m.p. 143-144°.]

 $\bar{\mathbb{C}}$  on mononitration in cold with 2 pts. fumg. HNO<sub>3</sub> (11) or with mixt. of 2 pts. conc. HNO<sub>3</sub> (D=1.4) + 3 pts. conc. H<sub>2</sub>SO<sub>4</sub> at 100° (3) yields 2,6-dichloro-3-nitrotoluene [Beil. V-332], ndls. from alc. + AcOH, m.p. 53° (3), 52-53° (11), 50° (13); note that the other possible isomer, viz., 2,6-dichloro-4-nitrotoluene, m.p. 65° (14), 63-64° (15), has been obtd. only by other means. —  $\bar{\mathbb{C}}$  on dinitration with mixt. of 7 pts. fumg. HNO<sub>3</sub> (D=1.5) and 3½ pts. conc. H<sub>2</sub>SO<sub>4</sub> at 100° yields (3) 2,6-dichloro-3,5-dinitrotoluene [Beil. V-345], ndls. from alc., m.p. 121-122° (3), 121° (4) (14); note that the isomeric 2,6-dichloro-3,4-dinitrotoluene, m.p. 130-131° (14), 129-130° (16), has been obtd. only by other means.

Č is extremely resistant to oxidn. either with dil. HNO<sub>3</sub> (9) (1) (3), aq. alk. KMnO<sub>4</sub> (4) (12), acid KMnO<sub>4</sub> (12), KMnO<sub>4</sub> in acetone (4), CrO<sub>3</sub> in H<sub>2</sub>SO<sub>4</sub> or AcOH (12), or K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> in H<sub>2</sub>SO<sub>4</sub> (12); by conversion of Č with Br<sub>2</sub> to 2,6-dichlorobenzyl bromide (see above) and oxidn. of this with alk. KMnO<sub>4</sub> (2) (12) 2,6-dichlorobenzoic acid (3:4200), m.p. 143-144°, is obtd. in 57% yield (12).

Č on sulfonation with fumg. H<sub>2</sub>SO<sub>4</sub> (3) yields 2,6-dichlorotoluenesulfonic acid-3 (corresp. sulfonyl chloride, m.p. 60° (3) (13), corresp. sulfonamide, m.p. 204° (3) (13), 199-201° u.c. (17)); Č on treatment with chlorosulfonic acid in CHCl<sub>3</sub> as directed (17) cf. (18) yields 2,6-dichlorotoluenesulfonyl chloride-3, m.p. 54-56° u.c. (17), 60° (3) (13) (18).

3:6270 (1) Wynne, Greeves, Proc. Chem. Soc. 11, 151-152 (1895). (2) Lehmstedt, Schrader, Ber. 70, 1530 (1937). (3) Cohen, Dakin, J. Chem. Soc. 79, 1131-1133 (1901). (4) Davies, J. Chem. Soc. 119, 873 (1921). (5) Austin, Johnson, J. Am. Chem. Soc. 54, 657-659 (1932). (6) Geigy and Co., Ger. 210,856, June 16, 1909; Cent. 1909, II 79-80. (7) Aronheim, Dietrich, Ber. 8, 1402 (1875). (8) Schultz, Ann. 187, 263 (1877). (9) Claus, Stavenhagen, Ann. 269, 231 (1892). (10) Ref. 3, p. 1117.

Cohen, Dakin, J. Chem. Soc. 81, 1343, 1346 (1902).
 Norris, Bearse, J. Am. Chem. Soc. 62, 956 (1940).
 Silvester, Wynne, J. Chem. Soc. 1936, 692, 695.
 Davies, J. Chem. Soc. 121, 812, 814 (1922).
 Ley, Stephen, J. Chem. Soc. 1931, 78-79.
 Davies, Leeper, J. Chem. Soc. 1926, 1416.
 Huntress, Carten, J. Am. Chem. Soc. 62, 512-513 (1940).
 I.G., Brit. 281,290, Jan. 25, 1928; French 644,319, Oct. 5, 1928; Cent. 1929, II 352.
 Lock, Stach, Ber. 76, 1252-1256 (1943).

3:6280 1,1,2,3,3-PENTACHLOROPROPANE H 
$$C_2H_3Cl_6$$
 I—  $(sym.-Pentachloropropane)$   $Cl_2CH-C-CHCl_2$  Beil.  $I_1$ -(34)  $I_2$ —

B.P. 
$$198-200^{\circ}$$
 (1)  $D_{4}^{34} = 1.6086$  (1)  $n_{D}^{16.5} = 1.5131$  (1)  $126^{\circ}$  at 90 mm. (1)  $98-100^{\circ}$  at 20 mm. (2)

Colorless liq. — Dissolves sulfur and vulcanized rubber.

[For prepn. (yields: 70-75% (3), 63% (2), 46% at  $17^{\circ}$  for 22 hrs. (3)) from CHCl<sub>3</sub> (3:5050) + sym-dichloroethylene (3:5030) + AlCl<sub>3</sub> by stirring with sand for 20 hrs. at 30° see (2) (3) (4).]

Č with alc. KOH (1 mole) gives (70% yield (2)) 1,2,3,3-tetrachloropropene-1 (3:5920), b.p. 165-167° (2).

3:6280 (1) Prins, J. prakt. Chem. (2) 89, 421 (1914). (2) Heilbron, Heslop, Irving, J. Chem. Soc. 1936, 782-783. (3) Porns, Engelhard, Rec. trav. chim. 54, 307-312 (1935). (4) Prins, Ger. 261,689, July 2, 1913; Cent. 1913, II 394; [C.A. 7, 3641 (1913)].

3:6290 2,4-DICHLOROTOLUENE CH<sub>3</sub> 
$$C_7H_6Cl_2$$
 Beil. V - 295  $V_{1^-}(152)$   $V_{2^-}(230)$ 

B.P. F.P. 199.9-200.5° cor. at 760 mm. (1) -13.5° (1) 
$$D_{20}^{20} = 1.2498$$
 (1) 198-200° (2) 1.24597 (6) 1.24597 (6) 196.4-198.2° (3) 196-197.5° (4)  $n_{\rm D}^{22} = 1.5480$  (1) 196-197.0° (5) 194° u.c. at 745 mm. (6) 82.0-82.9° at 15 mm. (3)

For f.p./compn. diagram of system:  $\bar{C} + 3,4$ -dichlorotoluene (3:6355) see (1); the eutectic conts. 48%  $\bar{C}$  and freezes about  $-38^{\circ}$  (1).

[For prepn. of  $\bar{C}$  from 2-chloro-4-aminotoluene [Bcil. XII-988, XII<sub>1</sub>-(435)] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reaction (yield: 72% (5), 30% (6)) see indic. refs.; similarly from 4-chloro-2-aminotoluene [Beil. XII-835, XII<sub>1</sub>-(389)] see (2); from 2,4-diaminotoluene [Beil. XIII-124, XIII<sub>1</sub>-(40)] via tetrazotization and use of CuCl<sub>2</sub> reaction (yield: 75% (7), 57% (16), 45% (4)) (3) see indic. refs.; from toluene + AlCl<sub>3</sub> + SO<sub>2</sub>Cl<sub>2</sub> at 70° (68% yield) see (10).]

[For formn. of  $\bar{C}$  (58% together with 42% 3,4-dichlorotoluene (3.6355) from p-chlorotoluene (3.8287) with  $Cl_2$  in pres. of Fe see (1); for formn. of  $\bar{C}$  (together with other isomers) from toluene with  $Cl_2$  in pres. of FeCl<sub>3</sub> or MoCl<sub>5</sub> (8) or by electrolysis in conc. HCl/AcOH soln. (9) see indic. refs.; from p-chlorotoluene (3.8245) or p-chlorotoluene (3.8287) with  $Cl_2$  in pres. of FeCl<sub>3</sub> or MoCl<sub>5</sub> (8) or Al/Hg (11) see indic. refs.; from potassium salt of 2,4-dichlorotoluenesulfonic acid-5 (12), sodium salt of 2,4-dichlorotoluenesulfonic acid-6 (12), or the sodium salt or amide of 2,4-dichlorotoluenesulfonic acid-3 (12) by hydrolysis in  $H_3PO_4$  with steam at 240° see indic. refs.]

[C with Cl<sub>2</sub> in pres. of Fe (13) or of Al/Hg (14) yields 2,4,5-trichlorotoluene (3.2100) together with other isomers; C with Br<sub>2</sub> at 180-200° yields (15) 2,4-dichlorobenzal dibromide which upon hydrolysis with conc. H<sub>2</sub>SO<sub>4</sub> as directed gives 92% overall yield 2,4-dichlorobenzaldehyde (3:1800), m.p. 74.5° (15) (for similar reaction with Cl<sub>2</sub> see (5)).]

[C with AlCl<sub>3</sub> + phthalic anhydride gives (60% yield (16)) (17) o-(2,4-dichloro-5-methyl)benzoyl-benzoic acid, cryst. from hot toluene, m.p. 140° (16); this prod. htd. 2 hrs. at 100° with 20 pts. conc. H<sub>2</sub>SO<sub>4</sub> + 0.2 pt. H<sub>3</sub>BO<sub>3</sub> ring-closes yielding 2,4-dichloro-1-methylanthraquinone, yel. cryst. from CHCl<sub>3</sub>, m.p. 155° (16).]

 $\bar{C}$  on mononitration, e.g., with cold mixt. of 2 pts. conc. HNO<sub>3</sub> (D=1.42) + 3 pts. conc. H<sub>2</sub>SO<sub>4</sub> (2), yields (2) (8) 2,4-dichloro-5-nitrotoluene [Beil. V-332, V<sub>1</sub>-(163)], long hard ndls. from alc., m.p. 54-55° (2), 55° (18), 53° (8), 49-50° (19);  $\bar{C}$  on dinitration, e.g., with 7 pts. fumg. HNO<sub>3</sub> (D=1.5) + 3½ pts. conc. H<sub>2</sub>SO<sub>4</sub> (2), yields (2) (8) (10) 2,4-dichloro-3,5-dinitrotoluene [Beil. V-345, V<sub>1</sub>-(169)], ndls. from MeOH, m.p. 104° (2) (18) (10)

 $\tilde{C}$  on oxidn. with dil. HNO<sub>3</sub> in s.t. at 130-150° (2) (6) (12), with alk. KMnO<sub>4</sub> (70% yield (25)), with Na<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> + H<sub>2</sub>SO<sub>4</sub> (60% yield (20)), or on electrolytic oxidn. (6.5% yield (21)) gives 2,4-dichlorobenzoic acid (3:4560), m.p. 164°.

 $\ddot{C}$  on sulfonation with fumg. H<sub>2</sub>SO<sub>4</sub> yields (2) (22) 2,4-dichlorotoluenesulfonic acid-5 (corresp. sulfonyl chloride, m.p. 72° (22), 71° (2) (24), corresp. sulfonamide, m.p. 176° (2) (22); 175–176° u.c. (23));  $\ddot{C}$  on treatment with chlorosulfonic acid in CHCl<sub>3</sub> as directed (23) cf. (24) yields 2,4-dichlorotoluenesulfonyl chloride, m.p. 71–72° u.c. (23), 71° (24).

3:6290 (1) Wahl, Compt. rend. 202, 2161-2163 (1936); Bull. soc. chim. (5) 4, 344-349 (1937). (2) Cohen, Dakin, J. Chem. Soc. 79, 1129-1130 (1901). (3) Kohlrausch, Stockmair, Ypsilanti, Monatsh. 67, 89 (1935). (4) Erdmann, Ber. 24, 2769-2770 (1891). (5) van de Lande, Rec. trav. chim. 51, 103, 109 (1932). (6) Lellmann, Klotz, Ann. 231, 314-316 (1885). (7) Hodgson, Walker, J. Chem. Soc. 1935, 530. (8) Seelig, Ann. 237, 157, 163, 166, 167 (1887). (9) Fichter, Glantzstein, Ber. 49, 2481-2487 (1916). (10) Silberrad, J. Chem. Soc. 127, 2680-2681 (1925). (11) Ref. 2, pp. 1116-1117. (12) Wynne, J. Chem. Soc. 1936, 703, 705. (13) Feldman,

Ref. 2, pp. 1116-1117. (12) Wynne, J. Chem. Soc. 1936, 703, 705. (13) Feldman,
 Kopeliowitsch, Arch. Pharm. 273, 493-495 (1935). (14) Cohen. Dakin, J. Chem. Soc. 81, 1340-1341 (1902). (15) Lock, Bock, Ber. 70, 923 (1937). (16) Stouder, Adams, J. Am. Chem. Soc. 49, 2044-2045 (1927). (17) Adams (to Newport Co.), U.S. 1,711,165, Apr. 30, 1929; Cent. 1929, II 796; C.A. 23, 2989 (1929). (18) Blanksma, Rec. trav. chim. 29, 415 (1910). (19) Dadswell,
 Kenner, J. Chem. Soc. 1927, 585. (20) Magidsson, Grigorowski, Russ. 47,689, July 31, 1936; Cent. 1937, I 430-431.

(21) Fichter, Adler, Helv. Chim Acta 9, 286 (1926). (22) Silvester, Wynne, J. Chem. Soc. 1936, 692. (23) Huntress, Carten, J. Am. Chem. Soc. 62, 512-513 (1940). (24) I.G., Brit. 281, 290, Jan 25, 1928; French 644, 319, Oct. 5, 1928, Cent. 1929, II 352. (25) Bornwater, Holleman, Rec. trav. chim. 31, 226-230 (1912).

| B.P.       |            |      | B.P. Cont. |             |      |                                    |
|------------|------------|------|------------|-------------|------|------------------------------------|
| 200°       | (1) (2)    | (13) | 193-197°   | u.c.        | (7)  | $D_4^{128} = 1.1851  (11)$         |
| 198-200°   |            | (3)  | 94-96°     | at 25 mm.   | (8)  |                                    |
| 197.5°     | at 760 mm. | (20) | 88°        | at 18 mm.   | (9)  |                                    |
| 197.7°     | at 759 mm. | (4)  | 79.5°      | at 12 mm.   | (10) | $n_{\rm He}^{12.8} = 1.54015 (11)$ |
| 196.6-197  | at 759 mm. | (5)  | 74.8-75.4  | ° at 10 mm. | (5)  |                                    |
| 194-198° u | .c.        | (6)  |            |             |      |                                    |

Insol. aq.; eas. sol. alc., ether, CHCl<sub>3</sub>. — Does not freeze at  $-18^{\circ}$  (3).

[For prepn. from p-chlorophenol (3:0475) by methylation with  $Me_2SO_4 + alk$ . (7) (6) (1) (60% yield (10)) or with MeI + KOH in s.t. at 120-140° (3) see indic. refs.; from anisole (1:7445) +  $PCl_5$  (2) (100% yield (12)) or  $SO_2Cl_2$  (4) see indic. refs.; from p-chloro-aniline by diazotization and htg. with MeOH see (13).]

Č on mononitration as directed (7) (14) (6) gives (93% yield (6)) 4-chloro-2-nitroanisole [Beil. VI-240], pale yel. lfts. from pet. eth, ndls. or pr. from alc, m.p. 98.5° (15), 98° (14), 96-97.5° (6), 96° (7). [The principal dinitration product, 4-chloro-2,6-dinitroanisole [Beil. VI-260] (best prepd. (16) by further nitration of the 2-nitro prod.), has m.p. 66° (16), 65° (17), 64° (18).]

 $\bar{C}$  on htg. with conc. HCl in s.t. (12) or with NaOMe in MeOH in s.t. at 176° (21) gives MeCl (3:7005) + p-chlorophenol (3:0475). [For study of rate of splitting by acids see (19).]

5-Chloro-2-methoxybenzenesulfonamide: m.p. 154° (22), 150-151° (23). [From C + chlorosulfonic acid followed by conversion of the resultant sulfonyl chloride, m.p. 104° (22), to sulfonamide with (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>; 82% yield (23).]

3:6300 (1) von Auwers, Baum, Lorenz, J. prakt. Chem. (2) 115, 89 (1927). (2) Henry, Ber. 2, 710 (1869). (3) Beilstein, Kurbatow, Ann. 176, 30 (1875). (4) Peratoner, Ortoleva, Gazz. Chim. ital. 28, I 226 (1898). (5) Reitz, Ypsilanti, Monatsh. 66, 305 (1935). (6) Ingold, Smith, Vass, J. Chem. Soc. 1927, 1248. (7) Kohn, Kramer, Monatsh. 49, 151 (1928). (8) Hayashi, J. prakt. Chem. (2) 123, 297 (1929). (9) Jones, J. Chem. Soc. 1942, 419. (10) Bergmann, Engel, Z. physik. Chem. B-15, 95-96 (1931).

(11) von Auwers, Z. physik. Chem. A-158, 418 (1932). (12) Autenrieth, Arch. Pharm. 233, 31-32 (1895). (13) Cameron, Am. Chem. J. 20, 241 (1898). (14) Reverdin, Eckhard, Ber. 32, 2623 (1899). (15) Reverdin, Ber. 29, 2599 (1896). (16) Schouten, Rec. trav. chim. 56, 555 (1937).

(17) van de Vliet, Rec. trav. chim. 43, 622 (1924). (18) Ref. 7, pp. 154-155. (19) Ghaswalla, Donnan, J. Chem. Soc. 1936, 1341-1346. (20) Paulsen, Monatch. 72, 257 (1939).

(21) de Lange, Rec. trav. chim. 38, 103 (1918). (22) Gauntlett, Smiles, J. Chem. Soc. 127, 2745 (1925). (23) Huntress, Carten, J. Am. Chem. Soc. 62, 603-604 (1940).

B.P. M.P. 201-202° cor. at 760 mm. (1) 26-27° (10) 
$$n_{\rm D}^{20} = 1.5438$$
 (12) 200° at 750 mm. (2) 26° (2) (3) (5) (6) (7) 195° at 729 mm. (3) 24.8-25.0° (4) 78-79° at 9 mm. (12) 24.5° (12) Sublimes at ord. temp. (3).

[For prepn. of Č from 3,5-dichloro-2-aminotoluene [Beil. XII-837] via diazotization and reactn. with alc. (yield: 80-85% (2), 57% (5)) (1) see indic. refs.; similarly from 3,5-dichloro-4-aminotoluene [Beil. XII-990] see (3) (4); for formn. of Č from 3,5-dibromo-2-aminotoluene [Beil. XII-840, XII<sub>1</sub>-(390)] or from 3,5-dibromo-4-aminotoluene [Beil. XII-993, XII<sub>1</sub>-(437)] by diazotization followed by treatment with HCl gas in alc. see (6); for prepn. from 3,5-dichloro-2-acetaminotoluene by hydrolysis with EtOH/HCl followed by HNO<sub>2</sub> (34% yield) see (12).]

[Č with Cl<sub>2</sub> in pres. of Al/Hg gives (7) exclusively 2,3,5-trichlorotoluene (3:0610), m.p. 43-45° (7); Č with Cl<sub>2</sub> at 180-190° for 10-12 hrs. gives (2) 3,5-dichlorobenzal dichloride (3:0370).]

[ $\overline{C}$  with Br<sub>2</sub> in pres. of Fe gives in cold (70% yield (8)) 2-bromo-3,5-dichlorotoluene, ndls. from alc., m.p. 33.5° (8).]

 $\bar{C}$  on mononitration by soln. in ice-cold fumg. HNO<sub>3</sub> (D=1.52) (9) yields 3,5-dichloro-2-nitrotoluene [Beil. V-331], ndls. from alc. + AcOH, m.p. 61-62° (5) (crude prod. m.p. 57° (9));  $\bar{C}$  on dinitration with mixt. of 4 pts. HNO<sub>3</sub> (D=1.5) + 4 pts. conc. H<sub>2</sub>SO<sub>4</sub> (5) or the above mononitro deriv. on further nitration with HNO<sub>3</sub> (D=1.52) at 65° (9) yields 3,5-dichloro-2,6-dinitrotoluene, ndls. from alc., m.p. 99-100° (5); note that the crude dinitration prod. often melts about 90° (9), probably because of contamination with 3,5-dichloro-2,4-dinitrotoluene, m.p. 127° (9).

C on oxidn. with dil. HNO<sub>3</sub> (5) (10) in s.t. at 170° (3) yields 3,5-dichlorobenzoic acid (3:4840), m.p. 188°.

 $\bar{C}$  on sulfonation with fumg. H<sub>2</sub>SO<sub>4</sub> yields (5) (11) 3,5-dichlorotoluenesulfonic acid-2, (corresp. sulfonyl chloride, m.p. 44-45° (5) (11), corresp. sulfonamide, m.p. 168-169° (5) (11)).

3:6310 (1) Wynne, Greeves, Proc. Chem. Soc. 11, 151-152 (1895).
 (2) Asinger, Lock, Monatsh.
 62, 345 (1933).
 (3) Lellmann, Klotz, Ann. 231, 322-324 (1885).
 (4) Maryott, Hobbs, Gross, J. Am. Chem. Soc. 62, 2321 (1940).
 (5) Cohen, Dakin, J. Chem. Soc. 79, 1133-1134 (1901).
 (6) Hantssch, Ber. 30, 2344-2346 (1897).
 (7) Cohen, Dakin, J. Chem. Soc. 81, 1343-1344 (1902).
 (8) Asinger, J. prakt. Chem. (2) 139, 299 (1934).
 (9) Borsche, Trautner, Ann. 447, 13 (1926).
 (10) Cohen, Miller, J. Chem. Soc. 85, 174-179 (1904).

(11) Silvester, Wynne, J. Chem. Soc. 1936, 692. (12) Marvel, Overberger, Allen, Johnston, Saunders, Young, J. Am. Chem. Soc. 68, 864 (1946).

3:6312 HEXACHLOROPROPANONE-2 
$$Cl_3C$$
— $CCl_3$   $C_3OCl_6$  Beil. I - 657 (Hexachloroacetone)  $I_1$ — $I_2$ — $I_3$ — $I_4$ — $I_5$ 

B.P. F.P. 202-204° (1) (7) 
$$-2$$
° (1)  $D_{12}^{12} = 1.744$  (1) (7) 110° at 40 mm. (2)  $-3$  to  $-4$ ° (2)

[See also pentachloropropanone-2 (3:6205).]

Colorless limpid liq. with odor which although faint at low temp. becomes sharp and lachrymatory at higher temps. —  $\tilde{C}$  is spar. sol. aq. but with it forms a cryst. monohydrate, m.p. + 15°, alm. insol. aq.

[For prepn. of  $\tilde{C}$  from acetone (1:5400) in 90% AcOH + a little HCl with Cl<sub>2</sub> for 12 hrs. at room temp., followed (after addn. of NaOAc) by 40 hrs. further chlorination at b.p. (2), or with Cl<sub>2</sub> in sunlight (1) (some pentachloroacetone (3:6205) is formed by either method): for prepn. of  $\tilde{C}$  from chloracetone (3:5425) with Cl<sub>2</sub> at 50–100° in light (3) (4) or under press. (5) see indic. refs.; for formn. of  $\tilde{C}$  from citric acid (1:0455) in conc. aq. soln. with Cl<sub>2</sub> in sunlight (1) (6) (7), or from glycerol (1:6540) with Cl<sub>2</sub> in pres. of I<sub>2</sub> (7), see indic. refs.]

C on stdg. with aq. at 30° (2) or with aq. in s.t. at 120° (1) readily undergoes hydrolytic cleavage yielding chloroform (3:5050) and trichloroacetic acid (3:1150).

 $\bar{C}$  with conc. aq. NH<sub>4</sub>OH readily splits yielding (1) chloroform (3:5050) and trichloroacetamide, spar. sol. aq., m.p. 141°; similarly  $\bar{C}$  with aniline yields (1) chloroform (3:5050) and trichloroacetanilide, m.p. 95-97°.

3:6312 (1) Cloëz, Ann. chim. (6) 9, 199-205 (1886). (2) Edwards, Evans, Wilson, J. Chem. Soc. 1937, 1944-1945. (3) Heisel, Hendschel (to I.G.), U.S. 2,199,934, May 7, 1940; C.A. 34, 5855 (1940). (4) I.G., French 816,956, Aug. 21, 1937, Cent. 1938, I 2216. (5) I.G., French 837,741, Feb. 20, 1939; Cent. 1939, II 228. (6) Stadeler, Ann. 111, 299-300 (1859). (7) Cloës, Ann. 122, 119-122 (1862). (8) Zaharia, Cent. 1896, I 100.

— DI-(TRICHLOROMETHYL) CARBONATE OCCl<sub>3</sub> 
$$C_3O_3Cl_6$$
 Beil. III - 17  $III_{1^-}(8)$   $III_{2^-}(16)$ 

B.P. 203° at 760 mm.

M.P. 78-79°

See 3:1915. Division A: Solids.

3:6315 n-BUTYL TRICHLOROACETATE  $C_6H_9O_2Cl_3$  Beil. S.N. 160  $n-C_4H_9O.CO.CCl_3$ 

B.P. 203-205° (1) 
$$D_4^{25} = 1.266$$
 (3)  $n_D^{25} = 1.4495$  (3) 111° at 40 mm. (2) 100-101° at 24 mm. (3)  $D_4^{20} = 1.2778$  (4)  $n_D^{20} = 1.4525$  (4)

[For prepn. (82-89% yield (3), 98% yield (2)) from *n*-butyl alc. (1:6180) + trichloro-acetic ac. (3:1150) see (2) (3).]

3:6315 (1) Cheng, Z. physik. Chem. B-24, 308 (1934). (2) Liston, Dehn, J. Am. Chem. Soc. 66, 1264-1265 (1938). (3) Waddle, Adkins, J. Am. Chem. Soc. 61, 3361-3364 (1939). (4) Schjanberg, Z. physik. Chem. A-172, 229 (1935).

3:6317 TRICHLOROACETALDEHYDE DIETHYLACETAL  $C_8H_{11}O_2Cl_3$  Beil. I - 621  $(\beta,\beta,\beta$ -Trichloroacetal)  $Cl_3C$ — $CH(OC_2H_5)_2$  I<sub>1</sub>— (Chloral diethylacetal) I<sub>2</sub>—

Colorless oil, spar. sol. aq. (abt. 5 g. C per liter aq. (2)), but misc. with alc., ether, or giveerol.

[For prepn. of  $\tilde{C}$  from ethyl  $\alpha,\beta,\beta,\beta$ -tetrachloroethyl ether [Beil. I-623,  $I_2$ -(681)] (itself prepd. (25–33% yield (3)) cf. (7) from chloral ethylalcoholate (3:0860) with PCl<sub>5</sub>) by protracted boilg. (4) (5) (1) with abs. alc. (70% yield (3)) see indic. refs.; for formn. of  $\tilde{C}$  from chloral ethylalcoholate (3:0860) with Cl<sub>2</sub> at 80° (2), or from 75% ethyl alc. with Cl<sub>2</sub> (2), see indic. refs.]

 $\ddot{C}$  above 200° or on distn. with conc.  $H_2SO_4$  yields (2) anhydrous chloral (3:5210).

Č is stable toward alkalies (2) and is unattacked by HCl gas even at 150° (6).

[ $\bar{\mathbf{C}}$  with K ter-butylate in ter-butyl alc. splits out HCl giving (76% yield (3)) dichloroketene diethylacetal, b.p. 177° at 732-740 mm.,  $D_{25}^{25} = 1.1672$ ,  $n_{25}^{25} = 1.4350$  (3).]

3:6317 (1) Paterno, Pisati, Gazz. chim. ital. 2, 333-338 (1872). (2) Byasson, Compt. rend. 87, 26 (1878); Bull. soc. chim. (2) 32, 304-305 (1879). (3) Magnani, McElvain, J. Am. Chem. Soc. 60, 2211-2212 (1938). (4) Wurtz, Frapolh, Jahresber. 1872, 438. (5) Wurtz, Vogt, Zeit. fur Chemie, 1871, 680. (6) Jacobsen, Neumeister. Ber. 15, 602 (1882). (7) Post. J. Org. Chem. 6, 833 (1941).

3:6318 
$$\beta,\beta'$$
-DICHLORO-ISOPROPYL ACETATE  $C_6H_8O_2Cl_2$  Beil. II - 130 (Glycerol  $\alpha,\alpha'$ -dichlorohydrin  $CH_2Cl$  II<sub>1</sub>-(59)  $\beta$ -acetate,  $\beta$ -aceto- $\alpha,\gamma$ -dichlorohydrin)  $H_C$ —O.CO.CH<sub>3</sub>  $H_C$ —O.CO.CH<sub>3</sub>

| B.P. 205° (1) at 760 mm. | (2)  | $D_4^{25} = 1.267$  | (6) | $n_{\rm D}^{25} = 1.4513 \ (6)$ |
|--------------------------|------|---------------------|-----|---------------------------------|
| 202-208°                 | (3)  |                     |     | _ ,,                            |
| <b>204</b> °             | (13) | $D_{20}^{20}=1.281$ | (9) | $n_{\rm D}^{20} = 1.4555 \ (7)$ |
| 202-203° at 740 mm.      | (4)  |                     |     | 1.4542 (9)                      |
| 194–195° u.c.            | (11) |                     |     | • •                             |
| 193-195°                 | (9)  |                     |     |                                 |
| 115-120° at 40 mm.       | (5)  |                     |     |                                 |
| 108-110° at 40 mm.       | (6)  |                     |     |                                 |
| 87-89° at 12 mm.         | (7)  |                     |     |                                 |
| 86° at 12 mm.            | (8)  |                     |     |                                 |
| 84.5° at 8 mm.           | (10) |                     |     |                                 |

[See also  $\beta, \gamma$ -dichloro-n-propyl acetate (3:6220).]

[For prepn. of  $\bar{C}$  from 1,3-dichloropropanol-2 (" $\alpha$ -dichlorohydrin") (3:5985) with AcCl (3:7065) under reflux (11) (9) (15) (3) or with Ac<sub>2</sub>O (1:1015) (12) (13) in pres. of a trace of H<sub>2</sub>SO<sub>4</sub> (8) see indic. refs.]

[For prepn. of C from 3-chloro-1,2-epoxypropane (epichlorohydrin) (3:5358) with AcCl (3:7065) (73% yield (7)) in s.t. at 100° for 2 hrs. (10) or 30 hrs. (4) or with Ac<sub>2</sub>O (1:1015) in s.t. at 180° for 4 hrs. (4) or in pres. of anhydrous FeCl<sub>3</sub> at ord. temp. for 24 hrs. (90% yield (14)) see indic. refs.]

[For formn. of C from glycerol (1:6540) with AcCl (3:7065) (1) or with AcOH (1:1010) + HCl gas at 100° (1) or from glyceryl triacetate (triacetin) with HCl gas (5) see indic. refs.]

[ $\bar{C}$  with MeOH contg. 1% HCl at 60° for 6 hrs. gives (85% yield (7)) 1,3-dichloropropanol-2 (" $\alpha$ -dichlorohydrin") (3:5985); for study of rate of hydrolysis of  $\bar{C}$  with N/10 HCl see (15).]

 $\bar{C}$  with K phthalimide at 150-170° for ½ hr., then extracted with AcOH, gives (3)  $\beta,\beta'$ -bis-(phthalimido)isopropyl acetate, m.p. 194° (3).

3:6318 (1) Berthelot, de Luca, Ann. chim. (3) 52, 459-460 (1858). (2) Gibson, J. Soc. Chem. Ind. 50, 950 (1931) (3) Fairbourne, Cowdrey, J. Chem. Soc. 1929, 133-134. (4) Truchot, Compt. rend. 61, 1171 (1865), Ann. 138, 297-299 (1866), 140, 244-246 (1866). (5) De La Acena, Compt. rend. 139, 868 (1904). (6) Gibson, J. Soc. Chem. Ind. 50, 973 (1931). (7) Sjöberg, Svensk Kem. Tud. 53, 454-457 (1941), Cent. 1942, II25; C.A. 37, 4363 (1943). (8) Wegscheider, Zmerslikar, Monatsh. 34, 1075 (1913). (9) Humnicki, Bull. soc. chim. (4) 45, 280 (1929). (10) Abderhalden, Weil, Fermentforschung 4, 84 (1920); Cent. 1920, III 643.

(11) Henry, Ber 4, 704 (1871). (12) Seelig, Ber. 24, 3470 (1891). (13) Bigot, Ann. chim. (6) 22, 492-493 (1891). (14) Knoevenagel, Ann. 402, 134-138 (1914). (15) Bancroft, J. Am. Chem. Soc. 41, 425, 429 (1919).

3:6323 m-CHLOROPHENETOLE 
$$C_8H_9OCl$$
 Beil. VI - 185  $VI_1$ —  $VI_2$ —

B.P.  $204-205^\circ$  cor. at 717 mm. (1)  $D_4^{20}=1.1712$  (1)  $204-205^\circ$  (2)

Colorless oil with agreeable odor. - Eas. sol. alc., ether, AcOH, C6H6.

[For prepn. of  $\tilde{C}$  from *m*-chlorophenol (3:0255) with EtI + KOH on alc. in s.t. at 100° for 3 hrs. see (1).]

[Č with HCN + C<sub>6</sub>H<sub>6</sub> + AlCl<sub>3</sub> at room temp. for 2 hrs. followed by hydrolysis gives (80% yield (2)) 2-chloro-4-cthoxybenzaldehyde [Beil. VIII-81], m.p. 66.5° (2).]

The direct nitration of  $\tilde{C}$  has not been reported. [Note, however, that all 4 possible mononitration products are known: viz., 3-chloro-2-nitrophenetole, m.p. 52° (3); 3-chloro-4-nitrophenetole, m.p. 39-40° (3); 3-chloro-5-nitrophenetole, m.p. 47° (4); and 3-chloro-6-nitrophenetole, m.p. 63° (3) (5), 62-63° (6). — The only known dinitro-derivative of  $\tilde{C}$  is 3-chloro-4,6-dinitrophenetole [Beil. V1-259], m.p. 112° (7) (8). — The only known trinitro-derivative of  $\tilde{C}$  is 3-chloro-2,4,6-trinitrophenetole [Beil. VI-292], m.p. 51° (5). — All 6 of these nitro products were obtained indirectly.]

3:6323 (1) Wohlleben, Ber. 42, 4372 (1909). (2) Gattermann, Ann. 357, 349-350 (1907). (3) Hodgson, Clay, J. Chem. Soc. 1930, 966. (4) van Erp, J. prakt. Chem. (2) 129, 335 (1931). (5) Blanksma, Rec. trav. chim. 21, 322, 325 (1904). (6) Beilstein, Kurbatow, Ann. 182, 110 (1876). (7) Robert, Rec. trav. chim. 56, 939 (1937). (8) Blanksma, Rec. trav. chim. 23, 123 (1904).



B.P. 206°

M.P. 58°

See 3:1175. Division A: Solids.

3:6327 BENZAL (DI)CHLORIDE CHCl<sub>2</sub> 
$$C_7H_6Cl_2$$
 Beil. V - 297 (Benzylidene (di)chloride,  $\alpha,\alpha$ -dichlorotoluene;  $\alpha,\omega$ -dichlorotoluene)  $V_2$ -(232)

B.P. [207° cor. (1)] 
$$-16.0^{\circ}$$
 to  $-16.2^{\circ}$  cor. (9)  $D_4^{14} = 1.2557$  (1)  $-16.1^{\circ}$  cor. (10)  $n_D^{20} = 1.5503$  (8)  $205.2^{\circ}$  at 760 mm. (2)  $-16.4^{\circ}$  (11)  $1.5502$  (13)  $205.15^{\circ}$  at 760 mm. (3)  $-17.0^{\circ}$  (12)  $205^{\circ}$  (37)  $-17.4^{\circ}$  (2)  $D_4^{0} = 1.2699$  (4)  $n_D^{19.4} = 1.5515$  (14)  $203.5^{\circ}$  (5) See Note 2. See Note 3. (5) See Note 2. See Note 3. (6)  $118^{\circ}$  at 60 mm. (7) Note 1. The b.p. of 214° given by (15) appears without 104–105° at 30 mm. (8) See Note 1. (9)  $D_4^{135.5} = 1.2122$  (4);  $D_4^{79.2} = 1.1877$  (4);  $D_4^{135.5} = 1.2127$  (4).

Note 3. The value of  $n_{20}^{20}$  for mixtures of  $\bar{C}$  with benzyl chloride (3:8535) ( $n_{20}^{20} = 1.5391$  (13)) is a linear function of their composition (13).

[See also benzyl chloride (3:8535) and benzotrichloride (3:6540).]

Ordinary comml.  $\bar{C}$ , usually obtd. by chlorination of toluene, frequently conts. benzyl chloride (3:8535) and benzotrichloride (3:6540), which are difficult (if not impossible) to remove by distillation methods. For purification of  $\bar{C}$  by repeated fractional freezing see (5); for patent on purification of  $\bar{C}$  from inorganic contaminants see (16). The best approach to pure  $\bar{C}$  is from benzaldehyde by action of PCl<sub>5</sub> (see below).

 $\overline{C}$  is insol. aq.; sol. alc., ether, or below  $-20^{\circ}$  in equal vol. of pet. ether (17).

[For a method for quant. detn. of  $\bar{\mathbf{C}}$  in mixtures with benzyl chloride (3:8535) and benzotrichloride (3:6540) see (18); for a rapid combustion method for detn. of chlorine in  $\bar{\mathbf{C}}$  see (19).]

# PREPARATION OF C

From benzaldehyde. [For prepn. of  $\bar{C}$  from benzaldehyde (1:0195) with PCl<sub>5</sub> (yield: 80-85% (20)) (21) in CHCl<sub>3</sub> (9), with POCl<sub>3</sub> in C<sub>6</sub>H<sub>6</sub> (22), with SOCl<sub>2</sub> (23) (24), with COCl<sub>2</sub> (3:5000) in s.t. at 120-130° (25), with oxalyl (di)chloride (3:5060) in s.t. at 130-140° for 2 hrs. (26), or with succinyl (di)chloride (3:6200) in s.t. at 100° (27) see indic. refs.]

From toluene. [For prepn. of  $\overline{C}$  from toluene (1.:7405) with SO<sub>2</sub>Cl<sub>2</sub> (2 moles) in presence of a trace of dibenzoyl peroxide refluxed for 6 hours (90% yield (8)), with SOCl<sub>2</sub> in s.t. at 230-250° (28), with PCl<sub>5</sub> in s.t. at 190-195° for 2 hours (29), or with NOCl at 350° (30) see indic. refs.]

[For studies of formn. of C from toluene (1:7405) with Cl<sub>2</sub>, especially in light, see the scientific papers (13) (31) (32) (33) and patents (34) (35) (36).]

From other sources. [For formn. of  $\tilde{C}$  from benzyl chloride (3:8535) with  $Cl_2$  (37) (38), with NOCl at 150° (39), or with PbCl<sub>4</sub>.2NH<sub>4</sub>Cl (40) see indic. refs.; from various benzyl ethers by cleavage with PCl<sub>5</sub> see (41); from  $\alpha$ -chlorobenzyl chloroformate [Beil. VII-211] by loss of  $CO_2$  on distn. see (42); or from benzaldazine with NOCl see (43).]

# CHEMICAL BEHAVIOR OF C

**Pyrolysis.** [Č passed over red-hot Pt wire gives (44) HCl and both cis (3:1380) and trans (3:4210) tolane dichlorides  $(\alpha, \alpha'$ -dichloro- $\alpha, \alpha'$ -diphenylethylenes).]

Reduction. [ $\bar{C}$  with  $H_2$  in pres. of Pd/CaCO<sub>3</sub> (45) or Ni (46) in alc. KOH loses all its halogen as HCl (use in quant. detn.) but the corresp. org. reduction prod. has not been characterized. —  $\bar{C}$  with  $H_2$  in pres. of colloidal Pd in dil. alc. gives (47) toluene (1:7405), benzyl chloride (3:8535), and  $\alpha$ -stilbene dichloride (3:4854). —  $\bar{C}$  in MeOH/KOH with hydrazine hydrate in pres. of Pd gives (19% yield (48))  $\alpha$ -stilbene dichloride (3:4854).]

Hydrolysis. C upon hydrolysis yields benzaldehyde (1:0195) and HCl; frequently the reaction is so executed that the benzaldehyde reacts further according to the nature of the environment; examples of both types of reaction are cited below.

[ $\bar{C}$  with aq. in s.t. at 140–160° (1), with aq. in pres. of ferric salts (49) or metallic Fe (50) below 100°, with 50% aq. acetone at 72° (59), with conc.  $H_2SO_4$  (2 moles) at 50° subsequently poured into aq. (51), with  $H_3BO_3$  (1 mole) at 130–160° (52) (note that benzyl chloride (3:8535) is unaffected while benzotrichloride (3:6540) gives benzote acid (1:0715)), with boilg. aq.  $K_2CO_3$  (53), with moist NiCO<sub>3</sub> at 120° or moist CoCO<sub>3</sub> at 60° for 3 hrs. (60), with aq. Na<sub>2</sub>SO<sub>3</sub> at 110° (54), with ZnO in  $C_6H_6$  followed by aq. (55), with anhydrous formic acid (56) (57), or with anhydrous oxalic acid at 130° (58) gives (yields: 85% (52), 82% (58), 79% (51), 76% (60), 75% (59), 70% (54), 30% (55)) benzaldehyde (1:0195).]

[For study of kinetics of hydrolysis of  $\bar{C}$  at 30° and 60° in aq. acetone either directly or in pres. of  $H_2SO_4$  or KOH see (61), with aq. or KOH in 95% alc. see (62): for study of influence of substituents on hydrolysis of  $\bar{C}$  see (61) (63) (64).]

[ $\bar{C}$  with AcOH + ZnCl<sub>2</sub> gives (65) benzaldehyde (1:0195) + acetyl chloride (3:7065) + HCl. —  $\bar{C}$  with anhydrous alkali acetate at 180–200° for 10–20 hrs. gives (66) cinnamic acid (1:0735). —  $\bar{C}$  with AgOAc (32) (1) (67) or with PbO in AcOH (68) gives benzal diacetate [Beil. VII-210, VII<sub>1</sub>-(119)], m.p. 45–46°.]

Alcoholysis. [C̄ with EtOH + ZnCl<sub>2</sub> gives (65) benzaldehyde (1:0195) + ethyl chloride (3:7015) + HCl; an analogous reaction occurs with C̄ + ZnCl<sub>2</sub> + aromatic alcohols (69). — C̄ with sodium alcoholates under ord. press. gives the corresp. benzaldehyde acetals: e.g., C̄ with MeOH/NaOMe at 100° for 15 hrs. gives (15% yield (70)) (67) benzaldehyde dimethylacetal [Beil. VII-209], b.p. 194-196°; C̄ with EtOH/NaOEt at 100° for 24 hrs. gives (33% yield (70)) (67) benzaldehyde diethylacetal [Beil. VII-209, VII<sub>1</sub>-(119)], b.p. 222°. — However, C̄ with sodium alcoholates under press. in s.t. gives (70) benzaldehyde (1:0195) together with the corresp. alkyl chlorides.]

Substitution. Chlorination. [C with Cl<sub>2</sub> in pres. of I<sub>2</sub> gives (32) p-chlorobenzal (di)chloride (3:6700). — Note, however, that C with excess liquid Cl<sub>2</sub> in s.t. in sunlight gives (71) an addn. prod., viz., benzal (di)chloride hexachloride, m.p. 153° (71); also that C with NOCl at 150° substitutes in the side chain giving (39) benzotrichloride (3:6540). — Note further that C with SO<sub>2</sub>Cl<sub>2</sub> + dibenzoyl peroxide does not react even when refluxed for 20 hrs. (8); cf. prepn. of C from toluene by this method (above).]

Bromination. [C with Br<sub>2</sub> in pres. of metallic beryllium gives (72) p-bromobenzal (di)-bromide, b.p. 170-171° at 19 mm. (72). — C with Br<sub>2</sub> at 120-140° gives (57) benzodichloride bromide, C<sub>6</sub>H<sub>5</sub>CCl<sub>2</sub>Br, b.p. 88-94° at 1 mm., and benzochloride dibromide, C<sub>6</sub>H<sub>5</sub>OClBr<sub>2</sub>, b.p. 98-103° at 1 mm.]

Sulfonation. [ $\tilde{C}$  with SO<sub>3</sub> does not sulfonate but instead undergoes hydrolysis: e.g.,  $\tilde{C}$  with sulfuric acid monohydrate at 35° gives (73) a mixt. of benzaldehyde-sulfonic acids in the ratio 10% o-+30% m-+60% p-, although these products cannot be isolated as such.] Nitration. [All three isomeric mononitro derivatives of  $\tilde{C}$  are known, viz., o-nitrobenzal

(di)chloride [Beil. V-332,  $V_{1}$ -(163)], m.p. 27.5° (63), 26–26.5° (61), 25.7° (11); *m*-nitrobenzal (di)chloride [Beil. V-332,  $V_{1}$ -(163),  $V_{2}$ -(254)], m.p. 64.5–65° (61), 64.5° (11); *p*-nitrobenzal

(di)chloride [Beil. V-332, V<sub>1</sub>-(163), V<sub>2</sub>-(255)], m.p. 43.0–43.5° (61), 43° (63), 42.8° (11); however, they are best prepared by reaction of the corresp. nitrobenzaldehydes with PCl<sub>5</sub> (74) (75). — For thermal anal. of mixtures of the three nitrobenzal (di)chlorides see (11). — For study of the mononitration of  $\bar{C}$  with anhydrous HNO<sub>3</sub> in Ac<sub>2</sub>O at 20° giving about 23% o-+34% m-+43% p- see (11) cf. (76). — Note that neither dinitro nor trinitro derivatives of  $\bar{C}$  have been reported.]

Behavior with other inorganic reactants.  $\bar{C}$  with metals.  $[\bar{C}$  with Na on htg. gives {1} stilbene (1:7250). For behavior of  $\bar{C}$  with Na in liq. NH<sub>3</sub> giving dibenzyl, benzylamine, and other products see (80). — $\bar{C}$  with equal wt. of Cu powder at 100° for 12 hrs. couples with loss of 2 Cl giving (77)  $\alpha$ -stilbene dichloride (3:4854). — $\bar{C}$  on boiling with Cu in aq. Na<sub>2</sub>CO<sub>3</sub> for 24 hrs. gives (78) benzaldehyde-copper, 2C<sub>6</sub>H<sub>5</sub> CHO Cu, green cryst., decg. about 220° without melting. — $\bar{C}$  with Cu in pyridine reacts vigorously (79), but the products have not been characterized.]

C with inorganic salts [C with AlCl<sub>3</sub> in pet. eth. or CS<sub>2</sub> evolves HCl and resinifies (37); C with yery small amt. AlCl<sub>3</sub> at -15° gives (small yield (81)) phenyl-m-dichloromethyl-phenylchloromethane, b.p. 285° at 750 mm.]

[Č with SbF<sub>3</sub> on htg. gives (82) (83) benzal (di)fluoride [Beil. V-290, V<sub>1</sub>-(149), V<sub>2</sub>-(224)], b.p. 139.95° (83),  $D_{-}^{20} = 1.13572$  (84),  $n_{D}^{20} = 1.45775$  (84) ]

[C with alc. Na<sub>2</sub>S under N<sub>2</sub> gives (85) cf. (86) monomeric thiobenzaldehyde, but this cannot be isolated since it immediately undergoes polymerization to β-trithiobenzaldehyde and/or other reactions. — C with alc. NaSH refluxed 3-4 hrs. gives (86) dibenzyl disulfide [Beil VI-465, VI<sub>1</sub>-(229), VI<sub>2</sub>-(437)], m.p. 69-70° (86).]

[ $\bar{C}$  with conc. aq. NH<sub>4</sub>OH on stdg 4 months at ord temp. (87), or  $\bar{C}$  with alc. NH<sub>4</sub>OH in s.t. at 100° (88), or  $\bar{C}$  with alc. NH<sub>4</sub>OH + trace of Zn dust at room temp. (88), gives hydrobenzamide [Beil. VII-215, VII<sub>1</sub>-(120)], m p. 110°, doubtless through intermediate hydrolysis to benzaldehyde since this can sometimes (88) be isolated.]

Behavior with organic reactants.  $\bar{C}$  with hydrocarbons [ $\bar{C}$  with  $C_6H_6$  in pres. of AlCl<sub>3</sub> (37) (89), Cr (90), BeCl<sub>2</sub> at 130–140° for 20 hrs. (91), or Zn dust (92) undergoes Friedel-Crafts reaction giving (yields: 28 7% (91), 19.5% (90), 13 4% (37)) triphenylmethane (1:7220) frequently accompanied (37) (89) by other products such as diphenylmethane (1:7120) and triphenylchloromethane (3:3410). — $\bar{C}$  with  $C_6H_6+Al+H_6Cl_2$  at 50–55° gives (93) cf. (89) 9, 10-diphenyl-9, 10-dihydroanthracene [Beil. V-745, V<sub>2</sub>-(681)], m.p. 164° (89), 159° (93).]

[ $\bar{C}$  with toluene in pres. of BeCl<sub>2</sub> refluxed 3 hrs. gives (73% yield (91)) phenyl-di-p-tolylmethane (4,4'-dimethyl-triphenylmethane) [Beil V-712, V<sub>1</sub>-(352), V<sub>2</sub>-(623)], accompanied by other products. —  $\bar{C}$  with toluene + Al + HgCl<sub>2</sub> at 60-70° for 2 hrs. gives (93) a hydrocarbon C<sub>28</sub>H<sub>24</sub>, m.p. 185°, possibly having the structure 9,10-di-p-tolyl-9,10-dihydroanthracene.]

[ $\bar{C}$  with o-xylene (1:7430) + AlCl<sub>3</sub> in acetylene tetrachloride (3:5750) as solvent gives (very small yield (94)) 2,3,6,7-tetramethyl-9,10-diphenylanthracene, m.p. 312°; note that this product has composition  $C_{30}H_{26}$  and is not a dihydroanthracene deriv.]

[For use of  $\tilde{C}$  + conc.  $H_2SO_4$  as a color test for various aromatic hydrocarbons see (95) (96).]

 $\bar{C}$  with phenols. [ $\bar{C}$  with phenol at 120° for 10 hrs. condenses with loss of HCl giving (87% yield (70)) 4,4'-dihydroxy-triphenylmethane (leucobenzaurin) [Beil. VI-1042, VI<sub>1</sub>-(1010)], ndls. from aq. alc. or from CHCl<sub>3</sub>, m.p. 160-161° (corresp diacetate, m.p. 115° (97)): this prod. is also obtd. from benzaldehyde (1:0195) by condensation with phenol (1:1420) in pres. of H<sub>2</sub>SO<sub>4</sub> (yields: 25% (98), 22% (99)) or H<sub>3</sub>PO<sub>4</sub> (100): note that the isomeric benzaldehyde diphenylacetal is unreported. For formn. of resin from  $\bar{C}$  with phenol see (101).]

[ $\tilde{C}$  with 2 moles  $\beta$ -naphthol (1:1540) on htg. condenses with loss of HCl + H<sub>2</sub>O giving (97% yield (102)) (103) 9-phenyl-1,2,7,8-dibenzoxanthene [Beil. XVII-98], pr. or tbls. from AcOH, m.p. 190-191° (103), 190° (102); this prod. is also obtd. from benzaldehyde (1:0195) by condensation with  $\beta$ -naphthol in AcOH in s.t. at 200° for 2 days (104) or in pres. of H<sub>2</sub>SO<sub>4</sub> (104) at 100°; see also under benzaldehyde (1:0195) for use as test for latter.]

 $\bar{C}$  with amines. [ $\bar{C}$  with aniline (2 moles) in pres. of Zn dust (92) or BeCl<sub>2</sub> at 120–125° for 2 hrs. (91) condenses giving (54% yield (91)) 4,4'-diamino-triphenylmethane [Beil. XIII-274, XIII<sub>1</sub>-(89)], cryst. from C<sub>6</sub>H<sub>6</sub> with 1 mole solvent, m.p. 106° (106), 104–105° (92), cryst. from dry ether without solvent, m.p. 139–140° (106), 139° (107) (corresp. diacetyl deriv., m.p. 233–234° (108) (109)); this compound is also obtd from benzaldehyde (1:0195) by condensation with 2 moles aniline in various ways, e.g., see (108) (106) (107).]

[Č with N,N-dimethylaniline (2 moles) in pres. of ZnCl<sub>2</sub> at 100° (110) condenses giving 4,4'-bis-(dimethylamino)-triphenylmethane (leuco-Malachite Green) [Beil. XIII-275, XIII<sub>1</sub>-(89)], cryst. from  $C_6H_6$  or alc. in 3 forms, mp. 102° (111) (112), m.p. 93–94° (111), 92–93° (112), and 77° (112) cf. (111); thus prod is also obtd from benzaldehyde (1:0195) by condensation with 2 moles N,N-dimethylaniline in various ways, e.g., with ZnCl<sub>2</sub> at 100° (113) (112), or with POCl<sub>3</sub> (alm. 100% yield (114))

[For study of reactivity of C toward pyridine or piperidine see (115).]

 $\bar{C}$  with other nutrogenous reactants. [ $\bar{C}$  (excess) with thiourea at not above 150° gives (116) (117) a salt,  $C_9H_9N_3S_2$  HCl, m.p. 236° (117), regarded as 4,6-di-imino-2-phenyl-1,3,5-dithiazane (117). — For analogous behavior of  $\bar{C}$  with N-phenylthiourea and with N-(p-tolyl)-thiourea see (117) [

[C with Zn salt of o-aminophenyl mercaptan in AcOH/NaOAc refluxed 30 min. in current of H<sub>2</sub>S gives (low yield (118)) 2-phenylbenzothiazole, m.p. 114° cor ]

 $\bar{C}$  with organometalic reactants. [ $\bar{C}$  with MeMgI gives (22% yield (119))  $\alpha$ -stilbene dichloride (3:4854) + ethane but no isopropylbenzene (cumene) or sym.-dimethyldiphenylethane; however,  $\bar{C}$  with MeMgCl gives (120) no  $\alpha$ -stilbene dichloride but instead a mixture of four other compds., viz., isopropylbenzene (cumene) (1:7440), 1-chloro-1,2-diphenylpropane, and two forms of 2,4-diphenylbutane.]

[ $\bar{C}$  with  $C_6H_6MgBr$  gives (119) cf. (121) triphenylmethane (1:7220) +  $\alpha$ -stilbene dichloride (3:4854) + biphenyl (1:7175) |

[C with Me<sub>2</sub>Zn gives (122) isopropylbenzene (cumene) (1:7440).]

[C does not react with Hg di-p-tolyl even on refluxing in toluene for 300 hrs. (123).]

- ₱ Hydrolysis to benzaldehyde: C on boilg. with 10% K₂CO₃ soln. gives benzaldehyde (1:0195); after acidification with HCl the benzaldehyde may be detected with fuchsin aldehyde reagent. (Dif. from pure benzyl chloride (3:8535) or pure benzotrichloride (3:6540).)
- **©** Benzaldehyde phenylhydrazone: m.p. 156° u.c. (From  $\bar{C}$  with 3 moles phenylhydrazine refluxed in alc. for 2 hrs. (55% yield {124}); note that from the mother liquor small amounts of an isomeric ( $\gamma$ ) benzaldehyde phenylhydrazone, m.p. 154–155°, are obtd. (124).]
- Benzaldehyde semicarbazone: m.p. 219-220° u.c. (124). [From Č (3.2 g.) with semicarbazide hydrochloride (4.4 g.) + Na<sub>2</sub>CO<sub>3</sub> (2.1 g.) refluxed a few hrs. in alc. and the ppt. recrystd. from hot aq. (124); note that the m.p. of this prod. varies somewhat with rate of htg. cf. (1:0195).]

3:6327 (1) Limpricht, Ann. 139, 317-321 (1866). (2) Timmermans, Bull. soc. chim. Belg. 25, 334-343 (1913); Cent. 1914, I 618. (3) Locat, Ann. soc. sci. Bruxelles B-47, 68 (1927); Cent. 1927, II 905; C.A. 22, 4296 (1928). (4) Schiff, Ber. 18, 563 (1886). (5) Olivier, Weber, Rec. trav. chim. 53, 880 (1934). (6) Lock, Asinger, Monatsh. 59, 157 (1932). (7) Lauer, J. prakt. Chem. (2) 142, 257 (1935). (8) Kharasch, Brown, J. Am. Chem. Soc. 61, 2146 (1939). (9) Sutton,

Proc. Roy. Soc. (London) A-133, 672-673 (1931). (10) von Schneider, Z. physik. Chem. 22, 234

(11) Holleman, Vermeulen, DeMooy, Rec. trav. chim. 33, 17-25 (1914). (12) Altschul, von Schneider, Z. physik. Chem. 16, 24 (1895). (13) King, Beasley, Proc. Nova Scotian Acad. Sci., 18, 204-212 (1932-33); Cent. 1934, I 3201; C.A. 28, 2686 (1934). (14) Cotton, Mouton, Ann. chim. (8) 28, 214 (1913). (15) "International Critical Tables," Vol. 1, p. 208 (1926). (16) Britton (to Dow Chem. Co.), U.S. 1,804,458, May 12, 1931; Cent. 1931, II 497; C.A. 25, 3668 (1931). (17) Prins, Rec. trav. chim. 42, 26 (1923). (18) Lubs, Clark, J. Am. Chem. Soc. 49, 1449-1453 (1918). (19) Van Winkle, Smith, J. Am. Chem. Soc. 42, 333-347 (1920). (20) Asinger, Lock, Monatsh. 62, 331-333 (1933).

(21) Cahours, Ann. 70, 39-40 (1849). (22) Backes, Compt. rend. 196, 1674-1675 (1933). (23) Loth, Michaelis, Ber. 27, 2548 (1894). (24) Hoering, Baum, Ber. 41, 1918 (1908). (25) Kempf, J. prakt. Chem. (2) 1, 412-413 (1870). (26) Staudinger, Ber. 42, 3976 (1909). (27), Rembold, Ann. 188, 189-190 (1866). (28) Meyer, Monatsh. 36, 729 (1915). (29) Colson, Gautier, Ann. chim. (6) 11, 21-22 (1887). (30) Moyer (to Solvay Process Co.), U.S. 2,152,357, March 28, 1939;

Cent. 1939, II 1775, [C.A. 33, 5001 (1939)].

(31) Mason, Smale, Thompson, Wheeler, J. Chem. Soc. 1931, 3150-3157. (32) Beilstein, Kuhlberg, Neuhof, Ann. 146, 332-323, 327 (1868). (33) Beilstein, Ann. 116, 336-341 (1860). (34) Conklin (to Solvay Process Co.), U.S. 1,828,858 + 1,828,859, Nov. 27, 1931; Cent. 1932, I 1575; [C.A. 26, 632 (1932)]. (35) Imperial Chemical Industries, Ltd., and Wheeler, Brit. 378,866, Sept. 15, 1932; Cent. 1933, II 936; [C.A. 27, 3947 (1933)]. (36) The Selden Co., Swiss 87,961, Jan. 17, 1921; Cent. 1921, IV 354; not in C.A. (37) Böeseken, Rec. trav. chum. 22, 311-312 (1903). (38) Zelinsky, Schering-Kahlbaum, A.G., Ger. 478,084, June 20, 1929; Cent. 1929, II 1216; C.A. 23, 4228 (1929). (39) Perrot, Compt. rend. 198, 1424-1426 (1934). (40) Seyewetz, Trawitz, Compt. rend. 136, 241 (1903).

(41) Whitmore, Langlois, J. Am. Chem. Soc. 55, 1518-1520 (1933). (42) F. Bayer and Co., Ger. 121,223, June 3, 1901; Cent. 1901, II 69. (43) Franzen, Zimmermann, Ber. 40, 2011-2012 (1907). (44) Lob, Ber. 36, 3060 (1903). (45) Busch, Stöve, Ber. 49, 1068 (1916). (46) Kelber, Ber. 50, 309 (1917). (47) Borsche, Heimburger, Ber. 48, 457-458 (1915). (48) Busch, Weber, J. prakt. Chem. (2) 146, 49-50 (1936). (49) Schultze, Ger. 82,927, July 22, 1895; Friedlander 4,

143 (1899). (50) Schultze, Ger. 85,493, Jan. 13, 1896; Friedländer 4, 145 (1899).

(51) Oppenheim, Ber. 2, 212-214 (1869).
(52) Makaroff-Semliansky, Prokin, J. prakt. Chem.
(2) 147, 317-320 (1936/37).
(53) Meunier, Bull. soc. chim. (2) 38, 160 (1882).
(54) Ger, Russian 40,349, Dec. 31, 1934; Cent. 1935, II 3704; [C.A. 30, 3838 (1936)].
(55) Davies, Dick, J. Chem. Soc. 1932, 2808.
(56) Gavankar, Heble, Wheeler, J. Univ. Bombay 6, Pt. II, 112-113 (1937); Cent. 1938, I 4610; [C.A. 32, 3757 (1938)].
(57) Heble, Nadkarni, Wheeler, J. Chem. Soc. 1938, 1322-1323.
(58) Anschütz, Ann. 226, 18 (1884).
(59) Asinger, Lock, Monatsh. 62, 323, 330 (1933).
(60) Vanin, Chernovarova, J. Russ. Phys.-Chem. Soc. 59, 891-894 (1927); Cent. 1928, I 2941; [C.A. 22, 3107 (1928)].

(61) Olivier, Weber, Rec. trav. chim. 53, 869-890 (1934). (62) Petrenko-Kritschenko, Opotzky, Ber. 59, 2136 (1926). (63) Asinger, Lock, Monatsh. 62, 323-348 (1933). (64) Lock, Asinger, Monatsh. 59, 152-160 (1932). (65) Jacobsen, Ger. 11,494, Dec. 7, 1879; Friedländer 1, 24 (1888). (66) B.A.S.F., Ger. 17,467, Aug. 14, 1880, Friedländer 1, 26 (1888); B.A.S.F., Ger. 18,232, Feb. 16, 1881, Friedländer 1, 28 (1888). (67) Wicke, Ann. 102, 363-368 (1857). (68) Bodroux, Bull. soc. chim. (3) 21, 331-333 (1899). (69) Jacobsen, Ger. 13,127, May 25, 1880;

Friedländer 1, 26 (1888). (70) Mackenzie, J. Chem. Soc. 79, 1212-1220 (1901).

(71) van der Linden, Rec. trav. chrm. 57, 1080-1083 (1938).
(72) Pajeau, Compt. rend. 204, 1203 (1937).
(73) Lauer, J. prakt. Chem. (2) 142, 252-257 (1935); (2) 143, 127-138 (1935).
(74) Kliegl, Ber. 40, 4939 (1907); 42, 2583 (1909).
(75) Zimmermann, Müller, Ber. 18, 997 (1885).
(76) Flürscheim, Holmes, J. Chem. Soc. 1928, 1607-1616.
(77) Onufrowicz, Ber. 17, 835-836 (1884).
(78) Bernoulli, Schaaf, Helv. Chim. Acta 5, 726-728 (1922).
(79) Karrer, Wehrli, Biedermann, dalla Vedova, Helv. Chim. Acta 11, 233 (1928).
(80) Dean, Berchet, J. Am. Chem. Soc. 52, 2825 (1930).

(81) Wertyporoch, Farnik, Ann. 491, 265-271 (1931).
(82) van Hove, Bull. acad. roy. Belg.
1913, 1074-1093; Cent. 1914, I 1565; not in C.A.
(83) Swarts, J. chim. phys. 17, 31 (1919).
(84) Swarts, J. chim. phys. 20, 65 (1923).
(85) Wood, Bost, J. Am. Chem. Soc. 59, 1011-1012 (1937).
(86) Fromm, Schmoldt, Ber. 40, 2869-2870 (1907).
(87) Engelhardt, Ann. 110, 77-78 (1859).
(88) Böttinger, Ber. 11, 841 (1878).
(89) Linebarger, Am. Chem. J. 13, 556-559 (1891).
(90) Chakrabarty, Dutt, J. Indian Chem. Soc. 5, 513-518 (1928); Cent. 1929, I 501; [C.A. 23, 822] (1929)].

(91) Bredereck, Lehmann, Schönfeld, Fritzsche, Ber. 72, 1415-1416, 1423 (1939). (92) Böttinger, Ber. 12, 976 (1879). (93) Ray, J. Chem. Soc. 117, 1336, 1338 (1920). (94) Barnett,

J. Chem. Soc. 1939, 348. (95) Levy, Campbell, J. Chem. Soc. 1939, 1442, 1445. (96) Lippmann, Pollak, Monatsh. 23, 670-671 (1902). (97) Meyer, Gerloff, Ber. 56, 103 (1923). (98) Zincke, Wollenberg, Ann. 363, 268 (1908). (99) Russanow, Ber. 22, 1944-1945 (1889). (100) Tanasescu, Simonescu, J. prakt. Chem. (2) 141, 318 (1934).

(101) Baekeland, Bender, Ind. Eng. Chem. 17, 236 (1925). (102) Dilthey, Quint, Heinen, J. prakt. Chem. (2) 152, 66 (1939). (103) Mackensie, Joseph, J. Chem. Soc. 85, 793 (1904). (104) Claisen, Ann. 237, 265-270 (1887). (105) Böttinger, Ber. 11, 276-277 (1878). (106) Fischer, Ann. 206, 147-155 (1880). (107) Weil, Sapper, Krämer, Klöter, Selberg, Ber. 61, 1299 (1928). (108) Baeyer, Villiger, Ber. 37, 2860 (1904). (109) Shoesmith, Sosson, Hetherington, J. Chem. Soc. 1927, 2227. (110) Fischer, Ann. 206, 136-137 (1880).

(111) E. Fischer, O. Fischer, O. Lehmann, Ber. 12, 798 (1879). (112) Heertjes, Bakker, van Kerkhof, Rec. trav. chim. 62, 738-739 (1942). (113) Fischer, Ann. 266, 122-129 (1880). (114) Nencki, Monatsh. 9, 1148-1149 (1888). (115) Tronov, J. Russ. Phys.-Chem. Soc. 58, 1278-1301 (1926); Cent. 1927, II 1145-1146; C.A. 22, 2737 (1928). (116) Abel, Am. Chem. J. 13, 118-119 (1891). (117) Underwood, Dains, J. Am. Chem. Soc. 57, 1769-1770 (1935). (118) Bogert, Stull, J. Am. Chem. Soc. 47, 3081 (1925). (119) Fuson, Ross, J. Am. Chem. Soc. 55, 720-722 (1933). (120) Ellingboe, Fuson, J. Am. Chem. Soc. 55, 2960-2964 (1933).

(121) Reychler, Bull. soc. chim. (3) 35, 739-740 (1906). (122) Liebmann, Ber. 13, 45-46 (1880). (123) Whitmore, Thurman, J. Am. Chem. Soc. 51, 1493, 1497 (1929). (124) Bodforss,

Ber. 59, 666-670 (1926).

3:6335 1,2,3-TRICHLORO-2(CHLOROMETHYL) 
$$C_4H_6Cl_4$$
 Beil. I — PROPANE  $CH_2Cl$   $I_1$ —  $I_2$ —(89)  $I_2$ — $I_2$ —(89)  $I_1$ —  $I_2$ —(89)  $I_2$ — $I_3$ — $I_4$ — $I_4$ — $I_5$ — $I_5$ — $I_5$ — $I_5$ — $I_5$ — $I_6$ 

Colorless odorless oil (2).

87° at 9 mm. (2)

[For formn. of  $\bar{C}$  (together with other products) from ter-butyl chloride (3:7045) +  $Cl_2$  see (1); from 3-chloro-2-(chloromethyl)propene-1 (3:5633) in CHCl<sub>3</sub> by shaking with  $Cl_2/aq$ , see (2).]

3:6335 (1) Rogers, Nelson, J. Am. Chem. Soc. 58, 1028 (1936). (2) Kleinfeller, Ber. 62, 1595 (1929).

B.P. 208° M.P. 63°

61-62° at 3 mm. (8)

See 3:1400. Division A: Solids.

[For prepn. of  $\tilde{C}$  from 2-chloro-3-aminotoluene [Beil. XII-870, XII<sub>1</sub>-(404)] via diazotization and use of  $Cu_2Cl_2$  reaction (alm. quant. yield (2), 64% (8)) see indic. refs.; for formn. of  $\tilde{C}$  (together with other dichlorotoluenes) from toluene or o-chlorotoluene (3:8245) with  $Cl_2$  in pres. of FeCl<sub>3</sub> or  $MoCl_5$  see (3) (4), from o-chlorotoluene +  $Cl_2$  + Al/Hg see (4).]

[ $\bar{\mathbf{C}}$  with Cl<sub>2</sub> in pres. of Al/Hg gives (70% yield (5)) 2,3,4-trichlorotoluene (3:0425), m.p. 41°.] [ $\bar{\mathbf{C}}$  with Br<sub>2</sub> at 180–200° gives (8) 2,3-dichlorobenzal (di)bromide (not isolated) which on hydrolysis with conc. H<sub>2</sub>SO<sub>4</sub> gives (71% yield (8)) 2,3-dichlorobenzaldehyde (3:1480).]

 $\bar{C}$  on mononitration with conc. HNO<sub>3</sub> (6) or cold mixt. of 2 pts. conc. HNO<sub>3</sub> + 3 pts. conc. H<sub>2</sub>SO<sub>4</sub> (2) yields 2,3-dichloro-4-nitrotoluene [Beil. V-332], ndls. from alc. + AcOH, m.p. 50.5-51.5° (2), 51° (6);  $\bar{C}$  on dinitration with mixt. of 7 pts. fumg. HNO<sub>3</sub> + 3.5 pts. conc. H<sub>2</sub>SO<sub>4</sub> yields (2) 2,3-dichloro-4,6-dinitrotoluene [Beil. V-345], cryst. from AcOH or alc., m.p. 71-72° (2).

C on oxidn. with alk. KMnO<sub>4</sub> (6) or with dil. HNO<sub>3</sub> for some hrs. in s.t. at 140° (2) (6) yields 2,3-dichlorobenzoic acid (3:4650), m.p. 166° (6), 163° (2).

Č on sulfonation with 2 pts. 10% oleum at 50° gives (7) mixt. of 89% 2,3-dichlorotoluene-sulfonic acid-6 (corresp. sulfonyl chloride, m.p. 51-52° (7), corresp. sulfonamide, m.p. 228° (7)) and 11% 2,3-dichlorotoluenesulfonic acid-5 (corresp. sulfonyl chloride, m.p. 87° (7), corresp. sulfonamide, m.p. 185° (7)).

3:6345 (1) Wynne, Greeves, Proc. Chem. Soc. 11, 151 (1895). (2) Cohen, Dakin, J. Chem. Soc. 79, 1128-1129 (1901). (3) Seelig, Ann. 237, 157, 166 (1887). (4) Ref. 2, pp 1114-1117. (5) Cohen, Dakin, J. Chem. Soc. 81, 1339-1340 (1902). (6) Ref. 3, pp. 162-163. (7) Silvester, Wynne, J. Chem. Soc. 1936, 692-694. (8) Marvel, Overberger, Allen, Johnston, Saunders, Young, J. Am. Chem. Soc. 68, 861-862 (1946).

### 3:6355 3,4-DICHLOROTOLUENE



| B.P.               | F.P.                  |                           |     |
|--------------------|-----------------------|---------------------------|-----|
| 207-208.1° cor. at | 770 mm. (1) -16.0° (1 | $D_{20}^{20}=1.2541 (1)$  |     |
| 208.3-208.8° at    | 745.5 mm. (2)         | 1.2512 (4)                |     |
| 205.5-206.5°       | (3)                   | $n_{\rm D}^{22} = 1.5490$ | (1) |
| 200.5° u.c. at     | 741 mm. (4)           |                           |     |

For f.p./compn. diagram of system:  $\bar{C} + 2.4$ -dichlorotoluene (3:6290) see (1); the eutectic conts. 52%  $\bar{C}$  and freezes about  $-38^{\circ}$  (1).

[For prepn. of  $\bar{C}$  from 4-chloro-3-aminotoluene [Beil. XII-871, XII<sub>1</sub>-(404)] by diazotization and Cu<sub>2</sub>Cl<sub>2</sub> reactn. (77% yield (5)) see (5) (6); similarly from 3-chloro-4-aminotoluene [Beil. XII-989, XII<sub>1</sub>-(436)] see (4) (3) (1); from 2-chloro-4-methylphenol (3:6215) with PCl<sub>5</sub> see (7); from salts of 3,4-dichlorotoluenesulfonic acid-2 or 3,4-dichlorosulfonic acid-5 by hydrolysis see (8).]

[For formn. of  $\bar{C}$  (42% together with 58% 2,4-dichlorotoluene (3:6290)) from p-chlorotoluene (3:8287) with  $Cl_2$  in pres. of Fe see (1); for formn. of  $\bar{C}$  (together with other isomers) from toluene with  $Cl_2$  in pres. of  $I_2$  (9) (10) or of  $MoCl_5$  (11) (12) or with  $SO_2Cl_2$  at 160° (13) see indic. refs.; for formn. of  $\bar{C}$  (together with other isomers) from m-chlorotoluene (3:8275) or p-chlorotoluene (3:8287) with  $Cl_2$  in pres. of Al/Hg see (14).]

[Č with Cl<sub>2</sub> in pres. of Al/Hg yields exclusively (15) 2,4,5-trichlorotoluene (3:2100), m.p. 81-82° (15); Č at its b.p. treated with Cl<sub>2</sub> yields (16) (5) (17) 3,4-dichlorobenzal dichloride (3:6876), b.p. 257°.

Č on mononitration with mixt. of 2 pts. conc. HNO<sub>3</sub> + 4 pts. conc. H<sub>2</sub>SO<sub>4</sub> yields (6) (18) 3,4-dichloro-6-nitrotoluene [Beil. V-331], ndls. from alc. + AcOH, m.p. 63-64° (6) (19), 63° (20); Č on dinitration yields (6) 3,4-dichloro-2,6-dinitrotoluene [Beil. V-345], ndls. from AcOH, m.p. 91.5-92.5° (6) (19).

C on oxidn. (2) with CrO<sub>3</sub> (9) (10), with KMnO<sub>4</sub> (21), or with dil. HNO<sub>3</sub> in s.t. at 130-150° (4) (6) (8) yields 3,4-dichlorobenzoic acid (3:4925), m.p. 206°.

[C on sulfonation with fumg. H<sub>2</sub>SO<sub>4</sub> yields (6) 3,4-dichlorotoluenesulfonic acid-6 (corresp. sulfonyl chloride, m.p. 81° (6), 82° (22), corresp. sulfonamide, m.p. 190-191° (6), 189° (22)); note, however, that the isomeric derivs., viz., 3,4-dichlorotoluenesulfonyl chloride-2, m.p. 49° (8), and 3,4-dichlorotoluenesulfonamide, m.p. 186° (8), have been independently prepd.]

3:6355 (1) Wahl, Compt. rend. 202, 2161-2163 (1936); Bull. soc. chim. (5) 4, 344-349 (1937). (2) Kraay, Rec. trav. chim. 49, 1085, 1090 (1930). (3) Wynne, J. Chem. Soc. 61, 1059-1060 (1892). (4) Lellmann, Klotz, Ann. 231, 312-314 (1885). (5) Ruggli, Zaeslin, Lang, Hels. Chim. Acta 21, 1248 (1938). (6) Cohen, Dakin, J. Chem. Soc. 79, 1133 (1901). (7) Schall, Dralle, Ber. 17, 2535 (1884). (8) Wynne, J. Chem. Soc. 1936, 702, 705. (9) Beilstein, Kuhlberg, Ann. 146, 319 (1868); 152, 224 (1869). (10) Beilstein, Ann. 179, 283 (1875).

berg, Ann. 146, 319 (1868); 152, 224 (1869). (10) Beilstein, Ann. 179, 283 (1875). (11) Aronheim, Dietrich, Ber. 8, 1402 (1875). (12) Schultz, Ann. 187, 263 (1877). (13) Töhl, Eberhard, Ber. 26, 2942 (1893). (14) Ref. 6, pp. 1117-1118. (15) Cohen, Dakin, J. Chem. Soc. 81, 1343 (1902). (16) Beilstein, Kuhlberg, Ann. 150, 291 (1869). (17) Booth, Elsey, Burchfield, J. Am. Chem. Soc. 57, 2068 (1935). (18) Ruggli, Zaeslin, Helv. Chrm. Acta 19, 437 (1936). (19) Cohen, Dakin, J. Chem. Soc. 81, 1349 (1902). (20) Kenner, Tod, Witham, J. Chem. Soc. 127, 2348 (1925).

(21) Bornwater, Holleman, Rec. trav. chim. 31, 228-229 (1912). (22) Silvester, Wynne, J. Chem. Soc. 1936, 692.

3:6370 HEXACHLOROPROPENE Cl 
$$C_3Cl_6$$
 Beil. I - 200  $I_{1^-}(83)$   $Cl_3C-C=Ccl_2$ 

B.P. 
$$209-210^{\circ}$$
 at 760 mm. (1) (2)  $D_{4}^{20}=1.7652$  (1)  $n_{D}^{20}=1.5091$  (1)  $122-123^{\circ}$  at 50 mm. (1)  $99^{\circ}$  at 15 mm. (2)

Oil with fragrant odor. - Insoluble aq.

[For prepn. of C from sym.-heptachloropropane (3:6860) by loss of HCl in presence of AlCl<sub>3</sub> in CCl<sub>4</sub> at 60-70° (83% yield) see (3); from asym.-heptachloropropane (3:0200) by htg. at 250-420°, especially in presence of ZnCl<sub>2</sub> or CuCl (4) (with latter tetrachloroethylene (3:5460), is also formed (4) (5)), or by htg. with ale KOH at 50-60° (90% yield (6)) (1); from heptachloro-n-butyraldehyde [Beil. I<sub>1</sub>-(346)] by actn. of 2 moles NaOEt see (7).]

 $\tilde{C}$  with AlCl<sub>3</sub> + 1 mole trichloroethylene (3:5170) in CH<sub>2</sub>Cl<sub>2</sub> (3:5020) or CHCl<sub>3</sub> (3:5050) at 30-37° gives (82% yield (6)) 1,1,2,3,3,4,5,5,5-nonachloropentene-1, colorless liq. with cedar-like odor, b.p. 128° at 2-3 mm., 86° at 0.2 mm.,  $D_2^{20} = 1.812$ ,  $n_2^{20} = 1.5703$  (6); with excess trichloroethylene (3:5170) prod. is mixt. consisting exclusively of two dodecachloroheptenes,  $C_7H_2Cl_{12}$ , one m.p. 94-96°, the other, m.p. 58-62° (6).

 $\bar{C}$  with AlCl<sub>3</sub> + 1,2-dichloroethylene (3:5030) in CH<sub>2</sub>Cl<sub>2</sub> soln. yields (8) a single 1,1,2,3,-3,4,5,5-octachloropentene-1, b.p. 145-147° at 11 mm., 113-113.5° at 2 mm.,  $D_{21}^{21} = 1.749$ ,  $n_{21}^{21} = 1.5607$  (8). [This product with conc. H<sub>2</sub>SO<sub>4</sub> gives (80% yield (8)) a mixt. of pentachlorobutenecarboxylic acids (8).]

Č forms with AlCl<sub>3</sub> at 80° a yel. cryst. addn.-prod. sparingly sol. in CCl<sub>4</sub> but regenerating Č upon treatment with aq. (8).

 $\tilde{C}$  on cautious warming with conc. H<sub>2</sub>SO<sub>4</sub> (9) (10) (2) (11) or on boilg. with an aqueous suspension of BaCO<sub>3</sub> (2) yields  $\alpha,\beta,\beta$ -trichloroacrylic acid (3:1840) spar. sol. cold aq., eas. sol. hot aq., pr. from CS<sub>2</sub>, m.p. 76° (2).

Č does not add Br<sub>2</sub> (10), but Č in sunlight adds Cl<sub>2</sub> yielding (10) octachloropropane (3:4450) q.v.

 $\bar{C}$  with alc. NaOEt yields (1) triethyl ortho- $\alpha,\beta,\beta$ -trichloroacrylate, b.p. 236-237°,  $D_4^{20}=1.2183$ ,  $n_D^{20}=1.4649$  (1). [This ortho ester on htg. with 2 vols. conc. HCl yields (1) ethyl  $\alpha,\beta,\beta$ -trichloroacrylate, b.p. 192-194°,  $D_4^{20}=1.3740$ ,  $n_D^{20}=1.4839$  (1), which can be hydrolyzed by conventional methods to  $\alpha,\beta,\beta$ -trichloroacrylic acid (see above).]

\$:8376 (1) Fritsch, Ann. 297, 314-316 (1897).
 \$\text{B\"o}\"o}\"o\$ B\"o\$eseken, Dujardin, Rec. trav. chim. 32, 98-100 (1913).
 \$\text{Prins}\"o\$, Rec. trav. chim. 54, 251-252 (1935).
 \$\text{B\"o}\"o\$eseken, van der Scheer, de Voogt, Rec. trav. chim. 34, 78-95 (1915).
 \$\text{B\"o}\"o\$eseken, Rec. trav. chim. 45, 467-468 (1915).
 \$\text{Prins}\"o\$, Rec. trav. chim. 57, 661-662 (1938).
 \$\text{P\"o}\"o\$eseken, Schimmel, Rec. trav. chim. 32, 132 (1913).
 \$\text{P\"o}\"o\$ Prins, Rec. trav. chim. 56, 781-783 (1937).
 \$\text{P\"o}\"o\$ Prins, Ger. 261,689, July\$\(\frac{1}{2}\)2, 1913; Cent. 1913, II 394.
 \$\text{P\"o}\"o\$ Prins, J. prakt. Chem. (2) 89, 415-416 (1914).

(11) Böeseken, Carrière, Rec. trav. chim. 34, 179-186 (1915).

3:6373 DI(TRICHLOROVINYL) ETHER Cl Cl C4OCl6 Beil. I - 725 Cl<sub>2</sub>C=C-O-C=CCl<sub>2</sub> 
$$I_1$$
-  $I_2$ -

B.P. 210° (1) 
$$D_{-}^{21} = 1.654$$
 (1)

[For prepn. of  $\bar{C}$  from decachlorodiethyl ether (3:1676) by treatment with alc.  $K_2S$  see (1).]

C with Cl<sub>2</sub> in sunlight adds 2 moles halogen yielding (1) decachlorodiethyl ether (3:1676), m.p. 69°.

 $\ddot{\mathbf{C}}$  with Br<sub>2</sub> in sunlight adds 2 moles halogen yielding (1) bis- $(\alpha,\beta$ -dibromo- $\alpha,\beta,\beta$ -trichloro-ethyl) ether, m.p. 96° (1).

3:6373 (1) Malaguti, Ann. chim. (3) 16, 19-28 (1846).

3:6375 ETHYL 
$$\gamma$$
-CHLOROACETOACETATE  $C_{\theta}H_{\theta}O_3Cl$  Beil. III - 663 (Ethyl  $\gamma$ -chloro- $\beta$ -keto- $n$ -  $CH_2$ — $C$ — $CH_2$ — $C$ — $C$  III<sub>1</sub>-(233) butyrate)  $Cl$   $O$   $O$ Et

|           |             |         | O1          | 0 020                   |                                |
|-----------|-------------|---------|-------------|-------------------------|--------------------------------|
| B.P.      |             |         | F.P.        |                         |                                |
| 210° dec. | •           | (1)     | -5° (2) (9) | $D_4^{20} = 1.2157 (4)$ |                                |
| 205° dec. | •           | (2) (9) | -8° (1)     |                         |                                |
| 117-119   | ° at 17 mm. | (3)     |             | $D_4^{17} = 1.2176 (4)$ | $n_{\rm D}^{17} = 1.4546  (4)$ |
| 107°      | at 14 mm.   |         |             |                         | <b>1.45452</b> (1)             |
| 105°      | at 11 mm.   | (2) (9) |             | 14                      |                                |
| 102°      | at 12 mm.   | (1)     |             | $D_4^{16} = 1.2182 (4)$ |                                |
| 103°      | at 12 mm.   |         |             |                         |                                |
| 92-93°    | at 6 mm.    |         |             |                         |                                |
| 80°       | at 3 mm.    | (19)    |             |                         |                                |

[See also ethyl  $\alpha$ -chloroacetoacetate (3:6207).]

Colorless limpid liq. which soon turns yellow (4). — Almost insol. aq. but miscible with most org. solvents. — [Note that purity of material of earlier workers (5) has been seriously questioned (2).]

[For prepn. of  $\bar{C}$  from acetylketene (ketene dimer (6) (7)) by conversion with  $Cl_2$  to  $\gamma$ -chloroacetoacetyl chloride (3:9088) and reactn. of the latter with excess abs. EtOH at 0° see (3); from ethyl chloroacetate (3:5700) (2 moles) with Mg (1 mole) in dry ether contg. HgCl<sub>2</sub> (58% yield (1)) cf. (19) or with Mg in dry ether contg. I<sub>2</sub> (35% yield (4)) or with

Al/Hg in pres. of a trace of EtOH (8) see indic. refs.; from chloroacetaldehyde (3:7212) with ethyl diazoacetate see (5); from ethyl  $\gamma$ -chloro- $\beta$ -hydroxy-n-butyrate [Beil. III-310, III<sub>1</sub>-(116)] by careful oxidn. with  $K_2Cr_2O_7 + H_2SO_4$  (poor yield) see (9).]

 $\bar{C}$  on hydrolysis with aq. HCl for 3 hrs. undergoes ketonic splitting yielding (1) chloroscetone (3:5425) + CO<sub>2</sub> + EtOH (note that this does not distinguish  $\bar{C}$  from ethyl  $\alpha$ -

chloroacetoacetate which yields same products).

[Č with alc. NaOEt at 100° undergoes bimolecular condensation with loss of 2 HCl yielding (10) diethyl succinylosuccinate [Beil. X-894, X<sub>1</sub>-(434)], m.p. 125-126° (10); this same condensation is also effected by other alkaline agents, e.g., sodium phenolate, dil. aq. NaOH, NH<sub>4</sub>OH, NH<sub>3</sub> in ether, KOAc alone or in pres. of alc. or C<sub>6</sub>H<sub>6</sub>, diethyl sodiomalonate or Me<sub>2</sub>NH in C<sub>6</sub>H<sub>6</sub>, or K phthalimide (10).]

[Č with ethyl orthoformate (1:3241) in Ac<sub>2</sub>O refluxed for  $\frac{1}{2}$  hr. ppts. on cooling (45% yield (11)) ethyl  $\gamma$ -chloro- $\alpha$ -ethoxymethylene-acetoacetate, colorless ndls. from alc. or C<sub>6</sub>H<sub>6</sub>, m.p. 98° (11).]

Note that  $\bar{C}$  is capable of displaying keto-enol tautomerism as is shown by the following reactions:

 $\bar{C}$  with FeCl<sub>2</sub> soln. gives red coloration (1) (4) (9) (19);  $\bar{C}$  conts. 10.9% enol, but 4% soln. of  $\bar{C}$  in ether conts. 53% enol. (19).

 $\bar{\rm C}$  forms a series of metallic salts of the enolic form; these are in general insol. in aq. but soluble in org. solvents: e.g.,  ${\rm Cu}({\rm C}_6{\rm H}_8{\rm O}_3{\rm Cl})_2$  (from  $\bar{\rm C}$  on shaking with aq.  ${\rm Cu}({\rm OAo}_2)$ , green ndls. from  ${\rm C}_6{\rm H}_6$ , m.p. 168–169° dec. (9) (4) cf. (19), 167.5° dec. (1), 163° (8); Mg-(C<sub>6</sub>H<sub>8</sub>O<sub>3</sub>Cl)<sub>2</sub> (from  $\bar{\rm C}$  shaken with aq. MgSO<sub>4</sub> + NH<sub>4</sub>Cl), m.p. 170° (1); Zn(C<sub>6</sub>H<sub>8</sub>O<sub>3</sub>Cl)<sub>2</sub> (from  $\bar{\rm C}$  on shaking with NH<sub>4</sub>OH/ZnSO<sub>4</sub>), m.p. 121° (1); Ni(C<sub>6</sub>H<sub>8</sub>O<sub>3</sub>Cl)<sub>2</sub> (from  $\bar{\rm C}$  on shaking with Ni(OAc)<sub>2</sub> + NH<sub>4</sub>OH), m.p. 131–132° (1); other metals behave similarly (1).

 $\ddot{\mathbf{C}}$  couples with diazonium salt solns. in pres. of NaOAc yielding the corresp.  $\alpha$ -(arylhydrazones) of ethyl  $\gamma$ -chloro- $\alpha$ , $\beta$ -diketo-n-butyrate (ethyl  $\gamma$ -chloro- $\alpha$ -(arylazo)aceto-acetates (cf. dif. behavior of isomeric ethyl  $\alpha$ -chloroacetoacetate (3:6207)): e.g.,  $\ddot{\mathbf{C}}$  with benzenediazonium chloride soln. in pres. of NaOAc at 0° gives (12) (13) ethyl  $\gamma$ -chloro- $\beta$ -keto- $\alpha$ -phenylhydrazono-n-butyrate, sparing sol. yel. ndls. from alc., m.p. 92-93° (12) (13), 92° (14) (note that this prod. on htg. with alc. KOAc loses HCl and ring-closes to 3-carbethoxy-4-hydroxy-1-phenylpyrazole, colorless pr. from alc., m.p. 85° (14) (15)); similarly  $\ddot{\mathbf{C}}$  with p-nitrobenzenediazonium chloride soln. in pres. of NaOAc at 0° gives (16) ethyl  $\gamma$ -chloro- $\alpha$ -(p-nitrobenzeneazo)acetoacetate, yel. ndls. from alc., m.p. 135° (16) (note that this prod. with hot alc. KOAc loses HCl and ring-closes to 3-carbethoxy-4-hydroxy-1-(p-nitro)phenylpyrazole, colorless ndls. from AcOH, m.p. 220° (16). — [For analogous reactions of  $\ddot{\mathbf{C}}$  with numerous other diazonium salts see the papers represented by (16) (14) (17).]

 $\bar{C}$  with thiourea on warming in alc. for 4 hrs. loses HCl and ring-closes yielding (9) ethyl (2-aminothiazolyl-4)acetate, colorless cryst. from  $C_6H_6$ , m.p. 94° (18), 74° (9) (one of these is probably a misprint for the other).

3:6375 (1) Hamel, Bull. soc. chim. (4) 29, 390-402 (1921). (2) Lespieau, Bull. soc. chim. (4) 9, 31-33 (1911). (3) Hurd, Abernathy, J. Am. Chem. Soc. 62, 1147-1148 (1940). (4) Alexandrow, Ber. 46, 1021-1024 (1913). (5) Schlotterbeck, Ber. 42, 2570-2571 (1909). (6) Boese, Ind. Eng. Chem. 32, 16-22 (1940). (7) Hurd, Williams, J. Am. Chem. Soc. 58, 962-968 (1936). (8) Picha, Doht, Weisl, Monatsh. 27, 1245-1249 (1906). (9) Lespieau, Bull. soc. chim. (3) 33, 463-464 (1905); Compt. rend. 138, 422 (1904). (10) Sommelet, Couroux, Bull. soc. chim. (4) 29, 402-406 (1921).

(11) Benary, Ebert, Ber. 56, 1897-1898 (1923). (12) Favrel, Compt. rend. 145, 196 (1907). (13) Favrel, Prevost, Bull. soc. chim. (4) 49, 245-246 (1931). (14) Chattaway, Lye, Proc. Roy. Soc. London A-137, 492, 497, 501 (1932). (15) Wolff, Ann. 313, 15 (1900). (16) Chattaway, Ashworth, J. Chem. Soc. 1933, 1146. (17) Chattaway, Lye, Proc. Roy. Soc. London A-136,

294-295 (1932). (18) Steude, Ann. 261, 30-31 (1891). (19) Arndt, Loewe, Capuano, Rev. faculté sci. univ. Istanbul 8-A, 122-152 (1943); C.A. 39, 1626 (1945).

— 
$$d_1l$$
- $\alpha,\beta$ -DICHLOROPROPIONIC ACID  $C_3H_4O_2Cl_2$  Beil. II - 252  $\Pi_1$ -(111)  $\Pi_2$ —

B.P. M.P. 210° sl. dec. at 762 mm. 49-50°

See 3:0855. Division A: Solids.

B.P. 211° at 744 mm.

M.P. 58°

Sec 3:1190. Division A: Solids.

 $D_{-}^{25} = 1.4723$  $n_{\rm D}^{25} = 1.1729$ B.P. 211° M.P. 45°

See 3:0560. Division A: Solids.

101.5°

at 17 mm. (3)

3:6380 ETHYL 
$$\alpha,\alpha,\beta$$
-TRICHLORO- $n$ -BUTYRATE  $C_0H_0O_2Cl_3$  Beil. II - 281  $II_1$ —  $Cl_3$ —  $Cl_4$ —  $Cl_5$ —  $C$ 

[For prepn. of  $\bar{C}$  from  $\alpha,\alpha,\beta$ -trichloro-n-butyric acid (3:1280) in EtOH with 10% conc. H<sub>2</sub>SO<sub>4</sub> in s.t. at 100° for 3 days see (2); note that the acid esterifies with difficulty and attempts to use the dry HCl method give only very poor yields (2).]

 $\bar{C}$  with Zn dust in moist ether loses HCl giving (almost 100% yield (3)) ethyl  $\alpha$ -chlorocrotonate (3:8523).

3:6380 (1) Judson, Ber. 3, 787 (1870). (2) Perkin, J. Chem. Soc. 65, 424 (1894). (3) Michael, Schulthess, J. prakt. Chem. (2) 43, 594-596 (1891).

[For prepn. of  $\bar{C}$  from o-chlorobenzyl alcohol [Beil. VI-444, VI<sub>1</sub>-(222)] with PCl<sub>5</sub> (7) or with SOCl<sub>2</sub> + pyridine (5) see indic. refs.; from o-chlorotoluene (3:8245) with PbCl<sub>4</sub>-2NH<sub>4</sub>Cl (1) or with Cl<sub>2</sub> (8) (9) in ultra-violet light (4) see indic. refs.; from benzyl chloride (3:8535) with Cl<sub>2</sub> see (10).]

[For condens. of  $\tilde{C}$  with p-chlorophenol and use of prod. as anti-moth prepn. see (11); for use in prepn. of condensation prod. with sulfonated phenol see (12).]

[C with phenol in toluene yields (13) 2-(o-chlorobenzyl)phenol, b.p. 146-151° at 3 mm. (benzoate, b.p. 173-176° at 2.5 mm.), and o-chlorobenzyl phenyl ether, b.p. 140-145° at 2.5 mm.; C with 2,4-dichlorophenol (3:0560) in toluene yields 2-(o-chlorobenzyl)-4,6-dichlorophenol, m.p. 59.5-60.5° (benzoate, m.p. 81-82°), and o-chlorobenzyl 2,4-dichlorophenyl ether, m.p. 61-62°.]

[C with phenol + AlCl<sub>3</sub> yields (13) 4-(o-chlorobenzyl)phenol, m.p. 68-69° (benzoate, m.p. 64.5-65.5°), and 2-(o-chlorobenzyl)phenol (see above); C with 2,6-dichlorophenol (3:1595) + AlCl<sub>3</sub> yields (13) 4-(o-chlorobenzyl)-2,6-dichlorophenol, m.p. 86.5-87.5° (benzoate, m.p. 86-87°).]

[C with Mg in 10 moles dry ether gives (60-75% yield (4)) cf. (25) o-Cl.C<sub>6</sub>H<sub>4</sub>.CH<sub>2</sub>MgCl (particularly sensitive to air oxidn.); this with CO<sub>2</sub> followed by acidification or with methyl chloroformate (3:5075) followed by hydrolysis yields (4) o-chlorophenylacetic acid, m.p. 94-95° (3:2640); the R.MgCl cpd. with phenyl isocyanate as directed (22) for p-isomer should yield o-chlorophenylacetanilide [Beil. XII-275], m.p. 140° cor. (23), 138.5° (24), although this method has not been specifically reported for C; the RMgCl cpd. with HgCl<sub>2</sub> gives (25) o-chlorobenzyl HgCl, m.p. 111°, or with HgBr<sub>2</sub> gives (25) o-chlorobenzyl HgBr, m.p. 128°.]

[For study of behavior of  $\bar{C}$  with NaOEt see (14) (7); for study of rate of reaction of  $\bar{C}$  with LiI, NaI, or KI (6) (5) or with Na<sub>2</sub>SO<sub>3</sub> (2) see indic. refs.; for study of acid hydrolysis of  $\bar{C}$  in various solvents see (5); for reaction of  $\bar{C}$  with KCN yielding o-chlorobenzyl cyanide (which on hydrolysis gives o-chlorophenylacetic acid (3:2640)) see (15) (16); for behavior of  $\bar{C}$  with cellulose (17) or sodium cellulose (18) see indic. refs.]

Č refluxed 4 hrs. with hexamethylenetetramine (1 mole) in 60% alc. soln. yields (19) o-chlorobenzaldehyde (3:6410) q.v.; Č htd. in xylene with p-nitrophenylhydrazine yields (20) o-chlorobenzal-p-nitrophenylhydrazone, m.p. 241° (20).

Č on mononitration with 1.2 pts. fumg. HNO<sub>3</sub> at 30-40° gives (35% yield (21)) 2-chloro-5-nitrobenzyl chloride, pr. from alc., m.p. 66° (21).

3:6400 (1) Seyewetz, Trawitz, Compt. rend. 136, 241 (1903). (2) Sprung, J. Am. Chem. Soc. 52, 1640-1649 (1930). (3) de Bruyne, Davis, Gross, J. Am. Chem. Soc. 55, 3938 (1933). (4) Austin, Johnson, J. Am. Chem. Soc. 54, 657 (1932). (5) Bennett, Jones, J. Chem. Soc. 1935, 1818. (6) Conant, Hussey, J. Am. Chem. Soc. 47, 486 (1925). (7) Olivier, Rec. trav. chim. 41, 308-309 (1921). (8) Jones, J. Chem. Soc. 1935, 1839. (9) Zelinsky & Schering-Kahlbaum, Ger. 478,084, June 20, 1929; Cent. 1929, II 1216. (10) Olivier, Rec. trav. chim. 41, 419-421 (1921).

(11) Weiler, Berres (to I.G.), Ger. 542,069, Jan. 20, 1932; Cent. 1932, I 3014. (12) I.G., Brit. 320,056, Oct. 31, 1929; Cent. 1939, I 590; Brit. 321,190, Nov. 28, 1929; Cent. 1939, I 1259. (13) Huston, Guile, Chen, Headley, Warren, Baur, Mate, J. Am. Chem. 50c. 55, 4639-4643 (1933). (14) Franzen, Rosenberg, J. prakt. Chem. (2) 101, 333-334 (1921). (15) Cerecedo, Sherwin, J. Biol. Chem. 58, 220 (1923). (16) Mehner, J. prakt. Chem. (2) 62, 554-555 (1900). (17) Niethammer, König, Cellulosechem. 10, 201-205 (1929). (18) Ball, Hibbert, Can. J. Research 7, 481-498 (1932). (19) Mayer, English, Ann. 417, 78 (1918). (20) Busch, Lang, J. prakt. Chem. (2) 144, 312 (1936).

(21) Meisenheimer, Zimmermann, von Kummer, Ann. 446, 225-226 (1926). (22) Underwood, Gale, J. Am. Chem. Soc. 56, 2117-2119 (1934). (23) Jenkins, Richardson, J. Am. Chem. Soc. 55, 1619 (1933). (24) Mehner, J. prakt. Chem. (2) 62, 558 (1900). (25) Ware, Hixon, J. Am.

Chem. Soc. 69, 1262-1263 (1938).

3:6410 o-CHLOROBENZALDEHYDE 
$$C_7H_5OCl$$
 Beil. VII - 233  $VII_1$ -(132)

B.P. 
$$M,P.$$
 (1)  $11^{\circ}$  (4)  $D_4^{20} = 1.2512$  (6)  $n_D^{20} = 1.56708$  (6) (2) (14)  $209.7-211.7^{\circ}$  at 760 mm. (3)  $208^{\circ}$  at 748 mm. (4)  $205-206^{\circ}$  cor. at 740 mm. (5)  $96.0-96.6^{\circ}$  at 16 mm. (3)

Oil, volatile with steam. —  $\tilde{C}$  often contains o-chlorobenzyl chloride (3:6400) as impurity (7). —  $\tilde{C}$  very easily oxidized in air (probable cause of variant constants). —  $\tilde{C}$  yields NaHSO<sub>3</sub> cpd. (15) (21).

[For prepn. of  $\bar{C}$  from o-chlorotoluene (3:8245) with MnO<sub>2</sub> + H<sub>2</sub>SO<sub>4</sub> (8), or PbO<sub>2</sub> (24% yield (21)), or CrO<sub>2</sub>Cl<sub>2</sub> in CCl<sub>4</sub> (9) or CS<sub>2</sub> (10), or via halogenation to o-chlorobenzal (di)chloride (3:6625) (5) (12) or o-chlorobenzal (di)bromide (11) and subsequent hydrolysis with fumg. H<sub>2</sub>SO<sub>4</sub> (11) (12) (1) or anhydrous oxalic ac. (14) see indicated refs.; for prepn. from o-nitrobenzaldehyde via o-aminobenzaldehyde see (12); from o-chlorobenzyl alc. by dehydrogenation with CuO + dinitrobenzene in quinoline (86% yield) see (13); from o-chlorobenzyl chloride (3:6400) with hexamethylenetetramine see (2); from o-chlorobenzylamine with formalin + hexamethylenetetramine see (41); for other misc. methods see Beil. VII-233].

Č with CrO<sub>3</sub> (16) or KMnO<sub>4</sub> (2) oxidizes to o-chlorobenzoic acid (3:4150), m.p. 141°. [For study of auto-oxidn. see (17).] — Č on cat. hydrogenation gives (yield: 96% (18); 50% (19)) o-chlorobenzyl alc., m.p. 69° (19), 64–65° (18). — Č with conc. alk. undergoes Cannizzaro reactn. (for study on dioxane soln. see (20)) although presumable products, o-chlorobenzyl alc. and o-chlorobenzoic acid, have not (by this reactn.) actually been isolated.

Č with dil. alc. KCN for 4 hrs. at 60° gives (21% yield (22)) 2,2'-dichlorobenzoin, m.p. 63-64° (22). — Č with KCN + HCl yields o-chloromandelonitrile which on hydrolysis with HCl gives o-chloromandelic acid, m.p. 84-85° (23).

Č on htg. with NaOAc + Ac<sub>2</sub>O for 8 hrs. at 180-200° undergoes Perkin reactn. giving (71% yield (12)) o-chlorocinnamic acid, m.p. 211° (12). [This with Br<sub>2</sub> in CHCl<sub>3</sub> gives (24) o-chlorocinnamic acid dibromide, m.p. 183° (24).] — Č + malonic acid + pyridine gives (38) alm. quant. yield of o-chlorocinnamic ac., m.p. 211-212° (31). [In absence of pyridine reactn. gives 93% yield o-chlorobenzalmalonic acid, m.p. 192° (37).]

C on mononitration as specified (25) gives 2-chloro-5-nitrobenzaldehyde, cryst. from

dil. AcOH, m.p. 78-79° (25), 80° (26). [Oxime, m.p. 147-148° (26); corresp. acid, 2-chloro-5-nitrobenzoic acid, m.p. 165° (25).]

Č in alc. warmed at 58-60° for 2 hrs. with (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> + KCN as directed (37) gives 5-(o-chlorophenyl)hydantoin, m.p. 175.7-176.1° cor. (37).

[Č with hydrazine sulfate gives (91-95% yield (40)) o-chlorobenzaldazine, m.p. 143.5° cor., but Č with hydrazine hydrate gives (84% yield (40)) o-chlorobenzaldehyde hydrazone m.p. 33-34°, b.p. 165-170° at 14 mm.; note that latter on Wolff-Kishner reduction gives (35-82% yield (40)) o-chlorotoluene (3:8245).]

- ① o-Chlorobenzaldoxime (anti form): pr. from alc., m.p. 75-76° (1) (27). [From Č + NH<sub>2</sub>OH.HCl + Na<sub>2</sub>CO<sub>3</sub> (1); the sym. isomer has m.p. 98-102° (28), 101-103° (7).]
- O-Chlorobenzaldehyde phenylhydrazone: m.p. 86° (29), 84° (39).
- O-Chlorobenzaldehyde p-nitrophenylhydrazone: or. pl., m.p. 249° (30) (31); br.-red. ndls., 241° (32); red ndls. from alc., 237–238° (13).
- © o-Chlorobenzaldehyde 2,4-dinitrophenylhydrazone: or.-red. ndls. from xylene, m.p. 209° (33), 213.6° (34) 207° (41). [Use in detn. of C (11).]
- ① o-Chlorobenzaldehyde dimethone: ndls. from alc., m.p. 199° u.c., 205° cor. (35). [Corresp. anhydride, cryst. from alc., m.p. 224-226° cor. (35).]
- © o-Chlorobenzaldehyde semicarbazone: lfts. from MeOH, m.p. 229-230° (36), tbls. from pyridine, m.p. 225-226° (9), 226° (42).
- 3:6410 (1) Erdmann, Schwechten, Ann. 260, 55-58 (1890). (2) Mayer, English, Ann. 417, 78 (1918). (3) Kahovec, Kohlrausch, Z. physik. Chem. B-38, 138 (1937). (4) Hoechster Farbwerke, Ger. 207,157; Cent. 1909, I 962. (5) Asinger, Lock, Monatsh. 62, 333-334 (1933). (6) von Auwers, Ann. 422, 166 (1921). (7) Brady, Cosson, Roper, J. Chem. Soc. 127, 2428-2429 (1925). (8) Gilliard, Monet, Cartier, Ger. 101,221; Cent. 1899, I 960. (9) Law, Perkin, J. Chem. Soc. 93, 1636 (1908). (10) Stuart, Elliot, J. Chem. Soc. 53, 803 (1888).
- (11) Eitel, Lock. Monaish. 72, 388-389 (1939). (12) Bock, Lock, Schmidt, Monaish. 64, 406 (1934). (13) Zetsche, Zala, Helv. Chim. Acta 9, 288-290 (1926). (14) Erdmann, Kirchhoff, Ann. 247, 368 (1888). (15) Rosenmund, Zetsche, Ber. 54, 436-437 (1921). (16) Henry, Ber. 2, 136 (1869). (17) van der Beek, Rec. trav. chim. 51, 411-413 (1932). (18) Carothers, Adams, J. Am. Chem. Soc. 46, 1682 (1924). (19) Rosenmund, Jordan, Ber. 58, 162 (1925). (20) Eitel, Lock, Monaish 72, 407 (1939).
- (21) Olivier, Weber, Rec. trav. chim. 53, 881 (1934). (22) Weissberger et al., Ann. 478, 128 (1930); J. Chem. Soc. 1935, 225. (23) Karrer et al., Helv. Chim. Acta 4, 144 (1921). (24) Willstaedt, Ber. 64, 2690 (1931). (25) Hodgson, Beard, J. Chem. Soc. 1926, 151. (26) Erdmann, Ann. 272, 153-154 (1892). (27) Brady, McHugh, J. Chem. Soc. 125, 551 (1924). (28) Behrend, Niessen, Ann. 269, 400 (1892). (29) Fichter, Frohlich, Cent. 1903, II 427. (30) Chattaway, Clemo, J. Chem. Soc. 123, 3059-3060 (1923).
- (31) Hodgson, Beard, J. Soc. Chem. Ind. 45, T 91-93 (1926). (32) Busch, Lang, J. prakt. Chem. (2) 144, 312 (1936). (33) Blanksma, Wacker, Rec. trav. chim. 55, 658 (1936). (34) Ferrante, Bloom, Am. J. Pharm. 165, 381-384 (1933). (35) Vorländer, Z. anal. Chem. 77, 265 (1929). (36) Henderson, Heilbron, J. Chem. Soc. 107, 1749 (1915). (37) Henze, Speer, J. Am. Chem. Soc. 64, 522-523 (1942). (38) K. C. Pandya, R. B. Pandya, Proc. Indian Acad. Sci. 14-A, 112-122 (1941); C.A. 36, 1599 (1942). (39) Harvill, Herbst, J. Org. Chem. 9, 26 (1944). (40) Lock, Stach, Ber. 76, 1253-1255 (1943).
- (41) Graymore, Davies, J. Chem. Soc. 1945, 293-294. (42) Vogelsang, Rec. trav. chim. 62, 5-11 (1943): C.A. 39, 1394 (1945).

3:6420 1,2,4-TRICHLOROBENZENE Cl 
$$C_6H_3Cl_3$$
 Beil. V - 204  $V_{1-}(112)$   $V_{2-}(156)$ 

B.P. M.P. 213° cor. (1) (17) 17–18° (8) 
$$D_{25}^{25} = 1.4634$$
 (15) 212.9–213° (2) 17° (7) (9) cf. (7) 212–213° (3) 16–17° (4)  $n_{\rm D}^{25} = 1.5524$  (15) 211° cor. at 742 mm. (4) 16.6° (10) 210° (5) (6) 16.5° (11) (12) 206° (7) 16° (1) (3) (13) 14.5° (14)

For thermal anal. of mixts. of  $\bar{C}$  with 1,2,3-trichlorobenzene (3:0990) or with 1,3,5-trichlorobenzene (3:1400) see (10) (the cutectic of  $\bar{C}$  with the former conts. 71%  $\bar{C}$  and melts 2.7° (10)); for m.p./compn. data on ternary mixt. of  $\bar{C}$  with the other two isomers see (10).

[For use of C in mfg. of elec. insulating material see (16).]

[For prepn. of  $\bar{C}$  from 2,4-dichloroaniline [Beil. XII-621;  $\bar{X}$ II<sub>1</sub>-(309)] (1) (11), from 2,5-dichloroaniline [Beil. XII-625, XII<sub>1</sub>-(311)] (6), or 3,4-dichloroaniline [Beil. XII-626 XII<sub>1</sub>-(311)] (1) via diazotization and use of  $Cu_2Cl_2$  reaction see indic. refs.; from 4-chloro-1,3-diaminobenzene [Beil. XIII-53, XIII<sub>1</sub>-(15)] via tetrazotization and use of  $Cu_2Cl_2$  reaction (62% yield) see (17); from p-dichlorobenzene (3:0980) with  $S_2Cl_2$  in  $SO_2Cl_2$  + AlCl<sub>3</sub> (58% yield  $\bar{C}$ ) see (3) (18).]

[For formn. of Č from 2,3,6-trichlorobenzaldehyde (3:2287) by KOH fusion (88% yield (4)) or from 2,3,6-trichloroacetophenone by KOH fusion (82% yield (14)) see indic. refs.; from 2,4-dichlorophenol (3 0560) by htg. 7 hrs. with PCl<sub>5</sub> (25.5% yield) see (1); from 2-nitro-1,4-dichlorobenzene or from 4-chloro-3-nitrobenzenesulfonic acid by htg. with SOCl<sub>2</sub> in s.t. 10 hrs. at 160-180° see (19) (20); from 2-chlorobenzene-1,4-disulfonyl chloride with PCl<sub>5</sub> in s.t. 4 hrs. at 210° see (8); from 2,4-dichlorobenzenesulfonyl chloride by htg. with SOCl<sub>2</sub> in s.t. at 180° see (21).]

[For formn. of  $\bar{\rm C}$  (together with other products) from  ${\rm C_6H_6}$  with  ${\rm Cl_2}$  in pres. of  ${\rm I_2}$  (7) or of Fe (22) see indic. refs.; from o-dichlorobenzene (3:6055) and/or p-dichlorobenzene (3:0980) with  ${\rm Cl_2}$  under various conditions see (22) (23) (24) (25) (9); from m-dichlorobenzene (3:5960) with  ${\rm Cl_2}$  under various conditions see (9) (13) (23); from chlorobenzene (3:7903) or p-dichlorobenzene (3:0980) by boilg. with  ${\rm FeCl_3}$  see (26); from  $\alpha$ -benzene-hexachloride (3:4410) on htg. above its m.p. (158°) (28) (21) or htd. with aq. in s.t. at 200° (27), or on boilg. with  ${\rm MeOH/KOH}$  (10),  ${\rm EtOH/KOH}$  (10) (28) (5) (22), alc. KCN (27), or pyridine (10), or on htg. with quinoline at 105–110° (10), see indic. refs.; from  $\beta$ -benzene-hexachloride (3:4990) q.v. on boilg. with alc. KOH see (10).]

[ $\bar{C}$  with Cl<sub>2</sub> in pres. of Al/Hg yields exclusively (23) 1,2,4,5-tetrachlorobenzene (3:4115), m.p. 135-136° (23);  $\bar{C}$  with liq. Cl<sub>2</sub> in s.t. at room temp. for 10 days gives (29) (30) a mixt. of addn. products.]

[Č with NaOMe in MeOH under various conditions (31) (32) (33) (11) (34) yields 2,5-dichlorophenol (3:1190), m.p. 57°; for behavior with EtOH/KOH see (38).]

 $\ddot{\mathbf{C}}$  on mononitration, e.g., by soln. of  $\ddot{\mathbf{C}}$  (1 g.) in 5 ml. fumg. HNO<sub>8</sub> (D=1.49) (35), then pouring onto ice (35), gives 100% yield (35) (1) (5) (15) (39) 1,2,4-trichloro-5-nitrobenzene [Beil. V-246], pr. from alc., m.p. 58° (1), 57° (7) (15), 56° (35); this prod. with piperidine as directed (36) yields 1,2-dichloro-4-piperidino-5-nitrobenzene, red pr. from alc., m.p. 64-65° (36).

 $\bar{C}$  on dinitration, e.g., by soln. of  $\bar{C}$  (1 g.) in 5 ml. fumg. HNO<sub>3</sub> (D=1.49) + 5 ml. conc. H<sub>2</sub>SO<sub>4</sub> and subsequent refluxing for 1 hr., then pouring into aq. (35), gives (100% yield (35)) (7) (37) 1,2,4-trichloro-3,5-dinitrobenzene [Beil. V-266], pr. from alc., m.p. 103.5° (7), 102.5-103.5° (35) (37); this prod. (1 g.) htd. 1 hr. at 100° with 5 g. aniline as directed (35) yields 1-chloro-2,4-dianilino-3,5-dinitrobenzene, m.p. 182° (35).

Note that the trinitration prod. to be expected from complete nitration of C has not been reported.

[ $\bar{C}$  with chlorosulfonic acid as directed (35) yields 1,2,4-trichlorobenzenesulfonyl chloride, m.p. 31-34° (35) which with  $(NH_4)_2CO_3$  yields 1,2,4-trichlorobenzenesulfonamide, m.p. above 200° (35).]

3:6420 (1) Beilstein, Kurbatow, Ann. 192, 230-232 (1878). (2) Dadieu, Pongratz, Kohlrausch, Monatsh. 61, 433 (1932). (3) Silberrad, J. Chem. Soc. 121, 1015-1020 (1922). (4) Lock, Ber. 66, 1531 (1933). (5) Lesimple, Ann. 137, 122-124 (1866). (6) Noelting, Kopp, Ber. 38, 3509 (1905). (7) Jungfleisch, Ann. chim. (4) 15, 264-277 (1868). (8) Olivier, Rec. trav. chim. 39, 502 (1920). (9) Mouneyrat, Pouret, Compt. rend. 127, 1028 (1898). (10) van der Linden, Ber. 45, 231-247 (1912).

(11) van der Lande, Rec. trav. chim. 51, 104, 110 (1932). (12) Hassel, Naeshagen, Z. physik. Chem. B-12, 87 (1931) (13) Oliviei, Rec trav. chim. 39, 411-413 (1920). (14) Lock, Böck, Ber. 70, 924 (1937). (15) Tei, Koinatsu, Mem. Coll. Sci. Kyoto Imp. Univ. 10-A, 325-330 (1927); Cent. 1928, I 2370, C.A. 22, 1086 (1928). (16) Ford (to Westinghouse Electric and Mfg. Co.), U.S. 2,139,945-2,139,948, Dec. 13, 1938, Cent. 1939, I 2047; C.A. 33, 2253-2254 (1939). (17) Cohn, Fischer, Monatsh. 21, 278 (1900) (18) Roberts Co. & Silberrad, Brit. 193,200, March 15, 1923; Cent. 1925, I 904. (19) Meyer, Monatsh. 36, 724-725 (1915). (20) Kinzlberger and Co., Ger. 280,739, Cent. 1915, I 104.

(21) Quihco, Gazz. chim. ital. 57, 800 (1927), Cenl. 1928, I 1395, C.A. 22, 1765 (1928). (22) Zil'berman, Slobodnik, J. Applied Chem. (U.S.S.R.) 10, 1080-1085 (1937), Cenl. 1938, 1580 (1938); C.A. 32, 1664 (1938). (23) Cohen, Hartley, J. Chem. Soc. 87, 1363-1364 (1905). (24) Britton (to Dow Chem. Co.), U.S. 1,923,419, Aug. 22, 1933; Cent. 1933, II 3049, C.A. 27, 5086 (1933). (25) Slobodnik, Zil'berman, Russ. 48,285, Aug. 31, 1936; Cent. 1937, II 288. (26) Thomas, Compt. rend. 126, 1212 (1898). (27) Meunier, Ann. chim. (6) 10, 223-269 (1887). (28) Matthews, J. Chem. Soc. 59, 165-172 (1891). (29) van der Linden, Rec. trav. chim. 55, 315-324 (1936). (30) van der Linden, Rec. trav. chim. 57, 217-224 (1938).

(31) Holleman, Rec. trav. chim. 37, 201 (1918). (32) Kraay, Rec. trav. chim. 49, 1087 (1930). (33) de Crauw, Rec. trav. chim. 50, 787 (1931). (34) Aktien-Gesell, für Anilin Fabrikation, Ger. 349,794, March 9, 1922, Cent. 1922, IV 45 (35) Huntress, Carten, J. Am. Chem. Soc. 62, 512-514 (1940). (36) LeFevre, Turner, J. Chem. Soc. 1927, 1116-1117. (37) Huffer, Rec. trav. chim. 40, 452 (1920). (38) Clark, Crozier, Trans. Roy. Soc. Can. (3) 19, III 153-156 (1925). (39) Holleman, van Haeften, Rec. trav. chim. 40, 71 (1921).

See 3:0220. Division A: Solids.

3:6425 HEXACHLOROBUTADIENE-1,3 Cl Cl C<sub>4</sub>Cl<sub>6</sub> Beil. S.N. 12  $Cl_2C=C-C=CCl_2$ 

B.P. M.P. 215° (1) 
$$-21$$
° (1) (2)  $D_4^{20} = 1.6820$  (1)  $n_D^{20} = 1.5542$  (1) 211° at 710 mm. (2)  $-19$ ° (5)

[See also octachlorocyclopentene (3:0422).]

Colorless oily liq. with weak turpentine-like odor.

[For prepn. of Č from butadiene-1,3 (1) (3) or butane, butene, or their chloro substitution products (3) (4) with Cl<sub>2</sub>; or from hexachlorobutene (itself obtd. from dimerization (5) (2) of trichloroethylene (3:5170)) by cat. addn. of Cl<sub>2</sub> followed by cat. removal of 2 HCl or vice versa (1) (2); or from acetylene with Cl<sub>2</sub> (6) (note that tetrachloroethylene (3:5460) is also formed).]

Č on reduction with Zn + alc. gives (1) butadiene-1,3 (corresp. tetrabromide, m.p. 117°). Č behaves as if saturated: e.g., Č does not add Cl<sub>2</sub> (even in sunlight) (1); Č does not (1) react with maleic anhydride or benzoquinone-1,4; Č does not (1) polymerize (even at 100 atm.).

Č is stable toward acids and alkalies and (unlike some other highly chlorinated unsaturates) does not give a carboxylic acid on treatment with conc. H<sub>2</sub>SO<sub>4</sub> (1).

Note that a product of m.p.  $38^{\circ}$  and b.p.  $283^{\circ}$  formerly regarded as  $\bar{C}$  is now thought to be octachlorocyclopentene (3:0390).

3:6425 (1) Fruhwirth, Ber. 74, 1700-1701 (1941). (2) Consortium für Elektrochem. Ind., French 836,719, Jan. 25, 1939; Cent. 1938, I 3256; [C.A. 33, 5548 (1939)]; Ger. 723,981, July 2, 1942; [C.A. 37, 5415 (1934)]. (3) Fruhwirth (to Donau-Chemie, A.G.), Ger. 736,884, May 20, 1943; C.A. 38, 2974 (1944). (4) Wimmer, Mugdan (to Consortium für Elektrochem. Ind.), Ger. 734,682, March 25, 1943; C.A. 38, 1245 (1944). (5) Mugdan, Wimmer (to Consortium für Elektrochem. Ind.), Ger. 704,179, Feb. 20, 1941; C.A. 36, 1116 (1942); U.S. 2,269,600, Jan. 13, 1942; C.A. 38, 2870 (1942). (6) Fruhwirth (to Donau-Chemie, A.G.), Ger. 734,722, March 25, 1943; C.A. 38, 1252 (1944).

3:6430 DICHLOROACETIC ACID ANHYDRIDE 
$$C_4H_2O_3Cl_4$$
 Beil. II - 204  $II_1$ ...  $II_2$ ...  $Cl_2CH$ ...

Note that the above name of C is so rendered to emphasize that it is the anhydride of dichloroacetic acid (not a dichlorinated acetic anhydride).

[For prepn. of  $\tilde{C}$  from dichloroacetyl chloride (3:5290) with Na $\tilde{A}$  in POCl<sub>3</sub> in dry ether (1), or with Na $\tilde{A}$  + AlCl<sub>3</sub> (4), or on boilg. with Na<sub>2</sub>CO<sub>3</sub> (2) see indic. refs.; for formn. of  $\tilde{C}$  as by-product during reactn. of sodium dichloroacetate with acetyl chloride (3:7065) in dry ether see (3) (the other prod. is the mixed anhydride, acetic-dichloroacetic anhydride [Beil. II-204], b.p. 79-80° at 16 mm.,  $D_4^{20} = 1.5170$  (3).]

Č on hydrolysis with aq. yields dichloroactic acid (3:6208) q.v.; for the amide, anilide, p-toluidide, and other derivs. corresp. to Č see dichloroacetic acid (3:6208).

3:6430 (1) Anthoine, Jahresber. 1883, 1032. (2) Patterson, Ber. 38, 212-213 (1905). (3) Baroni, Gazz. chim. ital. 63, 30 (1933); Cent. 1933, I 3183; C.A. 27, 3447 (1933). (4) Strosacker, Schwegler (to Dow Chem. Co.), U.S. 1,713,104, May 14, 1929; Cent. 1929, II 1215; C.A. 23, 3234 (1929).

3:6445 m-CHLOROBENZYL CHLORIDE 
$$C_7H_6Cl_2$$
 Beil. V —  $V_1$ —  $V_2$ —(231) B.P. 215-216° at 753 mm. (1)  $D_4^{15} = 1.2695$  (1) 213-214° at 740 mm. (2) 111.0-111.2° at 25.4 mm. (3) 111-113° at 25 mm. (4) 110-111° at 25 mm. (5) 104° at 17 mm. (6)

[For prepn. from m-chlorobenzyl alc. [Beil. VI-444] with PCl<sub>5</sub> (1) or with SOCl<sub>2</sub> (yield: 87% (5), 78% (4)) see indic. refs.; from m-chlorotoluene (3:8275) with Cl<sub>2</sub> see (2) (3) (6) (7) (8) (9) see indic. refs.]

[Č with phenol in toluene yields (10) o-(m-chlorobenzyl)phenol, b.p. 192-194° at 14 mm. (benzoate, m.p. 67-67.4°), and m-chlorobenzyl phenyl ether, m.p. 36.0-36.4°; Č with 2,-4-dichlorophenol (3:0560) in toluene yields (10) 2-(m-chlorobenzyl)-4,6-dichlorophenol, m.p. 59.4-60.0° (benzoate, m.p. 63.5-64.0°, benzenesulfonate, m.p. 114.5-115.0°, p-toluenesulfonate, m.p. 125.4-126.0°), and m-chlorobenzyl 2,4-dichlorophenyl ether, m.p. 42-42.5°,

[Č with phenol + AlCl<sub>3</sub> yields (10) p-(m-chlorobenzyl)phenol, b.p. 145-148° at 3 mm. (benzoate, m.p. 57.5-58.0°); Č with 2,6-dichlorophenol (3:1595) yields (10) 4-(m-chlorobenzyl)-2,6-dichlorophenol, m.p. 79-80° (benzoate, m.p. 130-130.4°; p-toluenesulfonate, m.p. 104.5-105.0°).]

[C with Mg in dry ether yields (8) m-Cl.C<sub>6</sub>H<sub>4</sub>.CH<sub>2</sub>Cl; this on treatment with CO<sub>2</sub> yields m-Cl.C<sub>6</sub>H<sub>4</sub>.CH<sub>2</sub>.COOMgCl which on subsequent further treatment with various other RMgX cpds. undergoes abnormal reaction giving m-chlorophenylmalonic acid, m.p. 127–128° (8); the RMgCl cpd. with phenyl isocyanate as directed (13) for the p-isomer should yield m-chlorophenylacetanilide, m.p. 130° cor. (14), although this reaction has not been specifically reported for C.]

[For studies of rate of reaction of  $\tilde{C}$  with NaOEt see (1) (11) (5); with Na<sub>2</sub>SO<sub>3</sub> see (4); with AlCl<sub>3</sub> + C<sub>6</sub>H<sub>6</sub> see (12); for acid hydrolysis in acetone see (6); with KI in various solv. see (6); for reactn. of  $\tilde{C}$  with diethyl malonate see (2).]

3:6445 (1) Olivier, Rec. trav. chim. 41, 309 (1921). (2) Kenner, Witham, J. Chem. Soc. 119, 1460 (1921). (3) de Bruyne, Davis, Gross, J. Am. Chem. Soc. 55, 3938 (1933). (4) Sprung, J. Am. Chem. Soc. 52, 1643, 1649 (1930). (5) Franzen, Rosenberg, J. prakt. Chem. (2) 101, 334 (1921). (6) Bennett, Jones, J. Chem. Soc. 1935, 1818. (7) Jones, J. Chem. Soc. 1935, 1839. (8) Ivanov, Pchenitchny, Bull. soc. chim. (5) 1, 231 (1934). (9) Zelinsky, Schering-Kahlbaum, Ger. 478,084, June 20, 1929; Cent. 1929, II 1216. (10) Houston, Guile, Chen, Headley, Warren, Baur, Mate, J. Am. Chem. Soc. 55, 4639-4643 (1933).

(11) Olivier, Rec. trav. chim. 41, 650 (1921). (12) Olivier, Berger, Rec. trav. chim. 45, 717 (1926). (13) Underwood, Gale, J. Am. Chem. Soc. 56, 2117-2119 (1934). (14) Jenkins, J. Am. Chem. Soc. 55, 2898 (1933).

See 3:0255. Division A: Solids.

3:6480 1,1,1,2,3,3-HEXACHLOROPROPANE Cl 
$$C_2H_2Cl_6$$
 Beil. I — (unsym.-Hexachloropropane)  $Cl_2HC$ — $C$ — $CCl_8$   $I_1$ -(35)  $I_2$ —

**B.P. 216°** (1) 
$$D_4^{34} = 1.6980$$
 (1)  $n_D^{17} = 1.5250$  (1) 145° cor, at 90 mm. (1)

Colorless liq. [For use as solvent for cellulose esters see (3) (4).]

[For prepn. of  $\overline{C}$  from chloroform (3.5050) + trichloroethylene (3:5170) + AlCl<sub>3</sub> (1) (2) or from CCl<sub>4</sub> (3:5100) + 1,2-dichloroethylene (3:5030) + AlCl<sub>3</sub> see (1) (2).]

Č with 1 ml. alc. KOH loses HCl yielding (1) (2) 1,1,2,3,3-pentachloropropene-1 (3:6075), b.p. 183° (1).

3:8460 (1) Prins, J. prakt. Chem. (2) 89, 417-419 (1914) (2) Prins, Ger. 261,689, March 2, 1912; Cent. 1913, II 394; C A. 7, 3641 (1913). (3) Spicers, Ltd. & Hands, Brit. 279,139, April 21, 1926; Cent. 1928, I 770, C.A. 22, 2840 (1928). (4) Spicers, Ltd. & Hands, French 625,165, Aug. 4, 1927; Cent. 1928, I 770.

3:6475 
$$m$$
-CHLOROBENZALDEHYDE  $C_7H_6OCl$  Beil. VII - 234  $VII_1$ -(133)

Oil. — Volatile with steam. — C yields NaHSO<sub>3</sub> cpd.

[For prepn. of  $\bar{C}$  from *m*-nitrobenzaldehyde via reductn. with SnCl<sub>2</sub> to *m*-aminobenzaldehyde followed by diazotization and reactn. with CuCl (yield: 75-79% (4), 70-80% (3), 58-65% (7) (24) see indic. refs.; from *m*-chlorotoluene (3:8275) with CrO<sub>2</sub>Cl<sub>2</sub> (44.5% yield) see (8); from *m*-chlorobenzyl alc. by oxidn. with HNO<sub>3</sub>/H<sub>2</sub>SO<sub>4</sub> see (9); for formn. (together with other products) during chlorination of benzaldehyde see (10); from *m*-chlorobenzylamine with formalin + hexamethylenetetramine see (25).]

 $\tilde{C}$  is readily oxidized even by air (4);  $\tilde{C}$  with KMnO<sub>4</sub> yields m-chlorobenzoic acid (3:4392), m.p. 154°. [For study of auto-oxidn see (11).] —  $\tilde{C}$  with conc. NaOH undergoes Cannizzaro reactn. (for study in dioxane soln see (23)) although the presumable products, m-chlorobenzyl alc., b.p. 234°, and m-chlorobenzoic acid, m.p. 154°, have not (by this reactn.) actually been isolated.

Č with dil. alc. KCN at 60° for 5 hrs. in absence of air gives 22% yield of 3,3'-dichlorobenzoin, cryst. from lgr., m.p. 75-76° (12).

 $\tilde{C}$  on htg. with NaOAc + Ac<sub>2</sub>O for 8 hrs. at 180-200° undergoes Perkin reactn. giving (61.5% yield (13)) m-chlorocinnamic acid, m.p. 165° (13) (14). [This with Br<sub>2</sub> in CHCl<sub>3</sub> gives dibromide, m.p. 183° (15).] —  $\tilde{C}$  htd. with malonic acid + pyridine (24) gives alm. quant. yield (24) of m-chlorocinnamic acid, m.p. 163° (24). [In absence of pyridine reaction gives 100% yield m-chlorobenzalmalonic acid, m.p. 184-186° (24).]

Č on mononitration as specified (3) yields 3-chloro-6-nitrobenzaldehyde [Beil. VII-262], ndls. from dil. alc., m.p. 77.5° (3). [Oxime, tbls. from alc., m.p. 112° (3); phenylhydrazone, ndls. from alc., m.p. 180-181° (3).]

- m-Chlorobenzaldoxime (anti form): pr. from alc., m.p. 70-71° (2), 70° (16) (17). [From C + NH<sub>2</sub>OH.HCl + Na<sub>2</sub>CO<sub>3</sub> (2); the syn isomer (from the anti via ethereal HCl, then Na<sub>2</sub>CO<sub>3</sub>) has m.p. 115-116° rap. htg. (2), 118° (17).].
- ① m-Chlorobenzaldehyde phenyihydrazone: ndls. from abs. alc., m.p. 134-135° (3), 133-134° (18).
- m-Chlorobenzaldehyde p-nitrophenylhydrazone: cryst. from dil. AcOH, m.p. 216° (19), 214° (16). [For m.p./compn. data on mixt. of this deriv. with benzaldehyde p-nitrophenylhydrazone, m.p. 190°, see (16).]
- m-Chlorobenzaldehyde 2,4-dinitrophenylhydrazone: or.-yel. cryst., m.p. 256° (20), Bordeaux-red cryst. from xylene, m.p. 248° cor. (22), 245° (25). [Use in detn. of C (22).]
- m-Chlorobenzaldehyde semicarbazone: lfts. from MeOH (21) or pyridine (8), m.p. 230° (21), 228° (8). [This deriv. does not distinguish C from o- (3:6410) or p- (3:0765) isomers.]
- 3:6475 (1) Olivier, Weber, Rec. trav. chim. 53, 882 (1934). (2) Erdmann, Schwechten, Ann. 266, 58-62 (1890) (3) Eichengrun, Einhorn, Ann. 262, 134-137 (1891). (4) Buck, Ide, Org. Syntheses, Coll. Vol. 2 (1st ed.), 130-133 (1943). (5) Kahovec, Kohlrausch, Z. physik. Chem. B-38, 138 (1937). (6) von Auwers, Ann. 422, 166 (1921). (7) Asinger, Lock, Monatsh. 62, 335 (1933). (8) Law, Perkin, J. Chem. Soc. 93, 1636-1637 (1908). (9) Mettler, Ber. 38, 2812 (1905). (10) Gnehm, Banziger, Ann. 296, 65 (1897); Ber. 29, 875 (1896).
- (11) van der Beek, Rec. trav. chm. 51, 412-413 (1932). (12) Weissberger, J. Chem. Soc. 1935, 225. (13) Bock, Lock, Schmidt, Monatsh. 64, 406 (1934). (14) Reich, Araus, Potok, Tempel, Helv. Chim. Acta 3, 794 (1920). (15) Willstaedt, Ber. 64, 2693 (1931). (16) Shoppee, J. Chem. Soc. 1932, 701, 705. (17) Brady, McHugh, J. Chem. Soc. 125, 551 (1924). (18) Charlton, Earl, Kenner, Luciano, J. Chem. Soc. 1932, 40. (19) Hodgson, Beard, J. Soc. Chem. Ind. 45, T 91-93 (1926). (20) Blanksma, Wackers, Rec. trav. chim. 55, 658 (1936).
- (21) Henderson, Heilbron, J. Chem. Soc. 107, 1749 (1915). (22) Eitel, Lock, Monatsh. 72, 389-390 (1939) (23) Eitel, Lock, Monatsh. 72, 332-409 (1939). (24) Ushakov, Matusov, J.Gen. Chem. (U.S.S.R.) 14, 120-127 (1944), C.A. 39, 916 (1945). (25) Graymore, Davies, J. Chem. Soc. 1945, 293-294. (26) Vogelsang, Rec. trav chim 62, 5-11 (1943); C.A. 39, 1394 (1945).
- 3:6490 ISOAMYL TRICHLOROACETATE  $C_7H_{11}O_2Cl_3$  Beil. II 209 iso- $C_5H_{11}O.CO.CCl_3$  II<sub>1</sub>-( 94) II<sub>2</sub>-(200)
  - B.P. 217° (1)  $D_4^{20} = 1.2314$  (2) cf. (3)  $n_D^{20} = 1.4521$  (2)
- 3:6490 (1) Clermont, Bull. soc. chim (2) 40, 302 (1883). (2) Schjanberg, Z. physik. Chem. A-172, 229 (1935). (3) Livingston, Morgan, Kramer, J. Am. Chem. Soc. 35, 1836 (1913).

#### CHAPTER XV

### DIVISION B. LIQUIDS WITH BOILING POINTS REPORTED AT ORDINARY PRESSURE

## Section 1. $D_4^{20}$ greater than 1.1500

(3:6500-3:6999)

C<sub>5</sub>H<sub>6</sub>O<sub>2</sub>Cl<sub>2</sub>

Beil. II - 634

II1-(273)

[For prepn. of C from glutaric acid (1:0440) with PCl<sub>5</sub> (1) (2) (3) or with SOCl<sub>2</sub> (80-88% vield (4)) (5) see indic. refs.]

Note that C may react in either sym. or unsym. form (6).

3:6500 GLUTARYL (DI)CHLORIDE

 $[\bar{C} \text{ with AlCl}_3 + C_6H_6 \text{ yields (7) (4) 1,5-diphenylpentanedione-1,5 (1,3-dibenzoylpropane)}$ [Beil. VII-775, VII<sub>1</sub>-(403)], m.p.  $62-63^{\circ}$  (7) (4);  $\bar{C}$  with AlCl<sub>3</sub> + m-xylene gives (8) 1,5di-m-xylylpentanedione-1,5, m.p. 60° (8),  $+ \gamma$ -(m-xyloyl)-n-butyric acid, m.p. 118° (8); Č with AlCl<sub>3</sub> + mesitylene gives (72% yield (5)) 1,5-dimesitylpentanedione-1,5, m.p. 133-134° (5).]

 $\tilde{C}$  on hydrolysis yields glutaric acid (1:0440), m.p. 98° (for the diamide, dianilide, di-ptoluidide, and other derivs. corresp. to  $\bar{C}$  see 1:0440).

3:6500 (1) Reboul, Ann. chim. (5) 14, 504 (1878). (2) von Auwers, Schmidt, Ber. 46, 479 (1913). (3) Meerburg, Rec. trav. chim. 18, 373 (1899). (4) Skraup, Guggenheimer, Ber. 58, 2493 (1925). (5) Kao, J. Chinese Chem. Soc. 3, 56-59 (1935). (6) Plant, Tomlinson, J. Chem. Soc. 1935, 856. (7) Auger, Ann. chim. (6) 22, 358 (1891). (8) Borsche, Ber. 52, 2080 (1919).

#### 3:6510 \(\beta\)-CHLOROETHYL TRICHLOROACETATE C<sub>4</sub>H<sub>4</sub>O<sub>2</sub>Cl<sub>4</sub> Beil. II - 209 Cl.CH<sub>2</sub>.CH<sub>2</sub>.O.CO.CCl<sub>a</sub> II1---II.

B.P. 217° at 766 mm. (1) 
$$D_4^{20} = 1.5357$$
 (1), cf. (4) 99.5–100.0° at 14 mm. (2)  $n_D^{20} = 1.48133$  (1) cf. (4) 95–96° at 11 mm. (3) 68–69° at 1.6 mm. (4)

[For prepn. (45% yield (3)) from ethylene chlorohydrin (3:5552) + trichloroacetyl chloride (3:5420) + pyridine in ether see (3) (1); for prepn. (70% yield (3)) from Bhydroxyethyl trichloroacetate (3:9099) + SOCl<sub>2</sub> see (3).]

 $\tilde{C}$  on shaking with aq. is smoothly saponified to  $\beta$ -chloroethanol (3:5552) + trichloroacetic ac. (3:1150), no chloride ion being formed (3).

3:6510 (1) Delacre, Bull. soc. chim. (2) 48, 708 (1887). (2) Palomaa, Salmi, Korte, Ber. 72, 797 (1939). (3) Meerwein, Sönke, Ber. 64, 2380 (1931). (4) Meerwein, Sönke, J. prakt. Chem. (2) 137, 309 (1933).

3:6517 
$$\beta$$
-CHLORO- $\beta'$ -HYDROXY-ISOPROPYL ACETATE  $C_5H_9O_3Cl$  Beil. II - 142 (Glycerol  $\alpha$ -chlorohydrin  $\beta$ -acetate; CH $_2Cl$  II<sub>1</sub>-(67)  $\beta$ -aceto- $\alpha$ -chlorohydrin; H—C—O.CO.CH $_3$  CH $_2OH$ 

B.P. 218° (1) at 760 mm. (2) 108° at 12 mm. (3)

[See also glycerol  $\alpha$ -chlorohydrin  $\alpha'$ -acetate (3:6775).]

[For formn. of  $\bar{C}$  from 3-hydroxy-1,2-epoxypropane (glycidol) with AcCl (3:7065) ( $\gamma$ -hydroxy- $\beta$ -chloro-n-propyl acetate is also formed) see (1); from epichlorohydrin (3:5358) with AcOH in s.t. at 180° see (1); from glycerol  $\alpha$ , $\beta$ -diacetate with PCl<sub>5</sub> see (3).]

Note that the homogeneity of all reported prepns. of  $\bar{\mathbf{C}}$  is probably open to serious question.

3:6517 (1) Bigot, Ann. chim. (6) 22, 489-491 (1891). (2) Gibson, J. Soc. Chem. Ind. 59, 950 (1931). (3) Wegscheider, Zmerzlikar, Monatsh. 34, 1079-1080 (1913).

B.P. 218-219°

M.P. 53-54°

See 3:0990. Division A: Solids.

B.P. 219-220° at 740 mm.

M.P. 67°

See 3:1595. Division A: Solids.

**B.P.** 218.5° (1)  $D_4^{34} = 1.7131$  (1)  $n_D^{18} = 1.5262$  (1)

[For prepn. of  $\tilde{C}$  from 1,2,3,3-tetrachloropropene-1 (3:5920) +  $Cl_2$  in sunlight at  $-30^{\circ}$  see (1).] [The product obtd. by (4) from sym.-tetrachloroacetone (3:6050) +  $PCl_5$  was probably very impure  $\tilde{C}$ .]

Č with alc. KOH loses HCl quant. yielding 1,1,2,3,3-pentachloropropene-1 (3:6075), b.p. 183° (1).

[For use as solvent for cellulose esters see (2) (3).]

3:6525 (1) Prins, J. prakt. Chem. (2) 89, 422 (1914). (2) Spicers, Ltd. & Hands, Brit. 279,139, April 21, 1926; Cent. 1928, I 770, C.A. 22, 2840 (1928). (3) Spicers, Ltd. & Hands, French 625,165, Aug. 4, 1927; Cent. 1928, I 770. (4) Levy, Curchod, Ann. 252, 335-338 (1889).

3:6535 m-TOLUYL CHLORIDE 
$$C_8H_7OCl$$
 Beil. IX - 477  $CH_3$   $CH_3$   $CH_3$   $CH_3$   $CH_7OCl$   $CH_7OCl$   $CH_8$   $CH_8$ 

| B.P.         |          |         | M.P.     |                        |
|--------------|----------|---------|----------|------------------------|
| 219-220°     | at 773 m | n. (1)  | -25° (4) | $D_4^{20} = 1.173 (3)$ |
| 218.7-219.7° | at 760 m | n. (2)  | -23° (1) | -                      |
| 218°         | at 724 m | n. (1)  |          |                        |
| 120°         | at 38 m  | n. (3)  |          |                        |
| 119-120°     | at 36 m  | n. (4)  |          |                        |
| [136-138°    | at 31 m  | n. (5)] |          |                        |
| 105°         | at 20 mm | n. (6)  |          |                        |
| 109°         | at 15 m  | n. (7)  |          |                        |
| 109°         | at 8 mm  | n. (8)  |          |                        |
| 71.2°        | at 4 m   | n. (9)  |          |                        |

[For prepn. of  $\bar{C}$  from m-toluic acid (1:0705) with PCl<sub>5</sub> (83% yield (1)) (2) (10), with PCl<sub>5</sub> in CHCl<sub>3</sub> (70% yield (3)) (5), with PCl<sub>3</sub> (8), with SOCl<sub>2</sub> (95% yield (11)) (12) (6) (9), or with POCl<sub>3</sub> + NaCl (or KCl) (13) see indic. refs.; for formn. of  $\bar{C}$  from heptadiyne-1,6-carboxylic acid-4 (pseudo-m-toluic acid) with PCl<sub>5</sub> see (14).]

C with pyridine and excess K<sub>2</sub>S<sub>2</sub>O<sub>5</sub> yields (15) m-toluic anhydride, m.p. 70-71°.

[For reactn. of  $\bar{C}$  with AlCl<sub>3</sub> and various hydrocarbons to yield corresp. ketones, e.g., with  $C_6H_6$  yielding (10) phenyl *m*-tolyl ketone [Beil. VII-440, VII<sub>1</sub>-(235)], with toluene yielding (16) *m*-tolyl *p*-tolyl ketone [Beil. VII-451], with *m*-xylene yielding (17) *m*-tolyl *m*-xylyl ketone, see indic. refs.; note, however, that  $\bar{C}$  on htg. with AlCl<sub>3</sub> alone at 130-140° gives (17) (44-46% yield (18)) 2,6-dimethylanthraquinone [Beil. VII-815], m.p. 236°]

[ $\bar{C}$  with MeZnI (19) or Zn(CH<sub>3</sub>)<sub>2</sub> (3) or MeMgBr + CdCl<sub>2</sub> (20) gives (yield: 83% (20), 43% (19)) *m*-methylacetophenone (1:5527), b.p. 220°.]

[ $\bar{\mathbf{C}}$  with Cl<sub>2</sub> at 160-180° gives (90% yield (21)) (6) m-(chloromethyl)benzoyl chloride ( $\omega$ -chloro-m-toluyl chloride), b.p. 149-150° at 20 mm. (21);  $\bar{\mathbf{C}}$  with Br<sub>2</sub> at 185-195° gives (50% yield (22))  $\omega$ -bromo-m-toluyl bromide, b.p. 167° at 22 mm. (22).]

[Č with MeOH yields methyl m-toluate (1:3781), b.p. 221°; Č with EtOH yields ethyl m-toluate (1:3942), b.p. 234°; for study of rate of reactn. see {4}.]

 $\bar{C}$  on hydrolysis yields *m*-toluic acid (1:0705), m.p. 110-111° (for study of rate see (23)). — For the amide, anilide, *p*-toluidide, and other derivs. corresp. to  $\bar{C}$  see *m*-toluic acid (1:0705).

3:6535 (1) van Scherpenzeel, Rec. trav. chim. 20, 162 (1901). (2) Kohlrausch, Pongratz, Stockmair, Monatsh. 67, 108 (1936). (3) Klages, Lickroth, Ber. 32, 1560 (1899). (4) Norris, Young, J. Am. Chem. Soc. 57, 1424 (1935). (5) Cohen, Dudley, J. Chem. Soc. 97, 1749 (1910). (6) Morgan, Parter, J. Chem. Soc. 1926, 1258. (7) Frankland, Aston, J. Chem. Soc. 75, 494 (1899). (8) Frankland, Wharton, J. Chem. Soc. 69, 1311 (1896). (9) Thompson, Norris, J. Am. Chem. Soc. 58, 1955 (1936). (10) Ador, Rilliet, Ber. 12, 2301 (1879).

(11) Maxim, Bul. Soc. Chim. România 11, 29-36 (1929); Cent. 1929, II 2324. (12) Shopee,

J. Chem. Soc. 1932, 700. (13) Kissling (to I.G.), Ger. 642,519, March 10, 1937; Cent. 1937, I, 3874; C.A. 31, 5816 (1937). (14) Perkin, Simonsen, J. Chem. Soc. 91, 847 (1907). (15) Gasopoulos, Praktika Akad. Athenon 6, 347-353 (1931); Cent 1932, I 3171. (16) Scharwin, Schorygin, Ber. 36, 2027 (1903). (17) Morgan, Coulson, J. Chem. Soc. 1929, 2213. (18) Seer, Monatsh. 32, 154-157 (1911). (19) Mauthner, J. prakt. Chem. (2) 103, 394 (1921/22). (20) Gilman, Nelson, Rec. trav. chim. 55, 528-530 (1936).

(21) Titley, J. Chem. Soc. 1928, 2582. (22) Davies, Perkin, J. Chem. Soc. 121, 2210 (1922).

(23) Berger, Olivier, Rec. trav. chim. 46, 524-527 (1927).

3:6540 BENZOTRICHLORIDE (Phenylchloroform, 
$$\omega, \omega, \omega$$
-trichlorotoluene) CCl<sub>3</sub> C<sub>7</sub>H<sub>5</sub>Cl<sub>3</sub> Beil. V - 300 V<sub>1</sub>-(152) V<sub>2</sub>-(233) B.P. F.P. 220.5-221.5° (1) -4.4° (8)  $D_4^{20} = 1.3741$  (8) 220.9° (2) -4.75° (3) 1.37563 (4) 220.7° at 761 mm. (3) -5.0° (9) (10)  $n_D^{20} = 1.55789$  (8) 214-216° (4) -8.1° (7) 1.5579 (4) 213.0-213.5° (5) 1.55726 (11) 129° at 60 mm. (6) 105° at 25 mm. (7) 110.7° at 23 mm. (3) 89.0-89.5° at 10 mm. (8)

Colorless liquid insol. aq., sol. many org. solvents. — Ord. samples of  $\bar{C}$  may also cont. benzal (di)chloride (3:6327) or even benzyl chloride (3:8535). —  $\bar{C}$  when pure is stable in dry air, but ord. material (contg. dislvd. HCl) hydrolyzes rapidly in moist air (3). — The very high value (93) of molal f.p. lowering of  $\bar{C}$  prob. accounts for difficulty of earlier workers in attaining high f.p. values (3). — For removal of dislvd. HCl from  $\bar{C}$  by treat. with PbCO<sub>3</sub> see (9). — For purification of  $\bar{C}$  via crystallization see (10); for comml. purification see (12).

 $\bar{\mathbf{C}}$  forms const.-boilg. mixts. with various cpds., e.g.,  $\bar{\mathbf{C}}$  with *p*-dibromobenzene (b.p. 220.25°) forms an azeotrope, b.p. 219.6° at 760 mm., contg. 28 wt. %  $\bar{\mathbf{C}}$  (2);  $\bar{\mathbf{C}}$  with nitrobenzene (b.p. 210.75°) forms an azeotrope, b.p. 210.72° at 760 mm., contg. 1.5 wt. %  $\bar{\mathbf{C}}$  (2);  $\bar{\mathbf{C}}$  with *o*-nitrotoluene (b.p. 221.85°) forms an azeotrope, b.p. 219.55° at 760 mm., contg. 75.5 wt. %  $\bar{\mathbf{C}}$  (13);  $\bar{\mathbf{C}}$  with methyl salicylate (1:1750) (b.p. 222.35°) forms an azeotrope, b.p. 220.75° at 760 mm., contg. 97 wt. %  $\bar{\mathbf{C}}$  (13).

 $\tilde{C}$  is impt. intermediate in prepn. of benzoic acid (see below under hydrolysis), in prepn. of certain dyestuffs (see below), and in prepn. of acyl halides and anhydrides (see below); for use in prepn. of films of cellulose ethers see (14).

[For prepn. of  $\bar{C}$  from toluene with Cl<sub>2</sub> especially in pres. of light and/or other catalysts see (15) (16) (17) (18); with Cl<sub>2</sub> in pres. of PCl<sub>3</sub> (3) cf. (19); with SOCl<sub>2</sub> in s.t. at 220° for 18 hrs. (20) or at 230-250° (21) see indic. refs.; with NOCl at 350° see (22); for formn. of  $\bar{C}$  from benzal (di)chloride (3:6327) with Cl<sub>2</sub> (23) or with NOCl at 150° (24) see indic. refs.; from benzyl chloride (3:8535) by htg. with PbCl<sub>4</sub>.2NH<sub>4</sub>Cl see (25); from benzoyl chloride (3:6240) with PCl<sub>5</sub> see (26); from benzotrifluoride + acetyl chloride + AlCl<sub>3</sub> as directed see (8); from benzyl ethers with PCl<sub>5</sub> see (27).]

 $[\bar{C}]$  on reductn. in alc. soln. with  $H_2$  in pres. of colloidal Pd (28) or Pd/CaCO<sub>3</sub> (29) reacts bimolecularly giving (75% yield (28)) tolane tetrachloride (diphenylacetylene tetrachloride) (3:4496), colorless cryst. from AcOH, m.p. 162–163° (28), also obtd. from  $\bar{C}$  by other treatments (see below); this prod. with  $H_2 + Pd/CaCO_3$  in alc. KOH is further reduced yielding (29) dibenzyl (1:7149) (use in quant. detn. of its halogen (29)). —  $\bar{C}$  with hydra-

zine hydrate in MeOH/KOH in pres. of Pd/CaCO<sub>3</sub> refluxed for  $1\frac{1}{2}$  hrs. gives (42% yield (30)) a mixt. of the two geom. isomeric tolane dichlorides consisting mainly of the  $\alpha$ -isomer (3:4210), colorless tbls. from alc., m.p. 148° (30), with a little of the  $\beta$ -isomer (3:1380), m.p. 61° (30); despite their unsaturation these prods. reduce further only with difficulty.

[Č satd. with Cl<sub>2</sub> and stood in sunlight for 8 months or Č with liq. Cl<sub>2</sub> in sunlight for a few days adds 3 Cl<sub>2</sub> yielding (31) 1,2,3,4,5,6-hexachloro-1 (trichloromethyl) cyclohexane, cryst. from CHCl<sub>3</sub> or by sublimation, m.p. 103° (31); this may be accompanied by a little pentachlorotrichloromethylcyclohexene, m.p. 132-134° (31). — Č with Cl<sub>2</sub> in pres. of I<sub>2</sub> yields (32) a mixt. of mono- and di-chlorobenzotrichlorides.]

[Č on pyrogenic decompn. over Pt at red heat yields (32a) cf. (34) tolane tetrachloride (3:4496) together with its isomorphous mixt. with  $\alpha$ -tolane dichloride (see above). —  $\tilde{C}$  with Na in liq. NH<sub>3</sub> yields (33) 5% dibenzyl (1:7149) accompanied by much nitrogenous tar. —  $\tilde{C}$  with Zn in ether soln. reacts vigorously yielding (35) a deep green soln. contg. tolane dichloride (see above). —  $\tilde{C}$  with equal wt. reduced Cu at 100° for 10 hrs. yields (36) tolane tetrachloride, m.p. 162° (3:4496); note that distn. of crude reactn. prod. leads to further reactn. and formation (36) (37) of  $\alpha$ - and  $\beta$ -tolane dichlorides (see above). —  $\tilde{C}$  with C<sub>6</sub>H<sub>6</sub> in pres. of powdered chromium metal at 100° for 5 hrs. gives (17% yield (38)) triphenylchloromethane (3:3410), m.p. 106° (38). —  $\tilde{C}$  with small proportion of AlCl<sub>3</sub> (0.1 mole) at 50-60° evolves HCl and gives a mixt. (39) contg. 40%  $\alpha$ , $\alpha$ -dichloro-m-trichloromethyl-diphenylmethane, m.p. 59-61°, + 10% m-( $\alpha$ ', $\alpha$ '-dichloro-m'-trichloromethylbenzyl)- $\alpha$ , $\alpha$ -dichlorodiphenylmethane, oil, + 34% unchanged  $\tilde{C}$ . —  $\tilde{C}$  with AlCl<sub>3</sub> in C<sub>6</sub>H<sub>6</sub> (39) or  $\tilde{C}$  with Al + HgCl<sub>2</sub> in C<sub>6</sub>H<sub>6</sub> (40) gives (62% yield (39)) 9,9',10,10'-tetraphenyl-9,10-dihydroanthracene, cryst. from acetone or lgr., m.p. 159° (40), 157-158° (39).]

[Č with MeMgCl in ether gives two types of reactn. according to concn. (41); e.g., Č with dilute MeMgCl yields tolane tetrachloride (3:4496) + ethane + MgCl<sub>2</sub>, while Č with conc. MeMgCl gives in 22% yield a mixt. of the two geom. isomers of tolane dichloride (see above) consisting of 5 pts. of the trans form (3:4210), m.p. 138-139° (41), together with 1 pt. of the cis form (3:1380), m.p. 63° (41), separable by fractional crystn. from alc. — For reactn. of Č with EtMgBr see (42). — Č does not (43) react with excess mercury di-p-tolyl.]

[ $\bar{C}$  with HF gas in Cu flask at 0° for 72 hrs. (44), or  $\bar{C}$  with SbF<sub>3</sub> (45) (46), or  $\bar{C}$  with SbF<sub>3</sub>.2NaF at 130-140° (47), gives (yields: 75-95% (44), 75% (45), benzotrifluoride, b.p. 102.3°, m.p.  $-29^{\circ}$ . — Note that  $\bar{C}$  with ZnF<sub>2</sub> in Cu flask at 120° for 6 hrs. gives (65% yield (57)) benzoyl fluoride, b.p. 155-156° (57), also that  $\bar{C}$  + KF in HCOOH gives (16% yield (68)) formyl fluoride, b.p.  $-26^{\circ}$  at 750 mm. (68).]

 $\bar{C}$  on complete hydrolysis yields benzoic acid (1:0715): e.g.,  $\bar{C}$  on htg. with anhydrous HCOOH yields (48) BzOH + CO + HCl (use in detn. of side-chain halogen (49));  $\bar{C}$  with aq. in s.t. at 150° (15) or with aq. at 90-95° in pres. of Fe salts (50), or with aq. vapor at 550-850° over cat. (51), or with aq. + ZnCl<sub>2</sub> at 110-115° under press. (52), or with aq. CaCO<sub>3</sub> at 90° followed by acidif. with minl. acid (53) yields BzOH; note, however, although  $\bar{C}$  in ether soln. is only slowly hydrolyzed by aq. at room temp. (54) yet  $\bar{C}$  adequately shaken with aq. at room temp. is completely hydrolyzed (use in detn. of  $\bar{C}$  + benzal (di-chloride + benzyl chloride by titration with std. alk. using thymolsulfonphthalein (55)) and  $\bar{C}$  if subjected to actn. of steam (as in steam distn. of mixt. with volatile cpds.) is partially hydrolyzed (8). — [For study of kinetics of hydrolysis of  $\bar{C}$  in aq. acetone at 30° in pres. of acids, bases, or salts see (1).]

[ $\tilde{C}$  on partial hydrolysis yields benzoyl chloride (3:6240): e.g.,  $\tilde{C}$  with limited amt. aq. in pres. of H<sub>2</sub>SO<sub>4</sub> or FeCl<sub>3</sub> (56), or  $\tilde{C}$  with ord. comml. ZnCl<sub>2</sub> at 120° (57) (58), or  $\tilde{C}$  with aq. vapor over tin phosphate at 240° (59), or  $\tilde{C}$  with pure ZnO at 100° (57), or  $\tilde{C}$  with benzoic

acid in boilg. nitrobenzene (60), yields BzCl; note, however, that C with pure ZnCl<sub>2</sub> fails to react but addn. of 1 mole aq. or initial use of tech. ZnCl<sub>2</sub> gives BzCl (57).]

[Č htd. with carboxylic acids or anhydrides especially in pres. of ZnCl<sub>2</sub> is often used to prepare a mixture of benzoyl chloride with the acid chloride of the acid employed, particularly in cases where the two acyl chlorides are readily separable: e.g., Č with phthalic anhydride (1:0725) (61) (62) or phthalic acid (1:0820) (62) + ZnCl<sub>2</sub> at 110-120° or above gives 96% yield BzCl (3:6240) + 93% sym.-phthalyl (di)chloride (3:6900); for other examples see under chloroacetyl chloride (3:5235), dichloroacetyl chloride (3:5290), trichloroacetyl chloride (3:5420), fumaryl (di)chloride (3:5875), and terephthalyl (di)chloride (3:2205). — Similarly Č with salts of sulfonic acids yields BzCl + the corresp. sulfonyl chloride: e.g., Č + sodium β-naphthalenesulfonate gives (63) 90% yield BzCl + 80% yield β-naphthalenesulfonyl chloride.]

[C under certain conditions may be converted to benzoic anhydride (1:0595): e.g., C with BzOH + trace Fe salts htd. 6 hrs. at 110-115° under reflux (64), or C with NaOBz (65), or C with ord. conc. H<sub>2</sub>SO<sub>4</sub> (66), or C in AcOH in pres. of phosgene (67), yields Bz<sub>2</sub>O<sub>-</sub>]

 $\bar{C}$  very readily undergoes alcoholysis: e.g.,  $\bar{C}$  with EtOH in pres. of ZnCl<sub>2</sub> yields (69) ethyl benzoate (1:3721); note, however, that  $\bar{C}$  + abs. EtOH in s.t. at 130-140° (70) or  $\bar{C}$  + trace sublimed FeCl<sub>3</sub> treated at 80-110° with 95% alc. (71) yields benzoyl chloride (3:6240) + ethyl chloride (3:7015); furthermore that  $\bar{C}$  + ethyl acetate (2 moles) in pres. of ZnCl<sub>2</sub> yields (69) ethyl benzoate (1:3721) + acetyl chloride (3:7065) + ethyl chloride (3:7015).

C reacts with phenols to give various products according to circumstances: C with aq. (72) (74) or better alc. (73) sodium phenolate (3 moles) gives at 100° small yields of phenyl benzoate (1:2257), m.p. 71°, and of o-hydroxybenzophenone (1:1414), m.p. 41°, together with other prods. notably benzaurin (see below). — C with phenol in pres. of ZnO gives (75) phenyl benzoate (see above) + p-hydroxybenzophenone (1:1560), m.p. 134°. — C with phenol (2 moles) htd. at 100° and reactn. prod. treated with steam yields (76) (77) 4,4'-dihydroxytriphenylcarbinol (=phenolbenzein=4'-hydroxyfuchsone=bcnzaurin) [Beil. VI-1145, VIII<sub>1</sub>-(589)], as red crystn. powder (diacetate, m.p. 119° (76) (77); dibenzoate, m.p. 183-184° (76)), accompanied by p-hydroxybenzophenone (see above). — [For corresp. reactns. of C with o-crosol (1:1400) yielding o-crosolbenzein (78) (79), with thymol (1:1430) yielding thymolbenzein (80), with resorcinol (1:1530) yielding resorcinolbenzein (76), or with pyrogallol (1:1555) yielding pyrogallolbenzein (81) see indic. refs. - For reactn. of  $\tilde{C}$  with  $\alpha$ -naphthol (1:1500) (73) (94) (95) (or with 1-hydroxynaphthoic acid-2 (82) (83) (95)) yielding 4-(1-hydroxynaphthyl) phenyl ketone (or the corresp. 4-(1-hydroxy-2carboxynaphthyl) phenyl ketones) respectively see indic. refs.; for reactn. of  $\bar{C}$  with  $\beta$ naphthol (1:1540) see (84).]

Č with ammonia or amines gives varied reactns. — Č with liq. NH<sub>3</sub> (85) or with NH<sub>4</sub>Cl in s.t. at 200° (86) gives (75% yield (85)) benzonitrile; Č with conc. aq. NH<sub>4</sub>OH in s.t. at 130° yields (85) benzoic acid + benzamide + benzonitrile. — Č (1 mole) with aniline (2 moles) warmed together without solvent or with ZnCl<sub>2</sub> in AcOH soln. gives (87) N,N'-diphenylbenzamidine hydrochloride [Beil. XII-273, XII<sub>1</sub>-(202)], the free base of which has m.p. 147°; note, however, that Č with aniline hydrochloride + nitrobenzene + Fe filings htd. at 180° for 3-4 hrs. yields (87) the dyestuff Doebner's Violet (the HCl reactn. prod. of 4,4'-diaminotriphenylcarbinol) [Beil. XIII-742, XIII<sub>1</sub>-(293)]. — Č (1 mole) with dimethylaniline (2 moles) htd. at 100° preferably in pres. of ZnCl<sub>2</sub> yields (86) the dyestuff Malachite Green (the HCl reactn. prod. of 4,4'-dimethylaminotriphenylcarbinol) [Beil. XIII-743, XIII<sub>1</sub>-(293)] (see ⊕ below); analogous dyestuffs from other tertiary amines cannot be discussed here.

[Č with excess phenylhydrazine in alc. does not react until Cu powder is added; the

solution then (89) rapidly turns or.-red. and on cooling soon ppts. a mixture of benzaldehydephenylhydrazone, m.p. 157° (see 1:0195) (doubtless accounted for by reductn. of  $\bar{\mathbf{C}}$  to benzal (di)chloride (3:6327) at the expense of phenylhydrazine), together with phenylhydrazine hydrochloride. —  $\bar{\mathbf{C}}$  + excess phenylhydrazine heated in alc. without Cu (89) turns dark red and ppts. a mixt. of "formazylbenzene" [Beil. XVI-17], red lfts. from alc., m.p. 173° (doubtless accounted for as above), and phenylhydrazine hydrochloride.]

[C with amides or ammonium salts gives on htg. mixtures of corresp. nitriles and acid halides: e.g., C with benzamide at 140° yields (90) benzonitrile + benzoyl chloride; C with p-toluamide at 140° yields (90) benzonitrile, p-toluntrile, benzoyl chloride, and p-toluyl chloride (3:6600). — For patents exemplifying this type of reactn. see (91) (92).]

 $\bar{C}$  on mononitration, e.g., with 0.44 pt. fumg. HNO<sub>3</sub> + 0.44 pt. conc. H<sub>2</sub>SO<sub>4</sub> at 25–30° for ½ hr. (4), gives 85% yield *m*-nitrobenzoic acid, m.p. 140° (4); very possibly hydrolysis here precedes nitration since  $\bar{C}$  on nitration with N<sub>2</sub>O<sub>5</sub> in cold CCl<sub>4</sub> gives (32) (93) an oily mixt. of nitrobenzotrichlorides more stable to hydrolysis than original  $\bar{C}$ , but which on cleavage with alk. or conc. H<sub>2</sub>SO<sub>4</sub> yields a mixt. of nitrobenzoic acids containing 70% *m*-nitrobenzoic acid (for other studies of nitration of  $\bar{C}$  see (5) (10)). —  $\bar{C}$  on dinitration by soln. in 5.4 pts. conc. H<sub>2</sub>SO<sub>4</sub> and treatment with 6.8 pts. fumg. HNO<sub>3</sub> at 185° for 1 hr. gives (4) 33% yield of 3,5-dinitrobenzoic acid, m.p. 203–204° (4).

[Č cannot be sulfonated without hydrolysis of the —CCl<sub>3</sub> group;  $\bar{C}$  with conc. H<sub>2</sub>SO<sub>4</sub> even at 30° yields (66) benzoic acid (or its anhydride). — However,  $\bar{C}$  with gaseous SO<sub>3</sub> at room temp. (6) gives on subsequent vac. distn. an oil (perhaps *m*-sulfobenzotrichloride) which with aq. yields *m*-sulfobenzoic acid [Beil. XI-384, XI<sub>1</sub>-(98)], dihydrate, m.p. 97-98°, losing aq. at 160° yielding anhydrous acid, m.p. 140-141° (6).]

- Malachite Green formation. C

  (1 drop) + dimethylaniline (1 drop) warmed with 0.1 g. fused ZnCl<sub>2</sub> gives intense green color.
- Benzoic acid: C on refluxing with aq. NaOH soln., subsequently acidified, ppts. benzoic acid (1:0715), m.p. 121°.

3:6540 (1) Olivier, Weber, Rec. trav. chim. 53, 881, 884 (1934). (2) Lecat, Rec. trav. chim. 47, 14, 17 (1928). (3) Swarts, Bull. soc. chim. Belg. 31, 375-377 (1922). (4) Sah, Lei, Wang, Sci. Repts. Natl. Tsinghua Univ. A-2, 137-141 (1933); Cent. 1933, II 2977, C.A. 28, 118 (1934). (5) Flürscheim, Holmes, J. Chem. Soc. 1928, 1611-1615. (6) Lauer, J. prakt. Chem. (2) 142, 252-258 (1935); (2) 143, 127-138 (1935). (7) Timmermans, Bull. soc. chim. Belg. 25, 334-343 (1914); Cent. 1914, I 618. (8) Henne, Newman, J. Am. Chem. Soc. 60, 1698 (1938). (9) Sutton, Proc. Roy. Soc. London A-133, 673 (1931). (10) Holleman, de Mooy, Rec. trav. chim. 33, 25-27, 33-34 (1914).

(11) Dummer, Z. anorg. allgem. Chem. 101, 37 (1920). (12) Britton (to Dow Chem. Co.), U.S. 1,804,458, May 12, 1931; Cent. 1931, II 497. (13) Lecat, Ann. Soc. sci. Bruxelles 48, I 16, 116 (1928). (14) Donohue (to Eastman Kodak Co.), U.S. 1,552,798, Sept. 8, 1925; Cent. 1926, I 541. (15) Beilstein, Kuhlberg, Ann. 146, 330-333 (1868). (16) Selden Co. & Gibbs, Brit. 123,341, Oct. 22, 1917; C.A. 13, 1478 (1919); Swiss 87,961, Jan. 17, 1921; Cent. 1921, IV 354. (17) Conklin (to Solvay Process Co.), U.S. 1,828,858, U.S. 1,828,859, Oct. 27, 1931; Cent. 1932, I 1575. (18) I.G., French 798,727, May 25, 1936; Cent. 1936, II 3360. (19) Erdmann, Ann. 272, 150 (1892). (20) Pollak, Rudich, Monatsh. 43, 218 (1922).

(21) Meyer, Monalsh. 36, 729 (1915). (22) Moyer (to Solvay Process Co.), U.S. 2,152,357, March 3, 1939; Cent. 1939, II 1775; C.A. 33, 5001 (1939). (23) Limpricht, Ann. 139, 321-325 (1866). (24) Perrot, Compt. rend. 198, 1425 (1934). (25) Seyewetz, Trawitz, Compt. rend. 136, 241 (1903). (26) Limpricht, Ann. 134, 55-57 (1865). (27) Whitmore, Langlois, J. Am. Chem. Soc. 55, 1518 (1933). (28) Borshee, Heimburger, Ber. 48, 458 (1915). (29) Busch, Stöve, Rev. 49, 1087, 1068 (1916). (29) Busch, Weber J. renkt. Chem. (2) 46, 12-13, 50-52 (1936).

Soc. 55, 1518 (1933). (28) Borshce, Heimburger, Ber. 48, 458 (1915). (29) Busch, Stöve, Ber. 49, 1067-1068 (1916). (30) Busch, Weber, J. prakt. Chem. (2) 46, 12-13, 50-52 (1936). (31) van der Linden, Rec. trav. chim. 57, 1075-1080 (1938). (32) Spreckels, Ber. 52, 315-319 (1919). (32a) Löb, Ber. 36, 3060-3061 (1903). (33) Dean, Berchet, J. Am. Chem. Soc. 52, 2825 (1930). (34) Marckwald, Karcag, Ber. 40, 2994-2996 (1907). (35) Staudinger, Clar, Czako, Ber. 44, 1646 (1911). (36) Onufrowicz, Ber. 17, 833-835 (1884). (37) Hanhart, Ber. 15, 898-901 (1882). (38) Chakrabarty, Dutt, J. Indian Chem. Soc. 5, 514, 517 (1928). (39) Wohl, Wertyporoch, Ann. 481, 30-42 (1930). (40) Ray, J. Chem. Soc. 117, 1339 (1920).

(41) Fuson, Ross, J. Am. Chem. Soc. 55, 720-723 (1933). (42) Sanna, Cent. 1937, II 2345. (43) Whitmore, Thurman, J. Am. Chem. Soc. 51, 1497 (1929). (44) Simons, Lewis, J. Am. Chem. Soc. 60, 492 (1938). (45) Aelony, J. Am. Chem. Soc. 56, 2063 (1934). (46) Booth, Elsey, Burchfield, J. Am. Chem. Soc. 57, 2066-2069 (1935). (47) I.G., French 809,301, March 1, 1937; Cent. 1938, I 4863. (48) Heble, Nadkarin, Wheeler, J. Chem. Soc. 1938, 1322. (49) Gavankar, Heble, Wheeler, J. Univ. Bombay 6 (2), 112-113 (1937); Cent. 1938, I 4610; C.A. 32, 3757 (1938). (50) Schultze, Ger. 82,927, July 22, 1895, 85,493, Jan. 13, 1896; Friedländer 4, 143, 145.

(51) Lloyd, Kennedy, U.S. 1,849,844, March 15, 1932; Cent. 1932, I 2994. (52) George (to Mathieson Alkali Works), U.S. 1,557,153, Oct. 13, 1925; Cent. 1926, I 1716. (53) Stockelbach (to Mathieson Alkali Works), U.S. 1,591,245, July 6, 1926; Cent. 1926, I I 1584. (54) Straus, Hussy, Ber 42, 2180-2181 (1909). (55) Lubs, Clark, J. Am. Chem. Soc. 49, 1449-1453 (1918). (56) B.A.S.F., Ger. 331,696, Jan. 10, 1921; Cent. 1921, II 558. (57) Davies, Dick, J. Chem. Soc. 1932, 2808-2809. (58) George (to Mathieson Alkali Works), U.S. 1,557,154, Oct. 13, 1925; Cent. 1926, I 1716-1717. (59) Abkin, Medvedev, J. Chem. Ind. (Moscow) 1934, No. 1, 30-34; Cent. 1935, I 2801; C.A. 28, 3051 (1934); Russ. 34,551, Feb. 28, 1934; C.A. 29, 2973 (1935). (60) British Dyestuff Corp. & Bunberg & Shepherdson, Brit. 293,924, Aug. 9, 1928; Cent. 1928, 11614.

(61) Kyrides, J. Am. Chem. Soc. 59, 207-208 (1937). (62) Kyrides (to Monsanto Chem. Co.), U.S. 1,963,748, 1,963,749, June 19, 1934; Cent. 1934, II 2900. (63) Kranzlein, Hopff (to I.G.), Ger. 574,836, April 20, 1933; Brit. 384,722, Jan. 5, 1933; Cent. 1933, II 1430; French 739,290, Jan. 9, 1933; Cent. 1933, I 2173. (64) British Dyestuffs Corp. & Payman & Hall, Brit. 280,373, Dec. 8, 1927; Cent. 1928 I 1460. (65) Wacker Soc. Chem. Ind. & Kaufler & Hormann, Brit. 165,747, Aug. 24, 1921; Cent. 1922, II 1218. (66) Jenssen, Ber. 12, 1495 (1879); Ger. 6,685, Oct. 30, 1878. (67) Béhal, Compt. rend. 148, 648 (1909). (68) Nesmeyanov, Kahn, Ber. 67, 370-373 (1934). (69) Jacobsen, Ger. 11,494; Friedländer 1, 24. (70) Limpricht, Ann. 135,

(71) Verein chem. metallurg. Prod., Ger. 472,422, Feb. 28, 1929; Cent. 1929, I 2823. (72)
Heiber, Ber. 24, 3684-3687 (1891). (73) Sen, Ray, J. Indian Chem. Soc. 9, 181-183 (1932).
(74) Hamada, Science Repts. Tohoku Imp. Univ., First Ser. 22, 55-60 (1933); Cent. 1933, II 871;
C.A. 27, 3928 (1933). (75) Doebner, Stackmann, Ber. 9, 1918-1920 (1876). (76) Meyer,
Gerloff, Ber. 56, 98-104 (1923); Ber. 57, 591-599 (1924). (77) Dobner, Ann. 217, 227-233 (1883).
(78) Orndorff, McNulty, J. Am. Chem. Soc. 49, 992-997 (1927). (79) Meyer, Funke, Ber. 57, 1360-1363 (1924). (80) Orndorff, Lacey, J. Am. Chem. Soc. 49, 818-826 (1927).

(81) Orndorff, Wang, J. Am. Chem. Soc. 47, 290-292 (1925); 49, 1284-1289 (1927).
(82) Soc. Chem. Ind. Basel, Ger. 355,115, June 21, 1922; Swiss 92,406, Feb. 16, 1922; Swiss 93,490-393,492, March 1, 1922; Cent. 1923, II 483-484.
(83) Soc. Chem Ind. Basel, Ger. 378,908, Aug. 7, 1923; Ger. 378,909, Aug. 11, 1923; Swiss 98,559, April 2, 1923; Cent. 1923, IV 593-594.
(84) Dilthey, Quint, Heinen, J. prakt. Chem. (2) 152, 66-68 (1939).
(85) Franklin, J. Am. Chem. Soc. 55, 4915 (1933).
(86) Fireman, J. Am. Chem. Soc. 52, 2951-2954 (1930).
(87) Doebner, Ann. 217, 239-249 (1883).
(88) Doebner, Ann. 217, 250-261 (1883).
(89) Bodforss, Ber. 59, 670 (1926).
(90) Titherly, Holden, J. Chem. Soc. 101, 1881-1889 (1912).

(91) I.G., Brit. 323,948, Feb. 6, 1930; Cent. 1930, I 2630. (92) Hopff (to I.G.), Ger. 517,760,
Feb. 13, 1931; Cent. 1931, I 2937: Ger. 524,715, May 11, 1931; Cent. 1931, II 497. (93) Vorlander,
Ber. 52, 273 (1919). (94) Soc. Chem. Ind. Basel, Swiss 105,396 June 16, 1924, Cent. 1925, I 1014.
(95) Soc. Chem. Ind. Basel & de Montmollin & Bonhote, Brit. 231,342, April 23, 1925; Cent. 1926.

II 614-615.

```
B.P.
                                   M.P.
                                   16°
                                                  D_4^{20} = 1.3621 (8)
221-221.5°
                             (1)
                                            (9)
                                                                    n_{\rm D}^{20} = 1.5790 \, (8)
                                   15°
220-222°
                   (2) (10) (12)
                                           (10)
119°
               at 27.5 mm. (3)
                                   14-16°
                                           (11)
109°
               at 18.5 mm. (3)
                                   13.5°
                                            (8)
111.5°
                                   13-14° (12)
               at
                   18 mm. (4)
109-111°
               at
                   18 mm.
                            (5)
104.5°
               at
                   15 mm.
                            (3)
105°
               at
                   14 mm.
100.0-100.4° at 12.5 mm. (7)
                   11 mm. (8)
99.6°
99°
               at 11.5 mm. (3)
               at 10.5 mm. (3)
97.5°
93.6-93.9°
                    9 mm. (33)
               at
79.5-79.7°
               at
                    2 mm. (19)
```

[For prepn. of  $\tilde{C}$  from p-chlorobenzoic acid (3:4940) with PCl<sub>5</sub> (80% yield (10)) (2) (13) (14), with SOCl<sub>2</sub> (11) (14) (6) (33), with SOCl<sub>2</sub> + AlCl<sub>3</sub> (15), or with p-chlorobenzotrichloride (3:6825) + ZnCl<sub>2</sub> (16) cf. (18) see indic. refs.; from NaĀ with oxalyl dichloride (3:5060) see (17); from p-toluenesulfonyl chloride with SOCl<sub>2</sub> in s.t. at 240° (95% yield) see (12); for formn. of  $\tilde{C}$  (2%) from benzoyl chloride (3:6240) with Cl<sub>2</sub> + FeCl<sub>3</sub> (together with 83.5% m- (3:6590) and 14.5% o- (3:6640) isomers see (3).]

 $\bar{C}$  with MeOH yields (4) methyl p-chlorobenzoate (3:0535), m.p. 43°;  $\bar{C}$  with EtOH yields ethyl p-chlorobenzoate (3:6750), b.p. 238° (for study of rate of alcoholysis see (19) (20));  $\bar{C}$  with isopropyl alc. yields isopropyl p-chlorobenzoate (for study of rate of reactn. see (21)).

 $\bar{C}$  with Na $\bar{A}$  (50% yield (22)) or  $\bar{C}$  with oxalyl dichloride (3:5060) in  $C_6H_6$  (23) gives p-chlorobenzoic acid anhydride, ndls. from  $C_6H_6$  or dil. acetone, m.p. 194.8° (22), 193–194° (23) (24). [This anhydride may form during various reactns. of  $\bar{C}$  espec. in pres. of terbases or Na<sub>2</sub>CO<sub>3</sub>.]

[For reactn. of  $\bar{C}$  with AlCl<sub>3</sub> + benzene yielding (25) p-chlorobenzophenone (3:1914), with AlCl<sub>3</sub> + toluene yielding (26) 4-chloro-4-methylbenzophenone, with AlCl<sub>3</sub> + biphenyl yielding (5) p-chlorophenyl p-xenyl ketone, with AlCl<sub>3</sub> + naphthalene yielding (27) p-chlorophenyl  $\alpha$ -naphthyl ketone; with AlCl<sub>3</sub> + chlorobenzene yielding (9) 4,4'-dichlorobenzophenone (3:4270), with AlCl<sub>3</sub> + anisole yielding (6) (28) 4-chloro-4'-methoxybenzophenone, with AlCl<sub>3</sub> + phenetole yielding 4-chloro-4'-ethoxybenzophenone see indic. refs.]

[For reactn. of C with perylenetetracarboxylic acid diimide yielding vat dyes see (30); with 4,10-dichloroperylene + AlCl<sub>3</sub> see (31).]

[For reactn. of  $\tilde{C}$  with alk.  $H_2O_2$  in acetone giving 4,4'-dichlorodibenzoyl peroxide, m.p.  $137-138^\circ$  dec., see (32).]

 $\bar{\mathbf{C}}$  on hydrolysis yields p-chlorobenzoic acid (3:4940); for the amide, anilide, p-toluidide, and other derivs. corresp. to  $\bar{\mathbf{C}}$  see p-chlorobenzoic acid (3:4940).

8:6550 (1) Norris, Fasce, Staud, J. Am. Chem. Soc. 57, 1415-1420 (1935). (2) Emmerling, Ber. 8, 881-883 (1875). (3) Hope, Riley, J. Chem. Soc. 121, 2510-2527 (1922); 123, 2470-2480 (1923). (4) Montagne, Rec. trav. chim. 19, 55, 61 (1900). (5) de Ceuster, Cent. 1932, II 1296; C.A. 26, 4323 (1932). (6) Bergmann, Bondi, Ber. 64, 1471 (1931). (7) Kohlrausch, Pongrats,

Stockmair, Monatch. 67, 108 (1935). (8) Martin, Partington, J. Chem. Soc. 1936, 1177. (9) Dittrich, Ann. 264, 175-177 (1891). (10) van Raalte, Rec. trav. chim. 18, 395 (1899).

(11) Meyer, Monatsh. 22, 778 (1901). (12) Pollak, Rudich, Monatsh. 43, 216-217 (1922). (13) Novello, Miriam, Sherwin, J. Biol. Chem. 67, 559 (1926). (14) Frankland, Carter, Adams, J. Chem. Soc. 101, 2476-2477 (1912). (15) Kissling, (to I.G.) Ger. 701,953 Jan. 2, 1940; C.A. 36, 99 (1942). (16) Scottish Dyes, Ltd., Bangham, Thomas, Brit. 308,231, April 18, 1929; Cent. 1929, II 1348. (17) Adams, Uhlich, J. Am. Chem. Soc. 42, 605-606 (1920). (18) Mills (to Dow Chem. Co.), U.S. 1,965,556, July 3, 1934; Cent. 1934, II 2899; C.A. 28, 5474 (1934). (19) Norris, Young, J. Am. Chem. Soc. 57, 1420-1424 (1935). (20) Berger, Olivier, Rec. trav. chim. 46, 516-527 (1927).

(21) Norris, Gregory, J. Am. Chem. Soc. 50, 1813-1816 (1928).
(22) Rule, Paterson, J. Chem. Soc. 125, 2161 (1924).
(23) Adams, Wirth, French, J. Am. Chem. Soc. 40, 427 (1918).
(24) Lockemann, Ber. 43, 2229 (1910).
(25) Demuth, Dittrich, Ber. 23, 3609 (1890).
(26) Blakey, Scarborough, J. Chem. Soc. 1928, 2495.
(27) Scholl, Seer, Ber. 55, 115 (1922).
(28) Jones, J. Chem. Soc. 1936, 1861.
(29) Montagne, Rec. trav. chim. 39, 346 (1920).
(30) Nawiasky (to B.A.S.F.), Ger. 411,594, April 2, 1925; Cent. 1925, I 2666.

(31) Zinke, Funke, Pongratz, Ber. 58, 802 (1925). (32) Gelissen, Hermans, Ber. 58, 292 (1925).

(33) Thompson, Norris, J. Am. Chem. Soc. 58, 1956 (1936).

# 3:6560 n-AMYL TRICHLOROACETATE $C_7H_{11}O_2Cl_3$ Beil. S.N. 160 n- $C_8H_{11}$ -O.CO.CCl<sub>3</sub>

B.P. 220.3-222.3° (1) 
$$D_{20}^{20} = 1.2475$$
 (2) 218° at 756 mm. (2)

124.8-125° at 36 mm. (1) 118° at 30 mm. (2)

[For prepn. (91% yield (2)) from n-amyl alc. (1:6205) + trichloroacetic ac. (3:1150) see (2).]

3:6560 (1) Cheng, Z. physik. Chem. B-24, 309 (1934). (2) Liston, Dehn, J. Am. Chem. Soc. 60, 1264-1265 (1938).

3:6575 TRICHLOROACETIC ACID ANHYDRIDE 
$$C_4O_3Cl_6$$
 Beil. II - 210  $II_1 II_2-$  (200)

Note that the above name of C is so rendered to emphasize that it is the anhydride of trichloroacetic acid (not a trichlorinated acetic anhydride).

[For prepn. of  $\tilde{C}$  from trichloroacetic acid (3:1150) with trichloroacetyl chloride (3:5420) and PCl<sub>3</sub> (2), P<sub>2</sub>O<sub>5</sub> (1) or AlCl<sub>3</sub> (5) see indic. refs.; for prepn. of  $\tilde{C}$  from trichloroacetic acid (3:1150) with P<sub>2</sub>O<sub>5</sub> at 200–215° (80% yield (6)) (4) see indic. refs.; for prepn. of  $\tilde{C}$  from sodium trichloroacetate with SO<sub>2</sub>Cl<sub>2</sub> or SO<sub>2</sub> + Cl<sub>2</sub> in EtOAc (90–95% yield) see (7).]

[For behavior of  $\tilde{C}$  on htg. with SbF<sub>3</sub> + Br<sub>2</sub> see (6); for behavior with pure H<sub>2</sub>O<sub>2</sub> see (4).]  $\tilde{C}$  is hydrolyzed with great speed by aq. or even moist air (2) (4) yielding trichloroacetic acid (3:1150) q.v.; for the amide, anilide, p-toluidide, and other derivatives corresp. to  $\tilde{C}$  see trichloroacetic acid (3:1150).

**3:6575** (1) Clermont, Compt. rend. **86**, 337 (1878); Bull. soc. chim. (2) **30**, 505 (1878). (2) Buckney, Thomsen, Ber. **10**, 698-699 (1877). (3) Antoine, Jahresber. **1883**, 1032. (4) Fichter, Fritsch, Müller, Helv. Chim. Acta **6**, 503-504 (1923). (5) Strosacker, Schwegler (to Dow Chem. Co.),

U.S. 1,713,104, May 14, 1929; Cent. 1929, II 1215; C.A. 23, 3234 (1929). (6) Swarts, Bull. soc. chim. (3) 13, 992 (1895). (7) I.G., French 703,816, May 6, 1931; Cent. 1931, II 1347.

3:6582 DIMETHYL CHLOROFUMARATE 
$$C_{0}H_{7}O_{4}Cl$$
 Beil. II - 744  $Cl$ —C—COOCH<sub>3</sub> II<sub>1</sub>-(302) II<sub>2</sub>-(640)  $CH_{3}OOC$ —CH

B.P. 224° (1)  $D_{4}^{25}v_{ac} = 1.2899$  (2) 115.5° cor. at 18 mm. (2)  $D_{4}^{20} = 1.300$  (3)  $n_{He}^{20} = 1.471$  (3) 108° at 15 mm. (3)  $D_{4}^{179} = 1.3028$  (3)  $n_{He}^{19} = 1.47198$  (3)

[For prepn. of C from chlorofumaric acid (3:4853) in abs. MeOH with HCl gas (1) or conc. H<sub>2</sub>SO<sub>4</sub> (3) see indic. refs.; from chlorofumaryl (di)chloride (3:6105) with MeOH under reflux see (1).]

3:6582 (1) Kauder, J. prakt. Chem (2) 31, 26-28, 32 (1885). (2) Walden, Swinne, Z. physik. Chem. 79, 741 (1912). (3) von Auwers, Harres, Ber. 62, 1679, 1686-1687 (1929).

[For prepn. of  $\bar{C}$  from *m*-chlorobenzoic acid (3:4392) with PCl<sub>5</sub> (76% yield (8)) (1) (5) or with SOCl<sub>2</sub> (10) (6) see indic. refs.; from benzoyl chloride (3:6240) with Cl<sub>2</sub> + FeCl<sub>3</sub> (83.5%  $\bar{C}$ ) see (7) (11); from tetrahydroxybenzoic acid [Beil. X-535, X<sub>1</sub>-(270)] with 5 moles PCl<sub>5</sub> see (12); from *o*-sulfobenzoic acid with 2 moles PCl<sub>5</sub> see (1) (13).]

[Note that for the isomeric p-chlorobenzoyl chloride (3:6550) htg with  $P_2O_5$  in toluene yields (16) the corresp. anhydrides; although this reactn. is not recorded for  $\bar{C}$  yet the corresp. m-chlorobenzoic acid anhydride, ndls. from alc. (17) or from lt. pet. (16), m.p. 95.5° (16), 95° (17), has been obtd. from m-chlorobenzoic acid (3:4392) with  $P_2O_5$  in boilg. toluene (30% yield (16)) or with oxalyl dichloride (3:5060) in boilg.  $C_6H_6$  (17).]

[Č with MeOH yields (5) methyl m-chlorobenzoate (3:6670), b.p. 231°; Č with EtOH yields (1) ethyl m-chlorobenzoate (3:6770), b.p. 245°.] [For studies of rate of alcoholysis of Č see (14) (9).]

[ $\tilde{C}$  with  $C_6H_6$  + AlCl<sub>3</sub> gives (65% yield (6)) (2) (4) *m*-chlorobenzophenone (3:2160), m.p. 82-83°;  $\tilde{C}$  with naphthalene + AlCl<sub>3</sub> in CS<sub>2</sub> gives (73% yield (15)) *m*-chlorophenyl  $\alpha$ -naphthyl ketone, pale yel. pr. from alc., m.p. 77-79° (15).]

 $\tilde{\mathbf{C}}$  on hydrolysis (e.g., by boilg. with aq. (7)) yields m-chlorobenzoic acid (3:4392). — For the amide, anilide, p-toluidide, and other derivs. corresp. to  $\tilde{\mathbf{C}}$  see m-chlorobenzoic acid (3:4392).

3:8590 (1) Limpricht, von Uslar, Ann. 102, 262-263 (1857). (2) Hantzsch, Ber. 24, 57 (1891). (3) Kohlrausch, Pongratz, Stockmair, Monatsh. 67, 108 (1935). (4) Norris, Blake, J. Am. Chem. Soc. 50, 1812. (5) Montagne, Rec. trav. chim. 19, 55, 58 (1900). (6) Bergmann, Bondi, Ber. 64, 1477 (1931). (7) Hope, Riley, J. Chem. Soc. 121, 2510-2527 (1922). (8) Novello, Miriam, Sherwin, J. Biol. Chem. 67, 558 (1926). (9) Norris, Young, J. Am. Chem. Soc. 57, 1420-1424 (1935). (10) Frankland, Carter, Adams, J. Chem. Soc. 101, 2476-2477 (1912).

Hope, Riley, J. Chem. Soc. 123, 2470-2480 (1923). (12) Graebe, Ann. 138, 200-202 (1866).
 Otto, Ann. 122, 156 (1862). (14) Berger, Olivier, Rec. trav. chim. 46, 516-527 (1927).
 Scholl, Seer, Ber. 55, 113 (1922). (16) Rule, Paterson, J. Chem. Soc. 125, 2161 (1924).
 Adams, Wirth, French, J. Am. Chem. Soc. 40, 427 (1919). (18) Thompson, Norris, J. Am. Chem. Soc. 58, 1956 (1936).

3:6600 p-TOLUYL CHLORIDE 
$$C_8H_7OCl$$
 Beil. IX - 486 (p-Methylbenzoyl chloride)  $CH_3$   $C=O$   $Cl$   $Cl$ 

[For prepn. of  $\bar{C}$  from p-toluic acid (1:0795) with PCl<sub>5</sub> (100% yield (3)) (6) (10), with PCl<sub>3</sub> (11), with SOCl<sub>2</sub> (95% yield (12)) (2) (7) (13) (14), with POCl<sub>3</sub> + NaCl (KCl) (15) see indic. refs.]

[ $\bar{C}$  with pyridine and excess  $K_2S_2O_5$  yields (16) p-toluic anhydride, m.p. 94° (also formed as by-product of prepn. of  $\bar{C}$  with  $PCl_5$  (6)).]

[For reactn. of  $\bar{C}$  with AlCl<sub>3</sub> and various hydrocarbons to yield ketones, e.g., with  $C_6H_6$  yielding (3) phenyl p-tolyl ketone (1:5160), with toluene yielding (17) di-p-tolyl ketone (1:5185), with biphenyl yielding (18) (13) p-tolyl p'-xenyl ketone, with naphthalene yielding (19)  $\alpha$ -naphthyl p-tolyl ketone, with m-xylene yielding (14) p-tolyl m-xylyl ketone, with p-xylene yielding (14) p-tolyl p-xylyl ketone, with isopropylbenzene (cumene) yielding (20) p-cumyl p-tolyl ketone see indic. refs.]

 $[\tilde{\mathbf{C}}$  with EtZnI yields (21) ethyl p-tolyl ketone [Beil. VII-317, VII<sub>1</sub>-(170)], b.p. 238°.]

 $[\bar{C}]$  with  $Cl_2$  at elevated temp. yields (22) p-(chloromethyl)benzoyl chloride (a-chloro-p-toluyl chloride, b.p. 150–155° at 22 mm. (22);  $\bar{C}$  with  $Br_2$  at 185–190° yields (23) a mixt. of p-(bromomethyl)benzoyl chloride, b.p. 155–156° at 20 mm., and p-(bromomethyl)benzoyl bromide, b.p. 170–171° at 20 mm., m.p. 56° (23).]

[C with MeOH yields methyl p-toluate (1:2071), m.p. 33°, b.p. 222.5°; C with EtOH yields ethyl p-toluate (1:3947), b.p. 234.5°; for study of rate of reactn. with MeOH see (24), with EtOH see (9), with isopropyl alc. see (25).]

 $\tilde{\mathbf{C}}$  on hydrolysis yields p-toluic acid (1:0795), m.p. 178°; for the amide, anilide, p-toluidide, and other derivs. corresp. to  $\tilde{\mathbf{C}}$  see p-toluic acid (1:0795).

3:6600 (1) Kohlrausch, Pongratz, Stockmair, Monatsh. 67, 108 (1936). (2) Meyer, Monatsh. 22, 425 (1901). (3) Ador, Rilliet, Ber. 12, 2298-2299 (1879). (4) Frankland, Aston, J. Chem.

Soc. 75, 494 (1899). (5) Martin, Partington, J. Chem. Soc. 1936, 1177. (6) van Scherpenzeel,
 Rec. trav. chim. 20, 156 (1901). (7) Thompson, Norris, J. Am. Chem. Soc. 58, 1955 (1936).
 Branch, Nixon, J. Am. Chem. Soc. 58, 2500 (1936). (9) Norris, Young, J. Am. Chem. Soc. 57, 1424 (1935). (10) Cahours, Ann. 108, 316 (1858).

(11) Frankland, Wharton, J. Chem. Soc. 69, 1311 (1896). (12) Maxim, Bul. Soc. Chim. România 11, 29-36 (1929); Cent. 1929, II 2324. (13) Schlenk, Bergmann, Ann. 464, 32 (1928). (14) Morgan, Coulson, J. Chem. Soc. 1929, 2208-2211. (15) Kissling (to I.G.), Ger. 642,519, March 10, 1937; Cent. 1937, I 3874; C.A. 31, 5816 (1937). (16) Gasopoulos, Praktika Akad. Athenon 6, 347-353 (1931); Cent. 1932, I 3171. (17) Sommelet, Compt. rend. 180, 1349-1351 (1925). (18) Dilthey, J. prakt. Chem. (2) 109, 316 (1925). (19) Scholl, Seer, Ann. 394, 147 (1912). (20) Kozlov, Fedoseev, Drabkin, J. Gen. Chem. (U.S.S.R.), 6, 1686-1689 (1936); Cent. 1937, I 2369; C.A. 31, 2591 (1937).

(21) Mauthner, J. prakt. Chem. (2) 103, 294 (1921/22). (22) Badische Anilin- und Soda-Fabrik., Ger. 239,311, Oct. 10, 1911; Cent. 1911, II 1394; Ger. 240,835, Nov. 15, 1911; Cent. 1911, II 1394; Ger. 240,835, Nov. 15, 1911; Cent. 1911, II 1843. (23) Titley, J. Chem. Soc. 1928, 2581. (24) Norris, Fasce, Staud, J. Am. Chem. Soc. 57, 1415–1420 (1935). (25) Norris, Gregory, J. Am. Chem. Soc. 50, 1813–1816 (1928).

B.P. 226.5°

M.P. 56°

See 3:1020. Division A: Solids.

3:6615 o-CHLOROACETOPHENONE O C<sub>8</sub>H<sub>7</sub>OCl Beil. VII — VII<sub>1</sub>-(151)

B.P. 
$$228-229^{\circ}$$
 at 758 mm. (10)  $D_{25}^{25}=1.1884$  (1)  $n_{25}^{25}=1.685$  (1)  $227-228^{\circ}$  at 738 mm. (1)  $D_{4}^{20}=1.198$  (4)  $n_{He}^{20}=1.5483$  (5)  $n_{He}^{20}=1.5483$  (6)  $n_{He}^{20}=1.5483$  (7)  $n_{He}^{20}=1.5483$  (8)  $n_{He}^{20}=1.5483$  (9)  $n_{He}^{20}=1.5483$  (1)  $n_{He}^{20}=1.5483$  (1)  $n_{He}^{20}=1.5483$  (2)  $n_{He}^{20}=1.5483$  (3)  $n_{He}^{20}=1.5483$  (4)  $n_{He}^{20}=1.5483$  (5)  $n_{He}^{20}=1.5483$  (6)  $n_{He}^{20}=1.5483$  (7)  $n_{He}^{20}=1.5483$  (8)  $n_{He}^{20}=1.5483$  (9)  $n_{He}^{20}=1.5483$  (1)  $n_{He}^{$ 

Colorless mobile liquid with agreeable odor.

[For prepn. of C from o-chlorophenyl-methyl-carbinol (4) (5) by oxidn. with CrO<sub>3</sub> see (4) (5); from methyl o-chlorobenzoylacetate (60% yield (2)) or from ethyl o-chlorobenzoylacetate (80% yield (1)) (54% from C (10)) on ketonic hydrol. with boilg. 20% H<sub>2</sub>SO<sub>4</sub> for 10-12 hrs. see indic. refs.; from o-chlorobenzonitrile [Beil. IX-336] with MeMgI in ether (56% yield) see (3).]

[C with CuCN on htg. in mixt. of quinoline + pyridine as directed (6) gives 20% yield o-cyanoacetophenone, m.p. 48°, b.p. 148° at 12 mm. (6); for behavior of C on htg. with CuCN in quinoline at 210° or with CuCN + phthalonitrile in quinoline yielding coppercontg. pigments of the phthalocyanine type see (7).]

[C on htg. with 50% KOH as directed (8) gives small yield o-chlorobenzoic acid.]

[ $\overline{C}$  on mononitration with 10 pts. HNO<sub>3</sub> (D=1.52) at 0° gives (85% yield (1)) 2-chloro-4-nitroacetophenone, colorless pr. from alc., m.p. 62° (1) (for condens. of this prod. with arylamines to give substituted acridines see (9)).]

- O-Chloroacetophenone oxime: ndls. from aq., m.p. 112-113° (4), 103° (1).
- © o-Chloroacetophenone p-nitrophenylhydrazone: maroon cryst. from AcOH, m.p. 215° (2). (The phenylhydrazone of C is unstable (2).)
- O o-Chloroacetophenone 2,4-dinitrophenylhydrazone: dark yel. lfts. from AcOEt, m.p. 206° (3).
- © o-Chloroacetophenone semicarbazone: cryst. from MeOH, m.p. 178-179° (3), from 40% AcOH, m.p. 159-160° (2).

3:8615 (1) Thorp, Brunskill, J. Am. Chem. Soc. 37, 1260-1261 (1915). (2) Wahl, Rolland, Ann. chim. (10) 10, 28-29 (1928). (3) Borsche, Scriba, Ann. 541, 290 (1939). (4) von Auwers, Lechner, Bundesmann, Ber. 58, 49-50 (1925). (5) Ferbwerke Meister Lucius Brüning, Brit. 176,038, March 30, 1922; Cent. 1923, II 1252. (6) Helberger, von Rebay, Ann. 531, 283-284 (1937). (7) Helberger, Ann. 529, 216-217 (1937). (8) Lock, Böck, Ber. 76, 920 (1937). (9) Jensen, Rethwisch, J. Am. Chem. Soc. 50, 1145, 1149 (1928). (10) Sharp, Sutherland, Wilson, J. Chem. Soc. 1943, 346.

3:6625 o-CHLOROBENZAL (DI)CHLORIDE 
$$C_7H_5Cl_3$$
 Beil. V - 300 (o-Chlorobenzylidene (di)chloride)  $CHCl_2$   $V_1$   $V_2$  B.P. 228.5° (1)  $D_{15}^{15} = 1.399$  (1)  $n_D^{16} = 1.5670$  (4) 227-230° (2) 226-228° at 745 mm. (3) 100° at 10 mm. (3)

[For prepn. of  $\bar{C}$  from o-chlorobenzaldehyde (3:6410) with PCl<sub>5</sub> (86% yield (3)) (5) see indic. refs.; from o-toluenesulfonyl chloride with Cl<sub>2</sub> at 92° (73.5% yield (4)) or at 150–200° (6) see indic. refs.; from o-chlorotoluene (3:8245) with Cl<sub>2</sub> (1) in pres. of PCl<sub>5</sub> at 150–180° (7) or in pres. of PCl<sub>5</sub> at 102–105° (8) see indic. refs.; from o-hydroxybenzaldehyde (salicylaldehyde) (1:0205) with PCl<sub>5</sub> see (2); for formn. of  $\bar{C}$  (5–7%) from benzal dichloride (3:6327) with Cl<sub>2</sub> in pres. of I<sub>2</sub> (accompanied by 43% m- and 46–47% p-isomers) see (9).]

[For use of  $\bar{C}$  in prepn. of triphenylmethane dyes see (10) (11); for condensation with isoviolanthrone in prepn. of vat dyes see (12).]

Č on boilg. with water for 20 hrs. (3) or on htg. with aq. in s.t. at 170° (2) or with weakly fumg. H<sub>2</sub>SO<sub>4</sub> at ord. temp. as directed (7) yields o-chlorobenzaldehyde (3:6410). [For studies of this hydrolysis under various other conditions see (13) (5).]

C on oxidn. with CrO<sub>3</sub> (2), or C on boilg. with aq. for 20 hrs. followed by treatment with cold conc. aq. KMnO<sub>4</sub> (3), gives (75% yield (3)) o-chlorobenzoic acid (3:4150), m.p. 141° (3).

[C in MeOH treated with molecular Ag + sand and htd. in s.t. for 6 hrs. at 95° yields (1)  $\alpha,\beta$ -dichloro- $\alpha,\beta$ -bis-(o-chlorophenyl)ethane [Beil. V-601], cryst. from ether + lgr., m.p. 170.5° (1).]

3:6625 (1) Gill, Ber. 26, 650-652 (1893). (2) Henry, Ber. 2, 136 (1869). (3) Asinger, Lock, Monatsh. 62, 333-334 (1933). (4) Davies, Dick, J. Chem. Soc. 1932, 2045. (5) Olivier, Weber, Rec. trav. chim. 53, 881, 888 (1934). (6) Gilliard, Monnet, Cartier, Ger. 98,433, Dec. 12, 1896, Cent. 1898, II 800. (7) Erdmann, Ann. 272, 151-152 (1892). (8) Kyrides (to National Aniline and Chem. Co.), U.S. 1,733,268, Oct. 29, 1929; Cent. 1936, I 3831. (9) Wertyporoch, Ann. 493, 161-162 (1932). (10) Geigy and Co., Ger. 213,503, Oct. 14, 1909; Cent. 1909, II 1515.

(11) Weiler, Wenk, Stötter, Ger. 540,208, Dec. 12, 1931; Cent. 1932, I 3013. (12) Wuerts, Lycan (to du Pont Co.), U.S. 2,082,560, June 1, 1937; Cent. 1937, II 2077; C.A. 31, 5595 (1937).

(13) Lock, Asinger, Monatsh. 59, 157-160 (1932).

| В.Р.                    | <b>B.P.</b> (cont.) |                   |           |
|-------------------------|---------------------|-------------------|-----------|
| 229-230° at 773 mm. (1) | 114.5°              | at 19.75 mm. (15) | F.P4° (1) |
| <b>235–238°</b> (2)     | 110°                | at 15 mm. (8)     |           |
| 228-236° at 760 mm. (3) | 108°                | at 14.5 mm. (15)  |           |
| <b>233°</b> (4)         | 105°                | at 12.75 mm. (15) |           |
| <b>227°</b> (11)        | 104.8-105.2°        | at 12.5 mm. (9)   |           |
| <b>224–224.5°</b> (5)   | 103.5°              | at 12 mm. (15)    |           |
| <b>224°</b> (6)         | 101.5°              | at 11 mm. (15)    |           |
| 137-139° at 60 mm. (7)  | 93-95°              | at 10 mm. (7)     |           |
| 122° at 26.5 mm. (15)   | 87°                 | at 9 mm. (10)     |           |
|                         | 78.9-79.2°          | at 2 mm. (36)     |           |

[For prepn. of  $\bar{C}$  from o-chlorobenzoic acid (3:4150) with PCl<sub>5</sub> (78% yield (11)) (2), with PCl<sub>3</sub> + ZnCl<sub>2</sub> (78% yield (11)), with SOCl<sub>2</sub> (yield: 90–98% (11), 87% (10)) (12) (13) (36), or with o-chlorobenzotrichloride (3 6880) + ZnCl<sub>2</sub> (14) see indic. refs.; from o-chlorobenzaldehyde (3:6410) with Cl<sub>2</sub> at 140–160° (70–72% yield) see (7); from toluene-o-sulfonyl chloride with SOCl<sub>2</sub> in s.t. at 240° (41% yield) see (4).]

[For formn. of  $\bar{C}$  (together with other products) from benzoyl chloride (3:6240) with  $Cl_2 + FeCl_3$  (14.5%  $\bar{C}$ ) (15) (16), from o-hydroxybenzoic acid (salicylic acid) (1:0780) with  $PCl_5$  (17) (18) or with phospene (3:5000) + pyridine in toluene at 60-80° (19); from sodium salicylate with  $PCl_5$  (18) (20); from o-sulfobenzoic acid dichloride by distn. at ord. press. (21) (8) (22) (3) see indic. refs.]

[C with MeOH yields (1) methyl o-chlorobenzoate (3:6695) (for study of rate of reaction see (6)); C with EtOH yields (23) ethyl o-chlorobenzoate (3:6800) (for study of rate of reaction see (5)).]

[ $\bar{C}$  with Na o-chlorobenzoate should yield o-chlorobenzoic acid anhydride, ndls. from lt. pet. (25) or alc. (26), m.p. 79.6° (25), 78–79° (26); this anhydride also results from o-chlorobenzoic acid with  $P_2O_5$  in boilg. toluene (25) or with oxalyl dichloride (3:5060) in boilg.  $C_6H_6$  (26).]

[C on cat. hydrogenation gives (70% yield (27)) (28) o-chlorobenzaldehyde (3:6410).]

[For reactn. of  $\ddot{C}$  with AlCl<sub>3</sub> + benzene yielding (29) o-chlorobenzophenone (3:0715), with AlCl<sub>3</sub> + o-chlorobluene yielding (30) 2,3-dichloro-4-methylbenzophenone, with AlCl<sub>3</sub> + p-dichlorobenzene yielding (31) 2,2',5'-trichlorobenzophenone, with AlCl<sub>3</sub> + naphthalene yielding (32)  $\alpha$ -naphthyl o-chlorophenyl ketone, or with anisole + AlCl<sub>3</sub> (1:7445) yielding (33) 2-chloro-4-methoxybenzophenone see indic. refs.]

[For reactn. of C with perylenetetracarboxylic acid diimide (34) or with aminodibenzanthrones (35) yielding vat dyes see indic. refs.]

Č on hydrolysis yields o-chlorobenzoic acid (3:4150), m.p. 141°; for the amide, anilide, p-toluidide, and other derivs. corresp. to Č see o-chlorobenzoic acid (3:4150).

3:8640 (1) Montagne, Rec. trav. chim. 19, 55-56 (1900). (2) Emmerling, Ber. 8, 883 (1875).
(3) Davies, Dick, J. Chem. Soc. 1932, 2044. (4) Pollak, Rudich, Monatsh. 43, 217-218 (1922).
(5) Norris, Fasce, Staud, J. Am. Chem. Soc. 57, 1415-1420 (1935). (6) Norris, Young, J. Am. Chem. Soc. 57, 1420-1424 (1935). (7) Clarke, Taylor, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 155-156 (1941); (1st ed.), 148-149 (1932); 9, 34-35 (1929). (8) Fritsch, Ber. 29, 2299 (1896).
(9) Kohlrausch, Pongrats, Stockmair, Monatsh. 67, 108 (1935). (10) Novello, Miriam, Sherwin, J. Biol. Chem. 67, 557, (1926).

(11) Clark, Bell, Trans. Roy. Soc. Can. (3) 27, III 97-103 (1933). (12) Frankland, Carter, Adams, J. Chem. Soc. 101, 2476 (1912). (13) Meyer, Monatsh. 22, 427 (1901). (14) Scottish Dyes, Ltd., Bangham, Thomas, Brit. 308,231, April 18, 1929; Cent. 1929, II 1348; C.A. 24, 129 Dyes, Ltd., Balgham, Indias, Dr. 305, 121, 2510-252, (1920). (15) Hope, Riley, J. Chem. Soc. 123, 2470-2480 (1923). (17) Chiozza, Ann. 83, 317-318 (1852). (18) Kolbe, Lautermann, Ann. 115, 183-187 (1860). (19) Soc. Chem. Ind. Basel, Brit. 401,643, Dec. 14, 1933; Cent. 1834, II 2133; French 732,078, Sept. 13, 1932; Cent. 1934, I 287. (20) Reichenbach, Beilstein. Ann. 132, 311-313 (1864).

(21) Remsen, Kohler, Am. Chem. J. 17, 332-333 (1895). (22) List, Stein, Ber. 31, 1653-1654 (1898). (23) Kekulé, Ann. 117, 153-154 (1861). (24) Berger, Olivier, Rec. trav. chim. 46, 516-527 (1927). (25) Rule, Paterson, J. Chem. Soc. 125, 2161 (1924). (26) Adams, Wirth, 510-527 (1927). (20) Rule, Facision, J. Chem. Soc. 200, 241 (1927). (20) Annual, French, J. Am. Chem. Soc. 40, 427 (1918). (27) Rosenmund, Zetsche, Ber. 54, 436-437 (1921). (28) Zetsche, Swiss 92,404, Jan. 2, 1922, Cent. 1922, IV 889. (29) Mayer, Freund, Ber. 55, 2050-2051 (1922). (30) de Diesbach, Bulhard, Helv. Chim. Acta 7, 625 (1924). (31) Ganzmuller, J. prakt Chem. (2) 138, 311-312 (1933). (32) Scholl, Sier, Ber. 55, 113 (1922).

(33) Jones, J. Chem. Soc. 1936, 1861. (34) Nawiasky (to B.A.S.F.), Ger. 411,594, April 2, 1925; Cent. 1925, I 2666. (35) B.A.S.F., French 598,752, Dec. 24, 1925; Cent. 1926, I 1889. (36)

Thompson, Norris, J. Am. Chem. Soc. 58, 1956 (1936).

### — 2,3,4-TRICHLOROTOLUENE

$$\begin{array}{ccccc} {\rm CH_{3}} & {\rm C_{7}H_{5}Cl_{3}} & {\rm Beil.} \ V - {\bf 298} \\ {\rm Cl} & & V_{1}-\\ {\rm Cl} & & V_{2}-({\bf 232}) \\ \end{array}$$

B.P. 231-232° at 716 mm.

M.P. 41°

See 3:0425. Division A: Solids.

#### - 2,3,5-TRICHLOROTOLUENE

$$CH_3$$
  $C_7H_5Cl_3$  Beil.  $V-299$   $V_1 V_2-$ 

B.P. 229-231° at 757 mm.

M.P. 45-46°

See 3:0610. Division A: Solids.

#### — 2,4,5-TRICHLOROTOLUENE

$$\begin{array}{cccc} CH_3 & C_7H_5Cl_3 & \text{Beil. V - 299} \\ & & V_{1^-}(152) \\ & & V_{2^-}(232) \end{array}$$

B.P. 229-230° at 716 mm.

M.P. 82°

See 3:2100. Division A: Solids.

1,1,2,3,4-PENTACHLOROBUTANE C<sub>4</sub>H<sub>5</sub>Cl<sub>5</sub> Beil. S.N. 10 (Solid diastereoisomer) CH<sub>2</sub>—CH—CH-

B.P. 230°

M.P. 49°

 $D_{-}^{53} = 1.539$   $n_{\rm D}^{53} = 1.5065$ 

See 3:0750. Division A: Solids.

[See also glycerol α-chlorohydrin α'-acetate (3:6775).]

[For prepn. of  $\tilde{C}$  from glycerol  $\beta$ -monochlorohydrin (3:9039) with Ac<sub>2</sub>O (1:1015) see (3).]

[For formn. of  $\bar{\mathbb{C}}$  from 3-hydroxy-1,2-epoxypropane (glycidol) with AcCl (3:7065) (note that  $\gamma$ -chloropropylene glycol  $\beta$ -acetate (3:6517) is also formed) see (1); from glycerol  $\alpha,\alpha'$ -diacetate with PCl<sub>5</sub> or S<sub>2</sub>Cl<sub>2</sub> see (3); from allyl acetate by addn. of HOCl see (1).]

Note that the homogeneity of all reported prepns. of  $\bar{\mathbf{C}}$  is probably open to serious question.

3:8648 (1) Bigot, Ann. chim. (6) 22, 490-493 (1891). (2) Gibson, J. Soc. Chem. Ind. 50, 950 (1931). (3) Wegscheider, Zmerzlikar, Monatsh. 34, 1071-1080 (1913).

3:6655 ETHYLENE GLYCOL bis- $(\beta$ -CHLOROETHYL)  $C_{\delta}H_{12}O_{2}Cl_{2}$  Beil. S.N. 30 ETHER  $CH_{2}O.CH_{2}.CH_{2}Cl_{2}$  CH<sub>2</sub>.O.CH<sub>2</sub>.CH<sub>2</sub>Cl  $(\beta(\beta$ -Chloroethoxy)ethyl  $\beta$ -chloroethyl ether;  $\alpha,\beta$ -bis- $(\beta$ -chloroethoxy)ethane;  $CH_{2}O.CH_{2}.CH_{2}Cl$  "triglycol dichloride")

| B.P. 230° | at 760 mm. (1) | $D_{24}^{24}=1.196\ (4)$ |  |
|-----------|----------------|--------------------------|--|
| 235°      | · <b>(2)</b>   |                          |  |
| 118°      | at 10 mm. (1)  | $D_{20}^{20}=1.197(1)$   |  |
| 80-85     | o at 2 mm. (4) |                          |  |

[For prepn. of  $\bar{C}$  from "triethylene glycol" (1:6538) + SOCl<sub>2</sub> (78.5% yield (4)) + dimethylaniline (2) or pyridine (4) see (2) (4); for prepn. from ethylene chlorohydrin (3:5552) + ethylene oxide (1:6105) see (1).]

[For reactn. of  $\bar{C}$  with phenols see (2) (3); with NaSCN see (5); for reactn. with metal polysulfides see (6).]

[For solubility of dichlorofluoromethane (refrigerating liquid) in  $\bar{C}$  see (4).] [For use in high-pressure lubrication see (1).]

3:8655 (1) Cox (to Carbide and Carbon Chem. Corp.), U.S. 2,017,811, Oct. 15, 1935; French 788,281, Oct. 7, 1935; Cent. 1936, I 3063; C.A. 29, 8320 (1935). (2) Röhm, Haas, French 822,326, Dec. 28, 1937; Cent. 1938, I 4384; C.A. 32, 4250-4251 (1938). (3) Rohm, Haas, French 824,887, Feb. 17, 1939; Cent. 1938, II 1861; C.A. 32, 6258 (1938). (4) Zellhoefer, Ind. Eng. Chem. 29, 548-551 (1937). (5) Hollander, Williams (to Röhm, Haas Co.), U.S. 2,077,478, 2,077,479, April 20, 1937; Cent. 1937, II 1650; C.A. 31, 4045-4046 (1937). (6) Patrick, Trans. Faraday Soc. 32, 347-358 (1935).

B.P. M.P. 231° at 763.5 mm. (1) 21° (2) 
$$n_{\rm D}^{10.5} = 1.4923$$
 (5) 227° at 760 mm. (5) 20.0–20.5° (3) 114° at 18 mm. (2) 99.5–101.5° at 12 mm. (5)

[For prepn. of  $\bar{C}$  from *m*-chlorobenzoic acid (3:4392) with MeOH + Hcl (2) or with MeOH + H<sub>2</sub>SO<sub>4</sub> (2) (3) see indic. refs.; from *m*-chlorobenzoyl chloride (3:6590) with MeOH see (1).]

 $\tilde{C}$  on htg. with sirupy  $H_3PO_4$  at 200° yields (4) m-chlorobenzoic acid (3:4392), chlorobenzene (3:7903), dimethyl ether, and  $CO_2$ .

Č added to 5-6 pts. very conc. HNO<sub>3</sub> at 0°, then poured onto ice, yields (1) methyl 5-chloro-2-nitrobenzoate [Beil. IX-401], cryst. from MeOH, m.p. 48.5° (1).

[ $\ddot{C}$  with Na + methyl acetate condenses giving (65-70% yield (3)) methyl m-chlorobenzoylacetate, b.p. 165-169° at 11 mm. (3); this prod. with excess phenylhydrazine in alc. + AcOH yields 3-(m-chlorophenyl)-1-phenylpyrazolone-5, cryst. from alc., m.p. 144° (3); corresp. prod. from p-nitrophenylhydrazine, m.p. 189° (3).]

Č on hydrolysis (Sap. Eq. = 170.5) yields methyl alcohol (1:6120) and m-chlorobenzoic acid (3:4392). [For study of vel. of hydrol. with MeOH/KOH at 25° see (2).] — For the amide, anilide, p-toluidide, and other derivs. corresp. to Č see m-chlorobenzoic acid (3:4392).

3:6670 (1) Montagne, Rec. trav. chim. 19, 55-56, 58-61, 63-64 (1900). (2) Kellas, Z. physik. Chem. 24, 243-252 (1897). (3) Wahl, Rolland, Ann. chim. (10) 10, 9-18 (1928). (4) Raikow, Tischkow, Chem. Ztg. 29, 1269 (1905). (5) Kahovec, Wagner, Monatsh. 74, 285 (1943).

B.P. 231-233°

M.P. 57-58°

See 3:1145. Division A: Solids.

--- 3,5-DICHLOROPHENOL OH C<sub>6</sub>H<sub>4</sub>OCl<sub>2</sub> Beil. VI - 190 VI<sub>1</sub>-(103) VI<sub>2</sub>-(179)

B.P. 233° at 757 mm.

M.P. 68°

See 3:1670. Division A: Solids.

3:6685 
$$d$$
, $l$ -1,2-DICHLORO-1-PHENYLETHANE  $C_8H_8Cl_2$  Beil. V - 354  $V_1$ —
styrene dichloride)  $C_8H_8Cl_2$   $V_1$ —
 $V_2$ -(278)

B.P. 233-234° at 759 mm. (1) 
$$D_4^{15} = 1.240$$
 (1)  $n_D^{15} = 1.5544$  (1) 114.5-115.5° at 15 mm. (1) 93° at 5 mm. (2)

Limpid liq. with faint odor.

3:6695 METHYL o-CHLOROBENZOATE

[For prepn. of  $\tilde{C}$  from phenylethylene (styrene) (1:7435) with Cl<sub>2</sub> in CHCl<sub>3</sub> at 0° {1} cf. (3) or in CCl<sub>4</sub> at 40-50° (4) (note that some  $\beta$ -chlorostyrene (3:8717) is also formed (4)) see indic. refs.; for form. of  $\tilde{C}$  in reaction of styrene (1:7435) with NCl<sub>3</sub> in CCl<sub>4</sub> at  $-10^{\circ}$  (5) or from ethylbenzene (1:7410) with Cl<sub>2</sub> in bright sunlight (6) see indic. refs.]

[ $\bar{C}$  with a mildly alkaline agent such as Na<sub>2</sub>CO<sub>3</sub>, NaOAc, CaO, or CaCO<sub>3</sub> (but not alkali hydroxide) as directed (7) undergoes hydrolysis of its  $\alpha$ -chlorine atom giving chloromethyl-phenyl-carbinol (styrene chlorohydrin) (3:9570).]

[ $\bar{C}$  passed over activated Al<sub>2</sub>O<sub>3</sub> at 360-400° and 85-105 mm. pres. (4) or  $\bar{C}$  with pyridine as directed (8) loses HCl giving (92% yield (4))  $\beta$ -chlorostyrene (3.8717).]

[C with aq. alc. NaOH at 50-60° for 4 hrs. loses HCl (in the opposite sense from preceding paragraph) giving (89% yield (4)) \( \alpha \)-chlorostyrene (3:8715).]

3:6685 (1) Biltz, Ann. 296, 275-277 (1897). (2) Knorr (to I.G.), Ger. 559,521, Sept. 21, 1932; Cent. 1933, I 1843; C.A. 27, 736 (1933): French 735,000, Oct. 31, 1932, Cent. 1933, I 1843; C.A. 27, 1011 (1933). (3) Blyth, Hofmann, Ann. 53, 309-310 (1845). (4) Emerson, Agnew, J. Am. Chem. Soc. 67, 518-520 (1945). (5) Coleman, Campbell, J. Am. Chem. Soc. 50, 2754-2755 (1928). (6) Evans, Mabbott, Turner, J. Chem. Soc. 1927, 1163. (7) I G., French 735, 108, Nov. 3, 1932; Cent. 1933, II 1093; C.A. 27, 1011 (1933). (8) I.G., French, 729,730, July 30, 1932; Cent. 1932, II 3015; C.A. 27, 307 (1933).

C<sub>8</sub>H<sub>7</sub>O<sub>2</sub>Cl

Beil. IX - 336

[For prepn. of  $\bar{C}$  from o-chlorobenzoic acid (3:4150) with MeOH + HCl (2) or MeOH + H<sub>2</sub>SO<sub>4</sub> (2) (5) or MeOH + BF<sub>3</sub>.Et<sub>2</sub>O (70.6% yield (4)) see indic. refs.; from o-chlorobenzoyl chloride (3:6640) with MeOH see (1).]

 $\tilde{C}$  on htg. with sirupy  $H_3PO_4$  at 200° yields (6) o-chlorobenzoic acid (3:4150), chlorobenzene (3:7903), dimethyl ether  $+ CO_2$ .

Č added to 5-6 pts. very conc. HNO<sub>3</sub> at 0°, poured onto ice, yields (1) mainly methyl 2-chloro-5-nitrobenzoate [Beil. IX-403], ndls. from MeOH, m.p. 73° (1).

[C with Na + methyl acetate condenses giving (65-70% yield (5)) methyl o-chlorobenzoylacetate, b.p. 170-172° at 12 mm. (5); this prod. with excess phenylhydrazine in alc. + AcOH gives on htg. 3-(o-chlorophenyl)-1-phenylpyrazolone-5, colorless ndls. from MeOH, m.p. 113-114° (5); corresp. prod. from p-nitrophenylhydrazine, m.p. 203-204° (5).] Č on hydrolysis (Sap. Eq. = 170.5) yields methyl alcohol (1:6120) + o-chlorobenzoic acid (3:4150). [For studies of hydrolysis under various cond. see (2) (3) (7).] — For the amide, anilide, p-toluidide, and other derivs. corresp. to Č see o-chlorobenzoic acid (3:4150).

3:8695 (1) Montagne, Rec. trav. chim. 19, 55-58, 63-64 (1900). (2) Kellas, Z. physik. Chem. 24, 243-252 (1897). (3) Bergmann, Hirshberg, J. Chem. Soc. 1936, 334-336. (4) Sowa, Nieuwland, J. Am. Chem. Soc. 58, 272 (1936). (5) Wahl, Rolland, Ann. chim. (10) 10, 9-13, 17-18 (1928). (6) Raikow, Tischkow, Chem. Ztg 29, 1269 (1905). (7) Jones, McCombie, Scarborough, J. Chem. Soc. 123, 2695-2697 (1923); 125, 2593-2594 (1924). (8) Kahovec, Wagner, Monatch. 74, 284 (1943).

3:6697 DIETHYL CHLOROMALEATE 
$$C_8H_{11}O_4Cl$$
 Beil. II - 753  $Cl$ — $C$ — $COOC_2H_5$  II<sub>1</sub>-(305)  $II_{2}$ -(646)

B.P. 235° at 760 mm., sl. dec. (1)  $D_4^{25}_{vac} = 1.1914$  (2) 189.5–190.5° at 210 mm. (1) 125.5° cor. at 19 mm. (2)  $D_4^{20} = 1.174$  (4) (5)  $n_{He}^{20} = 1.455$  (4) 122° at 15 mm. (3) 1.4549 (5) 120° at 12 mm. (5)  $D_4^{10} = 1.1754$  (4)  $n_{He}^{10} = 1.45532$  (4)

[See also diethyl chlorofumarate (3:6864).]

Colorless oil with pleasant odor.

[For prepn. of  $\bar{C}$  from chloromaleic anhydride (3:0280) in abs. EtOH with conc. H<sub>2</sub>SO<sub>4</sub> in cold (4) or on refluxing several hrs. (6) or from silver salt of chloromaleic acid (3:3432) with EtI (1) (3) see indic. refs.]

 $[\bar{C}\ (1\ mole)\ with ethyl sodioacetoacetate (1\ mole)\ in abs. alc. refluxed <math>\frac{1}{2}$  hr. reacts readily yielding (3) (7) triethyl  $\gamma$ -acetylaconitate [Beil. III-860], yel. oil, b.p. 187-188° at 15 mm. (3), the same prod. as similarly obtd. from diethyl chlorofumarate (3:6864).]

[C with 6% alc. NH<sub>3</sub> (2 moles) at ord. temp. for 5-6 days reacts to yield (6) diethyl immosuccinate (diethyl aminobuten-2-dioate) [Beil. III-784], b.p. 144-145° at 25 mm. (6), identical with the prod. from similar treatment of the isomeric diethyl chlorofumarate (3:6864) q.v.]

3:6697 (1) Perkin, J. Chem. Soc. 53, 708 (1888). (2) Walden, Swinne, Z. physik. Chem. 79, 742 (1912). (3) Ruhemann, Taylor, J. Chem. Soc. 69, 532-535 (1896). (4) von Auwers, Harres, Ber. 62, 1681, 1686-1687 (1929). (5) von Auwers, Harres, Z. physik. Chem. A-143, 10 (1929). (6) Thomas-Mamert, Bull. soc. chim. (3) 13, 848-853 (1895). (7) Ruhemann, J. Chem. Soc. 71, 323-324 (1897).

[For prepn. of  $\tilde{C}$  from p-chlorobenzaldehyde (3:0765) with PCl<sub>5</sub> see (1) (4); from p-toluenesulfonyl chloride with SOCl<sub>2</sub> in s.t. at 140° for 18 hrs. (54% yield (3)) or with Cl<sub>2</sub> at 150-200° (accompanied by p-chlorobenzotrichloride (3:6825) (5)) see indic. refs.; for formn. of  $\tilde{C}$  (47% (6)) from benzal dichloride (3:6327) with Cl<sub>2</sub> in pres. of I<sub>2</sub> (6) (2) (accompanied by 5-7% o- and 43% m-isomers (6)) see indic. refs.]

[For use of C in prepn. of triphenylmethane dyes see (7).]

C on refluxing with aq. for 20 hrs. (1) or on htg. with aq. in s.t. at 170° (2) yields p-chlorobenzaldehyde (3:0765). [For studies of this hydrolysis under various other conditions see (4) (1).]

 $\bar{C}$  on oxidn. with CrO<sub>3</sub> (2), or  $\bar{C}$  on refluxing with aq. for 20 hrs. followed by treatment with cold conc. aq. KMnO<sub>4</sub> (1), gives (85% yield (1)) p-chlorobenzoic acid (3:4940), m.p. 240° (1).

[For behavior of C with McMgCl see (8).]

3:6760 (1) Asinger, Lock, Monatsh. 62, 336 (1933). (2) Beilstein, Kuhlberg, Ann. 146, 327-329 (1868). (3) Pollak, Rudich, Monatsh. 43, 215-216 (1922). (4) Olivier, Weber, Rec. trav. chim. 53, 881, 888 (1934). (5) Gilliard, Monnet, Cartier, Ger. 98,433, Dec. 12, 1896, Cent. 1898, II 800. (6) Wertyporoch, Ann. 493, 161-162 (1932). (7) Weiler, Wenk, Stötter, Ger. 540,209, Dec. 12, 1931; Cent. 1932, I 3013. (8) Ellingboe, Fuson, J. Am. Chem. Soc. 55, 2964-2965 (1933).

# —- 2,4-DICHLORO-3-METHYLPHENOL OH C<sub>7</sub>H<sub>6</sub>OCl<sub>2</sub> Beil. VI — VI<sub>1</sub>— VI<sub>2</sub>-(356)

B.P. 235-236° at 745 mm. M.P. 58-59°

See 3:1205. Division A: Solids.

B.P. 235–236°

M.P. 71-72°

See 3:1745. Division A: Solids.

3:6710 m-CHLOROBENZAL (DI)CHLORIDE C<sub>7</sub>H<sub>5</sub>Cl<sub>3</sub> Beil. S.N. 466 (m-Chlorobenzylidene dichloride) CHCl<sub>2</sub>

B.P. 235-237° at 738 mm. (1) 105° at 11 mm. (1)

Colorless liq. with agreeable odor.

[For prepn. of  $\tilde{C}$  from m-chlorobenzaldehyde (3:6475) with PCl<sub>5</sub> (75% yield (1)) (2) see indic. refs.; for formn. of  $\tilde{C}$  from benzal dichloride (3:6327) with Cl<sub>2</sub> in pres. of I<sub>2</sub> (43%  $\tilde{C}$  together with 5-7% o- and 46% p-isomers) see (3).]

C on refluxing 20 hrs. with aq. then treated in cold with conc. aq. KMnO<sub>4</sub> gives (70% yield (1)) m-chlorobenzoic acid (3:4392), m.p. 158° (1).]

**3:6710** (1) Asinger, Lock, *Monatsh.* **62**, 334-336 (1933). (2) Olivier, Weber, *Rec. trav. chim.* **53**, 882, 888 (1934). (3) Wertyporoch, *Ann.* **493**, 161-162 (1932).

3:6725-3:6735

--- 
$$\alpha,\alpha,\beta$$
-TRICHLORO- $n$ -BUTYRIC ACID C<sub>4</sub>H<sub>5</sub>O<sub>2</sub>Cl<sub>3</sub> Beil. II - 280 H Cl II<sub>1</sub>-(124) CH<sub>3</sub>-C COOH II<sub>2</sub>-(255)

B.P. 236-238°

M.P. 60°

See 3:1280. Division A: Solids.

#### B.P. 235-240° (1)

[For prepn. of  $\tilde{C}$  from diisoamyl sulfide [Beil. I-405,  $I_1$ -(200),  $I_2$ -(435)] by actn. of  $Cl_2$  see (1).]

 $\bar{C}$  on htg. 7 hrs. at 110° in a s.t. with Ag<sub>2</sub>O and aq. yields (1) CO<sub>2</sub> + isobutyric acid (1:1030) (as Ag $\bar{A}$ ).

3:6725 (1) Spring, Lecrenier, Bull. soc. chim. (2) 48, 627-628 (1887).

# --- 3,5-DICHLOROBENZALDEHYDE C<sub>7</sub>H<sub>4</sub>OCl<sub>2</sub> Beil. S.N. 635

B.P. 235-240° at 748 mm.

M.P. 65°

See 3:1475. Division A: Solids.

3:6735 p-CHLOROACETOPHENONE

| ( <i>p</i> - | Chlorophenyl methyl ko | etone) Cl  | C—CH <sub>3</sub> | VII <sub>1</sub> -(151)  |
|--------------|------------------------|------------|-------------------|--------------------------|
| B.P.         |                        | M.P.       | U                 | •                        |
| 236.5°       | cor. at 740 mm. (1)    | 20.5°      | (10) (11) (12)    | $D_{-}^{20} = 1.188 (2)$ |
| 232°         | (2) (3                 | ) 20-21°   | (5) (1)           |                          |
| 231-232°     | (4) (17                | ) 20°      | (2)               |                          |
| 124-126°     | at 24 mm. (5)          | 19.8°      | (13)              |                          |
| 113°         | at 14 mm. (3)          | 19°        | (14)              |                          |
| 108-111°     | at 13 mm. (6)          | 17.6-17.8° | (15)              |                          |
| 152°         | at 12 mm. (7)          |            |                   |                          |
| 99°          | at 7 mm. (1)           |            |                   |                          |
| 89.4-91°     | at 5 mm. (8)           |            |                   |                          |

C<sub>8</sub>H<sub>7</sub>OCl

Beil. VII - 281

Insol. aq.; misc. alc. or ether. —  $\bar{C}$  does not yield an addn. prod. with NaHSO<sub>3</sub>. [For prepn. of  $\bar{C}$  from chlorobenzene (3:7903) with Ac<sub>2</sub>O + AlCl<sub>3</sub> in CS<sub>2</sub> (yields: 83-79% (15), 78-74% (5), 68-66% (1)) (8) (9) or with acetyl chloride (3:7065) + AlCl<sub>3</sub> in absence

of solvent (poor yield (2)) or in  $CS_2$  (yields: 80-90% (16), 81% (6), 41% (17)) see indicrefs.; from p-chlorobenzoylacetic acid on warming (18); from methyl p-chlorobenzoylacetate (4) on ketonic hydrolytic cleavage by boilg. 10-12 hrs. with 20% H<sub>2</sub>SO<sub>4</sub> see (4).]

[Č in CS<sub>2</sub> treated with 1 mole Cl<sub>2</sub> yields (19) p-chlorophenacyl chloride (3:2990), m.p. 101°; Č with 2 moles Cl<sub>2</sub> at 50-60° without solv. (19) yields 4,  $\omega$ ,  $\omega$ -trichloroacetophenone [Beil. VII-283], m.p. 57°. — Č with 1 mole Br<sub>2</sub> in CS<sub>2</sub> or AcOH yields (17) (20) p-chlorophenacyl bromide [Beil. VII-285], cryst. from alc., m.p. 96.5° (20), 96° (17) (for studies of rate of bromination see (13), of influence of light and other factors see (21)); Č with excess Br<sub>2</sub> directly (22), in AcOH (17), or in CCl<sub>4</sub> susp. of CaCO<sub>3</sub> (22) yields 4-chloro- $\omega$ ,  $\omega$ -dibromoacetophenone [Beil. VII-286], m.p. 93.5-94.5° (22), 92.5° (17).] [Note proximity of this m.p. to that (96°) of p-chlorophenacyl bromide (above).]

[ $\ddot{C}$  on monontration with mixt. of conc.  $HNO_3 + conc.$   $H_2SO_4$  at  $-10^\circ$  as directed (6) or added slowly to 10 pts.  $HNO_3$  (D=1.5) at 0° (23) yields 4-chloro-3-nitroacetophenone, ndls. from alc., m.p.  $104^\circ$  (6), 99- $101^\circ$  (23) (accompanied in the former case (6) by a little 4-chloro-3-nitrobenzoic acid, m.p.  $181^\circ$ ).]

 $\bar{C}$  in alk. medium readily condenses with aldehydes: e.g.,  $\bar{C}$  in dil. alc. with a little alk. gives (yields: 96% (24), 93% (25), 83% (7)) benzal p-chloroacetophenone (p-chlorochalcone), cryst. from ether of CHCl<sub>3</sub>, m.p. 101° (24), 98.5° (7), 96.4° (12), 96° (25) (for study of rate of condensation see (12)); similarly  $\bar{C}$  with salicylaldehyde (1:0205) yields (23) salicylidene-p-chloroacetophenone, yel. ndls. from alc., m.p. 151° (23);  $\bar{C}$  with p-dimethylaminobenzaldehyde yields (26) p-dimethylaminobenzal-p-chloroacetophenone, yel. ndls. from alc., m.p. 140-140.5° (26); for corresp. condensation of  $\bar{C}$  with p-chlorobenzaldehyde (3:0765) see (16), with o-nitrobenzaldehyde see (27) (28).

[ $\bar{\mathbf{C}}$  also readily condenses with esters: e.g.,  $\bar{\mathbf{C}}$  in abs. alc. + NaOEt treated with ethyl formate (1:3000) gives (28) hydroxymethylene-p-chloroacetophenone, yel. ndls. from pet. eth., m.p. 48-49° (28);  $\bar{\mathbf{C}}$  with ethyl phenylacetate (1:3872) in ether with Na gives (40% yield (29))  $\omega$ -(phenylacetyl)-p-chloroacetophenone.]

[ $\bar{C}$  with PCl<sub>5</sub> at 100° for 4 hrs. gives (60% yield (30))  $p,\alpha$ -dichlorostyrene, b.p. 115–116° at 20 mm., m.p. -6 to -5°,  $D_{-}^{25} = 1.247$ ,  $n_{D}^{25} = 1.5735$  (30);  $\bar{C}$  with selenium oxychloride (SeOCl<sub>2</sub>) gives (50% yield (31)) bis-(p-chlorophenacyl)selenium dichloride, m.p. 126° (31);  $\bar{C}$  with K pyrosulfate + a little cone. H<sub>2</sub>SO<sub>4</sub> htd. at 80° for 4 hrs. (46% yield (32)) or  $\bar{C}$  with 1% I<sub>2</sub> htd. 4 hrs. at 170° (32) gives 1,3,5-tris-(p-chlorophenyl)benzene, white ndls. from AcOEt, m.p. 238° (32); for behavior of  $\bar{C}$  with NOCl see (33) (14), with NaOEt + amyl nitrite in alc. see (34) (35).]

[ $\bar{\mathbf{C}}$  htd. as directed with excess NH<sub>4</sub> formate and the intermediate formyl deriv. hydrolyzed with HCl gives (yields: 82% (36), 65% (37)) d, l- $\alpha$ -(p-chlorophenyl)ethylamine, b.p. 105° at 10 mm.,  $D_{20}^{20} = 1.1178$ ,  $n_{D}^{25} = 1.5420$  (hydrochloride, m.p. 192–193°, N-benzoyl deriv., m.p. 144–145° (36)).]

[Č on htg. with 10% aq. NaOH + Cu at 190° for 5 hrs. under press. yields (38) p-hydroxy-acetophenone (1:1527), m.p. 109°; Č with conc. aq. NH<sub>4</sub>OH in pres. of Cu<sub>2</sub>O htd. 5 hrs. at 220° under press. yields (39) p-aminoacetophenone [Beil. XIV-46, XIV<sub>1</sub>-(366)]; Č on htg. with 50% KOH as directed (40) gives small yield of p-chlorobenzoic acid. (3:4940); Č with alc. NaOEt htd. in s.t. at 130°-140° gives (41) p-chlorophenyl-methyl-carbinol, p-chlorobenzoic acid, and other prods.]

 $\tilde{C}$  on oxidn. with KMnO<sub>4</sub> (2) or in MeOH soln. with NaOH + Cl<sub>2</sub> (93% yield (42)) or with CrO<sub>3</sub> + H<sub>2</sub>SO<sub>4</sub> (95% yield (43)) or by cat. vapor-phase oxidn. (90% yield (44)) gives p-chlorobenzoic acid (3:4940), m.p. 242°. [Note that  $\tilde{C}$  in abs. alc. refluxed with SeO<sub>2</sub> gives (45) p-chlorophenylglyoxal, m.p. 122° (for study of rate see (46)).]

**p-Chloroacetophenone oxime:** ndls. from alc., m.p. 95° (17). [This prod. with conc.

- $H_2SO_4$  htd. at 100° rearranges to acet-p-chloroanilide [Beil. XII-611, XII<sub>1</sub>-(306)], m.p. 172-173° (17).]
- p-Chloroacetophenone phenylhydrazone: m.p. 114° (17), 112-113° (48) (decomposes on stdg. 2 days (17) (4).)
- p-Chloroacetophenone p-nitrophenylhydrazone: maroon cryst. from AcOH, m.p.
   239° (4).
- p-Chloroacetophenone 2,4-dinitrophenylhydrazone: scarlet cryst., m.p. 231° cor. (47).
- p-Chloroacetophenone semicarbazone: white cryst. from 40% AcOH, m.p. 200-201° (4).
- 3:6735 (1) Noller, Adams, J. Am. Chem. Soc. 46, 1893 (1924). (2) Gautier, Ann. chim. (6) 14, 372-375 (1888). (3) Kahovec, Wagner, Proc. Indian Acad. Sci. A-8, 325 (1938). (4) Wahl, Rolland, Ann. chim. (10) 10, 27-31, 34-35 (1928). (5) Adams, Noller, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 111 (1941); (1st ed.), 105 (1932), 5, 19 (1925). (6) Mayer, Stark, Schön, Ber. 65, 1334 (1932). (7) Bergmann, Hampson, J. Chem. Soc. 1935, 991. (8) Groggins, U.S., 1,991,743, Feb. 19, 1935; Cent. 1936, I 883; C.A. 29, 2175 (1935). (9) Groggins, U.S. 2,008,418, July 16, 1935, Cent. 1936, I 1500; C.A. 29, 5856 (1935). (10) Hassel, Naeshagen, Z. physik. Chem. B-15, 419 (1932).
- (11) Evans, Morgan, Watson, J. Chem. Soc. 1935, 1172. (12) Coombs, Evans, J. Chem. Soc. 1949, 1295. (13) Nathan, Watson, J. Chem. Soc. 1933, 220. (14) Edkins, Linnell, Quart. J. Pharm. Pharmacol. 9, 75-109 (1936), Cent. 1937, I 4779, CA 30, 6349 (1936). (15) Groggins, Nagel, Ind. Eng. Chem. 26, 1316 (1934). (16) Straus, Ackermann, Ber. 42, 1812 (1909). (17) Collet, Bull. soc. chim. (3) 21, 68-70 (1899). (18) Throp, Brunskill, J. Am. Chem. Soc. 37, 1262 (1915). (19) Ref. 2, pp. 395-396, 402. (20) Judefind, Reid, J. Am. Chem. Soc. 42, 1044-1045 (1920).
- (21) Sampey, Hicks, J. Am. Chem. Soc. 63, 1098-1101 (1941).
  (22) Fisher, J. Am. Chem. Soc. 55, 4595 (1933).
  (23) C. G. LeFèvre, R. J. W. LeFèvre, J. Chem. Soc. 1932, 1989-1992.
  (24) Dilthey, J. prakt. Chem. (2) 101, 199 (1920).
  (25) Allen, Frame, Can J. Research 6, 605-613 (1932), Cent. 1932, II 3880, C.A. 26, 5086 (1932).
  (26) Pfeiffer, Kleu, Ber. 66, 1706 (1933).
  (27) Tanasescu, Baciu, Bull. soc. chim. (5) 4, 1748-1749; 1677-1678 (1937).
  (28) Benary, Ber. 61, 2253 (1928).
  (29) Kohler, Smith, J. Am. Chem. Soc. 44, 630 (1922).
  (30) Vaughn, Nieuwland, J. Am. Chem. Soc. 56, 1208 (1934).
- (31) Nelson, Jones, J. Am. Chem. Soc. 52, 1589 (1930). (32) Bernhauer, J. prakt. Chem. (2) 145, 305 (1936). (33) Rheinboldt, Schmitz-Dumont, Ann. 444, 129 (1925). (34) Avogadro, Gazz. chim. ttal. 53, 704-705 (1923). (35) Borsche, Ber. 62, 1365 (1929). (36) Ingersoll, Brown, Kim, Beauchamp, Jennings, J. Am. Chem. Soc. 58, 1810 (1936). (37) Ingersoll, Org. Syntheses, Coll. Vol. 2 (1st ed.), 505 (1943), 17, 78 (1937). (38) Britton (to Dow Chem. Co.), U.S. 1,961,630, April 10, 1934; Cent. 1934, II 1845; C.A. 28, 4744 (1934). (39) Britton, Bryner (to Dow Chem. Co.) U.S. 1,946,058; Feb. 6, 1934, Cent. 1934, I 3396; C.A. 28, 2364 (1934). (40) Lock, Böck, Ber. 70, 921 (1937).
- (41) Gastaldi, Cherchi, Gazz. chim. ital. 45, II 271-273 (1915). (42) von Arendonk, Cupery, J. Am. Chem. Soc. 53, 3184-3186 (1931). (43) Newton, Groggins, Ital. Eng. Chem. 27, 1397 (1935). (44) Stubbs, Sensemann, Ind. Eng. Chem. 28, 559-560 (1936). (45) Karrer, Musante, Helv. Chim. Acta 18, 1141-1142 (1935). (46) Mel'nikov, Rokitskaya, J. Gen. Chem. (U.S.S.R.) 10, 1439-1441 (1940); C.A. 35, 2400 (1941). (47) Allen, Richmond, J. Org. Chem. 2, 224 (1938). (48) Crowther, Mann, Purdiè, J. Chem. Soc. 1943, 67.

| 3 | :6750 ETH   | YL p-CHLOROBENZO | $\mathbf{ATE} \qquad \qquad \mathbf{C_9H_9O_2Cl}$ | Beil. IX - 340                  |
|---|-------------|------------------|---------------------------------------------------|---------------------------------|
|   |             | •                | Cl COOC <sub>2</sub> H <sub>5</sub>               | IX <sub>1</sub> -(140)          |
|   | B.P.        |                  |                                                   |                                 |
|   | 238°        | (1)              | $D_4^{14.0} = 1.1873 (8)$                         | $n_{\rm D}^{14} = 1.52700  (8)$ |
|   | 237.4-238.0 | )° (2)           |                                                   |                                 |
|   | 142°        | at 50 mm. (3)    |                                                   |                                 |
|   | 121-122°    | at 16 mm. (4)    |                                                   |                                 |
|   | 122°        | at 15 mm. (5)    |                                                   |                                 |
|   | 120.1-120.2 | e° at 15 mm. (2) |                                                   |                                 |
|   | 118°        | at 15 mm. (6)    |                                                   |                                 |
|   | 118°        | at 14 mm. (7)    |                                                   |                                 |
|   |             |                  |                                                   |                                 |

[For prepn. of  $\bar{C}$  from p-chlorobenzoic acid (3:4940) with EtOH + H<sub>2</sub>SO<sub>4</sub> see (1) (3); from p-chlorobenzoyl chloride (3:6550) with abs. EtOH see (2).]

 $\bar{C}$  in alc. soln. on htg. with hydrazine hydrate yields (9) (10) p-chlorobenzhydrazide, white ndls. from alc., m.p. 162-163° (10). [This prod. with BzH yields benzal p-chlorobenzhydrazide, ndls. from 95% alc., m.p. 227-229° (10).] [For use of p-chlorobenzhydrazide as reagt. for identification of aldehydes and ketones see (10).]

[Č (1.5 moles) with NaOEt (0.3 mole) at 160-180° for 1 hr. gives (75% yield (15)) di-(p-chlorobenzoyl)methane, cryst. from MeOH, m.p. 158-159° (15).]

 $\tilde{C}$  on hydrolysis (Sap. Eq. = 184.5) yields ethyl alcohol (1:6130) + p-chlorobenzoic acid (3:4940). [For studies of hydrolysis of  $\tilde{C}$  under various conditions see (7) (6) (11) (4) (12) (5) (13) (14).] For the amide, anilide, p-toluidide, and other derivs. corresp. to  $\tilde{C}$  see p-chlorobenzoic acid (3:4940).

3:6750 (1) van Raalte, Rec. trav. chim. 18, 398 (1899). (2) Kohlrausch, Stockmair, Monatsh. 66, 325 (1935). (3) Bergmann, Engel, Z. physik. Chem. B-15, 95 (1932). (4) Kındler, Ann. 456, 16 (1926). (5) Timm, Hinshelwood, J. Chem. Soc. 1938, 66-869. (6) Cashmore, McCombie, Scarborough, J. Chem. Soc. 121, 243-253 (1922). (7) McCombie, Scarborough, J. Chem. Soc. 107, 159 (1915). (8) von Auwers, Ann. 422, 166 (1921). (9) Kahl, Cent. 1904, II 1493. (10) Shih, Sah, Science Repts. Natl. Tsing-Hua Univ. A-2, 353-357 (1934); Cent. 1935, I 56-57; C.A. 29, 466 (1935).

(11) McCombie, Scarborough, Settle, J. Chem. Soc. 121, 2308-2318 (1922). (12) Blakey, McCombie, Scarborough, J. Chem. Soc. 1826, 2867. (13) Westheimer, J. Am. Chem. Soc. 62, 1893 (1940). (14) Price, Westheimer, J. Chem. Phys. 11, 150-153 (1943). (15) McElvain, Weber, J. Am. Chem. Soc. 63, 2196 (1941).

# --- o-XYLYLENE (DI)CHLORIDE

CH<sub>2</sub>Cl C<sub>8</sub>H<sub>8</sub>Cl<sub>2</sub> Beil. V - 364 V<sub>1</sub>— V<sub>2</sub>-(283)

B.P. 239-241° M.P. 55°

See 3:1040. Division A: Solids.

3:6770 ETHYL m-CHLOROBENZOATE  $C_9H_9O_2Cl$  Beil. IX - 337 IX<sub>1</sub>-(139)

B.P.  $D_4^{15.4} = 1.1859 (7)$  $n_D^{15.4} = 1.52233 \ (7)$ 245° (1)] 239.3-241.7° (2) 130.0-130.5° at 20-21 mm. (3) 124° 21.5 mm. (4) at 20 mm. (5) 121° at 15 mm. (2) 114.6-116.2° at 119° 13 mm. (6)

[For prepn. of  $\bar{C}$  from m-chlorobenzoic acid (3:4392) with EtOH + H<sub>2</sub>SO<sub>4</sub>·(1) or with 5% EtOH/HCl (90% yield (8)) see indic. refs.; from m-chlorobenzoyl chloride (3:6590) with EtOH see (1) (2).]

[ $\tilde{C}$  on electrolytic reductn. in alc./ $H_2SO_4$  soln. yields (9) *m*-chlorobenzyl ethyl ether [Beil. VI-444], b.p. 219° (9).]

Č on refluxing with hydrazine hydrate gives (97% yield (8)) m-chlorobenzhydrazide, ndls. from aq. or alc., m.p. 158° (8), 157-158° (10). [This prod. in aq. soln. on htg. with BzH + a few drops AcOH yields benzal-m-chlorobenzhydrazide, flocks from alc., m.p. 118°

(8) (10).] [For study of prepn. and use of m-chlorobenzhydrazide as reagt. for identification of aldehydes and ketones see (10).]

 $\tilde{C}$  on hydrolysis (Sap. Eq. = 184.5) yields ethyl alcohol (1:6130) + m-chlorobenzoic acid (3:4392). [For studies of hydrol. of  $\tilde{C}$  under various cond. see (6) (11) (5).] — For the amide, anilide, p-toluidide, and other derivs. corresp. to  $\tilde{C}$  see m-chlorobenzoic acid (3:4392).

3:6770 (1) Limpricht, von Uslar, Ann. 102, 262 (1857). (2) Kohlrausch, Stockmair, Monatsh. 66, 324 (1935). (3) Kindler, Ann. 450, 17 (1926). (4) Curtius, Melsbach, J. prakt. Chem. (2) 81, 536 (1910). (5) Evans, Gordon, Watson, J. Chem. Soc. 1937, 1430-1432. (6) McCombie, Scarborough, J. Chem. Soc. 107, 159 (1915). (7) von Auwers, Ann. 422, 166 (1921). (8) Curtius, Foerster, J. prakt. Chem. (2) 64, 326-328 (1901). (9) Mettler, Ber. 37, 3693 (1904). (10) Sah, Wu, Science Repts. Natl. Tsing-Hua Univ. A-3, 443-449 (1936); Cent. 1936, II 2130; C.A. 38, 8148 (1936).

(11) Blakey, McCombie, Scarborough, J. Chem. Soc. 1926, 2867.

3:6775 
$$\gamma$$
-CHLORO- $\beta$ -HYDROXY- $n$ -PROPYL ACETATE  $C_5H_9O_3Cl$  Beil. II - 142 (Glycerol  $\alpha$ -chlorohydrin CH2Cl II\_1-(67)  $\alpha'$ -acetate;  $\gamma$ -aceto- $\alpha$ -chlorohydrin;  $\gamma$ -chloropropylene glycol  $\alpha$ -acetate) H—C—OH

CH2O.CO.CH4

[See also glycerol  $\alpha$ -chlorohydrin  $\beta$ -acetate (3:6517).]

[For prepn. of  $\bar{C}$  from epichlorohydrin (3:5358) with AcOH in s.t. at 180° for 24 hrs. (1) (2) or in pres. of anhydr. FeCl<sub>3</sub> at room temp. (4) cf. (5); note, however, that the isomeric glycerol  $\alpha$ -chlorohydrin  $\beta$ -acetate (3:6517) is also formed.]

Note that the homogeneity of all reported prepns of  $\tilde{C}$  is probably open to serious question.

3:6775 (1) Reboul, Ann. Suppl. 1, 232 (1861). (2) Bigot, Ann. chim. (6) 22, 491 (1891). (3) Gibson, J. Soc. Chem. Ind. 50, 950 (1931). (4) Knoevenagel, Ann. 402, 136-138 (1914). (5) Delaby, Dubois, Bull. soc. chim. (4) 47, 573 (1930).

3:6780 
$$\beta$$
-HYDROXYETHYL CHLOROACETATE  $C_4H_7O_3Cl$  Beil. S.N. 160 (Ethylene glycol mono-(chloroacetate))  $CH_2.CO.O.CH_2.CH_2$   $Cl$  OH

| B.P.   |                    |                        |                                |
|--------|--------------------|------------------------|--------------------------------|
| 240° d | ec. at 760 mm. (1) | $D_4^{20} = 1.330 (2)$ | $n_{\rm D}^{25} = 1.4585  (1)$ |
| 86°    | at 1.6 mm. (2)     | 1.324 (2)              |                                |
| 85°    | at 0.15 mm. (1)    |                        | $n_{\rm D}^{20} = 1.46090 (2)$ |
| 84°    | at 0.95 mm. (2)    |                        | 1.46049 (2)                    |
| 83°    | at 0.08 mm. (1)    |                        |                                |

Colorless odorless liq. — Miscible with aq. [dif. from ethylene glycol bis-(chloroacetate) (3:0720)].

[For prepn. of C from ethylene oxide (1:6105) with chloroacetic acid (3:1370) in dry ether at 0° for 4 days (1) or at 50° for 6 days (2) see indic. refs.; from mono-sodium deriv. of ethylene glycol (1:6465) (1) or from ethylene glycol directly with chloroacetyl chloride (3:5235) in dry ether (1) or dioxane (2) see indic. refs.]

C on stdg. in ord. glass gradually disproportionates into ethylene glycol (1:6105) and

ethylene glycol bis-(chloroacetate) (3:0720) (1); this disproportionation may also occur during reactions of C and thus lead to numerous by-prods. (see below).

[ $\bar{C}$  with diazomethane gives (19% yield (1))  $\beta$ -methoxyethyl chloroacetate (3:9285) accompanied by methyl chloroacetate (3:5585) and ethylene glycol bis-(chloroacetate) (3:0720).]

Č on long stdg. with aq. is slowly hydrolyzed into ethylene glycol (1:6465) and chloro-acetic acid (3:1370) (2).

**3:6780** (1) Allen, Hibbert, J. Am. Chem. Soc. **56**, 1398-1399 (1934). (2) Meerwein, Sonke, J. prakt. Chem. (2) **137**, 316-319 (1933).

3:6790 DI-
$$(\beta$$
-CHLOROETHYL) CARBONATE  $C_5H_8O_3Cl_2$  Beil. III —  $(\beta,\beta'$ -Dichloroethyl  $Cl.CH_2CH_2O$  CO  $III_1$ —  $III_2$ —  $III$ 

B.P. M.P. 240-241° (1) 
$$+8.5$$
° (1)  $D_4^{20} = 1.3506$  (1)  $n_D^{20} = 1.4610$  (1) 115° at 8 mm. (1)

Colorless odorless liq. — Insol. in boil. aq. and not decomposed thereby. — Volatile with steam  $\{1\}$ . — Requires solid  $CO_2$  + ether for solidification.

[For prepn. from  $\beta$ -chloroethyl chloroformate (3:5780) + ethylene chlorohydrin (3:5552) (70% yield) see (1).]

Hydrolyzes, but very slowly, even with warm alk. (1).

[For use as industrial solvent see (2) (3).]

**3:6790** (1) Nekrassow, Komissarow, J. prakt. Chem. (2) **123**, 164 (1929). (2) I.G., French 785,705, Aug. 17, 1935; Cent. **1936**, I 1134. (3) I.G., Brit. 257,258, Aug. 11, 1926; Cent. **1927**, I 820.

3:6795 3,4-DICHLOROBENZYL CHLORIDE 
$$C_7H_5Cl_3$$
 Beil. V - 300  $Cl$   $CH_2Cl$   $V_1$   $V_2$ 

#### B.P. 241° (1)

[For prepn. of  $\bar{C}$  from 3,4-dichlorotoluene (3:6355) at b.p. or from benzyl chloride (3:8535) in pres. of  $I_2$  on treatment with  $Cl_2$  see (1).]

C on oxidn. with CrO<sub>3</sub> yields (2) 3,4-dichlorobenzoic acid (3:4925) q.v.

**3:6795** (1) Beilstein, Kuhlberg, *Ann.* **146**, 326–327 (1868). (2) Beilstein, Kuhlberg, *Ann.* **152**, 224–226 (1869).



B.P. 241° M.P. 27°

See 3:0150. Division A: Solids.

| B.P. 242.7–244.1° | at 760 mm. (1)     |
|-------------------|--------------------|
| 242-243°          | at 733 mm. (2) (3) |
| 148°              | at 24 mm. (4)      |
| 122-123°          | at 16 mm. (5)      |
| 123-125°          | at 15 mm. (6)      |
| 123°              | at 11 mm. (1)      |
| 110.8-111.0°      | at 8.5 mm. (7)     |
| 81.5-82.0°        | at 1 mm. (8)       |

[For prepn. of C from m-methoxybenzoic acid (1:0703) with PCl<sub>5</sub> (2) or with SOCl<sub>2</sub> (yields: 92% (6), 86% (4), 78% (5)) (1) (7) see indic. refs.]

[Although 2-methoxybenzoyl chloride (3:6870) with anhydrous Na<sub>2</sub>CO<sub>3</sub> + pyridine gives the corresp. anhydride, this reactn. is not specifically recorded for  $\bar{C}$ ; however, 3-methoxybenzoic acid anhydride, cryst. from pet. eth., m.p. 66.6° (9), has been reported from 3-methoxybenzoic acid (1:0703) with P<sub>2</sub>O<sub>5</sub> (9).]

[ $\bar{C}$  with  $C_6H_6$  + AlCl<sub>3</sub> (2) (said to be unsatisfactory because of autocondensation of  $\bar{C}$  to anthracene derivs. (3)) or better with  $C_6H_5ZnBr$  (62% yield (6)) yields 3-methoxybenzophenone (1:5141), m.p. 37° (6) (2), b.p. 342-343° at 730 mm. (2), 192° at 14 mm. (6). —  $\bar{C}$  with anisole (1:7445) + AlCl<sub>3</sub> in CS<sub>2</sub> (3) or in tetrachloroethane (5) gives (yields: 100% (5), 35% (3)) 3,4-dimethoxybenzophenone, pr. from alc., m.p. 58-59° (5), 55° (3).]

[ $\bar{C}$  with ethyl sodioacetoacetate gives (61% yield (4) (10) ethyl m-methoxybenzoylacetoacetate;  $\bar{C}$  with methyl sodio- $\alpha$ -ethylacetoacetate gives (10) methyl  $\alpha$ -ethyl- $\alpha$ -(m-methoxybenzoyl)acetoacetate;  $\bar{C}$  with ethyl sodio- $\alpha$ , $\gamma$ -dimethoxyacetoacetate gives (11) ethyl  $\alpha$ , $\gamma$ -dimethoxy- $\alpha$ -(m-methoxybenzoyl)acetoacetate (for ketonic cleavage of these substacetoacetates see indic. refs.).]

[For reactn. of C with 1,4-diaminoanthraquinone in prepn. of vat dyes see (12) (13).]

 $[\bar{C}]$  with MeOH yields methyl m-methoxybenzoate (1:4111), b.p. 252°;  $\bar{C}$  with EtOH yields ethyl m-methoxybenzoate (1:4131), b.p. 260° (for study of rate of reactn. of  $\bar{C}$  with EtOH at 0° see (14) (8)).]

C on hydrolysis yields m-methoxybenzoic acid (1:0703), m.p. 109-110°.

3:6797 (1) Kahovec, Kohlrausch, Z. physik. Chem. B-38, 136 (1938). (2) Ullmann, Goldberg, Ber. 35, 2813-2814 (1902). (3) Lea, Robinson, J. Chem. Soc. 1926, 2354-2355. (4) Robinson, Rose, J. Chem. Soc. 1933, 1472. (5) Blicke, Weinkauff, J. Am. Chem. Soc. 54, 1449 (1932). (6) Martynoff, Ann. chim. (11) 7, 437-438 (1937). (7) Thompson, Norris, J. Am. Chem. Soc. 58, 1956 (1936). (8) Norris, Young, J. Am. Chem. Soc. 57, 1424 (1936). (9) Rule, Patterson, J. Chem. Soc. 125, 2161-2162. (10) Furukawa, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 24, 320-324 (1934); Cent. 1935, I 1071.

(11) Pratt, Robinson, J. Chem. Soc. 127, 1185 (1925). (12) I.G., Swiss 136,249, Jan. 16, 1930; Cent. 1930, II 3462. (13) B.A.S.F., French 604,347, May 3, 1926; Cent. 1926, II 2358. (14)

Norris, Fasce, Staud, J. Am. Chem. Soc. 57, 1415-1420 (1935).



B.P. 240-245° dec.

M.P. 100°

122.5°

3:6800 ETHYL o-CHLOROBENZOATE 
$$C_9H_9O_2Cl$$
 Beil. IX - 336  $IX_1$ —

B.P. 242.8-244.0° (1)  $D_4^{15.4} = 1.1942$  (9)  $n_D^{15.4} = 1.52470$  (9) 243° (2) (3) 242° (4) 238-242° (5) 130° at 20 mm. (6) 124.8-125.1° at 20 mm. (1)

[For prepn. of  $\bar{C}$  from o-chlorobenzoic acid (3:4150) with EtOH + HCl see (2); from o-chlorobenzoyl chloride (3:6640) with abs. EtOH see (5) (1).]

at 15 mm. (7) (8)

[C on electrolytic reductn. in alc./H<sub>2</sub>SO<sub>4</sub> soln. yields (10) mainly o-chlorobenzyl ethyl ether [Beil. VI-444; VI<sub>1</sub>-(222)], b.p. 212° (10), together with a little o-chlorobenzyl alc. [Beil. VI-444; VI<sub>1</sub>-(222)], ndls. from dil. alc., m.p. 72° (10).]

[ $\bar{\mathbf{C}}$  with  $C_6H_5MgBr$  in ether as directed (11) yields  $\alpha,\alpha'$ -bis-(o-chlorophenyl)- $\alpha,\alpha'$ -diphenyl-ethylene glycol (sym.-2,2'-dichlorobenzpinacol) [Beil. VI<sub>1</sub>-(523)].]

Č in alc. on refluxing with hydrazine hydrate yields (14) (15) o-chlorobenzhydrazide, white ndls. from alc., m.p. 117-118° (15), 109-110° (14). [This prod. with BzH yields benzal-o-chlorobenzhydrazide, white ndls. from 95% alc., m.p. 162° (15).] [For use of o-chlorobenzhydrazide as reagt. for identification of aldehydes and ketones see (15).]

 $\tilde{C}$  on hydrolysis (Sap. Eq. = 184.5) yields ethyl alcohol (1:6130) + o-chlorobenzoic acid (3:4150). [For studies of hydrolysis of  $\tilde{C}$  under various conditions see (7) (8) (12) (13) (6).] — For the amide, anilide, p-toluidide, and other derivs. corresp. to  $\tilde{C}$  see o-chlorobenzoic acid (3:4150).

8:6800 (1) Kohlrausch, Stockmair, Monatsh. 66, 324 (1935). (2) Glutz, Ann. 143, 196 (1867).
 (3) Kindler, Ann. 464, 287 (1928). (4) Vavon, Barbier, Thiebaut, Bull. soc. chim. (5) 1, 813 (1934). (5) Kekulé, Ann. 117, 163-154 (1861). (6) Evans, Gordon, Watson, J. Chem. Soc. 1937, 1430-1432. (7) McCombie, Scarborough, J. Chem. Soc. 107, 159 (1915). (8) Cashmore, McCombie, Scarborough, J. Chem. Soc. 121, 249 (1922). (9) von Auwers, Ann. 422, 166 (1921). (10) Mettler, Ber. 37, 3696 (1904).

(11) Hatt, J. Chem. Soc. 1929, 1628. (12) McCombie, Scarborough, Settle, J. Chem. Soc. 121, 2314 (1922). (13) Blakey, McCombie, Scarborough, J. Chem. Soc. 1926, 2867. (14) Kalb, Gross, Ber. 59, 732 (1926). (15) Sun, Sah, Science Repts. Natl. Tsing Hua Univ. A-2, 359-363 (1934); Cent. 1935, I 57; C.A. 29, 466 (1935).

--- 1,2,4,5-TETRACHLOROBENZENE Cl 
$$C_6H_2Cl_4$$
 Beil. V - 205  $V_1$ -(113)  $V_2$ -(157)

B.P. 243-246° cor. M.P. 141°

See 3:4115. Division A: Solids.

--- 1,2,3,5-TETRACHLOROBENZENE Cl 
$$C_6H_2Cl_4$$
 Beil. V - 204  $V_1$ -(113)  $V_2$ -(157)

B.P. 246° cor. M.P. 51° See 3:0915. Division A: Solids.

227-229° (2)

127-131° at 30 mm. (3)

at 11 mm. (4) 113°

Colorless liq. with aromatic odor. — Volatile with steam.

[For prepn. of C from m-chlorophenyl-phenyl-carbinol (2) by oxidn. with CrO<sub>3</sub>/AcOH (90% yield) see (2); from m-aminoacetophenone [Beil. XIV-45, XIV<sub>1</sub>-(365)] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. (45% yield (4)) see (4) (3); from methyl m-chlorobenzoylacetate (2) by hydrolysis with 20% H<sub>2</sub>SO<sub>4</sub> for 12 hrs. (65% yield) see (2).]

[For study of rate of reactn. with Br2 see (4).]

C on htg. with 50% KOH as directed (1) gives 14% yield m-chlorobenzoic acid (3:4392).

- m-Chloroacetophenone oxime: cryst. from AcOH, m.p. 88° (2) (1).
- D m-Chloroacetophenone p-nitrophenylhydrazone: maroon cryst. from AcOH, m.p. 175-176° (2). (The phenylhydrazone of C is unstable (2).)
- m-Chloroacetophenone semicarbazone: cryst. from alc., m.p. 232° (3).

3:6815 (1) Lock, Böck, Ber. 70, 920-921 (1937). (2) Wahl, Rolland, Ann. chim. (10) 10, 29-30 (1928). (3) Edkins, Linnell, Quart. J. Pharm. Pharmacol. 9 75-109; Cent. 1937, I 4780; C.A. 30, 6349 (1936). (4) Evans, Morgan, Watson, J. Chem. Soc. 1935, 1172.

[For prepn. of  $\bar{C}$  from p-hydroxybenzoic acid (1:0840) (3) (or the "p-hydroxybenzid" [Beil. X-154] obtd. from it by htg. (4)) with PCl<sub>5</sub> see indic. refs.; from p-toluenesulfonyl chloride [Beil, XI-103, XI<sub>1</sub>-(26)] with Cl<sub>2</sub> at 150-200° see (5); from p-chlorotoluene (3:8287) with Cl<sub>2</sub> at high temp. in u.v. light see (2); for formn. of C (together with other products) from benzotrichloride (3:6540) with Cl2 under various circumstances see (1) (6) (7); for purification of C see (8).]

[For use of C with NaOAc in prepn. of acetic anhydride see (9); for use of C htd. with p-chlorobenzoic acid (3:4940) + ZnCl<sub>2</sub> + FeCl<sub>3</sub> in prepn. of p-chlorobenzoyl chloride (3:6550) see (10); for use of  $\bar{C}$  with dichloroacetic acid  $(3:6208) + H_2SO_4$  in prepn. of a mixt. of p-chlorobenzovl chloride (3:6550) and dichloroacetyl chloride (3:5290) see (11).

[For condens. of C with 1-hydroxynaphthoic acid-2 [Beil. X-331, X<sub>1</sub>-(144)] in prepn. of dyestuff intermediates see (12); for react. of  $\bar{C}$  with  $\alpha$ -naphthol (1:1500) to yield 1-hydroxy-4-(p-chlorobenzoyl)naphthalene see (13).]

[C htd. with 99% HF (14) (15) or with 2SbF<sub>3</sub>.NH<sub>4</sub>HF<sub>2</sub> at 150-160° (16) gives (86% yield (14)) p-chlorobenzotrifluoride, b.p. 137-138° (15).]

Č on hydrolysis, e.g., by htg. with aq. in s.t. at 200° (1), yields p-chlorobenzoic acid (3:4940) q.v.

3:6825 (1) Beilstein, Kuhlberg, Ann. 150, 295-296 (1869). (2) Maryott, Hobbs, Gross, J. Am. Chem. Soc. 62, 2321 (1940). (3) Anschütz, Moore, Ann. 239, 346-348 (1887). (4) Klepl, J. prakt. Chem. (2) 28, 204-205 (1883). (5) Gilliard, Monnet, Cartier, Ger. 98,433, Dec. 12, 1896; Cent. 1898, II 800. (6) Spreckels, Ber. 52, 319 (1919). (7) Wertyporoch, Ann. 493, 157-161 (1932). (8) Britton (to Dow Chem. Co.), U.S. 1,804,458, May 12, 1931; Cent. 1931, II 497; C.A. 25, 3668 (1931). (9) Dr. A. Wacker Ges. fur Elektrochem. Ind., Kaufler, Hormann, Brit. 165,747, June 30, 1921; Cent. 1922, II 1218. (10) Scottish Dyes, Ltd., Bangham, Thomas, Brit. 308,231, April 18, 1929; Cent. 1929, II 1348.

(11) Mills (to Dow Chem. Co.), U.S. 1,965,556, July 3, 1934; Cent. 1934, II 2899; C.A. 28, 5474 (1934). (12) Soc. Chem. Ind. Basel, Ger. 355,115, June 21, 1922; Swiss 92,406, Feb. 16, 1923; Cent. 1923, II 484. (13) Soc. Chem. Ind. Basel, Ger. 418,033, Aug. 26, 1925; Cent. 1925, II 2095. (14) Osswald, Muller, Steinhauser (to I.G.), Ger. 575,593, May 22, 1933; Cent. 1933, II 609. (15) I.G., French 745,293, May 8, 1933; Cent. 1933, II 2061. (16) I.G., French 809,301, March 1, 1937; Cent. 1937, I 4863; C.A. 31, 6675 (1937).

| 3:6835 ω,ω-DICHLOROACETO |                             | 8H6OCl2              | Beil. VII - 282         |
|--------------------------|-----------------------------|----------------------|-------------------------|
|                          |                             | CO.CHCl <sub>2</sub> | VII <sub>1</sub> -(152) |
| B.P.                     | M.P.                        |                      |                         |
| 245° at 760 mm. (1)      | 20-21.5°                    | (7)                  |                         |
| 247-248° dec. (2)        | 19°                         | (2)                  |                         |
| <b>249°</b> (3)          | Not frozen at $-10^{\circ}$ | (1)                  |                         |
| 143° at 25 mm. (2)       |                             |                      |                         |
| 142-144° at 25 mm. (11)  |                             |                      |                         |
| 138-140° at 13 mm. (5)   |                             |                      |                         |
| 132-134° at 13 mm. (11)  |                             |                      |                         |
| 131-132° at 11 mm. (6)   |                             |                      |                         |
| 128-129° at 14 mm. (4)   |                             |                      |                         |
| 121-122° at 10 mm. (1)   |                             |                      |                         |
|                          |                             |                      |                         |

Lachrymatory oil.

[For prepn. from acetophenone (1:5515) by actn. of Cl<sub>2</sub> (100% yield (4) (8)) in AcOH (80-94% yield (11)) see (4) (2) (11) or of sulfuryl chloride see (1); from phenylacetylene (1:7425) by actn. of HOCl (7), CH<sub>3</sub>OCl (6), or C<sub>2</sub>H<sub>5</sub>OCl (5) see (7) (6) (5); from C<sub>6</sub>H<sub>6</sub> + dichloroacetyl chloride (3:5290) (2) or dichloroacetonitrile (4) + AlCl<sub>3</sub> see (2) (4).]

 $\bar{C}$  is almost unchanged by boiling with aq. (2). —  $\bar{C}$  on shaking with 20 pts. 2 N aq. NaOH dissolves in 1–2 min.; after boiling under reflux for a few min. and acidifying, extraction with ether gives in 95% yield (8) 85–90% yield (11) d,l-mandelic ac. (1:0465), cryst. from CHCl<sub>3</sub> + pet. eth., m.p. 118.5° (8).

 $\tilde{C}$  on oxidn. with alk. KMnO<sub>4</sub> yields (1) (2) (3) (5) (6) benzoic ac. (1:0715), m.p. 121°. [ $\tilde{C}$  on treatment with NaOH + NaOCl in the cold yields benzoic ac. (1:0715) and chloroform in proportions depending upon conditions (9).] [Note that d,l-mandelic ac. (see above) may also be formed owing to actn. of alk. upon  $\tilde{C}$  cf. (9).]

 $\bar{C}$  on nitration yields m-nitro- $\omega$ ,  $\omega$ -dichloroacetophenone, m.p. 57-58° (10).

Č in alc. treated with excess alk. NH<sub>2</sub>OH for 7-10 hrs. yields (6) phenylglyoxaldioxime [Beil. VII-672], cryst. from CHCl<sub>3</sub>, m.p. 168° (6). [The product, m.p. 150-152°, so obtd. by (5) may have been a mixt. of the high-melting stereoisomer, m.p. 180°, with the low-melting stereoisomer. m.p. 168°.]

3:6835 (1) Durrans, J. Chem. Soc. 121, 46 (1922). (2) Gautier, Ann. chim. (6) 14, 345-347, 385-387 (1888). (3) Béhal, Bull. soc. chim. (2) 50, 634 (1888). (4) Houben, Fischer, Ber. 64, 2647-2648 (1931). (5) Goldschmidt, Endres, Dirsch, Ber. 58, 575-576 (1925). (6) Jackson, J. Am. Chem. Soc. 56, 977-978 (1934). (7) Wittorf, J. Russ. Phys.-Chem. Soc. 32, 88-117 (1900); Cent. 1900, II 30. (8) Houben, Fischer, Ber. 64, 2644-2645 (1931). (9) Aston, Newkirk, Dorsky, Jenkins, J. Am. Chem. Soc. 64, 1413-1416 (1942). (10) Rabcewicz-Zubkowsi, Roczniki Chem. 9, 532-537 (1929); C.A. 24, 92 (1930).

(11) Aston, Newkirk, Jenkins, Dorsky, Org. Syntheses 23, 48-51 (1943).

| 3:6840 | 3-CHLOROPROPANEDIOL-1,2 DIACETATE                                      | C <sub>7</sub> H <sub>11</sub> O <sub>4</sub> Cl | Beil. II - 142        |
|--------|------------------------------------------------------------------------|--------------------------------------------------|-----------------------|
|        | (γ-Chloropropylene glycol diacetate,                                   | CH <sub>2</sub> Cl                               | II <sub>1</sub> -(67) |
| •      | glycerol a-monochlorohydrin diacetate, "a-monochlorohydrin" diacetate) | нс-ооссиз                                        | П2                    |
|        |                                                                        | CH2OOCCH3                                        |                       |

| B.P.     |    |     |           |       |                        |                   |             |   |
|----------|----|-----|-----------|-------|------------------------|-------------------|-------------|---|
| 245°     | at | 740 | mm.       | (1)   | $D_4^{25} = 1.199 (5)$ | $n_{ m D}^{25}$ : | = 1.4386 (5 | ) |
| 145-150° | at | 40  | mm.       | (2)   |                        |                   |             |   |
| 142-149° | at | 40  | mm.       | (3)   |                        | $n_{ m D}^{20}$   | = 1.4407 (8 | ) |
| 116°     | at | 12  | mm.       | (4)   |                        |                   |             |   |
| 116-118° | at | 11  | mm.       | (10)  |                        |                   |             |   |
| 115-117° | at | 10  | mm.       | (5)   |                        |                   |             |   |
| 113-114° | at | 9   | mm.       | (6)   |                        |                   |             |   |
| 102-105° | at | 6   | mm.       | (7)   |                        |                   |             |   |
| 96.5-97° | at | 0.  | 4-0.6 mm. | . (7) |                        |                   |             |   |
| 90-91°   | at | 0.  | 8 mm.     | (8)   |                        |                   |             |   |
|          |    |     |           |       |                        |                   |             |   |

[For prepn. of  $\bar{C}$  from glycerol  $\alpha$ -monochlorohydrin (3:9038) with Ac<sub>2</sub>O (1:1015) (75% yield (6)) cf. (9) in pres. of a trace of H<sub>2</sub>SO<sub>4</sub> (100% yield (4)) see indic. refs.; from epichlorohydrin (3:5358) with Ac<sub>2</sub>O (1:1015) at 180° (1) (5) or in pres. of anhydrous FeCl<sub>3</sub> at ord. temp. (10) see indic. refs.; from 3-hydroxy-1,2-epoxypropane (glycidol) with large excess AcCl (3:7065) on htg. as directed (69% yield (7)) or from glyceryl-glycidol with AcCl (3:7065) at 60° for 2 hrs. (37% yield (8)) see indic. refs.]

[For prepn. of  $\tilde{C}$  from glycerol (1:6540) with AcOH + HCl see (11); from glyceryl  $\alpha,\alpha'$ -diacetate with Ac<sub>2</sub>O + HCl see (3); from glyceryl triacetate (triacetin) in dry ether at 0° with HCl gas (2) (3) cf. (4) see indic. refs.]

[ $\bar{C}$  in MeOH contg. 1% HCl at 60° for 6 hrs. gives (80% yield (8)) 3-chloropropanediol-1.2 (glycerol  $\alpha$ -monochlorohydrin) (3:9038).]

3:6840 (1) Truchot, Compt. rend. 61, 1170 (1865); Ann. 138, 299 (1866). (2) de la Acena, Compt. rend. 139, 868 (1904). (3) Seelig, Ber. 24, 3469-3471 (1891). (4) Wegscheider, Zmerzlikar, Monatsh. 34, 1068-1071 (1913). (5) Gibson, J. Soc. Chem. Ind. 50, 949-954 (1931). (6) Nivière, Compt. rend. 156, 1777 (1913); Bull. soc. chim. (4) 15, 82-83 (1914). (7) Rider, J. Am. Chem. Soc. 54, 775 (1932). (8) Sjöberg, Svensk Kem. Tid. 53, 454-457 (1941); Cent. 1942, II 25; C.A. 37, 4363 (1943). (9) Abderhalden, Eichwald, Ber. 47, 1859 (1914). (10) Knoevenagel, Ann. 402, 135-136 (1914).

(11) Berthelot, de Luca, Ann. chim. (3) 52, 461 (1858).)

--- 3,4,5-TRICHLOROTOLUENE CH<sub>3</sub> C<sub>7</sub>H<sub>5</sub>Cl<sub>3</sub> Beil. V - 299
V<sub>1</sub>--- V<sub>2</sub>---

B.P. 245.5-247° at 768 mm. M.P. 44.5-45.5°

See 3:0580. Division A: Solids.



B.P. 244-248° at 746 mm.

M.P. 67-68°

See 3:1620. Division A: Solids.

--- 1,1,1,2,2,3,3-HEPTACHLOROPROPANE  $C_3HCl_7$  Beil. I - 108  $I_{1-}$  (35)  $I_{1-}$  (35)  $I_{2-}$  (73)  $I_{2-}$  (73)  $I_{2-}$  (73) Beil. Beil. I - 108  $I_{3-}$  (73)  $I_{3-}$  (74)  $I_{3-}$  (74)  $I_{3-}$  (75)  $I_$ 

See 3:0200. Division A: Solids.

3,4-DICHLOROBENZALDEHYDE  $C_7H_4OCl_2$  Beil. VII - 238  $VII_1$ -(134)

B.P. 247-248°

M.P. 43-44°

See 3:0550. Division A: Solids.

3:6845 m-CHLOROBENZOTRICHLORIDE C<sub>7</sub>H<sub>4</sub>Cl<sub>4</sub> Beil. V -303 V<sub>1</sub>— V<sub>2</sub>—

B.P. 247-250° (1)

[For prepn. from m-hydroxybenzoic acid (1:0825) (1) or from m-sulfobenzoic acid [Beil. XI-384, XI<sub>1</sub>-(98)] (2) with PCl<sub>5</sub> see indic. refs.; for studies on formn. of  $\bar{C}$  from benzotrichloride (3:6540) with Cl<sub>2</sub> see (3) (4); for purification of  $\bar{C}$  see (5).]

[For condens. of C with 1-hydroxynaphthoic acid-2 [Beil. X-331, XI<sub>1</sub>-(144)] in prepn. of dyestuff intermediates see (6).]

C on hydrolysis presumably yields m-chlorobenzoic acid (3:4392) q.v.

3:6845 (1) Anschütz, Moore, Ann. 239, 342 (1887). (2) Kämmerer, Carius, Ann. 131, 158 (1864). (3) Wertyporoch, Ann. 493, 157-161 (1932). (4) Spreckels, Ber. 52, 319 (1919). (5) Britton (to Dow Chem. Co.), U.S. 1,804,458, May 12, 1931; Cent. 1931, II 497; C.A. 25, 3668 (1931). (6) Soc. Chem. Ind. Basel, Ger. 355,115, June 21, 1922; Swiss, 92,406, Feb. 16, 1923; Cent. 1923, II 484.

249° (1) 11-11.5° (1)  $D_4^{34} = 1.7921$  (1) 165° at 90 mm. (1)  $n_D^{21} = 1.5427$  (1) 126-132° at 20 mm. (2)

Oil with disagreeable odor.

[For prepn. from trichloroethylene  $(3:5170) + CCl_4 + AlCl_3$  (49% yield (2)) by stdg. 48 hrs. at 20-30° (2) see (2) (1).]

Č dislvd. in CCl<sub>4</sub> and heated at 60-70° with AlCl<sub>3</sub> evolves HCl and gives (83% yield (3)) hexachloropropene (3:6370).

Č in alc. on titration with alk. gives (3) an apparent Neut. Eq. of 285.5 by loss of 1 HCl and formation of hexachloropropene (3:6370).

3:6860 (1) Prins, J. prakt. Chem. (2) 89, 417 (1914). (2) Henne, Ladd, J. Am. Chem. Soc. 60, 2494-2495 (1938). (3) Prins, Rec. trav. chim. 54, 251 (1935).

3:6864 DIETHYL CHLOROFUMARATE 
$$C_8H_{11}O_4CI$$
 Beil. II - 745  $CI-C-COOC_2H_5$  II<sub>1</sub>-(302)  $II_2$ -(640)

B.P. 250° at 760 mm., sl. dec. (1)  $D_-^{24} = 1.19517$  (7)  $n_D^{24} = 1.4598$  (7) 243-245° u.c. at 735 mm. (10) 202-203° at 210 mm. (1)  $D_4^{20} = 1.188$  (8)  $n_D^{20} = 1.4571$  (8) 136.5° cor. at 19 mm. (2) 1.187 (8) 1.4564 (8) 135-136° at 17 mm. (8) 1.183 (4) 127° at 10 mm. (3) 119° at 12 mm. (4)  $D_4^{18.3} = 1.1890$  (8)  $n_D^{18.3} = 1.45782$  (8) 117° at 7 mm. (5) 108° at 15 mm. (6)  $D_4^{18.2} = 1.1903$  (8)  $n_D^{18.2} = 1.45723$  (8)  $D_4^{16.3} = 1.1822$  (4)  $n_{He}^{16.3} = 1.45979$  (4)

[See also diethyl chloromaleate (3:6697).]

Colorless liq. with irritating actn. on skin and whose vapor strongly attacks the eyes. — Insol. cold aq., eas. sol. alc., ether; volatile with steam.

[For prepn. of  $\bar{C}$  from chlorofumaric acid (3:4853) in abs. EtOH with HCl gas (1) or conc. H<sub>2</sub>SO<sub>4</sub> (4) see indic. refs.; from chlorofumaryl (di)chloride (3:6105) with EtOH see (10) (1) (9) (3).]

[For form. of  $\tilde{C}$  from diethyl d-tartrate (1:4256) with PCl<sub>5</sub> see (11) (note that ethyl hydrogen chlorofumarate, cryst. from pet. ether, m.p.  $52-53^{\circ}$ , has also been obtd. (12) as one of the prods. of this reactn.); from diethyl  $d,l(?)-\alpha,\alpha$ -dichlorosuccinate by loss of HCl under actn. of dimethylaniline see (5).]

 $[\bar{C}\ (1\ mole)\ )$  with diethyl sodio-malonate (1 mole) is said (13) to yield tetraethyl cyclopropane-1,1,2,3-tetracarboxylate [Beil. IX-991] although no details are given; in the presence of excess NaOEt in cold alc. for 12 hrs., however, the same components give (15-20% yield (14)) (15) triethyl  $\gamma$ -carbethoxyaconitate [Beil. II-876], b.p. 205-207° at 16 mm. (14); for reactn. of  $\bar{C}\ (1\ mole)$  with diethyl mono- and di-substituted malonates yielding triethyl corresp. subst. aconitates see (13). —  $\bar{C}\ (1\ mole)$  with ethyl sodioaceto-acetate (1 mole) in abs. alc. refluxed for ½ hr. gives (72% yield (3)) (16) triethyl  $\gamma$ -acetylaconitate [Beil. III-860], yel. oil, b.p. 187-188° at 15 mm. (3), the same as similarly obtd. (3) from diethyl chloromaleate (3:6697).]

[ $\bar{C}$  with o-chlorophenol (3:5980) or its Na deriv. in boilg. xylene for 2 hrs. gives (77% yield (17)) diethyl o-chlorophenoxyfumarate, b.p. 203-204° at 14 mm. (17). —  $\bar{C}$  with p-chlorophenol (3:0475) + NaOEt gives (17) diethyl p-chlorophenoxyfumarate, b.p. 199-200° at 12 mm. (17).]

The reactn. of C with NH<sub>3</sub> under various circumstances is disputed and confused and cannot profitably be discussed here; for refs. see Beil. II-745.

Č (1 mole) with hydrazine hydrate (2 moles) directly (18) or in alc. or AcOH (9) yields ethyl pyrazolone-5 (or 3)-carboxylate-3 (or 5) [Beil. XXV-206, XXV<sub>1</sub>-(567)], ndls. from boilg. aq., m.p. 184-185° (18); 178° (9); note that in the direct treatment with just 2 moles of hydrazine hydrate much heat is evolved and the product ppts. on cooling; if excess base is employed (in which the prod. is soluble) neutralization with acid is necessary.

[Č with phenylhydrazine reacts much more slowly; however, after several hrs. at 100° phenylhydrazine HCl ppts. leaving an oil from which a cryst. prod. spar. sol. in boilg. AcOH but sepg. from it in colorless ndls., m.p. 272° dec., can be obtd. (18); this prod. is not, however, the ethyl 1-phenylpyrazolone-5(or 3)-carboxylate-3(or 5) which might be expected, but is regarded [Beil. XXVI-578] (18) as a 4,4'-bis derivative of it.

C on boilg, with 1:1 HCl and subsequent evapn, to dryness undergoes hydrolysis yielding (4) chlorofumaric acid (3:4853), m.p. 191.5° (4).

3:6864 (1) Perkin, J. Chem. Soc. 53, 700-703 (1888). (2) Walden, Swinne, Z. physik. Chem. 79, 742 (1912). (3) Ruhemann, Tyler, J. Chem. Soc. 69, 532-535 (1896). (4) von Auwers, Harres, Ber. 62, 1679, 1685-1687 (1929). (5) Darzens, Sejourne, Compt. rend. 154, 1617 (1912). (6) von Auwers, Harres, Z. physik. Chem. A-143, 10 (1929). (7) Gladstone, J. Chem. Soc. 59, 293 (1891). (8) von Auwers, Schmidt, Ber. 46, 481 (1913). (9) Ruggli, Hartmann, Helv. Chim. Acta 3, 513 (1920). (10) Claus, Ann. 191, 80-93 (1878).

(11) Henry, Ann. 156, 178-179 (1870).
(12) Patterson, Todd, J. Chem. Soc. 1929, 1768-1770.
(13) Ruhemann, J. Chem. Soc. 81, 1212-1214 (1902).
(14) Desai, J. Chem. Soc. 1932, 1089-1090.
(15) Bland, Thorpe, Proc. Chem. Soc. 28, 131 (1912).
(16) Ruhemann, J. Chem. Soc. 71, 323-324 (1897).
(17) Ruhemann, Ber. 54, 916-918 (1921).
(18) Ruhemann, J. Chem. Soc. 69, 1394-1397 (1896).

# --- 2,3,6-TRICHLOROPHENOL

 $\begin{array}{cccc} & & & & & \text{C}_6\text{H}_3\text{OCl}_3 & & \text{Beil. VI - 190} \\ & & & & & \text{VI}_1\text{--} \\ & & & & & \text{VI}_2\text{-}(180) \\ \end{array}$ 

B.P. 252-253° u.c.

M.P. 58°

See 3:1160. Division A: Solids.

#### —— 3,4-DICHLOROPHENOL

B.P. 253.5° at 767 mm.

M.P. 65°

See 3:1460. Division A: Solids.

## --- 1,2,3,4-TETRACHLOROBENZENE



B.P. 254° cor. at 761 mm.

M.P. 45-46°

See 3:0655. Division A: Solids.

3:6870 2-METHOXYBENZOYL CHLORIDE Cl C<sub>3</sub>H<sub>7</sub>O<sub>2</sub>Cl Beil. X - 85 (o-Anisoyl chloride; Salicyloyl chloride methyl ether) CH<sub>3</sub> CCH<sub>3</sub>

B.P. 254° u.c. at 760 mm. (1) 133° at 19 mm. (2) 145° cor. at 17 mm. (3) 136° 12 mm. (4) 128° 11 mm. (5) 128.8-129.0° 8 mm. (6) at 119.6° 1 mm. (7) 105-106° at 1 mm.

Colorless liquid.

[For prepn. of  $\bar{C}$  from o-methoxybenzoic acid (o-anisic acid) (1:0685) with PCl<sub>5</sub> (1) (4) (9) (10) (11) (every trace of salicylic acid must first be removed (9)) or with SOCl<sub>2</sub> (2) (3) (4) (5) (6) (7) (12) (prolonged heating tends to demethylate product (4)) see indic. refs.; note that for none of the prepns. is the yield recorded.]

[C on cat. reductn. at 280° with H<sub>2</sub> at ord. press. in press of Pd gives (11), not the expected o-methoxybenzaldehyde, but instead o-methoxytoluene (methyl o-tolyl ether) (1:7480).]

Č with anhydrous Na<sub>2</sub>CO<sub>3</sub> in pyridine shaken for ½ hr., poured onto ice, yields (13) o-methoxybenzoic acid anhydrude, ndls. from pct. ether, m.p. 72.4° (13).

[ $\bar{C}$  with  $C_6H_6+AlCl_3$  gives (14) (9) (2) (12) o-hydroxybenzophenone (1:1414) (note demethylation of intermediate o-methoxybenzophenone (1:5142) and also the formn. in small amt. (12) of 2-hydroxy-5-(2'-hydroxybenzoyl)benzophenone, m.p. 131-132° (12)).]

[ $\bar{C}$  with Et<sub>2</sub>Zn gives (87% yield (3)) ethyl 2-methoxyphenyl ketone [Beil. VIII-102], b.p. 137° cor. at 16 mm. (3).]

[For reaction of  $\bar{C}$  with ethyl sodio-acetoacetate (5), with ethyl sodio- $\alpha$ -methylacetoacetate (15), with ethyl sodio- $\alpha$ -allylacetoacetate (16), or with ethyl sodio- $\alpha$ , dimethoxyacetoacetate (17) (together with hydrolytic cleavage of the resulting products to ketones and/or acids) see indic. refs.; for reactn. of  $\bar{C}$  with Na phenylacetylene and ring closure of intermediate to corresp. 2-methoxyflavone see (18).]

[C (1 mole) with HCN (4 moles) in dry ether + pyridine gives (4) o-methoxybenzoyl cyanide, yel. ndls. from lgr., m.p. 56°, b.p. 161° at 12 mm. (4).]

[ $\bar{C}$  with urea refluxed in  $C_6H_6$  for 15 hrs. gives (19) N-(o-methoxybenzoyl)urea, ndls. from hot aq. or toluene, m.p. 192° (19).]

[Č with methyl salicylate gives (20) methyl O-(2-methoxybenzoyl)salicylate, m.p. 102–104° (20); Č with salicylamide in pyridine gives (21) N-(2-methoxybenzoyl)salicylamide, m.p. 189° (21).]

[C with MeOH yields methyl o-methoxybenzoate (1:4091), b.p. 248°; C with EtOH yields ethyl o-methoxybenzoate (1:4151), b.p. 261°; for study of rate of reactn. of C with EtOH at 0° see (22) (8).]

 $\bar{C}$  on hydrolysis yields o-methoxybenzoic acid (1:0685), m.p. 100-101°; for the amide, anilide, and other derivs. corresp. to  $\bar{C}$  see o-methoxybenzoic acid (1:0685).

3:6870 (1) Pinnow, Müller, Ber. 28, 158 (1895).
 (2) Staudinger, Kon, Ann. 384, 99 (1911).
 (3) Fischer, Slimmer, Ber. 36, 2585-2586 (1903).
 (4) Marsh, Stephen, J. Chem. Soc. 127, 1635 (1925).
 (5) von Auwers, Ber. 52, 126-127 (1919).
 (6) Kahovec, Kohlrausch, Z. physik. Chem. B-38, 136 (1938).
 (7) Thompson, Norris, J. Am. Chem. Soc. 58, 1956 (1936).
 (8) Norris, Young, J. Am. Chem. Soc. 57, 1424 (1935).
 (9) Ullmann, Goldberg, Ber. 35, 2811-2812 (1902).
 (10) Cohen, Dudley, J. Chem. Soc. 97, 1739 (1910).

(11) Fröschl, Danoff, J. prakt. Chem. (2) 144, 224 (1936). (12) Blicke, Weinkauff, J. Am. Chem. Soc. 54, 1448 (1932). (13) Rule, Patterson, J. Chem. Soc. 125, 2161 (1924). (14) Graebe, Ullmann, Ber. 29, 824-825 (1896). (15) Robertson, Sandrock, Hendry, J. Chem. Soc. 1931, 2428. (16) Helferich, Keiner, Ber. 57, 1617-1618 (1924). (17) Pratt, Robinson, J. Chem. Soc. 127, 1184-1185 (1925). (18) Simonis, Z. angew Chem. 39, 1462 (1926). (19) Kaufmann, Arch. Pharm. 265, 236 (1927). (20) Lewicka, Bull. acad. sci. Cracovie, 1927-A; Cent. 1928, I 190; C.A. 22, 4515 (1928).

(21) Anschütz et al., Ann. 442, 33 (1925). (22) Norris, Fasce, Staud, J. Am. Chem Soc. 57, 1415-1420 (1935).

# m-XYLYLENE DICHLORIDE

$$\begin{array}{cccc} CH_{2}Cl & C_{8}H_{8}Cl_{2} & \text{Beil. V - 373} \\ & V_{1}-\\ & V_{2}-(\mathbf{291}) \end{array}$$

B.P. 250-255°

M.P. 34°

See 3:0310. Division A: Solids.

# 2-CHLORONAPHTHALENE



B.P. 256°

M.P. 60°

Division A: Solids. See 3:1285.

ω,ω,ω-TRICHLOROACETOPHENONE 3:6874 (Phenyl trichloromethyl ketone)



 $D_{-}^{16} = 1.425 (2)$ B.P. 256-257° (1) 249° (2)145° at 25 mm. (2) 120-121° at 15 mm. (3) 128-132° at 14 mm. (4) at 14 mm. (5)

Colorless liq. with agreeable odor. —  $\bar{C}$  has no lachrymatory or hypnotic props.

[For prepn. of C from acetophenone (1:5515) with Cl<sub>2</sub> at 100-200° in sunlight see (2); from phenyl-trichloromethyl-carbinol by oxidn. with CrO<sub>3</sub> (6) or K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> + H<sub>2</sub>SO<sub>4</sub> (72% yield (4)) see indic. refs.; from  $\omega$ ,  $\omega$ -dichloroacetophenone (3:6835) in AcOH + NaOAc with Cl<sub>2</sub> at 95-100° (79% yield (7)) cf. (2) see indic. refs.; from trichloroacetyl chloride (3:5420) with C<sub>6</sub>H<sub>6</sub> + AlCl<sub>3</sub> (47% yield (1)) (5) (2) or from trichloroacetonitrile with C<sub>6</sub>H<sub>6</sub> + AlCl<sub>3</sub> + HCl gas (70% yield (3)) see indic. refs.]

[For study of behavior of C with Cl2 or Br2 see (8).]

 $\ddot{C}$  with 3 pts. fumg. HNO<sub>3</sub> gives (96% yield (8)) m-nitro- $\omega, \omega, \omega$ -trichloroacetophenone, yel. oil, b.p. 200-201° at 26 mm., 192-193° at 18 mm. (8); this prod. with aq. alk. splits smoothly and quant. to m-nitrobenzoic acid, m.p. 137-141° (8).

[C with alcohols in pres. of corresp. Na alcoholate gives high yields (9) (10) of corresp. benzoates; e.g.,  $\bar{C}$  with MeOH + NaOMe gives (92-94% yield (9)) methyl benzoate (1:3586), Č with EtOH + EtONa gives (85% yield (9)) ethyl benzoate (1:3721) (for corresp. results with isopropyl alc. (9), benzyl alc. (9), linalool (1:6260) (9), menthol (1:5940) (9) (10), ethylene glycol (9), glycerol (9), and cetyl alc. (1:5945) (10) see indic. refs.);  $\bar{C}$  with phenols in pres. of KOAc gives corresp. benzoates; e.g.,  $\bar{C}$  with phenol + KOAc gives (80% yield (10)) phenyl benzoate (1:2257), m.p. 70°;  $\bar{C}$  with o-cresol + KOAc gives (80% yield (10)) o-tolyl benzoate (1:4371);  $\bar{C}$  with p-cresol + KOAc gives (90% yield (10)) p-tolyl benzoate (1:2279), m.p. 71°.]

C with boilg. aq. is scarcely affected (2), but C refluxed 16 hrs. with 10 pts. aq. contg. a little KOAc, or C in acctone contg. a little aq. KOAc refluxed 4 hrs., gives (90-96% yield (10)) benzoic acid (1:0715), m.p. 121°.

Č with cold dil. alk. (3) (7) (5) readily splits yielding benzoic acid (1:0715) and chloroform (3:5050).

3:6874 (1) Biltz, J. prakt. Chem. (2) 142, 196-197 (1935). (2) Gautier, Ann. chim. (6) 14, 396-402 (1888). (3) Houben, Fischer, J. prakt. Chem. (2) 123, 318-319 (1929). (4) Florence, Bull. soc. chim. (4) 49, 926-927 (1931). (5) Staudinger, Kon, Ann. 384, 112 (1911). (6) Dinesmann, Compt. rend. 141, 202 (1905). (7) Aston, Newkirk, Dorsky, Jenkins, J. Am. Chem. Soc. 64, 1415 (1942). (8) Houben, Fischer, Ber. 64, 2651-2653 (1931). (9) Houben, Fischer, Ber. 64, 244-247 (1931). (10) Houben, Fischer, Ber. 64, 2639-2645 (1931).

Oil, sol. alc., ether, C6H6, or AcOH.

[For prepn. of  $\bar{C}$  from 3,4-dichlorotoluene (3:6355) at its b.p. with  $Cl_2$  (1) (5) or with dry  $Cl_2$  in pres. of 2-3%  $PCl_5$  (2); no yields or details are given, and no further record of prepn. of  $\bar{C}$  is made.]

 $\tilde{C}$  on hydrolysis with aq. in s.t. at 220° (3) (4), or with 4 wt. pts. of a mixt. of equal parts fumg. H<sub>2</sub>SO<sub>4</sub> (10% SO<sub>3</sub>) + conc. H<sub>2</sub>SO<sub>4</sub> at 30-40° (yields: 66% (4), 36% (5)) cf. (6), or with 98% H<sub>2</sub>SO<sub>4</sub> (no yield stated (2)), or with aq. + CaCO<sub>3</sub> on refluxing 9 hrs. (40% yield (5)) gives 3,4-dichlorobenzaldehyde (3:0550) q.v.

C on oxidn. (5) with chromic acid (1) slowly yields 3,4-dichlorobenzoic acid (3:4925) q.v.

3:6876 (1) Beilstein, Kuhlberg, Ann. 150, 291-295 (1869). (2) Ruggli, Zaeslin, Lang, Helv. Chim. Acta 21, 1248 (1938); Erdmann, Ann. 272, 149-150 (1892). (3) Beilstein, Kuhlberg, Ann. 152, 228-229 (1869). (4) Erdmann, Schwechten, Ann. 260, 67, 72 (1890). (5) Kraay, Rec. trav. chim. 49, 1086 (1930). (6) B.A.S.F., Ger. 32,238, March 28, 1884; Ber. 18 (Referate), 470 (1885).

— CINNAMOYL CHLORIDE 
$$C_9H_7OCl$$
 Beil. IX - 587 IX<sub>1</sub>-(233)

B.P. 257.5° at 760 mm. M.P. 35-36°  $D_4^{45.3} = 1.1617$   $n_D^{42.5} = 1.61364$ 

See 3:0330. Division A: Solids.

```
B.P.
                                    F.P.
                                                    D_4^{25} = 1.192
[263°
                                    -2.3°
                                             (9)
                                                                     (6)
                             (1)
[259-262°
                                    -2.5^{\circ}
                             (2)
                                            (6)
                                                    D_4^{21.6} = 1.1906 (7)
259.4-260.3° at 760 mm.
                             (3)
                                    -4°
                                           (12)
259.3°
                at 760 mm.
                             (4)(5)
                                                                 n_{\rm D}^{21.6} = 1.63184
                                                                                       (7)
258.8°
                at 753 mm.
                             (6)
258° cor.
                             (7)
                                                    D_4^{20} = 1.19382 (4)
255.5-256.0°
                             (8)
                                                           1.192
255.6° cor.
                at 752 mm.
                             (9)
248.6°
                at 600 mm.
                             (4)
                                                                   n_{\rm D}^{20} = 1.63321 (4) (7)
                at 400 mm.
230.8°
                at 200 mm.
204.2°
 180.4°
                at 100 mm.
                                                    D_{15}^{15} = 1.1966 \quad (9)
 171.4°
                at 75 mm.
                             (4)
 159.3°
                at
                    50 mm.
                             (4)
 144.0-146.5° at
                    29 mm. (10)
 140.3°
                    25 mm. (4)
 129.54°
                    16 mm. (5)
 125.4°
                    16 mm. (11)
 127.97°
                    15 mm. (5)
 126.25°
                at
                    14 mm.
 122.0-122.2° at
                    13 mm.
                             (3)
 118.6°
                at
                    10 mm.
                             (4)
104.8°
                     5 mm. (4)
85.3°
                at 1.5 mm. (4)
```

Colorless oil, volatile with steam. — Note that presence of as much as 10% of 2-chloronaphthalene (3:1285) has no effect upon density of  $\bar{C}$  (9). — Note also that addn. of 1,4-dichloronaphthalene (3:1655), m.p. 68°, or of 1,6-dichloronaphthalene (3:0810), m.p. 48°, lowers m.p. of  $\bar{C}$  (9).

[For sepn. of mixts. of  $\bar{C}$  with the isomeric 2-chloronaphthalene by fractional freezing of their soln. in appropriate solvents see (6). — For purification of tech.  $\bar{C}$  by treatment with 1-2% alk. at 150° under reduced press. see (13). — For sepn. of  $\bar{C}$  from dichloronaphthalenes by means of its const.-boil. mixt. (b.p. 99°) with aq. see (18).]

[For prepn. of  $\tilde{C}$  from  $\alpha$ -naphthylamine [Beil. XII-1212, XII<sub>1</sub>-(519)] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. (70-75% yield (9)) (8) (7) or even by warming diazo soln. with HCl (10-20% yield (14)) or from diazonium/ZnCl<sub>2</sub> cpd. on addn. to phenol at 60° (46%  $\tilde{C}$  + 29% hydroxybiphenyl + 20% diphenyl ether (62)) see indic. refs.; from  $\alpha$ -naphthalenesulfonyl chloride [Beil. XI-157, XI<sub>1</sub>-(37)] (2), or from 1-nitronaphthalene [Beil. V-553, V<sub>1</sub>-(264)] (15), or from  $\beta$ -naphthol (1:1500) (16) with PCl<sub>5</sub> as directed see indic. refs.; for formn. of  $\tilde{C}$  from 1-nitronaphthalene with Cl<sub>2</sub> see (17).]

[For prepn. of C from naphthalene with Cl<sub>2</sub> in boilg. naphthalene (19) (48), in vapor phase (20) (22) (27), in various solvents (21) (22) (23) (24) (25) (26) see indic. refs.; from naphthalene with HCl gas + air in pres. of cat. see (28); from naphthalene with PbCl<sub>4</sub>-2NH<sub>4</sub>Cl at 140-150° (29) or with SO<sub>2</sub>Cl<sub>2</sub> + AlCl<sub>3</sub> (79% yield (30)) see indic. refs.; from

naphthalene dichloride [Beil. V-519] with boilg, alc. KOH (31) cf. (32) or by distn. (33) cf. (34) see indic. refs.]

[For thermal anal. of systems of  $\tilde{C}$  with SbBr<sub>5</sub> see (35); with PkOH see (36); with 2,4,6-trinitroresorcinol (styphnic acid) see (37).]

[C with Cl<sub>2</sub> in cold or C with Cl<sub>2</sub> in lt. pet. yields (38) 1-chloronaphthalene tetrachloride, m.p. 131° (38), and 1,4-dichloronaphthalene (3:1655), m.p. 68° (38); C with Cl<sub>2</sub> in CHCl<sub>3</sub> yields (38) the above 1-chloronaphthalene tetrachloride and 1,4-dichloronaphthalene tetrachloride, m.p. 172° (38); C with Cl<sub>2</sub> in CS<sub>2</sub> gives (38) a new dichloronaphthalene tetrachloride, m.p. 158° (38).]

[C on chloromethylation with paraformaldehyde + HCl gas + H<sub>3</sub>PO<sub>4</sub> in AcOH gives (81) 1-chloro-4-(chloromethyl)naphthalene, m.p. 78-79° (81).]

[ $\bar{C}$  is not reduced with excess 5% Na/Hg in alc. even after 5 hrs. (39) nor by HI + P at 182° for 10 hrs. (42); however,  $\bar{C}$  in boilg. AmOH treated with Na yields (40) 1,4-dihydronaphthalene [Beil. V-518, V<sub>1</sub>-(249)] (identified by addn. of Br<sub>2</sub> giving dibromide, m.p. 74° (40)) and 1,2,3,4-tetrahydronaphthalene (1:7550) q.v.; furthermore,  $\bar{C}$  with Mg in boilg. MeOH evolves gas and upon acidification and pouring into aq. gives alm. quant. yield (41) naphthalene (1:7200), m.p. 80°.]

 $[\bar{C}$  on cat. oxidn. with air at 250-300° gives (43) 97% phthalic anhydride (1:0725) + 3% 3-chlorophthalic anhydride (3:3900).

[ $\bar{C}$  with Li in s.t. 17½ hrs. at 263° followed by treatment with aq. gives (444) naphthalene (1:7200) + 1,1'-binaphthyl [Beil. V-725, V<sub>1</sub>-(358)], m.p. 156°. —  $\bar{C}$  with Li in dry ether yields soln. of  $\alpha$ -naphthyl-lithium which with Me<sub>2</sub>SO<sub>4</sub> gives (77% yield (45)) 1-methyl-naphthalene (1:7600), the reactn. of  $\bar{C}$  with Li occurring even more readily (46) than with Mg.]

[ $\tilde{C}$  with Mg at 200-220° reacts very energetically and is complete within a few minutes; naphthalene sublimes abundantly, and yield of  $\alpha$ -C<sub>10</sub>H<sub>7</sub>MgCl is only 10-13% (47).]

[ $\bar{C}$  with AlCl<sub>3</sub> at 100° gives small amts. (50) naphthalene (1:7200) + 2-chloronaphthalene (3:1285).]

[ $\bar{C}$  with CuCN in pyridine htd. 24 hrs. in bath at 245–250° (92% yield (10)) or  $\bar{C}$  with K<sub>4</sub>Fe(CN)<sub>6</sub> + pyridine at 270° for 18 hrs. (49) gives  $\alpha$ -naphthonitrile [Beil. IX-649, IX<sub>1</sub>-(275)], b.p. 299° cor., b.p. 173–174° at 27 mm., 166–169° at 18 mm. (10).]

[C does not with Ag 3,5-dinitrobenzoate yield corresp. ester (80).]

[ $\bar{C}$  with 15% aq. NaOH above 300° for 12 hrs. gives (46% yield (51)) α-naphthol (1:1500);  $\bar{C}$  with 5 moles 3-25% aq. NaOH at 350-360° under pressure in pres. of Cu for 1 hr. gives (52) a mixt. of α-naphthol (1:1500) + β-naphthol (1:1540). —  $\bar{C}$  with aq. Na<sub>2</sub>CO<sub>3</sub> + Cu at 300° under press. (53) or  $\bar{O}$  with aq. Na<sub>2</sub>CO<sub>3</sub>, Na<sub>2</sub>HPO<sub>4</sub>, or Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub> at 325° and 280 atm. (54) yields α-naphthol (1:1500). —  $\bar{C}$  with aq. vapor over cat. at 300-400° yields (55) α-naphthol (1:1500).]

[ $\bar{C}$  with conc. aq. NH<sub>4</sub>OH + CuO at 150-250° under press. (56) or  $\bar{C}$  with conc. aq. NH<sub>4</sub>OH + Cu<sub>2</sub>Cl<sub>2</sub> + Ca(OH)<sub>2</sub> at 225-230° under press. (57) cf. (58) yields  $\alpha$ -naphthylamine (for study rate of reactn. see (58) (61); under suitable conditions the main prod. may be di- $\alpha$ -naphthylamine (60).]

[Č with KNH<sub>2</sub> in liq. NH<sub>3</sub> at  $-33^{\circ}$  gives (82) only 2-3%  $\alpha$ -naphthylamine, the main prod. (43-53%) being  $\beta$ -naphthylamine; for behavior of  $\bar{C}$  with LiNEt<sub>2</sub> see (83).]

[C on mononitration, e.g., with a mixt. of conc. HNO<sub>3</sub> (D = 1.4) (1 mole) + conc. H<sub>2</sub>SO<sub>4</sub> (2 moles) at 0° (63) cf. (64) (65) (66) gives a mixt. of three mono nitro derivs., viz., 1-chloro-4-nitronaphthalene [Beil. V-555, V<sub>1</sub>-(264)], pale yel. ndls. from alc., m.p. 85° (66) (63), 87-87.5° (67); 1-chloro-5-nitronaphthalene [Beil. V-556], m.p. 111° (63) (68); and 1-chloro-8-nitronaphthalene [Beil. V-556], ndls. from AcOH or C<sub>6</sub>H<sub>6</sub>, m.p. 94° (63), 93-94° (69). (Note that the relative proportions of these three mononitration products

vary rather widely acc. to conds. (63); that thermal anal. of various combinations of these three isomers have been recorded (65); and that of the other possible isomers the only ones reported are 1-chloro-2-nitronaphthalene, pale yel. ndls. from lt. pet., m.p. 80.5-81° (67), 76° (70) (71), and 1-chloro-6-nitronaphthalene, m.p. 118-120° (72), both prepd. indirectly.)]

[C on dinitration, e.g., with warm conc. HNO<sub>3</sub> (66) or fumg. HNO<sub>3</sub> (66), or 1-chloro-8-nitronaphthalene (above) on further nitr. (73) gives 1-chloro-4,8-dinitronaphthalene [Beil. V-561], m.p. 138° (73), and 1-chloro-4,5-dinitronaphthalene [Beil. V-561], m.p. 180° (66) (68); note that the only other recorded isomer, viz., 1-chloro-2,4-dinitronaphthalene [Beil. V-561, V<sub>1</sub>-(265)], m.p. 146.5° cor., is obtd. only by indirect means, i.e., from 2,4-dinitronaphthol-1 with p-toluenesulfonyl chloride in diethylanline (74).]

[No record can be found of direct trinitration of  $\bar{C}$ ; the only two recorded 1-chlorotrinitronaphthalenes, viz., 1-chloro-2,4,5-trinitronaphthalene [Beil.  $V_{1}$ -(265)], m.p. 143-144°, and 1-chloro-2,4,8-trinitronaphthalene [Beil.  $V_{1}$ -(265)], m.p. 118-126°, have been obtd. from nitration (75) of 1-chloro-2,4-dinitronaphthalene (above).]

[ $\bar{C}$  with conc. H<sub>2</sub>SO<sub>4</sub> at 140° yields (76) (77) mainly 1-chloronaphthalenesulfonic acid-4 [Beil. XI-160] (see also below).]

- ₱ 1-Chloronaphthalenesulfonamide-4 (4-chloronaphthalenesulfonamide-1): cryst. from dil. alc., m.p. 185–186° u.c. (78). [From \(\bar{C}\) with chlorosulfonic acid as directed, followed by conversion of the intermediate 1-chloronaphthalenesulfonyl chloride-4, m.p. 92–93° u.c., with (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> to the desired sulfonamide (78).]
- ---- 1-Chloronaphthalene picrate: m.p. 137° (50), 135° (11), 125.7° (36). [Note that this cpd. with PkOH forms a cutectic, m.p. 104.7°, contg. 16.3% (36).]
- ---- 1-Chloronaphthalene styphnate: m.p. 126-128° (79), 109.8° (37). [From Č (1 mole) + 2,4,6-trinitroresorcinol (1 mole) (styphnic acid) in hot alc. (79); Neut. Eq. calcd. 203.8, found (79) 207.8.]
- 3:8878 (1) Widman, Bull. soc. chim. (2) 28, 509 (1877). (2) Carius, Ann. 114, 145-146 (1860). (3) Gockel, Z. physik. Chem. B-29, 85 (1935). (4) Kahlbaum, Arndt, Z. physik. Chem. 26, 628, 646, 655 (1898). (5) von Rechenberg, J. prakt. Chem. (2) 101, 117 (1920). (6) Britton, Reed (to Dow Chem. Co.), U.S. 1,917,822, July 11, 1933; Cent. 1933, II 2194; CA. 27, 4547 (1933). (7) von Auwers, Frühling, Ann. 422, 194, 200,202 (1921). (8) Hampson, Weissberger, J. Chem. Soc. 1936, 394. (9) Zil'berman, Rashevskaya, Martyntseva, J. Applied Chem. (U.S.S.R.) 9, 1832-1840 (1936); C.A. 31, 2597 (1937). (10) Newman, J. Am. Chem. Soc. 59, 2472 (1937); Org. Syntheses 21, 89-91 (espec. Note 10) (1941).
- (11) L. Klemm, W. Klemm, Schiemann, Z. physik. Chem. A-165, 382 (1933). (12) Parts, Z. physik. Chem. B-16, 265 (1930). (13) Hanson, Brown (to Halowax Corp.), U.S. 2,025,742, Dec. 31, 1935; Cent. 1936, I 4841; C.A. 36, 1068 (1936). (14) Gasiorowski, Wayss, Ber. 18, 1939-1940 (1885). (15) de Koninck, Marquart, Ber. 5, 11 (1872). (16) Claus, Öhler, Ber. 15, 312, Note 2 (1882). (17) Atterberg, Ber. 9, 317, 927 (1876). (18) Buchheim (to Chem. Fabrik. von Heyden), Ger. 616,596, Aug. 1, 1935; Cent. 1935, II 3703. (19) Rymarenko, J. Russ. Phys.-Chem. Soc. 8, 141 (1876). (20) Ferrero, Wunenburger, Helv. Chim. Acta 11, 416-425 (1928).
- (21) Traubenberg, Wasserman, J. prakt. Chem. (2) 120, 177-178 (1928). (22) Ferrero, Fehlmann, J. prakt. Chem. (2) 122, 340-343 (1929). (23) Ferrero, Fehlmann, Helv. Chim. Acta 12, 583-593 (1929). (24) Ferrero, Corbaz, Helv. Chim. Acta 13, 1009-1025 (1930). (25) Ferrero, Fehlmann, Swiss 134,089, Sept. 16, 1929; Cent. 1930, I 2165; C.A. 24, 1652 (1930). (26) Britton, Reed (to Dow Chem. Co.), U.S. 1,784,267, Dec. 9, 1930; Cent. 1931, I 1970-1971. (27) I.G., French 823,021, Jan. 12, 1938; Cent. 1938, I 4719. (28) Prahl, Mathes (to F. Raschig), Ger. 575, 765, May 3, 1933; Cent. 1933, II 134. (29) Seyewetz, Biot, Compt. rend. 135, 1122 (1902). (30) Töhl, Eberhard, Ber. 26, 2945 (1893).
- (31) Laurent, Gmelin-Kraut (7th ed.) 4, 35, 38. (32) Faust, Saame, Ann. 160, 66-68 (1871). (33) Fischer, Ber. 11, 738 (1878). (34) Laurent, Ann. chim. (2) 59, 199 (1835). (35) Menschutkin, J. Russ. Phys.-Chem. Soc. 44, 1082 (1912); Cent. 1912, III 1436. (36) Jefremov, J. Russ. Phys.-Chem. Soc. 56, 381 (1918); Cent. 1923, III 379. (37) Jefremov, J. Russ. Phys.-Chem. Soc. 51, 359 (1909); Cent. 1923, III 770. (38) Turner, Wynne, J. Chem. Soc. 1941, 244-245.

(39) Franzen, Stäuble, J. prakt. Chem. (2) 103, 389 (1922). (40) Grien, Rowe, J. Chem. Soc. 112, 970 (1918).

(41) Zechmeister, Rom, Ann. 468, 128 (1929). (42) Klages Liecke, J. prakt. Chem. (2) 61, 323 (1900). (43) Pongratz, Bassi, Fuchs, Süss, Wüstner, Schober, Angew. Chem. 54, 22-26 (1941); C.A. 35, 3248 (1941). (44) Spencer, Price, J. Chem. Soc. 97, 388 (1910). (45) Vesley, Stursa, Collection Czechoslov. Chem. Commun. 4, 141-142 (1932). (46) Gilman, Zoellner, Selby, J. Am. Chem. Soc. 55, 1255 (1933). (47) Shoruigin, Isagulyantz, Guseva, Ber. 66, 1427 (1933). (48) DeWitt, Ekely, Univ. Colorado Studies 18, 119-121 (1931); C.A. 26, 2974 (1932). (49) A.G.F.A., Ger. 293,094, July 12, 1916; Cent. 1916, II 288-289. (50) Roux, Ann. chim. (6) 12, 347-349 (1887) Bull. soc. chim. (2) 45, 515 (1886).

(51) Meyer, Bergius, Ber. 47, 3159 (1914). (52) Britton, Stearns (to Dow Chem. Co.), U.S. 1,996,745, April 9, 1935; Cent. 1935, II 2126; C.A. 29, 3354 (1935). (53) Britton (to Dow Chem. Co.), U.S. 1,959,283, May 15, 1934; Cent. 1934, II 1688. (54) Hale, Britton (to Dow Chem. Co.), U.S. 1,882,824, 1,882,825, 1,882,826, Oct. 18, 1932; Cent. 1933, 1309; C.A. 27, 731 (1933). (55) Dreyfus, French 709,184, Aug. 4, 1931; Cent. 1931, II 12933. (56) Williams (to Dow Chem. Co.), U.S. 1,775,360, Sept. 9, 1930; Cent. 1931, II 1195. (57) Booth (to Swann Research, Inc.), U.S. 1,954,469, April 10, 1934; Cent. 1934, II 1846. (58) Federal Phosphorus Co., Brit. 370,774, May 5, 1932; Cent. 1932, II 1237. (59) Groggins, Stirton, Ind. Eng. Chem. 28, 1054 (1936). (60) Hale (to Dow Chem. Co.), U.S. 1,804,466, May 12, 1931; Cent. 1931, II 1195.

(61) Vorozhtsov, Kobelev, J. Gen. Chem. (U.S.S.R.), 9, 1569-1576 (0939); C.A. 34, 2688-2689 (1940).
(62) Hodgson, Foster, J. Chem. Soc. 1942, 582-583.
(63) Ferrero, Caflisch, Helv. Chim. Acta 11, 795-812 (1928).
(64) Franzen, Helwert, Ber. 53, 319-322 (1920).
(65) Assoks, Bull. Tokyo Ind. Research Inst. 23, (9) 1-26 (1928); C.A. 23, 3923 (1929).
(66) Atterberg, Ber. 9, 926-928 (1876).
(67) Hodgson, Leigh, J. Chem. Soc. 1937, 1352.
(68) Friedländer, Karamessinis, Schenk, Ber. 55, 47, 52 (1922).
(69) Woroshtzow, Koslow, Ber. 69, 413-415 (1926).
(70) Hodgson, Kilner, J. Chem. Soc. 1926, 7.

(71) Hoogeveen, Rec. trav. chim. 50, 38-39 (1931). (72) Hodgson, Turner, J. Chem. Soc. 1943, 391-392. (73) Ullmann, Consonno, Ber. 35, 2810 (1902). (74) Ullmann, Bruck, Ber. 41, 3932-3933 (1908). (75) Rindl, J. Chem. Soc. 103, 1912-1913 (1913). (76) Zinin, J. prakt. Chem. (1) 33, 36-37 (1844). (77) Arnell, Bull. soc. chim. (2) 39, 62-63 (1883). (78) Huntress, Carten, J. Am Chem. Soc. 62, 511-513 (1940). (79) Ma, Hsia, Sah, Science Repts. Natl. Tsing Hua Univ. 2, 150-156 (1933). (80) Tseng, Chu, Natl. Central Univ. (Nanking), Sci. Repts. A-1, No. 2, 5-7 (1931); C.A. 26, 2166 (1932).

(81) Horn, Warren, J. Chem. Soc. 1946, 144. (82) Urner, Bergstrom, J. Am. Chem. Soc. 67, 2108-2109 (1945). (83) Gilman, Crounse, Massie, Benkaser, Spatz, J. Am. Chem. Soc. 67, 2107 (1945).

# 3:6880 o-CHLOROBENZOTRICHLORIDE $C_7H_4Cl_4$ Beil. V - 302 $V_{1-}(153)$ $V_{2-}(234)$

| B.P.                    | M.P.              |                      |
|-------------------------|-------------------|----------------------|
| 260° (1) (2)            | 30° (1) (2) (4)   | $D_{-}^{-}=1.51 (1)$ |
| 129.5° at 13 mm. (2)    | <b>29–30°</b> (5) |                      |
| 115-118° at 5-6 mm. (3) |                   |                      |

Colorless liq. with faint but not disagreeable odor.

[For prepn. of  $\bar{C}$  from salicylic acid (1:0780) with PCl<sub>5</sub> see (1) (4); from o-chlorobenzoyl chloride (3:6640) with PCl<sub>5</sub> in s.t. at 200° for several days see (2); from o-chlorotoluene (3:8245) with Cl<sub>2</sub> at 130° (5) in pres. of PCl<sub>3</sub> (9), or from o-chlorotoluene- $\alpha$ -sulfonyl chloride (3) with Cl<sub>2</sub> at 150–180° (3), see indic. refs.; for formn. of  $\bar{C}$  from benzotrichloride (3:6540) with Cl<sub>2</sub> see (6) (7); for purification see (8).]

[For condens. of  $\tilde{C}$  with 1-hydroxynaphthoic acid-2 [Beil. X-331, X<sub>1</sub>-(144)] to yield 1-hydroxy-4-(o-chlorobenzoyl)naphthoic acid-2, m.p. 213° (11), see (10) (11) (12); for reactn. of  $\tilde{C}$  with o-chlorobenzoic acid (3:4150) + ZnCl<sub>2</sub> to yield o-chlorobenzoyl chloride (3:6640) see (13); for reactn. of  $\tilde{C}$  with 99% HF yielding o-chlorobenzotrifluoride, b.p. 149-152°, see (14).]

Beil. X - 163

[ $\bar{C}$  on htg. with Cu powder in C<sub>6</sub>H<sub>6</sub> for 25 hrs. gives (5) a mixt. of the two stereoisomeric forms of 1,2-bis-(o-chlorophenyl)-1,2-dichloroethylene, [Beil. V-635]; by repeated cryst. from pet. ether this mixt. is separable into 3 pts. higher-melting stereoisomer, m.p. 172° (5), and 1 pt. lower-melting stereoisomer, m.p. 129° (5).]

Č on hydrolysis, e.g., by htg. with aq. in s.t. at 150° (1) or by boilg. with conc. HNO<sub>3</sub> (2), yields o-chlorobenzoic acid (3:4150) q.v.

3:6880 (1) Kolbe, Lautemann, Ann. 115, 183-185, 195-196 (1860). (2) Anschutz, Ann. 454, 95-99 (1927). (3) Meister Lucius Bruning, Ger. 229,873, Jan. 6, 1911, Cent. 1911, I 358. (4) Anschütz, Moore, Ann. 239, 321-322 (1887). (5) Fox, Ber. 26, 653-656 (1893). (6) Spreckels, Ber. 52, 319 (1919). (7) Wertyporoch, Ann. 493, 157-161 (1932). (8) Britton (to Dow Chem. Co.), U.S. 1,804,458, May 12, 1931; Cent. 1931, II 497; C.A. 25, 3668 (1931). (9) Kyrides (to Nat. Aniline and Chem. Co.), U.S. 1,733,268, Oct. 29, 1929; Cent. 1930, I 3831. (10) Soc. Chem. Ind. Basel, Ger. 355,115, June 21, 1922; Swiss, 92,406, Feb. 16, 1923; Cent. 1923, II 484.

(11) Soc. Chem. Ind. Basel, Ger. 378,908, Aug. 7, 1923; Ger. 378,909, Aug. 11, 1923; Swiss 98,559, April 2, 1923; Cent. 1923, IV 593. (12) Soc. Chem. Ind. Basel, Ger. 418,033, Aug. 26, 1925; Cent. 1925, II 2095. (13) Scottish Dyes, Ltd., Bangam, Thomas, Brit. 308,231, April 18, 1929; Cent. 1929, II 1348. (14) I.G., French 745,293, May 8, 1933; Cent. 1933, II 2061.

('sH<sub>7</sub>O<sub>2</sub>Cl

3:6890 4-METHOXYBENZOYL CHLORIDE

$$(p\text{-Anisoyl chloride}) \qquad \qquad \text{CH}_3\text{O} \qquad \text{C} = \text{O} \qquad \text{X}_{1^-}(\ 77)$$
 B.P. 
$$262-263^\circ \text{ sl. dec.} \qquad (1) \qquad 24^\circ \qquad (7) \qquad D_4^{20} = 1.2609 \ (6) \qquad n_D^{20} = 1.5802 \ (6)$$
 
$$262^\circ \qquad (9) \qquad 22^\circ \ (4) \ (15)$$
 
$$258.4-260.5^\circ \qquad (2) \qquad 21^\circ \qquad (8)$$
 
$$161-168^\circ \qquad \text{at } 38 \text{ mm. } (3)$$
 
$$160-164^\circ \qquad \text{at } 35 \text{ mm. } (4)$$
 
$$152-153^\circ \qquad \text{at } 24 \text{ mm. } (4)$$
 
$$148-153^\circ \qquad \text{at } 20 \text{ mm. } (5)$$
 
$$145^\circ \qquad \text{at } 14 \text{ mm. } (4)$$
 
$$137.6-137.8^\circ \text{ at } 14 \text{ mm. } (2)$$
 
$$90.8^\circ \qquad \text{at } 1 \text{ mm. } (6)$$

[For prepn. of  $\bar{C}$  from p-methoxybenzoic acid (p-anisic acid) (1:0805) with PCl<sub>5</sub> (93% yield (3)) (4) (9) (10) (11) or with SOCl<sub>2</sub> (6) (7) (12) (13) see indic. refs.; from sodium p-anisate with oxally chloride (3:5060) in  $C_0H_6(75-90\%$  yield) see (14).]

[ $\bar{C}$  with 3%  $H_2O_2$  in acetone + pyridine at 0° yields (15) di-p-anisyl peroxide, cryst. from AcOEt or pet. eth., m.p. 128° (15); for reactn. of  $\bar{C}$  with  $H_2S_2$  + ZnCl<sub>2</sub> giving (60% yield) di-p-anisyl disulfide see (30).]

[ $\bar{\mathbf{C}}$  on cat. reductn. with  $\mathbf{H}_2$  and cat. as directed gives (81% yield (16)) p-methoxybenzaldehyde (1:0240) (under some conds. (17) reductn. goes to p-methoxytoluene (methylp-tolyl ether) (1:7495)).]

[Although 2-methoxybenzoyl chloride (3:6870) with anhydrous Na<sub>2</sub>CO<sub>3</sub> + pyridine gives the corresp. anhydride, this reactn. is not specifically reported for Č; however, Č + a tertiary amine (pyridine) in C<sub>6</sub>H<sub>6</sub> with excess K<sub>2</sub>S<sub>2</sub>O<sub>5</sub> yields (18) p-methoxybenzoic acid anhydride, m.p. 99-100° (18).]

[Č with C<sub>6</sub>H<sub>6</sub> + AlCl<sub>3</sub> yields (1) p-methoxybenzophenone (1:5170); Č with toluene + AlCl<sub>3</sub> gives (40% yield (11)) 4-methoxy-4'-methylbenzophenone, cryst. from alc., m.p. 89° (11); Č with perylene + AlCl<sub>3</sub> in CS<sub>2</sub> gives (19) 3,9-bis-(p-methoxybenzoyl)perylene, m.p. 319.5° (19).]

[C condenses with many phenol ethers in pres. of AlCl<sub>3</sub>; e.g., for reactn. of C with anisole

yielding 4,4'-dimethoxybenzophenone [Beil. VIII-317, VIII<sub>1</sub>-(641)], m.p. 143-144° (20), see (20) (21); for  $\tilde{C}$  with phenetole yielding 4-methoxy-4'-ethoxybenzophenone, m.p. 112° (13), 111° (20), see indic. refs.; for  $\tilde{C}$  with pyrocatechol dimethyl ether (veratrole) (1:7560) yielding 3,4,4'-trimethoxybenzophenone [Beil. VIII-422], m.p. 98-99°, see (22); for  $\tilde{C}$  with resorcinol dimethyl ether (1:7570) yielding 2,4,4'-trimethoxybenzophenone [Beil. VIII-(702)], m.p. 70-71° (23), see (23); for  $\tilde{C}$  with phloroglucinol trimethyl ether (1:7148) yielding 2,4,6,4'-tetramethoxybenzophenone [Beil. VIII-496], m.p. 146°, see (22); for  $\tilde{C}$  with many other phenol ethers see (20).]

[ $\bar{C}$  with MeZnI (24) or better with Me<sub>2</sub>Cd (25) gives (yields: 25% (24), 84% (25)) p-methoxyphenyl methyl ketone (p-methoxyacetophenone) (1:5140), m.p. 38°;  $\bar{C}$  with C<sub>6</sub>H<sub>5</sub>ZnBr gives (65% yield (26)) p-methoxybenzophenone, (1:5170), m.p. 61°, b.p. 202° at 14 mm. (26).]

[ $\bar{C}$  with ethyl sodioacetoacetate yields (4) ethyl  $\alpha$ -(p-methoxybenzoyl)acetoacetate [Beil. X-1004];  $\bar{C}$  with ethyl sodio- $\alpha$ , $\gamma$ -dimethoxyacetoacetate yields (27) ethyl  $\alpha$ , $\gamma$ -dimethoxy- $\alpha$ -(p-anisoyl)acetoacetate (which on ketonic hydrolytic cleavage yields (27)  $\omega$ ,4-dimethoxyacetophenone).]

[Č (1 mole) with HCN (4 moles) in dry ether + pyridine gives (12) p-methoxybenzoyl cyanide, m.p. 63°, b.p. 150° at 12 mm. (12); Č with KCN + quinoline yields (28) 1-(p-anisoyl)-2-cyano-1,2-dihydroquinoline, m.p. 120°, which upon acid hydrolysis gives (57% yield (28)) p-methoxybenzaldehyde (p-anisaldehyde) (1:0240).]

[ $\bar{C}$  with urea refluxed in C<sub>6</sub>H<sub>6</sub> for 15 hrs. yields (29) N-(p-methoxybenzoyl)urea, ndls. from alc., m.p. 215° (29).]

[For reactn. of  $\tilde{C}$  with  $K_2S$  in alc. + ether yielding K salt of p-methoxythiobenzoic acid see (30); for reactn. of  $\tilde{C}$  with sodium phenylacetylene see (31); for reactn. of  $\tilde{C}$  with diphenylketene see (32); for reactn. of  $\tilde{C}$  with d-glucose and other carbohydrates see (33); for reactn. of  $\tilde{C}$  with 3,4-dimethoxyphenylethylamine (34) or with  $\beta$ -(n-butylamino)ethanol (3) see indic. refs.]

 $\tilde{C}$  with MeOH yields methyl p-methoxybenzoate (methyl p-anisate) (1:2128), m.p. 49°;  $\tilde{C}$  with EtOH yields ethyl p-anisate (1.4191), b.p. 269°, m.p.  $+7^{\circ}$  (for study of rate of reactn. of  $\tilde{C}$  with EtOH see (8) (35)).

 $\bar{C}$  on hydrolysis yields p-methoxybenzoic acid (1.0805), m.p. 184°; for the amide, anilide, p-toluidide, and other derivs. corresp. to  $\bar{C}$  see p-methoxybenzoic acid (1.0805).

3:6890 (1) Ullmann, Goldberg, Ber. 35, 2814 (1902) (2) Kohlerusch, Pongratz, Stockmair Monatsh. 67, 110 (1935). (3) Pierce, Salsbury, Fredericksen, J. Am. Chem. Soc. 64, 1691-1694 (1942). (4) Schoonjans, Bull. acad. roy. Betg. (3) 33, 810-820 (1897); Cent. 1897, II 616. (5) de Ceuster, Natuurw. Tydschr 14, Nos. 3-6, 188-202 (1932), Cent. 1932, II 1296. (6) Thompson, Norris, J. Am. Chem. Soc. 58, 1956 (1936). (7) Meyer, Monatsh. 22, 428 (1901). (8) Branch, Nixon, J. Am Chem. Soc. 58, 2499-2504 (1936). (9) Cahours, Ann. chim. (3) 23, 350-354 (1848), Ann. 70, 47-48 (1849). (10) Lossen, Ann. 175, 284, Note (1875).

(11) Orechow, Brouty, Bull. soc. chrm. (4) 47, 623 (1930). (12) Marsh, Stephen, J. Chem. Soc. 127, 1635 (1925). (13) Schonberg, Schutz, Nickel, Ber. 61, 1380 (1927). (14) Adams, Uhlich, J. Am. Chem. Soc. 42, 606 (1920). (15) Vanno, Uhlfelder, Ber. 37, 3624 (1904). (16) Rosenmund, Zetsche, Ber. 56, 1483 (1923). (17) Rosenmund, Zetsche, Ber. 54, 641 (1921). (18) Gasopoulos, Praktika Akad. Athenon 6, 347-353 (1931); Cent. 1932, I 3172. (19) Zinke, Funke, Ber. 58, 2225 (1925). (20) Jones, J. Chem. Soc. 1936, 1860.

(21) Schnackenberg, Schell, Ber. 36, 654 (1903). (22) von Kostanecki, Tambor, Ber. 39, 4024, 4026 (1906). (23) Ziegler, Ochs, Ber. 55, 2273 (1922). (24) Mauthner, J. prakt. Chem. (2) 103, 392, 396 (1922). (25) Gilman, Nelson, Rec. trav. chrm. 55, 528-529 (1936). (26) Martynoff, Ann. chim. (11) 7, 439 (1937). (27) Pratt, Robinson, J. Chem. Soc. 127, 169 (1925). (28) Sugasawa, Tsuda, J. Pharm. Soc. Japan, 56, 103-105 (1936); Cent. 1936, II 3670. (29) Kaufmann, Arch. Pharm. 265, 236 (1927). (30) Block, Bergmann, Ber. 53, 974-975 (1920).

(31) Weygand, Bauer, Ann. 459, 141 (1927). (32) Staudinger, Kon, Ann. 384, 117 (1911). (3) Oden, Arkiv Kemi, Mineral. Geol. 7, No. 16, 1-16 (1918); Cent. 1923, III 254-256; C.A. 14, 2171 (1920). (34) Ahluwalia, Narang, Ray, J. Chem. Soc. 1931, 2058. (35) Norris, Fasce, Staud, J. Am. Chem. Soc. 57, 1415-1420 (1935).

TEREPHTHALYL (DI)CHLORIDE 
$$C_8H_4O_2Cl_2$$
 Beil. IX<sub>1</sub>-
$$C=O$$
 IX<sub>1</sub>-

Beil. IX1- 844 IX<sub>1</sub>-(376)

B.P. 263°

M.P. 83°

See 3:2205. Division A: Solids.

2,4,6-TRICHLORO-3-METHYLPHENOL C7H5OCl3 Beil. VI ---VI<sub>2</sub>-(356)

B.P. 265°

M.P. 46°

See 3:0618. Division A: Solids.

3:6895 DI-(\gamma-CHLOROPROPYL) CARBONATE  $\mathrm{C_7H_{12}O_3Cl_2}$ Beil. III -Ш1--- $(\gamma, \gamma$ -Dichloropropyl carbonate) Cl.CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>O  $III_{2}$ -(5) Cl.CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>C

B.P. 265-270° at 740 mm. (1)

[Obtd. as by-product in prepn. of  $\gamma$ -chloropropyl chloroformate (3:6010) from phospene and trimethylene chlorohydrin (3:8285) (1).]

3:6895 (1) Pierce, Adams, J. Am. Chem. Soc. 45, 791-792 (1923).

 OCTACHLOROPROPANE Beil. I - 108  $I_{1}$ -( 35)

B.P. 268-269° at 734 mm.

M.P. 160° (?)

See 3:4450. Division A: Solids.

p-CHLOROPHENACYL CHLORIDE C<sub>8</sub>H<sub>6</sub>OCl<sub>2</sub> Beil. VII - 282 -CH<sub>2</sub>Cl VII<sub>1</sub>-(152)

B.P. 270°

M.P. 101-102°

See 3:2990. Division A: Solids.

M.P. 101°

B.P. 276°

M.P. 43°

See 3:0520. Division A: Solids.

# --- 3,4,5-TRICHLOROPHENOL

$$\begin{array}{cccc} \text{OH} & \text{C}_6\text{H}_5\text{OCl}_2 & \text{Beil. VI} - \\ & & \text{VI}_1 - \\ & & \text{VI}_2\text{-}(\mathbf{181}) \end{array}$$

B.P. 271-277° u.c. at 746 mm.

See 3:2885. Division A. Solids.

# --- PENTACHLOROBENZENE



B.P. 275-277° M.P. 86-87°

See 3:2290. Division A: Solids.

[See also unsym.-o-phthalyl dichloride (3:2395).]

The m.p. of ord. samples of  $\bar{C}$  is usually abt. 12°, but distr. at ord. press. (7) yields a prod. with m.p. 16°. The chem. of  $\bar{C}$  is closely connected with that of the isomeric unsym.-o-phthalyl dichloride (3:2395) q.v.; for f.p./compn. curve for mixts. of the two isomers see (8).

[For prepn. of  $\bar{C}$  from phthalic anhydride (1:0725) with PCl<sub>5</sub> (92% yield (7)) (1) (3) (9) (10), with PCl<sub>3</sub> + Cl<sub>2</sub> (12), with benzotrichloride (3:6540) + a little ZnCl<sub>2</sub> (13), with a little ZnCl<sub>2</sub> at 220° by grad. addn. of SOCl<sub>2</sub> (100% yield (14)) (15), or with CCl<sub>4</sub> (etc.) + 2% ZnCl<sub>2</sub> at 250-280° (16) see indic. refs.; from phthalic acid (1:0820) with benzotrichloride + a little ZnCl<sub>2</sub> see (17).]

[For prepn. of  $\tilde{C}$  from unsym.-o-phthalyl dichloride (3:2395) by htg. at 150° for 1 hr. see (5); from thiophthalic anhydride [Beil. XVII-486, XVII<sub>1</sub>-(256)] with dry Cl<sub>2</sub> at 245° see (18); for formn. as by-product of action of Cl<sub>2</sub> on o-toluoyl chloride (3:8740) see (19).] [For purification of  $\tilde{C}$  by treatment with MgO or CaO see (20).]

C on htg. with AlCl<sub>3</sub> (½ mole), then deeg. cpd. with aq. and extracting with pet. ether, isomerizes (72% yield (7)) (1) (21) to unsym.-o-phthalyl dichloride (3,3-dichlorophthalide) (3:2395), m.p. 89°.

[C with Cl<sub>2</sub> at 120-170° in pres. of Fe yields (22) tetrachlorophthalic acid (3:4946).]

[ $\bar{C}$  on reduction with Zn + HCl (23) (24) or HI + P in CS<sub>2</sub> (23) (25) yields phthalide (1:4920);  $\bar{C}$  on boilg. with AcOH + Na/Hg yields (26) phthalyl alcohol (o-xylylene glycol) [Beil. VI-910].]

 $\bar{C}$  on heating with K in xylene (27), or with ter-bases +  $K_2S_2O_5$  (28), or with  $ZnCl_2$  +  $SO_2$  at 200° (14) yields phthalic anhydride (1:0725). [Note that last reaction is the reverse of an impt. method (15) of prepn. of  $\bar{C}$ .]

[C on shaking for 20 min. at 60° in glass flask with ZnF<sub>2</sub>, then extracting with pet. eth. yields (29) o-phthalyl difluoride, m.p. 42-43°, b.p. 224-236° at 760 mm. (29); C with HBr gas at 150-160° gives (50% yield (30)) sym-o-phthalyl dibromide, m.p. 78-81° rap. htg., b.p. 191° at 24 mm., 134° at 2 mm. (30).]

[C htd. with a little ZnCl<sub>2</sub> and diethyl ether (31) or diethyl phthalate (32) gives (80% yield (31)) ethyl chloride (3:7015).] [Use in mfg. of alkyl chlorides (33).]

[For reactn. of  $\bar{C}$  with glycols see (34); for use of  $\bar{C}$  in acylation of cellulose see (35).]

[For behavior of  $\bar{C}$  with  $H_2O_2$  yielding phthalyl peroxide see (36); with  $PCl_5$  see (37); with  $NaN_3$  see (38) (39); with  $C_6H_5MgBr$  see (40).]

 $\bar{\mathbf{C}}$  on treatment with cold conc. NH<sub>4</sub>OH followed by acidification yields (41) (42) o-cyanobenzoic acid [Beil. IX-814, IX<sub>1</sub>-(365)], m.p. 190° dec., converted by htg. to phthal-imide, m.p. 228.5° u.c. [For reactn. of  $\bar{\mathbf{C}}$  with dimethylamine yielding N,N,N',N'-tetramethyl-o-phthaldiamide, m.p. 121-122°, see (43); with diethylamine yielding (44) (45) corresp. N,N,N',N'-tetra-ethyl-o-phthaldiamide, m.p. 36° (44), 39° (45) see indic. refs.]

C htd. with 1 mole acetamide until no more HCl is evolved gives in good yield (46) N-acetylphthalimide, cryst. from toluene, m.p. 135-136° (46); similarly benzamide gives N-benzoylphthalimide, m.p. 168° (46).

 $\bar{C}$  reacts instantly with aniline yielding (29) sym.-phthalyldianilide, m.p. 253-255°. [Note that when  $\bar{C}$  is treated with aniline in ether or  $C_6H_6$  and stood for some time the prod. has m.p. about 231°; when recrystd. from EtOH, however, the m.p. rises to 253-255°. This apparent anomaly is attributable to the pres. in most samples of  $\bar{C}$  of some phthalic anhydride whose slower reactn. with aniline contaminates the main prod. but is removed by recrystn. from alc. If, on reactn. of ord.  $\bar{C}$  with aniline, the resultant ppt. is filtered at once (before the anhydride has reacted), washed with  $C_6H_6$ , alc., and then aq., the prod. shows m.p. 253-255° without recrystn. (29).]

Č on hydrolysis yields o-phthalic acid (1:0825) q.v.

3:6900 (1) Ott, Ann. 392, 273-277 (1912). (2) Brühl, Ann. 235, 13-14 (1886). (3) Claus. Hoch, Ber. 19, 1187-1194 (1886). (4) von Auwers, Schmidt, Ber. 46, 483 (1913). (5) Garner, Sugden, J. Chem. Soc. 1927, 2878, 2881. (6) Martin, Partington, J. Chem. Soc. 1936, 1181. (7) Ott, Org. Syntheses, Coll. Vol. 2 (1st ed.), 528-530 (1943); 11, 88-91 (1931). (8) Csanyi, Monatsh. 40, 81-92 (1919). (9) Auger, Ann. chim. (6) 22, 295-302 (1891). (10) Tingle, Cram, Am. Chem. J. 37, 603-604 (1907).

(11) Graebe, Ann. 238, 329 Note (1887). (12) Clemmensen, Miller (to Monsanto Chem. Co.), U.S. 1,974,845, Sept. 25, 1934; Cenl. 1935, I 960; C.A. 28, 7285 (1934). (13) Kyrides (to Monsanto Chem. Co.), U.S. 1,963,749, June 19, 1934, Cenl. 1934, II 2900; C.A. 28, 5079 (1934). (14) Kyrides, J. Am. Chem. Soc 59, 206-208 (1937). (15) Kyrides (to Monsanto Chem. Co.), U.S. 1,951,364, Mar. 20, 1934; Cenl. 1934, II 333; C.A. 28, 3424 (1934). (16) Mares (to Monsanto Chem. Co.), U.S. 2,051,096, Aug. 18, 1936; Cenl. 1936, II 3594, C.A. 30, 6762 (1936). (17) Kyrides (to Monsanto Chem. Co.), U.S. 1,963,748, June 19, 1934; Cenl. 1934, II 2900; C.A. 28, 5080 (1934). (18) Ott, Langenohl, Zerweck, Ber. 70, 2360-2362 (1932). (19) Davies, Perkin, J. Chem. Soc. 121, 2213 (1922). (20) Luthy, Thomas (to Monsanto Chem. Works), U.S. 1,906,761, May 2, 1933; C.A. 27, 3484 (1933); Brit. 397,775, Sept. 21, 1933; Cenl. 1933, II 3194.

(21) Scheiber, Ber. 46, 2366-2370 (1913). (22) Zal'kind, Belikova, Russ. 35,188, Mar. 31, 1934; Cent. 1935, II 1090; C.A. 30, 3443 (1936). (23) Hessert, Ber. 10, 1445-1447 (1877). (24) Hessert, Ber. 11, 238-239 (1878). (25) Bacyer, Ber. 10, 123-124 (1877). (26) Hessert, Ber. 12, 646-648 (1879). (27) Pearl, Evans, Dehn, J. Am. Chem. Soc. 60, 2479 (1938). (28) Gasopoulos, Praktika Akad. Athenon. 6, 347-353; Cent. 1932, I 3172. (29) Dann, Davies, Hambly, Paul, Semmens, J. Chem. Soc. 1933, 17. (30) Davies, Hambly, Semmens, J. Chem. Soc. 1933, 1309-1315.

(31) Kyrides, J. Am. Chem. Soc. **55**, 1209–1212 (1933). (32) Kyrides, Dvornikoff, J. Am. Chem. Soc. **55**, 4630–4632 (1933). (33) Kyrides (to Monsanto Chem. Co.), U.S. 1,939,216, Dec. 12, 1933; Cent. **1934**, I 2040; C.A. **28**, 1361 (1934). (34) Carothers, Arvin, J. Am. Chem. Soc. **51**, 2560–2570 (1929). (35) Brit. 319,584, Nov. 20, 1929; Cent. **1930**, I 1377. (36) McKee, U.S. 1,614,037, Jan. 11, 1927, Brit. 271,725, June 23, 1927, Cent. **1927**, II 1085; C.A. **21**, 745 (1927). (37) Ott, Ber. **55**, 2108–2125 (1922). (38) Darapsky, Gaudian, J. prakt. Chem. (2) **147**, 47–48 (1936). (39) Lindemann, Schultheis, Ann. **464**, 249–253 (1928). (40) Clar, St. John, Hawran, Ber. **62**, 940–950 (1929).

(41) Hoogewerff, van Dorp, Rec. trav. chim
11, 91-94 (1892)
(42) Scheiber, Knothe, Ber. 45, 2252-2255 (1912).
(43) von Braun, Kaiser, Ber. 55, 1307-1310 (1922).
(44) Maxim, Compt. rend. 184, 690 (1927).
(45) French 785,428, Aug. 9, 1935; Cent. 1935, II 3441; C.A. 30, 488 (1936).
(46) Evans, Dehn, J. Am. Chem. Soc. 51, 3652 (1929).

# ---- 2,3,5,6,6-HEXACHLOROCYCLOHEXEN-2-DIONE-1,4

 $C_6 C_2 C_1$   $C_1 C_2$   $C_1 C_2$ 

Beil. VII - 574 VII<sub>1</sub>—

B.P. 275-285° dec.

M.P. 89°

See 3:2360. Division A: Solids.

B.P. 280-281° (1)  $D_{22}^{22} = 1.607 (1)$ 

Oil which below 0° solidifies to colorless cryst.

[For prepn. of  $\tilde{C}$  from 2,4,5-trichlorotoluene (3:2100) at b.p. with Cl<sub>2</sub> see (1); for formn. of  $\tilde{C}$  from toluene in AcOH/HCl on electrolysis in dark see (6).]

 $\bar{C}$  on hydrolysis with fumg. H<sub>2</sub>SO<sub>4</sub> (2), warm conc. H<sub>2</sub>SO<sub>4</sub> (3), or with aq. in s.t. at 260° (4) (1) gives 2,4,5-trichlorobenzaldehyde (3:3375).

[For use of  $\bar{C}$  in prepn. of dyestuffs see (5).]

3:6910 (1) Beilstein, Kuhlberg, Ann. 150, 299 (1869). (2) Seelig, Ann. 237, 148-149 (1887). (3) Fischer, Ger. 25,827; June 23, 1883, Friedländer 1, 42 (1877-87). (4) Beilstein, Kuhlberg, Ann. 152, 238-239 (1869). (5) Schmidlin (to Cassella and Co.), Ger. 363,290, Nov. 6, 1922; Cent. 1923, II 482; not in C.A. (6) Fichter, Glantzstein, Ber. 49, 2484 (1916).

--- 2,6-DICHLORONAPHTHALENE

Beil. V - 544  $C_{10}H_6Cl_2$ V1--- $V_2$ -(446)

B.P. 285° u.c.

M.P. 136°

See 3:4040. Division A: Solids.

 1,7-DICHLORONAPHTHALENE (2,8-Dichloronaphthalene)

 $C_{10}H_6Cl_2$ Beil. V - 543 V1-(263) V<sub>2</sub>-(446)

B.P. 286° u.c.

M.P. 63.5-64.5°

See 3:1385. Division A: Solids.

---- 1.4-DICHLORONAPHTHALENE

 $C_{10}H_6Cl_2$ Beil. V - 542 CI  $V_{1}$ -(262)  $V_{2}$ -(445)

B.P. 286-287° at 740 mm. M.P. 68°

See 3:1655. Division A: Solids.

---- 1,3-DICHLORONAPHTHALENE

 $C_{10}H_6Cl_2$ Beil. V - 542  $V_{1}$ -(262)  $V_{2}$ -(445)

B.P. 291° cor. at 775 mm. See 3:1310. Division A: Solids.

— 1,2-DICHLORONAPHTHALENE Beil. V - 542  $C_{10}H_6Cl_2$  $V_{1}$ -(262)  $V_{2}$ -(445)

M.P. 61-62°

B.P. 295-298°

M.P. 34-35°

See 3:0320. Division A: Solids.

3:6930 a-NAPHTHOYL CHLORIDE

C<sub>11</sub>H<sub>7</sub>OCl Beil. IX - 648  $IX_{1}$ -(275)

B.P. M.P. 26° (7) 297.5° (1) 182-183° at 14 mm. (2) 22° (5) 20° (3) (9) 172-173° at 15 mm. (3) (4) 167-168° at 15 mm. (11) 158° at 12 mm. (5) 168° at 10 mm. (6)

163° at 10 mm. (7) (8) [For prepn. of  $\tilde{C}$  from  $\alpha$ -naphthoic acid (1:0785) with PCl<sub>5</sub> (yield: 100% (4) (8)) (6) (1) (11) in CCl<sub>4</sub> (10) or with SOCl<sub>2</sub> (12) (13) (14) (7) see indic. refs.]

 $\tilde{C}$  + anhyd. Na<sub>2</sub>CO<sub>3</sub> + pyridine treated with a few drops of aq. (14), or  $\tilde{C}$  with various RMgX or other organometallic epds. (15), or  $\tilde{C}$  htd. with Ca  $\alpha$ -naphthoate (1), gives (80% yield (14))  $\alpha$ -naphthoic acid anhydride, pr. from C<sub>6</sub>H<sub>6</sub>, m.p. 145-146° (1) (14) (15).

[C on cat. hydrogenation gives (33% yield (5)) α-naphthaldehyde [Beil. VII-400, VII<sub>1</sub>-

(212)], b.p. 173-174° at 35 mm. (p-nitrophenylhydrazone, m.p. 233-235° (5)).]

[ $\bar{C}$  with AlCl<sub>3</sub> + hydrocarbons give corresp.  $\alpha$ -naphthyl ketones: e.g., with C<sub>6</sub>H<sub>6</sub> (6), biphenyl (8),  $\alpha$ -methylnaphthalene (16),  $\beta$ -methylnaphthalene (17) (18), with 2,3- (19), 2,6- and 2,7- (20) dimethyl-naphthalenes, with various subst. perylenes (21) (22), see indic. refs.;  $\bar{C}$  with RMgX cpds. also yields corresp.  $\alpha$ -naphthyl ketones: e.g., with  $\alpha$ -naphthyl MgBr (14) or  $\alpha$ -tetralyl MgBr (23), see indic. refs.]

 $\bar{C}$  with aq. hydrolyzes very slowly (9) yielding  $\alpha$ -naphthoic acid (1.0785) m.p. 161–162°. — For the amide, anilide, and other derivs. corresp. to  $\bar{C}$  see  $\alpha$ -naphthoic acid (1.0785);

in addition to these see below.

 $\bigoplus$   $\alpha$ -Naphthoic  $\beta$ -naphthalide: cryst. from alc., m.p. 200° (13). [From  $\bar{C} + \beta$ -naphthylamine in  $C_6H_6$  (13).]

3:6930 (1) Hofmann, Ber. 1, 41-42 (1868). (2) Bergmann, Schuchardt, Ann. 487, 253 (1931). (3) Linnell, Roushdi, Quart. J. Pharm. Pharmacol. 14, 270-280 (1941). (4) von Braun, Ber. 38, 180 (1905). (5) Shoesmith, Guthrie, J. Chem. Soc. 1928, 2332 (6) Reddelen, Ber. 46, 2722, Note 2 (1913). (7) Bell, J. Chem. Soc. 1930, 1984-1985. (8) Schmidlin, Garcia-Banus, Ber. 45, 3183 (1912) (9) Pope, Winmill, J. Chem. Soc. 101, 2316 (1912). (10) West, J. Am. Chem. Soc. 42, 1662 (1920).

Szperl, Herszaft, Roczniki Chem. 14, 1238-1242 (1934), Cent. 1935, I 2530. (12) Stollé,
 J. prakt. Chem. (2) 74, 19 (1906). (13) Bockmann, Luesche, Correns, Ber. 56, 354 (1923). (14)
 Blicke, J. Am. Chem. Soc. 49, 2847-2848 (1927). (15) Bruce, J. Am. Chem. Soc. 60, 2277 (1938).
 Cook, Robinson, J. Chem. Soc. 1938, 510. (17) Clar, Ber. 62, 355-356 (1929). (18) French
 Gl4,959, Dec. 27, 1926; Cent. 1929, II 796. (19) Cook, J. Chem. Soc. 1933, 1596. (20) Cook,
 J. Chem. Soc. 1932, 492.

(21) Zinke, Funke, Ber. 58, 2222-2227 (1925).
 (22) French 589,643, June 2, 1925; Cent. 1926,
 I 1053.
 (23) Fieser, Seligman, J. Am. Chem. Soc. 58, 478-480 (1936).

# ---- 2,5-DICHLOROBENZOIC ACID

 $C_7H_4O_2Cl_2$  Beil. IX - 342 IX<sub>1</sub>-(141)

B.P. 301°

M.P. 155°

See 3:4340. Division A: Solids.

## ---- 2,3,4,5,6-PENTACHLOROTOLUENE

 $\begin{array}{cccc} {\rm CH_3} & {\rm C_7H_3Cl_5} & & {\rm Beil.} \ {\rm V} - {\bf 303} \\ {\rm Cl} & & {\rm V_{1-}(153)} \\ {\rm Cl} & & {\rm V_{2-}(234)} \end{array}$ 

B.P. 301°

M.P. 224-225°

See 3:4937. Division A: Solids.

B.P. 304-306°

M.P. 51°

See 3:0900. Division A: Solids.



Colorless oil showing bluish fluorescence and having only faint odor (3).

[For prepn. of  $\bar{C}$  from benzophenone (1:5150) with PCl<sub>5</sub> (yield: 90% (3), 85% (7), 68% (9)) (1) (10) (11) (12) (15); with PCl<sub>5</sub> in  $C_6H_6$  (92% yield (13)), or with oxalyl dichloride (3:5060) in s.t. at 130-140° (14) see indic. refs.; from  $C_6H_6$  + AlCl<sub>3</sub> + excess CCl<sub>4</sub> (yield: 90-95% (16), 80-90% (18)) (17) see indic. refs.; for formn. of  $\bar{C}$  from diphenylmethane (1:7120) with PCl<sub>5</sub> in s.t. at 170° see (13), from bis-(triphenylmethyl) peroxide with PCl<sub>5</sub> (19) or with Cl<sub>2</sub> in CCl<sub>4</sub> in pres. of I<sub>2</sub> (19), from diphenyldiazomethane with SOCl<sub>2</sub> or SO<sub>2</sub>Cl<sub>2</sub> in pet. ether (100% yield (20)), or from benzotriehloride (3:6540) htd. with uranium metal at 115-128° (4) see indic. refs.]

[For use of  $\bar{C}$  in prepn. of acid anhydrides by htg. at 110–120° with salts of aliph. or arom. acids see (21).]

 $\bar{C}$  hydrolyzes slowly with cold but rapidly with hot aq. yielding (1) benzophenone (1:5150) and HCl (for study of rate of hydrol, of ether soln, on shaking with aq. see (22));  $\bar{C}$  dis. in conc. H<sub>2</sub>SO<sub>4</sub> with yel, color (which grad, disappears) and on pouring onto ice yields (6) benzophenone (1:5150);  $\bar{C}$  in dry ether shaken 2 hrs. with silver oxide gives (78% yield (23)) benzophenone (1:5150);  $\bar{C}$  with alc. NH<sub>3</sub> yields (33) benzophenone.

 $\ddot{C}$  with MeOH alone (6), with dry MeOH + Mg (24), with dry MeOH in dry pyridine at 0° (25), with NaOMe in MeOH (3) (26), or with NaN<sub>3</sub> in dry MeOH (27) gives (yields: 86% (6) (24), 81% (3))  $\alpha,\alpha$ -dimethoxy-diphenylmethane (benzophenone dimethylacetal) [Beil. VII-415], cryst. from MeOH, m.p. 107-108° (25), 107.5° cor. (24), 106.5-107° (3) (for application to higher alcs. see (3) (26)).

Č htd. with Ag (11) (5), or stood overnight with Ag or Zn in dry EtOAc (28) cf. (29), or refluxed in CS<sub>2</sub> with 3-4 moles Hg (28) (less Hg gives different result), or with 2 moles NaI in boilg. acetone (30) (1 mole NaI gives different result), or with excess cyclohexyl-MgBr (31) (less reagent gives different result), or with Na in liq. NH<sub>3</sub> (90% yield (32)) or htd. 8 hrs. with diphenylmethane (1:7120) (88% yield (12)) gives tetraphenylethylene [Beil. V-743, V<sub>1</sub>-(376)], m.p. 227° cor., 222° u.c. (31), 221° (11). — [Č does not react with

Mg in dry ether even in pres. of  $I_2$  (28).] — [ $\check{C}$  refluxed in  $CS_2$  with less than 3 moles Hg (28), or  $\check{C}$  with 1 mole NaI in acetone in cold (30), or  $\check{C}$  with 1 mole cyclohexyl MgBr (31), gives tetraphenylethylene dichloride [Beil.  $V_1$ -(371)], cryst. from ether, m.p. 186° cor. dec. (31).]

[Č with 2 moles Ag azide in ether gives (88% yield (34)) benzophenone diazide, m.p. 42°; Č treated as directed (15) with alc. NaSH gives 42–50% yield thiobenzophenone [Beil. VII-429, VII<sub>1</sub>-(232)], cryst. from pet. ether, m.p. 53–54° (15) (note that an excess of Č must always be present to prevent reduction of the thiobenzophenone to dibenzohydryl disulfide [Beil. VI-681], ndls. from alc., m.p. 152°, and that the latter is obtd. in 70% yield (15) if Č is added to the alc. NaSH instead of the reverse); for reactn. of Č with diethyl sodio-malonate (2) (9) or with ethyl sodioacetoacetate (8) see indic. refs.; for reaction of Č with SbF<sub>3</sub> yielding  $\alpha,\alpha$ -difluorodiphenylmethane, b.p. 260° dec., 125° at 10 mm., m.p.  $-1.8^{\circ}$ ,  $D_{4}^{20} = 1.1614$ ,  $n_{D}^{20} = 1.53786$ , see (35).]

 $\bar{C}$  with 4 moles aniline in cold gives (36) benzophenone anil [Beil. XII-201, XII<sub>1</sub>-(174)] + aniline hydrochloride; the former is sol. in ether, the latter in aq.; sepn. of the layers and addition of alc. to the ether ppts. benzophenone anil, pale yel. lfts. from abs. alc., m.p. 109° u.c. (36) 113°.

3:6960 (1) Kekulé, Franchimont, Ber. 5, 908-909 (1872). (2) Phalnikar, Nargund, J. Univ. Bombay 5, Part 2, 105-108 (1936); Cent. 1938, I 61, C.A. 31, 3036 (1937). (3) Mackenzie, J. Chem. Soc. 69, 987-991 (1896). (4) Lal, Dutt, J. Indian Chem. Soc. 12, 390 (1935). (5) Anschütz, Ann. 235, 221-222 (1886). (6) Straus, Ecker, Ber 39, 3005 (1906). (7) Hsu, Ingold, Wilson, J. Chem. Soc. 1935, 1782. (8) Klages, Fanto, Ber. 32, 1433 (1899). (9) Adickes, J. prakt. Chem. (2) 145, 239 (1936). (10) Gattermann, Schulze, Ber. 29, 2944-2945 (1896). (11) Behr, Ber. 3, 752 (1870). (12) Norris, Thomas, Brown, Ber. 43, 2958-2959 (1910). (13)

(11) Behr, Ber. 3, 752 (1870).
 (12) Norris, Thomas, Brown, Ber. 43, 2958-2959 (1910).
 (13) Cone, Robinson, Ber. 40, 2161-2162 (1907).
 (14) Staudinger, Ber. 42, 3976 (1909).
 (15) Staudinger, Freudenberger, Org. Syntheses, Coll. Vol. 2 (1st ed.), 573-574 (1943); 11, 94-95 (1931).
 (16) Gomberg, Jickling, J. Am. Chem. Soc. 37, 2577-2578 (1915).
 (17) Riddell, Noller, J. Am. Chem. Soc. 54, 292 (1932).
 (18) Boeseken, Rec. trav. chim. 23, 101-102 (1904), 24, 1-3 (1905).
 (19) Gomberg, Cone, Ber. 37, 3544 (1904).
 (20) Staudinger, Anthes, Pfenninger, Ber. 49, 1941 (1916).

(21) Evlampiev, Russ. 52,811, March 31, 1938; Cent. 1939, I 1449, C.A 34, 5468 (1940). (22) Straus, Hussey, Ber. 42, 2171 (1909). (23) Straus, Caspari, Ber. 40, 2709 (1907). (24) Zechmeister, Rom, Ann. 468, 127 (1928). (25) Papadakis, J. Am. Chem. Soc. 58, 666 (1936). (26) Mackenzie, J. Chem. Soc. 121, 1095-1096 (1922). (27) Schroeter, Ber. 42, 2340-2342 (1909). (28) Ref. 12, pp. 2946-2947. (29) Staudinger, Clar, Czako, Ber. 44, 1644 (1911). (30) Finkelstein, Ber. 43, 1532-1533 (1910).

(31) Schmidlin, von Escher, Ber. 45, 894-895 (1912); 43, 1157, 1159 (1910). (32) Dean, Berchet, J. Am. Chem. Soc. 52, 2825 (1930). (33) Pauly, Ann. 187, 217-220 (1877). (34) Götzky, Ber. 64, 1558 (1931). (35) Henne, Leicester, J. Am. Chem. Soc. 60, 864-865 (1938). (36) Ref. 33, pp. 199-202.

[For prepn. of  $\bar{C}$  from 2,3,4,6-tetrachlorotoluene (3:2480) or from 2,3,5,6-tetrachlorotoluene (3:2575) at their b.p.'s with Cl<sub>2</sub> (1) or with Cl<sub>2</sub> at 100-130° (especially in light from Hg-vapor lamp) (2) see indic. refs.]

Č with strong H<sub>2</sub>SO<sub>4</sub> at 90° is hydrolyzed (2) to 2,3,4,6-(or 2,3,5,6-)-tetrachlorobenzalde-hyde (3:2700).

**3:6980** (1) Beilstein, Kuhlberg, Ann. **150**, 303-304 (1869). (2) Cassella and Co., Ger. 290, 209, Feb. 8, 1916; Cent. **1916**, I 396-397; not in C.A.

---- PENTACHLOROPHENOL

B.P. 309-310° at 754 mm.

M.P. 190°

See 3:4850. Division A: Solids.

---- 4,5-DICHLOROPHTHALIC ANHYDRIDE

TORIDE C<sub>8</sub>H<sub>2</sub>O<sub>3</sub>Cl<sub>2</sub> Beil. XVII - 483 XVII<sub>1</sub>-(254)

**B.P. 313°** 

M.P. 187-188°

See 3:4830. Division A: Solids.

--- 4,4'-DICHLOROBIPHENYL

B.P. 315°

M.P. 148°

See 3:4300. Division A: Solids.

---- 3.3'-DICHLOROBIPHENYL

B.P. 326°

M.P. 29°

See 3:0180. Division A: Solids.

---- HEXACHLOROBENZENE

**B.P. 326°** 

M.P. 229°

See 3:4939. Division A: Solids.

3:6980

3,6-DICHLOROPHTHALIC ANHYDRIDE

 $C_8H_2O_3Cl_2$ 

Beil. XVII - 483 XVII<sub>1</sub>-(254)

Beil. VII - 420 VII<sub>1</sub>-(228)

B.P. 339°

M.P. 194°

See 3:4860. Division A: Solids.

---- 4,4'-DICHLOROBENZOPHENONE

Clash & OCl2

B.P. 353° at 757 mm.

M.P. 145°

See 3:4270. Division A: Solids.

- OCTACHLORONAPHTHALENE

B.P. 440-442°

M.P. 203°

See 3:4893. Division A: Solids.

## CHAPTER XVI

# DIVISION B. LIQUIDS WITH BOILING POINTS REPORTED AT ORDINARY PRESSURE

Section 2.  $D_4^{20}$  less than 1.1500

(3:7000-3:7499)

| 3:7000 | CHLOROACETYLENE (Chloroethyne) | HC≡C—Cl | C₂HCl | Beil. I - 244<br>I <sub>1</sub> -(106)<br>I <sub>2</sub> -(221) |
|--------|--------------------------------|---------|-------|-----------------------------------------------------------------|
| B.P    | 29.6° (1)<br>32 to -30° (2)    |         |       | -2 ()                                                           |

[See also dichloroacetylene (3:5010).]

C is a gas with extremely nauseating odor reminiscent both of yellow phosphorus and of carbylamines; its inhalation even in traces produces very unpleasant symptoms. It is also treacherously explosive and may detonate during manipulation (2). — C ignites spontaneously in air (6) (3).

[For prepn. of C from cis-1,2-dichloroethylene (3.5042) via treatment in dil. alc. with aq. alk. Hg(CN)<sub>2</sub> to yield Hg(C=CCl)<sub>2</sub> (see below) which is then warmed (under N<sub>2</sub>) with alk. NaCN soln. see (1) (2) (3) (4)] cf. (7).

[For formn. of C during reaction of 1,1,2,2-tetrachloroethane (acetylene tetrachloride) (3:5750) with solid KOH see (5); from 1,2-dichloroethylene with alc. KOH see (3) (4); from \$,\$-dichloroacrylic acid (3:1875) with Ba(OH)<sub>2</sub> see (6).]

C with NH<sub>4</sub>OH/CuCl gives (3) (6) an explosive ppt. — C with NH<sub>4</sub>OH/AgNO<sub>3</sub> gives (2) (3) a ppt. of silver salt, which is extremely explosive, detonating with great violence not only in dry state but also when moist and even under water, quantities as small as 0.1 g. causing considerable damage (2).

C with aq. alk. Hg(CN)<sub>2</sub> yields (3) (4) (1) (2) a mercury salt, Hg(C=CCl)<sub>2</sub>, cryst. from CHCl<sub>3</sub> (1) (2) (3) (4), m.p. 185° (1) (4), 186° (2); explodes at 195° with flame and deposition of soot (3) (4). [This prod. with alk. KCN evolves C (use in prepn. of C as above).]

Č with Br<sub>2</sub>/aq. yields (6) 1-chloro-1,1,2,2-tetrabromoethane [Beil. I-95], m.p. 33-34° (6). [For other reactns, see (2) (7); for study of oxidation of  $\bar{C}$  see (1).]

3:7000 (1) Bashford, Emeléus, Briscoe, J. Chem. Soc. 1938, 1358-1364. (2) Ingold, J. Chem. Soc. 125, 1535-1536 (1924). (3) Hofmann, Kirmreuther, Ber. 42, 4232-4238 (1909). (4) Hofmann, Kirmreuther, Ber. 41, 314-317 (1908). (5) Sastry, J. Soc. Chem. Ind. 35, 450-452 (6) Wallach, Ann. 203, 87-94 (1880). (7) Ott, Dittus, Weissenburger, Ber. 76, 87-88 (1916).(1943).

| 3:7005 | CHLOROMETHANE<br>(Methyl chloride)        | CH₃.Cl                             | CH <sub>3</sub> Cl | Beil. I - 59<br>I <sub>1</sub> -( 8)<br>I <sub>2</sub> -(11) |
|--------|-------------------------------------------|------------------------------------|--------------------|--------------------------------------------------------------|
|        | 2° at 760 mm. (1)<br>° at 760 mm. (3) (4) | M.P.<br>-97.72° (1)<br>-96.65° (2) | $n_{ m D}^{-42}$   | .5 = 1.3830 (3)                                              |

930

Colorless gas with ethereal faintly sweet non-irritating odor. — Important comml. fluid for refrigerating systems; for extensive reviews of properties, uses, handling, toxicity, hazards, etc., see (4) (5) (6). — For b.p. at various pressures from 26-761 mm. together with extensive thermodynamic data see (1) (4). — Solubility of  $\bar{C}$  (in cc.) in 100 cc. solvent at 20°C and 760 mm.: water, 303; EtOH, 3740; AcOH, 3679; CCl<sub>4</sub>, 3756; C<sub>6</sub>H<sub>6</sub>, 4723 (4); for extensive data on solubility of  $\bar{C}$  in other solvents see (7) (8) (9).

[For prepn. of  $\bar{C}$  from MeOH (1:6120) with conc. H<sub>2</sub>SO<sub>4</sub> + NaCl (10); with conc. HCl + ZnCl<sub>2</sub> (yield: 79% (11), (12)); with HCl gas + various catalysts (13) (14) (15); with PCl<sub>3</sub> + ZnCl<sub>2</sub> (68% yield (11)); with PCl<sub>5</sub> + ZnCl<sub>2</sub> (72% yield (11)); with SOCl<sub>2</sub> + pyridine (80% yield (11)); with AlCl<sub>3</sub> (100% yield (16)); with FeCl<sub>3</sub> (17) (20) see indic. refs.; for prepn. of  $\bar{C}$  from Me<sub>2</sub>SO<sub>4</sub> with strong HCl (or NaCl) (90% yield (18)) or with AlCl<sub>3</sub> (100% yield (19)) see indic. refs.] [For study of mechanism of formn. of  $\bar{C}$  from MeOH + HCl see (24).] [For formn. (53% yield) from NH<sub>4</sub>Cl with diazomethane in ether see (36).]

[For study of drying of  $\bar{C}$  see (21); for detn. of aq. in  $\bar{C}$  see (22); for study of pyrolysis see (23); for behavior with Na see (25).]

 $\tilde{C}$  on warming with NaI in MeOH or EtOH gives (26) methyl iodide, b.p. 42°. [Use in detection and detn. of  $\tilde{C}$  (26).]

 $\ddot{C}$  is inflammable in air within range 8.1-17.2% by vol. (4) (28) cf. (35). — [For study of detn. of  $\ddot{C}$  via combustion see (27) (29) (31) (32).] —  $\ddot{C}$  on burning in presence of copper gives strong Beilstein test; [use in detection and detn. of  $\ddot{C}$  in air and foods (29); for testing device see (30)].

[For detn. of  $\bar{C}$  by absorption in AcOH see (27); for detn. of small amts. of  $\bar{C}$  in air (31) (37) or in mixts. with other gases (32) see indic. refs.]

- Acetanilide: m.p. 112-113° u.c. (33). [From C via conversion to CH₃MgCl and reaction with phenyl isocyanate (33): note that C with Mg in dry ether + trace I₂ gives in 4 hrs. (99.7% yield) MeMgCl (38).]
- —— N-Methyl-3-nitrophthalimide: ndls. from CS<sub>2</sub>, m.p. 112-113° (34). [Not recorded directly from C but from MeI by reactn. with K 3-nitrophthalimide; probably therefore from C + NaI + K 3-nitrophthalimide in MeOH.]
- 3:7005 (1) Messerly, Aston, J. Am. Chem. Soc. 62, 886-890 (1940). (2) Booth, Martin, J. Am. Chem. Soc. 64, 2201 (1942). (3) Grosse, J. Am. Chem. Soc. 59, 2739-2741 (1937). (4) Willson, Walker, Rinelli, Mars, Chem. Eng. News, 21, 1254-1261 (1943). (5) McGovern, Refrig. Eng. 34, 29-38 (1937). (6) Churchill, Ind. Eng. Chem. 24, 623-626 (1932). (7) Zellhoefer, Ind. Eng. Chem. 29, 548-551 (1937). (8) Zellhoefer, Copley, Marvel, J. Am. Chem. Soc. 60, 1338 (1938) (9) Kaplan, Romanchuk, J. Gen. Chem. (U.S.S.R.) 6, 950-954 (1936), Cent 1937, II 1771; C.A. 31, 594 (1937). (10) L. I. Smith, Org. Syntheses, Coll. Vol. 2 (1st ed.), 251-252, Note 3 (1943).
- (11) Clark, Streight, Trans. Roy. Soc. Can. (3) 23, III 77-89 (1929). (12) Norris, Taylor, J. Am. Chem. Soc. 46, 756 (1924). (13) McKee, Burke, U.S. 1,738,193, Dec. 3, 1929; Cent. 1930, 13829. (14) Carlisle (to Roessler & Hasslacher Chem. Co.), U.S. 1,834,089, Dec. 1, 1931; Cent. 1932, I 1438. (15) Daudt (to du Pont), U.S. 2,016,075, Oct. 1,1935; Cent. 1936, I 2206. (16) Norris, Sturgis, J. Am. Chem. Soc. 61, 1415 (1939). (17) Harding (to Roessler & Hasslacher Chem. Co.), U.S. 1,816,845, Aug. 4, 1931; Cent. 1931, II 3392. (18) Boulin, Simon, Compt. rend. 170, 595-597 (1920); C.A. 14, 2623 (1920). (19) Shamshurin, J. Gen. Chem. (U.S.S.R.) 9, 2207-2208 (1939); C.A. 34, 4052 (1940). (20) Dangyan, J. Gen. Chem. (U.S.S.R.) 9, 1907-1910 (1939); C.A. 34, 4052 (1940).
- (21) McGovern, Power 79, 579-580 (1935); C.A. 30, 654 (1936). (22) Walker, Rinelli (to Ansul Chem. Co.), U.S. 2,145,203, Jan. 24, 1939; Cent. 1939, I 3778. (23) Wiesler, Chem. Ztg. 52, 182-183 (1928). (24) Hinshelwood, J. Chem. Soc. 1935, 599-601. (25) Morton, LeFevre, Hechenbleikner, J. Am. Chem. Soc. 58, 757 (1936). (26) Roka, Fuchs, Z. anal. Chem. 71, 381-386 (1927). (27) Allison, Meighan, Ind. Eng. Chem. 11, 943-946 (1919). (28) Jones, Ind. Eng. Chem. 20, 367-370 (1928). (29) Martinek, Marti, Ind. Eng. Chem., Anal. Ed. 3, 408-410 (1931). (30) Lamb, U.S. 1,864,544, June 28, 1932; C.A. 26, 4214 (1932).

(31) Patty, Schrenk, Yant, Ind. Eng. Chem., Anal. Ed. 4, 259-262 (1932). (32) McKee, Burke, Ind. Eng. Chem. 15, 578-579 (1923). (33) Underwood, Gale, J. Am. Chem. Soc. 56, 2119 (1934). (34) Sah, Ma, Ber. 65, 1632 (1932). (35) Willson, Walker, Ind. Eng. Chem. 36, 466-468 (1944). (36) Frankel, Katchalski, J. Am. Chem. Soc. 66, 764-765 (1944). (37) Franklin, Gunn, Martin, Ind. Eng. Chem., Anal. Ed. 18, 314-317 (1946). (38) Houben, Boedler, Fischer, Ber. 69, 1768, 1774-1775 (1936).

3:7010 CHLOROETHENE CH<sub>2</sub>=CHCl C<sub>2</sub>H<sub>3</sub>Cl Beil. I - 186 (Vinyl chloride)  $I_1$ -(77)  $I_2$ -(157)

# B.P. -13.9° at 760 mm. (1) F.P. -159.7° (1)

Colorless gas easily liquefied by cooling. — For b.p.'s at various pressures from 39.5—760.3 mm. see (1). — Readily polymerizes in light or in dark if catalysts are present. The literature on polymerization of  $\bar{C}$  and on its polymers and copolymers is extremely extensive and cannot be treated here.

[For prepn. of  $\bar{C}$  from 1,2-dichloroethane (ethylene dichloride) (3:5130) by action of alc. KOH (85% yield (2)) see (2) (3); for prepn. of  $\bar{C}$  from acetylene by addn. of HCl see (4) (5) (14) (15) + Beil.; for purification of  $\bar{C}$  with conc. H<sub>2</sub>SO<sub>4</sub> see (8).]

Č as liq. + SO<sub>2</sub> as liq. in 95% alc. + catalyst gives ppt. (6) of insol. pdr. of vinyl chloride polysulfone [(CH<sub>2</sub>=CHCl)<sub>2</sub>.SO<sub>2</sub>]<sub>n</sub>, darkens 135-140°, melts 250-275° (6); on hydrolysis with 20% aq. NaOH this polymer gives (7) acetaldehyde (1:0100) q.v.

 $\ddot{\mathbf{C}}$  adds HBr to give according to conditions (9) (10) either 100% 1-chloro-1-bromoethane (ethylidene chlorobromide), b.p. 82.7° at 760 mm. (11), b.p. 80.5-81.5° at 735 mm. (9),  $n_D^{20} = 1.4660$  (9), or 1-chloro-2-bromoethane (ethylene chlorobromide), b.p.  $106.7^\circ$  at 760 mm. (12), b.p.  $104-105^\circ$  at 735 mm. (9),  $n_D^{20} = 1.4908$  (9). [Note: the ethylidene chlorobromide may be further identified by htg. with moist silver oxide in a s.t. for 5 hrs. at  $100^\circ$  giving acetaldehyde (1:0100) q.v.; the ethylene chlorobromide may be further identified by refluxing with aniline to yield N,N'-diphenylethylenediamine, m.p.  $63.5-64^\circ$  (9).]

Č with HI yields only (9) 1-chloro-1-iodoethane (ethylidene chloroiodide), b.p. 117-119° (13), 114-115° (9).

Č adds Br<sub>2</sub> yielding (16) (17) 1-chloro-1,2-dibromoethane, b.p. 159-160° (16); 163° at 760 mm., 48° at 12 mm.;  $D_{-i}^{19} = 2.248$ ;  $n_{-}^{19} = 1.554$  (17); for study of this photochem. reaction see (18).

3:7010 (1) Dana, Burdick, Jenkins, J. Am. Chem. Soc. 49, 2802-2805 (1927). (2) Ostromysslenski, J. Russ. Phys.-Chem. Soc. 48, 1132-1151 (1916); Cent. 1923, IV 606. (3) Brous (to B. F. Goodrich Co.), U.S. 2,041,814, May 26, 1936; Cent. 1936, II 4048. (4) Wibaut, van Dalfsen, Rec. trav. chim. 51, 636-640 (1932). (5) van Dalfsen, Wibaut, Rec. trav. chim. 53, 489-496 (1934). (6) Marvel, Glavis, J. Am. Chem. Soc. 60, 2622-2628 (1938). (7) Marvel, Dunlap, J. Am. Chem. Soc. 61, 2709-2710 (1939). (8) Dosser, Arnold (to Dow Chem. Co.), U.S. 2,266,177, Dec. 16, 1941; C.A. 36, 2271 (1942). (9) Kharasch, Hannum, J. Am. Chem. Soc. 56, 712-714 (1934). (10) Kharasch, Haefele, Mayo, J. Am. Chem. Soc. 62, 2049 (1940).

(11) Städel, Denzel, Ber. 15, 2563 (1882). (12) Timmermans, Bull. soc. chim. Belg. 25, 300-327 (1911); Cent. 1911, II 1015. (13) Simpson, Bull. soc. chim. (2) 31, 411 (1879). (14) Toussaint (to Carbide and Carbon Chem. Corp.), U.S. 1,926,638, Sept. 12, 1933; C.A. 27, 5756 (1933). (15) Perkins (to Carbide and Carbon Chem. Corp.), U.S. 1,934,824, Nov. 7, 1933; C.A. 28, 488 (1934). (16) Földi, Ber. 60, 659 (1927). (17) Kirrmann, Bull. soc. chim. (5) 6, 846 (1939). (18) Schmitz, Schumacher, Z. physik. Chem. B-52, 80-89 (1942).

3: 7015 ETHYL CHLORIDE (Chloroethane) CH<sub>8</sub>CH<sub>2</sub>Cl C<sub>2</sub>H<sub>5</sub>Cl Beil. I - 82 I<sub>1</sub>-(23) I<sub>2</sub>-(50) 

B.P. F.P. +13.1° at 760 mm. (1) (2) -142.5° (15) [
$$D_4^{15} = 0.90280$$
 (11)] 12.6° (3) -141.6° (16)  $n_D^0 = 1.3790$  (10) [12.5-12.6° at 725 mm. (4)] -140° (17)  $D_{12}^{12} = 0.8510$  (19) 12.52° (5) -139.4° (18)  $n_D^{-20} = 1.3913$  (2) 12.50° (6) -138.7° (1)  $D_8^8 = 0.9176$  (12) 12.5° (7) (8) (9) -136.4° (11)  $n_D^{-50} = 1.4085$  (2) 12.4° (10)  $D_0^0 = 0.92138$  (20) 12.18° at 760 mm. (12) 12-12.5° (13) (14)

Colorless mobile liq. with pungent ethereal odor and sweetish taste. —  $\bar{\mathbf{C}}$  is inflammable (see also below) and burns with smoky green-edged flame producing fumes of HCl.

## SELECTED PHYSICAL PROPERTIES

Vapor pressure. [For vapor-press. data over various temp. ranges, e.g., from -30 to  $+40^{\circ}$  (5),  $-30^{\circ}$  to  $100^{\circ}$  (21),  $12-187^{\circ}$  (4) (22), see indic. refs.]

Solubility relations.  $\bar{C}$  is very spar. sol. aq., e.g., 100 g. aq. at 0° dis. 0.447 g.  $\bar{C}$  (23), 0.570 wt. % (24), although even this is somewhat more than its homologs (24).

 $\bar{C}$  is miscible with EtOH although forced out of soln. by addn. of aq. (25); for use of mixt. of EtOH (50-80%) + aq. (50-20%) as selective solv. for  $\bar{C}$  in sepn. from butane see (26). —  $\bar{C}$  is also miscible with ether. — [For study of rate of volatilization of  $\bar{C}$  from solns. in ether or oils see (32).]

[For soly. of  $\bar{C}$  in CCl<sub>4</sub> (3:5100) or in ethylene dichloride (3:5130) at  $-10^{\circ}$  and 20° and at 100-760 mm. press. see (27); for soly. of  $\bar{C}$  in various high-boilg. ethers and esters of interest to refrigeration industry see (28) (29); for solubility, density, b.p., vapor/liq. equil., etc., of system  $\bar{C}$  + kerosene see (30); for sepn. of  $\bar{C}$  from butane by azeotropic distn. with SO<sub>2</sub> see (31).]

[For soly. in  $\bar{C}$  of anhydrous FeCl<sub>3</sub> (33) (34) or anhydrous AlCl<sub>3</sub> (35) (36) see indic. refs.] Adsorption of  $\bar{C}$ . [For studies on adsorption of vapors of  $\bar{C}$  by activated carbon at  $-15^{\circ}$  (37), 0° (37) (38), 20° (37), 25° (39), or 50° (40) see indic. refs. and also (41); for sepn. of  $\bar{C}$  from ethylene + HCl gas by adsorption on carbon see (42). — For adsorption of vapors of  $\bar{C}$  by dehydrated chabasite see (43).]

