14/12/17

Roll No.

Total Pages: 3

MCA/D-17

10312

DISCRETE MATHEMATICAL STRUCTURES Paper: MCA-14-14

Time: Three Hours

[Maximum Marks: 80

Note: Attempt *five* questions in all. Question number 1 is compulsory. Attempt *four* more questions selecting *one* question from each unit. All questions carry equal marks.

Compulsory Question

- 1. Explain the following in brief using suitable example:
 - (a) Total order relation.
 - (b) Inverse function.
 - (c) Nested quantifier.
 - (d) Inclusion-Exclusion principle.
 - (e) Divide and Conquer approach.
 - (f) Principle of Duality.
 - (g) Isomorphism.
 - (h) Dual graphs.

 $(8 \times 2 = 16)$

UNIT-I

2. (a) A survey among 100 students shows that of the three ice-cream flavours vanilla, chocolate and strawberry, 50 students like vanilla, 43 like chocolate, 28 like strawberry, 13 like vanilla and chocolate, 11 like chocolate and

10312/200/KD/907

[P.T.O.

strawberry, 12 like strawberry and vanilla, and 5 like all of them. Find the number of students surveyed who like each of the following flavours:

(i) Chocolate but not strawberry.

(ii) Chocolate and strawberry, but not vanilla.

(iii) Vanilla or chocolate, but not strawberry.

8

(b) What is Function? Explain injective, bijective and surjective function using suitable examples.

8

3. (a) Let R be a relation on a set A. Prove that there is a path of length n, where n is a positive integer from a to b if and only if (a, b) belongs to Rⁿ.

8

(b) Let R be an equivalence relation on a set A. Prove that these statements are equivalent:

- (i) a R b
- (ii) [a] = [b]
- (iii) $[a] \cap [b] \neq \emptyset$.

8

UNIT-II

- 4. (a) Show that $\neg (p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent.
 - (b) Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology. 5

 Prove that sum of two rational numbers is rational. 5
- 5. (a) Show that among any n+1 positive integers not exceeding 2n, there must be an integer that divides one of the other integer.

10312/200/KD/907

2

(b) State and prove Pascal's Identity using binomial coefficients.

UNIT-III

6. (a) Solve the recurrence relation

$$a_n = 7a_{n-1} - 13a_{n-2} - 3a_{n-3} + 18a_{n-4},$$

where $a_0 = 5$, $a_1 = 3$, $a_2 = 6$ and $a_3 = -21$.

- (b) Write a recursive algorithm to compute the gcd of two positive integers x and y. 8
- 7. (a) Simplify the following expression and draw the switching AND gate circuit using NOR gates only:

$$F = (x + y)(y + z) (z + x)xyz.$$
 8

(b) What is a lattice and special lattice? Explain both types of lattices using suitable examples and drawing Hasse diagrams for the lattices.

UNIT-IV

- 8. (a) What do you mean by Euler's path and circuit? Explain necessary and sufficient conditions for Euler's paths and circuits using suitable examples.
 - (b) Explain the Dijkstra's algorithm using suitable examples.

 Also explain limitations of this algorithm.
- 9. What is Minimum spanning tree? Compare and contrast both the algorithms for finding minimum spanning trees. 16