Favorite Books

John Cruz

2023-03-08

Introduction

This project focuses on working with different types of files for analysis. I will be manually creating HTML, XML and JSON formats that store three of my favorite books related to data science and programming. Each file will store the title, author(s), publisher, published date, ISBN-13, and a best sellers rank from Amazon's website. The rankings were collected March 8, 2023.

HTML

HTML files is minimally comprised up of HTML elements and attributes. The HTML file storing my book data contains a web page title inside < head>, heading < h1> and . The is built using table headers and table data , similar to an Excel spreadsheet.

books.html

XML

XML forms a parent/child tree that stores information based on their relationship to each other. My XML file uses the "trunk" of the tree called $< fav_books>$. It then branches out into separate branches called < book>. Each < book> then contains the "leaves", unique information based on said book such as < title> and < authors>.

books.xml

JSON

JSON can be compared similarly to Python's dictionaries. It contains a key:value pair that identifies the objects. To store my books, it is in a nested dictionary with key:value pairs such as fav_books:book:title, where the title is stored in book and book is store in fav_books.

books.json

Import Libraries

```
library(tidyverse)
library(rvest)
library(xml2)
library(jsonlite)
```

Import HTML File into Data Frame

To import the HTML file stored within the GitHub repository, I will use the $read_html()$ function within the rvest library. This will then allow me to bring in the table using $read_table()$ function to transform the html table into a data frame.

```
url <- 'https://raw.githubusercontent.com/hellojohncruz/favorite_books/main/books.html'
html <-
    read_html(url) |>
    html_table()

df_html <-
    as.data.frame(html) |>
    janitor::clean_names()

knitr::kable(df_html)
```

title	author_s	$publishe \verb published is bn_13 best_sellers_rank$
Starting Out with C++ from Control	Tony Gaddis	Pearson February 978- 95,825
Structures to Objects		13, 0134498379
		2017
An Introduction to Statistical Learning: with	Gareth James, Daniela	SpringerJuly 978- 29,107
Applications in R	Witten, Trevor Hastie,	30, 1071614174
	Robert Tibshirani	2021
Hands-On Machine Learning with	Aurélien Géron	O'ReillyOctober 978- 18,543
Scikit-Learn, Keras, and TensorFlow:		Me- 15, 1492032649
Concepts, Tools, and Techniques to Build		dia 2019
Intelligent Systems		

Import XML File into Data Frame

To import the XML file stored within the GitHub repository, I will use the $read_xml()$ function within the xml2 library. We then can see the structure of the XML file using $xml_structure()$

```
url<- 'https://raw.githubusercontent.com/hellojohncruz/favorite_books/main/books.xml'
read_xml(url) |>
   xml_structure()
```

```
## <fav_books>
##
     <book>
##
       <title>
##
          {text}
##
       <authors>
##
          {text}
##
        <publisher>
          {text}
##
##
       <published>
##
          {text}
##
       <isbn_13>
##
          {text}
##
       <best_sellers_rank>
##
          {text}
##
     <book>
##
       <title>
##
          {text}
##
       <authors>
##
          {text}
##
       <publisher>
##
          {text}
##
        <published>
##
          {text}
##
       <isbn_13>
##
          {text}
##
       <best_sellers_rank>
##
          {text}
##
     <book>
##
       <title>
##
          {text}
##
       <authors>
##
          {text}
##
       <publisher>
##
          {text}
##
       <published>
##
          {text}
##
       <isbn_13>
##
          {text}
##
       <best_sellers_rank>
##
          {text}
```

To transform the portions of the XML file, I stored into vectors each "leaf" data, then created a tibble combining them all into one.

```
xml_title <-
  read_xml(url) |>
  xml_find_all(xpath = "//title") |>
  xml_text()

xml_authors <-
  read_xml(url) |>
  xml_find_all(xpath = "//authors") |>
  xml_text()
```

```
xml_publisher <-</pre>
  read_xml(url) |>
  xml_find_all(xpath = "//publisher") |>
  xml_text()
xml_published <-</pre>
  read_xml(url) |>
  xml_find_all(xpath = "//published") |>
  xml_text()
xml_isbn_13 <-</pre>
  read_xml(url) |>
  xml_find_all(xpath = "//isbn_13") |>
  xml_text()
xml_rank <-</pre>
  read_xml(url) |>
  xml_find_all(xpath = "//best_sellers_rank") |>
  xml_text()
df_xml <-
  tibble(title = xml_title, author_s = xml_authors, publisher = xml_publisher, published = xml_publishe
             isbn_13 = xml_isbn_13, best_sellers_rank = xml_rank)
knitr::kable(df_xml)
```

title	author_s	publishepublishedisbn_13best_sellers_		
Starting Out with C++ from Control	Tony Gaddis	Pearson February 978- 95,825		
Structures to Objects		13, 0134498379		
		2017		
An Introduction to Statistical Learning: with	Gareth James, Daniela	SpringerJuly 978- 29,107		
Applications in R	Witten, Trevor Hastie,	30, 1071614174	1071614174	
	Robert Tibshirani	2021		
Hands-On Machine Learning with	Aurélien Géron	O'ReillyOctober 978- 18,543		
Scikit-Learn, Keras, and TensorFlow:		Me- 15, 1492032649		
Concepts, Tools, and Techniques to Build		dia 2019		
Intelligent Systems				

Import JSON File into Data Frame

To import the JSON file stored within the GitHub repository, I will use the $read_json()$ function within the jsonlite library. We use the simplifyVector = TRUE parameter to create vectors that can be read into a data frame. Finally, using $clean_names()$, this will clean up the column names in the data frame.

What we do notice about the column names is that it creates a snake case format of how each key to value was reached. For example, for *title*, it required to go through fav_books > book > title to reach the data.

```
url <- 'https://raw.githubusercontent.com/hellojohncruz/favorite_books/main/books.json'</pre>
```

```
df_json <-
  as.data.frame(read_json(url, simplifyVector = TRUE)) |>
  janitor::clean_names()

knitr::kable(df_json)
```

$fav_books_book_title$	fav_books_book_a	utl íav s_bool	ks <u>fa</u> lv <u>o</u> dk <u>oo</u> k	u<u>falishbo</u>o k	nd<u>a</u>vhishokoblis br <u>bo</u> bk _best_
Starting Out with C++ from Control Structures to Objects	Tony Gaddis	Pearson	February 13, 2017	978- 01344983	95,825 79
An Introduction to Statistical Learning: with Applications in R	Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani	Springer	July 30, 2021	978- 10716141	29,107 74
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems	Aurélien Géron	O'Reilly Media	October 15, 2019	978- 14920326	18,543 49

Conclusion

To import the data, we can utilize multiple formats to obtain the information inside a data frame. However, some column and data formatting may be required to get them all into a standardized form.