Inflammability of  $\bar{C}$  or its mixtures.  $\bar{C}$  is readily inflammable; in mixts. with air explosive range conts. 4.00–14.18 vol. %  $\bar{C}$  with minimum ignition temp. 517°C. (44) cf. (47) (48); in mixts. with O<sub>2</sub> explosive range conts. 4.05–67.2 vol. %  $\bar{C}$  (44) (45) with min. ignition temp. 468°C.; in mixts. with N<sub>2</sub>O explosive range conts. 2.1–32.8 vol. %  $\bar{C}$  (45) cf. (46); for study of explosion range of  $\bar{C}$  + C<sub>2</sub>Cl<sub>2</sub>F<sub>2</sub> ("Freon") + air or  $\bar{C}$  + butane + air see (49). — See also below under use of  $\bar{C}$  as anesthetic.

Other miscellaneous physical props. [For study of thermal conductivity of  $\bar{C}$  see (50).] Binary systems contg.  $\bar{C}$ . [For f.p./compn. data and diagram of system  $\bar{C}$  + methylene (di)chloride (3:5020), eutectic, f.p.  $-149.7^{\circ}$ , contg. 68.3 wt. %  $\bar{C}$ , see (18); for f.p./compn. data and diag. of system  $\bar{C}$  + EtBr (note no eutectic is formed) see (18); for system  $\bar{C}$  + solid CO<sub>2</sub> see (8).]

# TOXICITY AND PHYSIOLOGICAL ACTION OF C

Full treatment of this topic is beyond the scope of this work; however, for lead references on its pharmacology (51), toxicity (52) (53) (54) (55), or anthelmintic props. (56) see indicrefs. — For use as narcotic and anesthetic see below.

## USES OF C

Use for anesthesia and narcosis. [For general reviews on use of  $\bar{C}$  as anesthetic see (57) (58) (59) (60); for use of  $\bar{C}$  as dental anesthetic see (61) (62) (63); for short narcosis see (64) (65). — For data on mortality from use of  $\bar{C}$  as anesthetic see (66). — For studies of explosion hazards with  $\bar{C}$  or  $\bar{C}$  + ether (67) especially in presence of X-ray apparatus (68) see indic. refs. (see also above under inflammability of  $\bar{C}$ ).]

Use as a refrigerant.  $\tilde{C}$  either alone or mixed with other cpds. is often used in refrigerating systems: e.g., for general survey of this aspect see (21); for examples of patents on use in refrigerating systems of  $\tilde{C}$  (70), of  $\tilde{C}$  (96%) + MeCl (4%) (3:7005) (71), of  $\tilde{C}$  (25%) + methylene (di)chloride (3:5020) (75%) (72), of  $\tilde{C}$  (40%) + EtBr (60%) (72), of  $\tilde{C}$  + an alc. + a hydrocarbon lubricant (74) see indic. refs. — For study of use of  $\tilde{C}$  with other suitable liq. in low-temp. cryostats see (18).

Use as solvent for extraction of oils. For use of  $\bar{C}$  as extremely volatile solvent for extraction of oils, fats, resins, perfumes, etc., see (75) (76) (77).

Miscellaneous uses of  $\tilde{\mathbf{C}}$ .  $\tilde{\mathbf{C}}$  is now an important raw material in the prepn. of tetraethyllead for use as an anti-knock agent in gasoline; for further details see below under chem. behavior of  $\tilde{\mathbf{C}}$  toward metals.

[For use of C in purification of metallic mercury see (78).]

Because of its inertness toward ozone, its availability, and its low b.p., Č is often used as solvent for ozonolysis.

#### DETERMINATION OF C

For detn. of  $\bar{C}$  by pyrolytic dissociation at 900° into ethylene and HCl, followed by detn. of chloride ion with stand. AgNO<sub>3</sub> (42) (80) cf. (81) or by combustion with O<sub>2</sub> in an explosion pipet to yield H<sub>2</sub>O, CO<sub>2</sub> + HCl (47), see indic. refs. — For detn. of  $\bar{C}$  by hydrolysis with excess std. N/2 alc. KOH in s.t. at 120° for 15 min. and back titration with N/2 HCl see (79).

For detn. of  $\tilde{C}$  in CHCl<sub>3</sub> (3:5050) see (82); for detection of  $\tilde{C}$  in perfumes see (83). For further aspects of identification of  $\tilde{C}$  see below under  $\mathfrak{D}$ .

## PREPARATION OF C

Č can be prepared from various sources and by many methods (see amplification below); however, for quick laboratory methods the most convenient are those from EtOH by htg. with AlCl<sub>3</sub> (1 mole) at 150° (97.6% yield (13)) and from diethyl sulfate with aq. CaCl<sub>2</sub> (63% yield (84)).

From ethyl alcohol (1:6130).

With hydrogen chloride or hydrochloric acid. [For prepn. of  $\bar{C}$  from EtOH by reactn. with HCl in absence of cat. under reflux (85) (86) or at 125° and 16 atm. (87), or 140° and 24 atm. (88), see indic. refs.; for use of EtOH + liq. HCl see (89).]

For prepn. of C from EtOH with conc. HCl in pres. of ZnCl<sub>2</sub> (60% yield (7) (91)) see articles represented by (90) (7) (91) (92) (93) [for patents (often including also other metal salt cat. such as BiCl<sub>3</sub>, etc.) see (94)-(102), incl.].

[For prepn. of  $\tilde{C}$  from EtOH + HCl in pres. of H<sub>3</sub>PO<sub>4</sub> (103) (104) (105) or H<sub>2</sub>SO<sub>4</sub> (106) or EtHSO<sub>4</sub> (107) see indic. refs.]

By use of metal salts. For prepn. of  $\tilde{C}$  from EtOH by use of AlCl<sub>3</sub> at 150° (97.6% yield (13)) or of aq. FeCl<sub>3</sub> at 80° (108), or by reflux with subl. FeCl<sub>3</sub> for  $1\frac{1}{2}$  hrs. (86% yield (112)), see indic. refs.

By use of inorganic acid chlorides. For prepn. of  $\bar{C}$  from EtOH by use of PCl<sub>3</sub> (43% yield (109)), PCl<sub>3</sub> + ZnCl<sub>2</sub> (62% yield (91)), PCl<sub>5</sub> + ZnCl<sub>2</sub> (70% yield (91)), SOCl<sub>2</sub> + pyridine (75% yield (91)), or SO<sub>2</sub>Cl<sub>2</sub> + pyridine (110) see indic. refs.

By use of organic acid chlorides. [For prepn. of  $\bar{C}$  from EtOH with benzotrichloride (3:6540) + FeCl<sub>3</sub> see (111).]

From diethyl ether (1:6110).

By cleavage with HCl + a catalyst. [For prepn. of  $\tilde{C}$  from diethyl ether with  $HCl + ZnCl_2$  (113) at 80–280° under press. (114) or at 300–370° under press. (115), or with  $HCl + AlCl_3/NaCl/FeCl_3$  at 200–325° (116), or with HCl + a nitrogen heterocycle (117) see indic. refs.]

By cleavage with acid chlorides + a catalyst. [For prepn. of  $\tilde{C}$  from diethyl ether with SOCl<sub>2</sub> or S<sub>2</sub>Cl<sub>2</sub> in pres. of SnCl<sub>4</sub> or TiCl<sub>4</sub> (118); or with SOCl<sub>2</sub> + ZnCl<sub>2</sub> (119); or with benzoyl chloride (3:6240) in pres. of Zn (120) cf. (121), ZnCl<sub>2</sub> at 150° (78% yield (122)) cf. (123) (124), MeZnI (125) or AlCl<sub>3</sub> (126); or with phthalyl (di)chloride (3:6900) in pres. of ZnCl<sub>2</sub> at 170° (80% yield (122)); or with acetyl chloride (3:7065) in pres. of ZnCl<sub>2</sub> (127) or AlCl<sub>3</sub> (126) see indic. refs.]

[For form. of  $\bar{C}$  from diethyl ether + CHCl<sub>3</sub> (3:5050) + cat. at 290° and 25 atm. see (128).]

From various ethyl esters of inorganic and organic acids. [For prepn. of  $\bar{C}$  from diethyl sulfate with aq. CaCl<sub>2</sub> as lab. method (63% yield (84)) or as manufacturing process (129); from diethyl sulfate with conc. IICl at 140° and 24 atm. (130); from ethyl chlorosulfonate with fumg. HCl at 100° (91% yield (131)) (132) cf. (189), pyridine (133), or di-n-butylamine at 100° (53% yield (134)) see indic. refs ]

[For prepn. of  $\bar{C}$  from ethyl formate (1:3000) with AlCl<sub>3</sub> (1 mole) at 110° (82% yield (135)); from ethyl chloroformate (3:7295) on htg. at 250° (for study of this reaction see (136) (137)), with dimethylaniline at 150° (138), with pyridine (139), with quinoline at 100° (139) or even 59° (140) (141), or with AlCl<sub>3</sub> at room temp. (142), or with EtHSO<sub>4</sub> (143) see indic. refs.]

[For prepn. of C from ethyl acetate (1:3015) with subl. FeCl<sub>3</sub> on 1½ hrs. reflux (73% yield (112)), or with SiCl<sub>4</sub> (144), from ethyl benzoate (1:3721) with subl. FeCl<sub>3</sub> on 1½ hrs. reflux (74% yield (112)); or from diethyl phthalate (1:4331) with phthalyl (di)chloride (3:6900) + trace ZnCl<sub>2</sub> at 130° (145) see indic. refs.]

From vinyl chloride (3:7010). [For prepn. of C from vinyl chloride by cat. hydrogenation at elev. temp. and press. see (146).]

From ethane. [For prepn. of  $\bar{C}$  from ethane with  $Cl_2$  above 290° in pres. of ethylene or PbEt<sub>4</sub> as cat. (yields 67.8–71.4% (147)) (148) see indic. refs. — For examples of other patents on prepn. of  $\bar{C}$  from ethane with  $Cl_2$  in pres. of various cat. (149) (150) (151) (152) (153) see indic. refs.]

From ethylene. The preparation of  $\bar{C}$  from ethylene by catalytic addn. of hydrogen chloride has been extensively studied both in the scientific and in technical literature. At very low temperatures, the catalyzed reaction is quantitative, but as the temperature is increased the reverse reaction (dissociation of  $\bar{C}$  into ethylene and HCl) is favored.

[For studies on the prepn. of  $\tilde{C}$  from ethylene with HCl in pres. of AlCl<sub>3</sub> or BiCl<sub>3</sub> at  $-78^{\circ}$  (100% yield (3) (155)), or as high as  $-12^{\circ}$  (95% yield (154) (155)) or 130° (37% yield (42)), see indic. refs.; for studies on equilibrium at 114° and 124° (156), at 170°, 200°, and 230° (157) or for calcn. of entropy of system (158) see indic. refs.; for study of various cat. see (159).]

[The patent literature on prepn. of C from ethylene + HCl is extensive and overlapping, but illustrative examples may be cited. For patents involving use of AlCl<sub>3</sub> (160) (161) under pressure (162) (163) (164) (165) in the pres. of a solvent (often C itself) (162) (166) (167) (168) (190) see indic. refs. — For use of ethylene + mixt. of HCl (90%) + Cl<sub>2</sub> (10%) + AlCl<sub>3</sub> (169) (170) or for prepn. (171) or revivification (172) of AlCl<sub>3</sub> cat. see indic. refs.]

[For patents on prepn. of  $\bar{C}$  from  $C_2H_4$  + HCl with various cat., e.g., with BiCl<sub>3</sub> (173) (174) (175), with anhydrous EtHSO<sub>4</sub> (176), with SnCl<sub>4</sub> on activated carbon at 150° (177), with bauxite cat. (178), with iron oxide cat. at 50° and ord. or increased press. (179), with BaCl<sub>2</sub> at 250° (180), with FeCl<sub>3</sub> in  $\bar{C}$  or AlCl<sub>3</sub> in nitrobenzene (181), with ZnCl<sub>2</sub> on activated carbon, silica gel, etc., (182) (183), with various surface agts. (184) (185), with SO<sub>2</sub> (186), with 90% H<sub>2</sub>SO<sub>4</sub> + NaCl (188), or in liq. ethyl chlorosulfonate + BiCl<sub>3</sub> (189) see indic. refs.]

[For purification of C obtd. from techn. gases by HCl method see (187).]

From miscellaneous sources. [For formn. of  $\bar{C}$  from EtBr with CHCl<sub>3</sub> (3:5050) in pres. of AlCl<sub>3</sub> at 50° (191), from EtMgBr during reaction with S<sub>2</sub>Cl<sub>2</sub> (192) or with 1,2-dichloroethylene (3:5030) (193), from EtI with Hg<sub>2</sub>Cl<sub>2</sub> in s.t. at 140° (12), from ethyl  $\alpha,\beta$ -dichlorovinyl ether (3:5540) with Cl<sub>2</sub> at ord. temp. followed by warms. or stdg. in absence of aq. (194), or from dichloroacetaldehyde diethylacetal (3:6110) with ZnEt<sub>2</sub> (195) see indic. refs.]

[For formn. of C from succinic acid (1:0530) with aq. FeCl<sub>3</sub> in sunlight (196) or from MeCl (3:7005) + aq. by disproportionation over cat. at 200-275° (197) see indic. refs.]

## CHEMICAL BEHAVIOR OF C

## Pyrolysis of C

 $\tilde{C}$  passed through plain tube at 410° is largely unchanged, but  $\tilde{C}$  passed at 550° through tube contg. pumice (198) cf. (42) or other cat. (199) dissociates completely into ethylene + HCl (use in detn. of  $\tilde{C}$  (42)).

## BEHAVIOR OF C WITH INORGANIC REACTANTS

**Chlorination.** [ $\bar{C}$  with liq. Cl<sub>2</sub> (1 mole) in u.v. light and cooling yields (200) mainly 1,1-dichloroethane (3:5035) accompanied by some 1,2-dichloroethane (3:5130) and higher chlorination prods.; the two dichloroethanes are also obtd. from  $\bar{C}$  with Cl<sub>2</sub> + aq. (201). — For very impt. study of behavior of  $\bar{C}$  with Cl<sub>2</sub> at 202-380° see (202) (147).]

[ $\bar{C}$  with SbCl<sub>5</sub> in s.t. at 100° (203) or  $\bar{C}$  with NCl<sub>3</sub> (204) yields 1,2-dichloroethane (ethylene dichloride) (3:5130).]

Bromination. [For behavior of C with Br<sub>2</sub> see (207) (208).]

Fluorination. [C at 900° with F<sub>2</sub> in pres. of Cu yields (205) CF<sub>4</sub>, CF<sub>3</sub>Cl, CF<sub>3</sub>.CF<sub>2</sub>Cl, CHF<sub>2</sub>.CH<sub>2</sub>Cl, CF<sub>2</sub>—CCl<sub>2</sub>, and other prods.]

Hydrogenation. [For behavior of C with atomic hydrogen see (206).]

Hydrolysis. [C over suitable partially dehydrated Al(OH)<sub>3</sub> at room temp. (209), or C + aq. vapor over cat. at 300-500° at ord. press. (210) (211) (212), or C with aq. NaOH above 150° under press. (213), or C with alc. NaOH (214), alc. Na<sub>2</sub>CO<sub>3</sub>, MgO, or CaOe (215) is saponified yielding EtOH (1:6130). — The reaction of C with EtOH/KOH is bimolecular (216); furthermore during hydrol. of C with alk. some diethyl ether is always formed cf. (213) (214) and the reaction may be adapted to its prepn. (217).]

Amination. [C with alc. NH3 in s.t. at 100° (218) or C with liq. NH3 at 220° and 220 atm. press. (219) gives salts of ethylamine, diethylamine, triethylamine, and other prods.—

 $\tilde{C}$  with NaNH<sub>2</sub> in liq. NH<sub>3</sub> at 0° and 20 atm. gives ethylamine (30% yield (220)) and ethylene.

Behavior of  $\tilde{C}$  with inorganic acids. [ $\tilde{C}$  passed through boilg.  $H_2SO_4$  gives  $C_2H_4 + SO_2 + HCl$ ;  $\tilde{C}$  is absorbed by  $SO_3$  giving a liq. which probably comprises a mixture of ethyl chlorosulfonate,  $\beta$ -chloroethanesulfonic acid, and  $\beta$ -hydroxyethanesulfonyl chloride (221).]

Behavior of C with inorganic salts. [For study of rate of reaction of C with KI in acetone at 50° and 60° see (222). — C with AlBr<sub>3</sub> under suitable cond. yields (223) ethyl bromide.]

Behavior of  $\tilde{\mathbb{C}}$  with metals. With sodium. The most important reaction of  $\tilde{\mathbb{C}}$  with metals is that involved in the manufacture of tetraethyllead for use as an anti-knock agent in motor fuels. Tetraethyllead is prepared for  $\tilde{\mathbb{C}}$  either by direct reaction with Na/Pb alloys, or by reaction with Mg and subsequent conversion of the EtMgCl by means of PbCl<sub>2</sub>. For a general survey (without references) on the manufacture of tetraethyllead see (224).

For patents involving the prepn. of Et<sub>4</sub>Pb from  $\bar{C}$  by reactn. with Na/Pb alloys under various circumstances see (225)-(244) incl.; for patents involving the use of EtMgCl see (245)-(248) incl.

[For behavior of  $\bar{C}$  with Na in lgr. followed by CO<sub>2</sub> (249) or with amyl-sodium or octyl-sodium (250) see indic. refs. —  $\bar{C}$  with K/Na alloy in xylene gives (251) ethane (32%) and ethylene (5.5%). —  $\bar{C}$  with Tl/Na yields (252) TlEt<sub>3</sub>.]

With magnesium. [ $\bar{C}$  with Mg in s.t. at 260° for 4 hrs. gives (253) gas (consisting of 45% butane + 20% olefins + 22% H<sub>2</sub>) and a white solid which with aq. gives a gas contg. 86% H<sub>2</sub> + 13% ethane.]

 $\bar{C}$  with Mg in dry ether in absence of air and in pres. of trace of I<sub>2</sub> gives (99.7% yield in 4 hrs. (254)) EtMgCl; this reagt. is actually an equil. mixt. contg. 25% EtMgCl + 42.5% MgCt<sub>2</sub> + 42.5% MgCl<sub>2</sub> (255). — For study of competitive reaction with Mg in ether of an equimolar mixt. of  $\bar{C}$  + EtI yielding 27% EtMgCl + 73% EtMgI see (256). — [For reactn. of EtMgCl with NH<sub>4</sub>Cl or triethylamine.HCl (254), with NH<sub>2</sub>Cl (257), or with NCl<sub>3</sub> (258) see indic. refs.; for study of electrolysis of EtMgCl in ether see (259). — For reactn. of EtMgCl with PbCl<sub>2</sub> yielding PbEt<sub>4</sub> see (245)–(248) incl.; with C<sub>6</sub>H<sub>5</sub>NCO yielding propionanilide see below under  $\bar{D}$ 's.]

## BEHAVIOR OF C WITH ORGANIC REAGENTS

[ $\bar{C}$  with  $C_6H_6+Al/Hg$  gives (76% yield (260)) ethylbenzenc (1:7410);  $\bar{C}$  + hexane + AlCl<sub>3</sub> gives (261) octane.]

[ $\bar{C}$  with CO + AlCl<sub>3</sub> at 40-50° and 120 atm. followed by treatment with H<sub>2</sub>O gives (43% yield (262)) (263) propionic acid (1:1025).]

[Č with ethylene oxide  $(1:6105) + AlCl_3$  gives (264) a mixt. contg. 4-chlorobutanol-1 (3:9170) + ethylene chlorohydrin (3:5552).]

[C may be used for the ethylation of OH groups or NH<sub>2</sub> groups: e.g., for reaction of C with sodium phenolate yielding (265) ethyl phenyl ether (1:7485) or for use of C in ethylation of cellulose (266) (267) see indic. refs.; for use of C in ethylation of metanilic acid (268) (214) (215), o-toluidine (269), or m-aminophenol (268) see indic. refs.]

[For condens. of C with hexamethylenetetramine see (270).]

[C (2 moles) with ethylene (di)bromide (1 mole) + 3% AlCl<sub>8</sub> in steel bomb at 25° for 14 days undergoes a redistribution reactn. yielding (271) a mixt. consisting of 5 cpds., viz., C (35 mole %) + EtBr (30 mole %) + ethylene chlorobromide (17 mole %) + ethylene (di)bromide (11 mole %) + ethylene dichloride (3:5130) (7 mole %).]

[C (1 mole) with quinoline (1 mole) in s.t. in direct sunlight reacts only very slowly (incomplete in 1 year) but grad. separates ethylquinolium chloride, cryst. from abs. EtOH by addn. of dry ether, m.p. 122° (290).]

- **Propionanilide:** m.p. 104.0-104.5° u.c. (272). (See also under propionic acid (1:1025).) [From  $\bar{C}$  by conversion to EtMgCl (see above) and reactn. in dry ether with phenyl isocyanate (272).]
- —— Propion-p-toluidide: m.p. 123°. [Presumably obtainable (272) from C via conversion to EtMgCl (see above) and reaction in dry ether with p-tolyl isocyanate.]
- Propion- $\alpha$ -naphthalide: m.p. 126° u.c. (273). [Presumably obtainable (272) from  $\bar{\mathbf{C}}$  via conversion to EtMgCl (see above) and reaction in dry ether with  $\alpha$ -naphthyl isocyanate; the analogous process for EtBr has been reported (273).]
- Ethyl mercuric chloride: m.p. 193.5° cor. (274), 192.5° (275), 192° (276). [Prepd. indirectly (276); but should be preparable from EtMgCl with HgCl<sub>2</sub> since corresp. EtHgBr has been reported (276) from EtMgBr + HgBr<sub>2</sub>. Note that m.p. of EtHgCl is almost identical with that (193.5°) of EtHgBr cf. (276).]
- ---- N-Ethylphthalimide: [Beil. XXI-461, XXI<sub>1</sub>-(363)], ndls. from alc., m.p. 79° (279), 78° (280). [Prepd. indirectly (280), also from EtI with potassium phthalimide in s.t. at 150° (279).]
- —— N-Ethyl-3-nitrophthalimide: pl. from CS<sub>2</sub>, m.p. 105-106° (281) (282); for photographs of crystals see (282). [Not reported from C itself, but obtd. from EtBr with K phthalimide on protracted reflux. (281).]
- N-Ethyltetrachlorophthalimide: pl. from CHCl<sub>3</sub> on pouring into 2 vols. EtOH, m.p. 192-193° (283). [Not reported from C but obtd. from EtBr or EtI with K tetrachlorophthalimide in s.t. at 200° for 6 hrs. (283).]
- —— N-Ethylsaccharin: cryst. from dil. alc., m.p. 94° (284). [This prod. cannot be obtd. from C itself (284) but is obtd. from either EtBr or EtI with sodium saccharin in aq. butylcarbitol (1:6517) contg. KI on refluxing for 30 min. (284).]
- ---- N-Ethyl-N-(p-bromobenzenesulfonyl)-p-anisidide: m.p. 113.5° u.c. (285). [Not reported from \(\bar{\chi}\) but obtained from EtBr with N-(p-bromobenzenesulfonyl)-p-anisidide (285).]
- —— p-Ethoxybenzoic acid: m.p. 195° (286) cf. (287).
- ---- Ethyl 2.4.6-triiodophenyl ether: m.p. 83.5° cor. (288).
- Ethyl α-naphthyl ether: oil, b.p. 280.5° cor., f.p. below -10° (289). (Corresp. picrate, m.p. 118.5-119.5° cor.; Neut. Eq. 401 (289).)
- Ethyl β-naphthyl ether: m.p. 35.5-36.0° cor., b.p. 282° cor. (289). (Corresp. picrate, m.p. 101.0-101.5° cor., Neut. Eq. 401 (289).)
- Timmermans, Bull. soc. chim. Belg. 27, 334 (1914), Cent. 1914, I 618. (2) Grosse, J. Am. Chem. Soc. 59, 2739-2741 (1937). (3) Tulleners, Tuyn, Waterman, Rec. trav. chim. 53, 544-554 (1934). (4) Berthoud, J. chim. phys. 15, 13 (1917). (5) Jenkin, Trans. Faraday Soc. 18, 197-199 (1922). (6) Regnault, Ann. chim. (4) 24, 380 (1871). (7) Norris, Taylor, J. Am. Chem. Soc. 45, 757 (1924). (8) Thiel, Schulte, Z. physik. Chem. 96, 331-333 (1920). (9) Beckmann, Z. anorg. allgem. Chem. 55, 379 (1907). (10) Fuchs, Z. Physik 63, 837 (1930).
- (11) Timmermans, Hennaut-Roland, J. chim. phys. 34, 699-700 (1937). (12) Linnemann, Ann. 160, 214 (1871). (13) Norris, Sturgis, J. Am. Chem. Soc. 61, 1415 (1939). (14) Paul, Schantz, Arch. Pharm. 257, 110-111, 127 (1919). (15) Schneider, Z. physik. Chem. 22, 235 (1897). (16) Gutmann, J. Chem. Soc. 87, 1040 (1905). (17) Awberry, Phil. Mag. (7) 31, 252 (1941). (18) Kanolt, Sci. Papers U.S. Bur. Standards No. 520; 20, 619-633 (1924-6). (19) Ramsay, J. Chem. Soc. 35, 470 (1879). (20) Pierre, Compt. rend. 27, 213 (1845/9).
- (21) Henning, J. Soc. Chem. Ind. 39, 1-8T (1920). (22) "International Critical Tables" III-231. (23) van Arkel, Vles, Rec. trav. chim. 55, 410 (1936). (24) Fühner, Ber. 57, 514 (1924).

(25) Genelen, Z. physik. chem. Unterricht 33, 147 (1920).
(26) Kimberlin (to Standard Oil Development Co.), U.S. 2,275,151, March 3, 1942; C.A. 36, 4137 (1942): Brit. 545,729, June 10, 1942; [C.A. 37, 2018 (1943)].
(27) Kaplan, Romanchuk, J. Gen. Chem. (U.S.S.R.) 6, 950-954 (1936); Cent. 1937, II 1771; C.A. 31, 594 (1937).
(28) Zellhoefer, Copley, Marvel, J. Am. Chem. Soc. 60, 1338 (1938).
(29) Zellhoefer, Ind. Eng. Chem. 29, 548 (1937).
(30) Kaplan, Monakhova, Reformatskaya, Bessanova, J. Applied Chem. (U.S.S.R.) 10, 2022-2027 (1937); Cent. 1939, I 2160; C.A. 32, 5281 (1938).

(31) Kimberlin (to du Pont Co.), U.S. 2,352,268, June 27, 1944; C.A. 38, 5508 (1944). (32) Baskerville, Hirsh, J. Ind. Eng. Chem. 13, 322-323 (1921). (33) Wertyporoch, Ber. 66, 1232-1238 (1933). (34) Wertyporoch, Kowalski, Z. physik. Chem. A-166, 205-213, 217 (1933). (35) Wertyporoch, Firla, Z. physik. Chem. A-162, 398-414 (1933). (36) Wertyporock, Firla, Ann. 500, 287-295 (1933). (37) Goldmann, Polyani, Z. physik. Chem. 132, 321-370 (1928). (38) Lamb, Coolidge, J. Am. Chem. Soc. 42, 1153 (1920). (39) Pearce, McKinley, J. Phys. Chem. 32, 370 (1928). (40) Pearce, Reed, J. Phys. Chem. 39, 294 (1935).

Gregg, J. Chem. Soc. 1943, 351-355. (42) Berl, Bitter, Ber. 57, 95-99 (1924). (43)
 Lamb, Ohl, J. Am. Chem. Soc. 57, 2154-2161 (1935). (44) Jones, U.S. Bur. Mines, Rept. Invest. 3745 (1949). (45) Huff, U.S. Bur. Mines, Rept. Invest. 3745 (1944). (46) Huff, U.S. Bur. Mines, Rept. Invest. 3745 (1944). (46) Huff, U.S. Bur. Mines, Rept. Invest. 3745 (1949). (47) Jones, Ind. Eng. Chem. 20, 367-370 (1928). (48) Deiss, Z. Elektrochem. 29, 586-587 (1923). (49) van Deventer, Rec. trav. chim. 57, 95-107 (1938).
 (50) Schafer, Foz Gazulla, Z. physik. Chem. B-52, 299-314 (1942); Anales fis quim. 38, 316-346

(1942); C.A. 37, 4943 (1943).

(51) Embley, Proc. Roy. Soc. (London) 78B, 391-413 (1906). (52) von Oettingen, J. Ind. Hyg. Toxcool. 19, 388-393 (1937). (53) Smyth, N.Y. State Med. J. 42, 1072-1079 (1942); C.A. 36, 4626 (1942). (54) Lehmann, Schmidt-Kehl, Arch. Hyg. Bakt. 116, 131-268 (1936); C.A. 31, 477 (1937). (55) Lazarev, Arch. exptl. Pathol. Pharmakol. 141, 19-24 (1928); Cent. 1929, II 451; not in C.A. (56) Faust, J. Am. Med. Assoc. 108, 386-392 (1937); C.A. 31, 3565 (1937). (57) Baskerville, Hamor, J. Ind. Eng. Chem. 5, 828-831 (1913). (58) Stewart, Anesthesiology 2, 635-640 (1941); C.A. 36, 865 (1942). (59) Efskind, Beitr. Klin. Chir. 167, 251-306 (1938); C.A. 32, 8558 (1938). (60) Schaefer, Schmerz, Narkose-Anesthesie 3, 330-340 (1930); Cent. 1931, 11 81; not in C.A.

(61) Lincoln, Anesthesia and Analgesia 20, 328-332 (1941); C.A. 36, 1094 (1942). (62) Miller, Bull. Am. Assoc. Nurse Anesthetists 8, 18-22 (1940); C.A. 34, 2137 (1940) (63) Marston, Brit. Dental J. 63, 569-575 (1937); Cent. 1938, I 3234. (64) Shields, Can. Med. Assoc. J. 24, 250-254 (1931); Cent. 1931, II 2351; not in C.A. (65) Davidson, J. Pharmacol. 26, 37-42 (1925); Cent. 1926, I 165; C.A. 19, 3123 (1925). (66) Committee on Anesthetic Deaths, S. African Dental J., March 1937; C.A. 32, 4220 (1938). (67) Coste, Chaplin, Brit. J. Anesthesia 14, 115-129 (1937); C.A. 31, 5165 (1937). (68) Greene, Ann. J. Roentgenol. Radium Therapy 45, 737-743 (1941); C.A. 35, 5703 (1941). (69) Greene, Anisthesiology 2, 144-160 (1941); C.A. 35, 4954 (1941). (70) Schwarzer, Ger. 326,407, Sept. 25, 1920, Cent. 1921, II 14; not in C.A.

(71) Henning, U.S. 1,356,765, Oct. 26, 1920; Cent. 1921, II 103; C.A. 15, 284 (1921). (72) Davenport (to Cheago Pneumatic Tool Co.), U.S. 1,986,959, Jan. 8, 1935; Cent. 1936, II 147; C.A. 29, 1294 (1935). (73) Sorenson, U.S. 1,845,355, Feb. 16, 1932; Cent. 1932, II 101; C.A. 26, 2257 (1932). (74) Davenport (to Cheago Pneumatic Tool Co.), U.S. 1,803,098, April 28, 1931; Cent. 1932, I 1935; [C.A. 25, 3746 (1931)]. (75) Henning, Ger. 354,609, June 9, 1922; Cent. 1922, IV 359; not in C.A.: Brit. 158,494, March 3, 1921; Cent. 1921, IV 274; C.A. 15, 1954 (1921). (76) Henning, Brit. 152,550. Nov. 11, 1920, Cent. 1921, II 323; C.A. 15, 737 (1921). (77) Solv. Extn. Refrig. Co., French 563,443, Dec. 5, 1923; Cent. 1924, II 2214; not in C.A. (78) DeRemer, (to Savage-DeRemer Corpn.), U.S. 1,707,471, April 2, 1929; Cent. 1929, II 85; C.A. 23, 2539 (1929). (79) Thorsell, Svensk Farm. Tid. 45, 341-344 (1941); C.A. 35, 6898 (1941). (80) Dement'eva, Serebryakova, Materials on Cracking and Chem. Treat. of Products Obtd., Khimteoret (Leningrad) No. 2, 144-146 (1935); C.A. 29, 6033 (1935); not in Cent.

(81) Martinek, Marti, Ind. Eng. Chem., Anal. Ed. 3, 408-410 (1931). (82) Newcomb, Analyst 51, 19-30 (1926). (83) Sudendorf, Penndorf, Pharm. Zentralhalle, 68, 226-228 (1927); Cent. 1927, II 754; C.A. 21, 2048 (1927). (84) Koten, J. Chem. Education 17, 461 (1940). (85) Buc, Gleason (Standard Oil Development Co), U.S. 2,153,170, April 4, 1939; Cent. 1939, II 2712; C.A. 33, 3005 (1939). (86) Ernst, Berndt (to I.G.), Ger. 467,185, Oct. 17, 1928; Cent. 1929, I 1045; C.A. 23, 1137 (1929); cf. Ernst, Berndt (to I.G.), Ger. 444,799, May 27, 1927; Cent. 1927, II 500; not in C.A. (87) I.G., Brtt. 375,199, July 14, 1932; Cent. 1932, II 2237; not in C.A. (88) I.G., French 716,217, Dec. 17, 1932; Cent. 1932, I 3345; C.A. 26, 2197 (1932). (89) Alckelin (to General Aniline Works), U.S. 2,007,322, July 9, 1935; Cent. 1935, II 3829; C.A. 29, 5862 (1935). (90) Eberhart, Z. physik. chem. Unterricht 50, 66 (1937).

(91) Clark, Streight, Trans. Roy. Soc. Can. (3) 29, III 77-89 (1929). (92) Groves, J. Chem.

Soc. 27, 636 (1874). (93) Krüger, J. prakt. Chem. (2) 14, 195-196 (1876). (94) Holt, Daudt (to du Pont Co.), U.S. 2,091,986, Sept. 7, 1937; Cent. 1937, II 4238; C.A. 31, 7445 (1937). (95) Daudt (to du Pont Co.), U.S. 2,016,075, Oct. 1, 1935; Cent. 1936, I 2206; C.A. 29, 8004 (1935): Brit. 450,843, Aug. 20, 1936; Cent. 1936, II 4048; [C.A. 31, 114 (1937)]. (96) Holt, Daudt (to du Pont Co.), U.S. 1,983,542, Dec. 11, 1934; Cent. 1935, I 3198; C.A. 29, 817 (1935). (97) Daudt (to du Pont Co.), U.S. 1,920,246, Aug. 1, 1933; Cent. 1933, II 2454; C.A. 27, 4818 (1933). (98) Frei (to du Pont Co.), U.S. 1,784,423, Dec. 9, 1930; Cent. 1931, I 2672; C.A. 25, 303 (1931); French 692,790, Nov. 10, 1930; Cent. 1931, I 2112; C.A. 25, 1537 (1931). (99) Backhaus (to U.S. Ind. Alc. Co.), U.S. 1,509,463, Sept. 23, 1924; Cent. 1925, I 573; C.A. 19, 78 (1925). (100) Willkie (to U.S. Ind. Alc. Co.), U.S. 1,478,498; Dec. 25, 1923; C.A. 18, 840 (1924); not in Cent. (101) Douane, Vila, French 529,558, Dec. 1, 1921; Cent. 1922, IV 940; not in C.A. (102) A.G.F.A., Ger. 280,740, Nov. 26, 1914; Cent. 1915, I 104; C.A. 9, 1829 (1915). (103) Ernst (to A. Wacker Soc. Electrochem. Ind.), Ger. 583,477, Sept. 4, 1933; Cent. 1933, II 2893; C.A. 28, 1052 (1934). (104) Ernst (to A. Wacker Soc. Electrochem. Ind.), U.S. 1,937,269, Nov. 28, 1933; [C.A. 28, 1052 (1934)]; Ger. 541,566, Aug. 10, 1929; C.A. 26, 2468 (1932); French 687,855, Aug. 14, 1930; Cent. 1930, II 3637; C.A. 25, 709 (1931). (105) Dachlauer, Eggert (to I.G.), Ger. 441,-747, March 10, 1927; Cent. 1927, I 2945; not in C.A. (106) I.G., Brit. 486,453, June 30, 1938; Cent. 1938, II 3157; C.A. 32, 8439 (1938). (107) Teupel (to I.G.), U.S. 1,950,827, March 13, 1934; C.A. 28, 3424 (1934); not in Cent.: French 716,217, Dec. 17, 1932; Cent. 1932, I 3345; C.A. 26, 2197 (1932). (108) Harding (to Roessler & Hasslacher Chem. Co.), U.S. 1,816,845, Aug. 4, 1931; Cent. 1931, II 3392; C.A. 25, 5433 (1931): Ger. 529,627, July 16, 1931; Cent. 1931, II 2386, C.A. 25, 5176 (1931). (109) Walker, Johnson, J. Chem. Soc. 87, 1592-1597 (1905).

(110) Baumgarten, Ber. 60, 1177 (1927).

(111) Verein chem. Metalurg. Prod., Ger. 472,422, Feb. 28, 1929; Cent. 1929, I 2823; C.A. 23, 2448 (1929). (112) Dangyan, J. Gen. Chem. (U.S.S.R.) 8, 1780-1783 (1938); C.A. 33, 4957 (1939); not in Cent. (113) Brooks (to Standard Alc. Co.), U.S. 2,015,706, Oct. 1, 1935; Cent. 1936, I 2206; C.A. 29, 8004 (1935). (114) Spurlin (to Hercules Powder Co.), U.S. 2,084,710, June 22, 1937; Cent. 1937, II 2900; C.A. 31, 5816 (1937). (115) du Pont Co., Brit. 390,209, April 27, 1933; Cent. 1933, II 604; C.A. 27, 4543 (1933). (116) Amos (to Dow Chem. Co.), U.S. 2,140,500, Dec. 20, 1938; Cent. 1939, I 3625; C.A. 33, 2540 (1939). (117) Leuchs (to I.G.), Ger. 659,927, May 13, 1938; Cent. 1938, II 2840; C.A. 32, 6666 (1938). (118) Goldfarb, Smorgonski, Ber. 69, 1036-1039 (1936). (119) Goldfarb, Smorgonski, Russ. 48,284, Aug. 31, 1936; Cent. 1937, II 139. (120) Varvoglis, Ber. 79, 2393 (1937).

(121) Kaufman, Fuchs, Arch. Pharm. 262, 119-125 (1924). (122) Kyrides, J. Am. Chem. Soc. 55, 1209-1212 (1933). (123) Underwood, Wakeman, J. Am. Chem. Soc. 52, 387-391 (1930). (124) Underwood, Toone, J. Am. Chem. Soc. 52, 391-394 (1930). (125) Blaisé, Bull. soc. chm. (4) 9, V (1911). (126) Kozlov, Bogdanovskava, Sologub, J. Gen. Chem. (U.S.S.R.) 6, 315-317 (1936); Cent. 1936, II 1896; C.A. 30, 4813 (1936). (127) Descudé, Compt. rend. 132, 1129 (1901). (128) Andrussow (to I.G.), Ger. 634,549, Aug. 29, 1936; Cent. 1936, II 4048; C.A. 31, 419 (1937): French 799,582, June 15, 1936; Cent. 1936, II 4048; C.A. 30, 7585 (1936). (129) Wilson (to Carbide and Carbon Chem. Corp.), U.S. 2,263,666, Nov. 25, 1941; C.A. 36, 1335 (1942). (130) Teupel (to I.G.), Ger. 574,833, April 24, 1933; Cent. 1933, II 131; C.A. 27, 4543 (1933).

(131) Traube, Z. angew. Chem. 38, 444 (1925). (132) Traube, Ger. 362,741, Oct. 31, 1922; Cent. 1923, II 741; not in C.A.; U.S. 1,470,656, Oct. 16, 1923; C.A. 18, 87 (1924). (133) Baumgarten, Ber. 59, 1166, 1169 (1926). (134) Binkley, Degering, Proc. Indiana Acad. Sci. 49, 117 (1939); C.A. 35, 5458 (1941). (135) Norris, Arthur, J. Am. Chem. Soc. 62, 875 (1940). (136) Choppin, Frediani, Kirby, J. Am. Chem. Soc. 61, 3176-3180 (1939). (137) Choppin, Kirby, J. Am. Chem. Soc. 62, 1592-1594 (1940). (138) Rivier, Richard, Helv. Chem. Acta 8, 492, 495 (1925). (139) Hopkins, J. Chem. Soc. 117, 278-282 (1920). (140) Carré, Passedouet, Compt. rend. 200, 1767-1769 (1935).

(141) Carré, Bull. soc. chim. (5) 3, 1069, 1072 (1936). (142) Rennie, J. Chem. Soc. 41, 33 (1882). (143) Kraft, Lyutina, J. Gen. Chem. (U.S.S.R.), 1, 190-192 (1931); Cent. 1931, II 3197; C.A. 26, 2167 (1932). (144) Vol'nov, J. Gen. Chem. (U.S.S.R.), 2, 2269-2282 (1939); C.A. 34, 5048 (1940). (145) Kyrides (to Monsanto Chem. Co.), U.S. 1,939,216, Dec. 12, 1933; Cent. 1934, I 2040; C.A. 28, 1361 (1934). (146) Baumann, Hirschbeck (to I.G.), U.S. 2,118,662, May 24, 1938; [C.A. 32, 5413 (1938)]: Brit. 470,817, Sept. 16, 1937; Cent. 1938, I 180; C.A. 32, 956 (1938). (Ger. 651,610, Oct. 23, 1937; Cent. 1938, I 180; C.A. 32, 596 (1938). (147) Vaughan, Rust, J. Org. Chem. 5, 449-471 (1940). (148) Vaughan, Rust (to Shell Development Co.), U.S. 2,299,441, Oct. 20, 1942; C.A. 37, 1722 (1943): U.S. 2,284,482, May 26, 1942; C.A. 36, 6546 (1942): U.S. 2,246,082, June 17, 1941; C.A. 35, 5911 (1941). (149) Flemming, Dachlauer, Schnitzler (to I.G.), U.S. 2,162,532, June 13, 1939; [C.A. 33, 7822 (1939)]: Brit. 483,051, May 5, 1938; Cent. 1938, II 2031; C.A. 32, 7057 (1938): French 826,808, April 11, 1938; Cent. 1938, II 2031; [C.A. 33, 2031]

7926 (1938)]. (150) Reilly (to Dow Chem. Co.), U.S. 2,140,547, Dec. 20, 1938; Cent. 1839, I 3625; C.A. 33, 2540 (1938).

(151) Lacy, U.S. 1,242,208, Oct. 9, 1917; C.A. 12, 155 (1918). (152) Gremli, Austrian 108,421. 108,424, Dec. 27, 1927; Cent. 1928, I 1229; not in C.A. (153) Müller, Conradi (to I.G.), Ger, 436,999, Nov. 11, 1926; Cent. 1927, I 354; not in C.A. (154) Rudkovskii, Aleksandrov, Pazhitnov, Ivanovskii, Goloushin, Org. Chem. Ind. (U.S.S.R.) 4, 499-502 (1937); C.A. 32, 4939 (1938); not in Cent. (155) Rudakovski, Trifel, Trans. Expt. Research Lab. "Khemgas," Materials on Cracking and Chem. Treatment of Cracking Products (U.S.S.R.) 3, 202-208 (1936); C.A. 31, 5319 (1937); not in Cent. (156) Wibaut, Z. Elektrochem. 35, 602-605 (1929). (157) Rudkovskii, Trifel. Frost, Ukrain. Khem. Zhur. 10, Sci. pt., 277-282 (1935); Cent. 1936, I 3667; C.A. 30, 2082 (1936), (158) Linnett, Trans. Faraday Soc. 36, 527-533 (1940). (159) Wibaut, Dickmann, Rutgers, Rec. trav. chim. 47, 477-495 (1928). (160) Hjerpe, Gruse (to Gulf Oil Co.), U.S. 2,099,480, Nov. 16, 1937; Cent. 1938, I 3418; [C.A. 32, 195 (1938)]; U.S. 1,944,839, Jan. 23, 1934; Cent. 1934,

I 2696; C.A. 28, 2174 (1934).

(161) Webb (to Carbide and Carbon Chem. Corp.), U.S. 1,560,625, Nov. 10, 1925; Cent. 1926. (162) Chem. Fabrik Weiler-ter-Meer, Brit. 235,521, July 9, 1925, I 1713; C.A. 20, 51 (1926). Cent. 1926, I 2240; C.A. 20, 918 (1926); Suida (to I.G.), Ger. 478,082, June 19, 1929; [Cent. 1929, II 1071]; C.A. 23, 4231 (1929). (163) Suida (to I.G.), Brit. 229,298, April 16, 1925; Cent. 1925. II 2090; C.A. 19, 3092 (1925): Ger. 485,434, Oct. 31, 1929; Cent. 1930, I 3829; C.A. 24, 866 (1930): French 591.753, July 17, 1925; Cent. 1925, II 2090; not in C.A. (164) Suida (to Chem. Fabrik Weiler-ter-Meer), Ger. 420,441, Oct. 24, 1925; Cent. 1926, I 2241; C.A. 20, 918 (1926). (165) Curme (to Carbide and Carbon Chem. Corp.), U.S. 1,518,182, Dec. 9, 1924; Cent. 1925, I 1129; C.A. 19, 523 (1925). (166) Tulleners, Tuyn, Waterman, Dutch 36,489, Oct. 15, 1935; Cent. 1936, I 1500; not in C.A. (167) Chamberlain, Williams, Blue (to Dow Chem. Co.), U.S. 2,140,507, Dec. 20, 1938; Chamberlain, Amos, Williams (to Dow Chem. Co.), U.S. 2,140,508, Dec. 20, 1938; Cent. 1939, I 3625; C.A. 33, 2540 (1939). (168) Pierce (to Dow Chem. Co.), U.S. 2,140,927, Dec. 20, 1938; Cent. 1939, I 3625; C.A. 33, 2540 (1939). (169) Hemminger (to Std. Oil. Dev. Co.), U.S. 2,353,563, July 11, 1944; C.A. 38, 5844 (1944). (170) Chem. Fabrik. Weiler-ter-Meer, Ger. 417,170, Aug. 8, 1925; Cent. 1925, II 2089; not in C.A.

(171) Blue (to Dow Chem. Co.), U.S. 2,180,345, Nov. 21, 1939; C.A. 34, 1688 (1940). Keyl, Blue (to Dow Chem. Co.), U.S. 2,209,981, Aug. 6, 1940; C.A. 35, 139 (1941). (173) Slotterbeck, Rosen (to Std. Oil Dev. Co.), U.S. 2,174,278, Sept. 26, 1939; C.A. 34, 778 (1940). (174) N. V. de Bataafsche Petroleum Maatschappij, French 830,602, Aug. 4, 1938; Cent. 1938, II 3460; C.A. 33, 1346 (1939). (175) Wibaut, U.S. 1,591,151, July 6, 1926; C.A. 20, 3170 (1926); not in Cent.: Brit. 209,722, March 5, 1924; Cent. 1925, 1 895; C.A. 18, 1673 (1924): Ger. 445,981. June 21, 1927; [Cent. 1927, II 863]; not in C.A.: French 574,800, July 18, 1924; Cent. 1925, I 895; not in C.A. (176) Chamberlain, Williams (to Dow Chem. Co.), U.S. 2,125,284, Aug. 2, 1938; Cent. 1939, I 531; C.A. 32, 7480 (1938). (177) Winkler, Ger. 574,802, March 30, 1933; Cent. 1933, I 3497; C.A. 27, 4543 (1933). (178) Strange, Kane, Brit. 500,880, March 16, 1939; Cent. 1839. II 226; C.A. 33, 5867 (1939). (179) Roush, Morrell (to Dow Chem. Co.), U.S. 2,110,141, March 8, 1938; Cent. 1938, I 4533; C.A. 32, 3421 (1938). (180) Balandin, Livanova, Uchenye Zapiski (Moscow State Univ.) 2, 237-239 (1934); Cent. 1935, II 1528; C.A. 30, 6321 (1936).

(181) I.G., French 780,057, April 18, 1935; Cent. 1935, II 1445; C.A. 29, 5862 (1935). (182) Arnold, Lessig (to du Pont Co.), U.S. 2,097,750, Nov. 2, 1937; Cent. 1938, I 1217; C.A. 32, 194 (1938). (183) Flemming (to I.G.), U.S. 2,094,064, Sept. 28, 1937; [C.A. 31, 7893 (1937)]; not in Cent., Brit. 448,269, July 2, 1936; Cent. 1936, II 2446; C.A. 30, 7127 (1936): Ger. 646,478, June 15, 1937; C.A. 31, 6260 (1937); not in Cent.: French 793,744, Jan. 30, 1936; Cent. 1936, I 4074; C.A. 30, 4515 (1936). (184) Bayer and Co., Ger. 361,041, Oct. 9, 1922; Cent. 1923, II 475; not in C.A. (185) Suida (to Chem. Fabrik Weiler-ter-Meer), Ger. 369,702, Feb. 22, 1923; Cent. 1923, II 906; not in C.A. (186) M.L.B., Brit. 216,368, June 19, 1924; Cent. 1925, I 1240; C.A. 19, 78 (1925): French 566,041, Feb. 8, 1924; Cent. 1925, I 1240; not in C.A. (187) Robinson (to Dow Chem. Co.), U.S. 2,286,379, June 16, 1942; C.A. 36, 7032 (1942). (188) Calcott, Daudt (to du Pont Co.), U.S. 2,016,072, Oct. 1, 1935; Cent. 1936, I 2206; C.A. 29, 8004 (1935). (189) Reilly (to Dow Chem. Co.), U.S. 2,031,228, Feb. 18, 1936; Cent. 1936, II 864; C.A. 30, 2205 (1936). (190) du Pont Co., Brit. 466,134, June 17, 1937; Cent. 1937, II 2431; C.A. 31, 7445 (1937).

(191) Dougherty, J. Am. Chem. Soc. 51, 579 (1929). (192) Ferrario, Bull. soc. chim. (4) 7. 525 (1910). (193) Binaghi, Gazz. chim. ital. 57, 672-673 (1927). (194) Crompton, Triffitt, J. Chem. Soc. 119, 1874 (1921). (195) Paterno, Gazz. chim. ital. 49, II 330 (1919). (196) Benrath, J. prakt. Chem. (2) 86, 337 (1912). (197) M.L.B., Brit. 196,272, June 6, 1923; Cent. 1925, I 1240; C.A. 17, 3879 (1923); French 564,641, Jan. 7, 1924; Cent. 1925, I 1240; not in C.A. (198) Nef, Ann. 318, 13-19 (1901). (199) Sabatier, Mailhe, Compt. rend. 141, 238 (1905). (200) D'Ans,

Kautzsch, J. prakt. Chem. (2) 89, 305-314 (1909).

(201) Aschan, Cent. 1919, I 221; C.A. 13, 2868 (1919). (202) Rust, Vaughan, J. Org. Chem. 6, 479-487 (1941). (203) Meyer, Muller, Ber. 24, 4249 (1891); J. prakt. Chem. (2) 46, 173-174 (1892). (204) Coleman, Noyes, J. Am. Chem. Soc. 43, 2214-2215 (1921). (205) Calfee, Fukuhara, Young, Bigelow, J. Am. Chem. Soc. 62, 267-269 (1939) (206) Chadwell, Titani, J. Am. Chem. Soc. 55, 1363-1375 (1933). (207) Denzel, Ann. 195, 189-205 (1879). (208) Meyer, Petrenko-Kritschenko, Ber. 25, 3306-3307 (1892). (209) Gurvich, J. Russ. Phys.-Chem. Soc. 48, 837-856 (1916); Cent. 1923, I 1531; C.A. 11, 1781 (1917); Z. physik. Chem. 107, 241 (1923). (210) Criqueboef, Gillet, French 528,344, Nov. 10, 1922, Cent. 1922, IV 946; not in C.A.

(211) Medvedev, Abkin, J. Phys. Chem. (U.S.S.R.) 4, 731-739 (1933); Cent. 1935, I 2520; not in C.A. (212) Abkin, Medvedev, Russ. 34,551, Feb. 28, 1934, CA. 29, 2973 (1935). (213) Hale (to Dow Chem. Co.), U.S. 1,938,453, Dec. 5, 1933, Cent. 1934, I 1709; C.A. 28, 1047 (1934). (214) Izmail'skii, Popov, Bull. soc. chim. (5) 3, 2028-2037 (1936). (215) Izmail'skii, Popov, J. Gen. Chem. (U.S.S.R.) 8, 695-697 (1938); Cent. 1939, I 2746; C.A. 33, 1263 (1939). (216) Grant, Hinshelwood, J. Chem. Soc. 1933, 260. (217) Carter, Coxe (to Karpen Bros.), U.S. 1,459,177, June 19, 1923; Cent. 1925, II 1224; C.A. 17, 2886 (1923). (218) Groves, J. Chem. Soc. 13, 331-333 (1861). (219) Stahler, Ber. 47, 910-911 (1914). (220) Picon, Bull. soc. chim. (4) 35, 979-981 (1924).

(221) Purgold, Ber. 6, 502-506 (1873). (222) Conant, Hussey, J. Am. Chem. Soc. 47, 477, 484 (1925). (223) Harlow, Ross (to Dow Chem. Co.), U.S. 1,891,415, Dec. 20, 1935; Cent. 1933, I 1683; C.A. 27, 1890 (1933). (224) Edgar, Ind. Eng. Chem. 31, 1439-1446 (1939). (225) Peck (to Std. Oil Dev. Co.), U.S. 2,293,214, Aug. 18, 1942. C.A. 37, 888 (1943). (226) Daudt (to du Pont Co.), U.S. 2,091,114, Aug. 24, 1937; Cent. 1937, II 3075; C.A. 31, 7446 (1937). (227) Amick, Parmelee, Stecher (to du Pont Co.), U.S. 2,091,112, Aug. 24, 1937; Cent. 1937, II 3075; C.A. 31, 7446 (1937). (228) Downing, Parmelee, Pedersen, Stecher (to du Pont Co.), U.S. 2,004,160, June 11, 1935; Cent. 1935, II 3702; C.A. 29, 4775 (1935). (229) Downing, Bake (to du Pont Co.), U.S. 2,000,069, May 7, 1935, Cent. 1935, II 3702; C.A. 29, 4026 (1935). (230) Calcott, Parmelee, Stecher (to du Pont Co), U.S. 1,983,535, Dec. 11, 1934; Cent. 1935, I 2599; C.A. 29, 817 (1935): Brit. 453,271, Sept. 1, 1936, C.A. 31, 1043 (1937), not in Cent.

(231) Downing, Bake (to du Pont Co.), U.S. 1,979,254, Nov. 6, 1934, Cent. 1935, II 1955: C.A. 29, 111 (1935). (232) Calcott, Parmelee, Meschter (to du Pont Co.), U.S. 1,962,173, June 12, 1934; Cent. 1934 II 3842; C.A. 28, 4847 (1934). (233) Calcott, Parmelee, Meschter (to du Pont Co.), U.S. 1,944,167, Jan. 23, 1934; Cent. 1934, I 2654; C.A. 28, 1982 (1934). Daudt (to du Pont Co.), U.S. 1,749,567, March 4, 1930; Cent. 1930, I 3354, C.A. 24, 2138 (1930). (235) Daudt, Parmelce (to du Pont Co.), U.S. 1,717,961, June 18, 1929; Cent. 1929, II 2101; C.A. 23, 3931 (1929). (236) Kraus, Callis (to Std. Oil Dev. Co.), U.S. 1,697,245, Jan. 1, 1929; Cent. 1929. I 2468; C.A. 23, 1262 (1929). (237) Calcott, Daudt (to du Pont), U.S. 1,692,926. Nov. 27, 1928; Cent. 1929, I 1741; C.A. 23, 608 (1929). (238) Calcott, Parmelee, Lorriman, U.S. 1,664,021, March 27, 1928; Cent. 1928, I 2989; C.A. 22, 1677 (1928). Brit. 280,169, Dec. 30, 1927; Cent. 1928, I 1459; [C.A. 22, 3042 (1928)]. Ger. 504,827, Aug. 14, 1930; [Cent. 1930, I 2440]; C.A. 25, 525 (1931): French 638,103, July 22, 1927; [C.A. 23, 275 (1929)], not in Cent. (239) Monroe (to du Pont Co.), U.S. 1,661,809, March 6, 1928; Cent. 1928, I 2304; C.A. 22, 1367 (1928). (240) Youtz (to Genl. Motors Corp.), U.S. 1,658,544, Feb. 7, 1928, Cent. 1928, I 1913, C.A. 22, 1164 (1928).

(241) Calcott, English (to du Pont Co.), U.S. 1,652,812, Dec. 13, 1927; Cent. 1928, I 1459; C.A. 22, 865 (1928). (242) Daudt, Parmelee, Calcott (to du Pont Co.), U.S. 1,645,375, Oct. 11, 1927; Cent. 1928, I 1328; C.A. 21, 3907 (1927). (243) Calingaert (to Genl. Motors Corp.), U.S. 1,622,233, March 22, 1927; Cent. 1928, I 1709; C A. 21, 1546 (1927). (244) Kraus, Callis (to Std. Oil Dev. Co.), U.S. 1,612,131, Dec. 28, 1926; Cent 1927, II 2111; C.A. 21, 593 (1927): Brit. 290,444, June 14, 1928; Cent. 1929, II 1214; C.A. 23, 848 (1929); Brit. 214,221, June 4, 1924; Cent. 1926, I 491; C.A. 18, 2524 (1924): French 578,858, Oct. 6, 1924, Cent. 1926, I 491; not in C.A. (245) Britton (to Dow Chem. Co.), U.S. 1,805,756, May 19, 1931; Cent. 1931, II 1192; C.A. 25, 3667 (1931). (246) Daudt (to du Pont Co.), U.S. 1,705,723, March 19, 1929; Cent. 1929, II 650; C.A. 23, 2192 (1929): Brit. 283,913, March 14, 1928, Cent. 1929, I 696; C.A. 22, 4134 (1928): Ger. 533,779, Oct. 13, 1927; C.A. 26, 738 (1932); not in Cent.: French 642,120, Aug. 22, 1928; Cent. 1929, I 696; C.A. 23, 1143 (1929). (247) Kraus, Callis (to Std. Oil Dev. Co.), U.S. 1,690,075, Oct. 30, 1928; Cent. 1929, I 696; C.A. 23, 245 (1929). (248) Daudt (to du Pont Co.), Brit. 297,106, Dec. 14, 1927; Cent. 1928, II 2404; C.A. 22, 2836 (1928). (249) Morton, LeFevre, Hechenbleikner, J. Am. Chem. Soc. 58, 757 (1936). (250) Morton, Davidson Hakan, J. Am. Chem. Soc. 64, 2243 (1942).

(251) Hückel, Kraemer, Thiele, J. prakt. Chem. (2) 42, 207-217 (1935). (252) Groll, J. Am. Chem. Soc. 52, 3000 (1930). (253) Spencer, Crewdson, J. Chem. Soc. 93, 1825 (1908). (254) Houben, Boedler, Fischer. Ber. 69, 1766-1788 (1936). (255) Schlenk, Ber. 64, 734-736 (1931). (256) Rudd, Turner, J. Chem. Soc. 1928, 686-691. (257) Coleman, Hermanson, Johnson, J. Am. Chem. Soc. 59, 1896 (1937). (258) Coleman, Buchanan, Paxson, J. Am. Chem. Soc. 55, 3670 (1933). (259) Evans, Lee, J. Am. Chem. Soc. 56, 654-657 (1934). (260) Diuguid, J. Am. Chem. Soc. 63, 3527-3529 (1941).

(261) I.G., French 669,739, Nov. 29, 1929; Cent. 1930, I 3237; C.A. 24, 1866 (1930). (262) Hopff, Ber. 64, 2478 (1931). (263) I.G., Brit. 310,438, May 23, 1929; Cent. 1929, II 1214; C.A. 24, 2137 (1930). (264) I.G., Brit. 354,992, Sept. 10, 1931; Cent. 1931, II 3545; C.A. 26, 5574 (1932). (265) Semon, Yohe (to B. F. Goodrich Co.), U.S. 2,070,848, Feb. 16, 1937; Cent. 1937, II 858; [C.A. 31, 2229 (1937)]. (266) Nikitin, Rudneva, J. Applied Chem. (U.S.S.R.) 6, 45-59 (1933); Cent. 1934, I 1415, C.A. 27, 5964 (1933). (267) Nikitin, Rudneva, J. Applied Chem. (U.S.S.R.) 12, 716-720 (1933); Cent. 1934, II 537; C.A. 28, 3891 (1934). (268) Ismail'skii, Popov, J. Applied Chem. (U.S.S.R.) 12, 776-785, 786-789 (1939); C.A. 34, 3246 (1940). (269) Tolmachev, Trans. Lenngrad Chem.-Tech. Inst. 1, 119-124 (1934); C.A. 29, 2930 (1935); not in Cent. (270) Sheppard, Adams (to Naugatuck Chem. Co.), U.S. 1,471,213, Oct. 16, 1923; Cent. 1926, II 2500; C.A. 18, 155 (1924): Brit. 207,499, Jan. 23, 1924; Cent. 1926, II 2500; C.A. 18, 150 (1924).

(271) Calingaert, Soroos, Hnizda, Shapiro, J. Am. Chem. Soc. 62, 1545-1547 (1940). (272)
Underwood, Gale, J. Am. Chem. Soc. 56, 2117-2120 (1934). (273) Gilman, Furry, J. Am. Chem. Soc. 59, 1214-1216 (1928). (274) Marvel, Gauerke, Hill, J. Am. Chem. Soc. 47, 3009-3011 (1925). (275) Crymble, J. Chem. Soc. 105, 668 (1914). (276) Slotta, Jacobi, J. prakt. Chem. (2) 120, 274 (1928). (277) Brown, Campbell, J. Chem. Soc. 1937, 1700. (278) Levy, Campbell, J. Chem. Soc. 1939, 1443. (279) Graebe, Pictet, Ann. 247, 302-303 (1888). (280) Wanag, Veinbergs, Ber. 75, 1569 (1942).

(281) Sah, Ma, Ber 65, 1630-1633 (1932). (282) Sah, Ma, Sci. Repts. Natl. Tsing Hua Univ.
2, 147-149 (1933). (283) Allen, Nicholls, J. Am. Chem. Soc. 56, 1409-1410 (1934). (284)
Morritt, Levey, Cutter, J. Am. Chem. Soc. 61, 15-16 (1939). (285) Gillespie, J. Am. Chem. Soc. 56, 2740-2741 (1934). (286) Bennett, Jones, J. Chem. Soc. 1939, 421. (287) Lauer, Sanders, Leekley, Ungnade, J. Am. Chem. Soc. 61, 3050 (1939). (288) Drew, Sturtevant, J. Am. Chem. Soc. 61, 2666 (1939). (289) V. H. Dermer, O. H. Dermer, J. Ory Chem. 3, 291 (1938). (290) Dehn, Cope, J. Am. Chem. Soc. 48, 2636-2637 (1926).

3:7020 2-CHLOROPROPENE-1 Cl 
$$C_3H_5Cl$$
 Beil. I - 198 (Isopropenyl chloride  $\alpha$ -methylyinyl chloride)  $CH_2$ -C=CH<sub>2</sub>  $I_{1-}$  (169)

B.P. F.P. 22.65° at 760 mm. (1) 
$$-138.6$$
° (2)  $D_9^9 = 0.918$  (5)  $n_D^{20} = 1.3949$  (4) 22.6° at 760 mm. (2)  $-137.4$ ° (1) 22.5-23.5° at 760 mm. (3) 21.7-21.8° at 743 mm. (4)

[For prepn. of  $\bar{C}$  (45%) together with 2,2-dichloropropane, b.p. 70° (3:7140) (55%), from acetone (1:5400) + PCl<sub>5</sub> see (6) (7) (9); from 2,2-dichloropropane (3:7140) + alc. KOH (3) or KOAm in AmOH (10); for prepn. of  $\bar{C}$  (together with 1-chloropropene-1 (3:7030)) from 1,2-dichloropropane (3:5200) + alc. KOH see (11) (12) (13); for prepn. of  $\bar{C}$  together with cyclopropane (b.p.  $-34^{\circ}$ ) from a mixt. of 1,3-dichloropropane (3:5450) + 1,2,2-trichloropropane (3:5475) on treatment with Zn see (14).]

 $\bar{C}$  with MeOH forms a const.-boilg. mixt., b.p. 22.0°, contg. 97%  $\bar{C}$  + 3% MeOH (15).  $\bar{C}$  treated with conc. H<sub>2</sub>SO<sub>4</sub> and (after evoln. of HCl has ceased) poured into much aq. and steam-distd. (16) or  $\bar{C}$  htd. with 10 vols. aq. in s.t. at 140–180° (17) yields acetone (1:5400) q.v.

 $\bar{C}$  adds  $Br_2$  yielding (8) (12) 2-chloro-1,2-dibromopropane [Beil. I-111], b.p. 169–170° cor. (12).

 $\bar{\rm C}$  adds HBr fairly readily; in the presence of air or of antioxidants in vacuo, the product is pure 2-chloro-2-bromopropane, b.p.  $91.0-92.0^{\circ}$  at 740 mm.,  $34.6-34.8^{\circ}$  at 100 mm.,  $n_{\rm D}^{20}=1.4575$  (4); in the presence of organic peroxides the major reactn. prod. is 2-chloro-1-bromopropane, b.p.  $117.6-118.0^{\circ}$  at 740 mm.,  $52.2-52.8^{\circ}$  at 75 mm.,  $n_{\rm D}^{20}=1.4778$  (4).

3:7020 (1) Timmermans, Bull. soc. chim. Belg. 27, 334-343 (1913); Cent. 1914, I 618. (2) Timmermans, Bull. soc. chim. Belg. 36, 504 (1927). (3) Kahovec, Kohlrausch, Z. physik. Chem. B-46, 178 (1940). (4) Kharasch, Engelmann, Mayo, J. Org. Chem. 2, 288-302 (1938). (5) Linnemann, Ann. 138, 125 (1866). (6) Henne, Renoll, J. Am. Chem. Soc. 59, 2435 (1937). (7) Stewart, Weidenbaum, J. Am. Chem. Soc. 58, 98 (1936). (8) Friedel, Ann. 112, 236-238 (1859). Friedel, Ann. 134, 265 (1865). (10) West, Farnsworth, Trans. Faraday Soc. 27, 147 (1931).

(11) Goudet, Schenker, Helv. Chim. Acta 10, 136-137 (1927). (12) Reboul, Ann. chim. (5) 14, 462-464 (1878). (13) Young (to Carbide and Carbide Corp.), U.S. 1,752,049, March 25, 1930; Cent. 1930, II 1280. (14) Hass, Hinds (to Purdue Research Foundation), U.S. 2,235,762, March 18, 1941; C.A. 35, 4042 (1941). (15) Lecat, Rec. trav. chim. 46, 242 (1927). (16) Oppenheim, Ann. Suppl. 6, 364-366 (1868). (17) Linnemann, Ann. 161, 66 (1872).

# 3: 7022 ETHYL HYPOCHLORITE

CH<sub>3</sub>.CH<sub>2</sub>OCl

C<sub>2</sub>H<sub>5</sub>OCl

Beil. I - 324  $I_{1}$ -(164)

 $I_{2}$ -(325)

B.P. 36° at 758 mm. (1) 36° at 752 mm. (2)  $D^{-6} = 1.013 (1)$ 

[See also ter-butyl hypochlorite (3:7165).]

Colorless oil (rapidly turning yellow in light) with odor like hypochlorous acid. — Č explodes on superhtg, its vapor or even in cold upon addn, of Cu powder or in bright sunlight — C gradually decomposes on stdg. in diffuse light with forms. of ethyl acetate and other prods. (3) (4) (10). [For study of stability of  $\bar{C}$  in aq. or in CCl<sub>4</sub> soln. see (4).] — Sol. ether, C<sub>6</sub>H<sub>6</sub>, CHCl<sub>3</sub>; for distrib. of C between aq. and CCl<sub>4</sub> see (4).

[For prepn. of C from EtOH (1:6130) with Cl<sub>2</sub> in cold aq. alk. (2) (5) (1) (6) (7) (8) (9) or alk. earth (9) or with aq. HOCl in pres. of CCl4 (4) see indic. refs.; for formn. of C from EtOH (1:6130) with  $Cl_2$  at  $-18^{\circ}$  (8) or with dry  $Ca(OCl)_2$  (15) or aq. HOCl (15) (16) see indic. refs.

Č is able according to prevailing circumstances to act as an oxidizing agent, chlorinating agent, or for addn. to unsaturated linkages: furthermore since in aq. C is extensively hydrolyzed (69% in sat. aq. soln. (4)) it may serve as source of HOCl; examples of these reactions are given below.

 $\bar{\mathbf{C}}$  with inorganic reactants.  $\bar{\mathbf{C}}$  with KI + AcOH liberates I<sub>2</sub> quant, according to the equation  $C_2H_5OCl + 2HI \rightarrow C_2H_5OH + HCl + I_2$  (use in quant. detn. of  $\bar{C}$  (2) (4) (7)); C with dil. alk. Na<sub>3</sub>AsO<sub>3</sub> gives (11) (12) EtCl (3:7015) + Na<sub>3</sub>AsO<sub>4</sub>; C in dil. alk. KSH/ KCN mixt. gives (12) KSCN + KCl + EtOH.

[C adds to dry SO<sub>2</sub> yielding (5) ethyl chlorosulfonate [Beil. I-327, I<sub>2</sub>-(327)], b.p. 151-154°  $\operatorname{dec.}, n_{\mathbf{D}}^{18} = 1.4174.$ 

 $\sqrt{C}$  (1 mole) with KCN (2 moles) in 7 pts. aq. at  $-5^{\circ}$  gives (30% yield (13)) ethyl cyanoiminoformate [Beil. II-549, II<sub>1</sub>-(238), II<sub>2</sub>-(511)], oil, b.p. 133° dec., accompanied by a little diethyl di-imino-oxalate [Beil. II-547, II<sub>1</sub>-(238)], m.p. 38°, b.p. 172° strong dec.; in aq. alc., however, the same components give (13) diethyl iminocarbonate [Beil. III-37, III<sub>1</sub>-(18), III<sub>2</sub>-(31)], oil, b.p. 141° cor., accompanied by diethyl di-iminooxalate (see above),

C with organic reactants. [C with EtOH (1:6130) yields (8) acetaldehyde (1:0100). acetaldehyde diethylacetal (1:0156), and paraldehyde (1:0170). —  $\tilde{C}$  with acetaldehyde (1:0100) at 0° followed by distn. of the mixture with anhyd. oxalic acid yields (3) chloroacetaldehyde (3:7212).]

IC with acetone (1:5400) yields (3) chloroacetone (3:5425); C with methyl phenyl ketone (acetophenone) (1:5515) yields (3) ω-chloroacetophenone (phenacyl chloride) (3:1212); Č with benzaldehyde (1:0195) yields (3) benzoyl chloride (3:6240),]

[C with phenol in CCl4 yields (3) both o-chlorophenol (3:5980) and p-chlorophenol

(3:0475); Č with hydroquinone (1:1590) in ether gives (3) 2,3-dichlorohydroquinone (3:4220).

Č with phenyl MgBr in ether at 0° gives (60% yield (14)) (1) chlorobenzene (3:7903). [Č with phenylacetylene (1:7425) in CCl<sub>4</sub> yields (3) ω,ω-dichloroacetophenone (3:6835).] [Č with cyclohexene (1:8070) in CCl<sub>4</sub> yields (3) 2-chlorocyclohexanol-1 (3:0175); for reactn. of Č with indene (1:7522) or with 1.4-dihydronaphthalene see (3).

[ $\bar{C}$  with olefins adds to the unsatd. linkage to give chlorohydrin ethyl ethers (a process now generically designated as chloroalkoxylation): e.g.,  $\bar{C}$  with ethylene yields (15) (17)  $\beta$ -chloroethyl ethyl ether (ethylene chlorohydrin ethyl ether) (3:7463);  $\bar{C}$  with amylene gives (3) a corresp. prod.; the rate of addn. of  $\bar{C}$  to olefins increases from ethylene to amylene (18). — For extensive studies on the prepn. of chlorohydrin ethers from olefins by use of alcs. + N,N-dichlorobenzenesulfonamide (which mixture appears to generate ROCl as the active addn. agent) see (18) (19) (20) (21).]

[ $\bar{C}$  has, however, but slight tendency to add to unsaturated acids: e.g.,  $\bar{C}$  in CCl<sub>4</sub> has no actn. (22) on cinnamic acid (1:0735);  $\bar{C}$  in dry ether or CCl<sub>4</sub> with crotonic acid (1:0425) or sorbic acid gives only traces (23) of the expected prods. —  $\bar{C}$  in CCl<sub>4</sub> with hexen-3-oic acid-1 (hydrosorbic acid) [Beil. II-435, II<sub>1</sub>-(193), II<sub>2</sub>-(404)] gives addn. to extent of 92% in 3 days (23), but the prod. is not a chloro-ethoxy-hexanoic acid and consists entirely of a mixt. of two stereoisomeric  $\beta$ -chlorohexanoic lactones.]

3:7022 (1) Durand, Naves, Bull. soc. chim. (4) 37, 717-723 (1925). (2) Sandmeyer, Ber. 18, 1767-1769 (1885). (3) Goldschmidt, Endres, Dirsch, Ber. 58, 572-577 (1925). (4) Taylor, MacMullen, Gammal, J. Am. Chem. Soc. 47, 395-403 (1925). (5) Sandmeyer, Ber. 19, 857-861 (1886). (6) Schaefer, Z. physik. Chem. 93, 316 (1919). (7) Chattaway, Backeberg, J. Chem. Soc. 123, 2999-3003 (1923). (8) Chattaway, Backeberg, J. Chem. Soc. 125, 1097-1101 (1924). (9) Deanesly (to Shell Development Co.), U.S. 1,938,175, Dec. 5, 1933; Cent. 1934, I 1709; C.A. 28, 1053 (1934). (10) Durand, Naves, Bull. soc. chim. (4) 37, 1152-1154 (1925).

(11) Gutmann, Z. anal. Chem. 66, 232 (1925). (12) Gutmann, Ber. 50, 1717-1718 (1917). (13) Nef, Ann. 287, 274-275, 298-299 (1895). (14) LeFevre, Markham, J. Chem. Soc. 1834, 703-704. (15) Sukhnevich, Chilingaryan, J. Gen. Chem. (U.S.S.R.) 2, 783-789 (1932); Cent. 1933, II 1170; C.A. 27, 2670 (1933). (16) Schmitt, Goldberg, J. prakt. Chem. (2) 19, 393-396 (1879). (17) Sukhnevich, Chilingaryan, Ber. 68, 1210 (1935). (18) Sklyarov, J. Applied Chem. (U.S.S.R.) 12, 1835-1839 (1939); Cent. 1940, II 607-608; C.A. 34, 7843 (1940). (19) Sklyarov, J. Gen. Chem. (U.S.S.R.) 9, 2121-2125 (1939); Cent. 1940, II 199-200; C.A. 34, 4055 (1940). (20) Likhosherstov, Sklyarov, Acta Univ. Voronegiensis 8, No. 2, 47-53 (1935); Cent. 1936, II 2524; C.A. 32, 4524-4525 (1938).

(21) Likhosherstov, Alekseev, J. Gen. Chem. (U.S.S.R.) 4, 1279-1282 (1934); Cent. 1936, I
4287; C.A. 29, 3306 (1935). (22) Jackson, Pasiut, J. Am. Chem. Soc. 49, 2079 (1927). (23)
Bloomfield, Farmer, J. Chem. Soc. 1932, 2065, 2070-2071.

B.P. 
$$F.P.$$
  $-117.0^{\circ}$  (8)  $D_{4}^{25} = 0.84281$  (8)  $36.5^{\circ}$  at 760 mm. (2) (5)  $D_{4}^{20} = 0.86168$  (8)  $n_{D}^{20} = 1.377$  (17)  $36.2-36.5^{\circ}$  u.c. (3)  $0.8610$  (7)  $36.25^{\circ}$  (4)  $D_{4}^{15} = 0.86797$  (8)  $n_{D}^{15} = 1.38110$  (8)  $36.0^{\circ}$  at 760 mm. (6)  $35.5^{\circ}$  at 757 mm. (7)  $34.8$  at 760 mm. (8)  $34.5^{\circ}$  at 740 mm. (43)

Colorless limpid liquid with not unpleasant odor. — Alm. insol. aq. [for precise data see (9) (10) (11).] — [For use as refrigerant see (12).]

 $\bar{\mathbf{C}}$  with MeOH, b.p. 64.7°, forms const.-boilg. mixt., b.p. 33.4°, contg. 94 wt. %  $\bar{\mathbf{C}}$  (4);  $\bar{\mathbf{C}}$  with EtOH, b.p. 78.3°, forms const.-boilg. mixt., b.p. 35.6°, contg. 97.2 wt. %  $\bar{\mathbf{C}}$  (4) [for other azeotropes see Beil. I<sub>2</sub>-(72).]

[For prepn. of  $\bar{C}$  from propanol-2 (1.6135) with conc. HCl + ZnCl<sub>2</sub> (yield: 70-76% (13)) (14) (15) (16) (17) (43); with PCl<sub>3</sub> + ZnCl<sub>2</sub> (74% yield (15)); with PCl<sub>5</sub> + ZnCl<sub>2</sub> (66% yield (15)); with SOCl<sub>2</sub> + pyridine (80% yield (15)); or with AlCl<sub>3</sub> (70% yield (18)) see indic. refs., for prepn. from propylene by addn. of HCl under various conditions see (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30).]

[For formn. of  $\bar{C}$  (together with other products) by actn. of  $Cl_2$  on propane see (31), for further actn. of  $Cl_2$  on  $\bar{C}$  see (3).] — [For isomerization of 1-chloropropane to  $\bar{C}$  in presence of metallic catalysts see 1-chloropropane (3:7040).] — [For purification of  $\bar{C}$  with conc.  $H_2SO_4$  see (32).]

Č on hydrolysis yields propanol-2 (1:6135). [For study of this reactn. see (2); for use in mfg. of propanol-2 see (33).]

[For reactn. of C with KI in acctone see (1).]

C with Mg in dry ether gives (90% yield (17), 93.9% (44)) RMgCl (for reactions of this see below).

[For study of behavior of  $\bar{C}$  with  $C_6H_6$  or toluene in pure HCl under press. see (45); for behavior with  $C_6H_6+Al/Hg$  see (46).]

- (36) Isobutyranilide: m.p. 105° (34); 104-105° (35); u.e. (36); 103° cor. (37). [From C (36) or from isopropyl bromide (37) via conversion to RMgX and reactn. with phenyl isocyanate.]
- —— Isobutyr-p-toluidide: m.p. 108.5-109.5° (38); 106-106.5° (39). [Presumably similarly obtainable via RMgCl + p-tolyl isocyanate but not actually so recorded.]
- ---- Isobutyr- $\alpha$ -naphthalide: unrecorded.
- —— S-(Isopropyl)isothiourea picrate: m.p. 196° (40). [From isopropyl bromide on htg. 3 hrs. in alc. with thiourea, then adding PkOH (40), but not recorded from C.]
- Isopropyl mercuric chloride (sec-PrHgCl): m.p. 97° (47). [Reported only by indirect means (47).]
- ---- N-(Isopropyl)phthalimide (2-(N-phthalimido)propane): m.p. 86° (48), 85° (49). [Not reported from  $\bar{C}$  but obtd. from isopropyl bromide with K phthalimide in s.t. at 160-170° for 7 hrs. (49), also indirectly (48) (50).]
- ---- N-(Isopropyl)-3-nitrophthalimide: unreported.
- ---- N-(Isopropyl)tetrachlorophthalimide: unreported.
- ---- N-(Isopropyl)-N-(p-bromobenzenesulfonyl)-p-anisidine: m.p. 107° u.c. (52). [Not reported from  $\bar{\mathbf{C}}$  but obtd. from isopropyl bromide with N-(p-bromobenzenesulfonyl)-p-anisidine in alc. KOH (52).]
- ---- p-Isopropoxybenzoic acid: m.p. 160-163° (53). [From  $\tilde{C}$  (?) or from isopropyl bromide with ethyl p-hydroxybenzoate (1:1534) in abs. alc. NaOEt on refluxing 1 hr. (53).]
- —— Isopropyl 2,4,6-triiodophenyl ether: m.p. 43° cor. (41). [From isopropyl bromide on refluxing with 2,4,6-triiodophenol, m.p. 157-158°, in alc. NaOEt (41).]
- Isopropyl  $\alpha$ -naphthyl ether: b.p. 282.5° cor. (42) [picrate: m.p. 104.5-105.5° cor. (42)].

—— Isopropyl β-naphthyl ether: b.p. 285° cor., m.p. 40.0° cor. (42) [picrate: m.p. 95.0-95.5° cor. (42)].

3:7025 (1) Conant, Hussey, J. Am. Chem. Soc. 47, 485 (1925). (2) Hughes, Shapiro, J.Chem. Soc. 1937, 1177-1183. (3) Rust Vaughan, J. Org. Chem. 6, 479-488 (1941). (4) Lecat, Rec. trav. chim. 46, 242 (1927). (5) Zander, Ann. 214, 157-158 (1882). (6) Matthews, Fehland, J. Am. Chem. Soc. 53, 3216 (1931). (7) Groves, Sugden, J. Chem. Soc. 1937, 161. (8) Timmermans, Martin, J. chim. phys. 25, 422 (1927). (9) Fühner, Ber. 57, 514 (1924). (10) van Arkel, Vles, Rec. trav. chim. 55, 408 (1936)

(11) Rex, Z. physik. Chem. 55, 364 (1906). (12) Churchill, U.S. 1,996,538, April 2, 1935; Cent. 1936, II 1984. (13) Norris, Orp. Syntheses, Coll. Vol. 1 (1st ed.), 137-138 (1932). (14) Norris, Taylor, J. Am. Chem. Soc. 46, 757 (1924). (15) Clark, Streight, Trans. Roy. Soc. Can. (3) 23, III 77-89 (1929). (16) Linnemann, Ann. 136, 41-42 (1865). (17) Whitmore, Johnston, J. Am. Chem. Soc. 60, 2265 (1938). (18) Norris, Sturgis, J. Am. Chem. Soc. 61, 1415 (1939). (19) Maass, Sivertz, J. Am. Chem. Soc. 47, 2883-2891 (1925). (20) Sutherland, Mass, Trans.

Roy. Soc. Can. (3) 20, III 499-505 (1926); Cent. 1927, II 2174; C.A. 21, 2657 (1927).

(21) Thomas, Morris (to Monsanto Chem. Co.), U.S. 2,285,173, June 9, 1942; C.A. 36, 6546 (1942). (22) Ballard (to Shell Development Co.), U.S. 2,284,467, May 26, 1942; C.A. 36, 6546 (1942). (23) Arnold, Lessig (to du Pont), U.S. 2,097,750, Nov. 2, 1937, Cent. 1938, I 1217. (24) du Pont Co., Brit. 466,134, June 17, 1937; Cent. 1937, II 2431. (25) Daudt (to du Pont), U.S. 2,016,075, Oct. 1, 1935; Cent. 1936, I 2206. (26) Daudt, Stansfield (to du Pont), U.S. 2,016,072, Oct. 1, 1935; Cent. 1936, I 2206. (27) du Pont Co., Brit. 450,843, Aug. 20, 1936; Cent. 1936, II 4048. (28) Nutting, Petrie, Crooke, Huscher (to Dow Chem. Co., U.S. 1,985,457, Dec. 25, 1934; Cent. 1935, I 3597. (29) Brouwer, Wibaut, Rec. trav. chim. 53, 1001-1010 (1934). (30) Wibaut, Diekmann, Rutgers, Rec. trav. chim. 47, 477-495 (1928).

(31) Hass, McBee, Weber, Ind. Eng. Chem. 27, 1190-1195 (1935) (32) Norris (to Petroleum Chem. Corp), U.S. 1,825,814, Oct. 6, 1931; Cent. 1932, I 1438. (33) Britton, Coleman, Moore (to Dow Chem. Co.), U.S. 2,110,838, Mar. 8, 1938; Cent. 1938, I 4533. (34) Tingle, Blanck, J. Am. Chem. Soc. 30, 1408 (1908). (35) Fieser, Campbell, J. Am. Chem. Soc. 60, 168-169 (1938). (36) Underwood, Gale, J. Am. Chem. Soc. 56, 2119 (1934). (37) Schwartz, Johnson, J. Am. Chem. Soc. 53, 1065 (1931). (38) von Auwers, Ungemach, Ber. 67, 252 (1934). (39) Fieser, Hartwell, Seligman, J. Am. Chem. Soc. 58, 1226 (1936). (40) Levy, Campbell, J. Chem. Soc. 1939, 1443.

(41) Drew, Sturtevant, J. Am. Chem. Soc. 61, 2666 (1931). (42) V. H. Dermer, O. C. Dermer, J. Org. Chem. 3, 290-291 (1939). (43) Vogel, J. Chem. Soc. 1943, 638-639. (44) Houben, Boedler, Fischer, Ber. 69, 1769, 1781 (1936). (45) Simmons, Hart, J. Am. Chem. Soc. 66, 1310-1311 (1944). (46) Diuguid, J. Am. Chem. Soc. 63, 3527-3529 (1941). (47) Goret, Cent. 1922 III 1371. (48) Vanags, Acta Univ. Latrensis, Kım. Fakultat, Series 4, No. 8, 405-421 (1939); Cent. 1939 II 3816; C.A. 34, 1983 (1940). (49) Gabriel, Ber. 24, 3106-3107 (1891). (50) Sachs, Ber. 31, 1228 (1898).

(51) Merritt, Levey, Cutter, J. Am. Chem. Soc. **61**, 15-16 (1939). (52) Gillespie, J. Am. Chem. Soc. **56**, 2740-2741 (1934). (53) Lauer, Sanders, Leekley, Ugnade, J. Am. Chem. Soc. **61**, 3050 (1939).

3: 7030 1-CHLOROPROPENE-1 H 
$$C_3H_5Cl$$
 Beil. I - 198 (Propenyl chloride,  $\beta$ -methylvinyl chloride) CH<sub>3</sub>. CH= $C$   $C_1$ 

trans form

B.P. F.P. 37.4° at 760 mm. (1) 
$$-99^{\circ}$$
 (1)  $n_{\rm D}^{20} = 1.4054$  (2) 36.7° at 747 mm. (2)

cis form

B.P. F.P. 
$$n_{\rm D}^{20} = 1.4053$$
 (2)  $n_{\rm D}^{20} = 1.4053$  (2)  $n_{\rm D}^{20} = 1.4053$  (2)

Mobile colorless liq. lighter than water (3).  $\ddot{\mathbf{C}}$  is stable toward hydrolysis; for use in anal. of mixts. of  $\ddot{\mathbf{C}}$  with 3-chloropropene-1 (allyl chloride) (3:7035) see (7).

[For prepn. of  $\bar{C}$  from 1,1-dichloropropane (3:7230) + alc. KOH in s.t. at 100° (3) (4) or with alc. NaOEt (2) see indicated refs.; for formn. from 1,2-dichloropropane (propylene dichloride) (3:5200) + alc. KOH see (3) (5) ( $\bar{C}$  is principal product (5), but some 2-chloropropene-1 (3:7020) and propadiene are also formed); for formn. of cis isomer from  $\alpha,\beta$ -dichloro-n-butyric acid of m.p. 62.5-63° by warming with Na<sub>2</sub>CO<sub>3</sub> see (6).]

 $\ddot{C}$  with Br<sub>2</sub> at  $-15^{\circ}$  yields 1-chloro-1,2-dibromopropane, b.p. 177-177.5° cor. (3).

 $\bar{\mathbf{C}}$  in presence of air or added peroxides adds HBr rapidly to give exclusively (2) 1-chloro-2-bromopropane, b.p. 117.2-117.3° at 740 mm., 52.0° at 75 mm.,  $n_D^{20} = 1.4795$  (2).

[For study of molecular refraction and dipole moment of both cis and trans forms of C see (8).]

3:7030 (1) Timmermans, Bull. soc. chim. Belg. 36, 504 (1927). (2) Kharasch, Engelmann, Mayo, J. Org. Chem. 2, 288-302 (1938). (3) Reboul, Ann. chim. (5) 14, 462-464 (1878). (4) Goudet, Schenker, Helv. Chim. Acta 10, 132-133 (1927). (5) Klebanskii, Vol'kenshtein, J. Applied Chem. (U.S.S.R.) 8, 108-116 (1935); Cent. 1931, II 1255; C.A. 29, 6879 (1935). (6) Wislicenus, Ann. 248, 297-298 (1888). (7) McBee, Hass, Chao, Welch, Thomas, Ind. Eng. Chem. 33, 180-181 (1941). (8) Hannay, Smyth, J. Am. Chem. Soc. 68, 1005-1008 (1946).

3: 7035 3-CHLOROPROPENE-1 CH<sub>2</sub>=CH.CH<sub>2</sub> C<sub>3</sub>H<sub>5</sub>Cl Beil. I - 198 (Allyl chloride) Cl 
$$I_{1-}$$
 (82)  $I_{2-}$  (169)

B.P. F.P. 46.0-47.5° at 772.5 mm. (1) -134.5°, (7)  $D_4^{25} = 0.93109$  (7) 46-47° at 758 mm. (2) -136.4° (10) 46.0-46.5° (3)  $D_4^{20} = 0.9379$  (14) 45.7° at 760 mm. (5) 0.9374. (11) 0.9267 (9) 45.36° (6)  $D_4^{15} = 0.94419$  (7) 45.1° at 760 mm. (7) 44.9° at 751 mm. (108)  $D_4^{15} = 0.94419$  (7) 44.8° at 754 mm. (8) (61) 44.8° at 754 mm. (9) 44.6° at 760 mm. (10) 44.6° (11) (12)  $D_4^{15} = 0.94419$  (7) 44.5-44.7° at 744 mm. (13) 44.4-44.6° (14)

Colorless oil, spar. sol. aq.; volatile with steam.

Č with EtOH (1:6130) forms a const.-boilg. mixt., b.p. 44° at 760 mm., contg. 95% Č (5); with formic acid (1:1005) forms a const.-boilg. mixt., b.p. 45.0° at 760 mm., contg. 92.5% Č (15).

C is one of most toxic of all halohydrocarbons (for study see (16)).

[For prepn. of Č from allyl alcohol (1:6145) on satn. at 0° with HCl gas and htg. in s.t. at 100° for 3 hrs. (17), with conc. HCl (2 moles) in s.t. 15 hrs. at 100° (78% yield (3)) cf. (1) (23) or 10 days at room temp. (55-65% yield (18)), on distn. with large excess (16 pts.) 6 N HCl (50% yield (19)), with ZnCl<sub>2</sub> + HCl gas at 75-82° (yield: 60% (20), 58% (21)), or dislvd. in cold conc. HCl and treated with Cu<sub>2</sub>Cl<sub>2</sub> (small amt.) + conc. H<sub>2</sub>SO<sub>4</sub> (yield 85-90% (2), 80% (22)) see indic. refs.; from allyl alcohol (1:6145) with SOCl<sub>2</sub> in CaH<sub>8</sub>

(71% yield (21)), with PCl<sub>3</sub> (1) (24), with PCl<sub>3</sub> + ZnCl<sub>2</sub> in  $C_6H_6$  at 0° (63% yield (21)), with PCl<sub>5</sub> + pyridine (73% yield (9)), with PCl<sub>5</sub> + ZnCl<sub>2</sub> in  $C_6H_6$  (57% yield (21)) see indic. refs.]

[For prepn. of  $\bar{C}$  from allyl formate (1:3035) with conc. HCl + a little Cu<sub>2</sub>Cl<sub>2</sub> + conc. H<sub>2</sub>SO<sub>4</sub> (93–98% yield (22)), or with ZnCl<sub>2</sub> + HCl gas (80–90% yield (25)) (26) see indic. refs.; from allyl oxalate in alc. CaCl<sub>2</sub> in s.t. at 100° see (27); from allyl iodide with alc. HgCl<sub>2</sub> at ord. temp. see (27).]

[For comml. prepn. of  $\bar{\rm C}$  from propylene with Cl<sub>2</sub> at elevated temps., e.g., 500° (yield 96%  $\bar{\rm C}$  accompanied by 3% 2-chloropropene-1 (3:7020) + 1% mixed cis and trans isomers of 1-chloropropene-1 (3:7030) (11)) (28) (29), see indic. refs. (note also that the high-boiling material from distn. of comml.  $\bar{\rm C}$  contains (110) approx. 60% 1,3-dichloropropene-1 (3:5280) + 30% 1,2-dichloropropene (3:5200)); for examples of patents covering this procedure see (30) (31) (32) (33) (34) (35); from propane (34) (36) or 1-chloropropane (3:7040) (36) with Cl<sub>2</sub> + cat. at 500-700° see indic. refs.; from 1,2-dichloropropane (3:5200) by suitable pyrolysis (yield: 55-70%  $\bar{\rm C}$  + 30-40% of mixt. of cis and trans isomers of 1-chloropropene-1 (3:7030) + 5% 2-chloropropene-1 (3:7020) (11)) cf. (12) (13) (39); for examples of relevant patents see (37) (38) (40).]

Reactions involving the double bond of  $\bar{C}$ . [ $\bar{C}$  with  $Cl_2$  adds and/or substitutes according to conditions (for study of relative proportions of these reactions see (29) (11));  $\bar{C}$  with  $Cl_2$  at ord. temp. (41) or  $\bar{C}$  with  $SO_2Cl_2$  in  $CCl_4$  in pres. of peroxides (42) gives (80–90% yield (42)) 1,2,3-trichloropropane (3:5840) (note that this comprises one step in one of the modern syntheses of glycerol from petroleum (43) (44));  $\bar{C}$  with  $Cl_2$  at high temp. yields (11) a mixt. of prods. of which the dichloropropene fraction comprises (11) 47% 1,3-dichloropropene-1 (high-boilg. isomer) (3:5280) + 42% 1,3-dichloropropene-1 (low-boilg. isomer) (3:5280) + 11% 1,1-dichloropropene-2 (3:5140) + trace of 1,2-dichloropropene-2 (3:5190).]

[ $\bar{C}$  with Br<sub>2</sub> adds 1 mole of halogen yielding (45) mainly 1,2-dibromo-3-chloropropane ( $\gamma$ -chloropropylene dibromide) [Beil. I-111], b.p. 195° (45); for study of rate of addn. of Br<sub>2</sub> under various conditions see (14) (9) (46) (105); for heat of reactn. see (47).]

[ $\bar{C}$  with conc. aq. HCl in s.t. at 100° for 18 hrs. (48), or  $\bar{C}$  with dry HCl in dark at 0° in absence of FeCl<sub>3</sub> (33% yield (49)) or at room temp. in pres. of FeCl<sub>3</sub> (85–89% yield (49)), gives 1,2-dichloropropane (propylene dichloride) (3:5200); note that addn. of HCl is not complicated by a peroxide effect but is very slow unless FeCl<sub>3</sub> (or less advantageously AlCl<sub>3</sub>) is used as a cat. (49). —  $\bar{C}$  satd. with HBr gas at 0° or below (50), or with conc. aq. HBr at 0° (51), or with HBr gas in s.t. at 100° for 8 hrs. (48) cf. (52), or in presence of Fe (53) or other cat., e.g., BiCl<sub>3</sub> (54), as directed, gives (yields: 36–38% (53), 43% (52), 50% (51), 87% (50)) 1-bromo-3-chloropropane ( $\gamma$ -chloro-n-propyl bromide) (trimethylene chlorobromide) [Beil. I-109, I<sub>1</sub>-(36), I<sub>2</sub>-(75)], b.p. 142°; note that the above mode of addn. is favored by peroxides (49) (54) cf. (106). —  $\bar{C}$  with HI (10–20% excess at 0°) gives exclusively (90–100% yield (55)) 1-chloro-2-iodopropane, b.p. 66.2° at 50 mm.,  $n_D^{20} = 1.5472$  (55); note that in this reactn. formn. of 2-iodopropane (isopropyl iodide) has also been reported (56).]

 $[\bar{C}\ (1\ mole)\ with conc.\ H_2SO_4\ (2\ moles)\ at\ 0^\circ\ gives\ an\ oily\ addn.\ prod.\ (24)\ (presumably\ \beta$ -chloroisopropyl hydrogen sulfate) which upon dilution with aq. and subsequent distillation gives (50% yield (57) (61)) (24) (58) (59) (60) 1-chloropropanol-2 (3:7747); in pres. of CuSO\_4 the yield rises to 66-70% (62). —  $\bar{C}$  adds HOCl yielding (63) (64) (65) (76) 2,3-dichloropropanol-1 (glycerol  $\beta$ -dichlorohydrin) (3:6060). —  $\bar{C}$  with ter-butyl hypochlorite (3:7165) in MeOH contg. a little p-toluenesulfonic acid gives at 40° (44% yield (66)) 1,3-dichloro-2-methoxypropane ( $\beta$ , $\beta$ '-dichloroisopropyl methyl ether), b.p. 154-156° at 730 mm.,  $D_{-}^{20}=1.2235,\ n_{10}^{20}=1.4542$  (66).]

[ $\bar{C}$  with liq. SO<sub>2</sub> + trace of ascaridole + a few drops of aq. or alc. HCl, HBr, or H<sub>2</sub>SO<sub>4</sub> gives (70–100% yield (67)) cf. (68) allyl chloride polysulfone, no def. m.p., dec. 210–235°, sol. CHCl<sub>3</sub> or acetone but insol. most other org. solvents; note, however, that this addn. of SO<sub>2</sub> is completely inhibited by the pres. of as little as 5 mole % of allyl bromide or cinnamyl bromide (67). —  $\bar{C}$  (2 moles) with S<sub>2</sub>Cl<sub>2</sub> (1 mole) in s.t. at 100° for 6 hrs. deposits sulfur and yields (69) bis-( $\beta$ , $\gamma$ -dichloro-n-propyl) sulfide, pale yel. oil, b.p. 181–182° at 15 mm. (69); the same components maintained at room temp. for 10 days, however, deposit no sulfur and on distn. yield (69) bis-( $\beta$ , $\gamma$ -dichloro-n-propyl) disulfide, b.p. 190° at 11 mm. (69).]

[ $\bar{C}$  (2 moles) with cyclopentadiene (1 mole) (1:8030) in s.t. at 170–180° for 8 hrs. gives (74% yield on  $C_5H_6$  (70)) by Diels-Alder addn. 2,5-endomethylene-1,2,5,6-tetrahydrobenzyl chloride (1-(chloromethyl)-2,5-endomethylenecyclohexene-3), b.p. 54–57° at 11 mm. (70). — For polymerization of  $\bar{C}$  see (71) (101).]

[ $\bar{C}$  with excess diazomethane in ether stood for 3 days yields a yel. very hygroscopic ppt. presumably 3-(chloromethyl)- $\Delta^2$ -pyrazoline (72).]

[ $\bar{C}$  with  $C_6H_6$  + conc.  $H_2SO_4$  gives (73) by addn. to the ethylene linkage β-chloro-n-propylbenzene (2-chloro-1-phenylpropane) [Beil. V-391, V<sub>1</sub>-(189), V<sub>2</sub>-(304)], b.p. 85° at 13 mm.,  $D_{-}^{19} = 1.047$ ,  $n_{D}^{19} = 1.5245$  (73); note, however, that  $\bar{C}$  with  $C_6H_6$  in pres. of FeCl<sub>3</sub> at  $-20^\circ$  gives (33.5% yield (74)) (73) the isomeric (β-chloroisopropyl)benzene (1-chloro-2-phenylpropane) [Beil. V<sub>1</sub>-(191)], b.p. 79° at 10 mm.,  $D_4^{17} = 1.0367$ ,  $n_D^{16} = 1.52129$  (74);  $\bar{C}$  with  $C_6H_6$  + AlCl<sub>3</sub> (½ mole) gives none of the β-chloroisopropylbenzene since it apparently reacts with more  $C_6H_6$  yielding (74) α-methylbibenzyl (1,2-diphenylpropane [Beil. V-613, V<sub>1</sub>-(288), V<sub>2</sub>-(517)].] [For analogous condensation of  $\bar{C}$  with fluorobenzene, chlorobenzene (3:7903), and bromobenzene see (118).]

[For oxidn. of  $\bar{C}$  in liq. phase at 75–250° by  $O_2$  in pres. of  $Cu(OAc)_2$  or peroxide catalysts and in an org. solv. such as AcOH to hydroxylated cpds. sec (75).]

Reactions involving the halogen atom of  $\bar{C}$ .  $[\bar{C} + H_2 \text{ over activated charcoal at } 300-500^{\circ}$  gives (58% yield (77)) propylene; note that the double bond is *not* (77) hydrogenated.]  $[\bar{C}$  passed over activated charcoal contg. 1-2% KOH is dehalogenated (78) at 375° to extent of 21%; at 400°, 58%.]

[C with aq. vapor at 550-850° + cat. (79) or under press. with alkali hydroxides (80) or with HCl/Cu<sub>2</sub>Cl<sub>2</sub>(108) yields (cf. (43) (44)) allyl alcohol (1:7145). — C with alc. KOH (81) (107) or alc. NaOH (12) yields allyl ethyl ether (1:7850) + alkali chloride; for use of this reactn. in detn. of C in pres. of cis-1-chloropropene-1 (3:7030) and trans-1-chloropropene-1 (3:7030) see (12); for study of rate of reactn. of C with NaOMe at 16-18° (82) or of C with NaOEt at 35° and 50° (83) see indic. refs.]

[ $\ddot{\mathbf{C}}$  with alc. KSH gives mainly (84) di-allyl sulfide [Beil. I-441, I<sub>1</sub>-(226), I<sub>2</sub>-(478)], b.p. 138-139° (84).] — [For reactn. of  $\ddot{\mathbf{C}}$  with alkali polysulfides in propn. of rubber-like prod. see (85).]

[For studies of rate of reactn. of  $\bar{C}$  with KI in acetone at 20° (83), 25° (86), or 60° (87) cf. (9) see indic. refs.; for reactn. of  $\bar{C}$  with Na<sub>3</sub>AsO<sub>3</sub> yielding allylarsinic acid see (88); for reactn. of  $\bar{C}$  with CuCN giving (85% yield (22)) allyl cyanide (vinylacetonitrile) [Beil. II-408, II<sub>1</sub>-(187), II<sub>2</sub>-(389)], b.p. 117.8-118.2° at 757 mm. (22), see indic. refs.; for reactn. of  $\bar{C}$  with Mg + acetone, giving allyl-dimethyl-carbinol [Beil. I-445, I<sub>2</sub>-(487)], b.p. 118-120°,  $D_4^{17} = 0.83452$ ,  $n_D^{17} = 1.4300$  see (89).]

[ $\tilde{C}$  with conc. aq. NH<sub>4</sub>OH as directed (90) yields allylamine [Beil. IV-205, IV<sub>1</sub>-(389), IV<sub>2</sub>-(662)], b.p. 56°, misc. aq. — For study of rate of addn. of  $\tilde{C}$  to pyridine or reactn. with piperidine see (82) (91); for sepn. of  $\tilde{C}$  from other chloro-olefins, e.g., 1-chloropropene-1 (3:7030) or 2-chloropropene-1 (3:7020), by conv. of  $\tilde{C}$  to quaternary salt see (111).]

 $\dot{C}$  with Mg in dry ether under carefully regulated conditions gives (84% yield (102))

cf. (109) (119) allyl MgCl; note that if this prod. reacts with phenyl isocyanate in a fashion analogous (103) to allyl MgBr the prod. obtd. should be crotonanilide, m.p. 113-114° cor. (103).

[ $\bar{C}$  with Mg in dry ether as directed gives (68% yield crude, 27% pure (92), 60% (93)) hexadienc-1,5 (1:8045). —  $\bar{C}$  with NaNH<sub>2</sub> in liq. NH<sub>3</sub> as directed gives (30% yield (94)) hexatriene-1,3,5 [Beil. I-263, I<sub>2</sub>-(243)], b.p. 76-80°,  $D_4^{20} = 0.7182$ ,  $n_D^{20} = 1.4330$  (94); during the reactn. an intermediate chlorohexadiene (95), b.p. 115° at 748 sl. dec., 46-47.5° at 96 mm.,  $n_D^{20} = 1.4483$ , appears to be formed, and the hexatriene is accompanied (94) (95) by variable amts. of its dimer, trimer, and tetramer. — For reaction of  $\bar{C}$  with monosodium acetylene in liq. NH<sub>3</sub> see (96).]

[Č with 1-chloro-2-methylpropene-2 (methallyl chloride) (3:7145) + Mg in ether gives (93) 47% 2-methylhexadiene-1,5 (b.p. 88.1° at 760 mm.,  $D_4^{20}=0.7198$ ,  $n_D^{20}=1.4184$ ) + 30% 2,5-dimethylhexadiene-1,5 (b.p. 114.3° at 760 mm.,  $D_4^{20}=0.7423$ ,  $n_D^{20}=1.4293$ ) + 12% hexadiene-1,5 (biallyl) (1:8045). — Č with crotyl chloride (the equil. mixt. of 1-chlorobutene-2 (3:7205) and 3-chlorobutene-1 (3:7090)) + Mg in ether gives 34% heptadiene-1,5 (b.p. 93.7° at 760 mm.,  $D_4^{20}=0.7186$ ,  $n_D^{20}=1.4200$ ) + 21% 3-methylheptadiene-1,5 (b.p. 111.0° at 760 mm.,  $D_4^{20}=0.7291$ ,  $n_D^{20}=1.4240$ ) + 10% hexadiene-1,5 (1:8045) + 10% 3-methylhexadiene-1,5 (b.p. 80.0° at 760 mm.,  $D_4^{20}=0.7103$ ,  $n_D^{20}=1.4116$ ) + 1% octadiene-1,6 (b.p. 124.5° at 760 mm.,  $D_4^{20}=0.7441$ ,  $n_D^{20}=1.4336$ ) (93).]

[Č reacts with RMgX cpds. in normal coupling; e.g., Č with EtMgBr gives (97) pentene-1 (1:8205); Č with n-PrMgBr gives (97) hexene-1 (1:8255); Č + n-C<sub>5</sub>H<sub>11</sub>MgCl gives (80% yield (93)) octene-1 (1:8375); Č with iso-AmMgCl gives (60% yield (93)) 6-methylheptene-1 (b.p. 113.2° at 760 mm.,  $D_4^{20} = 0.7119$ ,  $n_D^{20} = 1.4068$ ); Č with o-tolyl MgBr gives (98) o-allyltoluene (b.p. 182–183° at 757 mm.,  $D_4^{20} = 0.9001$ ,  $n_D^{20} = 1.5186$ ).]

Miscellaneous reactions of  $\bar{C}$ .  $[\bar{C}$  with phenol (1:1420) + conc.  $H_2SO_4$  stood at room temp. for 6 months gives (99) o-isopropenylphenol [Beil. VI-572, VI<sub>1</sub>-(283)]; for analogous prods. from  $\bar{C}$  with o-cresol (1:1400), m-cresol (1:1730), and p-cresol (1:1410) see (99).]

- S-Allylisothiurea picrate: m.p. 155° (100). [From C thiourea in EtOH, refluxed for 5 min., treated with PkOH (100).]
- —— N-(Allyl)phthalimide [Beil. XXI-464, XXI<sub>1</sub>-(364)]: m.p. 70°. [The direct prepn. of this epd. from C has not been reported; it has, however, been obtd. from allyl bromide with K phthalimide in s.t. at 150° for 2-3 hrs. (50% yield (104)) and has also been prepd. by numerous indirect means; with Cl<sub>2</sub> in CHCl<sub>3</sub> it yields N-(β,γ-dichloro-n-propyl)phthalimide, ndls. from alc., m.p. 93° (104); with Br<sub>2</sub> in CHCl<sub>3</sub> it yields N-(β,γ-dibromo-n-propyl)phthalimide, m.p. 113-114° (104).]
- —— N-(Allyl)-3-nitrophthalimide: pl. from CS<sub>2</sub>, m.p. 100-101° (112). [Not reported from C but obtd. from allyl bromide with K 3-nitrophthalimide (112); for photographs of cryst. see (113).]
- ---- N-(Allyl)tetrachlorophthalimide: unreported.
- N-(Allyl)-o-sulfobenzoic imide (N-allylsaccharin): m.p. 58° (114). [From C with sodium saccharin in aq. butylcarbitol (1:6517) on refluxing 30 min. (114).]
- —— p-Allyloxybenzoic acid: m.p. 162–163° u.c. (116). [From  $\bar{C}$  (?) or from allyl bromide with ethyl p-hydroxybenzoate (1:1534) in abs. alc. NaOEt on refluxing 1 hr. (116); note, however, that m.p. of prod. is almost identical with corresp. deriv., m.p. 160–163°, from isopropyl halides.]

- —— Allyl α-naphthyl ether: m.p. -10° (117) (corresp. picrate, m.p. 100.5-101.0° cor. (117)).
- —— Allyl  $\beta$ -naphthyl ether: m.p. +16° (117) (corresp. picrate, m.p. 98.5–99.0° cor. (117).)
- Tollens, Ann. 186, 154-156 (1870). (2) Dewael, Bull. soc. chim. Belg. 39, 41-42 (1930). (3) Pilyugin, Ukrain. Chem. Zhur. 6, Tech.-Wiss. Teil 213-216 (1932); Cent. 1932, II 1608; C.A. 26, 4581 (1932). (4) Zander, Ann. 214, 142-144 (1882). (5) Lecat, Rec. trav. chim. 46, 242 (1927). (6) Thorpe, Rodger, Phil. Trans. Roy. Soc. A-185, 464 (1894). (7) Timmermans, Hennaut-Roland, J. chim. phys. 29, 536-537 (1932). (8) Schiff, Ann. 220, 98 (1883). (9) Juvala, Ber. 63, 1991, 2001, 2006 (1930). (10) Timmermans, Bull. soc. chim. Belg. 25, 300-327 (1911); Cent. 1911, II 1015.
- (11) Groll, Hearne, Ind. Eng. Chem. 31, 1530-1537 (1939). (12) McBee, Hass, Chao, Welch, Thomas, Ind. Eng. Chem. 33, 176-181 (1941). (13) Bruhl, Ann. 200, 179-180 (1879). (14) Nozaki, Ogg, J. Am. Chem. Soc. 64, 703, 704-708, 709-716 (1942). (15) Lecat, Ann. soc. sci. Bruxelles 49-B, 111 (1929). (16) Adams, Spencer, Irish, J. Ind. Hyg. Toxicol. 22, 79-86 (1940); C.A. 34, 2065 (1940). (17) Bruylants, Rec. trav. chim. 28, 247 (1909). (18) McCullough, Cortese, J. Am. Chem. Soc. 51, 226 (1929). (19) Norris, Watt, Thomas, J. Am. Chem. Soc. 38, 1075 (1916). (20) Coffey, Ward, J. Chem. Soc. 119, 1302, 1305 (1921).
- (21) Clark, Streight, Trans. Roy Soc. Can. (3) 23, III 77-89 (1929). (22) Breckpot, Bull. soc. chim. Belg. 39, 462-469 (1930). (23) Eltekow, J. Russ. Phys.-Chem. Soc. 14, 394 (1882). (24) Bancroft, J. Am. Chem. Soc. 41, 426-427 (1919). (25) Chem. Fabrik Schering, Ger. 268,340, Dec. 12, 1913; Cent. 1914, I 309. (26) Aschan, Cent. 1919, I 221. (27) Oppenheim, Ann. 140, 205-206 (1866). (28) Vaughan, Rust, J. Org. Chem. 5, 449-471 (1940). (29) Rust, Vaughan, J. Org. Chem. 5, 472-503 (1940). (30) Engs, Redmond (to Shell Development Co.1, 2,077,382, April 20, 1937; Cent. 1937, II 1660; C.A. 31, 3937 (1937).
- (31) Groll, Hearne, Burgin, LaFrance (to Shell Development Co.), U.S. 2,130,084, Sept. 13, 1938; Cent. 1939, I 1253; C.A. 32, 9096 (1938). (32) Engs, Wik (to Shell Development Co.), U.S. 2,321,472, June 8, 1943; C.A. 37, 6675 (1943). (33) I.G., Brit. 502,611, April 20, 1939; Cent. 1939, II 525; C.A. 33, 7318 (1939); French 844,015, July 18, 1939; C.A. 34, 6946 (1940). (34) Flemming, Stein (to I.G.), Ger. 720,545, April 9, 1942; C.A. 37, 2389 (1943). (35) N. V., de Bataafsche Petroleum Maatschappij, Brit. 468,016, July 22, 1937; French 810,112, March 15. 1937; Cent. 1937, II 4101. (36) I.G., Brit. 495,500, Dec. 22, 1938; Cent. 1939, I 1652. (37) Groll (to Shell Development Co.), U.S. 2,207,193, July 9, 1940; C.A. 34, 7934 (1940). (38) Essex, Ward (to du Pont Co.), U.S. 1,477,047, Dec. 11, 1923; Cent. 1925, I 895. (39) Klebanskii Vol'kenstein, J. Applied Chem. (U.S.S.R.) 8, 106-116 (1935); Cent. 1935, II 3298; C.A. 29, 6879 (1935). (40) N. V. de Bataafsche Petroleum Maatschappij, French 843,274, June 28, 1939; Cent. 1939, II 3192; C.A. 34, 6654 (1939).
- (41) Herzfelder, Ber. 28, 2435 (1893). (42) Kharasch, Brown, J. Am. Chem. Soc. 61, 3433 (1939). (43) Williams et al., Chem. Met. Eng. 47, 834-838 (1940); Williams, Trans. Am. Inst. Chem. Engrs. 35, 157-207 (1941). (44) Williams, Ind. Eng. Chem., News Ed. 16, 630-632 (Dec. 10, 1938). (45) Oppenheim, Ann. Suppl. 6, 372 (1868). (46) Bockemüller, Pfeuffer, Ann. 537, 182-183 (1939). (47) Louguinine, Kablukoff, J. chim. phys. 5, 186-202 (1907). (48) Reboul, Ann. chim. (5) 14, 461, 487 (1878). (49) Kharasch, Kleiger, Mayo, J. Org. Chem. 4, 430, 433 (1939). (50) Putochin, Ber. 55, 2748 (1922).
- (51) Dalle, Rec. trav. chim. 21, 125-126 (1902). (52) Bruylants, Rec. trav. chim. 28, 241-246 (1909). (53) Kharasch, Haefele, Mayo, J. Am. Chem. Soc. 52, 2049 (1940). (54) Windecker, Schormuller, U.S. 2,255,605, Sept. 9, 1941; C.A. 36, 100 (1942). (55) Kharasch, Norton, Mayo, J. Am. Chem. Soc. 62, 83-86 (1940). (56) Oppenheim, Ann. Suppl. 6, 359 (1868). (57) Henry, Rec. trav. chim. 22, 324-326 (1903). (58) Oppenheim, Ann. Suppl. 6, 367 (1868). (59) Michael, Ber. 39, 2787 (1906). (60) Michael, J. prakt. Chem. (2) 69, 455 (1899).
- (61) Smith, Z. physik. Chem. 93, 63-64 (1918/19).
  (62) Dewael, Bull. soc. chim. Belg. 39, 87 (1930).
  (63) Smith, Z. physik. Chem. 92, 739 (1918).
  (64) Henry, Ber. 7, 409-416 (1874); Ber. 8, 352 (1870).
  (65) Emling, Vogt, Hennion, J. Am. Chem. Soc. 63, 1624-1625 (1941).
  (67) Kharasch, Sternfeld, J. Am. Chem. Soc. 62, 2559-2560 (1940).
  (68) Marvel, Glavis, J. Am. Chem. Soc. 60, 2025 (1938).
  (69) Pope, Smith, J. Chem. Soc. 121, 1168-1169 (1922).
  (70) Alder, Windemuth, Ber. 71, 1941, 1951 (1938).
- (71) Bauer, Göts (to Röhm, Haas Co.), Ger. 706,510, April 24, 1941; C.A. 36, 1952 (1942).
  (72) Caronna, Gazz. chim. ital. 67, 618-619 (1937); Cent. 1938, I 2877; C.A. 32, 4578 (1938).
  (73) Truffault, Bull. soc. chim. (5) 6, 730-733 (1939); Compt. rend. 292, 1288-1289 (1938).
  (74) Nenitzescu, Isacescu, Ber. 66, 1100-1103 (1933).
  (75) Loder, McAlevy (to du Pont Co.), U.S.

2,316,604, April 13, 1943; C.A. 37, 5737 (1943).
(76) Essex, Ward (to du Pont Co.), U.S. 1,477, 113, Dec. 11, 1923; Cent. 1925, I 896; U.S. 1,594,879, Aug. 3, 1926; Cent. 1926, II 1688; U.S. 1,626,398, April 26, 1927; Cent. 1928, I 410.
(77) Balandin, Patrikeev, J. Gen. Chem. (U.S.S.R.)
11, 225-231 (1941); Cent. 1942, I 2233; C.A. 35, 7937 (1941).
(78) Balandin, Patrikeev, Acta Physicochim. U.R.S.S. 15, 281-292 (1941); C.A. 37, 4959 (1943).
(79) Lloyd, Kennedy, U.S. 1,849,844, March 15, 1932; Cent. 1932, I 2994.
(80) Tamele, Groll (to Shell Development Co.), U.S. 2,072,015, 2,072,016, Feb. 23, 1937; Cent. 1937, II 472; C.A. 31, 2612 (1937).

(81) Oppenheim, Ann. 140, 206 (1866). (82) Tronow, Gerschewitsch, J. Russ. Phys.-Chem. Soc. 59, 735 (1927); Cent. 1928, I 2924. (83) Tamele, Ott, Marple, Hearne, Ind. Eng. Chem. 33, 119 (1941). (84) von Braun, Murjahn, Ber. 59, 1207 (1926). (85) Jacobi, Flemming, U.S. 2,259,470, Oct. 21, 1941; C.A. 36, 590 (1942); I.G., Brit. 509,796, July 21, 1939; C.A. 34, 4302 (1940). (86) Conant, Kirner, Hussey, J. Am. Chem. Soc. 47, 498 (1925). (87) Murray, J. Am. Chem. Soc. 60, 2663 (1938). (88) Hofmann-LaRoche Co., Brit. 167,157, Sept. 21, 1921; Cent. 1921, IV 1065. (89) Coffey, Rec. trav. chim. 41, 653 (1921). (90) Converse (to Shell

Development Co.), U.S. 2,216,548, Oct. 1, 1940; C.A. 35, 754 (1941).

(91) Tronow, J. Russ. Phys.-Chem. Soc. 58, 1278-1301 (1926); Cent. 1927, II 1145-1146.
(92) Cortese, J. Am. Chem. Soc. 51, 2266-2269 (1929).
(93) Henne, Chanan, Turk, J. Am. Chem. Soc. 63, 3474-3476 (1941).
(94) Kharasch, Sternfeld, J. Am. Chem. Soc. 61, 2318-2322 (1939).
(95) Kharasch, Nudenberg, Sternfeld, J. Am. Chem. Soc. 62, 2035 (1940).
(96) Lespieau, Journaud, Bull. soc. chim. (4) 49, 423-425 (1931).
(97) Mikhailov, Arbuzov, Compt. rend. acad. sci. U.R.S.S. 1936, III, 423-426; Cent. 1937, 1 2579.
(98) Levina, Grinberg, J. Gen. Chem. (U.S.S.R.) 7, 2306-2308 (1937); Cent. 1938, I 1770; C.A. 32, 510 (1938).
(99) Smith, Niederl, J. Am. Chem. Soc. 55, 4151-4153 (1933).
(100) Levy, Campbell, J. Chem. Soc. 1939, 1443.

(101) Staudinger, Fleitmann, Ann. 480, 92-108 (1930). (102) Young, Andrews, Cristol, J. Am. Chem. Soc. 65, 1657 (1943). (103) Schwartz, Johnson, J. Am. Chem. Soc. 53, 1063-1067 (1931). (104) Neumann, Ber. 23, 999-1000 (1890). (105) Sweddund, Robertson, J. Chem. Soc. 1945, 131-133. (106) Kharasch, Fuchs, J. Org. Chem. 10, 167-168 (1945). (107) Groll, Ott (to Shell Development Co.) U.S. 2,042,219, May 26, 1936; Cent. 1937, I 1013; [C.A. 30, 4871 (1936).] (108) Hatch, Estes, J. Am. Chem. Soc. 67, 1730-1733 (1945). (109) Houben, Boedler, Fischer, Ber. 69, 1783 (1936). (110) Hatch, Moore, J. Am. Chem. Soc. 66, 286 (1944).

(111) Pollack (to Pittsburgh Plate Glass Co.), U.S. 2,349,752, May 23, 1944; C.A. 39, 1416 (1945). (112) Sah, Ma, Ber. 65, 1630-1633 (1932). (113) Sah, Ma, Sci. Repts. Natl. Tsing Hua Univ. 2, 147-149 et. seq. (1933). (114) Merntt, Levey, Cutter, J. Am. Chem. Soc. 61, 15-16 (1939). (115) Gillespie, J. Am. Chem. Soc. 56, 2740-2741 (1934). (116) Lauer, Sanders, Leekley, Ungnade, J. Am. Chem. Soc. 61, 3050 (1939). (117) V. H. Dermer, O. C. Dermer, J. Org. Chem. 3, 290-291 (1939). (118) Patrick, McBee, Hass, J. Am Chem. Soc. 68, 1009-1011 (1946). (119) Kharasch, Fuchs, J. Org. Chem. 9, 364 (1944).

| B.P.         |       |           |         | F.P.            |                           |      |
|--------------|-------|-----------|---------|-----------------|---------------------------|------|
| 46.60°       | at    | 760 mm.   | (1)     | -122.8° (1) (7) | $D_4^{25} = 0.88611  (1)$ |      |
| 46.6°        | at    | 770.5 mm. | (2)     |                 | $D_4^{20} = 0.89229  (1)$ |      |
| 46.3-46.7° ı | 1.C.  |           | (3)     |                 | 0.8890 (52)               |      |
| 46.4° cor.   | at    | 760 mm.   | (4) (5) |                 | $D_4^{15} = 0.89486  (1)$ |      |
| 46.0-46.5°   | at    | 764 mm.   | (52)    |                 | $n_{\rm D}^{20}=1.38856$  | (8)  |
| 45.70-45.78  | 5° at | 760 mm.   | (6)     |                 | 1.38838                   | (9)  |
| <b>44°</b>   | at    | 744 mm.   | (8)     |                 | 1.38800                   | (52) |

Colorless limpid liquid with not unpleasant odor. — Almost insol. aq. [for precise data see (10) (11) (12)].

Č with MeOH, b.p. 64.7°, forms const.-boilg. mixt., b.p. 40.5°, contg. 90.5 wt. % Č (13); Č with EtOH, b.p. 78.3°, forms const.-boilg. mixt., b.p. 45.0°, contg. 94 wt. % Č (14); Č with isopropyl alc., b.p. 82.5°, forms const.-boilg. mixt., b.p. 46.4°, contg. 97.2 wt. % Č (14); Č with CS<sub>2</sub>, b.p. 46.3°, forms const.-boilg. mixt., b.p. 42.05°, contg. 44.5 wt. % Č (14).—
[For f.p./compn. data on mixts. of Č with cyclohexyl chloride (3:8040) or with isopropyl bromide see (15).]

reactn. see (30).]

[For prepn. of  $\bar{C}$  from propanol-1 (1:6150) with conc.  $HCl + ZnCl_2$  (yield: 92% (52); 70–72% (16), 65–70% (17), 61% (18) (19)); with  $PCl_3$  (20) +  $ZnCl_2$  (yield: 94% (21) (19)), with  $PCl_5$  (5) +  $ZnCl_2$  (76% yield (19)); with  $SOCl_2$  + pyridine (84% yield (19)) see indic. refs.; for other misc. methods see Beil.]

[For formn. of  $\tilde{C}$  (together with other products) from propane by actn. of  $Cl_2$  see (22) (23); for further actn. of  $Cl_2$  on  $\tilde{C}$  see (3) (24) (25); for further chlorination with  $SO_2Cl_2$  see (26).] [For isomerization of  $\tilde{C}$  to isopropyl chloride (3:7025) in pres. of metallic cat. see (27) (28); for isomerization of  $\tilde{C}$  accompanying alkylation see (29); for  $\tilde{C}$  in Friedel-Crafts

 $\bar{C}$  on passing over various cat. espec. at elevated temps. loses HCl (30) (31) + Beil. I<sub>2</sub>-(72).

[For study of behavior of  $\bar{C}$  with KI see (33); toward Na see (34) (35) (36); with Mg in dry ether see (37) (note that  $\bar{C}$  with Mg in dry ether contg. trace of I<sub>2</sub> gives in absence of air 98.2% yield (51) RMgCl).]

- n-Butyranilide: m.p. 96° (38); 97° (39); 92° cor. (40), u.c. (41). [From C (41) or n-propyl bromide (40) via conversion to RMgX and reactn. with phenyl isocyanate (41).]
- —— n-Butyr-p-toluidide: m.p. 75° (38); 74-75° (42); 73-74° (43). [Presumably similarly obtainable via RMgCl + p-tolyl isocyanate, but not actually so recorded.]
- n-Butyr-α-naphthalide: m.p. 120° (44); 121° (45). [From RMgBr via reactn. with α-naphthyl isocyanate (45).]
- ---- n-Propyl mercuric chloride: m.p. 140° (46).
- S-(n-Propyl)isothiourea picrate: m.p. 176° (47). [In small yield from C on htg. 5 hrs. with thiourea in alc., followed by addn. of PkOH (47).]
- —— n-Propyl 2,4,6-triiodophenyl ether: m.p. 82° cor. (48). [From n-propyl bromide on refluxing with 2,4,6-triiodophenol, m.p. 157-158°, in alc. NaOEt (48).] [Note that this ether depresses m.p. of corresp. Et 2,4,6-triiodophenyl ether, m.p. 82° cor. (48).]
- —— N-(n-Propyl)-3-nitrophthalimide: ndls. from CS<sub>2</sub>, m.p. 84-85° (49). [From n-propyl bromide on refluxing with K 3-nitrophthalimide (49).]
- —— n-Propyl β-naphthyl ether: b.p. 297.0° cor., m.p. 39.5-40.0° cor. (50) [picrate: m.p. 80.5-81.5° cor. (50)].
- 3:7040 (1) Timmermans, Hennaut-Roland, J. chim. phys. 27, 407-408 (1930). (2) Karvonen, Ann. Acad. Sci. Fennaca A-3, No. 7, 1-103; Cent. 1912, II 1271. (3) Rust, Vaughan, J. Org. Chem. 6, 479-488 (1941). (4) Linnemann, Ann. 161, 38-39 (1872). (5) Pierre, Puchot, Ann. 163, 266-269 (1872). (6) Matthews, Fehland, J. Am. Chem. Soc. 53, 3216 (1931). (7) Timmermans, Bull. soc. chim. Belg. 27, 334-343 (1913); Cent. 1914, I 618. (8) Bruhl, Ann. 200, 179 (1879). (9) Karvonen, Ann. Acad. Sci. Fennaca A-5, No. 6, 121. (10) Rex, Z. physik. Chem. 55, 364 (1906).
- (11) Fühner, Ber. 57, 514 (1924). (12) van Arkel, Vles, Rec. trav. chim. 55, 408 (1936). (13) Lecat, Rec. trav. chim. 46, 242 (1927). (14) Lecat, Ann. soc. sci. Bruxelles 47, I 66 (1927). (15) van de Vloed, Bull. soc. chim. Belg. 48, 261 (1939). (16) Copenhaver, Whaley, J. Am. Chem. Soc. 60, 2497-2498 (1938) (17) Copenhaver, Whaley, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 143, Note 6 (1941). (18) Norris, Taylor, J. Am. Chem. Soc. 46, 756 (1924). (19) Clark, Streight, Trans. Roy. Soc. Can. (3) 29, III 77-89 (1929). (20) Walker, Johnson, J. Chem. Soc. 87, 1592-1597 (1905).
- (21) Dehn, Davis, J. Am. Chem. Soc. 29, 1328-1334 (1907). (22) Hass, McBee, Weber, Ind. Eng. Chem. 27, 1190-1195 (1935). (23) Hass, McBee (to Purdue Research Foundation), U.S. 2,004,073, June 4, 1935; Cent. 1936, I 1500. (24) Hass, McBee (to Purdue Research Foundation), Can. 374,242, June 7, 1938; Cent. 1938, II 3005. (25) Hass, McBee (to Purdue Research Foundation), U.S. 2,147,577, Feb. 14, 1939; Cent. 1939, II 226. (26) Kharasch, Brown, J. Am. Chem. Soc. 61, 2142-2149 (1939). (27) N. V. de Bataafsche Petroleum Maatschappij. Brit. 535,435.

April 9, 1941; C.A. 36, 1614 (1942). (28) Nagai, J. Chem. Soc. Japan 61, 864-866 (1940); C.A. 34, 7841 (1940). (29) Ipatieff, Pines, Schmerling, J. Org. Chem. 5, 253-263 (1940). (30), Wertyporoch, Ann. 500, 287-295 (1933).

(31) Senderens, Bull. soc. chm. (4) 3, 828 (1908).
(32) Senderens, Compl. rend. 200, 612-615 (1935).
(33) Conant, Hussey, J. Am. Chem. Soc. 47, 484 (1925).
(34) Morton, LeFevre, Hechenbleikner, J. Am. Chem. Soc. 58, 754-757 (1936).
(35) Morton, Hechenbleikner, J. Am. Chem. Soc. 58, 1697-1701 (1936).
(36) Morton, Hechenbleikner, J. Am. Chem. Soc. 58, 2599-2605 (1936).
(37) Rudd, Turner, J. Chem. Soc. 1928, 686-691.
(38) Robertson, J. Chem. Soc. 115, 1220-1221 (1919).
(39) Fournier, Bull. soc. chm. (4) 7, 25-26 (1910).
(40) Schwartz, Johnson, J. Am. Chem. Soc. 53, 1065 (1931).

(41) Underwood, Gale, J. Am. Chem. Soc. 56, 2119 (1934).
(42) Davis, J. Chem. Soc. 95, 1398 (1909).
(43) Fichter, Rosenberger, J. prakt. Chem. (2) 74, 323 (1906).
(44) Robertson, J. Chem. Soc. 93, 1037 (1908).
(45) Gilman, Furry, J. Am. Chem. Soc. 50, 1214-1216 (1928).
(46) Marvel, Gauerke, Hill, J. Am. Chem. Soc. 47, 3010 (1925).
(47) Levy, Campbell, J. Chem. Soc. 1939, 1443.
(48) Drew, Sturtevant, J. Am. Chem. Soc. 61, 2666 (1939).
(49) Sah, Ma, Ber. 65, 1630-1633 (1932).
(50) V. H. Dermer, O. C. Dermer, J. Org. Chem. 3, 290-291 (1939).
(51) Houben, Boedler, Fischer, Ber. 69, 1768, 1776 (1936).
(52) Vogel, J. Chem. Soc. 1943, 638-639.

3: 7045 2-CHLORO-2-METHYLPROPANE CH<sub>3</sub> C<sub>4</sub>H<sub>9</sub>Cl Beil. I - 125 (ter-Butyl chloride; CH<sub>3</sub>—C—CH<sub>3</sub> I<sub>1</sub>-(40) I<sub>2</sub>-(88)

|             |      |           |      |                 | 0.       | •                           |           |
|-------------|------|-----------|------|-----------------|----------|-----------------------------|-----------|
| B.P.        |      |           |      | F.P.            |          |                             |           |
| 52°         |      |           | (1)  | -24.6°          | (12)     | $D_4^{25} = 0.83537  (9)$   |           |
| 51.52° cor. |      | (2)       | (36) | $-25.4^{\circ}$ | (13)     | $D_4^{20} = 0.8511  (20)$   |           |
| 51.6°       |      |           | (3)  | -27.1°          | (9) (19) | 0.8457 (16)                 |           |
| 51.0-51.2°  |      |           | (4)  | -28.5°          | (5)      | 0.84138 (9)                 |           |
| 51°         |      |           | (5)  |                 |          | $D_4^{15} = 0.84739  (9)$   |           |
| 50.9°       | at   | 762 mm.   | (6)  |                 |          |                             |           |
| 50.9°       |      |           | (7)  |                 |          |                             |           |
| 50.8°       | at   | 756 mm.   | (8)  |                 |          | $n_{\rm D}^{20}=1.38786$    | (13)      |
| 50.7°       | at   | 760 mm.   | (9)  |                 |          | 1.3858                      | (8)       |
| 50.7°       |      |           | (10) |                 |          | 1.38564                     | (16)      |
| 50.6-50.8°  | at   | 766 mm.   | (11) |                 |          | 1.3855                      | (17) (21) |
| 50.60°      |      |           | (12) | (18) (8)        |          | 1.3853                      | (8)       |
| 50.5°       |      |           | (13) |                 |          | 1.38528                     | (10)      |
| 50.0°       | at   | 749 mm.   | (14) |                 |          | 1.38470                     | (12)      |
| 49.7°       | at ' | 742.4 mm. | (15) |                 |          | 1.3839                      | (18)      |
| 49.5°       | at   | 738 mm.   | (16) |                 |          | $n_{\rm D}^{18} = 1.3860$   | (22)      |
| 49-50°      |      |           | (17) |                 |          | $n_{\rm D}^{178} = 1.38686$ | (1)       |

[See also 1-chloro-2-methylpropane (3:7135).]

Binary systems of  $\tilde{C}$  with other org. cpds. — For f.p./compn. data of mixts. of  $\tilde{C}$  with CCl<sub>4</sub> (3:5100) (23) (13), with *n*-butyl chloride (3:7160) (19), with *n*-butyl bromide (19), or with isobutyl bromide (19) see indic. refs.

 $\ddot{\mathbf{C}}$  with MeOH (1:6120) forms a const.-boilg. mixt., b.p. 43.75°, contg. 90%  $\ddot{\mathbf{C}}$  (24);  $\ddot{\mathbf{C}}$  with formic acid (1:1005) forms a const.-boilg. mixt., b.p. 50.0°, contg. 88.8%  $\ddot{\mathbf{C}}$  (3);  $\ddot{\mathbf{C}}$  with CS<sub>2</sub> forms a const.-boilg. mixt., b.p. 43.3°, contg. 37%  $\ddot{\mathbf{C}}$  (25). — Note that  $\ddot{\mathbf{C}}$  gives no azeotrope with ter-BuOH (1:6140) (9).

Preparation of C. [For prepn. of C from ter-BuOH (1:6140) with conc. HCl (3 vols.) by shaking in cold (espec. in pres. of CaCl<sub>2</sub>) (78-88% yield (26)) or by distillation (using

7-8 pts. by wt. conc. HCl) (94% yield (27)), or with dil. aq. HCl (18-20 Bé) in pres. of inorg. halide cat. (28) see indic. refs.]

[For prepn. of C from ter-BuOH (1:6140) with dry HCl gas in cold (1) (29), with HCl gas in pres. of pyridine at elevated temp. (some isobutyl chloride (3:7135) is also formed (30)); with PCl<sub>3</sub> (31), PCl<sub>3</sub> + ZnCl<sub>2</sub> (92% yield (32)), PCl<sub>5</sub> (33) (34), PCl<sub>5</sub> + ZnCl<sub>2</sub> (85% yield (32)), or excess AlCl<sub>3</sub> (35); with oxalyl (di)chloride (3:5060) (36) or with trichloromethyl chloroformate (diphosgene) (3:5515) (20) see indic. refs.]

 $\bar{C}$  can also be obtained from various isobutyl cpds. (see following paragraphs), but it must be constantly kept in mind that reactns. of this type involve the equilibrium between  $\bar{C}$ , isobutylene, and isobutyl chloride, and the proportions of the two halides may vary widely according to particular conditions; for some types of utilization, however, such a mixture may serve just as well as pure  $\bar{C}$ .

[For prepn. of  $\tilde{C}$  from 2-methylpropane (isobutane) with Cl<sub>2</sub> see (37) (38) (39); from isobutylene with HCl gas (40) (41) (4) (18), with conc. aq. HCl (42) (43) (44), with HCl gas + AlCl<sub>3</sub> at  $-50^{\circ}$  (45), with HCl gas + cat. (46), from tech. cracked gas (contg. isobutylene) with HCl (47) (48) (49) (57), with chloromethyl methyl ether (3:7085) + HgCl<sub>2</sub> (other prods. are also formed (50)), or even with Cl<sub>2</sub> (other prods. also formed) (51) (52) (53) see indic. refs.]

[For prepn. of  $\bar{C}$  from 1-chloro-2-methylpropane (isobutyl chloride) (3:7135) by htg. at 306° (8%  $\bar{C}$  (54)), or passing vapor over BaCl<sub>2</sub> at 380-400° (40%  $\bar{C}$  (55)), or over suitable cat. at 200° as directed (56); from isobutyl iodide with ICl (58); from isobutylamine with NOCl in xylene at -15° (59); from isobutyl alcohol (1:6165) with HCl gas (60) cf. (1), with HCl gas over Al<sub>2</sub>O<sub>3</sub> at 420° (61), or with PCl<sub>3</sub> + ZnCl<sub>2</sub> (62) see indic. refs.]

[For formn. of  $\bar{C}$  from 2-chloro-2-methylbutane (ter-amyl chloride) (3:7220) by cleavage with AlCl<sub>3</sub> (35) or with anhydrous HF at 0° (10-17% yield (17)) see indic. refs.]

Pyrolysis of C. [C on suitable htg. dec. into isobutylene + HCl; this begins to occur at 300° even in absence of cat. (63) (for study of equilibria involved see (4) (18)); for study of reactn. over ThO<sub>2</sub> at 100° (64), over pumice at 400-500° (65), or over activated carbon contg. 1-2% KOH (dehalogenation is 19.8% at 375°, 51% at 400° (66)) see indic. refs. — Note that C passed over activated carbon at 400° in pres. of H<sub>2</sub> is 51% dehalogenated but the isobutylene is not reduced (67).]

Further halogenation of  $\bar{\mathbf{C}}$ . [ $\bar{\mathbf{C}}$  in liq. phase with Cl<sub>2</sub> in light gives (68) a mixt. of chlorination prods. contg. approx. 37% 1,2,3-trichloro-2-methylpropane (3:5885) + 25% 1,1,2-trichloro-2-methylpropane (3:5710) + 21% 1,1,2,3-tetrachloro-2-methylpropane (3:6165) + 10% 1,2-dichloro-2-methylpropane (3:7430) + 6% 1,2,3-trichloro-2-(chloromethyl)-propane (3:6335) + a trace of 1,1,1,2-tetrachloro-2-methylpropane (3:4725).  $-\bar{\mathbf{C}}$  in vapor phase under reduced press. with Cl<sub>2</sub> in u.v. light or in dark electric discharge (69) or  $\bar{\mathbf{C}}$  with SbCl<sub>5</sub> (1 mole) with cooling (34) gives 1,2-dichloro-2-methylpropane (3:7430).]

 $\bar{C}$  with Br<sub>2</sub> in pres. of Fe (70) or in liq. SO<sub>2</sub> at room temp. for 14 hrs. (100% yield (72)) evolves HCl and gives 1,2-dibromo-2-methylbutane (isobutylene dibromide) [Beil. I-127, I<sub>1</sub>-(41), I<sub>2</sub>-(90)], b.p. 149.0°.

Reactions of the halogen atom of  $\tilde{C}$ . The tertiary chlorine atom of  $\tilde{C}$  is very reactive and therefore readily hydrolyzed or alcoholized. —  $\tilde{C}$  on shaking with aq. for 24 hrs. at room temp. (6) or  $\tilde{C}$  on refluxing with 2 vols. aq. for 8 hrs. (71% hydrolysis (72)) yields ter-BuOH (1:6140); note rate of hydrolysis of  $\tilde{C}$  is greater in pure aq. than in 5% aq. Na<sub>2</sub>CO<sub>3</sub> (72); for use of this facile hydrolysis in removal of  $\tilde{C}$  from isobutyl chloride (3:7135) see under latter). [For details of studies of kinetics of hydrol. of  $\tilde{C}$  under various circumstances, e.g., in aq. alc., see (73) (74) (75) (6) (11); in formic acid (14) (77) (78).] [For use in prepn. of ter-butyl alc. (1:6140) see (79).]

[ $\bar{C}$  (2 moles) in ether shaken with Ag<sub>2</sub>CO<sub>3</sub> (1 mole) gives (35% yield {114}) di-ter-butyl ether, b.p. 106.5-107°,  $D_4^{20} = 0.7658$ ,  $n_D^{20} = 1.3949$  {114}.]

[C in the presence of small amts. AlCl<sub>3</sub> exchanges halogen with reactive H atoms of certain hydrocarbons; e.g., C with 2,3-dimethylbutane (1:8515) + AlCl<sub>3</sub> shaken for ½ min. at room temp. gives (23% yield (112)) 2-chloro-2,3-dimethylbutane (3:7600); C with 2,2,3-trimethylbutane (1:8544) + AlCl<sub>3</sub> shaken for 30-45 seconds gives (16% yield (112)) 3-chloro-2,2,3-trimethylbutane (3:4020); for other examples see (112).]

[C also undergoes alcoholysis: e.g., C shaken with equal vol. 50 mole % MeOH for several days (74) (11) seps. a non-aq. phase of ter-butyl methyl ether (1:7830), b.p. 55°; C with EtOH gives (11) ter-butyl ethyl ether (1:7860), b.p. 73°; for study of this equilibrium and detn. of these ethers see (11).]

[For rate of reactn. of  $\bar{C}$  with KI in acetone at 60° see (80); for reactn. of  $\bar{C}$  with Ca formate yielding (77) (78) ter-butyl formate (1:3033), b.p. 83°, see indic. refs.; for conv. of  $\bar{C}$  to esters by htg. with alkali salt of a suitable acid under press. at 125-225° in pres. of Cu and the use of this reactn. in sepn. of  $\bar{C}$  from less reactive chlorine cpds. see (81).

[ $\bar{\mathbb{C}}$  readily condenses with arom. hydrocarbons and phenols: e.g.,  $\bar{\mathbb{C}}$  with Al/Hg + C<sub>6</sub>H<sub>6</sub> gives (74.5% yield (109)) or  $\bar{\mathbb{C}}$  with C<sub>6</sub>H<sub>6</sub> + AlCl<sub>3</sub> gives (yields: 69% (82), 60% (83)) (62) (1) mainly ter-butylbenzene (1:7460), b.p. 168.8°, often accompanied by some p-(di-ter-butyl)benzene, cryst. from alc., m.p. 77° (82); this same condensation can also be effected in anhydrous HCl at 235° under press. (88% yield (84)) or in anhydrous HF (yield: 60% di- + 10% mono- (85)).  $-\bar{\mathbb{C}}$  with toluene + AlCl<sub>3</sub> gives both p-ter-butyl-toluene and m-ter-butyltoluene (in ratio of 30–35/65–70, resp. (86)) but  $\bar{\mathbb{C}}$  with toluene in anhyd. HCl or HF (85) (22) cf. (113) gives exclusively (84) p-ter-butyltoluene, b.p. 188–189°,  $n_D^{20}$  = 1.4930 (84).  $-\bar{\mathbb{C}}$  For reactn. of  $\bar{\mathbb{C}}$  with naphthalene + AlCl<sub>3</sub> (87) or Al/Hg (109) or  $\bar{\mathbb{C}}$  with m-cymene + AlCl<sub>3</sub> (88) see indic. refs.]

[ $\bar{C}$  with phenol (1:1420) in anhyd. HF gives (85% yield (89)) p-ter-butylphenol (1:1510);  $\bar{C}$  with  $\beta$ -naphthol (1:1540) + AlCl<sub>3</sub> gives (90) 4-(ter-butyl)naphthol-2, m.p. 102° (90). —  $\bar{C}$  with anisole (1:7445) + ZnF<sub>2</sub> gives (30.6% yield (91)) p-ter-butylanisole, but  $\bar{C}$  does not react with anisole + AlF<sub>3</sub> or with furan + ZnF<sub>2</sub> (91).]

[ $\bar{C}$  with acetanilide + AlCl<sub>3</sub> in ethylene dichloride at —10° gives (93% yield) N-acetyl-p-ter-butylaniline (111).]

Č under proper conditions gives the corresponding RMgCl cpd.: e.g., Č with Mg in dry ether as directed gives (yields: 80% (92), 62% (93), 60% (95)) cf. (94) ter-BuMgCl; this RMgCl cpd. undergoes the usual reactions (see also below under ⊕'s) including the following: ter-BuMgCl with O₂ below 0° gives (80% yield (95)) ter-BuOH (1:6140) q.v.; with acetyl chloride (1 mole) in C<sub>6</sub>H<sub>6</sub> gives (40-54% yield (92)) ter-butyl methyl ketone (pinacolone) (1:5425) (note, however, that ter-BuMgCl with excess acetyl chloride takes a different course (97) and that with various other acyl halides the reducing action of the ter-BuMgCl becomes conspicuous cf. (98) (99) (100)); Č with ethyl chloroformate (3:7295) or diethyl carbonate (1:3150) gives (56% yield (92)) ethyl trimethylacetate (ethyl pivalate) (1:3117); with Č itself to give (10% yield (96)) hexamethylethane (1:7090).

Č reacts with other RMgX cpds. in conventional fashion: e.g., Č with MeMgCl gives (42-50% yield (108)) tetramethylmethane (neopentane) (1:8499); Č with n-PrMgBr in ether + HgCl<sub>2</sub> gives (yield 21% (101), 20% (110)) 2,2-dimethylpentane (1:8543); the numerous other reactions of ter-BuMgCl cannot be reviewed here.

[For reactn. of C with Et<sub>2</sub>Zn and numerous homologs see (102).]

- ① ter-Butyl alcohol (1:6140): m.p. 25.6°, b.p. 82.5°. [From Č by shaking with aq. for 24 hrs. at room temp. (6), or on refluxing with 2 vols. aq. for 8 hrs. (72), neutralizing with Na<sub>2</sub>CO<sub>3</sub>, salting out the alcohol with NaCl, drying over anhyd. Na<sub>2</sub>CO<sub>3</sub>, and distilling.]
- Trimethylacetic acid (pivalic acid) (1:0410): m.p. 35.5°, b.p. 163-164°. [From Č by

- conversion to ter-BuMgCl (see above) and reactn. of latter with dry CO<sub>2</sub> (yields based on C, 75% (92), 62% (93), 42.5% (17)) (94).]
- Trimethylacetic anilide (pivalanilide): m.p. 132-133° u.c. (103), 132.5-133° (17). [From C by conv. to ter-BuMgCl (see above) and reactn. of latter with phenyl isocvanate in dry ether (17) (103) (104).]
- Trimethylaceto-p-toluidide (pivalo-p-toluidide): m.p. 119-120° u.c. (103). [From  $\bar{\mathbf{C}}$  by conversion to ter-BuMgCl (see above) and reactn. of latter with p-tolyl isocyanate in dry ether (103).
- **D** Trimethylaceto- $\alpha$ -naphthalide (pivalo- $\alpha$ -naphthalide): m.p. 146-147° u.c. (103). [From  $\bar{C}$  by conversion to ter-BuMgCl (see above) and reactn. of latter with  $\alpha$ -naphthyl isocyanate in dry ether (103).]
- ter-Butyl mercuric chloride: long ndls. from aq. acetone as directed (105), m.p. 122-123° dec. (105). [From ter-BuMgCl with HgCl<sub>2</sub> (105).]
- S-ter-Butylisothiourea picrate: m.p. 160-161° (106). [From C with thiourea on htg. in alc. followed by conversion of the resultant hydrochloride to picrate (106); note, however, that, because of the lability of the ter-butyl radical, reactions carried out in MeOH or EtOH may give the corresp. S-methylisothiourea picrate, m.p. 224°, or S-ethylisothiourea picrate, m.p. 188°, and this definitely occurs (107) starting with ter-butyl iodide.]
  - --- N-(ter-Butvl)phthalimide: unreported.
  - ---- ter-Butyl 2,4,6-triiodophenyl ether: unreported.
  - ---- ter-Butyl α-naphthyl ether: unreported.
  - ---- ter-Butyl β-naphthyl ether: unreported.
- 3:7045 (1) Boedtker, Bull soc. chim. (3) 31, 965-971 (1904). (2) Perkin, J. prakt. Chem. (2) 31, 493 (1885). (3) Lecat, Ann. soc sci. Bruxelles 49-B, II 22 (1929). (4) Brearley, Kistiakowsky, Stauffer, J. Am. Chem. Soc. 58, 43-47 (1936). (5) Timmermans, Bull. soc. chim. Belg. 30, 66
- Stauffer, J. Am. Chem. Soc. 53, 43-41 (1930). (3) Himmermans, Butt. soc. carm. Bey. 50, 00 (1921). (6) Hughes, J. Chem. Soc. 1935, 255-258. (7) Lewis, Hammett, J. Am. Chem. Soc. 64, 1938-1940 (1942). (8) Wiswall, Smyth, J. Chem. Phys. 9, 357 (1941). (9) Timmermans, Delcourt, J. chem. phys. 31, 98-99 (1934). (10) Smyth, Dornte, J. Am. Chem. Soc. 53, 546 (1931). (11) Bateman, Hughes, Ingold, J. Chem. Soc. 1938, 876-887. (12) Baker, Smyth, J. Am. Chem. Soc. 61, 2798 (1939). (13) Turkevich, Smyth, J. Am. Chem. Soc. 62, 2473 (1940). (14) Bateman, Hughes, J. Chem. Soc. 1937, 1187-1192. (15) Koskoski, Thomas, Fowler, J. Am. Chem. Soc. 63, 2451 (1941). (16) Vogel, J. Chem. Soc. 1943, 638-639. (17) Simons, Fleming, Whitmare Rissinger, J. Am. Chem. Soc. 60, 2267-2269 (1938). (18) Kissingery J. Am. Chem. Soc. 1947, J. Am. Chem. Soc. 63, 2451 (1941). more, Bissinger, J. Am. Chem. Soc. **60**, 2267–2269 (1938). (18) Kistiakowsky, Stauffer, J. Am. Chem. Soc. **59**, 164–169 (1937). (19) Timmermans, Bull. soc. chim. Belg. **43**, 630 (1934). (20) Nekrassow, Melnikow, J. prakt. Chem. (2) **127**, 216 (1930).
- (21) Audsley, Joss, J. Chem. Soc. 1941, 873. (22) Sprauer, Simons, J. Am. Chem. Soc. 64 648-659 (1942). (23) Conner, Smyth, J. Am. Chem. Soc. 63, 3424-3428 (1941). (24) Lecat, Ann. soc. sci. Bruxelles, 47, II 112 (1927). (25) Lecat, Ann. soc. sci. Bruxelles 47, I 66 (1927). (26) Norris, Olmsted, Org Syntheses, Coll. Vol. 1 (2nd ed.), 144-145 (1941); (1st ed.), 138-139 (1932); 8, 50-51 (1928). (27) Norris, Am. Chem. J. 38, 642 (1907). (28) Wirth (to du Pont Co.), U.S. 2.013,722, Sept. 10, 1935; Cent. 1936, I 2826; C.A. 29, 6907 (1935). (29) Schramm, Monatsh. 9. 618-619 (1888). (30) Haack (to Chem. Fabrik von Heyden), Ger. 624,693, Jan. 30, 1936; Cent. 1936, I 3575; C.A. 30, 4876 (1936).
- (31) Jaroschenko, J. Russ. Phys.-Chem. Soc. 29, 223-227 (1879); Cent. 1897, II 334. (32) Clark, Streight, Trans. Roy. Soc. Canada (3) 23, III 77-89 (1929). (33) Butlerow, Jahresber. 1864, 497. (34) Meyer, Muller, J. prakt. Chem. (2) 46, 187-188 (1892). (35) Tzukervanik, J. Gen. Chem. (U.S.S.R.) 5, 117-120 (1935); Cent. 1936, II 2896; C.A. 29, 4746 (1935). (36) Adams, Weeks, J. Am. Chem. Soc. 38, 2518-2519 (1916). (37) Butlerow, Ann. 144, 15-18 (1867). (38) Hass, McBee, Weber, Ind. Eng. Chem. 27, 1190-1195 (1935). (39) Britton, Coleman, Hadler (to Dow Chem. Co.), U.S. 1,954,438, April 10, 1934; Cent. 1934, II 3180; C.A. 28, 3739 (1934); U.S. 2,018,345, Oct. 22, 1935; Cent. 1936, I 3907; C.A. 30, 106 (1936). (40) Coffin, Sutherland, Maas, Can. J. Research 2, 267–278 (1930); Cent. 1930, II 2250; C.A. 24, 3750 (1930).
- (41) Coffin, Maas, Can. J. Research 3, 526-539 (1930), Cent. 1931, I 2430; C.A. 25, 1146-1147 (1931). (42) Zalessky, Ber. 5, 480 (1872). (43) LeBel, Bull. soc. chim. (2) 28, 462 (1877). (44) Puchot, Ann. chim. (5) 28, 549-550 (1883). (45) Tulleners, Tuyn, Waterman, Dutch

- 36,489, Oct. 15, 1935; Cent. 1936, I 1500. (46) Strange, Kane, Brit. 435,858, Oct. 31, 1935; French 787,340, Sept. 20, 1935; Cent. 1936, I 2826 (47) Rudkovskii, Trans. Mendeleev Congr. Theor. Applied Chem. 6th Congr. 1932, 2, Part 1, 715-719 (1935); Cent. 1936, II 2269; C.A. 30, 2734 (1936). (48) Dobryanskii, Rudkovskii, Org. Chem. Ind. (U.S.S.R.) 1, 537-540 (1936); Cent. 1936, II 3865; C.A. 30, 6702 (1936). (49) Rudkovskii, Trifel, Org. Chem. Ind. (U.S.S.R.), 2, 203-205 (1936); Cent. 1937, I 3576; C.A. 31, 1004 (1937). (50) Straus, Thiel, Ann. 525, 174-175 (1936).
- (51) Pogorshelski, J. Russ. Phys.-Chem. Soc. 36, 1129-1184 (1904), Cent. 1905, I 667.
  (52) N. V. de Bataafsche Petroleum Mautschappij, French 761,614, March 23, 1934; Cent. 1934, II 1200.
  (53) D'yakonov, Tishchenko, J. Gen. Chem. (U.S.S.R.) 9, 1258-1264 (1939), C.A. 34, 710 (1940).
  (54) Michael, Zeidler, Ann. 393, 110-111 (1912).
  (55) Sabatier, Mailhe, Compt. rend. 156, 658 (1913).
  (56) Nutting, Britton, Huscher, Petrie (to Dow Chem. Co.), U.S. 1,993,719, March 5, 1935, Cent. 1935, II 2879-2880; C.A. 29, 2549 (1935).
  (57) Winkler, Ger. 574,802, March 30, 1933; Cent. 1933, I 3497.
  (58) Linnemann, Ann. 162, 18-19 (1872).
  (59) Ssolonina, J. Russ. Phys.-Chem. Soc. 30, 431-449 (1898); Cent. 1898, II 888.
  (60) Freund, J. prakt. Chem. (2) 12, 27-33 (1875).
- (61) Sabatier, Mailhe, Compt. rend. 169, 124 (1919). (62) Shoesmith, Mackie, J. Chem. Soc. 1928, 2336. (63) Senderens, Aboulenc, Compt. rend. 202, 104-106 (1936) (64) Senderens, Compt. rend. 200, 612-615 (1935). (65) Nef, Ann. 318, 24-28 (1901). (66) Balandin, Patrikeev, Acta Physicochim. U.R.S.S. 15, 281-292 (1941), C.A. 37, 4959 (1943). (67) Balandin, Patrikeev, J. Gen. Chem. (U.S. S.R.) 11, 225-231 (1941); C.A. 35, 7937-7938 (1941). (68) Rogers, Nelson, J. Am. Chem. Soc. 58, 1027-1029 (1936). (69) B.A.S.F., Ger. 259,192, April 4, 1913, Cent. 1913, I 1740-1741. (70) Herzfelder, Ber. 26, 1261 (1893).
- (71) Hughes, Ingold, Scott, J. Chem. Soc. 1937, 1276; Nature 138, 120-121 (1936).
  (72) Woodburn, Whitmore, J. Am Chem. Soc. 56, 1394-1395 (1934).
  (73) Brown, Kharasch, Chao, J. Am. Chem. Soc. 62, 3439 (1940).
  (74) Olson, Halford, J. Am. Chem. Soc. 59, 2644-2647 (1937).
  (75) Cooper, Hughes, Ingold, J. Chem. Soc. 1937, 1280-1283.
  (76) Straus, Ann. 370, 366-367 (1909).
  (77) Taylor, J. Chem. Soc. 1937, 1852-1853.
  (78) Bateman, Hughes, J. Chem. Soc. 1940, 935-940.
  (79) Britton, Coleman, Wairen (to Dow Chem. Co.), U.S. 1,984,725, Dec. 18, 1934, Cent. 1935, I 3199, C.A. 29, 819 (1935).
  (80) Conant, Hussey, J. Am. Chem. Soc. 47, 485 (1925).
- (81) Coleman, Moore (to Dow Chem. Co), U.S. 2,207,611, July 9, 1940; C.A. 34, 7934 (1940).
  (82) Backer, Kramer, Rec trav. chrm. 53, 1103 (1934).
  (83) Schramm, Monatsh. 9, 618-619 (1888).
  (84) Simons, Hart, J. Am. Chem. Soc. 66, 1309-1312 (1944).
  (85) Simons, Archer, J. Am. Chem. Soc. 60, 986; 2953-2954 (1938).
  (86) Shoesmith, McGeethen, J. Chem. Soc. 1930, 2231-2236.
  (87) Gump, J. Am. Chem. Soc. 53, 380-381 (1931).
  (88) Barbier, Helv. Chrm. Acta 15, 592-596 (1932).
  (89) Simons, Archer, Passino, J. Am. Chem. Soc. 60, 2956-2957 (1938).
  (90) Königsberger (to Dehls and Stein), U.S. 1,788, 529, Jan. 13, 1931; Cent. 1931, II 1351.
- (91) Calloway, J. Am. Chem. Soc. 59, 1477 (1937)
  (92) Whitmore, Badertscher, J. Am. Chem. Soc. 55, 1561-1567 (1933).
  (93) Gilman, Zoellner, J. Am. Chem. Soc. 50, 425-428 (1928).
  (94) Gilman, Zoellner, Rec. trav chim. 47, 1058-1063 (1928).
  (95) Whitmore, Lux, J. Am. Chem. Soc. 54, 3454 (1932).
  (96) Flood, Calingaert, J. Am. Chem. Soc. 56, 1211 (1934).
  (97) Whitmore, Wheeler, J. Am. Chem. Soc. 60, 2899-2900 (1938).
  (98) Greenwood, Whitmore, Crooks, J. Am. Chem. Soc. 60, 2028-2030 (1938).
  (99) Whitmore, Heyd, J. Am. Chem. Soc. 60, 2030-2031 (1938).
  (100) Whitmore, Whitaker, Mosher, Brevik, Wheeler, Miner, Sutherland, Wagner, Clapper, Lewis, Lux, Popkin, J. Am. Chem. Soc. 63, 643-654 (1941)
- (101) Edgar, Calingaert, Mather, J. Am. Chem. Soc. 51, 1487 (1929).
  (102) Noller, J. Am. Chem. Soc. 51, 594-599 (1929).
  (103) Underwood, Gale, J. Am. Chem. Soc. 56, 2117-2119 (1934).
  (104) Schwartz, Johnson, J. Am. Chem. Soc. 53, 1065 (1931).
  (105) Whitmore, Bernstein, J. Am. Chem. Soc. 60, 2627 (1938).
  (106) Sprague, Johnson, J. Am. Chem. Soc. 59, 1839 (1937).
  (107) Levy, Campbell, J. Chem. Soc. 1939, 1442-1443.
  (108) Whitmore, Fleming, J. Am. Chem. Soc. 55, 3803-3806 (1933).
  (109) Diuguid, J. Am. Chem. Soc. 63, 3527-3529 (1941).
  (110) Soroos, Willis, J. Am. Chem. Soc. 63, 881 (1941).
- (111) U.S. Industrial Alc. Co., French 811,832, April 23, 1937; Cent. 1937, II 1267. (112)
  Bartlett, Condon, Schneider, J. Am. Chem. Soc. 66, 1531-1539 (1944). (113)
  Pearlson, Simons, J. Am. Chem. Soc. 67, 352-362 (1945). (114)
  Erickson, Ashton, J. Am. Chem. Soc. 63, 1769 (1941).

| 3:7065       | ACETYL CHLORI<br>(Ethanoyl chloride |      |             | $\mathrm{C_{2}H_{3}OCl}$ | Beil. II - 173<br>II <sub>1</sub> -( 79)<br>II <sub>2</sub> -(175) |      |
|--------------|-------------------------------------|------|-------------|--------------------------|--------------------------------------------------------------------|------|
| B.P.         |                                     |      | F.P.        |                          |                                                                    |      |
| 55°          | at 760 mm.                          | (1)  | -112.0° (6) | $D_4^{25} = 1.0983$      | (5)                                                                |      |
| 51-52°       | at 761 mm.                          | (2)  | • •         | 1.0982                   | (11)                                                               |      |
| 52°          | at 737 mm.                          | (3)  |             |                          |                                                                    |      |
| 51-52°       |                                     | (12) |             | $D_4^{20.8} = 1.1037$    | (12)                                                               |      |
| 51-52°       | at 720 mm.                          | (4)  |             |                          |                                                                    |      |
| 51.8°        |                                     | (5)  |             | $D_4^{20} = 1.1044$      | (8)                                                                |      |
| 51.0°        | at 760 mm.                          | (6)  |             | $n_{ m D}^{25}$          | = 1.3878                                                           | (5)  |
| 50.92°       | at 746 mm.                          | (7)  |             |                          |                                                                    |      |
| <b>50.6°</b> | at 756 mm.                          | (8)  |             | $n_{ m D}^{20.8}$        | = 1.38831                                                          | (12) |
| 50.2°        |                                     | (9)  |             |                          |                                                                    |      |
| 50.08-       | 50.12° at 741 mm.                   | (10) |             | $n_{ m D}^{20}$          | = 1.38976                                                          | (4)  |
| <b>50°</b>   | at 740 mm.                          | (13) |             |                          | 1.3887                                                             | (8)  |

Colorless mobile liq. with sharp and penetrating odor. — Note that ordinary samples of  $\bar{C}$  may (according to their method of preparation) contain more or less PCl<sub>3</sub> (b.p. 75.95° at 760 mm.), POCl<sub>3</sub> (b.p. 107.2° at 760 mm.), SOCl<sub>2</sub> (b.p. 78.8°), AcOH (b.p. 118.2°), Ac<sub>2</sub>O (b.p. 140.0°), or various acetylated derivs. of phosphorous acid (if present in large amt. the last in part form a white ppt. on long stdg.), removal of which is difficult. the presence of these impurities doubtless accounts for various instances of abnormally high b.p.'s cf. (7). —  $\bar{C}$  may be freed from dissolved HCl and from AcOH by distn. with dimethylaniline (13) or by treatment with powdered basic oxides, hydroxides, carbonates, etc. (14).

# PREPARATION OF C

 $\bar{C}$  can be prepared from various sources with a wide variety of reagents; examples of the more important types of combinations are given below grouped under indicated subheadings. — It must also be recognized that many other processes (notably for manufacture of Ac<sub>2</sub>O) involve the formation of  $\bar{C}$  but immediately utilize it without separate isolation; these cannot be included here.

Preparation of  $\tilde{C}$  from AcOH. [For preparation of  $\tilde{C}$  from AcOH with PCl<sub>3</sub> (79% yield (20)) (15) (16) (7) (17) under press. at 80° (yield 100% (18)) or in Ac<sub>2</sub>O (85% yield (19)) see indic. refs. (note particularly the form. of Ac<sub>2</sub>O and of AcO.P(OH)<sub>2</sub> discussed in (17)): with PCl<sub>3</sub> + ZnCl<sub>2</sub> (90% yield) see (20); with PCl<sub>5</sub> (80% yield (20)) (21) see indic. refs.; with POCl<sub>3</sub> (22) (23) see indic. refs.; with P<sub>2</sub>O<sub>5</sub> + HCl gas at 0° see (24) (25); with P + Cl<sub>2</sub> in POCl<sub>3</sub> see (26).]

[For prepn. of  $\bar{C}$  from AcOH with SOCl<sub>2</sub> (46% yield (20)), with S<sub>2</sub>Cl<sub>2</sub> + Cl<sub>2</sub> at  $-4^{\circ}$  in pres. of Fe (95.5% yield (27)), with ClSO<sub>3</sub>H (20-25% yield (28)); with sodium chlorosulfonate (29) in pres. of NaCl or Na<sub>2</sub>S<sub>2</sub>O<sub>7</sub> (30) (31), or with SiCl<sub>4</sub> in toluene (85% yield (32)), see indic. refs.]

[For prepn. of  $\bar{C}$  from AcOH with COCl<sub>2</sub> (3:5000) at 110–120° (33) in vapor phase at 160° over MgCl<sub>2</sub> on diatomaceous earth (34) cf. (35) (36); with an arylsulfochloride such as p-toluenesulfonyl chloride + NaCl (30); with another org. acid chloride such as chloroacetyl chloride (3:5235) (37), dichloroacetyl chloride (3:5290) (38), or benzoyl chloride (3:6240) (yield 85–88% (39), 70% (42)) (40) (41); with benzotrichloride (3:6540) (90% yield (42)) see indic. refs.]

Preparation of C from salts of acetic acid. [For prepn. of C from NaOAc (or other metallic acetates) with POCl<sub>3</sub> (43) (44); with SO<sub>2</sub>Cl<sub>2</sub> (45) (46); with sodium chlorosulfonate

(29) cf. (30); with SiCl<sub>4</sub> (47) (48); with COCl<sub>2</sub> at 120° under press. (49); with p-toluene-sulfonyl chloride (50); with benzoyl chloride (3:6240) (40) see indic. refs.; from NaOAc/H<sub>2</sub>SO<sub>3</sub> compd. with Cl<sub>2</sub> see (51).]

Preparation of  $\tilde{C}$  from acetic anhydride. [For prepn. of  $\tilde{C}$  from Ac<sub>2</sub>O (1:1015) with Cl<sub>2</sub> (52); with dry HCl gas at 100° (52) or in continuous process at 85–90° (93% yield (53)) or under 18–42 atm. press. (100% yield (54)); with PCl<sub>3</sub> (15); with PCl<sub>5</sub> (21); with SOCl<sub>2</sub> at 20–25° (SO<sub>2</sub> being evolved) (55), or with sodium chlorosulfonate (29) see indic. refs.]

[For prepn. of  $\bar{C}$  from Ac<sub>2</sub>O (1:1015) with phosgene (3:5000) + cat. (56); with benzoyl chloride (3:6240) (77% yield (42)) (41) (40); with oxalyl (di)chloride (3:5060) (80-95% yield (57)); with benzo-trichloride (3:6540) + ZnCl<sub>2</sub> (33% yield (58)); with benzyl chloride (3:8535) + cat. (59) see indic. refs.; for formn. of  $\bar{C}$  as by-prod. from reactn. of ethylene with Cl<sub>2</sub> in Ac<sub>2</sub>O see (60).]

Preparation of C from methyl chloride. [For prepn. of C from CH<sub>3</sub>Cl (3:7005) with CO at 700-800° over pumice contg. sodium metaphosphate (61) or with CO, COCl<sub>2</sub>, or COS at 700-900° in pres. of metallic cat. (62) see indic. refs.]

Preparation of  $\bar{C}$  from miscellaneous sources. [For prepn. of  $\bar{C}$  from 1,1,1-trichloroethane (methylchloroform) (3:5085) by partial cat. hydrolysis (63) (64); from ketene + liq. HCl (65) or with HCl gas over activated carbon at 100° (100% yield (66)); from ethyl, isobutyl, isoamyl, benzyl, phenyl, or p-tolyl acetates with SiCl<sub>4</sub> (67); from  $\alpha$ -chloroethyl acetate (3:7625) (68) (69) or  $\alpha,\beta$ -dichloroethyl acetate (69) with ZnCl<sub>2</sub> (68) or over pumice at 250–300° (69); from  $\beta$ -bromo- $\alpha,\beta$ -dichlorovinyl ethyl ether with AcOH (70); from acetyl bromide with HCl gas at ord. temp. (71); from N,N-diacetylaniline (diacetanilide) with HCl gas at 150–170° (72); from diacetyl sulfite (see below) with SOCl<sub>2</sub> (73) see indic. refs.]

# PYROLYSIS OF C

[C in absence of cat. is stable to heat up to at least 450° (74). — C passed at 700-850° over hot Pt wire gives ethylene + CO + HCl (75), but at 400° over Pt on pumice gives (74) 45% MeCl (3:7005) + 49% CO + 5% H<sub>2</sub>. — C over Cu filings at 350° is partially decomposed yielding (74) MeCl (3:7005) + CO + CO<sub>2</sub> + H<sub>2</sub> + dehydroacetic acid (1:0700) + acetone. — C over ZnCl<sub>2</sub> on pumice at 400° gives (74) HCl + dehydroacetic acid (1:0700) + gas mixt. contg. 87% CO<sub>2</sub> + 4% CO + 2% H<sub>2</sub>. — C over Ni at 420° gives (76) HCl + gas mixt. contg. 62% CO + 32% H<sub>2</sub>. — For studies on pyrolysis of C over Al<sub>2</sub>O<sub>3</sub>, Cu<sub>2</sub>Cl<sub>2</sub>, CuO, Ni, etc., see (74).]

# REACTIONS OF C WITH INORGANIC REAGENTS

Reaction of  $\tilde{C}$  with  $H_2O$  (hydrolysis).  $\tilde{C}$  reacts violently with aq. hydrolyzing to AcOH (1:1010) + HCl (for kinetic studies see (777)); for use of this reactn. in volumetric detn. of  $H_2O$  in org. liquids see (185) (78). — Because of its ease of reactn. with aq.  $\tilde{C}$  is widely used for condensations, ring closures, etc.

Reaction of C with NH<sub>3</sub> and similar cpds. C with cold conc. aq. NH<sub>4</sub>OH (16) or C with liq. NH<sub>3</sub> (79) gives (yields: 77% (16), 88% (79)) acetamide, very sol. aq., m.p. 81.5°, b.p. 222° (best recrystd. from dry AcOEt by addn. of dry ether).

[The direct reaction of  $\bar{C}$  with NH<sub>2</sub>OH (or its salts) seems to be unreported, but the presumable prod., viz., N-acetylhydroxylamine (acethydroxamic acid) [Beil. II-187, II<sub>1</sub>-(85), II<sub>2</sub>-(184)], very eas. sol. aq. or alc., insol. ether, cryst. from EtOAc, m.p. anhydrous 89°, contg. crystal aq.  $57^{\circ}$ , has been obtd. indirectly.]

[The direct reacts. of  $\tilde{C}$  with hydrazine hydrate, NH<sub>2</sub>.NH<sub>2</sub>.H<sub>2</sub>O, seems to be unreported, but the presumable prod., viz., acethydrazide (acetylhydrazine) [Beil. II-191, II<sub>1</sub>-(86), II<sub>2</sub>-(185)], ndls. from alc., m.p. 67°, has been obtd. by indirect means.]

Reaction of  $\tilde{C}$  with halogens. [ $\tilde{C}$  with  $Cl_2$  in  $CCl_4$  in light (80) or in pres. of  $I_2$  (82) gives mainly chloroacetyl chloride (3:5235); for study of mechanism of chlorination see (81); for influence of  $\tilde{C}$  on chlorination of AcOH or Ac<sub>2</sub>O see (82), on bromination of AcOH see (83).]

[For studies of  $\overline{C}$  with Br<sub>2</sub> see (84) (85) (86).]

Reaction of  $\bar{C}$  with inorganic acids. [ $\bar{C}$  with dry HBr gas for 2 hrs. gives (80% yield (87)) acetyl bromide [Beil. II-174, II<sub>1</sub>-(79), II<sub>2</sub>-(176)], b.p. 76.7° at 760 mm.,  $D_4^{15.8} = 1.6625$ ,  $n_D^{15.8} = 1.45370$ ; for details on this equilibrium see (88).]

[C with 3 pts. dry HI in the cold gives (70% yield (87)) (89) acetyl iodide [Beil. II-174, II<sub>1</sub>-(80), II<sub>2</sub>-(177)], b.p. 104-106° at 735 mm. (89) (for studies of use of AcI in splitting of aliphatic ethers (90) or in addn. to unsatd. hydrocarbons (91) see indic. refs.).]

[ $\bar{C}$  with cold conc.  $H_2SO_4$  (1 mole) forms a mol. cpd. (88) (92) which can even be obtd. in cryst. form (92); this cpd. loses HCl only upon htg. (88) (92), and the residual acetyl hydrogen sulfate [Beil. II-170, II<sub>1</sub>-(78), II<sub>2</sub>-(174)] which might be expected is transformed into sulfoacetic acid and other prods. (92). —  $\bar{C}$  with nitrosylsulfuric acid in CCl<sub>4</sub> evolves NOCl and yields acetyl HSO<sub>4</sub> which rapidly changes to sulfoacetic acid (93).]

[C with ClSO<sub>3</sub>H stood for several days (94) (95) evolves HCl and forms the transient acetyl sulfonyl chloride, CH<sub>3</sub>.CO.O.SO<sub>2</sub>Cl; above 45° this intermediate rearr. to sulfoacetyl chloride which with water hydrolyzes to sulfoacetic acid; C with ClCO<sub>3</sub>H at 60–140°, however, also undergoes condensation involving 4 moles of C with evoln. of HCl and formn. of an acid chloride which on hydrolysis with aq. gives (3% yield (94)) a monobasic acid of compn. C<sub>8</sub>H<sub>8</sub>O<sub>4</sub> [Beil. XVIII-412], m.p. 99°, which is either 2,6-dimethylpyrone-4-carboxylic acid-3 or 2-methylpyrone-1,4-acetic acid-6 (96); note that this acid is isomeric with but distinct from dehydroacetic acid (1:0700), m.p. 109°. — Note also that C in AcOH boiled with conc. H<sub>2</sub>SO<sub>4</sub> gives (97) traces of 2,6-dimethylpyrone.]

[C with solid H<sub>2</sub>O<sub>2</sub> (0.6 mole) yields (98) about 60% acetyl hydrogen peroxide (peracetic acid) [Beil. II-169, II<sub>1</sub>-(78), II<sub>2</sub>-(174)] accompanied by some diacetyl peroxide [Beil. II-170, II<sub>1</sub>-(78), II<sub>2</sub>-(174)].— C with liq. H<sub>2</sub>S yields (99) "dithioacetic acid anhydride," (CH<sub>3</sub>.CS)<sub>2</sub>S, white cryst., m.p. 225° (99); note that, although neither C nor Ac<sub>2</sub>O separately treated with H<sub>2</sub>S gas shows any appreciable reaction, yet Ac<sub>2</sub>O contg. 2% C absorbs H<sub>2</sub>S giving (70% yield (100)) thiolacetic acid [Beil. II-230, II<sub>1</sub>-(101), II<sub>2</sub>-(208)], CH<sub>3</sub>.CO.SH, b.p. 93°. — C (4 moles) with H<sub>2</sub>S<sub>3</sub> + ZnCl<sub>2</sub> yields (101) diacetyl trisulfide.]

Reaction of  $\bar{C}$  with salts of inorganic acids.  $[\bar{C}$  with metal oxides in CHCl<sub>3</sub> at -60 to  $-20^{\circ}$  yields (102) the corresp. metallic chlorides.  $-\bar{C}$  with Sb<sub>2</sub>S<sub>3</sub> at 300-350° (103) or with K<sub>2</sub>S (104) gives diacetyl sulfide [Beil. II-232], b.p. 120°.  $-\bar{C}$  with PbSO<sub>3</sub> gives (72) diacetyl sulfite which with SOCl<sub>2</sub> gives  $\bar{C} + SO_2$  (72).

[ $\overline{C}$  (6 pts.) with KNO<sub>3</sub> (first fused, then powdered) (1 pt.) (105) or  $\overline{C}$  with Pb(NO<sub>3</sub>)<sub>2</sub> (106) gives mainly (yields: 81-85% (105), 58% (106)) acetic anhydride (1:1015).]

[C with NaN<sub>3</sub> in di-isoamyl ether stood overnight {108} {109}, then warmed at 60-70°, evolves N<sub>2</sub> and gives (86% yield (107)) methyl isocyanate [Beil. IV-77, IV<sub>1</sub>-(337), IV<sub>2</sub>-(578)], b.p. 27.4-27.8°; note, however, that C with NaN<sub>3</sub> in AcOH evolves N<sub>2</sub> and gives (50-63% yield {110}) N-methylacetamide, m.p. 27-28°, b.p. 202-204° (presumably by cleavage of the CH<sub>3</sub>NCO and acetylation of the MeNH<sub>2</sub>).]

[ $\bar{C}$  with NaHF<sub>2</sub> in Ac<sub>2</sub>O (111), with KF in AcOH (41) (42), AgF (112), ZnF<sub>2</sub> (112) (113), HgF<sub>2</sub> (114), C<sub>6</sub>H<sub>5</sub>HgF (115), SbF<sub>3</sub> (112) (116), or AsF<sub>3</sub> (112) gives (yields: 132% on  $\bar{C}$  or 66% on NaHF<sub>2</sub> (111), 76% (41) (42), 40% (113), 30.8% (116)) acetyl fluoride, b.p. 20.8° at 770 mm.]

[ $\bar{C}$  with AlCl<sub>3</sub> in CS<sub>2</sub> at  $-10^\circ$  gives (117) a mol. cpd.,  $\bar{C}$ .AlCl<sub>3</sub>, as a pale yel. gummy mass;  $\bar{C}$  with AlCl<sub>3</sub>.Et<sub>2</sub>O gives EtOAc (70% yield (118)) + EtCl (3:7015) + AlCl<sub>3</sub>.  $-\bar{C}$  (1 mole) with AlCl<sub>3</sub> (6 moles) in CHCl<sub>3</sub> gives (124) (CH<sub>3</sub>CO)<sub>2</sub>.CH.CCl<sub>2</sub>.O.AlCl<sub>2</sub> (125) which with

aq. yields (124) (125) acetylacetone (1:1700). — Note also that  $\bar{C}$  forms other analogous complexes: e.g.,  $\bar{C}$ .BCl<sub>3</sub> (119),  $\bar{C}$ .BF<sub>3</sub> (119),  $\bar{C}$ .SbCl<sub>5</sub> (119) (for use of these in splitting of ethers see (119)).]

[ $\tilde{C}$  with 2 pts. sublimed FeCl<sub>3</sub> in CS<sub>2</sub> for 24 hrs. gives (small yield (120)) dehydroacetic acid (1:0700).]

[Č with CaI<sub>2</sub> in s.t. at 70–75° for 120 hrs. gives (121) acetyl iodide (see above under HI).] Reaction of Č with esters of inorganic acids. [Č with Me<sub>2</sub>SO<sub>4</sub> (1 mole) + trace of ZnCl<sub>2</sub> at 140–150° evolves HCl and gives (20–25% yield (122)) dimethyl sulfoacetate, b.p. 155–165° at 20–22 mm. (122). — Č + di-n-propyl sulfite + trace ZnCl<sub>2</sub> at 170–200° gives (80% yield (123)) n-propyl acetate (1:3075).]

Reaction of  $\tilde{C}$  with metals. [ $\tilde{C}$  in excess with metallic Zn gives a solid of compn.  $C_{16}H_{18}O_4$  (126), now (127) thought to be 3,8-diacetyl-5,6-dimethyldecatetraene-3,4,6,7-dione-2,9. —  $\tilde{C}$  with metallic Zn in dry ether yields (128) EtOAc (1:3015) and AcOH (1:1010). —  $\tilde{C}$  with metallic Zn in dry dioxane (1:6400) gives (85% yield (128)) (129) ethylene glycol diacetate (1:3511). —  $\tilde{C}$  with CuH evolves  $H_2$  and gives (130) cf. (131) EtOAc (1:3015) + ethylidene diacetate (1:3383).]

# REACTIONS OF C WITH ORGANIC REAGENTS

# REACTIONS OF C WITH HYDROCARBONS

Reactions of  $\tilde{\mathbb{C}}$  with alkanes. [ $\tilde{\mathbb{C}}$  with n-butane (or isobutane) + AlCl<sub>3</sub> at 60° for 15 hrs. under press. gives (small yield (132)) isobutyl methyl ketone (1:5430). —  $\tilde{\mathbb{C}}$  with n-pentane + AlCl<sub>3</sub> at 15° at ord. press. gives (10% yield (133)) (134) 2,3-dimethylpentanone-4 (unsym.-isopropyl-methyl-acetone) [Beil. 1-703,  $1_{1^-}$ (360)], b.p. 135–136° (oxime, b.p. 101–105° at 20 mm., semicarbazone, m.p. 114° (133)) accompanied (134) by some 2,3-dimethylpenten-3-one-2 (unsym.-isopropylidene-methyl-acetone) [Beil.  $1_{2^-}$ (796)] (corresp. semicarbazone, m.p. 192.5° (134)). —  $\tilde{\mathbb{C}}$  with n-hexane + AlCl<sub>3</sub> in similar fashion gives (7% yield (135)) (134) 3-ethyl-2-methylpentanone-4 (unsym.-ethyl-isopropyl-acetone) [Beil. 1-707], b.p. 154–155° (semicarbazone, m.p. 120° (135)) accompanied by a little 3-ethyl-2-methylpenten-2-one-4 (unsym.-ethyl-isopropylidene-acetone), b.p. 177–178° (semicarbazone, m.p. 220° (135).]

Reactions of  $\bar{\mathbf{C}}$  with alkenes.  $[\bar{\mathbf{C}}$  in the pres. of suitable cat. can add to olefin linkages forming halogenated ketones: e.g.,  $\bar{\mathbf{C}}$  with ethylene + AlCl<sub>3</sub> at 0° (137) (138) or  $\bar{\mathbf{C}}$  + ethylene over activated carbon at 100° and 50 atm. (139) gives (yields: 53% (136), 33% (137)) (138) cf. (60)  $\beta$ -chloroethyl methyl ketone (3:7640) (note that  $\bar{\mathbf{C}}$  + ethylene + AlCl<sub>3</sub> in CS<sub>2</sub>, latter subsequently replaced by C<sub>6</sub>H<sub>6</sub>, goes further yielding (140) benzylacetone [Beil. VII-314, VII<sub>1</sub>-(167)], b.p. 235°). — For studies of analogous cat. addn. of  $\bar{\mathbf{C}}$  to 2-methylbutene-2, 2,3-dimethylbutene-2, and 2-methylbexene-2 see (141).]

Reactions of  $\bar{C}$  with alkynes.  $[\bar{C}$  in the pres. of suitable cat. can also add to a triple unsatd. linkage yielding olefinic chloroketones: e.g.,  $\bar{C}$  with acetylene + AlCl<sub>3</sub> at 15° (142) (143) or other cat. (143) gives (25% yield (142))  $\beta$ -chlorovinyl methyl ketone, b.p. 35–38° at 12 mm. (143). —  $\bar{C}$  with butyne-1 (ethylacetylene) + SnCl<sub>4</sub> gives (144) 4-chlorohexen-3-one-2, b.p. 46–53° at 10 mm.,  $D_4^{25} = 1.0973$ ,  $n_D^{25} = 1.4906$  (144); for analogous reactions with pentyne-1, hexyne-1, hexyne-3, heptyne-1, octyne-4, decyne-5, and dodecyne-6 together with corresp. constants of prods. see (144).]

Reaction of  $\bar{C}$  with cycloparaffins (cycloalkanes). [ $\bar{C}$  in the pres. of AlCl<sub>3</sub> also condenses with cycloalkanes eliminating HCl; e.g.,  $\bar{C}$  (1.9 moles) + cyclopentane (1:8400) (5.4 moles) + AlCl<sub>3</sub> (2.2 moles) at 0° gives (145) cyclopentyl methyl ketone (acetylcyclopentane), b.p. 159.5-160.5° at 760 mm.,  $D_{20}^{20} = 0.9172$ ,  $n = \frac{20}{D} 1.44351$  (145) (semicarbazone, m.p. 142-143° (145));  $\bar{C}$  + methylcyclopentane (1:8403) + AlCl<sub>3</sub> similarly gives (145) 1-

methylcyclopentyl-2 methyl ketone (1-acetyl-2-methylcyclopentane) accompanied by some 1-methylcyclopenten-1-yl-2 methyl ketone (1-acetyl-2-methylcyclopentene-1) (see below).

[ $\bar{C}$  in the pres. of AlCl<sub>3</sub> also condenses with cyclohexane, but here the reaction involves in addn. a change from a 6-membered to 5-membered ring: e.g.,  $\bar{C}$  with cyclohexane (1:8405) + AlCl<sub>3</sub> gives (135) (146) (147) (148) 1-methylcyclopentyl-2 methyl ketone (1-acetyl-2-methylcyclopentane), b.p. 167-168° at 759 mm.,  $D_4^{20}=0.8976$ ,  $n_D^{20}=1.4404$  (semicarbazone, m.p. 162.5-163° (148), 158° (146); p-nitrophenylhydrazone, m.p. 102.5° (148), accompanied under certain circumstances (135) by 1-methylcyclopenten-1-yl-2 methyl ketone (1-acetyl-2-methylcyclopentene-1), b.p. 185-187° (135) (oxime, m.p. 85-85.5° (148), p-nitrophenylhydrazone, m.p. 162° (148), semicarbazone, m.p. 221° (148), 220° (135)); note that various hydrocarbon by-products are also formed. —  $\bar{C}$  + methylcyclohexane (hexahydrotoluene) (1:8410) + AlCl<sub>3</sub> at room temp. similarly gives (149) 1-acetyl-2,3-dimethylcyclopentane, b.p. 182-184° at 754 mm.,  $D_{20}^{20}=0.8969$ ,  $n_D^{22}=1.44551$  (semicarbazone, m.p. 152°) (149).]

Reaction of  $\bar{C}$  with cycloalkenes. [ $\bar{C}$  in the pres. of suitable cat. adds to unsatd. linkages of cycloalkenes: e.g.,  $\bar{C}$  with cyclopentene (1:8037) + AlCl<sub>3</sub> (2 moles) in cyclohexane at  $-15^{\circ}$  gives (50% yield (150)) cyclopentyl methyl ketone (1-acetylcyclopentane) (for constants see above under  $\bar{C}$  + cyclopentane); note, however, that  $\bar{C}$  + cyclopentene (1:8037) + AlCl<sub>3</sub> at  $-14^{\circ}$  in CS<sub>2</sub> (the latter being subsequently replaced by benzene) gives (140) 1-acetyl-3-phenylcyclopentane (note rearr.).]

[Č with cyclohexene  $(1:8070) + \text{AlCl}_3$  (2 moles) in cyclohexane gives  $(53\% \text{ yield } \{150\})$  cyclohexyl methyl ketone (1-acetylcyclohexane) [Beil. VII-22, VII<sub>1</sub>-(16)]. — Č with cyclohexene  $(1:8070) + \text{AlCl}_3$  (1 mole) in CS<sub>2</sub> gives  $(21\% \text{ yield } \{151\})$  (152) cyclohexen-1-yl-1 methyl ketone (1-acetylcyclohexene-1) (tetrahydroacetophenone) [Beil. VII-58, VII<sub>1</sub>-(49)], b.p.  $201-202^\circ$ ,  $D_4^{20} = 0.9655$ ,  $n_2^{20} = 1.4881$  (oxime, m.p.  $99^\circ$ , semicarbazone, m.p.  $220-221^\circ$ ). — Č with cyclohexene  $(1:8070) + \text{AlCl}_3$  in CS<sub>2</sub> at  $-15^\circ$  gives by addn. a prod. supposed (153) to be 2-chlorocyclohexyl-1 methyl ketone (since it can be converted by loss of HCl to tetrahydroacetophenone (above)) but which when reacted with  $C_6H_6 + \text{AlCl}_3$  gives (140) 4-phenylcyclohexyl-1 methyl ketone (1-acetyl-4-phenylcyclohexane); in just which phase rearr. occurs has not been established with certainty.]

Reaction of C with aromatic hydrocarbons. C with aromatic hydrocarbons in the presence of various cat. (notably AlCl<sub>3</sub>) evolves HCl and yields aryl methyl ketones; examples are cited in the following paragraphs.

[ $\tilde{C}$  with  $C_6H_6$  + AlCl<sub>3</sub> (154) in CS<sub>2</sub> (155) gives (70% yield (155)) methyl phenyl ketone (acetophenone) (1:5515) accompanied by a little 1,3-diphenylbuten-2-one-1 (dypnone) cf. (155); for study of relative reactivity in this sense of AcF, AcCl, AcBr, and AcI see (111); for study of influence of other cat., e.g., FeCl<sub>3</sub> (156) (157), TlCl<sub>3</sub> (158), ZrCl<sub>4</sub> (159), UCl<sub>4</sub> (160), BeCl<sub>2</sub> (161), Al powder (162) or Cr powder (163), or for study of effect of various solvents with AlCl<sub>3</sub> (164) see indic. refs.]

[ $\bar{C}$  with toluene + AlCl<sub>3</sub> gives (70% yield (165)) (166) methyl p-tolyl ketone (1:5530); for study of use of BeCl<sub>2</sub> (80% yield (161)) or of 39 other metallic chlorides (167) (168) see indic. refs. — For reactn. of  $\bar{C}$  + AlCl<sub>3</sub> with a long series of homologous monoalkylbenzenes see (169) (170), with p-cymene (1:7505) see (171); many other, similar cases cannot be included here.]

[ $\bar{\mathbb{C}}$  with naphthalene (1:7200) + AlCl<sub>3</sub> in CS<sub>2</sub> gives a mixt. (75% yield {172}) comprising 50-60% 1-acetylnaphthalene (1:5600) + 15-20% 2-acetylnaphthalene (1:5153). —  $\bar{\mathbb{C}}$  with 1-methylnaphthalene (1:7600) + AlCl<sub>3</sub> in nitrobenzene at -3° gives {173} cf. (174) 1-aceto-4-methylnaphthalene;  $\bar{\mathbb{C}}$  with 2-methylnaphthalene (1:7605) + AlCl<sub>3</sub> in nitrobenzene gives a mixt. (64% yield {175}) comprising mainly 6-acetyl-2-methylnaphthalene accompanied by some 8-acetyl-2-methylnaphthalene.]

[ $\bar{\mathbf{C}}$  with biphenyl (1:7175) + AlCl<sub>3</sub> in CS<sub>2</sub> (176) or C<sub>6</sub>H<sub>6</sub> (177) gives (yields: 90% (176), 70% (177)) 4-acetylbiphenyl (p-phenylacetophenone) (1:5201); under appropriate conditions  $\bar{\mathbf{C}}$  with biphenyl + AlCl<sub>3</sub> in CS<sub>2</sub> gives (yields: 45% (176), 43% (178)) 4,4'-diacetyl-biphenyl.]

[ $\tilde{C}$  with acenaphthene (1:7225) + AlCl<sub>3</sub> in nitrobenzene (179) or with liq. HF (180) gives (29% yield (180)) 1-acetoacenaphthene.]

[Friedel-Crafts condensation can also be carried out with  $\bar{\mathbf{C}}$  and heterocyclic systems: e.g.,  $\bar{\mathbf{C}}$  with thiophene + SnCl<sub>4</sub> in C<sub>6</sub>H<sub>6</sub> gives (79-83% yield (181)) 2-acetylthiophene (methyl 2-thienyl ketone);  $\bar{\mathbf{C}}$  with thionaphthene + AlCl<sub>3</sub> in CS<sub>2</sub> gives (30% yield (182)) 3-acetylthionaphthene.]

# REACTIONS OF C WITH ORGANIC OH (OR SH) COMPOUNDS (OR THEIR METALLIC DERIVATIVES)

Reactions of  $\bar{C}$  with alcohols. [ $\bar{C}$  reacts with alcs. in general yielding the corresp. acetates: e.g.,  $\bar{C}$  with MeOH (1:6120) yields methyl acetate (1:3005),  $\bar{C}$  with EtOH (1:6130) yields EtOAc (1:3015), etc.; for studies on rate of reactn. of  $\bar{C}$  with EtOH in ether (1), or with  $\beta$ -chloroethyl alc. in dioxane (182) (183), or with benzyl alc. or cyclohexanol (182) see indic. refs.] — For use of  $\bar{C}$  in quant. detn. of OH groups in prim. and sec. alcs. see (186) (187) (188) cf. (185).

[Special interest, however, attaches to reaction of  $\bar{C}$  with ter-alcohols: under ord. conditions these react with  $\bar{C}$  to exchange Cl for OH yielding alkyl chloride + AcOH (e.g.,  $\bar{C}$  + ter-butyl alc. giving ter-BuCl + AcOH); note, therefore, that under special conditions  $\bar{C}$  with ter-alcs. also gives the corresp. esters; e.g.,  $\bar{C}$  with ter-butyl alc. (1:6140) in dry ether + Mg (189) (190) or dimethylaniline (191) or in xylene with pyridine (192) gives (yields: 98% (192), 83% (189), 63–68% (191), 45–55% (190)) ter-butyl acetate (1:3057); other ter-alcs. (189) and other acid chlorides (191) behave similarly.]

[For reactn. of  $\tilde{C}$  with cellulose (or cotton) see (193) (194) (195); with polyoxymethylenes see (196).]

[Č with mercaptans yields the corresp. thiolacetates: e.g.,  $\bar{C}$  with  $C_2H_5SH$  gives (80% yield (197)) ethyl thiolacetate,  $CH_3CO.S.C_2H_5$ , b.p. 116–117°,  $D_4^{25}=0.9755$ ,  $n_D^{28}=1.4503$  (197).]

Reactions of C with phenols. C can react with phenols in either or both of two modes: on one hand it can acetylate the phenolic OH yielding the corresp. phenol acetates, or in the pres. of suitable cat. or solvents it can condense with one or more of the nuclear H atoms yielding phenolic ketones. Furthermore the phenol acetates can more or less readily be caused to rearr. into phenolic ketones (Fries rearr.) so that the chemistry of the two classes is closely related and so voluminous that it cannot be given extensive discussion here.

[ $\tilde{C}$  with phenol (1:1420) directly (198) (199) or in  $C_6H_6+Mg$  (200) gives (yields: 92% (200), 90% (199)) phenyl acetate (1:3571); other mono-, di-, and polyhydric phenols behave analogously.]

[ $\bar{C}$  with phenol (1:1420) + FeCl<sub>3</sub> in CS<sub>2</sub> (156) (201) or phenyl acetate (above) + AlCl<sub>3</sub> in nitrobenzene at 20–25° for 24 hrs. (202) gives (yields: 75% (202), 33% (201)) p-hydroxy-acetophenone (1:1527), m.p. 109° (for extensive review of the Fries rearr. reactn. see (203)); the corresp. analogous reactns. of  $\bar{C}$  with other mono-, di-, and polyhydric phenols are legion and will not be cited here.]

[For study of series of mol. cpds. of C with various benzeneazophenols see (230).]

Reaction of  $\bar{C}$  with phenol ethers. With phenol ethers where no phenolic OH remains to interfere  $\bar{C}$  reacts in the pres. of suitable cat. in the Friedel-Crafts sense: e.g.  $[\bar{C}$  (2 moles) with methyl phenyl ether (anisole) (1:7445) (1 mole) + AlCl<sub>3</sub> (2 moles) gives (75% yield

(204)) (205) p-methoxyacetophenone (p-acetylanisole) (1:5140); note that  $\ddot{\mathbf{C}}$  + anisole do not react in the pres. of AlF<sub>3</sub> or ZnF<sub>2</sub> (111). — Countless analogous condensations of  $\ddot{\mathbf{C}}$  with other phenol ethers cannot be discussed here].

Reaction of  $\tilde{\mathbf{C}}$  with enols (or their metallic derivatives). [The reaction of  $\tilde{\mathbf{C}}$  with ethyl acetoacetate (1:1710) leads according to circumstances to either or both of two very closely similar derivatives; one of these is ethyl O-acetylacetoacetate (ethyl P-acetoxycrotonate) (A) [Beil. III-373, III<sub>1</sub>-(135), III<sub>2</sub>-(255)], b.p. 212-214° sl. dec. (206),  $D_4^{20}=1.060$  (207),  $n_D^{20}=1.4447$  (207); the other is ethyl  $\alpha$ -acetylacetoacetate (ethyl diacetylacetate) (B) [Beil. III-751, III<sub>1</sub>-(263), III<sub>2</sub>-(467)], b.p. 209-211° (208),  $D_4^{20}=1.093$  (207),  $n_D^{20}=1.4687$  (207); note that the latter (B) as liquid is 100% enolized (209) (210) and this prop. is used (211) for detn. of both A+B in their mixtures. — Note furthermore that the O-ester (A) by suitable htg. (212) (213) (214) (215) (216) can be converted to the isomer (B).]

[ $\bar{\mathbf{C}}$  with cthyl acetoacetate (1:1710) in pres. of pyridine (217) or  $\bar{\mathbf{C}}$  with its Na enolate in ether (219) or its Cu enolate in ether or  $C_6H_6$  (220) gives mainly the O-acetyl deriv. (A) (above);  $\bar{\mathbf{C}}$  with ethyl sodioacetoacetate in ether (221) (222) (223) (226) or pet. ether (216) or with the Ca enolate in  $C_6H_6$  (224) or  $\bar{\mathbf{C}}$  with ethyl acetoacetate + Mg in  $C_6H_6$  (225) (226) gives (yields: 65% (224), 46-52% (225)) ethyl diacetylacetate (B above) (Cu enolate, m.p. 151° (226)).]

[For study of influence of  $\bar{C}$  on rate of enolization of ethyl acetoacetate see (228); for formn. of ethyl O-acetylacetoacetate (isomer A above) from  $\bar{C}$  + ketene diethylacetal (30% yield together with other prods.) see (229).]

Reaction of  $\tilde{\mathbf{C}}$  with acids or their salts. [ $\tilde{\mathbf{C}}$  on htg. with NaOAc or other metal salts of AcOH yields acetic anhydride (1:1015); this reactn. is well known and will not be amplified here;  $\tilde{\mathbf{C}}$  with salts of acids other than acetic gives in some cases the corresp. mixed anhydride, in others only the anhydride of the second acid. E.g.,  $\tilde{\mathbf{C}}$  (1 mole) with dry Na isovalerate (1 mole) gives at 120° the mixed anhydride contg. 1 acetyl and 1 isovaleroyl radical (231); on the other hand,  $\tilde{\mathbf{C}}$  with dry Na cinnamate gives only cinnamic anhydride (231); many other examples are known.]

[ $\bar{C}$  on htg. with AcOH under appropriate conditions (232) (233) (234) loses HCl giving good yields Ac<sub>2</sub>O (1:1015).]

Note that  $\bar{C}$  in Ac<sub>2</sub>O behaves as a weak acid and can actually be titrated with NaOAc in Ac<sub>2</sub>O using methyl orange as indicator (235).

# REACTION OF C WITH AMINES (OR THEIR DERIVATIVES)

Reaction of  $\bar{\mathbf{C}}$  with primary and secondary amines.  $\bar{\mathbf{C}}$  readily reacts with such amines to yield under ord. conditions the N-acetylated derivative: e.g.,  $\bar{\mathbf{C}}$  with MeNH<sub>2</sub> gives N-methylacetamide [Beil. IV-58, IV<sub>1</sub>-(329), IV<sub>2</sub>-(563)], very sol. aq., m.p. 27-28°, b.p. 206°; countless other examples are known. Note that only 1 acetyl group is introduced into each amino group; also that  $\bar{\mathbf{C}}$  with a mixture of two amines gives mainly (or even exclusively) the N-acetyl deriv. of the more negative accompanied by the hydrochloride of the more positive (236). See also below under  $\bar{\mathbf{O}}$ 's.

Reaction of  $\bar{C}$  with tertiary amines.  $\bar{C}$  (1 mole) with pyridine (1 mole) directly (237) (238) or in  $C_6H_6$  (237) ppts. an addn. prod. (presumably N-acetylpyridinium chloride), white cryst. turning red in light, m.p. abt. 100°, after darkening at 90°; for use of this cpd. in cleavage of phenol ethers see (237). — For use of  $\bar{C}$  + pyridine in toluene as means of quant. detn. of OH groups see (186).

[Č (1 mole) with Et<sub>8</sub>N (1 mole) in 10 vols. dry C<sub>6</sub>H<sub>6</sub> (239) or Č in equal. vol. pyridine or picoline (238) yields dehydroacetic acid (1:0700), m.p. 209°.]

[Note here also a novel method of intermolecular dehydrohalogenation: e.g., C with

lauroyl chloride (3:9858) + Et<sub>2</sub>N in dry ether ppts. Et<sub>3</sub>N.HCl and yields (240) a mixt. of acetylketene (detene dimer) + lauroylketene and other prods. — Note further that since dehydroacetic acid (above) may be viewed as ketene tetramer, its formation from Č with ter-amines (above) may (241) involve preliminary formation of acetylketene followed by Diels-Alder addn. with a second identical molecule to give dehydroacetic acid.]

Reaction of  $\tilde{C}$  with other miscellaneous nitrogenous systems. [ $\tilde{C}$  with diazomethane in dry ether yields (242) diazoacetone (acetyldiazomethane) [Beil.  $I_1$ -(396),  $I_2$ -(823)] yel. liq., b.p. 49° at 13 mm. (242).]

[C with oximes often is used to effect either dehydration to nitriles or Beckmann rearr. or both (for review see {243}).]

[C with acetanilide refluxed for 7 hrs. gives (244) diphenylacetamidine; other anilides behave in analogous fashion (244). — However, C with acetanilide + AlCl<sub>3</sub> in CS<sub>2</sub> (245) or other inert solvent (246) gives Friedel-Crafts reactn. forming (57% yield (245)) p-(acetylamino)acetophenone [Beil. XIV-48, XIV<sub>1</sub>-(366)], m.p. 166-167°.]

[C with thiosemicarbazide results in acetylation followed by elimination of HCl and ring closure yielding (247) (248) the hydrochloride, m.p. 110° (248), of 5-amino-2-methyl-1-thiodiazole-3,4 [Beil. XXVII-629], m.p. 235° (248). — For study of reactn. of C with Schiff's bases see (249).]

# REACTION OF C WITH VARIOUS ORGANOMETALLIC COMPOUNDS

Reaction of  $\bar{C}$  with Grignard reagents. [The normal reaction of  $\bar{C}$  with 1 mole RMgX is to eliminate MgXCl and yield the corresp. ketone; e.g.,  $\bar{C}$  with EtMgBr in pres. of CdCl<sub>2</sub> gives (46% yield (250)) ethyl methyl ketone (1:5405); in the presence of excess RMgX, however (and sometimes without excess), the ketone may react further to yield the corresp. tertiary alcohol; e.g.,  $\bar{C}$  with C<sub>6</sub>H<sub>8</sub>MgBr gives 39% yield (251) diphenyl-methyl-carbinol; countless other examples cannot be included here.]

[Certain divergences from the above normal reaction have, however, now been recognized; these appear to be largely a function of the particular types of RMgX employed. E.g.,  $\bar{C}$  (0.5 mole) with benzyl MgCl (0.37 mole) in dry ether gives (instead of the expected phenylacetone (1:5118)) 24% yield (252) of o-methylacetophenone (1:5524).]

[Furthermore Č with Grignard reagents derived from tertiary alkyl halides is often reduced and the reactn. prod. then contains (in addn. to the normal prods.) other material derived from the reduction prods. E.g., Č (in excess) with ter-BuMgCl gives (40% yield (253) (254)) ter-butyl methyl ketone (pinacolone) (1:5425); note, however, that further study (255) (256) (13) has shown the formation of numerous other prods. including 2-methylpropane (isobutane), 2-methylpropene-1 (isobutylene), carbon monoxide, ethyl acetate, pinacolyl acetate, and mesityl oxide. — For study of reactn. of Č with ter-AmMgCl (254) (13) and other ter-RMgX cpds. (254) see indic. refs. — Note that even RMgX cpds. from even primary halides may effect reduction; e.g., Č with n-BuMgCl gives (255) 13% hexanol-2 (1:6210) + 8% EtOH (1:6130).]

[Note also that  $\bar{C}$  with 2,4,6-trimethylbenzyl MgBr (mesityl MgBr) gives (257) mesitylene but no 2,4,6-trimethylacetophenone (acetomesitylene) although  $\bar{C}$  with 2,4,6-triphenyl-phenyl MgBr does give (258) the corresp. 2,4,6-triphenylacetophenone.]

Reaction of  $\tilde{C}$  with other miscellaneous organometallic compounds. [ $\tilde{C}$  with diphenylmethylsodium reacts to replace Na by H yielding (259) diphenylmethane (1:7120);  $\tilde{C}$  with phenylsilver gives (260) 21% acetophenone (1:5515) + 40% biphenyl (1:7175);  $\tilde{C}$  with phenylcopper gives (260) 48-54% acetophenone (1:5515).]

[ $\bar{C}$  with E<sub>2</sub>Mg gives (261) 3-methylpentanol-3 (1:6189) (not *ter*-butyl alc. as was formerly supposed);  $\bar{C}$  with dibenzylzinc in pet. ether gives (262) 9% ketones;  $\bar{C}$  with dibenzylcadmium in ether gives (262) 18% phenylacetone (1:5118);  $\bar{C}$  with Et<sub>2</sub>Hg gives

- (263) EtHgCl + butanone-2 (1:5405), but  $\tilde{C}$  with dibenzylmercury or with benzylmercuric chloride shows little reaction (262) even after refluxing 2 weeks.]
- [ $\bar{C}$  with tetraphenyltin in s.t. at 100° for 15 hrs. gives (very small yield (264)) of acetophenone (1:5515); for reactn. of  $\bar{C}$  with tetraethyllead and use in detn. of latter in gasoline see (265).]
  - [C with triphenylbismuth in CCl<sub>4</sub> yields (266) acetophenone (1:5515).]
- [ $\overline{C}$  (2 moles) with Ni(CO)<sub>4</sub> (1 mole) in pet. ether gives (267) 4CO + NiCl<sub>2</sub> + biacetyl the latter sepg. as a 1:1 addn. cpd. with the NiCl<sub>2</sub>.]
  - D Acetanilide: cryst. from hot aq., m.p. 114°. [From C with aniline (2 moles) followed by recrystallization to remove aniline hydrochloride. Note that even with aniline + aq. at room temp. acetanilide formn. occurs to extent of 35-45% but its proportion diminishes with increase of temp. (268).]
  - Acet-p-toluidide: cryst. from hot aq. or dil. alc., m.p. 153°. [From C + p-toluidine (2 moles) followed by recrystallization to remove p-toluidine hydrochloride.]
  - D Acet-α-naphthalide: m.p. 159°.
  - D Acet-β-naphthalide: m.p. 132°.
  - β-Acetophenylhydrazide (β-acetylphenylhydrazine) ( $C_6H_5$ .NH.NH.COCH<sub>3</sub>) [Beil. XV-241, XV<sub>1</sub>-(63)]: m.p. 128–129°. [Note that α-acetphenylhydrazide [Beil. XV-236, XV<sub>1</sub>-(62)], m.p. 124°, is obtd. from  $\alpha$ ,β-diacetylphenylhydrazine [Beil. XV-245, XV<sub>1</sub>-(64)], m.p. 107–108°, by partial hydrolysis.]
  - β-Acet-p-nitrophenylhydrazide [Beil. XV-478]: yel. ndls. from alc., m.p. 205-206°.
     β-Acet-2,4-dinitrophenylhydrazide [Beil. XV-492]: yel. pr. from alc., m.p. 201° (269).
- 3:7065 (1) Branch, Nixon, J. Am. Chem. Soc. 58, 2499-2504 (1936). (2) Walden, Z. physik. Chem. 70, 578 (1910). (3) Whitmore, Rec. trav. chim. 57, 567 (1938). (4) Bruhl, Ann. 203, 11 (1880). (5) Koehl, Wenzke, J. Am. Chem. Soc. 59, 1418 (1937). (6) Timmermans, Bull. soc. chim. Belg. 30, 216 (1921). (7) Thorpe, J. Chem. Soc. 37, 186-189 (1880). (8) Martin, Partington, J. Chem. Soc. 1936, 162. (9) Kohlrausch, Pongratz, Z. physik. Chem. B-22, 381 (1933). (10) Mathews, Fehland, J. Am. Chem. Soc. 53, 3216 (1931).
- (11) Walden, Z. physik. Chem. 55, 222 (1906). (12) von Auwers, Schmidt, Ber. 46, 473 (1913). (13) Whitmore, Sutherland, Wagner, Clapper, Lewis, Lux, J. Am. Chem. Soc. 63, 651 (1941). (14) Monsanto Chemical Works, Brit. 397,775, Sept. 21, 1933; Cent. 1933, II 3194. (15) Béchamp, Compt. rend. 40, 946 (1855); 42, 226 (1856). (16) Aschan, Ber. 31, 2346-2347 (1898). (17) Brooks, J. Am. Chem. Soc. 34, 492-499 (1912). (18) Scheuble, Ger. 251,806, Oct. 8, 1912; Cent. 1912, II 1503. (19) British Dyestuffs Corp. & Coffey, Brit. 261,240, Dec. 9, 1926; Cent. 1927, II 620. (20) Clark, Bell, Trans. Roy. Soc. Can. (3) 27, III 97-104 (1933).
- (21) Ritter, Ann. 95, 208 (1855). (22) Kanonnikow, Ber. 7, 1650 (1874). (23) Kato, Fujino, Kikuchi, J. Spc. Chem. Ind. Japan (Suppl.) 37-B, 170-171 (1934); Cent. 1934, II 1440; C.A. 28, 5406 (1934). (24) Friedel, Compt. rend. 68, 1557 (1869). (25) Demole, Ber. 10, 1790-1791 (1877). (26) I.G., Ger. 539,624, Nov. 28, 1931; Cent. 1932, I 739. (27) Britton (to Dow Chem. Co.), U.S. 1,805,162, May 12, 1931; Cent. 1931, II 631; C.A. 25, 3670 (1931). (28) Traube, Krahmer, Ber. 52, 1294 (1919). (29) B.A.S.F., Ger. 146,690, Dec. 1, 1903; Cent. 1904, I 65. (30) Henle, Schirm (to M.L.B.), Ger. 397,311, July 1, 1924; French 568,331, March 22, 1924; Cent. 1924, II 1401-1402.
- (31) Henle (to I.G.), U.S. 1,792,163, Feb. 10, 1931; Cent. 1931, I 2934; C.A. 25, 1843 (1931). (32) Montonna, J. Am. Chem. Soc. 49, 2114-2115 (1927). (33) Kempf, J. prakt. Chem. (2) 1, 414 (1870). (34) Eggert, Grimm (to I.G.), Ger. 655,683, Jan. 25, 1938; Cent. 1938, I 2445; C.A. 32, 3773, 6672 (1938). (35) I.G., French 754,986, Nov. 17, 1933; Cent. 1934, I 942. (36) I.G., French 755,052, Nov. 18, 1933; Cent. 1934, I 942-943. (37) Hale, U.S. 1,850,205, March 22, 1932; Cent. 1933, II 2192; C.A. 26, 2750 (1932). (38) Mugdan, Wimmer (to Consortium für Elektrochem. Ind.), Ger. 549,725, April 30, 1932; Cent. 1932, II 122. (39) Brown, J. Am. Chem. Soc. 60, 1325-1328 (1938). (40) Chem. Fabrik vorm. Weiler-ter-Meer, Ger. 350,050, March 11, 1922; Cent. 1922, IV 155.
- (41) Nesmeyanov, Kahn, J. Gen. Chem. (U.S.S.R.) 4, 1243-1246 (1936); Cent. 1936, I 4288; not in C.A. (42) Nesmeyanov, Kahn, Ber. 67, 370-373 (1934). (43) Gerhardt, Ann. chim. (3)

37, 294-298 (1853); Ann. 87, 68-71 (1853). (44) Geuther, Ann. 123, 113-121 (1862). (45) Verein Chem. Ind., Ger. 63,593, June 8, 1892; Friedlander, 3, 8. (46) Wohl, Ger. 151,864, June 9, 1904; Cent. 1904, II 69. (47) Mugdan (to Consortium für Elektrochem. Ind.), U.S. 944,372, Dec. 28, 1909; C.A. 4, 643 (1910). (48) I.G., Brit. 289,959, May 31, 1928; Cent. 1928, II 711. (49) Hochstetter, Ger. 284,617, May 31, 1915; Cent. 1915, II 215. (50) Chem. Fabrik von Heyden, Ger. 123,052, July 29, 1901; Cent. 1901, II 518.

(51) M.L.B., Ger. 210,805, June 16, 1909; Cent. 1909, II 79. (52) Gal, Ann. chim. (3) 68. 188-190, 196-199 (1862). (53) Nametkin, Bryusova, Fedoseeva, J. Applied Chem. (U.S.S.R.) 12. 1698-1701 (1939); C.A. 34, 7283 (1940). (54) Schlubach, Elsner, Angew. Chem. 47, 130-131 (1934). (55) Masters (to Elko Chem. Co.), U.S. 1,819,613, Aug. 18, 1931; Cent. 1931, II 2932; C.A. 25, 5678 (1931). (56) Stellmann, French 785,075, Aug. 1, 1935, Cent. 1935, II 3301; C.A. 30. 490 (1936). (57) Adams, Uhlich, J. Am. Chem. Soc. 42, 606 (1920). (58) Rabcewicz-Zubkowski, Roczniki Chem. 9, 523-531 (1929); Cent. 1929, II 2767; C.A. 24, 61 (1930). (59) Givaudan et Cie, Swiss 169,040, July 16, 1934; Cent. 1934, II 3555. (60) Weber, Hennion, Vogt. J. Am. Chem. Soc. 61, 1456-1457 (1939).

(61) Steinhauser (to I.G.), Ger. 561,399, Oct. 13, 1932; Cent. 1932, II 3961; I.G., Brit. 308,666, March 25, 1929; Cent. 1929, II 1467; French 671,938, Dec. 20, 1929, Cent. 1930, I 2163. (62) Wiezevich, Frolich (to Standard Oil Development Co.), U.S. 2,062,344, Dec. 1, 1936; Cent. 1937, I 4863; C.A. 31, 708 (1937). (63) Lloyd, Kennedy, U.S. 1,849,844, March 15, 1932; Cent. 1932, I 2994; C.A. 26, 2747 (1932). (64) Britton, Reed (to Dow Chem. Co.), U.S. 1,870,601, Aug. 9, 1932; Cent. 1932, II 3305, C.A. 26, 5578 (1932). (65) Chick, Wilsmore, Proc. Chem. Soc. 24. 77-78 (1908); Cent. 1908, II 1018. (66) Eschenbach, Ger. 638,441, Nov. 16, 1936; Cent. 1937, I 2024; C.A. 31, 1042 (1937). (67) Vol'nov, J. Gen Chem. (U.S.S.R.) 9, 2269-2282 (1939); C.A. 34, 5048 (1940). (68) Soc. des Usines Chimiques Rhône-Poulenc, Brit. 329,721, June 19, 1930; Cent. 1930, II 1611. (69) Soc. des Usines Chimiques Rhône-Poulenc, Brit. 330,511, July 10, 1930; Cent. 1930, II 2184. (70) Smith, J. Chem. Soc. 1927, 1100.

(71) Aschan, Ber. 46, 2162-2168 (1913). (72) Chapman, J. Chem. Soc. 127, 2818-2819 (1925). (73) Richter, Ber. 49, 1026 (1916). (74) Shilov, J. Chem. Ind. U.S.S.R. 7, 110-115 (1930). Cent. 1930, II 463-464; C.A. 25, 4524 (1931). (75) Joist, Lob, Z. Elekatrochem. 11, 941 (1905). (76) Mailhe, Compt. rend. 180, 1111-1113 (1925); Cent. 1925, I 2554. (77) Barredo, Anales soc. españ. fis quím. **37**, 274-277, 278-281, 282-290 (1941); C.A. **37**, 24-25 (1943); Cent. **1943**, I 938-939 (1943). (78) Kaufmann, Funke, Fette u. Scifen 44, 386-390 (1937); Cent. 1938, I 1259; C.A. 32, 815 (1938). (79) Govaert, Natuurw. Tijdschr. 15, 149-153 (1933); C.A. 28, 740 (1934). (80) Benrath, Hertel, Z. wiss. Phot. 23, 30-40 (1924); Cent. 1924, II 822; C.A. 19, 440 (1925).

(81) Hertel, Becker, Clever, Z. physik. Chem. B-27, 303-315 (1934). (82) Watson, Roberts, J. Chem. Soc. 1928, 2781-2786. (83) Shaw, J. Chem. Soc. 123, 2234 (1923). (84) Kharasch. Hobbs, J. Org. Chem. 6, 705-712 (1941). (85) Watson, J. Chem. Soc. 1928, 1137-1141. (86) Aschan, Ber. 45, 1913-1919 (1912). (87) Staudinger, Anthes, Ber. 46, 1421-1422 (1913). Aschan, Ber. 46, 2162-2168 (1913). (89) Gustus, Stevens, J. Am. Chem. Soc. 55, 374-377 (1933).

(90) Gustus, Stevens, J. Am. Chem. Soc. 55, 378-386 (1933).

(91) Stevens, J. Am. Chem. Soc. 56, 450-452 (1934). (92) von Peski, Rec. trav. chim. 40, 106 (1921). (93) Elliott, Kleist, Wilkins, Webb, J. Chem. Soc. 1928, 1221, 1229. (94) Krajcinovic. Ber. 59, 2117-2119 (1926). (95) Krajcinovic, Arhiv Hem. Farm. 5, 2-13 (1931); C.A. 25, 3955 (1931). (96) Collie, Hilditch, J. Chem. Soc. 91, 787-789 (1907). (97) Skraup, Preglinger, Monatsh. 31, 367 (1910). (98) D'Ans, Friederich, Z. anorg. allgem. Chem. 73, 355-357 (1911). (99) Borgeson, Wilkinson, J. Am. Chem. Soc. 51, 1455 (1929). (100) Clarke, Hartmann, J. Am. Chem. Soc. 46, 1731-1733 (1924).

(101) Black, Bergmann, Ber. 53, 966-968 (1920). (102) Chretien, Oechsel, Compt. rend. 206. 254-256 (1938). (103) deFazi, Hemmler, Atti accad. Lincei (6) 12, 583-586 (1930); Cent. 1931, I 2858; C.A. 25, 4769 (1931). (104) Jacquemin, Vosselmann, Compt. rend. 49, 372 (1859). (105) Diels, Odada, Ber. 44, 3334-3335 (1911). (106) Lachowicz, Ber. 17, 1283 (1884). (107) Schroeter, Ber. 42, 3357-3358 (1909). (108) Biltz, Heidrich, Ann. 457, 203 (1927). (109) Biltz, Jeltsch, Ber. 56, 1918 (1923). (110) Naegeli, Gruntuch, Lendorff, Helv. Chim. Acta 12,

255 (1929).

(111) Calloway, J. Am. Chem. Soc. 59, 1474-1479 (1937). (112) Meslans, Ann. chim. (7) 1, 405-423 (1894). (113) Blicke, J. Am. Chem. Soc. 46, 1516-1517 (1924). (114) Henne, Midgely, J. Am. Chem. Soc. 58, 884-886 (1936). (115) Wright, J. Am. Chem. Soc. 58, 2653-2654 (1936). (116) Voznesenskii, J. Gen. Chem. (U.S.S.R.) 9, 2148-2152 (1939); C.A. 34, 4053 (1940). (117) Böeseken, Rec. trav. chim. 20, 103-104 (1901). (118) Kozlov, Bogdanovskaya, Silogul, J. Gen. Chem. (U.S.S.R.) 6, 315-317 (1936); Cent. 1936, II 1896; C.A. 30, 4813 (1936). (119) Meerwein, Maier-Hüser, J. prakt. Chem. (2) 134, 67-68, 75-77 (1932). (120) Wedekind, Ann. 323, 253-254 (1902).

- (121) Spindler, Ann. 231, 272 (1885). (122) Levaillant, Compt. rend. 200, 1054 (1935). (123) Levaillant, Compt. rend. 190, 56 (1930). (124) Combes, Ann. chim. (6) 12, 204-213 (1887); Compt. rend. 103, 814 (1886). (125) Gustavson, J. prakt. Chem. (2) 37, 108-110 (1888). (126) Tommasi, Quesneville, Bull. soc. chim. (2) 19, 204-205 (1873). (127) Pospekhov, Sbornik Rabot Kiev. Tekh. Inst. Kozhevenno-Obuvnoi Prom. 3, 268-270 (1940); C.A. 37, 4359-4360 (1943). (128) Varvoglis, Ber. 70, 2395-2396 (1937).
   (129) Varvoglis, Praktika Akad. Athenon 13, 42-44 (1938); Cent. 1938, II 1394-1395; C.A. 34, 5050 (1940).
   (130) Wohl, Mylo, Ber. 45, 328-329 (1912).
- (131) Neunhoeffer, Nerdel, J. prakt. Chem. (2) 144, 63-66 (1936). (132) Hopff, Nenitzescu, Isacescu, Cantuniari, Ber. 69, 2248-2249 (1936). (133) Hopff, Ber. 64, 2742-2743 (1931). (134) Nenitzescu, Chicos, Ber. 68, 1585-1587 (1935). (135) Nenitzescu, Cantuniari, Ber. 65, 1449-1453 (1932). (136) Kenner, Statham, Ber. 69, 17 (1936). (137) McGinnis, Robinson, J. Chem. Soc. 1941, 406. (138) Schoeller, Zollner (to Schering-Kahlbaum, A.G.), U.S 1,737,203, Nov 26, 1929; Cent. 1930, II 1133; Brit. 282,412, Feb. 15, 1928; Cent. 1929, I 143. (139) Frolich, Wiezevich (to Standard Oil Development Co.), U.S. 2,006,198, June 25, 1935; Cent. 1936, I 2827; C.A. 29, 5457 (1935). (140) Nemtzescu, Gavat, Ann. 519, 260-271 (1935).
- (141) Colonge, Mostafavi, Bull. soc. chim. (5) 6, 335-342; 342-354 (1939). (142) Cornillot, Alquier, Compt. rend. 201, 837-838 (1935). (143) Nelles, Bayer (to I.G.), Brit. 461,080, March 11, 1937; Cent. 1937, II 2597; C.A. 31, 4676 (1937); Ger. 461,080, Feb. 25, 1937; Cent. 1937, II 2597; C.A. 31, 3501 (1937). (144) Kroeger, Sowa, Nieuwland, J. Org. Chem. 1, 163-169 (1937). (145) Nenitzescu, Cantuniari, Ber. 65, 810-812 (1932). (146) Nenitzescu, Ionescu, Ann. 491, 202-208 (1931). (147) Nenitzescu, Vantu, Bull. soc. chim. (5) 2, 2209-2216 (1935). (148) Unger, Ber. 65, 467-472 (1932). (149) Nenitzescu, Cioranescu, Cantuniari, Ber. 76, 277-283 (1937). (150) Nenitzescu, Cioranescu, Ber. 69, 1820-1823 (1936).
  (151) Hurd, Christ, J. Am. Chem. Soc. 59, 120 (1937). (152) Darzens, Compt. rend. 150,
- 707-708 (1910). (153) Wieland, Bettag, Ber. 55, 2249-2252 (1922). (154) Friedel, Crafts, Ann. chim. (6) 1, 507 (1884). (155) Calloway, Green, J. Am. Chem. Soc. 59, 809-811 (1937). (156) Nencki, Stoeber, Ber. 30, 1769 (1897). (157) Wertyporoch, Ber. 66, 1237 (1933). (158). Kashtanov, J. Gen. Chem. (U.S.S.R.) 2, 515-523 (1932); Cent. 1933, I 600; C.A. 27, 975 (1933). (159) Krishnamurti, Cent. 1929, I 2156 (not in C.A.). (160) Kashtanov, J. Gen. Chem. (U.S.S.R.) 3, 229-233 (1933); Cent. 1933, II 2512; C.A. 28, 1687 (1934).
- (161) Bredereck, Lehmann, Schonfeld, Fritzsche, Ber 72, 1416, 1424 (1939). (162) Ray, Dutt, J. Indian Chem. Soc. 5, 108 (1928). (163) Chakrabarty, Dutt, J. Indian Chem. Soc. 5, 517 (1928). (164) Chopin, Bull. soc. chim. (4) 35, 610-614 (1924). (165) Sorge, Ber. 35, 1069-1070 (1902) (for other older work see Beil. VII-308). (166) Gastald, Cherchi, Gazz. chim. ital. 45, II 274, Note (1915). (167) O. C. Dermer, Wilson, Johnson, V. H. Dermer, J. Am. Chem. Soc. 63, 2881-2883 (1941). (168) O. C. Dermer, R. A. Billmeier, J. Am. Chem. Soc. 64, 464-465 (1942). (169) Weygand, Mensdorff, Ber. 68, 1831-1832 (1935). (170) Zaki, Fahim, J. Chem. Soc. 1942, 307-308.
- (171) Allen, Org. Syntheses, Coll. Vol. 2 (1st ed.), 3-5 (1943); 14, 1-3 (1934). (172) Lock, Monatsh. 74, 77-84 (1942); Cent. 1942, II 1901. (173) Dziewonski, Marusinska, Bull. intern. acad. polon. sci., Classe sci. math. nat. A-1938, 316-323; Cent. 1939, I 1171, C.A. 33, 1712 (1939). (174) Haworth, Mavin, J. Chem. Soc. 1932, 2720-2723. (175) Kon, Weller, J. Chem. Soc. 1939, 792-794. (176) Long, Henze, J. Am. Chem. Soc. 63, 1939-1940 (1941). (177) Grieve, Hey, J. Chem. Soc. 1933, 970. (178) Silver, Lowy, J. Am. Chem. Soc. 56, 2429-2430 (1934). (179) Fieser, Hershberg, J. Am. Chem. Soc. 61, 1278-1279 (1939). (180) Fieser, Cason, J. Am. Chem. Soc. 61, 1742 (1939).
- (181) Johnson, May, Org. Syntheses, Coll. Vol. 2 (1st ed.), 8-9 (1943); 18, 1-2 (1938). (182) Kommppa, J. prakt. Chem. (2) 122, 329-330 (1929). (183) Leimu, Ber. 70, 1042 (1937). (184) Palomaa, Leimu, Ber. 66, 813-815 (1933). (185) Smith, Bryant, J. Am. Chem. Soc. 57, 841-845 (1935). (186) Smith, Bryant, J. Am. Chem. Soc. 57, 61-65 (1935). (187) Christensen, Pennington, Dimick, Ind. Eng. Chem., Anal. Ed. 13, 821-823 (1941). (188) Kaufmann, Funke, Ber. 70, 2549-2554 (1937). (189) Spassow, Ber. 70, 1928-1930 (1937). (190) Spassow, Org. Syntheses **20.** 21-22 (1940).
- (191) Hauser, Hudson, Abramovitch, Shivers, Org. Syntheses 24, 19-21 (1944). (192) Bryant, Smith, J. Am. Chem. Soc. 58, 1016 (1936). (193) Hess, Ber. 54, 2869, 2872, 2881 (1921). (194) Zechmeister, Ber. 56, 577 (1923). (195) Weltzien, Singer, Ann. 443, 71-112 (1925). (196) Staudinger, Luthy, Helv. Chim. Acta 8, 53-56 (1925). (197) Baker, Reid, J. Am. Chem. Soc. 51 1568 (1929). (198) Hoeflake, Rec. trav. chim. 36, 30-32 (1916). (199) Adickes, Brunnert, Lücker, J. prakt. Chem. (2) 130, 172-173 (1931). (200) Spassow, Ber. 75, 779-780 (1942). (201) Irvine, Robinson, J. Chem. Soc. 1927, 2091. (202) Rosenmund, Schnurr, Ann. 460, 88
- (1928). (203) Blatt, Chem. Revs. 27, 413-436 (1940). (204) Straus, Ann. 374, 139, Note (1910).

(205) Pratt, Robinson, Williams, J. Chem. Soc. 125, 202 (1924). (206) Nef, Ann. 266,102-105 (1891). (207) von Auwers, Ann. 415, 228-229 (1918). (208) Claisen, Zedel, Ann. 277, 172 893). (209) Meyer, Ber. 45, 2854–2855 (1912). (210) von Auwers, Ann. 415, 185–186 (1918). (211) Seidel, Thier, Uber, Dittmer, Ber. 69, 650–653 (1936). (212) Wislicenus, Körber, Ber.

34, 218, 3768 (1901). (213) Wislicenus, Ber. 38, 546-548 (1905). (214) Bouveault, Bongert, Bull. soc. chim. (3) 27, 1163-1164 (1902). (215) Dieckmann, Stein, Ber. 37, 3373 (1904). (216) Machemer (to A. Wacker Ges. für Elektrochem. Ind.), Ger. 713,810, Nov. 15, 1941; Cent. 1942, I 2065; not in C.A. (217) Claisen, Haase, Ber. 33, 1242-1246 (1900). (218) Nef, Ann. 266, 206-207 (1893). (219) Mingasson, Bull. soc. chim. (4) 45, 716-718 (1929). (220) Michael, Carlson, J. Am. Chem. Soc. 58, 353 (1936).

(221) James, Ann. 226, 210-213 (1884). (222) Elion, Rec. trav. chim. 3, 248-252 (1884). (221) James, Am. 220, 210-213 (1884). (222) Finol, Rec. trav. crim. 3, 240-252 (1884). (223) Michael, Ber. 38, 2088-2090 (1905). (224) Packendorff, Ber. 64, 948-949 (1931). (225) Spassow, Org. Syntheses 21, 46-47 (1941). (226) Spassow, Ber. 70, 2383-2384 (1937). (227) Seidel, Ber. 65, 1209 (1932). (228) Rice, Sullivan, J. Am. Chem. Soc. 50, 3054 (1928). (229) McElvain, Kundiger, J. Am. Chem. Soc. 64, 255, 258 (1942). (230) Fischer, Taurinisch.

Ber. 64, 236-239 (1931).

(231) Autenrieth, Thomae, Ber. 57, 423-437 (1924). (232) Kanonnikow, Saytzeff, Ann. 187, 192 (1877). (233) M.L.B., Ger. 396,696, June 10, 1924; Cent. 1924, II 1401: Henle (to M.L.B.), Ger. 411,519, March 30, 1925; Cent. 1925, II 92. (234) I.G., Swiss 153,481, June 1, 1932; Cent. 1932, II 3014. (235) Usanovich, Yatsimirskii, J. Gen. Chem. (U.S.S.R.) 11, 957-958 (1941); C.A. 36, 6444 (1942). (236) Dains, J. Am. Chem. Soc. 28, 1183-1188 (1906). (237) Prev. Ber. 75, 543 (1942). (238) Dennstedt, Zimmermann, Ber. 19, 75-78 (1886). (239) Wedekind, Ann. 318, 100-101 (1901); Ann. 323, 247-249 (1902). (240) Sauer (to du Pont Co.), U.S. 2,238,826, April 15, 1941; Cent. 1942, II 1403; C.A. 35, 4970 (1941).

(241) Hurd, Abernathy, J. Am. Chem. Soc. 62, 1148 (1940). (242) Arndt, Amende, Ber. 61, 1124 (1928). (243) Blatt, Chem. Revs. 12, 215-260 (1933). (244) Friedmann, Backeberg, J. Chem. Soc. 1938, 469-470. (245) Niyogy, Proc. Indian Acad. Sci. A-4, 305 (1936). (246) von Schickh (to I G.), Ger. 715,930, Jan. 9, 1942; Cent. 1942, I 1561; not in C.A. (247) Fromm, Ann. 447, 304 (1926). (248) Freund, Meinecke, Ber. 29, 2516 (1896). (249) Tanasescu, Silberg,

Ann. 447, 304 (1926). (248) Freund, Meinecke, Ber. 29, 2516 (1896). (249) Tanasescu, Silberg, Bull. soc. chim. (5) 3, 224-239 (1936). (250) Gilman, Nelson, Rec. trav. chim. 55, 528-530 (1936). (251) Gilman, Fothergill, Parker, Rec. trav. chim. 48, 748-751 (1929). (252) Austin, Johnson, J. Am. Chem. Soc. 54, 656-659 (1932). (253) Whitmore, Badertscher, J. Am. Chem. Soc. 56, 825-826 (1932). (254) Whitmore, Badertscher, J. Am. Chem. Soc. 55, 1564 (1933). (255) Whitmore, Rec. trav. chim. 57, 566-567 (1938). (256) Whitmore, Wheeler, J. Am. Chem. Soc. 60, 2899-2900 (1938). (257) Smith, Webster, Guss, J. Am. Chem. Soc. 59, 1078-1082 (1937). (258) Kohler, Baltzley, J. Am. Chem. Soc. 54, 4015-4026 (1932). (259) Bergmann, J. Chem. Soc. 1936, 412-413. (260) Gilman, Straley, Rec. trav. chim. 55, 823, 825 (1936).

 Soc. 1936, 412-413. (2007) Gilman, Stratey, Rec. true. Crim. 50, 525, 525 (1950).
 (261) Gilman, Schulze, J. Am. Chem. Soc. 49, 2328-2330 (1927). (262) Gilman, Nelson, J. Am. Chem. Soc. 51, 742 (1939). (263) Mel'nikov, Rokitskaya, J. Gen. Chem. (U.S.S.R.) 7, 464-466 (1937), Cent. 1937, II 1557; C.A. 31, 4266 (1937). (264) Bost, Borgstrom, J. Am. Chem. Soc. 51, 1923 (1929). (265) Kiemstadt, Z. angew. Chem. 42, 1107-1108 (1929). (266) Challenger, Company of the company of t Ridgway, J. Chem. Soc. 121, 112-113 (1922). (267) Reihlen, Gruhl, von Hessling, Ann. 472, 277, 285-286 (1929). (268) Vles, Rec. trav. chim. 53, 961-962 (1934). (269) Strain, J. Am. Chem. Soc. 57, 758 (1935).

#### 1-CHLOROBUTEN-3-YNE-1 C4H3Cl Beil. S.N. 13 (1-Chloro-2-vinylacetylene) CH<sub>2</sub>=CH-C=C-Cl

B.P. 55-57° at 760 mm. (1) (2) (3) (4)

 $D_4^{20} = 1.0032$  (1) (2)  $n_D^{20} = 1.4663$  (1) (2) 1.0034 (4)  $D_7^7 = 1.021$  (4)  $n_D^7 = 1.4698$  (4)

Colorless oil, not explosive when pure (3) (4). — C rapidly polymerizes on stdg. into black brittle solid sensitive to heat and shock (1); polymerization of C catalyzed by u.v. light, peroxide, ozonides, etc. (2). After addn. of hydroquinone (3) C can be distd. at ord. press.

[For prepn. of C from vinylacetylene by actn. of alkaline alk. hypochlorite solns. at 0° (vield 60-65% (4), 10% (1)) see (1) (2) (3) (4).]

 $\bar{C}$  treated as directed at  $-10^{\circ}$  with conc.  $HCl + CuCl + NH_4Cl$  gives (56% yield (4)) 1,2-dichlorobutadiene-1,3 (3:9057) q.v.

C with NH<sub>4</sub>OH/AgNO<sub>3</sub> gives a white ppt.; with Ilosway reagt. a yel. ppt. (4).

**3:7070** (1) Jacobson, Carothers, J. Am. Chem. Soc. **55**, 4667–4669 (1933). (2) Jacobson (to du Pont), U.S. 1,967,864, July 24, 1934; Cent. **1936**, I 1709; C.A. **28**, 5834 (1934). (3) Klebanskii, Tzyurikh, Dolgopol'skii, Bull. acad. sci. U.R.S.S. **1935**, No. 2, 189–226; Rubber Chem. Tech. **9**, 383–408 (1936); Cent. **1935**, II 3844, C.A. **30**, 1259 (1936). (4) Klebanskii, Volkenshtein, Orlova, J. Gen. Chem. (U.S.S. R.) **5**, 1255–1267 (1935); Cent. **1936**, I 3414; C.A. **30**, 1025 (1936); J. prakt. Chem. (2) **145**, I-17 (1936).

B.P. 
$$D_4^{21} = 0.8950$$
 (2)  $D_D^{21} = 1.4115$  (2)  $D_D^{21} = 0.8950$  (2)  $D_D^{21} = 1.4115$  (2)  $D_D^{21} = 0.9107$  (1)  $D_D^{21} = 1.4166$  (1)

 $\bar{\rm C}$  forms with abs. EtOH an azeotrope, b.p. 53.6–54.0° at 760 mm.,  $D_4^{15}=0.8945,$  contg. 88.5% by wt. of  $\bar{\rm C}$  (1).

[For form. from d,l-1,2-dichlorobutane (3:7680) + alc. KOH (together with *cis*-(3:7110) and *trans* (3:7110) stereoisomers of 1-chloro-butene-1) see (1).]

3:7075 (1) Navez, Bull. soc. chim. Belg. 39, 435-443 (1930). (2) Kroeger, Sowa, Nieuwland, J. Org. Chem. 1, 167 (1936).

3:7080 2-CHLOROBUTADIENE-1,3 Cl C<sub>4</sub>H<sub>5</sub>Cl Beil. S.N. 12 (Chloroprene) 
$$H_2C=CH-C=CH_2$$

B.P.  $D_4^{20} = 0.9585$  (2)  $D_D^{20} = 1.4583$  (1)  $D_D^{20} = 1.4583$  (1)  $D_D^{20} = 1.4583$  (1)  $D_D^{20} = 1.4583$  (1)  $D_D^{20} = 0.9583$  (1)  $D_D^{20} = 0.9583$  (1)  $D_D^{20} = 0.9583$  (1)  $D_D^{20} = 0.9575$  (31)  $D_D^{20} = 0.9575$  (31)

Colorless liq. with ethereal odor suggesting  $C_2H_5Br$ . Only slightly sol. aq. but miscible with most org. solvs.

 $\bar{C}$  was first reported in 1931 (1) and given the name chloroprene (1) because of its analogy to 2-methylbutadiene-1,3 (isoprene) in structure and reactions. Despite its immense practical importance in the manufacture of various types of synthetic rubbers and plastics comparatively little information on  $\bar{C}$  itself has been released for publication in the scientific literature.

[For a study of the toxicity and pathology of  $\bar{C}$  see (3); for study of poisoning by  $\bar{C}$  and its treatment see (4).]

[For studies of detn. of C (5) by diazometric methods (6) (7) see indic. refs.]

# PREPARATION OF C

Č has been prepared from vinylacetylene by addn. of HCl, from dichlorobutenes by elimination of 1 HCl, and from various other sources. Comparatively little on these methods has appeared in the scientific literature, and most of the information is available only through patents. Such of the latter as are here cited must be regarded only as illustrative as no guarantee of complete patent coverage can be offered.

From vinylacetylene.  $ildе{C}$  is formed from vinylacetylene (8) by addn. of HCl from aqueous soln. in pres. of catalysts (usually copper salts). The initial step comprises 1,4 addition, and the primary product is 4-chlorobutadiene-1,2 (isochloroprene) (3:7225). Under certain conditions this may be isolated as the major reaction product, but it readily isomerizes (especially in the presence of cuprous chloride and/or other salts (9)) yielding chloroprene. When sufficient amounts of HCl are present further addition to  $\hat{C}$  may also occur leading to 2,4-dichlorobutene-2 (3:5550) (see also below).

[For prepn. of C from vinylacetylene (8) with conc. aq. HCl in pres. of  $Cu_2Cl_2 + NH_4Cl$  at 30° for 4 hrs. (65% yield) see (1) (47); for studies of this process in foreign laboratories see (10) (11) (12) (2) (24). For examples of patents on this process see (13)-(23) incl. For analogous prepn. of certain homologs of  $\bar{C}$  such as 2-chloro-3-methylbutadiene-1,3 (3:7290) and 2-chloro-3,4-dimethylbutadiene-1,3, etc., see (25) cf. (26).]

From dichlorobutenes. [For prepn. of C from 3,4-dichlorobutene-1 (1,2-dichlorobutene-3) (3:5350) with powdered KOH or alc. NaOH see (27) (28); for 2,3-dichlorobutene-1 (3:9074) by thermal dehydrochlorination at 530° without cat. see (29); from 2,4-dichlorobutene-2 (3:5550) by dehydrochlorination (and isomerization) in pres. of fused KOH at 180-190° (30) or over silica gel or clay at 245-275° (31) cf. (30) see indic. refs.; from 1,2-dichlorobutenes by dehydrochlorination with inorg. or org. bases in pres. of org. solvs. see (32).]

From other sources. [For prepn. of  $\bar{\rm C}$  from 2,2,3-trichlorobutane (3:5680) by thermal dehydrochlorination over MgCl<sub>2</sub>/MgSO<sub>4</sub> cat. see (33); from polychlorobutanes of 55-66% chlorine content (corresp. to dichloro-and trichlorobutanes) by thermal dehydrochlorination at 400-500° see (34) (note that 1-chlorobutadiene-1,3 (3:7210) is also formed; for separation of it from  $\bar{\rm C}$  see (35)): for formn of  $\bar{\rm C}$  from vinyl chloride (3:7010) with acetylene in pres. of aq. Cu<sub>2</sub>Cl<sub>2</sub>/NH<sub>4</sub>Cl see (36).]

# CHEMICAL BEHAVIOR OF C

# Addition Reactions

With chlorine. [ $\bar{C}$  (2 moles) with Cl<sub>2</sub> (1 mole) in CHCl<sub>3</sub> at  $-10^{\circ}$  in pres. of hydroquinone gives mainly (37) cf. (38) (39) 1,2,4-trichlorobutene-2 (1,3,4-trichlorobutene-2) (3:9062) accompanied by other products such as 1,2,3-trichlorobutene-1 (37), b.p. 40-42° at 10 mm.,  $D_4^{15} = 1.3190$ ,  $n_D^{15} = 1.4902$  (giving on oxidn.  $\alpha,\beta$ -dichloropropionic acid); note: data also consistent with 2,3,4-trichlorobutene-1 (3:9064) and 1,2-dichlorobutadiene-1,3 (3:9057), b.p. 45-48° at 10 mm. (37),  $D_4^{15} = 1.1905$   $n_D^{15} = 1.5065$  (37).]

With bromine. [C (0.3 mole) with Br<sub>2</sub> (0.25 mole) in CHCl<sub>3</sub> at 0-5° gives mainly (40) 2-chloro-1,4-dibromobutene-2, b.p. 98-101° at 10 mm. (oxidizing with KMnO<sub>4</sub> to bromoacetic acid), accompanied by other products; note that in pres. of anti-oxidants distn. range of prod. is much wider perhaps owing to formn. of geom. stereoisomers.]

With iodine chloride. [ $\tilde{C}$  with ICl in CHCl<sub>3</sub> at  $-5^{\circ}$  to  $0^{\circ}$  gives (70% yield (41)) a prod. regarded as 2.4-dichloro-1-iodobutene-2.]

With hydrogen chloride. [ $\bar{C}$  with conc. aq. HCl in pres. of Cu<sub>2</sub>Cl<sub>2</sub> (42) adds HCl giving 2,4-dichlorobutene-2 (3:5550); for behavior of  $\bar{C}$  in liq. HCl see (43).]

With hydrogen bromide. [C (0.96 mole) with dry HBr (0.88 mole) in AcOH at  $-5^{\circ}$  gives (72% yield on Br<sub>2</sub> (44)) 2-chloro-4-bromobutene-2, b.p. 150-152°;  $D_4^{20} = 1.5264$ ,  $D_4^{15} = 1.5335$ ;  $n_2^{20} = 1.5160$ ,  $n_2^{15} = 1.5185$ ; note that this prod. with aq. KMnO<sub>4</sub> oxidizes to AcOH + bromoacetic acid and adds 1 mole Br<sub>2</sub> giving 2-chloro-2,3,4-tribromobutane, b.p. 104.5-106° at 10 mm.,  $D_4^{15} = 2.1907$ .]

With hydrochlorous acid. [The behavior of  $\bar{C}$  with HOCl appears not to have been reported; 1,4 addition to  $\bar{C}$  might be expected to yield 1,2-dichlorobuten-2-ol-4 and/or 2,4-dichlorobuten-2-ol-1, but neither is reported from any source; an isomer, viz., 2,3-

dichlorobuten-1-ol-4, b.p. 72-73° at 10 mm.,  $D_4^{20} = 1.3198$ ,  $D_4^{15} = 1.3243$ ,  $n_D^{20} = 1.4956$ ,  $n_D^{15} = 1.4978$ , has been reported (45) by indirect means.]

With hypotromous acid. [Č with HOBr (from N-bromoacetamide) gives mainly (45) (note 3,4 addition) 2-chloro-4-bromobuten-1-ol-3, b.p. 77.0-77.25° at 10 mm.;  $D_4^{20} = 1.6710$ ,  $D_4^{15} = 1.6770$ ;  $n_D^{20} = 1.5228$ ,  $n_D^{15} = 1.5249$ ; this prod. in CHCl<sub>3</sub> adds 1 mole Br<sub>2</sub> giving 3-chloro-1,3,4-tribromobutanol-2, m.p. 69.5-71°.]

With alkyl hypoiodite. [ $\bar{C}$  with MeOI (from MeOH + HgO + I<sub>2</sub>) gives (62% yield (46)) 2-chloro-4-iodo-3-methoxybuten-1, b.p. 76.5-77.0° at 10 mm.,  $D_4^{20} = 1.7135$ ,  $D_4^{15} = 1.7209$ ;  $n_2^{20} = 1.5312$ ,  $n_2^{15} = 1.5338$ . —  $\bar{C}$  with EtOI (from EtOH + HgO + I<sub>2</sub>) gives (46% yield (46)) 2-chloro-4-iodo-3-ethoxybuten-1, b.p. 82-83° at 10 mm.;  $D_4^{20} = 1.6163$ ,  $D_4^{15} = 1.6231$ ;  $n_2^{20} = 1.5198$ ,  $n_2^{15} = 1.5220$ . — Note for both these cases the same type of 3.4 addn. observed for HOBr above.]

With sulfur dioxide. [ $\bar{C}$  in ether contg. pyrogallol treated with SO<sub>2</sub> at 100–105° in s.t. for 12 hrs. gives in very small amt. (2.5% (47)) an addition prod. 3-chloro-1-thiacyclopenten-3 dioxide (chloroprene sulfone).]

With naphthoquinone-1,4.  $\tilde{C}$  (2 moles) with  $\alpha$ -naphthoquinone (1:9040) (1 mole) in  $C_6H_6$  refluxed 3 hrs. and the intermediate addition prod. suspended in alc. NaOH and oxidized with air gives (1) 2-chloroanthraquinone (3:4922).

With maleic anhydride.  $\bar{C}$  (1+ moles) with maleic anhydride (1:0625) (1 mole) warmed at 50° then boiled with aq. gives (77% yield (1)) 4-chloro-1,2,3,6-tetrahydrophthalic acid, cryst. from aq., m.p. 173-175° cor. (1).

# POLYMERIZATION OF C

Č readily polymerizes at 30-35° in light from a 150-watt lamp in 48-80 hours (26); for study of various types of polymers from Č alone see (1). Furthermore, Č with various other unsaturated compounds undergoes copolymerization processes. The practical importance of the polymers and copolymers thus obtained can scarcely be overestimated, but the field is so large, so interlocked, and so rapidly developing that any attempt to organize it is quite beyond the scope of this book. Attention is here directed, however, to a few scientific papers of interest in this connection.

[For studies on structure of polychloroprene see (48) (49); for study of polymers of  $\bar{C}$  by ozonization and HNO<sub>3</sub> oxidn. see (50); for detn. of unsaturation in polymers of  $\bar{C}$  see (51); for permeability of polychloroprene to gas see (52).]

[For study of influence of tetralin peroxide (53) in nitrobenzene (54) or of high-frequency field (55) (56) on polymerization of  $\bar{C}$  see indic. refs.; for photopolymerization of  $\bar{C}$  see (57); for study of kinetics of polymerization of  $\bar{C}$  in di-n-butyl phthalate soln. in pres. of dibenzoyl peroxide see (58); for detection of free radicals in peroxide polymerization of  $\bar{C}$  see (59).

3:7680 (1) Carothers, Williams, Collins, Kirby, J. Am. Chem. Soc. 53, 4203-4225 (1931). (2) Zelinskii, Kozlov, Shter, Bull, acad. sci. U.R.S.S., Classe sci. math. nat. 1934, 141-151; Cent. 1935, I 1946; [C.A. 28, 5713 (1934)]. (3) von Oettingen, Hueper, Diechmann-Gruebler, Wiley, J. Ind. Hyg. Toxicol. 18, 240-270 (1936). (4) McNally, Ind. Med. 6, 270-283 (1937); C.A. 31, 8063 (1937). (5) Peregud, Caoutchouc and Rubber (U.S.S.R.) 1937, No. 7-8, 63/70; Cent. 1938, I 1477; C.A. 32, 3197 (1938). (6) Terent'ev, Org. Chem. Ind. (U.S.S.R.) 4, 535-542 (1937); [C.A. 32, 6580 (1938)]. (7) Senderikhina, Trudy Moskov. Sanit. Inst. im. Erismana 1939, 86-101; [C.A. 36, 2233 (1942)]. (8) Nieuwland, Calcott, Downing, Carter, J. Am. Chem. Soc. 53, 4197-4202 (1931). (9) Carothers (to du Pont Co.), U.S. 2, 104, 789, Jan. 11, 1938; Cent. 1938, I 4108; C.A. 32, 1718 (1938). (10) Klebanskii, Dolgopol'skii, Chevychalov, Caoutchouc and Rubber (U.S.S.R.) 10, No. 1, 31-34; No. 2, 19-27 (1937); Cent. 1937, II 872; C.A. 32, 4006 (1938).

Hurukawa, Nakamura, J. Soc. Rubber Ind. Japan 12, 103-106, 106-109 (1939); C.A. 33, 9717 (1939).
 Furukawa, Nakamura, J. Soc. Chem. Ind. Japan 41, 198-200 (1938); C.A. 32, 9557 (1938).
 Collins (to du Pont Co.), U.S. 1,950,435, March 13, 1934; Cent. 1936, I 1708; C.A. 28, 3270-3271 (1934).
 Perkins (to Carbide and Carbon Chem. Corp.), U.S.

2,027,550, Jan. 14, 1936; Cent. 1936, II 1796; C.A. 30, 1395 (1936). {15} Carothers, Collins (to du Pont Co.), U.S. 1,950,431, March 13, 1934; not in Cent.; C.A. 28, 3271 (1934): French 721,532, March 4, 1932; Cent. 1932, II 2107; C.A. 26, 4061 (1932): Brit. 387,325, Jan. 24, 1933; not in Cent.; C.A. 27, 4718 (1933): Ger. 588,708, Nov. 24, 1933; not in Cent.; C.A. 28, 2015 (1934): Australian 3619/31: Czechoslovakian 51,643: Dutch 31,084: Italian 301,326: Japanese 96,820: Norwegian 52,261; Spanish 123,629: Swedish 79,586: Swiss 164,539. (16) Carothers, Collins (to du Pont Co.), U.S. 2,178,737, Nov. 7, 1939; C.A. 34, 1334 (1940). {17} Carter (to du Pont Co.), U.S. 2,207,784, July 16, 1940; C.A. 34, 7936 (1940). {18} Carter, Downing (to du Pont Co.), U.S. 2,221,941, Nov. 19, 1940; C.A. 35, 1412 (1941). {19} I.G., Brit. 458,100, Dec. 14, 1936; not in Cent.; C.A. 31, 3070 (1937): French 805,238, Nov. 14, 1936; Cent. 1937, I 2022; [C.A. 31, 1284 (1937): French 805,621, Nov. 25, 1936, Cent. 1937, I 2456; C.A. 31, 4344 (1937):

(21) du Pont, Brit. 395,131, Aug. 3, 1933; Cent. 1933, II 2455; C.A. 28, 375 (1934). (22) du Pont, French 721,532, March 4, 1932; Cent. 1932, II 2107; C.A. 26, 4061 (1932). (23) Klebanskii, Trenke, Russian 46,916, May 31, 1936; Cent. 1936, II 3852; C.A. 33, 4079 (1939). (24) Klebanskii, Tzyurikh, Dolgopol'skii, Bull. acad. sci. U.R.S.S. 1935, No. 2, 189-226; J. Research Assoc. Brit. Rubber Mfrs. 4, 505-506 (1935); C.A. 30, 1259 (1936); Rubber Chem. and Tech. 9, 383-408 (1936). (25) Carothers, Coffman, J. Am. Chem. Soc. 54, 4071-4076 (1932). (26) Jacobson, Carothers, J. Am. Chem. Soc. 55, 1624-1627 (1933). (27) Petrov, Sopov, J. Gen. Chem. (U.S.S.R.) 15, 981-987 (1945); C.A. 40, 6407 (1946). (28) Carothers (to du Pont Co.), U.S. 2,038,538, April 28, 1936, Cent. 1936, II 3358; C.A. 30, 3838 (1936). (29) Hearne, Adams (to Shell Development Co.), U.S. 2,391,827, Dec. 25, 1945; C.A. 40, 1347 (1946). (30) Klebanskii, Chevychalova, Belen'kaya, J. Applied Chem. (U.S.S.R.) 9, 1985-1992 (1936); C.A. 31, 2580 (1937)

(31) Klebansku, Chevychalova, Sintet. Kauchuk 1935, No. 6, 16-21; Cent. 1936, I 1975; C.A. 39, 1024 (1936). (32) I.G., French 819,963, Oct. 29, 1937; Cent. 1938, II 950; C.A. 32, 3203 (1938): Ger. 683,097, Oct. 10, 1939, [C.A. 36, 3704 (1942)]. (33) Tishchenko, Churbakov, Russ. 51,994, Oct. 31, 1937; C.A. 34, 1336 (1940). (34) Carter, Johnson (to du Pont Co.), U.S. 2,381,037, Aug. 7, 1945, C.A. 39, 4888 (1945). (35) Carter, Willett (to du Pont Co.), U.S. 2,381,038, Aug. 7, 1945, C.A. 39, 4888 (1945). (36) Eringer, French 811,433, April 14, 1937; Cent. 1937, II 2914; [C.A. 31, 8996 (1937)]: Brit. 480,320, Feb. 17, 1938; C.A. 32, 6104 (1938). (37) Petrov, J. Gen. Chem. (U.S.S.R.) 13, 102-107 (1943); C.A. 38, 329 (1944). (38) Carothers, Berchet, J. Am. Chem. Soc. 55, 1628-1631 (1933). (39) Carothers, Berchet (to du Pont Co.), U.S. 1,965,369, July 3, 1934; Cent. 1935, I 3724; [C.A. 28, 5716 (1934)]. (40) Petrov, J. Gen. Chem. (U.S.S.R.) 13, 108-112 (1943), C.A. 38, 330 (1944).

(41) Petrov, J. Gen. Chem. (U.S.S.R.) 13, 155-158 (1943); C.A. 38, 1466 (1944). (42) Carothers, Berchet, Collins, J. Am. Chem. Soc. 54, 4066-4070 (1932). (43) Gebauer-Fuelnegg (to Marsene Corp. of America), U.S. 1,980,396, Nov. 13, 1934; Cent. 1935, I 3859; [C.A. 29, 376 (1935)]. (44) Petrov, J. Gen. Chem. (U.S.S.R.) 10, 1418-1424 (1940); C.A. 35, 3593 (1941). (45) Petrov, J. Gen. Chem. (U.S.S.R.) 2322-2243 (1939); Cent. 1940, II 611; C.A. 34, 5050 (1940). (46) Petrov, J. Gen. Chem. (U.S.S.R.) 10, 819-825 (1940); Cent. 1940, II 2734; C.A. 35, 2112 (1941). (47) Backer, Blass, Rec. trav. chim. 61, 787-788 (1942). (48) Bunn, Proc. Roy. Soc. (London) A-180, 58-60, 66 (1942); Rubber Chem. and Tech. 15, 790-797 (1942). (49) Clews, Proc. Roy. Soc. (London) A-180, 100-107 (1942); Rubber Chem. and Tech. 15, 847-853 (1942). (50) Klebanskii, Vasil'eva, J. Gen. Chem. (U.S.S.R.) 6, 359-369 (1936); Cent. 1936, II 1895; J. prakt. Chem. (2) 144, 251-264 (1936); Rubber Chem. and Tech. 10, 126-134 (1937)

(51) Klebanskii, Rakhlina, J. Gen. Chem. (U.S.S.R.) 7, 1299-1305 (1937); Cent. 1938, I 1478; C.A. 31, 6921 (1937). (52) Reitlinger, J. Gen. Chem. (U.S.S.R.) 14, 420-427 (1944); C.A. 39, 4776 (1945). (53) Medvedev, Chilikina, Klimenkov, Acta Physicochim. U.R.S.S. 11, 751-766 (1939); C.A. 34, 3159 (1940). (54) Chilikina, Medvedev, Acta Physicochim. U.R.S.S. 12, 293-302 (1940); C.A. 34, 7708 (1940). (55) Yakubovich, Evdokimova, Arch. sci. biol. (U.S.S.R.) 55, No. 3, 93-100 (1939); C.A. 34, 2687 (1940). (56) Balandin, Eidus, Terent'eva, Compt. rend., acad. sci. U.R.S.S. 27, 343-348 (1940); C.A. 34, 7757 (1940). (57) Bolland, Melville, Rubber Technol. Conf. (London) 1938, 239-252; Cent. 1939, II 2766; C.A. 32, 8396-8397 (1938). (58) Medvedev, Gindin, Lazareva, J. Phys. Chem. (U.S.S.R.) 13, 1389-1402 (1939); C.A. 35, 371 (1941). (59) Medvedev, Koritskaya, Alekseeva, J. Phys. Chem. (U.S.S.R.) 17, 391-407 (1943); C.A. 38, 4903 (1944).

56.4°

at 685 mm. (5)

3: 7085 CHLOROMETHYL METHYL ETHER 
$$C_2H_5OCl$$
 (Chlorodimethyl ether;  $CH_3OCH_2$   $I_1$ -(304)  $I_2$ -(645)

B.P. F.P. 61° (1) -103.5° (9)  $D_4^{20} = 1.0703$  (6) 59-60° (2) (3) (29) 1.0605 (5) 59.5° at 759 mm. (4) 59.4° at 760 mm. (5)  $D_4^{15} = 1.0771$  (6) 59.1-59.3° at 766 mm. (6) 59.15° at 760 mm. (7) 57.7° at 750 mm. (8)  $n_2^{20} = 1.39737$  (10)

 $\tilde{C}$  is frequently but incorrectly designated as "chloromethyl ether"; care should therefore be taken to avoid confusion of  $\tilde{C}$  with the closely related "bis-(chloromethyl) ether" (3:5245) which has the structure ClCH<sub>2</sub>OCH<sub>2</sub>Cl.

Č is insol. cold aq. but on stdg. or warming soon dissolves with hydrolysis (see below). — Č is sol. in cold conc. HCl but can be salted out with CaCl₂.

 $\bar{C}$  forms azeotropes with various org. cpds.: e.g.,  $\bar{C}$  with acetone (1:5400) forms a const.-boilg. mixt., b.p. 56.1°, contg. 13%  $\bar{C}$  (7);  $\bar{C}$  with CS<sub>2</sub> forms a const.-boilg. mixt., b.p. 43.1°, contg. 25%  $\bar{C}$  (7).

[For prepn. of  $\bar{C}$  from aq. formaldehyde soln. (formalin) (1:0145) in MeOH by passage of HCl gas at room temp. (yields: 64-66% (11)) (3) (12) (14) see indic. refs.; from paraformaldehyde (trioxymethylene) (1:0080) in dry MeOH by passage of HCl gas (yields: 80% (6) (15), 66% (16), 60% (17), 50-60% (18)) (19) (13) (20) (23) (note that the prod. conts. MeOH (1:6120), formaldehyde dimethylacetal (methylal) (1:0105), and acetone (1:5400) (1) (15), and that htg. should be avoided since it promotes methylal formn. (15)).

[For formn. of  $\bar{C}$  from dimethyl ether [Beil. I-281, I<sub>1</sub>-(139), I<sub>2</sub>-(269)] with Cl<sub>2</sub> in diffuse daylight (79% yield (21)) (4) or in CHCl<sub>3</sub> or CCl<sub>4</sub> solns. + cat. in light (75); from acetaldehyde dimethylacetal (1:0125) with Cl<sub>2</sub> at not above 60° (other prods. are also formed (22)) see indic. refs.]

Further substitution of  $\bar{C}$ . [ $\bar{C}$  with  $Cl_2$  in semi-darkness at 12° for 40 hrs. gives mainly (23) bis-(chloromethyl) ether (3:5245).]

Reactions involving the halogen atom of  $\bar{\mathbf{C}}$  with inorganic reactants.  $\bar{\mathbf{C}}$  is insol. in cold aq. but upon shaking or warming rapidly dissolves yielding soln. contg. formaldehyde (1:0145) + MeOH (1:6120) + HCl (note that paraformaldehyde (1:0080) is formed only on very slow hydrolysis with insufficient water for complete reactn. (18).

[ $\bar{C}$  with alc. KSH yields mainly (24) a polymeric thioformaldehyde, (CH<sub>2</sub>S)<sub>n</sub>, sol. aq. but cryst. from alc., m.p. 123-124° (24);  $\bar{C}$  with dry KSH. ½H<sub>2</sub>O at 5-10° gives methoxymethyl mercaptan, CH<sub>3</sub>OCH<sub>2</sub>SH, liq. with disagreeable odor, b.p. 52° at 15 mm.,  $D_{12}^{12} = 1.0738$ ,  $n_{12}^{12} = 1.4909$  (24);  $\bar{C}$  with 2K<sub>2</sub>S.H<sub>2</sub>O gives (24) bis-(methoxymethyl) sulfide, CH<sub>4</sub>OCH<sub>2</sub>-S-CH<sub>2</sub>OCH<sub>3</sub>, liq. with disagreeable odor, b.p. 62° at 15 mm.,  $D_{21.5}^{21.5} = 1.0418$ .  $n_{12}^{21.5} = 1.4575$  (24).]

[C with mixt. of HNO<sub>3</sub> (D = 1.5) + conc. H<sub>2</sub>SO<sub>4</sub> + fumg. H<sub>2</sub>SO<sub>4</sub> (70% SO<sub>3</sub>) and appropriate cooling gives in 15 min. nitromethoxymethyl nitrate, oil, b.p. 48° at 15 mm., + (nitromethoxy)methoxy methyl nitrate, highly explosive oil, b.p. 88-89° at 9 mm. (25).]

[ $\bar{\mathbf{C}}$  with SO<sub>3</sub> below 0° gives (27% yield (17)) chloromethyl methyl sulfate [Beil. I-582, I<sub>2</sub>-(647)], b.p. 92° at 18 mm.,  $D_{18}^{18} = 1.473$ .]

[C in either liq. or gaseous phase with various finely divided metals at 50-250° and press.

from 100-200 atm. yields (26) ethylene oxide (1:6105) and other products. —  $\bar{C}$  with metallic Zn at ord. temp. gives (27) formaldehyde dimethylacetal (1:0105) +  $\beta$ -chloroethyl methyl ether (3:7265) + CH<sub>3</sub>Cl (3:7005) + resins. —  $\bar{C}$  with ZnCl<sub>2</sub>.H<sub>2</sub>O vigorously stirred at 27° gives (28)  $b_2$ -(chloromethyl) ether (3:5245).]

[For rate of reactn. of C with KI in acetone see (29).]

[Č on adding to cold soln. of NH<sub>3</sub> in ether (30) or with aq. or alc. NH<sub>4</sub>OH (4) gives NH<sub>4</sub>Cl (pptd. in ether method) + hexamethylenetetramine.]

[C with equal wt. CuCN refluxed 4 hrs. (31) or with 3 wt. pts. Hg(CN)<sub>2</sub> at room temp. for several hrs. (33) gives (yields: 74% (31), 70% (32)) (8) methoxyacetonitrile [Beil. III-242, III<sub>1</sub>-(93), III<sub>2</sub>-(174)], b.p. 120-121° cor. at 759 mm.,  $D_4^{20} = 0.9492$ ,  $n_D^{20} = 1.3831$  (31); note that AgCN does not (33) give this result.]

[C with silver cyanate in dry ether in cold gives (30) methoxymethyl isocyanate, colorless lachrymatory oil, b.p. 87.5° cor. (30); C with KSCN in dry C<sub>6</sub>H<sub>6</sub> refluxed 2 days gives (34) methoxymethyl isothiocyanate, lachrymatory oil, b.p. 138° at 770 mm.]

Reactions involving the halogen atom of  $\tilde{C}$  with organic reactants. By virtue of its very reactive halogen atom,  $\tilde{C}$  may conveniently be employed for introducing the methoxymethyl radical in place of reactive H atoms; these may be located in OH groups of alcohols, phenols, or enols or in aromatic nuclei; various acceptors for the resulting HCl are employed or  $\tilde{C}$  may be used with metallic derivatives of the reactants; examples of the various combinations are cited below.

[Č with MeOH (1:6120) (12) (35) or with NaOMe (1) (12) gives (small yield (1)) formaldehyde dimethylacetal (methylal) (1:0105); Č with EtOH (1:6130) + pyridine in cold (36) or Č with NaOEt (37) gives (13.3% yield (36)) ethyl methoxymethyl ether (ethylmethyl-formal), b.p. 65.4° at 760 mm.,  $D_4^{20}=0.84198$ ,  $n_D^{20}=1.36426$  (36) (for corresp. prepn. of mixed formals from Č with n-PrOH, n-BuOH, n-AmOH, and n-hexyl alc. + pyridine (yields all 17-23%) see (36)). — Č with benzyl alc. (1:6480) + pyridine in dry ether gives (47% yield (35)) benzyl methoxymethyl ether, b.p. 208-211° at 756 mm. (35).]

[C with phenol + pyridine does not react (35), but C with K phenolate (38) or Na phenolate (16) (39) gives (70% yield (16)) methoxymethyl phenyl ether, b.p. 188-189° (39), 189-190° (16); for many analogous cases with other phenols see (16) (39).]

[C with sodium salts of phenolic aldehydes gives the corresp. ethers: e.g., C with Na salt of salicylaldehyde (1:0205) in alc. gives (33% yield (40)) (39) o-(methoxymethoxy)-benzaldehyde; for numerous other examples of this type of reaction with phenolic aldehydes see (39) (40) (41) (42) (43).]

[ $\bar{C}$  with ethyl cyano-sodio-acetate in dry ether gives (6% yield (44)) ethyl cyano-methoxymethyl-acetate;  $\bar{C}$  with diethyl malonate (1:3581) + Na in dry ether (45) or in  $C_6H_6(46)$  gives (49% yield (45)) (46) diethyl methoxymethylmalonate, b.p. 121–122° at 15 mm.;  $\bar{C}$  with diethyl benzylmalonate + Na in dry ether gives (78% yield (47)) diethyl benzylmethoxymethyl-malonate, m.p. 49–50°, b.p. 194–195° at 19 mm. (47);  $\bar{C}$  with ethyl aceto-acetate + Na in dry ether gives (51% yield (48)) O-(methoxymethyl) ether, viz., ethyl β-(methoxymethoxy)crotonate, b.p. 109–110° at 18 mm. (48), accompanied by (42% yield) diethyl  $\alpha$ ,γ-diacetylglutarate, b.p. 178° at 10 mm. (48), the latter also being obtd. in good vield from  $\bar{C}$  + the Cu enolate of ethyl acetoacetate in dry ether (48).]

[ $\bar{C}$  with triphenylmethylsodium gives (49) methyl  $\beta,\beta,\beta$ -triphenylethyl ether, cryst. from propyl alc. or lgr., m.p. 137° (49);  $\bar{C}$  with diphenylmethylsodium gives (50) methyl  $\beta,\beta$ -diphenylethyl ether, b.p. 198° at 19 mm. (50).]

[C with salts of organic acids yields the corresp. methoxymethyl esters: e.g., C with dry Pb formate (but not with K or Ca formates (18)) on htg. under reflux gives (20% yield (3) (18)) methoxymethyl formate, b.p. 102-103°; C with fused KOAc (3) or NaOAc (3) (51) (but not Pb or Zn acetates (3)) gives (35-40% yield (3)) methoxymethyl acetate [Beil.

II-151, II<sub>1</sub>-(70), II<sub>2</sub>-(163)], b.p.  $117-118^{\circ}$  (3); for corresp. react. with Pb propionate or Na *n*-butyrate see (3).]

[ $\tilde{\mathbf{C}}$  in  $\mathbf{C_6H_6}$  with  $\mathbf{ZnCl_2}$  + HCl gas at 55-65° gives (52) cf. (28) benzyl chloride (3:8535). —  $\tilde{\mathbf{C}}$  with chlorobenzene (3:7903) + dehydrating agts. gives (28) p-chlorobenzyl chloride (3:0220). —  $\tilde{\mathbf{C}}$  with toluene + SnCl<sub>4</sub> gives (35-40% yield (53)) p-methylbenzyl chloride (p-xylyl chloride) (3:8660) together with other prods.]

[ $\bar{C}$  in AcOH soln. without cat. condenses with aromatic nuclei: e.g.,  $\bar{C}$  with toluene in AcOH gives (25% yield {15}) a mixt. of o-xylyl chloride (3:8710) and p-xylyl chloride (3:8660); for analogous reactns. of  $\bar{C}$  in AcOH with o-xylene (1:7430), m-xylene (1:7420), pseudocumene (1:7470), mesitylene (1:7455), naphthalene (1:7200), tetralin (1:7550), anisole (1:7445), etc., see {15}.

[By virtue of its reactive halogen atom  $\bar{C}$  reacts readily with Grignard reagents giving (54) the corresp. methyl ethers: e.g.,  $\bar{C}$  with n-BuMgBr gives (67% yield (55)) (56) n-amyl methyl ether (1:7905);  $\bar{C}$  (2 moles) with decamethylene-bis-MgBr gives (53% yield (57)) dodecanediol-1,12-dimethyl ether;  $\bar{C}$  with CH<sub>3</sub>—C=C—MgBr gives (58) CH<sub>3</sub>.C=C.CH<sub>2</sub>OCH<sub>3</sub>;  $\bar{C}$  with Br—Mg.C=C—MgBr gives (63% yield (32)) 1,4-dimethoxybutyne-2;  $\bar{C}$  with C<sub>6</sub>H<sub>5</sub>MgBr gives (60% yield based on initial C<sub>6</sub>H<sub>5</sub>Br (59)) benzyl methyl ether (1:7475);  $\bar{C}$  with benzyl MgCl gives mainly (60) cf. (61) (62) methyl  $\beta$ -phenylethyl ether ( $\omega$ -methoxyethylbenzene) [Beil. VI-479, VI<sub>1</sub>-(238)], b.p. 185–187° (61), accompanied by some  $\rho$ -tolylcarbinol methyl ether and  $\rho$ -tolylcarbinol methyl ether, cf. (60).]

[In the pres. of appropriate catalysts  $\bar{\mathbb{C}}$  adds to olefinic unsatd. linkages, addition occurring as if  $\bar{\mathbb{C}}$  dissociated into (Cl-) and (CH<sub>3</sub>O.CH<sub>2</sub>-) radicals; examples of these addition reactions are given as follows:  $\bar{\mathbb{C}}$  with ethylene + BiCl<sub>3</sub> at 80° under 700–800 lbs. press. for 7 hrs. gives (63)  $\gamma$ -chloro-n-propyl methyl ether;  $\bar{\mathbb{C}}$  with propylene + BiCl<sub>3</sub> similarly gives (63)  $\gamma$ -chloro-n-butyl methyl ether;  $\bar{\mathbb{C}}$  with 2-methylpropene-1 (isobutylene) + HgCl<sub>2</sub> on stdg. in s.t. 4 days at room temp. gives (60% yield (64)) 2-chloro-4-methoxy-2-methylbutane, b.p. 136° at 751 mm.  $D_4^{20} = 0.9455$ , accompanied by some ter-butyl chloride (3:7045); but  $\bar{\mathbb{C}}$  with isobutylene + TiCl<sub>4</sub> as directed (65) gives the corresp. alc., viz., 3-chloro-3-methylbutanol-1;  $\bar{\mathbb{C}}$  with 2-methylbutene-2 (trimethylcthylene) (1:8220) with ZnCl<sub>2</sub> as directed (63) or with HgCl<sub>2</sub> in s.t. at room temp. for 48 hrs. (64) gives (40% yield (64)) 2-chloro-4-methoxy-2,3-dimethylbutane, b.p. 153° at 761 mm., 46-46.5° at 14 mm.,  $D_4^{20} = 0.9528$ , accompanied by some ter-AmCl (3:7220);  $\bar{\mathbb{C}}$  with cyclohexene (1:8070) + ZnCl<sub>2</sub> in CS<sub>2</sub> stirred 5 hrs. at 0°, then 3 hrs. at room temp., gives (28.7% yield (66)) cf. (64) (o-chlorocyclohexyl)methyl methyl ether (2-chloro-1-(methoxymethyl)cyclohexane), b.p. 88-91° at 17 mm.,  $D_4^{20} = 1.1552$  (66).]

[ $\bar{C}$  with butadiene-1,3 + ZnCl<sub>2</sub> in s.t. at room temp. for 24 hrs. gives (70% yield (64)) a mixt. of 1-chloro-5-methoxypentene-2, b.p. 168° at 758 mm., 56° at 10 mm.,  $D_4^{20} = 1.0022$  (from 1,4- addn. (?)) + 3-chloro-5-methoxypentene-1, b.p. 148° at 756 mm., 35° at 10 mm.,  $D_4^{20} = 0.9740$  (from 1,2 addn. (?)) (note that these two prods. represent synionic mesomers);  $\bar{C}$  with cyclohexadiene-1,3 (1:8057) + HgCl<sub>2</sub> under CO<sub>2</sub> at 0° stood 24 hrs. gives (38% yield (64)) (4-chlorocyclohexenyl)methyl methyl cther, b.p. 81° at 10 mm.,  $D_4^{20} = 1.0636$  (64).]

[ $\bar{\mathbb{C}}$  (1 mole) + vinylacetylene (1 mole) + BiCl<sub>3</sub> (trace) + pyrogallol (trace) in dry ether at 5-15° for 9 hrs. (with periodic addns. of BiCl<sub>3</sub>) gives (67) 34.8% yield 1-chloro-5-methoxypentadiene-2,3, b.p. 60-61° at 10 mm.,  $D_4^{20} = 1.0427$ ,  $n_D^{20} = 1.4893$  (by 1,4 addn.), together with 15% yield of 3-chloro-5-methoxypentadiene-1,3, b.p. 46° at 10 mm.,  $D_4^{20} = 1.0351$ ,  $n_D^{20} = 1.4846$ , together with other prods.; note that of the two preceding dienes the former with Cu<sub>2</sub>Cl<sub>2</sub> + HCl in ether at 20-40° for 2 hrs. readily isomerizes (81% yield (67)) to the latter; for further reactions of the pair see (67).]

 $[\tilde{C} \text{ with } 4.67\% \text{ dislvd. ZnCl}_2 \text{ shaken with CO at } 25-50^\circ \text{ at } 275-625 \text{ pounds press. for } 8 \text{ hrs. gives } (68) \text{ methoxyacetyl chloride } (3:5225).]$ 

Č with tertiary amines yields the corresp. quaternary ammonium salts: e.g., Č with Me<sub>3</sub>N in dry ether gives (69) methoxymethyl-trimethyl-ammonium chloride (chloroplatinate, m.p. 228–229°, picrate, m.p. 198°); Č with pyridine in dry ether gives (69) methoxymethyl-pyridinium chloride (chloroplatinate, m.p. 182–185° (70), 180–182° dec. (35), HgCl<sub>2</sub> cpd., m.p. 91° (69)); Č with quinoline in CHCl<sub>3</sub> gives (69) methoxymethyl-quinolinium chloride (chloroplatinate, m.p. 232–234°; chloroaurate, m.p. 126–127°); for other quaternary salts see (69).

- Methoxymethyl benzoate: oil, b.p. 283° (71). [From C with NaOBz at 100° (71).]
- ---- Methoxymethyl p-nitrobenzoate: unreported.
- Methoxymethyl 3,5-dinitrobenzoate: unreported.
- —— S-(Methoxymethyl)isothiourea picrate: m.p. 163° (72). [From C + thiourea in cold acetone giving (90% yield (72)) corresp. hydrochloride, m.p. 112° dec., which is then converted to the picrate.]
- ---- N-(Methoxymethyl)phthalimide: cryst. from dry MeOH, m.p. 120-121° (73), 118° (74). [Prepn. reported only by indirect means (73) (74).]

3:7685 (1) Löbering, Fleischmann, Ber. 70, 1680-1683 (1937). (2) Straus, Heinze, Ann. 493, 215-216 (1932). (3) Clark, Cox, Mack, J. Am. Chem. Soc. 39, 712-714 (1917). (4) Friedel, Bull. soc. chm. (2) 28, 171-172 (1877). (5) Rau, Nurayanawarmy, Proc. Indian Acad. Sci. A-1, 217-218 (1935). (6) Karvonen, Ann. Acad. Sci. Fennicac A-3, No. 7, 1-103; Cent. 1912, II 1268. (7) Lecat, Ann. soc. sci. Bruxelles 47, I 66 (1927); Cent. 1927, II 904. (8) Kohlrausch, Ypsilanti, Z. physik. Chem. B-29, 291 (1935). (9) Timmermans, Bull. soc. chim. Belg. 27, 334-343 (1913); Cent. 1914, I 618. (10) Karvonen, Ann. Acad. Sci. Fennicae A-5, No. 6, 105.

(11) Marvel, Porter, Org. Syntheses, Coll. Vol. 1 (2nd ed), 377-379 (1941); (1st ed.), 369-371 (1932), 9, 58-60 (1929). (12) Henry, Bull. acad. roy. Belg. (3) 25, 439-440 (1893); Ber. 26, Referate 933 (1893). (13) Litterschied, Thimme, Ann. 334, 1-49 (1904). (14) Favre, Compt. rend. 119, 284 (1894); Bull soc. chim. (3) 11, 1095-1096 (1894). (15) Vavon, Bolle, Calin, Bull. soc. chim. (5) 6, 1025-1033 (1939). (16) Reychler, Bull. soc. chim. (4) 1, 1195-1198 (1907). (17) Houben, Arnold, Ber. 40, 4306-4310 (1907). (18) Wedekind, Ber. 36, 1383-1386 (1903). (19) Wedekind, Ger. 135,310, Oct. 16, 1902; Cent. 1902, II 1164. (20) Farren, Fife, Clark, Garland, J. Am. Chem. Soc. 47, 2420-2421 (1925).

(21) Kleber, Ann. 246, 97-102 (1888). (22) Reichert, Bailey, Nieuwland, J. Am. Chem. Soc. 45, 1554-1555 (1923). (23) Litterscheid, Ann. 330, 114-116 (1903). (24) deLettre, Bull. soc. chim. Belg. 26, 323-336 (1912); Cent. 1912, II 1192. (25) Houben, Pfankuch, Ber. 59, 88-89 (1926). (26) du Pont Co., Brit. 435,110, Oct. 10, 1935; Cent. 1936, I 877; C.A. 30, 1387 (1936). (27) Fileti, de Gaspari, Gazz. chim. ital. 27, II 293-296 (1897). (28) Stephen, Short, Gladding, J. Chem. Soc. 117, 511, 517, 522 (1920). (29) Conant, Kuner, Hussey, J. Am. Chem. Soc. 47, 497 (1925). (30) Jones, Powers, J. Am. Chem. Soc 46, 2526-2527 (1924).

(31) Henze, Rigler, J. Am. Chem. Soc. **56**, 1351 (1934). (32) Gauthier, Ann. chim. (8) **16**, 306, 336-337 (1909). (33) Sommelet, Ann. chim. (8) **9**, 497-498 (1906); Bull. soc. chim. (4) **1**, 372-373 (1907). (34) Johnson, Guest, Am. Chem. J. **41**, 340-341 (1909). (35) Cocker, Lapworth, Walton, J. Chem. Soc. **1930**, 446-448, 451-453. (36) Palomaa, Kantola, Ber. **65**, 1593-1598 (1932). (37) Henry, de Sonay, Bull. acad. roy. Belg. **1908**, 6-17, Cent. **1908**, I 2014. (38) Breslauer, Pictet, Ber. **40**, 3786 (1907). (39) Hoering, Baum, Ger. 209,608, May 7, 1909; Cent. **1909**, I 1680-1681. (40) Pauly, Wasder, Ber **56**, 606-610 (1923).

(41) Pauly, Feuerstein, Ber. 62, 303 (1929).
(42) Pauly, Strassberger, Ber. 62, 2280 (1929).
(43) Smith, Laforge, J. Am. Chem. Soc. 56, 2431 (1934).
(44) Foldi, von Fodor, Demjen, Szekeres, Halmos, Ber. 75, 760 (1942).
(45) Simonsen, J. Chem. Soc. 93, 1780 (1908).
(46) Fischer, Nenitzescu, Ann. 443, 125 (1925).
(47) Simonsen, J. Chem. Soc. 117, 565-566 (1920).
(48) Simonsen, Storey, J. Chem. Soc. 95, 2108-2109, 2111-2112 (1909).
(49) Schlenk, Bergmann, Ann. 464, 17-18 (1928).
(50) Bergmann, J. Chem. Soc. 1936, 413.

(51) de Gaspari, Gazz. chrm. ital. 27, II 297-298 (1897). (52) Lock, Ber. 74, 1568-1574 (1941); Cent. 1942, I 189. (53) Sommelet, Compt. rend. 157, 1443-1445 (1913); Cent. 1914, I 462-463: Compt. rend. 180, 1349-1351 (1925), Cent. 1925, II 399. (54) Hamonet, Bull. soc. chrm. (4) 3, 254-258 (1908). (55) Gredy, Bull. soc. chim. (5) 3, 1094 (1936). (56) Kirrmann, Bull. soc. chim. (4) 39, 989 (1926). (57) Chuit, Helv. Chim. Acta 9, 268 (1926). (58) Yvon, Compt. rend. 180, 748-749 (1925); Cent. 1925, II 17. (59) Reychler, Bull. soc. chim. (4) 1, 1198-1200 (1907). (60) Bottomley, Lapworth, Walton, J. Chem. Soc. 1938, 2215-2216.

(61) Madinaveitia, Bull. soc. chim. (4) 25, 604 (1919). (62) Müller, Cent. 1932, I 811. (63) Scott (to du Pont Co.), U.S. 2,024,749, Dec. 17, 1935; Cent. 1936, I 4074; C.A. 30, 1067 (1939):

Brit. 423,520, Feb. 28, 1935; Cent. 1935, II 920; C.A. 29, 4374 (1935). (64) Straus, Thiel, Ann. 525, 151-182 (1936). (65) Martin (to du Pont Co.), U.S. 2,143,021, Jan. 10, 1939; Cent. 1939) II 227; C.A. 33, 2907 (1939). (66) Nenitzescu, Przemetzki, Ber. 69, 2706-2707 (1936). (67, Dykstra, J. Am. Chem. Soc. 58, 1747-1749 (1936). (68) Scott (to du Pont Co.), U.S. 2,084,284, June 15, 1937; Cent. 1937, II 2261; C.A. 31, 5383 (1937). (69) Litterscheid, Thimme, Ann. 334, 49-62 (1904). (70) Litterscheid, Ann. 316, 168-169 (1901).

(71) Walker, Plastic Products 9, 187-188 (1933); Cent. 1933, II 2517; C.A. 28, 1662 (1934).
(72) Sprague, Johnson, J. Am. Chem. Soc. 59, 2439-2441 (1937).
(73) Sachs, Ber. 31, 1230 (1898).
(74) Hopkins, J. Am. Chem. Soc. 45, 542 (1923).
(75) Salzberg (to du Pont Co.),

U.S. 2,065,400, Dec. 22, 1936; Cent. 1937, I 3715; C.A. 31, 1046 (1937).

3: 7090 d,l-3-CHLOROBUTENE-1 H H C<sub>4</sub>H<sub>7</sub>Cl Beil. I — 
$$(\gamma$$
-Chloro- $\alpha$ -butylene;  $CH_3$ — $C$ — $CH_2$   $I_1$ — $I_2$ -(174)

B.P. 63° at 760 mm. (1) 
$$D_4^{20} = 0.9001$$
 (1)  $n_D^{20} = 1.4151$  (10) 64-65° (2) 1.4150 (5) (3) (2) 64° at 750 mm. (5) 1.4153 (1) 63.5° at 751 mm. (10) 24.2-24.6° at 178 mm. (3) -5° at 26 mm. (4)

For important discussion of the relationship and conversion of  $\bar{C}$  to 1-chlorobutene-2 see the latter (3:7205).

[For the prepn. of a mixt. of  $\bar{C}$  and 1-chlorobutene-2 from butadiene-1,3 + HCl see (5) (1) (6) (7); for prepn. of  $\bar{C}$  from methyl-vinyl-carbinol (buten-1-ol-3) + conc. HCl see (3) (4) (8).]

[For study of reaction with Mg, Zn, etc., see (9); for study of hydrolysis under various conditions see (10); for behavior with cuprous cyanide see (11).]

- Methyl-vinyl-carbinyl p-nitrobenzoate: m.p. 43-44° (12). [Note that this prod. has been prepd. only by indirect means (12) and may (because of allylic rearr.) possibly be in fact crotonyl p-nitrobenzoate (see under 3:7205).]
- Methyl-vinyl-carbinyl 3,5-dinitrobenzoate: unreported. [See also note under 3:7205.]
- ---- N-(Methyl-vinyl-carbinyl)phthalimide: m.p. 87-88° (13). [Prepd. indirectly, and structure unproved (13).]

3:7690 (1) Henne, Chanan, Turk, J. Am. Chem. Soc. 63, 3474-3476 (1941). (2) Baudrenghien, Bull. soc. chim. Belg. 31, 168 (1922). (3) Roberts, Young, Winstein, J. Am. Chem. Soc. 64, 2163 (1942). (4) Böhme, Ber. 71, 2378-2379 (1938). (5) Kharasch, Kritchevsky, Mayo, J. Org. Chem. 2, 494-496 (1938). (6) Voigt, J. prakt. Chem. (2) 151, 310 (1938). (7) Dykstra (to du Pont), U.S. 2,123,504, July 12, 1938; Cent. 1938, II 2840; C.A. 32, 6666 (1938). (8) Ganguly, J. Indian Chem. Soc. 13, 584 (1936). (9) Young, Eisner, J. Am. Chem. Soc. 63, 2113-2115 (1941). (10) Young, Andrews, J. Am. Chem. Soc. 64, 421-425 (1944).

(11) Lane, Fentress, Sherwood, J. Am. Chem. Soc. 66, 545-548 (1944). (12) Burton, J. Chem. Soc. 1929, 456. (13) Mumm, Richter, Ber. 73, 847, 857 (1940).

[For prepn. from propyn-2-ol-1 (propargyl alcohol) [Beil. I-454, I<sub>1</sub>-(234) with PCl<sub>3</sub> see (1) (2).]

3:7160 (1) Henry, Ber. 8, 398 (1875). (2) Pauling, Gordy, Saylor, J. Am. Chem. Soc. 64, 1753-1756 (1942).

cis Stereoisomer

B.P. F.P. 66.6-67.0° at 760 mm. (1) 
$$-117.3$$
° (18)  $D_4^{20} = 0.9239$  (18)  $n_D^{20} = 1.4240$  (18) 70.58° (18)  $D_4^{15} = 0.9246$  (1)  $D_4^{0} = 0.9420$  (1)  $n_D^{13.4} = 1.4250$  (1)

trans Stereoisomer

B.P. F.P. 62.4-62.8° at 760 mm. (1) 
$$-105.8^{\circ}$$
 (18)  $D_4^{20} = 0.9139$  (18)  $n_D^{20} = 1.4190$  (18) 62.84° (18)  $D_4^{15} = 0.9185$  (1)  $D_4^{0} = 0.9361$  (1)  $n_D^{13.4} = 1.4217$  (1)

Ordinary C (mixt.)

B.P. 
$$64-68^{\circ}$$
 (2)  $D_4^{20} = 0.9179$  (3)  $62-67^{\circ}$  (3)  $n_D^{15} = 1.4232$  (2)  $59-61^{\circ}$  at 761 mm. (4)  $D_4^{15} = 0.9220$  (2)

Both stereoisomers form with abs. EtOH const.-boilg. mixts. from which  $\tilde{\mathbf{C}}$  can be recovered by repeated shaking with 3 vols. aq. to remove the alc.; the azeotrope with  $cis-\tilde{\mathbf{C}}$ , b.p. 60.0-60.4° at 760 mm.,  $D_4^{15}=0.8964$ , conts. 81.6% by wt. of  $cis-\tilde{\mathbf{C}}$ ; the azeotrope with trans- $\tilde{\mathbf{C}}$ , b.p. 56.8-57.2° at 760 mm.,  $D_4^{15}=0.8960$ , conts. 84.6% by wt. of trans- $\tilde{\mathbf{C}}$  (1).

[For study of toxicity of  $\bar{C}$  see (5); for use as anthelmintic see (6).]

[For prepn. of the two geom. stereoisomers of  $\bar{C}$  from either d,l- (3:7615) or meso- (3:7580) 2,3-dichlorobutane with alc. KOH (1 mole + 25% excess) refluxed for 3 days see {1}.

[For prepn. of ord.  $\tilde{C}$  (mixt. of cis+trans stereoisomers) from 2,2-dichlorobutane (3:7415) with alc. KOH see {8}; from ord. 2,3-dichlorobutane (3:7615) with alc. KOH (1) (2) (3) (8) (9), with aq. NaHCO<sub>3</sub> + Na<sub>2</sub>CO<sub>3</sub> under press. (yield 20%  $\tilde{C}$  accompanied by 4% butanone-2 (ethyl methyl ketone) (1:5405) + 5% butenols) (7), with aq. alkali or alkaline-earth hydroxides under press. at 118–250° (10), by passing vapor over BaCl<sub>2</sub> at 200–300° (11), or by passing vapor + steam at 300–400° over silica gel contg. MgCl<sub>2</sub> + CaCl<sub>2</sub>, etc. (yields 21–25%  $\tilde{C}$  accompanied by 35–38% butadiene-1,3 and 6–8% butanone-2) (3) see indic. refs.; from butanone-2 (ethyl methyl ketone) (1:5405) with PCl<sub>5</sub> ( $\tilde{C}$  is accompanied by 2-chlorobutene-1 (3:7075) (12) and by 2,2-dichlorobutane (3:7415) (4)) see indic. refs.]

[For prepn. of C from 2,2-dichloro-3-iodobutane (see below) with alc. KOH see (2); from 2-bromo-2-chloro-3-iodobutane with alc. KOH see (2) (note that the isomeric 2-bromo-3-chloro-2-iodobutane under same circumstances gives 3-bromo-2-chlorobutene-2).]

[For prepn. of C from 2,3-dichlorobutene-2 (3:5500) with aq. alk. or alkaline-earth hydroxides under press. at 118-250° see (13).]

[C with Cl2 may add halogen, or be further substituted by halogen, or both, according to

circumstances: e.g.,  $\tilde{C}$  in liq. phase with Cl<sub>2</sub> at 20–40° in absence of light but in pres. of cat. such as SnCl<sub>4</sub> or FeCl<sub>3</sub> adds Cl<sub>2</sub> giving (14) 2,2,3-trichlorobutane (3:5680);  $\tilde{C}$  in liq. phase with Cl<sub>2</sub> in pres. of light and of O<sub>2</sub> (15) or  $\tilde{C}$  with Cl<sub>2</sub> in pres. of NaHCO<sub>3</sub> at 0° (4) substitutes further giving (55% yield (4)) (15) 2,3-dichlorobutene-1 (3:9074) (accompanied by 45% 2,2,3-trichlorobutane (3:5680) (4));  $\tilde{C}$  with Cl<sub>2</sub> at 350° gives (16) a mixt. of unsatd. chlorobutenes, probably 1,2-dichlorobutene-2 (3:5560) or (3:5615) and 1,3(2,4)-dichlorobutene-2 (3:5550).]

Č adds Br<sub>2</sub> yielding (2) 2,3-dibromo-2-chlorobutane, b.p. 182.5–186° sl. dec., 66–66.5° at 12 mm.,  $D_4^{15} = 1.8975$ ,  $n_D^{15} = 1.5339$  (2) (this prod. with alc. KOH loses HBr yielding (2) 3-bromo-2-chlorobutene-2, b.p. 128–129.5°,  $D_4^{15} = 1.4998$ ,  $n_D^{15} = 1.4950$  (2)).

[ $\bar{C}$  adds ICl yielding (2) 2,2-dichloro-3-iodobutane, b.p. 69.5° at 11.5 mm.,  $D_4^{15} = 1.8580$ ,  $n_D^{15} = 1.5505$  (2) (this prod. with KOH regenerates  $\bar{C}$ ).]

[ $\bar{C}$  also adds HOCl but from the addn. prod. HCl splits out immediately: e.g.,  $\bar{C}$  in CCl<sub>4</sub> with Cl<sub>2</sub> + aq. as directed (17) gives (85% yield (17)) 3-chlorobutanone-2 ( $\alpha$ -chloroethyl methyl ketone) (3:7598).

[For behavior of C with dry HF yielding 2,2-difluorobutane see (18).]

[ $\bar{C}$  with steam passed at 300–400° over silica gel contg. MgCl<sub>2</sub> + CaCl<sub>2</sub> is unchanged (3) (dif. from 3-chlorobutene-1 (3:7090) or 1-chlorobutene-2 (3:7205) which lose HCl yielding butadiene-1,3 (3)). — Note that with alc. KOH the  $cis-\bar{C}$  splits off HCl 2.5 times as fast as the  $trans-\bar{C}$  (1).] [For dehydrohalogenation of  $\bar{C}$  yielding butadiene-1,3 see (19) (20).]

[ $\bar{\mathbf{C}}$  with alcoholates or phenolates as directed (9) yields the corresp. ethers; e.g.,  $\bar{\mathbf{C}}$  with NaOEt yields (9)  $\alpha_1\beta$ -dimethylvinyl ethyl ether.]

Č on oxidn. with boilg. aq. KMnO<sub>4</sub> yields (12) acetic acid (1:1010) and propionic acid (1:1025); the *cis*-Č appears to give mainly acetic acid; the *trans*-Č gives mainly propionic acid (12).

3:7105 (1) Navez, Bull. soc. chim. Belg. 39, 435-443 (1930); Cent. 1931, I 1269-1270; C.A. 25, 2412 (1931). (2) Petrov, Sapozhnikova, J. Gen. Chem. (U.S.S.R.) 7, 476-484 (1937), Cent. 1937, I 4925; C.A. 31, 4263 (1937). (3) Gutner, Tishchenko, J. Gen. Chem. (U.S.S.R.) 6, 1729-1735 (1936); Cent. 1937, I 3786; C.A. 31, 4265 (1937). (4) Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1232-1246 (1938), Cent. 1939, II 4222-4223, C.A. 33, 4190 (1939). (5) McCawley, Univ Calif. Pub. Pharmacol. 2, 89-97 (1942); C.A. 36, 4911 (1942). (6) Marcenac, Compt. rend. 198, 510-512 (1934); Cent. 1934, I 2786; C.A. 28, 2800 (1934). (7) Dobryanskii, Gutner, Shchigel'skaya, J. Gen. Chem. (U.S.S.R.) 7, 1315-1320 (1937); Cent. 1938, I 561, C.A. 31, 6189 (1937). (8) Tishchenko, Churbakov, J. Gen. Chem. (U.S.S.R.) 7, 663-666 (1937); Cent. 1937, II 372; C.A. 31, 5754 (1937). (9) I.G., Brit. 332,605, Aug. 21, 1930, Cent. 1930, II 2572. (10) du Pont Co. & Cass, Brit. 549,799, Dec. 8, 1942, C.A. 38, 756 (1944).

(11) Levine, Cass (to du Pont Co), U.S. 2,323,226, June 29, 1943; C.A. 38, 119 (1944); Brit. 535,555, April 15, 1941; C.A. 36, 1337 (1942). (12) Charpentier, Bull. soc. chim. (5) 1, 1407-1411 (1934). (13) Cass (to du Pont Co), U.S. 2,291,375, July 28, 1942; C.A. 37, 656 (1943). (14) Levine, Cass (to du Pont Co), U.S. 2,323,227, June 29, 1943; C.A. 38, 119 (1944): Brit. 535,586, April 15, 1941; C.A. 36, 1337 (1942). (15) Hearne (to Shell Development Co.), U.S. 2,296,614, Sept. 22, 1942; C.A. 37, 1129 (1943). (16) N. V. de Bataafsche Petroleum Maatschappii, Brit. 468,016, July 22, 1937; Cent. 1937, II 4102; C.A. 31, 8543 (1937): French 810,112, March 15, 1937; Cent. 1937, II 4102; C.A. 32, 587 (1938). (17) Groll, Hearne (to Shell Development Co.), U.S. 2,060,303, Nov. 10, 1936; Cent. 1937, I 4154, C.A. 31, 419 (1937); Brit. 437,573, Nov. 28, 1935; French 787,529, Sept. 24, 1935; Cent. 1936, II 2227. (18) Henne, Hinkamp, J. Am. Chem. Soc. 67, 1194-1197 (1945). (19) Evans, Morris, Melchior (to Shell Development Co.), U.S. 2,379,697, July 3, 1945; C.A. 39, 4331 (1945). (20) Hearne (to Shell Development Co.), U.S. 2,379,708, July 3, 1945; C.A. 39, 4330 (1945).

trans Stereoisomer

B.P. 
$$68.0-68.2^{\circ}$$
 at 760 mm. (1)  $D_4^{15} = 0.9205$  (1)  $n_D^{14.6} = 1.4225$  (1)  $D_4^{0} = 0.9376$  (1)

cis Stereoisomer

B.P. 63.4-63.6° at 760 mm. (1) 
$$D_4^{15} = 0.9153$$
 (1)  $n_D^{15} = 1.4194$  (1)  $D_4^0 = 0.9329$  (1)

Both stereoisomers form with abs. EtOH const.-boil. mixts. from which  $\bar{C}$  can be recovered by repeated shaking with 3 vols. aq. to remove the alc.: the azeotrope with the trans form, b.p. 61.2–61.6° at 760 mm.,  $D_4^{15}=0.8912$ , conts. 79.8% by wt. of  $\bar{C}$ ; the azeotrope with the crs form, b.p. 57.0–58.2° at 760 mm.,  $D_4^{15}=0.8946$ , conts. 85.2% by wt. of  $\bar{C}$  (1).

[For formn. of both trans and cs forms of  $\bar{C}$  from d,l-1,2-dichlorobutane (3:7680) with alc. KOH (1 mole + 25% excess) refluxed 3 days (some 2-chlorobutene-1 (3:7075) is also formed) see {1}.]

[The crs form of  $\bar{C}$  with alc. KOH splits off HCl 2 9 times as fast as the trans form (1).] [ $\bar{C}$  with Cl<sub>2</sub> in dark at 10° gives (70–75% yield (2)) 1,1,2-trichlorobutane, but no constants for latter can be found either in (2) or in prior literature.]

3:7110 (1) Navez, Bull. soc. chim Belg 39, 435-443 (1930); Cent. 1931, I 1269-1270; C.A. 25, 2412 (1931). (2) Henne, Hinkamp J. Am Chem. Soc. 67, 1197 (1945).

3:7120 1-CHLORO-2-METHYLPROPENE-1 CH<sub>3</sub> C<sub>4</sub>H<sub>7</sub>Cl Beil. I - 209 
$$(\beta,\beta$$
-Dimethylvinyl chloride; isocrotyl chloride; CH<sub>3</sub>—CH I<sub>2</sub>—  $\alpha$ -chloroisobutylene)

B.P. 
$$D_{25}^{25} = 0.9144$$
 (3)  $D_{D}^{25} = 1.4198$  (3)  $D_{D}^{25} = 1.4198$  (3)  $D_{D}^{25} = 1.4198$  (3)  $D_{D}^{25} = 1.4198$  (3)  $D_{D}^{20} = 1.4221$  (2)  $D_{D}^{20} = 1.4221$  (3)  $D_{D}^{20} = 1.4221$  (4)  $D_{D}^{20} = 1.4221$  (7)

[See also 3-chloro-2-methylpropene-1 (3:7145).]

Note that for  $\tilde{C}$  the designation  $\beta_i\beta$ -dimethylvinyl chloride is now preferred, cf. (5); great care should be used to avoid confusion of  $\tilde{C}$  with the isomeric and very closely related 3-chloro-2-methylpropene-1 (methallyl chloride) (3:7145); both these compounds are now commercial chemicals in the U.S.A.

[For prepn. of  $\bar{C}$  from 3-chloro-2-methylpropene-1 (methallyl chloride) (3:7145) see (2) (8): e.g., methallyl chloride (10 moles) with 80% H<sub>2</sub>SO<sub>4</sub> (1 mole) stirred at 40° for 2½ hrs. gives an upper phase contg. 87%  $\bar{C}$  + 7% residual methallyl chloride + 6% dichlorides and polymers; after washing free from acid, drying, and distilling it yields 85%  $\bar{C}$  (8) (20).]

[For formn. of C (usually accompanied by the isomeric methallyl chloride and/or other

prods.) from 2-methylpropene-1 (isobutylene) with Cl<sub>2</sub> (5) (9), from 1,1-dichloro-2-methylpropane (isobutylidene dichloride) (3:7425) by actn. of NH<sub>4</sub>OH or alc. KOH (4), from 1,2-dichloro-2-methylpropane (isobutylene dichloride) (3:7430) with alc. KOH (10) see indic. refs.]

[For formn. of  $\bar{C}$  (together with the isomeric methallyl chloride) from 1-chloro-2-methyl-propanol-2 (isobutylene chlorohydrin) (3:7752) by soln. in cold 45% H<sub>2</sub>SO<sub>4</sub> and subsequent warming (giving 90%  $\bar{C}$  + 10% methallyl chloride (2) (8)), or by use of P<sub>2</sub>O<sub>5</sub> (11) cf. (12); from 1,1,1-trichloro-2-methylpropanol-2 (1,1,1-trichloro-ter-butyl alc. = "Chlore-tone") (3:2662) with Zn dust + boilg. alc. (13), or from isobutyraldehyde (1:0120) by actn. of PCl<sub>5</sub> (4) see indic. refs.]

C forms with aq. a const.-boilg. mixt., b.p. 61.9°, contg. 7.5% aq. (2)

[For study of anesthetic props. of C see (14).]

Reactions involving further substitution of H atoms in C. [C with Cl<sub>2</sub> (in pres. of 1.5 moles NaHCO<sub>3</sub> at 0° (15)) cf. (2) reacts not only by addn. but also by substitution (the latter involving a shift of double bond) giving respectively 32% 1,1,2-trichloro-2-methyl-propane (3:5710) + 68% 1,1-dichloro-2-methyl-propene-2 (3:7480).]

Reactions involving the double bond of C. [C adds Cl2 (see preceding paragraph).]

[Č also adds HOCl (chlorohydrination); e.g., Č with  $Cl_2 + aq.$ , or aq. HOCl, or even alkyl or aralkyl hypochlorites as directed (16) cf. (2) (4), yields 1,1-dichloro-2-methyl-propanol-2 ( $\beta,\beta$ -dichloro-ter-butyl alc.) (3:5772), b.p. 150°.]

[ $\bar{C}$  can also undergo catalytic hydration of the double bond: e.g.,  $\bar{C}$  (1 mole) with 90%  $H_2SO_4$  (1 mole) stirred at  $-10^\circ$  to  $0^\circ$  for  $2\frac{1}{2}$  hrs., then poured onto cracked ice, diluted with aq., and distilled, gives 66% of the initial  $\bar{C}$  as 1-chloro-2-methylpropanol-2 ( $\beta$ -chloro-ter-butyl alcohol) (isobutylene chlorohydrin) (3:7752); note that other acids can also be used for this hydration, e.g., 85%  $H_3PO_4$ , 70%  $HNO_3$ , 60%  $HClO_4$ , benzenesulfonic acid, e.g., each having its own optimum conditions. Note also that some 18% of the initial  $\bar{C}$  is not hydrated but is partially isomerized to a mixt. contg. 90%  $\bar{C}$  + 10% methallyl chloride (2) (17).]

Reactions involving the halogen atom of  $\bar{C}$ . Note that in  $\bar{C}$  the halogen is extremely inert as compared with that of the isomeric methallyl chloride (3:7145); this permits removal of the latter from  $\bar{C}$  by chemical means (see below).

[ $\ddot{\mathbf{C}}$  is virtually unattacked by aq. or alc. KOH even at 100° (11) (1) (2) (dif. from methallyl chloride (3:7145)). —  $\ddot{\mathbf{C}}$  does not react with boilg. aq.  $K_2CO_3$  or KOAc (1) (dif. from methallyl chloride (3:7145)).]

[Č is not normally convertible to isobutyraldehyde except under extreme conditions (5) (dif. from methallyl chloride (3:7145) which upon acid hydrolysis or even boilg, with aquives isobutyraldehyde).]

- β,β-Dimethylvinyl (isocrotyl) acetate: unreported.
- β,β-Dimethylvinyl (isocrotyl) benzoate: unreported.
- β,β-Dimethylvinyl (isocrotyl) p-nitrobenzoate: unreported.
- ----- β,β-Dimethylvinyl (isocrotyl) 3,5-dinitrobenzoate: unreported.
- ---- N-(β,β-dimethylvinyl)phthalimide: unreported.
- 3:7120 (1) Pogorshelski, J. Russ. Phys.-Chem. Soc. 36, 1120-1184 (1904); Cent. 1905, I 667-668. (2) Burgin, Hearne, Rust, Ind. Eng. Chem. 33, 385-388 (1941). (3) Hurdis, Smyth, J. Am. Chem. Soc. 65, 89 (1943). (4) Oeconomides, Compt. rend. 92, 1237 (1881); Bull. soc. chim. (2) 35, 499-500 (1881). (5) Burgin, Engs, Groll, Hearne, Ind. Eng. Chem. 31, 1413-1419 (1939). (6) Engs, Redmond, U.S. 2,077,382, April 20, 1937; Cent. 1937, II 1660; C.A. 31, 3937 (1937). (7) Aschan, Oversitt Finska Velenskaps-Soc. Förh. 58, 122 (1915). (8) Groll, Burgin (to Shell Development Co.), U.S. 2,042,223, May 26, 1936; Cent. 1937, I 1274; C.A. 30, 4875 (1936). (9) Tamele, Ott, Marple, Hearne, Ind. Eng. Chem. 33, 115 (1941). (10) Mouneyrat, Ann. chim. (7) 26, 533-534 (1900).

(11) Michael, J. prakt. Chem. (2) 64, 104 (1901). (12) Krassuski, J. prakt. Chem. (2) 64, 390 (1901); J. Russ. Phys.-Chem. Soc. 33, 1-26 (1901); Cent. 1901, I 996. (13) Jositsch, J. Russ. Phys.-Chem. Soc. 36, 920-924 (1898); Cent. 1899, I 606. (14) Abreu, Peoples, Emerson, Anesthesia and Analgesia 18, 156-161 (1939); Cent. 1939, II 2111; C.A. 33, 6959 (1939). (15) Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1232-1245 (1938); Cent. 1939, II 4222; C.A. 33, 4190 (1939). (16) Groll, Hearne (to Shell Development Co.), U.S. 2,060,303, Nov. 10, 1936; Cent. 1937, I 4154; C.A. 31, 419 (1937); N. V. de Bataafsche Petroleum Matschappij, Brit. 437,573, Oct. 31, 1935; Cent. 1936, II 2227; C.A. 30, 2199 (1936); French 787,529; Sept. 24, 1935; Cent. 1936, II 2227; C.A. 30, 4875 (1936); N. V. de Bataafsche Petroleum Matschappij, French 791,644, Dec. 14, 1935; Cent. 1936, II 2227.

3: 7125 
$$d$$
, l-2-CHLOROBUTANE (sec.-Butyl chloride; CH<sub>3</sub>—CH<sub>2</sub>—CH—CH<sub>3</sub> I<sub>1</sub>— ethyl-methyl-carbinyl chloride)

B.P. F.P. (8.4-68.6° u.c. (28)] -131.3° (1) (10)  $D_4^{25} = 0.86767$  (1) (8.25° at 760 mm. (1) (2) (4) 0.87323 (1) (68° at 761 mm. (5) 0.8726 (5) (68° at 769 mm. (5) 0.8707 (6) (67.3-67.8° cor. (6) 67.3° at 761.4 mm. (7)  $D_4^{15} = 0.87880$  (1)  $D_4^{15} =$ 

Liquid with agreeable ethereal odor.

[For prepn. of  $\tilde{C}$  from butanol-2 (1:6155) by saturation with dry HCl gas and htg. in s.t. at 100° for several hrs. (9); by distillation with 18 wt. pts. 6 N HCl (50% yield (12)); with conc. HCl + ZnCl<sub>2</sub> (2 moles) (yields: 85–88% (13), 83% (14), 82% (5), 78% (15), 60–68% (16) (17)) (6); with PCl<sub>3</sub> + ZnCl<sub>2</sub> (yields: 67% (15), 40% (6)); with PCl<sub>5</sub> + ZnCl<sub>2</sub> (71% yield (15)); with SOCl<sub>2</sub> + pyridine (yields: 90% (15), 47% (5)); or with HCl in pres. of H<sub>3</sub>PO<sub>4</sub> (18) see indic. refs.]

[For formn. of  $\bar{C}$  from either butene-1 or butene-2 with HCl gas by addn. to unsatd. linkage (7) (19) in pres. of cat. (20) (21) (22) see indic. refs.; from *n*-butane with Cl<sub>2</sub> see (4) (23); from *n*-butylamine with HNO<sub>2</sub> (2.8% yield  $\bar{C}$  accompanied by 36.5% butenes, 25% butanol-1, 13.2% butanol-2, 5.2% *n*-butyl chloride (3:7160) and other prods.) see (24); from sec.-butylamine with NOCl in xylene see (25).]

[For study of anthelmintic props. of C see (26).]

Pyrolysis of C. [C at 450-550° without cat. loses HCl and yields (4) (27) a mixt. contg. butene-1, cis-butene-2, and trans-butene-2 (dif. from 1-chlorobutane (3:7160) which gives only butene-1); C at 450° in pres. of anhyd. CaCl<sub>2</sub> as cat. gives (4) (27) the same mixt. (as does also 1-chlorobutane (3:7160)). For use of this pyrolysis in distinction of C from ter-butyl chloride (3:7045) see (23).]

Further halogenation of  $\tilde{C}$ . [ $\tilde{C}$  with  $Cl_2$  at 200–380° gives (28) a mixt. of dichlorobutanes contg. 1,3-dichlorobutane (3:7925), 2,2-dichlorobutane (3:7415), and d,l-2,3-dichlorobutane (3:7680); note, however, that  $\tilde{C}$  with  $Cl_2$  in pres. of light gives (29) 1,2-dichlorobutane (3:7680), 1,3-dichlorobutane (3:7925), 2,2-dichlorobutane (3:7415), and both d,l- (3:7615) and meso- (3:7580) 2,3-dichlorobutanes.]

Reactions of the halogen atom of C. [For study of rate of reactn. of C with KI in acetone at 60° see (30).]

[Č with  $C_6H_6$  + AlCl<sub>3</sub> gives (yields: 82.5% (9), 69% (31)) sec.-butylbenzene (1:7490); Č with  $C_6H_6$  + Al/Hg gives (59.5% yield (32)) ter-butylbenzene (1:7460); Č with naphthalene + AlHg gives (48% yield (32)) 1-(sec.-butyl)naphthalene.]

[ $\ddot{\mathbf{C}}$  with acetanilide + AlCl<sub>3</sub> in ethylene dichloride (3:5130) at  $-5^{\circ}$  gives (33) N-acetyl-p-(sec.-butyl)aniline, cryst. from di-isopropyl ether, m.p. 121-122° (33).]

C with Mg in dry ether gives (87% yield (34)) sec.-BuMgCl (see also below).

- **D** Ethyl-methyl-acetic acid (1:1105): b.p. 176-177°. [From Č by conversion to RMgCl and carbonation of the latter with CO<sub>2</sub> (yields: 76-86% (35), 72%) (by adding ether soln. directly to solid CO<sub>2</sub> (36)).]
- **D** Ethyl-methyl-acetic-p-toluidide: m.p. 92.5-93° u.c. (39). [From  $\bar{C}$  by conversion to RMgCl (see above) and reactn. in dry other with p-tolyl isocyanate (39).]
- Ethyl-methyl-acetic α-naphthalide: m.p. 128-129° u.c. (39). [From C̄ by conversion to RMgCl (see above) and reactn. in dry ether with α-naphthyl isocyanate (39).] [Note that this prod. does not distinguish C̄ from isobutyl chloride (3:7135) for which the corresp. isovalero-α-naphthalide has m.p. 125-126° u.c. (39).]
- —— sec.-Butyl mercuric chloride (sec.-BuHgCl): cryst. from alc., m.p. 30.5° (40). [Reported only by indirect means (40).]
- —— S-(sec.-Butyl)isothiourea picrate; m.p. 190° (41). [Not reported from C but obtd. from sec.-BuBr (0.2 g.) + thiourea (0.2 g.) refluxed in alc. (2 ml.) for 2 min., then treated with PkOH (0.2 g.) dislyd. in least possible hot alc. (41).]
- N-(sec.-Butyl)phthalimide (2-(N-phthalimido)butane): m.p. 24.5-25.5° (42). [Not reported from Č but obtd. (35% yield (42)) from sec.-BuBr with K phthalimide by htg. in s.t. at 210° for 4 hrs.; note that m.p. is too low to be recommended as deriv. for identification.]
- --- N-(sec.-Butyl)-3-nitrophthalimide: unreported.
- --- N-(sec.-Butyl)tetrachlorophthalimide: unreported.
- N-(sec.-Butyl)-o-sulfobenzoic imide (N-(sec.-butyl)saccharin): m.p. 81° (43). [Not reported from C but obtd. from sec.-BuBr or sec.-BuI with sodium saccharin in aq. butylcarbitol (1:6517) on refluxing for 30 min. (43).]
- ---- N-(sec.-Butyl)-N-(p-bromobenzenesulfonyl)-p-anisidide: unreported.
- —— p-(sec.-Butoxy)benzoic acid: m.p. 121-123° u.c. (44). [From C (?) or from sec.-BuBr with ethyl p-hydroxybenzoate (1:1534) in abs. alc. NaOEt on refluxing 1 hr. (44).] [Note, however, that this prod. does not distinguish C from the corresp. deriv. of n-amyl chloride (3:7460) whose m.p. is 123-124° u.c. (44).]
- --- sec.-Butyl 2,4,6-triiodophenyl ether: unreported.
- —— sec.-Butyl \( \alpha\)-naphthyl ether: b.p. 293.5° cor. (45). (Corresp. picrate, m.p. 100.5-101.0° cor.; Neut. Eq. calcd. 429, found 427 (45).)

1.40047 (6)

- sec.-Butyl β-naphthyl ether: b.p. 298.5° cor. (45), 298° (46). (Corresp. picrate, m.p. 86.0-86.5° cor. (45); 85° (46); Neut. Eq., calcd. 429, found 429 (46).)

3:7125 (1) Timmermans, Martin, J. chim. phys. 25, 424-425 (1927). (2) Roland, Bull. soc. chim. Belg. 37, 122 (1928). (3) Wiswall, Smyth, J. Chem. Phys. 9, 357 (1941). (4) Weston, Hass, J. Am. Chem. Soc. 54, 3337-3343 (1932). (5) Vogel, J. Chem. Soc. 1943, 638-639. (6) Norris, Green, Am. Chem. J. 26, 307-308 (1901). (7) Coffin, Sutherland, Mass, Can. J. Research 2. 267-278 (1930); Cent. 1930, II 2250; C.A. 24, 3750 (1930). (8) Dadieu, Pongratz, Kohlrausch, Monatsh. 61, 416 (1932). (9) Estreicher, Ber. 33, 438-441 (1900). (10) Timmermans, Bull. soc. chim. Belg. 36, 504 (1927).

 (11) Wendell, Am. Chem. J. 26, 318 (1901).
 (12) Norris, Am. Chem. J. 38, 641-642 (1907).
 (13) Copenhaver, Whaley, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 143, espec. Note 6 (1941). (14) Whaley, Copenhaver, J. Am. Chem. Soc. 60, 2497-2498 (1938). (15) Clark, Streight, Trans. Roy. Soc. Can. (3) 23, III 77-89 (1929). (16) Norus, Org. Syntheses, Coll. Vol. 1 (1st ed.), 137-138 (1932); 5, 28, Note 5 (1925). (17) Norris, Taylor, J. Am. Chem. Soc. 46, 756 (1924). (18) A. Wacker Soc. Elektrochem. Ind., French 687,855, Aug. 14, 1930; Cent. 1930, II 3637; C.A. 25, 709 (1931). (19) Coffin, Mass, Can. J. Research 3, 526-539 (1930); Cent. 1931, I 2430; C.A. 25, 1146-1147 (1931). (20) Strange, Kane, Brit. 500,880, March 16, 1939; Cent. 1939, II 226; C.A. 33, 5867 (1939).

(21) Kane (to Strange), U.S. 2,119,167, May 31, 1938; C.A. 32, 5413, Brit. 414,766, Sept. 6, 1934; French 769,103, Aug. 20, 1934; Cent. 1935, I 1934. (22) Winkler, Ger. 574,802, March 30, 1933; Cent. 1933, I 3497. (23) Hass, McBee, Weber, Ind. Eng. Chem. 27, 1190-1195 (1935). (24) Whitmore, Langlois, J. Am. Chem. Soc. 54, 3441-3447 (1932). (25) Ssolonina, J. Russ. Phys.-Chem. Soc. 30, 431-449 (1898); Cent. 1898, II 888. (26) Wright, Schaffer, Am. J. Hyg. 16, 325-428 (1932); Cent. 1932, II 3119; J. Parasitol. 16, 107-108 (1929); C.A. 26, 4869 (1932). (27) Hass, Weston (to Purdue Research Foundation), U.S. 1,975,456, Oct. 2, 1934; Cent. 1835, II 2880; C.A. 28, 7260 (1934). (28) Rust, Vaughan, J. Org. Chem. 6, 479-488 (1941). (29)
 Tishchenko, Churbakov, J. Gen. Chem. (U.S.S.R.) 7, 663-666 (1937); Cent. 1937, II 372; C.A. 31, 5754 (1937). (30) Conant, Hussey, J. Am. Chem. Soc. 47, 485 (1925).

(31) Boedtker, Bull. soc. chim. (4) 45, 649 (1929). (32) Diuguid, J. Am. Chem. Soc. 63, 3527-3528 (1941). (33) U.S Industrial Alc. Co., French 811,832, April 23, 1937; Cent. 1937, II 1267; C.A. 32. 593 (1938). (34) Whitmore, Badertscher, J. Am. Chem. Soc. 55, 4159 (1933). (35) Gilman, Kirby, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 361-364 (1941); (1st ed.), 353-356 (1932). (36) Bartlett, Stauffer, J. Am. Chem. Soc. 57, 2582 (1935).
 (37) Verkade, Rec. trav. chem. 36, 204 (1916).
 (38) Schwartz, Johnson, J. Am. Chem. Soc. 53, 1063-1067 (1931).
 (39) Underwood, Gale, J. Am. Chem. Soc. 56, 2117-2120 (1934). (40) Marvel, Calvery, J. Am. Chem. Soc. **45**, 821 (1923).

(41) Brown, Campbell, J. Chem. Soc. 1937, 1699-1700. (42) Mumm, Richter. Ber. 73, 855 (1940). (43) Merritt, Levey, Cutter, J. Am. Chem. Soc. 61, 15-16 (1939). (44) Lauer, Sanders, Leekley, Ungnade, J. Am. Chem. Soc. 61, 3050 (1939). (45) V. H. Dermer, O. C. Dermer, J. Org. Chem. 3, 290-291 (1938/39). (46) Wang, J. Chinese Chem. Soc. 1, 61-62 (1933).

```
3:7135 1-CHLORO-2-METHYLPROPANE
                                                               CH<sub>3</sub>
                                                                          C<sub>4</sub>H<sub>9</sub>Cl
                                                                                           Beil. I - 124
                                                      CH<sub>3</sub>—CH—CH<sub>2</sub>
            (Isobutyl chloride;
                                                                                                 I_{1}-(40)
            isopropylcarbinyl chloride)
                                                                                                 I_{2}-(87)
                                             M.P.
  B.P.
                  at 760 mm. (1) (2) -130.3° (6) (7)
                                                                      D_4^{25} = 0.87177 (1)

D_4^{20} = 0.8810 (5)
                                             -131.2° (1) (2)
  68.8-69.2° at 769.2 mm. (3)
                                                                               0.87733 (1)
  68.5° cor.
                                   (4)
                                                                      D_4^{15} = 0.88290 (1)
  68.5° cor. at 756 mm. (5)
  68.2°
                                   (6) (7) (8)
                                                                                   n_{\rm D}^{25} = 1.39576 (1) n_{\rm D}^{20} = 1.39841 (5)
                                                                                           1.39836 (1)
                                                                                           1.3983
                                                                                                        (8)
                                                                                   n_{\rm D}^{16} = 1.40096 (1)
```

Colorless liquid. — Very spar. sol. aq.; 100 ml. aq. at 12.5° dis. 0.092 g. Č (9).

 $\bar{\mathbf{C}}$  forms with aq. a const.-boilg. mixt. (consts. not reported {10}) (use in sepn. from ter-butyl alc. (1:6140) {10};  $\bar{\mathbf{C}}$  also forms binary azeotropes with many org. compounds; e.g.,  $\bar{\mathbf{C}}$  with EtOH (1:6130) forms a const.-boilg. mixt., b.p. 61.45° at 760 mm., contg. 72 mole %  $\bar{\mathbf{C}}$  (11);  $\bar{\mathbf{C}}$  with propanol-1 (1:6150) forms a const.-boilg. mixt., b.p. 67.7° at 760 mm., contg. 78 wt. %  $\bar{\mathbf{C}}$  (12);  $\bar{\mathbf{C}}$  with propanol-2 (1:6135) forms a const.-boilg. mixt., b.p. 64.8° at 760 mm., contg. 83 wt. %  $\bar{\mathbf{C}}$  (13);  $\bar{\mathbf{C}}$  with ter-butyl alc. (1:6140) forms a const.-boilg. mixt., b.p. 65.5° at 760 mm., contg. 83 wt. %  $\bar{\mathbf{C}}$  (14);  $\bar{\mathbf{C}}$  with allyl alc. (1:6145) forms a const.-boilg. mixt., b.p. 67.2° at 760 mm., contg. 93 wt. %  $\bar{\mathbf{C}}$  (14);  $\bar{\mathbf{C}}$  with EtOH (1:6130) + aq. forms a ternary const.-boilg. mixt., b.p. 58.62° at 760 mm. (2 phases), contg. 62.6 mole %  $\bar{\mathbf{C}}$  + 19.8 mole %  $\bar{\mathbf{E}}$  EtOH + 17.6 mole % aq. (11).

[For prepn. of  $\tilde{C}$  from isobutyl alc. (1:6165) with dry HCl gas in s.t. at 120° for 8 hrs. (3) cf. (23) (gives 94% yield of a mixt. of  $\tilde{C}$  + ter-butyl chloride (3:7045) from which latter can be removed by 5-hr. shaking with 10% aq. KOH (3)) cf. (22); with dry HCl gas at 100° for 10 hrs. (4) or in pres. of pyridine (15) or CdO, ZnCl<sub>2</sub> or other cat. (16); or over Al<sub>2</sub>O<sub>3</sub> at 420° (ter-butyl chloride is also formed (17)); with conc. aq. HCl + ZnCl<sub>2</sub> refluxed 1 hr. (15% yield (18) (19)); with PCl<sub>3</sub> + ZnCl<sub>2</sub> (yields: 85% (20), 80% (18), 32% (21)) (note that some ter-butyl chloride is formed (21)); with PCl<sub>5</sub> (24) or PCl<sub>5</sub> + ZnCl<sub>2</sub> (76% yield (18)); or with SOCl<sub>2</sub> + pyridine (88% yield (18)) (5), SOCl<sub>2</sub> + dimethylaniline (70% yield (18)), SOCl<sub>2</sub> + diethylaniline (58% yield (18)) (note that use of aniline gives only 19% yield (18)) see indic. refs.]

[For formn. of  $\bar{C}$  from 2-methylpropane (isobutane) with  $Cl_2 + cat$ . at 180° (60% yield (25) together with other prods.) (26) see indic. refs.; for formn. of  $\bar{C}$  from isobutylene by cat. addn. of HCl (note "abnormal" addition) see (27).]

[For formn. of  $\bar{C}$  from isobutylamine with NOCl in xylene at  $-15^{\circ}$  (28) or with aqua regia (29) see indic. refs.; from *n*-butyl acetate (1:3145) by pyrolysis with AlCl<sub>3</sub> see (30).]

[For sepn. of  $\bar{C}$  from ter-butyl chloride (3:7045) by hydrol. of latter with aq. alk. and extraction of the resultant ter-butyl alc. with aq. see (10) (3); for sepn. of  $\bar{C}$  from more reactive alkyl chlorides (such as ter-butyl chloride (3:7045), methallyl chloride (3:7145), etc.) by esterification of the reactive chlorides by htg. at 125-225° under press. in pres. of Cu with alkali salt of a suitable acid, followed by fractional distn., see (47).]

[C on suitable htg. dec. into isobutylene and HCl; if the process is so conducted that these prods. can react at lower temp. they combine to yield ter-butyl chloride (3:7045): e.g.,  $\bar{C}$  passed over pumice at 500° (31), or over clay at 250–300° (32), or over BaCl<sub>2</sub>, ThCl<sub>4</sub>, ThO<sub>2</sub>, kaolin, etc., at 300° (33) (34) (35) (36), or with H<sub>2</sub> over reduced Ni at 270° (35) (36) yields isobutylene + HCl; for execution of this process so as to permit recombination to ter-butyl chloride (3:7045) see (37). — Note that  $\bar{C}$  on htg. in s.t. at 306° for 6 hrs. gives (3) 8% ter-butyl chloride; for study of the equilibrium in the system  $\bar{C}$  + ter-butyl chloride + HCl over range 88–237° see (38).]

[ $\bar{C}$  with Cl<sub>2</sub> yields (39) (26) 1,3-dichloro-2-methylpropane (3:7960) and other prods. —  $\bar{C}$  with Br<sub>2</sub> (1 mole) in pres. of Fe in s.t. at 100° for 6 hrs. gives (40) 1,2-dibromo-2-methyl propane (isobutylene dibromide), b.p. 148° (40).]

[C with aq. soln. or susp. of inorg. bases under press. at 120-350° yields (41) a mixt. contg. isobutyl alc. (1:6165), ter-butyl alc. (1:6140), and isobutylene. — For study of rate of hydrolysis of C in 50% alc. in pres. and abs. of dil. H<sub>2</sub>SO<sub>4</sub> see (42). — In connection with hydrolysis of C to isobutyl alc. note that these two form no azeotrope (1).]

[ $\overline{C}$  with Na in liq. NH<sub>3</sub> gives 2-methylpropane (isobutane) (43); but  $\overline{C}$  with NaNH<sub>2</sub> in liq. NH<sub>3</sub> gives isobutylene (43).]

[ $\bar{C}$  with  $C_6H_6+AlCl_3$  gives exclusively (44) (45) (46) (21) ter-butylbenzene (1:7460).]  $\bar{C}$  with Mg in dry ether in pres. of trace of MeI as cat. gives in 8 hrs. (98.9% yield (48))

- corresp. isobutyl MgCl; the ethereal soln. of this RMgCl undergoes the usual reactns. (see also below).
  - ① Isovaleric acid (1:1050) q.v. [From isobutyl MgCl with CO<sub>2</sub> followed by dil. non-volatile acid and subsequent distn. (49) (yield not reported).]
  - ① Isovaleranilide: m.p. 109-110° u.c. (50). [From isobutyl MgCl (above) with phenyl isocyanate in dry ether (50).] [Note that this derivative does *not* distinguish Ĉ from isoamyl chloride (3:7365) or 2-chlorobutane (3:7125) q.v.]

  - —— Isobutyl mercuric chloride: unreported.
  - —— S-(Isobutyl)isothiourea picrate: m.p. 174°(51). [This prod. has been reported from isobutyl bromide (or iodide) (but not from C) by htg. with thiourea in alc. for 2 min., followed by addn. of alc. PkOH (51).]
  - ---- N-(Isobutyl)phthalimide (1-(N-phthalimido)-2-methylpropane): lfts. from CS<sub>2</sub>, m.p. 93° (53). [This prod. has been reported from isobutyl bromide with K phthalimide on htg. in s.t. at 210° for 3-4 hrs. (53).]
  - ---- N-(Isobutyl)-3-nitrophthalimide: unreported.
  - --- N-(Isobutyl)tetrachlorophthalimide: unreported.
  - —— N-(Isobutyl)-N-(p-bromobenzenesulfonyl)-p-anisidide: cryst. from 75% alc., m.p. 78-79° (57). [From C (?) or the corresp. isobutyl bromide with N-(p-bromobenzenesulfonyl)-p-anisidine in alc. KOH after 1 hr. refluxing (57).]
  - —— N-(Isobutyl)-o-sulfobenzoic imide (N-(isobutyl)saccharin: m.p. 75.0° (55). [Not reported from C, but obtd. from isobutyl bromide or iodide with sodium saccharin in aq. butylcarbitol (1:6517) on refluxing 30 min. (55).]
  - p-(Isobutoxy)benzoic acid: m.p. 140-141° u.c. (56). [From  $\bar{C}$  with ethyl p-hydroxybenzoate (1:1534) in abs. alc. NaOEt on refluxing 1 hr. (56).] [Note, however, that this prod. does not distinguish  $\bar{C}$  from isoamyl chloride (3:7365) for which the corresp. p-(isoamoxy)benzoic acid has m.p. 141-142° (56).]
  - —— Isobutyl 2,4,6-tri-iodophenyl ether: m.p. 48.0° cor. (52). [This prod. has been obt. from isobutyl bromide (but not Č) with 2,4,6-tri-iodophenol in alc. NaOEt (52).] [Note that it would not distinguish Č from 1-chloropentane (3:7460) or 1-chlorohexane (3:7955).]
  - —— Isobutyl α-naphthyl ether: b.p. 301.5° cor. (54). (Corresp. picrate, m.p. 104.5–105.5° cor. (54).)
  - Isobutyl β-naphthyl ether: b.p. 204.5° cor. (54), m.p. 33.0-33.5° cor. (54). (Corresp. picrate, m.p. 84.0-85.0° cor. (54).)
- 3:7135 (1) Timmermans, Martin, J. chim. phys. 23, 778-779 (1926). (2) Timmermans, Bull. soc. chim. Belg. 27, 334-343 (1913); Cent. 1914, I 618. (3) Michael, Zeidler, Ann. 393, 110-111 (1912). (4) Linnemann, Ann. 162, 16-17 (1872). (5) Vogel, J. Chem. Soc. 1943, 638-639. (6) Turkevich, Smyth, J. Am. Chem. Soc. 64, 737 (1942). (7) Turkevich, Smyth, J. Am. Chem. Soc. 62, 247 (1940). (8) Wiswall, Smyth, J. Chem. Phys. 9, 357 (1941). (9) Fühner, Ber. 57, 514 (1924). (10) Britton, Coleman, Warren (to Dow Chem. Co.), U.S. 1,984,725, Dec. 18, 1934; Cent. 1935, I 3199.
- (11) Lecat, "L'azeotropisme," Brussels, 1918. (12) Lecat, Rec. trav. chim. 45, 624 (1926). (13) Lecat, Rec. trav. chim. 46, 242 (1927). (14) Lecat, Ann. soc. sci. Bruzelles 47, I 152, 155 (1927). (15) Haack (to Chem. Fabrik von Heyden), Ger. 624,693, Jan. 30, 1936; Cent. 1936,

I 3575; C.A. 30, 4876 (1936). (16) Ricard, Allenet et Cie, Brit. 191,002, Feb. 14, 1923; French 545,290, Oct. 9, 1922; Ger. 430,682, June 30, 1926; Cent. 1923, II 907. (17) Sabatier, Mailhe, Compt. rend. 169, 124 (1919). (18) Clark, Streight, Trans. Roy. Soc. Can. (3) 23, III 77-89 (1929). (19) Norris, Taylor, J. Am. Chem. Soc. 46, 755-757 (1924). (20) Dehn, Davis, J. Am. Chem. Soc. 29, 1328-1334 (1907).

(21) Shoesmith, Mackie, J. Chem. Soc. 1928, 2336. (22) Freund, J. prakt. Chem. (2) 12, 29-33 (1875). (23) Mouneyrat, Ann. chim. (7) 20, 530 (1900). (24) Pierre, Puchot, Ann. 163, 275-278 (1872). (25) Britton, Coleman, Hadler (to Dow Chem. Co.), U.S. 1,954,438, April 10, 1934; Cent. 1934, II 3180, C.A. 28, 3739 (1934); U.S. 2,018,345, Nov. 22, 1935; Cent. 1936, I 3907; C.A. 30, 106 (1936). (26) Hass, McBee, Weber, Ind. Eng. Chem. 27, 1190-1195 (1935). (27) Britton, Rouseh (to Dow Chem. Co.), U.S. 2,069,624, Feb. 2, 1937, Cent. 1937, I 5045. (28) Ssolonina, J. Russ. Phys.-Chem. Soc. 30, 431-449 (1898); Cent. 1898, II 887. (29) Ssolonina, J. Russ. Phys.-Chem. Soc. 30, 822-825 (1898); Cent. 1899, I 254. (30) Gault, Beloff, Bull. soc. chim. (5) 5, 295-300 (1938).

(31) Nef. Ann. 318, 21-23 (1901). (32) Senderens, Bull. soc. chim. (4) 3, 827-828 (1908); Compt. rend. 146, 1213 (1908). (33) Sabatier, Mailhe, Compt. rend. 141, 238 (1905). (34) Senderens, Compt. rend. 200, 612-615 (1935). (35) Mailhe, Compt. rend. 200, 612-615 (1935). (35) Mailhe, Compt. rend. 156, 658 (1913); 138, 407 (1904). (37) Nutting, Britton, Huscher, Petrie (to Dow Chem. Co.), U.S. 1,993,719, March 5, 1935; Cent. 1935, II 2879-2880, C.A. 29, 2549 (1935). (38) Kistiakowsky, Stauffer, J. Am. Chem. Soc. 59, 165-170 (1937). (39) Hass, McBee (to Purdue Research Foundation), U.S. 2,147,577, Feb. 14, 1939; Cent. 1939, II 226; Can. 378,829, Jan. 10, 1939; Cent. 1939, I 3454; C.A. 33, 2151 (1939). (40) Herzfelder, Ber. 26, 1260 (1893).

(41) Britton, Coleman, Moore (to Dow Chem. Co), U.S. 2,067,473, Jan. 12, 1937; Cent. 1937, II 1894, C.A. 31, 1432 (1937). (42) Olivier, Berger, Rec. trav. chim. 41, 640 (1921). (43) Chablay, Ann. chim. (9) 1, 484, 496 (1914). (44) Kolowalow, J. Russ. Phys.-Chem. Soc. 27, 457 (1895); Bull. soc. chim. (3) 16, 865 (1896). (45) Boedtker, Bull soc. chim. (3) 31, 966-968 (1904). (46) Schramm, Monatsh. 9, 615-618 (1888). (47) Coleman, Moore (to Dow Chem. Co.), U.S. 2,207,611, July 9, 1940, C.A. 34, 7934 (1940). (48) Houben, Boedler, Fischer, Ber. 69, 1781 (1936). (49) Fournier, Bull. soc. chim. (4) 5, 924 (1909). (50) Underwood, Gale, J. Am. Chem. Soc. 56, 2117-2120 (1934).

(51) Brown, Campbell, J. Chem. Soc. 1937, 1700.
(52) Drew, Sturtevant, J. Am. Chem. Soc. 61, 2666 (1939).
(53) Neumann, Ber. 23, 999 (1890).
(54) V. H. Dermer, O. C. Dermer, J. Org. Chem. 3, 290-291 (1938/39).
(55) Merritt, Levey, Cutter, J. Am. Chem. Soc. 61, 15-16 (1939).
(56) Lauer, Sanders, Leekley, Ungnade, J. Am. Chem. Soc. 61, 3050 (1939).
(57) Gillespie, J. Am. Chem. Soc. 56, 2740-2741 (1934).

| B.P.         |                | F.P.           |                             |     |
|--------------|----------------|----------------|-----------------------------|-----|
| 70.5°        | at 760 mm. (1) | -34.6° (8) (9) | $D_4^{25} = 1.084591 \ (1)$ |     |
| 69.8°        | (2)            | -34.4° (1)     | $D_4^{20} = 1.09151  (1)$   |     |
| 69.7°        | (3)            | -33.8° (5)     |                             |     |
| 69.69° cor.  | at 760 mm. (4) |                | $n_{\rm D}^{20} = 1.41167$  | (1) |
| 69.3°        | (5)            |                |                             |     |
| 68.9-69.3°   | (5a)           |                | $D_4^{15} = 1.09843  (1)$   |     |
| 68.86-69.06° | (6)            |                |                             |     |
| 68.85-68.87° | at 746 mm. (7) |                | •                           |     |

Č with MeOH (b.p. 64.7°) forms a const.-boilg. mixt., b.p. 55.5°, contg. 79% Č; Č with EtOH (b.p. 78.3°) forms a const.-boilg. mixt., b.p. 63.2°, contg. 85.5% Č (2).

[For f.p./compn. data on mixts. of  $\bar{C}$  with methylene (di)chloride (3:5020), with 1,1-dichloroethane (ethylidene (di)chloride) (3:5035), with CCl<sub>4</sub> (3:5100), or with 1,1,1-trichloroethane (methylchloroform) (3:5085) see (8).]

[For prepn. of  $\tilde{C}$  from acetone (1:5400) with PCl<sub>5</sub> [55% yield (10) (together with 45%

2-chloropropene-1 (3:7020)) (10)] see (10) (5) (11) (12); for formn. (25.5% (13)) (together with other products) from propane by vapor-phase chlorination at 400° see (13) (14).]

 $\ddot{\mathbf{C}}$  on hydrolysis by htg. with 8 vols. aq. in s.t. at 160–180° (4), or with HI at 130° (4), or on passing with steam over cat. at 550–850° (15) yields acetone (1:5400). [For behavior of  $\ddot{\mathbf{C}}$  with boilg. aq. + trace of NaHCO<sub>3</sub> or with boilg. aq. + Fe see (13).]

Č with alc. KOH yields (12) (13) (16) (17) 2-chloropropene-1 (3:7020), b.p. 22.3° [Č with excess alc. KOH yields (18) propyne-1 (allylene), b.p. -27.5°].

Č with H<sub>2</sub> over Ni at 300° (19) or over BaCl<sub>2</sub> at 380-400° [Beil. I<sub>2</sub>-(73)] gives 2-chloro-propene-1 (3:7020), b.p. 22.5°.

3:7149 (1) Timmermans, Delcourt, J. chim. phys. 31, 91-92 (1934). (2) Lecat, Rec. trav. chim. 46, 242 (1927). (3) Hass, McBee, Weber, Ind. Eng. Chem. 28, 338 (1936). (4) Linnemann, Ann. 161, 67 (1872). (5) Turkevich, Smyth, J. Am. Chem. Soc. 62, 2469 (1940). (5a) Kohlrausch, Köppl, Monatsh. 65, 196 (1935). (6) Gross, Physik. Z. 32, 589 (1931). (7) Maryott, Hobbs, Gross, J. Am. Chem. Soc. 63, 660 (1941). (8) van de Vloed, Bull. soc. chim. Belg. 48, 260, 262 (1939). (9) Timmermans, Bull. soc. chim. Belg. 25, 300-327 (1911); Cent. 1911, II 1015. (10) Henne, Renoll, J. Am. Chem. Soc. 59, 2435 (1937).

(11) Friedel, Ladenburg, Ann. 142, 315-316 (1867). (12) Friedel, Ann. 112, 236 (1859). (13) McBee, Hass, Chao, Welch, Thomas, Ind. Eng. Chem. 33, 176-177 (1941). (14) Hass, McBee (to Purdue Research Foundation), U.S. 2,004,073, June 4, 1935, Cent. 1936, I 1500. (15) Lloyd, Kennedy, U.S. 1,849,844, March 15, 1932; Cent. 1932, I 2994. (16) Kahover, Kohlrausch, Z. physik. Chem. B-46, 178 (1940). (17) West, Farnsworth, Trans. Faraday Soc. 27, 147 (1931). (18) Friedel, Ann. 134, 262-264 (1865). (19) Mailhe, Bull. soc. chim. (4) 29, 538 (1921).

3:7145 3-CHLORO-2-METHYLPROPENE-1 CH<sub>3</sub> C<sub>4</sub>H<sub>7</sub>Cl Beil. I - 209 (Methallyl chloride; isobutenyl chloride; CH<sub>2</sub>—CH<sub>2</sub> I<sub>1</sub>— I<sub>2</sub>— 
$$\beta$$
-methylallyl chloride;  $\gamma$ -chloroisobutylene)

B.P. 
$$[73.74^{\circ}]$$
 (1)]  $D_{4}^{20} = 0.9475 \ (7)$   $n_{D}^{20} = 1.4340 \ (7)$   $71-74^{\circ}]$  (2)  $72.2^{\circ}]$  (3) (8)  $71.5-72.5^{\circ}]$  (4) (5)  $70-71^{\circ}$  (6) at 739 mm. (7)

[See also 1-chloro-2-methylpropene-1 (3:7120).]

Note that for  $\bar{C}$  the designation methallyl chloride is now preferred (3); great care should be used to avoid confusion of  $\bar{C}$  with the isomeric and very closely related 1-chloro-2-methyl-propene-1 = isocrotyl chloride =  $\beta$ , $\beta$ -dimethylvinyl chloride =  $\alpha$ -chloroisobutylene (3:7120); both these compounds are now commercial products in the U.S.A.

Commercial  $\bar{C}$  contains approx. 4% (10) of the isomeric  $\beta,\beta$ -dimethylvinyl chloride (3:7120); owing to the proximity of their boiling points the two isomers are extremely difficult to separate by distillation (8), but owing to the great reactivity of the halogen of  $\bar{C}$  (see amplification below) and the relative unreactivity of the halogen of  $\beta,\beta$ -dimethylvinyl chloride (3:7120) interference from the latter in *metathetical* reactions of comml.  $\bar{C}$  need not be expected.

[For prepn. of  $\bar{C}$  from 2-methylpropene-1 (isobutylene) with  $Cl_2$  see (3) (2) (5) (9) (other prods. are also formed); for formn. of  $\bar{C}$  as its equilibrium mixt. (10%  $\bar{C}$ ) with  $\beta,\beta$ -dimethylvinyl chloride (3:7120) by actn. of  $H_2SO_4$  on latter see (8).]

[For use of  $\tilde{C}$  as insecticide see (11) (12); for toxicity studies on beetles see (13); for detn. of  $\tilde{C}$  (when used as industrial furnigant) by reaction with ethanolamine in dioxane

. (14) or by thermal decomposition (15) see indic. refs.; for use of  $\bar{\mathbf{C}}$  in prepn. of cellulose ethers see (16) (17).]

Reactions involving further substitution of H atoms in  $\bar{C}$ . [ $\bar{C}$  with  $Cl_2$  at room temp. (8) cf. (5) (9) or in pres. of NaHCO<sub>3</sub> soln. at 0° (2) gives (70% yield (8)) a mixt. of approximately equal amounts of 1,3-dichloro-2-methylpropene-1 (3:5590) and 1-chloro-2-(chloromethyl)propene-2 (3:5633) (see also next paragraph).]

Reactions involving the double bond of C. [C with Cl<sub>2</sub> (5) (42) or with SO<sub>2</sub>Cl<sub>2</sub> (42) also (see above) adds halogen to the unsaturated linkage yielding (5) (42) 1,2,3-trichloro-2-methylpropane (3:5710), b.p. 163.5-164° at 772 mm. (5).]

[Č with Br<sub>2</sub>, however, gives chiefly (93% yield (8)) cf. (5) (9) the expected addition prod., 1-chloro-2,3-dibromo-2-methylpropane [Beil. I-128], b.p. 57° at 5 mm.,  $D_4^{20} = 1.9168$ ,  $n_D^{20} = 1.5834$  (8).]

[ $\bar{C}$  adds HCl with considerable difficulty; e.g.,  $\bar{C}$  with equal vol. 12 N HCl at 3°, or  $\bar{C}$  at b.p. treated with HCl gas for 2 hrs., shows no reaction (3); however,  $\bar{C}$  with equal vol. 12 N HCl shaken for  $1\frac{1}{2}$  hrs. at 63° forms 30% of the expected 1,2-dichloro-2-methyl-propane (3:7430). —  $\bar{C}$  with dry HBr gas readily reacts giving (97% yield (8)) 1-chloro-3-bromo-2-methylpropane, b.p. 49° at 15 mm.,  $D_4^{20} = 1.4839$ ,  $n_D^{20} = 1.4816$  (8) (note that this "abnormal" mode of addition of HBr is presumably attributable to the presence in  $\bar{C}$  of peroxidic material (8)).]

[ $\ddot{\mathbf{C}}$  with aq. HOCl below 5° (1) (7) cf. (8), or  $\ddot{\mathbf{C}}$  with Cl<sub>2</sub>/aq. (8) (18) or even org. hypochlorites (18), gives by addn. of HOCl to unsatd. linkage 1,3-dichloro-2-methylpropanol-2 (3:5977). —  $\ddot{\mathbf{C}}$  with aq. HOBr (from Br<sub>2</sub>/KBr in aq.) at room temp. for 4 hrs. gives 97.5% yield (1)) 1-bromo-3-chloro-2-methylpropanol-2, b.p. 84-85° at 20 mm.,  $D_{20}^{20}=1.7578$ ,  $n_{20}^{20}=1.5171$  (1). —  $\ddot{\mathbf{C}}$  in ether with aq. HgO + I<sub>2</sub> (HOI) at room temp. for 5-6 hrs. gives (15% yield (1)) 3-chloro-1-iodo-2-methylpropanol-2, b.p. 101-103° at 18 mm.,  $n_{20}^{20}=1.547$  (1).]

[ $\bar{\mathbf{C}}$  can also add hypochlorite esters; e.g.,  $\bar{\mathbf{C}}$  with ter-BuOCl (3:7165) in MeOH + trace p-toluenesulfonic acid at 40° for 3-4 hrs. gives (35% yield (6))  $\beta$ , $\beta$ -dichloro-ter-butyl methyl ether (1,3-dichloro-2-methoxy-2-methylpropane), b.p. 170° at 748 mm.,  $D_{-}^{20} = 1.1953$ ,  $n_{D}^{20} = 1.4595$  (6).]

[ $\bar{C}$  can also undergo cat. hydration of the double bond; e.g.,  $\bar{C}$ , although but slightly sol. in 80% H<sub>2</sub>SO<sub>4</sub> at 0°, grad. dissolves on stirring; and after the solution is poured onto ice and the liquid distilled (8) (19) 63% of the original  $\bar{C}$  can be recovered as  $\beta$ -chloro-terbutyl alcohol (isobutylene chlorohydrin) (1-chloro-2-methylpropanol-2) (3:7752). Note that other acids can also be used for this hydration, e.g., 85% H<sub>3</sub>PO<sub>4</sub>, 70% HNO<sub>3</sub>, 60% HClO<sub>4</sub>, benzenesulfonic acid, etc., each having its own optimum conditions (8). Note also that in this reaction some 32% of the initial  $\bar{C}$  is not hydrated but is partially isomerized to a mixt. contg. 10%  $\bar{C}$  with 90%  $\beta$ , $\beta$ -dimethylvinyl chloride (3:7120) (see also below) (8).]

[ $\ddot{\mathbf{C}}$  can also be rearranged to the isomeric isocrotyl chloride; e.g.,  $\ddot{\mathbf{C}}$  (10 moles) with 80% H<sub>2</sub>SO<sub>4</sub> (1 mole) stirred at 40° for 2½ hrs. gives an upper phase which conts. abt. 87% isocrotyl chloride + 7%  $\ddot{\mathbf{C}}$  + 6% dichlorides and polymers; after washing free from acid, drying, and distilling it yields 85%  $\beta$ , $\beta$ -dimethylvinyl chloride (3:7120) (8) (20).]

[C on sulfonation with dioxane sulfotrioxide in ethylene dichloride gives (21) a complex mixt. of prods.; about 40% of the SO<sub>3</sub> adds to the unsatd. linkage giving a cyclic anhydride of the carbyl sulfate type, the remainder substituting to yield the three isomeric monosulfonic acids of C; neither polymerization nor disulfonation takes place; for details the original paper (21) should be consulted.]

[For polymerization of C in the pres. of peroxides see (22).]

[C condensed with C6H6 in pres. of anhydrous liq. HF at 0-10° for 20 hrs. as directed

(23) gives mainly (66% yield) 1-chloro-ter-butylbenzene (1-chloro-2-methyl-2-phenyl-propane), b.p. 111° at 90 mm., accompanied by a small amt. (10% yield) bis-(1-chloro-ter-butyl)benzene, b.p. 140° at 4 mm.]

Reactions involving the halogen atom of C. [C upon hydrolysis with boilg. aq. K2CO3 soln. for 30 hrs. (9) cf. (5) (4) (43) or C with 10% aq. NaOH at 116° under press. (reaction complete in 15 min.) (10) (24) yields the corresp. methallyl alcohol (2-methylpropen-2-ol-1). b.p.  $114.49^{\circ}$ ,  $D_4^{20} = 0.8515$ ,  $n_D^{20} = 1.4255$  (10); for important extensive survey of its reactions see (25). Note, however, that the nature of the material obtd. by hydrolysis of Č (because of the reactivity of the resultant methallyl alcohol) depends upon the precise conditions: e.g., if the reaction mixture becomes acid (either through inadequate mixing or lack of suitable neutralizer) isobutyraldehyde (1:0120) is formed (for instance, C with  $CaCO_3 + aq$ . at 140-180° under press. gives only isobutyraldehyde); if only temporary local regions of acidity develop and these subsequently become alkaline a complex mixt. (contg. isobutyric acid (1:1030), isobutyl alcohol (1:6165), and 2,2,4-trimethylpentanediol-1,3 [Beil. I-492, I<sub>2</sub>-(558)]) may result from the action of alk. on the isobutyraldehyde. — Note also that the principal by-product of the neut. or alk. hydrolysis of C (invariably formed to abt. 5%) is bis-(methallyl) ether, b.p. 134.34°,  $D_4^{20} = 0.8163$ ,  $n_D^{20} = 1.4276$ ; note that this cpd. forms with methallyl alc. a const.-boilg. mixt., b.p. 114.06° (almost identical with the b.p. of methallyl alc. itself), contg. 81.3 wt. % of bis-(methallyl) ether + 18.7 wt. % methallyl alc. (10) (for still other azeotropes in this system see (10).)]

[ $\bar{\mathbf{C}}$  with metal alkoxides or even  $\bar{\mathbf{C}}$  with alcohols + conc. aq. NaOH readily gives the corresp. ethers: e.g.,  $\bar{\mathbf{C}}$  with NaOEt (9) or alc. KOH (9) or EtOH + 50% aq. NaOH refluxed for 7 hrs. (10) (26) gives ethyl methallyl ether, b.p. 84.8-86.8°,  $D_4^{20}=0.8151$ ,  $n_D^{20}=1.4067$  (10);  $\bar{\mathbf{C}}$  (2 moles) with methallyl alc. (3 moles) + 50% aq. NaOH (4 moles) refluxed 2 hrs. gives (91.9% yield (10)) bis-(methallyl) ether (for consts. see preceding paragraph). (Note that this last ether cannot be prepd. by conventional bimolecular dehydration with acid because under such conditions only isobutyraldehyde results.) — Note that in reaction with alc. NaOEt  $\bar{\mathbf{C}}$  has about the same reactivity as allyl chloride (3:7035) at 35° but slightly less at 50°;  $\bar{\mathbf{C}}$ , however, is less reactive at 35° than crotyl chloride (1-chlorobutene-2) (3:7205), and the latter less than 1-chloro-2-methylbutene-2 (3:7485) (10). — For reactn. of  $\bar{\mathbf{C}}$  with phenol (1:1420) + dry  $\mathbf{K}_2\mathbf{CO}_3$  refluxed 24 hrs. in acetone and giving (72% yield (4)) corresp. methallyl phenyl ether, b.p. 89° at 10 mm., see (4).]

[ $\bar{C}$  with aq. or alc. NaSH (10) (27) or  $\bar{C}$  with aq. thiourea refluxed 2 hrs. then made alkaline (28) gives (68% yield (28)) methallyl mercaptan, b.p. 93.5° at 760 mm. (28), 92.4–92.6°,  $D_4^{20}=0.9137$ ,  $n_D^{20}=1.4872$  (10). —  $\bar{C}$  with Na<sub>2</sub>S.9H<sub>2</sub>O at 120° under press. (10) (27) yields bis-(methallyl) sulfide, b.p. 172.8–173.0°,  $D_4^{20}=0.8836$ ,  $n_D^{20}=1.4862$  (10);  $\bar{C}$  with Na<sub>2</sub>S<sub>2</sub> at 120° under press. (10) (27) yields bis-(methallyl) disulfide (no constagiven (10)) (both the sulfide and disulfide are valuable fly repellents and fumigants (29).) —  $\bar{C}$  with NaSCN (30) or NH<sub>4</sub>SCN (10) gives on refluxing 3–6 hrs. (yields: 94–95% (30), 70% (10)) methallyl isothiocyanate, b.p. 169–170° at 760 mm. (30), 89–90° at 50 mm. (30), 78° at 25 mm. (30), 64° at 10 mm. (30) (forms with aq. a const.-boilg. mixt., b.p. 96.3–97.5° (10)),  $D_4^{20}=0.9926$  (10),  $n_D^{20}=1.5220$  (10).]

[ $\ddot{\mathbf{C}}$  with NaBr in dry acetone refluxed for 5 hrs. gives (15-20% yield (10)) (27) methallyl bromide [Beil. I<sub>2</sub>-(182)], b.p. 94.2-95.2° at 774 mm.,  $D_4^{20}=1.31335$ ,  $n_D^{20}=1.46886$  (31). —  $\ddot{\mathbf{C}}$  with NaI in dry ethyl methyl ketone (1:5405) refluxed 3 hrs. gives (12% yield (10)) (27) methallyl iodide, b.p. 25-30° at 3-5 mm.,  $n_D^{20}=1.4862$  (10) (very unstable and may decompose violently even at room temp. on prolonged storage (10)); note that in this reactn.  $\ddot{\mathbf{C}}$  is more reactive than allyl chloride (3:7035) but somewhat less reactive than 1-chloro-2-methylbutene-2 (3:7485) and considerably less reactive than 1-chlorobutene-2 (crotyl chloride) (3:7205) (10).  $\rightarrow \ddot{\mathbf{C}}$  with CuCN in nitrobenzene at 125-130° for  $\frac{1}{2}$  hr.

gives (58% yield on CuCN (10)) (27) methallyl cyanide, b.p. 136.2-136.4°,  $D_4^{20} = 0.844$ ,  $n_{20}^{20} = 1.4202$  (10); note that use of NaCN gives a prod. of somewhat higher b.p., 138.0-139.5° (10), indicating pres. (by rearr.) of some  $\beta,\beta$ -dimethylacrylonitrile, b.p. 140-142°.]

[ $\bar{C}$  (1 mole) with conc. aq. NH<sub>4</sub>OH (10 moles) at 90° under press. reacts completely within 2 minutes giving (10) (32) mixt. of 56% methallylamine, b.p. 78.8°,  $D_4^{20} = 0.782$ ,  $n_D^{20} = 1.431$  (10) ( $\bar{B}$ .HCl, m.p. 190–191° cor. (41);  $\bar{B}$ .PkOH, m.p. 202–206° cor. (41)) + 26% di-(methallyl)amine, b.p. 148–149°,  $D_4^{20} = 0.799$ ,  $D_D^{20} = 1.446$  (10), + 8% tri-(methallyl)amine, b.p. 194–195° (32), 83–85° at 15 mm.,  $D_4^{20} = 0.8256$ ,  $D_D^{20} = 1.457$  (10), together with 5% tetra (methallyl)ammonium chloride;  $\bar{C}$  htd. with primary amines behaves in analogous fashion (10) (32).]

[C with Mg in dry other under very carefully regulated conditions (using large excess of Mg + ether and slow addn. of C) gives as high as 90% yield (10) corresp. methallyl MgCl; this with acetaldehyde (1:0100) gives (65% yield (10)) the expected secondary alc. 4-methylpenten-4-ol-2, b.p. 129° (10); similarly C with Mg + acetone (1:5400) in dry ether gives (59 mole % yield (10)) 2,4-dimethylpentene-4-ol-2, b.p. 126° (10) accompanied by (37 mole % yield (10)) of the coupling prod. di-methallyl (see next paragraph); note that this coupling reaction is very difficult to suppress.]

[ $\bar{C}$  with Mg in dry ether (10) (33), or with Na in dry ether (34), gives (yields: 90 mole % (10), 65% (33)) di-methallyl (2,5-dimethylhexadiene-1,5) [Beil. I-259, I<sub>1</sub>-(122), I<sub>2</sub>-(237)], b.p. 114.3° at 760 mm. (10) (33),  $D_2^{20}=0.7487$  (10), 0.7423 (33),  $n_D^{20}=1.4293$  (33). — Coupling of  $\bar{C}$  with other reactive alkenyl chlorides can also be effected: e.g.,  $\bar{C}$  with allyl chloride (3:7035) + Mg in dry ether gives (33) 47% yield 2-methylhexadiene-1,5 [Beil. I-257, I<sub>1</sub>-(120)], b.p. 88.1° at 760 mm.,  $D_D^{20}=0.7198$ ,  $n_D^{20}=1.4184$  (33), +30% di-methallyl (see above) + 12% hexadiene-1,5 (biallyl) (1:8045). — For analogous mixed couplings with 2-chloropentene-3 (piperylene hydrochloride) (3:7465) see (36).]

[ $\ddot{\mathbf{C}}$  with NaNH<sub>2</sub> in liq. NH<sub>3</sub> gives (27% yield (35)) 2,5-dimethylhexatriene-1,3,5, b.p. 145° at 747 mm., 90.2° at 200 mm., m.p.  $-9^{\circ}$ ,  $n_{\mathrm{D}}^{21}=1.5150$  (35); note that an intermediate x-chloro-2,5-dimethylhexadiene, b.p. 33-34° at 5 mm.,  $n_{\mathrm{D}}^{20}=1.4612$ , has been detected (35).]

[ $\bar{\mathbf{C}}$  reacts normally with other RMgX compounds: e.g.,  $\bar{\mathbf{C}}$  with MeMgBr in di-isopropyl ether (ord. ether boils too close to prod.) gives (10) 2-methylbutene-1 (1:8210);  $\bar{\mathbf{C}}$  with n-BuMgCl gives (83 mole % yield (10)) (33) 2-methylheptene-1, b.p. 119.3° at 760 mm.,  $D_4^{20} = 0.7206$ ,  $n_D^{20} = 1.4123$  (33) (contaminated with 2-methylheptene-2 formed by rearrof the former by the inevitable MgCl<sub>2</sub> (33));  $\bar{\mathbf{C}}$  with iso-AmMgCl gives (10) 2,6-dimethylheptene-1, b.p. 140-143° (10);  $\bar{\mathbf{C}}$  with  $C_6H_5$ MgBr gives (10) methallylbenzene (2-methyl-1-phenylpropene-1), b.p. 175-176° (10).]

[For reactn. of C with diethyl malonate (1:3581) and with various diethyl alkylmalonates see (37); for prepn. of methallyl substituted barbituric acids (37) (4) or thiobarbituric acids (38) see indic. refs.]

- Methallyl acetate [Beil. I-137, I<sub>2</sub>-(150)]: b.p. 124° at 760 mm.,  $D_{20}^{20} = 0.9239$ ,  $n_{D}^{20} = 1.4129$  (39). [From  $\bar{C}$  + KOAc at 150° in s.t. (5) (9) cf. (10).] [For data on the formate, propionate, and n-butyrate see (39).]
- Methallyl benzoate: yel. odorless oil, b.p. 120° at 50 mm. (40). [Prepd. indirectly (40).]
- ---- Methallyl p-nitrobenzoate: unreported.
- ---- Methallyl 3,5-dinitrobenzoate: unreported.
- M-(Methallyl)phthalimide: white cryst. from MeOH, m.p. 88.5-90° cor. (41). [From C + K phthalimide in s.t. at 150° for 3 hrs. (41).]

3:7145 (1) Hurd, Abernathy, J. Am. Chem. Soc. 63, 976-977 (1941). (2) D'yakonov, Tishchenko, J. Gen. Chem. (U.S.S.R.) 9, 1255-1264 (1939); C.A. 34, 710 (1940). (3) Burgin, Eng., Groll, Hearne, Ind. Eng. Chem. 31, 1413-1419 (1939). (4) Schales, Ber. 70, 116-121 1937). (5) Pogorshelski, J. Russ. Phys.-Chem. Soc. 36, 1129-1184 (1904); Cent. 1905, 1 667-668. (6) Emiling, Vogt, Hennion, J. Am. Chem. Soc. 63, 1624-1625 (1941). (7) Suter, Malkemus, J. Am. Chem. Soc. 63, 980 (1941). (8) Burgin, Hearne, Rust, Ind. Eng. Chem. 33, 385-388 (1941). (9) Sheshukov, J. Russ. Phys.-Chem. Soc. 16, 478-511 (1884); Ber. 17, Referate 412-415 (1884). (10) Tamele, Ott, Marple, Hearne, Ind. Eng. Chem. 33, 115-120 (1941).

(11) Hymas, Food 9, 254-257 (1940); C.A. 35, 4105 (1941). (12) Briejer, Nature 141, 1099-1100 (1938). (13) Richardson, Casanges, J. Econ. Entomol. 35, 664-668 (1942); C.A. 37, 687 (1943). (14) Winteringham, J. Soc. Chem. Ind. 61-T, 186-187 (1942); C.A. 37, 1951 (1943). (15) Winteringham, J. Soc. Chem. Ind. 61-T, 190-192 (1942); C.A. 37, 1951 (1943). (16) Hahn (to du Pont Co.), U.S. 2,082,787, June 8, 1937; Cent. 1937, II 3838. (17) Maxwell (to du Pont Co.), U.S. 2,134,086, Oct. 25, 1938; Cent. 1939, I 859. (18) Groll (to Shell Development Co.), U.S. 2,067,392, Jan. 12, 1937; C.A. 31, 1432 (1937), N. V. de Bataafsche Petroleum Matschappii, Brit. 435,096, Oct. 10, 1935; French 789,289, Oct. 25, 1935, Cent. 1936, II 865. (19) Groll, Burgin (to Shell Development Co.), U.S. 2,042,222, May 26, 1936; Cent. 1937, I 1546; C.A. 36, 4875 (1936); N. V. de Bataafsche Petroleum Matschappii, French 791,644, Dec. 14, 1935; Cent. 1936, II 2227. (20) Groll, Burgin (to Shell Development Co.), U.S. 2,042,223, May 26, 1936; Cent. 1937, I 1274; C.A. 36, 4875 (1936).

(21) Suter, Bordwell, J. Am. Chem. Soc. 65, 507-517 (1943). (22) Bauer, Götz (to Röhm & Haas Co.), Ger. 706,510, April 24, 1941; C.A. 36, 1952 (1942). (23) Calcott, Tinker, Weinmayr, J. Am. Chem. Soc. 61, 1012 (1939). (24) Tamele, Groll (to Shell Development Co.), U.S. 2,072,-015, 2,072,016, Feb. 23, 1937; Cent. 1937, II 472, C.A. 31, 2612 (1937); N. V. de Bataafsche Petroleum Maatschappij, French 764,207, May 17, 1934; Cent. 1935, I 3199. (25) Hearne, Tamele, Converse, Ind. Eng. Chem. 33, 805-809 (1941). (26) Groll, Ott (to Shell Development Co.), U.S. 2,042,219, May 26, 1936; Cent. 1937, I 1013; C.A. 30, 4871 (1936) (27) Groll, Ott (to Shell Development Co.), U.S. 2,042,219, May 26, 1936; Cent. 33, 102 (1934). (29) Williams (to Shell Development Co.), U.S. 2,043,941, June 9, 1936; C.A. 30, 5336 (1936): Can. 353,986, Nov. 5, 1935; C.A. 36,

1472 (1936). (30) Bruson, Eastes, J. Am. Chem. Soc. 59, 2012 (1937). (31) Merejkowsky, Bull. soc. chim. (4) 37, 711-713 (1925). (32) Tamele, Groll (to Shell Development Co.), U.S. 2,172,822, Sept. 12, 1939; Cent. 1939, II 4350; C.A. 34, 448 (1940). (33) Henne, Chanan, Turk, J. Am. Chem. Soc. 63, 3475 (1941). (34) Przybytek, Ber. 29, 3240-3241 (1887). (35) Kharasch, Nudenberg, Sternfeld, J. Am. Chem. Soc. 62, 2035 (1940). (36) Henne, Gilman, J. Am. Chem. Soc. 66, 392-394 (1944). (37) Doran, Shonle, J. Am. Chem. Soc. 59, 1625-1626 (1937). (38) Tabern, Volweiler, J. Am. Chem. Soc. 57, 1961-1963 (1935). (39) Ryan, Shaw, J. Am. Chem. Soc. 62, 3469 (1940). (40) Kleinfeller, Ber. 62, 1597 (1929).

(41) Adams, Cairns, J. Am. Chem. Soc. 61, 2466 (1939). (42) Mooradian, Cloke, J. Am. Chem. Soc. 68, 787 (1946). (43) Köhler (to Rohm & Haas Co.) U.S. 2,323,781, July 6, 1943; C.A. 38, 116 (1944).

3:7150 
$$\alpha$$
-CHLOROETHYL METHYL ETHER H C<sub>3</sub>H<sub>7</sub>OCl Beil. I - 606 ( $\alpha$ -Methoxyethyl chloride) CH<sub>3</sub>.C.O.CH<sub>3</sub> I<sub>1</sub>-(327) I<sub>2</sub>-(674)

B.P.  $72-73^{\circ}$  cor. at 751 mm. (1)  $D_4^{20} = 0.9909$  (2)  $n_D^{20} = 1.4004$  (1)  $70-72^{\circ}$  at 746 mm. (2) 0.9902 (1) 1.3969 (2)

[For prepn. (yields: 97% (1), 95% (2)) from paraldehyde (1:0170) + methyl alc. (1:6120) + dry HCl see (1) (2) (3).]

C on stdg. polymerizes to dark tarry residue.

[Č with Br<sub>2</sub> at 0° gives (3)  $\alpha,\beta$ -dibromoethyl methyl ether, b.p. 67-69° at 22 mm. (3).]  $\tilde{\mathbb{C}}$  on shaking with aq. yields acetaldehyde (1:0100), methyl alc. (1:6120), + HCl.

3:7150 (1) Henze, Murchison, J. Am. Chem. Soc. 53, 4077-4079 (1931). (2) Wallace, Henze, J. Am. Chem. Soc. 64, 2882 (1942). (3) Baker, J. Chem. Soc. 1942, 522.

B.P. 75.0° at 773 mm. (1) 
$$D_4^{20} = 0.9211$$
 (1)  $n_D^{20} = 1.42330$  (1)

Colorless liq. with odor similar to allyl chloride but less strong; insol. aq.

[For prepn. of  $\bar{C}$  from buten-1-ol-4 (allylcarbinol) [Beil. I-441, I<sub>1</sub>-(226), I<sub>2</sub>-(480)] with PCl<sub>3</sub> + pyridine (41% yield) see (1).] [ $\bar{C}$  is not formed (2) (3) during reactn. of butadiene-1.3 with HCl.]

**3:7151** (1) Juvala, Ber. **63**, 1993 (1930). (2) Kharasch, Kritchevsky, Mayo, J. Org. Chem. **2**, 494 (1938). (3) Ganguly, J. Indian Chem. Soc. **13**, 581, 584 (1936).

3: 7153 ACRYLOYL CHLORIDE (Propenoyl chloride) 
$$CH_2$$
— $CH_2$ — $CH_3$ — $CH_4$ — $CH_5$ — $CH_5$ — $CH_5$ — $CH_5$ — $CH_6$ — $CH$ 

Colorless mobile strongly lachrymatory liq., fumg. in air.

[For prepn. of  $\tilde{C}$  from sodium acrylate with POCl<sub>3</sub> (yields 80% (11), 60% (1), 27% (12), 22% (9) (2) (3) (4), with SOCl<sub>2</sub> (19% yield (9)), or from  $\beta$ -chloropropionyl chloride (3:5690) by loss of HCl (35% yield (12)) when passed over suitable cat. at 280–300° (5) see indic. refs.; for prepn. of  $\tilde{C}$  from acrylic acid (1:1020) with PCl<sub>3</sub> (66% yield) see (13).]

[For polymerization of  $\tilde{C}$  by light (10) in pres. of a small amt. of org. base see (6); for polymerization of  $\tilde{C}$  in pres. of u.v. light or by dibenzoyl peroxide see (9).]

[ $\bar{C}$  with MeOH yields (1) methyl  $\beta$ -chloropropionate (3:5765), b.p. 148°;  $\bar{C}$  with EtOH yields (1) ethyl  $\beta$ -chloropropionate (3:8290), b.p. 162°;  $\bar{C}$  with phenol yields (1) phenyl  $\beta$ -chloropropionate, b.p. 154–157° at 30 mm. (1); note, however, that  $\bar{C}$  reacting with a large excess of alcs. or phenols and/or in the pres. of acid binding agents such as CaCO<sub>3</sub> yields (7) esters of acrylic acid.]

[C with Na acrylate yields (1) acrylic anhydride, b.p. 97° at 35 mm. (1).]

Č with C<sub>6</sub>H<sub>6</sub> + AlCl<sub>3</sub> yields (8) (2) (by Friedel-Crafts reactn. and subsequent ring closure) indanone-1 (1:5144), m.p. 42°.

 $\bar{C}$  in CHCl<sub>3</sub> treated with Br<sub>2</sub> in CHCl<sub>3</sub> yields (1) 2,3-dibromopropionyl chloride, b.p. 191-193°, 97-99° at 37 mm. (1),  $D_{-}^{0}=2.181$  (1), which with warm aq. easily hydrolyzes to  $\alpha,\beta$ -dibromopropionic acid, m.p. 64° (1).

 $\bar{C}$  on hydrolysis yields (1) acrylic acid (1:1020) q.v. (for the amide, m.p. 84-85° (11), anilide, and p-toluidide corresp. to  $\bar{C}$  see 1:1020).

3:7153 (1) Moureu, Ann. chim. (7) 2, 161-174 (1894). (2) Kohler, Am. Chem. J. 42, 380 (1909). (3) van der Burg, Rec. trav. chim. 41, 23 (1921). (4) Gilman, Heckert, McCracken, J. Am. Chem. Soc. 56, 438 (1928). (5) I. G., Brit. 333,079, Aug. 28, 1930; Cent. 1930, II 2830; U.S. 2,050,752, Aug. 11, 1936; C.A. 36, 6762 (1936). (6) Fikenscher (to I. G.), Ger. 577,040, May 22, 1933; Cent. 1933, II 1250; C.A. 27, 3950 (1933). (7) Bauer, Lauth (to Röhm & Haas Co.), Ger. 570,955, Feb. 22, 1933; Cent. 1933, I 2608. (8) Ref. 1, pp. 198-202. (9) Marvel, Levesque, J. Am. Chem. Soc. 61, 3244-3246 (1939). (10) Staudinger, Urech, Helv. Chim. Acta 12, 1131 (1929).

(11) Jones, Zomlefer, Hawkins, J. Org. Chem. 9, 506-507 (1944). (12) Mowry, J. Am. Chem. Soc. 66, 371-372 (1944). (13) Rehberg, Dixon, Fisher, J. Am. Chem. Soc. 67, 209 (1945).

[For prepn. of  $\bar{C}$  from 2-methylbutyn-3-ol-2 (dimethyl-ethynyl-carbinol) on shaking as specified (1) (3) with HCl + CuCl<sub>2</sub> + NH<sub>4</sub>Cl; if Cu<sub>2</sub>Cl<sub>2</sub> is used or if reactn. is protracted  $\bar{C}$  is isomerized (cf. (4)) to 1-chloro-3-methylbutadiene-1,2 (3:7390) q.v.; for reverse conversion of latter to  $\bar{C}$  (and other products) by htg. with CaCO<sub>3</sub> + aq. see (3).]

C on htg. with aq. + CaCO<sub>3</sub> at 80° gives (2) the precursor 2-methylbutyn-3-ol-2.

Č with NH<sub>4</sub>OH/AgNO<sub>3</sub> gives (1) a white ppt. [dif. from 1-chloro-3-methylbutadiene-1,3 (3:9200)].

3:7155 (1) Favorskii, Favorskaya, Compt. rend. 200, 839-840 (1935); Cent. 1935, II 1340; C.A.
 30, 3651 (1935). (2) Favorskaya, J. Gen. Chem. (U.S.S.R.) 9, 386-395 (1939); C.A. 33, 9281 (1939); G.A. 34, 1303 (1940).
 4) Hurd (to Commercial Solvents Corp.), U.S. 2,274,611, Feb. 24, 1942; C.A. 36, 4138 (1942).

3:7160 1-CHLOROBUTANE CH<sub>3</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub> C<sub>4</sub>H<sub>9</sub>Cl Beil. I - 118
(n-Butyl chloride; I<sub>1</sub>-(38)
n-propylcarbinyl chloride) Cl I<sub>2</sub>-(80)
B.P. F.P.

| B.P.        |      |                  |      | F.P.       |                                    |
|-------------|------|------------------|------|------------|------------------------------------|
| 78.6°       | at   | 760 mm.          | (1)  | -123.1° (1 | $D_4^{25} = 0.88098  (2)$          |
| 78.50°      | at   | 760 mm.          | (2)  | (2         |                                    |
| 78.3-78.4°  | at   | 760 mm.          | (3)  |            | $D_4^{20} = 0.8866 \qquad (8)$     |
| 78.05°      | at   | 760 mm.          | (4)  |            | 0.88648 (2)                        |
| 78.4-78.7°  | u.c  | •                | (5)  |            | 0.8859 (8)                         |
| 78.4-78.6°  |      |                  | (6)  |            | 0.8845 (12)                        |
| 78.1°       | at   | 760 mm.          | (7)  |            | 0.88387 (11)                       |
| 78.0°       | at   | 762 mm.          | (8)  |            | (19)                               |
| 78°         |      |                  | (9)  |            |                                    |
| 77.96° cor. |      |                  | (10) |            | $D_4^{15} = 0.89197  (2)$          |
| 77.7-77.9°  | at ' | 762.7 mm.        | (11) |            | 0.88923 (11)                       |
| 77.6-77.7°  | at   | 743 mm.          | (3)  |            | (19)                               |
| 77.6°       | at   | 748 mm.          | (12) |            | $n_{\rm D}^{20} = 1.4023 $ (9) (6) |
| 77.6°       | at ' | <b>741.3</b> mm. | (13) |            | 1.40223 (8)                        |
| 77.5-77.9°  | at   | 760 mm.          | (14) |            | <b>1.4021</b> (18)                 |
| 77.5°       |      |                  | (15) | (16)       | 1.40173 (17)                       |
| 77.3-77.6°  |      |                  | (17) |            | 1.40159 (8)                        |
| 77.0°       | at   | 769 mm.          | (8)  |            | 1.40148 (16)                       |
| 76-77°      | at   | 750 mm.          | (18) |            | 1.40147 (19)                       |
|             |      |                  |      |            |                                    |

See also Note 1.

Note 1: For further data on b.p. at press. over range 565-760 mm. see (15).

Note 2: Č is very spar. sol. aq.; e.g., 0.066 wt. % at 12° (20).

Binary systems of  $\tilde{C}$  with other org. cpds. For f.p./compn. data on mixts. of  $\tilde{C}$  with ter-BuCl (3:7045) see (21); for partial vapor press. (17) or  $n_D^{20}$  (22) of mixts. of  $\tilde{C}$  with n-heptane (1:8575) or n-BuBr see indic. refs.

Č forms azeotropes with various other org. cpds.; e.g., Č with MeOH (1:6120) forms a const.-boilg. mixt., b.p. 57.0° at 760 mm., contg. 73 wt % Č (4); Č with EtOH (1:6130) forms a const.-boilg. mixt., b.p. 65.7° at 760 mm., contg. 79.7 wt. % Č (4); Č with n-PrOH (1:6150) forms a const.-boilg. mixt., b.p. 74.8° at 760 mm., contg. about 82 wt. % Č (4); Č with iso-PrOH (1:6135) forms a const.-boilg. mixt., b.p. 70.8° at 760 mm., contg. 77 wt. % Č (4); Č with isobutyl alc. (1:6165) forms a const.-boilg. mixt., b.p. 77.65° at 760 mm., contg. 96 wt. % Č (4); Č with EtOAc (1:3015) forms a const.-boilg. mixt., b.p. 75.5° at 760 mm., contg. 55 wt. % Č (23).

[For prepn. of  $\tilde{C}$  from *n*-butyl alc. (1:6180) with dry HCl gas on protracted htg. (11) (13) (24) (25), with conc. aq. HCl + ZnCl<sub>2</sub> (2 moles) (yields: 76-78% (26) (27) (29), 66-72% (30), 64-66% (28), 65% (8)) (31), other metal salts (31) (32), or H<sub>3</sub>PO<sub>4</sub> (33); with PCl<sub>3</sub> + ZnCl<sub>2</sub> (60% yield (30)) (34) or PCl<sub>3</sub> + pyridine (for important study of mechanism see (35) (36)); with PCl<sub>5</sub> + ZnCl<sub>2</sub> (74% yield (30)) cf. (35) (36); with SOCl<sub>2</sub> + pyridine (71% yield (8)) (for important study of mechanism see (37) (36)) see indic. refs.]

[For formn. of  $\bar{C}$  from *n*-butyl HSO<sub>4</sub> with HCl (25); from *n*-butyl MgBr with *p*-toluene-sulfonyl chloride (8.7% yield (38)); from *n*-butyl *p*-toluene-sulfonate as by-prod. of its reactn. with benzyl MgCl in prepn. of *n*-amylbenzene (39) cf. (40) (41); from *n*-butyl iodide with HgCl<sub>2</sub> in s.t. at 120–130° for 2 hrs. (10); from *n*-butylamine with HNO<sub>2</sub> (5.2%  $\bar{C}$  accompanied by 36.5% butenes + 25% butanol-1 + 13.2% butanol-2 + 2.8% 2-chlorobutane (42)); from *n*-butane with Cl<sub>2</sub> at 400–475° (together with other prods. (3)) see indic. refs.]

[For use as denaturant for alc. see (43) (for detn. of  $\bar{C}$  in denatured alc. see (4)); for use in removal of water from volatile fatty acids see (45); for study of anthelmintic props. see (46).]

Pyrolysis of  $\bar{C}$ . [ $\bar{C}$  at 450-650° without catalyst loses HCl and yields exclusively butene-1 (3) (47); however,  $\bar{C}$  passed at 450° over CaCl<sub>2</sub> cat. gives mixt. contg. 20% butene-1 + 80% cis + trans isomers of butene-2 (3) (47) (for influence of other cat. cf. (48) (49)).]

Further halogenation of C. [C with Cl<sub>2</sub> under various conditions (50) (51) (52) (53) (54) (5) gives a mixt. of 1,1-dichlorobutane (3:7550), 1,2-dichlorobutane (3:7680), 1,3-dichlorobutane (3:7925), and 1,4-dichlorobutane (3:5835) (together with higher chlorination prods.); note that the chlorination is facilitated by peroxides or by light but inhibited by O<sub>2</sub> (e.g., C with Cl<sub>2</sub> in absence of air at 0° in dark reacts 7% in 20 hrs. but in pres. of 2 mole % ascaridole 85% in same time or in light 100% in 1 min.; in pres. of 2% O<sub>2</sub> in dark no reactn. occurs in 96 hrs. (18). — C (2.5 moles) with SO<sub>2</sub>Cl<sub>2</sub> (1 mole) + trace dibenzoyl peroxide 3 hrs. under reflux in the dark gives (55) mixt. contg. 25% 1,2-dichlorobutane (3:7680) + 50% 1,3-dichlorobutane (3:7925) + 25% 1,4-dichlorobutane (3:5835). — C (1 mole) with SbCl<sub>5</sub> (1 mole) gives on warming (56) 2,3-dichlorobutane (3:7615).]

 $\bar{C}$  with Br<sub>2</sub> in pres. of Fe gives (57) 1,2-dibromobutane [Beil. I-120, I<sub>2</sub>-(83)], b.p. 166°. Reactions of the halogen atom of  $\bar{C}$ . Note that in  $\bar{C}$  the chlorine atom is much less

reactive than that of sec.-butyl chloride (3:7125) or ter-butyl chloride (3:7045).

[For study of hydrolysis of C in pres. and abs. of acid see (58).]

[For study of rate of reactn. of C with LiI, NaI, or KI in acctone see (59) (60).]

[For study of rate of reactn. of C with Na n-propylate see (61).]

[Č with aniline as directed yields (62) N-(n-butyl)aniline and/or N,N-di-(n-butyl) aniline; for analogous study of Č with N-methylaniline (63), N-ethylaniline (63), o-toluidine (64), p-toluidine (64), unsym.-m-xylidine (65) see indic. refs.]

[ $\bar{C}$  with  $C_6H_6$  + AlCl<sub>3</sub> gives (69% yield (66)) sec.-butylbenzene (1:7490) (note isomerization of carbon chain) (for comparison of reactivity of  $\bar{C}$  with other *n*-butyl halides see (67));  $\bar{C}$  with  $C_6H_6$  + Al/Hg gives both (68) sec.-butylbenzene (1:7490) and *n*-butylbenzene

(1:7515). — Č with toluene + AlCl<sub>3</sub> gives (45% yield (69) of a mixt. of both m- and p-sec.-butyltoluenes.]

[ $\check{\mathbf{C}}$  with  $\mathbf{C_6H_6}$  in dry liq. HCl at 195° under press. gives (70) 30% yield sec.-butylbenzene (1:7490) + 60% di-(sec.-butyl)benzene; for analogous behavior of  $\check{\mathbf{C}}$  with toluene see (70).] [ $\check{\mathbf{C}}$  with CO + AlCl<sub>3</sub> or similar cat. under press. yields (71) acids and ketones.]

Reaction of  $\tilde{C}$  to form organometallic cpds. [ $\tilde{C}$  with metallic Li in dry ether under N<sub>2</sub> gives (yields: 75–80% (72), 77% (73), 70–75% (74)) n-butyllithium (for study of rate of formn. of n-BuLi as compared with n-BuBr,  $C_0H_0Br$ ,  $C_0H_0Br$ ,  $C_0H_0Br$ ,  $C_0H_0Br$ ,  $C_0H_0Br$ ,  $C_0H_0Rr$  see (85)); this prod. with dry CO<sub>2</sub> in ether at 0° gives (45% yield (75)) di-n-butyl ketone (1:5493) or with CO<sub>2</sub> in  $C_0H_0$  at room temp. also (75) tri-n-butylcarbinol; for study of relative reactivity of n-BuLi as compared with n-BuMgBr,  $C_0H_0$ MgBr, etc., see (76); note, however, that full chemistry of n-BuLi cannot be discussed here.]

[ $\bar{C}$  with metallic Na in pet. ether yields (77) *n*-butylsodium; on carbonation with CO<sub>2</sub> this prod. gives (77) (78) (80) both *n*-valeric acid (1:1060) and *n*-propylmalonic acid; for study of reactn. of *n*-BuNa with C<sub>6</sub>H<sub>6</sub> see (77); note, however, that full chemistry of *n*-BuNa cannot be covered here.]

 $\bar{C}$  with Mg in dry ether gives (yields: 98.5% (81), 91.2% (82) (83), 85% (84)) n-BuMgCl; for studies on rate of forms. of n-BuMgCl (as compared with  $C_6H_6MgBr$ , or with other n-Bu halides, etc.) (85), on effect of rapid addn. of  $\bar{C}$  on yield (83), on effect of concentration of  $\bar{C}$  (84) see indic. refs.; for study of equilibrium composition of ether solns. of n-BuMgCl see (86) (87); for study of competitive reaction of mixts. of  $\bar{C}$  with n-BuBr and with n-BuI in forms. of RMgX see (88). — For certain important reactions of n-BuMgCl see below but note that full chemistry of this cpd. cannot be included here.

[ $\bar{C}$  with Mg + trace of I<sub>2</sub> but without solvent at 79-82° for 3 hrs. gives (10% yield (89)) n-octane (1:8655);  $\bar{C}$  + Mg + I<sub>2</sub> in toluene in similar fashion gives (6% yield (89)) p-(n-butyl)toluene.]

