Numerical Methods in Engineering Applications

Workshop #01-2:

Python & Finite differences

ronan.vicquelin@centralesupelec.fr aymeric.vie@centralesupelec.fr nicolas.dumont@centralesupelec.fr leo.cunha@centralesupelec.fr

Objectives of Workshop #1

Finite differences

- Derivation of finite difference formulae
- Implementation
- Validation and error evaluation

Introduction to Ordinary Differential Equation

- Derivation of Euler's explicit method
- Implementation

Finite differences

Taylor series expansion on uniform mesh

$$f(x+h) = f(x) + \sum_{k=1}^{\infty} \frac{h^k}{k!} \frac{\mathrm{d}^k f}{\mathrm{d}x^k} \bigg|_{x}$$

Approximation of derivatives

truncation at a given order

$$f(x+h) = f(x) + \sum_{k=1}^{N} \frac{h^k}{k!} \frac{\mathrm{d}^k f}{\mathrm{d}x^k} \bigg|_{x} + \mathcal{O}(h^{N+1})$$

Low order approximation using single Taylor series

$$N = 1, \quad h \frac{\mathrm{d}f}{\mathrm{d}x} + \mathcal{O}(h^2) = f(x+h) - f(x)$$
$$\Rightarrow \frac{\mathrm{d}f}{\mathrm{d}x} = \frac{f(x+h) - f(x)}{h} + \mathcal{O}(h)$$

Higher order using a composition of Taylor series at different h

Taylor tables

Determine the highest order approximation for a given stencil

$$\frac{\mathrm{d}f}{\mathrm{d}x} + \sum_{k=-l}^{Q} a_k f(x+kh) = \mathcal{O}(h^?)$$

Taylor tables

	f(x)	f'(x)	f''	• • •	$d^l f/dx^l$
f'	0	1	0	• • •	0
f(x)	a_0	0	0	• • •	0
f(x+h)	a_1	a_1h	$a_1h^2/2$	• • •	$a_1h^l/l!$
• • •	• • •	• • •	• • •	• • •	• • •
f(x+kh)	$ a_k $	a_1kh	$a_1(kh)^2/2$	• • •	$a_1(kh)^l/l!$

- Nullify the sum in each column
- Order is given by the last column constraint that is not verified

The explicit Euler's method for ODEs

Ordinary Differential Equations

$$\frac{\mathrm{d}Y(t)}{\mathrm{d}t} = F(t, Y(t))$$

Time-marching method

$$Y(t_{n+1}) = Y_n + \int_{t_n}^{t_{n+1}} F(\tau, Y(\tau)) d\tau$$

First order approximation of the RHS

$$F(\tau, Y(\tau)) = F(t_n, Y(t_n))$$

First order Explicit Euler method

$$Y(t_{n+1}) = Y_n + \Delta t F(t_n, Y(t_n))$$

Workshop I-2

 Derivation of finite difference approximations for first and second order derivatives

Implementation and evaluation of the order of accuracy

Introduction to Ordinary Differential Equations