- © n-Valeric acid (1:1060) q.v. [From  $\bar{C}$  by conversion to n-BuMgCl (see above) and carbonation with CO<sub>2</sub> (yields: 72-73% (90), 80% (91)) (note that this prod. may be accompanied by more or less di-n-butyl ketone (1:5493) and tri-n-butylcarbinol (91)), or by conversion of  $\bar{C}$  with KCN to n-valeronitrile and hydrolysis of the latter with 67% H<sub>2</sub>SO<sub>4</sub> (52) (92).]
- n-Valeranilide: m.p. 62-63° u.c. (93), 63° cor. (94). [From Č by conversion to n-BuMgCl (see above) and reactn. in dry ether with phenyl isocyanate (93) (42) cf. (93).]
- ① n-Valero-p-toluidide: m.p. 72-73° u.c. (93). [From  $\bar{C}$  by conversion to n-BuMgCl (see above) and reactn. in dry ether with p-tolyl isocyanate (93).] [Note that this derivative does not afford good distinction from n-amyl chloride (3:7460) for which the corresp. n-capro-p-toluidide has m.p. 74-75° u.c. (93).]
- D n-Valero-α-naphthalide: m.p. 109-110° u.c. (93). [From Č by conversion to n-BuMgCl (see above) and reactn. in dry ether with α-naphthyl isocyanate (93).] [Note that this derivative does not afford good distinction from isoamyl chloride (3:7365) for which the corresp. isocaproic α-naphthalide has m.p. 110-111° u.c. (93).]
- ---- n-Butyl mercuric chloride (n-BuHgCl): m.p. 130° cor. (95), 129° (96), 127.5° (98), 126° (96), 125.5° (97), 125° (99). [Prepd. indirectly but should be easily preparable from n-BuMgCl + HgCl<sub>2</sub> cf. (98), since it has been similarly prepd. from n-BuMgBr (95).]
- S-(n-Butyl)isothiourea picrate: m.p. 177° (100). [From Č (1 g.) with thiourea (1 g.) in alc. (10 ml.) on refluxing for 2 hrs., then adding PkOH (1 g.), htg. until a clear soln. results, then cooling (100).]—[Note that this derivative does not dis-

- tinguish  $\tilde{C}$  from *n*-propyl chloride (3:7040) for which the corresp. S-(*n*-propyl)-isothiourea picrate has m.p. 176° (100), nor from isoamyl chloride (3:7365) for which the corresp. S-(isoamyl)isothiourea picrate has m.p. 173° (100).]
- —— N-(n-Butyl)phthalimide (1-(N-phthalimido)butane): cryst. from dil. AcOH, m.p. 34° (101), b.p. 311.8° cor. at 758 mm. (102). [Prepd. indirectly from n-butyl-amine (101) (102); direct prepn., e.g., from C + K phthalimide in pres. of KI never reported and m.p. too low to serve as good derivative.]
- N-(n-Butyl)-3-nitrophthalimide: pr. from CS<sub>2</sub>, m.p. 71-72° (103). [From C with
   K 3-nitrophthalimide on refluxing for 10 hrs. (103); for photographs of crystals see
   (104).]
- N-(n-Butyl)tetrachlorophthalimide: pl. from alc., m.p. 153-154° (105). [From C with K tetrachlorophthalimide by htg. at 200° for 10 hrs. (105).]
- N-(n-Butyl)saccharin: cryst. from dil. alc., m.p. 38° (106). [From C with sodium saccharin in aq. butylcarbitol (1:6517) contg. KI on refluxing for 30 min. (106).]
- —— N-(n-Butyl)-N-(p-bromobenzenesulfonyl)-p-anisidide: cryst. from 75% alc., m.p. 74.5° u.c. (107). [This prod. has not been reported from C but has been obt. from n-BuBr with N-(p-bromobenzenesulfonyl)-p-anisidide in alc. KOH after 1 hr. reflux (107).]
- —— p-(n-Butoxy)benzoic acid: m.p. 147-148° (108), changing to a cloudy viscous liq. clearing sharply at 160° (108) cf. (109). [From  $\bar{\mathbb{C}}$  with ethyl p-hydroxybenzoate (1:1534) in abs. alc. NaOEt on refluxing 1 hr. (108)]. [Note, however, that this prod. does not distinguish  $\bar{\mathbb{C}}$  from n-propyl chloride for which the corresp. p-(n-propoxy)benzoic acid has m.p. 145.5-147°; the two prods. do, of course, have slightly different Neut. Eqs.]
- --- n-Butyl 2,4,6-triiodophenyl ether: m.p. 66° cor. (110). [This prod. has not been reported for C itself but has been obtd. from n-BuBr with 2,4,6-triiodophenol in abs. alc. NaOEt on refluxing for 30 min. (110).]
- —— n-Butyl α-naphthyl ether: b.p. 308.5° cor. (111), 310° (112) (corresp. picrate, m.p. 85.0° cor., Neut. Eq. 429 (111)).
- ---- n-Butyl β-naphthyl ether: b.p.  $309.0^{\circ}$  cor. (111),  $311^{\circ}$  (112); m.p.  $33.0-33.5^{\circ}$  (111) (corresp. picrate, m.p.  $67.0-67.5^{\circ}$  cor. (111),  $67^{\circ}$  (113)).
- 3:7160 (1) Timmermans, Bull. soc. chim. Belg. 30, 65 (1921). (2) Timmermans, Hennaut-Roland, J. chim. phys. 27, 408-410 (1930). (3) Weston, Hass, J. Am. Chem. Soc. 54, 3337-3343 (1932). (4) Lecat, Rec. trav. chim. 46, 242 (1927). (5) Rust, Vaughan, J. Org. Chem. 6, 479-488 (1941). (6) Smyth, McAlpine, J. Chem. Phys. 3, 348 (1935). (7) Kahovec, Kohlrausch, Z. physik. Chem. B-48, 8 (1940). (8) Vogel, J. Chem. Soc. 1943, 638-639. (9) Wiswall, Smyth, J. Chem. Phys. 9, 357 (1941). (10) Linnemann, Ann. 161, 197 (1872).
- (11) Karvonen, Ann. Acad. Sci. Fennicae, 3-A, 1-103 (1912); Cent. 1912, II 1271. {12} Groves, Sugden, J. Chem. Soc. 1937, 161. {13} Lieben, Rossi, Ann. 158, 160-161 (1871). {14} Mathews, Fehlandt, J. An. Chem. Soc. 53, 3216 (1931). {15} Lenth, J. An. Chem. Soc. 55, 3283 (1933). {16} Smyth, Rogers, J. Am. Chem. Soc. 52, 2228 (1930). {17} Smyth, Engel, J. An. Chem. Soc. 51, 2649-2650, 2655, 2658 (1929). {18} Kharasch, Berkman, J. Org. Chem. 6, 810-817 (1941). {19} Karvonen, Ann. Acad. Sci. Fennicae, 5-A, No. 6, 123 (1914). {20} Fühner, Ber. 57, 514 (1924).
- (21) Timmermans, Bull. soc. chim. Belg. 43, 630 (1934). (22) Smyth, Engel, Wilson, J. Am. Chem. Soc. 51, 1739 (1929). (23) Lecat, Ann. soc. sci. Bruxelles 48, I 116, 120 (1928). (24) Basel, Kaufler (to A. Wacker Soc. Elektrochem. Ind.), Ger. 462,993, July 20, 1928; Cent. 1932, I 1044; C.A. 23, 4133 (1928). (25) I.G., French 716,217, Dec. 17, 1932; Cent. 1933, I 3345. (26) Copenhaver, Whaley, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 142-144 (1941). (27) Whaley, Copenhaver, J. Am. Chem. Soc. 60, 2497-2498 (1938). (28) Norris, Org. Syntheses, Coll. Vol. 1 (1st ed.), 137-138 (1932); 5, 27-29 (1925). (29) Norris, Taylor, J. Am. Chem. Soc. 46, 756 (1924). (30) Clark, Streight, Trans. Roy. Soc. Can. (3) 23, III 77-89 (1929).
- (31) Ricard, Allenet et Cie, Brit. 191,002, Nov. 2, 1922; French 545,290, Oct. 9, 1927; Cent. 1923, II 907: Ger. 430,862, June 30, 1926; Cent. 1925, II 1097. (32) Frei (to du Pont Co.), U.S. 1,784,423, Dec. 9, 1930; Cent. 1931, I 2672; C.A. 25, 303 (1931): French 692,790, Nov. 30, 1930;

Cent. 1931, I 2112; C.A. 25, 1537 (1931). (33) A. Wacker Soc. Eicktrochem. Ind., French 687,855, Aug. 14, 1930; Cent. 1930, II 3637; C.A. 25, 709 (1931). (34) Polish 26,428, June 11. 1938; Cent. 1939, I 1856. (35) Gerrard, J. Chem. Soc. 1949, 1464-1469. (36) Gerrard, J. Chem. Soc. 1949, 218-230. (37) Gerrard, J. Chem. Soc. 1939, 99-103. (38) Gilman, Fothergill, J. Am. Chem. Soc. 51, 3506 (1929). (39) Gilman, Robinson, Org. Syntheses, Coll. Vol. 2 (1st ed.).

Am. Chem. Soc. 31, 3000 (1828); (197 (1818)), 1401 (1918); 19, 4-5 (1928). (40) (1918); 19, 4-5 (1928). (41) Rossander, Marvel, J. Am. Chem. Soc. 50, 1228 (1928). (42) Whitmore, Langlois, J. Am. Chem. Soc. 54, 3441-3447 (1932). (43) Bannister (to Comml. Solvents Corp.), U.S. 1,779,-687, Oct. 28, 1930; Cent. 1931, 1 376; C.A. 25, 168 (1931). (44) Hoff, J. Soc. Chem. Ind. 56, 1277 (1932). (43) (1932). (44) Hoff, J. Soc. Chem. Ind. 56, 1277 (1932). (45) Soc. 3 Apon de Distillating des 244T (1931); Cent. 1931, II 1506; C.A. 25, 4818 (1931). (45) Soc. Anon. des Distilleries des Deux-Sèvres, Danish 36,067, May 31, 1926; Cent. 1928, I 584: Austrian 117,474, April 25, 1930; Cent. 1930, II 620. (46) Wright, Schaffer, Am. J. Hyg. 16, 325-428 (1932); J. Parasilol. 16, 107-108 (1929); C.A. 26, 4869 (1932). (47) Hass, Weston (to Purdue Research Foundation), U.S. 1,975,456, Oct. 2, 1934; Cent. 1935, II 2880; C.A. 28, 7260 (1934). (48) Senderens, Compt. rend. 200, 612-615 (1935). (49) Senderens, Aboulenc, Compt. rend. 202, 104-107 (1936). (50) Perkin, J. Soc. Chem. Ind. 31, 616-624 (1912); Cent. 1912, II 1210-1212; C.A. 6, 2692-2693 (1912).

(51) Muskat, Northrup, J. Am. Chem. Soc. 52, 4053-4055 (1930). (52) Muskat (to du Pont Co.), U.S. 2,038,593, April 28, 1936; Cent. 1936, II 3358; C.A. 30, 3912 (1936). (53) Hass, McBes, Weber, Ind. Eng. Chem. 27, 1190-1195 (1935). (54) Tishchenko, Churbakov, J. Gen. Chem. (U.S.S.R.) 7, 893-896 (1937); Cent. 1938, II 2575; C.A. 31, 5755 (1937). (55) Kharasch, Brown, J. Am. Chem. Soc. 61, 2145 (1939). (56) Meyer, Müller, J. prakt. Chem. (2) 46, 186 (1892). (57) Herzfeld, Ber. 26, 1260 (1893). (58) Olivier, Berger, Rec. trav. chim. 41, 640 (1921). (59) Conant, Hussey, J. Am. Chem. Soc. 47, 476-488 (1925). (60) Conant, Kirner, J. Am. Chem. Soc. 46, 248 (1924).

(61) Malkiel, Mason, J. Org. Chem. 8, 200 (1943). (62) Reilly, Hickinbottom, J. Chem. Soc. 111, 1026-1034 (1917); 113, 99-111 (1918). (63) Reilly, Hickinbottom, J. Chem. Soc. 117, 130-132 (1920). (64) Reilly, Hickinbottom, J. Chem. Soc. 113, 974-985 (1918). (65) Reilly, O'Neill, J. Soc. Chem. Ind. 46, T 226-228 (1927); Cent. 1927, II 918. (66) Boedtker, Bull. soc. chim. (4) 45, 648-649 (1929). (67) Calloway, J. Am. Chem. Soc. 59, 1477-1478 (1937). (68) Diuguid, J. Am. Chem. Soc. 63, 3527-3528 (1941). (69) Shoesmith, McGechen, J. Chem. Soc. 1930, 2234-2235. (70) Simons, Hart, J. Am. Chem. Soc. 66, 1310-1311 (1944).

(71) I.G., French 671,241, Dec. 10, 1929; Cent. 1930, II 620; Brit. 310,438, May 23, 1929; Cent. 1929, II 1214. (72) Gilman, Zoellner, Selby, J. Am. Chem. Soc. 54, 1957-1962 (1932). (73) Gilman, Zoellner, Selby, J. Am. Chem. Soc. 55, 1252-1257 (1933). (74) Coleman, Hermanson, Johnson, J. Am. Chem. Soc. 59, 1897 (1937). (75) Gilman, Van Ess, J. Am. Chem. Soc. 55 1260 (1933). (76) Gilman, Kirby, J. Am. Chem. Soc. 55, 1265-1270 (1933). (77) Morton. Richardson, Hallowell, J. Am. Chem. Soc. 63, 327-328 (1941). (78) Morton, LeFevre, Hechenbleikner, J. Am. Chem. Soc. 58, 757 (1936). (79) Morton, Hechenbleikner, J. Am. Chem. Soc. 58, 1699 (1936). (80) Morton, Davidson, Newey, J. Am. Chem. Soc. 64, 2242 (1942).

(81) Houben, Boedler, Fischer, Ber. 69, 1768, 1776 (1936). (82) Gilman, Zoellner, Dickey, J. Am. Chem. Soc. 51, 1580-1581 (1929). (83) Gilman, Zoellner, Dickey, J. Am. Chem. Soc. 51. 1585 (1929). (84) Gilman, Vanderwal, Bull. soc. chim. (4) 45, 641-644 (1929). (85) Gilman, Zoellner, Dickey, Selby, J. Am. Chem. Soc. 57, 1062 (1935). (86) Noller, Raney, J. Am. Chem. Soc. 62, 1749-1751 (1940). (87) Noller, Castro, J. Am. Chem. Soc. 64, 2509-2510 (1942). (88) Rudd, Turner, J. Chem. Soc. 1928, 686-691. (89) Schorigin, Issaguljanz, Gussewa, Ber. 66, 1430 (1933). (90) Gilman, Kirby, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 361-364 (especially Note 10) (1941); (1st ed.), 353-356 (espec. Note 10) (1932).

(91) Ivanov, Bull. soc. chim. (4) 37, 290-293 (1927). (92) Hass, Marshall, Ind. Eng. Chem. 23, 353 (1931). (93) Underwood, Gale, J. Am. Chem. Soc. 56, 2118-2119 (1934). (94) Schwartz, Johnson, J. Am. Chem. Soc. 53, 1063-1067 (1931). (95) Slotta, Jacobi, J. prakt. Chem. (2) 120, 276 (1929). (96) Kharasch, Marker, J. Am. Chem. Soc. 48, 3141 (1926). (97) Tiffeneau, Cent. 1921, III 26. (98) Marvel, Gauerke, Hill, J. Am. Chem. Soc. 47, 3010 (1925). (99) Marvel, Gould, J. Am. Chem. Soc. 44, 156 (1922). (100) Levy, Campbell, J. Chem. Soc. 1939, 1443.

(101) Vanags, Acta Univ. Latviensis, Kim. Fakultat, Series 4, No. 8, 405-421 (1939); Cent. 1939. II 3816; C.A. 34, 1982-1983 (1940). (102) Sachs, Ber. 31, 1228 (1898). (103) Sah, Ma, Ber. 65, 1630-1633 (1932). (104) Sah, Ma, Sci. Repts. Natl. Tsing Hua Univ. 2, 147-149 et. seq. (1933). (105) Allen, Nicholls, J. Am. Chem. Soc. 56, 1409-1410 (1934). (106) Merritt, Levey, Cutter, J. Am. Chem. Soc. 61, 15-16 (1939). (107) Gillespie, J. Am. Chem. Soc. 56, 2740-2741 (1934). (108) Lauer, Sanders, Leekley, Ungnade, J. Am. Chem. Soc. 61, 3050 (1939). (109) Bennett, Jones, J. Chem. Soc. 1939, 424. (110) Drew, Sturtevant, J. Am. Chem. Soc. 61, 2666 (1939).

(111) V. H. Dermer, O. C. Dermer, J. Org. Chem. 3, 290-291 (1938/39). (112) Slotta, Franke, Ber. 63, 685 (1930). (113) Wang, J. Chinese Chem. Soc. 1, 61-62 (1933).

3:7165 ter-BUTYL HYPOCHLORITE (CH<sub>3</sub>)<sub>3</sub>C—OCl C<sub>4</sub>H<sub>9</sub>OCl Beil. I — (Trimethylcarbinyl hypochlorite) I<sub>1</sub>— I<sub>2</sub>-(415) B.P. 79.6° at 750 mm. (1) 
$$D_4^{18} = 0.9583$$
 (1) 77-79° (16)

Pale yellow mobile liquid with characteristic irritating odor. —  $\bar{C}$  violently attacks the eyes and mucous membranes. —  $\bar{C}$  is relatively stable and if protected from bright light can be kept at ordinary temps. for months with little or no decomposition (1).  $\bar{C}$  should, however, be handled with care since it is particularly susceptible to photochemical decomposition which may occur with explosive violence (2).

[For prepn. of  $\tilde{C}$  from *ter*-butyl alcohol (1:6140) + Cl<sub>2</sub> + alk. in pract. quant. yield see (1) (2) (3), 60% yield (16); from *ter*-butyl alc. (1:6140) + HOCl in CCl<sub>4</sub> see (15); for manufacture of  $\tilde{C}$  see (4).] [For use in bleaching of textles, fruits, etc., see (5) (6) (7).]

[For general survey of reactns. of  $\bar{C}$  see (8); for study of reactns. of  $\bar{C}$  with olefins (2) (13) (16) (17) (18) or olefins contg. activating groups (9) (10), with group  $R_2C=N.MgX$  (3), or with Schiff's bases (11) (12) see indic. refs.; for study of  $\bar{C}$  in Friedel-Crafts reactn. see (14).]

Č on sufficient htg. or on exposure to bright sunlight yields (1) acetone (1:5400) + methyl chloride (3:7005). — [For data on stability of Č in aq. or in CCl4 see (15).]

 $\bar{C}$  with aq. KI acidified with AcOH yields  $I_2$  (use in detn. of  $\bar{C}$  (1)).

3:7165 (1) Chattaway, Backeberg, J. Chem. Soc. 123, 2999-3003 (1923). (2) Irwin, Hennion, J. Am. Chem. Soc. 63, 858-860 (1941). (3) Hauser, Humble, Haus, J. Am. Chem. Soc. 54, 2476-2480 (1932). (4) Deanesty, (to Shell Development Co.), U.S. 1,938,175, Dec. 5, 1933; Cent. 1934, I 1709; C.A. 28, 1053 (1934). (5) Magill (to du Pont), U.S. 2,155,728; April 25, 1939; Cent. 1939, II 1808; C.A. 33, 6069 (1939). (6) Carlisle (to du Pont), U.S. 2,152,532, March 28, 1939; Cent. 1939, II 276; C.A. 33, 5085 (1939). (7) Imperial Chem. Ind., Brit. 523,467, July 15, 1940; C.A. 34, 6470 (1941). (8) Clark, Chem. News 143, 265-267 (1931). (9) Emling, Vogt, Hennion, J. Am. Chem. Soc. 49, 2071-2079 (1927).

(11) Fusco, Musante, Gazz. chim. ital. 66, 258-264 (1936); Cent. 1936, II 2341; C.A. 31, 1777 (1937). (12) Musante, Fusco, Gazz. chim. ital. 66, 639-648 (1936); Cent. 1937, I 1674; C.A. 31, 3459 (1937). (13) N. V. de Bataafsche Petroleum Maatschappi, Freuch 740,350, Jan. 24, 1933; Cent. 1933, I 2870; C.A. 27, 2160 (1933). (14) Bergman, Lowy, J. Am. Chem. Soc. 60, 2596-2597 (1938). (15) Taylor, MacMullin, Gammal, J. Am. Chem. Soc. 47, 397-398 (1925). (16) Hanby, Rydon, J. Chem. Soc. 1946, 114-115. (17) Harford (to A. D. Little, Inc.), U.S. 2,207,983, July 16, 1940; C.A. 34, 7932 (1940). U.S. 2,107,789, Feb. 8, 1938; Cent. 1938, I 4718; C.A. 32, 2543 (1938): U.S. 2,054,814, Sept. 22, 1936; Cent. 1937, I 1015, C.A. 30, 7584 (1936). (18) Langedijk (to Shell Development Co.) U.S. 2,106,353, Jan. 25, 1938; C.A. 32, 2543 (1938); not in Cent.

B.P. F.P. 80° (1) (2) (3) 
$$-94.0^{\circ}$$
 (9)  $D_4^{25} = 1.0508$  (10)  $n_D^{25} = 1.4057$  (1) 79-80° (4) 78.3° at 766 mm. (5)  $D_-^{25} = 1.0469$  (1) 78.3° (6) 77.8-78.3° at 723.7 mm. (7)  $D_4^{20} = 1.0646$  (7)  $n_D^{20} = 1.4057$  (7) 77-78.5° (8) 1.0565 (5) 1.4038 (5)

[For prepn. of Č from propionic acid (1:1025) with PCl<sub>5</sub> (77% yield (11)), with PCl<sub>3</sub> (yields: 67.5% (12), 61% (13), 48% (14)) (15) (16) (note that excess PCl<sub>3</sub> may not be

used since its b.p., 76°, is too close to that of  $\bar{C}$  for subsequent sepn.), with PCl<sub>3</sub> + ZnCl<sub>2</sub> (91% yield (11)), with SOCl<sub>2</sub> (4) (note that excess SOCl<sub>2</sub> may not be used since its b.p., 79°, is almost identical with that of  $\bar{C}$ ), with benzoyl chloride (3:6240) (yield 84-89% (8)) (17), with sodium chlorosulfonate (18), with benzenesulfonyl chloride + NaCl (18), with Cl<sub>2</sub> + S<sub>2</sub>Cl<sub>2</sub> in cold (37% yield (19)), with SiCl<sub>4</sub> in xylene at 50° (50% yield (20)), or with acetonitrile + HCl gas at 0° (21) see indic. refs.; for prepn. of  $\bar{C}$  from propionic anhydride (1:1100) with phosgene (3:5000) + cat. as directed see (22).]

[ $\bar{C}$  with Cl<sub>2</sub> (67) in CCl<sub>4</sub> in sunlight (15) at 0° (23) or in dark at 40° (24) or  $\bar{C}$  with SO<sub>2</sub>Cl<sub>2</sub> in CCl<sub>4</sub> in pres. of dibenzoyl peroxide refluxed 4–6 hrs. in dark (25) gives a mixt. contg. mainly  $\beta$ -chloropropionyl chloride (3:5690) accompanied also by  $\alpha$ -chloropropionyl chloride (3:5320) yield: 60%  $\beta$  isomer + 40%  $\alpha$  isomer (25)); note that in the pres. of I<sub>2</sub> instead of dibenzoyl peroxide only  $\alpha$ -chloropropionyl chloride (3:5320) (45% yield (26)) is produced (25).]

[ $\ddot{\mathbf{C}}$  with Br<sub>2</sub> (1 mole) at 80° evolves HCl and gives (100% yield (12)) (27) (28)  $\alpha$ -bromopropionyl bromude [Beil. II-256, II<sub>2</sub>-(230)], b.p. 153-155° (12); the reaction is accelerated by light, but the photobromination is retarded by O<sub>2</sub> (29).]

[C with Na propionate on htg. (14) (30) or C with Ag propionate on distn. (31) gives (80% yield (31)) propionic anhydride (1.1100).]

 $[\bar{C}$  passed over heated Ni cat. decomposes (32) into ethylene, HCl + CO, accompanied by smaller amts. methane, hydrogen, and CO<sub>2</sub>. —  $\bar{C}$  with Na in abs. ether is claimed (33) to yield the dipropionate of hexen-3-diol-3,4 [Beil. II-242], b.p. 108-109° at 10 mm. (33).]

[C with ter-butyl MgBr in dry ether yields (34) not only the expected coupling product ter-butyl methyl ketone (pinacolone) (1:5425) but also diethyl ketone (1:5420), propanol-1 (1:6150), and propionic acid (1:1025) accompanied by the propionates of ter-butyl-ethyl-carbinol (2,2-dimethylpentanol-3) [Beil. I<sub>1</sub>-(207), I<sub>2</sub>-(446)] and of diethylcarbinol (pentanol-3) (1.6175) (reduction products). — C with C<sub>6</sub>H<sub>5</sub>MgBr in ether gives (57% yield (35)) diphenyl-ethyl-carbinol [Beil. VI-687, VI<sub>1</sub>-(331)], m.p.95°, but C with C<sub>6</sub>H<sub>5</sub>MgBr with CdCl<sub>2</sub> in ether gives (76% yield (36)) ethyl phenyl ketone (propiophenone) (1:5525).]

 $[\bar{C}+2,5$ -dimethylpyrrole N-magnesyl bromide in dry ether gives (by rearr.) (37) 3-propionyl-2,5-dimethylpyrrole, colorless cryst. from AcOH, m.p. 102.5° (37);  $\bar{C}$  with benzimidazyl N-magnesyl bromide in dry ether yields (38) (39) N-(propionyl)benzimidazole, m.p. 125° (38) (39) (corresp. picrate, m.p. 228° (38) (39)).]

 $[\bar{C} + \text{ethyl acetoacetate} + \text{Mg in } C_6H_6 \text{ refluxed 2 hrs., treated with aq. gives (36% yield (40)) ethyl <math>\alpha$ -propionylacetoacetate, b.p.  $104-106^\circ$  at 12 mm. (40) (isolated as Cu enolate, m.p.  $78-79^\circ$ , blue ndls. from MeOH/aq.; violet ndls. from pct. ether (40)).]

[ $\bar{C}$  with FeCl<sub>3</sub> (1 mole) on warming evolves HCl and gives a prod. which with aq. gives (34% yield (41)) (42) diethyl ketone (1:5420) + CO<sub>2</sub>, or with alc. yields (43) ethyl  $\alpha$ -propionylpropionate [Beil. III-686, III<sub>2</sub>-(436).]

[Č with equal wt. CISO<sub>3</sub>H stood at room temp. 5–10 days, poured into aq. (44), or Č with tripropylamine in lgr. (45) gives (cf. (42)) in small yield 3,5-dimethyl-2-ethyl-6-hydroxypyrone-4 [Beil. XVII-453], cryst. from aq. or AcOH, m.p. 151° (45).]

[ $\bar{\mathbb{C}}$  with olefins or cyclo-olefins (cyclenes) in pres. of cat. adds to unsatn. yielding chloro-ketones; e.g.,  $\bar{\mathbb{C}}$  with ethylene + AlCl<sub>3</sub> at 0° gives (50% yield (46)) (47)  $\beta$ -chloroethyl ketone (1-chloropentanone-3) (3:9268);  $\bar{\mathbb{C}}$  with trimethylethylene (2-methylbutene-2) (1:8220) + SnCl<sub>4</sub> gives (57% yield (48)) 2-chloro-2,3-dimethylhexanone-4, b.p. 74-78° at 17 mm.,  $D_4^{16} = 0.975$  (48) (note that this prod. on htg. with dimethylaniline loses HCl giving (60% yield (48)) of a mixt. of 2,3-dimethylhexen-2-one-4, b.p. 164-166° at 750 mm.,  $D_4^{13} = 0.872$ ,  $n_D^{13} = 1.4535$  (semicarbazone, m.p. 209° (48)) and 2,3-dimethylhexen-1-one-4, b.p. 158-162° at 750 mm.,  $D_4^{13} = 0.862$ ,  $n_D^{13} = 1.4450$  (semicarbazone, m.p. 108-110° (48));  $\bar{\mathbb{C}}$  with cyclohexene (1:8070) + SnCl<sub>4</sub> gives a prod. which with dimethylaniline loses HCl

to cyclohexen-1-yl ethyl ketone, b.p. 90° at 10 mm.,  $D_4^{13.5} = 0.981$ ,  $n_D^{13.5} = 1.5005$  (oxime, m.p. 79°, semicarbazone, m.p. 195° (49)). — Note, however, that addn. of  $\tilde{\mathbf{C}}$  to certain types of olefins is followed by *spontaneous* loss of HCl so that the unsatd. ketone forms the direct product; e.g.,  $\tilde{\mathbf{C}}$  with isobutylene (2-methylpropene-1) + SnCl<sub>4</sub> gives (30% yield (48)) 2-methylhexen-2-one-4, b.p. 147-148° at 760 mm.,  $D_4^{15} = 0.859$ ,  $n_D^{15} = 1.4496$  (48) (semicarbazone, m.p. 163° (48)).]

[ $\bar{C}$  with aromatic hydrocarbons + cat. evolves HCl yielding corresp. ketones: e.g.,  $\bar{C}$  with  $C_6H_6$  + AlCl<sub>3</sub> in CS<sub>2</sub> gives (84% yield (19)) (50) ethyl phenyl ketone (propiophenone) (1:5525);  $\bar{C}$  with toluene (1:7405) + AlCl<sub>3</sub> in CS<sub>2</sub> gives (yields: 60% (51), 50% (52)) (53) ethyl p-tolyl ketone [Beil. VII-317, VII<sub>1</sub>-(170)], b.p. 238-239°; for analogous reactions of  $\bar{C}$  with o-xylene (1:7430) (54), 2-methylnaphthalene (1:7605) (55), anthracene (1:7285) (56), phenanthrene (1:7240) (57), or acenaphthene (1:7225) (58) see indic. refs.; for analogous reactions of  $\bar{C}$  with heterocyclic systems, e.g.,  $\bar{C}$  + 2-nitrofuran + TiCl<sub>4</sub> (59) or  $\bar{C}$  + thiophene +  $P_2O_5$  at 210° for 10-12 hrs. (60), see indic. refs.]

[ $\bar{C}$  with alcs. reacts normally yielding corresp. esters: e.g.,  $\bar{C}$  with MeOH yields methyl propionate (1:3020),  $\bar{C}$  with EtOH yields ethyl propionate (1:3070), etc.; for use of Mg in reaction of  $\bar{C}$  with tertiary alcs., e.g.,  $\bar{C}$  + ter-butyl alc. (1:6140) + Mg giving (68% yield (61)) ter-butyl propionate, b.p. 115–116.5° (61), or  $\bar{C}$  + ter-amyl alc. (1:6160) + Mg giving (75% yield (61)) ter-amyl propionate, b.p. 153–156° at 710 mm. (61), see indic. refs.)

[ $\tilde{C}$  with phenols gives the corresp. phenol esters: e.g.,  $\tilde{C}$  with phenol gives (62) phenyl propionate (1:3696), etc.; note, however, that these phenol esters on htg. with AlCl<sub>3</sub> in appropriate solvents, especially nitrobenzene, undergo the Fries rearr. yielding o- and p-propiophenols; this complete sequence is often carried through without isolation of the intermediate ester, e.g., for  $\tilde{C}$  + phenol + AlCl<sub>3</sub> giving directly o-hydroxypropiophenone [Beil. VIII-102, VIII<sub>1</sub>-(547)] (50% yield) and p-hydroxypropiophenone [Beil. VIII-102 (25% yield) see (63); for key refs. on direct rearr. of phenyl propionate to these products see (64) (65); scores of analogous cases with other phenols or their ethers cannot be included here.]

[Č with certain hydroxy-azo-compounds in dry ether yields addn. cpds. usually (but not always) of 1:1 type: e.g., Č with p-hydroxy-azobenzene [Beil. XVI-96, XVI<sub>1</sub>-(233)], m.p. 152°, in dry ether on stdg. at room temp. ppts. 1:1 cpd., m.p. 162° (66); for numerous analogous cases using homologous hydroxy-azo cpds. see (66).]

 $\ddot{\mathbf{C}}$  hydrolyzes with aq. yielding propionic acid (1:1025); for the amide, anilide, p-toluidide, and other derivs. corresp. to  $\ddot{\mathbf{C}}$  see under propionic acid (1:1025).

3:7170 (1) Koehl, Wenzke, J. Am. Chem. Soc. 59, 1418 (1937). (2) John, Beetz, J. prakt. Chem. (2) 143, 344 (1935). (3) Sestini, Bull. soc. chim. (2) 11, 470 (1869). (4) Bardan, Bull. soc. chim. (4) 49, 1427 (1931). (5) Martin, Partington, J. Chem. Soc. 1936, 162. (6) Kohlrausch, Pongratz, Z. physik. Chem. B-22, 381 (1933). (7) Brühl, Ann. 203, 14-15 (1880). (8) Brown, J. Am. Chem. Soc. 60, 1326 (1938). (9) Timmermans, Mataar, Bull. soc. chim. Belg. 30, 216 (1921). (10) Walden, Z. physik. Chem. 55, 222 (1906).

(11) Clark, Bell, Trans. Roy. Soc. Can. (3) 27, III 97-103 (1933). (12) Fourneau, Nicolitch, Bull. soc. chim. (4) 43, 1236-1238 (1928). (13) Fierz-David, Kuster, Helv. Chim. Acta 22, 89 (1939). (14) Linnemann, Ann. 148, 255-257 (1868). (15) Michael, Ber. 34, 4046-4051 (1901). (16) Aschan, Ber. 31, 2346 (1898). (17) Chem. Fabrik vorm. Weiler-ter-Meer, Ger. 350,050, March 11, 1922; Cent. 1922, IV 155. (18) Henle, Schirm (to M. L. B.), Ger. 397,311, July 1, 1924; French 568,331, March 22, 1924; Cent. 1924, II 1401-1402. (19) Read, J. Am. Chem. Soc. 44, 1751 (1922). (20) Montonna, J. Am. Chem. Soc. 49, 2115 (1927).

(21) Colson, Compt. rend. 121, 1155 (1895). (22) Stellmann, French 785,075, Aug. 1, 1935; Cent. 1935, II 3301. (23) Kuster, Z. physiol. Chem. 130, 9-10 (1923). (24) Hertel, Becker, Z. physik. Chem. B-27, 310-311 (1934). (25) Kharasch, Brown, J. Am. Chem. Soc. 62, 925-929 (1940). (26) Wolffenstein, Rolle, Ber. 41, 735 (1908). (27) Aschan, Ber. 45, 1913-1919 (1912).

(28) Aschan, Ber. 46, 2162 (1913). (29) Kharasch, Hobbs, J. Org. Chem. 6, 709-712 (1941).

(30) Anderlini, Gazz. chim. ital. 25, II 132-133 (1895).

(31) Whitby, J. Chem. Soc. 1926, 1462. (32) Mailhe, Compt. rend. 180, 1112 (1925). (33) Anderlini, Gazz. chim. ital. 25, II 48, 129 (1895). (34) Petrov, Roslova, J. Gen. Chem. (U.S.S.R.) 10, 973-976 (1940); C.A. 35, 2467 (1941). (35) Gilman, Fothergill, Parker, Rec. trav. chim. 48 750 (1929). (36) Gilman, Nelson, Rec. trav. chim. 55, 528-530 (1936). (37) Oddo, Acuto, Gazz. chim. ital. 65, 1033 (1935); Cent. 1936, I 3832; C.A. 30, 4857 (1936). (38) Oddo, Raffia, Gazz. chim. ital. 67, 541 (1937); Cent. 1938, I 1581; C.A. 32, 1697 (1938). (39) Oddo, Ingraffia, Gazz. chim. ital. 62, 1096 (1932); Cent. 1932, I 2943. (40) Spassow, Ber. 70, 2383-2384 (1937).

(41) Hamonet, Bull. soc. chim. (2) 50, 356-357 (1888). (42) Wedekind, Ann. 323, 250, 254 (1902). (43) Hamonet, Bull. soc. chim. (3) 2, 335-338 (1889). (44) Krajcinovic, Ber. 62, 579-581 (1929). (45) Wedekind, Haeussermann, Ber. 41, 2299-2302 (1908). (46) Kenner, Statham, Ber. 69, 17 (1936). (47) Schoeller, Zullner (to Schering-Kahlbaum A.G.), U.S. 1.737-203, Nov. 26, 1929; Cent. 1930, II 1133; Brit. 282,412, Feb. 15, 1928; Cent. 1929, I 143. (48) Colonge, Mostafavi, Bull. soc. chim. (5) 6, 335-342; 342-354 (1939). (49) Colonge, Deroux, Bull. soc. chim. (5) 7, 459-468 (1941). (50) Pampel, Schmidt, Ber. 19, 2896 (1886).

(51) Sanchez, Bull. soc. chim. (4) 45, 284 (1929). (52) Willgerodt, Hambrecht, J. prakt. Chem. (2) 81, 76 (1910). (53) Klages, Ber. 35, 2252 (1902). (54) von Auwers, Ziegler, Ann. 425, 260 (1921). (55) Haworth, Bolam, J. Chem. Soc. 1932, 2249. (56) I.G., Brit. 289,585, May 24, 1928; Cent. 1928, II 1036. (57) Bachmann, Struve, J. Am. Chem. Soc. 58, 1659 (1936). (58) Dziewonski, Moszew, Roczniki Chem. 11, 415-425 (1931); Cent. 1931, II 570; C.A. 26, 2975 (1932). (59) Gilman, Burtner, Calloway, Turck, J. Am. Chem. Soc. 57, 908 (1935). (60) Steinkopf, Schubart, Ann. 424, 8-9 (1921).

(61) Spassow, Ber. 70, 1928-1929 (1937). (62) Perkin, J. Chem. Soc. 55, 547-548 (1889). (63) Torres, Amargos, Anales soc. espan. fis. quim. 21, 37-47 (1933); Cent. 1933, II 372; C.A. 27, 1624 (1933). (64) Miller, Hartung, Org. Syntheses, Coll. Vol. 2 (1st ed.), 543-545 (1943); 13, 90-92 (1933). (65) von Auwers, Potz, Noll, Ann. 535, 228-230 (1938). (66) Fischer, Taurinisch, Ber. 64, 236-239 (1931). (67) Schmidt, Schloffer (to I.G.) Ger. 738,398, July 15, 1943; C.A. 38, 3992 (1944).

## 3:7175 1-CHLOROBUTYNE-2 CH<sub>3</sub>—C=C—CH<sub>2</sub>Cl C<sub>4</sub>H<sub>5</sub>Cl Beil. S.N. 12 $(\gamma$ -Methylpropargyl chloride)

## B.P. 81-84° (1)

Pale yel. oil.

[For prepn. of  $\bar{C}$  (44% yield) from butyn-2-ol-1 + PCl<sub>5</sub> in ether see (1).]

 $\bar{C}$  in ether/acetone soln. on treatment with  $K_2CO_3$  + phenol gives (57% yield)  $\gamma$ -methylpropargyl phenyl ether, b.p. 123-126° at 25 mm.,  $n_D^{20} = 1.3894$  (1).

3:7175 (1) Hurd. Cohen. J. Am. Chem. Soc. 53, 1074-1075 (1931).

## 3:7195 CHLOROMETHYL ETHYL ETHER C<sub>3</sub>H<sub>7</sub>OCl Beil. I - 581 CICH2.O.C2H5 I<sub>1</sub>-(304) $I_2-(645)$

B.P. 83° at 763.1 mm. (1) 
$$D_4^{20} = 1.0263$$
 (3)  $n_D^{20} = 1.40398$  (1) 82° (2) 1.0127 (1) 81-82° (3)  $D_4^{15} = 1.0188$  (1)  $n_-^{12} = 1.0282$  (3) (?) 80° (4) 79-80° (5) (6)

·· C undergoes some decompn. at b.p.

[For prepn. from ethyl alc. (1:6130) + trioxymethylene (1:0080) + dry HCl see (3) (1); from ethyl alc. + formalin + HCl (42-44% yield (6)) see (6).

C on shaking with aq. readily hydrolyzes yielding formaldehyde (1:0145), ethyl alc. (1:6130), + HCl.

3:7195 (1) Karvonen, Ann. Acad. Sci. Fennicae, 3-A, No. 7, 1-103 (1912); Cent. 1912, II 1269; C.A. 14, 2175 (1920). (2) Litterscheid, Ann. 330, 123 (1904). (3) Farren, Fife, Clark, Garland, J. Am. Chem. Soc. 47, 2421 (1925). (4) Wedekind, Ber. 36, 1385 (1903). (5) de Gaspari, Gazz. chim. ital. 27, II 297 (1897). (6) Foran, J. Soc. Chem. Ind. 44, 173-174T (1925).

3:7200 1-CHLORO-2,2-DIMETHYLPROPANE CH<sub>3</sub> C<sub>5</sub>H<sub>11</sub>Cl Beil. I - 141 (Neopentyl chloride; CH<sub>3</sub> C-CH<sub>2</sub>Cl 
$$I_{1-}$$
(50) ter-butylcarbinyl chloride)

B.P. F.P. 
$$-20^{\circ}$$
 (1) (4)  $D_{4}^{20} = 0.866$  (1)  $n_{D}^{20} = 1.4042$  (1) 83.9° at 750 mm. (1)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (4)  $0.865$  (5)  $0.865$  (6)  $0.865$  (7)  $0.865$  (8)  $0.865$  (9)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (2)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (3)  $0.865$  (4)  $0.865$  (4)  $0.865$  (5)  $0.865$  (6)  $0.865$  (6)  $0.865$  (7)  $0.865$  (8)  $0.865$  (8)  $0.865$  (9)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)  $0.865$  (1)

[For prepn. of  $\bar{C}$  (30% yield (3)) from neopentane (tetramethylmethane) (1:8499) by chlorination in light at 0° see (4) (3) (1). —  $\bar{C}$  cannot (1) (5) (contrary to earlier claims (6)) be prepared from neopentyl alc. (ter-butylcarbinol) (1:5812) even with SOCl<sub>2</sub> + pyridine (13).]

 $\ddot{\mathbf{C}}$  is stable for long periods of time even at 200° (1). —  $\ddot{\mathbf{C}}$  is extraordinarily unreactive giving none of the ordinary alkyl halide reactns. except the forms. of the corresponding Grignard reagent.

Č in dil. ether soln. reacts slowly with Mg giving (1) (90% yield (8)) neopentyl MgCl. [For reactn. of R.Mg.Cl with CO<sub>2</sub> see (12).]

[For reactns. of  $\bar{C}$  with  $C_6H_6+AlCl_3$  (2), or with metallic Na (10), or with NaPr (11) see indic. refs.]

Č is unchanged after htg. 20 hrs. at 100° with alc. KOH (1) or htg. with CuCN at 90° in a s.t. for 200 hrs. (1) or after treatment with KI in acctone (1) or after 6 hrs. refluxing with 6% Na/Hg (11).

- ① ter-Butylacetanilide (β,β-dimethyl-n-butyranilide): m.p. 131° (1), 130-131° (3), 129-130° (3). [From R.MgCl by reactn. with phenyl isocyanate (1).]
- Neopentyl mercuric chloride: m.p. 117-118° (3), 116.5-117° (1). [From RMgCl with HgCl₂ (1) (3) in dry ether (90% yield (3)).] [For reactn. of R.MgCl with di-p-tolylmercury giving di-neopentylmercury, b.p. 67-69° at 3 mm., m.p. 31-33°, see (9).] [For reactn. of RHgCl with KBr giving 82% yield neopentyl bromide, b.p. 104.8° at 732 mm., or with I₂ giving 92% yield neopentyl iodide, b.p. 70° at 100 mm., see (3).]
- 3:7200 (1) Whitmore, Fleming, J. Am. Chem. Soc. 55, 4161-4162 (1933). (2) Pines, Schmerling. Ipatieff, J. Am. Chem. Soc. 62, 2901-2902 (1939). (3) Whitmore, Wittle, Popkin, J. Am. Chem. Soc. 61, 1585-1590 (1939). (4) Fleming, Whitmore, J. Am. Chem. Soc. 54, 3460-3461 (1932). (5) Whitmore, Rothrock, J. Am. Chem. Soc. 54, 3431-3435 (1932). (6) Tissier, Ann. chim. (6) 29, 344 (1893). (7) Richard, Ann. chim. (8) 21, 341-342 (1910). (8) Whitmore, Wittle, Harriman, J. Am. Chem. Soc. 61, 1585-1586 (1939). (9) Whitmore, Rohrmann, J. Am. Chem. Soc. 61, 1591-1592 (1939). (10) Whitmore, Popkin, Bernstein, Wilkins, J. Am. Chem. Soc. 63, 124-127 (1941).
- (11) Whitmore, Zook, J. Am. Chem. Soc. 64, 1783-1785 (1942).
   (12) Bush, J. Am. Chem. Soc. 61, 965 (1939).
   (13) Whitmore, Karnatz, J. Am. Chem. Soc. 60, 2534 (1938).

```
3: 7205 1-CHLOROBUTENE-2 CH<sub>3</sub>.CH=CH.CH<sub>2</sub>Cl C<sub>4</sub>H<sub>7</sub>Cl Beil. I - 205 (Crotonyl chloride, \alpha-chloro-\beta-butylene; \gamma-methylallyl chloride) I<sub>2</sub>-(176)
```

| B.P. 84° | at 750 mm. (1)      | $D_4^{20} = 0.9340 \ (3)$ | $n_{\rm D}^{20} = 1.4350 (1) (2) (17)$ |
|----------|---------------------|---------------------------|----------------------------------------|
| 84-85°   | (2)                 | 0.9316 (7)                | 1.4351 (5)                             |
| 83.8°    | (3)                 | • •                       | 1.4352 (7)                             |
| 83°      | (7)                 |                           | 1.4356 (3)                             |
| 80°      | (4)                 |                           | 1.4359 (6)                             |
| 45.6-4   | 5.7° at 191 mm. (5) |                           |                                        |
| 43.7-4   | 4.0° at 177 mm. (5) |                           |                                        |
| -2°      | at 18 mm. (6)       |                           |                                        |

Because of the close interrelationship of  $\bar{C}$  with the isomeric 3-chlorobutene-1 (3:7090) some confusion exists regarding the nomenclature. The compound here described (1-chlorobutene-2) is by some authors designated as crotyl chloride; this name, however, is better reserved for the equilibrium mixture of 1-chlorobutene-2 and 3-chlorobutene-1 as indicated by  $\langle 7 \rangle$ .

Pure  $\bar{C}$  (in the absence of catalysts) is quite stable (1) and may be kept at room temperature as long as a year (5) without significant increase in  $n_2^{20}$ . However, in the presence of FeCl<sub>3</sub>, HCl, or CuCl<sub>2</sub> + HCl,  $\bar{C}$  is in part isomerized to 3-chlorobutene-1 and an equilibrium mixt. is formed. The composition of this equilibrium mixt. depends upon the temperature, catalyst, and other factors. E.g., with FeCl<sub>3</sub> the equilibrium mixt. conts. 50%  $\bar{C}$ ; with 1 mole HCl it conts. 75%  $\bar{C}$ . Although the two compounds can easily be separated by careful fractional distillation (5) yet consideration must always be given to the possible formation during chem. reaction of the derivatives of the other isomer. The refractive index of mixts. of 1-chlorobutene-2 and 3-chlorobutene-1 is a linear function of the composition (1). Although cis and trans stereoisomers of  $\bar{C}$  are possible, no record of their isolation has been published.

[For the prepn. of a mixt. of  $\bar{C}$  + 3-chlorobutene-1 from butadiene-1,3 + HCl see (1) (7) (8) (9); for prepn. of  $\bar{C}$  from crotonyl alcohol with PCl<sub>3</sub> + pyridine see (3) (6), with HCl + Cu<sub>2</sub>Cl<sub>2</sub> see (1), with conc. HCl see (5).]

C passed over soda-lime in an iron furnace at 530-550° yields (11) butadiene-1,3. [Use in prepn. of 1,2,3,4-tetrabromobutane (11).]

[For study of reactivity of  $\bar{C}$  with KI soln. at 20° or NaOEt soln. at 20° and 50° see (3); for reaction with Mg, Zn, etc., see (12); for use in formn. of cellulose ethers see (13); for study of hydrolysis of  $\bar{C}$  under various conditions see (16); for behavior of  $\bar{C}$  with cuprous cyanide see (17).]

— Crotonyl 3,5-dinitrobenzoate: cryst. from alc., m.p. 54° (9). [This cpd. has never been reported from  $\bar{C}$  but only (cf., however (15)) from the corresp. bromide via reaction with silver 3,5-dinitrobenzoate in ether (9), it is possible that the material of m.p. 54° represents a mixt. of the two esters corresponding to crotonyl bromide and the isomeric 3-bromobutene-1 since from the former a 3,5-dinitrobenzoate, m.p. 51°, 50-51° (15), and from the latter a 3,5-dinitrobenzoate, m.p. 59°, have been reported (14).

3:7205 (1) Kharasch, Kritchevsky, Mayo, J. Org. Chem. 2, 494-496 (1938). (2) Baudrenghien, Bull. soc. chim. Belg. 31, 168 (1922). (3) Tamele, Ott, Marple, Hearne, Ind. Eng. Chem. 33, 118-119 (1941). (4) Ganguly, J. Indian Chem. Soc. 13, 584 (1936). (5) Roberts, Young, Winstein, J. Am. Chem. Soc. 64, 2163 (1942). (6) Böhme, Ber. 71, 2378-2379 (1938). (7) Henne, Chanan, Turk, J. Am. Chem. Soc. 63, 3474-3476 (1941). (8) Dykstra (to du Pont), U.S. 2,123,504, July 12, 1938; Cent. 1938, II 2840; C.A. 32, 6666 (1938). (9) Voigt, J. prakt. Chem. (2) 151, 310 (1938). (10) Charon, Ann. chim. (7) 17, 228-230 (1899).

(11) Jacobson, J. Am. Chem. Soc. 54, 1546 (1932). (12) Young, Eisner, J. Am. Chem. Soc. 63, 2113-2115 (1941). (13) Hahn (to du Pont), U.S. 2,082,797, June [8, 1937; Cent. 1937, II 8383; C.A. 31, 5577 (1937). (14) Newman, Rydon, J. Chem. Soc. 1936, 262-264. (15) Adamson, Kenner, J. Chem. Soc. 1935, 287. (16) Young, Andrews, J. Am. Chem. Soc. 66, 421-425 (1944). (17) Lane, Fentress, Sherwood, J. Am. Chem. Soc. 66, 545-548 (1944).

3: 7210 1-CHLOROBUTADIENE-1,3 Cl C<sub>4</sub>H<sub>5</sub>Cl Beil. S.N. 12 
$$H_2$$
C=CH-CH=CH

B.P. 85° (1)  $D_{23}^{23} = 0.9601$  (2)  $n_D^{20} = 1.470$  (3)  $n_D^{23} = 1.4733$  (2)

[For prepn. of  $\overline{C}$  from either 1,2-dichlorobutene-3 (3:5350) or 1,4-dichlorobutene-2 (3:5725) by htg. with 2 pts. powdered KOH to about 90° see (1) (3); from solid 1,1,2,3,4-pentachlorobutane (3:0750) in 80% yield (2) or from liq. diastereoisomer (3:9068) in 60% yield (2) with Zn dust in alc. see (2).]

C on stdg. (1) (2) polymerizes to a dark resinous mass (4).

3:7210 (1) Muskat, Northrup, J. Am. Chem. Soc. 52, 4054-4055 (1930). (2) Prins, Rec. trav. chim. 56, 119-125 (1937). (3) Muskat (to du Pont), U.S. 2,038,593, Apr. 28, 1936; Cent. 1936, II 3359; C.A. 39, 3912 (1936). (4) I. G. Farbenindustrie, French 769,472, Aug. 27, 1934; Cent. 1935, I 1946.

3: 7212 CHLOROACETALDEHYDE CH<sub>2</sub>—CHO C<sub>2</sub>H<sub>3</sub>OCl Beil. I - 610 
$$I_{1-}(327)$$
 Cl  $I_{2-}(675)$  B.P. 85–86° (1)

85.0-85.5° cor. at 748 mm. (2) 84.5-85° at 759 mm. (3)

Colorless liq. with sharp and penetrating odor; vigorously attacks mucous membrane. —  $\bar{C}$  with aq. forms (2) a crystn. hemihydrate,  $\bar{C}$ . ½ $H_2O$ ; this does not have a sharp m.p. but about 43–50° begins to liquefy and on further htg. yields  $\bar{C}$ , whose vapor may be dried by passing over anhydr. CuSO<sub>4</sub> (2) (3); this hemihydrate is sol. in aq. from which it may be recovered by evaporation in a stream of dry  $CO_2$ ; it is also sol. in alc. or ether, sepg. unchanged on evapn. of solvent (2) (for prepn. (60% yield) from glycerol  $\alpha$ -monochlorohydrin (3:9038) by oxidn. with HIO<sub>4</sub> see (40)). —  $\bar{C}$  also forms (4) with EtOH a liq. chloroacetaldehyde ethylaleoholate (chloroacetaldehyde ethyl-hemi-acetal), but in excess alc. on protracted stdg. at room temp. (4) this is converted to chloroacetaldehyde diethylacetal (3:8228), or on treatment with dry HCl yields (4)  $\alpha$ , $\beta$ -dichloroethyl ethyl ether (3:5640).

[For prepn. of  $\bar{C}$  from its crystn. trimer (3:2300) by distn. at ord. press. see (2) (5) (6); from chloroacetaldehyde diethylacetal (3:8228) by htg. at 150° in CO<sub>2</sub> with anhydr. oxalic acid (2), AcOH (2), or dil. H<sub>2</sub>SO<sub>4</sub> (2) (7) see indic. refs.; from chloroacetaldehyde ethylalcoholate (see above) by htg. with anhydr. oxalic acid at 150° (90% yield) see (8) (note that the actn. of Cl<sub>2</sub> on paraldehyde (1:0170) gives acc. to conditions either  $\bar{C}$  (9) or  $\alpha,\alpha,\beta$ -trichloro-n-butyraldehyde (butylchloral) (3:5910) (10) (11)).]

[For prepn. of  $\tilde{C}$  from vinyl chloride (3:7010) with  $Cl_2 + aq$ . in the dark at 35° see (12) (13) (14) (15); from methylene dichloride (3:5020) with formaldehyde +  $SO_2Cl_2$  at 300° with cat. see (16); from  $\alpha,\beta$ -dichloroethyl ethyl ether (3:5640) with conc.  $H_2SO_4$  see (17); from  $\alpha,\beta$ -dichloroethyl acetate on distn. with a little ZnCl<sub>2</sub> (acetyl chloride also formed) (18) or from  $\alpha,\beta$ -dichloroethyl benzoate similarly (benzoyl chloride also being formed) (19) or from  $\alpha,\beta$ -dichloroethyl laurate (lauroyl chloride also being formed) (19) see indic. refs.]

[For form. of  $\tilde{C}$  from sodium  $\beta,\beta$ -dichloro- $\alpha$ -hydroxypropionate on boilg. with aq. see (20); from  $\beta$ -chloroethylidene-diurethane on warming with dil. HCl see (21); from acetaldehyde (1:0100) with ethyl hypochlorite followed by distn. with anhydr. oxalic acid see (22); from chloroacetaldehyde-sulfonic acid [Beil. I<sub>2</sub>-(818)] by treatment with steam in 60% H<sub>2</sub>SO<sub>4</sub> (23) or by htg. with 80% H<sub>2</sub>SO<sub>4</sub> (24) see indic. refs.]

 $\bar{C}$  gives positive fuchsin-aldehyde test (1). —  $\bar{C}$  reduces NH<sub>4</sub>OH/AgNO<sub>3</sub> on warming (2).  $\bar{C}$  does not oxidize in the air (2) but is oxidized by conc. HNO<sub>3</sub> (2) (20) or by AgOH (20) or by dil. H<sub>2</sub>O<sub>2</sub> (25) to chloroacetic acid (3:1370). —  $\bar{C}$  on treatment as directed (26) with halogen magnesium alcoholate (e.g., EtOMgCl) is reduced to  $\beta$ -chloroethanol (3:5552).

 $\bar{C}$  on stdg. in s.t. is rapidly converted to an amorphous polymer (2);  $\bar{C}$  (or its hemihydrate) on shaking with  $\frac{1}{2}$  vol. cold conc. H<sub>2</sub>SO<sub>4</sub> yields (1) a cryst. trimer, 2,4,6-tris-(chloromethyl)-trioxane-1,3,5 (3:2300), m.p. 87-87.5°, which on distn. at ord. press. depolymerizes to  $\bar{C}$ .

The hemihydrate of  $\bar{C}$  htd. alone or in pres. of a few drops of conc.  $H_2SO_4$  condenses with itself yielding (27) (28)  $\alpha, \gamma$ -dichlorocrotonaldehyde [Beil. I-731, I<sub>2</sub>-(789)].

[ $\bar{C}$  warmed with EtOH (4) or the ethylalcoholate of  $\bar{C}$  in EtOH treated with dry HCl gas (8) yields chloroacetaldehyde diethylacetal (3:8228), b.p. 157°, and in the latter case also (4)  $\alpha,\beta$ -dichloroethyl ethyl ether (3:5640).]

[ $\bar{C}$  with KCN yields (29) (7) an oily prod. (cyanohydrin?) which by hydrolysis with HCl gives  $\beta$ -chlorolactic acid [Beil. III-286, III<sub>1</sub>-(110), III<sub>2</sub>-(209)] + AcOH;  $\bar{C}$  + NaCN+BzCl yields (30)  $\alpha$ -benzoxy- $\beta$ -chlorolactonitrile; note, however, that  $\bar{C}$  boiled with alc. KCN yields (31) EtOAc, or with aq. KCN yields (31) AcOH.]

[For behavior of  $\tilde{C}$  with AcCl (2), Ac<sub>2</sub>O (32), see indic. refs.;  $\tilde{C}$  with ethyl diazoacetate yields (3) ethyl  $\gamma$ -chloroacetoacetate (3:6375);  $\tilde{C}$  with EtMgBr in ether yields (6) 1-chlorobutanol-2 (3:8025);  $\tilde{C}$  with nitromethane as directed (33) yields 1-chloro-3-nitropropanol-2, with nitroethane, 1-chloro-3-nitrobutanol-2;  $\tilde{C}$  with thioformamide (35) or  $\tilde{C}$  + formamide + P<sub>2</sub>S<sub>5</sub> (34) yields thiazole [Beil. XXVII-15, XXVII<sub>1</sub>-(207)], m.p. 116°.]

- Chloroacetaldoxime: lachrymatory oil dec. on distn. at 10 mm. (36). [From Č with 4 moles NH<sub>2</sub>OH.HCl (36).]
- © Chloroacetaldehyde semicarbazone: ndls. from alc., m.p. 148° (37), 134-135° dec. (38), 134° (40). [From C + semicarbazide hydrochloride + NaOAc (37).]
- Chloroacetaldehyde dimethone: unreported. [Note that Č with warm alc. soln. of "dimethone" ("dimedone") (dimethyldihydroresorcinol) not only condenses normally but also loses HCl yielding (39) same prod., m.p. 227° u.c., 237.5° cor. (39), as obtd. from hydroxyacetaldehyde.]

3:7212 (1) Jones, Williams, J. Chem. Soc. 1934, 834. (2) Natterer, Monatsh. 3, 442-464 (1882). (3) Schlotterbeck, Ber. 42, 2570-2571 (1909). (4) Natterer, Monatsh. 5, 494-499 (1884). (5) Späth, Monatsh. 36, 6-7 (1915). (6) Helferich, Speidel, Ber. 54, 2634-2635 (1921). (7) Frank, Ann. 206, 339-344 (1880). (8) Fritsch, Schumacher, Ann. 279, 307-308 (1894). (9) Freundler, Bull. soc. chim. (4) 1, 70 (1907). (10) Krämer, Pinner, Ber. 3, 385 (1870); Ann. 158, 41-42 (1871). (11) Pinner, Ann. 179, 26 (1875). (12) Ernst, Lange (to I.G.), U.S. 1,806,285, May 19, 1931; Cent. 1931, II 1632; C.A. 25, 3671 (1931); Brit. 299,319, Oct. 22, 1937; Cent. 1930, I 129; C.A. 23, 3235 (1929); Ger. 496,062, Oct. 23, 1927; Cent. 1930, I 3722; C.A. 24, 3251 (1930); French 662,361, Aug. 6, 1929; Cent. 1930, I 129. (13) Brit. 299,722, Oct. 28, 1927; C.A. 23, 3479 (1929). (14) N. V. de Bataafsche Petroleum Maatschappij, French 787,529, Sept. 24, 1935; Cent. 1936, II 2227; C.A. 30, 1067 (1936). (15) Groll, Hearne (to Shell Development Co.), U.S. 2,060,303, Nov. 10, 1936; Cent. 1937, I 4155; C.A. 31, 419 (1937). (16) Frohlich, Wiezevich (to Standard Oil Development Co.), U.S. 2,042,303, May 26, 1936; Cent. 1936, II 3193; C.A. 30, 4871 (1936); Ger. 629,897; May 26, 1936; Cent. 1936, II 2448; C.A. 30, 6006 (1936). (17) Jacobsen, Ber. 4, 216 (1871). (18) Soc. des Usines Chimiques Rhone-Poulenc, Brit. 329,721, June 19, 1930; Cent. 1930, II 1611; C.A. 24, 5767 (1930). (19) Soc. des Usines Chimiques Rhone-Poulenc, Ger. 527,874, June 22, 1931; Cent. 1931, II 1350. (20) Reisse, Ann. 257, 334-336 (1890). (21) Houben, J. prakt. Chem. (2) 165, 15 (1923). (22) Goldschmidt, Endres, Direch, Ber. 58,

576-577 (1925). (23) Lepouse, Bull. soc. chim. Belg. 34, 141-142 (1925). (24) Chem. Fabrik Weiler-ter-Meer, Ger. 362,744, Oct. 31, 1922; Cent. 1923, II 1246. (25) Filachione, J. Am. Chem. Soc. 61, 1706 (1939). (26) I.G., Brit. 384,156, Dec 22, 1932; Cent. 1933, I 1351. (27) Natterer, Monatsh. 4, 539-543 (1883). (28) Lespieau, Bull. soc. chim. (4) 43, 200-201 (1928). (29) Glinsky, Ber. 6, 1256-1257 (1873). (30) MacCorquodale, Johnson, Rec. trav. chim. 51, 486 (1932).

(31) Chattaway, Irving, J. Chem. Soc. 1929, 1043. (32) Spath, Monatsh. 36, 36 (1915). (33) I. G. French 804,589, Oct. 27, 1936; Cent. 1937, I 1791, C.A. 31, 3505 (1937). (34) Hromatka (to E. Merck), Ger. 670,131, Jan. 12, 1939; Cent. 1939, I 2296; C.A. 33, 2909 (1939). (35) Willstätter, Wirth, Ber. 42, 1918 (1909). (36) Meister, Ber. 40, 3442 (1907). (37) Blaise, Bull. soc. chim. (4) 15, 671–672 (1914). (38) Kling, Bull. soc. chim. (4) 5, 415 (1909). (39) Vorländer, Z. anal. Chem. 77, 254–255 (1929). (40) Hatch, Alexander, J. Am. Chem. Soc. 67, 688 (1945).

B.P. 85-87° (1) 91-96° (2)

[For prepn. of C from 4,4-dichloro-2-methylbutane (3:7885) with alc. KOH see (1); from 3,4-dichloro-2-methylbutane (3:8075) with alc. NaOH see (2) (note, however, that the latter process very probably leads to a mixt. of C with other prods.).]

3:7215 (1) Bruylants, Ber. 8, 413-414 (1875). (2) Kondakow, Ber. 21 Referate, 439 (1888).

3: 7220 2-CHLORO-2-METHYLBUTANE 
$$C_6H_{11}Cl$$
 Beil. I - 134 (ter-Amyl chloride;  $CH_3$   $I_{1}$ -( 46) dimethyl-ethyl-carbinyl chloride)  $CH_3.CH_2$   $CH_3$   $I_{2}$ -(100)

B.P. F.P. (1) (2) (11) 
$$-73.7^{\circ}$$
 (9)  $D_4^{20} = 0.8658$  (5)  $86.0-86.1^{\circ}$  (3)  $-72.7^{\circ}$  (4)  $0.8650$  (28)  $85.65^{\circ}$  at 760 mm. (4) M.P.  $85.4-85.6^{\circ}$  at 762 mm. (5)  $-73.3^{\circ}$  (9)  $D_4^{13.5} = 0.86989$  (10)  $n_{\rm D_i}^{20} = 1.4058$  (5)  $83.0-84.5^{\circ}$  at 744 mm. (6)  $1.40520$  (28)  $1.40550$  (7)  $1.4055$  (7)  $1.4055$  (7)  $1.4055$  (7)  $1.4055$  (7)  $1.4055$  (7)  $1.4055$  (7)  $1.4055$  (7)  $1.4055$  (7)  $1.4055$  (7)  $1.4055$  (8)  $1.4055$  (9)  $1.4055$  (10)

 $\bar{C}$  with aq. forms binary const.-boilg. mixt., b.p. 76° (2);  $\bar{C}$  with aq. + ter-amyl alc. (1:6160) forms a ternary const.-boilg. mixt. (2).

[For prepn. of  $\bar{C}$  from ter-amyl alc. (1:6160) with HCl gas see (11); with conc. HCl (yield: 93–98% (12), 65% (13)) see (12) (13); with PCl<sub>3</sub> (41% yield (6)) or PCl<sub>3</sub> + ZnCl<sub>2</sub> (98% yield (14)) see (6) (14); with PCl<sub>5</sub> (80% yield (14)) see (1) (14); with SOCl<sub>2</sub> (yield: 99% (14), 41% (6)) see (14) (6); with acetyl chloride see (6); with oxalyl chloride (3:5060) (yield 18% (6)) see (15) (6); with diphosgene (3:5515) see (16); with p-nitrobenzoyl chloride see (17).]

[For prepn. of C from isopropyl-methyl-carbinol (2-methylbutanol-3) (1:6170) by

rearr. with conc. HCl + ZnCl<sub>2</sub> (80% yield (7)), or with HCl on long stdg. (97% yield (7)), or with PCl<sub>5</sub> (76% yield (7)), or with SOCl<sub>2</sub> + pyridine (73% yield (7)) see (7).]

[For prepn. of C from trimethylethylene (2-methylbutene-2) (1:8220) by addn. of HCl see (18) (19) (20); from isopropylethylene (3-methylbutene-1) (1:8200) see (5).]

[For formn. of Č from 2-methylbutane (isopentane) (1:8500) by shaking 2 min. with diisobutylene hydrochloride (3:8113) + AlCl<sub>3</sub> see (29).]

Č very rapidly loses HCl by boilg. aq., e.g., 88.6% in 15 min., 94.9% in 30 min., 95.4% in 60 min. (7). Note that hydrolysis with hot aq. or aq. Na<sub>2</sub>CO<sub>3</sub> gives exclusively olefins (20) (6) but that with cold aq. or cold aq. NaOH some ter-amyl alc. (1:6160) is also formed (20), although the latter may result from hydration of the olefin. [For further studies of hydrolysis of Č see (2) (6) (20) (21) (22).]

 $\bar{\rm C}$  on passing over BaCl<sub>2</sub> + soda-lime at 350–400°C gives (85% yield (5)) a mixture of trimethylethylene (2-methylbutene-2) (1:8220) + unsym.-ethyl-methyl-ethylene (2-methylbutene-1) (1:8210).

Č with Mg in dry ether gives (yield: 73.6% (23), 38% (26)) RMgCl; this with CO<sub>2</sub> gives (60% yield (13)) dimethyl-ethyl-acetic acid (1:1113) q.v. (see also derivatives below). Č with Ag 3,5-dinitrobenzoate does not (24) yield expected ter-amyl 3,5-dinitrobenzoate

- Dimethyl-ethyl-acetanilide: m.p. 90-91° u.c. (25), 92° cor. (26), 91.4° (27). [From RMgCl + phenyl isocyanate (25) (26).] [Note that this same product results by rearr., however, from similar treatment of the RMgCl cpds. from 3-chlor-2-methyl-butane (3:7275) q.v.]
- ① Dimethyl-ethyl-acet-p-toluidide: m.p.  $83.0-83.5^{\circ}$  u.c. (25),  $83.3^{\circ}$  (27). [From RMgCl + p-tolyl isocyanate (25).]
- Dimethyl-ethyl-acet-α-naphthalide: m.p. 137-138° u.c. (25). [From RMgCl + α-naphthyl isocyanate (25).]

3:7220 (1) Wyschnegradsky, Ann. 190, 336 (1877). (2) Ayres, Ind. Eng. Chem. 21, 899-904 (1929). (3) Brearley, Kistiakowsky, Stauffer, J. Am. Chem. Soc. 58, 44-46 (1936). (4) Timmermans, Bull soc chim. Bclg. 30, 66 (1921). (5) Leendertse, Tulleners, Waterman, Rec. trav. chim. 52, 521-524 (1933). (6) French, Schaefer, J. Am. Chem. Soc. 57, 1576-1578 (1935). (7) Whitmore, Johnston, J. Am. Chem. Soc. 60, 2265-2266 (1938). (8) Simons, Fleming, Whitmore, Bissinger, J. Am. Chem. Soc. 60, 2265-2269 (1938) (9) Turkevich, Smyth, J. Am. Chem. Soc. 64, 737 (1942). (10) Jahn, Moller, Z. physik. Chem 13, 380 (1894). (11) Bruchet, Ann. chim. (7) 10, 384 (1897). (12) Norris, Watt, Thomas, J. Am. Chem. Soc.

(11) Bruchet, Ann. chim. (7) 10, 384 (1897).
(12) Norris, Watt, Thomas, J. Am. Chem. Soc. 38, 1076 (1916).
(13) Corson, Thomas, Waugh, J. Am. Chem. Soc. 51, 1950 (1929).
(14) Clark, Streight, Trans. Roy. Soc. Can. (3) 23, III 77-89 (1929).
(15) Adams, Weeks, J. Am. Chem. Soc. 38, 2518-2519 (1916).
(16) Nekrassow, Melnikow, J. prakt. Chem. (2) 127, 216-217 (1930).
(17) Meisenheimer, Ann. 442, 202 (1925).
(18) Michael, Zeidler, Ann. 385, 269-270 (1911).
(19) Aschan, Ber. 51, 1304-1306 (1918).
(20) Woodburn, Whitmore, J. Am. Chem. Soc. 56, 1394-1395 (1934).

(21) Hughes, J. Am. Chem. Soc. 57, 708-709 (1935). (22) Hughes, McNulty, J. Chem. Soc. 1937, 1283-1291. (23) Whitmore, Badertscher, J. Am. Chem. Soc. 55, 1562 (1933). (24) Tseng, Chu, Natl. Central Unrv. (Nanking), Sci. Rept., Ser. A-1, No. 2, 5-7 (1931); C.A. 28, 2116 (1932); Cent. 1938, I 669. (25) Underwood, Gale, J. Am. Chem. Soc. 58, 2119 (1934). (26) Schwartz, Johnson, J. Am. Chem. Soc. 53, 1065 (1931). (27) Hommelen, Bull. soc. chim. Belg. 42, 249 (1933). (28) Vogel, J. Chem. Soc. 1943, 638, 640. (29) Bartlett, Condon, Schneider, J. Am. Chem. Soc. 66, 1537 (1944).

## 3:7225 4-CHLOROBUTADIENE-1,2 Cl C<sub>4</sub>H<sub>5</sub>Cl Beil. S.N. 12 H<sub>2</sub>C—CH—C—CH<sub>2</sub>

B.P. 88° (1)

Č represents the initial step in the formn. of 3-chlorobutadiene-1,3 ("Chloroprene") (3:7080) by addn. of aq. HCl (1) (2) to vinylacetylene; under certain conditions Č can

be isolated as the major reactn. product, but it readily undergoes isomerization to "Chloroprene" especially in the presence of certain salts, e.g., CuCl (3). When sufficient HCl is present the reactn. proceeds further (1) with formn. of 2,4-dichlorobutene-2 (3:5550).

 $\ddot{C}$  shaken with 3 pts. 18% HCl contg. CuCl for 16 hrs. at 20° gives (4) (3) (2) butadiene-1,3 ("Chloroprene") (3:7080), the rest being chloroprene polymer. —  $\ddot{C}$  with 3% dry FeCl<sub>3</sub> spontaneously evolves heat and yields (4) chloroprene (3:7080).

 $\bar{C}$  stirred with aq. Na<sub>2</sub>CO<sub>3</sub> at 60–90° for 15 hrs. gives (10) (50% yield (4)) 4-hydroxy-butadiene-1,2, colorless lachrymatory, strongly vesicant liq. with sharp pungent odor, misc. aq. and org. solvents, b.p. 126–128° at 756 mm., 68–70° at 53 mm.,  $D_4^{20} = 0.9164$ ,  $n_2^{20} = 1.4759$ . [This prod. on cat. hydrogenation gives (4) butanol-1 (1:6180) but is unaffected by refluxing with alc. NaOEt, 25% aq. H<sub>2</sub>SO<sub>4</sub>, or 2% aq. HCl; for many other reactns. and derivatives see (4) (10).]

 $\tilde{C}$  in 80% alc. or in acetone with NaI, stood for 3 hrs. then diluted with aq., gives (46% yield (4)) 4-iodobutadiene-1,2, b.p. 43-45° at 38 mm.,  $D_D^{20} = 1.7129$ ,  $n_D^{20} = 1.5709$  (4), which on htg. at 125-130° polymerizes vigorously to iodoprene. —  $\tilde{C}$  with alc. NaCN yields (5) 4-cyanobutadiene-1,3 ( $\beta$ -vinylacrylonitrile), b.p. 135-138° at 760 mm., 65-68° at 58 mm., 48-50° at 28 mm.,  $D_A^{20} = 0.8644$ ,  $n_D^{20} = 1.4880$  (5). —  $\tilde{C}$  with liq. NH<sub>3</sub> at -40 to -50° yields (6) (7) tris-(butadien-1,2-yl-4)amine (for extension to many other amines see (7)).

 $\bar{C}$  added dropwise to 3 vols. conc. H<sub>2</sub>SO<sub>4</sub> at  $-5^{\circ}$  to  $+3^{\circ}$ , then poured onto ice, yields (1) 4-chlorobutanone-2 (3:7640), b.p. 120-122° at 760 mm. (1).

C with Cl<sub>2</sub> yields (8) (9) mixt. of 2,3,4-trichlorobutene-1 (3:9064) and 1,2,4-trichlorobutene-2 (3:9062) which reacts further to produce 1,2,2,3,4-pentachlorobutane (3:9070).

 $\bar{C}$  in aq. Na<sub>2</sub>CO<sub>3</sub> suspension, oxidized with KMnO<sub>4</sub>, yields (1) chloroacetic acid (3:1370), but neither acetic acid nor oxalic acid. —  $\bar{C}$  in CHCl<sub>3</sub> treated with O<sub>3</sub> for 12 hrs. at 0°, then with aq., yields (1) formaldehyde (1:0145) and chloroacetaldehyde (3:7212) (the latter not detected directly but only after KMnO<sub>4</sub> oxidn. (1) to chloroacetic acid (3:1370)).

3:7225 (1) Carothers, Berchet, Collins, J. Am. Chem. Soc. 54, 4066-4070 (1932). (2) Klebanskii, Tzyurikh, Dolgopol'skii, Bull. acad. sci. (U.R.S.S.) 1935, No. 2, 189-226; Cent. 1935, II 3843 C.A. 36, 1259 (1936) (full English translation in Rubber Chem. Tech. 9, 383-408 (1936). (3) Carothers (to du Pont), U.S. 2,104,789, Jan. 11, 1938; Cent. 1939, I 4108; C.A. 32, 1718 (1938). (4) Carothers, Berchet, J. Am. Chem. Soc. 55, 2811-2813 (1933). (5) Coffman, J. Am. Chem. Soc. 57, 1981-1984 (1935). (6) I. G. Farbenindustrie, French 815,312, July 9, 1937; Cent. 1937, II 2750; C.A. 32, 958 (1938). (7) Carothers, Berchet (to du Pont), U.S. 2,136,177, Nov. 8, 1938; Cent. 1939, I 2497; C.A. 33, 1344 (1939). (8) Carothers, Berchet, J. Am. Chem. Soc. 55, 1628-1631 (1933). (9) Carothers, Berchet (to du Pont), U.S. 1,965,369, July 3, 1934; Cent. 1936, 1937; Cent. 1938, I 1236; C.A. 31, 3503 (1937).

[For prepn. from propionaldehyde (1:0110) with PCl<sub>5</sub> (36-37% yield (1)) together with other products see (1) (3) (5); for formn. (19.6%) (together with other products) from propane by vapor-phase chlorination at 400° see (6) (7) (8); for formn. from 1-chloropropene-1 (3:7030) by addn. of HCl at 0° in presence of FeCl<sub>5</sub> see (2).]

 $\ddot{C}$  on hydrolysis yields propional dehyde (1:0110); for study of behavior of  $\ddot{C}$  with boilg. aq. + trace of NaHCO<sub>3</sub> or with boilg. aq. + Fe see (6).

Č with alc. KOH yields (5) 1-chloropropene-1 (3:7030) q.v.

3:7230 (1) Henne, Renoll, Leicester, J. Am. Chem. Soc. 63, 2477 (1941). (2) Kharasch, Engelmann, Mayo, J. Org. Chem. 2, 296, 301 (1937). (3) Kohlrausch, Köppl, Monatsh. 65, 196 (1935). (4) Hass, McBee, Weber, Ind. Eng. Chem. 28, 338 (1936). (5) Reboul, Ann. chim. (5) 14, 458-460 (1878). (6) McBee, Hass, Chao, Welch, Thomas, Ind. Eng. Chem. 33, 176-177 (1941). (7) Hass, McBee, Hinds, Gluesenkamp, Ind. Eng. Chem. 28, 1178-1179 (1936). (8) Hass, McBee (to Purdue Research Foundation), U.S. 2,004,073, June 4, 1935; Cent. 1936, I 1500.

3: 7235 
$$\alpha$$
-CHLORO-ISOBUTYRALDEHYDE CH<sub>3</sub> C<sub>4</sub>H<sub>7</sub>OCl Beil. I - 675 (2-Chloro-2-methylpropanal-1) CH<sub>3</sub>—C-CHO I<sub>1</sub>— I<sub>2</sub>— I<sub>2</sub>— B.P. 90° (1) (2)  $D_{15}^{45} = 1.053$  (1) (2)

Colorless liq. with piquant odor suggestive of chloral.

[For prepn. of  $\bar{C}$  from 2-methylpropanol-1 (isobutyl alc.) (1:6165) with  $Cl_2$  see (1) (2); from  $\alpha,\beta$ -dichloroisobutyl isobutyl ether (see below) by htg. with aq. at 100° see (1) (2); from  $\alpha$ -chloroisobutyraldehyde diisobutylacetal (see below) with anhydrous oxalic acid (1:0535) or with Ac<sub>2</sub>O (1:1015) on htg. see (2);  $\bar{C}$  is not (2) formed by chlorination of isobutyraldehyde (1:0120).]

Č reduces Tollens' reagt., Fehling's soln., or KMnO<sub>4</sub> (1) (2); Č on oxidn. with alk. KMnO<sub>4</sub> yields (2) α-hydroxyisobutyric acid (1:0431), m.p. 79°.

C adds NaHSO<sub>3</sub> yielding a compd. from which C is regenerated with difficulty (1) (2).

 $\bar{C}$  on shaking with conc.  $H_2SO_4$  (½ vol.) yields (1) (2) the corresp. trimer, viz., para- $\alpha$  chloro-isobutyraldehyde (2,4,6-tris-( $\alpha$ -chloroisopropyl)trioxane-1,3,5) (3:3220), m.p. 107° (1) (2).

[ $\bar{\rm C}$  with isobutyl alc. (1:6165) treated with HCl gas gives (2)  $\alpha,\beta$ -dichloroisobutyl isobutyl ether, b.p. 192.5° at 760 mm., 83° at 15 mm.,  $D_4^{15}=1.031, n_D^{19}=1.437$  (2), also obtd. from isobutyl alc. directly with Cl<sub>2</sub> in the cold (2); note that this prod. with aq. on htg. gives  $\bar{\rm C}+\alpha$ -chloroisobutyraldehyde di-isobutylacetal, b.p. 218° at 760 mm., 102° at 15 mm.,  $D_4^{15}=0.9355, n_D^{17}=1.428$  (2).]

[ $\tilde{C}$  (or the above  $\alpha$ -chloroisobutyraldehyde di-isobutylacetal) with ethyl carbamate satd. with HCl gas gives (2)  $\alpha$ -chloroisobutylidene bis-urethane (CH<sub>3</sub>)<sub>2</sub>C(Cl).CH(NH.-COOC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, m.p. 122° (2).]

[For complex behavior of C with MeMgBr see (3).]

---- α-Chloro-isobutyraldoxime: m.p. 96-97° (4). [Prepd. indirectly from isobutylene with amyl nitrite + HCl (4).]

3:7235 (1) Brochet, Bull. soc. chim. (3) 7, 641-644 (1892). (2) Brochet, Ann. chim. (7) 10, 352-362 (1897). (3) Henry, Bull. acad. roy. Belg. 1907, 162-189; Cent. 1907, II 445; Rec. trav. chim. 26, 416, 425-429 (1907); Compt. rend. 144, 308 (1907). (4) Ipatiev, Soolonina, J. Russ. Phys.-Chem. Soc. 33, 496-501 (1901); Cent. 1901, II 1201.

3: 7240 3-CHLOROPENTENE-2 Cl 
$$C_bH_9Cl$$
 Beil. I —  $I_1$ —  $I_2$ —  $CH_3$ .  $CH_2$ —  $CH_3$ .  $CH_3$ —  $CH_3$ .  $CH_3$   $C$ 

Two geometrical stereoisomers of C are possible but as yet unrecognized.

[For prepn. of  $\tilde{C}$  (together with 2-chloropentene-2 (3:7285) and other prods.) from methyl n-propyl ketone (1:5415) with PCl<sub>5</sub> see (1); for prepn. of  $\tilde{C}$  (together with other prods.) from diethyl ketone (propione) (1:5420) with PCl<sub>5</sub> (1) followed by treatment with alc. KOH (2) see (1) (2).]

Č with NaNH<sub>2</sub> in xylene at 130° gives (3) a little pentyne-2 (1:8040) and on subsequent pouring of the reacts, mixt, into water also pentyne-1 (1:8025).

**3:7246** (1) Bourgeul, Bull. soc. chim. (4) **35**, 1634-1636 (1924); Ann. chim. (10) **3**, 368-371 (1925). (2) Favorskii, Favorskaya, J. Russ. Phys.-Chem. Soc. **54**, 305 (1922); Cent. **1923**, III 1359. (3) Bourgeul, Ann. chim. (10) **3**, 221, 341 (1925); Compt. rend. **178**, 1985 (1924).

3:7260 3-CHLOROPENTENE-1 Cl 
$$C_6H_9Cl$$
 Beil. I —  $I_1$ —  $I_2$ —  $CH_3$ —  $CH_2$ —  $CH_2$ —  $CH_2$ —  $CH_2$ —  $I_2$ —  $I_2$ —  $I_2$ —  $I_3$ —  $I_2$ —  $I_3$ —  $I_$ 

B.P. 93-94° at 759.3 mm. (1) 
$$n_{\rm D}^{23} = 1.4224$$
 (4) 92-93° (2) (3)  $D_{\rm D}^{20} = 0.8978$  (1)  $n_{\rm D}^{20} = 1.4254$  (1)  $n_{\rm D}^{20} = 1.4254$  (1)

Note:  $\bar{C}$  by virtue of facile allylic transposition is readily converted to an equilibrium mixt. with its synionic isomer, 1-chloropentene-2 (3:7470) q.v.; reactns. of  $\bar{C}$  may therefore frequently yield also the corresponding derivatives of the isomer.

[For prepn. of  $\bar{C}$  (or its mixt. with 1-chloropentene-2 (3:7470)) from ethyl-vinyl-carbinol (penten-1-ol-3) with dry HCl (1) (3) (5) (7), with aq. HCl at 0° (6), with PCl<sub>3</sub> at 45° (4) or in cold with pyridine (7) or dimethylaniline (7) (55-59% (7)), with SOCl<sub>2</sub> alone (24% yield (7)) or in ether (24% yield (7)), or with dimethylaniline (43% yield (7)) see indic. refs.] [ $\bar{C}$  is separable from the accompanying isomer by careful fractional distillation (5) (7).]

 $\tilde{C}$  on long shaking with aq. Na<sub>2</sub>CO<sub>3</sub> gives (7) in very poor yield penten-1-ol-3 accompanied by much penten-3-ol-1 and other products. —  $\tilde{C}$  with alc. NaOEt gives (4) the corresp. ethyl ether, viz., 3-ethoxypentene-1, b.p. 102°,  $D_{-}^{23} = 0.7768$ ,  $n_{D}^{23} = 1.3986$ , accompanied by the isomeric 1-ethoxypentene-2, b.p. 123°,  $D_{-}^{23} = 0.7930$ ,  $n_{D}^{23} = 1.4099$  (4).

[For extensive study of behavior of  $\bar{C}$  with KOAc + AcOH, with AgOAc, with N-methylaniline, with diethylamine, etc., see (7); for reactn. of  $\bar{C}$  with phenol in pres. of  $K_2CO_3$  + acetone see (5).]

M-(Penten-1-yl-3)phthalimide [N-(α-ethylallyl)phthalimide]: colorless cryst. from alc., m.p. 78-79° (7). [From C on htg. with K phthalimide in a s.t. at 190-200° for 2½ hrs.; yield is only about half that obtd. from 1-chloropentene-3, the corresp. deriv. of which always accompanies that from C (7).]

3:7260 (1) Baudrenghien, Bull. soc. chim. Belg. 32, 338 (1923). (2) Mumm, Richter, Ber. 73, 858-860 (1940). (3) Mumm, Hornhardt, Diederichsen, Ber. 72, 107 (1939). (4) Prevost, Compt. rend. 187, 1053-1054 (1928). (5) Lauer, Filbert, J. Am. Chem. Soc. 58, 1388 (1936). (6) Prevost, Bull. soc. chim. (4) 49, 264-267 (1931). (7) Meisenheimer, Link, Ann. 479, 254-277 (1930).

3:7265-3:7270

Colorless liq. with odor like CHCl<sub>3</sub>; does not fume in air (3). — Sol. in aq. at room temp. to extent of 8% by wt. (7).

[For prepn. from ethylene chlorohydrin  $(3:5552) + (CH_3)_2SO_4$  (60% yield (2)) see (2); for prepn. from  $\beta$ -methoxyethanol (1:6405) with  $PCl_3 + pyridine$  (65% yield (6)), or  $SOCl_2 + dimethylaniline$  (7), or diazomethane (5) see (6) (5) (7); for prepn. from ethylene + N,N-dichlorobenzenesulfonamide see (1).]

 $\bar{C}$  on shaking with aq. does not hydrolyze (dif. from  $\alpha$ -chloroethers).

3:7265 (1) Sklyarov, J. Gen. Chem. (U.S.S.R.)
 9, 2121-2125 (1939); C.A. 34, 4055 (1940).
 42) Jones, Powers, J. Am. Chem. Soc. 46, 2531-2532 (1924).
 43) Fileti, de Gaspari, Gazz. cham. ital.
 44) Karvonen, Ann. Acad. Scs. Fennicae 3-A, No. 7, 1-103 (1912); Cent. 1912, II 1269; C.A. 14, 2175 (1920).
 45) Meerwein, Hinz, Ann 484, 17 (1930).
 46) Palomaa, Kenetti, Ber. 64, 798 (1931).
 47) Bennett, Heathcoat, J. Chem. Soc. 1929, 270.

3: 7270 ISOBUTYRYL CHLORIDE 
$$CH_3.CH-C=O$$
  $C_4H_7OCl$  Beil. II - 293  $II_{1}$ -(128)  $CH_3.Cl$   $II_{2}$ -(262)  $II_{2}$ -(262) B.P. F.P. 92° (1) (2)  $-90^{\circ}$  (7)  $D_4^{20} = 1.0174$  (8)  $n_D^{20} = 1.40789$  (8) 91.5-92.5° at 748.2 mm. (8) 1.4080 (3) 91-92° (3) 1.4070 (5) 90-92° (30) 91° at 735 mm. (4) 90-91° (5) 85-88° at 680 mm. (6)

[For prepn. of  $\bar{C}$  from isobutyric acid (1:1030) with PCl<sub>5</sub> (81% yield (9)), with PCl<sub>3</sub> (yield: 94% (6), 75% (2)) (8) (4), with PCl<sub>3</sub> + ZnCl<sub>2</sub> (82% yield (9)), with SOCl<sub>2</sub> (yield: 90% (30), 75% (4) (5), 70% (10), 44% (9)), with benzoyl chloride (82-88% yield (13)), or with SiCl<sub>4</sub> in xylene (52% yield (11)) see indic. refs.; for prepn. of  $\bar{C}$  from sodium isobutyrate with POCl<sub>3</sub> see (1) (12).]

[ $\bar{C}$  with isobutyric acid (1:1030) (14) or  $\bar{C}$  with pyridine in ether (15) yields isobutyric anhydride (1:1110), b.p. 182.5°.]

[ $\bar{C}$  on passing over Ni at 420° dec. (16) into HCl, CO, CO<sub>2</sub>, H<sub>2</sub>, CH<sub>4</sub> + propylene;  $\bar{C}$  + NH<sub>3</sub> over Al<sub>2</sub>O<sub>3</sub> at 490-500° yields (17) isobutyronitrile, b.p. 108°.]

[ $\bar{C}$  with Et<sub>3</sub>N in dry ether or lgr. at room temp. gives (18) 95% yield triethylamine hydrochloride + 57% yield dimethylketene dimer, cf. also (19) (20).]

[Č with  $\text{Cl}_2$  (31) in  $\text{CCl}_4$  gives (12) cf. (21) 60-70%  $\alpha$ -chloro-isobutyryl chloride (3:5385) + 30-40%  $\beta$ -chloroisobutyryl chloride (3:9101); Č with  $\text{SO}_2\text{Cl}_2$  in pres. of dibenzoyl peroxide gives (22) 20%  $\alpha$ -chloroisobutyryl chloride (3:5385) + 80%  $\beta$ -chloro-isobutyryl

chloride (3:9101). — Č with Br<sub>2</sub> htd. in s.t. 4 hrs. at 100° gives mainly (10) α-bromoisobutyryl bromide, b.p. 163°.]

[C added to large excess of certain RMgX cpds. is in part reduced and in part undergoes ordinary coupling with formn. of ketones; e.g., C with ter-BuMgCl in ether gives (5) (4) (3) 63% ter-butyl-isopropyl-carbinol + 20% isobutyl alc. + 18% 2,2,4-trimethylpentanone-3; C with ter-AmMgCl gives (3) 44% isobutyl isobutyrate.]

[For reactn. of  $\bar{C}$  with ethyl sodio-acetoacetate see (6); with ethyl acetoacetate + Mg see (23); with ethyl isobutyrate + triphenylmethylsodium giving 55% yield ethyl  $\alpha, \alpha, \gamma, \gamma$ -tetramethylacetoacetate see (24).]

[C with 2-methylbutene-2 (trimethylethylene) + SnCl<sub>4</sub> gives (25) 2-chloro-2,3,5-trimethylhexanone-4, b.p. 74-79° at 14 mm.; C with cyclohexene + SnCl<sub>4</sub> gives (26) 1-cyclohexenyl isopropyl ketone, b.p. 96° at 6 mm.]

[Č with AlCl<sub>3</sub> + C<sub>6</sub>H<sub>6</sub> gives (27) isobutyrophenone (isopropyl phenyl ketone) (1:5528); Č with AlCl<sub>3</sub> + toluene gives (28) isopropyl p-tolyl ketone [Beil. VII-331, VII<sub>1</sub>-(176)]; Č with AlCl<sub>3</sub> + mesitylene gives (29) 75% yield isopropyl mesityl ketone.]

Č on hydrolysis yields isobutyric acid (1:1030), b.p. 154.7°. — For the amide (30), anilide, p-toluidide, and other derivs. corresp. to Č see isobutyric acid (1:1030).

3:7270 (1) Markownikow, Zeit. für Chemie 1866, 501. (2) Recsei, Chem. Ztg. 52, 22 (1928). (3) Whitmore, Whitsker, Miner, J. Am. Chem. Soc. 63, 647, 650, 653-654 (1941). (4) Whitmore, Rec. trav. chim. 57, 565 (1938). (5) Greenwood, Whitmore, Crooks, J. Am. Chem. Soc. 60, 2029 (1938). (6) Ranganathan, J. Indian Chem. Soc. 16, 68-69 (1939). (7) Timmermans, Mattaar, Bull. soc. chim. Belg. 30, 216 (1921). (8) Bruhl, Ann. 203, 20 (1880). (9) Clark, Bell. Trans. Roy. Soc. Can. (3) 27, III 97-103 (1933). (10) Smith, Lewcock, Ber. 45, 2358-2359 (1912).

Roy. Soc. Can. (3) 27, III 97-103 (1933). (10) Smith, Lewcock, Ber. 45, 2358-2359 (1912). (11) Montonna, J. Am. Chem. Soc. 49, 2114-2116 (1927). (12) Michael, Ber. 34, 4054-4055 (1901). (13) Brown, J. Am. Chem. Soc. 60, 1325-1328 (1938). (14) Toennies, Staub, Ber. 17, 850-851 (1884). (15) Wedekind, Ber. 34, 2073 (1901). (16) Mallhe, Compt. rend. 180, 111 (1925). (17) Mailhe, Bull. soc. chim. (4) 23, 380 (1918); Ann. chim. (9) 13, 212 (1920). (18) Miller, Johnson, J. Org. Chem. 1, 138-139 (1937). (19) Wedekind, Weisswange, Ber. 39, 1631-1646 (1906). (20) Wedekind, Miller, Ber. 42, 1269-1275 (1909).

(21) Henry, Bull. acad. roy. Belg. 1906, 206-226; Cent. 1906, II 227. (22) Kharasch, Brown, J. Am. Chem. Soc. 62, 925-929 (1940). (23) Spassow, Ber. 70, 2383-2384 (1933). (24) Hauser, Renfrew, Org. Syntheses 19, 43-44 (1939). (25) Colonge, Mostafavi, Bull. soc. chim. (5) 6, 349-350 (1939). (26) Colonge, Deroux, Bull. soc. chim. (5) 7, 459-468 (1940); C.A. 36, 2842 (1942). (27) Evans, J. Chem. Soc. 1936, 788. (28) Claus, J. prakt. Chem. (2) 46, 480-481 (1892). (29) Maxwell, Adams, J. Am. Chem. Soc. 52, 2964 (1930). (30) Kent, McElvain, Org. Syntheses 25, 58-60 (1945).

(31) Schmidt, Schloffer (to I.G.) Ger. 738,398, July 15, 1943; C.A. 38, 3992 (1944).

#### 

B.P. 92.9-93.0° at 760 mm. (1) 
$$D_4^{20} = 0.8685$$
 (4)  $n_D^{20} = 1.4081$  (4) 91.8-91.9° at 753 mm. (2) 0.878 (2) 1.4095 (2) 91° at 753 mm. (3) 45.4° at 150 mm. (1) 25-27° at 60 mm. (4)

Stable at b.p., at  $100^{\circ}$  for 24 hrs., to aq. at room temp. (2). —  $\ddot{C}$  is not present in comml. "mixed amyl chlorides" (1).

[For prepn. of  $\bar{C}$  from 2-methylbutene-3 (1:8200) + HCl in dark at room temp. in s.t. for 7 months (88% yield (2)), or + HCl at 100° (5) (6), or at -80° in presence of AlCl<sub>3</sub> (4)

see indicated refs.] [Note that Č cannot be prepd. from the corresp. alc., 2-methylbutanol-3 (1:6170) + HCl since only ter-amyl chloride (3:7220) results (11).]

[For formn. of  $\tilde{C}$  from either 2-methylbutene-1 (1:8210) or 2-methylbutene-2 (1:8220) at  $-80^{\circ}$  in presence of AlCl<sub>3</sub> see (7); from isoamyl alcohol (1:6200) + HCl over Al<sub>2</sub>O<sub>3</sub> at 430° see (8); from isoamyl chloride (3:7365) over ThCl<sub>4</sub> or BaCl<sub>2</sub> at 250°, finally over pumice at 200°, see (9); from 2-methylbutane (1:8500) + Cl<sub>2</sub> see (10) (1).]

[For study of reactn. of C with Na see (12) (13).]

Č with Mg in dry ether yields (1) (2) corresponding R.Mg.Cl whose treatment with dry O<sub>2</sub> followed by hydrolysis yields (1) (2) 2-methylbutanol-3 (1:6170); [3,5-dinitrobenzoate, cryst. from dil. MeOH (1) or dil. EtOH (2), m.p. 76° (1) (2); N-(α-naphthyl)-carbamate, cryst. from pet. eth., m.p. 111-112° (2) (1).] — This R.Mg.Cl should also react according to method of (11) with phenyl isocyanate to yield isopropyl-methyl-acetanilide, m.p. 78.4° (14), 75° (15), although the execution of this reactn. is not recorded.

 $\ddot{C}$  with excess N/10 AgNO<sub>3</sub> is practically completely hydrolyzed in 60 hrs. (2) [dif. from isoamyl chloride (3:7365) which reacts only to extent of 3-4%].

3:7275 (1) Hass, McBee, Weber, Ind. Eng. Chem. 27, 1192-1195 (1935). (2) Whitmore, Johnston, J. Am. Chem. Soc. 55, 5020-5022 (1933). (3) Wyschnegradsky, Ann. 190, 357 (1877). (4) Leendertse, Tulleners, Waterman, Rec. trav. chim. 52, 519 (1933). (5) Berthelot, Ann. 127, 71 (1863). (6) Wurtz, Ann. 129, 368 (1864). (7) Leendertse, Tulleners, Waterman, Rec. trav. chim. 53, 717 (1934). (8) Sabatier, Mailhe, Compt. rend. 169, 124 (1919). (9) Sabatier, Mailhe, Compt. rend. 156, 658 (1913). (10) Aschan, Cent. 1918, II 939.

Underwood, Gale, J. Am. Chem. Soc. 56, 2117 (1934).
 Morton, LeFevre, Hechenbleikner, J. Am. Chem. Soc. 58, 757 (1936).
 Morton, Hechenbleikner, J. Am. Chem. Soc. 58, 1699 (1936).
 Hommelen, Bull. soc. chim. Belg. 42, 249 (1933).
 Crossley, Perkin, J. Chem. Soc. 73, 17 (1898).

B.P. 95-97° (1)

The structure of this material is inadequately supported; the prod. may very possibly be identical with 2-chloropentene-2 (3:7285) q.v.

[For prepn. of  $\bar{C}$  from 2,2-dichloropentane (3:7755) with alc. KOH see (1).]  $\bar{C}$  on further treatment with alc. KOH yields (1) pentyne-1 (1:8025), b.p. 39.7°.

3:7280 (1) Bruylants, Ber. 8, 411 (1875).

3: 7285 2-CHLOROPENTENE-2 Cl 
$$C_8H_9Cl$$
 Beil. I —  $I_1$ —  $I_1$ —  $I_2$ —  $I_3$ —  $I_4$ —  $I_2$ —  $I_2$ —  $I_3$ —  $I_4$ —  $I_4$ —  $I_4$ —  $I_5$ —

Two geom, stereoisomers of C are possible but as yet unrecognized.

[For prepn. of  $\bar{C}$  from 2,2-dichloropentane (3:7755) with boilg. 10% alc. KOH see (1); from pentanone-2 (1:5415) with PCl<sub>5</sub> see (2).]

C with conc. H<sub>2</sub>SO<sub>4</sub> followed by aq. yields (1) methyl-n-propyl ketone (pentanone-2 (1:5415), b.p. 102°.

[C with NaNH2 in xylene at 130° followed by ice water gives (3) pentyne-1 (1:8025).]

C on oxidn. with KMnO<sub>4</sub> yields (1) propionic acid (1:1025) + AcOH (1:1010).

3:7285 (1) Lemke, Tishchenko, J. Gen. Chem. (U.S.S.R.) 7, 1995-1998 (1937); Cent. 1939, I 2398; C.A. 32, 482 (1938). (2) Bourgeul, Ann. chim. (10) 3, 369-370 (1925); Bull. soc. chim. (4) 35, 1633 (1924). (3) Bourgeul, Ann. chim. (10) 3, 220, 370 (1925).

3: 7290 3-CHLORO-2-METHYLBUTADIENE-1,3 
$$C_5H_7Cl$$
 Beil. S.N. 12 (2-Chloro-3-methylbutadiene-1,3;  $Cl$   $CH_3$  " $\beta$ -Chloroisoprene")  $H_2C=C-C=CH_2$  B.P. 93° at 760 mm. (1)  $D_4^{20}=0.9593$  (1)  $n_D^{20}=1.4689$  (1) 41° at 113 mm. (1) (2) 37° at 105 mm. (1)

[For prepr. of  $\bar{C}$  (40% yield (1)) from 2-methylbutene-1-yne-3 by treatment as specified (1) with HCl + Cu<sub>2</sub>Cl<sub>2</sub> + NH<sub>4</sub>Cl see (1) (2) (10); for prepr. (60% yield (3) (4)) from 2,3,3-trichloro-2-methylbutane (3:4755) with quinoline (2 moles) at 140-225° see (3) (4).]

 $\bar{\mathbf{C}}$  readily polymerizes; for details see (1) (2). [For prepn. of plastic polymers from  $\bar{\mathbf{C}}$  see (5).]

 $\bar{C}$  htd. in s.t. 16 hrs. at 160° with SO<sub>2</sub> in ord. (not dry) ether yields (6) (7) (10) by 1,4-addition a compd. designated (6) (7) as 1,1-dioxo-3-chloro-4-methylthiacyclopentene-3, ndls. from aq. (7) or alc. (6), m.p. 120.0-120.5° (6) (7). [For extensive study of this prod. see (7).] [The corresponding selenium analog, in very poor (2%) yield from  $\bar{C}$  + SeO<sub>2</sub> in CHCl<sub>3</sub> (8), has m.p. 110° dec. (8).]

Č (1 g.) with 1,4-naphthoquinone (1:9040) htd. at 100° for ½ hr. gives (1) on cooling 2-chloro-3-methyltetrahydroanthraquinone, white ndls. from acetone, m.p. 165-166° u.c. (1); this prod. on suspension in dil. alc. NaOH and oxidn. of the blue soln. with air until yel., followed by dilution with aq., gives (1) 2-chloro-3-methylanthraquinone, cryst. from AcOH, m.p. 214-215° u.c. (1), 215° u.c. (9).

3:7290 (1) Carothers, Coffman, J. Am. Chem. Soc. 54, 4074-4076 (1932). (2) Carothers, Coffman (to du Pont), U.S. 1,950,441, March 13, 1934; Ger. 588,708, Nov. 24, 1933; Brit. 395,301, Oct. 10, 1933; Cent 1934, II 1038. (3) Tishchenko, J. Gen. Chem. (U.S.S. R.) 6, 1116-1132 (1936); Cent. 1937, I 573; C.A. 31, 1003 (1937). (4) Tishchenko, Russ. 44,249, Sept. 20, 1935; Cent. 1936, I 3575; C.A. 32, 2962 (1938). (5) du Pont Co., Brit. 529,838, Nov. 29, 1940; C.A. 35, 7758 (1941); French 853,478, Mar. 20, 1940; C.A. 36, 2650 (1942). (6) Backer, Strating, Rec. trav. chim. 53, 542-543 (1934). (7) Backer, van der Baan, Rec. trav. chim. 56, 181-185 (1937). (8) Backer, Strating, Rec. trav. chim. 53, 1118 (1934). (9) Keimatsu, Hirano, J. Pharm. Soc. Japan 49, 140-147 (1929); C.A. 23, 3466 (129). (10) Backer, Blass, Rec. trav. chim. 61, 785-801, 924 (1942); Cent. 1943, I 1567-1569, C.A. 38, 3646-3647 (1944).

3:7295 ETHYL CHLOROFORMATE Cl.CO.OC<sub>2</sub>H<sub>5</sub> C<sub>3</sub>H<sub>5</sub>O<sub>2</sub>Cl Beil. III - 10 ("Ethyl chlorocarbonate") III<sub>1</sub>-(5) III<sub>2</sub>-(10)

B.P. 
$$F.P.$$
  $-80.6^{\circ}$  (1)  $D_4^{25} = 1.127$  (10)  $D_2^{21.2} = 1.3949$  (8)  $D_4^{20} = 1.13519$  (4)  $D_4^{20} = 1.13519$  (5)  $D_2^{20} = 1.39738$  (4)  $D_2^{20} = 1.14419$  (6)  $D_2^{20} = 1.14419$  (7)  $D_2^{20} = 1.14419$  (8)  $D_2^{20} = 1.14419$  (9)  $D_2^{20} = 1.144$ 

Note 1. For  $D_4^1$  between  $-75.5^{\circ}$  (1.278) and  $+84.8^{\circ}$  (1.022) see (10).

 $\ddot{\mathbf{C}}$  has strong lachrymatory properties. — [For study of toxicity see (11).] —  $\ddot{\mathbf{C}}$  is comml. chemical in U.S.A.

[For prepn. of C from carbonyl chloride (phosgene) (3:5000) with abs. EtOH (1:6130) (90% yield (12)) in pres. of dimethylaniline, quantine, or antipyrine (13) or even Ca(OH)<sub>2</sub> (14) see indic. refs.; for formn. of C from diethyl carbonate (1:3150) with PCl<sub>5</sub> (15), from diethyl pyrocarbonate O(COOEt)<sub>2</sub> (16) with SOCl<sub>2</sub> (17); from pentachloroethyl chloroformate [Beil. III-13, III<sub>1</sub>-(6)] (18) or bis-(trichloromethyl) carbonate (triphosgene) (3:1915) (19) or bis-(trichloromethyl) oxalate [Beil. III-17] (20) with EtOH, or from K xanthate, ethyl xanthate, or benzyl xanthate with Cl<sub>2</sub> + aq. in cold (21) see indic. refs.]

Pyrolysis of  $\bar{C}$ .  $\bar{C}$  on htg. at 250° decomposes yielding (4) EtCl (3:7015) + CO<sub>2</sub> (for study of this reactn. see (22) (23)); in pres. of certain hydrocarbons or esters (24) or in pres. of dimethylaniline (25) temp. of this decomposition is lowered to 150°, in pres. of quinoline to 59° (26) (27), in pres. of AlCl<sub>3</sub> to room temp. (28) (see also below under  $\bar{C}$  + pyridine or quinoline).

 $\tilde{C}$  in pres. of anhydrous ZnCl<sub>2</sub> (29) (30) or even metallic Zn (31) decomposes at room temp. yielding (29) (30) EtCl (3:7015) + ethylene + CO<sub>2</sub> + HCl.

Reactions of the  $-COOC_2H_5$  group of  $\bar{C}$ .  $\bar{C}$  on hydrolysis, e.g., by boilg. with aq. or dil. acid (32), yields  $CO_2 + HCl + c$ thylene; on alkaline hydrolysis, however, no ethylene is formed (32); note that  $\bar{C}$  does not react with cold aq. very rapidly and may even be washed with it to remove alcohol.

[ $\tilde{C}$  at its b.p. treated with Cl<sub>2</sub> in sunlight undergoes further substitution by halogen yielding as final prod. (33) (34) pentachloroethyl chloroformate (ref. given above under prepn. of  $\tilde{C}$ ).]

[ $\bar{C}$  with EtHSO<sub>4</sub> at 100° under reflux for 6-8 hrs. gives (40% yield (48)) Et<sub>2</sub>SO<sub>4</sub> + EtCl (3:7015).]

Reactions of the chlorine atom of  $\bar{C}$ . [ $\bar{C}$  on reduction with 3% Na/Hg + aq. gives (51% yield (35)) salt of formic acid (1:1005).]

[C in CHCl<sub>3</sub> with Na<sub>2</sub>O<sub>2</sub> does not react until 1-2 drops of aq. are added; vigorous actn. then ensues with forms. of the expected (but very explosive) dicarbethoxy peroxide (EtOOC—O—O—COOEt) (36).]

[ $\bar{C}$  with NaSH (37) or with  $\bar{C}_2H_5$ —S—MgBr (38 in ether gives (68% yield (38))  $O_2S$ -diethyl thiocarbonate [Beil. III-133, III<sub>1</sub>-(62), III<sub>2</sub>-(105)], b.p. 158-159° cor.;  $\bar{C}$  (2 moles) + aq. (39) or alc. (40) Na<sub>2</sub>S,  $\bar{C}$  with BrMgSH in ether (41), or  $\bar{C}$  with aq. potassium trithiocarbonate (39), gives diethyl thiodiformate (dicarbethoxy sulfide) [Beil. III-133, III<sub>2</sub>-(105)], b.p. 180° dec.]

[C with thallous fluoride 12 hrs. at room temp., then refluxed 2-3 hrs., gives (47% yield (42)) ethyl fluoroformate, lachrymatory oil, b.p. 57° (42).]

[For rate of reactn. of C with KI in acctone at 25° see (43).]

[ $\bar{C}$  with aq. alc. KCN at  $-13^\circ$  (44) or with solid NaCN (contg. 0.2-7.0% moisture) at not above 90° (45) gives (yields: 90% (45), 46% (44)) ethyl cyanoformate [Beil. II-547, II<sub>1</sub>-(238), II<sub>2</sub>-(510)], b.p. 115-116° (46),  $D_4^{20}=1.0034$  (47),  $D_D^{20}=1.3821$  (47).]

 $\tilde{\mathbf{C}}$  as carbethoxylating agent.  $\tilde{\mathbf{C}}$  is widely employed as a means of introducing the  $-\mathrm{COOEt}$  group into other organic molecules by reactn. of the chlorine atom with the H of the alcoholic, phenolic, or enolic OH groups (or their metallic alcoholates, phenolates, enolates, etc.); under appropriate conditions  $\tilde{\mathbf{C}}$  is also employed to introduce the  $-\mathrm{COOEt}$  group into an aromatic nucleus. Examples of these reactns, are cited below.

[C with NaOMe yields (49) ethyl methyl carbonate [Beil. III-4, III<sub>2</sub>-(4)], b.p. 109° C with NaOEt yields diethyl carbonate (1:3150); other alcohols behave similarly (50). — C with K phenolate or C with phenol in ether + dry K<sub>2</sub>CO<sub>3</sub> gives (71% yield (51)) ethyl phenyl carbonate [Beil. VI-157], b.p. 229°; other mono-, di-, and polyhydric phenols behave

similarly. —  $\bar{C}$  (1 mole) with salicylic acid (1:0780) in pyridine at  $-15^{\circ}$  (52) or in  $C_6H_6$  with dimethylaniline (63% yield (52)) gives O-carbethoxysalicylic acid [Beil. X-69, X<sub>1</sub>-(30)], m.p. 95° (other mono-, di-, and polyhydroxy phenolic acids behave similarly); since the carbethoxy groups so introduced may subsequently be removed by hydrolysis, this process has great value as a means of temporary blocking of phenolic groups (for further discussion and many references see (53)).]

[ $\bar{C}$  also reacts with the sodio derivatives and other metallic enolates: e.g.,  $\bar{C}$  (1 mole) with ethyl cyanoacetate (2 moles) in abs. alc. + NaOEt (2 moles) gives (54) diethyl cyanomalonate [Beil. II-811, II<sub>1</sub>-(321), II<sub>2</sub>-(680)], b.p. 138-140° at 14 mm.,  $D_4^{20}=1.1128$ ,  $D_2^{20}=1.4295$  (55). —  $\bar{C}$  with diethyl malonate (1:3581) + NaOEt in alc. (56) or  $\bar{C}$  with dry diethyl sodio-malonate (57) directly (58) (59) or in  $C_8H_6$  refluxed for 10 hrs. (60) gives (yields: 50-80% (59), 60-65% (60)) triethyl methane-tricarboxylate (tricarbethoxymethane) [Beil. II-810, II<sub>1</sub>-(320), II<sub>2</sub>-(680)], m.p. 29°, b.p. 253°; note that this same prod. is also obtained (yields: 88-93% (61), 90% (62), 80% (63)) from  $\bar{C}$  with diethyl malonate (1:3581) in abs. alc. with Mg + trace CCl<sub>4</sub>. —  $\bar{C}$  with the Na enolate of ethyl isobutyrate (1:3095) gives (75% yield (64)) diethyl dimethylmalonate [Beil. II-648, II<sub>1</sub>-(276), II<sub>2</sub>-(572)], b.p. 195-196° at 760 mm. — The reactn. of  $\bar{C}$  with ethyl sodioacetoacetate cannot be discussed here.]

[C with excess RMgX compounds presumably gives first the corresp. esters which by further normal reactn. with more RMgX are converted to tertiary alcohols: e.g., C with EtMgBr (excess) yields (65) triethylcarbinol (1:6218); however, the intermediate ester can often readily be obtd.; e.g., C (1 mole) with ter-BuMgCl (1 mole) in dry ether gives (56% yield (66)) ethyl trimethylacetate (ethyl pivalate (1:3117), and other cases are recorded (66); note, however, that with certain types of RMgX cpd. abnormal reactions can occur: e.g., C with benzyl MgCl yields not only the normal tribenzylcarbinol but also (67) ethyl o-toluate (1:3862). — C also reacts with the =N—MgX grouping replacing—MgX by—COOEt (sometimes followed by rearrangement): e.g., C + 3,5-dimethyl-pyrrole-N-(magnesyl bromide) gives (57-58% yield (68)) 5-carbethoxy-2,4-dimethyl-pyrrole.]

Č also reacts readily with NH<sub>3</sub>, with primary and secondary amines, with amino acids, etc., to replace one of the H's attached to N by the —COOEt group (see also below and under ♠): e.g., Č with excess conc. aq. NH<sub>4</sub>OH immediately (if delayed, urea is formed) evaporated to dryness gives (3) ethyl carbamate (urethane) [Beil. III-22, III<sub>1</sub>-(9), III<sub>2</sub>-(19)], very eas. sol. aq., cryst. from abs. alc., dry ether, CHCl<sub>3</sub>, or C<sub>6</sub>H<sub>6</sub>, m.p. 48°, b.p. 184°. — [Č (1 mole) in ether with 33% aq. MeNH<sub>2</sub> soln. (1 mole) + aq. NaOH below 5° as directed (69) gives (88–90% yield (69)) (70) (71) ethyl N-methylcarbamate [Beil. IV-64, IV<sub>1</sub>-(330), IV<sub>2</sub>-(567)], oil, very sol. aq. (69 g. in 100 ml. aq. at 15.5° (72)), b.p.170°. — Countless other, analogous reactns. cannot be cited here.]

[ $\tilde{C}$  with hydroxylamine hydrochloride + conc. aq. Na<sub>2</sub>CO<sub>3</sub> (73) or with dry K<sub>2</sub>CO<sub>3</sub> in ether (74) gives (89.6% yield (74)) N-hydroxyurethane (carbethoxyhydroxamic acid) [Beil. III-95, III<sub>2</sub>-(77)], oil, very sol. aq.]

Č with hydrazine hydrate in alc. refluxed ½ hr. (75) (for starting with hydrazine sulfate see (76)) gives (yields: 100% (76), 90% (75)) diethyl sym.-hydrazinedicarboxylate (sym.-dicarbethoxyhydrazine) [Beil. III-98, III₁-(46), III₂-(79)], cryst. from hot aq., ndls. from CHCl₃, m.p. 130° (75), 131° (76) (note that the half reaction product, viz., ethyl hydrazine-monocarboxylate (N-aminourethane) (ethyl carbazinate), is also known (77) (78) but is an oil. — Č (1 mole) with urea (2.1 moles) refluxed for 2-3 hrs. gives (62-65% yield (79)) ethyl allophanate (N-carbethoxyurea) [Beil. III-69, III₁-(31), III₂-(56)], m.p. 192°.

Č (1 mole) in ether with phenylhydrazine (2 moles) in ether (80) (81) (82) (76) or in aq. pyridine (83) gives (yields: 60-65% (80), 60% (76)) ethyl ω-phenylcarbazinate (β-carb-

ethoxy-phenylhydrazine) [Beil. XV-286, XV<sub>1</sub>-(71)], cryst. from dil. alc. or  $C_6H_6$ /lgr. as monohydrate, m.p. 85° (81) (82), anhydrous form, m.p. 82-83° (81), 80-82° (76). —  $\tilde{C}$  with p-nitrophenylhydrazine in pyridine gives (84)  $\beta$ -carbethoxy-p-nitrophenylhydrazine, cryst. from alc., m.p. 198-199° (84). —  $\tilde{C}$  with 2,4-dinitrophenylhydrazine in pyridine gives (84)  $\beta$ -carbethoxy-2,4-dinitrophenylhydrazine, cryst. from aq. alc., m.p. 168-169° (64).

 $\tilde{C}$  (1 mole) with pyridine (1 mole) in the cold gives first a colorless addn. prod. (85) which rapidly turns red (can be used as test for pyridine (85)) and on warming rapidly decomposes with evolution of  $CO_2$  + EtCl (3:7015);  $\tilde{C}$  similarly treated with quinoline gives a yellow amorphous solid, considerably more stable than the above pyridine cpd., but at 100° decomposing similarly but more slowly (85) in the same manner (see also above under pyrolysis).

- **©** Ethyl N-(p-tolyl)carbamate (p-tolylurethane): pr. from alc., m.p. 52-53° (21), 52° (88). [From  $\tilde{C}$  (1 mole) with p-toluidine (2 moles) in ether (21) (88).]
- N,N'-bis-(Benzyl)urea: ndls. from alc., m.p. 167.5-169° cor. (89). [From C (1 ml.) with benzylamine (3 ml.) + trace NH<sub>4</sub>Cl refluxed 1 hr. (89); note that in this reactn. (unlike the two preceding cases) the reagent amine not only reacts with the chlorine atom of C but also ammonolyzes the carbethoxy group; the prod. is therefore a disubstituted urea rather than the ethyl N-benzylcarbamate [Beil. XII-1049], lfts. from lgr., m.p. 48-49° (90), which is formed from C + benzylamine + cold aq. NaOH (90).]
- ---- N-(Carbethoxy)phthalimide: unreported.
- --- N-(Carbethoxy)-3-nitrophthalimide: unreported.
- —— N-(Carbethoxy)-tetrachlorophthalimide: unreported. [Note that C with K tetrachlorophthalimide fails to react under reflux and explodes on htg. in s.t. (92).]
- —— S-(Carbethoxy)isothiourea picrate: m.p. 150-151° (93). [Note that Č (1 mole) with thiourea (1 mole) in conc. aq. soln. on treatment with NaHCO3 in slight excess evolves CO2 and ppts. S-(carbethoxy)isothiourea bicarbonate, bulky white ppt., insol. aq., m.p. 59-60° dec.; this ppt. on immediate treatment with dil. HCl dissolves and from the solution PkOH gives S-(carbethoxy)isothicurea picrate; the same prod. may also be obtd. from the original aq. soln. of Č + thiourea by direct addn. of PkOH (93). Note, however, that the above bicarbonate on stdg. with aq. changes spontaneously to N,N-dicarbethoxythiourea, m.p. 97° dec., + thiourea. Note, however, that Č (1 g.) with thiourea (1 g.) in EtOH (10 ml.) refluxed 30 min., then treated with PkOH (1 g.) does not yield the above prods. but instead (94) S-ethyl-isothiourea picrate, m.p. 187° (94).]

3:7295 (1) Timmermans, Bull. soc. chim. Belg. 31, 392 (1922). (2) Perkin, J. Chem. Soc. 65, 420 (1894). (3) Dumas, Ann. chim. (2) 54, 225-237 (1833); Ann. 10, 277-288 (1834). (4) Pavlevski, Ber. 25, 1449-1451 (1892). (5) Forster, Newman, J. Chem. Soc. 97, 2573 (1910). (6) Karvonen, Ann. Acad. Sci. Fennicae A-10, No. 4, 19, Cent. 1919, III 808. (7) Mizushima, Kubo, Bull. Chem. Soc. Japan 13, 178 (1938). (8) Guye, Mallet, Arch. sci. phys. Nat. Genève (4) 13, 274-296; Cent. 1902, I 1315. (9) von Auwers, Ber. 60, 2140 (1927). (10) Jaeger, Z. anorg. allgem. Chem. 101, 67 (1917).

(11) Eichholtz, Mertz, Arch. exptl. Path. Pharmakol. 171, 125-126 (1933); Cent. 1933, II 2160; C.A. 27, 5814 (1933). (12) Cappelli, Gazz. chim. ital. 50, II 8-12 (1920); C.A. 15, 524 (1921). (13) Bayer & Co., Ger. 118,536, 118,537, Feb. 28, 1901; Cent. 1901, I 651; Ger. 117,624, Jan. 29, 1901; Cent. 1901, I 428. (14) Hochstetter, Ger. 282,134, Feb. 16, 1915; Cent. 1915, I 464. (15)

Rose, Ann. 205, 247 (1880). (16) Boehm, Mehta, Ber. 71, 1797-1802 (1938). (17) Parfent'ev, Shamshurin, Trudy Uzbekskogo Gosudarst. Univ. Sbornik Rabot Khim. 15, 67-74 (1939); C.A. 35, 4351 (1941). (18) Cloez, Ann. chim. (3) 17, 302 (1846); Ann. 60, 260 (1846). (19) Marotta, Gazz. chim. ital. 59, 960 (1929); Cent. 1930, I 2546; C.A. 24, 3993 (1930). (20) Cahours, Ann. chim. (3) 19, 346-349 (1847); Ann. 64, 314 (1848).

(21) Douglass, Johnson, J. Am. Chem. Soc. 60, 1488 (1938). (22) Choppin, Frediani, Kirby, J. Am. Chem. Soc. 61, 3176-3180 (1939). (23) Choppin, Kirby, J. Am. Chem. Soc. 62, 1592-1594 (1940). (24) Wilm, Wischin, Ann. 147, 150-157 (1868). (25) Rivier, Richard, Helv. Chim. Acta 8, 495 (1925). (26) Carré, Passedouet, Compt. rend. 200, 1767-1769 (1935). (27) Carré, Bull. soc. chim. (5) 3, 1069, 1072 (1936). (28) Rennie, J. Chem. Soc. 41, 33 (1882). (29) Underwood, Baril, J. Am. Chem. Soc. 53, 2200-2201 (1931). (30) Ulsch, Ann. 226, 281-286 (1884).

(31) Geuther, J. prakt. Chem. (2) 6, 161 (Note) (1872). (32) Thiele, Dent, Ann. 302, 256-257 (1898). (33) Muller, Ann. 258, 50-66 (1890). (34) Anschutz, Emery, Ann. 273, 61-63 (1893). (35) Geuther, Ann. 205, 223-226 (1880). (36) Wieland, von Hove, Börner, Ann. 446, 46-47 (1926). (37) Salomon, J. prakt. Chem. (2) 6, 435-439 (1872). (38) Hepworth, Clapham, J. Chem. Soc. 119, 1195 (1921). (39) Holmberg, J. prakt. Chem. (2) 71, 278-279 (1905). (40) Meyer, Ber. 2, 298 (1869).

(41) Mingoia, Gazz. chim. ital. 55, 719 (1925). (42) Goswann, Sarkar, J. Indian Chem. Soc. 10, 537-539 (1933). (43) Conant, Kirner, Hussey, J. Am. Chem. Soc. 47, 489 (1925); Conant, Kirner, J. Am. Chem. Soc. 46, 249 (1924). (44) Nef, Ann. 287, 308 (1895). (45) Gluud, Nussler, Keller (to Gesellschaft fur Kohlentechnik), Ger. 592,539, Feb. 17, 1934; Cent. 1934, II 3437; C.A. 28, 3417 (1934). (46) Weddige, J. prakt. Chem. (2) 10, 197-199 (1874). (47) Haller, Muller, Ann. chim. (8) 14, 135 (1908). (48) Kraft, Lyutina, J. Gen. Chem. (U.S.S.R.) 1, 190-192 (1931); Cent. 1931, II 3197; C.A. 26, 2167 (1932). (49) Schreiner, J. prakt. Chem. (2) 22, 354 (1880). (50) Rose, Ann. 205, 241-246 (1880).

(51) Claisen, Ber. 27, 3183 (1894).
(52) Einhorn, Ber. 44, 435-436 (1911).
(53) Meyer, "Analyse und Konstitutionsermittlung organischer Vergindungen," 6th ed., pp. 448-451, 507 (1938).
(54) Haller, Ann. chim. (6) 16, 428-429 (1889).
(55) Mignonae, Rambeck, Compt. rend. 188, 1299 (1929).
(56) Conrad, Guthzeit, Ann. 214, 31-33 (1882).
(57) Adıckes, Ber. 59, 2527-2528 (1926).
(58) Michael, J. prakt. Chem. (2) 37, 476 (1888).
(59) Philippi, Hanusch, von Wacek, Ber. 54, 901 (1921).
(60) Adıckes, Bunnert, Lucker, J. prakt Chem. (2) 130, 163-166 (1931).

(61) Lund, Voigt, Org. Syntheses, Coll. Vol. 2 (1st ed.), 594-596 (1943); 17, 86-88 (1937). (62) Lund, Ber. 67, 938 (1934). (63) Backer, Lolkema, Rec. trav. chrm. 57, 1239 (1938). (64) Hudson, Hauser, J. Am. Chem. Soc. 63, 3160 (1941). (65) Mazurewitsch, J. Russ. Phys.-Chem. Soc. 42, 1582-1589 (1910); Cent. 1911, I 1500. (66) Whitmore, Badertscher, J. Am. Chem. Soc. 55, 1563-1564 (1933). (67) Austin, Johnson, J. Am. Chem. Soc. 54, 653-654 (1932). (68) Fischer, Org. Syntheses, Coll. Vol. 2, 198-200 (1943); 17, 48-50 (1937). (69) Hartmann, Brethen, Org. Syntheses, Coll. Vol. 2 (1st ed.), 278 (1943); 12, 38-39 (1932). (70) Schreiner, J. prakt. Chem. (2) 21, 124-125 (1880).

(71) von Pechmann, Ber. 28, 855-856 (1895).
(72) Fühner, Ber. 57, 514 (1924).
(73) Hantzsch, Ber. 27, 1255 (1894).
(74) Jones, Am. Chem. J. 20, 39-40 (1898).
(75) Curtuus, Heidenreich, J. prakt. Chem. (2) 52, 476-477 (1895).
(76) Ingold, Weaver, J. Chem. Soc. 127, 381-382 (1925).
(77) Stollé, Benrath, J. prakt. Chem. (2) 70, 276-277 (1904).
(78) von Auwers, Daniel, J. prakt. Chem. (2) 110, 256-257 (1925).
(79) Dains, Wertheim, J. Am. Chem. Soc. 42, 2303-2304 (1920).
(80) Heller, Ann. 263, 278-279 (1891).

(81) Widman, Ber. 28, 1927 (1895).
(82) Pieroni, Giannini, Gazz. chim. ital. 54, 170 (1924).
(83) Busch, Heinrichs, Ber. 33, 458 (1900).
(84) Longo, Gazz. chim. ital. 63, 467-468 (1933);
Cent. 1933, II 3415; C.A. 28, 122 (1934).
(85) Hopkins, J. Chem. Soc. 117, 278-282 (1920).
(86) Wilm, Wischin, Ann. 147, 157-163 (1868).
(87) Schmidt, Z. physik. Chem. 58, 516 (1907).
(88) Hofmann, Ber. 3, 656 (1870).
(89) Dermer, King, J. Org. Chem. 8, 168-173 (1943).
(90) Hantssch, Ber. 31, 180 (1898).

(91) Vles, Rec. trav. chim. 53, 964-966 (1934). (92) Allen, Nicholls, J. Am. Chem. Soc. 56, 1409 (1934). (93) Dixon, Kennedy, J. Chem. Soc. 117, 80-84 (1920). (94) Levy, Campbell, J. Chem. Soc. 1939, 1443.

3:7300 d,l-3-CHLORO-2-METHYLBUTENE-1 
$$C_5H_9Cl$$
 Beil. I - 211  $(\alpha,\beta$ -Dimethylallyl chloride)  $Cl$   $CH_3$   $I_1$ -(87)  $I_2$ --

B.P. 93.8° at 760 mm. (1) 
$$D_4^{20} = 0.9088$$
 (1)  $n_D^{20} = 1.4304$  (1) 18.0-18.1° at 30 mm. (1)

Note: C by virtue of facile allylic transposition is in equilibrium with its synionic isomer, 1-chloro-2-methylbutene-2 (3:7485); reactns. of C may therefore yield also derivatives related to its isomer.

[For prepn. of C (or its mixt, with 1-chloro-2-methylbutene-2) by actn. of Cl<sub>2</sub> as specified (1) on "tertiary amylene" (a mixt. consisting mainly of 2-methylbutene-2 (1:8220) with some 2-methylbutene-1 (1:8210)) see (1). — The relative amt. of  $\bar{C}$  and its isomer is not constant but usually is about 60% of C with 40% of 1-chloro-2-methylbutene-2, the ratio, however, being independent of the proportion of the two olefins in the starting material.

[For formn. of C from 2-methylbutene-2 (1:8220) with Cl<sub>2</sub> see (2); from 2-methylbutene-1 (1:8210) see (3); from 2,3-dichloro-2-methylbutane (3.7975) + alc. KOH (3) or by thermal dehydrohalogenation at 420-450° (4) see indic. refs.]

C on hydrolysis gives not only the corresponding alc. but also that corresponding to the isomeric 1-chloro-2-methylbutene-2 (3:7485) together with a little isopropyl methyl ketone. For details see the isomer (3:7485).

 $\bar{C}$  with HCl yields (2) 2,3-dichloro-2-methylbutane (3:7975) + 1,3-dichloro-2-methylbutane (3:9228).

C adds Br<sub>2</sub> giving (3) 1,2-dibromo-3-chloro-2-methylbutane, m.p. 197-198° (3).

3:7300 (1) Burgin, Engs. Groll, Hearne, Ind. Eng. Chem 31, 1416-1417 (1939). (2) Tishchenko, J. Gen. Chem. (U.S.S.R.) 6, 1116-1132 (1936); Cent. 1937, I 572, C.A. 31, 1003 (1937). (3) Gutner, Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1062-1067 (1938), Cent. 1939, II 4221; C.A. 33, 3755 (1939). (4) Buc, Muessig (to Standard Oil Development Co.) U.S. 2,332,778, Oct. 26, 1943; C.A. 38, 1750 (1944).

3: 7303 1-CHLORO-2-METHYLBUTENE-1 
$$CH_3$$
  $C_6H_9Cl$  Beil. I —  $I_{1}$ —  $I_{2}$ —(187)  $CH_3$ — $CH_2$ — $CH_2$ — $CH_3$ — $CH_3$ — $CH_3$ — $CH_4$ — $CH_4$ — $CH_5$ —

Oil with agreeable odor. — Insol. aq., sol. ether.

[For prepn. of  $\bar{C}$  from 1-chloro-2-methylbutanol-2 (3:8175) by loss of  $H_2O$  on distn. with anhyd. oxalic acid (1:0535) (44% yield (1) together with other prods.), or on treatment with PCl<sub>5</sub> (2) or Ac<sub>2</sub>O + trace conc. H<sub>2</sub>SO<sub>4</sub> (2) see indic. refs.; for formn. of C from 2-methylbutanediol-1,2 with PCl<sub>5</sub> (2) or from 1, 2-epoxy-2-methylbutane ( $\alpha$ -ethyl- $\alpha$ -methylethylene oxide) with PCl<sub>5</sub> (1 mole) in cold (1) (2) or with SOCl<sub>2</sub> (2) see indic. refs.]

[C with PCl5 adds Cl2 yielding (2) a cpd. C5H9Cl3, b.p. 180-184°.]

C adds Br<sub>2</sub> readily (2).

B.P. 96-97° (1)

[For behavior of C with NaI in acetone see (1).]

3;7303 (1) Chalmers, Trans. Roy. Soc. Can. (3) 22, III 75-78 (1928); Cent. 1929, I 631-632; C.A. 23, 2694 (1929). (2) Seyer, Chalmers, Trans. Roy. Soc. Can. (3) 20, III 338-339 (1926); Cent. 1927, II 1811; C.A. 21, 2663 (1927).

**B.P. 97.5°** cor. at **750** mm. (1) 
$$D_4^{20} = 0.9537$$
 (1)  $n_D^{20} = 1.3950$  (1)  $93-94^\circ$  at **735** mm. (2)  $0.9655$  (3)  $1.4052$  (3)

Colorless liq. which fumes in moist air.

[For prepn. (94% yield (1); 69% yield (6)) from paraldehyde (1:0170) + ethyl alc. (1:6130) + dry HCl see (1) (4); for prepn. (78% yield (5)) from acetaldehyde (1:0100) + ethyl alc. (1:6130) + dry HCl see (2) (5).]

Č on stdg. polymerizes to dark tarry residue (1).

[ $\bar{C}$  on bromination yields  $\alpha,\beta$ -dibromoethyl ethyl ether (6) (7)(5).]

Č on shaking with aq. yields acetaldehyde (1:0100), ethyl alc. (1:6130), + HCl; for study of rate of hydrolysis see (8).

3:7305 (1) Henze, Murchison, J. Am. Chem. Soc. 53, 4077-4079 (1931). (2) Mohler, Sorge, Helv. Chim. Acta 23, 1209 (1940). (3) Waterman, de Kok, Leendertse, Schoenmaker, Rec. trav. chim. 56, 437-441 (1937). (4) de Kok, Leendertse, Waterman, Chem. Weekblad, 37, 579-583 (1940); C.A. 36, 4800 (1942). (5) Sherrill, Walter, J. Am. Chem. Soc. 58, 743 (1936). (6) Swallen, Boord, J. Am. Chem. Soc. 52, 654 (1930). (7) Dykstra, Lewis, Boord, J. Am. Chem. Soc. 52, 3400 (1930). (8) Mohler, Hartnagel, Helv. Chim. Acta 25, 859-863 (1942); C.A. 37, 1799 (1943).

Note that all samples of  $\bar{\mathbb{C}}$  reported prior to 1935 were undoubtedly mixts. of 2-chloropentane ( $\bar{\mathbb{C}}$ ) with 3-chloropentane (3:7330). Each of these cpds. is with great ease partially converted to the other (see text), and their mixt. cannot be separated by fractional distillation (1).

[For prepn. of  $\bar{C}$  (or its mixt. with 3-chloropentane (3:7330)) from pentanol-2 (1:6185) with conc. HCl on long stdg. at room temp. (78% yield (1)) or in s.t. at 110° (3) see (1) (2) (3); with conc. HCl + ZnCl<sub>2</sub> (yield: 70% (6), 49% (16)) see indic. refs.; with PCl<sub>3</sub> + ZnCl<sub>2</sub> (64% yield (6)) or PCl<sub>5</sub> + ZnCl<sub>2</sub> (56% yield (6)) see (6); with SOCl<sub>2</sub> + pyridine (gives least rearr. (1)) (yield: 28% (1), 67% (6)) see (1) (6); from pentene-2 on shaking 10 hrs. at room temp. with conc. HCl see (5) (4).] [Note that both pentanol-2 (1:6185) and pentanol-3 (1:6175) with HCl even at room temp. give mixts. of 2-chloropentane ( $\bar{C}$ ) and 3-chloropentane (3:7330) (1).] [For formn. of  $\bar{C}$  in small amt. during reactn. of pentanol-1 (1:6205) with HCl + ZnCl<sub>2</sub> see (15).]

96-97°

at 729 mm.

(6)

 $\ddot{\mathbf{C}}$  is stable (no change in  $n_D^{20}$ ) on htg. in s.t. at 100° for 48° (1). — However,  $\ddot{\mathbf{C}}$  on shaking at 26–28° for 24 hrs. with HCl + ZnCl<sub>2</sub> gives a mixt. consisting of 80%  $\ddot{\mathbf{C}}$  + 20% 3-chloropentane (3:7330) (1).

[For study of rate of hydrolysis by water at 80° and 180° see (7); for rate of reactn. with KI in acetone at 60° see (8); for reactn. with Na see (9).]

- Methyl-n-propyl-acetanilide: Č with Mg in dry ether yields RMgCl which upon reactn. with phenyl isocyanate and subsequent hydrolysis yields (1) (2) (4) (10) methyl-n-propyl-acetanilide, m.p. 94-96° (1), 95.2° (11), 92.6° (12), 92.5° (2), 88° cor. (13). [For m.p./compn. data and diagrams for mixts. of methyl-n-propyl-acetanilide (from Č) with diethylacetanilide (from 3-chloropentane) see (4) (2) (12).] [For crystallographic study of these two anilides see (15).]
- (11). Methyl-n-propyl-acet-p-toluidide: m.p. 90-92° u.c. (10); 80.5° (11).
- **D** Methyl-n-propyl-acet- $\alpha$ -naphthalide: m.p. 102.5-103.5° (10).

3:7325 (1) Whitmore, Karnatz, J. Am. Chem. Soc. 60, 2536-2538 (1938). (2) Hass, Weber, Ind. Eng. Chem., Anal. Ed. 7, 231-233 (1935). (3) Kohlrausch, Köppl, Monatsh. 65, 195 (1935). (4) Kharasch, Walling, Mayo, J. Am. Chem. Soc. 61, 1559-1564 (1939). (5) Norris, Reuter, J. Am. Chem. Soc. 49, 2630-2631 (1927). (6) Clark, Streight, Trans. Roy. Soc. Can. (3) 23, III 77-89 (1929). (7) Ayres, Ind. Eng. Chem. 21, 899-904 (1929). (8) Conant, Hussey, J. Am. Chem. Soc. 47, 485 (1925). (9) Morton, LeFevre, Hechenbleikner, J. Am. Chem. Soc. 58, 757 (1936). (10) Underwood, Gale, J. Am. Chem. Soc. 56, 2117-2120 (1934).

Hommelen, Bull. soc. chim. Belg. 42, 249 (1933).
 Lauer, Stodola, J. Am. Chem. Soc. 56, 1218 (1934).
 Schwartz, Johnson, J. Am. Chem. Soc. 53, 1065 (1931).
 Hass, J. Chem. Education 13, 492-493 (1936).
 Whitmore, Karnatz, Popkin, J. Am. Chem. Soc. 60, 2541 (1938).
 Vogel, J. Chem. Soc. 1943, 638, 640.

Note that all samples of  $\bar{C}$  reported prior to 1935 were undoubtedly mixts. of 3-chloropentane ( $\bar{C}$ ) with 2-chloropentane (3:7325). Each of these cpds. is with great ease partially converted to the other (see text), and the mixture cannot be separated by fractional distillation (1).

[For prepn. of  $\bar{\rm C}$  (or its mixture with 2-chloropentane (3:7325)) from pentanol-3 (1:6175) with conc. HCl on long stdg. at room temp. (yield: 84% (1); 69% (3)) see (1) (3); with dil. HCl see (5); with conc. HCl + ZnCl<sub>2</sub> (yield: 81% (1), 70% (7), 55% (14)) see (1) (7) (14); with PCl<sub>3</sub> + ZnCl<sub>2</sub> (60% yield (7)) or PCl<sub>5</sub> + ZnCl<sub>2</sub> (73% yield (7)) see (7); with SOCl<sub>2</sub> + pyridine (gives least rearr. (1)) (yield: 46% (1), 42-44% (7)) see (1) (7); from pentene-2 (1:8215) + HCl in presence of FeCl<sub>3</sub> or AcOH see (4).] [Note that both pentanol-2 (1:6185) and pentanol-3 (1:6175) with HCl even at room temp. give mixts. of 2-chloropentane (3:7325) and 3-chloropentane ( $\bar{\rm C}$ ) (1).] [For formn. of  $\bar{\rm C}$  in small amt. during reactn. of pentanol-1 (1:6205) with HCl + ZnCl<sub>2</sub> see (12).]

 $\tilde{C}$  is stable (no change in  $n_D^{20}$ ) on htg. in s.t. at 100° for 48 hrs. (1). — However,  $\tilde{C}$  on shaking at 26–28° for 24 hrs. with HCl + ZnCl<sub>2</sub> gives a mixt. consisting of 20%  $\tilde{C}$  + 80% 2-chloropentane (1).

[For study of rate of hydrolysis by water at 80° and 180° and rate of cleavage of HCl at 180° see (12).]

- Diethylacetanilide: C with Mg in dry ether yields R.Mg.Cl which, upon reactn. with phenyl isocyanate and subsequent hydrolysis, yields (1) (3) (4) (5) diethylacetanilide, m.p. 127.5° (8), 126.8° (9), 126-127° (5), 125-128° (1), 123-124° cor. (10), 122° (3), 121° (11). [For m.p./compn. data and diagrams for mixts. of diethylacetanilide (from C) with methyl-n-propylacetanilide (from 2-chloropentane) see (4) (3) (11).] [For crystallographic study of these two anilides see (13).]
- Diethylacet-p-toluidide: m.p. 107.5-108.5° u.c. (5), 116.2° (9).
- Diethylacet-α-naphthalide: m.p. 117-118° u.c. (5).

3:7330 (1) Whitmore, Karnatz, J. Am. Chem. Soc. 60, 2536-2538 (1938). (2) Hass, J. Chem. Education 13, 493 (1936). (3) Hass, Weber, Ind. Eng. Chem., Anal. Ed. 7, 231-233 (1935).
 (4) Kharasch, Walling, Mayo, J. Am. Chem. Soc. 61, 1559-1564 (1939). (5) Underwood, Gale, J. Am. Chem. Soc. 56, 2117-2120 (1934). (6) Koelsch, McElvain, J. Am. Chem. Soc. 52, 1164-1169 (1930). (7) Clark, Streight, Trans. Roy. Soc. Can. (3) 23, III 77-89 (1929). (8) Tiffeneau, Compt rend. 204, 592 (1937). (9) Hommelen, Bull. soc. chim. Belg. 42, 249 (1933). (10) Schwartz, Johnson, J. Am. Chem. Soc. 53, 1065 (1931).

Lauer, Stodola, J. Am. Chem. Soc. 56, 1218 (1934).
 Ayres, Ind. Eng. Chem. 21, 899-904 (1929).
 Whitmore, Karnatz, Popkin, J. Am. Chem. Soc. 60, 2541 (1938).
 Vogel, J. Chem. Soc. 1943, 638, 640.

3: 7335 3-CHLORO-2-METHYLBUTENE-2 
$$C_{\delta}H_{9}Cl$$
 Beil. I - 213  $I_{1}$ —  $I_{2}$ —(Trimethylvinyl chloride)  $CH_{3}$ — $C_{-}$ — $CH_{3}$   $I_{1}$ —  $I_{2}$ —(189) B.P. 97-98° (1)  $D_{-}^{20} = 0.9096$  (5)  $n_{D}^{20} = 1.4320$  (5) 96-99° (2) 1.4380 (3) 94-99° (3)  $D_{4}^{20} = 0.925$  (3) 94° at 748 mm. (4) 91-92° at 741 mm. (5)  $D_{0}^{18} = 0.9215$  (1)

[For prepn. of  $\bar{C}$  from isopropyl methyl ketone (1:5410) with PCl<sub>5</sub> see (3) (4); from 3-chloro-2-methylbutanol-2 (3:8030) by dehydration with P<sub>2</sub>O<sub>5</sub> (50% yield (1)), anhyd. oxalic acid (6) at 130°, or strong oxygenated mineral acids such as H<sub>2</sub>SO<sub>4</sub> (92% yield (7)) see indic. refs.]

[For formn. of  $\tilde{C}$  (together with other prods.) from 2,3,3-trichloro-2-methylbutane (3:4755) (8) or from 2,3-dichloro-2-methylbutane (3:7975) with alc. KOH (2), from 2-methylbutene-2 (1:8210) with Cl<sub>2</sub> + NaHCO<sub>3</sub> at 0° (70-80% yield (9)) or with ter-butyl hypochlorite (3:7165) (47.5% yield (5)), or from 2-methylbutanol-2 (1:6160) with Cl<sub>2</sub> (10) see indic. refs.]

 $\ddot{C}$  with Cl<sub>2</sub> + NaHCO<sub>3</sub> at 0° gives (9) 80% 3,3-dichloro-2-methylbutene-1 (3:7690) + 10% addn. prod. 2,3,3-trichloro-2-methylbutane (3:4755).

 $\bar{C}$  in cold ether adds Br<sub>2</sub> giving (1) (2) 2,3-dibromo-3-chloro-2-methylbutane, cryst. m.p. 197° (1), 197-198° (2).

3:7335 (1) Krassuskii, J. Russ. Phys.-Chem. Soc. 33, 15-17 (1901); Cent. 1901, I 995. (2) Gutner, Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1062-1067 (1938); Cent. 1939, II 4221; C.A. 33, 3755 (1939). (3) Gredy, Bull. soc. chim. (5) 2, 1951 (1935). (4) Béhal, Ann. chim. (6) 15, 284-285

(1888). (5) Irwin, Hennion, J. Am. Chem. Soc. 63, 859 (1941). (6) Detoeuf, Bull. soc. chim. (4)
31, 170 (1922). (7) Groll, Burgin (to Shell Development Co.), U.S. 2,042,223, May 26, 1936;
Cent. 1937, I 1274; C.A. 30, 4875 (1936). (8) Tishchenko, J. Gen. Chem. (U.S.S.R.) 6, 1116–1132 (1936);
Cent. 1937, I 573; C.A 31, 1003 (1937). (9) Tishchenko, J. Gen. Chem. (U.S.S.R.)
8, 1232–1246 (1938);
Cent. 1939, II 4222, C.A. 33, 4190 (1939). (10) Brochet, Ann. chim. (7)
10, 381 (1897).

[For prepn. of  $\tilde{C}$  from ter-butyl methyl ketone (pinacolone) (1:5425) with PCl<sub>5</sub> on htg. (1) (50% yield (3)) or from 3,3-dichloro-2,2-dimethylbutane (3.4325) on htg. with alc. KOH at 150° (1) (3) or with KOAc + phenol (4) sec indic. refs.

Č with alc. KOH (3) or htd. at 160-200° for 5 hrs. with powdered KOH (or NaOH (5)) moistened with alc. (2) gives (80.5% yield (2)) ter-butylacetylene [Beil. 1-256], b.p. 36.4-37.8° at 768.3 mm. (2).

3:7340 (1) Delacre, Bull. acad. roy Belo. 1906, 7-41; Cent 1906, I 1233. (2) Bartlett, Rosen, J. Am. Chem. Soc. 64, 544 (1942). (3) Delacre, Bull. soc. chrm. (3) 35, 343-344 (1906). (4) Meerwein, Wortmann, Ann. 435, 194, Note 1 (1924). (5) de Graef, Bull. soc. chim. Belg. 34, 429 (1925).

3: 7345 
$$d$$
, $l$ -1-CHLORO-2-METHYLBUTANE CH<sub>3</sub> C<sub>5</sub>H<sub>11</sub>Cl Beil. I - 134  $(d$ , $l$ -sec.-Butylcarbinyl chloride) CH<sub>3</sub>.CH<sub>2</sub>-C-CH<sub>2</sub>Cl  $H$  I<sub>1</sub>- (46) I<sub>2</sub>-(100)

B.P. 
$$99.9^{\circ}$$
 at 760 mm. (1) (2)  $D_4^{20}$  unrecorded  $n_D^{20}$  unrecorded  $99.8-100^{\circ}$  at 760 mm. (2) (See note below.) (See note below.)  $99.5-100.5^{\circ}$  (3)  $99^{\circ}$  (4)  $52.5^{\circ}$  at 150 mm. (1)

[Note: for active d stereoisomer: b.p.  $100.45^{\circ}$  at 760 mm. (5),  $99.5^{\circ}$  at 750 mm. (11),  $86.8^{\circ}$  at 500 mm. (5),  $80.0^{\circ}$  at 400 mm. (5),  $71.5^{\circ}$  at 300 mm. (5),  $60.4^{\circ}$  at 200 mm. (5),  $43.0^{\circ}$  at 100 mm. (5),  $27.7^{\circ}$  at 50 mm. (5),  $D_4^{20}$  0.8857 (5), 0.8852 (6);  $n_D^{20}$  = 1.4124 (5), 1.4125 (6), 1.4126 (11).]

The sepn. of Č from 4-chloro-2-methylbutane (isoamyl chloride) (3:7365) by fractional distillation cannot be effected (1) (2).

[For prepn. of  $\tilde{C}$  from the corresponding alc., d,l-sec.-butylcarbinol (cf. 1:6195) with HCl gas at 90° for 6 hrs. (49% yield) see (2); with SOCl<sub>2</sub> see (3); for prepn. of d-form from corresp. alc. (1:6195) by satn. at 0° with HCl gas and htg. in s.t. 5 hrs. at 100° (20% yield) see (5), by use of SOCl<sub>2</sub> + pyridine (yield: 87% (11), 82% (7), 77% (6)) see (6) (7).]—
[For formn. by chlorination of crude pentane see (4).]

Č is not hydrolyzed by aq. either at 80° or at 180° (4). — For rate of loss of HCl at 180° to yield 2-methylbutene-1, b.p. 31° (1:8210), see (4).

For anal. of mixts. of C with 1-chloro-3-methylbutane (3:7365) via rate of reactn. with KI in acetone see (2).

Č with Mg in dry ether does not react (8). [However, from corresp. d,l-sec.-butyl-carbinyl bromide the R.Mg.Br cpd. was obtd. (9) in 66% yield and with phenyl isocyanate yielded N-(sec.-butylacet)anilide, m.p. 88° cor. (9), 87° (10).]

3:7345 (1) Hass, McBee, Weber, Ind. Eng. Chem. 27, 1192-1195 (1935). (2) Hass, Weber, Ind. Eng. Chem., Anal. Ed. 7, 231-233 (1935). (3) Kohlrausch, Köppl, Monatsh. 65, 195 (1935).
(4) Ayres, Ind. Eng. Chem. 21, 900 (1929). (5) Brauns, J. Research Natl. Bur. Standards 18, 323-324, 327-328 (1937). (6) Whitmore, Olewine, J. Am. Chem. Soc. 60, 2570-2571 (1938).
(7) Brown, Kharasch, Chao, J. Am. Chem. Soc. 62, 3439 (1940). (8) Underwood, Gale, J. Am. Chem. Soc. 56, 2117 (1934). (9) Schwartz, Johnson, J. Am. Chem. Soc. 53, 1063-1068 (1931).
(10) Hommelen, Bull. soc. chim. Belg. 42, 249 (1933).

(11) Brown, Groot, J. Am. Chem. Soc. 64, 2566 (1942).

3: 7350 d, '-4-CHLOROPENTENE-1 Cl C<sub>5</sub>H<sub>9</sub>Cl Beil. I — 
$$I_{1-}(86)$$
 CH<sub>3</sub>—C-CH<sub>2</sub>—CH=CH<sub>2</sub>  $I_{2-}$ 

**B.P.** 97-100° (1) 
$$D_{-}^{15} = 0.934$$
 (1)  $n_{D}^{15} = 1.417$  (1)

The levorotatory form of  $\tilde{C}$  has  $D_{\bullet}^{25}=0.8794$  (2),  $n_{D}^{25}=1.4218$  (2), but no b.p. or method of prepn. is recorded.

[For prepn. of C from penten-1-ol-4 (allyl-methyl-carbinol) [Beil. I-443] with PCl<sub>5</sub> at 0° see {1}.]

3:7350 (1) Pariselle, Compt. rend. 154, 712 (1912). (2) Levene, Rothen, J. Chem. Phys. 5, 982 (1937).

3: 7355 1-CHLORO-3-METHYLBUTADIENE-1,3 
$$C_5H_7Cl$$
 Beil. S.N. 12 (4-Chloro-2-methylbutadiene-1,3)  $CH_3$   $Cl$   $CH_2$ — $C$ — $CH$ — $CH$ 

**B.P.** 99-100° (1) 
$$D_4^{20} = 0.9543$$
 (1) (2)  $n_{\alpha}^- = 1.47189$  (1) 97.5-98° (2)

[For prepn. of  $\bar{C}$  from 1-chloro-3-methylbutadiene-1,2 (3:7390) by stdg. several days with HCl + Cu<sub>2</sub>Cl<sub>2</sub> + NH<sub>4</sub>Cl see (2).]

Č without solvent on htg. with maleic anhydride (1:0625) evolves HCl and gives (1) a mixt. of 4 acids: 2 dicarboxylic acids, m.p. 210-211° (1) (2) and m.p. 239-241° (1), and 2 tetracarboxylic acids, m.p. 298-299° (1) and m.p. 352-353° (1) (2); with solvent only the acids of m.p. 210-211° and 352-353° are formed (2).

3:7355 (1) Favorskii, Favorskaya, Compt. rend. 200, 839-840 (1935); Cent. 1935, II 1340; C.A. 20, 3651 (1935). (2) Favorskii, Favorskaya, J. Gen. Chem. (U.S.S.R.) 9, 386-395 (1939); C.A. 33, 9281 (1939).

3:7358 ISOPROPENYL CHLOROFORMATE CH<sub>3</sub> C<sub>4</sub>H<sub>5</sub>O<sub>2</sub>Cl Beil. S.N. 19 (Isopropenyl chlorocarbonate) O=C.O.C=CH<sub>2</sub>

B.P. 100° at 760 mm. (estimated) (1) 
$$D_{20}^{20} = 1.103$$
 (1) 93° at 746 mm. (1)

98.5-101°

Colorless lachrymatory liq. with sharp and unpleasant odor.

[For prepn. of  $\tilde{C}$  from acetone (1:5400) with liq. phospene (3:5000) for  $\frac{1}{2}$  hr. at room temp. see (1).

3:7358 (1) Matuszak, J. Am. Chem. Soc. 56, 2007 (1934).

3: 7360 3-CHLOROPENTADIENE-1,3 Cl 
$$C_8H_7Cl$$
 Beil. S.N. 12 ("Methylchloroprene"; pirylene monohydrochloride)

B.P. 99.5-101.5° at 759 mm. (1) (2)  $D_4^{20} = 0.9576$  (1) (2)  $n_D^{25} = 1.4745$  (3)  $n_D^{20} = 1.4785$  (1) (2)

Colorless liq. with characteristic odor; after addition of hydroquinone (as antioxidant) can be distilled (1). — [For polymerization of C see (1) (2).]

[For prepn. of  $\tilde{C}$  from penten-1-yne-3 ( $\alpha$ -methyl- $\beta$ -vinylacetylene = pirylene (3)) by shaking with conc. HCl contg. CuCl + NH<sub>4</sub>Cl see (1) (2) (3).]

C on htg. with 1,4-naphthoquinone (1:9040) at 100° for 2 hrs. then treated with alc. NaOH, and aerated (to oxidize the intermediate addn. prod.), gives (1) (3) 2-chloro-1methylanthraquinone, yel. ndls. from AcOH, m.p. 181° (1), 180.7-181.0° (3). [Dif. from 1-chloro-2-methylbutadiene-1,3 (3:9200) q.v.]

3:7360 (1) Jacobson, Carothers, J. Am. Chem. Soc. 55, 1624-1627 (1933). (2) Jacobson (to du Pont), U.S. 1,950,440, March 13, 1934; Cent. 1934, II 1037; C.A. 28, 3270 (1934). (3) Sargent, Buchman, Farquhar, J. Am. Chem. Soc. 64, 2693 (1942).

B.P. F.P. (1) 
$$-104.4^{\circ}$$
 (6)  $D_4^{20} = 0.8927$  (7)  $n_D^{20} = 1.4096$  (7)  $100-101^{\circ}$  (2)  $0.8732$  (25)  $1.40909$  (25)  $99.15^{\circ}$  at 760 mm. (3)  $1.4087$  (6)  $99^{\circ}$  at 777 mm. (25)  $98.8^{\circ}$  at 760 mm. (4) (5)  $98.1^{\circ}$  (6)

C forms many azeotropes: e.g., C with EtOH (1:6130), b.p. 78.3°, gives a const.-boilg. mixt., b.p. 74.8° at 760 mm., contg. 59 wt. % C (8); with n-propyl alc. (1:6150), b.p. 97.2°. a const.-boilg. mixt., b.p. 89.4° at 760 mm., contg. 69 wt. % C (8); with isopropyl alc. (1:6135), b.p. 82.45°, a const.-boilg. mixt., b.p. 79.2° at 760 mm., contg. 57 wt. % C (8) with isobutyl alc. (1:6165), b.p. 107.85°, a const.-boilg. mixt., b.p. 94.5° at 760 mm., contg. 78 wt. % C (8). [For still others see Beil. I<sub>2</sub>-(101).]

[For prepn. of C from isoamyl alc. (1.6200) with conc. HCl (5) (9) (10) (11), with conc. HCl + ZnCl<sub>2</sub> (60% yield (12) (13)), with PCl<sub>3</sub> + ZnCl<sub>2</sub> (13) (14), with PCl<sub>5</sub> (15) or PCl<sub>5</sub> + ZnCl<sub>2</sub> (71% yield (13)), with SOCl<sub>2</sub> (70-83% yield (13) (16)) or SOCl<sub>2</sub> + dimethylaniline (100% yield (13)) see indic. refs.]

[For study of hydrolysis by aq. at 80° and 180°, loss of HCl at 180°, and esterification with NaOAc at 180° see (1).]

[For study of rate of reactn. with KI in acetone at 60° see (2); for use in anal. of mixts. of C with 1-chloro-2-methylbutane (3:7345) see (5).

 $\bar{C}$  with Mg in dry ether + trace I<sub>2</sub> gives RMgCl (yield in 5 hrs. 96.3% (26)); this upon oxidation with O<sub>2</sub> yields (17) isoamyl alc. (1:6200) q.v. [Note: for m.p./compn. data for mixts. of N-phenylcarbamates of isoamyl alc. (1:6200) and d,l-sec.-butylcarbinol (1:6195) see orig. ref. (17).]

- © Isocaproanilide: m.p. 112.0° (18) (19); 111.5° (20); 110.5° u.c. (21); 108° cor. (22). [From RMgCl (21) or RMgBr (22) with phenyl isocyanate.]
- **D** Isocapro-p-toluidide: m.p. 63.0° (18); 61.5-62.5° u.c. (21). [From RMgCl + p-tolyl isocyanate (21).]
- ① Isocapro- $\alpha$ -naphthalide: m.p. 110-111° u.c. (21). [From RMgCl +  $\alpha$ -naphthyl isocyanate (21).]
- D Isoamyl mercuric chloride (RHgCl): m.p. 86° (23).
- **⑤** S-Isoamylisothiourea picrate: m.p. 173° (24). [In poor yield from Č in alc. on refluxing 2 hrs. with thiourea, followed by addn. of PkOH (24).]
- --- N-(Isoamyl)tetrachlorophthalimide: lfts. from EtOH, m.p. 170-171° (27).

3:7365 (1) Ayres, Ind. Eng. Chem. 21, 900 (1929). (2) Conant, Hussey, J. Am. Chem. Soc. 47, 485 (1925). (3) Timmermans, Bull. soc. chrm. Belg. 30, 66 (1921). (4) Hass, McBee, Weber, Ind. Eng. Chem. 27, 1192 (1938). (5) Hass, Weber, Ind. Eng. Chem., Anal. Ed., 7, 231-233 (1935). (6) Turkevich, Smyth, J. Am. Chem. Soc. 64, 737 (1942). (7) Washburn, Keim, J. Am. Chem. Soc. 62, 1747 (1940). (8) Lecat, Rec. trav. chim. 46, 242 (1927). (9) Mouneyrat, Ann. chim. (7) 20, 538 (1900). (10) Malbot, Bull. soc. chim. (3) 1, 603 (1889).

(11) Gleditsch, Bull. soc. chim. (3) 35, 1094-1095 (1906). (12) Norris, Taylor, J. An. Chem. Soc. 48, 756 (1924). (13) Clark, Streight, Trans. Roy. Soc. Can. (3) 23, III 77-89 (1929). (14) Dehn, Davis, J. Am. Chem. Soc. 29, 1332 (1907). (15) Cahours, Ann. 37, 164 (1841). (16) Ross, Bibbins, Ind. Eng. Chem. 31, 255-256 (1939). (17) Davydova, Papkina, Tischenko, J. Gen. Chem. (U.S.S.R.) 6, 1615-1623 (1936); Cent. 1937, I 3786. (18) Hommelen, Bull. soc. chim. Belg. 42, 249 (1933). (19) Brunner, Farmer, J. Chem. Soc. 1937, 1044. (20) Dragendorff, Ann. 487, 76 (1931).

(21) Underwood, Gale, J. Am. Chem. Soc. **56**, 2119 (1934). (22) Schwartz, Johnson, J. Am. Chem. Soc. **53**, 1065 (1931). (23) Marvel, Gauerke, Hill, J. Am. Chem. Soc. **47**, 3010 (1925). (24) Levy, Campbell, J. Chem. Soc. **1939**, 1443. (25) Vogel, J. Chem. Soc. **1943**, 638,640. (26) Houben, Boedler, Fischer, Ber. **69**, 1769, 1782 (1936). (27) Allen, Nicholls, J. Am. Chem. Soc. **56**, 1409-1410 (1934).

#### 

|             |            |      |             |                          |                                   | (      |
|-------------|------------|------|-------------|--------------------------|-----------------------------------|--------|
| B.P.        |            |      | F.P.        |                          |                                   |        |
| 101.8°      | at 760 mm. | (1)  | -89.0° (12) | $D_{-}^{25} = 1.0154  ($ | 2)                                |        |
| 102°        |            | (2)  | -89.3° (1)  |                          | $\eta_{\mathrm{D}}^{25} = 1.4115$ | (2)    |
| 101.5°      | at 768 mm. | (3)  |             | $D_4^{20} = 1.0277 (1$   | 3)                                |        |
| 101.4-102°  |            | (4)  |             |                          | 3)                                |        |
| 101.1-101.5 | •          | (5)  |             | 1                        | $\eta_{\rm D}^{20} = 1.4130$      | (11)   |
| 101-101.5°  | at 730 mm. | (6)  | (7)         |                          | 1.4126                            | (3)    |
| 101-102.5°  |            | (8)  |             |                          | 1.41209                           | (13)   |
| 100-101.5°  |            | (9)  |             |                          | 1.4117 (                          | 6) (7) |
| 100-101°    |            | (10) |             |                          | •                                 |        |
| 100.5°      | at 733 mm. | (11) |             |                          |                                   |        |

Comml. C may contain unsatd. and P cpds. (14).

[For prepn. of  $\tilde{C}$  from *n*-butyric acid (1:1035) with PCl<sub>5</sub> (83% yield (15)), with PCl<sub>3</sub> (yield 69-77% (16)) (9) (17) or PCl<sub>3</sub> + ZnCl<sub>2</sub> (77% yield (15)), with SOCl<sub>2</sub> (yield: 97.4% (18), 90% (19), 85% (10), 80% (6) (7), 50% (15)) (20), with benzoyl chloride (80-87%

yield (8) (21), with phthalyl dichloride (3:6900) (91.5% yield (22)), with benzotrichloride (3:6540) + ZnCl<sub>2</sub> at 70-80° (23), or with SiCl<sub>4</sub> in xylene (49% yield (24)) see indic. refs.; for prepn. of  $\tilde{C}$  from  $\alpha$ -chloroethyl n-butyrate on warming with a trace of ZnCl<sub>2</sub> see (25); for prepn. of  $\tilde{C}$  from n-butyric acid (1:1035) by use of methyl chlorosulfonate, benzene-sulfonyl chloride, etc., see (26).]

[ $\bar{C}$  on htg. with *n*-butyric acid (9) or with sodium *n*-butyrate yields *n*-butyric anhydride (1:1126), b.p. 198.2° at 760 mm. (12), f.p.  $-75.0^{\circ}$  (12),  $D_4^{21} = 0.9687$  (27),  $n_D^{19.73} = 1.4124$  (28).]

 $\tilde{C}$  with  $Cl_2$  in  $CCl_4$  gives (17) a mixt. of  $\alpha$ -,  $\beta$ - and  $\gamma$ -chloro-n-butyryl chlorides, some  $\alpha$ -chloro-n-butyric acid anhydride also being formed (29);  $\tilde{C}$  with  $SO_2Cl_2$  in pres. of dibenzoyl peroxide gives (30) 15%  $\alpha$ -chloro-n-butyryl chloride (3:5570), 55%  $\beta$ -chloro-n-butyryl chloride (3:5970). — For study of mech. of chlorination see (31). — [For action of  $PCl_5$  on  $\tilde{C}$  see (32).]

[ $\tilde{C}$  with Br<sub>2</sub> in light yields (17) (33) (14) (34)  $\alpha$ -bromo-*n*-butyryl chloride, b.p. 151-153° (34), and  $\beta$ -bromo-*n*-butyryl chloride.]

[ $\tilde{C}$  on cat. hydrogenation with  $H_2$  + Pd-BaSO<sub>4</sub> cat. in ether (35) or in vapor phase (36) gives n-butyraldehyde (1:0130), b.p. 74.7°;  $\tilde{C}$  on reduction with Na/Hg or Na in moist ether yields (37) (38) (39) octene-4-diol-4,5 di-n-butyrate.]

[C̄ added to large excess of certain RMgX cpds. in ether is in part reduced and in part undergoes normal form. of corresp. ketone: e.g., C̄ with ter-BuMgCl gives 9% reduction and 71% ketone form. (6) (7) (11); products include n-butyl n-butyrate, ter-butyl n-propyl ketone (2,2-dimethylhexanone-3), and ter-butyl-n-propyl-carbinyl n-butyrate. — C̄ with excess C<sub>6</sub>H<sub>6</sub>MgBr gives (84% yield (40)) 1,1-diphenylbutene-1 [Beil. V-648, V<sub>1</sub>-(313)].]

[C with chlorosulfonic acid at room temp. {41} or with AlCl<sub>3</sub> in CHCl<sub>3</sub> followed by aq. (42) gives di-n-propyl ketone (butyrone) (1:5447), b.p. 144°. — Note, however, that C on htg. with AlCl<sub>3</sub> at 60° without CHCl<sub>3</sub>, then poured into aq., yields (42) (43) 2,4,6-triethylphloroglucinol [Beil. VI-1129], m.p. 107°.]

[ $\bar{\rm C}$  with ethylene + AlCl<sub>3</sub> at 20° gives (70% yield (44)) (45)  $\beta$ -chloroethyl n-propyl ketone (1-chlorohexanone-3) [Beil. 1-690];  $\bar{\rm C}$  with cyclohexene + SnCl<sub>4</sub> yields (46) 1-cyclohexenyl n-propyl ketone, b.p. 100–102° at 8 mm.,  $D_4^{14} = 0.950$ ,  $n_D^{14} = 1.4885$  (oxime, m.p. 67°, semicarbazone, m.p. 175°) (46);  $\bar{\rm C}$  with cyclohexane + AlCl<sub>3</sub> yields (47)  $\alpha$ -methyl-cyclopentyl n-propyl ketone.]

[ $\bar{C}$  with  $C_6H_6$  + AlCl<sub>3</sub> gives (89% yield (48)) (16) phenyl *n*-propyl ketone (butyrophenone) (1:5535), b.p. 230°;  $\bar{C}$  with toluene + AlCl<sub>3</sub> gives (49) *n*-propyl *p*-tolyl ketone Beil. VII-330, VII<sub>1</sub>-(175)], b.p. 250°.]

[ $\bar{C}$  with AlCl<sub>3</sub> + phenol yields (50) (51) (20) 45% o-(n-butyryl)phenol, b.p. 124-126° at 14 mm. (51), 119° at 9 mm. (50), m.p. 10.5-10.6° (50), 8° (51),  $D_{-}^{24}$  = 1.0683 (50),  $n_{D}^{25.5}$  = 1.5375 (50) (semicarbazone, m.p. 192-193° (50), phenylhydrazone, m.p. 85-87° (51)), and 30% p-(n-butyryl)phenol, b.p. 200° at 15 mm. (51), 187-189° at 9 mm. (50), m.p. 91-91.5° (50) (benzoate, m.p. 107-107.5° (50), 106-107° (51)); for reactn. of  $\bar{C}$  with carvacrol (1:1760) + AlCl<sub>3</sub> in nitrobenzene see (52), similarly with thymol (1:1430) see (53).]

 $\bar{C}$  on hydrolysis yields *n*-butyric acid (1:1035), b.p. 164°; for the amide, anilide, *p*-toluidide, and other derivs. corresp. to  $\bar{C}$  see *n*-butyric acid (1:1035).

3:7370 (1) Timmermans, Bull. soc. chim. Belg. 36, 507 (1927). (2) Koehl, Wenzke, J. Am. Chem. Soc. 59, 1418 (1937). (3) Martin, Partington, J. Chem. Soc. 1936, 162. (4) Reitter, Z. physik. Chem. 36, 137 (1901). (5) Kohlrausch, Pongratz, Z. physik Chem. B-22, 381 (1933). (6) Greenwood, Whitmore, Crooks, J. Am. Chem. Soc. 60, 2028-2030 (1938). (7) Whitmore, Rec. trav. chim. 57, 565 (1938) (8) Brown, J. Am. Chem. Soc. 60, 1325-1328 (1938). (9)

Linnemann, Ann. 161, 179 (1872). (10) Helferich, Schaefer, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 147-149 (1941); (1st ed.), 142 (1932); 9, 32-33 (1929).

(11) Whitmore, Whitaker et al., J. Am. Chem. Soc. 63, 647-653 (1941). (12) Timmermans, Mattaar, Bull. soc. chim. Belg. 30, 216 (1921). (13) Brühl, Ann. 203, 19 (1880). (14) Kharasch, Hobbs, J. Orp. Chem. 6, 706, 709-712 (1941). (15) Clark, Bell, Trans. Roy. Soc. Can. (3) 27, III 97-103 (1933). (16) Burcker, Ann. chim. (5) 26, 466-469 (1892). (17) Michael, Ber. 34, 4051, 4057 (1901). (18) Fierz-David, Küster, Helv. Chim. Acta 22, 89 (1939). (19) Read, Orp. Syntheses 14, 90 (1934). (20) Rice, Harden, J. Am. Pharm. Assoc. 25, 7-9 (1936); Cent.

1936, II 70.

(21) Chem. Fabrik vorm. Weiler-ter-Meer, Ger. 350,050, March 11, 1922; Cent. 1972, IV 155. (22) Kyrides, J. Am. Chem. Soc. 59, 208 (1937). (23) Rabcewicz-Zubkowski, Roczniki Chem. 9, 523-531 (1929); Cent. 1979, II 2767; C.A. 24, 61 (1930). (24) Montonna, J. Am. Chem. Soc. 49, 2114-2116 (1927). (25) Soc. Usines Chim. Rhone-Poulenc, Brit. 329,721, June 19, 1930; Cent. 1930, II 1611. (26) Henle, Schirm (to Farbwerke Meister, Lucius & Brunng), Ger. 397,311, July 1, 1924; French 568,331, March 22, 1924; Cent. 1924, II 1402. (27) Tromp, Rec. trav. chim. 41, 299 (1921). (28) Whitby, J. Chem. Soc. 1926, 1463. (29) de Boosere, Bull. soc. chim. Belg. 32, 44, Note (1923). (30) Kharasch, Brown, J. Am. Chem. Soc. 62, 925-929 (1940).

32, 44, Note (1923). (30) Kharasch, Brown, J. Am. Chem. Soc. 62, 925-929 (1940). (31) Hertel, Becker, Clever, Z. physik. Chem. B-27, 303-315 (1934). (32) von Braun, Jostes, Munch, Ann. 453, 147 (1927). (33) Michael, Scharf, Ber. 46, 137-138 (1913). (34) Bardan, Bull. soc. chim. (4) 49, 1428 (1931). (35) Rosenmund, Ber. 51, 591-592 (1918). (36) Fröschl, Danoff, J. prakt. Chem. (2) 144, 220-221 (1936). (37) Freund, Ann. 118, 35-43 (1861). (38) Munchmeyer, Ber. 19, 1846 (1886). (39) Klinger, Schmitz, Ber. 24, 1271-1272 (1891). (40)

Gilman, Fothergill, Parker, Rec. trav. chim. 48, 750 (1929).

(41) Krajcinovic, Ber. 63, 2276-2278 (1930). (42) Combes, Bull. soc. chim. (3) 11, 710-712 (1894). (43) Combes, Ann. chim. (6) 12, 263-265 (1887). (44) Kenner, Statham, Ber. 63, 17 (1936). (45) Schering-Kahlbaum Akt. Ges., Brit. 282,412, Feb. 15, 1928; Cent. 1929, I 143. (46) Colonge, Duroux, Bull. soc. chim. (5) 7, 459-468 (1940); C.A. 36, 2842 (1942). (47) Nenitzescu, Ionescu, Ann. 491, 208 (1931). (48) Sorge, Ber. 35, 1073 (1902). (49) Willgerodt, Hambrecht, J. prakt. Chem. (2) 81, 78 (1910). (50) Sandulesco, Girard, Bull. soc. chim. (4) 47, 1305-1310 (1930).

(51) Coulthard, Marshall, Pyman, J. Chem. Soc. 1930, 286. (52) John, Beetz, J. prakt. Chem. (2) 143, 345 (1935). (53) Rosenmund, Schulz, Arch. Pharm. 265, 311 (1927).

3: 7390 1-CHLORO-3-METHYLBUTADIENE-1,2 
$$C_5H_7Cl$$
 Beil. S.N. 12 (4-Chloro-2-methylbutadiene-2,3)  $CH_3$   $Cl$   $CH_3$   $CH_4$   $CH_5$   $CH_$ 

B.P. 102-103° (1) 
$$D_4^{20} = 0.9515$$
 (1) (2)  $n_\alpha^{20} = 1.46697$  (2)  $101-104^\circ$  (2)

[For prepn. of  $\bar{C}$  from 2-methylbutyne-3-ol-2 (dimethyl-ethynyl-carbinol) on shaking as specified (1) (2) with HCl + CuCl<sub>2</sub> + NH<sub>4</sub>Cl; the initial reactn. prod. is 2-chloro-2-methylbutyne-3 (3:7155) which may be obtd. in 63% yield if reactn. time is short (1) (2); on stdg. with the reactn. mixt. for 18 days, however, this is isomerized to  $\bar{C}$  (40-65% yield (2)) cf. (4).]

Č on stdg. several days with HCl/Cu<sub>2</sub>Cl<sub>2</sub>/NH<sub>4</sub>Cl mixt. is isomerized (2) to 1-chloro-3-methylbutadiene-1,3 (3:7355) q.v.

 $\tilde{C}$  on htg. with aq. + CaCO<sub>3</sub> yields (1) (3) not only its precursors, 2-chloro-2-methylbutyne-3 (3:7155) and 2-methylbutyne-3-ol-2, but also vinyl chloride (3:7010), methylacetylene, and 4-chloro-2-methylbutadiene-1,3 (3:7355) q.v.

 $\tilde{C}$  gives no ppt. with NH<sub>4</sub>OH/AgNO<sub>8</sub> (1). [Dif. from 2-chloro-2-methylbutyne-3 (3:7155).]

C on oxidn. with KMnO<sub>4</sub> yields (1)  $\alpha$ -hydroxyisobutyric acid (1:0431).

3:7300 (1) Favorskii, Favorskaya, Compt. rend. 200, 839-840 (1935); Cent. 1935, II 1340; C.A. 29, 3651 (1935). (2) Favorskaya, J. Gen. Chem. (U.S.S.R.) 9, 386-395 (1939); C.A. 33, 9281

(1939). (3) Favorskaya, J. Gen. Chem. (U.S.S.R.) 9, 1237-1242 (1939); C.A. 34, 1303 (1940).
(4) Hurd (to Commercial Solvents Corp.), U.S. 2,274,611, Feb. 24, 1942; C.A. 36, 4138 (1942).

3: 7395 trans-2,3-DICHLOROBUTENE-2 Cl 
$$C_4H_6Cl_2$$
 Beil. S.N. 11  $CH_3$ — $C$  — $C$ — $CH_3$   $Cl$  B.P. 101–103° at 758 mm. (1)  $D_4^{20} = 1.1416$  (1)

[See also cis stereoisomer (3:5500).]

[For prepn. of  $\bar{C}$  (accompanied by its cis stereoisomer (3:5500)) from 2,2,3-trichloro-butane (3:5680) with solid KOH (1 mole) at 135-140° see (1).]

C on oxidn. with 3% aq. KMnO4 yields (1) acetic acid (1:1010).

 $\bar{C}$  in CCl<sub>4</sub> at  $-20^{\circ}$  treated with 7% O<sub>3</sub>, then hydrolyzed, yields (1) acetic acid (1:1010) + acetaldehyde (1:0100).

3:7395 (1) Tishchenko, Churbakov, J. Gen. Chem. (U.S.S.R.) 6, 1553-1558 (1936); Cent. 1937, I 3785; C.A. 31, 2165 (1937).

3: 7400 d,I-4-CHLOROPENTENE-2 Cl 
$$C_5H_9Cl$$
 Beil. I - 210 (2-Chloropentene-3;  $\alpha, \gamma$ -dimethylallyl chloride,  $\alpha$ -methylcrotyl chloride, piperylene hydrochloride)

B.P. 
$$103^{\circ}$$
 dec. at 760 mm. (1)  $n_{\rm D}^{25}=1.4311$  (5)  $103-106^{\circ}$  (2)  $100.5^{\circ}$  at 771.6 mm. (3)  $D_4^{20}=0.9004$  (3) (10)  $n_{\rm D}^{20}=1.4322$  (3)  $68^{\circ}$  at 200 mm. (4)  $1.4328$  (10)  $65^{\circ}$  at 200 mm. (3)  $57^{\circ}$  at 200 mm. (10)  $58^{\circ}$  at 155 mm. (5)  $18-20^{\circ}$  at 12-13 mm. (1)

Two geom. stereoisomers of  $\tilde{C}$  are possible but as yet unrecognized. — [A levorotatory form of  $\tilde{C}$  has been obtd. (6) (7) cf. (11). —  $\tilde{C}$  does not undergo allylic transposition.]

[For prepn. of C from penten-2-ol-4 with HCl gas in the cold (3) (5), with PCl<sub>3</sub> in dry ether (37% yield (8)) or with pyridine (4), with PCl<sub>5</sub> (2) see indic. refs.]

C is readily hydrolyzed even by cold aq. (3); with KOH gives Sap. Eq. 106.2 (calcd. 104.6) (4). [For study of mech. of hydrolysis of C see (4).]

 $[\bar{C}$  with HBr gives (3) 4-bromopentene-2; with phenol as specified (8) gives phenyl  $\alpha, \gamma$ -dimethylallyl ether, with diethyl sodiomalonate gives the substituted ester (5); for reactn. of  $\bar{C}$  with various aliphatic and aromatic amines see (9).]

[Č with *n*-propyl MgCl yields (10) 4-methylheptene-2, b.p. 113.5° at 760 mm.,  $D_4^{20} = 0.7206$ ,  $n_D^{20} = 1.4123$  (10).]

- $d-(\alpha,\gamma-\text{Dimethylallyl})$  acetate: b.p. 136-137° (11). [From the corresp. d-alcohol with Ac<sub>2</sub>O + pyridine (11).]
- $d_{i}l^{2}-(\alpha,\gamma$ -Dimethylallyl) benzoate: b.p. 140° at 21 mm.;  $n_{D}^{23}=1.5075$  (11). [From the corresp. d-alcohol with BzCl + pyridine (11).]

- $d_{s}l_{-}(\alpha, \gamma-\text{Dimethylallyl})$  p-nitrobenzoate: m.p. 56° (11). [From the d- or  $d_{s}l_{-}$  forms of corresp. alcohol (11).]
- $d_i$ -( $\alpha, \gamma$ -Dimethylallyl) N-( $\alpha$ -naphthyl)carbamate: m.p. 105° (11). [For important details regarding this see (11).]
- 3:7400 (1) Böttcher (to I.G.), Ger. 512,232, Nov. 7, 1930; Cent. 1931, I 1007; C.A. 25, 1037 (1931). (2) Reif, Ber. 41, 2741 (1908). (3) Baudrenghien, Bull. sci. acad. roy. Belg. (5) 15, 56 (1929); Cent. 1929, I 2966; C.A. 23, 4196 (1929). (4) Arcus, Smith, J. Chem. Soc. 1939, 1748–1749. (5) Shonle, Waldo, J. Am. Chem. Soc. 55, 4650 (1933). (6) Levene, Haller, J. Biol. Chem. 81, 706 (1929). (7) Hills, Kenyon, Phillips, J. Chem. Soc. 1936, 583. (8) Hurd, Cohen, J. Am. Chem. Soc. 53, 1920 (1931). (9) Böttcher (to I. G.), Ger. 473,215, March 14, 1929; Cent. 1929, I 3037, C.A. 23, 3052 (1929). (10) Henne, Chanan, Turk, J. Am. Chem. Soc. 63, 3474–3476 (1941).
  - (11) Balfe, Hills, Kenyon, Phillips, Platt, J. Chem. Soc. 1943, 348-351.

3:7405 ISOPROPYL CHLOROFORMATE 
$$C_4H_7O_2Cl$$
 Beil. III - 12 (Isopropyl chlorocarbonate) (CH<sub>3</sub>)<sub>2</sub>CH.O.CO.Cl III<sub>1</sub>— III<sub>2</sub>-(10)

#### B.P. 103-104° (1) (2) at 723 mm. (3)

Colorless liq. insol. cold aq.

[For prepn. (40% yield (2)) from isopropyl alc. (1:6135) + phosgene (3:5000) see (2) (3); using diphosgene (3:5515) see (1).]

 $\tilde{C}$  on htg. with quinoline dec. at 62° (4) into isopropyl chloride (3:7025) + CO<sub>2</sub>. [At higher temp. some propylene is also formed: for study see (5).]

- ① Isopropyl carbamate [Beil. III-29]: from  $\bar{C}$  in  $C_6H_6$  by treatment with NH<sub>3</sub> gas, filtration of pptd. NH<sub>4</sub>Cl, and evapn. of solvent; long ndls., m.p. 92-93° (3).
- ➡ Isopropyl N-phenylcarbamate (isopropyl carbanilate) [Beil. XII-321]: from C + aniline; cryst. from pet. ether, m.p. 75–76° (6). [Previous recorded values are erroneous.]
- 3:7495 (1) Nekrassow, Melnikow, J. prakt. Chem. (2) 127, 215 (1930). (2) Hamilton, Sly, J. Am. Chem. Soc. 47, 436-437 (1925). (3) Thiele, Dent, Ann. 302, 269-270 (1898). (4) Carré, Bull. soc. chim. (5) 3, 1072 (1936). (5) Compere, Proc. Louisiana Acad. Sci. 6, 93-98 (1942); C.A. 38, 2779 (1942). (6) Weizmann, Garrard, J. Chem. Soc. 117, 328 (1920).

B.P.  $D_4^{20} = 0.9125$  (1)  $D_D^{20} = 1.42973$  (1)  $D_D^{20} = 1.43055$  (2)  $D_D^{20} = 1.43055$  (2)

Colorless limpid liq. with odor like allyl chloride but weaker; alm. insol. aq. (1). [For prepn. of C from penten-1-ol-5 with PCl<sub>3</sub> + pyridine (1) or with SOCl<sub>2</sub> + dimethylaniline (2) see indic. refs.]

[For study of rate of reactn. of C with KI in acetone see (1).]

- 5-Phthalimidopentene-1: m.p. 40°, b.p. 155-157° at 12 mm. (3). [Not reported from C but obtd. in 90% yield (3) from 5-bromopentene-1 with K phthalimide in xylene at 150-160° for 6 hrs.]
- 3:7410 (1) Juvala, Ber. 63, 1994-1997 (1930). (2) Paul, Compt. rend. 193, 599 (1931). (3) Kharasch, Fuchs, J. Org. Chem. 9, 370 (1944).

3: 7415 2,2-DICHLOROBUTANE Cl 
$$C_4H_8Cl_2$$
 Beil. I - 119  $I_1$ —  $CH_3.CH_2.C.CH_3$   $I_2$ —  $I_2$ —

B.P. M.P. 
$$104-104.5^{\circ}$$
 (1)  $-74^{\circ}$  (3)  $D_4^{20} = 1.0665$  (2)  $n_D^{20} = 1.4306$  (2)  $102-104^{\circ}$  (2) (3)  $D_4^{21.8} = 1.069$  (5)  $n_D^{22} = 1.4270$  (4)

[For prepn. from butanone (ethyl methyl ketone) (1:5405) with PCl<sub>5</sub> see (8) (5) (4) (6) (1); for formn. (together with other isomers and 2-chlorobutene-1 (1)) from 2-chlorobutane (3:7125) by chlorination see (2).]

Č with alc. KOH splits off HCl and gives mixt. of both stereoisomeric 2-chlorobutene-2's (2) (9) (3:7105). [Cleavage of HCl in the other sense to yield mainly 2-chlorobutene-1 (3:7075) is also claimed (7).]

3:7415 (1) Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1232-1246 (1938); Cent. 1939, II 4223. (2) Tishchenko, Churbakov, J. Gen. Chem. (U.S.S.R.) 7, 663-666 (1937); Cent. 1937, II 372; C.A. 31, 5754 (1937). (3) Dupont, Compt. rend. 148, 1522 (1909). (4) Kahovec, Kohlrausch, Z. physik. Chem. B-48, 10 (1941). (5) Stoll, Rouvé, Helv. Chim. Acta 21, 1544 (1938). (6) Bruylants, Ber. 8, 412 (1875). (7) Schjanberg, Ber. 71, 573 (1938). (8) Henne, Renoll, Leicester, J. Am. Chem. Soc. 61, 940 (1939). (9) Charpentier, Bull. soc. chim. (5) 1, 1407-1411 (1934).

3: 7420 1-CHLOROPENTENE-1 Cl 
$$C_6H_9Cl$$
 Beil. S.N. 11 CH $_3$  CH $_2$ .CH $_2$ .CH $_2$ .CH $_3$ .CH $_4$ .CH

Two geom. stereoisomers of  $\bar{C}$  are possible but as yet unrecognized. [For prepr. of  $\bar{C}$  from 1.2-dichloropentane (3:8140) with alc. KOH see (1).]

3:7420 (1) Lemke, Tishchenko, J. Gen. Chem. (U.S.S.R.) 7, 1995-1998 (1937); Cent. 1939, I 2398; C.A. 32, 482 (1938).

B.P. 
$$105-106^{\circ}$$
 (1)  $D_{12}^{12} = 1.0111$  (5)  $104.3-105.7^{\circ}$  (2)  $108^{\circ}$  (3)  $103-105^{\circ}$  (5)

Colorless liq. with agreeable odor.

[For prepn. from isobutyraldehyde (1:0120) + PCl<sub>5</sub> see (5) (2); for formn. (with other products) during chlorination of isobutane see (1) (3).]

C htd. in s.t. with Ag<sub>2</sub>O + H<sub>2</sub>O yields Ag isobutyrate (4).

3:7425 (1) Hass, McBee, Weber, Ind. Eng. Chem. 27, 1191 (1935). (2) Kohlrausch, Köppl, Monatsh. 65, 197 (1935). (3) Hass, McBee (to Purdue Research Foundation), U.S. 2,004,072, June 4, 1935; Cent. 1936, I 3012. (4) Spring, Lecrenier, Bull. soc. chim. (2) 48, 626 (1887). (5) Oeconomides, Bull. soc. chim. (2) 45, 497-498 (1881).

3:7430 1,2-DICHLORO-2-METHYLPROPANE CH<sub>3</sub> C<sub>4</sub>H<sub>8</sub>Cl<sub>2</sub> Beil. I - 126 (Isobutylene dichloride) 
$$CH_3$$
— $C$ — $CH_2$   $I_{1-}$  ( 88)

B.P. 
$$106.5^{\circ}$$
 cor. at 760 mm. (1)  $D_4^{20} = 1.089$  (4)  $n_D^{20} = 1.4370$  (1)  $107-108^{\circ}$  (3) (4) (5) (6) (7)  $1.4360$  (4)  $59-60^{\circ}$  at 150 mm. (1)  $D_{20}^{20} = 1.093$  (1)  $n_D^{17} = 1.4373$  (3)  $38.6-39.2^{\circ}$  at 70 mm. (1)

Liq. with mild clean sweetish odor; stable on stdg. and develops no HCl even in 6 months (1).

[For prepn. from *ter*-butyl chloride (3:7045) by chlorination see (1) (2) (8); from 2-methylpropene (isobutylene) by addn. of  $Cl_2$  at 0° see (4); from 1-chloro-2-methylpropanol-2 (3:7752) with conc. HCl see (2) (9); from isobutane by chlorination see (10).]

Upon hydrolysis the tertiary chlorine atom shows great reactivity, the primary chlorine atom little. Thus  $\bar{\mathbb{C}}$  on boiling with aq. for 18 hrs. gives (48% yield (2)) 1-chloro-2-methylpropanol-2 (3:7752). [The addn. of bases (NaOH or NaHCO<sub>3</sub>) or antiacids (CaCO<sub>3</sub>) results in lower yields (2).] [In addn. to the above 1-chloro-2-methylpropanol-2 the presence of NaHCO<sub>3</sub> or Na<sub>2</sub>CO<sub>3</sub> leads (11) to formn. of 2-methylpropanediol-1,2 (isobutylene glycol) [Beil. I-480], 1-chloro-2-methylpropene-1 ("isocrotyl chloride") (3:7120), and isobutyraldehyde (1:0120).] [For study of methods of conversion of  $\bar{\mathbb{C}}$  to isobutyraldehyde see (1).]

3:7430 (1) Hersh, Nelson, J. Am. Chem. Soc. 58, 1631-1633 (1936). (2) Sparks, Nelson, J. Am. Chem. Soc. 58, 1010-1011 (1936). (3) Kahovoc, Kohirausch, Z. physik. Chem. B-48, 10 (1941).
(4) Burgin, Engs, Groll, Hearne, Ind. Eng. Chem. 31, 1414 (1939). (5) Hass, McBee, Weber, Ind. Eng. Chem. 27, 1191 (1935). (6) Mouneyrat, Ann. chim. (7) 20, 533-534 (1900). (7) Pogorshelski, J. Russ. Phys.-Chem. Soc. 36, 1129-1184 (1904); Cent. 1905, I 668. (8) Rogers, Nelson, J. Am. Chem. Soc. 58, 1027-1029 (1936). (9) Henry, Compt. rend. 142, 496 (1906). (10) Hass, McBee (to Purdue Research Foundation), U.S. 2,004,072, June 4, 1935; Cent. 1936, I 3012.

(11) Dobryanskii, Gutner, Shchigel'skaya, J. Gen. Chem. (U.S.S.R.) 7, 1315-1320 (1937); Cent. 1938, I 561; C.A. 31, 6189 (1937).

3: 7450 
$$\alpha, \alpha$$
-DIMETHYLPROPIONYL CHLORIDE  $C_5H_9OCl$  Beil. II - 320 (Trimethylacetyl chloride;  $CH_3$   $II_{1^-}(139)$  pivalyl chloride)  $CH_3$   $C$   $C=O$   $II_{2^-}(280)$  B.P. B.P. B.P. 107° (1) 70.5°-71.0° at 250 mm. (5) (6)  $n_D^{20} = 1.4126$  (7) 105–106° (2) 58° at 150 mm. (7) 1.4125 (9)

104.3-105.4° (3) 57.6° at 150 mm. (8) 1.4123 (9) 103-104° (4) 56° at 150 mm. (9) 1.4122 (8) 48° at 100 mm. (9) 1.4118 (5) (6) [For prepn. of  $\tilde{C}$  from trimethylacetic acid (pivalic acid) (1:0410) with PCl<sub>5</sub> (2), with

PCl<sub>8</sub> (10), with SOCl<sub>2</sub> (11) (yield 80% (5) (6) (8), 86% (7)), or with benzoyl chloride (1 mole 79% yield, 2 moles 92% yield (4) cf. (16)) see indic. refs.; for form. of C (together with other prods.) from isobutane + CO + AlCl<sub>8</sub> at 20° and 120 atm. see (12).]

[C with MeOH gives (50% yield (8)) methyl trimethylacetate (1:3072), b.p. 99.5° at

731 mm.,  $n_D^{20} = 1.3895$  (8);  $\bar{C}$  with sodium trimethylacetate yields (2) pivalic anhydride, b.p. 124° at 93 mm.,  $n_D^{20} = 1.4093$  (6).]

[C with large excess of most Grignard reagents is reduced to ter-butyl carbinol (neopentyl alcohol) (1:5812), other products also being formed; for reactn. of C with EtMgBr (8) (13), with n-PrMgBr (13), with iso-PrMgBr (13), with n-BuMgBr (5) (7) (13), with iso-BuMgBr (13) or iso-BuMgI (9), with ter-BuMgCl (5) (6) (9), with n-AmMgBr (13), with iso-AmMgBr (13), with ter-AmMgCl (9), with neopentyl MgCl (9) see indic. refs.]

[For study of rate of reactn. of C with various alcs. see (14).]

C on hydrolysis yields trimethylacetic acid (1:0410) q.v. (for the amide, m.p. 132.0-132.6° cor. (15), anilide, m.p. 132° cor. (16), p-toluidide, m.p. 119.5° cor. (16), and other derivatives (16) corresp. to C see 1:0410 and indic. refs.).

3:7450 (1) Böeseken, Rec. trav. chim. 29, 99 (1910). (2) Butlerow, Ann. 173, 373-374 (1874). (3) Kohlrausch, Pongratz, Z. physik. Chem. B-22, 382 (1933). (4) Brown, J. Am. Chem. Soc. 66, 1325-1328 (1938). (5) Whitmore, Rec. trav. chim. 57, 562-568 (1938). (6) Greenwood, Whitmore, Crooks, J. Am. Chem. Soc. 60, 2028-2030 (1938). (7) Whitmore, Popkin, Whitaker, Mattil, Zech, J. Am. Chem. Soc. 60, 2458-2462 (1938). (8) Whitmore, Foster, J. Am. Chem. Soc. 64, 2966-2968 (1942). (9) Whitmore, Whitaker, Mosher, Breivik, Wheeler, Miner, Sutherland, Wagner, Clapper, Lewis, Lux, Popkin, J. Am. Chem. Soc. 63, 643-654 (1941). (10) Whitmore, Langlois, J. Am. Chem. Soc. 54, 3439 (1932).

(11) Meyer, Monatsh. 27, 36 (1906).
(12) Hopff, Nenitzescu, Iascescu, Cantuniari, Ber. 69, 2250 (1936).
(13) Whitmore, Meyer, Pedlow, Popkin, J. Am. Chem. Soc. 60, 2788-2789 (1938).
(14) Leimu, Ber. 70, 1040-1053 (1937).
(15) Cavalieri, Pattison, Carmack, J. Am. Chem. Soc. 67, 1785 (1945).
(16) Degnan, Shoemaker, J. Am. Chem. Soc. 68, 105 (1946).

#### 3:7455 5-CHLOROPENTENE-2

C<sub>5</sub>H<sub>9</sub>Cl Beil. S.N. 11

(1-Chloropentene-3) CH<sub>3</sub>.CH=CH.CH<sub>2</sub>CH<sub>2</sub>Cl

B.P. 107.0-107.6° at 755 mm. (1)

$$D_4^{20} = 0.9043 (1) \quad n_D^{20} = 1.4310 (1)$$

Two geom, stereoisomers of C are possible but as yet unrecognized.

[For prepn. of  $\bar{C}$  in 75% yield from penten-3-ol-1 with SOCl<sub>2</sub> in CH<sub>2</sub>Cl<sub>2</sub> see (1).]

 $\bar{C}$  with NaI in acetone gives (1) after 11 hrs. reflux 74% yield 1-iodopentene-3, b.p. 53.6° at 20 mm.,  $D_{14}^{20} = 1.5579$ ,  $n_{D}^{20} = 1.5153$  (1).

Č with Mg in dry ether yields RMgCl (used in reactn. with acrolein (1:0115) to give (50% yield (1)) penten-3-yl-vinyl-carbinol).

3:7455 (1) Goethals, Bull. soc. chim. Belg. 46, 417-419 (1937).

# 3:7460 1-CHLOROPENTANE C<sub>5</sub>H<sub>11</sub>Cl Beil. I - 130 (n-Amyl chloride, CH<sub>3</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.Cl I<sub>1</sub>-(42) n-butylcarbinyl chloride) I<sub>2</sub>-(95)

| B.P.          |              | F.P.         |                                 |
|---------------|--------------|--------------|---------------------------------|
| 108.35° cor.  | at 760 mm.   | (1) (2) -99° |                                 |
| 107.74-107.78 | ° at 760 mm. | (3)          | $n_{\rm D}^{25} = 1.41026  (2)$ |
| 107-108°      |              | (4)          | $D_4^{20} = 0.8828 \qquad (8)$  |
| 105.7-105.8°  | at 759.3 mm. | (5)          | 0.8821 (30)                     |
| 105°          | at 764 mm.   | (30)         | 0.8816 (2)                      |
| 107.8-108.4°  | at 749.7 mm. | (6)          | $n_{\rm D}^{20} = 1.41280  (8)$ |
| 106.6°        | at 739.8 mm. | (7)          | 1.41253 (2)                     |
| 106°          | at 725 mm.   | (8)          | 1.41177 (30)                    |
|               |              |              | $D_4^{15} = 0.88657  (2)$       |
|               |              |              | $n_{\rm D}^{15} = 1.41481  (2)$ |

Note that most samples of  $\bar{C}$  reported prior to 1938 undoubtedly contained a small amount of mixed 2-chloropentane (3:7325) and 3-chloropentane (3:7330). This previously unrecognized fact may be the cause of much variation in reported physical constants, especially the refractive index.

[For prepn. of  $\bar{C}$  (or its mixt. with 2-chloro- and 3-choropentane) from pentanol-1 (1:6205) with conc. HCl (7) (4) in s.t. at 120° for 12-15 hrs. (94% yield (2)) see indic. refs.; with HCl + ZnCl<sub>2</sub> (yield: 67% (30), 57% (8), 72% (9)) see (8) (9) (30); with PCl<sub>3</sub> + ZnCl<sub>2</sub> (70% yield (9)) or PCl<sub>5</sub> + ZnCl<sub>2</sub> (76% yield (9)) see (9); with SOCl<sub>2</sub> + pyridine (gives no rearrangement (8)) (yield: 80% (8), 87% (9)) see (8) (9); for prepn. (23% yield (10)) from  $\gamma$ -chloropropyl p-toluenesulfonate by reactn. with EtMgBr see (10).]

[For formn. of C (together with other products) during chlorination of pentane see (11) (12) (13) (14).]

Č with EtOH forms const.-boilg. mixt., b.p. 72.5°, but forms no azeotrope with MeOH. Č forms with aq. a const.-boilg. mixt., b.p. 82°.

 $\ddot{C}$  on htg. with conc. HCl + ZnCl<sub>2</sub> at 126-134° for 12 hrs. undergoes partial isomerization forming 3% of a mixt. of 2-chloropentane (3:7325) and 3-chloropentane (3:7330) (8).

[For study of rate of hydrolysis by aq. at 80° and 180°, and rate of cleavage of HCl at 180°, see (11); for rate of reactn. with KI in acetone see (4) (15) (16); for reactn. with Na—C=CH see (17) (18); with KCN see (19); with Cl<sub>2</sub> see (6); for extensive study of reactn. with Na see (19) (20) (21) (22) (23) (24) (25).]

- n-Caproanilide: C with Mg in dry ether yields RMgCl which upon reactn. with phenyl isocyanate and subsequent hydrolysis yields (26) n-caproanilide, m.p. 96° cor. (27), 94-95° u.c. (26), 92° (28).
- n-Capro-p-toluidide: m.p. 74-75° u.c. (26), 73° (28). [From RMgCl + p-tolyl isocyanate as above (26).]
- S-n-Amylisothiourea picrate: m.p. 154° (29). [From C
   in alc. on refluxing 2 hrs. with thiourea, followed by addn. of PkOH (29).]
- —— N-(n-Amyl)tetrachlorophthalimide: ndls. from CHCl<sub>3</sub>, poured into 2 vols. MeOH, m.p. 145-146° (31).
- 3:7460 (1) Hass, J. Chem. Education 13, 492-493 (1936). (2) Simon, Bull. soc. chim Belg. 38, 48, 56, 58 (1929). (3) Rintelen, Saylor, Gross, J. Am. Chem. Soc. 59, 1129 (1937). (4) Conant, Kirner, J. Am. Chem. Soc. 46, 245 (1924). (5) Karvonen, Ann. Acad Sci. Fennicae 3-A, 1-103; Cent. 1912, II 1271. (6) Hass, Huffman, J. Am. Chem. Soc. 63, 1233-1235 (1941). (7) Lieben, Rossi, Ann. 159, 72 (1871). (8) Whitmore, Karnatz, Popkin, J. Am. Chem. Soc. 60, 2540-2542 (1938). (9) Clark, Streight, Trans. Roy. Soc. Can. (3) 23, III 77-89 (1929). (10) Rossander, Marvel, J. Am. Chem. Soc. 50, 1495 (1928).
- (11) Ayres, Ind. Eng. Chem. 21, 899-904 (1929). (12) Clerk, Ind. Eng. Chem. 22, 439-443 (1930). (13) Ayres (to B.A.S. Co.), U.S. 1,741,393, Dec. 31, 1929; Cent. 1930, I 3353. (14) Sharples Solv. Corp., Ger. 610,660; March 18, 1935; Cent. 1935, II 920. (15) Conant, Hussey, J. Am. Chem. Soc. 47, 485 (1925). (16) Conant, Kirner, Hussey, J. Am. Chem. Soc. 47, 587-589 (1925). (17) Hurd, Christ, J. Org. Chem. 1, 143-144 (1936). (18) Vaughn, Hennion, Vogt, Nieuwland, J. Org. Chem. 2, 1-22 (1937). (19) Hass, Marshall, Ind. Eng. Chem. 23, 352-353 (1931). (20) Morton, LeFevre, Hechenbleikner, J. Am. Chem. Soc. 58, 757 (1936).
- (21) Morton, Hechenbleikner, J. Am. Chem. Soc. 58, 1700 (1936). (22) Morton, Hechenbleikner, J. Am. Chem. Soc. 58, 2599-2605 (1936). (23) Morton, Richardson, J. Am. Chem. Soc. 62, 123-126 (1940). (24) Morton, Richardson, J. Am. Chem. Soc. 62, 129-131 (1940). (25) Gilman, Pacevitz, J. Am. Chem. Soc. 62, 1301-1302 (1940). (26) Underwood, Gale, J. Am. Chem. Soc. 56, 2119 (1934). (27) Schwartz, Johnson, J. Am. Chem. Soc. 53, 1065 (1931). (28) Robertson, J. Chem. Soc. 115, 1220-1221 (1919). (29) Levy, Campbell, J. Chem. Soc. 1339, 1443. (30) Vogel, J. Chem. Soc. 1943, 638, 640.

(31) Allen, Nicholls, J. Am. Chem. Soc. 56, 1409-1410 (1934).

[For prepn. of  $\bar{C}$  from  $\beta$ -ethoxyethyl alc. ("Cellosolve") (1:6410) with PCl<sub>3</sub> (7) (8) or with SOCl<sub>2</sub> + pyridine (20% yield (10)) (11) in CHCl<sub>3</sub> (58.3% yield (9)) see indic. refs.; from ethylene chlorohydrin (3:5552) + ethyl alc. (1:6130) + conc. H<sub>2</sub>SO<sub>4</sub> at 145° see (1); from ethylene with ethyl hypochlorite (3:7022) (12) or with mixtures yielding the latter, such as EtOH + Cl<sub>2</sub> (85% yield  $\bar{C}$  (2)) or alc. N,N-dichlorobenzenesulfonamide (5), see indic. refs.; from  $\beta$ -iodoethyl ethyl ether with Cl<sub>2</sub>, SbCl<sub>5</sub>, or ICl see (3).]

 $\bar{C}$  with NaI in acctone refluxed 15 hrs. gives (10) (11)  $\beta$ -ethoxyethyl iodide, b.p. 151-154° (10) (11).

[ $\bar{\rm C}$  with KSH in s.t. at 65° for 24 hrs. (1) cf. (13) gives (74% yield (1))  $\beta$ -ethoxyethyl mercaptan, b.p. 125.5–125.8° u.c.,  $D_{20}^{20}=0.9479$  (1) (corresp. EtOCH<sub>2</sub>CH<sub>2</sub>SHgCl, m.p. 152.0–153.5° dec. (1)) accompanied by (13% yield (1)) of bis-( $\beta$ -ethoxyethyl) sulfide, b.p. 229° cor., also obtd. (51% yield (1)) from  $\bar{\rm C}$  + alc. Na<sub>2</sub>S.]

[ $\bar{C}$  with excess NaOC<sub>6</sub>H<sub>5</sub> in alc. htd. 10 days gives (1)  $\beta$ -phenoxyethyl ethyl ether ( $\beta$ -ethoxyphenetole), b.p. 230°. —  $\bar{C}$  with disodium salt of hydroquinone (1:1590) gives (14) hydroquinone bis-( $\beta$ -ethoxyethyl ether), m.p. 34-35°, b.p. 210-212° at 25 mm. (14).]

[Č with diethyl malonate + alc. NaOEt gives (14% yield (1)) cf. (15) diethyl  $\beta$ -ethoxy-ethylmalonate, b.p. 134–138° at 15 mm. (1), 118–119° at 6 mm. (15);  $D_{\perp}^{20} = 1.0199$  (15).]

[ $\bar{C}$  with aniline refluxed 2 hrs. gives (1) N-( $\beta$ -ethoxyethyl)aniline, b.p. 262-263° cor.] [For reactn. of  $\bar{C}$  + NaNH<sub>2</sub> with  $\alpha$ -picoline, with  $\gamma$ -picoline, and with  $\beta$ -collidine see (16).]

3:7463 (1) Swallen, Boord, J. Am. Chem. Soc. 52, 653-659 (1930). (2) Ernst (to A. Wacker Soc. Elektrochem. Ind.), Ger. 537,696, Nov. 5, 1931; Cent. 1932, I 1153; C.A. 26, 1297 (1932). (3) Henry, Bull. soc. chim. (2) 44, 459 (1885); Compt. rend. 100, 1007 (1885). (4) Karvonen, Ann. Acad. Sci. Fennicae 5-A, 1-139 (1914); Cent. 1919, III 807; C.A. 14, 2176 (1920). (5) Sklyarov, J. Gen. Chem. (U.S.S.R.) 9, 2121-2125 (1939); Cent. 1940, II 199-200; C.A. 34, 4055 (1940). (6) Mohler, Sorge, Helv. Chim. Acta 23, 1208 (1940). (7) Karvonen, Ann. Acad. Sci. Fennicae 3-A, No. 7, 1-103 (1912); Cent. 1912, II 1270. (8) Chalmers, Can. J. Research 7, 464-471 (1932); Cent. 1933, I 1759; C.A. 27, 701 (1933). (9) Hurd, Fowler, J. Am. Chem. Soc. 61, 251 (1939). (10) Smith, Ungnade, Austin, Prichard, Opie, J. Org. Chem. 4, 339 (1939).

(11) Dutta, J. Indian Chem. Soc. 17, 652 (1940). (12) Suknevich, Chilingaryan, J. Gen. Chem. 2, 783-789 (1932); Cent. 1933, II 1170; C.A. 27, 2670 (1933). (13) Rojahn, Lemme, Arch. Pharm. 263, 623 (1925). (14) Sexton (to Imperial Chem. Ind., Ltd.), U.S. 2,056,299, Oct. 6, 1936; Cent. 1937, I 1798; C.A. 30, 8641 (1936). (15) Palomaa, Kenetti, Ber. 64, 800-801 (1931).

(16) Chichibabine, Bull. soc. chim. (5) 5, 439-441 (1938).

3:7464 
$$\beta$$
-CHLOROETHYL VINYL ETHER C<sub>4</sub>H<sub>7</sub>OCl Beil. I — CH<sub>2</sub>—CH<sub>2</sub>—CH<sub>2</sub>—CH<sub>2</sub>—CH<sub>2</sub>—CH<sub>2</sub>—CH<sub>2</sub>—CH<sub>2</sub>—CH<sub>2</sub>—CH<sub>2</sub>—CH<sub>2</sub>—CH<sub>2</sub>—CH<sub>2</sub>—(473) B.P. 109° cor. at 740 mm. (1)  $D_{15}^{15} = 1.0525$  (1)

[For prepn. of  $\tilde{C}$  from  $\beta,\beta'$ -dichlorodiethyl ether (3:6025) with solid N2OH at 200° (1) or with triethanolamine + solid NaOH (70% yield (2)) see indic. refs.]

 $\ddot{\mathbf{C}}$  is stable toward alkalies but with dil. acids even in cold is readily and quant. hydrolyzed (1) to  $\beta$ -chloroethanol (3:5552) and acetaldehyde (1:0100).

[ $\bar{C}$  with diethyl sodiomalonate gives (73% yield (1)) diethyl  $\beta$ -(vinyloxy)ethyl malonate, b.p. 130-135° at 9 mm.,  $D_{15}^{16} = 1.0575$  (1); this prod. condenses (1) with urea to give 5-( $\beta$ -(vinyloxy)ethyl)barbituric acid (whose properties appear to be subsequently unreported) which itself with dil. minl. acid hydrolyzes to give 5-( $\beta$ -hydroxyethyl)barbituric acid, m.p. above 300° (3). — For analogous reactions of  $\bar{C}$  with various diethyl alkylmalonates and reaction of the products with urea to give the corresp. 5-alkyl-5-( $\beta$ -(vinyloxy)ethyl)barbituric acids see (3). —  $\bar{C}$  with diethyl phenyl-sodio-malonate in s.t. at 140-145° for 14 hrs. gives (52% yield (4)) diethyl 5-phenyl-5-( $\beta$ -(vinyloxy)ethylmalonate, b.p. 196-197° at 17 mm.,  $D_4^{20} = 1.098$ ; this prod. with urea gives (4), 5-phenyl-5-( $\beta$ -(vinyloxy)ethyl)barbituric acid which upon hydrolysis with dil. acid gives (10% yield (4)) 5-phenyl-5-( $\beta$ -hydroxyethyl)barbituric acid ("hydroxyluminal").]

[ $\bar{C}$  with phenylacetonitrile gives (50% yield (4)) phenyl-( $\beta$ -vinyloxyethyl)acetonitrile, b.p. 147° at 8 mm.,  $D_4^{20} = 1.029$  (4).]

[For use of C in prepn. of cellulose ethers see (5).]

3:7464 (1) Cretcher, Koch, Pittenger, J. Am. Chem. Soc. 47, 1175-1176 (1925). (2) Chitwood, Perkins (to Carbide and Carbon Chem. Corp.), U.S. 2,104,717, Jan. 4, 1938; Cent. 1938, I 4236; [C.A. 32, 1712 (1938)]: French 815,148, July 6, 1937; Cent. 1937, II 4238; C.A. 32, 1278 (1938). (3) Cretcher, Koch, Pittenger, J. Am. Chem. Soc. 47, 3083-3085 (1925). (4) Nolson, Cretcher, J. Am. Chem. Soc. 50, 2761-2762 (1928). (5) Hahn (to du Pont Co.), U.S. 2,082,797, June 8, 1937; Cent. 1937. II 3838; C.A. 31, 5577 (1937).

3: 7465 4-CHLORO-2-METHYLBUTENE-2 
$$C_5H_9Cl$$
 Beil. I - 214  $(\gamma,\gamma$ -Dimethylallyl chloride;  $Cl$   $CH_3$   $I_1$ -(88) isoprene hydrochloride)  $CH_2$ -CH=C-CH<sub>3</sub>  $I_2$ -(191)

**B.P.** 
$$109^{\circ}$$
 (1)  $D_{4}^{20} = 0.9335$  (1)  $n_{D}^{20} = 1.43975$  (4)  $30-33^{\circ}$  at 40 mm. (4)

Colorless liq. with odor like allyl chloride. —  $\bar{\mathbf{C}}$  darkens on stdg. and loses HCl on distn. (1).

[For prepn. of C from 2-methylbutadiene-1,3 (isoprene) (1:8020) by 1,4-addn. of dry HCl gas see (1) (4).]

 $\overline{C}$  on htg. in s.t. with KOAc + AcOH (1) or passed over  $TiO_2$  at 425–450° at reduced press. (3) loses HCl yielding isoprene (1:8020), b.p. 34°.

Č reduces alk. KMnO<sub>4</sub> (1).

Č in conc. HCl satd. with HCl gas gives (94% yield (1)) 2,4-dichloro-2-methylbutane (3:8105), b.p. 145-146° (1) cf. (4).

C in CHCl<sub>3</sub> adds 1 Br<sub>2</sub>, yields (1) 2,3-dibromo-4-chloro-2-methylbutane, oil decomposing on distn. even under reduced press. (1).

[For behavior of C with AlCl<sub>3</sub> see (2).]

3:7465 (1) Aschan, Ber. 51, 1303-1307 (1918). (2) Thomas, Carmody, J. Am. Chem. Soc. 55, 3855 (1933). (3) Müller-Cunradi (to I.G.), Ger. 565,160, Nov. 26, 1932. (4) Soday (to United Gas Improvement Co.), U.S. 2,376,396, May 22, 1945; C.A. 39, 3548 (1945).

3: 7470 1-CHLOROPENTENE-2 
$$C_5H_9Cl$$
 Beil. I —  $(\gamma$ -Ethylallyl chloride) CH<sub>3</sub>.CH<sub>2</sub>.CH=CH.CH<sub>2</sub>Cl I<sub>1</sub>— I<sub>2</sub>-(184) B.P. 109–110° (1) (2)  $D_-^{23} = 0.9095$  (3)  $n_D^{23} = 1.4347$  (3)

Note. Č by virtue of facile allylic transposition is readily converted to an equilibrium mixt. with its synionic isomer 3-chloropentene-1 (3:7260) q.v.; reactns. of Č may therefore frequently yield also the corresponding derivatives of the isomer.

[For prepn. of  $\bar{C}$  (or its mixt. with 3-chloropentene-1 (3:7260)) from penten-2-ol-1 with dry HCl gas at 0° (5) (7), with PCl<sub>3</sub> + pyridine (4) (7), or with SOCl<sub>2</sub> in ether (6) see indic. refs.; for prepn. of  $\bar{C}$  from 3-chloropentene-1 (3:7260) by htg. at 225° (60-62%  $\bar{C}$ ) see (6) (3).] [ $\bar{C}$  is separable from the accompanying isomer by careful fractional distn. (7) (5).] [For formn. of  $\bar{C}$  (together with other products) from pentene-2 (1:8215) + Cl<sub>2</sub> in CCl<sub>4</sub> see (8).]

 $\bar{C}$  on long shaking with aq. Na<sub>2</sub>CO<sub>3</sub> gives (7) in poor yield penten-2-ol-1 (*p*-nitrobenzoate, m.p. 53°) accompanied by much penten-1-ol-3. —  $\bar{C}$  on htg. with alc. KOH gives (3) (7) in poor yield the corresp. ethyl ether, viz., 1-ethoxypentene-2, b.p. 123°,  $D_{-}^{23} = 0.7930$ ,  $n_{D}^{23} = 1.4099$  (3), accompanied by the isomeric 3-ethoxypentene-1, b.p. 102°,  $D_{-}^{23} = 0.7768$ ,  $n_{D}^{23} = 1.3986$  (3).

[For study of reactns. of  $\bar{C}$  with KOAc in AcOH, with AgOAc, with N-methylaniline, with diethylamine, etc., see (7); for reactn. of  $\bar{C}$  with phenol in pres. of  $K_2CO_3$  + acetone see (5).]

 $\bigcirc$  N-(Penten-2-yl-1)phthalimide [N-(γ-ethylallyl)phthalimide]: colorless rhombic cryst. from alc., m.p. 69-70° (7). [From  $\bigcirc$  on htg. with K phthalimide in a s.t. at 190-200° for 2½ hrs.; note that some of the corresp. deriv. from the isomer, viz., N-(α-ethylallyl)phthalimide, m.p. 78-79°, is formed to extent of about 10% (7).]

3:7470 (1) Mumm, Richter, Ber. 73, 858-860 (1940). (2) Mumm, Hornhardt, Diederichsen, Ber. 72, 107 (1939). (3) Prevost, Compt. rend. 187, 1053-1054 (1928). (4) Gredy, Bull. soc. chim. (5) 4, 419 (1937). (5) Lauer, Filbert, J. Am. Chem. Soc. 58, 1388 (1936). (6) Prevost, Bull. soc. chim. (4) 49, 264-267 (1931). (7) Meisenheimer, Link, Ann. 479, 254-277 (1930). (8) Stewart, Weidenbaum, J. Am. Chem. Soc. 58, 98-100 (1936).

3:7475 3-CHLORO-2,2-DIMETHYLBUTANE 
$$C_6H_{13}Cl$$
 Beil. S.N. 10 (Pinacolyl chloride;  $CH_3$  H ter-butyl-methyl-carbinyl chloride)  $CH_3$   $CH_4$   $CH_5$   $CH_5$ 

B.P. 109.9° at 734 mm. (1)  $D_4^{20} = 0.8767$  (1)  $n_D^{20} = 1.4181$  (1) [For form. of  $\tilde{C}$  (11%) from 2,2-dimethylbutane (neohexane) (1:8510) on chlorination

see (1).] [Note that the corresp. alc. (pinacolyl alc.) (1:6186) with HCl does not give C but rather rearr. prods. (2).]

Č with Mg in dry ether gives RMgCl which with oxygen yields (1) pinacolyl alc. (1:6186) q.v.

Pinacolyl mercuric chloride (C<sub>6</sub>H<sub>13</sub>HgCl): cryst. from dil. alc., m.p. 89-90° (3); 89.5-90° (2). [From RMgCl + HgCl<sub>2</sub> in ether.] 3:7475 (1) Whitmore, Bernstein, Mixon, J. Am. Chem. Soc. 60, 2539 (1938). (2) Whitmore, Rothrock, J. Am. Chem. Soc. 55, 1106-1109 (1933). (3) Whitmore, Bernstein, J. Am. Chem. Soc. 60, 2627 (1938).

3: 7480 3,3-DICHLORO-2-METHYLPROPENE-1 
$$C_4H_6Cl_2$$
 Beil. S.N. 11 (1,1-Dichloro-2-methylpropene-2)  $Cl$   $CH_3$   $HC$ — $C$ = $CH_2$   $Cl$ 

B.P. 
$$108-112^{\circ}$$
 at 762 mm. (1)  $D_4^{24} = 1.1363$  (1)  $n_C^{24} = 1.4523$  (1)  $49-50^{\circ}$  at 120 mm. (1)

Note.  $\bar{C}$  by virtue of allylic transposition may yield derivatives of its synionic isomer 1,3-dichloro-2-methylpropene-1 (3:5590) q.v.

[For prepn. of  $\tilde{C}$  (68% yield together with 32% yield of 1,1,2-trichloro-2-methylpropane (3:5710)) from 1-chloro-2-methylpropene-1 ( $\beta,\beta$ -dimethylvinyl chloride) (3:7120) with Cl<sub>2</sub> (1 mole) + NaHCO<sub>3</sub> (1.5 moles) at 0° see (1).]

Č on htg. under reflux gives (by allylic transposition) 1,3-dichloro-2-methylpropene-1 (3:5590), b.p. 132°.

Č with O<sub>3</sub> followed by hydrolysis yields (1)  $\alpha,\alpha$ -dichloroacetone (3:5430) + methylglyoxal (propanone-2-al-1) [Beil. I-762; I<sub>1</sub>-(395), I<sub>2</sub>-(819)].

**3:7480 (1)** Tishchenko, J. Gen. Chem. (U.S.S.R.) **8,** 1232-1246 (1938); Cent. **1939,** II 4223; C.A. **33,** 4190 (1939).

3: 7485 1-CHLORO-2-METHYLBUTENE-2 CH<sub>3</sub> 
$$C_5H_9Cl$$
 Beil. I —  $(\beta,\gamma$ -Dimethylallyl chloride) CH<sub>3</sub>—CH=C — CH<sub>2</sub>Cl  $I_1$ —  $I_2$ —(189) B.P. 110° at 760 mm. (1)  $D_4^{20} = 0.9327$  (1)  $n_D^{20} = 1.4481$  (1) 25.9-26.4° at 25 mm. (1)  $D_4^{16} = 0.9324$  (2)

Note.  $\tilde{C}$  by virtue of facile allylic transposition is in equilibrium with its synionic isomer 3-chloro-2-methylbutene-1 (3:7300); reactns. of  $\tilde{C}$  therefore may also yield derivatives related to its isomer.

[For prepn. of  $\bar{C}$  (or its mixt. with the synionic 3-chloro-2-methylbutene-1 (3:7300)) by actn. of  $Cl_2$  as specified (1) on "tertiary amylene" (a mixt. consisting mainly of 2-methylbutene-2 (1:8220) with some 2-methylbutene-1 (1:8210)) see (1). — The relative amt. of  $\bar{C}$  and its isomer is not constant but usually is about 40% of  $\bar{C}$  with 60% of 3-chloro-2-methylbutene-1 (3:7300), the ratio, however, being independent of the proportion of the two olefins in the starting material.]

[For formn. of  $\bar{C}$  from 2-methylbutene-2 (1:8220) with  $Cl_2$  see (2); from 2-methylbutene-1 (1:8210) see (3); for prepn. of  $\bar{C}$  (together with other prods.) from 1-chloro-2-methylbutanol-2 (3:8175) by distn. with anhyd. oxalic acid (4) or with  $Ac_2O$  + conc.  $H_2SO_4$  (5) see (4) (5); for prepn. of  $\bar{C}$  from 2-methylbuten-2-ol-1 with  $PCl_3$  + pyridine see (1).]

 $\ddot{\mathbf{C}}$  on hydrolysis gives not only the alc. corresponding to  $\ddot{\mathbf{C}}$  but also that corresp. to the isomeric 3-chloro-2-methylbutene-1 (3:7300) together with a little ketone: thus  $\ddot{\mathbf{C}}$  on hydrolysis with 12 pts. aq. at 70° for 16 hrs. gives (6) 25% alc. A (2-methylbuten-1-ol-3) [N-( $\alpha$ -naphthyl)carbamate, m.p. 91.5-93° (6)] + 50% alc. B (2-methylbuten-2-ol-1) [N-( $\alpha$ -naphthyl)carbamate, m.p. 103-103.5° (6)] + 5% isopropyl methyl ketone (1:5410);

 $\bar{C}$  on hydrolysis with 2 pts. aq. + 1 mole CaCO<sub>3</sub> for 4 hrs. at 70° gives (6) 60% alc. A + 30% alc. B + 5% isopropyl methyl ketone (1:5410);  $\bar{C}$  on hydrolysis with CaO for 1½ hrs. gives (6) 70% alc. A + 25% alc. B + a trace of ketone.

[For study of reactn. of C with NaI (4) and its rate of reactn. with KI in acetone at 20° (7) or with NaOEt in alc. at 35° (7) see indic. refs.; the reactivity of the halogenation of C is greater than that in crotyl chloride (1-chlorobutene-2) (3:7205) and the latter in turn is more reactive than that in methallyl chloride (3-chloro-2-methylpropene-1) (3:7145) or allyl chloride (3:7035), which are about the same (4),

 $\bar{C}$  on treatment with O<sub>3</sub> followed by hydrolysis yields (3) (2) chloroacetone (3:7212) + acetaldehyde (1:0100).

3:7485 (1) Burgin, Engs, Groll, Hearne, Ind. Eng. Chem. 31, 1416 (1939). (2) Tishchenko, J. Gen. Chem. (U.S.S.R.) 6, 1116-1132 (1936); Cent. 1937, I 572; C.A. 31, 1003 (1937). (3) Gutner, Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1062-1067 (1938); Cent. 1939, II 4221; C.A. 33, 3755 (1939). (4) Chalmers, Trans. Roy Soc Can. (3) 22, III 74-77 (1928). (5) Seyer, Chalmers, Trans. Roy. Soc. Can. (3) 20, III 338 (1926). (6) Tishchenko, J. Gen. Chem. (U.S.S.R.) 6, 1549-1552 (1936); Cent. 1937, I 3785, C.A. 31, 2165 (1937). (7) Tamele, Ott, Marple, Hearne, Ind. Eng. Chem. 33, 118-119 (1941).

Note that the prod. of b.p. 180°, formerly (3) supposed to have been C, is in fact (2) diallyl carbonate.

[For prepn. of  $\bar{C}$  from allyl alc. (1:6145) with phosgene (3:5000) (yield 37% (1)) (4) (2) see indic. refs.; note that some diallyl carbonate, b.p. 166° at 730 mm. (2), is also formed (2).]

 $\overline{C}$  in quinoline begins to decompose at 37° (5) (6) presumably into  $CO_2$  + allyl chloride (3:7035) although this is not specifically stated.

[For reaction of  $\bar{C}$  with diethylene glycol (1:6525), triethylene glycol (1:6538), etc., see (7).]

3:7487 (1) Schving, Sabetay, Bull. soc. chim. (4) 43, 858 (1928). (2) Fierz-David, Müller, J. Chem. Soc. 125, 26 (1924). (3) Thiele, Dent. Ann. 302, 262 (1898). (4) Schving, French 34,412, June 18, 1929; Cent. 1929, II 2829. (5) Carré, Bull. soc. chim. (5) 3, 1072 (1936). (6) Carré, Passedouet, Compl. rend. 201, 899 (1935). (7) Muskat, Strain (to Pittsburgh Plate Glass Co.), U.S. 2,370,565, Feb. 27, 1945; C.A. 39, 4526 (1945).

3: 7490 2-CHLORO-2-METHYLPENTANE 
$$C_{6}H_{13}Cl$$
 Beil. I - 148 (Dimethyl-n-propyl-carbinyl CH<sub>3</sub>  $I_{1-}$ (53)  $I_{2-}$ (111) CH<sub>3</sub>  $I_{1-}$ (53)  $I_{2-}$ (111) CH<sub>3</sub>  $I_{2-}$ (111)  $I_{2-}$ (111)  $I_{2-}$ (112)  $I_{2-}$ (112)  $I_{2-}$ (113)  $I_{2-}$ (114)  $I_{2-}$ (114)  $I_{2-}$ (115)  $I_{2-}$ (116)  $I_{2-}$ (116)  $I_{2-}$ (116)  $I_{2-}$ (117)  $I_{2-}$ (117)  $I_{2-}$ (118)  $I_{2-}$ (119)  $I_{2-}$ (119)  $I_{2-}$ (119)  $I_{2-}$ (119)  $I_{2-}$ (111)  $I_{2-$ 

;

[For density of  $\ddot{C}$  at 0°, 15°, 25°, 50°, and 65°, together with parachors at 0°, 25°, 50°, and 75°, see (9).]

[For prepn. of  $\tilde{C}$  from corresp. alc., dimethyl-n-propyl-carbinol (2-methylpentanol-2) (1:6190) with PCl<sub>5</sub> (6), with HCl gas (1) (2), or with conc. HCl (4) (5) see indic. refs.; for prepn. (68% yield) from ethyl-isopropyl-carbinol (2-methylpentanol-3) (1:6194) with HCl as the result of rearrangement see (1); for formn. (together with other products) from reaction of 2-ethylbutanol-1 (1:6223) with HCl + ZnCl<sub>2</sub> see (3); for formn. from 2-methylpentene-2 (1:8275) by addn. of HCl see (7) (8).]

[For study of rate of reaction with KI in acetone see (5).]

Č with Mg in dry ether yields RMgCl; upon treatment with oxygen this gives (48% yield (1)) of dimethyl-n-propyl-carbinol (2-methylpentanol-2) (1:6190) q.v.

- Dimethyl-n-propyl-acetanilide: m.p. 70.5-74° (3). [From C via conversion to RMgCl and reaction with phenyl isocyanate (3).]
- **Dimethyl-n-propyl-acet-\alpha-naphthalide:** m.p. 116-118° (3). [From  $\tilde{C}$  via conversion to RMgCl and reaction with  $\alpha$ -naphthyl isocyanate (3).]
- 3:7490 (1) Whitmore, Johnston, J. Am. Chem. Soc. 60, 2266 (1938). (2) Schreiner, J. prakt. Chem. (2) 82, 292-293 (1910). (3) Whitmore, Karnatz, J. Am. Chem. Soc. 60, 2534 (1938). (4) Deschamps, J. Am. Chem. Soc. 42, 2672 (1920). (5) Conant, Hussey, J. Am. Chem. Soc. 47, 485 (1925). (6) Butlerow, Bull. soc. chim. (2) 5, 23-24 (1866). (7) Nasarow, Ber. 70, 613 (1937). (8) Nasarow, Ber. 70, 622 (1937). (9) Quayle, Owen, Beavers, J. Am. Chem. Soc. 61, 3107-3111 (1939).

3: 7495 d,l-4-CHLORO-2-METHYLPENTANE 
$$C_6H_{13}Cl$$
 Beil. I —  $(d,l$ -Isobutyl-methyl-carbinyl  $CH_3$  H  $I_1$ — chloride)  $CH_2$ — $C$ — $CH_2$ — $C$ — $CH_3$  H  $I_2$ -(111)

B.P. 111-112° at 773 mm. (1) 
$$D_4^{20} = 0.861$$
 (1)  $n_D^{20} = 1.4113$  (1)

[For prepn. of  $\bar{C}$  from 2-methylpentanol-4 (1:6199) with dry HCl for 18 weeks (82% yield) see (1); for formn. of  $\bar{C}$  (together with other products) in reaction of 2-ethylbutanol-1 (1:6223) with HCl + ZnCl<sub>2</sub> see (2).]

 $\ddot{C}$  with Mg in dry ether yields RMgCl which with O<sub>2</sub> gives (62% yield (1)) 2-methylpentanol-4 (1:6199) [N-( $\alpha$ -naphthyl)carbamate, m.p. 93.5-94.5° (2)]; this alc. upon oxidn. with CrO<sub>3</sub>/H<sub>2</sub>SO<sub>4</sub> yields (2) 4-methylpentanone-2 (1:5430) q.v.

3:7495 (1) Whitmore, Johnston, J. Am. Chem. Soc. 60, 2267 (1938). (2) Whitmore, Karnatz, J. Am. Chem. Soc. 60, 2535 (1938).

#### CHAPTER XVII

## DIVISION B. LIQUIDS WITH BOILING POINTS REPORTED AT ORDINARY PRESSURE

### Section 2. $D_4^{20}$ less than 1.1500

(3:7500-3:7999)

B.P. 109-114° sl. dec. (1)

[For prepn. of  $\ddot{C}$  from 2-methylpenten-4-ol-2 (allyl-dimethyl-carbinol) [Beil. I-445, I<sub>2</sub>-(487)] with PCl<sub>5</sub> see (1).]

3:7500 (1) M. Saytzeff, A. Saytzeff, Ann. 185, 156 (1877).

3: 7520 1-CHLORO-2,3-DIMETHYLBUTENE-2 
$$C_6H_{11}Cl$$
 Beil. S.N. 11  $(\beta,\gamma,\gamma$ -Trimethylallyl chloride)  $CH_3$   $CH_3$ 

B.P. 111-112° at 756 mm. (1) 
$$D_4^{19} = 0.8895$$
 (1)  $n_C^{19} = 1.4315$  (1)

Note.  $\bar{C}$  by virtue of allylic transposition would be expected to be in equilibrium with its synionic isomer 3-chloro-2,3-dimethylbutene-1( $\alpha,\alpha,\beta$ -trimethylallyl chloride). The material described by (1) was regarded as  $\bar{C}$ ; the isomer seems to be unrecorded.

[For prepn. of  $\tilde{C}$  (or its mixt. with 3-chloro-2,3-dimethylbutene-1) in 90% yield from 2,3-dimethylbutene-2 (tetramethylethylene) (1:8290) with Cl<sub>2</sub> + NaHCO<sub>3</sub> at 0° see (1).]

 $\ddot{\mathbf{C}}$  on hydrolysis yields (1) a hexenol (regarded (1) as 2,3-dimethylbuten-1-ol-3 derived from the synionic isomer of  $\ddot{\mathbf{C}}$ ), b.p. 116-118°,  $D_4^{17}=0.835$ ,  $n_{\ddot{\mathbf{C}}}^{17}=1.4248$  (1).

3:7520 (1) Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1232-1246 (1938); Cent. 1939, II 4222; C.A. 33, 4190 (1939).

3: 7525 
$$\alpha$$
-CHLOROETHYL  $n$ -PROPYL ETHER  $C_5H_{11}OCl$  Beil. I - 607  $H_1$   $I_1$ —  $I_2$ —  $CH_3$ . C.O. $n$ -C $_3H_7$   $Cl$   $Cl$  B.P. 112–115° at 731 mm. (1)  $D_4^{20} = 0.9322$  (2)  $n_D^{20} = 1.4013$  (2)

47.5° cor. at 40 mm. (2)

C decomposes considerably if distd. at ord. press. (3).

[For prepn. (93% yield (2)) from paraldehyde (1:0170) + n-propyl alc. (1:6150) + dry HCl see (2) (3).]

C on stdg. polymerizes to dark tarry residue (2).

 $|\tilde{C}|$  on bromination yields  $\alpha,\beta$ -dibromoethyl n-propyl ether (3).

 $\overline{C}$  on shaking with aq. yields acetaldehyde (1:0100), n-propyl alc. (1:6150) + HCl.

3:7525 (1) Gauthier, Ann. chim. (8) 16, 312 (1909). (2) Henze, Murchison, J. Am. Chem. Soc. 53, 4077-4079 (1931). (3) Dykstra, Lewis, Boord, J. Am. Chem. Soc. 52, 3399-3400 (1930).

3:7530 2-CHLOROHEXENE-1 Cl 
$$C_6H_{11}Cl$$
 Beil. S.N. 11  $CH_3.CH_2.CH_2.CH_2-CH_2$ 

B.P.

113° at 740 mm. (1) 
$$D_4^{25} = 0.8886$$
 (1)  $n_D^{25} = 1.4278$  (1)  $109.5-110.5$ ° at 735 mm. (2)  $0.8872$  (2) 1.4187 (2)

[For prepn. of  $\tilde{C}$  from hexyne-1 (1:8055) with dry HCl + BiCl<sub>3</sub> in C<sub>6</sub>H<sub>6</sub> (20% yield {1}) together with 40% yield 2,2-dichlorohexane (3:9342)) or with AcCl + SnCl<sub>4</sub> (15% yield {2}) together with 37% 4-chloro-octen-3-one-2, b.p. 75-95° at 20 mm.) sec {1} (2); for prepn. of  $\tilde{C}$  (60.5% yield {1}) from 2,2-dichlorohexane (3:9342) with KOH in *n*-propyl alc. at 95° sec {1}.]

 $\tilde{C}$  in CCl<sub>4</sub> + SbCl<sub>5</sub> treated with Cl<sub>2</sub> at 35-40° gives (1) (3) cis-1,2-dichlorohexene-1 (3:9330) (26.7% yield (1)) together with 25.4% 1,1,2,2-tetrachlorohexene (3:9332).

3:7530 (1) Hennion, Walsh, J. Am. Chem. Soc. 62, 1367-1368 (1940). (2) Kroeger, Sowa, Nieuwland, J. Org. Chem. 1, 163-169 (1936). (3) Norris, Hennion, J. Am. Chem. Soc. 62, 450 (1940).

**B.P.** 113.0-113.5° at 748 mm. (1) 
$$D_4^{25} = 0.8898$$
 (1)  $n_D^{25} = 1.4320$  (1)

Two geom. stereoisomers of  $\ddot{C}$  are possible, but only this one is as yet recognized. [For prepn. of  $\ddot{C}$  from hexyne-3 (diethylacetylene) (1:8065) with AcCl + SnCl<sub>4</sub> see (1); (both *cis* and *trans* stereoisomers of 4-chloro-3-ethylhexen-3-one-2 are also formed).

3:7535 (1) Kroeger, Sowa, Nieuwland, J. Org. Chem. 1, 163-169 (1936).

3:7540 
$$n$$
-PROPYL CHLOROFORMATE  $C_4H_7O_2Cl$  Beil. III - 11  $(n$ -Propyl chlorocarbonate)  $n$ -C $_8H_7$ .O.CO Cl III $_2$ -(10)

B.P. 114-115.5° at 768 mm. (1) 
$$D_4^{20} = 1.0901$$
 (1)  $n_D^{20} = 1.40350$  (4) 115.2 cor. (2) (3)

 $\tilde{C}$  reacts but slowly with cold aq., more rapidly on warming, yielding *n*-propyl alc.  $(1:6150) + CO_2 + HCl$ .

[For prepn. from n-propyl alc. (1:6150) + phosgene (3:5000) (42% yield (3)) see (2) (3).]

 $\overline{C}$  on htg. with ZnCl<sub>2</sub> yields (5) propylene, CO<sub>2</sub>, + HCl;  $\overline{C}$  on warming with pyridine or quinoline dec. at 66° into *n*-propyl chloride (3:7040) + CO<sub>2</sub> (6) cf. (7).

- ① n-Propyl N-phenylcarbamate (n-propyl carbanilate) [Beil. XII-321]: from Č + excess aniline in ether, cryst. from alc., m.p. 57-59° (8).
- 3:7540 (1) Karvonen, Ann. Acad. Sci Fennicae A-10, No. 4, 19 (1916); Cent. 1919, III 808. (2) Roese, Ann. 205, 227-230 (1880) (3) Hamilton, Sly, J. Am. Chem. Soc. 47, 436-437 (1925).
- (4) Dobrosserdow, Cent. 1911, I 954. (5) Underwood, Baril, J. Am. Chem. Soc. 53, 2201 (1931).
- (6) Carré, Bull. soc. chim. (5) 3, 1069 (1936). (7) Fry, J. Am. Chem. Soc. 36, 260-261 (1914).
- (8) Roemer, Ber. 6, 1103 (1878).

114°

113-115°

3: 7545 CHLOROCYCLOPENTANE (Cyclopentyl chloride) 
$$H_2C - CH_2$$
  $H_2C - CH_2$   $H_3C - CH_3$   $H_3C -$ 

[For prepn. of  $\bar{C}$  from cyclopentanol (1:6412) with boilg. conc. HCl + CaCl<sub>2</sub> (87% yield (5)) (6), or with conc. HCl at 110° (87% yield (2)) (1) (7) (8), or with PCl<sub>3</sub> at 0° (3) (4) see indic. refs.] [Some cyclopentene (1:8037), b.p. 34°, may also be formed but is readily sepd. by distn.] [For prepn. of  $\bar{C}$  from cyclopentane (1:8400) with Cl<sub>2</sub> see (13).]

C over BaCl<sub>2</sub> at 300-400° at 15-20 mm. yields (9) cyclopentene (1:8037).

(4)

[ $\bar{C}$  with  $C_6H_6$  + AlCl<sub>3</sub> gives (54% yield (10)) phenylcyclopentane (cyclopentylbenzene), b.p. 217°,  $D_4^{20}$  = 0.9474,  $n_D^{10}$  = 1.5280 (10); for reactn. of  $\bar{C}$  with 2-methylpyridine ( $\alpha$ -picoline) see (11); for reactn. of  $\bar{C}$  with Na<sub>2</sub>SO<sub>3</sub> at 200° see (4).]

 $\tilde{C}$  with Mg in dry ether gives (1) (2) (5) (7) cyclopentyl MgCl; this with CO<sub>2</sub> gives (1) (7) cyclopentancearboxylic acid [Beil. IX-6], b.p. 215 5-216° cor.,  $D_4^{20} = 1.0510$ ,  $n_D^{18} = 1.4534$  (1) (amide, lfts. from MeOH, m.p. 179° cor. (1), 178° (12)).

- © Cyclopentyl mercuric chloride C<sub>5</sub>H<sub>9</sub>HgCl: m.p. 108.5° (4). [The method of formn. of this deriv. is not stated but is presumably from RMgCl + HgCl<sub>2</sub>.]
- 3:7545 (1) Zelinskiĭ, Ber. 41, 2627-2628 (1908). (2) Zelinskiĭ, Mikhlina, Eventova, Ber. 66, 1422-1426 (1933). (3) Kohlrausch, Reitz, Stockman, Z physik. Chem. B-32, 235 (1936). (4) Turkiewicz, Pilat, Ber. 71, 284-285 (1938). (5) Pilat, Turkiewicz, Ber. 72, 1527-1531 (1939). (6) Yarnall, Wallis, J. Org. Chem. 4, 287 (1939). (7) Neunhoffer, Schluter, Ann. 526, 70 (1936). (8) Canals, Mousseron, Granger, Gastaud, Bull. soc. chim. (5) 4, 2048 (1937). (9) Badische Anilin u. Sodafabrik, Ger. 255,538, Jan. 3, 1913, Cent. 1913, I 477. (10) Zelinskiĭ, Titz, Ber. 64, 185 (1931).
- (11) Tschitschibabine, Bull. soc. chim. (5) 5, 435 (1938). (12) Nenitzescu, Cantuniari, Ber. 65, 811 (1932). (13) Bailey, McAllister (to Shell Development Co.), U.S. 2,342,072, Feb. 15, 1944; C.A. 38, 4621 (1944).

3: 7550 1,1-DICHLOROBUTANE (
$$n$$
-Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene ( $n$ -Butylidene (

[For prepn. (47% yield (4)) from n-butyraldehyde (1:0130) by actn. of PCl<sub>6</sub> (39% yield (9)) see (4) (2) (3) (9); for formn. from butane by chlorination see (5) (6); for formn. from n-butyl chloride (3:7160) on chlorination see (7) (8).]

(3) (7)

[Č on passing over alkali (NaOH, K<sub>2</sub>CO<sub>3</sub>, soda-lime, etc.) at elevated temperatures (e.g., 700-750°) yields (6) butadiene-1,3.]

[C with boilg. satd. n-BuOH/KOH loses 1 HCl giving (64% yield (9)) 1-chlorobutene-1 (3:7110).]

3:7559 (1) Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1232-1246 (1938); Cent. 1939, II 4223. (2) Kohlrausch, Köppl, Monatsh. 65, 197 (1935). (3) Meyer, Petrenko-Kritschenko, Ber. 25, 3308 (1892). (4) Henne, Renoll, Leicester, J. Am. Chem. Soc. 61, 940 (1939). (5) Muskat (to du Pont), U.S. 2,038,593, April 28, 1936; Cent. 1936, II 3358. (6) Muskat (to du Pont), U.S. 2,070,609, Feb. 16, 1937; Cent. 1937, II 2597. (7) Tishchenko, Churbakov, J. Gen. Chem. (U.S.S.R.) 7, 893-896 (1937); C.A. 31, 5755 (1937); Cent. 1938, II 2575. (8) Muskat, Northrup, J. Am. Chem. Soc. 52, 4050-4052 (1930). (9) Henne, Hinkamp, J. Am. Chem. Soc. 67, 1197 (1945).

B.P. 
$$115^{\circ}$$
 (1) (2)  $D_{2}^{20} = 0.8670$  (2)  $n_{\rm D}^{20} = 1.4161$  (1) 41° at 50 mm. (2) (3) 1.4160 (2) (3)

[For prepn. of C (60% yield) from corresp. alc. (neopentylcarbinol) (1:6219) with SOCl<sub>2</sub> + pyridine see (1); for prepn. of C from *ter*-butyl chloride (3:7045) + ethylene in presence of AlCl<sub>3</sub> (75% yield), FeCl<sub>3</sub> (57% yield), or BiCl<sub>3</sub> (6-30% yield) see (2).]

 $\ddot{C}$  with Mg + dry ether yields RMgCl which with oxygen yields (1) (2) neopentylcarbinol (1:6219) q.v.

- Neopentylcarbinyl mercuric chloride (C<sub>6</sub>H<sub>13</sub>HgCl): m.p. 133-133.5° (1). [From RMgCl + HgCl<sub>2</sub> (1).]
- Φ γ,γ-Dimethyl-n-valeranilide: ndls. from dil. alc., m.p. 138-139° (2). [From C via conversion to RMgCl and reaction with phenyl isocyanate (2).]
- 3:7555 (1) Whitmore, Bernstein, J. Am. Chem. Soc. 60, 2626-2628 (1938). (2) Schmerling, J. Am. Chem. Soc. 67, 1152-1154 (1945). (3) Schmerling, J. Am. Chem. Soc. 67, 1782-1783 (1945).

C<sub>5</sub>H<sub>9</sub>OCi

0.9844 (1)

Beil. II - 315

1.41488 (1)

114.3-115.7° (4) 114.5-115.5° (5) 113.5-114.5° at 725.7 mm. (6)

3:7560 ISOVALERYL CHLORIDE

[For prepn. of  $\tilde{C}$  from isovaleric acid (1:1050) with PCl<sub>3</sub> (7) (8) (9), with PCl<sub>3</sub> + ZnCl<sub>2</sub> (79% yield (10)), with SOCl<sub>2</sub> (72% yield (10)) (1) (5) see indic. refs.; note that use of PCl<sub>5</sub> is inadvisable since the by-prod., POCl<sub>5</sub>, boils too close to  $\tilde{C}$ .]

[Č htd. with K isovalerate yields (11) isovaleric anhydride [Beil. II-314, II<sub>1</sub>-(137), II<sub>2</sub>-(277)], b.p. 215.1-215.3° at 762 mm., 102-103° at 15 mm. (11),  $D_{4j}^{20} = 0.9327$ ,  $n_{D}^{20} = 1.4043$  (12).]

[ $\bar{C}$  with Cl<sub>2</sub> in CCl<sub>4</sub> yields (8)  $\alpha$ -chloroisovaleryl chloride (3:8144), b.p. 148–149° (together with some  $\beta$ -chloroisovaleryl chloride).]

[C on cat. hydrogenation using Pd as specified (13) gives 95% yield isovaleraldehyde (1:0140), b.p. 92° (13) (use of PtO<sub>2</sub> gives (14) only small yield).]

[For reactn. of  $\bar{C}$  with acetylene + AlCl<sub>3</sub> in pet. eth. at 0-5°, yielding on treatment with aq.  $\beta$ -chlorovinyl isobutyl ketone, b.p. 63-65°, see (15); with cyclohexene + AlCl<sub>3</sub> in cyclohexane yielding cyclohexyl isobutyl ketone, b.p. 216-219°,  $D_4^{20} = 0.8867$ ,  $n_D^{20} = 1.58155$ , see (16); with sodium azide in benzene yielding isobutyl isocyanate see (17).]

 $\bar{C}$  on hydrolysis yields isovaleric acid (1:1050), b.p. 176.5°. — For the amide, anilide, p-toluidide, and other derivs. corresp. to  $\bar{C}$  see isovaleric acid (1:1050).

3:7560 (1) Leimu, Ber. 70, 1049 (1937). (2) von Auwers, Schmidt, Ber. 46, 474 (1913). (3) Martin, Partington, J. Chem. Soc. 1936, 162. (4) Kohlrausch, Pongratz, Z. physik. Chem. B-22, 382 (1933). (5) Bardan, Cent. 1932, II 354. (6) Bruhl, Ann. 203, 24 (1880). (7) Béchamp, Jahresber. 1856, 429. (8) Michael, Ber. 34, 4055-4056 (1901). (9) Scheuble, Ger. 251,806, Oct. 8, 1912; Cent. 1912, II 1503. (10) Clark, Bell, Trans. Roy. Soc. Can. (3) 27, III, 97-103 (1933).

(11) Verkade, Rec. trav. chim. 36, 197 (1916). (12) Tromp, Rec. trav. chim. 41, 299 (1921). (13) Froschl, Danoff, J. prakt. Chem. (2) 144, 221-222 (1935). (14) Grignard, Mingasson, Compt. rend. 185, 1176 (1927). (15) Nelles, Baeyer (to I.G.), Brit. 461,080, March 11, 1937; Ger. 642,147, Feb. 25, 1937; Cent. 1937, II 2597; C.A. 31, 4676 (1937). (16) Nenitzescu, Cioranescu, Ber. 69, 1823 (1936). (17) Naegeli, Grüntuch, Lendorff, Helv. Chim. Acta 12, 247-248 (1929).

3: 7563 · 
$$d$$
, $l$ -1-CHLORO-2-METHYLPENTANE  $C_0H_{13}Cl$  Beil. I —  $CH_3$   $Cl$   $I_1$ —  $I_2$ —  $CH_3$   $CH_4$   $CH_5$   $CH_5$   $CH_5$   $CH_5$   $CH_6$   $CH_7$   $CH_8$   $CH_8$   $CH_8$   $CH_8$   $CH_8$   $CH_9$   $CH_9$ 

#### B.P. 110-120° (1)

[For prepn. of Č from levorotatory 2-methylpentanol-1 with PCl<sub>5</sub> in CHCl<sub>3</sub> or from dextrorotatory 2-methylamylamine with NOCl see (1).]

3:7563 (1) Levene, Mikesa, J. Biol. Chem. 84, 579-580 (1929).

3:7565 d,l-3-CHLORO-2-METHYLPENTANE 
$$C_6H_{13}Cl$$
 Beil. I - 148 (Ethyl-isopropyl-carbinyl chloride)  $Cl$   $CH_3$   $I_1$ —

$$CH_3.CH_2-C$$
  $C$   $CH_3$   $I_2$ -(111)

#### B.P. 115-116.5° dec. at 752 mm. (1)

[For prepn. of C from 2-methylpentanol-3 (1:6194) with PCl<sub>5</sub> see (1).]

3:7565 (1) Grigorowitsch, Pavlov, J. Russ. Phys.-Chem. Soc. 23, 166 (1891).

3:7585

3: 7580 meso-2,3-DICHLOROBUTANE 
$$C_4H_8Cl_2$$
 Beil. I — (meso-\$\beta\$-Butylene dichloride)  $CH_3$ — $CH$ — $CH$ — $CH_3$  I — I2-(82)

B.P. F.P.

116.0° (1) (2)  $-80.4$ ° (1)  $D_4^{25} = 1.1023$  (6)
115.9° at 760 mm. (3)  $n_D^{25} = 1.4395$  (6)
115.5-116.5° cor. at 746 mm. (4) 1.4392 (6)
114-116° (5) 1.4386 (6)
113.14° at 746 mm. (6) 1.4385 (6)
49.52° at 80 mm. (6)  $D_4^{20} = 1.1134$  (5)
49.0-50.5° at 80 mm. (7) 1.1067 (2)
49.4-49.7° at 80 mm. (6)  $n_D^{20} = 1.4413$  (2)
48.5-49.0° at 80 mm. (6) 1.443 (5)

[See also d,l-2,3-dichlorobutane (3:7615).]

[For prepn. of  $\bar{\mathbb{C}}$  from trans-butene-2 with Cl<sub>2</sub> in light (63% yield (6)) (7) cf. (5) indic. refs.; for formn of  $\bar{\mathbb{C}}$  from d,l-erythro-3-chlorobutanol-2 (3:8004) (16% yield (6)) or from (+) threo-3-chlorobutanol-2 (3:8002) (15% yield (6)) with SOCl<sub>2</sub> see (6) (note that from d,l-erythro-3-chlorobutanol-2 with PCl<sub>5</sub> in CHCl<sub>3</sub> a mixt. of  $\bar{\mathbb{C}}$  + its d,l-isomer (3:7615) is obtd. (6)); for formn. of  $\bar{\mathbb{C}}$  from d,l-2-chlorobutane (3:7125) with Cl<sub>2</sub> in light (42.7% yield) see (2).]

[ $\bar{C}$  with Cl<sub>2</sub> (slight excess) in dark at  $-17^{\circ}$  gives (5) 36.5% 1,2,3-trichlorobutane (3:5935) + 18% 2,2,3-trichlorobutane (3:5680).]

[ $\bar{C}$  with alc. KOH gives same results as does the d,l-isomer (3:7615) (3).]

3-CHLORO-3-METHYLPENTANE

(Diethyl-methyl-carbinyl chloride)

Timmermans, Bull. soc. chim. Belg. 36, 504 (1927). (2) Tishchenko, Churbakov, J. Gen. Chem. (U.S.S.R.) 7, 663-666 (1937); Cent. 1937, II 372, C.A. 31, 5754 (1937). (3) Navez, Bull. soc. chim. Belg. 39, 435-439 (1930). (4) Lucas, Simpson, Carter, J. Am. Chem. Soc. 47, 1467 (1925). (5) Tishchenko, Churbakov, J. Gen. Chem. (U.S.S.R.) 6, 1553-1558 (1936); Cent. 1937, I 3785; C.A. 31, 2165 (1937). (6) Lucas, Gould, J. Am. Chem. Soc. 63, 2541-2545 (1941).
 Taufen, Murray, Cleveland, J. Am. Chem. Soc. 65, 1131-1132 (1943).

C<sub>6</sub>H<sub>13</sub>Cl

CH<sub>3</sub>

Beil. I - 149

 $I_{1}$ -( **54**)

[For density of  $\bar{C}$  at 0°, 15°, 25°, 50°, and 65° together with parachors at 0°, 25°, and 50° see (9).]

[For prepn. of C from corresp. alc., diethyl-methyl-carbinol (3-methylpentanol-3) (1:6189), with PCl<sub>5</sub> (8), HCl gas (1) (2) at 0° (5) or 10-15° (59% yield (7)) see indic. refs.;

with diphosgene (3:5515) see (4); for formn. from 3-methylpentene-2 (1:8260) + conc. HCl see (3); for formn. (together with other products) during reaction of 2-ethylbutanol-1 (1:6223) with HCl +  $\text{ZnCl}_2$  see (6).]

C with Mg in dry ether yields (7) corresp. RMgCl.

Diethyl-methyl-acetanilide: m.p. 86.5-88.5° (6). [From C via conversion to RMgCl and reaction with phenyl isocyanate (6).]

3:7585 (1) Schreiner, J. prakt. Chem. (2) 82, 295 (1910). (2) Gilman, Schulze, J. Am. Chem. Soc. 49, 2330 (1927). (3) Nasarow, Ber. 70, 621 (1937). (4) Nekrassow, Melnikow, J. prakt. Chem. (2) 127, 217-218 (1930). (5) Favorskii, Zalesskii-Kibardine, Bull. soc. chim. (4) 37, 1230 (1925). (6) Whitmore, Karnatz, J. Am. Chem. Soc. 60, 2535 (1938). (7) Whitmore, Badertscher, J. Am. Chem. Soc. 55, 1561 (1933). (8) Butlerow, Bull. soc. chim. (2) 5, 23-24 (1866).
 (9) Quayle, Owen, Beavers, J. Am. Chem. Soc. 61, 3107-3111 (1939).

3:7590 1-CHLORO-2,2-DIMETHYLBUTANE 
$$CH_3$$
  $C_6H_{13}Cl$  Beil. S.N. 10 (ter-Amyl-carbinyl chloride; neohexyl chloride)  $CH_3$ — $CH_2$ — $CH_2$   $CH_3$   $Cl$ 

B.P. 116.1° at 735 mm. (1) 
$$n_{\rm D}^{20} = 1.4200$$
 (1)  $113.5-115^{\circ}$  (2) 1.4190 (2)

[For prepn. of  $\bar{C}$  from 2,2-dimethylbutane (neohexane) (1:8510) with  $Cl_2$  in the cold see (2).]

[Č with Na yields (1) a mixt. of 4 compounds: 11.8% 1,1,2-trimethylcyclopropane, b.p.  $56.5-57^{\circ}$  at 735 mm.,  $D_{-}^{20} = 0.6967$ ,  $n_{0}^{20} = 1.3880$ ; 7.8% 2,2-dimethylbutene-3 (ter-butylethylene) (1:8225); 27.1% 2,2-dimethylbutane (neohexane) (1:8510); and 4.3% normal coupling prod., 3,3,6,6-tetramethyloctane, b.p.  $125^{\circ}$  at 140 mm.,  $n_{0}^{20} = 1.423$ .]

**3:7590** (1) Whitmore, Carney, J. Am. Chem. Soc. **63**, 2633-2635 (1941). (2) Whitmore, Bernstein, Mixon, J. Am. Chem. Soc. **60**, 2539 (1938).

3: 7595 
$$\alpha,\alpha'$$
-DICHLORODIETHYL ETHER Cl C<sub>4</sub>H<sub>8</sub>OCl<sub>2</sub> Beil, I - 607 (bis-( $\alpha$ -Chloroethyl) ether) CH<sub>3</sub>—CH CH<sub>3</sub>—CH

B.P. 116-147° (1) (2) 
$$D_4^{25} = 1.106$$
 (3)  $n_D^{25} = 1.4186$  (3)  $112.5-114$ ° (3)

Colorless liq. at first immiscible with aq. but grad. hydrolyzing (especially on warming) to acetaldehyde (1:0100) and HCl (1) (2).

[For prepn. of C from acetaldehyde (1:0100) with dry HCl gas see (2) (1).]

For identification hydrolyze  $\tilde{C}$  to acetaldehyde (1:0100) (3), derivatize the latter, e.g., via the p-nitro- or 2,4-dinitrophenylhydrazones.

3:7595 (1) Lieben, Ann. 106, 337 (1858). (2) Geuther, Laatsch, Ann. 218, 16-18 (1883). (3) Gebauer-Fuelnegg, Moffett, J. Am. Chem. Soc. 56, 2009 (1934).

B.P. 117.2° (1) 
$$D_4^{20} = 1.0083 (1)$$
  $n_D^{20} = 1.42044 (1)$ 

[For prepn. of  $\bar{C}$  from 2-methylbutanone-3 (isopropyl methyl ketone) (1:5410) with SO<sub>2</sub>Cl<sub>2</sub> in cold (84% yield (1)) or with Cl<sub>2</sub> by vapor-phase chlorination (2) see indic. refs.]  $\bar{C}$  with 20% aq. Na<sub>2</sub>CO<sub>3</sub> refluxed for 37 hrs. gives (1) 2-methylbutanon-3-ol-2 [Beil. I-832, I<sub>1</sub>-(422), I<sub>2</sub>-(873)], b.p. 143° (1).

Č with 40% aq. NaOH refluxed 20 hrs. gives (1) trimethylacetic acid (1:0410), b.p. 163°, m.p. 35° (1) (note structural change during this reaction).

 $\bar{C}$  with aq. KCN in cold for 1 hr. gives (1) 2,3-dimethyl-2,3-epoxy-*n*-butyronitrile, b.p. 157.8° at 747 mm.,  $D_4^{20} = 0.9314$ ,  $n_D^{20} = 1.41334$  (1).

3:7597 (1) Delbaere, Bull. soc. chim. Belg. 51, 1-10 (1942); Cent. 1942, II 763-764; C.A. 37, 5018 (1943). (2) Justoni, Chimica e industria (Italy) 24, 195-201 (1942); Cent. 1943, I 1659.

3:7598 d,l-3-CHLOROBUTANONE-2 H 
$$C_4H_7OCl$$
 Beil. I - 669 ( $\alpha$ -Chloroethyl methyl ketone)  $CH_3$   $C$ 

| B.P.         |            |          | B.P. (cc | ntd.)     |            |                              |
|--------------|------------|----------|----------|-----------|------------|------------------------------|
| 117-119° (1) | at 760 mm. | (8)      | 49-50°   | at 70 mm. | (6)        | $D_{-}^{0} = 1.032 (5) (15)$ |
| 114-117°     | at 760 mm. | (2)      | 46°      | at 40 mm. | (10)       |                              |
| 116-117°     |            | (3)      | 32°      | at 40 mm. | (4)        |                              |
| 116°         | at 770 mm. | (4)      | 40-41°   | at 30 mm. | (2)        |                              |
| 115°         | at 758 mm. | (5) (15) | 33-34°   | at 30 mm. | (7)        |                              |
| 115°         |            | (6)      | 26°      | at 18 mm. | <b>(4)</b> |                              |
| 114-115°     |            | (7) (16) |          |           |            |                              |
| 114°         |            | (9)      |          |           |            |                              |

[See also 1-chlorobutanone-2 (3:8012).]

Liquid with penetrating odor. - Insol. aq., eas. sol. alc., ether.

[For prepn. of  $\bar{\mathbb{C}}$  from ethyl methyl ketone (butanone-2) (1:5405) with  $\mathbb{C}l_2$  in pres. of  $\mathbb{C}a\mathbb{C}O_3$  + aq. (yields of  $\bar{\mathbb{C}}$  about 75% always accompanied by 25% of the isomeric 1-chlorobutanone-2 (3:8012)) see (2) (6) (7) (10) cf. (11); with  $\mathbb{C}l_2$  as vapor-phase chlorination see (12) (13) (14); with  $\mathbb{C}l_2$  diluted with dry  $\mathbb{C}O_2$  see (15) (4); with  $\mathbb{C}l_2$  in sunlight see (5) (16); with  $\mathbb{S}O_2\mathbb{C}l_2$  in sunlight see (5) (16) (17) cf. (11); with N-chlorourea in dil. AcOH see (1) (8); for prepn. of  $\bar{\mathbb{C}}$  from acetyl chloride (3:7065) with ethylene over activated carbon at 100° and 50 atm. see (18) (note that acetyl chloride + ethylene  $+ AlCl_3$  at 0° gives 4-chlorobutanone-2 (3:7640) q.v.); for prepn. of  $\bar{\mathbb{C}}$  from 2-chlorobutene-2 (3:7105) with  $\mathbb{C}l_2$  + aq. +  $\mathbb{C}Cl_4$  (65% yield) see (3).]

[ $\bar{C}$  on reduction using yeast (20) gives levorotatory 3-chlorobutanol-2, b.p. 139° (cf. 3:8000), but with Zn + HCl (15)  $\bar{C}$  yields butanone-2 (1:5405).]

 $\bar{C}$  on oxidn. with conc. HNO<sub>3</sub> (5) (16) (20) yields  $\alpha$ -chloropropionic acid (3:6125).

Č on hydrolysis with aq. in s.t. at 150° for 6–8 hrs. (15), or Č with alc. alk. (15) or MeOH/ KOH (21) in cold, gives (84% yield (21)) butanone-2-ol-3 (acetyl-methyl-carbinol) (acetoin) (1:5448) (as consequence of latter reactn. Č reduces Tollens' reagt. or Fehling's soln. in cold).

C with satd. aq. NaHSO3 soln. yields (15) a NaHSO3 addn. cpd.

[ $\bar{C}$  with conc. aq. KCN at 0° for 1 hr. gives (80% yield (21)) 2,3-epoxy-2-methyl-n-butyronitrile ( $\alpha$ -cyano- $\alpha$ , $\beta$ -dimethyl-ethylene oxide), b.p. 145°,  $D_4^{20}=0.9540$ ,  $n_D^{20}=1.4079$  (21);  $\bar{C}$  with alc. KCN gives (21) a mixt. consisting mainly of the above prod. together with a little  $\alpha$ -methylacetoacetonitrile [Beil. III<sub>2</sub>-(433)], b.p. 182–184° at 745 mm. with slight decompn. (22), b.p. 78° at 19 mm. (22), 68–70° at 12 mm. (23). (Note that the above represents a correction of the earlier views (5) (16) (24).)]

[Č with conc. aq. (NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub> at 70° yields (9) butanone-2-sulfonic acid-3.—Č with NaN<sub>3</sub> in aq. contg. AcOH yields (10) 3-azidobutanone-2, oil, b.p. 46° at 2 mm.]

[C with Na in abs. ether gives (15) by bimolecular coupling 3,4-dimethylhexanedione-2,5 [Beil. I-798, I<sub>1</sub>-(409), I<sub>2</sub>-(847)], b.p. 210° (15), 82° at 11 mm.; note therefore that sodium must not be used for drying C cf. (24).]

[ $\bar{C}$  with triethyl orthoformate (1:3241) in abs. alc. in pres. of NH<sub>4</sub>Cl as cat. gives (70% yield in 10 days but in absence of NH<sub>4</sub>Cl only 39% (24))  $\alpha$ -chloroethyl methyl ketone diethylacetal, b.p. 80–84° at 36 mm.,  $D_4^{20}=0.9773$  (24).]

[C with ethyl sodio-acetoacetate in abs. ether (4) or abs. alc. (25) (26) (24) gives (yields: 45-60% (24), 27-28% (26)) the expected ethyl  $\alpha,\beta$ -diaceto-n-butyrate [Beil. III-757, III<sub>1</sub>-(265), III<sub>2</sub>-(468)], b.p. 150° at 28 mm. (25), 121-124° at 11 mm. (26). — C with ethyl acetoacetate (1:1710) + aq. NH40H + NH<sub>3</sub> gas htd. for 1 hr. gives (26% yield (4)) 3-carbethoxy-2,4,5-trimethylpyrrole [Beil. XXII-31, XXII<sub>1</sub>-(497)], yel. cryst. from alc. or pet. eth., m.p. 101.5-102.5° (4), 104-105° (27), also obtd. from the above ethyl  $\alpha,\beta$ -diaceto-n-butyrate with conc. aq. NH<sub>4</sub>0H on warming (4). — C with methyl acetoacetate (1:1705) + conc. aq. NH<sub>4</sub>0H in the cold gives (4) methyl  $\beta$ -aminocorotonate, m.p. 82-84° (4), which only on htg. condenses with the ester to give 3-carbomethoxy-2,4,5-trimethyl-pyrrole [Beil. XXII-31], cryst. from dil. alc., m.p. 124.5-126° (4). — C with methyl acetoacetate (1:1705) + CH<sub>3</sub>NH<sub>2</sub> (33% in aq.) refluxed for some hours gives only very small yield (28) of 3-carbomethoxy-1,2,4,5-tetramethylpyrrole, cryst. from lgr., m.p. 101° (28).]

[C with diethyl acetonedicarboxylate (1:1772) in dry ether at -15° treated with NH<sub>3</sub> gas gives (10.7% yield (29)) 2-carbethoxymethyl-3-carbethoxy-4,5-dimethylfuran, b.p. 110-115° at 0.2 mm. (29).]

[For condens. of C with various phenols and phenol ethers see (30).]

[C with alc. NH<sub>3</sub> gives (15) in the cold the difficultly isolatable 3-aminobutanone [Beil. IV-319, IV<sub>1</sub>-(452)], but on warming this condenses bimolecularly yielding (15) (8) tetramethylpyrazine [Beil. XXIII-99, XXIII<sub>1</sub>-(28)], ndls. with 3H<sub>2</sub>O from aq., m.p. 74-77°, but aq. lost in desic. to anhydrous prod., m.p. 86° (8) (corresp. picrate, m.p. 194-195° (31)). — C with aniline (2 moles) gives (15) on refluxing 2,3-dimethylindole [Beil. XX-319, XX<sub>1</sub>-(130)], m.p. 107-109° (15).]

[C with thioformamide in abs. alc. for 4 days at 0° gives (22% yield (17)) 4,5-dimethylthiazole, b.p. 81-83° at 59 mm. (17) (corresp. picrate, cryst. from alc., m.p. 186-187° (17)).

— C with NH4 dithiocarbamate in abs. alc. refluxed ½ hr. gives (40% yield (17)) 2-mercapto-4,5-dimethylthiazole, cryst. from EtOAc, m.p. 163.5-163.8° (17). — C with benzamide + powd. CaCO<sub>3</sub> htd. at 110-120° for 10 hrs. gives (24% yield (32)) 4,5-dimethyl-2-phenyl-oxazole [Beil. XXVII<sub>1</sub>-(219)], m.p. 50°, b.p. 128-130° at 5 mm. (32). — C with thiobenzamide + NaOAc htd. in abs. alc. gives (65% yield (32)) 4,5-dimethyl-2-phenylthiazole, b.p. 126-128° at 6 mm. (32).]

<sup>3-</sup>Chlorobutanone-2 semicarbazone: m.p. 148°, or on slow htg. 143-145° dec. (33), 127° (1).

3:7598 (1) Béhal, Detoeuf, Compt. rend. 153, 1230 (1911). (2) Kling, Bull. soc. chim. (3) 33, 325-326 (1905); Ann. chim. (8) 5, 537-539 (1905). (3) Groll, Hearne (to Shell Development Corp.), U.S. 2,060,303, Nov. 10, 1936; Cent. 1937, I 4155; C.A. 31, 419 (1937); Brit. 437,573, Nov. 28, 1935; French 787,529, Sept. 24, 1935; Cent. 1936, II 2227. (4) Korschun, Ber. 38, 1125-1129 (1905). (5) van Reymenant, Bull. acad. roy. Belg. 1900, 724-742; Cent. 1901, I 95. (6) Justoni, Chimica e industria (Italy) 24, 89-94 (1942); Cent. 1943, I 383. (7) Blaise, Bull. soc. chim. (4) 15, 733 (1914). (8) Godchot, Mousseron, Bull. soc. chim. (4) 51, 356 (1932). (9) Backer, Strating, Zuithoff, Rec. trav. chim. 55, 761-764 (1936). (10) Forster, Fierz, J. Chem. Soc. 33, 675 (1908).

(11) Kolshorn, Ber. 37, 2474-2475 (1904). (12) Justoni, Chimica e industria (Italy), 24, 195-201 (1942), Cent. 1943, I 1659. (13) Calkins (to B. F. Goodrich Co.), U.S. 2,120,392, June 14, 1938; Cent. 1939, I 251; C.A. 32, 5854 (1938). (14) I.G., French S.I., 131, May 26, 1937; Cent. 1937, II 2071. (15) Démètre-Vladesco, Bull. soc. chim. (3) 6, 404-415, 807-829 (1891). (16) Henry, Bull. acad. roy. Belg. 1900, 57-63, Cent. 1900, I 1123. (17) Buchman, Reims, Sargent, J. Org. Chem. 6, 767-769 (1941). (18) Frolich, Wiezevich (to Standard Oil Dev. Co.), U.S. 2,006,198, June 25, 1935; Cent. 1936, I 2827; C.A. 29, 5457 (1935). (19) Santomauro, Buchem. Z. 151, 49 (1924); Cent. 1924, I 2272. (20) N. V. de Bataafsche Petroleum Maatschappij, French 797,043, May 6, 1936; Cent. 1936, II 865.

(21) Justoni, Gazz. chim. ital. 69, 378-391 (1939); Rend ist. lombardo sci 71, 407-424 (1938); C.A. 34, 3268 (1940). (22) Mohr. J. prakt. Chem. (2) 90, 199-200 (1914). (23) von Braun, Rudolph, Ber. 67, 1770 (1934). (24) Youtz, Perkins, J. Am. Chem. Soc. 51, 3512 (Note 5); 3514 (1929). (25) Korschun, Roll, Gazz. chim. ital. 41, I 188 (1911). (26) Willstatter, Clarke, Ber. 47, 307 (1914). (27) Knorr, Hess, Ber. 44, 2762 (1911). (28) Korschun, Roll, Bull. soc. chim. (4) 33, 1107-1108 (1923). (29) Reichstein, Zschokke, Syz, Helv. Chim. Acta 15, 1115-1116 (1932). (30) Curd, Robinson, J. Chem. Soc. 1933, 714-720, 1178-1179.

(31) Piloty, Ber. 43, 496 (1910). (32) Friedman, Sparks, Adams, J. Am. Chem. Soc. 59, 2263 (1937). (33) Blaise, Bull. soc. chem. (4) 17, 426 (1915).

Note. Much confusion exists in the literature with reference to the relation between Č and 3-chloro-2,2-dimethylbutane (3:7475) q.v. Since the identity of the latter has now been established, it is probable that the chloride obtained from 2,2-dimethylbutanol-3 (ter-butyl-methyl-carbinol) ("pinacolyl alcohol") (1:6186) is Č. In view, however, of modern appreciation of the rearrangements frequently occurring during the formation of alkyl chlorides with HCl, the homogeneity of all recorded samples of Č should be taken with reserve.

[For prepn. of  $\bar{C}$  from 2,3-dimethylbutanol-2 (1:6187) with HCl gas (4), with 40% HCl (4), or with AcCl (4), or from 2,3-dimethylbutanol-2 (1:6187) with HCl gas (5), see indic. refs.; for formn. of  $\bar{C}$  from 2,3-dimethylbutane (di-isopropyl) (1:8515) with Cl<sub>2</sub> (1) or from 2,3-dimethylbutene-2 (tetramethylethylene) (1:8290) with HCl see (3); for formn. of  $\bar{C}$  (23% yield) from ter-butyl chloride (3:7045) + 2,3-dimethylbutane (1.8515) on shaking  $\frac{1}{2}$  minute with AlCl<sub>3</sub> see (6).]

Dimethyl-isopropyl-acetamide: m.p. 128° (7), 125-127° (6). [From C via conversion to RMgCl, carbonation to dimethyl-isopropyl-acetic acid, and conversion of latter to amide (6) (7).]

① 2,3-Dibromo-2,3-dimethylbutane: m.p. 173-174° cor. (6), 166-168° (8). [From C with Br2 (6).1

3:7600 (1) Silva, Ber. 7, 953 (1874); Ber. 6, 36 (1873). (2) Aschan, Ber. 31, 1802 (1898). (3) Pavlov, Ann. 196, 124 (1879). (4) Henry, Rec. trav. chim. 25, 147 (1906). (5) Whitmore, Rothrock, J. Am. Chem. Soc. 55, 1107-1108 (1933). (6) Bartlett, Condon, Schneider, J. Am. Chem. Soc. 66, 1533, 1537 (1944). (7) Whitmore, Laughlin, J. Am. Chem. Soc. 55, 3735 (1935) (8) Grosse, Ipatieff, J. Org. Chem. 8, 440-441 (1943)

3: 7603 d,l-
$$\alpha$$
-METHYL- $n$ -BUTYRYL CHLORIDE H  $C_bH_9OCl$  Beil. II - 306 (Ethyl-methyl-acetyl chloride)  $CH_3$ -- $CH_2$ -- $C$ -- $C$ -- $C$ -- $C$ -- $U_2$ --

B.P. 118.0-118.3° at 761 mm. (1) 
$$D_4^{20} = 0.9917$$
 (1)  $n_D^{20} = 1.41695$  (1) 115.8-116.6° (2) 115-116° (3)

[The dextrorotatory form of  $\bar{C}$ , b.p. 119-120°,  $D_4^{24} = 0.990$ ,  $n_D^{17.5} = 1.4177$ , has also

[For prepn. of  $\bar{C}$  from d,l-2-methylbutanoic acid-1 (1:1105) with SOCl<sub>2</sub> see (1).]

[For actn. of PCl<sub>5</sub> on  $\bar{C}$  see (5).]

C with K ethyl-methyl-acetate yields (6) corresp. anhydride, b.p. 103-104° at 17 mm.

 $\tilde{C}$  on hydrolysis yields d,l-ethyl-methyl-acetic acid (1:1105) (for the amide, anilide, p-toluidide, and other derivs, corresp. to  $\bar{C}$  see 1:1105).

3:7603 (1) Leimu, Ber. 70, 1049 (1937). (2) Kohlausch, Pongratz, Z. physik. Chem. B-22, 382 (1933). (3) Rupe, Ann. **369**, 338 (1909). (4) Kenyon, Philips, Pittman, J. Chem. Soc. **1935**, 1080. (5) von Braun, Jostes, Munch, Ann. **453**, 146-147 (1927). (6) Verkade, Rec. trav. chim. 36, 203 (1916).

3: 7605 3-CHLORO-2,4-DIMETHYLPENTENE-2 
$$C_{7}H_{13}Cl$$
 Beil. I - 221  $CH_{3}$   $CH_{4}$   $CH_{5}$   $CH_{$ 

**B.P.** 118-120° (1) 
$$D_9^0 = 0.9513$$
 (1)

For prepn. of C from 2.4-dimethylpentanone-3 (di-isopropyl ketone) (isobutyrone) (1:5433) with PCls see (1).

Č with alc. KOH gives (1) 2,4-dimethylpentadiene-2,3 (tetramethylallene) [Beil. I-258,  $I_{1}$ -(121)], b.p. 70° (1), 86.5° at 763 mm. [Beil.  $I_{1}$ -(121)].

3:7605 (1) Henry, Ber. 8, 400 (1875).

B.P. 118-120° sl. dec. (1)

[For prepn. of C from 2,4-dimethylpentanone-3 (di-isopropyl ketone) (1:5433) with PCl<sub>5</sub> see (1).]

C on distillation loses 1 HCl yielding (1) a chloroolefin C7H13Cl of undetermined structure, but presumably 3-chloro-2,4-dimethylpentene-2.

C on htg. with alc. KOH loses 2 HCl yielding (1) a hydrocarbon  $C_7H_{12}$ , b.p. 70°, regarded (1) as 2.4-dimethylpentadiene-2,3 [Beil. I-258, I<sub>1</sub>-(121)].

3:7610 (1) Henry, Ber. 8, 400 (1875).

3: 7615 
$$d$$
, $l$ -2,3-DICHLOROBUTANE  $C_4H_8Cl_2$   $(d$ , $l$ - $\theta$ -Butylene dichloride)  $CH_3$ — $CH$ — $CH$ — $CH_3$   $I_1$ -( 38)  $I_2$ -( 82) B.P. 119-120° at 760 mm. (1)  $D_4^{25} = 1.1063$  (4)  $n_D^{25} = 1.4411$  (4) 119.5° at 760 mm. (2) (3) 1.1051 (2) 1.4410 (4) 117.10° at 746 mm. (4) 1.4409 (4) 53.0-53.5° at 81 mm. (5) 1.4405 (4) 53.1-53.4° at 80 mm. (4) 1.4404 (4) 53.16° at 80 mm. (4) 1.4402 (4) 53.0-53.2° at 80 mm. (4)  $D_4^{15} = 1.1183$  (2)  $D_4^{15} = 1.1183$  (2)  $D_D^{15} = 1.4458$  (2)

[See also meso-2,3-dichlorobutane (3:7580).]

52.7-53.5° at 80 mm. (4)

Note that constants on the products of other workers (6) (7) (8) (9) (since they were almost certainly mixts. of C with its meso isomer) are not included above.

[For prepn. of C from cis-butene-2 with Cl<sub>2</sub> in light (80.5% yield (4)) (5) cf. (7) see indic. refs.; for formn. of C from d,l-erythro-3-chlorobutanol-2 (3:8004) or from (+) 3-chlorobutanol-2 with PCl<sub>3</sub> or with SOCl<sub>2</sub> + pyridine see (4); for formn. of C from (+) three-3chlorobutanol-2 (3:8002) with SOCl<sub>2</sub> see (4).]

[For prepn. of ordinary samples of C (probably contg. more or less meso-2,3-dichlorobutane (3:7580)) see the following: for prepn. of ord. C from butene-2 with Cl<sub>2</sub> (8) (9) (10) (11) at -10° (60% yield (12)), at -17° in dark (13), or at 0-5° in dark (89-92% yield (14)), or with  $Cl_2 + aq$ . (15) see indic. refs.; for form. of  $\bar{C}$  from 1-chlorobutane (3:7160) with SbCl<sub>5</sub> on warming see (6) (7); from 2-chlorobutane (3:7125) with Cl<sub>2</sub> in light see (3).]

[For equilibrium consts. of system  $\bar{C}$  + aq., 3-chlorobutanol-2 (3:8000) + aq., and ternary system  $\ddot{C}$  + 3-chlorobutanol-2 + aq. see (16); for uses of  $\ddot{C}$  as industrial solvent see (14).]

[C with Cl<sub>2</sub> (slight excess) in dark at -17° gives (13) 36.5% 1,2,3-trichlorobutane (3:5935) + 18% 2,2,3-trichlorobutane (3:5680).

 $|\bar{C}|$  with alc. KOH (1 mole + 25% excess) refluxed for 3 days loses 1 HCl giving (2) (3) a mixt. of cis + trans 2-chlorobutene-2 (3:7105); note, however, that under certain conditions C with NaOEt not only loses 1 HCl but involves a reaction of the second halogen atom with a second mole of NaOEt thus yielding (17) ethyl  $\alpha,\beta$ -dimethylvinyl ether (2ethoxybutene-2) (accompanied by some butyne-2 (dimethylacetylene)). —  $\tilde{C}$  with excess alc. KOH, soda-lime, or diethylaniline (18), or C with aq. vapor at 200-500° over silica gel]+ cat. (19) (20), loses 2 moles HCl yielding (35-38% (20)) butadiene-1,3 (accompanied by 21-25% 2-chlorobutene-2 (3:7105) (20) and 6-8% ethyl methyl ketone (1:5405) (20)); note that in absence of water vapor in this last process  $\bar{C}$  yields 2-chlorobutene-2 (3:7105) + butene-2 (20). —  $\bar{C}$  over BaCl<sub>2</sub> at 200-300° (24) or with aq. alk. or alk.-earth hydroxides at 118-250° (25) loses 1 HCl giving 2-chlorobutene-2 (3:7105).]

[Č is not (3) hydrolyzed by boilg. aq. K<sub>2</sub>CO<sub>3</sub>, but Č with aq. Ca (OH)<sub>2</sub> at 75° (21) or with aq. Na<sub>2</sub>CO<sub>3</sub> + NaHCO<sub>3</sub> under press. (22) cf. (23) yields butanediol-2,3 (some 2-chlorobutene-2 (3:7105) and ethyl methyl ketone (1:5405) also being formed (22)).]

[Č with p-toluidine (6 moles) at 130-140° for 30 hrs. gives (10) d,l-bis-2,3-(di-p-toluidino)-butane, m.p. 62-63°, + meso-bis-2,3-(di-p-tolylamino) butane, m.p. 57-58°, + 2,7,9-trimethylacridine, m.p. 133-134°; on more protracted htg. or at higher temperature the prods. are mainly or even exclusively 2,7,9-trimethylacridine and di-p-tolylamine, m.p. 79° (from the reagent) (10).]

3:7615 (1) Timmermans, Bull. soc. chim. Belg. 36, 504 (1927). (2) Navez, Bull. soc. chim. 39, 435-443 (1930). (3) Tishchenko, Churbakov, J. Gen. Chem. (U.S.S.R.) 7, 663-666 (1937); Cent. 1937, II 372; C.A. 31, 5754 (1937). (4) Lucas, Gould, J. Am. Chem. Soc. 63, 2541-2545 (1941). (5) Taufen, Murray, Cleveland, J. Am. Chem. Soc. 65, 1131-1132 (1943). (6) Meyer, Müller, J. prakt. Chem. (2) 46, 186 (1892). (7) Kahovec, Kohlrausch, Z. physik. Chem. B-48, 11 (1940). (8) Sheshukov, J. Russ. Phys.-Chem. Soc. 17, 509 (1885). (9) Briner, Hausser, deLuserna, Helv. Chim. Acta 7, 374-376 (1924). (10) Morgan, Hickinbottom, J. Chem. Soc. 123, 97-105 (1923).

(11) Ruys, Edwards (to Shell Development Co.), U.S. 2,099,231, Nov. 16, 1937; Cent. 1938, I 3387; C.A. 32, 190 (1938). (12) Batalin, Ugryumov, Sintet. Kauchuk 5, No. 6, 8-16 (1936); Cent. 1936, II 3357; C.A. 39, 6701 (1936). (13) Tishchenko, Churbakov, J. Gen. Chem. (U.S.S.R.) 6, 1553-1558 (1936); Cent. 1937, I 3785; C.A. 31, 2165 (1937). (14) Likhosherstov, Alekseev, Shalaeva, J. Chem. Ind. (Moscow) 12, 705-709 (1935); Cent. 1936, I 3377; C.A. 29, 8174 (1935). (15) Batalin, Ugryumov, J. Gen. Chem. (U.S.S.R.) 4, 871-874 (1935); C.A. 29, 2147 (1935). (16) Bushmakin, Gol'dman, Kuchinskaya, Sintet. Kauchuk 4, No. 1, 33-35 (1935); Cent. 1936, I 1131; C.A. 29, 4248 (1935). (17) I.G., Brit. 332,605, Aug. 21, 1930; Cent. 1936, II 2572; French 684,722, June 30, 1930; Cent. 1930, II 2841; French 38,910, Aug. 10, 1931; Cent. 1933, I 1438. (18) Matthews, Strange, Bliss, Austrian 82,804, Feb. 25, 1921; Cent. 1921, IV 517. (19) Tishchenko, Churbakov, Russ. 52,023, Oct. 31, 1937; Cent. 1938, II 1127; C.A. 34, 1336 (1940). (20) Gutner, Tishchenko, J. Gen. Chem. (U.S.S.R.) 6, 1729-1735 (1936); Cent. 1937, I 3786; C.A. 31, 4265 (1937).

(21) Chem. Fabrik Schering, Ger. 246,572, May 6, 1912; Cent. 1912, I 1874. (22) Gutner, Shchigel'skaya, J. Gen. Chem. (U.S.S.R.) 7, 1315-1320 (1937); Cent. 1938, I 561; C.A. 31, 6189 (1937). (23) Tishchenko, J. Gen. Chem. (U.S.S.R.) 9, 1380-1388 (1939); C.A. 34, 1611 (1940). (24) Cass, Levine (to du Pont Co.), U.S. 2,323,226, June 29, 1943; C.A. 38, 119 (1944). (25) Cass, Levine (to du Pont Co.), Brit. 549,799, Dec. 8, 1942; C.A. 38, 756 (1944).

## 3: 7620 1-CHLOROHEXENE-2 $C_6H_{11}Cl$ Beil. S.N. 11 $(\gamma-(n-\text{Propyl})\text{allyl chloride})$

CH<sub>3</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH=CH.CH<sub>2</sub>

B.P. 120-122° at 751 mm. (1) 42-44° at 40 mm. (1)

Two geom. stereoisomers of  $\bar{C}$  are possible, but only one is yet recognized. Furthermore  $\bar{C}$  by virtue of allylic transposition would be expected to be in equilibrium with its synionic isomer 3-chlorohexene-1 ( $\alpha$ -( $\alpha$ -propyl)allyl chloride). The material reported by (1) was regarded as  $\bar{C}$ ; the isomer appears to be as yet unrecorded; however, see 3:9334.

[For prepn. of C from hexen-1-ol-3 [Beil. I<sub>2</sub>-(485)] with PCl<sub>3</sub> in C<sub>6</sub>H<sub>6</sub> see (1).]

[For reactn. of C with sodium phenate in alc. see (1).]

C on cat. hydrogenation gives 1-chlorohexane (3:7955), b.p. 126-127° (1).

Č on hydrolysis with hot aqueous 10 N NaOH for  $2\frac{1}{2}$  hrs. yields (1) hexen-1-ol-3, b.p.  $54-57^{\circ}$  at 20 mm.,  $n_D^{25} = 1.4485$  (1).

3:7630 (1) Hurd, McNamee, J. Am. Chem. Soc. 54, 1648-1649 (1932).

B.P. 
$$121.5^{\circ}$$
 at 746 mm. (sl. dec.) (1)  $D_{15}^{15} = 1.114$  (1)  $119-120^{\circ}$  at 740 mm. (2)  $119-121^{\circ}$  at 740 mm. (3)  $113-116^{\circ}$  at 740 mm. (3) (4)

Note that the same observers have noted (3) two dif. b.p.'s, viz., 119-121° and 113-116° both at 740 mm., on dif. prepns.; this anomaly is still unexplained.

[For prepn. of  $\bar{C}$  (75% yield (5)) from paraldehyde (1:0170) + AcCl (3:7065) + trace ZnCl<sub>2</sub> see (5) (1); from acetaldehyde (1:0100) + AcCl (3:7065) at 100° see (6); from vinyl acetate + liq. (3) or gas (7) HCl see (3) (7).]

 $\ddot{\mathbf{C}}$  on htg. with 0.02% ZnCl<sub>2</sub> at 80° yields acetaldehyde (1:0100) + AcCl (3:7065) + paraldehyde (1:0170) (8);  $\ddot{\mathbf{C}}$  passed through a tube at 360-380° or over pumice at 250-300° yields acetaldehyde + acetyl chloride (9).

 $\bar{C}$  with aq. slowly hydrolyzes in cold, more rapidly on warming, yielding acetaldehyde (1:0100), AcOH (1:1010), and HCl. [This hydrolysis is accelerated by trace of acid, e.g., N/10 HCl (10).]

3:7625 (1) Franchimont, Rec. trav. chim. 1, 245-246 (1882). (2) Descudé, Compt. rend. 132, 1568 (1901). (3) Gebauer-Fuelnegg, Moffett, J. Am. Chem. Soc. 56, 2009 (1934). (4) Ulich, Adams, J. Am. Chem. Soc. 43, 663 (1921). (5) Colonge, Mostafavi, Bull. soc. chim. (5) 5, 1485-1486 (1938). (6) Simpson, Ann. 109, 156-157 (1859). (7) Ger. 313,696, July 19, 1919; Cent. 1919, IV 664. (8) Brit. 329,721, June 17, 1930; Cent. 1930, II 1611. (9) Brit. 330,511, July 10, 1930; Cent. 1930, II 2184. (10) Drushel, Bancroft, Am. J. Sci. (4) 44, 376 (1917).

#### 3:7630 1-CHLOROHEXENE-1

Cl C<sub>6</sub>H<sub>11</sub>Cl Beil. S.N. 11

**B.P.** 121-121.5° (1) 
$$D_{-}^{22} = 0.8872$$
 (1)  $n_{D}^{22} = 1.4300$  (1)

[For formn. of  $\bar{C}$  (together with other prods.) from either 3,3-dichloropropene-1 (3:5140) or 1,3-dichloropropene-1 (3:5280) with n-propyl MgBr see (1).]

C does not react with NaOEt at 130° (1).

C readily reacts with Na yielding (1) hexene-1 (1:8255), b.p. 64°.

 $\tilde{C}$  adds  $\tilde{B}_{12}$  yielding (1) 1,2-dibromo-1-chlorohexane, b.p.  $107^\circ$  at 13 mm.,  $D_-^{24}=1.664$ ,  $n_D^{24}=1.515$  (1).

3:7630 (1) Kirrmann, Grard, Compt. rend. 190, 876-877 (1930); Bull. soc. chim. (4) 47, 843-847 (1930).

### 3:7640 4-CHLOROBUTANONE-2

' (β-Chloroethyl methyl ketone; 1-chlorobutanone-3)

[See also 3-chlorobutanone-2 (3:7598).]

Liquid with faint and not disagreeable odor.

[For prepn. of  $\tilde{C}$  from methyl vinyl ketone [Beil. I-728, I<sub>1</sub>-(379), I<sub>2</sub>-(786)] satd. at 0° with HCl gas directly (67% yield (4)) or in C<sub>6</sub>H<sub>6</sub> soln. (5); from acetyl chloride (3:7065) with ethylene + AlCl<sub>3</sub> at 0° (yields: 33% (3), 53% (6)) of. (2) or at 100° and 50 atm. press. (22); from 4-chlorobutadiene-1,2 (3:7225) by cat. hydration with conc. H<sub>2</sub>SO<sub>4</sub> at -5° (yield 54% crude  $\tilde{C}$  (1)); from  $\beta$ -chloropropionyl chloride (3:5690) with Zn(CH<sub>3</sub>)<sub>2</sub> (60% yield (7)); from butanol-1-one-3 ( $\gamma$ -keto-n-butyl alcohol) by saturation with HCl gas at 0° espec. in pres. of 5-10% AlCl<sub>3</sub> (63% yield (8)) see indic. refs.] — [Note that  $\tilde{C}$  is not formed by chlorination of ethyl methyl ketone (butanone-2) (21).]

 $\tilde{C}$  with hot aq. alk. or alk. carbonates gives only resins, but  $\tilde{C}$  on boilg. with dimethylaniline or better diethylaniline loses HCl giving (yields: 30% and 80%, respectively (7)) methyl vinyl ketone (see above), b.p. 79–80°; note, however, that  $\tilde{C}$  on warming with alc. KOH or quinoline loses both HCl and H<sub>2</sub>O yielding (4) a mixt. of dienes, b.p. 65–75°.

[For behavior of potential  $\tilde{C}$  (mixt. of methyl vinyl ketone + HCl gas in  $C_6H_6$ ) with ethylene glycol (1:6465) see (5); for reactn. of  $\tilde{C}$  with trimethylene glycol (1:6490) + K yielding  $\gamma$ -hydroxypropyl  $\gamma$ -keto-n-butyl ethel see (3).]

[ $\ddot{\mathbf{C}}$  with  $\beta$ -naphthol (1:1540) in EtOH/KOEt at 0° for 3 days gives (59% yield (9)) 1-( $\gamma$ -keto-n-butyl)naphthol-2, cryst. from aq. alc., m.p. 88-89° (corresp. semicarbazone, pale yel. pr. from MeOH, m.p. 179-180° (9)).]

[Č with 2-methylcyclohexanone (1:5470) in EtOH/NaOEt (or sodium isopropylate/isopropyl alc.) at 0° for 18 hrs. gives (yields: 15% (10), 10% (20)) 2-keto-10-methyl-2,3,4,5,6,7,8,10-octahydronaphthalene, b.p. 129-133° at 12 mm.,  $n_{\rm p}^{12} = 1.5250$  (10).]

[ $\bar{\mathbf{C}}$  with diethyl sodio-methylmalonate in ether gives (11) diethyl (methyl)-( $\gamma$ -keto-n-butyl)malonate, b.p. 114-116° at 0.4 mm.;  $\bar{\mathbf{C}}$  with ethyl  $\alpha$ -isopropylacetoacetate in EtOH/NaOEt as directed yields (13) ethyl  $\Delta$ -(1)p-menthenone-3-carboxylate-4.]

[C with aniline + conc. HCl or 40% H<sub>2</sub>SO<sub>4</sub> htd. with nitrobenzene or H<sub>3</sub>AsO<sub>4</sub> yields (14) (6) lepidine (4-methylquinoline) [Beil. XX-395, XXI<sub>1</sub>-(150)]; for corresp. reactn. with other amines see (14) (6).]

[ $\bar{C}$  with 1-aminoanthraquinone [Beil. XIV-177, XIV<sub>1</sub>-(436)] in pyridine yields (15) 1-( $\gamma$ -keto-n-butylamino)anthraquinone, dark red cryst. which dye cellulose acetate.]

[ $\bar{C}$  with hydrazine hydrate in MeOH gives (80% yield (16)) (17) (19) by ring closure 3-methyl- $\Delta^2$ -pyrazoline [Beil. XXIII-30], lıq., b.p. 56° at 15 mm. (16), sol. aq. but forming the corresp. picrate,  $\bar{B}$ .PkOH, yel. ndls. from alc., m.p. 153° (16) (17) (19). —  $\bar{C}$  in AcOH with methylhydrazine sulfate + NaOAc in aq. stood 2 nrs. gives (18) 1,3-dimethyl- $\Delta^2$ -pyrazoline, oil, which with ethereal picric acid gives the corresp. picrate,  $\bar{B}$ .PkOH, m.p. 131.5-132.5° (18). —  $\bar{C}$  with phenylhydrazine in ether gives (16) by ring closure 3-methyl-phenyl- $\Delta^2$ -pyrazoline, ndls. from ether by addn. of pet. ether, m.p. 76-77° (16).]

[ $\bar{C}$  with NH<sub>2</sub>OH.HCl + K<sub>2</sub>CO<sub>3</sub> in aq. MeOH htd. for a few minutes gives (20% yield (16)) by ring closure 3-methyl- $\Delta^2$ -isoxazoline [Beil. XXVII-12], oil, b.p. 60° at 15 mm. (16).]

- ① 1-Carbamido-3-methyl-Δ²-pyrazoline: ndls. from EtOAc, m.p. 167-168° (18), 167° (16). [Note that C̄ with 1 equiv. semicarbazide HCl + NaOAc in aq. immediately ppts. the corresp. semicarbazone; this on htg. for 10 min. with strong aq. NaOAc (or C̄ + semicarbazide HCl + strong NaOAc soln. htd. directly in dil. alc. (19)) loses HCl and ring-closes to the indicated deriv.]
- ① 1-Phenyl-3-methyl-Δ²-pyrazoline: ndls. from ether on addn. of pet. eth., m.p. 76-77° (16), 77° (1). [From C in ether with phenylhydrazine, followed by neutralization and drying with anhyd. K<sub>2</sub>CO<sub>3</sub> (16) (1); note that the presumably intermediate phenylhydrazone loses HCl and by ring closure gives the indicated deriv.]

3:7640 (1) Carothers, Berchet, Collins, J. Am. Chem. Soc. 54, 4070 (1932). (2) Schoeller, Zöllner (to Schering-Kahlbaum, A.G.), U.S. 1,737,203, Nov. 26, 1929; Cent. 1930, II 1133; Brit.

282,412, Feb. 15, 1928; Cent. 1929, I 143. (3) McGinnis, Robinson, J. Chem. Soc. 1941, 405-408. (4) Smith, Sprung, J. Am. Chem. Soc. 65, 1279-1280 (1932). (5) Kühn, J. prakt. Chem. (2) 156, 125 (1940). (6) Kenner, Statham, Ber. 69, 17 (1936). (7) Blaise, Maire, Bull. soc. chim. (4) 3, 268-270 (1908). (8) Décombe, Compt. rend. 202, 1685-1687 (1936). (9) McQuillin, Robinson, J. Chem. Soc. 1941, 588-589. (10) du Feu, McQuillin, Robinson, J. Chem. Soc. 1937, 53, 58-59.

(11) Lin, Robinson, J. Chem. Soc. 1938, 2006. (12) This reference deleted. (13) Walker, J. Chem. Soc. 1935, 1585. (14) Schering-Kahlbaum, A.G., Brit. 283,577, March 7, 1928; Cent. 1929, I 3148. (15) I.G., Brit. 485,175, June 9, 1938; French 828,581, May 20, 1938; Cent. 1938, II 3465. (16) Maire, Bull. soc. chim. (4) 3, 274-279 (1908). (17) Freudenberg, Stoll. Ann. 440, 44 (1924). (18) von Auwers, Heimke, Ann. 458, 205 (1927). (19) von Auwers, Ludewig, Ber. 69, 2348-2349 (1936). (20) Décombe, Compt. rend. 213, 579-581 (1941); Cent. 1942, II 1568.

(21) Forster, Fierz, J. Chem. Soc. 93, 669 (1908). (22) Frolich, Wiezevich (to Standard Oil Development Co.), U.S. 2,006,198, June 25, 1935; Cent. 1936, I 2827; C.A. 29, 5457 (1935).

**B.P. 120-123° (1)** 

$$D_{20}^{20} = 1.130 (1)$$
  $n_{\rm D}^{20} = 1.464 (1)$ 

Note. Č by virtue of facile allyllic transposition easily isomerizes to 1,1-dichlorobutene-2 (3:7685) q.v.

[For prepn. of  $\bar{C}$  from crotonaldehyde (1:0150) with PCl<sub>5</sub> see (1) (2); the resulting mixt. of  $\bar{C}$  with its synionic isomer (1,1-dichlorobutene-2) (supposed by (2) to have been only the latter) has been separated by very precise fractnl. distn. (1).]

C with NaOEt yields (1) 1-chloro-3-ethoxybutene-1, b.p. 132-133° at 760 mm., 54-55° at 46 mm.,  $D_{16}^{16} = 0.960$ ,  $n_{10}^{16} = 1.432$  (1).

C with NaOAc yields (1) 1-chloro-3-acetoxybutene-1, b.p. 57-58° at 16 mm.,  $D_{17}^{17} = 1.090$ ,  $n_D^{17} = 1.443$  (1). [Note that crotylidene diacetate (1,1-diacetoxybutene-2), prepd. (95% yield (3)) from crotonaldehyde (1:1050) with Ac<sub>2</sub>O, gives (3) with dry HCl the isomeric 3-chloro-1-acetoxybutene-1, b.p. 64° at 13 mm.,  $D_{20}^{20} = 1.083$ ,  $n_{-}^{20} = 1.451$  (3).]

**3:7650** (1) Kirrmann, Compt. rend. **199**, 1228–1229 (1934). (2) Kekulé, Ann. **162**, 98–100 (1872). (3) Kirrmann, Bull. soc. chim. (5) **5**, 917–918 (1938).

#### B.P. 120-123° dec. (1)

[For prepn. of Č from hexen-1-ol-4 (allyl-ethyl-carbinol) [Beil. I-444] with PCl<sub>5</sub> see (1).] Č with alc. KOH yields (1) hexadiene-1,3 [Beil. I-253], b.p. 72-74°.

3:7655 (1) Fournier, Bull. soc. chim. (3) 15, 402, 886 (1896).

3:7657 3-CHLORO-2-METHYL-1,2-EPOXYPROPANE C<sub>4</sub>H<sub>7</sub>OCl Bell. S.N. 2362 ("β-Methylepichlorohydrin") CH<sub>6</sub>Cl

B.P. 122.0° (1) 
$$D_4^{20} = 1.1025$$
 (1)  $n_D^{20} = 1.4340$  (1)

Colorless liq.;  $\tilde{C}$  is sol. aq. to extent of 3 g. in 100 g. aq. at 20° (1). —  $\tilde{C}$  with aq. forms a const.-boilg. mixt. (b.p. 89.8°) contg. 74.4%  $\tilde{C}$  + 25.6% aq. (1).

[For prepn. of C from 1,3-dichloropropanol-2 (dichloro-ter-butyl alcohol) (3:5985) with aq. Ca(OH)<sub>2</sub> (93% yield (1)) see (1) (2); from chloroacetone (3:5425) with diagomethane in ether see (3).]

 $\bar{C}$  with aq. especially at elevated temps., or  $\bar{C}$  stirred for 3 hrs. at 90-95° with aq. contg. 0.1% H<sub>2</sub>SO<sub>4</sub> until mixt. becomes homogeneous, gives (1) (4) (by hydration through ring opening) 95% yield (1) 3-chloro-2-methylpropanediol-1,2 ( $\beta$ -methylglycerol monochloro-hydrin) (3:9190). [Note that alk. also catalyzes this hydration but reacts with the prod.] [Note also that HCl may not be used since it adds to the epoxy ring yielding (3) 1,3-dichloro-2-methylpropanol-2 (3:5977).]

 $\ddot{C}$  on distn. with 12% H<sub>2</sub>SO<sub>4</sub> at ord. press. yields (1) (5) quant.  $\alpha$ -methylacrolein (" methacrolein") [Beil. I-731].

 $\ddot{C}$  with conc. aq. NH<sub>4</sub>OH + alk. yields (1) 1,3-diamino-2-methylpropanol-2 [Beil. IV<sub>2</sub>-(739)].

3:7657 (1) Hearne, DeJong, Ind. Eng. Chem. 33, 940-943 (1941). (2) Groll, Hearne (to Shell Development Co.), U.S. 2,061,377, Nov. 17, 1936; Cent. 1937, I 4862; C.A. 31, 704 (1937). (3) Arndt, Amende. Ender, Monatch. 59, 213 (1932). (4) Groll, Hearne (to Shell Development Co.), U.S. 2,086,077, July 6, 1937; Cent. 1937, II 2433; C.A. 31, 5813 (1937). (5) Groll, Hearne (to Shell Development Co.), U.S. 2,106,347, Jan. 25, 1938; Cent. 1938, II 1676; C.A. 32, 2542-2543 (1938).

3: 7660 
$$d$$
, $l$ -3-CHLORO-2-METHYLPENTENE-1  $C_0H_{11}Cl$  Beil. S.N. 11  $(\alpha$ -Ethyl- $\beta$ -methylallyl chloride)  $Cl$   $CH_3$   $CH_3$ - $CH_2$   $CH_3$ - $CH_2$ 

#### B.P. 120-124° (1)

Note.  $\bar{C}$  by virtue of allylic transposition would be expected to be in equilibrium with its synionic isomer 1-chloro-2-methylpentene-2 ( $\gamma$ -ethyl- $\beta$ -methylallyl chloride). The material reported by (1) was regarded as  $\bar{C}$ ; the isomer appears to be as yet unrecorded.

[For prepn. of Č from 2-methylpenten-1-ol-3 by htg. with SOCl<sub>2</sub> + pyridine at 65° for 4 hrs. see (1).]

Č in MeOH refluxed 4 hrs. with NaSCN gives (1)  $\alpha$ -ethyl- $\beta$ -methylallyl isothiocyanate, b.p. 190-200° at 760 mm., 75-90° at 10 mm. (1). [This prod. with conc. H<sub>2</sub>SO<sub>4</sub> at 0° vields 4-ethyl-5.5-dimethyl-2-mercaptothiazoline, color cryst. from alc., m.p. 115-118° (1).]

3:7660 (1) Bruson, Eastes, J. Am. Chem. Soc. 59, 2013 (1937).

3: 7665 
$$d$$
, 1-5-CHLOROHEXENE-1 (Biallyl hydrochloride) (Biallyl hydrochloride) (CH<sub>3</sub>—C—CH<sub>2</sub>.CH<sub>2</sub>.CH=CH<sub>2</sub>  $I_1$ — $I_{2-}$ (192) (H)

B.P. 121–125° at 760 mm. (1)  $D_4^{25} = 0.8891$  (1)  $n_D^{25} = 1.4279$  (1)

B.P. 121-125° at 760 mm. (1) 
$$D_4^{25} = 0.8891$$
 (1)  $n_D^{25} = 1.4279$  (1)  $120-124^\circ$  (2)  $64-66^\circ$  at 103 mm. (1)  $D_4^{20} = 0.9141$  (1)  $n_D^{20} = 1.4305$  (1)  $43-45^\circ$  at 45 mm. (1)  $n_D^{12} = 1.4332$  (1)  $28-30^\circ$  at 13 mm. (1)  $D_4^{12} = 0.9105$  (2)  $n_D^{12} = 1.4350$  (2)

[The levorotatory isomeride of  $\tilde{C}$  has also been reported (3) from dextrorotatory hexen-1-ol-5 with PCl<sub>5</sub> in ether, b.p. 119-122° (3); ozonolysis followed by treatment with Br<sub>2</sub>/aq. yields (3) levorotatory  $\gamma$ -chloro-n-valeric acid.]

[For prepn. of  $\bar{C}$  from hexadiene-1,5 (biallyl) (1:8045) by shaking at room temp. with 5 vols. conc. HCl for 120 hrs. see (1) (4) (yield of  $\bar{C}$  is 23% accompanied by 57% 1,5-dichlorohexane (3:9340) and other products (1)); for prepn. of  $\bar{C}$  from hexen-1-ol-5 [Beil. I-444] with PCl<sub>5</sub> in CHCl<sub>3</sub> (30% yield + much resin (2)) see (2) (attempts to obt.  $\bar{C}$  from this alc. with HCl gave (2) as a result of ring closure only 2,5-dimethyltetrahydrofuran [Beil. XVII-14], b.p. 93°).]

Č on oxidn. with CrO<sub>3</sub>/H<sub>2</sub>SO<sub>4</sub> for 2½ hrs. at 90-95° gave (2) formic acid (1.1005) but no allylacetone.

3:7665 (1) Cortese, J. Am. Chem. Soc. 52, 1519-1521 (1930). (2) Courtot, Pierron, Compt. rend. 190, 1057-1059 (1930). (3) Levene, Haller, J. Biol. Chem. 83, 599 (1929). (4) Wurtz, Ann. chim. (4) 3, 171 (1864).

3: 7670 3-CHLOROHEXANE 
$$C_6H_{13}Cl$$
 Beil. S.N. 10 (sec.-(3)-Hexyl chloride; ethyl-n-propyl-carbinyl chloride)  $CH_3.CH_2.CH_2$   $CH_4$   $CH_5$   $CH_5$   $CH_7$   $CH_8$   $CH_8$ 

[For prepn. of  $\tilde{C}$  from hexene-3 (1:8270) in CHCl<sub>3</sub> by shaking with conc. HCl for 48 hrs. (45% yield) (HCl gas in CHCl<sub>3</sub> fails) see (2) (for study of rate of reaction in various solvents see (4)); from hexanol-3 (1:6203) in ether + HCl gas for 5 days see (1); for formn. of  $\tilde{C}$  (together with other products) from reactn. of 2-ethylbutanol-1 (1:6223) with HCl + ZnCl<sub>2</sub> see (3).]

 $\tilde{C}$  with Mg in dry ether gives RMgCl which with O<sub>2</sub> yields (3) hexanol-3 (1:6203); this alc. upon oxidn. with  $CrO_3/H_2SO_4$  yields (3) hexanone-3 (2,4-dinitrophenylhydrazone, m.p. 146.5-148.5° (3); semicarbazone, m.p. 110.5-111.5° (3)).

3:7670 (1) Lagerev, Shadmanov, Trudy Uzbekskego Gosudarst. Univ. 6, 89-91 (1936); C.A. 35, 2120 (1941). (2) Spiegler, Tinker, J. Am. Chem. Soc. 61, 942 (1939). (3) Whitmore, Karnatz, J. Am. Chem. Soc. 60, 2535 (1938). (4) O'Connor, Baldinger, Vogt, Hennion, J. Am. Chem. Soc. 61, 1455 (1939).

3: 7675 
$$d$$
, $l$ -4-CHLOROHEXENE-2 ( $\alpha$ -Ethyl- $\gamma$ -methylallyl chloride;  $\alpha$ -ethylcrotyl chloride) CH<sub>3</sub>-CH<sub>2</sub>-C-CH=CH.CH<sub>3</sub>  $I_1$ - $I_{2-}$ (192) H

B.P. 123-124° at 760 mm., sl. dec. (1)  $n_D^{20} = 0.9148$  (6) 73-76° at 136 mm. (4)  $n_D^{20} = 0.9148$  (6)  $n_D^{20} = 1.4400$  (1) 66-67° at 110 mm. (5)  $n_D^{20} = 0.9148$  (6) 1.4385 (5) 65-67° at 110 mm. (2)  $n_D^{20} = 0.9148$  (6) 38-43° at 30 mm. (6) 30° at 13 mm. (1) 30° at 10 mm. (7)

Note. The possibility that  $\bar{C}$  may by virtue of allylic transposition exist or react in the form of its as yet unisolated symonic isomer 2-chlorohexene-3 ( $\gamma$ -ethyl- $\alpha$ -methylallyl chloride) should not be overlooked.

[For prepn. of  $\bar{C}$  from hexen-2-ol-4 ( $\alpha$ -ethyl- $\gamma$ -methylallyl alcohol) (1) [Beil. I-445] with dry HCl gas at 0° (5) (81% yield (2)), with conc. aq. HCl (7), with PCl<sub>5</sub> (5) (6) (54% yield (8)), or with SOCl<sub>2</sub> in ether + quinoline at 0° (1) see indic. refs.]

 $\bar{C}$  is readily hydrolyzed:  $\bar{C}$  on shaking with aq. at 15° is 81% hydrolyzed in 48 hrs.; 100% in 90 min. at 40° (2). —  $\bar{C}$  with  $2\frac{1}{2}$  pts. aq. + 1 pt. CaCO3 stood 3 days gives in good yield (1) 4-chlorohexen-2-ol, b.p. 49-50° at 12 mm. (1) [acid phthalate, m.p. 52-53° (1); p-nitrobenzoate, m.p. 35-37° (1); N-(p-xenyl)carbamate, m.p. 102° (1)].

 $\bar{C}$  on htg. in s.t. at 120° with MeOH/KOH gives (3) 4-methoxyhexene-2, b.p. 110-113° (3).

[For reactn. of  $\bar{C}$  with phenol +  $K_2CO_3$  in acetone see (8) (5); for extension to many phenols see (6); for reactn. of  $\bar{C}$  with diethylsodiomalonate see (4); for reactn. of  $\bar{C}$  with NH<sub>3</sub> or amines see (9).]

 $\bar{C}$  on oxidn. with CrO<sub>3</sub>/H<sub>2</sub>SO<sub>4</sub> at 40° gives (55% yield (2)) hexen-2-one-4, b.p. 137-140° (2) [2,4-dinitrophenylhydrazone, m.p. 100-101° (2).]

3:7675 (1) Airs, Balfe, Kenyon, J. Chem. Soc. 1942, 24-26. (2) Courtot, Pierron, Bull. soc. chim. (4) 45, 290-291 (1929). (3) Reif, Ber. 39, 1603-1604 (1906), 41, 2742 (1908). (4) Shonle, Waldo, J. Am. Chem. Soc. 55, 4649-4652 (1933). (5) Smith, Ungnade, Lauer, Leekley, J. Am. Chem. Soc. 61, 3080 (1939). (6) Hurd, Puterbaugh, J. Org. Chem. 2, 381-386 (1937). (7) Boettcher (to I.G.), Ger. 513,364, Nov. 26, 1930; Cent. 1931, I 1007, C.A. 25, 1260 (1931). (8) Hurd, Cohen, J. Am. Chem. Soc. 53, 1917-1922 (1931). (9) Boettcher (to I.G.), Ger. 487,787, Dec. 16, 1929; Cent. 1930, I 1050

3: 7680 
$$d$$
, $l$ -1, $l$ -DICHLOROBUTANE  $C_4H_8Cl_2$   $I_1$ -( $\alpha$ -Butylene dichloride)  $CH_3$ - $CH_2$ - $CH$ - $CH_2$   $I_1$ -(38)  $I_2$ -(81)

B.P. 124.0° (1) (2) (6)  $D_4^{25} = 1.1116$  (2)  $n_D^{20} = 1.440$  (7) abt. 125° (4)  $D_4^{20} = 1.1182$  (6) 123-125° at 758 mm. (7)  $121$ -122° at 735 mm. (5)  $D_4^{15} = 1.1244$  (2)  $n_D^{15} = 1.4474$  (2) 31° at 28 mm. (5) 1.4472 (3)

Colorless liq. with not disagreeable odor.

[For prepn. of  $\bar{C}$  from butene-1 with  $Cl_2$  in aq. (5), in  $CCl_4$  (2), or at elevated temp. and press. in pres. of  $CaCl_2$  + other cat. (8) (some 1,2,3-trichlorobutane (3:5935) is also formed (5)) see indic. refs.; for prepn. of  $\bar{C}$  from 1-chlorobutane (3:7160) with  $Cl_2$  in sunlight or u.v. light (other isomers are also formed) see (9) (10) (11) (4) (7) (other isomers are always formed, and yield of  $\bar{C}$  is about 17% (7)) see indic. refs.; for formn. of  $\bar{C}$  from 2-chlorobutane (3:7125) with  $Cl_2$  in light see (6).]

[ $\bar{\mathbb{C}}$  with Cl<sub>2</sub> at  $-17^\circ$  in dark gives (12) 1,2,3-trichlorobutane (3:5935) as main product.] [ $\bar{\mathbb{C}}$  is not hydrolyzed by boilg. aq. K<sub>2</sub>CO<sub>3</sub> (6) but on htg. with excess 7-15% aq. NaHCO<sub>3</sub> + Na<sub>2</sub>CO<sub>3</sub> at 135-195° under press. for 1-6 hrs. gives (13) butanediol-1,2 [Beil. I-477, I<sub>2</sub>-(545)] + 2-chlorobutene-2 (3:7105) + ethyl methyl ketone (1:5405) + mixt. of buten-1-ol-3 and buten-2-ol-1.]

[ $\bar{C}$  passed as vapor over heated soda-lime as directed (9) (4) (10) (11), or  $\bar{C}$  + aq. vapor at 200-500° over silica gel + cat. (14), gives (24.8% yield (9)) butadiene-1,3 (divinyl) [Beil. I-249, I<sub>1</sub>-(107), I<sub>2</sub>-(224)].]

[ $\ddot{\mathbf{C}}$  with alc. KOH (1 mole + 25% excess) refluxed 3 days gives a mixt. contg. (2) cf. (18) 2-chlorobutene-1 (3:7075) + cis-1-chlorobutene-1 (3:7110); note that by this method no butyne-1 is formed (15) and can be obtd. from  $\ddot{\mathbf{C}}$  + alc. KOH only by very drastic treatment, e.g., htg. in s.t. at 130-135° for 16-20 hrs. (15).]

[For reactn. of  $\tilde{C}$  with phenylacetonitrile (benzyl cyanide) + NaNH<sub>2</sub> in liq. NH<sub>3</sub> giving (40% yield (16)) 1-cyano-2-ethyl-1-phenylcyclopropane, b.p. 93-94° at 1 mm.,  $D_4^{20} = 0.9921$ ,  $n_D^{20} = 1.52457$ , see (16); for condens. of  $\tilde{C}$  with diphenyl ether (1:7125) + AlCl<sub>3</sub> see (17).]

3:7680 (1) Timmermans, Bull. soc. chim. Belg. 36, 504 (1927). (2) Navez, Bull. soc. chim. Belg. 38, 435-440 (1930). (3) Kahovec, Kohlrausch, Z. physik. Chem. B-48, 9 (1940). (4) Perkin, J. Soc. Chem. Ind. 31, 616-624 (1912); Cent. 1912, II 1210-1212. (5) de Montmollin, Matile, Helv. Chim. Acta 7, 106-108 (1924). (6) Tishchenko, Churbakov, J. Gen. Chem. (U.S.S.R.) 7, 663-666 (1937); Cent. 1937, II 372; C.A. 31, 5754 (1937). (7) Tishchenko, Churbakov, J. Gen. Chem. (U.S.S.R.) 7, 893-896 (1937); Cent. 1938, II 2575; C.A. 31, 5755 (1937). (8) Ruys, Edwards (to Shell Development Co.), U.S. 2,099,231, Nov. 16, 1937; Cent. 1938, I 3387; C.A. 32, 190 (1938). (9) Muskat, Northrup, J. Am. Chem. Soc. 52, 4043-4044, 4050-4053 (1930). (10) Muskat (to du Pont Co.), U.S. 2,038,593, April 28, 1936; Cent. 1936, II 3358; C.A. 30, 3912 (1936). (11) Muskat (to du Pont Co.), U.S. 2,070,609, Feb. 16, 1937; Cent. 1937, II 2597; C.A. 31,

(1937). (12) Tishchenko, Churbakov, J. Gen. Chem. (U.S.S.R.), 6, 1553-1558 (1936);
 Cent. 1937, I 3785;
 C.A. 31, 2165 (1937). (13) Dobryanskii, Gutner, Shchigel'skaya, J. Gen. Chem. (U.S.S.R.)
 7, 1315-1320 (1937);
 Cent. 1938, I 561;
 C.A. 31, 6189 (1937). (14) Tishchenko, Churbakov, Ryanantsev, Russ. 52,023, Oct. 31, 1937;
 Cent. 1938, II 1127;
 C.A. 34, 1336 (1940). (15) Schjanberg, Ber. 71, 573 (1938). (16) Murray, Cloke, J. Am. Chem. Soc. 58, 2016 (1936). (17) Coleman, Hadler (to Dow Chem. Co.), U.S. 2,079,279, May 4, 1937;
 Cent. 1937, II 1267.

(18) Henne, Hinkamp, J. Am. Chem. Soc. 67, 1197 (1945).

3: 7685 1,1-DICHLOROBUTENE-2 C<sub>4</sub>H<sub>6</sub>Cl<sub>2</sub> Beil. I - 205 (Crotylidene (di)chloride) CH<sub>3</sub>—CH—CH—CHCl<sub>2</sub> I<sub>1</sub>— I<sub>2</sub>—

**B.P.** 124-125° (1)  $D_{18}^{18} = 1.140$  (1)  $n_{D}^{18} = 1.466$  (1)

Č by virtue of facile allylic transposition easily isomerizes to 1,3-dichlorobutene-1 (3:7650) q.v.

[For prepn. of  $\bar{C}$  from crotonaldehyde (1:0150) with PCl<sub>5</sub> see (1) (2); the resulting mixt. of  $\bar{C}$  with its synionic isomer (1,3-dichlorobutene-1) (supposed by (2) to have been only  $\bar{C}$ ) has been separated by very precise fractional distn. (1).]

Crotylidene diacetate (from crotonaldehyde (1:0150) + Ac<sub>2</sub>O in 95% yield (3)) gives (3) with dry HCl 3-chloro-1-acetoxybutene-1, b.p. 64° at 13 mm.,  $D_{20}^{20} = 1.083$ ,  $n_{D}^{20} = 1.451$  (3), derived from the symionic isomer of  $\tilde{C}$ .

**3:7685** (1) Kirrmann, Compt. rend. **199**, 1228–1229 (1934). (2) Kekulé, Ann. **162**, 98–100 (1872). (3) Kirrmann, Bull. soc. chm. (5) **5**, 917–918 (1938).

3: 7690 3,3-DICHLORO-2-METHYLBUTENE-1 
$$C_{\delta}H_{8}Cl_{2}$$
 Beil. S.N. 11  $Cl_{3}$   $CH_{3}$   $CH_{3}$   $CH_{3}$   $CH_{4}$   $CH_{5}$   $CH$ 

[For prepn. of  $\tilde{C}$  from 3-chloro-2-methylbutene-2 (3:7335) with  $Cl_2 + NaHCO_3$  at 0° see (1) (yield 80% together with 10% 2,3,3-trichloro-2-methylbutane (3:4755), m.p. 182-183° (1)).]

C on htg. gives by allylic transposition 1,3-dichloro-2-methylbutene-2 (3:8170) (1).

3:7690 (1) Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1232-1246 (1938); Cent. 1939, II 4223; C.A. 33, 4190 (1939).

The name crotonoyl chloride is employed to avoid possible confusion with 1-chlorobutene-2 (3:7205) often designated as crotonyl chloride because of its relationship to crotonyl alcohol (buten-2-ol-1).

[For prepn. of  $\bar{C}$  from  $\alpha$ -crotonic acid (1:0425) with SOCl<sub>2</sub> (yield: 95% (5), 86% (11)) (6) (8) (10) in pet. ether (80% yield (2)), or with PCl<sub>3</sub> (84% yield (3)) (7) (4), or with PCl<sub>5</sub> (12), or with benzoyl chloride (3:6240) (yield: 72-80% (13)) see indic. refs.; for prepn. of  $\bar{C}$  from Na $\bar{A}$  with PCl<sub>5</sub> + POCl<sub>3</sub> (1), with PCl<sub>5</sub> in ether (26% yield (14)), or with POCl<sub>3</sub> (9) see indic. refs.; for prepn. of  $\bar{C}$  by distn. of isocrotonyl chloride see (12).]

 $\ddot{C}$  with EtOH yields (4) (by addn. of the resultant HCl) ethyl  $\beta$ -chloro-n-butyrate (3:8373).

[C on htg. with NaA (3) or with Et<sub>8</sub>N + C<sub>6</sub>H<sub>6</sub> in the cold (15) gives (81% yield (3)) crotonic anhydride (1:1155), b.p. 248°.]

[For reactn. of C with methyl diazoacetate see (2), with NaN<sub>3</sub> see (6).]

[C with AlCl<sub>3</sub> + C<sub>6</sub>H<sub>6</sub> in CS<sub>2</sub> in light gives (61% yield (11)) (1) both phenyl propenyl ketone [Beil. VII-368, VII<sub>1</sub>-(194)], b.p. 135-140° at 20 mm. (1), 90-95° at 2 mm. (11),  $n_D^{25} = 1.5475$  (11) (corresp. 1,3-diphenyl-5-methylpyrazoline from ketone with phenyl-

hydrazine, m.p. 108° (1)), and  $\beta$ -phenyl-n-butyrophenone (1,3-diphenylbutanone-1) [Beil. VII-453], m.p. 74° (1) (11). — For reactn. of  $\bar{C}$  with AlCl<sub>3</sub> + p-xylene (16), mesitylene (11), accnaphthene (17), anisole (18), methyl p-tolyl ether (7), methyl 3,5-dimethylphenyl ether (19) see indic. refs.]

 $\bar{C}$  on hydrolysis with aq. yields  $\alpha$ -crotonic acid (1:0425), m.p. 72°; for the amide, anilide, p-toluidide, and other derivs. corresp. to  $\bar{C}$  see 1:0425.

3:7693 (1) Kohler, Am. Chem. J. 42, 395-396 (1909). (2) Staudinger, Becker, Hirzel, Ber. 49, 1991 (1916). (3) Luniak, Ber. 42, 915-916 (1909). (4) Henry, Bull. acad. roy. Belg. (3) 36, 42 (1898); Cent. 1898, II 663 (5) Maxim, Bull. Soc. Chim. Românsa, 10, 97-115 (1928); Cent. 1929, I 2161, C.A. 23, 2697 (1929). (6) Jones, Mason, J. Am. Chem. Soc. 49, 2533 (1927). (7) von Auwers, Ann. 421, 30-36 (1921). (8) Kohlrausch, Pongratz, Z. physik. Chem. B-27, 193 (1934). (9) von Auwers, Schmidt, Ber. 46, 474 (1913). (10) Kuhn, F. Kohler, L. Kohler, Z. physiol. Chem. 247, 197-219 (1937); Cent. 1937, II 2391, C.A. 31, 6264 (1937)

(11) Fuson, Christ, Whitman, J. Am. Chem. Soc. 58, 2450-2452 (1936). (12) von Auwers, Spiess, Ber. 34, 191-192 (1901). (13) Brown, J. Am. Chem. Soc. 60, 1325-1328 (1938). (14) Rupe, Schaerer, Helv. Chim. Acta 8, 863 (1925). (15) Wedekind, Ann. 378, 288 (1910). (16) von Auwers, Risse, Ann. 502, 291-292 (1933). (17) Fieser, Hershberg, J. Am. Chem. Soc. 61, 1280 (1939). (18) von Auwers, Ann. 439, 150 (1924) (19) Ref. 7, pp. 97-100.

#### B.P. 125-126° at 761 mm. (1)

[For prepn. of  $\bar{\rm C}$  from N-(benzoyl)isohexylamine with PCl<sub>5</sub> followed by aq. see (1).]  $\bar{\rm C}$  on htg. in alc. with diethyl sodiomalonate in a s.t. at 100° for 4 hrs. gives an ester from which 2-methyloctanoic acid-8, b.p. abt. 230°, was obtd. by conventional methods (1).

3:7695 (1) Clarke, J. Chem. Soc 103, 1699 (1913).

B.P. 125-127° (1) 
$$D_4^{21} = 0.8694$$
 (3)  $n_D^{21.5} = 1.4142$  (3) 123-126° (2) 122.5° at 754 mm. (3)  $D_4^{14} = 0.8762$  (3) 61° at 100 mm. (3)

[For prepn. of  $\bar{C}$  from corresp. alc. hexanol-2 (1:6210) with conc. HCl at 125° (90% yield (3)) or conc. HCl (1) (2) see indic. refs.; for formn. of  $\bar{C}$  (together with other products) from reaction of 2-ethylbutanol-1 (1:6223) with conc. HCl + ZnCl<sub>2</sub> see (4).]

C on passing over Pyrex glass or unglazed porcelain at 150-500° loses HCl (5).

[For study of rate of reaction with KI in acetone see (2).]

Č with Mg in dry ether gives RMgCl; upon treatment with oxygen this gives (4) hexanol-2 (1:6210) q.v.

① n-Butyl-methyl-acet-anilide: m.p. 91-92° u.c. (1). [From  $\bar{C}$  via conversion to RMgCl and reaction with phenyl isocyanate (1).]

3:7715 (1) Underwood, Gale, J. Am. Chem. Soc. 50, 2119 (1934). (2) Conant, Hussey, J. Am. Chem. Soc. 47, 485 (1925). (3) Zelinskii, Przewalskii, J. Russ. Phys.-Chem. Soc. 49, 1105-1123 (1908); Cent. 1908, I 1854. (4) Whitmore, Karnatz, J. Am. Chem. Soc. 60, 2535 (1938). (5) Farragher, Garner, J. Am. Chem. Soc. 43, 1721 (1921).

B.P. 
$$125-127^{\circ}$$
 (1)  $D_4^{20} = 0.8914$  (2)  $n_D^{20} = 1.4230$  (2)  $88^{\circ}$  at 225 mm, (2)

[For prepn. of  $\bar{C}$  from 2-ethylbutanol-1 (1:6223) with SOCl<sub>2</sub> + pyridine (82% yield) see (2); with 45% HCl in s.t. at 100° (11% yield) see (1). [Note that 2-ethylbutanol (1:6223) with conc. HCl + ZnCl<sub>2</sub> gives (2) by rearr. of the carbon chain 7 different chlorohexanes.]

 $\overline{C}$  on shaking at 79-87° for 7 hrs. with conc. HCl + ZnCl<sub>2</sub> rearranges in part to a mixt. of other hexyl halides (2).

C with Mg in dry ether gives RMgCl; upon treatment with oxygen this yields (2) 2-ethylbutanol-1 (1:6223) q.v.

3:7720 (1) Fourneau, Matti, J. pharm. chim. (8) 14, 513-522 (1931); Cent 1932, I 2587. (2) Whitmore, Karnatz, J. Am. Chem. Soc. 60, 2533-2536 (1938).

3: 7725 
$$d$$
, $l$ -4-CHLORO-2,4-DIMETHYLPENTENE-1  $C_7H_{13}Cl$  Beil. I - 220  $Cl$   $I_1$ —  $CH_3$ —  $C$ —  $CH_2$ —  $C$ —  $CH_2$ —  $C$ —  $CH_2$ —  $C$ —  $CH_3$ 

[For prepn. of  $\bar{C}$  from ethyl  $\beta$ -chloroisovalerate + MeMgBr in ether see (1).]

3:7725 (1) Lemaire, Bull. acad. roy. Belg. 1969, 83-159; Cent. 1969, I 1982; C.A. 4, 1483-1484 (1910); Rec. trav. chim. 29, 51-52 (1910).

3:7730 
$$d$$
, $l$ -4-CHLORO-5-METHYLHEXENE-1  $C_7H_{13}Cl$  Beil. I - 220  $d$ , $l$ -3-Chloro-2-methylhexene-5  $Cl$   $CH_3$  I<sub>1</sub>— (Allyl-isopropyl-carbinyl chloride)  $CH_2$ — $CH$ — $CH$ — $CH$ — $CH$ — $CH$ 3  $I_2$ — $I_3$ 4  $I_4$ 4  $I_4$ 5  $I_4$ 5  $I_4$ 5  $I_4$ 5  $I_4$ 6  $I_4$ 6  $I_4$ 7  $I_4$ 7  $I_4$ 9  $I_4$ 9

#### B.P. 125-130° dec. (1)

[For prepn. of  $\bar{C}$  from 2-methylhexen-5-ol-3 (allyl-isopropyl-carbinol) [Beil. I-447] with PCl<sub>5</sub> see {1}.]

3:7730 (1) Fournier, Bull. soc. chim. (3) 15, 886 (1896).

3:7735 3-CHLOROHEXATETRAENE-1,3,4,5 Cl C<sub>6</sub>H<sub>6</sub>Cl Beil. S.N. 14 CH<sub>2</sub>=C=C=C-CH=CH<sub>2</sub>

B.P. 127° dec. at 760 mm. (1) 
$$D_4^{20} = 0.9997$$
 (1)  $n_D^{20} = 1.5280$  (1) 82° at 163 mm. (1) 55° at 54 mm. (1)

[For prepn. of C from 1,4-dichlorohexatriene-2,3,5 (3:9304) with MeOH/KOH at 10-15° or with NaOMe in dry MeOH see (1).]

C on cat. hydrogenation yields (1) n-hexane (1:8530).

 $\overline{C}$  on oxidn. with aq. KMnO<sub>4</sub> + Na<sub>2</sub>CO<sub>3</sub> soln. for 10 hrs. at 35–45° gives (1) oxalic acid dihydrate (1:0445).

3:7735 (1) Coffman, Carothers, J. Am. Chem. Soc. 55, 2040-2047 (1933).

3: 7740 
$$n$$
-VALERYL CHLORIDE  $C_8H_9OCl$   $III_1-II_{2-}(266)$   $III_{2-}(266)$   $III_{2-}(266)$ 

[For prepn. of  $\tilde{C}$  from n-valeric acid (1:1060) with PCl<sub>5</sub> (60% yield (8)), with PCl<sub>3</sub> (77% yield (9)) (1) or PCl<sub>3</sub> + ZnCl<sub>2</sub> (75% yield (8)), with SOCl<sub>2</sub> (yield: 92.5% (7), 84% (4), 77% (8)), with benzoyl chloride (3:6240) (84–76% yield (6)), or with oxalyl dichloride (3:5060) (95% yield (10)) see indic. refs.]

Č htd. with sodium n-valerate yields (11) n-valeric anhydride (1:1137), b.p. 218°.

[ $\bar{C}$  with EtMgBr gives (66% yield (4)) 3-ethylheptanol-3;  $\bar{C}$  + AlCl<sub>3</sub> treated at 0° with ethylene gives (74% yield (12)) (13) n-butyl  $\beta$ -chloroethyl ketone (1-chloro-heptanone-3), but its constants have not been reported.]

[Č with AlCl<sub>3</sub> and phenol yields (14) 56% o-(n-valeroyl)phenol, b.p. 130° at 10 mm.,  $D_{-}^{24} = 1.0435$ ,  $n_{D}^{25.5} = 1.5309$  (semicarbazone, m.p. 204-204.5°), and 29% p-(n-valeroyl)phenol, cryst. from pet. ether, m.p. 63°, b.p. 197.5-198.5° at 10 mm. (benzoate, m.p. 92°).]

Č on hydrolysis yields n-valeric acid (1:1060), b.p. 186°. — For the amide, anilide, p-toluidide, α-naphthalide, and other derivs. corresp. to Č see n-valeric acid (1:1060).

3:7740 (1) Freundler, Bull. soc. chim. (3) 11, 312 (1894); (3) 13, 833 (1895). (2) Timmermans, Bull. soc. chim. Belg. 36, 507 (1927). (3) Martin, Partington, J. Chem. Soc. 1936, 162. (4) Whitmore, Orem. J. Am. Chem. Soc. 60, 2574 (1938). (5) Kohlrausch, Pongrats, Z. physik. Chem. B-32, 382 (1933). (6) Brown, J. Am. Chem. Soc. 60, 1325-1328 (1938). (7) Fierz-David, Küster, Helv. Chim. Acta 22, 89 (1939). (8) Clark, Bell, Trans. Roy. Soc. Can. III 27, 97-103 (1933). (9) Reitter, Z. physik. Chem. 36, 137 (1901). (10) Uhlich, Adams, J. Am. Chem. Soc. 42, 604 (1920).

Pickard, Kenyon, J. Chem. Soc. 101, 1432 Note (1912).
 Kenner, Statham, Ber. 69, 17 (1936).
 Schering-Kahlbaum Akt. Ges., Brit. 282,412, Feb. 15, 1928; Cent. 1929, I 143.

(14) Sandulesco, Girard, Bull. soc. chim. (4) 47, 1308-1309 (1930).

3:7745-3:7747

E C<sub>4</sub>H<sub>7</sub>O<sub>2</sub>Cl C<sub>2</sub>H<sub>5</sub>,O.CH<sub>2</sub>,CO.Cl Beil. III - 240 III<sub>1</sub>-( 92)

III<sub>2</sub>-(173)

B.P. 127-128° (1) (2) 
$$D_4^{20} = 1.1170$$
 (4)  $n_D^{20} = 1.42039$  (4)  $123-124$ ° (3) .

Colorless limpid liq. with strong odor and lachrymatory character; fumes in moist air. [For prepn. from ethoxyacetic ac. (1:1070) by actn. of PCl<sub>3</sub> (90% yield (2)) see (1) (2); by actn. of thionyl chloride (90% yield (5), 73% yield (3), 45% yield (4)) see (3) (4) (5) (6).

 $\ddot{C}$  in aq. sinks to bottom in oily drops which soon dissolve by hydrolysis to ethoxyacetic acid (1:1070) + HCl.

3:7745 (1) Henry, Ber. 2, 276–277 (1869). (2) Pratt, Robinson, J. Chem. Soc. 123, 752, footnote (1923). (3) Rothstein, Bull. soc. chim. (4) 51, 841–842 (1932). (4) Leimu, Ber. 76, 1050 (1937). (5) Sommelet, Ann. chim. (8) 9, 492–493 (1906); Bull. soc. chim. (4) 1, 368–369 (1907). (6) Jones, Powers, J. Am. Chem. Soc. 46, 2528 (1924).

3: 7747 
$$d$$
, $l$ -1-CHLOROPROPANOL-2  $H$   $C_3H_7OCl$  Beil. I - 363  $I_1$ -(185)  $\beta$ -chloro-isopropyl alcohol; chloromethyl-methyl-carbinol) B.P. 127-128° at 761 mm. (1) (14)  $D_{20}^{20} = 1.115$  (5)  $n_D^{20} = 1.43924$  (2) 1.111 (2)

126-127° cor. at 762 mm. (2) (3) (21) 126-127° at 760 mm. (4)

126.0-126.5° cor. at 722 mm. (5) 78-81° at 80 mm. (6)

[See also 2-chloropropanol-1 (3:7917).]

Colorless liq. forming with aq. a const.-boilg. mixt., b.p. 96° at 743 mm., contg. 49.1 wt. % = 15.15 mole %  $\bar{\text{C}}$  (37).

[For prepn. of  $\bar{C}$  from allyl chloride (3:7035) by addn. of H<sub>2</sub>O to the unsatd. linkage through the actn. of H<sub>2</sub>SO<sub>4</sub> + CuSO<sub>4</sub> as specified (yield: 66-70% (8)) (9) (3) (5) (2) (11) see indic. refs.; an extensive study (10) has shown that this is the only method of prepn. of  $\bar{C}$  which does not gives also some 2-chloropropanol-1 (propylene  $\beta$ -chlorohydrin (3:7917).]

[For prepn. of ordinary  $\tilde{C}$  (probably containing some of the isomer) from propanediol-1,2 (propylene glycol) (1:6455) with HCl (2) (12) (10), with  $S_2Cl_2$  (14) (10), or with  $SiCl_4$  (15) see indic. refs.; from propylene glycol diacetate with an alc. + HCl see (16); from propylene with HOCl (17) (18) (19) (20) (10) (21), with  $Cl_2$  + aq. (22) (23) (30), or with *ter*-butyl hypochlorite (3:7165) (24) see indic. refs.; from 1,2-epoxypropane (propylene oxide) (1:6115) with HCl see (12) (5) (2) (7) (25) (10); note, however, that by these methods there results an inseparable mixt. of much  $\tilde{C}$  with a little 2-chloropropanol-1 (3:7917) (10).]

[For formn. of Č from chloroacetone (3:5425) with AlEt<sub>3</sub> etherate (70% yield (6)) or by actn. of yeast (26); from 2-amino-1-chloropropane with nitrous acid (27) or from 1,2-dichloropropane (propylene dichloride) (3:5200) with SO<sub>3</sub> followed by hydrolysis (28) see indic. refs.]

 $\ddot{\mathbf{C}}$  on htg. in s.t. at 140-160° yields (29) 1,2-dichloropropane (3:5200) + acetone (1:5400);  $\ddot{\mathbf{C}}$  similarly htd. with aq. yields (29) acetone (1:5400) + propionaldehyde (1:0110). —  $\ddot{\mathbf{C}}$  on htg. with P<sub>2</sub>O<sub>5</sub> yields (5) allyl chloride (3:7035) + 1-chloropropene-1 (3:7035).

Č with aq. alk. readily gives (30) by loss of HCl and ring closure 1,2-epoxypropane (propylene oxide) (1:6115), b.p. 35°. [For study of rate of reactn. see (10) (31).]

 $\tilde{C}$  on oxidn. with CrO<sub>3</sub> yields (17) (14) (18) (5) (7) chloroacetone (3:5425) + AcOH (1:1010);  $\tilde{C}$  treated with Ca(OCl)<sub>2</sub> in cold, then warmed, yields (32) chloroform (3:5050) + AcOH (1:1010);  $\tilde{C}$  on oxidn. with HNO<sub>3</sub> yields chloroacetic acid (3:1370) + AcOH (1:1010) + oxalic acid (1:0445).

[For reactn. of  $\bar{C}$  with Na<sub>2</sub>S yielding (9) (33)  $\beta,\beta'$ -dihydroxy-di-n-propyl sulfide; with Me<sub>3</sub>N in C<sub>6</sub>H<sub>6</sub> on htg. in s.t. 8 hrs. at 100° giving (48% yield (34))  $\beta$ -methylcholine chloride, m.p. 165° (34); with alkyl sulfates + alk. (35) to yield monoalkyl ethers of propylene glycol; with alkyl sulfates to yield (35) (36)  $\beta$ -chloroisopropyl alkyl ethers; with Br<sub>2</sub> + P to yield (8) 1-bromo-2-chloropropane, b.p. 117.5–118° at 756 mm.,  $D_4^{20} = 1.537$ ,  $n_D^{20} = 1.47447$  (8), see indic. refs.]

- ——  $\beta$ -Chloroisopropyl acetate: b.p. 149–150° (3) (2). [From  $\bar{C}$  + AcCl (3).]
- ——  $\beta$ -Chloroisopropyl benzoate: no b.p. recorded;  $D_{19}^{19} = 1.172$  (14). [From  $\bar{C}$  on htg. with BzCl at 180° (14); is saponified with great ease by alk. yielding propylene oxide (1:6115), b.p. 35°.]
- ---- β-Chloroisopropyl p-nitrobenzoate: unreported.
- **©**  $\beta$ -Chloroisopropyl 3,5-dinitrobenzoate: m.p. 76.5-77.3° (38).
- ① 1-(Phthalimido)propanol-2 [N-(β-hydroxy-n-propyl)phthalimide: m.p. 88-89° (39), 90-91° (40). [From C̄ + K phthalimide in s.t. at 170° for 3 hrs. (39); see also under corresp. deriv. of 2-chloropropanol-1 (3:7917).]

3:7747 (1) Dewael, Bull. soc. chim. Belg. 33, 504 (1924). (2) Henry, Rec. trav. chim. 22, 209-210. 326-329 (1903). (3) Bancroft, J. Am. Chem. Soc. 41, 426-427 (1919). (4) Henry, Bull. acad, roy. Belg. 1902, 535-536; Cent. 1902, II 1093-1094. (5) Michael, Ber. 39, 2786-2789 (1906). (6) Mecrewin, Hinz, Majert, Sonke, J. prakt. Chem. (2) 147, 237 (1936). (7) Henry, Bull. acad. roy. Belg. 1903, 397-431; Cent. 1903, II 486. (8) Dewael, Bull. soc. chim. Belg. 39, 87-90 (1930). (9) Coffey, J. Chem. Soc. 119, 96-97 (1921). (10) Smith, Z. physik. Chem. 93, 59-85 (1919).

(11) Oppenheim, Ann. Suppl. 6, 367-369 (1868). (12) Michael, J. prakt. Chem. (2) 60, 420-423 (1899). (13) Oser, Ann. Suppl. 1, 254 (1861). (14) Morley, Green, J. Chem. Soc. 47, 132-134 (1885); Ber. 18, 24-25 (1885). (15) Taurke, Ber. 38, 1669 (1905). (16) Britton, Coleman, Moore (to Dow Chem. Co.), U.S. 1,987,227, Jan. 8, 1935; Cent. 1935, II 350; C.A. 29,1432 (1935). (17) Markownikow, Ann. 153, 251-252 (1870). (18) Michael, J. prakt. Chem. (2) 69, 454-458 (1899). (19) Finkelstein (to I G.), Canadian 285,920, Dec. 25, 1928; Cent. 1932, I 1153. (20) Tropsch, Kassler, Brit. 377,595, Aug. 18, 1932; Cent. 1932, II 2724.

(21) Henry, Rec. trav. chim. 26, 138 (1907); Bull. acad. roy. Belg. 1906, 523-557; Cent. 1906, II 1550-1551. (22) Britton, Nutting, Huscher (to Dow Chem. Co.), U.S. 2,130,226, Sept. 13, 1938; Cent. 1939, I 1856; C.A. 32, 9096 (1938). (23) Soc. Carbochimique, Brit. 445,011, Apr. 30, 1936; Cent. 1936, II 1244; French 795,804, March 23, 1936, C.A. 30, 5592 (1936). (24) N. V. De Bataafsche Petroleum Maatschappij, French 740,350, Jan. 24, 1933; Cent. 1933, II 2053. (25) Nef. Ann. 335, 204-205 (1904). (26) Sen. J. Indian. Chem. Soc. 1, 7 (1924). (27) Smith, Platon, Ber. 55, 3150-3153 (1922). (28) Isham, Spring (to Doherty Research Co.), U.S. 1,918,967, July 18, 1933; Cent. 1933, II 2053; C.A. 27, 4815 (1933). (29) Krassuski, J. Russ. Phys.-Chem. Soc. 34, 287-315 (1902); Cent. 1902, II 19-21. (30) Moureu, Dodé, Bull. soc. chim. (5) 4, 281-295 (1937).

(31) Smith, Z. physik. Chem. A-152, 153-156 (1931). (32) Ssuknewitsch, Tschilingarjan, Ber. 69, 1542 (1936). (33) Farbwerke Meister, Lucius Bruning, Brit. 185,403, Oct. 25, 1922; Cent. 1923, II 684. (34) Major, Cline, J. Am. Chem. Soc. 54, 246-247 (1932). (35) Davidson (to Carbide and Carbon Chem. Corp.), U.S. 1,730,061, Oct. 1, 1929; Cent. 1930, I 1366; C.A. 23, 5474 (1929). (36) Dewael, Bull. soc. chim. Belg. 39, 395-401 (1930). (37) Kireev, Kaplan, Zlobin, J. Applied Chem (U.S.S.R.) 7, 1333-1338 (1934); Cent. 1936, I 4286; C.A. 29, 5712 (1935). (38) Magrane, Cottle, J. Am. Chem. Soc. 64, 485 (1942). (39) Gabriel, Ohle, Ber. 50, 807 (1917). (40) Gabriel, Ohle, Ber. 50, 820 (1917).

B.P. 127-128° dec. at 733 mm. (1) 
$$D_4^{20} = 0.861$$
 (1)  $n_D^{20} = 1.4180$  (1)  $126-127^{\circ}$  (2)  $1.4239$  (3)  $33-34^{\circ}$  at 20 mm. (3)  $D_4^{10} = 0.8650$  (2)  $n_D^{16.5} = 1.4202$  (2)

[For prepn. of  $\bar{C}$  from 2,4-dimethylpentanol-2 (dimethyl-isobutyl-carbinol) [Beil. I-417, I<sub>1</sub>-(207), I<sub>2</sub>-(446)] by saturation with HCl (2) or as by-product during its reacts. with AlCl<sub>3</sub> + C<sub>6</sub>H<sub>6</sub> (3) see indic. refs.; for prepn. of  $\bar{C}$  from 2,4-dimethylpentanol-3 (di-isopropyl-carbinol) (1:6215) in 100% yield by saturation with HCl gas and stdg. 10 weeks at 20° (note rearrangement) (1).]

 $\bar{C}$  with Mg in dry ether gives (1) RMgCl, which upon oxidation with O<sub>2</sub> and subsequent hydrolysis gives 32% yield 2,4-dimethylpentanol-2 (dimethyl-isobutyl-carbinol), b.p. 130-131° at 738 mm.,  $D_4^{20} = 0.811$ ,  $n_D^{20} = 1.4166$  (1).

[For reactn. of  $\tilde{C}$  with AlCl<sub>3</sub> + C<sub>6</sub>H<sub>6</sub> yielding 2,4-dimethyl-2-phenylpentane, b.p. 218°,  $D_4^{15} = 0.8741$ ,  $n_D^{16.5} = 1.49383$ , see (2).]

3:7750 (1) Whitmore, Johnston, J. Am. Chem. Soc. 60, 2267 (1938). (2) Schreiner, J. prakt. Chem. (2) 82, 294 (1910). (3) Huston, Fox, Binder, J. Org. Chem. 3, 252-253 (1939).

3: 7752 1-CHLQRO-2-METHYLPROPANOL-2 
$$C_4H_9OCl$$
 Beil. I - 382 (Chloro-ter-butyl alcohol;  $CH_3$   $I_1-$  chloro-trimethylcarbinol;  $CH_3 C CH_2$  isobutylene  $\alpha$ -chlorohydrin;  $\alpha,\alpha$ -dimethylethylene  $\alpha$ -chlorohydrin)  $OH$ 

| B.P.                |              | M.P.     |                         |
|---------------------|--------------|----------|-------------------------|
| 128-129°            | (1) (2)      | -20° (5) | $D_4^{20} = 1.0628 (9)$ |
| 127-129°            | (3)          |          |                         |
| 127-128.5°          | (4)          |          |                         |
| 126-128°            | (5) (6) (7)  |          |                         |
| 126-127° at 736     | 3.4 mm. (8)  |          |                         |
| 126.7°              | (9)          |          |                         |
| 126.0-126.5° at 748 | 3.3 mm. (10) |          |                         |
| 71.0-71.5° at 100   | mm. (10)     |          |                         |

[See also 2-chloro-2-methylpropanol-1 (3:7905).]

Colorless liq. somewhat sol. aq.; 100 g. aq. at 20° dis. 18.6 g. Č (note also that 100 g. Č at 20° dis. 19 g. H<sub>2</sub>O) (9). — Č forms with aq. a const.-boilg. mixt., b.p. 93-94° at 760 mm., contg. 34% aq. (9).

[For prepn. of  $\bar{C}$  from 3-chloro-2-methylpropene-1 (methallyl chloride) (3:7145) or from 1-chloro-2-methylpropene-1 ( $\theta,\beta$ -dimethylvinyl chloride) (3:7120) by cat. hydration of their unsatd. linkage (63-66% yield) see (9) (11); note that the former with 80% H<sub>2</sub>SO<sub>4</sub> at 0° or the latter with 90% H<sub>2</sub>SO<sub>4</sub> at -10° to 0° stirred for 2½ hfs., poured onto ice, and distilled gives 63-66% of the initial chloride as  $\bar{C}$ ; note that other acids can also be used for this hydration, e.g., 85% H<sub>3</sub>PO<sub>4</sub>, 70% HNO<sub>3</sub>, 60% HClO<sub>4</sub>, benzenesulfonic acid, etc., each having its own optimum conditions (9); note also that in this process some 32-18%

respectively of the initial chloride is not hydrated but partially isomerized to a mixt. contg. 90%  $\beta$ , $\beta$ -dimethylvinyl chloride (3:7120) + 10% methallyl chloride (3:7145) irrespective of whichever one was initially employed (9).]

[For prepn. of Č from 1,2-dichloro-2-methylpropane (isobutylene dichloride) (3:7430) by liq.-phase hydrolysis of the more reactive halogen atom under neutral (or even slightly acidic or basic) conditions (best yield 48% by refluxing 18 hrs. with aq.) see (10).]

[For prepn. of  $\bar{C}$  from chloroacetone (3:5425) or ethyl chloroacetate (3:5700) with MeMgBr (yields: 60% (5), 38% (12)) (3) (6) or MeMgI (20% yield (4)) see (3) (5) (6) (12) (note that  $\bar{C}$  is accompanied (as a result of reaction of a second MeMgBr (13) (14)) by some 2-methylbutanol-2 (1:6160)); for prepn. of  $\bar{C}$  from isobutylene with HOCl (yields: 64% (6), 63% (1), 60% (7), 47% (2)) (5) (15), with  $Cl_2 + H_2O$  (16) (17) in pres. of 10% CuCl<sub>2</sub> (80-85% yield (24)), or with ter-butyl-hypochlorite (3:7165) (18) see indic. refs.; for formn. of  $\bar{C}$  from 1,2-epoxy-2-methylpropane (isobutylene oxide) (1:6117) with HCl gas in ether see (19) (6) (4) (1) (note, however, that the prod. is a mixt. consisting of about  $\frac{1}{2}$   $\bar{C}$  contaminated with about  $\frac{1}{2}$  of the isomeric 2-chloro-2-methylpropanol-1 (3:7905)).] [For formn. of  $\bar{C}$  from 1-amino-2-methylpropanol-2 hydrochloride with conc. HCl in s.t. at 100° see (12).]

[Č on reduction with Na/Hg in dil. HCl yields (2) (15) 2-methylpropanol-1 (isobutyl alcohol) (1:6165); this unexpected result presumably is due to intermediate formation of isobutylene oxide (1:6117) which on reduction opens the ring to give isobutyl alc. (not ter-butyl alcohol).]

[ $\overline{C}$  on protracted oxidation, e.g., with mixt. of 1.5 wt. pts. fumg. HNO<sub>3</sub> + 3.5 wt. pts. conc. HNO<sub>3</sub> at 75° for 20 hrs. (2), gives traces of chloroacetone (3:5425) and a little oxalic acid (1:0445) and  $\alpha$ -chloroisobutyric acid (3:0235) (5).]

C on refluxing with aq. is slowly (e.g., 56% in 14 hrs. (2)) (21) converted to isobutyraldehyde (1:0120); note that this reaction carried out above 100° under press. (20) is greatly accelerated.

[C with warm conc. HCl yields (10) (5) 1,2-dichloro-2-methylpropane (3:7430).]

 $\ddot{C}$  on solution in cold 45%  $H_2SO_4$  followed by warming loses  $H_2O$  and yields (9) a mixt. consisting of about 90% 1-chloro-2-methylpropene-2 (methallyl chloride (3:7145)) accompanied by about 10% 1-chloro-2-methylpropene-1 ( $\beta,\beta$ -dimethylvinyl chloride) (3:7120); a mixt. of these two chlorides has also been obtd. by use of  $P_2O_5$  (1) (2) or anhydrous oxalic acid (2) (22).]

[C added dropwise to dry powdered KOH, NaOH, CaO, or Ca(OH)<sub>2</sub> loses HCl and gives (95% yield using NaOH (10), 67% using KOH (6)) 1,2-epoxy-2-methylpropane (isobutylene oxide) (1:6117), b.p. 56.0-56.5° cf. (24).]

 $[\bar{C}$  with aq. alkali ultimately yields 2-methylpropanediol-1,2 (isobutylene glycol) (1:6446) or its polymerization products; for study of kinetics of reaction of  $\bar{C}$  with aq. alk. see (4) (8).

[ $\bar{C}$  with KCN in 4 vols. 80% alc. refluxed for 15-20 min. gives (45-50% yield (23))  $\beta$ -hydroxy-isovaleronitrile [Beil. III-328], b.p. 210-212° at 756 mm., 130-132° at 30 mm., f.p.  $-12^{\circ}$ ,  $D_{-}^{20} = 0.96762$ ,  $n_{D} = 1.42911$  (23).]

[ $\tilde{C}$  with aq. 23% EtNH<sub>2</sub> (4 moles) in s.t. at 100° for 8 hrs. gives (70-75% yield (25)) 1-(ethylamino)-2-methylpropanol-2, b.p. 156° ( $\tilde{B}$ .HCl, m.p. 151° (25)). —  $\tilde{C}$  with aq. Et<sub>2</sub>NH refluxed 3-4 hrs. gives (60% yield (26)) 1-(diethylamino)-2-methylpropanol-2, b.p. 164-165° at 761 mm. (26),  $D_4^{20}=0.8382$  (27),  $n_D^{20}=1.4253$  (27) ( $\tilde{B}$ .PkOH, m.p. 99-100° (26)). — For reactn. of  $\tilde{C}$  with N-methylaniline, N-ethylaniline, or di-n-butylamine see (27).]

<sup>----</sup> Chloro-ter-butyl acetate: b.p. 154° at 760 mm. (28), 153-154° (5),  $D_4^{15} = 1.0626$  (28),  $n_D^{15} = 1.4340$  (28). [From  $\bar{C} + AcCl$  (5); also indirectly (28% yield (28)) from

isobutylene + N,N'-dichlorourea in AcOH.] — [For analogous indirect prepn. of the formate, chloroacetate, and trichloroacetate see (28).]

- ---- Chloro-ter-butyl benzoate: unreported.
- ---- Chloro-ter-butyl p-nitrobenzoate: unreported.
- ---- Chloro-ter-butyl 3,5-dinitrobenzoate: unreported.
- **①** 1-(N-Phthalimido)-2-methylpropanol-2 (N-( $\alpha$ -hydroxyisobutyl)phthalimide): ndls. or lfts. from alc., m.p. 106-107° (12). [From  $\ddot{C}$  + K phthalimide in s.t. at 150° for 4 hrs. (60% yield (12)).]
- 3:7752 (1) Michael, Leighton, J. prakt. Chem. (2) 64, 103-104 (1901). (2) Michael, Leighton, Ber. 39, 2157-2163 (1906). (3) Tiffeneau, Compt. rend. 134, 775 (1902). (4) Nillson, Smith, Z. physik. Chem. A-166, 143-144 (1933). (5) Henry, Rec. trav. chim. 26, 142-151 (1907); Bull. acad. rpy. Belg. 1906, 523-557; Cent. 1906, II 1550-1551; Compt. rend. 142, 131, 494-496 (1906). (6) Krassusky, J. prakt. Chem. (2) 75, 241-247 (1907). (7) Krassusky, J. Russ. Phys.-Chem. Soc. 33, 1-26 (1901); Cent. 1901, I 995-997. (8) Evans, Z. physik. Chem. 7, 338-357 (1891). (9) Burgin, Hearne, Rust, Ind. Eng. Chem. 33, 385-388 (1941). (10) Sparks, Nelson, J. Am. Chem. Soc. 58, 1010-1011 (1936).
- (11) Groll, Burgin (to Shell Development Co.), U.S. 2,042,222, May 26, 1936; Cent. 1937, I 1546; C.A. 30, 4875 (1936); N. V. de Bataafsche Petroleum Maatschappi, French 791,644, Dec. 14, 1935; Cent. 1936, II 2227. (12) Dersin, Ber. 54, 3158-3160 (1921). (13) Henry, Compt. rend. 145, 24 (1907). (14) Fourneau, Tiffeneau, Compt. rend. 145, 438 (1907). (15) Butlerow, Ann. 114, 25-26 (1867). (16) Kautter, U.S. 2,060,086, Oct. 17, 1936; Cent. 1937, I 3873; N. V. de Bataafsche Petroleum Maatschappij, French 799,805, June 20, 1936; Cent. 1938, II 3468; C.A. 30, 8250 (1936). (17) Britton, Nutting, Huscher (to Dow Chem. Co.), U.S. 2,130,226, Sept. 13, 1938; Cent. 1939, I 1856; C.A. 32, 9096 (1938). (18) N. V. de Bataafsche Petroleum Maatschappij, French 740,350, Jan. 24, 1933; Cent. 1933, I 2870. (19) Michael, Leighton, Ber. 39, 2789-2795 (1906). (20) Groll, Kautter (to Shell Development Co.), U.S. 2,042,225, May 26, 1936; Cent. 1937, I 184; C.A. 39, 4872 (1936); Canadian 363,685, Jan. 26, 1937; Cent. 1937, II 1661.
- (21) Krassusky, Bull. soc. chim. (3) 24, 236 (1900). (22) Krassusky, J. prakt. Chem. (2) 64, 389-390 (1901). (23) Lemaire, Rec. trav. chim. 29, 58-60 (1910); Bull. acad. roy. Belg. 1909, 83-159; Cent. 1909, I 1982. (24) Moureu, Dodé, Bull. soc. chim. (5) 4, 286-289 (1937). (25) Krassuskii, Kutzenos, Ukrain. Khem. Zhur. 4, Sci. Pt., 75-77 (1929); Cent. 1929, II 2174; C.A. 24, 1083 (1930). (26) Krassusky, Stepanoff, J. prakt. Chem. (2) 115, 321-324 (1927). (27) K. N. Campbell, B. K. Campbell, Proc. Induana Acad. Sci. 49, 101-104 (1939); C.A. 35, 5460 (1941). (28) Likhosherstov, Petrov, J. Gen. Chem. (U.S.S.R.) 9, 2000-2008 (1939); C.A. 34, 4381 (1940).

3:7755 2,2-DICHLOROPENTANE Cl 
$$C_6H_{10}Cl_2$$
 Beil. I - 131  $I_1 I_2 CH_3.CH_2.CH_2-C-CH_3$   $I_2-$  (95)

B.P. 128-129° cor. (1) 
$$D_{-}^{20} = 1.040$$
 (1)  $n_{\rm D}^{20} = 1.434$  (1)  $44^{\circ}$  at 31 mm. (1)  $36-37^{\circ}$  at 20 mm. (1)

The prod. upon which the above data are based was admittedly impure, still contg. 20% 2,3-dichloropentane (3:8010) q.v.

[For prepn. of  $\tilde{C}$  from methyl n-propyl ketone (1:5415) with PCl<sub>5</sub> see (1) (2) (3); for formn. of  $\tilde{C}$  (together with other products) from pentane (1:8505) + Cl<sub>2</sub> see (4).]

Č with alc. KOH gives (2) 2-chloropentene-1 (3:7280) and pentyne-1 (1:8025). — Č on boilg. with NaNH<sub>2</sub> in xylene gives (1) pentyne-1 (1:8025).

[For reactn. of  $\bar{C}$  with SbF<sub>5</sub> yielding 2,2-diffuoropentane, b.p. 59.8°,  $D_4^{20} = 0.8958$ ,  $n_{20}^{20} = 1.33570$ , see (3).]

\$:7755 (1) Bourgeul, Ann. chim. (10) \$, 220, 368-370 (1925); Bull. soc. chim. (4) \$5, 1634 (1924).
 (2) Bruylants, Ber. 8, 411 (1875).
 (3) Henne, Renoll, Leicester, J. Am. Chem. Soc. 61, 938-940

Beil. III - 12

C<sub>5</sub>H<sub>9</sub>O<sub>2</sub>Cl

3:7760 ISOBUTYL CHLOROFORMATE

(1939). (4) Lemke, Tishchenko, J. Gen. Chem. (U.S.S.R.), 7, 1995-1998 (1937); Cent. 1939, I 2397; C.A. 32, 482 (1938).

(Isobutyl chlorocarbonate) (CH<sub>3</sub>)<sub>2</sub>CH.CH<sub>2</sub>.O.CO.Cl 
$$III_{1}$$
-(6)  $III_{2}$ -(11)

**B.P. 128.8° cor. (1) (2)**  $D_{4}^{17.9} = 1.0425$  (3)  $n_{H_{e}}^{17.9} = 1.40711$  (3)  $D_{15}^{18.5} = 1.0445$  (4)

Colorless mobile lachrymatory oil. — Insol. in aq. and only slowly hydrolyzed by it even on htg.

[For prepn. of  $\tilde{C}$  (35% yield (2)) from isobutyl alc. (1:6165) + phosgene (3:5000) see (1) (2) (5).]

- D Isobutyl carbamate [Beil. III-29]: from C

  in C

  of B

  of by treatment with NH3 gas, filtration of pptd. NH4Cl, and evapn. of solvent; lfts. from aq., m.p. 61° (6); 64.4° (7); 64-65° (8).
- (isobutyl N-phenylcarbamate (isobutyl carbanilate) [Beil. XII-321]: from Č in ether by treatment with ether soln. of aniline (1 mole) + pyridine (1 mole); ndls. from alc., m.p. 86° (9) (10).
- 3:7760 (1) Roese, Ann. 205, 230 (1880).
   (2) Hamilton, Sly, J. Am. Chem. Soc. 47, 436 437 (1925).
   (3) von Auwers, Ber. 60, 2140 (1927).
   (4) Dobrosserdow, Cent. 1911, I 955 (5) Hochstetter, Ger. 254,471, Feb. 16, 1915; Cent. 1915, I 464.
   (6) Thiele, Dent, Ann. 302, 271 (1898).
   (7) Brunel, Ber. 44, 1002 (1911).
   (8) Schmidt, Z. physik. Chem. 58, 514 (1907).
   (9) Michael, Cobb, Ann. 363, 84 (1908).
   (10) Huckel, Ackermann, J prakt. Chem. (2) 136, 23 (1933).

$$CH_3$$
— $C$ — $CH_2$ — $C$ = $O$ 
 $CH_3$ — $C$ 1

B.P. 128.5–130.3° at 746 mm. (1)

 $D_4^{20} = 0.9696$  (1)  $n_D^{20} = 1.4230$ 

B.P. 128.5-130.3° at 746 mm. (1) 
$$D_4^{20} = 0.9696$$
 (1)  $n_D^{20} = 1.4230$  (6)  $79.5^{\circ}$  at 165 mm. (2)  $0.968$  (3)  $1.4226$  (5)  $79-81^{\circ}$  at 150 mm. (3)  $1.422$  (1) (3)  $79$  at 150 mm. (4)  $1.4213$  (2)  $68^{\circ}$  at 100 mm. (5)  $1.4212$  (4)  $1.4212$  (4)  $1.4213$  (2)  $1.4212$  (4)  $1.4213$  (2)  $1.4213$  (4)

[For prepn. of Č from ter-butylacetic acid (1:1112) with SOCl<sub>2</sub> (1) (yields: 93% (3), 86% (4) (5), 84% (2)) see indic. refs.]

[For reactn. of  $\bar{C}$  with various alcs. to give corresp. alkyl ter-butylacetates see (2) (3) (7): e.g., methyl ter-butylacetate, b.p. 126.5° at 739 mm. (3), 128° at 735 mm. (2),  $D_4^{20} = 0.8710$  (3),  $n_D^{20} = 1.3997$  (2), 1.3981 (3); ethyl ter-butylacetate, b.p. 144.5-144.7° at 739 mm. (3),  $D_4^{20} = 0.8604$  (3),  $n_D^{20} = 1.4010$  (3).]

[For behavior of C with a large excess of various Grignard compounds see following refs.: with EtMgBr (5), n-PrMgBr (5), iso-PrMgBr (2), n-BuMgBr (5), iso-BuMgBr (2), ter-BuMgCl (4) (6), n-AmMgBr (5).]

 $\ddot{\mathbf{C}}$  on hydrolysis yields *ter*-butylacetic acid (1:1112) q.v. (for the amide, anilide, *p*-toluidide, and other derivatives corresponding to  $\ddot{\mathbf{C}}$  see 1:1112).

3:7880 (1) Hommelen, Bull. soc. chim. Belg. 42, 243-250 (1933). (2) Whitmore, Foster, J. Am. Chem. Soc. 64, 2966-2968 (1942). (3) Homeyer, Whitmore, Wallingford, J. Am. Chem. Soc. 55, 4211-4212 (1933). (4) Whitmore, Heyd, J. Am. Chem. Soc. 60, 2030-2031 (1938). (5) Whitmore, Popkin, Whitaker, Mattel, Zech, J. Am. Chem. Soc. 60, 2462-2464 (1938). (6) Whitmore, Whitaker, Mosher, Breivik, Wheeler, Miner, Sutherland, Wagner, Clapper, Lewis, Lux, Popkin, J. Am. Chem. Soc. 63, 643-654 (1941). (7) Whitmore, Homeyer (to Mallinckrodt, Chem. Works), U.S. 2,052,995, Sept. 1, 1936; Cent. 1936, II 3846; C.A. 30, 7125 (1936).

3: 7885 
$$d$$
,  $l$ -4,  $d$ -DICHLORO-2-METHYLBUTANE  $C_{\delta}H_{10}Cl_{2}$  Beil.  $I$  - 135  $I_{1-}($  47)  $I_{2-}$   $I_{1-}($  47)  $I_{2-}$   $I_{2-}$ 

Colorless limpid liquid, insol. aq., sol. in alc. or ether.

[For prepn. of C from isovaleraldehyde (1:0140) with PCl<sub>5</sub> see (1) (2) (3); for formn. of  $\bar{C}$  by actn. of  $Cl_2$  (+ $I_2$ ) on diisoamyl sulfide see (4).]

C with KOH gives (1) (3) 4-chloro-2-methylbutene-3 (3:7215) and ultimately 3-methylbutyne-1 (isopropylacetylene) (1:8010), b.p. 28°.

 $\bar{C}$  htd. with PbO + H<sub>2</sub>O gives (4) isovaleraldehyde (1:0140).

3;7885 (1) Ebersach, Ann. 106, 265-266 (1858). (2) Kohlrausch, Monatsh. 65, 197 (1935). (3) Bruylants, Ber. 8, 413-414 (1875). (4) Spring, Lecrenier, Bull. soc. chim. (2) 48, 627 (1887).

For prepn. of C from 2-methylhexen-4-ol-3 [Beil. I-447, I<sub>2</sub>-(489)] with conc. HCl at ord. temp. (90% yield (2)) or with SOCl2 in pet. ether (1) see indic. refs.]

[C with quinoline loses HCl on boilg, giving (1) 2-methylhexadienc-2.4 [Beil, I-257. I<sub>2</sub>-(235)], b.p. 99° (1).]

[C with diethylamine yields (3) 3-diethylamino-2-methylhexene-4, oil, b.p. abt. 175° (3).]

3:7890 (1) Staudinger, Muntwyler, Ruzicks, Seibt, Helv. Chim. Acta 7, 399 (1924). (2) Böttcher (to I.G.), Ger. 508,891, Oct. 2, 1930; Cent. 1930, II 3637; C.A. 25, 710 (1931). (3) Bottcher (to I.G.), Ger. 487,787, Dec. 16, 1929; Cent. 1930, I 1050.

[For prepn. of  $\tilde{C}$  from pentanone-2 (methyl n-propyl ketone) (1:5415) with Cl<sub>2</sub> (yields: 35.5% (3), 85% crude (2)) cf. (6) or with SO<sub>2</sub>Cl<sub>2</sub> in C<sub>6</sub>H<sub>6</sub> (44% yield (7)) see indic. refs.; from ethyl  $\alpha$ -chloro- $\alpha$ -ethylacetoacetate [Beil. III-694, III<sub>1</sub>-(241), III<sub>2</sub>-(438)] by ketonic cleavage with dil. HCl in s.t. at 180° for 4-6 hrs. see {1} cf. (7).

[ $\tilde{C}$  in abs. alc. treated with NH<sub>3</sub> gas yields (2) 2,5-dimethyl-3,6-diethylpyrazine [Beil. XXIII-101], liq., b.p. 215-217°, forming with aq. a sublimable hydrate, m.p. 42.5°. (Note that 2-chloropentanone-3 (3:7935) similarly treated gives same prod.) —  $\tilde{C}$  with equiv. amt. ethyl  $\beta$ -aminocrotonate [Beil. III-654, III<sub>1</sub>-(228), III<sub>2</sub>-(423)] in pres. of excess conc. NH<sub>4</sub>OH gives (27.3% yield (4)) ethyl 2,5-dimethyl-4-ethylpyrrolecarboxylate-3 [Beil. XXII-33, XXII<sub>1</sub>-(501)], cryst. from dil. MeOH, m.p. 74-75° (4); note, however, m.p. 106-107° (5) reported for this prod. obtd. in a dif. way.]

[ $\overline{C}$  with thioformamide gives (29% yield (7)) 4-methyl-5-ethylthiazole, b.p. 169.5-170° at 745 mm., 78-79° at 25 mm. (7).]

3:7893 (1) Conrad, Ann. 186, 241-242 (1877). (2) Démetre-Vladesco, Bull. soc. chim. (3) 6, 832-834 (1891). (3) Korschun, Bull. soc. chim. (4) 3, 595-596 (1908). (4) Korschun, Bull. soc. chim. (4) 3, 594-595 (1908). (5) Vecchi, Gazz. chim. ital. 44, I 477 (1914). (6) Justoni, Chimica e industria (Italy) 24, 195-201 (1942); Cent. 1943, I 1659. (7) Buchman, Richardson, J. Am. Chem. Soc. 67, 397 (1945).

3: 7895 3,3-DICHLOROPENTANE Cl 
$$C_5H_{10}Cl_2$$
 Beil. I —  $I_1$ —  $I_2$ —  $CH_3$ .  $CH_2$ —  $CH_2$ .  $CH_3$   $I_2$ —  $I_2$ —  $I_3$ —  $I_4$ 

B.P. 131-132° at 750 mm. (1) 
$$D_{-}^{20} = 1.053$$
 (1)  $n_{D}^{20} = 1.442$  (1) 32° at 14 mm. (1)

 $\ddot{C}$  has never been reported in completely pure form; the above material contains abt. 20% 2,3-dichloropentane (3:8010) q.v. (1).

[For prepn. of  $\tilde{C}$  (together with other products) from diethyl ketone (1:5420) with PCl<sub>5</sub> see (1).]

3:7895 (1) Bourgeul, Compt. rend. 178, 1559 (1924); Bull. soc. chim. (4) 35, 1635 (1924); Ann. chim. (10) 3, 371 (1925).

3:7900 
$$\alpha,\alpha$$
-DIMETHYL-n-BUTYRYL CHLORIDE  $C_6H_{11}$ OCl Beil. II - 336 (Dimethyl-ethyl-acetyl chloride)  $CH_3$   $C$ 

B.P. 
$$132^{\circ}$$
 at 760 mm. (6)  $D_4^{20} = 0.9801$  (1)  $n_D^{20} = 1.4245$  (5)  $131.8-132.4^{\circ}$  at 748 mm. (1)  $131.7-131.9^{\circ}$  (2)  $129.8^{\circ}$  at 727 mm. (5)  $D_4^0 = 0.9973$  (1)  $23^{\circ}$  at 12 mm. (3)  $27^{\circ}$  at 11 mm. (4)

[For prepn. of C from 2,2-dimethylbutanoic acid-1 (1:1113) with SOCl<sub>2</sub> (50% yield (5)) see (1) (5); with benzoyl chloride (yield not given) see (6).]

[For reactn. of C with isobutyl zinc iodide yielding (3) 2,5,5-trimethylheptanone-4

(tetrahydroartemisaketone) see (3); for reactn. of  $\bar{C}$  with isopropyl MgBr yielding (by reducing actn.) 2,2-dimethylbutanol-1 (1:6204) and 2,4,4-trimethylhexanol-3 (5) see (5).]  $\bar{C}$  on hydrolysis yields 2,2-dimethylbutanoic acid-1 (1:1113) q.v. (for the amide, anilide,

p-toluidide,  $\alpha$ -naphthalide, and other derivatives corresponding to  $\tilde{C}$  see 1:1113).

3:7900 (1) Hommelen, Bull. soc. chim. Belg. 42, 243-250 (1933). (2) Kohlrausch, Pongrats, Z. physik. Chem. B-22, 383 (1933). (3) Ruzicka, Reichstein, Pulver, Helv. Chim. Acta 19, 648-649 (1936). (4) Reichstein, Rosenberg, Eberhardt, Helv. Chim. Acta 18, 723 (1935). (5) Whitmore, Foster, J. Am. Chem. Soc. 64, 2966-2968 (1942). (6) Degnan, Shoemaker, J. Am. Chem. Soc. 68, 104-105 (1946).

| 3: 7903 CHLOROBENZENE (Phenyl chloride) | CI               | C <sub>6</sub> H <sub>5</sub> Cl Beil. V - 199 |   |
|-----------------------------------------|------------------|------------------------------------------------|---|
| (I henyl cmorace)                       | $\smile$         | V <sub>1</sub> -(109)                          |   |
| B.P.                                    | F.P.             | V <sub>2</sub> -(148)                          | , |
| 132.10-132.12° cor. (1)                 | -44.0° (21) (22) | $D_4^{25} = 1.1016  (14)$                      |   |
| 132.07° at 760 mm. (2)                  | -45.0° (23) (24) | 1.1012 (31)                                    |   |
| 132.02° at 761.8 mm. (3)                | (7) (25)         | 1.1011 (32)                                    |   |
| 132.0° at 760 mm. (4)                   | -45.1° (4)       | 1.10091 (4)                                    |   |
| (5) (6) (7) (8) (9) (10)                | -45.2° (26) (27) | $n_{\rm D}^{25} = 1.5222  (14)$                | , |
| 131.83° at 760 mm. (11)                 | (28) (29)        | 1.5221 (28)                                    |   |
| 131.7° at 760 mm. (12)                  | (8)              | 1.5217 (31)                                    |   |
| 131.6° (13)                             | -45.29° (2)      | 1.5215 (36)                                    |   |
| 131.4-131.6° at 748 mm. (14)            | See Note 2.      | $D_4^{20} = 1.1066  (38)$                      |   |
| 130.7° at 755 mm. (15)                  |                  | 1.10643 (33)                                   |   |
| 130.5° at 755 mm. (16)                  |                  | 1.1064 (12)                                    |   |
| 129.6° at 719 mm. (17)                  |                  | 1.10631 (4)                                    |   |
| 114.9° at 468.5 mm. (17)                |                  | $n_{\rm D}^{20} = 1.5251  (37)$                |   |
| 99.7° at 292.8 mm. (17)                 |                  | 1.525 (2)                                      |   |
| 44.8° at 30 mm. (18)                    |                  | 1.52479 (38)                                   |   |
| See Note 1.                             |                  | 1.52459 (15)                                   |   |
|                                         |                  | $D_4^{15} = 1.11172  (4)$                      |   |
|                                         |                  | See Note 3.                                    |   |
|                                         |                  | $n_{\rm D}^{15} = 1.52748  (4)$                |   |
|                                         |                  | 1.5272 (39)                                    | , |
|                                         |                  | See Note 4.                                    |   |

Note 1. For further data on b.p. of C at various press. in range 98-758 mm. see (19), between 3-11, 188 mm., see (20).

Note 2. For details on m.p. of C under high pressures see (26) (30).

Note 3. For details on  $D_4^4$  over range 0.3-123.6° see (34), over range -42.7° to + 126° see (35).

Note 4. For details of change of refractive index with pressure see (40).

 $\tilde{C}$  is pract. insol. aq.; for precise data see (11) (225). —  $\tilde{C}$  is very eas. sol. alc., ether,  $C_6H_6$ ,  $CHCl_3$ ,  $CS_2$ . — For detn. of  $\tilde{C}$  in mixt. with  $C_6H_6$  and the dichlorobenzenes see (226) (227). — For use of  $\tilde{C}$  as immersion fluid in refractometry see (228). — For toxicity of  $\tilde{C}$  see (229). — For brief study of detn. of vapors of  $\tilde{C}$  in air using a combustion method see (230).

Selected data and references on physical properties of mixts. of  $\bar{C}$  with other cpds. (for additional data and references on many other systems see Beilstein).

Binary systems.  $\tilde{C}$  with  $H_2O$  forms a const.-boilg. mixt., b.p. 90.2° at 760 mm., contg; 71.6°  $\tilde{C}$  (41) (use in sepn. of  $\tilde{C}$  from polychlorobenzenes see (69)):  $\tilde{C}$  with acetone (1:5400).

vapor/liq. equilibrium see (13):  $\bar{\mathbb{C}}$  with acetic acid (1:1010), f.p./compn. data and diagrams (eutectic, m.p.  $-48.5^\circ$ , contg.  $97\%\bar{\mathbb{C}}$  (28)) see indic. refs.:  $\bar{\mathbb{C}}$  with  $C_6H_6$  (1:7400), f.p./compn. diagram see (24):  $\bar{\mathbb{C}}$  with aniline, liq./vapor equil.,  $D_{25}^{25}$ /compn., etc., see (43):  $\bar{\mathbb{C}}$  with nitrobenzene, f.p./compn. data + diagram (eutectic, m.p.  $-50.7^\circ$  contg. 78.3 wt.  $\%\bar{\mathbb{C}}$ ) see (21):  $\bar{\mathbb{C}}$  with pyridine, f.p./compn. data + diagram (eutectic, m.p.  $-63.5^\circ$ , contg.  $54\%\bar{\mathbb{C}}$ ) and also  $n_D^{25}$ /compn. diag. see (28):  $\bar{\mathbb{C}}$  with o-chlorotoluene (3:8245), f.p./compn. diagram (eutectic, m.p. abt.  $-71^\circ$ , contg. 39.4 mole  $\%\bar{\mathbb{C}}$ ) see (44);  $\bar{\mathbb{C}}$  with m-dichlorobenzene (3:5960), f.p./compn. data, see (23):  $\bar{\mathbb{C}}$  with benzoyl chloride (3:6240), f.p./compn. data see (45):  $\bar{\mathbb{C}}$  + ethylene dibromide, f.p./compn. dag. (eutectic, m.p.  $-55^\circ$  contg. 83 mole  $\%\bar{\mathbb{C}}$ ) see (44); vapor-press. equil. see (46):  $\bar{\mathbb{C}}$  + bromobenzene, f.p./compn. diagram (no eutectic) see (22) (24); for use in testing efficiency of distillation columns see (39):  $\bar{\mathbb{C}}$  + iodobenzene, f.p./compn. diagram (eutectic, m.p.  $-51.5^\circ$ , contg.  $57\%\bar{\mathbb{C}}$ ) see (22) (24):  $\bar{\mathbb{C}}$  with fluorobenzene, f.p./compn. diagram (complex system) see (22) (24).

**Ternary Systems.**  $\bar{C}$  with aq. + HCl forms ternary const.-boilg. mixt., b.p. 96.6° at 756 mm., contg. 74.5 wt.  $\%\bar{C} + 20.2$  wt. % aq. + 5.3 wt. % HCl (41):  $\bar{C}$  with aq. + acetone, solubility diagram see (47):  $\bar{C}$  + ethylene glycol (1:6465) + acetone, soly. of system at 23° see (48).

Preparation of  $\tilde{C}$ . Because of the magnitude of the literature on this topic only a few selected references can be given here; reference should also be made to Beil. V-199,  $V_1$ -(109) and  $V_2$ -(148).

[For prepn. of  $\bar{C}$  from  $C_6H_6$  with  $Cl_2$  in pres. of  $SnCl_4$  at 30-40° (49), with NOCl at 425° (50), with  $HCl + O_2$  (air) + cat. (51) see indic. refs.; for discussion of prepn. of industrial  $\bar{C}$  see (52); for study of photochem. chlorination of  $C_6H_6$  see (53).]

[For prepn. of  $\bar{C}$  from aniline via formn. of benzenediazonium chloride/ZnCl<sub>2</sub> cpd. and htg. with molten phenol (40% yield  $\bar{C}+26\%$  hydroxybiphenyl + 20% diphenyl ether (54)) or by isolation of solid benzene diazonium chloride and cautious decompn. by warming in various org. solvents see (55); from p-chloroanline via formn. of p-chlorobenzenediazonium chloride/ZnCl<sub>2</sub> cpd. and htg. latter with EtOH (67% yield) or EtOH + Zn dust (60% yield) see (54); from phenylhydrazine by oxidn. with aq. FeCl<sub>3</sub> at 70° (61% yield) or with HClO<sub>3</sub> (30% yield) see (56); from C<sub>6</sub>H<sub>5</sub>MgBr with ethyl hypochlorite (3:7022) (60% yield (57)), sulfuryl chloride (57), benzenesulfonyl chloride (yields: 52% (58), 25% (57)), other aromatic sulfonyl chlorides (58) (57), N-chloropiperidine and other N-chloroanines (59), or N-chloro-p-chlorobenzaldimine (60), see indic. refs.]

[For formn. of  $\bar{C}$  from benzoyl chloride (3:6240) on htg. in porcelain tube at 550-600° see (61); from benzeneazotriphenylmethane on warming in CCl<sub>4</sub> see (62); from bis-(p-chlorophenyl)zinc by reaction with aq. see (63); from phenylboric acid with Cl<sub>2</sub>/aq. or refluxed with aq. CuCl<sub>2</sub> (85% yield) see (64); from C<sub>6</sub>H<sub>6</sub> + n-butyl chlorosulfonate + AlCl<sub>3</sub> (11% yield) see (65); from C<sub>6</sub>H<sub>6</sub> with SeCl<sub>4</sub> + AlCl<sub>3</sub> see (66); from 4-chlorodiphenyl sulfide by htg. with sulfur see (67); from 2-chlorobenzophenone (3:0715) or 4-chlorobenzophenone (3:1914) on fusion with KOH/NaOH see (68).]

Pyrolysis. Č passed over Pt wire at bright red heat (70) or through hot Fe tube (71) yields 4,4'-dichlorobiphenyl (3:4300) accompanied by biphenyl (1:7175), 4-chlorobiphenyl (3:1912), and other products.

Reduction.  $\tilde{C}$  in EtOH at 55° with excess  $H_2$  at 3 atm. in pres. of Adams' cat. readily (72) yields cyclohexane (1:8405).  $-\tilde{C}$  with  $H_2$  or  $NH_2.NH_2$  in MeOH or EtOH in pres. of Pd/CaCO<sub>3</sub> gives (73) cf. (74) small yields of biphenyl (1:7175).  $-\tilde{C}$  with Na in boilg. EtOH (75), or Na/Hg in EtOH (76), or Na in AmOH (77), or NaOAm in AmOH (78) is dehalogenated, but extent of reactn. varies with conditions.  $-\tilde{C}$  with HI + P is unaffected at 300° but at 375° yields (79) benzene.  $-\tilde{C}$  in aq. or dil. alc. alk, with  $H_2$  in pres. of Ni

splits off all (80) its halogen as HCl. —  $\bar{\rm C}$  with H<sub>2</sub> + Ni at 270° yields (81) benzene + biphenyl.

Behavior with chlorine.  $\bar{C}$  with  $Cl_2$  may add or substitute or both according to conditions. —  $\bar{C}$  under dil. aq. NaOH with excess  $Cl_2$  in sunlight (82) or with  $Cl_2$  at 0° in dark as directed (83) (84) gives (90% yield (83)) heptachlorocyclohexane [Beil. V-23, V<sub>2</sub>-(12)] (known in 2 stereoisomeric forms, " $\alpha$ ," m.p. 146° (82), " $\beta$ ," m.p. 260° (82)). [For study of relative amts. addition and substitution with  $\bar{C} + Cl_2$  see (85).]

 $\bar{C}$  with Cl<sub>2</sub> in pres. of AlCl<sub>3</sub> (86), Al/Hg (87), or FeCl<sub>3</sub> (86), or  $\bar{C}$  with SO<sub>2</sub>Cl<sub>2</sub> + S<sub>2</sub>Cl<sub>2</sub> + AlCl<sub>3</sub> (88), or  $\bar{C}$  htd. with FeCl<sub>3</sub> (89) or PbCl<sub>4</sub>.2NH<sub>4</sub>Cl (90), gives mainly 1,4-dichlorobenzene (3:0980) accompanied by other products. —  $\bar{C}$  with Cl<sub>2</sub> at 400–700° in pres. of cat. yields (91) (92) 1,3-dichlorobenzene (3:5960) + 1,3,5-trichlorobenzene (3:1400) and other products.

Behavior with bromine.  $\bar{C}$  with Br<sub>2</sub> (93) under aq. (82) or in pres. of AlCl<sub>3</sub> (94), Al/Hg (95), Al (99), or Fe (99), or  $\bar{C}$  htd. with FeBr<sub>3</sub> (96), gives mainly 4-bromochlorobenzene [Beil. V-209, V<sub>1</sub>-(116), V<sub>2</sub>-(162)], m.p. 66°, together with other products; for study of rate in AcOH see (97). —  $\bar{C}$  with Br<sub>2</sub> at elevated temp. gives greatly increased proportion of meta-bromochlorobenzene; e.g.,  $\bar{C}$  with Br<sub>2</sub> at 475° gives (98) 53% m-, 27% p-, and 20% o-bromochlorobenzenes.

Behavior with metals.  $\bar{C}$  with Li in dry ether under dry N<sub>2</sub> gives (35-49% yield (100)) phenyllithium [Beil. XVI<sub>1</sub>-(589)]; for reactns, of latter with fluoro, chloro, bromo, or iodobenzene see (101).

 $\bar{\mathbf{C}}$  on boilg, with Na yields (102)  $\mathrm{C_6H_6}$ , biphenyl, and other products;  $\bar{\mathbf{C}}$  with Na in boilg, toluene yields mainly (102)  $\mathrm{C_6H_6}$  together with other prods. —  $\bar{\mathbf{C}}$  with amylsodium (from amyl chloride + Na) in lgr. gives (103) (104) (105) phenylsodium [Beil. XVI<sub>1</sub>-(589)] which with  $\mathrm{CO_2}$  gives (105) benzoic acid;  $\bar{\mathbf{C}}$  with Na + diethyl carbonate in  $\mathrm{C_6H_6}$  gives (79% yield (106)) (for use of other esters such as methyl benzoate, ethyl benzoate, or diethyl oxalate in ether see (107)) or  $\bar{\mathbf{C}}$  with Na + benzophenone in  $\mathrm{C_6H_6}$  gives (98% yield (106)) (108) triphenylcarbinol (1:5985). —  $\bar{\mathbf{C}}$  with Na + AsCl<sub>3</sub> in xylene gives (82% yield (109)) triphenylarsine;  $\bar{\mathbf{C}}$  with Na + SbCl<sub>3</sub> in xylene yields (109) triphenylstibine.

 $\bar{C}$  with Mg/Cu alloy in pres. of  $I_2$  (110), or  $\bar{C}$  with Mg in s.t. at 150-160° for 3 hrs. (111) (112), or  $\bar{C}$  refluxed with Mg + Cu<sub>2</sub>Cl<sub>2</sub> (113), gives (yields: 80% (110), 85% (111)) phenyl magnesium chloride.

Behavior with Al halides.  $\bar{C}$  does not react with AlCl<sub>3</sub> even on long boilg. (dif. from bromobenzene and iodobenzene which react at once) (114). —  $\bar{C}$  with freshly prepared fused AlBr<sub>3</sub> yields (115) bromobenzene.

Behavior with AlCl<sub>3</sub> + other compounds.  $\tilde{C}$  (2 moles) with  $CCl_4$  (1 mole) + AlCl<sub>3</sub> (1.75 moles) in  $CS_2$  gives (116) (117) bis-(4-chlorophenyl)dichloromethane [Beil.V -592], m.p. 52-53°, together with other products;  $\tilde{C}$  (6 moles) with  $CCl_4$  (1 mole) + AlCl<sub>3</sub> (1 mole) htd. at 60-70° gives mainly (118) 2-chlorophenyl-bis-(4-chlorophenyl)chloromethane [Beil. V-703], m.p. 153°, accompanied by a small amt. tris-(4-chlorophenyl)chloromethane [Beil. V-703], m.p. 113°.

 $\tilde{C}$  with AcCl (3:7065) or Ac<sub>2</sub>O + AlCl<sub>3</sub> yields p-chloroacetophenone (3:6735) q.v. for details.

 $\ddot{\mathbf{C}}$  + furoic acid (1:0475) + AlCl<sub>3</sub> gives (18% yield (119)) 6-chloronaphthoic acid-1 (3:4845);  $\ddot{\mathbf{C}}$  + methyl furoate (1:3452) + AlCl<sub>3</sub> gives in good yield (120) methyl 6-chloronaphthoate.

 $\ddot{C}$  with phthalic anhydride (1:0725) + AlCl<sub>3</sub> gives (121) (122) (123) (124) o-(4-chlorobenzoyl)benzoic acid [Beil. X-750, X<sub>1</sub>-(356)], m.p. 147-148°, which on ring closure with

cone. H<sub>2</sub>SO<sub>4</sub> yields 2-chloroanthraquinone (3:4922) q.v. [For corresp. reactns. of Č with 4-bromophthalic anhydride (125), 4-sulfophthalic anhydride (126), naphthalene-1,2-dicarboxylic acid anhydride (127), or naphthalene-2,3-dicarboxylic acid anhydride (128) see indic. refs.]

Miscellaneous condensations.  $\bar{C}$  with acetylene + AlCl<sub>3</sub> gives (129) 1,2-bis(4-chlorophenyl)ethane (4,4'-dichlorodibenzyl) + other prods., cf. also (130). —  $\bar{C}$  with propylene in pres. of sulfonic acids at 86–130° gives (131) isopropylbenzene (cumene) (1:7440). —  $\bar{C}$  + hexene-3 + H<sub>2</sub>F<sub>2</sub> gives (25% yield (132)) 4-chloro-(1'-ethylbutyl)benzene. —  $\bar{C}$  + cyclohexene + conc. H<sub>2</sub>SO<sub>4</sub> gives (50% yield (133)) 4-chlorophenylcyclohexane. —  $\bar{C}$  + allyl chloride (3:7035) + conc. H<sub>2</sub>SO<sub>4</sub> gives (133) 1-chloro-2-(p-chlorophenyl)propane.

 $\tilde{C}$  + isopropyl alc. with 80% H<sub>2</sub>SO<sub>4</sub> at 70° gives (72% yield (134)) 4-chloro-isopropyl-benzene (3:8705).  $-\bar{C}$  with ter-butyl alc. + AlCl<sub>3</sub> gives (135) 4-chloro-ter-butylbenzene;  $\bar{C}$  with ter-amyl alc. + AlCl<sub>3</sub> gives (135) 4-chloro-ter-amylbenzene.

 $\ddot{\mathbf{C}}$  + CO + AlCl<sub>3</sub> + TiCl<sub>4</sub> at 60 atm. and 30-35° (136) or  $\ddot{\mathbf{C}}$  + HCN + AlCl<sub>3</sub> at 100° for 6 hrs. (137) gives p-chlorobenzaldehyde (3:0765). —  $\ddot{\mathbf{C}}$  + CO + cat. + steam at 300-400° (138) (139) gives benzoic acid. —  $\ddot{\mathbf{C}}$  with paraformaldehyde + ZnCl<sub>2</sub> (140) (142) or  $\ddot{\mathbf{C}}$  with formalin + HCl (141) or  $\ddot{\mathbf{C}}$  with chloromethyl methyl ether (3:7085) + ZnCl<sub>2</sub> (142) or  $\ddot{\mathbf{C}}$  with bis-(chloromethyl) ether (3:5245) + ZnCl<sub>2</sub> (142) yields p-chlorobenzyl chloride (3:0220) q.v. —  $\ddot{\mathbf{C}}$  with p-chlorobenzyl chloride (3:0220) + H<sub>2</sub>SO<sub>4</sub> yields (142) 4.4'-dichlorodiphenylmethane.

Č with chloral (3:5210) or chloral hydrate (3:1270) + conc. or fumg. H<sub>2</sub>SO<sub>4</sub> gives 1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane ("DDT") (3:3298) q.v.

Hydrolysis.  $\bar{C}$  is unaffected by protracted boilg. with aq. or even alc. alk.; however, by use of increased temp. and press. especially in pres. of catalysts the hydrolysis of  $\bar{C}$  constitutes an extremely important industrial process for manufacture of phenol.

For general studies on the catalytic hydrolysis of  $\bar{C}$  to phenol with steam at elevated temperatures see (143) (144) (145) (146); for patents employing this method see (147)–(159) incl. — For résumé of prepn. of phenol via Raschig method ( $C_6H_6+HCl+O_2$  to  $\bar{C}$  with subsequent hydrolysis) see (160); for relevant patents see (161) (162) (163). — For sepn. of products of hydrolysis see (41) (164).

Č may also be hydrolyzed to phenol by means of aq. NaOH, Ca(OH)<sub>2</sub>, Na<sub>2</sub>CO<sub>3</sub>, NaHCO<sub>3</sub>, etc., at elevated temp. and press. especially in pres. of catalysts, notably copper: for impt. general review of these methods up to 1927 see (165); for general discussion see (166); for recent patents on this process and its variants see (167)–(182) incl. — For conv. of Č with alk. to 4-hydroxybiphenyl (1:1585) see (183) or to diphenyl ether (1:7125) see (184) (185) (186).

 $\tilde{C}$  htd. with aq. Na<sub>2</sub>S, NaSH, or H<sub>2</sub>S under press. gives (187) (188) (189) (190) diphenyl sulfide and/or thiophenol. —  $\tilde{C}$  + H<sub>2</sub>S + cat. at 700° gives (191) thiophenol.

[For use of C in prepn. of sulfur dyes by htg. with sulfur see (192) (193).]

Ammonolysis.  $\bar{C}$  with dry NH<sub>3</sub> does not react even in pres. of Cu + I<sub>2</sub> and high temp. and press. (194). — However,  $\bar{C}$  with conc. aq. NH<sub>4</sub>OH htd. at high temp. and press. especially in pres. of Cu, Cu cpds., or other cat. yields aniline and/or diphenylamine; for general discussion of this reactn. see (195) (196) (197) (198) (199); for illustrative patents see (200)–(208) incl.; for purification of reactn. prod. see (209) (210). — For behavior of  $\bar{C}$  with Na in liq. NH<sub>3</sub> (211) and its use in detn. of halogen content of  $\bar{C}$  (212) see indic. refs. — For behavior of  $\bar{C}$  with KNH<sub>2</sub> in liq. NH<sub>3</sub> see (213) (214).

Nitration.  $\tilde{C}$  on mononitration, e.g., with mixt. of 10 ml. HNO<sub>3</sub> (D=1.52) + 50 ml. HNO<sub>3</sub> (D=1.48) for 25 g.  $\tilde{C}$  at 0° (215), gives a prod. contg. 69.9% p-chloronitrobenzene [Beil. V-243, V<sub>1</sub>-(130), V<sub>2</sub>-(183)], m.p. 82°, together with 29.8% o-chloronitrobenzene [Beil. V-241, V<sub>1</sub>-(129), V<sub>2</sub>-(180)], m.p. 32°; the p/o ratio is but little different at -30°;

for f.p./compn. curve of system p-chloronitrobenzene/o-chloronitrobenzene (eutectic, m.p. 14.7°, contg. 33.1% p-isomer) see (215). — For mononitration using 0.9 g. of 70% HNO<sub>3</sub> + 1.29 g. 94% H<sub>2</sub>SO<sub>4</sub> per gram of  $\bar{C}$  (216) or using nitrosulfonic acid (from fumg. HNO<sub>3</sub> treated with SO<sub>2</sub>) at 30° (217) or using Fe(NO<sub>3</sub>)<sub>3</sub> in Ac<sub>2</sub>O at 40–45° (218) see indic. refs. — Note that no appreciable amt. of m-chloronitrobenzene is formed by direct nitration of  $\bar{C}$ .

Č on dinitration, e.g., with 5 wt. pts. of a mixt. consisting of equal wts. of 92.8% HNO<sub>3</sub>, 93.3% H<sub>2</sub>SO<sub>4</sub>, and fumg. H<sub>2</sub>SO<sub>4</sub> (contg. 14.2% SO<sub>3</sub>) at 95° for 2 hrs. (219) gives 96.7% yield 2,4-dinitrochlorobenzene [Beil. V-263, V-(137), V<sub>2</sub>-(196)], cryst. from alc., m.p. 52-53°. [The other dinitro isomers are known but need not be discussed here.]

Sulfonation.  $\bar{C}$  is insol. in cold conc.  $H_2SO_4$ ; however,  $\bar{C}$  on warming or on stdg. at room temp. for 48 hrs. (220) with equal wt. conc.  $H_2SO_4$  dissolves and later ppts. p-chlorobenzenesulfonic acid [Beil. XI-54, XI<sub>1</sub>-(14)], anhydrous cryst. from CHCl<sub>3</sub>, m.p. 92-93° (220), monohydrate from aq., m.p. 67° (221). —  $\bar{C}$  with fumg.  $H_2SO_4$  (10%  $SO_3$ ) below 60° for 1 hr. then poured into 6 vols. satd. aq. NaCl soln. gives (222) (223) sodium salt of p-chlorobenzenesulfonic acid which with PCl<sub>5</sub> yields corresp. sulfonyl chloride (see below). — For reactn. of  $\bar{C}$  with ClSO<sub>3</sub>H see below. — [The corresp. bis- (4-chlorophenyl) sulfone [Beil. VI-327, VI<sub>1</sub>-(149)] which may be formed in small amt. has m.p. 147-148°.] [For study of kinetics of sulfonation of  $\bar{C}$  see (231).]

- **p-Bromochlorobenzene:**  $\bar{C}$  with 0.25-0.50 mole Br<sub>2</sub> at 60° in pres. of Fe gives (88% yield (99)) p-bromochlorobenzene, cryst. from alc., m.p. 67-68°.
- ② 2,4-Dinitrochlorobenzene: C on htg. with mixt. of HNO<sub>3</sub> + H<sub>2</sub>SO<sub>4</sub> (see above under nitration) at 95° for 2 hrs. gives (96.7% yield (219)) 2,4-dinitrochlorobenzene, cryst. from alc., m.p. 52-53°.

3:7903 (1) Brooks, Hobbs, J. Am. Chem. Soc. 62, 2851 (1940). (2) Stull, J. Am. Chem. Soc. 59, 2729 (1937). (3) Feitler, Z. physik. Chem. 4, 68 (1889). (4) Timmermans, Martin, J. chim. phys. 23, 780-782 (1926). (5) Lecat, Rec. trav. chim. 46, 242 (1927). (6) Grimm, Patrick, J. Am. Chem. Soc. 45, 2799 (1923). (7) Timmermans, Bull. soc. chim. Belg. 30, 67 (1921). (8) Timmermans, van der Horst, Onnes, Compt. rend. 174, 366 (1922); Cent. 1923, IV 377. (9) Young, Proc. Roy. Dublin Soc. 12, 424 (1909/10). (10) Timmermans, Bull. soc. chim. Belg. 24, 244-269 (1909); Cent. 1916, II 442.

(11) Gross, Saylor, J. Am. Chem. Soc. 53, 1748 (1931). (12) Matthews, J. Am. Chem. Soc. 48, 570 (1926). (13) Othmer, Ind. Eng. Chem. 35, 619 (1943). (14) Thomson, J. Chem. Soc. 1937, 1055. (15) McAlpine, Smyth, J. Chem. Phys. 3, 56 (1935). (16) Hurdis, Smyth, J. Am. Chem. Soc. 64, 2212 (1942). (17) Ramsay, Steele, Z. physik. Chem. 44, 362-363 (1903). (18) Patterson, McDonald, J. Chem. Soc. 93, 941 (1908). (19) Ramsay, Young, Z. physik. Chem. 1, 248 (1887). (20) Young, J. Chem. Soc. 55, 490, 502 (1889).

(21) Hrynakowski, Szmyt, Z. physik. Chem. A-182, 110-112 (1938). (22) Pascal, Bull. soc. chim. (4) 13, 745-752 (1913). (23) Timmermans, Bull. soc. chim. Belg. 43, 633 (1934). (24) L. Klemm, W. Klemm, G. Schiemann, Z. physik. Chem. A-165, 384-386 (1933). (25) Timmermans, Bull. soc. chim. Belg. 25, 300-327 (1911); Cent. 1911, II 1015. (26) Bridgman, J. Chem. Phys. 9, 794-795 (1941). (27) Skau, J. Phys. Chem. 37, 612-613 (1933). (28) Burnham, Madgin, J. Chem. Soc. 1936, 790-792. (29) Menschutkin, J. Russ. Phys.-Chem. Soc. 43, 402 (1911); Cent. 1910, II 379. (30) Bridgman, Phys. Rev. (2) 6, 7-10 (1915). (31) Curran, J. Am. Chem. Soc. 64, 830 (1942). (32) Sugden, J. Chem. Soc. 1933, 772. (33)

(31) Curran, J. Am. Chem. Soc. **64**, 830 (1942). (32) Sugden, J. Chem. Soc. **1933**, 772. (33) Biron, J. Russ. Phys.-Chem. Soc. **42**, 148 (1910); Cent. **1910**, I 1912. (34) Meyer, Mylius, Z. physik. Chem. **95**, 356 (1920). (35) Smyth, Morgan, J. Am. Chem. Soc. **50**, 1554 (1928). (36) Dobrosserdow, J. Russ. Phys.-Chem. Soc. **44**, 692 (1912); Cent. **1912**, II 789. (37) Margulewa, J. Russ. Phys.-Chem. Soc. **46**, 237 (1914); Cent. **1914**, I 2137. (38) Brühl, Ann. **200**, 187 (1879).

- (39) Miller, Bull. soc. chim. Belg. 48, 447-550 (1939). (40) Himstedt, Wertheimer, Ann. physik. (4) 67, 395-406 (1922).
- (41) Prahl, Mathes, Angew. Chem. 47, 11-13 (1934). (42) Baud, Bull. soc. chim. (4) 13, 436 (1913). (43) Coulter, Lindsay, Baker, Ind. Eng. Chem. 33, 1251-1253 (1941). (44) Linard, Bull. soc. chim. Belg. 34, 392-393 (1925). (45) Menschutkin, J. Russ. Phys.-Chem. Soc. 45, 1706 (1913); Cent. 1914, I 463. (46) Lacher, Hunt, J. Am. Chem. Soc. 63, 1753 (1941). (47) Othmer, White, Trueger, Ind. Eng. Chem. 33, 1242, 1245 (1941). (48) Trimble, Frazer, Ind. Eng. Chem. 21, 1064 (1929). (49) Marcs (to Monsanto Chem. Co.), U.S. 2,111,866, March 22, 1938; Cent. 1938, I 4719. (50) Moyer (to Solvay Process Co.), U.S. 2,152,357, March 28, 1939; Cent. 1938, II 1775.
- (51) Prahl (to F. Raschg), Ger. 539,176, March 7, 1932; Brit. 362,817, Dec. 31, 1931; French 715,009, Nov. 24, 1931; Cent. 1932, II 2642. (52) Bourion, Ann. chim. (9) 14, 215-272, 273-321 (1920). (53) Lane, Noyes, J. Am. Chem. Soc. 54, 161-169 (1932). (54) Hodgson, Foster, J. Chem. Soc. 1942, 582-583. (55) Waters, J. Chem Soc. 1937, 2007-2014. (56) Seide, Scherlin, Bras, J. prakt. Chem. (2) 138, 55, 65, 227 (1933). (57) LeFevre, Markham, J. Chem. Soc. 1934, 703-705. (58) Gilman, Fothergill, J. Am. Chem. Soc. 51, 3501-3508 (1929). (59) LeFevre, J. Chem. Soc. 1932, 1745-1747. (60) LeMaistre, Ramsford, Hauser, J. Org. Chem. 4, 106-110 (1939).
- (61) Erlenmeyer, Leo, Helv. Chim. Acta 16, 897-904 (1933). (62) Wieland, Ann. 514, 155-156 (1934). (63) Kozeschkow, Nesmejanow, Potrosow, Ber. 67, 1140 (1934). (64) Ainley, Challenger, J. Chem. Soc. 1936, 2175-2176. (65) Barkenbus, Hopkins, Allen, J. Am. Chem. Soc. 61, 2452-2453 (1939). (66) Bradt, Green, J. Org. Chem. 1, 540-543 (1937). (67) Billman, Dougherty, J. Am. Chem. Soc. 61, 387-389 (1939). (68) Lock, Rodiger, Ber. 72, 867-868 (1939). (69) Buchheim (to Chem. Fabrik von Heyden), Get. 616,596, Aug. 1, 1935, Cent. 1935, II 3703.
- (71) Kramers, Ann. 189, 135-141 (1877). (72) Brown, Durand, Marvel, J. Am. Chem. Soc. 58, 1594-1596 (1936). (73) Busch, Schmidt, Ber. 62, 2617 (1929). (74) Busch, Weber, J. prakt. Chem. (2) 146, 15, 22 (1936). (75) Stepanov, J. Russ. Phys.-Chem. Soc. 37, 15 (1905); Cent. 1905, I 1273. (76) Jöwenherz, Z. physik. Chem. 40, 414 (1902). (77) Lowenherz, Z. physik. Chem. 32, 486 (1940). (78) Lowenherz, Z. physik. Chem. 29, 413-414 (1899). (79) Klages, Liecke, J. prakt. Chem. (2) 61, 313, 319 (1900). (80) Kelber, Ber. 50, 309 (1917).
- (81) Sabatier, Mailhe, Compt. rend. 138, 246 (1904). (82) Matthews, J. Chem. Soc. 61, 104-111 (1892). (83) Kharasch, Berkman, J. Org. Chem. 6, 810-817 (1941). (84) Bender (to Great Western Electrochem. Co.). U.S. 2,010,841, Aug. 13, 1935; Cent. 1936, I 1112. (85) Hart, Noyes, J. Am. Chem. Soc. 58, 1305-1310 (1934). (86) Holleman, van der Linden, Cent. 1916, II 640-641; Rec. trav. chim. 30, 321-329 (1911). (87) Cohen, Hartley, J. Chem. Soc. 87, 1362-1363 (1905). (88) Silberrad, J. Chem. Soc. 121, 1019 (1922). (89) Thomas, Compt. rend. 126, 1212 (1898). (90) Seyewetz, Trawitz, Compt. rend. 136, 242 (1903).
- (91) Wibaut, van de Lande, Wallagh, Rec. trav. chim. 56, 65-70 (1937). (92) Wibaut, van de Lande, Wallagh (to Dow Chem. Co.), U.S. 2,123,857, July 12, 1938; Cent. 1939, I 250. (93) Korner, Gazz. chim. ital. 4, 342-343 (1874). (94) Mouneyrat, Pouret, Bull. soc. chim. (3) 19, 801-802 (1898). (95) Cohen, Dakin, J. Chem. Soc. 75, 895 (1899). (96) Thomas, Compt. rend. 128, 1577 (1899). (97) Lauer, Oda, Ber. 69, 984 (1936). (98) van Loon, Wibaut, Rec. trav. chim. 56, 826-828 (1937); Nature 139, 151 (1937). (99) Holleman, van der Linden, Rec. trav. chim. 30, 356-361 (1911). (100) Gilman, Zoellner, Selby, J. Am. Chem. Soc. 55, 1253 (1933).
- (101) Wittig, Pieper, Fuhrmann, Ber. 73, 1193 (1940). (102) Bachmann, Clarke, J. Am. Chem. Soc. 49, 2089-2098 (1927). (103) Morton, Fallwell, J. Am. Chem. Soc. 60, 1429-1431 (1938). (104) Morton, Hechenbleikner, J. Am. Chem. Soc. 58, 1697-1701 (1936). (105) Morton, LeFevre, Hechenbleikner, J. Am. Chem. Soc. 58, 754-757 (1936). (106) Morton, Stevens, J. Am. Chem. Soc. 53, 4030 (1931). (107) Morton, Stevens, J. Am. Chem. Soc. 53, 2246 (1931). (108) Imperial Chem Ind., Ltd., French 687,316, Aug. 7, 1930; Cent. 1930, II 3851. (109) Morgan, Vining, J. Chem. Soc. 117, 778-779 (1920). (110) Gilman, N. B. St. John, Rec. trav. chim. 49, 717-723 (1930).
- (111) Gilman, Brown, J. Am. Chem. Soc. 52, 3330-3332 (1930). (112) Schorigin, Issaguljanz, Gussewa, Ossipowa, Poljakowa, Ber. 64, 2584-2588 (1931). (113) I.G., Italian 341,937, May 14, 1936; Cent. 1937, II 2073. (114) von Dumreicher, Ber. 15, 1866-1870 (1882). (115) Harlow, Ross (to Dow Chem. Co.), U.S. 1,891,415, Dec. 20, 1932; Cent. 1933, I 1683. (116) Norris, Green, Am. Chem. J. 26, 492-499 (1901). (117) Norris, Twieg, Am. Chem. J. 30, 392-399 (1903). (118) Gomberg, Cone, Ber. 37, 1635-1636 (1904); 39, 1465, 3280-3282 (1906). (119) Price, Chapin, Goldman, Krebs, Shafer, J. Am. Chem. Soc. 63, 1861 (1941). (120) Price, Huber, J. Am. Chem. Soc. 64, 2136-2139 (1942).
  - (121) Murch (to National Aniline & Chem. Co.), U.S. 1,746,736, Feb. 11, 1930; Cent. 1930,

I 2798. (122) Müller, (to I.G.), Ger. 495,447, April 7, 1930; Cent. 1931, I 1675. (123) Lloyd, Gershon (to W. M. Grosvenor), U.S. 1,826,621, Oct. 6, 1931; Cent. 1931, II 3663. (124) Jacobson (to Calco Chem. Co.), U.S. 1,942,430, Jan. 9, 1934; Cent. 1934, I 2493. (125) Waldmann, J. prakt. Chem. (2) 126, 75 (1930). (126) Schwenk, Waldmann, Angew. Chem. 45, 20 (1932). (127) Waldmann, J. prakt. Chem. 127, 199-200 (1930). (128) Waldmann, Mathiowetz, Ber. 64, 1717-1718 (1931). (129) Cook, Chambers, J. Am. Chem. Soc. 43, 338 (1921). (130) Böeseken, Adler, Rec. trav. chim. 48, 482-483 (1929).

(131) Pine, Isham, U.S. 2,014,766, Sept. 17, 1935; Cent. 1936, I 4990. (132) Spiegler, Tinker, J. Am. Chem. Soc. 61, 1003 (1939). (133) Truffault, Compt. rend. 207, 677 (1938). (134) Meyer, Bernhauer, Monatsh. 53/54, 741 (1929). (135) Zuckerwanik, J. Gen. Chem., (U.S.S.R.) 8, 1512-1515 (1938). (136) I.G., Biit. 334,009, Sept. 18, 1930; Cent. 1930, II 3850. (137) Hinkel, Ayling, Beynon, J. Chem. Soc. 1936, 342. (138) Dieterle, Exchenbach, Ger. 537,610, Nov. 6, 1931; Cent. 1932, I 1155. (139) Marecek, Chem. Obzor 7, 171-173 (1932); Cent. 1933, I

1286; C.A. 27, 1876 (1933). (140) Blanc, Bull. soc. chim. (4) 33, 317-318 (1923).

(141) Tschunkur, Eichler (to I.G.), Ger. 509,149, Oct. 8, 1930; Cent. 1931, I 360. (142) Stephen, Short, Gladding, J. Chem. Soc. 117, 522-523 (1920). (143) Vernon, Thompson, J. Phys. Chem. 44, 727-730 (1940). (144) Tishchenko, Churbakov, J. Applied Chem. (U.S.S.R.) 7, 764-769 (1934); Cent. 1935, II 2358; C.A. 29, 2520 (1935). (145) Tishchenko, Gutner, Faerman, Shchigelskaya, J. Applied Chem. (U.S.S.R.) 8, 685-694 (1935); Cent. 1936, I 3907; C.A. 30, 4155 (1936). (146) Chalkey, J. Am. Chem. Soc. 51, 2489-2495 (1929). (147) Redman (to Bakelite Corp.), U.S. 2,311,777, Feb. 23, 1943, C.A. 37, 4405 (1943). (148) Meyer (to A.O. Smith Corp.), U.S. 2,138,609, Nov. 29, 1938; Cent. 1939, I, 1654. (149) Bertsch (to Monsanto Chem. Co.), U.S. 1,966,281, July 10, 1934; Cent. 1935, I 959. (150) Steingrover, Zellmann (to Chem. Fabrik. von Heyden), U.S. 1,961,834, June 5, 1934; Cent. 1934, II 1845.

(151) Jenkins, Norris (to Swann Research, Inc.), U.S. 1,950,359, March 6, 1934; Cent. 1934, II 1201. (152) Rittler (to Chem. Fabrik von Heyden), U.S. 1,936,567, Nov. 21, 1933; Cent. 1934, I 1711. (153) Jenkins, Norris (to Swann Research, Inc.), U.S. 1,884,710, Oct. 25, 1932; Cent. 1933, I 1998. (154) Kennedy, Lloyd (to Federal Phosphorus Co.), U.S. 1,735,327, Nov. 12, 1929; Cent. 1930, I 2009. (155) Zelnskii, Ushakov, Russ. 30,688, June 30, 1933, Cent. 1934, I 767. (156) Progil, Soc. An., French 720,721, Feb. 23, 1932; Cent. 1932, II 616. (157) Dreyfus, French 709,184, Aug. 4, 1931; Cent. 1931, II 2933. (158) Progil, Soc. An., Italian 302,818, Oct. 26, 1931; Cent. 1938, I 3263. (159) I.G., Brit. 308,220, May 15, 1929; Cent. 1930, II 1772. (160) Mathes, Augew. Chem. 52, 591-592 (1939); Olive, Chem. & Met. Eng. 47, 770-775, 789-792 (1940).

(161) F. Raschig Co., Ger. 700,802, Nov. 28, 1940; C.A. 35, 7421 (1941). (162) F. Raschig Co., Ger. 588,649, Nov. 21, 1933, Cent. 1934, I 767. (163) F. Raschig Co., French 698,341, Jan. 29, 1931; Cent. 1931, II 1491. (164) Progil, Soc. An., French 765,128, June 2, 1934; Cent. 1934, II 1687. (165) Hale, Britton, Ind. Eng. Chem. 20, 114-124 (1928). (166) Ushakov, Zelinskii, J. Applied Chem. (U.S.S.R.) 5, 302-309 (1932), Cent. 1932, I 2242; C.A. 27, 276 (1933). (167) Grebe (to Dow Chem. Co.), U.S. 2,275,044, 2,275,045, March 3, 1942; C.A. 36, 4137 (1942). (168) Poffenberger (to Dow Chem. Co.), U.S. 2,137,587, Nov. 22, 1938; Cent. 1939, I 1254. (169) Raeth, Rittler, Steingroever (to Chem. Fabrik von Heyden), U.S. 2,079,383, May 4, 1937; Cent. 1937, II 858. (170) Grebe, Reilly (to Dow Chem. Co.), U.S. 1,986,194, Jan. 1, 1935; Cent. 1935, II 1257.

(171) Hale, Britton (to Dow Chem. Co.), U.S. 1,925,321, Sept. 5, 1933; Cent. 1934, I 127. (172) Grebe, Dow (to Dow Chem. Co.), U.S. 1,924,313, Aug. 29, 1933; Cent. 1934, I 127. (173) Putnam (to Dow Chem. Co.), U.S. 1,921,373, Aug. 8, 1933; Cent. 1934, I 127. (174) Hale, Britton (to Dow Chem. Co.), U.S. 1,882,824, Oct. 18, 1932; Cent. 1933, I 309. (175) Hale (to Dow Chem. Co.), U.S. 1,868,140, July 19, 1932; Cent. 1933, I 309. (176) Griswold (to Dow Chem. Co.), U.S. 1,833,485, Nov. 24, 1931; Cent. 1932, I 739. (177) Hale, Britton (to Dow Chem. Co.), U.S. 1,806,798, May 26, 1931; Cent. 1931, II 1348. (178) Hale, Britton (to Dow Chem. Co.), U.S. 1,737,841, 1,737,842, Dec. 3, 1929, Cent. 1930, II 803. (179) Williams, Britton (to Dow Chem. Co.), U.S. 1,756,110, April 29, 1930; Cent. 1930, II 803. (180) Rath, Buchheim, Rittler (to Chem. Fabrik von Heyden), Ger. 586,646, Oct. 25, 1933; French 751,158, Aug. 28, 1933; Cent. 1934, I 126.

(181) Vorozhtzov, Oshuev, Russ. 28,219, Nov. 30, 1932; Cent. 1933, II 3195; C.A. 27, 3724 (1933). (182) Chem. Fabrik von Heyden, Brit. 382,969, Dec. 1, 1932; Cent. 1933, I 2315. (183) Hale (to Dow Chem. Co.), U.S. 1,922,695, Aug. 15, 1933; Cent. 1934, I 128. (184) Hale (to Dow Chem. Co.), U.S. 1,744,961, Jan. 28, 1930; Cent. 1936, II 803. (185) I.G., French 755,051, Nov. 18, 1933; Cent. 1934, I 945. (186) Vorozhtzov, Oshuev, Russ. 40,345, Dec. 31, 1934; C.A. 30, 3838 (1936). (187) Vorozhtzov, Mitzengelder, Compt. rend. acad. sci. (U.R.S.S.) 1933, 291-295; Cent. 1935, I 1860; C.A. 28, 2340 (1934). (188) Vorozhtzov, Mützenhandler,

Russ. 34,554, Feb. 28, 1934; Cent. 1935, I 2442; C.A. 29, 2977 (1935). (189) Vorozhtzov-Mladschi Mitzengendler, Russ. 29,168, Feb. 28, 1933; Cent. 1933, II 3195. (190) Hale (to Dow Chem. Co.), U.S. 1,825,662, Oct. 6, 1931; Cent. 1931, II 3264.

(191) Ohse (to Chem. Fabrik von Heyden), Ger. 497,570, May 8, 1930; Cent. 1930, II 622. (192) Palmer, Lloyd, J. Am. Chem. Soc. 52, 3388-3395 (1930). (193) Palmer, Lloyd, McLure, LeMaistre, Waring, Bachman, J. Am. Chem. Soc. 62, 1005-1006 (1940). (194) Stähler, Ber. 47, 912 (1914). (195) Quick, J. Am. Chem. Soc. 42, 1041-1042 (1920). (196) Groggins, Stirton, Ind. Eng. Chem. 28, 1051-1056 (1936). (197) Vorozhtzov, Kobelev, Compt. rend. acad. sci. (U.R.S.S.), 3, 108-114 (1934); Cent. 1935, I 3653; C.A. 28, 6706 (1934). (198) Vorozhtzov, Kobelev, J. Gen. Chem. (U.S.S.R.) 4, 310-323 (1934); Cent. 1935, II 505; C.A. 29, 1787 (1935). (199) Vorozhtzov, Kobelev, J. Gen. Chem. (U.S.S.R.) 8, 1106-1119 (1938); Cent. 1939, II 3397. (200) Calcott, Bake (to du Pont Co.), U.S. 2,062,349, Dec. 1, 1936; Cent. 1937, II 472.

(201) Booth (to Swann Research, Inc.), U.S. 1,954,469, April 10, 1934; Cent. 1934, II 1846. (202) Prahl, Mathes (to Raschig Co.), Ger. 579,229, June 22, 1933; Cent. 1933, II 1430. (203) Williams (to Dow Chem. Co.), U.S. 1,840,760, Jan. 12, 1932; Cent. 1932, I 3498. (204) Hale (to Dow Chem. Co.), U.S. 1,804,466, May 12, 1931; Cent. 1931, II 1195. (205) Federal Phosphorus Co., Brit. 370,774, May 5, 1932; Cent. 1932, II 1237. (206) Hale (to Dow Chem. Co.), U.S. 1,764,869, June 17, 1930; Cent. 1930, II 1442. (207) Britton, Williams (to Dow Chem. Co.), U.S. 1,726,170-1,726,173 incl., Aug. 27, 1929; Cent. 1930, I 2479. (208) A.G.F.A., Ger. 204,951, Dec. 14, 1908; Cent. 1909, I 475. (209) Britton (to Dow Chem. Co.), U.S. 1,823,024, 1,823,025, Sept. 15, 1931; Cent. 1932, II 1237. (210) Britton, Williams, Putnam (to Dow Chem. Co.), U.S. 1,823,026, Sept. 15, 1931; Cent. 1932, II 1237.

(211) White, J. Am. Chem. Soc. 45, 779-784 (1923). (212) Dains, Brewster, J. Am. Chem. Soc. 42, 1573-1579 (1920). (213) Bergstrom, Wright, Chandler, Gilkey, J. Org. Chem. 1, 170-178 (1936). (214) Wright, Bergstrom, J. Org. Chem. 1, 179-188 (1936). (215) Holleman, de Bruyn, Rec. trav. chim. 19, 189-197, 375 (1900). (216) Bashioum, Powers, Ind. Eng. Chem. 15, 407-408 (1923). (217) Varma, Kulkarni, J. Am. Chem. Soc. 47, 143-147 (1925). (218) Menke, Rec. trav. chim. 44, 146 (1925). (219) Hoffman, Dame, J. Am. Chem. Soc. 41, 1015-1016 (1919). (220) Tanasescu, Macarovici, Bull. soc. chim. (5) 5, 1128 (1939).

(221) Meyer, Schmidt, Ann. 433, 333 (1923). (222) Baxter, Chattaway, J. Chem. Soc. 107, 1815 (1915). (223) Davies, Wood, J. Chem. Soc. 1928, 1124-1125. (224) Huntress, Carten, J. Am. Chem. Soc. 62, 512-513 (1940). (225) van Arkel, Vles, Rec. trav. chim. 55, 408 (1936). (226) Coffin, Holt, Analyst 44, 226-229 (1919). (227) Frankland, Carter, Webster, J. Soc. Chem. Ind. 38, 153-155T (1919). (228) Emmons, Am. Mineral. 14, 482-483 (1929). (229) Cameron, Thomas, et al., J. Path. Bact. 44, 281-296 (1937). (230) Smyth, Ind. Eng. Chem., Anal. Ed. 8, 379 (1936).

(231) Wadsworth, Hinshelwood, J. Chem. Soc. 1944, 469-473.

# 3: 7905 2-CHLORO-2-METHYLPROPANOL-1 Cl C<sub>4</sub>H<sub>9</sub>OCl Beil. I - 378 (" $\beta$ -Isobutylene chlorohydrin"; CH<sub>3</sub>—C—CH<sub>2</sub>OH I<sub>1</sub>— I<sub>2</sub>— I<sub>2</sub>—

B.P. 132-133° sl. dec. (1).

[See also 1-chloro-2-methyl-propanol-2 (3:7752).]

Colorless visc. liq. with disagreeable odor (1). — Does not freeze in mixt. of solid  $CO_2$  + ether (1). — Sol. in cold fumg. HCl (1).

[For prepn. (accompanied by the isomeric 1-chloro-2-methylpropanol-2 (3:7752)) from 2-methyl-1,2-epoxypropane (isobutylene oxide) + HCl see (1) (2) (3).]

Č on stdg. a few days with aq. yields (2) isobutyraldehyde (1:0120) [cf. behavior of 1-chloro-2-methylpropanol-2 (3:7752)].

- —— β-Chloroisobutyl acetate: unreported.
- ---- β-Chloroisobutyl benzoate: unreported.
- ---- β-Chloroisobutyl p-nitrobenzoate: unreported.
- ----- β-Chloroisobutyl 3,5-dinitrobenzoate: unreported.
- ---- 2-(N-Phthalimido)-2-methylpropanol-1: unreported.

127-130°

at 748 mm. (9)

3:7905 (1) Henry, Compt. rend. 142, 495-496 (1906). (2) Michael, Leighton, Ber. 39, 2793-2795 (1906). (3) Krassusky, J. prakt. Chem. (2) 75, 238-247 (1907).

3: 7908 METHYL 
$$d$$
, $l$ - $\alpha$ -CHLOROPROPIONATE C<sub>4</sub>H<sub>7</sub>O<sub>2</sub>Cl Beil. II - 249 CH<sub>3</sub>-CH—C=O II<sub>1</sub>-(111) II<sub>2</sub>-(226) B.P. 132.5° (1)  $D_4^{20} = 1.1374$  (4)  $n_D^{20} = 1.4182$  (4) 130.9–131.5° at 760 mm. (2) 130–132° at 767 mm. (3)

[For prepn. of  $\tilde{C}$  from  $\alpha$ -chloropropionyl chloride (3:5320) with MeOH see (1); for formn. of  $\tilde{C}$  (20% yield) together with other prods. from phosgene (3:5000) + methyl lactate (1:3236) + pyridine see (3); for formn. (90% yield) from methyl  $\alpha$ -aminopropionate hydrochloride with HCl + NaNO<sub>2</sub> see (5); for prepn. of  $\tilde{C}$  from methyl lactate (1:3236) with SOCl<sub>2</sub> (71% yield) see (9).]

 $[\bar{C} + 1-5\% \text{ FeCl}_3 \text{ at } 100^\circ \text{ or above loses HCl yielding (6) methyl acrylate (1:3025), b.p. 80.3°.]}$ 

[ $\overline{C}$  with MeOH/NaOMe gives (63% yield (9)) methyl  $\alpha$ -methoxypropionate [Beil. III-280, III<sub>1</sub>-(109)], b.p. 127-129° at 747 mm. (9).]

 $\bar{C}$  on hydrolysis yields MeOH (1:6120) +  $\alpha$ -chloropropionic acid (3:6125). [For study of kinetics of hydrolysis see (7).] — For the amide, anilide, p-toluidide, and other derivs. corresp. to  $\bar{C}$  see the acid (3:6125).

**D** Methyl  $\alpha$ -(tetrachlorophthalimido)-propionate: pl. from alc., m.p. 165-166° (8). [From  $\ddot{C}$  + K tetrachlorophthalimide as directed (8).]

3:7908 (1) Kahlbaum, Ber. 12, 343-344 (1879).
 (2) Burkard, Kahovec, Monatsh. 70, 340 (1938).
 (3) Rıtchie, J. Chem. Soc. 1935, 1059.
 (4) Schjanberg, Z. physik. Chem. A-172, 230 (1935).
 (5) Barker, Skinner, J. Am. Chem. Soc. 46, 409-410 (1924).
 (6) Barrett (to du Pont), U.S. 2,013,648, Sept. 10, 1935; Cent. 1936, I 3217; C.A. 29, 6902 (1935).
 (7) Bürki, Helv. Chim. Acta 1, 243-244 (1918).
 (8) Allen, Nicholls, J. Am. Chem. Soc. 56, 1409-1410 (1934).
 (9) Niemann, Benson, Mead, J. Org. Chem. 8, 401 (1943).

3: 7915 d,l-5-CHLORO-2-METHYLPENTENE-2 
$$C_6H_{11}Cl$$
 Beil. I —  $Cl$   $CH_3$   $I_1$ —  $I_2$ —(194)

B.P. 132–133° at 759 mm. (1)  $D_2^{20} = 0.92653$  (1)  $n_D^{20} = 1.44193$  (1)

[For prepn. of C from dimethyl-cyclopropyl-carbinol [Beil. VI-10] by shaking with conc. HCl see (1) (2.5-dichloro-2-methylpentane (3:8550) is also formed (1)).

 $\tilde{C}$  on prolonged treatment with KOAc + AcOH yields (1) corresp. acetate, b.p. 170-171°,  $D_A^{20} = 0.9108$ ,  $n_D^{20} = 1.43107$  (1).

 $\bar{C}$  with NaOEt yields (1) corresp. ethyl ether, 5-ethoxy-2-methylpentene-2, b.p. 142-143°,  $D_{4}^{20} = 0.7989$ ,  $n_{1}^{20} = 1.41948$  (1).

 $\tilde{C}$  on protracted boilg. with aq. + CaCO<sub>3</sub>, followed by further treatment with alc. KOAc + a little NaI, regenerates (1) dimethyl-cyclopropyl-carbinol, b.p. 124-125° at 762 mm.  $D_A^{20} = 0.8800$ ,  $n_D^{20} = 1.43237$  (1).

3:7915 (1) Bruylants, Dewael, Bull. sci. acad. roy. Belg. (5) 14, 140-153 (1928); Cent. 1928, I 2708; C.A. 22, 3883 (1928).

3: 7917 
$$d$$
, $l$ -2-CHLOROPROPANOL-1  $CH_3$ — $CH$ — $CH_2$   $C_3H_7OCl$  Beil. I - 356 (Propylene  $\beta$ -chlorohydrin;  $Cl$  OH I<sub>2</sub>-(369) B.P. 133–134° cor. at 762 mm. (1)  $D_-^{20} = 1.103$  (1)  $n_D^{20} = 1.43623$  (1) 133–134° at 761 mm. (2) 133–134° at 760 mm. (3)  $D_4^{15} = 1.4505$  (9)  $n_D^{15} = 1.4766$  (9) 133° (10) 94° at 8 mm. (9)

[See also 1-chloropropanol-2 (3:7747).]

[For prepn. of  $\bar{C}$  from its acetate (see below) by alcoholysis with excess boilg. dry MeOH for 8 hrs. (83% yield) see (1); note that this prepn. really starts from the isomeric 1-chloropropanol-2, the conversion of which to  $\bar{C}$  involves the following steps: reaction with KOAc yielding CH<sub>3</sub>.CH(OH).CH<sub>2</sub>(OAc), conversion of latter with HCl + ZnCl<sub>2</sub> to CH<sub>3</sub>.CH(Cl).-CH<sub>2</sub>(OAc), and finally alcoholysis to  $\bar{C}$  as mentioned above (1) (4); for formn. of  $\bar{C}$  by alk. hydrol. of its trichloroacetate see (9).]

[Note that although  $\bar{C}$  is formed in other ways (e.g., from propanediol-1,2 (propylene glycol) (1:6455) with HCl or S<sub>2</sub>Cl<sub>2</sub> (5), from 2,3-epoxybutane (propylene oxide) (1:6115) by addn. of HCl (5), from propylene with HOCl (5), or from  $\alpha$ -chloro-n-propylamine with HNO<sub>2</sub> (6)) the product of these reactions appears to be (5) (6) an inseparable mixt. of about 40%  $\bar{C}$  with 60% of the isomeric 1-chloropropanol-2 (3:7747).]

Reactions of the halogen atom of  $\tilde{C}$ .  $[\tilde{C}$  when added dropwise to conc. aq. KOH loses HCl yielding (1) 2,3-epoxybutane (propylene oxide) (1:6115), b.p. 35°. —  $\tilde{C}$  with KCN in 80% alc. contg. some NaI gives on warming (60% yield (2))  $\beta$ -hydroxy-n-butyronitrile [Beil. III-309, III<sub>2</sub>-(221)], b.p. 214-215° (2); note that this is not the product to be expected from simple replacement of Cl by CN and apparently results from preliminary formation of propylene oxide to which HCN then adds so as to give a straight (rather than forked) carbon chain.]

Reactions of the OH group of C. [C reacts normally as a substituted primary alc. giving ethers, esters, oxidn. products, etc.]

[ $\bar{\mathbf{C}}$  readily gives the corresp. ethers; e.g.,  $\bar{\mathbf{C}}$  with Me<sub>2</sub>SO<sub>4</sub> on warming gives  $\langle 7 \rangle$   $\beta$ -chloro-n-propyl methyl ether, b.p. 98–99° at 756 mm.,  $D_4^{20}=0.9946$ ,  $n_D^{20}=1.40754$   $\langle 7 \rangle$ ;  $\bar{\mathbf{C}}$  with EtOH + conc. H<sub>2</sub>SO<sub>4</sub> on htg. gives (54%) yield  $\langle 7 \rangle$ )  $\beta$ -chloro-n-propyl ethyl ether, b.p. 116–117° at 758 mm.,  $D_4^{20}=0.9828$ ,  $n_D^{20}=1.41285$   $\langle 7 \rangle$ ; for corresp. formn. of ethers with n-propyl alc. (1:6150) and with allyl alc. (1:6145) see  $\langle 7 \rangle$ .]

[ $\bar{C}$  (1 mole) with SO<sub>2</sub>Cl<sub>2</sub> (2.5 moles) at 130° gives (16% yield {7}) bis-( $\beta$ -chloro-n-propyl) ether, b.p. 188° at 762 mm.,  $D_4^{20} = 1.109$ ,  $n_D^{20} = 1.4467$  (7); note that this ether is not obtd. from  $\bar{C}$  with cone. H<sub>2</sub>SO<sub>4</sub> (7).]

[ $\bar{C}$  on oxidn. with 3 wt. pts. conc. HNO<sub>3</sub> as directed (8) (2) gives (85% yield (2))  $\alpha$ -chloropropionic acid (3:6125), accompanied by some acetic acid (1:1010) and oxalic acid (1:0445); note that  $\bar{C}$  on oxidn. with chromic acid yields no  $\alpha$ -chloropropionic acid but only acetic acid (1:1010) and formic acid (1:1005) (2).]

- β-Chloro-n-propyl acetate [Beil. II-129, II<sub>1</sub>-(58), II<sub>2</sub>-(139)]: oil, insol. aq., b.p. 151-152° at 768 mm. (11), 152-153° at 750 mm. (1). [Prepd. indirectly; furthermore the prods. reported may be contaminated with some of the isomeric β-chloroisopropyl acetate cf. (10).]
- ---- β-Chloro-n-propyl benzoate: unreported.
- $\beta$ -Chloro-n-propyl  $\beta$ -nitrobenzoate: unreported.
- ------  $\beta$ -Chloro-n-propyl 3,5-dinitrobenzoate: unreported.

2-(Phthalimido)propanol-1 (N-(β-hydroxyisopropyl)phthalimide); lfts. from EtOAc m.p. 99-101° (10). [Prepd. indirectly (10); note that the prod. obtd. (10) from C with K phthalimide in s.t. at 200-230° was the isomeric 1-(phthalimido)propanol-2, m.p. 88-89° (10), but whether this result was due to contamination of C with the isomeric 1-chloro-propanol-2 (3:7747) or the rearr, has never been clarified.

3:7917 (1) Henry, Rec. trav. chim. 22, 327-333 (1903). (2) Dewael, Rec. trav. chim. 33, 504-507 (1924). (3) Henry, Rec. trav. chem. 22, 209-210 (1903). (4) Henry, Bull. acad. roy. Belg. 1902, 445-494; Cent. 1902, II 929. (5) Smith, Z. physik. Chem. 93, 59-85 (1919). (6) Smith, Platon, Ber. 55, 3150-3155 (1922). (7) Dewael, Bull. soc. chim. Belg. 34, 343-346 (1925). (8) Henry, Rec. trav. chim. 22, 341-344 (1903). (9) Gayler, Waddle, J. Am. Chem. Soc. 63, 3359 (1941). (10) Gabriel, Ohle, Ber. 50, 807, 812 (1917).

(11) Dewael, Bull. soc. chim. Belg. 39, 400 (1930).

B.P. 
$$135^{\circ}$$
 at 760 mm. (7)  $D_{15}^{15} = 1.0893$  (3)  $n_{\rm D}^{21} = 1.4122$  (7)  $133-135^{\circ}$  at 760 mm. (1) (2)  $128-129.5^{\circ}$  at 753 mm. (3)  $n_{\rm D}^{15} = 1.4019$  (3)  $64-65^{\circ}$  at 55 mm. (3)  $42-44^{\circ}$  at 17 mm. (7)

[For prepn. of  $\bar{C}$  from  $\alpha$ -chloroisobutyric acid (3:0235) with MeOH see (3) (4); for formn. of  $\tilde{C}$  as by-product of reactn. of methyl  $\alpha$ -hydroxyisobutyrate (1:3206) with phospene (3:5000) + pyridine see (1) (2) (6).]

(C on htg. at 500-510° (1), or passed over silica gel at 300° (4), or htd. with anhydrous FeCl<sub>3</sub> for 4 hrs. at 100° (5), or htd. with quinoline in pres. of hydroquinone (3), gives (83% yield (5)) methyl methacrylate, b.p. 100-101°.]

3:7918 (1) Burns, Jones, Ritchie, J. Chem. Soc. 1935, 717. (2) Ritchie, J. Chem. Soc. 1935, 1059. (3) Zal'kind, Markov, J. Applied Chem. (U.S.S.R.) 10, 1042-1044 (1937); Cent. 1938, II 2421; C.A. 32, 1652 (1938).
 (4) du Pont Co. & Loder, Brit. 428,223, June 6, 1935; Cent. 1936, I 179;
 C.A. 29, 6607 (1935).
 (5) Barrett (to du Pont Co.), U.S. 2013,648, Sept. 10, 1935; Cent. 1936, I 3217; C.A 29, 6902 (1935). (6) Imperial Chem. Ind & Ritchie, Jones, Burns, Brit. 424,885, March 4, 1935; Cent. 1936, I 2440; C.A. 29, 5124 (1935) (7) Kahovec, Kohliausch, Monatsh. 74, 116 (1943).

3: 7920 d,I-1,2-DICHLORO-2-METHYLBUTANE 
$$C_8H_{10}Cl_2$$
 Beil. I — Cl Cl  $I_1$ —  $I_2$ —(101) CH<sub>3</sub>.CH<sub>2</sub>—C,CH<sub>2</sub>  $I_1$ —  $I_2$ —(101)

B.P. 
$$133-135^{\circ}$$
 (1)  $D_4^{20} = 1.0785$  (1)  $n_D^{23.5} = 1.4432$  (4)  $133.5^{\circ}$  at 760 mm. (caled.) (4)  $1.0766$  (4)  $71.5^{\circ}$  at 100 mm. (4)

[For prepn. of C from 1,2-epoxy-2-methylbutane (1) with PCl<sub>5</sub> see (1); for formn. of Č (together with other products) from 2-methylbutene-1 (unsym.-ethyl-methyl-ethylene) (1:8210) with  $Cl_2$  at -5 to  $-17^\circ$  see (2) (3); for forms. of  $\bar{C}$  (together with other products) from dextrorotatory amyl chloride by photochemical chlorination with SO<sub>2</sub>Cl<sub>2</sub> in pres. of benzoyl peroxide see (4).]

C on boilg. with aq. K<sub>2</sub>CO<sub>3</sub> gives (1) (together with other products) 1-chloro-2-methyl-butene-1 (3:7303), b.p. 96-97°.

C on oxidn. with KMnO<sub>4</sub> gives (2) butanone-2 (ethyl methyl ketone) (1:5405).

3:7920 (1) Chalmers, Trans. Roy. Soc. Can. (3) 22, III 69-78 (1928). (2) Gutner, Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1062-1067 (1938); Cent. 1939, II 4221; C.A. 33, 3755 (1939). (3) Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1232-1246 (1938); Cent. 1939, II 4222; C.A. 33, 4190 (1939). (4) Brown, Kharasch, Chao, J. Am. Chem. Soc. 62, 3437-3439 (1940).

3: 7925 1,3-DICHLOROBUTANE H 
$$C_4H_8Cl_2$$
 Beil. I —  $I_{1^-}(38)$   $I_{2^-}$  CH<sub>3</sub>.C.CH<sub>2</sub>.CH<sub>2</sub>  $I_{2^-}$  Cl Cl Cl B.P. 134° (1)  $D_4^{20} = 1.1158$  (3)  $n_D^{20} = 1.445$  131–133° at 758 mm. (3)

[For prepn. from butanediol-1,3 by htg. in s.t. with conc. HCl (satd. at 0°) see (1); for prepn. from 1-chlorobutane (n-butyl chloride) (3:7160) by actn. of Cl<sub>2</sub> in light (other products also being formed) see (2) (3) (4) (5); for prepn. from 2-chlorobutane (3:7125) by actn. of Cl<sub>2</sub> see (6).]

 $\bar{C}$  on passing over alkali (NaOH, K<sub>2</sub>CO<sub>3</sub>, soda-lime, etc.) at elevated temperatures (e.g., 700-750°) yields butadiene-1,3. [For studies of this reaction see (2) (4) (5).]

C is readily saponified with aq. K<sub>2</sub>CO<sub>3</sub> to butanediol-1,3 (1:6482) (6).

3:7925 (1) Fargher, Perkin, J. Chem. Soc. 105, 1356 (1914). (2) Muskat, Northrup, J. Am. Chem. Soc. 52, 4050-4052 (1930). (3) Tishchenko, Churbakov, J. Gen. Chem. (U.S.S.R.) 7, 893-896 (1937); Cent. 1938, II 2575; C.A. 31, 5755 (1937). (4) Carothers (to du Pont), U.S. 2,038,593, April 28, 1936; Cent. 1936, II 3358; C.A. 30, 3912 (1936). (5) Muskat (to du Pont), U.S. 2,070,609, Feb. 16, 1937; Cent. 1937, II 2597; C.A. 31, 2236 (1937). (6) Tishchenko, Churbakov, J. Gen. Chem. (U.S.S.R.) 7, 663-666 (1937); Cent. 1937, II 372; C.A. 31, 5754 (1937).

3:7935 2-CHLOROPENTANONE-3 
$$(\alpha$$
-Chloroethyl ethyl ketone;  $\alpha$ -chlorodiethyl ketone) CH<sub>3</sub>.CH<sub>2</sub>—C—CH—CH<sub>3</sub>  $I_1$ —  $I_2$ —

B.P. 135° (1) (2) 145° (3)

Oil, insol. aq., sol. alc., ether.

[For prepn. of Č from pentanone-3 (diethyl ketone) (1:5420) with Cl<sub>2</sub> (3) (4), with Cl<sub>2</sub> in pres. of aq. + CaCO<sub>3</sub> (86% yield (1)), or with Cl<sub>2</sub> in vapor-phase chlorination (4) see indic. refs.; from 4-chloro-4-methyl-3-ethylisoxazolone-5 [Beil. XXVII-163] with hydrochloric acid see (2).]

 $\ddot{\mathbf{C}}$  on reduction with  $\mathbf{H}_2$  yields (3) pentanone-3 (1:5420).

C does not (3) form a cpd. with satd. aq. NaHSO3 soln.

Č dis. readily in aq. alk. yielding a soln. (presumably contg. pentanone-3-ol-2) which readily reduces NH<sub>4</sub>OH/AgNO<sub>3</sub> and reduces Fehling's soln. on warming (3).

[C in abs. alc. treated with NH<sub>3</sub> gas yields (3) 2,5-dimethyl-3,6-diethylpyrazine [Beil. XXIII-101], liq., b.p. 215-217°, forming with aq. a sublimable hydrate, m.p. 42.5°. (Note that 3-chloropentanone-2 (3:7893) similarly treated gives the same prod.)]

3:7935 (1) Justoni, Chimica e industria (Italy) 24, 89-94 (1942); Cent. 1943, I 383. (2) Hanriot, Reynaud, Bull. soc. chim. (3) 21, 14-15 (1899). (3) Demetre-Vladesco, Bull. soc. chim. (3) 6, 834-835 (1891). (4) Justoni, Chimica e industria (Italy) 24, 195-201 (1942); Cent. 1943, I 1659.

[For prepn. of  $\bar{C}$  from 2-methylhexanol-2 (n-butyl-dimethyl-carbinol) [Beil. I-415, I<sub>2</sub>-(444)] (5) (6) with dry HCl gas at  $-10^\circ$  (65-75% yield (6)) or at  $10-15^\circ$  (75% yield (5)) (8), with conc. HCl (1), or with AcCl (1) (2) see indic. refs.; for formn. of  $\bar{C}$  as byproduct during reactn. of the above carbinol with  $C_6H_6+AlCl_3$  (main prod. 45% yield of 2-methyl-2-phenylhexane, b.p.  $106-109^\circ$  at 20 mm.) see (4); for prepn. of  $\bar{C}$  from 2-methylhexanol-3 (isopropyl-n-propyl-carbinol) [Beil. I-416, I<sub>1</sub>-(206)] (3) with dry HCl at  $0^\circ$  (80% yield (3)) by rearrangement see (3).]

[For data on density and parachor of C at 25°, 50°, and 75° see (7).]

Č with Mg in dry ether as specified (5) gives 74.4% yield corresponding RMgCl.

 $\bar{C}$  converted (as above) to RMgCl and the latter oxidized with  $O_2$  gives (42% yield (3)) 2-methylhexanol-2, b.p. 139.5–140.5° at 741 mm., 110° at 250 mm.,  $D_4^{20}=0.813, n_D^{20}=1.4173$  (3).

[For reactn. of RMgCl with ethyl chloroformate (3:7295) yielding (5) ethyl n-butyl-dimethyl-acetate, b.p. 66.5– $70.0^{\circ}$  at 16 mm.,  $n_{\rm D}^{20}=1.4148$  (5) (corresp. amide, m.p. 92.8–93.8° (5)) see (5); for reactn. of RMgCl with AcCl (3:7065) giving (9% yield (5)) 3,3-dimethylheptanone-2, b.p. 68– $70.5^{\circ}$  at 20 mm.,  $n_{\rm D}^{20}=1.4206$  (semicarbazone, m.p. 129–130°) (5) see (5).]

Č converted to RMgCl and treated with CO<sub>2</sub> gives (5) n-butyl-dimethylacetic acid (constants not given (5)) (corresp. amide via acid chloride, m.p. 92.8-93.8° u.c. (5)).

3:7945 (1) Henry, de Wael, Bull. acad. roy. Belg. 1908, 957-963; Cent. 1909, I 1854; Rec. trav. chim. 28, 448 (1909). (2) Muset, Bull. acad. roy. Belg. 1906, 775-789; Cent. 1907, I 1313. (3) Whitmore, Johnston, J. Am. Chem. Soc. 60, 2266 (1938). (4) Huston, Fox, Binder, J. Org. Chem. 3, 252 (1939). (5) Whitmore, Badertscher, J. Am. Chem. Soc. 55, 1559-1567 (1933). (6) Whitmore, Woodburn, J. Am. Chem. Soc. 55, 363-364 (1933). (7) Quayle, Owen, Beavers, J. Am. Chem. Soc. 61, 3108 (1939). (8) Petrov, Kurbskii, J. Gen. Chem. (U.S.S.R.) 14, 492-494 (1944); C.A. 39, 4600 (1945).

3:7950 3-CHLORO-3-METHYLHEXANE Cl 
$$C_1H_{16}Cl$$
 Beil. I — (Ethyl-methyl-n-propyl-carbinyl chloride)  $CH_3.CH_2.CH_2$ — $C$ — $CH_2.CH_3$   $I_{1-}$ (58)  $I_{2-}$ (119)  $CH_3$  B.P. abt. 135° (1)  $D_4^{20} = 0.8787$  (4)  $n_D^{20} = 1.4250$  (2) 1.4283 (3) 18 (4) (2)  $I_{16}$  (2) (5)

B.P. abt.  $135^{\circ}$  (1)  $D_{4}^{\circ} = 0.8787$  (2)  $n_{D}^{\circ} = 1.4280$  (2) 1.4283 (3)  $41^{\circ}$  at 20 mm. (3)  $n_{D}^{18} = 1.4280$  (5)  $n_{D}^{18} = 1.42705$  (4)  $n_{D}^{18} = 1.42705$  (4)

[For prepn. of  $\bar{\rm C}$  from 3-methylhexanol-3 (ethyl-methyl-n-propyl-carbinol) [Beil. I-416, I<sub>1</sub>-(206), I<sub>2</sub>-(445)] (2) with dry HCl at 10-15° (90% yield (2)) or with HCl (4) see (2) (4); for formn. of  $\bar{\rm C}$  as a by-product of the reactn. of the above carbinol with  ${\rm C_6H_6}+{\rm AlCl_3}$  (main prod. 45% yield of 3-methyl-3-phenylhexane, b.p. 106-107° at 20 mm.,  $n_D^{20}=1.4964$ ) see (3); for formn. of  $\bar{\rm C}$  from 3-methylhexene-2 (1:8322) with conc. HCl see (5); for formn. of  $\bar{\rm C}$  from ethyl-methyl-n-propyl-carbinyl isocyanate on htg. with conc. HCl see (1).]

[For data on density and parachor of  $\bar{C}$  at 0°, 15°, 25°, 50°, and 65° see (6).]

C with Mg in dry ether as specified (2) gives 67-78% yield corresponding RMgCl.

[ $\bar{C}$  converted as above to RMgCl, treated with formaldehyde gas, gives (30% yield (2)) 2-ethyl-2-methylpentanol-1, b.p. 75.5-76.0° at 15 mm.,  $n_D^{20} = 1.4353$  (2).]

 $\bar{C}$  with  $C_6H_6$  + AlCl<sub>3</sub> yields (4) 3-methyl-3-phenylhexane, b.p. 110-112° at 15 mm.,  $D_4^{20}$  = 0.8819,  $n_1^{15}$  = 1.49951 (4).

3:7950 (1) Montagne, Ann. chim. (10) 13, 125 (1930). (2) Whitmore, Badertscher, J. Am. Chem. Soc. 55, 1561, 1565 (1933). (3) Huston, Fox, Binder, J. Org. Chem. 3, 253 (1939). (4) Halse, J. prakt. Chem. (2) 89, 452-453 (1914). (5) Nasarov, Ber. 70, 622 (1937). (6) Quayle, Owen, Beavers, J. Am. Chem. Soc. 61, 3108 (1939).

| B.P.          |    |       |     |      |     |              |         |      |                    |         |      |
|---------------|----|-------|-----|------|-----|--------------|---------|------|--------------------|---------|------|
| 135-136°      |    |       |     | (1)  |     | $D_4^{20} =$ | 0.8784  | (18) | $n_{\rm D}^{20} =$ | 1.42364 | (1)  |
| 134-135° cor. | at | 763   | mm. | (2)  | (3) |              | 0.8765  | (7)  |                    | 1.4200  | (4)  |
| 134°          | at | 759   | mm. | (18) |     |              | 0.87551 | (8)  |                    | 1.41991 | (18) |
| 134°          | at | 738   | mm. | (4)  |     |              |         |      |                    | 1.41944 | (6)  |
| 133.6-134.4°  |    |       |     | (5)  |     |              |         |      |                    |         |      |
| 132.9°        | at | 764.7 | mm. | (6)  |     |              |         |      |                    |         |      |
| 132.7-133.3°  |    |       |     | (15) |     |              |         |      |                    |         |      |
| 132-133°      | at | 760   | mm. | (7)  |     |              |         |      |                    |         |      |

Colorless mobile liq., insol. aq.

[For prepn. of  $\bar{C}$  from hexanol-1 (1:6230) by htg. with fumg. HCl in s.t. at 100° (100% yield) see (2); by shaking with HCl + ZnCl<sub>2</sub> for 2 days (45% yield), with PCl<sub>3</sub> + ZnCl<sub>2</sub> (61% yield), with PCl<sub>5</sub> + ZnCl<sub>2</sub> (77% yield), or with excess SOCl<sub>2</sub> (yield: 85-87% (1), 63% (18) see (1) (18)); for prepn. from 1-chlorohexene-2 by cat. reducts. see (9).]

[For formation (besides other products) from n-hexanc by chlorination see (10) (11) (12) (13); for formation from heavy metal n-caproates +  $Cl_2$  see (14).]

C on refluxing with 10% aq. NaOH yields (9) n-hexanol (1:6230).

[For study of reaction of  $\tilde{C}$  with KI in acetone see (15); with metallic Na see (16); with NaC<sub>2</sub>H<sub>5</sub> see (4); with CH<sub>3</sub>NH<sub>2</sub> see (17).]

C with Mg in dry ether + trace I<sub>2</sub> gives (97.2% yield (19)) RMgCl.

— N-(n-Hexyl)tetrachlorophthalimide: lfts. from EtOH, m.p. 150-151° (20). [From C (?) or from n-hexyl bromide with K tetrachlorophthalimide (20).]

3:7955 (1) Clark, Streight, Trans. Roy. Soc. Can. (3) 23, III, 77-89 (1929). (2) Henry, Bull. acad. roy. Belg. 1905, 158-177; Cent. 1905, II 214 (3) Henry, Rec. trav. chim. 24, 354-355 (1905). (4) Whitmore, Zook, J. Am. Chem. Soc. 64, 1784 (1942). (5) Kohlrausch, Köppl, Monatsh. 63, 268 (1933). (6) Karvonen, Ann. Acad. Scr. Fennicae (A) 5, No. 6, 125 (1914), Cent. 1919, III 807. (7) Olivier, Rec. trav. chim. 55, 1035 (1936). (8) Karvonen, Cent. 1912, II 1271. (9) Hurd, McNamee, J. Am. Chem. Soc. 54, 1648-1651 (1932). (10) Schorlemmer, Ann. 161, 272 (1872). (11) Michael, Turner, Ber. 39, 2154-2156 (1906). (12) Ger. 261,677; June 27, 1913; Cent. 1913, II 325. (13) Wertyporoch, Ber. 66, 732-739 (1933). (14) C. Hunsdiecker, H. Hunsdiecker, Vogt, U.S. 2,176,181, October 17, 1939; C.A. 34, 1686 (1940); Brit. 456,565, Dec. 10, 1936; French 803,941, Oct. 12, 1936; Cent. 1937, I 2258. (15) Conant, Hussey, J. Am. Chem. Soc. 47, 485 (1925). (16) Morton, Hechenbleikner, J. Am. Chem. Soc. 58, 1697-1701 (1936). (17) Westphal, Jetchel, Ber. 73, 1007 (1940). (18) Vogel, J. Chem. Soc. 1943, 638,640. (19) Houben, Boedler, Fischer, Ber. 69, 1768, 1777 (1936). (20) Allen, Nicholls, J. Am. Chem. Soc. 56, 1409-1410 (1934).

B.P. 
$$136.0^{\circ}$$
 at 760 mm. (1) (2) (3)  $D_{20}^{20} = 1.131$  (3)  $n_{\rm D}^{19} = 1.4627$  (4)  $135.5^{\circ}-136.5^{\circ}$  (9)  $131.5-132.5^{\circ}$  at 721 mm. (4)  $24.5^{\circ}$  at 10 mm. (1)

[For prepn. by chlorination of isobutane see (3) (5) (6); from 3-chloro-2-(chloromethyl)-propene-1 (3:5633) or from 1,3-dichloro-2-(chloromethyl)propene-1 (3:9066) with  $H_2$  + Pt black in alc. soln. see (10).]

 $\bar{\rm C}$  on htg. in s.t. at 180° with anhyd. NaOAc + AcOH yields corresp. diacetate, and this on alcoholysis by htg. with 3% dry HCl in dry MeOH gave an overall yield of 60% of the glycol, 2-methylpropanediol-1,3 [Beil. I-480], b.p. 213-214°,  $D_4^{20}=1.0290, n_D^{20}=1.4445$  (6).

[For study of further chlorination of  $\bar{C}$  see (7); note that  $\bar{C}$  with  $Cl_2$  or with  $SO_2Cl_2 + Bz_2O_2$  gives (73% yield (9)) 1,2,3-trichloro-2-methylpropane (3:5885).]

 $\ddot{C}$  on treatment with Zn dust in 85% alc. gives 38% yield 2-methylpropene-1, (isobutylene) (8).

 $[\bar{C}]$  with aq. alc. NaCN as directed (11) gives 20.4% yield  $\gamma$ -chloro- $\beta$ -methyl-n-butyronitrile, b.p. 82-83° at 16 mm.,  $D_4^{20} = 1.042$ ,  $n_D^{20} = 1.44255$ , accompanied by 11.5% yield of  $\beta$ -methyl glutaro (di)nitrile, b.p. 133-137° at 16 mm. (11).]

3:7960 (1) Hass, J. Chem. Education 13, 493 (1936). (2) Hass, McBee, Weber, Ind. Eng. Chem. 27, 1191 (1935). (3) Hass, McBee (to Purdue Research Foundation), U.S. 2,004,072, June 4, 1935; Cent. 1936, I 3012. (4) Kahovec, Kohlrausch, Z. physik. Chem. B-48, 11 (1940). (5) Hass, McBee (to Purdue Research Foundation), U.S. 2,147,577, Feb. 14, 1939; Cent. 1939, II 226. (6) Hass, McBee, Weber, Ind. Eng. Chem. 27, 1194 (1935). (7) Rogers, Nelson, J. Am. Chem. Soc. 58, 1027-1029 (1936). (8) Lott, Christiansen, Schakell, J. Am. Pharm. Assoc. 27, 125-130

35-37°

33-35°

(1938). (9) Mooradian, Cloke, J. Am. Chem. Soc. 68, 787 (1946). (10) Kleinfeller, Ber. 62, 1595-1596 (1929).

(11) Cloke, Stehr, Steadman, Westcott, J. Am. Chem. Soc. 67, 1588 (1945).

3: 7965 
$$d_{r}$$
  $a_{r}$   $b_{r}$  DIMETHYL- $n$ -BUTYRYL CHLORIDE  $C_{0}$   $C_{11}$   $C_{$ 

[For prepn. of  $\bar{C}$  from 2,3-dimethylbutanoic acid-1 (1:1114) with SOCl<sub>2</sub> see (1).]  $\bar{C}$  on hydrolysis yields 2,3-dimethylbutanoic acid (1:1114) q.v. (for the amide, anilide, p-toluidide, and other derivatives corresponding to  $\bar{C}$  see 1:1114).

3:7965 (1) Hommelen, Bull. soc. chim. Belg. 42, 243-250 (1933). (2) Nenitzescu, Chicos, Ber. 68, 1587 (1935).

3: 7970 3-CHLORO-2,3-DIMETHYLPENTANE 
$$C_7H_{16}Cl$$
 Beil. I - 157 (Ethyl-isopropyl-methyl-carbinyl Cl H  $I_1$ —  $I_2$ — CH<sub>3</sub>. CH<sub>2</sub>—  $C$ —  $C$ —  $C$ H<sub>3</sub>  $C$ H<sub>4</sub>  $C$ H<sub>5</sub>  $C$ H<sub>6</sub>  $C$ H<sub>7</sub>  $C$ H<sub>8</sub>  $C$ H<sub>9</sub>  $C$ H<sub>9</sub>

[For prepn. of  $\bar{C}$  from 2,3-dimethylpentanol-3 (ethyl-isopropyl-methyl-carbinol [Beil. I-417, I<sub>1</sub>-(207), I<sub>2</sub>-(446)] with HCl (1) or dry HCl at 0° (50% yield (2)) see (1) (2); for formn. of  $\bar{C}$  from reactn. of the above carbinol with C<sub>6</sub>H<sub>6</sub> + AlCl<sub>3</sub> (14% yield accompanied by 22% yield 2,3-dimethyl-2-phenylpentane) see (3).]

**3:7970** (1) Kaschirsky, J. Russ. Phys.-Chem. Soc. **13**, 90 (1881); Ber. **11**, 985 (1878). (2) Whitmore, Evers, J. Am. Chem. Soc. **55**, 813-814 (1933). (3) Huston, Fox, Binder, J. Org. Chem. **3**, 253 (1939).

[For prepn. of C from 2-methylbutene-2 (trimethylethylene) (1:8220) with Cl<sub>2</sub> at low temp. (6) (7) (8) (3) or SO<sub>2</sub>Cl<sub>2</sub> at 0° (9) see indic. refs.; for formn. of C from 2-methylbutane

at 18-20 mm. (4)

at

17 mm. (5)

(isopentane) (1:8500) (4) (10) or from 2-chloro-2-methylbutane (ter-amyl chloride) (3:7220) (11) with  $Cl_2$  see indic. refs.; for form. of  $\bar{C}$  from 2-methylbutene-1 (unsymethyl-methyl-ethylene (1:8210) +  $Cl_2$  see (12); for form. of  $\bar{C}$  from 3-chloro-2-methylbutene-1 (3:7300) + HCl see (3); for form. of  $\bar{C}$  from 2-methylbutanol-2 (ter-amyl alcohol) (1:6160) +  $Cl_2$  see (1).]

[C on further chlorination yields (3) 2,3,3-trichloro-2-methylbutane (3:4755) together with other prods.]

Č on htg. with solid KOH (3) or with alc. KOH (3) (4) loses HCl yielding 3-chloro-2-methylbutene-2 (3:7335) and other prods. — [Č on passing over soda-lime or burnt lime at 600° (13) or BaCl₂ at 300−500° at 20−50 mm. (14) yields 2-methylbutadiene-1,3 (isoprene) (1:8020).]

Č on boilg. with aq. or with aq. Na<sub>2</sub>HPO<sub>4</sub> for 30 hrs. gave (2) only 10% hydrolysis; Č on boilg. with 1 mole NaOH in aq. soln. for 24 hrs. gave (2) only 17% hydrolysis, accompanied by isopropyl methyl ketone (1:5410).

C on boilg. with 35 pts. aq. for 40 hrs. gave (5) complete decomposition with formn. of isopropyl methyl ketone (2-methylbutanone-3) (1:5410) q.v., b.p. 94°.

3:7975 (1) Brochet, Ann. chim. (7) 10, 385 (1897). (2) Evers, Rothrock, Woodburn, Stahly, Whitmore, J. Am. Chem. Soc. 55, 1137 (1933). (3) Tishchenko, J. Gen. Chem. (U.S.S.R.) 6, 1116-1132 (1936); Cent. 1937, I 573; C.A. 31, 1003 (1937). (4) Davydova, Papkina, Tishchenko, J. Gen. Chem. (U.S.S.R.) 7, 1992-1994 (1937); Cent. 1939, I 2397; C.A. 32, 482 (1938). (5) Froebe, Hochstetter, Monatsh. 23, 1082-1083 (1902). (6) Kondakov, J. Russ. Phys.-Chem. Soc. 17, 302 (1885). (7) Ostromuislenskii, J. Russ. Phys.-Chem. Soc. 47, 1989-1991 (1915); Cent. 1916, II 308; C.A. 10, 1342 (1916). (8) Badische Anlin- und Soda-Fabrik, Ger. 258,555, May 31, 1912; Cent. 1913, I 1640. (9) Badische Anlin- und Soda-Fabrik, Ger. 251,100, June 7, 1911; Cent. 1912, II 1318. (10) Ayres, Ind. Eng. Chem. 21, 902 (1929).

Badische Anilin- und Soda-Fabrik, Ger. 257,600, Oct. 28, 1911; Cent. 1913, I 1246. (12)
 Gutner, Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1062-1067 (1938); Cent. 1939, II 4221; C.A. 33, 3755 (1939). (13) Harries, Ger. 243,075, Aug. 3, 1910; Cent. 1912, I 535. (14) Badische Anilin-

und Soda-Fabrik, Ger. 255,519, March 15, 1911; Cent. 1913, I 476.

3:7980 *n*-BUTYL CHLOROFORMATE 
$$C_5H_9O_2Cl$$
 Beil. III —  $III_1$ —  $III_2$ —  $IIII_2$ —  $IIIII_2$ —  $IIII_2$ —  $IIII_2$ —  $IIII_2$ —  $IIII_2$ 

B.P. 137.8° at 734.5 mm. (1) 
$$D_4^{25} = 1.074$$
 (1)  $n_D^{18} = 1.4132$  (2) 137.6° at 730 mm. (2) (3)  $n_D^{8.4} = 1.417$  (1) 37-38° at 13 mm. (2)

Colorless mobile lachrymatory liq. with sharp but pleasant odor. — Insol. aq. and only slowly hydrolyzed by it even on htg. (1).

[For prepn. (35% yield (3)) from *n*-butyl alc. (1:6180) + phosgene (3:5000) see (1) (3); from di-*n*-butyl carbonate (1:3626) + PCl<sub>5</sub> see (2).]

 $\bar{C}$  on htg. with quinoline dec. at 81° (4) into n-butyl chloride (3:7160) + CO<sub>2</sub>.

- D n-Butyl carbamate: from \(\tilde{\Chi}\) by shaking with conc. aq. NH4OH (1); pr. from alc., m.p. 54° (1).
- n-Butyl-N-phenylcarbamate (n-butyl carbanilate): from  $\bar{C}$  in ether by treatment with ether soln. of aniline (1 mole) + pyridine (1 mole) (1); pr., m.p. 65.5° (1), 61° (5). [For corresp. products from many other substituted anilines see (1).]
- ① n-Butyl phenylcarbazate: from  $\tilde{C}$  (3.9 g.) + phenylhydrazine (3.1 g.) + pyridine (3.1 g.) in aq. (15 ml.); after solidification of the sepg. yel. oil it is washed with aq. and recryst. from  $C_6H_6$ : white scaly cryst., m.p. 70° (6).

T980 (1) Chattaway, Saerens, J. Chem. Soc. 117, 708-711 (1920).
 Kohlrausch, Sabathy, Monatsh. 72, 307 (1939).
 Hamilton, Sly, J. Am. Chem. Soc. 47, 436-437 (1925).
 Carré, Bull. soc. chim. (5) 3, 1069 (1936).
 Weizmann, Garrard, J. Chem. Soc. 117, 328 (1920).
 Dos, J. Am. Chem. Soc. 48, 1954 (1926).

[For prepn. of  $\tilde{C}$  from 2-methylhexanol-5 (isoamyl-methyl-carbinol) [Beil. I-416, I<sub>1</sub>-(206), I<sub>1</sub>-(445)] by saturation with dry HCl and stdg. for 6 weeks (90% yield (1)) or htg. in s.t. at 140° (2) see indic. refs.]

 $\ddot{C}$  on conversion with Mg in dry ether to RMgCl and treatment with  $O_2$  gives (60% yield (1)) 2-methylhexanol-5, b.p. 151-152° at 736 mm.,  $n_D^{20}=1.4180~(N-(\alpha-naphthyl)-carbamate)$ , m.p. 84-85° (1).

3:7985 (1) Whitmore, Johnston, J. Am. Chem. Soc. 60, 2267 (1938). (2) Rohn, Ann. 190, 312-313 (1877).

B.P. 138-139° at 748 mm. (1) 
$$D_4^{24} = 0.8788$$
 (1)  $n_D^{24} = 1.4302$  (1)  $D_4^{20} = 0.8895$  (2)  $D_D^{20} = 1.4349$  (2)

[For prepn. of  $\bar{\rm C}$  from n-amyl methyl ketone (heptanone-2) (1:5460) with PCl<sub>5</sub> in C<sub>6</sub>H<sub>6</sub> (40% yield together with 23% yield 2,2-dichloroheptane (3:9424)) see (2); for prepn from heptyne-1 (1:8085) + AcCl + SnCl<sub>4</sub> see (2) (both cis-4-chlorononen-3-one-2, b.p. 99° at 10 mm.,  $D_4^{25} = 0.9830$ ,  $D_5^{25} = 1.4607$ , and trans-4-chlorononen-3-one-2, b.p. 89° at 10 mm.,  $D_4^{25} = 0.9752$ ,  $D_5^{25} = 1.4665$  are also formed (1).]

C with powdered KOH in mineral oil at 250° does not (2) yield heptyne-1 (dif. from 1-chloroheptene-1 (3:8219)).

3:7988 (1) Kroeger, Sowa, Nieuwland, J. Org. Chem. 1, 163-169 (1936). (2) Bachmann, Hill, J. Am. Chem. Soc. 56, 2730-2732 (1934).

3:7990 
$$\alpha$$
-ETHYL- $n$ -BUTYRYL CHLORIDE  $C_6H_{11}OCl$  Beil. II - 334 (Diethylacetyl chloride)  $CH_3$ .  $CH_2$ .  $CH_3$ - $CH_4$   $CH_5$   $CH_$ 

B.P. 138.0-138.8° at 750 mm. (1) 
$$D_4^{20} = 0.9825$$
 (1)  $n_D^{20} = 1.4234$  (3); 134-137° (2) 1.4239 (3) 71° at 88 mm. (3)  $D_4^0 = 0.9992$  (1) 40° at 20 mm. (3)

[For prepn. of C from 2-ethylbutanoic acid (1:1115) with PCl<sub>5</sub> (2), or with SOCl<sub>2</sub> (1) (85-90% yield (3)) see indic. refs.]

- [C on htg. with sodium diethylacetate yields (2) corresp. anhydride, b.p. 230° (2).]
- [ $\tilde{C}$  with Cl<sub>2</sub> yields (4)  $\alpha$ -chloro-diethylacetyl chloride, b.p. 93° at 70 mm. (amide, m.p. 58° (4));  $\tilde{C}$  with Br<sub>2</sub> yields (5)  $\alpha$ -bromo-diethylacetyl bromide, b.p. 98-100° at 25 mm. (5); for reactn. of  $\tilde{C}$  with AlCl<sub>3</sub> + C<sub>6</sub>H<sub>6</sub> see (6).]
- [ $\bar{C}$  (1 mole) upon addition to ter-butyl MgCl (3.7 moles) in dry ether yields (3) (by virtue of reducing actn. of the tertiary RMgX cpd.) 2-ethylbutanol-1 (1:6223), 2,2-dimethyl-4-ethylhexanol-3 (b.p. 131-132° at 150 mm.,  $D^{20}_{-}=0.8339$ ,  $n^{20}_{D}=1.4340-1.4362$ ,  $N-(\alpha-naphthyl)$ carbamate, m.p. 63-64°), and hexamethylethane (1:7090), m.p. 103° (3).]
- $\bar{\mathbf{C}}$  on hydrolysis yields 2-ethylbutanoic acid (1:1115) q.v. (for the amide, anilide, p-toluidide, and other derivatives corresponding to  $\bar{\mathbf{C}}$  see 1:1115).
- 3:7990 (1) Hommelen, Bull. soc. chim. Belg. 42, 243-250 (1933). (2) Freund, Hermann, Ber. 23, 189-190 (1890). (3) Whitmore and 11 others, J. Am Chem Soc. 63, 646, 651-652 (1941). (4) Altwegg, Pivot, U.S 1,493,182, May 6, 1924; Brst. 209,706, March 5, 1924; Cent. 1924, II 1485; C.A. 18, 2058 (1924). (5) Fourneau, Nicolitch, Bull. soc. chim. (4) 43, 1238-1239 (1928). (6) Apolit, Ann. chim. (10) 2, 80 (1924).

## CHAPTER XVIII

# DIVISION B. LIQUIDS WITH BOILING POINTS REPORTED AT ORDINARY PRESSURE

# Section 2. $D_4^{20}$ less than 1.1500

(3:8000-3:8499)

3:8000 3-CHLOROBUTANOL-2 
$$CH_3$$
- $CH$ - $CH_3$ - $CH_9OCl$  Beil. I - 373 ( $\beta$ -Butylene chlorohydrin;  $Cl$  OH  $I_1$ - $I_2$ -(403) chlorohydrin)

**B.P.** 
$$138-140^{\circ}$$
 (1)  $D_0^{18} = 1.0692$  (3) (4)  $n_D^{20} = 1.4422$  (9)  $138-139^{\circ}$  at 753 mm. (2)  $136.0-137.5^{\circ}$  at 760 mm. (3) (4)  $134-138^{\circ}$  (9)  $76-79^{\circ}$  at 100 mm. (5)

[See also d,l-erythro-3-chlorobutanol-2 (3:8004) and d,l-threo-3-chlorobutanol-2 (3:8002).]

 $\bar{\mathbf{C}}$  in this present discussion designates the ordinary mixture of stereoisomeric configurations of 3-chlorobutanol-2.

Colorless somewhat viscous liq. of agreeable odor.  $-\bar{C}$  is sol. at 20° in 15 vols. aq. (2); its sepn. from dilute aq. solns. is best effected by steam distillation at reduced pressure (6) cf. (9).

[For prepn. of  $\bar{C}$  from ordinary butene-2 (mixt. of cis and trans stereoisomers) by addn. of HOCl (yields: 55% {11}, 50% {3}, 20% {5}) {4} {1} {2}, with Cl<sub>2</sub> + steam at 100° (60–65%  $\bar{C}$  together with 10–30% 2,3-dichlorobutane (3:7615) {6}), with Cl<sub>2</sub> + aq. at 40–50° (50–60% yield (6)) {9}, or with N-chlorourea in dil. aq. acid 15–17° in pres. of CuCl<sub>2</sub> (best yield 79.9%  $\bar{C}$  + 20.1% 2,3-dichlorobutane (3:7615) obtd. in 5% AcOH (7), but proportion of the two products varies widely with nature of acid used) see indic. refs.]

[For tabular and graphic data on equilibrium consts. of binary system  $\bar{C}$  + aq., and ternary system  $\bar{C}$  + 2.3-dichlorobutane (3:7615) + aq. see (8).]

Č in s.t. at 180°, or Č with aq. in s.t. at 100° for 10 hrs. or at 120° for 3 hrs., gives (80–100% yield (3)) (10) butanone-2 (ethyl methyl ketone) (1:5405) + HCl (cf. also (14)).

[ $\bar{C}$  with solid KOH (5), or with 40-50% aq. NaOH or KOH (15-20% excess) at 75-90° (11) (10), or with aq. KOH,  $K_2CO_3$ , or PbO at ord. temp. (3) (4) (2) causes elimination of HCl and gives (yields: 87-90% (11), 75-81% (10), 66% (5)) 2,3-epoxybutane ( $\alpha,\beta$ -dimethylethylene oxide) (1:6116) (mixt. of cis and trans stereoisomers).

[The simple alkyl ethers of  $\tilde{C}$  have been prepared by indirect means; e.g., from butene-2 by action of corresp. alkyl hypochlorites dislvd. in the corresp. alc. or by action of N,N'-dichlorourea in the corresp. alc.: e.g., methyl ether (3-chloro-2-methoxybutane), b.p. 116°,  $D_4^{15}=1.0230,\ n_{D_4}^{14}=1.4225$  (12); ethyl ether (3-chloro-2-ethoxybutane), b.p. 122-124°,  $D_4^{15}=0.9812,\ n_{D_4}^{15}=1.4260$  (12); for n-propyl, isopropyl, and isoamyl ethers see (12).]

- ---- 3-Chlorobutyl-2 benzoate: b.p. 263-265.5 u.c. (7).
- ---- 3-Chlorobutyl-2 p-nitrobenzoate: unreported.
- ---- 3-Chlorobutyl-2 3,5-dinitrobenzoate: unreported.

3:8000 (1) Fourneau, Puyal, Bull. soc. chim. (4) 31, 427-428 (1922). (2) Henry, Compt. rend. 145, 499 (1907). (3) Krassuski, J. Russ. Phys.-Chem. Soc. 34, 287-315 (1902); Cent. 1902, II 20. (4) Krassuski, Compt. rend. 145, 763 (1907). (5) Norton, Hass, J. Am. Chem. Soc. 58, 2147 (1936). (6) Batalin, Ugryumov, J. Gen. Chem. (U.S.S.R.) 4, 871-874 (1934); Cent. 1936, I 986; C.A. 29, 2147 (1935). (7) Likhosherstov, Alekseev, J. Gen. Chem. (U.S.S.R.) 3, 927-932 (1933); Cent. 1934, II 1437; C.A. 28, 3053-3054 (1934). (8) Bushmakin, Gol'dman, Kuchinskaya, Sintet. Kauchuk 4, No. 1, 33-35 (1935); Cent. 1936, I 1131; C.A. 29, 4248 (1935). (9) Batalin, Ugryumov, Tikhomirov, Sintet. Kauchuk 3, No. 6, 6-12 (1934); Cent. 1935, II 1935; not in C.A. (10) Batalin, Ugryumov, Sintet. Kauchuk 5, No. 6, 8-16 (1936); Cent. 1936, II 3357; C.A. 30, 6701 (1936).

(11) Wilson, Lucas, J. Am. Chem. Soc. 58, 2398-2399 (1936). (12) Likhosherstov, Alekseev, J. Gen. Chem. (U.S.S.R.) 4, 1279-1282 (1934), Cent. 1936, I 4287, C.A. 29, 3306 (1935). (13) Likhosherstov, Petrov, J. Gen. Chem. (U.S.S.R.) 9, 2000-2008 (1939); C.A. 34, 4380-4381 (1940). (14) Gutner, Tishchenko, J. Gen. Chem. (U.S.S.R.) 6, 1729-1735 (1936), Cent. 1937, I 3786; C.A. 31, 4265 (1937).

B.P. 130.8° at 748 mm. (1) 
$$D_4^{25} = 1.0586$$
 (1)  $n_D^{25} = 1.4386$  (1)  $52.0$ ° at 30 mm. (1)  $D_4^{20} = 1.0626$  (2)  $D_D^{20} = 1.4403$  (2)  $D_4^{20} = 1.0626$  (2)  $D_D^{20} = 1.4403$  (2)

[See also ord. 3-chlorobutanol-2 (3:8000) and d,l-erythro-3-chlorobutanol-2 (3:8004).]

[For prepn. of Č from cis-2,3-epoxybutane (1:6116) (2 moles) with conc. HCl (3 moles) at 5° or below (77% yield) see (1); from cis-butene-2 with ter-butyl hypochlorite (3:7165) in AcOH/H<sub>2</sub>SO<sub>4</sub> (61% yield (1)) or with Ca(OCl)<sub>2</sub> in AcOH (2) see indic. refs.; from the diacetate of meso-butanediol-2,3 (1:6452) in conc. HCl contg 1 drop conc. H<sub>2</sub>SO<sub>4</sub> with large excess dry HCl gas at —10° for 90 hrs. (43% yield) see (1). — Note that Č cannot be obtd. from butene-2 with aq. N-chloroacetamide (1).]

 $[\bar{C}\ (1\ mole)\ with\ SOCl_2\ (1.5\ moles)\ refluxed\ 3\ hrs., then kept at 100° for\ 3\ hrs. more, gives <math>(17.4\%\ yield\ \{1\})\ d_1l^2$ ,3-dichlorobutane (3:7615); note, however, that  $\bar{C}\ (1\ mole)$  with SOCl<sub>2</sub>  $(2\ moles)\ htd.\ 2\ hrs.\ at\ 95° in\ pres.\ of\ pyridine\ gives <math>(24\%\ yield\ \{1\})\ meso-2,3$ -dichlorobutane (3:7580). — Note that  $\bar{C}\ with\ conc.\ HCl\ or\ with\ conc.\ HCl\ +\ ZnCl_2\ fails$  to give any dichlorobutane; note also that  $\bar{C}\ fails\ to\ react\ with\ 60\%\ HBr\ even\ in\ s.t.\ at\ 100° for\ 3\ hrs. <math>\{1\}$ .

[Č with very conc. aq. KOH at 90-95° loses HCl and gives (75% yield (1)) cis-2,3-epoxybutane (1:6116).]

3:8002 (1) Lucas, Gould, J. Am. Chem. Soc. 63, 2541-2551 (1941). (2) Wilson, Lucas, J. Am. Chem. Soc. 58, 2396-2402 (1936).

B.P. 135.4° at 748 mm. (1) 
$$D_4^{25} = 1.0610$$
 (1)  $n_D^{25} = 1.4397$  (1)  $55.9-56.1$ ° at 30 mm. (1)

[See also ord. 3-chlorobutanol-2 (3:8000) and d,l-threo-3-chlorobutanol-2 (3:8002).]

[For prepn of  $\bar{C}$  from trans-2,3-epoxybutane (1:6116) (2 moles) with conc. HCl (3 moles) at 5° or below (82 5% yield) see {1}.]

[ $\bar{\mathbb{C}}$  (1 mole) with SOCl<sub>2</sub> (1.5 moles) refluxed 3 hrs., then kept at 100° for 3 more hrs gives (16% yield {1}) meso-2,3-dichlorobutane (3:7580);  $\bar{\mathbb{C}}$  (1 mole) in pyridine (2.2 moles) treated with SOCl<sub>2</sub> (2 moles) at 100° for 3 hrs. gives (63% yield {1}) d,l-2,3-dichlorobutane (3:7615), and  $\bar{\mathbb{C}}$  (3 moles) with PCl<sub>3</sub> (1 mole) at 100° for 3 hrs also gives (20% yield {1}) d,l-2,3-dichlorobutane (3:7615); note, however, that  $\bar{\mathbb{C}}$  (1 mole) with PCl<sub>5</sub> (3.9 moles) in CHCl<sub>3</sub> refluxed 2 hrs. gives (42.7% yield {1}) a mixt. of d,l- and meso- forms of 2,3-dichlorobutane. — Note that  $\bar{\mathbb{C}}$  with conc. HCl or with conc HCl + ZnCl<sub>2</sub> fatls to give any dichlorobutane; note also that  $\bar{\mathbb{C}}$  fatls to react with 60% HBr even in s.t at 100° for 3 hrs. {1}.]  $[\bar{\mathbb{C}}$  with aq. KOH loses HCl and gives (1) trans-2,3-epoxybutane (1:6116).]

3:8004 (1) Lucas, Gould, J. Am. Chem. Soc. 63, 2541-2551 (1941).

50-53° at 28 mm. (2)

50-51° at 20 mm. (3)

Principal component of comml. "amylene dichloride" (5).

[For prepn. of  $\bar{C}$  from pentene-2 (unsym.-ethyl-methyl-ethylene) (1:8215) +  $Cl_2$  at  $-17^\circ$  (3) or below  $-5^\circ$  (4) see indic. refs.; for formn. of  $\bar{C}$  (together with other products) from pentane (1:8505) +  $Cl_2$  see (2) (5).]

 $\bar{C}$  on boilg. with 10% alc. KOH gives (2) 2-chloropentene-2 (3:7285), but  $\bar{C}$  with aq.  $K_2CO_3$  gives no pentanediol-2,3 (see below).

C on boilg, with Zn dust in alc. or on htg. with Na in xylene at 120° gives (6) pentene-2 (1:8215).

 $[\tilde{C} + aq. \text{ vapor passed at } 300^{\circ} \text{ over MgCl}_2 \text{ gives } (48-50\% \text{ yield (7)}) \text{ pentadiene-1,3} (1:8035).]$ 

Č on protracted (250 hrs.) boilg. with 35 pts. aq. gives (3) traces of the corresp. glycol, pentanediol-2,3 [Beil. I-482], and either or both pentanone-2 (1:5415) and/or pentanone-3 (1:5420).

3:8010 (1) Kondakov, Ber. 24, 931 (1891). (2) Lemke, Tishchenko, J. Gen. Chem. (U.S.S.R.) 7, 1995-1998 (1937); Cent. 1939, I 2397; C.A. 32, 482 (1938). (3) Froebe, Hochstetter, Monatsh. 23, 1085-1086 (1902). (4) Tishchenko, Schtschigelskaya, J. Gen. Chem. (U.S.S.R.) 7, 1246-1248 (1937); Cent. 1938, II 2576. (5) Ayres, Ind. Eng. Chem. 21, 902 (1929). (6) Bourgeul, Bull. soc. chim. (4) 35, 1634-1635 (1924); Ann. chim. (10) 3, 370 (1925). (7) Lemke, Tishchenko, Russ. 50,691, March 31, 1937; Cent. 1938, II 174.

3:8012 1-CHLOROBUTANONE-2 (Chloromethyl ethyl ketone) 
$$CH_3$$
— $CH_2$ — $C$ — $CH_2$ — $CH_3$ — $CH_4$ 

[See also 3-chlorobutanone-2 (3:7598).]

Liquid with penetrating odor. — Insol. aq.

[For prepn. of  $\tilde{C}$  from ethyl methyl ketone (butanone-2) (1:5405) with  $Cl_2$  in pres. of  $CaCO_3$  + aq. (yields of  $\tilde{C}$  about 25% always accompanied by 75% of the isomeric 3-chlorobutanone-2 (3:7598)) see (1) (3) (6) (10) (12); with  $Cl_2$  in vapor phase (13) (14), with  $Cl_2$  or  $SO_2Cl_2$  in sunlight (8) (11), or with N-chlorourea (5) see indic. refs. — For formn. of  $\tilde{C}$  from 1-chlorobutanol-2 (3:8025) by oxidn. with chromic acid (4), from butene-1 with HOCl (4), from 2-chloromethyl-2-ethyl-4-methyl-1,3-dioxolone-5 by hydrol. with AcOH/HCl (9), or from 2-(chloromethyl)butene-1 (3:9214) by ozonolysis (18) see indic. refs.]

[C on reduction using yeast gives (15) 1-chlorobutanol-2 (3:8025).]

C on oxidn. with HNO<sub>3</sub> (8) (11) yields chloroacetic acid (3:1370).

[C on hydrolysis, e.g., by refluxing overnight with K formate in MeOH, yields (1) butanone-2-ol-1 (propionyl-carbinol) [Beil. I-826, I<sub>2</sub>-(870)], b.p. 153-154°, 50.5-51.0° at 14 mm. (1); note, however, that C with K acetate in EtOH gives (6) (8) (11) (65-70% yield (6)) propionyl-carbinyl acetate, b.p. 176° (8) (11), 178-180° (6).]

[C with conc. aq. KCN even in the cold yields (8) (11) the corresp. nitrile, propionylacetonitrile [Beil. III-671], b.p. 164-165° (8) (11), colorless liq., insol. aq. — C with conc. aq. (NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub> at 70° yields (7) butanone-2-sulfonic acid-1. — C with NaN<sub>3</sub> in aq. contg. AcOH yields (10) 1-azidobutanone-2, oil, b.p. 56° at 2 mm. (10).]

[C with thiourea refluxed for 2 hrs. gives (72% yield (16)) 2-amino-4-ethylthiazole hydrochloride, cryst. from alc./acetone, m.p. 185.5-187.5° u.c.; this salt with conc. aq. NH<sub>4</sub>OH gives the free base, m.p. 35°, b.p. 118-120° at 7 mm. (16) (corresp. acetyl deriv., m.p. 117.5° u.c. (16)). — C with thiobenzamide + NaOAc htd. in alc. gives (67% yield (17)) 4-ethyl-2-phenylthiazole, yel. cryst. from xylene, m.p. 117-118° (17).]

Č with phenylhydrazine yields (4) a prod., yel. cryst. from AcOH, m.p. 210-215° dec., whose structure is in doubt.

- ① Chloromethyl ethyl ketone semicarbazone: m.p. 121° (5), 120-121° (18).
- © Condens. prod. of C with N-methyl-β-carbohydrazidopyridinium p-toluenesulfonate: cryst. from 1:1 EtOH/ether, m.p. 136-137° cor. (19). [From C + indicated reagent refluxed 15 min. in abs. alc. (19).]
- ① 1-(Phthalimido)butanone-2: ndls. from hot aq., m.p. 107° (12). [From Č with K phthalimide in dry xylene 2 hrs. at b.p. (27% yield (12)).]

3:8012 (1) Levene, Haller, J. Biol. Chem. 74, 348 (1927). (2) Blaise, Bull. soc. chim. (4) 15, 733 (1914). (3) Justoni, Chimica e industria (Italy) 24, 89-94 (1942); Cent. 1943, I 383. (4) de

Montmollin, Matile, Helv. Chim. Acta 7, 107-109 (1924). (5) Béhal, Detoeuf, Compt. rend. 153, 1230 (1911). (6) Kling, Bull. soc. chim. (3) 33, 325-326 (1905); Ann. chim. (8) 5, 538-539 (1905). (7) Backer, Strating, Zuithoff, Rec. trav. chim. 55, 762-764 (1936). (8) van Reymenant, Bull. acad. roy Belg. 1906, 724-742; Cent. 1901, I 95-96. (9) Blaise, Bull. soc. chim. (4) 15, 673 (1914). (10) Forster, Fierz, J. Chem. Soc. 93, 675, 677 (1908).

(11) Henry, Bull. acad. roy. Belg. 1900, 57-63; Cent. 1900, I 1123. (12) Kolshorn, Ber. 37, 2474 (1904). (13) Justoni, Chimica e industria (Italy) 24, 195-201 (1942); Cent. 1943, I 1659. [14] I.G., French 813,131, May 26, 1937, Cent. 1937, II 2071. (15) Santomauro, Biochem. Z.
151, 50 (1924); Cent. 1924, II 2272. (16) Bergeim, Coy, Lott, J. Am. Chem. Soc. 62, 1873 (1940).
[17] Friedman, Sparks, Adams, J. Am. Chem. Soc. 59, 2263 (1937). (18) Gutner, Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1062-1067 (1938); Cent. 1939, II 4221. (19) Allen, Gates, J. Org. Chem. 6, 596-601 (1941).

## 3:8015 1,1-DICHLOROPENTANE

C<sub>5</sub>H<sub>10</sub>Cl<sub>2</sub> Beil. S.N. 10

CH<sub>3</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CHCl<sub>2</sub>

#### B.P. 139.4-140.2° (1)

[For prepn. of  $\vec{C}$  from isovaleraldehyde (1:0140) with PCl<sub>5</sub> see (1); for formn. of  $\vec{C}$ (together with other prods.) from pentane (1:8505) by vapor-phase photochemical chlorination see (2).]

3:8015 (1) Kohlrausch, Köppl, Monatsh. 65, 197 (1935). (2) Hass, Huffman, J. Am. Chem. Soc. 63, 1233-1235 (1941).

3:8020 d.l-α-METHYL-n-VALERYL CHLORIDE C<sub>6</sub>H<sub>11</sub>OCl Beil. S.N. 162 (Methyl-n-propyl-acetyl chloride) CH<sub>3</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>1</sub>. C=O

 $D_4^{20} = 0.9781 (1)$   $D_4^{0} = 0.9979 (1)$ B.P. 140.0-140.8° at 745 mm. (1)

[For prepn. of C from 2-methylpentanoic acid (1:1117) with SOCl<sub>2</sub> see (1).] [The dextrorotatory isomer of C has also been reported (2).

Č on hydrolysis yields 2-methylpentanoic acid (1:1117) q.v. (for the amide, anilide, p-toluidide, and other derivatives corresponding to  $\bar{C}$  see 1:1117).

3:8020 (1) Hommelen, Bull. soc. chim. Belg. 42, 243-250 (1933). (2) Levene, Mikesa, J. Biol. Chem. 84, 576 (1929).

3:8023 4-CHLOROHEPTENE-3 CI C7H18Cl Beil. I - 220 **I**1---CH<sub>3</sub>.CH<sub>2</sub>.CH<sub>2</sub>.C=CH.CH<sub>2</sub>.CH<sub>3</sub> I2-(197)

 $D_{-}^{14} = 0.883 (2) \quad n_{\rm D}^{14} = 1.437 (2)$ B.P. 141° 138.5-139.5° cor. (2)

Two geom, stereoisomers of C are possible, but only C has yet been recognized.

[For prepn. of C from heptanone-4 (di-n-propyl ketone) (butyrone) (1:5447) with

C on treatment with NaNH2 in pseudocumene at 140° yields (3) heptyne-3 (1:8095) together with a solid prod. which with aq. yields (3) heptyne-1 (1:8085).

3:8023 (1) Tawildarow, Ber. 9, 1442 (1876). (2) Bourgeul, Compt. rend. 178, 1559 (1924); Bull. soc. chim. (4) 35, 1636-1637 (1924); Ann. chim. (10) 3, 372 (1925). (3) Bourgeul, Compt. rend, 178, 1985 (1924); Ann. chim. (10) 8, 342 (1925).

3:8025 d,l-1-CHLOROBUTANOL-2 H 
$$C_4H_9OCl$$
 Beil. I —  $I_1$ —  $I_2$ —( $\alpha$ -Butylene chlorohydrin)  $CH_3.CH_2.C.CH_2Cl$   $I_2$ —(402)

B.P. 141° (1) 
$$D_4^{25} = 1.068$$
 (2)  $n_D^{25} = 1.4410$  (2)  $68-70^{\circ}$  at 27 mm. (2)  $53-65^{\circ}$  at 17 mm. (5)  $D_4^{18} = 1.040$  (3)  $n_D^{18} = 1.4353$  (3)  $52^{\circ}$  at 15 mm. (3)

[See also 2-chlorobutanol-1 (3:9160).]

Colorless liq. when freshly distd. but turns red on stdg. and darkens with time (3). — On distn. at ord. press. partially dec. with loss of HCl (3) [and probable forms. of 1,2-epoxybutane (see below)].

[For prepn. of  $\bar{C}$  from butene-1 + HOCl (40-50% yield) see (1) cf. (5); from chloroacetaldehyde (3:7212) +  $C_2H_5MgBr$  in ether see (3) (5); for prepn. (44% yield) by hydrolysis of corresp. trichloroacetate (obtd. by chlorination of sec.-butyl trichloroacetate) see (2).]

C on oxidn. with CrO3 yields (1) 1-chlorobutanone-2 (3:8012).

Č with hot conc. KOH gives (50% yield (1)) 1,2-epoxybutane (1:6118), b.p. 61-62° (4). [For study of this reaction see (4).]

- ---- Chloromethyl-ethyl-carbinyl acetate: unreported.
- --- Chloromethyl-ethyl-carbinyl benzoate: unreported.
- —— Chloromethyl-ethyl-carbinyl p-nitrobenzoate: unreported.
- --- Chloromethyl-ethyl-carbinyl 3,5-dinitrobenzoate: unreported.
- --- 1-(N-Phthalimido)butanol-2: unreported.
- © Chloromethyl-ethyl-carbinyl N-phenylcarbamate: m.p. 78.5-79° (3).

3:8025 (1) de Montmollin, Matile, Helv. Chim. Acta 7, 106-107 (1924). (2) Waddle, Adkins, J. Am. Chem. Soc. 61, 3363 (1939). (3) Helferich, Speidel, Ber. 54, 2636-2637 (1921). (4) Moureu, Dodé, Bull. soc. chim. (5) 4, 288-289 (1937). (5) Olson, Whitacre, J. Am. Chem. Soc. 65, 1020 (1943).

3: 8028 METHYL 
$$\beta$$
-CHLOROISOCROTONATE  $C_{\delta}H_{7}O_{2}Cl$  Beil. II - 417 CH<sub>3</sub>—C—Cl II<sub>1</sub>-(190) CH<sub>5</sub>OCC—C—H

B.P. 142.4° cor. (1) 
$$D_4^{20} = 1.138$$
 (1) (3)  $141-142^{\circ}$  (2)  $D_4^{18.9} = 1.1361$  (3)  $n_D^{18.9} = 1.45733$  (3)  $42-43^{\circ}$  at 13 mm. (3)  $D_-^{15} = 1.143$  (1)

[See also methyl  $\beta$ -chlorocrotonate (3:9244).]

[For prepn. of  $\bar{C}$  from  $\beta$ -chloroisocrotonic acid (3:1300) in MeOH soln. satd. with HCl gas (1) (3) or htd. with 10% conc. H<sub>2</sub>SO<sub>4</sub> (yields: 70% (2), 60-62% (4)) see indic. refs.; from  $\beta$ -chloroisocrotonoyl chloride (see under  $\beta$ -chloroisocrotonic acid (3:1300)) with MeOH (yields: 90-95% (4), 80% (2)) see indic. refs.]

[ $\bar{C}$  with NaSH in MeOH gives (40-45% yield (2)) methyl  $\beta$ -mercaptocrotonate; note that the prod. is apparently a mixture of the two geometrically stereoisomeric thioenols together with the keto form, viz., methyl thioacetoacetate, CH<sub>3</sub>.CS.CH<sub>2</sub>.COOCH<sub>3</sub>; for details see (2).]

[C with Na salt of ethyl mercaptan below 5° gives (80% yield (4)) a mixt. (b.p. 116-132°

at 14 mm.) of methyl  $\beta$ -ethylmercaptocrotonate and methyl  $\beta$ -ethylmercaptoisocrotonate. —  $\tilde{C}$  with Na salt of benzyl mercaptan gives (85% yield (4)) methyl  $\beta$ -benzylmercaptocrotonate, cryst. from ether or MeOH, m.p. 69-70° (4), 73° (2); note the change to the other series of stereoisomers and also that this same prod. is obtd. (78% yield (2)) from the Na thioenolate of methyl  $\beta$ -mercaptocrotonate with benzyl chloride.

Č with hydrazine hydrate splits out HCl and MeOH with consequent ring closure yielding (5) (6) 5-methylpyrazolone-3 [Beil. XXIV-19, XXIV<sub>1</sub>-(189)], m.p. 215° (5) (6).

3:8028 (1) Geuther, Frolich, Zeit. für Chemie 1869, 274. (2) Scheibler, Topouzada, Schulze, J. prakt. Chem. (2) 124, 16-20 (1930). (3) von Auwers, Ber. 45, 2807 (1912). (4) Scheibler, Voss, Ber. 53, 381-387 (1920). (5) Frei, Atti V congr. nazl. chim. pura applicata, Rome 1935, Pt. I, 361-365 (1936); Cent. 1937, I 4630; C.A. 31, 3914 (1937). (6) Freri, Gazz. chim. ital. 66, 25 (1936); Cent. 1936, II 621; C.A. 30, 6387 (1936).

3: 8C30 d,l-3-CHLORO-2-METHYLBUTANOL-2 
$$C_5H_{11}$$
OCl  $I_1$ —  $I_2$ -(424) (Trimethylethylene chlorohydrin;  $C_1$   $C_3$ —  $C_4$ —  $C_5$ —  $C_5$ —  $C_6$ —

Liq. sol. in 15-16 pts. aq. at room temp. (1).

[For prepn. of  $\tilde{C}$  from 2-methylbutene-2 (trimethylethylene) (1:8220) with HOCl (50% yield (1) (2)) or with N-chlorourea in acid solution (70% yield (5)) see indic. refs.; for prepn. of  $\tilde{C}$  from 3-chloropentanone-2 (a-chloroethyl methyl ketone) (3:7893) (3) (4) or from ethyl a-chloropropionate (3:8125) (6) with MeMgBr (3) or MeMgI (4) see indic. refs.; note that a mixture of  $\tilde{C}$  with 2-chloro-2-methylbutanol-3 (3:9290) results from 2,3-epoxy-2-methylbutane (trimethylethylene oxide) [Beil. XVII-13], b.p. 75°, by ring cleavage with HCl (4).]

 $\bar{\rm C}$  on distillation over P<sub>2</sub>O<sub>5</sub> (1) or on htg. at 130° with anhydrous oxalic acid (1:0535) (5) or with H<sub>2</sub>SO<sub>4</sub> (92% yield (7)) gives 3-chloro-2-methylbutene-2 (trimethylvinyl chloride) (3:7335), b.p. 97-98°, + 1-chloro-2-methylbutene-2 ( $\beta$ , $\gamma$ -dimethylallyl chloride) (3:7485), b.p. 110°.

 $\bar{C}$  on boilg. with aq. + BaCO<sub>3</sub> yields (5) 2-methylbutanediol-2,3 (trimethylethylene glycol) [Beil. I-482, I<sub>1</sub>-(251), I<sub>2</sub>-(549)];  $\bar{C}$  on htg. with KOH (3) (6), alc. KOH (40% yield (5)), or better powdered KOH in ether (70% yield (5)) gives 2,3-epoxy-2-methylbutane (see above).

C on htg. in a s.t. with aq. at 140° (8) or by itself at 155° (8), or on htg. with aniline (70% yield (5)), gives 2-methylbutanone-3 (isopropyl methyl ketone) (1:5410).

Č with MeMgI as directed (9) yields 2,3-dimethylbutanol-2 (dimethyl-isopropyl-carbinol) (1:6187).

3:8630 (1) Krassuski, J. Russ. Phys.-Chem. Soc. 33, 1-26 (1901); Cent. 1901, I 995. (2) Mokiewsky, J. Russ. Phys.-Chem. Soc. 30, 885-900 (1898); Cent. 1899, I 589. (3) Fourneau, Tiffeneau, Compt. rend. 145, 439 (1907). (4) Nilsson, Smith, Z. physik. Chem. A-166, 144-145 (1933). (5) Detoeuf, Bull. soc. chim. (4) 31, 170-171 (1922). (6) Henry, Bull. soc. chim. Belg. 20, 152-156 (1906); Cent. 1906, II 1178; Rec. trav. chim. 26, 420 (1907). (7) Groll, Burgin (to Shell Development Co.), U.S. 2,042,223, May 26, 1936; Cent. 1937, I 1274; C.A. 30, 4875 (1936). (8) Krassuski, J. Russ. Phys.-Chem. Soc. 34, 287-315 (1902); Cent. 1902, II 19. (9) Earl, J. Proc. Roy. Soc. N.S. Wales, 61, 71 (1928); Cent. 1929, I 803; C.A. 23, 815 (1929).

3:8032 1-CHLOROHEPTYNE-1

C7H11Cl

Beil. S.N. 12

CH<sub>3</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.C=C-Cl

B.P. 141-142° at 760 mm. (1) 
$$D_4^{24} = 0.9250$$
 (3)  $n_D^{24} = 1.4411$  (3) 65° at 49 mm. (2) 65° at 45 mm. (3)  $D_-^{18} = 0.918$  (1) (5)  $n_D^{18} = 1.441$  (1) (5) 58.0-58.4° at 35 mm. (4)

[For prepn. of  $\tilde{C}$  from heptyne-1 (n-amylacetylene) (1:8085) via conversion with NaNH<sub>2</sub> in ether (1) or in liq. NH<sub>3</sub> (4) to  $C_6H_{11}$ . C=C—Na and subsequent reactn. with benzene-sulfonyl chloride (yield: 52% (5), 60% (1)) or p-toluenesulfonyl chloride (yield: 60-65% (1) (5)) see indic. refs.; via conversion with KNH<sub>2</sub> in liq. NH<sub>3</sub> (3) to  $C_6H_{11}$ —C=C.K and subsequent treatment with Cl<sub>2</sub> in dry ether at  $-70^\circ$  see (3).]

Refractive indices of  $\bar{C}$  on Pulfrich instrument:  $n_{\bar{C}}^{12.9} = 1.4402$ ;  $n_{\bar{D}}^{12.9} = 1.4429$ ;  $n_{\bar{F}}^{12.9} = 1.4492$ ;  $n_{\bar{C}}^{12.9} = 1.4540$  (1).

 $\bar{C}$  with HgSO<sub>4</sub>/H<sub>2</sub>SO<sub>4</sub> gives (24–28% yield (1)) 1-chloroheptanone-2, b.p. 72–75° at 20 mm.,  $D_{-}^{20} = 0.802$ ,  $n_{D}^{20} = 1.450$  (1) (see, however, different values below).

C refluxed 6 hrs. with alc. NaOEt gives (74% yield (1)) n-heptanoic acid (1:1140).

[ $\bar{C}$  with HgO.BF<sub>3</sub> cat. in MeOH gives (30% yield (2)) 1-chloro-2,2-dimethoxyheptane, b.p. 80-82° at 8 mm.,  $D_4^{25}=0.9842$ ,  $n_D^{25}=1.4325$  (2); this on hydrolysis with 15% HCl yields (2) 1-chloroheptanone-2, b.p. 80-82° at 13 mm.,  $D_4^{26}=0.9896$ ,  $n_D^{26}=1.4387$  (2) (cf. values given above for prepn. by different method).]

[ $\bar{\mathbf{C}}$  with KCN in aq. MeOH gives (43% yield (2)) 1-cyano-2-methoxyheptene-1, b.p. 124-131° at 15 mm.,  $D_4^{25}=0.9205, n_D^{25}=1.4462$  (2) (prob. a mixt. of geom. stereoisomers).]  $\bar{\mathbf{C}}$  fails to react with KI; after htg. 4 hrs. with 10 pts. N KI  $\bar{\mathbf{C}}$  was recovered unchanged (1).

3:8632 (1) Truchet, Ann. chim. (10) 16, 325, 331-334, 337, 343-351 (1931). (2) Pflaum, Wenzke, J. Am. Chem. Soc. 56, 1106 (1934). (3) McCusker, Vogt. J. Am. Chem. Soc. 59, 1307-1309 (1937). (4) Cleveland, Murray, Taufen, J. Chem. Phys. 10, 173 (1942). (5) Bourgeul, Truchet, Compt. rend. 190, 754 (1930).

3: 8035 
$$d_{*}l^{-}\beta$$
-METHYL- $n$ -VALERYL CHLORIDE  $C_{6}H_{11}OCl$  Beil. S.N. 162 (sec.-Butyl-acetyl chloride)  $CH_{3}.CH_{2}.CH_{2}.CH_{2}.CH_{2}$   $CH_{3}$   $Cl$  B.P. 142.5–143.0° at 749 mm. (1)  $D_{4}^{20} = 0.9781$  (1)

142-144° (2) 140° at 738 mm. (3)  $D_4^0 = 0.9963$  (1)

[For prepn. of C from 3-methylpentanoic acid (1:1125) with SOCl<sub>2</sub> see (1) (2) (3),]

[ $\bar{\mathbf{C}}$  with AlCl<sub>3</sub> + C<sub>6</sub>H<sub>6</sub> in CS<sub>2</sub> gives (3) (sec.-butyl-acetyl)benzene ( $\beta$ -methyl-n-valerophenone, b.p. 160–161° at 50 mm. (semicarbazone, m.p. 179–180°);  $\bar{\mathbf{C}}$  with diethyl-zinc yields (2) 3-methylheptanone-5, b.p. 156.5–157.5°,  $D_4^{15}=0.825, n_D^{15}=1.4159$  (semicarbazone, m.p. 101–102°).]

 $\tilde{\mathbf{C}}$  on hydrolysis yields 3-methylpentanoic acid (1:1125) q.v. (for the amide, anilide, p-toluidide, and other derivatives corresponding to  $\tilde{\mathbf{C}}$  see 1:1125).

3:8035 (1) Hommelen, Bull. soc. chim. Belg. 42, 243-250 (1933). (2) Colonge, Bull. soc. chim. (4) 49, 448 (1931). (3) Stenzl, Fichter, Helv. Chim. Acta 20, 849 (1937).

3:8040 CHLOROCYCLOHEXANE 
$$CH_2-CH_2$$
  $C_0H_{11}Cl$  Beil. V - 21 (Cyclohexyl chloride)  $H_2C$   $CH_2-CH_2$   $CH_2-CH_2$   $V_{1-}(8)$   $V_{2-}(11)$ 

B.P. M.P. 
$$143^{\circ}$$
 at 768 mm. (1)  $-43.9^{\circ}$  (4)  $D_{4}^{20.3} = 1.0000$  (8)  $n_{D}^{20.3} = 1.46264$  (8) (13)  $n_{D}^{20.3} = 1.462644$  (9) (13)  $n_{D}^{20.3} = 1.462644$  (13)  $n_{D}^{20.3} = 1.4626444$  (13)  $n_{D}^{20.3} = 1.462644$ 

Colorless liq. with somewhat penetrating but not disagreeable odor. — Volatile with steam. — Stable when pure and dry; in presence of moisture and traces of HCl, however, turns yellow, then brown (1).

[For prepn. of  $\bar{C}$  from cyclohexanol (1:6415) + conc. HCl under various conditions (yield: 93% (12), 90% (7), 85% (3), 60-70% (9)) see (1) (10) (7) (3) (9); from cyclohexane by chlorination with Cl<sub>2</sub> (11) (1) (6) (18) (33) or with SO<sub>2</sub>Cl<sub>2</sub> (5) (13) see indic. refs.; from cyclohexene (1:8070) with ter-BuCl (3:7045) in liq. HF at 0-5° (65% yield) see (34).]

Č on treatment with alc. KOH (14) (6) (8), or on passing over dehydrohalogenating catalysts such as CaO, BaCl<sub>2</sub>, etc., at elevated temps. (15) (16) (17) (19), or even somewhat on distillation (7), loses HCl to give cyclohexene (1:8070), b.p. 83°.

[For study of behavior of  $\bar{C}$  with AlCl<sub>3</sub> in CS<sub>2</sub> or cyclohexane see (20); for reactn. of  $\bar{C}$  with C<sub>6</sub>H<sub>6</sub> + AlCl<sub>3</sub> to give 60-78% yield of phenylcyclohexane (1:7595), b.p. 238.7°, see (9) (21); for reactn. of  $\bar{C}$  with NaOC<sub>6</sub>H<sub>11</sub> to yield dicyclohexyl ether, b.p. 124-126° at 10 mm., see (22); for study of reactivity of  $\bar{C}$  with KI (23) (24), NaOMe, pyridine, or piperidine (24) see (23) (24); for reactn. of  $\bar{C}$  with oxalyl chloride (3:5060) giving (60% yield (31)) hexahydrobenzoyl chloride (3:8580), b.p. 180-181° u.c., see (31).]

Č with Mg in dry ether gives under optimum conditions 96.5% yield (25) RMgCl; this on oxidn. with O<sub>2</sub> at 25° gives (81% yield (26)) cyclohexanol (1:6145) q.v., accompanied by small amts. of dicyclohexyl ether and dicyclohexyl (1:8490). [Note that Č on reactn. with Ag 3,5-dinitrobenzoate does not (27) yield expected cyclohexyl 3,5-dinitrobenzoate, m.p. 112-113°.]

- © Cyclohexanecarboxylic acid (hexahydrobenzoic acid) (1:0575): m.p. 30-31°, b.p. 233°, Neut. Eq. 128. [From RMgCl on treatment with CO<sub>2</sub> and subsequent acidification (85% yield (25) (28)).]
- © Cyclohexanecarboxylic acid anilide (hexahydrobenzanilide): m.p. 146° cor. (29), 143-144° u.c. (30). [From RMgCl (30) (or RMgBr (29)) by reactn. with phenyl isocyanate.]
- O Cyclohexanecarboxylic acid p-toluidide (hexahydrobenzo-p-toluidide): unrecorded.
- Φ Cyclohexanecarboxylic acid α-naphthalide (hexahydrobenzo-α-naphthalide): m.p. 188° u.c. (32). [From R.MgBr + α-naphthyl isocyanate (32).]

3:8040 (1) Markownikow, Ann. 302, 9-11 (1898). (2) Kohlrausch, Stockmair, Z. physik. Chem. B-31, 400 (1936). (3) van Woerden, Rec. trav. chim. 45, 135 (1926). (4) Nagornov, Rotinyants, Ann. inst. anal. phys. chim. (U.S.S.R.) 3, 162-173 (1926); Cent. 1927, I 2648; C.A. 21, 3780 (1927). (5) Kharasch, Berkmann, J. Org. Chem. 6, 815 (1941). (6) Sabatier, Mailhe, Ann. chim. (8) 10, 531 (1907); Bull. soc. chim. (3) 29, 976 (1903). (7) van de Vloed, Bull. soc. chim. Belg. 48, 255, 261 (1939). (8) Krause, Pohland, Ber. 57, 1066 (1924). (9) Mayes, Turner, J. Chem. Soc. 1929, 502. (10) I. Zugravescu, S. Zugravescu, Bul. Soc. Chim. România 19-A, 85-92 (1937); Cent. 1939, II 1279.

(11) Fortey, J. Chem. Soc. 73, 940 (1898). (12) Norris, Mulliken, J. Am. Chem. Soc. 42, 2097 (1920). (13) Kharasch, Brown, J. Am. Chem. Soc. 61, 2142-2150 (1939). (14) Ref. 1, pp. 27-28. (15) B.A.S.F. Ger. 252,499; Cent. 1912, II 1708. (16) B.A.S.F. Ger. 254,473; Cent. 1913, I 346. (17) Faragher, Garner, J. Am. Chem. Soc. 43, 1716-1724 (1921). (18) Levine, Cass (to du Pont), U.S. 2,154,049, April 11, 1939; C.A. 33, 5414 (1939). (19) Levine, Cass (to du Pont), U.S. 2,183,574, Dec. 19, 1939; C.A. 34, 2396 (1940). (20) Nenitzescu, Ionescu, Ann. 491, 202-206 (1931).

(21) Neunhoeffer, J. prakt. Chem. (2) 133, 105-107 (1932). (22) Fichter, Siegrist, Helv. Chim. Acta 15, 703 (1932). (23) Conant, Hussey, J. Am. Chem. Soc. 47, 485 (1925). (24) Tronow, Ladigina, Ber. 63, 3060-3067 (1930). (25) Gilman, Zoellner, J. Am. Chem. Soc. 53, 1945-1948 (1931). (26) Wuyts, Bull. soc. chim. Belg. 36, 230-232 (1927). (27) Tseng, Chu, Natl. Central Univ. (Nanking) Sci. Repts., Ser. A, 1, No. 2, 5-7 (1931); C.A. 26, 2166 (1932); Cent. 1938, I 669. (28) Gilman, Kirby, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 361-364, Note 10 (1941). (29) Schwartz, Johnson, J. Am. Chem. Soc. 53, 1056 (1931). (30) Underwood, Gale, J. Am. Chem. Soc. 56, 2119 (1934).

(31) Kharasch, Brown, J. Am. Chem. Soc. 64, 332 (1941). (32) Gilman, Furry, J. Am. Chem. Soc. 50, 1216 (1928). (33) Zellner (to Tide Water Associated Oil Co.), U.S. 2,370,342, Feb. 27, 1945; C.A. 39, 3534 (1945). (34) Simons, Meunier, J. Am. Chem. Soc. 65, 1269-1271 (1943).

3: 8045 
$$d$$
, $l$ -3,4-DICHLOROPENTENE-2 Cl Cl C<sub>5</sub>H<sub>8</sub>Cl<sub>2</sub> Beil. I - 210 CH<sub>3</sub>—CH<sub>2</sub>—CH—CH<sub>3</sub> I<sub>1</sub>—I<sub>2</sub>—

#### B.P. 142-144° at 736 mm. (1)

Two geom. stereoisomers of  $\bar{C}$  are possible, but as yet only this one is recognized. [For prepn. of  $\bar{C}$  from 3-chloropenten-2-ol-4 with PCl<sub>3</sub> see (1).]

Č on boilg, with aq. is partially reconverted (1) to 3-chloropenten-2-ol-4 [Beil. I-443], b.p. 158-159° at 724.4 mm.

C adds Br<sub>2</sub> yielding (1) 2,3-dibromo-3,4-dichloropentane, b.p. 140-145° at 31 mm. (1).

3:8045 (1) Garzarolli-Thurnlackh, Ann. 223, 160-161 (1884).

B.P. 
$$140-145^{\circ}$$
 (1)  
 $140-144^{\circ}$  (5)  
 $86-90^{\circ}$  at  $104$  mm. (5)  
 $49^{\circ}$  at  $21$  mm. (2)  
 $46-48^{\circ}$  at  $12$  mm. (3)  
 $D_{4}^{18} = 0.879$  (2)

Note that some evidence exists (1) that in certain reactions C reacts (by virtue of allyl transposition) as its synionic isomer 2-chloroheptene-3 (but this has not itself been characterized).

[For prepn. from hepten-2-ol-4 (propenyl-n-propyl-carbinol) [Beil. I-447, I2-(488)]

(1) (4) (p-nitrobenzoate, m.p. 40-41° (2); N-(p-xenyl) carbamate, m.p. 103.5° (2)) with PCl<sub>5</sub> (73% yield (4)) (1) (5) or with PCl<sub>3</sub> + pyridine at 0° (2) see indic. refs.] [The levorotatory isomer of  $\bar{\mathbf{C}}$  (from dextrorotatory hepten-2-ol-4, with PCl<sub>3</sub> + pyridine at 0° (2)) has b.p. 44° at 14 mm.,  $n_D^{21} = 1.4430$  (2).]

[ $\bar{C}$  with phenol +  $K_2CO_3$  in acctone gives (65% yield (4)) (3) phenyl  $\alpha$ -(n-propyl)crotyl ether, b.p. 153-154° at 23 mm. (4), 103-104° at 4 mm. (3),  $D_{20}^{20} = 0.9282$  (3),  $n_D^{21} = 1.5000$  (3). — For studies of the rearr. of this ether on htg. see (1).] [For similar reaction of  $\bar{C}$  with o-cresol see (3).]

3:8656 (1) Hurd, Williams, J. Am. Chem. Soc. 58, 2636-2637 (1936). (2) Arcus, Kenyon, J. Chem. Soc. 1938, 1918. (3) Hurd, Puterbaugh, J. Org. Chem. 2, 382-384 (1938). (4) Hurd, Cohen, J. Am. Chem. Soc. 53, 1920-1922 (1931). (5) Reif, Ber. 41, 2743 (1908).

[For prepn. of  $\bar{C}$  from 3-ethylpentanol-3 (triethylcarbinol) (1:6218) with dry HCl at 10–15° (88% yield (4)), with HCl (1), or with cone. HCl + ZnCl<sub>2</sub> at room temp. (3) see indic. refs.; for formn. of  $\bar{C}$  (2% yield (5)) as by-product of reactn. of triethylcarbinol with AlCl<sub>3</sub>+ C<sub>6</sub>H<sub>6</sub> (main prod. is 40% yield of 3-ethyl-3-phenylpentane, b.p. 225–226° at 745 mm., 107–108° at 20 mm.,  $n_{c}^{25} = 1.4953$ ,  $n_{c}^{20} = 1.4975$ ) see (5); for prepn. of  $\bar{C}$  from 3-ethylpentene-2 (1:8330) with HCl gas in AcOH (3) or with conc. or fumg. HCl (2) see (2) (3).]

C with Mg in dry ether as directed (4) gives 58% yield corresp. RMgCl.

 $\bar{\mathbf{C}}$  converted (as above) to RMgCl, treated with formaldehyde gas, gives (10% yield (4)) 2,2-diethylbutanol-1, b.p. 75-78° at 12 mm,  $n_{\mathrm{D}}^{20} = 1.443$  (4).

3:8655 (1) Schreiner, J. prakt. Chem. (2) 82, 296 (1910). (2) Nasarov, Ber 70, 623 (1937). (3) Lucas, J. Am. Chem. Soc. 51, 252-253 (1929). (4) Whitmore, Badertscher, J. Am. Chem. Soc. 55, 1560-1562, 1566 (1933). (5) Huston, Fox, Binder, J. Org. Chem. 3, 253 (1939).

3:8075 d,I-3,4-DICHLORO-2-METHYLBUTANE 
$$C_5H_{10}Cl_2$$
 Beil. I - 137 (Isopropylethylene dichloride)  $Cl$   $Cl$   $CH_3$   $I_{1-}$  (47)  $I_{2-}$   $I_{2-}$ 

[For prepn. of  $\ddot{\mathbf{C}}$  from 3-methylbutene-1 (isopropylethylene) (1:8200) +  $\mathbf{Cl_2}$  see (1); for formn. (together with 1,4-dichloro-2-methylbutane (3:8360) and 2,4-dichloro-2-methylbutane (3:8105)) from 4-chloro-2-methylbutane (isoamyl chloride) (3:7365) with  $\mathbf{Cl_2}$  in light see (2) (4).]

 $\tilde{C}$  is scarcely attacked by  $K_2CO_3$  (1). —  $\tilde{C}$  on boilg. with aq. for 100 hrs. can be recovered unchanged to extent of 85%, the remainder yielding traces of 2-methylbutanediol-1,2 [Beil. I-482], 2-methylbutanene-3 (isopropyl methyl ketone) (1:5410), and 2-methylbutyne-1 (isopropylacetylene) (1:8010) (3).

[Č passed over soda-lime at 470° gives (2) 2-methylbutadiene-1,3 (isoprene) (1:8020).

3:8075 (1) Kondakow, J. Russ. Phys.-Chem. Soc. 20, 144 (1888). (2) Perkin, J. Soc. Chem. Ind. 31, 616-624 (1912). (3) Froebe, Hochstetter, Monatsh. 23, 1079-1081 (1902). (4) Badische Anilin- u. Soda-Fabrik, Ger. 261,677, March 14, 1911; Cent. 1913, II 325.

B.P. 143.4-144.4° at 751 mm. (1) 
$$D_4^{20} = 0.8690$$
 (2)  $n_D^{20} = 1.4237$  (1)  $48.3^{\circ}$  at 21 mm. (2)  $D_4^{15} = 0.8732$  (2) 1.4228 (2)

[For prepn. of  $\bar{C}$  from heptanol-3 [Beil.  $I_1$ -(205),  $I_2$ -(444) (2)] with conc. HCl + ZnCl<sub>2</sub> (yield 60-64% (2)), 30% (1)) see (1) (2).] [A dextrorotatory form of  $\bar{C}$  has been prepd. (3) by cat. hydrogenation of levorotatory 3-chloroheptene-1: b.p. 87-90° at 113 mm.,  $n_D^{25} = 1.4221$  (3).]

Č converted to corresp. acetate by 7 hrs. reflux with KOAc + AcOH, then hydrolyzed by 6 hrs. boilg. with 20% alc. KOH, and the resultant heptanol-3 oxidized with CrO<sub>3</sub>/H<sub>2</sub>SO<sub>4</sub> gives (2) heptanone-3 [Beil. I-699, I<sub>3</sub>-(359), I<sub>2</sub>-(754)] (semicarbazone, m.p. 88-89° (2)).

3:8080 (1) Dillon, Lucas, J. Am. Chem. Soc. 50, 1711-1714 (1928). (2) Sherrill, J. Am. Chem. Soc. 52, 1985-1988 (1930). (3) Levene, Rothen, J. Biol. Chem. 119, 191-192 (1937).

3: 8085 4-CHLOROHEPTADIENE-1,6 Cl 
$$C_7H_{11}Cl$$
 Beil. I -257 (Diallylcarbinyl chloride)  $CH_2$ — $CH.CH_2$ — $CH_2.CH$ — $CH_2$ — $CH_3$ — $CH_4$ — $CH_4$ — $CH_5$ — $CH_6$ 

#### B.P. 144° dec. (1)

[For prepn. of  $\bar{C}$  from heptadien-1,6-ol-4 (diallylearbinol) [Beil. I-455, I<sub>2</sub>-(506)] with PCl<sub>5</sub> see (1).]

C with alc. KOH readily removes 1 HCl yielding a heptatriene, b.p. 115° (1).

3:8085 (1) Saytzeff, Ann. 189, 141-145 (1877).

3: 8090 
$$\gamma$$
-METHYL-n-VALERYL CHLORIDE  $C_6H_{11}OCl$  Beil. II - 329 (Isocaproyl chloride, CH<sub>3</sub>.CH.CH<sub>2</sub>.CH<sub>2</sub>.C=O II<sub>1</sub>— II<sub>2</sub>-(289) B.P. 143.8–144.6° at 745 mm. (1)  $D_4^{20} = 0.9725$  (1) 141.9–144.7° (2) 141–142° (3)  $D_4^0 = 0.9922$  (1) [129–130° (8)]

[For prepn. of  $\bar{C}$  from 4-methylpentanoic acid-1 (isocaproic acid) (1:1127) with PCl<sub>5</sub> (63% yield (4)), with PCl<sub>3</sub> + ZnCl<sub>2</sub> (68% yield (4)), or with SOCl<sub>2</sub> (1) (2) (5) (8) (82% yield (4)) see indic. refs.]

[ $\bar{C}$  with Br<sub>2</sub> followed by abs. alc. gives (94% yield (6)) ethyl  $\alpha$ -bromo-isobutylacetate, b.p. 100-102° at 17 mm. (6); for study of catalytic reduction of  $\bar{C}$  see (7).]

 $\bar{\mathbf{C}}$  on hydrolysis yields isobutylacetic acid (isocaproic acid) (1:1127) q.v. (for the amide, anilide, p-toluidide, and other derivatives corresponding to  $\bar{\mathbf{C}}$  see 1:1127).

3:8696 (1) Hommelen, Bull. soc. chim. Belg. 42, 243-250 (1933). (2) Kohlrausch, Pongratz, Z. physik. Chem. B-22, 383 (1933). (3) Freundler, Bull. soc. chim. (3) 13, 833 (1895). (4) Clark, Bell. Trans. Roy. Soc. Can. (3) 27, III 97-103 (1933). (5) Curtius, Hambsch, J. prakt. Chem. (2) 125, 194 (1930). (6) Guha, Muthanna, Ber. 71, 2670 (1938). (7) Grignard, Mingasson, Compt. rend. 185, 1173-1176 (1927). (8) Rupe, Giesler, Helv. Chim. Acta 11, 664 (1928).

B.P. 144-145° at 758 mm. (1) 
$$D_4^{20} = 0.8710$$
 (3)  $n_D^{20} = 1.4237$  (1) 143.1-144.4° at 751 mm. (2) 0.8619 (1) 1.4231 (3) 48.9° at 21 mm. (3)  $D_4^{15} = 0.8751$  (3) 1.4199 (2)

[For prepn. of  $\bar{C}$  from heptanol-4 (1:6228) with conc.  $HCl + ZnCl_2$  (1) (2) (3) (yield: 60-64% (3), 35% (1)) see indic. refs.]

C converted to corresp. acetate by 7-hr. reflux with KOAc + AcOH, then hydrolyzed by 6-hr. boilg. with 20% alc. KOH, and the resultant heptanol-4 (1:6228) oxidized with CrO<sub>3</sub>/H<sub>2</sub>SO<sub>4</sub> gives (3) heptanone-4 (1:5447) q.v. (semicarbazone, m.p. 129° by this route, 132° from authentic heptanone-4 (3)).

Č with powdered or alc. KOH or NaOH slowly regenerates heptanol-4 (1:6228) without any trace of olefin (1).

3:8095 (1) Mathus, Gibon, Bull. soc. chim. Belg. 34, 306 (1925). (2) Dillon, Lucas, J. Am. Chem. Soc. 50, 1711-1714 (1928). (3) Sherrill, J. Am. Chem. Soc. 52, 1985-1989 (1930).

B.P. 140-150° dec. (1) 
$$D_4^{25} = 0.8568$$
 (2)  $n_D^{25} = 1.4363$  (4)  $49.5-51^\circ$  at 15 mm. (2)  $n_D^{20} = 1.4263$  (4)

1.4257 (3)

1.4250 (2)

Č decomposes very easily on distn. (cf. (3)).

[For prepn. of  $\bar{C}$  from 2-methylheptanol-2 (n-amyl-dimethyl-carbinol) [Beil. I-420, I<sub>1</sub>-(209), I<sub>2</sub>-(452) (2) (3)] with HCl gas (yield 81% (2), 73% (3)) or with AcCl (1) see indic. refs.]

 $\bar{\mathbf{C}}$  on distn. over powdered KOH gives 2-methylheptene-2 ( $\alpha,\alpha$ -dimethyl- $\beta$ -n-butyl-ethylene) [Beil. I-222, I<sub>1</sub>-(93)], b.p. 122-123° at 755 mm.,  $D_{-}^{20} = 0.816$  (1).

C with Mg in dry ether as directed (2) gives 59.9% yield RMgCl.

Č on conversion to RMgCl and subsequent treatment with CO<sub>2</sub> gives (in addition to much olefin) (22% yield (2)) dimethyl-n-amyl-acetic acid, b.p. 118°,  $n_D^{20} = 1.4335-1.4305$  (2) (amide, m.p. 102.5-103.5° (2)).

3:8160 (1) Muset, Bull. acad. roy. Belg. 1906, 775-789; Cent. 1907, I 1313; C.A. 1, 1696 (1907). (2) Whitmore, Badertscher, J. Am. Chem. Soc. 55, 1559-1567 (1933). (3) Whitmore, Williams, J. Am. Chem. Soc. 55, 409 (1933). (4) Smart, Quayle, J. Am. Chem. Soc. 67, 21-23 (1945).

3: 8103 METHYL 
$$d_il$$
- $\alpha$ -CHLORO- $n$ -BUTYRATE  $C_bH_9O_2Cl$  Beil. II - 277 CH<sub>3</sub>.CH<sub>2</sub>.CH<sub>.</sub>COOCH<sub>3</sub> II<sub>1</sub>— II<sub>2</sub>—

$$D_{-}^{14} = 1.0979 (1) \quad n_{\rm D}^{14} = 1.42526 (1)$$

[For prepn. of  $\bar{C}$  from  $\alpha$ -chloro-n-butyronitrile with MeOH + HCl see (1).] For the amide corresp. to  $\bar{C}$  see  $\alpha$ -chloro-n-butyric acid (3:9130).

3:8103 (1) Henry, Bull. acad. roy. Belg. (3) 35, 507-520 (1898); Cent. 1898, I 273.

3:8105 2,4-DICHLORO-2-METHYLBUTANE 
$$C_5H_{10}Cl_2$$
 Beil. I - 135 (Isoprene bis-hydrochloride)  $Cl$   $Cl$   $I_{1-}$  (47)  $CH_2$ — $CH_2$ — $CH_3$   $CH_3$ 

B.P. 
$$145-146^{\circ}$$
 (1)  $D_4^{20} = 1.0654$  (1)  $n_D^{20} = 1.44549$  (5)  $144-148^{\circ}$  (5)  $142^{\circ}$  (2)  $52-53^{\circ}$  at 12 mm. (1)  $39^{\circ}$  at 10 mm. (5)

[Earlier work on this compd. seems now to have been carried out on impure material and should be disregarded.]

[For prepn. of C from 4-chloro-2-methylbutene-2 (isoprene monohydrochloride) (3:7465) with conc. HCl satd. with HCl gas see (1) (5); for prepn. of C from 2-methylbutadiene-1,3 (isoprene) (1:8020) with conc. HCl see (2) (5); for formn. of C from 2-methylbutane (isopentane) (1:8500) (together with 2,3-dichloro-2-methylbutane (3:7975) and 1,4-dichloro-2-methylbutane (3:8360)) see (3); for formn. of C (together with 1,4-dichloro-2-methylbutane (3:8360) and 3,4-dichloro-2-methylbutane (3:8075)) from 4-chloro-2-methylbutane (isoamyl chloride) (3:7365) + Cl<sub>2</sub> in light see (4).]

 $\bar{C}$  on hydrolysis with boilg. 20% K<sub>2</sub>CO<sub>3</sub> (3) or 20% aq. NaOH (5) gives 2-methylbutane-diol-2,4 [Beil. I-483, I<sub>1</sub>-(251)], b.p. 108° at 16-17 mm.,  $D_{20}^{20}=0.9852, n_D^{20}=1.4434$  [N,N-bis (phenylcarbamate), m.p. 113.8-114.6°] (3) cf. (5).

C on oxidn. with KMnO<sub>4</sub> yields (3) β-hydroxyisovaleric acid [Beil. III-327, III<sub>1</sub>-(122)].

3:8105 (1) Aschan, Ber. 51, 1307 (1918). (2) Ostromuislenskii, J. Russ. Phys.-Chem. Soc. 47, 1983-1988 (1915); Cent. 1916, II 307, C.A. 10, 1341 (1916). (3) Davydova, Papkina, Tishchenko, J. Gen. Chem. (U.S.S.R.) 7, 1992-1994 (1937); Cent. 1939, I 2397; C.A. 32, 482 (1938). (4) Perkin, J. Soc. Chem. Ind. 31, 616-624 (1912). (5) Soday (to United Gas Improvement Co.), U.S. 2,376,396, May 22, 1945; C.A. 39, 3548-3549 (1945).

 $n_{\rm D}^{20} = 1.4660 (3)$ 

3:8110 d,l-1-CHLOROBUTEN-3-OL-2  $C_4H_7OCl$  Beil. S.N. 25 (Chloromethyl-vinyl-carbinol)  $CH_2 = CH - CH - CH_2$  OH Cl

OH Cl **B.P.**144–147° (1)  $D_4^{20} = 1.111$  (3)

76° at 60 mm. (2) 1.4643 (2) 64.0-64.8° at 30 mm. (3)  $D_4^{15} = 1.1214$  (1)  $n_D^{15} = 1.468$  (1)

[See also 2-chlorobuten-3-ol-1 (3:9113).]

[For prepn. of  $\tilde{C}$  from butadiene-1,3 with HOCl generated from  $Ca(OCl)_2 + CO_2$  (3) or from N-chlorourea + acid in cold (1) (yields of  $\tilde{C}$ : 75% (1), 52% (3)) see indic. refs.]

 $\ddot{\mathbf{C}}$  with Br<sub>2</sub> in CHCl<sub>3</sub> adds 1 mole halogen giving (1) 1-chloro-3,4-dibromobutanol-2, b.p. 129–130° at 10 mm.;  $D_4^{20}=2.042, D_4^{15}=2.0504; n_D^{20}=1.561, n_D^{15}=1.564$  (1); note that this prod. on oxidn. with Na<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> + H<sub>2</sub>SO<sub>4</sub> at 35° gives (1) 1-chloro-3,4-dibromobutanone-2, b.p. 132–133° at 25 mm.;  $D_4^{20}=2.0521, D_4^{15}=2.0589; n_D^{20}=1.554, n_D^{15}=1.559$  (1).

 $\tilde{C}$  with 50% aq. NaOH at 115-185° for 1 hr. (3) or with 60% KOH (1) loses HCl ring closing to (yields: 87% (2), 84% (3)) 3,4-epoxybutene-1, b.p. 65.0-65.8° at 739 mm.,  $D_4^{20} = 0.875$ ,  $n_D^{20} = 1.4170$  (3) cf. (1). [For various reactions of this product see (1) (2) (3) (4).]

[For study of rate of hydrolysis of C with aq. NaOH see (2).]

- —— 1-Methoxybuten-3-ol-2 ( $\bar{\mathbf{C}}$  methyl ether): b.p. 143-144° (1) (4), 69-71° at 49 mm (3);  $D_{\mathbf{A}}^{20} = 0.9470$  (1) (4);  $n_{\mathbf{D}}^{20} = 1.4343$  (1) (4), 1.4297 (3): corresp. 3,5-dimitrobenzoate, m.p. 70-71° (3). [From  $\bar{\mathbf{C}}$  (3) or from 3,4-epoxybutene-1 (above) (1) (4) with MeOH/NaOMe in 51-52% yields (3) (1).]
- —— 1-Ethoxybuten-3-ol-2 ( $\tilde{C}$  ethyl ether): b.p. 153-157°;  $D_4^{15} = 0.9214$ ;  $n_D^{15} = 1.4330$  (1) (4). [Presumably from  $\tilde{C}$  (although not actually reported) or from 3,4-epoxybutene-1 (above) (1) (4) with EtOH/NaOEt.]
- 1-Chlorobuten-3-yl-2 acetate: b.p. 163-166°;  $D_4^{15} = 1.1308$ ;  $n_D^{15} = 1.4610$  (1).
- ① 1-Chlorobuten-3-yl-2 3,5-dinitrobenzoate: m.p. 61.5-63.5° u.c. (3). [Note that this prod. depresses m.p. of corresp. deriv. (m.p. 65.5° u.c.) from 2-chlorobuten-3-ol-1 (3:9113).]

3:8110 (1) Petrov. J. Gen. Chem. (U.S.S.R.) 8, 131-140 (1938); Cent. 1939, I 2596; C.A. 32, 5369 (1938). (2) Kadesch, J. Am. Chem. Soc. 68, 46-48 (1946). (3) Kadesch, J. Am. Chem. Soc. 68, 41-45 (1946). (4) Petrov, Acta Univ. Voronegiensis 8, No. 2, 71-79 (1935); Cent. 1936, II 2333-2334; C.A. 32, 4524 (1938).

Colorless mobile liq. with characteristic odor.

[For prepn. from 2,4,4-trimethylpentene-1 (1:8340) or 2,4,4-trimethylpentene-2 (1:8345) ("diisobutylene") with conc. HCl (satd. at  $-20^{\circ}$ ) in s.t. at  $100^{\circ}$  (1) (2), with HCl gas in cold (5) or at  $-10^{\circ}$  to  $-25^{\circ}$  in pres. of ZnCl<sub>2</sub> (4) (almost quant. yield (5)) see indic. refs.]  $\bar{C}$  on distillation loses HCl and regenerates "diisobutylene" (4) (2).

C with alc. KOH yields diisobutylene (see above).

[For reactn. of  $\bar{C}$  with phenol + alc. NaOC<sub>6</sub>H<sub>6</sub> yielding phenyl diisobutyl ether, b.p. 250-260° see (3); note, however, that this prod. in s.t. at 250° for 2 hrs. rearr. to p-(diisobutyl)phenol, m.p. 84° (3).]

[For reaction of  $\bar{C}$  with  $(CH_3)_2Zn$  yielding 2,2,4,4-tetramethylpentane (1:8645), b.p.  $122.3^{\circ}$ ,  $n_D^{25} = 1.4051$ , see (4).]

[For reactn. of  $\tilde{C}$  with silver cyanate, followed by alk. hydrolysis to yield 4-amino-2,2,4-trimethylpentane (acetyl deriv., m.p. 99°; reactn. prod. with phenyl isocyanate, m.p. 137°) see (5).]

[ $\bar{C}$  with 2-methyl butane (isopentane) (1:8500) + AlCl<sub>3</sub> shaken for 2 min. gives (6) 2-chloro-2-methylbutane (ter-amyl chloride) (3:7220).]

3:8113 (1) Butlerow, Ann. 189, 51-52 (1877). (2) Kondakov, J. Russ. Phys.-Chem. Soc. 28, 790 (1896); J. prakt. Chem. (2) 54, 449-450 (1896). (3) Natelson, J. Am. Chem. Soc. 56, 1585 (1934). (4) Howard, J. Research Natl. Bur. Standards 24, 678-679, 681 (1940). (5) Whitmore, Wilson, Capinjola, Tongberg, Fleming, McGrew, Cosby, J. Am. Chem. Soc. 63, 2041 (1941).
 (6) Bartlett, Condon, Schneider, J. Am. Chem. Soc. 66, 1537 (1944).

## 3:8115 2-CHLORO-3-ETHYL-3-METHYLPENTENE-1 C<sub>8</sub>H<sub>15</sub>Cl Beil. S.N. 11

$$CH_3.CH_2$$
— $C$ — $C=CH_2$ 
 $CH_2$ — $CH_3$ 
 $n_D^{25} = 1.4450 (1)$ 

CH<sub>3</sub> Cl

B.P. 147° at 743 mm. (1) 
$$n_D^{25} = 1.4450 (1)$$
 53° at 20 mm. (1)  $D_4^{20} = 0.9147 (1)$ 

[For prepn. of  $\bar{C}$  from 3-ethyl-3-methylpentanone-2 [Beil. I<sub>2</sub>-(760)] (1) with PCl<sub>5</sub> (65% yield) see (1).]

 $\bar{\text{C}}$  with NaNH<sub>2</sub> in mineral oil at 160–165° gives 45% yield 3-ethyl-3-methyl-pentyne-1, b.p. 98–100° at 745 mm.,  $D_4^{20}=0.7360,\,n_D^{20}=1\,4102$  (Ag salt, darkens 167°, melts 191.5°) (1).

3:8115 (1) Davis, Marvel, J. Am. Chem. Soc. 53, 3844-3845 (1931).

3: 8117 
$$\alpha$$
-CHLOROCROTONALDEHYDE  $C_4H_5$ OCl Beil. I - 731 (2-Chlorobuten-2-al-1)  $CH_3$ .CH=C-CHO  $I_1$ -  $I_2$ -(789) B.P. 147-150° at 760 mm. (1)  $D_4^{23} = 1.1404$  (4)  $n_D^{23} = 1.478$  (4) 147-149° (2)  $D_4^{15} = 1.1422$  (4) 146-148° (4)  $D_4^{15} = 1.1590$  (4)  $D_4^{15} = 1.1590$  (4)

Colorless lachrymatory liq. gradually becoming colored in light. — Spar. sol. aq.; eas. sol. alc., ether, CHCl<sub>3</sub>. — Volatile with steam. — Note that although two geometrical isomers are possible only this one (configuration uncertain) is known.

[For prepn. of  $\bar{C}$  from  $\alpha,\beta$ -dichloro-n-butyraldehyde (3:9102) by elimination of HCl through steam distillation of its soln. in aq. NaOAc (70-80% yield (5)) (4) (1) (2) see indic. refs.; for form. of  $\bar{C}$  (together with other prods.) from acetaldehyde (1:0100) with Cl<sub>2</sub> (3), from  $\alpha,\alpha,\beta$ -trichloro-n-butyraldehyde ("butylchloral") (3:5910) with Zn + aq. or Zn + HCl (6), from chloroacetaldehyde (hemihydrate) (3:7212) with acetaldehyde + trace fumg. HCl (7), from  $\alpha$ -chloro- $\beta$ -hydroxy-n-butyraldehyde ( $\alpha$ -chloroacetaldol) (itself obtd. from crotonaldehyde (1:0150) by addn. of HOCl (8)) by steam distillation (8) see indic. refs.]

 $\bar{C}$  with  $Cl_2$  (3) (7) (2) in  $CCl_4$  soln. (4) adds 1 mole halogen yielding  $\alpha,\alpha,\beta$ -trichloro-n-butyraldehyde ("butyrchloral") (3:5910). —  $\bar{C}$  with  $Br_2$  (1 mole) below 0° rapidly adds 1 mole halogen yielding (5)  $\alpha$ -chloro- $\alpha,\beta$ -dibromo-n-butyraldehyde (not distillable without decompn. even in vac.); this prod., however, slowly combines with aq. yielding corresp. monohydrate, cryst., m.p. 45-50° (5), or on oxidn. with excess fumg. HNO<sub>3</sub> at 100° for several hrs. gives  $\alpha$ -chloro- $\alpha,\beta$ -dibromo-n-butyric acid, colorless pr. from conc. HNO<sub>3</sub>, m.p. 91-92° (5).

[ $\tilde{C}$  on reduction with Al(OEt)<sub>3</sub> under H<sub>2</sub> (9) or with Zr isopropylate in isopropyl alc. (10) yields  $\beta$ -chlorocrotonyl alc. (2-chlorobuten-2-ol-1) (3:8240), b.p. 159°.]

[ $\bar{C}$  with ethylene glycol (1:6465) + a little 20% H<sub>3</sub>PO<sub>4</sub> gives (22% yield (1)) the corresp. cyclic acetal ("  $\alpha$ -chlorocrotylidene-ethylene glycol"), b.p. 76-80° at 14 mm. (1); for formn. of analogous cyclic acetals from  $\bar{C}$  with other glycols see (11).]

[Č with liq. HCN as directed gives (88% yield (4)) the corresp. cyanohydrin, 3-chloro-2-hydroxypenten-3-nitrile, b.p. 137-138° at 26 mm.,  $D_{\rm A}^{21} = 1.964$ ,  $n_{\rm D}^{21} = 1.4762$  (4).]

 $\bar{C}$  with naphthoquinone-1,4 (1:9040) in  $C_6H_6$  treated with trace of piperidine undergoes condensation of Diels-Alder type yielding {12} 2-chloroanthraquinone (3:4922).

[For conversion of  $\bar{C}$  with EtOH to corresponding  $\alpha$ -chlorocrotonaldehyde diethylacetal (14), b.p. 181–184°, see (14).]

[C with sodium salt of anthrahydroquinone bis-sulfuric acid ester in  $Ac_2O/AcOH +$  piperidine at 100° for ½ hr. yields (13) the corresp. benzanthrone, presumably Bz-2-chloro-Bz-1-methylbenzanthrone (12-chloro-13-methylbenzanthrone) (for ring numbering see Beil. VII<sub>1</sub>-(288)).]

3:8117 (1) Hibbert, Houghton, Taylor, J. Am. Chem. Soc. 51, 613 (1929). (2) Chem. Fabrik vorm. Weiler-ter-Meer, Ger. 351,137, April 3, 1922; Cent. 1922, IV 155. (3) Pinner, Ber. 8, 1321-1322 (1875); Ann. 179, 29-32 (1875). (4) Moureu, Murat, Tampier, Bull. soc. chim. (4) 29, 32-34 (1921). (5) Chattaway, Irving, Outhwaite, J. Chem. Soc. 1933, 993-995. (6) Sarnow, Ann. 164, 108 (1872). (7) Lieben, Zeisel, Monatsh. 4, 532-536 (1883). (8) Leopold, van Zütphen (to I.G.), Ger. 559,329, Feb. 20, 1933; Cent. 1933, I 2608. (9) Bayer and Co., U.S. 1,572,742, Feb. 9, 1926; Cent. 1926, I 3627: Brit. 235,584, June 27, 1926; Cent. 1926, II 1097; I.G., Ger. 437,160, Nov. 18, 1926; Cent. 1927, I 802. (10) I.G., Brit. 370,490, May 5, 1932; Cent. 1932, II 3304.

(11) Billig (to I.G.), U.S. 2,131,998, Oct. 4, 1938; Cent. 1939, I 3454; C.A. 33, 271 (1939); Ger. 667,793, Nov. 19, 1938; Ger. 669,805, Jan. 1, 1939; Cent. 1939, I 2294. (12) Nicodemus, Vollmann, Schloffer (to I.G.), Ger. 715,201, Dec. 16, 1941; Cent. 1942, I 1811. (13) Hrubesch, Schlichting (to I.G.), Ger. 720,467, May 7, 1942; Cent. 1942, II 2087. (14) The Distillers Co. Ltd., Staudinger, Tuerck, Lichtenstein, Brit. 554,570, July 9, 1943; C.A. 39, 312 (1945).

3:8120 2,4-DICHLOROPENTANE Cl Cl 
$$C_5H_{10}Cl_2$$
 Beil. I —  $C_7H_{10}Cl_{10}$  CH<sub>3</sub>  $C_7H_{10}Cl_{10}$  CH<sub>4</sub>  $C_7H_{10}Cl_{10}$  CH<sub>5</sub>  $C_7H_{10}Cl_{10}$   $C_7H_{10}C$ 

**B.P.** 147–150° (1) 
$$D_{-}^{18} = 1.063$$
 (1)  $n_{0}^{18} = 1.447$  (1)  $62-62.5$ ° at 12 mm. (2)  $D_{4}^{12} = 1.0529$  (2)  $n_{C}^{12} = 1.4495$  (2)

[For prepn. of C from penten-1-ol-4 (allyl-methyl-carbinol) [Beil. I-443] with PCls. followed by aq., see (1) (some 4-chloropentene-1 (3:7350) is also formed (1)); for formn, of  $\bar{C}$  (together with other prods.) from pentane (1:8505) +  $Cl_2$  see (3).

[For study of hydrolysis of  $\bar{C}$  with N/10 alc. KOH see (2).]

3:8120 (1) Pariselle, Compt. rend. 154, 712 (1912). (2) Tishchenko, J. Gen. Chem. (U.S.S.R.) 9, 1380-1388 (1939); C.A. 34, 1611 (1940). (3) Lemke, Tishchenko, J. Gen. Chem. 7, 1995-1998 (1937); Cent. 1939, I 2397; C.A. 32, 482 (1938).

3: 8125 ETHYL 
$$d$$
,  $l$ - $\alpha$ -CHLOROPROPIONATE  $C_5H_9O_2Cl$   $H_1$ -(111)  $Cl$   $CC_2H_5$   $H_1$ -(111)  $H_2$ -(226)  $H_1$ -(226)  $H_1$ -(226)  $H_2$ -(226)  $H_1$ -(226)  $H_2$ -(226)  $H_2$ -(226)  $H_1$ -(226)  $H_2$ -(226)  $H_2$ -(226)  $H_2$ -(226)  $H_1$ -(226)  $H_2$ 

[For prepn. of  $\bar{C}$  from  $\alpha$ -chloropropionic acid (3:6125) + EtOH + HCl see (8); from  $\alpha$ -chloropropionyl chloride (3:5320) + EtOH see (2) (3) (4) (9) (10) (11); from ethyl d, l-lactate (1:3303) + SOCl<sub>2</sub> + pyridine (95% yield) see (5); from ethyl  $\alpha$ -aminopropionate hydrochloride +  $NaNO_2$  + HCl see (12).]

[C with alc. NaOEt yields (13) ethyl ethoxypropionate [Beil. III-280, III<sub>1</sub>-(109), III<sub>2</sub>-(206)], b.p. 155°, but C with dry NaOEt yields (14) (15) both cis and trans forms of diethyl cyclobutane-1,3-dicarboxylate [Beil. IX-726].]

[For reactn. of C with excess C<sub>6</sub>H<sub>5</sub>MgBr in ether yielding 1,1,2-triphenylpropene-1 [Beil. V-723, V<sub>1</sub>-(356)], m.p. 89-90°, see (16); for study of cat. hydrogenation of C see (8); for NaOEt condensation of  $\bar{C}$  with citral (1:0230) or with citronellal (1:0220) see (17) (18); for NaOEt condensation with cyclohexanone see (10).

 $\bar{C}$  on hydrolysis yields EtOH (1:6130) +  $d_{\nu}l_{\nu}\alpha$ -chloropropionic acid (3:6125). [For study of kinetics of hydrolysis see (20) (21) (22).]

For the amide, anilide, p-toluidide, and other derivatives corresp. to  $\tilde{C}$  see d.l- $\alpha$ -chloropropionic acid (3:6125).

**D** Ethyl  $\alpha$ -(tetrachlorophthalimido)propionate: rods from dioxane, poured into 2 vols. MeOH and aq. added, m.p. 159-160° (23). [From C + K tetrachlorophthalimide as directed (23).1

3:8125 (1) Perkin, J. Chem. Soc. 65, 428 (1894). (2) Brühl, Ann. 203, 24-25 (1880). (3) Beckurts, Otto, Ber. 9, 1592 (1876). (4) Simpson, J. Am. Chem. Soc. 40, 674 (1918). (5) Darzens, Compt. rend. 152, 1601 (1911). (6) Burkard, Kahovec, Monatsh. 71, 340 (1938). (7) Schjanberg, Z.

7ena. 105, 1001 (1911). (o) Burkerd, Ranovec, Mondain. 11, 340 (1950). (7) Schlanders, Z. physik. Chem. A-172, 230 (1935). (8) Paal, Müller-Lobeck, Ber. 64, 2144-2147 (1931). (9) Wurts, Ann. 107, 195 (1858). (10) Ulrich, Ann 109, 268 (1859). (11) Brühl, Ber. 9, 35 (1876). (12) Barker, Skinner, J. Am. Chem. Soc. 46, 412-413 (1924). (13) Wurtz, Ann. chim. (3) 59, 169-170 (1860). (14) Haworth, Perkin, J. Chem. Soc. 73, 336-339 (1898). (15) Markownikow, Krestownikow, Ann. 208, 334-349 (1881). (16) Levy, Compt. rend. 172, 385 (1921); Bull. soc. chim. (4) 29, 894 (1921). (17) Barbier, Helv. Chim. Acta 17, 1026-1030 (1934). (18) Givaudan et Cie, Ger. 596,255, May 11, 1934; Cent. 1934, II 1214. (19) Yarnall, Wallis, J. Org. Chem. 4, 277-278 (1939). (20) Anantakrishman, Krishnamurti, Proc. Indian Acad. Sci. 14-A, 270-278 (1941); C.A. 36, 1837 (1942).

(21) Drushel, Am. J. Sci. (4) 34, 69-74 (1912); Cent. 1912, II 704; C.A. 6, 2593 (1912). (22) Bolin, Z. anorg. allgem. Chem. 177, 246-248 (1929).

3:8132 4,4-DICHLORO-2,2-DIMETHYLBUTANE 
$$C_6H_{12}Cl_2$$
 Beil. S.N. 10 (1,1-Dichloro-3,3-dimethylbutane)  $CH_3$   $Cl$   $CH_3$   $CH_4$   $CH_5$   $CH_5$ 

B.P. M.P. 
$$-56.5^{\circ}/-56.0^{\circ}$$
 (1)  $D_4^{20} = 1.0262$  (1)  $n_4^{20} = 1.4389$  (1)

[For prepn. of  $\bar{C}$  from vinyl chloride (3:7010) with 2-methylbutane (isobutane) + AlCl<sub>3</sub> at  $-10^{\circ}$  (40% yield) or with ter-butyl chloride (3:7045) see (1).]

C with aq. in s.t. at 300° hydrolyzes to ter-butylacetaldehyde, b.p. 102-103° (corresp. methone, m.p. 162-163°; corresp. 2,4-dinitrophenylhydrazone, m.p. 146-147°) (1).

**3:8132** (1) Schmerling, J. Am. Chem. Soc. 67, 1438-1441 (1945).

B.P. 148.4-148.8° (1) 
$$D_{25}^{25} = 1.0773$$
 (2)  $n_{\rm D}^{25} = 1.4453$  (2) 146.0-146.2° (2) 1.0667 (2) 1.4448 (2) 145.8-146.2° at 739 mm. (2) 58-59° at 28 mm. (3)  $D_{4}^{20} = 1.0872$  (1)  $n_{\rm D}^{20} = 1.4485$  (1)

Colorless oil, insol. aq., volatile with steam.

[For prepn. of  $\bar{C}$  (70% yield (2)) from 1-chloropentanol-2 (3:8225) with SOCl<sub>2</sub> + diethylaniline or from pentene-1 (1:8205) in CCl<sub>4</sub> at 0°+Cl<sub>2</sub> (50% yield (2)) (1) see (1) (2).]

[For form. of  $\tilde{C}$  (together with other prods.) from pentane (1:8505) (3) or from 1-chloropentane (3:7460) (4) with  $Cl_2$  see indic. refs.]

Č with alc. KOH gives (3) 1-chloropentene-1 (3:7420), but Č with K<sub>2</sub>CO<sub>3</sub> does not (3) yield the corresp. glycol.

3:8140 (1) Tishchenko, Shchigel'skaya, J. Gen. Chem. (U.S.S.R.) 7, 1246-1248 (1937); Cent. 1938, II 2576, C.A. 31, 6189 (1937). (2) Koelsch, McElvain, J. Am. Chem. Soc. 51, 3393-3394 (1929). (3) Lemke, Tishchenko, J. Gen. Chem. (U.S.S.R.) 7, 1995-1998 (1937); Cent. 1939, I 2398; C.A. 32, 482 (1938). (4) Hass, Huffman, J. Am. Chem. Soc. 63, 1233-1235 (1941).

[For prepn. of  $\bar{C}$  from  $\alpha$ -chloro-isovaleric acid (3:0050) with PCl<sub>3</sub> see (1).]  $\bar{C}$  on hydrolysis with aq. yields  $\alpha$ -chloro-isovaleric acid (3:0050).

3:8144 (1) Servais, Rec. trav. chim. 20, 53 (1901).

3:8145  $\alpha_{j}\alpha_{j}\beta$ -TRIMETHYL-n-BUTYRYL CHLORIDE C<sub>7</sub>H<sub>13</sub>OCl Beil. S.N. 162 (Dimethyl-isopropyl-acetyl chloride) CH<sub>3</sub>

#### B.P. 148-150° (1)

[For prepn. of  $\bar{C}$  from dimethyl-isopropyl-acetic acid [Beil. II-346, II<sub>1</sub>-(147)] see (1).]  $\bar{C}$  on hydrolysis yields dimethyl-isopropyl-acetic acid (see above), camphoraceous cryst. from pet. ether, m.p. 50° (2) (3), 41-42° (1).

- Dimethyl-isopropyl-acet-amide: m.p. 133-134° (2), 129° (1).
- 3:8145 (1) Locquin, Leers, Compt. rend. 179, 55 (1924). (2) Haller, Bauer, Compt. rend. 149, 6 (1909). (3) Richard, Ann. chim. (8) 21, 353 (1910).

3:8147 ETHYL 
$$\alpha$$
-CHLORO-ISOBUTYRATE Cl C<sub>6</sub>H<sub>11</sub>O<sub>2</sub>Cl Beil. II -295 CH<sub>3</sub>—C—COOC<sub>2</sub>H<sub>5</sub> II<sub>1</sub>—II<sub>2</sub>—

B.P. 
$$148.5^{-}149^{\circ}$$
 cor. (1)  $D_{-}^{0} = 1.062$  (1)  $n_{\rm D}^{16} = 1.4109$  (5)  $148-149^{\circ}$  (2)  $147-148.5^{\circ}$  at 760 mm. (5)

[For prepn. of  $\bar{C}$  from  $\alpha$ -chloro-isobutyric acid (3:0235) with EtOH + HCl see (3); from  $\alpha$ -chloro-isobutyryl chloride (3:5385) with EtOH see (2).]

 $[\bar{C}$  on htg. with 1-5% FeCl<sub>3</sub> at 100° or above loses HCl yielding (4) ethyl methacrylate, b.p. 118-119° (4).]

3:8147 (1) Balbiano, Ber. 11, 1693 (1878).
 42) Henry, Rec. trav. chim. 26, 84-85 (1907); Compt. rend. 142, 1023 (1906), Bull. acad. roy Belg. 1906, 206-226; Cent. 1906, 11 227.
 43) Balbiano, Gazz. chim. tal. 8, 372 (1878).
 44) Barrett (to du Pont), U.S. 2,013,648, Sept. 10, 1935; Cent. 1936, 1 3217; C.A. 29, 6902 (1935)
 45) Kahovee, Kohlrausch, Monatsh. 74, 116 (1943).

3: 8150 
$$\beta$$
-CHLOROISOPROPYL ACETATE CH<sub>2</sub>Cl C<sub>5</sub>H<sub>9</sub>O<sub>2</sub>Cl Beil. II - 130 (2-Acetoxy-1-chloropropane) HC-O.COCH<sub>3</sub> II<sub>1</sub>- II<sub>2</sub>-

B.P. 
$$149-150^{\circ}$$
 (1) (2)  $D_{-}^{20}=1.0788$  (3)  $n_{D}^{20}=1.4223$  (3)  $147-149^{\circ}$  at 745 mm. (3)

[For prepn. (72% yield (3)) from propylene + ter-butyl hypochlorite (3:7165) + AcOH see (3); for prepn. from 1-chloropropanol-2 (3:7747) + AcCl see (2); for formn. from 1,2-diacetoxypropane + HCl gas see (4).]

1 ml. aq. dis. 8 ml.  $\bar{C}$ . — With N/10 HCl at 35° or 45°  $\bar{C}$  hydrolyzes much more slowly than isopropyl acetate (1:3041), but no chloride ion is liberated at 35° (1).

- ① 1-Phthalimido-2-acetoxypropane [Beil. XXI<sub>1</sub>-(369)]: from  $\tilde{C}$  on htg. 2 hrs. with K phthalimide; m.p. 99-100° (5).
- 3:8150 (1) Henry, Cent. 1902, II 1093. (2) Bancroft, J. Am. Chem. Soc. 41, 427 (1919). (3) Irwin, Hennion, J. Am. Chem. Soc. 63, 859 (1941). (4) Dewael, Bull. soc. chim. Belg. 39, 400 (1930). (5) Gabriel, Ohle, Ber. 50, 808 (1917).

3: 8152 TETRAHYDRO-α-FURFURYL CHLORIDE C<sub>5</sub>H<sub>9</sub>OCl Beil, S.N. 2362 (2-(Chloromethyl)tetrahydrofuran) CH<sub>9</sub>—CH<sub>9</sub>

B.P. 
$$150-151^{\circ}$$
 at  $762$  mm. (1)  $D_4^{20} = 1.1102$  (2)  $n_D^{20} = 1.4560$  (2)  $149.0-149.5^{\circ}$  at  $721$  mm. (2)  $47-48^{\circ}$  at  $15$  mm. (3)  $n_D^{12} = 1.45922$  (1)  $41-42^{\circ}$  at  $11$  mm. (3)  $38.5-39^{\circ}$  at  $10$  mm. (2)

Water-white liq. with mild and pleasant odor. — Č has no lachrymatory properties and is relatively stable (2); its chlorine atom is extremely unreactive (2).

[For prepn. of  $\bar{C}$  from tetrahydro- $\alpha$ -furfuryl alcohol (1:6445) with SOCl<sub>2</sub> + pyridine (yields: 75% (2), 73-75% (3)) see indic. refs.; note that attempts to replace SOCl<sub>2</sub> by PCl<sub>3</sub> (excess) in dry ether (2) were *not* successful; for formn. of  $\bar{C}$  from 5-chloropentanediol-1,4 (1) by dehydrative ring closure with 15%  $H_2SO_4$  at 100° for 2 hrs. (19% yield) see (1).]

C with metallic Na in dry ether under reflux, subsequently decomposed by water, gives (yields: 82% (4), 76-83% (3)) penten-4-ol-1 (penten-1-ol-5) [Beil. I-443, I<sub>2</sub>-(483)], b.p. 141.0-141.5° at 758 mm. (5), 139° at 760 mm. (6), 138.8-139.3° at 760 mm. (7);  $D_4^{25} = 0.8588$  (7),  $D_4^{20} = 0.8457$  (5);  $n_D^{20} = 1.43085$  (5),  $n_D^{15.5} = 1.4312$  (8),  $n_D^{15} = 1.4305$  (9) (corresp. allophanate, m.p. 148° (6), 147-148° (9); corresp. N-phenylcarbamate, oil, b.p. 183.5° at 16 mm. (8)).

 $\ddot{C}$  with thiourea refluxed in alc. 4 days gives (10) S-(tetrahydro- $\alpha$ -furfuryl)isothiourea, isolated as corresp. picrate, m.p. 153.0–153.5° (10).

3:8152 (1) Paul, Ann. chim. (10) 18, 385-386 (1932). (2) Kirner, J. Am. Chem. Soc. 52, 3251-3255 (1930). (3) Brooks, Snyder, Org. Syntheses 25, 84-86 (1945). (4) Gaubert, Linstead, Rydon, J. Chem. Soc. 1937, 1972. (5) Juvala, Ber. 63, 1993 (1930). (6) Paul, Compt. rend. 195, 1290-1291 (1932). (7) Ginnings, Herring, Coltrane, J. Am. Chem. Soc. 61, 807 (1939). (8) Robinson, Smith, J. Chem. Soc. 1936, 196. (9) Paul, Compt. rend. 192, 1574 (1931). (10) Sprague, Johnson, J. Am. Chem. Soc. 59, 2440-2441 (1937).

B.P. 150-151° at 745 mm. (1) 
$$D_4^{20} = 0.8825$$
 (1)  $n_D^{20} = 1.4299$  (1)  $52-53°$  at 20 mm. (1)

[For prepn. of  $\bar{C}$  from allyl chloride (3:7035) with 2-methylpropane (isobutane) + AlCl<sub>3</sub> at  $-10^{\circ}$  (35-40% yield accompanied by 13-15% yield 4,5-dichloro-2,2-dimethylpentane (3:8516) see (1).]

Č on hydrolysis with aq. MgO in s.t. at 225° for 4 hrs. gives  $(54\% \text{ yield } \{1\})$  3,4-dimethylpentanol-1, b.p.  $168-169^{\circ}$ ,  $n_D^{20} = 1.4288$  (corresp. 3,5-dimitrobenzoate, m.p.  $51-52^{\circ}$ ; corresp.  $N-(\alpha-\text{naphthylcarbamate})$ , m.p.  $41-42^{\circ}$ ) (1).

 $\tilde{C}$  with Mg in dry ether gives corresp. RMgCl cpd.; this prod. on hydrolysis with aq.  $(NH_4)_2SO_4$  gives (54% yield (1)) 2,3-dimethylpentane (1:8554) or on oxidn. with air gives (62% yield (1)) 3,4-dimethylpentanol-1 (see preceding paragraph); see also below.

Φ γ,8-Dimethylcaproanilide: nacreous flakes from dil. alc., m.p. 80-81° (1). [From C by conversion to RMgCl and reaction with phenyl isocyanate (1) according to method of (2) cf. (3).]

3:8153 (1) Schmerling, J. Am. Chem. Soc. 67, 1438-1441 (1945). (2) Schwartz, Johnson, J. Am. Chem. Soc. 53, 1063-1068 (1931). (3) Underwood, Gale, J. Am. Chem. Soc. 56, 2117-2120 (1934).

3:8155 
$$d$$
, $l$ -1-CHLORO-3-METHYLHEXANE  $C_7H_{15}Cl$  Beil. I —  $CH_3$   $Cl$   $I_1$ —  $CH_3$ . $CH_2$ . $CH_2$ — $C$ — $CH_2$ . $CH_2$   $I_2$ -(119)

B.P. 150-152° at 758 mm. (1) 
$$D_4^{20} = 0.8766$$
 (1)  $n_D^{20} = 1.4274$  (1)

[For prepn. of  $\bar{C}$  from 3-methylhexanol-1 [Beil. I<sub>2</sub>-(445)] with alc. HCl in s.t. at 100° see (1).] [The dextrorotatory form of  $\bar{C}$  has also been prepd. (2) from levorotatory 3-methylhexanol-1 with SOCl<sub>2</sub>; b.p. 66° at 25 mm.;  $D_4^{29} = 0.854$ ;  $n_D^{30} = 1.4282$  (2).]

3:8155 (1) Dewael, Weckering, Bull. soc. chim. Belg. 33, 498 (1924). (2) Levene, Marker, J. Biol. Chem. 91, 90 (1931).

3:8160 ISOPROPYL CHLOROACETATE 
$$C_5H_9O_2Cl$$
 Beil. II - 198  $II_1 II_2 II_2 II_2 II_2 II_2 II_2 II_3-$ 

B.P. 
$$150.4-151.6^{\circ}$$
 (1)  $D_4^{25} = 1.0812$  (3)  $n_D^{25} = 1.4175$  (3)  $149.5^{\circ}$  at 760 mm. (2)  $D_4^{20} = 1.0888$  (5)  $n_D^{20} = 1.4192$  (5)  $149.5^{\circ}$  at 747 mm. (3)  $D_4^{15} = 1.0944$  (4)  $149-150^{\circ}$  at 760 mm. (4)

Oil with agreeable odor; insol. aq., sol. alc., ether.

[For prepn. (38.8% yield (3)) from isopropyl alc. (1:6135) + chloroacetic ac. (3:1370) see (3) (4); for prepn. (34.2% yield (3)) from propylene + chloroacetic ac. (3:1370) see (3).]

[For study of insecticidal action of vapor of C see (2).]

3:8160 (1) Cheng, Z. physik. Chem. B-24, 309 (1934). (2) Roark, Cotton, Ind. Eng. Chem. 20, 512-514 (1928). (3) Dorris, Sowa, Nieuwland, J. Am. Chem. Soc. 56, 2689-2690 (1934). (4) Steinlen, Bull. acad. roy. Belg. (3) 34, 101-108 (1897); Cent. 1897, II 659. (5) Schjanberg, Z. physik. Chem. A-172, 228 (1935).

3:8165 ISOPROPYL d,l-α-CHLOROPROPIONATE C<sub>6</sub>H<sub>11</sub>O<sub>2</sub>Cl Beil. S.N. 162

B.P. 
$$151.5-152.5^{\circ}$$
 at 760 mm. (1)  $D_4^{20} = 1.0315$  (2)  $n_D^{20} = 1.4149$  (2)  $46.1-46.9^{\circ}$  at 12 mm. (1)

3:8165 (1) Burkard, Kahovec, *Monatsh.* 71, 340 (1938). (2) Schjanberg, *Z. physik. Chem.* A-172, 230 (1935).

[For prepn. of  $\bar{C}$  from n-caproic acid (1:1130) with PCl<sub>5</sub> (62% yield (6)), with PCl<sub>3</sub> (84% yield (1)) (4) or with PCl<sub>3</sub> + ZnCl<sub>2</sub> (89% yield (6)), with SOCl<sub>2</sub> (yield: 95% (9), 77% (6)) (5) (11), with benzoyl chloride (80% yield (7)), or with oxalyl dichloride (3:5060) (12) see indic. refs.; for formn. of  $\bar{C}$  from ozonide of heptync-1 (1:8085) with SOCl<sub>2</sub> see (13).]

[ $\tilde{\mathbf{C}}$  htd. with sodium *n*-caproate gives (72% yield (1)) *n*-caproic anhydride (1:1150), b.p. 142.9° at 14.5 mm., f.p.  $-40.6^{\circ}$ ,  $D_{4}^{20} = 0.91983$ ,  $n_{D}^{20} = 1.42971$  (1).]

[ $\bar{C}$  with 2 moles Br<sub>2</sub> yields (5)  $\alpha$ -bromo-n-caproyl chloride, b.p. 106-107° at 31 mm. (5), 102-105° at 30 mm. (14).]

[For reactn. of  $\bar{C}$  with various acylureas see (15); with vanillylamine see (10) (16); with cyclohexene (1:8070) + AlCl<sub>3</sub> yielding n-amyl o-chlorocyclohexyl ketone see (17).]

[ $\bar{C}$  with AlCl<sub>3</sub> + phenol yields (18) 56% o-(n-hexanoyl)phenol, b.p. 145-147° at 15 mm. (19), 142-143° at 10 mm. (18), m.p. 22° (19), 17.2-17.4° (18),  $D_{-}^{24}$  = 1.0260 (18),  $n_{D}^{25}$  = 1.5254 (18) (phenylhydrazone, m.p. 102-103° (19), semicarbazone, m.p. 179° (18)) and 34% p-(n-hexanoyl)phenol, m.p. 63-64° (19), 61° (18), b.p. 207-208° at 10 mm. (18) (benzoate, m.p. 105.5° (18)). — For reactn. of  $\bar{C}$  with resorcinol (1:1530) leading to 4-(n-hexanoyl)-1,3-resorcinol (n-amyl 2,4-dihydroxyphenyl ketone) (1:1443) see (20) (21).]

 $\tilde{\mathbf{C}}$  on hydrolysis yields *n*-caproic acid (*n*-hexanoic acid) (1:1130). — For the amide, anilide, *p*-toluidide, and other derivs. corresp. to  $\tilde{\mathbf{C}}$  see *n*-caproic acid (1:1130).

3:8168 (1) Simon, Bull. soc. chim. Belg. 38, 51, 56, 59 (1929). (2) Kohlrausch, Pongratz, Z. physik. Chem. B-22, 382 (1933). (3) Norstedt, Wahlforss, Ber. 25, Referate, 637 (1862). (4) Reitter, Z. physik. Chem. 36, 138 (1901). (5) Bardan, Bull. soc. chim. (5) 1, 142 (1934). (6) Clark, Bell, Trans. Roy. Soc. Can. (3) 27, III 97-103 (1933). (7) Brown, J. Am. Chem. Soc. 60, 1325-1328 (1938). (8) Ponzio, de Gaspari, J. prakt. Chem. (2) 58, 397 Note (1898). (9) Fierz-David, Küster, Helv. Chim. Acta 22, 89 (1939). (10) Ford-Moore, Phillips, Rec. trav. chim. 53, 855 (1934).

(11) Meyer, Monatsh. 22, 418 (1901). (12) Averill, Roche, King, J. Am. Chem. Soc. 51, 868 (1929). (13) Paillard, Wieland, Helv. Chim. Acta 21, 1359-1360 (1938). (14) Marvel, Noyes, J. Am. Chem. Soc. 42, 2273 (1920). (15) Stoughton, J. Org. Chem. 2, 514-521 (1938). (16) Nelson, J. Am. Chem. Soc. 41, 2123-2124 (1919). (17) Nenitzescu, Cioranescu, Ber. 69, 1823 (1936). (18) Sandulesco, Girard, Bull. soc. chim. (4) 47, 1305-1310 (1930). (19) Coulthard, Marshall, Pyman, J. Chem. Soc. 1930, 280-291. (20) Pope, Brit. 287,967, April 26, 1928; Cent. 1929, I 439; C.A. 23, 395 (1929).

(21) Cox, Rec. trav. chim. 50, 848-850 (1931).

3:8170 1,3-DICHLORO-2-METHYLBUTENE-2 
$$CH_3$$
  $C_5H_8Cl_2$  Beil. S.N. 11

B.P. 151-153° (1) 
$$D_4^{19} = 1.1276$$
 (1)  $n_C^{19} = 1.4737$  (1)

Two geom. stereoisomers of C are possible, but only this one has been reported.

[For formn. of C from 1,2,3-trichloro-2-methylbutane (3:6100) by loss of 1 HCl through distn. over KOH see (2); from 3,3-dichloro-2-methylbutene-1 (3:7690) by htg. (allylic transposition) see (1).]

 $\bar{C}$  on oxidn. with KMnO<sub>4</sub> in acetone gives (2) acetic acid (1:1010) and methylglyoxal [Beil. I-762, I<sub>1</sub>-(395), I<sub>2</sub>-(819)].

3:8170 (1) Tishchenko, J. Gen. Chem. '(U.S.S.R.) 8, 1232-1246 (1938); Cent. 1939, II 4223; C.A. 33, 4190 (1939). (2) Tishchenko, J. Gen. Chem. (U.S.S.R.) 6, 1116-1132 (1936); Cent. 1937, I 573; C.A. 31, 1003 (1937).

B.P. 
$$152-153^{\circ}$$
 (1)  $D_{-}^{0} = 1.068$  (1)  $145-149^{\circ}$  (2)

[For prepn. of  $\bar{C}$  from chloroacetone (3:5425) with EtMgBr see (1) (2) (3) (4) (5); note that in this reactn.  $\bar{C}$  is accompanied by 3-methylhexanol-4 [Beil. I-416], whose b.p. (150°) is so close to that of  $\bar{C}$  that separation by distillation is impossible.]

 $\bar{C}$  on distillation (5) or on treatment with Ac<sub>2</sub>O + conc. H<sub>2</sub>SO<sub>4</sub> (5) yields 1-chloro-2-methylbutene-1 (3:7303) and 1-chloro-2-methylbutene-2 (3:7485);  $\bar{C}$  on distn. over anhydrous oxalic acid (1:0535) yields (6) both these halo-olefins and also 2-(chloromethyl)-butene-1 (3:9214). [ $\bar{C}$  on distn. over anhydrous oxalic acid (1:0535) and passing the resultant vapors over soda-lime or burnt lime at 600° yields (7) 2-methylbutadiene-1,3 (isoprene) (1:8020).]

C with PCl<sub>5</sub> yields (5) 1-chloro-2-methylbutene-1 (3:7303).

Č with conc. aq. NaOH at 40-50° gives (63% yield (9) (1) (4) (10) 1,2-epoxy-2-methylbutane (unsym.-ethyl-methyl-ethylene oxide) [Beil. XVII-13, XVII<sub>1</sub>-(8)], b.p. 82°.

3:8175 (1) Fourneau, Tiffeneau, Compt. rend. 145, 437-438 (1907). (2) Tiffeneau, Compt. rend. 134, 774 (1902). (3) Bruylants, Bull. acad. roy. Belg. (5) 17, 1008-1026 (1931). (4) Kyriakides, Am. Chem. Soc. 36, 657-663 (1914). (5) Seyer, Chalmers, Trans. Roy. Soc. Can. (3) 29, III 337 (1926); Cent. 1927, II 1811; C.A. 21, 2663 (1927). (6) Chalmers, Trans. Roy. Soc. Can. (3) 22, III 75-76 (1928); Cent. 1929, I 632; C.A. 23, 2694 (1929). (7) Harries, Ann. 383, 178 (1911). (8) Harries, Ger. 243,075 + 243,076, Jan. 31, 1912; Cent. 1912, I 535. (9) Fourneau, Benoit, Firmenick, Bull. soc. chim. (4) 47, 870 (1930). (10) Riedel, Ger. 199,148, June 3, 1908; Cent. 1996, II 121.

3:8180-3:8205

3:8180 
$$\beta$$
-CHLORO- $n$ -PROPYL ACETATE H  $C_6H_9O_2Cl$  Beil. II - 129 (1-Acetoxy-2-chloropropane) CH<sub>3</sub>-C-CH<sub>2</sub>.O.CO.CH<sub>3</sub>  $\Pi_1$ -(58)  $\Pi_2$ -

B.P. 152-153° at 750 mm. (1) 
$$D_4^{20} = 1.095$$
 (2)  $n_D^{20} = 1.42213$  (2)  $D_{20}^{20} = 1.098$  (3)

Colorless oil with agreeable odor. - Insol aq.

[Note that  $\bar{C}$  has never been obtd. in authentically pure state. The prepn. of Henry (1) was later shown (4) to be actually a mixt. of  $\bar{C}$  with 2-acetoxy-1-chloropropane (3:8150); that of Dewael (2) was admittedly such a mixture.]

Henry's material was obtd. from 1-chloropropanol-2 by treatment with KOAc and conversion of the presumably resultant 1-acetoxypropanol-2 with SOCl<sub>2</sub> to  $\tilde{C}$ ; Dewael's material was obtd. from 1,2-diacetoxypropane by treatment with HCl gas.

3:8180 (1) Henry, Cent. 1902, II 929, 1093. (2) Dewael, Bull. soc. chim. Belg. 39, 400 (1930). (3) Henry, Cent. 1903, II 486. (4) Gabriel, Ohle, Ber. 50, 806 (1917).

**B.P.** 153° (1) 
$$D_4^{20} = 0.8924$$
 (2)  $n_D^{25} = 1.4590$  (1) 69–70° at 9 mm. (2)  $0.8816$  (1)  $n_D^{20} = 1.4452$  (2)

Note that two geom. stereoisomers of  $\tilde{C}$  are possible; also the possibility that by allylic transposition  $\tilde{C}$  may react in the form of its as yet unrecognized synionic isomer, 2-chloroctene-3.

[For prepn. of  $\ddot{C}$  from octen-2-ol-4 [Beil. I<sub>2</sub>-489] (1) (2) with PCl<sub>5</sub> in ether at 0° (43% yield (2)), with HCl (3), or with Cl<sub>2</sub> (1) see indic. refs.]

[ $\bar{\mathbf{C}}$  with phenol +  $K_2\mathrm{CO}_3$  in acctone yields phenyl  $\alpha$ -(n-butyl)crotyl ether, b.p. 107-108° at 4 mm.,  $D_{18}^{18} = 0.9208$ ,  $n_D^{18} = 1.4955$  (2);  $\bar{\mathbf{C}}$  similarly with o-cresol yields  $\alpha$ -(n-butyl)crotyl o-tolyl ether, b.p. 118-119° at 4 mm.,  $D_{18}^{18} = 0.9143$ ,  $n_D^{18} = 1.4950$  (2).]

3:8185 (1) Karasev, Khabarova, J. Gen. Chem. (U.S.S.R.) 16, 1641-1646 (1940); C.A. 35, 3225 (1941) (English translation in Foreign Petroleum Tech. 9, 42-51 (1941)). (2) Hurd, Puterbaugh, J. Org. Chem. 2, 381-386 (1937). (3) Knorr, (to I.G.) Ger. 553,279, June 24, 1932; Cent. 1932, II 2370.

3:8205 d,l-4-CHLORO-6-METHYLHEPTENE-1 
$$C_8H_{16}Cl$$
 Beil. I -222 (4-Chloro-2-methylheptene-6; allyl-isobutyl-carbinyl chloride)  $CH_2$ — $CH_2$ — $CH_2$ — $CH_2$ — $CH_3$ — $CH_4$ 

### B.P. 150-155° dec. (1)

[For prepn. of  $\tilde{C}$  from 2-methylhepten-6-ol-4 (allyl-isobutyl-carbinol) [Beil. I-448] with PCl<sub>5</sub> see (1).]

 $\ddot{\mathbf{C}}$  on htg. with powdered KOH at 140° loses HCl yielding (1) 2-methylheptadiene-4,6 [Beil, I-258], b.p. 116-118°,  $D_{-2}^{22} = 0.741$  (1).

3:8265 (1) Fournier, Bull. soc. chim. (3) 15, 400-401 (1896).

3:8210-3:8217

3: 8210 3-CHLORO-3-ETHYL-2-METHYLPENTANE C<sub>8</sub>H<sub>17</sub>Cl Beil. I -164
(3-Chloro-3-methoethylpentane; Cl H
diethyl-isopropyl-carbinyl chloride)
CH<sub>3</sub>.CH<sub>2</sub> C
CH<sub>4</sub> CH<sub>5</sub>

B.P. 150-155° dec. (1).

[For prepn. from 3-ethyl-2-methylpentanol-3 (diethyl-isopropyl-carbinol) [Beil. I-423,  $I_{2}$ -(454)] with PCl<sub>5</sub> see (1).]

3:8210 (1) Grigorowitsch, Pavlov, J. Russ. Phys.-Chem. Soc. 23, 169 (1891).

3:8215 ISOAMYL CHLOROFORMATE  $C_6H_{11}O_2Cl$  Beil. III - 12 (Isoamyl chlorocarbonate) iso- $C_6H_{11}O$ .CO.Cl III<sub>1</sub>-(6) III<sub>2</sub>-(11)

B.P. 154.3° cor. (1)  $D_i^{15} = 1.0321$  (2)  $n_{\text{He}}^{16} = 1.41916$  (2)

[For prepn. from isoamyl alc. (1:6200) + phosgene (3:5000) see (1).]

- ➡ Isoamyl N-phenylcarbamate (isoamyl carbanilate): m.p. 57-58° (6), 57-59° (7),
  55° (8), 55-56° (9). [This deriv. is not recorded directly from C but should be preparable by actn. of aniline, cf. (5).]
- 3:8215 (1) Roese, Ann. 205, 230 (1880). (2) von Auwers, Ber. 60, 2140 (1927). (3) Marckwald, Ber. 37, 1040 (1904). (4) Béhal, Bull. soc. chim. (4) 25, 480 (1919). (5) Chattaway, Saerens, J. Chem. Soc. 117, 708-711 (1920). (6) Locquin, Bull. soc. chim. (3) 31, 600 (1904). (7) Levene, Allen, J. Biol. Chem. 27, 440 (1916). (8) Marckwald, Ber. 37, 1049 (1904). (9) Nekrassow, Melnikow, J. prakt. Chem. (2) 126, 92 (1930).

3: 8217 1-CHLOROPENTANONE-2 
$$C_6H_9OCl$$
 Beil. I — (Chloromethyl *n*-propyl ketone)  $CH_3.CH_2.CH_2.CH_2.CH_2$   $I_1$ -(350)  $I_2$ -(738)

B.P. 154.5-156° sl. dec. (1)

58-59° at 17 mm. (1)

55-57° at 15 mm. (2

Liquid with penetrating odor. — Very spar. sol. aq.; volatile with steam.

[For prepn. of  $\bar{C}$  from 1-chloropentanol-2 (3:8225) by oxidn. with  $K_2Cr_2O_7/H_2SO_4$  see (2); from 2-chloromethyl-4-methyl-2-propyl-1,3-dioxolone-5 [Beil. XIX<sub>1</sub>-(657)] by hydrolytic cleavage with alk., or from 2-chloromethyl-4,4-dimethyl-2-propyl-1,3-dioxolone-5 [Beil. XIX<sub>1</sub>-(657)] by hydrolytic cleavage with aq. HCl/AcOH on warming (75-80% yield), see (1).]

[ $\ddot{\mathbf{C}}$  with dry K formate in MeOH refluxed overnight yields (2) pentanone-2-ol-1 [Beil. I<sub>2</sub>-(872)], b.p. 62-64° at 18 mm. (2), 54-56° at 11 mm.,  $D_4^{20} = 0.9860$ ,  $n_2^{20} = 1.4234$  (3).]

Č readily forms a cpd. with satd. aq. NaHSO<sub>3</sub> soln. (2).

Č does not react (4) with benzenediazonium hydroxide (diazotized aniline in NaOAe soln.), cf. chloroacetone (3:5425).

① 1-Chloropentanone-2 semicarbazone: m.p. 157° (instantaneous fusion on Hg bath) with decomp. (1).

3:8317 (1) Blaise, Bull. soc. chim. (4) 15, 672-673 (1914); Compt. rend. 155, 48 (1912). (2) Levene, Haller, J. Biol. Chem. 77, 560-561 (1928). (3) Schmidt, Ascherl, Ber. 58, 358 (1925). (4) Fayrel, Bull. soc. chim. (5) 1, 990 (1934).

3:8219 1-CHLOROHEPTENE-1  $CH_3$ . $(CH_2)_4$ .CH=CHCl  $C_7H_{18}Cl$  Beil. I - 219 I<sub>1</sub>---

I<sub>2</sub>-(196)

B.P. 155° cor. (1) 149-150° at 733 mm. (2) 148° (3) 78-82° at 75 mm. (4)

Note that although two geom. steroisomers of  $\tilde{\mathbf{C}}$  are possible only one has yet been recognized.

[For prepn. of  $\tilde{C}$  from 1,1-dichloroheptane (3:8650) by elimination of 1 HCl with alc. KOH (1) (3) (note, however, that yields are low (4) and the process has sometimes (5) failed), or better large excess solid KOH at 200° (62% yield (4)), see indic. refs.; from n-heptaldehyde (1:0183) with PCl<sub>5</sub> see (6).

 $\bar{C}$  with KOH in mineral oil at 250° (4), or with NaNH<sub>2</sub> in toluene or xylene at 100-150° (6), or in mineral oil (Nujol) at 150-155° (7) gives (yields: 54% (7), 37% (4)) heptyne-1 (1:8085), b.p. 98°.

[ $\bar{\rm C}$  with perbenzoic acid (benzoyl hydrogen peroxide) in CHCl<sub>3</sub> for 25 days gives (2) corresp. oxide, viz., 1-chloro-1,2-epoxyheptane, b.p. 93-95° at 50 mm.,  $D_4^{16}=0.9874$ ,  $n_D^-=1.4370$  (2).]

[Č with NaSC<sub>2</sub>H<sub>5</sub> in n-BuOH under reflux or better in EtOH at 138° under pressure gives (8) ethyl hepten-1-yl sulfide, b.p. 196-202°.]

3:8219 (1) Limpricht, Ann. 103, 82-83 (1857). (2) Prileschajew, Ber. 59, 196-197 (1926). (3) Welt, Ber. 30, 1496 (1897). (4) Bachmann, Hill, J. Am. Chem. Soc. 56, 2731 (1934). (5) Guest J. Am. Chem. Soc. 47, 801 (1925). (6) Bourgeul, Compt. rend. 177, 823 (1923); 178, 1560 (1924). (7) Johnson, McEwen, J. Am. Chem. Soc. 48, 473 (1926). (8) Loevenich, Losen, Dierichs, Ber. 60, 954 (1927).

3: 8220 ter-BUTYL CHLOROACETATE  $C_6H_{11}O_2Cl$  Beil. S.N. 160  $(CH_3)_3C.O.CO.CH_2Cl$ 

B.P. 155° sl. dec. (1)  $n_D^{20} = 1.4260$  (2)  $60.2^{\circ}$  at 15 mm. (1) 1.4230 (1)  $48-49^{\circ}$  at 11 mm. (2)

Colorless liq. heavier than aq. (1).

[For prepn. (yield: 63% (2), 60% (1)) from ter-butyl alc. (1:6140) + chloroacetyl chloride (3:5235) + dimethylaniline see (1) (2).]

Hydrolysis yields (1) ter-butyl alc. (1:6140) + chloroacetic acid (3:1370) (1); Sap. Eq. = 150.5 (1).

3:8220 (1) Westheimer, Shookhoff, J. Am. Chem. Soc. 62, 271 (1940). (2) Baker, Org. Syntheses 24, 21 (1944).

3:8223-3:8225

B.P. 155° sl. dec. (1)

[For prepn. of  $\tilde{C}$  from 3-ethylhexanol-3 (diethyl-n-propyl-carbinol) [Beil. I-421, I<sub>1</sub>-(210), I<sub>2</sub>-(454)] with PCl<sub>5</sub> see (1).]

[O with diethylamine loses HCl (2) yielding an olefin (2).]

[For data on density and parachor of C at 0°, 15°, 25°, 50°, and 65° see (3).]

3:8223 (1) Butlerow, Bull. soc. chim. (2) 5, 23 (1866). (2) Montagne, Ann. chim. (10) 13, 111 (1930). (3) Quayle, Owen, Beavers, J. Am. Chem. Soc. 61, 3107-3111 (1939).

3:8224 METHYL 
$$d,l$$
- $\beta$ -CHLORO- $n$ -BUTYRATE  $C_5H_9O_2Cl$  Beil. II - 277 CH<sub>3</sub>.CH.CH<sub>2</sub>.COOCH<sub>3</sub> II<sub>1</sub>— II<sub>2</sub>—

B.P. 155-156° at 750 mm. (1)

$$D_4^{20} = 1.0996 (2) \quad n_D^{20} = 1.4258 (2)$$

[For prepn. of  $\tilde{C}$  from methyl crotonate (1:3121) by addn. of HCl, from  $\beta$ -chloro-n-butyronitrile + MeOH + HCl, or from methyl n-butyrate (1:3080) with Cl<sub>2</sub> see (1).]  $\tilde{C}$  on hydrolysis yields MeOH (1:6120), crotonic acid (1:0425), and HCl.

3:8224 (1) Henry, Bull. acad. roy. Belg. (3) 35, 507-520 (1898); Cent. 1898, II 273. (2) Schjanberg, Z. physik. Chem. A-172, 232 (1935).

3: 8225 
$$d$$
, $l$ -1-CHLOROPENTANOL-2  $C_5H_{11}OCl$  Beil. I — (Chloromethyl- $n$ -propyl-  $CH_3$ . $CH_2$ . $CH_2$ — $CH$ —— $CH_2$   $I_1$ —— carbinol;  $n$ -propylethylene chlorohydrin)  $OH$   $Cl$   $I_2$ -(419)

B.P. 
$$157-160^{\circ}$$
 at 735 mm. (1)  $D_{25}^{25} = 1.0143$  (1)  $n_{\rm D}^{25} = 1.4404$  (1)  $68-75^{\circ}$  at 30 mm. (2)  $66-67^{\circ}$  at 18 mm. (3)  $D_{20}^{20} = 1.037$  (2)  $n_{\rm D}^{20} = 1.4520$  (2)  $59-62^{\circ}$  at 14 mm. (4) 1.031 (3) 1.4422 (3)

[For prepn. of C from pentenc-1 (1:8205) with HOCl (43% yield) see (2); from 1-chloro-2,3-epoxypropane (epichlorohydrin) (3:5358) with MgEt<sub>2</sub> (70% yield (3)) or with EtMgBr (16-19% yield (1)) see indic. refs.; from chloroacetaldehyde (3:7212) with n-PrMgBr see (4).]

 $\bar{\mathbb{C}}$  with AcCl yields (1) 1-chloro-2-acetoxypentane, b.p. 186–188° at 740 mm.,  $D_{25}^{25}=1.0825$ ,  $n_{25}^{25}=1.4328$  (1);  $\bar{\mathbb{C}}$  with NaSMe gives (45% yield (2)) 1-methylthiolpentanol-2, b.p. 90° at 18 mm.,  $D_{20}^{20}=0.943$ ,  $n_{20}^{20}=1.4792$  (2);  $\bar{\mathbb{C}}$  with SOCl<sub>2</sub> + diethylaniline gives (70% yield (1)) 1,2-dichloropentane (3:8140);  $\bar{\mathbb{C}}$  with 2 moles EtMgBr yields (3) heptanol-4 (1:6228).

 $\bar{C}$  on oxidn. with  $K_2Cr_2O_7 + H_2SO_4$  yields (4) 1-chloropentanone-2 (3:8217), b.p. 55-57° at 15 mm. (4);  $\bar{C}$  on oxidn. with aq. KMnO<sub>4</sub> yields (1) n-butyric acid (1:1035) q.v.

© Chloromethyl-n-propyl-carbinyl 3,5-dinitrobenzoate: pl. from alc., m.p. 84-85° (3), 83-84° (1); from  $\bar{C}$  on htg. with 3,5-dinitrobenzoyl chloride until no more HCl is evolved (1).

3:8225 (1) Koelsch, McElvain, J. Am. Chem. Soc. 51, 3392, 3393 (1929). (2) Glavis, Ryden, Marvel, J. Am. Chem. Soc. 59, 709 (1937). (3) Magrane, Cottle, J. Am. Chem. Soc. 64, 484-487 (1942). (4) Levene, Haller, J. Biol. Chem. 77, 560 (1928).

3: 8228 CHLOROACETALDEHYDE DIETHYLACETAL 
$$C_6H_{13}O_2Cl$$
 Beil. I - 611 (Chloroacetal)  $CH_2$ — $CH(OC_2H_5)_2$   $I_1$ -(328)  $I_2$ -(676) B.P. 157.4° {1}  $D_{20}^{20} = 1.017$  (3)  $D_{20}^{20} = 1.017$ 

[For prepn. from vinyl acetate (b.p. 69-71°) by treatment in abs. EtOH soln. with Cl<sub>2</sub> in dark and in a solid CO<sub>2</sub>/acetone cooling bath (83% yield) see (3); from acetaldehyde diethylacetal ("acetal") (1:0156) with Cl<sub>2</sub> at 50° in presence of abs. alc. NaOEt (90% yield) see (4); from paraldehyde (1:0170) by chlorination and subsequent treatment with EtOH see (5) (6); from EtOH (1:6130) by treatment with Cl<sub>2</sub> see (7) (8).]

[For prepn. of  $\bar{C}$  from chloroacetaldehyde (3:7212) on warming with EtOH see (9); from chloroacetaldehyde ethyl alcoholate (chloroacetaldehyde ethyl-hemi-acetal) [Beil. I-611] in EtOH with dry HCl gas see (10); from  $\alpha,\beta$ -dichloroethyl ethyl ether (3:5640) with 2 vols. abs. EtOH (2) or with NaOEt (11) (12) (13) see indic. refs.]

Č is comml. chem. in U.S. (1943) (14); Č is widely used in org. synthesis as source of combined chloroacetaldehyde (3:7212) and otherwise.

The acetal portion of  $\tilde{C}$  is stable to alkali but readily hydrolyzed by aq. acids; the chlorine atom, however, behaves like a reactive alkyl halide; all these characteristics are illustrated in the reactns, cited below.

 $\tilde{\mathbf{C}}$  on warming with dil.  $\mathbf{H}_2\mathbf{SO}_4$  yields (15) chloroacetaldehyde (3:7212) accompanied by some bis-( $\beta$ -chloro- $\alpha$ -ethoxyethyl) ether, b.p. abt. 165°;  $\tilde{\mathbf{C}}$  on satn. at 100° with dry HCl gas yields (9)  $\alpha_i\beta$ -dichloroethyl ethyl ether (3:5640). —  $\tilde{\mathbf{C}}$  on htg. with AcOH at 120° or with anhydrous oxalic acid at 100–150° yields (12) chloroacetaldehyde (3:7212) + ethyl acetate (1:3015) or diethyl oxalate (1:1055) respectively.

[ $\bar{C}$  htd. with NaOEt in s.t. at 140–150° for 30 hrs. (11) (13) (17) or with abs. alc. NaOEt at 160° under press. (16) gives (66% yield (16)) ethoxyacetaldehyde diethylacetal, b.p. 168° (11) (this prod. on boilg. with dil. H<sub>2</sub>SO<sub>4</sub> (17) (13) (16) hydrolyzes to EtOH (1:6130) + ethoxyacetaldehyde (1:0159), b.p. 105–106°). — $\bar{C}$  htd. with 10% excess of satd. abs. alc. KOH in s.t. for 75 hrs. gives (95% yield (18)) glycolaldehyde diethylacetal (hydroxyacetaldehyde diethylacetal) (1:0191), b.p. 167°.] [For reactn. of  $\bar{C}$  with many other alcs. (19) (20) and phenols (21) in pres. of alk. see indic. refs.]

[ $\bar{\mathbf{C}}$  htd. with Na or Mg at 120–130° (22) or with Na in ether at 0–20° (23) yields ethyl vinyl ether (1:7810), b.p. 35.7°, + EtOH and prob, also ethoxyacetaldehyde diethylacetal (see above). —  $\bar{\mathbf{C}}$  on boilg. with Zn dust yields (2) ethyl chloride (3:7015) + EtOH (1:6130). —  $\bar{\mathbf{C}}$  with excess phenyl MgBr at 120° as directed (24) gives 31% yield  $\alpha,\beta$ -diphenylethyl ethyl ether ( $\alpha$ -ethoxydibenzyl) [Beil. VI<sub>1</sub>-(329)].]

[ $\ddot{C}$  htd. with 4-5 vols. conc. aq. NH<sub>4</sub>OH in s.t. at 130° for 12-14 hrs. (25) or  $\ddot{C}$ +20 vols. satd. alc. NH<sub>3</sub> in s.t. at 130° (26) (27) (28) or refluxed in pres. of NaI (29) yields amino-acetaldehyde diethylacetal [Beil. IV-308, IV<sub>1</sub>-(449), IV<sub>2</sub>-(758)], b.p. 163°. —  $\ddot{C}$  htd. with alc. hydrazine hydrate under press. for 6 hrs. at 115-120° yields (30) hydrazinoacetaldehyde diethylacetal [Beil. IV-553].]

[Č with aniline + NaNH<sub>2</sub> in ether gives (77% yield (31)) N-(phenyl)aminoacetalde-

hyde diethylacetal [Beil. XII-213], b.p. 92-94° at 0.3 mm.; for corresp. behavior with benzylamine (32) or primary aliph. amines (33) see indic. refs.] — C with 3 moles phenylhydrazine htd. several hrs. at 130° yields (34) glyoxal-bis-(phenylhydrazone), yel. tbls. from alc. or ether, m.p. 177° u.c., 179° cor. (34).

C on acid hydrolysis (3) yields ethyl alcohol (1:6130) and chloroacetaldehyde (3:7212) q.v.

3:8228 (1) Lecat, Rec. trav. chim. 45, 622 (1926). (2) Paterno, Mazzara, Gazz. chim. ital. 3, 254-256 (1873); Ber. 6, 1202 (1873). (3) Filachione, J. Am. Chem. Soc. 61, 1705-1706 (1939). (4) Anselm, Galitzenstein, Ger. 639,507, Dec. 7, 1936; Cent. 1937, I 2023; C.A. 31, 3940 (1927). (5) Freundler, Bull. soc. chim. (4) 1, 70-71 (1907). (6) Soc. des Usines Chimiques Rhone-Poulenc, French 711,095, Sept. 2, 1931; Cent. 1932, I 130. (7) Lieben, Ann. 104, 114-115 (1857). (8) Fritsch, Ann. 279, 300 (1879). (9) Natterer, Monatsh. 5, 497-499 (1884). (10) Fritsch, Schumacher, Ann. 279, 308 (1894).

(11) Lieben, Ann. 146, 193-201 (1868). (12) Natterer, Monatsh. 3, 444-449 (1882). (13) Kluger, Monatsh. 26, 880-882 (1905). (14) Chem. Eng. News 21, 1986 (1943). (15) Frank, Ann. 206, 341-344 (1880). (16) Leuchs, Geiger, Ber. 39, 2645 (1906). (17) Eissler, Pollak, Monatch. 27, 1130-1132 (1906). (18) Beyerstedt, McElvain, J. Am. Chem. Soc. 58, 530 (1936). (19) Sabetay, Bull. soc. chim. (4) 45, 1161-1169 (1929). (20) Hallonquist, Hibbert, Can. J. Research

8, 129-136 (1933); Cent. 1933, II 1017; C.A. 27, 2133 (1983).

(21) Parfumerie Houbigant, Sabetay, French 673,379, Feb. 14, 1930; Cent. 1936, II 2694. (22) Wislicenus, Ann. 192, 106-109 (1878). (23) Leuchs, Lemcke, Ber. 47, 2577 (1914). (24) Späth, Monatsh. 35, 466-467 (1914). (25) Wolff, Ber. 21, 1482 (1888); 26, 1832 (1893). (26) Wolff, Marburg, Ann. 363, 179-182 (1908). (27) Marckwald, Ber. 25, 2355 (1892). (28) Buck, Wrenn, J. Am. Chem. Soc. 51, 3613 (1929). (29) Wohl, Ber. 39, 1953 (1906). (30) Fischer, Hunsalz, Ber. 27, 178-179 (1894).

(31) Wohl, Lange, Ber. 40, 4728 (1907). (32) Rügheimer, Schön, Ber. 41, 17-18 (1908). (33) Paal, van Gember, Arch. Pharm. 246, 306-314 (1908). (34) Fischer, Ber. 26, 97 (1893).

B.P. 157-159.5° at 750 mm. (1) 
$$D_4^{25} = 0.8788$$
 (1)  $n_D^{25} = 1.4394$  (1)

Although two geom. stereoisomers of C are possible only this one has as yet been reported. [For prepn. of C from octyne-4 (di-n-propylacetylene) (1:8110) with AcCl + SnCl<sub>4</sub> (both stereoisomers of 4-chloro-3-n-propylhepten-3-one-2 are also formed: cis, b.p. 117-118° at 28 mm.,  $D_4^{25} = 0.9680$ ,  $n_D^{25} = 1.4587$ ; trans, b.p. 112-113° at 28 mm.,  $D_4^{25} = 0.9592$ ,  $n_{\rm D}^{25} = 1.4601 \, (1) \, \text{see} \, (1).$ 

3:8230 (1) Kroeger, Sowa, Nieuwland, J. Org. Chem. 1, 163-169 (1936).

3:8235 
$$d_{r}$$
- $\alpha$ -ETHYL- $n$ -VALERYL CHLORIDE  $C_{r}$ H<sub>13</sub>OCl  $(d_{r}$ - $d_{r}$ -Ethylpentanoyl chloride-1; CH<sub>3</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH . C=O ethyl- $n$ -propyl-acetyl chloride)  $C_{r}$ - $C_{r}$ 

B.P. 158-160° 50° at 11 mm. (2)

[For prepn. of C from 2-ethylpentanoic acid-1 (ethyl-n-propyl-acetic acid) (1:1133) with PCl<sub>3</sub> (1) or SOCl<sub>2</sub> (2) see indic. refs.]

C on hydrolysis yields ethyl-n-propyl-acetic acid (1:1133) q.v. (for the amide, anilide, p-toluidide, and other derivatives corresponding to C see 1:1133).

3:8235 (1) Rasetti, Bull. soc. chim. (3) 33, 687 (1905). (2) Reichstein, Trivelli, Helv. Chim. Acta **16,** 974 (1933); **15,** 258-259 (1932).

3:8240-3:8243

3:8240 2-CHLOROBUTEN-2-OL-1 H Cl C<sub>4</sub>H<sub>7</sub>OCl Beil. I - 442 
$$I_1$$
—  $I_2$ —(481) CH<sub>8</sub>—C=C—CH<sub>2</sub>OH  $I_1$ —  $I_2$ —(481) B.P. 159° at 760 mm. (1)  $D_4^{23} = 1.0950$  (4)  $n_C^{23} = 1.45093$  (4)

B.P. 159° at 760 mm. (1) 
$$D_4^{23} = 1.0950$$
 (4)  $n_C^{23} = 1.45093$  (4)  $158-161$ ° (2)  $158.3$ ° cor. at 742.5 mm. (3)  $D_4^{20} = 1.118$ . (1)  $n_D^{20} = 1.46823$  (1)  $52-53$ ° at 19 mm. (4)

Note: cis and trans stereoisomers of  $\ddot{\mathbf{C}}$  are theoretically possible but have not definitely been reported.

[For prepn. of  $\tilde{C}$  from 2-chlorobuten-2-al-1 ( $\alpha$ -chlorocrotonaldehyde) (3:8117) by reduction in abs. alc. with  $H_2 + Al(OEt)_3$  (2) or with  $Mg(OEt)_2$ .EtOMgCl (1) see (2) (1); for formn. of  $\tilde{C}$  (together with 3-chlorobuten-3-ol-2) (3:9115) from either the low-boilg. (3:5360) or high-boilg. (3:5615) stereoisomer of 1,2-dichlorobutene-2 by hydrolysis with 2 pts. aq. + 1 mole CaCO<sub>3</sub> for 4 hrs. at 70° see (4); for prepn. of  $\tilde{C}$  from 2,2,3-trichlorobutanol-1 (3:1336) with Zn dust + HCl see (3).]

**D** 2-Chlorobuten-2-yl-1  $N-(\alpha$ -naphthyl)carbamate: m.p. 95-96° (4).

**3:8240** (1) Meerwein et al., *J. prakt. Chem.* (2) **147**, 225 (1936). (2) I. G. Farbenindustrie, Ger. 437,160, Nov. 18, 1926; *Cent.* **1927**, I 802. (3) Garzarolli-Thurnlackh, *Ann.* **213**, 375-379 (1882). (4) Tishchenko, *J. Gen. Chem.* (U.S.S.R.) **7**, 658-662 (1937); *Cent.* **1937**, II 371-372; *C.A.* **31**, 5754 (1937).

#### B.P. 159-160° (1)

[For preparation of  $\bar{C}$  from acetyl chloride (3:7065) + propylene in pres. of ZnCl<sub>2</sub> see (1); for reactn. of acetyl chloride with propylene in pres. of activated carbon at 100-300° and at press. of 20-200 atm. cf. (2).]

**3:8243** (1) Kondakow, J. Russ. Phys.-Chem. Soc., **26**, 15 (1883). (2) Frohlich, Wiezevich (to Standard Oil Development Co.), U.S. 2,006,198, June 25, 1935; Cent. **1936**, I 2827.

B.P. F.P. 
$$159.45-159.55^{\circ}$$
 at  $760 \text{ mm}$ .  $(1) -34.0^{\circ}$   $(12) D_4^{25} = 1.07762$   $(4) 159.5^{\circ}$  cor. at  $759.5 \text{ mm}$ .  $(2) -34.5^{\circ}$   $(11) D_4^{20} = 1.08246$   $(4) 159.38^{\circ}$  at  $760.1 \text{ mm}$ .  $(3) -34.7^{\circ}$   $(13) D_4^{20} = 1.08246$   $(4) 159.15^{\circ}$  at  $760 \text{ mm}$ .  $(4) -35.1^{\circ}$   $(8) 1.08173$   $(14) 159.0-159.2^{\circ}$  cor.  $(5) -36.5^{\circ}$   $(4) 1.0785$   $(1) 158.93-158.97^{\circ}$  at  $760 \text{ mm}$ .  $(6) 158.7-158.9^{\circ}$  at  $760.4 \text{ mm}$ .  $(8) 158.3-159.3^{\circ}$  at  $760.4 \text{ mm}$ .  $(8) 158.3-159.3^{\circ}$  at  $760.4 \text{ mm}$ .  $(8) 158.3-159.3^{\circ}$  at  $760.4 \text{ mm}$ .  $(3) 142.3^{\circ}$  at  $558.9 \text{ mm}$ .  $(3) 142.3^{\circ}$  at  $391.1 \text{ mm}$ .  $(3) 134.2^{\circ}$  at  $391.1 \text{ mm}$ .  $(3) 112.1^{\circ}$  at  $191.0 \text{ mm}$ .  $(3) 112.1^{\circ}$  at  $191.0 \text{ mm}$ .  $(3) 132.3^{\circ}$  at  $106.0 \text{ mm}$ .  $(3) 132.3^{\circ}$  at  $106.0 \text{ mm}$ .  $(3) 132.2^{\circ}$  at  $106.0 \text{ mm}$ .

[For f.p./compn. data on system:  $\bar{C}+p$ -chlorotoluene (3:8287) (eutectic, f.p.  $-50^{\circ}$  conts. 73%  $\bar{C}$ ) see (8) (112); for  $D_{20}^{20}$ /compn. data on this system see (8); for  $n_{D}^{10}$ /compn. data on this system see (15). — For f.p./compn. data on systems  $\bar{C}$  + chlorobenzene (3:7903) (13),  $\bar{C}+m$ -dichlorobenzene (3:5960) (16),  $\bar{C}$  + bromobenzene (16) see indic. refs.]

[For prepn. of  $\bar{C}$  from o-toluidine [Beil. XII-772, XII<sub>1</sub>-(372)] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. (yields: 85% (23), 79–90% (21), 74 79% (7), 70% (18)) (19) (20) (22), or Cu powder (66% yield (24)) (25), or mere boilg, with HCl (26), or use of CuH (27), or CaCl<sub>2</sub> (28) see indic. refs.; for prepn. from o-toluenediazonium chloride (solid) [Beil. XVI-495, XVI<sub>1</sub>-(358)] with C<sub>6</sub>H<sub>6</sub> + AlCl<sub>3</sub> (29), from o-toluenediazonium chloroplatinate on htg. (30), or from o-toluenediazopiperidide by htg. with HCl (31) see indic. refs.; for prepn. of  $\bar{C}$  from o-cresol (1:1400) via conv. with PCl<sub>5</sub> at 140° to tris-(o-toloxy)phosphoric acid dichloride and htg. of latter at 180° see (32); for prepn. of  $\bar{C}$  from p-toluenesulfonyl chloride via chlorination to 2-chlorotoluenesulfonyl chloride-4 followed by hydrolysis with 10% H<sub>2</sub>SO<sub>4</sub> (33) to 2-chlorotoluenesulfonic acid-4 (see below) and subsequent replacement of  $-SO_3H$  by H with superheated steam in 80% H<sub>2</sub>SO<sub>4</sub> (overall yield 88–90% (33)) cf. (34) (35); for prepn. of  $\bar{C}$  from 2-chlorotoluenesulfonic acid-5 (see below) or its sodium salt by steam distn. of its soln. in 75% H<sub>2</sub>SO<sub>4</sub> see (8).]

[For prepn. of  $\bar{C}$  from toluene with  $Cl_2$  in pres. of Fe (8) (36) (38), or  $I_2$  (37) (39), Fe +  $I_2$  (15), Al/Hg (45), MoCl<sub>5</sub> (36), SbCl<sub>5</sub> (39), or PbCl<sub>2</sub> (8), from toluene via electrolysis of its suspension in boilg. HCl (40) or in HCl/AcOH at 35° (41), from toluene by boilg. with PbCl<sub>2</sub>.2NH<sub>4</sub>Cl (42), from toluene with SO<sub>2</sub>Cl<sub>2</sub> + cat. (43) especially AlCl<sub>3</sub> (43) (44), from toluene with n-butyl chlorosulfonate (46), from toluene with NCl<sub>3</sub> (47) see indic. refs.: no m-chlorotoluene is formed by any of these methods, but the proportion of  $\bar{C}$  to its ac-

companying p-isomer (3:8287) varies widely, e.g., from 100%  $\tilde{C}$  with PbCl<sub>2</sub> + NH<sub>4</sub>OH (42), through 62% o/28% p with PbCl<sub>2</sub> (8), to 2.5 o/1 p via the electrolytic methods (40) (for details the orig. refs. must be consulted).] — [For sepn. of  $\tilde{C}$  from polychlorotoluenes via const.-boilg. mixt. with aq. see (79).]

[For prepn. of C from hydrazone of o-chlorobenzaldehyde (3:6410) by Wolff-Kishner reduction (35-82% yield) see [113].]

[For thermal anal. of system: C + SbCl<sub>3</sub> see (48).]

[ $\overline{C}$  with H<sub>2</sub> in pres. of Pd/CaCO<sub>3</sub> in alc./alk. soln. loses all its chlorine as HCl (49);  $\overline{C}$  with HI + P at 302° for 5 hrs. gives 80% yield (50) toluene (1:7405).]

 $\bar{C}$  on oxidn. with CrO<sub>3</sub> is completely destroyed (30);  $\bar{C}$  on oxidn. with boilg. aq. KMnO<sub>4</sub> (74–78% yield (51)) (52) (36) (53) or  $\bar{C}$  on cat. oxidn. with air over granular tin vanadate at 287° (13.8% yield (54)) cf. (55) or  $\bar{C}$  + KCN + NiCl<sub>2</sub> in dil. alc. 20 hrs. at 260–270° (7.5% yield (63)) gives  $\sigma$ -chlorobenzoic acid (3:4150);  $\bar{C}$  with CrO<sub>2</sub>Cl<sub>2</sub> followed by aq. (51.5% yield (56)) (57) or  $\bar{C}$  on oxidn. with Ce cpds. (58) or with air over Ta<sub>2</sub>O<sub>5</sub> (59) cf. (60) or  $\bar{C}$  with MnO<sub>2</sub> + H<sub>2</sub>SO<sub>4</sub> (61) or PbO<sub>2</sub> + dil. H<sub>2</sub>SO<sub>4</sub> (24% yield (62)) gives  $\sigma$ -chlorobenzaldehyde (3:6410).

[ $\tilde{C}$  with Cl<sub>2</sub> in pres. of Al/Hg gives (64) a mixt. contg. 2,3- (3:6345), 2,4- (3:6290), 2,6- (3:6270), together with some 2,5-dichlorotoluene (3:6245). —  $\tilde{C}$  with Cl<sub>2</sub> + 3% PCl<sub>5</sub> in light gives (65) (19) o-chlorobenzyl chloride (3:6400);  $\tilde{C}$  with Cl<sub>2</sub> + PCl<sub>5</sub> at 150-180° (66) (67) (68) cf. (70) gives o-chlorobenzal (di)chloride (3:6625);  $\tilde{C}$  with Cl<sub>2</sub> + PCl<sub>3</sub> (73) or with Cl<sub>2</sub> at 160-190° (69) gives (64% yield (69)) (70) (71) o-chlorobenzotrichloride (3:6880).]

[ $\bar{C}$  with Br<sub>2</sub> in pres. of Al/Hg in CCl<sub>4</sub> gives (74) mainly 5-bromo-2-chlorotoluene [Beil. V-307, V<sub>1</sub>-(155)], together with a smaller amt. of 4-bromo-2-chlorotoluene [Beil. V-307, V<sub>1</sub>-(155)]; the former is also obtd. (75) from  $\bar{C}$  + Br<sub>2</sub> + HNO<sub>3</sub> + H<sub>2</sub>SO<sub>4</sub> in AcOH. —  $\bar{C}$  with Br<sub>2</sub> (76) (77) yields o-chlorobenzyl bromide [Beil. V<sub>1</sub>-(155)] (for studies of rate of side-chain bromination of  $\bar{C}$  see (78)).]

 $[\tilde{C} + I_2 + HNO_3 + H_2SO_4]$  in AcOH gives (75) 2-chloro-5-iodotoluene [Beil. V-315].]  $[\tilde{C}$  with AlCl<sub>3</sub> + HCl gas as directed (7) undergoes partial rearr. to both *m*-chlorotoluene (3:8275) and *p*-chlorotoluene (3:8287); for anal. of mixts. of the three isomers see (7).]

[ $\bar{C}$  with AcCl (80) or better Ac<sub>2</sub>O (81) + AlCl<sub>3</sub> gives (70% yield (81)) 4-chloro-3-methylacetophenone [Beil. VII-307], b.p. 254.2-254.4° at 753.4 mm.,  $n_D^{25} = 1.5521$  (81). —  $\bar{C}$  with  $\beta$ -chloropropionyl chloride (3:5690) + AlCl<sub>3</sub> in CS<sub>2</sub> gives (68% yield (82)) (83) 2-chloro-5-( $\beta$ -chloropropionyl)toluene, colorless pr. from C<sub>6</sub>H<sub>6</sub>, m.p. 46° (82), which on ring closure with conc. H<sub>2</sub>SO<sub>4</sub> gives (82) (83) 6-chloro-7 (or 5)-methylindanone-1, cryst. from alc., m.p. 74-75° (82) (83). —  $\bar{C}$  with trichloroacetonitrile + AlCl<sub>3</sub> (4 moles) at 80-90° satd. with HCl gas for 2 days gives (40% yield (84)) 4-chloro-3-methyl- $\omega$ ,  $\omega$ -trichloroacetophenone, b.p. 155-160° at 11 mm. (84). —  $\bar{C}$  with fumaryl (di)chloride + AlCl<sub>3</sub> in CS<sub>2</sub> at 50-60° for 2 hrs. gives (51% yield (85)) trans-bis-1,2-(4-chloro-3-methylbenzoyl) ethylene, pale yel. cryst. from alc., m.p. 167° (85).]

[ $\ddot{\mathbf{C}}$  with benzoyl chloride + AlCl<sub>3</sub> gives (83% yield (86)) 3-chloro-4-methylbenzophenone [Beil. VII<sub>1</sub>-(236)], lfts. from alc., m.p. 82-83° (86);  $\ddot{\mathbf{C}}$  with o-chlorobenzoyl chloride (3:6640) + AlCl<sub>3</sub> in CS<sub>2</sub> for 12 hrs. gives (87) 2',3-dichloro-4-methylbenzophenone, cryst. from alc., m.p. 43.5° (87). —  $\ddot{\mathbf{C}}$  with naphthalene-bis-1,4(or 5)-(dicarboxylic acid dichloride) + AlCl<sub>3</sub> gives (88) bis-1,4(or 5)(chlorotoluoyl)naphthalene (used for ring closure to corresp. dibenzpyrenequinones).]

[C with phthalic anhydride + AlCl<sub>3</sub> at 90° gives (89) (90) (91) a mixt. (93% yield (90)) of two o-(chlorotoluoyl)benzoic acids A + B: A, m.p. 183-184° (90), 182-183° (91) (89), the main prod., is regarded variously as either (90) o-(3-chloro-4-methylbenzoyl)benzoic acid or (91) o-(4-chloro-3-methylbenzoyl)benzoic acid but in any case with conc. H<sub>2</sub>SO<sub>4</sub>

ring-closes to give (92% yield (90)) (91) 2-chloro-3-methylanthraquinone, colorless tbls. from toluene, m.p. 219° (91) cor. (90); B, m.p. 176–177° (91), the minor prod., regarded (91) as o-(2-chloro-3-methylbenzoyl)benzoic acid, with conc.  $H_2SO_4$  ring-closes to give 1-chloro-2-methylanthraquinone, yel.-br. ndls. from toluene, m.p. 171° (91), 170–171° (90).] — [For reactn. of  $\tilde{C}$  with 3,4-dichlorophthalic anhydride (3:3695) (92) or with pyromellitic anhydride (93) see indic. refs.]

[ $\tilde{C}$  with aq. NaOH in pres. of Cu at 350-360° under press. yields (94) a mixt. contg. 41% o-cresol (1:1400) + 59% m-cresol (1:1730) (for extensive study of hydrolysis of  $\tilde{C}$  as means of prepn. of m-cresol (1:1730) see (112));  $\tilde{C}$  with NH<sub>3</sub> + cat. under press. as directed (95) (96) (97) yields o-toluidine (for behavior of  $\tilde{C}$  with liquid NH<sub>3</sub> see (98)). —  $\tilde{C}$  with aniline + Cu at 175° yields (99) phenyl-o-tolylamine. —  $\tilde{C}$  with diphenylamine + K at 240-245° in H<sub>2</sub> gives (by rearr.) (100) N,N-diphenyl-m-toluidine, m.p. 69-70°.] — [Note that  $\tilde{C}$  does not react with aq. sodium sulfanilate + Na<sub>2</sub>CO<sub>3</sub> (dif. from benzyl chloride (3:8535)) and use in sepn. of  $\tilde{C}$  from the latter (8).]

[ $\bar{\mathbf{C}}$  on mononitration, e.g., with 4 pts. HNO<sub>3</sub> (D=1.52) at 0° (101) gives a mixt. contg. all four possible isomers, viz., 43% 2-chloro-5-nitrotoluene [Beil. V-329, V<sub>1</sub>-(163)], m.p. 42.9° (101), 44° (102), 21% 2-chloro-6-nitrotoluene [Beil. V-327, V<sub>1</sub>-(162)], m.p. 35.3° (101), 37° (103) (104), 19% 2-chloro-3-nitrotoluene [Beil. V-328, V<sub>1</sub>-(163)], m.p. 22.1° (101), 21.5° (105), and 17% 2-chloro-4-nitrotoluene [Beil. V-329, V<sub>1</sub>-(163)], m.p. 62.3° (101), 65° (105A).]

 $\bar{C}$  on dinitration, e.g., with mixt. of 3 wt. pts. HNO<sub>3</sub> (D=1.48) + 9 wt. pts. conc. H<sub>2</sub>SO<sub>4</sub> at 100° (106), or with 2 vol. pts. HNO<sub>3</sub> (D=1.42) + 5 vols. pts. conc. H<sub>2</sub>SO<sub>4</sub> at 100° as directed (107), gives mainly (55–60% (107)) 2-chloro-3,5-dinitrotoluene [Beil. V-345, V<sub>1</sub>-(169)], cryst. from alc., m.p. 64° (107), 63–64° (106), accompanied by smaller amts. of three isomers, viz., 2-chloro-4,5-dinitrotoluene, m.p. 88.5° (18–20% (107)), 2-chloro-5,6-dinitrotoluene, m.p. 106.5° (18–20% (107)), and 2-chloro-4,6-dinitrotoluene, m.p. 49° (1-2% (107)) [the two other possible dinitro-2-chlorotoluenes have been prepd. by indirect means, viz., 2-chloro-3,4-dinitrotoluene, m.p. 89° (108), and 2-chloro-3,6-dinitrotoluene, m.p. 62–63° (109)].

[ $\bar{C}$  on monosulfonation with fumg. H<sub>2</sub>SO<sub>4</sub> (37) or 100% H<sub>2</sub>SO<sub>4</sub> (23) (8) or CISO<sub>3</sub>H (110) (see below) yields 2-chlorotoluenesulfonic acid-5 [Beil. XI-95];  $\bar{C}$  sulfonates more readily (8) than p-chlorotoluene (3:8287) and may thus be used to separate  $\bar{C}$  from the latter (8) (111).]

D 2-Chlorotoluenesulfonamide-5 (4-chloro-3-methylbenzenesulfonamide-1): cryst. from dil. alc., m.p. 126° u.c. (110). [From C with ClSO<sub>3</sub>H as directed (110) followed by conv. of the intermediate 2-chlorotoluenesulfonyl chloride-5, cryst. from pet. ether, m.p. 63° u.c. (110), with (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>.]

3:8245 (1) Matthews, J. Am. Chem. Soc. 48, 570 (1926). (2) Wibaut, Rec. trav. chim. 32, 247 (1913). (3) Feitler, Z. physik. Chem. 4, 71-72 (1889). (4) Timmermans, Hennaut-Roland, J. chim. phys. 27, 410-411 (1930). (5) Perkin, J. Chem. Soc. 69, 1203 (1896). (6) Stuckey, Saylor, J. Am. Chem. Soc. 62, 2923 (1940). (7) Norris, Turner, J. Am. Chem. Soc. 61, 2128-2131 (1939). (8) Wahl, Normand, Vermeylen, Bull. soc. chim. (4) 31, 570-583 (1922). (9) Kohlrausch, Pongratz, Monatsh. 63, 441 (1934). (10) Timmermans, Bull. soc. chim. Belg. 36, 505 (1927).

(11) Rule, McLean, J. Chem. Soc. 1931, 689. (12) Haase, Ber. 26, 1053 (1893). (13) Linard, Bull. soc. chim. Belg. 34, 369, 393 (1925). (14) Seubert, Ber. 22, 2520 (1889). (15) Chindraux, Hels. Chim. Acta 12, 925-227 (1929). (16) Timmermans, Bull. soc. chim. Belg. 43, 633-634 (1934). (17) Marvel, McElvain, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 170-172 (1941); (1st ed.), 163-165 (1932); 3, 33-35 (1923). (18) Erdmann, Ann. 272, 145-147 (1892). (19) Behrend, Nissen, Ann. 269, 393-394 (1892). (20) Heller, Tischner, Ber. 44, 250-255 (1911).

(21) Heller, Z. angew. Chem. 23, 389-392 (1910). (22) Sandmeyer, Ber. 17, 2651 (1884).

- (23) Wynne, J. Chem. Soc. 61, 1072-1075 (1892). (24) Gattermann, Ber. 23, 1221 (1890).
  (25) Ullmann, Ber. 29, 1878, Note (1896). (26) Gasiorowski, Wayss, Ber. 18, 1939 (1885).
  (27) Neogi, Mitra, J. Chem. Soc. 1928, 1332. (28) Kuhn, Eichenberger, French 663,236, Aug. 19, 1929; Cent. 1929, II 3069. (29) Mohlau, Berger, Ber. 26, 1998 (1893). (30) Beilstein, Kuhlberg, Ann. 156, 79 (1870).
- (31) Wallach, Ann. 235, 247 (1886). (32) Autenrieth, Geyer, Ber. 41, 157 (1908). (33) McMaster, Carol, Ind. Eng. Chem. 23, 218-219 (1931). (34) Soc. Chem. Ind. Basel, Ger. 133,000, July 9, 1902; Cent. 1902, II 313-314. (35) B.A.S.F., Ger. 294,638, Oct. 16, 1916; Cent. 1916, II 860. (36) Seelig, Ann. 237, 130-131, 151-155 (1887). (37) Hübner, Majert, Ber. 6, 790-795, 1672 (1873). (38) Book, Eggert, Z. Elektrochem. 29, 521-527 (1923); Cent. 1924, I 1741. (39) Wertyporoch, Ann. 493, 163 (1932). (40) Cohen, Dawson, Crosland, J. Chem. Soc. 87, 1034-1037 (1905).
- (41) Fichter, Glantzstein, Ber. 41, 2484-2487 (1916). (42) Seyewetz, Biot, Compt. rend. 135, 1121 (1902); Bull. soc. chim. (3) 29, 221-222 (1903). (43) O. Silberiad, C. Silberiad, Parke, J. Chem. Soc. 127, 1724-1731 (1925). (44) O. Silberiad, J. Chem. Soc. 127, 2678 (1925). (45) Cohen, Dakin, J. Chem. Soc. 79, 1119-1120 (1901). (46) Barkenbus, Hopkins, Allen, J. Am. Chem. Soc. 61, 2452-2453 (1939). (47) Stoll, Bull. soc. chim. Belg. 38, 77-91 (1929). (48) Menschutkin, J. Russ. Phys.-Chem. Soc. 44, 1940 (1912), Cent 1913, I 805. (49) Busch, Stöve, Ber. 49, 1069 (1916). (50) Klages, Liccke, J. prakt. Chem. (2) 61, 322 (1900).
- (51) Clarke, Taylor, Org. Syntheses, Coll. Vol. 2 (1st ed.), 135-136 (1943); 16, 20-21 (1930). (52) Graebe, Ann. 276, 55-56 (1893). (53) Emmerling, Ber. 8, 880 (1875). (54) Maxted, Dunsby, J. Chem. Soc. 1928, 1411. (55) Maxted, Coke, Brit. 237,688, Aug. 21, 1925; Cent. 1928, I 1712. (56) Law, Perkin, J. Chem. Soc. 93, 1636 (1908). (57) Stuart, Elliot, J. Chem. Soc. 53, 803 (1888). (58) M.I.B., Ger. 174,238, Sept. 10, 1906, Cent. 1906, II 1297. (59) Craver (to Barrett Co.), Brit. 189,091, 189,097, Jan. 17, 1923; Cent. 1923, II 746. (60) Charlot, Ann. chim. (11) 2, 469-470 (1934); Bull. soc. chim. (4) 53, 577 (1933).
- (61) Gilliard, Monet, Cartier, Ger. 101,221, Sept. 23, 1897, Cent. 1899, I 960. (62) Olivier, Weber, Rec. trav. chim. 53, 881 (1934). (63) Slebodzinski, J. prakt. Chem. (2) 143, 118 (1935). (64) Cohen, Dakin, J. Chem. Soc. 79, 1117 (1901). (65) Meisenheimer, Zimmermann, von Kummer, Ann. 446, 225 (1926). (66) Shoesmith, Slater, J. Chem. Soc. 1926, 218. (67) Asinger, Lock, Monatsh. 62, 333, Note 14 (1933). (68) Erdmann, Ann. 272, 151 (1892). (69) Booth, Elsey, Burchfield, J. Am. Chem. Soc. 57, 2067 (1935). (70) Kyndes (to National Aniline and Chem. Co.), U.S. 1,733,268, Oct. 29, 1929; Cent. 1930, I 3831.
- (71) Britton (to Dow Chem. Co), U.S. 1,878,463, Sept. 20, 1932; Cent. 1933, I 311. (72)
  Scottish Dyes, Ltd., Bangham, Thomas, Brit. 308,231, April 18, 1929; Cent. 1929, II 1348.
  (73) Fox, Ber. 26, 653 (1893). (74) Cohen, Smithells, J. Chem. Soc. 105, 1910 (1941). (75)
  Varma, Sahay, J. Indian. Chem. Soc. 11, 293-294 (1934). (76) Leonaud, J. Chem. Soc. 109, 570-571 (1916). (77) Thomson, Stevens, J. Chem. Soc. 1932, 61. (78) Sampey, Fawcett, Moorehead, J. Am. Chem. Soc. 62, 1839-1840 (1940). (79) Buchheim (to Chem. Fabrik von Heyden, Ger. 616,596, Aug. 1, 1935; Cent. 1935, I 3703. (80) Claus, J. prakt. Chem. (2) 43, 356-357 (1891).
- (81) Allen, Bridgess, J. Am. Chem. Soc. 49, 1846 (1927).
  (82) Mayer, Müller, Ber. 60, 2281–2283 (1927).
  (83) Mayer (to I.G.), Ger. 515,110, Jan. 15, 1931, Cent. 1931, II 908.
  (84) Houben, Fischer, Ber. 64, 2648–2650 (1931).
  (85) Conant, Lutz, J. Am. Chem. Soc. 47, 891 (1925).
  (86) Heller, Ber. 46, 1500 (1931).
  (87) de Diesbach, Bulliard, Helv. Chim. Acta 7, 625 (1924).
  (88) I.G., French 657,245, May 18, 1929; Cent. 1930, I 130.
  (89) Heller, Schulke, Ber. 41, 3636–3637 (1908).
  (90) Ullmann, Dasgupta, Ber. 47, 556–558 (1914).
- (91) Keimatsu, Hirano, J. Pharm. Soc. Japan 49, 17-20 (1929); Cent. 1929, I 2532. (92) Kumatsu, Hirano, J. Pharm. Soc. Japan 49, 158-163 (1929); Cent. 1930, I 1303. (93) de Diesbach, Schmidt, Helv. Chrm. Acta 7, 648-650 (1924). (94) Britton (to Dow Chem. Co.), U.S. 1,996,744, April 9, 1935; Cent. 1935, II 1962. (95) Williams (to Dow Chem. Co.), U.S. 1,775,360, Sept. 9, 1930; Cent. 1931, II 1195. (96) Federal Phosphorus Co., Brit. 370,774, May 5, 1932; Cent. 1932, II 1237. (97) Booth (to Swann Rosearch, Inc.), U.S. 1,954,469, April 10, 1934; Cent. 1934, II 1846. (98) Kraus, White, J. Am. Chem. Soc. 45, 773-774 (1923). (99) Soc. Chem. Ind. Basel, Brit. 250,819, May 13, 1926; Cent. 1927, I 804. (100) Haeussermann, Ber. 34, 39-40 (1901); Haeussermann, Bauer, Ber. 31, 2988-2989 (1898).
- (101) Wibaut, Rec. trav. chim. 32, 256-286 (1913). (102) Goldschmidt, Hönig, Ber. 20, 200 (1887). (103) Green, Lawson, J. Chem. Soc. 59, 1017 (1891). (104) Ullmann, Panchaud, Ann. 359, 110-111 (1906). (105) Holleman, Rec. trav. chim. 27, 456 (1908). (105A) Ullmann, Wagner, Ann. 355, 360 (1907). (106) Borsche, Fiedler, Ber. 45, 271-272 (1912). (107) Morgan, Drew, J. Chem. Soc. 117, 784-793 (1920). (108) Morgan, Glover, J. Chem. Soc. 119, 1700-1706 (1921).

(109) Morgan, Glover, J. Chem. Soc. 125, 1597-1601 (1924). (110) Huntress, Carten, J. Am. Chem. Soc. 62, 512-513 (1940).

(111) Wahl, Brit. 159,837, March 31, 1921; French 524,537, Sept. 6, 1921; Swiss 96,185, Sept. 16, 1922; Ger. 376,634, June 5, 1923; Cent. 1921, IV 124. (112) Shreve, Marsel, Ind. Eng. Chem. 38, 254-261 (1946). (113) Lock, Stach, Ber. 76, 1253-1255 (1943).

| B.P.             |                   | F.P.       |                                 |
|------------------|-------------------|------------|---------------------------------|
| 159.5° (1)       | at 759 mm. (10)   | -69.5° (6) | $D_4^{20} = 0.8766 (10)$        |
| 159.2°           | at 750 mm. (2)    |            | 0.8725 (6)                      |
| 158.8-160.0°     | (3)               |            | $n_{\rm D}^{20} = 1.42844  (4)$ |
| 158.5-159.5°     | (4)               |            | 1.42571 (10)                    |
| 117.0-117.5° con | r. at 163 mm. (5) |            | $D_4^{15} = 0.8783  (6)$        |
| 61.4°            | at 27 mm. (6)     |            |                                 |

[For prepn. of  $\bar{C}$  from heptanol-1 (1:6240) by shaking 2 days with conc. HCl + ZnCl<sub>2</sub> in cold (60% yield (4)) see (4) (8); with PCl<sub>3</sub> + ZnCl<sub>2</sub> (70% yield), PCl<sub>5</sub> + ZnCl<sub>2</sub> (78% yield), or SOCl<sub>2</sub> + pyridine (81% yield) see (4); with SOCl<sub>2</sub> but without pyridine (80% yield) see (10); with conc. HCl in s.t. at 120–130° see (2); with HCl over Al<sub>2</sub>O<sub>3</sub> at 420–440° see (7): for formation from *n*-heptylamine + NOCl see (8): for formation during chlorination of *n*-heptane see (9).]

[For study of reaction of  $\bar{C}$  with KI in acctone see (5); for difficulty in forming R.MgCl see (1); note, however, that  $\bar{C}$  with Mg in dry ether + trace I<sub>2</sub> gives (97.5% yield (11)) RMgCl.]

D N-(n-Heptyl)tetrachlorophthalimide: lfts. from EtOH, m.p. 145-146° (12). [From C (?) or from n-heptyl bromide with K tetrachlorophthalimide (12).]

3:8250 (1) Underwood, Gale, J. Am. Chem. Soc. 56, 2117-2120 (1934). (2) Cross, Ann. 189, 3 (1877). (3) Kohlrausch, Koppl, Monatsh. 63, 268 (1933). (4) Clark, Streight, Trans. Roy. Soc. Can. (3) 23, III 77-89 (1929). (5) Conant, Hussey, J. Am. Chem. Soc. 47, 485 (1925). (6) Sherrill, J. Am. Chem. Soc. 52, 1985-1988 (1930). (7) Sabatier, Mailhe, Compt. rend. 169, 124 (1919). (8) Ssolonina, Cent. 1898, II 888. (9) Wertyporoch, Ber. 66, 737-738 (1933). (10) Vogel, J. Chem. Soc. 1943, 638, 640.

(11) Houben, Boedler, Fischer, Ber. 69, 1768, 1777 (1936). (12) Allen, Nicholls, J. Am. Chem. Soc. 56, 1409-1410 (1934).

3: 8264 METHYL 
$$d_1l_{-\alpha}$$
-CHLORO- $n$ -VALERATE C<sub>6</sub>H<sub>11</sub>O<sub>2</sub>Cl Beil. II - 302 CH<sub>3</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH.COOCH<sub>3</sub> II<sub>1</sub>--- II<sub>2</sub>---

### B.P. 160° at 764 mm. (1)

[For prepn. of  $\bar{C}$  from  $\alpha$ -chloro-n-valeronitrile with MeOH + H<sub>2</sub>SO<sub>4</sub> see (1).] 3:8264 (1) Henry, Bull. acad. roy. Belg. (3) 36, 241-262 (1898); Cent. 1898, I 194.

Cl

C4H7OCl

Beil. S.N. 25

3:8270 3-CHLOROBUTEN-2-OL-1

(2-Chlorobuten-2-ol-4; 
$$\gamma$$
-chlorocrotonyl alcohol)

B.P. 161-162° (1)

92-93° at 50 mm. (2)

92° at 50 mm. (3) (4)

78.5-79° at 25 mm. (1)

67-67.5° at 12 mm. (5)

56.5° at 9 mm. (6)

CH<sub>3</sub>—C=CH—CH<sub>2</sub>OH

$$D_4^{20} = 1.1139 (1) \quad n_D^{20} = 1.4678 \quad (1)$$

1.1128 (2)

1.4649 (2)

$$D_4^{17} = 1.1172 (5) \quad n_C^{17} = 1.4654 \quad (5)$$

$$D_4^{15} = 1.1185 (1) \quad n_D^{15} = 1.4698 \quad (1)$$

[For prepn. of  $\bar{C}$  from 1,3-dichlorobutene-2 (3:5550) by hydrolysis with steam (6), or aq. alk. (4) (6), or aq.  $K_2CO_3$  (2), aq.  $Na_2CO_3$  (70-80% yield (3)) or  $CaCO_3$  (5) see indic. refs.; note that the ether corresp. to  $\bar{C}$  (see below) is always formed as a by-product (4) and also that alc. KOH does not yield  $\bar{C}$  but the corresponding ethers (see below); for prepn. of  $\bar{C}$  from 1-bromo-3-chlorobutene-3 ("chloroprene hydrobromide") by refluxing 2 hrs. with aq.  $Na_2CO_3$  (80% yield) see (1).]

C refluxed with 16% H<sub>2</sub>SO<sub>4</sub> yields (2) methyl vinyl ketone.

Ethers of  $\tilde{C}$ . Di-(3-chlorobuten-2-yl-1) ether: from  $\tilde{C}$  in aq. KOH by addn. of 1 mole 1,3-dichlorobutene-2 (3:5550) (80-90% yield (3)) (4); b.p. 142° at 50 mm., (3) (4)  $D_{20}^{20} = 1.171$  (3), 1.1171 (4);  $n_D^{20} = 1.4860$  (3) (4).

Methyl 3-chlorobuten-2-yl-1 ether: from 1,3-dichlorobutene-2 (3:5550) with MeOH + alk. (7), b.p. 125-126° (7).

Ethyl 3-chlorobuten-2-yl-1 ether: from 1,3-dichlorobutene-2 (3:5550) with excess conc. alk. EtOH (80-90% yield (3)) (4) (7); b.p.  $143^{\circ}$  (3) (4),  $88-89^{\circ}$  at 129 mm. (7),  $62-64^{\circ}$  at 40 mm. (3) (4);  $D_2^{40} = 0.9788$  (7),  $D_{20}^{20} = 0.9729$  (3) (4);  $n_D^{20} = 1.4392$  (7), 1.4382 (3) (4).

Phenyl 3-chlorobuten-2-yl-1 ether: from 1,3-dichlorobutene-2 (3:5550) with alk. + phenol (7); b.p. 94° at 1 mm.,  $D_4^{20} = 1.1080$ ,  $n_D^{20} = 1.5378$  (7).

Esters of  $\bar{C}$ . 3-Chlorobuten-2-yl-1 acetate: from  $\bar{C}$  with AcCl (1); b.p. 80.5-81.5° at 25 mm.  $D_4^{20} = 1.1029$ ,  $n_D^{20} = 1.4495$  (1).

 $\bar{C}$  readily adds Br<sub>2</sub> yielding (1) 2,3-dibromo-3-chlorobutanol-1, b.p. 111-112.5° at 10 mm.,  $D_4^{20} = 2.0058$ ,  $n_D^{20} = 1.5544$  (1).

- **3-Chlorobuten-2-yl-1** N- $(\alpha$ -naphthyl)carbamate: cryst. from lgr., m.p. 107-108° (5).
- 3-Chlorobuten-2-vl-1 3.5-dinitrobenzoate: m.p. 72-73° (6).

3:8270 (1) Petrov, J. Gen. Chem. (U.S.S.R.) 10, 1418-1424 (1940); C.A. 35, 3593 (1941). (2) Churbakov, J. Gen. Chem. (U.S.S.R.) 10, 977-980 (1940); C.A. 35, 2469 (1941). (3) Klebanskii, Chevuichalova, Sintet. Kauchuk 1935, No. 6, 16-21; Cent. 1936, I 1975; C.A. 30, 1024 (1936). (4) Klebanskii, Tzyurikh, Dolgopol'skii, Bull. acad. sci. (U.S.S.R.) 1935, No. 2, 189-226; Cent. 1935, II 3844; C.A. 30, 1259 (1936) (full English translation in Rubber Chem. Tech. 9, 383-408 (1936)). (5) Tishchenko, J. Gen. Chem. (U.S.S.R.) 7, 658-662 (1937); Cent. 1937, II 371; C.A. 31, 5754 (1937). (6) Collins (to du Pont), U.S. 2,192,299, Mar. 5, 1940; C.A. 34, 4392 (1940). (7) Berchet (to du Pont), U.S. 2,079,758, May 11, 1937; Cent. 1937, II 2597; C.A. 31, 4676 (1937).

CHa

C<sub>7</sub>H<sub>7</sub>Cl

Beil. V - 291

3:8275 m-CHLOROTOLUENE

B.P. F.P. 162.2° at 756.5 mm. (1) 
$$-48.0^{\circ}$$
 (7)  $D_4^{20} = 1.07218$  (9)  $D_4^{18.7} = 1.0760$  (10)  $D_4^{18.7} = 1.0797$  (10)  $D_4^{18.9} = 1.0797$  (10)  $D_4^{18.9} = 1.0797$  (10)  $D_4^{18.9} = 1.0797$  (10)  $D_4^{18.9} = 1.0797$  (10)

[For prepn. of  $\tilde{C}$  from *m*-toluidine [Beil. XII-853, XII<sub>1</sub>-(397)] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. (yields: 86% (46), 80% (11)) (12) (13) or CuH (35% yield (48)) see indic. refs.; from 3-chloro-4-aminotoluene [Beil. XII-989, XII<sub>1</sub>-(436)] via diazotization followed by boilg. with alc. (60% yield (14)) or conversion to corresp. hydrazine and subsequent oxidn. with CuSO<sub>4</sub> (50% yield (15)) see indic. refs.; from 5-chloro-2-aminotoluene [Beil. XII-835] with alc. H<sub>2</sub>SO<sub>4</sub> + ethyl nitrite (1) or by diazotization, reduction to the corresp. hydrazine, and oxidn. of latter with CuSO<sub>4</sub> (43–63% yield (15)) see indic. refs.: for formn. of  $\tilde{C}$  from 1-methylcyclohexanone-3 by conversion with PCl<sub>5</sub> to 3-chloro-1-methylcyclohexane-x, treatment with Br<sub>2</sub>, and boilg. with quinoline see (16); from 3-chloro-1-methylcyclohexadiene-1,3 [Beil. V-116] by conv. to dibromide and boilg. with quinoline see (17), from *m*-cresol (1:1730) with PCl<sub>5</sub>, or from tri-(*m*-tolyl) phosphate at 210° see (18): for study of formn. of  $\tilde{C}$  by partial rearr. with AlCl<sub>3</sub> of o-chlorotoluene (3:8245) or p-chlorotoluene (3:8287) see (2).]

 $[\bar{C} \text{ with } H_2 \text{ in pres. of } Pd/CaCO_3 \text{ in alc./alk. soln. loses all its chlorine as HCl (19); <math>\bar{C} \text{ with } H_2 \text{ in pres. of } Pt \text{ in AcOH loses } HCl, \text{ but no quant. data are given (20).}]$ 

[C with Cl<sub>2</sub> in pres. of Al/Hg yields (21) both 2,5-dichlorotoluene (3:6245) and 3,4-dichlorotoluene (3:6355) but no trace of any other isomers.]

[ $\bar{\mathbb{C}}$  with Br<sub>2</sub> in CCl<sub>4</sub> at 60-80° in bright light (22) (23) or in CS<sub>2</sub> (23) or  $\bar{\mathbb{C}}$  at 130° with Br<sub>2</sub> directly (24) gives (55% yield (22)) m-chlorobenzyl bromide, m.p. 15-15.5°, b.p. 103-105° at 8 mm. (22), b.p. 108-111° at 10 mm. (24),  $D_{25}^{25} = 1.5652$  (22);  $\bar{\mathbb{C}}$  with Br<sub>2</sub> in CCl<sub>4</sub> in pres. of Al/Hg (25) or  $\bar{\mathbb{C}}$  with Br<sub>2</sub> in AcOH in pres. of HNO<sub>3</sub> or HNO<sub>3</sub>/H<sub>2</sub>SO<sub>4</sub> (26) gives both 6-bromo-3-chlorotoluene, b.p. 120-125° at 15 mm. (26), 100-103° at 15 mm. (25) (note disagreement!), and 4-bromo-3-chlorotoluene, b.p. 90-93° at 12 mm. (26).] — [ $\bar{\mathbb{C}}$  with Br<sub>2</sub> in pres. of Be yields (27) x,y-dibromo-3-chlorotoluene, m.p. 96.5°.]

[ $\tilde{C}$  with AlCl<sub>3</sub> + HCl gas as directed undergoes partial rearr. (2) to both o-chlorotoluene (3:8245) and p-chlorotoluene (3:8287); for anal. of mixtures of the three isomers see (2).]

[Č with  $AcCl + AlCl_3$  in  $CS_2$  gives (60% yield (28)) 3-chloro-4-acetyltoluene (2-chloro-4-methylacetophenone), b.p. 260–262° at 760 mm. (28), b.p. 120–126° at 14 mm. (29), accompanied (29) by some of the isomeric 3-chloro-6-acetyltoluene (4-chloro-2-methylacetophenone), b.p. 120–122° at 14 mm. (29). — Č with chloroacetyl chloride (3:5235) +  $AlCl_3$  in  $CS_2$  gives (70% yield (33)) 3-chloro-6-(chloroacetyl)toluene (ω,4-dichloro-2-methylacetophenone, m.p. 90° (33). — Č with β-chloropropionyl chloride (3:5690) +  $AlCl_3$  in  $CS_2$  gives (87% yield (50)) (30) 3-chloro-6-(β-chloropropionyl)toluene which on ring closure with conc.  $H_2SO_4$  gives (50) (30) 5-chloro-7-methylindanone-1, m.p. 71° (50) (30). — Č with biphenyl-4,4'-bis-(carboxylic acid chloride) +  $AlCl_3$  yields (31) 4,4'-bis-(4-chloro-2-methylbenzoyl)-biphenyl (used in prepn. of bis-anthraquinonyl derivs.).]

[Č with trichloroacetonitrile + AlCl<sub>3</sub> as directed (32) yields 4-chloro-2-methylbenzoic acid (3:4700).]

[For study of system: C + SbCl<sub>3</sub> see (7).]

[ $\bar{C}$  with NH<sub>3</sub> + cat. as directed (34) (35) yields *m*-toluidine;  $\bar{C}$  with aq. NaOH in pres. of Cu at 300-400° under press. yields (51) mixt. of o-cresol (1:1400), *m*-cresol (1:1730), and *p*-cresol (1:1410).]

[ $\bar{C}$  on mononitration, e.g., with 4 pts. HNO<sub>3</sub> (D=1.52) at 0°, gives a mixt. contg. (36) cf. (37) (13) (38) 59% 3-chloro-6-nitrotoluene [Beil. V-327, V<sub>1</sub>-(162)], m.p. 24.9°, + 32% 3-chloro-4-nitrotoluene [Beil. V-329, V<sub>1</sub>-(163)], m.p. 24.2°, + 9% 3-chloro-2-nitrotoluene [Beil. V-327, V<sub>1</sub>-(162)], m.p. 23.4°. —  $\bar{C}$  on dinitration, e.g., with mixt. of 2 wt. pts. HNO<sub>3</sub> (D=1.52) + 3 wt. pts. conc. H<sub>2</sub>SO<sub>4</sub> at room temp. for 12–18 hrs. (13), gives (95.8% yield (13)) 3-chloro-4,6-dinitrotoluene [Beil. V-344, V<sub>1</sub>-(168)], cryst. from alc. or lgr., m.p. 91° (13) (38) (39), 90–90.5° (52) (note that the isomeric 3-chloro-2,6-dinitrotoluene [Beil. V<sub>1</sub>-(168)] (40), m.p. 77° (40), and 3-chloro-2,4-dinitrotoluene, m.p. 92° (41), are also known but prepd. by indirect means). —  $\bar{C}$  on trinitration, e.g., by refluxing with 3 pts. HNO<sub>3</sub> (49.4°Bé) + 3 pts. H<sub>2</sub>SO<sub>4</sub> (66°Bé) at 160° (42), yields 3-chloro-2,4,6-trinitrotoluene [Beil. V-349], cryst. from C<sub>6</sub>H<sub>6</sub> + lgr., m.p. 150–151° (52), 148.5° (42).]

[ $\bar{C}$  with Na followed by CO<sub>2</sub> as directed gives (yields: 88% (43A), 58% (43B)) *m*-toluic acid (1:0705), m.p. 110-111°, also obtd. in small yield (44) from  $\bar{C}$  + alc. KCN in pres. of NiCl<sub>2</sub>, htd. in s.t. at 260-270° for 20 hrs.]

[ $\bar{C}$  with  $CrO_2Cl_2$  gives a cpd. which with aq. gives (44.5% yield (45)) *m*-chlorobenzaldehyde (3:6475).]

 $\tilde{C}$  on oxidn. with  $K_2Cr_2O_7 + H_2SO_4$  (14), with 5% aq. KMnO<sub>4</sub> (11) (46) or with dil. HNO<sub>3</sub> in s.t. at 130-140° for 10 hrs. (15) gives (75% yield (46)) *m*-chlorobenzoic acid (3:4392).

3:8275 (1) Feitler, Z. physik. Chem. 4, 73-76 (1889). (2) Norris, Turner, J. Am. Chem. Soc. 61;
2128-2131 (1939). (3) Kohlrausch, Pongratz, Monatsh. 63, 441 (1934). (4) Stuckey, Saylor, J. Am. Chem. Soc. 62, 2923 (1940). (5) Wibaut, Rec. trav. chim. 32, 286 (1913). (6) Rule, McLean, J. Chem. Soc. 1931, 689. (7) Menschutkin, J. Russ. Phys.-Chem. Soc. 44, 1940 (1912);
Cent. 1913, I 805. (8) Haase, Ber. 26, 1053 (1893). (9) Seubert, Ber. 22, 2520, 2522 (1889).
(10) von Auwers, Ann. 422, 164 (1921).

(11) Bornwater, Holleman, Rec. trav. chim. 31, 223-224 (1912). (12) Wibaut, Rec. trav. chim. 32, 286 (1913). (13) Réverdin, Crépieux, Ber. 33, 2505-2507 (1900). (14) Wroblewski, Ann. 168, 200 (1873). (15) Wynne, J. Chem. Soc. 61, 1047-1049, 1058-1059 (1892). (16) Klages, Ber. 32, 2567-2569 (1899). (17) Klages, Knoevenagel, Ber. 27, 3021-3023 (1894). (18) Autenrieth, Geyer, Ber. 41, 156-157 (1908). (19) Busch, Stove, Ber. 49, 1069 (1916). (20) Willstatter, Hatt, Ber. 45, 1477 (1912).

Cohen, Dakin, J. Chem. Soc. 79, 1117-1118 (1901). (22) Jenkins, J. Am. Chem. Soc. 55, 2897 (1933). (23) Sampey, Fawcett, Morehead, J. Am. Chem. Soc. 62, 1839-1840 (1940). (24) Thomson, Stevens, J. Chem. Soc. 1932, 62. (25) Cohen, Smithells, J. Chem. Soc. 165, 1911-1912 (1914). (26) Varma, Sahay, J. Indian Chem. Soc. 11, 293-294 (1934). (27) Pajeau, Compt. rend. 262, 1796 (1936). (28) Ganguly, LeFevre, J. Chem. Soc. 1934, 851. (29) Mayer, Albert, Sohön, Ber. 65, 1297-1299 (1932). (30) Mayer (to I.G.), Ger. 515,110, Jan. 15, 1931; Cent. 1931, 11 908.

(31) I.G., Brit. 394,995, Aug. 3, 1933; Cent. 1933, II 2753. (32) Houben, Fischer, Ber. 64, 2649 (1931). (33) Kunckell, Ber. 41, 2648 (1908). (34) Federal Phosphorus Co., Brit. 370,774, May 5, 1932; Cent. 1932, II 1237. (35) Booth (to Swann Research, Inc.), U.S. 1,954,469, April 10, 1934; Cent. 1934, II 1846. (36) Wibaut, Rec. trav. chim. 32, 286-309 (1913). (37) Fry, J. Am. Chem. Soc. 38, 1327-1333 (1916). (38) Réverdin, Crépieux, Bull. soc. chim. (3) 23, 838-839 (1900). (39) Sane, Joshi, J. Indian. Chem. Soc. 5, 300 (1928). (40) Lindemann, Pabst, Ann. 462, 43 (1928).

(41) Brady, Bowman, J. Chem. Soc. 119, 896-897 (1921). (42) Réverdin, Dresel, Déletra,

Ber. 37, 2094-2095 (1904); Bull. soc. chim. (3) 31, 633 (1904). (43A) Morton, LeFevre, Hechenbleikner, J. Am. Chem. Soc. 58, 754-755 (1936). (43B) Morton, Stevens, J. Am. Chem. Soc. 53, 4031-4032 (1931). (44) Siebodzinski, J. prakt. Chem. (2) 143, 119 (1935). (45) Law, Perkin, J. Chem. Soc. 93, 1636 (1908). (46) Koopal, Rec. trav. chim. 34, 144 (1915). (47) Huntress, Carten, J. Am. Chem. Soc. 62, 512-513 (1940). (48) Neogi, Mitra, J. Chem. Soc. 1928, 1332. (49) I.G., Brit. 281,290, Nov. 22, 1927; French 644,319, Oct. 5, 1928; Cent. 1929, II 352. (50) Mayer, Müller, Ber. 60, 2281-2283 (1927).

(51) Britton (to Dow Chem. Co.), U.S. 1,996,744, April 9, 1935; Cent. 1935, II 1962. (52) Qvist, Moilanen, Acta Acad. Aboensis, Math. et Phys. 14, No. 3, 9 pp. (1943); Cent. 1943, II 1268-

1269; C.A. 38, 5491 (1944).

```
3-CHLOROPROPANOL-1
3:8285
                                              CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>OH
                                                                      C<sub>3</sub>H<sub>7</sub>OCl
                                                                                    Beil. I - 356
            (Trimethylene chloro-
                                                                                           I<sub>1</sub>-(180)
            hydrin, y-chloro-n-
                                                                                           I<sub>2</sub>-(370)
            propyl alcohol)
  B.P.
                                                       D_4^{20} = 1.1318 \quad (9)
                                                                               n_{\rm D}^{20} = 1.44693 (2)
  160-162° cor.
                                    (1) (10)
  160.0-160.3° at 734.1 mm.
                                    (2)
                                                               1.1309 (2)
                                                                                      1.4469 (9)
  158.6-161.0° at
                        734 mm.
                                                               1.1262 (7)
                                                                                      1.448
                                                                                                  (7)
  158-159°
                                    (4)
                                                       D_4^{18} = 1.129 \quad (10)
  74-76°
                          23 mm.
                                   (5)
  66.0-66.2°
                   at
                          16 mm.
                                    (6)
  63-64°
                          16 mm. (7)
                   at
  64-66°
                   at
                          14 mm. (77)
  60-64°
                   at
                          10 mm. (8)
  53°
                           6 mm. (2)
                   at
```

Colorless oil with agreeable odor; undergoes partial decompn. on distn. at ord. press. — Very sol. aq. but not miscible with it.

[For prepn. of  $\bar{C}$  from propanediol-1,3 (trimethylene glycol) (1:6490) with HCl gas (50-60% yield (8)) (4) (7) (11) (12) (13) (1), with conc. HCl (yield: 34% (14), 28% (15), 15% (16)) (some 1,3-dichloropropane and other prods. are also formed), with SOCl<sub>2</sub> (50-60% yield (77)), or with  $S_2Cl_2$  (yields: 68% (5), 60% (16)) (17) see indic. refs.; for formn. of  $\bar{C}$  from  $\gamma$ -chloro-n-propyl acetate (see below) by alcoholysis with MeOH/HCl (85% yield (18)) or from  $\gamma$ -chloro-n-propyl trichloroacetate (9) by hydrol. with aq. KOH at 35° (9) see indic. refs.; for manuf. from ethylene + formaldehyde + HCl + ZnCl<sub>2</sub> see (19).]

 $\bar{C}$  on oxidn. with conc. HNO<sub>3</sub> gives (yields: 78-79% (20), 54-56% (21), 30-40% (13))  $\beta$ -chloropropionic acid (3:0460) (note that the presumably intermediate  $\beta$ -chloropropionaldehyde (3:5576) is best obtd. by other means).

[ $\bar{C}$  with HBr gas (22), on distn. with 48% HBr (yield: 75–85% (22), 40% (11)), with HBr + H<sub>2</sub>SO<sub>4</sub> (yield: 89% (23)), or with PBr<sub>3</sub> (94% yield (11)) gives 1-bromo-3-chloropropane (trimethylene chlorobromide) [Beil. I-109, I<sub>1</sub>-(36), I<sub>2</sub>-(75)], b.p. 142–145°,  $D_{25}^{25}$  = 1.4718 (24),  $n_{25}^{25}$  = 1.4732 (24); for study of rate of reactn. of  $\bar{C}$  with HBr in phenol see (25).]

[ $\bar{C}$  refluxed with  $\frac{1}{2}$  wt. conc. H<sub>2</sub>SO<sub>4</sub> gives (10–15% yield (26)) bis-( $\gamma$ -chloro-n-propyl) ether, b.p. 215° at 745 mm.,  $D_{20}^{20} = 1.140$  (26). —  $\bar{C}$  with SO<sub>2</sub>Cl<sub>2</sub> gives (68% yield (27))  $\gamma$ -chloro-n-propyl chlorosulfonate, b.p. 85° at 4 mm.,  $D_{20}^{02} = 1.456$  (27). —  $\bar{C}$  with SOCl<sub>2</sub> gives (70% yield (27)) sym.-bis-( $\gamma$ -chloro-n-propyl) sulfite, b.p. 161–162° at 13 mm.,  $D_{10}^{10} = 1.313$  (27).]

[ $\bar{\mathbf{C}}$  with COCl<sub>2</sub> (3:5000) directly (28) or in toluene (29) gives (43% yield (29))  $\gamma$ -chloro-n-propyl chloroformate (3:6895);  $\bar{\mathbf{C}}$  with trichloroacetic acid (3:1150) gives (57% yield (9))  $\gamma$ -chloro-n-propyl trichloroacetate, b.p. 107° at 8 mm.,  $D_4^{15} = 1.4732$ ,  $n_D^{15} = 1.4830$  (9); for formn, of other esters (as derivs.) see below.]

[Other reactns. involving only the OH group of  $\tilde{C}$  include the following:  $\tilde{C}$  with acetylene + BF<sub>3</sub> + HgO gives (38% yield (30)) ethylidene bis-( $\gamma$ -chloro-n-propyl)acetal, b.p. 127-129° at 14 mm. (30);  $\tilde{C}$  with benzonitrile + HCl gas in ether gives (31)  $\gamma$ -chloro-n-propyl iminobenzoate hydrochloride;  $\tilde{C}$  with  $\beta$ -acetobromglucose + Ag<sub>2</sub>CO<sub>3</sub> yields (32) tetra-acetyl- $\beta$ -d-( $\gamma$ -chloro-n-propyl)glucoside, m.p. 74° (for extension to prepn. of corresp. xyloside, galactoside, and lactoside see (32)).]

[Č with solid KOH loses HCl on htg. giving (16) (7) (10) (1) 1,3-epoxypropane (trimethylene oxide) [Beil. XVII-6, XVII<sub>1</sub>-(3)], b.p. 47.8° at 760 mm.,  $D_4^{25} = 0.8930$ ,  $n_D^{24} = 1.3897$  (16) (for study of rate of reactn. see (33)).]

[ $\bar{C}$  with NaOEt in abs. alc. reacts vigorously giving (38% yield (34)) ethyl  $\gamma$ -hydroxy-n-propyl ether (trimethylene glycol monoethyl ether) [Beil. I-476, I<sub>1</sub>-(247)], b.p. 160-161° (34), 162.1-162.2°,  $D_4^{20} = 0.91691$ ,  $n_D^{20} = 1.41666$  (35), accompanied by some trimethylene glycol diethyl ether, b.p. 140° (34). —  $\bar{C}$  with NaSH as directed gives (70-80% yield (34))  $\gamma$ -hydroxy-n-propyl mercaptan, b.p. 85-90° at 15 mm. (Hg mercaptide = Hg (SCH<sub>2</sub>CH<sub>2</sub>-CH<sub>2</sub>OH)<sub>2</sub>, pl. from butanol, m.p. 132-134° (36). —  $\bar{C}$  with aq. Na<sub>2</sub>S gives (36) bis-( $\gamma$ -hydroxy-n-propyl) sulfide, visc. oil which could be neither distd. nor crystd. but which with phenyl isocyanate gave the corresp. bis-(phenylcarbamate), m.p. 146-148° (36). —  $\bar{C}$  with NaSCH<sub>3</sub> in ether gives (76% yield (42))  $\gamma$ -hydroxy-n-propyl methyl sulfide, b.p. 105-105.5° at 30 mm. (42). —  $\bar{C}$  with benzyl mercaptan in alc. gives (88% yield (43)) benzyl  $\gamma$ -hydroxy-n-propyl sulfide, b.p. 185° at 19 mm. (43).]

[ $\bar{C}$  in alk. medium reacts with phenols yielding corresp. subst. alcohols; e.g.,  $\bar{C}$  with phenol + alc. NaOEt (75% yield (37)) or  $\bar{C}$  + phenol + aq. NaOH (80% yield (38) (39)) gives 3-phenoxypropanol-1, b.p. 158-160° at 25 mm.,  $n_D^{2D} = 1.491$  (37) which with ZnCl<sub>2</sub> at 215° loses aq. and ring-closes (37) to chromane [Beil. XVII-52, XVII<sub>1</sub>-(22)]; for corresp. reactn. with o-cresol (40), with m-cresol (41), p-cresol (41),  $\beta$ -naphthol (40), or resorcinol (40) see indic. refs.]

[ $\bar{\mathbf{C}}$  with prim. or sec. amines splits out HCl yielding corresp. subst. aminoalcohols: e.g., for reactn. of  $\bar{\mathbf{C}}$  with aniline + anhydrous Na<sub>2</sub>CO<sub>3</sub> giving (67.5% yield) 3-(N-phenylamino)propanol-1 (N-(γ-hydroxy-n-propyl)aniline), b.p. 192° at 30 mm.,  $D_{20}^{20} = 1.063$ ,  $n_{20}^{20} = 1.502$ , see (44); for analogous reactn. of  $\bar{\mathbf{C}}$  with p-toluidine see (45); for  $\bar{\mathbf{C}}$  with actetrahydro-β-naphthylamine see (46); for  $\bar{\mathbf{C}}$  with various sym. aliphatic sec. amines see (47) (55); for  $\bar{\mathbf{C}}$  with morpholine giving (75% yield) 3-(morpholino)propanol-1, b.p. 147–149° at 21 mm.,  $n_{20}^{20} = 1.4743$ ,  $n_{20}^{20} = 1.4762$ , see (76); for  $\bar{\mathbf{C}}$  with piperidine see (48) (56).] — [ $\bar{\mathbf{C}}$  with ter-amines yields corresp. quat. ammon. salts: e.g.,  $\bar{\mathbf{C}}$  with (CH<sub>3</sub>)<sub>3</sub>N in C<sub>6</sub>H<sub>6</sub> in s.t. at 100° for 8 hrs. gives (92% yield (49)) γ-homocholine chloride, m.p. 173° (49);  $\bar{\mathbf{C}}$  with pyridine gives (85% yield (50)) γ-hydroxy-n-propyl pyridinium chloride, oil.] — [For reactn. of  $\bar{\mathbf{C}}$  with arsanlic acid (p-aminobenzenearsonic acid) (51), with p-hydroxy-benzenearsonic acid (52), with ethyl β-methylaminopropionate (53), or with various carbazole derivs. (54) see indic. refs.]

[Č with 1 mole thiourea htd. at 120–125° yields (57) S-( $\gamma$ -hydroxy-n-propyl)isothiourea hydrochloride, cryst. from butanol, m.p. 130° (57); Č with dry sodium p-toluenesulfonamide htd. at 160–170° for 18 hrs. yields (58) N-( $\gamma$ -hydroxy-n-propyl)-p-toluenesulfonamide as an oil.]

[For study of rate of reactn. of  $\bar{C}$  with KI in acetone at 35° and 45° see (39); for reactn. of  $\bar{C}$  with Na<sub>3</sub>AsO<sub>3</sub> see (5).]

<sup>----</sup> γ-Chloro-n-propyl acetate [Beil. II<sub>1</sub>-(48), II<sub>2</sub>-(139)]: liq., b.p. 168-169° (59), 165-166° (60), 88-90° at 22 mm. (61), 66° at 14 mm. (17), 62-63° at 10 mm. (7)  $D_{21}^{21} = 1.1105$  (7);  $n_D^{21} = 1.431$  (7). [From  $\ddot{C}$  + AcCl (yields: 90% (60), 87% (16)) (7) (62), from 1,3-dichloropropane (3:5450) with AgOAc (53% yield (61)), or from

- trimethylene glycol (1:6490) with  $Ao_2O + S_2Cl_2$  (68% yield (17)).]—[This acetate with solid KOH loses HOAc giving (16) (7) (61) 2,3-epoxypropane (trimethylene oxide) (see above).]
- ——  $\gamma$ -Chloro-n-propyl benzoate: oil, b.p. 154-156° at 22 mm. (31), 155-156° at 15 mm. (4), 133-134° at 2 mm. (39),  $D_4^{22} = 1.1672$  (31),  $n_D^{20} = 1.5136$  (31). [From  $\ddot{\mathbf{C}}$  + BzCl (yields: 84% (39), 75% (4)) or from  $\gamma$ -chloro-n-propyl iminobenzoate hydrochloride (see above) by hydrol. (31).] [For reactn. of this ester with pyrrolidine (63), pyrroline (63), piperidine (56), subst. piperidines (64) (65) (68), hydrogenated quinolines (66), or with N-methyl-phenyl-alkylamines (67) see indic. refs.]
- ——  $\gamma$ -Chloro-n-propyl p-nitrobenzoate: oil, b.p. 168.5–169.5° at 2 mm.,  $D_{25}^{25} = 1.3222$ ,  $n_{D}^{25} = 1.54736$  (67). [From  $\tilde{C} + p$ -nitrobenzoyl chloride on htg. (67).]
- $\bigcirc$   $\gamma$ -Chloro-n-propyl 3,5-dinitrobenzoate: colorless pl. from lt. pet., m.p. 77° (17). [From  $\bar{C} + 3,5$ -dinitrobenzoyl chloride (17).]
- γ-Chloro-n-propyl hydrogen phthalate: unreported.
- ---- γ-Chloro-n-propyl hydrogen 3-nitrophthalate: unreported.
  - —— γ-Chloro-n-propyl benzenesulfonate: unreported.
- ---- γ-Chloro-n-propyl p-toluenesulfonate: oil, b.p.  $216-219^{\circ}$  at 17 mm. (69),  $188-192^{\circ}$  at 5 mm. (24),  $D_4^{20} = 1.2674$  (69),  $D_2^{25} = 1.2396$  (24),  $D_D^{20} = 1.5230$  (69),  $D_D^{21} = 1.5225$  (24). [From  $\bar{C} + p$ -toluenesulfonyl chloride on htg. (69) or with aq. NaOH at 15° (50-55% yield (24)).]—[For reactn. of this ester with RMgX cpds. see (69) (24), with various sodium acetylenes see (70).]
- γ-Chloro-n-propyl carbamate: pearly cryst. from hot. aq., m.p. 62° (29). [From C with urea nitrate (2 moles) on htg. at 130-135° (16% yield (29)) or from γ-chloro-n-propyl chloroformate (3:6010) with conc. aq. NH<sub>4</sub>OH (29).]
- —— γ-Chloro-n-propyl N-(phenyl)carbamate: ndls. from alc., m.p. 38° (29), m.p. 35-36° (28), b.p. 190° at 3.5 mm. (28). [From C̄ + phenyl isocyanate at 150° (29) or from γ-chloro-n-propyl chloroformate (3:6010) with aniline (29).]
- $\bigcirc$   $\gamma$ -Chloro-n-propyl N-( $\alpha$ -naphthyl)carbamate. cryst. from hot lgr., m.p. 76° (71) (17), 76.5° (9), 75.5–76.5° (28). [From  $\ddot{C} + \alpha$ -naphthyl isocyanate (71).]
- ①  $N-(\gamma-Hydroxy-n-propyl)$ phthalimide [3-(N-phthalimido)propanol-1] [Beil. XXI-472]: cryst. from aq., m.p. 75°-(72), 74° (73), 88° (74). [From  $\bar{C}$  + K phthalimide at 190° (73); also indirectly as cited in other indicated refs.]
- N-(γ-Hydroxy-n-propyl)tetrachlorophthalimide [3-(N-tetrachlorophthalimido)propanol-1)]: pr. from acetone, m.p. 165–166° (75). [From C with K tetrachlorophthalimide as directed (75).]
- 3:8285 (1) Reboul, Ann. chim. (5) 14, 493-496 (1878). (2) Karvonen, Ann. Acad. Sci. Fennicae A-3, No. 7, 1-103; Cent. 1912, II 1271; C.A. 14, 2175-2176 (1920); Ann. Acad. Sci. Fennicae A-5, No. 6, 120. (3) Kohlrausch, Ypsilanti, Z. physik. Chem. B-32, 414 (1936). (4) Zaki, J. Chem. Soc. 1930, 2271. (5) Gough, King, J. Chem. Soc. 1928, 2439. (6) Smyth, Walls, J. Am. Chem. Soc. 54, 2263 (1932). (7) Lespieau, Bull. soc. chim. (5) 7, 254-255 (1940). (8) Marvel, Calvery, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 533-535 (1941); (1st ed.), 519-521 (1932); 8, 112-115 (1928). (9) Gayler, Waddle, J. Am. Chem. Soc. 63, 3358-3359 (1941). (10) Ipatov, J. Russ. Phys.-Chem. Soc. 46, 64 (1914); Cent. 1914, I 2161.
- (11) Cloke, Anderson, Lachmann, Smith, J. Am. Chem. Soc. 53, 2793-2794 (1931). (12) Smith, Wode, Widhe, Z. physik. Chem. 130, 164 (1927). (13) Rojahn, Ber. 54, 3116-3117 (1921). (14) Hultman, Davis, Clarke, J. Am. Chem. Soc. 43, 369-370 (1921). (15) Norris, Mulliken, J. Am. Chem. Soc. 42, 2095-2096 (1920). (16) Derick, Bissell, J. Am. Chem. Soc. 38, 2481-2486 (1916). (17) Bennett, Heathcoat, J. Chem. Soc. 1929, 269-271. (18) Henry, Bull. acad. roy. Belg. 1906, 732-740 (1907); Cent. 1907, I 1314. (19) I.G., Brit. 465,467, June 3, 1937; French 812,292, May 4, 1937; Cent. 1937, II 1445. (20) Powell, Huntress, Hershberg, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 168-169 (1941).
  - (21) Powell, Org. Syntheses, Coll. Vol. 1 (1st. ed.), 162-163 (1932); 8, 58-59 (1928); J. Am. Chem.

Soc. 46, 2879 (1924). (22) Allen, Org. Syntheses, Coll. Vol. 2 (2nd ed.), 157, Note 2 (1941); Coll. Vol. 1 (1st ed.), 150-151, Note 2 (1932); 8, 53, Note 2 (1928). (23) Kamm, Marvel, J. Am. Chem. Soc. 42, 307 (1920). (24) Rossander, Marvel, J. Am. Chem. Soc. 50, 1493-1494 (1928). (25) Bennett, Reynolds, J. Chem. Soc. 1935, 134. (26) Kamm, Newcomb, J. Am. Chem. Soc. 43, 2228-2229 (1921). (27) Levaillant, Compt. rend. 197, 336 (1933). (28) Pierce, Adams, J. Am. Chem. Soc. 45, 791-793 (1923). (29) Dox, Yoder, J. Am. Chem. Soc. 45, 725 (1923). (30) Nieuwland, Vogt, Foohey, J. Am. Chem. Soc. 52, 1020-1022 (1930).

(31) Cloke, Keniston, J. Am. Chem. Soc. 60, 129-130 (1938). (32) Coles, Dodds, Bergeim, J. Am. Chem. Soc. 60, 1021-1022 (1938). (33) Petrenko-Kritschenko, Konschin, Ann. 342, 56 (1905). (34) Rojahn, Lemme, Arch. Pharm. 263, 617, 619 (1925). (35) Karvonen, Ann. Acad. Sci. Fennicae A-10, No. 9, p. 7. (36) Bennett, Hock, J. Chem. Soc. 127, 2673 (1925). (37) Rindfusz, J. Am. Chem. Soc. 41, 668-669 (1919). (38) Powell, J. Am. Chem. Soc. 45, 2709-2710 (1923). (39) Kirner, J. Am. Chem. Soc. 48, 2745-2751 (1926). (40) Rindfusz, Ginnings.

Harnack, J. Am. Chem. Soc. 42, 160-165 (1920).

(41) Powell, Johnson, J. Am. Chem. Soc. 46, 2862-2863 (1924). (42) Kirner, J. Am. Chem. Soc. 50, 2452 (1928). (43) Rothstein, J. Chem. Soc. 1934, 686. (44) Rindfusz, Harnack, J. Am. Chem. Soc. 42, 1723 (1920). (45) Davis, Brewster, Blair, Thompson, J. Am. Chem. Soc. 44, 2640-2641 (1922). (46) Coles, Lott, J. Am. Chem. Soc. 58, 1989 (1936). (47) Burnett, Jenkins, Peet, Dreger, Adams, J. Am. Chem. Soc. 59, 2249-2250 (1937). (48) Brill, J. Am. Chem. Soc. 47, 1135 (1925). (49) Major, Cline, J. Am. Chem. Soc. 54, 244-247 (1932). (50) Barnes, Adams, J. Am. Chem. Soc. 49, 1312 (1927).

(51) Hamilton, J. Am. Chem. Soc. 45, 2752 (1923). (52) Sweet, Hamilton, J. Am. Chem. Soc. 56, 2411 (1934). (53) McElvain, J. Am. Chem. Soc. 46, 1726 (1924). (54) Burtner, Lehmann, J. Am. Chem. Soc. 52, 529-530 (1940). (55) K. D. Campbell, B. K. Campbell, Proc. Induana Acad. Sci. 49, 101-104 (1939); C.A. 35, 5460 (1941). (56) McElvain, J. Am. Chem. Soc. 49, 2838 (1927). (57) Ohn, Davis, J. Am. Chem. Soc. 52, 3323 (1930). (58) Peacock, Givan, J. Chem. Soc. 1937, 1470. (59) Conant, Kirner, Hussey, J. Am. Chem. Soc. 47, 498-499 (1925).

(60) Bogert, Slocum, J. Am. Chem. Soc. 46, 766 (1924).

3:8287 p-CHLOROTOLUENE

(61) Bermejo, Aranda, Anales soc. españ. fis quím. 27, 798-800 (1929); Cent. 1930, I 2382. (62) Blicke, Blake, J. Am. Chem. Soc. 53, 1018 (1931). (63) Andrews, McElvain, J. Am. Chem. Soc. 51, 890-891 (1929). (64) Bailey, McElvain, J. Am. Chem. Soc. 52, 1637-1638 (1930). (65) Walters, McElvain, J. Am. Chem. Soc. 55, 4625-4626 (1933). (66) Bailey, McElvain, J. Am. Chem. Soc. 52, 4015-4016 (1930). (67) Cope, McElvain, J. Am. Chem. Soc. 53, 1589-1590 (1931). (68) McElvain, U.S. 1,784,903, Dec. 16, 1930, Cent. 1931, I 1789; C.A. 25, 1037 (1931). (69) Gilman, Beaber, J. Am. Chem. Soc. 45, 842 (1923). (70) Johnson, Schwartz, Jacobs, J. Am. Chem. Soc. 60, 1882-1884 (1938).

(71) Bickel, French, J. Am. Chem. Soc. 48, 747-749 (1926).
(72) Gabriel, Ber. 38, 633 (1905).
(73) Gardner, Haenni, J. Am. Chem. Soc. 53, 2766-2767 (1931).
(74) Garelli, Racciu, Att. accad. sci. Torino, Classe sci. fis. mat. nat. 69, 358-363 (1934); Cent. 1934, II 2823.
(75) Allen, Nicholls, J. Am. Chem. Soc. 56, 1409-1410 (1934).
(76) Cheney, Bywater, J. Am. Chem. Scc. 64, 970 (1942).
(77) Rovira, Halasz, Compt. rend. 212, 644 (1941).

C7H7Cl

Beil. V - 292

#### V<sub>1</sub>-(150) $V_{2}$ -(226) B.P. M.P. $D_4^{25} = 1.065$ $+7.8^{\circ}$ 163.5° cor. 764 mm. (1) (8) (16) $n_{\rm D}^{25} = 1.51895$ (9) $D_4^{24.35} = 1.0651$ (21) 760 mm. (2) 7.5° (14) (15) (16) 162.4° (3) $n_{\rm D}^{24 \ 35} = 1.51925 (21)$ 162.3° at 756.4 mm. $\langle 4 \rangle$ 7.4° (17)(4) $D_4^{20} = 1.0700$ 162.0-162.2° cor. (5) 7.15-7.30° (7) 162-163° (6) 7.1° (18)1.06974 (17) 161.98-161.99° at 760 mm. 7° (6) (19) (7) 1.069 $n_{\rm D}^{20} = 1.521$ 161.7-162.2° cor.at 759.9 mm. (8) 6.86° (12)(21)at 760 mm. 6.85° (20) 161.5-161.9° (9) See also 161.0-161.4° (10)Note 3. $n_{\rm D}^{19} = 1.5223$ 160.6-161.2° See also Note 2. (11)162.1° u.c. at 755 mm. (12)

| 55.57°     | at | 16 mm. | (3)  | $n_{\rm D}^{18} = 1.5221$ | (12) |
|------------|----|--------|------|---------------------------|------|
| 54.28°     | at | 15 mm. | (3)  | See also Note 4.          |      |
| 52.86°     | at | 14 mm. | (3)  |                           |      |
| 48°        | at | 12 mm. | (13) |                           |      |
| 45.5°      | at | 12 mm. | (14) |                           |      |
| <b>44°</b> | at | 10 mm. | (15) |                           |      |

See also Note 1.

Note 1. For further data on b.p. of C at 16 pressures from 74-764 mm. see (4).

Note 2. For effect of press. on m.p. see (20).

Note 3. For data on  $D_4^t$  from  $t = 25^\circ$  to  $t = 160^\circ$  see (16) (4); note also  $D_{20}^{20} = 1.0714$  (8).

Note 4. For  $n_{\rm D}^{19}/{\rm compn}$ . data on system:  $\bar{\rm C}$  + o-chlorotoluene (3:8245) see (22).

 $\bar{C}$  with aq. forms a const.-boilg. mixt., b.p. 95° (use in sepn. of  $\bar{C}$  from polychlorotoluenes (23)). — For f.p./compn. data on system:  $\bar{C}$  + o-chlorotoluene (3:8245) (eutectic, f.p. -49.8°, contg. 27 wt. %  $\bar{C}$ ) see (8) (147); for  $D_{20}^{20}$ /compn. data (8) and for  $n_{D}^{10}$ /compn. data (22) on this system see indic. refs. — For f.p./compn. data on systems of  $\bar{C}$  with p-bromotoluene or with p-fluorotoluene see (19). — For data on const.-boilg. mixts. of  $\bar{C}$  with various org. cpds. see Beil. V<sub>2</sub>-(227). — For cryoscopic constant (i.e., lowering of f.p. per mole solute per 1000 g.  $\bar{C}$ ) viz., 5.53 (12), 5.6 (24), 5.97 (25), see indic. refs.; for use in detn. of  $\bar{C}$  in mixt. with o-chlorotoluene (3:8245) and m-chlorotoluene (3:8275) see (25).

[For prepn. of  $\bar{C}$  from p-toludine via diazotization in HCl and warming the resultant solution as such (yields: 60% (26), 40-44% (27)) (28) or in pres. of Cu<sub>2</sub>Cl<sub>2</sub> (yields: 95% (33), 88-89% (29), 81% (31), 70-79% (30), 63.5% (32)) [for study of kinetics of this reaction see (34) (35)], or in pres. of Cu powder (63.8% yield (36)), or in pres. of CuH (64% yield (37)), or by electrolysis between Cu electrodes in pres. of CuCl<sub>2</sub> (38) see indic. refs.; for prepn. of  $\bar{C}$  from p-toluidine via diazotization, conversion to solid p-toluenediazonium chloride, and subsequent warming with  $C_6H_6$  + AlCl<sub>3</sub> (39), or via diazotization, conversion of diazonium salt to its cpd. with PbCl<sub>4</sub>, and subsequent htg. of latter in naphthalene at 150° (40), see indic. refs.]

[For formn. of  $\tilde{C}$  (usually together with other prods.) from toluene (1:7405) with Cl<sub>2</sub> (70) in pres. of Fe in diffuse light in cold (8) (gives mixt. contg. 42%  $\tilde{C}$  + 58% o-chlorotoluene (3:8245) (8) (22)), or in pres. of I<sub>2</sub> (22) (41) (42), or in pres. of PbCl<sub>2</sub> (8), SbCl<sub>5</sub> (41), MoCl<sub>5</sub> (43) (28) (44), or Al/Hg (45); for formn. of  $\tilde{C}$  from toluene by electrolysis in strong HCl (46) or in AcOH/conc. HCl in dark (47) see indic. refs.; for formn. of  $\tilde{C}$  from toluene with SO<sub>2</sub>Cl<sub>2</sub> at 160° (48), with SO<sub>2</sub>Cl<sub>2</sub> in pres. of various cat. in dark (49), with SO<sub>2</sub>Cl<sub>2</sub> + AlCl<sub>3</sub> + S<sub>2</sub>Cl<sub>2</sub> at 70° (50), with pyrosulfuryl chloride + AlCl<sub>3</sub> at 0° (51), with HCl + HNO<sub>3</sub> at 100° (52), with n-butyl chlorosulfonate + AlCl<sub>3</sub> (6.2% yield (53)), with anhydrous FeCl<sub>3</sub> after refluxing 1½ hrs. (65% yield (54)), or with NCl<sub>3</sub> (55) see indic. refs.]

[For formn. of  $\tilde{C}$  from o-chlorotoluene (3:8245) or m-chlorotoluene (3:8275) by partial rearr. with AlCl<sub>3</sub> + HCl gas see (25); from tetra-(p-tolyl)tin with Cl<sub>2</sub> in CHCl<sub>3</sub> (85% yield (6)) or from tri-(p-tolyl) stibine dichloride on htg. under 5-7 mm. press. at 60-65° (56) (note that at 160-200° di-p-tolylstibine chloride is formed (56)) or from tri-(p-tolyl)-phosphite dichloride by htg. at 200-210° (57) see indic. refs.; from p-tolyl MgBr in ether with Cl<sub>2</sub> (58) or with benzenesulfonyl chloride (59) see indic. refs.; from p-toluenediazopiperidide with conc. HCl see (60); from p-chlorobenzaldehyde (3:0765) on elec. reduction in acid soln. with Cu cathode see (61); from chlorobenzene (3:7903) via condensation with CH<sub>2</sub>O + HCl to p-chlorobenzyl chloride (3:0220) and subsequent reductn. with Zn + NaOH see (62).]

[Č on pyrolysis over red-hot Pt yields (63) mainly 4,4'-dichlorodibenzyl (1,2-bis-(p-chlorophenyl)ethane [Beil. V-600,  $V_1$ -(281),  $V_2$ -(507)], colorless lfts. from alc., m.p. 112°, accompanied by a very small amt. 4,4'-dichlorostilbene (1,2-bis-(p-chlorophenyl)ethylene) [Beil.  $V_1$ -(304),  $V_2$ -(539)], ndls. from alc., m.p. 170°.]

[ $\bar{C}$  with H<sub>2</sub> in pres. of Pd/CaCO<sub>3</sub> (64) or reduced Ni (65) in alc./alk. soln. loses all its halogen as HCl;  $\bar{C}$  with Na in liq. NH<sub>3</sub> as directed (66) yields toluene and other prods.;  $\bar{C}$  with HI + P in s.t. at 302° for 5 hrs. gives (80% yield (67)) toluene.]

 $\bar{\mathbb{C}}$  on oxidn. with 3 pts. KMnO<sub>4</sub> in dil. aq. soln. under reflux for 4–5 hrs. (68) (51), or with CrO<sub>3</sub> (42), or with dil. HNO<sub>3</sub>, e.g., with 6 pts. of dil. HNO<sub>3</sub> (1 vol. conc. HNO<sub>3</sub> + 2 vols. aq.) at 145° for 1½ hrs. (69) or at 115–120° for 5–6 hrs. (70), yields p-chlorobenzoic acid (3:4940), m.p. 243° (for use in quant. estn. of  $\bar{\mathbb{C}}$  in pres. of toluene, benzyl chloride, and o-chlorotoluene see (70)). — Note that with HNO<sub>3</sub>  $\bar{\mathbb{C}}$  is more rapidly oxidized than o-chlorotoluene, m-chlorotoluene, or the various dichlorotoluenes but more slowly than p-bromotoluene (69). —  $\bar{\mathbb{C}}$  on oxidn. with air at 260° in pres. of Na<sub>2</sub>CO<sub>3</sub> and under press. (71), or on vapor-phase oxidn. over suitable cat. (72), or on electrolytic oxidn. in dil. Na<sub>2</sub>CO<sub>3</sub> soln. at 60° (73) cf. (74), or even on very long stdg. (2 years) with  $\bar{\mathbb{I}}_2$  + aq. in sunlight (75) gives p-chlorobenzoic acid. —  $\bar{\mathbb{C}}$  with N<sub>2</sub>O<sub>4</sub> yields (76) p-chlorobenzoic acid accompanied by nitration prods.

[ $\bar{C}$  with chromyl chloride (CrO<sub>2</sub>Cl<sub>2</sub>) yields an addn. prod. which with aq. gives in good yield (77) p-chlorobenzaldehyde (3:0765). —  $\bar{C}$  with air in aq. susp. of FeO.OH + cat. at 235-240° and 50-60 atm. press. gives (78) a mixt. of p-chlorobenzaldehyde (3:0765) + p-chlorobenzoic acid (3:4940).]

[ $\bar{\mathbb{C}}$  with Cl<sub>2</sub> or on htg. with PbCl<sub>4</sub>.2NH<sub>4</sub>Cl or with SO<sub>2</sub>Cl<sub>2</sub> in pres. of dibenzoyl peroxide in dark yields p-chlorobenzyl chloride (3:0220), q.v. for relevant refs. —  $\bar{\mathbb{C}}$  with 2 moles Cl<sub>2</sub> in pres. of 5% PCl<sub>5</sub> at 160–170° gives (79) (80) p-chlorobenzal (di)chloride (3:6700). —  $\bar{\mathbb{C}}$  with 3 moles Cl<sub>2</sub> at high temp. in u.v. light (81) cf. (82) or with 3 moles Cl<sub>2</sub> (83) in pres. of FeCl<sub>3</sub> (84) or of PCl<sub>5</sub> (85) (86) gives (93% yield (85)) p-chlorobenzotrichloride (3:6825) q.v. —  $\bar{\mathbb{C}}$  with Cl<sub>2</sub> (1 mole) in pres. of 1% Fe or 40% PbCl<sub>2</sub> at 20° gives (65% yield (87)) a mixt. comprising 58.4% 2,4-dichlorotoluene (3:6290) + 41.6% 3,4-dichlorotoluene (3:6355).]

[ $\bar{C}$  with Br<sub>2</sub> at 130° (88) or at 160° (89) (90) or in pres. of dibenzoyl peroxide in dark at 100° (91) gives (21% yield (90)) exclusively (91) p-chlorobenzyl bromide [Beil. V-307, V<sub>2</sub>-(239)], cryst. from MeOH, m.p. 62-63° (88), ndls. from 85% alc., m.p. 50° (90), 51° (79), 48.5° (89); for study of rate of side-chain bromination of  $\bar{C}$  in CS<sub>2</sub> at 57° see (92). —  $\bar{C}$  with 2 moles Br<sub>2</sub> in pres. of BeBr<sub>2</sub> (93) or in AcOH + fumg. HNO<sub>3</sub> + fumg. H<sub>2</sub>SO<sub>4</sub> (94) gives p-chlorobenzal (di)bromide, m.p. 99° (93).]

[C with AlCl<sub>3</sub> + HCl gas as directed (25) undergoes partial rearr. to both o-chlorotoluene (3:8245) and m-chlorotoluene (3:8275); for anal. of mixts. of the three isomers see (25).]

[ $\bar{C}$  with AcCl (95) or better Ac<sub>2</sub>O (96) (97) + AlCl<sub>3</sub> in CS<sub>2</sub> (98) gives (yields: 85% in 4 hrs. (97), 65% (98), 34% in 2 hrs. (96)) 2-chloro-5-methylacetophenone [Beil. VII-307], b.p. 245.8-246.0° at 760.1 mm. (96),  $n_2^{25} = 1.5419$  (96). —  $\bar{C}$  with  $\beta$ -chloropropionyl chloride (3:5690) + AlCl<sub>3</sub> in CS<sub>2</sub> gives (87% yield (99)) (100) 4-chloro-3-( $\beta$ -chloropropionyl)toluene, oil, which on ring closure with conc. H<sub>2</sub>SO<sub>4</sub> gives (72% yield (99)) (100) 7-chloro-4-methylindanone-1, cryst. from MeOH, m.p. 128° (99) (100). —  $\bar{C}$  with trichloroacetonitrile + AlCl<sub>3</sub> (4 moles) at 80-90° satd. with HCl gas for 2 days gives only 5% yield (101) of a mixt. of 2-chloro-5-methyl- and 5-chloro-2-methyl- $\omega$ ,  $\omega$ ,  $\omega$ -trichloroacetophenones.]

[Č with oxalyl (di)chloride (3:5060) + AlCl<sub>3</sub> in CS<sub>2</sub> for 20 hrs. at room temp. gives (40% yield (102)) 2-chloro-5-methylbenzoic acid (6-chloro-3-methylbenzoic acid) (3:4615), cryst. from aq., m.p. 163-166° (102), accompanied by some dichlorodimethyl-benzophenone, m.p. 70°, whose structure was not detd. — Č with fumaryl (di)chloride (3:5875) + AlCl<sub>3</sub>

in CS<sub>2</sub> at 50-60° for 2 hrs. gives (25% yield {103}) bis-1,2-(2-chloro-5-methylbenzoyl)-ethylene, pale yel. cryst. from alc., m.p. 158° (103).]

[ $\ddot{\mathbf{C}}$  with benzoyl chloride + AlCl<sub>3</sub> in CS<sub>2</sub> gives (50% yield (98)) (104) (105) 2-chloro-5-methylbenzophenone (6-chloro-3-methylbenzophenone) [Beil. VII<sub>1</sub>-(235)], cryst. from AcOH, m.p. 35–36° (98) (104) (105), together with 5-chloro-2-methyl-(3-chloro-6-methyl)-benzophenone [Beil. VII<sub>1</sub>-(235)], oil, b.p. 210° at 30 mm. (106). —  $\ddot{\mathbf{C}}$  with o-chlorobenzoyl chloride (3:6640) + AlCl<sub>3</sub> in CS<sub>2</sub> gives (106) 5,2'-dichloro-2-methylbenzophenone [Beil. VII<sub>1</sub>-(235)], oil, b.p. 225° at 12 mm. (106).]

[C with phthalic anhydride (1:0725) + AlCl<sub>3</sub> gives (62.5% yield on the phthalic anhydride (107)) o-(2-chloro-5-methylbenzoyl) benzoic acid, ndls. from C<sub>6</sub>H<sub>6</sub>, m.p. 164-165° (107), 165° (108), which with conc. H<sub>2</sub>SO<sub>4</sub> at 75° for 4 hrs. (108) or with 8 pts. fumg. H<sub>2</sub>SO<sub>4</sub> (20% SO<sub>3</sub>) (107) ring-closes to give (yields: 93% (107), 85% (108)) 1-chloro-4-methylanthraquinone [Beil. VII-809, VII<sub>1</sub>-(421)], yel. ndls. from AcOH or alc., m.p. 164° (107) (108). — Note that the structure of the above keto acid, m.p. 164-165°, has been definitely established (109) as shown and that it is not the isomeric o-(5-chloro-2-methylbenzoyl)-benzoic acid, which appears to be still unreported. — For reactn. of C with 3,6-dichloro-phthalic anhydride (3:4860) (110) or with pyromellitic anhydride (111) in pres. of AlCl<sub>3</sub> see indic. refs.]

[ $\bar{C}$  does not (112) react with bis-(chloromethyl) ether (3:5245), but  $\bar{C}$  with formalin + conc. HCl yields (62) 4-chloro-3-(chloromethyl)toluene since on reductn. with Zn + NaOH the prod. gives 4-chloro-1,3-dimethylbenzene (3:8665). —  $\bar{C}$  with aq. vapor + CO over suitable cat. at 300-400° yields (113) p-toluic acid (1:0795). —  $\bar{C}$  with NH<sub>3</sub> + CO over suitable cat. as directed (114) yields p-toluidine (see also below). —  $\bar{C}$  with S<sub>2</sub>Cl<sub>2</sub> + AlCl<sub>3</sub> in CS<sub>2</sub> gives (115) 4,5-dichloro-1,8-dimethylthianthrene, m.p. 195-197° (115).]

[ $\bar{C}$  with Li in ether gives (63% yield (116)) p-tolyllithium;  $\bar{C}$  with Li at 150° followed by treatment with aq. gives (117) toluene + 4,4'-dimethylbiphenyl. —  $\bar{C}$  with Na in C<sub>6</sub>H<sub>6</sub> treated with CO<sub>2</sub> at ord. temp. (118) (119) or at 50° and 500 lbs. press. (120) cf. (121) gives (yields: 95% (120), 76% (121)) p-toluic acid (1:0795), m.p. 178°. —  $\bar{C}$  with Na treated with benzophenone as directed (122) yields diphenyl-p-tolyl-carbinol [Beil. VI-722, VI<sub>1</sub>-(355)], m.p. 72-73°.]

[C on hydrolysis with aq. vapor over silica gel contg. 3% finely divided Ni at 380° (123), or with aq. vapor over cat. at 480° (124), or with aq. Na<sub>2</sub>CO<sub>3</sub> in pres. of Cu at 300° under press. (125), or with 15–20% aq. NaOH at 300° (126) gives (80% yield (123)) p-cresol (1:1410). Note, however, claim (127) that C when hydrolyzed with 15% aq. NaOH in pres. of Cu for 2 hrs. at 315–320° yields prod. contg. not only p-cresol (1:1410) but also m-cresol (1:1730) (for extensive study of hydrolysis of C as means of prepn. of m-cresol see (147)). — C with H<sub>2</sub>S at 700° over suitable cat. yields (128) thio-p-cresol (p-tolyl-mercaptan).]

[C with aq. NH<sub>4</sub>OH + CuO at 150-250° under press. (129) or C + aq. NH<sub>4</sub>OH + Cu salts + various anti acids at 225-230° under press. (130) (131) yields p-toluidine and/or di-p-tolylamine. — C with KNH<sub>2</sub> in liq. NH<sub>3</sub> (132) or Na in liq. NH<sub>3</sub> (66) yields p toluidine. — Note that C does not react with aq. sodium sulfanilate + Na<sub>2</sub>CO<sub>3</sub> (dif. from benzyl chloride (3:8535) and use in sepn. of C from latter (8)).]

[ $\bar{C}$  on mononitration yields a mixt. contg. both 4-chloro-2-nitrotoluene [Beil. V-327, V<sub>1</sub>-(162), V<sub>2</sub>-(251)], m.p. 38.2° (133), 37-38° (10), 37° (29) (22), b.p. 239.5-240° at 718 mm. (134), 115.5° at 11 mm. (22) (easily volatile with steam, but not reacting with piperidine even after 8 hrs. at 100° (10)), and 4-chloro-3-nitrotoluene [Beil. V-329, V<sub>2</sub>-(252)], m.p. 7° (135), 5.8° (133), b.p. 260° at 745 mm. (135), 118° at 11 mm. (22) (reacts readily with piperidine at 100° (10)); e.g.,  $\bar{C}$  added in 2 equal portions to 3 wt. pts. HNO<sub>3</sub> (D = 1.5) at 0° gives 88% yield of mixt. contg. 58.8% 4-chloro-2-nitrotoluene + 41.2% 4-chloro-3-

nitrotoluene (10). — For further studies of mononitration of  $\bar{C}$  with HNO<sub>3</sub> + H<sub>2</sub>SO<sub>4</sub> or with HNO<sub>3</sub> + Ac<sub>2</sub>O + P<sub>2</sub>O<sub>5</sub> see (29) (136), for influence of temperature (at  $-15^{\circ}$  proportion of 4-chloro-2-nitrotoluene is slightly increased) see (10) (133).]

 $\bar{C}$  on direct dinitration, e.g., with 3 wt. pts. fumg. HNO<sub>3</sub> (D=1.47), gives (134) a prod. now regarded (137) as 4-chloro-2,6-dinitrotoluene [Beil. V-344], yel. ndls. from ether, m.p. 76° (134), 76–77° (137). — [The three other possible dinitro-4-chlorotoluenes are now all known but have been prepd. indirectly; viz., 4-chloro-2,3-dinitrotoluene, lemon-yel. pr. from C<sub>6</sub>H<sub>6</sub> + {lt. pet., m.p. 106.5° (138); 4-chloro-2,5-dinitrotoluene [Beil. V-344, V<sub>1</sub>-(168), V<sub>2</sub>-(263)], yel. pr. from lgr., m.p. 107°; and 4-chloro-3,5-dinitrotoluene [Beil. V-345, V<sub>1</sub>-(169), V<sub>2</sub>-(264)], pale yel. ndls. from alc., m.p. 115–116° (139), 116° (140).]

[C on monosulfonation, e.g., by htg. with 3 pts. 100% H<sub>2</sub>SO<sub>4</sub> at 100° (141) (142) cf. (143) (28), yields mainly 4-chlorotoluenesulfonic acid-2 [Beil. XI-88] (corresp. sulfonyl chloride (144), m.p. 24° (142), see also below; corresp. sulfonamide, m.p. 145° (144), 142° (142), see also below; corresp. sulfonamilide, m.p. 144° (142)), accompanied by some 4-chlorotoluenesulfonic acid-3 [Beil. XI-95] (corresp. sulfonyl chloride, m.p. 56° (142), corresp. sulfonamide, m.p. 156° (142), corresp. sulfonamilide, m.p. 188° (142)). — C sulfonates much less readily than the isomeric o-chlorotoluene (3:8245); for use of this means of separation of C from the latter see (8) (145).]

◆ 4-Chlorotoluenesulfonamide-2 (5-chloro-2-methylbenzenesulfonamide-1): cryst. from dil. alc., m.p. 142-143° u.c. (146). [From C with ClSO<sub>3</sub>H in CHCl<sub>3</sub> as directed (146) followed by conversion of the intermediate 4-chlorotoluenesulfonyl chloride-2 cryst. from pet. ether, m.p. 21°, to the sulfonamide with (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> or NH<sub>4</sub>OH (146).]

Sugden, J. Chem. Soc. 125, 1175 (1924).
 Lecat, Rec. trav. chim. 46, 245 (1927).
 von Rechenberg, J. prakt. Chem. (2) 101, 117 (1920).
 Feitler, Z. physik. Chem. 4, 78-79 (1889).
 Perkin, J. Chem. Soc. 69, 1203 (1896).
 Bost, Baker, J. Am. Chem. Soc. 55, 1112 (1933).
 Stuckey, Saylor, J. Am. Chem. Soc. 62, 2923 (1940).
 Wahl, Normand, Vermeylen, Bull. scc. chim. (4) 31, 570-583 (1922); Compt. rend. 174, 948 (1922).
 Mathews, J. Am. Chem. Soc. 49, 570 (1926).
 Shaw, Turner, J. Chem. Soc. 1932, 1884-1888.

(11) Kohlrausch, Pongratz, Monalsh. 63, 441 (1934). {12} Bell, Baughan, Vaughan-Jackson, J. Chem. Soc. 1934, 1970-1971. {13} Paulsen, Monalsh. 72, 256 (1939). {14} Rule, McLean, J. Chem. Soc. 1931, 689. {15} van Scherpenzeel, Rec. trav. chim. 20, 155 (1901). {16} Jaeger, Z. anorg. allgem. Chem. 101, 126 (1917). {17} Seubert, Ber. 22, 2520, 2524 (1889). {18} Meharg, Allen, J. Am. Chem. Soc. 54, 2921 (1932). {19} L. Klemm, W. Klemm, G. Schiemann, Z. physik. Chem. A-165, 384, 386 (1933). {20} Block, Z. physik. Chem. 82, 408, 410 (1913).

(21) von Auwers, Frühling, Ann. 422, 164, 168 (1921). (22) Gindraux, Helv. Chim. Acta 12, 923-932 (1929). (23) Buchheim (to Chem. Fabrik von Heyden), Ger. 616, 596, Aug. 1, 1935; Cent. 1935, II 3703. (24) von Auwers, Z. physik. Chem. 42, 515 (1902). (25) Norris, Turner, J. Am. Chem. Soc. 61, 2128-2131 (1939). (26) Holleman, Beckmann, Rec. trav. chim. 23, 239 (1904). (27) Gaslorowski, Wayss, Ber. 18, 1939 (1885). (28) Hübert, Majert, Ber. 6, 760, 794 (1873). (29) Hodgson, J. Soc. Dyers Colourists 41, 328-329 (1925). (30) Marvel, McElvain, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 170-172 (1941); (1st ed.), 163-166 (1932); 3, 33-35 (1923).

(31) Erdmann, Ann. 272, 141–147 (1892). (32) Sandmeyer, Ber. 17, 2651 (1884). (33) Heller, Z. angew. Chem. 23, 389–392 (1910). (34) Heller, Tischner, Ber. 44, 250–255 (1911). (35) Waentig, Thomas, Ber. 46, 3933–3937 (1913). (36) Gattermann, Ber. 23, 1221 (1890). (37) Neogi, Mitra, J. Chem. Soc. 1928, 1332. (38) Votocek, Zenisek, Z. Elektrochem. 5, 486 (1898). (39) Möhlau, Berger, Ber. 26, 1998 (1893). (40) Sakellarios, Ber. 56, 2539 (1923).

(41) Wertyporoch, Ann. 493, 163 (1932). (42) Beilstein, Geitner, Ann. 139, 334-337 (1868). (43) Aronheim, Dietrich, Ber. 8, 1402 (1875). (44) Seelig, Ann. 237, 130 (1887). (45) Cohen, Dakin, J. Chem. Soc. 79, 1119-1120 (1901). (46) Cohen, Dawson, Crosland, J. Chem. Soc. 87, 1034-1037 (1905). (47) Fichter, Glanzstein, Ber. 49, 2481-2485 (1916). (48) Töhl, Eberhard, Ber. 26, 2942 (1893). (49) O. Silberrad, C. A. Silberrad, B. Parke, J. Chem. Soc. 127, 1724-1731 (1925). (50) O. Silberrad, J. Chem. Soc. 127, 2680 (1925).

(51) Steinkopf, Buchheim, Ber. 54, 2963-2968 (1921). (52) Datta, Fernandes, J. Am. Chem. Soc. 38, 1010-1011 (1914). (53) Barkenbus, Hopkins, Allen, J. Am. Chem. Soc. 61, 2453 (1939). (54) Dangyan, J. Gen. Chem. (U.S.S.R.), 8, 1780-1783 (1938); Cent. 1939, I 4928; C.A. 33, 4967 (1939). (55) Stoll, Bull. soc. chim. Belg. 38, 77-91 (1929). (56) Goddard, Yaraley,

J. Chem. Soc. 1928, 720. (57) Autenrieth, Geyer, Ber. 41, 155-156 (1908). (58) Datta, Mitter,
J. Am. Chem. Soc. 41, 292 (1919). (59) Gilman, Fothergill. J. Am. Chem. Soc. 51, 3506 (1929).
(60) Wallach, Ann. 235, 247 (1886).

(61) Law, J. Chem. Soc. 99, 1114 (1911).
(62) Tschunkur, Eichler (to I.G.), Ger. 509,149, Oct. 8, 1933, Cent. 1931, I 360.
(63) Meyer, Hofmann, Monatsh. 38, 151-152 (1917).
(64) Busch, Stöve, Ber. 49, 1069 (1916).
(65) Kelber, Ber. 50, 309 (1917).
(66) Kraus, White, J. Am. Chem. Soc. 45, 774 (1923).
(67) Klages, Liecke, J. prakt. Chem. (2) 61, 322 (1900).
(68) Emmerling, Ber. 8, 880-881 (1875).
(69) Cohen, Miller, J. Chem. Soc. 85, 174-179, 1626, 1630 (1904).

(70) Cohen, Dawson, Blockey, Woodmansey, J. Chem. Soc. 97, 1623-1636 (1910).

(71) Schrader, Ges. Abhandl. Kenntn. Kohle 4, 325 (1920), Cent. 1921, I 537; C.A. 15, 2850 (1921). (72) Charlot, Bull. soc. chim. (4) 53, 575 (1933); Ann. chim. (11) 2, 470 (1934). (73) Fichter, Adler, Helv. Chim. Acta 9, 281-282 (1926). (74) Dunbrook, Lowy, Trans. Am. Electrochem. Soc. 45 (Preprint), 1924; Cent. 1924, II 2838; C.A. 18, 1088 (1924). (75) O. Silberrad, J. Chem. Soc. 125, 2196-2197 (1924). (76) Schaarschmidt, Smolla, Ber. 57, 34 (1924). (77) Law, Perkin, J. Chem. Soc. 93, 1636 (1908). (78) I.G., Brit. 331,100, July 17, 1930; Cent. 1939, II 2186: French 676,826, Feb. 27, 1930; Cent. 1930, I 3881. (79) Shoesmith, Slater, J. Chem. Soc. 1926, 218-219. (80) McEwen, Org. Syntheses, Coll. Vol. 2 (1 st ed.), 133-135 (1943); 12, 12-14 (1933).

(81) Maryott, Hobbs, Gross, J. Am. Chem. Soc. 62, 2321 (1940). (82) Kenner, Witham, J. Chem. Soc. 97, 1963 (1910). (83) Britton (to Dow Chem. Co.), U.S. 1,878,463, Sept. 20, 1932; Cent. 1933, I 311. (84) Scottish Dyes, Ltd. & Bangham & Thomas, Brit. 308,231, April 18, 1929; Cent. 1929, II 1348. (85) Booth, Elsey, Burchfield, J. Chem. Soc. 57, 2068 (1935). (86) I.G., French 798,727, May 25, 1936; Cent. 1936, II 3360. (87) Wahl, Bull. soc. chim. (5) 4, 344-349 (1937); Compt. rend. 202, 2161-2163 (1936). (88) Thomson, Stevens, J. Chem. Soc. 1932, 62. (89) Jackson, Field, Ber. 11, 904-905 (1878). (90) Oxford, Robinson, J. Chem. Soc. 1927, 2241. (91) Kharasch, Margolis, White, Mayo, J. Am. Chem. Soc. 59, 1405 (1937). (92) Sampey,

Kharasch, Margolis, White, Mayo, J. Am. Chem. Soc. 59, 1405 (1937).
 Sampey, Fawcett, Morehead, J. Am. Chem. Soc. 62, 1839-1840 (1940).
 Pajeau, Compt. rend. 202, 1796 (1936).
 Yayama, Sahay, J. Indian Chem. Soc. 11, 293-294 (1934).
 Chem. 46, 26-27 (1892).
 Allen, Bridgess, J. Am. Chem. Soc. 49, 1846 (1927).
 Allen, Normington, Wilson, Can. J. Research 11, 387 (1934).
 Mayer, Freund, Ber. 55, 2052-2053 (1922).
 Mayer, Muller, Ber. 60, 2281 (1927).
 Mayer (to I.G.), Ger. 515,110, Jan. 15, 1931; Cent. 1931, II 908.

(101) Houben, Fischer, Ber. 64, 2648-2649 (1931). (102) Scholl, Meyer, Keller, Ann. 513, 298 (1934). (103) Conant, Lutz, J. Am. Chem. Soc. 47, 891 (1925). (104) Heller, Ber. 46, 1500-1501 (1913). (105) de Diesbach, Dobbelmann, Helv. Chim. Acta 14, 374 (1931). (106) A.G.F.A., Ger. 267,271, Nov. 12, 1913; Cent 1913, II 2014. (107) Heller, Schülke, Ber. 41, 3634-3635 (1908). (108) Dougherty, Gleason, J. Am. Chem. Soc. 52, 1025, 1027 (1930). (109) Reilly, Drumm, J. Chem. Soc. 1927, 2814. (110) Keimatsu, Hirano, Yoshimi, J. Pharm. Soc. Japan 59, 95-98 (1930); Cent. 1930, II 2384.

(111) de Diesbach, Schmidt, Helv. Chim. Acta 7, 650 (1924).
(112) Stephen, Short, Gladding, J. Chem. Soc. 117, 513 (1920).
(113) Dieterle, Eschenbach, Ger. 537,610, Nov. 6, 1931; Cent.
1932, I 1156-1157.
(114) Dieterle, Eschenbach, Arch. Pharm. 265, 195 (1927).
(115) Ray, J. Chem. Soc. 119, 1963-1964 (1921).
(116) Gilman, Zoellner, Selby, J. Am. Chem. Soc. 55, 1255 (1933).
(117) Spencer, Price, J. Chem. Soc. 97, 388 (1910).
(118) I.G., French 736, 428, Nov.
23, 1932; Cent. 1933, II 2193.
(119) I.G., Austrian 148,984, Mar. 25, 1937; Cent. 1937, II 1082.

(120) Morton, Le Fevre, Hechenbleikner, J. Am. Chem. Soc. 58, 755 (1936).

(121) Morton, Stevens, J. Am. Chem. Soc. 53, 4032 (1931). (122) Imperial Chem. Ind., Ltd. & Coffey, Brit. 325,933, March 27, 1930; Cent. 1930, II 2695: French 687,316, Aug. 7, 1930; Cent. 1930, II 3851. (123) I.G., Brit. 308,220, May 15, 1929; Cent. 1930, II 1772. (124) F. Raschig Co., French 698,341, Jan. 29, 1931; Cent. 1931, II 1491. (125) Britton (to Dow Chem. Co.), U.S. 1,959,283, May 15, 1934; Cent. 1934, II 1688. (126) Meyer, Bergius, Ber. 47, 3159 (1914). (127) Meharg, Allen, J. Am. Chem. Soc. 54, 2920-2922 (1932). (128) Ohse (to Chem. Fabrik von Heyden), Ger. 497,570, May 8, 1930; Cent. 1930, II 622. (129) Williams (to Dow Chem. Co.), U.S. 1,775,360, Sept. 9, 1930; Cent. 1931, II 1195. (130) Federal Phosphorus Co., Brit. 370,774, May 5, 1932; Cent. 1932, II 1237.

(131) Booth (to Swann Research, Inc.), U.S. 1,954,469, April 10, 1934; Cent. 1934, II 1846. (132) Bergstrom, Wright, Chandler, Gilkey, J. Org. Chem. 1, 174-175 (1936). (133) Holleman, van den Arend, Rec. trav. chim. 28, 418-423, 496 (1909). (134) Goldschmidt, Hönig, Ber. 19, 2438-2440 (1886). (135) Gattermann, Kaiser, Ber. 18, 2600 (1885). (136) Hodgson, Anderson, J. Chem. Soc. 125, 2195-2196 (1924). (137) Cohen, McCandlish, J. Chem. Soc. 87, 1265-1266 (1905). (138) Kenner, Tod, Witham, J. Chem. Soc. 127, 12348 (1925). (139) Borsche, Fiedler,

Ber. 46, 2118-2121 (1913). (140) Borsche, Feske, Ber. 60, 159 (1927).

(141) Wynne, J. Chem. Soc. 61, 1078-1082 (1892). (142) Wynne, Bruce, J. Chem. Soc. 78,

Beil. II - 250

61.5°

3:8290 ETHYL β-CHLOROPROPIONATE

at 15 mm. (7)

760-762, 772-773 (1898). (143) Vogt, Henninger, Ann. 165, 363-365 (1873). (144) DeRoode, Am. Chem. J. 13, 225 (1891). (145) Wahl, Brit. 159,837, March 31, 1921; French 524,587, Sept. 6, 1921; Swiss 96,185, Sept. 16, 1932; Ger. 376,634, June 5, 1923; Cent. 1921, IV 124. (146) Huntress, Carten, J. Am. Chem. Soc. 62, 512-513 (1940). (147) Shreve, Marsel, Ind. Eng. Chem. 38, 254-261 (1946).

C<sub>5</sub>H<sub>9</sub>O<sub>2</sub>Cl

CICH<sub>2</sub>.CH<sub>2</sub>.CO.O.C<sub>2</sub>H<sub>5</sub> 
$$\Pi_{1}$$
-(111)  $\Pi_{2}$ -(227)

B.P. 162–163° at 765 mm. (1)  $D_{4}^{20}$  = 1.1086 (5)  $n_{D}^{20}$  = 1.42537 (5) 162-163° at 760 mm. (3) 162° (4)  $D_{4}^{15}$  = 1.1141 (2)  $n_{D}^{15}$  = 1.4284 (2) 161.4–161.8° at 758 mm. (5) 161° (6) 80° at 29 mm. (2)

[For prepn. of  $\tilde{C}$  from  $\beta$ -chloropropionic acid (3:0460) by esterification with EtOH + HCl (59% yield (6)) (4) or H<sub>2</sub>SO<sub>4</sub> (1) see indicated refs.; from  $\beta$ -chloropropionyl chloride (3:5690) + EtOH see (1); from acrylic acid chloride (3:7153) + EtOH see (4) (7); from ethyl acrylate (1:3071) + HCl see (2); from acrylonitrile + HCl to  $\beta$ -chloropropionitrile followed by reactn. with EtOH see (8); from ethyl lactate (1:3303) + SOCl<sub>2</sub> + pyridine (95% yield (9)) see (9).]

C with 20% alc. NaOH at room temp. (10) or htd. at 95-100° with 10 pts. conc.  $H_2SO_4$  (11) gives (90% yield (10)) ethyl acrylate (1:3071), b.p. 101°.

Č refluxed with NaI in acetone gives (yield: 81% (12), 75-80% (13)) ethyl  $\beta$ -iodopropionate, b.p.  $183-185^{\circ}$  at 760 mm. (13). [For study of rate of reactn. with KI in acetone see (6).] [Note also that  $\beta$ -iodopropionic acid with alc. HCl (as in its esterification) gives some ethyl  $\beta$ -chloropropionate (14).]

 $\bar{C}$  on catalytic hydrogenation as specified (7) takes up only a little  $H_2$  [dif. from ethyl  $\alpha$ -chloropropionate which gives quant. ethyl propionate].

[For reactns. of C with CH<sub>3</sub>MgI (15), C<sub>2</sub>H<sub>5</sub>MgBr (16), and other RMgX cpds. (17) see indicated refs.]

3:8290 (1) Henry, Compt. rend. 100, 115 (1885); J. prakt. Chem. (2) 31, 127 (1885). (2) Moureu, Murat, Tampier, Ann. chim. (9) 15, 239 (1921). (3) Robinson, Watt, J. Chem. Soc. 1934, 1539. (4) Moureu, Ann. chim. (7) 2, 171-172 (1894). (5) Karvonen, Ann. Acad. Sci. Fennicae A-10, No. 4, 31; Cent. 1919, III 808. (6) Conant, Kirner, J. Am. Chem. Soc. 46, 243, 249 (1924). (7) Paal, Müller-Lobecle, Ber. 64, 2145, 2147 (1931). (8) I.G., Brit. 352,802, Aug. 6, 1931; Cent. 1931, II 2658. (9) Darsen, Compt. rend. 152, 1601 (1911). (10) Rohn, Haas, Ger. 546,141, March 12, 1932; Cent. 1933, I 2642.

Brit. 351,518, July 23, 1931; Cent. 1931, II 1923. (12) Baker, J. Chem. Soc. 1933, 216.
 Borsche, Ann. 526, 16 (1936). (14) Flürscheim, J. prakt. Chem. (2) 68, 346 (1903). (15) Bennett, Philip, J. Chem. Soc. 1928, 1937-1942. (16) Moureu, Barrett, Bull. soc. chim. (4) 29, 994-996 (1921). (17) Weizmann, Bergmann, J. Chem. Soc. 1936, 401-402. (18) Schjanberg, Z. physik. Chem. A-173, 231 (1935).

3:8295-3:8305

 $\begin{array}{ll} \textbf{TE} & \textbf{C}_{5}\textbf{H}_{9}\textbf{O}_{2}\textbf{C} \textbf{I} \\ \textbf{n-C}_{3}\textbf{H}_{7}\textbf{O}.\textbf{CO}.\textbf{CH}_{2}\textbf{C} \textbf{I} \end{array}$ 

Beil. II - 198 II<sub>1</sub>-( 89) II<sub>2</sub>---

B.P.  $162.9^{\circ}$  (1)  $D_4^{20} = 1.1033$  (6)  $n_D^{20} = 1.4261$  (6)  $162.8-163.2^{\circ}$  (2) 1.1050 (2) 1.4256 (2)  $162.3-162.5^{\circ}$  at 777.5 mm. (3)

162.3-162.5° at 777.5 mm. (3) 161-162° at 765 mm. (4) 161° at 740 mm. (5)

3:8295 (1) Cheng, Z. physik. Chem. B-24, 307 (1934). (2) Drushel, Hill, Am. J. Sci. (4) 30, 72-78 (1910); C.A. 4, 2438 (1910). (3) Schiff, Z. physik. Chem. 1, 378 (1887). (4) Henry, Compt. rend. 100, 115 (1885). (5) Schreiner, Ann. 197, 8 (1879). (6) Schjanberg, Z. physik. Chem. A-172, 228 (1935).

3:8300 2,3-DICHLOROHEXANE Cl Cl 
$$C_6H_{12}Cl_2$$
 Beil. I - 144  $I_1$ —  $CH_3.CH_2.CH_2$ — $C$ — $C$ — $CH_3$   $I_4$ — $I_{2}$ —(109) H H D<sub>11</sub> = 1.0527 (1)

[For prepn. of C from 2,3-epoxyhexane with PCl<sub>5</sub> see (1) (2).]

Č is not attacked by solid KOH but with alc. KOH yields (1) a chlorohexane, b.p. 122° (1).

3:8300 (1) Henry, Bull. soc. chim. (2) 41, 363 (1884). (2) Henry, Compt. rend. 97, 262 (1883).

3: 8305 
$$d$$
, $l$ - $\beta$ -METHYL- $n$ -CAPROYL CHLORIDE  $C_7H_{13}OCl$  Beil. II — (sec.-Amyl-(2)-acetyl chloride) CH<sub>3</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>3</sub>.  $Cl$  II<sub>2</sub>-(298)

B.P. 
$$163-164^{\circ}$$
 at 751 mm. (1)  $D_4^{20} = 0.967$  (1)  $159-161^{\circ}$  at 733 mm. (2)

[For prepn. of C from methyl-n-propyl-acetic acid [Beil. II<sub>1</sub>-(146)] (1) (2) with PCl<sub>3</sub> (1) or SOCl<sub>2</sub> (87% yield (2)) see indic. refs.]

[ $\bar{C}$  with n-propyl zinc iodide in toluene gives (70% yield (2)) 6-methylnonanone-4, b.p. 192-193° at 715 mm. (2).]

C on hydrolysis yields (1) β-methyl-n-caproic acid, [Beil. II<sub>1</sub>-(146)] (1) (2), b.p. 215-216° (3), 212-213° at 755 mm. (1), 207-209° u.c. at 728 mm. (2).

 $\oplus$   $\beta$ -Methyl-n-caproamide: m.p. 97° (1), 99° (4). [From  $\tilde{C}$  + excess conc. aq. NH<sub>4</sub>OH (1).]

3:8305 (1) Dewael, Weckering, Bull. soc. chim. Belg. 33, 496-497 (1924). (2) Karrer, Shibata, Wettstein, Jacubowicz, Helv. Chim. Acta 13, 1302-1303 (1930). (3) Ciamician, Silber, Ber. 46, 3080 (1913). (4) Bayer & Co., Ger. 228,667, Nov. 15, 1910; Cent. 1910, II 1789.

3:8307-3:8315

3: 8307 ETHYL 
$$d,l-\alpha$$
-CHLORO- $n$ -BUTYRATE  $C_6H_{11}O_2Cl$  Beil. II-277 CH<sub>3</sub>.CH<sub>2</sub>.CH.COOC<sub>2</sub>H<sub>5</sub> II<sub>1</sub>— II<sub>2</sub>— Cl

B.P. 163-164° at 760 mm. (1)  $D_-^{13} = 1.056$  (1)  $n_-^{-} = 1.42430$  (1)  $D_-^{17.5} = 1.063$  (2)

[For prepn. of  $\bar{C}$  from  $\alpha$ -chloro-n-butyronitrile with EtOH (2) or with EtOH + HCl (1) see indic. refs.; for formn. of  $\bar{C}$  from ethyl n-butyrate (1:3127) with SO<sub>2</sub>Cl<sub>2</sub> + dibenzoyl peroxide in CCl<sub>4</sub> (10%  $\bar{C}$  + 50%  $\beta$ - and 40%  $\gamma$ -isomers (3)) see (3).]

[For use of C in Reformatsky reactn. see (4).]

For the amide corresp. to  $\bar{C}$  see  $\alpha$ -chloro-n-butyric acid (3:9130).

**3:8367 (1)** Henry, Bull. acad. roy. Belg. (3) **35,** 507-520 (1898); Cent. **1898**, I 273. **(2)** Markownikow, Ann. **153**, 241 (1870). **(3)** Price, Schwarcz, J. Am. Chem. Soc. **62**, 2854-2895 (1940). **(4)** Nieuwland, Daly, J. Am. Chem. Soc. **53**, 1842-1846 (1931).

3:8310  $\gamma$ -CHLORO-n-PROPYL ACETATE  $C_5H_9O_2Cl$  Beil. II — (1-Acetoxy-3-chloropropane;  $ClCH_2.CH_2.CH_2.O.CO.CH_3$  II<sub>1</sub>-( 58) VI - 1281 II<sub>2</sub>-( 139)

B.P. 
$$165-166^{\circ}$$
 (1)  $D_4^{21} = 1.1105$  (7)  $n_D^{21} = 1.431$  (7)  $168-173^{\circ}$  (2)  $163-165^{\circ}$  at 747 mm. (3)  $160-166^{\circ}$  (4)  $88-90^{\circ}$  at 22 mm. (5)  $66^{\circ}$  at 14 mm. (6)  $62-63^{\circ}$  at 10 mm. (7)

[For prepn. of  $\tilde{C}$  from trimethylene chlorohydrin (3:8285) + AcCl see (7) (2) (1); from trimethylene dichloride (3:5450) + AgOAc see (5); from trimethylene glycol (1:6490) + Ac2O + S<sub>2</sub>Cl<sub>2</sub> (68% yield) see (6); from trimethylene chlorobromide + KOAc + AcOH see (3) (8).]

 $\bar{C}$  htd. with KOH + 8% aq. at 100-110° yields (1) (7) trimethylene oxide [Beil. XVII-6], b.p. 48.2° at 761 mm.,  $D_4^{18}=0.9038, n_D^{20}=1.392$  (7).

3:8310 (1) Bogert, Slocum, J. Am. Chem. Soc. 46, 766 (1924). (2) Blicke, Blake, J. Am. Chem. Soc. 53, 1018 (1931). (3) Henry, Bull. acad. roy. Belg. (3) 32, 261 (1896). (4) Derick, Bissel, J. Am. Chem. Soc. 38, 2483 (1916). (5) Bermejo, Gomez Aranda, Anales soc. españ. fie. quím. 27, 798-800 (1929); Cent. 1930, I 2382. (6) Bennett, Heathcoat, J. Chem. Soc. 1929, 271. (7) Lespieau, Bull. soc. chim. (5) 7, 254 (1940). (8) Henry, Bull. acad. roy. Belg. 1906, 738, Note.

[For prepn. of  $\tilde{C}$  from 3,4-dimethylhexanediol-3,4 [Beil. I-492, I<sub>1</sub>-(256), I<sub>2</sub>-(558)] by saturation with HCl gas in presence of P<sub>2</sub>O<sub>5</sub> see (1).]

3:8315 (1) Frumins, Bull. acad. roy. Belg. 1909, 1151-1157; Cent. 1910, I 1001; C.A. 5, 1096 (1911).

3: 8325 ETHYL 
$$\beta$$
-CHLOROISOCROTONATE  $C_6H_9O_2Cl$  Beil. II - 417   
 $CH_3-C-Cl$  II<sub>1</sub>-(190)   
 $C_7H_5OOC-C-H$  II<sub>2</sub>-(397)

B.P. (contd.)   
165.6-167.2° (1) 60° at 15 mm. (7) 
$$D_4^{20} = 1.088$$
 (8)   
164° (13) 56-57° at 13 mm. (8) (9) 1.087 (7)   
161.4° (2) 54° at 14 mm. (10) 1.086 (11)   
159-161° (3) 50° at 10 mm. (11)  $n_D^{18.7} = 1.4538$  (7)   
157-158° at 740 mm. (4)  $D_4^{18.7} = 1.0924$  (3)   
155-156° (5)  $n_D^{17.7} = 1.45423$  (3)   
154-157° (6)  $D_4^{17.7} = 1.0920$  (11)

[See also ethyl  $\beta$ -chlorocrotonate (3:8538).]

Note the lack of accord regarding the b.p. of  $\bar{C}$  especially at ordinary pressures; this is presumably attributable to more or less contamination with the stereoisomeric ester (3:8538).

[For prepn. of  $\tilde{C}$  from  $\beta$ -chloroisocrotonic acid (3:1300) in EtOH with dry HCl gas (yields: 100% (4), 65% (12)) (2) (5) or a little conc. H<sub>2</sub>SO<sub>4</sub> (yield 65% (6)) (8) (11) see indic. refs.]

[For prepn. of  $\bar{C}$  from ethyl acetoacetate (1:1710) with  $PCl_5$  in  $C_6H_6$  followed by refluxing with a little  $I_2$  see {13} (1); note, however, that this method has subsequently (6) been regarded as unsatisfactory for the prepn. of pure  $\bar{C}$  although it suffices to give (40–50% yields (14)) a mixt. of  $\bar{C}$  with its stereoisomer (3:8538) which for many purposes is adequate.]

[ $\bar{C}$  (2 moles) with K<sub>2</sub>S (1½ moles) in 5 vols. abs. EtOH refluxed for 5 hrs. (note that the stereoisomer (3:8538) requires 16) gives (53% yield (14)) diethyl  $\beta$ , $\beta$ -thiodicrotonate, S(—C(CH<sub>3</sub>)=CH.COOC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, b.p. 150-153° at 4 mm. (14), accompanied by some ethyl  $\beta$ -mercaptocrotonate (see below).]

 $[\bar{C}]$  with alc. NaSH as directed gives (55-60% yield crude prod. (15)) ethyl  $\beta$ -mercaptocrotonate; note that this prod. is apparently a mixt. of the two geom. stereoisomeric thioenols together with the keto form, viz., ethyl thioacetoacetate, CH<sub>3</sub>.CS.CH<sub>2</sub>.COOC<sub>2</sub>H<sub>5</sub>; for details see (15); note also that ethyl  $\beta$ -chlorocrotonate (3:8538) by the same treatment gives the same result so that a mixt. of the esters can be employed as initial material.]

 $[\bar{C}]$  with alkali derivs. of alcohols, phenols, mercaptans, etc., splits out alkali halide yielding corresp. ethyl  $\beta$ -substituted crotonates: e.g.,  $\bar{C}$  with NaOEt in ether gives (5) ethyl  $\beta$ -ethoxycrotonate [Beil. III-373, III<sub>1</sub>-(135), III<sub>2</sub>-(254)], m.p. 29.5° (5);  $\bar{C}$  with Na allylate gives (6) ethyl  $\beta$ -allyloxycrotonate;  $\bar{C}$  with Na cinnamylate gives (6) ethyl  $\beta$ -cinnamyloxycrotonate;  $\bar{C}$  with Na phenolate gives (16) ethyl  $\beta$ -phenoxycrotonate, b.p. 152° at 18 mm. (16); note that in the three preceding cases either  $\bar{C}$  or its stereoisomer (3:8538) yields the same result.]

[Č with Na salt of ethyl mercaptan gives (12) ethyl  $\beta$ -ethylmercaptoisocrotonate, b.p. 127–129° at 16 mm. (12); Č with Na salt of benzyl mercaptan gives (75% yield (12)) a mixt. of ethyl  $\beta$ -benzylmercaptocrotonate, m.p. 64.5° (12), and ethyl  $\beta$ -benzylmercaptoisocrotonate (consts. not given).]

[Č with diethyl sodiomalonate gives (9) cf. (17) cis diethyl α-carbethoxy-β-methylglutaconate, (C<sub>2</sub>H<sub>5</sub>OOC)<sub>2</sub>CH.C(CH<sub>3</sub>)=CH.COOC<sub>2</sub>H<sub>5</sub> [Beil. II-853], b.p. 164-165° at 12 mm.,

 $D_4^{20} = 1.0884$ ,  $n_D^{20} = 1.4579$  (9); cf. behavior of stereoisomeric ethyl  $\beta$ -chlorocrotonate (3:8538).

 $\ddot{\mathbf{C}}$  with hydrazine hydrate in abs. alc. splits out HCl and EtOH with consequent ring closure yielding (18) 5-methylpyrazolone-3 [Beil. XXIV-19, XXIV<sub>1</sub>-(189)], m.p. 215° (18); note that same prod. is also obtd. from methyl  $\beta$ -chloroisocrotonate (3:8028).

Č (1 mole) with phenylhydrazine (1 mole) at 100° for 6–8 hrs. gives by ring closure mainly (4) 3-methyl-1-phenylpyrazolone-5 [Beil. XXIV-20, XXIV<sub>1</sub>-(190)], pr. from aq., m.p. 127°, accompanied by small amts. of 4-benzeneazo-3-methyl-1-phenylpyrazolone-5 [Beil. XXIV-328, XXIV<sub>1</sub>-(319)], m.p. 155–156°, and 3,3'-dimethyl-1,1'-diphenyl-bis pyrazolone-5,5' [Beil. XXVI-484], dec. at high temp. without melting. — Note that with excess phenylhydrazine (2–4 moles) only traces of the 3-methyl-1-phenylpyrazolone-5 are formed while the amt. of the other two (less desirable) prods. is greatly increased (4).

3:8325 (1) Kohlrausch, Pongratz, Z. physik. Chem. 27, 193 (1934). (2) Geuther, Frolich, Zeit. für Chemie 1869, 273. (3) Eisenlohr, Ber. 44, 3208 (1911). (4) Autenrieth, Ber. 29, 1654-1664 (1896). (5) Koll, Ann. 249, 323-324 (1888). (6) Lauer, Kilburn, J. Am. Chem. Soc. 59, 2587 (1937). (7) von Auwers, Ber. 56, 724 (1923). (8) von Auwers, Ber. 45, 2807-2808 (1912). (9) Gidvani, Kon, Wright, J. Chem. Soc. 1932, 1034-1035. (10) Errera, Lepingle, Bull. sci. acad. roy. Belg. (5) 11, 150-153 (1925); Cent. 1925, II 897; C.A. 19, 3057 (1925).

(11) von Auwers, Ann. 432, 62 (1923). (12) Scheibler, Voss, Ber. 53, 381-382, 387-388 (1920). (13) Thomas-Mamert, Bull. soc. chm. (3) 13, 70-71 (1895). (14) Scheibler, Bube, Ber. 48, 1449-1451 (1915). (15) Scheibler, Topouzada, Schulze, J. prakt. Chem. (2) 124, 7-12 (1930). (16) Ruhemann, Wragg, J. Chem. Soc. 79, 1190 (1901). (17) Fichter, Schwab, Ann. 348, 251-256 (1906). (18) Freri, Gazz. chim. ital. 66, 25 (1936); Cent. 1936, II 621; C.A. 30, 6387 (1936).

72° at 13 mm. (2) 62–63° at 14 mm. (3)

[For prepn. of  $\bar{C}$  from methyl  $\beta$ -chloropropionate (3:5765) (3) or from ethyl  $\beta$ -chloropropionate (3:8290) (1) (53% yield (2)) with MeMgBr see indic. refs.]

Č with fumg. HCl at room temp. yields (1) 2,4-dichloro-2-methylbutane (3:8105).

 $\bar{C}$  mixed with 3 pts. dry powdered KOH and htd. at 130-180° gives (43% yield (2)) by loss of HCl and ring closure 2,4-epoxy-2-methylbutane ( $\alpha,\alpha$ -dimethyltrimethylene oxide), b.p. 71° at 750 mm.,  $D_4^{20} = 0.8279$  (2).

 $\ddot{\mathbf{C}}$  with specially dried K phthalimide htd. in a s.t. 8 hrs. at 169°, finally 3½ hrs. at 218°, yields (3) (by metathesis and loss of H<sub>2</sub>O) N-(2-methylbuten-2-yl-4)phthalimide, m.p. 99° (3).

3:8335 (1) Henry, Bull. soc. chim. Belg. 20, 152-156 (1906); Cent. 1906, II 1178; Compt. rend. 142, 133 (1906). (2) Bennett, Philip, J. Chem. Soc. 1928, 1938. (3) Späth, Spitzy, Ber. 58, 2276-2277 (1925).

3: 8340 3-CHLORO-2-METHYLPROPEN-2-OL-1 CH<sub>3</sub> C<sub>4</sub>H<sub>7</sub>OCl Beil. I-448 
$$(\gamma$$
-Chloro- $\beta$ -methyl-allyl alcohol)

CH<sub>2</sub>—C=CH
OH
Cl

High-boilg. (cis?)

B.P.
167-167.5° (1)
166-168° cor. (2)
163-164° (3)

Low-boilg. (trans?)

B.P.
160-162° cor. (2)

 $D_4^{25} = 1.1262$  (2)
 $D_4^{20} = 1.1243$  (1)
 $D_6^{20} = 1.4677$  (1)

 $D_7^{25} = 1.1290$  (2)
 $D_7^{25} = 1.1290$  (2)
 $D_7^{25} = 1.4737$  (2)

[For prepn. of  $\bar{C}$  (mixt. of both forms) from 1,2,3-trichloro-2-methylpropane (3:5885) in 84% yield by hydrolysis with excess 5% aq. NaOH see (2) (4); for prepn. of  $\bar{C}$  from 1,3-dichloro-2-methylpropene-1 (3:5590) by hydrolysis with aq. alk. (4), with aq. Na<sub>2</sub>CO<sub>3</sub> (3), or aq. + CaCO<sub>3</sub> (1) see indic. refs. Note that by virtue of allylic transposition 1,3-dichloro-2-methylpropene-1 (3:5590) may frequently yield derivatives of its synionic isomer, 1,1-dichloro-2-methylpropene-2 (3:7480).]

 $\bar{C}$  with excess AcOH + conc. HCl gives (60% yield (2)) 1-chloro-2-methylpropen-2-yl-1 acetate, b.p.  $167-174^{\circ}$  at 748 mm. (2),  $176-178^{\circ}$  at 784 mm. (1).

 $\bar{C}$  on treatment with acids as specified (5) gives 3-chloro-2-methylpropanal-1 ( $\beta$ -chloro-isobutyraldehyde) (3:9112).

- ① 1-Chloro-2-methylpropen-2-yl-1 3,5-dinitrobenzoate: from high-boilg. form of C;
  m.p. 63.8-64.5° (2); from low-boilg. form of C; m.p. 94.4-95.8° (2).
- 1-Chloro-2-methylpropen-2-yl-1 N-phenylcarbamate: from high-boilg. form of C; m.p. 81-82° (1).

3:8340 (1) Tishchenko. J. Gen. Chem. (U.S.S.R.) 8, 1232-1246 (1938); Cent. 1939, II 4223; C.A. 33, 4190 (1939). (2) Rogers, Nelson, J. Am. Chem. Soc. 58, 1030 (1936). (3) Pogorshelski, J. Russ. Phys.-Chem. Soc. 36, 1129-1184 (1904); Cent. 1905, I 668. (4) Nelson, Rogers (to Purdue Research Foundation), U.S. 2,061,519, Nov. 17, 1936; Cent. 1937, I 2682; C.A. 31, 711 (1937). (5) N. V. de Bataafsche Petroleum Maatschappij, French 763,286. Apr. 26, 1934; Cent. 1934, II 1531.

B.P. 167-168° (1) 
$$D_{16}^{16} = 0.8923$$
 (2)  $n_{D}^{16} = 1.4424$  (2)

Some doubt exists as to whether this material is in fact C, 2-chloro-octene-1, or a mixture of both.

[For prepn. of C from octanone-2 (n-hexyl-methyl ketone) (1:5490) with PCl<sub>5</sub> followed by distillation (1) or treatment with alkali (2) see indic. refs.]

Č with alc. KOH yields (1) octyne-1 (n-hexylacetylene) (1:8105) or octyne-2 (n-amylmethyl-acetylene) (1:8120).

[ $\tilde{C}$  on protracted (16 days') standing with benzoyl hydrogen peroxide in ether yields (2) 2-chloro-2,3-epoxyoctane, b.p. 81-82° at 21 mm.,  $D_4^{16} = 0.9609$ ,  $n_D^- = 1.4359$  (2).]

3:8345 (1) Béhal, Ann. chim. (6) 15, 277-278 (1888). (2) Prileshaiev, Ber. 59, 197-198 (1926).

3:8346 2-CHLORO-OCTENE-1 
$$CH_3$$
— $(CH_2)_{\delta}$ — $C$ = $CH_2$   $C_8H_{18}Cl$  Beil. I-221  $I_1$ — $I_2$ —
B.P. 168-170° (1)  $D_0^0 = 0.9274$  (2) 167-168° (2)

[For prepn. of  $\tilde{C}$  from ( $\beta$ -chloro- $\beta$ -n-hexylvinyl)arsonic acid by htg. at 175° (1) or from octanone-2 (1:5490) with PCl<sub>5</sub> (2) see indic. refs.]

[Note that the structure of  $\tilde{C}$  has not been unequivocally demonstrated, and it may be 2-chloro-octene-2 (3:8345).]

3:8346 (1) Fusco, Cottignoli, Farm. ital. 11, 89-91 (1943); Cent. 1943, II 2285; C.A. 38, 6054 (1944). (2) Béhal, Ann. chim. (6) 15, 277-278 (1888).

B.P. 167.5° at 760 mm. (2) 
$$D_{20}^{20} = 1.062$$
 (2)  $n_{\rm D}^{19} = 1.4251$  (1)  $D_{15}^{15} = 1.055$  (1)

[For prepn. from butene-2 + chloroacetic ac. (3:1370) +  $ZnCl_2$  see (1).] [For study of insecticidal action of vapor of  $\bar{C}$  see (2).]

3:8350 (1) Aldoschin, J. Gen. Chem. (U.S.S.R.) 8, 1385-1389 (1938); Cent. 1939, II 2223; C.A. 33, 4194 (1939). (2) Roark, Cotton, Ind. Eng. Chem. 20, 512-514 (1928).

B.P. 167-168° at 767 mm. (1) 
$$D_4^{20} = 0.9677$$
 (1)

[For prepn. of  $\bar{C}$  from  $\gamma$ -methyl-n-caproic acid (1:1136) with PCl<sub>3</sub> see (1).] [The dextrorotatory isomer of  $\bar{C}$ , b.p. 80° at 50 mm. (2), has been prepared from the dextrorotatory acid + SOCl<sub>2</sub>.]

 $\ddot{\mathbf{C}}$  on hydrolysis yields  $\gamma$ -methyl-n-caproic acid (1:1136) q.v. (for the amide, anilide, and other derivatives corresponding to  $\ddot{\mathbf{C}}$  see 1:1136).

3:8355 (1) Dewael, Weckering, Bull. soc. chim. Belg. 33, 501-502 (1924). (2) Levene, Rothen, Marker, J. Biol. Chem. 115, 261-262 (1936).

3:8360 d,l-1,4-DICHLORO-2-METHYLBUTANE 
$$C_5H_{10}Cl_2$$
 Beil. I —  $Cl$   $Cl$   $I_1$ —  $I_2$ — $CH_2$ — $CH_2$ — $CH_3$   $CH_3$ 

B.P. 168-169° at 760 mm. (calcd.) (1) 
$$D_4^{24.5} = 1.1003$$
 (1)  $n_D^{21} = 1.4562$  (1)

[For formn. of  $\bar{C}$  from 2-methylbutane (isopentane) (1:8500) with  $Cl_2$  (together with 2,3-dichloro-2-methylbutane (3:7975) and 2,4-dichloro-2-methylbutane (3:8105)) see (3); for formn. of  $\bar{C}$  (together with other products) from dextrorotatory 1-chloro-2-methylbutane (act.-amyl chloride) by chlorination with  $SO_2Cl_2$  + benzoyl peroxide see (1); for formn. of  $\bar{C}$  (together with other products) from 4-chloro-2-methylbutane (isoamyl chloride) (3:7365) +  $Cl_2$  in light see (2).] [The dextrorotatory form of  $\bar{C}$  has been obtd. (4) from  $N_1N'$ -dibenzoyl-2-methyltetramethylenediamine with  $PCl_5$ .]

C on boilg. with AgOAc gives (3) a diacetate which upon saponification and subsequent oxidn. gives (3) methylsuccinic acid [Beil. II-637; II<sub>1</sub>-(274)], m.p. 112°.

3:8360 (1) Brown, Kharasch, Chao, J. Am. Chem. Soc. 62, 3437-3439 (1940). (2) Perkin, J. Soc. Chem. Ind. 31, 616-624 (1912); Cent. 1912, II (1912). (3) Davydova, Papkina, Tishchenko, J. Gen. Chem. (U.S.S.R.) 7, 1992-1994 (1937); Cent. 1939, I 2397; C.A. 32, 482 (1938). (4) von Braun, Jostes, Ber. 59, 1095-1096 (1926).

3:8365 
$$\delta$$
-METHYL- $n$ -CAPROYL CHLORIDE  $C_7H_{13}OCl$  Beil. II - 342 (Isoheptanoyl chloride; isoamylacetyl  $CH_3$ . CH.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.C II<sub>1</sub>— chloride)  $CH_3$   $CH_3$   $CH_4$ 

#### B.P. 168-169° at 739 mm. (1)

[For prepn. of  $\bar{C}$  from isoamylacetic acid [Beil. II-342, II<sub>1</sub>-(146)] with PCl<sub>3</sub> (1) or with SOCl<sub>2</sub> (2) see indic. refs.]

[ $\bar{\mathbf{C}}$  with McOH yields methyl isoheptanoate, b.p. 166-167.5° cor. (3);  $\bar{\mathbf{C}}$  with EtOH yields ethyl isoheptanoate, b.p. 181.5-182.5° cor. (3), 182.7° cor. at 750 mm. (4); for reactn. of  $\bar{\mathbf{C}}$  with benzyl alc., phenylethyl alc., phenylpropyl alc., geraniol, and terpineol to give corresp. esters see (5).]

C on hydrolysis yields isoamylacetic acid (see above), b.p. 216° cor. at 762 mm. (4).

- (4), 102-103° (6).
- D Isoamylacet-anilide: cryst. from ether + pet. ether, m.p. 74-75° (7), 75° (6).
- D Isoamyl acet-p-toluidide: ndls. from dil. alc., m.p. 75° (8).

3:8365 (1) Ponzio, de Gaspari, Gazz. chim. ital. 28, II 277 (1898). (2) Staudinger, Muntwyler, Kupfer, Helv. Chim. Acta 5, 761 (1922). (3) Poetsch, Ann. 218, 68-70 (1883). (4) Levene, Allen, J. Biol. Chem. 27, 442 (1916). (5) Rothstein, Bull. sec. chim. (4) 53, 1106-1107 (1938). (6) Wallach, Ann. 408, 190 (1915). (7) Fournier, Bull. sec. chim. (4) 5, 925 (1909). (8) Fichter, Rosenberger, J. prakt. Chem. (2) 74, 324 (1906).

[For prepn. of  $\bar{C}$  from 2-ethylhexanol-1 (1:6248) with SOCl<sub>2</sub> + dimethylaniline see (1).] 3:8376 (1) Weizmann, Bergmann, Haskelberg, Chemistry & Industry 56, 589 (1937).

3: 8373 ETHYL 
$$d$$
,  $l$ - $s$ -CHLORO- $n$ -BUTYRATE  $C_0H_{11}O_2Cl$  Beil. II - 277  $CH_3$ . CH. CH.  $CH_2$ . COOC<sub>2</sub>H<sub>5</sub> II<sub>1</sub>-(124) II<sub>2</sub>-(253) Cl

B.P. 169.5° (1)  $D_4^{20} = 1.0542$  (6)  $n_D^{20} = 1.4253$  (2) 1.68-169° at 745.4 mm. (3) 1.4247 (6) 1.4248 (3) 168-169° at 741 mm. (4) 65-65.5° at 15 mm. (5)

[For prepn. of  $\bar{C}$  from ethyl *n*-butyrate (1:3127) with SO<sub>2</sub>Cl<sub>2</sub> + dibenzoyl peroxide in CCl<sub>4</sub> (50%  $\bar{C}$  together with 10%  $\alpha$ - and 40%  $\gamma$ -isomers) see (2); from  $\beta$ -chloro-*n*-butyric acid (3:0035) with EtOH + HCl see (4); from  $\beta$ -chloro-*n*-butyronitrile with EtOH + HCl or ethyl crotonate (1:3196) with HCl see (7) (9); from crotonic acid (1:0425) + EtOH + HCl see (3); from crotonyl chloride (3:7693) with EtOH see (8); from ethyl acetoacetate (1:1710) with Zn/Hg + alc. HCl (together with other prods.) see (10).]

 $\bar{C}$  on htg. at 70-80° in s.t. with 9 vols. conc. alc. NH<sub>3</sub> yields (12) (13) (10)  $\beta$ -amino-n-butyramide [Beil. IV-412], sirup (chloroplatinate, pale yel. ndls. from alc., % Pt. 31.78 (10) (12)).

 $\tilde{C}$  on hydrolysis (e.g., with aq. KOH (11)) yields EtOH (1:6130) and crotonic acid (1:0425), m.p. 72°, together with a little  $\beta$ -hydroxy-n-butyric acid.

3:8373 (1) Weidel, Roithner, Monatsh. 17, 188 (1896). (2) Price, Schwarcz, J. Am. Chem. Soc. 62, 2894-2895 (1940). (3) Brühl, Ann. 203, 27-28 (1880). (4) Balbiano, Ber. 10, 1749 (1887). (5) Loven, Johansson, Ber. 48, 1256 (1915). (6) Schjanberg, Z. physik. Chem. A-172, 232 (1935). (7) Henry, Bull. acad. roy Belg. (3) 35, 507-520 (1898); Cent. 1898, II 273. (8) Henry, Bull. acad. roy. Belg. (3) 36, 31-54 (1898); Cent. 1898, II 663. (9) Pinner, Ber. 17, 2008 (1884). (10) Steinkopf, Wolfram, Ann. 430, 141 (1923).

(11) Balbiano, Ber. 11, 348 (1878). (12) Balbiano, Ber. 13, 312 (1880); Gazz. chim. ital. 10, 137 (1880). (13) Scheibler, Magasanik, Ber. 48, 1812 (1915).

3:8375 ISOBUTYL CHLOROACETATE 
$$C_0H_{11}O_2Cl$$
 Beil. II - 198  $(CH_3)_2CH.CH_2O.CO.CH_2Cl$  II<sub>1</sub>-(89)  $II_2$ —

B.P. 170° at 760 mm. (1)  $D_4^{20} = 1.0612$  (2)  $n_D^{20} = 1.4255$  (2)  $D_4^{15} = 1.0675$  (1)

Colorless liq. with agreeable odor; insol. aq.; sol. alc., ether.

[For prepn. from isobutyl alc. (1:6165) + chloroacetic ac. (3:1370) + conc.  $H_2SO_4$  see (1).]

For study of hydrol. by dil. aq. halogen acids see (3).

3:8375 (1) Steinlen, Bull. acad. roy. Belg. (3) 34, 103 (1897); Cent. 1897, II 659. (2) Schjanberg, Z. physik. Chem. A-172, 228 (1935). (3) Drushel, Hill, Am. J. Sci. (4) 30, 72-78 (1910); C.A. 4, 2438 (1910).

3:8378-3:8380

3:8378 
$$d$$
, $l$ -2-CHLORO-OCTANE  $(n$ -Hexyl-methyl-carbinyl chloride) Cl  $I_1$ —  $I_2$ -(124)  $I_3$ —  $I_4$ -(124)  $I_4$ -(124)  $I_5$ -(124)  $I_6$ 

[For prepn. of  $\tilde{C}$  from octanol-2 (n-hexyl-methyl-carbinol) (1:6245) with HCl (4) (5), with PCl<sub>5</sub> (4) (6), or with SOCl<sub>2</sub> in pyridine (3) see indic. refs.; for prepn. of  $\tilde{C}$  from octene-1 + HCl + AlCl<sub>3</sub> see (7).] [The large amt. of work on the opt. act. isomers of  $\tilde{C}$  cannot be discussed here; see Beil. I<sub>1</sub>-(60), I<sub>2</sub>-(124) and subsequent literature incl. (8).]

[For study of rate of reactn. of C with KI in acetone see (2).]

3:8378 (1) Perkin, J. prakt. Chem. (2) 31, 495 (1885). (2) Conant, Hussey, J. Am. Chem. Soc. 47, 485 (1925). (3) McKenzie, Tudhope, J. Biol. Chem. 62, 554 (1924/25). (4) Bouis, Ann. 92, 398 (1854). (5) Malbot, Bull. soc. chim. (3) 3, 69 (1890). (6) Dachauer, Ann. 166, 270 (1858). (7) Webb (to Carbide and Carbon Chem. Corp.), U.S. 1,560,625, Nov. 10, 1925; Cent. 1926, I 1713; C.A. 20, 51 (1926). (8) Gerrard, J. Chem. Soc. 1944, 85-90; 1945, 106-112.

3:8380 d,l-1,2-DICHLOROHEXANE Cl Cl 
$$C_6H_{12}Cl_2$$
 Beil. I - 144  $I_1$ —  $CH_3.CH_2.CH_2.CH_2$ — $CH_2$   $I_1$ —  $I_2$ —  $I_2$ —  $I_2$ —  $I_3$ —  $I_4$ 

[For prepn. of  $\bar{C}$  from hexene-1 (1:8255) +  $Cl_2$  see (1).]

3:8380 (1) Brochet, Bull. soc. chim. (3) 7, 569 (1892).

#### CHAPTER XIX

# DIVISION B. LIQUIDS WITH BOILING POINTS REPORTED AT ORDINARY PRESSURE

## Section 2. $D_4^{20}$ less than 1.1500

(3:8500-3:8999)

| 3:850 | 0 <i>d,l-</i> 1-CH | d,l-1-CHLOROPENTANOL-3 (β-Chloroethyl-ethyl-carbinol) |     |              | C <sub>5</sub> H <sub>11</sub> OCl<br>CH <sub>3</sub> .CH <sub>2</sub> .CH.CH <sub>2</sub> .CH <sub>2</sub> |     | Beil. I —<br>I <sub>1</sub> -(194) |              |     |
|-------|--------------------|-------------------------------------------------------|-----|--------------|-------------------------------------------------------------------------------------------------------------|-----|------------------------------------|--------------|-----|
|       | (\$-Chlore         |                                                       |     |              |                                                                                                             |     |                                    |              |     |
|       |                    |                                                       |     | ОН           |                                                                                                             |     | ]                                  | 2-( <b>4</b> | 21) |
| B.P.  | 173°               | at 760 mm.                                            | (1) | $D_4^{25} =$ | 1.0327                                                                                                      | (2) | $n_{\rm D}^{25}=1.4$               | 466          | (3) |
|       | 100°               | at 60 mm.                                             | (1) |              | 1.035                                                                                                       | (3) | 1.4                                | 448          | (2) |
|       | 77.0-77.5°         | at 20 mm.                                             | (2) |              |                                                                                                             |     |                                    |              |     |
|       | 70-71°             | at 10 mm.                                             | (3) |              |                                                                                                             |     |                                    |              |     |

Liquid with weak odor resembling that of allyl alcohol. — Sparingly sol. cold aq.; sol. hot aq.

[For prepn. of C from β-chloropropionaldehyde (3:5576) with EtMgBr see (1) (2) (3).] [C with AcCl yields (1) 3-acetoxy-1-chloropentane, b.p. 89° at 15 mm. (1), while C htd. 4 hrs. at 160-170° with KOAc yields (4) 1-acetoxypentanol-3, b.p. 113-114° at 12 mm. (4); C with BzCl yields (1) 3-benzoxy-1-chloropentane, b.p. 168° at 15 mm. (1), while C htd. to 180° for 10 hrs. with NaOBz + KI yields (4) 1-benzoxypentanol-3, b.p. 181° at 20 mm., 171° at 11 mm. (4).]

[For reactn. of C with alk. Na<sub>3</sub>AsO<sub>3</sub> see (3).]

[ $\bar{C}$  with COCl<sub>2</sub> yields (5) the corresp. chloroformate, b.p. 95° at 18 mm., which with excess NH<sub>3</sub> gives  $\beta$ -chloroethyl-ethyl-carbinyl carbamate, m.p. 68° (5).]

3:8560 (1) Fourneau, Ramart-Lucas, Bull. soc. chim. (4) 25, 366-368 (1919). (2) Lespieau, Bull. soc. chim. (5) 7, 254-258 (1940); C.A. 34, 5414 (1940). (3) Backer, Bolt, Rec. trav. chim. 54, 70 (1935). (4) Fourneau, Ramart-Lucas, Bull. soc. chim. (4) 27, 554-556 (1920). (5) Puyal, Montagne, Bull. soc. chim. (4) 27, 859 (1920).

3:8510 1-CHLORO-4-ETHYLHEXENE-3 
$$C_8H_{15}Cl$$
 Beil. I —  $Cl$   $CH_2.CH_3$   $I_1$ —  $I_2$ —(201)  $CH_2.CH_2.CH_3$   $I_2$ —(201) B.P. 173° (1)  $D_2^{40} = 0.9102$  (1)  $n_D^{20} = 1.4524$  (1)

[For prepn. of  $\tilde{\mathbf{C}}$  from 6-chlorohexanone-3 ( $\gamma$ -chloro-n-propyl ethyl ketone) [Beil. I<sub>1</sub>-(355), I<sub>2</sub>-(747)] with excess EtMgBr see (1).]  $\tilde{\mathbf{C}}$  adds Br<sub>2</sub>.

3:8519 (1) De Boosere, Bull. soc. chim. Belg. 32, 35-39 (1923).

Colorless strongly refractive liquid rapidly decomposed in strong light (7).—Č is stronger lachrymator than BzCl (2).

[For prepn. of  $\bar{C}$  from furoic acid (1:0475) with PCl<sub>5</sub> (poor yields (3) (4) (6)), with excess PCl<sub>5</sub> in dry CHCl<sub>3</sub> as specified (100% yield (6)) (8), with PCl<sub>5</sub> (77% yield (5)), with SOCl<sub>2</sub> (100% (2), 79% (1), 60% (3)), with SOCl<sub>2</sub> in C<sub>6</sub>H<sub>6</sub> (89.5% yield (7)), or with phosgene (9) see indic. refs.

[ $\bar{\mathbf{C}}$  with MeOH yields methyl furoate (1:3452), b.p. 180.5° at 750 mm., 76° at 20 mm.,  $D_4^{20}=1.1792,~n_D^{20}=1.4875$  (10);  $\bar{\mathbf{C}}$  with EtOH yields ethyl furoate (1:2082), b.p. 197°, m.p. 34°;  $\bar{\mathbf{C}}$  with furfuryl alc. (1:6425) yields (11) furfuryl furoate, dimorphous cryst., m.p. 27.5° and 19 5°, b.p. 122° at 2 mm. (11); for study of reactn. of  $\bar{\mathbf{C}}$  with cellulose see (12).]

[C with phenol yields (2) phenyl furoate, m.p. 41 5° (2).]

[ $\tilde{C}$  with  $C_6H_6$  + AlCl<sub>3</sub> yields (13) (14)  $\alpha$ -furyl phenyl ketone [Beil. XVII-348; XVII<sub>1</sub>-(186)], b.p. 282-284°;  $\tilde{C}$  with toluene + AlCl<sub>3</sub> gives (80% yield (15))  $\alpha$ -furyl p-tolyl ketone, m.p. 41-42°, b.p. 180-183° at 23 mm. (15).]

[For study of reactn. of C with Cl<sub>2</sub> (16) or Br<sub>2</sub> (17) see indic. refs.]

Č with pyridine in ether or Č with Na or Ag furoate yields (18) furoic anhydride, ndls. from alc., m.p. 73° (18).

 $\bar{C}$  on hydrolysis (rate of reactn. even with boilg. aq. slower than BzCl (6)) yields furoic acid (1:0475), m.p. 133-134° (for the amide, anilide, p-toluidide, and other derivatives corresp. to  $\bar{C}$  see 1:0475).

3:8515 (1) Bogert, Stull. J. Am. Chem. Soc. 48, 252 (1925). (2) Baum, Ber. 37, 2951 (1904), (3) Gelissen, van Roon, Rec. trav. chim. 43, 361 (1924). (4) Liès-Bodart, Ann. 100, 327 (1856); Compt. rend. 43, 393 (1856). (5) Reichstein, Morsman, Helv. Chim. Acta 17, 1122 (1934). (6) Frankland, Aston, J. Chem. Soc. 79, 516-517 (1901). (7) Hartmann, Dickey, Ind. Eng. Chem. 24, 151-152 (1932). (8) Chavanne, Compt. rend. 134, 1439 (1902). (9) Meuser (to Dominion Rubber Co.), Canadian 373,516, May 3, 1938; Cent. 1938, II 3609; C.A. 32, 5003 (1938). (10) Price, Chapin, Goldman, Krebs, Shafer, J. Am. Chem. Soc. 63, 1859 (1941).

(11) Zanetti, J. Am. Chem. Soc. 47, 1452-1453 (1925). (12) Kobe, Montonna, J. Am. Chem. Soc. 53, 1889-1891 (1931). (13) Marquis, Bull. soc. chim. (3) 23, 33 (1900); Ann. chim. (8) 4, 276-277 (1905). (14) Gilman, Hewlett, Iowa State Coll. J. Sci. 4, 27-33 (1929); Cent. 1931, II 428; C.A. 24, 1640 (1930). (15) Borsche, Leditsche, Ann. 529, 110 (1937). (16) Hewlett, Iowa State Coll. J. Sci. 6, 439-445 (1932); Cent. 1933, I 942; C.A. 27, 979-980 (1933). (17) Shepard, Winslow, Johnson, J. Am. Chem. Soc. 52, 2083-2090 (1930). (18) Baum, Ber. 34, 2505 (1901).

B.P. 173-175° at 745 mm. (1) 
$$D_4^{20} = 1.0259$$
 (1)  $n_D^{20} = 1.4489$  (1) 58-59° at 12 mm. (1)

[For prepn. of  $\bar{C}$  from allyl chloride (3:7035) with 2-methylpropane (isobutane) + AlCl<sub>3</sub> at  $-10^{\circ}$  (13-15% yield accompanied by 35-40% yield of 5-chloro-2,3-dimethylpentane (3:8153)), or with ter-butyl chloride (3:7045) + AlCl<sub>3</sub> at  $-10^{\circ}$  to  $-20^{\circ}$ , see (1).] [ $\bar{C}$  with isobutane + AlCl<sub>3</sub> gives (1) a mixt. of products including ter-butyl chloride (3:7045), 5-chloro-2,3-dimethylpentane (3:8153), etc.]

C with Zn dust + alc. reacts only very slowly under reflux but in s.t. at 120° gives (45% yield (1)) 4,4-dimethylpentene-1 (1:8285), b.p. 71.8° (1).

3:8516 (1) Schmerling, J. Am. Chem. Soc. 67, 1438-1441 (1945).

3:8517 METHYL 
$$\gamma$$
-CHLORO- $n$ -BUTYRATE  $C_5H_9O_2Cl$  Beil. II -278  $CH_2$ .CH $_2$ .COOCH $_3$  II $_1$ —  $II_2$ —

B.P. 175-176° at 764 mm. (1)  $D_-^{14} = 1.1268$  (1)  $n_D^{20} = 1.4324$  (4) 173-174° (2) 172-174° at 749 mm. (3)  $D_-^{10} = 1.1894$  (2) 102-105° at 58 mm. (3) 90° at 45 mm. (4) 55-56° at 7 mm. (5)

[For prepn. of  $\bar{C}$  from  $\gamma$ -chloro-n-butyronitrile with MeOH + HCl (80% yield (4)) (2) see indic. refs.; from  $\gamma$ -methoxy-n-butyric acid (3) by htg. with SOCl<sub>2</sub> for 6 hrs. (86% yield (3)) or by htg.  $\gamma$ -methoxy-n-butyryl chloride (84% yield (3)) see (3); from  $\gamma$ -hydroxy-n-butyronitrile with MeOH + HCl see (5).]

Č on 48-hr. reflux with alc. KOH gives (67.5% yield (3))  $\gamma$ -butyrolactone (1:5070), b.p. 206°.

[C refluxed 8 hrs. with NaI in acetone gives (3) methyl γ-iodo-n-butyrate, b.p. 80-83° at 11 mm. (3); C with 4 moles MeMgCl in ether yields (4) 5-chloro-2-methylpentanol-2.

Č on hydrolysis by boilg. 6 hrs. with conc. HCl gives (32% yield (3))  $\gamma$ -chloro-n-butyric acid (3:0020) q.v.

For the amide, anilide, p-toluidide, and other derivatives corresp. to  $\bar{C}$  see  $\gamma$ -chloro-n-butyric acid (3:0020).

8:8517 (1) Henry, Bull. acad. roy. Belg. (3) 35, 507-520 (1898); Cent. 1898, II 273. (2) Henry, Bull. soc. chim. (2) 45, 341 (1886). (3) Blicke, Wright, Zienty, J. Am. Chem. Soc. 63, 2489 (1941).
 (4) B. K. Campbell, K. N. Campbell, J. Am. Chem. Soc. 60, 1375 (1938). (5) Palomaa, Ber. 75, 339 (1942).

3:8518 ETHYL d.J-\a-CHLORO-\a-METHYL-n-BUTYRATE C7H12O2Cl Beil. II-306

$$\begin{array}{c} \text{CH}_3 & \textbf{II}_1 \\ \text{CH}_3.\text{CH}_2 & \textbf{COOC}_2\textbf{H}_5 \end{array}$$

B.P. 175° at 747 mm. (1) 
$$D_{-}^{14} = 1.069 (1)$$
  $n_{-}^{11} = 1.43683 (1)$ 

Oily liq.; insol. aq.; sol. alc., ether.

[For prepn. of  $\tilde{C}$  from  $\alpha$ -chloro- $\alpha$ -methyl-n-butyronitrile with EtOH + HCl see (1).] For the corresp. acid,  $\alpha$ -chloro- $\alpha$ -methyl-n-butyric acid see 3:8718.

3:8518 (1) Servais, Rec. trav. chim. 20, 60 (1901).

3:8520 n-HEPTANOYL CHLORIDE 
$$CH_3(CH_2)_5$$
. $C=O$   $C_7H_{13}OCl$  Beil. II - 340 (Enanthoyl chloride) II<sub>1</sub>...

B.P. F.P. 
$$-83.8^{\circ}$$
 (1)  $D_4^{25} = 0.95694$  (1) . .  $175.0^{\circ}$  (2)  $174-175^{\circ}$  (3)  $D_4^{20} = 0.96170$  (1)  $77^{\circ}$  at 23 mm. (4)  $74-75^{\circ}$  at 19 mm. (5)  $D_4^{15} = 0.96645$  (1)  $n_D^{15} = 1.43447$  (2)  $59-61^{\circ}$  at 11 mm. (6)  $0.9669$  (2)  $56^{\circ}$  at 8 mm. (7)

[For prepn. of  $\bar{C}$  from heptanoic acid (enanthic acid) (1:1140) with PCl<sub>5</sub> (2) (51% yield (8)), with PCl<sub>5</sub> (75% yield (1)), with PCl<sub>5</sub> + ZnCl<sub>2</sub> (89% yield (8)), or with SOCl<sub>2</sub> (yield 98.5% (6), 80% (8)) see indic. refs.]

[For reactn. of  $\bar{C}$  with various higher alcohols see (9), with various acylureas see (10), with vanilylamine see (11) (5), with sodium *n*-heptylate to yield *n*-heptylic anhydride (1:1165), b.p. 258°, see (1) (2).]

[ $\bar{C}$  with AlCl<sub>3</sub> + phenol yields (12) 48% o-(n-heptanoyl)phenol, b.p. 172-174° at 20 mm. (13), 155-156° at 10 mm. (12), m.p. 24° (13), +9.8° (12),  $D_{-}^{24}$  = 1.0110 (12),  $n_{D}^{25.5}$  = 1.5209 (12) (phenylhydrazone, m.p. 91-92° (13), semicarbazone, m.p. 162° (12)), and 41% p-(n-heptanoyl)phenol, m.p. 93-94° (13), 91-91.5° (12), b.p. 220° at 15 mm. (13) (acetate, m.p. 46.5° (12), benzoate, m.p. 96.5-97° (12), 92-93° (13)).]

[ $\bar{C}$  on warming with NaN<sub>3</sub> in C<sub>6</sub>H<sub>6</sub> yields (14) n-hexyl isocyanate, b.p. 163-164° (14), and/or (15) n-hexylamine HCl + N,N'-di-n-hexylurea, m.p. 58-59° (15).]

[C in ether treated with diazomethane as directed (7) yields 1-chlorooctanone-2, b.p. 91-96° at 10 mm. (7).]

 $\tilde{C}$  on hydrolysis yields *n*-heptanoic (enanthic) acid (1:1140) q.v. (for the amine, anilide, *p*-toluidide, and other derivatives corresp. to  $\tilde{C}$  see 1:1140).

3:8520 (1) Deffet, Bull. soc. chim. Belg. 40, 389-394 (1931). (2) Lumsden, J. Chem. Soc. 87, 92-93 (1905). (3) Freundler, Bull. soc. chim. (3) 13, 833 (1895). (4) Krafit, Ber. 19, 2987 (1886). (5) Ford-Moore, Phillips, Rec. trav. chim. 53, 855 (1934). (6) Fierz-David, Kuster, Helv. Chim. Acta 22, 86-89 (1939). (7) Späth, Lorenz, Ber. 74, 599-603 (1941). (8) Clark, Bell, Trans. Roy. Soc. Can. (3) 27, III 97-103 (1933). (9) Rothstein, Bull. soc. chim. (4) 53, 1106-1107 (1933). (10) Stoughton, J. Org. Chem. 2, 514-521 (1938).

(11) Nelson, J. Am. Chem. Soc. 41, 2124 (1919). (12) Sandulesco, Girard, Bull. soc. chim. (4) 47, 1305-1310 (1930). (13) Coulthard, Marshall, Pyman, J. Chem. Soc. 1936, 280-291.

(14) Schroeter, Ber. 42, 3358 (1909). (15) Nelles, Ber. 65, 1346-1347 (1932).

3:8523 ETHYL 
$$\alpha$$
-CHLOROCROTONATE  $C_0H_0O_2Cl$  Beil. II - 415  $III_1$ -(189)  $III_2$ -(395) Cl—C—COOC $_2H_5$  B.P. (contd.)
176-178° (1) 85° at 35 mm. (3)  $D_4^{20.1} = 1.1086$  (8) 175-177° (2) 67-68° at 15 mm. (2)  $n_D^{20.1} = 1.45303$  (8) 176° at 760 mm. (3)  $72^\circ$  at 14 mm. (8)  $D_4^{20} = 1.109$  (8) 176° (4) 61° at 10 mm. (9) 1.102 (9) 175-176° cor. (5)  $D_4^{19.8} = 1.1133$  (6)  $n_D^{19.8} = 1.45378$  (6)  $D_4^{14.3} = 1.1073$  (9)

[See also ethyl  $\alpha$ -chloroisocrotonate (3:9368).]

[For prepn. of  $\tilde{C}$  from  $\alpha$ -chlorocrotonic acid (3:2760) in EtOH with dry HCl gas (4) (5) (8) or with conc. H<sub>2</sub>SO<sub>4</sub> (9) see indic. refs.; from  $\alpha$ -chloroisocrotonic acid (3:1615) in EtOH with conc. H<sub>2</sub>SO<sub>4</sub> at 100° (note isomerization) see (9); from the ethyl ester of the lower-melting (63°)  $\alpha,\beta$ -dichloro-n-butyric acid (3:1375) in EtOH with KCN (1 mole) for 10 min. (75% yield) see (3); from ethyl  $\alpha,\alpha,\beta$ -trichloro-n-butyrate (3:6380) with Zn in moist ether (100% yield) see (10); from  $\alpha,\alpha,\beta$ -trichloro-n-butyraldehyde (butylchloral) (3:5910) (1) as hydrate (3) or cyanohydrin (3) in EtOH with KCN (2 moles) below 15° (85% yield (3)) see indic. refs.; from ethyl  $\alpha$ -chloro- $\alpha$ -vinylacetate (2) by isomerization of the double bond with NaOAc/AcOH under reflux 30-40 hrs. see (2).]

[C with Al/Hg in alc. gives (11) crotonic acid (1:0425), m.p. 72°.]

 $\bar{C}$  with diazomethane in dry ether does not react (12); however, upon addn. of a drop of water addition of CH<sub>2</sub>N<sub>2</sub> to unsatd. linkage takes place with elimination of HCl (on distillation) yielding (12) ethyl 4-methylpyrazole-3-(5)carboxylate [Beil. XXV-117], m.p. 156-157° (12).

[ $\overline{C}$  with piperidine (3 moles) in abs. alc. stood 3 hrs. then neutralized, etc., (13) gives (by reactn. of 1 piperidine with the halogen and addition of a second molecule of piperidine to the unsatd. linkage (or vice versa)) (63% yield (13)) ethyl  $\alpha,\beta$ -di-piperidino-n-butyrate, viscous oil, insol. aq., b.p. 181–183° at 14 mm.]

3:8523 (1) Wallach, Ann. 173, 301 (1874). (2) Rambaud, Bull. soc. chim. (5) 1, 1353-1354 (1934). (3) Chattaway, Irving, J. Chem. Soc. 1929, 1043-1045. (4) Sarnow, Ann. 164, 101 (1872). (5) Perkin, J. Chem. Soc. 65, 424 (1894). (6) Eisenlohr, Ber. 44, 3208 (1911). (7) Roberts, J. Chem. Soc. 1938, 779. (8) von Auwers, Ber. 45, 2806 (1912). (9) von Auwers, Ann. 432, 61 (1923). (10) Michael, Schulthess, J. prakt. Chem. (2) 43, 595 (1891).

(11) Wislicenus, J. prakt. Chem. (2) 54, 59-60 (1896). (12) von Auwers, König, Ann. 496, 31,

41 (1932). (13) Roberts, J. Chem. Soc. 1938, 963-964.

d,l-form

B.P.

62.0-62.5° at 12 mm. (2)

 $D_4^{25} = 1.0431 \quad (1)$ 

$$D_4^{12} = 1.0529$$
 (2)  $n_C^{12} = 1.4495$  (2)  $D_4^0 = 1.0675$  (1)

meso-form

B.P.

177.8-178.2° cor. at 751.8 mm. (1) 18.7° (

18.7° (1)
$$D_4^{25} = 1.0459 \quad (1)$$

[For prepn. of  $\bar{C}$  (presumably mixt. of both diastereoisomers) from hexadiene-1,5 (biallyl) (1:8045) by shaking with 5 vols. conc. HCl for 120 hrs. at room temp. (57% yield accompanied by 23% 5-chlorohexene-1 (3:7665)) see (1); from 2,5-dimethyltetrahydrofuran [Beil. XVII-14] on protracted treatment with HCl gas + ZnCl<sub>2</sub> (8% yield (3)) see (3).]

[For sepn. of meso- from  $d_i$ -form by cooling to  $-50^{\circ}$  see (1).]

[For behavior of  $\bar{C}$  on treatment with N/10 ag. alc. KOH see (2).]

3:8525 (1) Cortese, J. Am. Chem. Soc. 52, 1519-1520 (1930). (2) Tishchenko, J. Gen. Chem. (U.S.S.R.) 9, 1380-1388 (1939); C.A. 34, 1611 (1940). (3) Fried, Kleene, J. Am. Chem. Soc. 63, 2691 (1941).

3:8528 ETHYL d,l-
$$\alpha$$
-CHLORO-ISOVALERATE  $C_7H_{13}O_2Cl$  Beil. II - 316 (Ethyl  $\alpha$ -chloro- $\beta$ -methyl- $n$ -butyrate)  $CH_3$ — $CH$ — $CH$ — $COOC_2H_5$  II<sub>1</sub>— II<sub>2</sub>— II<sub>2</sub>—

B.P. 177-179° at 756 mm. (1) 
$$D_{-}^{13.2} = 1.021$$
 (1)  $n_{-}^{11} = 1.42951$  (1)

Oil with odor like peppermint.

[For prepn. of  $\bar{C}$  from  $\alpha$ -chloro-isovaleric acid (3:0050) with EtOH + H<sub>2</sub>SO<sub>4</sub> see (1); for formn. from ethyl  $\alpha$ -diazo-isovalerate with HCl see (2).]

3:8528 (1) Servais, Rec. trav. chim. 20, 54 (1901). (2) Curtius, J. prakt. Chem. (2) 125, 254 (1930).

B.P. 178.2-179° at 727 mm. (1) 
$$D_4^{20} = 1.0704$$
 (4)  $n_D^{20} = 1.4301$  (4) 176.7° (2) 94° at 38 mm. (3)

Colorless mobile liq. with fragrant odor. — Insol. aq., misc. with alc. or ether (5). [For prepn. (97% yield (3)) from n-butyl\_alc. (1:6180) + chloroacetic ac. (3:1370) see (3).]

[For study of insecticidal action of vapor of  $\bar{C}$  see (6).]

3:8530 (1) Gustus, Stevens, J. Am. Chem. Soc. 55, 384-385 (1933). (2) Cheng, Z. physik. Chem. B-24, 307 (1934). (3) Liston, Dehn, J. Am. Chem. Soc. 60, 1264-1265 (1938). (4) Schjanberg, Z. physik. Chem. A-172, 228 (1935). (5) Gehring, Bull. soc. chim. (2) 46, 147 (1886). (6) Roark, Cotton, Ind. Eng. Chem. 20, 512-514 (1928).

| 3:8535             |         | oro | CHLORI<br>toluene;<br>luene) | IDE           | ,   | CH <sub>2</sub> | CI        | C7            | H <sub>7</sub> Cl                                                          | _                 | - 292<br>-(151)<br>-(227) |
|--------------------|---------|-----|------------------------------|---------------|-----|-----------------|-----------|---------------|----------------------------------------------------------------------------|-------------------|---------------------------|
| B.P.               |         |     |                              |               |     | F.P.            |           |               |                                                                            |                   |                           |
| 179.35             | °       | at  | 760 m                        | m. (          | (1) | -37.5° (23      | ) D       | 30 =          | 1.08977                                                                    | (24)              |                           |
| 179.3°             |         | at  | 760 m                        | m.            | (2) | -39.0° (1       | )         | _             | 1.08815                                                                    | (28)              |                           |
| 179° c             | or.     |     |                              | (             | (3) | -39.2° (24      | .)        |               | 1.08699                                                                    |                   |                           |
| 179°               |         | at  | 749 m                        | m.            | (4) | -39.7° (7       | ) D       | $_{4}^{25} =$ | 1.09460                                                                    | (24)              |                           |
|                    | 179.0°  | at  | 766 m                        |               | (5) | -41.2° (25      |           |               | 1.100                                                                      | (29)              |                           |
| 178.5              | 179°    |     |                              |               | (6) | -43.2° (26      | <b>i)</b> |               | $n_{\rm D}^{25}=1$                                                         | l.5363            | (21)                      |
| 178.5°             |         | at  | 754 m                        | m.            | (7) | -48.0° (27      | D         | $^{20}_{4} =$ | 1.09943                                                                    | (24)              |                           |
| 178.0-             | -178.5° |     |                              | (             | (8) |                 |           |               | $n_{\mathrm{D}}^{20} = 1$                                                  | 1. <b>5391</b> (3 | 1) (32)                   |
| 177.5-             | 178°    | at  | 755 m                        | m. (14        | 2)  |                 |           |               | $n_{\rm D}^{17.4} = 1$                                                     | L.5391            | (33)                      |
| 177.0-             | -177.5° | u.c | <b>:</b> .                   |               | (9) |                 | $D_4^1$   | 5.4 _         | $   \begin{array}{l}     1.1138 \\     n_{\rm D}^{154} = 1   \end{array} $ | (30)              |                           |
| 175.2-             | 178.3°  |     |                              | (2            | 28) |                 |           |               |                                                                            |                   | (30)                      |
| 175-1              | 75.2°   | at  | 769.3 m                      | <b>m. (</b> 1 | (0) |                 | D         | $Q_4^{15} =$  | 1.10426                                                                    |                   |                           |
| 174.0-             | 174.8°  |     |                              | (2            | (85 |                 |           | _             |                                                                            | 1.54124           | (24)                      |
| 173° d             | ec.     |     |                              | (1            | 11) |                 | D         | ) <u> </u>    |                                                                            | (34)              |                           |
| 172°               |         | at  | 730 m                        | m. (1         | 2)  |                 |           |               | $n_{\rm D}^7 = 1$                                                          | 1.5415            | (34)                      |
| 141°               |         | at  | 261 m                        | m. (1         | 3)  |                 |           |               |                                                                            |                   |                           |
| 128°               |         | at  | 163 m                        | m. (1         | 3)  |                 | S         | ee als        | o Note 2.                                                                  |                   |                           |
| 118°               |         | at  | 111 m                        | m. (1         | 3)  |                 |           |               | See also                                                                   | Note 3.           |                           |
| 106.2°             |         | at  | 92 m                         | m. (1         | 4)  |                 |           |               |                                                                            | _                 |                           |
| 103°               |         | at  | 76.1 m                       | m. (1         | 4)  | Note 1.         |           |               |                                                                            |                   |                           |
| 96-99              | •       | at  | 62 m                         | m. (1         | 15) | (34) stated     | to dec    | compo         | se so rea                                                                  | adily on l        | neating                   |
| 100°               |         | at  | 59 m                         |               | 13) | that precise    |           | of bo         | oiling poir                                                                | at at 760         | mm. is                    |
| 93.3°              |         | at  | 47.8 m                       | <b>m.</b> (1  | 4)  | impracticable   | e.        |               |                                                                            |                   |                           |
| 89.9°              |         | at  | 40 m                         |               | 4)  |                 |           |               |                                                                            |                   |                           |
| 83.6°              |         | at  | 28.64 m                      | -             | 4)  |                 |           |               |                                                                            |                   |                           |
| 81.5~8             | 2°      | at  | 28 m                         | •             | 6)  | Note 2.         |           |               |                                                                            |                   |                           |
| 81.8°              |         | at  | 26.74 m                      | •             | 4)  | lowers densit   |           |               |                                                                            | or of ox          | idation                   |
| 78.2°              |         | at  | 22.1 m                       |               | 4)  | products rais   | ses den   | nsity (       | 24).                                                                       |                   |                           |
| 73.9°              |         | at  | 17 m                         | -             | 4)  |                 |           |               |                                                                            |                   |                           |
| <del>66-67</del> ° |         | at  | 16 m                         | -             | 7)  |                 |           |               |                                                                            |                   | _                         |
| 70.4-7             |         | at  | 15 m                         |               | 1)  | Note 3.         | Values    | of n          | for mix                                                                    | xtures of         | C with                    |
| 64.0-6             | 4.2°    | at  | 12 m                         |               | .8) | benzal (di)c    |           |               |                                                                            |                   | $n_{\rm D}^{20} =$        |
| 66°                |         | at  | 11 m                         | -             | 3)  | 1.5502) are l   | inear     | with o        | compositi                                                                  | on (31).          |                           |
| 61-62°             |         | at  | 11 m                         | •             | 9)  |                 |           |               | •                                                                          |                   |                           |
| 63.0°              |         | at  | 8.2 m                        | -             | 4)  |                 |           |               |                                                                            |                   |                           |
| 57-58°             |         | at  | 8 m                          | -             | (0) |                 |           |               |                                                                            |                   |                           |
| 56-58°             |         | at  | 4-5 m                        | •             | 1)  |                 |           |               |                                                                            |                   |                           |
| 51-52°             |         | at  | 4 m                          | n. (2         | 2)  |                 |           |               |                                                                            |                   |                           |
|                    |         |     |                              |               |     |                 |           |               |                                                                            |                   |                           |

See also Note 1.

[See also benzal (di)chloride (3:6327) and benzotrichloride (3:6540).]

Colorless liq. with penetrating odor; vapor of  $\bar{C}$  is irritating to eyes. — Insol. aq., volatile with steam. — Insol. cold conc.  $H_2SO_4$ , but soon reacts evolving HCl.  $\bar{C}$  dissolves below  $-20^\circ$  in equal vol. pet. ether (35).

Binary systems containing  $\bar{C}$ .  $\bar{C}$  + toluene: for b.p. and vapor press. relations see (36). -  $\bar{C}$  + anisole: for f.p./composition data see (25). -  $\bar{C}$  + N-methylaniline: for f.p./composition data see (25).

 $\bar{C}$  with benzaldehyde (1:0195) forms a const.-boilg. mixt., b.p. 177.9° at 760 mm., contg. 50 wt. %  $\bar{C}$  (37-a). —  $\bar{C}$  with n-butyric acid (1:1035) forms a const.-boilg. mixt., b.p. 160.8° at 760 mm., contg. 35 wt. %  $\bar{C}$  (38). —  $\bar{C}$  with isobutyric acid (1:1030) forms a const.-boilg. mixt., b.p. 153.5° at 760 mm., contg. 20 wt. %  $\bar{C}$  (38). —  $\bar{C}$  with n-caproic acid (1:1130) forms a const.-boilg. mixt., b.p. 179.0° at 760 mm., contg. 97 wt. %  $\bar{C}$  (38).

 $\bar{C}$  with chloroacetic acid (3:1370) forms a const.-boilg. mixt., b.p. 172° at 760 mm., contg. 72 wt. %  $\bar{C}$  (38-b). —  $\bar{C}$  with " $\alpha$ -dichlorohydrin" (1,3-dichloropropanol-2) (3:5985) forms a const.-boilg. mixt., b.p. 168.9° at 760 mm., contg. 43 wt. % (2)

#### PREPARATION OF C

From benzene. The prepn. of  $\bar{C}$  from benzene (1:7400) by direct introduction of the —CH<sub>2</sub>Cl group (chloromethylation) has been much studied especially in recent years. Chloromethylation may be effected with paraformaldehyde (1:0080), formalin (1:0145), chloromethyl methyl ether (3:7085), or bis-(chloromethyl) ether (3:5245), each in the pres. of ZnCl<sub>2</sub> and frequently also of HCl gas. For a general review of the process of chloromethylation see (39) and subsequent articles (32) (40) (41). Various by-products of the reaction are formed, notably  $\omega, \omega'$ -dichloro-p-xylene (3:2825) and diphenylmethane (1:7120). For study of further chloromethylation of  $\bar{C}$  to various poly-(chloromethyl)-benzenes see (41).

[For prepn. of  $\bar{C}$  from  $C_6H_6$  (1:7400) by chloromethylation with paraformaldehyde (1:0080) +  $ZnCl_2$  + HCl (yields: 80% (42), 73.5% (40), 70% (32), 36% (42)) (39), with formalin (1:0145) +  $ZnCl_2$  + HCl (yields: 70.5% (40), 57% (44)) (45) (39) (48), or with chloromethyl methyl ether (3:7085) (40) (43) (46) (47) or bis-(chloromethyl) ether (3:5245) (40) (43) see indic. refs.]

From toluene. [For prepn. of C from toluene (1:7405) by chlorination with SO<sub>2</sub>Cl<sub>2</sub> in pres. of dibenzoyl peroxide (75-80% yield (15)), with SO<sub>2</sub>Cl<sub>2</sub> (for study of effect of catalysts see (83) (84)) below 130° (49) (50), with SO<sub>2</sub>Cl<sub>2</sub> in pres. of acetyl chloride (51), with Cl<sub>2</sub> (52) (53) (for study of catalysts see (85)) in vapor phase (54) (55) (61) in light (56) (57) (58) (59) (60) (62), with Cl<sub>2</sub> in pres. of Pb + PCl<sub>3</sub> (63), with NOCl at 150° (64) or 350° (65), with NCl<sub>3</sub> (66), or with ter-butyl hypochlorite (3:7165) (62% yield (67)) see indic. refs.]

From benzyl alcohol. [For prepn. of  $\bar{C}$  from benzyl alcohol (1:6480) with HCl gas (68), with conc. aq. HCl at 60° (70–100% yield (69)) (70) in  $C_6H_6$  (study of kinetics at 60° (71)), with conc. HCl + ZnCl<sub>2</sub> in cold (100% yield (72)), with PCl<sub>3</sub> + ZnCl<sub>2</sub> (60% yield (72)), with SOCl<sub>2</sub> (100% yield (73)) in  $C_6H_6$  (85% yield (72)) or in N,N-dimethylaniline (26% yield (72)), or with AlCl<sub>3</sub> in pet. eth. above 40° (74) see indic. refs.]

From other miscellaneous sources. [For formn. of  $\bar{C}$  from benzyl chloroformate (3:9565) on htg. (75) (76), from benzyl benzoate (1:4422) with 5 moles  $SO_2Cl_2$  (77), from dibenzyl ether (1:7640) or other benzyl ethers with  $PCl_5$  (78), from dibenzyl disulfide with excess  $SO_2Cl_2$  in  $C_6H_6$  at 37-39° (79), from benzylamine with NOCl in ether at  $-15^\circ$  (80) or with aqua regia (81), or from tetrabenzylhydrazine with conc. HCl on htg. (82) see indic. refs.]

## CHEMICAL BEHAVIOR OF C

Determination of C. Many methods for detn. of C have been employed and no complete listing can be given here; the following examples, however, may be helpful. [For detn. of C by boilg, with alc. AgNO<sub>3</sub> and weighing pptd. AgCl see (85) cf. (83); for detn. of C in

C<sub>6</sub>H<sub>6</sub> by addn. of excess standard AgNO<sub>3</sub> in isopropyl alc., htg. several hrs., and excess AgNO<sub>3</sub> titrated with standard aq. NaCl see (71); for methods of detn. of C in pres. of benzal (di)chloride (3:6327) or benzatichloride (3:6540) see (86) (87).]

Pyrolysis of C. [C on boiling (34) (88) gradually dec. with evoln. of HCl. — C over glowing Pt wire gives (89) (90) much stilbene (1:7250) accompanied (91) by small amounts of toluene (1:7405) and dibenzyl (1:7149).]

Resinification of  $\tilde{C}$ .  $\tilde{C}$  under the influence of various catalysts condenses with itself evolving HCl and yielding a material of composition  $(C_7H_6)_n$ ; this material is often (though incorrectly) designated as polymeric  $\tilde{C}$ . Because of the indefinite character of the product and the voluminous and diffuse character of the literature, no exhaustive review will here be attempted. However, for extensive reviews of this reaction see (92) (93); for studies of catalysts for this type of reaction see also (94) (95) (96) (97).

Reduction of  $\bar{C}$ .  $[\bar{C}$  with  $H_2$  in pres. of Pd/BaCO<sub>3</sub> (98) or Ni (99) in alc. KOH loses all its halogen as HCl (use in quant. detn.), but the corresp. org. reduction prod. has not been characterized. —  $\bar{C}$  with  $H_2$  in pres. of colloidal Pd in alc. gives (76% yield (100)) toluene (1:7405). —  $\bar{C}$  with EtOH + Zn dust on boilg. gives (101) cf. (102) toluene (1:7405) + benzyl ethyl ether (1:7530). —  $\bar{C}$  in EtOH/KOH with hydrazine hydrate in pres. of Pd boiled for 1 hr. gives (29% yield (103)) dibenzyl (1:7149); note that in conc. soln. only traces of dibenzyl are formed (103) cf. (104) and the principal prod. is  $N_1N_2$ -dibenzyl-hydrazine [Beil. XV-533, XV<sub>1</sub>-(164)] accompanied by some benzyl ethyl ether (1:7530).]

Oxidation of C. C upon oxidn. yields either benzoic acid or benzaldehyde according to circumstances.

[ $\bar{C}$  with air at 160° over Ni cat. (105), with O<sub>2</sub> in u.v. light (106), or with CrO<sub>3</sub>/H<sub>2</sub>SO<sub>4</sub> at 95–98° for 1½ hrs. (note that  $\beta$ -chloroethylbenzene (3:8712) is stable under these conditions (1071) cf. (53), gives benzoic acid (1:0715). —  $\bar{C}$  with conc. aq. alk. at 250–280° and at 300–500 lb./sq. in. press. gives (80–90% yield (108)) benzoic acid (1:0715).]

[Č with equimolal amt. SeO<sub>2</sub> refluxed without solv. for 3 hrs. (109), with CrO<sub>2</sub>Cl<sub>2</sub> followed by aq. (110), with hot very dil. HNO<sub>3</sub> (111) (112), with hot 14% aq. Pb(NO<sub>3</sub>)<sub>2</sub> (111), with boilg. aq. Ca(NO<sub>3</sub>)<sub>2</sub> (112), with boilg. aq. Na<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> + Na<sub>2</sub>CO<sub>3</sub> (113), with boilg. aq. or alc. hexamethylenetetramine (114) (115), with air at 160° over Ni cat. (105), or with steam + air at 360–480° over V<sub>2</sub>O<sub>5</sub> on pumice (116) (117) gives benzaldehyde (1:0195); naturally any over-oxidn. gives also some benzoic acid (1:0715).]

[Note that auto-ignition temp. of C on Pt in air at ord. press. is 627° (118).]

Substitution of  $\bar{C}$ . Chlorination. [ $\bar{C}$  with NOCl at 150° gives (64) benzal (di)chloride (3:6327). —  $\bar{C}$  with aq. PbCl<sub>4</sub>.2NH<sub>4</sub>Cl on boilg. gives (119) benzal (di)chloride (3:6327) + benzotrichloride (3:6540). —  $\bar{C}$  with Cl<sub>2</sub> in pres. of I<sub>2</sub> at 30–40° gives (120) cf. (121) both o-chlorobenzyl chloride (3:6400) and p-chlorobenzyl chloride (3:0220). — Note that  $\bar{C}$  with Cl<sub>2</sub> in sunlight (122) undergoes both substitution and addition and that only isolatable prod. was benzal (di)chloride hexachloride, m.p. 153°.]

Bromination. [ $\bar{C}$  with Br<sub>2</sub> at 100° gives (123) cf. (124) a mixt. of benzyl bromide, benzal chlorobromide, and benzal (di) bromide. — $\bar{C}$  with Br<sub>2</sub> + BeBr<sub>2</sub> in ether gives (125) p-bromobenzyl bromide. — $\bar{C}$  with Br<sub>2</sub> in pres. of I<sub>2</sub> gives (126) (127) a mixt. of p-bromobenzyl bromide and p-bromobenzyl chloride.]

Sulfonation. [Presumably because of facile hydrolysis or resinification of  $\tilde{C}$  with conc.  $H_2SO_4$ , its direct sulfonation has not been reported. However, p-sulfobenzyl chloride ( $\omega$ -chlorotoluene-p-sulfonic acid) [Beil. XI<sub>1</sub>-(30)] has been prepd. (e.g., (128) (129)) from sodium salt of p-toluenesulfonic acid by chlorination.]

Nitration.  $\bar{C}$  on mononitration gives a mixt. of o-nitrobenzyl chloride [Beil. V-327, V<sub>1</sub>-(162), V<sub>2</sub>-(252)], m.p. 49-50° (130), 49.5° (17), 48-48.5° (131), 48-49° (132), 47.9° (133) (143), m-nitrobenzyl chloride [Beil. V-329, V<sub>1</sub>-(163), V<sub>2</sub>-(252)], m.p. 45-46° (130),

45.5° (17) (131) (134), 44.9° (143), 44.8° (133), and p-nitrobenzyl chloride [Beil. V-329, V<sub>1</sub>-(163), V<sub>2</sub>-(253)], cryst. from alc., m.p. 72.5° (17) (131) (134), 72.4° (133), 71-72° (130), 71.95° (143), 71° (53). — [For earlier studies of this mononitration of  $\bar{C}$  see (53) (135) (136) (137) (138) (139) and especially (140). — Subsequent studies of this mononitration with conc. HNO<sub>3</sub> in acetic anhydride gives (133) 40.9% o-, 4.2% m-, and 54.9% p-nitrobenzyl chlorides (cf. (141) (142) (144)). — For thermal anal. of various mixtures of these three nitrobenzyl chlorides see (133) (143). — For study of rate of nitration of  $\bar{C}$  in nitrobenzene soln. at 16-18° see (145). Note that p-nitrobenzyl chloride is a useful reagent for characterization of organic acids by conversion to the corresp. p-nitrobenzyl esters (146) (147); for transformation of p-nitrobenzyl chloride to p-nitrobenzyl bromide in alc. NaBr see (147) cf. (148).]

[Direct polynitration of  $\bar{C}$  has not been reported; however, p-nitrobenzyl chloride on further nitration with  $HNO_3/H_2SO_4$  as directed (149) (150) gives 2,4-dinitrobenzyl chloride [Beil. V-344, V<sub>2</sub>-(263)], tbls. from ether, m.p. 34° (150), 33-34° (149). — No other dinitrobenzyl chlorides and no trinitrobenzyl chlorides have been reported.]

Hydrolysis of C. C on hydrolysis by various means gives benzyl alcohol (1:6480) and HCl.

[ $\bar{C}$  with aq. on protracted boilg. (151) (86) in sunlight (154), with steam + cat. at 550–850° (155) cf. (156), with boilg. aq.  $K_2CO_3$  (157) or alk.-earth carbonates at elev. temps. (158) (159), with hot aq. suspension of PbO (111), with boilg. aq.  $Na_2CO_3$ , NaOH, or their mixt. (160) (161), or with anhydrous formic acid (162) gives benzyl alcohol (1:6480).— For studies on kinetics of hydrolysis of  $\bar{C}$  in aq. (163) (169), in 95% EtOH at 30° and 40° (164) (165), in 50% acetone at 60° (166) cf. (167) (168) (170) (17), in dioxane (22), or in formic acid (170) see indic. refs.]

## BEHAVIOR OF C WITH OTHER INORGANIC REACTANTS

With alkali sulfhydrates. [ $\bar{C}$  with alc. KSH (171) (172) or aq. NaSH (173) (174) (175) gives (75% yield (172)) benzyl mercaptan [Beil. VI-453, VI<sub>1</sub>-(224), VI<sub>2</sub>-(427)], b.p. 194-195° (171), 99° at 32 mm. (176), 75.8-76.2° at 10 mm. (11),  $D_4^{25} = 0.8097$  (176),  $n_D^{25} = 1.5729$  (176) (corresp. benzoate, m.p. 30° (177), 3,5-dinitrobenzoate, m.p. 119-120° (177), reaction prod. with 3-nitrophthalic anhydride, m.p. 136-137° (177), 2,4-dinitrophenyl thioether, m.p. 182.5° cor. (185)). Note that benzyl mercaptan with isotopic sulfur has been prepared (178) from  $\bar{C}$  via conversion to RMgCl and reaction with S<sup>34</sup>.]

With alkali sulfides. [ $\bar{C}$  with alc.  $K_2S$  (171) or alc.  $Na_2S$  (179) gives (83% yield (179)) dibenzyl sulfide [Beil. VI-455, VI<sub>1</sub>-(225), VI<sub>2</sub>-(429)], tbls. from ether, CHCl<sub>3</sub>, or alc., m.p. 49-50° (180), 49° (171) (179) (181) (corresp. sulfoxide [Beil. VI-456, VI<sub>1</sub>-(226), VI<sub>2</sub>-(429)], m.p. 135° (182), 133-134.6° (183), 132-133° (179); corresp. sulfone [Beil. VI-456, VI<sub>1</sub>-(226), VI<sub>2</sub>-(430)], m.p. 151° (184), 149.5-151° (183), 149.5-150° (179)).]

With alkali polysulfides. [ $\bar{C}$  with alc. Na<sub>2</sub>S.9H<sub>2</sub>O + S (186) (189) in C<sub>6</sub>H<sub>6</sub> (187) cf. (188) gives dibenzyl disulfide [Beil. VI-465, VI<sub>1</sub>-(229), VI<sub>2</sub>-(437)], m.p. 74° (189), 72° (190), 71-72° (191), 70° (186) (corresp. disulfoxide [Beil. VI-466, VI<sub>1</sub>-(230), VI<sub>2</sub>-(438)], m.p. 108° (190) (192) cf. (209) (201) (210)).]

With salts of various sulfur acids.  $[\bar{C}$  with conc. aq.  $K_2SO_3$  (194) cf. (196) or  $Na_2SO_3$  (195) in aq. alc. at 37° (197) (for study of rate at 40° see (16)) or at 190–200° under press. (98% yield (198)), or  $\bar{C}$  with aq.  $Na_2SO_3/NaOH$  on boilg. (80% yield (199)) (192), gives corresp. salt of toluene- $\alpha$ -sulfonic acid (benzylsulfonic acid) [Beil. XI-116, XI<sub>1</sub>-(32)]; for dimorphism of Na salt see (200) (corresp. sulfonyl chloride, m.p. 92–93° (201) (202), 92° (203); corresp. amide, m.p. 105° (203) (192), 104–105° (199), 102° (204); corresp. methyl ester, m.p. 61–62° (205)).]

[ $\bar{C}$  with Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> on boilg. in aq. alc. (206) or aq. (207) gives salt of S-benzylthiosulfuric acid [Beil. VI-439, VI<sub>1</sub>-(230)] (corresp. quaternary salt, viz., benzyl-dimethyl-phenyl-ammonium S-benzylthiosulfate, from metathesis of benzyl-dimethyl-phenyl-ammonium chloride with sodium S-benzylthiosulfate, has m.p. 104° (208)).]

With salts of other inorganic acids. [ $\bar{C}$  with NaI in acetone (211) (212) or abs. MeOH (213), or  $\bar{C}$  with KI in acetone (214) or EtOH (215), gives (90% yield (211)) benzyl iodide [Beil. V-314, V<sub>1</sub>-(157), V<sub>2</sub>-(241)], m.p. 24° (211) (212), 27-30° (213), b.p. 97-98° at 11 mm. (216), 93° at 10 mm. (214). — For study of rate of reaction of  $\bar{C}$  with KI in acetone at 25° (19) (20), 30° (19), and 50° (19), or with NaI or LiI in acetone at 25° or 30° (19), see indic. refs.]

[Č with powdered AgNO<sub>3</sub> in dry ether 20 hrs. in cold, then at 70–75° for 5 hrs., gives (84% yield (219)) (220) benzyl nitrate [Beil. VI-439], explosive liquid, b.p. 106° at 20 mm. (219), 100–101° at 18 mm. (21), 43° at 0.5 mm. (220). — For study of kinetics of reaction of C with solid AgNO<sub>3</sub> (221) in pres. of inert diluents such as dry ether, CHCl<sub>3</sub>, and CCl<sub>4</sub> (222) see indic. refs.; for study of kinetics of reaction of C with Hg(NO<sub>3</sub>)<sub>2</sub> in aq. dioxane see (21).]

[Č with AgNO<sub>2</sub> (223) (224) (231) or better mercurous nitrate (225) gives  $\omega$ -nitrotoluene (phenylnitromethane) [Beil. V-325, V<sub>1</sub>-(161), V<sub>2</sub>-(249)], b.p. 225-227° dec. (226) (227) cf. (228), 141-142° sl. dec. at 35 mm. (226), 135° at 25 mm. (229), 118-119° at 16 mm. (230), 110° at 8 mm. (231), 90-92° at 3 mm. (232);  $D_1^{24.7} = 1.1540$  (233),  $D_0^{20} = 1.1598$  (226);  $n_{\rm He}^{24.7} = 1.5285$  (233),  $n_{\rm D}^{20} = 1.5323$  (226); note, however, that phenylnitromethane is best prepd. in a different way, viz., from benzyl cyanide with methyl nitrate and alc./NaOEt (50-55% yield (232)). — Note that the isomeric benzyl nitrite [Beil. VI-439], unstable oil, b.p. 80-81° at 35 mm. (234), has been reported from benzyl alcohol (1:6480) with aq. NaNO<sub>2</sub> + H<sub>2</sub>SO<sub>4</sub> (234).]

[Č with NaN<sub>3</sub> in alc. refluxed 6 hrs. gives (90% yield (234))  $\omega$ -azidotoluene (benzyl azide) [Beil. V-350, V<sub>1</sub>-(174), V<sub>2</sub>-(274)], oil, insol. aq. and volatile with either steam or ether, b.p. 108° at 23 mm. (235), 82.5° at 16.5 mm. (234), 74° cor. at 11 mm. (236);  $D_{-}^{24.9} = 1.0655$  (237);  $n_{D}^{24.9} = 1.53414$  (237).]

[For behavior of C with metallic evanides see below under organic acids.]

With ammonia. C with ammonia under various circumstances (see below) gives one (or more) of the following amines.

Benzylamine [Beil. XII-1013, XII<sub>1</sub>-(445)], liq. with faint characteristic odor, misc. with aq. alc. ether: b.p. 184.5° cor. at 760 mm. (238), 184-186° cor. at 745 mm. (239), 184° at 767 mm. (240), 182° at 749 mm. (226), 181.5-182° at 740 mm. (241), 90° at 12 mm. (242);  $D_4^{25} = 0.9812$  (243),  $D_4^{20} = 0.9822$  (244);  $n_D^{20} = 1.54015$  (226),  $n_D^{10.5} = 1.54406$  (244) (corresp. B.HCl, m.p. 255.5-258° (245), 255-256° rap. htg. (226), 253° (246); B.PkOH, m.p. 195-199° (247), 194° (248); B.3,5-dinitrobenzoic acid, m.p. 210.0° cor. (249); B.2,4-dinitrobenzoic acid, m.p. 199.1-200.1° cor. (513); B.p-toluenesulfonic acid, m.p. 180.5-181.5° u.c. (250), 180° (251)). — Dibenzylamine [Beil. XII-1035, XII<sub>1</sub>-(453)], oil, insol. aq., eas. sol. alc., ether; b.p. >300° dec. (252), 268-271° cor. at 250 mm. (238), 218-220° at 60 mm. (253), 215°  $\pm$  1° at 39 mm. (254), 186° at 19 mm. (255), 172° at 14 mm. (256); f.p. -25.6° (254);  $D_4^{25} = 1.024$  (255), 1.019 (257);  $D_4^{21.6} = 1.0256$  (244);  $n_D^{21.6} = 1.57432$  (244) (corresp. B.HCl, m.p. 256° (252), 255.5° (258); B.p-toluenesulfonic acid, m.p. 155.5-156.5° u.c. (250)). — Tribenzylamine [Beil. XII-1038, XII<sub>1</sub>-(454)], solid, m.p. 92° (259) (260), 91° (256) (261) (262); b.p. 218-222° at 14 mm. (256), 230° at 13 mm. (259) (corresp. B.HCl, m.p. 227-228° (263), 221° (261); B.p-toluenesulfonic acid, m.p. 200.0-202.5° u.c. (250)).

[For formn. of mixts. of benzylamine, dibenzylamine, and tribenzylamine (properties given in preceding paragraph) from reaction of C with aq. NH<sub>4</sub>OH at 80° for 8 days (264) or at 125° and 8 atm. press. (265) in pres. of cat. (266); from reaction of C with alc. NH<sub>3</sub> on

stdg. several days (268) (269) (270) or in s.t. at  $100^{\circ}$  (256) (267), with NH<sub>3</sub> in conc. aq. phenol in s.t. at  $100^{\circ}$  for 18 hrs. (271), with liq. NH<sub>3</sub> for 24 hrs. (256), or with 5 moles aq. (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> for 5-6 hrs. at 85-110° (160) see indic. refs.]

[For formn. of benzylamine from reaction of  $\tilde{C}$  with K phthalimide at 170–180° followed by hydrolysis of the N-benzylphthalimide (see below under  $\mathfrak{D}$ 's) with fumg. HCl at 200° for 2 hrs. (272) cf. (273) (274), with silver cyanate followed by hydrolysis with alkali (275) (276) cf. (268) (277), with acetamide followed by hydrolysis with alc. KOH (278), or with hexamethylenetetramine followed by hydrolysis with alc. HCl (279) see indic. refs.]

[For formn. of tribenzylamine from reaction of C with NaNH<sub>2</sub> at 120° for 24 hrs. see (261) (280).]

With hydroxylamine. [ $\bar{C}$  with NH<sub>2</sub>OH.HCl + Na<sub>2</sub>CO<sub>3</sub> in aq. alc. under reflux gives (281) (282) (283) (284) N,N-dibenzylhydroxylamine [Beil. XV-19, XV<sub>1</sub>-(9)], m.p. 124° (284), 123-124° (285), 123° (281); note that the isomeric O,N-dibenzylhydroxylamine [Beil. XV-21], oil, b.p. 145-146° at 3 mm. (286), is obtd. indirectly. —  $\bar{C}$  with acetone oxime refluxed in 75% AcOH gives (287) (as the hydrochloride) N-benzylhydroxylamine [Beil. XV-17, XV<sub>1</sub>-(8)], m.p. 57° (288), 56-58° (289) ( $\bar{B}$ .HCl, m.p. 110° (288)). — Various other benzylated hydroxylamines cannot be discussed here.]

With hydrazine. [ $\bar{C}$  with alc. 50% hydrazine hydrate under reflux gives (290) N,N-dibenzylhydrazine [Beil. XV-533, XV<sub>1</sub>-(164)], m.p. 65° ( $\bar{B}$ .HCl, m.p. 202° (292), 200° (290)); note that the isomeric N,N'-dibenzylhydrazine [Beil. XV-534, XV<sub>1</sub>-(166)], m.p. 47° (291) ( $\bar{B}$ .HCl, m.p. 225° (293)), is prepd. indirectly. — Various other benzylated hydrazines cannot be discussed here.]

With metals. Sodium. [ $\bar{C}$  with Na at 30° on stdg. gives (294) encrustation of NaCH<sub>2</sub>-C<sub>6</sub>H<sub>5</sub> [Beil. XVI<sub>1</sub>-(589)]; the solid is wine red within 5 hrs., red-violet in 12 hrs., blue-violet in 36 hrs., and finally blue-black; and the sodium benzyl can be isolated as a blue-violet solid stable in air (294). — $\bar{C}$  with Na at 100° (295) in a mixt. of C<sub>6</sub>H<sub>6</sub> and toluene (296) or in toluene (297) gives dibenzyl (1:7149). — $\bar{C}$  with Na in liq. NH<sub>3</sub> loses its halogen quantitatively (298) giving (50% yield (299)) dibenzyl (1:7149) accompanied by toluene and other products. — For study of free benzyl radical from  $\bar{C}$  with Na vapor in helium see (302).]

[ $\bar{C}$  with Cu powder in s.t. at 150-160° for 12 hrs. (300), or  $\bar{C}$  with Al powder (pretreated with H<sub>2</sub> at 500°) refluxed at 200° for 1 hr. (301), gives (60% yield (301)) dibenzyl (1:7149).] *Magnesium*. [ $\bar{C}$  as vapor passed over htd. Mg gives (303) magnesium allylide which with aq. yields methylacetylene ("allylene").]

[Č with Mg in dry ether gives (304) (305) (306) C<sub>6</sub>H<sub>5</sub>.CH<sub>2</sub>MgCl: for study of optimum conditions (311) giving yields of 94.28% (307), 93.2% (308), 91.0-94.1% (309), 90.7-91.2% (310) see indic. refs.; for study of effect of nature of Mg (312), of use of ether/hydrocarbon mixts. as solvent (313), of stability toward long boilg. in ether or ether/benzene (314) see indic. refs.; for further examples of practical prepn. of C<sub>6</sub>H<sub>5</sub>.CH<sub>2</sub>MgCl see (315) (316).—Note that some dibenzyl (1:7149) (e.g., 9.4% (317)) and di-p-tolyl (4,4'-dimethylbiphenyl) (318) are also formed and the yield of dibenzyl is greatly increased in pres. of cat. such as CuCl<sub>2</sub>, HgBr<sub>2</sub>, FeCl<sub>3</sub>, FeBr<sub>3</sub> (319), or MoCl<sub>5</sub> (320).]

An exhaustive treatment of the behavior of C<sub>6</sub>H<sub>5</sub>.CH<sub>2</sub>MgCl (hereafter called RMgCl) is far beyond the scope of this book, but the following examples will be useful and will serve as lead references; for further examples see Beil. XVI-939, XVI<sub>1</sub>-(554) and subsequent literature.

[RMgCl with  $O_2$  gives (80% yield (321)) cf. (322) benzyl alcohol (1:6480). — RMgCl (1 mole) gives (84% yield (323)) (324) (325)  $C_6H_5CH_2HgCl$ , m.p. 104° (323) (324) (326), but excess RMgCl with HgCl<sub>2</sub> gives (326) (325) (327) dibenzyl mercury, m.p. 111° (326). — RMgCl with SbCl<sub>3</sub> gives (328) tribenzylstilbene, m.p. 107-108°. — RMgCl with ClNH<sub>2</sub>

gives (yields: 92% (329), 85% (212)) benzylamine (for constants see above under behavior of  $\bar{C}$  with NH<sub>3</sub>) as hydrochloride; RMgCl with BrNH<sub>2</sub> gives (63% yield (330)) benzylamine. — RMgCl with NCl<sub>3</sub> gives (331) both benzylamine (32% yield) and dibenzylamine (7% yield). — RMgCl with SiF<sub>4</sub> gives (336) (C<sub>6</sub>H<sub>5</sub>.CH<sub>2</sub>)<sub>3</sub>SiF, m.p. 79°, accompanied by some (C<sub>6</sub>H<sub>5</sub>.CH<sub>2</sub>)<sub>4</sub>Si, m.p. 127.5°; the latter is also obtd. (20.7% yield (337)) from RMgCl with Na<sub>2</sub>SiF<sub>6</sub>.]

1166

RMgCl with organic reactants frequently (but not invariably) leads to products derived from o-tolyl MgCl and/or p-tolyl MgCl: for reviews on and studies of this rearr. of RMgCl see (332) (333) (334) (335). — RMgCl shows little if any tendency to act as a reducing agent in Grignard additions; for review of reducing action of many Grignard reagents (including C<sub>6</sub>H<sub>5</sub>.CH<sub>2</sub>MgCl) see (338).

[RMgCl with CO at 120° under press. gives (60% yield (339)) 1,3-diphenylpropene-1 [Beil. V-643, V<sub>1</sub>-(310), V<sub>2</sub>-(552)]. — RMgCl with CO<sub>2</sub> gives (yields: 75-76% (310), 62.7% (335), 60% (340), 51% (318), 40% (333)) phenylacetic acid (1:0665).]

[RMgCl with trioxymethylene gives (50-55% yield (341)) (342) (343) o-tolylcarbinol (1:5922) (note rearr.), but RMgCl with acetaldehyde (as paraldehyde) gives (343) (335) the expected benzyl-methyl-carbinol [Beil. VI-503, VI<sub>1</sub>-(251), VI<sub>2</sub>-(472)]. — RMgCl with benzaldehyde gives according to conditions various prods. including benzyl-phenyl-carbinol (1:5958) (78% yield (344)) (345) (346), stilbene (1:7250) (25-35% yield (316)), and other products.]

[RMgBr with acetone gives (347) (343) benzyl-dimethyl-carbinol (1:5910). — RMgCl gives with diphenylketone (85% yield (349)) (348) benzyl-diphenyl-carbinol [Beil. VI-721, VI<sub>1</sub>-(354), VI<sub>2</sub>-(696)] easily dehydrated to (54–59% overall yield (316))  $\alpha,\alpha,\beta$ -triphenyl-ethylene [Beil. V-722, V<sub>1</sub>-(355), V<sub>2</sub>-(630)].]

[RMgCl with ClCH<sub>2</sub>OCH<sub>3</sub> (3:7085) according to circumstances gives either or both the "normal" prod. (350) (351) methyl  $\beta$ -phenylethyl ether [Beil. VI-479, VI<sub>1</sub>-(238), VI<sub>2</sub>-(449)] and the "abnormal" prod. (352) (353) methyl o-tolylcarbinyl ether [Beil. VI-484]. — RMgCl with ClCH<sub>2</sub>O.CH<sub>2</sub>CH<sub>3</sub> (3:7195) according to circumstances gives either or both the "normal" prod. (354) ethyl  $\beta$ -phenylethyl ether [Beil. VI<sub>1</sub>-(450)] or the "abnormal" products (352) (332) ethyl o-tolyl ether [Beil. VI-484] and ethyl p-tolyl ether [Beil. VI-498].]

[RMgCl with methyl chloroformate (3:5075) gives some "abnormal" prod. (333).—RMgCl with ethyl chloroformate (3:7295) gives not only the "normal" tribenzylcarbinol [Beil. VI-723, VI<sub>1</sub>-(356)] (355) and ethyl phenylacetate (1:3872) but also "abnormal" products (332) (333).]

[RMgCl with acetyl chloride (3:7065) gives (yields: 24% (333), 18% (335)) (332) the "abnormal" product, methyl o-tolyl ketone (o-methylacetophenone) (1:5224). — RMgCl with benzoyl chloride (3:6240) gives (333) the "abnormal" product, phenyl o-tolyl ketone [Beil. VII-439, VII<sub>1</sub>-(234)].]

[RMgCl with benzenesulfonyl chloride gives (356) (357) benzyl phenyl sulfone [Beil. VI-455, VI<sub>2</sub>-(428)] (2.9% yield (356)) cf. (357) and  $\bar{C}$  (60% yield (356)).]

RMgCl with alkyl p-toluenesulfonates gives hydrocarbons. — [E.g., RMgCl with methyl p-toluenesulfonate gives (40.9% yield (358)) ethylbenzene (1:7410), with ethyl p-toluenesulfonate (358) or diethyl sulfate (359) gives (yields: 100% (359), 38.3% (358)) n-propylbenzene (1:7450), with n-propyl p-toluenesulfonate gives (35.6% yield (358)) n-butylbenzene (1:7515), with n-butyl p-toluenesulfonate gives (yields: 67% (361), 50-59% (360), 24.6% (358)) n-amylbenzene (1:7549). — RMgCl with  $\gamma$ -chloro-n-propyl p-toluenesulfonate gives (42-50% yield (362))  $\omega$ -chloro-n-butylbenzene ( $\delta$ -phenyl-n-butyl chloride) [Beil. V<sub>1</sub>-(201), V<sub>2</sub>-(317)].]

#### BEHAVIOR OF C WITH ORGANIC REACTANTS

With hydrocarbons.  $\bar{C}$  with benzene (1:7400) in pres. of widely varied condensing agts. gives diphenylmethane (1:7120), frequently accompanied by o-dibenzylbenzene [Beil. V-710, V<sub>1</sub>-(351), V<sub>2</sub>-(621)], m.p. 78-79°, and by p-dibenzylbenzene [Beil. V-711, V<sub>1</sub>-(351), V<sub>2</sub>-(621)], m.p. 86°. — [E.g.,  $\bar{C}$  with benzene (1:7400) in pres. of Zn dust (363) (369), Cr powder (364), uranium dust at 100° for 4 hrs. (365), Al powder (preheated in H<sub>2</sub> at 500°) (301), Ti (393), Al/Hg (366) (367), Al + HgCl<sub>2</sub> (368), Al + HCl (368), AlCl<sub>3</sub> (369) (370), AlCl<sub>3</sub>/nitrobenzene cpd. at 30° (372), NaCl.AlCl<sub>3</sub> at 15-20° (373), BeCl<sub>2</sub> at 100° for 6 hrs. (374), TiCl<sub>4</sub> (375), ZrCl<sub>4</sub> (376), SnCl<sub>4</sub>/diethyl etherate (377), TlCl<sub>3</sub> (378), iron pyrites (97), Ag<sub>2</sub>SO<sub>4</sub> (379), silver methionate (neutral silver salt of methanedisulfonic acid) (379), P<sub>2</sub>O<sub>5</sub> (380), or HF in Cu bomb at 100° for 15 hrs. (381) gives (yields: 60-63% (368), 60% (372) (374), 56% (381), 52% (373), 49.5-52.5% (366), 40% (365), 38% (301), 35% (375), 30% (376), 22% (363)) diphenylmethane (1:7120).]

[ $\bar{C}$  with toluene (1:7405) in pres. of Zn dust (382) cf. (383) (384), Ti (393), AlCl<sub>3</sub> (369) (370) cf. (385) (386) (371), Al/Hg (367), FeCl<sub>3</sub> (385) (386), BeCl<sub>2</sub> at 110-125° (374), or MeMgI (387) gives p-benzyltoluene [Beil. V-607, V<sub>1</sub>-(286), V<sub>2</sub>-(511)], b.p. 279°.]

[ $\bar{C}$  with m-xylene (1:7420) in pres. of Zn dust (388), finely divided Cu (389), or BeCl<sub>2</sub> at 130-140° (374) gives (73.6% yield (384)) phenyl-m-xylyl-methane [Beil. V-615, V<sub>1</sub>-(289), V<sub>2</sub>-(518)], b.p. 295-296° cor. (388) (389).]

[Č with mesitylene (1:7455) refluxed 60 hrs. without cat. (391), or in pres. of AlCl<sub>3</sub> (390) at 98-100°, or BeCl<sub>2</sub> at 140-160° (374), gives (78% yield (374)) benzylmesitylene (phenyl-2,4,6-trimethylphenyl-methane) [Beil. V-619], m.p. 36-37° (390), 36° (374).]

[ $\overline{C}$  with biphenyl (1:7175) refluxed 3 hrs. without cat. (391), or in pres. of Zn dust at 100° (392), or of Ti (393) gives 4-benzylbiphenyl [Beil. V-708, V<sub>2</sub>-(618)], m.p. 85° (392) (391).]

[ $\bar{C}$  with naphthalene (1:7200) refluxed 3 hrs. without cat. (391), or in pres. of Zn dust (394) (395), ZnCl<sub>2</sub> (396) at not over 125° (397), AlCl<sub>3</sub> (396) (398), Ti (393), or P<sub>2</sub>O<sub>5</sub> at 200° (380) gives mainly 1-benzylnaphthalene [Beil. V-689, V<sub>1</sub>-(341), V<sub>2</sub>-(604)], m.p. 59° (corresp. picric acid addn. cpd., m.p. 100–101° (396) (400)), accompanied by some 2-benzylnaphthalene [Beil. V-690], m.p. 55–55.5° (398), 55.5° (399) (corresp. picric acid addn. cpd., m.p. 93° (396) (400)). — Note that using ZnCl<sub>2</sub> little 2-benzylnaphthalene is formed (398); also that polybenzylation may occur (399).]

With alcohols (or alcoholates). [ $\bar{C}$  with MeOH/KOH (401) or with MeOH/NaOMe (403) in s.t. at 120° (402) gives benzyl methyl ether (1:7475), b.p. 170–171° cor. (403), 170.5° cor. at 760 mm. (3), 170–171° at 759 mm. (377), 170.2–172.2° at 760 mm. (404);  $D_4^{25} = 0.9745$  (405), 0.9594 (403),  $D_4^{20} = 0.9649$  (403);  $n_D^{25} = 1.4983$  (403),  $n_D^{20} = 1.5031$  (405), 1.5008 (403) (corresp. picrate, m.p. 115–116° u.c. (406)). —  $\bar{C}$  with EtOH/KOH (401), EtOH/NaOEt (403) (377) (407), EtOH/LiOEt (407), or KOEt/liq. NH<sub>3</sub> (408) gives (yields: 81% (408), 63–77% (407)) benzyl ethyl ether (1:7530); b.p. 184.7–185.2° at 761 mm. (377), 184–186° cor. (403);  $D_4^{25} = 0.9446$  (403),  $D_4^{20} = 0.9490$  (409), 0.9478 (403);  $n_D^{25} = 1.4934$  (403),  $n_D^{20} = 1.4958$  (403), 1.4955 (409). — For studies of rate of reaction of  $\bar{C}$  with EtOH (410) (411) or with EtOH/NaOEt (412) see indic. refs.]

[ $\tilde{C}$  with n-PrOH/NaO-n-Pr gives (90-93% yield (413) (403)) benzyl n-propyl ether [Beil. VI-431, VI<sub>1</sub>-(219), VI<sub>2</sub>-(410)], b.p. 200-202° cor. (403), 68° at 9 mm. (413);  $D_4^{25} = 0.9480$  (403),  $D_4^{20} = 0.9535$  (403) cf. (413);  $n_2^{25} = 1.4932$  (403),  $n_2^{20} = 1.4953$  (403), 1.4905 (413); for study of rate at 50.6° see (414). —  $\tilde{C}$  with iso-PrOH/NaOisoPr gives (403) benzyl isopropyl ether, b.p. 192-194° cor.;  $D_4^{25} = 0.9403$ ,  $D_4^{20} = 0.9457$ ;  $n_D^{25} = 1.4876$ ,  $n_D^{20} = 1.4900$  (403).]

[For corresp. prepn. and constants for benzyl n-butyl ether (403) (417), benzyl sec-butyl ether (417), benzyl isobutyl ether (403), and benzyl isoamyl ether (403) see indic. refs.]

[ $\bar{C}$  with benzyl alc./NaOCH<sub>2</sub>C<sub>6</sub>H<sub>5</sub> in ether (415), with solid KOH at 180-200° (416), with conc. aq. NaOH at 90-120° (416), or with K benzylate in liq. NH<sub>3</sub> (408) gives dibenzyl ether (1:7640).]

With phenols (or phenolates). Č with phenols may react either with phenolic or nuclear hydrogen giving respectively benzyl aryl ethers or benzylated phenols; moreover, the former may, under appropriate conditions, be rearranged to the latter; examples of all these types of reaction are included below.

[ $\tilde{C}$  with K phenolate (111) (418) or Na phenolate (417) in boilg. alc., or  $\tilde{C}$  with phenol in boilg. alc. NaOMe or NaOEt (419) (420), boilg. aq. NaOH (160) (421), or boilg. acetone +  $K_2CO_3$  (422) gives (73% yield (421)) benzyl phenyl ether [Beil. VI-432, VI<sub>1</sub>-(220), VI<sub>2</sub>-(411)], m.p. 39° (418) (420) (421) (422), 38-39° (401); b.p. 286-287° (401), 286-288° (419), 178-179° at 35 mm. (422), 124-125° at 4 mm. (417). — Note that although this prod. is completely stable to distn. (419) yet on htg. with ZnCl<sub>2</sub> or in dry HCl as directed (421) it undergoes rearr. (accompanied by some cleavage) giving 2-benzylphenol (1:1431), 4-benzylphenol (1:1485), 2,4-dibenzylphenol (see below), and other prods.]

 $\tilde{\mathbf{C}}$  under suitable conditions also effects nuclear benzylation of phenol yielding a mixt. of o-benzylphenol (1:1431) and p-benzylphenol (1:1485) (the latter usually predominating) accompanied by polybenzylphenols and other products. [E.g.,  $\tilde{\mathbf{C}}$  with phenol (1:1420) directly at 125° (423) or 150–180° (160), or in pres. of Cu powder at 115–120° (160), Ce at 120–130° (424), Ti (393), AlCl<sub>3</sub> in pet. ether (425), Zn at room temp. (426) (427) (428) (429) in solvent media such as  $C_6H_6$ , toluene, CHCl<sub>3</sub>, or EtOH (430), ZnCl<sub>2</sub> on warming (421) (431) (432), 38% HCl in s.t. at 100° (421),  $P_2O_5$  (434) or  $PCl_5$  (435) in toluene at 130–135°, or  $\tilde{\mathbf{C}}$  with Na phenolate (or phenol + Na) in dry toluene (419) (436) (437) gives o-benzylphenol + p-benzylphenol (accompanied by other products). — For sepn. of the two benzylphenols by formn. of Na salt of latter in toluene see (438).]

Other phenols, cresols, naphthols, etc., behave analogously but cannot be discussed here. With phenol ethers. With phenol ethers (where no phenolic H atom is available for reaction) Č effects nuclear benzylation. [E.g., Č with methyl phenyl ether (anisole) (1:7445) refluxed 2-3 hrs. (391), or in pres. of Zn (439), Ti (393), Ce (424), W (365), AlCl<sub>3</sub> (440), or ZnCl<sub>2</sub> + dry HCl (421) gives (yields: 63% (393), 57% (424), 52.9% (365)) p-benzylanisole [Beil. VI-676, VI<sub>1</sub>-(325), VI<sub>2</sub>-(630)], b.p. 305-308° (425), 191-193° at 38 mm. (391), 172-174° at 10 mm. (421), 157-158° at 8 mm. (411), 133-135° at 4 mm. (425); m.p. 20-21° (441).]

[C with phenetole (1:7485) in pres. of Ti (393), U (365), or Ce (424) as directed gives (yields: 76% (393), 80% (365), 88% (424)) p-benzylphenetole [Beil. VI-676, VI<sub>2</sub>-(630)], b.p. 317° (442), 315-317° (425), 217° at 37 mm. (442), 203° at 12 mm. (442), 171-173° at 12 mm. (425).]

With organic acids (or their salts). KCN or NaCN. [ $\bar{C}$  with alc. KCN (443) (444) (445) (446) in pres. of CuCN and in u.v. light (447), or  $\bar{C}$  with aq. alc. NaCN (160) (448), gives (yields: 80-90% (448), 70-76% (447), 70% (160)) benzyl cyanide ( $\alpha$ -tolunitrile) (phenylacetonitrile) [Beil. IX-441, IX<sub>1</sub>-(176)], b.p. 233-234° cor. (3), 231-232° at 755 mm. (449), 135-140° at 38 mm. (448), 118-119° at 20 mm. (450), 107-107.4° at 12 mm. (18); f.p. -24.6° (26), -26.5° (451);  $D_4^{25} = 1.0125$  (452),  $D_4^{20.2} = 1.0176$  (453), 1.0157 (454);  $n_D^{25} = 1.52105$  (455),  $n_D^{20.2} = 1.52422$  (453); for removal from this prod. of traces of benzyl isocyanide with aq. H<sub>2</sub>SO<sub>4</sub> at 60° see (456).]

With salts of aliphatic acids. [C with Na formate + anhydrous formic acid in s.t. at 140° (402) gives benzyl formate (1:3596) q.v.]

[Č with KOAc in alc. (443) (457) (460) or benzyl acetate itself (458), or Č with Pb(OAc)<sub>2</sub> in AcOH (459), or Č with NaOAc in AcOH (461) cf. (160) or aq. at 115° (160), gives (80% yield (160)) benzyl acetate (1:3751) q.v.; for study of kinetics see (22).]

[ $\bar{C}$  with alc. K propionate (460) or with aq. Na propionate (160) gives benzyl propionate [Beil. VI-436, VI<sub>1</sub>-(220), VI<sub>2</sub>-(416)], b.p. 222°.]

 $[\bar{C} \text{ with alc. } \text{K } n\text{-butyrate (460), or aq. Na } n\text{-butyrate (160), gives benzyl } n\text{-butyrate (1:3977).}]$ 

C with salts of other aliphatic acids behaves similarly but detailed treatment will not be given here.

With salts of aromatic acids. [For extensive study of reaction of  $\bar{C}$  with NaOBz giving benzyl benzoate (1:4422) see (462) (629)]

With salts of enolic esters. [ $\tilde{C}$  with diethyl sodiomalonate gives (yields: 87% (463), 85% (464), 60% (471), 51–57% (465), 50% (470)) (466) diethyl benzylmalonate [Beil. IX-868, IX<sub>1</sub>-(381)], b.p. 300° (466), 296–298° (467), 195° at 22 mm. (463), 163° at 14 mm. (468), 170° at 13 mm. (469), 169° at 12 mm. (470) (471), 158° at 8 mm. (472), 128–133° at 6 mm. (473), 145–155° at 5 mm. (465), 150–152° at 4 mm. (474), 140–140.5° at 1.5 mm. (474), 105–108° at 1 mm. (475) (476);  $D_4^{20}=1.0750$  (468);  $n_D^{20}=1.4872$  (468). This prod. on alk. hydrolysis (for study of kinetics see (477)) and subsequent acidification gives benzylmalonic acid [Beil. IX-868, IX<sub>1</sub>-(381)], cryst. from ether,  $C_6H_6$ , or CHCl<sub>3</sub>/pet. ether, m.p. 120.6° (478), 120° (479), 120° dec. (468), 119–120° (480), 117–118° (472), 117° (466) (467); on htg. above its m.p. (480) this acid readily loses CO<sub>2</sub> yielding hydrocinnamic acid (1:0615), m.p. 48°.]

[ $\bar{C}$  with Na enolate of diethyl benzylmalonate (above) (482) (485), or  $\bar{C}$  with diethyl disodiomalonate (483), or  $\bar{C}$  with diethyl ethoxymagnesiomalonate (484), gives (yields: 85% (483), 84–87% (485)) diethyl dibenzylmalonate [Beil. IX-937, IX<sub>1</sub>-(408)], b.p. 250° at 40 mm. (482), 256–257° at 38 mm. (486), 234–235° at 23 mm. (485), 224–226° at 15 mm. (484), 221° at 11 mm. (483), 192–193° at 2 mm. (487); m.p. 13–14° (486);  $D_4^{20}=1.0930$  (482). Note that this prod. always accompanies the diethyl benzylmalonate of preceding paragraph. Diethyl dibenzylmalonate with alc. alk. hydrolyzes with great difficulty (488) (485) but gives dibenzylmalonic acid [Beil. IX-937, IX<sub>1</sub>-(407)], m.p. 175° (485), 174° (488), which on htg. above its m.p. loses CO<sub>2</sub> giving dibenzylacetic acid (1:0668), m.p. 89°.]

[ $\bar{C}$  with ethyl sodioacetoacetate as directed (489) (490) (491), or  $\bar{C}$  with ethyl acetoacetate + BF<sub>3</sub> (492), gives (yields: 70% (491), 23% (492)) ethyl  $\alpha$ -benzylacetoacetate [Beil. X-710], b.p. 283–284° u.c. (493), 276° (490), 157–158° at 14 mm. (494), 164–165° at 12 mm. (493), 163–165° at 12 mm. (491), 140–150° at 2–3 mm. (473) (corresp. 2,4-dinitrophenyl-hydrazone, m.p. 71.5° (473)). For ketonic cleavage of this prod. with 20% aq. NaOH (495) or aq. in s.t. at 250° (496) giving benzylacetone [Beil. VII-314, VII<sub>1</sub>-(167)], b.p. 236°, see indic. refs.]

[ $\bar{C}$  with ethyl acctoacetate as directed (497) cf. (501) or  $\bar{C}$  with ethyl  $\alpha$ -benzylacetoacetate (above) as directed (489) (493) (498) (499) gives (58% yield (497)) ethyl  $\alpha$ , $\alpha$ -dibenzylacetoacetate [Beil. IX-771], m.p. 57° (493) (497) (500), b.p. 230-234° at 12 mm. (493) cf. (497). For ketonic cleavage of this prod. with HI/AcOH giving (80% yield)  $\alpha$ , $\alpha$ -dibenzylacetone, b.p. 190-192° at 15 mm., see (497); for acid cleavage giving dibenzylacetic acid (1:0668) see (500) (501).]

With amines. With aliphatic primary amines. [ $\bar{C}$  with CH<sub>3</sub>NH<sub>2</sub> (2 moles) as 33% soln. in abs. EtOH gives (546) cf. (554) N-methylbenzylamine [Beil. XII-1019, XII<sub>1</sub>-(447)], oil, sol. aq., b.p. 184–186° (547) (554), 184–185° u.c. at 749 mm. (548), 184° (549) at 759 mm. (550), 180–181° cor. at 765.5 mm. (546), 180° at 760 mm. (551);  $D_{18}^{18.5}$  = 0.9450 (552) ( $\bar{B}$ .HCl, 195° (554), 174–175° (546);  $\bar{B}$ .PkOH, m.p. 117–118° (532), 113–116° (553)). Note that this prod. is usually accompanied by some N-methyl-dibenzylamine [Beil. XII-1036, XII<sub>1</sub>-(453)], b.p. 304–305° cor. at 765.5 mm. (546), 165° at 15 mm. (555), 161–162° at 12 mm. (556) ( $\bar{B}$ .HCl, m.p. 200–201° (556);  $\bar{B}$ .PkOH, m.p. 107° (5571), also obtd. from  $\bar{C}$  with N-methylbenzylamine (above) in pres. of NaOH at 145° for 4 hrs. (555).]

[Č with  $C_2H_3NH_2$  in 33% aq. soln. with some alc. in s.t. at 110° gives (558) N-ethylbenzylamine [Beil. XII-1020, XII<sub>1</sub>-(448)], oil, spar. sol. aq., b.p. 199° (539), 198° at 750 mm. (550), 194° cor. (558), 191-194° u.c. at 740 mm. (548);  $D_{15}^{16.7} = 0.9350$  (552) (B.PkOH, m.p. 122-123° (559)), accompanied by N-ethyldibenzylamine [Beil. XII-1036], b.p. 306° cor. (558).]

With aromatic primary amines. [ $\bar{C}$  (1 mole) with aniline (2 moles) in s.t. at 160° for 24 hrs. (502), or htd. in open vessel at 140° (503), or in pres. of I<sub>2</sub> at 50° (504), in alc. (505) or aq. Na<sub>2</sub>CO<sub>3</sub> (160), or  $\bar{C}$  (1 mole) with aniline (4 moles) in aq. NaHCO<sub>3</sub> at 90–95° (506), or  $\bar{C}$  with sodium anilide (from aniline + Na + Cu<sub>2</sub>O) at 30–100° under press., (507) gives (yields: 85–87% (506), 56% (160), 49% (504)) N-benzylaniline (N-phenylbenzylamine) [Beil. XII-1023, XII<sub>1</sub>-(449)], m.p. 39° (508), 37–38° (509), 37° (510), 36.5–36.8° cor. (503), 36.5° (511), 36° (506) (512); b.p. 306–307° at 759 mm. (509), 201–203° at 37 mm. (510), 178–180° at 12 mm. (506), 171.5° at 10 mm. (508);  $D_4^{65}$  = 1.0298 (503);  $n_D^{65}$  = 1.59562 (508) ( $\bar{B}$ .HCl, m.p. 214–216° (509),  $\bar{B}$ .3,5-dinitrobenzoic acid, m.p. 133.0° cor. (249),  $\bar{B}$ .2,4-dinitrobenzoic acid, m.p. 121.4–122.2° cor. (513),  $\bar{B}$ .p-toluenesulfonic acid, m.p. 148.3–148.8° cor. (250)); for method of sepn. of N-benzylaniline from N,N-dibenzylaniline (below) by reactn. with phthalic anhydride (1:0725) sec (514). — For studies of kinetics of reaction of  $\bar{C}$  with aniline in MeOH at 35° and 45° (515) or in EtOH at 35°, 40°, and 45° (516) cf. (4) see indic. refs.; for study of rearr. of N-benzylaniline to p-aminodiphenylmethane see (517).]

[ $\bar{C}$  with aniline on htg. cf. (503) (508) in pres of NaOH at 100° (518), anhydrous NaOAc +  $I_2$  at 97° (504), NaNH<sub>2</sub> + Cu powder (519), benzyl alc. (520), or aq. Na<sub>2</sub>CO<sub>3</sub> (160) gives N,N-dibenzylaniline (N-phenyldibenzylamine) [Beil. XII-1037, XII<sub>1</sub>-(453)], m.p. 71-72° (521), 70° (522), 69.5° (508), 69° (520), 67° (518); b.p. 226° at 10 mm. (508);  $D_4^{80} = 1.04436$ ;  $n_D^{80} = 1.60647$  (508) ( $\bar{B}$ .HCl, pr. with 1 H<sub>2</sub>O from alc (518), but m p unreported;  $\bar{B}$ .PkOH, m.p. 131-132° dec. (518);  $\bar{B}$ .3,5-dinitrobenzoic acid gives no cpd. (249); B.2,4-dinitrobenzoic acid gives no cpd. (513);  $\bar{B}$ .p-toluenesulfonic acid is oil (250); 2 $\bar{B}$ .1,3,5-trinitrobenzene, m.p. 86-87° (523)). — For study of rearr. of N,N-dibenzylaniline hydrochloride to p-aminodiphenylmethane, 2,4-dibenzylaniline, and 2,4,6-tribenzylaniline see (524).]

Č with other aromatic primary amines behaves similarly but cannot be detailed here; however, for a number of cases see (508).

With aliphatic secondary amines. [ $\bar{C}$  with  $(CH_3)_2NH$  in abs. alc. on stdg. (560) or under reflux (546) (561), or in  $C_6H_6$  at 40–50° for 2 days (562), gives (80% yield (561)) N,N-dimethylbenzylamine [Beil. XII-1019, XII<sub>1</sub>-(448)], oil, fairly sol. cold but less sol. hot aq., b.p. 183–184° cor. at 765.3 mm. (560), 180–181° at 749 mm. (540), 178–179° cor. (563), 177.8–178.2° cor. at 766 mm. (561), 178° u.c. (562), 98–99° at 24 mm. (564), 83.5–85.5° at 21 mm. (565), 66–67° at 15 mm. (566),  $n_D^{20} = 1.5157$  (564) ( $\bar{B}$ .HCl, m.p. 175° (562) cf. (566);  $\bar{B}$ .PkOH, m.p. 94° (532), 94–95° (559)).]

[ $\bar{C}$  with  $(C_2H_5)_2NH$  in s.t. at 100° gives (567) (568) N,N-diethylbenzylamine [Beil. XII-1021, XII<sub>1</sub>-(448)], oil, spar. sol. aq., b.p. 212° (569), 211-212° (568) cor. (567), 209° (570) at 755 mm. (551), 96-98° at 17 mm. (564), 94° at 15 mm. (555) ( $\bar{B}$ .PkOH, m.p. 120-121° (571), 119° (566)).]

With aromatic secondary amines. [C htd. with N-methylaniline at 100° (521) (525) in pres. of aq. Na<sub>2</sub>CO<sub>3</sub> (160), or C with N,N-dimethylaniline + I<sub>2</sub> at 150° (504), or C with mixt. of N-methylaniline and N,N-dimethylaniline at 150° (526), gives (yields: 92.5% (526), 60% (525), 41% (521)) N-benzyl-N-methylaniline (benzyl-methyl-phenylamine) [Beil. XII-1024, XII<sub>1</sub>-(450)], b.p. 305-306° (527), 187-188° at 26 mm. (525), 177-178° at 18 mm. (528), 171° at 13 mm. (528), 162-163° at 8 mm. (504);  $D_{2}^{26.5} = 1.0421$  (504),  $D_{4}^{15} = 1.0475$  (528);  $n_{2}^{26.5} = 1.6006$  (504), 1.6071 (528). (B.PkOH, m.p. 131° (529), 128-128.5° (504), 127° (525), 109° (530), 105-107° (531), 104° (532), 103.0-103.5° (533); note disagreement.)] [C htd. with N-ethylaniline (534) in toluene + Na<sub>2</sub>CO<sub>3</sub> (535), or C with N,N-diethylaniline

iline + I<sub>2</sub> at 150° (504), or  $\tilde{C}$  with a mixt. of N-ethylaniline + N,N-diethylaniline at 150° (526), gives N-benzyl-N-ethylaniline (benzyl-ethyl-phenylamine) [Beil. XII-1026, XII<sub>1</sub>-(450)], b.p. 285-286° sl. dec. at 710 mm. (534), 212-220° at 54 mm. (526), 185.5-186.5° at 22 mm. (535) (536), 173° at 12 mm. (528), 163-164° at 6 mm. (504);  $D_4^{15}$  = 1.0330 (528);  $n_D^{15}$  = 1.5975 (528) ( $\tilde{B}$ .PkOH, m.p. 116-117° (536), 114° (535), 113-114° (504), 111-112° (533)). — For important study of sulfonation of N-benzyl-N-ethylaniline see (537).]

With heterocyclic secondary amines. [ $\bar{C}$  with piperidine reacts vigorously giving (538) (541) (542) N-benzylpiperidine [Beil. XX-23, XX<sub>1</sub>-(8)], b.p. 248° (539), 245-247° (540), 245° (538) (541), 119° at 13 mm (542);  $D_4^{20}=0.96049$  (542),  $D_4^{16}=0.9625$  (541),  $D_4^{15}=0.96451$  (542);  $n_{\pi}^{20}=1.52269$  (542) ( $\bar{B}$  HCl, m.p. 178° (543)).]

[Direct reaction of  $\bar{C}$  with morpholine appears never to have been reported; the expected product, viz., N-benzylmorpholine [Beil. XXVII-7, XXVII<sub>1</sub>-(203)] (544), has, however, been prepd. by many other methods and has following constants: b.p. 260-261° cor. (545), 136-136.5° at 14 mm. (544), 128-129° at 13 mm. (542);  $D_4^{20} = 1.03874$ ,  $D_4^{15} = 1.03396$  (542) ( $\bar{B}$ .HCl, m.p. 244-245° dec. (545);  $\bar{B}$ .PkOH, m.p. 193.5-195° cor. (544), 184-185° (545)).]

With aliphatic tertiary amines. [C with (CH<sub>3</sub>)<sub>3</sub>N in abs. alc. (546) (561) (563) or abs. MeOH at 0° (572) gives trimethyl-benzyl-ammonium chloride [Beil. XII-1020, XII<sub>1</sub>-(448)], m.p. 235° (572) dec. (546); for studies of behavior of this prod. toward cat. hydrogenation see (573) (574)]

 $[\bar{C} \text{ with } (C_2H_5)_3N \text{ directly (563) or at 100° in s.t. (567) cf. (570) gives triethyl-benzyl-ammonium chloride [Beil. XII-1021], but its constants are not reported.]$ 

With aromatic tertiary amines. [C with N,N-dimethylaniline at ord. temp. (575) (577) in MeOH or EtOH (576) gives dimethyl-phenyl-benzyl-ammonium chloride [Beil. XII-1025, XII<sub>1</sub>-(450)], tbls. of monohydrate from aq or alc., m.p. 110° (575), 109.5° (578), m.p. anhydrous form, 116° (577); for studies of rate of forms. of this salt in MeOH at 29° and 38° see (579); for studies of behavior on cat. hydrogenation see (573) (580); for use of this quaternary salt as reagt. for introduction of benzyl radical see (473).]

[ $\bar{C}$  with N,N-diethylaniline in dry  $C_6H_6$  refluxed 30 min gives (581) diethyl-phenyl-benzyl-ammonium chloride, m.p.  $104^\circ$  (581).]

With heterocyclic tertiary amines. [C with pyridine directly (582) (583) (584) (585) (586) or on htg. at 150° for 6 hrs. (587) gives N-benzylpyridinium chloride [Beil. XX-218, XX<sub>1</sub>-(74)], but this salt is difficult to crystallize (586) and its properties are not well established; for kinetics of the addition see (4) (579). — Note that C with pyridine in pres. of Cu on htg. gives (588) a mixt. of 2-benzylpyridine and 4-benzylpyridine, but this type of nuclear benzylation cannot be discussed here.]

With arylhydrazines. Č (1 mole) with phenylhydrazine (2 moles) mixed with cooling (589) and subsequently htd. at  $115-120^\circ$  (590) (591) (592), or refluxed in alc. (593), or Č with phenylhydrazine + Na in C<sub>6</sub>H<sub>6</sub> (594) or liq. NH<sub>3</sub> (595), or Č with phenylhydrazine + NaNH<sub>2</sub> in liq. NH<sub>3</sub> (73% yield (595)), gives N-benzyl-N-phenylhydrazine ( $\alpha$ -benzyl-phenylhydrazine) (Beil. XV-532, XV<sub>1</sub>-(164)], oil, b.p. 216-218° at 38 mm. (591), 207-208° at 10 mm. (593) (B.HCl, m.p. 176-177° (596), 170° (593), 164-169° (595), 167° (594) (595), 166-167° (590); corresp. acetyl deriv., m.p. 121-122° (594) (595); corresp. benzyl deriv., m.p. 139-140° (590)); note that the N-benzyl-N-phenylhydrazine is often accompanied (593) (591) by some benzaldehyde N-benzyl-N-phenylhydrazine, m.p. 111-112° (590), 111° (593) (594). — The isomeric N-benzyl-N'-phenylhydrazine ( $\beta$  or sym.-benzyl-phenylhydrazine) [Beil. XV-533, XV<sub>1</sub>-(165)], m.p. 35-36°, is not obtd. by benzylation of phenylhydrazine but only by indirect methods.]

[For analogous use of C in prepn. of asym.-benzyl-o-tolylhydrazine, asym.-benzyl-m-tolylhydrazine, asym.-benzyl-p-tolylhydrazine, etc., see (597).]

With arythydroxylamines. [C with N-phenylhydroxylamine in pyridine as directed

- (598) gives (69% yield) N-benzyl-N-phenylhydroxylamine, yellowish lfts., colorless after steam distn., cryst. from pet. ether or EtOAc, m.p. 86° (598) (598) (corresp. B.HCl, m.p. 104-105° (600); corresp. benzoyl deriv., m.p. 115-117° (600)).]
  - Benzyl acetate (1:3751): b.p. 217°. [See also text above under behavior of C with salts of organic acids.]
  - —— Benzyl benzoate (1:4422): b.p. 323-324° cor., m.p. 21°. [For extensive study of prepn. from C with NaOBz see (462) (629).]
  - Benzyl p-nitrobenzoate: m.p. 85°. [See also under benzyl alc. (1:6480).]
  - Benzyl 3,5-dinitrobenzoate: m.p. 113°. [From C with Ag 3,5-dinitrobenzoate refluxed in alc. (190); see also under benzyl alc. (1:6480).]
  - **D** Phenylacetic acid (1:0665): m.p. 76.5°; b.p. 265.5° cor.; Neut. Eq. 136. [From  $\bar{C}$  via conversion to  $C_6H_6$ .CH<sub>2</sub>.MgCl (see text above under behavior of  $\bar{C}$  with Mg) and subsequent treatment with CO<sub>2</sub>; yields 75-76% (310), 62.7% (335), 60% (340), 51% (318), 40% (333).]
  - **D** Phenylacetanilide: m.p. 115-116° u.c. (601), 117° cor. (602). [From  $\bar{C}$  via conversion to  $C_6H_6$ .CH<sub>2</sub>.MgCl (see text above under behavior of  $\bar{C}$  with Mg) and subsequent reaction with phenyl isocyanate (602) (601).]
  - —— Phenylaceto-p-toluidide: m.p. 135°. [Presumably from  $\tilde{C}$  via conversion to  $C_6H_6$ .CH<sub>2</sub>.MgCl and reaction with p-tolyl isocyanate (cf. preceding paragraph) but never actually so reported.]
  - **D** Phenylaceto- $\alpha$ -naphthalide: m.p. 175° (603), 169° (604), 166° u.c. (605). [From  $\bar{C}$  via conversion to  $C_6H_6$ .CH<sub>2</sub>.MgCl (see text above under behavior of  $\bar{C}$  with Mg) and subsequent reaction with  $\alpha$ -naphthyl isocyanate (605).]
  - —— Phenylaceto- $\beta$ -naphthalide: m.p. 159° (604), 158° (603). [Presumably from  $\bar{C}$  via conversion to  $C_6H_5$ .CH<sub>2</sub>.MgCl (cf. preceding paragraph) and subsequent reaction with  $\beta$ -naphthyl isocyanate but never actually so reported.]
  - Benzylmercuric chloride: m.p. 104° u.c. (323) (324) (326). [From  $\bar{C}$  via conversion to  $C_6H_5$ .CH<sub>2</sub>.MgCl (see text above under behavior of  $\bar{C}$  with Mg) and subsequent reaction (84% yield (323)) (324) (325) with HgCl<sub>2</sub>; note, however, that excess  $C_6H_5$ .-CH<sub>2</sub>.MgCl gives (325) (326) (327) dibenzylmercury, m.p. 111° (326).]
  - D S-Benzylisothiourea picrate: m.p. 188° (606). [From C with thiourea in alc. htd. 2 min., then treated with alc. PkOH (606). Note that S-benzylisothiourea hydrochloride (S-benzylthiuronium chloride), prepd. from C + thiourea by refluxing alc. soln. (607) (608), and existing in two forms, m.p. 175-176° (608), 172-174° (607), and m.p. 150-151° (608), 146-148° (607), is an important general reagt. for identification of organic acids (607) (608) (609).]
  - ₱ N-Benzylphthalimide: cryst. from AcOH m.p. 116° cor. (610), 116° (611) (612), 115–116° (613), 115° (614). [From C with phthalimide in pres. of dry K₂CO₃ under reflux (72–79% yield (610) (611) or in pres. of NaOEt (612), or from C with K phthalimide under reflux (613), or from benzylamine with phthalic anhydride (1:0725) refluxed in AcOH (614).]
  - N-Benzyl-3-nitrophthalimide: ndls. from CS<sub>2</sub>, m.p. 142-143° (615). [From C with K 3-nitrophthalimide under reflux (615).]

  - N-(Benzyl)saccharin: ndls. from alc., m.p. 118° (617), 110-111° (618). [From Č with sodium saccharin in aq. butylcarbitol (1:6517) contg. KI on 30 min. reflux (618).]
- N-(Benzyl)-N-(p-bromobenzenesulfonyl)-p-anisidide: cryst. from 75% alc., m.p. 167.5° u.c. (619). [From Č with N-(p-bromobenzenesulfonyl)-p-anisidide in alc. KOH after 1 hr. reflux (619).]

- p-(Benzyloxy)benzoic acid: m.p. 188-190° (620) (621). [From C with ethyl p-hydroxybenzoate (1:1534) in abs. alc. NaOEt on refluxing 1 hr. (620).]
- Benzyl phenyl ether: m.p. 39°, b.p. 286°. [See text under behavior of  $\bar{\mathbf{C}}$  with phenols.]
- © Benzyl 2,4,6-triiodophenyl ether: cryst. from alc., m.p. 123° (622), 122.5° cor. (623). [From Č with 2,4,6-triiodophenol in alc. NaOEt refluxed 30 min. (623) cf. (622).]
- Benzyl α-naphthyl ether: m.p. 77.0-77.0° cor. (624), 74.5-75° (625), 61° (626). [Prepd. only by indirect means; corresp. picric acid addn. cpd., dec. 85-100° (624).]
- Benzyl β-naphthyl ether: m.p. 101.5-102.0° cor. (624), 99-100° (625), 99° (418), 98.5° (627), 98° (628), 95° (626). [From C with β-naphthol (1:1540) in conc. aq. KOH (418) or NaOH (627) on htg. 2 hrs.; corresp. picric acid addn. cpd., m.p. 123.0° cor. (624), 122° (627).]
- 3:8535 (1) Timmermans, Bull. soc. chim. Belg. 25, 344 (1913); Cent. 1914, I [618. (2) Lecat, Rec. trav. chim. 46, 243 (1927). (3) Perkin, J. Chem. Soc. 69, 1190, 1203, 1206 (1896). (4) Baker, J. Chem. Soc. 1932, 2634-2635. (5) Fairbrother, Proc. Roy. Soc. (London) A-142, 184 (1933). (6) Weissberger, Sängewald, Z. physik. Chem. B-9, 140 (1930). (7) Smith, Andrews, J. Am. Chem. Soc. 53, 3649-3650 (1931). (8) Arnold, Kistiakowsky, J. Am. Chem. Soc. 54, 1716 (1932). (9) Bell, J. Chem. Soc. 1931, 1373. (10) Schiff, Ann. 220, 99 (1883).
- (1936). (13) Lorges, Rev. chim. intervention of the control of the
- (21) Roberts, Hammett, J. Am. Chem. Soc. 59, 1063-1070 (1937). (22) Beste, Hammett, J. Am. Chem. Soc. 62, 2481-2487 (1940). (23) Sutton, Proc. Roy. Soc. (London) A-133, 672 (1931). (24) Timmermans, Hennaut-Roland, J. chim. phys. 32, 517-519 (1935). (25) Wroczynski, Guye, J. chim. phys. 8, 197-203 (1910). (26) von Schneider, Z. physik. Chem. 22, 230, 233 (1897). (27) Haase, Ber. 26, 1053 (1893). (28) Pound, J. Phys. Chem. 30, 793 (1926). (29) Dunstan, Hilditch, Thole, J. Chem. Soc. 103, 140 (1913). (30) Jahn, Möller, Z. physik. Chem. 13, 389 (1894).
- (31) King, Beazley, Proc. Nova Scotian Inst. Sci. 18, 204-212 (1934); Cent. 1934, I 3201; C.A. 28, 2686 (1934). (32) Ginsburg, Rueggeberg, Tharp, Nottorf, Cannon, Carnahan, Cryder, Fleming, Goldberg, Haggard, Herr, Hoover, Lovell, Mraz, Noll, Oakwood, Patterson, Van Strien, Walter, Zook, Wagner, Weisgerber, Wilkins, Whitmore, Ind. Eng. Chem. 38, 478-485 (1946). (33) Cotton, Mouton, Ann. chim. (8) 28, 214 (1913). (34) Gladstone, J. Chem. Soc. 45, 245 (1884). (35) Prins, Rec. trav. chim. 42, 26 (1923). (36) Kireev, Kaplan, Zlobin, J. Applied Chem. (U.S.S.R.) 7, 1333-1338 (1934); Cent. 1936, I 4286; C.A. 29, 5712 (1935). (37) Lecat, "L'Azeotropisme," 1918; (a) p. 112, (b) p. 76. (38) Lecat, Ann. soc. sci. Bruxelles 49-B, 18, 20, 110 (1929). (39) Fuson, McKeever, Org. Reactions 1, 63-90 (1942). (40) Lock, Ber. 74, 1568-1574 (1941).
- (41) Kulka, Can. J. Research 23-B, 106-110 (1945). (42) Blanc, Bull. soc. chim. (4) 33, 313-319 (1923). (43) Stephen, Short, Gladding, J. Chem. Soc. 117, 510-527 (1920). (44) Sivkov, Matveeva, Sintezy Dushistykh Veshchestv, Sbornik Statei 1939, 154-161; C.A. 36, 3793 (1942). (45) Vorozhtzov, Jurygina, J. Gen. Chem. (U.S.S.R.) 1, 49-64 (1931); Cent. 1931, II 1132; not in C.A. (46) Vavon, Bolle, Calin, Bull. soc. chim. (5) 6, 1025-1033 (1939). (47) Sommelet, Compt. rend. 157, 1445 (1913). (48) Tschunkur, Eichler, Ger. 509,149, Oct. 8, 1930; Cent. 1931, I 360; C.A. 25, 711 (1931). (49) Wohl, Ger. 139,552, Feb. 16, 1903; Cent. 1903, I 607. (50) Wohl, Ger. 160,102, July 4, 1905; Cent. 1905, II 367.
- (51) Wohl, Ger. 162,394, July 22, 1905; Cent. 1905, II 727. (52) Cannizzaro, Ann. chim. (3) 45, 468-475 (1855). (53) Beilstein, Geitner, Ann. 139, 331-337 (1866). (54) Asolkar, Guha, J. Indian Chem. Soc. 23, 47, 50 (1946). (55) Mason, Smale, Thompson, Wheeler, J. Chem. Soc. 1931, 3150-3154. (56) Cohen, Dawson, Blockey, Woodmansey, J. Chem. Soc. 97, 1623-1636 (1910). (57) Schramm, Ber. 18, 607-608 (1885). (58) Gibbs, Geiger, U.S. 1,246,739, Nov. 13, 1917; C.A. 12, 280 (1918). (59) Zelinsky, Schering-Kahlbaum, A.G., Ger. 478,084, June 20, 1929; Cent. 1929, II 1216; [C.A. 23, 4228 (1929)]. (60) The Selden Co., Swiss 87,961, Jan. 17, 1921; Cent. 1921, IV 354; not in C.A.
- (61) Imperial Chem. Ind., Ltd., and Wheeler, Brit. 378,866, Sept. 15, 1932; Cent. 1933, II 936; [C.A. 27, 3947 (1933)]. (62) Conklin (to Solvay Process Co.), U.S. 1,828,858 + 1,828,859, Oct.

1931; Cent. 1932, I 1575; [C.A. 26, 632 (1932)]. (63) Kyrides (to National Aniline Co.), U.S. 1,733,268, Oct. 29, 1929; Cent. 1936, I 3831; C.A. 24, 382 (1930). (64) Perrot, Compt. rend. 196, 1424-1425 (1934). (65) Moyer (to Solvay Process Co.), U.S. 2,152,357, March 28, 1939; Cent. 1939, II 1775; [C.A. 33, 5001 (1939)]. (66) Coleman, Noyes, J. Am. Chem. Soc. 43, 2215-2216 (1921). (67) Clark, Chem. News 143, 265-267 (1931); Cent. 1932, I 1359; C.A. 26, 1591 (1932). (68) Cannizzaro, Ann. 88, 130 (1853). (69) Norris, Am. Chem. J. 38, 638-639 (1907). (70) Imperial Chem. Ind., Ltd., and Bennett, Dodd, and Sprent, Brit. 334,260 + 334,261, Sept. 25, 1930; Cent. 1931, I 158; C.A. 25, 973 (1931).

(71) Halford, Reid, J. Am. Chem. Soc. 63, 1873-1878 (1941).
(72) Clark, Streight, Trans. Roy. Soc. Can. (3) 23, III 77-89 (1929).
(73) Carré, Libermann, Compt. rend. 198, 274 (1934).
(74) Huston, J. Am. Chem. Soc. 46, 2778 (1924).
(75) Thiele, Dont, Ann. 302, 257 (1898),
(76) Bergmann, Zervas, Ber. 65, 1195 (1932).
(77) Durrans, J. Chem. Soc. 123, 1424-1425 (1923).
(78) Whitmore, Langlois, J. Am. Chem. Soc. 55, 1519-1520 (1933).
(79) Elliott, Speakman, J. Chem. Soc. 1940, 643-644.
(80) Solonina, J. Russ. Phys.-Chem. Soc. 30, 431-439 (1898); Cent. 1898, II 887.

(81) Solonina, J. Russ. Phys.-Chem. Soc. 30, 822-825 (1898); Cent. 1899, I 254.
(82) Wieland, Schamberg, Ber. 53, 1330, 1334 (1920).
(83) O. Silberrad, C. A. Silberrad, B. Parke, J. Chem. Soc. 127, 1244-92450.
(1925).
(85) Firth, Smith, J. Chem. Soc. 1936, 337-339.
(86) Lubs, Clark, J. Am. Chem. Soc. 40, 1449-1453 (1918).
(87) Tsypin, Chekalina, Org. Chem. Ind. (U.S.S.R.) 6, 504-506 (1939);
(CA. 34, 2288 (1940).
(88) Vandevelde, Bull. acad. roy. Belg. (3) 34, 894-920 (1897); Cent. 1898, I 438.
(89) Löb, Ber. 36, 3060 (1903).
(90) Staudinger, Kupfer, Ber. 44, 2195 (1911).

(91) Meyer, Hofmann, Monatsh. 38, 157 (1917).
(92) Shriner, Berger, J. Org. Chem. 6, 305–317 (1941).
(93) Jacobson, J. Am. Chem. Soc. 54, 1513–1518 (1932).
(94) Dermer, Hooper, J. Am. Chem. Soc. 63, 3525–3526 (1941).
(95) Fisher, Eisner, J. Org. Chem. 6, 169–173 (1941).
(96) Olivier, Wick, Rec. trav. chem. 57, 1117–1124 (1938).
(97) Smythe, J. Chem. Soc. 121, 1270–1279 (1922).
(98) Busch, Stöve, Ber. 49, 1068 (1916).
(99) Kelber, Ber. 50, 308 (1917).
(100) Borsche, Heimburger, Ber. 48, 457 (1915).

(101) C. Ingold, E. Ingold, J. Chem. Soc. 1928, 2259. (102) Tommasi, Ber. 7, 826 (1874). (103) Busch, Weber, J. prakt. Chem. (2) 146, 48-49 (1936). (104) Busch, Weiss, Ber. 33, 2702-2703 (1900). (105) Korczynski, Reinholz, Schmidt, Roczniki Chem. 9, 731-740 (1929); Cent. 1930, I 2075; [C.A. 24, 1858 (1930)]. (106) Muller, Ehrmann, Ber. 69, 2209-2210 (1936). (107). Courtot, Pierron, Compt. rend. 190, 1057 (1930). (108) Kyrides (to Monsanto Chem. Co.), U.S. 1,968,300, July 31, 1934; Cent. 1934, II 3555; [C.A. 28, 5833 (1934)]. (109) Fischer, J. Am. Chem. Soc. 56, 2056-2057 (1934). (110) Etard, Ann. chim. (5) 22, 235-240 (1881).

(111) Lauth, Grimaux, Bull. soc. chm. (2) 7, 106-107 (1867); Ann. 143, 80-82 (1867). (112)
Shorigin, Kizber, Smol'yaninova, J. Applied Chem. (U.S.S.R.) 3, 721-726 (1930); Cent. 1930,
II 3397; C.A. 25, 94 (1931). (113)
Blanc, Ger. 347,583, Jan. 23, 1922; Cent. 1922; II 1138, not in C.A. (114)
Sommelet, Compt. rend. 157, 852 (1913). (115)
Fabriques de Produits de Chimie Organique de Laire, Ger. 268,786, Jan. 2, 1914; Cent. 1914, I 539, not in C.A.; French 452,537,
Mar. 7, 1912; C.A. 7, 3641 (1913). (116)
Shorigin, Kızberg, Troitzkın, Smol'yaninova, J. Chem. Ind. (U.S.S.R.) 6, 258-260 (1929); Cent. 1929, II 730, 2603; C.A. 23, 3680 3681 (1929). (117)
Schorigin, Russian 19,621, Mar. 31, 1931; Cent. 1931, II 2659; not in C.A. (118)
Masson, Hamilton, Ind. Eng. Chem. 20, 814 (1928). (119)
Seyewetz, Trawitz, Compt. rend. 136, 241 (1903). (120)
Olivier, Rec. trav. chrm. 41, 419-421 (1921).

(121) Beilstein, Kuhlberg, Ann. 146, 320-322 (1868). (122) van der Linden, Rec. trav. chim. 57, 1083-1084 (1938). (123) Heble, Nadkarni, Wheeler, J. Chem. Soc. 1938, 1322. (124) Asinger, J. prakt. Chem. (2) 152, 4-5, 7-8 (1939). (125) Pajeau, Compt. rend. 204, 1203 (1937). (126) Srpek, Monatsh. 11, 429,430 (1890). (127) Errera, Gazz. chim. idl. 17, 198-203 (1887). (128) Rohner and Co., Ger. 293,319, July 25, 1916; Cent. 1916, II 359; [C.A. 11, 1884 (1917)]. (129) Soc. Chem. Ind. Basel, Ger. 312,959, June 21, 1919; Cent. 1919, IV 373-374; not in C.A. (130) Conant, Kirner, Hussey, J. Am. Chem. Soc. 47, 498-499 (1925).

(131) Olivier, Rec. trav. chim. 41, 309-311 (1921). (132) Gabriel, Borgmann, Ber. 16, 2066 (1883). (133) Holleman, Vermeulen, Rec. trav. chim. 33, 12-17 (1914). (134) Norrish, Smith, J. Chem. Soc. 1928, 130. (135) Grimaux, Ann. 145, 46-49 (1868). (136) Strakosch, Ber. 6, 1059 (1873). (137) Abelli, Gazz. chim. ital. 13, 97-99 (1883). (138) Noelting, Ber. 17, 385 (1884). (139) Klumpf, Ann. 224, 98-103 (1884). (140) Alway, J. Am. Chem. Soc. 24, 1060-1063 (1902).

(141) Flurscheim, Holmes, J. Chem. Soc. 1928, 1611. (142) Shaw, J. Chem. Soc. 1928, 1278.
(143) van der Linden, Rec. trav. chim. 50, 1105-1110 (1931). (144) Pictet, Khotinsky, Ber. 40, 1165 (1907). (145) Tronov, Bair, J. Russ. Phys.-Chem. Soc. 62, 2337-2345 (1930); Cent. 1931, II 422; C.A. 25, 3973 (1931). (146) Lyman, Reid, J. Am. Chem. Soc. 39, 702 (1917). (147)

Lyons, Reid, J. Am. Chem. Soc. 39, 1730 (1917). (148) Bither, Sturtevant, Thomas, J. Am. Chem. Soc. 67, 1562-1566 (1945). (149) Escales, Ber. 37, 3599 (1904). (150) Friedländer, Cohn. Monatsh. 23, 545-548 (1902).

(151) Niederist, Ann. 196, 353-354 (1879). (152) von Braun, Moldaenke, Ber. 56, 2169 (1923). (153) Harker, J. Chem Soc. 125, 500-511 (1924). (154) Benrath, Ann. 382, 223 (1911). (155) Lloyd, Kennedy, U.S. 1,849,844, Mar. 15, 1932; Cent. 1932, I 2994; [C.A. 26, 2747 (1932)]. (156) Yamasaki, Titani, Bull. Chem. Soc. Japan 9, 503 (1934). (157) Meunier, Bull. soc. chim. (2) 38, 159-160 (1882). (158) Pospiech (to Chem. Fabrik Pott and Co.), Ger. 484,662, Oct. 23. 1929; Cent. 1930, I 1051; C.A. 24, 1125 (1930). (159) Klever, French 462,438, Sept. 10, 1913; C.A. 8, 2781 (1914); Brit. 20,505, Sept. 10, 1913; C.A. 9, 694 (1915). (160) Gomberg, Buchler. J. Am. Chem. Soc. 42, 2059-2072 (1920).

(161) Rosenberg (to National Oil Products Co.), U.S. 2,221,882, Nov. 19, 1940; C.A. 35, 1411 (1941). (162) Gavankar, Heble, Wheeler, J. Univ. Bombay 6, Pt. II, 112-113 (1937); Cent. 1938, I 4610; [C.A. 32, 3757 (1938)]. (163) Olivier, Rec. trav. chim. 53, 891-894 (1934). (164) Olivier, Berger, Rec. trav. chim. 41,637-640 (1921). (165) Olivier, Rec. trav. chim. 41,304 (1921). (166) Olivier, Rec. trav. chrm. 48, 234 (1929). (167) Olivier, Rec. trav. chrm. 49, 697-704 (1930). (168) Moelwyn-Hughes, J. Chem. Soc. 1932, 102. (169) Titani, Kurano, Bull. Chem. Soc. Japan 6, 152-162 (1931). (170) Heble, Wheeler, Proc. Indian Acad. Sci. A-7, 411-415 (1938).

(171) Marcker, Ann. 136, 75-78, 88-89 (1865). (172) Scheibler, Voss, Ber. 53, 382-383 (1920). (173) Hoffman, Reid, J. Am. Chem. Soc. 45, 1833 (1923). (174) Leaper (to National Aniline and Chem. Co.), U.S. 1,842,414, Jan. 26, 1932; Cent. 1932, I 1829; [C.A. 26, 1618 (1932)]. (175) Olin, Deger (to Sharples Chemicals, Inc.), U.S. 2,349,191, May 16, 1944, C.A. 39, 710 (1945). (176) Fallow, Signaigo (to du Pont Co.), U.S. 2,402,613, June 25, 1946; C.A. 40, 5759 (1946). (177) Wertheim, J. Am. Chem. Soc. 51, 3661-3664 (1929). (178) Kilmer, du Vigneaud, J. Buol. Chem. 154, 248, 250 (1944). (179) Shriner, Struck, Jorison, J. Am. Chem. Soc. 52, 2066-2068 (1930). (180) Lewin, J. prakt. Chem. (2) 118, 286 (1928).

(181) Smythe, J. Chem. Soc. 121, 1400-1405 (1922). (182) Knoll, J. prakt. Chem. (2) 113, 45 (1926). (183) Lewin, J. prakt. Chem. (2) 119, 213-214 (1928). (184) Smythe, J. Chem. Soc. 101, 2079-2080 (1912). (185) Bost, Turner, Norton, J. Am. Chem. Soc. 54, 1986-1987 (1932). (186) Blaksma, Rec. trav. chim. 20, 137 (1901). (187) Moran, Crandall (to Socony-Vacuum Oil Co), U.S. 2,113,092 and 2,113,093, Apr. 5, 1938; Cent. 1938, II 414-415, C.A. 32, 4178 (1938). (188) Wojcik (to Hooker Electrochemical Co.), U.S. 2,185,007, Dec. 26, 1939; C.A. 34, 2865 (1940). (189) Bergmann, Hervey, Ber. 62, 914 (1929). (190) Elliott, Speakman, J. Chem. Soc. 1940, 645, 648.

(191) Hofmann, Ber. 20, 15 (1887). (192) Fromm, de Seixas Palma, Ber. 39, 3312-3316 (1906). (193) Hinsberg, Ber. 41, 2839 (1908). (194) Bohler, Ann. 154, 50-55 (1870). (195) Mohr, Ann. 221, 215-216 (1883). (196) Vogt, Henninger, Ann. 165, 375-376 (1873). (197) Davies, Dick, J. Chem. Soc. 1932, 484. (198) Turckiewicz, St. Pilat, Ber. 71, 285 (1938). (199) Johnson, Ambler, J. Am. Chem. Soc. 36, 381 (1914). (200) Dodge, J. Am. Chem. Soc. 58, 437-438 (1936).

(201) Lee, Dougherty, J. Org. Chem. 5, 84 (1940). (202) Otto, Luders, Ber. 13, 1286-1287 (1880). (203) Lampricht, von Pechmann, Ber. 6, 534-535 (1873). (204) Kostsova, J. Gen. Chem. (U S S.R.) 11, 63 66 (1941); C.A. 35, 5462 (1941). (205) C. K. Ingold, E. H. Ingold, F. R. Shaw, J. Chem. Soc. 1927, 819. (206) Purgotti, Gazz. chim ital. 20, 25-27 (1890). (207) Hess, Leaper (to Barrett Co.), U.S. 1,729,615, Oct. 1, 1929; Cent. 1930, I 436; C.A. 23, 5474 (1929). (208) Snyder, Speck, J. Am. Chem. Soc. 61, 670 (1939). (209) Douglass, Johnson, J. Am. Chem. Soc. 60, 1488 (1938). (210) Dougherty, Barth (to Heyden Chemical Corpn.), U.S. 2,293,971, Aug. 25, 1942; C.A. 37, 889 (1943).

(211) Steinkopf, Bessaritsch, J. prakt. Chem. (2) 109, 243, Note 1 (1925). (212) Coleman, Hauser, J. Am. Chem. Soc. 50, 1194-1196 (1928). (213) Whitmore, Thurman, J. Am. Chem. Soc. 51, 1497 (1929). (214) Spath, Monatsh. 34, 1995 (1913). (215) Kumpf, Ann. 224, 126-128 (1884). (216) Fischer, Ber. 48, 101 (1915). (217) Conant, Kirner, Hussey, J. Am. Chem. Soc. 47, 587-589 (1925). (218) van Duin, J. Am. Chem. Soc. 47, 585-587 (1925). (219) Nef, Ann. 309, 171-172 (1899). (220) Baker, Nathan, J. Chem. Soc. 1936, 240.

(221) Nabar, Wheeler, Proc. Indian Acad. Sci. A-2, 265-278 (1935). (222) Nabar, Wheeler, Proc. Indian Acad. Sci. A-4, 91-96 (1936). (223) Holleman, Rec. trav. chim. 13, 403-410 (1894). (224) van Raalte, Rec. trav. chim. 18, 383-387 (1899). (225) Neogi, Adhicary, Z. anorg. Chem. 69, 270-272 (1910). (226) Konowalow, Ber. 28, 1861 (1895). (227) Gabriel, Ber. 18, 1254 (1885). (228) Holleman, Rec. trav. chim. 14, 121 (1895). (229) Sherrill, J. Am. Chem. Soc. 46, 2757 (1924). (230) Wislicenus, Endres, Ber. 35, 1760 (1902).

(231) Baker, Ingold, J. Chem. Soc. 1926, 2467. (232) Black, Babers, Org. Syntheses, Coll. Vol. 2 (1st ed.), 512-515 (1943); 19, 73-76 (1939). (233) von Auwers, Ottens, Ber. 57, 458 (1924). (234) Curtius, Ehrhart, Ber. 55, 1565-1567 (1922). (235) Wohl, Oesterlin, Ber. 33, 2741 (1900). (236) Curtius, Darapsky, J. prakt. Chem. (2) 63, 433 (1901). (237) Philip, J. Chem. Soc. 93. 919 (1908). (238) Perkin, J. Chem. Soc. 69, 1208 (1896). (239) Baillie, Tafel, Ber. 32, 71 (1899). (240) Walden, Z. physik. Chem. 70, 579 (1910).

(241) Ssachanow, Prsheborowski, Z. Elektrochem. 20, 40 (1914); Cent. 1914, I 602. (242) Curtius, Boetzelen, J. prakt. Chem. (2) 64, 322 (1901). (243) Dunstan, Hilditch, Thole, J. Chem. Soc. 163, 141 (1913). (244) Brühl, Z. physik. Chem. 16, 216-218 (1895). (245) Hoogewerff, van Dorp, Rec. trav. chim. 5, 253 (1886). (246) Frankland, J. Chem. Soc. 99, 1779 (1911). (247) Jerusalem, J. Chem. Soc. 95, 1283 (1909). (248) Moureu, Lazennec, Bull. soc. chim. (3) 35, 1183 (1906). (249) Buehler, Currier, Lawrence, Ind. Eng. Chem., Anal. Ed. 5, 277 (1933). (250) Noller, Liang, J. Am. Chem. Soc. 54, 672 (1932).

(251) Neber, Uber, Ann. 467, 61 (1928). (252) Limpricht, Ann. 144, 313-314 (1867). (253) Smirnow, J. Russ. Phys.-Chem. Soc. 43, 12 (1911); Cent. 1911, I 1683. (254) Timmermans, Bull. soc. chim. Belg. 30, 69 (1921). (255) Jaeger, Z. anorg. Chem. 101, 151 (1917). (256) von Braun, Ber. 70, 983 (1937). (257) Mussell, Thole, Dunstan, J. Chem. Soc. 101, 1014 (1912). (258) Curtius, J. prakt. Chem. (2) 62, 99 (1900). (259) Scheibler, Beiser, Cobler, Schmidt, Ber.

67, 1511-1512 (1934). (260) Mailhe, Ann. chim. (9) 13, 189 (1920).

(261) Wegler, Frank, Ber. 69, 2075 (1936). (262) Limpricht, Ann. 144, 307-313 (1867). (263) Spica, Gazz. chim. ital. 10, 515 (1880). (264) Darzens, Compt. rend. 208, 1504 (1939). 265) Barbieri, Heard, U.S. 2,113,640, April 12, 1938; Cent. 1938, II 413; [C.A. 32, 4174 (1938)]. [266] McKee, Bahner, U.S. 2,164,587, July 4, 1939; Cent. 1939, II 3193; [C.A. 33, 8211 (1939)]. (267) Limpricht, Ann. 144, 305-307 (1867). (268) Cannizzaro, Bull. soc. chim. (2) 2, 126 (1864); Ann. 134, 128 (1865); Ann. Suppl. 4, 24-27 (1866). (269) Mason, J. Chem. Soc. 63, 1311-1314 (1893). (270) Dhommée, Compt. rend. 133, 636 (1903).

(271) Seelig, Ber. 23, 2971-2972 (1890). (272) Gabriel, Ber. 20, 2227 (1887). (273) Herzberg, Lange (to I.G.), Ger. 442,774, April 7, 1927; French 610,830, Sept. 14, 1926; Cent. 1927, II 505-506; not in C.A. (274) Herzberg, Lange, Ger. 462,652, July 17, 1928; Cent. 1929, I 2236; not in C.A. (275) Letts, Ber. 5, 90-94 (1872). (276) Strakosch, Ber. 5, 692-699 (1872). (277) Ladenburg, Struve, Ber. 10, 46-47 (1877). (278) Rudolph, Ber. 12, 1297-1298 (1879). (279) Delépine, Compt. rend. 124, 292 (1897); Bull. soc. chim. (3) 17, 293-297 (1897). (280) Matter, Ger. 301,450, Oct. 22, 1917; Cent. 1918, I 53; C.A. 13, 324 (1919).

(281) Schramm, Ber. 16, 2184-2185 (1883). (282) Walder, Ber. 19, 1626-1631 (1886). (283) Behrend, Leuchs, Ann. 257, 216-222 (1890). (284) Haase, Wolffenstein, Ber. 37, 3235 (1904). (285) Gambarjan, Cialtician, Ber. 60, 391 (1927). (286) Jones, Fleck, J. Am. Chem. Soc. 50, 2024 (1928). (287) Neubauer, Ann. 298, 200 (1897). (288) Behrend, Leuchs, Ann. 257, 214, 235 (1890). (289) Beckmann, Ber. 22, 516 (1889). (290) Busch, Weiss, Ber. 33, 2702-2703 (1900).

(291) Pascal, Bull. soc. chim. (4) 15, 456 (1914). (292) Kenner, Wilson, J. Chem. Soc. 1927, (293) Curtius, J. prakt. Chem. (2) 62, 92-93 (1900). (294) Schlubach, Goes, Ber. 55, 2890, 2900 (1922). (295) Cannizzaro, Rossi, Ann. 121, 250-251 (1862). (296) Stelling, Fittig, Ann. 137, 258-260 (1866). (297) Comey, Ber. 23, 1115 (1890). (298) Dains, Brewster, J. Am. Chem. Soc. 42, 1578 (1920). (299) Dean, Berchet, J. Am. Chem. Soc. 52, 2824 (1930). (300) Onufrowicz. Ber. 17, 836-837 (1884).

(301) Ray, Dutt. J. Indian Chem. Soc. 5, 107-108 (1928). (302) Paneth. Lautsch. J. Chem. Soc. 1935, 382. (303) Keiser, McMaster, J. Am. Chem. Soc. 32, 388-391 (1910). (304) Hell, Ber. 37, 453-458 (1904); Ber. 38, 1682 (1905). (305) Klages, Heilmann, Ber. 37, 1449 (1904). (306) Klages, Ber. 38, 2220 (Note 5) (1905). (307) Gilman, McCracken, J. Am. Chem. Soc. 45, 2462-2466 (1923). (308) Gilman, Zoellner, Dickey, J. Am. Chem. Soc. 51, 1585 (1929). (309) Houben, Boedler, Fischer, Ber. 69, 1783 (1936). (310) H. Gilman, E. L. St. John, N. B. St. John, Rec. trav. chim. 48, 593-596 (1929).

(311) Gilman, Vanderwal, Bull. soc. chim. (4) 45, 348, 641-644 (1929). (312) Gilman, Zoellner, J. Am. Chem. Soc. 53, 1581-1583 (1929). (313) Gilman, McCracken, Rec. trav. chim. 46, 463-472 (1937). (314) H. Gilman, E. L. St. John, Bull soc. chim. (4) 45, 1091-1095 (1929). (315) Gilman, Catlin, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 471-473 (1941); (1st ed.), 458-460 (1932); 4, 59-61 (1925). (316) Adkins, Zartman, Org. Syntheses, Coll. Vol. 2 (1st ed.), 606-607 (1943); 17, 89-90 (1937). (317) Oldham, Ubbelohde, J. Chem. Soc. 1938, 202-204. (318) Gilman, Kirby, J. Am. Chem. Soc. 51, 1571-1576 (1929). (319) Mikhailenko, Protasova, J. Russ. Phys.-Chem. Soc. 53, I 347-349 (1921); Cent. 1923, III 1014; C. A. 18, 2338 (1924).. (320) Gasopoulos, Praktika Akad. Athenon 7, 180-183 (1932); Cent. 1933, II 534; C.A. 28, 4726 (1934).

(321) Bouveault, Bull. soc. chim. (3) 29, 1053-1054 (1903). (322) Ivanoff, Bull. soc. chim (4) 39, 53 (1926). (323) Hilpert, Grüttner, Ber. 48, 913-914 (1915). (324) Pope, Gibson. J. Chem. Soc. 101, 735 (1912). (325) Jones, Werner, J. Am. Chem. Soc. 40, 1266 (1918). (326) Wolff, Ber. 46, 64-66 (1913). (327) Garcia-Banus, Anales soc. españ. fis. quím. 20, 667-668 (1922): Cent. 1923, III 1265; C.A. 17, 2109 (1923). (328) Hardtmann (to I.G.), Ger. 466,364, Oct. 5, 1928; Cent. 1929, I 3010; [C.A. 23, 2187 (1929)]. (329) Coleman, Forrester, J. Am. Chem. Soc. 58, 27-28 (1936). (330) Coleman, Soroos, Yager, J. Am. Chem. Soc. 55, 2075-2080 (1933).

(331) Coleman, Buchanan, Paxson, J. Am. Chem. Soc. 55, 3669-3672 (1933). (332) Gilman, Kirby, J. Am. Chem. Soc. 54, 345-355 (1932). (333) Austin, Johnson, J. Am. Chem. Soc. 54, 647-660 (1932). (334) Johnson, J. Am. Chem. Soc. 55, 3029-3032 (1933). (335) Whitmore, Sloat, J. Am. Chem. Soc. 64, 2968-2970 (1942). (336) Medoks, J. Gen. Chem. (U.S.S.R.) 8. 291-293 (1938); Cent. 1939, I 4934; [C.A. 32, 5392 (1938)]. (337) Soshestvenskaya, J. Gen. Chem. (U.S.S.R.) 8, 294-297 (1938); C.A. 32, 5392 (1938). (338) Kharasch, Weinhouse, J. Org. Chem. 1, 209-230 (1937). (339) Fischer, Stoffers, Ann. 500, 266 (1933). (340) Houben, Kesselkaul, Ber. 35, 2523 (1902).

(341) Reichstein, Cohen, Ruth, Meldahl, Helv. Chim. Acta 19, 414-415 (1936). (342) Grignard. Bull. soc. chim. (3) 29, 953-954 (1903). (343) Tiffeanu, Delange, Compt. rend. 137, 573-574 (1903). (344) Gerrard, Kenyon, J. Chem. Soc. 1928, 2564. (345) Schmidlin, Garcia-Banus, Ber. 45. 3193-3205 (1912). (346) Garcia-Banus, Anales soc. españ. fís. quím. 26, 372-398 (1928); Cent. 1929, II 1412-1414; C.A. 23, 2178-2180 (1929). (347) Grignard, Compt. rend. 130, 1324 (1900); Ann. chim. (7) 24, 471-472 (1901). (348) Hell, Wiegandt, Ber. 37, 1429-1431 (1904). (349) Gilman, Fothergill, J. Am. Chem. Soc. 51, 3155, 3157 (1929). (350) Madinaveitia, Bull.

soc. chim. (4) 25, 604 (1919).

(351) Muller, Deut. Parfum. Ztg. 17, 498 (1931); Cent. 1932, I 811-812; C.A. 26, 3785 (1932). (352) F. Bayer and Co., Ger. 154,658, Oct. 17, 1904; Cent. 1904, II 1355. (353) Bottomley. Lapworth, Walton, J. Chem. Soc. 1930, 2215-2216. (354) Ranedo, Anales soc. españ. fis. quim. 16, 351-354 (1918); C.A. 13, 2514-2515 (1919). (355) Houben, Ber. 36, 3088-3089 (1903). (356) Gilman, Fothergill, J. Am. Chem. Soc. 51, 3506 (1929). (357) Hepworth, Clapham. J. Chem. Soc. 119, 1193 (1921). (358) Gilman, Beaber, J. Am. Chem. Soc. 47, 523 (1925). (359) Gilman, Hoyle, J. Am. Chem. Soc. 44, 2625 (1922). (360) Gilman, Robinson, Org. Syntheses, Coll. Vol. 2 (1st ed.), 47-48 (1943); 10, 4-5 (1930).

(361) Gilman, Heck. J. Am. Chem. Soc. 50, 2228 (1928). (362) Rossander, Marvel, J. Am. Chem. Soc. 50, 1491-1496 (1928). (363) Zincke, Ann. 159, 374-376 (1871); Ber. 6, 119-122 (1873). (364) Chakrabarty, Dutt. J. Indian Chem. Scc. 5, 516 (1928). (365) Lal. Dutt. J. Indian Chem. Soc. 12, 392-394 (1935). (366) Hartman, Phillips, Org. Syntheses, Coll. Vol. 2 (1st ed.), 232-234 (1943); 14, 34-35 (1934). (367) Hirst, Cohen, J. Chem. Soc. 67, 826-829 (1895). (368) Radziewanowski, Ber. 28, 1136, 1139 (1895). (369) Friedel, Crafts, Ann. chim.

(6) 1, 477-484 (1884). (370) Friedel, Balsohn, Bull. soc. chim. (2) 33, 337 (1880).

(371) Lavaux, Lombard, Bull. soc. chim. (4) 7, 540-541 (1910); Ann. chim. (8) 20, 477-481 (1910). (372) Olivier, Rec. trav. chrm. 45, 817-818 (1926). (373) Norris, Klemka, J. Am. Chem. Soc. 62, 1434 (1940). (374) Bredereck, Lehmann, Schönfeld, Fritzsche, Ber. 72, 1421-1423 (1939). (375) Stadnikoff, Kaschtanoff, Ber. 61, 1390 (1928). (376) Krishnamurti, J. Madras Univ. 1928, 5 pp. (preprint); Cent. 1929, I 2156; C.A. 23, 2164 (1929). (377) Zonew, J. Russ. Phys.-Chem. Soc. 48, 567-568 (1916); Cent. 1923, I 1498; not in C.A. (378) Kashtanov, J. Gen. Chem. (U.S.S.R.) 2, 515-523 (1932); Cent. 1933, I 600; C.A. 27, 975 (1933). (379) Schroeter, Ann. 418, 198-199 (1919). (380) Lecher, Ger. 281,802, Jan. 27, 1915; Cent. 1915, I 281; [C.A. 9, 2292 (1915)].

(381) Simons, Archer, J. Am. Chem. Soc. 61, 1522 (1939). (382) Zincke, Ann. 161, 93-98 (1872). (383) Plascuda, Zincke, Ber. 6, 906-910 (1873). (384) Weber, Zincke, Ber. 7, 1153-1157 (1874). (385) Steele, J. Chem. Soc. 83, 1486-1489 (1903). (386) Martin, Pizzolato. McWaters, J. Am. Chem. Soc. 57, 2584-2589 (1935). (387) Montagne, Ann. chim. (10) 13, 108-110 (1930). (388) Zincke, Ber. 5, 799 (1872). (389) Zincke, Blatzbecker, Ber. 9, 1761 (1876).

(390) Louise, Ann. chim. (6) 6, 176-180 (1885).

(391) Nenitzescu, Isacescu, Ionescu, Ann. 491, 217-218 (1931). (392) Goldschmiedt. Monatsh. 2, 432-437 (1881). (393) Sharma, Dutt, J. Indian Chem. Soc. 12, 774-778 (1935). (394) Froté, Compt. rend. 76, 639 (1872). (395) Miguel, Bull. soc. chim (2) 26, 2-6 (1876). (396) Roux, Ann. chim. (6) 12, 323-331 (1887). (397) Dziewonski, Dziecielewski, Bull. intern. acad. polon. sci. 1927-A, 273-286; Cent. 1928, I 57; C.A. 22, 2164 (1928). (398) Vincent, Roux, Bull. soc. chim. (2) 40, 163-166 (1883). (399) Dziewonski, St. Wodelski, Roczniki Chem. 12, 366-377 (1932); Bull. intern. acad. polon. sci. 1932-A, 115-127; Cent. 1933, I 774; C.A. 27, 2145 (1933). (400) Price, Ciskowski, J. Am. Chem. Soc. 60, 2502 (1938).

(401) Sintenis, Ann. 161, 334-337 (1872). (402) Bacon, Philippine J. Sci. 3, 65-86 (1907); Cent. 1908, II 947. (403) Sah, Lei, Science Repts. Natl. Tsing Hua Univ. A-1, 193-195 (1932). (404) Kahovec, Reitz, Monatsh. 69, 372 (1936). (405) Ipatieff, Burwell, J. Am. Chem. Soc. 63, 970 (1941). (406) Baril, Megrdichian, J. Am. Chem. Soc. 58, 1415 (1936). (407) Rojahn, Schulten, Ber. 59, 500 (1926). (408) White, Morrison, Anderson, J. Am. Chem. Soc. 46, 964 (1924). (409) Chelintzev, Pavlov, J. Russ. Phys.-Chem. Soc. 45, 295 (1913); Cent. 1913, I 1962;
 [C.A. 7, 2227 (1913)]. (410) Semikhatova, Geskin, Gurevich, Ditkovskaya, Nauch. Zapiski

Dnepropetrovsk. Gosudarst. Univ. 15, 135-143 (1940), C.A. 37, 6527 (1943).

(411) von Halban, Gast, Z. physik. Chem. 91, 597-598 (1916). (412) Franzen, J. prakt. Chem. (2) 97, 82-83 (1918). (413) Monacelli, Hennion, J. Am. Chem. Soc. 63, 1723 (1941). (414) Malkiel, Mason, J. Org. Chem. 8, 199-204 (1943). (415) Love, Ann. 241, 374-376 (1887). (416) Bayer and Co., Ger. 343,930, Nov. 11, 1921, Cent. 1922, II 700; C.A. 17, 1242-1243 (1923). (417) Van Dusee, Adkins, J. Am. Chem. Soc. 57, 149-150 (1935). (418) Staedel, Ann. 217, 43-49 (1883). (419) Claisen, Ann. 442, 237 (1925). (420) van Alphen, Rec. trav. chim. 46, 804 (1927).

(421) Short, Stewart, J. Chem. Soc. 1929, 553-559.
(422) Powell, Adams, J. Am. Chem. Soc. 42, 5056 (1920).
(423) McMaster, Bruner, Ind. Eng. Chem. 28, 505-500 (1936).
(424) Lal, Dutt, J. Indian Chem. Soc. 9, 567-568 (1932).
(425) Huston, J. Am. Chem. Soc. 46, 2778 (1924).
(426) Paterno, Gazz. chim. ital. 2, 2-3 (1872); Ber. 5, 288 (1872).
(427) Paterno, Fileti, Gazz. chim. ital. 3, 121-123 (1873), Ber. 6, 757 (1873).
(428) Rennie, J. Chem. Soc. 41, 34, 220 (Note) (1822).
(429) Zincke, Walter, Ann. 334, 373 (1904).
(430) Bakunin, Gazz. chim. ital. 33, II
454-457 (1903).

(431) Å.G.F.A., Ger. 17,311, July 10, 1881; Friedlander 1, 22 (1888). (432) Liebmann, Ger. 18,977, Sept. 30, 1881; Friedlander 1, 23 (1888). (433) Liebmann, Ber. 15, 152-153 (1882). (434) Andrianov, J. Gen. Chem. (U.S.S. R.) 6, 846-851 (1936); Cent. 1937, I 1930; C.A. 30, 6718-6719 (1936). (435) Andrianov, Russ. 48,217, Aug. 31, 1936, Cent. 1937, II 289; not in C.A. (436) Claisen, Ger. 412,169, April 15, 1925; Cent. 1925, II 94; not in C.A. (437) Claisen, Z. angew. Chem. 36, 478 (1923). (438) Akimoff (to Monsanto Chem. Co.), U.S. 2,016,848, Oct. 8, 1935; Cent. 1936, I 3014, C.A. 29, 8008 (1935). (439) Paterno, Gazz. chim. ital. 1, 589-590 (1871). (440) Goldschmidt, Larsen, Z. physik. Chem. 48, 428-430 (1904).

(441) Spath, Monatsh. 34, 2007 (1913). (442) Klages, Allendorff, Ber. 31, 1002 (1898). (443) Cannizzaro, Ann. 96, 247 (1855). (444) Radzıszewski, Ber. 3, 198 (1870). (445) Mann, Ber. 14, 1645 (1881). (446) Staedel, Ber. 19, 1950 (1886). (447) Rosenmund, Luxat, Tiedemann, Ber. 56, 1956–1957 (1923). (448) Adams, Thal, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 107–109 (1941); (1st ed.), 101–103 (1932); 2, 9–11 (1922). (449) Berthelot, Petit, Ann. chim. (6) 18, 124

(1889). (450) Walden, Z physik. Chem. 70, 575 (1910).

(451) Walden, Z. physik. Chem. 73, 261 (1910).
(452) Walden, Z. physik. Chem. 65, 138 (1999).
(453) Bruhl, Z. physik. Chem. 16, 218-219 (1895).
(454) Turner, Merry, J. Chem. Soc. 97, 2075 (1910).
(455) Walden, Z. physik. Chem. 59, 394 (1907).
(456) Johnson, Org. Syntheses 18, 89 (1936).
(457) Seelig, J. prakt. Chem. (2) 39, 162-164 (1889); Ger. 41,507, Jan. 8, 1887; Friedlander 1, 577 (1888).
(458) Wassmuth (to F. Bayer and Co.), Ger. 387,453, Dec. 28, 1923; Cent. 1924, II 403; not in C A.
(459) Bodroux, Bull. soc. chim. (3) 21, 288-289 (1899).
(460) Conrad, Hodgkinson, Ann. 193, 298-299, 311-312, 317-318 (1878).

(461) Klover, Brit. 20,504, Sept. 10, 1913; C.A. 9, 694 (1915). (462) Rueggeberg, Ginsburg, Frantz, Ind. Eng. Chem. 38, 207-211 (1946). (463) Dolique, Ann. chim. (10) 15, 445 (1931).
(464) Leuchs, Ber. 44, 1509 (1911). (465) Marvel, Org. Syntheses 21, 99 100 (1941). (466) Conrad, Ann. 204, 174-175 (1880). (467) Wislicenus, Munzesheimer, Ber. 31, 555 (1898).
(468) Vogel. J. Chem. Soc. 1928, 1019. (469) Brewin, Turner, J. Chem. Soc. 1930, 503. (470)

Fittig, Röders, Ann. 256, 91-92 (1890).

(471) Ramart-Lucas, Papadakis, Ann. chim. (10) 18, 53-54 (1932). (472) Wojick, Adkins, J. Am. Chem. Soc. 56, 2425 (1934). (473) Snyder, Smith, Stewart, J. Am. Chem. Soc. 66, 200-204 (1944). (474) Gardner, Rydon, J. Chem. Soc. 1938, 43. (475) Wallingford, Homeyer, Jones, J. Am. Chem. Soc. 63, 2058 (1941). (476) Wallingford, Homeyer (to Mallinckrodt Chem. Works), U.S. 2,367,632, Jan. 16, 1945, C.A. 39, 4333 (1945). (477) Vavon, Ducasse, Bull. soc. chim. (5) 10, 325-329 (1943); C.A. 38, 4504 (1944). (478) Billmann, Madson, Ann. 402, 337 (1914). (479) Fichter, Schiess, Ber. 34, 1998 (1901). (480) Norris, Tucker, J. Am. Chem. Soc. 55, 4700 (1933).

(481) Jakubowicz, Z. anorg. allgem. Chem. 121, 117-119 (1922). (482) Lellmann, Schleich, Ber. 20, 439 (1887). (483) Maxim, Bull. soc. chm. (4) 39, 1024-1029 (1926). (484) Lund, Hansen, Voigt, Kgl. Danske Videnskab. Selskab. Math.-Fys. Mcdd. 12, No. 9, 23 pp. (1933); Cent. 1934, I 1961-1963; C.A. 28, 2333 (1934). (485) Leuchs, Radulescu, Ber. 45, 194 (1912). (486) Thomas, Rec. trav. chim. 6, 87-88 (1887). (487) Krollpfeiffer, Rosenberg, Ber. 69, 470 (1936). (488) Dolique, Ann. chim. (1) 15, 464-465 (1931). (489) Ehrlich, Ann. 187, 11-15, 24-26 (1877). (490) Conrad, Bischoff, Ann. 204, 179-180 (1880).

(491) Fichter, Alber, J. prakt. Chem. (2) 74, 334 (1906). (492) Breslow, Hauser, J. Am. Chem. Soc. 62, 2388 (1940). (493) Fittig, Christ, Ann. 268, 122-124 (1892). (494) Tafel, Jürgens, Ber. 42, 2556 (1909). (495) Heilbron, Heslop, Irving, Wilson, J. Chem. Soc. 1931, 1338. (496)

Meerwein, Ann. 398, 249 (1913). (497) Leuchs, Heller, Hoffmann, Ber. 62, 875 (1929). (498) von Auwers, Dersch, Ann. 462, 121 (1928). (499) Schlenk, Bergmann, Ann. 463, 48-49 (1928). (500) Hill, J. Chem. Soc. 1926, 956.

(501) Mills, Akers, J. Chem. Soc. 127, 2476-2477 (1925). (502) Fleischer, Ann. 138, 225-230 (1866). (503) Nolan, Clapham, J. Soc. Chem. Ind. 44, 220-221 T (1925); Cent. 1925, II 394: C.A. 19. 2194 (1925). (504) Desai, J. Indian Inst. Sci. 7, 235-251 (1924); Cent. 1925, I 1297; C.A. 19, 2645 (1925). (505) Rivier, Schalch, Helv. Chim. Acta 6, 608-609 (1923). (506) Willson, Wheeler. Org. Syntheses, Coll. Vol. 1 (2nd ed.), 102-104 (1941); (1st ed.), 97-98 (1932); 8, 38-40 (1928). (507) Britton, Slagh (to Dow Chem. Co), U.S. 1,887,228, Nov. 8, 1932; Cent. 1933, I 1515-1516; [C.A. 27, 1360 (1933)] (508) Courtot, Petitcolas, Bull. soc chim. (4) 39, 452-457, 461 (1926). (509) Brand, Ber. 42, 3461-3462 (1909). (510) Tafel, Pfeffermann, Ber. 35, 1513-1514 (1902).

(511) Block, Z. physik. Chem. 82, 412 (1913). (512) Pascal, Normand, Bull. soc. chim. (4) 13, 209-216 (1913). (513) Buehler, Calfee, Ind. Eng. Chem., Anal. Ed. 6, 351-352 (1934). (514) Ritter (to I.G.), Ger. 523,603, April 25, 1931; Cent. 1931, II 3545; [C.A. 25, 3665 (1931)]: French 687,826, Aug. 13, 1930; Cent. 1931, II 3545; [C A. 25, 711 (1931)]. (515) Peacock, J. Chem. Soc. 127, 2177-2180 (1925). (516) Peacock, J. Chem. Soc. 125, 1975-1980 (1924). (517) Hickinbottom, J. Chem Soc. 1937, 1124-1125. (518) Matzudaira, Ber. 20, 1611-1612 (1887). (519) Matter, Ger. 301,832, Oct. 30, 1917; Cent. 1918, I 149, C.A 13, 324-325 (1919). (520) Hinman, Hollmann (to F. Post Co.), U.S. 2,150,832, March 14, 1939, Cent. 1939, I 4681; [C.A. **33.** 4599 (1939)].

(521) Wedekind, Ber. 32, 519-522 (1899). (522) Bischoff, Ber. 31, 2674 (1898). (523) Sudborough, J. Chem. Sec. 109, 1346 (1916). (524) Drumm, O'Connor, Reilly, J. Am Chem. Soc. 62. 1241-1243 (1940). (525) Meisenheimer, Greeske, Willmersdorf, Ber. 55, 520 (1922). (526) Martin, McQueen (to Dow Chem. Co.), U.S. 1,887,772, Nov. 15, 1932; Cent. 1934, II 512-513; [C.A. 27, 1361 (1933)]. (527) Noelting, Jahresber. 1883, 702. (528) Courtot, Dondelinger, Bull. soc. chim. (4) 37, 116 (1925). (529) Meisenheimer, Glawe, Ann. 449, 202 (1926) (530) Singh, J. Chem. Soc. 109, 790 (1916).

(531) Thomson, Stevens, J. Chem. Soc. 1932, 1938. (532) McMeeking, Stevens, J. Chem. Soc. 1933, 349. (533) Komatsu, Mem. Coll. Sci. Eng. Kyoto Imp. Univ 3, 371-426 (1912). Cent. 1913. I 799; [C.A. 7, 1020-1021 (1913)]. (534) Friedlander, Ber 22, 588 (1889). (535) Livingston (to National Andrea and Chem Co.), U.S 1,854,553, April 19, 1932, Cent. 1932, II 442-443; [C.A. 26, 3262 (1932)]. (535) Schultz, Bosch, Ber 35, 1292-1293 (1902). (536) Schultz, Rohde, Bosch, Ann. 334, 236-237 (1904). (537) Blangey, Fierz-David, Stamm, Helv. Chim. Acta 25, 1162-1179 (1942). (538) Schotten, Ber. 15, 423 (1882). (539) Wallach, Huttner, Altonburg, Ann. 343, 73-74 (1905). (540) Baillie, Tafel, Ber. 32, 72, 74 (1899).

(541) Clarke, J. Chem. Soc. 99, 1935 (1911). (542) Clarke, J. Chem. Soc. 101, 1807-1808 (1912). (543) Haase, Wolffenstein, Ber. 37, 3232 (1904). (544) Mason, Zief, J. Am. Chem. Soc. (545) Gabriel, Stelzner, Ber 29, 2386 (1896) (546) Emde, Arch. Pharm. **62**, 1450–1452 (1940). (547) Cromwell, Babson, Harns, J Am. Chem. Soc. 65, 313 (1943). **247.** 358–368 (1909). (548) Zaunschirm, Ann. 245, 280, 282 (1888). (549) Meisenheimer, Ann. 438, 258 (1924). (550)

Young, Robinson, J. Chem. Soc. 1933, 277-278.

(551) Prevost, Cerf de Mauny, Compt. rend. 216, 771-772 (1943). (552) Dobrosserdow. J. Russ. Phys.-Chem. Soc. 43, 124 (1911), Cent. 1911, I 955 (553) Meisenheimer, Denner, Ber. 65, 1801 (1932). (554) Holmes, Ingold, J. Chem. Soc. 127, 1812 1813 (1925). (555) Wegler, Frank, Ber. 69, 2074-2075 (1936). (556) Blicke, Zienty, J. Am. Chem. Soc. 61, 775 (1939). (557) Hughes, Ingold, J. Chem. Soc. 1933, 75. (558) Krafft, Ber. 23, 2781-2782 (1890). (559) Graymore, J. Chem. Soc. 1941, 41. (560) Jackson, Wing, Am. Chem. J. 9, 79-81 (1887).

(561) Emde, Ber. 42, 2590-2593 (1909). (562) Tiffeneau, Fuhrei, Bull. soc. chim. (4) 15, 168 (1914). (563) Collie, Schryver, J. Chem. Soc. 57, 778, 781 (1890). (564) Coleman, J. Am. Chem. Soc. 55, 3004 (1933) (565) King, McMillan, J. Am Chem. Soc. 68, 1469 (1946). (566) Skita, Keil, Ber. 63, 41 (1930). (567) Meyer, Ber. 10, 310-312 (1877). (568) Noelting, Kregczy, Bull. soc. chim. (4) 19, 336 (1916). (569) Emde, Schellbach, Arch. Pharm. 249, 122 (1911).

(570) Ladenburg, Struve, Ber. 10, 40-48 (1877).

(571) Rascanu, Ann. sci. univ. Jassy, Pt. I, 25, 395 424 (1939); Cent. 1939, II 3068; C.A. 34, 394 (1940). (572) Achmatowicz, Perkin, Robinson, J. Chem. Soc. 1932, 500. Kull, Arch. Pharm. 274, 179-180 (1936). (574) Achmatowicz, Lindenfeld, Roczniki Chem. 18, 75-87 (1938); Cent. 1939, II 626; [C.A. 32, 9047 (1938)]. (575) Michler, Gradmann, Ber. 10, 2078-2081 (1877). (576) Izmailskii, Danchev, Russian 33,149, Nov. 30, 1933; Cent. 1934, II 2451; C.A. 29, 2179 (1935). (577) Emde, Arch. Pharm. 249, 106-111 (1911). (578) Straus, Thiel, Ann. 525, 182 (1936). (579) Hol'tsshmidt, Vorob'ev, J. Phys. Chem. (U.S.S.R.) 13, 473-482 (1939); C.A. 34, 1234 (1940). (580) Birkofer, Ber. 75, 436 (1942).

(581) Marvel, Scott, Amstutz, J. Am. Chem. Soc. 51, 3638-3641 (1929). (582) Hofmann, Ber. 14, 1504 (1881). (583) Ferns, Lapworth, J. Chem. Soc. 101, 283 (1912). (584) Magidson, Menschikoff, Ber. 59, 1210 (1926). (585) Hamilton, Adams, J. Am. Chem. Soc. 50, 2262 (1928). (586) Suichev, J. Russ. Phys.-Chem. Soc. 60, 325-330 (1928); Cent. 1930, I 2564; C.A. 23, 1329-1330 (1929). (587) Hamer, Kelly, J. Chem. Soc. 1931, 780. (588) Crook, McElvain, J. Am. Chem. Soc. 52, 4007-4008 (1930). (589) Ruff, Ollendorf, Ber. 32, 3235, Note 2 (1899). (590) Minunni, Gazz. chim. ital. 22, II 217-224 (1892).

(591) Ofner, Monatsh. 25, 593-602 (1904). (592) Milrath, Monatsh. 29, 910, Note 2 (1908). (593) Ponzio, Valente, Gazz. chim. ital. 38, I 520-521 (1908). (594) Michaelis, Philips, Ann. 252, 286-290 (1889). (595) Audrieth, Weisiger, Carter, J. Org. Chem. 6, 418-419 (1941). (596) von Auwers, Wegener, J. prakt. Chem. (2) 106, 244 (1923). (597) Busch, Lang, J. prakt. Chem. (2) 144, 299-301 (1936). (598) Utzinger, Ann. 556, 60-61 (1944). (599) Vavon, Crajcinovic, Compt. rend. 187, 420-422 (1928). (600) Emerson, Shunk, J. Am. Chem. Soc. 63, 2485-2486

(1941).

(601) Underwood, Gale, J. Am. Chem. Soc. 56, 2118-2119 (1934). (602) Schwartz, Johnson, J. Am. Chem. Soc. 53, 1063-1068 (1931). (603) Aggarwal, Das, Ray, J. Indian Chem. Soc. 6, 718 (1929). (604) Crippa, Caracci, Gazz. chim. ital. 69, 136 (1939). (605) Gilman, Furry, J. Am. Chem. Soc. 50, 1214-1216 (1928). (606) Brown, Campbell, J. Chem. Soc. 1937, 1700. (607) Donleavy, J. Am. Chem. Soc. 58, 1004-1005 (1936). (608) Veibel, Lillelund, Bull. soc. chim. (5) 5, 1153-1158 (1938). (609) Chambers, Scherer, Ind. Eng. Chem. 16, 1272-1273 (1924). (610) Manske, Org. Syntheses, Coll. Vol. 2 (1st ed.), 83-84 (1943); 12, 10-11 (1932).

(611) Ing, Manske, J. Chem. Soc. 1926, 2349. (612) Weisz, Lanyi, Magyar Chem. Folyóirat 39, 153-155 (1933); C.A. 28, 5815 (1934). (613) Gabriel, Ber. 20, 2227 (1887). (614) Vanags, Acta Univ. Latviensis, Kim. Fakultat, Ser. 4, No. 8, 405-421 (1939); Cent. 1939, II 3815-3816; C.A. 34, 1982-1983 (1940). (615) Sah, Ma, Ber. 65, 1630-1633 (1932). (616) Allen, Nicholls, J. Am. Chem. Soc. 56, 1409-1410 (1934). (617) Eckenroth, Koerppen, Ber. 29, 1048 (1896). (618) Merritt, Levey, Cutter, J. Am. Chem. Soc. 61, 15-16 (1939). (619) Gillespie, J. Am. Chem. Soc. 56, 2740-2741 (1934). (620) Lauer, Sanders, Leekley, Ungnade, J. Am. Chem. Soc. 61, 3050 (1939).

(621) Cohen, Dudley, J. Chem. Soc. 97, 1737 (1910). (622) Brenans, Bull. soc. chim. (3) 25, 819 (1901). (623) Drew, Sturtevant, J. Am. Chem. Soc. 61, 2666 (1939). (624) V. H. Dermer, O. C. Dermer, J. Org. Chem. 3, 289-293 (1938). (625) Baw, J. Indian Chem. Soc. 3, 102-103 (1926). (626) von Braun, Reich, Ann. 445, 233 (1925). (627) Wang, J. Chinese Chem. Soc. 1, 59-63 (1933). (628) Thiele, Ann. 376, 255 (1910). (629) Tharp, Nottorf, Herr, Hoover, Wagner, Weisgerber, Wilkins, Whitmore, Ind. Eng. Chem. 39, 1300-1302 (1947).

3:8538 ETHYL 
$$\beta$$
-CHLOROCROTONATE  $C_6H_9O_2Cl$  Beil. II - 416  $CH_3$ —C—Cl II<sub>1</sub>-(189) II<sub>2</sub>-(396) B.P. [184° cor. (1)]  $D_4^{20} = 1.106$  (3) (4)  $n_D^{20} = 1.4587$  (3) 179–180° (2) 1.101 (7) 77° at 15 mm. (3)  $D_4^{19.2} = 1.1018$  (7)  $n_D^{10.6} = 1.4588$  (4) 76–77° at 14 mm. (4) (5) 75.3–76.0° at 14 mm. (6)  $D_4^{17.9} = 1.1526$  (6)  $n_D^{17.9} = 1.4509$  (6) 66° at 10 mm. (7)

[See also ethyl  $\beta$ -chloroisocrotonate (3:8325).]

[For prepn. of  $\bar{C}$  from  $\beta$ -chlorocrotonic acid (3:2625) in EtOH with HCl gas (100% yield (2)) (4) or with conc. H<sub>2</sub>SO<sub>4</sub> (7) see indic. refs.]

[For form. of  $\bar{C}$  from ethyl acetoacetate (1:1710) with PCl<sub>5</sub> as a by-product of prepn. of ethyl  $\beta$ -chloroisocrotonate (3:8325) see (8) (9), but this is definitely not a good means of prepn. of  $\bar{C}$ .]

[ $\tilde{C}$  with Al/Hg in alc. on warming is both dehalogenated and hydrolyzed yielding (10) crotonic acid (1:0425); note that with  $\tilde{C}$  this reactn. goes more readily than with the isomeric ethyl  $\beta$ -chloro-isocrotonate (3:8325).]

[ $\ddot{\mathbf{C}}$  (2 moles) with  $\mathbf{K}_2\mathbf{S}$  (1½ moles) in 5 vols. abs. EtOH refluxed 16 hrs. (11) or  $\ddot{\mathbf{C}}$  with Na enolate of ethyl thioacetoacetate (14) gives (53% yield (11)) diethyl  $\beta,\beta'$ -thiodicrotonate

S(—C(CH<sub>3</sub>)=CH.COOC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, b.p. 150-153° at 4 mm. {11}, accompanied by some ethyl  $\beta$ -mercaptocrotonate (see below).]

[ $\bar{C}$  with alc. NaSH (12) or alc. KSH (11) (13) gives (30% yield (13)) ethyl  $\beta$ -mercaptocrotonate; note that this prod. is apparently a mixt. of the two geom. stereoisomers of ethyl  $\beta$ -mercaptocrotonate with the corresp. keto form, viz., ethyl thioacetoacetate, CH<sub>3</sub>-CS.CH<sub>2</sub>.COOC<sub>2</sub>H<sub>5</sub>; for details see indic. refs. — Note also that, since the same prod. results by similar treatment of the isomeric ethyl  $\beta$ -chloroisocrotonate (3:8325), a mixture of the stereoisomers can be used as the starting material.]

[ $\bar{C}$  with alkali derivs. of alcohols, phenols, mercaptans, etc., splits out alkali halide yielding corresp. ethyl β-substituted crotonates: e.g.,  $\bar{C}$  with Na allylate gives (9) ethyl β-allyloxycrotonate;  $\bar{C}$  with Na cinnamylate gives (9) ethyl β-cinnamyloxycrotonate;  $\bar{C}$  with Na phenolate gives (15) cf. (16) ethyl β-phenoxycrotonate, b.p. 147–148° at 14 mm. (15);  $\bar{C}$  with Na salt of ethyl mercaptan gives (17) ethyl β-ethylmercaptoisocrotonate, b.p. 139–141° at 16 mm. (17);  $\bar{C}$  with Na salt of benzyl mercaptan gives (90% yield (17)) ethyl β-benzylmercaptocrotonate, cryst. from lgr., m.p. 64.5° (17). Note that in the first three of the five preceding examples either  $\bar{C}$  or the isomeric ethyl β-chloroisocrotonate (3:8325) or their mixture gives the same result; for the last two, however, such is not the case.

[ $\bar{C}$  with diethyl sodiomalonate gives (5) cf. (18) trans diethyl  $\alpha$ -carbethoxy- $\beta$ -methyl gluconate, ( $C_2H_5OOC)_2CH.C(CH_3)$ — $CH.COOC_2H_5$  [Beil. II-853], b.p. 169-170° at 13 mm.,  $D_4^{20} = 1.0937$ ,  $n_D^{20} = 1.4595$  (5); cf. behavior of stereoisomeric ethyl  $\beta$ -chloroisocrotonate (3:8325).]

Č with phenylhydrazine gives the same (2) products as obtd. from the stereoisomeric ethyl β-chloroisocrotonate (3:8325): e.g., Č (1 mole) with phenylhydrazine (1 mole) at 100° for 6-8 hrs. gives by ring closure mainly (2) 3-methyl-1-phenylpyrazolone-5 [Beil. XXIV-20, XXIV<sub>1</sub>-(190)], pr. from aq., m.p. 127°, accompanied by small amts. of 4-benzene-azo-3-methyl-1-phenylpyrazolone-5 [Beil. XXIV-328, XXIV<sub>1</sub>-(319)], m.p. 155-156°, and 3,3′-dimethyl-1,1′-diphenyl-bis-pyrazolone-5,5′ [Beil. XXVI-484], dec. at high temp. without melting. — Note that with excess phenylhydrazine (2-4 moles) only traces of the 3-methyl-1-phenylpyrazolone-5 are formed while the amt. of the other two (less desirable) products is greatly increased (2).

3:8538 (1) Geuther, Zeil. für Chemie 1871, 240. (2) Autenrieth, Ber. 29, 1653-1664 (1896). (3) von Auwers, Wissenbach, Ber. 56, 724 (1923). (4) von Auwers, Ber. 45, 2807 (1912). (5) Gidvani, Kon, Wright, J. Chem. Soc. 1932, 1034-1035. (6) Errera, Lepingle, Bull. sci. acad. roy. Belg. (5) 11, 150-153 (1925); Cenl. 1925, II 897; C.A. 19, 3057 (1925). (7) von Auwers, Ann. 432, 61 (1923). (8) Thomas-Mamert, Bull. soc. chim. (3) 13, 70-71 (1895). (9) Lauer, Kilburn, J. Am. Chem. Soc. 59, 2587-2588 (1937). (10) Wislicenus, J. prakt. Chem. (2) 54, 59-60 (1896). (11) Scheibler, Ber. 48, 1450-1451 (1915). (12) Scheibler, Topouzada, Schulze, J. prakt. Chem. (2) 124, 7-10 (1930). (13) Mitra, J. Indian Chem. Soc. 8, 471-474 (1931). (14) Mitra, J. Indian. Chem. Soc. 15, 36 (1938). (15) Ruhemann, Wragg, J. Chem. Soc. 79, 1189-1190 (1901). (16) Ruhemann, Ber. 53, 285-286 (1920). (17) Scheibler, Voss, Ber. 53, 385-388 (1920). (18) Fichter, Schwab, Ann. 348, 251-256 (1906).

3: 8540 
$$d$$
, $l$ -2,5-DICHLORO-2-METHYLPENTANE  $C_0H_{12}Cl_2$  Beil. I - 148  $Cl$   $Cl$   $I_1 I_{2-}(111)$   $CH_2.CH_2.CH_2 CH_3$ 

B.P. 179-180° (1)

[For prepn. of  $\bar{C}$  from 5-chloro-2-methylpentanol-2 [Beil. I-410, I<sub>2</sub>-(440)] with fumg. HCl or AcCl see (1); for formn. (together with other prods.) from dimethyl-cyclopropyl-carbinol [Beil. VI-10] by treatment with excess fumg. HCl see (2).]

3:8546 (1) Henry, Compt. rend. 143, 1224 (1906). (2) Bruylants, Dewael, Bull. sci. acad. roy. Bela. (5) 14, 148 (1928); Cent. 1928, I 2709; C.A. 22, 3883 (1928).

3:8545 n-PROPYL 
$$\beta$$
-CHLOROPROPIONATE  $C_6H_{11}O_2Cl$  Beil. II - 250  $n$ - $C_3H_7O.CO.CH_2.CH_2Cl$  II \_\_\_\_\_ II \_\_\_\_

**B.P.** 179-181° (1) 
$$D_4^{20} = 1.0656$$
 (2)  $n_D^{20} = 1.4290$  (2)

3:8545 (1) Moureu, Ann. chim. (7) 2, 172 (1894). (2) Schjanberg, Z. physik. Chem. A-172, 231 (1935).

# B.P. 180° (1)

[For form. of  $\bar{C}$  from ethylbenzene (1:7410) by chlorination (other products are also formed) see (1); for form. from chlorobenzene (3:7903) with ethylene + AlCl<sub>3</sub> at 80° under pressure (3,5-diethyl-1-chlorobenzene is also formed) see (2).]

C on oxidn. with alk. KMnO4 yields (1) o-chlorobenzoic acid (3:4150).

 $[\bar{\mathbf{C}}$  on htg. with 15% NaOH + Cu powder for 2 hrs. at 315-320° in steel autoclave is thought (1) to undergo partial rearrangement, thus yielding some *m*-ethylphenol (1:1744).]

[ $\bar{C}$  on passing through an Fe or Ni-Cr tube at 675–700° is alleged (3) to lose HCl with production of phenylethylene (styrene) (1:7435).]

 $[\bar{C} \text{ on htg. with conc. NH}_3 + \text{CuO for 20 hrs. at 225}^\circ \text{ yields (2) } o\text{-aminocthylbenzene.}]$ 

**3:8550** (1) Meharg, Allen, J. Am. Chem. Soc. **54**, 2920–2922 (1932). (2) Dreisbach (to Dow Chem. Co.), U.S. 2,159,370, May 23, 1939, Cent. **1939**, II 1775, C.A. **33**, 6875 (1939). (3) Smith (to Naugatuck Chem. Co.), U.S. 1,687,903, Oct 16, 1928, Cent. **1929**, I 2922; C.A. **23**, 156 (1929).

3: 8570 p-CHLORO-ETHYLBENZENE 
$$C_8H_9Cl$$
 Beil. V - 354  $V_1$ -(176)  $V_2$ —

B.P. 180–182° (1)  $D_{20}^{20} = 1.0463$  (4)  $I_{20}^{20} = 1.0463$  (4)  $I_{20}^{20} = 1.0575$  (3)  $I_{20}^{20} = 1.5223$  (3)  $I_{20}^{20} = 1.5223$  (3)  $I_{20}^{20} = 1.5235$  (4)  $I_{20}^{20} = 1.5235$  (4)

[For prepn. of  $\bar{C}$  from ethylbenzene (1:7410) with  $Cl_2$  in the dark and in pres. of  $I_2$  (2) or with  $SO_2Cl_2 + AlCl_3$  (1) see indic. refs.; for prepn. of  $\bar{C}$  from chlorobenzene (3:7903) with EtBr +  $AlCl_3$  (3) or EtOH +  $AlCl_3$  (4) see indic. refs.; for prepn. of  $\bar{C}$  from p-chloroacetophenone (3:6735) by reduction with Zn/Hg + HCl (27% yield) see (5).]

 $\bar{C}$  on oxidn. with CrO<sub>3</sub> in AcOH (3) or with HNO<sub>3</sub>(2) yields p-chlorobenzoic acid (3:4940), m.p. 234° (3).

[C on attempted nitration gives only (3) a liquid mixt. of isomers.]

[C with Br<sub>2</sub> in AcOH + trace of I<sub>2</sub> yields (2) 3-bromo-4-chloro-ethylbenzene, b.p. 143-144° at 10 mm. (2); C with Br<sub>2</sub> in CHCl<sub>3</sub> exposed in silica flask to sunlight yields (2) p-chloro-α-bromo-ethylbenzene, b.p. 120-121° at 8 mm. (2).]

64-66°

[ $\tilde{C}$  on htg. with 15% NaOH + Cu powder for 2 hrs. at 315-320° in a steel autoclave is thought (6) to undergo partial rearr., thus yielding *m*-ethylphenol (1:1744).]

[Č on passing through an Fe or Ni-Cr tube at 675-700° is alleged (7) to lose HCl with production of styrene (1:7435).]

3:8570 (1) Töhl, Eberhard, Ber. 26, 2944 (1893). (2) Varma, Sahay, Subrammonium, J. Indian Chem. Soc. 14, 157-159 (1937). (3) Schreiner, J. prakt. Chem. (2) 81, 557-558 (1910). (4) Tsukervanik, J. Gen. Chem. (U.S.S.R.) 8, 1512-1515 (1938); Cent. 1939, I 4929; C.A. 33, 4587 (1939). (5) Lock, Bayer, Ber. 72, 1068 (1939). (6) Meharg, Allen, J. Am. Chem. Soc. 54, 2920-2922 (1932). (7) Smith (to Naugatuck Chem. Co.), U.S. 1,687,903, Oct. 16, 1928; Cent. 1929, I 2922; C.A. 23, 156 (1929).

```
3:8575 1.5-DICHLOROPENTANE
                                                                         C<sub>5</sub>H<sub>10</sub>Cl<sub>2</sub>
                                                                                           Beil. I - 131
             (Pentamethylene dichloride)
                                                   Cl.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.Cl
                                                                                                  I_{1}-(43)
                                                                                                  I<sub>2</sub>-( 95)
  B.P.
                                       F.P.
                                       -72.8^{\circ} (1) D_4^{25} = 1.0940 (3) (7)
   182.3° cor. at 760 mm. (1)
                                                                 1.0918 (1)
   179.5-180.5°
                                 \langle 2 \rangle
  178-180°
                                 (3)
   176-178° sl. dec.
                                 (4)
                                                        D_4^{20} = 1.1028 (8)
                                                                                       n_{\rm D}^{20} = 1.4563 (8)
                 at 60 mm. (8)
                                                                 1.0697 (1)
   102.4°
   79-80°
                 at 21 mm. (4)
   76-78°
                 at 21 mm. (5)
  68°
                 at 14 mm. (4)
```

Colorless liq. with characteristic odor; sol. org. solv., insol. aq.

[For prepn. (yield 77-78% (1); 75-80% (4)) from N-benzoylpiperidine [Beil. XX-46] +  $PCl_5$  see (4) (1) (2); note that by-product benzonitrile may be removed by acid hydrolysis (4) (9) (2) or stdg. with aq. (10); for prepn. from pentanediol-1,5 (1:6519) +  $PCl_5$  in  $CCl_4$  see (5); for prepn. from  $N_1N$ -dibenzoylpentamethylenediamine +  $SOCl_2$  see (11) (12); for formn. (19%) in direct chlorination of 1-chloropentane see (8).]

Č htd. in s.t. 5 hrs. at 130° with NaCN in MeOH yields (5) 1,5-dicyanopentane (pimelonitrile) which after hydrolysis with conc. HCl at 110° for 5 hrs. (5) gives pimelic acid (1:0456), m.p. 104° (5).

[For reaction with NaI in acetone see (8).]

at 10 mm. (6)

- ₱ 1,5-bis-(Phthalimido)pentane [Beil. XXI-493]: from C + K phthalimide in 60-70% yield (13) by htg. at 190-200°, pale yel. ndls. from CHCl₃ + alc., m.p. 186° (13). [The half reaction prod., viz., 1-chloro-5-phthalimidopentane N-(ε-chloro-n-amyl)-phthalimide (14), has m.p. 30-31° (14).]
- —— Pentamethylene- $\omega$ , $\omega'$ -bis-(isothiourea hydrochloride): monohydrate, m.p. 206° (15), anhydrous epd., m.p. 210° (15). [From  $\tilde{C}$  with thiourea (2 moles) in *n*-BuOH refluxed 1 hr. (15).]
- —— 1,5-Diphenoxypentane (pentamethylene glycol diphenyl ether) [Beil. VI-147]: m.p. 48-49° (16); b.p. 340° sl. dec., 215-217° at 12 mm. (16). [From Č in 75% yield on protracted boilg. (30 hrs.) with large excess (3 moles) sodium phenolate in alc. (16).]
- 3:8575 (1) Serwy, Bull. soc. chim Belg. 42, 486, 488 (1933). (2) Clarke, J. Chem. Soc. 101, 1805 (1912). (3) Hilditch, Dunstan, Z. Elektrochem. 18, 883 (1912). (4) von Braun, Ber. 37, 2918–2920 (1904). (5) Pummerer, Schönsamgruber, Ber. 72, 1842 (1939). (6) Bost, Conn. Oil Gas J. 32, No. 3, 17 (1933). (7) Dunstan, Hilditch, Thole, J. Chem. Soc. 103, 137 (1913). (8) Hass, Huffman, J. Am. Chem. Soc. 63, 1233–1235 (1941). (9) von Braun, Sobecki, Ber. 44, 1469 (1911). (10) Zappi, Bull. soc. chim. (4) 19, 249 (1916).

(11) von Braun, Ber. 38, 2343-2344 (1905). (12) von Braun, Pinkernelle, Ber. 67, 1220 (1934). (13) von Braun, Ber. 37, 3584-3586 (1904). (14) Gabriel, Ber. 42, 4051-4052 (1909). (15) Kawai, Hosono, Shikinami, Yonechi, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 16, Nos. 306-309, 9-16 (1931); Cent. 1931, II 1694; C.A. 25, 5665 (1931). (16) von Braun, Steindorff, Ber. 38, 959-960 (1905).

3: 8580 HEXAHYDROBENZOYL CHLORIDE 
$$C_7H_{11}OCl$$
 Beil. IX-9 (Cyclohexanecarboxylic acid  $CH_2.CH_2$  H IX<sub>1</sub>— chloride)  $H_2C$   $CH_2.CH_2$   $CH_3$   $CH_4$   $CH_5$   $CH_5$   $CH_6$   $CH_6$   $CH_7$   $CH_8$   $CH_8$   $CH_8$   $CH_8$   $CH_8$   $CH_8$   $CH_8$   $CH_8$   $CH_8$   $CH_9$   $CH$ 

[For prepn. of  $\overline{C}$  from hexahydrobenzoic acid (1:0575) with PCl<sub>5</sub> (1) (3) (8) or with SOCl<sub>2</sub> (yield: 100% (9), 92% (7)) see indic. refs.; for prepn. of  $\overline{C}$  from cyclohexane (1:8405) with oxalyl (di)chloride (3:5060) (85% yield (4)) or with phosgene (3:5000) see (4).

[Č with Na hexahydrobenzoate htd. at 100° yields (1) hexahydrobenzoic anhydride, b.p. 280-283°, m.p. 25° (1).]

[ $\bar{C}$  with SO<sub>2</sub>Cl<sub>2</sub> in pres. of dibenzoyl peroxide gives (34% yield (5))  $\alpha$ -chloro-hexahydrobenzoyl chloride, b.p. 95–96° at 18 mm.,  $D_4^{20}=1.2280, n_D^{20}=1.4866$  (amide, m.p. 117–118° (5));  $\bar{C}$  with Br<sub>2</sub> yields (9)  $\alpha$ -bromohexahydrobenzoyl chloride, b.p. 115–118° at 12 mm. (corresp. acid, m.p. 103°; amide, m.p. 136°; monoureide, m.p. 159–160° (9)).]

[ $\bar{C}$  with  $C_6H_6$  + AlCl<sub>3</sub> gives (3) cyclohexyl phenyl ketone (hexahydrobenzophenone) [Beil. VII-378, VII<sub>1</sub>-(200)], m.p. 54° (3);  $\bar{C}$  with Na phenolate yields (10) phenyl hexahydrobenzoate, b.p. 160-163° at 15 mm. (10);  $\bar{C}$  with Na perbenzoate gives (53% yield (7)) benzoyl-hexahydrobenzoyl peroxide, m.p. 56° dec. (7).]

Č on hydrolysis yields hexahydrobenzoic acid (1:0575), m.p. 30-31° (for the amide, m.p. 185-186° (4), 184° (1), and anilide corresp. to Č see 1:0575).

S:8580 (1) Lumsden, J. Chem. Soc. 87, 92 (1897).
 Hopff (to I.G.), Ger. 520,154, March 7, 1931; Cent. 1931, I 3060.
 Meyer, Scharwin, Ber. 30, 1941-1942 (1897).
 Kharasch, Brown, J. Am. Chem. Soc. 62, 454 (1940).
 Price, Schwarcz, J. Am. Chem. Soc. 62, 2895 (1940).
 Chem. Fabrik, Sandoz, Brit. 230,432, April 29, 1925; French 592,541, Aug. 4, 1925; Swiss 109,582, April 1, 1925; Cent. 1926, II 1585.
 Wieland, Schapiro, Metzger, Ann. 513, 103 (1934).
 Godchot, Bull. soc. chim. (4) 9, 262 (1911).
 Fourneau, Montagne, Payal, Anales soc. españ. fis. quím. (2) 19, 192-198 (1921); Cent. 1921, III 828; C.A. 16, 240 (1922).
 Blicke, J. Am. Chem. Soc. 47, 237 (1925).

185-187°

3:8585-3:8590

3: 8585 1-CHLORO-OCTANE (n-Octyl chloride) CH<sub>3</sub>(CH<sub>2</sub>)<sub>6</sub>CH<sub>2</sub>Cl C<sub>8</sub>H<sub>17</sub>Cl Beil. I - 159 I<sub>1</sub>-(60) I<sub>2</sub>-(124) B.P. 183.6-184.6° cor. (1) 
$$D_{25}^{25} = 0.87192$$
 (3) 183.0-183.5° cor. (2) 182.5-183.5° cor. (3)  $D_{4}^{20} = 0.8748$  (13)  $n_{D}^{20} = 1.43424$  (4) 181.5° at 765 mm. (13) 1.43058 (13) 179.5-180.5° (7)  $D_{20}^{20} = 0.8745$  (4) 179-180° (4)  $D_{15}^{15} = 0.87857$  (3) 78° at 15 mm. (5) 68.8-70.0° at 12 mm. (6)

Colorless liq. with characteristic fatty odor. - Insol. aq., spar. sol. abs. alc., eas. sol.

[For prepn. of C from octanol-1 (1:6255) with HCl + ZnCl<sub>2</sub>, PCl<sub>3</sub> + ZnCl<sub>2</sub> (60% yield), PCl<sub>5</sub> + ZnCl<sub>2</sub> (69% yield), or SOCl<sub>2</sub> (yield: 80% (13), 70% (4)) see indic. refs.; by saturating with HCl and htg. in s.t. at 120° see (5) (7).]

[For study of reaction with NaI (8) or KI (2) see these; for reactn. with Mg see (9) (note that  $\bar{C}$  with Mg in dry ether + trace I<sub>2</sub> gives (96.3% yield in 8 hrs. (12)) RMgCl); for reactn. with liq. NH<sub>3</sub> and with amines see (10).

① n-Octyl mercuric chloride: m.p. 115.0-115.5° (11). [From RMgCl + HgCl<sub>2</sub> (11).]

3:8585 (1) Perkin, J. Chem. Soc. 69, 1173 (1896). (2) Conant, Hussey, J. Am. Chem. Soc. 47, 485 (1925). (3) Perkin, J. prakt. Chem. (2) 31, 495 (1885). (4) Clark, Streight, Trans. Roy. Soc. Can. (3) 23, III 77-79 (1929). (5) Bouveault, Blanc, Bull. soc. chim. (3) 31, 673 (1904). (6) Kohlrausch, Köppl, Monatsh. 63, 268 (1933). (7) Zincke, Ann. 152, 4-5 (1869). (8) Apolit, Ann. chim. (10) 2, 83 (1924). (9) Schorigin, Issaguljanz, Gussewa, Ber. 66, 1430 (1933). (10) Westphal, Jerchel, Ber. 73, 1004-1010 (1940).

(11) Whitmore, Bernstein, J. Am. Chem. Soc. 60, 2627 (1938). (12) Houben, Boedler, Fischer, Ber. 69, 1768, 1778 (1936). (13) Vogel, J. Chem. Soc. 1943, 638, 640.

[For prepn. of C from 2-amino-1,3-dimethylbenzene (vic.-m-xylidine) [Beil. XII-1107, XII<sub>1</sub>-(482)] via diazotization and Cu<sub>2</sub>Cl<sub>2</sub> reactn. see (1); for prepn. of C from m-xylene (1:7420) via sulfonation to 2,4-dimethylbenzenesulfonic acid, chlorination, conversion to sodium salt of 3-chloro-2,4-dimethylbenzenesulfonic acid, and hydrolysis of the latter with superheated steam in H<sub>2</sub>SO<sub>4</sub> at 160-170° see (2).]

3:8590 (1) Kohlrausch, Pongratz, Monatsh. 64, 369 (1934). (2) Kalischer, Frister (to I.G.), Ger. 491,220, March 13, 1927; C.A. 24, 2307 (1930); I.G., Brit. 313,207, July 4, 1929; Cent. 1939, II 1591; I.G., French 650,732, Jan. 12, 1929; Cent. 1929, II 653.

3: 8595 n-BUTYL 
$$d_1l$$
- $\alpha$ -CHLOROPROPIONATE H  $C_7H_{18}O_2Cl$  Beil. S.N. 162  $n$ - $C_4H_9O.CO.C.CH_3$ 

B.P. 
$$183.5-185.0^{\circ}$$
 at 760 mm. (1)  $D_4^{20} = 1.0253$  (2)  $n_D^{20} = 1.4263$  (2)  $71.6-72.6^{\circ}$  at 10 mm. (1)

3:8595 (1) Burkhard, Kahovec, Monatsh. 71, 340 (1938). (2) Schjanberg, Z. physik. Chem. A-172, 230 (1935).

3:8596 ETHYL 
$$d$$
, $l$ - $\alpha$ -CHLORO- $n$ -VALERATE  $C_7H_{13}O_2Cl$  Beil. II - 302  $CH_3$ . CH<sub>2</sub>. CH<sub>2</sub>. CH<sub>2</sub>. CH. COOC<sub>2</sub>H<sub>5</sub>  $II_1$ —  $II_2$ —

B.P. 185° at 752 mm. (1) 
$$D_{-}^{11.8} = 1.040$$
 (1)  $n_{-}^{11} = 1.43071$  (1)

Liq. with peppermint-like odor; insol. aq.; sol. alc., ether.

[For prepn. of  $\bar{C}$  from  $\alpha$ -chloro-n-valeronitrile with abs. EtOH + HCl see (1).]

3:8596 (1) Servais, Rec. trav. chim. 20, 47-48 (1901).

3: 8597 ETHYL 
$$\gamma$$
-CHLORO- $n$ -BUTYRATE  $C_6H_{11}O_2Cl$  Beil. II - 278  $CH_2$ -CH $_2$ -COOC $_2H_6$  II $_1$ -(124)  $II_2$ -(254) B.P. 186° at 760 mm. (1)  $D_4^{20} = 1.0754$  (4)  $n_D^{20} = 1.43107$  (4) 183–184° (2) 77° at 16 mm. (3) 76° at 16 mm. (4) 72° at 16 mm. (12) 70–71° at 10 mm. (5) 64–66° at 10 mm. (6)

[For prepn. of  $\bar{C}$  from  $\gamma$ -chloro-n-butyric acid (3:0020) with EtOH + H<sub>2</sub>SO<sub>4</sub> (80% yield (3)) see (3); from  $\gamma$ -chloro-n-butyric with EtOH + HCl see (2); from  $\gamma$ -ethoxy-n-butyric acid by htg. with SOCl<sub>2</sub> (77% yield) see (5); from ethyl n-butyrate (1:3127) with SO<sub>2</sub>Cl<sub>2</sub> + dibenzoyl peroxide in CCl<sub>4</sub> (40%  $\bar{C}$  + 10%  $\alpha$ - and 40%  $\beta$ -isomers) see (7); from  $\gamma$ -ethoxy-n-butyryl chloride (12) in almost 100% yield merely by htg. at 100° for 10 hrs. see (12).]

Č added dropwise to solid KOH at 180° loses HCl and by ring closure yields (8) ethyl cyclopropanecarboxylate [Beil. IX-4, IX<sub>1</sub>-(3)], b.p. 134°.

[Č heated with NaI in acetone yields (5) (6) (9) ethyl  $\gamma$ -iodo-n-butyrate, b.p. 69-71° at 3 mm. (5), 84-85° at 4 mm. (9); Č with excess MeMgI yields (10) 5-chloro-2-methylpentanol-2; Č with NaN<sub>3</sub> in aq. alc. yields (11) ethyl  $\gamma$ -azido-n-butyrate; Č with diethylamine in s.t. at 100° yields (3) ethyl  $\gamma$ -diethylamino-n-butyrate, b.p. 73-75° at 4 mm. (5).]

 $\bar{\mathbf{C}}$  on htg. with conc. HCl yields (5)  $\gamma$ -chloro-n-butyric acid (3:0020).

For the amide, anilide, p-toluidide, and other derivs. corresp. to  $\bar{C}$  see  $\gamma$ -chloro-n-butyric acid (3:0020).

◆ 1-Phenylpyrrolidone-2 [Beil. XXI-237]: cryst. from aq., m.p. 69° (12). [From Č with aniline at 110° for 1 hr. (12).]

3:8597 (1) Henry, Bull. acad. roy. Belg. (3) 35, 507-520 (1898); Cent. 1898, II 273. (2) Henry, Bull. soc. chim. (2) 45, 341 (1886). (3) Wohlgemuth, Ann. chim. (9) 2, 307, 316 (1914). (4) Karvonen, Ann. Acad. Sci. Fennicae A-10, No. 4, p. 21; Cent. 1919, III 808. (5) Blicke, Wright, Zienty, J. Am. Chem. Soc. 63, 2489-2490 (1941). (6) Conant, Kirner, J. Am. Chem. Soc. 46, 249 (1924). (7) Price, Schwarcz, J. Am. Chem. Soc. 62, 2894-2895 (1940). (8) Rambaud, Bull. soc. chim. (5) 5, 1564 (1938). (9) Fuson, Arnold, Cooke, J. Am. Chem. Soc. 69, 2272 (1938). (10) Henry, Compt. rend. 143, 1223 (1906).

(11) Curtius, Giulini, Ber. 45, 1046 (1912). (12) Prelog, Heimbach-Juhasz, Ber. 74, 1703-1704 (1941).

[For prepn. of  $\bar{C}$  from p-xylene (1:7415) with  $Cl_2$  in pres. of Fe (82–86% yield (4)) (5) or  $I_2$  (2), by refluxing with PbCl<sub>4</sub>.2NH<sub>4</sub>Cl (6), with  $SO_2Cl_2 + AlCl_3$  (7), or with  $Cl_2$  aq. (1) see indic. refs.; for prepn. of  $\bar{C}$  from p-xylidine [Beil. XII-1135, XII<sub>1</sub>-(488)] via diazotization and use of  $Cu_2Cl_2$  reaction see (3).]

 $\tilde{C}$  on nitration with a mixt. of HNO<sub>3</sub> + H<sub>2</sub>SO<sub>4</sub> acids as directed (4) (8) gives 5-nitro-2-chloro-1,4-dimethylbenzene, cryst from ether, m.p. 77-78° (4), 78° (8) (accompanied by other products). [This mononitro- $\tilde{C}$  on further nitration yields 5,6-dinitro-2-chloro-1,4-dimethylbenzene, cryst. from alc., m.p. 101° (4).]

C on monosulfonation with fumg. H<sub>2</sub>SO<sub>4</sub> (2), 100% H<sub>2</sub>SO<sub>4</sub> (4), or chlorosulfonic acid (9) yields 2-chloro-1,4-dimethylbenzenesulfonic acid-5 [Beil. XI-127] (corresp. sulfonyl chloride, m.p. 50° (4) (9); sulfonamide, m.p. 185° (4); sulfonanilide, m.p. 155° (4)).

[C on further chlorination yields mainly 2,5-dichloro-1,4-dimethylbenzene [Beil. V-384], m.p. 71° (2) (4), b.p. 221° cor. (2), 224° at 770 mm. (4) (together with small amts. of other prods.).] [For side-chain chlorination of C and conversion of resultant prods. by hydrolysis to 2-chlorobenzenedicarboxylic acid-1,4 (chloroterephthalic acid) (3:4995) see (10).]

 $\tilde{C}$  with  $Br_2 + Fe$  (5) or with  $Br_2 + HNO_3 + H_2SO_4$  (11) as directed yields 5-bromo-2-chloro-1,4-dimethylbenzene [Beil. V-385], lfts. from hot alc., m.p. 66° (5) (11). [Some dibromo- $\tilde{C}$ , m.p. 93°, and tribromo- $\tilde{C}$ , m.p. 234°, are also formed (5).]

3:8600 (1) Datta, Fernandes, J. Am. Chem. Soc. 38, 1811 (1916). (2) Kluge, Ber. 18, 2099 (1885). (3) Kohlrausch, Pongratz, Monatsh. 64, 369 (1934). (4) Wahl, Ann. chim. (11) 5, 5-82 (1936). (5) Willgerodt, Wolfien, J. prakt. Chem. (2) 39, 402-405 (1889). (6) Seyewets, Biot, Compt. rend. 135, 1121 (1902). (7) Töhl, Eberhard, Ber. 26, 2942 (1893). (8) Varma, Raman, J. Indian Chem. Soc. 12, 540-541 (1935). (9) I.G., Brit. 281,290, Jan. 25, 1928; French 644,319, Oct. 5, 1928; Cent. 1929, II 352. (10) I.G., French 663,791, Aug. 26, 1929; Cent. 1929, II 2731.

(11) Varma, Raman, J. Indian Chem. Soc. 12, 248 (1935).

3:8605 
$$\beta_1\beta'$$
-DICHLORO-DI-ISOPROPYL ETHER  $C_0H_{12}$ OCl<sub>2</sub> Beil. S.N. 24 (bis-( $\beta$ -Chloro-isopropyl) ether) CH<sub>3</sub> CH<sub>3</sub> CH<sub>3</sub> ClCH<sub>2</sub>.CH—O—CH.CH<sub>2</sub>Cl B.P. 187–188° at 761 mm. (1)  $D_4^{20} = 1.103$  (1)  $n_D^{20} = 1.45046$  (1) 187.4° (3)  $D_{20}^{20} = 1.1127$  (2) 1.1135 (3)

Colorless liq. with agreeable odor (1).

[For prepn. from 1-chloropropanol-2  $(3:7747) + H_2SO_4$  see (2).]

 $\bar{C}$  on htg. with KOAc + AcOH yields corresp. diacetate, b.p. 248° at 761 mm.,  $D_4^{20}=1.050, n_D^{20}=1.42654$  (1).

**3:8605** (1) Dewael, Bull. soc. chim. Belg. **39**, 396 (1930). (2) Wickert (to Union Carbide and Carbon Corp.), U.S. 2,052,264, Aug. 25, 1936; Cent. **1936**, II 3846; C.A. **30**, 7127 (1936). (3) McClure, Chem. Eng. News **32**, 421 (1944).

3: 8610 
$$\beta,\beta'$$
-DICHLORO-DI- $n$ -PROPYL ETHER  $C_6H_{12}$ OCl<sub>2</sub> Beil. S.N. 24 ( $bis$ -( $\beta$ -Chloro- $n$ -propyl) ether) Cl Cl CH<sub>3</sub>-CH.CH<sub>2</sub>—O—CH<sub>2</sub>.CH.CH<sub>3</sub>

B.P. 188° at 762 mm. (1)  $D_2^{20} = 1.109$  (1)  $n_D^{20} = 1.44675$  (1)

Colorless liq. with agreeable odor.

4 mm. (1)

45-50°

[For prepn. from 2-chloropropanol-1 (3:7917) by htg. with  $SO_2Cl_2$  see (1); for prepn. from propylene + HOCl see (2).]

**3:8610** (1) Dewael, Bull. soc. chim. Belg. **34**, 345-346 (1925). (2) Nutting, Britton, Croope (to Dow Chem. Co.), U.S. 2,095,612, Oct. 12, 1937; Cent. **1938**, I 2059; C.A. **31**, 8545 (1937).

[For prepn. from K 6-chloro-2-methylphenol-4-sulfonate by htg. with dil.  $H_2SO_4$  at 130° see (2).]

Č on treatment with nitrous acid yields 6-chloro-2-methyl-4-nitrosophenol, brownish ndls., m.p. 112° (3).

3:8615 (1) Huston, Neely, J. Am. Chem. Soc. 57, 2177 (1935). (2), Fahlberg, List and Co., Ger. 256,345, Feb. 10, 1913; Cent. 1913, I 866. (3) von Auwers, Wittig, Ber. 57, 1271, Note 3 (1924).

3: 8629 ETHYL 
$$d,l$$
- $\beta$ -CHLORO- $n$ -VALERATE  $C_7H_{13}O_2Cl$  Beil. S.N. 162 CH<sub>3</sub>.CH<sub>2</sub>.CH.CH<sub>2</sub>.COOC<sub>2</sub>H<sub>5</sub> Cl

B.P. 189° (1)  $D_4^{20} = 1.0330$  (1)  $n_D^{20} = 1.42777$  (1)

[For prepn. of  $\tilde{C}$  from  $\beta$ -chloro-n-valeric acid (3:0270) with EtOH + H<sub>2</sub>SO<sub>4</sub> see (1).] [The levorotatory isomer of  $\tilde{C}$ , b.p. 66.5–67° at 10 mm., has been obtd. from levorotatory  $\beta$ -chloro-n-valeronitrile with alc. HCl (2) or from levorotatory ethyl  $\beta$ -hydroxy-n-valerate with PCl<sub>5</sub> or SOCl<sub>2</sub> in CHCl<sub>3</sub> (2).]

3:8629 (1) Schjanberg, Ber. 70, 2385-2391 (1937). (2) Levene, Mori, J. Biol. Chem. 78, 9-10 (1928).

[For prepn. of  $\tilde{C}$  from nonanol-2 (*n*-heptyl-methyl-carbinol) (1:6259) with HCl gas see (1).]

3:8635 (1) van Gysegen, Bull. acad. roy. Belg. 1906, 692-706; Cent. 1907, I 530; C.A. 1, 1969 (1907).

[For prepn. of  $\bar{C}$  from 5-amino-1,3-dimethylbenzene (sym.-m-xylidine) [Beil. XII-1131, XII<sub>1</sub>-(487)] via diazotization and use of Sandmeyer reactn. with Cu<sub>2</sub>Cl<sub>2</sub> see (1) (3); from 5-chloro-1,3-dimethylcyclohexadiene-3,5 [Beil. V-119, V<sub>1</sub>-(64)] by addn. of Br<sub>2</sub> and subsequent elimination of 2HBr by boilg, with quinoline see (2).

C on shaking with 10 pts. fumg.  $H_2SO_4$  (15%  $SO_3$ ) at 30-40° yields (2) (1) 5-chloro-1,3-dimethylbenzenesulfonic acid-2, non-hygroscopic cryst., m.p. 52° (1) (corresp. sulfonyl chloride, m.p. 56-58° (1); sulfonamide, m.p. 191-192° (1)).

3:8640 (1) Klages, Ber. 29, 310-311 (1896). (2) Klages, Knoevenagel, Ber. 27. 3024-3025 (1894). (3) Kohlrausch, Pongratz, Monatsh. 64, 370 (1934).

[For prepn. of  $\tilde{C}$  from 3-amino-1,2-dimethylbenzene (vic.-o-xylidine) [Beil. XII-1101, XII<sub>1</sub>-(478)] via diazotization and use of  $Cu_2Cl_2$  reactn. see (1); for formn. of  $\tilde{C}$  from o-xylene (1:7430) with  $Cl_2$  in pres. of  $I_2$  (2) or Fe (3) (the isomeric 4-chloro-1,2-dimethylbenzene (3:8675) is also formed) see (2) (3).]

Č on oxidn. with dil. HNO<sub>3</sub> in a s.t. yields (2) (3) 3-chloro-2-methylbenzoic acid (3:4435). [The behavior of Č on nitration has not as yet been reported, all three possible mononitro derivatives have, however, been independently prepared; viz., 4-nitro-Č, m.p. 46° (4); 5-nitro-Č, m.p. 101° (5); 6-nitro-Č, m.p. 62° (6).]

Č on sulfonation yields exclusively 3-chloro-1,2-dimethylbenzenesulfonic acid-6 [Beil. XI-121] (corresp. sulfonyl chloride as yet unreported; corresp. sulfonamide, m.p. 199° (2)).

[ $\overline{C}$  with  $Cl_2$  in pres. of Fe yields (1) 3,4-dichloro-1,2-dimethylbenzene, b.p. 234°, m.p. 8-9° (2).]

3:8645 (1) Hinkel, Ayling, Walters, J. Chem. Soc. 1934, 1947-1948. (2) Krüger, Ber. 18, 1755-1758 (1885). (3) Claus, Bayer, Ann. 274, 305-311 (1893). (4) Hinkel, Ayling, Walters, J. Chem. Soc. 1934, 287. (5) Hinkel, J. Chem. Soc. 125, 1852-1853 (1924). (6) Hinkel, Collins, Ayling, J. Chem. Soc. 123, 2972 (1923).

B.P. 191° cor. (1) 
$$D_4^{20} = 1.011$$
 (3)  $n_D^{20} = 1.4440$  (3)  $82-84^\circ$  at 30 mm. (2)  $82^\circ$  at 20 mm. (3)

[For prepn. of  $\bar{C}$  from n-heptaldehyde (1:0183) with PCl<sub>5</sub> at 150° (1) (2) (16% yield (6)), in the cold (61% yield (4)) (11), or in C<sub>6</sub>H<sub>6</sub> at 20° (3) (50% yield (5)), see indic. refs. (much loss is incurred by polymerization of the initial aldehyde by the HCl resulting in the reactn.).]

 $\bar{C}$  with alc. KOH gives (1) (2) 1-chloroheptene-1 (3:8219) and on protracted actn. (1) (2) heptyne-1 (1:8085), b.p. 100°. —  $\bar{C}$  passed over soda-lime at 420° (3) (5) or htd. with powdered KOH + mineral oil at 250° (5) or dropped onto NaNH.C<sub>6</sub>H<sub>5</sub> (7) or treated with NaNH<sub>2</sub> in xylene or mineral oil (60% yield (8) (10)) (9) gives n-amylacetylene (heptyne-1) (1:8085).

[For conversion of  $\bar{C}$  to 1,1-diffuoroheptane by use of HgO + HF see (6).]

3:8650 (1) Limpricht, Ann. 103, 81-82 (1857). (2) Welt, Ber. 30, 1496 (1897). (3) Bachmann, Hill, J. Am. Chem. Soc. 56, 2730-2732 (1934). (4) Loevenich, Losen, Dierichs, Ber. 60, 951 (1927). (5) Hill, Tyson, J. Am. Chem. Soc. 50, 172-176 (1928). (6) Henne, Renoll, Leicester, J. Am. Chem. Soc. 61, 938-940 (1939). (7) Bodroux, Compt. rend. 208, 1023 (1939). (8) Bourgeul, Ann. chim. (10) 3, 223-224 (1925). (9) Meunier, Desparmet, Bull. soc. chim. (4) 35, 481-482 (1924). (10) Guest, J. Am. Chem. Soc. 47, 862 (1925).

(11) Kuz'min, Soobschemie o Nauch.-Isslodovatel Rabote Kiev Ind. Inst. 2, 18 (1940); C.A. 37, 3047 (1943).

3:8655 ISOBUTYL  $\beta$ -CHLOROPROPIONATE  $C_7H_{13}O_2Cl$  Beil. II-250 (CH<sub>3</sub>)<sub>2</sub>CH.CH<sub>2</sub>.O.CO.CH<sub>2</sub>.CH<sub>2</sub>Cl II<sub>1</sub>— II<sub>2</sub>—

B.P. 191-193° (1) 
$$D_4^{20} = 1.0323$$
 (2)  $n_D^{20} = 1.4295$  (2)

3:8655 (1) Moureu, Ann. chim. (7) 2, 172-173 (1894). (2) Schjanberg, Z. physik. Chem. A-172, 231 (1935).

```
3:8657 ETHYL y-CHLOROCROTONATE
                                                       C6H9O2Cl
                                                                       Beil. II - 418
                                     CH2.CH=CH.COOC2H5
                                                                            П1---
                                                                            II<sub>2</sub>-(397)
                                            D_{-}^{15} = 1.130 (2)
                                                                    n_{-}^{15} = 1.4625 (2)
  B.P. 191-193° at 760 mm. (1)
       84-85°
                    15 mm. (2)
       80°
                  at 10 mm. (3)
       77-82°
                    12 mm. (4)
       66-68°
                      2 mm. (3)
```

[See also  $\gamma$ -chlorocrotonic acid (3:2170).]

Although  $\bar{C}$  is capable of existing in two geometrically isomeric forms, only this one is known; collateral evidence (but not actual proof) indicates that  $\bar{C}$  is the *trans* stereoisomer. [For prepn. of  $\bar{C}$  from ethyl vinylacetate [Beil. II-407] (5) with Cl<sub>2</sub> in CCl<sub>4</sub> (forming ethyl  $\beta$ , $\gamma$ -dichloro-n-butyrate) followed by treatment with alc. NaOEt at 0° (splitting out HCl) and giving 65% yield see (5); from ethyl  $\gamma$ -chloro- $\beta$ -hydroxy-n-butyrate [Beil. III-310, III<sub>1</sub>-(116)] by dehydration with P<sub>2</sub>O<sub>5</sub> (yields: 65% (4), 62.5% (3), 60% (2)) (6) (accompanied by some  $\gamma$ -chlorocorotonic acid (3:2170) (3) (2) and also by ethyl  $\gamma$ -chlorovinylacetate (3)) see indic. refs.l

 $\tilde{C}$  on hydrolysis with Ba(OH)<sub>2</sub> below 0° or even (but less advantageously) with KOH gives (60% yield (3) (5)) (7) (2)  $\gamma$ -chlorocrotonic acid (3:2170), m.p. 83°; note, however, that hydrolysis with hot cone. alk. gives also two other products, viz., O(CH<sub>2</sub>—CH—CH.-COOH)<sub>2</sub>, m.p. 195° (2), and  $\gamma$ -hydroxycrotonic acid, m.p. 108° (2).

[ $\bar{\rm C}$  in EtOH/NaOEt undergoes addition of EtOH to unsatd. linkage followed to small extent by elimination of HCl with consequent ring closure to a cyclopropane deriv.; e.g.,  $\bar{\rm C}$  (0.134 mole) in 2½ pts. EtOH treated dropwise in cold with soln. of Na (0.087 mole) in the same vol. of EtOH as above gives (yields: 42% (8), 25% (9)) ethyl  $\gamma$ -chloro- $\beta$ -ethoxy-n-butyrate, b.p. 108.0–108.5° at 20 mm.,  $D_{-}^{17.5} = 1.078$ ,  $n_{-}^{17.5} = 1.4295$  (8), accompanied by a little (3% yield (8)) ethyl 2-ethoxycyclopropane-1-carboxylate (1-carbethoxy-2-ethoxycyclopropane), b.p. 77.50–77.75° at 13 mm.,  $D_{-}^{18} = 0.995$ ,  $n_{-}^{18} = 1.453$  (8); the latter is also obtd. (22% yield (8)) by distn. of the ethyl  $\gamma$ -chloro- $\beta$ -ethoxy-n-butyrate with dry powdered KOH at 180° and 45 mm. press.]

[ $\bar{C}$  on dropwise addition to dry powdered KOH at 180° gives ethyl cyclopropane-1-carboxylate [Beil. IX-4, IX<sub>1</sub>-(3)], b.p. 130° at 728 mm.,  $D=0.970, n_{-}^{15}=1.416$ .]

[ $\bar{C}$  with excess dry powdered CaBr<sub>2</sub> heated several days under reflux gives (2) (10) ethyl  $\gamma$ -bromocrotonate. —  $\bar{C}$  (1 mole) with NaI (1 mole) in acetone reacts readily at ord. temp. pptg. NaCl (80% theory) and yielding (3) ethyl  $\gamma$ -iodocrotonate, b.p. 92–93° at 2 mm.]

[ $\bar{C}$  with NaOAc in AcOH heated at 100° cf. (11) yields (8) ethyl  $\gamma$ -acetoxycrotonate, b.p. 115–116° at 15 mm.,  $D_{-}^{23} = 1.075$ ,  $n_{-}^{23} = 1.4445$  (11).]

[ $\bar{C}$  with conc. aq. NH<sub>4</sub>OH not only has its halogen replaced by  $-NH_2$  but also is hydrolyzed with consequent formn. of  $\gamma$ -aminocrotonic acid; this was not isolatable as such but only as its picrate, the m.p. of which, however, is not reported (2).]

[ $\bar{C}$  with Me<sub>3</sub>N (excess) in alc. contg. a trace of NaI in s.t. at 100° followed by evapn. with HCl gives (4)  $\gamma$ -dimethylaminocrotonic acid chloromethylate ( $\gamma$ -dimethylaminocrotonbetain chloride), m.p. 203-205° dec. (4).]

3:8657 (1) Lespieau, Bull. soc. chim. (3) 33, 466-467 (1905). (2) Rambaud, Bull. soc. chim. (5) 3, 139-141 (1936). (3) Braun, J. Am. Chem. Soc. 52, 3167-3176 (1930). (4) Linneweh, Z. physiol. Chem. 176, 217-221 (1928). (5) Glattfeld, Rietz, J. Am. Chem. Soc. 62, 976 (1940). (6) Lespieau, Compt. rend. 130, 1410 (1900). (7) Bacher, Benninga, Rec. trav. chim. 55, 610 (1936).

(8) Rambaud, Bull. soc. chim. (5) 5, 1552-1565 (1938).
(9) Rambaud, Compt. rend. 200, 2089-2091 (1935).
(10) Rambaud, Bull. soc. chim. (5) 1, 1347 (1934).
(11) Rambaud, Bull. soc. chim. (5) 1, 1328 (1934).

3:8660 p-XYLYL CHLORIDE (p-Methylbenzyl chloride; 
$$\omega$$
-chloro-p-xylene) CH<sub>3</sub>CH<sub>2</sub>Cl  $C_8H_9Cl$  Beil. V - 384 V<sub>1</sub>-(186) V<sub>2</sub>-(299) B.P. 192° at 760 mm. (1)  $D_4^{20} = 1.0512$  (2)  $n_{\overline{D}}^{\overline{D}} = 1.5380$  (2) 98-101° at 27 mm. (2) 92-94° at 20 mm. (1) 90° at 20 mm. (3) 81.5° at 15 mm. (4)

[For prepn. of  $\tilde{C}$  from p-tolylcarbinol (1:5954) by distn. with HCl see (3) (4A) (8); by treatment with PCl<sub>3</sub> (87% yield) see (6); for prepn. from toluene (1:7405) with paraformaldehyde + HCl (75% yield (2)) see also (5); with sym-dichlorodimethyl ether (3:5245) + ZnCl<sub>2</sub> see (1) (5).]

 $\bar{C}$  stood with N/10 alc. NaOEt at 30° yields ethyl p-xylyl ether [Beil. VI-498], b.p. 203°, to extent of 15% yield in 6 hrs., 40.5% in 24 hrs. (7) cf. (8) (9). [For data on rate of hydrolysis with acid or alk. in acetone soln. at 30° see (10).]

 $\bar{C}$  with Mg in ether yields RMgCl; on carbonation at 0° (11) this yields  $p\text{-CH}_3.C_6H_4$ .-CH<sub>2</sub>.COOMgCl; this upon acidification presumably (no record) would yield p-tolylacetic ac. [Beil. IX-530], m.p. 92°; on treatment (12) with  $C_2H_5MgBr$ , however, it gives a mixt. contg. 64.2% p-tolylmalonic ac., sepd. with  $C_6H_6$ , cryst. from aq., m.p. 143.5–144.5° with evoln. of CO<sub>2</sub> (12). [Use of isopropyl MgCl instead of  $C_2H_5MgBr$  gave 93% p-tolylmalonic ac. (12).]

 $\bar{C}$  boiled for 6 hrs. with 10 pts. 7% NaHCO<sub>3</sub> soln. gave (66% yield (2)) p-tolylearbinol (1:5954).

N-(p-Xylyl)phthalimide [Beil. XXI-468]: from \(\tilde{C}\) by htg. at 180° with K phthalimide
 (3); ndls. (from dil. alc.), m.p. 116-117° (3), 120° (13).

3:8660 (1) Stephen, Short, Gladding, J. Chem. Soc. 117, 520 (1920). (2) Shorygin, Bogdanowa, J. Applied Chem. (U.S.S.R.) 11, 1217-1221 (1938); Cent. 1939, II 1277; C.A. 33, 4216 (1939). (3) Curtius, Sprenger, J. prakt. Chem. (2) 62, 111 (1900). (4) Bennett, Jönes, J. Chem. Soc. 1935, 1818. (4A) Halford, Reid, J. Am. Chem. Soc. 63, 1875 (1941). (5) Hill, Short, J. Chem. Soc. 1935, 1126. (6) Ingold, Rothstein, J. Chem. Soc. 1928, 1279. (7) Franzen, J. prakt. Chem. (2) 97, 84 (1913). (8) Olivier, Rec. trav. chim. 41, 305-306 (1921). (9) von Braun, Engel, Ann. 436, 319-320 (1924). (10) Olivier, Weber, Rec. trav. chim. 53, 885 (1934).

(11) Ivanoff, Spassoff, Bull. soc. chim. (4) 9, 20 (1931). (12) Ivanoff, Pchenitchny, Bull. soc. chim. (5) 1, 228 (1934). (13) Curtius, Schmidt, Ber. 55, 1577-1578 (1922).

C<sub>8</sub>H<sub>9</sub>Cl

Beil. V - 373

 $V_{1}$ -(183)

CH<sub>3</sub>

3:8665 4-CHLORO-1,3-DIMETHYLBENZENE

(unsym.-Chloro-m-xylene)

$$V_{2}$$
-(291)

B.P. 192.2-193.9° (1) (?)
 $D_{20}^{20} = 1.0598$  (3)  $n_{D}^{25} = 1.5230$  (5)
187-188° at 755 mm. (2)
186.5° cor. at 767 mm. (3)
183-184° (6)
73-75° at 16 mm. (4)

[For prepn. of  $\tilde{C}$  from 1,2-dimethylbenzene (m-xylene) (1:7420) with  $Cl_2$  in pres. of  $I_2$  see (6) (3), with  $SO_2Cl_2$  in the dark see (7), as by-product in prepn. of m-xylyl (di)chloride (3:8700) see (5); for prepn. of  $\tilde{C}$  from 4-amino-1,2-dimethylbenzene (unsym.-m-xylidine) [Beil. XII-1111, XII<sub>1</sub>-(483)] via diazotization and use of  $Cu_2Cl_2$  reaction see (2) (1); for formn. of  $\tilde{C}$  from 1,3-dimethylbenzenesulfonic acid-4 [Beil. XI-123, XI<sub>1</sub>-(34)] by htg. with  $SOCl_2$  in a s.t. at  $160^\circ$  for 3-4 hrs. see (8); for formn. of  $\tilde{C}$  from 4-bromo-1,3-dimethylbenzene via conversion to RMgBr and reactn. with Cl.CN see (4); for prepn. of  $\tilde{C}$  from p-chlorotoluene (3:8287) by chloromethylation with  $Cl_2O$  + HCl to 4-chloro-3-(chloromethyl)-toluene and subsequent reduction with Zn + NaOH see (20).]

[For reactn. of  $\bar{C}$  with 4,4'-tetramethyldiaminobenzophenone (Michler's ketone) + Na in toluene yielding bis-(4-dimethylaminophenyl)-4-m-xylylcarbinol, odorless ndls. from m.p. 145°, see (9); for use of this prod. in prepn. of homologs of malachite green alc., (10) (11) and other dyestuffs (12) see indic. refs.]

 $\tilde{C}$  on oxidn. with  $K_2Cr_2O_7 + H_2SO_4$  (6) (3) (7) yields 4-chloro-3-methylbenzoic acid (3:4915), cryst. from aq., m.p. 209-210° (3) (7). —  $\tilde{C}$  on oxidn. with aq. KMnO<sub>4</sub> gives (13) (14) 4-chlorobenzenedicarboxylic acid-1,3 (4-chloroisophthalic acid) (3:4980), ndls. from hot aq., m.p. 294.5° (14), 295° (13).

 $\bar{C}$  in Ac<sub>2</sub>O treated with mixt. of HNO<sub>3</sub> + H<sub>2</sub>SO<sub>4</sub> as specified (15) yields 6-nitro-4-chloro-1,3-dimethylbenzene [Beil. V-379, V<sub>1</sub>-(184)], m.p. 42° (15). [The other mononitro derivs. of  $\bar{C}$  have been prepd. indirectly, viz., 5-nitro- $\bar{C}$  [Beil. V-379] (16), m.p. 51°; 3-nitro- $\bar{C}$ , m.p. 72-73° (17).]

 $\tilde{C}$  on sulfonation with a mixt. of equal pts. fumg.  $H_2SO_4$  + conc.  $H_2SO_4$  yields (18) 4-chloro-1,3-dimethylbenzenesulfonic acid-6 [Beil. XI-123] (corresp. sulfonamide, m.p. 195° (3)).

Č on bromination with Br<sub>2</sub> + HNO<sub>3</sub>/H<sub>2</sub>SO<sub>4</sub> mixt. (19) yields 6-bromo-4-chloro-1,3-dimethylbenzene [Beil. V-374], m.p. 66° (19).

3:8665 (1) Kohlrausch, Pongratz, Monatsh. 64, 370 (1934). (2) Klages, Ber. 29, 310 (1896). (3) Jacobsen, Ber. 18, 1761 (1885). (4) Grignard, Bellet, Courtot, Ann. chim. (9) 4, 45 (1915). (5) King, Merriam, Proc. Nova Scotian Inst. Sci. 18, 276-281 (1933/1934); Cent. 1935, II 2359; C.A. 29, 6214 (1935). (6) Vollrath, Ann. 144, 266-267 (1867). (7) Töhl, Eberhard, Ber. 26, 2942 (1893). (8) Meyer, Ann. 433, 336 (1923). (9) Rodd, Linch, J. Chem. Soc. 1927, 2177. (10) Lawrie, Linch, Rodd, British Dyestuffs Corp., Brit. 297,897, Nov. 25, 1928; Cent. 1929, I 1274.

(11) British Dyestuffs Corp., Linch, Rodd, Brit. 301,193, Dec. 20, 1928; Cent. 1929, I 1747. (12) Imperial Chem. Ind., Rodd, Linch, Brit. 314,825, Aug. 1, 1929; Cent. 1929, II 2610. (13) Davies, Wood, J. Chem. Soc. 1928, 1126. (14) Ullmann, Uzbachian, Ber. 36, 1799 (1903). (15) Varma, Raman, J. Indian. Chem. Soc. 12, 540 (1935). (16) Karrer, Fritzsche, Helv. Chim. Acta 19, 482 (1936). (17) Dadswell, Kenner, J. Chem. Soc. 1927, 1106. (18) Gundelach, Bull. soc. chim. (2) 28, 343 (1877). (19) Varma, Raman, J. Indian Chem. Soc. 12, 248 (1935). (20) Tschunkur, Eichler (to I.G.), Ger. 509,149, Oct. 8, 1930; Cent. 1931, I 360; [C.A. 25, 711 (1931)].



B.P. abt. 194°

M.P. 55-56°

See 3: 1055. Division A: Solids.

3:8667 
$$d_{r}l_{-\alpha}$$
-CHLOROETHYLBENZENE H  $C_{8}H_{9}Cl$  Beil. V - 354 (Methyl-phenyl-carbinyl chloride)  $V_{1}$ -(177)  $V_{2}$ -(277)

B.P. 195° dec. (1)  $D_{4}^{20} = 1.0620$  (9)  $n_{D}^{20} = 1.5276$  (9) 194° dec. (2) 90-91° at 33 mm. (3)  $D_{4}^{20} = 1.0598$  (6)  $n_{D}^{13} = 1.5337$  (6) 82-83° at 18 mm. (4) 81-82° at 17 mm. (5) 91-92° at 15 mm. (6) 69-70° at 13 mm. (7) 67.5° at 12 mm. (8) 68° at 9 mm. (9)

 $\bar{C}$  even on stdg. tends to lose HCl with formn, of styrene and styrene polymers (9); such decompn, is facilitated by pres. of any HCl and  $\bar{C}$  could not be dried with  $P_2O_5$  (10).

[Both opt. act. stereoisomerides of C are known but cannot be discussed here.]

[For prepn. of  $\bar{\mathbb{C}}$  from methyl-phenyl-carbinol (1:6475) with 6 N HCl (75% yield (3)) (7), with aq. HCl in pres. of  $\mathrm{CaCl_2}$  (2) (8), with HCl +  $\mathrm{ZnCl_2}$  (71% yield (11)), with SOCl<sub>2</sub> (82-88% yield (11)) (4) (5) (10), or with acetyl chloride (3:7065) (12) see indic. refs.; from ethylbenzene (1:7410) with  $\mathrm{Cl_2}$  in light (1) (13) (14) (15) or in pres. of 1% PCl<sub>5</sub> (90% yield (16)) see indic. refs.; from styrene (1:7435) by addn. of HCl (9) (17) (18) under press. in solvent (100% yield (19)) or at  $-80^\circ$  (68% yield (29)) see indic. refs.; for formn. of  $\bar{\mathbb{C}}$  from methyl-phenyl-carbinyl MgBr during reaction with cyanogen chloride (47%  $\bar{\mathbb{C}}$  + 10% methyl-phenyl-carbinyl cyanide + 5% 2,3-diphenylbutane) see (6); for formn. of  $\bar{\mathbb{C}}$  from methyl phenyl ketone (acetophenone) (1:5515) during reduction with  $\mathrm{Zn/Hg}$  + HCl see (20).]

[C passed at elevated temp. over dehydrohalogenating cat. (21), or htd. with pyridine in s.t. 6 hrs. at 130° (77% yield (22)), or boiled with a small excess quinoline for ½ hr. (75–80% yield (16)) (23), or its quat. salt with pyridine htd. in vac. (24), or htd. with acids less volatile than HCl (25), or htd. with salts of org. bases (26) (23) yields styrene (1:7435), b.p. 145°.]

[ $\bar{C}$  with H<sub>2</sub> and Pd in pres. of MgO as specified (8) gives rapidly and quant ethylbenzene (1:7410); note that  $\bar{C}$  reduces much more readily than the isomeric  $\beta$ -chloroethylbenzene (3:8712) (8).]

 $\bar{C}$  on hydrolysis, e.g., by boilg. with 25% excess of 10-15% aq. Na<sub>2</sub>CO<sub>3</sub> soln., gives (90% yield (16)) (27) methyl-phenyl-carbinol (1:6475) q.v.;  $\bar{C}$  with aq. alc. or with aq. alc. NaOH gives at 50° only (5) methyl-phenyl-carbinol; at 100° both styrene (1:7435) and  $\alpha,\alpha$ -diphenyl-diethyl ether are also formed (5); under certain circumstances  $\alpha$ -diphenyl-diethyl ether may also appear (5) (1). [For study of hydrolysis of  $\bar{C}$  in acetone contg. HgCl<sub>2</sub> see (4).]

[ $\overline{C}$  with aq. Na<sub>2</sub>SO<sub>3</sub> on boilg. for 9 hrs. (14) (7) gives (43-45% yield (14)) sodium  $\alpha$ -phenylethanesulfonate (corresp. sulfonyl chloride, ndls. from alc., m.p. 79° (14) cf. (7), corresp. sulfonamide and anilide are unreported).]

C on oxidn. with Cu(NO<sub>3</sub>)<sub>2</sub> (13) or on boilg. with aq. or dil. alc. soln. of hexamethylenetetramine (28) gives (60% yield (13)) methyl phenyl ketone (acetophenone) (1:5515).

3:8667 (1) Schramm, Monatsh. 8, 101–105 (1887). (2) Engler, Bethge, Ber. 7, 1127 (1874). (3) Norris, Watt, Thomas, J. Am. Chem. Soc. 38, 1078 (1916). (4) Read, Taylor, J. Chem. Soc. 1949, 681. (5) Ward, J. Chem. Soc. 1927, 445–458. (6) Grignard, Ono, Bull. soc. chim. (4)

1593 (1926).
 Kharasch, May, Mayo, J. Org. Chem. 3, 188-189 (1939).
 Paal, Müller-Lobeck, Ber. 64, 2148-2149 (1931).
 Breitenbach, Maschin, Z. physik. Chem. A-187, 181 (1940).
 Hughes, Ingold, Scott, J. Chem. Soc. 1937, 1275.

(11) Clark, Streight, Trans. Roy. Soc. Can. (3) 23, III 77-89 (1929). (12) Radziszewski, Ber. 7, 142 (1874). (13) Fischer, Schmitz, Ber. 39, 2210 (1906). (14) Evans, Mabbott, Turner, J. Chem. Soc. 1927, 1159-1160, 1162-1163. (15) Darapsky, J. prakt. Chem. (2) 146, 287 (1936). (16) Zal'kind, Berkovich, Amusin, Plasticheskie Massy 1934, No. 1, 14-20; Cent. 1934, II 3435; C.A. 28, 5810 (1934). (17) I.G., French 745,533, May 12, 1933; Cent. 1933, II 2327. (18) I.G. French 724,105, April 22, 1932; Cent. 1933, I 505. (19) I.G., Ger. 646,479, June 15, 1937; Brit. 464,054, April 12, 1937; Cent. 1937, II 1662; C.A. 31, 6252 (1937). (20) Steinkopf, Wolfram, Ann. 430, 157 (1923).

(21) Smith (to Naugatuck Chem. Co.), U.S. 1,687,903, Oct. 16, 1928; Brit. 298,152, Oct. 4, 1927; Cent. 1929, I 2922; C.A. 23, 156 (1929). (22) Klages, Keil, Ber. 36, 1632 (1903). (23) I.G., French 729,730, July 30, 1932; Cent. 1932, II 3015. (24) Dorough (to du Pont Co.), U.S. 1,892,386, Dec. 27, 1932; Cent. 1933, I 2872; C.A. 27, 1897 (1933). (25) I.G., French 729,687, July 29, 1932; Cent. 1932, II 3015. (26) Naugatuck Chem. Co., French 721,843, March 8, 1932; Cent. 1932, II 2109. (27) Zal'kind, Berkovich, Amusin, Russ. 34,547, Feb. 28, 1934; Cent. 1935, I 3347. (28) Fabr. de Laire, Ger. 268,786, Jan. 2, 1914; Cent. 1914, I 589. (29) Kharasch, Kleiman, J. Am. Chem. Soc. 65, 13-44 (1943).

3:8670 2,2-DICHLORO-OCTANE Cl 
$$C_3H_{16}Cl_2$$
 Beil. I - 160  $I_1$  —  $CH_3.CH_2.CH_2.CH_2.CH_2.CH_2$ — $CH_3$  —  $CH_3$ 

B.P. 190-200° (1)

[For prepn. of  $\bar{C}$  from octanone-2 (*n*-hexyl methyl ketone) (1:5490) with  $PCl_5$  see (1).] 3:8670 (1) Dachauer, *Ann.* 106, 271 (1858).

B.P. 
$$195^{\circ}$$
 u.c. (1) F.P.  $-6.25^{\circ}$  (2)  $D_{15}^{15} = 1.0692$  (4)  $194^{\circ}$  at 755 mm. (2)  $192.2-194.0^{\circ}$  (3)  $191.5^{\circ}$  cor. (4)  $75.6-75.8^{\circ}$  at 15 mm. (3)

[For prepn. of  $\bar{\mathbb{C}}$  from 4-amino-1,2-dimethylbenzene (unsym.-o-xylidine) [Beil. XII-1103, XII<sub>1</sub>-(480)] via diazotization and use of  $\mathrm{Cu_2Cl_2}$  reaction see (2) (3); for prepn. of  $\bar{\mathbb{C}}$  from o-xylene (1:7430) with  $\mathrm{Cl_2}$  in pres. of I<sub>2</sub> (4) (1) or Fe (5) (1) (the isomeric 3-chloro-1,2-dimethylbenzene (3:8645) and other products are also formed) see indic. refs.]

 $\bar{C}$  on oxidn. with hot dil. HNO<sub>3</sub> (D=1.2) or by htg. with HNO<sub>3</sub> (D=1.1) in a s.t. at 160° yields (4) (5) a mixt. of 5-chloro-2-methylbenzoic acid (3:4670), m.p. 130°, and 4-chloro-2-methylbenzoic acid (3:4700), eas. volatile with steam, ndls. from aq. or dil. AcOH (6), m.p. 170° (5) (6).

 $\bar{C}$  added to 3-4 vols. HNO<sub>3</sub> (D=1.5) in the cold, then htd. ½ hr. at 100°, then poured into aq. yields (2) 4-chloro-5-nitro-1,2-dimethylbenzene, m.p. 63° (2) (7). [Note (a) that small amt. of a dinitro cpd., m.p. 111° (2), is also formed; (b) that the prod. of m.p. 73° so obtd. by earlier work (1) was certainly impure; and (c) that the isomeric 3-nitro-4-chloro-1,2-dimethylbenzene has m.p. 75° (7).]

Č on sulfonation (4) (5) yields exclusively 4-chloro-1,2-dimethylbenzenesulfonic acid-5 [Beil. XI-121] (corresp. sulfonyl chloride, as yet unreported; sulfonamide, ndls. from alc., m.p. 207° (4)).

 $\tilde{C}$  with  $Cl_2$  in pres. of Fe yields (2) 4,5-dichloro-1,2-dimethylbenzene, m.p. 76°, b.p. 240° (2).

Claus, Groneweg, J. prakt. Chem. (2) 43, 257 (1891). (2) Hinkel, Ayling, Walters, J. Chem. Soc. 1934, 1947–1948. (3) Kohlrausch, Pongratz, Monatsh. 64, 371 (1934). (4) Krüger, Ber. 18, 1756–1758 (1885). (5) Claus, Bayer, Ann. 274, 305–309 (1893). (6) Huntress, Seikel, J. Am. Chem. Soc. 61, 820 (1939). (7) Hinkel, Ayling, Walters, J. Chem. Soc. 1934, 286–287.

3:8680 n-OCTANOYL CHLORIDE 
$$CH_3$$
.(CH<sub>2</sub>) $_6$ .C=O  $C_8H_{16}$ OCl Beil. II - 348 (n-Capryloyl chloride)  $H_1$ .—  $H_2$ -(303)

B.P. F.P. 195.55° at 760 mm. (1) 
$$-61.1$$
° (1) cf. (19)  $D_4^2 = 0.94483$  (1) 194-195° at 756 mm. (2)  $-63$ ° to  $-62.5$ ° cor. (19) 188-192° (3)  $D_4^{20} = 0.94866$  (1) 91° at 22 mm. (4) 83° at 15 mm. (5) (19)  $D_4^{15} = 0.95349$  (1) 74-77° at 11 mm. (6) [104-105° at 9 mm. (18)]  $n_{\text{He}\alpha}^{15} = 1.43408$  (1)

Care must be taken not to confuse  $\bar{C}$ , the acid chloride of *n*-caprylic acid, with the corresponding relatives of *n*-caproic acid ( $C_6$ ) and of *n*-capric acid ( $C_{10}$ ); for this reason the name *n*-octanoyl chloride is preferred.

[For prepn. of  $\bar{C}$  from *n*-octanoic acid (*n*-caprylic acid) (1:1145) with PCl<sub>5</sub> (yield: 82% (19), 64% (7), with PCl<sub>3</sub> (2) (8), with PCl<sub>3</sub> + ZnCl<sub>2</sub> (90% yield (7)), with SOCl<sub>2</sub> (3) (96% yield (6)), or with oxalyl (di)chloride (3:5060) (18) see indic. refs.]

[For use of  $\bar{C}$  in prepn. of corresp. cellulose esters see (9) (10); for use in syntheses of glycerides see (11) (12); for use with AlCl<sub>3</sub> in Friedel-Crafts synthesis of various ketones see (13) (14) (19); for use in prepn. of derivatives of vanillylamine see (4) (16); for cathydrogenation to octanaldehyde (1:0192) see (15).]

[ $\bar{C}$  with AlCl<sub>3</sub> + phenol yields (17) 45% o-(n-octanoyl)phenol, m.p. 22.3°, b.p. 169-170° at 11 mm.,  $D_{-}^{24}$  = 0.9989,  $n_{D}^{25}$  = 1.5169 (17) (semicarbazone, m.p. 157-158° (17)), and 38% p-(n-octanoyl)phenol, m.p. 62°, b.p. 224-225° at 10 mm. (17) (benzoate, m.p. 107-108° (17)).]

 $\tilde{C}$  on hydrolysis yields n-octanoic acid (n-caprylic acid) (1:1145) q.v. (for the amide, anilide, p-toluidide, and other derivs. corresponding to  $\tilde{C}$  see 1:1145).

3:8680 (1) Deffet, Bull. soc. chim. Belg. 40, 389-394 (1931). (2) Henry, Bull. acad. roy. Belg. (3) 37, 63-72 (1899); Cent. 1899, I 968; Rec. trav. chim. 18, 252-253 (1899). (3) Bardan, Bull. soc. chim. (5) 1, 143 (1934). (4) Ford-Moore, Phillips, Rec. trav. chim. 53, 855 (1934). (5) Krafft, Koenigs, Ber. 23, 2384 (1890). (6) Fierz-David, Kuster, Helv. Chim. Acta 22, 86-89 (1939). (7) Clark, Bell, Trans. Roy. Soc. Can. (3) 27, III 97-103 (1933). (8) Aschan, Ber. 31, 2348 (1898). (9) Brit. 201,510, Sept. 19, 1923; Cent. 1923, IV 961. (10) Brit. 313,616, Aug. 8, 1929; Cent. 1929, II 2743.

(11) Heiduschka, Schuster, J. prakt. Chem. (2) 120, 155-156 (1928). (12) Robinson, Roche, King, J. Am. Chem. Soc. 54, 705-710 (1932). (13) Hartung, Munch, Deckert, Crossley, J. Am. Chem. Soc. 52, 3320 (1930). (14) Ralston, Bauer, J. Org. Chem. 5, 165-170 (1940). (15) Escourrou, Bull. soc. chim. (5) 6, 1181 (1939). (16) Nelson, J. Am. Chem. Soc. 41, 2124 (1919). (17) Sandulesco, Girard, Bull. soc. chim. (4) 47, 1309-1310 (1930). (18) Averill, Roche, King, J. Am. Chem. Soc. 51, 868 (1929). (19) Paquette, Lingafelter, Tartar, J. Am. Chem. Soc. 65, 686 (1943).

3:8700 m-XYLYL CHLORIDE (m-Methylbenzyl chloride, ω-chlorom-xylene)

$$\begin{array}{cccc} CH_2Cl & C_8H_9Cl & Beil. \ V - 373 & & V_{1^-}(183) \\ CH_3 & & V_{2^-}(291) & & & \end{array}$$

 $D_{20}^{20} = 1.064 (2) \quad n_{\rm D}^{25} = 1.5327 (1)$ 

[For special study of prepn. (76% yield) by chlorination of m-xylene (1:7420) in light see (1).]

 $\bar{C}$  stood with N/10 alc. NaOEt at 30° yields ethyl m-xylyl ether [Beil. VI-494], b.p. 202°, to extent of 10.9% in 6 hrs., 32.4% in 24 hrs. (3) cf. (4). [For data on rate of hydrolysis with acid or alkali in acetone soln. at 30° see (5).]

Č with Mg in ether yields R.MgCl; on carbonation at 0° (7) this yields m-CH<sub>3</sub>.C<sub>6</sub>H<sub>4</sub>.CH<sub>2</sub>.-COOMgCl; this upon acidification presumably (no record) would yield m-tolylacetic acid [Beil. IX-528], m.p. 61°; upon treatment (8) with C<sub>2</sub>H<sub>5</sub>MgBr, however, it gives a mixt. contg. 57.6% m-tolylmalonic acid, colorless pdr. from CHCl<sub>3</sub>, m.p. 130-131° with loss of CO<sub>2</sub> (8). [Use of isopropyl MgCl in place of C<sub>2</sub>H<sub>5</sub>MgBr gave 88% of m-tolylmalonic ac. (8).]

 $\overline{C}$  on boiling with Pb(NO<sub>3</sub>)<sub>2</sub> soln. (2), or Cu(NO<sub>3</sub>)<sub>2</sub> soln. (30% yield (6)), or alk. Na<sub>2</sub>CrO<sub>4</sub> (90% yield (6)) gives *m*-tolualdehyde (1:0208).

N-(o-Xylyl)phthalimide [Beil. XXI-467]: ndls. from alc., m.p. 117-118°. [Reported
 (9) from m-xylyl bromide and therefore presumably obtainable under appropriate
 conditions from C.]

3:8700 (1) King, Merriam, Proc. Nova Scotian Inst. Sci. 18, 276-281 (1933/34); C.A. 29, 6214 (1935); Cent. 1935, II 2359. (2) Gundelach, Bull. soc. chim. (2) 26, 43 (1876). (3) Franzen, J. prakt. Chem. (2) 97, 83-84 (1918). (4) Olivier, Rec. trav. chim. 41, 306-307 (1921). (5) Olivier, Weber, Rec. trav. chim. 53, 885 (1934). (6) Posner, Schreiber, Ber. 57, 1131, 1137 (1924). (7) Ivanoff, Spassoff, Bull. soc. chim. (4) 9, 20 (1931). (8) Ivanoff, Pchenitchny, Bull. soc. chim. (5) 1, 227 (1934). (9) Brömme, Ber. 21, 2700 (1888).

3: 8703 ETHYL 
$$d,l-\gamma$$
-CHLORO- $n$ -VALERATE  $C_7H_{13}O_2Cl$  Beil. II - 302  $CH_3$ -CH.CH<sub>2</sub>.CH<sub>2</sub>.COOC<sub>2</sub>H<sub>5</sub>  $II_1$ -(131)  $II_2$ —

B.P. 196° (1)  $D_4^{20} = 1.0393$  (1)  $n_D^{20} = 1.4310$  (1) 70.5° at 9 mm. (2)

Oil with odor like amyl acetate.

[For prepn. of  $\bar{C}$  from  $\gamma$ -chloro-n-valeric acid (3:9270) + EtOH + H<sub>2</sub>SO<sub>4</sub> see (1); from  $\gamma$ -n-valerolactone (1:5080) with HCl in EtOH see (3).] [For the opt. active isomers of  $\bar{C}$  see Beil. II<sub>2</sub>-(268) and subsequent literature.]

3:8763 (1) Schjanberg, Ber. 76, 2385-2391 (1937). (2) Wohlgemuth, Compt. rend. 158, 1578 (1914); Ann. chim. (9) 2, 300-301 (1914). (3) Noyes, Cox, J. Am. Chem. Soc. 25, 1094 (1903).



B.P. 196° cor.

M.P. 33-34°

 $D_4^{15} = 1.5427$ 

See 3:0280. Division A: Solids.

--- 6-CHLORO-3-METHYLPHENOL OH 
$$C_7H_7OCl$$
 Beil. VI --  $VI_{1^-}(187)$  VI $_{2^-}(355)$  B.P. 196° M.P. 46°  $D_{-5}^{15}=1.215$ 

See 3:0700. Division A: Solids.

3:8705 4-CHLORO-ISOPROPYLBENZENE 
$$C_9H_{11}Cl$$
 Beil. V - 395  $V_1-V_2-(307)$ 

B.P. 195-197° at 750 mm. (1) 
$$D_{20}^{20} = 1.0257$$
 (2)  $n_{\rm D}^{25} = 1.514$  (1) 81° at 15 mm. (2) 1.0022 (1) 66-72° at 11 mm. (7) 1.0190 (7)  $n_{\rm D}^{20} = 1.5120$  (2) 1.5109 (7)

The first reference given in Beil. V-395 is erroneous.

[For prepn. of  $\bar{C}$  from  $\beta$ -(p-chlorophenyl)propene (2) by cat. hydrogenation see (2); from chlorobenzene (3:7903) with isopropyl alc. (1:6135) + H<sub>2</sub>SO<sub>4</sub> (72% yield) see (3) or with isopropyl alc. (1:6135) + BF<sub>3</sub> + P<sub>2</sub>O<sub>5</sub> (63% yield) see (7); for formn. of  $\bar{C}$  from isopropylbenzene (cumene) (1:7440) with Cl<sub>2</sub> (together with other prods.) (4) (5) or with SO<sub>2</sub>Cl<sub>2</sub> + AlCl<sub>3</sub> (6) see indic. refs.]

 $\overline{C}$  on oxidn. with HNO<sub>3</sub> (D=1.2) yields (3) (4) p-chlorobenzoic acid (3:4940).

Č with chlorosulfonic acid yields a sulfonyl chloride which with NH<sub>3</sub> yields a sulfonamide, probably 2-chloro-5-isopropylbenzenesulfonamide, m.p. 91° (2).

3:8705 (1) Tsukervanik, J. Gen. Chem. (U.S.S.R.) 8, 1512-1515 (1938); Cent. 1939, I 4929; C.A. 33, 4587 (1939). (2) Ellingboe, Fuson, J. Am. Chem Soc. 55, 2965 (1933). (3) Meyer, Bernhauer, Monatsh. 53/54, 741 (1929). (4) Qvist, Acta Acad. Aboensus, Math. et Phys. 8, No. 4, 30 pp. (1934); Cent. 1934, II 595; 1936, I 540; C.A. 29, 6885 (1935). (5) Varma, Srinivasan, J. Indian Chem. Soc. 13, 191 (1936). (6) Töhl, Eberhard, Ber. 26, 2944 (1893). (7) Hennion, Pieronek, J. Am. Chem. Soc. 64, 2751-2752 (1942).

3:8710 o-XYLYL CHLORIDE (o-Methylbenzyl chloride, 
$$\omega$$
-chloro-o-xylene) CH<sub>3</sub> C<sub>8</sub>H<sub>9</sub>Cl Beil. V - 364 V<sub>1</sub>-(180) CH<sub>2</sub>Cl V<sub>2</sub>-(283)

B.P. 197-199° (1) 92-94° at 20 mm. (2) 76-80° at 14 mm. (3) Lachrymatory oil.

[For prepn. (88% yield) from o-tolylcarbinol (1:5922) by action of thionyl chloride and pyridine see (2), by action of  $H_2SO_4 + HCl$  (85-92% yield) see (3); the prepn. from o-xylene (1:7430) by action of trioxymethylene + HCl gives a mixture of  $\bar{C}$  and p-xylyl chloride (3:8660) (4) (5) (6).]

 $\bar{C}$  stood with N/10 alc. NaOEt at 30° yields ethyl o-xylyl ether [Beil. VI-484], oil, b.p. 208-210°, to extent of 21% in 6 hrs., 52% in 24 hrs. (7) cf. (8). [For data on rate of hydrolysis with acid or alkali in acetone soln. at 30° see (9).]

Č with Mg in ether yields R.MgCl; on carbonation at 0° (10) this yields o-CH<sub>3</sub>.C<sub>6</sub>H<sub>4</sub>.CH<sub>2</sub>.-COOMgCl; this upon acidification presumably (no record) would yield o-tolylacetic acid [Beil. IX-527], m.p. 88−89°; upon treatment (11) with C<sub>2</sub>H<sub>5</sub>MgBr, however, it gives 83.3% yield of o-tolymalonic ac., ndls. from aq., m.p. 139−140°, with loss of CO<sub>2</sub> (11), + 16% yield of o-tolylacetic ac.

Č refluxed 5 hrs. with dil. alc. KCN gives 74% yield (2) o-tolylacetonitrile [Beil. IX-527], b.p. 244°, which on boiling 1 hr. with dil. H<sub>2</sub>SO<sub>4</sub> (2) gives 73% yield (2) of o-tolylacetic ac. [Beil. IX-527], ndls. from aq., m.p. 88-89°.

Č on warming at 100° with 1.3 moles pyridine gives ppt. of o-xylylpyridinium chloride, cryst. from CH<sub>3</sub>OH + dry ether, m.p. 183° (12).

N-(o-Xylyl)phthalimide [Beil. XXI-467]: cryst. from alc., m.p. 148-149°. [Reported (13) from o-xylyl bromide and therefore presumably obtainable under appropriate conditions from C.]

3:8710 (1) Reyman, Bull. soc. chim. (2) 26, 534 (1876). (2) Hill, Short, J. Chem. Soc. 1935, 1125. (3) Reichstein, Cohen, Ruth, Meldahl, Helv. Chim. Acta 19, 415 (1936). (4) Darzens, Compt. rend. 208, 818-820 (1839). (5) Shorygin, Skoblinskaya, J. Gen. Chem. (U.S.S.R.) 6, 1578-1582 (1936); Cent. 1937, I 1678; C.A. 31, 2196 (1937). (6) Hoch, Compt. rend. 192, 1465 (1931). (7) Franzen, J. prakt Chem. (2) 97, 83 (1918). (8) Olivier, Rec. trav. chim. 41, 306 (1921). (9) Olivier, Weber, Rec. trav. chim. 53, 885 (1934). (10) Ivanoff, Spassoff, Bull. soc. chim. (4) 9, 20 (1931).

(11) Ivanoff, Pchenitchny, Bull. soc. chim. (5) 1, 226 (1934). (12) von Braun, Nelles, Ber. 70, 1762 (1937). (13) Strassmann, Ber. 21, 576 (1888).

### 3:8712 β-CHLOROETHYLBENZENE C<sub>8</sub>H<sub>9</sub>Cl Beil. V-(354) (ω-Chloroethylbenzene, β-phenylethyl chloride, benzylcarbinyl chloride) CH<sub>2</sub>.CH<sub>2</sub>Cl V<sub>1</sub>-(177) V<sub>2</sub>-(277)

|                          | •            |             |           |       |                                  |
|--------------------------|--------------|-------------|-----------|-------|----------------------------------|
| B.P.                     | I            | B.P. (conta |           |       |                                  |
| 197-198°                 | (1) 8        | 88°         | at 16 mm. | (9) D | $_{4}^{25} = 1.069 (14)$         |
| 192-198° dec. at 760 mm. | (2) 8        | 82-84°      | at 16 mm. | (2)   |                                  |
| 190-200° sl. dec.        | (3)          | 83-84°      | at 14 mm. | (10)  | $n_{\rm D_s}^{20} = 1.5294 (11)$ |
| 96° at 23 mm.            | (4) 8        | 81-84°      | at 14 mm. | (11)  |                                  |
| 91-92° at 20 mm.         | (3) (5) 8    | 85-86°      | at 12 mm. | (5)   |                                  |
| 80° at 20 mm.            | (6)          | 79°         | at 12 mm. | (12)  |                                  |
| 94-96° at 18 mm.         | (7) <i>E</i> | 68.5-69°    | at 4 mm.  | (13)  |                                  |
| 89-92° at 16 mm.         | (8)          |             |           |       |                                  |

Colorless oily liquid.

[For prepn. of  $\tilde{C}$  from  $\beta$ -phenylethyl alc. (1:6505) with fumg. HCl in s.t. 4 hrs. at 140° (57% yield (13)) (15), with conc. HCl + ZnCl<sub>2</sub> (82% yield (8)), with 6 N HCl (small yield (16)), with PCl<sub>5</sub> in CHCl<sub>3</sub> (yield 70% (3)) (10) (12) (prod. conts. P compounds (10) removed with NaHCO<sub>3</sub> (12)) or in CCl<sub>4</sub> (80% yield (5)), with SOCl<sub>2</sub> at room temp. (yields:

87% (10) (11), 74% (6)) or warming in dimethylaniline (91% yield (1)) (17) (for intermediate forms, of  $\beta$ -phenylethyl chlorosulfite see (18)) see indic. refs.]

[For formn. of Č from  $\beta$ -chloroethyl p-toluenesulfonate with  $C_6H_5MgBr$  (36% yield (19)) (20) see indic. refs.; from di-( $\beta$ -chloroethyl) sulfate with  $C_6H_5MgBr$  (25% yield) see (21); from  $C_6H_5HgCl$  with ICl in CCl<sub>4</sub> (35% yield) see (11); from methyl  $\beta$ -phenylethyl ether (22) or N-( $\beta$ -phenylethyl)benzamide (7) (15) or N,N-bis-( $\beta$ -phenylethyl)benzamide (60% yield (23)) with PCl<sub>5</sub> see indic. refs.; from  $\beta$ -phenylethylamine hydrochloride with HNO<sub>2</sub> see (24); from bis-( $\beta$ -phenylethyl) ether with AcCl + ZnCl<sub>2</sub> see (9); from bislg. ethylbenzene (1:7410) with Cl<sub>2</sub> (as by-product of the  $\alpha$ -isomer) see (25) (26) (27) (35).]

 $\ddot{C}$  on oxidn. with  $CrO_5/H_2SO_4$  is much more resistant than benzyl chloride (3:8535) (28) but ultimately yields benzoic acid (1:0715), m.p. 121°. — [ $\ddot{C}$  passed with steam and air at 450° over pumice impregnated with  $V_2O_5$  gives (29) benzoic acid (52%), benzaldehyde (35%), phenylacetaldehyde (6%), and styrene (3%).]

[ $\bar{C}$  on reduction with  $H_2 + Pd/CaCO_3$  in pres. of MgO ultimately gives ethylbenzene (1:7410) but rate is very much slower than with  $\alpha$ -chloroethylbenzene (3:8667) (12).]

[For study of rate of reactn. of  $\bar{C}$  with aq. alc. NaOH (much slower than with  $\alpha$ -chloroethylbenzene (3:8667) see (10); for rate with NaOEt see (30); for rate with NaOPr see (47);  $\bar{C}$  with KOC<sub>6</sub>H<sub>5</sub> in alc. gives (45–50% yield (31)) phenyl  $\beta$ -phenylethyl ether [Beil. VI-479], b.p. 180° at 23 mm.,  $D_4^{20} = 1.0501$  (31);  $\bar{C}$  with NaOAc + AcOH yields (32) mainly  $\beta$ -phenylethyl acetate (1:3922), but 15% of the isomeric methyl-phenyl-carbinyl acetate [Beil. VI-476, VI<sub>1</sub>-(236)], b.p. 222° (32), is also formed.]

[C with NaI in acetone boiled 4 hrs. gives (33) β-phenylethyl iodide, b.p. 125-128° at 18-20 mm. (33) (for rate of reactn. of C with KI in acetone see (13) (34)): C with alc. KCN yields (25) (26) (27) β-phenylethyl cyanide [Beil. IX-512, IX<sub>1</sub>-(199)] which on hydrolysis gives hydrocinnamic acid (1:0615), m.p. 48-49°; C on boilg, for 20 hrs. with conc. aq. Na<sub>2</sub>SO<sub>3</sub> gives (65% yield (35)) sodium β-phenylethanesulfonate (corresp. sulfonyl chloride, m.p. 34° (35); corresp. sulfonamide, m.p. 119° (35), 124° (20); corresp. sulfonamide m.p. 77° (35)) accompanied by a little β-phenylethyl alcohol (1:6505) but without any evolution of SO<sub>2</sub> (contrary to previous report (36)).]

Č with Mg in dry ether yields (2) (11) (19) (5) (37) (38) C<sub>6</sub>H<sub>5</sub>.CH<sub>2</sub>.CH<sub>2</sub>.MgCl: this RMgCl epd. with dry CO<sub>2</sub> yields (19) hydrocinnamic acid (1:0615), m.p. 48-49°; with phenylisocyanate it yields (2) hydrocinnamanilide, m.p. 96°; with HgCl<sub>2</sub> it gives (85% yield (11)) β-phenylethyl HgCl, m.p. 163-166° (11). [For reactn. of this RMgCl epd. with cyclopentanone (38), cyclohexanone (37), α-tetralone (37), and other ketones see indic. refs.]

[ $\bar{C}$  with AlCl<sub>3</sub> in CS<sub>2</sub> or lgr. gives (12) (1) a resin;  $\bar{C}$  with AlCl<sub>3</sub> + C<sub>6</sub>H<sub>6</sub> gives (85% yield (39)) (40) dibenzyl (1:7149) together with other products (26) (27).]—[ $\bar{C}$  with Na in C<sub>6</sub>H<sub>6</sub> or ether (41) gives ethylbenzene (1:7410) and 1,4-diphenylbutane [Beil. V-616, V<sub>1</sub>-(290)], m.p. 52°.] [For behavior of  $\bar{C}$  with benzhydryl sodium (42), triphenylmethyl sodium, etc. (6), see indic. refs.]

[Č on mononitration, e.g., with HNO<sub>3</sub> (D=1.52) at  $-15^{\circ}$  (3) (24) (4) (45) or even at  $-70^{\circ}$  (45) gives (70% yield (44))  $\beta$ -(4-nitrophenyl)ethyl chloride, m.p. 49° (3) (44), 48–49° (4), 48° (45) (43), 46–47° (24), accompanied by (30% yield (44))  $\beta$ -(2-nitrophenyl)ethyl chloride, an oil, b.p. 156.5–158° at 15 mm.,  $D_{-}^{20}=1.5620$ ,  $n_{D}^{20}=1.562$  (46); some  $\beta$ -(2,4-dinitrophenyl)ethyl chloride, m.p. 136° (4), is sometimes formed (4).]

3:8712 (1) Sisido, Kato, J. Soc. Chem. Ind. Japan 43, Suppl. bind., 450-451 (1940); C.A. 35, 3246 (1941). (2) Underwood, Gale, J. Am. Chem. Soc. 56, 2119 (1934). (3) Barger, J. Chem. Soc. 95, 2194-2195, 2197 (1909). (4) Ferber, Ber. 62, 187 (1929). (5) Bergs, Ber. 67, 242-244 (1934). (6) Schlenk, Bergmann, Ann. 479, 83-84 (1930). (7) von Brau, Ber. 44, 2870 (1911). (8) Norris, Taylor, J. Am. Chem. Soc. 46, 756 (1924). (9) Gans, Holton, U.S. 2,013,752, Sept. 10, 1935; Cent. 1936, I 2207; C.A. 29, 6902 (1933). (10) Ward, J. Chem. Soc. 1937, 453, 458.

Beil. V - 476

 $V_{1}$ -(230)

(11) Whitmore, Thorpe, J. Am. Chem. Soc. 55, 785 (1933). (12) Paal, Müller-Lobeck, Ber. 64, 2148-2150 (1931). (13) Conant, Kirner, J. Am. Chem. Soc. 46, 241, 249 (1924). (14) Dunstan, Hilditch, Thole, J. Chem. Soc. 163, 140 (1913). (15) von Braun, Deutsch, Ber. 45, 1268-1269 (1912). (16) Norris, Watt, Thomas, J. Am. Chem. Soc. 38, 1078 (1916). (17) Darzens, Compt. rend. 152, 1316 (1911). (18) Carré, Libermann, Compt. rend. 198, 274-276 (1934). (19) Gilman. Beaber, J. Am. Chem. Soc. 45, 842 (1923). (20) Ashworth, Burkhardt, J. Chem. Soc. 1928, 1798-1799.

(21) Suter, Evans, J. Am. Chem. Soc. **60**, 537 (1938). (22) Madinaveitia, Bull. soc. chim. (4) **25**, 604 (1919). (23) von Braun, Cahn, Ann. **436**, 266 (1924). (24) Shoesmith, Connor, J. Chem. Soc. **1927**, 2232. (25) Fittig, Kiesow, Ann. **156**, 246-247 (1870). (26) Schramm, Monatsh. 8, 104-105 (1887); Ber. **26**, 1706-1707 (1893). (27) Fischer, Schmitz, Ber. **39**, 2209-2210 (1906). (28) Courtot, Pierron, Compt. rend. **190**, 1057 (1930). (29) Shoruigin, Losev, J. Gen. Chem. (U.S.S.R.) **3**, 821-824 (1933); Cent. **1934**, II 2206; C.A. **28**, 6103 (1934). (30) Kindler, Ann. **452**, 119-120 (1927).

(31) Shoruigin, Ber. 58, 2035 (1925). (32) von Braun, Bartsch, Ber. 46, 3055 (1913). (33) Coleman, Hauser, J. Am. Chem. Soc. 50, 1196 (1928). (34) Baddeley, Bennett, J. Chem. Soc. 1935, 1820. (35) Evans, Mabbott, Turner, J. Chem. Soc. 1927, 1159-1163. (36) Clutterbuck, Cohen, J. Chem. Soc. 123, 2509 (1923). (37) Bergs, Ber. 67, 1621 (1934). (38) Denissenko, Ber. 69, 2184-2185 (1936). (39) Nenitzescu, Isacescu, Ionescu, Ann. 491, 219-220 (1931). (40) Anschutz, Ann. 235, 329-330 (1886).

(41) von Braun, Deutsch, Ber. 45, 2181 (1912). (42) Bergmann, J. Chem. Soc. 1936, 412-413. (43) Sobotka, Ber. 62, 2192 (1929). (44) Holleman, Hoeflake, Rec. trav. chim. 34, 261-264 (1915). (45) von Braun, Ber. 45, 1277-1278 (1912). (46) Kursanov, Kichkina, J. Gen. Chem. (U.S.S.R.) 5, 1342-1347 (1935); Cent. 1936, II 1534; C.A. 30, 2188 (1936). (47) Malkiel, Mason, J. Org. Chem. 8, 199-200 (1943).

3:8715 α-CHLOROVINYLBENZENE

 $(\alpha$ -Chlorostyrene)

B.P. F.P. 199° (1) 
$$-24^{\circ}$$
 to  $-23^{\circ}$  (5)  $D_4^{24.6} = 1.0983$  (2) 83.5-84° at 23 mm. (2)  $n_D^{24.6} = 1.55898$  (2) 85.0-85.5° at 22.5 mm. (3)  $D_4^{20} = 1.101$  (2) 80-83° at 21 mm. (13) 1.0975 (3) 73° at 16 mm. (4) 1.0916 (3) 73-74° at 15 mm. (3)  $n_D^{20.5} = 1.5584$  (5) 64° at 9 mm. (5)  $n_A^{20.5} = 1.5684$  (5)  $n_A^{20.5} = 1.5600$  (13)  $n_D^{18} = 1.5645$  (4)

$$D_4^{17} = 1.1030$$
 (2)  
 $D_4^{16.6} = 1.1024$  (2)  
 $n_D^{16.5} = 1.56226$  (2)

 $n_{\rm D}^{17} = 1.56199$ 

Colorless liq. with arom. odor soon changing to that of formaldehyde and benzoyl chloride from air oxidation (5). — Č could not be polymerized even in u.v. light, by peroxides or SnCl4 (12).

[For prepn. of  $\tilde{C}$  from methyl phenyl ketone (acetophenone) (1:5515) with PCl<sub>5</sub> see (2) (1) (5) (6); from  $\alpha,\alpha$ -dichloroethylbenzene ("acetophenone dichloride") on htg. see (7); from  $\beta$ -bromo- $\alpha$ -chloroethylbenzene (styrene chloro-bromide) with alc. KOH in the cold (70% yield) see (4); from  $\alpha,\beta$ -dichloroethyl benzene (styrene dichloride) (3:6685) with aq. alc. NaOH at 50-60° (89% yield) see (13).]

 $\tilde{C}$  on boilg. with conc. HCl (4) (1), or  $\tilde{C}$  with 80% H<sub>2</sub>SO<sub>4</sub> at 60° for 4 hrs. (13) cf. (14), gives (81% yield (13)) cf. (14) acetophenone (1:5515).

Č is resistant to actn. of alc. KOH (5); Č on refluxing for 13 hrs. with very conc. alc. NaOEt gives (8) some phenylacetylene (1:7425) together with other prods. (8).

[ $\tilde{C}$  with NOCl yields (9)  $\alpha,\beta,\beta$ -trichlorostyrene, b.p. 148–150° at 20 mm. (9);  $\tilde{C}$  htd. with alc. KCN in s.t. at 200–220° yields (10) phenylsuccinonitrile which on saponification gives phenylsuccinic acid (1:0790);  $\tilde{C}$  with Na in liq. NH<sub>3</sub> gives (15% yield (10)) ethylbenzene (1:7410);  $\tilde{C}$  with NaNH<sub>2</sub> in liq. NH<sub>3</sub> gives (57% yield (11)) phenylacetylene (1:7425);  $\tilde{C}$  in alc. contg. BF<sub>3</sub>/EtOAc (12) or in pres. of HCl (1) condenses with itself by loss of 3 HCl yielding 1,3,5-triphenylbenzene (1:7270).]

 $\tilde{C}$  (10 g.) in  $C_6H_6$  (10 ml.) stood 3 days with  $PCl_5$  (30 g.) in  $C_6H_6$  (50 ml.), then poured into aq. worked up as directed (13), yields 1-phenyl-1-chloroethylenephosphinic acid-2,  $C_6H_6$ —C(Cl)—CH— $P(=0)(OH)_2$ , ndls. from dil. HCl, m.p. 162° (13) (together with a little benzoic acid (1:0715), m.p. 121°).

3:8715 (1) Béhal, Bull. soc. chim. (2) 50, 632-638 (1888). (2) von Auwers, Ber. 45, 2799-2801 (1912). (3) Ley, Rinke, Ber. 56, 776 (1923). (4) Urion, Namias, Bull. soc. chim. (5) 3, 2335-2336 (1936). (5) Dufraisse, Viel, Bull. soc. chim. (4) 37, 878-879 (1925). (6) Taylor, J. Chem. Soc. 1987, 504-308. (7) Friedel, Ann. chim. (4) 16, 360 (1869). (8) Nef, Ann. 308, 269-270 (1898). (9) Perrot, Compt. rend. 202, 495 (1936). (10) Vaughn, J. Am. Chem. Soc. 56, 2064 (1934).

(11) Vaughn, Vogt, Nieuwland, J. Am. Chem. Soc. 56, 2121 (1934). (12) Marvel, Moon, J. Am. Chem. Soc. 62, 48 (1940). (13) Emerson, Agnew, J. Am. Chem. Soc. 67, 518-520 (1945). (14) Emerson (to Monsanto Chem. Co.), U.S. 2,372,562, March 27, 1945; C.A. 39, 3555 (1945).

3:8717 
$$\beta$$
-CHLOROVINYLBENZENE  $C_8H_7Cl$  Beil. V - 476  $(\beta$ -Chlorostyrene,  $\omega$ -chlorostyrene, styryl  $CH$ =CHCl  $V_2$ -(367) chloride)

| B.P.         |       |       |     | B.P. (con    | td.)        |         |                                |
|--------------|-------|-------|-----|--------------|-------------|---------|--------------------------------|
| 199-199.2°   |       |       | (1) | 92-93°       | at 22 mm.   | (5)     | $D_4^{25} = 1.1040 (1)$        |
| 199°         | at 76 | 6 mm. | (2) | 88-100°      | at 18 mm.(2 | 20)     | $n_{\rm D}^{25} = 1.5736  (1)$ |
| 197-199°     |       |       | (3) | 83°          | at 18 mm.   | (6)     | 1.5719 (20)                    |
| 195.5-196.5° | at 71 | 5 mm. | (4) | 89°          | at 17 mm.   | (7) (1) | 1.5700 (20)                    |
| 113°         | at 4  | 4 mm. | (1) | 82-87°       | at 16 mm.(2 | 20) 2   | $D_4^{20} = 1.109  (9)$        |
| 112°         | at 4  | 0 mm. | (2) | 83-84°       | at 11 mm.   |         | 1.108 (9)                      |
|              |       |       |     | <b>79.5°</b> | at 11 mm. ( | (9) 1   | $D_4^{15} = 1.1122  (1)$       |
|              |       |       |     | 78.5°        | at 9 mm.    | (9)     | $n_{\rm D}^{15}=1.5808  (1)$   |

Liquid with odor of hyacinth; used in perfume industry. Although C should exist in two geom. stereoisomeric forms only this one has as yet been recognized. — Volatile with steam.

[For prepn. of  $\bar{C}$  from cinnamic acid (1:0735) with Cl<sub>2</sub>/aq. or HOCl (1) (3) (10) (8) (12), with Cl<sub>2</sub> in EtOH (11), with NaOCl (13) (20), or Ca(OCl)<sub>2</sub> (14) see indic. refs.; from  $\alpha,\beta$ -dichlorohydrocinnamic acid (cinnamic acid dichloride) [Beil. IX-514, IX<sub>1</sub>-(200)] with Na<sub>2</sub>CO<sub>3</sub> at 100° (yield: 97% (15) (1)) (9) (6) or with NaOAc (60% yield (5)) see indic. refs.; from  $\alpha$ -chloro- $\beta$ -hydroxyhydrocinnamic acid [Beil. X-250, X<sub>1</sub>-(110)] by htg. with aq. in s.t. at 200–220° see (2) cf. (3): for formn. of  $\bar{C}$  from  $\omega,\omega$ -dichloroethylbenzene [Beil. V-354] with alc. KOH in s.t. at 120° see (4); from phenyl-trichloromethyl-carbinol [Beil. VI-476, VI<sub>1</sub>-(237)] with Zn dust in alc. see (16); from  $\alpha,\beta$ -dichloroethylbenzene (styrene dichloride) (3:6885) by htg. with pyridine (17) or by passing over Al<sub>2</sub>O<sub>3</sub> at 360–400° and 85–105 mm. (92% yield (20)) see indic. refs.; from C<sub>6</sub>H<sub>5</sub>MgBr with acetylene tetrachloride (3:5750) see (18): from styrene chlorohydrin (3:9570) by dehydration over HPO<sub>3</sub> on silica gel at 370–400° and 95–115 mm. (63% yield) see (20).

[ $\bar{\mathbf{C}}$  with Cl<sub>2</sub> in CHCl<sub>3</sub> yields (1)  $\alpha,\beta,\beta$ -trichloroethylbenzene [Beil. V-355], b.p. 254.5–255.5° sl. dec. at 770 mm., b.p. 137° at 21 mm.,  $D_4^{15}=1.3619, n_D^{15}=1.5652$  (1);  $\bar{\mathbf{C}}$  with

Br<sub>2</sub> in CHCl<sub>3</sub> yields (1) (13) (19)  $\beta$ -chloro- $\alpha,\beta$ -dibromoethylbenzene [Beil. V-356], ndls. from alc., m.p. 32° (1) (13), b.p. 165° sl. dec. at 26 mm. (1).

 $\ddot{C}$  with alc. KOH in s.t. at 200-250° is partly resinified (2);  $\ddot{C}$  with very conc. alc. KOH gives on very strong htg. a chlorine-free oil which on distn. with aq. gives phenylacetaldehyde (1:0200) (4). [For rate of loss of halogen with alc. KOH see (5).] —  $\ddot{C}$  with EtOH/NaOEt in s.t. at 175-182° for  $5\frac{1}{2}$  hrs. gives (66% yield (20))  $\beta$ -ethoxystyrene [Beil. VI-564, VI<sub>1</sub>-(279)] for conversion of which to phenylacetaldehyde see (20).]

 $\bar{C}$  on oxidn. with  $K_2Cr_2O_7 + H_2SO_4$  or with HNO<sub>3</sub> (D=1.2) gives (2) benzoic acid (1:0715).

3:8717 (1) Biltz, Ann. 296, 266-268, 272-273 (1897). (2) Glaser, Ann. 154, 164-167 (1870). (3) Forster, Saville, J. Chem. Soc. 121, 2595-2600 (1922). (4) Forster, Ber. 17, 982-983 (1884). (5) Dann, Howard, Davies, J. Chem. Soc. 1928, 609-610. (6) Durrans, J. Chem. Soc. 123, 1427 (1923). (7) Bergmann, J. Chem. Soc. 1936, 404. (8) Farmer, Hose, J. Chem. Soc. 133, 964. (9) von Auwers, Ber. 45, 2796-2797 (1912). (10) Erlenmeyer, Lipp, Ann. 219, 185-186 (1883). (11) Jackson, Pasiut, J. Am. Chem. Soc. 49, 2074 (1927). (12) Böeseken, Rec. trav. chim. 41, 204 (1921). (13) Ssuknewitsch, Tschilingarjan, Ber. 68, 1214 (1935). (14) Stenhouse, Ann. 55, 3-4 (1845). (15) Erlenmeyer, Ber. 14, 1868 (1881). (16) Jositsch, Favorski, J. Russ. Phys. Chem. Soc. 30, 920-924 (1898), Cent. 1899, I 607. (17) I.G., French 729,730, July 30, 1932; Cent. 1932, II 3015. (18) Swarts, Bull. soc. chim. (4) 25, 168-169 (1919). (19) Reich, van Wijck, Waelle, Helv. Chim. Acta 4, 248 (1921). (20) Emerson, Agnew, J. Am. Chem. Soc. 67, 518-520 (1945).

3: 8718 
$$d$$
, $l$ - $\alpha$ -CHLORO- $\alpha$ -METHYL- $n$ -BUTYRIC ACID  $C_5H_9O_2Cl$  Beil. II - 306 CH<sub>3</sub> II<sub>1</sub>— II<sub>2</sub>— CH<sub>3</sub>.CH<sub>2</sub>.C—COOH

B.P. 200-205° at 754 mm., sl. dec. (1) 
$$D_{-}^{10} = 1.101$$
 (1)  $n_{-}^{11} = 1.45077$  (1) 123-124° at 36 mm. (1)

Oily liq.; insol. aq.; sol. alc., ether.

[For prepn. of  $\bar{\mathbf{C}}$  from  $\alpha$ -chloro- $\alpha$ -methyl-n-butyronitrile by hydrolysis with conc. HCl see (1).]

- Methyl  $\alpha$ -chloro- $\alpha$ -methyl-n-butyrate: unreported.
- Ethyl  $\alpha$ -chloro- $\alpha$ -methyl-n-butyrate (see 3:8518).
- $\alpha$ -Chloro- $\alpha$ -methyl-n-butyramide: unreported.
- $\alpha$ -Chloro- $\alpha$ -methyl-n-butyranilide: unreported.
- ——  $\alpha$ -Chloro- $\alpha$ -methyl-n-butyro-p-toluidide: unreported.

3:8718 (1) Servais, Rec. trav. chim. 20, 58-59 (1901).

3:8719 1-CHLORONONANE (
$$n$$
-Nonyl chloride) CH<sub>3</sub>. ( $n$ -CH<sub>2</sub>Cl C<sub>9</sub>H<sub>19</sub>Cl Beil. I — I<sub>1</sub>— I<sub>2</sub>-(128) B.P. 202° at 760 mm. (4)  $D_{20}^{25} = 0.8931$  (3)  $D_{20}^{25} = 1.4400$  (3) 98–100° at 22 mm. (1)  $D_{20}^{20} = 0.8679$  (1)  $D_{20}^{20} = 1.43692$  (1) 92.6–93.0° at 16 mm. (2)  $D_{20}^{20} = 0.8704$  (4) 1.43400 (4) 76–79° at 4 mm. (3)

[For prepn. of  $\tilde{C}$  from nonanol-1 (1:6265) + PCl<sub>8</sub> + ZnCl<sub>2</sub> (53% yield) or PCl<sub>5</sub> + ZnCl<sub>2</sub> in C<sub>6</sub>H<sub>6</sub> (58% yield) or excess SOCl<sub>2</sub> (76% yield (4)) in C<sub>6</sub>H<sub>6</sub> (62% yield) see (1);

for prepn. of  $\tilde{C}$  (52% yield (3)) from *n*-hexyl MgBr +  $\gamma$ -chloro-*n*-propyl *p*-toluenesulfonate see (3).

3:8719 (1) Clark, Streight, Trans. Roy. Soc. Can. (3) 23, III 77-89 (1929). (2) Kohlrausch, Köppl, Monatsh. 63, 269 (1933). (3) Rossander, Marvel, J. Am. Chem. Soc. 50, 1495 (1928). (4) Vogel, J. Chem. Soc. 1943, 638, 640.

B.P. 203-205° (1) 94° at 22 mm. (2)

[For prepn. of  $\bar{C}$  from N,N'-bis-benzoylhexamethylenediamine [Beil. IX-263] via reactn. with PCl<sub>5</sub> and distn. of the resultant bis-(imide chloride) (64% yield (2)), or similarly from N-(benzoyl)hexamethyleneimine [Beil. XX<sub>1</sub>-(27)] (3), see (2) (3); for formn. from hexamethylenediamine [Beil. IV-269] with NOCl (1) or from hexamediol-1,6 diphenyl ether [Beil. VI-148] by htg. with HCl in s.t. at 165-175° see (1).]

① Hexanediol-1,6 diphenyl ether (1,6-diphenoxyhexane) [Beil. VI-148]: cryst. from alc., m.p. 83° (2), 83.0-83.5° cor. (3). [From C on refluxing 12½ hrs. with large excess sodium phenolate in alc. (2) (41% yield (3))]. [The half reactn. prod., ω-chloro-n-hexyl phenyl ether [Beil. VI-144], is an oil, b.p. 164-165° at 11 mm. (4).]

3:8720 (1) Solonina, J. Russ. Phys.-Chem. Soc. 30, 606-632 (1898); Cent. 1899, I 25. (2) von Braun, Ber. 38, 2344-2345 (1905). (3) Muller, Sauerwald, Monatsh. 48, 732 (1927). (4) von Braun, Müller, Ber. 39, 4112-4113 (1906).

B.P. 204°

90-91°

M.P. 42°

at 20 mm. (3)

See 3:0460. Division A: Solids.

3:8725 2-CHLORO-1,3,5-TRIMETHYLBENZENE 
$$C_9H_{11}Cl$$
 Beil. V - 408 (eso-Chloromesitylene)  $CH_3$   $V_1$ —  $V_2$ -(315)  $CH_3$   $CH_3$   $CH_3$   $CH_3$   $CH_3$  B.P. 204-206° (1)  $D_-^{20} = 1.0337$  (2)  $n_D^{20} = 1.52119$  (2) 103.6-103.7° at 25 mm. (2)

 $\bar{C}$  remains liquid down to  $-20^{\circ}$ .  $\bar{C}$  is insol. aq., eas. sol. alc. or ether; volatile with steam but less so than dichloromesitylene.

[For prepn. of  $\bar{C}$  from 1,3,5-trimethylbenzene (mesitylene) (1:7455) with Cl<sub>2</sub> either directly (1) or in CHCl<sub>3</sub> at 0° (75% yield (3)) accompanied by 2,4-dichloro-1,3,5-trimethylbenzene (1) and/or 2,4,6-trichloro-1,3,5-trimethylbenzene, m.p. 209° (3), 204-205° (1)), or from 2,4,6-trimethylphenol (mesitol) (1:1467) with PCl<sub>5</sub> in C<sub>5</sub>H<sub>5</sub> (2) see indic. refs.]

C with fumg. H<sub>2</sub>SO<sub>4</sub> (20% SO<sub>3</sub>) shaken for 15 min. gives 2-chloromesitylenesulfonic acid

(corresp. sulfonyl chloride, oil (3), sulfonamide, m.p. 165.5-166° (3)) but gives no evidence of any Jacobsen rearrangement (3).

Č with fumg. HNO<sub>3</sub> yields (1) (4) mainly 4,6-dinitro-2-chloromesitylene, colorless ndls. from alc., m.p. 178-179° (1), 176.5° (4) [the mononitration prod., 4-nitro-2-chloromesitylene, has m.p. 56-57° (1)].

 $\bar{C}$  on oxidn. with boilg. dil. HNO<sub>3</sub> (1 conc. HNO<sub>3</sub>: 2 aq.) for 30 hrs. yields (1) 4-chloro-3,5-dimethylbenzoic acid ("chloromesitylenic acid") [Beil. IX-536], browns at 220° but does not melt (unsuitable as derivative). [Note that a little 4-nitro-2-chloromesitylene m.p. 56-57° (1), may be formed in this process; furthermore that attempts to oxidize  $\bar{C}$  with  $K_2Cr_2O_7$  + dil.  $H_2SO_4$  yield only acetic acid (1).]

C on oxidn. with aq. KMnO<sub>4</sub> gives (63.5% yield (5)) 2-chlorobenzenetricarboxylic acid-1,3,5 (chlorotrimesic acid) (3:4975), readily sol. cold aq., excessively sol. hot aq., m.p. anhydrous acid 285° (5), monohydrate 278° (6).

S:8725 (1) Fittig, Hoogewerff, Ann. 150, 323-329 (1869). (2) Brown, de Bruyne, Gross, J. Am. Chem. Soc. 56, 1291 (1934). (3) Smith, Moyle, J. Am. Chem. Soc. 58, 1, 4, 7 (1936). (4) Anschutz, Boedeker, Ann. 454, 108 (1927). (5) Davies, Wood, J. Chem. Soc. 1928, 1126-1127. (6) Ost, J. prakt. Chem. (2) 15, 310 (1877).

3: 8727 ETHYL &-CHLORO-
$$n$$
-VALERATE  $C_7H_{13}O_2Cl$  Beil. II - 302  $CH_2.CH_2.CH_2.CH_2.COOC_2H_5$   $II_1$ —  $II_2$ -(268)

B.P. 205-206° (1)
120-125° at 40 mm. (2)
93° at 16 mm. (5)
83.5-85° at 8 mm. (4)
83° at 8 mm. (3)

[For prepn. of  $\tilde{C}$  from  $\delta$ -chloro-n-valeric acid (3:0075) with EtOH + dry HCl see (1) (2) (3) (4); from  $\delta$ -ethoxy-n-valeryl chloride (5) on htg. with 0.7% conc. H<sub>2</sub>SO<sub>4</sub> at 100° for 5 hrs. see (5).]

[For reactn. of  $\bar{C}$  with diethyl sodio-ethylmalonate see (2); for rate of reactn. of  $\bar{C}$  with KI in acctone at 50° see (3).]

Neither  $\bar{C}$  nor its halogen is rapidly hydrolyzed by cold aq. 10% NaOH (3) (use in sepn. of  $\bar{C}$  from phenol (3)).

3:8727 (1) Funk, Ber. 26, 2574-2575 (1893). (2) Mellor, J. Chem. Soc. 79, 132 (1901). (3) Conant, Kirner, J. Am. Chem. Soc. 46, 244-245, 249 (1924). (4) Cheney, Piening, J. Am. Chem. Soc. 67, 733 (1945). (5) Prelog, Heimbach-Juhasz, Ber. 74, 1704 (1941).

```
3: 8730 ISOAMYL \beta-CHLOROPROPIONATE C_8H_{16}O_2Cl Beil. II — iso-C_5H_{11}O.CO.CH_2.CH_2Cl II<sub>1</sub>-(111) II<sub>2</sub>-(227)

B.P. 207-208° at 740 mm. (1) D_4^{20} = 1.0171 (3) n_D^{20} = 1.4343 (3) 121° at 30 mm. (4) 87° at 12 mm. (2) D_4^{15} = 1.0419 (4) n_D^{11} = 1.4380 (4)
```

87° at 12 mm. (2)  $D_4^{15} = 1.0419$  (4)  $n_D^{11} = 1.4380$  (4) [For prepn. (97% yield (2), 90% yield (1)) from isoamyl alc. (1:6200) +  $\beta$ -chloro-

propionic ac. (3:0460) see (1) (2).]  $\ddot{C}$  on htg. at 220° with diethylaniline gives (poor yield (4)) isoamyl acrylate, b.p. 157–159° at 756 mm.,  $n_D^{12}=1.4287$  (4).

D Isoamyl β-(phthalimido) propionate: from  $\tilde{C}$  in 70% yield on htg. with potassium phthalimide in s.t. at 130° for 1 hr.; prod. repeatedly extracted with dry ether and solvent evapd.; cryst. from alc., m.p. 61° (1). [This product on shaking with 12 pts. HBr (48%) at 40° yields β-phthalimidopropionic acid (40% yield), cryst. from aq., m.p. 150-151° (4).]

3:8730 (1) Hale, Britton, J. Am. Chem. Soc. 41, 844-845 (1919). (2) Fichter, Schnider, Helv. Chim. Acta 14, 857 (1931). (3) Schjanberg, Z. physik. Chem. A-172, 231 (1935). (4) Moureu, Murat, Tampier, Ann. chim. (9) 15, 247, 251 (1921).

3: 8735 o-CHLOROPHENETOLE (o-Chlorophenyl ethyl ether)  $C_8H_9OCl$  Beil. VI - 184 VI—

B.P. 210.3° (1) 
$$D_4^{25} = 1.1288$$
 (5)  $n_D^{25} = 1.5284$  (5)  $208^{\circ}$  (2)  $D_{242}^{242} = 1.12993$  (1)  $n_{H\alpha_1}^{242} = 1.52333$  (1)  $n_{H\alpha_1}^{242} = 1.54014$  (1)

Colorless oil, volatile with steam.

[For prepn. from 3-chloro-4-ethoxyaniline [Beil. XIII-511, XIII<sub>1</sub>-(181)] by replacement of -NH<sub>2</sub> group with H via diazo reaction see (3).]

 $\tilde{C}$  added dropwise to 2 pts. HNO<sub>3</sub> (D=1.38) with cooling, then poured into aq., yields (3) 2-chloro-4-nitrophenetole [Beil. VI-240], yel. ndls. from alc. + lgr., m.p. 82° (3).

3-Chloro-4-ethoxybenzenesulfonamide: cryst. from dil. alc., m.p. 132-133° u.c. (4). [From \(\bar{C}\) by treatment with chlorosulfonic ac. followed by conversion of the intermediate sulfonyl chloride to the sulfonamide by treatment with (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> (73% yield (4)).] [Note that this prod. depresses the m.p. of the corresponding deriv. (m.p. 134-134.5°) from p-chlorophenetole (3:0090) (4).]

3:8735 (1) Swarts, J. chim. phys. 20, 75-76 (1923). (2) Beilstein, Kurbatow, Ann. 176, 39 (1875). (3) Reverdin, During, Ber. 32, 155-156 (1899). (4) Huntress, Carten, J. Am. Chem. Soc. 62, 603-604 (1940). (5) Anzilotti, Curran, J. Am. Chem. Soc. 65, 609 (1943).

--- d,l- $\alpha$ -CHLORO-ISOVALERIC ACID  $C_6H_9O_2Cl$  Beil. II - 316  $II_1$ --  $II_2$ --  $II_2$ --

B.P. 210-212° at 756 mm. M.P. 16°  $D_{-}^{13.2} = 1.135$   $n_{-}^{11} = 1.44496$ 

See 3:0050. Division A: Solids.

— p-CHLOROPHENETOLE Cl OC<sub>2</sub>H<sub>5</sub> C<sub>8</sub>H<sub>9</sub>OCl Beil. VI - 187 VI<sub>1</sub>-(101) VI<sub>2</sub>-(176)

B.P. 211.6° cor. M.P. 20-21°  $D_{20.2}^{20.2} = 1.12310$   $n_{\rm D}^{19} = 1.5227$ 

See 3:0090. Division A: Solids.

--- α-CHLOROCROTONIC ACID 
$$CH_3$$
--C--H  $C_4H_5O_2Cl$  Beil. II - 414  $\Pi_1$ -(189)  $\Pi_2$ -(395)

B.P. 212°

M.P. 99-100°

See 3:2760. Division A: Solids.

3:8737 1-CHLORO-3-PHENYLPROPENE-1 
$$C_9H_9Cl$$
 Beil. V —  $V_1$ —  $V_2$ —chloroallylbenzene;  $V_1$ —  $V_2$ —CH=CH  $V_2$ —CH=CH  $V_2$ —CH=CH  $V_3$ — $V_4$ —

Liquid with penetrating odor suggesting benzene.

[For prepn. of  $\bar{C}$  from 1,3-dichloropropene-1 (3:5280) with  $C_6H_6$  + AlCl<sub>3</sub> (3), or with  $C_6H_5MgBr$  in toluene (1) (4) or ether (2) (alm. quant. yield (1)), see indic. refs.]

 $\bar{C}$  with PCl<sub>5</sub> gives on warming (by addition to  $\bar{C}$  of 2 atoms chlorine) alm. quant. yield (5) of 3-phenyl-1,1,2-trichloropropane, b.p. 135–136° at 13 mm.,  $D_4^{23}=1.293, n_D^{23}=1.553$  (5).

 $\bar{C}$  with Br<sub>2</sub> adds similarly giving (1) (4) 1-chloro-1,2-dibromo-3-phenylpropane, b.p. 160° at 12 mm.,  $D_4^{10} = 1.727$ ,  $n_D^{10} = 1.611$  (4) (for use of this prod. in prepn. of hydrocinnamaldehyde (1:0225) see (6)).

[ $\bar{C}$  resists hydrolysis and is unchanged even after several hours with aq. + PbO in s.t. at 200° (1) (4); however,  $\bar{C}$  with KOH (3 moles) in abs. alc. on refluxing at 130–135° is readily converted (by reactn. of the  $\omega$ -chlorine atom and rearr. or vice versa) into cinnamyl ethyl ether ( $\gamma$ -ethoxyallylbenzene) [Beil. VI-571, VI<sub>1</sub>-(281)], b.p. 127–128° at 22 mm.,  $D_4^{15} = 0.970$ ,  $n_5^{15} = 1.547$  (1) (4), which by cleavage with HCl under press. gives (7) cinnamyl chloride (3:0010) q.v.]

[C with Na (4 moles) in boilg. tolucne gives (8) propenylbenzene (β-methylstyrene) [Beil. V-481, V<sub>1</sub>-(371)], b.p. 176°, neither methyl phenylacetylene nor benzylacetylene being formed.]

 $[\bar{C} \text{ with NaNH}_2 \text{ in high-boilg. pet. at } 105-110^\circ \text{ gives } (75\% \text{ yield (9)) (10) (11) benzylacetylene [Beil. V<sub>2</sub>-(408)], b.p. abt. 166° at 760 mm. (with resinification).]$ 

3:8737 (1) Bert, Bull. soc. chim. (4) 37, 879-881 (1925). (2) von Braun, Kuhn, Ber. 58, 2171 (1925). (3) Bert, Compt. rend. 213, 619-620 (1941); Cent. 1942, II 30-31; C.A. 37, 4373 (1943). (4) Bert, Compt. rend. 180, 1504-1506 (1925). (5) Bert, Annequin, Compt. rend. 192, 1107-1108 (1931). (6) Bert, Compt. rend. 215, 356-357 (1942); C.A. 38, 3633 (1944). (7) Bert, Dorier, Compt. rend. 191, 332-333 (1930); Cent. 1930, II 2376; C.A. 24, 5739 (1930). (8) Bert, Raynaud, Compt. rend. 191, 454-455 (1930); Cent. 1930, II 3544; C.A. 25, 89 (1931). (9) Bert, Dorier, Bull. soc. chim. (4) 39, 1611-1612 (1926). (10) Bourgeul, Bull. soc. chim. (4) 41, 192-193 (1927). (11) Bert, Dorier, Bull. soc. chim. (4) 41, 1171-1173 (1927).

[For prepn. of  $\tilde{C}$  from o-toluic acid (1:0690) with PCl<sub>5</sub> (10) (yield:100% (3), 75% (13)), with PCl<sub>5</sub> in CHCl<sub>3</sub> (7), with PCl<sub>3</sub> at 110° (14), with POCl<sub>3</sub> (6) or POCl<sub>3</sub>+ alk. chloride (15), with SOCl<sub>2</sub> (11) (yield:100% (9), 95% (2), 92% (26), 89% (4)) see indic. refs.; for prepn. of  $\tilde{C}$  from o-toluic anhydride (see below) with PCl<sub>5</sub> in POCl<sub>3</sub> see (7).]

 $\tilde{C}$  with pyridine + excess  $K_2S_2O_5$  yields (16) o-toluic anhydride, m.p. 39° (16) (7), 36–37° (17).

[For Friedel-Crafts reactn. of  $\tilde{C}$  + AlCl<sub>3</sub> + various hydrocarbons to yield corresp. ketones, e.g., with  $C_6H_6$  (5) (6) (18), with toluene (19), with naphthalene (9), with phenanthrene (20), with acenaphthene (4), etc., see indic. refs.;  $\tilde{C}$  with MeZnI gives (75% yield (21)) methyl o-tolyl ketone.]

[For studies of rate of reactn. of  $\bar{C}$  with MeOH (22) (23), with EtOH (12) see indic. refs.] [For actn. of Br<sub>2</sub> on  $\bar{C}$  see (2); for reactn. of  $\bar{C}$  with diethyl sodiomalonate see (24); for sulfonation of  $\bar{C}$  see (25); for behavior of  $\bar{C}$  with  $C_6H_5MgBr$  in ether  $+ C_0Br_2$  see (26).]

 $\tilde{\mathbf{C}}$  on hydrolysis yields o-toluic acid (1:0690), m.p. 104° (for the amide, anilide, p-toluidide, and other derivatives corresp. to  $\tilde{\mathbf{C}}$  see 1:0690).

3:8740 (1) Kohlrausch, Pongratz, Stockmair, Monatsh. 67, 107 (1936). (2) Davies, Perkin, J. Chem. Soc. 121, 2207 (1922). (3) van Scherpenzeel, Rec. trav. chim. 20, 169 (1901). (4) Guyer, Zuffanti, J. Am. Chem. Soc. 57, 1787-1788 (1935). (5) Ador, Filliet, Ber. 12, 2301 (1879). (6) Reddelien, Ber. 48, 1468 (1915). (7) Klages, Lickroth, Ber. 62, 1561 (1889). (8) Hayashi, J. prakt. Chem. (2) 123, 300 (1929). (9) Mayer, Fleckenstein, Gunther, Ber. 63, 1470 (1930). (10) Cohen, Dudley, J. Chem. Soc. 97, 1749 (1910).

(11) Thompson, Norris, J. Am. Chem. Soc. 58, 1955 (1936). (12) Norris, Young, J. Am. Chem. Soc. 57, 1420-1424 (1935). (13) Tanner, Lasselle, J. Am. Chem. Soc. 48, 2164 (1926). (14) Frankland, Wharton, J. Chem. Soc. 69, 1311 (1896). (15) Kissling (to I.G.), Ger. 642,519, March 10, 1937; Cent. 1937, I 3874; C.A. 31, 5816 (1937). (16) Gasopoulos, Praktika Acad. Athenon 6, 347-353 (1931). (17) Adams, Wirth, French, J. Am. Chem. Soc. 49, 426 (1918). (18) Diesbach, Strebel, Helv. Chem. Acta 8, 561 (1925). (19) Mauthner, J. prakt. Chem. (2) 163, 393 (1921). (20) Clar, Ber. 62, 358 (1929).

(21) Ruzicka, Ehmann, Helv. Chim. Acta 15, 150 (1932). (22) Norris, Fasce, Staud, J. Am. Chem. Soc. 57, 1415-1420 (1935). (23) Ott, Ber. 55, 2123 (1922). (24) Mercer, Robertson, J. Chem. Soc. 1936, 292. (25) Meiser (to General Aniline and Film Corp.), U.S. 2,273,974, Feb. 24, 1942; C.A. 36, 3809 (1942). (26) Kharasch, Nudenberg, Archer, J. Am. Chem. Soc. 65, 497 (1943).

210-215° (2) 102-106° at 14 mm. (2) [For prepn. of  $\bar{\mathbf{C}}$  from  $\alpha,\beta$ -dichloroisopropylbenzene ( $\alpha$ -methylstyrene dichloride) [Beil. V-395] with alc. KOH see (2); from  $\beta$ -chloro- $\alpha$ -hydroxyisopropylbenzene [Beil. VI-507] on distn. at ord. press. (3) or by htg. with oxalic acid (2) see indic. refs.; from the lower-melting stereoisomer of  $\beta$ -methylcinnamic acid [Beil. IX-614, IX<sub>1</sub>-(254)] with HOCl see (2).]

3:8742 (1) Tiffeneau, Compt. rend. 138, 986 (1904). (2) Tiffeneau, Ann. chim. (8) 16, 163, 173, 180 (1907). (3) Tiffeneau, Compt. rend. 134, 775 (1902).

3: 8745 
$$\gamma_{\gamma\gamma'}$$
-DICHLORO-DI- $n$ -PROPYL ETHER  $C_0H_{12}$ OCl<sub>2</sub> Beil. S.N. 24 (bis- $(\gamma$ -Chloro- $n$ -propyl)ether) ClCH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub> ClCH<sub>2</sub>.CH<sub>2</sub>

ClCH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>

B.P. 215° at 745 mm. (1)  $D_{20}^{20} = 1.140$  (1) 93-95° at 18 mm. (2)

[For prepn. (10-15% yield (1)) from trimethylene chlorohydrin (3:8285) by refluxing with dil.  $H_2SO_4$  see (1).]

3:8745 (1) Kamm, Newcomb, J. Am. Chem. Soc. 43, 2228-2229 (1921). (2) Eastman Org. Chem. List No. 33 (1942).

```
B.P. F.P. 215.35° at 760 mm. (1) -60.5° (1) D_4^{25} = 0.93780 (1) 220° at 749 mm. (2) D_4^{20} = 0.94206 (1) D_4^{15} = 0.94633 (1) n_{\text{Hex}}^{15} = 1.43802 (1) 93° at 11 mm. (4) 89° at 6 mm. (5)
```

[For prepn. of  $\tilde{C}$  from pelargonic acid (n-nonanoic acid) (1:0560) with PCl<sub>5</sub> (3) (65% yield (6)), with PCl<sub>5</sub> (2) (72% yield (1)), with PCl<sub>5</sub> + ZnCl<sub>2</sub> (93% yield (6)), or with SOCl<sub>2</sub> (yield 93.5% (4), 85% (6)) see indic. refs.]

[For reactn. of  $\tilde{C}$  with toluene + AlCl<sub>3</sub> to give corresp. ketone see (7), with AlCl<sub>3</sub> + anisole to give corresp. ketone see (8), with ethyl sodio-acetoacetate and hydrolysis to methyl *n*-octyl ketone (decanone-2) see (9), with K carbazole to yield *N*-(*n*-nonyl)carbazole, m.p. 72-73°, see (10), with vanillylamine see (5).]

[Č with AlCl<sub>3</sub> + phenol yields (11) 55% o-(n-nonanoyl)phenol, b.p. 180° at 10 mm., m.p. 18.4°,  $D_D^{24} = 0.9887$ ,  $n_D^{255} = 1.5139$  (11) (semicarbazone, m.p. 164° (11), and 35% p-(n-nonanoyl)phenol, m.p. 54.5°, b.p. 232° at 10 mm. (benzoate, m.p. 99.8° (11)).]

 $\bar{\mathbf{C}}$  on hydrolysis yields pelargonic acid (1:0560) q.v. (for the amide, anilide, *p*-toluidide, and other derivatives corresp. to  $\bar{\mathbf{C}}$  see 1:0560).

3:8765 (1) Deffet, Bull. soc. chim. Belg. 40, 389-396 (1931). (2) Henry, Bull. acad. roy. Belg. (3) 37, 63-72 (1899); Cent. 1899, I 968; Rec. trav. chim. 18, 253-254 (1899). (3) Krafft, Koenig, Ber. 23, 2384 (1890). (4) Fierz-David, Kuster, Helv. Chim. Acta 22, 86-89 (1939). (5) Ford-Moore, Phillips, Rec. trav. chim. 53, 855 (1934). (6) Clark, Bell, Trans. Roy. Soc. Can. (3) 27, III 97-103 (1933). (7) Hasan, Stedman, J. Chem. Soc. 1931, 2117. (8) Skraup, Nieten, Ber. 57, 1302-1303 (1924). (9) Asahina, Nakayama, J. Pharm. Soc. Japan 1925, No. 526, 3-5; Cent. 1926, I 2670. (10) Copisarow, J. Chem. Soc. 113, 818 (1918).

(11) Sandulesco, Girard, Bull. soc. chim. (4) 47, 1310 (1930).

M.P. 48-49°

See 3:0765. Division A: Solids.

3:8770 3-CHLORO-4-ISOPROPYL-1-METHYLBENZENE C10H13Cl Beil. V - 423 (3-Chloro-p-cymene) **V**1--- $V_{2}$ -(326)

B.P. 217.1° at 760 mm. (1) 
$$D_4^{18} = 1.01799$$
 (5)  $213-214^\circ$  cor. at 735.6 mm. (2)  $n_D^{18} = 1.51796$  (5)  $214^\circ$  at 760 mm. (3)  $120-122^\circ$  at 20 mm. (4) (5)

[For prepn. of C from thymol (3-hydroxy-p-cymene) (1:1430) with PCl<sub>5</sub> see (1) (4) (5) (6); for prepn. of C from 2-bromo-p-cymene [Beil. V-423, V<sub>1</sub>-(205)] by chlorination to 5-chloro-2-bromo-p-cymene [Beil. V-424] followed by replacement of Br by H with Zn/Cu at 200° (7) or in alc. alk. (8) see (7) (8); for prepn. of C from 3-chloromenthadiene dibromide by elimination of 2 HBr with quinoline see (3).

 $[\bar{C} \text{ on oxidn. with 15 pts. boilg. dil. HNO}_3 (D = 1.24) gives (2) a mixt. of 3-chloro-4$ isopropylbenzoic acid (3-chlorocuminic acid) [Beil. IX-549], m.p. 122-123°, 2-chloro-4methylbenzoic acid (2-chloro-p-toluic acid) (3:4355), m.p. 155°, and 2-chloroterephthalic acid (3:4995), m.p. about 320°.]

 $[\bar{C}]$  on mononitration with 6 pts. conc. HNO<sub>3</sub> (D=1.48) below 15° for 3-4 hrs. as directed (4) yields 6-nitro-3-chloro-p-cymene = 2-nitro-5-chloro-p-cymene [Beil. V-424], oil, b.p. 142-150° at 13 mm. (4) (which with piperidine for 30 min. at 100° yields (4) 2-nitro-5piperdino-p-cymene, oil, b.p. 146-148° at 32 mm. (4)).

 $\bar{C}$  on dinitration by adding to 10 pts. conc. HNO<sub>3</sub> (D=1.5) below  $-5^{\circ}$  during 15 min., then poured onto ice, yields (4) (9) a mixt. from which can be isolated 2,6-dinitro-3-chlorop-cymene, m.p. 105-106° (9), 102.5-103.5° (4) (which with piperidine (5 pts.) at 100° for 1½ hrs. yields 2,6-dinitro-3-piperidino-p-cymene, pale yel. ndls. from alc., m.p. 126-127° (9), 123-124° (4)).

[During this dinitration of C there is also formed a by-prod. formerly (4) supposed to be 2-chloro-3,5-dinitro-4-methylacetophenone but more recently (10) shown to be 3-chloro-4.6-dinitrotoluene, m.p. 90.0-90.5° (10); this prod. with piperidine gives (10) 3-piperidino-4.6-dinitrotoluene, m.p. 116-116.5° (10).]

3:8770 (1) Kobe, Okabe, Ramstad, Huemmer, J. Am. Chem. Soc. 63, 3251-3252 (1941). Fileti, Crosa, Gazz. chim. ital. 16, 288 (1886). (3) Junger, Klages, Ber. 29, 316 (1896). (4) Ganguly, R. J. W. LeFevre, J. Chem. Soc. 1934, 848-852. (5) C. G. LeFevre, R. J. W. LeFevre, R. W. Le K. W. Robertson, J. Chem. Soc. 1935, 483. (6) Vongerichten, Ber. 11, 364-369 (1878). (7)
 Frisch, Ger. 615,470, July 5, 1935; Cent. 1936, I 883; C.A. 29, 6252 (1935). (8) Livak, Carlson (to Dow Chem. Co.), U.S. 2,192,613, March 5, 1940; C.A. 34, 4396 (1940). (9) Qvist, Moilanen, Acta Acad. Aboensis, Math. et Phys. 13, No. 12, 10 pp. (1942); Cent. 1942, II 1337-1338; C.A. 37, 6254 (1943). (10) Qvist, Moilanen, Acta Acad. Aboensis, Math. et Phys. 14, No. 3, 9 pp. (1943); Cent. 1943, II 1268-1269; C.A. 38, 5491 (1944).

3:8775 2-CHLORO-4-ISOPROPYL-1-METHYLBENZENE  $C_{10}H_{13}Cl$  Beil. V - 423 (2-Chloro-p-cymene) (CH<sub>3</sub>)<sub>2</sub>CH CH<sub>3</sub>  $V_1$  -  $V_2$ -(325)

| B.P. 217.6°   | at 760 mm. | (1)     | $D_4^{17} = 1.0208$ | (5)                                |
|---------------|------------|---------|---------------------|------------------------------------|
| 216-218°      | at 762 mm. | (2) (3) | 1.0152 (?)          | (2)                                |
| 216-218° cor. | at 746 mm. | (4)     |                     | $n_{\rm D}^{17} = 1.51776 (5) (2)$ |
| 216-217°      | at 761 mm. | (5)     |                     |                                    |
| 215-218°      |            | (6)     |                     |                                    |
| 214-216°      |            | (7)     |                     |                                    |
| 213-216°      |            | (8)     |                     |                                    |
| 213-214°      | at 764 mm. | (9)     |                     |                                    |
| 117°          | at 35 mm.  | (4)     |                     |                                    |
| 103-105°      | at 19 mm.  | (10)    |                     |                                    |
| 85-90°        | at 5 mm.   | (6)     |                     |                                    |

[For prepn. of  $\tilde{C}$  from carvacrol (2-hydroxy-p-cymene) (1:1760) with PCl<sub>5</sub> see (1) (11); from p-cymene (1:7505) with Cl<sub>2</sub> in pres. of I<sub>2</sub> (9) (3) (12) (8) (17) or Fe (6) (17) see indic. refs.; from 2-amino-p-cymene (cymidine) (carvacrylamine) [Beil. XII-1171, XII<sub>1</sub>-(506)] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reactn. see (2) (9); from carvone (1:5540) (13) or eucarvone [Beil. VII-151, VII<sub>1</sub>-(99)] (13) or carvenone [Beil. VII-78, VII<sub>1</sub>-(66)] (10) with PCl<sub>5</sub> (cf. (14) (15)) see indic. refs.]

C on oxidn. with boilg. dil. HNO<sub>3</sub> yields (12) (8) (11) (10) 3-chloro-4-methylbenzoic acid (3-chloro-p-toluic acid) (3:4900), m.p. 199° (10), 196° (8), 194-195° (12).

 $\bar{C}$  on dinitration with 10–12 pts. HNO<sub>3</sub> (D=15) below 0° (2) (16) (18) or with a mixt. of conc. or fumg. HNO<sub>3</sub> + fumg. H<sub>2</sub>SO<sub>4</sub> as directed (2) (8) (6) yields 5,6-dinitro-2-chloro-p-cymene, cryst. from AcOH (2), dil. AcOH (2), EtOH (6), or dil. MeOH (16), m.p. 111.0–111.5° cor (18), 109.5–110.5° (2), 109.5° (8), 108–109° (6). [This prod. refluxed with 5–10 pts. piperidine for 20–60 min. at 100° gives 3,5-dinitro-2-piperidino-p-cymene, yel. ndls. from AcOH (2) or from dil. alc. (18) (16), m.p. 123–124° (16), 122.5–123.5° (18), 122–123° (2).] [Note that the original structure assigned by (6) to dinitro- $\bar{C}$  has been confirmed by (18) despite intermediate contrary views (2) (16).]

[ $\bar{C}$  with Br<sub>2</sub> + Fe at ord. temp. yields (17) 5-bromo-2-chloro-p-cymene, b.p. 247° (17).]

3:8775 (1) Kobe, Okabe, Ramstad, Huemmer, J. Am. Chem. Soc. 63, 3251-3252 (1941). (2) Ganguly, R. J. W. LeFevre, J. Chem. Soc. 1934, 852-854. (3) Ganguly, R. J. W. LeFevre, J. Chem. Soc. 1934, 1699. (4) Fileti, Crosa, Gazz. chim. ital. 18, 299 (1888). (5) C. G. LeFevre, R. J. W. LeFevre, K. W. Robertson, J. Chem. Soc. 1935, 480-488. (6) Lubs, Young, J. Ind. Eng. Chem. 11, 1130-1133 (1919). (7) Junger, Klages, Ber. 29, 315 (1896). (8) Hintikka, Ann. Acad. Sci. Fennicae 19-A, No. 10, 6 pp. (1923), C.A. 19, 42 (1925). (9) R. J. W. LeFevre, J. Chem. Soc. 1933, 980-984. (10) Marsh, Hartridge, J. Chem. Soc. 73, 854-855 (1898).

(11) Fleischer, Kehulé, Ber. 6, 1090 (1873).
(12) Vongerichten, Ber. 10, 1249-1252 (1877).
(13) Klages, Kraith, Ber. 32, 2554, 2558, 2560 (1899).
(14) Semmler, Ber. 41, 4478 (1908).
(15) Wallach, Ann. 368, 15 (1909).
(16) R. J. W. LeFevre, J. Chem. Soc. 1933, 980.
(17) Varma, Srinivasan, J. Indian Chem. Soc. 13, 190-191 (1936).
(18) Qvist, Kajander, Acta Acad. Aboensis, Math. et Phys. 13, No. 10, 16 pp. (1942); Cent. 1942, II 26-28; C.A. 37, 4370-4372 (1943).

— p-CHLOROPHENOL CIOH C<sub>6</sub>H<sub>5</sub>OCl Beil. VI - 186 VI<sub>1</sub>-(100) VI<sub>2</sub>-(174)

B.P. 218-219° M.P. 42-43°

See 3:0475. Division A: Solids.

3: 8777 
$$\gamma$$
-PHENYL- $n$ -PROPYL CHLORIDE  $\gamma$ -Chloro- $n$ -propylbenzene, hydrocinnamyl chloride)  $\gamma$ -CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.Cl  $\gamma$ -CH<sub>2</sub>.CH<sub>2</sub>.Cl  $\gamma$ -CH<sub>2</sub>.Cl  $\gamma$ -CH<sub>2</sub>.CH<sub>2</sub>.Cl  $\gamma$ -CH<sub>2</sub>.Cl  $\gamma$ -CH<sub>2</sub>.CH<sub>2</sub>.Cl  $\gamma$ -CH<sub>2</sub>.Cl  $\gamma$ -CH<sub>2</sub>.CH<sub>2</sub>.Cl  $\gamma$ -CH<sub>2</sub>.Cl  $\gamma$ -CH<sub>2</sub>.CH<sub>2</sub>.Cl  $\gamma$ -CH<sub>2</sub>.Cl  $\gamma$ -Cl  $\gamma$ -Cl

[For prepn. of  $\bar{C}$  from  $\gamma$ -phenyl-n-propyl alc. (hydrocinnamyl alc.) (1:6520) with fumg. HCl in s.t. at 130° (1) (15) or 140–150° (3), or in s.t. at 100° for 8 hrs. (77% yield (5)), or with ZnCl<sub>2</sub> + conc. HCl (40% yield (8)) (2) see indic. refs.; with SOCl<sub>2</sub> in ether (82% yield (9)) or pyridine (48.5% yield (10)) or dimethylaniline (70.5% yield (10)) see indic. refs. (for intermediate formn. of  $\gamma$ -phenyl-n-propyl chlorosulfite and bis-( $\gamma$ -phenyl-n-propyl) sulfite in this reactn. see (11)); from  $\gamma$ -chloro-n-propyl p-toluenesulfonate (2 moles) with C<sub>6</sub>H<sub>5</sub>MgBr in ether (yield: 62% (6), 31% (12)) see indic. refs.; from C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>MgCl with di-( $\beta$ -chloroethyl) sulfate in ether (66% yield) see (4); from o-( $\gamma$ -chloro-n-propyl)-aniline via diazotization and treatment with alk. + SnCl<sub>2</sub> (75% yield (3)) (13) see indic. refs.; from N-methyl-n-( $\gamma$ -phenyl-n-propyl)benzamide with PCl<sub>5</sub> see (14).]

Č is not decomposed on boilg. with ZnCl<sub>2</sub> and does not react at 100° with AgOAc (1).

[ $\bar{\mathbf{C}}$  boiled for 8 hrs. with excess 5% NaOMe in MeOH gives (86% yield (15))  $\gamma$ -phenyl-n-propyl methyl ether [Beil. VI<sub>1</sub>-(252)], b.p. 206.5° at 758.5 mm. u.c., b.p. 100–102° at 20 mm. (15);  $\bar{\mathbf{C}}$  with KOH in EtOH refluxed 2 hrs. gives (1)  $\gamma$ -phenyl-n-propyl ethyl ether [Beil. VI-503], b.p. 224° cor.;  $\bar{\mathbf{C}}$  boiled several hours with excess conc. alc. NaOC<sub>6</sub>H<sub>5</sub> gives (100% yield (3))  $\gamma$ -phenyl-n-propyl phenyl ether [Beil. VI-504, VI<sub>1</sub>-252], b.p. 182–183° at 17 mm. (3).]

[ $\tilde{\mathbf{C}}$  on boilg. several hours with alc. NaI yields (3)  $\gamma$ -phenyl-n-propyl iodide, b.p. 137–140° at 20 mm. (3) (for rate of reactn. of  $\tilde{\mathbf{C}}$  with KI in acctone at 50° see (5)).]

[Č with activated Mg in dry ether gives (98% yield (9)) C<sub>6</sub>H<sub>5</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.MgCl; for reactn. of this RMgCl cpd. with various carbonyl cpds., e.g., acrolein (10), ethyl phenyl ketone (9), or cyclopentanone (16), see indic. refs.]

[C with AlCl<sub>3</sub> in CS<sub>2</sub> or lgr. gives (17) about 10% hydrindene (1:7511), b.p. 177°, together with other products.]

[ $\bar{\mathbf{C}}$  on mononitration with 4 vols. HNO<sub>3</sub> (D=1.5) below  $-10^\circ$  gives over 90% yield (18) of  $\gamma$ -(p-nitrophenyl)-n-propyl chloride [Beil. V<sub>1</sub>-191], b.p. 176–180° at 15 mm. with sl. dec. (18).]

3:8777 (1) Errera, Gazz. chim. ital. 16, 313-314 (1886). (2) Goebel, Wenzke, J. Am. Chem. Soc. 60, 698 (1938). (3) von Braun, Ber. 43, 2841-2842 (1910). (4) Suter, Evans, J. Am. Chem. Soc. 60, 536-537 (1938). (5) Conant, Kirner, J. Am. Chem. Soc. 46, 242, 249 (1924). (6) Rossander. Marvel, J. Am. Chem. Soc. 50, 1495 (1928). (7) Dunstan, Hiditch, Thole, J. Chem. Soc. 103, 140 (1913). (8) Norris, Taylor, J. Am. Chem. Soc. 46, 756 (1924). (9) Gilman, Harris, J. Am. Chem. Soc. 54, 2075 (1932). (10) Cohen, J. Chem. Soc. 1935, 433.

(11) Carré, Libermann, Compt. rend. 198, 274-276 (1934). (12) Gilman, Beaber, J. Am. Chem. Soc. 45, 842 (1923). (13) Merck, Ger. 239,076, Oct. 9, 1911; Cent. 1911, II 1393. (14) von Braun, Aust, Ber. 49, 507 (1916). (15) Straus, Berkow, Ann. 401, 151 (1913). (16) Denissenko, Ber. 69, 2186 (1936). (17) von Braun, Deutsch, Ber. 45, 1269 (1912).

**B.P. 220°** 

53°

M.P. 28°

1 mm. (8)

at

See 3:0165. Division A: Solids.

3:8780 NEOPHYL CHLORIDE (1) 
$$C_{10}H_{13}Cl$$
 Beil. V —  $(\beta\text{-Chloro-}ter\text{-butyl})\text{benzene};$   $(\beta\text{-chloro-}\alpha,\alpha\text{-dimethyl})\text{ethylbenzene}$   $CH_3$   $V_1$ —  $C_2$   $CH_2Cl$   $CH_3$   $V_2$ -(320)  $CH_3$   $C_2$   $CH_3$   $C_2$   $CH_3$   $C_3$   $C_4$   $C_4$   $C_4$   $C_5$   $C_5$   $C_5$   $C_6$   $C_7$   $C_8$   $C_9$   $C_9$ 

[For prepn. of  $\bar{C}$  from benzene (1:7400) + methallyl chloride (3-chloro-2-methylpropene-1) (3:7145) by condensation in presence of conc. H<sub>2</sub>SO<sub>4</sub> (68% yield (1)) or HF (66% yield (2)) see (1) (2); for formn. from *ter*-butylbenzene (1:7460) by treatment with SO<sub>2</sub>Cl<sub>2</sub> see (3); for formn. from corresp. alc. (2-methyl-2-phenylpropanol-1) with SOCl<sub>2</sub> see (5) (4).]

C htd. with 13% alc. KOH at 86° for 24 hrs. is unchanged (2); C refluxed 11½ hrs. with NaOEt in abs. alc. (1) or refluxed 9½ hrs. with pyridine (1) is recoverable to extent of 87-88% (1).

[For study of behavior of  $\bar{C}$  with Na, Na in liq. NH<sub>3</sub>, NaEt, NaNH<sub>2</sub>, etc., or on pyrolysis see (1).]

 $\bar{C}$  with sublimed Mg (not comml. Mg even after activation) + a trace of I<sub>2</sub> yields (3) neophyl MgCl; this RMgCl on oxidation with O<sub>2</sub> gives (71.6% yield (1)) the corresp. alc., 2-methyl-2-phenylpropanol-1, b.p. 131° at 30 mm. (1), 122-123° at 20 mm. (5),  $n_D^{20}$  = 1.5261 (N-phenylcarbamate, m.p. 59-60° (5), 59.5-60.5° (1); N-( $\alpha$ -naphthyl)carbamate, m.p. 91.5-92.5° (1)). [For behavior of  $\bar{C}$  with C<sub>6</sub>H<sub>5</sub>MgBr in pres. of CoBr<sub>2</sub> see (8).]

- $\oplus$   $\beta$ -Phenylisovaleric acid: cryst from pet. eth., m.p. 57.5-58.5° (6), 58-59.5° (1). [From RMgCl on carbonation and subsequent hydrolysis; yield 81.6% (1).]
- β-Phenylisovaleranilide: m.p. 122-123° (3), 121-123° (6) [from RMgCl by reactn. with phenyl isocyanate (3)].
- p-Acetamino-(β-chloro-ter-butyl) benzene: m.p. 155-156° (7). [From C by nitration, reduction, and acetylation (7).]

3:8780 (1) Whitmore, Weisgerber, Shabica, J. Am. Chem. Soc. 65, 1469-1471 (1943). (2) Calcott, Tinker, Weinmayr, J. Am. Chem. Soc. 61, 1012 (1939). (3) Kharasch, Brown, J. Am. Chem. Soc. 61, 2147-2148 (1939). (4) Haller, Ramart, Compt. rend. 174, 1212; Cent. 1922, III 545. (5) Haller, Bauer, Ann. chim. (9) 9, 10-14 (1918). (6) Hoffmann, J. Am. Chem. Soc. 51, 2547 (1929). (7) Ipatieff, Schmerling, J. Am. Chem. Soc. 67, 1624 (1945). (8) Urry, Kharasch, J. Am. Chem. Soc. 66, 1438-1440 (1944).

3:8783  $d_{s}l_{-\alpha}$ -CHLORO-n-VALERIC ACID  $C_{5}H_{9}O_{2}Cl$  Beil. II -302  $\Pi_{1}$ —  $\Pi_{2}$ —  $\Pi_{2}$ —

B.P. F.P. 222° at 763 mm. (1)  $-15^{\circ}$  (1)  $D_{-}^{13.2} = 1.141$  (1)  $n_{-}^{11} = 1.44807$  (1) 132-135° at 32 mm. (1)

Oil; insol. aq., sol. in alc., ether.

[For prepn. of  $\bar{C}$  from  $\alpha$ -chloro-n-valeronitrile by hydrolysis with conc. HCl see (1) (2).] [The levorotatory isomer of  $\bar{C}$ , b.p. 80-84° at 1 mm., has been obtd. (3) from dextrorotatory 3-chlorohexene-1 by ozonolysis in CHCl<sub>3</sub>, decompn. with aq., and Br<sub>2</sub>/aq. oxidn. of the resultant aldehyde.]

- α-Chloro-n-valeramide: cryst. from alc. + aq. (3:1), m.p. 70-70.2° (4). [Prepd. indirectly from α-chloro-n-valeronitrile with conc. HCl (4).]
- ----  $\alpha$ -Chloro-n-valer-anilide: unreported.
- ---- α-Chloro-n-valero-p-toluidide: unreported.

3:8783 (1) Servais, Rec. trav. chim. 20, 45-46 (1901). (2) Henry, Bull. acad. roy. Belg. (3) 36, 241-262 (1898); Cent. 1898, I 194. (3) Levene, Haller, J. Biol. Chem. 83, 596 (1929). (4) Vandewijer, Bull. soc. chim. Belg. 45, 255 (1936).

### --- 4-CHLORO-2-METHYLPHENOL OH C<sub>7</sub>H<sub>7</sub>OCl Beil. VI -(359) CH<sub>3</sub> VI<sub>1</sub>-(174) VI<sub>2</sub>-(332)

B.P. 220-225°

M.P. 48-49°

See 3:0780. Division A: Solids.

3:8784 6-CHLORO-2,4-DIMETHYLPHENOL C<sub>8</sub>H<sub>9</sub>OCl Beil. VI - 489 (5-Chloro-m-4-xylenol) OH VI<sub>1</sub>-(241) VI<sub>2</sub>—

B.P. 221-223° at 760 mm. (1) 100-101° at 17 mm. (2) 100-101° at 16 mm. (3)

86.5-87° at 9 mm. (2)

Oil with phenolic odor. - Sol. aq., eas. sol. org. solvents. - Volatile with steam.

[For prepn. of  $\bar{C}$  from 2,4-dimethylphenol (unsym.-m-xylenol) (1:1740) by chlorination with acet-N-chloro-2,4-dichloroanilide in AcOH contg. HCl at 15° as directed (1), or with SO<sub>2</sub>Cl<sub>2</sub> in AcOH (3), see indic. refs.; from 6-amino-2,4-dimethylphenol hydrochloride [Beil. XIII-630, XIII<sub>1</sub>-(245)] via diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reaction (77% yield) see (2); for formn. of  $\bar{C}$  from 2,4-dimethylquinol (m-xyloquinol) [Beil. VIII-22, VIII<sub>1</sub>-(514)] by action of HCl (some of the isomeric 5-chloro-2,4-dimethylphenol (3:2460) also being formed) see (2) (4).]

[For studies of bactericidal action of C see (3) (5).]

The nitration of  $\tilde{C}$  has not been reported, and none of its mononitro- or dinitro-derivs. are known; for patent on sulfonation of  $\tilde{C}$  see (6).

Č in alc. soln. with FeCl<sub>3</sub> gives olive-green color turning brown on htg.

- ---- 6-Chloro-2,4-dimethylphenyl acetate: unreported.
- --- 6-Chloro-2,4-dimethylphenyl benzoate: oil (2).
- **© 6-Chloro-2,4-dimethylphenyl** p-nitrobenzoate: m.p. 94-94.5° (2). [From  $\ddot{\mathbf{C}} + p$ -nitrobenzoyl chloride in pyridine (2).]
- © 6-Chloro-2,4-dimethylphenyl N-phenylcarbamate: m.p. 129-130° (2). [From C + phenyl isocyanate at 150-200° (2).]
- 3:8784 (1) Orton, King, J. Chem. Soc. 99, 1191 (1911). (2) Bamberger, Reber, Ber. 46, 793-795, 798-799 (1913). (3) Heicken, Angew. Chem. 52, 263-265 (1939). (4) Bamberger, Reber, Ber. 40, 2268 (1907). (5) Lockemann, Kunzmann, Angew. Chem. 46, 296-301 (1933). (6) Weiler, Better (to I.G.), Ger. 557,450, Aug. 24, 1931; Cent. 1932, II 2370-2371; [C.A. 27, 735 (1938)].

3:8785 1-CHLORODECANE 
$$CH_3.(CH_2)_8.CH_2Cl$$
  $C_{10}H_{21}Cl$  Beil. I - 169  $I_1-I_{2-1}Cl$   $I_{2-1}Cl$   $I_{2-1}Cl$   $I_{2-1}Cl$   $I_{2-1}Cl$   $I_{2-1}Cl$   $I_{2-1}Cl$   $I_{3-1}Cl$   $I_{3-1}C$ 

```
B.P. 223.0-223.5° at 760 mm. (1) D_{25}^{25} = 0.8850 (4) n_{\rm D}^{25} = 1.4400 (4) 222-223^{\circ} at 760 mm. (7) D_{4}^{20} = 0.8696 (1) n_{\rm D}^{20} = 1.43799 (1) 180-190^{\circ} at 720 mm. (2) 0.8683 (7) 1.43731 (7) 130-140^{\circ} at 80 mm. (3) 122^{\circ} at 50 mm. (2) 137-142^{\circ} at 24 mm. (4) 100.8-101.0^{\circ} at 12 mm. (5) 106^{\circ} at 16 mm. (6)
```

Colorless oil with characteristic odor (1).

[For prepn. of  $\tilde{C}$  from decanol-1 (1:6275) with PCl<sub>5</sub> in CCl<sub>4</sub> see (1); with SOCl<sub>2</sub> + pyridine (80% yield (5)) or SOCl<sub>2</sub> without pyridine (91% yield (7)) see (5) (7); for prepn. from n-heptyl MgBr +  $\gamma$ -chloro-n-propyl p-toluenesulfonate sec (4).]

C htd. at 100° with aq. Ba(OH)<sub>2</sub> yields (2) decanol-1 (1:6275).

C with Mg in dry ether contg. trace of I2 gives (96% yield in 9 hrs. (8)) RMgCl.

3:8785 (1) Komppa, Talvitie, J. prakt Chem. (2) 135, 196 (1932). (2) Schultz, Ber. 42, 3610-3611 (1909). (3) Mabery, Am. Chem. J 19, 432 (1897). (4) Rossander, Marvel, J. Am. Chem. Soc. 50, 1493-1494 (1928). (5) Kohlrausch, Kóppl, Monatsh. 63, 269 (1933). (6) Rothstein, Bull. soc. chim. (5) 2, 84 (1935). (7) Vogel, J. Chem. Soc. 1943, 638, 641. (8) Houben, Boedler, Fischer, Ber. 69, 1768, 1779 (1936).

3:8787 HYDROCINNAMOYL CHLORIDE 
$$C_9H_9OCl$$
 Beil. IX - 511  $(\beta$ -Phenylpropionyl chloride)  $CH_2.CH_2.C=0$   $Cl$   $CH_2.CH_2.C=0$   $Cl$  B.P. B.P.  $(contd.)$  D<sub>21</sub> = 1.135 (3) 225° at 760 mm. dec. (1) 112° at 15 mm. (7) 154-155° at 75 mm. (2) 113.5-114° at 13.5-14.5 mm. (8) 122° at 25 mm. (3) 117-119° at 13 mm. (9) (10) 121-122° at 22.5 mm. (4) 115-116° at 11-12 mm. (11) 133-135° at 21 mm. (23) 107° at 11-12 mm. (12) 122-123° at 20 mm. (25) 105° at 10 mm. (13) 115-118° at 16-17 mm. (5) 107.5° at 9 mm. (14) 116° at 15 mm. (6)

Colorless liq. with disagreeable odor; not solid even at  $-60^{\circ}$  (3).

[For prepn. of  $\bar{C}$  from hydrocinnamic acid (1:0615) with PCl<sub>5</sub> (36% yield (8)) (15), with PCl<sub>5</sub> in CHCl<sub>3</sub> (yield: 95% (2), 90% (8), 75% (7)) (3), with PCl<sub>3</sub> in C<sub>6</sub>H<sub>6</sub> (10), with SOCl<sub>2</sub> (yield: 100% (13) (4) (23), 88% (8), 85% (5)) (16) (17), or with oxally dichloride (3:5060) (98% yield (6)) see indic. refs.]

 $\bar{C}$  with AlCl<sub>3</sub> in pet. ether (yield: 95% (13), 90% (18) (19)) (2) (20) (21) or  $\bar{C}$  with AlCl<sub>3</sub> in CS<sub>2</sub> (84.3% yield (25)) or  $\bar{C}$  with FeCl<sub>3</sub> in CS<sub>2</sub> (15) yields by ring closure and loss of HCl  $\alpha$ -hydrindone (indanone-1) (1:5144), m.p. 42°.

[Č with Br<sub>2</sub> at 65-70° gives (74% yield (5))  $\alpha$ -bromo-hydrocinnamoyl chloride, b.p. 132-133° at 12 mm. (22), 113-115° at 5 mm.,  $D_{20}^{20} = 1.5538$ ,  $n_{\rm D}^{20} = 1.5768$  (5) (amide, m.p. 126-127° (5)).]

[ $\bar{\mathbf{C}}$  with NaN<sub>3</sub> in toluene yields (23)  $\beta$ -phenylethyl isocyanate, b.p. 112-114° at 15 mm. (23);  $\bar{\mathbf{C}}$  with diazomethane in ether gives the corresp. diazo-ketone which according to treatment gives either (11)  $\beta$ -phenylethyl chloromethyl ketone (1-chloro-4-phenylbutanone-2) [Beil. VII<sub>1</sub>-(168)], ndls. from C<sub>6</sub>H<sub>6</sub>, m.p. 84-85° (11), or (60% yield (24))  $\gamma$ -phenyl-n-butyric acid, cryst. from lt. pet., m.p. 49-50° (24).]

Č on hydrolysis yields hydrocinnamic acid (1:0615), m.p. 48.7°; for the amide, anilide, p-toluidide, and other derivs. corresp. to Č see hydrocinnamic acid (1:0615).

3:8787 (1) Freundler, Bull. soc. chim. (3) 13, 834 (1895). (2) Kipping, J. Chem. Soc. 65, 484-486 (1894). (3) Taverne, Rec. trav. chim. 16, 39-40 (Note) (1897). (4) Ingold, Thorpe, J. Chem. Soc. 115, 149-150 (1919). (5) Shriner, Damschroder, J. Am. Chem. Soc. 60, 895 (1938). (6) Adams, Ulich, J. Am. Chem. Soc. 42, 604 (1920). (7) Freudenberg, Markert, Ber. 58, 1759 (1925). (8) Mohr, J. prakt. Chem. (2) 71, 322-324 (1905). (9) Hughes, Ber. 25, Referate, 747 (1892). (10) Rupe, Ann. 369, 319-320 (1909).

(11) Clibbens, Nierenstein, J. Chem. Soc. 107, 1493 (1907).
(12) Bergs, Ber. 67, 1621 (1934).
(13) Thiele, Wanscheidt, Ann. 376, 271-272 (1910).
(14) Schlenk, Bergmann, Ann. 463, 50 (1928).
(15) Wedekind, Ann. 253, 255-256 (1902).
(16) Haworth, Perkin, Pink, J. Chem. Soc. 127, 1714 (1925).
(17) Klarmann, J. Am. Chem. Soc. 48, 2363 (1926).
(18) Ingold, Piggott, J. Chem. Soc. 123, 1483 (1923).
(19) Amagat, Bull. soc. chm. (4) 41, 940-943 (1927).
(20) Haller, Bauer, Ann. chim. (9) 26, 341 (1921).

(21) Ramart, Amagat, Ann. chim. (10) 8, 320-321 (1927). (22) Fischer, Ber. 37, 3065 (1904). (23) Forster, Stötter, J. Chem. Soc. 99, 1338 (1911). (24) Litvan, Robinson, J. Chem. Soc. 1938, 1999. (25) Levin, Graham, Kolloff, J. Org. Chem. 9, 384 (1944).

B.P. 225°

M.P. 86°

See 3:2280. Division A: Solids.

#### 3:8790 PHENOXYACETYL CHLORIDE

[For prepn. of  $\bar{C}$  from phenoxyacetic acid (1:0680) with PCl<sub>5</sub> (1) (4) (yield: 80% (2), 75% (3)), with PCl<sub>3</sub> (45% yield (3)), with SOCl<sub>2</sub> (100% yield (3)), or with phosgene + a nitrogen base or its salts (5) see indic. refs.]

Č htd. with alk. phenoxyacetate + POCl<sub>3</sub> in toluene yields (6) phenoxyacetic anhydride, ndls. from ether, m.p. 67-69° (6).

[C with MeOH yields methyl phenoxyacetate (1:4021), b.p. 245°; C with EtOH yields ethyl phenoxyacetate (1:4106), b.p. 251°; for reactn. of C with higher alcs. in prepn. of corresp. esters for use as textile assistants, e.g., n-dodecyl phenoxyacetate, m.p. 31° (7), n-tetradecyl phenoxyacetate, m.p. 39° (7), n-hexadecyl phenoxyacetate, m.p. 47° (7) (8), n-octadecyl phenoxyacetate, m.p. 55° (7), see indic. refs.; C with phenol yields (1) phenyl phenoxyacetate, m.p. 59°.]

[ $\bar{C}$  with AlCl<sub>3</sub> + C<sub>6</sub>H<sub>6</sub> undergoes Friedel-Crafts reactn. yielding (1) (2) (9) mainly (9) phenoxymethyl phenyl ketone ( $\omega$ -phenoxyacetophenone) [Beil. VIII-91], m.p. 72° (2) (not volatile with steam (2) (9)), together with a small proportion (15% (9)) of ring-closure product, viz., coumaranone [Beil. XVII-118, XVII<sub>1</sub>-(59)], m.p. 101-102° (volatile with steam).]

[For reactn. of  $\bar{C}$  with dimethyl sodio-malonate in  $C_6H_6$  see (10) (4); with K carbazole yielding N-(phenoxyacetyl)carbazole, m.p. 121-122°, see (11).]

 $\ddot{\mathbf{C}}$  on hydrolysis yields phenoxyacetic acid (1:0680), m.p. 98-99° (for the amide, anilide, and other derivatives corresp. to  $\ddot{\mathbf{C}}$  see 1:0680).

3:8790 (1) Vandevelde, Bull. acad. roy. Belg. (3) 35, 223-237 (1898); Cent. 1898, I 988. (2) Stoermer, Atenstädt, Ber. 35, 3561-356 (1902). (3) Blaise, Picard, Ann. chim. (8) 26, 274 (1912). (4) Gabriel, Ber. 46, 1346 (1913). (5) Soc. Chem. Ind. Basel, French 732,078, Sept. 13, 1932; Cent. 1934, I 287. (6) Schering (Chem. Fabrik. Aktien), Ger. 120,772, May 20, 1901; Cent. 1901, I 1304. (7) Henkel et Cie, French 746,434, May 29, 1933; Cent. 1933, II 1430. (8) I. R. Geigy, Swiss 165,401, 165,402, Jan. 16, 1934; Cent. 1934, I 3126. (9) Ramart-Lucas, Hoch, Bull. soc. chim. (4) 51, 837-838 (1932). (10) Pfeiffer, Willems, Ber. 62, 1245 (1929).

(11) Copisarow, J. Chem. Soc. 113, 818 (1918).

)

#### 3-CHLORO-4-METHYLPHENOL



B.P. 228° at 760 mm.

M.P. 55°

See 3:1025. Division A: Solids.

### 3:8795 4-ISOPROPYLBENZYL CHLORIDE

(Cuminyl chloride; 1-chloromethyl-4isopropylbenzene)

|   | B.P.                 |     | F.P. |     |                            |                              |
|---|----------------------|-----|------|-----|----------------------------|------------------------------|
|   | 228° with part. dec. | (1) | -29° | (8) | $D_4^{21.5} = 1.020 \ \{1$ | $n_{\rm D}^{21.5}=1.523 (1)$ |
|   | 227-228°             | (2) |      |     | _                          |                              |
|   | 226-229°             | (3) |      |     |                            |                              |
|   | 225-229°             | (4) |      |     |                            |                              |
|   | 116-118° at 22 mm.   | (5) |      |     |                            |                              |
| ٠ | 110° cor. at 15 mm.  | (1) |      |     |                            |                              |
|   | 108-109° at 14 mm.   | (6) |      |     |                            |                              |
|   | 100° at 14 mm.       | (7) |      |     |                            |                              |
|   |                      |     |      |     |                            |                              |

Liq. with odor and lachrymatory effect less than that of benzyl chloride (3:8535) but with irritating effect on skin (1). — C on boilg. (4) (espec. in presence of ZnCl<sub>2</sub>) partially dec. with forms. of a hydrocarbon C<sub>20</sub>H<sub>24</sub> (probably 2,6-di-isopropyl-9,10-dihydroanthracene [Beil. V-654]), yel. pdr., m.p. 90° (4).

[For prepn. of  $\bar{C}$  from p-isopropylbenzene (cumene) (1:7440) with trioxymethylene (75% yield (1)) or formalin  $(75\% \text{ yield (7)}) + \text{HCl} + \text{ZnCl}_2 \text{ sec (1) (7)}$ ; with chloromethyl methyl ether (3:7085) + SnCl<sub>4</sub> see (8); from p-cymeme (1:7505) by direct chlorination see (4) (3) (9); from cuminyl alc. [Beil. VI-543] with dry HCl (10) or const.-boilg. HCl (100% yield (2)) see (10) (2) (9).]

 $\bar{C}$  with Zn + HCl reduces (10) to p-cymene (1:7507). —  $\bar{C}$  on boilg. with aq. Pb(NO<sub>3</sub>)<sub>2</sub> soln. (7) or alk. Na<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> (12) yields p-isopropylbenzaldehyde (cuminaldehyde) (1:0234). — Č with aq. alk. presumably (no record) yields cuminyl alcohol [Beil. VI-543] but with alc. KOH gives (4) ethyl cuminyl ether [Beil. VI-544], b.p. 227° (4).

Č with Mg in dry ether yields (9) cuminyl MgCl accompanied by some bicumyl (4,4'disopropyldibenzyl) [Beil. V-623], m.p. 58° (9); the R.MgCl with aq. gives (74% yield (1)) p-cymene (1:7505); the R.Mg.Cl upon treatment with O<sub>2</sub> gas gives (71-80% yield (9)) cuminyl alcohol [Beil. VI-543], b.p. 246° cor. (9), 140° at 20 mm. (9); the R.Mg.Cl with CO<sub>2</sub> gives (73% yield (9)) after acidification p-isopropylphenylacetic acid (homocuminic ac.) [Beil. IX-561], m.p. 52°, b.p. 195° at 30 mm., 190° at 25 mm.,  $D_4^{15} = 1.039$ ,  $n_D^{15} = 1.522$  (9). [The R.COOMgCl epd. if treated with isopropyl MgCl gives mainly (11) p-isopropylmalonic ac., m.p. 143.5° dec. (1).]

3:8795 (1) Bert, Bull. soc. chim. (4) 37, 1266-1268 (1925). (2) Norris, Mulliken, J. Am. Chem. Soc. 42, 2098 (1920). (3) Varma, Srinivasan, J. Indian Chem. Soc. 13, 191 (1936). (4) Errera, Gazz. chim. ital. 14, 277-283 (1884). (5) Jones, J. Chem. Soc. 1938, 1416. J. Chem. Soc. 1935, 1844. (7) Blanc, Bull. soc. chim. (4) 33, 317 (1923). (6) Baker, Nathan, (8) Darzens, Levy, Compt. rend. 194, 2057 (1932). (9) Bert, Bull. soc. chim. (4) 37, 1577-1583 (1925). (10) Paterno, Spica, Gazz. chim. ital. 9, 397-398 (1879).

(11) Ivanoff, Pchénitchny, Bull. soc. chim. (5) 1, 229 (1934). (12) Blanc, Ger. 347,583, Jan.

23, 1922; Cent. 1922, II 1138.

Care must be taken not to confuse C, the acid chloride of n-capric acid, with the corresponding relatives of n-caprylic acid ( $C_8$ ) and of n-caproic acid ( $C_6$ ); for this reason the name n-decanoyl chloride is preferred.

[For prepn. of C from n-decanoic acid (n-decylic acid) (n-capric acid) (1:0585) with PCl<sub>5</sub> (3), with PCl<sub>3</sub> (70% yield (1)), with POCl<sub>3</sub> (7), with oxalyl (di)chloride (3:5060) (5), or with SOCl<sub>2</sub> (6) (94% yield (4)) see indic. refs.]

[For use of C in prepn. of corresp. cellulose esters see (8) (9); for use in syntheses of various glycerides see (5) (6); for use in prepn. of derivs. of vanillylamine see (2) (10); for cat. hydrogenation to n-decylaldehyde (1:0222) see (11).

 $\bar{\mathbf{C}}$  on hydrolysis (or even slowly in moist air) yields n-decanoic acid (1:0585) q.v. (for the amide, anilide, p-toluidide, and other derivatives corresponding to  $\ddot{C}$  see 1:0585).

3:8800 (1) Deffett, Bull. soc. chim. Belg. 40, 389-391 (1931). (2) Ford-Moore, Phillips, Rec. trav. chim. 53, 856 (1934). (3) Krafft, Koenig, Ber. 23, 2385 (1890). (4) Fierz-David, Kuster, Helv. Chim. Acta 22, 86-89 (1939). (5) Averill, Roche, King, J. Am. Chem. Soc. 51, 868 (1929). (6) Robinson, Roche, King, J. Am. Chem. Soc. 54, 705-710 (1932). (7) Grimm, Ann. 157, 272-274 (1871). (8) Brit. 201,510, Sept. 19, 1923; Cent. 1923, IV 961. (9) Brit. 313,616, Aug. 8, 1929; Cent. 1929, II 2743. (10) Nelson, J. Am. Chem Soc. 42, 2125 (1919).

(11) Escourrou, Bull. soc. chim. (5) 6, 1180-1181 (1939).

#### PHENYL CHLOROACETATE C<sub>8</sub>H<sub>7</sub>O<sub>2</sub>Cl Beil. VI - 153 VI<sub>1</sub>-(87) Cl.CH<sub>2</sub>.CO.O $VI_{2}$ -(154) $n_0^{44} = 1.5146$ B.P. 230-235° M.P. 45°

See 3:0565. Division A: Solids.

B.P. 235° M.P. 57°

See 3:1535. Division A: Solids.

3:8803 1-CHLOROUNDECANE  $CH_3.(CH_2)_9.CH_2Cl$   $C_{11}H_{23}Cl$ Beil. S.N. 10 (*n*-Undecyl chloride: 1-chlorohendecane)

B.P. 240-241° at 772 mm. (2) 
$$D_4^{21.5} = 0.8570$$
 (1)  $n_D^{21.5} = 1.4350$  (1)  $117^\circ$  at 16 mm. (1)  $D_4^{20} = 0.8677$  (2)  $n_D^{20} = 1.44003$  (2)

[For prepn. (80% yield (1)) from undecanol-1  $(1:5890) + \text{SOCl}_2 + \text{pyridine see (1)}$ , or with SOCl<sub>2</sub> alone (89% yield) see (2).]

No other data on C are recorded.

3:8803 (1) Rothstein, Bull. soc. chim. (5) 2, 84 (1935). (2) Vogel, J. Chem. Soc. 1943, 638, 641.

B.P. 240-242° (1)

[For form. of  $\bar{C}$  from octamethylenediamine [Beil. IV-271] with NOCl see (1); from 1,8-diphenoxyoctane (see below) with fumg. HCl see (1).]

 $\bar{C}$  htd. with sodium phenolate yields (1) (2) 1,8-diphenoxyoctane [Beil. VI-148; VI<sub>1</sub>-(85)], colorless tbls., m.p. 83.5–84°, sol. in hot alc., in ether, or in  $C_6H_6$ ; not volatile with steam. [This prod. splits with HCl to yield (1)  $\bar{C}$ ; with HBr to yield (1) 1,8-dibromooctane [Beil. I-160], m.p. 15–16°, b.p. 270–272° sl. dec., b.p. 150–161° at 20–25 mm. (1).]

Č refluxed with NaI in acctone for 4 hrs., solvent evaporated, ether-sol. portion of residual oil htd. for 4 hrs., with thiourea in isoamyl alc. gives (3) octamethylene bis-( $\omega$ , $\omega$ '-isothiourea hydrochloride), m.p. 185–186° (3).

3:8865 (1) Ssolonina, J. Russ. Phys.-Chem. Soc. 30, 620, 623 (1898); Cent. 1899, I 26. (2) Ssolonina, J. Russ. Phys.-Chem. Soc. 30, 822, 824 (1898); Cent. 1899, I 254. (3) Kawai, Hosono, Shikinami, Yonechi, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 16, Nos. 306-309, 9-16 (1931); Cent. 1831, II 1694; C.A. 25, 5665 (1931).

3:8810 1-CHLORODODECANE 
$$CH_3$$
.  $(CH_2)_{10}$ .  $CH_2Cl$   $C_{12}H_{2\delta}Cl$  Beil. I — (n-Dodecyl chloride; I<sub>1</sub>— n-lauryl chloride) I<sub>2</sub>-(133)

B.P. 243-244° cor. (1) 
$$D_4^{22} = 0.8673$$
 (3)  $n_{\rm D}^{22} = 1.4421$  (3)  $132-134^{\circ}$  at 18 mm. (2)  $D_4^{20} = 0.8673$  (9)  $n_{\rm D}^{20} = 1.44255$  (9)  $130^{\circ}$  at 15 mm. (3)  $125-126^{\circ}$  at 10 mm. (4)  $116.5^{\circ}$  at 5 mm. (9)

[For prepn. (80% yield (3)) from dodecanol-1 (1:5900) + SOCl<sub>2</sub> + pyridine see (3); or with SOCl<sub>2</sub> in absence of pyridine (84% yield) see (9).]

C in alc. refluxed with thiourea for 4 days gives (5) S-n-dodecylisothiourea hydrochloride, m.p. 132-135° (5).

[For reactn. of C with liq. NH<sub>3</sub> see (6) (7); with various amines see (7).]

[For reactn. of  $\tilde{C}$  with KI see (1); for reactn. with Mg + ether see (2); for reaction of  $\tilde{C}$  with Li. Na, or K followed by  $CO_2$  see (10).]

 $\bar{C}$  htd. with pyridine in s.t. at 110° for 15 hrs. yields (8) n-dodecylpyridinium chloride, cryst. from alc. + ether or from  $C_6H_6$  as monohydrate, m.p. 92° (8). [This quat. salt yields (8) on cat. hydrogenation N-(n-dodecyl)piperidinium hydrochloride, m.p. 188–189° (8).]

--n-Dodecyl mercuric chloride (C<sub>12</sub>H<sub>25</sub>HgCl); m.p. 114.0-114.5° (10). [Prepd. indirectly (10).]

3:8810 (1) Conant, Hussey, J. Am. Chem. Soc. 47, 485 (1925). (2) Oldham, Ubbelohde, J. Chem. Soc. 1938, 204. (3) Rothstein, Bull. soc. chim. (5) 2, 84 (1935). (4) Reed, Tartar, J. Am.

Chem. Soc. 57, 571 (1935). (5) Sprague, Johnson, J. Am. Chem. Soc. 59, 1838-1839 (1937). (6) Wibaut, Heiermann, Wagtendonk, Rec. trav. chim. 57, 456-458 (1938). (7) Westphal, Jerchel, Ber. 73, 1004-1011 (1940). (8) Karrer, Kahnt, Epstein, Jaffé, Ishil, Helv. Chim. Acta 21, 233-234 (1938). (9) Vogel, J. Chem. Soc. 1943, 638, 641. (10) Meals, J. Org. Chem. 9, 211-218 (1944).

3: 8820 
$$\gamma$$
-PHENOXY- $n$ -PROPYL CHLORIDE  $\gamma$ -Chloro- $n$ -propyl phenyl ether)  $\gamma$ -Chloro- $n$ -propyl phenyl ether)  $\gamma$ -Chloro- $\gamma$ -PROPYL CHLORIDE  $\gamma$ -PROPYL

Colorless oil gradually turning yellowish in light.

[For prepn. of  $\bar{C}$  from  $\gamma$ -phenoxy-n-propyl alcohol (trimethylene glycol monophenyl ether) [Beil. VI-147, VI<sub>1</sub>-(85)] with SOCl<sub>2</sub> + pyridine (88% yield) see (3).]

[For prepn. of C from 1-bromo-3-chloropropane (trimethylene glycol chlorobromide) (5) with potassium phenolate (1) or with alc. sodium phenolate (yields: 68% (6) (4), 55% (2)) see indic. refs.; note that by this method some trimethylene glycol diphenyl ether (1,3-diphenoxypropane) (1:7170), m.p. 61°, b.p. 338-340° cor., may also be formed.]

 $[\bar{C}$  with diethyl sodiomalonate in usual way gives (yields: 77% (2), 56% (6), 55% (4)) diethyl ( $\gamma$ -phenoxy-n-propyl)malonate [Beil. VI-168], b.p. 271° dec. at 140 mm. (4), 265–266° at 140 mm. (7), 216–219° at 20 mm. (6), m.p. 32° (7), 30° (4). — For analogous behavior of  $\bar{C}$  with diethyl sodio-methylmalonate see (7).]

[Č with Na in ether undergoes a complex decomposition giving (8) cf. (7) sodium phenolate, propylene, cyclopropane, hexamethylene glycol diphenyl ether, etc.]

[For study of rate of reactn. of C with KI in acetone at 50° and at 60° see (3).]

— N-( $\gamma$ -Phenoxypropyl)phthalimide (phenyl  $\gamma$ -(phthalimido)-n-propyl ether) [Beil. XXI-472]: ndls. from alc., m. p. 91° (9), 88° (10). [Not reported from  $\bar{\mathbf{C}}$  but obtd. in 80% yield (10) from  $\gamma$ -phenoxy-n-propylbromide with K phthalimide; also indirectly (9).]

3:8820 (1) Henry, Bull. soc. chim. (3) 15, 1224 (1896). (2) Gabriel, Ber. 25, 416-418 (1892). (3) Kirner, J. Am. Chem. Soc. 48, 2748-2749 (1926). (4) Granger, Ber. 28, 1198-1200 (1895). (5) Allen, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 157, Note 2 (1941); (18t ed.), 150-151, Note 2 (1932); 8, 53, Note 2 (1928). (6) Günther, Ber. 31, 2136-2137 (1898). (7) Funk, Ber. 26, 2569-2570 (1893). (8) Hamonet, Compt. rend. 136, 97 (1903); Bull. soc. chim. (3) 33, 535-536 (1905). (9) Manske, J. Am. Chem. Soc. 51, 1203 (1929). (10) Lohmann, Ber. 24, 2633 (1891).



B.P. 246° M.P. 115°

See 3:3505. Division A: Solids.

Beil. IX- 112

3:8830-3:8860

3:8830 2-CHLORO-4-n-BUTYLPHENOL

C<sub>9</sub>H<sub>9</sub>O<sub>2</sub>Cl

[For prepn. of  $\bar{C}$  from p-n-butylphenol (1:1771) by chlorination with  $Cl_2$  (3),  $SO_2Cl_2$  (4) (5); or  $ClSO_3H$  (5) see indic. refs.; for prepn. of  $\bar{C}$  from o-chlorophenyl propionate by rearr. with AlCl<sub>3</sub> in nitrobenzene to n-propyl 3-chloro-4-hydroxyphenyl ketone and subsequent reductn. to  $\bar{C}$  see (4) (1).]

[For studies of bactericidal characteristics of C see (1) (2) (6).]

Č with  $\alpha$ -naphthoyl chloride (3:6930) yields (2) 4-n-butyl-2-chlorophenyl  $\alpha$ -naphthoate, m.p. 44-46° (2).

3:8830 (1) Klarmann, Shternov, Gates, J. Am. Chem. Soc. 55, 2576-2589 (1933). (2) Blicke, Stockhaus, J. Am. Pharm. Assoc. 22, 1090-1092 (1933), Cent. 1934, I 1642, C.A. 28, 4839 (1934). (3) Klarmann (to Lehn & Fink Products Corp.), U.S. 2,010,595, Aug. 6, 1935, Cent. 1936, I 810; C.A. 29, 6608 (1935). (4) Klarmann (to Lehn & Fink Products Corp.), U.S. 2,139,550, Dec. 6, 1938; Cent. 1939, I 1807; C.A. 33, 2285 (1939). (5) Blicke (to Regents of Univ. of Michigan), U.S. 1,980,966, Nov. 13, 1934; Cent. 1935, I 3312; C.A. 29, 476 (1935). (6) Klarmann, Shternov, Gates, J. Lab. Clim. Med. 20, 40-47 (1934).

118-120° at 2 mm. (6)
Oil, insol. aq.; eas. sol. alc., ether.

5 mm. (5)

120-122° at

3:8860 β-CHLOROETHYL BENZOATE

[For prepn. of  $\overline{C}$  from ethylene chlorohydrin (3:5552) with BzCl (3:6240) on htg. (yields: 90% (1), 84.5% (6), 55% (2)) (5) see indic. refs.; from ethylene glycol (1:6465) with benzoic acid (1:0715) at 100° in pres. of HCl gas (7); from ethylene oxide (1:6105) with BzCl (3:6240) at 190° (8); from 1,4-dioxane (1:6400) with BzCl (3:6240) + TiCl<sub>4</sub> (2 moles) at 150-180° for 10 hrs. (70% yield (9)); from ethylene + BzOH (1:0715) + Cl<sub>2</sub> + cat. as directed (10) see indic. refs.]

[For formn. of  $\bar{C}$  from  $\beta$ -chloroethyl iminobenzoate on warming (3), from  $\beta$ -chloroethyl p-toluenesulfonate with  $C_6H_5COOMgBr$  (5% yield (11)), or from bis-( $\beta$ -chloroethyl) sulfate with NaOBz at 170° (61.5% yield (4)) see indic. refs.]

 $\ddot{C}$  on htg. either alone or with SnCl<sub>4</sub> at 180–200° for 25 hrs. gives (9) ethylene glycol dibenzoate, m.p. 73°.

[ $\ddot{\mathbf{C}}$  on a mononitration is claimed (1) to yield mainly  $\beta$ -chloroethyl m-nitrobenzoate, but this alleged prod. is not described either in the article or elsewhere in the literature.]

 $\bar{C}$  with NaI (2 moles) in 90% alc. refluxed 6 hrs. gives (80% yield (1))  $\beta$ -iodoethyl benzoate, b.p. 161–163° at 17 mm. (1).

 $\tilde{C}$  with sec.-amines splits out HCl yielding the corresp.  $\beta$ -dialkylaminoethyl benzoate hydrochlorides [e.g., for reactn. of  $\tilde{C}$  with N-methylbenzylamine, N-methyl- $\beta$ -phenylethylamine, N-methyl- $\gamma$ -phenylpropylamine, and N-methyl- $\delta$ -phenylbutylamine see (12); with 4-methylpiperidine, 2-( $\beta$ -phenylethyl)piperidine, and 4-( $\beta$ -phenylethyl)piperidine see (13); with tetrahydroquinoline, tetrahydroisoquinoline, and cis- and trans-decahydroquinoline see (14)].

 $[\bar{\mathbf{C}}$  (1 mole) with N,N'-diphenylthiourea (thiocarbanilide) directly or in xylene at 130–150° for several hrs. gives a mixt. contg. N,N'-diphenylurea, phenylisothiocyanate, benzanilide, benzoic acid, and 2,3-diphenylthiazolidine, m.p. 136° (15).]

3:8860 (1) Zaki, J. Chem. Soc. 1930, 2271-2272. (2) Jones, Major, J. Am. Chem. Soc. 49, 1535-1536 (1927). (3) Gabriel, Heumann, Ber. 25, 2384 (1892). (4) Suter, Evans, J. Am. Chem. Soc. 60, 537 (1938). (5) Lynn, Lofgren, J. Am. Pharm. Assoc. 14, 970-972 (1925). (6) Kirner, J. Am. Chem. Soc. 48, 2751 (1926). (7) Simpson, Ann. 113, 120-121 (1860). (8) Altwegg, Landrivon (to Soc. Chim. Usines du Rhone), U.S. 1,393,191, Oct. 11, 1921; Cent. 1922, IV 947; C.A. 16, 422 (1922). (9) Goldfarb, Smorgonskii, J. Gen. Chem. (U.S. S.R.) 8, 1516-1522 (1938); Cent. 1939, II 4233, C.A. 33, 4593 (1939). (10) I.G., Brit. 460,720, March 4, 1937; Cent. 1937, I 4021; C.A. 31, 4675 (1937).

(11) Gilman, Beaber, J. Am. Chem. Soc. 45, 842 (1923).
(12) Cope, McElvain, J. Am. Chem. Soc. 53, 1589-1590 (1931).
(13) Bailey, McElvain, J. Am. Chem. Soc. 52, 1637-1638 (1930).
(14) Bailey, McElvain, J. Am. Chem. Soc. 52, 4013-4017 (1930).
(15) Olin, Dains, J. Am. Chem. Soc. 52, 3325 (1930).

# — 4-CHLORORESORCINOL OH $C_6H_5O_2Cl$ Beil. S.N. 554 OH

B.P. 259–260° M.P. 105°

See 3:3100. Division A: Solids.

B.P. 258-262° dec. (1) 138-139° at 17 mm. (2)

Colorless liq. with agreeable odor; volatile with steam (1).

[For formn. of  $\bar{C}$  from 1,9-diaminononane (enneamethylenediamine) [Beil. IV-272] with NOCl (1), or from N,N' (bis-benzoylamino)nonane [Beil. IX-264, IX<sub>1</sub>-(119)] with PCl<sub>5</sub> (60% yield (2)), or from 1,9-diphenoxynonane [Beil. VI-148] with HCl (1) see indic. refs.]

Č on htg. with sodium phenolate in alc. yields (1) 1,9-diphenoxynonane, white lfts., m.p. 62°, sol. in alc., ether, or C<sub>6</sub>H<sub>6</sub> but not volatile with steam. [By loss of HCl during this etherification there is also formed a phenoxynonene (no constants) which is volatile with steam (1).]

3:8880 (1) Ssolonina, J. Russ. Phys.-Chem. Soc. 30, 606-632 (1898); Cent. 1899, I 26. (2) von Braun, Danziger, Ber. 45, 1972 (1912).

B.P. 260-263°

M.P. 57-58°

See 3:1130. Division A: Solids.

## — 2-CHLOROHYDROQUINONE OH C<sub>6</sub>H<sub>5</sub>O<sub>2</sub>Cl Beil. VI - 849 VI<sub>1</sub>-(417) VI<sub>2</sub> (844)

B.P. 263°

M.P. 106°

See 3:3130. Division A: Solids.

B.P. 274° at 738 mm.

M.P. 34°

See 3:0300. Division A: Solids.

150-160° at 6 mm. (3) 87° at 0.15 mm. (4)

Pale yel. oil. — By soln. in 2 vols. 96% alc., cooling to  $-18^{\circ}$ , and scratching,  $\tilde{C}$  has been obtd. in colorless cryst. from. (4).

[For prepn. (27% yield (2), 16% yield (4), 13-25% yield (3)) from diazotized m-chloro-aniline +  $C_6H_6$  see (3) (4) (2).]

 $\ddot{C}$  on oxidn. with CrO<sub>3</sub> in AcOH +  $V_2O_5$  yields (5) *m*-chlorobenzoic acid (3:4392), m.p. 154°.

Č on nitration (no details (6)) gives a dinitro compd., 3-chloro-4,4'-dinitrobiphenyl, wooly flocks from alc., m.p. 202-203° (6) (9). [No other dinitro-3-chlorobiphenyls are recorded; of the possible mononitro-3-chlorobiphenyls only two (both prepd. indirectly) are known, viz., 4-nitro-3-chlorobiphenyl, m.p. 78.5-79.5° (7), and 3'-nitro-3-chlorobiphenyl, m.p. 101° (8).]

3:8940 (1) Hale, J. Am. Chem. Soc. 54, 4458-4459 (1932). (2), Gomberg, Bachmann, J. Am. Chem. Soc. 46, 2343 (1924). (3) Elks, Haworth, Hey, J. Chem. Soc. 1940, 1285. (4) Weissberger, Sängewald, Z. physik. Chem. B-20, 154 (1933). (5) Bellavita, Gazz. chim. ital. 65, 639 (1935). (6) Mascarelli, Gatti, Gazz. chim. ital. 63, 660 (1933). (7) Schoepfle, Truesdale, J. Am. Chem. Soc. 59, 376 (1937). (8) Mascarelli, Gatti, Atti accad. sci. Torino, 65, 143-147; Cent. 1930, II 1861. (9) Case, J. Am. Chem. Soc. 67, 116, 118 (1945).

### --- 1-(CHLOROMETHYL)NAPHTHALENE

CH<sub>2</sub>Cl C<sub>11</sub>H<sub>2</sub>Cl Beil. V - 566 V<sub>1</sub>— V<sub>2</sub>-(461)

B.P.291-292°

M.P. 32°

See 3:0250. Division A: Solids.

---- 4-CHLOROBIPHENYL

 $C_{12}H_9Cl$ 

Beil. V - 579 V<sub>1</sub>---

 $V_{2}$ -(483)

B.P. 291° at 745 mm.

M.P. 77°

See 3:1912. Division A: Solids.

### --- 4-CHLOROPHTHALIC ANHYDRIDE

ORIDE O C<sub>8</sub>H<sub>3</sub>O<sub>3</sub>Cl Beil. XVII - 483 XVII<sub>1</sub>-(253)

B.P. 294.5° cor. at 720 mm.

M.P. 98°

See 3:2725. Division A: Solids.

---- 8-CHLORONAPHTHOL-2

Cl C<sub>10</sub>H<sub>7</sub>OCl

Beil. VI - 649

VI<sub>1</sub>---VI<sub>2</sub>-(604)

B.P. 307-308°

M.P. 101°

See 3:2965. Division A: Solids.

--- 6-CHLORO-2-PHENYLPHENOL

C<sub>12</sub>H<sub>9</sub>OCl

Beil, S.N. 539

B.P. 312° at 745 mm.

M.P. 71-72°

See 3:1757. Division A: Solids.

Beil, S.N. 539

### 3:8980 4-CHLORO-2-PHENYLPHENOL

(5-Chloro-2-hydroxybiphenyl)

C<sub>12</sub>H<sub>9</sub>OCl

[See also 6-chloro-2-phenylphenol (3:1757).]

Important Note: Through the year 1944 (and perhaps in some cases beyond) the chlorophenyl-phenol of m.p.  $+ 11^{\circ}$  ( $\tilde{\mathbb{C}}$ ) was regarded as having the structure 6-chloro-2-phenylphenol = 3-chloro-2-hydroxybiphenyl. In 1945, however, this view was corrected by the paper of Weissberger and Salminen (3); in this text, therefore, expression of the facts is reported in the light of their paper. Particular care is, therefore, required in consulting references prior to it since such material is universally expressed in the reverse sense of the present view.

[For prepn. of  $\bar{C}$  from 2-hydroxybiphenyl (1:1440) with  $Cl_2$  (note that 6-chloro-2-phenylphenol (3:1757) is also formed) see (1) (4) (3), for prepn. of C from 5-amino-2-hydroxybiphenyl (5) by diazotization and use of Cu<sub>2</sub>Cl<sub>2</sub> reaction (27% yield (3)) see indic. refs.]

C is sol. in aq. 25% NaOH at 60° but on cooling seps. NaA.4H<sub>2</sub>O, m.p. 84-85° (1); anhydrous NaA, m.p. 280° (1) (4) (for use in sepn. of C from the isomeric 6-chloro-2phenylphenol (3:1757) see (1). [For form. of NaA in org. solvents such as MeOH, ether, or toluene see (8).1

The calcium salt of  $\bar{C}$  is more sol. in aq. than the corresp. deriv. of the isomeric 6-chloro-2-phenylphenol (3:1757) (use in sepn. (2)).

C on mononitration with HNO<sub>3</sub> in AcOH at 15-20° as directed gives (48% yield (3)) 5-chloro-2-hydroxy-3-nitrobiphenyl, yellow ndls., m.p. 57-58° (3).

[C on condensation with formaldehyde + morpholine yields (6) a prod. m.p. 125-126° (6).]

---- 4-Chloro-2-phenylphenyl benzoate: m.p. 86-87° (7). [Note that this prod. does not distinguish C from the isomeric 6-chloro-2-phenylphenol (3:1757) whose benzoate has m.p. 88.5°.1

3:8980 (1) Britton, Bryner (to Dow Chem. Co.), U.S. 1,921,727, Aug. 8, 1933; Cent. 1934, I 128-129; C.A. 27, 5086 (1933); Brit. 396,251, Aug. 24, 1933; Cent. 1934, I 128-129; C.A. 28, 578 (1934). (2) Rittler, Heller (to Chem. Fabrik von Heyden), Ger. 615,133, June 27, 1935; Cent. 1936, I 884; C.A. 29, 6247 (1935). (3) Weissberger, Salminen, J. Am. Chem. Soc. 67, 58-60 (4) Britton, Bryner (to Dow Chem. Co.), U.S. 1,969,963, Aug 14, 1934; C.A. 28, 6160 (5) Vorozhtsov, Troshchenko, J. Gen. Chem. (U.S.S.R.) 8, 431-437 (1938); Cent. 1940, II 2152; C.A. 32, 7907 (1938). (6) Bruson (to Rohm and Haas Co.), U.S. 2,040,039, May 5, 1936; Cent. 1936, II 1386-1387; C.A. 30, 4177 (1936). (7) Harris, Christiansen, J. Am. Pharm. Assoc. 24, 553-557 (1935). (8) Mills (to Dow Chem. Co.), U.S. 1,955,080, April 17, 1934; Cent. 1934, II 1991; C.A. 28, 3743 (1934).

1227

- 2-CHLOROBENZOPHENONE

B.P. 330° cor.

M.P. 45-46°

See 3:0715. Division A: Solids.

---- 4-CHLOROBENZOPHENONE

Cl C<sub>13</sub>H<sub>9</sub>OCl Beil. VII - 419 VII<sub>1</sub>-(227)

B.P. 332° at 771 mm.

M.P. 77-78°

See 3:1914. Division A: Solids.

### CHAPTER XX

### DIVISION C. LIQUIDS WITH BOILING POINTS REPORTED ONLY UNDER REDUCED PRESSURE

3:9000-3:9299 (C<sub>3</sub>-C<sub>5</sub> inclusive)

(Arranged in sequence of empirical formulas)

3: 9030 MALONYL DICHLORIDE 
$$O=C-CH_2-C=O$$
  $C_3H_2O_2Cl_2$  Beil. II - 582  $II_{1^-}(252)$   $II_{2^-}(529)$ 

B.P. 58° at 27 mm. (1) (2) (3)  $D_4^{22.9} = 1.4505$  (4)  $n_D^{23.4} = 1.45973$  (4) 58° at 26 mm. (4)  $D_4^{20} = 1.4509$  (5)  $D_4^{20} = 1.4509$  (5)  $D_4^{20} = 1.4509$  (5)  $D_4^{20} = 1.4509$  (6)  $D_4^{20} = 1.4639$  (7) at 15 mm. (6)  $D_4^{20} = 1.4639$  (7)  $D_4^{20} = 1.4639$  (8)  $D_4^{20} = 1.4639$  (8)  $D_4^{20} = 1.4639$  (9)  $D_4^{20} = 1.4639$  (1)  $D_4^{20} = 1.4639$  (1)  $D_4^{20} = 1.4639$  (1)  $D_4^{20} = 1.4639$  (2)  $D_4^{20} = 1.4639$  (3)  $D_4^{20} = 1.4639$  (4)  $D_2^{20} = 1.4639$  (5)  $D_4^{20} = 1.4639$  (5)  $D_4^{20} = 1.4639$  (5)  $D_4^{20} = 1.4639$  (6)  $D_4^{20} = 1.4639$  (7) at 13 mm. (4)

Colorless liq. turning dark red on stdg. (6).

[For prepn. of  $\tilde{C}$  from malonic acid (1:0480) with SOCl<sub>2</sub> (yield 70% (8), 60% (6), 50% (9)) (1) (2) or with PCl<sub>5</sub> (yield: 68% (3), 36% (7)) see indic. refs.; for formn. of  $\tilde{C}$  from carbon suboxide with dry HCl gas see (10); for mfg. of  $\tilde{C}$  from methylene dichloride (3:5020) with CO, COS, or COCl<sub>2</sub> (3:5000) + cat. at 700° see (11).]

[ $\bar{C}$  in ether or EtOAc with Ag<sub>2</sub>O, PbO, ZnO, etc., yields (8) carbon suboxide, b.p. +7°;  $\bar{C}$  treated at 0° with dry HBr gas yields (12) malonyl dibromide, b.p. 55–57° at 11 mm. (12);  $\bar{C}$  on cat. hydrogenation as specified (13) yields a condensation prod., m.p. 83°, of formyl-glutaconic acid.]

[C with acetone + CaCO<sub>3</sub> yields (14) mainly CH<sub>3</sub>.CO.CH<sub>2</sub>.CO.CH<sub>2</sub>.CO.Cl [Beil. III<sub>1</sub>-(263)] + a little phloroglucinol (1:1620) (the acid chloride itself, however, is quant. conv. to phloroglucinol by further htg. with CaCO<sub>3</sub>).]

[ $\bar{C}$  with AlCl<sub>3</sub> + C<sub>6</sub>H<sub>6</sub> yields (1) dibenzoylmethane (1:1480), m.p. 78°; for reactn. of  $\bar{C}$  with AlCl<sub>3</sub> + naphthalene (1:7200) yielding (15) (16) peri-naphthindandione (1,8-malonylnaphthalene) [Beil. VII<sub>1</sub>-(391)] see indic. refs.; for reactn. of  $\bar{C}$  with acenaphthene (1:7225) yielding (15) (17) peri-acenaphtheneindandione (5,6-malonylacenaphthene) which on oxidn. gives (17) (18) naphthalene-1,4,5,8-tetracarboxylic acid [Beil. IX-1002, IX<sub>1</sub>-(437)] see indic. refs.]

 $\tilde{C}$  with 4 moles phenylhydrazine yields (2) malon-bis-( $\beta$ -phenylhydrazide) [Beil. XV-272], m.p. 184° (2);  $\tilde{C}$  with 2 moles ethyl carbamate (urethane) in  $C_6H_6$  refluxed until HCl is no longer evolved gives (85% yield {19}) malonyl-diurethane, cryst. from alc., m.p. 124° (19).

 $\tilde{\mathbf{C}}$  on hydrolysis with aq. yields malonic acid (1:0480). [Note that the half acid chloride of malonic acid has m.p. 65° dec. (20).] — For the amide, anilide, p-toluidide, and other derivs, corresp. to  $\tilde{\mathbf{C}}$  see malonic acid (1:0480).

3:9030 (1) Auger, Ann. chim. (6) 22, 347-350 (1891). (2) Asher, Ber. 30, 1023-1024 (1897). (3) Clark, Bell. Trans. Roy. Soc. Can. (3), 27, III 97-107 (1933). (4) von Auwers, Schmidt, Ber. 46, 477-478 (1913). (5) Martin, Partington, J. Chem. Soc. 1936, 1181. (6) McMaster, Ahmann, J. Am. Chem. Soc. 50, 146 (1928). (7) Black, Shaw, Walker, J. Chem. Soc. 1931, 276. (8) Staudinger, Bereza, Ber. 41, 4463-4465 (1908). (9) Nightingale, Alexander, J. Am. Chem. Soc. 58, 794-796 (1936). (10) Diels, Wolf, Ber. 39, 696 (1906).

(11) Wiezevich, Frolich (to Standard Oil Development Co.), U.S. 2,062,344, Dec. 1, 1936; Cent. 1937, I 4863; C.A. 31, 708 (1937). (12) Fleischer, Hittle, Wolff, Ber. 53, 1848 (1920). (13) Fröschl, Maier, Monatsh. 59, 261, 269-270 (1932). (14) Komninos, Compt. rend. 167, 781 (1918); Bull. soc. chim. (4) 23, 452-455 (1918). (15) Fleischer, Retze, Ber. 55, 3282, 3285 (1922). (16) Badische Anilin und Soda Fabrik, Ger. 283,365, Apr. 10, 1915; Cent. 1915, I 965. (17) Eckert (to I.G.), Ger. 439,511, Jan. 14, 1927; Cent. 1927, I 1527. (18) Eckert (to Grasselli Dyestuffs Corp.), U.S. 1,612,103, Dec. 28, 1926; Cent. 1927, I 1527, C.A. 21, 593 (1927). (19) Basterfield, Woods, Whelen, J. Am. Chem. Soc. 49, 2945 (1927). (20) Staudinger, Ott, Ber. 41, 2211-2212 (1908).

3:9031 
$$\alpha$$
-CHLOROACROLEIN (2-Chloropropen-2-al-1)  $CH_2$ =C—CHO  $C_3H_3$ OCl Beil. I —  $I_1$ —  $I_2$ —(785) B.P. 40° at 30 mm. (1)  $D_2^{20} = 1.199$  (2) (3)  $n_D^{20} = 1.463$  (2) (3)  $D_2^{15} = 1.205$  (3)  $D_2^{10} = 1.272$  (3)

Colorless strongly lachrymatory liq. with pronounced irritating effect on mucous membranes.

[For prepn. of  $\tilde{C}$  from acrolein (1:0115) in aq. with  $Cl_2$  (50% yield (2)) or from  $\alpha,\beta$ -dichloropropional dehyde (3:9034) by loss of 1 HCl with hot aq. NaOAc (27% yield (3)) (1) see indic. refs.]

C readily polymerizes.

 $[\bar{C} \text{ in CCl}_4 \text{ with Cl}_2 \text{ in cold adds 1 mole halogen giving (2) } \alpha,\alpha,\beta-\text{trichloropropionaldehyde } (3:9033).]$ 

[ $\bar{C}$  in dry ether with Br<sub>2</sub> in cold adds 1 mole halogen giving (2)  $\alpha$ -chloro- $\alpha,\beta$ -dibromo-propionaldehyde, b.p. 105° at 55 mm.,  $D_{-}^{20} = 2.17$ ,  $n_{D}^{20} = 1.548$ .]

[For conversion of  $\bar{C}$  with EtOH to  $\alpha$ -chloroacrolein diethylacetal, b.p. 158-160°, see (4).]

3:9031 (1) Muskat, Becker, J. Am. Chem. Soc. 52, 816-817 (1930). (2) Berlande, Bull. soc. chim. (4) 37, 1392-1393 (1925). (3) Moureu, Robin, Boisemenu, Ann. chim. (9) 15, 210-211 (1921). (4) The Distillers Co., Ltd., Staudinger, Tuerck, Lichtenstein, Brit. 554,570, July 9, 1943; C.A. 39, 312 (1945).

3:9082 d,l-α,β-DICHLOROPROPIONYL CHLORIDE C<sub>3</sub>H<sub>3</sub>OCl<sub>3</sub> Beil. S.N. 162

B.P. 
$$52-54^{\circ}$$
 at 16 mm. (1)  $D_4^{20} = 1.4757$  (2)  $n_D^{20} = 1.47640$  (2)  $43-44^{\circ}$  at 10 mm. (2)

[For prepn. of  $\bar{C}$  from  $\alpha,\beta$ -dichloropropionic acid (3:0855) with SOCl<sub>2</sub> see (1) (2); for formn. of  $\bar{C}$  from glyceric acid ( $\alpha,\beta$ -dihydroxypropionic acid) with PCl<sub>5</sub> see (4) (3) (5).]

[ $\bar{C}$  with alcohols yields alkyl  $\alpha,\beta$ -dichloropropionates; e.g., cf. (1) (2) (3).]

 $\bar{C}$  on hydrolysis yields  $\alpha, \beta$ -dichloropropionic acid (3:0855) q.v.

3:9032 (1) Marvel, Dec, Cooke, Cowan, J. Am. Chem. Soc. 62, 3495-3498 (1940). (2) Leimu, Ber. 76, 1046, 1050 (1937). (3) Werigo, Werner, Ann. 170, 163-167 (1874). (4) Werigo, Okulitch, Ann. 167, 49 (1873). (5) Wichelhaus, Ann. 135, 253 (1865); 143, 3 (1867).

3:9032-A 
$$\beta$$
, $\beta$ -DICHLOROPROPIONYL CHLORIDE C<sub>3</sub>H<sub>3</sub>OCl<sub>3</sub> Beil. S.N. 162 Cl<sub>2</sub>CHCH<sub>2</sub>—C=O Cl

B.P. 43-44° at 10 mm. (1) 
$$D_4^{20} = 1.4557$$
 (1)  $n_D^{20} = 1.47378$  (1)

[For prepn. of  $\bar{C}$  from  $\beta,\beta$ -dichloropropionic acid (3:1058) with SOCl<sub>2</sub> at 75–80° for 3–4 hrs. see (1).]

[For study of rate of reaction of  $\bar{C}$  in dioxane with  $\beta$ -chloroethanol (3:5552) see (1).]  $\bar{C}$  on hydrolysis with aq. gives  $\beta,\beta$ -dichloropropionic acid (3:1058).

3:9032-A (1) Leimu, Ber. 70, 1046, 1050 (1937).

3:9033 
$$\alpha_{1}\alpha_{1}\beta_{1}$$
-TRICHLOROPROPIONALDEHYDE  $C_{3}H_{3}OCl_{3}$  Beil. I —  $C_{1}$   $C_{1}$   $C_{1}$   $C_{1}$   $C_{1}$   $C_{2}$   $C_{3}H_{3}OCl_{3}$  Beil. I —  $C_{1}$   $C_{2}$   $C_{3}H_{3}OCl_{3}$  Beil. I —  $C_{1}$   $C_{2}$   $C_{3}H_{3}OCl_{3}$  Beil. I —  $C_{2}$   $C_{3}H_{3}OCl_{3}$   $C_{3}H$ 

[For prepn. of  $\bar{C}$  from  $\alpha$ -chloroacrolein (3:9031) with  $Cl_2$  in  $CCl_4$  soln. (2), or for formn. of  $\bar{C}$  from  $\beta$ -( $\beta$ '-chlorovinyl)acrylic acid dichloride (4,4,5-trichloropenten-2-oic acid-1) with ozone (1) see indic. refs.]

 $\bar{C}$  on oxidn. with fumg. HNO<sub>3</sub> gives (2) (1)  $\alpha,\alpha,\beta$ -trichloropropionic acid (3:1275).

3:9033 (1) Muskat, Becker, J. Am. Chem. Soc. 52, 817-818 (1930). (2) Berlande, Bull. soc. chim. (4) 37, 1392 (1925).

3:9033-A 
$$\alpha,\alpha$$
-DICHLOROPROPIONALDEHYDE Cl  $C_3H_4OCl_2$  Beil. I-632 (2,2-Dichloropropanal-1)  $CH_3$ — $C$ — $CHO$   $I_1$ — $I_2$ —

The physical constants of authentic pure C are unreported.

Note, however, that from n-propyl alc. (1:6150) by the action of  $Cl_2$  there has been prepd. (1) a prod., m.p. 111-112° u.c., which is regarded (on very meager evidence) as a polymer of  $\bar{C}$ .

No further data on  $\bar{C}$  or its relatives can be found in the literature although the isomeric  $\alpha,\beta$ -dichloropropional dehyde (acrolein dichloride) (3:9034) is well known.

3:9033-A (1) Spring, Tart, Bull. soc. chim. (3) 3, 402-405 (1890).

3: 9034 
$$d_1$$
- $\alpha_1$ -DICHLOROPROPIONALDEHYDE  $C_3$ H $_4$ OCl $_2$  Beil. I - 632 (2,3-Dichloropropanal-1, CH $_2$ -CH $_2$ -CH $_3$ -CH $_4$ CH $_4$ -CHO I   $_4$ -CHO

Colorless mobile liq. with strong odor suggesting chloral.

[For prepn. of  $\bar{C}$  from acrolein (1:0115) with  $Cl_2$  in  $CCl_4$  soln. in cold (74% yield (1)) cf. (3); for formn. of  $\bar{C}$  (together with oxalic acid) from 4,5-dichloropenten-2-oic acid (vinylacrylic acid dichloride) with ozone see (2).]

C with aq. forms a white solid (presumably a hydrate) but not further characterized (3) (1).

Č with abs. EtOH evolves heat and yields a prod. which analyzes correctly for the expected ethyl alcoholate but has been little studied (3).

C does not (3) combine with aq. NaHSO<sub>3</sub>.

[Č with aq. NaOAc on htg. loses HCl giving (27% yield (1)) (2) 2-chloropropen-2-al-1 (α-chloroacrolein) (3:9031).

[ $\bar{C}$  with MeOH refluxed 6 hrs. gives (4)  $\alpha,\beta$ -dichloropropionaldehyde dimethylacetal, b.p. 78–82° at 13 mm.,  $D_4^{18} = 1.182$ ,  $n_D^{18} = 1.144$  (4); note, however, that  $\bar{C}$  with MeOH/NaOMe not only acetalizes but also loses 1 HCl giving (46% yield (4))  $\alpha$ -chloroacrolein dimethylacetal, b.p. 28° at 12 mm.,  $D_4^{19.5} = 1.081$ ,  $n_D^{19.5} = 1.4305$  (4).]

[For reactn. of  $\tilde{C}$  with BrMgC=CMgBr yielding 4,5-dichloropentyn-1-ol-3, b.p. 90-91° at 12 mm.,  $D_4^{23}=1.306, n_D^{23}=1.500$  (5), see (5) (6).]

3:9034 (1) Moureu, Robin, Boismenu, Ann. chim. (9) 15, 209-211 (1921). (2) Muskat, Becker, J. Am. Chem. Soc 52, 816-817 (1930). (3) Aronstein, Ann. Suppl. 3, 190-192 (1864/5). (4) Naftali, Bull. soc. chim. (5) 4, 337 (1937). (5) Lespieau, Bull. soc. chim. (4) 43, 657-658 (1928). (6) Lespieau, Compl. rend. 179, 1606-1607 (1924), 203, 145 (1936).

3:9036 1,1,1,3-TETRACHLOROPROPANOL-2 
$$C_3H_4OCl_4$$
 Beil. I —  $(\beta,\beta,\beta,\beta'$ -Tetrachloroisopropyl alcohol)  $CH_2$ — $C$ — $CCl_3$  I<sub>1</sub>— I<sub>2</sub>-(385)

B.P. 95-96° at 17 mm. (1) 
$$D_4^{20} = 1.610$$
 (2)  $n_D^{20} = 1.51453$  (2)  $87-89$ ° at 14 mm. (2)

Liq. with odor suggesting iodoform.

[For prepn. of  $\tilde{C}$  from 1,1,1,3-tetrachloropropanone-2 (unsym.-tetrachloroacetone) (3:6085) by reduction with  $\Lambda l(OEt)_3$  or  $Mg(OEt)_2$  or EtOMgCl see (2); from 3,3,3-trichloro-1,2-epoxypropane ( $\gamma,\gamma,\gamma$ -trichloropropylene oxide) (3:5760) (1) with conc. HCl on warming see (1).]

C with BzCl + dil. aq. alk. fails (1) to yield a crystn. benzoate.

3:9036 (1) Arndt, Eistert, Ber. 61, 1122 (1928). (2) Meerwein, von Bock, Kirschnick, Lens, Migge, J. prakt Chem. (2) 147, 212, 225 (1936).

3:9037 1,1,3,3-TETRACHLOROPROPANOL-2 
$$C_3H_4OCl_4$$
 Beil. S.N. 24  $(\beta,\beta,\beta',\beta'$ -Tetrachloroisopropyl alcohol)  $Cl_2CH$ — $CH$ — $CHCl_2$ 

B.P. 80-90° at 14 mm. (1) 
$$D_4^{20} = 1.612$$
 (1)  $n_D^{20} = 1.51334$  (1)

[For prepn. of  $\tilde{C}$  from 1,1,3,3-tetrachloropropanone-2 (sym.-tetrachloroacetone) (3:6050) by reduction with Al(OEt)<sub>3</sub>, Mg(OEt)<sub>2</sub>, or EtOMgCl see {1}.]

3:9037 (1) Meerwein, von Bock, Kirschnick, Lenz, Migge, J. prakt. Chem. (2) 147, 212, 225 (1936).

| (Glycer<br>" α-moi<br>γ-chlore                                                                          | HLOROPROI<br>rol α-monochlo<br>pochlorohydrii<br>ppropylene gly                                                   | n,"                                                                                                                              | CH <sub>2</sub> Cl C <sub>3</sub> H <sub>2</sub><br>H—C—OH<br>CH <sub>2</sub> OH | O <sub>2</sub> Cl Beil. I - 473<br>I <sub>1</sub> -(246)<br>I <sub>2</sub> -(537)                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B.P. 141° 135° 129° 118.5-119.5° cor 119° 116° 113.5° 112-114° 101-105° 98-100° 92° cor. 83° 82-84° 81° | at 14 mm.<br>at 11 mm.<br>at 10.5 mm.<br>at 10 mm.<br>at 10 mm.<br>at 3-4 mm.<br>at 1 mm.<br>at 1 mm.<br>at 1 mm. | (2) 1 (3) 1 (45) (44) $D_4^{20} = 1$ (5) 1 (6) 1 (7) (76) (8) (9) $D_4^{17.5} = 1$ (1) (10) (11) Note. (12) 135.5–13 (13) 18 mm. | B.P. values of 1 36.0° at 20 mm. (6                                              | $n_{\rm D}^{25} = 1.4811 \ (16)$ $1.4782 \ (15)$ $1.4781 \ (10)$ $1.4778 \ (15)$ $n_{\rm D}^{20} = 1.4811 \ (5)$ $1.4810 \ (13)$ $1.4809 \ (12)$ $1.4800 \ (15)$ $1.4794 \ (15)$ $n_{\rm D}^{17.5} = 1.4820 \ (6)$ $39^{\circ}$ at 18 mm. (17), 34), and 130–131° at a material of doubtful |
| 81°<br>80.9°                                                                                            | at 0.5 mm.<br>at 0.53 mm.                                                                                         |                                                                                                                                  |                                                                                  |                                                                                                                                                                                                                                                                                             |

[See also 2-chloropropanediol-1,3 (glycerol β-monochlorohydrin) (3:9039).]

 $\bar{C}$  is misc. with aq.; eas. sol. alc., ether, but alm. insol. pet. ether. — [For f.p./compn. data and diagram of system  $\bar{C}$  + aq. over range 0-60%  $\bar{C}$  see (19).]

#### USES OF C

The manifold uses of  $\bar{C}$  both as solvent and chemical intermediate cannot here be treated in detail [note, however, the following: for use of  $\bar{C}$  (sometimes together with ethylene glycol (1:6465) as solvent in nitration of various carbohydrates and related prods. see (20) (21); in cellulose nitrate lacquers see (22); in extraction of ligroin from spruce wood see (23); as rodent poison see (24)].

#### BIOCHEMICAL BEHAVIOR OF C

[For study of action of C on amylase (25), for effect on fermentation (26), for bactericidal action (27) (28) see indic. refs.]

#### PREPARATION OF C

 $\ddot{\mathbf{C}}$  may be prepared from four principal starting points, viz., glycerol (1:6540), 3-chloro-1,2-epoxypropane (epichlorohydrin) (3:5358), 3-hydroxy-1,2-epoxypropane (glycidol), or allyl alcohol (1:6145); also from various miscellaneous starting points. — Note that by most of these methods a small proportion, e.g., 10-15%, of glycerol  $\beta$ -monochlorohydrin (3:9039) is also formed.

[For best working directions for lab. prepn. of C see (29).]

From glycerol (1:6540). With HCl without other acids. The earlier methods for prepn. of C from glycerol involved merely reaction with HCl under various circumstances [e.g., from glycerol satd. with HCl gas and htd. at 100° (30) (17), or 120° (32) cf. (15), 130° (19),

or at 150-170° under reduced press. (33), or in inert solvent such as dioxane or C itself (34) see indic. refs. and also (4); from glycerol with conc. HCl (9 moles) at 85° for 4 hrs. (9% yield (35)) or at 120° under press. (36) see indic. refs.].

With HCl in presence of organic acids. The reaction of glycerol with HCl is markedly facilitated by the presence of AcOH, other org. acids, or substances which yield such acids [e.g., for prepn. of  $\bar{C}$  from glycerol + AcOH with HCl gas (29) (1) (19) (37) (38) (39a) (yields: 86% (1) (19), 66% (29)) or with conc. aq. HCl (yields: 85–88% (16), 59–63% (29), 59% (9)) cf. (37) (39b) see indic. refs.; for prepn. of  $\bar{C}$  from glycerol + other org. acids (37) (39) or + esters of org. or inorg. acids (40) see indic. refs.; note also that further reactn. of  $\bar{C}$  with HCl leads to glycerol  $\alpha,\alpha'$ -dichlorohydrin (3:5985)].

With other reagents. [For prepn. of  $\bar{C}$  from glycerol with  $S_2Cl_2$  (41) or with  $SOCl_2$  + pyridine (42) see indic. refs.]

From 3-chloro-1,2-epoxypropane (epichlorohydrin) (3:5358). [For prepn. of  $\overline{C}$  from epichlorohydrin with aq. at 100° (43) in s.t. (38) (31) or in s.t. at 125° (3) or on reflux. for 14 hrs. (80% yield (7)) see indic. refs.; this ring opening is greatly facilitated by pres. of dil. acids such as dil. H<sub>2</sub>SO<sub>4</sub> (yields: 85-90% (44) (6), 80% (45)) or formic acid (66% yield (46)); for study of kinetics of this reactn. incl. influence of various acids and salts see (43) (3) (47) (48); for patent on use of dil. acids or acid-reacting salts see (49).]

From 3-hydroxy-1,2-epoxypropane (glycidol = epihydrin alc.). [For prepn. of  $\tilde{C}$  from glycidol with HCl (by oxide ring opening and addn.) under a wide variety of conditions see (4) (3) (50); yields may run as high as 90% (4).]

From allyl alcohol (1:6145) by addn. of HOCl. [For formn. of  $\bar{C}$  (together with glycerol  $\beta$ -monochlorohydrin (3:9039)) from allyl alc. by addn. of HOCl see text and corresp. citations under the  $\beta$ -isomer (3:9039).]

From miscellaneous starting points. [For prepn. of  $\bar{C}$  from propylene by addn. of HOCl see (51); from glyceryl triesters of hydroxy acids (e.g., castor oil) with HCl under various conditions see (52); from glycerol  $\alpha$ -monochlorohydrin diacetate (3:6840) by alcoholysis with MeOH/HCl at 60° for 6 hrs. (yields: 86% (13), 81-85% (14)) see indic. refs.; from the reaction prod. of  $\bar{C}$  with acetone, i.e. from 4-(chloromethyl)-2,2-dimethyl-1,3-dioxolane (see below), by acid hydrolysis see (9) (5).]

#### CHEMICAL BEHAVIOR OF C WITH INORGANIC REACTANTS

Reduction of C. [C in aq. soln. with Na/Hg shaken 2 days at room temp. gives (53) cf. (31) propylene glycol (propanediol-1,2) (1:6455); note that reduction of C with conc. HI (which might be expected to yield isopropyl iodide) is so slow as to be useless for detn. of C (58).]

Oxidation of  $\tilde{C}$ .  $[\tilde{C}$  in aq. soln. on oxidn. with conc. HNO<sub>3</sub> as directed (54) gives (yield not stated)  $\beta$ -chloro- $\alpha$ -hydroxypropionic acid ( $\beta$ -chlorolactic acid) [Beil. III-286, III<sub>1</sub>-(110), III<sub>2</sub>-(209)], eas. sol. aq., alc., ether, cryst. from C<sub>6</sub>H<sub>6</sub> (54), m.p. 77° (54), 77-78° (55); for resolution of this acid into opt. act. forms, d-form, m.p. 91.5°, see (56). — For oxidation of  $\tilde{C}$  with HIO<sub>4</sub> giving (50% yield) chloroacetaldehyde hydrate (3:7212) see (146).]

[For study of inflammability of  $\bar{C}$  with solid KMnO<sub>4</sub> see (57); for titration of  $\bar{C}$  with Pb(OAc)<sub>4</sub> and use in detn. of  $\bar{C}$  in pres. of the isomeric glycerol  $\beta$ -monochlorohydrin (3:9039) see (12).]

Behavior of  $\tilde{C}$  with alkalies.  $\tilde{C}$  in the pres. of alkalies may react in at least two ways according to conditions: i.e.,  $\tilde{C}$  may either undergo hydrolysis yielding glycerol (1:6540) or loss of HCl and consequent ring closure yielding 3-hydroxy-1,2-epoxypropane (epihydrin alc. = glycidol).

Hydrolysis of  $\bar{C}$ . [ $\bar{C}$  with aq. under reflux is slowly (33% in 70 hrs. (59)) hydrolyzed to

glycerol. — Č with aq. alk. (60) (61) (62) or alk. carbonate (61) (62) cf. (63) hydrolyzes to glycerol; for study of kinetics of alk. hydrol. see (60) (3) (4) (64) (65). — Note that Ç with alc. NaSH (66) or KSH (67) gives monothioglycerol [Beil. I-519].]

Dehydrochlorination of  $\bar{C}$ . [ $\bar{C}$  with alc. NaOH (68) (43) (4), or alc. KOH (16), or alc. NaOEt (16), or  $\bar{C}$  in dry ether with Na (16) (63) (50) (71), or  $\bar{C}$  with Na<sub>2</sub>CO<sub>3</sub> + CaSO<sub>4</sub> (63), or  $\bar{C}$  in ether with BaO (31), or  $\bar{C}$  with 2 N aq. NaOH at ord. temp. for 10 min. (69), or  $\bar{C}$  with basic cpds. in alc. + C<sub>6</sub>H<sub>6</sub> (70) gives (yields: 66% (68), 60–90% (16), 67% (4) 55% (71), 50–60% (63), 37% (43)) 3-hydroxy-1,2-epoxypropane (glycidol) [Beil. XVII-104, XVII<sub>1</sub>-(50)], b.p. 160–161° (50), 65–66° at 2–25 mm (16),  $D_-^{25}$  = 1.1143 (16),  $n_D^{25}$  = 1.4302 (16) (corresp. N-phenylcarbamate, m.p. 60° (16); N-( $\alpha$ -naphthyl) carbamate, m.p. 102° (16)).

[Note that  $\tilde{C}$  in dil. aq. alk. loses HCl to give glycidol very much more rapidly (3) (4) than does the isomeric glycerol  $\beta$ -monochlorohydrm; for use of this property in detn. of purity of samples of  $\tilde{C}$  see (9).]

Behavior of C with salts of inorganic acids (for NaCN see below under salts of organic acids).

With alkali (or alk.-earth) volutes. [ $\bar{C}$  with alkali iodides (72a) or alk.-earth iodides (72b) at not above 90° in absence of light gives 3-iodopropanediol-1,2 (glycerol  $\alpha$ -iodohydrin) [Beil. I<sub>1</sub>-(246), I<sub>2</sub>-(539)], m.p. 48-49° (72) (73), 49-50° (7) (corresp. bis-(p-nitrobenzoate), m.p. 102° (74), 102-103° (75)), note that this prod. comprises the pharmaceutical "Alival" (74) (75).]

With alkali phosphates.  $[\bar{C}$  with aq.  $K_3PO_4$  (76) or  $Na_3PO_4$  (76) (77) cf. (78) (82) gives the di alkali salts of glycerol  $\alpha$ -phosphoric acid [Bell. I-517,  $I_{1-}(274)$ ,  $I_{2-}(592)$ ].]

With alkali arsenites [For analogous behavior of C with Na<sub>3</sub>AsO<sub>3</sub> see (79)]

**Behavior of \tilde{C} with NH<sub>3</sub>.**  $\tilde{C}$  with NH<sub>3</sub> might be expected to yield 3-aminopropanediol-1,2; however, this prod. although known, is usually prepared from other sources. [For comments on reactn. of  $\tilde{C}$  with NH<sub>3</sub> see (80) (81).]

## CHEMICAL BEHAVIOR OF C WITH ORGANIC REACTANTS

#### BEHAVIOR WITH ORGANIC HYDROXY COMPOUNDS

With monohydric alcohols.  $\tilde{C}$  with monohydric alcs. in pres. of corresp. alkoxide splits out alkali chloride giving the corresp. glycerol  $\alpha$ -monoalkyl ethers.

[ $\bar{\mathbf{C}}$  with MeOH/NaOMe gives (1) (83) (84) glycerol  $\alpha$ -methyl ether (3-methoxypropanediol-1,2) [Beil. I-512, I<sub>1</sub>-(271), I<sub>2</sub>-(589)], b.p. 220° at 760 mm. (1) (15), 196° at 728 mm. (83), 135.5-136° at 40 mm (1) (15), 111-112° at 13 mm. (85),  $D_4^{25} = 1.111$  (1) (15),  $D_4^{17} = 1.1189$  (85),  $n_D^{25} = 1.442$  (1) (15),  $n_D^{17} = 1.4445$  (85) (corresp bis-(p-nitrobenzoate), m.p. 108° (86) (87) (15), corresp. bis-(N-phenylcarbamate), m.p. 118-119° (87)). — Note differences of these constants from those of the isomeric glycerol  $\beta$ -methyl ether (2-methoxy-propanediol-1,3) [Beil. I<sub>2</sub>-(589)], viz., b.p. 232° at 760 mm. (1) (15), 148° at 40 mm. (1) (15),  $D_4^{25} = 1.124$  (1) (15),  $n_D^{25} = 1.446$  (1) (15) (corresp. bis-(P-nitrobenzoate), m.p. 155° (87) (15), corresp. bis-(P-phenylcarbamate), m.p. 102° (87)); note also that m.p.'s of mixts. of the two bis-(P-nitrobenzoates) (86) and of the two bis-(N-phenylcarbamates) (87) are depressed.]

[Č with EtOH/NaOEt gives (75% yield (1)) (88) glycerol  $\alpha$ -ethyl ether (3-ethoxypropanediol-1,2) [Beil. I-512, I<sub>2</sub>-(590)], b.p. 222° at 760 mm. (1) (15), 118-121° at 21 mm. (88), 114-116° at 10 mm. (15), 112-113° at 10 mm. (1);  $D_4^{25} = 1.063$  (1), 1.058 (15);  $n_D^{25} = 1.440$  (15),  $n_D^{20} = 1.441$  (1) (corresp. bis-(N-phenylcarbamate), m.p. 103-104° (88)).]

[C with n-PrOH/NaO-n-Pr gives (88) (84) glycerol α-n-propyl ether (3-(n-propoxy)pro-

panediol-1,2) [Beil.  $I_1$ -(272)], b.p. 122° at 22 mm. (84), 118-122° at 15 mm. (88),  $D_4^{18} = 1.074$  (88),  $D_5^{18} = 1.4400$  (88) (corresp. bis-(N-phenylcarbamate), m.p. 116° (88)).]

[ $\bar{C}$  with n-BuOH/NaO-n-Bu gives (88) glycerol  $\alpha$ -n-butyl other (3-(n-butoxy))propanediol-1,2), b.p. 138-140° at 22 mm.,  $D_4^{18}=1.002, n_D^{18}=1.4463$  (corresp. bis-(N-phenylcarbamate), m.p. 94-95°).]

Certain of the glycerol  $\alpha$ -monoalkyl ethers contg. long-chain alkyl radicals have special interest because of their occurrence in natural prods. Two such cases are represented by glycerol  $\alpha$ -n-hexadecyl ether (chimyl alcohol) and glycerol  $\alpha$ -n-octadecyl ether (batyl alcohol).

[ $\bar{C}$  with Na *n*-hexadecyl oxide fails (88), however, to yield  $d_i l$ -glycerol  $\alpha$ -*n*-hexadecyl ether (chimyl alcohol) [Beil. I<sub>2</sub>-(590)], but prepns. by other methods (89) show following props.: m.p. 62-63° (89) (corresp. bis-(p-mtrobenzoate), m.p. 52-53° (89); corresp. bis-(N-phenylcarbamate), m.p. 92° (89)).]

[ $\ddot{C}$  with Na *n*-octadecyl oxide fails (88) to yield d,l-glycerol  $\alpha$ -n-octadecyl ether (batyl alcohol) [Beil. I<sub>2</sub>-(590)], but prepns by other methods (91) (89) (88) show following props.: m.p. 71-71.5° (89), 70-71° (91) (90) (89) (88) (corresp. bis-(p-nitrobenzoate), m.p. 73.5-74° (89); corresp. bis-(N-phenylcarbamate), m.p. 94.5-95° (89), 95-96° (88)).]

With polyhydric alcohols.  $[\bar{C}$  with cellulose + NaOH gives (92) completely aq. soluble cellulose ethers; note, however, that the press of as little as 1% of 1,3-dichloropropanol-2 (glycerol  $\alpha, \alpha'$ -dichlorohydrin) (3:5985) suffices to render the ether completely aq. insoluble. — For use of  $\bar{C}$  in etherification of starch (93) (94), dextrin (94), etc., see indic. refs.]

With monohydric phenols.  $\tilde{C}$  with the sodium salts of monohydric phenols splits out NaCl yielding the corresp. glycerol  $\alpha$ -aryl ethers.

[ $\bar{C}$  with phenol (1:1420) in EtOH/NaOEt (95), or  $\bar{C}$  with phenol + solid NaOH at 120° (96) (97), or  $\bar{C}$  with phenol + aq. NaOH at 100° for 2 hrs. (98) gives (yields: 61-64% (95), 59% (96)) glycerol  $\alpha$ -phenyl ether (3-phenoxypropanediol-1,2) [Beil. VI-149, VI<sub>1</sub>-(85)], m.p. 70° (95), 69° (99), 67-68° (96); note that this prod. on fusion changes to a second form, m.p. 53-54° (96) (97), but on stdg. at room temp. m.p. rises again to 68°.]

Corresponding condensations of  $\bar{C}$  with many other phenols are known but cannot be included here.

#### BEHAVIOR WITH CARBONYL COMPOUNDS

Č with carbonyl cpds. under appropriate conditions yields the corresp. cyclic acetals (see also under corresp. subheading of epichlorohydrin (3:5358).

With aldehydes. [ $\bar{C}$  with aq. formaldehyde soln. ("formalin") (1:0145) +  $H_3PO_4$  on htg. gives (100) 4-(chloromethyl)-1,3-dioxolane [Beil. XIX-8, XIX<sub>1</sub>-(610)], b.p. 126° at 750 mm. (100). — Note, however, that  $\bar{C}$  with paraformaldehyde (1:0080) + dry HCl gas reacts differently giving (101) 3-chloro-1,2-bis-(chloromethoxy) propane, although no constants on this prod. appear to have been reported.]

[C with acetaldehyde (1:0100) directly seems not have been recorded (cf. under epichlorohydrin (3:5358)): note, however, that  $\bar{C}$  with acetylene in pres. of HgSO<sub>4</sub> at 60-80° (102) or in pres. of BF<sub>3</sub>/HgO/MeOH (103) gives (72% yield (103)) 4-(chloromethyl)-2-methyl-1,3-dioxolane [Beil. XIX<sub>1</sub>-(610)], b.p. 148° (102), 147-149° (103),  $D_4^{24} = 1.1720$  (103),  $n_D^{24} = 1.4410$  (103).]

With ketones. [C with acetone (1:5400) in pres. of HCl (5),  $P_2O_5$  (5), HCl + Na<sub>2</sub>SO<sub>4</sub> (7), or H<sub>2</sub>SO<sub>4</sub> + Na<sub>2</sub>SO<sub>4</sub> (9) gives (60% yield (7)) 4-(chloromethyl)-2,2-dimethyl-1,3-dioxolane ("acetone-glycerol  $\alpha$ -chlorohydrin"), b.p. 157° at 767 mm.,  $D_4^{20} = 1.1079$ ,  $n_D^{15} = 1.43750$  (7). — Note that this condensation occurs more readily than for the corresp. isomeric glycerol  $\beta$ -monochlorohydrin (3:9039) q.v. and has been employed (5) to enrich the proportion of the latter in mixtures of the two.]

[C with hexanone-2 directly has not been studied, but C with *n*-butylacetylene (1:8055) in pres. of Et<sub>2</sub>O.BF<sub>3</sub>/HgO/MeOH/trichloroacetic acid gives (104) 4-(chloromethyl)-2-*n*-butyl-2-methyl-1,3-dioxolane, b.p. 109° at 25 mm.]

[C with acetophenone (1:5515) in pres. of H<sub>2</sub>SO<sub>4</sub> or HCl gives (105) a prod. presumably 4-(chloromethyl)-2-methyl-2-phenyl-1,3-dioxolane, b.p. 153-153.3° at 40 mm., which with

2 N HCl at 60° is hydrolyzed into its original components.]

## BEHAVIOR OF C WITH SALTS OF ORGANIC ACIDS

 $\bar{C}$  reacts with salts of organic acids to give in general the corresp. glycerol  $\alpha$ -esters.

With salts of aliphatic monobasic acids. [ $\bar{C}$  with Na formate on htg. is claimed to yield (106) (45) glycerol  $\alpha$ -monoformate [Beil. II-24, II<sub>1</sub>-(19), II<sub>2</sub>-(33)], but owing to the instability of this prod. the reliability of its supposed constants has been questioned (8).]

[ $\bar{C}$  with NaOAc or KOAc in s.t. at 150–160° yields (107) glyceryl  $\alpha$ -acetate [Beil. II-146, II<sub>1</sub>-(69), II<sub>2</sub>-(159)], b.p. 129–131° at 3 mm.,  $D_4^{20}=1.2060$ ,  $n_D^{20}=1.4517$  (108), but the reactn. is accompanied by some formn. of glyceryl diacetate and glyceryl triacetate.]

[For corresp. reactions of  $\bar{C}$  with sodium salts of *n*-butyric acid (1:1035), isobutyric acid (1:1030), *n*-valeric acid (1:1060), isovaleric acid (1:1050), and *n*-caproic acid (1:1130) see (8).

[ $\bar{C}$  with K laurate in s.t. at 180° under CO<sub>2</sub> (109) or  $\bar{C}$  with Na laurate at 130° (110) gives glyceryl  $\alpha$ -laurate (" $\alpha$ -monolaurin") [Beil. II-362, II<sub>1</sub>-(157), II<sub>2</sub>-(320)], m.p. 63° (111), cf. (112), 62° (2).]

[ $\bar{C}$  with K myristate in s.t. at 180° under CO<sub>2</sub> (109), or  $\bar{C}$  with sodium myristate at 110–115° for 8–10 hrs. (110), gives (70% yield (110)) glyceryl  $\alpha$ -myristate (" $\alpha$ -monomyristin") [Beil. II-366, II<sub>1</sub>-(162), II<sub>2</sub>-(327)], m.p. 68° (109) (113), 67.3° (111) cf. (112).]

[ $\bar{C}$  with K palmitate in s.t. at 180° under CO<sub>2</sub> (109), or  $\bar{C}$  with Pb palmitate at 112° under CO<sub>2</sub> (113), gives (50% yield (113)) glyceryl  $\alpha$ -palmitate (" $\alpha$ -monopalmitin") [Beil. II-373, II<sub>2</sub>-(338)], m.p. 74-75° (2), 77° (111) cf. (112).]

[ $\bar{C}$  with K stearate in s.t. at 180° under CO<sub>2</sub> (109), or  $\bar{C}$  with sodium stearate at 110–115° for 8–10 hrs. (110) cf. (114), gives glyceryl  $\alpha$ -stearate (" $\alpha$ -monostearin"), m.p. 81.1° (111) cf. (112).]

With salts of amino acids. [For analogous forms. of corresp. glyceryl mono esters from  $\tilde{C}$  with sodium salts of aminoacetic acid (glycine) (115),  $\alpha$ -aminopropionic acid (alanine) (115),  $\alpha$ -amino-isocaproic acid (leucine) (116) see indic. refs.]

With alkali cyanides. [ $\bar{C}$  in 95% alc. with aq. KCN (or NaCN) in s.t. at 100° for 36 hrs., followed by hydrolysis, gives (9) 28% yield of the lactone of  $\beta$ , $\gamma$ -dihydroxy-n-butyric acid ( $\beta$ -hydroxy-n-butyro- $\gamma$ -lactone), m.p. 22.5-26° (9), accompanied by (23% yield (9)) the lactone of  $\gamma$ -hydroxyisocrotonic acid, m.p. +5° (9) (presumably formed by loss of H<sub>2</sub>O from the former).] Cf. behavior of "glycerol  $\beta$ -monochlorohydrin" (3:9039).

# BEHAVIOR OF Č WITH OTHER NON-NITROGENOUS ORGANIC REACTANTS

With alkyl halides (or their equivalents). [ $\bar{C}$  with MeI + silver oxide (15), or  $\bar{C}$  with methyl p-toluenesulfonate at 150° for 5 hrs. (117), or  $\bar{C}$  with diazomethane (118) gives the corresp. dimethyl ether, viz., 3-chloro-1,2-dimethoxypropane, b.p. 156-157° at 760 mm. (117), 156-158° (118), 156° (15),  $D_4^{25} = 1.08$  (15),  $n_2^{25} = 1.43$  (15).]

[Note that the corresp. diethyl ether, viz., 3-chloro-1,2-diethoxypropane, b.p. 69.8-70.4° at 14 mm.,  $D_4^{19} = 1.026$ ,  $n_D^{20} = 1.4246$ , has been prepd. indirectly (119).]

With RMgX cpds. [C with EtMgBr (2 moles) reacts in an obscure fashion yielding (120) hydroxyacetone (acetol) (1:5455). — C with iso-AmMgBr (4 moles) (perhaps acting through intermediate acetol) gives (25% yield (120)) 2,5-dimethylhexanediol-1,2 [Beil. I-491], b.p. 245-247° at 745 mm., 129-132° at 11 mm.]

[C with C<sub>6</sub>H<sub>5</sub>MgBr (4 moles) (perhaps acting through intermediate acetol) gives (120) (121) (60% yield (120)) 2-phenylpropanediol-1,2 [Beil. VI-930] accompanied by some 3-phenylpropanediol-1,2 [Beil. VI-929].]

# BEHAVIOR OF C WITH AMINES

With primary amines. With aliphatic primary amines. [ $\bar{\mathbb{C}}$  with n-heptadecylamine (122) or its hydrochloride gives a prod. which may be the expected N-( $\beta$ , $\gamma$ -dihydroxy-n-propyl)n-heptadecylamine.]

With aromatic primary amines. [Č with aniline (2 moles) + a little aq. refluxed for 1 hr., then neutralized, gives (63% yield (124))  $N-(\beta,\gamma-\text{dihydroxy-}n-\text{propyl})$  aniline [Beil. XII-183], b.p. 249-250° at 50 mm. (125), 200-203° (124), m.p. 42° (124), 52° (125).]

[ $\bar{\mathbf{C}}$  with p-aminophenol gives (126)  $N-(\beta,\gamma-\text{dihydroxy-}n\text{-propyl})-p$ -aminophenol, m.p. 192°, used as photographic developer (127); for analogous reactions of  $\bar{\mathbf{C}}$  with p-anisidine giving  $N-(\beta,\gamma-\text{dihydroxy-}n\text{-propyl})-p$ -anisidine, m.p. 75–76° see (126), or of  $\bar{\mathbf{C}}$  with p-phenetidine giving  $N-(\beta,\gamma-\text{dihydroxy-}n\text{-propyl})-p$ -phenetidine, m.p. 93° (126), 90–92° (128), see indic. refs.]

With secondary amines. With aliphatic secondary amines. [ $\bar{C}$  with Me<sub>2</sub>NH + aq. NaOH at 20–40° (129) or  $\bar{C}$  with Me<sub>2</sub>NH in s.t. at 100° for 5–6 hrs. (130) (131) cf. (132) gives 3-(dimethylamino)propanediol-1,2 [Beil. IV-302], b.p. 220° cor. at 749 mm. (130), 111° at 15 mm. (132). —  $\bar{C}$  with Et<sub>2</sub>NH in s.t. at 100° for 5–6 hrs. (131) cf. (130) (132) gives 3-(diethylamino)propanediol-1,2 [Beil. IV-302], b.p. 233–235° at 748 mm. (130) (131), 106° at 3 mm. (132) (corresp. bis-(N-phenylcarbamate), m.p. 106.5° (133); corresp. bis-(N-phenylcarbamate)monohydrochloride, m.p. 109° (133)).]

With heterocyclic secondary amines. [ $\bar{\mathbb{C}}$  with piperidine in s.t. at 100° for 4–5 hrs. (131, cf. (132) or in ord. flask at 100° for 1½ hrs. (134) gives 3-(piperidino)propanediol-1,2 [Beil. XX-34, XX<sub>1</sub>-(12)], m.p. 83° (135) (132), 79–80° (136), 67–68° (134) (corresp. bis-(p-nitrobenzoate), m.p. 108° (135); corresp. bis-(N-phenylcarbamate)monohydrochloride ("Diothane"), m.p. 201–202° cor. (137), 197–198° u.c. (?) (133)). — Note that in prepn. of "Diothane" the influence of the purity of the piperidine has been studied (137); that 3-(piperidino)propanediol-1,2 yields a mono-(N-phenylcarbamate)monohydrochloride, m.p. 176–177° (133); for resolution of d,l-3-(piperidino)propanediol-1,2 into its opt. act. enantiomorphs and prepn. of the corresp. opt. act. "Diothanes" see (138).]

With tertiary amines. [ $\bar{C}$  with Me<sub>3</sub>N anhydrous (139) or in aq. soln in s.t. at 100° for 8 hrs. (31) or in alc. soln. in s.t. at 100° for 6 hrs. (140) gives trimethyl- $(\beta,\gamma$ -dihydroxy-n-propyl)-ammonium chloride [Beil. IV-302]. —  $\bar{C}$  with Et<sub>3</sub>N in s.t. at 100° for 8 hrs. gives (141) triethyl- $(\beta,\gamma$ -dihydroxy-n-propyl)-ammonium chloride [Beil. IV-303]. — For analogous behavior of  $\bar{C}$  with tri-n-propylamine, quinoline, and strychnine see (141). — For quat. salt from  $\bar{C}$  with N,N-dimethyl "stenyl" amine see (142).]

# BEHAVIOR OF C WITH OTHER NITROGENOUS ORG. REACTANTS

[ $\tilde{\mathbf{C}}$  with diazomethane gives (118) the corresp. dimethyl ether for which see above under behavior of  $\tilde{\mathbf{C}}$  with alkyl halides.]

[C with aq. Na<sub>2</sub>NCN stood for 12 hrs., then shaken with benzoyl chloride, gives (143) the tribenzoate, m.p. 130° of 5-(hydroxymethyl)-2-aminooxazoline; substitution of benzene-sulfonyl chloride for the benzoyl chloride yields (144) corresp. *tris*-(benzene-sulfonate), m.p. 158°.] Cf. behavior of epichlorohydrin (3:5358).

<sup>—</sup> Glycerol  $\alpha$ -monochlorohydrin  $\alpha'$ -acetate ( $\gamma$ -chloro- $\beta$ -hydroxy-n-propyl acetate): b.p. 240° (see 3:6775).

- Glycerol  $\alpha$ -monochlorohydrin  $\beta$ -acetate ( $\beta$ -chloro- $\beta$ '-hydroxy-isopropyl acetate): b.p. 218° (see 3:6517).
- —— Glycerol  $\alpha$ -monochlorohydrin  $\alpha,\beta$ -diacetate: b.p. 245° (see 3:6840).
- —— Glycerol  $\alpha$ -monochlorohydrin  $\alpha'$ -benzoate: unreported.
- —— Glycerol  $\alpha$ -monochlorohydrin  $\beta$ -benzoate: unreported.
- Glycerol  $\alpha$ -monochlorohydrin  $\alpha', \beta$ -dibenzoate: unreported.
- © Glycerol  $\alpha$ -monochlorohydrin di-(p-nitrobenzoate): m.p. 108-109° u.c. (14), 108° (15), 107-108° (2). [From  $\bar{C}$  with p-nitrobenzoyl chloride (2 moles) in pyridine at room temp. for several days (93-96% yield (14)) or in CHCl<sub>3</sub> soln. with quinoline as acid acceptor (100% yield (2)); note that this prod. depresses m.p. (121-122°) of the corresp. deriv. of the isomeric glycerol  $\beta$ -monochlorohydrin (3:9039) (14).]
- Glycerol  $\alpha$ -monochlorohydrin  $\alpha'$ -(?)-(N-phenylcarbamate): m.p. 128-129° (16), 127-129° (9), 126° (42). [From  $\bar{C}$  with phenyl isocyanate in 7% yield (9); note that for the corresp. deriv. of glycerol  $\beta$ -monochlorohydrin (3:9039) the m.p. is 133-136°.]
- **D** N- $(\beta, \gamma$ -dihydroxy-n-propyl)phthalimide: m.p. 111.5-112.5° (145), 111° (46). [From  $\bar{C}$  with K phthalimide (100% yield (46)), but no details of conditions are stated.]
- 3:9038 (1) Fairbourne, Gibson, Stephens, J. Soc. Chem. Ind. 49, 1021-1023 (1930). (2) Fairbourne, Foster, J. Chem. Soc. 1926, 3148-3151. (3) Smith, Z. physik. Chem. 92, 717-735 (1917).
   (4) Smith, Z. physik. Chem. 94, 691-722 (1920). (5) Smith, Lindberg, Ber. 64, 511-515 (1931).
- Böeseken, Heimans, Rec. trav. chim. 42, 1106-1108 (1923), Bull. soc. chim. (4) 39, 1254 (1926).
   Fischer, Pfahler, Ber. 53, 1608-1609 (1920).
   Gilchrist, Schuette, J. Am. Chem. Soc. 53, 3480-3484 (1931).
   Glattfeld, Leavell, Spieth, Hutton, J. Am. Chem. Soc. 53, 3165-3171

(1931). (10) Gibson, J Soc. Chem. Ind 50, 971 (1931).

- (11) Walden, Swinne, Z. physik. Chem. 79, 721 (1912). (12) Sjoberg, Svensk Kem. Tid. 53, 390-400 (1941), Cent. 1942, I 2517-2518; C.A. 36, 2812 (1942). (13) Sjoberg, Svensk Kem. Tid. 53, 454-457 (1941); Cent. 1942, II 25, not in C.A. (14) Rider, J. Am. Chem. Soc. 54, 775-776 (1932). (15) Fairbourne, Gibson, Stephens, J. Chem. Soc. 1931, 446, 451-452. (16) Rider, Hill, J. Am. Chem. Soc. 52, 1521-1525 (1930) (17) Hanriot, Ann. Chim. (5) 17, 67-75 (1879). (18) Grun, von Skopnick, Ber. 42, 3750-3759 (1909). (19) Gibson, J. Soc. Chem. Ind. 50, 949-954 (1931). (20) Sturgis (to General Explosives Co), U.S. 1,473,685, Nov. 13, 1923; Cent. 1924, I 720; C.A. 18, 472 (1924).
- (21) Wrightsman (to du Pont Co.), U.S. 1,751,377, March 18, 1930, Cent. 1930, II 2476; C.A.
  24, 2605 (1930): U.S. 1,891,255, Dec. 20, 1932; Cent. 1933, I 1717; C.A. 27, 2036 (1933). (22)
  Rosenthal (to F. Bayer & Co.), Ger 406,426, Nov. 18, 1924, Cent. 1925, I 908; not in C.A. (23)
  Schütz, Cellulosechem. 19, 33-38 (1941); C.A. 36, 5008 (1942). (24) I G., Brit. 474,677, Dec. 2, 1937; Cent. 1938, I 2045, C.A. 32, 3004 (1938) French 805,557, Nov. 24, 1936; Cent. 1937, I 3397; C.A. 31, 4417 (1937). (25) Clark, Edwards, Trans. Roy. Soc. Can. (3) 28, III 107-125 (1934); Cent. 1935, I 2548; C.A. 29, 1112 (1935). (26) Simon, Buchem. Z. 253, 218-221 (1932). (27)
  Cooper, Forstner, Buchem. J. 18, 944 (1924). (28) Salumbein Compt. rend. 155, 368 (1912). (29) Conant, Quayle, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 294-296 (1941); (1st. ed.), 288-289 (1932), 2, 33-35 (1922). (30) Berthelot, Ann. 88, 311-312 (1853); Ann. chim. (3) 41, 296-297 (1854).
- (31) Hanriot, Ann. chim. (5) 17, 80, 100, 114 (1879). (32) Nivière, Compt. rend. 156, 1628 (1913); Bull. soc. chim. (4) 13, 893-894 (1913). (33) Sprengstoffwerke Nahnsen & Co., A.G., Ger. 254,709, Dec. 12, 1912; Cent. 1913, I 348, C.A. 8, 1190 (1914) Ger. 269,657, Jan. 88, 1914; Cent. 1914, I 713, C A. 8, 2253 (1914). (34) Britton, Slagh (to Dow Chem. Co.), U.S. 2,257,899, Oct. 7, 1941; C.A. 36, 498 (1942). (35) Norris, Mulliken, J. Am. Chem Soc. 42, 2096 (1920). (36) Deutsche Sprengstoff, A.G., Ger. 180,668, Jan. 29, 1907; Cent. 1907, I 774; C.A. 1, 1655 (1907). (37) Novelli, Anales farm. bioquim. (Buenos Aires) 1, 8-19 (1930); Cent. 1931, 250; C.A. 24, 5021 (1930). (38) Reboul, Ann. chim. (3) 60, 18-19 (1860). (39) Boehringer und Söhne, (a) Ger. 197,308 (b) Ger. 197,309; April 16, 1908; Cent. 1908, I 1655-1666; C.A. 2, 2429 (1908). (40) Chem. Fabrik Griesheim-Elektron, Ger. 238,341, Sept. 19, 1911; Cent. 1911, II 1679; C.A. 6, 1660 (1912).
- (41) Deutsche Sprengstoff, A.G., Ger. 229,872, Jan. 6, 1911; Cent. 1911, I 358; C.A. 5, 2557 (1911); Ger. 229,536, Dec. 22, 1910; Cent. 1911, I 274; C.A. 5, 2557 (1911); Ger. 201,230, Sept. 25, 1908; Cent. 1908, II 1218; C.A. 3, 377 (1910). (42) Carré, Mauclere, Compt. rend. 192, 1568 (1931).
  (43) Brönsted, Mary Kilpatrick, Martin Kilpatrick, J. Am. Chem. Soc. 51, 430-431, 445-446 (1929).
  (44) Fourneau, Ribas y Marques, Bull. soc. chim. (4) 39, 700 (1926). (45) Delaby,

Dubois, Compt. rend. 187, 767-769, 949-951 (1928); Bull. soc. chim. (4) 47, 570 (1930). (46) den Otter, Rec. trav. chim. 57, 18-20 (1938). (47) Banerjee, Sen, J. Indian Chem. Soc. 9, 509-518 (1932). (48) Smith, Wode, Widhe, Z. physik. Chem. 130, 157-162 (1927). (49) Groll, Hearne (to Shell Development Co.), U.S. 2,086,077, July 6, 1937; Cent. 1937, II 2433; C.A. 31, 5813 (1937). (50) Bigot, Ann. chim. (6) 22, 481-487 (1891).

(51) Curme, Young (to Carbide and Carbon Chem. Corpn.) Canadian 238,729, March 18, 1924; Cent. 1925, I 1129; not in C.A. (52) Grun, Ger. 272,337, March 27, 1914; Cent. 1914, I 1469–1470; C.A. 8, 2604 (1914): Ger. 227,901, Sept. 3, 1914; Cent. 1914, II 812; C.A. 9, 1096 (1915). (53) Lourenco, Ann. 120, 91 (1861). (54) Koelsch, J. Am. Chem. Soc. 52, 1105–1106 (1930). (55) von Richter, J. prakt. Chem. (2) 20, 193–195 (1879). (56) Tsunoo, Ber. 68, 1342 (1935). (57) Rathsburg, Gawlich, Chem. Ztp. 65, 426–427 (1941); Cent. 1942, I 651; C.A. 37, 3273 (1943). (58) Grün, Boedecker, Ber. 43, 1058, Note 1 (1910). (59) Olivier, Berger, Rec. trav. chim. 41, 639–640 (1921). (60) Drozdov, Chernov, J. Gen. Chem. (U.S.S.R.), 4, 1305–1309 (1934); Cent. 1936, I 4549; C.A. 29, 3306 (1935).

(61) Lewis (to du Pont Co.), U.S. 1,895,517, Jan. 31, 1933; Cent. 1933, I 2870; [C.A. 27, 2455 (1933)]. (62) Essex, Ward (to du Pont Co.), U.S. 1,626,398, April 26, 1927; Cent. 1928, I 410? [C.A. 21, 2136 (1927)]. (63) Kötz, Richter, J. prakt. Chem. (2) 111, 395-397 (1925). (64) Smith, Z. physik. Chem. 83, 349-352 (1912). (65) Smith, Lindberg, Ber. 61, 1709-1717 (1928). (66) Thiess, Müller (to M.L.B.), Ger. 405,384, Oct. 31, 1924; Cent. 1925, I 1527; not in C.A. (67) Carius, Ann. 124, 222-224 (1862). (68) Nef, Ann. 335, 232 (1904). (69) Groll, Hearne (to Shell Development Co.), U.S. 2,070,990, Feb. 16, 1937, Cent. 1937, II 2433; [C.A. 31, 2612 (1937)]. (70) Marple, Evans (to Shell Development Co.), U.S. 2,248,635, July 8, 1941; C.A. 35, 6599 (1941).

(71) Nivière, Bull. soc. chrm. (4) 15, 464-465 (1914). (72) Luders, (a) Ger. 291,541, April 20, 1916; Cent. 1916, I 913; C.A. 11, 1018 (1917); (b) Ger. 291,922, May 15. 1916; Cent. 1916, I 1210; C.A. 11, 1519 (1917). (73) Luders, Emmert, Deut. med. Wochschr. 41, 648-649 (1914); Cent. 1915, II 238. (74) Fairbourne, Stephens, J. Chem. Soc. 1932, 1973-1976. (75) Fischer, Ber. 53, 1625 (1920). (76) Bailly, Gaumé, Compt. rena. 178, 1192 (1924); Bull. soc. chrm. (4) 35, 590-91 (1924). (77) King, Pyman, J. Chem. Soc. 105, 1253 (1914). (78) Bailly, Ann. chrm. (9) 6, 127-137 (1916). (79) Oechslin (to Étab Poulenc Frères), Brit. 191,028, Feb. 14, 1923; Cent. 1923, IV 721; C.A. 17, 2887 (1923): French 556,366, July 19, 1923; Cent. 1923, IV 721; not in C.A. (80) Fairbourne, Gibson, Stephens. J. Soc. Chem. Ind. 49, 1069 (1930).

(81) Smith, Nilsson, J. prakt. Chem. (2) 162, 63-70 (1943). (82) Hill, Pyman, J. Chem. Soc. 1929, 2236-2238. (83) Grun, Bockish, Ber. 41, 3471 (1908). (84) Boehringer u. Söhne, Ger. 226,454, Oct. 4, 1910; Cent. 1910, II 1256; [C.A. 5, 1321 (1911)]. (85) Hibbert, Whelen, J. Am. Chem. Soc. 51, 1947 (1929). (86) Fairbourne, J. Chem. Soc. 1931, 2235. (87) Hibbert, Whelen, Carter, J. Am. Chem. Soc. 51, 302-306 (1929). (38) Davies, Heilbron, Owens, J. Chem. Soc. 1930, 2542-2546. (89) Baer, Fischer, J. Buol. Chem. 140, 397-410 (1941). (90) Davies, Heilbron, Jones, J. Chem. Soc. 1933, 167.

(91) Kornblum, Holmes, J. Am. Chem. Soc. 64, 3045-3046 (1942).
(92) Shorygin, Rymashevskaya, J. Gen. Chem. (U.S.S.R.) 8, 1903-1908 (1938); Cent. 1939, II 419, C A. 33, 5650 (1939); J. Gen. Chem. (U.S.S.R.) 7, 2428-2436 (1937); Cent. 1938, II 860; C A. 32, 1925 (1938).
(93) Shorygin, Makarov-Zemlyanskaya, Bilenko, Derevitskaya, Shematenkova, J. Gen. Chem. (U.S.S.R.) 8, 1910-1917 (1938), Cent. 1939, II 420; C.A. 33, 5814 (1939).
(94) Leuchs (to F. Bayer Co.), Ger. 408,714, Jan. 23, 1925, Cent. 1925, I 1820, not in C.A. (95) Wheeler, Willson, Org. Syntheses, Coll. Vol. 1 (2nd ed.), 296-298 (1941); (1st ed.), 290-291 (1932); 6, 48-50 (1926).
(96) Fairbourne, Stephens, J. Chem. Soc. 1932, 1972-1973.
(97) Stephens, J. Soc. Chem. Ind. 51, 375-378 (1932).
(98) Marle, J. Chem. Soc. 101, 310 (1912).
(99) Fourneau, J. pharm. chm. (7) 1, 55-61 (1910); Cent. 1910, I 1134; C.A. 4, 3070 (1910).
(100) Verley, Bull. soc. chm. (3) 21, 276-277 (1899).

(101) Blanchard, Bull. soc. chim. (4) 39, 1120 (1926). (102) Chem. Fabrik Griesheim-Elektron, Ger. 271,381, March 13, 1914; Cent. 1914, I 1316-1317; [C.A. 9, 356 (1915)]. (103) Nieuwland, Vogt, Foohey, J. Am. Chem. Soc. 52, 1020-1022 (1930). (104) Killian, Hennion, Nieuwland, J. Am. Chem. Soc. 58, 1658-1659 (1936). (105) Altwegg, Chermette (to Soc. Chim. Usines du Rhone), U.S. 1,572,176, Feb. 9, 1926; Cent. 1926, I 3370; [C.A. 20, 1243 (1926)]. (106) Van Romburgh, Rec. trav. chim. 1, 186-187 (1882). (107) Smith, Z. physik. Chem. 102, 64-65 (1922). (108) Schuette, Hale, J. Am. Chem. Soc. 52, 1979-1980 (1930). (109) Krafft, Ber. 36, 4341-4343 (1903). (110) Heiduschka, Schuster, J. prakt. Chem. (2) 120, 148-157 (1928).

(111) Averill, Roche, King, J. Am. Chem. Soc. 51, 869 (1929). (112) Young, Black, J. Am. Chem. Soc. 60, 2604 (1938). (113) Brash, J. Soc. Chem. Ind. 46, T. 481-482 (1927). (114) Veikhertz, Khim. Farm. Prom. 1932, 284-286; Cent. 1933, II 2661; [C.A. 27, 270 (1933)]. (115) Weizmann, Haskelberg, Compt. rend. 189, 105 (1929). (116) Fodor, Weizmann, Z. physiol. Chem. 154, 290-292 (1926). (117) Blanchard, Bull. soc. chim. (4) 41, 831 (1927). (118) Meer-

wein, Hins, Ann. 484, 17-18 (1930). (119) Meerwein, Hins, Hofmann, Kroning, Pfeil, J. prakt. Chem. (2) 147, 278 (1936/7). (120) Grignard, Compt. rend. 141, 45 (1905); Ann. chim. (8) 10, 31-40 (1907).

(121) Grignard, Ger. 164,883, Nov. 16, 1905; Cent. 1905, II 1751. (122) I.G., Brit, 358,114, Oct. 29, 1931; Cent. 1932, I 449; [C.A. 26, 4926 (1932)]. (123) I.G., Brit. 361,261, Dec. 10, 1931; Cent. 1932, I 1438; [C.A. 27, 1112 (1933)]; French 716,560, Dec. 23, 1931; Cent. 1932, I 1438; [C.A. 26, 2288 (1932)]. (124) Shoruigin, Smirnov, J. Gen. Chem. (U.S.S.R.) 4, 830-833 (1934); Cent. 1935, II 3763; C.A. 29, 2155 (1935). (125) Bamberger, Kitschelt, Ber. 27, 3425-3426 (1894). (126) Kolshorn, Ger. 346,385, Dec. 29, 1921, Ger. 346,386, Jan. 2, 1922; [Cent. 1922, II 574]; not in C.A.: Ger. 343,151, Oct. 28, 1921; [Cent. 1922, II 143]; not in C.A.: Brit. 145,614, June 29, 1920; C.A. 14, 3427 (1920); not in Cent.: Brit. 155,575/6, Jan. 13, 1921; Cent. 1921, II 601; C.A. 15, 1535 (1921): French 519,129, June 4, 1921; Cent. 1921, IV 803; not in C.A. (127) Kolshorn, Ger. 343,994, Nov. 12, 1921; Cent. 1922, II 604; not in C.A. (128) Bergmann, Ulpts, Camacho, Ber. 55, 2807-2809 (1922). (129) Alquist, Slagh (to Dow Chem. Co.), U.S. 2,147,226, 756-757 (1899).

(131) Roth, Ber. 15, 1149-1153 (1882). (132) Rider, Hill, J. Am. Chem. Soc. 52, 1528-1530 (1930). (133) Rider, J. Am. Chem. Soc. 52, 2115-2118 (1930); U.S. 2,004,132, June 11, 1935; Cent. 1935, II 3546; C.A. 29, 4902 (1935). (134) Magidson, Strukow, Arch. Pharm. 271, 1576-577 (1933). (135) Einhorn, Fiedler, Ladisch, Uhlfelder, Ann. 371, 158-161 (1910). (136) Pyman, J. Chem. Soc. 93, 1795 (1908). (137) Rider, Cook, J. Am. Chem. Soc. 59, 1741 (1937). (138) Rassch, Brode, J. Am. Chem. Soc. 64, 1112-1113 (1942). (139) Meyer, Ber. 2, 186-188 (1869). (140) Schmidt, Hartmann, Ann. 337, 102 (1904).

(141) Bienenthal, Ber. 33, 3500-3506 (1900). (142) du Pont Co., Brit. 477,981, Feb. 10, 1938; Cent. 1938, II 183; not in C.A. (143) Fromm, Pirk, Ann. 442, 143-144 (1925). (144) Fromm, Kapeller-Adler, Ann. 467, 253-254 (1928). (145) Gabriel, Ohle, Ber. 50, 824 (1917). (146) Hatch, Alexander, J. Am. Chem. Soc. 67, 688 (1945).

3:9039 2-CHLOROPROPANEDIOL-1,3 
$$CH_2OH$$
  $C_3H_7O_2Cl$  Beil. I - 476 (Glycerol  $\beta$ -monochlorohydrin, "  $\beta$ -monochlorohydrin,"  $H$ — $C$ — $Cl$   $I_1$ -(247)  $I_2$ -(542)  $\beta$ -chlorotrimethylene glycol,  $\beta$ - $\beta$ '-dihydroxyisopropyl chloride)

B.P. 
$$[146^{\circ}]$$
 at 18 mm. (1) (2)]  $D_{4}^{20} = 1.3219$  (4)  $n_{D}^{20} = 1.4831$  (4)  $124.5-125^{\circ}]$  at 14.5 mm. (3)  $1.3217$  (3)  $1.3217$  (3)  $cf.$  (4)  $122.5-123.5^{\circ}]$  at 13.5 mm. (5)  $D_{4}^{0} = 1.3416$   $1.3375$  (3)

Attention is directed to the fact that  $\bar{C}$  is in most respects extremely similar in physical constants and chemical behavior to the isomeric glycerol  $\alpha$ -monochlorohydrin (3-chloropropanediol-1,2) (3:9038); that  $\bar{C}$  is very readily partially isomerized to the latter, and that, therefore, the homogeneity of all prepns. of  $\bar{C}$  or reactn. prods. derived from supposedly pure  $\bar{C}$  must be accepted with reserve. The literature of the two glycerol monochlorohydrins is seriously entangled, and reference to the original articles must be made for supporting details.

# PREPARATION OF C

Č has been isolated (3) from the mixed glycerol monochlorohydrins by fractional hydrolysis and distillation; this isolation has been confirmed (4) (6) by methods based on the slower condensation of  $\bar{C}$  with acetone (see below). — The mixture of glycerol monochlorohydrins obtd. from glycerol (1:6540) with conc. HCl at 120° for 5 hrs. under press. contains (4) 13% $\bar{C}$ .

[For formn. of  $\bar{C}$  (together with the isomeric  $\alpha$ -monochlorohydrin) from a mixt. of monochlorohydrin diacetates with abs. MeOH contg. dry HCl gas see [7].]

[The mixture of the two glycerol monochlorohydrins obtd. from allyl alcohol (1:6145) by addn. of HOCl (1) (8) (5) cf. (6) (9) (10) (11) (13) or from epichlorohydrin (3:5358) q.v. by addn. of aq. in pres. of acids has been shown (12) to be essentially similar to that obtd. from glycerol with HCl, although different proportions of  $\alpha$ - and  $\beta$ - isomers might be anticipated (3).]

#### CHEMICAL BEHAVIOR OF C

Reduction of  $\tilde{C}$ . [ $\tilde{C}$  with Na/Hg in aq. alc. HCl gives (8) trimethylene glycol (1:6490).] Behavior with aq. alkalies. [ $\tilde{C}$  with aq. alk. loses HCl and ring-closes to 3-hydroxy-1,2-epoxypropane (glycidol = epihydrin alcohol): this reactn. occurs with  $\tilde{C}$  very much more slowly than for the isomeric  $\alpha$ -monochlorohydrin (3:9038); for its use in detn. of purity of  $\tilde{C}$  see (6) (3) (13) (14).]

Behavior with alkali cyanides. [ $\bar{C}$  in 95% alc. with aq. KCN (or NaCN) in s.t. at 100° for 36 hrs., followed by hydrolysis, does not (6) give the expected  $\beta_1\beta'$ -dihydroxyisobutyric acid but instead gives (35% yield (6)) the lactone of  $\beta_1\gamma$ -dihydroxy-n-butyric acid ( $\beta$ -hydroxy-n-butyro- $\gamma$ -lactone), m.p. 22.5–26° (6), i.e., the same prod. similarly obtd. from glycerol  $\alpha$ -monochlorohydrin (3:9038).]

Behavior with NaI. [ $\bar{C}$  with dry NaI in anhydrous acctone in s.t. at 100° for 12 hrs. gives (18% yield (15)) glycerol  $\beta$ -mono-iodohydrin, m.p. 52-53° (15).]

Behavior with acetone. [ $\bar{C}$  in acetone with  $P_2O_5$  at 2-7° gives (57% yield (4)) a condensation prod., "acetone- $\beta$ -chlorohydrin,"  $C_6H_{11}O_2Cl$ , b.p. 161.5-162.2° cor. at 757 mm.,  $D_4^{15}=1.1344$ ,  $n_D^{15}=1.4487$ ; this condensation occurs less readily, however, than the analogous reactn. for glycerol  $\alpha$ -monochlorohydrin (3:9038), and removal of the latter by this means has been used (4) to enrich the proportion of  $\bar{C}$  in a mixt. of the two.]

- Glycerol  $\beta$ -monochlorohydrin  $\alpha$ -acetate: oil, b.p. 230° at 760 mm., 230–234° cor. at 750 mm. (10),  $D_{15}^{15} = 1.235$  (10). (See 3:6648.)
- Glycerol  $\beta$ -monochlorohydrin  $\alpha_1\alpha'$ -diacetate: oil, b.p. 101–102° at 4 mm. (15).
- —— Glycerol  $\beta$ -monochlorohydrin  $\alpha$ -benzoate: unreported.
- Glycerol  $\beta$ -monochlorohydrin  $\alpha,\alpha'$ -dibenzoate: oil, b.p. 210-211° at 1.5 mm. (15).
- Glycerol β-monochlorohydrin α,α'-bis-(p-nitrobenzoate): m.p. 121-122° (16) (7).
  [Prepd. indirectly; note that this prod. depresses the m.p. of authentic glycerol α-monochlorohydrin bis-(p-nitrobenzoate), m.p. 108-109° u.c. (7).]
- Glycerol  $\beta$ -monochlorohydrin  $\alpha$ -(N-phenylcarbamate): m.p. 133-136° (6), 131-133° remelting at 133° (12). [From  $\bar{C}$  with phenyl isocyanate in 6% yield (6); note that, for the corresp. deriv. of glycerol  $\alpha$ -monochlorohydrin, m.p. is 128-129° (12).]

3:9039 (1) Hanriot, Ann. chim. (5) 17, 73-75, 76-78 (1879). (2) Gibson, J. Soc. Chem. Ind. 56, 949-950 (1931). (3) Smith, Z. physik. Chem. 94, 723-736 (1920). (4) Smith, Lindberg, Ber. 64, 509-516 (1931). (5) Read, Hurst, J. Chem. Soc. 121, 996-999 (1922). (6) Glattfeld, Leavell, Spieth, Hutton, J. Am. Chem. Soc. 53, 3169-3171 (1931). (7) Rider, J. Am. Chem. Soc. 54, 773-776 (1932). (8) Henry, Ber. 5, 449 (1872): Bull. acad. roy. Belg. (3) 33, 110-114; Cent. 1897, I 741. (9) Essex, Ward (to du Pont Co.), U.S. 1,594,608, Aug. 3, 1926; Cent. 1926, II 1693; [C.A. 20, 3170-3171 (1926)]. (10) Wegscheider, Zmerzlikar, Monatsh. 34, 1071-1072 (1913).

[11] Brooks (to Standard Alcohol Co.), U.S. 2,311,023, Feb. 16, 1943; C.A. 37, 4407 (1943).
[12] Rider, Hill, J. Am. Chem. Soc. 52, 1521-1527 (1930).
[13] Smith, Z. physik. Chem. 92, 717-740 (1917).
[14] Smith, Lindberg, Ber. 61, 1712-1717 (1928).
[15] Glattfeld, Klass, J. Am. Chem. Soc. 55, 1114-1119 (1933).
[16] Fairbourne, Foster, J. Chem. Soc. 1926, 3150.

3:9040 1,4-DICHLOROBUTADI-YNE-1,8 
$$C_4Cl_2$$
 Beil. I — (Dichlorobiacetylene)  $Cl$ — $C$ = $C$ — $C$ = $C$ — $Cl$   $I_1$ — $I_2$ -(246)

M.P. 1-3° (1)

Long colorless ndls., which can be distilled under  $N_2$  yielding a colorless oil (1). —  $\bar{C}$  has odor of dichloroacetylene; readily polymerizes to an insol. dark brown explosive material. —  $\bar{C}$  explodes at 73° (1).

[For prepn. of C from diacetylene [Beil. 1-266] by actn. of alk. hypochlorite soln. in cold and absence of light see (1) (2) (3).]

 $\bar{C}$  dislyd. in CHCl<sub>3</sub> and stood 1 day with I<sub>2</sub> in CHCl<sub>3</sub> adds 2 moles I<sub>2</sub> yielding (1) 1,4-dichloro-1,2,3,4-tetraiodobutadiene-1,3, which after careful recrystn. from C<sub>6</sub>H<sub>6</sub>/pet. ether has m.p. 155-157° (1).

**3:9010** (1) Straus, Kollek, Hauptmann, Ber. **63**, 1893–1894 (1930). (2) I.G., Brit. 333,946, Sept. 18, 1930; Cent. **1931**, I 523. (3) I.G., Ger. 495,787, April 17, 1930.

# B.P. 125° at 70-80 mm. (1)

[From 2,3,4,5,5-pentachloropentadien-2,4-oic acid-1 [Beil. II-482] by boilg. with aq., then distilling with steam; the structure of the acid (and therefore of  $\bar{C}$ ) is disputed (2). — For two other materials (b.p. 193-200° at 720 mm.) having the composition C<sub>4</sub>HCl<sub>5</sub>, obtd. from trichloroethylene (3:5170) with AlCl<sub>3</sub>, but thought *not* to be identical with  $\bar{C}$ , see (3).]

3:9044 (1) Zincke, Küster, Ber. 26, 2113 (1893). (2) Zincke, Ann. 296, 143 (1897). (3) Kaufler, Ann. 433, 48-51 (1923).

3:9046 1,1,2,3,4,4-HEXACHLOROBUTENE-2 C<sub>4</sub>H<sub>2</sub>Cl<sub>6</sub> Beil. S.N. 11

(Liquid stereoisomer) Cl Cl Cl Cl

HC—C—C—C—H

B.P. 97-98° at 10 mm. (1) 
$$D_{15}^{15} = 1.651$$
 (1)  $n_{D}^{-} = 1.53313$  (1)

[See also solid stereoisomer (3:1945).]

Colorless oily liq. with agreeable odor.

[For formn. of  $\bar{C}$  (together with its solid stereoisomer (3:1945)) by actn. of Cl<sub>2</sub> upon the high-boilg fraction obtd. in the prepn. of trichloroethylene (3:5170) from 1,1,2,2-tetrachloroethane (acetylene tetrachloride) (3:5750) see (1); for formn. of  $\bar{C}$  from the liq. stereoisomer (3:6150) of 1,2,3,4-tetrachlorobutadiene-1,3 + Cl<sub>2</sub> see (1).]

8:9046 (1) Müller, Hüther, Ber. 64, 589-600 (1931); C.A. 25, 3956-3957 (1931).

1243

#### 3:9048 HEXACHLOROBUTENE-X

C<sub>4</sub>H<sub>2</sub>Cl<sub>6</sub>

Beil. S.N. 11

B.P. 106-107.5° at 14 mm. (1)

[For formn. of  $\tilde{C}$  from 1,1,2,2,3,4,4-heptachlorobutane (3:9056) with conc. aq. KOH see (1).]

Č reduces Tollens' reagt. (1).

3:9048 (1) Prins, Rec. trav. chim. 56, 125 (1937); Cent. 1937, I 3308; C.A. 31, 2999 (1937).

#### 3:9050 HEXACHLOROBUTENE-Y

C<sub>4</sub>H<sub>2</sub>Cl<sub>6</sub> Beil. S.N. 11

**B.**P.

125.5° at 25 mm. (1)

M.P.

9.5-11° (1) 
$$D_4^{20} = 1.6880$$
 (1)  $n_D^{20} = 1.5442$  (1)

[For formn. of  $\bar{C}$  (together with other products) by actn. of  $F_2$  on trichloroethylene (3:5170) see (1).]

 $\bar{C}$  does not add  $Cl_2$  or  $Br_2$  in sunlight (1).

Č differs (1) in prop. from the solid stereoisomer (3:1945) of 1,1,2,3,4,4-hexachloro-butene-2.

3:9050 (1) Miller, J. Am. Chem. Soc. 62, 343 (1940).

3:9052 1,2,3-TRICHLOROBUTADIENE-1,3 Cl Cl Cl C4H<sub>3</sub>Cl<sub>3</sub> Beil. S.N. 12

B.P. 33-34° at 7 mm. (1) (2) 
$$D_A^{20} = 1.4060$$
 (1)  $n_D^{20} = 1.5262$  (1)

[For prepn. of  $\tilde{C}$  from 1,2,2,3,4-pentachlorobutane (3:9070) (55% yield of  $\tilde{C}$  together with 25% yield 2,3,3,4-tetrachlorobutene-1 (3:9060)) with alc. KOH for 2 hrs. at room temp. see (1) (2).]

 $\bar{C}$  after addition of hydroquinone can be distd. in vac. (1). —  $\bar{C}$  polymerizes more slowly than 2,3-dichlorobutadiene-1,3 (3:5220); under ordinary conditions  $\bar{C}$  changes in 10-12 days to a jelly-like mass contg. 50% unchanged  $\bar{C}$ ; after a month polymerization to a dark-colored soft friable mass is apparently complete (1).

3:9052 (1) Carothers, Berchet, J. Am. Chem. Soc. 55, 2004-2008 (1933). (2) Carothers, Berchet (to du Pont), U.S. 1,965,369, July 3, 1934, Cent. 1935, I 3724, C.A. 28, 5716 (1934).

3:9054 1,1,1,4,4-PENTACHLOROBUTENE-2  $C_4H_3Cl_5$  Beil. S.N. 11 Cl Cl

B.P. 
$$78.5-80^{\circ}$$
 at 11 mm. (1)  $D_{22}^{22}=1.611$  (1)  $n_{\rm D}^{22}=1.5548$  (1)  $76-77.9^{\circ}$  at 10 mm. (1)  $D_{21}^{21}=1.612$  (1)  $n_{\rm D}^{21}=1.5538$  (1)

[For prepn. of  $\bar{C}$  (in small yield and with much resinification (1)) from either trichloroethylene (3:5170) + 1,1,2-trichloroethane (3:5330) + AlCl<sub>3</sub> for 7 days at 40°, or from 1,2-dichloroethylene (3:5030) + 1,1,1,2-tetrachloroethane (3:5555) + AlCl<sub>3</sub> for 10 days at 40°, see (1).]

Č is volatile with steam (use in sepn. from accompanying resin (1).)

C reduces Tollens' soln, but not NH4OH/AgNO3 without alkali (1).

Č is not attacked by boilg. 0.1% KMnO<sub>4</sub> (1).

 $\bar{\mathbf{C}}$  on boilg. with excess N/10 alc. KOH splits off 2.34-2.6 moles HCl but  $\bar{\mathbf{C}}$  cannot be titrated (1).

3:9054 (1) Prins, Rec. trav. chim. 56, 123-124 (1937).

**B.P.** 137.5° at 13.5 mm. (1) 
$$D_{20}^{20} = 1.742$$
 (1)  $n_{\rm D}^{20} = 1.5407$  (1) 97.5° at 2 mm. (1)

[For prepn. of C (60% yield (1) together with other products) from 1,2-dichloroethylene (3:5030) + pentachloroethane (3:5880) + AlCl<sub>3</sub> for 12 days at 40° see (1).

C in CCl4 gives with AlCl3 a yel. color; no HCl is evolved on boilg., and on addn. of water the solution is completely decolorized (1).

Č with Zn dust in alc. gives (50% yield (1)) of a trichlorobutadiene, b.p. 161°, 52° at 12 mm. (1).

3:9056 (1) Prins, Rec. trav. chim. 56, 124-125 (1937).

3:9057 1,2-DICHLOROBUTADIENE-1,3 Cl Cl C<sub>4</sub>H<sub>4</sub>Cl<sub>2</sub> Beil, S.N. 12 CH—CH—C—CH

B.P. 
$$60-65^{\circ}$$
 at 105 mm. (4)  $D_{15}^{15} = 1.207$  (1)  $n_{D}^{15} = 1.5078$  (1) (5)  $46.75-47.5^{\circ}$  at 85 mm. (5)  $D_{4}^{15} = 1.199$  (5)  $n_{D}^{7} = 1.4698$  (2)

(2)

C polymerizes slower than chloroprene (3:7080) yielding a rubberlike polymer which on vulcanization gives an ebonite-like subst. (1).

[For prepn. of C (56% yield (4)) from 1-chloro-2-vinylacetylene (3:7070) by treatment as directed at room temp. with conc. HCl + CuCl + NH<sub>4</sub>Cl see (4); for formn. from vinylacetylene + Cl<sub>2</sub> see (3); for prepn. of C from 1,2,4-trichlorobutene-2 (3:9062) with EtOH/ KOH see (5).]

C on oxidn. with KMnO4 yields (3) oxalic acid dihydrate (1:0445). — C on ozonization in CCL (3) yields oxalic acid (1:0535) and formic acid (1:1005); under specified conditions. however. α,β-dichloroacrylic acid (3:2265), m.p. 85-86°, has been isolated (3).

C fails to add maleic anhydride (3). - [For behavior of C with HOBr or with HgO +  $I_2 + MeOH see (6).$ 

3:9657 (1) Klebanskii, Tzyurikh, Dolgopol'skii, Bull. acad. sci., U.S.S.R. 1935, No. 2, 189-226; Rubber Chem. Tech. 9, 383-408 (1936); Cent. 1935, II 3844; C.A. 30, 1259 (1936). (2) Klebanskii. Volkenshtein, Orlova, J. Gen. Chem. (U.S.S.R.) 5, 1255-1267 (1935); Cent. 1936, I 3414; C.A. 30, 1025 (1936); J. prakt. Chem. (2) 145, 1-17 (1936). (3) du Pont Co., Brit. 389,122, April 4, 1933; Cent. 1934, II 2609. (4) Petrov, J. Gen. Chem. (U.S.S.R.) 13, 250-256 (1943); C.A. 38, 1467 (1944). (5) Petrov, J. Gen. Chem. (U.S.S.R.) 13, 102-107 (1943); C.A. 38, 329-330 (1944).

B.P. 82-83° at 17 mm. (1)

[For prepn. of C from 1,2-dichloroethylene (3:5030) by polymerization in pres. of peroxide cat. see (1).]

3:9058 (1) Bauer, U.S. 2,267,712, Dec. 30, 1941; C.A. 36, 2564 (1942).

3:9060 2,3,3,4-TETRACHLOROBUTENE-1 Cl Cl Cl C<sub>4</sub>H<sub>4</sub>Cl<sub>4</sub> Beil. S.N. 11 (1,2,2,3-Tetrachlorobutene-3)

 $D_4^{20} = 1.4602 (1)$   $n_D^{20} = 1.5133 (1)$ B.P. 41-42° at 7 mm. (1)

[For formn. of C (25% yield (1)) from 1,2,3,3,4-pentachlorobutane (3:9070) with MeOH/ KOH at room temp. for 2 hrs. (together with 55% yield 1,2,3-trichlorobutadiene-1,3 (3:9052)) see (1).]

 $\bar{C}$  on oxidn. with excess aq. KMnO<sub>4</sub> yields (1)  $\alpha, \alpha, \beta$ -trichloropropionic acid (3:1275). m.p. 48-50°, Neut. Eq. 176.4 (calcd. 177.5) (1).

[A liquid, b.p. 90-110° at 25 mm.,  $D_4^{21} = 1.473$ ,  $n_D^{21} = 1.514$ , and believed to be a mixt. of tetrachlorobutenes, has been obtd. (2) from mon vinylacetylene + Cl<sub>2</sub>; it may or may not have contained C.1

3:9060 (1) Berchet, Carothers, J. Am. Chem. Soc. 55, 2004-2008 (1933). (2) Rengert. Schumacher, Ber 73, 1025-1042 (1940); C.A. 35, 1027 (1941).

3:9062 1,2,4-TRICHLOROBUTENE-2 C<sub>4</sub>H<sub>5</sub>Cl<sub>3</sub> Beil. S.N. 11 (1,3,4-Trichlorobutene-2)

 $D_4^{20} = 1.3843$  (1)  $n_D^{20} = 1.5175$  (1) B.P. 67-69° at 10 mm. (3)  $D_4^{15} = 1.3575$  (3)  $n_D^{15} = 1.5121$  (3) 64-65° at 10 mm. (1)

62-65° at 11 mm. (2)

[For formn. of C from 4-chlorobutadiene-1,2 (3:7225) + Cl<sub>2</sub> (together with 2,3,4trichlorobutene-1 (3:9064) and 1,2,2,3,4-pentachlorobutane) see (1) (2); for formn. of C from 2-chlorobutadiene-1,3 (Chloroprene) (3:7080) + Cl<sub>2</sub> (together with 2,3,4-trichlorobutene-1 (3:9064) and 1,2,2,3,4-pentachlorobutane (3:9070)) see (1) (2) (3),1

C with EtOH/KOH as directed (3) loses HCl giving 1,2-dichlorobutadiene-1,3 (3:9057). C on oxidn. with aq. KMnO<sub>4</sub> yields (1) (3) chloroacetic acid (3:1370), m.p. 63°, Neut. Eq. 95.1 (calcd. 94.5) (1).

3:9062 (1) Carothers, Berchet, J. Am. Chem. Soc. 55, 1628-1631 (1933). (2) Carothers, Berchet (to du Pont), U.S. 1,965,369, July 3, 1934; Cent. 1935, I 3724; C.A. 28, 5716 (1934). (3) Petrov. J. Gen. Chem. (U.S.S.R.) 13, 102-107 (1943); C.A. 38, 329 (1944).

B.P. 40-41° at 10 mm. (1) 
$$D_4^{20} = 1.3430$$
 (1)  $n_D^{20} = 1.4944$  (1)  $37-41°$  at 10 mm. (2)

36-40° at 6 mm. (2)

[For formn. of  $\bar{C}$  from 4-chlorobutadiene-1,2 (3:7225) (together with 1,2,4-trichlorobutene-2 (3:9062)) especially at low temps., e.g., -60 to  $-70^{\circ}$ , see (1). Note that at 40-60°  $\bar{C}$  formed by this reactn. reacts further with the by-product 1,2,4-trichlorobutene-2 (3:9062) to yield (1) as the principal product 1,2,3,3-tetrachlorobutane (3:9080) q.v.; for formn. of  $\bar{C}$  from 2-chlorobutadiene-1,3 (Chloroprene) (3:7080) with  $Cl_2$  see (2) (3).]

C with alk. as specified (2) gives 2,3-dichlorobutadiene-1,3 (3:5220), b.p. 98° at 760 mm. (2).

 $\bar{C}$  on htg. with 2 pts. aq. + calcd. amt. powdered CaCO<sub>3</sub> for 4 hrs. at 70° fails (4) to hydrolyze [diff. from 1,2-dichlorobutene-2 (3:5615) or 1,3-dichlorobutene-2 (3:5550)]. —  $\bar{C}$  does react, however, with hot aq.  $K_2CO_3$  losing HCl and yielding (4) alm. 100% 2,3-dichlorobutadiene-1,3 polymer (4).

 $\overline{C}$  on oxidn. with aq. KMnO<sub>4</sub> yields (1)  $\alpha,\beta$ -dichloropropionic acid, (3:0855), m.p. 49–50°, Neut. Eq. 141 (calcd. 143) (1).

3:9064 (1) Carothers, Berchet, J. Am. Chem. Soc. 55, 1628-1631 (1933) (2) Carothers, Berchet (to du Pont), U.S. 1,965,369, July 3, 1934, Cent. 1935, I 3724, C.A. 28, 5716 (1934). (3) Coffmann (to du Pont), U.S. 1,964,720, July 3, 1934, Cent. 1934, II 3180; C.A. 28, 5080 (1934) (4) Tishchenko, J. Gen. Chem. (U.S. S.R.) 7, 658-662 (1937), Cent. 1937, II 371; C.A. 31, 5754 (1937).

# 3:9066 1,3-DICHLORO-2-(CHLOROMETHYL)PROPENE-1 $C_4H_5Cl_3$ Beil. I — $CH_2Cl$ $I_1$ — $I_2$ -(181)

# B.P. 62-64° at 9 mm. (1) (2)

[For formn. of  $\tilde{C}$  (together with other products) from 1,3-dichloro-2-chloromethyl-2-nitropropane [Beil.  $I_{2^{-}}(92)$ ] with Na/Hg (2) or from 2-nitro-2-hydroxymethylpropanediol-1,3 [Beil.  $I_{2^{-}}(596)$ ] with PCl<sub>5</sub> (1) see (1) (2).

Č on cat. hydrogenation with Pt black in alc. yields (2) 1,3-dichloro-2-methylpropane (3:7960), b.p. 45° at 10 mm.

 $\bar{C}$  in CHCl<sub>3</sub> on shaking with Cl<sub>2</sub>/aq. adds Cl<sub>2</sub> yielding (2) 1,1,2,3-tetrachloro-2-chloromethylpropane (3:9072), b.p. 99–101° at 12 mm. —  $\bar{C}$  with Br<sub>2</sub> in CHCl<sub>3</sub> adds Br<sub>2</sub> yielding (2) 1,2-dibromo-1,3-dichloro-2-(chloromethyl)propane, colorless odorless oil, b.p. 140° at 10 mm.

[For reactn. of C with sodio-malonic ester see (3).]

3:9066 (1) Kleinfeller, Ber. 62, 1585-1587 (1929). (2) Kleinfeller, Ber. 62, 1594-1595 (1929). (3) Kleinfeller, Frercks, J. prakt. Chem. (2) 138, 195-196 (1933).

B.P. 95.3-95.5° at 11 mm. (1)

[See also solid diastereoisomer (3:0750).]

[For prepn. of  $\bar{C}$  (30-50% yield of mixed solid and liquid stereomers (1)) from 1,2-dichloroethylene (3:5030) + 1,1,2-trichloroethane (3:5330) + 1% AlCl<sub>3</sub> for 5 days at 35-40° see (1).]

Č in CCl4 treated with AlCl3 gives a dark violet soln. which on boilg. evolves HCl (1).

 $\ddot{\mathbf{C}}$  in alc. treated wih Zn dust gives (60% yield (1)) 1-chlorobutadiene-1,3 (3:7210), b.p. 68° (1).

 $\bar{C}$  dissolved in hot alc. and titrated with N/10 KOH splits off 1.51-1.59 moles HCl (1).

[A pentachlorobutane obtained (2) from trichloroethylene (3:5170) + 1,1-dichloroethane (3:5035) + AlCl<sub>3</sub> may or may not be identical with  $\bar{C}$ .]

**3:9068** (1) Prins, Rec. trav. chim. **56**, 121-123 (1937). (2) Consortium für Elektrochem. Ind., Brit. **453**,414, Oct. 8, 1936; Cent. **1937**, I 1012.

3:9070 1,2,2,3,4-PENTACHLOROBUTANE Cl 
$$C_4H_5Cl_5$$
 Beil. S.N. 10 (1,2,3,3,4-Pentachlorobutane)  $H_2C-CH-C-CH_2$  Cl Cl Cl Cl Cl Cl B.P. 85° at 10 mm. (1)  $D_4^{20}=1.5543$  (1)  $n_D^{20}=1.5157$  (1) 78-84° at 9 mm. (2)

[For prepn. of  $\bar{C}$  from 1,3-dichlorobutene-2 (3:5550) by actn. of  $Cl_2$  at low temps. (-60 to -70°), much HCl being evolved and 2,3,4-trichlorobutene-1 (3:9064) also being formed, see (1); note also that chlorination of 4-chlorobutadiene-1,2 (3:7225) gives mixts. of 2,3,4-trichlorobutene-1 (3:9064) and 1,2,4-trichlorobutene-2 (3:9062) which react further to yield  $\bar{C}$  (1).] [For patents on these processes see (2) (3).]

Č with alk. yields (2) both 1,2,3-trichlorobutadiene-1,3 (3:9052), b.p. 34° at 7 mm. (2), and 2,3,3,4-tetrachlorobutene-1 (3:9060), b.p. 42° at 7 mm. (2).

3:9070 (1) Carothers, Berchet, J. Am. Chem. Soc. 55, 1628–1631 (1933). (2) Carothers, Berchet (to du Pont), U.S. 1,965,369, July 3, 1934; Cent. 1935, I 3724; C.A. 28, 5716 (1934). (3) Coffmann (to du Pont), U.S. 1,964,720, July 3, 1934, Cent. 1934, II 3180; C.A. 28, 5080 (1934).

#### B.P. 99-101° at 12 mm. (1)

82-86° at 6 mm. (2)

[For prepn. of  $\bar{C}$  from 1,3-dichloro-2-(chloromethyl)propene-1 (3:9066) by shaking in CHCl<sub>3</sub> with Cl<sub>2</sub>/aq. see (1).]

3:9072 (1) Kleinfeller, Ber. 62, 1595 (1929).

3:9074 2,3-DICHLOROBUTENE-1 Cl Cl C4H6Cl2 Beil. S.N. 11 
$$CH_3 - C - C = CH_2$$

B.P. 111-113° at 2 mm. (1)  $D_4^{18} = 1.1319$  (1)  $n_C^{18} = 1.4503$  (1)

[For prepn. of  $\tilde{C}$  in 55% yield (1) from 2-chlorobutene-2 (3:7105) by treatment with 1 mole  $Cl_2 + 1.5$  moles NaHCO<sub>3</sub> at 0° (accompanied by 45% yield 2,2,3-trichlorobutane (3:5680)) see (1); with  $Cl_2$  in pres. of light and  $O_2$  as directed see (2).]

**3:9074** (1) Tishchenko, *J. Gen. Chem.* (U.S.S.R.) **8,** 1232-1246 (1938); Cent. **1939**, II 4223; C.A. **33,** 4190 (1939). (2) Hearne (to Shell Development Co.), U.S. 2,296,614, Sept. 22, 1942; C.A. **37,** 1129 (1943).

3:9078 1,2,2,3-TETRACHLOROBUTANE Cl Cl Cl C<sub>4</sub>H<sub>5</sub>Cl<sub>4</sub> Beil. I-119 CH<sub>3</sub>—C—C—CH<sub>2</sub> 
$$I_1$$
— $I_2$ —

B.P. 63.0-63.5° at 11 mm. (1)

$$D_4^{18} = 1.4276 (1)$$
  $n_C^{18} = 1.4893 (1)$ 

[For prepn. (100% yield (1)) from 1,2-dichlorobutene-2 (3:5615) with 1 mole  $Cl_2$  + 1.5 moles NaHCO<sub>3</sub> at 0° see (1).]

[The product obtained (2) cf. (3) from 2,2,3-trichlorobutanol-1 (3:1336) with PCl<sub>5</sub> may have been impure  $\bar{C}$ .]

**3:9078** (1) Tishchenko, J. Gen. Chem. (U.S.S.R.) **8,** 1232-1246 (1938); C.A. **33,** 4190 (1939). (2) Garzarolli-Thurnlaekh, Ann. **213,** 372-373 (1882). (3) Norton, Noyes, Am. Chem. J. **10,** 432 (1888).

8:9080 1,2,3,3-TETRACHLOROBUTANE Cl Cl Cl C<sub>4</sub>H<sub>6</sub>Cl<sub>4</sub> Beil. S.N. 10

CH<sub>3</sub>—C—C—CH<sub>2</sub>

Cl H

B.P. 90° at 32 mm. (1) 
$$D_4^{20} = 1.4204$$
 (1)  $n_D^{20} = 1.4958$  (1)  $55-57$ ° at 10 mm. (1)

[For formn. of  $\bar{C}$  (together with other products) from 1,3-dichlorobutenc-2 (3:5550) at 40-60° with Cl<sub>2</sub> see {1}. Note, however, that at very low temps. (-60 to -70°) much HCl is evolved during chlorination and the principal products are then 2,3,4-trichlorobutenc-1 (3:9064), b.p. 40-41° at 10 mm. {1}, and 1,2,3,3,4-pentachlorobutane (3:9070), b.p. 85° at 10 mm. {1}.] [For patents on this process see {2} {3}.]

**3:9680** (1) Carothers, Berchet, J. Am. Chem. Soc. **55**, 1629–1631 (1933). (2) Coffman (to du Pont), U.S. 1,964,720, July 3, 1934; Cent. **1934**, II 3180; C.A. **28**, 5080 (1934). (3) Carothers, Berchet (to du Pont), U.S. 1,965,369, July 3, 1934; Cent. **1935**, I 3724; C.A. **28**, 5716 (1934).

B.P. 130-134° at 40 mm.

M.P. 73°

See 3:1760. Division A: Solids.

1249 LIQUIDS (WITH B.P. REPTD. AT RED. PRESS.) 3:9082-3:9086

3:9082 1,2,3,4-TETRACHLOROBUTANE (liquid isomer)  $C_4H_6Cl_4$  Beil. I - 119 (Butadiene tetrachloride (liquid isomer);  $CH_2$ —CH—CH— $CH_2$   $I_1$ -( 38) erythrene tetrachloride (liquid isomer))  $CH_2$   $CH_3$   $CH_4$   $CH_4$   $CH_5$   

B.P. 110-111° at 40 mm. (1) (2)

For formn. and reactns. see solid form, m.p. 73° (3:1760).

3:9082 (1) Muskat, Northrup, J. Am. Chem. Soc. 52, 4053-4055 (1930). (2) Muskat (to du Pont), U.S. 2,038,593, Apr. 28, 1936; Cent. 1936, II 3359; C.A. 30, 3912 (1936).

3:9084 1,1,3-TRICHLORO-2-(CHLOROMETHYL)PROPANE C4HaCla Beil, I --

$$\begin{array}{c} \operatorname{CH_2Cl} & \mathbf{I_1} \\ \downarrow & \mathbf{I_2} \\ \operatorname{ClCH_2-C-CHCl_2} \\ \downarrow & \operatorname{H} \end{array}$$

B.P. 77-80° at 9 mm. (1)

Oil with odor like CCl<sub>4</sub> but with irritating actn. on eyes. — Volatile with steam. [For formn. of  $\tilde{C}$  in small amt. (together with other products) from 2-nitro-2-hydroxymethylpropanediol-1,3 (nitro-isobutylglycerol) with PCl<sub>5</sub> see (1).]

3:9084 (1) Kleinfeller, Ber. 62, 1585 (1929).

3:9086 1,1,3-TRICHLOROBUTANE Cl  $C_4H_7Cl_3$  Beil. S.N. 10  $CH_3$ —C— $CH_2$ - $CH_2$ .  $CH_2$ 

B.P. 150° at 720 mm. (1)

A trichlorobutane which may have this structure has been reported (1) when vinyl chloride (3:7004) + AlCl<sub>3</sub> at 20° reacts with the material obtd. from ethylidene dichloride (3:5035) + AlCl<sub>3</sub> + chlorinated ethylenes.

3:9086 (1) Consortium für Elektrochem. Ind., Brit. 453,414, Sept. 10, 1936; Cent. 1937, I 1012; C.A. 31, 1046 (1937).

--- d,l- $\alpha,\alpha'$ -DICHLOROSUCCINYL (DI)CHLORIDE  $C_4H_2O_2Cl_4$  Beil. II ---CO--Cl II<sub>1</sub>--H--C--Cl II<sub>2</sub>-(558) Cl--C--Cl

B.P. 78.5° at 7 mm.

M.P. 39°

See 3:0395. Division A: Solids.

3:9087 meso-\alpha,\alpha'-DICHLOROSUCCINYL(DI)CHLORIDE C4H2O2Cl4 Beil. II - 619

CO—Cl 
$$\Pi_{1}$$
-(267)  
H—C—Cl  $\Pi_{2}$ -(558)  
H—C—Cl  $\Pi_{2}$ -(558)

B.P. 105-106° at 45 mm. (1)

85-86° at 22 mm. (1)

79-80° at 15 mm. (2)

Colorless viscous lachrymatory oil.

[For prepn. of  $\bar{C}$  from fumaryl (di)chloride (3:5875) in CCl<sub>4</sub> soln. with Cl<sub>2</sub> in direct sunlight (100% yield (3)) (1) (2) see indic. refs.]

C with aq. reacts only very slowly on mere standing (1), but on continuous shaking with cooling readily hydrolyzes yielding (1) (2) meso-\alpha,\alpha'-dichlorosuccinic acid (3:4930).

[ $\bar{C}$  with  $C_6H_6$  + AlCl<sub>3</sub> gives (60% yield (3)) meso-1,2-dichloro-1,2-dibenzoylethane (meso-2,3-dichloro-1,4-dipenylbutandione-1,4), m.p. 167° (4) (5), accompanied under certain conditions (3) by some  $\alpha,\beta$ -dichloro- $\gamma,\gamma$ -diphenylbutyrolacetone, m.p. 141-142° (3), presumably arising from reactn. of  $\bar{C}$  in the unsymmetrical (phthalide type) form.]

3:9087 (1) Michael, Tissot, J. prakt. Chem. (2) 46, 394-395 (1892). (2) Holmberg, J. prakt, Chem. (2) 84, 148 (1911). (3) Lutz, J. Am. Chem. Soc. 49, 1109-1110 (1927). (4) Conant, Lutz, J. Am. Chem. Soc. 47, 885-886 (1925). (5) Lutz, J. Am. Chem. Soc. 48, 2908, 2911 (1926).

B.P. 117-119° at 17 mm. (1) 
$$D_4^{20} = 1.4397$$
 (1)  $n_D^{20} = 1.4860$  (1)  $93-96$ ° at 8 mm. (1)

Orange-colored liq. which fumes in air.

[For prepn. of  $\tilde{C}$  from acetylketene (ketene dimer) (2) (3) with  $Cl_2$  in cold  $CCl_4$  soln. see (1).]

 $\bar{C}$  with aq. yields chloroacetone (3:5425) +  $CO_2$  + HCl (note that this method gives chloroacetone free from higher chlorination products (3)).

[ $\bar{C}$  with excess abs. EtOH at 0° gives (1) (3) ethyl  $\gamma$ -chloroacetoacetate (3:6375).]

 $\bar{C}$  with aniline in  $C_6H_6$  yields (1) (3)  $\gamma$ -chloroacetoacetanilide, cryst. from ether, m.p. 140-141° (1).

3:9088 (1) Hurd, Abernathy, J. Am. Chem. Soc. 62, 1147-1148 (1940). (2) Hurd, Williams, J. Am. Chem. Soc. 58, 962-968 (1936). (3) Boese, Ind. Eng. Chem. 32, 16-22 (1940).

3:9092 DIGLYCOLOYL DICHLORIDE Cl C<sub>4</sub>H<sub>4</sub>O<sub>3</sub>Cl<sub>2</sub> Beil. S.N. 220

CH<sub>2</sub>—C=O

CH<sub>2</sub>—C=O

B.P. 116° at 12 mm. (1)

Colorless oily liq. with odor suggesting succinyl dichloride (3:6200).

[For prepn. of C from diglycolic acid (1:0495) by susp. in CHCl<sub>3</sub> and treatment with PCl<sub>5</sub> see (1) (note also that insufficient PCl<sub>5</sub> leads (1) to diglycolic anhydride, m.p. 97°. b.p. 120° at 12 mm. (3)); for mfg. from  $\alpha, \alpha'$ -dichlorodimethyl ether (3:5245) by treatment at 25-50° and elevated press. with CO and suitable catalysts such as AlCl<sub>2</sub> or ZnCl<sub>2</sub> see (2).1

C with excess MeOH yields (1) (3) dimethyl diglycolate, m.p. 35° (3), 36° (1).

 $\bar{\mathbf{C}}$  with aq. readily hydrolyzes (1) yielding diglycolic acid (1:0495); for the anilide, ptoluidide, and other derivs. corresp. to C see the acid (1:0495).

3:9092 (1) Anschutz, Biernaux, Ann. 273, 64-65 (1893). (2) Scott (to du Pont Co.). U.S. 2,084,284, June 15, 1937; Cent. 1937, II 2261; C.A. 31, 5383 (1937). (3) Darapsky, Stauber, J. prakt. Chem. (2) 146, 212 (1936).

3:9094 
$$\alpha_1\alpha_2\gamma$$
-TRICHLORO-n-BUTYRALDEHYDE Cl C<sub>4</sub>H<sub>5</sub>OCl<sub>3</sub> Beil. I-665 CH<sub>2</sub>—CH<sub>2</sub>—CHO I<sub>1</sub>— I<sub>2</sub>— Cl Cl

No physical consts. on  $\ddot{C}$  are reported; it is characterized only as a liquid which at  $-78^{\circ}$ becomes a glassy solid (1). — Spar. sol. aq. (1).

[For prepn. of  $\bar{C}$  from  $\alpha, \gamma$ -dichlorocrotonaldehyde [Beil. I-731], with dry HCl gas at 0° see (1).]

 $\bar{C}$  oxidizes only very slowly in air but with fumg. HNO<sub>3</sub> in cold gives (1)  $\alpha.\alpha.\gamma$ -trichloron-butyric acid (3:1831), m.p. 73-75° (1).

C does not add aq. to form a hydrate but on shaking with satd, aq. NaHSO3 soln, evolves heat and ppts. a NaHSO<sub>3</sub> cpd. (1).

C on boilg, with aq. contg. BaCO3 gives an amorphous prod., very easily sol, in aq. and possessing carbohydrate characteristics; for details see (2).

3:9094 (1) Natterer, Monatsh. 4, 551 (1883). (2) Natterer, Monatsh. 5, 251-255 (1884).

3:9096 METHYL 
$$\alpha$$
-CHLOROACRYLATE Cl C<sub>4</sub>H<sub>5</sub>O<sub>2</sub>Cl Beil. S.N. 163 CH<sub>2</sub>—C—COOCH<sub>3</sub>

B.P. 57-59° at 55 mm. (1)  $D_4^{20} = 1.189$  (1)  $n_D^{20} = 1.4420$  (11) 41-44° at 28 mm. (11) 1.4400 (1)

B.P. 
$$57-59^{\circ}$$
 at 55 mm. (1)  $D_4^{20} = 1.189$  (1)  $n_D^{20} = 1.4420$  (11)  $41-44^{\circ}$  at 28 mm. (11)  $1.4400$  (1)

[For prepn. of  $\bar{C}$  from methyl  $\alpha,\beta$ -dichloropropionate (3:9103) by distn. with quinoline (yield: 73% (1), 60% (11)) or other dehydrochlorinating agent such as Na<sub>2</sub>CO<sub>3</sub> (2) see indic. refs.; from trichloroethylene (3:5170) with CH<sub>2</sub>O + MeOH + H<sub>2</sub>SO<sub>4</sub> + CuCO<sub>3</sub> as directed (73% yield) see (10).]

IC readily polymerizes on standing, especially in light or pres. of peroxides (for study of polymers and polymerization see (1)). For examples of industrial prepn. and use of polymers of C for molding resins, etc., see (3) (4) (5) (6); for examples of co-polymers of C with butadiene-1,3 or chloroprene (7), styrene (8), or vinyl acetate (9) see indic. refs.]

For comments on other esters of  $\bar{C}$  see  $\alpha$ -chloroacrylic acid (3:1445).

[For study of ester interchange of C with various alcohols see (11).]

3:9096 (1) Marvel, Cowan, J. Am. Chem. Soc. 61, 3156-3160 (1939). (2) Pollack (to Pittsburgh Plate Glass Co.), U.S. 2,245,547, June 10, 1941; C.A. 35, 5908 (1941); Brit. 536,806, May 28, 1941; C.A. 36, 1614 (1942). (3) Röhm & Haas Co., Brit. 411,860, June 13, 1934; Cent. 1935,

1252

C.A. 38, 1751 (1944).
(11) Frank, David, Drake, McPherson, J. Am. Chem. Soc. 66, 1509-1510 (1944).

3:9098 ACETOACETYL CHLORIDE 
$$C_4H_5O_2Cl$$
 Beil. III —  $(\beta$ -Keto- $n$ -butyryl chloride)  $CH_3$ — $C$ — $CH_2$ — $C$ = $O$   $III_1$ — $III_2$ — $O$   $Cl$ 

This compound cannot be preserved at temperatures above  $-20^{\circ}$  (1) cf. (4); m.p. -50 to  $-51^{\circ}$  (1).

[For prepn. of  $\tilde{C}$  from acetylketene (ketene dimer) (2) (3) (5) with dry HCl gas at -7 to  $-50^{\circ}$  see (1).] [For anal. of  $\tilde{C}$  by reactn. with dil. alk. see (1).]

C on warming to room temp. undergoes bimolecular condensation with elimination of 2 HCl and yields (1) dehydroacetic acid (1:0700), m.p. 109°.

 $\bar{\mathbf{C}}$  in dry ether at  $-60^{\circ}$  treated with abs. EtOH gives (27% yield (1)) ethyl acetoacetate (1:1710).

 $\bar{C}$  in dry ether at  $-60^{\circ}$  treated with aniline gives (49% yield (1)) acetoacetanilide [Beil. XII-518, XII<sub>1</sub>-(275)], m.p. 85°; note, however, that  $\bar{C}$  with aniline at room temp. yields 1-phenyl-2,6-dimethylpyridone-4-carboxylic acid-3 (1-phenyllutidonecarboxylic acid-3) [Beil. XXII-303], m.p. 260–265° dec., Neut. Eq. calcd. 243, found 235 (1).

 $\tilde{C}$  with  $C_6H_6$  + AlCl<sub>3</sub> or with  $C_6H_6MgBr$  in ether at  $-50^\circ$  gives (27% and 12% yield respectively (1)) benzoylacetone (1:1450), m.p. 59° (1).

3:9098 (1) Hurd, Kelso, J. Am. Chem. Soc. 62, 1548-1549 (1940). (2) Hurd, Abernathy, J. Am. Chem. Soc. 62, 1147-1148 (1940). (3) Hurd, Williams, J. Am. Chem. Soc. 58, 962-968 (1936). (4) Staudinger, Schotz, Ber. 53, 1109 Note 1 (1920). (5) Boese, Ind. Eng. Chem. 32, 16-22 (1940).

3:9098-A METHYL (CHLOROFORMYL)ACETATE 
$$C_4H_5O_3Cl$$
 Beil. II - 582 (Carbomethoxyacetyl chloride)  $COOCH_3$  II<sub>1</sub>-(252)  $II_2$ —

#### B.P. 57-59° at 12 mm. (1)

[See also ethyl (chloroformyl)acetate (3:9246).]

Note that  $\bar{C}$  is both an acid chloride and an ester; it comprises the half acid chloride/half methyl ester of malonic acid (1:0480).

[For prepn. of Č from potassium salt of methyl hydrogen malonate with SOCl<sub>2</sub> in dry ether (68% yield) see (1).]

Č on htg. or on repeated distn. or by action of quinoline in dry ether at 0° loses HCl and undergoes condensation to methyl 6-methoxy-2,4-diketo-2,3-dihydropyran-3-carboxylate [Beil. XVIII<sub>1</sub>-(540)], ndls. from CHCl<sub>3</sub>, m.p. 148-150° (1) cf. (2).

- $\odot$   $\omega$ -(Carbomethoxyacet)anilide: ndls. from ether/pet. eth., m.p. 42-43° (1). [From  $\ddot{\mathbf{C}}$  with aniline (1).]
- ---  $\omega$ -(Carbomethoxyacet)-p-toluidide: unreported.
- 3:9098-A (1) Staudinger, Becker, Ber. 50, 1019-1020 (1917). (2) Leuchs, Ber. 39, 2643 (1906).

B.P. 130-140° at 12 mm. (1) 
$$n_{\rm D}^{25}=1.4762$$
 (3) 89° at 1.75 mm. (2) 83° at 0.8 mm. (2)  $D_4^{20}=1.532$   $n_{\rm D}^{20}=1.48378$  (2) 68° at 0.025 mm. (3) 1.4775 (3)

Note that  $\bar{C}$  may react either in the ester form (A) or the dioxolane form (B) and doubtless exists as a tautomeric equilibrium of both; in this equilibrium, however, form (A) probably predominates (2), but variations in the equilibrium may account for the observed variation in  $n_D^{20}$  (see above).

Colorless odorless oil, spar. sol. aq. (2). —  $\bar{C}$  on long stdg. is claimed (2) to disproportionate to ethylene glycol bis-(trichloroacetate) (not, however, otherwise described in the literature) and ethylene glycol (1:6465). —  $\bar{C}$  on attempted distn. at usual water-pump vac. (14-17 mm.) (3) or  $\bar{C}$  in presence of a trace of pyridine (3) decomposes yielding monomeric ethylene glycol carbonate [Beil. XIX-100], m.p. 38°, and CHCl<sub>3</sub> (3:5050).

[For prepn. of  $\bar{C}$  from ethylene glycol (1:6465) with trichloroacetyl chloride (3:5420) in 1,4-dioxane soln. (82% yield (2)) or from ethylene oxide (1:6105) with trichloroacetic acid (3:1150) (28% yield based on latter (1) (3)) see indic. refs.]

 $\bar{C}$  on shaking with aq. and simultaneously titrating with N/10 aq. NaOH hydrolyzes to ethylene glycol (1:6465) and trichloroacetic acid (3:1150) as shown by Sap. Eq. of 207.8 (2) (calcd. 207.5).

[ $\bar{C}$  with diazomethane (1) best in CCl<sub>4</sub> soln. (2) gives (yields: 78% (2), 39% (1)) the methyl ether corresp. to structure (B), viz., 2-methoxy-2-(trichloromethyl)-1,3-dioxolane, pr. tbls. from alc., m.p. 78-78.5° (1), 77-78° (2) (4), b.p. 114-115° at 12 mm. (4), 112-113° at 10 mm. (1); this product although resistant to saponification by alkalies is hydrolyzed by dil. acids (4). — Note that the isomeric methyl ether corresponding to structure (A), viz.,  $\beta$ -methoxyethyl trichloroacetate, although not obtainable from  $\bar{C}$ , has nevertheless been prepd. (82% yield (4)) from  $\beta$ -methoxyethanol (methyl "cellosolve") (1:6405 with trichloroacetyl chloride (3:5420), has quite different physical props., viz., m.p. 14.6-14.8° (4), b.p. 92-93° at 10 mm. (4), and is easily hydrolyzed (4) on shaking with aq. alone to  $\beta$ -methoxyethanol (1:6405) and trichloroacetic acid (3:1150). — Note also that the first of the above two methyl ethers, i.e., 2-methoxy-2-(trichloromethyl)-1,3-dioxolane, by trans-esterification with alcohols (e.g., EtOH (2), n-PrOH (4), n-BuOH (2)) can be converted to its higher homologs.]

 $\bar{C}$  with acid chlorides gives esters corresp. to the acylic structure (A): e.g.,  $\bar{C}$  with AcCl (3:7065) gives (71% yield (4)) the mixed ester, ethylene glycol acetate-trichloroacetate ( $\beta$ -acetoxyethyl trichloroacetate) b.p. 122° at 11 mm. (4);  $\bar{C}$  with SOCl<sub>2</sub> gives (70% yield (4))  $\beta$ -chloroethyl trichloroacetate (3:6510).

3:9690 (1) Meerwein, Hins, Ann. 484, 16-17 (1930). (2) Meerwin, Sönke, J. prakt. Chem. (2) 137, 295-298, 308-311 (1933). (3) Hibbert, Grieg, Can. J. Research 4, 261-263 (1931). (4) Meerwin, Sönke, Ber. 64, 2375-2381 (1931).

3:9100 
$$d_{i}l$$
- $\beta$ -CHLORO- $n$ -BUTYRYL CHLORIDE  $C_{4}H_{0}OCl_{2}$  Beil. II - 278  $CH_{3}$ -CH.CH<sub>2</sub>.C=O  $II_{1}$ —  $II_{2}$ -(253) B.P. 67-69° at 41 mm. (1)  $D_{4}^{20.25} = 1.2163$  (4)  $n_{D}^{20} = 1.4525$  (3) 65-67° at 40 mm. (2) (3) 1.4511 (4) 40-41° at 12 mm. (2)

1254

[For prepn. of  $\tilde{C}$  from  $\beta$ -chloro-n-butyric acid (3:0035) with SOCl<sub>2</sub> (4) (6) (3) (90% yield (2)) see indic. refs.; from n-butyryl chloride (3:7370) with SO<sub>2</sub>Cl<sub>2</sub> + dibenzoyl peroxide in CCl<sub>4</sub> (55% yield  $\tilde{C}$  + 15%  $\alpha$ - (3:5570) and 30%  $\gamma$ - (3:5970) isomers (3)) or with Cl<sub>2</sub> in CCl<sub>4</sub> (1) see indic. refs |

[C with methyl p-tolyl ether (1:7495) + AlCl<sub>3</sub> in CS<sub>2</sub> yields (4) 3-(β-chloro-n-butyryl)-4-methylphenol (b.p. 167-170° at 20 mm. (4)) which in alc. soln. on addn. of dil. Na<sub>2</sub>CO<sub>3</sub> loses HCl yielding 2,6-dimethylchromanone, m.p. 54-55° (5).]

 $\bar{C}$  with benzene + AlCl<sub>3</sub> in CS<sub>2</sub> yields (6) (by Friedel-Crafts reactn. of both halogen atoms)  $\beta$ -phenylbutyrophenone (phenyl  $\beta$ -phenyl-n-propyl ketone) [Beil. VII-453], m.p. 74° (6).

 $\bar{C}$  on hydrolysis with aq. yields  $\beta$ -chloro-n-butyric acid (3:0035) q.v. (note, however, that hydrolysis with alk. will cause loss of HCl and formn. of crotonic acid (1:0425).

For the anilide, p-toluidide, and other derivs corresp. to  $\bar{C}$  see  $\beta$ -chloro-n-butyric acid (3:0035).

3:9100 (1) Michael, Ber. 34, 4052 (1901). (2) Abderhalden, Fleischmann, Fermentforschung, 10, 203 (1928); Cent. 1929, I 2318; C.A. 23, 1388 (1929). (3) Kharasch, Brown, J. Am. Chem. Soc. 62, 928 (1940). (4) von Auwers, Ann. 421, 37-39 (1921). (5) von Auwers, Ber. 52, 128 (1919). (6) von Auwers, Muller, J. prakt. Chem. (2) 137, 128 (1933).

3:9101 
$$\beta$$
-CHLORO-ISOBUTYRYL CHLORIDE  $C_4H_6OCl_2$  Beil. II - 295  $CH_2$ —CH--C=O  $II_1$ —  $II_2$ —

B.P. 171–172° at 765 mm. (1)  $n_D^{20} = 1.4542$  (2)  $n_D^{20} = 1.4542$  (2)

Because of the serious disagreement in b.p. and the lack of data to decide between them,  $\ddot{\mathbf{C}}$  is placed in this division.

[For prepn. of  $\bar{C}$  from isobutyryl chloride (3:7270) with  $Cl_2$  in  $CCl_4$  soln. (30-40% yield  $\bar{C}$  + 60-70%  $\alpha$ -isomer (3:5385) (1)), with  $Cl_2$  in activating light (3) (6), or with  $SO_2Cl_2$  + dibenzoyl peroxide in  $CCl_4$  (80% yield  $\bar{C}$  + 20%  $\alpha$ -isomer (3:5385) (2)), see indic. refs.; for formn. of  $\bar{C}$  from phosgene (3:5000) + propylene + cat. see (5).]

Č as liq. with dehydrohalogenating cat. loses HCl giving (4) α-methacryloyl chloride.

 $\ddot{C}$  with aniline gives (1) (2)  $\beta$ -chloro-isobutyranilide, m.p. 109.0-109.5° (2), 104-105° (1); note that the isomeric  $\alpha$ -dichloro-isobutyranilide has m.p. 71-71.5° (2), 69-70° (1).

3:9101 (1) Michael, Garner, Ber. 34, 4054-4055 (1901). (2) Kharasch, Brown, J. Am. Chem. Soc. 62, 925-929 (1940). (3) Schmidt, Schloffer (to I.G.), Ger. 738,398, July 15, 1943; C.A. 38, 392 (1944). (4) I.G., French 873, 389, July 7, 1942; Cent. 1942, II 2535; not in C.A. (5) Reid (to du Pont Co.), U.S. 2,028,012, Jan. 14, 1936; Cent. 1936, II 866; C.A. 30, 1387 (1936). (6) Schmidt, Schloffer (to I.G.), Ger. 738,398, July 15, 1943; C.A. 38, 3992 (1944).

3:9102 
$$\alpha,\beta$$
-DICHLORO- $n$ -BUTYRALDEHYDE  $C_4H_6OCl_2$  Beil. I — (Crotonaldehyde dichloride;  $Cl$   $Cl$   $Cl$   $I_1$ —  $I_2$ —(724)

B.P. 
$$58-60^{\circ}$$
 at 20 mm. (1)  $D_{1}^{21} = 1.2666$  (1)  $n_{D_{1}}^{21} = 1.4618$  (1)  $48-49^{\circ}$  at 13 mm. (2)  $D_{1}^{45} = 1.2716$  (1)

Colorless liq. with odor suggesting chloral. —  $\bar{C}$  on exposure to light or on distn. at ord. press. turns brown and decomposes with evoln. of HCl. —  $\bar{C}$  is insol. aq.; sol. alc., ether, CHCl<sub>3</sub>, or CCl<sub>4</sub>.

[For prepn. of  $\bar{C}$  from crotonaldehyde (1:0150) with Cl<sub>2</sub> directly at  $-5^{\circ}$  (3) cf. (4), or in CCl<sub>4</sub> soln. at 0° (98% yield (1)), or in CS<sub>2</sub> in freezing mixt. (2) see indic. refs.]

C with NaHSO<sub>3</sub> soln. gives (2) a crystn. addn. compound.

[ $\bar{\rm C}$  in McOH contg. 1% HCl gas refluxed 4 hours gives (40% yield (5))  $\alpha,\beta$ -dichloro-n-butyraldehyde dimethylacetal, oil, b.p. 86–90° at 13 mm.,  $D_{\rm D}^{19.5}=1.179, n_{\rm D}^{19.5}=1.4498$  (5); note that the presumably corresp. behavior of  $\bar{\rm C}$  with EtOH and the  $\alpha,\beta$ -dichloro-n-butyral-dehyde diethylacetal are unreported.]

[ $\tilde{C}$  with ethylene glycol (1:6465) at 160° for 1 hour even in absence of cat. gives (50.3% yield (3)) corresp. cyclic acetal, viz., 2-( $\alpha,\beta$ -dichloro-n-propyl)-1,3-dioxolane, b.p. 100–105° at 13–15 mm. (3).]

[Č with aq. NaOAc on distn. with steam splits out 1 HCl giving (70-80% yield (6)) (1) (3) (7) \(\alpha\)-chlorocrotonaldehyde (3:8117), b.p. 147-150° at 760 mm. (3).

[ $\bar{\rm C}$  with EtMgBr in dry ether followed by usual hydrolysis gives (80% yield (2)) 4,5-dichlorohexanol-3 [Beil. I-439], b.p. 88-93° at 12 mm.,  $D_4^{19}=1.1685$ ,  $n_D^{19}=1.4709$  (2). — Similarly,  $\bar{\rm C}$  with  ${\rm C_6H_5MgBr}$  gives (66% yield (2))  $\alpha,\beta$ -dichloro-n-propyl-phenyl-carbinol, b.p. 162-168° at 14 mm.,  $D_4^{15}=1.2355$ ,  $n_D^{15}=1.5500$  (2).]

[Note that suitable oxidn. of  $\bar{C}$  would be expected to yield either or both crotonic acid dichloride (3:1375), m.p. 63°, or isocrotonic acid dichloride (3:1903), m.p. 78°, but that such oxidation has not actually been reported.]

[For use of C as component of insecticides see (8).]

- $\alpha,\beta$ -Dichloro-n-butyraldoxime: oil, not further characterized (2).
- α,β-Dichloro-n-butyraldehyde phenylhydrazone: unreported. [Note, however, that C̄ reacts vigorously with phenylhydrazine (2).]
- $\bigcirc$   $\alpha,\beta$ -Dichloro-n-butyraldehyde semicarbazone: m.p. 96-97° (2).

3:9102 (1) Moureu, Murat, Tampier, Bull. soc. chim. (4) 29, 31-32 (1921). (2) Helferich, Besler, Ber. 57, 1277-1278 (1924). (3) Hibbert, Houghton, Taylor, J. Am. Chem. Soc. 51, 613 (1929). (4) Zeisel, Monatsh. 7, 360 (1886). (5) Naftali, Bull. soc. chim. (5) 4, 338 (1937). (6) Chattaway, Irving, Outhwaite, J. Chem. Soc. 1933, 994. (7) Chem. Fabrik vorm. Weilerter-Meer, Ger. 351, 137, April 3, 1922; Cent. 1922, IV 155; not in C.A. (8) Soc. des Usines Chim. Rhône-Poulenc, Ger. 528, 194, June 26, 1931; Cent. 1931, II 1910; [C.A. 25, 4653 (1931)].

3:9103 METHYL 
$$d,l$$
- $\alpha,\beta$ -DICHLOROPROPIONATE  $C_4H_6O_2Cl_2$  Beil. S.N. 162  $CH_2$ — $CH$ — $COOCH_3$ 

$$CI$$

$$CI$$

# B.P. 72-75° at 21 mm. (1)

[For prepn. of  $\bar{C}$  from technical methyl acrylate (1:3025) in MeOH soln. below 40° by treatment with Cl<sub>2</sub> (85% yield) see (1).]

 $\tilde{C}$  on distn. with quinoline (2), with dimethylaniline (1), with quinaldine (1), or with other dehydrohalogenating agents (such as Na<sub>2</sub>CO<sub>3</sub> (3)) (4) loses HCl giving (73% yield (2)) methyl  $\alpha$ -chloroacrylate (3:9096).

 $\ddot{C}$  on boilg. with 20% HCl hydrolyzes (1) yielding MeOH (1:6120) and  $\alpha,\beta$ -dichloropropionic acid (3:0855) g.v.

3:9163 (1) Marvel, Dec, Cooke, Cowan, J. Am. Chem. Soc. 62, 3495-3498 (1940). (2) Marvel, Cowan, J. Am. Chem. Soc. 61, 3158 (1939). (3) Pollack (to Pittsburgh Plate Glass Co.), U.S. 2,245,547, June 10, 1941; C.A. 35, 5908 (1941); Brit. 536,806, May 28, 1941; C.A. 36, 1614 (1942). (4) Bauer, Lauth (to Rohm, Hass Co.), Ger. 648,820, June 23, 1937; Cent. 1937, II 2072.

3: 9105 2,3-DICHLORODIOXANE O 
$$C_4H_6O_2Cl_2$$
 Beil. S.N. 2668  $H_2C$  CHCl  $H_$ 

 $\bar{\mathbf{C}}$  is theoretically capable of existing in *cis* and *trans* forms; collateral evidence exists that both may actually be present, but they have not yet been isolated as such.

88-89°

85°

82°

at 16-17 mm.

at

at

(3)

15 mm. (4)

14 mm. (5)

Although comml.  $\bar{C}$  is liq. extremely pure samples may, after inoculation (9), be obtd. in cryst. form.

[For prepn. of  $\bar{C}$  from 1,4-dioxane (1:6400) by actn. of  $Cl_2$  at 90° in presence of catalyst such as  $SnCl_2$  or  $I_2$  (96.6% yield (6)), or with  $Cl_2$  at 90° for 16 hrs. without catalyst (61% yield (4)), see (6) (4) (7).]

[For studies of further chlorination of  $\bar{C}$  see (3) (8); for studies of reaction of  $\bar{C}$  with alcohols and phenols see (5) (9) (2) (10) (11) (17); for studies of reaction of  $\bar{C}$  with R.MgX cpds. see (12) (13) (4) (14) (15); for reaction of  $\bar{C}$  with Mg + I<sub>2</sub> yielding dioxadiene see (16).]

Č on boiling with aq. for 10 min. gives clear soln. containing hydrolysis products, viz., ethylene glycol (1:6465) and glycxal. After cooling, making alk., and shaking with BzCl the former can be converted to ethylene glycol dibenzoate (1:2293), extracted with ether, recrystd. from MeOH, m.p. 73° (70-72° (3)); another portion of the aq. soln. of hydrolysis products gives on treatment with p-nitrophenylhydrazine hydrochloride a 97% yield of glycxal-p-nitrophenylosazone, yel. cryst., m.p. 306° (310°) (3).

3:9105 (1) Médard, J. chim. phys. 33, 627 (1936). (2) Baker, Shannon, J. Chem. Soc. 1933, 1598. (3) Butler, Cretcher, J. Am. Chem. Soc. 54, 2987-2988 (1932). (4) Summerbell, Bauer, J. Am. Chem. Soc. 57, 2365 (1935). (5) Böeseken, Tellegen, Henriquez, Rec. trav. chim. 50, 909-914 (1931). (6) Kucera, Carpenter, J. Am. Chem. Soc. 57, 2346-2347 (1935). (7) Lintner, Scheuerman (to I.G.), Ger. 705,435, March 20, 1941; C.A. 36, 1955 (1942); Ger. 717,953, Feb. 12, 1942; C.A. 38, 2350 (1944). (8) Böeseken, Tellegen, Henriquez, J.Am. Chem. Soc. 55, 1284-1288 (1933). (9) Böeseken, Tellegen, Matha, Rec. trav. chim. 52, 1067-1072 (1933). (10) Böeseken, Tellegen, Plusje, Rec. trav. chim. 57, 73-78 (1938).

(11) Tellegen, Rec. trav. chim. 57, 667-672 (1938). (12) Summerbell, Christ, J. Am. Chem. Soc. 54, 3777-3778 (1932). (13) Christ, Summerbell, J. Am. Chem. Soc. 55, 4547-4548 (1933). (14) Summerbell, Bauer, J. Am. Chem. Soc. 58, 759-761 (1936). (15) Summerbell, Umhoefer, J. Am. Chem. Soc. 61, 3016-3019 (1939). (16) Summerbell, Unhoefer, J. Am. Chem. Soc. 61, 3020-3022 (1939). (17) McNally, Schmitt (to Eastman Kodak Co.), U.S. 2,069,962, Feb. 9, 1937; Cent. 1937, I 4056. (18) Bitler, Nicholl (to Kay-Fries Chemicals, Inc.), U.S. 2,327,855, Aug. 24, 1943; C.A. 38, 752 (1944).

3:9107 \$\textit{\beta-HYDROXYETHYL DICHLOROACETATE C4H}\_6O\_3Cl\_2\$ (A) Beil. S.N. 160 (2-Hydroxy-2-(dichloromethyl)-1,3-dioxolane) (B) Beil. S.N. 2691

HOCH<sub>2</sub>.CH<sub>2</sub>.O.CO.CHCl<sub>2</sub> 
$$CH_2$$
—O  $CH_2$ —O  $CHCl_2$ 

(A) (B)

B.P. 106° at 0.08 mm. (1) (3) 
$$D_4^{20} = 1.438$$
 (2)  $n_D^{25} = 1.4730$  (1) 82° at 0.5 mm. (2) 1.429 (2)  $n_D^{22} = 1.4743$  (3)  $n_D^{22} = 1.4743$  (3)  $n_D^{20} = 1.47345$  (2) 1.47263 (2)

Note that C may react either in the acyclic ester form (A) or the dioxolane form (B) and doubtless exists as a tautomeric equilibrium of both; in such an equilibrium, however, form (A) greatly predominates (2); but variations may account for the variation in constants (see above).

Colorless oil, spar. sol. aq. —  $\bar{C}$  on long stdg. is claimed (2) to disproportionate to ethylene glycol bis-(dichloroacetate) (not, however, further described in the literature) and ethylene glycol (1:6465).

[For prepn. of  $\bar{C}$  from ethylene glycol (1:6465) with dichloroacetyl chloride (3:5290) in 1,4-dioxane soln. (75% yield (2)) or from ethylene oxide (1:6105) with dichloroacetic acid (3:6208) (yields: 34% (2), 15% (1)) see indic. refs.]

 $\bar{C}$  on shaking with aq. and simultaneously titrating with N/10 aq. NaOH hydrolyzes to ethylene glycol (1:6465) and dichloroacetic acid (3:6208) as shown by Sap. Eq. of 170.8 (2) (calcd. 173).

[ $\bar{C}$  with diazomethane gives not only the methyl ethers of both forms (A) and (B) but also other unexpected products including ethylene glycol (1:6465), ethylene glycol dimethyl ether (1:6141), methyl dichloroacetate (3:5655), etc. Note that the methyl ether of structure (B), viz., 2-methoxy-2-(dichloromethyl)-1,3-dioxolane, has b.p 91-92.5° at 9 mm. (2),  $D_4^{20}=1.387$  (2),  $n_D^{20}=1.47032$ , and is stable to aq. alk.; that corresp. to the acyclic structure (A), viz.,  $\beta$ -methoxyethyl dichloroacetate (methyl-" cellosolve" dichloroacetate), best prepared (100% yield (2)) from  $\beta$ -methoxyethanol (1:6405) with dichloroacetyl chloride (3:5290) in CHCl<sub>3</sub>), has b.p. 55-56° at 0.5 mm. (2),  $D_4^{20}=1.309$  (2),  $n_D^{20}=1.45157$  (2).]

3:9107 (1) Allen, Hibbert, J. Am. Chem. Soc. 56, 1399 (1934). (2) Meerwein, Sonke, J. prakt. Chem. (2) 137, 298-301, 311-316 (1933). (3) Hibbert, Greig, Can. J. Research 4, 262 (1931).

3:9109 \(\alpha\)-CHLORO-n-BUTYRALDEHYDE \(\Chi\_4\)H7OCl Beil. S.N. 87 (2-Chlorobutanal-1) \(CH\_3\).CH2.CH2.CH.CHO

No record of this compound can be found in the literature. However, for the isomeric  $\beta$ -chloro-n-butyraldehyde (3:9110),  $\gamma$ -chloro-n-butyraldehyde (3:9111), and  $\alpha$ -chloro-isobutyraldehyde (3:7235) see indic. refs.

# 3:9110 $\beta$ -CHLORO-n-BUTYRALDEHYDE $C_4H_7OCl$ Beil. I — (3-Chlorobutanal-1) $CH_3$ -CH.CH $_2$ -CHO $I_1$ — $I_2$ -(724)

B.P. 28-33° at 13 mm. (1)

[See also the trimer of  $\ddot{C}$  (3:2650).]

Spar. sol. aq. but misc. with org. solvents.

[For prepn. of C from crotonaldehyde (1:0150) with 1 mole HCl in ether (50% yield) see (1).]

 $\bar{\mathbf{C}}$  is difficult to preserve because of rapid polymerization to its trimer, para- $\beta$ -chloro-n-butyraldehyde (3:2650), m.p. 96-97°. [The product supposed by (2) to have been  $\bar{\mathbf{C}}$  was actually (1) this trimer.]

[ $\bar{\mathbf{C}}$  with 3 moles acetaldehyde (1:0100) in the cold gives (53% yield (1)) 2,4-dimethyl-6-( $\beta$ -chloro-n-propyl)trioxane-1,3,5 [Beil. S.N. 2952], b.p. 83-85° at 13 mm.,  $D_4^{19} = 1.0937$ ,  $n_1^{19} = 1.4373$  (1).]

[ $\bar{\mathbf{C}}$  with excess EtMgBr yields (1) 5-chlorohexanol-3 [Beil. I<sub>2</sub>-(438)] b.p. 78-79° at 13 mm.,  $D_1^{19} = 1.0012$ ,  $n_D^{19} = 1.4433$  (1), together with other products.]

Č with methylhydrazine in dry ether yields (3) 1,5-dimethylpyrazoline, b.p. 124-132° (picrate, m.p. 112-113° (3)).

**3:9110** (1) Helferich, Besler, *Ber.* **57**, 1280 (1924). (2) Kekulé, *Ann.* **162**, 100–102 (1872). (3) von Auwers, Heimke, *Ann.* **458**, 204 (1927).

3:9111 
$$\gamma$$
-CHLORO- $n$ -BUTYRALDEHYDE  $C_4H_7OCl$  Beil. S.N. 87 (4-Chlorobutanal-1)  $CH_2.CH_2.CH_2.CH_2$   $Cl$ 

B.P. 50-51° at 13 mm. (1) 
$$D_{15}^{8.5} = 1.107$$
 (1)  $n_{D}^{8.5} = 1.44662$  (1)

[For prepn. of  $\overline{C}$  from 5-chloropentanediol-1,5 (1) by oxidn. with Pb(OAc)<sub>4</sub> see (1).]  $\overline{C}$  polymerizes readily on htg. (1).

- $\bigcirc$   $\gamma$ -Chloro-n-butyraldoxime: m.p. 74.5° (1).
- D γ-Chloro-n-butyraldehyde p-nitrophenylhydrazone: m.p. 110° (1).
- ① γ-Chloro-n-butyraldehyde 2,4-dinitrophenylhydrazone: m.p. 134-135° (1).

3:9111 (1) Paul, Compt. rend. 215, 303-305 (1942); C.A. 38, 4907 (1944).

No physical constants for C are recorded.

[For prepn. of Č from 3-chloro-2-methylpropen-2-ol-1 (3:8340) by treatment with acids as specified see (1).]

No other record of C appears in the literature.

**3:9112 (1)** N. V. de Bataafsche Petroleum Maatschappij, French 763,286, April 26, 1934; Cent. **1934** II 1531; [C.A. **28**, 5077 (1934)].

3:9113 d,l-2-CHLOROBUTEN-3-OL-1

CaHrOCl Beil, S.N. 25

B.P. 69.5-70.0° at 30 mm. (1) (2) 66.5-67.0° at 30 mm. (3)

 $n_{\rm D}^{20}=1.4665~(1)~(2)$ 

[See also 1-chlorobuten-3-ol-2 (3:8110).]

[For prepn. of  $\tilde{C}$  from 3,4-epoxybutene-1 (1) (2) with conc. HCl (2 moles) in ether below 5° (61% yield (2)) or with cold conc. HCl (60% yield (3)) see indic. refs.; note that by these methods  $\tilde{C}$  is accompanied by a small amt. (2% (2)) of 4-chlorobuten-2-ol-1 (1-chlorobuten-2-ol-4) (3:9114).]

C with Br<sub>2</sub> gives (3) 2-chloro-3,4-dibromobutanol-1, b.p. 133.5-135.5° at 10 mm. (3).

 $\bar{C}$  with KOH (3) loses HCl, ring-closing to 3,4-epoxybutene-1, b.p. 67° at 750 mm. (3), 65.0-65.8° at 739 mm. (2);  $D_{\underline{4}}^{20} = 0.8745$  (2) (3);  $n_{\underline{D}}^{20} = 1.4170$  (2) cf. (3).

[For study of hydrolysis of C with aq. NaOH see (1).]

- 2-Methoxybuten-3-ol-1 ( $\bar{C}$  methyl ether): b.p. 70° at 50 mm. (2);  $n_D^{20} = 1.4290$  (2): corresp. 3,5-dinitrobenzoate, m.p. 68-71° (2). [From  $\bar{C}$  with MeOH/NaOMe refluxed 30 min. (52% yield (2)).]
- —— 1-Chlorobuten-3-yl-1 acetate: b.p. 79.5-80° at 30 mm. (3). [Note that with KOH this prod. loses AcOH, ring-closing (3) to 3,4 epoxybutene-1 (above).]
- —— 1-Chlorobuten-3-yl-1 3,5-dinitrobenzoate: m.p. 65.6° u.c. (2). [Note that this prod. depresses m.p. of corresp. deriv. (m.p. 61.5-63.5° u.c.) from 1-chlorobuten-3-ol-2 (3:8110).]

3:9113 (1) Kadesch, J. Am. Chem. Soc. 68, 46-48 (1946). (2) Kadesch, J. Am. Chem. Soc. 68, 41-45 (1946). (3) Petrov, J. Gen. Chem. (U.S.S.R.) 11, 991-995 (1941), C.A. 37, 1699 (1943).

3:9114 4-CHLOROBUTEN-2-OL-1 C<sub>4</sub>H<sub>7</sub>OCl Beil. S.N. 25 (1-Chlorobuten-2-ol-4)

 $n_{\rm D}^{20.5} = 1.4792 \,(1)$ 

64-65° at 2 mm. (2) 54-55° at 2 mm. (1)

 $n_{\rm D}^{20} = 1.4845 (2)$ 

[For form. of  $\bar{C}$  in small amount (18.6% yield (2)) from 3,4-epoxybutene-1 with HCl see (1) (2); note that the main product of this reaction is 2-chlorobuten-3-ol-1 (3:9113) (1) (2).] [For study of hydrolysis of  $\bar{C}$  with aq. or aq. NaOH see (2).]

---- 4-Chlorobuten-2-vl-1 3.5-dinitrobenzoate: unreported.

**6** 4-Chlorobuten-2-yl-1  $N-(\alpha$ -naphthyl)carbamate: m.p. 88-89° (1).

3:9114 (1) Kadesch, J. Am. Chem. Soc. 68, 45 (1946). (2) Kadesch, J. Am. Chem. Soc. 68, 46-48 (1946).

3:9115 d,l-3-CHLOROBUTEN-3-OL-2 Cl OH C<sub>4</sub>H<sub>7</sub>OCl Beil. S.N. 25

B.P.  $53-57^{\circ}$  at 19 mm. (1)  $D_4^{23} = 1.1138$  (1)  $n_C^{23} = 1.46232$  (1)  $67-68^{\circ}$  at 19 mm. (1)

[For prepn. of  $\tilde{C}$  from either the low-boilg. (3:5360) or high-boilg. (3:5615) stereoisomers of 1,2-dichlorobutene-2 (together with 2-chlorobutene-2-ol-1 (3:8240)) by hydrolysis with 2 pts. aq. + 1 mole CaCO<sub>3</sub> for 4 hrs. at 70° see {1}; note that  $\tilde{C}$  is formed by virtue of allylic transposition during the process and that *Cent*. and *C.A.* do not agree on the boilg. pt. (orig. inaccessible).

**3-Chlorobuten-3-yl-2**  $N-(\alpha-naphthyl)$  carbamate: m.p.  $92-92.5^{\circ}$  (1).

3:9115 (1) Tishchenko, J. Gen. Chem. (U.S.S.R.) 7, 658-662 (1937); Cent. 1937, II 371; C.A. 31, 5754 (1937).

3:9130 d,l-
$$\alpha$$
-CHLORO- $n$ -BUTYRIC ACID C<sub>4</sub>H<sub>7</sub>O<sub>2</sub>Cl Beil. II - 276 CH<sub>3</sub>—CH<sub>2</sub>.CH.COOH II<sub>1</sub>-(123) II<sub>2</sub>-(253)

B.P. 109.5° at 24 mm. (1) 
$$D_4^{20} = 1.1796$$
 (13)  $n_{D_1}^{20} = 1.4411$  (13) 101.25° at 15 mm. (2)

Viscous liq.; spar. sol. cold aq.; eas. sol. hot aq.

[For prepn. of  $\bar{C}$  from diethyl  $\alpha$ -ethyl- $\alpha$ -chloromalonate by hydrolysis and subsequent htg. of the resultant  $\alpha$ -ethyl- $\alpha$ -chloromalonic acid (90% yield (1)) (2) see indic. refs.; from n-butyric acid (1:1035) with SO<sub>2</sub>Cl<sub>2</sub> + acetyl chloride (3:7065) (3) or with SO<sub>2</sub>Cl<sub>2</sub> + dibenzoyl peroxide in CCl<sub>4</sub> (10%  $\bar{C}$  + 45%  $\beta$ - (3:0035) and 45%  $\gamma$ - (3:0020) isomers) see (4); from n-butyric acid with Cl<sub>2</sub> and suitable cat. see (5); from  $\alpha$ -chloro-n-butyryl chloride (3:5570) by hydrolysis with aq. see (7).]

 $\bar{C}$  with SOCl<sub>2</sub> (1) yields  $\alpha$ -chloro-n-butyryl chloride (3:5570), b.p. 129-132°.

 $[\bar{C} \text{ (in the form of Ca$\bar{A}_2)} \text{ on cat. hydrogenation with Pd/Ba$SO_4 in aq. alc. is completely converted (6) to n-butyric acid; <math>\bar{C}$  itself is only partially (6) reduced.]

[For study of rate of hydrolysis of the halogen in NaĀ by aq. at 70° see (8).]

- Methyl  $d_{i}$ - $\alpha$ -chloro-n-butyrate: b.p. 145-146° at 756 mm. (See 3:8103.)
- Ethyl d,l-α-chloro-n-butyrate: b.p. 163-164° at 760 mm. (See 3:8307.) For study of rate of esterification of C with EtOH see (9).]
- $\bigcirc$  d<sub>1</sub>- $\alpha$ -Chloro-n-butyramide: cryst. from C<sub>6</sub>H<sub>6</sub>, m.p. 81° (10), 78.4-78.9° (11). [From methyl  $\alpha$ -chloro-n-butyrate (3:8103) with conc. aq. NH<sub>4</sub>OH (60% yield (10)).]
- $\bigoplus$  d<sub>i</sub>l- $\alpha$ -Chloro-n-butyranilide: m.p. not reported. [From  $\alpha$ -chloro-n-butyryl chloride (3:5570) with aniline (1).]
- $\bigcirc$  d.l- $\alpha$ -Chloro-n-butyro- $\phi$ -toluidide: m.p. 98° (12).

3:9130 (1) Blaise, Bull. soc. chim. (4) 15, 668 (1914). (2) Cloves, Ann. 319, 357-358 (1901). (3) Blank, Ger. 157,816, Jan. 18, 1905; Cent. 1905, I 414. (4) Kharasch, Brown, J. Am. Chem. Soc. 62, 925-929 (1940). (5) Bass (to Dow Chem. Co.), U.S. 2,010,685, Aug. 6, 1935; Cent. 1936, I 880; C.A. 29, 6608 (1935). (6) Paal, Schiedewitz, Ber. 62, 1937-1938 (1929). (7) Markownikow, Ann. 163, 241 (1870). (8) Simpson, J. Am. Chem. Soc. 40, 679 (1918). (9) Lichty, Ann. 319, 372 (1901). (10) De Boosere, Bull. soc. chim. Belg. 32, 44-45 (1923).

Vandewijer, Bull. soc. chim. Belg. 45, 255 (1936). (12) Wolffenstein, Rolle, Ber, 41, 736 (1908).
 Schjanberg, Z. physik. Chem. A-172, 231 (1935).

--- d,l- $\beta$ -CHLORO-n-BUTYRIC ACID C<sub>4</sub>H<sub>7</sub>O<sub>2</sub>Cl Beil. II - 277 CH<sub>3</sub>--CH.CH<sub>2</sub>.COOH II<sub>1</sub>-(123) II<sub>2</sub>-(253)

B.P. 116° at 22 mm. M.P. 16-16.5°  $D_{4}^{20} = 1.1898$   $n_{D}^{20} = 1.4421$ 

See 3:0035. Division A: Solids.

B.P. 196° at 22 mm. M.P. 16°  $D_4^{20} = 1.2236$   $n_D^{20} = 1.4512$ 

See 3:0020. Division A: Solids.

--- 
$$\alpha$$
-CHLORO-ISOBUTYRIC ACID CH<sub>3</sub> C<sub>4</sub>H<sub>7</sub>O<sub>2</sub>Cl Beil. II - 294 II<sub>1</sub>-- CH<sub>3</sub> C<sub>4</sub>H<sub>7</sub>O<sub>2</sub>Cl Beil. II - 294 II<sub>2</sub>-- CI

B.P. 118° at 50 mm. M.P. 31°

See 3:0235. Division A: Solids.

3:9132 
$$\beta$$
-CHLORO-ISOBUTYRIC ACID  $C_4H_7O_2Cl$  Beil. S.N. 162  $CH_2$ — $CH$ — $COOH$   $Cl$   $CH_2$ 

#### B.P. 128-133° at 50 mm. (1)

[For prepn. of  $\bar{C}$  from isobutyric acid (1:1030) with  $Cl_2$  in pres. of S (2) (3) or in activating light (1) (note that some  $\alpha$ -chloro-isobutyric acid (3:0235) is also formed) see indic. refs.; for prepn. of  $\bar{C}$  from isobutyric acid (1:1030) with  $SO_2Cl_2$  in presence of dibenzoyl peroxide in  $CCl_4$  soln. (85% yield  $\bar{C}$  + 15%  $\alpha$ -isomer) see (4).]

 $\bar{C}$  should by conventional means such as SOCl<sub>2</sub>, etc., be convertible to the corresp.  $\beta$ -chloroisobutyryl chloride (3:9101), but no record of such transformation appears in the literature, the expected product having been prepd. by indirect means.

- Methyl β-chloroisobutyrate: b.p. 151-155° at 750 mm., 85-90° at 60 mm.,  $D_{15}^{15}$  = 1.1101  $n_D^{15}$  = 1.4297 (1). [From  $\bar{C}$  in MeOH with H<sub>2</sub>SO<sub>4</sub> in 70% yield (1) cf. (3); note that this prod. on htg. with quinoline (1) or passing over hot silica gel (3) loses HCl giving (87% yield (1)) methyl methacrylate.]
- Ethyl  $\beta$ -chloroisobutyrate: b.p. 56-58° at 10 mm. (5). [From ethyl  $\beta$ -hydroxyisobutyrate with PCl<sub>5</sub> in dry ether (40% yield (5)).]
- ---- B-Chloroisobutyramide: unreported.
- ---- β-Chloroisobutyranilide: m.p. 109.0-109.5° (4), 104-105° (6).
- ---- β-Chloroisobutyr-p-toluidide: unreported.

3:9132 (1) Zal'kind, Markov, J. Applied Chem. (U S.S.R.) 10, 1042-1044 (1937); Cent. 1938, II 2421; C.A. 32, 1652 (1938); note that in C.A. reference isobutyric acid has been erroneously rendered as "isooleic acid" and chloroisobutyric acid as "chloroisooleic acid" throughout. (2) Loder, Ries (to du Pont Co.), U.S. 2,043,670, June 9, 1936; Cent. 1936, II 2229; C.A. 30,5240 (1936). (3) Loder (to du Pont Co.), Brit. 428,223, June 6, 1935; Cent. 1936, I 179; C.A. 29,6607 (1935). (4) Kharsch, Brown, J. Am. Chem. Soc. 62, 925-929 (1940). (5) Rydon. J. Chem. Soc. 1936, 1448. (6) Michael, Garner, Ber. 34, 4054-4055 (1901).

3:9140 β-METHOXYETHYL CHLOROFORMATE C<sub>4</sub>H<sub>7</sub>O<sub>3</sub>Cl Beil. S.N. 199 (Methyl "cellosolve" chloroformate; CH<sub>3</sub>.O.CH<sub>2</sub>.CH<sub>2</sub>.O.CO.Cl β-methoxyethyl chlorocarbonate)

B.P. 58.7° at 13 mm. (1) 
$$D_{abs.}^{25} = 1.1905$$
 (1)  $n_D^{25} = 1.4163$  (1)

Colorless liq. insol. aq.

[For prepn. (93% yield (1)) from  $\beta$ -methoxyethanol (methyl "cellosolve") (1:6405) + phosgene (3:5000) see (1).]

**D**  $\beta$ -Methoxyethyl carbamate: from  $\tilde{C}$  + aq. NH<sub>4</sub>OH in poor yield (13.3% (1)); m.p. 46.8° (1).

3:9140 (1) Ashburn, Collett, Lazzell, J. Am. Chem. Soc. 60, 2933-2934 (1938).

3:9145 1,3-DICHLOROBUTANOL-2 H H 
$$C_4H_8OCl_2$$
 Beil. I-373  $CH_3-C$   $CH_2$   $CH_2$   $CH_3$   $CH_3$   $CH_3$   $CH_4$   $CH_5$   $CH$ 

B.P. 63-64° at 10 mm. (1) 
$$n_{\rm D}^{20}=1.4766$$
 (1)  $D_{\rm D}^{15}=1.2870$  (1)  $n_{\rm D}^{15}=1.4790$  (1)

[For prepn. of  $\bar{C}$  from 3-chloro-1,2-epoxybutane ( $\alpha$ -chloroethylethylene oxide) or from 1-chloro-2,3-epoxybutane ( $\alpha$ -(chloromethyl)- $\alpha$ -methylethylene oxide) by addn. of HCl see (1); for possibly similar processes cf. (2).]

C on oxidn. gives (1) 1,3-dichlorobutanone-2 (3:5900).

—— 1,3-Dichloro-sec.-butyl acetate: b.p. 82.5-83.5° at 10 mm., 
$$D_4^{20} = 1.2185$$
,  $D_4^{15} = 1.2229$ ;  $n_D^{20} = 1.4530$ ,  $n_D^{15} = 1.4550$  (1).

**3:9145** (1) Petrov, J. Am. Chem. (U.S S R.) **11**, 713-721 (1941); Cent. **1942**, I 2867; C.A. **36**, 404 (1942). (2) Zikes, Monatsh. **6**, 348-355 (1885).

3:9150 
$$\alpha,\beta'$$
-DICHLORODIETHYL ETHER Cl C<sub>4</sub>H<sub>8</sub>OCl<sub>2</sub> Beil. I — I<sub>1</sub>— I<sub>2</sub>-(674) Cl<sub>3</sub>— C H O Cl.CH<sub>2</sub>.CH<sub>2</sub>

B.P. 55-57° at 17 mm. (1) 
$$D_4^{20} = 1.1867$$
 (2)  $n_D^{20} = 1.4473$  (2)  $D_{19}^{19} = 1.1823$  (1)  $n_D^{16.2} = 1.4497$  (1)

Colorless liq. fumg. in air and decomposing on distn. at ord. press. (1).

[For prepn. (60%) yield (2)) from ethylene chlorohydrin (3:5552) + acetaldehyde (1:0100) (2) or paraldehyde (1:0170) (1) + dry HCl see (1) (2).]

 $\bar{C}$  rapidly dis. in cold aq. yielding by hydrolysis  $\beta$ -chloroethanol (3:5552), acetaldehyde (1:0100), and HCl (1).

3:9150 (1) Grignard, Purdy, Bull. soc. chim. (4) 31, 984-985 (1922). (2) Lingo, Henze, J. Am. Chem. Soc. 61, 1574-1575 (1939).

[For prepn. of  $\bar{C}$  (83% yield (1)) by saponification of the corresp. trichloroacetate obtd. by chlorination of *n*-butyl trichloroacetate (3:6315) see (1).]

 $\bar{C}$  with SOCl<sub>2</sub> + pyridine gives (1) 1,2-dichlorobutane (3:7680), b.p. 127°,  $n_D^{25} = 1.4420$ (1).

- ---- β-Chloro-n-butyl acetate: unreported.
- --- B-Chloro-n-butyl benzoate: unreported.
- ---- β-Chloro-n-butyl p-nitrobenzoate: unreported.
- ---- β-Chloro-n-butyl 3,5-dinitrobenzoate: unreported.
- $\bigcirc$   $\beta$ -Chloro-n-butyl N-phenylcarbamate: m.p.  $52.5-53.5^{\circ}$  (1).
- ---- 2-(N-Phthalimino)butanol-1: unreported.
- 3:9160 (1) Waddle, Adkins, J. Am. Chem. Soc. 61, 3363 (1939).

3:9165 3-CHLOROBUTANOL-1 H C<sub>4</sub>H<sub>9</sub>OCl Beil. S.N. 24 
$$(\gamma$$
-Chloro- $n$ -butyl alcohol) CH<sub>3</sub>—C—CH<sub>2</sub>.CH<sub>2</sub>OH  $C$ l B.P. 67–68° at 15 mm. (1)  $D_4^{20} = 1.06218$  (1)  $n_D^{20} = 1.44464$  (1) 61° at 10 mm. (2)

C on distn. at atm. press. or on htg. with quinoline loses HCl and yields crotonyl alc. CH<sub>3</sub>.CH=CH.CH<sub>2</sub>OH, b.p. 120-121° at 755 mm.,  $D_4^{20} = 0.85306$ ,  $n_D^{20} = 1.42976$  (Nphenylcarbamate, m.p. 79.4-80°) (1).

[For prepn. of  $\bar{C}$  from butanediol-1,3 (1:6482) + HCl see (1) (3); from  $\gamma$ -chloro-n-butyl butyrate by hydrol. with HCl see (2); from  $C_3H_6 + 30\%$  CH<sub>2</sub>O + HCl at 50° see (4).]

[C over Al<sub>2</sub>O<sub>3</sub> at 250° gives (3) butadiene-1,3.]

- ---- γ-Chloro-n-butyl acetate: unreported.
- ---- γ-Chloro-n-butyl benzoate: unreported.
- ---- γ-Chloro-n-butyl p-nitrobenzoate: unreported.
- ---- γ-Chloro-n-butyl 3,5-dinitrobenzoate: unreported.
- ---- γ-Chloro-n-butyl N-phenylcarbamate: unreported.
- --- 3-(N-Phthalimino)butanol-1: unreported.

3:9165 (1) Verhulst, Bull. soc. chim. Belg. 40, 85-90 (1931). (2) Heyse (to I.G.), Ger. 524,435, May 7, 1931; Cent. 1931, II 767. (3) Runge, Müller-Cunradi (to I.G.), Ger. 578,038, June 12, 1933, Cent. 1933, II 935. (4) I.G., Brit. 465,467, June 3, 1937; Cent. 1937, II 1445.

| 3:9170 4-CHLOROBUTANOL-1 (δ-Chloro-n-butyl alcohol, tetramethylene chlorohydri                                                                                         | 010112.0112.0112.0112.011                                       | Beil. I —<br>I <sub>1</sub> —<br>I <sub>2</sub> -(398)                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------|
| B.P. 84-85° at 16 mm. (1)<br>86° at 15.mm. (2)<br>81-82° at 14 mm. (3) (4)<br>72-75° at 10 mm. (5)<br>70-71° at 7 mm. (4)<br>64-65° at 3 mm. (6)<br>57° at 0.5 mm. (7) | $D_4^{25} = 1.125$ (5)<br>$D_4^{20} = 1.0883$ (1)<br>1.0867 (8) | $n_{\rm D}^{25} = 1.4551$ (5)<br>$n_{\rm D}^{20} = 1.4518$ (1)<br>1.4529 (8) |

Colorless liq. — On distn. above 16 mm. splits off HCl (1) (2) yielding tetrahydrofuran, b.p. 63°.

[For prepn. from tetrahydrofuran [Beil. XVII-10] by actn. of HCl gas (yield; 54-57%

- (3) (4) (8)) see (3) (4) (8); from tetramethylene glycol (1:6516) with SOCl<sub>2</sub> + pyridine (47% yield (1)) or  $S_2$ Cl<sub>2</sub> (2) see (1) (2); from  $\delta$ -chlorobutyl acetate by alcoholysis with MeOH (80% yield) see (6); for mfg. from ethylene oxide +  $C_2$ H<sub> $\delta$ </sub>Cl + AlCl<sub>3</sub> (or other catalysts) see (9).]
- $\bar{C}$  (2 moles) treated with PBr<sub>3</sub> (1 mole) gives (98% yield (3)) tetramethylene chlorobromide, b.p. 175–176°,  $D_4^{20}=1.488, n_D^{20}=1.4885$  (3). [For study of reaction of  $\bar{C}$  with HBr see (7).]
  - ----  $\delta$ -Chloro-n-butyl acetate: oil, b.p. 92-93° at 22 mm. (6), 92-94° at 22 mm. (10);  $D_4^{20} = 1.0805$  (6);  $n_D^{20} = 1.43439$  (6). [From tetrahydrofuran [Beil. XVII-10] with AcCl (6) as directed cf. (10) or with AcOH + HCl + cat. (11).]
  - ---  $\delta$ -Chloro-n-butyl benzoate: oil, b.p. 140-142.5° at 4 mm.,  $D_4^{20} = 1.1429$ ,  $n_D^{20} = 1.52028$  (6). [From tetrahydrofuran [Beil. XVII-10] with benzoyl chloride + ZnCl<sub>2</sub> (54.5% yield (6)).]
  - ----- δ-Chloro-n-butyl p-nitrobenzoate: oil, b.p. 205-206° at 7 mm. (12). [From tetra-hydrofuran [Beil. XVII-10] with p-nitrobenzoyl chloride + SnCl<sub>2</sub> (12).]
  - ---- δ-Chloro-n-butyl 3,5-dinitrobenzoate: unreported.
  - . Φ δ-Chlorobutyl N-phenylcarbamate: cryst. from pet. eth. (1); m.p. 54° (1), 54-55° (5).
  - $\bigcirc$  \$\delta\$-Chlorobutyl N-(\alpha-naphthyl)carbamate: cryst. from pet. eth. (1); m.p. 69-70° (1), 69° (3), 66° (2).
- 3:9176 (1) Kirner, Richter, J. Am. Chem. Soc. 51, 2505-2506 (1929). (2) Bennett, Heathcoat, J. Chem. Soc. 1929, 272. (3) Starr, Hixon, J. Am. Chem. Soc. 56, 1595-1596 (1934). (4) Starr, Hixon, Org. Syntheses, Coll. Vol. 2 (1st ed.), 571-572 (1943). (5) Waddle, Adkins, J. Am. Chem. Soc. 61, 3363 (1939). (6) Cloke, Pilgrim, J. Am. Chem. Soc. 61, 2667-2669 (1939). (7) Bennett, Reynolds, J. Chem. Soc. 1935, 139. (8) Yur'ev, Minacher, Samurskaya, J. Gen. Chem. (U.S.S.R.) 9, 1710-1716 (1939); C.A. 34, 3731 (1940). (9) I.G., Brit. 354,992, Sept. 10, 1931; Cent. 1931, II 3545. (10) Manchen, Schmidt (to I.G.), Ger. 736,428, May 6, 1943; C.A. 38, 2966 (1944); U.S. 2,314,454, March 23, 1943; C.A. 37, 5078 (1943).
- (11) Seidenfaden, Bröker (to I.G.), Ger. 725,528, Aug. 13, 1942; C.A. 37, 5985 (1943). (12) Smorgonskii, Gold'farb, J. Gen. Chem. (U.S.S.R.) 10, 1113-1119 (1940); C.A. 35, 4011 (1941).

3:9175 
$$d$$
, $l$ -C-CHLOROBUTANOL-2 H C<sub>4</sub>H<sub>9</sub>OCl Beil. I — (1-Chlorobutanol-3) ClCH<sub>2</sub>-C-CH<sub>3</sub>  $I_{1}$ -(188)  $I_{2}$ —

#### B.P. 70° at 13 mm. (1)

[For prepn. from 3-chloropropanal-1 (β-chloropropionaldehyde) (3:5576) + CH<sub>3</sub>MgI see (1) (2).]

[4-Phthalimidobutanol-2, cryst. from pet. eth., m.p. 47-48°, although never recorded by reactn. of  $\tilde{C}$  with K phthalimide, has been prepd. indirectly (3).]

3:9175 (1) Fourneau, Ramart-Lucas, Bull. soc. chim. (4) 25, 367 (1919). (2) Backer, Bilt, Rec. trav. chim. 54, 69-70 (1935). (3) Robinson, Suginome, J. Chem. Soc. 1932, 308.

[For prepn. (76% yield (1)) via hydrolysis of the corresp. trichloroacetate (obtd. by chlorination of isobutyl trichloroacetate) see (1).]

- $\bigcirc$   $\beta$ -Chloro- $\alpha$ -methyl-n-propyl N-phenylcarbamate; m.p. 63.5-64° (1).
- 3:9180 (1) Waddle, Adkins, J. Am. Chem. Soc. 61, 3363 (1939).
- 3:9185 2-( $\beta$ -CHLOROETHOXY)ETHANOL-1 C<sub>4</sub>H<sub>9</sub>O<sub>2</sub>Cl Beil. I 467 (Diethylene glycol chlorohydrin; CH<sub>2</sub>—CH<sub>2</sub>—O—CH<sub>2</sub>—CH<sub>2</sub>OH I<sub>1</sub>— ethylene glycol mono- $\beta$ -chloroethyl cher;  $\beta$ -chloroethyl  $\beta$ -hydroxyethyl Cl ether;  $\beta$ -chloro- $\beta$ -hydroxydiethyl ether)
  - B.P. 180-185° (1) 92-100° at 12 mm. (2) 93-96° at 11 mm. (3)

Colorless mobile highly refractive liq. — Very sol. aq. but can be salted out by addition of  $K_2CO_3$ . — Misc. with alc. or ether. [For study of toxicity see (11).]

[For prepn. of  $\bar{C}$  from ethylene chlorohydrin (3:5552) with ethylene oxide (1:6105) at 140° (4) in pres. of SnCl<sub>4</sub>, AlCl<sub>3</sub>, etc. (2), or acidified hydrosilicate cat. (3), or conc. H<sub>2</sub>SO<sub>4</sub> (30-35% yield (5)) (together with numerous other prods.), or with ethylene glycol (1:6465) + HCl gas as directed (1) see indic. refs.; for prepn. from ethylene oxide (1:6105) satd. with HCl gas see (4); for formn. of  $\bar{C}$  during extractn. of lignin from pine wood by means of ethylene chlorohydrin + HCl see (6).]

[For use of quat. salts obtd. from  $\bar{C}$  by treatment with oleic acid followed by pyridine or from  $\bar{C}$  with *n*-octadecylamine followed by pyridine and chloroacetic acid see (7); for use of  $\bar{C}$  as rat poison see (8).]

- [ $\bar{C}$  with hot aq. alk. ring-closes with loss of HCl giving (90-95% yield (9)) 1,4-dioxane (1:6400).]
- [Č (1 mole) with Me<sub>2</sub>NH (3 moles) in C<sub>6</sub>H<sub>6</sub> in s.t. at 120° for 8 hrs. gives (75% yield (5)) 2-( $\beta$ -dimethylaminoethoxy)ethanol-1, b.p. 95° at 15 mm. ( $\bar{B}$ .picrolonate, m.p. 110°;  $\bar{B}$ .m-nitrobenzoate.HCl, m.p. 142°) (5).]
  - ---- 2-(β-Chloroethoxy) ethyl acetate; oil, b.p. 94-95° at 11 mm. (6).
  - 2-( $\beta$ -Chloroethoxy)ethyl p-toluenesulfonate: oil; consts. not reported. [From  $\bar{C}$  (1 mole) with p-toluenesulfonyl chloride (0.75 mole) at 142° for 10 hrs. (yield 59% (10)); for use in introduction of 2-( $\beta$ -chloroethoxyethyl) group see (10).]
- 3:9185 (1) Lourenco, Ann. chim. (3) 67, 290-292 (1863). (2) Haussmann, Göts, Ger. 670,419, Jan. 18, 1939; Cent. 1939, II 560; C.A. 33, 3031 (1939). (3) I.G., Brit. 354,357, Sept. 3, 1931; Cent. 1931, II 2657; C.A. 26, 3885 (1932). (4) Wurts, Ann. chim. (3) 69, 338-341 (1863). (5) Fourneau, Ribas, Bull. soc. chim. (4) 41, 1046-1051 (1927). (6) Freudenberg, Acker, Ber. 74, 1406 (1941). (7) I.G., Brit. 474,671, Dec. 2, 1937; Cent. 1938, 2063; C.A. 32, 3518 (1938): French 19,000, Oct. 7, 1937; Cent. 1938, 2063; C.A. 32, 2653 (1938). (8) I.G., Brit. 474,677, Dec. 2, 1937; Cent. 1938, I 2045; C.A. 32, 3064 (1938): French 805,557, Nov. 24, 1936; Cent. 1937, I 3397; C.A. 31, 4417 (1937). (9) Webel (to I.G.), Ger. 526,478, Oct. 8, 1932; Cent. 1933, I 1019; C.A. 27, 737 (1933). (10) Butler, Renfrew, Cretcher, Souther, J. Am. Chem. Soc. 59, 228-229 (1937).
  - (11) Smyth, Carpenter, J. Ind. Hyg. Toxicol. 26, 269-273 (1944).

3:9190 d,l-3-CHLORO-2-METHYLPROPANEDIOL-1,2  $C_4H_9O_2Cl$  Beil. S.N. 30  $(\beta$ -Methylglycerol- $\alpha$ -monochlorohydrin)  $CH_2Cl$ 

**B.P.** 80° at 1.6 mm. (1) 
$$D_4^{20} = 1.2362$$
 (1)  $n_D^{20} = 1.4748$  (1)

Colorless viscous liq., misc. in all proportions with aq., alc., ether (1).

[For prepn. of  $\bar{C}$  from 1-chloro-2-methyl-2,3-epoxypropane (" $\beta$ -methylepichlorohydrin") (3:7657) by warming with 0.1% aq. H<sub>2</sub>SO<sub>4</sub> (95% yield (1)) see (1) (2).]

 $\overline{C}$  with aq. 15% NaOH at 10–20° reacts very rapidly (by loss of HCl and ring closure) giving (70% yield (1)) (3) by ether extraction 2,3-epoxy-2-methylpropanol-1 (β-methylglycidol), colorless liq. misc. with aq., alc., or ether, b.p. 68° at 25 mm.,  $D_4^{20}=1.0420$ ,  $n_D^{20}=1.4299$  (1). [This prod. on further hydration in the aq. soln. yields 2-methylpropanetriol-1,2,3 (β-methylglycerol), b.p. 115–120° at 1.6 mm.,  $D_4^{20}=1.1863$ ,  $n_D^{20}=1.4730$  (1).]

**3:9190** (1) Hearne, DeJong, *Ind. Eng. Chem.* **33**, 940-943 (1941). (2) Groll, Hearne (to Shell Development Co.), U.S. 2,086,077, July 6, 1937; *Cent.* **1937**, II 2433; *C.A.* **31**, 5813 (1937). (3) Groll, Hearne (to Shell Development Co.), U.S. 2,070,990, Feb. 16, 1937; *Cent.* **1937**, II 2433; *C.A.* **31**, 2612 (1937).

3:9195 1-CHLORO-2-(CHLOROMETHYL)BUTADIENE-1,3 
$$C_5H_6Cl_2$$
 Beil. I —  $CH_2Cl$   $I_1$ —  $CH_2$ —

No physical constants on C are cited by the abstract journals.

[For formn. of C from 2-(chloromethyl)-1,2,3-trichlorobutane (3:5230) with boilg. alc. KOH (2-(chloromethyl)-1,3-dichlorobutene-1 (3:9201) is also formed) see (1),

C readily polymerizes (1).

C with maleic anhydride (1:0625) forms addn. prods. (1).

3:9195 (1) Tishchenko, J. Gen. Chem. (U.S.S.R.) 6, 1116-1132 (1936); Cent. 1937, I 573; C.A. 31, 1003 (1937).

3:9200 1-CHLORO-2-METHYLBUTADIENE-1,3  $C_5H_7Cl$  Beil. S.N. 12 ("Isoprene monochloride")  $CH_3$  Cl  $H_2C$ —CH—C—CH

B.P. 50.4° at 100 mm. (1) 
$$D_4^{20} = 0.9710$$
 (1)  $n_D^{20} = 1.4792$  (1)

Č has pleasant odor resembling isoprene.

[For prepn. of  $\bar{C}$  (38% yield (1) together with other products) from 2-methylbutadiene-1,3 (isoprene) with  $Cl_2$  in  $CCl_4$  see (1); for formn. of  $\bar{C}$  (30% yield (2) together with other products) from 1,2,3-trichloro-2-methylbutane (3:6100) with 2 moles of quinoline at 185– 225° see (2).]

Č with 4 pts. liq. SO<sub>2</sub> gives (1) 1-chloro-2-methylbutene-2 1,4-sulfone, white rhombic plates from water (which effectively separates the accompanying tar), or from ether, m.p. 73° cor. (1). [This prod. is a potent sternutator and skin irritant; its soly. in aq. is about

2.4 g. at 15° and 7.2 g. per 100 ml. aq.; in boilg. aq. it gives a tar, and aq. solns. are therefore concd. under reduced press.; on htg. to  $140^{\circ}$  under 100 mm. press. it regenerates (77% yield)  $\tilde{C}$  and thus constitutes a convenient means for storing  $\tilde{C}$  in stable form. (1).]

C polymerizes at a rate comparable to that of isoprene (for details see (1)).

Č (6 g.) + 1,4-naphthoquinone (1:9040) (3.5 g.) htd. under N<sub>2</sub> for 4 hrs. at 80° gives (1) on cooling 1-chloro-2-methyltetrahydroanthraquinone, pale yel. ndls. from acetone, colorless ndls. from alc., m.p. 146° cor. (1); this prod. on oxidn. with air in alc. NaOH yields 1-chloro-2-methylanthraquinone, cryst. from AcOH or alc., m.p. 171-172° cor. (1) (3) [dif. from 3-chloropentadiene-1,3 (3:7360) q.v.].

C with maleic anhydride (1:0625) evolves HCl and yields (2) a dianhydride.

3:9200 (1) Jones, Williams, J. Chem. Soc. 1934, 829-835. (2) Tishchenko, J. Gen. Chem. (U.S.S.R.) 6, 1116-1132 (1936); Cent. 1937, I 573; C.A. 31, 1003 (1937). (3) Keimatsu, Hirano, J. Pharm. Soc. Japan, 49, 140-147 (1929); C.A. 23, 3466 (1929).

# 3:9201 2-(CHLOROMETHYL)-1,3-DICHLOROBUTENE-1 C<sub>5</sub>H<sub>7</sub>Cl<sub>8</sub> Beil. S.N. 11

$$D_4^{12} = 1.33$$
 (1)  $n_C^{12} = 1.4975$  (1)

[For prepn. of  $\bar{C}$  from 2-(chloromethyl)1,2,3-trichlorobutane (3:5230) by loss of HCl with boilg. alc. KOH (1-chloro-2-(chloromethyl)butadiene-1,3 (3:9195) is also formed) see (2); for formn. of  $\bar{C}$  from 3-chloro-2-(chloromethyl)butene-1 (3:9206) with Cl<sub>2</sub> + NaHCO<sub>3</sub> at 0° (yield 6%  $\bar{C}$  together with 90% 2-(chloromethyl)-1,2,3-trichlorobutane (3:5230)) see (1).]

C on ozonolysis yields (2) 1,3-dichlorobutanone-2 (3:5900) and formic acid (1:1005).

3:9201 (1) Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1232-1246 (1938), Cent. 1939, II 4223; C.A. 33, 4190 (1939). (2) Tishchenko. J. Gen. Chem. (U.S.S.R.) 6, 1116-1132 (1936); Cent. 1937, I 573; C.A. 31, 1003 (1937).

#### 3:9202 2,5-DICHLOROPENTENE-2

$$D_4^{14.5} = 1.1182 (1) \quad n_C^{14.5} = 1.4683 (1)$$

[For prepn. of  $\bar{C}$  (92% yield (1)) from cyclopropyl methyl ketone [Beil. VII-7, VII<sub>1</sub>-(5)] with PCl<sub>5</sub> below 20° see (1); for formn. of  $\bar{C}$  from 5-chloropentanone-2 (see below) with excess 50% KOH see (1).]

C with conc. H<sub>2</sub>SO<sub>4</sub> gives (43% yield (1)) 5-chloropentanone-2 (3:9267).

 $\bar{\rm C}$  cannot be hydrolyzed with aq. + CaCO<sub>3</sub> but on protracted reflux (210 hrs.) with excess KOAc in abs. alc. gives 2-chloro-5-acetoxypentene-2, b.p. 81.5° at 13 mm.,  $D_4^{15}$  = 1.0800,  $n_{Cl}^{15}$  = 1.4499 (1).

C on oxidn, with 3% KMnO4 gives (1) acetic acid (1:1010) and acrylic acid (1:1020).

 $\ddot{\mathbf{C}}$  on ozonolysis yields (1)  $\beta$ -chloropropionic acid (3:0460).

3:9202 (1) D'yakonov, J. Gen. Chem. (U.S.S.R.) 10, 414-412 (1940); C.A. 34, 7861 (1940).

3:9204 1,4-DICHLORO-2-METHYLBUTENE-2  $C_5H_8Cl_2$  Beil. S.N. 11 Cl Cl Cl Cl  $CH_2$ —CH=C— $CH_2$ 

B.P. 93° at 50 mm. (1) 
$$D_4^{20} = 1.1526$$
 (1)  $n_D^{20} = 1.4932$  (1)  $56^\circ$  at 10 mm. (1)

Colorless lachrymatory liquid. — Sol. in cold conc. H<sub>2</sub>SO<sub>4</sub> with yel.-br. color.

[For prepn. from 2-methylbutadiene-1,3 (isoprene) (1:8020) in CCl<sub>4</sub> by treatment with Cl<sub>2</sub> see (1) (1-chloro-2-methylbutadiene-1,3 (3:9200) is also formed (1)).]

C in alc. added dropwise to a suspension of Zn dust in hot alc. gives (77% yield (1)) 2-methylbutadiene-1,3 (isoprene) (1:8020), b.p. 34°.

 $\overline{C}$  on oxidn. with KMnO<sub>4</sub> in acctone at  $-5^{\circ}$  gives (1) 1,4-dichloro-2-methylbutanediol-2,3, ndls. from ether, m.p. 106.5° cor. (1).

Č in CHCl<sub>3</sub> treated with O<sub>3</sub>, then with aq., yields (1) chloroacetone (3:5425) and chloroacetaldehyde (3:7212); ozonolysis of Č without solvent followed by KMnO<sub>4</sub> oxidn. gives (1) chloroacetic acid (3:1370).

3:9204 (1) Jones, Williams, J. Chem. Soc. 1934, 829-834.

3:9206 d,l-3-CHLORO-2-(CHLOROMETHYL)BUTENE-1 C<sub>5</sub>H<sub>8</sub>Cl<sub>2</sub> Beil. S.N. 11

B.P. 39-40° at 7 mm. (1) 
$$D_4^{18} = 1.1328$$
 (1)  $n_C^{18} = 1.4713$  (1)

[For form. of  $\bar{C}$  from 3-chloro-2-methylbutene-1 (3:7300) with  $Cl_2 + NaHCO_3$  at 0° see (1) (yield of  $\bar{C}$  is 35% accompanied by 30% 1,3-dichloro-2-methylbutene-2 (3:8170) and 30% 1,2,3-trichloro-2-methylbutane (3:6100)) (1).]

Č upon ozonolysis yields (1) 1,3-dichlorobutanone-2 (3:5900).

3:9206 (1) Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1232-1246 (1938); Cent. 1939, II 4223; C.A. 33, 4190 (1939).

1,3-DICHLORO-2,2-bis-(CHLOROMETHYL)PROPANE C5H8Cl4 Beil. I - 141

$$\begin{array}{ccc} & \text{CH}_2\text{Cl} & \text{I}_1-\\ & \text{ClCH}_2-\text{C-CH}_2\text{Cl} & \text{I}_2-(\textbf{104}) \\ & \text{CH}_2\text{Cl} & & \end{array}$$

1268

B.P. 110° at 12 mm. M.P. 97°

See 3:2675. Division A: Solids.

3:9214 2-(CHLOROMETHYL)BUTENE-1 CH<sub>2</sub>Cl C<sub>5</sub>H<sub>9</sub>Cl Beil. I - 211 ( $\beta$ -Ethylallyl chloride) CH<sub>3</sub>.CH<sub>2</sub>—C=CH<sub>2</sub> I<sub>1</sub>— I<sub>2</sub>-(187)

C has not been obtd. in pure form.

[For formn. of C together with 1-chloro-2-methylbutene-1 (3:7303) + 1-chloro-2-methylbutene-2 (3:7485) from 1-chloro-2-methylbutanol-2 (3:8175) by distn. with anhydrous

oxalic acid see (1); for formn, of C (together with other products) from 2-methylbutene-1 (1:8210) by actn. of Cl<sub>2</sub> see (2).]

[For behavior of C with NaI in acetone see (2); for use in prepn. of unsatd. cellulose ethers see (3).1

C with O<sub>3</sub> followed by hydrolysis yields (2) chloromethyl ethyl ketone (3:8012).

3:9214 (1) Chalmers, Trans. Roy. Soc. Can. (3) 22, III 73, 76 (1928). (2) Gutner, Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1062-1067 (1938); Cent. 1939, II 4221; C.A. 33, 3755 (1939). (3) Hahn (to du Pont), U.S. 2,082,797, June 8, 1937; Cent. 1937, II 3838; C.A. 31, 5577 (1937).

No physical constants of C have been reported.

[For formn. of C from diisoamyl sulfide [Beil. I-405, I<sub>1</sub>-(200), I<sub>2</sub>-(435)] by action of Cl<sub>2</sub> see (1).]

 $\tilde{C}$  on htg. in a s.t. for 5 hrs. at 110° with Ag<sub>2</sub>O + ag. yields (1) isovaleric acid (1:1050). 3:9216 (1) Spring, Lecrenier, Bull. soc. chim. (2) 48, 627 (1887).

3:9218 d,l-1,3-DICHLORO-2-(CHLOROMETHYL)BUTANE C<sub>5</sub>H<sub>9</sub>Cl<sub>3</sub> Beil. S.N. 10

[For formn. of C from 1,3-dichloro-2-methylbutane (3:9228) or from 3-chloro-2-methylbutene-1 (3:7300) with Cl<sub>2</sub> see (1).]

C with Cl<sub>2</sub> as specified (1) yields 1,2,3-trichloro-(2-chloromethyl)butane (3:5230).

C with KOH or with quinoline gives (1) only resins.

3:9218 (1) Tishchenko, J. Gen. Chem. (U.S.S.R.) 6, 1116-1132 (1936); Cent. 1937, I 573; C.A. **31.** 1003 (1937).

B.P. 80.4° at 60 mm. (1) 
$$D_4^{20} = 1.0834$$
 (1)  $n_D^{20} = 1.4485$  (1)

[For prepn. of C (30% yield (1) together with other products) from 1-chloropentane (3:7460) by vapor-phase photochemical chlorination see (1).]

Č on refluxing 24 hrs. with NaI in acetone gives (90% yield (1)) 3-chloro-1-iodopentane, b.p.  $50.5^{\circ}$  at 2.5 mm.,  $D_{-}^{20} = 1.6611$ ,  $n_{\rm D}^{20} = 1.5229$  (1). (A small amt. of 1,3-diiodopentane, b.p. 80-82° at 2.5 mm., is also formed (1).) [For reactn. of 3-chloro-1-iodopentane with diethylamine to give (74% yield) 3-chloropentyl-diethylamine HCl, m.p. 98.5°, see (1).]

3:9220 (1) Hass, Huffman, J. Am. Chem. Soc. 63, 1233-1235 (1941).

B.P. 88.1° at 60 mm. (1) 
$$D_4^{20} = 1.0840$$
 (1)  $n_D^{20} = 1.4503$  (1)

69-70° at 28 mm. (3) 59-61° at 17 mm. (2)

**58–60° at 15 mm. (2)** r prepn. of  $\bar{C}$  (31% yield (1) together with other prods.) from 1-ch

[For prepn. of  $\tilde{C}$  (31% yield (1) together with other prods.) from 1-chloropentane (3:7460) by vapor-phase photochemical chlorination see (1); from 2-methyltetrahydrofuran [Beil. XVII-12] on htg. in s.t. for 4 hrs. at 60° with 2 vols. conc. HCl (2) or from pentanediol-1,4 by treatment in boilg. aq. with HCl (2) see indic. refs. — For formn. of  $\tilde{C}$  (together with other prods.) from pentane (1:8505) + Cl<sub>2</sub> see (3).]

 $\tilde{C}$  on boilg, with aq. (2) or aq.  $K_2CO_3$  (3) yields pentanediol-1,4 [Beil. I-480] [bis-(N-phenylcarbamate), m.p. 125-125.5° (3)].

 $\vec{C}$  on refluxing 24 hrs. with NaI in acetone gives (90% yield (1)) 4-chloro-1-iodopentane, b.p. 61.3° at 3.5 mm.,  $D_{\rm c}^{20}=1.6580$ ,  $n_{\rm D}^{20}=1.5248$  (1) (a small amt. of 1,4-diiodopentane, b.p. 100° at 5 mm. is also formed (1)). [For reactn. of 4-chloro-iodopentane with diethylamine to give (42% yield) 4-chloropentyl-diethylamine hydrochloride, m.p. 99°, see (1).]

3:9224 (1) Hass, Huffman, J. Am. Chem. Soc. 63, 1233-1235 (1941). (2) Fröbe, Hochstetter, Monatsh. 23, 1087-1088 (1902). (3) Lemke, Tishchenko, J. Gen. Chem. (U.S.S.R.) 7, 1995-1998 (1937); Cent. 1939, I 2398; C.A. 32, 482 (1938).

3:9228 d,l-1,3-DICHLORO-2-METHYLBUTANE  $C_5H_{10}Cl_2$  Beil S.N. 10

Note that C has never been reported; the prod. originally supposed by (1) to have been C was later (2) found to be 2-(chloromethyl)-3-chlorobutene-1 (3:9206) q.y.

By chlorination of opt. act. 1-chloro-2-methylbutane with SO<sub>2</sub>Cl<sub>2</sub> in pres. of benzoyl peroxide followed by subsequent fractionation (3) both opt. act. forms of  $\bar{C}$  are alleged to have been obtd.; dextro form, b.p. 155° at 760 mm. (calcd.), 91° at 100 mm. (obs.); levo form, b.p. 153° at 760 mm. (calcd.), 89.2° at 100 mm. (obs.) (3). Note, however, that in (3) the authors were apparently unaware of the correction mentioned above.

3:9228 (1) Tishchenko, J. Gen. Chem. (U.S.S.R.) 6, 1116-1132 (1936); Cent. 1937, I 573; C.A. 31, 1003 (1937). (2) Tishchenko, J. Gen. Chem. 8, 1232-1246 (1938); Cent. 1939, II 4222. (3) Brown, Kharasch, Chao, J. Am. Chem. Soc. 62, 3437 (1940).

3:9230 d,l-3,8-DICHLORO-2-METHYLBUTANE  $C_8H_{10}Cl_2$  Beil. I -135  $I_1$ —  $CH_3$ —C—C— $CH_3$   $I_2$ —  $I_2$ —

No data on physical properties of C appear to be recorded.

[For prepn. of  $\bar{C}$  from isopropyl methyl ketone (1:5410) with PCl<sub>5</sub> see (1).]

C with alc. KOH at 130° yields (1) isopropylacetylene (1:8010), b.p. 28°.

3:9230 (1) Béhal, Ann. chim. (6) 15, 285-286 (1888).

B.P. 64° at 35 mm. (1) 45° at 12 mm. (2)

[For prepn. of  $\bar{C}$  from tiglic acid (1:0420) with PCl<sub>3</sub> (yield 90% (1)) (2) see indic. refs.]  $\bar{C}$  with hydrazine hydrate (2 moles) yields (3) N,N'-ditiglylhydrazide, m.p. 182-183° (3).  $\bar{C}$  on hydrolysis yields tiglic acid (1:0420), m.p. 64.5-65°, q.v. for the corresp. amide, anilide, v-toluidide, and other derivs.

**3:9240** (1) Barger, Martin, Mitchell, J. Chem. Soc. **1937**, 1822. (2) Blaise, Bagard, Ann. chim. (8) **11**, 120 (1907). (3) Freri, Atti X° congr. intern. chim. **3**, 150–154 (1939); Cent. **1939**, II 3975; C.A. **34**, 100 (1940).

3:9242 ETHYL 
$$\alpha$$
-CHLOROACRYLATE Cl C<sub>5</sub>H<sub>7</sub>O<sub>2</sub>Cl Beil. S.N. 163 CH<sub>2</sub>=C-COOC<sub>2</sub>H<sub>5</sub> B.P. 51-53° at 18 mm. (1)  $n_D^{20} = 1.4384$  (1)

[For prepn. of  $\bar{C}$  from ethyl  $\alpha,\beta$ -dichloropropionate (3:6090) by htg. with dimethylaniline, quinoline, or quinaldine at 100° for 10 min. under  $N_2$  (81% yield) see (1).

See also  $\alpha$ -chloroacrylic acid (3:1445) and methyl  $\alpha$ -chloroacrylate (3:9096).

3:9242 (1) Marvel, Dec, Cooke, Cowan, J. Am. Chem. Soc. 62, 3495-3498 (1940).

3: 9244 METHYL 
$$\beta$$
-CHLOROCROTONATE  $C_6H_7O_2Cl$  Beil. II — CH<sub>3</sub>—C—Cl II<sub>1</sub>-(189) II<sub>2</sub>-(396) H—C—COOCH<sub>3</sub>

B.P. 64–67° at 14 mm. (1)  $D_4^{22\ 3}=1.1555$  (1)  $D_4^{21\ 4}=1.1564$  (1)  $n_D^{21\ 4}=1.46275$  (1)  $D_4^{20}=1.157$  (1)

[See also methyl B-chloroisocrotonate (3:8028).]

[For prepn. of  $\tilde{C}$  from  $\beta$ -chlorocrotonic acid (3:2625) in MeOH (1:6120) with dry HCl see (1).]

 $[\bar{C}]$  with Na salt of benzyl mercaptan gives (2) methyl  $\beta$ -(benzylmercapto)crotonate, cryst. from ether and MeOH, m.p. 69–70° (2), 73° (3), also obtd. (78% yield (3)) from Na thioenolate of methyl  $\beta$ -mercaptocrotonate with benzyl chloride (3:8535); note that this (and also other, analogous products) are also obtd. starting with the stereoisomeric methyl  $\beta$ -chloroisocrotonate (3:8028) q.v.

3:9244 (1) von Auwers, Ber. 45, 2806-2807 (1912). (2) Scheibler, Voss, Ber. 53, 384 (1920). (3) Scheibler, Topouzada, Schulze, J. prakt. Chem. (2) 124, 20 (1940).

See also methyl (chloroformyl)acetate (3:9098-A).1

63-64° at 10 mm. (4)

Note that  $\tilde{C}$  is both an acid chloride and an ester; it comprises the half acid chloride/half ethyl ester of malonic acid (1:0480).

[For prepn. of Č from ethyl hydrogen malonate with SOCl<sub>2</sub> (3) or better from potassium ethyl malonate with SOCl<sub>2</sub> at 0° (1) or in ether (4) (yields: 70% (1), 45% (4)) of. (5) or with PCl<sub>5</sub> (6) see indic. refs.]

Č boils at ord. press. about 170–180° with serious decompn. (3). — Č on repeated distn. even under reduced press. (4) or Č with quinoline in dry ether at 0° (4) loses HCl and undergoes condensation yielding ethyl 6-ethoxy-2,4-diketo-2,3-dihydropyran-3-carboxylate [Beil. XVIII<sub>1</sub>-(540)], cryst, from CS<sub>2</sub>, m.p. 85–86° (4) cf. (7).

[For behavior of C with 2,4-dimethylpyrryl MgBr (8), with indolyl MgBr (5), with indolyl MgI (9), or with imidazolyl MgBr (10) see indic. refs.]

[For behavior of C with atoxyl see (1).]

[ $\bar{C}$  with urea (2 moles) reacts as an acid chloride giving (2) ethyl malonurate [Beil. III-66], m.p. 128° (2). —  $\bar{C}$  with thioformamide condenses with loss of  $H_2O$  + HCl giving (11) (12) (13) ethyl thiazole-5-carboxylate, b.p. 103.5-104.5° at 12 mm. (13), which on hydrolysis gives thiazole-5-carboxylic acid, m.p. 196-197° cor. (11).]

```
—— ω-(Carbethoxyacet)anilide: unreported.

Φ ω-(Carbethoxyacet)-p-toluidide: m.p. 83° (4).
```

3:9246 (1) Morgan, Walton, J. Chem. Soc. 1931, 1744-1745. (2) Boehringer und Söhne, Ger. 193,447, Dec. 28, 1907; Cent. 1908, I 1000; C.A. 2, 1862-1863 (1908). (3) Marguery, Bull. soc. chim. (3) 33, 546-547 (1905). (4) Staudinger, Becker, Ber. 50, 1023 (1917). (5) Oddo, Albanese, Gazz. chim. ital. 57, 833-834 (1927). (6) van't Hoff, Ber. 7, 1572 (1874). (7) Leuchs, Ber. 39, 2642-2643 (1906). (8) Ingraffia, Gazz. chim. ital. 64, 780-782 (1934). (9) Majima, Shigematsu, Rokkaku, Ber. 57, 1454-1455 (1924). (10) Oddo, Quintino, Gazz. chim. ital. 58, 595-596 (1928).

(11) Erlenmeyer, von Meyenburg, Helv. Chim. Acta 20, 205 (1937). (12) Soc. Chem. Ind. Basel, Swiss 192,849, Nov. 16, 1937; Cent. 1938, I 3659; C.A. 32, 4285 (1938). (13) Soc. Chem. Ind. Basel, Ger. 658,353, March 29, 1938, Cent. 1938, II 354; C.A. 32, 4727 (1938).

Note that  $\bar{C}$  is both an acid chloride and an ester;  $\bar{C}$  is an important reagent for introducing the three-carbon radical —CH<sub>2</sub>.CH<sub>2</sub>.COOH.

[For prepr. of  $\bar{C}$  from methyl hydrogen succinate, m.p. 58° (itself obtd. (yields: 95–96% (3), 83% (4) (1)) from succinic anhydride (1:0710) with MeOH (1:6120)) by action of SOCl<sub>2</sub> (yields: 100% (6), 90–93% (3), 90% (5)) or of PCl<sub>5</sub> (92.5% yield (4)) see indic. refs. Note that  $\bar{C}$  on distr. (except at low press.) tends to lose MeCl (3:7005) giving (3). succinic anhydride (1:0710).

Examples of utility of  $\bar{C}$  in synthesis include the following:  $\bar{C}$  + ethyl sodio-acetoacetate (6);  $\bar{C}$  + ethyl sodio- $\alpha$ -acetyl-n-undecanoate (7);  $\bar{C}$  + ethyl sodio- $\alpha$ -acetyl- $\gamma$ -phenoxy-n-butyrate (8);  $\bar{C}$  + ethyl sodio- $\gamma$ -phenoxy-propylacetoacetate (9);  $\bar{C}$  + methyl  $\gamma$ -(6-methoxy-1-naphthyl)butyrate (10);  $\bar{C}$  + methyl sodio- $\alpha$ -acetyl-propionate (11);  $\bar{C}$  + 1-methyl-cyclohexene-1 (5);  $\bar{C}$  + ethyl  $\alpha$ -acetyl-n-tridecanoate (1);  $\bar{C}$  + Cd diisoamyl (4).]

- $\beta$ -(Carbomethoxy) propionamide: unreported.
- $\oplus$   $\beta$ -(Carbomethoxy)propionanilide: ndls. from ether or lt. pet./C<sub>6</sub>H<sub>6</sub>, m.p. 97-99° (1). [From  $\bar{C}$  with aniline (1).]
- 3:9247 (1) G. M. Robinson, R. Robinson, J. Chem. Soc. 127, 180 (1925). (2) Clutterbeck, R. Robinson, Biochem. J., 19, 385-396 (1925); Cent. 1925, II 1516. (3) Cason, Org. Syntheses 25, 19-22 (1945). (4) Cason, J. Am. Chem. Soc. 64, 1107 (1942). (5) Nenitzescu, Cioranescu, Przemetzky, Ber. 73, 314 (1940). (6) Ruggli, Maeder, Helv. Chim. Acta 25, 943 (1942); C.A. 37, 1714-1715 (1943). (7) G. Robinson, Robinson, J. Chem. Soc. 1926, 2206. (8) R. Robinson, Watt, J. Chem. Soc. 1934, 1539. (9) Barger, R. Robinson, Smith, J. Chem. Soc. 1937, 724. (10) R. Robinson, Thompson, J. Chem. Soc. 1938, 2011.
  - (11) R. Robinson, Seijo, J. Chem. Soc. 1941, 585.

3:9250 β-METHOXYETHYL TRICHLOROACETATE C<sub>5</sub>H<sub>7</sub>O<sub>3</sub>Cl<sub>3</sub> Beil. S.N. 160 (Methyl "cellosolve" trichloroacetate) CH<sub>2</sub>OCH<sub>3</sub>

B.P. M.P. 98.0-99.5° at 17 mm. (2) 14.6-14.8° (1)  $D_4^{20} = 1.3866$  (3)  $n_D^{20} = 1.45626$  (2) 92-93° at 10 mm. (1) 1.3826 (2) 1.45823 (2) 61° at 0.9 mm. (3)

Colorless liq. with agreeable odor.

[For prepn. (82% yield (1)) from  $\beta$ -methoxyethanol (1:6405) + trichloroacetyl chloride (3:5420) see (1).]

Č on shaking with ac. is smoothly saponified (1) to  $\beta$ -methoxyethanol (1:6405) + tri-chloroacetic ac. (3:1150).

3:9256 (1) Meerwein, Sönke, Ber. 64, 2379 (1931). (2) Palomaa, Salmi, Korte, Ber. 72, 797 (1939). (3) Meerwein, Sönke, J. prakt. Chem. (2) 137, 309 (1933).

3:9260 d,l- $\gamma$ -CHLORO-n-VALERYL CHLORIDE  $C_5H_8$ OCl<sub>2</sub> Beil. II — CH<sub>3</sub>.CH.CH<sub>2</sub>.CH<sub>2</sub>—C=O II<sub>1</sub>-(132)  $C_1$  II<sub>2</sub>—

### B.P. 61° at 8 mm. (1)

[For prepn. of C from  $\gamma$ -chloro-n-valeric acid (3:9270) with sl. excess of SOCl<sub>2</sub> (100% yield) see (1).]

 $[\bar{C}]$  with EtZnI at  $-15^{\circ}$  to  $-20^{\circ}$  yields (2)  $\gamma$ -chloro-n-butyl ethyl ketone (6-chlorohepta-

none-3) [Beil. I<sub>1</sub>-(359)], b.p. 79° at 13 mm. (2) (semicarbazone, m.p. 129-129.5° (2), pnitrophenylhydrazone, unrecryst. oil (2));  $\tilde{C}$  with  $C_6H_6ZnBr$  at 0° yields (3)  $\gamma$ -chloro-nbutyl phenyl ketone [Beil. VII<sub>1</sub>-(173)], b.p. 155-156° at 15 mm. (3) (semicarbazone, m.p. 123° (3)).]

 $\tilde{C}$  on hydrolysis with aq. yields (1)  $\gamma$ -chloro-n-valeric acid (3:9270); for the amide, anilide, and other derivs, corresp. to C see the acid (3:9270).

3:9260 (1) Wohlgemuth, Compt. rend. 159, 80 (1914); Ann. chim. (9) 2, 301 (1914). (2) Wohlgemuth, Ann. chim. (9) 2, 405-406, 410-412 (1914). (3) Ref. 2, 417-419.

B.P. 75-80° at 5-8 mm. (1)

[For prepn. of C from δ-chloro-n-valeric acid (3:0075) with SOCl<sub>2</sub> see (1).]

3:9264 (1) Child, Pyman, J. Chem. Soc. 1931, 41.

3:9266 CHLOROPIVALYL CHLORIDE  $(\beta$ -Chloro- $\alpha, \alpha$ -dimethylpropionyl chloride)

B.P. 85-86° at 60 mm. (1)

$$n_{\rm D}^{20} = 1.4539 (1)$$

[For prepn. of C from pivalyl chloride (trimethylacetyl chloride) (3:7450) with SO<sub>2</sub>Cl<sub>2</sub> + dibenzovl peroxide in CCl4 see (1).1

- Chloropivalamide: pl. from aq., m.p. 108-109° (1).
- 3:9266 (1) Kharasch, Brown, J. Am. Chem. Soc. 62, 925-929 (1940).

3:9267 5-CHLOROPENTANONE-2 
$$C_{\delta}H_{\theta}OCl$$
 Beil. I —  $(\gamma\text{-Chloro-}n\text{-propyl} CH_2\text{--CH}_2\text{--CH}_2\text{--CH}_3$  I<sub>1</sub>—  $I_{2}$ —(738)  $I_{2}$ —(738) B.P. 76° at 34 mm. (6)  $D_{4}^{18} = 1.0571$  (1)  $n_{F}^{18} = 1.4461$  (1)  $n_{C}^{18} = 1.4371$  (1)  $n_{C}^{18} = 1.4371$  (1)

B.P. 76° at 34 mm. (6) 
$$D_4^{18} = 1.0571$$
 (1)  $n_F^{18} = 1.4461$  (1)  $71-72^\circ$  at 20 mm. (2)  $n_C^{18} = 1.4371$  (1)

[For prepn. of C from 2,5-dichloropentene-2 (3:9202) by hydration with conc. H<sub>2</sub>SO<sub>4</sub> (43% yield) see (1); from 2,5-epoxypentene-1 ("α-methylenetetrahydrofuran") (for whose prepn. + characteristics see (3)) by ring cleavage with conc. HCl see (4); from cyclopropyl methyl ketone cyanohydrin ("acetyltrimethylene cyanohydrin") with conc. HCl by ring cleavage and loss of HCN see (5); from  $\alpha$ -acetobutyrolactone with HCl as directed see (6).

[C with 50% excess KOH on refluxing loses HCl and ring-closes giving (60% yield (2)) (5) cyclopropyl methyl ketone [Beil. VII-7, VII<sub>1</sub>-(7)], b.p. 112-113° (5),  $D_4^{20} = 0.8993$ ,  $n_D^{20} = 1.4244$  (corresp. semicarbazone, m.p. 120-121° (5)).]

5-Chloropentanone semicarbazone: m.p. 92-93° (5), 91-92° (1).

3:9267 (1) D'yakonov, J. Gen. Chem. (U.S.S.R.) 10, 414-426 (1940); C.A. 34, 7861 (1940). (2) Zelinsky, Dengin, Ber. 55, 3360 (1922). (3) Paul, Bull. soc. chim. (4) 53, 425-426 (1933); (5) 2, 752-754 (1935). (4) Topchiev, Russ. 57,345, June 30, 1940; C.A. 36, 2509 (1942). (5) Khaletskii, J. Gen. Chem. (U.S.S.R.) 11, 319-323 (1941); Cent. 1942, I 1364; C.A. 35, 5853 (1941) (6) Boon (to Imperial Chem. Ind. Ltd.), U.S. 2,370,392, Feb. 27, 1945; Brit. 558,286, Dec. 30 1943; C.A. 39, 4090 (1945).

[For prepn. of  $\bar{C}$  from propionyl chloride (3:7170) with ethylene + AlCl<sub>3</sub> with or without diluent (50% yield (4)) (2), or over suitable cat. at 100-300° and at 20-200 atm. press. (3), see indic. refs.; from  $\beta$ -chloropropionyl chloride (3:5690) with ZnEt<sub>2</sub> in toluene (70% yield) see (1).]

 $\tilde{C}$  with hot aq. alk. or alk. carbonates gives only resins, but  $\tilde{C}$  on boilg. with dry diethylaniline loses HCl yielding (1) ethyl vinyl ketone [Beil. I-731, I<sub>2</sub>-(791)], b.p. 96°.

[ $\bar{C}$  with diethyl sodio-malonate in ether gives (5) diethyl  $\alpha$ -( $\gamma$ -keto-n-amyl)malonate, b.p. 166° at 14 mm. (5);  $\bar{C}$  with sodio-acetylacetone yields (5) the triketone 3-acetyloctane-dione-2,6, b.p. 154° at 16 mm. (5);  $\bar{C}$  with ethyl sodio-acetoacetate in ether yields (6) the expected ethyl octandione-2,6-carboxylate-3 (3-carbethoxyoctanedione-2,6), b.p. 150° at 8 mm. (6).]

[ $\ddot{\mathbf{C}}$  with diethylamine in ether in cold, followed by treatment with dil. aq. alk., yields (7) 1-diethylaminopentanone-3, b.p. 84° at 13 mm.,  $n_{15}^{15} = 1.4368$  (7).]

[ $\bar{C}$  with aniline (2 moles) + a little water reacts vigorously on warming yielding (8) 1-anilinopentanone-3 [Beil. XII-214], tbls. from ether, m.p. 55.5° (8); note, however, that  $\bar{C}$  with aniline htd. in abs. alc. or  $C_6H_6$  (8), or  $\bar{C}$  with aniline htd. with conc. HCl (or 40%  $H_2SO_4$ ) + nitrobenzene (or  $H_3AsO_4$ ), gives (9) (4) 4-ethylquinoline [Beil. XX-406, XX<sub>1</sub>-(153)].]

[C̄ with hydrazine hydrate in MeOH gives (80% yield (10)) by ring closure 3-ethyl-Δ²-pyrazoline [Beil. XXIII-32], liq., b.p. 76° at 22 mm. (10) (corresp. picrate, B.PkOH, yel. ndls. from 95° alc., m.p. 117° (10)). — C̄ with phenylhydrazine in ether gives (10) by ring closure 3-ethyl-1-phenyl-Δ²-pyrazoline [Beil. XXIII-32], oil, b.p. 155° at 9 mm. (10).]

[ $\bar{C}$  with NH<sub>2</sub>OH.H $\bar{C}$ l + K<sub>2</sub>CO<sub>3</sub> in aq. MeOH htd. for a few minutes gives (20% yield (10)) by ring closure 3-ethyl- $\Delta^2$ -isoxazoline [Beil. XXVII-13], oil, b.p. 69° at 11 mm. (10).]

① 1-Carbamido-3-ethyl- $\Delta^2$ -pyrazoline: cryst. from EtOAc or  $C_6H_6$ , m.p. 96° (10). [Note that  $\bar{C}$  with 1 equiv. semicarbazide HCl + NaOAc in aq. immediately ppts. the corresp. semicarbazone; this on htg. with strong aq. NaOAc (or  $\bar{C}$  + semicarbazide HCl + strong NaOAc soln. htd. directly) loses HCl and ring-closes to the indic. deriv. (10).]

3:9268 (1) Blaise, Maire, Bull. soc. chim. (4) 3, 268-271 (1908); Compt. rend, 142, 216 (1906). (2) Schoeller, Zöllner (to I.G.), U.S. 1,737,203, Nov. 26, 1929; Cent. 1939, II 1133; Brit. 282,412, Feb. 15, 1928; Cent. 1929, I 143. (3) Frolich, Wiezevich (to Standard Oil Development Co.), U.S. 2,006,198, June 25, 1935; Cent. 1936, I 2827. (4) Kenner, Statham, Ber. 69, 16-17 (1936). (5) Blaise, Maire, Bull. soc. chim. (4) 3, 421, 423 (1908). (6) Blaise, Maire, Bull. soc. chim. (4) 3, 413-417 (1908). (7) Adamson, McQuillin, Robinson, Simonsen, J. Chem. Soc. 1937, 1578. (8) Blaise, Maire, Bull. soc. chim. (4) 3, 659-660, 662-665 (1908). (9) Schering-Kahlbaum, A.G., Brit. 283,577, March 7, 1928; Cent. 1929, I 3148. (10) Blaise, Maire, Bull. soc. chim. (4) 3, 272-279 (1908).

### B.P. 60-62° at 16 mm. (1)

[For prepn. of  $\bar{C}$  from 2-methylbutanon-3-ol-1 ( $\beta$ -acetyl-n-propyl alc.) [Beil.  $I_1$ -(422)] with 3 moles HCl (satd. at 0°), preferably in pres. of 5-10% AlCl<sub>3</sub> (50% yield, accompanied by some 2-methylbuten-1-one-3, b.p. 96-99°) see (1).]

3:9269 (1) Decombe, Compt. rend. 202, 1685-1687 (1936); Cent. 1936, II 1525.

M.P. 33°

— 
$$d,l$$
- $\beta$ -CHLORO- $n$ -VALERIC ACID  $C_{\delta}H_{9}O_{2}Cl$  Beil. S.N. 162 CH<sub>3</sub>.CH<sub>2</sub>.CH.CH<sub>2</sub>COOH

Cl

B.P. 112° at 10 mm. M.P. 33°  $D_{4}^{20} = 1.1484$   $n_{D}^{20} = 1.4462$ 

See 3:0270. Division A: Solids.

3:9270 
$$d_i l_{-\gamma}$$
-CHLORO- $n$ -VALERIC ACID  $C_5 H_9 O_2 Cl$  Beil. II — CH<sub>3</sub>.CH.CH<sub>2</sub>.CH<sub>2</sub>.COOH  $II_1$ -(131)  $II_2$ —

B.P. 117° at 10 mm. (1) 
$$D_4^{20} = 1.1514$$
 (1)  $n_D^{20} = 1.4458$  (1) 115-116° at 10 mm. (2) 1.1510 (1) 1.4456 (1)

[For prepn. of  $\tilde{C}$  from  $\gamma$ -n-valerolactone (1:5080) with conc. HCl at 150° see (2); from β-ethylidene-propionic acid (penten-3-oic acid-1) [Beil. II-426, II<sub>1</sub>-(191), II<sub>2</sub>-(400)] or from allyl-acetic acid (penten-4-oic acid-1) [Beil. II-425, II<sub>1</sub>-(191), II<sub>2</sub>-(399)] with dry HCl gas in ether or heptane at  $-15^{\circ}$  see (1).] [For opt. act. isomers of  $\bar{C}$  see Beil. II<sub>2</sub>-(268) and subsequent literature.]

C with SOCl<sub>2</sub> yields (2) γ-chloro-n-valeryl chloride (3:9260).

- ---- Methyl ~-chloro-n-valerate: unrecorded.
- Ethyl  $\gamma$ -chloro-n-valerate: b.p. 196° (see 3:8703).
- D γ-Chloro-n-valeramide: tbls. from ether, m.p. 79-79.5° (2). [From γ-chloro-nvaleryl chloride (3:9260) with conc. aq. NH<sub>4</sub>OH (2).]
- (2), [From pet. eth. + a little AcOH, m.p. 104° (2). γ-chloro-n-valeryl chloride (3:9260) with aniline in ether soln. (2).
- Φ γ-Chloro-n-valero-phenylhydrazide: ndls. from EtOAc, m.p. 100° (2). [From γchloro-n-valeryl chloride (3:9260) with 2 moles phenylhydrazine in ether (2).

3:9276 (1) Schjanberg, Ber. 70, 2385-2391 (1937). (2) Wohlgemuth, Compt. rend. 158, 1577 (1914); Ann. chim. (9) 2, 298-304 (1914).

--- CHLOROPIVALIC ACID CH<sub>8</sub> C<sub>5</sub>H<sub>9</sub>O<sub>2</sub>Cl Beil. S.N. 162

B.P. 126-129° at 30 mm.

M.P. 40-42°

See 3:0440. Division A: Solids.

1277 LIQUIDS (WITH B.P. REPTD, AT RED. PRESS.)

Beil. S.N. 199

3:9280-3:9287

("Cellosolve" chloroformate;  $\beta$ -ethoxyethyl chlorocarbonate)

3:9280 B-ETHOXYETHYL CHLOROFORMATE

C<sub>2</sub>H<sub>5</sub>.O.CH<sub>2</sub>.CH<sub>2</sub>.O.CO.Cl

C<sub>6</sub>H<sub>9</sub>O<sub>8</sub>Cl

B.P. 67.2° at 14 mm. (1)

 $D_{\text{th}}^{25} = 1.1341 \ (1)$ 

 $n_{\rm D}^{25} = 1.4169 (1)$ 

Colorless liq. insol. aq.

[For prepn. (77% yield (1)) from  $\beta$ -ethoxyethanol ("Cellosolve") (1:6410) + phosgene (3:5000) see (1).]

 $\bigcirc$   $\beta$ -Ethoxyethyl carbamate: m.p. 62.2° (1). [From  $\ddot{C}$  + aq. NH<sub>4</sub>OH in 39% yield; cryst. from propylene chloride (1).

3:9280 (1) Asburn, Collett, Lazzell, J. Am. Chem. Soc. 60, 2933-2934 (1938).

3:9285 β-METHOXYETHYL CHLOROACETATE C<sub>5</sub>H<sub>9</sub>O<sub>2</sub>Cl Beil. S.N. 160 (Methyl "cellosolve" chloroacetate) CH<sub>2</sub>.O.CH<sub>3</sub>

CH2.O.CO.CH2Cl  $D_4^{20} = 1.2015 (1)$   $n_D^{20} = 1.43821 (1)$ B.P. 85-86° at 9 mm. (1) 60° at 1.3 mm. (1)

Colorless oil.

[For prepn. (80% yield (1)) from ethylene glycol monomethyl ether (1:6405) + chloroacetyl chloride (3:5235) in CHCl<sub>3</sub> see (1).]

 $\bar{C}$  on shaking with aq. saponifies to  $\beta$ -methoxyethanol (1:6405) + chloroacetic ac. (3:1370); titration of aq. soln. neutralizes 1 equiv. alk. (i.e., Sap. Eq. = 188.5).

3:9285 (1) Meerwein, Sönke, J. prakt. Chem. (2) 137, 319-320 (1933).

CH<sub>2</sub>.CH<sub>2</sub>—C—CH<sub>3</sub>
OCI ter-AMYL HYPOCHLORITE C<sub>5</sub>H<sub>11</sub>OCl 3:9287 Beil. I — (Dimethyl-ethyl-carbinyl  $I_1$  hypochlorite) I<sub>2</sub>-(423)  $D_4^{25} = 0.8547 (1)$ B.P. see text.

[See also ter-butyl hypochlorite (3:7165).]

Yellow mobile liquid with irritating odor and giving vapor which violently attacks eves and mucous membranes (1). — C boils with considerable decomposition; a thermometer in the vapor recorded 76° at 752 mm., but this cannot, of course, be regarded as a b.p. (1).

Č is relatively stable and even after 2 months (in dark) is practically unchanged (1); for study of stability of  $\bar{C}$  in aq. or in CCl4 see (2). —  $\bar{C}$  on exposure to bright sunlight dec. quietly with evolution of heat leaving a colorless liq. contg. acetone (1:5400) and other prods.

[For prepn. of C from ter-amyl alc. (1:6160) with Cl<sub>2</sub> in aq. alk. (1) (3) or alk. earth (4) or with aq. HOCl in pres. of CCl4 (90% yield (5)) (2) see indic. refs.]

 $\bar{C}$  with KI + AcOH liberates I<sub>2</sub> quant. according to equation  $C_5H_{11}OCl + 2HI \rightarrow$  $C_8H_{11}OH + HCl + I_2$  (use in quant. detn. of  $\bar{C}$  (1)).

[For reactn. of C with R<sub>2</sub>C=NMgX cpds. to yield N-chloroimines see (3); for reactn. of C with Schiff's bases see (5) (6).]

**3:9287** (1) Chattaway, Backeburg, J. Chem. Soc. **123**, 2999-3003 (1923). (2) Taylor, MacMullen, Gammal, J. Am. Chem. Soc. **47**, 397-398 (1925). (3) Hauser, Humble, Haus, J. Am. Chem. Soc. **54**, 2476-2480 (1932). (4) Deanesly (to Shell Development Co.), U.S. 1,938,175, Dec. 5, 1933; Cent. **1934**, I 1709; C.A. **28**, 1053 (1934). (5) Fusco, Musante, Gazz. chim. ital. **66**, 258-264 (1936); Cent. **1936**, II 2341; C.A. **31**, 1777 (1937). (6) Musante, Fusco, Gazz. chim. ital. **66**, 639-648 (1936); Cent. **1937**, I 1674; C.A. **31**, 3459 (1937).

No physical constants on C appear to be recorded.

[For prepn. of  $\bar{C}$  from 2,3-epoxy-2-methylbutane (trimethylethylene oxide) [Beil. XVII-18] by addn. of HCl see (1).]

Č passed over clay at 350° and 18 mm. pressure yields (2) 2-methylbutadiene-1,3 (isoprene) (1:8020).

**3:9290** (1) Henry, Compt. rend. **144**, 311 (1907); Rec. trav. chim. **26**, 430-433 (1907). (2) Badische Anilin und Soda Fabrik, Ger. 255,519, Jan 3, 1913; Cent. **1913**, I 476.

3:9295 5-CHLOROPENTANOL-1  $CH_2.(CH_2)_3.CH_2OH$   $C_5H_{11}OCl$  Beil. S.N. 24  $(\omega$ -Chloro-n-amyl alcohol)

## B.P. 114° at 16 mm. (1)

[For prepn. of  $\bar{C}$  from  $\alpha, \omega$ -pentamethylene glycol (1:6519) with SOCl<sub>2</sub> (35% yield (2)) or with S<sub>2</sub>Cl<sub>2</sub> (35% yield (1)) see indic. refs.]

 $\tilde{C}$  with aliphatic mercaptans has apparently not been studied. [However, 5-chloro-n-amyl acetate (see below) with MeSH in MeOH/KOH yields (1) 5-hydroxy-n-amyl methyl sulfide, b.p. 121° at 16 mm.,  $D_4^{20} = 0.9846$ ,  $n_a^{20} = 1.488185$  (corresp. N-phenylcarbamate, m.p. 43.5°); this prod. with SOCl<sub>2</sub> gives (75% yield (3)) 5-chloro-n-amyl methyl sulfide, b.p. 94° at 15 mm.,  $D_4^{20} = 1.0300$ ,  $n_D^{20} = 1.48597$ . — Similarly 5-chloro-n-amyl acetate with EtSH in alc. KOH gives (68% yield (4)) 5-hydroxy-n-amyl ethyl sulfide, b.p. 135° at 20 mm.; this prod. with SOCl<sub>2</sub> + diethylamline in CCl<sub>4</sub> gives (64% yield (4)) 5-chloro-n-amyl ethyl sulfide b.p. 122° at 25 mm. (4).]

 $\tilde{C}$  with aromatic mercaptans has apparently not been studied. [However, 5-chloro-namyl acetate (see below) with thiophenol in alc. KOH gives (1) 5-hydroxy-n-amyl sulfide, ndls. from lt. pet., m.p. 31.5° (corresp. N-phenylcarbamate, m.p. 59°); this prod. with SOCl<sub>2</sub> + dimethylaniline in CHCl<sub>3</sub> gives (3) 5-chloro-n-amyl phenyl sulfide, b.p. 174° at 14 mm., sl. dec., 140° at 1 mm.,  $D_4^{20} = 1.1065$ ,  $n_D^{20} = 1.56040$ .]

 $\bar{C}$  with Et<sub>2</sub>NH appears never to have been studied. [However, the prod. to be expected, viz., 5-(diethylamino)pentanol-1, b.p. 131° at 23-24 mm. (5), 125° at 18 mm. (6),  $D_{20}^{20} = 0.8842$  (5),  $n_D^{20} = 1.4642$  (5), has been reported by other means; this prod. with SOCl<sub>2</sub> in CHCl<sub>3</sub> would be expected to yield 5-(diethylamino)-n-amyl chloride, but this cannot be isolated in the free state owing to its isomerization (7) to N-ethyl 1-ethyl-2-methylpyrrolidinium chloride.]

Č with morpholine gives (8) alm. quant. 5-(4-morpholinyl)pentanol-1, b.p. 133.0-133.5° at 5 mm.,  $D_4^{25} = 1.005$ ,  $n_D^{24} = 1.4755$  (corresp. N-phenylcarbamate, m.p. 55.5-57.0° cor.) (8). — Č (1 mole) with N-phenylpiperazine (2 moles) at 100° for 5 hrs. gives (2) in alm. 100% yield (as salt) N-(5-hydroxy-n-amyl)-N'-phenylpiperazine, m.p. 74.0-75.0° cor. (corresp. N-phenylcarbamate, m.p. 100.0-101.5° cor.) (2).

- 5-Chloro-n-amyl acetate: b.p.  $103^{\circ}$  at 18 mm.,  $D_4^{20}=1.0648$ ,  $n_{\alpha}^{20}=1.43791$  (1). 5-Chloro-n-amyl N-phenylcarbamate: m.p.  $72^{\circ}$  (1).
- 3:9295 (1) Bennett, Heathcoat, J. Chem. Soc. 1929, 273-274. (2) Anderson, Pollard, J. Am. Chem. Soc. 61, 3439-3440 (1939). (3) Bennett, Heathcoat, Mosses, J. Chem. Soc. 1929, 2569-2571. (4) Bennett, Turner, J. Chem. Soc. 1938, 814-815. (5) Magidson, Strukow, Arch. Pharm. 271, 575 (1933). (6) von Braun, Ber. 49, 974 (1916). (7) Clemo, Hook, J. Chem. Soc. 1936, 608-609. (8) Anderson, Pollard, J. Am. Chem. Soc. 61, 3440-3441 (1939).

## CHAPTER XXI

## DIVISION C. LIQUIDS WITH BOILING POINTS REPORTED ONLY UNDER REDUCED PRESSURE

3:9300-3:9599 (C<sub>6</sub>-C<sub>8</sub> inclusive)

(Arranged in sequence of empirical formulas)

--- 1,2,4,4,6,6-HEXACHLOROCYCLOHEXEN- O C<sub>6</sub>O<sub>2</sub>Cl<sub>6</sub> Beil. VII - 272
1-DIONE-3,5 | VII<sub>1</sub>--("Hexachlororesorcinol") | Cl

B.P. 159-160° at 13-15 mm.

M.P. 115°

See 3:3470. Division A: Solids.

3:9300 3,4-DICHLOROHEXATETRAENE-1,2,4,5 C<sub>6</sub>H<sub>4</sub>Cl<sub>2</sub> Beil. S.N. 14

$$\begin{array}{c} Cl & Cl \\ \downarrow & \downarrow \\ CH_2 \hspace{-0.1cm} = \hspace{-0.1cm} C \hspace{-0.1cm} = \hspace{-0.1cm} C \hspace{-0.1cm} = \hspace{-0.1cm} CH_2 \end{array}$$

$$D_4^{20} = 1.1819 (1) \quad n_D^{20} = 1.5456 (1)$$

[For prepn. of  $\bar{C}$  from 1,3,4,6-tetrachlorohexadiene-2,4 (3:9306) with 15% excess KOH in abs. MeOH at 10-15° (a much larger amt. of 1,3,4-trichlorohexatriene-2,4,5 (3:9302) is also formed) see (1).]

3:9300 (1) Coffman, Carothers, J. Am. Chem. Soc. 55, 2040-2047 (1933).

3:9302 3,4,6-TRICHLOROHEXATRIENE-1,2,4 C<sub>6</sub>H<sub>5</sub>Cl<sub>3</sub> Beil. S.N. 13

B.P. 50° at 1 mm. (1) 
$$D_4^{20} = 1.3132$$
 (1)  $n_D^{20} = 1.5517$  (1)

[For prepn. of  $\bar{C}$  from 1,3,4,6-tetrachlorohexadiene-2,4 (3:9306) with 15% excess KOH in abs. MeOH at 10-15° (a small amt. of 3,4-dichlorohexatetraene-1,2,4,5 (3:9300) is also formed) see (1).]

3:9362 (1) Coffman, Carothers, J. Am. Chem. Soc. 55, 2040-2047 (1933).

3:9304 3,6-DICHLOROHEXATRIENE-1,3,4 C<sub>6</sub>H<sub>6</sub>Cl<sub>2</sub> Beil. S.N. 13

B.P. 45-46° at 3 mm. (1) 
$$D_4^{20} = 1.1807$$
 (1)  $n_D^{20} = 1.5195$  (1)  $38^\circ$  at 1 mm. (1)

[For prepn. of  $\bar{C}$  from hexadien-2,5-yne-3 (divinylacetylene) (2) with  $Cl_2$  in  $CCl_4$  at -50° (20-25% yield together with other products) or in small yield with HOCl see (1).]  $\bar{C}$  slowly polymerizes, changing in 3 months to a viscous sirup (1).

C on cat. hydrogenation in EtOAc yields n-hexane (1:8530), b.p. 69-70° (1).

C on further treatment with Cl<sub>2</sub> in CCl<sub>4</sub> at 5-10° gives (1) 1,3,4,6-tetrachlorohexadiene-2,4 (3:9306), b.p. 85-92° at 3 mm.,  $D_4^{20} = 1.4902$ ,  $n_D^{20} = 1.5458$  (1).

Č with conc. HCl contg. Cu<sub>2</sub>Cl<sub>2</sub> shaken for 12 hrs. at 27° adds HCl yielding (1) 3,3,6-trichlorohexadiene-1,4 (3:9308) q.v.

 $\bar{C}$  refluxed with stirring for 8 hrs. with 6 pts. aq. contg. 2 moles Na<sub>2</sub>CO<sub>3</sub> gives (1) chloride ion corresp. to one of the two initial halogenations together with a soft sticky resin. —  $\bar{C}$  with MeOH/KOH at 10–15° or with NaOMe in dry MeOH loses 1 HCl giving excellent yield (1) of 3-chlorohexatetraene-1,3,4,5 (3:7735).

C on oxidn. with aq. KMnO4 yields (1) chloroacetic acid (3:1370).

3:9304 (1) Coffman, Carothers, J. Am. Chem. Soc. 55, 2040-2047 (1933). (2) Nieuwland, Calcott, Downing, Carter, J. Am. Chem. Soc. 53, 4200-4202 (1931).

B.P. 84-89° at 2 mm. (1)

$$D_4^{20} = 1.4013$$
 (1)  $n_{D_4}^{20} = 1.5465$  (1)

[For prepn. of  $\tilde{C}$  from hexadien-2,5-yne-3 (divinylacetylene) (2) with  $Cl_2$  at  $-40^\circ$  to  $-50^\circ$  (together with other products) see (1).]

 $\bar{C}$  treated directly with  $Cl_2$  for 8 hrs. at 60-70° gives (23% yield (1)) 1,2,3,4,5,6-hexachlorohexene-3 (3:1220), m.p. 57-58° (1).

 $\bar{C}$  refluxed for 8 hrs. with stirring with aq. Na<sub>2</sub>CO<sub>3</sub> soln. gives (1) chloride ion corresp. to two of the initial four chlorine atoms. —  $\bar{C}$  with abs. MeOH/KOH at 10-15° loses HCl in each of two ways yielding (1) both 1,3,4-trichlorohexatriene-2,4,5 (3:9302) and 3,4-dichlorohexatetraene-1,2,4,5 (3:9300).

C on oxidn. with aq. KMnO<sub>4</sub> for 5 hrs. at 35-40° gives (1) chloroacetic acid (3:1370).

3:9306 (1) Coffman, Carothers, J. Am. Chem. Soc. 55, 2040-2047 (1933). (2) Nieuwland, Calcott, Downing, Carter, J. Am. Chem. Soc. 53, 4200-4202 (1931).

B.P. 110-112° at 2 mm.

M.P. 58-59°

See 3:1220. Division A: Solids.

3: 9308 3,3,6-TRICHLOROHEXADIENE-1,4 C<sub>6</sub>H<sub>7</sub>Cl<sub>3</sub> Beil S.N. 12

Cl Cl

CH<sub>2</sub>=CH-CH-CH-CH<sub>2</sub>

Cl

B.P. 100-103° at 4 mm. (1)  $D_4^{20} = 1.3036$  (1)  $n_D^{20} = 1.5585$  (1)

[For prepn. of C from 3,6-dichlorohexatriene-1,3,4 (3:9304) with conc. HCl contg. Cu<sub>2</sub>Cl<sub>2</sub> by shaking for 12 hrs. at 27° see {1}.]

 $\bar{C}$  refluxed with stirring for 7 hrs. with aq. Na<sub>2</sub>CO<sub>3</sub> gives (1) chloride ion corresp. to three halogen atoms but the org. product was not identified.

C on oxidn, with alk, KMnO<sub>4</sub> for 4 hrs. at 30-40° yields (1) chloroacetic acid (3:1370).

3:9308 (1) Coffman, Carothers, J. Am. Chem. Soc. 55, 2040-2047 (1933).

## 3:9310 1,3-DICHLOROHEXADIENE-2,4

C<sub>6</sub>H<sub>8</sub>Cl<sub>2</sub> Beil. S.N. 12

(Divinylacetylene dihydrochloride)

Cl Cl CH<sub>3</sub>—CH—CH—C—CH—CH<sub>2</sub>

$$D_4^{20} = 1.1456 (1) \quad n_D^{20} = 1.5271 (1)$$

[For prepn. of  $\bar{\mathbf{C}}$  (53% yield (1)) from divinylacetylene by shaking with 12 N HCl contg. Cu<sub>2</sub>Cl<sub>2</sub> see (1).]

 $\bar{\rm C}$  refluxed with NaOAc + AcOH yields (by reactn. of one chlorine atom) 1-acetoxy-3-chlorohexadiene-2,4, b p. 84-85° at 3 mm.,  $D_4^{20}=1.0915, n_D^{20}=1.4890$  (1). — Similarly  $\bar{\rm C}$  on htg. with MeOH/KOH yields (1) 1-methoxy-3-chlorohexadiene-2,4, n.p. 88-92° at 30 mm.,  $D_4^{20}=1.0239, n_D^{20}=1.4928$  (1).

 $\bar{C}$  on oxidn. with aq. KMnO<sub>4</sub> in K<sub>2</sub>CO<sub>3</sub> soln. gives (1) chloroacetic acid (3:1370) + acetic acid (1:1010).

Č with naphthoquinone-1,4 (1:9040) or with maleic anhydride (1:0625) gives (1) only a small amt. of dark gummy material.

3:9310 (1) Coffman, Nieuwland, Carothers, J. Am. Chem. Soc. 55, 2048-2051 (1933).

3:9312 3-CHLOROHEXADIENE-1,3

C<sub>6</sub>H<sub>9</sub>Cl Beil. S.N. 12

B.P. 68.2-69° at 117 mm. (1) 
$$D_4^{20} = 0.9390$$
 (1)  $n_D^{20} = 1.4770$  (1)

[For prepn. of  $\bar{C}$  from  $\alpha$ -ethyl- $\beta$ -vinylacetylene by shaking with conc. HCl contg.  $Cu_2Cl_2 + NH_4Cl$  see (1).]

[For polymerization of  $\bar{C}$  see (1) (2).]

C on htg. with 2 pts. naphthoquinone-1,4 (1:9040) for 2 hrs. at 100° then suspended in alc. NaOH and aerated gives (1) 2-chloro-1-ethylanthraquinone, yel. ndls. from alc., m.p. 151-152° (1).

[For study of another chlorohexadiene obtd. from allyl chloride (3:7035) by actn. of NaNH<sub>2</sub> in liq. NH<sub>3</sub> see  $\{3\}$ .]

3:9312 (1) Jacobson, Carothers, J. Am. Chem. Soc. 55, 1624-1627 (1933). (2) Carothers, Coffman (to du Pont), U.S. 1,950,441, March 13, 1934; Cent 1934, II 1037; C.A. 28, 3270 (1934). (3) Kharasch, Nudenberg, Sternfeld, J. Am. Chem. Soc. 62, 2034-2035 (1940).

### 3:9314 1-CHLORO-3-METHYLPENTADIENE-1,2 C<sub>6</sub>H<sub>9</sub>Cl Beil. S.N. 12

B.P. 68-70° at 100 mm. (1) 
$$D_4^{20} = 0.9562$$
 (1)  $n_\alpha^{20} = 1.46967$  (1)

[For formn. of C from 3-methylpentyn-1-ol-3 (ethyl-ethynyl-methyl-carbinol) by shaking

with conc. HCl contg.  $Cu_2Cl_2 + NH_4Cl$  see (1) (considerable 3-chloro-3-methylpentyne-1 (3:9322) is also formed).

Č on stdg. 8 months with Cu<sub>2</sub>Cl<sub>2</sub>, NH<sub>4</sub>Cl, plus a few drops conc. HCl isomerized to 1-chloro-3-methylbutadiene-1,3 (3:7355) (1).

3:9314 (1) Favorskaya, Zakharova, J. Gen. Chem. (U.S.S R.) 10, 446-450 (1940); C.A. 34, 7844 (1940).

B.P. 62-63° at 100 mm. (1) 
$$D_4^{20} = 0.9574$$
 (1)  $n_2^{20} = 1.47714$  (1)

[For prepn. of  $\bar{C}$  from 1-chloro-3-methylpentadiene-1,2 (3:9314) by stdg. 8 months with Cu<sub>2</sub>Cl<sub>2</sub>, NH<sub>4</sub>Cl, plus a few drops conc. HCl see (1).]

Č reacts with maleic anhydride (1:0625) to give a mixt. from which after hydrolysis two acids, one m.p. 218-220°, the other, m.p. 350-351°, are obtd. (1).

3:9316 (1) Favorskaya, Zakharova, J. Gen. Chem. (U.S.S R), 16, 446-450 (1940); C.A. 34, 7844 (1940).

B.P. 57-60° at 96 mm. (1) 
$$D_4^{20} = 0.9437$$
 (1)  $n_D^{20} = 1.4671$  (1)

[For prepn. of  $\bar{C}$  from 3-methylpenten-2-yne-4 in 22% yield (1) by shaking for 5½ hrs. at 20° with conc. HCl contg. Cu<sub>2</sub>Cl<sub>2</sub> + NH<sub>4</sub>Cl see (1).]

C on htg. with 2 pts. naphthoquinone-1,4 (1:9040) for 1 hr. at 100° gives (1) on cooling 2-chloro-3,4-dimethyltetrahydroanthraquinone, colorless ndls. from aq. acetone, m.p. 107° (1); suspension of this intermediate in dil. alc. NaOH and aeration until the purple solution becomes yellow gives (1) 2-chloro-3,4-dimethylanthraquinone, yel. cryst. from AcOH, m.p. 171.5° (1).

[For polymerization of C see (1) (2).]

3:3318 (1) Carothers, Coffman, J. Am. Chem. Soc. 54, 4075–4076 (1932). (2) Carothers, Coffman (to du Pont), U.S. 1,950,441, March 13, 1934; Cent. 1934, II 1038; C.A. 28, 3270 (1934).

3:9320 1-CHLOROHEXYNE-1 
$$C_6H_9Cl$$
 Beil. S.N. 12  $CH_3.CH_2.CH_2.CH_2.CH_2.CH_2.Cl$ 

B.P. 47° at 55 mm. (1) 
$$n_D^- = 1.43350$$
 (1)

[For prepn. of  $\bar{C}$  from hexyne-1 (1:8055) by conversion in liq. NH<sub>3</sub> to C<sub>4</sub>H<sub>9</sub>.C $\equiv$ C $\rightarrow$ K and treatment of this prod. in ether suspension with Cl<sub>2</sub> at  $-32^{\circ}$  see (2) (3); for prepn. of  $\bar{C}$  from C<sub>4</sub>H<sub>9</sub>.C $\equiv$ C.Na with benzenesulfonyl chloride in ether see (1) (4).]

Č in MeOH + HgO + BF<sub>3</sub> as specified (2) adds 2 MeOH giving in 83% yield 1-chloro-2.2-dimethoxyhexane, b.p. 77-80° at 14 mm.,  $D_{-}^{25} = 0.9873$ ,  $n_{\rm D}^{25} = 1.4305$  (2).

3:9326 (1) Pflaum, Wenzke, J. Am. Chem. Soc. 56, 1106-1107 (1934). (2) Verbanc, Hennion, J. Am. Chem. Soc. 66, 1711-1713 (1938). (3) McCusker, Vogt, J. Am. Chem. Soc. 59, 1308-1309 (1937). (4) Truchet, Ann. chim. (10) 16, 309-416 (1931).

B.P. 55° at 130 mm. (1) 
$$D_4^{20} = 0.9163$$
 (1)  $n_D^{20} = 1.4330$  (1) (2)  $51-52^\circ$  at 135 mm. (2)  $0.9140$  (2)  $48-50^\circ$  at 100 mm. (3)  $0.9141$  (3)  $n_\alpha^{20} = 1.42963$  (3)

[For prepn. of  $\bar{C}$  from 3-methylpentyn-1-ol-3 (ethyl-ethynyl-methyl-carbinol) by shaking with conc. HCl (40% yield (2)) best overnight (60% yield (1)); if the acid also contains  $Cu_2Cl_2 + NH_4Cl$ ,  $\bar{C}$  is accompanied (3) by 1-chloro-3-methylpentadiene-1,2 (3:9314).] [Note that dry HCl at 0° reacts with the alc. only slightly while PCl<sub>3</sub> + pyridine gave a product difficult to purify (1).]

 $\bar{\mathbf{C}}$  with CH<sub>3</sub>MgBr gives (66% yield (1)) 3,3-dimethylpentyne-1, b.p. 69° at 100 mm.,  $D_4^{20}=0.7610,\ n_D^{20}=1.4360;\ \bar{\mathbf{C}}$  with C<sub>2</sub>H<sub>5</sub>MgBr gives (61% yield (1)) 3-ethyl-3-methylpentyne-1, b.p. 88° at 100 mm.,  $D_4^{20}=0.7714,\ n_D^{20}=1.4386$ . [In orig. paper these products are incorrectly numbered and named.]

**3:8322** (1) Campbell, Eby, J. Am. Chem. Soc. **62**, 1798–1800 (1940). (2) K. N. Campbell, B. K. Campbell, Eby, J. Am. Chem. Soc. **60**, 2882–2884 (1938). (3) Favorskaya, Zakharova, J. Gen. Chem. (U.S.S.R.) **10**, 446–450 (1940); C.A. **34**, 7844 (1940).

B.P. 57-61° at 47 mm. (1) 
$$n_{\rm D}^{20} = 1.4143$$
 (1)

[For prepn. of C (33% yield (1)) from 2-methylpropyn-3-ol-2 (trimethylpropargyl alcohol) with PCl<sub>3</sub> in dry ether see (1).]

 $\ddot{C}$  in acetone refluxed 4 hrs. with  $K_2CO_3$  and phenol gives (69% yield (1)) phenyl trimethylpropargyl ether,  $n_D^{2D} = 1.3408$ , but undistillable without decomposition (1).

3:9324 (1) Hurd, Cohen, J. Am. Chem. Soc. 53, 1074 (1931).

B.P. 90-93° at 10 mm. (1) (2) 
$$D_{-}^{25} = 1.225$$
 (1) (2)  $n_{D}^{25} = 1.4760$  (1) (2)

This compound was at first (2) thought to be 1,2,2-trichlorohexane but later (1) was established as C.

[For formn. of C from hexyne-1 (n-butylacetylene) (1:8055) with Cl<sub>2</sub> in aq. ter-BuOH, MeOAc, AcOH, or Ac<sub>2</sub>O at 45° (2) or in 35% aq. HCl, 30% aq. H<sub>2</sub>SO<sub>4</sub>, 30% H<sub>3</sub>PO<sub>4</sub>, or 22% MeOH/HCl (1) see indic. refs.]

3:3326 (1) Norris, Hennion, J. Am. Chem. Soc. 62, 449-450 (1940). (2) Norris, Vogt, Hennion, J. Am. Chem. Soc. 61, 1460-1461 (1939).

Beil. S.N. 11

3:9330 1,2-DICHLOROHEXENE-1

55-57° at 25 mm. (2)

B.P. 129-131° at 10 mm. (1) 
$$D_{-}^{25} = 1.370$$
 (1)  $n_{D}^{25} = 1.4980$  (1)

[For formn. of C from hexyne-1 (n-butylacetylene) (1:8055) with Cl<sub>2</sub> in MeOAc at 45° (1) or in 35% aq. HCl, 30% aq. H<sub>2</sub>SO<sub>4</sub>, 30% aq. H<sub>3</sub>PO<sub>4</sub>, or 22% MeOH/HCl (2) (together with other products) see indic. refs.

3:9328 (1) Norris, Vogt, Hennion, J. Am. Chem. Soc. 61, 1460-1461 (1939). (2) Norris, Hennion, J. Am. Chem. Soc. 62, 449-450 (1940).

C6H10Cl2

[For prepn. of C (cis form) from 2-chlorohexene-1 (3:7530) with Cl<sub>2</sub> in CCl<sub>4</sub> at 35-40° (1) (yield 26.7% together with 25.4% of 1,1,2,2-tetrachlorohexane (3:9332)) (1) or in Ac<sub>2</sub>O, or AcOH (2), see indic. refs.; for prepn. of C (trans form) from hexyne-1 (1:8055) with Cl2 in CCl4 or heptane in pres. of trace of SbCl5 (yield 19.6% together with 30.6% yield of 1,1,2,2-tetrachlorohexane (3:9332)) (1) or in aq. or ter-BuOH (2) see indic. refs.; for prepn. of C (both forms) from hexyne-1 (1:8055) + Cl<sub>2</sub> in conc. HCl, 30% H<sub>2</sub>SO<sub>4</sub>. 30% H<sub>3</sub>PO<sub>4</sub>, or MeOH satd. with HCl (together with other prods.) see (3) (4) or in MeOAc see (2).1

Neither cis nor trans forms of C will add HCl even in pres. of BiCl<sub>2</sub> (1) (3).

3:9330 (1) Hennion, Welsh, J. Am. Chem. Soc. 62, 1367-1368 (1940). (2) Norris, Vogt, Hennion, J. Am. Chem. Soc. 61, 1460-1461 (1939). (3) Norris, Hennion, J. Am. Chem. Soc. 62, 449-450 (1940). (4) Verbanc, Hennion, J. Am. Chem. Soc. 60, 1711-1713 (1938).

B.P. 99-101° at 14 mm. (1) 
$$D_4^{25} = 1.3096$$
 (1)  $n_D^{25} = 1.4888$  (1)  $108-110^\circ$  at 10 mm. (1)  $D_-^{25} = 1.320$  (2) 1.4890 (2)

[For formn. of C from hexyne-1 (n-butylacetylene) (1:8055) with Cl<sub>2</sub> in aq., MeOAc, Ac<sub>2</sub>O, or AcOH at 45° (1), or in 35% aq. HCl, 30% aq. H<sub>2</sub>SO<sub>4</sub>, 30% aq. H<sub>3</sub>PO<sub>4</sub>, or 22% MeOH/HCl (3), or in CCl<sub>4</sub> + SbCl<sub>5</sub> (30.6% yield (1)) (together with other products) see indic. refs.; for formn. of C from 2-chlorohexene-1 (3:7530) with Cl2 in C6H6 + BiCl3 at 35-40° (25.4% yield  $\ddot{C} + 26.7\%$  yield cis 1,2-dichlorohexene-1 (3:9330)) see (1).

3:9332 (1) Hennion, Welsh, J. Am. Chem. Soc. 62, 1367-1368 (1940). (2) Norris, Vogt, Hennion, J. Am. Chem. Soc. 61, 1460-1461 (1939). (3) Norris, Hennion, J. Am. Chem. Soc. 62, 449-450 (1940).

[This compound is as yet unrecorded: a dextrorotatory isomeride has been prepared (1) from levorotatory hexen-1-ol-3 with PCl<sub>3</sub> in pyridine. Although distd. at 20 mm., no b.p. was reported (1).]

3:9334 (1) Levene, Haller, J. Biol. Chem. 83, 595 (1929):

B.P. 59-61° at 60 mm. (1) 
$$D_4^{24} = 0.900$$
 (1)  $n_D^{24} = 1.435$  (1)

Two geometrical stereoisomers of this structure are theoretically possible, but only that with the cis configuration  $(\bar{C})$  has as yet been recognized.

[For prepn. of  $\overline{C}$  from cis-hexen-3-ol-1 [Beil.  $I_1$ -(229),  $I_2$ -(486)] (1) (2) (b.p. 156.1° at 760 mm. (3), 63.3° at 14 mm. (3),  $D_1^{21.6} = 0.8478$  (2),  $n_D^{24.6} = 1.4373$  (2); 3,5-dinitrobenzoate, m.p. 44.5-46°, N-( $\alpha$ -naphthyl)carbamate, m.p. 80° (4)) with  $SOCl_2$  + pyridine in CHCl<sub>3</sub> (72% yield (1)) see (1).]

 $\bar{C}$  with NaI htd. 12 hrs. in acetone yields (1) 1-iodohexene-3, b.p. 62-63° at 12 mm.,  $D_4^{21} = 1.469$  (1).

C fails to react with activated Mg in dry ether, but the corresponding iodo cpd. (see above) yields the corresp. RMgI (1), and a mixt. of both can be used (5).

3:9336 (1) Ruzicka, Schinz, Helv. Chim. Acta 17, 1606 (1934). (2) Stoll, Rouvé, Helv. Chim. Acta 21, 1542-1547 (1938). (3) von Rechenberg, J. prakt. Chem. (2) 101, 120 (1920). (4) van Romburgh, Proc. Acad. Sci. Amsterdam 22, 758-761 (1920); C.A. 14, 2780 (1920). (5) Stoll, Bolle, Helv. Chim. Acta 21, 1551 (1938).

3:9338 
$$d,l$$
4-CHLORO-3-METHYLPENTENE-2 Cl CH<sub>3</sub> C<sub>6</sub>H<sub>11</sub>Cl Beil I — ( $\alpha,\beta,\gamma$ -Trimethylallyl chloride) CH<sub>3</sub>—C—C—CH—CH<sub>3</sub> I<sub>1</sub>-(90) I<sub>2</sub>—

## B.P. 41-43° at 31 mm. (1)

Note: although the product is as yet unrecognized,  $\vec{C}$  by virtue of allylic transposition may conceivably be in equilibrium with its synionic isomer 2-chloro-3-methylbutene-3.

[For prepn. of  $\bar{C}$  (75-80% yield (1)) from 3-methylpenten-2-ol-4 [Beil. I-445] by distn. with 6 N HCl see (1).]

 $\bar{C}$  with quinoline at 170° loses HCl giving (66% yield {1}) 3-methylpentadiene-1,3 [Beil. I<sub>1</sub>-(118), I<sub>2</sub>-(231)], b.p. 76°.

3:9338 (1) Abelmann, Ber. 43, 1579, 1583 (1910).

## B.P. 74-78° at 10 mm. (1)

Heavy oil with agreeable odor. — Insol. aq.

[For prepn. of C (50% yield (1)) from N-benzoyl-2-methylpiperidine (N-benzoyl-α-pipecoline) [Beil. XX-97] with PCl<sub>5</sub> (1), from hexanediol-1,5 [Beil. I-484] or the corresponding internal ether, 2-methyltetrahydropyran [Beil. XVII-13], by repeated treatment with HCl (2), or from hexamethylenediamine [Beil. IV-269] with NOCl (3) see indic. refs.]

3:9340 (1) von Braun, Sobecki, Ber. 44, 1042-1043 (1911). (2) Lipp, Ber. 18, 3283-3286 (1885). (3) Ssolonina, J. Russ. Phys.-Chem. Soc. 30, 606-632 (1898); Cent. 1899, I 25.

3: 9342 2,2-DICHLOROHEXANE Cl 
$$C_0H_{12}Cl_2$$
 Beil. S.N. 10 
$$CH_3.CH_2.CH_2.CH_2.CH_2$$

$$D_4^{25} = 1.0150 (1) \quad n_D^{25} = 1.4353 (1)$$

[For formn. of  $\bar{C}$  (40% yield (1) together with 20% yield (1) of 2-chlorohexene-1 (3:7530)) from hexyne-1 (1:8055) with HCl gas + BiCl<sub>3</sub> see (1).]

 $\bar{C}$  htd. at 95° with soln. of solid KOH in *n*-propyl alc. gives (60.5% yield (1)) 2-chlorohexene-1 (3:7530).

3:9342 (1) Hennion, Welsh, J. Am. Chem. Soc. 62, 1367-1368 (1940).

$$D_{-}^{20} = 1.055 (1) \quad n_{\rm D}^{20} = 1.4490 (1)$$

Colorless liq. with sweetish odor.

[For prepn. of  $\bar{C}$  from hexene-3 (1:8270) with Cl<sub>2</sub> in CHCl<sub>3</sub> at  $-30^{\circ}$  to  $-40^{\circ}$  (67% yield (1)), or with SO<sub>2</sub>Cl<sub>2</sub> at 40-50° (1), or with PCl<sub>5</sub> in CCl<sub>4</sub> (1) see (1).]

3:9344 (1) Spiegler, Tinker, J. Am. Chem. Soc. 61, 941-942 (1939).

3: 9346 
$$d$$
, $l$ -2,3-DICHLORO-2-METHYLPENTANE  $C_6H_{12}Cl_2$  Beil. 1 — H CH<sub>3</sub>  $I_1$ — CH<sub>8</sub>.CH<sub>2</sub>—C—C—CH<sub>8</sub>  $I_2$ —(111)

## B.P. 82-84° at 42 mm. (1)

[For formn. of Č from 2-methylpentene-2 (1:8275) with Cl<sub>2</sub> in CHCl<sub>3</sub> (some 2-(or 3)-chloro-2-methylpentane (3:7490) is also formed) see (1).]

3:9346 (1) van Risseghem, Bull. soc. chim. Belg. 32, 149-150 (1923).

3:9348 d,l-1-CHLORO-3-METHYLPENTANE

Beil, S.N. 10

Č itself seems to be unreported.

[The dextrorotatory isomer of C has, however, been studied (1) (2) (3). For prepn. of it from dextrorotatory 3-methylpentanol-1 with SOCl<sub>2</sub> see (1); b.p. 73° at 100 mm. (1),  $D_4^{27} = 0.892, n_D^{25} = 1.4210$  (1). — With Mg in dry ether this isomer yields (2) (3) RMgCl which with CO2 gives (2) (3) dextrorotatory 3-methylhexanoic acid-6, b.p. 115° at 16 mm. (2) (3),  $D_4^{22} = 0.923$  (3).]

3:9348 (1) Levene, Marker, J. Biol. Chem. 91, 86 (1931). (2) Levene, Marker, J. Biol. Chem. 95, 11 (1932). (3) Levene, Marker, J. Biol. Chem. 95, 161 (1932).

3:9350 d.l-2-CHLORO-3-METHYLPENTANE

C<sub>6</sub>H<sub>13</sub>Cl CH<sub>3</sub> H

Beil. S.N. 10

(sec.-Butyl-methyl-carbinyl chloride)

CaH5O2Cl

## B.P. 71.1-73.3° at 160 mm. (1)

[For formn. of C (together with other products) in reaction of 2-ethylbutanol-1(1:6223) with  $HCl + ZnCl_2$  see (1)].

 $\bar{C}$  with Mg + dry ether yields (1) RMgCl which with O<sub>2</sub> yields (1) 3-methylpentanol-2 (1:6202); this alc. upon oxidn. with CrO<sub>3</sub>/H<sub>2</sub>SO<sub>4</sub> yields (1) 3-methylpentanone-2 (2,4dinitrophenylhydrazone, m.p. 71.2° (2), 70.5-72.5° (1)).

3:9350 (1) Whitmore, Karnatz, J. Am. Chem. Soc. 60, 2535 (1938). (2) Drake, Veitch, J. Am. Chem. Soc. 57, 2624 (1935).

**3-CHLOROCATECHOL** 

VI<sub>1</sub>-(388)

B.P. 110-111° at 11 mm.

M.P. 47°

See 3:0745. Division A: Solids.

4-CHLOROCATECHOL

Beil. VI - 783 VI<sub>1</sub>-(389)

VI<sub>2</sub>-(787)

B.P. 139° at 10 mm.

M.P. 90-91°

See 3:2470. Division A: Solids.

3:9351 DIMETHYL CHLOROMALEATE 
$$C_6H_7O_4Cl$$
 Beil. II —  $II_{1-}(305)$   $II_{2-}(646)$ 

B.P. 106.5° cor. at 18 mm. (1) 
$$D_{4\text{vac.}}^{25} = 1.2775$$
 (1)  $D_{4}^{20} = 1.276$  (2)  $n_{\text{He}}^{20} = 1.461$  (2)  $D_{4}^{18 9} = 1.2775$  (2)  $n_{\text{He}}^{18 9} = 1.46170$  (2)

[For prepn. of C from chloromaleic anhydride (3:0280) with abs. MeOH + conc. H<sub>2</sub>SO<sub>4</sub> in cold see (2).]

3:9351 (1) Walden, Swinne, Z. physik. Chem. 79, 741 (1912). (2) von Auwers, Harres, Ber. 62, 1681, 1686-1687 (1929).

3:9352 ADIPYL (DI)CHLORIDE 
$$C_6H_8O_2Cl_2$$
 Beil. II - 653  $II_{1^-}$  (277)  $C_1$   $C_1$   $C_1$   $C_1$   $C_2$   $C_3$   $C_4$   $C_5$   $C_6$   $C_7$   $C_8$   $C$ 

[For prepn. of  $\tilde{C}$  from adipic acid (1:0775) with PCl<sub>5</sub> (5) (yield: 79% (4), 50% (1)), with PCl<sub>3</sub> (5) (82% yield (6)), with PCl<sub>3</sub> +  $ZnCl_2$  (76% yield (4)), or with SOCl<sub>2</sub> (yield: 100% (2), 90% (3), 81% (4), 60% (7)) (8) (9) (10) (19) see indic. refs.]

[For study of reactn. of  $\tilde{C}$  with  $Cl_2$  see (11); of  $\tilde{C}$  with  $Br_2$  see (11) (12) (13) (19); with diethyl sodio-malonate see (14); with MeZnI or EtZnI see (7); with triethylamine or with pyridine in  $C_6H_6$  see (15).]

[ $\bar{C}$  with AlCl<sub>3</sub> + C<sub>6</sub>II<sub>6</sub> gives (75–81% yield (9)) (8) (1) (6) (16) 1,6-diphenylhexanedione-1,6 (dibenzoylbutane) [Beil. VII-777, VII<sub>1</sub>-(404)], cryst. from alc., m.p. 106–107° (9), 107° (6) (16) (note that some \$\delta\$-benzoyl-n-valeric acid [Beil. X<sub>1</sub>-(339)], m.p. 78° (16) 77–78° (17) (p-nitrophenylhydrazone, m.p. 187° (17), semicarbazone, m.p. 187° (17)), is, also formed). — For reactn. of  $\bar{C}$  with AlCl<sub>3</sub> + toluene, m-xylene, p-xylene, mesitylene, (18) or chlorobenzene (8) see indic. refs ]

Č on hydrolysis yields adipic acid (1:0775) (for the diamide, dianilide, di-p-toluidide, and other derivs. corresp. to Č see 1:0775).

3:9352 (1) Etaix, Ann. chim. (7) 9, 369-377 (1896). (2) Fröschl, Maier, Monatsh. 59, 271-272 (1932). (3) Lieser, Macura, Ann. 548, 226-254 (1941); C.A. 37, 4699 (1943). (4) Clark, Bell, Trans. Roy. Soc. Can. (3) 27, III 97-103 (1933). (5) Ruggli, Ann. 399, 179-180 (1913). (6) Borsche, Wollemann, Ber. 45, 3715-3716 (1912). (7) Blaise, Koehler, Bull. soc. chim. (4) 5, 683 (1909). (8) Skraup, Guggenheimer, Ber. 58, 2495 (1925). (9) Fuson, Walker, Org. Syntheses, Coll. Vol. 2 (1st ed.), 169-171 (1943); 13, 32-34 (1933). (10) Meyer, Jäger, Ann. 347, 49 (1906). (11) Ingold, J. Chem. Soc. 119, 961 (1921). (12) Bernton, Ing, Perkin, J. Chem. Soc. 125, 1500 (1924). (13) Holmberg, Müller, Ber. 58, 1602 (1925). (14) Scheiber, Lungwitz, Ber. 42, 1323 (1909). (15) Wedekind, Miller, Weinand, J. prakt. Chem. (2) 109, 161-174 (1925). (16) Bauer, Ann. chim. (9) 1, 343-344, 394 (1914). (17) von Auwers, Trippmann, Ber. 48, 1217 (1915). (18) Borsche, Ber. 53, 2079-2080 (1919). (19) Guha, Sankaran, Org. Syntheses 26, 57-80 (1946).

1290

II<sub>2</sub>-(557)

## DIMETHYL d,l-α,α'-DICHLORO-

l,l-α,α'-DICHLORO-COOCH<sub>3</sub>

C<sub>6</sub>H<sub>8</sub>O<sub>4</sub>Cl<sub>2</sub> Beil. II — II<sub>1</sub>-(267)

COOCH8

B.P. 116.5-120.5° cor. at 12.5 mm.

M.P. 43° '

See 3:0485. Division A: Solids.

SUCCINATE

## 2-CHLOROCYCLOHEXANONE

 $\mathrm{C}_{\mathrm{H_2}}$ 

B.P. 88-90° at 16 mm.

M.P. 23-24°

 $D_{15}^{20} = 1.161$ 

 $n_{\rm D}^{20} = 1.4825$ 

Beil. VII- 10

See 3:0120. Division A: Solids.

### 3:9360 3-CHLOROCYCLOHEXANONE

 $\begin{array}{c} O & C_6H_9OCl \\ \parallel & \\ C & \\ H_2C & CH_2 \\ H_2C & CH_2 \\ \end{array}$ 

B.P. 91-92° at 14 mm. (1).

Colorless oil. —  $\bar{C}$  does not fume in air or attack skin (1).

[For prepn. from cyclohexen-1-one-3 + dry HCl in dry ether see (1).]

3:9360 (1) Kötz, Grethe, J. prakt. Chem. (2) 80, 503-504 (1909).

## 3:9364 4-CHLOROCYCLOHEXANONE

 $C_6H_9OCl$ 

Beil. S.N. 612

H<sub>2</sub>C CH<sub>2</sub> H<sub>2</sub>C CH<sub>2</sub>

B.P. 95° at 17 mm. (1)

 $n_{\rm D}^{20} = 1.4867 \, (1)$ 

Liq. with penetrating odor (1).

[For prepn. from 4-chlorocyclohexanol-1 (3:9376) by oxidn. with CrO<sub>2</sub> see (1) (3).]

1291

**4-Chlorocyclohexanone-1 semicarbazone:** from  $\bar{C}$  + semicarbazide HCl + KOAc (1); cryst. from aq., m.p. 191° (block) (1); 196° (2).

3:9364 (1) Sabetay, Palfray, Bull. soc. chim. (4) 43, 909 (1928). (2) Palfray, Rothstein, Compt. rend. 190, 944 (1930). (3) Backer, Tamsma, Rec. trav. chim. 57, 1205-1206 (1938).

3:9368 ETHYL 
$$\alpha$$
-CHLOROISOCROTONATE  $C_6H_9O_2Cl$  Beil. II —  $CH_8$ — $C$ — $H$  II<sub>1</sub>—  $II_2$ —(396)

B.P. 75° at 30 mm. (1) 
$$D_4^{20} = 1.100$$
 (1)  $n_{\text{He}}^{20} = 1.4530$  (1)  $D_4^{18} = 1.1021$  (1)

[See also ethyl  $\alpha$ -chlorocrotonate (3:8523).]

[For prepn. of  $\tilde{C}$  from Ag salt of  $\alpha$ -chloroisocrotonic acid (3:1615) with  $C_2H_5I$  see (1); note that attempts to prepare  $\tilde{C}$  from  $\alpha$ -chloro-isocrotonic acid (3:1615) in EtOH with conc.  $H_2SO_4$  at 100° give only (1) the stereoisomeric ethyl  $\alpha$ -chlorocrotonate (3:8523).]

 $\bar{C}$  with alc. KOH at room temp. gives upon acidification  $\alpha$ -chloroisocrotonic acid (3:1615), m.p. 66°.

3:9368 (1) von Auwers, Ann. 432, 61-62 (1923).

3:9372 sec.-BUTYL TRICHLOROACETATE 
$$C_0H_9O_2Cl_3$$
 Beil. S.N. 160  $CH_3CH_2CH.O.CO.CCl_3$   $CH_3$ 

B.P. 88-89° at 19 mm. (1) 
$$D_4^{25} = 1.252$$
 (1)  $n_D^{25} = 1.4440$  (1)

[For prepn. (82-89% yield) from butanol-2 (1:6155) + trichloroacetic ac. (3:1150) see (1).]

[For study of chlorination of C see (1).]

3:9372 (1) Waddle, Adkins. J. Am. Chem. Soc. 61, 3361-3364 (1939).

— ter-BUTYL TRICHLOROACETATE C<sub>6</sub>H<sub>9</sub>O<sub>2</sub>Cl<sub>3</sub> Beil. S.N. 160 Cl<sub>2</sub>C.CO.O.C<sub>4</sub>H<sub>9</sub>

B.P. 37° at 1 mm. M.P. 25.5° 
$$D_4^{25} = 1.2363$$
  $n_-^{25} = 1.4398$ 

See 3:0138. Division A: Solids.

3:9373 METHYL  $\gamma$ -(CHLOROFORMYL)-n-BUTYRATE  $C_6H_9O_3Cl$  Beil. S.N. 172 ( $\gamma$ -(Carbomethoxy)-n-butyryl chloride)  $CH_2$ — $CH_2$ — $COOCH_8$   $CH_2$ —C1

Note that C is both an acid chloride and an ester.

[For prepn. of C from methyl hydrogen glutarate [Beil. II<sub>2</sub>-(565)] (b.p. 158° at 27 mm. (1), 153° at 20 mm. (2), 150-151° at 10 mm. (3),  $D_{-}^{18} = 1.164$  (3),  $n_{D}^{18} = 1.4392$  (3), itself obtd. from glutaric anhydride with MeOH (2) (1)) with SOCl2 at 20° for 12 hrs., then at 30° for 3 hrs. (yield 93% (1), 87% (5)) (2), see indic. refs.]

1292

[For behavior of  $\tilde{C}$  with EtMgI in toluene followed by hydrolysis giving  $\delta$ -keto-n-heptanoic acid, m.p. 50° see (2); for reaction of C with atoxyl see (1).]

[For use of C in Friedel-Crafts type of reaction see (4).]

[ $\bar{C}$  on catalytic hydrogenation as directed gives (70–85% yield (5)) methyl  $\gamma$ -formyl n-butyrate, b.p. 100-103° at 23 mm. (corresp. 2,4-dinitrophenylhydrazone, m.p. 105-106°) (5).1

3:9373 (1) Morgan, Walton, J. Chem. Soc 1932, 277. (2) Clutterbuck, Raper, Biochem. J. 19, 393-394 (1925). (3) Fourneau, Sabetay, Bull. soc. chim. (4) 45, 838-839 (1929). (4) Robinson, Walker, J. Chem. Soc. 1937, 62, 66-67. (5) Harris, Wolf, Mozingo, Arth, Anderson, Easton, Folkers, J. Am. Chem. Soc. 67, 2098 (1945).

TRICHLOROPARALDEHYDE O 
$$C_6H_9O_3Cl_3$$
 Beil. XIX - 386 XIX<sub>1</sub>-(807)
$$ClCH_2-CH HC-CH_2Cl$$

$$U$$

$$ClCH_2-CH HC-CH_2Cl$$

$$CH_2Cl$$

B.P. 142° at 10 mm.

M.P. 87-87.5° cor.

See 3:2300. Division A. Solids.

B.P. 93-94° at 26 mm. (1)

76°

3: 9374 
$$cis$$
-2-CHLOROCYCLOHEXANOL-1 OH  $C_6H_{11}$ OCl Beil. S.N. 502  $(cis$ -Cyclohexene chlorohydrin)

H<sub>2</sub>C H<sub>2</sub>C CH<sub>2</sub>

CH<sub>2</sub>

B.P. 93-94° at 26 mm. (1)

 $D_0^{25} = 1.1261$  (1)  $n_D^{25} = 1.4860$  (1)

 $D_0^{16} = 1.150$  (2)  $n_D^{16} = 1.4860$  (2)

at 15 mm. (2) [See also trans-2-chlorocyclohexanol-1 (3:0175).]

[For prepn. of C from 2-chlorocyclohexanone-1 (3:0120) by reductn, with isopropyl MgCl, ter-butyl MgX, or cyclohexanyl MgX (the prod. is actually a mixt. of C (72-73%) with the trans isomer (27-28%) see (1); for formn. of C from cyclohexene (1:8070) with HOCl see (2) cf. (5) (this method is claimed by (2) to yield some C, but according to (1) gives solely the trans isomer).

Č with aq. NaOH gives on refluxing (76% yield (1)) cyclohexanone (1:5465) (note difference from the trans isomer which gives cyclohexene oxide). — C with conc. HCl or with ZnCl<sub>2</sub> in ether shows no tendency to convert to the trans isomer (1).

(Note: the following derivatives are listed as trans on the assumption of inversion during formation.)

- ----trans-2-Chlorocyclohexanyl acetate: consts. not reported (4).
- -----trans-2-Chlorocyclohexanyl N-phenylurethane: m.p. 56-59° (3). [From Č + phenyl isocyamate in lt. pet. (3).]
- ——trans-2-Chlorocyclohexanyl N-(α-naphthyl)carbamate: m.p. 165° (1). [From C with α-naphthyl isocyanate htd. 4 hrs. at 100° (1).]

3:9374 (1) Bartlett, J. Am. Chem. Soc. 57, 224-227 (1935). (2) Godchot, Mousseron, Granger, Compt. rend. 200, 748-749 (1935). (3) Cook, Hewitt, Lawrence, J. Chem. Soc. 1936, 75. (4) Winstein, Buckles, J. Am. Chem. Soc. 65, 616 (1943). (5) Newman, Van der Werf, J. Am. Chem. Soc. 67, 235 (1945).

B.P. 104-106° at 45 mm.

M.P. 29°

 $D_{-}^{16} = 1.146 \quad n_{\rm D}^{16} = 1.4850$ 

See 3:0175. Division A: Solids.

B.P. 106° at 14 mm. (1) 105° at 12 mm. (2)  $D_4^{17} = 1.1435 (2) \quad n_D^{17} = 1.4930 (2)$ 

Colorless oil.

[For prepn. from quinitol (cyclohexanediol-1,4) [Beil. VI-74] by htg. with conc. HCl see (1) (2); for formn. from resorcitol (cyclohexanediol-1,3) [Beil. VI-740] with conc. HCl see (3).]

[ $\bar{\mathbf{C}}$  on refluxing 2 days in dry ether with Na yields (3) (by loss of HCl and rearr.) cyclohexen-3-ol-1, b.p. 67-68° at 14 mm.,  $D_{20}^{20}=0.9425$ ,  $n_{\mathrm{D}}^{20}=1.4627$ ; N-phenylcarbamate, m.p. 82° (block) (1).] — [ $\bar{\mathbf{C}}$  with powd. KOH in ether is only partially transformed to cyclohexen-3-ol-1, even on boiling (1).]

C on oxidn. with CrO<sub>3</sub> yields (1) (3) 4-chlorocyclohexanone-1 (3:9364).

[The acetyl deriv. of  $\bar{C}$  is an oil, b.p. 111–112° cor. at 18 mm.,  $D_4^{18.5} = 1.1282$ ,  $n_D^{18.5} = 1.4659$  (2).]

1 4-Chlorocyclohexyl N-phenylcarbamate: m.p. 99° (2).

3:9376 (1) Sabetay, Palfray, Bull. soc. chim. (4) 43, 908-909 (1928). (2) Palfray, Rothstein, Compt. rend. 189, 701-703 (1929). (3) Palfray, Rothstein, Compt. rend. 199, 942-945 (1930).

3: 9380 n-AMYL CHLOROFORMATE C<sub>6</sub>H<sub>11</sub>O<sub>2</sub>Cl Beil. S.N. 199 (n-Amyl chlorocarbonate) n-C<sub>8</sub>H<sub>11</sub>O.CO.Cl

B.P. 
$$60-62^{\circ}$$
 at 15 mm. (1)  $n_{\rm D}^{18}=1.4181$  (2)  $53.4-54.5^{\circ}$  at 11 mm. (2)

 $\tilde{C}$  on htg. with quinoline dec. at 72° (3) into *n*-amyl chloride (3:7460) +  $CO_2$ ;  $\tilde{C}$  on htg. with  $ZnCl_2$  gives these + amylene (and its polymers) + HCl (4).

3:9380 (1) Eastman Organic Chemicals, List No. 36 (1946). (2) Kohlrausch, Sabathy, Monatsh. 72, 307 (1939). (3) Carré, Bull. soc. chim. (5) 3, 1069 (1936). (4) Underwood, Baril, J. Am. Chem. Soc. 57, 2729 (1935).

3: 9384 n-PROPYL d,l- $\alpha$ -CHLOROPROPIONATE  $C_6H_{11}O_2Cl$  Beil. S.N. 162 H n- $C_3H_7$ .O CO.C.CH<sub>3</sub> Cl

B.P. — 
$$D_4^{20} = 1.0478 \, (1) \quad n_D^{20} = 1.4218 \, (1)$$

3:9384 (1) Schjanberg, Z. physik. Chem. A-172, 230 (1935).

3:9388 ISOPROPYL  $\beta$ -CHLOROPROPIONATE  $C_6H_{11}O_2C_1$  Beil. S.N. 162  $(CH_3)_2CH.O.CO \ CH_2 \ CH_2C_1$ 

B.P. – 
$$D_4^{20} = 1.0503 (1) \quad n_D^{20} = 1.4230 (1)$$

3:9388 (1) Schianberg, Z. physik. Chem. A-172, 231 (1935).

3:9390 β-(β-HYDROXYETHOXY)ETHYL CHLOROACETATE Beil. S.N. 160
(Diethylene glycol mono (chloroacetate)) C<sub>6</sub>H<sub>11</sub>O<sub>4</sub>Cl

HOCH<sub>2</sub>.CH<sub>2</sub>.O.CH<sub>2</sub>.CO.CO.CH<sub>2</sub>Cl

### B.P. 130-142° at 0.2 mm. (1)

Viscous oil, insol. in aq. but slowly dissolving when shaken with aq. because of hydrolysis to diethylene glycol (1:6525) + chloroacetic ac. (3:1370) (1).

3:9390 (1) Meerwein, Sönke, J. prakt. Chem. (2) 137, 317 (1933).

3:9394 FORMALDEHYDE  $\beta_1\beta'$ -DICHLORO-  $C_6H_{12}O_2Cl_2$  Beil. I — ISOPROPYL-ETHYL-ACETAL (ClCH<sub>2</sub>)<sub>2</sub>CH.O.CH<sub>2</sub>.O.C<sub>2</sub>H<sub>6</sub> I<sub>1</sub>— ( $\beta_1\beta'$ -Dichloroisopropyl-ethyl-formal) I<sub>2</sub>-(640)

B.P. 96-98° at 16 mm. (1) 
$$D_{17}^{17} = 1.182$$
 (2)  $n_{\rm D}^{17} = 1.44912$  (2) 90-91° at 12 mm. (2)

Colorless liq. with ethereal odor.

[For prepn. of  $\tilde{C}$  from epichlorohydrin (3-chloro-1,2-epoxypropane) (3:5358) + chloromethyl ethyl ether (3:7195) see (1) (2).]

3:9394 (1) Blanchard, Bull. soc. chim. (4) 39, 1265 (1926). (2) Blanchard, Bull. soc. chim. (4) 49, 285 (1931).

3:9395 6-CHLOROHEXANOL-1 CH<sub>2</sub>.(CH<sub>2</sub>)<sub>4</sub>.CH<sub>2</sub>OH C<sub>6</sub>H<sub>13</sub>OCl Beil. S.N. 24 (ω-Chloro-n-hexyl alcohol)

B.P. 116-117° at 19 mm. (1) 112° at 17 mm. (1)

[For prepn. of  $\bar{C}$  from  $\alpha,\omega$ -hexamethylene glycol [Beil. I-484, I<sub>1</sub>-(251), I<sub>2</sub>-(551)] (b.p. 145-149° at 18 mm. (2)) with conc. HCl as directed (1) cf. (2) (yields: 65% (3)) see indic. refs.]

[C with KSEt in alc. htd. ½ hr. gives (1) ethyl 6-hydroxy-n-hexyl sulfide, colorless oil, b.p. 134-136° at 17 mm.; this prod. with SOCl<sub>2</sub> + diethylaniline in CCl<sub>4</sub> at 55° gives (1) 6-chloro-n-hexyl ethyl sulfide, b.p. 128-131° at 26 mm.]

Č with thiophenol has not been studied [however, 6-chloro-n-hexyl acetate with excess thiophenol in aq. NaOH htd. 3 hrs. gives (85% yield (2)) 6-hydroxy-n-hexyl phenyl sulfide, pl. from lt. pet., m.p. 43°; this prod. with SOCl<sub>2</sub> + diethylaniline in CCl<sub>4</sub> yields (2) 6-chloro-n-hexyl phenyl sulfide, m.p. 7-8° (undistillable)].

[C (1 mole) with Et<sub>2</sub>NH (2 moles) in s.t. at 100° for 16 hrs. gives (58% yield (4)) 6-(diethylamino)hexanol-1, b.p. 96-99° at 2 mm. (4); this prod. with SOCl<sub>2</sub> in CHCl<sub>3</sub> gives (39% yield (4)) 6-(diethylamino)-n-hexyl chloride, b.p. 118-120° at 19 mm

 $\bar{\rm C}$  with morpholine gives (5) alm. quant. 6-(4-morpholinyl)hexanol-1, b.p. 146.0-147.0° at 5 mm.,  $D_{\rm A}^{25}=0.9884$ ,  $n_{\rm D}^{25}=1.4750$  (corresp. N-( $\alpha$ -naphthyl)carbamate, m.p. 71.0-72.0° cor.) (5). —  $\bar{\rm C}$  (1 mole) with N-phenylpiperazine (2 moles) at 100° for 5 hrs. gives (3) in alm. 100% yield (as salt) N-(6-hydroxy-n-hexyl)-N-phenylpiperazine, m.p. 65.5-67.0° cor. (corresp. N-phenylcarbamate, m.p. 91.5-93.0° cor.) (3).

——6-Chloro-n-hexyl acetate: oil, b.p. 113-116° at 17 mm. [Prepd. indirectly (2).] © 6-Chloro-n-hexyl N-phenylcarbamate: m.p. 49-50° (3).

3:9395 (1) Bennett, Turner, J. Chem. Soc. 1938, 813-815. (2) Bennett, Mosses, J. Chem. Soc. 1931, 1698-1699. (3) Anderson, Pollard, J. Am Chem. Soc. 61, 3439-3440 (1939). (4) Work. J. Chem. Soc. 1942, 428. (5) Anderson, Pollard, J. Am. Chem. Soc. 61, 3440-3441 (1939).

3: 9396 *n*-BUTYL  $\alpha$ -CHLOROETHYL ETHER H  $C_8H_{13}$ OCl Beil. S.N. 78 ( $\alpha$ -Chloroethyl *n*-butyl ether) CH<sub>3</sub> C.O.*n*-C<sub>4</sub>H<sub>9</sub>

B.P.  $48.9-50.3^{\circ}$  cor. at 11 mm. (1)  $D_4^{20} = 0.9335$  (1)  $n_D^{20} = 1.4155$  (1)

C decomposes considerably if distd. at ord. press. (2).

[For prepn. (95% yield (1)) from paraldehyde (1:0170) + n-butyl alc. (1:6180) + dry HCl see (1).]

C on stdg. polymerizes to dark tarry residue (1).

 $[\bar{C} \text{ on bromination yields } \alpha, \beta\text{-dibromoethyl } n\text{-butyl ether (2).}]$ 

 $\bar{C}$  on shaking with aq. yields acetaldehyde (1:0100), n-butyl alc. (1:6180), + HCl.

3:9396 (1) Henze, Murchison, J. Am. Chem. Soc. 53, 4077-4079 (1931). (2) Dykstra, Lewis, Boord, J. Am. Chem. Soc. 52, 3399-3400 (1930).

2,5-DICHLOROBENZAL (DI)CHLORIDE C<sub>7</sub>H<sub>4</sub>Cl<sub>4</sub> Beil. V - 302 V<sub>1</sub>— CHCl<sub>2</sub> V<sub>2</sub>-(234)

B.P. 118-120° at 14 mm.

M.P. 43°

See 3:0490. Division A: Solids.

## 3:9397 2,3,4,5-TETRACHLOROBENZAL (DI)CHLORIDE C7H2Cl6 Beil. S.N. 466

No physical constants on C are available.

[For prepn. of  $\bar{C}$  from 2,3,4,5-tetrachlorotoluene (3:2710) with  $Cl_2$  see (1).]

 $\bar{C}$  on hydrolysis (presumably with strong  $H_2SO_4$ ) gives (1) 2,3,4,5-tetrachlorobenzal-dehyde (3:3140).

3:337 (1) Chem. Fabrik Griesheim-Elektron, Brit. 251,511, May 27, 1926; Cent. 1926, II 2355; C.A. 21, 1361 (1927); French 603,650, April 26, 1926; Cent. 1926, II 2355; not in C.A.

## 3:9398 2,6-DICHLOROBENZAL (DI)CHLORIDE . C<sub>7</sub>H<sub>4</sub>Cl<sub>4</sub> Beil. V-302 V<sub>1</sub>— V<sub>2</sub>—

### B.P. 124-126° at 16 mm. (1)

Oil with penetrating odor.

[For prepn. of  $\bar{C}$  from 2,6-dichlorobenzaldehyde (3:1690) with PCl<sub>5</sub> (90% yield (1)) (2) (note the intermediate form. of bis-( $\alpha$ ,2,6-trichlorobenzyl) ether (2)) or from 2,6-dichlorotoluene (3:6270) with Cl<sub>2</sub> (4) see indic. refs.]

 $\bar{C}$  is extremely resistant to hydrolysis with either acid or alkali or conc. H<sub>2</sub>SO<sub>4</sub>; for details see (3) (5).

[For condens. of  $\bar{C}$  with various phenols (e.g., 2,4-dichlorophenol (3:0560)) in prepn. of mothproofing agts. see (6).]

3:9398 (1) Lock, Asinger, Monatsh. 59, 157-160 (1932). (2) Olivier, Weber, Rec. trav. chim. 52, 169-174 (1933). (3) Olivier, Weber, Rec. trav. chim. 53, 875, 882, 889 (1934). (4) Geigy, Ger. 213,503, Oct. 14, 1909; Cent. 1909, II 1515. (5) Asinger, Lock, Monatsh. 62, 326, 328, 337 (1933). (6) Weiler, Wenk, Stotter (to I.G.), Ger. 540,208, Dec. 12, 1931; Brit. 337,832, Dec. 4, 1930; French 39,334, Oct. 12, 1931; Cent. 1932, I 3013.

3: 9399 2,4-DICHLOROBENZAL (DI)CHLORIDE C7H4Cl4 Beil. S.N. 466
Cl CHCl2

This compound appears to be unreported. However, for many isomeric compounds see the Formula Index.

B.P. 48-49° at 28 mm. (1) 
$$n_{\rm D}^{15}=1.4812$$
 (1)  $31-32^{\circ}$  at 10 mm. (1)

[For prepn. of  $\bar{C}$  from dimethyl-vinylethynyl-carbinol (b.p. 58-59° at 13 mm.,  $D_4^{15}=0.8925, n_D^{15}=1.4786$  (2), see (1).]

[ $\bar{\mathbf{C}}$  with phenol + KOH in acetone refluxed 3 hrs. yields (3) about equal amts. of 2-methylhexadien-1,5-yne-3 ( $\alpha$ -isopropenyl- $\beta$ -vinyl-acetylene) + the phenyl ether of  $\bar{\mathbf{C}}$  (dimethyl-phenoxy-vinylethynyl-methane), b.p. 105.5° at 7 mm.,  $D_4^{16} = 0.9714$ ,  $n_D^{16} = 1.5350$  (3).]

3:9492 (1) Nazarov, Bull. acad. sci. U.R.S.S., Classe sci. math. nat., Ser. chim. 1938, 695-705; Cent. 1939, II 3403; C.A. 33, 5682 (1939). (2) Nazarov, Bull. acad. sci. U.R.S.S., Classe sci. math. nat., Ser. chim. 1938, 683-694; Cent. 1939, II 3402; C.A. 33, 5682 (1939). (3) Nazarov, Elizarova, Bull. acad. sci. U.R.S.S., Classe sci. chim. 1941, 423-430; C.A. 36, 1298 (1942).

3:9406 1-CHLORO-3-ETHYLPENTADIENE-1,2 Cl C7H11Cl Beil. S.N. 12

B.P. 85-88° at 100 mm. (1) 
$$D_4^{18.5} = 0.9297 \text{ (1)} \quad n_{\alpha}^{18.5} = 1.47036 \text{ (1)} \\ D_4^{16.5} = 0.9329 \text{ (1)} \quad n_{\beta}^{18.5} = 1.48431 \text{ (1)}$$

[For prepn. of  $\bar{C}$  from 3-ethylpentyn-1-ol-3 (diethyl-ethynyl-carbinol) [Beil. I<sub>1</sub>-(236), I<sub>2</sub>-(506)] (1) directly, or from the intermediate 1-chloro-3-ethylpentyne-1 (3:9410) by rearr., on shaking either with aq. HCl contg. Cu<sub>2</sub>Cl<sub>2</sub> + NH<sub>4</sub>Cl (some 3-ethylpenten-3-yne-1 also being formed in the latter case) see (1).]

 $\bar{C}$  with aq. + CaCO<sub>3</sub> first isomerizes to 1-chloro-3-ethylpentyne-1 (3:9410) which then yields 3-ethylpentyn-1-ol-3 (b.p. 136-137°,  $D_4^{17} = 0.8748$ ; N-phenylcarbamate, m.p. 52-53° (1); allophanate, m.p. 130-131° (2)) and 3-ethylpenten-3-yne-1, b.p. 41-43° at 100 mm.,  $D_4^{13} = 0.7733$ ,  $n_a^{13} = 1.43962$ ,  $n_B^{13} = 1.45224$  (1).

3:9406 (1) T. A. Favorskaya, I. A. Favorskaya, J. Gen. Chem. (U.S.S.R.) 10, 451-460 (1940); C.A. 34, 7844 (1940). (2) Locquin, Sung, Bull. soc. chim. (4) 35, 601 (1924).

3: 9410 1-CHLORO-3-ETHYLPENTYNE-1 Cl 
$$C_7H_{11}Cl$$
 Beil. S.N. 12 
$$CH_3.CH_2-CH-C \stackrel{|}{=} C$$
 
$$C_2H_5$$

B.P. 73-76° at 100 mm. (1) 
$$D_4^{18.5} = 0.9230$$
 (1)  $n_a^{18.5} = 1.44372$  (1)  $D_4^{0} = 0.9330$  (1)  $n_{\beta}^{18.5} = 1.45364$  (1)

[For prepn. of  $\bar{C}$  from 3-ethylpentyn-1-ol-3 (diethyl-ethynyl-carbinol) [Beil. I<sub>1</sub>-(236), I<sub>2</sub>-(506)] (1) on shaking with HCl alone, or with HCl + Cu<sub>2</sub>Cl<sub>2</sub> + NH<sub>4</sub>Cl (70% yield together in the latter case with a maximum of 25-30% 1-chloro-3-ethylpentadiene-1,2 (3:9406)) see (1).]

 $\bar{C}$  on shaking with HCl + Cu<sub>2</sub>Cl<sub>2</sub> + NH<sub>4</sub>Cl is partly converted to 1-chloro-3-ethylpentadiene-1.2 (3:9406) (some 3-ethylpenten-3-yne-1 also being formed), but without the HCl no action occurs (1).

C easily loses HCl yielding 3-ethylpenten-3-yne-1, b.p. 41-43° at 100 mm.,  $D_4^{13} = 0.7733$ ,  $n_4^{13} = 1.43962$ ,  $n_8^{13} = 1.45224$  (1).

C upon hydrolysis (1) with aq. + CaCO<sub>3</sub> gives a mixt. of 3-ethylpentyn-1-ol-3 (b.p. 136-137°,  $D_4^{17} = 0.8748$ ,  $n_{\alpha}^{14} = 1.4385$ ,  $n_{\beta}^{14} = 1.44697$  (1) [N-phenylcarbamate, m.p. 52-53° (1), allophanate, m.p. 130-131° (2)]) and 3-ethylpenten-3-yne-1 (see above).

**3:9410** (1) T. A. Favorskaya, I. A. Favorskaya, J. Gen. Chem. (U.S.S.R.) **10**, 451-460 (1940); C.A. **34**, 7844 (1940). (2) Locquin, Sung, Bull. soc. chm. (4) **35**, 601 (1924).

# 3:9412 d,l-3-CHLOROHEPTENE-1 C<sub>7</sub>H<sub>13</sub>Cl Beil. S.N. 11 (n-Butyl-vinyl-carbinyl chloride) H CH<sub>3</sub> CH<sub>2</sub> CH<sub>2</sub>.CH<sub>2</sub>—C—CH—CH<sub>2</sub>

 $\bar{\mathbf{C}}$  as such is as yet unreported, but both of the opt. active stereoisomerides have been prepared.

[The dextrorotatory isomer, b.p.  $92-94^{\circ}$  at 125 mm. (1),  $87-88^{\circ}$  at 90 mm. (1),  $D_4^{25} = 0.8857$  (1), has been obtd. from levorotatory hepten-1-ol-3 (*n*-butyl-vinyl-carbinol) [Beil. I<sub>2</sub>-(488)] with PCl<sub>5</sub> in dry ether (1), with PCl<sub>3</sub> + pyridine (2), or from levorotatory 3-bromoheptene-1 (1) with LiCl in MeOH (1).

[Upon ozonolysis in CHCl<sub>3</sub> followed by  $Br_2/aq$ , oxidn, of the resultant aldehyde, levorotatory  $\alpha$ -chlorocaproic acid, b.p. 80-95° at 1 mm., was obtd. (2).]

[The levorotatory isomer, b.p. 87-90° at 92 mm. (3),  $D_4^{25} = 0.8883$  (4),  $n_D^{25} = 1.4380$  (4), has been obtd. from dextrorotatory hepten-1-ol-3 (n-butyl-vinyl-carbinol) [Beil. I<sub>2</sub>-(488)] with PCl<sub>5</sub> (3); upon catalytic hydrogenation it yields (3) dextrorotatory 3-chloroheptane, b.p. 87-90° at 113 mm.,  $n_D^{25} = 1.4221$  (3); cf. d,t-isomer (3:8080).]

3:9412 (1) Levene, Rothen, Kuna, J. Biol. Chem. 120, 787-790 (1937). (2) Levene, Haller, J. Biol. Chem. 83, 597 (1929). (3) Levene, Rothen, J. Biol. Chem. 119, 191-192 (1937). (4) Levene, Rothen, J. Chem. Phys. 5, 981 (1937).

3:9414 4-CHLORO-3-METHYLHEXENE-2 Cl CH<sub>3</sub> C<sub>7</sub>H<sub>13</sub>Cl Beil. I — CH<sub>3</sub>.CH<sub>2</sub>—C—CH.CH<sub>3</sub> 
$$I_{1}$$
-(91)

B.P. 51° at 11.5 mm. (1)

[For prepn. of  $\bar{C}$  from 3-methylhexen-2-ol-4 [Beil. I-447,  $I_1$ -(229)] with 6 N HCl see (1)]. **3:9414** (1) Abelmann, Ber. 43, 1581 (1910).

3:9418 4-CHLORO-2,4-DIMETHYLPENTENE-2 C<sub>7</sub>H<sub>13</sub>Cl Beil. S.N. 11

(2-Chloro-2,4-dimethylpentene-3; Cl
trimethylcrotyl chloride)

CH<sub>3</sub>—C=CH—C—CH<sub>3</sub>

CH<sub>3</sub>

[Č is too unstable for purification by distillation; however, it can be prepared in solution from 2,4-dimethylpenten-3-ol-2 (1) with PCl<sub>3</sub> in dry ether.]

C on attempted distillation gave (1) almost quantitative yields of 2,4-dimethylpentadiene-1,3 [Beil. I-257, I<sub>1</sub>-(121), I<sub>2</sub>-(235)], b.p. 92-93° (1).

[For reactn. of  $\ddot{C}$  with phenol +  $K_2CO_3$  in acctone see (1).]

3:9418 (1) Hurd, Cohen, J. Am. Chem. Soc. 53, 1920-1922 (1931).

B.P. 68-72° at 7 mm. (1) 
$$D_4^{20} = 1.064$$
 (1)  $n_D^{20} = 1.4490$  (1)

[For prepn. of  $\tilde{C}$  from heptene-1 (1:8324) with  $Cl_2$  in  $CCl_4$  at  $-15^\circ$  (13% yield (1)) or with  $SOCl_2$  (30-40% yield (1)) see (1).]

 $\bar{C}$  passed over soda-lime at 420° (3% yield) or htd. to 250° with powdered KOH in mineral oil (33% yield) loses 2 HCl giving (1) n-amylacetylene (1.8085) accompanied by other prods.

3:9420 (1) Bachmann, Hill, J. Am. Chem. Soc. 56, 2730-2731 (1934).

## B.P. 120° at 28 mm. (1)

[For prepn. of  $\bar{C}$  (60% yield (1)) from N,N'-bis-benzoylheptamethylenediamine [Beil. IX-264] via conversion with PCl<sub>5</sub> to the corresp bis-imidechloride and distillation of the latter see (1); for formn. of  $\bar{C}$  (together with other prods) from heptamethylenediamine [Beil. IV-271] + NOCl see (2).]

① 1,7-Diphenoxyheptane (heptanediol-1,7 bis-phenyl ether) [Beil. VI-148]: colorless cyrst. from hot alc., m.p. 53° (1), 54.5-55° (2). [From C on htg. with excess NaOC<sub>6</sub>H<sub>5</sub> in alc. (1) (2).]

3:9422 (1) von Braun, Muller, Ber. 38, 2347 (1905). (2) Ssolonina, J. Russ. Phys.-Chem. Soc. 30, 606-632 (1898); Cent. 1898, I 26.

## B.P. 77° at 25 mm. (1)

[For prepn. of  $\bar{C}$  from heptanone-2 (n-amyl methyl ketone) (1:5460) with PCl<sub>5</sub> (23% yield accompanied by 40% yield of 2-chloroheptene-1 (3:7988)) see (1).]

3:9424 (1) Bachmann, Hill, J. Am. Chem. Soc. 56, 2730 (1934).

3: 9426 4,4-DICHLOROHEPŢANE Cl 
$$C_7H_{14}Cl_2$$
 Beil. I - 154  $I_1$ —  $I_2$ —CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>3</sub>  $I_1$ —  $I_2$ —(117) Cl B.P. 86° at 27 mm. (1)  $D_-^{17} = 1.008$  (1)  $n_D^{17} = 1.448$  (1) (2) 60.5° at 11 mm. (2) 1.006 (2)

[For prepn. of  $\tilde{C}$  from heptanone-4 (butyrone) (1:5447) with PCl<sub>5</sub> see (1); note that heptyne-3 (1:8095), b.p. 105-106°, and 4-chloroheptene-3 (3:8023) are also formed (1). The earlier prepns. are regarded as impure.]

**3:9426** (1) Bourgeul, Bull. soc. chim. (4) **35**, 1636–1637 (1924). (2) Bourgeul, Ann. chim. (10) **3**, 372 (1925).

3: 9428 2,4-DICHLORO-2,4-DIMETHYLPENTANE 
$$C_7H_{14}Cl_2$$
 Beil. S.N. 10  $Cl$   $Cl$   $CH_3-C-CH_2-C-CH_3$   $CH_3$   $CH_3$   $CH_3$ 

B.P. 51.5°, at 8 mm. (1)

[For study of behavior of  $\ddot{C}$  with aq. alc. N/10 NaOH see (1).]

3:9428 (1) Tishchenko, J. Gen. Chem. (U.S.S.R.) 9, 1380-1388 (1939); C.A. 34, 1611 (1940).

3:9430 1,5-DICHLORO-3,3-DIMETHYLPENTANE 
$$C_7H_{14}Cl_2$$
 Beil. I —  $Cl$   $CH_3$   $Cl$   $I_1$ —  $I_2$ -(121)  $CH_2$ .  $CH_2$   $CH_3$ 

B.P. 135° at 80 mm. (1) 
$$D_4^{15} = 1.0917$$
 (2)  $n_D^{15} = 1.48990$  (2)  $58-59$ ° at 8 mm. (2)

[For prepn. of  $\bar{C}$  from 3,3-dimethylpentanediol-1,5 (1) with SOCl<sub>2</sub> refluxed for 4 hrs. (yield 80% (1)); from N-benzoyl-4,4-dimethylpiperidine (2) with PCl<sub>5</sub> see (2).]

[For reactn. of  $\bar{C}$  with alc. NaCN giving (yield: 80% (2), 40% (1)) 3,3-dimethylpimelonitrile, cryst. from  $C_6H_6/lgr.$ , m.p. 123° (2), b.p. 155–157° at 7 mm. (1),  $D_{20}^{20}=1.0936$  (1),  $n_{20}^{20}=1.4404$  (1), see indic. refs.] [This dinitrile upon htg. with conc. HCl in s.t. 4 hrs. at 120° gives (85% yield (2))  $\gamma,\gamma$ -dimethylpimelic acid; ndls. from  $C_6H_6/lgr.$ , m.p. 83° (2) (diamide, m.p. 176° (2); dianilide, m.p. 165° (2)).]

3:9430 (1) Miller, Adams, J. Am. Chem. Soc. 58, 789 (1936). (2) Komppa, Ber. 62, 1371-1372 (1929).

B.P. 46.0° at 19.5 mm. (1) 
$$D_4^{20} = 0.8672$$
 (1)  $n_D^{20} = 1.4221$  (1)  $D_4^{15} = 0.8725$  (1)

[For prepn. from heptanol-2 (1:6235) with conc.  $HCl + ZnCl_2$  at 0° for 6-8 hrs. (60-64% yield (1)) see (1).]

 $\tilde{C}$  converted to corresp. acetate by 7-hr. reflux with KOAc + AcOH, then hydrolyzed by 6-hr. boilg. with 20% alc. KOH, and the resultant heptanol-2 oxidized with CrO<sub>3</sub>/H<sub>2</sub>SO<sub>4</sub>, gives (1) heptanone-2 (1:5460), pptd. as the semicarbazone, m.p. 123° (1).

3:9432 (1) Sherrill, J. Am. Chem. Soc. 52, 1985-1988 (1930).

B.P. 53-58° at 36 mm. (1)

[For prepn. of  $\tilde{C}$  (80% yield (1)) from 3-methylhexanol-2 [Beil. I<sub>1</sub>-(206), I<sub>2</sub>-(445)] with PCl<sub>5</sub> see (1).]

3:9434 (1) Bielouss, Ber. 45, 627-628 (1912).

Only a levorotatory isomer of C has been reported; this resulted from treatment (1) of levorotatory 3-methylhexanol-4 (1) with SOCl<sub>2</sub> in pet. ether; b.p. 37° at 15 mm. (1).

3:9436 (1) Duveen, Kenyon, Bull. soc. chim. (5) 5, 1120-1126 (1938).

3:9438 2-CHLORO-3-ETHYLPENTANE Cl 
$$C_7H_{16}Cl$$
 Beil. I —  $I_1-I_{1-1}CH_{3}$  CH<sub>3</sub>.CH<sub>2</sub>—CH—  $I_{1-1}CH_{3}$  CH<sub>3</sub>.CH<sub>2</sub>—CH<sub>3</sub> H

B.P. 62-62.5° cor. at 50 mm. (1) 
$$D_{25}^{25} = 0.8911$$
 (1)  $n_{20}^{25} = 1.4295$  (1)  $n_{20}^{20} = 1.4318$  (1)

[For prepn. of  $\tilde{C}$  from 3-ethylpentanol-2 [Beil. I 416,  $I_1$ -(207),  $I_2$ -(445)] (1) with conc.  $HCl + ZnCl_2$  at room temp. in 35% yield see (1).]

3:9438 (1) Lucas, J. Am. Chem. Soc. 51, 252 (1929).

B.P. 93° at 250 mm. (1) 
$$D_4^{20} = 0.855$$
 (1)  $n_D^{20} = 1.4180$  (1) 63-65° at 85 mm. (2) 1.4183 (2)

[For prepn. of  $\bar{C}$  from 2,2-dimethylpentanol-4 (methyl-neopentyl-carbinol) satd. with dry HCl and stood 8 weeks (90% yield (1)) or treated with dry HCl under press. for 22 weeks (2) see indic. refs.]

 $\bar{C}$  with Mg in dry ether gives RMgCl; this on oxidn. with  $O_2$  yields (1) 2,2-dimethylpentanol-4, b.p. 136-136.5° at 730 mm. (2),  $n_D^{20} = 1.4183$  (2) (N-(\alpha-naphthyl)carbamate, m.p. 84° (1)).

 $\tilde{C}$  converted to RMgCl, treated with CO<sub>2</sub>, gives (50% yield (2)) methyl-neopentyl-acetic acid, b.p. 109° at 14 mm.,  $n_D^{2D} = 1.4233$  (2) (amide, m.p. 123° (2); anilide, m.p. 117.5° (2)).

3:9440 (1) Whitmore, Johnston, J. Am. Chem. Soc. 60, 2267 (1938). (2) Whitmore, Noll, Heyd, Surmatis, J. Am. Chem. Soc. 63, 2028 (1941).

3: 9442 d.l-2-CHLORO-2,3-DIMETHYLPENTANE Beil. S.N. 10 C<sub>7</sub>H<sub>15</sub>Cl (sec.-Butyl-dimethyl-carbinyl

chloride)

B.P. 38-39° at 20 mm. (1)

 $n_{\rm D}^{20} = 1.4264 (1)$ 

C has been obtd. (1) only as a by-product (10% yield) from the reactn. of 2,3-dimethylpentanol-2 with AlCl<sub>3</sub> and C<sub>6</sub>H<sub>6</sub>; the structure assigned above should be accepted with reserve.

3:9442 (1) Huston, Fox, Binder, J. Org. Chem. 3, 253 (1939).

C7H5O2Cl Beil. VIII -53 5-CHLORO-2-HYDROXYBENZALDEHYDE VIII<sub>1</sub>— CHO ΉO

B.P. 105° at 12 mm.

M.P. 100°

See 3:2800. Division A: Solids.

Beil. VIII-81 3-CHLORO-4-HYDROXYBENZALDEHYDE C<sub>7</sub>H<sub>5</sub>O<sub>2</sub>Cl VIII<sub>1</sub>---CHO

B.P. 149-150° at 14 mm.

M.P. 139° cor.

See 3:4065. Division A: Solids.

2-HYDROXYBENZOYL CHLORIDE C7H5O2Cl Beil. X ---

 $X_{1}$ -(43)

 $D_{-}^{20} = 1.3112$ B.P. 92° at 15 mm. M.P. 19° See 3:0085. Division A: Solids.

3:9446 3-HYDROXYBENZOYL CHLORIDE C7H5O2Cl Beil. X ---X1-(66)

### B.P. 110-113° at 0.5 mm. (1)

Pale yel. oil, not solidifying at  $-15^{\circ}$  (2). —  $\bar{C}$  has odor and lachrymatory props. similar to benzoyl chloride; on stdg. even in s.t. turns brown and decomposes (1).

[For prepn. of C from Na or K salts of m-hydroxybenxoic acid (1:0825) with SOCl<sub>2</sub> (2) or with COCl<sub>2</sub> in toluene (3) see indic. refs.]

Č with MeOH yields (1) methyl m-hydroxybenzoate (1:1468), m.p. 70°, b.p. 178° at 17 mm. (1); Č with EtOH yields (1) ethyl m-hydroxybenzoate (1:1471), m.p. 73.8°, b.p. 180° at 17 mm. (1); Č with dry NH3 gas in CHCl3 yields (1) m-hydroxybenzamide, lfts.

from hot aq., m.p. 167° (1); Č with aniline in CHCl<sub>3</sub> yields (1) *m*-hydroxybenzanilide [Beil. XII-502, XII<sub>1</sub>-(269)], ndls. from hot aq. or dil. alc., m.p. 156° (4), 154-155° (1) (5), Č with *p*-toluidine in CHCl<sub>3</sub> yields (1) *m*-hydroxybenzo-*p*-toluidide, ndls. from dil. alc., m.p. 163° (1).

3:9446 (1) Anschütz, Krone, Ann. 442, 41-42 (1925). (2) Kopetschni, Karczag, Ger. 262,783, July 25, 1913; Cent. 1913, II 728. (3) Kopetschni, Karczag, Ger. 266,351, Oct. 21, 1913; Cent. 1913, II 1715. (4) Klemenc, Ber. 49, 1373 (1916). (5) Kupferberg, J. prakt. Chem. (2) 16, 445 (1877).

The precise physical props. of  $\tilde{C}$  have never been reported; it appears to be a yellow oil still liquid at -15° (1) which cannot be distilled with decompn. even in high vac. (2);  $\tilde{C}$  has odor and lachrymatory character of benzoyl chloride (2).

[For prepn. of  $\bar{C}$  from Na or K salt of p-hydroxybenzoic acid (1:0840) with SOCl<sub>2</sub> (1) (4) or with COCl<sub>2</sub> (3:5000) in toluene (3) see indic. refs.; from p-hydroxybenzoic acid (1:0840) with 4 pts. SOCl<sub>2</sub> at b.p. in pres. of AlCl<sub>3</sub>, SnCl<sub>4</sub>, or SbCl<sub>5</sub> see (5).]

 $\tilde{C}$  with MeOH yields methyl p-hydroxybenzoate (1:1549), m.p. 131°;  $\tilde{C}$  with EtOH yields (2) ethyl p-hydroxybenzoate (1:1534), m.p. 116°, 112.5° (2);  $\tilde{C}$  with dry NH<sub>3</sub> gas in CHCl<sub>3</sub> yields p-hydroxybenzamide, ndls. with 1 H<sub>2</sub>O from aq., m.p. 162° (2);  $\tilde{C}$  with aniline in CHCl<sub>3</sub> yields p-hydroxybenzamilide [Beil. XII-502, XII<sub>1</sub>-(269)], lfts. from hot aq., m.p. 196-197° (2);  $\tilde{C}$  with p-toluidine in CHCl<sub>3</sub> yields p-hydroxybenzo-p-toluidide, ndls. from alc., n.p. 203-204° (2).

3:9447 (1) Kopetschni, Karczag, Ger. 262,883, July 25, 1913; Cent. 1913, II 728. (2) Anschütz, Zerbe, Ann. 442, 38 (1925). (3) Kopetschni, Karczag, Ger. 266,351, Oct 21, 1913, Cent. 1913, II 1715. (4) Kopetschni, Karczag, Ber. 47, 237 (1914). (5) Kissling (to I.G.), Ger. 701,953, Jan. 2, 1940; C.A. 36, 99 (1942).

## 3:9448 PHENOXYMETHYL CHLORIDE C<sub>7</sub>H<sub>7</sub>OCl Beil. S.N. 514 (Chloromethyl phenyl ether; $\alpha$ -chloroanisole; $\omega$ -chloroanisole)

Authentic physical constants for this compound are unreported.

[For attempts to prepare  $\bar{C}$  from methylene (di)chloride (3:5020) (1) or from chloromethyl acetate (3:5356) (2) by reaction with sodium phenolate, from formaldehyde diphenylacetal (diphenoxymethane) [Beil. VI-150] by partial cleavage to phenoxymethyl alcohol followed by conversion to  $\bar{C}$  (1), or from anisole (1:7445) by chlorination (3) see indic. refs.]

[For claim on use of  $\bar{C}$  in refining of mineral oils see (4).]

3:9448 (1) Bentley, Haworth, Perkin, J. Chem. Soc. 69, 166-167 (1896). (2) Kirner, J. Am. Chem. Soc. 48, 2747-2748 (1926). (3) Weygand, Vogel, J. prakt. Chem. (2) 155, 342-346 (1940). (4) Clarke, Towne (to Texas Co.), U.S. 2,075,269, March 30, 1937; Cent. 1937, II 330; C.A. 31, 3686 (1937).

2,6-DICHLORO-4-METHYLPHENOL C7H6OCl2 Beil. VI - 403 OH VI<sub>1</sub>-(204) VI<sub>2</sub>---

B.P. 138-139° at 28 mm.

M.P. 38-39°

See 3:0400. Division A: Solids.

Beil. II-671 3:9450 PIMELYL (DI)CHLORIDE II1-

#### B.P. 137° at 15 mm. (1)

[For prepn. of C from pimelic acid (1:0456) with excess SOCl<sub>2</sub> (1) (2) see indic. refs.] [C with 1 mole MeOH should give 6-carbomethoxyhexanovl chloride-1, b.p. 135-136° at 17 mm. (3), usually prepd. (3) from methyl hydrogen pimelate + SOCl<sub>2</sub>.

 $\ddot{C} + AlCl_3 + C_6H_6$  yields (2) 1,5-diphenylpentanedione-1,5.

C on hydrolysis yields pimelic acid (1:0456) (for the dianilide, di-p-toluidide, and other derivs. corresp. to C see 1:0456).

3:9450 (1) Blaise, Koehler, Bull. soc. chim. (4) 5, 687 (1909). (2) Skraup, Guggenheimer, Ber. 58, 2498 (1925). (3) Morgan, Walton, J. Chem. Soc. 1935, 291.

3:9452  $d_i l - \alpha$ -METHYL-n-CAPROYL CHLORIDE C7H18OCl Beil. II - 342 (n-Butyl-methyl-acetyl CH3.CH2.CH2.CH2.CH-C=O II1--chloride)  $II_{2}$ -(296)

Physical constants for C appear to be as yet unrecorded. [The dextrorotatory stereoisomer of C, b.p. 45-48° at 9 mm. (1) (amide, m.p. 66° (1)), has been obtd. from the dextrorotatory acid with SOCl<sub>2</sub> (1).]

[For prepn. of C from n-butyl-methyl-acetic acid (1:1134) with PCl<sub>3</sub> (2) or with SOCl<sub>2</sub> (3) see indic. refs.l

Č on hydrolysis yields 2-methylhexanoic acid-1 (n-butyl-methyl-acetic acid) (1:1134) (for the amide, anilide, p-toluidide, and other derivs, corresp. to  $\bar{C}$  see 1:1134).

3:9452 (1) Levene, Mikesa, J. Biol. Chem. 84, 581-582 (1929). (2) Rasetti, Bull. soc. chim. (3) 33, 690 (1905). (3) Reichstein, Trivelli, Helv. Chim. Acta 15, 258-259 (1932).

3:9456 α,α-DIMETHYL-n-VALERYL CHLORIDE C7H13OCl Beil. S.N. 162 (Dimethyl-n-propyl-acetyl CH<sub>2</sub> chloride)

#### B.P. 45° at 10 mm. (1)

[For prepn. of  $\ddot{C}$  from  $\alpha,\alpha$ -dimethyl-n-valeric acid [Beil. II-345] see (1).]  $\bar{C}$  on hydrolysis yields  $\alpha, \alpha$ -dimethyl-n-valeric acid (see above), b.p. 199-200°, 101-102° at 11 mm. (2), 98-99° at 9 mm. (1).

Dimethyl-n-propyl-acet-amide: m.p. 95-96° (1) (2).

3:9456 (1) Locquin, Leers, Compt. rend. 178, 2097 (1924). (2) Haller, Bauer, Compt. rend. 148, 129 (1909).

3:9458 α,β-DIMETHYL-n-VALERYL CHLORIDE C<sub>7</sub>H<sub>13</sub>OCl (sec.-Butyl-methyl-acetyl CH<sub>3</sub>.CH<sub>2</sub>.CH—CH—C=O chloride CH<sub>3</sub>.CH<sub>2</sub>.CH CH<sub>3</sub>.CH<sub>2</sub>.CH CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>.CH<sub>3</sub>

#### B.P. 110-113° at 193 mm. (1)

[For prepn. of  $\bar{C}$  from  $\alpha,\beta$ -dimethyl-n-valeric acid (1) see (1).]

 $\ddot{C}$  on hydrolysis yields  $\alpha,\beta$ -dimethyl-n-valeric acid, b.p. 210.5-210.8° at 750 mm. (1),  $D_{18}^{18} = 0.9316$  (methyl ester, b.p. 155-158° at 743 mm. (1)).

- $\bigcirc$   $\alpha,\beta$ -Dimethyl-n-valeramide: m.p. 101-103° (1)
- $\bigcirc \alpha_n \beta$ -Dimethyl-n-valeranilide: m.p. 71-72° (1).
- D αβ-Dimethyl-n-valero-p-bromognilide; m.p. 115-117° (1).

3:9458 (1) Chichibabin, Katznelson, Bull. acad. sci. U.R.S.S., Classe sci. math. nat. 1933, 267-271; Cent. 1933, II 3409; C.A. 27, 3698 (1933).

3:9460  $\gamma,\gamma$ -DIMETHYL-n-VALERYL CHLORIDE  $C_7H_{13}OCl$  Beil. S.N. 162 (Neopentylacetyl chloride)  $CH_3$   $CH_3$   $CH_4$  C  $CH_2$   $CH_2$   $CH_5$   $CH_6$   $CH_7$   $CH_8$   $CH_8$ 

B.P. 94° at 100 mm. (1) .

 $n_{\rm D}^{20} = 1.4294 \, (1)$ 

[For prepn. of  $\bar{C}$  from neopentylacetic acid (1) with SOCl<sub>2</sub> see (1).]

[ $\ddot{\mathbf{C}}$  with a large excess of ter-BuMgCl (4 moles) gives (1) 67% yield 2,2,6,6-tetramethylheptanol-3, m.p. 58–59° (1) (3,5-dinitrobenzoate, m.p. 99.5° (1);  $N-(\alpha-\text{naphthyl})$ carbamate, m.p. 92° (1)), and 13.5% 2,2-dimethylpentanol-5, b.p. 160° at 728 mm. (1), 158° at 737 mm. (2), 96° at 62 mm. (2),  $D_4^{20} = 0.815$  (2),  $D_D^{20} = 1.4202$  (2) ( $N-(\alpha-\text{naphthyl})$ carbamate, m.p. 80.5–81° (2)).]

 $\tilde{C}$  on hydrolysis presumably yields neopentylacetic acid, b.p. 159° at 150 mm. (1),  $n_{D}^{20} = 1.4215$  (1).

3:9460 (1) Whitmore, Whitaker, Mosher, Breivik, Wheeler, Miner, Sutherland, Wagner, Clapper, Lewis, Lux, Popkin, J. Am. Chem. Soc. 63, 647 (1941). (2) Whitmore, Homeyer, J. Am. Chem. Soc. 55, 4558 (1933).

3:9462 α-ETHYL-β-METHYL-n-BUTYRYL CHLORIDE C<sub>7</sub>H<sub>18</sub>OCl Beil. S.N. 162 (α-Ethyl-isovaleryl chloride; CH<sub>3</sub>—CH—CH—C=O ethyl-isopropyl-acetyl chloride)

#### B.P. 63-65° at 12 mm. (1)

[For prepn. of  $\tilde{C}$  from ethyl-isopropyl-acetic acid [Beil. II-345, II<sub>1</sub>-(147)] see (1).]  $\tilde{C}$  on hydrolysis yields  $\alpha$ -ethyl-isovaleric acid (see above), b.p. 202–203° (1), 202–204° (2).

- Ethyl-isopropyl-acet-amide: ndls. from aq., m.p. 136° cor. (3), 134-135.5° (2), 134° (2). [From C + NH<sub>3</sub> at 180° (2).]
- (1). Ethyl-isopropyl-acet-anilide: ndls. from lgr., m.p. 114-115° (1).
- DEthyl-isopropyl-acet-p-toluidide: ndls. from lt. pet. m.p. 122.5-123° (2).

3:9462 (1) Nenitzescu, Chicos, Ber. 68, 1587 (1935). (2) Crossley, Le Sueur, J. Chem. Soc. 77, 94 (1900). (3) Fischer, Rohde, Brauns, Ann. 492, 375-376 (1914).

3:9470 ISOBUTYL d,l-a-CHLOROPROPIONATE C7H13O2Cl Bell. S.N. 162 (CH<sub>3</sub>)<sub>2</sub>CH.CH<sub>2</sub>.O.CO.C.CH<sub>3</sub>

 $D_4^{20} = 1.0175$  (1)  $n_D^{20} = 1.4230$  (1) B.P. --

3:9479 (1) Schjanberg, Z. physik. Chem. A-172, 230 (1935).

3:9474 n-BUTYL β-CHLOROPROPIONATE  $C_7H_{13}O_2Cl$ Beil. II —  $\Pi_1$  n-C<sub>4</sub>H<sub>9</sub>O.CO.CH<sub>2</sub>.CH<sub>2</sub>Cl II<sub>2</sub>-(227)

 $D_4^{20} = 1.0394$  (2)  $n_D^{20} = 1.4321$  (2)  $D_4^{15} = 1.0708$  (1)  $n_D^{10} = 1.4385$  (1) B.P. 104° at 22 mm. (1) 97° at 15 mm. (1)

[For prepn. from n-butyl alc. (1:6180) +  $\beta$ -chloropropionic ac. (3:0460) see (1).]

Č htd. at 200° with diethylaniline loses HCl and gives (90-100% yield (1)) in distillate n-butyl acrylate, b.p. 138-140° at 756 mm. (1).

3:9474 (1) Moureu, Murat, Tampier, Ann. chim. (9) 15, 246, 251 (1921). (2) Schjanberg, Z. physik. Chem. A-172, 231 (1935).

R H  $C_7H_{15}OCl$  Beil. S.N. 78  $CH_3.C.O.n-C_5H_{11}$  Cl  $D_4^{20} = 0.9200 (1)$   $n_D^{20} = 1.4218 (1)$ 3:9480 n-AMYL α-CHLOROETHYL ETHER ( $\alpha$ -Chloroethyl n-amyl ether)

**B.P.** 63.3-66.3° cor. at 8 mm. (1)

[For prepn. (99% yield (1)) from paraldehyde (1:0170) + n-amyl alc. (1:6205) + dry HCl see (1).

C on stdg. polymerizes to dark tarry residue (1).

 $\overline{C}$  on shaking with aq. yields acetaldehyde (1:0100), n-amyl alc. (1:6205), + HCl.

3:9480 (1) Henze, Murchison, J. Am. Chem. Soc. 53, 4077-4079 (1931).

3:9490 \(\beta\)-CHLOROPROPIONALDEHYDE DIETHYLACETAL Beil. I - 632  $ClCH_2.CH_2.CH(OC_2H_5)_2$   $C_7H_{15}O_2Cl$ I<sub>1</sub>-(335) I<sub>2</sub>-(690)

 $D_4^{22\ 3} = 0.9845\ (2)$   $n_D^{22.3} = 1.4203\ (2)$   $D_4^{18\ 7} = 0.9951\ (2)$   $n_D^{18\ 1} = 1.4206\ (2)$ B.P. 84° at 25 mm. (1) at 20 mm. (2) (10) 74° 56-66° at 8 mm. (3) 47-50° at 3-4 mm. (4)

Oil, insol. in aq. but sol. in org. solvents. — C may be preserved only if completely free from acid (11) and should be kept over moist K<sub>2</sub>CO<sub>3</sub> (3). — C on htg. dec. at abt. 145° yielding (1) HCl and acrolein (1:0115).

[For prepn. from acrolein (1:0115) in abs. alc. at 0° with HCl gas (34% yield (5)) (6) (7) (11) (12) in the presence of CaCl<sub>2</sub> (90% yield (8), 56% yield (8)) see indic. refs.; for prepn. from α, γ-dichloro-n-propyl ethyl ether (9) by reactn. in the cold with EtOH (83% yield (9)) (1) or with NaOEt (1) see indic. refs.]

Č readily hydrolyzes in the presence of dil. acid yielding  $\beta$ -chloropropionaldehyde (3:5576) q.v. and EtOH (1:6130) q.v.

 $\tilde{C}$  on refluxing with 2 moles aq. soon undergoes spontaneous reactn., the initial two layers becoming miscible, and after rapid cooling and shaking with conc. KHSO<sub>3</sub> or NaHSO<sub>3</sub> soln. gives (2) upon addn. of alcohol a ppt. of the corresp. bisulfite cpd. of  $\beta$ -chloropropionaldehyde (3:5576).

[ $\bar{\mathbf{C}}$  shaken with a large excess (6 moles) of powdered KOH, then htd. at 210-220°, gives (yields: 75% (13), 70% (8)) (10) (3) (12) acrolein diethylacetal (1:0169) q.v., b.p. 123°. —  $\bar{\mathbf{C}}$  on shaking with dil. aq. NaOH at 115° yields (11)  $\beta$ -hydroxypropionaldehyde diethylacetal [Beil. I-820, I<sub>1</sub>-(418)].]

[For reactn. of  $\bar{C}$  with aniline (14) (15), with hydrazine hydrate (16), with alcoholates or phenolates (17), with diethyl sodiomalonate (18), with MeNH<sub>2</sub> (19), or with sodium methyl mercaptide (20) see indic. refs.]

3:9490 (1) Brabant, Z. physiol. Chem. 86, 208-209 (1913). (2) Crawford, Kenyon, J. Chem. Soc. 1927, 399. (3) Witzemann, J. Am. Chem. Soc. 36, 1909-1912 (1914). (4) Hartung, Adkins, J. Am. Chem. Soc. 49, 2521 (1927). (5) Witzemann, Evans, Hass, Schroeder, Org. Syntheses, Coll. Vol. 2 (1st ed.), 137-138 (1943). (6) Neuberg, Wendisch, Biochem. Z. 166, 480 (1925). (7) Evans, Hass, J. Am. Chem. Soc. 48, 2705-2706 (1926). (8) Reeves, J. Chem. Soc. 1927, 2481. (9) Dulière, Bull. soc. chim. (4) 33, 1651-1652 (1923). (10) Wohl, Ber. 31, 1797-1798 (1898).

(11) Wohl, Emmerich, Ber. 33, 7051-7052 (1822). (10) Wohl, Emmerich, Ber. 33, 7051-7052 (1822). (1928). (11) Wohl, Emmerich, Ber. 33, 2761 (1900). (12) Spoehr, Young, Carnegie Inst. Wash. Yearbook 25, 175-177 (1925/6); Expt. Sta. Record, 57, 817; C.A. 22, 2368 (1928). (13) Witzemann, Evans, Hass, Schroeder, Org. Syntheses, Coll. Vol. 2 (1st ed.), 17-18 (1943). (14) Barr, J. Am. Chem. Soc 52, 2422-2425 (1930). (15) Rath, Ber. 57, 717 (1924). (16) Wohl, Ber. 64, 1384 (1931). (17) Schorigin, Korschak, Ber. 68, 841-844 (1935). (18) Ellinger, Ber. 38, 2886 (1905). (19) Wohl, Johnson, Ber. 40, 4714 (1907). (20) Barger, Coyne, Buchem. J. 22, 1420 (1928).

# 3:9494 $\alpha$ -CHLORO- $\beta$ -PHENYLACETYLENE $C_8H_5Cl$ Beil. V - 513 (Chloroethynylbenzene; phenylethynyl chloride; $\omega$ -chlorophenylacetylene)

B.P. 
$$74^{\circ}$$
 at 15 mm. (1)  $D_{-}^{18} = 1.126$  (5) (6)  $n_{D}^{18} = 1.576$  (5) (6)  $n_{D}^{14} = 1.576$  (7) (6)  $n_{D}^{14} = 1.5798$  (7) at 16 mm. (3)  $n_{D}^{14} = 1.5798$  (6)  $n_{D}^{14} = 1.5798$  (7) at 15 mm. (4)  $n_{D}^{14} = 1.5798$  (8)  $n_{D}^{14} = 1.5798$  (9)  $n_{D}^{14} = 1.5798$  (9)  $n_{D}^{14} = 1.5798$  (9)  $n_{D}^{14} = 1.5798$  (9)  $n_{D}^{14} = 1.5798$  (10)  $n_{D}^{14} = 1.5798$  (11)  $n_{D}^{14} = 1.5798$  (11)  $n_{D}^{14} = 1.5798$  (12)  $n_{D}^{14} = 1.5798$  (13)  $n_{D}^{14} = 1.5798$  (13)  $n_{D}^{14} = 1.5798$  (13)  $n_{D}^{14} = 1.5798$  (13)  $n_{D}^{14} = 1.5798$  (14)  $n_{D}^{14} = 1.5798$  (15)  $n_{D}^{14} = 1.5798$  (17)  $n_{D}^{14} = 1.5798$  (17)  $n_{D}^{14} = 1.5798$  (17)  $n_{D}^{14} = 1.5798$  (18)  $n_{D}^{14} = 1.5798$ 

Colorless mobile liq. with strong and characteristic odor. — Polymerizes rapidly on stdg. with sepn. of crystals (never identified) (7).

[For prepn. of  $\bar{C}$  from sodium deriv. of phenylacetylene (1:7425) in dry ether with p-toluenesulfonyl chloride (65% yield (6)) (3) (7) or benzenesulfonyl chloride (yield 54% (6)) (8) see indic. refs.; from phenylethynyl MgBr in dry ether with benzenesulfonyl chloride (yields: 35% (6), 13.7% (9)) or p-toluenesulfonyl chloride (33% yield (6)) see indic. refs.; from dichloroacetylene (3:5010) with  $C_6H_5MgX$  (70% yield) see (4); from sodium or silver salts of phenylacetylene (1:7425) with  $SO_2Cl_2$  in dry ether (small yield) see (2); from  $\omega$ ,  $\omega$ -dichlorostyrene ( $\alpha$ ,  $\alpha$ -dichloro- $\beta$ -phenylethylene) [Beil. V-477,  $V_2$ -(367)] by elimination of 1 HCl with alc. KOH (1 mole) at 100° for 1 hr. see (2).]

Č on protracted boilg, with excess alc. KOH followed by acidification yields (2) (6) phenylacetic acid (1:0665).

[For reactn. of C with diethyl sodiomalonate see (2) (6).]

Č does not react with KI in acetone (7).

3:9494 (1) Bergmann, J. Chem. Soc. 1936, 404. (2) Nef, Ann. 368, 316-328 (1898). (3) Cleveland, Murray, J. Am. Chem. Soc. 61, 3547 (1939). (4) Ott, Bossaller, Ber. 76, 89-90 (1943); C.A. 37, 5015 (1943). (5) Bourgeul, Truchet, Compt. rend. 190, 753-755 (1930). (6) Truchet, Ann. chim. (10) 16, 320-327, 335-337, 340-358 (1931). (7) Murray, J. Am. Chem. Soc. 60, 2663 (1938). (8) Wilson, Wenzke, J. Am. Chem. Soc. 56, 2026 (1934). (9) Gilman, Fothergill, J. Am. Chem. Soc. 51, 3506 (1929).

#### 3:9497 o-CHLOROPHENYLACETYLENE

C<sub>8</sub>H<sub>5</sub>Cl Beil. S.N. 474

B.P. 71° at 18 mm. (1) (2)

$$D_{-}^{25} = 1.1249 (2) \quad n_{\rm D}^{25} = 1.5690 (2)$$

[For prepn. of  $\tilde{C}$  from o-chlorophenylpropiolic acid (3:3956) by elimination of CO<sub>2</sub> with NaHCO<sub>3</sub> + CuCl<sub>2</sub> (66% yield (1)) or Cu(OAc)<sub>2</sub> (yield not stated (2)) see indic. refs.] [For study of dipole moment see (3).]

 $\overset{\circ}{C}$  with PCl<sub>5</sub> (3 wt. pts.) in C<sub>6</sub>H<sub>6</sub> stood 24 hrs. then poured into aq. gives (54% yield (1)) α-chloro-α-(o-chlorophenyl)ethylene-β-phosphinic acid (C<sub>8</sub>H<sub>7</sub>O<sub>5</sub>Cl<sub>2</sub>P), lfts. from dil. HCl, m.p. 187° (1). — [This prod. with 5% aq. KOH boiled for 6 hrs. loses HCl, giving (1) upon acidification o-chlorophenylacetylenephosphinic acid (C<sub>8</sub>H<sub>6</sub>O<sub>3</sub>ClP), lfts. from C<sub>6</sub>H<sub>6</sub>/AcOH, m.p. 134° (1).]

[ $\overline{C}$  with I<sub>2</sub> in liq. NH<sub>3</sub> at  $-34^{\circ}$  readily gives (95% yield (4)) o-chlorophenyl-iodo-acetylene, cryst. from MeOH, m.p. 37.7–38.0° (4).]

Di-(o-chlorophenylethynyl)mercury: m.p. 213-214° (2). [From C in alc. with alk. K<sub>2</sub>HgI<sub>4</sub> according to (5); note, however, that m.p. of this prod. is only slightly lower than that (221-222°) of the corresp. prod. from p-chlorophenylacetylene (3:0590).]

3:9497 (1) Bergmann, Bondi, Ber. 66, 282-283 (1933). (2) Otto, J. Am. Chem. Soc. 56, 1393-1394 (1934). (3) Otto, Wenzke, J. Am. Chem. Soc. 56, 1314-1315 (1934). (4) Vaughn, Nieuwland, J. Am. Chem. Soc. 56, 1207-1209 (1934). (5) Johnson, McEwen, J. Am. Chem. Soc. 48, 471 (1926).

3:9500 m-CHLOROPHENYLACETYLENE

C<sub>8</sub>H<sub>5</sub>Cl Beil. S.N. 474

B.P. 64-65° at 12 mm. (1)

[See also o-chlorophenylacetylene (3:9497).]

[For prepn. of  $\bar{C}$  from m-chlorophenylpropiolic acid (3:4102) by elimination of  $CO_2$  with  $Cu(OAc)_2$  (yield not stated) see (1); for formn. of  $\bar{C}$  from m-chlorocumene by pyrolysis see (5).]

[For study of dipole moment see (2).]

[ $\bar{C}$  with  $I_2$  in liq. NH<sub>3</sub> at  $-34^{\circ}$  readily gives (91% yield (3)) m-chlorophenyl-iodo-acetylene, m.p. 11.1°,  $D_2^{25} = 1.818$ ,  $n_1^{25} = 1.6638$  (3).]

Di-(m-chlorophenylethynyl)mercury: m.p. 138-139° (2), 138.0-138.5° (3). [From C in alc. with alk. K<sub>2</sub>HgL<sub>4</sub> according to (4).]

3:9500 (1) Otto, J. Am. Chem. Soc. 56, 1393-1394 (1934). (2) Otto, Wenzke, J. Am. Chem. Soc. 56, 1314-1315 (1934). (3) Vaughn, Nieuwland, J. Am. Chem. Soc. 56, 1207-1209 (1934). (4) Johnson, McEwen, J. Am. Chem. Soc. 48, 471 (1926). (5) Dreisbach (to Dow Chem. Co.), U.S. 2,110,830, March 8, 1938; Cent. 1938, I 4110; C.A. 52, 3426 (1938).

1309 LIQUIDS (WITH B.P. REPTD. AT RED. PRESS.) 3:9504-3:9514

3:9504 2,5-DICHLORO-2,5-DIMETHYLHEXYNE-3 
$$C_8H_{12}Cl_2$$
 Beil. I — Cl  $Cl$   $I_{1}$ -(121)  $CH_3$ — C—C—C—CH<sub>3</sub>  $CH_3$ 

B.P. 62-63° at 15 mm. (1) M.P. 29° (1)

[From 2,5-dimethylhexyn-3-diol-2,5 [Beil. I-501, I<sub>1</sub>-(263)] with HCl at 0° see (1).]

3:9504 (1) Dupont, Compt. rend. 152, 198 (1911).

B.P. 64-65° at 18 mm. (1) (3) 
$$D_4^{20} = 0.9366$$
 (1)  $n_D^{20} = 1.4794$  (1)

[For prepn. of  $\bar{C}$  from 1-n-butyl-2-vinylacetylene (2) by shaking with conc. HCl contg.  $Cu_2Cl_2 + NH_4Cl$  see (1).]

Č htd. ½ pt. naphthoquinone-1,4 (1:9040) at 100° for 2 hrs., prod. suspended in alc. NaOH and aerated, yields (1) 1-n-butyl-2-chloroanthraquinone, yel. ndls. from MeOH, m.p. 129-130° (1).

[For polymerization of  $\bar{C}$  see (1) (3).]

**3:9506** (1) Jacobson, Carothers, J. Am. Chem. Soc. **55**, 1624–1627 (1933). (2) Jacobson, Carothers, J. Am. Chem. Soc. **55**, 1622–1624 (1933). (3) Carothers, Coffman, U.S. 1,950,441, March 13, 1934; Cent. **1934**, II 1037; C.A. **28**, 3270 (1934).

B.P. 61-62° at 17 mm. (1) 
$$D_{-}^{20} = 0.912$$
 (1)  $n_{D}^{20} = 1.445$  (1)

[For prepn. of  $\bar{C}$  from octyne-1 (n-hexylacetylene) (1:8105) via conversion with NaNH<sub>2</sub> to  $C_6H_{18}.C = C$ —Na and reaction in ether with bezenesulfonyl chloride (65% yield (1)) see (1).]

[Refractive indices via Pulfrich instrument:  $n_{\rm C}^{12.7} = 1.4447$ ,  $n_{\rm D}^{12.7} = 1.4472$ ,  $n_{\rm F}^{12.7} = 1.4536$ ,  $n_{\rm C}^{12}$  = 1.4589 (1).]

Č on refluxing for 12 hrs. with alc. KOH gives (70% yield (1)) n-caprylic acid (1:1145).

3:9510 (1) Truchet, Ann. chim. (10) 16, 334, 337, 351 (1931).

B.P. 80.5-81° at 15 mm. (1)

[For prepn. of C from octyn-2-ol-1 [Beil I-456, I<sub>1</sub>-(236), I<sub>2</sub>-(506)] with PCl<sub>3</sub> see (1).] **3:9514** (1) Toussaint, Wenzke, J. Am. Chem. Soc. **57**, 668-669 (1935).

B.P. 55° at 130 mm. (1) 
$$D_4^{20} = 0.9163$$
 (1)  $n_D^{20} = 1.4330$  (1)

[For prepn. of C from 3-methylheptyn-4-ol-3 (1) by saturation with HCl gas (60% yield) see (1).1

[ $\bar{C}$  with MeMgBr gives (66% yield) 3,3-dimethylheptyne-4, b.p. 69° at 100 mm.,  $D_4^{20}$  = 0.7610,  $n_D^{20} = 1.4360$  (1);  $\bar{C}$  with EtMgBr gives (61% yield) 3-ethyl-3-methyl-heptyne-4, b.p. 88° at 100 mm.,  $D_4^{20} = 0.7714$ ,  $n_D^{20} = 1.4386$  (1).]

3:9516 (1) Campbell, Eby. J. Am. Chem. Soc. 62, 1799-1800 (1940).

3:9518 
$$d$$
, $l$ -3-CHLORO-OCTENE-1  $C_8H_{16}Cl$  Beil. S.N. 11  $CH_3$ — $CH$ — $CH$ — $CH$ = $CH_2$ 

No record of this compound can be found in the literature.

[Note, however, that the levorotatory enantiomorph has been reported (1).]

3:9518 (1) Levene, Rothen, J. Chem. Phys. 5, 982 (1937).

B.P. 60-61° at 15 mm. (1) 
$$D_4^{18} = 0.8931$$
 (1)  $n_D^{18} = 1.4458$  (1 59-61° at 15 mm. (2)

Colorless mobile liq., insol. aq., sol. in usual org. solvents

[For prepn. from 2-methylhepten-2-ol-6 [Beil. I-448,  $I_1$ -(230),  $I_2$ -(490)] with SOCl<sub>2</sub> + pyridine (39% yield (1)) see (1) (2).]

Č could not be induced to yield an R.MgCl cpd. (2).

Č in AcOH treated with O<sub>3</sub> and the soln. subsequently shaken with Zn dust gives (61% yield (1))  $\gamma$ -chloro-n-valeraldehyde, b.p. 70-71° at 16 mm. (1).

3:9520 (1) Helferich. Dommer. Ber. 53, 2008-2009 (1920). (2) Doeuvre. Bull. soc. chim. (4) 45, 359-360 (1929).

[For prepn. of C from 3-methylhepten-2-ol-4 (1) with 6 N HCl see (1).]

3:9524 (1) Abelmann, Ber. 43, 1581 (1910).

#### B.P. 57° at 13 mm. (1)

[For prepn. of C from 6-methylhepten-2-ol-4 with HCl see (1).]

3:9525 (1) Knorr (to I.G.), Ger. 553,279, June 24, 1932; Cent. 1932, II 2370; C.A. 26, 4611 (1932).

#### B.P. 75-78° at 53 mm. (1)

Two geom. stereoisomers of C are possible, but only this one is as yet recorded.

[For prepn. of  $\bar{C}$  from 4-methylhepten-3-ol-5 [Beil. I<sub>1</sub>-(201), I<sub>2</sub>-(491)] by distn. with conc. HCl (1) (3) or by saturation with dry HCl gas at 0° (2) see indic. refs.]

 $\bar{C}$  is very reactive toward aq.; at 15°  $\bar{C}$  is 93% hydrolyzed in 48 hrs., at 45-50° 90% hydrolyzed in 75 min. (2).

 $\bar{C}$  on oxidn. with Na<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> + H<sub>2</sub>SO<sub>4</sub> at 45–50° yields (2) 4-methylhepten-3-one-5 [Beil. I<sub>2</sub>-(799)], b.p. 170–172° at 735 mm., 96–98° at 70 mm.,  $D_4^{15} = 0.8773$ ,  $n_D^{15} = 1.4510$  (2,4-dinitrophenylhydrazone, m.p. 147°, semicarbazone, m.p. 167° (2)).

3:9526 (1) Bjelouss, Ber. 43, 2331 (1910). (2) Courtot, Pierron, Bull. soc. chim. (4) 45, 292 (1929). (3) Knorr (to I.G.), Ger. 553,279, June 24, 1932; Cent. 1932, II 2370.

Č has never been reported in pure form; note that, in addition to the possibility of existence of two geometrical stereoisomers, Č by virtue of allylic rearrangement can yield 4-chloro-2,5-dimethylhexene-2 (3:9529) q.v.

[For prepn. of  $\bar{\rm C}$  (as a mixt. with some or all of these other compds.) from 2,5-dimethylhexadiene-2,4 ("di-isocrotyl") [Beil. I-259, I<sub>1</sub>-(122), I<sub>2</sub>-(237)] by addn. of dry HCl gas see (1); note that the reaction prod. has b p. 45-60° at 15 mm.,  $n_{\rm D}^{20}=1.45$  to 1.46, and although stable in the cold decomposes on attempts to effect fractional distn.]

[ $\bar{C}$  with MeMgCl yields (1) mainly 2,4,5-trimethylhexene-2 [Beil. I<sub>1</sub>-(95)], b.p. 128.4° at 760 mm. (1),  $D_4^{20}=0.7403$  (1),  $n_D^{20}=1.4268$  (1), accompanied by some 2,2,5-trimethylhexene-3, b.p. 114° at 760 mm. (1),  $n_D^{20}=1.416$  (1).]

3:9527 (1) Henne, Chanan, Turk, J. Am. Chem. Soc. 63, 3474-3476 (1941).

[For prepn. of Č from 2,4-dimethylhexen-4-ol-3 (1) with 6 N HCl (80% yield) see (1).] **3:3528** (1) Abelmann, Ber. 43, 1581-1582 (1910).

Č, the allylic rearr. prod. of 2-chloro-2,5-dimethylhexene-3 (3:9527) q.v., has never been reported in pure form (1).

3:9529 (1) Henne, Chanan, Turk, J. Am. Chem. Soc. 63, 3474-3476 (1941).

#### B.P. 105-107° at 16 mm. (1)

[For prepn. of  $\tilde{C}$  from N-benzoyl-2-n-propylpiperidine (N-benzoylconiine) [Beil. XX-116] by conversion with PCl<sub>5</sub> to the amide-chloride  $C_8H_{16}N.C(Cl)_2.C_6H_5$  followed by rapid distn. of the latter see (1).] [This prod. was originally (1) thought to be 1,5-dichloroctane [Beil. I-160] but is now regarded (2) as  $\tilde{C}$ .]

**3:9530** (1) von Braun, Schmits, Ber. **39**, 4366 (1906). (2) von Braun, Pohl, Ber. **57**, 482–483 (1924).

#### B.P. 132-138° at 20-25 mm. (1)

[For prepn. of C from octamethylenediamine [Beil. IV-271] with NOCl see (1). The prod. is admittedly impure and contains also 8-chloro-octene-2 and 1,8-dichloro-octane (3:8805).]

Č on htg. with sodium phenolate yields (1) 1,7-diphenoxyoctane [Beil. VI-148], b.p. 240-250° at 20-25 mm., not volatile with steam.

3:9532 (1) Ssolonina, J. Russ. Phys.-Chem. Soc. 30, 620-621 (1898); Cent. 1898, I 26.

1313

[For prepn. of C from 2-ethylhexanediol-1,2 with conc. HCl at 120° see (1).]

3:9534 (1) von Braun, Mans, Ber. 67, 1704-1705 (1934).

B.P. 122-125° at 19 mm. (1)

[For prepn. of  $\tilde{C}$  from 2,2,4-trimethylpentanone-3 (pentamethylacetone) [Beil. I-708, I<sub>1</sub>-(364), I<sub>2</sub>-(760)] with PCl<sub>5</sub> in s.t. for 60 hrs. at 140° (1) (together with other products) see (1).]

3:9536'(1) Favorskii, Fritzman, J. Russ. Phys.-Chem. Soc. 44, 1353 (1912); Cent. 1913, I 1007; C.A. 7, 985 (1913); J. prakt. Chem. (2) 88, 654 (1913).

C as such is as yet unreported; however, the dextrorotatory isomer of C has been obtd. (1) from the metathesis of levorotatory 4-iodooctane with LiCl in MeOH; b.p. 92° at 50 mm.

3:9538 (1) Levene, Rothen, Kuna, J. Biol. Chem. 120, 786 (1937).

[For prepn. of  $\tilde{C}$  from 2-methylheptanol-6 [Beil. I-421, I<sub>1</sub>-(209), I<sub>2</sub>-(453)] with SOCl<sub>3</sub> in cold CHCl<sub>3</sub> + dimethylaniline, then refluxed 2 hrs., see (1).]

Č with activated Mg in dry ether gives with difficulty not over 41% of RMgCl (by carbonation and titration of the resultant acid (1)).

3:9540 (1) Peak, Robinson, J. Chem. Soc. 1937, 1589-1590.

1.4205 (2)

[For prepn. of  $\tilde{C}$  from 3-methylheptanol-3 (n-butyl-ethyl-methylcarbinol) [Beil. I-421, I<sub>2</sub>-(453)] (1) (2) with dry HCl gas at  $-10^{\circ}$  (2) or at  $10-15^{\circ}$  (92% yield (1)) see indic. refs.]  $\tilde{C}$  with Mg in dry ether as specified (1) gives 70% yield corresp. RMgCl.

1314

 $\bar{C}$  converted as above to RMgCl, treated with formaldehyde gas, gives (31% yield (1)) 2-ethyl-2-methylhexanol-1, b.p. 85.5-86° at 11 mm.,  $n_D^{20} = 1.4401$  (1).

**3:9544** (1) Whitmore, Badertscher, J. Am. Chem. Soc. **55**, 1560-1562, 1565 (1933). (2) Whitmore, Woodburn, J. Am. Chem. Soc. **55**, 361-365 (1933). (3) Smart, Quayle, J. Am. Chem. Soc. **67**, 21 (1945).

B.P. 83-86° at 79 mm. (1)

[For prepn. of C from 4-methylheptanol-3 with PCl<sub>5</sub> see (1).]

3:9548 (1) Bjelouss, Ber. 45, 628 (1912).

B.P. 50-51° at 12 mm. (1) (3) 
$$D_4^{20} = 0.8690$$
 (1)  $n_D^{15} = 1.43098$  (1)

[For prepn. of  $\bar{C}$  from 4-methylheptanol-4 (methyl-di-n-propyl-carbinol (1)) by saturation with HCl gas see (1).]

[For data on density of  $\ddot{C}$  at 15°, 25°, 50°, and 65° and value of parachor at 0°, 25°, 50°, and 75° see (2).]

[ $\tilde{C}$  with  $C_6H_6$  + AlCl<sub>3</sub> gives (64% yield (1)) 4-methyl-4-phenyl-heptane, b.p. 120-121° at 12 mm.,  $D_4^{20}$  = 0.8708,  $n_D^{16}$  = 1.49326 (1); for behavior with naphthalene + AlCl<sub>3</sub> in CS<sub>2</sub> see (3).]

3:9550 (1) Halse, J. prakt. Chem. (2) 89, 453-454 (1914). (2) Quayle, Owen, Beavers, J. Am. Chem. Soc. 61, 3108 (1939). (3) Petrov, Kurbskii, J. Gen. Chem. (U.S.S.R.) 14, 492-494 (1944); C.A. 39, 4600 (1945).

 $\tilde{C}$  as such is as yet unreported; however, the dextrorotatory isomer of  $\tilde{C}$  has been prepared from dextrorotatory 3-ethylhexanol-1 (1) with SOCl<sub>2</sub>; b.p. 85° at 40 mm.,  $D_4^{27} = 0.879$ ,  $n_D^{25} = 1.4335$  (1).

3:9552 (1) Levene, Marker, J. Biol. Chem. 91, 699-700 (1931).

B.P. 41-43° at 12 mm. (1) 
$$n_{\rm D}^{25} = 1.4333 \ (2) \\ D_4^{20} = 0.8869 \ (1) \quad n_{\rm D}^{20} = 1.4353 \ (2) \\ 1.4350 \ (1)$$

[For prepn. from 2,3-dimethylhexanol-3 [Beil.  $I_1$ -(210),  $I_2$ -(454)] (2) (1) with dry HCl gas at 0° (81% yield (1)) see (1) (2).]

3:9554 (1) Whitmore, Evers, J. Am. Chem. Soc. 55, 813-814 (1933). (2) Stevens, Greenwood, J. Am. Chem. Soc. 65, 2152-2153 (1943).

3:9556 2-CHLORO-2,5-DIMETHYLHEXANE 
$$C_8H_{17}Cl$$
 Beil. I — (Isoamyl-dimethyl-carbinyl chloride)  $Cl$   $I_1$ -(62)  $I_2$ —  $CH_3$ —  $CH_3$ —  $CH_2$ —  $CH_2$ —  $CH_3$   $CH_$ 

[For prepn. of  $\tilde{C}$  from 2,5-dimethylhexanol-2 (isoamyl-dimethyl-carbinol) (2) by saturation with HCl gas (79% yield (2)) see (1) (2); for formn. of  $\tilde{C}$  (together with other prods.) during hydrolysis of 2-nitroso-2,5-dimethylhexane see (1).]

[ $\bar{C}$  with  $C_6H_6$  + AlCl<sub>3</sub> gives 2,5-dimethyl-2-phenylhexane, b.p. 116-117° at 14 mm.,  $D_4^{18} = 0.8844$ ,  $n_D^{15} = 1.50233$  (2).]

3:9556 (1) Aston, Ailman, J. Am. Chem. Soc. 60, 1931 (1938). (2) Halse, J. prakt. Chem. (2) 89, 455 (1914).

### 3:9558 2-CHLORO-3,4-DIMETHYLHEXANE

C<sub>8</sub>H<sub>17</sub>Cl Beil. S.N. 10

No physical constants on this compound are recorded; for its formation, however, as a by-product of the addition of HCl to butene-2 see (1).

3:9558 (1) Coffin, Sutherland, Masss, Can. J. Research 2, 275-278 (1930).

3:9560 4-(CHLOROMETHYL)-3-METHYLHEXANE C<sub>8</sub>H<sub>17</sub>Cl Beil. S.N. 10

No physical constants on this compound are recorded; for its formation, however, as a by-product of the addition of HCl to butene-1 see (1).

3:3560 (1) Coffin, Sutherland, Mass, Can. J. Research 2, 277 (1930).

#### 1-CHLORO-2,2,3,3-TETRAMETHYLBUTANE C<sub>8</sub>H<sub>17</sub>Cl Beil. S.N. 10

B.P. 80-81° at 40 mm.

M.P. 52-53°

See 3:0945. Division A: Solids.

— PIPERONYLOYL CHLORIDE  $C_8H_5O_3Cl$  Beil. XIX-270  $C_8H_5O_3Cl$  Beil. XIX-270  $C_8H_5O_3Cl$  Cl

B.P. 155° at 25 mm.

M.P. 80°

See 3:1960. Division A: Solids.

3:9565 BENZYL CHLOROFORMATE C<sub>8</sub>H<sub>7</sub>O<sub>2</sub>Cl Beil. VI- 437 (Benzyl chlorocarbonate, "carbobenzoxychloride") CH<sub>2</sub>.O.CO.Cl VI<sub>1</sub>— VI<sub>2</sub>—

#### B.P. 103° at 20 mm. (1)

Colorless oil with penetrating odor. —  $\bar{C}$  is a valuable common reagent for characterization of amino acids and related compounds.

[For prepn. of  $\bar{C}$  from benzyl alc. (1:6480) by treatment with phospene (3:5000) directly at  $-8^{\circ}$  (1) or in toluene (2) (91-95% yield (3)) see (1) (2) (3).]

Č on htg. loses CO<sub>2</sub> (1) (2), slowly at 100°, rapidly at 155°, leaving benzyl chloride (3:8535), b.p. 179°. Even vac. distd. Č may contain benzyl chloride.

Č with hydroquinone (1:1590) in aq. Na<sub>2</sub>CO<sub>3</sub> under N<sub>2</sub> yields according to conditions (4) mono (carbobenzoxy)hydroquinone, pr. from 50% alc., m.p. 120-120.5° cor. (4), or di (carbobenzoxy)hydroquinone, ndls. from alc., m.p. 142-143° cor. (4).

- Benzyl carbamate [Beil. VI-437]: cryst. from aq. (1) or toluene (3), m.p. 87° (3) (5), 86° (1). [From C by addn. to 5 vols. conc. aq. NH<sub>4</sub>OH; yield 95% (5), 91-94% (3).]
   Benzyl-N-phenylcarbamate [Beil. XII-328]: ndls. from pet. other. m. p. 78-77° (cf. 100).
- —— Benzyl-N-phenylcarbamate [Beil. XII-328]: ndls. from pet. ether, m.p. 76-77° (cf. under benzyl alc. (1:6480)). [From Č + aniline + aq. NaOH (6).]
- —— Benzyl N-(o-tolyl)carbamate: m.p. 83.5° (6). [From Č o-toluidine + aq. NaOH (6).]
- Benzyl N-(p-tolyl)carbamate: m.p. 83° (6). [From  $\tilde{C} + p$ -toluidine + aq. NaOH (6).]

S:9565 (1) Thiele, Dent, Ann. 362, 257-258 (1898). (2) Bergmann, Zervas, Ber. 65, 1194-1195 (1932). (3) Carter, Frank, Johnston, Org. Syntheses 23, 13-16 (1943). (4) Olcott, J. Am. Chem. Soc. 59, 392 (1937). (5) Martell, Herbst, J. Org. Chem. 6, 882 (1941). (6) Bergstrom, Martell, J. Am. Chem. Soc. 67, 494-495 (1945).

3:9567 PHENYLACETYL CHLORIDE 
$$C_8H_7OCl$$
 Beil. IX - 436  $(\alpha\text{-Toluyl chloride})$   $CH_2$   $C=0$   $Cl$   $Cl$ 

| B.P.      |                | B.P. (contd.)               |                                |
|-----------|----------------|-----------------------------|--------------------------------|
| 170° cor. | at 250 mm. (1) | 100-101° at 16 mm. (9) (10) | $D_4^{20} = 1.1685  (3)$       |
| 108-110°  | at 25 mm. (2)  | 96° at 14 mm. (11)          | 1.16817 (7)                    |
| 105.1°    | at 23 mm. (3)  | 95.4-95.8° at 12 mm. (7)    |                                |
| 104-105°  | at 23 mm. (4)  | 95.4-95.5° at 12 mm. (12)   | $n_{\rm D}^{20} = 1.5333  (3)$ |
| 106°      | at 22 mm. (5)  | 95° at 12 mm. (13)          |                                |
| 109-110°  | at 20 mm. (6)  | [100° at 12 mm. (14)]       |                                |
| 102.5°    | at 17 mm. (7)  |                             |                                |
| 102.3°    | at 17 mm. (5)  |                             |                                |
| 102°      | at 17 mm. (8)  |                             |                                |

#### Colorless liq.

[For prepn. of  $\tilde{C}$  from phenylacetic acid ( $\alpha$ -toluic acid) (1:0665) with PCl<sub>5</sub> (63% yield (13)) (15) (16) (33) in CHCl<sub>3</sub> (yields: 80–90% (17), 80% (4)) (18) (19) (7); with PCl<sub>5</sub> in C<sub>6</sub>H<sub>6</sub> (yield: 97% (5)) (20) (10); with PCl<sub>3</sub> + ZnCl<sub>2</sub> (73% yield (13)); with SOCl<sub>2</sub> (yields: 86% (5), 79% (11), 54% (13)) (21) (9) (22) in CCl<sub>4</sub> (79–80% yield (8)); with SiCl<sub>4</sub> in C<sub>6</sub>H<sub>6</sub> (61% yield (23)); or with oxalyl (di)chloride (3:5060) (74% yield (14)) see indic. refs.; for formn. of  $\tilde{C}$  from sodium salt of phenylacetic acid (1:0665) with SO<sub>2</sub>Cl<sub>2</sub> (phenylacetic acid anhydride (see below) also being formed) see (26).]

[ $\tilde{C}$  with Ag $\bar{A}$  in ether (7) or with Pb $\bar{A}_2$  in ether in s.t. at 100° (24), or  $\tilde{C}$  treated with strong tertiary bases such as Et<sub>3</sub>N or pyridine (25), or  $\tilde{C}$  with anhyd. FeCl<sub>3</sub> yields phenylacetic acid anhydride, pr. from ether, m.p. 72.5° (7), 72° (24); note that with tertiary bases (25) some  $\alpha,\alpha'$ -diphenylacetone (dibenzyl ketone) (1:5135), m.p. 34°, together with 6-benzyl-3,5-diphenyl-2-hydroxypyrone-4 (phenylketene trimer) [Beil. XVII-547, XVII<sub>1</sub>-(278)], cryst. from C<sub>6</sub>H<sub>6</sub>, m.p. 173–174° (27), are also formed and that under favorable conds. (27) latter may amount to 50% yield.]—[Note also that phenylacetic acid anhydride, m.p. 72.5°, and phenylacetic acid, m.p. 76.5°, have m.p.'s in close proximity.]

[ $\overline{C}$  with Br<sub>2</sub> at 120-125° gives (84% yield (5))  $\alpha$ -bromo- $\alpha$ -phenylacetyl bromide, b.p. 150° at 26 mm. (5).]

[ $\bar{C}$  on cat. reductn. with H<sub>2</sub> + Pd/BaSO<sub>4</sub> in toluene as directed (28) gives (80% yield) phenylacetaldehyde (1:0200); however, cat. reductn. in vapor phase using Pd cat. (29) yields only ethylbenzene (1:7410) and β-phenylethyl alcohol (1:6505), while with H<sub>2</sub> + PtO at 200°  $\bar{C}$ , although giving traces of phenylacetaldehyde and β-phenylethyl alcohol, yields as the principal prod. (30) benzyl-β-phenylethyl-carbinol, m.p. 41-42° (30), 41° (31).] — [ $\bar{C}$  with KCN + quinoline yields 1-phenylacetyl-2-cyano-1,2-dihydroquinoline which on acid hydrolysis gives (32) phenylacetaldehyde (1:0200).]

[Č with C<sub>6</sub>H<sub>6</sub> + AlCl<sub>3</sub> gives (82–83% yield (20)) (33) (36) benzyl phenyl ketone (desoxybenzoin) (1:5165), m.p. 60°; similarly Č with other hydrocarbons + AlCl<sub>3</sub> gives substituted desoxybenzoins: e.g., Č with toluene gives (81% yield (18)) (34) (35) 4-methyldesoxybenzoin [Beil. VII-47, VII<sub>1</sub>-(239)], m.p. 109° (18); Č with o-xylene gives (37) 3,4-dimethyldesoxybenzoin [Beil. VII-454, VII<sub>1</sub>-(244)], m.p. 95° (37); Č with m-xylene gives (37) cf. (38) 2,4-dimethyldesoxybenzoin [Beil. VII-454], oil, b.p. 202–205° at 13 mm. (38); Č with p-xylene gives (37) cf. (38) 2,5-dimethyldesoxybenzoin [Beil. VII-454], oil, b.p. 220–230° at 26 mm. (37); Č + naphthalene (in CS<sub>2</sub>) gives (77% yield (39)) a mixt. of benzyl α-naphthyl ketone, m.p. 66–67° (39), and benzyl β-naphthyl ketone, m.p. 99.0–99.5° (39); Č + biphenyl (in CS<sub>2</sub> (40)) gives (40) (41) (42) 4-phenyldesoxybenzoin, m.p.

150° (42) (40), 149° (41); Č with acenaphthene gives (65–68% yield (43)) 5-(phenylacetyl)acenaphthene (4-acenaphthyl benzyl ketone), m.p. 114° (43); Č with bromobenzene (in CS<sub>2</sub>) gives (44) 4-bromodesoxybenzoin, m.p. 114-115°, b.p. 165° at 3 mm. (44).] — [For oxidn. of many of these with SeO2 to corresp. benzils see (38).]

[Č with phenols + AlCl<sub>3</sub> (often in nitrobenzene) similarly yields hydroxy-substituted desoxybenzoins: e.g., C with phenol as directed gives (60-70% yield (45)) 4-hydroxydesoxybenzoin [Beil. VIII-165], m.p. 142° cor. (45); C with o-cresol gives (60-70% yield (46) 4-hydroxy-3-methyldesoxybenzoin [Beil, VIII-183], m.p. 152° (46); C with salicylic acid (1:0780) gives (47) 4-hydroxy-3-carboxy-desoxybenzoin; for similar reactn. with catechol resorcinol, and hydroquinone (48) or with phloroglucinol (49) see indic. refs.]

[C with phenol ethers + AlCl<sub>3</sub> (often in nitrobenzene) similarly yields substituted desoxybenzoins: e.g., C with anisole (1:7445) + SnCl4 (51) or AlCl3 (34) (50) gives 4methoxydesoxybenzoin [Beil. VIII-166, VIII<sub>1</sub>-(571)], m.p. 77°; C with methyl m-tolyl ether (1:7510) + SnCl<sub>4</sub> (not AlCl<sub>3</sub>) gives (60-70% yield (51)) (50) 4-methoxy-2-methyldesoxybenzoin, m.p. 76.5° (51); C with methyl p-tolyl ether (1:7495) + AlCl<sub>3</sub> in CS<sub>2</sub> gives (11) 2-methoxy-5-methyldesoxybenzoin, m.p. 75°, b.p. 205-207° at 14 mm. (11).]

C with phenols on htg. gives corresp. esters: e.g., C with phenol at 150° for 8 hrs. (6) (or C with phenol + aq. alk. (52)) yields phenyl phenylacetate [Beil. IX-435], ndls. from lt. pet., m.p. 50° (6), 42° (52);  $\bar{C}$  with  $\beta$ -naphthol at 150° for 6 hrs. yields (6)  $\beta$ -naphthyl phenylacetate, pl. from lt. pet., m.p. 87° (6); C with o-cresol at 90° yields (9) o-tolyl phenylacetate, m.p. 44-45° (9);  $\ddot{C}$  with m-cresol at 90° yields (9) m-tolyl phenylacetate, m.p. 51-52° (9); C with p-cresol at 90° yields (9) p-tolyl phenylacetate, m.p. 74-75° (9).

[C with MeZnI (53) in toluene + FtOAc or with Me<sub>2</sub>Zn (54) gives (72% yield (53)) benzyl methyl ketone (phenylacetone) (1:5118); C with EtZnI (53) or with EtzZn (54) gives (78% yield (53)) benzyl ethyl ketone [Beil. VII-314, VII<sub>1</sub>-(167)].]

(C + o-hydroxyacetophenone (1:1746) + NaĀ at 180° for 6 hrs. followed by hydrol.with alc. KOH gives (6) 4-methyl-3-phenylcoumarin, m.p. 153° (6); C with 2-hydroxy-5methylbenzophenone + Na $\overline{A}$  at 180° gives (80–90% yield (55)) 3,4-diphenyl-6-methylcoumarin, cryst. from AcOH, m.p. 208-209° (55).]

[C with diazomethane in ether gives acc. to cond. (56) (57) (58) (62) either (yield: 84%) (56), 83% (62)) α-chloro-γ-phenylacetone [Beil. VII<sub>1</sub>-(162)], m.p. 72-73° (56), b.p. 133-135° at 19 mm. (62),  $n_D^{20} = 1.5379$  (62), or  $\alpha$ -diazo- $\gamma$ -phenylacetone (identified by reactn. with p-nitrobenzoic acid yielding (58)  $\alpha$ -(p-nitrobenzoyloxy)- $\alpha$ -phenylacetone, pl. from alc., m.p. 120° (58)); note, however, that work of (56) could not be duplicated by later investigators (58) (62).1

 $[\bar{C}]$  with biuret yields (59)  $N_1$ -(phenylacetyl)biuret, cryst. from alc., m.p. 199-200° u.c. dec. (59).1

[C with ethyl carbamate (urethane) at 60-70° gives (70% yield (60)) ethyl N-(phenylacetyl)carbamate, m.p. 113° (60).]

[C with MeOH yields methyl phenylacetate (1:3771), b.p. 220°; C with EtOH yields ethyl phenylacetate (1:3872), b.p. 227.5°.] [For use in prepn. of cellulose esters see (61).] C on hydrolysis yields phenylacetic acid (1:0665), m.p. 76.5°; for the amide, anilide, p-toluidide, and other derivs. corresp. to C see phenylacetic acid (1:0665)

3:9567 (1) Perkin, J. Chem. Soc. 69, 1205 (1896). (2) Bardan, Bull. soc. chim. (4) 49, 1428-1429 (3) Martin, Partington, J. Chem. Soc. 1936, 1177. (4) Schott, Ber. 29, 1985-1989 (5) Fourneau, Nicolitch, Bull. soc. chim (4) 43, 1239 (1928). (6) Chadha, Mahal, Venkatarman, J. Chem. Soc. 1933, 1461-1462. (7) Anschütz, Berns, Ber. 20, 1389-1392 (1887). (8) Bergs, Ber. 67, 240-241 (1934). (9) Raiford, Hildebrand, Am. J. Pharm. 101, 481-484 (1929); Cent. 1936, I 209. (10) Rupe, Ann. 369, 330 (1909). (11) von Auwers, Ber. 63, 2277, 2282-2283 (1920). (12) Kohlrausch, Pongrats, Monatsh. 64,

382 (1934). (13) Clark, Bell, Trans. Roy. Soc. Can. (3) 27, III 97-103 (1933). (14) Adams,

Ulich, J. Am. Chem. Soc. 42, 604 (1920). (15) Möller, Strecker, Ann. 113, 68 (1860). (16) Vanino, Thiele, Ber. 29, 1727, Note (1896). (17) Ivanov, Nicolov, Bull. soc. chim. (4) 51, 1333 (1932). (18) Weiss, Monatsh. 40, 394-395 (1919). (19) Metzner, Ann. 298, 375-376 (1897). (20) Allen, Barker, Org. Syntheses 12, 16-18 (1932); Coll. Vol. 2 (1st ed.), 156-158 (1943).

(21) Aeschliman, J. Chem. Soc. 1926, 2909. (22) Meyer, Monatsh. 22, 427-428 (1901). (23) Montonna, J. Am. Chem. Soc. 49, 2114-2116 (1927). (24) Rupe, Fiedler, J. prakt. Chem. (2) 84, 814 (1911). (25) Wedekind, Ber. 34, 2074-2077 (1901). (26) Durrans, J. Chem. Soc. 121, 49 (1922). (27) Wedekind, Ann. 378, 262-268, 275-283 (1910). (28) Rosenmund, Zetsche, Ber. 34, 337 (1921). (29) Fröschl, Danoff, J. prakt. Chem. (2) 144, 223-224 (1936). (30) Grignard, Mingasson, Compt. rend. 185, 1176 (1927).

(31) von Braun, Kochendorfer, Ber. 56, 2176 (1923). (32) Sugasawa, Tsuda, J. Pharm. Soc. Japan 56, 103-105 (1936); Cent. 1936, II 3670. (33) Graebe, Bungener, Ber. 12, 1079-1080 (1879). (34) Tiffeneau, Levy, Ditz, Bull. soc. chim. (5) 2, 1873-1874, 1875 (1935). (35) Mann, Ber. 14, 1646 (1881). (36) Kayser, Ann. chim. (11) 6, 187-188 (1936). (37) Wege, Ber. 24, 3540-3542 (1891). (38) Hatt, Pilgrim, Hurran, J. Chem. Soc. 1936, 94-95. (39) Ruggli, Reinert, Helv. Chim. Acta 9, 71-74 (1926). (40) Ferris, Turner, J. Chem. Soc. 117, 1148-1149 (1920).

(41) Delaville, Compt. rend. 184, 463 (1927). (42) Päpcke, Ber. 21, 1339 (1888). (43) Ruggli, Jenney, Helv. Chim. Acta 10, 231–232 (1927). (44) Speer, Hıll, J. Org. Chem. 2, 142 (1937). (45) Weisl, Monatsh. 26, 986–987 (1905). (46) Blau, Monatsh. 26, 1115–1153 (1905). (47) Glassner, Monatsh. 28, 282–285 (1907). (48) Finzi, Monatsh. 26, 1119–1138 (1905). (49) K. Rosenmund, M. Rosenmund, Ber. 61, 2610 (1928). (50) Ney, Ber. 21, 2450–2451 (1888).

(51) Hill, Short, J. Chem. Soc. 1935, 1125. (52) Stoermer, Biesenbach, Ber. 38, 1962 (1905). (53) Morgan, Drew, Porter, Ber. 58, 339-341 (1925). (54) Popov, J. Russ. Phys.-Chem. Soc. 4, 214 (1872); Ber. 5, 500-502 (1872). (55) Ziegler, Fries, Salzer, Ann. 448, 261 (1926). (56) Clibbens, Nierenstein, J. Chem. Soc. 107, 1492 (1915). (57) Lewis, Nierenstein, Rich, J. Am. Chem. Soc. 47, 1729 (1925). (58) Bradley, Schwarzenbach, J. Chem. Soc. 1928, 2906. (59) Ostrogovich, Tanislau, Gazz. chim. ital 64, 825-828 (1934); Cent. 1935, I 2820. (60) Basterfield, Woods, Wright, J. Am. Chem. Soc. 48, 2371-2372 (1926).

(61) I.G., Brit. 305,947, April 10, 1929; Cent. 1929, II 112. (62) McPhee, Klingsberg, J. Am. Chem. Soc. 66, 1134-1135 (1944).

3:9570 
$$d$$
, $l$ -CHLOROMETHYL-PHENYL-CARBINOL  $C_8H_9OCl$  Beil. VI —  $(\beta$ -Hydroxy- $\beta$ -phenylethyl chloride;  $H$  VI<sub>1</sub>-(236)  $\alpha$ -(chloromethyl)benzyl alcohol;  $C_8H_9OCl$   $M$ -CH<sub>2</sub>  $M$ -CH

B.P. 
$$128^{\circ}$$
 at 17 mm. (1)  $n_{\rm D}^{25} = 1.5538$  (2)  $1.8-126^{\circ}$  at 14 mm. (2)  $1.5520$  (2)  $1.2-114^{\circ}$  at 10 mm. (3)  $D_4^{20.5} = 1.1646$  (4)  $n_{\rm D}^{20.5} = 1.5400$  (4)  $1.0-112^{\circ}$  at 5 mm. (5)  $D_-^0 = 1.225$  (1)  $n_-^{17} = 1.55405$  (1)

[For prepn. of  $\bar{C}$  from phenylethylene (styrene) (1:7435) by addition of HOCl generated from Ca(OCl)<sub>2</sub> + CO<sub>2</sub> (76% yield (2)), from NaOCl + CO<sub>2</sub> (6), from N-chlorourea + AcOH (yield: 70% (1), 52% (4)), or from ter-butyl hypochlorite (3:7165) in dil. AcOH (60-70% yield (4)) see indic. refs. (note that omission of AcOH in ter-BuOCl method leads to formn. by direct addn. (4) of chloromethyl-phenyl-carbinyl ter-butyl ether, b.p. 87-88° at 1.5 mm.,  $D_4^{14} = 1.0549$ ,  $n_D^{15} = 1.5102$  (4)).]

[For prepn. of  $\bar{C}$  from chloroacetaldehyde (3:7212) with  $C_6H_5MgBr$  in ether (71% yield (3)) or from  $\alpha,\beta$ -dichloro- $\alpha$ -phenylethane (styrene dichloride) (3:6685) with a mild dehydrochlorinating agent such as Na<sub>2</sub>CO<sub>3</sub>, NaOAc, CaO, or CaCO<sub>3</sub> (but not an alkali hydroxide) as directed (5) see indic. refs.]

[C with alc. KOH (1) or with an alk. or alk.-earth metal oxide or hydroxide as directed (7) (8) loses HCl with ring closure to phenylepoxyethane (styrene oxide) [Beil. XVII-49 cf. (2), b.p. 191-192°, but no phenylacetaldehyde (1:0200) is formed (1) (for use of this

conversion to remove  $\tilde{C}$  from mixtures with styrene dichloride (3:6685) see (7) (8)). — However,  $\tilde{C}$  with NaOEt gives (yield not reported (1)) cf. (3) ethyl  $\beta$ -hydroxy- $\beta$ -phenylethyl ether [Beil. VI-907], b.p. 242-243°.]

[ $\tilde{C}$  on dehydration by passing over HPO<sub>3</sub> on silica gel at 370–400° and 95–115 mm. press. gives (63% yield (9))  $\beta$ -chlorostyrene (3:8717).]

[Č on passing over activated Al<sub>2</sub>O<sub>3</sub> at 360-390° and 115-125 mm. press. gives (67% yield (9)) acetophenone (1:5515), but Č on passing over CaCO<sub>3</sub> on silica gel at 325-350° and 105-125 mm. press. gives (51% yield (9)) phenylacetaldehyde (1:0200).]

Č with pyridine at 120° for 6 hrs. gives in quant. yield (10) the corresp. quaternary pyridinium salt; m.p. 210-212° dec., sol. in aq., MeOH, EtOH, but spar. sol. in other org. solvents.

 $\ddot{C}$  on oxidn. with  $K_2Cr_2O_7/H_2SO_4/AcOH$  at low temp. (1) cf. (4) gives (84% yield (4))  $\omega$ -chloroacetophenone (phenacyl chloride) (3:1212).

- ——Chloromethyl-phenyl-carbinyl acetate: b.p.  $101-104^{\circ}$  at 3 mm.,  $n_D^{12}=1.5182$  (4). [From  $\bar{C}$  with  $Ac_2O$  + pyridine (66% yield (4)).]
- ---- Chloromethyl-phenyl-carbinyl benzoate: unreported.
- ① Chloromethyl-phenyl-carbinyl p-nitrobenzoate: m.p. 81° (4). [From C with p-nitrobenzoyl chloride in pyridine (4).]
- --- Chloromethyl-phenyl-carbinyl 3,5-dinitrobenzoate: unreported.

3:9570 (1) Detoeuf, Bull. soc. chim. (4) 31, 176-177 (1922). (2) Emerson, J. Am. Chem. Soc. 67, 516-518 (1945). (3) Späth, Monatsh. 36, 6-7 (1915). (4) Hanby, Rydon, J. Chem. Soc. 1946, 114-115. (5) I.G., French 735,108, Nov. 3, 1932; Cent. 1933, II 1093; C.A. 27, 1011 (1933). (6) Essex, Ward (to du Pont Co.), U.S. 1,594,608, Aug. 3, 1926; Cent. 1926, II 1693; C.A. 20, 3170 (1926). (7) I.G., Brit. 381,459, Oct. 27, 1932; Cent. 1933, I 506; C.A. 27, 3950 (1933). (8) Knorr (to I.G.) Ger. 559,551, Sept. 21, 1932; Cent. 1933, I 1843; C.A. 27, 736 (1933): French 735,000, Oct. 31, 1932; Cent. 1933, I 1843; C.A. 27, 1011 (1933). (9) Emerson, Agnew, J. Am. Chem. Soc. 67, 518-520 (1945). (10) Gautier, Compt. rend. 198, 1430-1431 (1934).

3:9576 SUBERYL (DI)CHLORIDE 
$$C_8H_{12}O_2Cl_2$$
 Beil. II - 694 O=C-(CH<sub>2</sub>)<sub>6</sub>-C=O II<sub>1</sub>-(287) C<sub>1</sub> C<sub>1</sub> C<sub>1</sub> C<sub>1</sub>

B.P. 
$$162-163^{\circ}$$
 at 15 mm., sl. dec. (1)  $D_4^{20.8} = 1.1718$  (3)  $n_D^{20.6} = 1.46847$  (3)  $159-160^{\circ}$  at 12 mm. (2)  $149-150^{\circ}$  at 12 mm. (3)  $147^{\circ}$  at 12 mm. (4)  $143-147^{\circ}$  at 12 mm. (5)

[For prepn. of  $\bar{C}$  from suberic acid (1:0755) with PCl<sub>5</sub> (1), with PCl<sub>3</sub> (4), or with SOCl<sub>2</sub> (yield: 100% (2)) (3) (5) (6) (8) (10) see indic. refs.]

[ $\bar{C}$  with excess MeOH yields (6) dimethyl suberate (1:4186), b.p. 268°.  $\bar{C}$  with 1 mole MeOH should yield 7-carbomethoxyheptanoyl chloride-1, b.p. 163-165° at 34 mm. (7), usually prepd. from methyl hydrogen suberate with SOCl<sub>2</sub> (7).]

C with excess phenol htd. at 100° yields (8) diphenyl suberate, m.p. 70-71° (8).

Č htd. with dry disodium subcrate yields (1) subcric anhydride, m.p. 65-66° (1), presumably the linear polymeric subcric α-anhydride (cf. 1:0755).

 $\tilde{C}$  with AlCl<sub>3</sub> + C<sub>6</sub>H<sub>6</sub> yields (1) (4) 1,8-diphenyloctanedione-1,8, m.p. 85° (4), 83-85° (1) (dioxime, m.p. 192-193° (1)).

[Č on cat. hydrogenation over Pd/diatomaceous earth as directed (9) yields suberic dialdehyde (octanedial-1,8), (bis-oxime, m.p. 152° (9), bis-phenylhydrazone, m.p. 84-86° u.c. (9), bis-semicarbazone, m.p. 183-185° (9)) cf. (2).]

1321

 $\bar{C}$  treated with Br<sub>2</sub>, then poured into abs. formic acid and boiled until evolution of CO ceases, yields (10)  $\alpha,\alpha'$ -dibromosuberic acid, m.p. 172-173° (10). [From the mother liq. a small amt. of another form, m.p. 120-121° (10), can be obtd.]

C on hydrolysis yields suberic acid (1:0755), m.p. 141° (for the diamide, dianilide, di-z-toluidide, and other derivs. corresp. to C see 1:0755).

3:9576 (1) Etaix, Ann. chim. (7) 9, 386-391 (1896). (2) Fröschl, Maier, Monatsh. 59, 273-274 (1932). (3) von Auwers, Schmidt, Ber. 46, 479 (1913). (4) Borsche, Wolleman, Ber. 45, 3717 (1912). (5) Blaise, Koehler, Bull. soc. chim. (4) 5, 690 (1909). (6) Meyer, Monatsh. 22, 421 (1901). (7) Morgan, Walton, J. Chem. Soc. 1935, 292. (8) Marangoni, Atti ist. Veneto sci. Pt. 2. Sci. math. nat. 97, 209-218 (1937-1938); Cent. 1939, I 96; C.A. 34, 6934-6935 (1940). (9) Rosenmund, Zetsche, Ber. 54, 2889-2890 (1921). (10) Goss, Ingold, J. Chem. Soc. 1926, 1473.

3:9578 DIETHYL  $d_1l$ - $\alpha_1\alpha'$ -DICHLOROSUCCINATE  $C_8H_{12}O_4Cl_2$  Beil. II - 620 (Diethyl allo-dichlorosuccinate; COOC<sub>2</sub>H<sub>5</sub> II<sub>1</sub>— diethyl isodichlorosuccinate) H-C-Cl H-C-Cl H-C-Cl COOC<sub>2</sub>H<sub>5</sub>

B.P. 132° cor. at 15 mm. (1) 
$$D_4^{90} = 1.1636$$
 (1)  $n_D^{61.5} = 1.4296$  (1) 129.5° at 12.5 mm. (1)  $D_4^{77} = 1.1963$  (1)  $n_D^{10} = 1.4512$  (1)  $n_D^{17.5} = 1.4521$  (1)

Stable oil (1), contrary to earlier (2) report.

[For prepn. of  $\bar{C}$  from  $d,l-\alpha,\alpha'$ -dichlorosuccinic acid (3:4711) in EtOH with HCl gas see (1) cf. (2).]

 $\overline{C}$  with 30%  $H_2SO_4$  on boilg. not only hydrolyzes but also loses HCl yielding (3) chlorofumaric acid (3:4853).

**3:9578** (1) Kuhn, Wagner-Jauregg, Ber. **61**, 485–486, 504 (1928). (2) van der Riet, Ann. **286**, 221 (1894). (3) Patterson, Todd, J. Chem. Soc. **1929**, 1769–1770.

3:9580 ISOAMYL d,l- $\alpha$ -CHLOROPROPIONATE H  $C_8H_{15}O_2Cl$  Beil. S.N. 162

B.P.— 
$$D_4^{20} = 1.0050 (1) \quad n_D^{20} = 1.4289 (1)$$

3:9580 (1) Schjanberg, Z. physik. Chem. A-172, 231 (1935).

#### B.P. 180-195° at 0.5 mm. (1)

Viscous oil, insol. in aq. but slowly dissolving when shaken with aq. because of hydrolysis to triethylene glycol (1:6538) + chloroacetic ac. (3:1370) (1).

3:9588 (1) Meerwein, Sönke, J. prakt. Chem. (2) 137, 317 (1933).

3:9590 8-CHLORO-OCTANOL-1 CH<sub>2</sub>.(CH<sub>2</sub>)<sub>6</sub>.CH<sub>2</sub>OH C<sub>8</sub>H<sub>17</sub>OCl Beil. S.N. 24 (ω-Chloro-n-octyl alcohol)

B.P. 139° at 18.5 mm. (1) 125-140° at 18 mm. (2)

[For prepn. of  $\bar{C}$  from  $\alpha, \omega$ -octamethylene glycol (m.p. 63°, b.p. 167–168° at 18 mm. (2)) with conc. HCl as directed (yields: 81% (2), 75% (1), 65% (3)) see indic. refs.]

Č with thiophenol in aq. NaOH htd. 3 hrs. gives (2) 8-hydroxy-n-octyl phenyl sulfide, pl. from lt. pet., m.p. 55° [this prod. with SOCl<sub>2</sub> gives (2) 8-chloro-n-octyl phenyl sulfide, cryst. from aq. alc. at low temp., m.p. 16°].

[ $\bar{\mathbf{C}}$  (1 mole) with Et<sub>2</sub>NH (3-4 moles) in s.t. at 120-160° for 12-15 hrs. gives (88% yield (1)) 8-(diethylamino)octanol-1, b.p. 151° at 12 mm.,  $D_4^{15.5} = 0.8610$ ,  $n_D^{19} = 1.4570$  (1) cf. (5) (corresp. *p*-nitrobenzoate, m.p. 74° (1)); this prod. with SOCl<sub>2</sub> in C<sub>6</sub>H<sub>6</sub> yields (1) (5) 8-(diethylamino)-*n*-octyl chloride, b.p. 130.5° at 11 mm.,  $n_D^{18} = 1.4535$  (1) cf. (5) (corresp.  $\bar{\mathbf{B}}$ .HCl, m.p. 73° (5)).]

 $\bar{C}$  with morpholine gives (4) alm. quant. 8-(4-morpholinyl)octanol-1, b.p. 164.0-164.2° at 5 mm.,  $D_4^{25} = 0.9675$ ,  $n_D^{27} = 1.4735$  (corresp.  $N-(\alpha-\text{naphthyl})$ carbamate, m.p. 73.0-74.0° cor.) —  $\bar{C}$  (1 mole) with N-phenylpiperazine (2 moles) at 100° for 5 hrs gives (3) in alm. 100% yield (as salt) N-(8-hydroxy-n-octyl)-N'-phenylpiperazine, m.p. 57.0-58.5° cor. (corresp. N-phenylcarbamate, m.p. 99.5-100.5° cor.); note that this free base readily absorbs an from air to form a monohydrate, m.p. 80-82° (3).

- **8-Chloro-n-octyl N-phenylcarbamate:** ndls from aq. alc, m.p. 77° (2).
- **© 8-Chloro-n-octyl** N-(m-nitrophenyl)carbamate: m p. 62° (1)

**3:9590** (1) Altman, Rec. trav. chim **57**, 951-952 (1938). (2) Bennett, Mosses, J. Chem. Soc. **1931**, 1698-1701. (3) Anderson, Pollard, J. Am. Chem. Soc. **61**, 3439-3440 (1939). (4) Anderson, Pollard, J. Am. Chem. Soc. **61**, 3440-3441 (1939). (5) Pyman, Levene (to Boot's Pure Drug Co.), Brit. **402**,159, Dec. 21, 1933; Cent. **1934**, I 2005, C.A. **28**, 3081 (1934).

3:9594 
$$\beta$$
-CHLORO- $n$ -BUTYRALDEHYDE  $C_8H_{17}O_2Cl$  Beil. I - 663 DIETHYLACETAL  $CH_3.CH$   $CH_2.CH(OC_2H_5)_2$   $I_1$ —  $I_2$ -(724)

B.P. 70-71° at 12 mm. (1) 
$$D_4^{20} = 0.9677$$
 (2)  $n_D^{20} = 1.42103$  (2)

Oil insol. aq.; misc. with alc., C6H6, AcOH, or CHCl3 or pet. ether.

[For prepn. of  $\tilde{C}$  from crotonaldehyde (1:0150) with abs. EtOH + dry HCl (yield: 66% (1), 50% (3)) (2) see indic. refs.]

Č on distn. with dry KOH gives (70-80% yield) crotonaldehyde diethylacetal [Beil. I-730, I<sub>1</sub>-(380), I<sub>2</sub>-(789)], b.p. 146-148°.

[For reactn. of  $\tilde{C}$  with alc. NH<sub>3</sub> in s.t. at 120-130° giving (20% yield (4))  $\beta$ -amino-n-butyraldehyde diethylacetal see (4); for analogous behavior of  $\tilde{C}$  with other amines see (4) (3).]

3:3594 (1) Wohl, Frank, Ber. 35, 1905–1906 (1902). (2) Wichterle, Vavrecka, Collection Czechoslov. Chem. Commun. 10, 494 (1938). (3) Mason, J. Chem. Soc. 127, 1033 (1925). (4) Mannich, Horkheimer, Arch. Pharm. 264, 171–172 (1926).

#### CHAPTER XXII

### DIVISION C. LIQUIDS WITH BOILING POINTS REPORTED ONLY UNDER REDUCED PRESSURE

3:9600-3:9999 (C<sub>9</sub>-C<sub>18</sub> inclusive) (Arranged in sequence of empirical formulas)

3:9604 1-CHLORO-1-PHENYLPROPENE-1 
$$C_8H_9Cl$$
 Beil. V —  $C=CH-CH_3$   $V_1-(232)$   $V_2-(372)$ 

B.P. 
$$90.5^{\circ}$$
 at 9 mm. (1)  $D_4^{20} = 1.085$  (1)  $D_D^{14.6} = 1.0890$  (1)  $n_D^{14.6} = 1.56352$  (1)

[For prepn. of C from ethyl phenyl ketone (propiophenone) (1:5525) by treatment with PCl<sub>5</sub> followed by alc. KOH see (1).]

[ $\bar{C}$  with NaNH<sub>2</sub> in toluene at 110° gives traces (2) of methyl-phenyl-acetylene [Beil. V-514, V<sub>2</sub>-(408)].]

3:9604 (1) von Auwers, Ber. 45, 2799-2801 (1912). (2) Bourgeul, Ann. chim. (10) 3, 351 (1925).

B.P. 118-123° at 28 mm. (1) 
$$D_4^{19} = 1.0738$$
 (3)  $n_D^{19} = 1.5565$  (3)  $120-124$ ° at 26 mm. (2)  $D_4^{0} = 1.0912$  (3)  $0.5-62.5$ ° at 2 mm. (3)

[For prepn. of  $\bar{C}$  from benzyl methyl ketone (phenylacetone) (1:5118) with PCl<sub>5</sub> in C<sub>6</sub>H<sub>6</sub> (26.3% yield accompanied by 45.9% of the mesomeric 2-chloro-3-phenylpropene-1 (3:9608)) see (2); from 2,3-dichloro-1-phenylpropene-1 (3) by partial reduction with Zn dust in EtOH under N<sub>2</sub> (70% yield accompanied by 16-20% 1-phenylpropadiene-1,2 (phenylallene)) see (3); for formn. as by-prod. during addn. of HOCl to  $\alpha$ -methylcinnamic acid see (1).

Note that  $\ddot{C}$  on stdg. isomerizes in part (2) to the mesomeric 2-chloro-3-phenylpropene-1 (3:9608).

 $\bar{C}$  (freshly distilled) with O<sub>3</sub> in CHCl<sub>3</sub> gives (2) benzoic acid (1:0715);  $\bar{C}$  on oxidn. with KMnO<sub>4</sub> yields (3) benzoic acid (1:0715) + AcOH (1:1010) (note difference from the mesomer).

3:9606 (1) Hose, Farmer, J. Chem. Soc. 1933, 965. (2) Zaki, Iskander, J. Chem. Soc. 1943, 68-69. (3) Ginzburg, J. Gen. Chem. (U.S.S.R.) 8, 1029-1041 (1938); Cent. 1939, I 2183; C.A. 33, 3776 (1939).

1324

B.P. 140° at 37 mm.

M.P. 8-9°

 $D_4^{25} = 1.08815$ 

 $n_{\rm D}^{25} = 1.58065$ 

See 3:0010. Division A: Solids.

3:9608 2-CHLORO-3-PHENYLPROPENE-1

#### B.P. 105-107° at 26 mm. (1)

[For prepn. of  $\bar{C}$  from benzyl methyl ketone (phenylacetone) (1:5118) with PCl<sub>5</sub> in  $C_6H_6$  (yield 45.9% accompanied by 26.3% of the mesomeric 2-chloro-1-phenylpropene-1 (3:9606)) see (1).]

C on stdg. isomerizes in part to the mesomeric 2-chloro-1-phenylpropene-1 (3:9606)(1).

Č (freshly distilled) with O<sub>3</sub> in CHCl<sub>3</sub> contg. some EtOH yields (1) ethyl phenylacetate (1:3872) (note difference from the mesomer).

3:9698 (1) Zaki, Iskander, J. Chem. Soc. 1943, 68-69.

3:9610 α-CHLORO-ISOPROPYLBENZENE
(Dimethyl-phenyl-carbinyl

chloride; 2-chloro-2-phenylpropane)

No physical constants for C appear to have been reported, presumably because of its ease of decomposition.

[For prepn. of  $\bar{C}$  from dimethyl-phenyl-carbinol [Beil. VI-506] by saturation with dry HCl gas at 0° see (1) (2).]

 $\tilde{C}$  on htg. evolves HCl (1). —  $\tilde{C}$  in  $C_6H_6$  + SnCl<sub>4</sub> stood for several hours below 10° gives (88% yield) the "saturated dimer of  $\alpha$ -methylstyrene," i.e., 1,1,3-trimethyl-3-phenyl-hydrindene, cryst. from alc., m.p. 52° (3).

 $\bar{C}$  on slow addn. to boilg. alc. KOH (4) or on warming with pyridine (1) (4) loses HCl smoothly giving (70% yield (5))  $\alpha$ -methylstyrene ( $\beta$ -phenylpropylene) [Beil. V-484, V<sub>1</sub>-(233)], b.p. 161-162° (5).

 $\ddot{\mathbf{C}}$  dislvd. in MeOH and merely stood overnight gives (6) the corresponding ether, viz., 2-methoxy-2-phenylpropane, b.p. 78° at 13 mm.,  $D_4^{20} = 0.945$ ,  $n_D^{20} = 1.4981$  (6).

**3:9610** (1) Klages, Ber. **35**, 2638 (1902). (2) Hoffman, J. Am. Chem. Soc. **51**, 2546 (1929). (3) Schoepffle, Ryan, J. Am. Chem. Soc. **52**, 4028 (1930). (4) Tiffeneau, Ann. chim. (8) **10**, 156-157 (1907). (5) Harries, Ann. **390**, 265 (1912). (6) Ziegler, Schnell, Ann. **437**, 254-255 (1924).

3:9614 2-CHLORO-6-METHYL-5-METHYLENEHEPTENE-2 CoHisCl Beil. S.N. 10

B.P. 95-96° at 18 mm. (1)  $D_4^{25} = 0.9310$  (1)  $n_D^{25} = 1.4730$  (1)

[For prepn. of C from 2-methyl-3-methyleneheptanone-6 (thujaketone) [Beil. I-745, I<sub>1</sub>-(386)] with PCl<sub>5</sub> in the cold, then htd. at 100° for 2½ hrs. (40% yield), see (1).]

 $\bar{C}$  on oxidn. with KMnO<sub>4</sub> yields (1) 2-methylbutanone-3 (isopropyl methyl ketone) (1:5410) q.v.

3:9614 (1) Werner, Bogert, J. Org. Chem. 3, 585 (1939).

B.P. 75-77° at 15 mm. (1) 
$$D_{-}^{20} = 0.906$$
 (1)  $n_{D}^{20} = 1.450$  (1)

[For prepn. of  $\bar{C}$  from nonyne-1 (1:8125) by conversion with NaNH<sub>2</sub> to  $C_7H_{15}$ —C=C—Na and subsequent reactn. with benzenesulfonyl chloride in dry ether (55% yield (1)) see (1).] [Refractive indices of  $\bar{C}$  by Pulfrich instrument:  $n_C^{13} = 1.4492$ ,  $n_D^{13} = 1.4519$ ,  $n_F^{13} = 1.4582$ ,  $n_D^{13} = 1.4634$  (1).]

3:9618 (1) Truchet, Ann. chim. (10) 16, 335, 337 (1931).

3:9622 
$$d$$
, $l$ -2-CHLORO-2-METHYLOCTYNE-3 Cl C<sub>9</sub>H<sub>16</sub>Cl Beil. S.N. 12 CH<sub>3</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>3</sub>

B.P. 68° at 15 mm. (1) 
$$D_4^{20} = 0.8929$$
 (1)  $n_D^{20} = 1.4480$  (1)

[For prepn. of  $\bar{C}$  from 2-methyloctyn-3-ol-2 (1) by saturation with HCl gas (85% yield) see (1).]

[C with MeMgBr gives 74% yield 2,2-dimethyloctyne-3, b.p. 79° at 70 mm.,  $D_4^{20} = 0.7491$ ,  $n_2^{20} = 1.4270$  (1); C with EtMgBr gives 60% yield 3,3-dimethylnonyne-4, b.p. 82° at 40 mm.,  $D_4^{20} = 0.7650$ ,  $n_2^{20} = 1.4312$  (1).]

3:9622 (1) Campbell, Eby, J. Am. Chem. Soc. 62, 1799-1800 (1940).

#### B.P. 59-62° at 11 mm. (1)

[For prepn. of  $\bar{C}$  from 4-methylocten-3-ol-5 [Beil. I<sub>1</sub>-(230), I<sub>2</sub>-(492)] with conc. HCl see (1).]

3:9624 (1) Bjelouss, Ber. 45, 626 (1912).

#### B.P. 124-126° at 108 mm. (1)

[For prepn. of  $\bar{C}$  from 2-methylocten-6-ol-5 (isoamyl-propenyl-carbinol) [Beil. I-449,  $I_1$ -(230),  $I_2$ -(492)] with PCl<sub>5</sub> see {1}.]

3:9628 (1) Reif, Ber. 41, 2740, 2743, Note 1 (1908).

3:9630 4-CHLORO-3,6-DIMETHYLHEPTENE-2 Cl 
$$C_0H_{17}Cl$$
 Beil. I — CH<sub>3</sub>.CH=C-CH.CH<sub>2</sub>—CH.CH<sub>3</sub>  $I_1$  - (95)  $I_2$ — CH<sub>3</sub>  $CH_3$ 

#### B.P. 59-63° at 9 mm. (1)

[For prepn. of  $\tilde{C}$  from 2,5-dimethylhepten-5-ol-4 [Beil. I<sub>1</sub>-(231)] with 6 N HCl (78% yield) see (1).]

3:9630 (1) Abelmann, Ber. 43, 1582 (1910).

3:9632 
$$d$$
, $l$ -1,2-DICHLORONONANE Cl Cl C $_9$ H $_{18}$ Cl $_2$  Beil. S.N. 10 CH $_3$ .CH $_2$ .CH $_3$ .CH $_4$ .CH $_4$ .CH $_4$ .CH $_5$ .CH $_$ 

No data on C have apparently been reported.

[For prepn. of  $\bar{C}$  from nonene-1 (1:8385) by actn. of HOCl (together with 1-chlorononanol-2) see (1).]

3:9632 (1) Kiss (to Shell Development Co.), U.S. 1,767,291, June 24, 1930; Cent. 1930, II 1475.

 $\bar{\bf C}$  has not as yet been reported, although both the optical isomerides are known. The dextrorotatory form of  $\bar{\bf C}$ , from levorotatory nonanol-3 with HCl at 100° (1), or from levorotatory 3-iodononane with LiCl in MeOH (2), has b.p. 98° at 33 mm. (2), 87-89° at 24 mm. (1),  $D_4^{17}=0.8588$  (1). The levorotatory form of  $\bar{\bf C}$ , from dextrorotatory nonanol-3, with HCl at 100° (1), has b.p. 101° at 40 mm.,  $D_4^{17}=0.8540$  (1).

3:9638 (1) Pickard, Kenyon, J. Chem. Soc. 99, 71 (1911). (2) Levene, Rothen, Kuna, J. Biol. Chem. 120, 786 (1937).

**B.P.** 85-87° at 14 mm. (1) 
$$D_4^{15} = 0.8639$$
 (1)  $n_D^{15} = 1.4314$  (1)

[For prepn. of C from 5-bromononane by conversion to RMgBr and subsequent treatment with Cl.CN (68% yield) see (1).]

3:9640 (1) Grignard, Ono, Bull. soc. chim. (4) 39, 1592 (1926).

**B.P. 72.7-74.0° at 15 mm.** (1) 
$$D_4^{25} = 0.8680 \text{ (1)} \quad n_D^{25} = 1.4330 \text{ (2)} \\ n_D^{20} = 1.4351 \text{ (2)} \\ 1.4347 \text{ (1)}$$

[For prepn. of C from 3-methyloctanol-3 (n-amyl-ethyl-methyl-carbinol) (1) with HCl gas (72% yield) see (1).]

3:9642 (1) Whitmore, Williams, J. Am. Chem. Soc. 55, 408-409 (1933). (2) Smart, Quayle, J. Am. Chem. Soc. 67, 21 (1945).

B.P. 70.8-71.4° at 14.5 mm. (1) 
$$D_4^{25} = 0.8690$$
 (1)  $n_D^{25} = 1.4338$  (2)  $D_4^{20} = 0.8723$  (1)  $n_D^{20} = 1.4360$  (2)

[For prepn. of  $\tilde{C}$  from 4-methyloctanol-4 (n-butyl-methyl-n-propyl-carbinol) [Beil. I<sub>1</sub>-(211)] (1) with dry HCl at  $-10^{\circ}$  see (1).]

3:9644 (1) Whitmore, Woodburn, J. Am. Chem. Soc. 55, 363-364 (1933). (2) Smart, Quayle, J. Am. Chem. Soc. 67, 21 (1945).

B.P. 46.0° at 3 mm. (1) 
$$D_4^{25} = 0.8822$$
 (1)  $D_4^{20} = 0.8856$  (1)  $n_D^{20} = 1.4400$  (1)

[For prepn. of  $\tilde{C}$  from 3-ethylheptanol-3 (n-butyl-diethyl-carbinol) [Beil. I<sub>1</sub>-(211), I<sub>2</sub>-(457)] (1) with dry HCl gas at  $-10^\circ$  see (1).]

3:9646 (1) Whitmore, Woodburn, J. Am. Chem. Soc. 55, 363-364 (1933).

B.P. 67-68° at 12 mm. (1) 
$$D_4^{20} = 0.8821$$
 (1)  $n_D^{20} = 1.4438$  (2)  $0.884$  (2)  $0.884$  (2)  $0.884$  (2)  $0.884$  (2)  $0.884$  (1)  $0.884$  (2)  $0.884$  (2)  $0.884$  (1)

[For prepn. of  $\tilde{C}$  from 4-ethylheptanol-4 (ethyl-di-n-propyl-carbinol) [Beil. I-424, I<sub>1</sub>-(212), I<sub>2</sub>-(457)] by saturation with HCl gas see (1); for formn. of  $\tilde{C}$  from 3-n-propylhexene-2 (2) with conc. HCl see (2).]

[For data on density and parachor of C at 0°, 15°, 25°, and 65° see (3).]

[Č with AlCl<sub>3</sub> + C<sub>6</sub>H<sub>6</sub> gives 67% yield 4-ethyl-4-phenylheptane, b.p. 127-128° at 15 mm.,  $D_4^{20} = 0.8698$ ,  $n_D^{15} = 1.49211$  (1).]

3:9648 (1) Halse, J. prakt. Chem. (2) 89, 456-457 (1914). (2) Nasarov, Ber. 70, 624 (1937). (3) Quayle, Owen, Beavers, J. Am. Chem. Soc. 61, 3107-3111 (1939).

1328

B.P. 54° at 8 mm. (1) 
$$D_{4}^{23} = 0.8809$$
 (1)  $D_{2}^{20} = 0.885$  (1)  $n_{\rm D}^{20} = 1.4391$  (1)

[For prepn. of Č from 2,3-dimethylheptanol-3 (n-butyl-isopropyl-methyl-carbinol) (1) with dry HCl at 0° (86% yield) see (1).]

3:9650 (1) Whitmore, Evers, J. Am. Chem. Soc. 55, 813 (1933).

**B.P.** 63-64° at 15 mm. (1) 
$$D_4^{18.5} = 0.8692$$
 (1)  $n_D^{15} = 1.43457$  (1)

[For prepn. of  $\bar{C}$  from 2,5-dimethylheptanol-5 (ethyl-isoamyl-methyl-carbinol) [Beil. I-425,  $I_1$ -(212)] by saturation with dry HCl gas (75% yield (1)) see (1).]

[Č with AlCl<sub>3</sub> + C<sub>6</sub>H<sub>6</sub> yields (1) 5-phenyl-2,5-dimethylheptane, b.p. 122-123° at 14 mm.,  $D_4^{16} = 0.8788$ ,  $n_D^{13} = 1.49894$  (1).]

3:9652 (1) Halse, J. prakt. Chem. (2) 89, 455 (1914).

3:9654 d,l-3-CHLORO-2,2,3-TRIMETHYLHEXANE C<sub>2</sub>H<sub>10</sub>Cl Beil. S.N. 10

(ter-Butyl-methyl-n-propyl-carbinyl Cl CH<sub>3</sub>

chloride) CH<sub>3</sub>.CH<sub>2</sub>.CH<sub>2</sub> CH<sub>3</sub>

CH<sub>3</sub> CH<sub>3</sub>

B.P. 64.2-65.5° at 12.5-13 mm. (1) 
$$D_4^{20} = 0.8973$$
 (1)  $n_D^{20} = 1.4468$  (1)

[For prepn. of  $\bar{C}$  from 2,2,3-trimethylhexanol-3 (ter-butyl-methyl-n-propyl-carbinol) [Beil. I<sub>2</sub>-(458)] (1) by saturation with dry HCl at 0° see (1).]

3:9654 (1) Petrov, Karasev, Cheltzova, Bull. soc. chim. (5) 3, 172-173 (1936).

3:9656 3-CHLORO-2,2-DIMETHYL-3-ETHYLPENTANE C<sub>2</sub>H<sub>12</sub>Cl Beil. S.N. 10 (ter-Butyl-diethyl-carbinyl chloride) Cl CH<sub>3</sub>

CH<sub>3</sub>.CH<sub>2</sub>—C—C—CH<sub>3</sub>

B.P. 53-54° at 6 mm. (1)

[For prepn. of  $\bar{C}$  from 2,2-dimethyl-3-ethylpentanol-3 (ter-butyl-diethyl-carbinol) (1) with dry HCl gas at 0° see (1).]

C on distn. at 150 mm. loses HCl (1) yielding a nonene, b.p. 80.6-81° at 150 mm. (1).

3:9656 (1) Bartlett, Knox, J. Am. Chem. Soc. 61, 3119 (1939).

Beil. S.N. 640

3:9658 PHENYLPROPIOLYL CHLORIDE

B.P. 130-133° at 25-30 mm. (1) 115-116° at 17 mm. (2) 119° at 12 mm. (3)

[For prepn. of  $\bar{C}$  from phenylpropiolic acid (1:0745) with PCl<sub>5</sub> (1) (2) cf. (3), or refluxed with 7 pts. SOCl<sub>2</sub> (90-95% yield (4)) (3), or from sodium propiolate (available from pharmaceutical industry (5)) with SOCl<sub>2</sub> (5) but not PCl<sub>3</sub> (2), see indic. refs. Note that phenylpropiolic acid (1:0745) dislvd. in 2 pts. POCl<sub>3</sub> at 100° and htd. 3 min. beyond first sepn. of cryst. (6), or the acid refluxed with Ac<sub>2</sub>O (7), gives good yield 1-phenylnaphthalene-2,3-dicarboxylic anhydride [Beil. XVII-541, XVII<sub>1</sub>-(275)], ndls. from  $C_6H_6 + \lg r$ ., m.p. 255°.]

[For reactn. of  $\bar{C}$  with AlCl<sub>3</sub> + anisole (1:7445) yielding (1) (3) p-methoxyphenyl phenylethynyl ketone [Beil. VIII-199], m.p.  $100^{\circ}$  (1) (3) (dibromide, m.p.  $138-140^{\circ}$  (3)), see indic. refs.; for reactn. of  $\bar{C}$  with AlCl<sub>3</sub> + methyl p-tolyl ether (1:7495) giving (60% yield (5)) 2-hydroxy-5-methyl- $\beta$ -chlorochalcone, deep yel. ndls. from pet. eth., m.p. 95.5° (which in alc. on dropwise treatment with dil. aq. NaOH ring-closes by loss of HCl to give quant. (5) 6-methylflavone [Beil. XVIII-(206)], m.p.  $122^{\circ}$  (5)), see (5); for reactn. of  $\bar{C}$  with AlCl<sub>3</sub> + resorcinol (1:1530) in nitrobenzene to give 7-hydroxyflavone [Beil. XVIII-58], m.p. 241°, see (8).]

[For reactn. of C with diethyl sodio-malonate (4), ethyl sodio-acetoacetate (4), sodio-acetylacetone (4), with Na phenylacetylene or phenyl-ethynyl MgBr (9) see indic. refs.]

 $\tilde{C}$  on hydrolysis (presumably) yields phenylpropiolic acid (1:0745), m.p. 136°. For the amide, anilide, p-toluidide, and other derivs. corresp. to  $\tilde{C}$  see the acid (1:0745).

3:9658 (1) Stockhausen, Gattermann, Ber. 25, 3537-3538 (1892). (2) Rupe, Ann. 369, 329 (1909). (3) Watson, J. Chem. Soc. 85, 1324-1325 (1904). (4) Ruhemann, Merriman, J. Chem. Soc. 87, 1389-1395 (1905). (5) Simonis, Lear, Ber. 59, 2908-2913 (1926). (6) Michael, Ber. 39, 1911-1912 (1906). (7) Michael, Bucher, Am. Chem. J. 20, 91-92 (1898). (8) Seka, Prosche, Monatsh. 69, 289 (1936). (9) Hess, Weltzien, Ber. 54, 2515-2516 (1921).

3:9660 o-METHYLPHENACYL CHLORIDE (Chloromethyl o-tolyl ketone;

(Chloromethyl o-tolyl ketone;  $\omega$ -chloro-o-methylacetophenone)

C<sub>9</sub>H<sub>9</sub>OCl CH<sub>3</sub> CO.CH<sub>2</sub>Cl

B.P. 129-130° at 11 mm. (1)

Clear pale yel. liq. (1). — Strong lachrymator!

[For prepn. from benzyl MgCl + chloroacetic acid anhydride (3:0730) (42% yield (1)) see (1): from o-toluyl chloride (3:8740) + diazomethane see (2).]

C on oxidn, with NaOCl gives (56% yield (1)) o-toluic ac. (1:0690), m.p. 104° (1).

© Chloromethyl o-tolyl ketone semicarbazone: m.p. 103-105° (1).

3:9660 (1) Austin, Johnson, J. Am. Chem. Soc. 54, 656 (1932). (2) Mercer, Robertson, Cahn, J. Chem. Soc. 1935, 1000.

--- p-CHLOROPHENYL ETHYL C<sub>9</sub>H<sub>9</sub>OCl Beil. VII - 301
KETONE Cl ——CO.CH<sub>2</sub>CH<sub>3</sub> VII<sub>1</sub>—

B.P. 152° at 30 mm.

M.P. 35-36°

See 3:0340. Division A: Solids.

## 3:9664 a-CHLOROETHYL PHENYL KETONE H C9H9OCl Beil. S.N. 640 (a-Chloropropiophenone) CH3-C-CO-

B.P. 131-133° at 26 mm. (1)

[For prepn. (66.4% yield (1)) from  $\alpha$ -chloropropionyl chloride (3:5320) + C<sub>6</sub>H<sub>6</sub> + AlCl<sub>3</sub> see (1).]

3:9664 (1) Baker, Barkenbus, J. Am. Chem. Soc. 58, 263 (1936).

3:9680 AZELAYL (DI)CHLORIDE  $C_9H_{14}O_2Cl_2$  Beil. II - 709  $II_1-C_1$   $II_2-C_1$   $II_2-C_1$ 

B.P. 180-183° at 35 mm. (1) 166° at 18 mm. (2) 165° at 13 mm. (1) 140° at 0.4 mm. (3)

[For prepn. of  $\tilde{C}$  from azelaic acid (1:0695) with PCl<sub>5</sub> (1) or with SOCl<sub>2</sub> (2) (3) see indic. refs.]

[Č with 1 mole MeOH should yield 8-carbomethoxyoctanoyl chloride-1, b.p. 150-155° at 15 mm. (7), usually prepd. from methyl hydrogen azelate, b.p. 190-195° at 15 mm., m.p. 21-24° (7), with SOCl<sub>2</sub> (7).]

Č on htg. with disodium azelate yields (1) azelaic anhydride, m.p. 54-56° (1) (this prod. is probably the linear polymeric α-anhydride (see 1:0695)).

[ $\bar{C}$  with  $C_6H_6 + AlCl_3$  yields (1) 1,9-diphenylnonanedione-1,9, m.p. 44° (1);  $\bar{C}$  with toluene + AlCl<sub>3</sub> yields (4) 1,9-di-p-tolylnonanedione-1,9, m.p. 78-79° (4).]

C with phenol yields (5) (6) diphenyl azelate, m.p. 59-60° (6), 49-50° (5).

[C with MeZnI yields (2) undecanedione-2,10, m.p. 64° (2).]

Č on hydrolysis yields azelaic acid (1:0695), m.p. 106° (for the diamide, dianilide, di-p-toluidide, and other derivs. corresp. to Č see 1:0695).

3:9680 (1) Etaix, Ann. chim. (7) 9, 397-401 (1896). (2) Blaise, Koehler, Bull. soc. chim. (4) 5, 692 (1909). (3) Rusicka, Boekenoogen, Helv. Chim. Acta 14, 1332 (1931). (4) Borsche, Ber. 52, 2081-2082 (1919). (5) Bouchonnet, Compt. rend. 140, 1599 (1905). (6) Marangoni, Atti ist. Veneto sci. Pt. 2, Sci. math. nat. 97, 209-218 (1937-38); Cent. 1939, I 96; C.A. 34, 6934-6935 (1940). (7) Morgan, Walton, J. Chem. Soc. 1936, 903.

This compound is apparently unreported although the corresp. 2,3,6-trimethylbenzyl bromide, b.p. 146° at 23 mm., 130–132° at 14 mm., has been obtd. (41% yield (1)) from prehnitene (1,2,3,4-tetramethylbenzene) (1:7548) by bromination.

Certain derivatives of Č are, however, recorded here because of the desirability of comparison with the corresp. derivs. of 2,4,5-trimethylbenzyl chloride (3:9702) and of 2,4,6-trimethylbenzyl chloride (3:0372).

- 2,3,6-Trimethylbenzyl alcohol: m.p. 83.5-85° (1).
- 2,3,6-Trimethylbenzyl acetate: oil, b.p. 152° at 23 mm. (1).

3:9701 (1) Smith, Agre, J. Am. Chem. Soc. 60, 652-653 (1938).

3:9702 2,4,5-TRIMETHYLBENZYL CHLORIDE C<sub>10</sub>H<sub>13</sub>Cl Beil. V — V<sub>1</sub>— V<sub>2</sub> - (329)
CH<sub>2</sub>CH<sub>2</sub>Cl

3:9702-3:9712

B.P. 130° at 15 mm. (1) 111-116° at 6 mm. (2) 110° at 5 mm. (2) 98-108° at 1 mm. (3)

[See also the isomeric 2,4,6-trimethylbenzyl chloride (3:0372).]

[For prepn. of  $\bar{C}$  from 1,2,4-trimethylbenzene (pseudocumene) (1:7470) by chloromethylation with formalin (1:0145) + conc. HCl + HCl gas (yields: 70% (2), 40-43% (3)), or with paraformaldehyde + HCl + ZnCl<sub>2</sub> (4), or with chloromethyl methyl ether (3:7085) in AcOH without cat. (yields: 60% (1), 50-60% (5)) (note that some bis (chloromethylated) product is also formed) see indic. refs.; for prepn. of  $\bar{C}$  from 2,4,5-trimethylbenzyl alc. (see below) with conc. HCl under reflux 5 hrs. see (2).]

[Č on catalytic hydrogenation presumably yields 1,2,4-trimethylbenzene (pseudocumene) (1:7470) although this particular reaction is not actually reported cf. (1)]

[C on hydrolysis presumably yields 2,4,5-trimethylbenzyl alcohol, cryst. from alc., m.p. 83.0-83.5° (2); note, however that this reaction is not actually reported, the alc. having been obtd. by hydrolysis of its acetate, oil, b.p. 141-150° at 9 mm. (2).]

Č in alc. with aq. NaCN refluxed 5 hrs. gives (85% yield (2)) 2,4,5-trimethylbenzyl cyanide, m.p. 9-10°, b.p. 133-147° at 4 mm. (2); note that this nitrile upon hydrolysis with 50% H<sub>2</sub>SO<sub>4</sub> at 100° for 2½ hrs. gives 2,4,5-trimethylphenylacetic acid, crude m.p. 116-118° (2), pure m.p. 128-129° (2) (corresp. dinitro deriv., m.p. 203-203.5° (2)).

[For condensation of C with ethyl sodio-acetoacetate see (3).]

3:9762 (1) Vavon, Bolle, Calin, Bull soc. chim. (5) 6, 1025-1033 (1939). (2) Smith, MacMullen, J. Am. Chem. Soc. 58, 633-635 (1936). (3) John, Gunther, Ber. 74, 887-888 (1941). (4) Bert, Comp. rend. 186, 373-374 (1928). (5) Vavon, Bolle, Comp. rend. 204, 1826-1828 (1937).

B.P. 82° at 17 mm. (1) 
$$D_4^{20} = 0.8968$$
 (1)  $n_D^{20} = 1.4543$  (1)

[For prepn. of  $\bar{C}$  from 3-methylnonyn-4-ol-3 (1) by saturation with HCl gas (72% yield) see (1).]

[ $\tilde{C}$  with MeMgBr gives 73% yield 3,3-dimethylnonyne-4, b.p. 82° at 40 mm.,  $D_4^{20} = 0.7658$ ,  $n_D^{20} = 1.4313$  (1).]

3:9710 (1) Campbell, Eby, J. Am. Chem. Soc. 62, 1799-1800 (1940).

3:9712 5-CHLORODECENE-5 Cl C<sub>10</sub>H<sub>19</sub>Cl Beil. S.N. 11
CH<sub>3</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>2</sub>.CH<sub>3</sub>.

B.P. 99-100° at 28 mm. (1) 
$$D_4^{25} = 0.8753$$
 (1)  $n_D^{25} = 1.4448$  (1)

Two geom. stereoisomers of  $\tilde{C}$  are possible, but only this one has as yet been recognized. [For prepn. of  $\tilde{C}$  from decyne-5 (di-n-butylacetylene) [Beil. I<sub>2</sub>-(239)] with AcCl + SnCl<sub>4</sub>

(4-chloro-3-n-butylocten-3-one-2, b.p. 140-146° at 28 mm.,  $D_4^{25} = 0.9459$ ,  $n_D^{25} = 1.4612$ , is also formed (1)) see (1).]

3:9712 (1) Kroeger, Sowa, Nieuwland, J. Org. Chem. 1, 163-169 (1936).

#### B.P. 83-84° at 12 mm. (1)

[For prepn. of C from 2,6-dimethylocten-6-ol-5 [Beil. I-452, I<sub>1</sub>-(232)] with 6 N HCl see (1).]

3:9714 (1) Abelmann, Ber. 43, 1583 (1910).

B.P. 70-72° at 10 mm. (1)

For prepn. of  $\bar{C}$  from 3,4-diethylhexene-3 (1) with  $Cl_2 + NaHCO_3$  at 0° (60% yield accompanied by 40% yield of 3,4-dichloro-3,4-diethylhexane (3:9724)) see (1).]

Beil. S.N. 10

C on treatment with O<sub>3</sub> yields (1) acetaldehyde (1:0100) q.v.

3:9716 (1) Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1232-1246 (1938); Cent. 1939, II 4222; C.A. 33, 4190 (1939).

B.P. 147-148° at 11 mm. (1) 
$$D_4^{22} = 0.9941$$
 (1)

[For prepn. of C from decanediol-1,10 (decamethylene glycol) (1:5961) by htg. 1 day with excess SOCl<sub>2</sub> see (1).]

C with NaI in acetone refluxed 4 hrs., acetone evaporated, residual material htd. for 3 hrs. at 140-150° with thiourea in isoamyl alc., yields (1) decamethylene  $\omega, \omega'$ -bis-(isothiourea hydrochloride), m.p. 186° (1).

3:9720 (1) Kawai, Hosono, Shikinami, Yonechi, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 16, Nos. 306-309, 9-16 (1931); Cent. 1931, II 1694; C.A. 25, 5665 (1931).

3:9724 3,4-DICHLORO-3,4-DIETHYLHEXANE 
$$C_{10}H_{20}Cl_2$$
 Beil S.N. 10  $Cl$   $Cl$   $CH_2.CH_2$   $CH_3.CH_3$   $C_2H_5$   $C_2H_5$ 

B.P. 101-103 at 10 mm. (1)

 $D_4^{10} = 1.022 (1) \quad n_5^{15} = 1.47485 (1)$ 

[For prepn. of Č from 3,4-diethylhexene-3 (1) with Cl<sub>2</sub> + NaHCO<sub>3</sub> at 0° (yield 40% accompanied by 60% 4-chloro-3,4-diethylhexene-2 (3:9716)) see (1).]

3:9724 (1) Tishchenko, J. Gen. Chem. (U.S.S.R.) 8, 1232-1246 (1938); Cent. 1939, II 4222; C.A. 33, 4190 (1939).

B.P. 43-45° at 1 mm. (1) 
$$D_4^{25} = 0.8663$$
 (1)  $n_D^{25} = 1.4369$  (2)  $n_D^{20} = 1.4389$  (2) 1.4375 (1)

[For prepn. of  $\tilde{C}$  from 4-methylnonanol-4 (n-amyl-methyl-n-propyl-carbinol) (1) with HCl gas (85% yield (1)) see (1).]

3:9730 (1) Whitmore, Williams, J. Am. Chem. Soc. 55, 408-409 (1933). (2) Smart, Quayle, J. Am. Chem. Soc. 67, 21 (1945).

B.P. 75-77° at 10 mm. (3) 
$$D_4^{25} = 0.8676$$
 (1)  $D_4^{20} = 0.8707$  (1)  $D_D^{20} = 1.4382$  (1)

[For prepn. of  $\tilde{C}$  from 5-methylnonanol-5 (di-n-butyl-methyl-carbinol [Beil. I<sub>1</sub>-(213), I<sub>2</sub>-(460)] (1) by saturation with dry HCl gas at  $-10^{\circ}$  see (1).]

Č on refluxing with 2½ pts. aq. for 9 hrs. gives 14% of its halogen as halide ion (1) (the resultant olefin was not isolated).

[For behavior of  $\ddot{C}$  with naphthalene + AlCl<sub>3</sub> in CS<sub>2</sub> see (3).]

**3:9732** (1) Whitmore, Woodburn, J. Am. Chem. Soc. **55**, 363-364 (1933). (2) Woodburn, Whitmore, J. Am. Chem. Soc. **56**, 1394-1395 (1934). (3) Petrov, Kurbskii, J. Gen. Chem. (U.S.S.R.) **14**, 492-494 (1944); C.A. **39**, 4600 (1945).

3:9734 
$$d$$
, $l$ -3-CHLORO-3-ETHYLOCTANE  $C_{10}H_{21}Cl$  Beil S.N. 10 ( $n$ -Amyl-diethyl-carbinyl chloride)  $Cl$   $CH_3$ . $CH_2$ . $CH_2$ . $CH_3$ . $CH_2$ . $CH_3$ . $CH_4$ . $CH_5$ 

B.P. 42-43° at 0.5 mm. (1) 
$$D_4^{25} = 0.8792$$
 (1)  $n_D^{20} = 1.4423$  (1)

[For prepn. of C from 3-ethyloctanol-3 (n-amyl-diethyl-carbinol) [Beil. I-426] (1) with HCl gas (72% yield (1)) see (1).]

3:9734 (1) Whitmore, Williams, J. Am. Chem. Soc. 55, 408-409 (1933).

[For prepn. of  $\tilde{C}$  from 4-ethyloctanol-4 (n-butyl-ethyl-n-propyl-carbinol) [Beil. I<sub>2</sub>-(460)] (1) by saturation with dry HCl gas at  $-10^{\circ}$  see (1).]

3:9736 (1) Whitmore, Woodburn, J. Am. Chem. Soc. 55, 363-364 (1933).

B.P. 53-55° at 3 mm. (1) 
$$D_4^{20} = 0.8818$$
 (1)  $n_D^{20} = 1.4420$  (1)

[For prepn. of  $\bar{C}$  from 2,3-dimethyloctanol-3 (1) with dry HCl gas at 0° (77% yield) see (1).]

3:9738 (1) Whitmore, Evers, J. Am. Chem. Soc. 55, 813-814 (1933).

B.P. 88-89° at 12 mm. (1) 85-86° at 10 mm. (2)

[For prepn. of  $\bar{C}$  from 2,6-dimethyloctanol-8 [Beil. I-426,  $I_{1}$ -(214),  $I_{2}$ -(461)] (1) with dry HCl (1) or with PCl<sub>5</sub> (2) see indic. refs.]

[For conversion of  $\bar{C}$  to corresp. RMgCl and reactn. of latter with chloromethyl methyl ether (3:7085) to give (70% yield (1)) 1-methoxy-4,8-dimethylnonane, b.p. 94-94.5° at 14.5 mm.,  $n_D^{20} = 1.4240$  see (1).]

3:9749 (1) Smith, Ungnade, Austin, Prichard, Opie, J. Org. Chem. 4, 338-340 (1939). (2) Ishizaka, Ber. 47, 2454 (1914).

B.P. 80° at 12 mm. (1) 
$$D_4^{20} = 0.8779$$
 (1)  $n_D^{16} = 1.44209$  (1)

. [For prepn. of Č from 4-n-propylheptanol-4 [Beil. I-426, I<sub>1</sub>-(214), I<sub>2</sub>-(461)] by saturation with dry HCl see (1).]

[For data on density and parachor of C at 0°, 15°, 25°, 50°, and 75° see (2).]

[For reactn. of  $\bar{C}$  with AlCl<sub>3</sub> + C<sub>6</sub>H<sub>6</sub> yielding 4-phenyl-4-n-propylheptane, b.p. 140-141° at 15 mm.,  $D_4^{20} = 0.8694$ ,  $n_D^{15} = 1.4924$ , see (1).]

3:9742 (1) Halse, J. prakt. Chem. (2) 89, 459 (1914). (2) Quayle, Owen, Beavers, J. Am. Chem. Soc. 61, 3107-3111 (1939).

B.P. 82-83° at 25 mm. (1)

$$D_4^{20} = 0.8657$$
 (1)  $n_D^{15} = 1.43336$  (1)

[For prepn. of  $\bar{C}$  from 2,4,6-trimethylheptanol-4 (di-isobutyl-methyl-carbinol) [Beil. I-427, I<sub>1</sub>-(215)] (1) by saturation with dry HCl gas see (1).]

[For reactn. of  $\tilde{C}$  with AlCl<sub>3</sub> +  $C_6H_6$  to give 4-phenyl-2,4,6-trimethylheptane, b.p. 143-144° at 18 mm.,  $D_4^{20}=0.8753, n_D^{15}=1.49497$  see (1).]

3:9744 (1) Halse, J. prakt. Chem. (2) 89, 458-459 (1914).

3:9750 2,4,6-TRIMETHYLBENZOYL CHLORIDE 
$$C_{10}H_{11}OCl$$
 Beil. S.N. 943 (Mesito'yl chloride;  $CH_3$   $CH_3$ 

B.P. 
$$143-146^{\circ}$$
 at 60 mm. (1)  $D_4^{25}=1.0967$  (3)  $n_D^{25}=1.5263$  (3)  $118-119^{\circ}$  at 19 mm. (2)  $115.5-116.5^{\circ}$  at 18 mm. (3)  $85.0-85.5^{\circ}$  at 4 mm. (4)  $85.5-86.5^{\circ}$  at 2-3 mm. (5)

[For prepn. of  $\bar{C}$  from 2,4,6-trimethylbenzoic acid (mesitoic acid) [Beil. IX-553, IX<sub>1</sub>-(214)] (1) with SOCl<sub>2</sub> (90-97% yield (1)) (2) (3) (5) (6) see indic. refs.]

[ $\tilde{C}$  with MeOH yields (3) (4) methyl-2,4,6-trimethylbenzoate (mesitoate) [Beil. IX-553], b.p. 242°, 102-103° at 5.5 mm. (3), 101-102° at 3 mm.,  $n_D^- = 1.4970$  (4).]

[C with 2,4,6-trimethylphenyl MgBr yields (5) (6) 2,4,6,2',4',6'-hexamethylbenzophenone (dimesityl ketone), m.p. 138-139° (5), 136-137° (6); C with 2,4,6-trimethylphenacyl MgBr gives (7) 2,4,6,2',4',6'-hexamethyldibenzoylmethane (dimesitoylmethane), m.p. 96-97° (7).]

C on hydrolysis yields (4) 2,4,6-trimethylbenzoic acid, m.p. 152° (amide, m.p. 189° (9), 188–188.5° (4), 187–188° (8)).

3:9750 (1) Barnes, Org. Syntheses 21, 77-79 (1941). (2) Murray, Cleveland, Saunders, J. Am. Chem. Soc. 63, 3121 (1941). (3) Kadesch, Weller, J. Am. Chem. Soc. 63, 1311 (1941). (4) Norris, Young, J. Am. Chem. Soc. 57, 1424 (1935). (5) Nauta, Wuis, Rec. trav. chim. 56, 537-538 (1937). (6) Kohler, Baltaly, J. Am. Chem. Soc. 54, 4023 (1932). (7) Fuson, Fugate, Fisher, J. Am. Chem. Soc. 61, 2363 (1939). (8) Wheeler, Am. Chem. J. 23, 468 (1900). (9) Hantssch, Lucas, Ber. 28, 748 (1895).

3:9760 2-CHLORO-4-ter-BUTYLPHENOL

C<sub>10</sub>H<sub>18</sub>OCl

Beil. S.N. 530-a

B.P. 113-115° at 8 mm. (1)

85-86° at 3-4 mm. (2)

84.5-85° at 3-4 mm. (3)

[For prepn. of  $\bar{C}$  from *p-ter*-butylphenol (1:1510) by chlorination with *N*-chloroacetamide (cf. (4) (5)) see (1); for other methods see (2) (3).] [For study of mercuration of  $\bar{C}$  see (6).]

4-ter-Butyl-2-chlorophenyl p-nitrobenzyl ether: colorless pl. from EtOH, m.p. 90° (1).

3:9760 (1) Jones, J. Chem. Soc. 1942, 678. (2) Mills (to Dow Chem. Co.), U.S. 2,176,010, Oct. 10, 1939; C. A. 34, 858 (1940). (3) Mills (to Dow Chem. Co.), U.S. 2,221,807, Nov. 19, 1940; C.A. 35, 1936 (1941). (4) Orton, King, J. Chem. Soc. 99, 1185-1192 (1911). (5) Orton, Bradfield, J. Chem. Soc. 1927, 993. (6) Moness, Christiansen (to E.R. Squibb), U.S. 2,137,236, Nov. 22, 1938; Cent. 1939, I 5007; C.A. 33, 1885-1886 (1939).

4-CHLORO-5-ISOPROPYL-2- Cl C<sub>10</sub>H<sub>13</sub>OCl Beil. S.N. 531
METHYLPHENOL (CH<sub>3</sub>)<sub>2</sub>CH CH<sub>3</sub> ?

B.P. 158° at 52 mm.

M.P. 42-43°

See 3:0480. Division A: Solids,

113-120° at 1 mm. (3)

3:9770  $\beta$ -CHLOROETHYL- $\beta$ '-PHENOXYETHYL  $C_{10}H_{13}O_2C!$  Beil. VI — VI<sub>1</sub>—  $C_{10}H_{13}O_2C!$  Beil. VI — VI<sub>1</sub>— VI<sub>2</sub>— (150) chloride]

B.P. 149° at 10 mm. (1)  $D_{15}^{15} = 1.149$  (1) 138–143° at 8 mm. (2)

[For prepn. (60% yield (1)) from  $\beta,\beta'$ -dichlorodiethyl ether (3:6025) with alc. NaOC<sub>6</sub>H<sub>5</sub> (1 mole) see (1).]

[For reaction of C in CS<sub>2</sub> or C<sub>6</sub>H<sub>6</sub> with AlCl<sub>3</sub> + phthalic anhydride, succinic anhydride, maleic anhydride, acetic anhydride see (4).]

[For condensation with amines and phenols see (5); for use as plasticizer see (6).]

S:9770 (1) Cretcher, Koch, Pittenger, J. Am. Chem. Soc. 47, 1174 (1925). (2) Eastman Organic Chemicals, List No. 33 (1942). (3) Bruson (to Röhm and Haas Co.), U.S. 2,249,111, July 15, 1941; C.A. 35, 6698 (1941). (4) Bruson, Eastes, J. Am. Chem. Soc. 60, 2502-2505 (1938). (5) Röhm and Haas Co., French 824,887, Feb. 17, 1938; Cent. 1938, II 1861; C.A. 32, 6258 (1938). (6) Murray, Kenyon (to Eastman Kodak Co.), U.S. 1,946,635, Feb. 13, 1934; Cent. 1934, II 2153; C.A. 28, 2532 (1934).

3:9780 SEBACYL (DI)CHLORIDE 
$$C_{10}H_{16}O_{2}Cl_{2}$$
 Beil. II - 719  $C_{10}CC_{10}$   $C_{10}CCC_{10}$   $C_{10}CCC_{10}$   $C_{10}CCC_{10}$   $C_{10}CCC_{10}$   $C_{$ 

168-170° at 16 mm. (4) 152° at 15 mm. (5) 162-167° at 11 mm. (6) 155-156° at 8 mm. (7) 109-110° at 1-2 mm. (11)

[For prepn. of  $\bar{C}$  from sebacic acid (1:0730) with PCl<sub>5</sub> (90-95% yield (5) (2)) (4), with PCl<sub>3</sub> (3), with SOCl<sub>2</sub> (yield: 100% (1), 86% (6), 84% (7)) (8), 83% (11), or with SiCl<sub>4</sub> in  $C_6H_6$  + ether (37% yield (9)) see indic. refs.]

Č with MeOH (1 mole) followed by Na<sub>2</sub>CO<sub>3</sub> yields (1) methyl hydrogen sebacate, m.p. 36° (1); Č with abs. EtOH (1 mole) yields (7) 9-carbethoxynonanoyl chloride (C<sub>2</sub>H<sub>5</sub>OOC.(CH<sub>2</sub>)<sub>8</sub>.CO.Cl), b.p. 158−160° at 7 mm. (7) (corresp. 9-carbethoxynonanoic anilide, m.p. 60−61° (7)); Č with excess phenol yields (8) diphenyl sebacate, m.p. 65−66° (8).

[ $\bar{C}$  with AlCl<sub>3</sub> +  $C_6H_6$  (1:7400) gives (50% yield (2)) (4) 1,8-dibenzoyloctane, m.p. 91-92° (4), 88-89° (2);  $\bar{C}$  with AlCl<sub>3</sub> + m-xylene (1:7420) gives (10) 1,8-bis-(2,4-dimethylbenzoyl)octane.]

[ $\bar{C}$  with n- $C_6H_{13}MgBr$  gives (28% yield (7)) 10-ketopalmitic acid, m.p. 75-75.8° (7);  $\bar{C}$  with n- $C_8H_{17}MgBr$  gives (12% yield (7)) 10-ketostearic acid, mp.. 82-82.8° (7);  $\bar{C}$  with AgNCO yields (11) sebacyl di-isocyanate.

[C in xylene on cat. hydrogenation over Pd/CaCO<sub>3</sub> (6) or Pd/diatomaceous earth (5) gives (30-40% yield (5)) corresp. dialdehyde, decandial-1,10 [Beil. I<sub>2</sub>-(849)].]

 $\tilde{\mathbf{C}}$  on hydrolysis yields sebacic acid (1:0730); for the diamide, dianilide, di-p-toluidide, and other derivs. corresp. to  $\tilde{\mathbf{C}}$  see 1:0730.

3:9780 (1) Meyer, Monatsh. 22, 421 (1901). (2) Auger, Ann. chim. (6) 22, 361-364 (1891). (3) Borsche, Wollemann, Ber. 44, 3185-3186 (1911). (4) von Auwers, Schmidt, Ber. 46, 480 (1913). (5) Rosenmund, Zetsche, Ber. 55, 609-612 (1922). (6) Waser, Helv. Chim. Acta 8, 124-125 (1925). (7) Fordyce, Johnson, J. Am. Chem. Soc. 55, 3369-3370 (1933). (8) Marangoni, Atti ist. Veneto sci. Pt. 2. Sci. mat. nat. 97, 209-218 (1937-1938); Cent. 1939, I 96; C.A. 34, 6934-6935 (1940). (9) Montonna, J. Am. Chem. Soc. 49, 2115 (1927). (10) Borsche, Ber. 52, 2078, 2082 (1919).

(11) Lieser, Macura, Ann. 548, 226-254 (1941); Cent. 1942, II 146-148; C.A. 37, 4699 (1942).

## 3:9792 METHYL $\omega$ -(CHLOROFORMYL)PELARGONATE Beil. S.N. 178 ( $\omega$ -(Carbomethoxy)pelargonyl chloride) O $C_{11}H_{19}O_3Cl$

CH<sub>3</sub>OOC—(CH<sub>2</sub>)<sub>8</sub>—C—Cl

B.P. 177° at 23 mm. (1) 158-160° at 10 mm. (2)

Note that C is both an acid chloride and an ester.

[For prepn. of  $\tilde{C}$  from methyl hydrogen sebacate (itself obtd. (52-61% (2)) from sebacic acid (1:0730) + MeOH (1:6120)) by action of SOCl<sub>2</sub> (yields: 83-86% (2), 60-70% (1)) set indic. refs.]

- ω-(Carbomethoxy)pelargonamide (methyl sebacamate): cryst. from aq., m.p. 77.4° (3), 72–74° (2). [From Č with conc. aq. NH<sub>4</sub>OH at 8° (yields: 93–95% (2), 90% (3)); for dehydration of this prod. (64–71% yield) (3) with P<sub>2</sub>O<sub>5</sub> in acetylene tetrachloride to methyl ω-cyanopelargonate, b.p. 170° at 14 mm.,  $n_D^{25} = 1.4398$  (3), and use of latter in prepn. of high-mol.-wt. linear polymers (4), see indic. refs.]
- **3:9792** (1) Morgan, Walton, J. Chem. Soc. 1936, 904. (2) Bishop, Org. Syntheses 25, 71-72 (1945). (3) Biggs, Bishop, J. Am. Chem. Soc. 63, 944 (1944). (4) Bishop (to Bell Telephone Laboratories, Inc.), U.S. 2,277,033, March 24, 1942; C.A. 36, 4636 (1942).

3:9800 *n*-UNDECANOYL CHLORIDE 
$$C_{10}H_{21}OCl$$
 Beil. S.N. 162 (*n*-Hendecanoyl chloride)  $CH_{3}.(CH_{2})_{9}.C=O$   $Cl$  B.P. 119–120° at 40 mm. (1)  $n_{D}^{5}=1.4465$  (3)

123° at 11 mm. (2) 90° at 1 mm. (3)

Care must be taken to avoid confusion of  $\tilde{C}$  with *n*-undecyl chloride (1-chloroundecane) (3:8803).

[For prepn. of  $\tilde{C}$  from *n*-undecylic acid (1:0573) with SOCl<sub>2</sub> (yield: 95.5% (1)) (3) (4) see indic. refs.]

[ $\bar{C}$  with  $C_6H_6+AlCl_3$  should give *n*-undecyl phenyl ketone, but this compd. is unreported in the literature. —  $\bar{C}$  with toluene (1:7405) + AlCl<sub>3</sub> gives (80% yield (5)) *n*-undecyl *p*-tolyl ketone, m.p. 32°, b.p. 196–197° at 12 mm.(?)]

[ $\bar{C}$  with MeOH presumably gives methyl *n*-undecylate [Beil. II<sub>1</sub>-(154), II<sub>2</sub>-(314)], b.p. 123° at 9-10 mm. (6); similarly,  $\bar{C}$  with EtOH presumably gives ethyl *n*-undecylate [Beil. II-358, II<sub>1</sub>-(154)] (known in polymorphic forms for which see (7) (8) (9)); note, however, that prepn. of these esters by this means is not actually reported in the literature).]

 $[\bar{C}]$  with phenol presumably gives phenyl *n*-undecylate, but neither this cpd. nor either of the *n*-undecyl hydroxyphenyl ketones to be expected from its rearr. with AlCl<sub>3</sub> is reported in the literature. — However, for reaction of  $\bar{C}$  with hydroquinone (1:1590) see (10).]

[Č with sodium undecylate on htg. presumably gives undecylic anhydride, m.p. 36.7° (11), 35° (12), but this cpd. is actually reported only by other methods (11) (12).]

[For reaction of  $\hat{C}$  with diethyl sodioacetosuccinate [Beil. III-801, III<sub>1</sub>-(280), III<sub>2</sub>-(486)] and subsequent hydrolysis of prod. to  $\gamma$ -ketomyristic acid see (4).]

[ $\bar{C}$  with vanilly lamine (4-hydroxy-3-methoxybenzy lamine) gives (2) cf. (13) N-(vanilly l)-myristamide,  $\alpha$ -form, m.p. 69.5° (2);  $\beta$ -form, m.p. 62.0-62.5° (2); the m.p. of 54-56° reported earlier (13) may have been a mixture, but that of 73-74° by other workers (14) is unexplained.]

 $\bar{C}$  on hydrolysis yields undecylic acid (1:0573), m.p. 29.3°; for the amide, anilide, p-toluidide, and other derivatives corresp. to  $\bar{C}$  see undecylic acid (1:0573).

S:9900 (1) Fierz-David, Kuster, Helv. Chim. Acta 22, 86-89 (1939). (2) Ford-Moore, Phillips, Rec. trav. chim. 53, 856 (1934). (3) Haskelberg, Bergmann, J. Soc. Chem. Ind. 60, 166-168 (1941). (4) Robinson, J. Chem. Soc. 1930, 747-748. (5) Hasan, Stedman, J. Chem. Soc. 1931, 2120. (6) Lesser, Weiss, Ber. 47, 2519 (1914). (7) van Bellinghen, Bull. soc. chim. Belg. 47, 647, 659, 673, 674, 676, 677, (1938). (8) Mumford, Phillips, Rec trav. chim. 52, 181-194 (1933). (9) Meyer, Reed, J. Am. Chem. Soc. 55, 1582 (1933). (10) Asano, Hase, J. Pharm. Soc. Japan 60, 650-659 (1940); 61, 1-6 (1941); C.A. 36, 82 (1942).

(11) Wallace, Copenhaver, J. Am. Chem. Soc. 63, 699 (1941). (12) Backer, van der Baan, Rec. trav. chim. 56, 1166 (1937). (13) Nelson, J. Am. Chem. Soc. 41, 2125-2126 (1919). (14) Kobayashi, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 6, 166-184 (1927); Cent. 1928, I 1029.

3:9850 2,3-DICHLOROBIPHENYL

Cl Cl Beil. S.N. 479

B.P. 172° at 30 mm. (1) 170-176° at 19 mm. (2)

[For prepn. from 2-amino-3-chlorobiphenyl via diazo reactn. see (1); for other methods see (2).]

 $\bar{C}$  on oxidn. with  $CrO_3 + AcOH$  yields (1) 2,3-dichlorobenzoic acid (3:4650), m.p. 160° (1).

3:9850 (1) de Crauw, Rec. trav. chim. 50, 776-777 (1931). (2) Zerweek, Schütz (to General Aniline and Film Corp.), U.S. 2,280,504, April 21, 1942; C.A. 36, 5658 (1942).

- 2,4'-DICHLOROBIPHENYL C<sub>12</sub>H<sub>8</sub>Cl<sub>2</sub> Beil. S.N. 479

B.P. 191° at 30 mm.

M.P. 46°

See 3:0670. Division A: Solids.

3:9854 2,5-DICHLOROBIPHENYL Cl C<sub>12</sub>H<sub>8</sub>Cl<sub>2</sub> Beil. V — V<sub>1</sub>— V<sub>2</sub>-(483)

B.P. 182° at 30 mm. (1)

171° at 15 mm. (2)

147-148° at 8 mm. (3)

[For prepn. of C from 2-amino-5-chlorobiphenyl (1) (2), 4,4'-diamino-2,5-dichlorobiphenyl (20% yield (1)), or 2,5-dichloroaniline (3) via appropriate diazo reactions see (1) (2) (3).] C on oxidn. with CrO<sub>3</sub> + AcOH yields (1) (2) 2,5-dichlorobenzoic acid (3:4340), m.p. 152° (1), 154° (2).

[For study of reaction of C with NaOMe see (4).]

3:9854 (1) de Crauw, Rec. trav. chim. 50, 776-777 (1931). (2) Scarborough, Waters, J. Chem. Soc. 1927, 94. (3) I.G., French 851,131, Jan. 3, 1940; C.A. 36, 1950 (1942). (4) Ref. 1, pp. 784-785, 789.

— 3,4-DICHLOROBIPHENYL Cl Cl Cl<sub>12</sub>H<sub>8</sub>Cl<sub>2</sub> Beil. V — V<sub>1</sub>— V<sub>2</sub>—(483)

B.P. 195-200° at 15 mm.

M.P. 46°

See 3:0685. Division A: Solids.

-- 3,5-DICHLOROBIPHENYL Cl C<sub>12</sub>H<sub>8</sub>Cl<sub>2</sub> Beil. V -- V<sub>1</sub>-- V<sub>2</sub>-(484)

B.P. 180° at 15 mm.

M.P. 36°

See 3:0360. Division A: Solids.

Beil. S.N. 539

B.P. 176.6° at 5 mm.

M.P. 77°

See 3:1900. Division A: Solids.

3:9856 
$$\alpha$$
-NAPHTHYLACETYL CHLORIDE  $C_{12}H_{9}OCl$  Beil. IX — IX<sub>1</sub>-(278)

[For prepn. of  $\tilde{C}$  from  $\alpha$ -naphthylacetic acid (1:0728) with PCl<sub>5</sub> (4) (1), or with SOCl<sub>2</sub> alone (2) (5) or in C<sub>6</sub>H<sub>5</sub> (6), see indic. refs.]

Č with AlCl<sub>3</sub> in nitrobenzene (1) (but *not* by SnCl<sub>4</sub> in CS<sub>2</sub> at room temp. (2)) losses HCl and ring-closes yielding acenaphthenone (1:5200), m.p. 121° cor.

[ $\bar{C}$  with aminoacetic acid (glycine) yields (5) N-( $\alpha$ -naphthylacetyl) glycine, m.p. 153-154° (5). (For reactn. of  $\bar{C}$  with other amino acids and use as plant hormone see (5)).]

 $\bar{C}$  on hydrolysis yields  $\alpha$ -naphthylacetic acid (1:0728) q.v. for the corresp. amide and anilide.

3:9856 (1) Badische Anilin- und Soda-Fabrik, Ger. 230,237, Jan. 20, 1910; Cent. 1911, I 358. (2) Cook, Hewett, J. Chem. Soc. 1933, 1108. (3) Wolfram, Schörnig, Hausdörfer (to I.G.), Ger. 562,391, Nov. 1, 1932; Cent. 1933, I 849. (4) Boessneck, Ber. 16, 641 (1883). (5) Isler (to Hoffmann-LaRoche Inc.), U.S. 2,179,979, Nov. 14, 1939; C.A. 34, 1808 (1940); Brit. 510,138, July 27, 1939; Cent. 1939, II 3872; C.A. 34, 4080 (1940); Swiss 203,078, May 16, 1939; Cent. 1939, II 3872. (6) Gilman, Kirby, J. Am. Chem. Soc. 51, 3477, Note 18 (1929). (7) King, Henshall, J. Chem. Soc. 1945, 418.

Note that care must be taken to avoid confusion of  $\tilde{C}$  with *n*-lauryl chloride (1-chlorododecane) (3:8810).

## PREPARATION OF C

[For prepn. of  $\tilde{C}$  from *n*-lauric acid (1:0605) with PCl<sub>5</sub> (yields: 91.5% (10), 66% (13)) (6) (15) (32), with PCl<sub>5</sub> + ZnCl<sub>2</sub> (45% yield (13)), with PCl<sub>3</sub> (yields: 80% (8), 72% (13)) (4) (16), with PCl<sub>3</sub> + ZnCl<sub>2</sub> (79% yield (13)), with SOCl<sub>2</sub> (yields: 92% (9), 80-84% (11), 83% (13), 80% (20)) (1) (5) (17) (32) (33), with oxalyl (di)chloride (3:5060) (99% yield (3)) (2), or with carbonyl chloride (phosgene) (3:5000) at 140-150° (85-90% yield (18)) see indic. refs.]

[For prepn. of  $\bar{C}$  from  $\alpha, \beta$ -dichloroethyl laurate (19) on distn. with 0.1% ZnCl<sub>2</sub> (chloroacetaldehyde (3:7212) is also formed) see (19).]

#### CHEMICAL BEHAVIOR OF C

#### BEHAVIOR WITH INORGANIC REACTANTS

Hydrogenation of  $\tilde{C}$ . [ $\tilde{C}$  with  $H_2 + Pt$  cat. at 200-320° and 50-180 mm. or with  $H_2 + Raney$  Ni at 160° and 50 mm. fails (8] to give the expected lauraldehyde (1:0017); this result is apparently due to side reactions of the latter since undecane (1:8820) and tricosane,  $C_{23}H_{48}$ , were isolated (8).]

Behavior with sodium. [Č (1 mole) with metallic sodium (1.2 moles) in dry ether refluxed (with stirring) for 4 hrs. gives (60% yield (20)) tetracosen-12-diol-12,13 dilaurate, i.e., the dilaurate ester of CH<sub>3</sub>.(CH<sub>2</sub>)<sub>10</sub>.C(OH)=C(OH).(CH<sub>2</sub>)<sub>10</sub>.CH<sub>3</sub>, cryst. from acetone/C<sub>6</sub>H<sub>6</sub> (3:1), m.p. 42-43° (20).]

Behavior with  $Na_2O_2$ . [ $\bar{C}$  with aq.  $Na_2O_2$  below 50° gives (21) dilauroyl peroxide, but no constants for either this prod. or for lauroyl hydrogen peroxide can be found in the literature; for use of dilauroyl peroxide as cat. for drying oils see (22).]

Behavior with NaN<sub>3</sub>. [ $\tilde{C}$  with NaN<sub>3</sub> in C<sub>6</sub>H<sub>6</sub> reacts to give lauroyl azide (not isolated (23)), which loses N<sub>2</sub> and rearr. giving (81–86% yield (23)) undecyl isocyanate, b.p. 103° at 3 mm. (23).]

#### BEHAVIOR WITH ORGANIC REACTANTS

With hydrocarbons. [ $\bar{C}$  with  $C_6H_6+AlCl_3$  gives (yields: 100% (14), 71% (11)) (24) (25) (26) (27) phenyl undecyl ketone (laurophenone) [Beil. VII-345, VII<sub>1</sub>-(186)], m.p. 47° (24) (28), 46° (14) (25), 45° (26), 44-45° (11); b.p. 222-223° at 21 mm. (25), 201-202° at 9 mm. (26), 193-194° at 9 mm. (11), 174° at 3 mm. (29) (corresp. oxime, m.p. 64.5° (11); semicarbazone, m.p. 98° (11); 2,4-dinitrophenylhydrazone, m.p.  $101-102^\circ$  (11)). — For analogous reactions of  $\bar{C}$  in pres. of AlCl<sub>3</sub> with biphenyl (1:7175), diphenyl ether (1:7125), diphenylene oxide (1:7205), carbazole, thiophene, and furan see (30); for use of these products as waxes, addition agents for lubricants, etc., see (30) (31).]

With alcohols.  $\bar{C}$  with alcohols gives in general the corresp. alkyl laurates [e.g.,  $\bar{C}$  with MeOH gives methyl laurate, m.p. +5°, b.p. 148° at 18 mm. (10);  $\bar{C}$  with EtOH gives ethyl laurate (1:4196), m.p. -1.7 b.p. 269°; etc.  $-\bar{C}$  with benzyl alc. (1:6480) gives (32) benzyl laurate;  $\bar{C}$  with menthol (1:5940) gives (33) menthyl laurate; etc.].

C (2 moles) with dihydric alcs. on htg. gives the corresp. neutral esters [e.g., C with ethylene glycol (1:6465) gives (34) ethylene glycol dilaurate (1:2157), m.p. 52°; C with propanediol-1,2 (1:6455) gives (34) propylene glycol dilaurate, m.p. 35°; C with butanediol-1,3 (1:6482) gives (34) 1,3-butylene glycol dilaurate, m.p. about 16.5°; C with butanediol-1,4 (1:6516) gives (34) tetramethylene glycol dilaurate, m.p. 45.5°].

Č has also been much employed in the prepn. of mixed glycerides, but this topic cannot be expanded in detail in this text.

With phenols.  $\bar{\mathbb{C}}$  on htg. with phenols splits out HCl yielding the corresp. esters. [E.g.,  $\bar{\mathbb{C}}$  with phenol (1:1420) gives (6) phenyl laurate, m.p. 24.5° (6), b.p. 210° at 15 mm. (6), 159–161° at 1 mm. (35);  $\bar{\mathbb{C}}$  with p-cresol (1:1410) gives (6) p-tolyl laurate, m.p. 28° (6), b.p. 219.5° at 15 mm. (6).  $-\bar{\mathbb{C}}$  (2 moles) with pyrocatechol (1:1520) at 110° for 2 hrs. gives (36) pyrocatechol dilaurate, m.p. 35.5°;  $\bar{\mathbb{C}}$  (2 moles) with resorcinol (1:1530) at 110° for 2 hrs. gives (36) resorcinol dilaurate, m.p. 43–44.5°;  $\bar{\mathbb{C}}$  (2 moles) with hydroquinone (1:1590) at 110° for 2 hrs. gives (36) hydroquinone dilaurate, m.p. 85–86°.]

[ $\tilde{C}$  with phenol (1:1420) + AlCl<sub>3</sub> in sym.-tetrachloroethane (3:5750) as solvent, however, gives (37) (35) (38) a mixt. of the corresp. hydroxylaurophenones; viz., 32.6% yield (37) o-hydroxyphenyl undecyl ketone, m.p. 44-45.5° (corresp. 2,4-dinitrophenylhydrazone, m.p. 92-93°) and 24.6% yield (37) p-hydroxyphenyl undecyl ketone, m.p. 71-72° (corresp. 2,4-dinitrophenylhydrazone, m.p. 150-151°); for study of influence upon o/p ratio of use of nitrobenzene and CS<sub>2</sub> as solvents see (38); for prepn. of these hydroxylaurophenones from phenyl laurate by BF<sub>3</sub> rearr. see (39); for their methyl ethers see (44).]

With salts of organic acids. [Č with Na laurate at 100° with protection from moist air gives (40) lauric anhydride (1:0601), m.p. 44° (41), 42.1° (42), 41.8° (43), 41° (40), but the latter is usually prepd. from lauric acid (1:0605) by htg. with Ac<sub>2</sub>O (41) (42) (43).]

With Grignard reagents.  $\bar{C}$  with RMgX reagents derived from tertiary halides not only undergoes the normal reaction to give the corresp. secondary alcohol but also suffers reduction [e.g.,  $\bar{C}$  with ter-BuMgCl gives (7) the expected 2,2-dimethyltetradecanol-3 (67% yield) together with lauryl alc. (1:5900) (13.7%) and ter-butyl-undecyl-carbinyl laurate (10.4%); similarly,  $\bar{C}$  with ter-AmMgCl gives (7) lauryl alc. (1:5900) (54.8%) and 3,3-dimethylpentadecanol-4 (17.7%)].

With organic amines.  $\bar{C}$  with organic primary amines yields the corresp. amides [e.g.,  $\bar{C}$  with p-cymidine (2-methyl-5-isopropylaniline) gives (1) lauro-(2-methyl-5-isopropyl)-anilide, m.p. 82-83°;  $\bar{C}$  with vanillylamine (4-hydroxy-3-methoxybenzylamine) gives (12) N-(vanillyl)lauramide,  $\alpha$ -form, m.p. 72.5-73°,  $\beta$ -form, m.p. 67-67.5°].

 $\bar{\mathbf{C}}$  on hydrolysis yields lauric acid (1:0605), m.p. 43-44°; for the amide, anilide, p-toluidide, and other derivatives corresp. to  $\bar{\mathbf{C}}$  see lauric acid (1:0605).

3:9858 (1) Hann, Jamieson, J. Am. Chem. Soc. 50, 1443 (1928). (2) Averill, Roche, King, J. Am. Chem. Soc. 51, 868 (1929). (3) Adams, Ulich, J. Am. Chem. Soc. 42, 604 (1920). (4) Caspari, Am. Chem. J. 27, 305 (1902). (5) Gault, Ehrmann, Bull. soc. chm. (4) 39, 875-876 (1926). (6) Krafft, Burger, Ber. 17, 1378 (1884). (7) Whitmore, Wintaker, J. Am. Chem. Soc. 63, 649-650 (1941). (8) Escourrou, Bull soc. chim. (5) 6, 1177-1180 (1939). (9) Fierz-David, Kuster, Helv. Chim. Acta 22, 89 (1939). (10) Guerin, Bull soc. chim. (3) 29, 1121 1123 (1903).

(11) Ju, Shen, Wood, J. Inst. Petroleum Tech. 26, 514-520 (1940). (12) Ford-Moore, Phillips, Rec. trav. chim. 53, 856 (1934). (13) Clark, Bull, Trans. Roy. Soc. Can. (3) 27, III 97-103 (1933). (14) Darzens, Mentzer, Compt. rend. 213, 268-271 (1941). (15) Ralston, McCorkle, Vander Wal (to Armour and Co.), U.S. 2,262,431, Nov. 11, 1941; C.A. 36, 1513 (1942). (16) Tilak, Venkataraman, J. Sci. Ind. Research (India) 3, 193-197 (1944); C.A. 39, 4242 (1945). (17) Izard, Biochem. Z. 40, 401 (1912). (18) Prat, Étienne, Bull. soc. chim. (5) 11, 30-34 (1944); C.A. 38, 6274 (1944). (19) Soc. des Usines Chim. Rhone-Poulenc, Ger. 527,874, June 22, 1931; Cent. 1931, II 1350; C.A. 25, 1575 (1931): Brit. 329,721, June 19, 1930; Cent. 1930, II 1611; C.A. 24, 5767 (1930): Brit. 330,511, July 10, 1930; Cent. 1930, II 2184; C.A. 24, 5767 (1930). (20) Ralston, Selby, J. Am. Chem. Soc. 61, 1019-1020 (1939).

(21) Stoddard, Kokatnur (to Pilot Lab., Inc.), U.S. 1,718,609, June 25, 1929; Cent. 1929, II 2261; [C.A. 23, 4093 (1929)]. (22) Hooft (to Lucidol Corp.), U.S. 2,032,554, March 3, 1936; Cent. 1936, I 4813; [C.A. 30, 2781 (1936)]. (23) Allen, Bell, Org. Syntheses 24, 94-95 (1944). (24) Kipping, Russell, J. Chem. Soc. 67, 508 (1895). (25) von Auwers. Ber 45, 2772 (1912). (26) Haller, Bauer, Compt. rend. 149, 7 (1909). (27) I.G., Brit. 453,778, Oct. 15, 1936; Cent 1937, I 727; C.A. 31, 1122 (1937). (28) Sabatier, Mailhe, Compt. rend. 158, 834 (1914). (29) I.G., French 801,499, Aug. 5, 1936; Cent. 1937, I 1016; C.A. 31, 483 (1937). (30) Ralston, Christensen, Ind. Eng. Chem. 29, 194-196 (1937).

(31) Ralston, Christensen (to Armour and Co.), U.S. 2,033,544, March 10, 1936; Cent 1936, II 897; [C.A. 30, 3134 (1936)]. (32) Shonle, Row, J. Am. Chem. Soc. 43, 363 (1921). (33) Brauns, J. Am. Chem. Soc. 42, 1479 (1920). (34) Staudinger, Schwalenstöcker, Ber. 68, 728-742 (1935). (35) Ralston, McCorkle, Bauer, J. Org. Chem. 5, 658 (1940). (36) Marangoni, Atti ist. Veneto sci., Pt. 2. Sci. mat. nat. 97, 209-218 (1937/8); Cent. 1939, I 95-96; C.A. 34, 6934 Verieto Sci., Fi. 2. Sci. mat. at. 25, 250-216 (1937/8); Cent. 1838, 193-96; C.A. 25, 0934 (1940).
 (37) Raiston, Bauer, J. Org. Chem. 5, 165-170 (1940).
 (38) Raiston, Ingle, McCorkle, J. Org. Chem. 7, 457-461 (1942).
 (39) Balle, Heimke (to I.G.), Ger. 637,808, Nov. 4, 1936; Cent. 1937, I 4581; C.A. 31, 5379 (1937).
 (40) Kraft, Rosiny, Ber. 33, 3577-3578 (1900).
 (41) Mannich, Nadelmann, Ber. 63, 797 (1930).
 (42) Wallace, Copenhaver, J. Am. Chem. Soc.
 63, 699 (1941).
 (43) Holde, Gentner, Ber. 58, 1423 (1925).
 (44) Paranipe, Phalnikar, Nargund,

J. Univ. Bombay 11, Pt. 3, 120-123 (1942); C.A. 37, 1999 (1943).

BENZOHYDRYL CHLORIDE C<sub>13</sub>H<sub>11</sub>Cl Beil. V - 590 V1-(278) V<sub>2</sub>-(500)

B.P. 190-191° at 247 mm. M.P. 18°

1343

 $D_4^{19.5} = 1.1398$  $n_{\rm D}^{19.5} = 1.5959$ See 3:0060. Division A: Solids.

3:9859 1-CHLOROTRIDECANE CH<sub>3</sub>. (CH<sub>2</sub>)<sub>11</sub>.CH<sub>2</sub>Cl  $C_{13}H_{27}Cl$ Beil. S.N. 10 (n-Tridecyl chloride)

 $D_4^{20} = 0.8668 (1) \quad n_5^{20} = 1.4460 (1)$ B.P. 135.7-136.0° at 9 mm. (1)

[For prepn. of C from N-benzoyl-n-tridecylamine (N-(n-tridecyl)benzamide) with PCls at 160-210° (67% yield) see (1).]

Č with Mg in dry ether gives n-C<sub>13</sub>H<sub>27</sub>MgCl (1) [this prod. with allyl bromide as directed gives (48% yield (1)) hexadecene-1 (cetene) (1:7000)].

- ----n-Tridecyl p-nitrobenzoate: m.p. 37.4° cor. (2). [Prepd. indirectly (2).]
- ----n-Tridecvl 3.5-dinitrobenzoate: unreported.
- ----N-(n-Tridecvl)phthalimide: unreported.

3:9859 (1) Suida, Drahowzal, Ber. 75, 996 (1942). (2) Armstrong, Copenhaver, J. Am. Chem. Soc. 65, 2252-2253 (1943).

2.4'-DICHLOROBENZOPHENONE  $C_{13}H_8OCl_2$ Beil. VII - 420 VII<sub>1</sub>---

B.P. 214-215° at 22 mm.

M.P. 66-67°

See 3:1565. Division A: Solids.

3:9859-A 2,3'-DICHLOROBENZOPHENONE C12HaOCl2 Beil. S.N. 652 (o-Chlorophenyl m-chlorophenyl ketone)

B.P. 140-142° at 1 mm. (1)

[For prepn. of  $\bar{C}$  from *m*-chlorobromobenzene [Beil. V-209, V<sub>1</sub>-(115), V<sub>2</sub>-(161)] (2) by conversion to *m*-chlorophenyl MgBr (cf. (3)) and reaction with *o*-chlorobenzonitrile [Beil. IX-336] (4) (5) followed by hydrolysis (73% yield) see (1).]

1) 2,3'-Dichlorobenzophenone 2,4-dinitrophenylhydrazone: m.p. 255-257° (1).

3:2859-A (1) Haller, Bartlett, Drake, Newman, Cristol, et al., J. Am. Chem. Soc. 67, 1601-1602 (1945). (2) Hartwell, Org. Syntheses 24, 22-24, Note 5 (1944). (3) Hein, Retter, Ber. 71, 1968 (1938). (4) Norris, Klemka, J. Am. Chem. Soc. 62, 1433 (1940). (5) Baudet, Rec. trav. chem. 43, 707-708 (1924).

3:9860 TRIDECANOYL CHLORIDE

$$C_{13}H_{25}OCl$$

Beil. S.N. 162

1

B.P. 145-146° at 11 mm. (1)

145-147° at 10 mm. (2)

144-145° at 10 mm. (3)

[For prepn. of  $\bar{C}$  from tridecanoic acid (1:0600) with SOCl<sub>2</sub> (3) (96.5% yield (2)) see indic. refs.]

[For reactn. of  $\bar{C}$  with  $C_6H_6+AlCl_3$  yielding phenyl *n*-dodecyl ketone, m.p. 41-42°, b.p. 170° at 0.1 mm. (semicarbazone, m.p. 101°), see (3); for reactn. of  $\bar{C}$  with vanillylamine see (1); for reactn. of  $\bar{C}$  with 1,7-aminonaphthol see (4).]

 $\bar{\mathbf{C}}$  on hydrolysis yields tridecanoic acid (1:0600) (for the amide, anilide, p-toluidide, and other derivatives corresp. to  $\bar{\mathbf{C}}$  see 1:0600).

3:9869 (1) Ford-Moore, Phillips, Rec. trav. chim. 53, 856-857 (1934). (2) Fierz-David, Kuster, Helv. Chim. Acta 22, 86-89, 101 (1939). (3) Ziegler, Dersch, Wollthan, Ann. 511, 38-39 (1934).

3:9863 1,1-DICHLORO-2-(m-CHLOROPHENYL)-2- C<sub>14</sub>H<sub>8</sub>Cl<sub>4</sub> Beil. S.N. 480 (p-CHLOROPHENYL)ETHYLENE

CI CI CI

#### B.P. 158-162° at 1 mm. (1)

[For prepn. of  $\bar{C}$  from "m,p-DDT" (3:9867) by elimination of 1 HCl with alc. KOH (80% yield) see (1).]

C on oxidn. with CrO<sub>3</sub> gives (41% yield, (1)) 3,4'-dichlorobenzophenone (3:3415), m.p. 113°.

3:9863 (1) Haller, Bartlett, Drake, Newman, Cristol, et al., J. Am. Chem. Soc. 67, 1600 (1945).

3:9865 1,1,1-TRICHLORO-2,2-bis-(o-CHLOROPHENYL)ETHANE ("o.o'-DDT")

This compound is the so-called o,o'-isomer of "DDT" (3:3298). Although it is known to be a contaminant of "DDT" (e.g., 6% (1)) no accurate information regarding it is at present available.

3:9865 (1) Gunther, J. Chem. Education 22, 239 (1945).

## 3:9867 1,1,1-TRICHLORO-2-(m-CHLOROPHENYL)-2- C<sub>14</sub>H<sub>9</sub>Cl<sub>5</sub> Beil. S.N. 479 (b-CHLOROPHENYL)ETHANE Cl

(" m,p'-DDT ")

B.P. 181-185° at 1 mm. (1)

[For prepn. of  $\bar{C}$  from 2,2,2-trichloro-1-(m-chlorophenyl)ethanol (1) by condensation with chlorobenzene (3:7903) in presence of fumg. H<sub>2</sub>SO<sub>4</sub> (48% yield) see (1).]

[C with alc. KOH loses HCl giving (80% yield (1)) 1,1-dichloro-2-(m-chlorophenyl)-2-(p-chlorophenyl)ethylene (3:9863).]

 $\bar{C}$  on dinitration with equal wt. fumg. HNO<sub>3</sub> gives (90% yield (1)) a dinitro cpd., m.p. 118.8-120.1° (1)..

3:9867 (1) Haller, Bartlett, Drake, Newman, Cristol, J. Am. Chem. Soc. 67, 1600 (1945).

## 3:9870 1,1-DIPHENYLETHYL CHLORIDE

C<sub>14</sub>H<sub>13</sub>Cl Beil. S.N. 479

(Chloro-diphenyl-methyl-methane)

C—CH<sub>3</sub>

[See also 2,2-diphenylethyl chloride (3:9871).]

 $\bar{C}$  cannot be obtd. in cryst. form; at room temp.  $\bar{C}$  slowly dec. (1) to give HCl and 1,1-diphenylethylene [Beil. V-639, V<sub>1</sub>-(308), V<sub>2</sub>-(543)], b.p. 277°, accompanied (1) (3) by a small amt. of 1,1,3,3-tetraphenylbutene-1, m.p. 113-114° (the unsatd. dimer of 1,1-diphenylethylene).

[For prepn. of  $\bar{C}$  from diphenyl-methyl-carbinol [Beil. VI-685, VI<sub>1</sub>-(330)] in  $C_6H_6$  (1) or pet. ether (2) in pres. of  $CaCl_2$  by saturation at 0-10° with dry HCl gas and stdg. overnight see indic. refs.]

 $\bar{C}$  in  $C_6H_6$  stood at room temp. gives (95-97% yield in 1 week, 80% in 1 day (1)) 1,1,3-triphenyl-3-methylhydrindene (the saturated dimer of 1,1-diphenylethylene), colorless cryst. from alc., m.p. 143° (1); note that attempts to accelerate this reaction by warming give decreased yield together with formation of 1,1-diphenylethylene and its unsaturated dimer (mentioned above).

3:9870 (1) Schoepfle, Ryan, J. Am. Chem. Soc. 52, 4025-4027 (1930). (2) Schoepfle, Ryan, J. Am. Chem. Soc. 54, 3692 (1932). (3) Blicke, Powers. J. Am. Chem. Soc. 52, 3383 (1929).

## 3:9871 2,2-DIPHENYLETHYL CHLORIDE

C<sub>14</sub>H<sub>13</sub>Cl

Beil. V - 606 V<sub>1</sub>-(285)

CH—CH

[See also 1.1-diphenylethyl chloride (3:9870).]

Oil, which on attempted distillation dec. (1) (2) into HCl + 1,2-diphenylethylene (stilbene) (1:7250). —  $\bar{C}$  can, however, be distilled with steam (1).

[For prepn. of  $\bar{C}$  from  $C_6H_6$  with chloroacetaldehyde (3:7212) (generated in mixt. by use of  $\alpha,\beta$ -dichloroethyl ethyl ether (3:5640)) + conc.  $H_2SO_4$  see (2); for formn. in very small amt. from 1,1,1-trichloro-2,2-diphenylethane [Beil. VI-606, VI<sub>1</sub>-(285)] during electrolytic reduction in alc./HCl see (3).]

 $\bar{C}$  with alc. KOH loses HCl yielding (1) 1,1-diphenylethylene [Beil. V-639, V<sub>1</sub>-(308), V<sub>2</sub>-(543)], b.p. 277°, accompanied by its polymers.

3:9871 (1) Hepp, Ber. 7, 1409-1413 (1874). (2) Hepp, Ber. 6, 1439 (1873). (3) Brand, Z. Elektrochem. 16, 670 (1910).

B.P. 
$$154-155^{\circ}$$
 at 15 mm. (1)  $D_4^{20} = 0.8589$  (2)  $n_D^{20} = 1.4450$  (2)  $139-142^{\circ}$  at 4 mm. (2)  $44-53^{\circ}$  at  $2 \times 10^{-4}$  mm. (2)

Care must be taken to avoid confusion of  $\bar{C}$  with the acid chloride of *n*-tetradecanoic acid (myristic acid), commonly designated as *n*-myristoyl chloride (3:9885).

[For prepn. of  $\bar{C}$  from tetradecanol-1 (1:5935) with conc. HCl + ZnCl<sub>2</sub> or by htg. in s.t. with fumg. HCl see (1); for formn. of  $\bar{C}$  (31% yield) from tetradecanol-1 (1:5935) with PCl<sub>3</sub> in pres. of mesityl oxide and Ac<sub>2</sub>O see (2).]

[ $\bar{C}$  (1 mole) with pyridine (1 mole) in s.t. at 110° for 15 hrs. gives (3) the corresp. quaternary salt, viz., N-(n-tetradecyl)pyridinium chloride, cryst. from alc./ether or from  $C_6H_6$  as monohydrate, m.p. 85.5° (3), 75.5° (5) (this prod. on cat. hydrogenation gives (3) N-(n-tetradecyl)piperidinium hydrochloride, m.p. 186–187° (3). — For analogous reactn. of  $\bar{C}$  with isoquinoline see (3).]

[For study of rate of reactn. of  $\bar{C}$  with KI in acetone at 50° and 60° see (1).]

- --- n-Tetradecyl p-nitrobenzoate: m.p. 51.2° cor. (4). [Prepd. indirectly.]
- ---- n-Tetradecyl 3,5-dinitrobenzoate: unreported.
- --- N-(n-Tetradecyl)phthalimide: unreported.
- ---- S-(n-Tetradecyl)isothiourea picrate: unreported.
- ---- n-Tetradecyl mercuric chloride: unreported (but see (6)).

3:9874 (1) Conant, Hussey, J. Am. Chem. Soc. 47, 483, 485 (1925). (2) Drake, Marvel, J. Org. Chem. 2, 394 (1937). (3) Karrer, Kahnt, Epstein, Jaffé, Ishii, Helv. Chim. Acta 21, 233-234 (1938). (4) Armstrong, Copenhaver, J. Am. Chem. Soc. 65, 2252-2253 (1943). (5) Lottermoser, Froscher, Kolloid-Beihefte 45, 305-306, 315, 319, 323, 339 (1937). (6) Meals, J. Org. Chem. 9, 215 (1944).

o-BENZOYLBENZOYL CHLORIDE --- A 3:9880 3-CHLORO-3-PHENYLPHTHALIDE—B

(o-Benzovlbenzovl pseudo-chloride)

C<sub>14</sub>H<sub>9</sub>O<sub>2</sub>Cl

A. Beil. X-749 X1----

> B. Beil. XVII - 361 XVII<sub>1</sub>---

3:9880



C appears to react in two tautomeric forms corresp. to structures A and B, the independent existence of which, however, has not (as yet) been definitely established. same method of prepn. has in various laboratories given results sometimes suggesting a preponderance of A, sometimes of the tautomer B. The constants reported for C show a correspondingly wide variation, e.g., m.p. 82-83° (1), abt. 70° (2), 59-60° (3); b.p. 170-171° at 1 mm. (1); other workers, e.g. (5) (6), have sometimes obtd. C in crystn form and sometimes not and have failed to report constants.

[For prepn. of C from o-benzoylbenzoic acid (1:0720) with PCl<sub>5</sub> in CS<sub>2</sub> (2) (3) (4) (5), or PCl<sub>5</sub> (7), PCl<sub>3</sub> (7) (4), or SOCl<sub>2</sub> (7) (4) (5) (6) (1) (8) (11), see indic. refs.; for prepn. of C from 3-phenylphthalide with Cl<sub>2</sub> at 115-120° see (5)

Č-A on htg. above 130° loses HCl and ring-closes yielding (9) (10) anthraquinone (1:9095). C-A with conc. aq. NH4OH at 0° yields (9) o-benzoylbenzamide, m.p. 165° cor. (9); with aniline yields (11) o-benzoylbenzanilide, m p. 195° (11).

C-A with MeOH yields (2) (7) (4) methyl o-benzoylbenzoate, m p. 51.5° (4), 51.7° (4). 51-52° (2), 52° (12); C-B with MeOH yields (7) methyl pseudo-o-benzoylbenzoate (3methoxy-3-phenylphthalide), m.p. 80-81° (7).

Č-A with EtOH should yield ethyl o-benzoylbenzoate, m.p. 58° (13) (12); Č-B with EtOH yields (14) ethyl pseudo-o-benzoylbenzoate (3-ethoxy-3-phenylphthalide), m.p. 51-53° (14), 56° (13).

C-A with K phenolate or with phenol in pyridine yields (5) phenyl o-benzoylbenzoate, m.p. 162-163° (5); C-B under same circumstances yields phenyl pseudo-o-benzoylbenzoate (3-phenoxy-3-phenylphthalide), m.p. 80-82° (5). [For analogous behavior of other phenols see (5).]

Č-B with phenol yields (6) 3-(p-hydroxyphenyl)-3-phenylphthalide, m.p. 168-170° (6). [For analogous reactn. with other phenols and phenol ethers see (6).]

[For reactn. of  $\bar{C}$  with  $\alpha$ -methylnaphthalene see (15).]

3:9880 (1) Norris, Ware, J. Am. Chem. Soc. 61, 1418-1420 (1938). (2) Haller, Guyot, Bull. soc. chsm. (3) 25, 49-56 (1901). (3) Martin, J. Am. Chem. Soc. 38, 1142-1144 (1916). (4) McMullen, J. Am. Chem. Soc. 38, 1228-1230 (1916). (5) Blicke, Swisher, J. Am. Chem. Soc. 56, 902-904 (1934). (6) Blicke, Swisher, J. Am. Chem. Soc. 56, 923-925 (1934). (7) Meyer, Monatsh. 25, 475-486 (1904). (8) Samdahl, Christiansen, Bull. soc. chim. (5) 5, 1577 (1938). (9) Graebe, Ullmann, Ann. 291, 10-12 (1896). (10) Meyer, Monatsh. 25, 1181-1184 (1904).

(11) Meyer, Monatsh. 28, 1226-1227 (1907). (12) Plascuda, Ber. 7, 987 (1874). (13) von Auwers, Heinze, Ber. 52, 599 (1919). (14) Egerer, Meyer, Monatsh. 34, 77-79 (1913). (15) Clar, Ber. 63, 116 (1930).

---- α-CHLORO-DIPHENYLACETYL CHLORIDE C<sub>14</sub>H<sub>10</sub>OCl<sub>2</sub> Beil. IX - 675 IX<sub>1</sub>-(283)

B.P. 180° at 14 mm. M.P. 50°

See 3:0885. Division A: Solids.

3:9885 n-TETRADECANOYL CHLORIDE C<sub>14</sub>H<sub>27</sub>OCl Beil. II - 368 (n-Myristoyl chloride) CH<sub>3</sub>.(CH<sub>2</sub>)<sub>12</sub>.C=O II<sub>1</sub>-(162) II<sub>2</sub>-(329)

Care must be taken to avoid confusion of  $\bar{\mathbf{C}}$  with *n*-myristyl chloride (1-chlorotetradecane) (3:9874).

#### PREPARATION OF C

[For prepn. of  $\bar{C}$  from myristic acid (1:0630) with SOCl<sub>2</sub> (yields: 91% (8), 80% (3), 80-84% (9), 79% (6)) (12) (2) (13) (14) (15); with PCl<sub>5</sub> (89% yield (6)) (7) (14); with PCl<sub>3</sub> (11) (1) (17); with PCl<sub>3</sub> + ZnCl<sub>2</sub> (79% yield (6)); or with oxalyl (di)chloride (3:5060) (10) see indic. refs.]

#### CHEMICAL BEHAVIOR OF C

#### BEHAVIOR WITH INORGANIC REACTANTS

Hydrogenation of  $\bar{C}$ . [ $\bar{C}$  with  $H_2 + Pt$  cat. at 220-230° at 60-65 mm. gives (1) not only some *n*-myristaldehyde (1:0004) and its trimer but also (by loss of CO from  $\bar{C}$ ) *n*-tridecane [Beil. 1-171, I<sub>2</sub>-(134)], b.p. 234°.]

Hydrolysis of C. C on hydrolysis with aq. presumably yields myristic acid (1:0630) + HCl although actual record of this reaction is lacking in the literature.

Behavior with sodium. [ $\bar{C}$  (1 mole) with metallic sodium (1.2 moles) in dry ether refluxed (with stirring) for 10 hrs. gives (64% yield (3)) octacosen-14-diol-14,15 dimyristate, i.e., the dimyristate ester of CH<sub>3</sub>. (CH<sub>2</sub>)<sub>12</sub>.C(OH)=C(OH). (CH<sub>2</sub>)<sub>12</sub>.CH<sub>3</sub>, cryst. from acetone/C<sub>6</sub>H<sub>6</sub> (3:1), m.p. 54-55° (3).]

#### BEHAVIOR WITH ORGANIC REACTANTS

With hydrocarbons (or their equivalents). [C with C<sub>6</sub>H<sub>6</sub> + AlCl<sub>3</sub> in CS<sub>2</sub> gives (69% yield (9)) phenyl n-tridecyl ketone (myristophenone) [Beil. VII<sub>1</sub>-(186)], m.p. 52-53°

(corresp. oxime, m.p. 69.5°; corresp. 2,4-dinitrophenylhydrazone, m.p. 98.0-98.5°; corresp. semicarbazone, m.p. 101° (9)).]

[ $\bar{C}$  with thiophene + SnCl<sub>4</sub> gives (yield not stated (18)) 2-furyl *n*-tridecyl ketone (2-myristolythiophene), oil, b.p. 205-210° at 4 mm.,  $D_{25}^{25} = 0.9506$ ,  $n_{D}^{35} = 1.4961$  (18).]

[C with carbazole + AlCl<sub>3</sub> gives (yield not stated (18)) 2,8-dimyristolylcarbazole, m.p. 169° (18).

With alcohols.  $\tilde{C}$  with alcohols gives in general the corresp. alkyl myristates. [E.g.,  $\tilde{C}$  with MeOH gives methyl myristate (1:2013), m.p. 18.5°;  $\tilde{C}$  with EtOH gives ethyl myristate (1:4316), m.p. 11.9°, b.p. 295°; etc. —  $\tilde{C}$  with benzyl alc. (1:6480) gives (14) benzyl myristate;  $\tilde{C}$  with menthol (1:5940) gives (15) menthyl myristate; etc.]

C (2 moles) with dihydric alcs. on htg. gives the corresp. neutral esters [e.g., C with ethylene glycol (1:6465) gives (20) ethylene glycol dimyristate (1:2233), m.p. 63°; C with propanediol-1,2 (1:6455) gives (20) propylene glycol dimyristate, m.p. 41.5°; C with butanediol-1,3 (1:6482) gives (20) 1,3-butylene glycol dimyristate, m.p. 29.5-31.0°; C with butanediol-1,4 (1:6516) gives (20) tetramethyleneglycol dimyristate, m.p. 55°].

 $\bar{C}$  has been much employed in prepn. of mixed glycerides, but this topic cannot be expanded in detail in this text [however, for examples of use of  $\bar{C}$  with the compound of glycerol + acetone (i.e., 4-hydroxymethyl-2,2-dimethyldioxolane-1,3) in prepn. of glyceryl  $\alpha$ -monomyristate (" $\alpha$ -monomyristin") see (10) (5)].

With phenols.  $\bar{C}$  on htg. with phenols splits out HCl yielding the corresp. esters [e.g.,  $\bar{C}$  with phenol (1:1420) on htg. gives (7) phenyl myristate, m.p. 36°, b.p. 230° cor. at 15 mm. (7);  $\bar{C}$  with p-cresol (1:1410) on htg. gives (7) p-tolyl myristate, m.p. 39°, b.p. 239.5° at 15 mm. (7);  $\bar{C}$  (2 moles) with pyrocatechol (1:1520) at 110° for 2 hrs. gives (12) pyrocatechol dimyristate, m.p. 47-48°;  $\bar{C}$  (2 moles) with resorcinol (1:1530) at 110° for 2 hrs. gives (12) resorcinol dimyristate, m.p. 53°;  $\bar{C}$  (2 moles) with hydroquinone (1:1590) at 110° for 2 hrs. gives (12) hydroquinone dimyristate, m.p. 90-90.3°].

[ $\overline{C}$  with phenol (1:1420) + AlCl<sub>3</sub> in sym.-tetrachloroethane (3:5750) as solvent, however, gives (11) a mixt. of the corresp. hydroxymyristophenones: viz., 31.9% yield (11) o-hydroxyphenyl n-tridecyl ketone, m.p. 52-55° (corresp. 2,4-dinitrophenylhydrazone, m.p. 92.0-92.5°) and 36.7% yield (11) p-hydroxphenyl n-tridecyl ketone, m.p. 78-80° (corresp. 2,4-dinitrophenylhydrazone, m.p. 142-143°); for prepn. of these same products by direct rearr. of phenyl myristate (above) with AlCl<sub>3</sub> in sym.-tetrachloroethane soln. see (19).

With salts of organic acids. [C with sodium myristate at 100° in absence of air gives (21) myristic anhydride (1:0629), m.p. 53.5° (22), 53.4° (23), 51° (21).]

With organometallic compounds. [ $\bar{C}$  with ethyl sodioacetoacetate gives (60% yield (13)) ethyl  $\alpha$ -myristoylacetoacetate, b.p. 170–183° at 3 mm.; this prod. with NH<sub>3</sub> gas splits off the aceto group yielding (13) ethyl myristoylacetate, m.p. 36–37°, b.p. 187–188° at 7 mm.]

With organic amines.  $\tilde{C}$  with organic primary amines yields the corresp. amides [e.g.,  $\tilde{C}$  with p-cymidine (2-methyl-5-isopropylaniline) gives (2) myristo-(2-methyl-5-isopropyl)-anilide, m.p. 88-89°;  $\tilde{C}$  with vanillylamine (4-hydroxy-3-methoxybenzylamine) gives (4) N-(vanillyl)myristamide,  $\alpha$ -form, m.p. 82°,  $\beta$ -form, m.p. 76.5-77°].

C on hydrolysis yields myristic acid (1:0630), m.p. 53.86°; for the amide, anilide, p-toluidide, and other derivatives corresp. to C see myristic acid (1:0630).

3:9885 (1) Escourrou, Bull. soc. chim. (5) 6, 1177, 1180 (1939). (2) Hann, Jamieson, J. Am. Chem. Soc. 50, 1443 (1928). (3) Ralston, Selby, J. Am. Chem. Soc. 61, 1019-1020 (1939). (4) Ford-Moore, Phillips, Rec. trav. chim. 53, 857 (1934). (5) Rewadikar, Watson, J. Indian Inst. Sci. A-13, 128-140 (1930); Cent. 1930, II 3737; C.A. 25, 613 (1931). (6) Clark, Bell, Trans. Roy. Soc. Can. (3) 27, III 97-103 (1933). (7) Krafft, Bürger, Ber, 17, 1378-1380 (1884). (8) Fierz-David, Kuster, Helv. Chim. Acta 22, 89 (1939). (9) Ju, Shen, Wood, J. Inst. Petroleum Tech. 26, 514-520 (1940). (10) Averill, Roche, King, J. Am. Chem. Soc. 51, 868 (1929).

(11) Ralston, Bauer, J. Org. Chem. 5, 168-169 (1940). (12) Marangoni, Atti ist. Veneto eci., Pt. 2. Sci. mat. nat. 97, 209-218 (1937/8); Cent. 1939, I 95-96; C.A. 34, 6934 (1940). (13) Asano, Ohta, J. Pharm. Soc. Japan 51, 36-37, 395-401 (1931); Cent. 1931, II 1867; C.A. 25, 4267 (1931). (14) Shonle, Row, J. Am. Chem. Soc. 43, 363 (1921).
 (15) Brauns, J. Am. Chem. Soc. 42, 1479 (1920).
 (16) Izar, Biochem. Z. 40, 402 (1912).
 (17) Blau, Monatsh. 26, 95-99 (1905).
 (18) Ralston, Christensen, Ind. Eng. Chem. 29, 194-196 (1937). (19) Ralston, McCorkle, Bauer, J. Org. Chem. 5, 653, 658 (1940).
(20) Staudinger, Schwalenstöcker, Ber. 68, 732-741 (1935).
(21) Krafft, Rosiny, Ber. 33, 3577-3578 (1900).
(22) Wallace, Copenhaver, J. Am. Chem.

Soc. 63, 699 (1941). (23) Holde, Gentner, Ber. 58, 1423 (1925).

3:9890 1-CHLOROPENTADECANE  $C_{15}H_{31}Cl$ Beil. I -(n-Pentadecyl chloride) CH<sub>3</sub>.(CH<sub>2</sub>)<sub>13</sub>.CH<sub>2</sub>Cl I<sub>1</sub>-(68) I<sub>2</sub>-(136)

 $D_{25}^{25} = 0.8433$  (2)  $n_{\rm D}^{25} = 1.4470$  (2) B.P. 168-171° at 10 mm. (1)

[For prepn. of  $\bar{C}$  from N-benzoyl-n-pentadecylamine (N-(n-pentadecyl)benzamide) with PCl<sub>5</sub> on distn. (58% yield) see (1); from n-C<sub>12</sub>H<sub>25</sub>MgBr (1 mole) by reactn. in ether with γ-chloro-n-propyl p-toluenesulfonate (2 moles) (yield 42% on RMgBr) (note that some 1-bromo-3-chloropropane, b.p. 138-140°, is also formed) see (2).

[C with excess aniline at 100° for a long time, then treated with dil. HCl, ppts. (1) N-(npentadecyl)aniline HCl, cryst. from alc./ether, m.p. 97° (1); free base, m.p. 36° (1).]

- ---- n-Pentadecyl p-nitrobenzoate: m.p. 45.8° cor. (3). [Prepd. indirectly.]
- ---- n-Pentadecyl 3,5-dinitrobenzoate: unreported.
- ---- N-(n-Pentadecyl)phthalimide: unreported.
- --- S-(n-Pentadecyl isothiourea picrate: unreported.
- ---- n-Pentadecvl mercuric chloride: unreported.

3:9890 (1) von Braun, Solecki, Ber. 44, 1472 (1911). (2) Rossander, Marvel, J. Am. Chem. Soc. 50, 1495 (1928). (3) Armstrong, Copenhaver, J. Am. Chem. Soc. 65, 2252-2253 (1943).

3:9900 PENTADECANOYL CHLORIDE  $C_{15}H_{29}OCl$   $CH_3.(CH_2)_{13}.C = O$ Beil. S.N. 162

B.P. 172-176° at 10 mm. (1) at 5 mm. (2)

[For prepn. of C from pentadecanoic acid (1:0620) with SOCl<sub>2</sub> (97% yield (1)) see (1). [For reactn. of C with vanillylamine see (2); with 1,7-aminonaphthol see (1).]

C on hydrolysis yields pentadecanoic acid (1:0620) q.v. (for the amide, anilide, and other derivatives corresp. to  $\bar{C}$  see 1:0620).

3:990 (1) Fierz-David, Kuster, Helv. Chim. Acta 22, 86-89, 101 (1939). (2) Ford-Moore, Phillips, Rec. trav. chim. 53, 857 (1934).

CH<sub>3</sub>.(CH<sub>2</sub>)<sub>14</sub>.CH<sub>2</sub>Cl C<sub>16</sub>H<sub>38</sub>Cl Beil. I - 172 1-CHLOROHEXADECANE (n-Hexadecyl chloride; cetyl chloride)  $I_{2}$ -(138)

B.P. 289° dec. M.P. 15°

See 3:0015. Division A: Solids.

Note that care must be taken to avoid confusion of C with palmityl chloride (1-chloro-hexadecane) (3:0015).

### PREPARATION OF C

[For prepn. of  $\bar{C}$  from palmitic acid (1:0650) with PCl<sub>5</sub> (yields: 60% (2), 49% (12)) (5) (13) (14) (15) (16), with PCl<sub>3</sub> + ZnCl<sub>2</sub> (72% yield (12)), with SOCl<sub>2</sub> directly (yields: 93.5% (7), 86% (12), 80% (6)) (17) (19) (45) or in CCl<sub>4</sub> soln. (18), or with phospene (3:5000) at 140-155° (70-75% yield (20)) see indic. refs.)

#### CHEMICAL BEHAVIOR OF C

#### BEHAVIOR WITH INORGANIC REACTANTS

With sodium. [C (1 mole) with metallic sodium (1.2 moles) in dry ether refluxed with stirring as directed gives (70% yield (6)) dotriaconten-16-diol-16,17 dipalmitate, i.e., the dipalmitate ester of CH<sub>3</sub>. (CH<sub>2</sub>)<sub>14</sub>. C(OH)=C(OH). (CH<sub>2</sub>)<sub>14</sub>. CH<sub>3</sub>, cryst. from acetone/C<sub>6</sub>H<sub>6</sub> (3:1), m.p. 61-62° (6).]

With sodium azide. [ $\bar{C}$  with NaN<sub>3</sub> in C<sub>6</sub>H<sub>6</sub> gives (14) palmitoyl azide [Beil. II-375] (not isolated by (14)) which loses N<sub>2</sub> with rearr. to pentadecyl isocyanate [Beil. IV-202] (not isolated by (14) but from indirect prepn. reported (21) as m.p. 8-14°) [cf. corresp. behavior of lauroyl chloride (3:9858)].]

With water.  $\bar{C}$  with aq. hydrolyzes to palmitic acid (1:0650) + HCl. [For study of rate of hydrolysis with ord. H<sub>2</sub>O and with D<sub>2</sub>O see (22).]

#### BEHAVIOR WITH ORGANIC REACTANTS

With hydrocarbons. [ $\bar{C}$  with  $C_6H_6+AlCl_3$  gives (60% yield (23)) (24) (25) pentadecyl phenyl ketone (penmitophenone) [Beil. VII-347, VII<sub>1</sub>-(186)], lfts. from alc., m.p. 59° (23) (24) (26), b.p. 250.5-251.0° at 15 mm. (24) (corresp. oxime, m.p. 73-74° (26)). —  $\bar{C}$  with toluene + AlCl<sub>3</sub> gives (24) pentadecyl p-tolyl ketone [Beil. VII-347, VII<sub>1</sub>-(186)], lfts. from alc., m.p. 60° (24) (26), b.p. 262° cor. at 15 mm. (24) (corresp. oxime, m.p. 60° (27), semi-carbazone, m.p. 114.5° (26), phenylhydrazone, m.p. 54-55° (26)). — For analogous behavior of  $\bar{C}$  + AlCl<sub>3</sub> + m-xylene (24), mesitylene (27) (2), diphenyl ether (23), and carbazole (28) see indic. refs.; for use of these products as waxes, addition agents for lubricants, etc., see (28) (29).]

With alcohols. Č with alcohols gives in general the corresp. alkyl palmitates [e.g.; Č with MeOH gives methyl palmitate (1:2055), m.p. 30°; Č with EtOH gives ethyl palmitate (1:2034), α-form, m.p. 19.4°, β-form, m.p. 24.2°, etc.; Č with bezynl alc. (1:6480) gives (30) benzyl palmitate, m.p. 36°; Č with menthol (1:5940) gives (31) menthyl palmitate, m.p. 32°].

Č (2 moles) with dihydric alcs. on htg. gives the corresp. neutral esters [e.g., C with ethylene glycol (1:6465) gives (32) ethylene glycol dipalmitate (1:2269), m.p. 70.5°; C with propanediol-1,2 (1:6455) gives (32) propylene glycol dipalmitate, m.p. 52.5-54.5°; C with butanediol-1,3 (1:6482) gives (32) 1,3-butylene glycol dipalmitate, m.p. 39-40°; C with butanediol-1,4 (1:6516) gives (32) tetramethylene glycol dipalmitate, m.p. 63°].

Č has also been much employed in the prepn. of mixed glycerides, but this topic cannot be expanded in detail in this text.

With phenols.  $\bar{C}$  on htg. with phenols splits out HCl yielding the corresp. esters. [E.g.,  $\bar{C}$  with phenol (1:1420) gives (5) phenyl palmitate, m.p. 45° (5), 44.5–46.0° (33), b.p. 249.5° at 15 mm. (5);  $\bar{C}$  with p-cresol (1:1410) gives (5) p-tolyl palmitate, m.p. 47°, b.p. 258° at 15 mm. —  $\bar{C}$  (2 moles) with pyrocatechol (1:1520) at 110° for 2 hrs. gives (34) pyrocatechol dipalmitate, m.p. 58°;  $\bar{C}$  (2 moles) with resorcinol (1:1530) at 110° for 2 hrs. gives (34) resorcinol dipalmitate, m.p. 62.5–63.5°;  $\bar{C}$  (2 moles) with hydroquinone (1:1590) at 110° for 2 hrs. gives (34) hydroquinone dipalmitate, m.p. 94.5°.]

[ $\tilde{C}$  with phenol (1:1420) + AlCl<sub>3</sub> in sym.-tetrachloroethane (3:5750) as solvent, however, gives (35) (33) (36) a mixt. of the corresp. hydroxypalmitophenones; viz., 25.4% yield o-hydroxyphenyl pentadecyl ketone, m.p. 54-56° (corresp. 2,4-dinitrophenylhydrazone, m.p. 94-95° (35)), and 28.5% yield p-hydroxyphenyl pentadecyl ketone, m.p. 84.5-85° (35), 78° (37) (corresp. 2,4-dinitrophenylhydrazone, m.p. 141-142° (35)); for study of influence upon o/p ratio of use of nitrobenzene and of CS<sub>2</sub> as solvents see (36).]

With salts of organic acids. [ $\overline{C}$  with Ag palmitate at 100° for 10 min. (38) or  $\overline{C}$  with Na $\overline{A}$  (32) (42) gives palmitic anhydride (1:0651), m.p. 64° (39), 63.9° (40), 63-64° (41), 63° (38), 62-63° (32) (43), but the latter is usually prepd. from palmitic acid (1:0650) by htg. with Ac<sub>2</sub>O (39) (40) (41) (42) (43) ]

With esters. [C with diethyl sodiomalonate would be expected to give diethyl palmitoylmalonate, but for unsuccessful attempt to realize this reaction see (44).]

[ $\overline{C}$  with ethyl sodio-acetacetate in dry ether gives (62% yield (11)) (45) ethyl  $\alpha$ -palmitoylacetoacetate, m.p. 36-36.5° (11) (45); note that this prod. with aq. NaOH splits off the acetyl group giving (62% yield (11)) ethyl palmitoylacetate, m.p. 37-38° (11) (45).]

With amines.  $\bar{C}$  with org. prim. amines yields the corresp. amides [e.g.,  $\bar{C}$  with p-cymidine (2-methyl-5-isopropylaniline) gives (1) palmito-(2-methyl-5-isopropyl)anilide, m.p. 90-91°;  $\bar{C}$  with vanillylamine (4-hydroxy-3-methoxybenzylamine) gives (8) N-(vanillyl)-palmitamide,  $\alpha$ -form, m.p. 89-89.5°,  $\beta$ -form, m.p. 84-84.5°].

 $\tilde{C}$  on hydrolysis yields palmitic acid (1:0650), m.p. 62.7°; for the amide, anilide, *p*-toluidide, and other derivs. corresp. to  $\tilde{C}$  see palmitic acid (1:0650).

3:9912 (1) Hann, Jamieson, J. Am. Chem. Soc. 50, 1443 (1928). (2) Klages, Ber. 35, 2260-2261 (1902). (3) Stephenson, Biochem. J. 7, 431 (1913). (4) Gault, Ehrmann, Bull. soc. chim. (4) 39, 876 (1926). (5) Krafft, Burger, Ber. 17, 1379-1380 (1884). (6) Ralston, Selby, J. Am. Chem. Soc. 61, 1019-1020 (1939). (7) Fierz-David, Kuster, Helv. Chim. Acta 22, 89 (1939). (8) Ford-Moore, Phillips, Rec. trav. chim. 53, 857 (1934). (9) Fischer, Bergmann, Barwind, Ber. 53, 1603 (1920). (10) Nishimura, Science Repts. Tohoku Imp. Univ. 20, 97-100 (1931); Cent. 1931, I 3671; C.A. 25, 3978 (1931).

(11) Levene, Haller, J. Biol. Chem. 63, 670-671 (1925). (12) Clark, Bell, Trans. Roy. Soc. Can. (3) 27, III 97-103 (1933). (13) von Braun, Jostes, Münch, Ann. 453, 147 (1927). (14) Naegeli, Grüntuch, Lendorff, Heis. Chim. Acta 12, 240-241 (1929). (15) Pummerer, Kranz. Ber. 62, 2624 (1929). (16) Ralston, McCorkle, Vander Wal (to Armour and Co.), U.S. 2,262,431, Nov. 11, 1941; C.A. 36, 1513 (1942). (17) Escher, Heis. Chim. Acta 12, 37-38, 45-45 (1929). (18) Bückel,

Ger. 281,364, Jan. 2, 1915; Cent. 1915, I 230; C.A. 9, 2130 (1915). (19) Izard, Brochem, Z, 40, 402 (1912). (20) Prat, Étienne, Bull. soc. chim. (5) 11, 30-34 (1944); C.A. 38, 6274 (1944).

(21) Jeffreys, Am. Chem. J. 22, 27 (1899). (22) Hughes, Rideal, J. Chem. Soc. 1934, 1107. (23) Adam, Proc. Roy. Soc. (London) A-103, 684-685 (1923). (24) Krafit, Ber 19, 2982-2983 (1886). (25) I.G., French 693,699, Nov. 24, 1930; Cent. 1931, I 1018; [C.A. 25, 1646 (1931)]. (26) Ryan, Nolan, Proc. Roy. Irish Acad. 30-B, 1-7 (1912); Cent. 1913, II 2050; C.A. 7, 1712 (1913). (27) Claus, Hafelin, J. prakt. Chem. (2) 54, 402-403 (1896). (28) Ralston, Christensen, Ind. Eng. Chem. 29, 194-196 (1937). (29) Ralston, Christensen (to Armour and Co.), U.S. 2,033,544, March 10, 1936; Cent. 1936, II 897; [C.A. 30, 3134 (1936)]. (30) Shonle, Row, J. Am. Chem. Soc. 43, 363 (1921).

(31) Brauns, J. Am. Chem. Soc. 42, 1479 (1920). (32) Staudinger, Schwalenstöcker, Ber. 68 733-742 (1935). (33) Ralston, McCorkle, Bauer, J. Org. Chem. 5, 658 (1940). (34) Marangoni, Atti ist. Veneto sci., Pt. 2. Sci. mat. nat. 97, 209-218 (1937/8); Cent. 1939, I 95-96; C.A. 34, 6934 (1940). (35) Ralston, Bauer, J. Org. Chem. 5, 165-170 (1940). (36) Ralston, Ingle, McCorkle, J. Org. Chem. 7, 457-461 (1942). (37) von Auwers, Ber. 36, 3891 (1903). (38) Whitby, J. Chem. Soc. 1926, 1462. (39) Holde, Ripper, Zadek, Ber. 57, 103 (1924). (40) Wallace, Copenhaver, J. Am. Chem. Soc. 63, 699 (1941).

(41) Holde, Gentner, Ber. 58, 1424 (1925). (42) Krafft, Rosiny, Ber. 33, 3578 (1900). (43) Autenrieth, Thomae, Ber. 57, 430 (1924). (44) von Auwers, Jacobsen, Ann. 426, 222 (1922).

(45) Helferich, Koster, Ber. 56, 2090-2091 (1923).

--- 1-CHLOROHEPTADECANE 
$$CH_3(CH_2)_{15}$$
. $CH_2Cl$   $C_{17}H_{36}Cl$  Beil. I --  $I_{1-}(69)$   $I_{2-}$ 

B.P. 192-195° at 10 mm. M.P. 24°

See 3:0100. Division A: Solids.

B.P. 176° at 4 mm. (1) 139-144° at 0.04 mm. (2)

[For prepn. of  $\bar{C}$  from margaric acid (1:0635) with SOCl<sub>2</sub> (84.5% yield (2)) (1) (3) see indic. refs.]

C with phenol (1:1420) on htg. gives (3) phenyl margarate, cryst. from MeOH, m.p. 37°, b.p. 240-250° dec. at 11 mm. (3).

[C with alkali margarates presumably would yield margaric anhydride, cryst. from ether or pet. ether, m.p. 67.6° cor. (4), although this reaction has not actually been reported and the margaric anhydride is readily obtd. from the acid (1:0635) with Ac<sub>2</sub>O (4).]

[For reaction of C with vanilly lamine see (1); with 1,7-aminonaphthol see (2).]

 $\bar{\mathbf{C}}$  on hydrolysis yields margaric acid (1:0635); for the amide and other derivs, corresp. to  $\bar{\mathbf{C}}$  see margaric acid (1:0635).

3:9925 (1) Ford-Moore, Phillips, Rec. trav. chim. 53, 858 (1934). (2) Fierz-David, Kuster, Helv. Chim. Acta. 22, 89, 101 (1939). (3) Skraup, Schwamberger, Ann. 462, 153 (1928). (4) Wallace, Copenhaver, J. Am. Chem. Soc. 63, 699-700 (1941).

--- 1-CHLORO-OCTADECANE CH<sub>3</sub>.(CH<sub>2</sub>)<sub>16</sub>.CH<sub>2</sub>Cl C<sub>18</sub>H<sub>37</sub>Cl Beil. S.N. 10 (n-Octadecyl chloride; stearyl chloride)

B.P. 180-190° at 12 mm. M.P. 21°

See 3:0095. Division A: Solids

[See also the trans stereoisomer, viz., elaidoyl chloride (3:9950).]

[For prepn. of  $\bar{C}$  from oleic acid (1:0565) with PCl<sub>5</sub> (yields: 75% (2), 48% (6), 27% (7)) (8), with PCl<sub>3</sub> (46% yield (6)) (9), with PCl<sub>3</sub> + ZnCl<sub>2</sub> (50% yield (7)), with SOCl<sub>2</sub> (yields: 82.5% (4), 80% (7), 75% (2)) (3), with oxalyl (di)chloride (3:5060) (90% yield (3)), or with COCl<sub>2</sub> (3:5000) (10) see indic. refs.]

Note that  $\tilde{C}$  with oleic acid (1:0565) forms a const.-boilg. mixt., b.p. about 241° at 6 mm., contg. 40%  $\tilde{C}$  (6).

The reaction of C as an acyl chloride with a wide variety of organic compounds has been reported in many patents which cannot be reviewed here.

Č has also been employed in the course of prepn. of mixed glycerides; although this topic cannot be fully reviewed in this text, see for examples (3) (11) (12).

[For behavior of C with resins derived from indene, coumarone, or dicyclopentadiene see (13).]

[Č with diazomethane gives an intermediate diazoketone which on decompn. with AcOH gives (75% yield (4)) nonadecen-10-one-2-yl-1 acetate, m p 21° (14).]

[ $\bar{C}$  with phenol (1:1420) at 160° for 4 hrs. gives (55% yield (18)) phenyl oleate, oil, b.p. 256-257° at 12 mm. (18).]

[Č with Na oleate yields (10) oleic anhydride [Beil. II-469, II<sub>2</sub>-(441)], lfts. or scales from ether or alc., m.p. 22.2° (15), 22° (16), but the latter is usually prepared directly (15) (17) from oleic acid (1:0565).]

 $\tilde{\mathbf{C}}$  on hydrolysis yields oleic acid (1:0565); for the amide, anilide, p-toluidide, and other derivs. corresp. to  $\tilde{\mathbf{C}}$  see oleic acid (1:0565).

3:9940 (1) Krafft, Tritschler, Ber. 33, 3584 (1900). (2) Sulzberger, Z. angew Chem. 27, 40 (1914).
 (3) Daubert, Frieke, Longenecker, J. Am. Chem. Soc. 65, 2143 (1943). (4) Fierz-David, Kuster, Helv. Chim. Acta 22, 89 (1939). (5) Verkade, Rec. trav. chim. 62, 393-397 (1943); Cent. 1943, II 1532; C.A. 38, 3250-3251 (1944). (6) Taufel, Kunkle, Fettchem. Umschau 42, 27-29 (1935); Cent. 1935, I 2971; C.A. 29, 3307 (1935). (7) Clark, Bell, Trans. Roy Soc. Can. (3) 27, III 97-103 (1933). (8) Shonle, Row, J. Am. Chem. Soc. 43, 363 (1921). (9) Aschan, Ber. 31, 2349 (1898). (10) Prat, Etienne, Bull. soc. chim. (5) 11, 30-34 (1944); C.A. 38, 6274 (1944).

(11) Daubert, Spiegl, Longenecker, J. Am. Chem. Soc. 65, 2144-2145 (1943). (12) Jackson, Daubert, King, Longenecker, J. Am. Chem. Soc. 66, 289-290 (1944). (13) Ralston, Vander Wal, Bower, Segebrecht, Ind. Eng. Chem. 32, 99-101 (1940). (14) Grundmann, Ann. 524, 31-39 (1936). (15) Holde, Rietz, Ber. 57, 100 (1924). (16) Levene, Rolf, J. Biol. Chem. 60, 681 (1924). (17) Holde, Smelkus, Ber. 53, 1894-1895 (1920). (18) Skraup, Beng, Ber. 60, 950 (1927).

3:9950 ELAIDYL CHLORIDE 
$$C_{18}H_{33}OCl$$
 Beil II - 470  $CH_3.(CH_2)_7-C-H$   $Cl$   $II_1-H-C-(CH_2)_7.C=O$ 

B.P. 216° at 13 mm. (1) sl. dec. 168-170° at 1 mm. (5) [For prepn. of C from elaidic acid (1:0610) with PCl<sub>5</sub> (1), with SOCl<sub>2</sub> (2), or with oxalyl (di)chloride (3:5060) (91% yield (5)) cf. (6) see indic. refs.]

[For reactn. of  $\tilde{C}$  with diazomethane giving (83% yield (2)) 1-diazononadecen-10-one-2, m.p. 53° (2), see (2); for reactn. of  $\tilde{C}$  with ethyl sodio-acetosuccinate see (3); for use of  $\tilde{C}$  in prepn. of synthetic glycerides see (4).]

 $\bar{\mathbf{C}}$  on hydrolysis yields elaidic acid (1:0610) (for the amide and other derivatives corresp. to  $\bar{\mathbf{C}}$  see 1:0610).

3:9950 (1) Krafft, Tritschler, Ber. 33, 3582 (1900). (2) Grundmann, Ann. 524, 43 (1936). (3) Robinson, J. Chem. Soc. 1930, 750. (4) Böhmer, Kappeller, Fette u. Seifen 44, 340-343 (1937); Cent. 1938, I 573. (5) Daubert, J. Am. Chem. Soc. 66, 291 (1944). (6) Wood, Jackson, Baldwin, Longenecker, J. Am. Chem. Soc. 66, 287-289 (1944).

| 3:996 | 0 n-OCTAL<br>(Stearoyl |      |         | L CE | ILOR | CH <sub>3</sub> .(CH <sub>2</sub> ) |       | : <sub>18</sub> H <sub>35</sub> C<br>=O | Cl  | Веіl. II - 384<br>II <sub>1</sub> -(176)<br>II <sub>2</sub> -(360) |
|-------|------------------------|------|---------|------|------|-------------------------------------|-------|-----------------------------------------|-----|--------------------------------------------------------------------|
| B.P.  | 215°                   | at   | 15      | mm.  | (1)  | M.P.                                | 24°   |                                         | (2) |                                                                    |
|       | 211-219°               | at   | 15      | mm.  | (2)  |                                     | 23°   |                                         | (1) |                                                                    |
|       | 200-215°               | at   | 13-15   | mm.  | (3)  |                                     | 23.2- | 23.4°                                   | (8) |                                                                    |
|       | 205°                   | at   | 9       | mm.  | (4)  |                                     |       |                                         |     |                                                                    |
|       | 202-203°               | at   | 6       | mm.  | (5)  |                                     |       |                                         |     |                                                                    |
|       | 186-190°               | at   | 5-6     | mm.  | (45) |                                     |       |                                         |     |                                                                    |
|       | 203°                   | at   | 5       | mm.  | (6)  |                                     |       |                                         |     |                                                                    |
|       | 185°                   | at   | 3       | mm.  | (7)  |                                     |       |                                         |     |                                                                    |
|       | 195-195.5°             | at   | 2       | mm.  | (8)  |                                     |       |                                         |     |                                                                    |
|       | 164-166°               | at ( | 0.5-1.0 | mm.  | (9)  |                                     |       |                                         |     |                                                                    |
|       | 176-178°               | at   | 0.5     | mm.  | (10) |                                     |       |                                         |     |                                                                    |
|       | 165°                   | at   | 0.4     | mm.  | (11) |                                     |       |                                         |     |                                                                    |

Note that care must be taken to avoid confusion of  $\bar{C}$  with stearyl chloride (1-chloro-octadecane) (3:0095).

## PREPARATION OF C

[For prepn. of  $\bar{C}$  from stearic acid (1:0660) with PCl<sub>5</sub> directly (1) (12) (13) (21) or in CCl<sub>4</sub> soln. (14), with SOCl<sub>2</sub> directly (yields: 97% (10), 81% (3)) (4) (7) (15) (16) (17) or in CCl<sub>4</sub> soln. (yield 86% (8)) (14), with PCl<sub>3</sub> (18), with oxalyl (di)chloride (3:5060) (11), or with phospene (3:5000) at 140-150° (70-75% yield (19)) see indic. refs.]

#### CHEMICAL BEHAVIOR OF C

#### BEHAVIOR WITH INORGANIC REAGENTS

Hydrogenation of  $\tilde{C}$ . [ $\tilde{C}$  with  $H_2 + Pd/BaSO_4$  cat. in boilg. xylene gives (20) (21) stearaldehyde (1:0012).]

Behavior with bromine. [For behavior of C with Br<sub>2</sub> at room temp., 100°, and 135° see (22).]

Behavior with sodium. [ $\bar{C}$  (1 mole) with metallic sodium (1.2 moles) in dry ether under reflux gives (67% yield (3)) hexatriaconten-18-diol-18,19 distearate, i.e., the distearate ester of CH<sub>3</sub>. (CH<sub>2</sub>)<sub>16</sub>.C(OH)=C(OH). (CH<sub>2</sub>)<sub>16</sub>.CH<sub>3</sub>, m.p. 67-68°.]

With sodium azide. [ $\check{C}$  with NaN<sub>3</sub> in C<sub>6</sub>H<sub>6</sub> gives (23) (12) stearoyl azide (not isolated) which loses N<sub>2</sub> with rearr. giving (43% yield (23)) heptadecyl isocyanate, b.p. 208-209°

at 17 mm. (23), 290-203° at 15 mm. (24); cf. the corresp. behavior of lauroyl chloride (3:9858).]

With water. C with aq. hydrolyzes to stearic acid (1:0660) + HCl.

## BEHAVIOR WITH ORGANIC REACTANTS

With hydrocarbons (or their equivalents). [ $\bar{C}$  with  $C_6H_6 + AlCl_3$  gives (yields: 65% (25), 60% (26)) (27) (18) heptadecyl phenyl ketone (stearophenone) [Beil. VII-347, VII<sub>1</sub>-(187)], lfts. from alc., m.p. 64-65° (25), 63.5-64.5° (18), 64° (28), 59° (27) (29) (corresp. oxime, m.p. 53° (27), phenylhydrazone, m.p. 54° (28)); note that in this reaction no introduction of a second acyl radical occurs (30), and that attempts to prepare stearophenone by use (with  $C_6H_6 + AlCl_3$ ) of the mixed anhydride from stearic acid with ketene) gave very poor yields (29). — For patents on the use of stearophenone as an electric insulator (31), on its sulfonation (32), or on its reaction with PCl<sub>3</sub> (33) see indic. refs.]

[ $\bar{C}$  with toluene + AlCl<sub>3</sub> gives (34) heptadecyl p-tolyl-ketone [Beil. VII-347, VII<sub>1</sub>-(187)], lfts. from alc., m.p. 67° (34), 66–67° (28), b.p. 278° cor. at 15 mm. (34) (corresp. oxime, m.p. 64° (27)). — For analogous behavior of  $\bar{C}$  with naphthalene (1:7200) (18), tetralin (1:7550) (18), biphenyl (1:715) (18) (35), p-methylbiphenyl (35), p-chlorobiphenyl (3:1912) (35), diphenyl ether (1:7125) (35), p-nitrodiphenyl ether (35), furan (1:8015) (35), p-methylfuran (35), dibenzofuran (35), thiophene (35), dibenzothiophene (35), carbazole (35), etc., see indic. refs.; for use of these products as waxes, addition agents for lubricants, etc., see (35) (36).]

[For behavior of  $\bar{C}$  with resins derived from indene, coumarone, or dicyclopentadiene see (37). — For addition of  $\bar{C}$  to alkynes in pres. of a condensing agent such as AlCl<sub>3</sub>, ZnCl<sub>2</sub>, etc., see (38) cf. (39).]

With alcohols.  $\bar{C}$  with alcohols gives in general the corresp. alkyl stearates. [E.g.,  $\bar{C}$  with MeOH gives methyl stearate (1:2095), m.p. 38.8°;  $\bar{C}$  with EtOH gives ethyl stearate (1:2078), α-form, m.p. 30.9°, β-form, m.p. 33.5°. —  $\bar{C}$  with benzyl alc. (1:6480) gives (40) benzyl stearate, m.p. 45.8°;  $\bar{C}$  with menthol (1:5940) gives (41) menthyl stearate, m.p. 38–39°.]

C has also been much employed in the prepn. of mixed glycerides, but this topic cannot be expanded in detail in this text.

With phenols. [ $\bar{C}$  on htg. with phenols splits out HCl yielding the corresp. esters: e.g.,  $\bar{C}$  with phenol (1:1420) gives (1) phenyl stearate, m.p. 52° (1), 51.5-53.0 (44), b.p. 267° at 15 mm. (1);  $\bar{C}$  with p-cresol (1:1410) gives (1) p-tolyl stearate, m.p. 54°, b.p. 276° at 15 mm.]

[ $\bar{C}$  (2 moles) with pyrocatechol (1:1520) at 100° gives (42) (43) pyrocatechol distearate, m.p. 83-85° (43), 68° (42);  $\bar{C}$  (2 moles) with hydroquinone (1:1590) at 130° gives (42) hydroquinone distearate, m.p. 97°.]

[ $\tilde{C}$  with phenol (1:1420) + AlCl<sub>3</sub> in sym.-tetrachloroethane (3:5750) as solvent, however, gives (45) (44) (46) a mixt. of the corresp. hydroxystearophenones: viz., 27.8% yield o-hydroxyphenyl heptadecyl ketone, m.p. 64-66° (corresp. 2,4-dinitrophenylhydrazone, m.p. 96-97° (45)); and 28% yield p-hydroxyphenyl heptadecyl ketone, m.p. 87-89° corresp. 2,4-dinitrophenylhydrazone, m.p. 139.5-140° (45)); for study of influence upon o/p ratio of use of nitrobenzene or of CS<sub>2</sub> as solvents see (46).]

With salts of organic acids. [C with Ag stearate at  $100^{\circ}$  for 10 min. gives (47) stearic anhydride (1:4915), m.p.  $71-72^{\circ}$  (48),  $71-71.5^{\circ}$  (49),  $70.7^{\circ}$  (50),  $70.5^{\circ}$  (47),  $70-71^{\circ}$  (51), but the latter is usually prepd. from stearic acid (1:0660) by htg. with Ac<sub>2</sub>O (48) (49) (50) (51).

With esters. [Č with ethyl sodio-acetoacetate refluxed 1 hr. under  $N_2$  gives (68% yield (52)) ethyl  $\alpha$ -stearoylacetoacetate, m.p. 42°; note that this prod. with aq. NaOH splits off its acetyl group giving (74% yield (52)) ethyl stearoylacetate, m.p. 46.5° (corresp. copper enolate, m.p. 111-112°).]

With Grignard reagents. [C with ter-BuMgBr gives (28.5% yield (8)) ter-butyl n-hep-tadecyl ketone, m.p. 44.8-45.1° (corresp. semicarbazone, m.p. 78.0-78.2°); note that low yield suggests probability that the RMgBr also acted as a reducing agent cf. corresp. behavior of lauroyl chloride (3:9858), but no study of such effect for this combination is reported. — C with cyclohexyl MgBr gives (8) cyclohexyl n-heptadecyl ketone.]

[ $\bar{C}$  with EtMgBr + CdCl<sub>2</sub> (53) or  $\bar{C}$  with ZnEt<sub>2</sub> (54) gives (65% yield (53)) ethyl n-heptadecyl ketone (eikosanone-3) [Beil. I-719, I<sub>1</sub>-(374), I<sub>2</sub>-(774)], m.p. 60-61° (54), 59.5-60° (55), 57° (28), 54-55° (53) (corresp. oxime, m.p. 55.5-56.5° (54), semicarbazone, m.p. 89-91° (53)).]

With diazomethane. [ $\bar{C}$  with CH<sub>2</sub>N<sub>2</sub> (2.2 moles) as directed gives (88.5% yield (15)) 1-diazononadecanone-2, m.p. 69°, which in AcOH loses N<sub>2</sub> and esterifies giving (89% yield (15)) nonadecanon-2-yl-l acetate, m.p. 72°.]

With amines.  $\bar{C}$  with org. prim. amines yields the corresp. amides [e.g.,  $\bar{C}$  with p-cymidine (2-methyl-5-isopropylaniline) gives (56) stearo-(2-methyl-5-isopropyl)anilide, m.p. 93-94°;  $\bar{C}$  with vanillylamine (4-hydroxy-3-methoxybenzylamine) gives (5) N-(vanillyl)-stearamide,  $\alpha$ -form, m.p. 94 5-95°,  $\beta$ -form, m.p. 90.0-90.5°].

 $\bar{C}$  on hydrolysis yields stearic acid (1:0660), m.p. 69-70°; for the amide, anilide, p-toluidide, and other derivatives corresp. to  $\bar{C}$  see stearic acid (1:0660).

3:9960 (1) Krafft, Bürger, Ber. 17, 1379-1380 (1884). (2) Gault, Ehrmann, Bull. soc. chim.
 (4) 39, 876 (1926). (3) Ralston, Selby, J. Am. Chem. Soc. 61, 1019-1020 (1939). (4) Ott.
 Zimmermann, Ann. 425, 337 (1921). (5) Ford-Moore, Phillips, Rec. trav. chim. 53, 858 (1934).
 (6) Kabashima, Ber. 71, 1072 (1938). (7) Robinson, Roche, King, J. Am. Chem. Soc. 54, 707 (1932).
 (8) Strating, Backer, Rec. trav. chim. 55, 904, 914 (1936). (9) Fischer, Bergmann, Barwind, Ber. 53, 1597 (1920). (10) Fierz-David, Kuster, Helv. Chim. Acta 22, 89 (1939).

(11) Averill, Roche, King, J. Am. Chem. Soc. 51, 868 (1929). (12) Naegeli, Gruntuch, Lendorff, Helv. Chim. Acta 12, 236-238 (1929). (13) Ralston, McCorkle, Vander Wal (to Armour and Co.), U.S. 2,262,431, Nov. 11, 1941; C A 36, 1513 (1942). (14) Bückel, Ger. 281,364, Jan. 2, 1915; Cent. 1915, I 230; (C.A. 9, 2130 (1915)]. (15) Grundmann, Ann. 524, 31-32, 36-37 (1936). (16) Izard, Biochem. Z. 40, 403 (1912). (17) Escher, Helv. Chim. Acta 12, 37-38, 44-45 (1929). (18) Mikesa, Smith, Lieber, J. Ory. Chem. 2, 500-504 (1938). (19) Prat. Étienne, Bull. soc. chim. (5) 11, 30-34 (1944); C A. 38, 6274 (1944). (20) Rosenmund, Ber. 51, 592 (1918); Ger. 333,154, Feb. 18, 1921; Cent. 1921, II 737; not in C.A.

(21) Feulgen, Behrens, Z. physiol. Chem. 177, 221-230 (1928). (22) Aschan, Ber. 45, 1918 (1912). (23) Schroeter, Ber. 42, 3359 (1909). (24) Piggott, Statham (to Imp. Chem. Ind. Ltd.), Brit. 485,761, Nov. 24, 1937; Cent. 1938, II 1676; [C.A. 32, 7926 (1938)]. (25) Seidel, Engelfried, Ber. 69, 2569, 2578-1579 (1936). (26) Adam, Proc. Roy. Soc. (London) A-103, 684 (1923). (27) Claus, Häfelin, J. prakt. Chem. (2) 54, 399 (1896). (28) Ryan, Nolan, Proc. Irish Acad. 30-B, 1-7 (1912); Cent. 1913, II 2050; C.A. 7, 1712 (1913). (29) Williams, Dickert, Krynitsky, J. Am. Chem. Soc. 63, 2510-2511 (1941). (30) Gilman, Turck, J. Am. Chem. Soc. 61, 478-479 (1939).

(31) Ralston, Christensen (to Armour and Co.), U.S. 2,039,837, May 5, 1936; Cent. 1937, I 678; C.A. 30, 4239 (1936). (32) Ralston (to Armour and Co.), U.S. 2,089,154, Aug. 3, 1937; Cent. 1937, II 4240; C.A. 31, 6769 (1937). (33) Ralston, Christensen (to Armour and Co.), U.S. 2,162,970, June 26, 1939; Cent. 1939, II 3883; C.A. 33, 7815 (1939). (34) Kraft, Ber. 21, 2268 (1888). (35) Ralston, Christensen, Ind. Eng. Chem. 29, 194-196 (1937). (36) Ralston, Christensen (to Armour and Co.), U.S. 2,033,544, March 10, 1936; Cent. 1936, II 897; [C.A. 36, 3134 (1936)]. (37) Ralston, Vander Wal, Bauer, Segebrecht, Ind. Eng. Chem. 32, 99-100 (1940). (38) Nelles, Bayer (to I.G.), Ger. 642,147, Feb. 25, 1937; Cent. 1937, II 2597; C.A. 31, 3502 (1937): Brit. 461,080, March 11, 1937; Cent. 1937, II 2597; C.A. 31, 4676 (1937). (39) Kroeger, Sowa, Nieuwland, J. Org. Chem. 1, 163-169 (1936). (40) Shonle, Row, J. Am. Chem. Soc. 43, 363 (1921).

(41) Brauns, J. Am. Chem. Soc. 42, 1479 (1920). (42) Marangoni, Atti ist. Veneto sci., Pt. 2. Sci. mat. nat. 97, 209-218 (1937/8); Cent. 1939, I 95-96; C.A. 34, 6934 (1940), (43) Rosenmund,

Lohfert, Ber. 61, 2605 (1928). (44) Ralston, McCorkle, Bauer, J. Org. Chem. 5, 658 (1940). (45) Ralston, Bauer, J. Org. Chem. 5, 165-170 (1940). (46) Ralston, Ingle, McCorkle, J. Org. Chem. 7, 457-461 (1942). (47) Whitby, J. Chem. Soc. 1926, 1462. (48) Holde, Ripper, Zadek, Ber. 57, 104 (1924). (49) Holde, Gentner, Ber. 58, 1424 (1925). (50) Wallace, Copenhaver, J. Am. Chem. Soc. 63, 699 (1941).

(51) Autenrieth, Thomae, Ber. 57, 429 (1924).
(52) Bergel, Jacob, Todd, Work, J. Chem. Soc. 1938, 1378.
(53) Gilman, Nelson, Rec. trav. chim. 55, 528-530 (1936).
(54) Ponsio, de Gaspari, Gazz. chim. ital. 29, I 474 (1899).
(55) Saville, Shearer, J. Chem. Soc. 127, 593 (1925).
(56) Hann, Jamieson, J. Am. Chem. Soc. 50, 1443 (1928).

## CHAPTER XXIII

# I. INDEX OF COMPOUNDS ACCORDING TO EMPIRICAL FORMULA

This Empirical Formula Index comprises four parts as follows:

- A. Compounds containing only carbon and chlorine.
- B. Compounds containing only carbon, oxygen, and chlorine.
- C. Compounds containing only carbon, hydrogen, and chlorine.
- D. Compounds containing only carbon, hydrogen, oxygen, and chlorine.

Within each section the component individuals are arranged in groups according to increasing number of carbon atoms. Within each group of isomeric compounds the order of listing follows the sequence of the eight units comprising the Chemical Type Index.

#### A. COMPOUNDS CONTAINING ONLY CARBON AND CHLORINE

| CCl <sub>4</sub><br>Carbon tetrack               | C <sub>1</sub> GROUP<br>M W. = 153.8<br>aloride | Cl=92.2%<br>3:5100 | C <sub>4</sub> Cl <sub>2</sub><br>1,4-Dichlorob  | C <sub>4</sub> GROUP<br>M.W. = 119.0<br>ntadi-yne-1,3 | Cl=59.6%<br>3:1    |
|--------------------------------------------------|-------------------------------------------------|--------------------|--------------------------------------------------|-------------------------------------------------------|--------------------|
| C <sub>2</sub> Cl <sub>2</sub><br>Dichloroacetyl | C <sub>2</sub> GROUP<br>M.W.=94.9<br>ene        | Cl=74.7%<br>3:5010 | C <sub>4</sub> Cl <sub>6</sub><br>Hexachlorobu   | M.W. = 260.8<br>tadiene-1,3                           | Cl=81.6%<br>3:6425 |
| C <sub>2</sub> Cl <sub>4</sub><br>Tetrachloroeth | M.W. = 165.8<br>ylene                           | C1=85.5%<br>3:5460 | C <sub>b</sub> Cl <sub>8</sub><br>Octachlorocyc  | C <sub>5</sub> GROUP<br>M.W.=343.7<br>lopentene       | Cl=82.5%<br>3:0422 |
| C <sub>2</sub> Cl <sub>6</sub><br>Hexachloroeth  | M.W. = 236.8<br>ane                             | Cl=89.9%<br>3:4835 | 0.01                                             | C <sub>6</sub> GROUP                                  | CI BARO            |
| C <sub>5</sub> Cl <sub>5</sub><br>Hexachloropro  | C <sub>3</sub> GROUP<br>M.W.=248.8<br>pene      | Cl=85.5%<br>3:6370 | C <sub>6</sub> Cl <sub>6</sub><br>Hexachlorober  | $M.W. = 284.8$ nzene . $C_{10}$ GROUP                 | Cl=74.7%<br>3:4939 |
| C <sub>3</sub> Cl <sub>8</sub><br>Octachloroprop | M.W.=319.7                                      | Cl=88.7%<br>3:4450 | C <sub>10</sub> Cl <sub>8</sub><br>Octachloronar | M.W.=403.8<br>ohthalene                               | Cl=70.3%<br>3:4893 |

## B. COMPOUNDS CONTAINING ONLY CARBON, OXYGEN, AND CHLORINE

| COCl <sub>2</sub> Carbonyl chlor | C <sub>1</sub> GROUP<br>M.W. = 98.9<br>ride (phosgene) | Cl=71.7%<br><b>3:5000</b> | C <sub>2</sub> O <sub>2</sub> Cl <sub>2</sub><br>Oxalyl (di)chl               | M.W. = 126.9<br>oride              | Cl=55.9%<br>3:5060        |
|----------------------------------|--------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------|------------------------------------|---------------------------|
| C2OCl4                           | C <sub>2</sub> GROUP<br>M.W. = 181.8                   | Cl=78.0%<br>3:5420        | C <sub>2</sub> O <sub>2</sub> Cl <sub>4</sub><br>Trichlorometh<br>(diphosgene | M.W. = 197.8  ayl chloroformate  ) | Cl=71.7%<br><b>3:5515</b> |

| C <sub>8</sub> OCl <sub>4</sub><br>Trichloroacrylo              | C <sub>8</sub> GROUP<br>M.W. = 193.9<br>byl chloride | Cl=73.2%<br>3:5845           | C <sub>4</sub> O <sub>2</sub> Cl <sub>6</sub><br>Trichloroacetic                | M.W.=308.8<br>acid anhydride<br>C <sub>6</sub> GROUP | Cl=68.9%<br>3:6575 |
|-----------------------------------------------------------------|------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------|--------------------|
| Hexachloroace                                                   | M.W.=124.1<br>tone<br>opionyl chloride               | Cl=58.1%<br>3:6312<br>3:0470 | C <sub>6</sub> OCl <sub>6</sub> "Hexachlorop                                    | M.W. = 300.8<br>henol"                               | Cl=70.0%<br>3:3180 |
| C <sub>8</sub> O <sub>2</sub> Cl <sub>6</sub><br>Trichloromethy | M.W.=280.8<br>yl trichloroacetate                    | Cl=75.8%<br>3:0290           |                                                                                 | M.W. = 245.9<br>nzoquinone-1,2<br>nzoquinone-1,4     | Cl=57.7%<br>3:3965 |
| C <sub>3</sub> O <sub>3</sub> Cl <sub>6</sub><br>Di-(trichlorom |                                                      | Cl=71.7%                     | (chloranil)                                                                     |                                                      | <b>3:49</b> 78     |
| carbonate (t                                                    | riphosgene)  C4 GROUP                                | 3:1915                       | C <sub>6</sub> O <sub>2</sub> Cl <sub>6</sub><br>2,3,5,5,6,6-Hex<br>cyclohexen- |                                                      | Cl=67.2%<br>3:3260 |
| C <sub>4</sub> OCl <sub>6</sub><br>Dı-(trichlorovi              | M.W. = 276.8 nyl) ether                              | Cl=76.9%<br>3:6373           | "Hexachlorore                                                                   |                                                      | 3:3470             |
| C4OCl <sub>10</sub>                                             | M.W.=418.6                                           | Cl=84.7%                     |                                                                                 | C7 GROUP                                             |                    |
| Decachlorodiet                                                  |                                                      | 3:1676                       | C <sub>7</sub> OCl <sub>6</sub><br>Pentachlorobe                                | M.W.=312.8<br>nzoyl chloride                         | Cl=68.0%<br>3:2295 |
| C <sub>4</sub> O <sub>2</sub> Cl <sub>4</sub><br>Dichloromaley  | M.W.=221.9<br>l (di)chloride                         | Cl=63.9%<br>3:6197           |                                                                                 | C <sub>8</sub> GROUP                                 |                    |
| C <sub>4</sub> O <sub>8</sub> Cl <sub>2</sub><br>Dichloromaleic | M.W.=167.0<br>anhydride                              | Cl=42.5%<br>3:3635           | C <sub>8</sub> O <sub>3</sub> Cl <sub>4</sub><br>Tetrachloroph                  | M.W. = 285.9<br>thalic anhydride                     | Cl=49.6%<br>3:4947 |

# C. COMPOUNDS CONTAINING ONLY CARBON, HYDROGEN, AND CHLORIDE

| CHCl <sub>3</sub>                                                                   | C <sub>1</sub> GROUP<br>M.W.=119.4                 | Cl=89.1%                       | C₂H₃Cl<br>Vinyl chloride                                                          |                                                      | Cl=56.7%<br>3:7010           |
|-------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------|------------------------------|
| Chloroform<br>CH <sub>2</sub> Cl <sub>2</sub><br>Methylene (di                      | M.W.=84.9<br>)chloride                             | 3:5050<br>C1=83.5%<br>3:5020   | $C_2H_3Cl_8$<br>1,1,1-Trichloro<br>1,1,2-Trichloro                                |                                                      | Cl=79.7%<br>3:5085<br>3:5330 |
| CH <sub>2</sub> Cl<br>Methyl chloric                                                |                                                    | C1=70.2%<br>3:7005             | C <sub>2</sub> H <sub>4</sub> Cl <sub>2</sub><br>1,1-Dichloroet<br>1,2-Dichloroet | hane                                                 | Cl=71.7%<br>3:5035<br>3:5130 |
| C <sub>2</sub> HCl<br>Chloroacetyler                                                | C <sub>2</sub> GROUP<br>M.W. = 60.5                | C1=58.6%<br>3:7000             | C <sub>2</sub> H <sub>5</sub> Cl<br>Ethyl chloride                                | M.W.=64.5                                            | Cl=55.1%<br>3:7015           |
| C <sub>2</sub> HCl <sub>3</sub><br>Trichloroethyl                                   | M.W. = 131.4<br>ene                                | Cl=81.0%<br>3:5170             | C <sub>3</sub> HCl <sub>5</sub><br>1,1,2,3,3-Petac                                | C <sub>3</sub> GROUP<br>M.W.=214.3<br>hloropropene-1 | Cl=82.7%<br>3:6975           |
| C <sub>2</sub> HCl <sub>5</sub><br>Pentachloroeth                                   | M.W. = 202.3<br>nane                               | C1=87.6%<br>3:5880             |                                                                                   | M.W. = 285.2<br>eptachloropropane                    |                              |
| C <sub>2</sub> H <sub>2</sub> Cl <sub>2</sub><br>1.1-Dichloroet                     | M.W.=97.0<br>hylene                                | Cl = 73.1%                     | 1,1,1,2,3,3,3-H<br>CaH2Cla                                                        | eptachloropropane                                    | 3:6860<br>Cl=78.8%           |
| (vinylidene                                                                         | (di)chloride)<br>hylene (cis form)                 | 3:5005<br>3:5042               | 1,2,3,3-Tetrach                                                                   |                                                      | 3:5920                       |
| 1,2-Dichloroet<br>1,2-Dichloroet                                                    | hylene ( <i>trans</i> form)<br>hylene (ord. mixt.) | 3:5030                         | 1,1,1,2,3,3-Hex                                                                   | M.W.=250.8<br>achloropropane<br>achloropropane       | Cl=84.8%<br>3:6460<br>3:6525 |
| C <sub>2</sub> H <sub>2</sub> Cl <sub>4</sub><br>1,1,1,2-Tetrach<br>1,1,2,2-Tetrach | M.W. = 167.9<br>doroethane<br>doroethane           | Cl = 84.5%<br>3:5555<br>3:5756 | C <sub>8</sub> H <sub>8</sub> Cl<br>3-Chloropropy                                 | M.W.=74.5                                            | Cl=47.6%<br>3:7100           |

| CaHaCla                                       | M.W. = 145.4         | Cl = 73.1%       | C4H2Cla                                       | M.W. = 333.8                            | Cl = 85.0%                            |
|-----------------------------------------------|----------------------|------------------|-----------------------------------------------|-----------------------------------------|---------------------------------------|
| 1,1,2-Trichlord                               | propene-1            | 3:5395           | 1.1.2.2.3.3.4.4                               | -Octachlorobutane                       | 3:2000                                |
| 1,2,3-Trichlord                               |                      | 3:5650           | _,_,_,_,_,_,_,_                               | • • • • • • • • • • • • • • • • • • • • |                                       |
| 3,3,3-Trichloro                               |                      | 3:5345           | C <sub>4</sub> H <sub>3</sub> Cl              | M.W. = 86.5                             | Cl = 41.0%                            |
| 0,0,0-1110111010                              | properte-r           | 0.0020           | 1-Chlorobuter                                 |                                         | 3:7070                                |
| CaHaCla                                       | M.W. = 216.3         | Cl=82.0%         | 1-CIMOTODU GE                                 | 1-0-y11 <del>0-</del> 1                 | 5. IVIV                               |
|                                               |                      |                  | O TT 01                                       | NE XV - 157 4                           | C1 - 07 001                           |
|                                               | chloropropane        | 3:4740           | C <sub>4</sub> H <sub>3</sub> Cl <sub>3</sub> | M.W. = 157.4                            | Cl = 67.6%                            |
| 1,1,2,3,3-Penta                               | achloropropane       | <b>3:6280</b>    | 1,2,3-Trichlor                                | obutadiene-1,3                          | <b>3:96</b> 52                        |
|                                               |                      |                  | ~ ~ ~                                         |                                         | ~ ~~                                  |
| $C_3H_4Cl_2$                                  | M.W. = 111.0         | Cl = 63.9%       | C <sub>4</sub> H <sub>8</sub> Cl <sub>5</sub> | M.W. = 228.4                            | Cl = 77.6%                            |
| 1,1-Dichloropr                                | opene-1              | 3:5120           | 1,1,1,4,4-Pent                                | achlorobutene-2                         | 3:9 <b>6</b> 54                       |
| 1,2-Dichloropr                                |                      |                  |                                               |                                         |                                       |
| Higher-boili                                  |                      | 3:5150           | C <sub>4</sub> H <sub>2</sub> Cl <sub>7</sub> | M.W. = 299.3                            | Cl = 82.9%                            |
| 1,2-Dichloropr                                |                      |                  | 1.1.2.2.3.4.4-F                               | Ieptachlorobutane                       | 3:9056                                |
| Lower-boiling                                 |                      | 3:5110           |                                               | •                                       |                                       |
| 1,3-Dichloropr                                |                      | 3:5280           | C4H4Cl2                                       | M.W. = 123.0                            | Cl = 57.7%                            |
| 2.3-Dichloropr                                |                      | 3:5190           | 1.2-Dichlorob                                 |                                         | 3:9957                                |
|                                               |                      | 3:5140           | 2,3-Dichlorob                                 |                                         | 3:5220                                |
| 3,3-Dichloropr                                | opene-1              | 3:3140           | 2,5 Dicinoron                                 | diadiene-1,5                            | <b>3. 3 2 2 2 3 3 3 3 3 3 3 3 3 3</b> |
|                                               |                      | ~ ~~             | CaHaCla                                       | M.W. = 193.9                            | Cl=73.1%                              |
| $C_3H_4Cl_4$                                  | M.W. = 181.9         | Cl = 78.0%       |                                               |                                         | 3:9058                                |
| 1,1,1,2-Tetrac                                | hloropropane         | 3:5785           |                                               | hlorobutene-1                           |                                       |
| 1,1,2,2-Tetrac                                | hloropropane         | 3:5825           | 2,3,3,4-Tetrac                                | hlorobutene-1                           | 3:9060                                |
| 1,1,2,3-Tetrac                                | hloropropane         | 3:6035           |                                               |                                         |                                       |
| 1.2,2,3-Tetrac                                |                      | 3:5895           | $C_4H_4Cl_6$                                  | M.W. = 264.8                            | Cl = 80.3%                            |
| -,-,-,-                                       |                      |                  | 1,1,2,3,4,4-He                                | xachlorobutane                          | 3:3155                                |
| CaHaCl                                        | M.W. = 76.5          | Cl = 46.3%       |                                               |                                         |                                       |
| 1-Chloroprope                                 |                      | 3:7030           | C <sub>4</sub> H <sub>5</sub> Cl              | M.W. = 88.5                             | Cl = 40.1%                            |
| 2-Chloroprope                                 |                      | 3:7020           | 4-Chlorobuta                                  | diene-1.2                               | 3:7225                                |
|                                               |                      |                  | 1-Chlorobuta                                  |                                         | 3:7210                                |
| 3-Chioroprope                                 | ne-1 (allyl chloride | 9) 9:1099        | 2-Chlorobuta                                  |                                         | 3:7080                                |
|                                               | 36377 1477 4         | CI #0.107        | (Chloropre                                    |                                         | 000                                   |
| $C_8H_5Cl_3$                                  | M.W = 147.4          | Cl = 72.1%       | 1-Chlorobuty                                  |                                         | 3:7175                                |
| 1,1,1-Trichlore                               |                      | 3:5270           | 1-Cmorobuty.                                  | 110-2                                   | 3.7170                                |
| 1,1,2-Trichlore                               |                      | 3:5630           | ~ ** ~*                                       |                                         | ~ ~ ~~                                |
| 1,1,3-Trichlore                               | propane              | <b>3:5660</b>    | $C_4H_5Cl_3$                                  | M.W. = 159.5                            | Cl = 66.7%                            |
| 1,2,2-Trichlore                               | propane              | 3:5475           | 1,2,4-Trichlor                                |                                         | 3:9062                                |
| 1,2,3-Trichlore                               | propane              | 3:5840           | 2,3,4-Trichlor                                | obutene-2                               | 3:9064                                |
| -,-,-                                         | • •                  |                  | 1,1,3-Trichlor                                | o-2-methylpropene                       | -1 <b>3:5025</b>                      |
| $C_2H_6Cl_2$                                  | M.W. = 113.0         | Cl = 62.8%       | 3,3,3-Trichlor                                | o-2-methylpropene                       | -1 <b>3:5605</b>                      |
| 1.1-Dichloropa                                |                      | 3:7230           | 1,3-Dichloro-                                 | 2-(chloromethyl)-                       |                                       |
| 1,2-Dichloropa                                |                      | 3:5200           | propene-1                                     |                                         | 3:9066                                |
| 1.3-Dichloropa                                |                      | 3:5450           |                                               |                                         |                                       |
| 2.2-Dichloropa                                |                      | 3:7140           | $C_4H_5Cl_5$                                  | M.W. = 230.4                            | Cl = 77.0%                            |
| Z,Z-Dicmoropi                                 | Opario               | 0.0110           |                                               | achlorobutane                           | 01-11.070                             |
| O TT 01                                       | M W - 70 F           | Cl = 45.1%       | Solid isome                                   |                                         | 3:0750                                |
| C <sub>8</sub> H <sub>7</sub> Cl              | M.W. = 78.5          | 3:7040           | Liquid isome                                  |                                         | 3:9968                                |
| 1-Chloropropa                                 |                      |                  |                                               |                                         |                                       |
| 2-Chloropropa                                 | ne                   | 3:7025           |                                               | achlorobutane                           | 3:9970                                |
|                                               |                      |                  | 1,1,1,2,3-Pent                                |                                         |                                       |
|                                               | C <sub>4</sub> GROUP |                  | methylprop                                    |                                         | 3:1265                                |
| CAHCla                                        | M.W. = 226.3         | C1 = 78.3%       |                                               | hloro-2-(chloro-                        |                                       |
|                                               | achlorobutadiene-1   | .3 <b>3:9044</b> | methyl)pro                                    | pane                                    | 3:9072                                |
| _,_,_,_,                                      |                      |                  |                                               |                                         |                                       |
| C <sub>4</sub> H <sub>2</sub> Cl <sub>4</sub> | M.W. = 191.9         | Cl = 73.9%       | $C_4H_6Cl_2$                                  | M.W. = 125.0                            | Cl = 56.7%                            |
| 1 2 3 4-Tetrac                                | hlorobutadiene-1,3   |                  | 1,3-Dichlorob                                 | utene-1                                 | 3:7650                                |
| Solid isome                                   | •                    | 3:0870           | 2,3-Dichlorob                                 | utene-1                                 | 3:9074                                |
| Liquid isom                                   |                      | 3:6150           | 3,4-Dichlorob                                 |                                         | 3:5350                                |
| Tudara mom                                    |                      | • •              |                                               |                                         |                                       |
| C <sub>4</sub> H <sub>2</sub> Cl <sub>5</sub> | M.W. = 262.8         | Cl = 81.0%       | 1,1-Dichlorob                                 | utene-2                                 | 3:7685                                |
| 119944-11                                     | kachlorobutene-2     |                  | 1,2-Dichlorob                                 |                                         |                                       |
| Solid isome                                   |                      | 3:1945           | Higher-boil                                   |                                         | 3:5615                                |
|                                               |                      | 3:9046           | Lower-boil                                    |                                         | 3:5360                                |
| Liquid isom                                   |                      | 3:9048           | 1.3-Dichlorob                                 |                                         | 3:5550                                |
| Hexachlorobu                                  |                      | 3:9050           | 1.4-Dichlorob                                 |                                         | 3:5725                                |
| Hexachlorobu                                  | tene- X              | 9 : 200U         | 1,4-Dicinolog                                 | и <i>ю</i> н <i>0-2</i>                 | ø:9/79                                |
|                                               |                      |                  |                                               |                                         |                                       |

| 2,3-Dichlorobutene-2 Higher-boiling isomer (trans) Lower-boiling isomer (cis)                      | 3 : 7395<br>3 : 55 <b>90</b>                           | $C_4H_9Cl$ M.W.=92.6<br>1-Chlorobutane<br>2-Chlorobutane         | Cl=38.3%<br>3:7160<br>3:7125 |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------|------------------------------|
| 1,1-Dichloro-2-methylpropene-1<br>1,3-Dichloro-2-methylpropene-1<br>3,3-Dichloro-2-methylpropene-1 | 3 : <b>5300</b><br>3 : <b>5590</b><br>3 : <b>748</b> 0 | 1-Chloro-2-methylpropane<br>2-Chloro-2-methylpropane             | 3:7135<br>3:7 <b>04</b> 5    |
| 3-Chloro-2-(chloromethyl)-<br>propene-1                                                            | 3:5633                                                 | $C_{\delta}$ GROUP<br>$C_{\delta}H_{\delta}Cl_{2}$ M.W. = 137.0  | Cl=51.8%                     |
| C <sub>4</sub> H <sub>6</sub> Cl <sub>4</sub> M.W.=195.9                                           | Cl=72.4%                                               | 1-Chloro-2-(chloromethyl)-<br>butadiene-1.3                      | 3:9195                       |
| 1,1,1,2-Tetrachlorobutane                                                                          | 3:5622                                                 |                                                                  |                              |
| 1,2,2,3-Tetrachlorobutane<br>1,2,3,3-Tetrachlorobutane                                             | 3:9078<br>3:9080                                       | $C_5H_7Cl$ M.W.=102.6<br>1-Chloro-3-methylbutadiene-1,2          | Cl=34.6%<br>3:7390           |
| 1,2,3,4-Tetrachlorobutane                                                                          |                                                        | 1-Chioro-3-methylodtadiene-1,2                                   | 9:1080                       |
| Solid isomer                                                                                       | 3:1760<br>3:9082                                       | 3-Chloropentadiene-1,3                                           | 3:7360                       |
| Liquid isomer                                                                                      | 9:800%                                                 | 1-Chloro-2-methylbutadiene-1,3<br>3-Chloro-2-methylbutadiene-1,3 | 3:9200<br>3:7290             |
| 1,1,1,2-Tetrachloro-2-                                                                             |                                                        | 1-Chloro-3-methylbutadiene-1,3                                   | 3:7355                       |
| methylpropane 1,1,2,3-Tetrachloro-2-                                                               | 3:4725                                                 | 2 Chlore 2 mathadhatana 1                                        | 0.7177                       |
| methylpropane                                                                                      | 3:6165                                                 | 3-Chloro-3-methylbutyne-1                                        | 3:7155                       |
| 1,1,3-Trichloro-2-(chloro-                                                                         | 0.0004                                                 | $C_{\delta}H_{7}Cl_{3}$ M.W. = 173.5                             | Cl = 61.3%                   |
| methyl) propane<br>1,2,3-Trichloro-2-(chloro-                                                      | 3:908 <del>4</del>                                     | 1,3-Dichloro-2-(chloro-<br>methyl)butene-1                       | 3:9201                       |
| methyl)propane                                                                                     | 3:6335                                                 | methyl)butene-i                                                  | 0:92VI                       |
| $C_4H_7Cl$ $M.W. = 90.6$                                                                           | Cl=39.2%                                               | $C_{b}H_{1}Cl_{b}$ M.W.=244.4                                    | Cl = 72.5%                   |
| 1-Chlorobutene-1                                                                                   | 3:7110                                                 | 3,3,4,4,4-Pentachloro-2-<br>methylbutane                         | 3:6725                       |
| 2-Chlorobutene-1                                                                                   | 3:7075                                                 |                                                                  |                              |
| 3-Chlorobutene-1<br>4-Chlorobutene-1                                                               | 3:7 <b>090</b><br>3:7151                               | $C_5H_8Cl_2$ M.W.=139.0<br>2,5-Dichloropentene-2                 | Cl=51.0%                     |
| 2-0mor 05q00m0-2                                                                                   |                                                        | 3,4-Dichloropentene-2                                            | 3:9202<br>3:8045             |
| 1-Chlorobutene-2                                                                                   | 3:7205                                                 |                                                                  |                              |
| 2-Chlorobutene-2                                                                                   | 3:7105                                                 | 3,3-Dichloro-2-methylbutene-1<br>3-Chloro-2-(chloromethyl)-      | 3:7690                       |
| 1-Chloro-2-methylpropene-1<br>(isocrotyl chloride)                                                 | 3:7120                                                 | butene-1                                                         | 3:9206                       |
| 3-Chloro-2-methylpropene-1                                                                         |                                                        | 1,3-Dichloro-2-methylbutene-2                                    | 3:8170                       |
| (methallyl chloride)                                                                               | 3:7145                                                 | 1,4-Dichloro-2-methylbutene-2                                    | 3:9204                       |
| $C_4H_7Cl_3$ M.W. = 161.5                                                                          | Cl = 65.9%                                             | $C_5H_8Cl_4$ M.W. = 209.9                                        | Cl = 67.6%                   |
| 1,1,3-Trichlorobutane                                                                              | 3:9086                                                 | 1,2,3-Trichloro-2-(chloro-<br>methyl)butane                      | 9 . 5990                     |
| 1,2,3-Trichlorobutane<br>2,2,3-Trichlorobutane                                                     | 3:5935<br>3:5680                                       | 1,3-Dichloro-2,2-bis-(chloro-                                    | 3:5230                       |
| 2,2,3-1 Hemorobutane                                                                               | 9.000                                                  | methyl)propane                                                   | 3:2675                       |
| 1,1,2-Trichloro-2-methylpropane                                                                    | 3:5710                                                 | C <sub>6</sub> H <sub>9</sub> Cl M.W. = 104.6                    | Cl=33.9%                     |
| 1,2,3-Trichloro-2-methylpropane                                                                    | 3:5885                                                 | 1-Chloropentene-1                                                | 3:7420                       |
| C4HaCle M.W.=127.0                                                                                 | Cl = 55.8%                                             | 2-Chloropentene-1                                                | 3:7280                       |
| 1.1-Dichlorobutane                                                                                 | 3:7550                                                 | 3-Chloropentene-1<br>4-Chloropentene-1                           | 3:7260                       |
| 1,2-Dichlorobutane                                                                                 | 3:7680                                                 | 5-Chloropentene-1                                                | 3:7350<br>3:7410             |
| 1,3-Dichlerobutane                                                                                 | 3:7925                                                 | b-Cimor openiene-1                                               | 0:1710                       |
| 1,4-Dichlorobutane                                                                                 | -: 5835                                                | 1-Chloropentene-2                                                | 3:7470                       |
| 2,2-Dichlorobutane                                                                                 | : 7415                                                 | 2-Chloropentene-2                                                | 3:7285                       |
| 2,3-Dichlorobutane                                                                                 | : 7615                                                 | 3-Chloropentene-2                                                | 3:7240                       |
| d,l (racemic) isomer  meso isomer                                                                  | :7580                                                  | 4-Chloropentene-2<br>5-Chloropentene-2                           | 3:7 <b>400</b>               |
|                                                                                                    |                                                        | o openiones                                                      | 8:7455                       |
| 1,1-Dichloro-2-methylpropane                                                                       | 8:7425                                                 | 1-Chloro-2-methylbutene-1                                        | 3:7303                       |
| 1,2-Dichloro-2-methylpropane                                                                       | 3:7430<br>3:7960                                       | 2-(Chloromethyl)butene-1<br>3-Chloro-2-methylbutene-1            | 3:9214                       |
| 1,3-Dichloro-2-methylpropane                                                                       | 0.1000                                                 | O-Candi O-2-Intellity IDU/CHO-1                                  | 8:7300                       |

| 1-Chloro-3-methylbutene-1        | 3:7215          | 1.2-Dichlorobenzene             | 3:6055          |
|----------------------------------|-----------------|---------------------------------|-----------------|
| _                                |                 | 1,3-Dichlorobenzene             | 3:5960          |
| 1-Chloro-2-methylbutene-2        | 3:7485          | 1,4-Dichlorobenzene             | 3:0980          |
| 3-Chloro-2-methylbutene-2        | 3:7835          | -,                              | 0.000           |
| 4-Chloro-2-methylbutene-2        | 3:7465          | $C_6H_5Cl$ M.W. = 112.6         | Cl = 31.5%      |
|                                  | 0.1.200         | 3-Chlorohexatetraene-1,3,4,5    | 3:7735          |
| Chlorocyclopentane               | 3:7545          | 0 Chioronozaven aene-1,0,2,0    | 0.7700          |
| Candiday diopenional             | 0.1020          | Chlorobenzene                   | 3:7963          |
| $C_8H_9Cl_8$ $M.W. = 175.5$      | Cl = 60.6%      | Chiorobenzene                   | 0.1340          |
| 1.2.3-Trichloro-2-methylbutane   | 3:6100          | $C_6H_5Cl_3$ M.W. = 183.5       | C1 _ E0 000     |
| 2.3.3-Trichloro-2-methylbutane   | 3:4755          |                                 | C1 = 58.0%      |
|                                  |                 | 3,4,6-Trichlorohexatriene-1,2,4 | 3: <b>936</b> 2 |
| 4,4,4-Trichloro-2-methylbutane   | 3:9216          | CITICI MATERIAL                 | ~               |
| 1,3-Dichloro-2-(chloro-          |                 | $C_6H_6Cl_2$ M.W = 149.0        | Cl = 47.6%      |
| methyl)butane                    | 3:9218          | 3,6-Dichlorohexatriene-1,3,4    | 3:93 <b>01</b>  |
|                                  | ~ = = = = =     |                                 |                 |
| $C_6H_{10}Cl_2$ M.W. = 141.0     | Cl = 50.3%      | $C_6H_6Cl_4$ M.W. = 219.9       | Cl = 64.5%      |
| 1,1-Dichloropentane              | 3:8015          | 1,3,4,6-Tetrachlorohexadiene-2, | 4 3:9306        |
| 1,2-Dichloropentane              | 3:81 <b>40</b>  |                                 |                 |
| 1,3-Dichloropentane              | 3:9220          | $C_6H_6Cl_6$ $M.W. = 290.8$     | Cl = 73.1%      |
| 1,4-Dichloropentane              | 3:9224          | 1,2,3,4,5,6-Hexachlorohexene-3  | 3:1220          |
| 1,5-Dichloropentane              | 3:8575          | 1,2,3,4,5,6-Hexachlorocyclohexa |                 |
| 2,2-Dichloropentane              | 3:7755          | Higher-melting isomer (trans)   |                 |
| 2,3-Dichloropentane              | 3:8010          | Lower-melting isomer (cis)      | 3:4410          |
| 2.4-Dichloropentane              | 3:8120          | nower merang nomer (ca)         | 0.2210          |
| 3,3-Dichloropentane              | 3:7895          | $C_6H_7Cl_8$ M.W. = 185.5       | Cl=57.4%        |
| e,e zionorepontune               | 0               | 3,3,6-Trichlorohexadiene-1,4    |                 |
| 1.2-Dichloro-2-methylbutane      | 3:7920          | 3,3,0-1 richioronexaciene-1,4   | <b>3:930</b> 8  |
| 1.3-Dichloro-2-methylbutane      | 3:9228          | CHC WW-1710                     | C1 45.00        |
| 1.4-Dichloro-2-methylbutane      | 3:8360          | $C_0H_0Cl_2$ M.W.=151.0         | Cl = 47.0%      |
| 2,3-Dichloro-2-methylbutane      | 3:7975          | 1,3-Dichlorohexadiene-2,4       | 3:9310          |
| 2,4-Dichloro-2-methylbutane      | 3:8105          |                                 |                 |
| 3,3-Dichloro-2-methylbutane      | 3:9230          | $C_6H_9Cl$ $M.W.=116.6$         | Cl = 30.4%      |
| 3,4-Dichloro-2-methylbutane      | 3:8075          | 3-Chlorohexadiene-1,3           | 3:9312          |
| 4,4-Dichloro-2-methylbutane      | 3:7885          |                                 |                 |
| 4,4-Dichioro-2-methylodiane      | 9:1000          | 1-Chloro-3-methylpentadiene-1,  | 2 3:9314        |
| $C_6H_{11}Cl$ M.W. = 106.6       | Cl = 33.3%      | 1-Chloro-3-methylpentadiene-1,  | 3 3:9316        |
| 1-Chloropentane                  | 3:7460          | 2-Chloro-3-methylpentadiene-1,  |                 |
| 2-Chloropentane                  | 3:7325          |                                 |                 |
| 3-Chloropentane                  | 3:7330          | 1-Chlorohexvne-1                | 3:9320          |
| 5-Chloropentane                  | 9.1990          | 3-Chloro-3-methylpentyne-1      | 3:9322          |
| 1-Chloro-2-methylbutane          | 3:7345          | 4-Chloro-4-methylpentyne-2      | 3:9324          |
| 2-Chloro-2-methylbutane          | 3:7220          | 1 Chair 1 mond pond no 2        | 0.00NZ          |
| 3-Chloro-2-methylbutane          | 3:7275          | $C_aH_oCl_s$ $M.W.=187.5$       | Cl = 56.7%      |
| 4-Chloro-2-methylbutane          | 3:7365          | 1.1.2-Trichlorohexene-1         | 3:9326          |
| 4-Cittoro-2-memyrodcane          | 0.7000          | 1,1,2-111CHOFOHEXEHE-1          | 0:50/0          |
| 1 Chloro 2 2 dimethylmana        | 3:7200          | $C_6H_6Cl_5$ $M.W.=258.4$       | C1_00 00        |
| 1-Chloro-2,2-dimethylpropane     | 9:1 <i>H</i> 00 |                                 | Cl = 68.6%      |
| C CROTTE                         |                 | 1,1,1,2,2-Pentachlorohexane     | 3:9328          |
| C <sub>6</sub> GROUP             |                 | A ** A1 ***                     |                 |
| $C_6HCl_5$ M.W. = 250.4          | Cl = 70.8%      | $C_6H_{10}Cl_2$ M.W. = 153.1    | Cl = 46.3%      |
| Pentachlorobenzene               | 3:2290          | 1,2-Dichlorohexene-1            | 3:9330          |
|                                  |                 |                                 |                 |
| $C_6H_2Cl_4$ M.W. = 215.9        | Cl = 65.7%      | $C_6H_{10}Cl_4$ $M.W. = 224.0$  | Cl = 63.3%      |
| 1,2,3,4-Tetrachlorobenzene       | 3:0655          | 1,1,2,2-Tetrachlorohexane       | 3:9832          |
| 1,2,3,5-Tetrachlorobensene       | 3:0915          |                                 |                 |
| 1,2,4,5-Tetrachlorobenzene       | 3:4115          | $C_6H_{11}Cl$ M.W. = 118.6      | Cl = 29.9%      |
| _,_,_,                           |                 | 1-Chlorohexene-1                | 3:7630          |
| $C_6H_3Cl_8$                     | Cl = 58.6%      | 2-Chlorohexene-1                | 3:7530          |
| 1,2,3-Trichlorobensene           | 3:0990          | 3-Chlorohexene-1                | 3:9334          |
| 1,2,4-Trichlorobensene           | 3:6420          | 4-Chlorohexene-1                | 8:7655          |
| 1,3,5-Trichlorobensene           | 3:1400          | 5-Chlorohexene-1                | 3:7665          |
| 1,0,0-110moronemente             |                 |                                 |                 |
| $C_0H_4Cl_2$ M.W. = 147.0        | Cl = 48.2%      | 1-Chlorohexene-2                | 3:7620          |
|                                  |                 | 4-Chlorohexene-2                | 3:7675          |
| 3.4-Dichlorohexatetraene-1,2,4,5 |                 |                                 |                 |

| 1-Chlorohexene-3                                           | 3:9336              | 2,3,4,6-Tetrachlorobensal          | 0.0000                  |
|------------------------------------------------------------|---------------------|------------------------------------|-------------------------|
| 3-Chlorohexene-3                                           | 3:7535              | (di)chloride                       | <b>3:69</b> 80          |
|                                                            |                     | 2,3,5,6-Tetrachlorobenzal          |                         |
| 3-Chloro-2-methylpentene-1                                 | 3:7660              | (di)chloride                       | 3:6980                  |
| 4-Chloro-4-methylpentene-1                                 | 8:7500              | C7H2Cl5 M.W. = 264.4               | Cl = 67.1%              |
|                                                            |                     |                                    |                         |
| 5-Chloro-2-methylpentene-2                                 | 3:7915              | 2,3,4,5,6-Pentachlorotoluene       | 3:4937                  |
| 4-Chloro-3-methylpentene-2                                 | 3:9338              | 2,3,4-Trichlorobenzal (di)chloride | a 3:2212                |
| 4-Chloro-a-methy pentene-2                                 | 0.5000              |                                    |                         |
| 2 CT 1                                                     | 9.7946              | 2,3,6-Trichlorobenzal (di)chloride |                         |
| 2-Chloro-3,3-dimethylbutene-1                              | 3:7340              | 2,4,5-Trichlorobenzal (di)chloride |                         |
| 1-Chloro-2,3-dimethylbutene-2                              | 3:7520              | 2,4,6-Trichlorobenzal (di)chloride | 3:01 <b>4</b> 2         |
|                                                            |                     | $C_7H_4Cl_4$ M.W. = 230.0          | Cl = 61.7%              |
| Chlorocyclohexane                                          | 3:80 <del>4</del> 0 |                                    | 3:2710                  |
| •                                                          |                     | 2,3,4,5-Tetrachlorotoluene         | 3:2480                  |
| $C_6H_{12}Cl_2$ M.W. = 155.1                               | Cl = 45.7%          | 2,3,4,6-Tetrachlorotoluene         |                         |
| 1.2-Dichlorohexane                                         | 3:8380              | 2,3,5,6-Tetrachlorotoluene         | 3:2575                  |
| 1,5-Dichlorohexane                                         | 3:9340              | 0.4 Disklasskassal (di) sklasida   | 3:9399                  |
| 1,6-Dichlorohexane                                         | 3:8720              | 2,4-Dichlorobenzal (di)chloride    | 3:0490                  |
| 2.2-Dichlorohexane                                         | 3:9342              | 2,5-Dichlorobenzal (di)chloride    |                         |
|                                                            | 3:8300              | 2,6-Dichlorobenzal (dı)chloride    | 3:9398                  |
| 2,3-Dichlorohexane                                         |                     | 3,4-Dichlorobenzal (di)chloride    | 3:6876                  |
| 2,5-Dichlorohexane                                         | 3:8525              | 3,5-Dichlorobenzal (di)chloride    | 3:0370                  |
| 3,4-Dichlorohexane                                         | 3:9344              |                                    |                         |
|                                                            |                     | 2-Chlorobenzotrichloride           | 3:6880                  |
| 2.3-Dichloro-2-methylpentane                               | 3:9346              | 3-Chlorobenzotrichloride           | 3:6845                  |
| 2.5-Dichloro-2-methylpentane                               | 3:8540              | 4-Chlorobenzotrichloride           | 3:6825                  |
| 2,0 21012111                                               |                     |                                    |                         |
| 3.3-Dichloro-2,2-dimethylbutane                            | 3:4325              | $C_7H_5Cl_8$ M.W. = 195.5          | Cl = 54.4%              |
| 3,3-Dichioro-2,2-dimeniyibulane                            | 0.2040              | 2.3.4-Trichlorotoluene             | 3:0425                  |
| 4.4 Di 11 O.O. Novemberlierten e                           | 3:8132              | 2.3.5-Trichlorotoluene             | 3:0610                  |
| 4,4-Dichloro-2,2-dimethylbutane                            | 9:0108              | 2,3,6-Trichlorotoluene             | 3:0625                  |
|                                                            |                     | 2.4.5-Trichlorotoluene             | 3:2100                  |
| 2,3-Dichloro-2,3-dimethylbutane                            | <b>3:4520</b>       | 2,4,6-Trichlorotoluene             | 3:0380                  |
|                                                            |                     |                                    | 3:0580                  |
| $C_6H_{18}Cl$ M.W. = 120.6                                 | Cl = 29.4%          | 3,4,5-Trichlorotoluene             | 9:0000                  |
| 1-Chlorohexane                                             | 3:7955              |                                    |                         |
| 2-Chlorohexane                                             | 3:7715              | 2,6-Dichlorobenzyl chloride        | 3:0410                  |
| 3-Chlorohexane                                             | 3:7670              | 3,4-Dichlorobenzyl chloride        | 3:6795                  |
| 0 02001022                                                 | •                   | 3,5-Dichlorobenzyl chloride        | 3:0350                  |
| 1-Chloro-2-methylpentane                                   | 3:7563              |                                    |                         |
| 2-Chloro-2-methylpentane                                   | 3:7490              | 2-Chlorobenzal (di)chloride        | 3:6625                  |
|                                                            | 3:7565              | 3-Chlorobenzal (di)chloride        | 8:6710                  |
| 3-Chloro-2-methylpentane                                   | 3:7495              | 4-Chlorobenzal (di)chloride        | 3:6700                  |
| 4-Chloro-2-methylpentane                                   |                     | 2 Chiorosoman (di)omoraco          | 0.0.00                  |
| 5-Chloro-2-methylpentane                                   | 3:7695              | Benzotrichloride                   | 3:6540                  |
|                                                            | 9.0040              | TOTAL SOLITOR AND                  | ₩. <b>₩</b> ₩ <b>₹₩</b> |
| 1-Chloro-3-methylpentane                                   | 3:9348              | $C_7H_6Cl_2$ M.W.=161.0            | Cl = 44.0%              |
| 2-Chloro-3-methylpentane                                   | 3:9350              | 2,3-Dichlorotoluene                |                         |
| 3-Chloro-3-methylpentane                                   | 3:7585              |                                    | 3:6345                  |
| 3-(Chloromethyl)pentane                                    | 3:77 <b>20</b>      | 2,4-Dichlorotoluene                | 3:6290                  |
| * ***                                                      |                     | 2,5-Dichlorotoluene                | 3:62 <u>4</u> 5         |
| 1-Chloro-2,2-dimethylbutane                                | 3:7590              | 2,6-Dichlorotoluene                | 3:6270                  |
| 3-Chloro-2,2-dimethylbutane                                | 3:7475              | 3,4-Dichlorotoluene                | 3:6355                  |
| 4-Chloro-2,2-dimethylbutane                                | 3:7555              | 3,5-Dichlorotoluene                | 3:6310                  |
| 4-CHIOLO-2,2-dimeniyibulano                                | 0                   |                                    |                         |
| 2-Chloro-2,3-dimethylbutane                                | 3:7600              | 2-Chlorobenzyl chloride            | 3:6400                  |
| 2-CHOIO-2,0-CHICOMYIDGERIC                                 | 0.1000              | 3-Chlorobenzyl chloride            | 8:6445                  |
|                                                            |                     | 4-Chlorobenzyl chloride            | 3:0220                  |
| C <sub>7</sub> GROUP                                       |                     |                                    | 0.000                   |
| C <sub>2</sub> HCl <sub>2</sub> M.W. = 333.3               | Cl = 74.5%          | Bensal (di)chloride                | 3:6327                  |
| Pentachlorobenzal (di)chloride                             | 3:3590              | 20220 (0)01101100                  | U. W.                   |
| Lentwomoroneman (or)emorida                                | J. 90 <b>7</b> 4    | $C_7H_7Cl$ M.W. = 126.6            | C1 = 28.0%              |
| O IT OI 34 TIT 000 0                                       | C) 71 907           | 2-Chlorotoluene                    |                         |
| C <sub>7</sub> H <sub>2</sub> Cl <sub>6</sub> M.W. = 298.8 | Cl = 71.2%          |                                    | 3:8245                  |
| 2,3,4,5-Tetrachlorobensal                                  |                     | 3-Chlorotoluene                    | 3:8275                  |
| (di)chloride                                               | 3:9397              | 4-Chlorotoluene                    | 8:5287                  |
|                                                            |                     |                                    |                         |

| Benzyl chloride                                           | 3:8535                  | 4-Chloro-2,2-dimethylpentane                                 | 3:9440                       |
|-----------------------------------------------------------|-------------------------|--------------------------------------------------------------|------------------------------|
| $C_7H_9Cl$ M.W. = 128.6<br>5-Chloro-5-methylhexen-1-yne-3 | Cl=27.6%<br>3:9492      | 2-Chloro-2,3-dimethylpentane<br>3-Chloro-2,3-dimethylpentane | 3:9442<br>3:7970             |
| OH O MW -120 4                                            | CI 07 107               | 5-Chloro-2,3-dimethylpentane                                 | 3:8153                       |
| $C_7H_{11}Cl$ M.W. = 130.6<br>4-Chloroheptadiene-1,6      | Cl = 27.1%<br>3:8085    | 2-Chloro-2,4-dimethylpentane                                 | 3:7750                       |
| 1-Chloro-3-ethylpentadiene-1,2                            | 3:9406                  | 3-Chloro-2,2,3-trimethylbutane                               | 3: <b>4920</b>               |
| 1-Chloroheptyne-1                                         | 3:8032                  | C <sub>8</sub> GROUP                                         |                              |
| 1-Chloro-3-ethylpentyne-1                                 | 3:9410                  | $C_8H_8Cl$ M.W. = 136.6<br>$\omega$ -Chlorophenylacetylene   | Cl=25.1%<br>3:9494           |
| $C_7H_{13}Cl$ M.W.= 132.6                                 | Cl = 26.7%              | o-Chlorophenylacetylene                                      | 3:9497                       |
| 1-Chloroheptene-1                                         | 3:8219                  | m-Chlorophenylacetylene                                      | 3:9500                       |
| 2-Chloroheptene-1                                         | 3:7988                  | p-Chlorophenylacetylene                                      | 3:0590                       |
| 3-Chloroheptene-1                                         | 3: <b>94</b> 12         |                                                              |                              |
| 4-Chloroheptene-2                                         | 3:8050                  | $C_8H_7Cl$ M.W. = 138.6<br>$\alpha$ -Chlorovinylbenzene      | Cl=25.6%<br>3:8715           |
| 4-Chloroheptene-3                                         | 3:8023                  | $\beta$ -Chlorobinylbenzene                                  | 3:8717                       |
| 4-Chloroneptene-3                                         | <b>⊍.</b> 0 <b>₩</b> ₽⊌ | O H Ol W W 175 1                                             | C1 - 40 FC                   |
| 4-Chloro-5-methylhexene-1                                 | 3:7730                  | $C_8H_8Cl_2$ M.W.=175.1<br>Styrene dichloride                | Cl=40.5%<br>3:6685           |
| 4-Chloro-3-methylhexene-2                                 | 3:9414                  | o-Xylylene (di)chloride                                      | 3:1040                       |
| 4-Chloro-5-methylhexene-2                                 | 3:7890                  | m-Xylylene (di)chloride                                      | 3:1 <del>010</del><br>3:0310 |
| 4-Chloro-2,4-dimethylpentene-1                            | 3:7725                  | p-Xylylene (di)chloride                                      | 3:2825                       |
| 3-Chloro-2,4-dimethylpentene-2                            | 3:7605                  | $C_8H_9Cl$ M W. = 140.6                                      | Cl=25.2%                     |
| 4-Chloro-2,4-dimethylpentene-2                            |                         | 3-Chloro-1,2-dimethylbenzene<br>4-Chloro-1,2-dimethylbenzene | 3:8645<br>3:8675             |
| $C_7H_{14}Cl_2$ M.W. = 169.1                              | Cl = 41.9%              | 4-Choro-1,2-dimensyrbenzene                                  | 9.0019                       |
| 1,1-Dichloroheptane                                       | 3:8650                  | 2-Chloro-1,3-dimethylbenzene                                 | 3:8590                       |
| 1,2-Dichloroheptane                                       | 3:9420                  |                                                              | 3:8665                       |
| 1,7-Dichloroheptane                                       | 3:9422                  | 4-Chloro-1,3-dimethylbenzene                                 | 3:8640                       |
| 2,2-Dichloroheptane                                       | 3:9424                  | 5-Chloro-1,3-dimethylbenzene                                 | 9:9040                       |
| 4,4-Dichloroheptane                                       | 3:9426                  | O Chlana 1.4 dimethodhannan                                  |                              |
|                                                           | 0.0540                  | 2-Chloro-1,4-dimethylbenzene                                 | 3:8600                       |
| 4,5-Dichloro-2,2-dimethylpentane                          | 3:8516                  | O Chlamathulhanaana                                          | 3:8550                       |
| 0.4.70'.11 0.4.154b                                       | 3:9428                  | 2-Chloroethylbenzene<br>4-Chloroethylbenzene                 | 3:8570                       |
| 2,4-Dichloro-2,4-dimethylpentane                          |                         | 4-Chloroethylbenzene                                         | 0:00/0                       |
| 3,3-Dichloro-2,4-dimethylpentane                          | 9:7010                  | O Mathedhammed (a moded)                                     |                              |
| 4 % D' 11 . 0 0 1!                                        | 0.0400                  | 2-Methylbenzyl (o-xylyl)<br>chloride                         | 3:8710                       |
| 1,5-Dichloro-3,3-dimethylpentane                          | 3:9430                  | 3-Methylbenzyl (m-xylyl)                                     | A:011A                       |
| O.T. OL' M.W1947                                          | Cl = 26.3%              | chloride                                                     | 3:8700                       |
| $C_7H_{15}C1$ M.W.=134.7                                  | 3:8250                  | 4-Methylbenzyl (p-xylyl)                                     | <b>4.0.44</b>                |
| 1-Chloroheptane                                           | 3:9432                  | chloride                                                     | 3:8660                       |
| 2-Chloroheptane                                           | 3:8080                  | α-Chloroethylbenzene                                         | 3:8667                       |
| 3-Chloroheptane<br>4-Chloroheptane                        | 3:8095                  | $\beta$ -Chloroethylbenzene                                  | 3:8712                       |
| 4-Chioroneptane                                           | 0.0000                  | p ====================================                       | 0.002.0                      |
| 2-Chloro-2-methylhexane                                   | 3:7945                  | $C_8H_{12}Cl_2$ M.W. = 179.1                                 | Cl = 39.6%                   |
| 5-Chloro-2-methylnexane                                   | 3:7985                  | 2,5-Dichloro-2,5-dimethylhexyne                              |                              |
| 0-Omoro-2-memymexane                                      |                         |                                                              |                              |
| 1-Chloro-3-methylhexane                                   | 3:8155                  | $C_8H_{18}C1$ M.W. = 144.6                                   | Cl = 24.5%                   |
| 2-Chloro-3-methylhexane                                   | 3:9434                  | 3-Chloro-octadiene-1,3                                       | 3: <b>9566</b>               |
| 3-Chloro-3-methylhexane                                   | 3:7950                  |                                                              |                              |
| 4-Chloro-3-methylhexane                                   | 3:9436                  | 1-Chloro-octyne-1<br>1-Chloro-octyne-2                       | 3:9510<br>3:9514             |
| 2-Chloro-3-ethylpentane<br>3-Chloro-3-ethylpentane        | 3:9438<br>3:8955        | 3-Chloro-3-methylheptyne-4                                   | 3:9516                       |
|                                                           |                         |                                                              |                              |

| C <sub>8</sub> H <sub>18</sub> Cl M.W.=146.7<br>2-Chloro-octene-1<br>3-Chloro-octene-1 | Cl=24.2%<br>3:8346<br>3:9518 | 2-Chloro-3,4-dimethylhexane<br>4-(Chloromethyl)-3-methylhexan                          | 3:9558<br>ae <b>3:9560</b> |
|----------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------|----------------------------|
| 3-Chioro-occene-1                                                                      | 9.9010                       | 3-Chloro-3-ethyl-2-methylpentar                                                        | e 3:8210                   |
| 2-Chloro-octene-2<br>4-Chloro-octene-2                                                 | 3:8345<br>3:8185             | 4-Chloro-2,2,4-trimethylpentane                                                        | 3:8113                     |
| 4-Chloro-octene-4                                                                      | 3:8230                       | 1-Chloro-2,2,3,3-tetramethyl-<br>butane                                                | 3: <b>094</b> 5            |
| 4-Chloro-6-methylheptene-1                                                             | 3:8205                       |                                                                                        | 0.0020                     |
| CONTRACTOR OF THE STREET                                                               | 9.0790                       | C, GROUP                                                                               |                            |
| 6-Chloro-2-methylheptene-2                                                             | 3:9520                       | C <sub>9</sub> H <sub>9</sub> Cl M.W. = 152.6                                          | Cl=23.2%<br>3:9604         |
| 4-Chloro-3-methylheptene-2                                                             | 3:9524                       | 1-Chloro-1-phenylpropene-1<br>2-Chloro-1-phenylpropene-1<br>3-Chloro-1-phenylpropene-1 | 3:9606<br>3:0010           |
| 4-Chloro-6-methylheptene-2                                                             | 3:9525                       | 0-Omoro-1-phonyspropono-1                                                              |                            |
| 5-Chloro-4-methylheptene-3                                                             | 3:9526                       | 1-Chloro-2-phenylpropene-1                                                             | 3:8742                     |
| 4-Chloro-2,5-dimethylhexene-2                                                          | 3:9529                       | 1-Chloro-3-phenylpropene-1<br>2-Chloro-3-phenylpropene-1                               | 3:8737<br>3:9608           |
| 4-Chloro-3,5-dimethylhexene-2                                                          | 3:9528                       | $C_9H_{11}Cl$ $M.W. = 154.6$                                                           | Cl=22.9%                   |
| 2-Chloro-2,5-dimethylhexene-3                                                          | 3:9527                       | $\gamma$ -Phenyl- $n$ -propyl chloride                                                 | 3:8777                     |
| 1-Chloro-4-ethylhexene-3                                                               | 3:8510                       | 4-Chloro-isopropylbenzene<br>α-Chloro-isopropylbenzene                                 | 3:87 <b>0</b> 5<br>3:9610  |
| 2-Chloro-3-ethyl-3-methyl-                                                             | 0.0112                       | 2-Chloro-1,3,5-trimethylbenzene                                                        | 3:8725                     |
| pentene-1                                                                              | 3:8115                       | $C_9H_{15}Cl$ $M.W. = 158.7$                                                           | Cl=22.4%                   |
| $C_8H_{16}Cl_2$ M.W. = 183.1<br>1,6-Dichloro-octane                                    | Cl=38.7%<br>3:9530           | 2-Chloro-6-methyl-5-methyl-                                                            | ,,,                        |
| 1,7-Dichloro-octane                                                                    | 3:9532                       | eneheptene-2                                                                           | 3:9614                     |
| 1,8-Dichloro-octane                                                                    | 3:8805                       | 1-Chlorononyne-1                                                                       | 3:9618                     |
| 2,2-Dichloro-octane                                                                    | 3:8670                       | 2-Chloro-2-methyloctyne-3                                                              | 3:9622                     |
| 4-Chloro-3-(chloromethyl)heptane                                                       | e 3:9534                     | $C_0H_{17}Cl$ M.W. = 160.7                                                             | Cl=22.1%                   |
| 2,5-Dichloro-2,5-dimethylhexane                                                        | 3:1550                       | 4-Chloro-7-methyloctene-2                                                              | 3:9628                     |
| 3,4-Dichloro-3,4-dimethylhexane                                                        | 3:8315                       | 5-Chloro-4-methyloctene-3                                                              | 3:9624                     |
| 3,3-Dichloro-2,2,4-trimethylpenta                                                      | ne <b>3:9536</b>             | 4-Chloro-3,6-dimethylheptene-2                                                         | 3:9630                     |
| $C_8H_{17}Cl$ M.W. = 148.7                                                             | Cl = 23.9%                   | $C_9H_{18}Cl_2$ M.W. = 197.1                                                           | Cl = 36.0%                 |
| 1-Chloro-octane                                                                        | 3:8585                       | 1,2-Dichlorononane                                                                     | 3:9632                     |
| 2-Chloro-octane                                                                        | 3:8378                       | 1,9-Dichlorononane                                                                     | 3:8880                     |
| 4-Chloro-octane                                                                        | 3:9538                       | 2,6-Dichloro-2,6-dimethylheptan                                                        | e <b>3:0455</b>            |
| 2-Chloro-2-methylheptane                                                               | 3:8100                       | $C_9H_{19}Cl$ $M.W. = 162.7$                                                           | Cl=21.8%                   |
| 6-Chloro-2-methylheptane                                                               | 3:9540                       | 1-Chlorononane                                                                         | 3:8719                     |
| 3-Chloro-3-methylheptane                                                               | 3:9544                       | 2-Chlorononane                                                                         | 3:8635                     |
| 3-(Chloromethyl)heptane                                                                | 3:8370                       | 3-Chlorononane                                                                         | 3:9638                     |
| 8-(OHO! OHIemy!)heptane                                                                | 0.00.0                       | 5-Chlorononane                                                                         | 3: <b>964</b> 0            |
| 8-Chloro-4-methylheptane<br>4-Chloro-4-methylheptane                                   | 3:9548<br>3:9550             | 3-Chloro-3-methyloctane                                                                | 3:9642                     |
| 1-Chloro-3-ethylhexane<br>3-Chloro-3-ethylhexane                                       | 3:9552<br>3:8223             | 4-Chloro-4-methyloctane                                                                | 8:9644                     |
| •                                                                                      |                              | 3-Chloro-3-ethylheptane                                                                | 3:9646                     |
| 3-Chloro-2,3-dimethylhexane<br>2-Chloro-2,5-dimethylhexane                             | 3 : 9554<br>3 : 9556         | 4-Chloro-4-ethylheptane                                                                | 3:9648                     |

| 3-Chloro-2,3-dimethylheptane                                     | 3:9650                   | $C_{10}H_{17}Cl$ M.W.=172.7                    | Cl = 20.5%    |
|------------------------------------------------------------------|--------------------------|------------------------------------------------|---------------|
| Chlore 0.5 dimethallontone                                       | 9.0070                   | 3-Chloro-3-methylnonyne-4                      | 3:9710        |
| 5-Chloro-2,5-dimethylheptane                                     | 3:9652                   | $C_{10}H_{19}Cl$ M.W.=174.7                    | Cl=20.3%      |
| 3-Chloro-2,2,3-trimethylhexane                                   | 3:9654                   | 5-Chlorodecene-5                               | 3:9712        |
| 3-Chloro-2,2-dimethyl-3-                                         |                          | 4-Chloro-3,7-dimethyloctene-2                  | 3:9714        |
| ethylpentane                                                     | 3:9656                   | 4601 04 11 11 0                                | 0.0740        |
| C <sub>10</sub> GROUP                                            |                          | 4-Chloro-3,4-diethylhexene-2                   | 3:9716        |
|                                                                  |                          | $C_{10}H_{20}Cl_2$ M.W. = 211.2                | Cl = 33.6%    |
| $C_{10}H_5Cl_8$ M.W. = 231.5                                     | Cl = 46.0%               | 1,10-Dichlorodecane                            | 3:9720        |
| 1,2,3-Trichloronaphthalene                                       | 3:2125                   |                                                |               |
| 1,2,4-Trichloronaphthalene                                       | 3:2490                   | 2,7-Dichloro-2,7-dimethyloctane                | 3:0840        |
| 1,2,5-Trichloronaphthalene                                       | 3:1930<br>3:2515         |                                                |               |
| 1,2,6-Trichloronaphthalene<br>1,2,7-Trichloronaphthalene         | 3:2325                   | 3,4-Dichloro-3,4-diethylhexane                 | 3:9724        |
| 1,2,8-Trichloronaphthalene                                       | 3:2220                   | O 77 OI                                        |               |
| 1,2,8-1 richioronaphthatene                                      | 3 . AAAU                 | $C_{10}H_{21}Cl$ M.W. = 176.7                  | Cl=20.1%      |
| 1,3,5-Trichloronaphthalene                                       | 3:3015                   | 1-Chlorodecane                                 | 3:8785        |
| 1,3,6-Trichloronaphthalene                                       | 3:1975                   | A Chlora A mothedomore                         | 0.0700        |
| 1,3,7-Trichloronaphthalene                                       | 3:3400                   | 4-Chloro-4-methylnonane                        | 3:9730        |
| 1.3.8-Trichloronaphthalene                                       | 3:2420                   | 5-Chloro-5-methylnonane                        | 3:9732        |
| _,_,_                                                            | · · · · · · · · ·        | 5-Omoro-5-methymonane                          | 0.810%        |
| 1,4,5-Trichloronaphthalene                                       | 3:4005                   | 3-Chloro-3-ethyloctane                         | 3:9734        |
| 1,4,6-Trichloronaphthalene                                       | 3:1625                   | s smore s singressime                          | 0.0.01        |
|                                                                  |                          | 4-Chloro-4-ethyloctane                         | 3:9736        |
| 2,3,5-Trichloronaphthalene                                       | 3:3300                   | •                                              |               |
| 2,3,6-Trichloronaphthalene                                       | 3:2455                   | 3-Chloro-2,3-dimethyloctane                    | 3:9738        |
| $C_{10}H_6Cl_2$ M.W. = 197.1                                     | Cl = 36.0%               |                                                |               |
|                                                                  | 3:0320                   | 8-Chloro-2,6-dimethyloctane                    | 3:9740        |
| 1,2-Dichloronaphthalene<br>1,3-Dichloronaphthalene               | 3: 0320<br>3: 1310       | 4.001                                          |               |
| 1,4-Dichloronaphthalene                                          | 3:1655                   | 4-Chloro-4-n-propylheptane                     | 3:9742        |
| 1,5-Dichloronaphthalene                                          | 3:3200                   | 4 (1) 1 0 4 0 4 1 41 11 4                      | 0.0044        |
| 1,6-Dichloronaphthalene                                          | 3:0810                   | 4-Chloro-2,4,6-trimethylheptane                | 3:9744        |
| 1,7-Dichloronaphthalene                                          | 3:1385                   |                                                |               |
| 1,8-Dichloronaphthalene                                          | 3:2435                   | C <sub>11</sub> GROUP                          |               |
| <u></u>                                                          |                          | $C_{11}H_9Cl$ M.W. = 176.6                     | Cl = 20.1%    |
| 2,3-Dichloronaphthalene                                          | 3:3665                   | 1-(Chloromethyl)naphthalene                    | 3:0250        |
| 2,6-Dichloronaphthalene                                          | 3:4040                   | 2-(Chloromethyl)naphthalene                    | 3:0747        |
| 2,7-Dichloronaphthalene                                          | 3:3 <del>44</del> 5      |                                                |               |
|                                                                  |                          | $C_{11}H_{23}Cl$ M.W. = 190.8                  | Cl = 18.6%    |
| $C_{10}H_7Cl$ M.W. = 162.6                                       | Cl = 21.8%               | 1-Chloroundecane                               | <b>3:8803</b> |
| 1-Chloronaphthalene                                              | 3:6878                   |                                                |               |
| 2-Chloronaphthalene                                              | 3:1285                   | C <sub>12</sub> GROUP                          |               |
|                                                                  | <b>~! *</b> 0 <b>*</b> 0 | $C_{12}H_8Cl_2$ M.W. = 223.1                   | Cl=31.8%      |
| $C_{10}H_8Cl_4$ M.W. = 270.0                                     | C1 = 52.5%               | 2,2'-Dichlorobiphenyl                          | 3:1325        |
| Naphthalene tetrachloride                                        | 3:4750                   | 2,3-Dichlorobiphenyl                           | 3:9850        |
| Tetrachlorotetralin                                              | 3:4703                   | 2.4'-Dichlorobiphenyl                          | 3:0670        |
| G 77 G1 35 W 100 W                                               | C1 01 0C7                | 2,5-Dichlorobiphenyl                           | 3:9854        |
| $C_{10}H_{13}Cl$ M.W. = 168.7                                    | Cl = 21.0%               |                                                |               |
| 2,3,6-Trimethylbenzyl chloride                                   | 3:9701<br>3:9702         | 3,3'-Dichlorobiphenyl                          | 3:0180        |
| 2,4,5-Trimethylbenzyl chloride<br>2,4,6-Trimethylbenzyl chloride | 3:9702<br>3:0372         | 3,4-Dichlorobiphenyl                           | 3:0685        |
| 2,2,0-1 rimethytoenzyt chioride                                  | 9. V91 A                 | 3,5-Dichlorobiphenyl                           | 3:0360        |
| 2-Chloro-p-cymene                                                | 3:8775                   | 4.4/ Diellenslichen                            | 0.4000        |
| 3-Chloro-p-cymene                                                | 3:8770                   | 4,4'-Dichlorobiphenyl                          | 3:4300        |
| P. O                                                             | 2.3                      | C <sub>12</sub> H <sub>2</sub> Cl M.W. = 188.7 | Cl=18.8%      |
| 4-Isopropylbenzyl chloride                                       | 3:8795                   | 2-Chlorobiphenyl                               | 3:0300        |
|                                                                  |                          | 3-Chlorobiphenyl                               | 3:8940        |
| β-Chloro-ter-butylbenzene                                        | 3:8780                   | 4-Chlorobiphenyl                               | 3:1912        |
|                                                                  |                          |                                                |               |

| C12H25Cl                                                       | M.W.=204.8                              | Cl=17.3%             | 1,1,2,2-Tetrachloro-1,2-                                             |                             |
|----------------------------------------------------------------|-----------------------------------------|----------------------|----------------------------------------------------------------------|-----------------------------|
| 1-Chlorododec                                                  |                                         | 3:8810               | diphenylethane 1,1-Dichloro-2-(o-chlorophenyl)-                      | 3:4496                      |
|                                                                | C <sub>13</sub> GROUP                   |                      | ethane                                                               | 3:1890                      |
| C12H10Cl2                                                      | M.W. = 237.1                            | Cl = 29.9%           | 1,1-Dichloro-2,2-bis-(p-chloro-<br>phenyl)ethane                     | 3:3320                      |
| Benzophenone                                                   | dichloride<br>iphenylmethane            | 3:6960<br>3:1057     | phenyi/echane                                                        | 0.0000                      |
| ,                                                              | -                                       |                      | $C_{14}H_{11}Cl_3$ M.W. = 285.6<br>1,1,1-Trichloro-2,2-diphenylethan | Cl = 37.2% ne <b>3:1420</b> |
| C <sub>12</sub> H <sub>11</sub> Cl<br>Benzohydryl c            | M.W. = 202.7                            | Cl = 17.5%<br>3:0060 | 1,1,1-1 richioro-2,2-diphenylethal                                   | 16 9.12.00                  |
|                                                                |                                         |                      | $C_{14}H_{12}Cl_2$ M.W. = 251.2                                      | Cl = 28.3%<br>3:0995        |
| C <sub>13</sub> H <sub>27</sub> Cl<br>1-Chlorotridec           | M.W. = 218.8                            | Cl = 16.2%<br>3:9859 | 1,1-Di- $(p$ -chlorophenyl) ethane                                   | a: 0999                     |
| 1-01101011100                                                  |                                         | 0.000                | 1,1-Dichloro-2,2-diphenylethane                                      | 3:1940                      |
|                                                                | C <sub>14</sub> GROUP                   |                      | d,l-1,2-Dichloro-1,2-                                                |                             |
| C <sub>14</sub> H <sub>8</sub> Cl <sub>2</sub>                 | M.W. = 247.1                            | Cl = 28.7%<br>3:4916 | diphenylethane                                                       | 3:2570                      |
| 9,10-Dichloros                                                 | munacene                                | 9: 5810              | meso-1,2-Dichloro-1,2-                                               | 0.4074                      |
| C14H8CL                                                        | M.W. = 318.0                            | Cl = 44.6%           | diphenylethane                                                       | 3:4854                      |
| 1,1-Dichloro-2                                                 | -(o-chlorophenyl)-<br>henyl)ethylene    | 3:19250              | $C_{14}H_{13}Cl$ M.W. = 216.7                                        | Cl = 11.7%                  |
|                                                                |                                         |                      | 1,1-Diphenylethyl chloride<br>2,2-Diphenylethyl chloride             | 3:9870<br>3:9871            |
|                                                                | -(m-chlorophenyl)-<br>henyl)ethylene    | 3:9863               | 2,2-Diphenylethyl chloride                                           | 9.9071                      |
| 2-(p-cmore)                                                    | menyi)emyiene                           | 9.9009               | $C_{14}H_{29}Cl$ M W. = 232.8                                        | Cl = 15.2%                  |
|                                                                | ,2-bis-(p-chloro-                       | 0.0400               | 1-Chlorotetradecane                                                  | 3:9874                      |
| phenyl)ethy                                                    | iene                                    | 3:2438               | C <sub>15</sub> GROUP                                                |                             |
| C14H8Cl6                                                       | M.W. = 388.9                            | Cl = 54.7%           | $C_{15}H_{31}Cl$ M.W. = 246.9                                        | Cl = 14.4%                  |
| 1,1,1,2-Tetracl<br>(p-chlorophe                                |                                         | 3:2477               | 1-Chloropentadecane                                                  | 3:9890                      |
|                                                                | -                                       |                      | C <sub>16</sub> GROUP                                                |                             |
| C <sub>14</sub> H <sub>9</sub> Cl <sub>3</sub>                 | M.W. = 283.6<br>is-(p-chlorophenyl      | Cl = 37.5%           | $C_{16}H_{33}Cl$ M.W. = 260.9                                        | Cl=13.6%                    |
| ethylene                                                       | a-(p-cinoropheny)                       | 3:1430               | 1-Chlorohexadecane                                                   | 3:0015                      |
| C 17 C1                                                        | M W 254 5                               | C1 - 50 007          | C <sub>17</sub> GROUP                                                |                             |
| C <sub>14</sub> H <sub>9</sub> Cl <sub>5</sub><br>" o,o'-DDT " | M.W. = 354.5                            | C1 = 50.0%<br>3:9865 | $C_{17}H_{85}Cl$ $M.W. = 274.9$                                      | Cl = 12.9%                  |
| " o,p'-DDT "                                                   |                                         | 3:1820               | 1-Chloroheptadecane                                                  | 3:0100                      |
| "m,p'-DDT"                                                     | (ordinary DDT)                          | 3:9867<br>3:3298     | C <sub>18</sub> GROUP                                                |                             |
| p,p -DD1                                                       | (ordinary DD1)                          | <b>9</b> : 9/80      | $C_{18}H_{87}Cl$ $M.W. = 288.9$                                      | Cl=12.3%                    |
| C14H10Cl2                                                      | M.W. = 249.1                            | Cl = 28.5%           | 1-Chloro-octadecane                                                  | 3:0095                      |
|                                                                | ,2-diphenylethylen<br>rophenyl)ethylene | e 3:1938<br>3:2475   | a anom                                                               |                             |
|                                                                |                                         | 01,0210              | $C_{19}$ GROUP<br>$C_{19}H_{15}Cl$ M.W. = 278.8                      | C1 10 FC                    |
| cis-1,2-Dichlor<br>diphenyleth                                 |                                         | 3:1380               | Triphenylchloromethane                                               | Cl=12.7%<br>3:3410          |
| trans-1,2-Dich                                                 |                                         | 9:1904               |                                                                      | 0.0110                      |
| diphenyleth                                                    |                                         | 3: <b>4210</b>       | C <sub>20</sub> GROUP                                                |                             |
| $C_{14}H_{10}Cl_4$                                             | M.W. = 320.1                            | Cl = 44.3%           | $C_{20}H_{16}Cl$ M.W. = 290.8<br>1-Chloro-1,2,2-triphenylethylene    | Cl = 12.2%<br>3:3560        |
| D COMPO                                                        | ייאראט ארמווני                          | NING ONIV            | CARBON, HYDROGEN, OXYG                                               | TORE A TREE                 |
| D. COMPC                                                       | CIPO CONTAI                             | TITLO OUT!           | CARDON, MIDROGEN, UXIG                                               | EN, AND                     |

## D. COMPOUNDS CONTAINING ONLY CARBON, HYDROGEN, OXYGEN, AND CHLORINE

| C <sub>2</sub> GROUP                                      |          | Dichloromethyl chloroformate | 3:5315   |
|-----------------------------------------------------------|----------|------------------------------|----------|
| C <sub>2</sub> HOCl <sub>3</sub> M.W. = 147.4             | Cl=72.2% | $C_2H_2OCl_2$ M.W. = 112.9   | Cl=62.8% |
| Trichloroacetaldehyde (chloral)                           | 3:5210   | Dichloroacetaldehyde         | 3:5180   |
| Dichloroscetyl chloride                                   | 3:5290   | Chloroacetyl chloride        | 3:5235   |
| C <sub>2</sub> HO <sub>2</sub> Cl <sub>2</sub> M.W.=163.4 | Cl=65.1% | $C_2H_2O_2Cl_2$ M.W. = 128.9 | Cl=55.0% |
| Trichloroacetic acid                                      | 3:1150   | Dichloroacetic acid          | 3:6208   |

| Chloromethyl chloroformate                                                             | 3:5275                       | C <sub>2</sub> H <sub>3</sub> OCl <sub>2</sub> M.W. = 161.4                                                    | C1 05 000                      |
|----------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------|
| •                                                                                      |                              | $\alpha, \alpha, \beta$ -Trichloropropionaldehyde                                                              | Cl = 65.9%<br>3:9033           |
| $C_2H_3OCl$ M.W.=78.5<br>Chloroacetaldehyde                                            | Cl=45.2%<br>3:7212           | $\alpha, \alpha, \alpha$ -Trichloroacetone                                                                     | 3:5620                         |
| •                                                                                      |                              | $\alpha, \alpha, \gamma$ -Trichloroacetone                                                                     | 3:5957                         |
| Acetyl chloride                                                                        | 3:7065                       | α,α-Dichloropropionyl chloride                                                                                 | 3:5372                         |
| $C_2H_2OCl_3$ M.W. = 149.4<br>2,2,2-Trichloroethanol-1                                 | Cl=71.2%<br>3:5775           | $\alpha,\beta$ -Dichloropropionyl chloride $\beta,\beta$ -Dichloropropionyl chloride                           | 3 : 9032<br>3 : 9032-A         |
| $C_2H_3O_2Cl$ M.W=94.5<br>Chloroacetic acid                                            | Cl = 37.5%<br>3:1370         | 3,3,3-Trichloro-1,2-epoxypropan                                                                                |                                |
| Methyl chloroformate                                                                   | 3:5075                       | $C_8H_8O_2Cl$ M.W. = 106.5<br>$\alpha$ -Chloroacrylic acid                                                     | Cl=33.3%<br>3:1445             |
| $C_2H_3O_2Cl_8$ M.W. = 165.4                                                           | Cl = 64.3%                   | β-Chloroacrylic acid                                                                                           | 3:2240                         |
| Choral hydrate                                                                         | 3:1270                       | $C_8H_8O_2Cl_8$ M W. = 177.4<br>$\alpha,\alpha,\beta$ -Trichloropropionic acid                                 | Cl=56.0%<br>3:1275             |
| $C_2H_4OCl_2$ M.W.=115.0<br>2,2-Dichloroethanol-1                                      | Cl=61.7%<br>3:5745           | Methyl trichloroacetate                                                                                        | 3:5800                         |
| symDichlorodimethyl ether                                                              | 3:5245                       | •                                                                                                              |                                |
| •                                                                                      |                              | $C_3H_4OCl_2$ M.W. = 127.0 $\alpha, \alpha$ -Dichloropropional dehyde                                          | Cl = 55.9%<br>3:9033-A         |
| $C_2H_4O_2Cl_2$ M.W. = 131 0<br>Dichloroacetaldehyde hydrate                           | Cl = 54.2%<br>3:1085         | $\alpha,\beta$ -Dichloropropionaldehyde                                                                        | 3:9034                         |
| $C_2H_bOCl$ M.W. = 80.5                                                                | Cl = 44.0%                   | symDichloroacetone unsymDichloroacetone                                                                        | 3:0563<br>3:5430               |
| Ethylene chlorohydrin                                                                  | 3:5552                       | •                                                                                                              |                                |
| Chloromethyl methyl ether                                                              | 3:7085                       | $\alpha$ -Chloropropionyl chloride $\beta$ -Chloropropionyl chloride                                           | 3 : 5320<br>3 : 5690           |
| Ethyl hypochlorite                                                                     | 3:7022                       | $C_8H_4OCl_4$ M.W.=197.9                                                                                       | Cl=71.7%                       |
| C <sub>3</sub> GROUP                                                                   |                              | 1,1,1,3-Tetrachloropropanol-2<br>1,1,3,3-Tetrachloropropanol-2                                                 | 3:9036<br>3:9037               |
| C <sub>8</sub> HOCl <sub>5</sub> M.W.=230.3<br>Pentachloroacetone                      | Cl=77.0%<br>3:6205           | $C_3H_4O_2Cl_2$ M.W. = 143.0                                                                                   | Cl=49.6%                       |
| rentacmoroacetone                                                                      |                              | α,α-Dichloropropionic acid<br>α,β-Dichloropropionic acid                                                       | 3:6162<br>3:0855               |
| C <sub>8</sub> HO <sub>2</sub> Cl M.W. = 104.5<br>Chloropropiolic acid                 | Cl=33.9%<br>3:1685           | $\beta,\beta$ -Dichloropropionic acid                                                                          | 3:1058                         |
| $C_8HO_2Cl_8$ M.W. = 175.4 $\alpha,\beta,\beta$ -Trichloroacrylic acid                 | Cl=60.6%<br>3:1840           | Methyl dichloroacetate $\beta$ -Chloroethyl chloroformate                                                      | 3:5655<br>3:5780               |
| C <sub>2</sub> HO <sub>2</sub> Cl <sub>5</sub> M.W. = 246.3                            | Cl = 72.0%                   | $C_3H_5OC1$ M.W. = 92.5                                                                                        | C1 = 38.3%                     |
| Pentachloropropionic acid                                                              | 3:4895                       | β-Chloroallyl alcohol<br>γ-Chloroallyl alcohol                                                                 | 3 : 5635<br>3 : 58 <b>20</b>   |
| $C_2H_2OCl_4$ M.W. = 195.9                                                             | Cl=72.4%                     | α-Chloropropionaldehyde                                                                                        | 3:5160                         |
| symTetrachloroacetone unsymTetrachloroacetone                                          | 3 : 6050<br>3 : 6085         | $\beta$ -Chloropropionaldehyde $\beta$ -Chloropropionaldehyde                                                  | 3:5576                         |
| unsym1 etracmoroacetone                                                                |                              | Chlanacatana                                                                                                   | 3:5425                         |
| $C_8H_2O_2Cl_2$ M.W. = 141.0<br>$\alpha,\beta$ -Dichloroacrylic acid                   | C1 = 50.3%<br>3:2265         | Chloroacetone                                                                                                  | 3:09.60                        |
| ·                                                                                      |                              | Propionyl chloride                                                                                             | 3:7170                         |
| $\beta$ , $\beta$ -Dichloroacrylic acid                                                | 3:1875                       | 3-Chloro-1,2-epoxypropane                                                                                      |                                |
| Malonyl (di)chloride                                                                   | <b>3:9030</b>                | (Epichlorohydrin)                                                                                              | 3:5358                         |
| $C_2H_2O_2Cl_4$ M.W. = 211.9 $\alpha,\alpha,\beta,\beta$ -Tetrachloropropionic aci     | Cl=66.9%<br>d <b>3:1850</b>  | C <sub>2</sub> H <sub>8</sub> OCl <sub>8</sub> M.W. = 163.4<br>1,1,1-Trichloropropanol-2                       | Cl=64.5%<br>3:0646             |
| C <sub>8</sub> H <sub>4</sub> OCl M.W. = 90.5<br>α-Chloroacrolein<br>Acryloyl chloride | Cl=39.2%<br>3:9031<br>3:7153 | C <sub>8</sub> H <sub>6</sub> O <sub>2</sub> Cl M.W.=108.5<br>α-Chloropropionic acid<br>β-Chloropropionic acid | Cl = 32.7%<br>3:6125<br>3:0460 |

| Methoxyacetyl chloride                                                                                                        | 3:5225                                 | Diglycoloyl dichloride                                                                                                                                            | 1=41.5%<br>3:9092<br>3:0730 |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Chloromethyl acetate Methyl chloroacetate Ethyl chloroformate                                                                 | 3 : 5356<br>3 : 5585<br>3 : 7295       | Chloroacetic acid anhydride  C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> Cl <sub>2</sub> M.W. = 187.0 Cl                                                         | 1=37.9%                     |
| C <sub>8</sub> H <sub>6</sub> OCl <sub>2</sub> M.W. = 129.0                                                                   | Cl=55.0%                               | $d.l,\alpha,\alpha'$ -Dichlorosuccinic acid $meso,\alpha,\alpha'$ -Dichlorosuccinic acid                                                                          | 3:4711<br>3:4930            |
| 2,3-Dichloropropanol-1<br>1,1-Dichloropropanol-2<br>1,3-Dichloropropanol-2                                                    | 3:6060<br>3:5755<br>3:5985             | $C_4H_4OCl$ M.W. = 104.5 Cl<br>$\alpha$ -Chlorocrotonaldehyde<br>$\alpha$ -Crotonoyl chloride                                                                     | 3:8117<br>3:7693            |
| C <sub>8</sub> H <sub>7</sub> OCl M.W. = 94.5<br>2-Chloropropanol-1<br>3-Chloropropanol-1<br>1-Chloropropanol-2               | Cl=37.5%<br>3:7917<br>3:8285<br>3:7747 | $C_4H_5OCl_3$ M.W.=175.5 Cl $\alpha,\alpha,\beta$ -Trichloro- $n$ -butyraldehyde $\alpha,\alpha,\gamma$ -Trichloro- $n$ -butyraldehyde                            | = 60.6%<br>3:5910<br>3:9094 |
| Chloromethyl ethyl ether                                                                                                      | 3:7195                                 | α-Chlorocrotonic acid                                                                                                                                             | = 29.4%<br>3:2760           |
| $\alpha$ -Chloroethyl methyl ether $\beta$ -Chloroethyl methyl ether                                                          | 3:7150<br>3:7265                       | α-Chlorosocrotonic acid<br>β-Chlorocrotonic acid<br>β-Chlorosocrotonic acid                                                                                       | 3:1615<br>3:2625<br>3:1300  |
| $C_3H_7O_2Cl$ M.W. = 110.5<br>3-Chloropropanediol-1,2<br>2-Chloropropanediol-1,3                                              | Cl=32.1%<br>3:9038<br>3:9039           | $\gamma$ -Chlorocrotonic acid  Acetoacetyl chloride                                                                                                               | 3:2170<br>3:9098            |
| C <sub>4</sub> GROUP                                                                                                          | <b>6</b> 1 66                          | Methyl $\alpha$ -chloroacrylate Allyl chloroformate                                                                                                               | 3: <b>9096</b><br>3:7487    |
| C <sub>4</sub> HO <sub>2</sub> Cl <sub>8</sub> M.W.= 187.4<br>Chlorofumaryl (di)chloride<br>Chloromaleyl (di)chloride         | Cl = 56.8%<br>3:6105<br>3:6158         |                                                                                                                                                                   | 3:7358<br>= 55.6%           |
| C <sub>4</sub> HO <sub>3</sub> Cl M.W.=132.5<br>Chloromaleic acid anhydride                                                   | Cl = 26.8%<br>3:0280                   | $\alpha, \alpha, \beta$ -Trichloro- $n$ -butyric acid $\alpha, \alpha, \gamma$ -Trichloro- $n$ -butyric acid $\alpha, \beta, \beta$ -Trichloro- $n$ -butyric acid | 3:1280<br>3:1831<br>3:0925  |
| $C_4H_2OCl_8$ M.W. = 349 8 $\alpha, \alpha', \beta, \beta, \beta, \beta', \beta', \beta'$ -Octachlorodiet                     | Cl=81.1%<br>hyl                        | $\gamma, \gamma, \gamma$ -Trichloro- $n$ -butyric acid<br>Ethyl trichloroacetate                                                                                  | 3:1000<br>3:5950            |
| ether                                                                                                                         | 3:0738<br>Cl=46.4%                     | $C_4H_6O_3Cl$ M.W. = 136.5 Cl<br>Ethoxalyl chloride                                                                                                               | = 26.0%<br>3:5625           |
| $C_4H_2O_2Cl_2$ M.W. = 153.0<br>Fumaryl (di)chloride                                                                          | 3:5875                                 |                                                                                                                                                                   | 3:3025<br>3:9098-A          |
| $C_4H_2O_2Cl_4$ M.W. = 223.9 d,l- $\alpha$ , $\alpha'$ -Dichlorosuccinyl (di)chl meso- $\alpha$ , $\alpha'$ -Dichlorosuccinyl | Cl = 63.3% oride <b>3:0395</b>         | $C_4H_6O_3Cl_3$ M.W = 207.5 Cl<br>$\beta$ -Hydroxyethyl trichloro-<br>acetate                                                                                     | =51.3%<br>3:9099            |
| (di)chloride                                                                                                                  | 3:9087                                 |                                                                                                                                                                   | =50.3%                      |
| C <sub>4</sub> H <sub>2</sub> O <sub>3</sub> Cl <sub>4</sub> M.W. = 239 9<br>Dichloroacetic acid anhydride                    | C1=59.2%<br>3:6430                     | α-Chloro-n-butyryl chloride<br>β-Chloro-n-butyryl chloride<br>γ-Chloro-n-butyryl chloride                                                                         | 3:5570<br>3:9100<br>3:5970  |
| $C_4H_2O_4Cl_2$ M.W. = 185.0<br>Dichloromaleic acid                                                                           | Cl=38 3%<br>3:3634                     | α-Chloroisobutyryl chloride<br>β-Chloroisobutyryl chloride                                                                                                        | 3:5385<br>3:9101            |
| $C_4H_3O_4Cl$ M.W. = 150.5<br>Chlorofumaric acid<br>Chloromaleic acid                                                         | Cl = 23.6%<br>3:4853<br>3:3432         | $\alpha,\beta$ -Dichloro- $n$ -butyraldehyde                                                                                                                      | 3:9102                      |
| $C_4H_4O_2Cl_2$ M.W.=155.0<br>Succinyl (di)chloride                                                                           | Cl=45.7%<br>3:6200                     | 1,3-Dichlorobutanone-2 $\alpha,\beta$ -Dichlorovinyl ethyl ether                                                                                                  | 3:5900<br>3:5540            |
| γ-Chloroacetoacetyl chloride                                                                                                  | 3:9088                                 | C <sub>4</sub> H <sub>6</sub> O <sub>2</sub> Cl <sub>2</sub> M.W. = 157.0 Cl                                                                                      | =45.2%                      |
| C <sub>4</sub> H <sub>4</sub> O <sub>2</sub> Cl <sub>4</sub> M.W. = 225.9<br><b>6</b> -Chloroethyl trichloroacetate           | C1=62.8%<br>3:6510                     | <ul> <li>α,β-Dichloro-n-butyric acid</li> <li>High-melting isomer</li> <li>Low-melting isomer</li> </ul>                                                          | 3:1903<br>3:1375            |

| 2,3-Dichlorodioxane-1,4                                                             | 3:9105                       | Methyl $\alpha$ -chloropropionate<br>Methyl $\beta$ -chloropropionate | 3:7 <b>90</b> 8<br>3:57 <b>6</b> 5 |
|-------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------|------------------------------------|
| β-Chloroethyl chloroacetate Ethyl dichloroacetate Methyl α,β-dichloropropionate     | 3:6230<br>3:5850<br>3:9103   | n-Propyl chloroformate Isopropyl chloroformate                        | 8:7540<br>3:7405                   |
| γ-Chloro-n-propyl chloro-<br>formate                                                | 3: <b>910</b> 3<br>3:6010    | $C_4H_7O_2Cl_3$ M W. = 193.5<br>Chloral ethylalcoholate               | Cl=55.0%<br>3:0860                 |
| $C_4H_6O_3Cl_2$ M.W. = 173.0<br>$\beta$ , $\beta$ -Dichloro- $\alpha$ -hydroxy-iso- | Cl=41.0%                     | α,α,β-Trichloro-n-butyr-<br>aldehyde hydrate                          | 3:1905                             |
| butyric acid $\beta,\beta'$ -Dichloro- $\alpha$ -hydroxy-iso-                       | 3:2145                       | $C_4H_7O_3Cl$ M.W. = 138.6<br>$\beta$ -Hydroxyethyl chloroacetate     | Cl = 25.6%<br>3:6780               |
| butyric acid                                                                        | 3:2565                       | β-Methoxyethyl chloroformate                                          | 3:91 <b>40</b>                     |
| β-Hydroxyethyl dichloroacetate                                                      | 3:9107                       | $C_4H_8OCl_2$ M.W. = 143.0<br>1,3-Dichlorobutanol-2                   | Cl=49.6%<br>3:9145                 |
| $C_4H_7OCl$ M.W. = 106.6<br>2-Chlorobuten-2-ol-1                                    | Cl=33.3%<br>3:8240           | 1,1-Dichloro-2-methylpropanol-2<br>1,3-Dichloro-2-methylpropanol-2    |                                    |
| 3-Chlorobuten-2-ol-1<br>4-Chlorobuten-2-ol-1                                        | 3:8270<br>3:911 <del>4</del> | $\alpha, \alpha'$ -Dichlorodiethyl ether                              | 3:7595                             |
| 2-Chlorobuten-3-ol-1                                                                | 3:9113                       | $\alpha,\beta$ -Dichlorodiethyl ether                                 | 3:5640                             |
| 1-Chlorobuten-3-ol-2                                                                | 3:8110                       | $\alpha, \beta'$ -Dichlorodiethyl ether                               | 3:9150                             |
| 3-Chlorobuten-3-ol-2                                                                | 3:9115                       | $\beta,\beta'$ -Dichlorodiethyl ether                                 | 3:6025                             |
| 3-Chloro-2-methylpropen-2-ol-1                                                      | 3:8340                       | $C_4H_8O_2Cl_2$ M.W. = 159.0<br>Dichloroacetaldehyde ethyl            | Cl=44.6%                           |
| α-Chloro-n-butyraldehyde                                                            | 3:9109                       | alcoholate                                                            | 3:5310                             |
| β-Chloro-n-butyraldehyde                                                            | 3:9110<br>3:9111             | $C_4H_9OCl$ M.W. = 108.6                                              | Cl = 32.7%                         |
| $\gamma$ -Chloro- $n$ -butyraldehyde                                                | 9.9111                       | 2-Chlorobutanol-1                                                     | 3:9160                             |
| α-Chloroisobutyraldehyde                                                            | 3:7235                       | 3-Chlorobutanol-1                                                     | 3:9165                             |
| $\beta$ -Chloroisobutyraldehyde                                                     | 3:9112                       | 4-Chlorobutanol-1                                                     | 3:9170                             |
|                                                                                     | 0.0040                       | 1-Chlorobutanol-2                                                     | 3:8025                             |
| 1-Chlorobutanone-2                                                                  | 3:8012<br>3:7598             | 3-Chlorobutanol-2                                                     | 3:8000                             |
| 3-Chlorobutanone-2<br>4-Chlorobutanone-2                                            | 3:7640                       | d,l-threo-3-Chlorobutanol-2                                           | 3:8002                             |
|                                                                                     |                              | d,l-erythro-3-Chlorobutanol-2<br>4-Chlorobutanol-2                    | 3:8004<br>3:9175                   |
| n-Butyryl chloride                                                                  | 3:7370                       | 0.001                                                                 |                                    |
| Isobutyryl chloride                                                                 | 3:7270                       | 2-Chloro-2-methylpropanol-1<br>3-Chloro-2-methylpropanol-1            | 3:7905<br>3:9180                   |
| 3-Chloro-2-methyl-1,2-                                                              |                              | 1-Chloro-2-methylpropanol-2                                           | 3:7752                             |
| epoxypropane                                                                        | 3:7657                       |                                                                       |                                    |
| $\beta$ -Chloroethyl vinyl ether                                                    | 3:7464                       | ter-Butyl hypochlorite                                                | 3:7165                             |
| $C_4H_7OCl_3$ M.W. = 177.5                                                          | Cl = 59.9%                   | α-Chloroethyl ethyl ether<br>β-Chloroethyl ethyl ether                | 3:7305<br>3:7463                   |
| 2,2,3-Trichlorobutanol-1                                                            | 3:1336                       | p-Chioroedhyr ethyr ether                                             | 0.1200                             |
| 1,1,1-Trichlorobutanol-2                                                            | 3:5 <b>9</b> 55              | $C_4H_9O_2Cl$ M.W. = 124.6                                            | Cl = 28.5%                         |
| 1,1,1-Trichloro-2-methyl-<br>propanol-2                                             | 3:2662                       | 2-(β-Chloroethoxy)ethanol-1                                           | 3:9185                             |
| propanoi-2                                                                          | 0.2002                       | 3-Chloro-2-methylpropanediol-1,                                       | 2 3:9190                           |
| $C_4H_7O_2Cl$ M.W. = 122.6                                                          | Cl = 28.9%                   | C₅ GROUP                                                              |                                    |
| $\alpha$ -Chloro- $n$ -butyric acid                                                 | 3:9130                       | $C_5H_2O_3Cl_6$ M.W. = 322.8                                          | Cl = 65.9%                         |
| β-Chloro-n-butyric acid                                                             | 3:0035                       | Chloralide                                                            | 3:3510                             |
| $\gamma$ -Chloro- $n$ -butyric acid                                                 | 3:0020                       |                                                                       |                                    |
| α-Chloroisobutyric acid<br>β-Chloroisobutyric acid                                  | 3:0235<br>3:9132             | $C_6H_3O_2Cl$ M.W. = 130.5<br>Furoyl chloride                         | Cl=27.2%<br>3:8515                 |
| Ethoxyacetyl chloride                                                               | 3:7745                       | $C_5H_6O_2Cl_2$ M.W. = 169.0<br>Glutaryl (di)chloride                 | Cl=42.0%<br>3:6500                 |
| $\alpha$ -Chloroethyl acetate $\beta$ -Chloroethyl acetate                          | 3:7625<br>3:5735             | C <sub>6</sub> H <sub>7</sub> OCl M.W.=118.6                          | Cl=29.9%                           |
| Ethyl chloroacetate                                                                 | 3:5700                       | Tiglyl chloride                                                       | 3:9240                             |

| O TT O OL 34 TT 1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C_6H_7O_2Cl$ $M.W. = 134.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cl = 26.4%                                                                                                                                            | $\beta$ -Chloro- $n$ -valeric acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3:0270                                                                                                                                                 |
| Ethyl α-chloroacrylate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3:9242                                                                                                                                                | $\gamma$ -Chloro-n-valeric acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3:9270                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3:5870                                                                                                                                                | δ-Chloro-n-valeric acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3:0075                                                                                                                                                 |
| Methyl α-chlorocrotonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                       | o-Chioro-n-valerie acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.4414                                                                                                                                                 |
| Methyl $\beta$ -chlorocrotonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3:92 <u>44</u>                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0840                                                                                                                                                 |
| Methyl $\beta$ -chloroisocrotonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3:8028                                                                                                                                                | $\alpha$ -Chloro- $\alpha$ -methyl- $n$ -butyric acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3:8718                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                       | $\alpha$ -Chloro- $\beta$ -methyl- $n$ -butyric acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3:0050                                                                                                                                                 |
| $C_5H_7O_2Cl_3$ M.W. = 205.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cl = 51.8%                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                        |
| n-Propyl trichloroacetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3:6135                                                                                                                                                | Chloropivalic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3:0440                                                                                                                                                 |
| Isopropyl trichloroacetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3:5975                                                                                                                                                | Ozzotopił wie word                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                        |
| 250ptop31 tricinoroaccusto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                       | $\beta$ -Chloro- $n$ -propyl acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3:8180                                                                                                                                                 |
| C TT O CI M TTT - 150 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | O1 00 FM                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3:8310                                                                                                                                                 |
| $C_8H_7O_8C1$ M.W. = 150.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cl = 23.5%                                                                                                                                            | γ-Chloro-n-propyl acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                        |
| Carbethoxyacetyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3:9246                                                                                                                                                | β-Chloroisopropyl acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3:81 <b>50</b>                                                                                                                                         |
| $\beta$ -(Carbomethoxy) propionyl chlo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | oride <b>3:9247</b>                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                       | n-Propyl chloroacetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>3:8295</b>                                                                                                                                          |
| $C_5H_7O_2Cl_3$ M.W. = 221.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cl = 48.0%                                                                                                                                            | Isopropyl chloroacetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3:8160                                                                                                                                                 |
| β-Methoxyethyl trichloroacetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                       | zoopi opji omorouotuto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                        |
| p-intentoxyemyi urichiotoaceaae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000                                                                                                                                                 | Ethyl α-chloropropionate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3:8125                                                                                                                                                 |
| CLTLOCK NEW 1880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O1 45 507                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                        |
| $C_8H_8OCl_2$ M.W. = 155.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cl = 45.7%                                                                                                                                            | Ethyl $\beta$ -chloropropionate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3:8290                                                                                                                                                 |
| α-Chloro-n-valeryl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>3:5860</b>                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                        |
| γ-Chloro-n-valeryl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3:9260                                                                                                                                                | Methyl $\alpha$ -chloro- $n$ -butyrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3:8103                                                                                                                                                 |
| δ-Chloro-n-valeryl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3:9264                                                                                                                                                | Methyl $\beta$ -chloro-n-butyrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3:8224                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                       | Methyl γ-chloro-n-butyrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3:8517                                                                                                                                                 |
| $\alpha$ -Chloro- $\alpha$ -methyl- $n$ -butyryl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                       | Medity1 y-citio10-%-buty1208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9. 5000                                                                                                                                               | 36.41.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.7010                                                                                                                                                 |
| chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3:5670                                                                                                                                                | Methyl $\alpha$ -chloroisobutyrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3:7918                                                                                                                                                 |
| $\alpha$ -Chloro- $\beta$ -methyl- $n$ -butyryl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                        |
| chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3:81 <del>44</del>                                                                                                                                    | n-Butyl chloroformate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3:7980                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                       | Isobutyl chloroformate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3:7760                                                                                                                                                 |
| Chloropivalyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3:9266                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                        |
| Candiopivalji dindrido                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                                                                 | C <sub>5</sub> H <sub>9</sub> O <sub>2</sub> Cl M.W. = 152.6 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1=23.2%                                                                                                                                                |
| O TI O OL 34 W 171 O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | O1 41 FO7                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                        |
| $C_5H_8O_2Cl_2$ M.W. = 171.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cl = 41.5%                                                                                                                                            | Glycerol $\alpha$ -chlorohydrin $\alpha'$ -acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3:6775                                                                                                                                                 |
| $\beta, \gamma$ -Dichloro- $n$ -propyl acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3:6220                                                                                                                                                | Glycerol $\alpha$ -chlorohydrin $\beta$ -acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3:6517                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                        |
| $\beta, \beta'$ -Dichloroisopropyl acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3:6318                                                                                                                                                | Glycerol $\beta$ -chlorohydrin $\alpha$ -acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3:6648                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                       | - · · -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                        |
| n-Propyl dichloroscetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3:6000                                                                                                                                                | 8-Methovyethyl chlorogetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 · 9285                                                                                                                                               |
| n-Propyl dichloroacetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3:6000<br>3:5800                                                                                                                                      | β-Methoxyethyl chloroacetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3:9285                                                                                                                                                 |
| n-Propyl dichloroacetate Isopropyl dichloroacetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3:6000<br>3:5890                                                                                                                                      | eta-Methoxyethyl chloroacetate $eta$ -Ethoxyethyl chloroformate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3:9285<br>3:9280                                                                                                                                       |
| Isopropyl dichloroacetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3:5890                                                                                                                                                | $\beta$ -Ethoxyethyl chloroformate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3:9280                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                       | $\beta$ -Ethoxyethyl chloroformate $C_{\delta}H_{11}OCl$ $M.W.=122.6$ $C_{\delta}H_{12}OCl$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3:9280<br>1=28.9%                                                                                                                                      |
| Isopropyl dichloroacetate  Ethyl $\alpha,\beta$ -dichloropropionate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3:5890<br>3:6090                                                                                                                                      | $\beta$ -Ethoxyethyl chloroformate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3:9280                                                                                                                                                 |
| Isopropyl dichloroacetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3:5890                                                                                                                                                | β-Ethoxyethyl chloroformate  C <sub>6</sub> H <sub>11</sub> OCl M.W.=122.6 C 5-Chloropentanol-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3:9280<br>1=28.9%                                                                                                                                      |
| Isopropyl dichloroacetate  Ethyl $\alpha,\beta$ -dichloropropionate $C_bH_8O_2Cl_2$ M.W. = 187.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3:5890<br>3:6090                                                                                                                                      | β-Ethoxyethyl chloroformate  C <sub>b</sub> H <sub>11</sub> OCl M.W.=122.6 C 5-Chloropentanol-1 1-Chloropentanol-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3:9280<br>3:9280<br>3:9295<br>3:8225                                                                                                                   |
| Isopropyl dichloroacetate  Ethyl $\alpha,\beta$ -dichloropropionate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3:5890<br>3:6090<br>Cl=37.9%                                                                                                                          | β-Ethoxyethyl chloroformate  C <sub>6</sub> H <sub>11</sub> OCl M.W.=122.6 C 5-Chloropentanol-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3:9280<br>21=28.9%<br>3:9295                                                                                                                           |
| Isopropyl dichloroacetate  Ethyl $\alpha,\beta$ -dichloropropionate $C_bH_8O_3Cl_2$ M.W. = 187.0  Di-( $\beta$ -chloroethyl) carbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3:5890<br>3:6090<br>Cl=37.9%<br>3:6790                                                                                                                | β-Ethoxyethyl chloroformate  C <sub>6</sub> H <sub>11</sub> OCl M.W.=122.6 C 5-Chloropentanol-1 1-Chloropentanol-2 1-Chloropentanol-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3:9280<br>21=28.9%<br>3:9295<br>3:8225<br>3:8500                                                                                                       |
| Isopropyl dichloroacetate  Ethyl $\alpha,\beta$ -dichloropropionate $C_bH_8O_9Cl_2$ M.W. = 187.0  Di- $(\beta$ -chloroethyl) carbonate $C_bH_9OCl$ M.W. = 120.6                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3:5890<br>3:6090<br>Cl=37.9%<br>3:6790<br>Cl=29.4%                                                                                                    | β-Ethoxyethyl chloroformate  C <sub>6</sub> H <sub>11</sub> OCl M.W.=122.6 C 5-Chloropentanol-1 1-Chloropentanol-2 1-Chloropentanol-3 1-Chloro-2-methylbutanol-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3:9280<br>21=28.9%<br>3:9295<br>3:8225<br>3:8500<br>3:8175                                                                                             |
| Isopropyl dichloroacetate  Ethyl $\alpha,\beta$ -dichloropropionate $C_bH_8O_2Cl_2$ M.W. = 187.0  Di- $(\beta$ -chloroethyl) carbonate $C_bH_9OCl$ M.W. = 120.6  1-Chloropentanone-2                                                                                                                                                                                                                                                                                                                                                                                                            | 3:5890<br>3:6090<br>Cl=37.9%<br>3:6790<br>Cl=29.4%<br>3:8217                                                                                          | β-Ethoxyethyl chloroformate  C <sub>b</sub> H <sub>11</sub> OCl M.W.=122.6 C 5-Chloropentanol-1 1-Chloropentanol-2 1-Chloropentanol-3  1-Chloro-2-methylbutanol-2 3-Chloro-2-methylbutanol-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3:9280<br>21=28.9%<br>3:9295<br>3:8225<br>3:8500<br>3:8175<br>3:8030                                                                                   |
| Isopropyl dichloroacetate  Ethyl α,β-dichloropropionate  C <sub>k</sub> H <sub>8</sub> O <sub>2</sub> Cl <sub>2</sub> M.W.=187.0  Di-(β-chloroethyl) carbonate  C <sub>k</sub> H <sub>9</sub> OCl M.W.=120.6  1-Chloropentanone-2  3-Chloropentanone-2                                                                                                                                                                                                                                                                                                                                          | 3:5890<br>3:6090<br>Cl=37.9%<br>3:6790<br>Cl=29.4%<br>3:8217<br>3:7893                                                                                | β-Ethoxyethyl chloroformate  C <sub>6</sub> H <sub>11</sub> OCl M.W.=122.6 C 5-Chloropentanol-1 1-Chloropentanol-2 1-Chloropentanol-3 1-Chloro-2-methylbutanol-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3:9280<br>21=28.9%<br>3:9295<br>3:8225<br>3:8500<br>3:8175                                                                                             |
| Isopropyl dichloroacetate  Ethyl $\alpha,\beta$ -dichloropropionate $C_4H_4O_3Cl_2$ M.W.=187.0  Di- $(\beta$ -chloroethyl) carbonate $C_4H_9OCl$ M.W.=120.6  1-Chloropentanone-2  3-Chloropentanone-2  4-Chloropentanone-2                                                                                                                                                                                                                                                                                                                                                                      | 3:5890<br>3:6090<br>C1=37.9%<br>3:6790<br>C1=29.4%<br>3:8217<br>3:7893<br>3:8243                                                                      | β-Ethoxyethyl chloroformate  C <sub>b</sub> H <sub>11</sub> OCl M.W.=122.6 C 5-Chloropentanol-1 1-Chloropentanol-2 1-Chloropentanol-3  1-Chloro-2-methylbutanol-2 3-Chloro-2-methylbutanol-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3:9280<br>21=28.9%<br>3:9295<br>3:8225<br>3:8500<br>3:8175<br>3:8030                                                                                   |
| Isopropyl dichloroacetate  Ethyl α,β-dichloropropionate  C <sub>k</sub> H <sub>8</sub> O <sub>2</sub> Cl <sub>2</sub> M.W.=187.0  Di-(β-chloroethyl) carbonate  C <sub>k</sub> H <sub>9</sub> OCl M.W.=120.6  1-Chloropentanone-2  3-Chloropentanone-2                                                                                                                                                                                                                                                                                                                                          | 3:5890<br>3:6090<br>Cl=37.9%<br>3:6790<br>Cl=29.4%<br>3:8217<br>3:7893                                                                                | β-Ethoxyethyl chloroformate  C <sub>b</sub> H <sub>11</sub> OCl M.W.=122.6 C 5-Chloropentanol-1 1-Chloropentanol-2 1-Chloropentanol-3  1-Chloro-2-methylbutanol-2 3-Chloro-2-methylbutanol-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3:9280<br>21=28.9%<br>3:9295<br>3:8225<br>3:8500<br>3:8175<br>3:8030                                                                                   |
| Isopropyl dichloroacetate  Ethyl $\alpha,\beta$ -dichloropropionate $C_4H_4O_3Cl_2$ M.W.=187.0  Di- $(\beta$ -chloroethyl) carbonate $C_4H_9OCl$ M.W.=120.6  1-Chloropentanone-2  3-Chloropentanone-2  4-Chloropentanone-2                                                                                                                                                                                                                                                                                                                                                                      | 3:5890<br>3:6090<br>C1=37.9%<br>3:6790<br>C1=29.4%<br>3:8217<br>3:7893<br>3:8243                                                                      | β-Ethoxyethyl chloroformate  C <sub>6</sub> H <sub>11</sub> OCl M.W.=122.6 C 5-Chloropentanol-1 1-Chloropentanol-2 1-Chloropentanol-3  1-Chloro-2-methylbutanol-2 3-Chloro-2-methylbutanol-2 4-Chloro-2-methylbutanol-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3:9280<br>3:9285<br>3:9295<br>3:8225<br>3:8500<br>3:8175<br>3:8030<br>3:8335                                                                           |
| Isopropyl dichloroacetate  Ethyl α,β-dichloropropionate  C <sub>b</sub> H <sub>8</sub> O <sub>8</sub> Cl <sub>2</sub> M.W. = 187.0  Di-(β-chloroethyl) carbonate  C <sub>b</sub> H <sub>9</sub> OCl M.W. = 120.6  1-Chloropentanone-2  3-Chloropentanone-2  4-Chloropentanone-2  5-Chloropentanone-2                                                                                                                                                                                                                                                                                            | 3:5890<br>3:6090<br>C1=37.9%<br>3:6790<br>C1=29.4%<br>3:8217<br>3:7893<br>3:8243<br>3:9267                                                            | β-Ethoxyethyl chloroformate  C <sub>b</sub> H <sub>11</sub> OCl M.W.=122.6 C 5-Chloropentanol-1 1-Chloropentanol-2 1-Chloro-2-methylbutanol-2 3-Chloro-2-methylbutanol-2 4-Chloro-2-methylbutanol-2 2-Chloro-2-methylbutanol-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3:9280<br>3:9285<br>3:9295<br>3:8225<br>3:8500<br>3:8175<br>3:8030<br>3:8335                                                                           |
| Isopropyl dichloroacetate  Ethyl α,β-dichloropropionate  C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> Cl <sub>2</sub> M.W. = 187.0  Di-(β-chloroethyl) carbonate  C <sub>8</sub> H <sub>9</sub> OCl M.W. = 120.6  1-Chloropentanone-2  3-Chloropentanone-2  4-Chloropentanone-2  5-Chloropentanone-2  1-Chloropentanone-3                                                                                                                                                                                                                                                                       | 3:5890<br>3:6090<br>C1=37.9%<br>3:6790<br>C1=29.4%<br>3:8217<br>3:7893<br>3:8243<br>3:9267<br>3:9268                                                  | β-Ethoxyethyl chloroformate  C <sub>b</sub> H <sub>11</sub> OCl M.W.=122.6 C 5-Chloropentanol-1 1-Chloropentanol-2 1-Chloropentanol-3  1-Chloro-2-methylbutanol-2 3-Chloro-2-methylbutanol-2 4-Chloro-2-methylbutanol-2 2-Chloro-2-methylbutanol-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3:9280<br>3:9285<br>3:9295<br>3:8225<br>3:8500<br>3:8175<br>3:8030<br>3:8335<br>3:9290                                                                 |
| Isopropyl dichloroacetate  Ethyl α,β-dichloropropionate  C <sub>b</sub> H <sub>8</sub> O <sub>8</sub> Cl <sub>2</sub> M.W. = 187.0  Di-(β-chloroethyl) carbonate  C <sub>b</sub> H <sub>9</sub> OCl M.W. = 120.6  1-Chloropentanone-2  3-Chloropentanone-2  4-Chloropentanone-2  5-Chloropentanone-2                                                                                                                                                                                                                                                                                            | 3:5890<br>3:6090<br>C1=37.9%<br>3:6790<br>C1=29.4%<br>3:8217<br>3:7893<br>3:8243<br>3:9267                                                            | β-Ethoxyethyl chloroformate  C <sub>b</sub> H <sub>11</sub> OCl M.W.=122.6 C 5-Chloropentanol-1 1-Chloropentanol-2 1-Chloro-2-methylbutanol-2 3-Chloro-2-methylbutanol-2 4-Chloro-2-methylbutanol-2 2-Chloro-2-methylbutanol-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3:9280<br>3:9285<br>3:9295<br>3:8225<br>3:8500<br>3:8175<br>3:8030<br>3:8335                                                                           |
| Isopropyl dichloroacetate  Ethyl α,β-dichloropropionate  C <sub>b</sub> H <sub>8</sub> O <sub>3</sub> Cl <sub>2</sub> M.W.=187.0  Di-(β-chloroethyl) carbonate  C <sub>b</sub> H <sub>9</sub> OCl M.W.=120.6  1-Chloropentanone-2  3-Chloropentanone-2  4-Chloropentanone-2  5-Chloropentanone-2  1-Chloropentanone-3  2-Chloropentanone-3                                                                                                                                                                                                                                                      | 3:5890<br>3:6090<br>C1=37.9%<br>3:6790<br>C1=29.4%<br>3:8217<br>3:8243<br>3:8243<br>3:9267<br>3:9268<br>3:7935                                        | β-Ethoxyethyl chloroformate  C <sub>6</sub> H <sub>11</sub> OCl M.W.=122.6 G 5-Chloropentanol-1 1-Chloropentanol-2 1-Chloro-2-methylbutanol-2 3-Chloro-2-methylbutanol-2 4-Chloro-2-methylbutanol-2 2-Chloro-2-methylbutanol-2 α-Chloro-thylbutanol-2 α-Chloro-thylbutanol-2 α-Chloro-thylbutanol-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3:9280<br>3:9285<br>3:9295<br>3:8225<br>3:8500<br>3:8175<br>3:8030<br>3:8335<br>3:9290                                                                 |
| Isopropyl dichloroacetate  Ethyl α,β-dichloropropionate  C <sub>b</sub> H <sub>8</sub> O <sub>2</sub> Cl <sub>2</sub> M.W. = 187.0  Di-(β-chloroethyl) carbonate  C <sub>b</sub> H <sub>9</sub> OCl M.W. = 120.6  1-Chloropentanone-2  3-Chloropentanone-2  5-Chloropentanone-2  1-Chloropentanone-3  2-Chloropentanone-3  1-Chloro-2-methylbutanone-3                                                                                                                                                                                                                                          | 3:5890<br>3:6090<br>C1=37.9%<br>3:6790<br>C1=29.4%<br>3:8217<br>3:7893<br>3:8243<br>3:9267<br>3:9268<br>3:7935                                        | β-Ethoxyethyl chloroformate  C <sub>b</sub> H <sub>11</sub> OCl M.W.=122.6 C 5-Chloropentanol-1 1-Chloropentanol-2 1-Chloropentanol-3  1-Chloro-2-methylbutanol-2 3-Chloro-2-methylbutanol-2 4-Chloro-2-methylbutanol-2 2-Chloro-2-methylbutanol-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3:9280<br>3:9285<br>3:9295<br>3:8225<br>3:8500<br>3:8175<br>3:8030<br>3:8335<br>3:9290                                                                 |
| Isopropyl dichloroacetate  Ethyl α,β-dichloropropionate  C <sub>b</sub> H <sub>8</sub> O <sub>3</sub> Cl <sub>2</sub> M.W.=187.0  Di-(β-chloroethyl) carbonate  C <sub>b</sub> H <sub>9</sub> OCl M.W.=120.6  1-Chloropentanone-2  3-Chloropentanone-2  4-Chloropentanone-2  5-Chloropentanone-2  1-Chloropentanone-3  2-Chloropentanone-3                                                                                                                                                                                                                                                      | 3:5890<br>3:6090<br>C1=37.9%<br>3:6790<br>C1=29.4%<br>3:8217<br>3:8243<br>3:8243<br>3:9267<br>3:9268<br>3:7935                                        | β-Ethoxyethyl chloroformate  C <sub>6</sub> H <sub>11</sub> OCl M.W.=122.6 5-Chloropentanol-1 1-Chloropentanol-2 1-Chloro-2-methylbutanol-2 3-Chloro-2-methylbutanol-2 4-Chloro-2-methylbutanol-2 2-Chloro-2-methylbutanol-2 α-Chloro-thyl n-propyl ether ter-Amyl hypochlorite  C <sub>6</sub> GROUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3:9280<br>3:9285<br>3:9285<br>3:8225<br>3:8225<br>3:8175<br>3:8030<br>3:8335<br>3:9290<br>3:7525<br>3:9287                                             |
| Isopropyl dichloroacetate  Ethyl α,β-dichloropropionate  C <sub>b</sub> H <sub>8</sub> O <sub>2</sub> Cl <sub>2</sub> M.W. = 187.0  Di-(β-chloroethyl) carbonate  C <sub>b</sub> H <sub>9</sub> OCl M.W. = 120.6  1-Chloropentanone-2  3-Chloropentanone-2  5-Chloropentanone-2  1-Chloropentanone-3  2-Chloropentanone-3  1-Chloro-2-methylbutanone-3                                                                                                                                                                                                                                          | 3:5890<br>3:6090<br>C1=37.9%<br>3:6790<br>C1=29.4%<br>3:8217<br>3:7893<br>3:8243<br>3:9267<br>3:9268<br>3:7935                                        | β-Ethoxyethyl chloroformate  C <sub>6</sub> H <sub>11</sub> OCl M.W.=122.6 5-Chloropentanol-1 1-Chloropentanol-2 1-Chloro-2-methylbutanol-2 3-Chloro-2-methylbutanol-2 4-Chloro-2-methylbutanol-2 2-Chloro-2-methylbutanol-2 α-Chloro-thyl n-propyl ether ter-Amyl hypochlorite  C <sub>6</sub> GROUP C <sub>6</sub> HOCl <sub>5</sub> M.W.=266.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3:9280<br>3:9285<br>3:9295<br>3:8225<br>3:8500<br>3:8175<br>3:8030<br>3:8335<br>3:7525<br>3:9287                                                       |
| Isopropyl dichloroacetate  Ethyl α,β-dichloropropionate  C <sub>b</sub> H <sub>8</sub> O <sub>2</sub> Cl <sub>2</sub> M.W. = 187.0  Di-(β-chloroethyl) carbonate  C <sub>b</sub> H <sub>9</sub> OCl M.W. = 120.6  1-Chloropentanone-2  3-Chloropentanone-2  5-Chloropentanone-2  1-Chloropentanone-3  2-Chloropentanone-3  1-Chloro-2-methylbutanone-3                                                                                                                                                                                                                                          | 3:5890<br>3:6090<br>C1=37.9%<br>3:6790<br>C1=29.4%<br>3:8217<br>3:7893<br>3:8243<br>3:9267<br>3:9268<br>3:7935                                        | β-Ethoxyethyl chloroformate  C <sub>6</sub> H <sub>11</sub> OCl M.W.=122.6 5-Chloropentanol-1 1-Chloropentanol-2 1-Chloro-2-methylbutanol-2 3-Chloro-2-methylbutanol-2 4-Chloro-2-methylbutanol-2 2-Chloro-2-methylbutanol-2 α-Chloro-thyl n-propyl ether ter-Amyl hypochlorite  C <sub>6</sub> GROUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3:9280<br>3:9285<br>3:9285<br>3:8225<br>3:8225<br>3:8175<br>3:8030<br>3:8335<br>3:9290<br>3:7525<br>3:9287                                             |
| Isopropyl dichloroacetate  Ethyl α,β-dichloropropionate  C <sub>b</sub> H <sub>8</sub> O <sub>3</sub> Cl <sub>2</sub> M.W. = 187.0  Di-(β-chloroethyl) carbonate  C <sub>b</sub> H <sub>9</sub> OCl M.W. = 120.6  1-Chloropentanone-2  3-Chloropentanone-2  5-Chloropentanone-2  1-Chloropentanone-3  2-Chloropentanone-3  2-Chloro-2-methylbutanone-3  n-Valeryl chloride                                                                                                                                                                                                                      | 3:5890<br>3:6090<br>C1=37.9%<br>3:6790<br>C1=29.4%<br>3:8217<br>3:8243<br>3:8243<br>3:9267<br>3:9268<br>3:7935<br>3:9269<br>3:7597<br>3:7740          | β-Ethoxyethyl chloroformate  C <sub>6</sub> H <sub>11</sub> OCl M.W.=122.6 Control of the control of t | 3:9280<br>3:9295<br>3:9295<br>3:8225<br>3:8500<br>3:8175<br>3:8030<br>3:8335<br>3:9290<br>3:7525<br>3:9287                                             |
| Isopropyl dichloroacetate Ethyl α,β-dichloropropionate C <sub>b</sub> H <sub>B</sub> O <sub>2</sub> Cl <sub>2</sub> M.W.=187.0 Di-(β-chloroethyl) carbonate C <sub>b</sub> H <sub>B</sub> OCl M.W.=120.6 1-Chloropentanone-2 3-Chloropentanone-2 4-Chloropentanone-2 1-Chloropentanone-3 2-Chloropentanone-3 1-Chloro-2-methylbutanone-3 2-Chloro-2-methylbutanone-3 n-Valeryl chloride α-Methyl-n-butyryl chloride                                                                                                                                                                             | 3:5890<br>3:6090<br>C1=37.9%<br>3:6790<br>C1=29.4%<br>3:8217<br>3:7893<br>3:8243<br>3:9267<br>3:9268<br>3:7935<br>3:9269<br>3:7597<br>3:740<br>3:7603 | β-Ethoxyethyl chloroformate  C <sub>6</sub> H <sub>11</sub> OCl M.W.=122.6 G-Chloropentanol-1 1-Chloropentanol-2 1-Chloropentanol-3  1-Chloro-2-methylbutanol-2 3-Chloro-2-methylbutanol-2 4-Chloro-2-methylbutanol-2 2-Chloro-2-methylbutanol-2  α-Chloroethyl n-propyl ether ter-Amyl hypochlorite  C <sub>6</sub> GROUP  C <sub>6</sub> HOCl <sub>5</sub> M.W.=286.4 Pentachlorophenol  C <sub>6</sub> HO <sub>2</sub> Cl <sub>5</sub> M.W.=211.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3:9280<br>3:9295<br>3:9295<br>3:8225<br>3:8500<br>3:8175<br>3:8030<br>3:8335<br>3:9290<br>3:7525<br>3:9287                                             |
| Isopropyl dichloroacetate  Ethyl α,β-dichloropropionate  C <sub>b</sub> H <sub>8</sub> O <sub>5</sub> Cl <sub>2</sub> M.W. = 187.0  Di-(β-chloroethyl) carbonate  C <sub>b</sub> H <sub>9</sub> OCl M.W. = 120.6  1-Chloropentanone-2  3-Chloropentanone-2  4-Chloropentanone-2  1-Chloropentanone-3  2-Chloropentanone-3  1-Chloro-2-methylbutanone-3  2-Chloro-2-methylbutanone-3  n-Valeryl chloride  α-Methyl-n-butyryl chloride  β-Methyl-n-butyryl chloride                                                                                                                               | 3:5890<br>3:6090<br>C1=37.9%<br>3:6790<br>C1=29.4%<br>3:8217<br>3:8243<br>3:9267<br>3:9268<br>3:7935<br>3:9269<br>3:7597<br>3:7560                    | β-Ethoxyethyl chloroformate  C <sub>6</sub> H <sub>11</sub> OCl M.W.=122.6 G-Chloropentanol-1 1-Chloropentanol-2 1-Chloropentanol-3  1-Chloro-2-methylbutanol-2 3-Chloro-2-methylbutanol-2 4-Chloro-2-methylbutanol-2 2-Chloro-2-methylbutanol-2  α-Chloroethyl n-propyl ether ter-Amyl hypochlorite  C <sub>6</sub> GROUP  C <sub>6</sub> HOCl <sub>5</sub> M.W.=286.4 Pentachlorophenol  C <sub>6</sub> HO <sub>2</sub> Cl <sub>5</sub> M.W.=211.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3:9280<br>3:9285<br>3:9295<br>3:8225<br>3:8225<br>3:8175<br>3:8030<br>3:8335<br>3:7525<br>3:9287<br>41=66.6%<br>3:4850                                 |
| Isopropyl dichloroacetate Ethyl α,β-dichloropropionate C <sub>b</sub> H <sub>B</sub> O <sub>2</sub> Cl <sub>2</sub> M.W.=187.0 Di-(β-chloroethyl) carbonate C <sub>b</sub> H <sub>B</sub> OCl M.W.=120.6 1-Chloropentanone-2 3-Chloropentanone-2 4-Chloropentanone-2 1-Chloropentanone-3 2-Chloropentanone-3 1-Chloro-2-methylbutanone-3 2-Chloro-2-methylbutanone-3 n-Valeryl chloride α-Methyl-n-butyryl chloride                                                                                                                                                                             | 3:5890<br>3:6090<br>C1=37.9%<br>3:6790<br>C1=29.4%<br>3:8217<br>3:7893<br>3:8243<br>3:9267<br>3:9268<br>3:7935<br>3:9269<br>3:7597<br>3:740<br>3:7603 | β-Ethoxyethyl chloroformate  C <sub>6</sub> H <sub>11</sub> OCl M.W.=122.6 Control of the control of t | 3:9280<br>3:9295<br>3:9295<br>3:8225<br>3:8500<br>3:8175<br>3:8030<br>3:8335<br>3:9290<br>3:7525<br>3:9287                                             |
| Isopropyl dichloroacetate Ethyl α,β-dichloropropionate C <sub>k</sub> H <sub>8</sub> O <sub>2</sub> Cl <sub>2</sub> M.W. = 187.0 Di-(β-chloroethyl) carbonate C <sub>4</sub> H <sub>9</sub> OCl M.W. = 120.6 1-Chloropentanone-2 3-Chloropentanone-2 4-Chloropentanone-2 1-Chloropentanone-3 2-Chloropentanone-3 1-Chloro-2-methylbutanone-3 2-Chloro-2-methylbutanone-3 n-Valeryl chloride α-Methyl-n-butyryl chloride β-Methyl-n-butyryl chloride α,α-Dimethylpropionyl chloride                                                                                                              | 3:5890 3:6090 C1=37.9% 3:6790 C1=29.4% 3:8217 3:7893 3:8243 3:9267 3:9268 3:7935 3:9269 3:7597 3:7603 3:7450                                          | β-Ethoxyethyl chloroformate  C <sub>b</sub> H <sub>11</sub> OCl M.W.=122.6 Conception of the conception o | 3:9280<br>3:9295<br>3:9295<br>3:8225<br>3:8560<br>3:8175<br>3:8030<br>3:8335<br>3:7525<br>3:9287                                                       |
| Isopropyl dichloroacetate  Ethyl α,β-dichloropropionate  C <sub>b</sub> H <sub>8</sub> O <sub>5</sub> Cl <sub>2</sub> M.W. = 187.0  Di-(β-chloroethyl) carbonate  C <sub>b</sub> H <sub>9</sub> OCl M.W. = 120.6  1-Chloropentanone-2  3-Chloropentanone-2  4-Chloropentanone-2  1-Chloropentanone-3  2-Chloropentanone-3  1-Chloro-2-methylbutanone-3  2-Chloro-2-methylbutanone-3  n-Valeryl chloride  α-Methyl-n-butyryl chloride  β-Methyl-n-butyryl chloride                                                                                                                               | 3:5890<br>3:6090<br>C1=37.9%<br>3:6790<br>C1=29.4%<br>3:8217<br>3:8243<br>3:9267<br>3:9268<br>3:7935<br>3:9269<br>3:7597<br>3:7560                    | β-Ethoxyethyl chloroformate  C <sub>6</sub> H <sub>11</sub> OCl M.W.=122.6 G 5-Chloropentanol-1 1-Chloropentanol-2 1-Chloropentanol-3  1-Chloro-2-methylbutanol-2 3-Chloro-2-methylbutanol-2 4-Chloro-2-methylbutanol-2 2-Chloro-2-methylbutanol-2  α-Chloro-2-methylbutanol-2  α-Chloroethyl n-propyl ether ter-Amyl hypochlorite  C <sub>6</sub> GROUP  C <sub>6</sub> HOCl <sub>5</sub> M.W.=286.4 C Pentachlorophenol  C <sub>6</sub> HO <sub>2</sub> Cl <sub>8</sub> M.W.=211.4 2,3,5-Trichlorobenzoquinone-1,4  C <sub>6</sub> H <sub>2</sub> OCl <sub>4</sub> M.W.=231.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3:9280<br>3:9295<br>3:9295<br>3:8225<br>3:8500<br>3:8175<br>3:8030<br>3:8335<br>3:9290<br>3:7525<br>3:9287                                             |
| Isopropyl dichloroacetate  Ethyl α,β-dichloropropionate  C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> Cl <sub>2</sub> M.W. = 187.0  Di-(β-chloroethyl) carbonate  C <sub>8</sub> H <sub>9</sub> OCl M.W. = 120.6  1-Chloropentanone-2  3-Chloropentanone-2  4-Chloropentanone-2  5-Chloropentanone-3  2-Chloropentanone-3  2-Chloropentanone-3  1-Chloro-2-methylbutanone-3  n-Valeryl chloride  α-Methyl-n-butyryl chloride  β-Methyl-n-butyryl chloride  α,α-Dimethylpropionyl chloride  Tetrahydro-α-furfuryl chloride                                                                       | 3:5890 3:6090 C1=37.9% 3:6790 C1=29.4% 3:8217 3:7893 3:8243 3:9267 3:9268 3:7935 3:9269 3:7597 3:7740 3:7603 3:7450 3:7450 3:8152                     | β-Ethoxyethyl chloroformate  C <sub>6</sub> H <sub>11</sub> OCl M.W.=122.6 G 5-Chloropentanol-1 1-Chloropentanol-2 1-Chloro-2-methylbutanol-2 3-Chloro-2-methylbutanol-2 4-Chloro-2-methylbutanol-2 2-Chloro-2-methylbutanol-2 2-Chloro-2-methylbutanol-2 α-Chloroethyl n-propyl ether ter-Amyl hypochlorite  C <sub>6</sub> GROUP  C <sub>6</sub> HOCl <sub>5</sub> M.W.=286.4 C Pentachlorophenol  C <sub>6</sub> HO <sub>2</sub> Cl <sub>8</sub> M.W.=211.4 2,3,5-Trichlorobenzoquinone-1,4  C <sub>6</sub> H <sub>3</sub> OCl <sub>4</sub> M.W.=231.9 C 2,3,4,5-Tetrachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3:9280<br>3:9285<br>3:9295<br>3:8225<br>3:8225<br>3:8175<br>3:8030<br>3:8335<br>3:9290<br>3:7525<br>3:9287<br>41=66.6%<br>3:4850<br>41=50.3%<br>3:4672 |
| Isopropyl dichloroacetate  Ethyl α,β-dichloropropionate  C <sub>k</sub> H <sub>8</sub> O <sub>2</sub> Cl <sub>2</sub> M.W. = 187.0  Di-(β-chloroethyl) carbonate  C <sub>4</sub> H <sub>9</sub> OCl M.W. = 120.6  1-Chloropentanone-2  3-Chloropentanone-2  4-Chloropentanone-2  1-Chloropentanone-3  2-Chloropentanone-3  1-Chloro-2-methylbutanone-3  2-Chloro-2-methylbutanone-3  n-Valeryl chloride  α-Methyl-n-butyryl chloride  β-Methyl-n-butyryl chloride  α,α-Dimethylpropionyl chloride  Tetrahydro-α-furfuryl chloride  C <sub>4</sub> H <sub>9</sub> O <sub>2</sub> Cl M.W. = 136.6 | 3:5890 3:6090 C1=37.9% 3:6790 C1=29.4% 3:8217 3:7893 3:8243 3:9267 3:9268 3:7935 3:9269 3:7597 3:7603 3:7450 3:8152 C1=26.0%                          | β-Ethoxyethyl chloroformate  C <sub>b</sub> H <sub>11</sub> OCl M.W.=122.6 C 5-Chloropentanol-1 1-Chloropentanol-2 1-Chloropentanol-3  1-Chloro-2-methylbutanol-2 3-Chloro-2-methylbutanol-2 4-Chloro-2-methylbutanol-2 2-Chloro-2-methylbutanol-2  α-Chloro-2-methylbutanol-2  α-Chloroethyl n-propyl ether ter-Amyl hypochlorite  C <sub>6</sub> GROUP  C <sub>6</sub> HOCl <sub>5</sub> M.W.=286.4 C Pentachlorophenol  C <sub>6</sub> HO <sub>2</sub> Cl <sub>5</sub> M.W.=211.4 C 2,3,5-Trichlorobenzoquinone-1,4  C <sub>6</sub> H <sub>3</sub> OCl <sub>4</sub> M.W.=231.9 C 2,3,4,5-Tetrachlorophenol 2,3,4,5-Tetrachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3:9280<br>3:9295<br>3:9295<br>3:8225<br>3:8500<br>3:8175<br>3:8030<br>3:8335<br>3:9290<br>3:7525<br>3:9287                                             |
| Isopropyl dichloroacetate  Ethyl α,β-dichloropropionate  C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> Cl <sub>2</sub> M.W. = 187.0  Di-(β-chloroethyl) carbonate  C <sub>8</sub> H <sub>9</sub> OCl M.W. = 120.6  1-Chloropentanone-2  3-Chloropentanone-2  4-Chloropentanone-2  5-Chloropentanone-3  2-Chloropentanone-3  2-Chloropentanone-3  1-Chloro-2-methylbutanone-3  n-Valeryl chloride  α-Methyl-n-butyryl chloride  β-Methyl-n-butyryl chloride  α,α-Dimethylpropionyl chloride  Tetrahydro-α-furfuryl chloride                                                                       | 3:5890 3:6090 C1=37.9% 3:6790 C1=29.4% 3:8217 3:7893 3:8243 3:9267 3:9268 3:7935 3:9269 3:7597 3:7740 3:7603 3:7450 3:7450 3:8152                     | β-Ethoxyethyl chloroformate  C <sub>6</sub> H <sub>11</sub> OCl M.W.=122.6 G 5-Chloropentanol-1 1-Chloropentanol-2 1-Chloro-2-methylbutanol-2 3-Chloro-2-methylbutanol-2 4-Chloro-2-methylbutanol-2 2-Chloro-2-methylbutanol-2 2-Chloro-2-methylbutanol-2 α-Chloroethyl n-propyl ether ter-Amyl hypochlorite  C <sub>6</sub> GROUP  C <sub>6</sub> HOCl <sub>5</sub> M.W.=286.4 C Pentachlorophenol  C <sub>6</sub> HO <sub>2</sub> Cl <sub>8</sub> M.W.=211.4 2,3,5-Trichlorobenzoquinone-1,4  C <sub>6</sub> H <sub>3</sub> OCl <sub>4</sub> M.W.=231.9 C 2,3,4,5-Tetrachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3:9280<br>3:9285<br>3:9295<br>3:8225<br>3:8225<br>3:8175<br>3:8030<br>3:8335<br>3:9290<br>3:7525<br>3:9287<br>41=66.6%<br>3:4850<br>41=50.3%<br>3:4672 |

| $C_6H_2O_2Cl_2$ M.W. = 177.0                                                                 | Cl=40.1%                         | 2-Chlorohydroquinone                                                                    | 3:3139             |
|----------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------|--------------------|
| 2,3-Dichlorobenzoquinone-1,4<br>2,5-Dichlorobenzoquinone-1,4<br>2,6-Dichlorobenzoquinone-1,4 | 3:2855<br>3:4470<br>3:3750       | C <sub>6</sub> H <sub>7</sub> O <sub>4</sub> Cl M.W. = 178.6<br>Dimethyl chlorofumarate | Cl=19.9%<br>3:6582 |
| $C_6H_2O_2Cl_4$ M.W. = 247.9<br>Tetrachloropyrocatechol                                      | Cl=57.2%<br>3:4875               | Dimethyl chloromaleate                                                                  | 3:9351             |
| Tetrachlororesorcinol<br>Tetrachlorohydroquinone                                             | 3:4135<br>3:4941                 | $C_6H_8O_2Cl_2$ M.W. = 183.0<br>Adipyl (di)chloride                                     | Cl=38.7%<br>3:9352 |
| $C_6H_2O_4Cl_2$ M.W. = 209.0<br>2,5-Dichloro-3,6-dihydroxy-                                  | C1 = 33.9%                       | $C_6H_8O_4Cl_2$ M.W. = 215.0<br>Di-( $\beta$ -chloroethyl) oxalate                      | Cl=33.0%<br>3:0572 |
| benzoquinone-1,4                                                                             | 3:4970                           | Ethylene glycol bis-(chloroacetat                                                       | te) <b>3:0720</b>  |
| $C_6H_8OCl_3$ M.W. = 197.5<br>2,3,4-Trichlorophenol                                          | Cl = 53.9%<br>3:2185             | Dimethyl $d, l-\alpha, \alpha'$ -dichlorosuccin                                         | ate <b>3:0485</b>  |
| 2,3,5-Trichlorophenol<br>2,3,6-Trichlorophenol                                               | 3:1340<br>3:1160                 | Dimethyl $meso-\alpha,\alpha'$ -dichloro-<br>succinate                                  | 3:0240             |
| 2,4,5-Trichlorophenol                                                                        | 3:1620                           | CaHaOCl M.W. = 132.6                                                                    | Cl = 26.7%         |
| 2,4,6-Trichlorophenol<br>3,4,5-Trichlorophenol                                               | 3:1673<br>3:2885                 | 2-Chlorocyclohexanone-1                                                                 | 3:0120             |
| •                                                                                            |                                  | 3-Chlorocyclohexanone-1                                                                 | 3:9360             |
| $C_6H_3O_2Cl$ M.W.=142.5<br>2-Chlorobenzoquinone-1,4                                         | Cl = 24.9%<br>3:1100             | 4-Chlorocyclohexanone-1                                                                 | 3:9364             |
| $C_6H_3O_2Cl_3$ M.W.=213.5                                                                   | Cl = 49.8%                       | C <sub>6</sub> H <sub>9</sub> O <sub>2</sub> Cl M.W. = 148.6                            | Cl = 23.9%         |
| 3,4,5-Trichlorocatechol                                                                      | 3:3448                           | Ethyl $\alpha$ -chlorocrotonate<br>Ethyl $\beta$ -chlorocrotonate                       | 3:8523<br>3:8538   |
| 2,4,6-Trichlororesorcinol<br>2,3,5-Trichlorohydroquinone                                     | 3:2174<br>3: <b>40</b> 52        | Ethyl $\gamma$ -chlorocrotonate                                                         | 3:8657             |
| $C_6H_3O_3Cl_3$ M.W. = 229.5                                                                 | Cl = 46.4%                       | Ethyl $\alpha$ -chloroisocrotonate                                                      | 3:9368             |
| 4,5,6-Trichloropyrogallol<br>3,5,6-Trichloro-2-hydroxy-                                      | 3:4782                           | Ethyl $\beta$ -chloroisocrotonate                                                       | 3:8325             |
| hydroquinone                                                                                 | 3: <del>4444</del>               | $C_6H_9O_2Cl_3$ M.W. = 219.5                                                            | Cl = 48.6%         |
| 2,4,6-Trichlorophloroglucinol                                                                | 3:4030                           | $\beta,\beta,\beta$ -Trichloro-ter-butylacetate                                         | 3:6180             |
| $C_6H_4OCl_2$ M.W.=163.0<br>2.3-Dichlorophenol                                               | Cl=43.5%<br>3:1175               | Ethyl $\alpha,\alpha,\beta$ -trichloro-n-butyrate                                       | 3:6380             |
| 2,4-Dichlorophenol                                                                           | 3:0560                           | n-Butyl trichloroacetate                                                                | 3:6315             |
| 2,5-Dichlorophenol                                                                           | 3:1190<br>3:1595                 | secButyl trichloroacetate                                                               | 3:9372             |
| 2,6-Dichlorophenol 3,4-Dichlorophenol                                                        | 3:1460                           | Isobutyl trichloroacetate ter-Butyl trichloroacetate                                    | 3:6140<br>3:0138   |
| 3,5-Dichlorophenol                                                                           | 3:1670                           | •                                                                                       |                    |
| $C_0H_4O_2Cl_2$ M.W. = 179.0                                                                 | Cl = 39.6%                       | $C_6H_9O_3Cl$ M.W. = 164.6<br>$\gamma$ -(Carbomethoxy)-n-butyryl                        | Cl = 21.5%         |
| 3,5-Dichlorocatechol 4,5-Dichlorocatechol                                                    | 3:2192<br>3:3525                 | chloride                                                                                | 3:9373             |
| 4,6-Dichlororesorcinol                                                                       | 3:3380                           | Ethyl $\alpha$ -chloroacetoacetate                                                      | 3:6207             |
| 2,3-Dichlorohydroquinone                                                                     | 3:4220                           | Ethyl $\gamma$ -chloroacetoacetate                                                      | 3:6375             |
| 2,5-Dichlorohydroquinone                                                                     | 3:4690                           | $C_6H_9O_3Cl_3$ M W. = 235.5                                                            | Cl = 45.2%         |
| 2,6-Dichlorohydroquinone                                                                     | 3: <b>4600</b>                   | Trichloroparaldehyde                                                                    | 3:2300             |
| $C_6H_6OCl$ $M.W. = 128.6$                                                                   | C1 = 27.6%                       | $C_6H_{11}OCl$ M.W. = 134.6                                                             | Cl=26.3%           |
| o-Chlorophenol m-Chlorophenol                                                                | 3 : 5980<br>3 : 0255             | 2-Chlorocyclohexanol-1                                                                  |                    |
| p-Chlorophenol                                                                               | 3:0475                           | Liquid stereoisomer (cis) Solid stereoisomer (trans)                                    | 3:9374<br>3:0175   |
| C <sub>6</sub> H <sub>5</sub> O <sub>2</sub> Cl M.W. = 144.6                                 | Cl = 24.5%                       | 4-Chlorocyclohexanol-1                                                                  | 3:9376             |
| 3-Chlorocatechol                                                                             | 3:07 <u>45</u>                   | - C Nowida                                                                              | 3:8168             |
| 4-Chlorocatechol                                                                             | 3:2470                           | n-Caproyl chloride                                                                      | 9:9T#2             |
| 2-Chlororesorcinol                                                                           | 3:2690                           | α-Methyl-n-valeryl chloride                                                             | 3:8020             |
| 4-Chlororesorcinol  5-Chlororesorcinol                                                       | 3:31 <b>99</b><br>3:353 <b>0</b> | $\beta$ -Methyl- $n$ -valeryl chloride $\gamma$ -Methyl- $n$ -valeryl chloride          | 3:8 <b>93</b> 5    |
| A-CATTOL OF ODOL OFFICE                                                                      | <b>U.</b> 0000                   | 1-1-TONITATION A STORY I CHICKING                                                       |                    |

| $\alpha,\alpha$ -Dimethyl-n-butyryl chloride                                                    | 3:7900           | C7 GROUP                                                                                                |                    |
|-------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------|--------------------|
| $\alpha,\beta$ -Dimethyl-n-butyryl chloride                                                     | 3:7965           | •                                                                                                       | C1 00 FC           |
| $\beta$ , $\beta$ -Dimethyl- $n$ -butyryl chloride                                              | 3:7880           | C <sub>7</sub> HOCl <sub>5</sub> M.W.=278.4<br>Pentachlorobenzaldehyde                                  | Cl=63.7%<br>3:4892 |
| α-Ethyl-n-butyryl chloride                                                                      | 3:7990           | $C_7HO_2Cl_5$ M.W. = 294.4                                                                              | Cl=60.2%           |
| $C_6H_{11}O_2Cl$ M.W. = 150.6                                                                   | Cl=23.5%         | Pentachlorobenzoic acid                                                                                 | 3:4910             |
| n-Butyl chloroacetate                                                                           | 3:8530           |                                                                                                         |                    |
| secButyl chloroacetate                                                                          | 3:8350           | $C_7H_2OCl_4$ M.W. = 243.9                                                                              | Cl = 58.1%         |
| ter-Butyl chloroacetate                                                                         | 3:8220           | 2,3,4,5-Tetrachlorobenzaldehyde                                                                         |                    |
| Isobutyl chloroacetate                                                                          | 3:8375           | 2,3,4,6-Tetrachlorobenzaldehyde<br>2,3,5,6-Tetrachlorobenzaldehyde                                      |                    |
| $n$ -Propyl $\alpha$ -chloropropionate                                                          | 3:9384           |                                                                                                         |                    |
| Isopropyl $\alpha$ -chloropropionate                                                            | 3:8165           | $C_7H_2O_2Cl_4$ M.W. = 259.9<br>2,3,4,5-Tetrachlorobenzoic acid                                         | Cl=54.6%<br>3:4790 |
| n-Propyl β-chloropropionate                                                                     | 3:8545           |                                                                                                         |                    |
| Isopropyl $\beta$ -chloropropionate                                                             | 3:9388           | $C_7H_3OCl_3$ M.W.=209.5<br>2,3,4-Trichlorobenzaldehyde                                                 | Cl=50.8%<br>3:2445 |
| Ethyl α-chloro-n-butyrate                                                                       | 3:8307           | 2,3,5-Trichlorobenzaldehyde                                                                             | 3:1060             |
| Ethyl $\beta$ -chloro- $n$ -butyrate                                                            | 3:8373           | 2,3,6-Trichlorobenzaldehyde                                                                             | 3:2287             |
| Ethyl γ-chloro-n-butyrate                                                                       | 3:8597           | 2,4,5-Trichlorobenzaldehyde                                                                             | 3:3375             |
|                                                                                                 |                  | 2,4,6-Trichlorobenzaldehyde                                                                             | 3:1200             |
| Ethyl $\alpha$ -chloroisobutyrate                                                               | 3:8147           | 3,4,5-Trichlorobenzaldehyde                                                                             | 3:2440             |
| Methyl $\alpha$ -chloro- $n$ -valerate                                                          | 3:8264           | C <sub>7</sub> H <sub>8</sub> O <sub>2</sub> Cl <sub>3</sub> M.W. = 225.4<br>2,4,6-Trichloro-3-hydroxy- | Cl=47.2%           |
| n-Amyl chloroformate                                                                            | 3:9380           | benzaldehyde                                                                                            | 3:3520             |
| Isoamyl chloroformate                                                                           | 3:8215           | ,                                                                                                       |                    |
| 250ming 1 cittor or or intactor                                                                 | 0.0020           | 2,3,4-Trichlorobenzoic acid                                                                             | 3:4810             |
| $C_6H_{11}O_2Cl_8$ M.W. = 221.5                                                                 | Cl = 48.0%       | 2,3,5-Trichlorobenzoic acid                                                                             | 3:4485             |
| Chloral diethylacetal                                                                           | 3:6317           | 2,3,6-Trichlorobenzoic acid                                                                             | 3:4500             |
| Chloral n-butylalcoholate                                                                       | 3:0843           | 2.4.5-Trichlorobenzoic acid                                                                             | 3:4630             |
| Chiorai n-butylaiconolate                                                                       | U. UOZU          | 2.4.6-Trichlorobenzoic acid                                                                             | 3:4545             |
| $C_6H_{11}O_4Cl$ M.W. = 182.6<br>Diethylene glycol mono-                                        | Cl=19.4%         | 3,4,5-Trichlorobenzoic acid                                                                             | 3:4920             |
| (chloroacetate)                                                                                 | 3:9390           | CHOC MI 1870                                                                                            | OI 40 FO           |
| (emoroacetate)                                                                                  | 0.0000           | $C_7H_4OCl_2$ M.W. = 175.0                                                                              | Cl = 40.5%         |
| C II OCI W W 181 1                                                                              | C1 - 41 007      | 2,3-Dichlorobenzaldehyde                                                                                | 3:1480             |
| $C_6H_{12}OCl_2$ M.W. = 171.1                                                                   | Cl=41.6%         | 2,4-Dichlorobenzaldehyde                                                                                | 3:1800             |
| β,β'-Dichloro-di-n-propyl ether                                                                 | 3:8610<br>3:8745 | 2,5-Dichlorobenzaldehyde                                                                                | 3:1145             |
| $\gamma, \gamma'$ -Dichloro-di-n-propyl ether                                                   | 3:8605           | 2,6-Dichlorobenzaldehyde                                                                                | 3:1690             |
| β,β'-Dichloro-di-isopropyl ether                                                                |                  | 3,4-Dichlorobenzaldehyde<br>3,5-Dichlorobenzaldehyde                                                    | 3:0550<br>3:1475   |
| $C_6H_{12}O_2Cl_2$ M.W. = 187.1                                                                 | Cl = 37.9%       |                                                                                                         |                    |
| Formaldehyde $\beta$ , $\beta'$ -dichloro-                                                      |                  | o-Chlorobenzoyl chloride                                                                                | 3:6640             |
| isopropyl ethylacetal                                                                           | 3:9394           | m-Chlorobenzoyl chloride                                                                                | 3:6590             |
|                                                                                                 |                  | p-Chlorobenzoyl chloride                                                                                | 3:65 <b>50</b>     |
| Acetaldehyde $bis$ -( $\beta$ -chloroethyl)                                                     |                  |                                                                                                         |                    |
| acetal                                                                                          | 3:6210           | $C_7H_4O_2Cl_2$ M.W. = 191.0                                                                            | Cl = 37.1%         |
| Dichloroacetaldehyde diethylacet                                                                | al <b>3:6110</b> | 3,5-Dichloro-2-hydroxy-<br>benzaldehyde                                                                 | 3:2637             |
|                                                                                                 |                  | <del>-</del> -                                                                                          | , <del>.</del>     |
| Ethylene glycol bis- $(\beta$ -chloroethyl                                                      |                  | 2,4-Dichloro-3-hydroxy-                                                                                 |                    |
| ether                                                                                           | 3:6655           | benzaldehyde                                                                                            | 3:4140             |
| G TT G G L 3 C TT 100 C                                                                         | C1 00.00         | 2,6-Dichloro-3-hydroxybenz-                                                                             | O. HIEU            |
| $C_6H_{18}OCl$ M.W.= 136.6                                                                      | Cl=26.0%         | aldehyde                                                                                                | 3:4160             |
| 6-Chlorohexanol-1                                                                               | 3:9395           | 4,6-Dichloro-3-hydroxybenz-                                                                             | O. X.100           |
| $n$ -Butyl $\alpha$ -chloroethyl ether                                                          | 3:9396           | aldehyde                                                                                                | 3:3952             |
| CaH12O2Cl M.W.=152.6                                                                            | Cl=23.2%         | 3,5-Dichloro-4-hydroxybenz-                                                                             |                    |
| C <sub>6</sub> H <sub>18</sub> O <sub>2</sub> Cl M.W.=152.6<br>Chloroacetaldehyde diethylacetal |                  | aldehyde                                                                                                | 3:4400             |

| 2.3-Dichlorobenzoic acid                | 3:4650          | 2.6-Dichloro-4-methylphenol 3:0400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2,4-Dichlorobenzoic acid                | 3:4560          | 2,0 2.0moro 2-morny phonor 0.0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         |                 | C 77 C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2,5-Dichlorobenzoic acid                | 3: <b>4340</b>  | $C_7H_7OCl$ M.W. = 142.6 $Cl = 24.9\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2,6-Dichlorobenzoic acid                | 3:4200          | 3-Chloro-2-methylphenol 3:2280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3,4-Dichlorobenzoic acid                | 3:4925          | 4-Chloro-2-methylphenol 3:6789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3,5-Dichlorobenzoic acid                | 3:4840          | 5-Chloro-2-methylphenol 3:1815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5,5-1310HOLOBEH2010 acid                | O. TOTO         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                 | 6-Chloro-2-methylphenol 3:8615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         | =34.3%          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.5-Dichloro-2-hydroxybenzoic acid      | 3:4935          | 2-Chloro-3-methylphenol 3:1055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| • •                                     |                 | 4-Chloro-3-methylphenol 3:1535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3.5-Dichloro-4-hydroxybenzoic acid      | 9.4050          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5,5-Dichioro-4-nyuroxybenzoic acid      | 0 . Z000        | 6-Chloro-3-methylphenol 3:6766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $C_7H_5OCl$ M.W. = 140.6 Cl =           | 25.2%           | 2-Chloro-4-methylphenol 3:6215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| o-Chlorobenzaldehyde                    | 3:6410          | 3-Chloro-4-methylphenol 3:1025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| m-Chlorobenzaldehyde                    | 3:6475          | 3-Cinoro-1-methylphenol 5:1925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <i>p</i> -Chlorobenzaldehyde            | 3:0765          | Phenoxymethyl chloride 3:9448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                         |                 | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Benzoyl chloride                        | 3:6240          | . (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                         |                 | o-Chloroanisole 3:6255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CITOCI MW-011 F C                       | - E0 907        | m-Chloroanisole 3:6195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                         | =50.3%          | p-Chloroanisole 3:6300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2,4,6-Trichloro-3-methylphenol          | 3: <b>061</b> 8 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                 | $C_7H_{10}O_2Cl_2$ M.W.=197.1 $Cl=36.0\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $C_7H_5O_2Cl$ M.W. = 156.5 Cl           | =22.7%          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | 3:1010          | Pimelyl (di)chloride 3:9450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3-Chloro-2-hydroxybenzaldehyde          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4-Chloro-2-hydroxybenzaldehyde          | 3: <b>096</b> 0 | $C_7H_{11}OCl$ M.W. = 146.6 $Cl = 24.2\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5-Chloro-2-hydroxybenzaldehyde          | 3:2800          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| • • • • • • • • • • • • • • • • • • • • |                 | Hexahydrobenzoyl chloride 3:8580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2-Chloro-3-hydroxybenzaldehyde          | 3:4085          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                 | $C_7H_{11}O_2Cl$ M.W. = 162.6 $Cl = 21.8\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4-Chloro-3-hydroxybenzaldehyde          | 3:3780          | Cyclohexyl chloroformate 3:5770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6-Chloro-3-hydroxybenzaldehyde          | <b>3:3350</b>   | Cy did to the control of the control |
|                                         |                 | O II O OL 14 M OO F OL 4 F ACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2-Chloro-4-hydroxybenzaldehyde          | 3:4280          | $C_7H_{11}O_2Cl_8$ M.W. = 233.5 $Cl = 45.6\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                         |                 | n-Amyl trichloroacetate 3:6560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3-Chloro-4-hydroxybenzaldehyde          | 3: <b>40</b> 65 | Isoamyl trichloroacetate 3:6490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                 | ter-Amyl trichloroacetate 3:6185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| o-Chlorobenzoic acid                    | 3:4150          | er-Amyr bricinoroacetate 9:0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| m-Chlorobenzoic acid                    | 3:4392          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                 | $C_7H_{11}O_4Cl$ M.W. = 194.6 $Cl = 18.2\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| p-Chlorobenzoic acid                    | 3: <b>494</b> 0 | 3-Chloropropanediol-1,2 diacetate 3:6840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| o-Hydroxybenzoyl chloride               | 3:0085          | $C_7H_{12}O_3Cl_2$ M.W. = 215.1 $Cl = 33.0\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| m-Hydroxybenzoyl chloride               | 3:9446          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | 3:9447          | Di- $(\gamma$ -chloro- $n$ -propyl) carbonate 3:6895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| p-Hydroxybenzoyl chloride               | J. GER!         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                 | $C_7H_{18}OCl$ M.W. = 148.6 $Cl = 23.9\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $C_7H_5O_3Cl$ M.W. = 172.6 Cl           | =20.6%          | n-Heptanoyl chloride 3:8520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3-Chloro-2-hydroxybenzoic acid          | 3:4745          | "-IIchmioline 9:9956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                         | 3:4908          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4-Chloro-2-hydroxybenzoic acid          |                 | $\alpha$ -Methyl- $n$ -caproyl chloride 3:9452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5-Chloro-2-hydroxybenzoic acid          | 3:4705          | $\beta$ -Methyl- $n$ -caproyl chloride 3:8305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6-Chloro-2-hydroxybenzoic acid          | 3: <b>4610</b>  | γ-Methyl-n-caproyl chloride 3:8355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| • •                                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| O Chloro 2 hardrough                    | 3:4395          | $\delta$ -Methyl- $n$ -caproyl chloride 3:8365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2-Chloro-3-hydroxybenzoic acid          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4-Chloro-3-hydroxybenzoic acid          | 3: <b>493</b> 3 | $\alpha, \alpha$ -Dimethyl-n-valeryl chloride 3:9456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6-Chloro-3-hydroxybenzoic acid          | 3:4720          | $\alpha,\beta$ -Dimethyl-n-valeryl chloride 3:9458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| • • •                                   |                 | $\gamma_{,\gamma}$ -Dimethyl- $n$ -valeryl chloride 3:9460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| O Chlore 4 buduomshamasis - 23          | 9.4490          | 1.1-Timenthi-16-Agree At Cittoure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2-Chloro-4-hydroxybenzoic acid          | 3:4430          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3-Chloro-4-hydroxybenzoic acid          | 3: <b>46</b> 75 | $\alpha$ -Ethyl- $n$ -valeryl chloride 3:8235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $C_7H_6OCl_2$ M.W. = 177.0 Cl           | =40.1%          | α,α,β-Trimethyl-n-butyryl chloride 3:8145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4,5-Dichloro-2-methylphenol             | 3:2910          | $\alpha$ -Ethyl- $\beta$ -methyl- $n$ -butyryl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4,6-Dichloro-2-methylphenol             | 3:1020          | chloride 3:9462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| • •                                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.4-Dichloro-3-methylphenol             | 3:1205          | $C_7H_{18}O_2Cl$ M.W. = 164.6 $Cl = 21.5\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2,6-Dichloro-3-methylphneol             | 3:0150          | $n$ -Butyl $\alpha$ -chloropropionate 3:8595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4,6-Dichloro-3-methylphenol             | 3:17 <b>4</b> 5 | Isobutyl $\alpha$ -chloropropionate 3:3470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| •                                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| n-Butyl $\beta$ -chloropropionate<br>Isobutyl $\beta$ -chloropropionate<br>Ethyl $\alpha$ -chloro-n-valerate | 3:9474<br>3:8655<br>3:8596       | C <sub>8</sub> H <sub>8</sub> O <sub>4</sub> Cl M.W.=200.6<br>3-Chlorophthalic acid<br>4-Chlorophthalic acid         | Cl = 17.7%<br>3:4820<br>3:4390           |
|--------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Ethyl β-chloro-n-valerate Ethyl β-chloro-n-valerate Ethyl δ-chloro-n-valerate Ethyl δ-chloro-n-valerate      | 3:8629<br>3:8703<br>3:8727       | 4-Chloroisophthalic acid<br>5-Chloroisophthalic acid                                                                 | 3:4980<br>3:4960                         |
| Ethyl α-chloroisovalerate                                                                                    | 3:8528                           | Chloroterephthalic acid                                                                                              | 3:4995                                   |
| Ethyl α-chloro-α-methyl-n-<br>butyrate                                                                       | 3:8518                           | $C_8H_6OCl_2$ M.W. = 189.0 $\omega$ , $\omega$ -Dichloroacetophenone                                                 | Cl=37.5%<br>3:6835                       |
| $C_7H_{16}OCl$ M.W. = 150.7                                                                                  | Cl=23.5%                         | p-Chlorophenacyl chloride                                                                                            | 3:2990                                   |
| 7-Chloroheptanol-1 n-Amyl α-chloroethyl ether                                                                | 3:0013<br>3:9480                 | $C_8H_8O_3Cl_2$ M.W. = 221.0<br>2,4-Dichlorophenoxyacetic acid                                                       | Cl=32.1%<br>3:4095                       |
| C <sub>7</sub> H <sub>18</sub> O <sub>3</sub> Cl M.W.=166.7<br>\$-Chloropropionaldehyde<br>diethylacetal     | Cl=21.3%<br>3:9490               | C <sub>8</sub> H <sub>7</sub> OCl M.W.=154.6<br>ω-Chloroacetophenone<br>o-Chloroacetophenone<br>m-Chloroacetophenone | Cl = 22.9%<br>3:1212<br>3:6615<br>3:6815 |
| C <sub>8</sub> GROUP                                                                                         |                                  | p-Chloroacetophenone                                                                                                 | 3:6735                                   |
| C <sub>8</sub> H <sub>2</sub> O <sub>3</sub> Cl <sub>2</sub> M.W.=217.0<br>3,4-Dichlorophthalic anhydride    | C1=32.7%<br>3:3695               | Phenylacetyl chloride                                                                                                | 3:9567                                   |
| 3,5-Dichlorophthalic anhydride<br>3,6-Dichlorophthalic anhydride<br>4,5-Dichlorophthalic anhydride           | 3 : 2375<br>3 : 4860<br>3 : 4830 | o-Toluyl chloride<br>m-Toluyl chloride<br>p-Toluyl chloride                                                          | 3:8740<br>3:6535                         |
| $C_8H_2O_4Cl_4$ M.W.=303.9<br>Tetrachlorophthalic acid                                                       | Cl=46.7%<br>3:4946               | $C_8H_7OCl_8$ M.W. = 225.5<br>4,5,6-Trichloro-2,3-dimethylphen<br>3,5,6-Trichloro-2,4-dimethylphen                   |                                          |
| $C_8H_8O_8Cl$ M.W. = 182.6<br>3-Chlorophthalic anhydride                                                     | Cl=19.4%<br>3:3900               | 3,4,6-Trichloro-2,5-dimethylphen                                                                                     | ol 3:4709                                |
| 4-Chlorophthalic anhydride                                                                                   | 3:2725                           | 2,5,6-Trichloro-3,4-dimethylphen<br>2,4,6-Trichloro-3,5-dimethylphen                                                 |                                          |
| $C_8H_4O_2Cl_2$ M.W. = 203.0                                                                                 | Cl = 34.9%                       | C <sub>8</sub> H <sub>7</sub> O <sub>2</sub> Cl M.W. = 170.6                                                         | Cl=20.8%                                 |
| Phthalyl (di)chloride (sym.) Phthalyl (di)chloride (unsym.)                                                  | 3 : 6900<br>3 : 2395             | 3-Chloro-2-methylbenzoic acid                                                                                        | 3:4435                                   |
|                                                                                                              |                                  | 4-Chloro-2-methylbenzoic acid<br>5-Chloro-2-methylbenzoic acid                                                       | 3:4700<br>3:4670                         |
| Isophthalyl (di)chloride                                                                                     | 3:0520                           | 6-Chloro-2-methylbenzoic acid                                                                                        | 3:3275                                   |
| Terephthalyl (di)chloride                                                                                    | 3:2205                           | 4-Chloro-3-methylbenzoic acid<br>5-Chloro-3-methylbenzoic acid                                                       | 3:4915<br>3:4715                         |
| $C_8H_4O_4Cl_2$ M.W. = 235.0<br>3.4-Dichlorophthalic acid                                                    | Cl=30.2%<br>3:4880               | 6-Chloro-3-methylbenzoic acid                                                                                        | 3:4615                                   |
| 3,5-Dichlorophthalic acid                                                                                    | 3:4580                           | 2-Chloro-4-methylbenzoic acid                                                                                        | 3:4355                                   |
| 3,6-Dichlorophthalic acid<br>4,5-Dichlorophthalic acid                                                       | 3:4870<br>3:4890                 | 3-Chloro-4-methylbenzoic acid                                                                                        | 3:4900                                   |
| 4,5-Demorophunane acid                                                                                       | 9 . 20 <b>9</b> 0                | 2-Chlorophenylacetic acid                                                                                            | . 3:2640                                 |
| 4,6-Dichloroisophthalic acid                                                                                 | 3:4965                           | 3-Chlorophenylacetic acid<br>4-Chlorophenylacetic acid                                                               | 3:1910<br>3:3135                         |
| 2,5-Dichloroterephthalic acid                                                                                | 3: <b>49</b> 85                  | Dhanara actual ablacida                                                                                              |                                          |
| $C_8H_6OCl_8$ M.W. = 223.5                                                                                   | Cl=47.6%                         | Phenoxyacetyl chloride                                                                                               | 3:87 <b>90</b>                           |
| ω,ω,ω-Trichloroscetophenone                                                                                  | 3:6874                           | 2-Methoxybenzoyl chloride                                                                                            | 8:6870                                   |
| C <sub>2</sub> H <sub>5</sub> O <sub>2</sub> Cl M.W. = 184.6<br>Piperonyl chloride                           | Cl=19.2%<br>3:1960               | 3-Methoxybenzoyl chloride<br>4-Methoxybenzoyl chloride                                                               | 3 : 6797<br>3 : 6890                     |
|                                                                                                              |                                  | Phenyl chloroacetate                                                                                                 | 3:0565                                   |
| C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> Cl <sub>2</sub> M.W.=255.5<br>2,4,5-Trichlorophenoxyacetic aci  | Cl=41.6%<br>id <b>3:4335</b>     | Bensyl chloroformate                                                                                                 | 3:9565                                   |

| C <sub>A</sub> H <sub>1</sub> OCl   M.W. = 186.6   Cl = 19.0%   S-Chloro-phenoxyacetic acid   3:4326   P-Chlorophenoxyacetic acid   3:4326   P-Chlorophenoxyacetic acid   3:4325   P-Chlorophenoxyacetic acid   3:2426   P-Chlorophenoxyacetic acid   3:2426   P-Chlorophenoxyacetic acid   3:2426   P-Chlorophenyl-propiolic acid   P-Chloroph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Methyl o-chlorobenzoate<br>Methyl m-chlorobenzoate<br>Methyl p-chlorobenzoate | 3 : 6695<br>3 : 6670<br>3 : 0535 | C <sub>8</sub> H <sub>18</sub> O <sub>5</sub> Cl M.W. = 226.7<br>Triethylene glycol mono-<br>(chloroscetate) | Cl=15.6%<br>3:9588             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------|
| -Chlorophenoxyacetic acid mechlorophenoxyacetic acid 3:4256 p-Chlorophenoxyacetic acid 3:4375 p-Chlorophenoxyacetic acid 3:4385 p-Chlorophenoxyacetic acid 3:4386 p-Chlorophenoxyacetic acid 3:4385 p-Chlorophenoxyacetic acid 3:4386 p-Chlorophenoxyacetic acid 3:4386 p-Chlorophenoxyacetic acid 3:4386 p-Chlorophenoxyacetic acid 3:4385 p-Chloropheno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mondy's p-unorodonadado                                                       | 0.000                            | (cmoroacetate)                                                                                               | 9:3000                         |
| p-Chlorophenoxyacetic acid C <sub>1</sub> H <sub>1</sub> OCl <sub>2</sub> M.W. = 191.1 C <sub>1</sub> =37.1% S <sub>6</sub> -Dichloro-2,3-dimethylphenol 2,5-Dichloro-3,4-dimethylphenol 3:2442 C <sub>2</sub> H <sub>2</sub> OCl <sub>2</sub> M.W. = 164.6 C <sub>3</sub> -Dichloro-3,4-dimethylphenol 3:245 S <sub>6</sub> -Dichloro-3,4-dimethylphenol 3:245 S <sub>6</sub> -Dichloro-3,4-dimethylphenol 3:245 S <sub>6</sub> -Dichloro-3,4-dimethylphenol 3:246 S <sub>6</sub> -Dichloro-3,5-dimethylphenol 3:2482 C <sub>6</sub> -Dichloro-3,5-dimethylphenol 3:2483 C <sub>6</sub> -Dichloro-3,5-dimethylphenol 3:2483 C <sub>6</sub> -Dichloro-3,4-dimethylphenol 3:2483 C <sub>6</sub> -Dichloro-3,4-dimethylphenol 3:2484 C <sub>6</sub> -Dichloro-3,4-dimethylphenol 3:2485 C <sub>6</sub> -Dichloro-2,4-dimethylphenol 3:2486 C <sub>6</sub> -Chlorophenylpropiolic acid p-Chlorophenylpropiolic acid p-Chlorophenylpropi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | o-Chlorophenoxyacetic acid                                                    | 3:4260                           |                                                                                                              |                                |
| CaHq.OCls   M.W. = 191.1   Cl = 37.1%   disthylacetal   3:9594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                               |                                  |                                                                                                              | Cl = 19.6%                     |
| 2.4-Dichloro-3.4-dimethylphenol 3:0935 5.6-Dichloro-3.4-dimethylphenol 3:3905 5.6-Dichloro-3.4-dimethylphenol 3:3905 2.4-Dichloro-3.5-dimethylphenol 3:3905 C <sub>A</sub> H <sub>0</sub> OCl M.W. = 166.6 C <sub>A</sub> H <sub>0</sub> OCl M.W. = 244.6 C <sub>A</sub> H <sub>0</sub> O <sub>C</sub> M.W. = 244.6 C <sub>A</sub> H <sub>0</sub> O <sub>C</sub> M.W. = 244.6 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.6 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.6 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.6 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.6 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.6 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.6 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.6 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.6 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.6 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.6 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.6 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.6 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 206.6 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 206.6 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 206.6 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 206.6 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 223.1 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 224.1 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 224.1 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 224.1 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 224.1 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 224.1 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 224.1 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180.7 C <sub>A</sub> H <sub>1</sub> O <sub>C</sub> O <sub>C</sub> M.W. = 180 |                                                                               |                                  | diethylacetal                                                                                                | 3:9594                         |
| 2.6-Dichloro-3,4-dimethylphenol 3:0935 5,6-Dichloro-3,4-dimethylphenol 3:3095 2.4-Dichloro-3,5-dimethylphenol 3:2838 2.6-Dichloro-3,5-dimethylphenol 3:2838 C <sub>6</sub> -H <sub>6</sub> OCl M.W. = 156.6 Cl = 22.6% Chloromethyl-phenyl-carbinol 3:9570 4-Chloro-2,3-dimethylphenol 3:2818 5-Chloro-2,3-dimethylphenol 3:2818 5-Chloro-2,4-dimethylphenol 3:2818 6-Chloro-2,4-dimethylphenol 3:2818 6-Chloro-2,5-dimethylphenol 3:2858 4-Chloro-2,5-dimethylphenol 3:2868 4-Chloro-2,5-dimethylphenol 3:2868 4-Chloro-2,5-dimethylphenol 3:2868 4-Chloro-3,4-dimethylphenol 3:2868 6-Chloro-3,4-dimethylphenol 3:2868 6-Chloro-3,4-dimethylphenol 3:2705 6-Chloro-3,4-dimethylphenol 3:2705 6-Chloro-3,4-dimethylphenol 3:2705 6-Chloro-3,5-dimethylphenol 3:2705 6-Chloro-3,5-dimethylphenol 3:2864 4-Chloro-3,5-dimethylphenol 3:3565 β-Phenoxyethyl chloride 3:0165 β-Phenoxyethyl chloride 3:0165 β-Phenoxyethyl chloride 3:0165 β-Phenoxyethyl chloride 3:0165 β-Chloro-1,6-dimethylphenol 3:3684 β-Chloro-1,6-dimethylphenol 3:2864 β-Chloro-1,6-dimethylphenol 3:2864 β-Chloro-1,6-dimethylphenol 3:2864 β-Chloro-2,6-dimethylphenol 3:2864 β-Chloro-3,6-dimethylphenol 3:2864 β-Chloro-1,6-dimethylphenol 3:2864 β-Chloro-1,6-dimethylphenol 3:2864 β-Chloro-1,6-dimethylphenol 3:2864 β-Chloro-1,6-dimethylphenol 3:2868 β-Chloro-1,6-dimethylphenol 3:2868 β-Chloro-3,6-dimethylphenol 3:2868 β-Chloro-3,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                  | <u> </u>                                                                                                     |                                |
| 2.4-Dichloro-3,5-dimethylphenol 3:2182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,6-Dichloro-3,4-dimethylphenol                                               | 3:0935                           |                                                                                                              |                                |
| CaHaOC  M.W. = 156.6   Cl = 22.6%   Chloromethyl-phenyl-carbinol   3:9579   CaHaOc  M.W. = 244.6   Cl = 14.4%   S-Chloro-2,3-dimethylphenol   3:218   S-Chloro-2,3-dimethylphenol   3:218   S-Chloro-2,4-dimethylphenol   3:218   S-Chloro-2,4-dimethylphenol   3:289   CaHaOc  M.W. = 166.6   Cl = 21.3%   CaHaOc  M.W. = 186.6   Cl = 21.3%   CaHaOc  M.W. = 184.6   Cl = 21.6%   CaHaOc  M.W. = 243.1   Cl = 29.6%   CaHaOc  M.W. = 255.1   Cl = 31.5%   CaHaOc  M.W. = 178.7   Cl = 20.8%   CaHaOc  M.W. = 178.7   Cl = 20.8%   CaHaOc  M.W. = 178.7   Cl = 21.8%   CaHaOc  M.W. = 178.7   Cl = 20.8%   CaHaOc  M.W. = 178.7   Cl = 20.8%   CaHaOc  M.W. = 191.6   CaHaOc  M.W. =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                               |                                  | o-Chlorophenylpropiolic acid                                                                                 | 3:3956                         |
| Chloromethyl-phenyl-carbinol   3:9576   Chloro-2,3-dimethylphenol   3:2118   5-Chloro-2,3-dimethylphenol   3:2118   5-Chloro-2,3-dimethylphenol   3:2118   5-Chloro-2,4-dimethylphenol   3:3734   2-Chlorobenzenetricarboxylic acid-1,3,5   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855   3:4855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                               |                                  |                                                                                                              | 3:4265                         |
| 4-Chloro-2,3-dimethylphenol 3:2118 5-Chloro-2,4-dimethylphenol 3:2116 5-Chloro-2,4-dimethylphenol 3:8784 4-Chloro-2,5-dimethylphenol 3:8784 4-Chloro-2,5-dimethylphenol 3:1822 4-Chloro-2,6-dimethylphenol 3:2189 4-Chloro-2,6-dimethylphenol 3:2189 4-Chloro-3,4-dimethylphenol 3:2189 5-Chloro-3,4-dimethylphenol 3:2189 5-Chloro-3,4-dimethylphenol 3:2705 5-Chloro-3,4-dimethylphenol 3:2705 5-Chloro-3,5-dimethylphenol 3:2754 4-Chloro-3,5-dimethylphenol 3:2754 5-Chloro-3,5-dimethylphenol 3:2755 6-Chloro-3,5-dimethylphenol 3:3505 6-Chloro-3,5-dimethylphenol 3:3505 6-Chloro-3,5-dimethylphenol 3:3505 6-Chloro-3,5-dimethylphenol 3:3505 6-Chloro-3,5-dimethylphenol 3:3505 6-Chlorophenetole 3:8735 6-Chlorophenetole 3:8735 6-Chlorophenetole 3:6323 6-Chlorophenole 3:6324 6-Chlorophenole 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |                                  |                                                                                                              |                                |
| 4-Chloro-2,3-dimethylphenol 3:2456 5-Chloro-2,4-dimethylphenol 3:2450 6-Chloro-2,4-dimethylphenol 3:8784 4-Chloro-2,5-dimethylphenol 3:8784 4-Chloro-2,5-dimethylphenol 3:1822 4-Chloro-2,6-dimethylphenol 3:1822 4-Chloro-3,4-dimethylphenol 3:2180 6-Chloro-3,4-dimethylphenol 3:2754 6-Chloro-3,4-dimethylphenol 3:1754 6-Chloro-3,5-dimethylphenol 3:1754 4-Chloro-3,5-dimethylphenol 3:1754 6-Chloro-3,5-dimethylphenol 3:3844 4-Chloro-3,5-dimethylphenol 3:3505 6-Chloro-3,5-dimethylphenol 3:3505 6-Chloro-3,5-dimethylphenol 3:3505 6-Phenoxyethyl chloride 3:3505 6-Phenoxyethyl chloride 3:3632 6-Chlorophenetole 3:6323 6-Chloro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chloromethyl-phenyl-carolhol                                                  |                                  |                                                                                                              | C1 = 14.4%                     |
| 5-Chloro-2,4-dimethylphenol 3:2460 6-Chloro-2,4-dimethylphenol 3:8784 4-Chloro-2,5-dimethylphenol 3:1822 C <sub>2</sub> H <sub>7</sub> OCl M.W.=166.6 Cl=21.3% 4-Chloro-2,6-dimethylphenol 3:2180 2-Chloro-3,4-dimethylphenol 3:2180 6-Chloro-3,4-dimethylphenol 3:2765 6-Chloro-3,4-dimethylphenol 3:2765 6-Chloro-3,5-dimethylphenol 3:2765 6-Chloro-3,5-dimethylphenol 3:3505 4-Chloro-3,5-dimethylphenol 3:3505 6-Chloro-3,5-dimethylphenol 3:3505 6-Chloro-3,5-dimethylphenol 3:3505 6-Phenoxyethyl chloride 3:0165 6-Phenoxyethyl chloride 3:0165 6-Chlorophenetole 3:6323 6-Chlorophenetole 3:6323 6-Chlorophenotole 3:6324 6-Chlorophenotole 3:6324 6-Chlorophenotole 3:6324 6-Chlorophenotole 3:6325 6-Chlorophenotole 3:6326 6-Chlo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                  |                                                                                                              | 3:4855                         |
| 5-Chloro-2,4-dimethylphenol 3:8460 6-Chloro-2,4-dimethylphenol 3:8784 4-Chloro-2,5-dimethylphenol 3:1822 4-Chloro-2,5-dimethylphenol 3:2180 2-Chloro-3,4-dimethylphenol 3:2705 6-Chloro-3,4-dimethylphenol 3:2705 6-Chloro-3,4-dimethylphenol 3:2705 6-Chloro-3,5-dimethylphenol 3:1754 4-Chloro-3,5-dimethylphenol 3:3754 4-Chloro-3,5-dimethylphenol 3:3505 6-Phenoxyethyl chloride 3:3505 6-Phenoxyethyl chloride 3:6532 6-Chlorophenetole 3:6332 6-Chlorophenetole 3:6333 6-Chlorophenetole 3:6340 6-Chlorophenetole 3:6333 6-Chlorophenetole 3:6340 6-Chlorophenetole 3:6333 6-Chlorophenetole 3:6340 6-Chlorophenetole 3:6333 6-Chlorophenetole 3:6333 6-Chlorophenetole 3:6340 6-Chlorophenetole 3:6333 6-Chlorophenetole 3:6340 6-Chlorophenetole 3:6333 6-Chlorophenetole 3:6340 6-Chlorophenyl ketone 3:9644 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5-Chloro-2,3-dimethylphenol                                                   | 3:2115                           |                                                                                                              |                                |
| 6-Chloro-2,4-dimethylphenol 3:8784 4-Chloro-2,5-dimethylphenol 3:1822 Chloro-2,6-dimethylphenol 3:2180 4-Chloro-2,6-dimethylphenol 3:0158 5-Chloro-3,4-dimethylphenol 3:2705 6-Chloro-3,4-dimethylphenol 3:2705 6-Chloro-3,4-dimethylphenol 3:1754 2-Chloro-3,5-dimethylphenol 3:0844 4-Chloro-3,5-dimethylphenol 3:0844 4-Chloro-3,5-dimethylphenol 3:0844 4-Chloro-3,5-dimethylphenol 3:3505 β-Phenoxyethyl chloride 3:0165 β-Phenoxyethyl chlo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5-Chloro-2.4-dimethylphenol                                                   | 3:2460                           |                                                                                                              | 9.4075                         |
| 4-Chloro-2,6-dimethylphenol 3:1822  4-Chloro-2,6-dimethylphenol 3:2180  4-Chloro-2,6-dimethylphenol 3:2180  5-Chloro-3,4-dimethylphenol 3:2705  6-Chloro-3,4-dimethylphenol 3:2705  6-Chloro-3,5-dimethylphenol 3:31754  4-Chloro-3,5-dimethylphenol 3:3505  4-Chloro-3,5-dimethylphenol 3:3505  4-Chloro-3,5-dimethylphenol 3:3505  4-Chloro-3,5-dimethylphenol 3:3505  4-Chloro-3,5-dimethylphenol 3:3505  4-Chloro-3,5-dimethylphenol 3:3505  6-Phenoxyethyl chloride 3:0165  6-Chlorophenetole 3:6323  6-Chlorophenetole 3:6324  6-Chlorophenetole 3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |                                  | acid-1,0,0                                                                                                   | 0.2510                         |
| 2-Chloro-3,4-dimethylphenol 3:0168 5-Chloro-3,4-dimethylphenol 3:2705 6-Chloro-3,4-dimethylphenol 3:1754 2-Chloro-3,4-dimethylphenol 3:1754 2-Chloro-3,5-dimethylphenol 3:6844 4-Chloro-3,5-dimethylphenol 3:3565 6-Phenoxyethyl chloride 3:0165 6-Chlorophenetole 3:6323 6-Phenoxyethyl chloride 3:6323 6-Chlorophenetole 3:6324 6-Chlorophenyl ketone 3:9344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-Chloro-2,5-dimethylphenol                                                   | 3:1822                           |                                                                                                              | Cl=21.3%<br>3:0330             |
| 2-Chloro-3,4-dimethylphenol 3:2705 6-Chloro-3,4-dimethylphenol 3:2705 6-Chloro-3,4-dimethylphenol 3:1754 2-Chloro-3,5-dimethylphenol 3:6844 4-Chloro-3,5-dimethylphenol 3:3505 4-Chloro-3,5-dimethylphenol 3:3505 6-Phenoxyethyl chloride 3:0165 6-Phenoxyethyl chloride 3:6844 6-Chloro-3,5-dimethylphenol 3:3505 6-Phenoxyethyl chloride 3:0165 6-Phenoxyethyl chloride 3:0165 6-Chlorophenetole 3:6323 6-Chlorophenyl chlorophenetole 3:6323 6-Chlorophenyl chloride 3:6323 6-Chlorophenyl chloride 3:6324 6-Chlorophenyl chloride 3:632                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4-Chloro-2,6-dimethylphenol                                                   | 3:2180                           |                                                                                                              |                                |
| 5-Chloro-3,4-dimethylphenol 6-Chloro-3,4-dimethylphenol 3:1754 2-Chloro-3,5-dimethylphenol 3:6844 4-Chloro-3,5-dimethylphenol 3:3565 β-Phenoxyethyl chloride 3:6845 ρ-Chlorophenetole 3:8735 μ-Chlorophenetole 3:6323 μ-Chlorophenyl ethyl ketone 3:6346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-Chloro-3.4-dimethylphenol                                                   | 3:0158                           |                                                                                                              |                                |
| 2-Chloro-3,5-dimethylphenol 3:6844 4-Chloro-3,5-dimethylphenol 3:3505 4-Chloro-3,5-dimethylphenol 3:3505 6-Phenoxyethyl chloride 3:6165 α-Chlorophenetole 3:6735 α-Chlorophenetole 3:6735 α-Chlorophenetole 3:6323 α-Chlorophenyl ethyl ketone 3:6346 α-Chlorophyl ethyl ketone 3:6366 α-Chlorophyl ethyl ketone 3:6366 α-Chlorophyl ethyl ketone 3:6366 α-Chlorophyl ethyl ketone 4:6406 α-α-α-α-α-α-α-α-α-α-α-α-α-α-α-α-α-α-α-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                               |                                  | w-Chief p-inesity laces optioned                                                                             | 0.1100                         |
| 2-Chloro-3,5-dimethylphenol 3:6844 4-Chloro-3,5-dimethylphenol 3:3505 β-Phenoxyethyl chloride 3:0165 ο-Chlorophenetole 3:8735 m-Chlorophenetole 3:6323 p-Chlorophenetole 3:6323 p-Chlorophenyl ethyl ketone 3:8340 p-Chlorophenyl ethyl ketone 3:8360 p-Chlorophenyl ethyl ketone 3:8340 p-Chlorophenyl ethyl ketone 4:8450 p-Chlorophenyl ethyl ketone 3:8340 p-Chlorophenyl ethyl ketone 4:8450 p-Chlorophenyl ethyl ketone 4:8450 p-Chlorophenyl ethyl ketone 4:8450 p-Chlorophenyl ethyl ketone 4:8450 p-Chlorophenotole 3:8540 p-Chlorophenotole 3:8540 p-Chlorophenotole 3:6323 p-Chlorophenotole 3:6323 p-Chlorophenotole 3:6324 p-Chlorophenotole 3:6323 p-Chlorophenotole 3:6323 p-Chlorophenotole 3:6323 p-Chlorophenotole 3:6323 p-Chlorophenotole 3:6320 p-Chlorophenotole 3:6320 p-Chlorophenotole 3:6320 p-Chlorophenotole 3:6320 p-Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6-Chloro-3,4-dimethylphenol                                                   | 3:1754                           |                                                                                                              | 3:9664                         |
| 4-Chloro-3,5-dimethylphenol 3:3505 β-Phenoxyethyl chloride 3:0165 σ-Chlorophenetole 3:8735 m-Chlorophenetole 3:6323 p-Chlorophenetole 3:6323 p-Chlorophenetole 3:6323 Ethyl σ-chlorobenzoate 3:6300 Ethyl σ-chlorobenzoate 3:6730 Ethyl p-chlorobenzoate 3:6750 Ethyl p-chlorobenzoate 3:6750  C <sub>2</sub> H <sub>11</sub> O <sub>4</sub> Cl M.W. = 206.6 Cl = 17.2% Diethyl chlorofumarate 3:6864 Diethyl chloromaleate 3:6697 C <sub>2</sub> H <sub>11</sub> O <sub>4</sub> Cl <sub>2</sub> M.W. = 211.1 Cl = 33.6% Suberyl (di)chloride 3:9576 C <sub>2</sub> H <sub>11</sub> O <sub>4</sub> Cl <sub>2</sub> M.W. = 211.1 Cl = 33.6% Suberyl (di)chloride 3:9576 C <sub>2</sub> H <sub>11</sub> O <sub>4</sub> Cl <sub>2</sub> M.W. = 243.1 Cl = 29.6% Diethyl d <sub>1</sub> l-α,α-dichlorosuccinate 3:9578 Diethyl d <sub>2</sub> l-α,α-dichlorosuccinate 3:9578 Diethyl meso-α,α-dichlorosuccinate 3:1364 C <sub>2</sub> H <sub>11</sub> OCl M.W. = 176.7 Cl = 20.1% n-Octanoyl chloride 3:8680 C <sub>2</sub> H <sub>12</sub> O <sub>2</sub> Cl M.W. = 178.7 Cl = 19.9% n-Octanoyl α-chloropropionate 3:2580 C <sub>2</sub> H <sub>16</sub> O <sub>2</sub> Cl M.W. = 178.7 Cl = 19.9% Suberyl α-chloropropionate 3:2580 C <sub>2</sub> H <sub>16</sub> O <sub>2</sub> Cl M.W. = 178.7 Cl = 19.9% Suberyl α-chloropropionate 3:2580 C <sub>2</sub> H <sub>16</sub> O <sub>2</sub> Cl M.W. = 178.7 Cl = 19.9% Suberyl α-chloropropionate 3:2580 C <sub>2</sub> H <sub>16</sub> O <sub>2</sub> Cl M.W. = 178.7 Cl = 19.9% Suberyl α-chloropropionate 3:2580 C <sub>2</sub> H <sub>16</sub> O <sub>2</sub> Cl M.W. = 178.7 Cl = 19.9% Suberyl α-chloropropionate 3:2580 C <sub>2</sub> H <sub>16</sub> O <sub>2</sub> Cl M.W. = 178.7 Cl = 19.9% Suberyl α-chloropropionate 3:2580 C <sub>2</sub> H <sub>16</sub> O <sub>2</sub> Cl M.W. = 178.7 Cl = 19.9% Suberyl α-chloropropionate 3:2580 C <sub>2</sub> H <sub>16</sub> O <sub>2</sub> Cl M.W. = 178.7 Cl = 19.9% Suberyl α-chloropropionate 3:2580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-Chloro-3,5-dimethylphenol                                                   | 3:0844                           | p-Cmoroethyl phenyl ketone                                                                                   | 9:1119                         |
| β-Phenoxyethyl chloride         3:0165         C <sub>9</sub> H <sub>9</sub> O <sub>2</sub> Cl         M.W. = 184.6         Cl = 19.2%           o-Chlorophenetole         3:8735         Ethyl o-chlorobenzoate         3:6860           m-Chlorophenetole         3:6323         Ethyl m-chlorobenzoate         3:6776           p-Chlorophenetole         3:0000         Ethyl p-chlorobenzoate         3:6756           C <sub>8</sub> H <sub>11</sub> O <sub>4</sub> Cl         M.W. = 206.6         Cl = 17.2%         β-Chloroethyl benzoate         3:8860           Diethyl chlorofumarate         3:6864         C <sub>8</sub> H <sub>11</sub> OCl         M.W. = 170.6         Cl = 20.8%           Diethyl chloromaleate         3:6867         C <sub>9</sub> H <sub>14</sub> O <sub>2</sub> Cl <sub>2</sub> M.W. = 170.6         Cl = 20.8%           Suberyl (di)chloride         3:6867         C <sub>9</sub> H <sub>14</sub> O <sub>2</sub> Cl <sub>2</sub> M.W. = 225.1         Cl = 31.5%           Suberyl (di)chloride         3:9576         Azelayl (di)chloride         3:9580           C <sub>8</sub> H <sub>19</sub> O <sub>4</sub> Cl <sub>2</sub> M.W. = 243.1         Cl = 29.6%         C <sub>9</sub> H <sub>17</sub> OCl         M.W. = 176.7         Cl = 20.1%           Diethyl d.l-α,α-dichlorosuccinate         3:9578         3:1364         C <sub>8</sub> H <sub>19</sub> OCl         M.W. = 178.7         Cl = 21.8%           n-Octanoyl chloride         3:8680         C <sub>10</sub> GROUP         C <sub>10</sub> GROUP         C <sub>10</sub> H <sub>2</sub> O <sub>2</sub> Cl <sub>2</sub> M.W. = 191.6         C <sub>1</sub> Cl = 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4-Chloro-3,5-dimethylphenol                                                   | 3:3505                           | •                                                                                                            | 3:0340                         |
| c-Chlorophenetole         3:8735         Ethyl o-chlorobenzoate         3:6866           m-Chlorophenetole         3:6323         Ethyl m-chlorobenzoate         3:6776           p-Chlorophenetole         3:6323         Ethyl m-chlorobenzoate         3:6776           C <sub>8</sub> H <sub>11</sub> O <sub>4</sub> Cl         M.W. = 206.6         Cl = 17.2%         β-Chloroethyl benzoate         3:8860           Diethyl chlorofumarate         3:6864         C <sub>8</sub> H <sub>11</sub> OCl         M.W. = 170.6         Cl = 20.8%           Diethyl chloromaleate         3:6697         C <sub>9</sub> H <sub>11</sub> OCl         M.W. = 170.6         Cl = 20.8%           Suberyl (di)chloride         3:6576         Agelayl (di)chloride         3:8520           C <sub>8</sub> H <sub>12</sub> O <sub>2</sub> Cl <sub>2</sub> M.W. = 223.1         Cl = 20.6%         C <sub>9</sub> H <sub>14</sub> O <sub>2</sub> Cl <sub>2</sub> M.W. = 225.1         Cl = 31.5%           Suberyl (di)chloride         3:9578         Agelayl (di)chloride         3:9580           C <sub>8</sub> H <sub>12</sub> O <sub>4</sub> Cl <sub>2</sub> M.W. = 243.1         Cl = 29.6%         Pelargonyl chloride         3:8765           Diethyl d <sub>1</sub> J-α,α-dichlorosuccinate         3:9578         Pelargonyl chloride         3:8765           C <sub>8</sub> H <sub>12</sub> OCl         M.W. = 162.7         Cl = 21.8%         9-Chlorononanol-1         3:6176           C <sub>2</sub> H <sub>16</sub> OCl         M.W. = 162.7         Cl = 21.8%         9-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\beta$ -Phenoxyethyl chloride                                                | 3:0165                           |                                                                                                              |                                |
| ## Chlorophenetole ## Sie676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | en. 1 . 1                                                                     | 0.0007                           |                                                                                                              |                                |
| ## Chlorophenetole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                               |                                  |                                                                                                              | 3:6770                         |
| C <sub>2</sub> H <sub>11</sub> O <sub>4</sub> Cl M.W. = 206.6 Cl = 17.2% β-Chloroethyl benzoate 3:8866 Diethyl chlorofumarate 3:6864 Diethyl chloromaleate 3:6697 γ-Phenoxy-n-propyl chloride 3:8826 γ-Phenoxy-n-propyl chloride 3:8826 C <sub>2</sub> H <sub>12</sub> O <sub>2</sub> Cl <sub>2</sub> M.W. = 211.1 Cl = 33.6% C <sub>2</sub> H <sub>14</sub> O <sub>2</sub> Cl <sub>2</sub> M.W. = 225.1 Cl = 31.5% Suberyl (di) chloride 3:9576 Azelayl (di) chloride 3:9686 C <sub>2</sub> H <sub>12</sub> O <sub>4</sub> Cl <sub>2</sub> M.W. = 243.1 Cl = 29.6% Diethyl d, l-α,α-dichlorosuccinate 3:9578 Diethyl d, l-α,α-dichlorosuccinate 3:9578 Diethyl meso-α,α-dichlorosuccinate 3:1364 C <sub>2</sub> H <sub>12</sub> OCl M.W. = 176.7 Cl = 20.1% n-Octanoyl chloride 3:8686 C <sub>2</sub> H <sub>12</sub> OCl M.W. = 162.7 Cl = 21.8% n-Octanoyl chloride 3:8686 C <sub>2</sub> H <sub>12</sub> OCl M.W. = 178.7 Cl = 19.9% S-Chlorononanol-1 3:6176 Cl = 18.5% S-Chloropropionate 3:9586 S-Chloropropionate 3:9586 Cl = 19.9% S-Chloropro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                  |                                                                                                              | 3:6750                         |
| Diethyl chlorofumarate   3:6864   2:6697   C <sub>b</sub> H <sub>11</sub> OCl   M.W. = 170.6   3:8820   C <sub>c</sub> H <sub>12</sub> O <sub>2</sub> Cl <sub>2</sub>   M.W. = 211.1   Cl = 33.6%   Suberyl (di) chloride   3:9576   Aselayl (di) chloride   3:9576   Aselayl (di) chloride   3:9630   C <sub>c</sub> H <sub>12</sub> O <sub>4</sub> Cl <sub>2</sub>   M.W. = 243.1   Cl = 29.6%   Diethyl d.l-α,α-dichlorosuccinate   3:9578   Diethyl meso-α,α-dichlorosuccinate   3:1364   C <sub>c</sub> H <sub>12</sub> OCl   M.W. = 162.7   Cl = 21.8%   n-Octanoyl chloride   3:8680   C <sub>c</sub> H <sub>16</sub> O <sub>2</sub> Cl   M.W. = 178.7   Cl = 19.9%   C <sub>c</sub> H <sub>16</sub> O <sub>2</sub> Cl   M.W. = 178.7   Cl = 19.9%   C <sub>c</sub> H <sub>16</sub> O <sub>2</sub> Cl   M.W. = 178.7   Cl = 19.9%   C <sub>c</sub> H <sub>16</sub> O <sub>2</sub> Cl   M.W. = 178.7   Cl = 19.9%   C <sub>c</sub> H <sub>16</sub> O <sub>2</sub> Cl   M.W. = 191.6   Cl = 18.5%   Cl = 19.9%   Cl =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                               | Cl = 17 2%                       | β-Chloroethyl benzoate                                                                                       | 3:8860                         |
| Diethyl chloromaleate         3:6697 $\gamma$ -Phenoxy- $n$ -propyl chloride         3:8830           C <sub>3</sub> H <sub>12</sub> O <sub>2</sub> Cl <sub>2</sub> M.W. = 211.1         Cl = 33.6%         C <sub>9</sub> H <sub>14</sub> O <sub>2</sub> Cl <sub>2</sub> M.W. = 225.1         Cl = 31.5%           Suberyl (di)chloride         3:9576         Aselayl (di)chloride         3:9680           C <sub>2</sub> H <sub>12</sub> O <sub>4</sub> Cl <sub>2</sub> M.W. = 243.1         Cl = 29.6%         C <sub>9</sub> H <sub>17</sub> OCl         M.W. = 176.7         Cl = 20.1%           Diethyl d <sub>1</sub> L-α,α-dichlorosuccinate         3:9578         Pelargonyl chloride         3:8765           Diethyl meso-α,α-dichlorosuccinate         3:1364         C <sub>9</sub> H <sub>19</sub> OCl         M.W. = 178.7         Cl = 19.8%           C <sub>2</sub> H <sub>18</sub> OCl         M.W. = 162.7         Cl = 21.8%         9-Chlorononanol-1         3:0170           C <sub>2</sub> H <sub>18</sub> O <sub>2</sub> Cl         M.W. = 178.7         Cl = 19.9%         C <sub>10</sub> H <sub>4</sub> O <sub>2</sub> Cl <sub>2</sub> M.W. = 191.6         Cl = 18.5%           Isoamyl α-chloropropionate         3:9580         C <sub>10</sub> H <sub>4</sub> O <sub>2</sub> Cl <sub>2</sub> M.W. = 191.6         Cl = 18.5%           3.4-Dichloromaphthoquinone-1,2         3:4775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                               |                                  | C H. OCI M W = 170 6                                                                                         | C1-20.80                       |
| Suberyl (di)chloride       3:9576       Aselayl (di)chloride       3:9680 $C_8H_{19}O_4Cl_3$ M.W. = 243.1 Diethyl $d_1l$ - $\alpha,\alpha$ -dichlorosuccinate       Cl = 29.6% Signs of the policy of the polic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               |                                  |                                                                                                              | 3:8820                         |
| Diethyl d,l-α,α-dichlorosuccinate   Diethyl d,l-α,α-dichlorosuccinate   Diethyl meso-α,α-dichlorosuccinate   Diethyl me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                               |                                  |                                                                                                              | Cl=31.5%<br>3:9680             |
| Diethyl meso-α,α-dichlorosuccinate 3:1364  C <sub>2</sub> H <sub>19</sub> OCl M.W.=162.7 Cl=21.8% n-Octanoyl chloride 3:8680  C <sub>2</sub> H <sub>19</sub> OCl M.W.=178.7 Cl=19.8% 9-Chlorononanol-1 3:0170  C <sub>10</sub> GROUP  C <sub>2</sub> H <sub>16</sub> O <sub>2</sub> Cl M.W.=178.7 Cl=19.9% Isoamyl α-chloropropionate 3:9580 3.4-Dichloronaphthoquinone-1,2 3:4775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                               |                                  |                                                                                                              | Cl=20.1%<br>3:8765             |
| C <sub>8</sub> H <sub>18</sub> OCl M.W.=162.7 Cl=21.8% n-Octanoyl chloride 3:8680  C <sub>10</sub> GROUP  C <sub>8</sub> H <sub>18</sub> O <sub>2</sub> Cl M.W.=178.7 Cl=19.9% C <sub>10</sub> H <sub>4</sub> O <sub>2</sub> Cl <sub>2</sub> M.W.=191.6 Cl=18.5% Isoamyl a-chloropropionate 3:9580 3,4-Dichloronaphthoquinone-1,2 3:4737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Diethyl meso-a, a-dichlorosuccins                                             | ate 3:1364                       | C <sub>6</sub> H <sub>19</sub> OCl M.W.=178.7                                                                | Cl=19.8%                       |
| n-Octanoyl chloride 3:8680 C <sub>10</sub> GROUP  C <sub>2</sub> H <sub>16</sub> O <sub>2</sub> Cl M.W.=178.7 Cl=19.9% C <sub>10</sub> H <sub>4</sub> O <sub>2</sub> Cl <sub>2</sub> M.W.=191.6 Cl=18.5%  Isoamyl α-chloropropionate 3:9580 3,4-Dichloronaphthoguinone-1,2 3:478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OH OOL WW 1897                                                                | C1=21 8%                         |                                                                                                              | 3:0170                         |
| C <sub>2</sub> H <sub>16</sub> O <sub>2</sub> Cl M.W.=178.7 Cl=19.9% C <sub>10</sub> H <sub>4</sub> O <sub>2</sub> Cl <sub>2</sub> M.W.=191.6 Cl=18.5% Isoamyl α-chloropropionate 3:9580 3,4-Diohloronaphthoquinone-1,2 3:478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |                                  |                                                                                                              |                                |
| Isoamyl α-chloropropionate 3:9590 3,4-Dichloronaphthoquinone-1,2 3:4775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                               |                                  |                                                                                                              | <b>a</b>                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Isoamyl $\alpha$ -chloropropionate                                            | 3:9580                           | 3,4-Dichloronaphthoquinone-1,2                                                                               | CI = 18.5%<br>3:4775<br>3:4857 |

| $C_{10}H_5O_2Cl$ M.W. = 192.6                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                   | Cl = 18.4%                                                                                                                 | $C_{10}H_{16}O_{2}Cl_{2}$ M.W. = 239.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cl = 29.7%                                                                                                                                         |
| 3-Chloronaphthoquinone-1,2                                                                                                                                                                                                                                                                                                                                                                        | 3:4704                                                                                                                     | Sebacyl (di)chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3:9780                                                                                                                                             |
| 4-Chloronaphthoquinone-1,2                                                                                                                                                                                                                                                                                                                                                                        | 3:4000                                                                                                                     | Debacyi (di)oniorido                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                              |
| a-Omoromaphimodumono-1,2                                                                                                                                                                                                                                                                                                                                                                          | 0.2000                                                                                                                     | $C_{10}H_{19}OCl$ M.W. = 190.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cl=18.6%                                                                                                                                           |
| 0 Chlana - hab a 1 4                                                                                                                                                                                                                                                                                                                                                                              | 0.0700                                                                                                                     | n-Decanoyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3:8800                                                                                                                                             |
| 2-Chloronaphthoquinone-1,4                                                                                                                                                                                                                                                                                                                                                                        | 3:3580                                                                                                                     | n-Decanoyi emoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                             |
| 5-Chloronaphthoquinone-1,4                                                                                                                                                                                                                                                                                                                                                                        | 3:4492                                                                                                                     | C H OCI MW -1096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CI 19 407                                                                                                                                          |
| 6-Chloronaphthoquinone-1,4                                                                                                                                                                                                                                                                                                                                                                        | 3:3145                                                                                                                     | $C_{10}H_{21}OCl$ M.W.=192.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cl=18.4%                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            | 10-Chlorodecanol-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3:0014                                                                                                                                             |
| $C_{10}H_6OCl_2$ M.W. = 213.1                                                                                                                                                                                                                                                                                                                                                                     | C1 = 33.3%                                                                                                                 | G 77 CG1 15 777 100 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~~                                                                                                                                                 |
| 2,3-Dichloronaphthol-1                                                                                                                                                                                                                                                                                                                                                                            | <b>3:293</b> 5                                                                                                             | $C_{11}H_7OCl$ M.W. = 190.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cl = 18.6%                                                                                                                                         |
| 2,4-Dichloronaphthol-1                                                                                                                                                                                                                                                                                                                                                                            | 3:3250                                                                                                                     | α-Naphthoyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3:6930                                                                                                                                             |
| 5,7-Dichloronaphthol-1                                                                                                                                                                                                                                                                                                                                                                            | 3:3985                                                                                                                     | β-Naphthoyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3:0900                                                                                                                                             |
| 5.8-Dichloronaphthol-1                                                                                                                                                                                                                                                                                                                                                                            | 3:3420                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                    |
| 6,7-Dichloronaphthol-1                                                                                                                                                                                                                                                                                                                                                                            | 3:4315                                                                                                                     | $C_{11}H_7O_2Cl$ M.W. = 206.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cl = 17.2%                                                                                                                                         |
| 7,8-Dichloronaphthol-1                                                                                                                                                                                                                                                                                                                                                                            | 3:2635                                                                                                                     | 2-Chloronaphthoic acid-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3:4330                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            | 4-Chloronaphthoic acid-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3: <b>49</b> 36                                                                                                                                    |
| 1,3-Dichloronaphthol-2                                                                                                                                                                                                                                                                                                                                                                            | 3:1990                                                                                                                     | 5-Chloronaphthoic acid-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3: <b>4944</b>                                                                                                                                     |
| 1,4-Dichloronaphthol-2                                                                                                                                                                                                                                                                                                                                                                            | 3:3840                                                                                                                     | 6-Chloronaphthoic acid-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3:4845                                                                                                                                             |
| 1,6-Dichloronaphthol-2                                                                                                                                                                                                                                                                                                                                                                            | 3:3600                                                                                                                     | 7-Chloronaphthoic acid-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3:4942                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            | 8-Chloronaphthoic acid-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3:4680                                                                                                                                             |
| 3,4-Dichloronaphthol-2                                                                                                                                                                                                                                                                                                                                                                            | 3:3295                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                    |
| 4,8-Dichloronaphthol-2                                                                                                                                                                                                                                                                                                                                                                            | 3:4420                                                                                                                     | 1-Chloronaphthoic acid-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3:4885                                                                                                                                             |
| 5,8-Dichloronaphthol-2                                                                                                                                                                                                                                                                                                                                                                            | 3:4155                                                                                                                     | 3-Chloronaphthoic acid-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3:4928                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            | 5-Chloronaphthoic acid-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3:4952                                                                                                                                             |
| $C_{10}H_7OCl$ M.W. = 178.6                                                                                                                                                                                                                                                                                                                                                                       | Cl = 19.8%                                                                                                                 | 8-Chloronaphthoic acid-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3:4948                                                                                                                                             |
| 2-Chloronaphthol-1                                                                                                                                                                                                                                                                                                                                                                                | 3:1490                                                                                                                     | 8-Chioronaphthole acid-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1010                                                                                                                                             |
| 3-Chloronaphthol-1                                                                                                                                                                                                                                                                                                                                                                                | 3:4170                                                                                                                     | $C_{11}H_{19}O_{3}Cl$ M.W. = 234.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C1 _ 15 107                                                                                                                                        |
| 4-Chloronaphthol-1                                                                                                                                                                                                                                                                                                                                                                                | 3:3720                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cl = 15.1%                                                                                                                                         |
| 5-Chloronaphthol-1                                                                                                                                                                                                                                                                                                                                                                                | 3:3960                                                                                                                     | ω-(Carbomethoxy)pelargonyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                    |
| 6-Chloronaphthol-1                                                                                                                                                                                                                                                                                                                                                                                | 3:2615                                                                                                                     | chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3:9792                                                                                                                                             |
| 7-Chloronaphthol-1                                                                                                                                                                                                                                                                                                                                                                                | 3:3810                                                                                                                     | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                    |
| 8-Chloronaphthol-1                                                                                                                                                                                                                                                                                                                                                                                | 3:1610                                                                                                                     | $C_{11}H_{21}OC1$ M.W. = 204.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cl = 17.3%                                                                                                                                         |
| 0-Cinorollapatonor 2                                                                                                                                                                                                                                                                                                                                                                              | 0.1010                                                                                                                     | Undecanoyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>3:9800</b>                                                                                                                                      |
| 1-Chloronaphthol-2                                                                                                                                                                                                                                                                                                                                                                                | 3:1700                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                   | 3:2545                                                                                                                     | C <sub>12</sub> GROUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                    |
| 3-Chioronaphthol-2                                                                                                                                                                                                                                                                                                                                                                                | 3:3045                                                                                                                     | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | O1 4800                                                                                                                                            |
| 4-Chloronaphthol-2                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            | $C_{12}H_9OCl$ M.W. = 204.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cl = 17.3%                                                                                                                                         |
| 5-Chloronaphthol-2                                                                                                                                                                                                                                                                                                                                                                                | 3:3945                                                                                                                     | 3-Chloro-2-hydroxybiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3:1757                                                                                                                                             |
| 6-Chloronaphthol-2                                                                                                                                                                                                                                                                                                                                                                                | 3:3500                                                                                                                     | 5-Chloro-2-hydroxybiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3:8980                                                                                                                                             |
| 7-Chloronaphthol-2                                                                                                                                                                                                                                                                                                                                                                                | 3:3925                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                    |
| 8-Chloronaphthol-2                                                                                                                                                                                                                                                                                                                                                                                | 3:2965                                                                                                                     | 3-Chloro-4-hydroxybiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3:1900                                                                                                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                 | 3:2965                                                                                                                     | 3-Chloro-4-hydroxybiphenyl<br>4'-Chloro-4-hydroxybiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3:1900<br>3:4262                                                                                                                                   |
| 8-Chloronaphthol-2<br>C <sub>10</sub> H <sub>11</sub> OCl M.W. = 182.6                                                                                                                                                                                                                                                                                                                            |                                                                                                                            | 4'-Chloro-4-hydroxybiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                    |
| ·                                                                                                                                                                                                                                                                                                                                                                                                 | 3:2965                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                    |
| $C_{10}H_{11}OCl$ M.W. = 182.6                                                                                                                                                                                                                                                                                                                                                                    | 3:2965                                                                                                                     | 4'-Chloro-4-hydroxybiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3:4262                                                                                                                                             |
| $C_{10}H_{11}OCl$ M.W. = 182.6 $\omega$ -Chloro-2,4-dimethyl-                                                                                                                                                                                                                                                                                                                                     | 3:2965<br>Cl=19.4%                                                                                                         | 4'-Chloro-4-hydroxybiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3:4262                                                                                                                                             |
| $C_{10}H_{11}OCl$ M.W. = 182.6<br>$\omega$ -Chloro-2,4-dimethyl-<br>acetophenone<br>$\omega$ -Chloro-2,5-dimethyl-                                                                                                                                                                                                                                                                                | 3:2965<br>Cl=19.4%                                                                                                         | $4'$ -Chloro- $4$ -hydroxybiphenyl $\alpha$ -Naphthylacetyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3:4262<br>3:9856                                                                                                                                   |
| $C_{10}H_{11}OCl$ M.W. = 182.6<br>$\omega$ -Chloro-2,4-dimethyl-<br>acetophenone<br>$\omega$ -Chloro-2,5-dimethyl-<br>acetophenone                                                                                                                                                                                                                                                                | 3:2965<br>C1=19.4%<br>3:1355                                                                                               | 4'-Chloro-4-hydroxybiphenyl α-Naphthylacetyl chloride C <sub>12</sub> H <sub>21</sub> O <sub>5</sub> Cl <sub>3</sub> M.W.=319.7 Para-(β-chloro-n-butyraldehyde)                                                                                                                                                                                                                                                                                                                                                                   | 3:4262<br>3:9856<br>Cl=33.3%<br>3:2650                                                                                                             |
| C <sub>10</sub> H <sub>11</sub> OCl M.W. = 182.6<br>ω-Chloro-2,4-dimethyl-<br>acetophenone<br>ω-Chloro-2,5-dimethyl-<br>acetophenone<br>ω-Chloro-3,4-dimethyl-                                                                                                                                                                                                                                    | 3:2965<br>Cl=19.4%<br>3:1355<br>3:0245                                                                                     | 4'-Chloro-4-hydroxybiphenyl α-Naphthylacetyl chloride C <sub>12</sub> H <sub>21</sub> O <sub>2</sub> Cl <sub>3</sub> M.W.=319.7                                                                                                                                                                                                                                                                                                                                                                                                   | 3:4262<br>3:9856<br>Cl=33.3%<br>3:2650                                                                                                             |
| $C_{10}H_{11}OCl$ M.W. = 182.6<br>$\omega$ -Chloro-2,4-dimethyl-<br>acetophenone<br>$\omega$ -Chloro-2,5-dimethyl-<br>acetophenone                                                                                                                                                                                                                                                                | 3:2965<br>C1=19.4%<br>3:1355                                                                                               | 4'-Chloro-4-hydroxybiphenyl α-Naphthylacetyl chloride C <sub>12</sub> H <sub>21</sub> O <sub>3</sub> Cl <sub>3</sub> M.W.=319.7 Para-(β-chloro-n-butyraldehyde) Para-(α-chloro-isobutyraldehyde)                                                                                                                                                                                                                                                                                                                                  | 3:4262<br>3:9856<br>Cl=33.3%<br>3:2650<br>3:3220                                                                                                   |
| $C_{10}H_{11}OCl$ M.W. = 182.6 $\omega$ -Chloro-2,4-dimethylacetophenone $\omega$ -Chloro-2,5-dimethylacetophenone $\omega$ -Chloro-3,4-dimethylacetophenone                                                                                                                                                                                                                                      | 3:2965<br>C1=19.4%<br>3:1355<br>3:0245<br>3:1775                                                                           | 4'-Chloro-4-hydroxybiphenyl α-Naphthylacetyl chloride C <sub>12</sub> H <sub>21</sub> O <sub>2</sub> Cl <sub>3</sub> M.W.=319.7 Para-(β-chloro-n-butyraldehyde) Para-(α-chloro-isobutyraldehyde) C <sub>12</sub> H <sub>26</sub> OCl M.W.=218.8                                                                                                                                                                                                                                                                                   | 3:4262<br>3:9856<br>Cl=33.3%<br>3:2650<br>3:3220<br>Cl=16.2%                                                                                       |
| C <sub>10</sub> H <sub>11</sub> OCl M.W. = 182.6<br>ω-Chloro-2,4-dimethyl-<br>acetophenone<br>ω-Chloro-2,5-dimethyl-<br>acetophenone<br>ω-Chloro-3,4-dimethyl-                                                                                                                                                                                                                                    | 3:2965<br>Cl=19.4%<br>3:1355<br>3:0245                                                                                     | 4'-Chloro-4-hydroxybiphenyl α-Naphthylacetyl chloride C <sub>12</sub> H <sub>21</sub> O <sub>3</sub> Cl <sub>3</sub> M.W.=319.7 Para-(β-chloro-n-butyraldehyde) Para-(α-chloro-isobutyraldehyde)                                                                                                                                                                                                                                                                                                                                  | 3:4262<br>3:9856<br>Cl=33.3%<br>3:2650<br>3:3220                                                                                                   |
| C <sub>10</sub> H <sub>11</sub> OCl M.W. = 182.6<br>ω-Chloro-2,4-dimethyl-<br>acetophenone<br>ω-Chloro-2,5-dimethyl-<br>acetophenone<br>ω-Chloro-3,4-dimethyl-<br>acetophenone<br>2,4,6-Trimethylbenzoyl chloride                                                                                                                                                                                 | 3:2965<br>C1=19.4%<br>3:1355<br>3:0245<br>3:1775<br>3:9750                                                                 | 4'-Chloro-4-hydroxybiphenyl α-Naphthylacetyl chloride  C <sub>12</sub> H <sub>21</sub> O <sub>5</sub> Cl <sub>5</sub> M.W. = 319.7  Para-(β-chloro-n-butyraldehyde)  Para-(α-chloro-isobutyraldehyde)  C <sub>12</sub> H <sub>25</sub> OCl M.W. = 218.8  Lauroyl chloride                                                                                                                                                                                                                                                         | 3:4262<br>3:9856<br>Cl=33.3%<br>3:2650<br>3:3220<br>Cl=16.2%<br>3:9858                                                                             |
| C <sub>10</sub> H <sub>11</sub> OCl M.W. = 182.6<br>ω-Chloro-2,4-dimethyl-<br>acetophenone<br>ω-Chloro-2,5-dimethyl-<br>acetophenone<br>ω-Chloro-3,4-dimethyl-<br>acetophenone<br>2,4,6-Trimethylbenzoyl chloride<br>C <sub>10</sub> H <sub>13</sub> OCl M.W. = 184.7                                                                                                                             | 3:2965<br>C1=19.4%<br>3:1355<br>3:0245<br>3:1775<br>3:9750<br>C1=19.2%                                                     | 4'-Chloro-4-hydroxybiphenyl α-Naphthylacetyl chloride  C <sub>12</sub> H <sub>21</sub> O <sub>3</sub> Cl <sub>3</sub> M.W.=319.7  Para-(β-chloro-n-butyraldehyde)  Para-(α-chloro-isobutyraldehyde)  C <sub>12</sub> H <sub>25</sub> OCl M.W.=218.8  Lauroyl chloride  C <sub>12</sub> H <sub>26</sub> OCl M.W.=220.8                                                                                                                                                                                                             | 3:4262<br>3:9856<br>Cl=33.3%<br>3:2650<br>3:3220<br>Cl=16.2%<br>3:9858<br>Cl=16.1%                                                                 |
| C <sub>10</sub> H <sub>11</sub> OCl M.W. = 182.6<br>ω-Chloro-2,4-dimethyl-<br>acetophenone<br>ω-Chloro-2,5-dimethyl-<br>acetophenone<br>ω-Chloro-3,4-dimethyl-<br>acetophenone<br>2,4,6-Trimethylbenzoyl chloride                                                                                                                                                                                 | 3:2965<br>C1=19.4%<br>3:1355<br>3:0245<br>3:1775<br>3:9750                                                                 | 4'-Chloro-4-hydroxybiphenyl α-Naphthylacetyl chloride  C <sub>12</sub> H <sub>21</sub> O <sub>5</sub> Cl <sub>5</sub> M.W. = 319.7  Para-(β-chloro-n-butyraldehyde)  Para-(α-chloro-isobutyraldehyde)  C <sub>12</sub> H <sub>25</sub> OCl M.W. = 218.8  Lauroyl chloride                                                                                                                                                                                                                                                         | 3:4262<br>3:9856<br>Cl=33.3%<br>3:2650<br>3:3220<br>Cl=16.2%<br>3:9858                                                                             |
| C <sub>10</sub> H <sub>11</sub> OCl M.W. = 182.6<br>ω-Chloro-2,4-dimethyl-<br>acetophenone<br>ω-Chloro-2,5-dimethyl-<br>acetophenone<br>ω-Chloro-3,4-dimethyl-<br>acetophenone<br>2,4,6-Trimethylbenzoyl chloride<br>C <sub>10</sub> H <sub>18</sub> OCl M.W. = 184.7<br>2-Chloro-4-n-butylphenol                                                                                                 | 3:2965<br>C1=19.4%<br>3:1355<br>3:0245<br>3:1775<br>3:9750<br>C1=19.2%<br>3:8830                                           | 4'-Chloro-4-hydroxybiphenyl α-Naphthylacetyl chloride  C <sub>12</sub> H <sub>21</sub> O <sub>2</sub> Cl <sub>3</sub> M.W.=319.7  Para-(β-chloro-n-butyraldehyde)  Para-(α-chloro-isobutyraldehyde)  C <sub>12</sub> H <sub>26</sub> OCl M.W.=218.8  Lauroyl chloride  C <sub>12</sub> H <sub>26</sub> OCl M.W.=220.8  12-Chlorododecanol-1                                                                                                                                                                                       | 3:4262<br>3:9856<br>Cl=33.3%<br>3:2650<br>3:3220<br>Cl=16.2%<br>3:9858<br>Cl=16.1%                                                                 |
| C <sub>10</sub> H <sub>11</sub> OCl M.W. = 182.6<br>ω-Chloro-2,4-dimethyl-<br>acetophenone<br>ω-Chloro-2,5-dimethyl-<br>acetophenone<br>ω-Chloro-3,4-dimethyl-<br>acetophenone<br>2,4,6-Trimethylbenzoyl chloride<br>C <sub>10</sub> H <sub>13</sub> OCl M.W. = 184.7                                                                                                                             | 3:2965<br>C1=19.4%<br>3:1355<br>3:0245<br>3:1775<br>3:9750<br>C1=19.2%                                                     | 4'-Chloro-4-hydroxybiphenyl α-Naphthylacetyl chloride  C <sub>12</sub> H <sub>21</sub> O <sub>3</sub> Cl <sub>3</sub> M.W.=319.7  Para-(β-chloro-n-butyraldehyde)  Para-(α-chloro-isobutyraldehyde)  C <sub>12</sub> H <sub>25</sub> OCl M.W.=218.8  Lauroyl chloride  C <sub>12</sub> H <sub>26</sub> OCl M.W.=220.8                                                                                                                                                                                                             | 3:4262<br>3:9856<br>Cl=33.3%<br>3:2650<br>3:3220<br>Cl=16.2%<br>3:9858<br>Cl=16.1%                                                                 |
| C <sub>10</sub> H <sub>11</sub> OCl M.W. = 182.6<br>ω-Chloro-2,4-dimethyl-<br>acetophenone<br>ω-Chloro-2,5-dimethyl-<br>acetophenone<br>ω-Chloro-3,4-dimethyl-<br>acetophenone<br>2,4,6-Trimethylbenzoyl chloride<br>C <sub>10</sub> H <sub>18</sub> OCl M.W. = 184.7<br>2-Chloro-4-n-butylphenol                                                                                                 | 3:2965<br>C1=19.4%<br>3:1355<br>3:0245<br>3:1775<br>3:9750<br>C1=19.2%<br>3:8830                                           | 4'-Chloro-4-hydroxybiphenyl α-Naphthylacetyl chloride  C <sub>12</sub> H <sub>21</sub> O <sub>3</sub> Cl <sub>5</sub> M.W.=319.7  Para-(β-chloro-n-butyraldehyde)  Para-(α-chloro-isobutyraldehyde)  C <sub>12</sub> H <sub>26</sub> OCl M.W.=218.8  Lauroyl chloride  C <sub>12</sub> H <sub>26</sub> OCl M.W.=220.8  12-Chlorododecanol-1  C <sub>13</sub> GROUP                                                                                                                                                                | 3:4262<br>3:9856<br>Cl=33.3%<br>3:2650<br>3:3220<br>Cl=16.2%<br>3:9858<br>Cl=16.1%<br>3:0172                                                       |
| C <sub>10</sub> H <sub>11</sub> OCl M.W. = 182.6<br>ω-Chloro-2,4-dimethyl-<br>acetophenone<br>ω-Chloro-3,5-dimethyl-<br>acetophenone<br>ω-Chloro-3,4-dimethyl-<br>acetophenone<br>2,4,6-Trimethylbenzoyl chloride<br>C <sub>10</sub> H <sub>15</sub> OCl M.W. = 184.7<br>2-Chloro-4-n-butylphenol                                                                                                 | 3:2965<br>C1=19.4%<br>3:1355<br>3:0245<br>3:1775<br>3:9750<br>C1=19.2%<br>3:8830                                           | 4'-Chloro-4-hydroxybiphenyl α-Naphthylacetyl chloride  C <sub>12</sub> H <sub>21</sub> O <sub>2</sub> Cl <sub>3</sub> M.W. = 319.7 Para-(β-chloro-n-butyraldehyde) Para-(α-chloro-isobutyraldehyde) C <sub>12</sub> H <sub>25</sub> OCl M.W. = 218.8 Lauroyl chloride  C <sub>12</sub> H <sub>26</sub> OCl M.W. = 220.8 12-Chlorododecanol-1  C <sub>13</sub> GROUP C <sub>12</sub> H <sub>3</sub> OCl <sub>2</sub> M.W. = 251.1                                                                                                  | 3:4262<br>3:9856<br>Cl=33.3%<br>3:2650<br>3:3220<br>Cl=16.2%<br>3:9858<br>Cl=16.1%<br>3:0172                                                       |
| C <sub>10</sub> H <sub>11</sub> OCl M.W. = 182.6<br>ω-Chloro-2,4-dimethyl-<br>acetophenone<br>ω-Chloro-2,5-dimethyl-<br>acetophenone<br>ω-Chloro-3,4-dimethyl-<br>acetophenone<br>2,4,6-Trimethylbenzoyl chloride<br>C <sub>10</sub> H <sub>18</sub> OCl M.W. = 184.7<br>2-Chloro-4-n-butylphenol                                                                                                 | 3:2965<br>C1=19.4%<br>3:1355<br>3:0245<br>3:1775<br>3:9750<br>C1=19.2%<br>3:8830<br>3:9760                                 | 4'-Chloro-4-hydroxybiphenyl α-Naphthylacetyl chloride  C <sub>12</sub> H <sub>21</sub> O <sub>3</sub> Cl <sub>3</sub> M.W.=319.7 Para-(β-chloro-n-butyraldehyde) Para-(α-chloro-isobutyraldehyde)  C <sub>12</sub> H <sub>25</sub> OCl M.W.=218.8 Lauroyl chloride  C <sub>12</sub> H <sub>26</sub> OCl M.W.=220.8 12-Chlorododecanol-1  C <sub>13</sub> GROUP  C <sub>13</sub> H <sub>3</sub> OCl <sub>2</sub> M.W.=251.1 2,2'-Dichlorobenzophenone                                                                              | 3:4262<br>3:9856<br>Cl=33.3%<br>3:2650<br>3:3220<br>Cl=16.2%<br>3:9858<br>Cl=16.1%<br>3:0172<br>Cl=28.2%<br>3:0717                                 |
| C <sub>10</sub> H <sub>11</sub> OCl M.W. = 182.6<br>ω-Chloro-2,4-dimethyl-<br>acetophenone<br>ω-Chloro-3,5-dimethyl-<br>acetophenone<br>ω-Chloro-3,4-dimethyl-<br>acetophenone<br>2,4,6-Trimethylbensoyl chloride<br>C <sub>10</sub> H <sub>18</sub> OCl M.W. = 184.7<br>2-Chloro-4-n-butylphenol<br>2-Chloro-4-ter-butylphenol<br>p-Chlorocarvacrol                                              | 3:2965 C1=19.4% 3:1355 3:9245 3:1775 3:9750 C1=19.2% 3:8830 3:9760 3:0480                                                  | 4'-Chloro-4-hydroxybiphenyl α-Naphthylacetyl chloride  C <sub>12</sub> H <sub>21</sub> O <sub>3</sub> Cl <sub>3</sub> M.W.=319.7 Para-(β-chloro-n-butyraldehyde) Para-(α-chloro-isobutyraldehyde)  C <sub>12</sub> H <sub>25</sub> OCl M.W.=218.8 Lauroyl chloride  C <sub>12</sub> H <sub>26</sub> OCl M.W.=220.8 12-Chlorododecanol-1  C <sub>13</sub> GROUP  C <sub>14</sub> H <sub>3</sub> OCl <sub>2</sub> M.W.=251.1 2,2'-Dichlorobenzophenone 2,3'-Dichlorobenzophenone                                                    | 3:4262<br>3:9856<br>Cl=33.3%<br>3:2650<br>3:3220<br>Cl=16.2%<br>3:9858<br>Cl=16.1%<br>3:0172<br>Cl=28.2%<br>3:6717<br>3:9859-A                     |
| C <sub>10</sub> H <sub>11</sub> OCl M.W. = 182.6<br>ω-Chloro-2,4-dimethyl-<br>acetophenone<br>ω-Chloro-3,5-dimethyl-<br>acetophenone<br>ω-Chloro-3,4-dimethyl-<br>acetophenone<br>2,4,6-Trimethylbenzoyl chloride<br>C <sub>10</sub> H <sub>15</sub> OCl M.W. = 184.7<br>2-Chloro-4-n-butylphenol                                                                                                 | 3:2965<br>C1=19.4%<br>3:1355<br>3:0245<br>3:1775<br>3:9750<br>C1=19.2%<br>3:8830<br>3:9760                                 | 4'-Chloro-4-hydroxybiphenyl α-Naphthylacetyl chloride  C <sub>12</sub> H <sub>21</sub> O <sub>3</sub> Cl <sub>3</sub> M.W.=319.7 Para-(β-chloro-n-butyraldehyde) Para-(α-chloro-isobutyraldehyde)  C <sub>12</sub> H <sub>26</sub> OCl M.W.=218.8 Lauroyl chloride  C <sub>12</sub> H <sub>26</sub> OCl M.W.=220.8 12-Chlorododecanol-1  C <sub>13</sub> GROUP  C <sub>12</sub> H <sub>3</sub> OCl <sub>2</sub> M.W.=251.1 2,2'-Dichlorobenzophenone 2,3'-Dichlorobenzophenone 2,4-Dichlorobenzophenone                           | 3:4262<br>3:9856<br>Cl=33.3%<br>3:2650<br>3:3220<br>Cl=16.2%<br>3:9858<br>Cl=16.1%<br>3:0172<br>Cl=28.2%<br>3:9717<br>3:9859-A<br>3:9825           |
| C <sub>10</sub> H <sub>11</sub> OCl M.W. = 182.6<br>ω-Chloro-2,4-dimethyl-<br>acetophenone<br>ω-Chloro-3,5-dimethyl-<br>acetophenone<br>ω-Chloro-3,4-dimethyl-<br>acetophenone<br>2,4,6-Trimethylbenzoyl chloride<br>C <sub>10</sub> H <sub>13</sub> OCl M.W. = 184.7<br>2-Chloro-4-n-butylphenol<br>2-Chloro-4-ier-butylphenol<br>p-Chlorocarvacrol<br>p-Chlorothymol                            | 3:2965<br>C1=19.4%<br>3:1355<br>3:0245<br>3:1775<br>3:9750<br>C1=19.2%<br>3:8830<br>3:9760<br>3:0480<br>3:1293             | 4'-Chloro-4-hydroxybiphenyl α-Naphthylacetyl chloride  C <sub>12</sub> H <sub>21</sub> O <sub>5</sub> Cl <sub>5</sub> M.W. = 319.7 Para-(β-chloro-n-butyraldehyde) Para-(α-chloro-isobutyraldehyde) C <sub>12</sub> H <sub>25</sub> OCl M.W. = 218.8 Lauroyl chloride  C <sub>12</sub> H <sub>26</sub> OCl M.W. = 220.8 12-Chlorododecanol-1  C <sub>13</sub> GROUP  C <sub>15</sub> H <sub>3</sub> OCl <sub>5</sub> M.W. = 251.1 2,2'-Dichlorobenzophenone 2,3'-Dichlorobenzophenone 2,4'-Dichlorobenzophenone                   | 3:4262<br>3:9856<br>Cl=33.3%<br>3:2650<br>3:3220<br>Cl=16.2%<br>3:9858<br>Cl=16.1%<br>3:0172<br>Cl=28.2%<br>3:0717<br>3:9858-A<br>3:0825<br>3:1565 |
| C <sub>10</sub> H <sub>11</sub> OCl M.W. = 182.6 ω-Chloro-2,4-dimethyl- acetophenone ω-Chloro-3,5-dimethyl- acetophenone ω-Chloro-3,4-dimethyl- acetophenone 2,4,6-Trimethylbensoyl chloride C <sub>10</sub> H <sub>13</sub> OCl M.W. = 184.7 2-Chloro-4-n-butylphenol 2-Chloro-4-ter-butylphenol p-Chlorocarvacrol p-Chlorothymol C <sub>10</sub> H <sub>15</sub> O <sub>3</sub> Cl M.W. = 200.7 | 3:2965<br>C1=19.4%<br>3:1355<br>3:0245<br>3:1775<br>3:9750<br>C1=19.2%<br>3:8830<br>3:9760<br>3:0480<br>3:1293<br>C1=17.7% | 4'-Chloro-4-hydroxybiphenyl α-Naphthylacetyl chloride  C <sub>12</sub> H <sub>21</sub> O <sub>3</sub> Cl <sub>3</sub> M.W.=319.7 Para-(β-chloro-n-butyraldehyde) Para-(α-chloro-isobutyraldehyde) C <sub>12</sub> H <sub>25</sub> OCl M.W.=218.8 Lauroyl chloride  C <sub>12</sub> H <sub>26</sub> OCl M.W.=220.8 12-Chlorododecanol-1  C <sub>13</sub> GROUP  C <sub>14</sub> H <sub>3</sub> OCl <sub>2</sub> M.W.=251.1 2,2'-Dichlorobenzophenone 2,3'-Dichlorobenzophenone 2,4'-Dichlorobenzophenone 2,4'-Dichlorobenzophenone | 3:4262 3:9856 C1=33.3% 3:2650 3:3220 C1=16.2% 3:9858 C1=16.1% 3:0172 C1=28.2% 3:6717 3:9859-A 3:0825 3:1565 3:2340                                 |
| C <sub>10</sub> H <sub>11</sub> OCl M.W. = 182.6<br>ω-Chloro-2,4-dimethyl-<br>acetophenone<br>ω-Chloro-3,5-dimethyl-<br>acetophenone<br>ω-Chloro-3,4-dimethyl-<br>acetophenone<br>2,4,6-Trimethylbenzoyl chloride<br>C <sub>10</sub> H <sub>13</sub> OCl M.W. = 184.7<br>2-Chloro-4-n-butylphenol<br>2-Chloro-4-ier-butylphenol<br>p-Chlorocarvacrol<br>p-Chlorothymol                            | 3:2965<br>C1=19.4%<br>3:1355<br>3:0245<br>3:1775<br>3:9750<br>C1=19.2%<br>3:8830<br>3:9760<br>3:0480<br>3:1293<br>C1=17.7% | 4'-Chloro-4-hydroxybiphenyl α-Naphthylacetyl chloride  C <sub>12</sub> H <sub>21</sub> O <sub>5</sub> Cl <sub>5</sub> M.W. = 319.7 Para-(β-chloro-n-butyraldehyde) Para-(α-chloro-isobutyraldehyde) C <sub>12</sub> H <sub>25</sub> OCl M.W. = 218.8 Lauroyl chloride  C <sub>12</sub> H <sub>26</sub> OCl M.W. = 220.8 12-Chlorododecanol-1  C <sub>13</sub> GROUP  C <sub>15</sub> H <sub>3</sub> OCl <sub>5</sub> M.W. = 251.1 2,2'-Dichlorobenzophenone 2,3'-Dichlorobenzophenone 2,4'-Dichlorobenzophenone                   | 3:4262<br>3:9856<br>Cl=33.3%<br>3:2650<br>3:3220<br>Cl=16.2%<br>3:9858<br>Cl=16.1%<br>3:0172<br>Cl=28.2%<br>3:0717<br>3:9858-A<br>3:0825<br>3:1565 |

| 3,3'-Dichlorobenzophenone<br>3,4-Dichlorobenzophenone<br>3,4'-Dichlorobenzophenone                                    | 3:3860<br>3:3070<br>3:3415             | $C_{14}H_{27}OCl$ M.W.=246.8<br>Myristoyl chloride                                                  | Cl=14.4%<br>3:9885           |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------|
| 3,5-Dichlorobenzophenone 4,4'-Dichlorobenzophenone                                                                    | 3:1505<br>3:4270                       | $C_{14}H_{20}OCl$ M.W. = 248.8<br>14-Chlorotetradecanol-1                                           | Cl=14.2%<br>3: <b>93</b> 75  |
| C <sub>18</sub> H <sub>9</sub> OCl M.W.=216.7<br>2-Chlorobenzophenone<br>3-Chlorobenzophenone<br>4-Chlorobenzophenone | Cl=16.4%<br>3:0715<br>3:2160<br>3:1914 | C <sub>15</sub> GROUP<br>C <sub>15</sub> H <sub>29</sub> OCl M.W. = 260.8<br>Pentadecanoyl chloride | Cl=13.6%<br>3:9900           |
| C <sub>14</sub> H <sub>26</sub> OCl M.W.=232.8<br>Tridecanoyl chloride                                                | Cl=15.2%<br>3:9860                     | $C_{16}$ GROUP<br>$C_{16}H_{31}OCl$ M.W. = 274.9<br>Palmitoyl chloride                              | Cl=12.9%<br>3:9912           |
| $C_{14}$ GROUP $C_{14}H_7O_2Cl$ M.W. = 242.7  1-Chloroanthraquinone  2-Chloroanthraquinone                            | Cl=14.6%<br>3:4480<br>3:4922           | C <sub>16</sub> H <sub>38</sub> OCl M.W. = 276.9<br>16-Chlorohexadecanol-1                          | Cl=12.8%<br>3:0525           |
| C <sub>14</sub> H <sub>9</sub> O <sub>2</sub> Cl M.W.=244.7<br>o-Benzoylbenzoyl chloride                              | Cl=14.5%<br>3:9880                     | C <sub>17</sub> GROUP<br>C <sub>17</sub> H <sub>29</sub> OCl M.W.=288.9<br>Heptadecanoyl chloride   | Cl = 12.3%<br>3:9925         |
| $C_{14}H_{10}OCl_2$ M.W. = 265.1<br>$\alpha$ -Chlorodiphenylacetyl chloride                                           | C1 = 26.8%<br>3:0885                   | C <sub>18</sub> GROUP                                                                               |                              |
| $C_{14}H_{10}O_2Cl_2$ M.W. = 281.1<br>D <sub>1</sub> -(p-chlorophenyl) acetic acid                                    | Cl=25.2%<br>3:4613                     | C <sub>18</sub> H <sub>38</sub> OCl M.W. = 300.9<br>Elaidyl chloride<br>Oleoyl chloride             | Cl=11.8%<br>3:9950<br>3:9940 |
| $C_{14}H_{11}OCl$ M.W. = 230.7<br>p-Phenylphenacyl chloride<br>Desyl chloride                                         | Cl=15.4%<br>3:3934<br>3:1618           | $C_{18}H_{35}OC1$ M.W. = 302.9<br>Stearoyl chloride                                                 | Cl=11.7%<br>3:9960           |
| $C_{14}H_{11}O_2Cl$ M.W. = 246.7<br>Diphenylchloroacetic acid                                                         | Cl=14.4%<br>3:3585                     | C <sub>18</sub> H <sub>37</sub> OCl M.W. = 304.9<br>18-Chloro-octadecanol-1                         | Cl=11.6%<br>3:0985           |

# II. INDEX OF EMPIRICAL FORMULAS ACCORDING TO PERCENTAGE CHLORINE CONTENT

The empirical formulas for all groups of isomers listed in this book are represented below in diminishing order of their percentage chlorine. Note that there are numerous instances in which this value is the same for several different formulas. An analogous list of empirical formulas arranged according to their molecular weights comprises Index III (page 1383).

To ascertain which specific compounds corresponding to a given formula are described in the text of this volume, see the Empirical Formula Index (page 1359).

| %        |                                               | . %          |                                                | %        |                                                              |  |  |
|----------|-----------------------------------------------|--------------|------------------------------------------------|----------|--------------------------------------------------------------|--|--|
| Chlorine | Formula                                       | Chlorine     | Formula                                        | Chlorine | Formula                                                      |  |  |
| 92.2     | CCL                                           | 76.9         | C4OCl6                                         | 68.0     | C7OCls                                                       |  |  |
| 89.9     | C <sub>2</sub> Cl <sub>6</sub>                | <b>75.8</b>  | C <sub>2</sub> O <sub>2</sub> Cl <sub>6</sub>  | 67.6     | C <sub>4</sub> H <sub>8</sub> Cl <sub>8</sub>                |  |  |
| 89.1     | CHCl <sub>2</sub>                             | 74.7         | $C_2Cl_2$                                      | 67.6     | C <sub>5</sub> H <sub>8</sub> Cl <sub>4</sub>                |  |  |
| 88.7     | C <sub>2</sub> Cl <sub>8</sub>                | <b>74</b> .7 | C <sub>6</sub> Cl <sub>6</sub>                 | 67.2     | C6O2Cl6                                                      |  |  |
| 87.6     | C <sub>2</sub> HCl <sub>5</sub>               | 74.5         | C7HCl7                                         | 67.1     | C7H8Cl5                                                      |  |  |
| 87.0     | C <sub>2</sub> HCl <sub>7</sub>               | 73.9         | C <sub>4</sub> H <sub>2</sub> Cl <sub>4</sub>  | 66.9     | $C_3H_2O_2Cl_4$                                              |  |  |
| 85.5     | C <sub>2</sub> Cl <sub>4</sub>                | 73.2         | C <sub>8</sub> OCl <sub>4</sub>                | 66.7     | $C_4H_5Cl_3$                                                 |  |  |
| 85.5     | C <sub>2</sub> Cl <sub>6</sub>                | 73.1         | $C_2H_2Cl_2$                                   | 66.6     | C <sub>6</sub> HOCl <sub>5</sub>                             |  |  |
| 85.0     | $C_4H_2Cl_8$                                  | 73.1         | $C_8H_3Cl_8$                                   | 65.9     | C <sub>2</sub> H <sub>3</sub> OCl <sub>3</sub>               |  |  |
| 84.8     | C <sub>3</sub> H <sub>2</sub> Cl <sub>6</sub> | 73.1         | C <sub>4</sub> H <sub>4</sub> Cl <sub>4</sub>  | 65.9     | $C_4H_7Cl_8$                                                 |  |  |
| 84.7     | C4OCl10                                       | 73.1         | C6H6Cl6                                        | 65.9     | C <sub>5</sub> H <sub>2</sub> O <sub>3</sub> Cl <sub>6</sub> |  |  |
| 84.5     | $C_2H_2Cl_4$                                  | 72.5         | C <sub>5</sub> H <sub>7</sub> Cl <sub>5</sub>  | 65.7     | C <sub>6</sub> H <sub>2</sub> Cl <sub>4</sub>                |  |  |
| 83.5     | $CH_2Cl_2$                                    | <b>72.4</b>  | C <sub>3</sub> H <sub>2</sub> OCl <sub>4</sub> | 65.1     | C <sub>2</sub> HO <sub>2</sub> Cl <sub>3</sub>               |  |  |
| 82.9     | C <sub>4</sub> H <sub>3</sub> Cl <sub>7</sub> | 72.4         | C4H6Cl4                                        | 64.5     | CaHoOCla                                                     |  |  |
| 82.7     | C <sub>8</sub> HCl <sub>5</sub>               | 72.2         | C <sub>2</sub> HOCl <sub>3</sub>               | 64.5     | $C_6H_6Cl_4$                                                 |  |  |
| 82.5     | C <sub>b</sub> Cl <sub>8</sub>                | 72.1         | C <sub>3</sub> H <sub>5</sub> Cl <sub>3</sub>  | 64.3     | C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> Cl <sub>2</sub> |  |  |
| 82.0     | $C_8H_8Cl_5$                                  | 72.0         | $C_3HO_2Cl_5$                                  | 63.9     | C <sub>2</sub> H <sub>4</sub> Cl <sub>2</sub>                |  |  |
| 81.6     | C <sub>4</sub> Cl <sub>6</sub>                | 71.7         | $COCl_2$                                       | 63.9     | C <sub>4</sub> O <sub>2</sub> Cl <sub>4</sub>                |  |  |
| 81.1     | $C_4H_2OCl_8$                                 | 71.7         | $C_2O_2Cl_4$                                   | 63.7     | C7HOCl5                                                      |  |  |
| 81.0     | C <sub>2</sub> HCl <sub>3</sub>               | 71.7         | $C_2H_4Cl_2$                                   | 63.3     | C <sub>4</sub> H <sub>2</sub> O <sub>2</sub> Cl <sub>4</sub> |  |  |
| 81.0     | C4H2Cl6                                       | 71.7         | C <sub>3</sub> O <sub>3</sub> Cl <sub>6</sub>  | 63.3     | $C_6H_{10}Cl_4$                                              |  |  |
| 80.3     | C4H4Cl6                                       | 71.7         | C <sub>8</sub> H <sub>4</sub> OCl <sub>4</sub> | 62.8     | C <sub>2</sub> H <sub>2</sub> OCl <sub>2</sub>               |  |  |
| 79.7     | C <sub>2</sub> H <sub>3</sub> Cl <sub>3</sub> | 71.2         | C <sub>2</sub> H <sub>8</sub> OCl <sub>8</sub> | 62.8     | C <sub>8</sub> H <sub>6</sub> Cl <sub>2</sub>                |  |  |
| 78.8     | C <sub>4</sub> H <sub>2</sub> Cl <sub>4</sub> | 71.2         | C7H2Cl6                                        | 62.8     | C <sub>4</sub> H <sub>4</sub> O <sub>2</sub> Cl <sub>4</sub> |  |  |
| 78.3     | C4HCl5                                        | 70.8         | C <sub>6</sub> HCl <sub>5</sub>                | 61.7     | $C_2H_4OCl_2$                                                |  |  |
| 78.0     | C2OCl4                                        | 70.7         | C <sub>6</sub> OCl <sub>6</sub>                | 61.7     | C7H4Cl4                                                      |  |  |
| 78.0     | C <sub>8</sub> H <sub>4</sub> Cl <sub>4</sub> | 70.3         | C <sub>10</sub> Cl <sub>8</sub>                | 61.3     | C <sub>5</sub> H <sub>7</sub> Cl <sub>2</sub>                |  |  |
| 77.6     | C4H3Cl5                                       | 70.2         | CH <sub>2</sub> Cl                             | 61.2     | C <sub>6</sub> H <sub>2</sub> OCl <sub>4</sub>               |  |  |
| 77.0     | C <sub>8</sub> HOCl <sub>5</sub>              | 68.9         | C <sub>4</sub> O <sub>8</sub> Cl <sub>6</sub>  | 60.6     | C <sub>3</sub> HO <sub>2</sub> Cl <sub>3</sub>               |  |  |
| 77.0     | C <sub>4</sub> H <sub>4</sub> Cl <sub>5</sub> | 68.6         | C <sub>6</sub> H <sub>9</sub> Cl <sub>5</sub>  | 60.6     | C <sub>4</sub> H <sub>5</sub> OCl <sub>3</sub>               |  |  |
|          | 1380                                          |              |                                                |          |                                                              |  |  |

| %           |                                                              | %            |                                                                                                   | %        |                                                                |
|-------------|--------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------|
| Chlorine    | Formula .                                                    | Chlorine     | Formula                                                                                           | Chlorine | Formula.                                                       |
| 60.6        | $C_5H_9Cl_8$                                                 | 48.0         | C <sub>5</sub> H <sub>7</sub> O <sub>8</sub> Cl <sub>8</sub>                                      | 38.3     | C <sub>4</sub> H <sub>9</sub> Cl                               |
| 60.2        | C7HO2Cl5                                                     | 48.0         | C <sub>6</sub> H <sub>11</sub> O <sub>2</sub> Cl <sub>8</sub>                                     | 37.9     | C4H4O4Cl2                                                      |
| 59.9        | C <sub>4</sub> H <sub>7</sub> OCl <sub>8</sub>               | 47.6         | C <sub>8</sub> H <sub>8</sub> Cl                                                                  | 37.9     | $C_6H_8O_8Cl_2$                                                |
| <b>59.6</b> | C <sub>4</sub> Cl <sub>2</sub>                               | 47.6         | C <sub>6</sub> H <sub>6</sub> Cl <sub>2</sub>                                                     | 37.9     | $C_6H_{12}O_2Cl_2$                                             |
| 59.2        | C <sub>4</sub> H <sub>2</sub> O <sub>8</sub> Cl <sub>4</sub> | 47.6         | C <sub>8</sub> H <sub>5</sub> OCl <sub>3</sub>                                                    | 37.5     | C <sub>2</sub> H <sub>3</sub> O <sub>2</sub> Cl                |
| 58.6        | C <sub>2</sub> HCl                                           | 47.2         | C7H3O2Cl3                                                                                         | 37.5     | CaH7OC1                                                        |
| 58.6        | $C_6H_3Cl_8$                                                 | 47.2         | C <sub>8</sub> H <sub>7</sub> OCl <sub>8</sub>                                                    | 37.5     | C <sub>8</sub> H <sub>6</sub> OCl <sub>2</sub>                 |
| 58.1        | C <sub>8</sub> OCl <sub>6</sub>                              | <b>47.0</b>  | $C_6H_8Cl_2$                                                                                      | 37.5     | C <sub>14</sub> H <sub>9</sub> Cl <sub>8</sub>                 |
| 58.1        | C7H2OCL                                                      | 46.7         | C <sub>8</sub> H <sub>2</sub> O <sub>4</sub> Cl <sub>4</sub>                                      | 37.2     | C <sub>14</sub> H <sub>11</sub> Cl <sub>4</sub>                |
| 58.0        | $C_6H_5Cl_8$                                                 | 46.4         | $C_4H_2O_2Cl_2$                                                                                   | 37.1     | C7H4O2Cl2                                                      |
| 57.7        | $C_4H_4Cl_2$                                                 | 46.4         | $C_6H_3O_3Cl_3$                                                                                   | 37.1     | C <sub>8</sub> H <sub>8</sub> OCl <sub>2</sub>                 |
| 57.7        | $C_6O_2Cl_4$                                                 | 46.3         | $C_8H_6Cl$                                                                                        | 36.0     | C <sub>7</sub> H <sub>10</sub> O <sub>2</sub> Cl <sub>2</sub>  |
| 57.4        | C <sub>6</sub> H <sub>7</sub> Cl <sub>8</sub>                | 46.3         | C <sub>6</sub> H <sub>10</sub> Cl <sub>2</sub>                                                    | 36.0     | C <sub>2</sub> H <sub>18</sub> Cl <sub>2</sub>                 |
| 57.2        | C <sub>6</sub> H <sub>2</sub> O <sub>2</sub> Cl <sub>4</sub> | 46.0         | C10H6Cls                                                                                          | 36.0     | C <sub>10</sub> H <sub>6</sub> Cl <sub>2</sub>                 |
| 56.8        | C <sub>4</sub> HO <sub>2</sub> Cl <sub>3</sub>               | 45.7         | $C_4H_4O_2Cl_2$                                                                                   | 34.9     | C <sub>8</sub> H <sub>4</sub> O <sub>2</sub> Cl <sub>2</sub>   |
| 56.7        | C <sub>2</sub> H <sub>3</sub> Cl                             | 45.7         | C <sub>6</sub> H <sub>8</sub> OCl <sub>2</sub>                                                    | 34.6     | C <sub>6</sub> H <sub>7</sub> Cl                               |
| 56.7        | C <sub>4</sub> H <sub>6</sub> Cl <sub>2</sub>                | 45.7         | C <sub>6</sub> H <sub>12</sub> Cl <sub>2</sub>                                                    | 34.3     | C7H4O8Cl2                                                      |
| 56.7        | C <sub>6</sub> H <sub>9</sub> Cl <sub>8</sub>                | 45.6         | C <sub>7</sub> H <sub>11</sub> O <sub>2</sub> Cl <sub>3</sub>                                     | 33.9     | C <sub>3</sub> HO <sub>2</sub> Cl                              |
| 56.0        | C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> Cl <sub>8</sub> | 45.2<br>45.2 | C <sub>2</sub> H <sub>8</sub> OCl<br>C <sub>4</sub> H <sub>6</sub> O <sub>2</sub> Cl <sub>2</sub> | 33.9     | C <sub>4</sub> H <sub>5</sub> OCl                              |
| 55.9        | $C_2O_2Cl_2$                                                 | 40.2         | C4H6O2CI2                                                                                         | 33.9     | C <sub>5</sub> H <sub>9</sub> Cl                               |
| 55.9        | $C_8H_4OCl_2$                                                | 45.2         | $C_6H_9O_8Cl_8$                                                                                   | 33.9     | C <sub>6</sub> H <sub>2</sub> O <sub>4</sub> Cl <sub>2</sub>   |
| 55.8        | $C_4H_8Cl_2$                                                 | <b>45.1</b>  | C <sub>8</sub> H <sub>7</sub> Cl                                                                  | 33.6     | C <sub>8</sub> H <sub>12</sub> O <sub>2</sub> Cl <sub>2</sub>  |
| 55.6        | $C_4H_5O_2Cl_8$                                              | 44.6         | $C_4H_8O_2Cl_2$                                                                                   | 33.6     | $C_{10}H_{20}Cl_2$                                             |
| 55.1        | $C_2H_5Cl$                                                   | 44.6         | C <sub>14</sub> H <sub>8</sub> Cl <sub>4</sub>                                                    | 33.3     | C <sub>2</sub> H <sub>3</sub> O <sub>2</sub> Cl                |
| 55.0        | $C_2H_2O_2Cl_2$                                              | 44.3         | $C_{14}H_{10}Cl_4$                                                                                | 33.3     | C <sub>4</sub> H <sub>7</sub> OCl                              |
| 55.0        | CaH6OCl2                                                     | 44.0         | C <sub>2</sub> H <sub>5</sub> OCl                                                                 | 33.3     | C <sub>5</sub> H <sub>11</sub> Cl                              |
| 55.0        | C <sub>4</sub> H <sub>7</sub> O <sub>2</sub> Cl <sub>3</sub> | 44.0         | C7H6Cl2                                                                                           | 33.3     | C10H6OCl2                                                      |
| 54.7        | C14H8Cl6                                                     | 43.5         | C <sub>6</sub> H <sub>4</sub> OCl <sub>2</sub>                                                    | 33.3     | C12H21O2Cla                                                    |
| 54.6        | $C_7H_2O_2Cl_4$                                              | 42.5         | $C_4O_8Cl_2$                                                                                      | 33.0     | C6H8O4Cl2                                                      |
| 54.4        | $C_7H_5Cl_3$                                                 | 42.0         | $C_6H_6O_2Cl_2$                                                                                   | 33.0     | C7H12O8Cl2                                                     |
| 54.2        | $C_2H_4O_2Cl_2$                                              | 41.9         | $C_7H_{14}Cl_2$                                                                                   | 32.7     | C <sub>3</sub> H <sub>5</sub> O <sub>2</sub> Cl                |
| 53.9        | $C_6H_8OCl_8$                                                | 41.6         | $C_6H_{12}OCl_2$                                                                                  | 32.7     | C <sub>4</sub> H <sub>9</sub> OCl                              |
| 52.5        | $C_{10}H_8Cl_4$                                              | 41.6         | $C_8H_8O_8Cl_8$                                                                                   | 32.7     | $C_8H_2O_8Cl_2$                                                |
| 51.8        | $C_5H_6Cl_2$                                                 | 41.5         | C <sub>4</sub> H <sub>4</sub> O <sub>3</sub> Cl <sub>2</sub>                                      | 32.1     | C <sub>8</sub> H <sub>7</sub> O <sub>2</sub> Cl                |
| 51.8        | $C_bH_7O_2Cl_8$                                              | 41.5         | $C_5H_8O_2Cl_2$                                                                                   | 32.1     | $C_8H_6O_8Cl_2$                                                |
| 51.3        | C4H5O3Cl3                                                    | 41.0         | C4H3Cl                                                                                            | 31.8     | $C_{12}H_8Cl_2$                                                |
| 51.0        | $C_bH_8Cl_2$                                                 | 41.0         | C <sub>4</sub> H <sub>6</sub> O <sub>8</sub> Cl <sub>2</sub>                                      | 31.5     | C <sub>6</sub> H <sub>6</sub> Cl                               |
| 50.8        | C7H8OCl3                                                     | 40.5         | C7H4OCl2                                                                                          | 31.5     | C <sub>9</sub> H <sub>14</sub> O <sub>2</sub> Cl <sub>2</sub>  |
| 50.3        | C <sub>3</sub> H <sub>2</sub> O <sub>2</sub> Cl <sub>2</sub> | 40.5<br>40.1 | $C_8H_8Cl_2$<br>$C_4H_5Cl$                                                                        | 30.4     | C <sub>6</sub> H <sub>9</sub> Cl                               |
| 50.3        | $C_4H_6OCl_2$                                                | 40.1         | Canto                                                                                             | 30.2     | C <sub>8</sub> H <sub>4</sub> O <sub>4</sub> Cl <sub>2</sub>   |
| 50.3        | $C_{\delta}H_{10}Cl_{2}$                                     | 40.1         | C <sub>6</sub> H <sub>2</sub> O <sub>2</sub> Cl <sub>2</sub>                                      | 29.9     | C <sub>5</sub> H <sub>7</sub> OCl                              |
| 50.3        | $C_6HO_2Cl_8$                                                | 40.1         | C7H6OCl2                                                                                          | 29.9     | C <sub>6</sub> H <sub>11</sub> Cl                              |
| 50.3        | C7H5OCl3                                                     | 39.6         | C <sub>6</sub> H <sub>4</sub> O <sub>2</sub> Cl <sub>2</sub>                                      | 29.9     | C <sub>18</sub> H <sub>10</sub> Cl <sub>2</sub>                |
| 50.0        | C <sub>14</sub> H <sub>9</sub> Cl <sub>5</sub>               | 39.6         | C <sub>8</sub> H <sub>12</sub> Cl <sub>2</sub>                                                    | 29.7     | C <sub>10</sub> H <sub>16</sub> O <sub>2</sub> Cl <sub>2</sub> |
| 49.8        | $C_6H_8O_2Cl_8$                                              | 39.2         | C <sub>3</sub> H <sub>3</sub> OCl                                                                 | 29.6     | $C_8H_{12}O_4Cl_2$                                             |
| 49.6        | C <sub>3</sub> H <sub>4</sub> O <sub>2</sub> Cl <sub>2</sub> | 39.2         | C <sub>4</sub> H <sub>7</sub> Cl                                                                  | 29.4     | C4H6O2Cl                                                       |
| 49.6        | C4H8OCl2                                                     | 38.7         | C <sub>6</sub> H <sub>8</sub> O <sub>2</sub> Cl <sub>2</sub>                                      | 29.4     | C <sub>t</sub> H <sub>t</sub> OCl                              |
| 49.6        | C <sub>8</sub> O <sub>8</sub> CL                             | 38.7         | C <sub>8</sub> H <sub>16</sub> Cl <sub>2</sub>                                                    | 29.4     | C <sub>6</sub> H <sub>18</sub> Cl                              |
| 48.6        | C <sub>6</sub> H <sub>9</sub> O <sub>2</sub> Cl <sub>3</sub> | 38.3         | C <sub>3</sub> H <sub>4</sub> OCl                                                                 | 28.9     | C <sub>4</sub> H <sub>7</sub> O <sub>2</sub> Cl                |
| 48.2        | $C_6H_4Cl_2$                                                 | 38.3         | $C_4H_2O_4Cl_3$                                                                                   | 28.9     | C <sub>5</sub> H <sub>11</sub> OCl                             |

| %            |                                                  | %            |                                                               | %        |                                                           |
|--------------|--------------------------------------------------|--------------|---------------------------------------------------------------|----------|-----------------------------------------------------------|
| Chlorine     | Formula                                          | Chlorine     | Formula                                                       | Chlorine | Formula                                                   |
| 28.7         | C14HaCl2                                         | 22.6         | C <sub>8</sub> H <sub>9</sub> OCl                             | 17.7     | $C_{10}H_{13}O_2Cl$                                       |
| 28.5         | C <sub>4</sub> H <sub>9</sub> O <sub>2</sub> Cl  | 22.4         | C <sub>2</sub> H <sub>15</sub> Cl                             | 17.5     | C <sub>18</sub> H <sub>11</sub> Cl                        |
| 28.5         | C14H10Cl2                                        | 22.1         | C <sub>2</sub> H <sub>17</sub> Cl                             | 17.3     | C <sub>11</sub> H <sub>21</sub> OCl                       |
| 28.3         | C <sub>14</sub> H <sub>12</sub> Cl <sub>2</sub>  | 21.8         | C <sub>7</sub> H <sub>11</sub> O <sub>2</sub> Cl              | 17.3     | C <sub>12</sub> H <sub>2</sub> OCl                        |
| 28.2         | C <sub>12</sub> H <sub>8</sub> OCl <sub>2</sub>  | 21.8         | C <sub>8</sub> H <sub>15</sub> OCl                            | 17.3     | $C_{12}H_{25}Cl$                                          |
|              | 0,422,0004                                       | 22.0         | ,                                                             |          | - 13 20                                                   |
| 28.0         | $C_7H_7Cl$                                       | 21.8         | C <sub>9</sub> H <sub>19</sub> Cl                             | 17.2     | $C_8H_{11}O_4Cl$                                          |
| 27.6         | C <sub>6</sub> H <sub>6</sub> OCl                | 21.8         | C <sub>10</sub> H <sub>7</sub> Cl                             | 17.2     | $C_{11}H_7O_2Cl$                                          |
| 27.6         | C7H9Cl                                           | 21.5         | C <sub>6</sub> H <sub>9</sub> O <sub>3</sub> Cl               | 16.4     | C <sub>18</sub> H <sub>9</sub> OCl                        |
| 27.2         | $C_5H_8O_2Cl$                                    | 21.5         | $C_7H_{13}O_2Cl$                                              | 16.2     | $C_{12}H_{23}OCl$                                         |
| 27.1         | C7H11Cl                                          | 21.5         | C <sub>8</sub> H <sub>17</sub> OCl                            | 16.2     | $C_{18}H_{27}Cl$                                          |
| 26.8         | C4HO2Cl                                          | 21.5         | C <sub>2</sub> H <sub>5</sub> OCl                             | 16.1     | C <sub>12</sub> H <sub>25</sub> OCl                       |
| 26.8         | C <sub>14</sub> H <sub>10</sub> OCl <sub>2</sub> | 21.3<br>21.3 | C <sub>7</sub> H <sub>16</sub> O <sub>2</sub> Cl              | 15.6     |                                                           |
| 26.7         | C <sub>6</sub> H <sub>9</sub> OCl                | 21.3<br>21.3 | C <sub>9</sub> H <sub>7</sub> OCl                             | 15.4     |                                                           |
| 26.7<br>26.7 | C <sub>7</sub> H <sub>18</sub> Cl                | 21.0<br>21.0 | C <sub>9</sub> H <sub>9</sub> OCl                             | 15.2     | C <sub>13</sub> H <sub>25</sub> OCl                       |
| 26.4         | C <sub>5</sub> H <sub>7</sub> O <sub>2</sub> Cl  | 21.0         | C <sub>10</sub> H <sub>18</sub> Cl                            | 15.2     | C <sub>14</sub> H <sub>29</sub> Cl                        |
| 20.2         | Childon                                          | 21.0         | ClottisCi                                                     | 10.2     | 014112901                                                 |
| 26.3         | C <sub>6</sub> H <sub>11</sub> OCl               | 20.8         | C <sub>8</sub> H <sub>7</sub> O <sub>2</sub> Cl               | 15.1     | $C_{11}H_{19}O_3Cl$                                       |
| 26.3         | C7H15Cl                                          | 20.8         | C <sub>2</sub> H <sub>11</sub> OCl                            | 14.6     | C <sub>14</sub> H <sub>7</sub> O <sub>2</sub> Cl          |
| 26.0         | C <sub>4</sub> H <sub>5</sub> O <sub>3</sub> Cl  | 20.6         | C7H5O3Cl                                                      | 14.5     | C14H0O2Cl                                                 |
| 26.0         | C <sub>5</sub> H <sub>9</sub> O <sub>2</sub> Cl  | 20.5         | $C_{10}H_{17}Cl$                                              | 14.4     | $C_9H_5O_6Cl$                                             |
| 26.0         | C <sub>6</sub> H <sub>13</sub> OCl               | 20.3         | $C_{10}H_{19}Cl$                                              | 14.4     | $\mathrm{C}_{14}\mathrm{H}_{11}\mathrm{O}_{2}\mathrm{Cl}$ |
| 25.6         | C <sub>4</sub> H <sub>7</sub> O <sub>3</sub> Cl  | 20.1         | C <sub>9</sub> H <sub>17</sub> OCl                            | 14.4     | C <sub>14</sub> H <sub>27</sub> OCl                       |
| 25.6         | C <sub>8</sub> H <sub>7</sub> Cl                 | 20.1         | $C_{10}H_{21}Cl$                                              | 14.4     | $C_{15}H_{31}Cl$                                          |
| 25.2         | C7H5OCl                                          | 20.1         | C <sub>11</sub> H <sub>9</sub> Cl                             | 14.2     | C14H29OCl                                                 |
| 25.2         | C <sub>8</sub> H <sub>9</sub> Cl                 | 19.9         | C <sub>6</sub> H <sub>7</sub> O <sub>4</sub> Cl               | 13.6     | C <sub>15</sub> H <sub>29</sub> OCl                       |
| 25.2         | $\mathrm{C_{14}H_{10}O_{2}Cl_{2}}$               | 19.9         | $C_8H_{15}O_2Cl$                                              | 13.6     | $C_{16}H_{83}Cl$                                          |
| 25.1         | CaHaCl                                           | 19.8         | C <sub>9</sub> H <sub>19</sub> OCl                            | 12.9     | C <sub>16</sub> H <sub>31</sub> OCl                       |
| 24.9         | C <sub>6</sub> H <sub>8</sub> O <sub>2</sub> Cl  | 19.8         | C <sub>10</sub> H <sub>7</sub> OCl                            | 12.9     | C <sub>17</sub> H <sub>35</sub> Cl                        |
| 24.9         | C <sub>7</sub> H <sub>7</sub> OCl                | 19.6         | C <sub>8</sub> H <sub>17</sub> O <sub>2</sub> Cl              | 12.8     | C <sub>16</sub> H <sub>25</sub> OCl                       |
| 24.5         | C <sub>6</sub> H <sub>5</sub> O <sub>2</sub> Cl  | 19.6         | C <sub>2</sub> H <sub>5</sub> O <sub>2</sub> Cl               | 12.7     | C <sub>19</sub> H <sub>15</sub> Cl                        |
| 24.5         | C <sub>8</sub> H <sub>18</sub> Cl                | 19.4         | C <sub>6</sub> H <sub>11</sub> O <sub>4</sub> Cl              | 12.3     | C <sub>17</sub> H <sub>88</sub> OCl                       |
|              |                                                  |              |                                                               |          |                                                           |
| 24.2         | C7H11OCl                                         | 19.4         | C <sub>8</sub> H <sub>3</sub> O <sub>8</sub> Cl               | 12.3     | $C_{18}H_{87}Cl$                                          |
| 24.2         | C <sub>8</sub> H <sub>18</sub> Cl                | 19.4         | C <sub>10</sub> H <sub>11</sub> OCl                           | 12.2     | $C_{10}H_{15}Cl$                                          |
| 23.9         | C <sub>6</sub> H <sub>9</sub> O <sub>2</sub> Cl  | 19.2         | C <sub>8</sub> H <sub>6</sub> O <sub>8</sub> Cl               | 11.8     | C <sub>18</sub> H <sub>38</sub> OCl                       |
| 23.9         | C <sub>7</sub> H <sub>18</sub> OCl               | 19.2         | C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> Cl               | 11.7     | C <sub>18</sub> H <sub>85</sub> OCl                       |
| 23.9         | C <sub>8</sub> H <sub>17</sub> Cl                | 19.2         | $C_{10}H_{13}OCl$                                             | 11.7     | $C_{14}H_{13}Cl$                                          |
| 23.6         | C <sub>4</sub> H <sub>8</sub> O <sub>4</sub> Cl  | 19.0         | C <sub>8</sub> H <sub>7</sub> O <sub>8</sub> Cl               | 11.6     | C <sub>18</sub> H <sub>87</sub> OCl                       |
| 23.5         | C <sub>5</sub> H <sub>7</sub> O <sub>8</sub> Cl  | 18.8         | $\mathbf{C_{12}H_{9}Cl}$                                      |          |                                                           |
| 23.5         | $C_6H_{11}O_2Cl$                                 | 18.6         | $C_{10}H_{19}OCl$                                             |          |                                                           |
| 23.5         | C7H15OCl                                         | 18.6         | $\mathbf{C_{11}H_{28}Cl}$                                     |          |                                                           |
| 23. <b>2</b> | C <sub>6</sub> H <sub>9</sub> O <sub>3</sub> Cl  | 18.6         | $C_{11}H_7OCl$                                                |          |                                                           |
| 23.2         | C <sub>6</sub> H <sub>12</sub> O <sub>2</sub> Cl | 18.5         | C <sub>10</sub> H <sub>4</sub> O <sub>2</sub> Cl <sub>2</sub> |          |                                                           |
| 23.2         | C <sub>2</sub> H <sub>2</sub> Cl                 | 18.4         | C <sub>10</sub> H <sub>5</sub> O <sub>2</sub> Cl              |          |                                                           |
| 22.9         | CaHrOCl                                          | 18.4         | C <sub>10</sub> H <sub>21</sub> OCl                           |          |                                                           |
| 22.9         | C <sub>2</sub> H <sub>11</sub> Cl                | 18.2         | C7H11O4Cl                                                     |          |                                                           |
| 22.7         | C7H5O2Cl                                         | 17.7         | C <sub>8</sub> H <sub>5</sub> O <sub>4</sub> Cl               |          |                                                           |
|              | <del>-</del> -                                   |              | -                                                             |          |                                                           |

# III. INDEX OF EMPIRICAL FORMULAS ACCORDING TO MOLECULAR WEIGHTS

The empirical formulas for all groups of isomers listed in this book are represented below in increasing order of their molecular weights. Note that there are numerous instances in which this value is the same for several different formulas. An analogous list of empirical formulas arranged according to their percentage chlorine comprises Index II (page 1380).

To ascertain which specific compounds corresponding to a given formula are described in the text of this volume see the Empirical Formula Index (page 1359).

| M.W.         | Formula                                         | M.W.  | Formula                                         | M.W.           | Formula                                          |
|--------------|-------------------------------------------------|-------|-------------------------------------------------|----------------|--------------------------------------------------|
| 50.5         | CH <sub>2</sub> Cl                              | 113.0 | C <sub>2</sub> H <sub>6</sub> Cl <sub>2</sub>   | 136.5          | $C_4H_5O_3Cl$                                    |
| 60.5         | C <sub>2</sub> HCl                              | 115.0 | C <sub>2</sub> H <sub>4</sub> OCl <sub>2</sub>  | 136.6          | C <sub>5</sub> H <sub>9</sub> O <sub>2</sub> Cl  |
| 62.5         | C <sub>2</sub> H <sub>2</sub> Cl                | 116.6 | $C_6H_9Cl$                                      | 136.6          | C <sub>6</sub> H <sub>18</sub> OCl               |
| 64.5         | C <sub>2</sub> H <sub>5</sub> Cl                | 118.6 | C <sub>5</sub> H <sub>7</sub> OCl               | 136.6          | C <sub>8</sub> H <sub>5</sub> Cl                 |
| 74.5         | $C_3H_3Cl$                                      | 118.6 | $C_0H_{11}Cl$                                   | 137.0          | $C_5H_6Cl_2$                                     |
| 76.5         | $C_3H_5Cl$                                      | 119.0 | $C_4Cl_2$                                       | 138.6          | C <sub>4</sub> H <sub>7</sub> O <sub>8</sub> Cl  |
| 78.5         | $C_2H_3OCI$                                     | 119.4 | CHCl <sub>3</sub>                               | 138.6          | $C_8H_7Cl$                                       |
| 78.5         | $C_3H_7Cl$                                      | 120.5 | $C_4H_6O_2Cl$                                   | 139.0          | $C_5H_8Cl_2$                                     |
| 80.5         | C <sub>2</sub> H <sub>5</sub> OCl               | 120.6 | $C_bH_9OCl$                                     | 140.6          | C7H5OCl                                          |
| 84.9         | $\mathrm{CH_2Cl_2}$                             | 120.6 | $C_6H_{18}Cl$                                   | 140.6          | $C_8H_9Cl$                                       |
| 86.5         | $C_4H_3Cl$                                      | 122.6 | $C_4H_7O_2Cl$                                   | 141.0          | $C_8H_2O_2Cl_2$                                  |
| 88. <b>5</b> | C₄H₅Cl                                          | 122.6 | $C_5H_{11}OCl$                                  | 141.0          | $C_4H_6OCl_2$                                    |
| 90.5         | $C_3H_3OCl$                                     | 123.0 | $C_4H_4Cl_2$                                    | 141.0          | $C_6H_{10}Cl_2$                                  |
| 90.6         | C <sub>4</sub> H <sub>7</sub> Cl                | 124.1 | $C_3OCl_6$                                      | 142.5          | $C_6H_3O_2Cl$                                    |
| 92.5         | $C_3H_5OCl$                                     | 124.6 | $C_4H_9O_2Cl$                                   | 142.6          | C7H7OCl                                          |
| 92.6         | C <sub>4</sub> H <sub>9</sub> Cl                | 125.0 | $C_4H_6Cl_2$                                    | 143.0          | $C_3H_4O_2Cl_2$                                  |
| 94.5         | $C_2H_3O_2Cl$                                   | 126.6 | $C_7H_7Cl$                                      | 143.0          | $C_4H_8OCl_2$                                    |
| 94.5         | C <sub>3</sub> H <sub>7</sub> OCl               | 126.9 | $C_2O_2Cl_2$                                    | 1 <b>44</b> .6 | $C_6H_6O_2Cl$                                    |
| 94.9         | $C_2Cl_2$                                       | 127.0 | $C_3H_4OCl_2$                                   | 144.6          | $C_8H_{18}Cl$                                    |
| 97.0         | $C_2H_2Cl_2$                                    | 127.0 | $C_4H_8Cl_2$                                    | 145.4          | C <sub>8</sub> H <sub>8</sub> Cl <sub>8</sub>    |
| 98.9         | COCl <sub>2</sub> `                             | 128.6 | $C_6H_5OCl$                                     | 146.6          | C7H11OCl                                         |
| 99.0         | $C_2H_4Cl_2$                                    | 128.6 | C7H9Cl                                          | <b>146.7</b>   | $C_8H_{16}Cl$                                    |
| 102.6        | $C_bH_7Cl$                                      | 128.9 | $C_2H_2O_2Cl_2$                                 | 147.0          | $C_6H_4Cl_2$                                     |
| 104.5        | $C_8HO_2Cl$                                     | 129.0 | $C_3H_6OCl_2$                                   | 147.4          | C <sub>2</sub> HOCl <sub>8</sub>                 |
| 104.5        | C <sub>4</sub> H <sub>5</sub> OCl               | 130.5 | $\mathrm{C_5H_3O_2Cl}$                          | 147.4          | $C_8H_5Cl_8$                                     |
| 104.6        | $C_bH_9Cl$                                      | 130.6 | $C_7H_{11}Cl$                                   | 148.6          | $C_6H_9O_2C_1$                                   |
| 106.5        | $C_8H_8O_2Cl$                                   | 131.0 | $C_2H_4O_2Cl_2$                                 | 148.6          | $C_7H_{13}OCl$                                   |
| 106.6        | C <sub>4</sub> H <sub>7</sub> OCl               | 131.4 | $C_2HCl_3$                                      | 148.7          | $C_8H_{17}Cl$                                    |
| 106.6        | C <sub>6</sub> H <sub>11</sub> Cl               | 132.5 | $C_4HO_3C1$                                     | 149.0          | $C_6H_6Cl_2$                                     |
| 108.5        | C <sub>8</sub> H <sub>5</sub> O <sub>2</sub> Cl | 132.6 | $C_6H_9OCl$                                     | 149.4          | $C_2H_3OCl_3$                                    |
| 108.6        | C <sub>4</sub> H <sub>9</sub> OCl               | 132.6 | $C_7H_{18}Cl$                                   | 150.5          | C4H4O4Cl                                         |
| 110.5        | C <sub>8</sub> H <sub>7</sub> O <sub>2</sub> Cl | 133.4 | $C_2H_3Cl_3$                                    | 150.6          | $C_5H_7O_3C_1$                                   |
| 111.0        | C <sub>8</sub> H <sub>4</sub> Cl <sub>2</sub>   | 134.6 | C <sub>5</sub> H <sub>7</sub> O <sub>2</sub> Cl | 150.6          | C <sub>6</sub> H <sub>11</sub> O <sub>2</sub> Cl |
| 112.6        | $C_6H_6Cl$                                      | 134.6 | C <sub>6</sub> H <sub>11</sub> OCl              | 150.7          | C7H15OCl                                         |
| 112.9        | $C_2H_2OCl_2$                                   | 134.7 | C7H16Cl                                         | 151.0          | C <sub>6</sub> H <sub>8</sub> Cl <sub>2</sub>    |
|              |                                                 |       | 1383                                            |                |                                                  |

| M.W.  | Formula                                                      | M.W.  | Formula                                                       | M.W.           | Formula                                                       |
|-------|--------------------------------------------------------------|-------|---------------------------------------------------------------|----------------|---------------------------------------------------------------|
| 152.6 |                                                              |       |                                                               | 191.1          |                                                               |
|       | C <sub>6</sub> H <sub>9</sub> O <sub>3</sub> Cl              | 173.0 | C <sub>4</sub> H <sub>6</sub> O <sub>8</sub> Cl <sub>2</sub>  |                | C <sub>8</sub> H <sub>8</sub> OCl <sub>2</sub>                |
| 152.6 | $C_6H_{13}O_2Cl$                                             | 173.5 | C <sub>6</sub> H <sub>7</sub> Cl <sub>8</sub>                 | 191.5          | C <sub>4</sub> H <sub>5</sub> O <sub>2</sub> Cl <sub>3</sub>  |
| 152.6 | C <sub>9</sub> H <sub>9</sub> Cl                             | 174.7 | $C_{10}H_{19}Cl$                                              | 191.6          | C <sub>10</sub> H <sub>4</sub> O <sub>2</sub> Cl <sub>2</sub> |
| 153.0 | $C_4H_2O_2Cl_2$                                              | 175.0 | C7H4OCl2                                                      | 191.9          | C <sub>4</sub> H <sub>2</sub> Cl <sub>4</sub>                 |
| 153.1 | $C_6H_{10}Cl_2$                                              | 175.1 | $C_8H_8Cl_2$                                                  | 192.6          | $C_{10}H_4O_2Cl$                                              |
|       |                                                              |       |                                                               |                |                                                               |
| 153.8 | CCl <sub>4</sub>                                             | 175.4 | C <sub>8</sub> HO <sub>2</sub> Cl <sub>8</sub>                | 192.6          | C <sub>10</sub> H <sub>21</sub> OCl                           |
| 154.6 | C <sub>8</sub> H <sub>7</sub> OCl                            | 175.5 | C <sub>4</sub> H <sub>5</sub> OCl <sub>5</sub>                | 193.5          | C <sub>4</sub> H <sub>7</sub> O <sub>2</sub> Cl <sub>2</sub>  |
| 154.6 | C <sub>2</sub> H <sub>11</sub> Cl                            | 175.5 | C <sub>6</sub> H <sub>9</sub> Cl <sub>8</sub>                 | 193.9          | C <sub>2</sub> OCl <sub>4</sub>                               |
| 155.0 | C <sub>4</sub> H <sub>4</sub> O <sub>2</sub> Cl <sub>2</sub> | 176.6 | C11H <sub>0</sub> Cl                                          | 193.9          | C4H4Cl4                                                       |
| 155.0 | C <sub>b</sub> H <sub>8</sub> OCl <sub>2</sub>               | 176.7 | C <sub>2</sub> H <sub>17</sub> OCl                            | 194.6          | C7H11O4Cl                                                     |
| 200.0 | 092260012                                                    | 21011 | Oprilloor                                                     | 101.0          | C/IIICECI                                                     |
| 155.1 | $C_6H_{12}Cl_2$                                              | 176.7 | $C_{10}H_{21}Cl$                                              | 195.5          | C7H5Cl8                                                       |
| 156.6 | C7HsO2Cl                                                     | 177.0 | C <sub>6</sub> H <sub>2</sub> O <sub>2</sub> Cl <sub>2</sub>  | 195.9          | C <sub>2</sub> H <sub>2</sub> OCl <sub>4</sub>                |
| 156.6 | C <sub>8</sub> H <sub>9</sub> OCl                            | 177.0 | C <sub>7</sub> H <sub>6</sub> OCl <sub>2</sub>                | 195.9          | CaHaCla                                                       |
|       |                                                              |       |                                                               |                |                                                               |
| 157.0 | C <sub>4</sub> H <sub>6</sub> O <sub>2</sub> Cl <sub>2</sub> | 177.4 | C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> Cl <sub>8</sub>  | 197.1          | C7H10O2Cl2                                                    |
| 157.4 | C <sub>4</sub> H <sub>8</sub> Cl <sub>8</sub>                | 177.5 | C <sub>4</sub> H <sub>7</sub> OCl <sub>3</sub>                | 197.1          | $C_9H_{18}Cl_2$                                               |
| 158.7 | C <sub>2</sub> H <sub>15</sub> Cl                            | 178.6 | C <sub>6</sub> H <sub>7</sub> O <sub>4</sub> Cl               | 197.1          | C10H6Cl2                                                      |
| 159.0 | C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> Cl <sub>2</sub> | 178.6 | C <sub>10</sub> H <sub>7</sub> OCl                            | 197.5          | C <sub>6</sub> H <sub>2</sub> OCl <sub>2</sub>                |
|       |                                                              |       |                                                               |                |                                                               |
| 159.5 | C4H5Cl3                                                      | 178.7 | C <sub>8</sub> H <sub>15</sub> O <sub>2</sub> Cl              | 197.8          | C <sub>2</sub> O <sub>2</sub> Cl <sub>4</sub>                 |
| 160.7 | C <sub>9</sub> H <sub>17</sub> Cl                            | 178.7 | C <sub>9</sub> H <sub>19</sub> OCl                            | 197.9          | C <sub>8</sub> H <sub>4</sub> OCl <sub>4</sub>                |
| 161.0 | $C_7H_6Cl_2$                                                 | 179.0 | $C_6H_4O_2Cl_2$                                               | 200.6          | C <sub>8</sub> H <sub>5</sub> O <sub>4</sub> Cl               |
| 161.4 | CaHaOCla                                                     | 179.1 | CaH12Cl2                                                      | 200.7          | C10H12O2Cl                                                    |
| 161.5 | C <sub>4</sub> H <sub>7</sub> Cl <sub>3</sub>                | 179.9 | C <sub>2</sub> H <sub>2</sub> Cl <sub>4</sub>                 | 202.3          | C <sub>2</sub> HCl <sub>5</sub>                               |
|       |                                                              |       |                                                               |                |                                                               |
| 162.6 | C <sub>7</sub> H <sub>11</sub> O <sub>2</sub> Cl             | 180.6 | C <sub>2</sub> H <sub>5</sub> O <sub>2</sub> Cl               | 202.7          | C <sub>18</sub> H <sub>11</sub> Cl                            |
| 162.6 | C <sub>10</sub> H <sub>7</sub> Cl                            | 180.7 | C <sub>8</sub> H <sub>17</sub> O <sub>2</sub> Cl              | 203.0          | $C_8H_4O_2Cl_2$                                               |
| 162.7 | C <sub>8</sub> H <sub>18</sub> OCl                           | 181.5 | $C_6H_3Cl_3$                                                  | 204.7          | $C_{11}H_{21}OCl$                                             |
| 162.7 | C <sub>9</sub> H <sub>19</sub> Cl                            | 181.8 | C2OCl4                                                        | 204.7          | C <sub>12</sub> H <sub>9</sub> OCl                            |
| 163.0 | C <sub>6</sub> H <sub>4</sub> OCl <sub>2</sub>               | 181.9 | C <sub>2</sub> H <sub>4</sub> Cl <sub>4</sub>                 | 204.8          | C <sub>12</sub> H <sub>25</sub> Cl                            |
| 163.4 | C <sub>2</sub> HO <sub>2</sub> Cl <sub>3</sub>               | 182.6 | C <sub>6</sub> H <sub>11</sub> O <sub>4</sub> Cl              | 205.5          |                                                               |
| 163.4 | CaH6OCla                                                     | 182.6 | C <sub>8</sub> H <sub>8</sub> O <sub>8</sub> Cl               |                | C <sub>6</sub> H <sub>7</sub> O <sub>2</sub> Cl <sub>8</sub>  |
| 164.6 | C <sub>6</sub> H <sub>9</sub> O <sub>8</sub> Cl              | 182.6 | C <sub>10</sub> H <sub>11</sub> OCl                           | 206.6          | C <sub>8</sub> H <sub>11</sub> O <sub>4</sub> Cl              |
| 104.0 | Cenaca                                                       | 182.0 | Cioniioci                                                     | 206.6          | $C_{11}H_7O_2Cl$                                              |
| 164.6 | $C_7H_{18}O_2Cl$                                             | 183.0 | C <sub>6</sub> H <sub>8</sub> O <sub>2</sub> Cl <sub>2</sub>  | 207.0          | C7H4O3Cl2                                                     |
| 164.6 | C <sub>9</sub> H <sub>6</sub> OCl                            | 183.1 | C <sub>8</sub> H <sub>16</sub> Cl <sub>2</sub>                | 207.5          | C <sub>4</sub> H <sub>5</sub> O <sub>2</sub> Cl <sub>2</sub>  |
| 164.7 | C <sub>6</sub> H <sub>17</sub> OCl                           | 183.5 | C <sub>6</sub> H <sub>5</sub> Cl <sub>8</sub>                 | 209.0          | C <sub>6</sub> H <sub>2</sub> O <sub>4</sub> Cl <sub>2</sub>  |
| 165.4 | C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> Cl <sub>2</sub> | 184.6 | CaHaOaCl                                                      | 209.5          |                                                               |
| 165.8 |                                                              | 184.6 | C <sub>0</sub> H <sub>0</sub> O <sub>2</sub> Cl               |                | C7H2OCl3                                                      |
| 100.8 | C <sub>2</sub> Cl <sub>4</sub>                               | 104.0 | Childosol                                                     | 209.9          | C <sub>5</sub> H <sub>8</sub> Cl <sub>4</sub>                 |
| 166.6 | C <sub>p</sub> H <sub>7</sub> OCl                            | 184.7 | C <sub>10</sub> H <sub>12</sub> OCl                           | 211.1          | CaH12O2Cl2                                                    |
| 166.7 | C <sub>7</sub> H <sub>16</sub> O <sub>2</sub> Cl             | 185.0 | C <sub>4</sub> H <sub>2</sub> O <sub>4</sub> Cl <sub>2</sub>  | 211.2          | C <sub>10</sub> H <sub>20</sub> Cl <sub>2</sub>               |
| 167.0 | C <sub>4</sub> O <sub>2</sub> Cl <sub>2</sub>                | 185.5 | C <sub>6</sub> H <sub>7</sub> Cl <sub>8</sub>                 | 211.4          | C <sub>6</sub> HO <sub>2</sub> Cl <sub>2</sub>                |
| 167.9 | C <sub>2</sub> H <sub>2</sub> CL                             | 186.6 | C <sub>8</sub> H <sub>7</sub> O <sub>8</sub> Cl               | 211.4          |                                                               |
| 168.6 | C <sub>2</sub> H <sub>2</sub> OCl                            | 187.0 | C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> Cl <sub>2</sub>  |                | C7H5OCl                                                       |
| 108.0 | Carracti                                                     | 167.0 | C4114O4C12                                                    | 211.9          | C <sub>8</sub> H <sub>2</sub> O <sub>2</sub> Cl <sub>4</sub>  |
| 168.7 | C <sub>10</sub> H <sub>18</sub> Cl                           | 187.0 | C <sub>5</sub> H <sub>8</sub> O <sub>2</sub> Cl <sub>2</sub>  | 213.1          | C <sub>10</sub> H <sub>6</sub> OCl <sub>2</sub>               |
| 169.0 | C <sub>6</sub> H <sub>6</sub> O <sub>2</sub> Cl <sub>2</sub> | 187.1 | C <sub>6</sub> H <sub>12</sub> O <sub>2</sub> Cl <sub>2</sub> | 213.5          | · CaHaO2Cla                                                   |
| 169.1 | C7H14Cl2                                                     | 187.4 | C <sub>4</sub> HO <sub>2</sub> Cl <sub>2</sub>                | 214.3          | CaHCla                                                        |
| 170.6 | C <sub>8</sub> H <sub>7</sub> O <sub>2</sub> Cl              | 187.5 | C <sub>6</sub> H <sub>9</sub> Cl <sub>2</sub>                 | 215.0          | C <sub>6</sub> H <sub>8</sub> O <sub>4</sub> Cl <sub>2</sub>  |
| 170.6 | C <sub>2</sub> H <sub>11</sub> OCl                           | 188.7 | C <sub>12</sub> H <sub>9</sub> Cl                             | 215.0<br>215.1 | C <sub>7</sub> H <sub>12</sub> O <sub>8</sub> Cl <sub>2</sub> |
| 110.0 | Chritocr                                                     | 10011 | CHARLOT                                                       | 210.1          | <b>∪71112∪8∪12</b>                                            |
| 171.0 | C4H4O2Cl2                                                    | 189.0 | C <sub>8</sub> H <sub>6</sub> OCl <sub>2</sub>                | 215.9          | C <sub>6</sub> H <sub>2</sub> Cl <sub>4</sub>                 |
| 171.0 | C <sub>5</sub> H <sub>8</sub> O <sub>2</sub> Cl <sub>2</sub> | 190.6 | C <sub>11</sub> H <sub>7</sub> OCl                            | 216.3          | CaHaCla                                                       |
| 171.1 | C <sub>6</sub> H <sub>12</sub> OCl <sub>2</sub>              | 190.7 | C <sub>10</sub> H <sub>19</sub> OCl                           | 216.7          | CuH,OCl                                                       |
| 172.6 | C7H4O4Cl                                                     | 190.8 | C <sub>11</sub> H <sub>22</sub> Cl                            | 216.7          | C <sub>14</sub> H <sub>18</sub> Cl                            |
| 172.7 | C <sub>10</sub> H <sub>17</sub> Cl                           | 191.0 | C7H4O2Cl2                                                     | 217.0          | C <sub>8</sub> H <sub>2</sub> O <sub>8</sub> Cl <sub>2</sub>  |
| ~     | -Marel Co                                                    |       | -,,,                                                          | ~21.0          |                                                               |

| M.W.  | Formula                                                       | M.W.   | Formula .                                                    | M.W.  | Formula                                                      |
|-------|---------------------------------------------------------------|--------|--------------------------------------------------------------|-------|--------------------------------------------------------------|
| 218.8 | C <sub>12</sub> H <sub>22</sub> OCl                           | 244.4  | C <sub>8</sub> H <sub>7</sub> Cl <sub>8</sub>                | 285.6 | C14H11Cla                                                    |
| 218.8 | C18H27Cl                                                      | 244.6  | C <sub>6</sub> H <sub>6</sub> O <sub>6</sub> Cl              | 285.9 | C <sub>8</sub> O <sub>2</sub> Cl <sub>4</sub>                |
| 219.5 | CaHaO2Cla                                                     | 244.7  | C14H9O2Cl                                                    | 288.9 | C <sub>17</sub> H <sub>22</sub> OCl                          |
| 219.9 | C <sub>6</sub> H <sub>6</sub> Cl <sub>4</sub>                 | 245.9  | CaO2Cl4                                                      | 288.9 | C <sub>18</sub> H <sub>a7</sub> Cl                           |
| 220.8 | C <sub>12</sub> H <sub>25</sub> OCl                           | 246.3  | C <sub>2</sub> HO <sub>2</sub> Cl <sub>5</sub>               | 290.8 | CeHeCle                                                      |
| 220.0 | Claristoci                                                    | 2/20.0 | CSTICSCIP                                                    | 200.0 | Cerrecie                                                     |
| 221.0 | $C_8H_6O_8Cl_2$                                               | 246.7  | $C_{14}H_{11}O_{2}Cl$                                        | 290.8 | $C_{20}H_{15}Cl$                                             |
| 221.5 | $C_bH_7O_aCl_a$                                               | 246.8  | C14H27OCl                                                    | 294.4 | C7HO2Cls                                                     |
| 221.5 | CaH11O2Cla                                                    | 246.9  | CisHs1Cl                                                     | 296.8 | CzOzCla                                                      |
| 221.9 | C <sub>4</sub> O <sub>2</sub> Cl <sub>4</sub>                 | 247.1  | C14H8Cl2                                                     | 298.8 | C7H2Cl6                                                      |
| 223.1 | C <sub>12</sub> H <sub>8</sub> Cl <sub>2</sub>                | 247.9  | C <sub>6</sub> H <sub>2</sub> O <sub>2</sub> Cl <sub>4</sub> | 299.3 | C <sub>4</sub> H <sub>a</sub> Cl <sub>7</sub>                |
|       | Olimbor.                                                      |        | -1-1-1-1                                                     |       | 04-40-,                                                      |
| 223.5 | $C_8H_5OCl_8$                                                 | 248.8  | C <sub>8</sub> Cl <sub>6</sub>                               | 300.8 | C <sub>6</sub> OCl <sub>6</sub>                              |
| 223.9 | $C_4H_2O_2Cl_4$                                               | 248.8  | C <sub>14</sub> H <sub>29</sub> OCl                          | 300.9 | C <sub>18</sub> H <sub>28</sub> OCl                          |
| 224.0 | C <sub>6</sub> H <sub>10</sub> Cl <sub>4</sub>                | 249.1  | $C_{14}H_{10}Cl_2$                                           | 302.9 | C <sub>18</sub> H <sub>85</sub> OCl                          |
| 225.1 | CoH14O2Cla                                                    | 250.4  | CaHCla                                                       | 303.9 | C <sub>8</sub> H <sub>2</sub> O <sub>4</sub> Cl <sub>4</sub> |
| 225.4 | C <sub>7</sub> H <sub>8</sub> O <sub>2</sub> Cl <sub>8</sub>  | 250.8  | CaH <sub>2</sub> Cl <sub>4</sub>                             | 304.9 | C <sub>18</sub> H <sub>87</sub> OCl                          |
|       | 0,200                                                         |        |                                                              |       | -10                                                          |
| 225.5 | C <sub>8</sub> H <sub>7</sub> OCl <sub>8</sub>                | 251.1  | $C_{12}H_8OCl_2$                                             | 308.8 | C <sub>4</sub> O <sub>3</sub> Cl <sub>6</sub>                |
| 225.9 | $C_4H_4O_2Cl_4$                                               | 251.2  | $C_{14}H_{12}Cl_2$                                           | 312.8 | C7OCl6                                                       |
| 226.3 | C <sub>4</sub> HCl <sub>5</sub>                               | 255.5  | $C_8H_5O_8Cl_8$                                              | 316.8 | $C_6O_2Cl_6$                                                 |
| 226.7 | CaH15O5Cl                                                     | 258.4  | C <sub>6</sub> H <sub>9</sub> Cl <sub>5</sub>                | 318.0 | $C_{14}H_8Cl_4$                                              |
| 228.4 | C <sub>4</sub> H <sub>8</sub> Cl <sub>5</sub>                 | 259.9  | $C_7H_2O_2Cl_4$                                              | 319.7 | C <sub>2</sub> Cl <sub>3</sub>                               |
|       |                                                               |        |                                                              |       |                                                              |
| 229.5 | $C_6H_3O_5Cl_3$                                               | 260.8  | C <sub>4</sub> Cl <sub>6</sub>                               | 319.7 | $C_{12}H_{21}O_{3}Cl_{3}$                                    |
| 230.0 | C7H4Cl4                                                       | 260.8  | $C_{15}H_{29}OCl$                                            | 320.1 | $C_{14}H_{10}Cl_4$                                           |
| 230.3 | CaHOCla                                                       | 260.9  | $C_{16}H_{33}Cl$                                             | 322.8 | CaH2OaCla                                                    |
| 230.4 | C <sub>4</sub> H <sub>5</sub> Cl <sub>5</sub>                 | 262.8  | C <sub>4</sub> H <sub>2</sub> Cl <sub>6</sub>                | 333.3 | C <sub>7</sub> HCl <sub>7</sub>                              |
| 230.7 | C <sub>14</sub> H <sub>11</sub> OCl                           | 264.4  | C7H4Cl4                                                      | 333.8 | C <sub>4</sub> H <sub>2</sub> Cl <sub>8</sub>                |
|       |                                                               |        |                                                              |       |                                                              |
| 231.5 | $C_{10}H_5Cl_8$                                               | 264.8  | $C_4H_4Cl_6$                                                 | 343.7 | $C_5Cl_8$                                                    |
| 231.9 | $C_6H_2OCl_4$                                                 | 265.1  | $C_{14}H_{10}OCl_2$                                          | 349.8 | C <sub>4</sub> H <sub>2</sub> OCl <sub>8</sub>               |
| 232.8 | C12H26OCl                                                     | 266.4  | $C_6HOCl_5$                                                  | 354.5 | C14H0Cls                                                     |
| 232.8 | C14H29Cl                                                      | 270.0  | C10H8CL                                                      | 388.9 | C14H8Cls                                                     |
| 233.5 | C7H11O2Cl3                                                    | 274.9  | C <sub>16</sub> H <sub>31</sub> OCl                          | 403.8 | C10Cla                                                       |
| 200.0 | 0,1,-1,-0                                                     |        |                                                              | 418.6 | C <sub>4</sub> OCl <sub>10</sub>                             |
| 234.7 | C11H10O2Cl                                                    | 274.9  | C17HaaCl                                                     |       |                                                              |
| 235.0 | CaH4O4Cla                                                     | 276.8  | C <sub>4</sub> OCl <sub>6</sub>                              |       |                                                              |
| 235.5 | C <sub>6</sub> H <sub>9</sub> O <sub>2</sub> Cl <sub>2</sub>  | 276.9  | C <sub>16</sub> H <sub>35</sub> OCl                          |       |                                                              |
| 236.8 | C <sub>2</sub> Cl <sub>6</sub>                                | 278.4  | C <sub>7</sub> HOCl <sub>6</sub>                             |       |                                                              |
| 237.1 | C <sub>13</sub> H <sub>10</sub> Cl <sub>2</sub>               | 278.8  | C <sub>19</sub> H <sub>15</sub> Cl                           |       |                                                              |
| 401.1 | ○1311 10○13                                                   | 210.0  | Clarifor                                                     |       |                                                              |
| 236.1 | C10H16O2Cl2                                                   | 280.8  | $C_8O_2Cl_6$                                                 |       |                                                              |
| 239.9 | C <sub>4</sub> H <sub>2</sub> O <sub>2</sub> Cl <sub>4</sub>  | 281.1  | C14H10O2Cl2                                                  |       |                                                              |
| 242.7 | C <sub>14</sub> H <sub>7</sub> O <sub>2</sub> Cl              | 283.6  | C <sub>14</sub> H <sub>9</sub> Cl <sub>2</sub>               |       |                                                              |
| 243.1 | C <sub>8</sub> H <sub>12</sub> O <sub>4</sub> Cl <sub>2</sub> | 284.8  | CoClo                                                        |       |                                                              |
| 243.1 | C <sub>7</sub> H <sub>2</sub> OCl <sub>4</sub>                | 285.2  | CaHCl7                                                       |       |                                                              |
| 240.V | O7112004                                                      | 200.2  | Observe!                                                     |       |                                                              |

# IV. INDEX OF COMPOUNDS ACCORDING TO CHEMICAL TYPES

The numerous individual compounds of Order III whose preparation, properties, and reactions comprise the main text of this book are there listed in progressively increasing order of melting points (Division A, Solids), boiling points (Division B, Liquids), or empirical formulas (Division C, liquids for which data at ordinary pressure are not available). Unlike the treatment of Order I in an earlier volume, the compounds of the present Order III are not subdivided into genera. For this reason a highly useful feature of this volume is the following Chemical Type Index in which each compound is listed in one (or more) of the following eight arbitrary units.

- UNIT 1. Chloro substitution products of saturated acyclic hydrocarbons.
- Unit 2. Chloro substitution products of unsaturated acyclic hydrocarbons.
- Unit 3. Chloro substitution products of cyclic hydrocarbons.
- Unit 4. Chloro substitution products of hydroxy compounds.
- Unit 5. Chlorosubstitution products (and their relatives) of carbonyl compounds.
- Unit 6. Chloro substitution products of carboxylic acids and anhydrides.
- UNIT 7. Acyl chlorides.
- UNIT 8. Chlorine substitution products of ethers and of esters.

In order to facilitate recognition of the extent of subdivision of the above eight *units*, a brief summary of the subclassification is placed at the head of each one. Note that the names employed in this index are those best suited to recognition of the chemical relationships involved, and are not necessarily the same as those selected as principal names in the individual descriptions in the text.

Attention is also called to the fact that, in addition to this chemical type index, this volume is provided with conventional alphabetical name index and with empirical formula index.

## UNIT 1. CHLORO SUBSTITUTION PRODUCTS OF ACYCLIC SATURATED HYDROCARBONS

(Summary of Classification of Unit 1)

- A. Monochloro Derivatives.
  - 1. With primary halogen.
  - 2. With secondary halogen.
  - 3. With tertiary halogen.

### B. DICHLORO DERIVATIVES.

- 1. With both chlorine atoms primary.
  - a. Both chlorine atoms on same carbon.
  - b. The two chlorine atoms on different carbons.
- 2. With both chlorine atoms secondary.
  - a. Both chlorine atoms on same carbon.
  - b. Both chlorine atoms on different carbons.
- 3. With both chlorine atoms tertiary.
- 4. With one chlorine primary and one secondary.
- 5. With one chlorine primary and one tertiary.
- 6. With one chlorine secondary and one tertiary.

#### C. TRICHLORO DERIVATIVES.

- 1. With all three chlorine atoms primary.
- 2. With two chlorine atoms primary and one secondary.
- 3. With two chlorine atoms primary and one tertiary.
- 4. With one chlorine atom primary and two secondary.
- 5. With one chlorine each primary, secondary, and tertiary.
- 6. With all three chlorine atoms secondary.
- 7. With two chlorine atoms secondary and one tertiary.

#### D. TETRACHLORO DERIVATIVES.

- 1. With all four chlorine atoms primary.
- 2. With three chlorine atoms primary and one secondary.
- 3. With two chlorine atoms primary and two secondary.
- 4. With one chlorine atom primary and three secondary.
- 5. With three chlorine atoms primary and one tertiary.
- 6. With two chlorine atoms primary, one secondary, and one tertiary.

#### E. PENTACHLORO DERIVATIVES.

- 1. With all five chlorine atoms primary.
- 2. With four chlorine atoms primary and one secondary.
- 3. With three chlorine atoms primary and two secondary.
- 4. With two chlorine atoms primary and three secondary.
- 5. With four chlorine atoms primary and one tertiary.

#### F. HEXACHLORO DERIVATIVES.

- 1. With all six chlorine atoms primary.
- 2. With five chlorine atoms primary and one secondary.
- 3. With four chlorine atoms primary and two secondary.
- G. HEPTACHLORO DERIVATIVES.
- H. OCTACHLORO DERIVATIVES.

## UNIT 1. CHLORO SUBSTITUTION PRODUCTS OF SATURATED ACYCLIC HYDROCARBONS

|                                  | oro Derivatives<br>primary halogen |        | C <sub>5</sub> H <sub>9</sub> Cl<br>Contd. | Isoamyl chloride<br>Neopentyl chloride | 3:7365<br>3:7200 |
|----------------------------------|------------------------------------|--------|--------------------------------------------|----------------------------------------|------------------|
| CH <sub>8</sub> Cl               | Methyl chloride                    | 3:7005 | $C_6H_{13}Cl$                              | 1-Chlorohexane                         | 3:7955           |
| $C_2H_5Cl$                       | Ethyl chloride                     | 3:7015 |                                            | 1-Chloro-2-methyl-                     |                  |
| C <sub>8</sub> H <sub>7</sub> Cl | n-Propyl chloride                  | 3:7040 |                                            | pentane 5-Chloro-2-methyl-             | 3:7563           |
| C <sub>4</sub> H <sub>9</sub> Cl | n-Butyl chloride Isobutyl chloride |        |                                            | pentane<br>1-Chloro-3-methyl-          | 3:7695           |
| C <sub>6</sub> H <sub>9</sub> Cl | n-Amyl chloride                    | 3:7460 |                                            | pentane                                | 3:9348           |
|                                  | secButylcarbinyl<br>chloride       | 3:7345 |                                            | 1-Chloro-2-ethyl-<br>butane            | 3:7720           |

| C <sub>6</sub> H <sub>18</sub> Cl<br>Contd. | 1-Chloro-2,2-di-<br>methylbutane<br>4-Chloro-2,2-di- | 3:7590           | C <sub>6</sub> H <sub>13</sub> Cl<br>Contd. | 3-Chloro-2-methyl-<br>pentane<br>4-Chloro-2-methyl- | 3:7565           |
|---------------------------------------------|------------------------------------------------------|------------------|---------------------------------------------|-----------------------------------------------------|------------------|
|                                             | methylbutane                                         | 3:7555           |                                             | pentane                                             | 3:7495           |
| C7H15Cl                                     | 1-Chloroheptane                                      | 3:8250           |                                             | 2-Chloro-3-methyl pentane                           | 3:9359           |
|                                             | 1-Chloro-3-methyl-<br>hexane                         | 3:8155           |                                             | 3-Chloro-2,2-di-<br>methylbutane                    | 3:7475           |
|                                             | 5-Chloro-2,3-di-<br>methylpentane                    | 3:8153           | C7H15Cl                                     | 2-Chloroheptane                                     | 3:9432           |
| C <sub>8</sub> H <sub>17</sub> Cl           | 1-Chloro-octane                                      | 3:8585           |                                             | 3-Chloroheptane                                     | 3:8080<br>3:8095 |
|                                             | 1-Chloro-2-ethyl-<br>hexane<br>1-Chloro-3-ethyl-     | 3:8370           |                                             | 5-Chloro-2-methyl-<br>hexane                        | 8:7985           |
|                                             | hexane                                               | 3:9552           |                                             | 2-Chloro-3-methyl-<br>hexane                        | 3:9434           |
|                                             | 1-Chloro-2-ethyl-3-<br>methylpentane                 | 3:9560           |                                             | 4-Chloro-3-methyl-<br>hexane                        | 3:9436           |
|                                             | 1-Chloro-2,2,3,3-tetra-<br>methylbutane              | 3:0945           |                                             | 2-Chloro-3-ethyl-<br>pentane                        | 3:9438           |
| $C_9H_{19}Cl$                               | 1-Chlorononane                                       | 3:8719           |                                             | 4-Chloro-2,2-di-                                    | 3:9440           |
| $C_{10}H_{31}Cl$                            | 1-Chlorodecane                                       | 3:8785           | C H C                                       | methylpentane                                       |                  |
|                                             | 1-Chloro-3,7-di-<br>methyloctane                     | 3:9740           | C <sub>8</sub> H <sub>17</sub> Cl           | 2-Chloro-octane                                     | 3:8378<br>3:9538 |
| C <sub>11</sub> H <sub>28</sub> Cl          | 1-Chloroundecane                                     | 3:8803           |                                             | 6-Chloro-2-methyl-<br>heptane                       | 3:9540           |
| $C_{12}H_{25}Cl$                            | 1-Chlorododecane                                     | 3:8810           |                                             | 3-Chloro-4-methyl-                                  | 3:9548           |
| C18H27Cl                                    | $1\text{-}Chlorotridecane\dots$                      | 3:9859           |                                             | heptane                                             | 9:3020           |
| $\mathrm{C}_{14}\mathrm{H}_{29}\mathrm{Cl}$ | 1-Chlorotetradecane                                  | 3:9874           |                                             | 2-Chloro-3,4-di-<br>methylhexane                    | 3:9558           |
| $C_{15}H_{31}Cl$                            | 1-Chloropentadecane .                                | 3:9890           | $C_9H_{19}Cl$                               | 2-Chlorononane                                      | 3:8635           |
| $\mathbf{C}_{16}\mathbf{H}_{88}\mathbf{Cl}$ | 1-Chlorohexadecane                                   | 3:0015           |                                             | 3-Chlorononane<br>5-Chlorononane                    | 3:9638<br>3:9640 |
| $C_{17}H_{85}Cl$                            | 1-Chloroheptadecane .                                | 3:0100           | 3. With                                     | tertiary halogen                                    |                  |
| C <sub>18</sub> H <sub>87</sub> Cl          | 1-Chloro-octadecane                                  | 3:9095           | C <sub>4</sub> H <sub>9</sub> Cl            | ter-Butyl chloride                                  | 3:7045           |
| 9. With                                     | secondary halogen                                    |                  | $C_8H_{11}Cl$                               | ter-Amyl chloride                                   | 3:7220           |
| C <sub>2</sub> H <sub>7</sub> Cl            | 2-Chloropropane                                      | 3:7025           | $C_6H_{18}Cl$                               | 2-Chloro-2-methyl-<br>pentane                       | 3:7 <b>490</b>   |
| C <sub>4</sub> H <sub>9</sub> Cl            | 2-Chlorobutane                                       | 3:7125           |                                             | 3-Chloro-3-methyl-                                  | V.120V           |
| C <sub>5</sub> H <sub>11</sub> Cl           | 2-Chloropentane                                      | 3:7325           |                                             | pentane                                             | 3:7585           |
|                                             | 3-Chloropentane                                      | 3:7330           |                                             | 2-Chloro-2,3-di-<br>methylbutane                    | 3:7600           |
|                                             | 8-Chloro-2-methyl-<br>butane                         | 8:7275           | C7H18Cl                                     | 2-Chloro-2-methyl-                                  |                  |
| C <sub>6</sub> H <sub>13</sub> Cl           | 2-Chlorohexane                                       | 3:7715<br>3:7676 |                                             | hexane                                              | 3:7945<br>3:7950 |
|                                             |                                                      |                  |                                             |                                                     | _                |

| C7H18Cl<br>Contd.                  | 3-Chloro-3-ethyl-<br>pentane                          | 3:8055             | C <sub>10</sub> H <sub>21</sub> Cl<br>Contd.   | 4-Chloro-4-ethyl-<br>octane          | 3:9736         |
|------------------------------------|-------------------------------------------------------|--------------------|------------------------------------------------|--------------------------------------|----------------|
|                                    | 2-Chloro-2,3-di-<br>methylpentane<br>3-Chloro-2,3-di- | .3:9442            |                                                | 3-Chloro-2,3-di-<br>methyloctane     | 3:9738         |
|                                    | methylpentane 2-Chloro-2,4-di- methylpentane          | 3:7970<br>3:7750   |                                                | 4-Chloro-4-n-propyl-<br>heptane      | 3:9742         |
|                                    | 3-Chloro-2,2,3-tri-<br>methylbutane                   | 3:4020             | B. Dichlore                                    | 4-Chloro-2,4,6-tri-<br>methylheptane | 3:9744         |
| $C_8H_{17}Cl$                      | 2-Chloro-2-methyl-                                    | 9.0100             |                                                | both chlorine atoms prim             | erv            |
|                                    | heptane                                               | 3:8100             |                                                | th chlorine atoms on sam             | -              |
|                                    | heptane4-Chloro-4-methyl-                             | 3:95 <del>44</del> | $CH_2Cl_2$                                     | Methylene dichloride .               | 3:5020         |
|                                    | heptane                                               | 3:9550             | $C_2H_4Cl_2$                                   | 1,1-Dichloroethane                   | 3:5035         |
|                                    | 3-Chloro-3-ethyl-<br>hexane                           | 3:8 <sup>nna</sup> | $\mathrm{C_{8}H_{6}Cl_{2}}$                    | 1,1-Dichloropropane                  | 3:7230         |
|                                    |                                                       | •••                | $C_4H_8Cl_2$                                   | 1,1-Dichlorobutane                   | 3:7550         |
|                                    | 3-Chloro-2,3-di-<br>methylhexane<br>2-Chloro-2,5-di   | 3:9554             |                                                | 1,1-Dichloro-2-methyl-               | 0.7407         |
|                                    | methylhexane                                          | 3:9556             |                                                | propane                              | 3:7425         |
|                                    | 3-Chloro-3-ethyl-2-                                   |                    | $C_6H_{10}Cl_2$                                | 1,1-Dichloropentane                  | 3:8015         |
|                                    | methylpentane                                         | 3:8210             |                                                | 4,4-Dichloro-2-methyl-<br>butane     | 3:7885         |
|                                    | 4-Chloro-2,2,4-tri-<br>methylpentane                  | 3:8113             | $C_7H_{14}Cl_2$                                | 1,1-Dichloroheptane                  | 3:8650         |
| $C_9H_{19}Cl$                      | 3-Chloro-3-methyl-<br>octane                          | 3:9642             | b. The                                         | two chlorine atoms on                | different      |
|                                    | 4-Chloro-4-methyl-<br>octane                          | 3:9644             | $C_2H_4Cl_2$                                   | 1,2-Dichloroethane                   | 3:5130         |
|                                    | 3-Chloro-3-ethyl-                                     | 010011             | $C_8H_6Cl_2$                                   | 1,3-Dichloropropane                  | 3:5 <b>450</b> |
|                                    | heptane<br>4-Chloro-4-ethyl-                          | 3:9646             | $C_4H_8Cl_2$                                   | 1,4-Dichlorobutane                   | 3:5835         |
|                                    | heptane                                               | 3:9648             |                                                | 1,3-Dichloro-2-methyl-<br>propane    | 3:7960         |
|                                    | 3-Chloro-2,3-di-<br>methylheptane<br>5-Chloro-2,5-di- | 3:9650             | C <sub>5</sub> H <sub>10</sub> Cl <sub>2</sub> | 1,5-Dichloropentane                  | 3:8575         |
|                                    | methylheptane                                         | 3:9652             |                                                | 1,4-Dichloro-2-methyl-<br>butane     | 3:8360         |
|                                    | 3-Chloro-2,2,3-tri-<br>methylhexane                   | 3:9654             | C <sub>6</sub> H <sub>12</sub> Cl <sub>2</sub> | 1,6-Dichlorohexane                   | 3:8720         |
|                                    | 3-Chloro-2,2-di-<br>methyl-3-ethyl-                   |                    | $C_7H_{14}Cl_2$                                | 1,7-Dichloroheptane                  | 3:9422         |
| 0 H 0                              | pentane                                               | 3:9656             |                                                | 1,5-Dichloro-3,3-<br>dimethylpentane | 3:9430         |
| C <sub>10</sub> H <sub>41</sub> Cl | 4-Chloro-4-methyl-<br>nonane                          | 3:9730             | O TT 61                                        |                                      |                |
|                                    | 5-Chloro-5-methyl-<br>nonane                          | 3:9732             | C <sub>8</sub> H <sub>16</sub> Cl <sub>2</sub> | 1,8-Dichloro-octane                  | 3:8895         |
|                                    | 3-Chloro-3-ethyl-                                     | J. W. 1916         | $C_9H_{18}Cl_2$                                | 1,9-Dichlorononane                   | 3:8880         |
|                                    | octane                                                | 3:9734             | C10H20Cl2                                      | 1,10-Dichlorodecane                  | 3:9720         |

| 2. Wit                                         | h both chlorine atoms sec                                | ondary           | $\mathrm{C_{10}H_{20}Cl_2}$                             | 2,7-Dichloro-2,7-                                  |                  |
|------------------------------------------------|----------------------------------------------------------|------------------|---------------------------------------------------------|----------------------------------------------------|------------------|
| a. I                                           | Both chlorine atoms on sam                               | e carbon         |                                                         | dimethyloctane<br>3,4-Dichloro-3,4-                | 3:0840           |
| $C_3H_6Cl_2$                                   | 2,2-Dichloropropane                                      | 3:7140           |                                                         | dimethylhexane                                     | 3:9724           |
| C <sub>4</sub> H <sub>8</sub> Cl <sub>2</sub>  | 2,2-Dichlorobutane                                       | 3:7415           |                                                         | h one chlorine primary<br>ndary                    | and one          |
| $C_bH_{10}Cl_2$                                | 2,2-Dichloropentane<br>3,3-Dichloropentane               | 3:7755<br>3:7895 | $\mathrm{C_3H_6Cl_2}$                                   | 1,2-Dichloropropane                                | 3:5200           |
|                                                | 3,3-Dichloro-2-                                          |                  | $\mathrm{C_4H_8Cl_2}$                                   | 1,2-Dichlorobutane<br>1,3-Dichlorobutane           | 3:7680<br>3:7925 |
| C.T                                            | methylbutane                                             | 3:9230           | $\mathrm{C_{b}H_{10}Cl_{2}}$                            | 1,2-Dichloropentane<br>1,3-Dichloropentane         | 3:8140<br>3:9220 |
| C <sub>6</sub> H <sub>12</sub> Cl <sub>2</sub> | 2,2-Dichlorohexane                                       | 3:9342           |                                                         | 1,4-Dichloropentane                                | 3:9224           |
|                                                | 3,3-Dichloro-2,2-<br>dimethylbutane<br>4,4-Dichloro-2,2- | 3:4325           |                                                         | 1,3-Dichloro-2-methyl-<br>butane                   | 3:9228           |
|                                                | dimethylbutane .                                         | 3:8132           |                                                         | 3,4-Dichloro-2-methyl-<br>butane                   | 3:8075           |
| C7H14Cl2                                       | 2,2-Dichloroheptane<br>4,4-Dichloroheptane               | 3:9424<br>3:9426 | $\mathrm{C_6H_{12}Cl_2}$                                | 1,2-Dichlorohexane                                 | 3:8380<br>3:9340 |
|                                                | 3,3-Dichloro-2,4-di-<br>methylpentane                    | 3:7610           | $C_7H_{14}Cl_2$                                         | 1,2-Dichloroheptane                                | 3:9420           |
| C <sub>8</sub> H <sub>16</sub> Cl <sub>2</sub> | 2,2-Dichloro-octane                                      | 3:8670           |                                                         | 1,2-Dichloro-4,4-<br>dimethylpentane               | 3:8516           |
|                                                | 3,3-Dichloro-2,2,4-<br>trimethylpentane                  | 3:9536           | $\mathrm{C_8H_{16}Cl_2}$                                | 1,6-Dichloro-octane 1,7-Dichloro-octane            | 3:9530<br>3:9532 |
| b. Bo                                          | th chlorine atoms on $diffe$                             | rent car-        |                                                         | 4-Chloro-3-(chloro-<br>methyl)heptane              | 3:9534           |
| C <sub>4</sub> H <sub>8</sub> Cl <sub>2</sub>  | d,l-2,3-Dichloro-<br>butane                              | 3:7615           | $C_9H_{18}Cl_2$                                         | 1,2-Dichlorononane                                 | 3:9632           |
|                                                | meso-2,3-Dichloro-<br>butane                             | 3:7580           |                                                         | one chlorine primary                               | and one          |
| C <sub>5</sub> H <sub>10</sub> Cl <sub>2</sub> | 2,3-Dichloropentane<br>2,4-Dichloropentane.              | 3:8010<br>3:8120 | tertis<br>C <sub>4</sub> H <sub>8</sub> Cl <sub>2</sub> | 1,2-Dichloro-2-<br>methylpropane                   | 3:7430           |
| C <sub>6</sub> H <sub>12</sub> Cl <sub>2</sub> | 2,3-Dichlorohexane                                       | 3:8300<br>3:8525 | $\mathrm{C_{5}H_{10}Cl_{2}}$                            | 1,2-Dichloro-2-<br>methylbutane<br>2,4-Dichloro-2- | 3:7920           |
|                                                | 3,4-Dichlorohexane.                                      | 3:9344           |                                                         | methylbutane                                       | 3:8105           |
|                                                | h both chlorine atoms tert                               | iary             | $\mathbf{C_6H_{12}Cl_2}$                                | 2,5-Dichloro-2-<br>methylpentane                   | 3:8540           |
| C <sub>6</sub> H <sub>12</sub> Cl <sub>2</sub> | 2,3-Dichloro-2,3-<br>dimethylbutane                      | 3:4520           | 6. With tertia                                          | one chlorine secondary                             | and one          |
| C7H14Cl2                                       | 2,4-Dichloro-2,4-<br>dimethylpentane                     | 3:9428           | $\mathrm{C_{5}H_{10}Cl_{2}}$                            | 2,3-Dichloro-2-<br>methylbutane                    | 3:7975           |
| C <sub>8</sub> H <sub>16</sub> Cl <sub>2</sub> | 2,5-Dichloro-2,5-<br>dimethylhexane                      | 3:1550           | $\mathrm{C_6H_{12}Cl_2}$                                | 2,3-Dichloro-2-<br>methylpentane                   | 3:9346           |
|                                                | 3,4-Dichloro-3,4-                                        | 3:8315           |                                                         |                                                    | u . 4020         |
|                                                | dimethylhexane                                           | 0.0010           |                                                         | o Derivatives                                      | _                |
| $C_9H_{18}Cl_2$                                | 2,6-Dichloro-2,6-                                        | 0.0622           |                                                         | all three chlorine atoms                           |                  |
|                                                | dimethylheptane                                          | 3:0455           | CHCla                                                   | Chloroform                                         | 2 · KAKA         |

| $C_2H_3Cl_3$                                  | 1,1,1-Trichlorethane<br>1,1,2-Trichloroethane.                                 | 3:5085<br>3:5330         |                                               | th three chlorine atoms prints                                      | nary and             |
|-----------------------------------------------|--------------------------------------------------------------------------------|--------------------------|-----------------------------------------------|---------------------------------------------------------------------|----------------------|
| $C_8H_5Cl_8$                                  | 1,1,1-Trichloropropane<br>1,1,3-Trichloropropane                               | 3:527 <b>0</b><br>3:5660 | C <sub>2</sub> H <sub>4</sub> Cl <sub>4</sub> | 1,1,1,2-Tetrachloro-<br>propane<br>1,1,2,3-Tetrachloro-             | 3:5785               |
| C <sub>5</sub> H <sub>9</sub> Cl <sub>3</sub> | 4,4,4-Trichloro-2-<br>methylbutane                                             | 3:9216                   | C <sub>4</sub> H <sub>6</sub> Cl <sub>4</sub> | propane                                                             | <b>3:60</b> 35       |
|                                               | two chlorine atoms prin                                                        | nary and                 |                                               | butane                                                              | 3:5622               |
| $\mathrm{C_8H_5Cl_3}$                         | 1,1,2-Trichloropropane<br>1,2,3-Trichloropropane                               | 3:5630<br>3:5840         |                                               | h two chlorine atoms prim<br>secondary                              | ary and              |
| C <sub>4</sub> H <sub>7</sub> Cl <sub>3</sub> | 1,1,3-Trichlorobutane.                                                         | 3:9086                   | C <sub>8</sub> H <sub>4</sub> Cl <sub>4</sub> | 1,1,2,2-Tetrachloro-<br>propane<br>1,2,2,3-Tetrachloro-             | 3:5825               |
| C <sub>5</sub> H <sub>9</sub> Cl <sub>8</sub> | 1,3-Dichloro-2-(chloro-<br>methyl)butane                                       | 3:9218                   | CHC                                           | propane                                                             | 3:5895               |
|                                               | two chlorine atoms primertiary  1,1,2-Trichloro-2-                             | ary and                  | C <sub>4</sub> H <sub>6</sub> Cl <sub>4</sub> | 1,2,3,4-Tetrachloro-<br>butane<br>(solid isomer)<br>(liquid isomer) | 3:1760<br>3:9082     |
| Ogra / Old                                    | methylpropane 1,2,3-Trichloro-2- methylpropane                                 | 3:5710<br>3:5885         | $C_6H_{10}Cl_4$                               | 1,1,2,2-Tetrachloro-<br>hexane                                      | 3:9332               |
|                                               | one chlorine atom prim                                                         | ary and                  |                                               | h one chlorine atom primi<br>e secondary                            | ry and               |
| $\mathrm{C_3H_5Cl_3}$                         | 1,2,2-Trichloropropane                                                         | 3:5475                   | $C_4H_6Cl_4$                                  | 1,2,2,3-Tetrachloro-<br>butane                                      | <b>3:90</b> 78       |
| $C_4H_7Cl_3$                                  | 1,2,3-Trichlorobutane.                                                         | 3:5935                   |                                               | 1,2,3,3-Tetrachloro-<br>butane                                      | 3:9080               |
| secor                                         | one chlorine each                                                              | primary,                 |                                               | h three chlorine atoms prime<br>tertiary                            | ary and              |
| $\mathrm{C_{5}H_{9}Cl_{3}}$                   | 1,2,3-Trichloro-2-<br>methylbutane                                             | 3:6100                   | C <sub>4</sub> H <sub>6</sub> Cl <sub>4</sub> | 1,1,1,2-Tetrachloro-2-<br>methylpropane                             | 3:4725               |
| C <sub>4</sub> H <sub>7</sub> Cl <sub>3</sub> | all three chlorine atoms so<br>2,2,3-Trichlorobutane.<br>two chlorine atoms so | 3:5680                   |                                               | 1,1,2,3-Tetrachloro-2-                                              | 3:6165               |
|                                               | one tertiary 2.3.3-Trichloro-2-                                                |                          |                                               |                                                                     | 3:6335               |
|                                               | methylbutane                                                                   | 3:4755                   |                                               | h two chlorine atoms prima<br>ndary, and one tertiary               | ry, one              |
|                                               | loro Derivatives all four chlorine atoms                                       | neimaev                  | $C_5H_8Cl_4$                                  | 1,2,3-Trichloro-2-                                                  |                      |
| CC4                                           | Carbon tetrachloride .                                                         | 3:5100                   |                                               | (chloromethyl)-<br>butane                                           | 3:52 <b>30</b>       |
| C <sub>2</sub> H <sub>2</sub> Cl <sub>4</sub> | 1,1,1,2-Tetrachloro-<br>ethane.                                                | 3:5555                   |                                               | nloro Derivatives                                                   | _                    |
|                                               | 1,1,2,2-Tetrachloro-<br>ethane                                                 | 3:5750                   |                                               | h all five chlorine atoms 1                                         |                      |
| C4H6Cl4                                       | 1,1,3-Trichloro-2-                                                             | 3.3.00                   | C₂HCl₅<br>2. Witi                             | Pentachloroethane                                                   | 3:5880<br>cv and     |
|                                               | (chloromethyl)-<br>propane                                                     | 3:9084                   |                                               | secondary 1,1,1,2,3-Pentachloro-                                    |                      |
| C <sub>5</sub> H <sub>8</sub> Cl <sub>4</sub> | 1,3-Dichloro-2,2-bis-<br>(chloromethyl)-<br>propane                            | 3:2657                   | <b>√3113</b> €15                              | propane<br>1,1,2,3,3-Pentachloro-                                   | 3 : 4740<br>3 : 6280 |
|                                               | -                                                                              |                          |                                               |                                                                     |                      |

| 3. With three chlorine atoms printed two secondary                                               | mary and       |                                               | h four chlorine atoms primary and secondary      |
|--------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------|--------------------------------------------------|
| C <sub>4</sub> H <sub>5</sub> Cl <sub>5</sub> 1,1,2,3,4-Pentachloro-<br>butane<br>(solid isomer) | 3:0750         | $C_8H_2Cl_6$                                  | 1,1,2,2,3,3-Hexachloro-<br>propane 3:6525        |
| (liquid isomer)  CaHrCla 3.3.4.4.4-Pentachloro-                                                  | <b>3:996</b> 8 | $C_4H_4Cl_6$                                  | 1,1,2,3,4,4-Hexachloro-<br>butane 3:3155         |
| 2-methylbutane                                                                                   | 3:6725         | G Wante                                       | chloro Derivatives                               |
| C <sub>6</sub> H <sub>9</sub> Cl <sub>5</sub> 1,1,1,2,2-Pentachloro-                             |                |                                               |                                                  |
| hexane                                                                                           |                |                                               | h six chlorine atoms primary and secondary       |
| 4. With two chlorine atoms print three secondary                                                 | mary and       | C <sub>8</sub> HCl <sub>7</sub>               | 1,1,1,2,3,3,3-Hepta-<br>chloropropane 3:6860     |
| C <sub>4</sub> H <sub>5</sub> Cl <sub>5</sub> 1,2,2,3,4-Pentachloro-                             |                |                                               | cmoropropane •.•o••                              |
| butane                                                                                           | 3:9070         | 2. Wit                                        | h five chlorine atoms primary and                |
| 5. With four chlorine atoms prin                                                                 | marv and       |                                               | secondary                                        |
| one tertiary                                                                                     |                | CaHCl7                                        | 1,1,1,2,2,3,3-Hepta-                             |
| C <sub>4</sub> H <sub>5</sub> Cl <sub>5</sub> 1,1,1,2,3-Pentachloro-<br>2-methylpropane          | 3:1265         | Oglicia                                       | chloropropane 3:0200                             |
| 1,1,2,3-Tetrachloro-2-<br>(chloromethyl)-<br>propane,                                            | 3:9072         |                                               | h four chlorine atoms primary and<br>e secondary |
| F. Hexachloro Derivatives                                                                        |                | C <sub>4</sub> H <sub>3</sub> Cl <sub>7</sub> | 1,1,2,2,3,4,4-Hepta-<br>chlorobutane 3:9056      |
| 1. With all six chlorine atoms p                                                                 | rimary         |                                               |                                                  |
| C <sub>2</sub> Cl <sub>5</sub> Hexachloroethane                                                  | 3:4835         | H. Octach                                     | loro Derivatives                                 |
| 2. With five chlorine atoms print two secondary                                                  | nary and       | $C_8Cl_8$                                     | Octachloropropane 3:4450                         |
| C <sub>8</sub> H <sub>2</sub> Cl <sub>6</sub> 1,1,1,2,3,3-Hexachlo-<br>ropropane                 | 3:6460         | C <sub>4</sub> H <sub>2</sub> Cl <sub>8</sub> | 1,1,2,2,3,3,4,4-Octa-<br>chlorobutane 3:200      |

## UNIT 2. CHLORO SUBSTITUTION PRODUCTS OF UNSATURATED ACYCLIC HYDROCARBONS

(Summary of Classification of Unit 2)

#### A. OF MONO-OLEFINS.

- 1. With one chlorine on C attached to unsaturation.
  - a. This chlorine atom is primary.
    - aı Monochloro.
    - a<sub>2</sub> Dichloro.
    - as Polychloro.
  - b. This chlorine atom is secondary.
    - b<sub>1</sub> Monochloro.
    - b<sub>2</sub> Dichloro.
    - ba Polychloro.
- 2. With two chlorine atoms on C attached to unsaturation.
  - a. Both these chlorines are on same C atom.
  - b. These two chlorines are on different carbons.
- 3. With none of the chlorine atoms on C attached to unsaturation.
  - a. Monochloro.
  - b. Dichloro.
  - c. Polychloro.

- B. OF DIOLEFINS.

  - With "cumulative" unsaturation.
     With "conjugated" unsaturation.
    - a. C4 series.
    - b. C<sub>5</sub> series. c. C6 series.
    - d. Cs series.
  - 3. With "isolated" unsaturation.
- C. OF TRIOLEFINS.
- D. OF TETRAOLEFINS.
- E. OF ALKYNES.
  - 1. With chlorine attached to C also bearing triple bond.
    - a. Monochloro.
    - b. Dichloro.
  - 2. With chlorine (s) attached to some C other than that bearing triple bond.
    - a. Monochloro.
      - a<sub>1</sub> Chlorine is primary.
      - a<sub>2</sub> Chlorine is tertiary.
  - b. Dichloro.
- F. OF ALKADI-YNES.
- G. OF ALKENYNES.

## UNIT 2. CHLORO SUBSTITUTION PRODUCTS OF UNSATURATED ACYCLIC HYDROCARBONS

| A. Of M                                                                                                              | ono-olefins                                      |                | $C_4H_6Cl_2$                                  | 1,3-Dichlorobutene-1.                    | 3:7650           |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------|-----------------------------------------------|------------------------------------------|------------------|
| <ul> <li>1. With one chlorine on C attached to<br/>unsaturation</li> <li>a. This chlorine atom is primary</li> </ul> |                                                  |                |                                               | 1,3-Dichloro-2-methyl-<br>propene-1      | 3:5590           |
|                                                                                                                      | 81 MONOCHLORO                                    |                |                                               | as POLYCHLORO                            |                  |
| C <sub>2</sub> H <sub>3</sub> Cl                                                                                     | Vinyl chloride                                   | 3:7010         | $C_4H_5Cl_8$                                  | 1,3-Dichloro-2-(chloro-                  |                  |
| $C_8H_5Cl$                                                                                                           | 1-Chloropropene-1                                | 3:7030         |                                               | methyl)propene-1                         | 3:9066           |
| C <sub>4</sub> H <sub>7</sub> Cl                                                                                     | 1-Chlorobutene-1                                 | 3:7110         | C <sub>4</sub> H <sub>4</sub> Cl <sub>4</sub> | 1,3,4,4-Tetrachloro-<br>butene-1         | 3:9058           |
|                                                                                                                      | 1-Chloro-2-methyl-<br>propene-1                  | 3:71 <b>20</b> | C <sub>6</sub> H <sub>7</sub> Cl <sub>8</sub> | 2-(Chloromethyl)1,3-<br>dichlorobutene-1 | 3:9201           |
| $C_5H_9Cl$                                                                                                           | 1-Chloropentene-1                                | 3:7420         | <b>ь.</b> Т                                   | This chlorine atom is secon              | dary             |
|                                                                                                                      | 1-Chloro-2-methyl-                               |                |                                               | b <sub>1</sub> monochloro                |                  |
|                                                                                                                      | butene-1                                         | 3:7303         | $C_8H_5Cl$                                    | 2-Chloropropene-1                        | 3:7020           |
|                                                                                                                      | 1-Chloro-3-methyl-<br>butene-1                   | 3:7215         | C <sub>4</sub> H <sub>7</sub> Cl              | 2-Chlorobutene-1 2-Chlorobutene-2        | 3:7075<br>3:7105 |
| $C_0H_{11}Cl$                                                                                                        | 1-Chlorohexene-1                                 | 3:7630         | C <sub>6</sub> H <sub>9</sub> Cl              | 2-Chloropentene-1                        | 3:7280           |
| C7H18Cl                                                                                                              | 1-Chloroheptene-1                                | 3:8219         |                                               | 2-Chloropentene-2 3-Chloropentene-2      | 3:7285<br>3:7240 |
| C <sub>2</sub> H <sub>4</sub> Cl <sub>2</sub>                                                                        | a <sub>2</sub> DICHLORO<br>1,3-Dichloropropene-1 | 3:5280         |                                               | 3-Chloro-2-methyl-<br>butene-2           | 8:7335           |

| C <sub>6</sub> H <sub>11</sub> Cl             | 2-Chlorohexene-1 3-Chlorohexene-3                              |                  | C <sub>8</sub> H <sub>8</sub> Cl <sub>8</sub> | 1,1,2-Trichloro-<br>propene-1                            | 3:5395           |
|-----------------------------------------------|----------------------------------------------------------------|------------------|-----------------------------------------------|----------------------------------------------------------|------------------|
|                                               | 2-Chloro-3,3-dimethyl-<br>butene-1                             |                  | $C_4H_5Cl_3$                                  | 1,1,3-Trichloro-2-<br>methylpropene-1                    | 3:5025           |
| C7H18Cl                                       | 2-Chloroheptene-1 4-Chloroheptene-3                            |                  | $C_6H_9Cl_8$                                  | 1,1,2-Trichloro-<br>hexene-1                             | 3:9326           |
|                                               | 3-Chloro-2,4-dimethyl-<br>pentene-2                            |                  | $C_2Cl_4$                                     | Tetrachloroethylene                                      | 3:5460           |
| C <sub>8</sub> H <sub>15</sub> Cl             | 2-Chloro-octene-1<br>2-Chloro-octene-2                         | 3:8345           | C <sub>8</sub> HCl <sub>5</sub>               | 1,1,2,3,3-Pentachloro-<br>propene-1                      | 3:6075           |
|                                               | 4-Chloro-octene-4 2-Chloro-3-ethyl-3-                          | 3:8230           | C <sub>3</sub> Cl <sub>6</sub>                | Hexachloropropene                                        | 3:6370           |
| C <sub>10</sub> H <sub>19</sub> Cl            | methylpentene-1  5-Chlorodecene-5                              | 3:8115<br>3:9712 |                                               | These two chlorines are o<br>ent carbons<br>(—C—C—)      | n differ-        |
| Chilipoi                                      | b <sub>2</sub> dichloro                                        | 0.0118           |                                               | Cl Cl                                                    |                  |
| C <sub>3</sub> H <sub>4</sub> Cl <sub>2</sub> | 2,3-Dichloropropene-1                                          | 3:5190           | $\mathrm{C_2H_2Cl_2}$                         | cis-1,2-Dichloro-<br>ethylene                            | 3:5042           |
| C <sub>4</sub> H <sub>6</sub> Cl <sub>2</sub> | 2,3-Dichlorobutene-1 .  1,2-Dichlorobutene-2                   | 3:9074           |                                               | trans-1,2-Dichloro-<br>ethylene                          | 3:5028           |
|                                               | (hb.)                                                          | 3:5615<br>3:5360 | $C_8H_4Cl_2$                                  | 1,2-Dichloropropene-1 (hb. isomer) 1,2-Dichloropropene-1 | 3:5150           |
| ~ ~                                           | 1,3-Dichlorobutene-2.                                          | 3:5550           |                                               | (lb. isomer)                                             | 3:5110           |
| C <sub>5</sub> H <sub>8</sub> Cl <sub>2</sub> | 2,5-Dichloropentene-2<br>3,4-Dichloropentene-2                 | 3:9202<br>3:8045 |                                               | cis-2,3-Dichloro-<br>butene-2                            | 3:5500           |
|                                               | 1,3-Dichloro-2-methyl-<br>butene-2                             | 3:8170           | O. TT. GI                                     | butene-2                                                 | 3:7395           |
|                                               | b <sub>8</sub> POLYCHLORO                                      |                  | $\mathrm{C_{6}H_{10}Cl_{2}}$                  | 1,2-Dichlorohexene-1.                                    | 3:9330           |
| C <sub>4</sub> H <sub>5</sub> Cl <sub>8</sub> | 1,2,4-Trichloro-<br>butene-2<br>2,3,4-Trichloro-               | 3:9062           | C <sub>2</sub> HCl <sub>3</sub>               | 1,1,2-Trichloro-<br>ethylene                             | 3:5170           |
| C4H4Cl4                                       | butene-2                                                       | 3:9064           | $C_8H_3Cl_8$                                  | 1,1,2-Trichloropro-<br>pene-1                            | 3:5395           |
|                                               | butene-1                                                       | 3:9060           |                                               | 1,2,3-Trichloropro-<br>pene-1                            | 3:5650           |
| to u                                          | h two chlorine atoms on Consaturation  oth these chlorines are |                  | $C_3H_2Cl_4$                                  | 1,2,3,3-Tetrachloro-<br>propene-1                        | 3:5920           |
| _                                             | atom                                                           | on same          | G (0)                                         |                                                          |                  |
| $C_2H_2Cl_2$                                  | 1,1-Dichloroethylene                                           | 3:5005           | C <sub>4</sub> Cl <sub>4</sub>                | Tetrachloroethylene                                      | 3:5460           |
| C <sub>8</sub> H <sub>4</sub> Cl <sub>2</sub> | 1,1-Dichloropropene-1                                          | 3:5120           | $C_4H_2Cl_6$                                  | 1,1,2,3,4,4-Hexa-<br>chlorobutene-2                      |                  |
| C <sub>4</sub> H <sub>6</sub> Cl <sub>2</sub> | 1,1-Dichloro-2-methyl-<br>propene-1                            | 3:5300           |                                               | (liquid isomer)<br>(solid isomer)                        | 3:9046<br>3:1945 |
| C <sub>2</sub> HCl <sub>3</sub>               | 1,1,2-Trichloro-<br>ethylene                                   | 3:5170           | $C_0H_0Cl_0$                                  | 1,2,3,4,5,6-Hexa-<br>chlorohexene-3                      | 3:1220           |

| 3. With none of the chlorine atoms on C attached to unsaturation |                                                      |                          | C <sub>7</sub> H <sub>18</sub> Cl 4-Chloro-2,4-dimethy<br>Contd. pentene-1 |                                                                 | 8:7725                     |
|------------------------------------------------------------------|------------------------------------------------------|--------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------|
| a. M                                                             | lonochloro                                           |                          |                                                                            | 4-Chloro-2,4-dimethyl-                                          | 0.0440                     |
| $C_8H_5Cl$                                                       | 3-Chloropropene-1                                    | 3:7035                   | $C_8H_{15}Cl$                                                              | pentene-2 3-Chloro-octene-1 4-Chloro-octene-2                   | 3:9418<br>3:9518<br>3:8185 |
| C <sub>4</sub> H <sub>7</sub> Cl                                 | 3-Chlorobutene-1 4-Chlorobutene-1                    | 3:7 <b>090</b><br>3:7151 |                                                                            | 4-Chloro-6-methyl-                                              |                            |
|                                                                  | 1-Chlorobutene-2                                     | 3:7205                   |                                                                            | heptene-1                                                       | 3:8205                     |
|                                                                  | 3-Chloro-2-methyl-<br>propene-1                      | 3:7145                   |                                                                            | 6-Chloro-2-methyl-<br>heptene-2<br>4-Chloro-3-methyl-           | 3:9520                     |
| C <sub>5</sub> H <sub>9</sub> Cl                                 | 3-Chloropentene-1                                    | 3:7260                   |                                                                            | heptene-24-Chloro-6-methyl-                                     | 3:9524                     |
|                                                                  | 4-Chloropentene-1<br>5-Chloropentene-1               | 3:7350<br>3:7410         |                                                                            | heptene-2<br>5-Chloro-4-methyl-                                 | 3:9525                     |
|                                                                  | 1-Chloropentene-2<br>4-Chloropentene-2               | 3:7470<br>3:7400         |                                                                            | heptene-3                                                       | 3:9526                     |
|                                                                  | 5-Chloropentene-2                                    | 3:7455                   |                                                                            | 4-Chloro-2,5-dimethyl-<br>hexene-2<br>4-Chloro-3,5-dimethyl-    | 3:9529                     |
|                                                                  | 2-(Chloromethyl)-<br>butene-1                        | 3:9214                   |                                                                            | hexene-2<br>2-Chloro-2,5-dimethyl-                              | 3:9528                     |
| •                                                                | 3-Chloro-2-methyl-                                   |                          |                                                                            | hexene-3                                                        | 3:9527                     |
|                                                                  | butene-1                                             | 3:7300                   |                                                                            | 1-Chloro-4-ethyl-<br>hexene-3                                   | 3:8510                     |
|                                                                  | 1-Chloro-2-methyl-<br>butene-2<br>4-Chloro-2-methyl- | 3:7485                   | C <sub>9</sub> H <sub>17</sub> Cl                                          | 4-Chloro-7-methyl-                                              |                            |
|                                                                  | butene-2                                             | 3:7465                   |                                                                            | octene-2<br>5-Chloro-4-methyl-<br>octene-3                      | 3:9628<br>3:9624           |
| $C_6H_{11}Cl$                                                    | 3-Chlorohexene-1 4-Chlorohexene-1                    | 3:9334<br>3:7655         |                                                                            | 4-Chloro-3,6-dimethyl-                                          | J. 50#2                    |
|                                                                  | 5-Chlorohexene-1                                     | 3:7665                   |                                                                            | heptene-2                                                       | 3:9630                     |
|                                                                  | 1-Chlorohexene-2 4-Chlorohexene-2                    | 3:7620<br>3:7675         | $\mathrm{C}_{10}\mathrm{H}_{19}\mathrm{Cl}$                                | 4-Chloro-3,7-dimethyl-<br>octene-2                              | 3:9714                     |
|                                                                  | 1-Chlorohexene-3                                     | 3:9336                   |                                                                            | 4-Chloro-3,4-diethyl-<br>hexene-2                               | 3:9716                     |
|                                                                  | 3-Chloro-2-methyl-<br>pentene-1                      | 3:7660                   | <b>b.</b> D:                                                               | ichloro                                                         |                            |
|                                                                  | 4-Chloro-4-methyl-<br>pentene-1                      | 3:7500                   | C <sub>8</sub> H <sub>4</sub> Cl <sub>2</sub>                              | 3,3-Dichloropropene-1                                           | 3:5140                     |
|                                                                  | 5-Chloro-2-methyl-<br>pentene-2                      | 3:7915                   | $C_4H_6Cl_2$                                                               | 3,4-Dichlorobutene-1.                                           | 3:5350                     |
|                                                                  | 4-Chloro-3-methyl-<br>pentene-2                      | 3:9338                   |                                                                            | 1,1-Dichlorobutene-2.<br>1,4-Dichlorobutene-2.                  | 3:7685<br>3:5725           |
|                                                                  | 1-Chloro-2,3-di-<br>methylbutene-2                   | 3:7520                   |                                                                            | 3-Chloro-2-(chloro-<br>methyl) propene-1 3,3-Dichloro-2-methyl- | 3:5633<br>3:7480           |
| C <sub>7</sub> H <sub>18</sub> Cl                                | 3-Chloroheptene-1 4-Chloroheptene-2                  | 3:9412<br>3:8050         | C <sub>5</sub> H <sub>8</sub> Cl <sub>2</sub>                              | 3-Chloro-2-(chloro-methyl)-butene-1                             | 3:9206                     |
|                                                                  | 4-Chloro-5-methyl-<br>hexene-14-Chloro-3-methyl-     | 3:7730                   |                                                                            | 3,3-Dichloro-2-methyl-                                          | J. FAUU                    |
|                                                                  | hexene-24-Chloro-5-methyl-                           | 3:9414                   |                                                                            | butene-1                                                        | 3:7690                     |
|                                                                  | hexene-2                                             | 3:7890                   |                                                                            | butene-2                                                        | 3:9204                     |

| c. I<br>C <sub>2</sub> H <sub>3</sub> Cl <sub>3</sub> | Polychloro<br>3,3,3-Trichloro-                 | 0.1047             | $C_{\delta}H_{\delta}Cl_{2}$                        | 1-Chloro-2-(chloro-<br>methyl)-butadiene-<br>1,3           | 3:9195   |
|-------------------------------------------------------|------------------------------------------------|--------------------|-----------------------------------------------------|------------------------------------------------------------|----------|
|                                                       | propene-1                                      | 3:53 <u>45</u>     |                                                     |                                                            | 0.0100   |
| C <sub>4</sub> H <sub>4</sub> Cl <sub>3</sub>         | 3,3,3-Trichloro-2-                             |                    | c. C                                                | 6 series                                                   |          |
|                                                       | methylpropene-1                                | 3:5605             | $C_0H_0Cl$                                          | 3-Chlorohexadiene-1,3                                      | 3:9312   |
| C <sub>4</sub> H <sub>3</sub> Cl <sub>5</sub>         | 1,1,1,4,4-Pentachloro-<br>butene-2             | 3:9054             |                                                     | 1-Chloro-3-methyl-<br>pentadiene-1,3<br>2-Chloro-3-methyl- | 3:9316   |
| C <sub>4</sub> H <sub>2</sub> Cl <sub>6</sub>         | Hexachlorobutene-X<br>Hexachlorobutene-Y       | 3:9048<br>3:9050   |                                                     | pentadiene-1,3                                             | 3:9318   |
| B. Of Diol                                            | efins                                          |                    | $C_6H_8Cl_2$                                        | 1,3-Dichlorohexa-<br>diene-2,4                             | 3:9310   |
| 4 72744                                               | h '' cumulative " unsature                     |                    |                                                     |                                                            |          |
|                                                       |                                                | -                  | $C_6H_6Cl_4$                                        | 1,3,4,6-Tetrachloro-                                       | • ••••   |
| C <sub>4</sub> H <sub>5</sub> Cl                      | 4-Chlorobutadiene-1,2                          | 3:7225             |                                                     | hexadiene-2,4                                              | 3:9306   |
| C <sub>b</sub> H <sub>7</sub> Cl                      | 1-Chloro-3-methyl-                             |                    | d. C                                                | s series                                                   |          |
|                                                       | butadiene-1,2                                  | 3:73 <b>90</b>     | $C_8H_{13}Cl$                                       | 3-Chloro-octadiene-1,3                                     | 3:9506   |
| $C_0H_0Cl$                                            | 1-Chloro-3-methyl-                             |                    | 3. Witi                                             | h " isolated" unsaturation                                 | 2        |
|                                                       | pentadiene-1,2                                 | 3:9314             | CaH <sub>7</sub> Cla                                | 3,3,6-Trichlorohexa-                                       |          |
| C <sub>7</sub> H <sub>11</sub> Cl                     | 1-Chloro-3-ethyl-                              |                    |                                                     | diene-1,4                                                  | 3:9308   |
| C/11IIO.                                              | pentadiene-1,2                                 | 3:9406             |                                                     |                                                            | •        |
|                                                       |                                                |                    | $\mathbf{C}_{7}\mathbf{H}_{11}\mathbf{C}\mathbf{l}$ | 4-Chlorohepta-                                             |          |
|                                                       | h '' conjugated'' unsatura                     | tio <b>n</b>       |                                                     | diene-1,6                                                  | 3:8085   |
|                                                       | 4 series                                       |                    | C <sub>2</sub> H <sub>15</sub> Cl                   | 2-Chloro-6-methyl-5-                                       |          |
| C <sub>4</sub> H <sub>5</sub> Cl                      | 1-Chlorobutadiene-1,3<br>2-Chlorobutadiene-1,3 | 3:7210<br>3:7080   |                                                     | methyleneheptene-2                                         | 3:9614   |
|                                                       |                                                | 000                | C. Of Trio                                          | lefins '                                                   |          |
| $C_4H_4Cl_2$                                          | 1,2-Dichlorobuta-                              |                    | C <sub>6</sub> H <sub>6</sub> Cl <sub>2</sub>       | 3,6-Dichlorohexa-                                          |          |
|                                                       | diene-1,3                                      | 3:9057             |                                                     | triene-1,3,4                                               | 3:9304   |
|                                                       | diene-1,3                                      | 3:5220             | $C_6H_5Cl_8$                                        | 3,4,6-Trichlorohexa-<br>triene-1,2,4                       | 3:9302   |
| $C_4H_8Cl_8$                                          | 1,2,3-Trichlorobuta-                           |                    |                                                     | 0110110-1,2,1                                              | U . 93UR |
|                                                       | diene-1,3                                      | <b>3:99</b> 52     | D. Of Tetr                                          | aolefins                                                   |          |
| C <sub>4</sub> H <sub>2</sub> Cl <sub>4</sub>         | 1,2,3,4-Tetrachloro-<br>butadiene-1,3          |                    | C <sub>6</sub> H <sub>5</sub> Cl                    | 3-Chlorohexa-<br>tetraene-1,3,4,5                          | 3:7735   |
|                                                       | (solid isomer)                                 | 3:0870             | C <sub>6</sub> H <sub>4</sub> Cl <sub>2</sub>       | 3,4-Dichlorohexa-                                          |          |
|                                                       | (liquid isomer)                                | <b>3:6150</b>      | Cerriois                                            | tetraene-1,2,4,5                                           | 3:9300   |
| C4HCl4                                                | 1,1,2,3,4-Pentachloro-                         |                    | E. Of Alky                                          | nes                                                        |          |
|                                                       | butadiene-1,3                                  | 3:9 <del>011</del> | •                                                   |                                                            |          |
| C <sub>4</sub> Cl <sub>6</sub>                        | Hexachlorobuta-                                | 9.0492             |                                                     | t chlorine attached to C al<br>riple bond                  | so bear- |
|                                                       | diene-1,3                                      | 3:6425             | a. M                                                | onochloro                                                  |          |
| 8. C                                                  | series                                         |                    | C <sub>2</sub> HCl                                  | Chloroacetylene                                            | 3:7000   |
| C <sub>4</sub> H <sub>7</sub> Cl                      | 3-Chloropenta-                                 |                    | C <sub>s</sub> H <sub>s</sub> Cl                    | •                                                          |          |
|                                                       | diene-1,3                                      | 8:7860             |                                                     | 1-Chlorohexyne-1                                           | 3:9320   |
|                                                       | 1-Chloro-2-methyl-<br>butadiene-1,3            | 3:9200             | C <sub>7</sub> H <sub>11</sub> Cl                   | 1-Chloroheptyne-1 1-Chloro-3-ethyl- pentyne-1              | 3:8033   |
|                                                       | 3-Chloro-2-methyl-                             |                    |                                                     | F                                                          | 8:9410   |
|                                                       | butadiene-1,3<br>4-Chloro-2-methyl-            | 3:7 <b>290</b>     | C <sub>8</sub> H <sub>u</sub> Cl                    | 1-Chloro-octyne-1                                          | 3:9510   |
|                                                       | butadiene-1,3                                  | 3:7855             | C <sub>b</sub> H <sub>15</sub> Cl                   | 1-Chlorononyne-1                                           | 3:9618   |

| ъ.                               | Dichloro                                                    |        | $C_8H_{18}Cl$                      | 3-Chloro-3-methyl-                    |        |
|----------------------------------|-------------------------------------------------------------|--------|------------------------------------|---------------------------------------|--------|
| $C_2Cl_2$                        | Dichloroacetylene                                           | 3:5010 |                                    | heptyne-4                             | 3:9516 |
|                                  | ith chlorine(s) attached to<br>ter than that bearing triple |        | C <sub>9</sub> H <sub>15</sub> Cl  | 2-Chloro-2-methyl-<br>octyne-3        | 3:9622 |
| a.                               | Monochloro a1 CHLORINE IS PRIMARY                           |        | C <sub>10</sub> H <sub>17</sub> Cl | 3-Chloro-3-methyl-<br>nonyne-4        | 3:9710 |
| C <sub>2</sub> H <sub>2</sub> Cl | 3-Chloropropyne-1                                           | 3:7100 | <b>b.</b>                          | Dichloro                              |        |
| C4H5Cl                           | 1-Chlorobutyne-2                                            |        | $C_8H_{12}Cl_2$                    | 2,5-Dichloro-2,5-<br>dimethylhexene-3 | 3:9504 |
| CaH12Cl                          | 1-Chloro-octyne-2                                           | 3:9514 | F. Of Alka                         | di-ynes                               |        |
| C <sub>k</sub> H <sub>7</sub> Cl | 82 CHLORINE IS TERTIARY 3-Chloro-3-methyl-                  | 0,002  | C <sub>4</sub> Cl <sub>2</sub>     | 1,4-Dichlorobuta-<br>di-yne-1,3       | 3:9040 |
| 0,11,01                          | butyne-1                                                    | 3:7155 | G. Of Alke                         | nynes                                 |        |
| C <sub>6</sub> H <sub>9</sub> Cl | 3-Chloro-3-methyl-<br>pentyne-1                             | 3:9322 | C <sub>4</sub> H <sub>3</sub> Cl   | 1-Chlorobuten-3-<br>yne-1             | 3:7070 |
|                                  | 4-Chloro-4-methyl-<br>pentyne-2                             |        | C <sub>7</sub> H <sub>9</sub> Cl   | 5-Chloro-5-methyl-<br>hexen-1-yne-3   | 3:9402 |

# UNIT 3. CHLORO SUBSTITUTION PRODUCTS OF HYDROCARBONS CONTAINING CYCLIC NUCLEI

(Summary of Classification of Unit 3)

- A. OF CYCLOALKANES.
- B. OF MONONUCLEAR AROMATIC HYDROCARBONS.
  - 1. With all chlorine in nucleus.
  - 2. With all chlorine in side chain(s).
    - a. Saturated side chain(s).
    - b. Unsaturated side chain(s).
  - 3. With chlorine both in ring and in side chain(s).
- C. OF POLYNUCLEAR AROMATIC HYDROCARBONS.
  - 1. With all chlorine in nucleus.
    - a. Systems with uncondensed rings.
    - b. Systems with condensed rings.
  - 2. With all chlorine in side chain(s).
    - a. Systems with two uncondensed rings.
    - b. Systems with two condensed rings.
    - c. Systems with three uncondensed rings.
  - 3. With chlorine both in nucleus and side chain.

# UNIT 3. CHLORO SUBSTITUTION PRODUCTS OF HYDROCARBONS CONTAINING CYCLIC NUCLEI

| A. Of Cycloalkanes                            |                                                                       |                                 | B. Of Mononuclear Aromatic                    |                                     |                  |
|-----------------------------------------------|-----------------------------------------------------------------------|---------------------------------|-----------------------------------------------|-------------------------------------|------------------|
| C <sub>5</sub> H <sub>9</sub> Cl              | Chlorocyclopentane                                                    | 3:7545                          | Hydro                                         | carbons                             |                  |
| CaHuCl Chlorocyclohexane                      | 3:8040                                                                | 1. With all chlorine in nucleus |                                               |                                     |                  |
| Canno                                         | C <sub>6</sub> H <sub>11</sub> Cl Chlorocyclohexane                   | O.OUZU                          | $C_6H_5Cl$                                    | Chlorobenzene                       | 3:7903           |
| C <sub>6</sub> H <sub>6</sub> Cl <sub>6</sub> | cis-1,2,3,4,5,6-Hexa-<br>chlorocyclohexane<br>trans-1,2,3,4,5,6-Hexa- | 8:4410                          | C <sub>6</sub> H <sub>4</sub> Cl <sub>2</sub> | o-Dichlorobensene m-Dichlorobensene | 3:6055<br>3:5960 |
|                                               | chlorocyclohexane                                                     | 3: <b>4990</b>                  |                                               | p-Dichlorobenzene                   | 3:0960           |

| C <sub>6</sub> H <sub>8</sub> Cl <sub>8</sub> | 1,2,3-Trichlorobenzene<br>1,2,4-Trichlorobenzene<br>1,3,5-Trichlorobenzene               | 3:6420                                       | C9H11Cl<br>Contd.                           | 2-Chloro-1,3,5-tri-<br>methylbenzene                      | 3:8725                     |
|-----------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------|-----------------------------------------------------------|----------------------------|
| C <sub>6</sub> H <sub>2</sub> Cl <sub>4</sub> | 1,2,3,4-Tetrachloro-                                                                     |                                              | $\mathrm{C}_{10}\mathrm{H}_{13}\mathrm{Cl}$ | 2-Chloro-p-cymene<br>3-Chloro-p-cymene                    | 3:8775<br>3:8770           |
|                                               | benzene                                                                                  | 3:0655<br>3:0915                             | 2. Wi                                       | th all chlorine in side chai                              | n(s)                       |
|                                               | 1,2,4,5-Tetrachloro-                                                                     | 0.0000                                       | a.                                          | Saturated side chain(s)                                   |                            |
|                                               | benzene                                                                                  | 3:4115                                       | C7H7Cl                                      | Benzyl chloride                                           | 3:8535                     |
| C <sub>6</sub> HCl <sub>5</sub>               | Pentachlorobenzene                                                                       | 3:2290                                       | $C_7H_6Cl_2$                                | Benzal (di)chloride                                       | 3:6327                     |
| C <sub>6</sub> Cl <sub>6</sub>                | Hexachlorobenzene                                                                        | 3:4939                                       | $C_7H_5Cl_8$                                | Benzotrichloride                                          | 3:6540                     |
| C7H7Cl                                        | o-Chlorotoluene m-Chlorotoluene p-Chlorotoluene                                          | 3:8245<br>3:8275<br>3:8287                   | C <sub>8</sub> H <sub>9</sub> Cl            | $\alpha$ -Chloroethylbenzene $\beta$ -Chloroethylbenzene. | 3:8667<br>3:8712           |
| C7H6Cl2                                       | 2,3-Dichlorotoluene                                                                      | 3:6345                                       | $\mathrm{C_8H_8Cl_2}$                       | $\alpha,\beta$ -Dichloroethylbenzene                      | 3:6685                     |
|                                               | 2,4-Dichlorotoluene<br>2,5-Dichlorotoluene<br>2,6-Dichlorotoluene<br>3,4-Dichlorotoluene | 3 : 6290<br>3 : 6245<br>3 : 6270<br>3 : 6355 | $C_8H_9Cl$                                  | o-Xylyl chloride m-Xylyl chloride p-Xylyl chloride        | 3:8710<br>3:8700<br>3:8660 |
| C7H5Cl3                                       | 3,5-Dichlorotoluene 2,3,4-Trichlorotoluene                                               | 3:6310<br>3:0425                             | $\mathrm{C_8H_8Cl_2}$                       | o-Xylylene (di)-                                          |                            |
| 5,0,-                                         | 2,3,5-Trichlorotoluene<br>2,3,6-Trichlorotoluene                                         | 3:0610<br>3:0625                             |                                             | chloride                                                  | 3:1040<br>3:0310           |
|                                               | 2,4,5-Trichlorotoluene<br>2,4,6-Trichlorotoluene<br>3,4,5-Trichlorotoluene               | 3:2100<br>3:0380<br>3:0580                   |                                             | p-Xylylene (di)-<br>chloride                              | 3:2825                     |
| C7H4Cl4                                       | 2,3,4,5-Tetrachloro-                                                                     |                                              | C <sub>9</sub> H <sub>11</sub> Cl           | $\gamma$ -Chloro- $n$ -propyl-<br>benzene                 | 3:8777                     |
|                                               | toluene<br>2,3,4,6-Tetrachloro-                                                          | 3:2710                                       |                                             | α-Chloroisopropyl-<br>benzene                             | 3:9610                     |
|                                               | toluene                                                                                  | 3:2480                                       | $C_{10}H_{13}Cl$                            | 2,3,6-Trimethylbenzyl                                     |                            |
| G II GI                                       | toluene                                                                                  | 3:2575                                       |                                             | chloride                                                  | 3:9701                     |
| C7H2Cl5                                       | 2,3,4,5,6-Pentachloro-<br>toluene                                                        | 3:4937                                       |                                             | chloride2,4,6-Trimethylbenzyl                             | 3:9702                     |
| C <sub>8</sub> H <sub>9</sub> Cl              | o-Chloro-ethylbenzene<br>p-Chloro-ethylbenzene                                           | 3:8550<br>3:8570                             |                                             | chloride                                                  | 3:0372                     |
|                                               | 3-Chloro-1,2-dimethyl-                                                                   | 0.0010                                       |                                             | 4-Isopropylbenzyl chloride                                | 3:8795                     |
|                                               | benzene4-Chloro-1,2-dimethyl-                                                            | 3:8645                                       |                                             | β-Chloro-ter-butyl-<br>benzene                            | 3:8780                     |
|                                               | benzene                                                                                  | 3:8675                                       | <b>b.</b> T                                 | Insaturated side chain(s)                                 |                            |
|                                               | 2-Chloro-1,3-dimethyl-<br>benzene                                                        | 3:8590                                       | C <sub>8</sub> H <sub>6</sub> Cl            | ω-Chlorophenyl-                                           | 0.0404                     |
|                                               | 4-Chloro-1,3-dimethyl-<br>benzene                                                        | 3:8665                                       |                                             | acetylene                                                 | 3:9494<br>3:9497           |
|                                               | 5-Chloro-1,3-dimethyl-<br>benzene                                                        | 3:8640                                       |                                             | acetylene                                                 | 3:9497<br>3:9500           |
|                                               | 2-Chloro-1,4-dimethyl-<br>benzene                                                        | 3:8600                                       |                                             | p-Chlorophenyl-<br>acetylene                              | 3:0590                     |
|                                               |                                                                                          | J.0000                                       |                                             |                                                           |                            |
| C <sub>0</sub> H <sub>11</sub> Cl             | 4-Chloro-isopropyl-<br>benzene                                                           | 3:8705                                       | C <sub>8</sub> H <sub>7</sub> Cl            | $\alpha$ -Chlorovinylbenzene $\beta$ -Chlorovinylbenzene. | 3:8715<br>3:8717           |

| $C_9H_9Cl$   | 1-Chloro-1-phenylpro-              | 9.0004          | C7H3Cl5                                        | 2,4,5-Trichlorobenzal                         | 3:6910           |
|--------------|------------------------------------|-----------------|------------------------------------------------|-----------------------------------------------|------------------|
|              | pene-1                             | 3:9604          | Contd.                                         | (di)chloride                                  | 0 : 09 TA        |
|              | pene-1                             | 3:9606          |                                                | (di)chloride                                  | 3:0142           |
|              | 3-Chloro-1-phenylpro-<br>pene-1    | 3:0010          | C7H2Cl6                                        | 2,3,4,5-Tetrachloro-                          |                  |
|              | pene-1                             | 3. WI           | -,20                                           | benzal (di)chloride .                         | 3:9397           |
|              | 1-Chloro-2-phenylpro-              |                 |                                                | 2,3,4,6-Tetrachloro-                          | 9.0000           |
|              | pene-1                             | 3:8742          |                                                | benzal (di)chloride .<br>2,3,5,6-Tetrachloro- | 3:6980           |
|              | 1-Chloro-3-phenylpro-              |                 |                                                | benzal (di)chloride .                         | 3:6980           |
|              | pene-1                             | 3:8737          | C7HCl5                                         | Pentachlorobenzal                             |                  |
|              | 2-Chloro-3-phenylpro-              |                 | Cilicis                                        | (dı)chloride                                  | 3:3590           |
|              | penc-1                             | 3:9 <b>60</b> 8 |                                                |                                               |                  |
| 9 With       | chlorine both in ring and          | l in side       | _                                              | nuclear Aromatic Hydrocar                     | bons             |
| chain        |                                    |                 |                                                | all chlorine in nucleus                       | •                |
| C7H6Cl2      | o-Chlorobenzyl                     |                 |                                                | ystems with uncondensed                       | _                |
| 0/116012     | chloride                           | 3:6400          | C <sub>12</sub> H <sub>9</sub> Cl              | 2-Chlorobiphenyl 3-Chlorobiphenyl             | 3:0300<br>3:8940 |
|              | m-Chlorobenzyl                     |                 |                                                | 4-Chlorobiphenyl                              | 3:1912           |
|              | chloride                           | 3: <b>644</b> 5 | C <sub>12</sub> H <sub>8</sub> Cl <sub>2</sub> | 2,2'-Dichlorobiphenyl.                        | 3:1325           |
|              | chloride                           | 3:0220          | C12118C12                                      | 2,3-Dichlorobiphenyl.                         | 3:9850           |
|              |                                    |                 |                                                | 2,4'-Dichlorobiphenyl.                        | 3:0670           |
| $C_7H_5Cl_3$ | 2,6-Dichlorobenzyl                 | 0.0440          |                                                | 2,5-Dichlorobiphenyl.                         | 3:9854           |
|              | chloride<br>3,4-Dichlorobenzyl     | 3:0410          |                                                | 3,3'-Dichlorobipehnyl. 3,4-Dichlorobiphenyl.  | 3:0180<br>3:0685 |
|              | chloride                           | 3:6795          |                                                | 3,5-Dichlorobiphenyl .                        | 3:0360           |
|              | 3,5-Dichlorobenzyl                 |                 |                                                | 4,4'-Dichlorobiphenyl.                        | 3:4300           |
|              | chloride                           | 3:0350          | C18H10Cl2                                      | 4,4'-Dichlorodiphenyl-                        |                  |
|              | o-Chlorobenzal                     |                 | C181110C12                                     | methane                                       | 3:1057           |
|              | (di)chloride                       | 3:6625          | C14H10Cl2                                      | 1,1-Di-(p-chloro-                             |                  |
|              | m-Chlorobenzal                     | 9.0716          | C141110C12                                     | phenyl)ethylene                               | 3:2475           |
|              | (di)chloride<br>p-Chlorobenzal     | 3:6710          | $\mathbf{C_{14}H_{12}Cl_2}$                    | 1,1-Di-(p-chloro-                             |                  |
|              | (di)chloride                       | 3:6700          |                                                | phenyl)ethane                                 | 3:0995           |
| ~ ** ~*      | 0.4.70.11. 1. 1.                   |                 | ъ. 1                                           | Systems with condensed ri                     | ngs              |
| C7H4Cl4      | 2,4-Dichlorobenzal (di)chloride    | 3:9399          | C <sub>10</sub> H <sub>7</sub> Cl              | 1-Chloronaphthalene .                         | 3:6878           |
|              | 2,5-Dichlorobenzal                 | 0.000           |                                                | 2-Chloronaphthalene.                          | 3:1285           |
|              | (di)chloride                       | 3:0490          | $C_{10}H_6Cl_2$                                | 1,2-Dichloronaphtha-                          |                  |
|              | 2,6-Dichlorobenzal<br>(di)chloride | 3:9398          | -100                                           | lene                                          | 3:0320           |
|              | (ui)emoride                        | o. 900G         |                                                | 1,3-Dichloronaphtha-                          | 9. 1910          |
|              | 3,4-Dichlorobenzal                 |                 |                                                | lene<br>1,4-Dichloronaphtha-                  | 3:1310           |
|              | (di)chloride                       | 3:6867          |                                                | lene                                          | 3:1655           |
|              | 3,5-Dichlorobenzal<br>(di)chloride | 3:0370          |                                                | 1,5-Dichloronaphtha-                          | 0.0000           |
|              | (41)01114011111111                 | 510010          |                                                | lene                                          | 3:3200           |
|              | o-Chlorobenzotri-                  |                 |                                                | lene                                          | 3:0810           |
|              | chloride                           | 3:6880          |                                                | 1,7-Dichloronaphtha-                          | 0.400=           |
|              | chloride                           | 3:6845          |                                                | lene<br>1,8-Dichloronaphtha-                  | 3:1385           |
|              | p-Chlorobenzotri-                  |                 |                                                | lene                                          | 3:2435           |
|              | chloride                           | 3:6825          |                                                | 2,3-Dichloronaphtha-                          | 0.000-           |
| C7H2Cl5      | 2,3,4-Trichlorobenzal              |                 |                                                | lene                                          | 3:3665           |
| ~1116018     | (di)chloride                       | 3:2212          |                                                | lene                                          | 3: <b>4040</b>   |
|              | 2,3,6-Trichlorobenzal              | 0.0420          |                                                | 2,7-Dichloronaphtha-                          |                  |
|              | (di)chloride                       | 3:2178          |                                                | lene                                          | 3:3445           |

| C <sub>10</sub> H <sub>6</sub> Cl <sub>8</sub> | 1,2,3-Trichloro-<br>naphthalene<br>1,2,4-Trichloro- | 3:2125                   | C <sub>14</sub> H <sub>11</sub> Cl <sub>2</sub> | 1,1,1-Trichloro-2,2-<br>diphenylethane         | 3:1420   |
|------------------------------------------------|-----------------------------------------------------|--------------------------|-------------------------------------------------|------------------------------------------------|----------|
|                                                | naphthalene<br>1,2,5-Trichloro-                     | 3:2490                   | C14H16Cl4                                       | 1,1,2,2-Tetrachloro-1,<br>2-diphenylethane     | 3:4496   |
|                                                | naphthalene<br>1,2,6-Trichloro-<br>naphthalene      | 3:193 <b>9</b><br>3:2515 | C14H10Cl2                                       | cis-1,2-Dichloro-1,2-<br>diphenylethylene      | 3:1380   |
|                                                | 1,2,7-Trichloro-<br>naphthalene                     | 3:2825                   |                                                 | trans-1,2-Dichloro-<br>1,2-diphenylethyl-      | 0,2000   |
|                                                | 1,2,8-Trichloro-<br>naphthalene                     | 3:2220                   |                                                 | ene                                            | 3:4210   |
|                                                | 1,3,5-Trichloro-<br>naphthalene                     | 3:3015                   |                                                 | 1,1-Dichloro-2,2-di-<br>phenylethylene         | 3:1938   |
|                                                | 1,3,6-Trichloro-<br>naphthalene                     | 3:1975                   | ь sı                                            | stems with two condense                        |          |
|                                                | 1,3,7-Trichloro-<br>naphthalene                     | 3:3400                   | C <sub>11</sub> H <sub>9</sub> Cl               | 1-(Chloromethyl)-                              | va 1 men |
|                                                | 1,3,8-Trichloro-<br>naphthalene                     | 3:2420                   | On-Lioi                                         | naphthalene<br>2-(Chloromethyl)-               | 3:0250   |
|                                                | 1,4,5-Trichloro-<br>naphthalene                     | 3:4005                   |                                                 | naphthalene                                    | 3:0747   |
|                                                | 1,4,6-Trichloro-<br>naphthalene                     | 3:1625                   |                                                 | vstems with three unco                         | ndensed  |
|                                                | 2,3,5-Trichloro-<br>naphthalene                     | 3:3300                   | C <sub>19</sub> H <sub>15</sub> Cl              | α-Chlorotriphenyl-                             |          |
|                                                | 2,3,6-Trichloro-<br>naphthalene                     | 3:2455                   |                                                 | methane                                        | 3:3410   |
| C10Cl8                                         | Octachloronaptha-                                   | 3:4893                   | C <sub>20</sub> H <sub>18</sub> Cl              | 1-Chloro-1,2,2-<br>triphenylethylene           | 3:3560   |
| C10HaCl4                                       | 1,2,3,4-Tetrachloro-                                | 0,200                    |                                                 | ı chlorine both in nucleu<br>chain             | s and in |
|                                                | 1,2,3,4-tetrahydro-                                 | 0.4876                   | C <sub>14</sub> H <sub>10</sub> Cl <sub>4</sub> | 1,1-Dichloro-2,2-                              |          |
|                                                | naphthalene<br>5,6,7,8-Tetrachloro-                 | 3:4750                   | CHILIOCH                                        | bis-(p-chloro-<br>phenyl)ethane                | 3:3320   |
|                                                | 1,2,3,4-tetrahydro-<br>naphthalene                  | 3:4703                   |                                                 | 1,1-Dichloro-2-(o-                             | 0.00.00  |
| C14H8Cl2                                       | 9,10-Dichloro-<br>anthracene                        | 3:4916                   |                                                 | chlorophenyl)-2-( <b>p</b> -<br>chlorophenyl)- |          |
| 0 12744                                        | h all chlorine in side chai                         | n(e)                     |                                                 | ethane                                         | 3:1890   |
|                                                | Systems with two unce                               |                          | $C_{14}H_9Cl_5$                                 | 1,1,1-Trichloro-2,2-                           |          |
| :                                              | rings                                               |                          |                                                 | bis-(o-chlorophenyl)-<br>ethane                | 3:9865   |
| C <sub>18</sub> H <sub>11</sub> Cl             | $\alpha$ -Chloro-<br>diphenylmethane                | 3:0060                   |                                                 | 1,1,1-Trichloro-2,2-<br>bis-(p-chloro-         |          |
| C18H10Cl2                                      | α,α-Dichloro-<br>diphenylmethane                    | 3:6960                   |                                                 | phenyl)ethane                                  | 3:3298   |
| C14H12Cl                                       | 1,1-Diphenylethyl                                   |                          |                                                 | 1,1,1-Trichloro-2-(o-<br>chlorophenyl)-2-      |          |
| 0,,2,                                          | chloride                                            | 3:9870                   |                                                 | (p-chlorophenyl)-<br>ethane                    | 3:1820   |
|                                                | chloride                                            | 3:9871                   |                                                 | 1,1,1-Trichloro-2-(m-chlorophenyl)-2-          | 3.22.00  |
| C14H12Cl2                                      | 6,l-1,2-Dichloro-1,2-<br>diphenylethane             | 3:2570                   |                                                 | (p-chlorophenyl)-<br>ethane                    | 3:9867   |
|                                                | meso-1,2-Dichloro-1,2-<br>diphenylethane            | 3:4854                   | a Fran                                          |                                                | 3.5001   |
|                                                |                                                     |                          | $C_{13}H_8Cl_6$                                 | 1,1,1,2-Tetrachloro- $2$ ,                     |          |
|                                                | 1,1-Dichloro-2,2-                                   | 3:1940                   |                                                 | 2-bis-(p-chloro-<br>phenyl)ethane              | 3:2477   |

| C <sub>14</sub> H <sub>9</sub> Cl <sub>2</sub> | 1-Chloro-2,2-bis-(p-chlorophenyl)-<br>ethylene | <b>3:1430</b> | C14H8Cl4<br>Contd. | 1,1-Dichloro-2-(o-<br>chlorophenyl)-2-<br>(p-chlorophenyl)-<br>ethylene | 3:1925 |
|------------------------------------------------|------------------------------------------------|---------------|--------------------|-------------------------------------------------------------------------|--------|
| $C_{14}H_8Cl_4$                                | 1,1-Dichloro-2,2-bis-                          |               |                    | ethylene                                                                | 9:19/0 |
|                                                | (p-chlorophenyl)-<br>ethylene                  | 3:2438        |                    | 1,1-Dichloro-2-(m-<br>chlorophenyl)-2-<br>(p-chlorophenyl)-<br>ethylene | 2:9863 |

## UNIT 4. CHLORO SUBSTITUTION PRODUCTS OF HYDROXY COMPOUNDS

## (Summary of Classification of Unit 4)

### A. OF ALCOHOLS.

- 1. Of acyclic alcohols.
  - a. Saturated monohydric.
    - a<sub>1</sub> Primary.
    - a<sub>2</sub> Secondary.
    - as Tertiary.
  - b. Saturated dihydric.
  - c. Unsaturated (olefinic) monohydric.
    - c1 Primary.
    - c2 Secondary.
- 2. Of cyclanols (alicyclic alcohols).
- 3. Of aromatic alcohols.
- 4. Of alcohols containing also other functional groups.

  - a. Ether/alcohols. b. Ester/alcohols.
  - c. Ether/ester/alcohols.
  - d. Acid/alcohols (hydroxy acids).

## B. OF PHENOLS.

- 1. Of mononuclear phenols.
  - a. Monohydric.
    - a<sub>1</sub> Derivatives of phenol.
    - a<sub>2</sub> Derivatives of methylphenols.
    - as Derivatives of xylenols.
    - a4 Derivatives of miscellaneous alkylphenols.
    - as Derivatives of phenolic aldehydes.
    - as Derivatives of phenolic acids.
    - a7 Derivatives of phenolic acid chlorides.
  - b. Dihydric.
    - b<sub>1</sub> Derivatives of pyrocatechol.
    - b<sub>2</sub> Derivatives of resorcinol.
    - ba Derivatives of hydroquinone.
  - c. Trihydric.
- 2. Of binuclear phenols.
  - a. Monohydric.
    - a<sub>1</sub> With uncondensed rings.
    - as With condensed rings.

## UNIT 4. CHLORO SUBSTITUTION PRODUCTS OF HYDROXY COMPOUNDS

| •                                              | cyclic alcohols                                            |                            | C <sub>8</sub> H <sub>5</sub> OCl <sub>8</sub>  | 1,1,1-Trichloro-<br>propanol-2                                                           | 3:0846           |
|------------------------------------------------|------------------------------------------------------------|----------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------|------------------|
|                                                | turated monohydric                                         |                            | C <sub>8</sub> H <sub>4</sub> OCl <sub>4</sub>  | 1,1,1,3-Tetrachloro-                                                                     |                  |
| C <sub>2</sub> H <sub>5</sub> OCl              | 2-Chloroethanol-1                                          | 3:5552                     |                                                 | propanol-2                                                                               | 3:9036           |
| $C_2H_4OCl_2$                                  | 2,2-Dichloroethanol-1.                                     | 3:5745                     |                                                 | propanol-2                                                                               | 3:9037           |
| C <sub>2</sub> H <sub>8</sub> OCl <sub>3</sub> | 2,2,2-Trichloro-<br>ethanol-1                              | 3:5775                     | C <sub>4</sub> H <sub>9</sub> OCl               | 1-Chlorobutanol-2 3-Chlorobutanol-2 erythro-3-Chloro-                                    | 3:8025<br>3:8000 |
| C <sub>8</sub> H <sub>7</sub> OCl              | 2-Chloropropanol-1 3-Chloropropanol-1                      | 3:7917<br>3:8285           |                                                 | butanol-2<br>threo-3-Chloro-<br>butanol-2                                                | 3:8004<br>3:8002 |
| C <sub>8</sub> H <sub>6</sub> CCl <sub>2</sub> | 2,3-Dichloro-<br>propanol-1                                | 3:6060                     | C4H8OCl2                                        | 4-Chlorobutanol-2  1,3-Dichlorobutanol-2                                                 | 3:9175<br>3:9145 |
| G <sub>4</sub> H <sub>9</sub> OCl              | 2-Chlorobutanol-1 3-Chlorobutanol-1 4-Chlorobutanol-1      | 3:9160<br>3:9165<br>3:9170 |                                                 | 1,1-Dichloro-2-methyl-<br>propanol-2                                                     | 3:5772           |
| C4H7OCl8                                       | 2,2,3-Trichloro-<br>butanol-1                              | 3:1336                     | C <sub>4</sub> H <sub>7</sub> OCl <sub>3</sub>  | 1,1,1-Trichloro-<br>butanol-2                                                            | 3:5955           |
| C <sub>4</sub> H <sub>9</sub> OCl              | 2-Chloro-2-methyl-<br>propanol-1                           | 3:7905                     | C <sub>6</sub> H <sub>11</sub> OCl              | 1-Chloropentanol-2 1-Chloropentanol-3                                                    | 3:8225<br>3:8500 |
|                                                | 3-Chloro-2-methyl-<br>propanol-1                           | 3:9180                     |                                                 | 2-Chloro-2-methyl-<br>butanol-3                                                          | 3:9290           |
| $C_bH_{11}OCl$                                 | 5-Chloropentanol-1                                         | 3:9295                     | 8.3                                             | TERTIARY                                                                                 |                  |
| C <sub>6</sub> H <sub>18</sub> OCl             | 6-Chlorohexanol-1                                          | 3:9395                     | C <sub>4</sub> H <sub>9</sub> OCl               | 1-Chloro-2-methyl-<br>propanol-2                                                         | 3:7752           |
| $C_7H_{15}OCl$                                 | 7-Chloroheptanol-1                                         | 3:0013                     | C <sub>4</sub> H <sub>8</sub> OCl <sub>2</sub>  | 1,3-Dichloro-2-methyl-                                                                   |                  |
| C <sub>8</sub> H <sub>17</sub> OCl             | 8-Chloro-octanol-1                                         | 3:9590                     |                                                 | propanol-2                                                                               | 3:5977           |
| $C_9H_{19}OCl$                                 | 9-Chlorononanol-1                                          | 3:0170                     | C <sub>4</sub> H <sub>7</sub> OCl <sub>8</sub>  | 1,1,1-Trichloro-2-<br>methylpropanol-2                                                   | 3:2662           |
| $C_{10}H_{21}OCl$                              | $10\text{-}Chlorodecanol-1\dots$                           | 3:0014                     | C <sub>b</sub> H <sub>11</sub> OCl              | 1-Chloro-2-methyl-                                                                       |                  |
| $\mathrm{C}_{12}\mathrm{H}_{25}\mathrm{OCl}$   | 12-Chloro-<br>dodecanol-1                                  | 3:0172                     |                                                 | butanol-2 3-Chloro-2-methyl- butanol-2                                                   | 3:8175<br>3:8030 |
| C <sub>14</sub> H <sub>29</sub> OCl            | 14-Chloro-<br>tetradecanol-1                               | 3:0375                     |                                                 | 4-Chloro-2-methyl-<br>butanol-2                                                          | 3:8335           |
| C <sub>16</sub> H <sub>88</sub> OCl            | 16-Chloro-<br>hexadecanol-1                                | 3:0525                     | b. Sa<br>C₃H7O₃Cl                               | turated dihydric  3-Chloropropanediol- 1,2                                               | 3:9038           |
| C <sub>18</sub> H <sub>87</sub> OCl            | 18-Chloro-<br>octadecanol-1                                | 3:0985                     |                                                 | 2-Chloropropanediol-<br>1,3                                                              | 8:9039           |
| -                                              | SECONDARY                                                  |                            | C <sub>4</sub> H <sub>9</sub> O <sub>2</sub> Cl | 3-Chloro-2-methyl-<br>propanediol-1,2                                                    | 3:9190           |
| C <sub>8</sub> H <sub>7</sub> OCl              | 1-Chloropropanol-2                                         | 3:7747                     | . **                                            |                                                                                          |                  |
| C <sub>2</sub> H <sub>6</sub> OCl <sub>2</sub> | 1,1-Dichloro-<br>propanol-2<br>1,3-Dichloro-<br>propanol-2 | 3:5755<br>3:5985           |                                                 | nsaturated (olefinic) mon<br>PRIMARY<br>2-Chloropropen-2-ol-1.<br>3-Chloropropen-2-ol-1. | 3:5635<br>3:5820 |

| C <sub>4</sub> H <sub>7</sub> OCl                            | 2-Chlorobuten-2-ol-1 . 3-Chlorobuten-2-ol-1 . 4-Chlorobuten-2-ol-1 . 2-Chlorobuten-3-ol-1 | 3:8240<br>3:8270<br>3:9114<br>3:9113 | a. M                                           | nois<br>onuclear phenois<br>onobydric<br>derivatives of phenoi             | L                                |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------|----------------------------------------------------------------------------|----------------------------------|
|                                                              | 3-Chloro-2-methyl-<br>propen-2-ol-1                                                       | 3:8340                               | $C_6H_5OCl$                                    | o-Chlorophenol  m-Chlorophenol  p-Chlorophenol                             | 3:5980<br>3:0255<br>3:0475       |
| _                                                            | SECONDARY                                                                                 |                                      |                                                | •                                                                          |                                  |
| C <sub>4</sub> H <sub>7</sub> OCl                            | 1-Chlorobuten-3-ol-2<br>3-Chlorobuten-3-ol-2.                                             | 3:8110<br>3:9115                     | C <sub>6</sub> H <sub>4</sub> OCl <sub>2</sub> | 2,3-Dichlorophenol<br>2,4-Dichlorophenol<br>2,5-Dichlorophenol             | 3:1175<br>3:0560<br>3:1190       |
| 2. Of cy                                                     | clanols (alicyclic alcohol:                                                               | s)                                   |                                                | 2,6-Dichlorophenol                                                         | 3:1595                           |
| C <sub>6</sub> H <sub>11</sub> OCl                           | cis-2-Chlorocyclo-<br>hexanol-1<br>trans-2-Chlorocyclo-                                   | 3:9374                               |                                                | 3,4-Dichlorophenol<br>3,5-Dichlorophenol                                   | 3:1 <b>460</b><br>3:167 <b>0</b> |
|                                                              | hexanol-1                                                                                 | 3:0175                               | C <sub>6</sub> H <sub>8</sub> OCl <sub>8</sub> | 2,3,4-Trichlorophenol.                                                     | 3:2185                           |
|                                                              | 4-Chlorocyclo-<br>hexanol-1                                                               | 3:9376                               |                                                | 2,3,5-Trichlorophenol.<br>2,3,6-Trichlorophenol.<br>2,4,5-Trichlorophenol. | 3:1340<br>3:1160<br>3:1620       |
| 3. Of an                                                     | omatic alcohols                                                                           |                                      |                                                | 2,4,6-Trichlorophenol.                                                     | 3:1673                           |
| C <sub>8</sub> H <sub>9</sub> OCl                            | Styrene chlorohydrin.                                                                     | 3:9570                               |                                                | 3,4,5-Trichlorophenol.                                                     | 3:2885                           |
|                                                              | nicohols containing als<br>ional groups                                                   | o other                              | C <sub>6</sub> H <sub>2</sub> OCl <sub>4</sub> | 2,3,4,5-Tetrachloro-<br>phenol.                                            | 3:3523                           |
| a. Et                                                        | her/alcohols                                                                              |                                      |                                                | 2,3,4,6-Tetrachloro-<br>phenol                                             | 3:1687                           |
| $C_4H_9O_2Cl$                                                | 2-(β-Chloroethoxy)-                                                                       |                                      |                                                | 2,3,5,6-Tetrachloro-                                                       | 0.1001                           |
|                                                              | ethanol-1                                                                                 | 3:9185                               |                                                | phenol                                                                     | 3:3460                           |
| b. Es                                                        | ter/alcohols                                                                              |                                      | C <sub>6</sub> HOCl <sub>5</sub>               | Pentachlorophenol                                                          | 3:4850                           |
| C <sub>4</sub> H <sub>7</sub> O <sub>8</sub> Cl              | $\beta$ -Hydroxyethyl chloroacetate                                                       | 3:6780                               | -                                              | DERIVATIVES OF THE                                                         |                                  |
| C <sub>4</sub> H <sub>6</sub> O <sub>3</sub> Cl <sub>2</sub> | β-Hydroxyethyl di-                                                                        |                                      |                                                | PHENOLS (CRESOLS)                                                          |                                  |
| C4118O3C12                                                   | chloroacetate                                                                             | 3:9107                               | C7H7OCl                                        | 3-Chloro-2-methyl-<br>phenol.                                              | 3:2280                           |
| C <sub>4</sub> H <sub>5</sub> O <sub>8</sub> Cl <sub>8</sub> | β-Hydroxyethyl tri-<br>chloroacetate                                                      | 3:9099                               |                                                | 4-Chloro-2-methyl-<br>phenol<br>5-Chloro-2-methyl-                         | 3:0780                           |
| C <sub>5</sub> H <sub>9</sub> O <sub>5</sub> Cl              | β-Chloro-γ-hydroxy-                                                                       |                                      |                                                | phenol                                                                     | 3:1815                           |
|                                                              | n-propyl acetate                                                                          | 3:6648                               |                                                | 6-Chloro-2-methyl-                                                         |                                  |
|                                                              | γ-Chloro-β-hydroxy-                                                                       |                                      |                                                | phenol                                                                     | 3:8615                           |
|                                                              | n-propyl acetate                                                                          | 3:6775                               | C7H4OCl2                                       | 4,5-Dichloro-2-                                                            |                                  |
|                                                              | $\beta$ -Chloro- $\beta'$ -hydroxy-isopropyl acetate                                      | 3:6517                               | CALIGOUS                                       | methylphenol<br>4,6-Dichloro-2-                                            | 3:2910                           |
| _ TA                                                         | her/ester alcohols                                                                        |                                      |                                                | methylphenol                                                               | 3:1020                           |
|                                                              | •                                                                                         |                                      | C <sub>7</sub> H <sub>7</sub> OCl              | 2-Chloro-3-methyl-                                                         |                                  |
| C <sub>6</sub> H <sub>11</sub> O <sub>4</sub> Cl             | Diethylene glycol<br>mono(chloroacetate)                                                  | 3:9390                               | Canada                                         | phenol4-Chloro-3-methyl-                                                   | 3:1055                           |
| C <sub>8</sub> H <sub>15</sub> O <sub>5</sub> Cl             | Triethylene glycol<br>mono(chloroacetate)                                                 | 3:9588                               |                                                | phenol6-Chloro-3-methyl-                                                   | 3:1535                           |
| d. A                                                         | eid/alcohols                                                                              |                                      |                                                | phenol                                                                     | 3:0700                           |
| C <sub>4</sub> H <sub>6</sub> O <sub>3</sub> Cl <sub>2</sub> | β,β-Dichloro-α-                                                                           |                                      | C7H6OCl2                                       | 2,4-Dichloro-3-                                                            |                                  |
| ~4440V8V12                                                   | hydroxyisobutyric                                                                         |                                      | -,04                                           | methylphenol                                                               | 3:1205                           |
|                                                              | acid                                                                                      | 3:2145                               |                                                | 2,6-Dichloro-3-                                                            |                                  |
|                                                              | $\beta$ , $\beta'$ -Dichloro- $\alpha$ -                                                  |                                      |                                                | methylphenol                                                               | 3:0150                           |
|                                                              | hydroxyisobutyric<br>acid                                                                 | 3:2565                               |                                                | 4,6-Dichloro-3-<br>methylphenol                                            | 8:1745                           |

| C7H6OCl8                                       | 2,4,6-Trichloro-3-<br>methylphenol             | 3:0618              | 8.5                                                          | DERIVATIVES OF PHENOI<br>HYDES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IC ALDE-         |
|------------------------------------------------|------------------------------------------------|---------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| ~ ** ~ ~ .                                     |                                                |                     | C7H5O2Cl                                                     | 3-Chloro-2-hydroxy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| C7H7OCl                                        | 2-Chloro-4-methyl-<br>phenol                   | 3:6215              |                                                              | benzaldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3:1010           |
|                                                | 3-Chloro-4-methyl-                             | 9: UAI9             |                                                              | 4-Chloro-2-hydroxy-<br>benzaldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3:0960           |
|                                                | phenol                                         | 3:1025              |                                                              | 5-Chloro-2-hydroxy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 : <b>UV</b> UU |
|                                                |                                                |                     |                                                              | benzaldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3:2800           |
| C7H6OCl2                                       | 2,6-Dichloro-4-                                | 3:0400              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                                | methylphenol                                   | 3:0100              | $C_7H_4O_2Cl_2$                                              | 3,5-Dichloro-2-hy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.0007           |
| ۵.                                             | DERIVATIVES OF THE X                           | TARNOTA             |                                                              | droxybenzaldehyde.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3:2637           |
| -                                              |                                                |                     | C7H5O2Cl                                                     | 2-Chloro-3-hydroxy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| C <sub>8</sub> H <sub>9</sub> OCl              | 5-Chloro-o-3-xylenol<br>6-Chloro-o-3-xylenol   | 3:2115<br>3:2218    |                                                              | benzaldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3:4085           |
|                                                | o-chioro-o-ayrenor                             | <b>0.</b> NN 10     |                                                              | 4-Chloro-3-hydroxy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>0</b> - 0800  |
|                                                | 3-Chloro-o-4-xylenol .                         | 3:0158              |                                                              | benzaldehyde<br>6-Chloro-3-hydroxy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3:3780           |
|                                                | 5-Chloro-o-4-xylenol                           | 3:1754              |                                                              | benzaldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3:3350           |
|                                                | 6-Chloro-o-4-xylenol                           | 3:2705              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                                | 5-Chloro-m-4-xylenol .                         | 3:8784              | $C_7H_4O_2Cl_2$                                              | 2,4-Dichloro-3-hy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
|                                                | 6-Chloro-m-4-xylenol .                         | 3:2460              |                                                              | droyxbenzaldehyde.<br>2.6-Dichloro-3-hy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3:4140           |
|                                                |                                                |                     | •                                                            | droxybenzaldehyde.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3:4160           |
|                                                | 2-Chloro-m-5-xylenol .                         | 3:3505<br>3:2180    |                                                              | 4,6-Dichloro-3-hy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
|                                                | 5-Chloro-m-5-xylenol.<br>6-Chloro-m-5-xylenol. | 3:0844              |                                                              | droxybenzaldehyde.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3:3952           |
|                                                | 5-Chloro-p-2-xylenol                           | 3:1822              | C II O OI                                                    | 0.40 Thiskland 2 hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
|                                                |                                                |                     | C <sub>7</sub> H <sub>8</sub> O <sub>2</sub> Cl <sub>8</sub> | 2,4,6-Trichloro-3-hy-<br>droxybenzaldehyde.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3:3520           |
| C <sub>8</sub> H <sub>8</sub> OCl <sub>2</sub> | 4,5-Dichloro-o-3-                              | 9.9449              |                                                              | arony bondanaony ao-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00.00          |
|                                                | xylenol                                        | 3:2 <del>44</del> 2 | $C_7H_5O_2Cl$                                                | 2-Chloro-4-hydroxy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                | 3,5-Dichloro-o-4-                              |                     |                                                              | benzaldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3:4280           |
|                                                | xylenol                                        | 3:0935              |                                                              | 3-Chloro-4-hydroxy-<br>benzaldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3:4065           |
|                                                | 3,6-Dichloro-o-4-                              | 0.0010              |                                                              | 3,5-Dichloro-4-hy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.200            |
|                                                | xylenol                                        | 3:2216              |                                                              | droxybenzaldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3:4400           |
|                                                | xylenol                                        | 3:3005              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                                |                                                |                     | -                                                            | DERIVATIVES OF PHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IC ACIDS         |
|                                                | 2,4-Dichloro-m-5-                              | 0.0100              | C7H5O8Cl                                                     | 3-Chloro-2-hydroxy-<br>benzoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3:4745           |
|                                                | xylenol 2,6-Dichloro-m-5-                      | 3:2182              |                                                              | 4-Chloro-2-hydroxy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2120           |
|                                                | xylenol                                        | 3:2638              | •                                                            | benzoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3:4908           |
|                                                |                                                |                     |                                                              | 5-Chloro-2-hydroxy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| C <sub>8</sub> H <sub>7</sub> OCl <sub>8</sub> | Trichloro-o-3-xylenol .                        | 3:4742              |                                                              | benzoic acid<br>6-Chloro-2-hydroxy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3:4705           |
|                                                | Trichloro-o-4-xylenol .                        | 3:4747              |                                                              | benzoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3:4610           |
|                                                | Tremoro-o-1-Aylenor.                           | 9.2727              |                                                              | DOMESTIC MOTOR TOTAL TOT | 0.1010           |
|                                                | Trichloro-m-4-xylenol.                         | 3:4707              | $C_7H_4O_3Cl_2$                                              | 3,5-Dichloro-2-hy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
|                                                | m-t-11 r11                                     | 0.4710              |                                                              | droxybenzoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3: <b>493</b> 5  |
|                                                | Trichloro-m-5-xylenol.                         | 3:4713              | C7H5O3Cl                                                     | 2-Chloro-3-hydroxy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                | Trichloro-p-xylenol                            | 3:47 <b>09</b>      |                                                              | benzoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3:4395           |
| •                                              |                                                |                     |                                                              | 4-Chloro-3-hydroxy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                | DERIVATIVES OF MISCEL                          | LANEOUS             |                                                              | bensoic acid<br>6-Chloro-3-hydroxy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3:4 <b>9</b> 33  |
|                                                | ALKYLPHENOLS                                   |                     |                                                              | benzoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3:4720           |
| $C_{10}H_{18}OCl$                              | 2-Chloro-4-n-butyl-                            |                     |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                                | phenol                                         | 3:8830              | C7H5O8Cl                                                     | 2-Chloro-4-hydroxy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                | 2-Chloro-4-ter-butyl-<br>phenol                | 3:9760              |                                                              | benzoic acid 3-Chloro-4-hydroxy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3:4430           |
|                                                | p.1011011111111111111111111111111111111        | J. 9100             |                                                              | benzoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3:4675           |
|                                                | p-Chlorocarvacrol                              | 3:0480              |                                                              | 3,5-Dichloro-4-hy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
|                                                | p-Chlorothymol                                 | 3:1293              |                                                              | droxybensoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3: <b>4950</b>   |

| 8.7                                                          | PHENOLIC ACID CHLORID                               | E8               |                                                                        |                                                        |                          |
|--------------------------------------------------------------|-----------------------------------------------------|------------------|------------------------------------------------------------------------|--------------------------------------------------------|--------------------------|
| C7H5O2Cl                                                     | 2-Hydroxybenzoyl chloride                           | 3:0085           | C <sub>6</sub> H <sub>8</sub> O <sub>5</sub> Cl <sub>8</sub><br>Contd. | 3,5,6-Trichloro-2-hy-<br>droxyhydroquinone.            | 8: <del>4444</del>       |
|                                                              | 3-Hydroxybenzoyl chloride                           | 3: <b>944</b> 6  |                                                                        | 2,4,6-Trichlorophloro-                                 | 3:4030                   |
|                                                              | 4-Hydroxybenzoyl chloride                           | 3: <b>944</b> 7  |                                                                        | glucinol                                               | 5 : <del>1</del> 030     |
|                                                              |                                                     |                  |                                                                        | lear phenois                                           |                          |
| b. Di                                                        | hydrie                                              |                  |                                                                        | onohydric                                              |                          |
| $\mathbf{b_i}$                                               | DERIVATIVES OF PYROCA                               | TECHOL           |                                                                        | WITH UNCONDENSED RIN                                   | GS                       |
| $C_6H_5O_2Cl$                                                | 3-Chlorocatechol                                    | 3:0745<br>3:2470 | C <sub>12</sub> H <sub>9</sub> OCl                                     | 3-Chloro-2-hydroxy-<br>biphenyl<br>5-Chloro-2-hydroxy- | 3:1757                   |
| $\mathrm{C_6H_4O_2Cl_2}$                                     | 3,5-Dichlorocatechol<br>4,5-Dichlorocatechol        | 3:2192<br>3:3525 |                                                                        | biphenyl3-Chloro-4-hydroxy-                            | 3:8980                   |
| C <sub>6</sub> H <sub>3</sub> O <sub>2</sub> Cl <sub>3</sub> | 3,4,5-Trichloro-                                    |                  |                                                                        | biphenyl4'-Chloro-4-hydroxy-                           | 3:1900                   |
| 0611802018                                                   | catechol                                            | 3:3448           |                                                                        | biphenyl                                               | 3:4262                   |
| C <sub>6</sub> H <sub>2</sub> O <sub>2</sub> Cl <sub>4</sub> | Tetrachlorocatechol                                 | 3:4875           |                                                                        | WITH CONDENSED RINGS                                   |                          |
| <b>b</b> .                                                   | DANIEL BLANCE OF DESCRIPTION                        |                  | C <sub>10</sub> H <sub>7</sub> OCl                                     | 2-Chloronaphthol-1 3-Chloronaphthol-1                  | 3:1490<br>3:4170         |
| _                                                            | DERIVATIVES OF RESORCE                              |                  |                                                                        | 4-Chloronaphthol-1                                     | 8:3720                   |
| C <sub>6</sub> H <sub>5</sub> O <sub>2</sub> Cl              | 2-Chlororesorcinol                                  | 3:2690           |                                                                        | 5-Chloronaphthol-1<br>6-Chloronaphthol-1               | 3:3960<br>3:2615         |
|                                                              | 4-Chlororesorcinol<br>5-Chlororesorcinol            | 3:3100<br>3:3530 |                                                                        | 7-Chloronaphthol-1<br>8-Chloronaphthol-1               | 3:381 <b>0</b><br>3:1610 |
| $\mathrm{C_6H_4O_2Cl_2}$                                     | 4,6-Dichlororesorcinol                              | 3:3380           | $\mathrm{C}_{10}\mathrm{H}_6\mathrm{OCl}_2$                            | .2,3-Dichloro-<br>naphthol-1                           | 3:2935                   |
| C <sub>6</sub> H <sub>8</sub> O <sub>2</sub> Cl <sub>8</sub> | 2,4,6-Trichloro-<br>resorcinol                      | 3:2174           |                                                                        | 2,4-Dichloro-<br>naphthol-1<br>5,7-Dichloro-           | 3:3250                   |
| $\mathrm{C_6H_2O_2Cl_4}$                                     | Tetrachlororesorcinol.                              | 3:4135           |                                                                        | naphthol-1<br>5,8-Dichloro-                            | 3:3985                   |
| b <sub>3</sub>                                               | DERIVATIVES OF HYDROQ                               | UINONE           |                                                                        | naphthol-1<br>6.7-Dichloro-                            | 3:3420                   |
| C <sub>6</sub> H <sub>5</sub> O <sub>2</sub> Cl              | 2-Chlorohydro-<br>quinone                           | 3:3130           |                                                                        | naphthol-1                                             | 3:4315                   |
| 0.77.0.01                                                    | 0.0.701.111. 1.                                     |                  |                                                                        | naphthol-1                                             | 3:2635                   |
| C <sub>6</sub> H <sub>4</sub> O <sub>2</sub> Cl <sub>2</sub> | 2,3-Dichlorohydro-<br>quinone<br>2,5-Dichlorohydro- | 3:4220           | C <sub>10</sub> H <sub>7</sub> OCl                                     | 1-Chloronaphthol-2 3-Chloronaphthol-2                  | 3:1700<br>3:2545         |
|                                                              | quinone                                             | 3:4690           |                                                                        | 4-Chloronaphthol-2<br>5-Chloronaphthol-2               | 3:3045<br>3:3945         |
|                                                              | 2,6-Dichlorohydro-<br>quinone                       | 3:4600           |                                                                        | 6-Chloronaphthol-2<br>7-Chloronaphthol-2               | 3:3500<br>3:3925         |
| $C_6H_8O_2Cl_8$                                              | 2,3,5-Trichlorohydro-<br>quinone                    | 3:4052           | G 77 001                                                               | 8-Chloronaphthol-2                                     | 3:2965                   |
|                                                              |                                                     |                  | C <sub>10</sub> H <sub>6</sub> OCl <sub>2</sub>                        | 1,3-Dichloro-<br>naphthol-2                            | 3:1990                   |
| C <sub>6</sub> H <sub>2</sub> O <sub>2</sub> Cl <sub>4</sub> | Tetrachlorohydro-<br>quinone                        | 3:4941           |                                                                        | 1,4-Dichloro-<br>naphthol-2                            | 3:3840                   |
| $C_6H_2O_4Cl_2$                                              | 2,5-Diehloro-3,6-dihy-<br>droxybenzoquinone-        |                  |                                                                        | 1,6-Dichloro-<br>naphthol-2                            | 3:3600                   |
|                                                              | 1,4                                                 | 3:4970           |                                                                        | 3,4-Dichloro-<br>naphthol-2                            | 3:3295                   |
| e Tv                                                         | ihydric                                             |                  |                                                                        | 4,8-Dichloro-<br>naphthol-2                            | 3:4420                   |
| C <sub>6</sub> H <sub>2</sub> O <sub>2</sub> Cl <sub>2</sub> | 4,5,6-Trichloro-                                    |                  |                                                                        | 5,8-Dichloro-                                          |                          |
|                                                              | pyrogallol                                          | 3:4782           |                                                                        | naphthol-2                                             | 3:4155                   |

# UNIT 5. CHLORO SUBSTITUTION PRODUCTS OF CARBONYL COMPOUNDS (AND THEIR RELATIVES)

## (Summary of Classification of Unit 5)

#### A. OF ALDEHYDES.

- 1. Acyclic aldehydes.
  - a. Saturated.
  - b. Unsaturated.
  - c. Relatives of the above.
    - c1 Hydrates.
    - c<sub>2</sub> Hemiacetals.
    - cs Diethylacetals.
    - c4 Acetals with chlorine only in alcohol radicals;
    - c. Polymers.
- 2. Aromatic aldehydes.
  - a. Simple aldehydes.
  - b. Phenolic aldehydes.
- B. OF KETONES.
  - 1. Dialkyl ketones.
  - 2. Alicyclic ketones.
  - 3. Alkyl aryl ketones.
    - a. With chlorine only in alkyl.
    - b. With chlorine both in alkyl and aryl.
    - c. With chlorine only in aryl.
  - 4. Diaryl ketones.
  - 5. Ketones containing also other functional groups.
    - a. Keto-acid chlorides.
    - b. Keto-acid esters.

#### C. OF QUINONES.

- 1. Mononuclear quinones.
- 2. Dinuclear quinones.
- 3. Trinuclear quinones.

## UNIT 5. CHLORO SUBSTITUTION PRODUCTS OF CARBONYL COMPOUNDS (AND THEIR RELATIVES)

| •                                              | ohydes<br><i>dic Aldehydes</i><br>aturated        |                  | C <sub>4</sub> H <sub>7</sub> OCl | α-Chloro-n-<br>butyraldehyde<br>β-Chloro-n-                        |                  |
|------------------------------------------------|---------------------------------------------------|------------------|-----------------------------------|--------------------------------------------------------------------|------------------|
| $C_2H_3OCl$                                    | $Chloroacetal dehyde \dots$                       | 3:7212           |                                   | butyraldehyde $\gamma$ -Chloro- $n$ -                              | 3:9110           |
| $C_2H_2OCl_2$                                  | Dichloroacetaldehyde.                             | 3:5180           |                                   | butyraldehyde                                                      | 3:9111           |
| C <sub>2</sub> HOCl <sub>3</sub>               | Trichloroacetaldehyde                             | 3:5210           | $C_4H_6OCl_2$                     | $\alpha,\beta$ -Dichloro- $n$ -                                    |                  |
| C <sub>2</sub> H <sub>5</sub> OCl              | α-Chloropropionalde-<br>hyde                      | 3:5160<br>3:5576 | $\mathrm{C_4H_5OCl_3}$            | butyraldehyde  α,α,β-Trichloro-n- butyraldehyde α,α,γ-Trichloro-n- | 3:9102<br>3:5910 |
| C <sub>3</sub> H <sub>4</sub> OCl <sub>2</sub> | α,α-Dichloropropion-<br>aldehyde                  | : 9033-A         |                                   | butyraldehyde                                                      | 3:9094           |
|                                                | aldehyde                                          | 3:9034           | C <sub>4</sub> H <sub>7</sub> OCl | α-Chloro-iso-<br>butyraldehyde                                     | 3:7235           |
| C <sub>2</sub> H <sub>4</sub> OCl <sub>3</sub> | $\alpha, \alpha, \beta$ -Trichloropropionaldehyde | 3:9033           |                                   | β-Chloro-iso-<br>butyraldehyde                                     | 3:9112           |

| b. Ui                                                        | nsaturated                                                |                  | C7H4OCl2  | 2,3-Dichlorobenzal-                                          | 0.1400             |
|--------------------------------------------------------------|-----------------------------------------------------------|------------------|-----------|--------------------------------------------------------------|--------------------|
| C <sub>8</sub> H <sub>8</sub> OCl                            | α-Chloroacrolein                                          | 3:9031           |           | dehyde                                                       | 3:1480             |
| C <sub>4</sub> H <sub>5</sub> OCl                            | α-Chlorocrotonalde-<br>hyde                               | 3:8117           |           | dehyde                                                       | 3:1800             |
| c. Re                                                        | latives of the above                                      |                  |           | hyde<br>2,6-Dichlorobenzal-                                  | 3:1145             |
| c <sub>1</sub>                                               | HYDRATES                                                  |                  |           | dehyde                                                       | 3:1690             |
| C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> Cl <sub>2</sub> | Dichloroacetaldehyde<br>hydrate                           | 3:1085           |           | hyde                                                         | 3:0550             |
| $C_2H_3O_2Cl_2$                                              | Chloral hydrate                                           | 3:1270           |           | hyde                                                         | 3:1475             |
| C <sub>4</sub> H <sub>7</sub> O <sub>2</sub> Cl <sub>8</sub> | Butyrchloral hydrate.                                     | 3:1905           | C7H8OCl3  | 2,3,4-Trichlorobenzal-<br>dehyde                             | 3:2445             |
| C <sub>2</sub>                                               | HEMIACETALS                                               |                  |           | 2,3,5-Trichlorobenzal-<br>dehyde                             | 3:1060             |
| $\mathrm{C_4H_8O_2Cl_2}$                                     | Dichloroacetaldehyde ethyl alcoholate                     | 3:5310           |           | 2,3,6-Trichlorobenzal-<br>dehyde                             | 3:2287             |
| $C_4H_7O_2Cl_8$                                              | Chloral ethyl alcohol-                                    |                  |           | 2,4,5-Trichlorobenzal-<br>dehyde                             | 3:3375             |
|                                                              | ate                                                       | 3:0860           |           | 2,4,6-Trichlorobenzal-<br>dehyde                             | 3:1200             |
| $C_6H_{11}O_2Cl_3$                                           | Chloral n-butyl-<br>alcoholate                            | 3:0843           |           | 3,4,5-Trichlorobenzal-                                       |                    |
|                                                              |                                                           | 0.0020           |           | dehyde                                                       | 3:2440             |
|                                                              | Chloroacetaldchyde diethylacetal                          | 3:8228           | C7H2OCl4  | 2,3,4,5-Tetrachloro-<br>benzaldehyde<br>2,3,4,6-Tetrachloro- | 3:3140             |
| $C_6H_{12}O_2Cl_2$                                           | Dichloroacetaldehyde<br>diethylacetal                     | 3:6110           |           | benzaldehyde<br>2,3,5,6-Tetrachloro-<br>benzaldehyde         | 3:2700<br>3:2700   |
| C6H11O2Cl3                                                   | Chloral diethylacetal .                                   | 3:6317           | C TTOCI   | •                                                            | 00.000             |
| $\mathrm{C_7H_{15}O_2Cl}$                                    | β-Chloropropionalde-<br>hyde diethylacetal                | 3: <b>9490</b>   | C7HOCl5   | Pentachlorobenzal-<br>dehyde                                 | 3:4892             |
| C <sub>8</sub> H <sub>17</sub> O <sub>2</sub> Cl             | β-Chloro-n-butyralde-                                     |                  |           | enolic aldehydes                                             |                    |
| 0,1,0201                                                     | hyde diethylacetal .                                      | 3:95 <b>94</b>   | C7H5O2Cl  | 3-Chloro-2-hydroxy-<br>benzaldehyde                          | 3:1010             |
|                                                              | ACETALS WITH CHLORIN                                      | E ONLY           |           | 4-Chloro-2-hydroxy-<br>benzaldehyde                          | 3:0960             |
|                                                              | IN ALCOHOL RADICALS Formaldehyde β,β'-di-                 |                  |           | 5-Chloro-2-hydroxy-                                          |                    |
| 06111202012                                                  | chlorosopropyl-                                           |                  |           | benzaldehyde                                                 | 3:2800             |
|                                                              | ethyl-acetal<br>Acetaldehyde bis-(β-                      | 3:9 <b>394</b>   |           | 2-Chloro-3-hydroxy-                                          |                    |
|                                                              | chloroethyl)acetal                                        | 3:6210           |           | benzaldehyde 4-Chloro-3-hydroxy-                             | 3:4085             |
| Cā                                                           | POLYMERS                                                  |                  |           | benzaldehyde                                                 | 3:3780             |
| C <sub>6</sub> H <sub>9</sub> O <sub>8</sub> Cl <sub>3</sub> | Parachloro-                                               |                  |           | 6-Chloro-3-hydroxy-<br>benzaldehyde                          | 3:3350             |
|                                                              | acetaldehyde                                              | 3:2300           |           | 9 Chloro 4 hardnown                                          |                    |
| C12H21O8Cl3                                                  | Para-β-chloro-n-<br>butyraldehyde                         | 3:2650           |           | 2-Chloro-4-hydroxy-<br>benzaldehyde<br>3-Chloro-4-hydroxy-   | 3:4280             |
|                                                              | Para-α-chloroiso-<br>butyraldehyde                        | 3:3220           |           | benzaldehyde                                                 | 3:4065             |
| Q Arom                                                       | atic aldehudes                                            | •                | C7H4O2Cl2 | 3,5-Dichloro-2-                                              |                    |
|                                                              | nple aldehydes                                            |                  |           | hydroxybenzal-                                               | 3:2637             |
| C7H6OCl                                                      | o-Chlorobenzaldehyde                                      | 3:6410           |           | dehyde                                                       | J. 2001            |
|                                                              | <i>m</i> -Chlorobenzaldehyde <i>p</i> -Chlorobenzaldehyde | 3:6475<br>3:0765 |           | 2,4-Dichloro-3-hy-<br>droxybenzaldehyde.                     | 3:41 <del>40</del> |

| C <sub>7</sub> H <sub>4</sub> O <sub>2</sub> Cl <sub>2</sub><br>Contd. | 2,6-Dichloro-3-hy-<br>droxybenzaldehyde.<br>4,6-Dichloro-3-hy-<br>droxybenzaldehyde.         | 3:4160<br>3:3952                     | C <sub>6</sub> OCl <sub>6</sub>               | Hexachlorocyclo-<br>hexadien-2,5-one-1<br>(" Hexachloro-<br>phenol ")                                                                        | 3:3180                     |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| C7H4O2Cl3                                                              | 3,5-Dichloro-4-hy-<br>droxybensaldehyde.  2,4,6-Trichloro-3-<br>hydroxybensal-<br>dehyde     | 3:4400<br>3:8520                     | C <sub>6</sub> O <sub>2</sub> Cl <sub>6</sub> | 1,2,3,4,6,6-Hexachloro-<br>cyclohexen-1-dione-<br>3,5 ("Hexachloro-<br>resorcinol")<br>2,3,5,5,6,6-Hexachloro-<br>cyclohexen-2-<br>dione-1,4 | 3:3470<br>3:2360           |
| B. Of Ketor                                                            | 168                                                                                          |                                      |                                               | ,                                                                                                                                            | 0.2000                     |
|                                                                        | yl ketones                                                                                   |                                      | •                                             | l aryl ketones                                                                                                                               |                            |
| C <sub>a</sub> H <sub>a</sub> OCl                                      | Chloroacetone                                                                                | 3:5425                               | a. w<br>C <sub>8</sub> H <sub>7</sub> OCl     | ith chlorine only in alkyl<br>ω-Chloroaceto-                                                                                                 |                            |
| Carract                                                                | Chioroacetone                                                                                | J. 0420                              | Cantoci                                       | phenone                                                                                                                                      | 3:1212                     |
| C <sub>3</sub> H <sub>4</sub> OCl <sub>2</sub>                         | $\alpha,\alpha$ -Dichloroacetone $\alpha,\alpha'$ -Dichloroacetone .                         | 3:5430<br>3:0563                     | $C_8H_6OCl_2$                                 | ω,ω-Dichloroaceto-<br>phenone                                                                                                                | 3:6835                     |
| C <sub>8</sub> H <sub>8</sub> OCl <sub>8</sub>                         | $\alpha,\alpha,\alpha$ -Trichloro- acetone                                                   | 3:5620                               | $\mathrm{C_8H_5OCl_3}$                        | ω,ω,ω-Trichloroaceto-                                                                                                                        |                            |
|                                                                        | $\alpha,\alpha,\alpha'$ -Trichloro- acetone                                                  | 3:5957                               |                                               | phenone                                                                                                                                      | 3:6847                     |
| C <sub>8</sub> H <sub>2</sub> OCl <sub>4</sub>                         | $\alpha,\alpha,\alpha,\alpha'$ -Tetrachloro-                                                 |                                      | C <sub>9</sub> H <sub>9</sub> OCl             | α-Chloroethyl phenyl ketone                                                                                                                  | 3:9664                     |
|                                                                        | acetone $\alpha, \alpha, \alpha', \alpha'$ -Tetrachloro-acetone                              | 3:6085<br>3:6050                     |                                               | β-Chloroethyl phenyl ketone                                                                                                                  | 3:1115                     |
| C <sub>8</sub> HOCl <sub>5</sub>                                       | Pentachloroacetone                                                                           | 3:6205                               |                                               | ω-Chloro-o-methyl-<br>acetophenone                                                                                                           | 3:9660                     |
| C <sub>8</sub> OCl <sub>6</sub>                                        | Hexachloroacetone                                                                            | 3:6312                               |                                               | ω-Chloro- $p$ -methyl-acetophenone                                                                                                           | 3:1130                     |
| C <sub>4</sub> H <sub>7</sub> OCl                                      | 1-Chlorobutanone-2<br>3-Chlorobutanone-2<br>4-Chlorobutanone-2                               | 3:8012<br>3:7598<br>3:7640           | $\mathrm{C}_{10}\mathrm{H}_{11}\mathrm{OCl}$  | ω-Chloro-2,4-di-<br>methylacetophenone<br>ω-Chloro-2,5-di-                                                                                   | 3:1355                     |
| C <sub>4</sub> H <sub>6</sub> OCl <sub>2</sub>                         | 1,3-Dichlorobutanone-                                                                        | 3:5900                               |                                               | methylacetophenone<br>ω-Chloro-3,4-di-<br>methylacetophenone                                                                                 | 3:0245<br>3:1775           |
| C <sub>5</sub> H <sub>9</sub> OCl                                      | 1-Chloropentanone-2.<br>3-Chloropentanone-2.<br>4-Chloropentanone-2.<br>5-Chloropentanone-2. | 3:8217<br>3:7893<br>3:8243<br>3:9267 | C <sub>14</sub> H <sub>11</sub> OCl           | p-Phenylphenacyl chloride α-Chlorobenzyl phenyl ketone                                                                                       | 3:3934<br>3:1618           |
|                                                                        | 1-Chloropentanone-3 .<br>2-Chloropentanone-3 .                                               | 3:9268<br>3:7935                     | b. Wi                                         | ith chlorine both in alkyl a p-Chlorophenacyl                                                                                                | _                          |
|                                                                        | 1-Chloro-2-methyl-<br>butanone-3                                                             | 3:9269                               | c Wi                                          | chlorideth chlorine only in aryl                                                                                                             | 3:2990                     |
|                                                                        | 2-Chloro-2-methyl-<br>butanone-3                                                             | 3:7597                               | C <sub>8</sub> H <sub>7</sub> OCl             | o-Chloroacetophenone m-Chloroacetophenone p-Chloroacetophenone                                                                               | 3:6615<br>3:6815<br>3:6735 |
| 2. Alicycl                                                             | lic ketones                                                                                  |                                      | C <sub>9</sub> H <sub>9</sub> OCl             | p-Chlorophenyl ethyl                                                                                                                         |                            |
| $C_6H_9OCl$                                                            | 2-Chlorocyclo-                                                                               | 9.6196                               |                                               | ketone                                                                                                                                       | 3:0340                     |
|                                                                        | hexanone-1 3-Chlorocyclo-                                                                    | 3:0120                               | 4. Diary                                      | l ketones                                                                                                                                    |                            |
|                                                                        | hexanone-14-Chlorocyclo-<br>hexanone-1                                                       | 3:9360<br>3:9364                     | C <sub>18</sub> H <sub>0</sub> OCl            | 2-Chlorobenzophenone<br>3-Chlorobenzophenone<br>4-Chlorobenzophenone                                                                         | 3:0715<br>3:2160<br>3:1914 |
|                                                                        | TIONORIOTIA-T                                                                                |                                      |                                               | OTTO LONGUE OF THE LIGHT                                                                                                                     | A. 1414                    |

| C <sub>18</sub> H <sub>8</sub> OCl <sub>8</sub> 2,2'-Dichlorobenso-<br>phenone                      | 3:0717<br>3:9859-A<br>3:0825 | C <sub>6</sub> H <sub>2</sub> O <sub>2</sub> Cl <sub>2</sub> | 2,3-Dichlorobenso-<br>quinone-1,4                                    | 3:2855<br>3:4476<br>3:3750 |
|-----------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|----------------------------|
| phenone                                                                                             | 3:1565<br>3:2340             | C <sub>6</sub> H <sub>2</sub> O <sub>4</sub> Cl <sub>2</sub> | 2,5-Dichloro-3,6-<br>dihydroxybenzo-<br>quinone-1,4                  | 3:4976                     |
| phenone                                                                                             | 3:2285<br>3:3860             | $\mathrm{C_6HO_2Cl_3}$                                       | 2,3,5-Trichlorobenzo-<br>quinone-1,4                                 | 8:4672                     |
| phenone                                                                                             | 3:3070<br>3:3415             | C <sub>6</sub> O <sub>2</sub> Cl <sub>4</sub>                | Tetrachlorobenzo-<br>quinone-1,2<br>Tetrachlorobenzo-<br>quinone-1,4 | 3:3965<br>3:4978           |
| phenone<br>4,4 '-Dichlorobenzo-<br>phenone                                                          | 3:1505<br>3:4270             |                                                              | clear quinones                                                       |                            |
| 5. Ketones containing also oth tional groups                                                        | er func-                     | $\mathrm{C}_{10}\mathrm{H}_{5}\mathrm{O}_{2}\mathrm{Cl}$     | 3-Chloronaphtho-<br>quinone-1,2<br>4-Chloronaphtho-                  | 3:4704                     |
| a. Keto-acid chlorides                                                                              |                              |                                                              | quinone-1,2                                                          | 3:4000                     |
| $C_4H_4O_2Cl_2$ Acetoacetyl chloride<br>$C_4H_4O_2Cl_2$ $\gamma$ -Chloroacetoacetyl                 | 3:9098                       |                                                              | 2-Chloronaphtho-<br>quinone-1,4                                      | 3:3580                     |
| chloride                                                                                            | 3:9088                       |                                                              | 5-Chloronaphtho-<br>quinone-1,4                                      | 3:4492                     |
| $\begin{array}{ccc} C_{14}H_9O_2Cl & \text{$o$-Benzoylbenzoyl} \\ & \text{$c$-hloride} \end{array}$ | 3:9880                       |                                                              | 6-Chloronaphtho-<br>quinone-1,4                                      | 3:3145                     |
| b. Keto-acid esters                                                                                 |                              | $\mathrm{C}_{10}\mathrm{H}_4\mathrm{O}_2\mathrm{Cl}_2$       | 3,4-Dichloronaphtho-                                                 |                            |
| C <sub>6</sub> H <sub>9</sub> O <sub>3</sub> Cl Ethyl α-chloroaceto-<br>acetate                     | 3:6207                       |                                                              | quinone-1,2<br>2,3-Dichloronaphtho-<br>quinone-1,4                   | 3:4775<br>3:4857           |
| Ethyl $\gamma$ -chloroaceto-acetate                                                                 | 3:6375                       | 3. Trinı                                                     | uclear quinones                                                      | 012301                     |
| C. Of Quinones                                                                                      |                              | C14H7O4Cl                                                    | 1-Chloroanthra-                                                      |                            |
| 1. Mononuclear quinones                                                                             |                              | 01911/0301                                                   | quinone                                                              | 3:4480                     |
| C <sub>6</sub> H <sub>3</sub> O <sub>2</sub> Cl 2-Chlorobenzo-<br>quinone-1,4                       | 3:1100                       |                                                              | 2-Chloroanthra-<br>quinone                                           | 3:4922                     |

## UNIT 6. CHLORO SUBSTITUTION PRODUCTS OF CARBOXYLIC ACIDS AND ANHYDRIDES

(Summary of Classification of Unit 6)

### A. OF ACYCLIC ACIDS.

- 1. With no other functional group.
  - a. Saturated monobasic.
  - b. Saturated dibasic.
  - c. Unsaturated (olefinic) monobasic.d. Unsaturated (olefinic) dibasic.

  - e. Unsaturated (acetylenic) monobasic.
- 2. With some other functional group.
  - a. Hydroxy monobasic.

- B. OF ISOCYCLIC ACIDS.
  - 1. With no other functional group.
    - a. Monobasic.

    - b. Dibasic.c. Tribasic.
  - 2. With some other functional group.
    - a. Phenolic acids.
    - b. Ether acids.
- C. ANHYDRIDES OF ACYCLIC ACIDS.
  - 1. Saturated.
  - 2. Unsaturated.
- D. ANHYDRIDES OF ISOCYCLIC ACIDS.

### UNIT 6. CHLORO SUBSTITUTION PRODUCTS OF CARBOXYLIC ACIDS AND ANHYDRIDES

(For acyl chlorides see Unit 7)

| A. Of Acyc                                                   |                                                                                  |                  | C4H5O2Cl3                                                    | $\alpha, \alpha, \gamma$ -Trichloro- $n$ -                                                                                                     | 0.4004                               |
|--------------------------------------------------------------|----------------------------------------------------------------------------------|------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|                                                              | no other functional grou                                                         | Þ                | Contd.                                                       | butyric acid $\alpha, \beta, \beta$ -Trichloro- $n$ -                                                                                          | 3:1831                               |
| a. Sa<br>C <sub>2</sub> H <sub>3</sub> O <sub>2</sub> Cl     | turated monobasic Chloroacetic acid                                              | 3:1370           |                                                              | butryic acid $\gamma, \gamma, \gamma$ -Trichloro- $n$ -                                                                                        | 3:0925                               |
| $\mathrm{C_2H_2O_2Cl_2}$                                     | Dichloroacetic acid                                                              | 3:6208           |                                                              | butryic acid                                                                                                                                   | 3:1000                               |
| $\mathrm{C_2HO_2Cl_3}$                                       | Trichloroacetic acid                                                             | 3:115 <b>0</b>   | C <sub>4</sub> H <sub>7</sub> O <sub>2</sub> Cl              | α-Chloroisobutyric acid                                                                                                                        | 3:0235                               |
| $C_3H_5O_2Cl$                                                | $\alpha$ -Chloropropionic acid $\beta$ -Chloropropionic acid                     | 3:6125<br>3:0460 |                                                              | β-Chloroisobutyric acid                                                                                                                        | 3:9132                               |
| C <sub>8</sub> H <sub>4</sub> O <sub>2</sub> Cl <sub>2</sub> | $\alpha, \alpha$ -Dichloropropionic acid $\alpha, \beta$ -Dichloropropionic acid | 3:6162<br>3:0855 | C <sub>6</sub> H <sub>9</sub> O <sub>2</sub> Cl              | $\alpha$ -Chloro- $n$ -valeric acid $\beta$ -Chloro- $n$ -valeric acid $\gamma$ -Chloro- $n$ -valeric acid $\delta$ -Chloro- $n$ -valeric acid | 3:8783<br>3:0270<br>3:9270<br>3:0075 |
|                                                              | $\beta,\beta$ -Dichloropropionic acid                                            | 3:1058           |                                                              | α-Chloro-α-methyl-n-<br>butyric acid<br>α-Chloro-β-methyl-n-                                                                                   | 3:8718                               |
| C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> Cl <sub>3</sub> | $\alpha,\alpha,\beta$ -Trichloropropionic acid                                   | 3:1275           |                                                              | butyric acid $\beta$ -Chloro- $\alpha$ , $\alpha$ -dimethyl-                                                                                   | 3:0050                               |
| C <sub>3</sub> H <sub>2</sub> O <sub>2</sub> Cl <sub>4</sub> | $\alpha, \alpha, \beta, \beta$ -Tetrachloro- propionic acid                      | 3:1850           | 1 0                                                          | propionic acid                                                                                                                                 | 3:0440                               |
| C <sub>8</sub> HO <sub>2</sub> Cl <sub>5</sub>               | Pentachloropropionic acid                                                        | 3:4895           | C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> Cl <sub>2</sub> | turated dibasic $d,l$ - $\alpha,\alpha'$ -Dichloro-                                                                                            | 0.4844                               |
| C <sub>4</sub> H <sub>7</sub> O <sub>2</sub> Cl              | α-Chloro-n-butyric acid                                                          | 3:9130           |                                                              | succinic acid $meso-\alpha,\alpha'$ -Dichlorosuccinic acid                                                                                     | 3:4711<br>3:4930                     |
|                                                              | β-Chloro-n-butyric acid                                                          | 3:0035           | c. Ur                                                        | saturated (olefinic) mon                                                                                                                       | obasic                               |
|                                                              | $\gamma$ -Chloro- $n$ -butyric acid                                              | 3:0020           | C <sub>8</sub> H <sub>3</sub> O <sub>2</sub> Cl              | $\alpha$ -Chloroacrylic acid $\beta$ -Chloroacrylic acid                                                                                       | 3:1445<br>3:2240                     |
| C <sub>4</sub> H <sub>6</sub> O <sub>2</sub> Cl <sub>2</sub> | α,β-Dichloro-n-butyric<br>acid<br>Higher-melting isomer<br>Lower-melting isomer. | 3:1903<br>3:1375 | C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> Cl <sub>2</sub> | $\alpha,\beta$ -Dichloroacrylic acid $\beta,\beta$ -Dichloroacrylic acid                                                                       | 3:2265<br>3:1875                     |
| $C_4H_5O_2Cl_3$                                              | α,α,β-Trichloro-n-<br>butyric acid                                               | 3:1280           | C <sub>8</sub> HO <sub>2</sub> Cl <sub>8</sub>               | $\alpha,\beta,\beta$ -Trichloroacrylic acid                                                                                                    | 3:18 <b>40</b>                       |

| C₄H₄O₂Cl                                        | α-Chlorocrotonic acid. α-Chloroisocrotonic acid β-Chlorocrotonic acid. β-Chloroisocrotonic | 3:2760<br>3:1615<br>3:2625 | $\mathrm{C_8H_7O_2Cl}$                            | 3-Chloro-2-methylbenzoic acid 4-Chloro-2-methylbenzoic acid 5-Chloro-2-methyl- | 3:4435<br>3:4700 |
|-------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------|--------------------------------------------------------------------------------|------------------|
|                                                 | acid $\gamma$ -Chlorocrotonic acid.                                                        | 3:1300<br>3:2170           |                                                   | benzoic acid 6-Chloro-2-methyl- benzoic acid                                   | 3:4670<br>3:3275 |
| <b>d.</b> U                                     | nsaturated (olefinic) dibas                                                                | sic                        |                                                   |                                                                                |                  |
| C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> Cl | Chlorofumaric acid<br>Chloromaleic acid                                                    | 3:4853<br>3:3432           |                                                   | 4-Chloro-3-methyl-<br>benzoic acid<br>5-Chloro-3-methyl-                       | 3: <b>49</b> 15  |
| $C_4H_2O_4Cl_2$                                 | Dichloromaleic acid                                                                        | 3:3634                     |                                                   | benzoic acid 6-Chloro-3-methyl-                                                | 3:4715           |
| e. Ur                                           | nsaturated (acetylenic) m                                                                  | onobasic                   |                                                   | benzoic acid                                                                   | 3:4615           |
| $C_3HO_2Cl$                                     | Chloropropiolic acid                                                                       | 3:1685                     |                                                   | 2-Chloro-4-methyl-                                                             |                  |
|                                                 | some other functional gr<br>ydroxy monobasic                                               | оир                        |                                                   | benzoic acid 3-Chloro-4-methyl-                                                | 3:4355           |
|                                                 | $\beta$ , $\beta$ -Dichloro- $\alpha$ -hydroxy-                                            | _                          |                                                   | benzoic acid                                                                   | 3:4900           |
| 0411603012                                      | isobutyric acid $\beta,\beta'$ -Dichloro- $\alpha$ -hydroxy isobutyric acid.               | 3:2145                     |                                                   | 2-Chlorophenylacetic acid                                                      | 3:2640           |
|                                                 | •                                                                                          | 3.7000                     |                                                   | 3-Chlorophenylacetic acid                                                      | 3:1910           |
| B. Of Isocy                                     |                                                                                            |                            |                                                   | 4-Chlorophenylacetic                                                           | 9.9195           |
|                                                 | no other functional grou <u>f</u><br>Ionabasia                                             | ,                          |                                                   | acid                                                                           | 3:3135           |
| C7H5O2Cl                                        | Ionobasic  o-Chlorobenzoic acid  m-Chlorobenzoic acid.                                     | 3:4150<br>3:4392           | C <sub>14</sub> H <sub>11</sub> O <sub>2</sub> Cl | Diphenyl-chloroacetic acid                                                     | 3:3585           |
|                                                 | p-Chlorobenzoic acid .                                                                     | 3:4940                     | $C_{14}H_{10}O_{2}Cl_{2}$                         | Di-(p-chlorophenyl)-                                                           |                  |
| $C_7H_4O_2Cl_2$                                 | 2,3-Dichlorobenzoic                                                                        | 0.4050                     |                                                   | acetic acid                                                                    | 3:4612           |
|                                                 | acid                                                                                       | 3:4650                     | C <sub>2</sub> H <sub>5</sub> O <sub>2</sub> Cl   | o-Chlorophenylpro-                                                             |                  |
|                                                 | acid                                                                                       | 3:4560                     |                                                   | piolie acid                                                                    | 3:3956           |
|                                                 | 2,5-Dichlorobenzoic acid                                                                   | 3:43 <b>40</b>             |                                                   | m-Chlorophenylpro-<br>piolic acid                                              | 3:4102           |
|                                                 | 2,6-Dichlorobenzoic                                                                        | 0.4000                     | •                                                 | p-Chlorophenylpro-                                                             | 9.4907           |
|                                                 | acid 3,4-Dichlorobenzoic .                                                                 | 3:4200                     |                                                   | piolie acid                                                                    | 3:4265           |
|                                                 | acid                                                                                       | 3:4925                     | $C_{11}H_7O_2Cl$                                  | 2-Chloronaphthoic                                                              |                  |
|                                                 | 3,5-Dichlorobenzoic acid                                                                   | 3:4840                     |                                                   | acid-14-Chloronaphthoic acid-1                                                 | 3:4330<br>3:4936 |
| $C_7H_8O_2Cl_8$                                 | 2,3,4-Trichlorobenzoic                                                                     | 3:4810                     |                                                   | 5-Chloronaphthoic                                                              |                  |
|                                                 | acid                                                                                       |                            |                                                   | acid-1 6-Chloronaphthoic                                                       | 3:4944           |
|                                                 | acid                                                                                       | 3:4485                     |                                                   | acid-1                                                                         | 3:4845           |
|                                                 | 2,3,6-Trichlorobenzoic acid                                                                | 3:4500                     |                                                   | 7-Chloronaphthoic acid-1                                                       | 3:4942           |
|                                                 | 2,4,5-Trichlorobenzoic acid                                                                | 3:4630                     |                                                   | 8-Chloronaphthoic acid-1                                                       | 3:4680           |
|                                                 | 2,4,6-Trichlorobenzoic                                                                     | 3:4545                     |                                                   |                                                                                | ~ · #400         |
|                                                 | acid                                                                                       |                            |                                                   | 1-Chloronaphthoic acid-2                                                       | 3:4885           |
|                                                 | acid                                                                                       | 3:4920                     |                                                   | 3-Chloronaphthoic                                                              |                  |
| C7H2O2Cl4                                       | 2,3,4,5-Tetrachloro-<br>benzoic acid                                                       | 3:4790                     |                                                   | acid-2<br>5-Chloronaphthoic<br>acid-2                                          | 3:4982<br>3:4952 |
| C7HO2Cl5                                        | Pentachlorobenzoic acid                                                                    | 3: <b>4910</b>             |                                                   | 8-Chloronaphthoic acid-2                                                       | 3:4948           |
|                                                 |                                                                                            |                            |                                                   |                                                                                |                  |

| b. Di                                                        |                                                            |                     | C7H5O8Cl<br>Contd.                                           | 2-Chloro-4-hydroxy-<br>bensoic acid               | 3:4430           |
|--------------------------------------------------------------|------------------------------------------------------------|---------------------|--------------------------------------------------------------|---------------------------------------------------|------------------|
| C <sub>8</sub> H <sub>5</sub> O <sub>4</sub> Cl              | 3-Chlorophthalic acid.<br>4-Chlorophthalic acid.           | 3:4820<br>3:4390    | Control.                                                     | 3-Chloro-4-hydroxy-<br>benzoic acid               | 3:4675           |
| C <sub>8</sub> H <sub>4</sub> O <sub>4</sub> Cl <sub>2</sub> | 3,4-Dichlorophthalic<br>acid                               | .3:4880             | $C_7H_4O_8Cl_2$                                              | 3,5-Dichloro-4-hydroxy-<br>benzoic acid           | 3:4950           |
|                                                              | acid                                                       | 3:4580              | b. Et                                                        | her acids                                         |                  |
|                                                              | 3,6-Dichlorophthalic<br>acid                               | 3:4870              | C <sub>8</sub> H <sub>7</sub> O <sub>8</sub> Cl              | o-Chlorophenoxyacetic                             | 3:4260           |
|                                                              | acid                                                       | 3:4890              |                                                              | m-Chlorophenoxyacetic                             |                  |
| C <sub>8</sub> H <sub>2</sub> O <sub>4</sub> Cl <sub>4</sub> | Tetrachlorophthalic acid                                   | 3:4946              |                                                              | acidp-Chlorophenoxyacetic acid                    | 3:3325<br>3:4375 |
| C <sub>8</sub> H <sub>5</sub> O <sub>4</sub> Cl              | 4-Chloroisophthalic<br>acid                                | 3:4980              | $C_8H_6O_8Cl_2$                                              | 2,4-Dichlorophenoxy-<br>acetic acid               | <b>3:409</b> 5   |
|                                                              | acid                                                       | 3:4960              | $\mathrm{C_8H_5O_3Cl_3}$                                     | 2,4,5-Trichlorophenoxy-<br>acetic acid            | 3:4335           |
| C <sub>8</sub> H <sub>4</sub> O <sub>4</sub> Cl <sub>2</sub> | 4,6-Dichloroisophthalic acid                               | 3:4965              | C. Anhydri                                                   | des of Acyclic Acids                              |                  |
| C <sub>8</sub> H <sub>5</sub> O <sub>4</sub> Cl              | Chloroterephthalic acid                                    | 3:4 <del>99</del> 5 | C <sub>4</sub> H <sub>4</sub> O <sub>8</sub> Cl <sub>2</sub> | Chloroacetic acid<br>anhydride                    | 3:0730           |
| $C_8H_4O_4Cl_2$                                              | 2,5-Dichloroterephthalic acid                              | 3:4985              | $C_4H_2O_3CL_4$                                              | Dichloroacetic acid anhydride                     | 3:6430           |
| c. Tr                                                        |                                                            |                     | $\mathbf{C_4O_3Cl_6}$                                        | Trichloroacetic acid anhydride                    | 8:6575           |
| C <sub>9</sub> H <sub>6</sub> O <sub>6</sub> Cl              | 5-Chlorobenzenetri-<br>carboxylic acid-1,2,4               | 3:4855              | 2. Unsa                                                      | •                                                 | 0.00.0           |
|                                                              | 2-Chlorobenzenetri-<br>carboxylic acid-1,3,5               | 3:4975              | C4HO3Cl                                                      | Chloromaleic an-<br>hydride                       | 3:0280           |
| 2. With                                                      | some other functional gre                                  | oup                 | C <sub>4</sub> O <sub>3</sub> Cl <sub>2</sub>                | Dichloromaleic                                    |                  |
| a. Ph                                                        | enolic acids                                               |                     | 0403012                                                      | anhydride                                         | 3:3635           |
| C7H6O3Cl                                                     | 3-Chloro-2-hydroxy-<br>benzoic acid                        | 3:4745              |                                                              | des of Isocyclic Acids                            |                  |
|                                                              | 4-Chloro-2-hydroxy-<br>benzoic acid<br>5-Chloro-2-hydroxy- | 3:4908              | C <sub>8</sub> H <sub>3</sub> O <sub>3</sub> Cl              | 3-Chlorophthalic<br>anhydride<br>4-Chlorophthalic | 3:3900           |
|                                                              | benzoic acid                                               | 3:4705              |                                                              | anhydride                                         | 3:2725           |
|                                                              | 6-Chloro-2-hydroxy-<br>benzoic acid                        | 3:4610              | $\mathrm{C_8H_2O_8Cl_2}$                                     | 3,4-Dichlorophthalic                              | 3:3695           |
| $\mathrm{C}_7\mathrm{H}_4\mathrm{O}_8\mathrm{Cl}_2$          | 3,5-Dichloro-2-hydroxy-<br>benzoic acid                    | 3:4935              |                                                              | 3,5-Dichlorophthalic<br>anhydride                 | 3:2375           |
| 0 11 0 01                                                    |                                                            |                     |                                                              | 3,6-Dichlorophthalic                              |                  |
| C7H5O8Cl                                                     | 2-Chloro-3-hydroxy-<br>benzoic acid                        | 3:4395              |                                                              | anhydride                                         | 3:4860           |
|                                                              | 4-Chloro-3-hydroxy-<br>benzoic acid                        | 3:4933              |                                                              | anhydride                                         | 3:4830           |
|                                                              | 6-Chloro-3-hydroxy-<br>benzoic acid                        | 8:4720              | C <sub>8</sub> O <sub>3</sub> Cl <sub>4</sub>                | Tetrachlorophthalic anhydride                     | 3:4947           |
|                                                              |                                                            | ·                   |                                                              |                                                   |                  |

# UNIT 7. ACYL CHLORIDES

(Summary of Classification of Unit 7)

## A. OF ACYCLIC ACIDS (R.CO.Cl).

- 1. The radical (R) contains no chlorine.
  - a. Corresponding acid is saturated and monobasic.
  - b. Corresponding acid is saturated and dibasic.
  - c. Corresponding acid is unsaturated and monobasic.
  - d. Corresponding acid is unsaturated and dibasic.
  - e. Corresponding acid contains also other functional groups.
    - e<sub>1</sub> Ether/acyl chloride.
    - e<sub>2</sub> Ester/acyl chloride.
    - es Keto/acyl chloride.
- 2. The radical (R) does contain chlorine.
  - a. Corresponding acid is saturated and monobasic.
  - b. Corresponding acid is saturated and dibasic.
  - c. Corresponding acid is unsaturated and monobasic.
  - d. Corresponding acid is unsaturated and dibasic.
  - e. Corresponding acid contains other functional groups.

## B. OF ISOCYCLIC ACIDS.

- 1. The radical (R) contains no chlorine.
  - a. Corresponding acid is monobasic.
    - at With -COOH group attached to ring.
    - a2 With -COOH group attached to saturated side chain.
    - as With -- COOH group attached to unsaturated side chain.
    - as With —COOH group attached to ring containing another functional group.
  - b. Corresponding acid is dibasic.
- 2. The radical (R) does contain chlorine.
  - Corresponding acid is monobasic.

## C. OF HETEROCYCLIC ACIDS.

- 1. The radical (R) contains no chlorine.
  - a. Corresponding acid is monobasic.

## UNIT 7. ACYL CHLORIDES

| A. Of Acyc                        | lic Acids (R.CO.OH)                         |                | C <sub>6</sub> H <sub>11</sub> OCl | n-Caproyl chloride                                      | 3:8168         |
|-----------------------------------|---------------------------------------------|----------------|------------------------------------|---------------------------------------------------------|----------------|
| 1. The                            | radical (R) contains no                     | chlorine       |                                    |                                                         |                |
|                                   | orresponding acid is satura<br>conobasic    | ited and       |                                    | α-Methyl-n-valeryl chloride                             | 3:8020         |
| C <sub>2</sub> H <sub>3</sub> OCl | Acetyl chloride                             | 3:7065         |                                    | β-Methyl-n-valeryl chloride                             | 3:8035         |
| C <sub>8</sub> H <sub>5</sub> OCl | Propionyl chloride                          | 3:7170         |                                    | $\gamma$ -Methyl- $n$ -valeryl chloride                 | 3:8090         |
| C <sub>4</sub> H <sub>7</sub> OCl | n-Butyryl chloride Isobutyryl chloride      |                |                                    | α-Ethyl-n-butyryl chloride                              | 3:7 <b>990</b> |
| $C_bH_0OCl$                       | n-Valeryl chloride                          | 3:77 <b>49</b> |                                    | a,a-Dimethyl-n-                                         |                |
|                                   | α-Methyl-n-butyryl chloride                 | 3:7603         |                                    | butyryl chloride  a, \beta-Dimethyl-n- butyryl chloride |                |
|                                   | β-Methyl-n-butyryl chloride                 | 3:7560         |                                    | $\beta$ , $\beta$ -Dimethyl- $n$ -butyrylchloride       | 3:7880         |
|                                   | $\alpha,\alpha$ -Dimethylpropionyl chloride | 3:7450         | C7H18OCl                           | n-Heptanoyl chloride .                                  | 8:8520         |

| C7H18OCl<br>Contd.                                           | α-Methyl-n-caproyl chloride                                   | 3:9452           | $C_7H_{10}O_2Cl_2$                                                | Pimelyl (di)chloride 3:945                                             |
|--------------------------------------------------------------|---------------------------------------------------------------|------------------|-------------------------------------------------------------------|------------------------------------------------------------------------|
| COLICA.                                                      | $\beta$ -Methyl- $n$ -caproyl                                 |                  | $\mathrm{C_8H_{12}O_2Cl_2}$                                       | Suberyl (di)chloride 3:9576                                            |
|                                                              | chloride<br>γ-Methyl- <i>n</i> -caproyl                       | 3:8305           | $C_9H_{14}O_2Cl_2$                                                | Azelayl (di)chloride 3:9686                                            |
|                                                              | chloride<br>δ-Methyl-n-caproyl<br>chloride                    | 3:8355<br>3:8365 | C <sub>10</sub> H <sub>16</sub> O <sub>2</sub> Cl <sub>2</sub>    | Sebacyl (di)chloride 3:978                                             |
|                                                              | α-Ethyl-n-valeryl                                             | <b>4.000</b>     |                                                                   | orresp. acid is unsaturated and                                        |
|                                                              | chloride                                                      | 3:8235           | C <sub>3</sub> H <sub>3</sub> OCl                                 | Acrylyl chloride 3:715                                                 |
|                                                              | $\alpha, \alpha$ -Dimethyl- $n$ -valeryl                      |                  | $C_4H_5OCl$                                                       | α-Crotonoyl chloride 3:769                                             |
|                                                              | chloride $\alpha,\beta$ -Dimethyl- $n$ -valeryl               | 3:9456           | $C_bH_7OCl$                                                       | cis-\alpha-Methylcrotonoyl                                             |
|                                                              | chloride $\gamma, \gamma$ -Dimethyl- $n$ -valeryl             |                  | G TT 0.01                                                         | chloride 3:924                                                         |
|                                                              | chloride                                                      | 3:9460           | C <sub>18</sub> H <sub>88</sub> OCl                               | Elaidyl chloride 3:9950<br>Oleyl chloride 3:9940                       |
|                                                              | α-Ethyl-β-methyl-n-<br>butyryl chloride<br>α,α,β-Trimethyl-n- | 3:9462           |                                                                   | orresp. acid is unsaturated and                                        |
|                                                              | butyryl chloride                                              | 3:8145           | $\mathrm{C_4H_2O_2Cl_2}$                                          | Fumaryl (di)chloride . 3:5878                                          |
| C <sub>8</sub> H <sub>15</sub> OCl                           | n-Octanoyl chloride                                           | 3:8680           |                                                                   | orresp. acid contains also other                                       |
| C <sub>9</sub> H <sub>17</sub> OCl                           | Pelargonyl chloride                                           | 3:8765           | e₁<br>C₃H₅O₂Cl                                                    | ETHER/ACYL CHLORIDE Methoxyacetyl                                      |
| C <sub>10</sub> H <sub>19</sub> OCl                          | n-Decanoyl chloride                                           | 3:8800           | 081180201                                                         | chloride 3:5226                                                        |
| C <sub>11</sub> H <sub>21</sub> OCl                          | n-Undecanoyl chloride                                         | 3:9800           | $C_4H_7O_2Cl$                                                     | Ethoxyacetyl chloride 3:7745                                           |
| C <sub>12</sub> H <sub>28</sub> OCl                          | n-Lauroyl chloride                                            | 3:9858           | C <sub>4</sub> H <sub>4</sub> O <sub>3</sub> Cl <sub>2</sub>      | Diglycoloyl (di)-<br>chloride 3:909%                                   |
| C <sub>18</sub> H <sub>18</sub> OCl                          | <i>n</i> -Tridecanoyl chloride                                | 3:9860           | _                                                                 | ESTER/ACYL CHLORIDE                                                    |
| C <sub>14</sub> H <sub>27</sub> OCl                          | Myristoyl chloride                                            | 3:9885           | (For esters C <sub>4</sub> H <sub>5</sub> O <sub>3</sub> Cl       | of chloroformic acid see Unit 8) Ethoxalyl chloride 3:5625             |
| C <sub>15</sub> H <sub>29</sub> OCl                          | n-Pentadecanoyl chloride                                      | 3:9900           |                                                                   | Carbomethoxyacetyl chloride 3:9098-A                                   |
| C <sub>16</sub> H <sub>81</sub> OCl                          | Palmitoyl chloride                                            | 3:9912           | $C_5H_7O_8Cl$                                                     | β-(Carbomethoxy)pro-<br>pionyl chloride 3:9247                         |
| C <sub>17</sub> H <sub>88</sub> OCl                          | Margaroyl chloride                                            | 3:9925           |                                                                   | Carbethoxyacetyl chloride 3:9246                                       |
| C <sub>18</sub> H <sub>86</sub> OCl                          | Stearoyl chloride                                             | 3:9960           | $C_6H_9O_8C1$                                                     | γ-(Carbomethoxy)-n-                                                    |
| b. Co                                                        | orresp. acid is saturated                                     | and di-          | C <sub>11</sub> H <sub>19</sub> O <sub>8</sub> Cl                 | butyryl chloride 3:9373 (Carbomethoxy)-                                |
| COCl                                                         | Carbonyl (di)chloride                                         |                  |                                                                   | pelargonyl chloride. 3:9792                                            |
|                                                              | (phosgene)                                                    | 3:5000           | e <sub>3</sub><br>C <sub>4</sub> H <sub>5</sub> O <sub>2</sub> Cl | KETO/ACYL CHLORIDE Acetoacetyl chloride. 3:9098                        |
| $C_2O_2Cl_2$                                                 | Oxalyl (di)chloride                                           | 3:5060           |                                                                   | •                                                                      |
| C <sub>8</sub> H <sub>2</sub> O <sub>2</sub> Cl <sub>2</sub> | Malonyl (di)chloride                                          | 3:9030           |                                                                   | adical (R) does contain chlorine<br>rresp. acid is saturated and mono- |
| C <sub>4</sub> H <sub>4</sub> O <sub>2</sub> Cl <sub>2</sub> | Succinyl (di)chloride                                         | 3:6200           | bas<br>C <sub>2</sub> H <sub>2</sub> OCl <sub>2</sub>             | sic Chloroacetyl chloride . 3:5235                                     |
| C <sub>5</sub> H <sub>6</sub> O <sub>2</sub> Cl <sub>2</sub> | Glutaryl (di)chloride .                                       | 3:6500           | C <sub>2</sub> H <sub>2</sub> OCl <sub>2</sub>                    |                                                                        |
| C <sub>6</sub> H <sub>8</sub> O <sub>2</sub> Cl <sub>2</sub> | Adipyl (di)chloride                                           | 3:9352           | O3110/C18                                                         | Dichloroacetyl chloride 3:5290                                         |

| C2OCL                                                        | Trichloroacetyl chloride                                                               | 3:5420   | C <sub>4</sub> HO <sub>2</sub> Cl <sub>3</sub><br>Contd.     | Chloromaleyl (di)-<br>chloride 3:6158                                            |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------|----------|--------------------------------------------------------------|----------------------------------------------------------------------------------|
| C <sub>2</sub> H <sub>4</sub> OCl <sub>2</sub>               | α-Chloropropionyl chloride                                                             | 3:5320   | C <sub>4</sub> O <sub>2</sub> Cl <sub>4</sub>                | Dichloromaleyl (di)-<br>chloride 3:6197                                          |
|                                                              | chloride                                                                               | 3:5690   |                                                              | orresp. acid contains other func-                                                |
| C <sub>8</sub> H <sub>8</sub> OCl <sub>8</sub>               | <ul><li>α,α-Dichloropropionyl</li><li>chloride</li><li>α,β-Dichloropropionyl</li></ul> | 3:5372   | C <sub>4</sub> H <sub>4</sub> O <sub>2</sub> Cl <sub>2</sub> | γ-Chloroacetoacetyl chloride 3:9888                                              |
|                                                              | chloride                                                                               | 3:9032   | B. Of Isocy                                                  | yclic Acids                                                                      |
|                                                              | $\beta,\beta$ -Dichloropropionyl chloride 3                                            | : 9032-A | 1. The                                                       | radical (R) contains no chlorine                                                 |
|                                                              |                                                                                        |          | aC                                                           | orresp. acid is monobasic                                                        |
| C <sub>3</sub> OCl <sub>6</sub>                              | Pentachloropropionyl chloride                                                          | 3:0470   | a <sub>i</sub>                                               | WITH —COOH ATTACHED TO RING                                                      |
| $C_4H_6O_2Cl_2$                                              | α-Chloro-n-butyryl chloride                                                            | 3:5570   | C7H11OCl                                                     | Hexahydrobenzoyl chloride 3:8589                                                 |
|                                                              | β-Chloro-n-butyryl chloride                                                            | 3:9100   | $C_7H_6OCl$                                                  | Benzoyl chloride 3:6240                                                          |
|                                                              | γ-Chloro-n-butyryl chloride                                                            | 3:5970   | C <sub>8</sub> H <sub>7</sub> OCl                            | o-Toluyl chloride 3:8740<br>m-Toluyl chloride 3:6535<br>p-Toluyl chloride 3:6600 |
|                                                              | α-Chloro-isobutyryl chloride                                                           | 3:5385   |                                                              | p = 0.000                                                                        |
|                                                              | β-Chloro-isobutyryl chloride                                                           | 3:9101   | C <sub>10</sub> H <sub>11</sub> OCl                          | 2,4,6-Trimethyl-<br>benzoyl chloride 3:9750                                      |
| $C_6H_8OCl_2$                                                | α-Chloro-n-valeryl chloride                                                            | 3:5860   | C <sub>11</sub> H <sub>7</sub> OCl                           | $\alpha$ -Naphthoyl chloride. 3:6930 $\beta$ -Naphthoyl chloride. 3:0900         |
|                                                              | γ-Chloro-n-valeryl<br>chloride                                                         | 3:9260   | 82                                                           | WITH —COOH GROUP ATTACHED<br>TO SATURATED SIDE CHAIN                             |
|                                                              | δ-Chloro-n-valeryl chloride                                                            | 3:9264   | $C_8H_7O_2Cl$                                                | Phenylacetyl chloride. 3:9567                                                    |
|                                                              | α-Chloro-α-methyl-n-<br>butyryl chloride<br>α-Chloro-β-methyl-n-                       | 3:5670   | C <sub>9</sub> H <sub>9</sub> OCl                            | β-Phenylpropionyl chloride 3:8787                                                |
|                                                              | butyryl chloride                                                                       | 3:8144   | C <sub>12</sub> H <sub>9</sub> OCl                           | $\alpha$ -Naphthylacetyl chloride 3:9856                                         |
|                                                              | $\beta$ -Chloro- $\alpha$ , $\alpha$ -di-                                              |          |                                                              | 000                                                                              |
|                                                              | methylpropionyl<br>chloride                                                            | 3:9266   | 8.8                                                          | WITH —COOH GROUP ATTACHED<br>TO UNSATURATED SIDE CHAIN                           |
|                                                              | rresp. acid is saturated                                                               | and di-  | C <sub>9</sub> H <sub>7</sub> OCl                            | Cinnamoyl chloride 3:0339                                                        |
|                                                              | asic                                                                                   |          | C <sub>9</sub> H <sub>5</sub> OCl                            | Phenylpropiolyl                                                                  |
| C <sub>4</sub> H <sub>2</sub> O <sub>2</sub> Cl <sub>4</sub> | d,l-α,α'-Dichloro-<br>succinyl (di)chloride                                            | 3:0395   |                                                              | chloride 3:9658                                                                  |
|                                                              | meso-α,α'-Dichloro-<br>succinyl (di)chloride                                           | 3:9087   | 84                                                           | WITH —COOH ATTACHED TO<br>RING CONTAINING ANOTHER FUNC-<br>TIONAL GROUP          |
|                                                              | rresp. acid is unsaturat<br>onobasic                                                   | ed and   | $C_7H_6O_2Cl$                                                | 2-Hydroxybenzoyl chloride 3:9085                                                 |
| C <sub>8</sub> OCl <sub>4</sub>                              | Trichloroacryloyl chloride                                                             | 3:5845   |                                                              | 3-Hydroxybenzoyl<br>chloride 3:9446                                              |
|                                                              | orresp. acid is unsaturated                                                            | and di-  |                                                              | 4-Hydroxybenzoyl chloride 3:9447                                                 |
| ba<br>C <sub>4</sub> HO <sub>2</sub> Cl <sub>3</sub>         | Chlorofumaryl (di)-<br>chloride                                                        | 3:6105   | C <sub>8</sub> H <sub>7</sub> O <sub>2</sub> Cl              | 2-Methoxybenzoyl chloride 3:6879                                                 |

| Contd. 3-Methoxybensoyl chloride                             |                               | 3:6797 |                                                 | the radical (R) does contain chlorine.  Corresp. acid is monobasic |        |
|--------------------------------------------------------------|-------------------------------|--------|-------------------------------------------------|--------------------------------------------------------------------|--------|
|                                                              | chloride                      | 3:6899 | C7H4OCl2                                        | o-Chlorobenzoyl chloride m-Chlorobenzoyl                           | 3:6640 |
|                                                              | chloride                      | 3:8790 |                                                 | chloride<br>p-Chlorobenzoyl                                        | 3:6590 |
| $C_8H_4O_8Cl$                                                | Piperonyloyl chloride.        | 3:1960 |                                                 | chloride                                                           | 3:6550 |
| C <sub>14</sub> H <sub>9</sub> O <sub>2</sub> Cl             | o-Benzoylbenzoyl chloride     | 3:9880 | C7OCl6                                          | Pentachlorobenzoyl chloride                                        | 3:2295 |
| <b>b.</b> Co                                                 | orresp. acid is dibasic       |        | CHOCh                                           | α-Chloro-diphenyl-                                                 |        |
| C <sub>8</sub> H <sub>4</sub> O <sub>2</sub> Cl <sub>2</sub> | chloride                      | 9.0000 | 01411100012                                     | acetyl chloride                                                    | 3:0885 |
| unsymo-Phthalyl<br>(di)chloride                              | 3:2395                        |        | rocyclic Acids                                  |                                                                    |        |
|                                                              | Isophthalyl (di)-<br>chloride | 3:0520 | a. Co                                           | re R contains no chlorine<br>orresp. acid is monobasic             |        |
|                                                              | Terephthalyl (di)-            | 3:2205 | C <sub>5</sub> H <sub>2</sub> O <sub>2</sub> Cl | Furoyl chloride                                                    | 3:8515 |

# UNIT 8. CHLORO SUBSTITUTION PRODUCTS OF ETHERS AND OF ESTERS

(Summary of Classification of Unit 8)

## A. ETHERS.

- 1. Completely acyclic saturated ethers.
  - a. Monoethers.
    - a<sub>1</sub> Derived from symmetrical ethers.
    - a2 Derived from unsymmetrical ethers.
  - b. Diethers.
  - c. Ethers containing also other functions.
    - c1 Ether/alcohols.
    - c<sub>2</sub> Ether/esters.
    - ca Ether/ester/alcohols.
    - c4 Ether/ester/acyl halides.
- 2. Completely acyclic unsaturated ethers.
- 3. Cyclic ethers.
  - a. Non-aromatic.
    - a<sub>1</sub> Monoethers.
    - a<sub>2</sub> Diethers.
  - b. Aromatic ethers (phenol ethers).
  - c. Heterocyclic ethers.

## B. ESTERS.

- 1. Esters of aliphatic acids.
  - a. Acids containing no chlorine.
    - a<sub>1</sub> From acetic acid.
    - as From oxalic acid.
    - as From carbonic acid.
  - b. Saturated monobasic acids containing chlorine.
    - b<sub>1</sub> From chloroacetic acid.
    - ba From dichloroscetic scid.
    - be From trichloroacetic acid.

- b4 From chloropropionic acid.
- bs From chlorobutyric acids.
- be From chlorovaleric acids.
- c. Saturated dibasic acids containing chlorine.
  d. Unsaturated monobasic acids containing chlorine.
- e. Unsaturated dibasic acids containing chlorine.
- f. Esters of chloroformic acid.
- g. Esters of keto acids.
- 2. Esters of aromatic acids.
  - a. Acids containing no chlorine.
  - b. Acids containing chlorine.
- 3. Esters of inorganic acids.
- 4. Esters containing also other functional groups.
  - a. Ester/alcohols.
    - a<sub>1</sub> From acids containing no chlorine.
    - a<sub>2</sub> From acids containing chlorine.
  - b. Ester/acyl chlorides.
  - c. Ester/ethers.
  - d. Ester/ether/alcohols.
  - e. Ester/ether/acyl chlorides.

# UNIT 8. CHLORINE SUBSTITUTION PRODUCTS OF ETHERS AND ESTERS

| A. Ethers 1. Com                                | pletely acyclic saturated (                      | ethers | C <sub>6</sub> H <sub>12</sub> OCl <sub>2</sub><br>Contd.     | $\beta$ , $\beta'$ -Dichloro-di-<br>isopropyl ether | 3:8605           |
|-------------------------------------------------|--------------------------------------------------|--------|---------------------------------------------------------------|-----------------------------------------------------|------------------|
|                                                 | Ionoethers                                       |        |                                                               | 82 DERIVED FROM UNSYMB                              | IETRICAL         |
| a <sub>1</sub>                                  | DERIVED FROM SYMMETR<br>ETHERS                   | ICAL   | C₃H₁OCl                                                       | ETHERS Ethyl chloromethyl                           |                  |
| C <sub>2</sub> H <sub>5</sub> OCl               | Chloromethyl methyl ether                        | 3:7085 |                                                               | ether                                               | 3:7195<br>3:7150 |
| C <sub>2</sub> H <sub>4</sub> OCl <sub>2</sub>  | symDichlorodimethyl ether                        | 3:5245 |                                                               | β-Chloroethyl methyl ether                          | 3:7265           |
| C <sub>4</sub> H <sub>9</sub> OCl               | α-Chloroethyl ethyl                              | 3:7305 | C <sub>6</sub> H <sub>11</sub> OCl                            | α-Chloroethyl n-<br>propyl ether                    | 3:7525           |
|                                                 | ether<br>β-Chloroethyl ethyl<br>ether            | 3:7463 | C <sub>6</sub> H <sub>18</sub> OCl                            | α-Chloroethyl n-<br>butyl ether                     | 3:9396           |
| C <sub>4</sub> H <sub>8</sub> OCl <sub>3</sub>  | $\alpha, \alpha'$ -Dichlorodiethyl ether         | 3:7595 | C7H15OCl                                                      | $\alpha$ -Chloroethyl $n$ - amyl ether              | 3:9480           |
|                                                 | $\alpha,\beta$ -Dichlorodiethyl ether            | 3:5640 | b. Di                                                         | ethers                                              |                  |
|                                                 | $\alpha, \beta'$ -Dichlorodiethyl ether          | 3:9150 | C <sub>6</sub> H <sub>12</sub> O <sub>2</sub> Cl <sub>2</sub> | Ethylene glycol bis-<br>(β-chloroethyl)<br>ether    | 2 · 88KK         |
|                                                 | ether                                            | 3:6025 | <b></b>                                                       |                                                     |                  |
| C <sub>4</sub> H <sub>2</sub> OCl <sub>8</sub>  | Octachlorodiethyl<br>ether                       | 3:0738 | tio                                                           |                                                     | er iune-         |
| C4OCl10                                         | Decachlorodiethyl<br>ether                       | 3:1676 | $C_4H_9O_2Cl$                                                 | β-Chloro-β'-hydroxy-<br>diethyl ether               | 3:9185           |
| C <sub>6</sub> H <sub>12</sub> OCl <sub>2</sub> | $\beta, \beta'$ -Dichloro-di- $n$ - propyl ether | 3:8610 | _                                                             | ETHER/ESTERS                                        |                  |
|                                                 | $\gamma, \gamma'$ -Dichloro-di- $n$ propyl ether | 3:8745 | C <sub>5</sub> H <sub>9</sub> O <sub>5</sub> Cl               | β-Methoxyethyl chloroacetate                        | 3.: 9265         |

| C <sub>5</sub> H <sub>7</sub> O <sub>8</sub> Cl <sub>8</sub> | β-Methoxyethyl tri-<br>chloroacetate                    | 3:9250                     | c. H<br>C₅H <sub>9</sub> OCl                                      | eterocyclic ethers<br>Tetrahydro-α-<br>furfuryl chloride | 3:8152           |
|--------------------------------------------------------------|---------------------------------------------------------|----------------------------|-------------------------------------------------------------------|----------------------------------------------------------|------------------|
| Cs                                                           | ETHER/ESTER/ALCOHOLS                                    | l.                         |                                                                   | 1411419                                                  |                  |
| C <sub>6</sub> H <sub>11</sub> O <sub>4</sub> Cl             | Diethylene glycol<br>mono(chloroacetate)                | 3:9390                     |                                                                   | ed according to acid rad<br>on according to alkyl or a   |                  |
| $C_8H_{16}O_5Cl$                                             | Triethylene glycol<br>mono(chloroacetate)               | 3:9588                     | cals see Alı                                                      | phabetical Index.                                        | aryi radi-       |
| ٠.                                                           | ETHER/ESTER/ACYL HALI                                   | rnwa                       |                                                                   | cids containing no chloris                               | 10               |
|                                                              | · · · · · · · · · · · · · · · · · · ·                   | DES                        | u. A                                                              | cids containing no emorn                                 | 10               |
| C <sub>4</sub> H <sub>7</sub> O <sub>3</sub> Cl              | β-Methoxyethyl chloroformate                            | 3:9140                     | a <sub>1</sub><br>C <sub>8</sub> H <sub>5</sub> O <sub>2</sub> Cl | FROM ACETIC ACID<br>Chloromethyl acetate.                | 3:5356           |
| C <sub>5</sub> H <sub>9</sub> O <sub>3</sub> Cl              | β-Ethoxyethy!<br>chloroformate                          | 3:9280                     | C <sub>4</sub> H <sub>7</sub> O <sub>2</sub> Cl                   | α-Chloroethyl acetate.<br>β-Chloroethyl acetate.         | 3:7625<br>3:5735 |
| 2. Com                                                       | pletely acyclic unsaturate                              | d ethers                   |                                                                   |                                                          |                  |
| C <sub>4</sub> H <sub>7</sub> OCl                            | β-Chloroethyl vinyl                                     | 3:7464                     | $C_6H_9O_2C1$                                                     | β-Chloro- $n$ -propyl acetate $γ$ -Chloro- $n$ -propyl   | 3:8180           |
|                                                              | ether                                                   | 0.7101                     |                                                                   | acetate                                                  | 3:8310           |
| C <sub>4</sub> H <sub>6</sub> OCl <sub>8</sub>               | $\alpha,\beta$ -Dichlorovinyl ethyl ether               | 3:5540                     | $\mathrm{C_{5}H_{8}O_{2}Cl_{2}}$                                  | $\beta, \gamma$ -Dichloro- $n$ - propyl acetate          | 3:6220           |
| C4OCl6                                                       | Di-(trichlorovinyl)<br>ether                            | 3:6373                     | $\mathrm{C_{5}H_{9}O_{2}Cl}$                                      | β-Chloroisopropyl acetate                                | 3:8150           |
| 3. Cycli                                                     | c ethers                                                |                            |                                                                   |                                                          |                  |
| -                                                            | on-aromatic                                             |                            | $\mathrm{C_{5}H_{8}O_{2}Cl_{2}}$                                  | $\beta, \beta'$ -Dichloroisopropyl                       |                  |
|                                                              | MONOETHERS                                              |                            |                                                                   | acetate                                                  | 3:6318           |
| C <sub>8</sub> H <sub>6</sub> OCl                            | 3-Chloro-1,2-<br>epoxypropane                           | 3:5358                     | $\mathrm{C_6H_9O_2Cl_3}$                                          | $\beta,\beta,\beta$ -Trichloro-terbutyl acetate          | 3:6180           |
| C <sub>8</sub> H <sub>3</sub> OCl <sub>8</sub>               | 3,3,3-Trichloro-1,2-<br>epoxypropane                    | 3:5760                     | $C_7H_{11}O_4Cl_8$                                                | 3-Chloropropane-<br>diol-1,2 diacetate                   | 3:6840           |
| C <sub>4</sub> H <sub>7</sub> OCl                            | 3-Chloro-2-methyl-1,<br>2-epoxypropane                  | 3:7657                     | $\mathrm{C_6H_8O_4Cl_2}^{\mathrm{fl_2}}$                          | FROM OXALIC ACID bis-(β-Chloroethyl) oxalate             | 3:0572           |
| 82                                                           | DIETHERS                                                |                            |                                                                   |                                                          | 0.0000           |
| $C_4H_6O_2Cl_2$                                              | 2,3-Dichlorodioxane-<br>1,4                             | 3:9105                     | C <sub>\$</sub> O <sub>\$</sub> Cl <sub>6</sub>                   | bis-(Trichloromethyl) carbonate                          | 3:1915           |
| b. Ar                                                        | omatic ethers (phenol eth                               | hers)                      |                                                                   |                                                          |                  |
| C7H7OCl                                                      | o-Chloroanisole m-Chloroanisole                         | 3:6255<br>3:6195           | $\mathbf{C_5H_8O_3Cl_2}$                                          | Di- $(\beta$ -chloroethyl) carbonate                     | 3:6790           |
|                                                              | p-Chloroanisole<br>ω-Chloroanisole                      | 3:6300<br>3:9448           | $\mathrm{C_7H_{12}O_3Cl_2}$                                       | Di- $(\gamma$ -chloro- $n$ -propyl) carbonate            | 3:6895           |
| C <sub>8</sub> H <sub>9</sub> OCl                            | o-Chlorophenetole  m-Chlorophenetole  p-Chlorophenetole | 3:8735<br>3:6323<br>3:0090 |                                                                   | turated monobasic acids on chlorine                      | contain-         |
|                                                              | ω-Chlorophenetole                                       | 3:0165                     | $\mathbf{b_1}$                                                    | FROM CHLOROACETIC ACI                                    | 9                |
|                                                              |                                                         |                            | $C_3H_5O_2Cl$                                                     | Methyl chloroacetate.                                    | 3:5585           |
| C <sub>1</sub> H <sub>11</sub> OCl                           | γ-Chloro-n-propyl phenyl ether                          | 3:8820                     | C <sub>4</sub> H <sub>7</sub> O <sub>2</sub> Cl                   | Ethyl chloroacetate                                      | 3:5700           |
| C <sub>10</sub> H <sub>18</sub> O <sub>2</sub> Cl            | $\beta$ -Chloroethyl $\beta'$ - phenoxyethyl ether.     | 3:9770                     | $C_4H_6O_2Cl_2$                                                   | $\beta$ -Chloroethyl chloro-<br>acetate                  | 3:6230           |

| C <sub>4</sub> H <sub>7</sub> O <sub>8</sub> Cl              | $\beta$ -Hydroxyethyl chloro-<br>acetate    | 3:6780         | C <sub>5</sub> H <sub>7</sub> O <sub>8</sub> Cl <sub>3</sub>  | $\beta$ -Methoxyethyl tri-<br>chloroacetate                            | 3:9250           |
|--------------------------------------------------------------|---------------------------------------------|----------------|---------------------------------------------------------------|------------------------------------------------------------------------|------------------|
| $C_bH_9O_8Cl$                                                | β-Methoxyethyl chloro-<br>acetate           | 3:9285         | $C_6H_7O_2Cl_8$                                               | n-Propyl trichloro-<br>acetate                                         | 3:6135           |
| C <sub>5</sub> H <sub>9</sub> O <sub>2</sub> Cl              | n-Propyl chloroacetate                      | 3:8295         |                                                               | Isopropyl trichloro-<br>acetate                                        | 3:5975           |
|                                                              | Isopropyl chloro-<br>acetate                | 3:8160         | C <sub>6</sub> H <sub>9</sub> O <sub>2</sub> Cl <sub>3</sub>  | n-Butyl trichloro-                                                     | 0.000            |
| C.H. O.Cl                                                    |                                             |                | 0611403013                                                    | acetate                                                                | 3: <b>63</b> 15  |
| $C_6H_{11}O_2Cl$                                             | n-Butyl chloroacetate<br>Isobutyl chloro-   | 3:8530         |                                                               | Isobutyl trichloro-<br>acetate                                         | 3:61 <b>40</b>   |
|                                                              | acetatesecButyl chloro-                     | 3:8375         |                                                               | secButyl trichloro-<br>acetate                                         | 3:9372           |
|                                                              | *acetate  ter-Butyl chloro-                 | 3:8350         |                                                               | ter-Butyl trichloro-<br>acetate                                        | 3:0138           |
|                                                              | acetate                                     | 3:8220         | C <sub>7</sub> H <sub>11</sub> O <sub>2</sub> Cl <sub>3</sub> |                                                                        |                  |
| C <sub>4</sub> H <sub>7</sub> O <sub>3</sub> Cl              | Ethylene glycol mono-<br>(chloroacetate)    | 3:6780         | O/MIO2OI3                                                     | acetate Isoamyl trichloro-                                             | 3:6560           |
| $\mathrm{C_6H_8O_4Cl_2}$                                     | Ethylene glycol bis-<br>(chloroacetate)     | 3:0720         |                                                               | acetate<br>ter-Amyl trichloro-<br>acetate                              | 3:6490<br>3:6185 |
| C <sub>8</sub> H <sub>21</sub> O <sub>4</sub> Cl             | Diethylene glycol                           |                | <b>h</b> .                                                    | FROM CHLOROPROPIONIC                                                   | 0.0100           |
| Ogrinotor                                                    | mono(chloroacetate)                         | 3:9390         |                                                               | ACIDS                                                                  |                  |
| $\mathrm{C_8H_{1\delta}O_{\delta}Cl}$                        | Triethylene glycol<br>mono(chloroacetate)   | 3:9588         | C <sub>4</sub> H <sub>7</sub> O <sub>2</sub> Cl               | Methyl $\alpha$ -chloropropionate                                      | 3:7908           |
| C <sub>8</sub> H <sub>7</sub> O <sub>2</sub> Cl              | Phenyl chloroacetate .                      | 3:0565         | $C_5H_9O_2Cl$                                                 | Ethyl α-chloropro-<br>pionate                                          | 3:8125           |
| $b_2$                                                        | FROM DICHLOROACETIC AC                      | CID            | $C_6H_{11}O_2Cl$                                              | n-Propyl α-chloro-                                                     |                  |
| $\mathrm{C_8H_4O_2Cl_2}$                                     | Methyl dichloro-<br>acetate                 | 3:5655         |                                                               | propionate<br>Isopropyl α-chloro-<br>propionate                        | 3:9384<br>3:8165 |
| $C_4H_6O_2Cl_2$                                              | Ethyl dichloroacetate.                      | 3:5850         | C7H18O2Cl                                                     | n-Butyl α-chloropro-                                                   | 010200           |
| C <sub>4</sub> H <sub>6</sub> O <sub>3</sub> Cl <sub>2</sub> | $\beta$ -Hydroxyethyl                       |                | C/11/80201                                                    | pionate                                                                | 3:8595           |
|                                                              | dichloroacetate                             | 3:9107         |                                                               | Isobutyl $\alpha$ -chloropropionate                                    | 3:9470           |
| $\mathrm{C_{5}H_{8}O_{2}Cl_{2}}$                             | n-Propyl dichloro-<br>acetate               | 3:6000         | $\mathrm{C_8H_{15}O_2Cl}$                                     | Isoamyl $\alpha$ -chloropropionate                                     | 3:9580           |
|                                                              | acetate                                     | 3:5890         | C <sub>4</sub> H <sub>7</sub> O <sub>2</sub> Cl               | Methyl β-chloropro-<br>pionate                                         | 3:5765           |
| b <sub>8</sub>                                               | FROM TRICHLOROACETIC                        | CID            | C T O CI                                                      | _                                                                      |                  |
| $\mathrm{C_3H_3O_2Cl_3}$                                     | Methyl trichloro-<br>acetate                | 3:5800         | C <sub>8</sub> H <sub>9</sub> O <sub>2</sub> Cl               | Ethyl $\beta$ -chloropropionate                                        | 3:8290           |
| $\mathrm{C_{8}O_{2}Cl_{6}}$                                  | Trichloromethyl trichloroacetate            | 3:0290         | C <sub>6</sub> H <sub>11</sub> O <sub>2</sub> Cl              | $n$ -Propyl $\beta$ -chloropropionate<br>Isopropyl $\beta$ -chloropro- | 3:8545           |
| C <sub>4</sub> H <sub>5</sub> O <sub>2</sub> Cl <sub>3</sub> | Ethyl trichloro-                            | - <del>-</del> |                                                               | pionate                                                                | 3:9388           |
| O4119O3O13                                                   | acetate                                     | 3:5950         | $C_7H_{18}O_2Cl$                                              | n-Butyl β-chloropro-<br>pionate                                        | 3:9474           |
| C <sub>4</sub> H <sub>4</sub> O <sub>2</sub> Cl <sub>4</sub> | β-Chloroethyl tri-<br>chloroacetate         | 3:6510         |                                                               | Isobutyl $\beta$ -chloropropionate                                     | 3:8655           |
| C <sub>4</sub> H <sub>5</sub> O <sub>5</sub> Cl <sub>5</sub> | $\beta$ -Hydroxyethyl tri-<br>chloroacetate | 3:9099         | C <sub>8</sub> H <sub>15</sub> O <sub>2</sub> Cl              | Isoamyl β-chloropro-<br>pionate                                        | 3:8730           |

| C <sub>4</sub> H <sub>6</sub> O <sub>2</sub> Cl <sub>2</sub> | Methyl $\alpha,\beta$ -dichloropropionate             | 3:9103         | $C_8H_{12}O_4Cl_2$                                        | Diethyl $d,l$ - $\alpha,\alpha$ -di-<br>chlorosuccinate | 3:9578    |
|--------------------------------------------------------------|-------------------------------------------------------|----------------|-----------------------------------------------------------|---------------------------------------------------------|-----------|
| C <sub>5</sub> H <sub>5</sub> O <sub>2</sub> Cl <sub>2</sub> | Ethyl α,β-dichloro-<br>propionate                     | 3:6090         | $C_6H_8O_4Cl_2$                                           | Dimethyl meso-a,a-di-<br>chlorosuccinate                | 3:0240    |
| b                                                            | FROM CHLOROBUTYRIC                                    |                | $C_8H_{12}O_4Cl_2$                                        | Diethyl meso-a,a-di-<br>chlorosuccinate                 | 3:1364    |
| C <sub>8</sub> H <sub>9</sub> O <sub>2</sub> Cl              | Methyl α-chloro-n-<br>butyrate                        | 3:8103         |                                                           | om unsaturated monoba<br>ntaining chlorine              | sic acids |
| C <sub>6</sub> H <sub>11</sub> O <sub>2</sub> Cl             | Ethyl $\alpha$ -chloro- $n$ -butyrate                 | 3:8307         | C <sub>4</sub> H <sub>5</sub> O <sub>2</sub> Cl           | Methyl α-chloro-<br>acrylate                            | 3:9096    |
| C <sub>5</sub> H <sub>9</sub> O <sub>5</sub> Cl              | Methyl $\beta$ -chloro- $n$ -butyrate                 | 3:8224         | C <sub>5</sub> H <sub>7</sub> O <sub>2</sub> Cl           | Ethyl $\alpha$ -chloro- * acrylate                      | ,3:9242   |
| C <sub>6</sub> H <sub>11</sub> O <sub>2</sub> Cl             | Ethyl β-chloro-n-<br>butyrate                         | 3:8373         | C <sub>6</sub> H <sub>7</sub> O <sub>2</sub> Cl           | Methyl $\alpha$ -chloro-<br>crotonate                   | 3:5870    |
| C <sub>5</sub> H <sub>9</sub> O <sub>2</sub> Cl              | Methyl γ-chloro-n-<br>butyrate                        | 3:8517         | C <sub>6</sub> H <sub>9</sub> O <sub>2</sub> Cl           | Ethyl α-chloro-<br>crotonate                            | 3:8523    |
| C <sub>6</sub> H <sub>11</sub> O <sub>2</sub> Cl             | Ethyl γ-chloro-n-<br>butyrate                         | 3:8597         | $C_6H_7O_2Cl$                                             | Methyl β-chloro-<br>crotonate                           | 3:9244    |
| C <sub>8</sub> H <sub>9</sub> O <sub>2</sub> Cl              | Methyl α-chloroiso-<br>butyrate                       | 3:7918         | $C_6H_9O_2Cl$                                             | Ethyl $\beta$ -chloro-crotonate                         | 3:8538    |
| C <sub>6</sub> H <sub>11</sub> O <sub>2</sub> Cl             | Ethyl α-chloroiso-<br>butyrate                        | 3:8147         | $C_6H_9O_2Cl$                                             | Ethyl γ-chloro-<br>crotonate                            | 3:8657    |
| C <sub>6</sub> H <sub>9</sub> O <sub>2</sub> Cl <sub>3</sub> | Ethyl $\alpha,\alpha,\beta$ -trichloro-<br>n-butyrate | 3:6380         | $C_6H_9O_2Cl$                                             | Ethyl $\alpha$ -chloroiso-crotonate                     | 3:9368    |
| b <sub>6</sub>                                               | FROM CHLOROVALERIC                                    |                | $C_6H_7O_2Cl$                                             | Methyl $\beta$ -chloroiso-crotonate                     | 3:8028    |
| C <sub>6</sub> H <sub>11</sub> O <sub>2</sub> Cl             | Methyl α-chloro-n-<br>valerate                        | 3:8264         | $C_6H_9O_2Cl$                                             | Ethyl $\beta$ -chloroiso-crotonate                      | 3:8325    |
| C7H18O2Cl                                                    | Ethyl $\alpha$ -chloro- $n$ -valerate                 | 3:8596         |                                                           | om unsaturated dibasic ac<br>ning chlorine              | cids con- |
| C7H18O2Cl                                                    | Ethyl $\beta$ -chloro- $n$ -valerate                  | 3:8629         | C <sub>6</sub> H <sub>7</sub> O <sub>4</sub> Cl           | Dimethyl chloro-<br>fumarate                            | 3:6582    |
| C7H18O2Cl                                                    | Ethyl γ-chloro-n-valerate                             | 3:87 <b>03</b> | C <sub>8</sub> H <sub>11</sub> O <sub>4</sub> Cl          | Diethyl chloro-<br>fumarate                             | 3:6864    |
| C7H18O2Cl                                                    | Ethyl &-chloro-n-valerate                             | 3:8727         | C <sub>6</sub> H <sub>7</sub> O <sub>4</sub> Cl           | Dimethyl chloro-<br>maleate                             | 3:9351    |
| C7H18O3Cl                                                    | Ethyl α-chloro-α-<br>methyl-n-butyrate .              | 3:8518         | C <sub>8</sub> H <sub>11</sub> O <sub>4</sub> Cl          | Diethyl chloro-<br>maleate                              | 3:6697    |
|                                                              | Ethyl α-chloro-β-<br>methyl-n-butyrate                | 3:8528         | f. Fro<br>C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> Cl | om chloroformic acid<br>Methyl chloroformate            | 3:5075    |
|                                                              | om saturated dibasic ac<br>ning chlorine              | ids con-       | $C_2H_2O_2Cl_2$                                           | Chloromethyl chloro-<br>formate                         | 3:5275    |
| C <sub>5</sub> H <sub>5</sub> O <sub>2</sub> Cl <sub>2</sub> | Dimethyl d,l-α,α-<br>dichlorosuccinate                | 3:0485         | C <sub>2</sub> HO <sub>2</sub> Cl <sub>3</sub>            | Dichloromethyl chloro-<br>formate                       | 3:5315    |

| C <sub>2</sub> O <sub>2</sub> Cl <sub>4</sub>                | Trichloromethyl chloroformate                             | 8:5515           | C <sub>8</sub> H <sub>7</sub> O <sub>2</sub> Cl              | Methyl p-chloro-<br>benzoate                                 | 3:0535                             |
|--------------------------------------------------------------|-----------------------------------------------------------|------------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------|
| $\mathrm{C_8H_5O_2Cl}$                                       | Ethyl chloroformate                                       | 8:7295           | $C_9H_9O_2Cl$                                                | Ethyl p-chloro-<br>benzoate                                  | 3:67 <i>5</i> 0                    |
| C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> Cl <sub>2</sub> | β-Chloroethyl chloro-<br>formate                          | 3:5780           |                                                              | s of inorganic acids                                         |                                    |
| C <sub>4</sub> H <sub>7</sub> O <sub>3</sub> Cl              | β-Methoxyethyl chloro-<br>formate                         | 3:9140           | C <sub>2</sub> H <sub>4</sub> OCl                            | Ethyl hypochlorite  ter-Butyl hypochlorite                   | 3:7 <b>02</b> 2<br>3:71 <b>6</b> 5 |
| C <sub>6</sub> H <sub>9</sub> O <sub>8</sub> Cl              | $\beta$ -Ethoxyethyl chloroformate                        | 3:9280           | C <sub>8</sub> H <sub>11</sub> OCl                           | ter-Amyl hypochlorite.                                       | 3:9287                             |
| C <sub>4</sub> H <sub>7</sub> O <sub>2</sub> Cl              | n-Propyl chloro-<br>formate                               | 3:7540           | grou                                                         |                                                              | ınctional                          |
| $C_4H_6O_2Cl_2$                                              | γ-Chloro-n-propyl chloroformate                           | 3:6010           |                                                              | ster/alcohols<br>FROM ACIDS WITH NO C<br>β-Chloro-α-hydroxy- | HLORINE                            |
| C <sub>4</sub> H <sub>7</sub> O <sub>2</sub> Cl              | Isopropyl chloro-<br>formate                              | 3:7405           |                                                              | n-propyl acetate<br>α-Chloro-β-hydroxy-<br>n-propyl acetate  | 3:6775<br>3:6648                   |
| C <sub>6</sub> H <sub>9</sub> O <sub>2</sub> Cl              | n-Butyl chloro-<br>formate<br>Isobutyl chloro-            | 3:7980           |                                                              | β-Chloro-β'-hydroxy-<br>isopropyl acetate                    | 3:6517                             |
| C <sub>6</sub> H <sub>11</sub> O <sub>2</sub> Cl             | formate  n-Amyl chloroformate                             | 3:7760<br>3:9380 | 82                                                           | FROM ACIDS CONTAINING                                        | īG                                 |
|                                                              | Isoamyl chloroformate                                     | 3:8215           | C <sub>4</sub> H <sub>7</sub> O <sub>8</sub> Cl              | $\beta$ -Hydroxyethyl chloro-<br>acetate                     | 3:6780                             |
| C <sub>4</sub> H <sub>5</sub> O <sub>2</sub> Cl              | Allyl chloroformate Isopropenyl chloro- formate           | 3:7487<br>3:7358 | $\mathrm{C_4H_6O_3Cl_2}$                                     | $\beta$ -Hydroxyethyl di-<br>chloroacetate                   | 3:9107                             |
| C7H11O2Cl                                                    | Cyclohexyl chloro-<br>formate                             | 3:5770           | C <sub>4</sub> H <sub>5</sub> O <sub>8</sub> Cl <sub>8</sub> | $\beta$ -Hydroxyethyl tri-<br>chloroacetate                  | 3:9099                             |
| $C_8H_7O_2Cl$                                                | Benzyl chloroformate.                                     | 3:9565           | b. Es                                                        | ter/acyl halides Ethoxalyl chloride                          | 9.7097                             |
| a. Ke                                                        | to acids                                                  |                  | Carrect                                                      | Carbomethoxyacetyl                                           | 3:5625                             |
| C <sub>6</sub> H <sub>9</sub> O <sub>3</sub> Cl              | Ethyl $\alpha$ -chloroaceto-                              | 3:6207           |                                                              |                                                              | :9098-A                            |
|                                                              | acetate Ethyl $\gamma$ -chloroaceto-acetate               | 3:6375           | C <sub>8</sub> H <sub>7</sub> O <sub>8</sub> Cl              | β-(Carbomethoxy)pro-<br>pionyl chloride<br>Carbethoxyacetyl  | 3:9247                             |
|                                                              | s of aromatic acids                                       |                  |                                                              | chloride                                                     | 3:9246                             |
| a. Fr<br>C <sub>9</sub> H <sub>9</sub> O <sub>2</sub> Cl     | om acids containing no c<br>β-Chloroethyl benzoate        | 3:8860           | $C_6H_9O_3Cl$                                                | γ-(Carbomethoxy)-n-<br>butyryl chloride                      | 3:9373                             |
| b. Fro                                                       | om acids containing chlor<br>Methyl o-chloro-<br>benzoate | ine<br>3:6695    | C11H19O3Cl                                                   | $\omega$ -(Carbomethoxy)- pelargonyl chloride .              | 3:9792                             |
| G TT O G                                                     | This all a shipper                                        |                  | c. Es                                                        | ter/ethers                                                   |                                    |
| C <sub>9</sub> H <sub>9</sub> O <sub>9</sub> Cl              | Ethyl o-chloro-<br>benzoate                               | 3:6800           | C <sub>5</sub> H <sub>9</sub> O <sub>8</sub> Cl              | β-Methoxyethyl chloroacetate                                 | <b>3:9285</b>                      |
| C <sub>8</sub> H <sub>7</sub> O <sub>2</sub> Cl              | Methyl m-chloro-<br>benzoate                              | 3:6670           | C <sub>6</sub> H <sub>7</sub> O <sub>2</sub> Cl <sub>3</sub> | β-Methoxyethyl tri-<br>chloroacetate                         | 3:9250                             |
| C <sub>9</sub> H <sub>9</sub> O <sub>2</sub> Cl              | Ethyl m-chloro-<br>benzoate                               | 3:6770           | C <sub>5</sub> H <sub>2</sub> O <sub>5</sub> Cl <sub>5</sub> | Chloralide                                                   | 3:3510                             |

| đ. Es                                            | ter/ether/alcohols                        |        | e. Es                                           | ster/ether/acyl halides             |        |
|--------------------------------------------------|-------------------------------------------|--------|-------------------------------------------------|-------------------------------------|--------|
| C <sub>6</sub> H <sub>11</sub> O <sub>4</sub> Cl | Diethylene glycol<br>mono(chloroacetate)  | 3:9390 | C <sub>4</sub> H <sub>7</sub> O <sub>3</sub> Cl | $\beta$ -Methoxyethyl chloroformate | 3:9140 |
| $C_8H_{15}O_5Cl$                                 | Triethylene glycol<br>mono(chloroacetate) | 3:9588 | $C_8H_9O_8Cl$                                   | $\beta$ -Ethoxyethyl chloroformate  | 3:9280 |

# V. ALPHABETICAL NAME INDEX TO COMPOUNDS OF ORDER 3

- 1. Note that this index refers only to numbered compounds of Order 3; for practical reasons it cannot include the large number of related products which are incidentally mentioned within the text of these numbered individuals.
- 2. In this alphabetical name index all literal prefixes (such as those below) are ignored in establishing the alphabetical sequence. Note, however, that "iso" is not recognized as a prefix but is construed as an integral part of the name and therefore indexed under the letter I.
- 3. Within any given group of related prefixes the following sequences are employed:

- 4. Note that except when needed to distinguish from other stereoisomers the prefix d,l is omitted from the alphabetical index names even when included in text of the individual compound.
- 5. Whenever in a particular name the syllable (di) is inserted in parentheses to avoid possible ambiguity, such syllable is ignored in establishing the alphabetical sequence.
- 6. For a given family of derivatives of the same halogen-free parent, the sequence of listing is based upon the parent, e.g., all the dichloro substitution products of naphthol-1 precede all those derived from naphthol-2.

|        | A                                                   | 3:8150         | 2-Acetoxy-1-chloropropane      |
|--------|-----------------------------------------------------|----------------|--------------------------------|
| 3:6210 | Acetaldehyde bis-(\beta-chlorethyl)-                | 3:8180         | 1-Acetoxy-2-chloropropane      |
|        | acetal                                              | 3:8310         | 1-Acetoxy-3-chloropropane      |
| 3:9098 | Acetoacetyl chloride                                | 3:7065         | Acetyl chloride                |
| 3:6517 | $\beta$ -Aceto- $\alpha$ -chlorohdryin              | 3:5042         | cis-Acetylene dichloride       |
| 3:6775 | $\gamma$ -Aceto- $\alpha$ -chlorohydrin             | 3:5028         | trans-Acetylene dichloride     |
| 3:6648 | α-Aceto-β-chlorohydrin                              | 3:5030         | Acetylene dichloride (ordinary |
| 3:6220 | $\gamma$ -Aceto- $\alpha$ , $\beta$ -dichlorohydrin |                | mixt.)                         |
| 3:6318 | $\beta$ -Aceto- $\alpha$ , $\gamma$ -dichlorohydrin | 3:5750         | Acetylene tetrachloride        |
| 3:7140 | "Acetone (di)chloride"                              | 3:5555         | Acetylidene tetrachloride      |
| 3:2662 | Acetone chloroform                                  | 3:9034         | Acrolein dichloride            |
| 3:6180 | "Acetone chloroform" acetate                        | 3:51 <b>40</b> | " Acrolein dichloride "        |
| 3:5425 | Acetonyl chloride                                   | 3:5576         | Acrolein hydrochloride         |

| 0.2420              |                                                       |                    |                                                            |
|---------------------|-------------------------------------------------------|--------------------|------------------------------------------------------------|
| 3:7153<br>3:9352    | Acryloyl chloride                                     | 3:7345             | secButylcarbinyl chloride                                  |
| 3:6060              | Adipyl (di)chloride                                   | 3:7200             | ter-Butylcarbinyl chloride                                 |
| 3:7 <b>63</b> 5     | Allyl alcohol dichloride Allyl chloride               | 3:5910             | "Butylchloral" n-Butyl chloride                            |
| 3:7487              | Allyl chlorocarbonate                                 | 3:7160<br>3:7125   | secButyl chloride                                          |
| 3:7487              | Allyl chloroformate                                   | 3:7045             | ter-Butyl chloride                                         |
| 3:7500              | Allyl-dimethyl-carbinyl chloride                      | 3:8530             | n-Butyl chloroacetate                                      |
| 3:7 <b>6</b> 55     | Allyl-ethyl-carbinyl chloride                         | 3:8350             | sccButyl chloroacetate                                     |
| 8:5140              | Allylidene (di)chloride                               | 3:8220             | ter-Butyl chloroacetate                                    |
| 3:8205              | Allyl-isobutyl-carbinyl chloride                      | 3:7980             | n-Butyl chlorocarbonate                                    |
| 3:7730              | Allyl-isopropyl-carbinyl chloride                     | 3:9396             | n-Butyl α-chloroethyl ether                                |
| 3:8305              | secAmyl-(2)-acetyl chloride                           | 3:7980             | n-Butyl chloroformate                                      |
| 3:7590              | ter-Amyl-carbinyl chloride                            | 3:8595             | n-Butyl α-chloropropionate                                 |
| 3:7 <b>460</b>      | n-Amyl chloride                                       | 3:9474             | $n$ -Butyl $\beta$ -chloropropionate                       |
| 3:7325              | sec(2)-Amyl chloride                                  | 3:8185             | α-(n-Butyl)crotyl chloride                                 |
| 3:7330              | sec(3)-Amyl chloride                                  | 3:9646             | n-Butyl-diethyl-carbinyl chloride                          |
| 3:7220              | ter-Amyl chloride                                     | 3:9656             | ter-Butyl-diethyl-carbinyl                                 |
| 3:9390              | n-Amyl chlorocarbonate                                |                    | chloride                                                   |
| 3:9 <del>48</del> 0 | $n$ -Amyl $\alpha$ -chloroethyl ether                 | 3:7 <b>94</b> 5    | n-Butyl-dimethyl-carbinyl                                  |
| 3:9380              | n-Amyl chloroformate                                  |                    | chloride                                                   |
| 3:9734              | n-Amyl-diethyl-carbinyl chloride                      | 3:9442             | secButyl-dimethyl-carbinyl                                 |
| 3:8100              | n-Amyl-dimethyl-carbinyl                              |                    | chloride                                                   |
|                     | chloride                                              | <b>3:4020</b>      | ter-Butyl-dimethyl-carbinyl                                |
| 3:7975              | ter-Amylene dichloride                                |                    | chloride                                                   |
| 3:9 <del>64</del> 2 | n-Amyl-ethyl-methyl-carbinyl                          | 3:8025             | α-Butylene chlorohydrin                                    |
| 3:9287              | chloride                                              | 3:8000             | β-Butylene chlorohydrin                                    |
| 3:9738              | ter-Amyl hypochlorite n-Amyl-isopropyl-methyl-car-    | 3:8000<br>3:7680   | pseudo-Butylene chlorohydrin                               |
| 0.9100              | binyl chloride                                        | 3:7615             | $\alpha$ -Butylene dichloride $\beta$ -Butylene dichloride |
| 3:9432              | n-Amyl-methyl-carbinyl chloride                       | 3:7580             | meso-β-Butylene dichloride                                 |
| 3:9730              | n-Amyl-methyl-n-propyl-                               | 3:9436             | secButyl-ethyl-carbinyl chloride                           |
| 0.0.00              | carbinyl chloride                                     | 3:9544             | n-Butyl-ethyl-methyl-carbinyl                              |
| 3:6560              | n-Amyl trichloroacetate                               | 0.0011             | chloride                                                   |
| 3:6185              | ter-Amyl trichloroacetate                             | 3:9736             | n-Butyl-ethyl-n-propyl-carbinyl                            |
| 3:6870              | o-Anisoyl chloride                                    | 0.0.00             | chloride                                                   |
| 3:6797              | m-Anisoyl chloride                                    | 3:7165             | ter-Butyl hypochlorite                                     |
| 3:6890              | p-Anisoyl chloride                                    | 3:7550             | n-Butylidene (dı)chloride                                  |
| 3:9680              | Azelayl (di)chloride                                  | 3:9650             | n-Butyl-isopropyl-methyl-                                  |
|                     | , n                                                   |                    | carbinyl chloride                                          |
|                     | В                                                     | <b>3:94</b> 52     | n-Butyl-methyl-acetyl chloride                             |
| 3:6327              | Benzal (di)chloride                                   | 3:9458             | secButyl-methyl-acetyl chloride                            |
| 3:4410              | α-Benzene hexachloride                                | 3:7715             | n-Butyl-methyl-carbinyl chloride                           |
| 3:4990              | β-Benzene hexachloride                                | 3:9350             | secButyl-methyl-carbinyl                                   |
| 3:0060              | Benzohydryl chloride                                  |                    | chloride                                                   |
| 3:6960              | Benzophenone (di)chloride                             | 8:7475             | ter-Butyl-methyl-carbinyl chloride                         |
| 3:6540<br>3:9880    | Benzotrichloride                                      | 3:9 <del>611</del> | n-Butyl-methyl-n-propyl-                                   |
| 3:9880              | o-Benzoylbenzoyl chloride<br>o-Benzoylbenzoyl pseudo- | 3:9654             | carbinyl chloride                                          |
| u. 900u             | chloride                                              | 0.000I             | ter-Butyl-methyl-n-propyl-<br>carbinyl chloride            |
| 3:6240              | Benzoyl chloride                                      | 3:9538             | n-Butyl-n-propyl-carbinyl                                  |
| 3:8712              | Benzylcarbinyl chloride                               | 0.000              | chloride                                                   |
| 3:8535              | Benzyl chloride                                       | 3:6315             | n-Butyl trichloroacetate                                   |
| 3:9565              | Benzyl chlorocarbonate                                | 3:9372             | secButyl trichloroacetate                                  |
| 3:9565              | Benzyl chloroformate                                  | 3:0138             | ter-Butyl trichloroacetate                                 |
| 3:6327              | Benzylidene (di)chloride                              | 3:9412             | n-Butyl-vinyl-carbinyl chloride                            |
| 3:7665              | Biallyl hydrochloride                                 | 3:5910             | "Butyrchloral"                                             |
| 3:17 <b>60</b>      | Butadiene tetrachloride (solid                        | 3:1905             | "Butyrchloral hydrate"                                     |
|                     | isomer)                                               | 8:7370             | n-Butyryl chloride                                         |
| 3:9082              | Butadiene tetrachloride (liquid                       |                    | 0                                                          |
|                     | isomer)                                               | 0.0000             | C                                                          |
| 3:8035              | secButylacetyl chloride                               | 3:8800             | n-Caprinyl chloride                                        |
| 3:7880              | ter-Butylacetyl chloride                              | 3:8168<br>3:8680   | n-Caproyl chloride                                         |
| 3:7 <b>460</b>      | n-Butylcarbinyl chloride                              | 9:000A             | n-Capryloyl chloride                                       |

| 3:92 <b>46</b> | Carbethoxyacetyl chloride              | 3:6710             | m-Chlorobenzal (di)chloride      |
|----------------|----------------------------------------|--------------------|----------------------------------|
| 3:9565         | "Carbobenzoxy chloride"                | 3:6700             | p-Chlorobenzal (di)chloride      |
| 3:9098-A       | Carbomethoxyacetyl chloride            | 3:6410             | o-Chlorobenzaldehyde             |
| 3:9378         |                                        | 3:6475             |                                  |
| 0:0010         | $\gamma$ -(Carbomethoxy)- $n$ -butyryl |                    | m-Chlorobenzaldehyde             |
|                | chloride                               | 3:0765             | <i>p</i> -Chlorobenzaldehyde     |
| 3:9792         | ω-(Carbomethoxy)pelargonyl             | 3 : 7 <b>90</b> 3  | Chlorobenzene                    |
|                | chloride                               | 3:4980             | 4-Chlorobenzenedicarboxylic      |
| 3:9247         | β-(Carbomethoxy) propionyl             |                    | acid-1,3                         |
| 0.0721         | chloride                               | 3:4960             |                                  |
|                |                                        | 0.2500             | 5-Chlorobenzenedicarboxylic      |
| 3:5100         | Carbon tetrachloride                   |                    | acid-1,3                         |
| 3:5000         | Carbonyl chloride                      | <b>3:499</b> 5     | 2-Chlorobenzenedicarboxylic      |
| 3:9280         | "Cellosolve" chloroformate             |                    | acid-1.4                         |
| 3:0015         | Cetyl chloride                         | 3:4855             | 5-Chlorobenzenetricarboxylic     |
|                |                                        | 0.2000             |                                  |
| 3:5210         | Chloral                                |                    | acid-1,2,4                       |
| 3:0860         | Chloralalcoholate                      | 3:4975             | 2-Chlorobenzenetricarboxylic     |
| 3:0843         | Chloral n-butylalcoholate              |                    | acid-1,3,5                       |
| 3:6317         | Chloral diethylacetal                  | 3:4150             | o-Chlorobenzoic acid             |
| 3:0860         | Chloral ethylalcoholate                | 3:4392             | m-Chlorobenzoic acid             |
|                |                                        |                    |                                  |
| 3:1270         | Chloral hydrate                        | 3:4940             | p-Chlorobenzoic acid             |
| 3:3510         | Chloralide                             | 3: <b>0</b> 715    | 2-Chlorobenzophenone             |
| 3:4978         | Chloranil                              | 3:2160             | 3-Chlorobenzophenone             |
| 3:4970         | Chloranilic acid                       | 3:1914             | 4-Chlorobenzophenone             |
|                | "Chlorbutol "                          | 3:1100             |                                  |
| 3:2662         |                                        |                    | 2-Chlorobenzoquinone-1,4         |
| 3:7015         | Chlorethane                            | 3:6880             | c-Chlorobenzotrichloride         |
| 3:2662         | " Chloretone "                         | 3:6845             | m-Chlorobenzotrichloride         |
| 3:6180         | "Chloretone" acetate                   | 3:6825             | p-Chlorobenzotrichloride         |
| 3:6025         | "Chlorex "                             | 3:6640             | o-Chlorobenzoyl chloride         |
|                |                                        |                    |                                  |
| 3:8228         | Chloroacetal                           | 3:6590             | m-Chlorobenzoyl chloride         |
| 3:7212         | Chloroacetaldehyde                     | <b>3:6550</b>      | p-Chlorobenzoyl chloride         |
| 3:8228         | Chloroacetaldehyde diethylacetal       | 3:6400             | o-Chlorobenzyl chloride          |
| 3:2300         | Chloroacetaldehyde trimer              | 3:6445             | m-Chlorobenzyl chloride          |
| 3:1370         |                                        | 3:0220             | p-Chlorobenzyl chloride          |
|                | Chloroacetic acid                      |                    |                                  |
| 3:0730         | Chloroacetic acid anhydride            | 3:6625             | o-Chlorobenzylidene (di)chloride |
| <b>3:90</b> 88 | γ-Chloroacetoacetyl chloride           | 3:6710             | m-Chlorobenzylidene (di)chloride |
| 3:5425         | Chloroacetone                          | 3:6700             | p-Chlorobenzylidene (di)chloride |
| 3:1212         | α-Chloroacetophenone                   | 3:1618             | α-Chlorobenzyl phenyl ketone     |
| 3:1212         | ω-Chloroacetophenone                   | 3:0300             | 2-Chlorobiphenyl                 |
|                |                                        |                    |                                  |
| 3:6615         | o-Chloroacetophenone                   | 3:8940             | 3-Chlorobiphenyl                 |
| 3:6815         | m-Chloroacetophenone                   | 3:1912             | 4-Chlorobiphenyl                 |
| 3:6735         | p-Chloroacetophenone                   | 3:7225             | 4-Chlorobutadiene-1,2            |
| 3:3934         | 4-(Chloroacetyl)biphenyl               | 3:7210             | 1-Chlorobutadiene-1,3            |
| 3:5235         |                                        | 3:7080             | 2-Chlorobutadiene-1.3            |
|                | Chloroacetyl chloride                  |                    |                                  |
| 3:7000         | Chloroacetylene                        | 3:9109             | 2-Chlorobutanal-1                |
| 3:9031         | α-Chloroacrolein                       | 3:9110             | 3-Chlorobutanal-1                |
| 3:1445         | α-Chloroacrylic acid                   | 3:9111             | 4-Chlorobutanal-1                |
| 3:2240         | β-Chloroacrylic acid                   | 3:7160             | 1-Chlorobutane                   |
| 3:5635         | β-Chloroallyl alcohol                  | 3:7125             | 2-Chlorobutane                   |
|                |                                        |                    |                                  |
| 3:5820         | γ-Chloroallyl alcohol                  | 3:9160             | 2-Chlorobutanol-1                |
| 3:8737         | $\gamma$ -Chloroallylbenzene           | 3:9165             | 3-Chlorobutanol-1                |
| 3:8737         | ω-Chloroallylbenzene                   | 3:9170             | 4-Chlorobutanol-1                |
| 3:5190         | β-Chloroallyl chloride                 | 3:8025             | 1-Chlorobutanol-2                |
|                |                                        | 3:8000             | 3-Chlorobutanol-2                |
| : 5280         | γ-Chloroallyl chloride                 |                    |                                  |
| : 9295         | ω-Chloro-n-amyl alcohol                | 3:8004             | d,l-erythro-3-Chlorobutanol-2    |
| : 8030         | 3-Chloro-ter-amyl alcohol              | 3:8002             | d,l-threo-3-Chlorobutanol-2      |
| : 4970         | Chloroanilic acid                      | 3:9175             | 4-Chlorobutanol-2                |
| :9448          | α-Chloroanisole                        | 3:9175             | 1-Chlorobutanol-3                |
|                |                                        | 3:8012             | 1-Chlorobutanone-2               |
| : <b>944</b> 8 | ω-Chloroanisole                        |                    |                                  |
| : 6255         | o-Chloroanisole                        | <b>3:759</b> 8     | 3-Chlorobutanone-2               |
| : 6195         | m-Chloroanisole                        | 3:76 <b>40</b>     | 4-Chlorobutanone-2               |
| : 6300         | p-Chloroanisole                        | 3:7640             | 1-Chlorobutanone-3               |
| : 4480         | 1-Chloroanthraquinone                  | 8:7110             | 1-Chlorobutene-1                 |
|                |                                        |                    |                                  |
| : 4922         | 2-Chloroanthraquinone                  | 3:7075             | 2-Chlorobutene-1                 |
| : 6625         | o-Chlorobensal (di)chloride            | 3:7 <del>090</del> | 3-Chlorobutene-1                 |
|                |                                        |                    |                                  |

| 3:7151           | 4-Chlorobutene-1                          | 3:1025             | 3-Chloro-p-cresol                                            |
|------------------|-------------------------------------------|--------------------|--------------------------------------------------------------|
| 3:7205           | 1-Chlorobutene-2                          | 3:8117             | α-Chlorocrotonaldehyde                                       |
| 3:7105           | 2-Chlorobutene-2                          | 3:1615             | allo-α-Chlorocrotonic acid                                   |
| 3:8117           | 2-Chlorobuten-2-al-1                      | 3:2760             | $\alpha$ -Chlorocrotonic acid                                |
| 3:1615           | cis-2-Chlorobuten-2-oic acid-1            | 3:2625             | $\beta$ -Chlorocrotonic acid                                 |
| 3:2760           | trans-2-Chlorobuten-2-oic acid-1          | 3:2170             | γ-Chlorocrotonic acid                                        |
| 3:1300           | cis-3-Chlorobuten-2-oic acid-1            | 3:8240             | β-Chlorocrotonyl alcohol                                     |
| 3:2625           | trans-3-Chlorobuten-2-oic acid-1          | 3:8270             | y-Chlorocrotonyl alcohol                                     |
| 3:2170           | 4-Chlorobuten-2-oic acid-1                | 3:8705             | p-Chlorocumene                                               |
| 3:8240           | 2-Chlorobuten-2-ol-1                      | 3:8040             | Chlorocyclohexane                                            |
| 3:8270           | 3-Chlorobuten-2-ol-1                      | 3:9374             | cis-2-Chlorocyclobexanol-1                                   |
| 3:9114           | 4-Chlorobuten-2-ol-1                      | 3:0175             | trans-2-Chlorocyclohexanol-1                                 |
| 3:9113           | 2-Chlorobuten-3-ol-1                      | 3:9376             | 4-Chlorocyclohexanol-1                                       |
| 3:8110           | 1-Chlorobuten-3-ol-2                      | 3:0120             | 2-Chlorocyclohexanone-1                                      |
| 3:9115           | 3-Chlorobuten-3-ol-2                      | 3:9360             | 3-Chlorocyclohexanone-1                                      |
| 3:9114           | 1-Chlorobuten-2-ol-4                      | 3:936 <del>4</del> | 4-Chlorocyclohexanone-1                                      |
| 3:8270           | 2-Chlorobuten-2-ol-4                      | 3:7545             | Chlorocylopentane                                            |
| 3:7070           | 1-Chlorobuten-3-yne-1                     | 3:8775             | 2-Chloro-p-cymene                                            |
| 3:9160           | β-Chloro-n-butyl alcohol                  | 3:8770             | 3-Chloro-p-cymene                                            |
| 3:9165           | $\gamma$ -Chloro- $n$ -butyl alcohol      | 3:8785             | 1-Chlorodecane                                               |
| 3:9170           | $\delta$ -Chloro- $n$ -butyl alcohol      | 3:0014             | 10-Chlorodecanol-1                                           |
| 3:7752           | Chloro-ter-butyl alcohol                  | 3:9712             | 5-Chlorodecene-5                                             |
| 3:8780           | (β-Chloro-ter-butyl) benzene              | 3:0014             | $\omega$ -Chloro- $n$ -decyl alcohol                         |
| 3:7090           | $\gamma$ -Chloro- $\alpha$ -butylene      | 3:1618             | $\alpha$ -Chlorodesoxy benzoin                               |
| 3:7205           | $\alpha$ -Chloro- $\beta$ -butylene       | 3:1618             | ms-Chlorodesoxybenzoin                                       |
| 3:8830           | 2-Chloro-4-n-butylphenol                  | 3:7305             | α-Chlorodiethyl ether                                        |
| 3:9760           | 2-Chloro-4-ter-butylphenol                | 3:9716             | 4-Chloro-3,4-diethylhexene-2                                 |
| 3:7175           | 1-Chlorobutyne-2                          | <b>3:793</b> 5     | α-Chlorodiethylketone                                        |
| <b>3:9594</b>    | $\beta$ -Chlorobutyracetal                | 3:1355             | ω-Chloro-2,4-dimethylacoto-                                  |
| 3:9109           | α-Chloro-n-butyraldehyde                  |                    | phenone                                                      |
| 3:9110           | β-Chloro-n-butyraldehyde                  | 3:1775             | ω-Chloro-3,4-dimethylaceto-                                  |
| 3:9111           | γ-Chloro-n-butyraldehyde                  |                    | phenone                                                      |
| 3:95 <b>94</b>   | $\beta$ -Chloro- $n$ -butyraldehyde       | 3:0245             | ω-Chloro-2,5-dimethylaceto-                                  |
|                  | diethylacetal                             |                    | phenone                                                      |
| 3:9130           | α-Chloro-n-butyric acid                   | 3:8645             | 3-Chloro-1,2-dimethylbenzene                                 |
| 3:0035           | $\beta$ -Chloro- $n$ -butyric acid        | 3:8675             | 4-Chloro-1,2-dimethylbenzene                                 |
| 3:0020           | γ-Chloro-n-butyric acid                   | 3:8590             | 2-Chloro-1,3-dimethylbenzene                                 |
| 3:5570           | a-Chloro-n-butyryl chloride               | 3:8665             | 4-Chloro-1,3-dimethylbenzene                                 |
| 3:9100           | β-Chloro-n-butyryl chloride               | 3:8640             | 5-Chloro-1,3-dimethylbenzene                                 |
| 3:5970<br>3:0480 | γ-Chloro-n-butyryl chloride               | 3:8600<br>3:7590   | 2-Chloro-1,4-dimethylbenzene                                 |
| 3:0250           | p-(5)-Chlorocarvacrol<br>3-Chlorocatechol | 3:7475             | 1-Chloro-2,2-dimethylbutane                                  |
| 3:07±3<br>3:2470 | 4-Chlorocatechol                          | 3:7555             | 3-Chloro-2,2-dimethylbutane                                  |
| 3:9195           | 1-Chloro-2-(chloromethyl)-                | 3:7600             | 4-Chloro-2,2-dimethylbutane                                  |
| 0.0100           | butadiene-1,3                             | 3:7340             | 2-Chloro-2,3-dimethylbutane<br>2-Chloro-3,3-dimethylbutene-1 |
| 3:9206           | 3-Chloro-2-(chloromethyl)-                | 3:7520             | 1-Chloro-2,3-dimethylbutene-2                                |
| 6.0×00           | butene-1                                  | 3:7340             | 3-Chloro-2,2-dimethylbutene-3                                |
| 3:9534           | 4-Chloro-3-(chloromethyl)-                | 3:7085             | Chlorodimethyl ether                                         |
| 0.0001           | heptane                                   | 3:8780             | $(\beta$ -Chloro- $\alpha$ , $\alpha$ -dimethyl) ethyl-      |
| 3:5633           | 3-Chloro-2-(chloromethyl)-                | 0.0.00             | benzene                                                      |
| 0.000            | propene-1                                 | 3:9656             | 3-Chloro-2,2-dimethyl-3-ethyl-                               |
| 3:5633           | 1-Chloro-2-(chloromethyl)-                |                    | pentane                                                      |
|                  | propene-2                                 | 3:9650             | 3-Chloro-2,3-dimethylheptane                                 |
| 3:1430           | 1-Chloro-2,2-bis-(p-chlorophenyl)-        | 3:9652             | 5-Chloro-2,5-dimethylheptane                                 |
| <del></del>      | ethylene                                  | 3:9630             | 4-Chloro-3,6-dimethylheptene-2                               |
| 3:2280           | 3-Chloro-o-cresol                         | 3:9554             | 3-Chloro-2,3-dimethylhexane                                  |
| 3:0780           | 4-Chloro-o-cresol                         | 3:9556             | 2-Chloro-2,5-dimethylhexane                                  |
| 3:1815           | 5-Chloro-o-cresol                         | 3:9558             | 2-Chloro-3,4-dimethylhexane                                  |
| 3:8615           | 6-Chloro-o-cresol                         | 3:9529             | 4-Chloro-2,5-dimethylhexene-2                                |
| 3:1055           | 2-Chloro-m-cresol                         | 3:9528             | 4-Chloro-3,5-dimethylhexene-2                                |
| 3:1535           | 4-Chloro-m-cresol                         | 3:9527             | 2-Chloro-2,5-dimethylhexene-3                                |
| 3:0700           | 6-Chloro-m-cresol                         | 3:9528             | 3-Chloro-2,4-dimethylhexene-4                                |
| 3:6215           | 2-Chloro-p-cresol                         | 3:9738             | 3-Chloro-2,3-dimethyloctane                                  |
|                  | -                                         |                    |                                                              |

| 3:9740           | 8-Chloro-2,6-dimethyloctane                             | 3:5780           | $\beta$ -Chloroethyl chloroformate                        |
|------------------|---------------------------------------------------------|------------------|-----------------------------------------------------------|
| 3:9714           | 4-Chloro-3,7-dimethyloctene-2                           | 3:5900           | α-Chloroethyl chloromethyl                                |
| 3:9714           | 5-Chloro-2.6-dimethyloctene-6                           |                  | ketone                                                    |
| 3:9440           | 4-Chloro-2,2-dimethylpentane                            | 3:8030           | α-Chloroethyl-dimethyl-carbinol                           |
| 3:9442           | 2-Chloro-2,3-dimethylpentane                            | 3:8335           | $\beta$ -Chloroethyl-dimethyl-carbinol                    |
| 3:7970           | 3-Chloro-2,3-dimethylpentane                            | 3:7595           | bis-(α-Chloroethyl) ether                                 |
| 3:8153           | 5-Chloro-2,3-dimethylpentane                            | 3:6025           | bis-(β-Chloroethyl) ether                                 |
| 3:7750           | 2-Chloro-2,4-dimethylpentane                            | 3:8500           | β-Chloroethyl-ethyl-carbinol                              |
| 3:8153           | 1-Chloro-3,4-dimethylpentane                            | 3:7305           | α-Chloroethyl ethyl ether                                 |
| 3:7725           | 4-Chloro-2,4-dimethylpentene-1                          | 3:7463           | $\beta$ -Chloroethyl ethyl ether                          |
| 3:7605           | 3-Chloro-2,4-dimethylpentene-2                          | 3:7935           | $\alpha$ -Chloroethyl ethyl ketone                        |
| 3:9418           | 4-Chloro-2,4-dimethylpentene-2                          | 3:9268           | $\beta$ -Chloroethyl ethyl ketone                         |
| 3:9418           | 2-Chloro-2,4-dimethylpentene-3                          | 3:9646           | 3-Chloro-3-ethylheptane                                   |
| 3:2218           | 4-Chloro-2,3-dimethylphenol                             | 3: <b>964</b> 8  | 4-Chloro-4-ethylheptane                                   |
| 3:2115           | 5-Chloro-2,3-dimethylphenol                             | 3:8370           | 1-Chloro-2-ethylhexane                                    |
| 3:2460           | 5-Chloro 2,4-dimethylphenol                             | 3:9552           | 1-Chloro-3-ethylhexane                                    |
| 3:8784           | 6-Chloro-2,4-dimethylphenol                             | 3:8223           | 3-Chloro-3-ethylhexane                                    |
| 3:1822           | 4-Chloro-2,5-dimethylphenol                             | 3:8510           | 1-Chloro-4-ethylhexene-3                                  |
| 3:2180           | 4-Chloro-2,6-dimethylphenol                             | 3:9185           | α-Chloroethyl β-hydroxyethyl                              |
| 3:0158           | 2-Chloro-3,4-dimethylphenol                             |                  | ether                                                     |
| 3:2705           | 5-Chloro-3,4-dimethylphenol                             | <b>3:5330</b>    | Chloroethylidene (di)chloride                             |
| 3:1754           | 6-Chloro-3,4-dimethylphenol                             | 3:7150           | α-Chloroethyl methyl ether                                |
| 3:0844           | 2-Chloro-3,5-dimethylphenol                             | 3:7265           | $\beta$ -Chloroethyl methyl ether                         |
| 3:3505           | 4-Chloro-3,5-dimethylphenol                             | 3:7598           | α-Chloroethyl methyl ketone                               |
| 3:7200           | 1-Chloro-2,2-dimethylpropane                            | 3:7640           | β-Chloroethyl methyl ketone                               |
| 3: <b>044</b> 0  | $\beta$ -Chloro- $\alpha$ , $\alpha$ -dimethylpropionic | 3:8210           | 3-Chloro-3-ethyl-2-methyl-                                |
|                  | acid                                                    | 0.0447           | pentane                                                   |
| 3:9266           | $\beta$ -Chloro- $\alpha$ , $\alpha$ -dimethylpropionyl | 3:8115           | 2-Chloro-3-ethyl-3-methyl-                                |
|                  | chloride                                                | 0.0004           | pentene-1                                                 |
| 3:3585           | α-Chloro-diphenylacetic acid                            | 3:9734           | 3-Chloro-3-ethyloctane                                    |
| 3:0885           | α-Chloro-diphenylacetyl chloride                        | 3:9736<br>3:9406 | 4-Chloro-4-ethyloctane                                    |
| 3:0060           | α-Chlorodiphenylmethane                                 | 3:9438           | 1-Chloro-3-ethylpentadiene-1,2<br>2-Chloro-3-ethylpentane |
| 3:9870           | Chloro-diphenyl-methyl-<br>methane                      | 3:8055           | 3-Chloro-3-ethylpentane                                   |
| *n . 001A        | 1-Chlorododecane                                        | 3:9410           | 1-Chloro-3-ethylpentyne-1                                 |
| 3:8810<br>3:0172 | 12-Chlorododecanol-1                                    | 3:9770           | $\beta$ -Chloroethyl $\beta'$ -phenoxyethyl               |
| 3:0172           | ω-Chloro-n-dodecyl alcohol                              | 0.0110           | ether                                                     |
| 3:9702           | ω-Chlorodurene                                          | 3:0165           | β-Chloroethyl phenyl ether                                |
| 3:5358           | 3-Chloro-1,2-epoxypropane                               | 3:9664           | α-Chloroethyl phenyl ketone                               |
| 3:7015           | Chloroethane                                            | 3:1115           | β-Chloroethyl phenyl ketone                               |
| 3:5552           | β-Chloroethanol                                         | 3:7525           | α-Chloroethyl n-propyl ether                              |
| 3:5552           | 2-Chloroethanol-1                                       | 3:6510           | β-Chloroethyl trichloroacetate                            |
| 3:7010           | Chloroethene                                            | 3:7464           | β-Chloroethyl vinyl ether                                 |
| 3:6210           | $\alpha.\alpha$ -bis-( $\beta$ -Chloroethoxy)ethane     | 3:7000           | Chloroethyne                                              |
| 3:6655           | $\alpha.\beta$ -bis-( $\beta$ -Chloroethoxy)ethane      | 3:9494           | Chloroethynylbenzene                                      |
| 3:9185           | 2-(β-Chloroethoxy)ethanol-1                             | 3:5050           | Chloroform                                                |
| 3:6655           | $\beta$ -( $\beta$ -Chloroethoxy)ethyl $\beta$ -        | 3:4853           | Chlorofumaric acid                                        |
|                  | chloroethyl ether                                       | 3:6105           | Chlorofumaryl (di)chloride                                |
| 3:7625           | α-Chloroethyl acetate                                   | 3:8803           | 1-Chlorohendecane                                         |
| 3:5735           | β-Chloroethyl acetate                                   | 3:0100           | 1-Chloroheptadecane                                       |
| 3:5552           | β-Chloroethyl alcohol                                   | 3:8085           | 1-Chloroheptadiene-1,6                                    |
| 3:9480           | $\alpha$ -Chloroethyl $n$ -amyl ether                   | 3:8250           | 1-Chloroheptane                                           |
| 3:8667           | $\alpha$ -Chloroethylbenzene                            | 3:9432           | 2-Chloroheptane                                           |
| 3:8712           | $\beta$ -Chloroethylbenzene                             | 3:8080           | 3-Chloroheptane                                           |
| 3:8712           | $\omega$ -Chloroethylbenzene                            | 3:8095           | 4-Chloroheptane                                           |
| 3:8550           | o-Chloroethylbenzene                                    | 3:0013           | 7-Chloroheptanol-1                                        |
| 3:8570           | p-Chloroethylbenzene                                    | 3:8219           | 1-Chloroheptene-1                                         |
| 3:8860           | β-Chloroethyl benzoate                                  | 3:7988           | 2-Chloroheptene-1                                         |
| 3:7720           | 1-Chloro-2-ethylbutane                                  | 3:9412           | 3-Chloroheptene-1                                         |
| 3:9396           | α-Chloroethyl n-butyl ether                             | 3:8050           | 4-Chloroheptene-2                                         |
| 3:6230           | β-Chloroethyl chloroacetate                             | 3:8023           | 4-Chloroheptene-3                                         |
| 3:5780           | β-Chloroethyl chlorocarbonate                           | 3:0013<br>3:8032 | ω-Chloro-n-heptyl alcohol<br>1-Chloroheptyne-1            |
| 3:9150           | $\alpha$ -Chloroethyl $\beta$ -chloroethyl ether        | a : 300%         | 1-CHOLOUGhFAUG-1                                          |
|                  |                                                         |                  |                                                           |

| 3: <b>00</b> 15  | 1-Chlorohexadecane                                               | <b>3:4980</b>    | 4-Chloroisophthalic acid                                       |
|------------------|------------------------------------------------------------------|------------------|----------------------------------------------------------------|
| 3:0525           | 16-Chlorohexadecanol-1                                           | 3: <b>4960</b>   | 5-Chloroisophthalic acid                                       |
| 3:0525           | ω-Chloro-n-hexadecyl alcohol                                     | 3:7290           | "β-Chloroisoprene "                                            |
| 3:9312           | 3-Chlorohexadiene-1,3                                            | 3:8150           | β-Chloro-isopropyl acetate                                     |
| 3:0945           | Chlorohexamethylethane                                           | 3:7747           | β-Chloro-isopropyl alcohol                                     |
| 3:7955           | 1-Chlorohexane                                                   | 3:9610           | α-Chloro-isopropylbenzene                                      |
| 3:7715           | 2-Chlorohexane                                                   | 3:8705           | 4-Chloro-isopropylbenzene                                      |
| 3:7670           | 3-Chlorohexane                                                   | 3:8605           | bis-(β-Chloro-isopropyl) ether                                 |
| 3:9395           | 6-Chlorohexanol-1                                                | 3:8775           | 2-Chloro-4-isopropyl-1-methyl-                                 |
| 8:7785           | 3-Chlorohexatetraene-1,3,4,5                                     |                  | benzene                                                        |
| 3:7630           | 1-Chlorohexene-1                                                 | 3:8770           | 3-Chloro-4-isopropyl-1-methyl-                                 |
| 3:7530           | 2-Chlorohexene-1                                                 |                  | benzene                                                        |
| 3:9334           | 3-Chlorohexene-1                                                 | 3:9290           | α-Chloroisopropyl-methyl-                                      |
| 3:7 <b>65</b> 5  | 4-Chlorohexene-1                                                 |                  | carbinol                                                       |
| 3:7 <b>66</b> 5  | 5-Chlorohexene-1                                                 | 3:1293           | 4-Chloro-2-isopropyl-5-methyl-                                 |
| 3:7620           | 1-Chlorohexene-2                                                 |                  | phenol                                                         |
| 3:7675           | 4-Chlorohexene-2                                                 | 3:0480           | 4-Chloro-5-isopropyl-2-methyl-                                 |
| 3:9336           | cis-1-Chlorohexene-3                                             |                  | phenol                                                         |
| 3:7 <b>53</b> 5  | 3-Chlorohexene-3                                                 | 3:3220           | $2,4,6$ -tris-( $\alpha$ -Chloro-isopropyl)-                   |
| <b>3:939</b> 5   | $\omega$ -Chloro- $n$ -hexyl alcohol                             |                  | trioxane-1,3,5                                                 |
| 3:9320           | 1-Chlorohexyne-1                                                 | 3:0050           | α-Chloro-isovaleric acid                                       |
| 3:3130           | 2-Chlorohydroquinone                                             | 3:81 <b>44</b>   | α-Chloro-isovaleryl chloride                                   |
| 3:1010           | 3-Chloro-2-hydroxybenzaldehyde                                   | <b>3:90</b> 88   | $\gamma$ -Chloro- $\beta$ -keto- $n$ -butyryl                  |
| 3:0960           | 4-Chloro-2-hydroxybenzaldehyde                                   |                  | chloride                                                       |
| 3:2800           | 5-Chloro-2-hydroxybenzaldehyde                                   | 3:0172           | ω-Chlorolauryl alcohol                                         |
| 3:4085           | 2-Chloro-3-hydroxybenzaldehyde                                   | 3:3432           | Chloromaleic acid                                              |
| 3:3780           | 4-Chloro-3-hydroxybenzaldehyde                                   | 3:0280           | Chloromaleic anhydride                                         |
| 3:3350           | 6-Chloro-3-hydroxybenzaldehyde                                   | 3:6158           | Chloromaleyl (di)chloride                                      |
| 3:4280           | 2-Chloro-4-hydroxybenzaldehyde                                   | 3:8725           | eso-Chloromesitylene                                           |
| 3:4065           | 3-Chloro-4-hydroxybenzaldehyde                                   | 3:7005           | Chloromethane                                                  |
| 3:3350           | 2-Chloro-5-hydroxybenzaldehyde                                   | 3:8210           | 3-Chloro-3-methoethylpentane                                   |
| 3:4745           | 3-Chloro-2-hydroxybenzoic acid                                   | 3:5356           | Chloromethyl acetate                                           |
| 3:4908<br>3:4705 | 4-Chloro-2-hydroxybenzoic acid                                   | 3:9660<br>3:1130 | ω-Chloro-o-methylacetophenone                                  |
| 3:4610           | 5-Chloro-2-hydroxybenzoic acid                                   | 3:8340           | ω-Chloro-p-methylacetophenone                                  |
| 3:4395           | 6-Chloro-2-hydroxybenzoic acid<br>2-Chloro-3-hydroxybenzoic acid | 3:4435           | γ-Chloro-β-methylallyl alcohol                                 |
| 3:4933           | 4-Chloro-3-hydroxybenzoic acid                                   | 3:4700           | 3-Chloro-2-methylbenzoic acid                                  |
| 3:4720           | 6-Chloro-3-hydroxybenzoic acid                                   | 3:4670           | 4-Chloro-2-methylbenzoic acid<br>5-Chloro-2-methylbenzoic acid |
| 3:4430           | 2-Chloro 4-hydroxybenzoic acid                                   | 3:3275           | 6-Chloro-2-methylbenzoic acid                                  |
| 3:4675           | 3-Chloro-4-hydroxybenzoic acid                                   | 3:4915           | 4-Chloro-3-methylbenzoic acid                                  |
| 3:1757           | 3-Chloro-2-hydroxybiphenyl                                       | 8:4715           | 5-Chloro-3-methylbenzoic acid                                  |
| 3:8980           | 5-Chloro-2-hydroxybiphenyl                                       | 3:4615           | 6-Chloro-3-methylbenzoic acid                                  |
| 3:1900           | 3-Chloro-4-hydroxybiphenyl                                       | 3:4355           | 2-Chloro-4 methylbenzoic acid                                  |
| 3:4262           | 4'-Chloro-4-hydroxybiphenyl                                      | 3:4900           | 3-Chloro-4-methylbenzoic acid                                  |
| 3:9185           | $\beta$ -Chloro- $\beta'$ -hydroxydiethyl ether                  | 3:9570           | α-(Chloromethyl)benzyl alcohol                                 |
| 3:6517           | β-Chloro-β'-hydroxy-isopropyl                                    | 3:7390           | 1-Chloro-3-methylbutadiene-1.2                                 |
|                  | acetate                                                          | 3:9200           | 1-Chloro-2-methylbutadiene-1,3                                 |
| 3:6648           | $\beta$ -Chloro- $\gamma$ -hydroxy- $n$ -propyl                  | 3:7290           | 3-Chloro-2-methylbutadiene-1,3                                 |
|                  | acetate                                                          | 8:7355           | 4-Chloro-2-methylbutadiene-1,3                                 |
| 3:6775           | $\gamma$ -Chloro- $\beta$ -hydroxy- $n$ -propyl                  | 3:7355           | 1-Chloro-3-methylbutadiene-1,3                                 |
|                  | acetate                                                          | <b>3:7290</b>    | 2-Chloro-3-methylbutadiene-1,3                                 |
| 3:7 <b>90</b> 5  | $\beta$ -Chloroisobutyl alcohol                                  | <b>3:7396</b>    | 4-Chloro-2-methylbutadiene-2,3                                 |
| 3:7120           | $\alpha$ -Chloroisobutylene                                      | <b>3:734</b> 5   | 1-Chloro-2-methylbutane                                        |
| 8:7145           | γ-Chloroisobutylene                                              | 3:7220           | 2-Chloro-2-methylbutane                                        |
| 3:7235           | a-Chloro-isobutyraldehyde                                        | 3:7275           | 3-Chloro-2-methylbutane                                        |
| 3:9112           | β-Chloro-isobutyraldehyde                                        | 3:7365           | 4-Chloro-2-methylbutane                                        |
| 3:0235           | α-Chloro-isobutyric acid                                         | 8:7365           | 1-Chloro-3-methylbutane                                        |
| 3:9132           | β-Chloro-isobutyric acid                                         | 3:8175           | 1-Chloro-2-methylbutanol-2                                     |
| 3:5385           | α-Chloro-isobutyryl chloride                                     | 3:8030           | 3-Chloro-2-methylbutanol-2                                     |
| 3:9101           | β-Chloro-isobutyryl chloride                                     | 3:8335           | 4-Chloro-2-methylbutanol-2                                     |
| 3:1615           | α-Chloroisocrotonic acid                                         | 3:9290           | 2-Chloro-2-methylbutanol-3                                     |
| 3:1300<br>3:0372 | β-Chloroisocrotonic acid α²-Chloroisodurene                      | 3:9269<br>3:7597 | 1-Chloro-2-methylbutanone-3                                    |
| y: <b>y</b> 9/// | α -∩motoraodmana                                                 | e : 1071         | 2-Chloro-2-methylbutanone-3                                    |
|                  |                                                                  |                  |                                                                |

| 3: <b>9</b> 214          | 2-(Chloromethyl)butene-1                               | 3:961 <u>4</u>   | 2-Chloro-6-methyl-5-methylene-                               |
|--------------------------|--------------------------------------------------------|------------------|--------------------------------------------------------------|
| 8:7803                   | 1-Chloro-2-methylbutene-1                              |                  | heptene-2                                                    |
| 3:7300                   | 3-Chloro-2-methylbutene-1                              | <b>3:7085</b>    | Chloromethyl methyl ether                                    |
| 3:7215                   | 1-Chloro-3-methylbutene-1                              | <b>3:9560</b>    | 4-(Chloromethyl)-3-methyl-                                   |
| 3:7485                   | 1-Chloro-2-methylbutene-2                              |                  | hexane                                                       |
| 3:7335                   | 3-Chloro-2-methylbutene-2                              | 3:0250           | 1-(Chloromethyl)naphthalene                                  |
| 3:7465                   | 4-Chloro-2 methylbutene-2                              | 3:0747           | 2-(Chloromethyl)naphthalene                                  |
| 3:7215                   | 4-Chloro-2-methylbutene-3                              | 3:9730           | 4-Chloro-4-methylnonane                                      |
| 3:7155                   | 3-Chloro-3-methylbutyne-1                              | 3:9732           | 5-Chloro-5-methylnonane                                      |
| 3:7155                   | 2-Chloro-2-methylbutyne-3                              | 3:9710           | 3-Chloro-3-methylnonyne-4                                    |
| 3:8718                   | $\alpha$ -Chloro- $\alpha$ -methyl- $n$ -butyric       | 3:9642           | 3-Chloro-3-methyloctane                                      |
|                          | acid                                                   | 3:9644           | 4-Chloro-4-methyloctane                                      |
| 3:0050                   | α-Chloro-β-methyl-n-butyric                            | 3:9628           | 4-Chloro-7-methyloctene-2                                    |
|                          | acid                                                   | 3:9624           | 5-Chloro-4-methyloctene-3                                    |
| 3:5670                   | α-Chloro-α-methyl-n-butyryl                            | 3:9628           | 5-Chloro-2-methyloctene-6                                    |
|                          | chloride                                               | 3:9622<br>3:9314 | 2-Chloro-2-methyloctyne-3                                    |
| 3:8144                   | α-Chloro-β-methyl-n-butyryl                            | 3:9314           | 1-Chloro-3-methylpentadiene-1,2                              |
|                          | chloride                                               | 3:9318           | 1-Chloro-3-methylpentadiene-1,3                              |
| 3:5275                   | Chloromethyl chlorocarbonate                           | 3:7720           | 2-Chloro-3-methylpentadiene-1,3                              |
| 3:5275                   | Chloromethyl chloroformate                             | 3:7563           | 3-(Chloromethyl)pentane<br>1-Chloro-2-methylpentane          |
| 3:2990                   | Chloromethyl p-chlorophenyl                            | 3:7490           | 2-Chloro-2-methylpentane                                     |
| 0.0001                   | ketone<br>2-(Chloromethyl)-1,3-dichloro-               | 3:7565           | 3-Chloro-2-methylpentane                                     |
| 3:9201                   | butene-1                                               | 3:7495           | 4-Chloro-2-methylpentane                                     |
| 3:7657                   | 3-Chloro-2-methyl-1,2-epoxy-                           | 3:7695           | 5-Chloro-2-methylpentane                                     |
| 9:1001                   | propane                                                | 3:9348           | 1-Chloro-3-methylpentane                                     |
| 3:5245                   | bis-(Chloromethyl) ether                               | 3:9350           | 2-Chloro-3-methylpentane                                     |
| 3:5358                   | (Chloromethyl)ethylene oxide                           | 3:7585           | 3-Chloro-3-methylpentane                                     |
| 3:7195                   | Chloromethyl ethyl ether                               | 3:7660           | 3-Chloro-2-methylpentene-1                                   |
| 3:8012                   | Chloromethyl ethyl ketone                              | 3:7500           | 4-Chloro-4-methylpentene-1                                   |
| 3:8175                   | Chloromethyl-ethyl-methyl-                             | 3:7915           | 5-Chloro-2-methylpentene-2                                   |
| U. 02.0                  | carbinol                                               | 3:9338           | 4-Chloro-3-methylpentene-2                                   |
| 3:8370                   | 3-(Chloromethyl)heptane                                | 3:7500           | 2-Chloro-2-methylpentene-4                                   |
| 3:8100                   | 2-Chloro-2-methylheptane                               | 3:9322           | 3-Chloro-3-methylpentyne-1                                   |
| 3:9540                   | 6-Chloro-2-methylheptane                               | 3:9324           | 4-Chloro-4-methylpentyne-2                                   |
| 3:9544                   | 3-Chloro-3-methylheptane                               | 3:2280           | 3-Chloro-2-methylphenol                                      |
| 3:9548                   | 3-Chloro-4-methylheptane                               | 3:0780           | 4-Chloro-2-methylphenol                                      |
| 3:9550                   | 4-Chloro-4-methylheptane                               | 3:1815           | 5-Chloro-2-methylphenol                                      |
| 3:8205                   | 4-Chloro-6-methylheptene-1                             | 3:8615           | 6-Chloro-2-methylphenol                                      |
| 3:9520                   | 6-Chloro-2-methylheptene-2                             | 3:1055           | 2-Chloro-3-methylphenol                                      |
| 3:9524                   | 4-Chloro-3-methylheptene-2                             | 3:1535           | 4-Chloro-3-methylphenol                                      |
| 3:9525                   | 4-Chloro-6-methylheptene-2                             | 3:0700           | 6-Chloro-3-methylphenol                                      |
| 3:9526                   | 5-Chloro-4-methylheptene-3                             | 3:6215           | 2-Chloro-4-methylphenol                                      |
| 3:9525                   | 4-Chloro-2-methylheptene-5                             | 3:1025           | 3-Chloro-4-methylphenol                                      |
| 3:8205                   | 4-Chloro-2-methylheptene-6                             | 3:0700           | 2-Chloro-5-methylphenol                                      |
| 3:9516                   | 3-Chloro-3-methylheptyne-4                             | 3:9570           | Chloromethyl-phenyl-carbinol                                 |
| 3:7945                   | 2-Chloro-2-methylhexane                                | 3:9448           | Chloromethyl phenyl ether                                    |
| 3:7985                   | 5-Chloro-2-methylhexane                                | 3:1212<br>3:7235 | Chloromethyl phenyl ketone                                   |
| 3:8155                   | 1-Chloro-3-methylhexane                                |                  | 2-Chloro-2-methylpropanal-1                                  |
| 8: <b>9434</b>           | 2-Chloro-3-methylhexane                                | 3:9112<br>3:7135 | 3-Chloro-2-methylpropanal-1                                  |
| 3:7950                   | 3-Chloro-3-methylhexane                                | 3:7 <b>04</b> 5  | 1-Chloro-2-methylpropane                                     |
| 3:9436                   | 4-Chloro-3-methylhexane                                | 3:7043<br>3:9190 | 2-Chloro-2-methylpropane<br>3-Chloro-2-methylpropanediol-1,2 |
| 3:7730                   | 4-Chloro-5-methylhexene-1                              | 3:7905           | 2-Chloro-2-methylpropanol-1                                  |
| 3:9414                   | 4-Chloro-3-methylhexene-2<br>4-Chloro-5-methylhexene-2 | 3:9180           | 3-Chloro-2-methylpropanol-1                                  |
| 3:7890                   | 3-Chloro-2-methylhexene-4                              | 3:7752           | 1-Chloro-2-methylpropanol-2                                  |
| 3:78 <b>90</b><br>3:7730 | 3-Chloro-2-methylnexene-5                              | 3:7120           | 1-Chloro-2-methylpropene-1                                   |
| 3:7730<br>3:9402         | 5-Chloro-5-methylhexen-1-yne-3                         | 3:7145           | 3-Chloro-2-methylpropene-1                                   |
| 3:9402<br>3:9402         | 2-Chloro-2-methylhexen-5-yne-3                         | 3:8340           | 3-Chloro-2-methylpropen-2-ol-1                               |
| 3:940%<br>3:8795         | 1-Chloromethyl-4-isopropyl-                            | 3:8225           | Chloromethyl-n-propyl-carbinol                               |
| 0:0180                   | benzene                                                | 3:8217           | Chloromethyl-n-propyl ketone                                 |
| 3:0563                   | bis-(Chloromethyl) ketone                              | 3:8742           | β-Chloro-α-methylstryene                                     |
| 3:7747                   | Chloromethyl-methyl-carbinol                           | 3:9604           | α-Chloro-β-methylstyrene                                     |
| a                        | ~                                                      |                  |                                                              |

|                          | 0.001                                           |                  |                                                       |
|--------------------------|-------------------------------------------------|------------------|-------------------------------------------------------|
| 3:9606                   | β-Chloro-β-methylstyrene                        | 3:9514           | 1-Chloro-octyne-2                                     |
| 3:8152<br>3: <b>9660</b> | 2-(Chloromethyl) tetrahydrofuran                | 3:0525           | ω-Chloropalmityl alcohol                              |
| 3:1130                   | Chloromethyl o-tolyl ketone                     | 3:9890           | 1-Chloropentadecane                                   |
| 3:2300                   | Chloromethyl p-tolyl ketone                     | 3:7360           | 3-Chloropentadiene-1,3                                |
| 9 . KOUU                 | 2,4,6-tris-(Chloromethyl)tri-<br>oxane-1,3,5    | 3:7460<br>3:7325 | 1-Chloropentane<br>2-Chloropentane                    |
| 3:8110                   | Chloromethyl-vinyl-carbinol                     | 3:7330           | 3-Chloropentane                                       |
| 3:3934                   | Chloromethyl p-xenyl ketone                     | 3:9295           | 5-Chloropentanol-1                                    |
| 3:0375                   | ω-Chloromyristyl alcohol                        | 3:8225           | 1-Chloropentanol-2                                    |
| 3:6878                   | 1-Chloronaphthalene                             | 3:8500           | 1-Chloropentanol-3                                    |
| 3:1285                   | 2-Chloronaphthalene                             | 3:8217           | 1-Chloropentanone-2                                   |
| 3:4330                   | 2-Chloronaphthoic acid-1                        | 3:7893           | 3-Chloropentanone-2                                   |
| 3:4936                   | 4-Chloronaphthoic acid-1                        | 3:8243           | 4-Chloropentanone-2                                   |
| 3:4944                   | 5-Chloronaphthoic acid-1                        | 3:9267           | 5-Chloropentanone-2                                   |
| 3:4845                   | 6-Chloronaphthoic acid-1                        | 3:9268           | 1-Chloropentanone-3                                   |
| 3:4 <del>94</del> 2      | 7-Chloronaphthoic acid-1                        | 3:7935           | 2-Chloropentanone-3                                   |
| 3:4680                   | 8-Chloronaphthoic acid-1                        | 3:7420           | 1-Chloropentene-1                                     |
| 3:4885                   | 1-Chloronaphthoic acid-2                        | 3:7280           | 2-Chloropentene-1                                     |
| <b>3:492</b> 8           | 3-Chloronaphthoic acid-2                        | 3:7260           | 3-Chloropentenc-1                                     |
| 3:4952                   | 5-Chloronaphthoic acid-2                        | 3:7350           | 4-Chloropentene-1                                     |
| 3: <b>494</b> 8          | 8-Chloronaphthoic acid-2                        | 3:7410           | 5-Chloropentene-1                                     |
| 3:1490                   | 2-Chloronaphthol-1                              | 3:7470           | 1-Chloropentene-2                                     |
| 3:1470                   | 3-Chloronaphthol-1                              | 3:7285           | 2-Chloropentene-2                                     |
| 3:3720                   | 4-Chloronaphthol-1                              | 3:7240           | 3-Chloropentene-2                                     |
| 3:3960                   | 5-Chloronaphthol-1                              | 3:7400           | 4-Chloropentene-2                                     |
| 3:2615                   | 6-Chloronaphthol-1                              | 3:7455           | 5-Chloropentene-2                                     |
| 3:3810                   | 7-Chloronaphthol-1                              | 3:7455<br>3:7400 | 1-Chloropentene-3                                     |
| 3:1610<br>3:1700         | 8-Chloronaphthol-1                              | 3:7400<br>3:2990 | 2-Chloropentene-3 p-Chlorophenacyl chloride           |
| 3:2545                   | 1-Chloronaphthol-2<br>3-Chloronaphthol-2        | 3:8735           | o-Chlorophenetole                                     |
| 3:3045                   | 4-Chloronaphthol-2                              | 3:6323           | m-Chlorophenetole                                     |
| 3:3945                   | 5-Chloronaphthol-2                              | 3:0090           | p-Chlorophenetole                                     |
| 3:3500                   | 6-Chloronaphthol-2                              | 3:0165           | ω-Chlorophenetole                                     |
| 3:3925                   | 7-Chloronaphthol-2                              | 3:5980           | o-Chlorophenol                                        |
| 3:2965                   | 8-Chloronaphthol-2                              | 3:0255           | m-Chlorophenol                                        |
| 3:4704                   | 3-Chloro-β-naphthoquinone                       | 3:0475           | p-Chlorophenol                                        |
| 3:4704                   | 3-Chloronaphthoquinone-1,2                      | 3:4260           | o-Chlorophenoxyacetic acid                            |
| 3:4000                   | 4-Chloronaphthoquinone-1,2                      | 3:3325           | m-Chlorophenoxyacetic acid                            |
| 3:3580                   | 2-Chloronaphthoquinone-1,4                      | 3: <b>4</b> 375  | p-Chlorophenoxyacetic acid                            |
| 3:4492                   | 5-Chloronaphthoquinone-1,4                      | 3:2640           | 2-Chlorophenylacetic acid                             |
| 3:3145                   | 6-Chloronaphthoquinone-1,4                      | 3:1910           | 3-Chlorophenylacetic acid                             |
| 3:8719                   | 1-Chlorononane                                  | 3:3135           | 4-Chlorophenylacetic acid                             |
| 3:8635                   | 2-Chlorononane                                  | 3:1618           | α-Chloro-α-phenyl-aceto-                              |
| 3:9638                   | 3-Chlorononane                                  | 0.0004           | phenone                                               |
| 3:9640                   | 5-Chlorononane                                  | 3:3934           | ω-Chloro-p-phenylacetophenone                         |
| 3:0170                   | 9-Chlorononanol-1                               | 3:9497           | o-Chlorophenylacetylene                               |
| 3:0170                   | ω-Chloro-n-nonyl alcohol                        | 3:9500<br>3:0590 | m-Chlorophenylacetylene                               |
| 3:9618<br>3:0095         | 1-Chlorononyne-1<br>1-Chloro-octadecane         | 3:9494           | p-Chlorophenylacetylene                               |
| 3:0985                   | 18-Chloro-octadecane<br>18-Chloro-octadecanol-1 | 3:9494           | α-Chloro-β-phenylacetylene<br>ω-Chlorophenylacetylene |
| 3:0985                   | $\omega$ -Chloro- $n$ -octadecyl alcohol        | 3:9859-A         | o-Chlorophenyl m-chlorophenyl                         |
| 3:9506                   | 3-Chloro-octadiene-1,3                          | 0.0000 12        | ketone                                                |
| 3:8585                   | 1-Chloro-octane                                 | 3:1565           | o-Chlorophenyl p-chlorophenyl                         |
| 3:8378                   | 2-Chloro-octane                                 |                  | ketone                                                |
| 3:9538                   | 4-Chloro-octane                                 | 3:3415           | m-Chlorophenyl p-chlorophenyl                         |
| 3:9590                   | 8-Chloro-octanol-1                              |                  | ketone                                                |
| 3:8346                   | 2-Chloro-octene-1                               | 3:8735           | o-Chlorophenyl ethyl ether                            |
| 3:9518                   | 3-Chloro-octene-1                               | 3:6323           | m-Chlorophenyl ethyl ether                            |
| 3:8345                   | 2-Chloro-octene-2                               | 3:0090           | p-Chlorophenyl ethyl ether                            |
| 3:8185                   | 4-Chloro-octene-2                               | 3:0340           | p-Chlorophenyl ethyl ketone                           |
| 3:8230                   | 4-Chloro-octene-4                               | 3 : 6255         | o-Chlorophenyl methyl ether                           |
| 3:9590                   | ω-Chloro-n-octyl alcohol                        | 3:6195           | m-Chlorophenyl methyl ether                           |
| 3:9510                   | 1-Chloro-octyne-1                               | 3 : 6300         | p-Chlorophenyl methyl ether                           |

|                | 011 1 1 1 1 1                     |                 |                                             |
|----------------|-----------------------------------|-----------------|---------------------------------------------|
| 3:6615         | o-Chlorophenyl methyl ketone      | 3:8285          | γ-Chloro-n-propyl alcohol                   |
| 3:6815         | m-Chlorophenyl methyl ketone      | 3:8777          | γ-Chloro-n-propylbenzene                    |
| 3:6735         | p-Chlorophenyl methyl ketone      | 3:6010          | $\gamma$ -Chloro- $n$ -propyl               |
| 3:1757         | " o-Chloro-o'-phenylphenol "      |                 | chlorocarbonate                             |
| 3:8980         | 4-Chloro-2-phenylphenol           | 3:6010          | $\gamma$ -Chloro- $n$ -propyl chloroformate |
| 3:1757         | 6-Chloro-2-phenylphenol           | <b>3:903</b> 8  | γ-Chloropropylene glycol                    |
| 3:1900         | 2-Chloro-4-phenylphenol           | 3:6775          | γ-Chloropropylene glycol                    |
| 3:0715         | o-Chlorophenyl phenyl ketone      |                 | α-acetate                                   |
| 3:2160         | m-Chlorophenyl phenyl ketone      | 3:6517          | γ-Chloropropylene glycol                    |
| 3:1914         | p-Chlorophenyl phenyl ketone      |                 | $\beta$ -acetate                            |
| 3:9880         | 3-Chloro-3-phenylphthalide        | 3:6840          | γ-Chloropropylene glycol                    |
| 3:9610         | 2-Chloro-2-phenylpropane          |                 | diacetate                                   |
| 3:9604         | 1-Chloro-1-phenylpropene-1        | 3:5358          | γ-Chloropropylene oxide                     |
| 3:9606         | 2-Chloro-1-phenylpropene-1        | 3:8610          | bis-(β-Chloro-n-propyl) ether               |
| 3:0010         | 3-Chloro-1-phenylpropene-1        | 3:8745          | bis-(γ-Chloro-n-propyl) ether               |
| 3:8742         | 1-Chloro-2-phenylpropene-1        | 3:9742          | 4-Chloro-4-n-propylheptane                  |
| 3:8737         | 1-Chloro-3-phenylpropene-1        | 3:5630          | α-Chloropropylidene (di)-                   |
| 3:9608         | 2-Chloro-3-phenylpropene-1        |                 | chloride                                    |
| 3:3956         | o-Chlorophenylpropiolic acid      | 3:5660          | β-Chloropropylidene (di)-                   |
| 3:4102         | m-Chlorophenylpropiolic acid      | 3.5550          | chloride                                    |
| 3:4265         | p-Chlorophenylpropiolic acid      | 3:7893          | α-Chloro-n-propyl methyl ketone             |
| 3:4820         | 3-Chlorophthalic acid             | 3:8243          | $\beta$ -Chloro- $n$ -propyl methyl ketone  |
| 3:4390         | 4-Chlorophthalic acid             | 3:9267          | $\gamma$ -Chloro- $n$ -propyl methyl ketone |
| 3:3900         | 3-Chlorophthalic anhydride        | 3:8820          |                                             |
| 3:2725         | 4-Chlorophthalic anhydride        | 3:2650          | γ-Chloro-n-propyl phenyl ether              |
| 3:0440         | Chloropivalic acid                | a . 2000        | 2,4,6-tris-(β-Chloro-n-propyl)-             |
| 3:9266         | Chloropivallyl chloride           | 3:7100          | trioxane-1,3,5                              |
| 3:7080         |                                   |                 | 3-Chloropropyne-1                           |
| 3:5576         | Chloroprene                       | 3:0745          | 3-Chloropyrocatechol                        |
| 3:7040         | 3-Chloropropanal-1                | 3:2470          | 4-Chloropyrocatechol                        |
|                | 1-Chloropropane                   | 3:1100          | Chloroquinone                               |
| 3:7025         | 2-Chloropropane                   | 3:2690          | 2-Chlororesorcinol                          |
| 3:9038         | 3-Chloropropanediol-1,2           | 3:3100          | 4-Chlororesorcinol                          |
| 3:9039         | 2-Chloropropanediol-1,3           | 3:3530          | 5-Chlororesorcinol                          |
| 3:6840         | 3-Chloropropanediol-1,2           | 3:1010          | 3-Chlorosalicylaldehyde                     |
|                | diacetate                         | 3:0960          | 4-Chlorosalicylaldehyde                     |
| 3:6125         | 2-Chloropropanoic acid            | 4:2800          | 5-Chlorosalicylaldehyde                     |
| 3:0460         | 3-Chloropropanoic acid            | 3:4745          | 3-Chlorosalicylic acid                      |
| 3:7917         | 2-Chloropropanol-1                | 3:4908          | 4-Chlorosalicylic acid                      |
| 3:8285         | 3-Chloropropanol-1                | 3:4705          | 5-Chlorosalicylic acid                      |
| 3:7747         | 1-Chloropropanol-2                | 3:4610          | 6-Chlorosalicylic acid                      |
| 3:5425         | 1-Chloropropanone-2               | <b>3:0985</b>   | ω-Chlorostearyl alcohol                     |
| 3:9031         | 2-Chloropropen-2-a1-1             | 3:8715          | $\alpha$ -Chlorostyrene                     |
| 3:7030         | 1-Chloropropene-1                 | 3:8717          | $\beta$ -Chlorostyrene                      |
| 3:7020         | 2-Chloropropene-1                 | 3:8717          | ω-Chlorostyrene                             |
| 3:7035         | 3-Chloropropene-1                 | 3: <b>499</b> 5 | Chloroterephthalic acid                     |
| 3:5635         | 2-Chloropropen-2-o1-1             | 3:9874          | 1-Chlorotetradecane                         |
| <b>3:5820</b>  | 3-Chloropropen-2-o1-1             | 3:0375          | 14-Chlorotetradecanol-1                     |
| 3:5635         | 2-Chloropropen-1-o1-3             | 3:0375          | ω-Chloro-n-tetradecyl alcohol               |
| 3:1685         | Chloropropiolic acid              | 3: <b>094</b> 5 | 1-Chloro-2,2,3,3-tetramethyl-               |
| 3:51 <b>60</b> | $\alpha$ -Chloropropionaldehyde   |                 | butane                                      |
| 3:5576         | $\beta$ -Chloropropionaldehyde    | 3:1293          | p-Chlorothymol                              |
| 3:9490         | β-Chloropropionaldehyde           | 3:8535          | α-Chlorotoluene                             |
|                | diethylacetal                     | 3:8535          | ω-Chlorotoluene                             |
| 3:6125         | α-Chloropropionic acid            | 3:8245          | o-Chlorotoluene                             |
| 3: <b>0460</b> | β-Chloropropionic acid            | 3:8275          | m-Chlorotoluene                             |
| 3:5320         | α-Chloropropionyl chloride        | 3:8287          | p-Chlorotoluene                             |
| 3:5690         | $\beta$ -Chloropropionyl chloride | 3:2640          | o-Chloro-α-toluie acid                      |
| 3:9664         | α-Chloropropiophenone             | 3:1910          | $m$ -Chloro- $\alpha$ -toluic acid          |
| 3:1115         | β-Chloropropiophenone             | 3:3135          | p-Chloro-α-toluic acid                      |
| 3:0340         | 4-Chloropropiophenone             | 3:9859          | 1-Chlorotridecane                           |
| 3:8180         | β-Chloro-n-propyl acetate         | 3:4855          | 5-Chlorotrimellitic acid                    |
| 3:8310         | γ-Chloro-m-propyl acetate         | 3:4975          | Chlorotrimesic acid                         |
| 3:7917         | β-Chloro-n-propyl alcohol         | 3:8725          | 2-Chloro-1,3,5-trimethylbensene             |
|                | to a contract to the second       |                 | more riole or minearly increasing           |

| 3:4020             | 3-Chloro-2,2,3-trimethylbutane                                 |                                  | D                                                    |
|--------------------|----------------------------------------------------------------|----------------------------------|------------------------------------------------------|
| 3:7752             | Chloro-trimethylcarbinol                                       | 0.0000                           |                                                      |
| 3:9039             | β-Chlorotrimethylene glycol                                    | 3: <b>3320</b><br>3:18 <b>90</b> | "DDD"                                                |
| 3:6648             | β-Chlorotrimethylene glycol                                    | 3:1890<br>3:3320                 | " o,p'-DDD "                                         |
|                    | acetate                                                        | 3:3298                           | " p,p'-DDD "<br>" DDT "                              |
| 3:9744             | 4-Chloro-2,4,6-trimethylheptane                                | 3:9865                           | " o,o'-DDT "                                         |
| 3:9654             | 3-Chloro-2,2,3-trimethylhexane                                 | 3:1820                           | " o,p'-DDT "                                         |
| 3:8113             | 4-Chloro-2,2,4-trimethylpentane                                | 3:9867                           | " m,p'-DDT "                                         |
| 3:3560             | 1-Chloro-1,2,2-triphenylethyl-                                 | 3:3298                           | " p,p'-DDT "                                         |
|                    | ene                                                            | 3:1676                           | Decachlorodiethyl ether                              |
| 3:3560             | "Chlorotriphenylethylene"                                      | 3:9720                           | Decamethylene (di)chloride                           |
| 3:3410             | $\alpha$ -Chlorotriphenylmethane                               | 3:8800                           | n-Decanoyl chloride                                  |
| 3:88 <b>9</b> 3    | 1-Chloroundecane                                               | 3:8785                           | n-Decyl chloride                                     |
| 3:8783             | α-Chloro-n-valeric acid                                        | 3:1618                           | Desyl chloride                                       |
| 3:0270             | β-Chloro-n-valeric acid                                        | 3:8085                           | Diallylcarbinyl chloride                             |
| 3:9270             | γ-Chloro-n-valeric acid                                        | 3:9640                           | Di-n-butylcarbinyl chloride                          |
| 3:0075             | δ-Chloro-n-valeric acid                                        | 3:9732                           | Di-n-butyl-methyl-carbinyl                           |
| 3:5860             | α-Chloro-n-valeryl chloride                                    |                                  | chloride                                             |
| 3:9260             | β-Chloro-n-valeryl chloride                                    | 3:6110                           | "Dichloroacetal"                                     |
| 3:9264<br>3:7070   | δ-Chloro-n-valeryl chloride                                    | 3:5180                           | Dichloroacetaldehyde                                 |
|                    | 1-Chloro-2-vinylacetylene                                      | 3:6110                           | Dichloroacetaldehyde diethyl-                        |
| 3:8715<br>3:8717   | α-Chlorovinylbenzene                                           |                                  | acetal                                               |
| 3:0300             | β-Chlorovinylbenzene<br>2-Chloro-xenene                        | 3:5310                           | Dichloroacetaldehyde ethyl-                          |
| 3:8940             | 3-Chloro-xenene                                                | 0.7010                           | alcoholate                                           |
| 3:1912             | 4-Chloro-xenene                                                | 3:5310                           | Dichloroacetaldehyde ethyl-                          |
| 3:8710             | ω-Chloro-o-xylene                                              | 3:1085                           | hemiacetal                                           |
| 3:8645             | vicChloro-o-xylene                                             | 3:6208                           | Dichloroacetaldehyde hydrate<br>Dichloroacetic acid  |
| 3:8675             | unsymChloro-o-xylene                                           | 3:6430                           | Dichloroacetic acid anhydride                        |
| 3:8700             | ω-Chloro-m-xylene                                              | 3:5430                           | $\alpha, \alpha$ -Dichloroacetone                    |
| 3:8590             | vicChloro-m-xylene                                             | 3:0563                           | $\alpha,\alpha'$ -Dichloroacetone                    |
| 3:8665             | unsymChloro-m-xylene                                           | 3:0563                           | symDichloroacetone                                   |
| 3:8640             | symChloro-m-xylene                                             | 3:5430                           | unsymDichloroacetone                                 |
| 3:8660             | ω-Chloro-p-xylene                                              | 3:6835                           | ω,ω-Dichloroacetophenone                             |
| 3:8600             | eso-Chloro-p-xylene                                            | 3:5290                           | Dichloroacetyl chloride                              |
| 3:2115             | 5-Chloro-o-3-xylenol                                           | 3:5010                           | Dichloroacetylene                                    |
| 3:2218             | 6-Chloro-o-3-xylenol                                           | 3:2265                           | $\alpha,\beta$ -Dichloroacrylic acid                 |
| 3:1754             | 5-Chloro-o-4-xylenol                                           | 3:1875                           | $\beta$ , $\beta$ -Dichloroacrylic acid              |
| 3:2705             | 6-Chloro-o-4-xylenol                                           | 3:4916                           | 9,10-Dichloroanthracene                              |
| 3:0158             | 3-Chloro-o-4-xylenol                                           | 3:4916                           | meso-Dichloroanthracene                              |
| 3:2180             | 5-Chloro-m-2-xylenol                                           | 3:9399                           | 2,4-Dichlorobenzal (di)chloride                      |
| 3:8784             | 5-Chloro-m-4-xylenol                                           | 3:0490                           | 2,5-Dichlorobenzal (di)chloride                      |
| 3:2460<br>3:3505   | 6-Chloro-m-4-xylenol                                           | 3:9898                           | 2,6-Dichlorobenzal (dı)chloride                      |
| 3:0844             | 2-Chloro-m-5-xylenol                                           | 3:6876                           | 3,4-Dichlorobenzal (di)chloride                      |
| 3:1822             | 6-Chloro- <i>m</i> -5-xylenol<br>5-Chloro- <i>p</i> -2-xylenol | 3:0370                           | 3,5-Dichlorobenzal (di)chloride                      |
| 3:0330             | Cinnamoyl chloride                                             | 3:1480<br>3:1800                 | 2,3-Dichlorobenzaldehyde                             |
| 3:0010             | Cinnamyl chloride                                              | 3:1145                           | 2,4-Dichlorobenzaldehyde                             |
| 3:9102             | Crotonaldehyde dichloride                                      | 3:11 <del>1</del> 5<br>3:1690    | 2,5-Dichlorobenzaldehyde<br>2,6-Dichlorobenzaldehyde |
| 3:5910             | Crotonchloral                                                  | 3:0550                           | 3,4-Dichlorobenzaldehyde                             |
| 3:1375             | Crotonic acid dichloride                                       | 3:1475                           | 3,5-Dichlorobenzaldehyde                             |
| 3:7693             | a-Crotonyl chloride                                            | 3:6055                           | o-Dichlorobenzene                                    |
| 3:7205             | Crotonyl chloride                                              | 3:5960                           | m-Dichlorobenzene                                    |
| 3:7685             | Crotylidene (di)chloride                                       | 3:0980                           | p-Dichlorobenzene                                    |
| 3:8795             | Cuminyl chloride                                               | 3:4965                           | 4,6-Dichlorobenzenedicarboxylic                      |
| 3:8580             | Cyclohexanecarboxylic acid                                     |                                  | acid-1,3                                             |
|                    | chloride                                                       | 3:4985                           | 2,5-Dichlorobenzenedicarboxylic                      |
| 3:9374             | cis-Cyclohexene chlorohydrin                                   |                                  | acid-1,4                                             |
| 3:0175             | trans-Cyclohexene chlorohydrin                                 | 3:4650                           | 2,3-Dichlorobenzoic acid                             |
| 3:8040             | Cyclohexyl chloride                                            | 3:4560                           | 2,4-Dichlorobenzoic acid                             |
| 8:5770             | Cyclohexyl chlorocarbonate                                     | 3:4340                           | 2,5-Dichlorobenzoic acid                             |
| 3:5770             | Cyclohexyl chloroformate                                       | 3:4200                           | 2,6-Dichlorobenzoic acid                             |
| 3:75 <del>45</del> | Cyclopentyl chloride                                           | <b>3:4925</b>                    | 3,4-Dichlorobensoic acid                             |
|                    |                                                                |                                  |                                                      |

| 3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-19.00   3.6-   |        |                                  |                 |                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------|-----------------|---------------------------------|
| 3:9856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3:4840 | 3,5-Dichlorobenzoic acid         | 3:1 <b>90</b> 3 | α,β-Dichloro-n-butyric acid     |
| 3:19625   2.4-Dichlorobenzophenone   3:2526   2.5-Dichlorobenzophenone   3:2536   2.5-Dichlorobenzophenone   3:2536   3.5-Dichlorobenzophenone   3:2536   3.5-Dichlorobenzophenone   3:2526   3.4-Dichlorobenzophenone   3:2526   3.4-Dichlorobenzophenone   3:2526   3.5-Dichlorobenzophenone   3:2527   3.4-Dichlorobenzophenone   3:2527   3.5-Dichlorobenzophenone   3:2527   3.5-Dichlorobenzophenone   3:2527   3.5-Dichlorobenzophenone   3:2528   3.5-Dichlorobinheny   3:25   |        |                                  |                 |                                 |
| 3:2465   2,4'-Dichlorobensophenone   3:2429   3,5-Dichlorocatechol   3:2285   2,5-Dichlorobensophenone   3:2825   2,5-Dichlorobensophenone   3:2825   3,3-Dichlorobensophenone   3:2826   3,3-Dichlorobensophenone   3:2826   3,3-Dichlorobensophenone   3:2826   3,3-Dichlorobensophenone   3:2826   3,3-Dichlorobensophenone   3:2826   3,3-Dichlorobensophenone   3:2825   3,3-Dichlorobinensyl   3:2825   3,3-Di   |        |                                  | 3:1375          |                                 |
| 3:2346   2.5-Dichlorobenzophenone   3:2555   3:2516   3.3-Dichlorobenzophenone   3:3976   3.3-Dichlorobenzophenone   3:3976   3.4-Dichlorobenzophenone   3:275   3.4-Dichlorobenzophenone   3:275   3.5-Dichlorobenzophenone   3:2855   3.5-Dichlorobenzophenone   3:2855   3.5-Dichlorobenzophenone   3:2855   3.5-Dichlorobenzoquinone   3:2855   3.2-Dichlorobenzoquinone   3:2855   3.2-Dichlorobenzoquinone   3:2855   3.2-Dichlorobenzoquinone   3:2855   3.2-Dichlorobenzoquinone   3:2855   3.2-Dichlorobenzoquinone   3:2856   3.2-Dichlorobinal   3:2855   3.2-Dich    |        |                                  |                 |                                 |
| 3:2856   2.6-Dichlorobenzophenone   3:3846   3.4-Dichlorobenzophenone   3:3846   3.4-Dichlorobenzophenone   3:415   3.4-Dichlorobenzophenone   3:4275   3.4-Dichlorobenzophenone   3:2855   3.5-Dichlorobenzophenone   3:2855   3.5-Dichlorobenzophenone   3:2855   3.5-Dichlorobenzoquinone   3:2856   3.5-Dichlorobinenzy    3:2856   3.5-Dichlor    |        |                                  |                 |                                 |
| 3.3456   3.3-Dichlorobenzophenone   3.3666   3.4-Dichlorobenzophenone   3.4-Dichlorobenzophenone   3.5-Dichlorobenzophenone   3   |        | 2,5-Dichlorobenzophenone         |                 | 4,5-Dichlorocatechol            |
| 3.4976   3.4-Dichlorobensophenone   3.2416   3.5-Dichloro-2.2-bie-(chloromens)   3.2416   3.5-Dichlorobensophenone   3.2477   4.4'-Dichlorobensophenone   3.2966   3.5-Dichlorobensophenone   3.2966   3.5-Dichlorobensophenone   3.2966   3.2955   3.5-Dichlorobensoquinone   4.4'-Dichlorobensoquinone   4.4'-Dichlorobensoquinone   4.4'-Dichlorobensoquinone   4.4'-Dichlorobensoquinone   4.4'-Dichlorobensoquinone   4.4'-Dichlorobensoquinone   4.4'-Dichlorobensoquinone   4.4'-Dichlorobensopuinone   4.4'-Dic    | 3:2285 | 2,6-Dichlorobenzophenone         | 3:9218          | 1,3-Dichloro-2-(chloromethyl)-  |
| 3.44.5   3,4 - Dichlorobenzophenone   3.9066   1,3 - Dichloro-2-(chloromethyl)   1,1 - Dichloro-2-(chloromethyl)   1,1 - Dichloro-2-(chloromethyl)   2,2 - Dichlorobenzoquinone   1,3 - Dichloro-2-(chloromethyl)   2,2 - Dichlorobinophyl   3,2 - Dichlor    | 3:3860 | 3,3'-Dichlorobenzophenone        |                 | butane                          |
| 3.1-2065 3.5-Dichlorobensophenone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3:3070 | 3,4-Dichlorobenzophenone         | 3:2675          | 1,3-Dichloro-2,2-bis-(chloro-   |
| 3:2476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3:3415 | 3,4'-Dichlorobenzophenone        |                 | methyl)propane                  |
| 3:4276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3:1505 | 3,5-Dichlorobenzophenone         | 3:9066          | 1,3-Dichloro-2-(chloromethyl)-  |
| 3:2855   c-Dichlorobensoquinone   3:1896   1,1-Dichloro-2-(c-chlorophenyl)ethane   1,2-Dichlorobensoquinone   3:2855   2,3-Dichlorobensoquinone-1,4   3:3750   2,5-Dichlorobensoquinone-1,4   3:3750   2,5-Dichlorobensoquinone-1,4   3:3750   2,5-Dichlorobensoquinone-1,4   3:3750   2,5-Dichlorobensyl chloride   3,5-Dichlorobensyl chloride   3,5-Dichlorobensyl chloride   3,5-Dichlorobensyl chloride   3,5-Dichlorobensyl chloride   3,5-Dichlorobensyl chloride   3,5-Dichlorobensyl chloride   3:2857   2,2-Dichlorobiphenyl   3:1285   2,2-Dichlorobiphenyl   3:1285   2,2-Dichlorobiphenyl   3:1285   2,2-Dichlorobiphenyl   3:1285   2,3-Dichlorobiphenyl   3:1285   2,3-Dichlorobiphenyl   3:1286   3,5-Dichlorobiphenyl   3:1286   3,5-Dichl    | 3:4270 | 4.4'-Dichlorobenzophenone        |                 | propene-1                       |
| 3:3750 m-Dichlorobensoquinone   3:4470 p-Dichlorobensoquinone-1,4   3:4470   2,5-Dichlorobensoquinone-1,4   3:4470   2,5-Dichlorobensoquinone-1,4   3:4470   2,5-Dichlorobensoquinone-1,4   3:4470   2,5-Dichlorobensoquinone-1,4   3:3750   2,5-Dichlorobensoquinone-1,4   3:3750   3,5-Dichlorobensyl chloride   3:3750   3,5-Dichlorobensyl chloride   3:3650   3,5-Dichlorobensyl chloride   3:3863   3,5-Dichlorobensyl chloride   3:3854   meso-a,a'-Dichlorobinensyl   3:1926   4,5-Dichloro-c-c-cesol   3:1935   2,2-Dichlorobinensyl   3:1926   2,5-Dichloro-c-c-cesol   4,5-Dichloro-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3:2855 |                                  | 3:1890          |                                 |
| 3:1457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3:3750 |                                  |                 |                                 |
| 3:2455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3:4470 |                                  | 3:1925          |                                 |
| 3.476   2,5-Dichlorobenzoquinone-1,4   3:3863   1,1-Dichloro-2-(m-chlorophenyl)-2-(p-chlorophenyl)-thylene   2,6-Dichlorobenzyl chloride   3:3320   1,1-Dichloro-2,2-bis-(p-chlorophenyl)-thylene   3:0350   3,5-Dichlorobenzyl chloride   3:2438   1,1-Dichloro-2,2-bis-(p-chlorophenyl)-thylene   3:0350   3,5-Dichlorobenzyl chloride   3:2438   1,1-Dichloro-2,2-bis-(p-chlorophenyl)-thylene   2,2-bis-(horobenzyl-thorophenyl)-thylene   2,2-bis-(horobenzyl-thorophenyl-thylene   2,2-bis-(horobenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl-thorophenzyl    |        |                                  |                 |                                 |
| 3.3750   2.6-Dichlorobenzoquinone-1.4   3.3320   1,1-Dichloro-2,2-bis-(p-chlorobenzyl chloride   3.3425   3,4-Dichlorobitenzyl   3.1920   4,6-Dichloro-c-cresol   3.1854   meso-α,α'-Dichlorobitenzyl   3.1920   2,4-Dichloro-c-cresol   3.19350   2,3-Dichlorobitenzyl   3.1936   2,4-Dichloro-c-cresol   3.1936   2,4-Dichloro-bitenzyl   3.1936   2,4-Dichloro-c-cresol   3.1936   3,4-Dichlorobitenzyl   3,4-Dichloro-3,3-dimethy    |        |                                  | 3:9863          |                                 |
| 3.6410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                  | 0.0000          |                                 |
| 3: 6795 3, 4-Dichlorobenzyl chloride 3: 2438 phenyl)ethane 2: 2570 d.la.a'-Dichlorobinzyl 3: 2940 phenylethylene 3: 2570 d.la.a'-Dichlorobibenzyl 3: 2940 d.la.a'-Dichlorobibenzyl 3: 2940 d.la.a'-Dichlorobibenzyl 3: 2940 d.la.a'-Dichlorobibenzyl 3: 1295 d.la.a'-Dichlorobibenzyl 3: 1295 d.la.a'-Dichlorobibenzyl 3: 1295 d.la.a'-Dichlorobibenzyl 3: 1295 d.la.a'-Dichlorobiphenyl 3: 1295 d.la.a'-Dichlorodecane 3: 1295 d.la.a'-Dichlorobiphenyl 3: 1295 d.la.a'-Dichlorodicthyl ether 3: 1295 d.la.a'-Dichlorobitadiene-1, 3 3: 1295 d.la'-Dichlorobitadiene-1, 3 3: 1295 d.la'-Dichlorobitadiene-1, 3 3: 1295 d.la'-Dichlorobitadiene-1, 3 3: 1295 d.la'-Dichlorobitane 3: 1.1-Dichlorobitane 3: 1.2-Dichlorobitane 3: 1.2-Dichlorobitane 3: 1.2-Dichlorobitane 3: 1.3-Dichlorobitane                                                |        |                                  | 3:3320          |                                 |
| 3:9440   Dichlorobiacetylene   3:2438   1,1-Dichloro-2,2-bis-(p-chlorobiacetylene   1,4-Dichlorobibenzyl   3:2910   4,5-Dichloro-c-cresol   4,6-Dichloro-c-cresol   4,6-Dichloro-c-c-cresol   4,6-Dichloro-c-c-cresol   4,6-Dichloro-c-c-cresol   4,6-Dichloro-c-c-cresol   4,6-Dichloro-c-c-cresol   4,6-Dichloro-c-c-cresol   4,6-Dichloro-c-c-c-col   4,6-Dichloro-c-c-c-col   4,6-Dichloro-c-c-c-col   4,6-Dichloro-c-c-c-col   4,6-Dichloro-c-c-c-col   4,6-Dichloro-c-c-c-col   4,6-Dichloro-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                                  | 0.00/10         |                                 |
| 3:9040   Dichlorobiacetylene   3:2970   d.l-α.α'-Dichlorobibenzyl   3:2910   4,5-Dichloro-c-cresol   4,5-Dichloro-c-cresol   4,5-Dichloro-c-cresol   4,5-Dichloro-c-cresol   4,5-Dichloro-c-cresol   3:1325   2,2'-Dichlorobiphenyl   3:1205   2,4-Dichloro-m-cresol   2,4'-Dichlorobiphenyl   3:1745   4,6-Dichloro-m-cresol   2,6-Dichloro-m-cresol   2,6-Dichloro-dexene   2,6-Dichloro-dicthyl ether   2,6-Dichloro-dicthyl ether   2,6-Dichloro-dicthyl ether   2,6-Dichloro-3,4-diethylhexane   3,4-Dichloro-dexene   3,4-Dichloro-2,2-dimethylbutane   3,4-Dichloro-2,2-dimethylbutane   3,4-Dichloro-dexene   3,4-Dichloro-2,3-dimethylbutane   3,4-Dichloro-2,3-dimethylbutane   3,4-Dichloro-2,3-dimethylbutane   2,6-Dichloro-2,6-dimethyl-kexane   2,    |        |                                  | 3 . 2438        |                                 |
| 3: 2570   d,l-α,α'-Dichlorobibenzyl   3: 2910   4,5-Dichloro-α-cresol   3: 1825   2,2'-Dichlorobiphenyl   3: 1825   2,2'-Dichlorobiphenyl   3: 1826   2,4-Dichloro-m-cresol   2,4-Dichloro-m-cresol   2,4-Dichloro-m-cresol   2,4-Dichloro-m-cresol   2,5-Dichloro-m-cresol   2,5-Dichloro-p-cresol   2,5-Dichloro-m-cresol    |        |                                  | U . NEUG        |                                 |
| 3:4854   meso-α,α'-Dichlorobibenzyl   3:1026   4,6-Dichloro-o-cresol   3:1325   2,2'-Dichlorobiphenyl   3:1056   2,4-Dichloro-m-cresol   3:1936   2,6-Dichloro-m-cresol   3:0160   2,4'-Dichlorobiphenyl   3:1745   4,6-Dichloro-m-cresol   3:0160   3,3'-Dichlorobiphenyl   3:0400   2,6-Dichloro-m-cresol   3:0150   3,3'-Dichlorobiphenyl   3:0400   2,6-Dichloro-m-cresol   1,10-Dichlorodecane   α,α'-Dichlorodecane   α,α'-Dichlorodecane   α,α'-Dichlorodecane   α,α'-Dichlorodecane   α,α'-Dichlorodecane   α,α'-Dichlorodecane   α,α'-Dichlorodecane   α,α'-Dichlorodecane   α,α'-Dichlorodecane   α,β'-Dichlorodecane   α,β    |        |                                  | 3.2010          |                                 |
| 3:1325 2.2'-Dichlorobiphenyl 3:1245 2.4-Dichloro-m-cresol 3:9850 2.3-Dichlorobiphenyl 3:1745 4.6-Dichloro-m-cresol 4.6-Dichloro-m-cresol 3:9854 2.5-Dichlorobiphenyl 3:1745 4.6-Dichloro-m-cresol 3:0858 2.5-Dichlorobiphenyl 3:9720 1,10-Dichlorodecane α.α'-Dichlorodiethyl ether α.β-Dichlorodiethyl ether β.β-Dichlorodiethyl ether α.β-Dichlorodiethyl ether α  |        |                                  |                 |                                 |
| 3:9850 2,3-Dichlorobiphenyl 3:1745 4,6-Dichloro-m-cresol 3:0870 2,4'-Dichlorobiphenyl 3:1745 4,6-Dichloro-m-cresol 3:0870 2,4'-Dichlorobiphenyl 3:1745 4,6-Dichloro-m-cresol 3:0885 3,4-Dichlorobiphenyl 3:9720 1,10-Dichlorodesane α,α'-Dichlorobiphenyl 3:9730 α,α'-Dichlorodiethyl ether α,β-Dichlorodiethyl ether α,β-Dichlorodiethyl ether α,β-Dichlorodiethyl ether α,β-Dichlorodiethyl ether 3:9657 1,2-Dichlorobutadiene-1,3 3:9724 3,4-Dichlorodiethyl ether 3:9527 2,3-Dichlorobutadiene-1,3 3:9724 3,4-Dichloro-3,4-diethylhexane 3:9162 2,3-Dichlorobutane 3:4326 3,3-Dichloro-3,4-diethylhexane 3:7680 1,2-Dichlorobutane 3:4326 3,3-Dichloro-2,2-dimethylbutane 3:7415 2,2-Dichlorobutane 3:4326 3,3-Dichloro-2,2-dimethylbutane 3:5835 1,4-Dichlorobutane 3:4326 3,3-Dichloro-2,2-dimethylbutane 3:5836 1,3-Dichlorobutane 3:54520 2,3-Dichlorobutane 3:54520 2,3-Dichloro-2,3-dimethylbutane 3:54520 1,3-Dichlorobutane 3:54520 2,3-Dichloro-2,2-dimethylbutane 3:54520 1,3-Dichlorobutane 3:54520 2,3-Dichloro-2,2-dimethylbutane 3:54520 1,3-Dichlorobutane 3:54520 2,3-Dichloro-2,2-dimethylbutane 3:54520 1,3-Dichlorobutane 3:54520 1,3-Dichlorobu  |        |                                  |                 |                                 |
| 3: 9854 2,5-Dichlorobiphenyl 3: 9400 2,6-Dichloro-m-cresol 3: 9854 2,5-Dichlorobiphenyl 3: 9400 1,10-Dichlorodecane 3: 9720 1,10-Dichlorodecane 3: 9720 2,3-Dichlorobiphenyl 3: 5544 α,β-Dichlorodichtyl ether α,β-Dichloro-3,β-diintyl dray-y-benzoquinone-1,4 α,β-Dichloro-3,β-diintyl dray-y-benzoquinone-1,4 α,β-Dichloro-3,β-diintyl dray-y-benzoquinone-1,4 α,β-Dichloro-2,2-dimethyl butane 3: 4520 3,3-Dichloro-2,2-dimethyl butane 3: 4520 3,3-Dichloro-2,2-dimethyl butane 3: 4520 3,3-Dichloro-2,2-dimethyl-beptane 3: 5324 3,3-Dichloro-2,3-dimethyl butane 3: 5324 3,3-Dichloro-2,3-dimethyl butane 3: 5324 3,3-Dichloro-2,3-dimethyl butane 3: 5324 3,3-Dichloro-2,3-dimethyl butane 3: 5324 3,3-Dichloro-2,3-dimethyl benzoquinone-2 3: 5330 3,3-Dichloro-2,3-dimethyl benzoquinone-2 3: 5330 3,3-Dichloro-2,3-dimethyl benzoquinone-2 3: 5330 3,3-Dichloro-2,3-dimethyl-benzoquinone-2 3: 5330 3,3-Dichloro-2,3-dimethyl-benzoquinone-1,4 3: 5330 3,3-Dichloro-2,3-dimethyl-benzoquinone-3 3: 5330 3,3-Dichloro-2,3-dimethyl-benz  |        |                                  |                 |                                 |
| 3:9854 2,5-Dichlorobiphenyl 3:9720 1,10-Dichlorodecane 3.693 3,4-Dichlorobiphenyl 3:9720 1,10-Dichlorodecane 3.7595 3,4-Dichlorobiphenyl 3:5640 α,β-Dichlorodiethyl ether α,β-Dichloro-3,4-diethylhexane 3:9122 2,3-Dichlorobutane 3:9224 3,4-Dichloro-3,4-diethylhutane 3:9325 1,3-Dichlorobutane 3:8325 3,3-Dichloro-2,2-dimethylbutane 3:4326 3,3-Dichloro-2,2-dimethylbutane 3:4326 3,3-Dichloro-2,3-dimethylbutane 3:4526 2,3-Dichlorobutane 3:8132 1,1-Dichlorodiethyl ether 3:9145 1,3-Dichlorobutane 3:8132 1,1-Dichlorodiethyl ether 3:9145 1,3-Dichlorobutane 3:8132 1,1-Dichlorodiethyl ether 3:9145 1,3-Dichlorobutane 3:9145 1,3-Dichlorobutane 3:9145 1,3-Dichlorobutane 3:9145 1,3-Dichlorobutane 3:9145 1,3-Dichlorobutane 3:9145 1,3-Dichlorobutene-1 3:9145 1,3-Dichlorobutene-1 3:9145 1,3-Dichlorobutene-1 3:9145 1,3-Dichlorobutene-2   |        |                                  |                 |                                 |
| 3.0180 3,3'-Dichlorobiphenyl 3:7595 a, α'-Dichlorodethyl ether α.α'-Dichlorodethyl ether α.α'-Dichloro-3.4-diethylbexane 3:6324 3.4-Dichloro-3.4-diethylbexane 3:6324 3.4-Dichloro-3.4-diethylbexane 3:6324 3.4-Dichloro-3.4-dimethylbexane 3:6324 3.4-Dichlorodethyl ether 3:6324 3.3-Dichlorodethyl ether 3  |        |                                  |                 |                                 |
| 3.0685 3,4-Dichlorobiphenyl 3:5646 α,β-Dichlorodiethyl ether α,β-Dichloro-3,4-diethylhexane 3:6025 β,β'-Dichloro-3,4-diethylhexane 3:9040 1,4-Dichlorobutane-1,3 3:9724 3,4-Dichloro-3,4-diethylhexane 3:9162 2,3-Dichlorobutane-1,4 bensoquinone-1,4 μ-Dichloro-2,2-dimethylbutane 3:4326 3,3-Dichloro-2,2-dimethylbutane 3:4326 3,3-Dichloro-2,2-dimethylbutane 3:4326 3,3-Dichloro-2,2-dimethylbutane 3:4520 2,3-Dichloro-2,3-dimethylbutane 3:4520 2,3-Dichlorobutane 3:54520 2,3-Dichlorobutane 3:54520 2,3-Dichlorobutane 3:54520 2,3-Dichlorobutane 3:54520 2,3-Dichlorobutane-2 3:5550 1,3-Dichlorobutane-2 3:5550 1,3-Dichlorobutene-1 3:5550 1,3-Dichlorobutene-1 3:5550 1,3-Dichlorobutene-2 3:5550 1,3-Dichlorobutene-2 2 3:5550 1,3-Dichlorobutene-2 3:5550 1,3-  |        |                                  |                 |                                 |
| 3:0360 3,5-Dichlorobiphenyl 3:5640 α,β-Dichlorodiethyl ether 3:4300 4,4'-Dichlorobutadiene-1,3 3:6025 β,β'-Dichlorodiethyl ether 3:9057 1,2-Dichlorobutadiene-1,3 3:6025 β,β'-Dichlorodiethyl ether 3:5220 2,3-Dichlorobutadiene-1,3 3:9724 3,4-Dichloro-3,4-diethylhexane 3:9040 1,4-Dichlorobutane-1,3 3:4970 2,5-Dichloro-3,6-dihydroxy-benzoquinone-1,4 benzoquinone-1,4 benzoquinone-1  |        |                                  |                 |                                 |
| 3:4300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                  |                 |                                 |
| 3:9057 1,2-Dichlorobutadiene-1,3 3:9724 3,4-Dichloro-3,4-diethylhexane 3:9040 1,4-Dichlorobutadiyne-1,3 3:4970 2,3-Dichlorobutaniyne-1,3 3:4970 2,5-Dichloro-3,6-dihydroxy-benzoquinone-1,4 5:7550 1,1-Dichlorobutane 3:4826 3,3-Dichloro-2,2-dimethylbutane 3:4826 1,2-Dichlorobutane 3:4826 3,3-Dichloro-2,2-dimethylbutane 3:5835 1,4-Dichlorobutane 3:4520 2,3-Dichloro-2,2-dimethylbutane 3:7615 4,2-3-Dichlorobutane 3:4520 2,3-Dichloro-2,3-dimethylbutane 3:7615 4,2-3-Dichlorobutane 3:5245 2,6-Dichloro-3,3-dimethylbutane 3:5836 1,3-Dichlorobutane 3:6536 1,3-Dichlorobutane 3:6536 1,3-Dichlorobutane 3:6536 1,3-Dichlorobutane 3:6536 1,3-Dichlorobutane 3:6536 1,2-Dichlorobutene-1 3:6536 1,2-Dichlorobutene-2 3:6536 1,2-Dichlorobutene-2 (low-boilg. isomer) 3:6536 1,2-Dichlorobutene-2 (low-boilg. isomer) 3:6536 1,3-Dichlorobutene-2 3:6536 1,3-Dichlorobutene-2 3:6536 1,3-Dichlorobutene-2 3:6536 1,2-Dichlorobutene-2 3:6536 1,2-Dic  |        |                                  |                 |                                 |
| 3:5229 2,3-Dichlorobutadiene-1,3 3:9724 3,4-Dichloro-3,4-diethylhexane 3:9102 2,3-Dichlorobutanil-1 2,3-Dichlorobutanal-1 3:1952 1,1-Dichlorobutane 3:4325 3,3-Dichloro-2,2-dimethylbutane 3:4325 3,3-Dichloro-2,2-dimethylbutane 3:5335 1,4-Dichlorobutane 3:4529 2,3-Dichloro-2,2-dimethylbutane 3:5335 1,4-Dichlorobutane 3:5535 1,3-Dichlorobutane 3:5535 1,2-Dichlorobutene-1 3:5535 1,2-Dichlorobutene-2 3:5535 1,3-Dichlorobutene-2 3:5535 1,3-Dichlorobutene-2 3:5535 1,3-Dichlorobutene-2 3:5535 1,3-Dichlorobutene-2 3:5535 1,3-Dichlorobutene-2 3:5535 1,3-Dichlorobutene-2 3:5535 1,2-Dichlorobutene-2 3:5535 1,2-Dichlorobutene-2 3:5535 1,3-Dichlorobutene-2 3:5535  |        |                                  |                 |                                 |
| 3:9040 1,4-Dichlorobutaniyne-1,3 3:9102 2,3-Dichlorobutanie 3:8505 1,1-Dichlorobutane 3:4325 3,3-Dichloro-2,2-dimethylbutane 3:5835 1,4-Dichlorobutane 3:4325 4,4-Dichloro-2,2-dimethylbutane 3:5835 1,4-Dichlorobutane 3:4520 2,3-Dichloro-2,3-dimethylbutane 3:5835 1,4-Dichlorobutane 3:4520 2,3-Dichloro-2,3-dimethylbutane 3:5835 1,4-Dichlorobutane 3:5325 3,3-Dichloro-2,3-dimethylbutane 3:5835 1,4-Dichlorobutane 3:5325 3,3-Dichloro-2,3-dimethylbutane 3:5835 3,3-Dichloro-2,3-dimethylbutane 3:5836 3:5836 3,3-Dichlorobutane 3:5245 3,3-Dichlorobutane 3:5845 3,3-Dichloro-2,3-dimethylbutane 3:5836 3,3-Dichlorobutane 3:5835 3,3-Dichlorobutane 3:5836 1,1-Dichlorobutane 2 3:5836 1,2-Dichlorobutane 2 3:5836 1,2-Dichlorobutane 2 3:5836 1,3-Dichlorobutane   |        |                                  |                 |                                 |
| 3:9102   2,3-Dichlorobutanal-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                                  |                 |                                 |
| 3:7550         1,1-Dichlorobutane         3:8605         β,β'-Dichloro-di-isopropyl ether           3:7680         1,2-Dichlorobutane         3:4325         3,3-Dichloro-2,2-dimethylbutane           3:7855         1,3-Dichlorobutane         3:8132         4,4-Dichloro-2,2-dimethylbutane           3:5835         1,4-Dichlorobutane         3:4520         2,3-Dichloro-2,3-dimethylbutane           3:7415         2,2-Dichlorobutane         3:8132         1,1-Dichloro-3,3-dimethylbutane           3:7615         d,L-2,3-Dichlorobutane         3:5245         symDichlorodimethyl ether           3:7616         d,L-2,3-Dichlorobutanol-2         3:5455         symDichlorodimethyl ether           3:7616         d,L-2,3-Dichlorobutanol-2         3:1550         2,6-Dichloro-2,6-dimethyl-hexane           3:7650         1,3-Dichlorobutene-1         3:8315         3,4-Dichloro-3,4-dimethylhexane           3:7685         1,1-Dichlorobutene-2         3:8316         2,6-Dichloro-2,5-dimethyl-hexane           3:5860         1,2-Dichlorobutene-2 (low-boilg, isomer)         3:8516         4,5-Dichloro-2,7-dimethyl-pentane           3:5850         1,3-Dichlorobutene-2         3:7610         3:9428         2,4-Dichloro-2,4-dimethyl-pentane           3:5850         1,3-Dichlorobutene-2         3:9430         3:9430         3:9400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                  | 3:4976          |                                 |
| 3:7680 1,2-Dichlorobutane 3:4325 3,3-Dichloro-2,2-dimethylbutane 3:7925 1,3-Dichlorobutane 3:8132 4,4-Dichloro-2,2-dimethylbutane 3:5835 1,4-Dichlorobutane 3:4520 2,3-Dichloro-2,3-dimethylbutane 3:7415 2,2-Dichlorobutane 3:8132 1,1-Dichloro-2,3-dimethylbutane 3:7415 2,2-Dichlorobutane 3:63245 2,3-Dichlorobutane 3:5245 2,4-Dichloro-2,3-dimethylbutane 3:5245 2,5-Dichloro-2,5-dimethylbutane 2,5-Dichloro-2,7-dimethylbutane 2,5-Dichloro-2,7-dimethylbutane 2,5-Dichloro-2,4-dimethylbutane 3:5245 2,4-Dichlorobutene-2 |        |                                  |                 |                                 |
| 3:7925 1,3-Dichlorobutane 3:8132 4,4-Dichloro-2,2-dimethylbutane 3:5835 1,4-Dichlorobutane 3:4529 2,3-Dichloro-2,3-dimethylbutane 3:7415 2,2-Dichlorobutane 3:8132 1,1-Dichloro-3,3-dimethylbutane 3:7515 d,2-3-Dichlorobutane 3:8245 symDichlorodimethyl ether 3:7580 mesc-2,3-Dichlorobutane 3:6245 symDichlorodimethyl ether 3:5945 1,3-Dichlorobutane-2 3:1550 2,5-Dichloro-2,5-dimethylhexane 3:9074 2,3-Dichlorobutene-1 3:8315 3,4-Dichloro-2,5-dimethylhexane 3:9074 2,3-Dichlorobutene-1 3:9504 2,5-Dichloro-2,5-dimethylhexane 3:9074 2,3-Dichlorobutene-2 3:9504 2,5-Dichloro-2,5-dimethylhexane 3:7685 1,1-Dichlorobutene-2 (low-boilg. 3:9640 2,7-Dichloro-2,7-dimethyloctane 2,7-Dichloro-2,2-dimethyl-pentane 3:5515 1,2-Dichlorobutene-2 (high-boilg 3:9428 2,4-Dichloro-2,4-dimethyl-pentane 3:5550 1,3-Dichlorobutene-2 3:7616 3,3-Dichloro-2,4-dimethyl-pentane 3:5550 cis-2,3-Dichlorobutene-2 3:6550 cis-2,3-Dichlorobutene-2 3:6550 2,4-Dichloro-2,4-dimethyl-pentane 1,2-Dichloro-4,4-dimethyl-pentane 3:5550 2,4-Dichloro-4er-butyl alcohol 3:2442 5,6-Dichloro-2,3-dimethyl-pentane 2,3-Dichloro-4,4-dimethyl-pentane 2,3-Dichloro-4,4-dimethyl-pentane 2,3-Dichloro-3,3-dimethyl-pentane 2,3-Dichloro-3,4-dimethyl-pentane 2,5-Dichloro-3,4-dimethyl-pentane 3,5-Dichloro-3,4-dimethyl-pentane 3,5-Dichloro-3,4-dimethyl-pentane 3,5-Dichloro-3,4-dime     |        |                                  |                 |                                 |
| 3:5835 1,4-Dichlorobutane 3:4520 2,3-Dichloro-2,3-dimethylbutane 3:7415 2,2-Dichlorobutane 3:5132 1,1-Dichloro-3,3-dimethylbutane 3:7615 d,l-2,3-Dichlorobutane 3:5245 2,6-Dichloro-2,8-dimethylbutane 3:5285 2,6-Dichlorobutane 3:6455 2,6-Dichloro-2,8-dimethyl-heptane 3:5850 1,3-Dichlorobutanen-2 3:1550 1,3-Dichlorobutene-1 3:8515 3,4-Dichlorobutene-1 3:8515 3,4-Dichlorobutene-1 3:8550 1,1-Dichlorobutene-2 3:6560 1,2-Dichlorobutene-2 (low-boilg. isomer) 3:5550 1,3-Dichlorobutene-2 (low-boilg. isomer) 3:5550 1,3-Dichlorobutene-2 (low-boilg. isomer) 3:5550 1,3-Dichlorobutene-2 (high-boilg 3:9428 2,4-Dichloro-2,4-dimethyl-pentane 3:5550 1,3-Dichlorobutene-2 3:5550 2,4-Dichlorobutene-2 3:5550 2,4-Dichlorobutene-2 3:5550 2,4-Dichlorobutene-2 3:5550 1,2-Dichlorobutene-2 3:5550 2,4-Dichlorobutene-2 3:5550 2,4-Dic |        |                                  |                 |                                 |
| 3:7415 2,2-Dichlorobutane 3:8132 1,1-Dichloro-3,3-dimethylbutane 3:7515 d,2-3-Dichlorobutane 3:6245 2,6-Dichlorodimethyl ether 3:58145 1,3-Dichlorobutane-2 3:455 2,6-Dichloro-2,6-dimethyl-hexane 3:5900 1,3-Dichlorobutane-2 3:1550 2,5-Dichlorobutane-1 3:8315 3,4-Dichloro-2,5-dimethylhexane 3:9074 2,3-Dichlorobutene-1 3:8315 3,4-Dichloro-2,5-dimethylhexane 3:9074 2,3-Dichlorobutene-1 3:9564 2,5-Dichloro-2,5-dimethylhexane 3:5350 3,4-Dichlorobutene-2 3:6545 1,2-Dichlorobutene-2 (low-boilg. isomer) 3:5550 1,2-Dichlorobutene-2 (low-boilg isomer) 3:5550 1,3-Dichlorobutene-2 3:6550 1,3-Dichlorobutene-2 3:6550 1,3-Dichlorobutene-2 3:6550 1,3-Dichlorobutene-2 3:6550 2,4-Dichlorobutene-2 3:6550 2,4-Dichlorobutene-2 3:6550 2,4-Dichlorobutene-2 3:6550 1,2-Dichlorobutene-2 3:6550 1,2-Dichlorobutene-2 3:6550 2,4-Dichlorobutene-2 3:6550 1,2-Dichlorobutene-2 3:6550 2,4-Dichlorobutene-2 3:6550 2,5-Dichlorobutene-2 3:6550 2,5-Dich |        |                                  |                 |                                 |
| 3:7615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                  |                 |                                 |
| 3:7580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                  |                 |                                 |
| 1,3-Dichlorobutanon-2   3:1550   1,3-Dichlorobutanon-2   3:1550   1,3-Dichlorobutene-1   3:8315   3,4-Dichlorobutene-1   3:9504   2,5-Dichloro-2,5-dimethylhexane   2,5-Dichloro-2,5-dimethylhexane   2,5-Dichloro-3,4-dimethylhexane   2,5-Dichloro-2,5-dimethylhexane   2,5-Dichloro-2,4-dimethylhexane   2,5-Dichloro-2,4-dimethylhexane   2,5-Dichloro-3,3-dimethylhexane   2,5-Dichloro-3,4-dimethylhexane   2,5-Dichloro-3,3-dimethylhexane   2,5-Dichloro-3,3-dimethylhexane   2,5-Dichloro-3,4-dimethylhexane   2,5-Dichloro-3,4-dimethylhexane   2,5-Dichloro-3,4-dimethylhexane   2,5-Dichloro-3,4-dimethylhexane   2,5-Dichloro-3,4-dimethylhexane   2,5-Dichloro-3,4-dimethylhexane   2,5-Dichlorodixane   2   |        |                                  |                 |                                 |
| 3:5900 1,3-Dichlorobutanone-2 3:1850 2,5-Dichloro-2,5-dimethylhexane 3:7650 1,3-Dichlorobutene-1 3:8315 3,4-Dichloro-3,4-dimethylhexane 3:9504 2,3-Dichlorobutene-1 3:9504 2,5-Dichloro-2,5-dimethylhexane 3:500 3,4-Dichlorobutene-2 3:9504 2,5-Dichloro-2,5-dimethylhexane 3:500 1,2-Dichlorobutene-2 (low-boilg, isomer) 3:8516 1,2-Dichlorobutene-2 (low-boilg isomer) 3:5550 1,3-Dichlorobutene-2 3:5550 1,3-Dichlorobutene-2 3:5500 cis-2,3-Dichlorobutene-2 3:5500 cis-2,3-Dichlorobutene-2 3:5500 2,4-Dichlorobutene-2 3:5500 2,4-Dichlorobute |        |                                  | 3: <b>04</b> 55 |                                 |
| 3:7650 1,3-Dichlorobutene-1 3:8315 3,4-Dichloro-3,4-dimethylhexane 3:9074 2,3-Dichlorobutene-1 3:9564 2,5-Dichloro-2,5-dimethylhexane 2,5-Dichlorobutene-2 3:9565 1,1-Dichlorobutene-2 (low-boilg. isomer) 3:8516 1,2-Dichlorobutene-2 (high-boilg isomer) 3:9428 2,4-Dichloro-2,4-dimethylexane 3:5550 1,3-Dichlorobutene-2 3:7516 3,3-Dichlorobutene-2 3:5550 cis-2,3-Dichlorobutene-2 3:5550 cis-2,3-Dichlorobutene-2 3:5550 2,4-Dichlorobutene-2 3:5550 2,4-Di |        |                                  |                 |                                 |
| 3:9674 2,3-Dichlorobutene-1 3:5356 3,4-Dichlorobutene-1 3:7685 1,1-Dichlorobutene-2 (low-boilg. isomer) 3:5615 1,2-Dichlorobutene-2 (high-boilg isomer) 3:5550 1,3-Dichlorobutene-2 (high-boilg isomer) 3:5550 1,4-Dichlorobutene-2 (high-boilg isomer) 3:5550 2,4-Dichlorobutene-2 (high-boilg isomer) 3:5550 2,4-Dichlorobutene-2 (high-boilg isomer) 3:5550 2,4-Dichlorobutene-2 (high-boilg isomer) 3:5550 2,4-Dichlorobutene-2 (high-boilg isomer) 3:5555 1,4-Dichlorobutene-2 (high-boilg isomer) 3:5550 2,4-Dichlorobutene-2 (high-boilg isomer) 3:5560 2,4-Dichlorobutene-2 (high-boilg isomer) 3:5570 2,4-Dichlorobutene-2 (high-boilg isomer) 3:5560 2,4-Dichlorobutene-2 (high-boilg isomer) 3:5570 2,4-Dichloro-2,4-dimethyl-pentane 3:5570 2,4-Dichloro-4,4-dimethyl-pentane 3:5570 2,5-Dichlorodioxane-1,4 3:5771 2,5-Dichloro-4,4-dimethyl-pentane 3:5772 2,5-Dichloro-3,4-dimethyl-pentane 3:5773 2,5-Dichloro-3,4-dimethyl-pentane 3:5773 2,5-Dichlorodioxane-1,4 3:5773 2,5-Dichlorodioxane-1,4 3:5773 2,5-Dichlorodioxane-1,4 3:5773 2,5-Dichlorodioxane-1,4 3:5774 2,5-Dichlorodioxane-1,4 3:5775 2,5-Dichlorodioxane-1,4 3:5776 2,5-Dichlorodioxane-1,4 3:5777 2,5-Dichlorodioxane-1,4 3:5778 2,5-Dichlorodioxane-1,4 3:5779 2,5-Dichlorodioxane-1,4 3:5770 2,5-Dichlorodioxane-1,4 3:5771 2,5-Dichlorodioxane-1,4 3:5772 2,5-Dichlorodioxane-1,4 3:5773 2,5-Dichlorodioxane-1,4 3:5773 2,5-Dichlorodioxane-1,4 3:5774 2,5-Dichlorodioxane-1,4 3:5775 2,5-Dichlorodioxane-1,4 3:5775 2,5-Dichlorodioxane-1,4 3:5775 2,5-Dichlorodioxane-1,4 3:5775 2,5-Dichlorodioxane-1,4 3:5785 2,5-Dichlorodioxane-1,4 |        |                                  |                 |                                 |
| 3: 5350 3,4-Dichlorobutene-1 3: 6846 2,7-Dichloro-2,7-dimethyloctane 3: 5360 1,2-Dichlorobutene-2 (low-boilg. isomer) 3: 5815 1,2-Dichlorobutene-2 (high-boilg isomer) 3: 5855 1,3-Dichlorobutene-2 3: 5550 1,3-Dichlorobutene-2 3: 5560 cis-2,3-Dichlorobutene-2 3: 5560 2,4-Dichlorobutene-2 3: 5550 2,4-Dichlorobutene-2 3: 5550 1,2-Dichlorobutene-2 3: 5550 1,2-Dichlorobutene-2 3: 5550 1,2-Dichlorobutene-2 3: 5550 2,4-Dichlorobutene-2 3: 5550 2,4-Dichlorobutene-2 3: 5550 2,4-Dichlorobutene-2 3: 5550 3,3-Dichlorobutene-2 3: 5550 3,3-Dichlor |        |                                  |                 |                                 |
| 3:7685 1,1-Dichlorobutene-2 3:6846 2,7-Dichloro-2,7-dimethyloctane 4,5-Dichloro-2,2-dimethyloctane 4,5-Dichloro-2,2-dimethyloctane 4,5-Dichloro-2,2-dimethyloctane 4,5-Dichloro-2,2-dimethyloctane 4,5-Dichloro-2,2-dimethyloctane 2,4-Dichlorobutene-2 3:7616 3:7616 3,3-Dichloro-2,4-dimethyloctane 3,3-Dichloro-2,4-dimethyloctane 3,3-Dichloro-2,4-dimethyloctane 2,3-Dichlorobutene-2 3:5500 cis-2,3-Dichlorobutene-2 3:5500 cis-2,3-Dichlorobutene-2 3:5500 cis-2,3-Dichlorobutene-2 3:5500 2,4-Dichlorobutene-2 3:6500 2,4-Dichlorobutene-2 3:6 |        |                                  | 3:95 <b>04</b>  |                                 |
| 3:5360 1,2-Dichlorobutene-2 (low-boilg. isomer) 3:5615 1,2-Dichlorobutene-2 (high-boilg isomer) 3:5550 1,3-Dichlorobutene-2 3:5550 1,4-Dichlorobutene-2 3:5550 1,4-Dichlorobutene-2 3:5550 2,4-Dichlorobutene-2 3:5550 2,4-Dichlorobutene-2 3:5550 2,4-Dichlorobutene-2 3:5550 2,4-Dichlorobutene-2 3:5550 2,4-Dichlorobutene-2 3:5550 3,3-Dichloro-2,4-dimethyl-pentane 1,5-Dichloro-3,3-dimethyl-pentane 1,2-Dichloro-3,3-dimethyl-pentane 2,3-Dichloro-4,4-dimethyl-pentane 3:5577 3:5772 3:5772 3:5773 3:5773 3:5773 3:5774 3:5775 3:5775 3:5775 3:5776 3:5776 3:5776 3:5776 3:5776 3:5776 3:5777 3:5776 3:5777 3:5777 3:5777 3:5777 3:5777 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5778 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3:5788 3 |        |                                  |                 |                                 |
| isomer)  3:5615 1,2-Dichlorobutene-2 (high-boilg isomer)  3:5550 1,3-Dichlorobutene-2 3:5725 1,4-Dichlorobutene-2 3:5500 cis-2,3-Dichlorobutene-2 3:5550 2,4-Dichlorobutene-2 3:5550 2,4-Dichlorobutene-2 3:5550 1,2-Dichlorobutene-2 3:5550 1,2-Dichlorobutene-2 3:5550 1,2-Dichlorobutene-2 3:5550 1,2-Dichlorobutene-2 3:5550 1,2-Dichlorobutene-2 3:5550 1,2-Dichlorobutene-3 3:5577 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3:7685 |                                  |                 |                                 |
| 3:5615 1,2-Dichlorobutene-2 (high-boilg isomer) 3:5428 2,4-Dichloro-2,4-dimethylpentane 3,3-Dichlorobutene-2 3:5550 1,3-Dichlorobutene-2 pentane 3,3-Dichlorobutene-2 pentane 1,5-Dichloro-3,3-dimethylpentane 1,5-Dichlorobutene-2 3:5550 2,4-Dichlorobutene-2 3:6550 2,4-Dichlorobutene-2 3:6550 1,2-Dichlorobutene-2 3:6550 1,2-Dichlorobutene-3 3:6577 symDichloro-ter-butyl alcohol 3:2442 5,6-Dichloro-2,3-dimethylphenol alcohol 3:2216 2,5-Dichloro-3,4-dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3:5360 |                                  | 3:8516          |                                 |
| isomer)  3:5550  1,3-Dichlorobutene-2 3:5725 1,4-Dichlorobutene-2 3:5500 2:5500 3:7355 1,4-Dichlorobutene-2 3:5550 3:7355 1,4-Dichlorobutene-2 3:7395 3:7355 2,4-Dichlorobutene-2 3:5550 3:5550 3:5550 3:5577 3:5772 3:5772 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 3:5773 |        |                                  |                 |                                 |
| 3:5550 1,3-Dichlorobutene-2 3:7610 3,3-Dichloro-2,4-dimethyl- 3:5725 1,4-Dichlorobutene-2 pentane 1,5-Dichloro-3,3-dimethyl- 3:5500 cis-2,3-Dichlorobutene-2 2,4-Dichlorobutene-2 3:5550 2,4-Dichlorobutene-2 3:5550 1,2-Dichlorobutene-3 3:5570 symDichloro-ter-butyl alcohol 3:7216 2,5-Dichloro-3,4-dimethylphenol 2,5-Dichloro-3,4-dimethylphenol 3:7216 2,5-Dichloro-3,4-dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3:5615 | 1,2-Dichlorobutene-2 (high-boilg | <b>3:9428</b>   |                                 |
| 3: 5725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                                  |                 |                                 |
| 3:5500         cis-2,3-Dichlorobutene-2         3:9430         1,5-Dichloro-3,3-dimethyl-pentane           3:7395         trans-2,3-Dichlorobutene-2         pentane         1,2-Dichloro-4,4-dimethyl-pentane           3:5550         2,4-Dichloro-butene-2         3:8516         1,2-Dichloro-4,4-dimethyl-pentane           3:5977         symDichloro-ter-butyl alcohol         3:9195         2,3-Dichlorodioxane-1,4           3:5773         unsymDichloro-ter-butyl         3:2443         5,6-Dichloro-2,3-dimethylphenol           alcohol         3:2216         2,5-Dichloro-3,4-dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3:5550 | 1,3-Dichlorobutene-2             | 3:7610          | 3,3-Dichloro-2,4-dimethyl-      |
| 3: 7395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3:5725 | 1,4-Dichlorobutene-2             |                 |                                 |
| 3:5550 2,4-Dichlorobutene-2 3:8556 1,2-Dichloro-4,4-dimethyl- 3:6350 1,2-Dichlorobutene-3 pentane 3:5577 symDichloro-ter-butyl alcohol 3:2442 5,6-Dichloro-2,3-dimethylphenol alcohol 3:2316 2,5-Dichloro-3,4-dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3:5500 | cis-2,3-Dichlorobutene-2         | 3:9430          | 1,5-Dichloro-3,3-dimethyl-      |
| 3:5559 2,4-Dichlorobutene-2 3:8516 1,2-Dichloro-4,4-dimethyl- 3:6359 1,2-Dichlorobutene-3 pentane 3:5577 symDichloro-ter-butyl alcohol 3:2442 5,6-Dichloro-2,3-dimethylphenol alcohol 3:2216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3:7395 | trans-2,3-Dichlorobutene-2       |                 | pentane                         |
| 3:5356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3:5550 |                                  | 3:8516          | 1,2-Dichloro-4,4-dimethyl-      |
| 3:5977 symDichloro-ter-butyl alcohol 3:9165 2,3-Dichlorodioxane-1,4 3:5772 unsymDichloro-ter-butyl 3:2443 5,6-Dichloro-2,3-dimethylphenol 2,5-Dichloro-3,4-dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                                  |                 | pentane                         |
| 3: 5772 unsymDichloro-ter-butyl 3: 2443 5,6-Dichloro-2,3-dimethylphenol alcohol 3: 2216 2,5-Dichloro-3,4-dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                                  | 3:9105          | 2,3-Dichlorodioxane-1,4         |
| alcohol 3:2216 2,5-Dichloro-3,4-dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                                  | 3:2442          | 5,6-Dichloro-2,3-dimethylphenol |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                  |                 |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3:9103 | α,β-Dichloro-n-butyraldehyde     | 3:0935          |                                 |

| 3:3 <b>00</b> 5     | 5,6-Dichloro-3,4-dimethylphenol                    | 3:2637             | 3,5-Dichloro-2-hydroxy-                         |
|---------------------|----------------------------------------------------|--------------------|-------------------------------------------------|
| 3:2182              | 2,4-Dichloro-3,5-dimethylphenol                    |                    | benzaldehyde                                    |
| 3:2638              | 2,6-Dichloro-3,5-dimethylphenol                    | 3:4140             | 2.4-Dichloro-3-hydroxy-                         |
| 3:2570              | d,l-1,2-Dichloro-1,2-diphenyl-                     | 011110             | benzaldehyde                                    |
| 0.2010              |                                                    | 0.4400             |                                                 |
|                     | ethane                                             | <b>3:4160</b>      | 2,6-Dichloro-3-hydroxy-                         |
| <b>3:4854</b>       | meso-1,2-Dichloro-1,2-diphenyl-                    |                    | benzaldehyde                                    |
|                     | ethane                                             | 3:3952             | 4,6-Dichloro-3-hydroxy-                         |
| 3:1940              | 1,1-Dichloro-2,2-diphenylethane                    |                    | benzaldehyde                                    |
| 3:1380              | cis-1,2-Dichloro-1,2-diphenyl-                     | 3:4400             | 3.5-Dichloro-4-hydroxy-                         |
| 0.1000              |                                                    | 0:2200             |                                                 |
| 0.4040              | ethylene                                           |                    | benzaldehyde                                    |
| 3: <b>4210</b>      | trans-1,2-Dichloro-1,2-diphenyl-                   | <b>3:4935</b>      | 3,5-Dichloro-2-hydroxybenzoic                   |
|                     | ethylene                                           |                    | acid                                            |
| 3:1938              | 1,1-Dichloro-2,2-diphenyl-                         | 8:4950             | 3,5-Dichloro-4-hydroxybenzoic                   |
|                     | ethylene                                           |                    | acid                                            |
| 3:1057              | 4,4'-Dichlorodiphenylmethane                       | 3:2145             | $\beta,\beta$ -Dichloro- $\alpha$ -hydroxyiso-  |
|                     |                                                    | 9:5140             |                                                 |
| 3:6960              | $\alpha, \alpha$ -Dichlorodiphenylmethane          |                    | butyric acid                                    |
| 3:8610              | $\beta,\beta'$ -Dichloro-di-n-propyl ether         | 3:2565             | $\beta,\beta'$ -Dichloro- $\alpha$ -hydroxyiso- |
| 3:8745              | $\gamma, \gamma$ -Dichloro-di-n-propyl ether       |                    | butyric acid                                    |
| 3:6960              | α,α-Dichloroditan                                  | 3:5300             | α,α-Dichloroisobutylene                         |
| 3:5035              | 1,1-Dichloroethane                                 | 3:5590             | α,γ-Dichloroisobutylene                         |
| 3:5130              | 1,2-Dichloroethane                                 |                    |                                                 |
|                     |                                                    | 3:5633             | $\gamma, \gamma'$ -Dichloroisobutylene          |
| 3:5130              | symDichloroethane                                  | 3: <b>496</b> 5    | 4,6-Dichloroisophthalic acid                    |
| 3:5035              | unsymDichloroethane                                | 3:6318             | $\beta,\beta'$ -Dichloroisopropyl acetate       |
| 3:5745              | 2,2-Dichloroethanol-1                              | 3:5755             | $\beta,\beta$ -Dichloroisopropyl alcohol        |
| 3:5540              | $\alpha,\beta$ -Dichloro- $\alpha$ -ethoxyethylene | 3:5985             | $\beta, \beta'$ -Dichloroisopropyl alcohol      |
| 3:5745              | β,β-Dichloroethyl alcohol                          | 3:9394             | $\beta, \beta'$ -Dichloroisopropyl-ethyl-       |
| 3:6685              |                                                    | 9:9994             |                                                 |
|                     | $\alpha, \beta$ -Dichloroethylbenzene              |                    | formal                                          |
| 3:6790              | $Di(\beta$ -chloroethyl) carbonate                 | 3:363 <del>4</del> | Dichloromaleic acid                             |
| 3:6790              | β,β-Dichloroethyl carbonate                        | 3:3635             | Dichloromaleic anhydride                        |
| 3:5005              | 1,1-Dichloroethylene                               | 3:6197             | Dichloromalevl (di)chloride                     |
| 3:5030              | 1,2-Dichloroethylene (ordinary                     | 3:5020             | Dichloromethane                                 |
| 0.0000              | mixt.)                                             | 3:7920             | 1,2-Dichloro-2-methylbutane                     |
| 3:5005              |                                                    |                    |                                                 |
|                     | unsymDichloroethylene                              | 3:9228             | 1,3-Dichloro-2-methylbutane                     |
| 3:5042              | cis-1,2-Dichlorethylene                            | 3:8360             | 1,4-Dichloro-2-methylbutane                     |
| <b>3:5028</b>       | trans-1,2-Dichloroethylene                         | 3:7975             | 2,3-Dichloro-2-methylbutane                     |
| 3:5 <del>640</del>  | α,β-Dichloroethyl ethyl eth <b>er</b>              | 3:8105             | 2.4-Dichloro-2-methylbutane                     |
| 3:9534              | 1,3-Dichloro-2-ethylhexane                         | 3:9230             | 3,3-Dichloro-2-methylbutane                     |
| 3:0572              | Di-(β-chloroethyl) oxalate                         | 3:8075             | 3,4-Dichloro-2-methylbutane                     |
| 3:5010              | 1,2-Dichloroethyne                                 |                    |                                                 |
|                     |                                                    | 3:7885             | 4,4-Dichloro-2-methylbutane                     |
| 3:8650              | 1,1-Dichloroheptane                                | 3:7690             | 3,3-Dichloro-2-methylbutene-1                   |
| 3:9420              | 1,2-Dichloroheptane                                | 3:8170             | 1,3-Dichloro-2-methylbutene-2                   |
| 3: <del>94</del> 22 | 1,7-Dichloroheptane                                | 3:92 <b>04</b>     | 1,4-Dichloro-2-methylbutene-2                   |
| 3:9424              | 2,2-Dichloroheptane                                | 3:5315             | Dichloromethyl chlorocarbonate                  |
| 3:9426              | 4.4-Dichloroheptane                                | 3:5315             | Dichloromethyl chloroformate                    |
| 3:9310              | 1,3-Dichlorohexadiene-2,4                          | 3:5772             |                                                 |
| 3:8380              |                                                    | 0.0118             | Dichloromethyl-dimethyl-                        |
|                     | 1,2-Dichlorohexane                                 |                    | carbinol                                        |
| 3:9340              | 1,5-Dichlorohexane                                 | 3:5755             | Dichloromethyl-methyl-carbinol                  |
| 3:8720              | 1,6-Dichlorohexane                                 | <b>3:5430</b>      | Dichloromethyl methyl ketone                    |
| <b>3:934</b> 2      | 2,2-Dichlorohexane                                 | <b>3:934</b> 6     | 2,3-Dichloro-2-methylpentane                    |
| 3:8300              | 2,3-Dichlorohexane                                 | 3:8550             | 2,5-Dichloro-2-methylpentane                    |
| 3:8525              | 2.5-Dichlorohexane                                 | 3:2910             | 4,5-Dichloro-2-methylphenol                     |
| 3:9344              | 3,4-Dichlorohexane                                 | 3:1020             | 4.6 Dichlers 0 moderate laborat                 |
|                     |                                                    |                    | 4,6-Dichloro-2-methylphenol                     |
| 3:9300              | 3,4-Dichlorohexatetraene-1,2,4,5                   | 8:1205             | 2,4-Dichloro-3-methylphenol                     |
| <b>3:9304</b> ,     | 3.6-Dichlorohexatriene-1,3,4                       | 3:0150             | 2,6-Dichloro-3-methylphenol                     |
| 8:9330              | 1,2-Dichlorohexene-1                               | 8:1745             | 4,6-Dichloro-3-methylphenol                     |
| 3:5985              | " a-Dichlorohydrin "                               | 3:0400             | 2,6-Dichloro-4-methylphenol                     |
| 3:6060              | "β-Dichlorohydrin "                                | 3:7425             | 1,1-Dichloro-2-methylpropane                    |
| 3:4220              | b zatomoromy arm                                   | 8:7430             | 1.9 Dickless 0                                  |
|                     | 2,3-Dichlorohydroquinone                           |                    | 1,2-Dichloro-2-methylpropane                    |
| 3:4690              | 2,5-Dichlorohydroquinone                           | 3:7960             | 1,3-Dichloro-2-methylpropane                    |
| <b>3:4600</b>       | 2,6-Dichlorohydroquinone                           | 8:5772             | 1,1-Dichloro-2-methylpropanol-2                 |
| 3:4220              | o-Dichlorohydroquinone                             | 3:5977             | 1,3-Dichloro-2-methylpropanol-2                 |
| 3:4600              | m-Dichlorohydroquinone                             | 3:5300             | 1,1-Dichloro-2-methylpropene-1                  |
| 3:4690              | p-Dichlorohydroquinone                             | 3:5590             | 1,3-Dichloro-2-methylpropene-1                  |
| J. 2000             | 5                                                  | J. 3000            | -,                                              |

| 3:7480           | 3,3-Dichloro-2-methylpropene-1             | 3:2285             | 2,6-Dichlorophenyl phenyl                                                            |
|------------------|--------------------------------------------|--------------------|--------------------------------------------------------------------------------------|
| 3:7480           | 1,1-Dichloro-2-methylpropene-2             | <b>5.</b> AROS     | ketone                                                                               |
| 3:0320           | 1,2-Dichloronaphthalene                    | 3:3070             | 3,4-Dichlorophenyl phenyl                                                            |
| 3:1310           | 1,3-Dichloronaphthalene                    | 0.00.0             | ketone                                                                               |
| 3:1655           | 1,4-Dichloronaphthalene                    | 3:1505             | 3,5-Dichlorophenyl phenyl                                                            |
| 3:3200           | 1.5-Dichloronaphthalene                    | 012000             | ketone                                                                               |
| 3:0810           | 1.6-Dichloronaphthalene                    | 3:4880             | 3.4-Dichlorophthalic acid                                                            |
| 3:1385           | 1.7-Dichloronaphthalene                    | 3:4580             | 3,5-Dichlorophthalic acid                                                            |
| 3:2435           | 1,8-Dichloronaphthalene                    | 3:4870             | 3,6-Dichlorophthalic acid                                                            |
| 3:3665           | 2.3-Dichloronaphthalene                    | 3:4890             | 4,5-Dichlorophthalic acid                                                            |
| 3:0810           | 2,5-Dichloronaphthalene                    | 3:3695             | 3,4-Dichlorophthalic anhydride                                                       |
| 3:4040           | 2,6-Dichloronaphthalene                    | 3:2375             | 3,5-Dichlorophthalic anhydride                                                       |
| 3:3445           | 2.7-Dichloronaphthalene                    | 3:4860             | 3,6-Dichlorophthalic anhydride                                                       |
| 3:1385           | 2,8-Dichloronaphthalene                    | 3:4830             | 4,5-Dichlorophthalic anhydride                                                       |
| 3:2935           | 2,3-Dichloronaphthol-1                     | 3:2395             | 3,3-Dichlorophthalide                                                                |
| 3:3250           | 2,4-Dichloronaphthol-1                     | 3:9033-A           | 2,2-Dichloropropanal-1                                                               |
| 3:3985           | 5,7-Dichloronaphthol-1                     | 3:903 <del>4</del> | 2,3-Dichloropropanal-1                                                               |
| 3:3420           | 5,8-Dichloronaphthol-1                     | 3:7230             | 1,1-Dichloropropane                                                                  |
| 3:4315           | 6,7-Dichloronaphthol-1                     | 3:5200             | 1,2-Dichloropropane                                                                  |
| 3:2635           | 7,8-Dichloronaphthol-1                     | 3:5450             | 1,3-Dichloropropane                                                                  |
| 3:1990           | 1,3-Dichloronaphthol-2                     | 3:71 <b>40</b>     | 2,2-Dichloropropane                                                                  |
| 3:3840           | 1,4-Dichloronaphthol-2                     | 3:6060             | 2,3-Dichloropropanol-1                                                               |
| 3:360 <b>0</b>   | 1,6-Dichloronaphthol-2                     | 3:5755             | 1,1-Dichloropropanol-2                                                               |
| 3:3295           | 3,4-Dichloronaphthol-2                     | 3:5985             | 1,3-Dichloropropanol-2                                                               |
| 3: <b>44</b> 20  | 4,8-Dichloronaphthol-2                     | <b>3:5430</b>      | 1,1-Dichloropropanone-2                                                              |
| 3:4155           | 5,8-Dichloronaphthol-2                     | 3:0563             | 1,3-Dichloropropanone-2                                                              |
| 3:4857           | 2,3-Dichloronaphthoquinone-1,4             | 3:5120             | 1,1-Dichloropropene-1                                                                |
| 3:4775           | 3,4-Dichloronaphthoquinone-1,2             | 3:5150             | 1,2-Dichloropropene-1 (hb.                                                           |
| 3:9632           | 1,2-Dichlorononane                         |                    | isomer)                                                                              |
| 3:8880           | 1,9-Dichlorononane                         | 3:5110             | 1,2-Dichloropropene-1 (lb.                                                           |
| 3:9530           | 1,6-Dichloro-octane                        |                    | isomer)                                                                              |
| 3:9532           | 1,7-Dichloro-octane                        | 3:5280             | 1,3-Dichloropropene-1                                                                |
| 3:8805           | 1,8-Dichloro-octane                        | 3:5190             | 2,3-Dichloropropene-1                                                                |
| 3:8670           | 2,2-Dichloro-octane                        | 3:5140             | 3,3-Dichloropropene-1                                                                |
| 3:8015           | 1,1-Dichloropentane                        | 3:5140             | 1,1-Dichloropropene-2                                                                |
| 3:8140           | 1,2-Dichloropentane                        | 3:9033-A           | α,α-Dichloropropionaldehyde                                                          |
| 3:9220           | 1,3-Dichloropentane                        | 3:9034             | α,β-Dichloropropionaldehyde                                                          |
| 3:9224           | 1,4-Dichloropentane                        | 3:6162.            | α,α-Dichloropropionic acid                                                           |
| 3:8575           | 1,5-Dichloropentane                        | 3:0855<br>3:1058   | α,β-Dichloropropionic acid                                                           |
| 3:7755           | 2,2-Dichloropentane                        | 3:5372             | β,β-Dichloropropionic acid                                                           |
| 3:8010<br>3:8120 | 2,3-Dichloropentane                        | 3:9032             | α,α-Dichloropropionyl chloride                                                       |
| 3:7895           | 2,4-Dichloropentane<br>3,3-Dichloropentane | 3:9032-A           | $\alpha,\beta$ -Dichloropropionyl chloride $\beta,\beta$ -Dichloropropionyl chloride |
| 3:8045           | 3,4-Dichloropentene-2                      | 3:6220             | $\beta, \gamma$ -Dichloro-n-propyl acetate                                           |
| 3:9202           | 2,5-Dichloropentene-2                      | 3:6895             | Di-(γ-chloropropyl) carbonate                                                        |
| 3:1175           | 2,3-Dichlorophenol                         | 3:6895             | $\gamma, \gamma'$ -Dichloropropyl carbonate                                          |
| 3:0560           | 2,4-Dichlorophenol                         | 3:5280             | $\alpha, \gamma$ -Dichloropropylene                                                  |
| 3:1190           | 2,5-Dichlorophenol                         | 3:2192             | 3,5-Dichloropyrocatechol                                                             |
| 3:1595           | 2,6-Dichlorophenol                         | 3:3525             | 4,5-Dichloropyrocatechol                                                             |
| 3:1460           | 3,4-Dichlorophenol                         | 3:4220             | 2,3-Dichloroquinol                                                                   |
| 3:1670           | 3,5-Dichlorophenol                         | 3:3380             | 4,6-Dichlororesorcinol                                                               |
| 3:4095           | 2,4-Dichlorophenoxyacetic acid             | 3:2637             | 3,5-Dichlorosalicylaldehyde                                                          |
| 3:4612           | Di-(p-chlorophenyl)acetic acid             | 3:4935             | 3,5-Dichlorosalicylic acid                                                           |
| 3:6685           | 1,2-Dichloro-1-phenylethane                | 3:1380             | cis-\alpha,\alpha'-Dichlorostilbene                                                  |
| 3:0995           | 1,1-Di-(p-chlorophenyl)ethane              | 3:4210             | trans-a, a'-Dichlorostilbene                                                         |
| 3:2475           | 1,1-Di-(p-chlorophenyl)ethylene            | 3:4711             | d,l-α,α'-Dichlorosuccinic acid                                                       |
| 3:0717           | Di-(o-chlorophenyl) ketone                 | 3:4930             | meso-a.a'-Dichlorosuccinic                                                           |
| 3:3860           | Di-(m-chlorophenyl) ketone                 |                    | acid                                                                                 |
| 3:4270           | Di-(p-chlorophenyl) ketone                 | 3:4711             | allo-Dichlorosuccinic acid                                                           |
| 3:1057           | Di-(p-chlorophenyl)methane                 | 3:0395             | d,l-α,α'-Dichlorosuccinyl (di)-                                                      |
| 3:0825           | 2,4-Dichlorophenyl phenyl ketone           |                    | chloride                                                                             |
| 3:2340           | 2,5-Dichlorophenyl phenyl                  | 3:9087             | meso-α,α'-Dichlorosuccinyl (di)-                                                     |
|                  | ketone                                     |                    | chloride                                                                             |
|                  |                                            |                    |                                                                                      |

| 3:4985           | 2,5-Dichloroterephthalic acid                                 | 3:7900               | Dimethyl-ethyl-acetyl chloride                            |
|------------------|---------------------------------------------------------------|----------------------|-----------------------------------------------------------|
| 3:6327           | α,α-Dichlorotoluene                                           | 8:7220               | Dimethyl-ethyl-carbinyl chloride                          |
| 3:6327           | ω,ω-Dichlorotoluene                                           | 3:9287               | Dimethyl-ethyl-carbinyl hypo-                             |
| 3:6345           | 2,3-Dichlorotoluene                                           |                      | chlorite                                                  |
| 3:6290<br>3:6245 | 2,4-Dichlorotoluene                                           | 3:7752               | α,α-Dimethylethylene α-chloro-                            |
| 3:0245           | 2,5-Dichlorotoluene                                           |                      | hydrin                                                    |
| 3:6355           | 2,6-Dichlorotoluene                                           | 3:7750               | Dimethyl-isobutyl-carbinyl                                |
| 3:6310           | 3,4-Dichlorotoluene<br>3,5-Dichlorotoluene                    | 9.0405               | chloride                                                  |
| 3:9536           | 3,3-Dichloro-2,2,4-trimethyl-                                 | 3:0485<br>3:8145     | Dimethyl isodichlorosuccinate                             |
| 0.000            | pentane                                                       | 9:0149               | Dimethyl-isopropyl-acetyl chloride                        |
| 3:5540           | α,β-Dichlorovinyl ethyl ether                                 | 3:7600               | Dimethyl-isopropyl-carbinyl                               |
| 3:1040           | ω,ω'-Dichloro-o-xylene                                        | 0.1000               | chloride                                                  |
| 3:0310           | $\omega,\omega'$ -Dichloro-m-xylene                           | 3:1355               | 2,4-Dimethylphenacyl chloride                             |
| 3:2825           | $\omega,\omega'$ -Dichloro-p-xylene                           | 3:0245               | 2,5-Dimethylphenacyl chloride                             |
| 3:2442           | 4,5-Dichloro-o-3-xylenol                                      | 3:1775               | 3,4-Dimethylphenacyl chloride                             |
| 3:0935           | 3,5-Dichloro-o-4-xylenol                                      | 3:9610               | Dimethyl-phonyl-carbinyl                                  |
| 3:2216           | 3,6-Dichloro-o-4-xylenol                                      |                      | chloride                                                  |
| 3:3005           | 5,6-Dichloro-o-4-xylenol                                      | 3:7450               | $\alpha,\alpha$ -Dimethylpropionyl chloride               |
| 3:2182           | 2,4-Dichloro-m-5-xylenol                                      | 3:9456               | Dimethyl- $n$ -propyl-acetyl                              |
| 3:2638           | 2,6-Dichloro-m-5-xylenol                                      |                      | chloride                                                  |
| 3:7990<br>3:7330 | Diethylacetyl chloride                                        | 3:7490               | Dimethyl-n-propyl-carbinyl                                |
| 3:6864           | Diethylcarbinyl chloride                                      |                      | chloride                                                  |
| 3:6697           | Diethyl chlorofumarate<br>Diethyl chloromaleate               | 3:9456               | $\alpha, \alpha$ -Dimethyl-n-valeryl chloride             |
| 2:9578           | Diethyl $d_i l - \alpha_i \alpha'$ -dichloro-                 | 3:9458<br>3:9460     | $\alpha,\beta$ -Dimethyl- <i>n</i> -valeryl chloride      |
| 0.00.0           | succinate                                                     | 3:7120<br>3:7120     | γ,γ-Dimethyl-n-valeryl chloride                           |
| 3:9578           | Diethyl allo-dichlorosuccinate                                | 3:9402               | β,β-Dimethylvinyl chloride Dimethyl-vinylethynyl-carbinyl |
| 3:1364           | Diethyl meso-a, a'-dichloro-                                  | 0.0±0%               | chloride                                                  |
|                  | succinate                                                     | 3:0060               | Diphenylcarbinyl chlorido                                 |
| 3:9390           | Diethylene glycol mono(chloro-                                | 3:3585               | Diphenylchloroacetic acid .                               |
|                  | acetate)                                                      | 3:0885               | Diphenyl-chloro-acetyl chloride                           |
| 3:9185           | Diethylene glycol chlorohydrin                                | 3:0060               | Diphenyl-chloromethane                                    |
| 3:9578           | Diethyl isodichlorosuccinate                                  | 3:9870               | 1,1-Diphenylethyl chloride                                |
| 3:8210           | Diethyl-isopropyl-carbinyl                                    | 3:9871               | 2,2-Diphenylethyl chloride                                |
|                  | chloride                                                      | 3:0060               | Diphenylmethyl chloride                                   |
| 3:7585           | Diethyl-methyl-carbinyl                                       | 3:5515               | " Diphosgene "                                            |
| 3:8223           | chloride .                                                    | 3:8095               | Di-n-propyl-carbinyl chloride                             |
| o. Grro          | Diethyl-n-propyl-carbinyl chloride                            | 3:1915               | Di-(trichloromethyl) carbonate                            |
| 3:9092           | Diglycoloyl dichloride                                        | 3:6373               | Di-(trichlorovinyl) ether                                 |
| 3:9039           | $\beta, \beta'$ -Dihydroxyisopropyl chloride                  | 3:9310<br>3:9858     | Divinylacetylene dihydrochloride                          |
| 3:8113           | Di-isobutylene hydrochloride                                  | 3:8810               | n-Dodecanoyl chloride n-Dodecyl chloride                  |
| 3:9744           | Di-isobutyl-methyl-carbinyl                                   | 0.0010               | n-Dodecyr emoride                                         |
|                  | chloride                                                      |                      | E                                                         |
| 3:9527           | Di-isocrotyl hydrochloride                                    |                      | F.                                                        |
| 3:1550           | Di-isocrotyl bis-hydrochloride                                | 3:9950               | Elaidyl chloride                                          |
| <b>3:9240</b>    | cis-α,β-Dimethyl-acryloyl                                     | 3:8520               | Enanthoyl chloride                                        |
|                  | chloride                                                      | 3:5358               | "Epichlorohydrin"                                         |
| 3:7300           | $\alpha, \beta$ -Dimethylallyl chloride                       | 3:9082               | Erythrene tetrachloride (liquid                           |
| 8:7400           | α,γ-Dimethylallyl chloride                                    |                      | isomer)                                                   |
| 3:7485<br>3:7465 | β,γ-Dimethylallyl chloride                                    | 3:1760               | Erythrene tetrachloride (solid                            |
| 8:7900           | γ,γ-Dimethylallyl chloride<br>α,α-Dimethyl-n-butyryl chloride | 9.7007               | isomer)                                                   |
| 3:7965           | $\alpha,\beta$ -Dimethyl- $n$ -butyryl chloride               | 3 : 7065<br>3 : 5625 | Ethanoyl chloride                                         |
| 3:7880           | β,β-Dimethyl-n-butyryl chloride                               | 3:7745               | Ethoxalyl chloride                                        |
| 3:6582           | Dimethyl chlorofumarate                                       | 3:7305               | Ethoxyacetyl chloride                                     |
| 3:9251           | Dimethyl chloromaleate                                        | 3:7463               | α-Ethoxyethyl chloride<br>β-Ethoxyethyl chloride          |
| 3:0485           | Dimethyl d,l-\alpha,\alpha'-dichloro-                         | 3:9280               | β-Ethoxyethyl chlorocarbonate                             |
|                  | succinate                                                     | 3:9280               | β-Ethoxyethyl chloroformate                               |
| 3:0485           | Dimethyl allo-dichlorosuccinate                               | 3:7260               | α-Ethylallyl chloride                                     |
| 8:0240           | Dimethyl meso-\alpha,\alpha'-dichloro-                        | 3:9214               | β-Ethylallyl chloride                                     |
|                  | succinate                                                     | 3:7470               | γ-Ethylallyl chloride                                     |
|                  |                                                               |                      | •                                                         |

| 0.0000           | Walnut or housest and the St. 11. 19                                |                 |                                                     |
|------------------|---------------------------------------------------------------------|-----------------|-----------------------------------------------------|
| 3:8080           | Ethyl-n-butyl-carbinyl chloride                                     | 3:9462          | $\alpha$ -Ethyl-isovaleryl chloride                 |
| 3:7720           | 2-Ethylbutyl chloride                                               | 3:7603          | Ethyl-methyl-acetyl chloride                        |
| 3:7990           | α-Ethyl-n-butyryl chloride                                          | 3:7660          | $\alpha$ -Ethyl- $\beta$ -methylallyl chloride      |
| 3:7015           | Ethyl chloride                                                      | 3:7675          | $\alpha$ -Ethyl- $\gamma$ -methylallyl chloride     |
| 3:5700           | Ethyl chloroacetate                                                 | 3: <b>946</b> 2 | $\alpha$ -Ethyl- $\beta$ -methyl- $n$ -butyryl      |
| 3:6207           | Ethyl α-chloroacetoacetate                                          |                 | chloride                                            |
| 3:6375           | Ethyl γ-chloroacetoacetate                                          | 3:7125          | Ethyl-methyl-carbinyl chloride                      |
| 3:9242           | Ethyl a-chloroacrylate                                              | 3:8175          | unsymEthyl-methyl-ethylene                          |
| 3:6800           | Ethyl o-chlorobenzoate                                              |                 | chlorohydrin                                        |
| 3:6770           | Ethyl m-chlorobenzoate                                              | 3:8010          | symEthyl-methyl-ethylene                            |
| 3:6750           | Ethyl p-chlorobenzoate                                              |                 | dichloride                                          |
| 3:8307           | Ethyl a-chloro-n-butyrate                                           | 3:7950          | Ethyl-methyl-n-propyl-carbinyl                      |
| 3:8373           | Ethyl $\beta$ -chloro- $n$ -butyrate                                |                 | chloride                                            |
| 3:8597           | Ethyl $\gamma$ -chloro- $n$ -butyrate                               | 3:8235          | Ethyl-n-propyl-acetyl chloride                      |
| 3:7295           | "Ethyl chlorocarbonate"                                             | 3:7670          | Ethyl-n-propyl-carbinyl chloride                    |
| 3:8523           | Ethyl α-chlorocrotonate                                             | 3:5950          | Ethyl trichloroacetate                              |
| 3:8538           | Ethyl β-chlorocrotonate                                             | 3:6380          | Ethyl $\alpha, \alpha, \beta$ -trichloro-n-butyrate |
| 3:8657           | Ethyl γ-chlorocrotonate                                             | 3:5955          | Ethyl-trichloromethyl-carbinol                      |
| 3:5270           | "Ethyl chloroform"                                                  | 3:8235          | $\alpha$ -Ethyl- $n$ -valeryl chloride              |
| 3:7295           | Ethyl chloroformate                                                 |                 | F                                                   |
| 3:9246           | Ethyl (chloroformyl)acetate                                         | 9.0004          | -                                                   |
| 3:8147           | Ethyl α-chloro-isobutyrate                                          | 3:9394          | Formaldehyde β,β'-dichloro-                         |
| 3:9368           | Ethyl α-chloroisocrotonate                                          |                 | isopropyl-ethyl-acetal                              |
| 3:8325           | Ethyl $\beta$ -chloroisocrotonate                                   | 3:5875          | Fumaryl (di)chloride                                |
| 3:8528           | Ethyl α-chloro-isovalerate                                          | 3:8515          | Furan 2-carboxylic acid chloride                    |
| 3:6207           | Ethyl $\alpha$ -chloro- $\beta$ -keto- $n$ -butyrate                | 3:8515          | Furoyl chloride                                     |
| 3:6375           | Ethyl $\gamma$ -chloro- $\beta$ -keto- $n$ -butyrate                |                 | G                                                   |
| 3:8518           | Ethyl $\alpha$ -chloro- $\alpha$ -methyl- $n$ - butyrate            | 3:6500          | Glutaryl (di)chloride                               |
| 3:8528           |                                                                     | 3:6775          | Glycerol a-chlorohydrin a'-                         |
| 3:39/6           | Ethyl α-chloro-β-methyl-n-                                          | 3.9713          | acetate                                             |
| 0.0105           | butyrate                                                            | 3:6517          | Glycerol α-chlorohydrin β-                          |
| 3:8125<br>3:8290 | Ethyl $\alpha$ -chloropropionate<br>Ethyl $\beta$ -chloropropionate | 6.0011          | acetate                                             |
| 3:8596           | Ethyl $\alpha$ -chloro- $n$ -valerate                               | 3:6648          | Glycerol $\beta$ -chlorohydrin $\alpha$ -           |
| 3:8629           | Ethyl $\beta$ -chloro-n-valerate.                                   | 0.0020          | acetate                                             |
| 3:8703           | Ethyl $\gamma$ -chloro- $n$ -valerate                               | 3:5985          | Glycerol $\alpha,\alpha'$ -dichlorohydrin           |
| 3:8727           | Ethyl δ-chloro-n-valerate                                           | 3:6060          | Glycerol $\alpha, \beta$ -dichlorohydrin            |
| 3:7675           | α-Ethylcrotyl chloride                                              | 3:6318          | Glycerol a,a'-dichlorohydrin                        |
| 3:5850           | Ethyl dichloroacetate                                               |                 | β-acetate                                           |
| 3:6090           | Ethyl α,β-dichloropropionate                                        | 3:6220          | Glycerol α-β-dichlorohydrin α'-                     |
| 3:9648           | Ethyl-di-n-propyl-carbinyl                                          |                 | acetate                                             |
| 0.0020           | chloride                                                            | 3:9038          | Glycerol a-monochlorohydrin                         |
| 3:5130           | Ethylene (di)chloride                                               | 3:9039          | Glycerol β-monochlorohydrin                         |
| 3:5552           | Ethylene chlorohydrin                                               | 3:6840          | Glycerol a-monochlorohydrin                         |
| 3:6780           | Ethylene glycol mono(chloro-                                        |                 | diacetate                                           |
|                  | acetate)                                                            | 3:5840          | Glycerol trichlorohydrin                            |
| 3:0720           | Ethylene glycol bis-(chloro-                                        | 3:5552          | " Glycol chlorohydrin "                             |
|                  | acetate)                                                            |                 |                                                     |
| 3:9185           | Ethylene glycol mono-(β-                                            |                 | H                                                   |
|                  | chloroethyl) ether                                                  | 3:9800          | n-Hendecanoyl chloride                              |
| 3:6655           | Ethylene glycol bis-(β-chloro-                                      | 3:9800          | n-Hendecoyl chloride                                |
|                  | ethyl) ether                                                        | 3:9056          | 1,1,2,2,3,4,4-Heptachlorobutane                     |
| 3:9322           | Ethyl-ethynyl-methyl-carbinyl                                       | 3:6860          | symHeptachloropropane                               |
|                  | chloride                                                            | 3:0200          | unsymHeptachloropropane                             |
| 3:8370           | 2-Ethylhexyl chloride                                               | 3:0200          | 1,1,1,2,2,3,3-Heptachloropropane                    |
| 3:7022           | Ethyl hypochlorite                                                  | 3:6860          | 1,1,1,2,3,3,3-Heptachloropropane                    |
| 3:5 <b>9</b> 35  | Ethylidene (di)chloride                                             | 3:9925          | n-Heptadecanoyl chloride                            |
| 3:9652           | Ethyl-isoamyl-methyl-carbinyl                                       | 3:0100          | n-Heptadecyl chloride                               |
|                  | chloride                                                            | 3:9422          | Heptamethylene dichloride                           |
| 3:9462           | Ethyl-isopropyl-acetyl chloride                                     | 3:8520          | n-Heptanoyl chloride                                |
| 3:7565           | Ethyl-isopropyl-carbinyl chloride                                   | 3:8250          | n-Heptyl chloride                                   |
| 3:7970           | Ethyl-isopropyl-methyl-carbinyl                                     | 3:8 <b>63</b> 5 | n-Heptyl-methyl-carbinyl chlo-                      |
|                  | chloride                                                            |                 | ride                                                |
|                  |                                                                     |                 |                                                     |

| 0.0040           | 77 13 1                                                   |                  |                                                                      |
|------------------|-----------------------------------------------------------|------------------|----------------------------------------------------------------------|
| 3:6312<br>3:4939 | Hexachloroacetone<br>Hexachlorobenzene                    | 3:8215           | Isoamyl chlorocarbonate                                              |
| 3:6425           | Hexachlorobutadiene-1,3                                   | 3:8215<br>3:9580 | Isoamyl chloroformate                                                |
| 3:3155           | 1.1.2.3.4.4-Hexachlorobutane                              | 3:873 <b>0</b>   | Isoamyl $\alpha$ -chloropropionate Isoamyl $\beta$ -chloropropionate |
| 3:1945           | 1,1,2,3,4,4-Hexachlorobutene-2                            | 3:9556           | Isoamyl-dimethyl-carbinyl                                            |
| VV.              | (solid isomer)                                            | 0.000            | chloride                                                             |
| 3:9046           | 1,1,2,3,4,4-Hexachlorobutene-2                            | 3:7985           | Isoamyl-methyl-carbinyl chloride                                     |
|                  | (liquid isomer)                                           | 3:9628           | Isoamyl-propenyl-carbinyl                                            |
| 3:9048           | Hexachlorobutene-X                                        |                  | chloride                                                             |
| 3:9050           | Hexachlorobutene-Y                                        | 3:6490           | Isoamyl trichloroacetate                                             |
| 3:318 <b>0</b>   | Hexachlorocyclohexadien-2,5-                              | 3:7145           | Isobutenyl chloride                                                  |
| 0.4440           | one-1                                                     | 3:8090           | Isobutyl-acetyl chloride                                             |
| 3:4410           | cis-1,2,3,4,5,6-Hexachlorocyclo-                          | 3:7135           | Isobutyl chloride                                                    |
| 3:4990           | hexane                                                    | 3:8375           | Isobutyl chloroacetate                                               |
| 0.2000           | trans-1,2,3,4,5,6-Hexachloro-<br>cyclohexane              | 3:7760<br>3:9216 | Isobutyl chlorocarbonate "Isobutylchloroform"                        |
| 3:3470           | 1,2,4,4,6,6-Hexachlorocyclo-                              | 3:7760           | Isobutyl chloroformate                                               |
| 0.02.0           | hexen-1-dione-3,5                                         | 3:9470           | Isobutyl a-chloropropionate                                          |
| 3:2360           | 2,3,5,5,6,6-Hexachlorocyclo-                              | 3:8655           | Isobutyl β-chloropropionate                                          |
|                  | hexen-5-dione-1,4                                         | 3:7752           | Isobutylene $\alpha$ -chlorohydrin                                   |
| 3:1915           | Hexachlorodimethyl carbonate                              | 3:7905           | "β-Isobutylene chlorohydrin"                                         |
| 3:4835           | Hexachloroethane                                          | 3:7 <b>430</b>   | Isobutylene dichloride                                               |
| 3:1220           | 1,2,3,4,5,6-Hexachlorohexene-3                            | 3:7425           | Isobutylidene (di)chloride                                           |
| 3:3180           | "Hexachlorophenol"                                        | 3:7495           | Isobutyl-methyl-carbinyl                                             |
| 3:6460<br>3:6525 | 1,1,1,2,3,3-Hexachloropropane                             | 0.0110           | chloride                                                             |
| 3:6525           | 1,1,2,2,3,3-Hexachloropropane<br>symHexachloropropane     | 3:6140<br>3:7270 | Isobutyl trichloroacetate                                            |
| 3:6460           | unsymHexachloropropane                                    | 3:8090           | Isobutyryl chloride Isocaproyl chloride                              |
| 3:6312           | Hexachloropropanone-2                                     | 3:1903           | Isocrotonic acid dichloride                                          |
| 3:6370           | Hexachloropropene                                         | 3:7120           | Isocrotyl chloride                                                   |
| 3:3470           | "Hexachlororesorcinol"                                    | 3:4711           | Isodichlorosuccinic acid                                             |
| 3:9912           | n-Hexadecanoyl chloride                                   | 3:9750           | β-Isodurylyl chloride                                                |
| 3:0015           | n-Hexadecyl chloride                                      | 3:8365           | Isoheptanoyl chloride                                                |
| 3:8580           | Hexahydrobenzoyl chloride                                 | 3:7695           | Isohexyl chloride                                                    |
| 3:8720           | Hexamethylene dichloride                                  | 3:9540           | Isohexyl-methyl-carbinyl                                             |
| 3:8168           | n-Hexanoyl chloride                                       | 0.0700           | chloride                                                             |
| 3:7955<br>3:7715 | n-Hexyl chloride<br>sec(2)-Hexyl chloride                 | 3:0520<br>3:0520 | Isophthaloyl (di)chloride<br>Isophthalyl (di)chloride                |
| 3:7670           | sec(3)-Hexyl chloride                                     | 3:0846           | "Isopral"                                                            |
| 3:8378           | n-Hexyl-methyl-carbinyl chloride                          | 3:8105           | Isoprene bis-hydrochloride                                           |
| 3:8787           | Hydrocinnamoyl chloride                                   | 3:7465           | Isoprene hydrochloride                                               |
| 3:8777           | Hydrocinnamyl chloride                                    | 3:9200           | "Isoprene monochloride"                                              |
| 3:0085           | 2-Hydroxybenzoyl chloride                                 | 3:7020           | Isopropenyl chloride                                                 |
| 3:9446           | 3-Hydroxybenzoyl chloride                                 | <b>3:7358</b>    | Isopropenyl chlorocarbonate                                          |
| 3:9447           | 4-Hydroxybenzoyl chloride                                 | 3:7358           | Isopropenyl chloroformate                                            |
| 3:9107           | 2-Hydroxy-2-(dichloromethyl)-                             | 3:8795           | 4-Isopropylbenzyl chloride                                           |
| 3:9588           | 1,3-dioxolane $\beta$ -[( $\beta$ -Hydroxyethoxy)ethoxy]- | 3:7135<br>3:7025 | Isopropylcarbinyl chloride<br>Isopropyl chloride                     |
| <b>0:5000</b>    | ethyl chloroacetate                                       | 3:8160           | Isopropyl chloroacetate                                              |
| 3:9390           | $\beta$ -( $\beta$ -Hydroxyethoxy)ethyl                   | 3:7405           | Isopropyl chlorocarbonate                                            |
| 0.000            | chloroacetate                                             | 3:7405           | Isopropyl chloroformate                                              |
| 3:6780           | β-Hydroxyethyl chloroacetate                              | 3:8165           | Isopropyl a-chloropropionate                                         |
| 3:9107           | $\beta$ -Hydroxyethyl dichloroacetate                     | 3:9388           | Isopropyl $\beta$ -chloropropionate                                  |
| 3:9099           | β-Hydroxyethyl trichloroacetate                           | 3:5890           | Isopropyl dichloroacetate                                            |
| 3:9570           | β-Hydroxy-β-phenyl-ethyl chlo-                            | 3:8075           | Isopropylethylene dichoride                                          |
| 0.0000           | ride                                                      | 3:7140           | Isopropylidene (di)chloride                                          |
| <b>3:9099</b>    | 2-Hydroxy-2-(trichloromethyl)-                            | 3:7965           | Isopropyl-methyl-acetyl chloride                                     |
|                  | 1,3-dioxolane                                             | 3:7275           | Isopropyl-methyl-carbinyl chlo-<br>ride                              |
| 3:8365           | I<br>Isoamylacetyl chloride                               | 3:9554           | Isopropyl-methyl-n-propyl-<br>carbinyl chloride                      |
| 3:7865           | Isoamyl chloride                                          | 3:5975           | Isopropyl tirchloroacetate                                           |
| 8:7275           | secIsoamyl chloride                                       | 3:7560           | Isovaleryl chloride                                                  |

|                           | ĸ                                                              | 3:9792               | Mothyl (c. (abloroformyl)                                     |
|---------------------------|----------------------------------------------------------------|----------------------|---------------------------------------------------------------|
| 3:9098                    | β-Keto-n-butyryl chloride                                      | U. 318A              | Methyl ω-(chloroformyl)-<br>pelargonate                       |
| 21000                     | •                                                              | 3:9247               | Methyl $\beta$ -(chloroformyl)-                               |
|                           | L                                                              |                      | propionate                                                    |
| 3:9858                    | n-Lauroyl chloride                                             | 3:7918               | Methyl α-chloroisobutyrate                                    |
| 3:8810                    | n-Lauryl chloride                                              | 3:8028<br>3:7360     | Methyl β-chloroisocrotonate "Methylchloroprene"               |
|                           | M                                                              | 3:7908               | Methyl α-chloropropionate                                     |
| 3:9030                    | Malonyl dichloride                                             | 3:5765               | Methyl β-chloropropionate                                     |
| 3:9925                    | n-Margaroyl chloride                                           | 3:8264               | Methyl $\alpha$ -chloro-n-valerate                            |
| 3:0250                    | α-Menaphthyl chloride                                          | 3:9240               | cis-a-Methylcrotonoyl chloride                                |
| 3:0747                    | β-Menaphthyl chloride                                          | 3:7400<br>3:5655     | a-Methylcrotyl chloride                                       |
| 3:9750                    | Mesitoyl chloride                                              | 3:9103               | Methyl dichloroacetate<br>Methyl α,β-dichloropropionate       |
| 3:71 <b>4</b> 5<br>3:5225 | Methallyl chloride<br>Methoxyacetyl chloride                   | 3:9550               | Methyl-di-n-propyl-carbinyl                                   |
| 3:6870                    | 2-Methoxybenzoyl chloride                                      |                      | chloride                                                      |
| 3:6797                    | 3-Methoxybenzoyl chloride                                      | 3:5020               | Methylene (di)chloride                                        |
| 3:6890                    | 4-Methoxybenzoyl chloride                                      | 3:1960               | 3,4-Methylenedioxybenzoyl                                     |
| 3:7150                    | α-Methoxyethyl chloride                                        | 3:7657               | chloride                                                      |
| 3:7265                    | β-Methoxyethyl chloride                                        | 3:9190               | "β-Methylepichlorohydrin" β-Methylglycerol α-monochloro-      |
| 3:9285<br>3:9140          | β-Methoxyethyl chloroacetate<br>β-Methoxyethyl chlorocarbonate | 0.0100               | hydrin                                                        |
| 3:9140                    | β-Methoxyethyl chloroformate                                   | 3:9440               | Methyl-neopentyl-carbinyl                                     |
| 3:9250                    | β-Methoxyethyl trichloroacetate                                |                      | chloride                                                      |
| 3:7085                    | Methoxymethyl chloride                                         | 3:9660               | o-Methylphenacyl chloride                                     |
| 3:7090                    | $\alpha$ -Methylallyl chloride                                 | 3:1130<br>3:8667     | p-Methylphenacyl chloride                                     |
| 3:7145                    | β-Methylallyl chloride                                         | 3:7175               | Methyl-phenyl-carbinyl chloride<br>γ-Methylpropargyl chloride |
| 3:7205<br>3:8740          | γ-Methylallyl chloride<br>o-Methylbenzoyl chloride             | 3:8020               | Methyl-n-propyl-acetyl chloride                               |
| 3:6535                    | m-Methylbenzoyl chloride                                       | 3:7325               | Methyl-n-propyl-carbinyl                                      |
| 3:6600                    | p-Methylbenzoyl chloride                                       |                      | chloride                                                      |
| 3:8710                    | o-Methylbenzyl chloride                                        | 3:5800               | Methyl trichloroacetate                                       |
| 3:8700                    | m-Methylbenzyl chloride                                        | 3 : 5620<br>3 : 8020 | Methyl trichloromethyl ketone                                 |
| 3:8660                    | p-Methylbenzyl chloride                                        | 3:8035               | α-Methyl-n-valeryl chloride<br>β-Methyl-n-valeryl chloride    |
| 3:7603<br>3:7560          | α-Methyl-n-butyryl chloride<br>β-Methyl-n-butyryl chloride     | 3:8090               | $\gamma$ -Methyl- $n$ -valeryl chloride                       |
| 3:9452                    | $\alpha$ -Methyl- $n$ -caproyl chloride                        | 3:7020               | α-Methylvinyl chloride                                        |
| 3:8305                    | β-Methyl-n-caproyl chloride                                    | 3:7030               | $\beta$ -Methylvinyl chloride                                 |
| 3:8355                    | $\gamma$ -Methyl- $n$ -caproyl chloride                        | 3:9038               | "α-Monochlorohydrin"                                          |
| 3:8365                    | δ-Methyl-n-caproyl chloride                                    | 3:9039<br>3:6840     | "β-Monochlorohydrin"<br>"α-Monochlorohydrin"                  |
| 3:9285                    | "Methylcellosolve"                                             | 0.0020               | diacetate                                                     |
| 3:9140                    | chloroacetate<br>"Methylcellosolve"                            | 3:9885               | n-Myristoyl chloride                                          |
| 0.0120                    | chloroformate                                                  | 3:9874               | n-Myristyl chloride                                           |
| 3:9250                    | "Methylcellosolve"                                             |                      | N                                                             |
|                           | trichloroacetate                                               | 9.4750               | <del>-</del>                                                  |
| 3:7005                    | Methyl chloride                                                | 3 : 4750<br>3 : 6930 | Napthalene tetrachloride<br>α-Naphthoyl chloride              |
| 3:5585<br>3:9096          | Methyl chloroacetate<br>Methyl α-chloroacrylate                | 3:0900               | β-Naphthoyl chloride                                          |
| 3:6695                    | Methyl o-chlorobenzoate                                        | 3:9856               | α-Naphthylacetyl chloride                                     |
| 3:6670                    | Methyl m-chlorobenzoate                                        | 3:0250               | α-Naphthylmethyl chloride                                     |
| 3:0535                    | Methyl p-chlorobenzoate                                        | 3:0747               | $\beta$ -Naphthylmethyl chloride                              |
| 3:8103                    | Methyl $\alpha$ -chloro- $n$ -butyrate                         | 3:7590<br>3:9460     | Neohexyl chloride                                             |
| 3:8224                    | Methyl β-chloro-n-butyrate                                     | 3:7555               | Neopentylacetyl chloride<br>Neopentylcarbinyl chloride        |
| 3:8517                    | Methyl γ-chloro-n-butyrate " Methyl chlorocarbonate"           | 3:7200               | Neopentyl chloride                                            |
| 3:5075<br>3:5870          | Methyl α-chlorocrotonate                                       | 3:8780               | Neophyl chloride                                              |
| 3:9244                    | Methyl $\beta$ -chlorocrotonate                                | 3:8765               | <i>n</i> -Nonanoyl chloride                                   |
| 3:5085                    | Methylchloroform                                               | 3:8719               | n-Nonyl chloride                                              |
| 3:5075                    | Methyl chloroformate                                           |                      | 0                                                             |
| 3:9998-A                  | Methyl (chloroformyl)acetate                                   | 0.0000               | 0                                                             |
| 3:9373                    | Methyl γ-(chloroformyl)-n-                                     | 3:2000<br>3:0422     | 1,1,2,2,3,3,4,4-Octachlorobutane<br>Octachlorocyclopentene    |
|                           | butyrate                                                       | U.VZAA               | Consenior ocy cropertiente                                    |

| <b>3:073</b> 8   | $\alpha,\alpha,\beta,\beta,\beta,\beta',\beta',\beta'$ -Octachlorodi- | <b>3:483</b> 5   | Perchloroethane                                                              |
|------------------|-----------------------------------------------------------------------|------------------|------------------------------------------------------------------------------|
|                  | ethyl ether                                                           | 3:1676           | " Perchloroether "                                                           |
| <b>3:4893</b>    | Octachloronaphthalene                                                 | 3:5460           | Perchloroethylene                                                            |
| 3:4450           | Octachloropropane                                                     | 3:0290           | Perchloromethyl acetate                                                      |
| 3:9960           | n-Octadecanoyl chloride                                               | 3:48 <b>9</b> 3  | Perchloronaphthalene                                                         |
| 3:9940           | n-Octadecen-9-oyl chloride                                            | 3: <b>4450</b>   | Perchloropropane                                                             |
| 3:0095           | n-Octadecyl chloride                                                  | 3:6373           | "Perchlorovinyl ether"                                                       |
| 3:8805           | Octamethylene dichloride                                              | 3:97 <b>40</b>   | Perhydrogeranyl chloride                                                     |
| 3:8680           | n-Octanoyl chloride                                                   | 3:1212           | Phenacyl chloride                                                            |
| 3:8585           | n-Octyl chloride                                                      | 3:8790           | Phenoxyacetyl chloride                                                       |
| 3:9940           | n-Oleoyl chloride                                                     | 3:9770           | $\beta$ -( $\beta$ -Phenoxyethoxy)ethyl                                      |
| 3: <i>5</i> 060  | Oxalyl (di)chloride                                                   |                  | chloride                                                                     |
|                  | P                                                                     | 3:0165           | $\beta$ -Phenoxyethyl chloride                                               |
| 0.0010           | _                                                                     | 3:9448           | Phenoxymethyl chloride                                                       |
| 3:9912           | n-Palmitoyl chloride                                                  | 3:8820           | γ-Phenoxy-n-propyl chloride                                                  |
| 3:2650           | Para-β-chloro-n-butyraldehyde                                         | 3:9567           | Phenylacetyl chloride                                                        |
| 3:3220<br>3:8766 | Para-α-chloro-isobutyraldehyde                                        | 3:7 <b>90</b> 3  | Phenyl chloride                                                              |
| 3:62 <b>0</b> 5  | Pelagonyl chloride                                                    | 3:0565           | Phenyl chloroacetate                                                         |
| 3:3590           | Pentachloroacetone                                                    | 3:6540           | Phenylchloroform                                                             |
| 3:4892           | Pentachlorobenzal (di)chloride<br>Pentachlorobenzaldehyde             | 3:8712<br>3:9494 | β-Phenylethyl chloride                                                       |
| 3:2290           | Pentachlorobenzene                                                    | 3:3934           | Phenylethynyl chloride                                                       |
| 3:4910           | Pentachlorobenzoic acid                                               | 3:9658           | p-Phenylphenacyl chloride Phenylpropiolyl chloride                           |
| 3:2295           | Pentachlorobenzovi chloride                                           | 3:8787           | β-Phenylpropionyl chloride                                                   |
| 3:9044           | 1.1.2.3.4-Pentachlorobutadiene-                                       | 3:8777           | $\gamma$ -Phenyl- $n$ -propyl chloride                                       |
| 0.00xx           | 1,3                                                                   | 3:6874           | Phenyl trichloromethyl ketone                                                |
| 3:0750           | 1,1,2,3,4-Pentachlorobutane                                           | 3:5000           | Phosgene                                                                     |
| 0.0.00           | (solid isomer)                                                        | 3:6900           | symo-Phthaloyl dichloride                                                    |
| 3:9068           | 1,1,2,3,4-Pentachlorobutane                                           | 3:2395           | unsymo-Phthaloyl dichloride                                                  |
| 0.000            | (liquid isomer)                                                       | 3:6900           | symo-Phthalyl dichloride                                                     |
| 3:9070           | 1,2,2,3,4-Pentachlorobutane                                           | 3:2395           | unsymo-Phthalyl dichloride                                                   |
| 3:9070           | 1,2,3,3,4-Pentachlorobutane                                           | 3:9450           | Pimelyl (di)chloride                                                         |
| 3:0750           | 1.2.3.4.4-Pentachlorobutane                                           | 3:7475           | Pinacolyl chloride                                                           |
|                  | (solid isomer)                                                        | 3:1960           | Piperonyloyl chloride                                                        |
| 3:9068           | 1,2,3,4,4-Pentachlorobutane                                           | 3:7400           | Piperylene hydrochloride                                                     |
|                  | (liquid isomer)                                                       | 3:7360           | Pirylene monohydrochloride                                                   |
| 3:9054           | 1,1,1,4,4-Pentachlorobutene-2                                         | 3:7450           | Pivalyl chloride                                                             |
| 3:5880           | Pentachloroethane                                                     | 3:7100           | Propargyl chloride                                                           |
| 3:1676           | bis-(Pentachloroethyl) ether                                          | 3:7153           | Propencyl chloride                                                           |
| 3:9328           | 1,1,1,2,2-Pentachlorohexane                                           | 3:7030           | Propenyl chloride                                                            |
| 3:6725           | 3,3,4,4,4-Pentachloro-2-methyl-                                       | 3:8050           | Propenyl-n-propyl-carbinyl                                                   |
|                  | butane                                                                |                  | chloride                                                                     |
| 3:1265           | 1,1,1,2,3-Pentachloro-2-methyl-                                       | 3:7170           | Propionyl chloride                                                           |
|                  | propane                                                               | 3:7620           | γ-(n-Propyl)allyl chloride                                                   |
| 3:4850           | Pentachlorophenol                                                     | 3:7160           | n-Propylcarbinyl chloride                                                    |
| 3:4740           | 1,1,1,2,3-Pentachloropropane                                          | 3:7040           | n-Propyl chloride                                                            |
| 3:6280           | 1,1,2,3,3-Pentachloropropane                                          | 3:8295           | n-Propyl chloroacetate                                                       |
| 3:6280<br>3:4740 | symPentachloropropane unsymPentachloropropane                         | 3:7540<br>3:7540 | n-Propyl chlorocarbonate n-Propyl chloroformate                              |
| 3:4740<br>3:6205 |                                                                       | 3:9384           |                                                                              |
| 3:6075           | Pentachloropropanone-2<br>1,1,2,3,3-Pentachloropropene-1              | 3:8545           | $n$ -Propyl $\alpha$ -chloropropionate $n$ -Propyl $\beta$ -chloropropionate |
| 3:4895           | Pentachloropropionic acid                                             | 3:6000           | n-Propyl dichloroacetate                                                     |
| 3:0470           | Pentachloropropionyl chloride                                         | 3:5200           | Propylene (di)chloride                                                       |
| 3:4937           | 2.3.4.5.6-Pentachlorotoluene                                          | 3:7747           | Propylene (al/chloride<br>Propylene $\alpha$ -chlorohydrin                   |
| 3:4937<br>3:4937 | eso-Pentachlorotoluene                                                | 3:7727           | Propylene $\beta$ -chlorohydrin                                              |
| 3:9900           | Pentadecanoyl chloride                                                | 3:8225           | n-Propylethylene chlorohydrin                                                |
| 3:9890           | n-Pentadecyl chloride                                                 | 3:7230           | Propylidene (di)chloride                                                     |
| 3:2675           | Pentaerythrityl tetrachloride                                         | 3:6135           | n-Propyl trichloroacetate                                                    |
| 3:5880           | "Pentalin"                                                            | 3:8515           | Pyromucyl chloride                                                           |
| 3:9536           | Pentamethylacetone dichloride                                         | G . COTA         | - J. J. J. OHIOITAG                                                          |
| 3:8575           | Pentamethylene dichloride                                             |                  | Q                                                                            |
| 3:1915           | Perchlorodimethyl carbonate                                           | 3:9376           | Quinitol chlorohydrin                                                        |
|                  | J v von nvenuv                                                        | 50.0             |                                                                              |

|                  | 8                                                               | 3:5555                   | unsymTetrachloroethane                                   |
|------------------|-----------------------------------------------------------------|--------------------------|----------------------------------------------------------|
| 3:0085           | Salicyloyl chloride                                             | 3:5460                   | Tetrachloroethylene                                      |
| 3:6870           | Salicyloyl chloride methyl ether                                | 3:0738                   | $bis-(\alpha,\beta,\beta,\beta-\text{Tetrachloroethyl})$ |
| 3:9789           | Sebacyl (di)chloride                                            |                          | ether                                                    |
| 3:9960           | n-Stearoyl chloride                                             | 3:9306                   | 1,3,4,6-Tetrachlorohexadiene-2,4                         |
| 3:0095           | Stearyl chloride                                                | 3:9332                   | 1,1,2,2-Tetrachlorohexane                                |
| 3:4854           | "α"-Stilbene dichloride                                         | 3:4941                   | 2,3,5,6-Tetrachlorohydroquinone                          |
| 3:2570           | "β"-Stilbene dichloride                                         | <b>3:90</b> 36           | $\beta, \beta, \beta, \beta'$ -Tetrachloroisopropyl      |
| 3:9570           | Styrene chlorohydrin                                            | 3:9037                   | alcohol                                                  |
| 3:6685           | Styrene dichloride                                              | 3:8037                   | β,β,β',β'-Tetrachloroisopropyl<br>alcohol                |
| 3:8717           | Styryl chloride                                                 | 3:5100                   | Tetrachloromethane                                       |
| 3:9576<br>3:6200 | Suberyl (di)chloride<br>Succinyl (di)chloride                   | 3:4725                   | 1,1,1,2-Tetrachloro-2-methyl-                            |
| 3:5515           | "Superpalite"                                                   | 012170                   | propane                                                  |
| 0.0010           | Duperpante                                                      | 3:6165                   | 1,1,2,3-Tetrachloro-2-methyl-                            |
|                  | ${f T}$                                                         |                          | propane                                                  |
| 3:2205           | Terephthaloyl (di)chloride                                      | 3:3523                   | 2,3,4,5-Tetrachlorophenol                                |
| 3:2205           | Terephthalyl (di)chloride                                       | 3:1687                   | 2,3,4,6-Tetrachlorophenol                                |
| 3:6050           | symTetrachloroacetone                                           | 3:3460                   | 2,3,5,6-Tetrachlorophenol                                |
| 3:6085           | unsymTetrachloroacetone                                         | 3:4946                   | Tetrachlorophthalic acid                                 |
| <b>3:9397</b>    | 2,3,4,5-Tetrachlorobenzal (di)-                                 | 3:4947<br>3:5785         | Tetrachlorophthalic anhydride                            |
|                  | chloride                                                        | 3:5825                   | 1,1,1,2-Tetrachloropropane<br>1,1,2,2-Tetrachloropropane |
| 3:6980           | 2,3,4,6-(or 2,3,5,6-)Tetrachloro-                               | 3:0035                   | 1,1,2,3-Tetrachloropropane                               |
| 3:3140           | benzal (di)chloride<br>2,3,4,5-Tetrachlorobenzaldehyde          | 3:5895                   | 1,2,2,3-Tetrachloropropane                               |
| 3:2700           | 2,3,4,6-(or 2,3,5,6-) Tetrachloro-                              | 3:9036                   | 1,1,1,3-Tetrachloropropanol-2                            |
| 0.2100           | benzaldehyde                                                    | 3:9037                   | 1,1,3,3-Tetrachloropropanol-2                            |
| 3:0655           | 1,2,3,4-Tetrachlorobenzene                                      | 3:6085                   | 1,1,1,3-Tetrachloropropanone-2                           |
| 3:0915           | 1,2,3,5-Tetrachlorobenzene                                      | 3:6050                   | 1,1,3,3-Tetrachloropropanone-2                           |
| 3:4115           | 1,2,4,5-Tetrachlorobenzene                                      | 3:5920                   | 1,2,3,3-Tetrachloropropene-1                             |
| 3:4790           | 2,3,4,5-Tetrachlorobenzoic acid                                 | 3:1850                   | $\alpha, \alpha, \beta, \beta$ -Tetrachloropropionic     |
| 3:3965           | Tetrachlorobenzoquinone-1,2                                     | 3:4875                   | acid                                                     |
| 3:4978           | 2,3,5,6-Tetrachlorobenzoquinone-                                | 3:3965                   | Tetrachloropyrocatechol<br>Tetrachloro-o-quinone         |
| 3:4496           | 1,4                                                             | 3:4978                   | Tetrachloro-p-quinone                                    |
| 3:4490<br>3:0870 | α,α,α',α',-Tetrachlorobibenzyl<br>1,2,3,4-Tetrachlorobutadiene- | 3:4135                   | Tetrachlororesorcinol                                    |
| 0.0010           | 1,3 (solid isomer)                                              | 3:4750                   | 1,2,3,4-Tetrachloro-1,2,3,4-                             |
| 3:6150           | 1,2,3,4-Tetrachorobutadiene-                                    |                          | tetrahydronaphthalene                                    |
|                  | 1,3 (liquid isomer)                                             | 3:4703                   | 5,6,7,8-Tetrachloro-1,2,3,4-                             |
| 3:5622           | 1,1,1,2-Tetrachlorobutane                                       |                          | tetrahydronaphthalene                                    |
| 3:9078           | 1,2,2,3-Tetrachlorobutane                                       | 3:4750                   | 1,2,3,4-Tetrachlorotetralin                              |
| 3:9080           | 1,2,3,3-Tetracholorobutane                                      | 3:47 <b>03</b><br>3:2710 | 5,6,7,8-Tetrachlorotetralin                              |
| 3:1760           | 1,2,3,4-Tetrachlorobutane (solid                                | 3:2480                   | 2,3,4,5-Tetrachlorotoluene<br>2,3,4,6-Tetrachlorotoluene |
| 3:9082           | isomer)<br>1,2,3,4-Tetrachlorobutane (liquid                    | 3:2575                   | 2,3,5,6-Tetrachlorotoluene                               |
| 9:5006           | isomer)                                                         | 3:9885                   | n-Tetradecanoyl chloride                                 |
| 3:9058           | 1,3,4,4-Tetrachlorobutene-1                                     | 3:9874                   | n-Tetradecyl chloride                                    |
| 3:9060           | 2,3,3,4-Tetrachlorobutene-1                                     | 3:8152                   | Tetrahydro-α-furfuryl chloride                           |
| 3:9058           | 1,1,2,4-Tetrachlorobutene-3                                     | 3:9740                   | Tetrahydrogeranyl chloride                               |
| 3:9060           | 1,2,2,3-Tetrachlorobutene-3                                     | 3:9170                   | Tetramethylene chlorohydrin                              |
| 3:4875           | Tetrachlorocatechol                                             | 3:5835                   | Tetramethylene (di)chloride                              |
| 3:9072           | 1,1,2,3-Tetrachloro-2-(chloro-                                  | 3:4520<br>3:9240         | Tetramethylethylene dichloride                           |
|                  | methyl) propane                                                 | 3:1380                   | Tiglyl chloride<br>cis-Tolane dichloride                 |
| 3:2477           | 1,1,1,2-Tetrachloro-2,2-bis-                                    | 3:421 <b>0</b>           | trans-Tolane dichloride                                  |
| 3:4875           | (p-chlorophenyl)ethane<br>Tetrachloro-1,2-dihydroxyben-         | 3:4496                   | Tolane tetrachloride                                     |
| 0:20/0           | zene                                                            | 3:9567                   | a-Toluyl chloride                                        |
| 3:4496           | 1,1,2,2-Tetrachloro-1,2-diphenyl-                               | 3:8740                   | o-Toluyl chloride                                        |
| J. 2200          | ethane                                                          | 3:6535                   | m-Toluyl chloride                                        |
| 3:5555           | 1,1,1,2-Tetrachloroethane                                       | 8:6600                   | p-Toluyl chloride                                        |
| 3:5750           | 1,1,2,2-Tetrachloroethane                                       | 3:6317                   | $\beta, \beta, \beta$ -Trichloroacetal                   |
| 8:5750           | symTetrachloroethane                                            | 8:5210                   | Trichloroacetaldehyde                                    |
|                  |                                                                 |                          |                                                          |

|                  |                                                            |                  | m / 11                                                           |
|------------------|------------------------------------------------------------|------------------|------------------------------------------------------------------|
| 3:0843           | Trichloroacetaldehyde n-                                   | 3:9094           | α,α,γ-Trichloro-n-butyraldehyde                                  |
| 9.0947           | butylhemiacetal                                            | 3:1905           | $\alpha, \alpha, \beta$ -Trichloro- <i>n</i> -butyraldehyde      |
| 3:6317           | Trichloroacetaldehyde di-                                  | 3:1280           | hydrate                                                          |
| 3:0860           | ethylacetal<br>Trichloroacetaldehyde (mono)-               | 3:1831           | α,α,β-Trichloro-n-butyric acid<br>α,α,γ-Trichloro-n-butyric acid |
| 9:0000           | ethylacetal                                                | 3:0925           | $\alpha, \beta, \beta$ -Trichloro- <i>n</i> -butyric acid        |
| 3:1270           | Trichloroacetaldehyde hydrate                              | 3:1000           | $\gamma, \gamma, \gamma$ -Trichloro-n-butyric acid               |
| 3:1270<br>3:1150 | Trichloroacetic acid                                       | 3:3448           | 3.4.5-Trichlorocatechol                                          |
| 3:6575           | Trichloroacetic acid anhydride                             | 3:5230           | 1,2,3-Trichloro-2-(chloromethyl)-                                |
| 3:5620           | $\alpha,\alpha,\alpha$ -Trichloroacetone                   | 0.000            | butane                                                           |
| 3:5957           | $\alpha,\alpha,\gamma$ -Trichloroacetone                   | 3:9084           | 1,1,3-Trichloro-2-(chloromethyl)-                                |
| 3:6874           | ω,ω,ω-Trichloroacetophenone                                | 0.0002           | propane                                                          |
| 3:5420           | Trichloroacetyl chloride                                   | 3:6335           | 1,2,3-Trichloro-2-(chloromethyl)-                                |
| 3:1840           | $\alpha, \beta, \beta$ -Trichloroacrylic acid              |                  | propane                                                          |
| 3:5845           | Trichloroscryloyl chloride                                 | 3:1820           | 1,1,1-Trichloro-2-(o-chloro-                                     |
| 3:2212           | 2,3,4-Trichlorobenzal (di)-                                |                  | phenyl)-2-(p-chlorophenyl)-                                      |
|                  | chloride                                                   |                  | ethane                                                           |
| 3:2178           | 2,3,6-Trichlorobenzal (di)-                                | 3:9867           | 1,1,1-Trichloro-2-(m-chloro-                                     |
|                  | chloride                                                   |                  | phenyl)- $2$ -( $p$ -chlorophenyl)-                              |
| 3:6910           | 2,4,5-Trichlorobenzal (di)-                                |                  | ethane                                                           |
|                  | chloride                                                   | <b>3:9865</b>    | 1,1,1-Trichloro-2,2-bis-(o-chloro-                               |
| 3:0142           | 2,4,6-Trichlorobenzal (di-                                 |                  | phenyl)ethane                                                    |
|                  | chloride                                                   | <b>3:329</b> 8   | 1,1,1-Trichloro-2,2-bis-(p-chloro-                               |
| 3:2445           | 2,3,4-Trichlorobenzaldehyde                                | 0.000            | phenyl)ethane                                                    |
| 3:1060           | 2,3,5-Trichlorobenzaldehyde                                | 3:0618           | 2,4,6-Trichloro-m-cresol                                         |
| 3:2287           | 2,3,6-Trichlorobenzaldehyde                                | 3:1280           | "Trichlorocrotonic acid"                                         |
| 8:3375           | 2,4,5-Trichlorobenzaldehyde                                | 3:4742           | 4,5,6-Trichloro-2,3-dimethyl-                                    |
| 3:1200<br>3:2440 | 2,4,6-Trichlorobenzaldehyde<br>3,4,5-Trichlorobenzaldehyde | 3:4707           | phenol<br>3,5,6-Trichloro-2,4-dimethyl-                          |
| 3:0990           | 1,2,3-Trichlorobenzene                                     | 0.2101           | phenol                                                           |
| 3:6420           | 1,2,4-Trichlorobenzene                                     | 3:4709           | 3,4,6-Trichloro-2,5-dimethyl-                                    |
| 3:1400           | 1,3,5-Trichlorobenzene                                     | 0.2100           | phenol                                                           |
| 3:1400           | symTrichlorobenzene                                        | 3:4747           | 2,5,6-Trichloro-3,4-dimethyl-                                    |
| 3:6420           | unsymTrichlorobenzene                                      |                  | phenol                                                           |
| 3:0990           | vicTrichlorobenzene                                        | 3:4713           | 2,4,6-Trichloro-3,5-dimethyl-                                    |
| 3:4810           | 2,3,4-Trichlorobenzoic acid                                |                  | phenol                                                           |
| 3:4485           | 2,3,5-Trichlorobenzoic acid                                | 3:1420           | 1,1,1-Trichloro-2,2-diphenyl-                                    |
| 3:4500           | 2,3,6-Trichlorobenzoic acid                                |                  | ethane                                                           |
| <b>3:4630</b>    | 2,4,5-Trichlorobenzoic acid                                | 3:5760           | 3,3,3-Trichloro-1,2-epoxypropane                                 |
| <b>3:454</b> 5   | 2,4,6-Trichlorobenzoic acid                                | 3:5085           | 1,1,1-Trichloroethane                                            |
| 8:4920           | 3,4,5-Trichlorobenzoic acid                                | 3:5330           | 1,1,2-Trichloroethane                                            |
| 8:4672           | 2,3,5-Trichlorobenzoquinone-1,4                            | 3:5330           | unsymTrichloroethane                                             |
| 8:2212           | 2,3,4-Trichlorobenzylidene (di)-                           | 3:5775           | 2,2,2-Trichloroethanol-1                                         |
| 9.9470           | chloride                                                   | 3:5775<br>3:5170 | β,β,β-Trichloroethyl alcohol<br>1,1,2-Trichloroethylene          |
| 3:2178           | 2,3,6-Trichlorobenzylidene (di)-<br>chloride               | 3:9308           | 3,3,6-Trichlorohexadiene-1,4                                     |
| 3:6910           | 2,4,5-Trichlorobenzylidene (di)-                           | 3:9302           | 3,4,6-Trichlorohexatriene-1,2,4                                  |
| 9.4814           | chloride                                                   | 3:9326           | 1,1,2-Trichlorohexene-1                                          |
| 3:0142           | 2,4,6-Trichlorobenzylidene (di)-                           | 3:5840           | "Trichlorohydrin"                                                |
|                  | chloride                                                   | 3:4052           | 2,3,5-Trichlorohydroquinone                                      |
| 3:9052           | 1,2,3-Trichlorobutadiene-1,3                               | 3:3520           | 2,4,6-Trichloro-3-hydroxy-                                       |
| 3:9086           | 1,1,3-Trichlorobutane                                      |                  | benzaldehyde                                                     |
| 3:5935           | 1,2,3-Trichlorobutane                                      | 3:4444           | 3,5,6-Trichloro-2-hydroxy-                                       |
| 3:5680           | 2,2,3-Trichlorobutane                                      |                  | hydroquinone                                                     |
| 3:1336           | 2,2,3-Trichlorobutanol-1                                   | 3:0846           | $\beta, \beta, \beta$ -Trichloroisopropyl alcohol                |
| 3:5955           | 1,1,1-Trichlorobutanol-2                                   | 3:5785           | $\beta, \beta, \beta$ -Trichloroisopropyl chloride               |
| 3:9064           | 2,3,4-Trichlorobutene-1                                    | 3:5050           | Trichloromethane                                                 |
| 8:9062           | 1,2,4-Trichlorobutene-2                                    | 3:6100           | 1,2,3-Trichloro-2-methylbutane                                   |
| 8:9062           | 1,3,4-Trichlorobutene-2                                    | 3:4755           | 2,3,3-Trichloro-2-methylbutane                                   |
| 8:9064           | 1,2,3-Trichlorobutene-3                                    | 3:9216           | 4,4,4-Trichloro-2-methylbutane                                   |
| 3:6180           | β,β,β-Trichloro-ter-butyl acetate                          | 3:1915<br>3:5515 | bis-(Trichloromethyl) carbonate                                  |
| 3:2662<br>3:5910 | β,β,β-Trichloro-ter-butyl alcohol                          | 3:5515<br>3:5515 | Trichloromethyl chlorocarbonate                                  |
| ●: 0ATA          | $\alpha, \alpha, \beta$ -Trichloro- $n$ -butyraldehyde     | o . Jolu         | Trichloromethyl chloroformate                                    |

| 3:351 <b>0</b>      | 2.5-bis-(Trichloromethyl)-1,3-                    | 3:0425              | 2,3,4-Trichlorotoluene                           |
|---------------------|---------------------------------------------------|---------------------|--------------------------------------------------|
|                     | dioxolanone-4                                     | 3:0610              | 2,3,5-Trichlorotoluene                           |
| 3:0618              | 2,4,6-Trichloro-3-methylphenol                    | 3:0625              | 2,3,6-Trichlorotoluene                           |
| 3:5710              | 1,1,2-Trichloro-2-methylpropane                   | 3:2100              | 2.4.5-Trichlorotoluene                           |
| 3:5885              | 1,2,3-Trichloro-2-methylpropane                   | 3:0380              | 2,4,6-Trichlorotoluene                           |
| 3:2662              | 1,1,1-Trichloro-2-methyl-                         | 3:0580              | 3,4,5-Trichlorotoluene                           |
|                     | propanol-2                                        | 3:4742              | Trichloro-o-3-xylenol                            |
| 3:5025              | 1,1,3-Trichloro-2-methyl-                         | 3:4747              | Trichloro-o-4-xylenol                            |
|                     | propene-1                                         | 3:4707              | Trichloro-m-4-xylenol                            |
| 3:5605              | 3,3,3-Trichloro-2-methyl-                         | 3:4713              | Trichloro-m-5-xylenol                            |
|                     | propene-1                                         | 3:4709              | Trichloro-p-xylenol                              |
| 3:5605              | 1,1,1-Trichloro-2-methyl-                         | 3:9860              | Tridecanoyl chloride                             |
|                     | propene-2                                         | 3:9859              | n-Tridecyl chloride                              |
| 3:0290              | Trichloromethyl trichloroacetate                  | 3:8055              | Triethylcarbinyl chloride                        |
| 3:2125              | 1,2,3-Trichloronaphthalene                        | 3:9588              | Triethylene glycol mono(chloro-                  |
| 3:2490              | 1,2,4-Trichloronaphthalene                        | 0.0000              | acetate)                                         |
| 3:1930              | 1,2,5-Trichloronaphthalene                        | 3:6655              | "Triglycol dichloride"                           |
| 3:2515              | 1,2,6-Trichloronaphthalene                        | 3:7450              | Trimethylacetyl chloride                         |
| 3:2325              | 1,2,7-Trichloronaphthalene                        | 3:9338              | $\alpha, \beta, \gamma$ -Trimethylallyl chloride |
| 3:2220              | 1,2,8-Trichloronaphthalene                        | 3:7520              | $\beta, \gamma, \gamma$ -Trimethylallyl chloride |
| 3:3015              | 1,3,5-Trichloronaphthalene                        | 3:9750              | 2,4,6-Trimethylbenzoyl chloride                  |
| 3:1975              | 1,3,6-Trichloronaphthalene                        | 3:9701              | 2,3,6-Trimethylbenzyl chloride                   |
| 3:3400              | 1,3,7-Trichloronaphthalene                        | 3:9702              | 2,4,5-Trimethylbenzyl chloride                   |
| 3:2420              |                                                   | 3:0372              |                                                  |
| 3:4005              | 1,3,8-Tric iloronaphthalene                       | 3:8145              | 2,4,6-Trimethylbenzyl chloride                   |
| 3:1625              | 1,4,5-Trichloronaphthalene                        | 9:0149              | $\alpha, \alpha, \beta$ -Trimethyl- $n$ -butyryl |
|                     | 1,4,6-Trichloronaphthalene                        | 0.7047              | chloride                                         |
| 3:3300              | 2,3,5-Trichloronaphthalene                        | 3:7045              | Trimethylcarbinyl chloride                       |
| 3:2455              | 2,3,6-Trichloronaphthalene                        | 3:7165              | Trimethylcarbinyl hypochlorite                   |
| 3:2300              | Trichloroparaldehyde                              | 3:9418              | Trimethylcrotyl chloride                         |
| 3:2185              | 2,3,4-Trichlorophenol                             | 3:5450              | Trimethylene (di)chloride                        |
| 3:13 <b>40</b>      | 2,3,5-Trichlorophenol                             | 3:8285              | Trimethylene chlorohydrin                        |
| 3:1160              | 2,3,6-Trichlorophenol                             | 3:8310              | Trimethylene chlorohydrin                        |
| 3:1620              | 2,4,5-Trichlorophenol                             |                     | acetate                                          |
| 3:1673              | 2,4,6-Trichlorophenol                             | 3:8030              | Trimethylethylene chlorohydrin                   |
| 3:2885              | 3,4,5-Trichlorophenol                             | 3:7975              | Trimethylethylene dichloride                     |
| 3:4335              | 2,4,5-Trichlorophenoxyacetic                      | 3:9324              | Trimethylpropargyl chloride                      |
|                     | acid                                              | 3:7335              | Trimethylvinyl chloride                          |
| 3:4030              | 2,4,6-Trichlorophloroglucinol                     | 3:3410              | Triphenylchloromethane                           |
| 3:9033              | 2,2,3-Trichloropropanal-1                         | 3:3410              | Triphenylmethyl chloride                         |
| 3:5270              | 1,1,1-Trichloropropane                            | 3:1915              | Triphosgene                                      |
| 3:5630              | 1,1,2-Trichloropropane                            | 3:9742              | Tri-n-propylcarbinyl chloride                    |
| 3:5660              | 1,1,3-Trichloropropane                            | 3:3410              | Trityl chloride                                  |
| 3:5475              | 1,2,2-Trichloropropane                            |                     | U                                                |
| 3:5840              | 1,2,3-Trichloropropane                            |                     |                                                  |
| 3:0846              | 1,1,1-Trichloropropanol-2                         | 3:9800              | n-Undecanoyl chloride                            |
| 3:5620              | 1,1,1-Trichloropropanone-2                        | 3:8803              | n-Undecyl chloride                               |
| 3:5957              | 1,1,3-Trichloropropanone-2                        |                     | v                                                |
| 3:5395              | 1,1,2-Trichloropropene-1                          |                     | •                                                |
| 3:5650              | 1,2,3-Trichloropropene-1                          | 3:7740              | n-Valeryl chloride                               |
| 3:5345              | 3,3,3-Trichloropropene-1                          | 3:7010              | Vinyl chloride                                   |
| 3:5345              | 1,1,1-Trichloropropene-2                          | 3:5005              | Vinylidene (di)chloride                          |
| 3:9033              | $\alpha, \alpha, \beta$ -Trichloropropionaldehyde |                     | x                                                |
| 3:1275              | $\alpha, \alpha, \beta$ -Trichloropropionic acid  |                     |                                                  |
| 3:5760              | $\omega,\omega,\omega$ -Trichloropropylene oxide  | 3:8710              | o-Xylyl chloride                                 |
| 3:3 <del>44</del> 8 | 3,4,5-Trichloropyrocatechol                       | 3:8700              | m-Xylyl chloride                                 |
| 3:4782              | 4,5,6-Trichloropyrogallol                         | 3:8660              | p-Xylyl chloride                                 |
| 3:4672              | Trichloroquinone                                  | 3:1 <del>04</del> 0 | o-Xylylene (di)chloride                          |
| 3:2174              | 2,4,6-Trichlororesorcinol                         | 3:0310              | m-Xylylene (di)chloride                          |
| 3:6540              | $\omega,\omega,\omega$ -Trichlorotoluene          | 3:2825              | p-Xylylene (di)chloride                          |
|                     |                                                   |                     |                                                  |



1246.13 Hayyp

Perhandring properties chemical

behavior & identification of

Organic Chemical

Organi