(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 3 July 2003 (03.07.2003)

PCT

(10) International Publication Number WO 03/054213 A2

(51) International Patent Classification7:

C12Q

- (21) International Application Number: PCT/US02/38805
- (22) International Filing Date: 3 December 2002 (03.12.2002)

English

(26) Publication Language:

(25) Filing Language:

English

(30) Priority Data:

10/027,736

19 December 2001 (19.12.2001) U

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US Filed on

CA 94080 (US).

10/027,736 (CON) 19 December 2001 (19.12.2001)

(71) Applicant (for all designated States except US): GENEN-TECH, INC. [US/US]; 1 DNA Way, South San Francisco, (72) Inventors; and

- (75) Inventors/Applicants (for US only): PRESTA, Leonard, G. [US/US]; 1900 Gough Street, #206, San Francisco, CA 94109 (US). NAMENUK, Angela, K. [US/US]; 2948 Florida Street, Oakland, CA 94602 (US).
- (74) Agent: DAIGNAULT, Ronald, A.; Merchant & Gould P.C. P.O. Box 2903, Minneapolis, MN 55402-0903 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK,

[Continued on next page]

(54) Title: NON-HUMAN PRIMATE Fc RECEPTORS AND METHODS OF USE

Monomeric IgG Subclass Binding to Cyno FcgRi (Detected with anti-Kappa chain)

(57) Abstract: The invention provides isolated non-human primate Fc receptor polypeptides, the nucleic acid molecules encoding the Fc receptor polypeptides, and the processes for production of recombinant forms of the Fc receptor polypeptides, including fusions, variants, and derivatives thereof. The invention also provides methods for evaluating the safety, efficacy and biological properties of Fc region containing molecules using the non-human primate Fc receptor polypeptides.

ATTORNEY DOCKET NUMBER: 10271-027-999 SERIAL NUMBER: 10/020,354

REFERENCE: DO

WO 03/054213 A2

TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

NON-HUMAN PRIMATE Fc RECEPTORS AND METHODS OF USE

This application is being filed as a PCT international patent application in the name of Genentech, Inc., a U.S. national corporation (applicant for all countries except the U.S.), and in the names of Leonard G. Presta and Angela K. Namenuk, both U.S. citizens and residents (applicants for the U.S. designation only), on 03 December 2002, designating all countries.

FIELD OF THE INVENTION

The invention generally relates to purified and isolated non-human primate Fc receptor polypeptides, the nucleic acid molecules encoding the FcR polypeptides, and the processes for production of non-human primate Fc receptor polypeptides as well as to methods for evaluating the safety, efficacy and biological properties of therapeutic agents.

15

20

25

30

10

BACKGROUND OF THE INVENTION

Fc receptors (FcRs) are membrane receptors expressed on a number of immune effector cells. Upon interaction with target immunoglobulins, FcRs mediate a number of cellular responses, including, activation of cell mediated killing, induction of mediator release from the cell, uptake and destruction of antibody coated particles, and transport of immunoglobulins. Deo et al., 1997, *Immunology Today* 18:127-135. Further, it has been shown that antigen-presenting cells, *e.g.*, macrophages and dendritic cells, undergo FcR mediated internalization of antigen-antibody complexes, allowing for antigen presentation and the consequent amplification of the immune response. As such, FcRs play a central role in development of antibody specificity and effector cell function. Deo et al., 1997, *Immunology Today* 18:127-135.

FcRs are defined by their specificity for immunoglobulin isotypes; Fc receptors for IgG antibodies are referred to as FcγR, for IgE as FcεR, for IgA as FcαR and so on. FcRn is a special class of Fc receptor found on neonatal cells and is responsible for, among other things, transporting maternal IgG from milk across the infants intestinal epithelial cells. Three subclasses of human gamma receptors have been identified: FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16). Because each human FcγR subclass is encoded by two or three genes, and alternative RNA spicing leads to

multiple transcripts, a broad diversity in Fc γ isoforms exists. The three genes encoding the human Fc γ RI subclass (Fc γ RIA, Fc γ RIB and Fc γ RIC) are clustered in region 1q21.1 of the long arm of chromosome 1; the genes encoding Fc γ RII isoforms (Fc γ RIIA, Fc γ RIIB and Fc γ RIIC) and the two genes encoding Fc γ RIII (Fc γ RIIIA and Fc γ RIIIB) are all clustered in region 1q22. FcRs are reviewed in Ravetch and Kinet, Annu. Rev. Immunol 9:457-92 (1991); Capel et al., Immunomethods 4:25-34 (1994); and de Haas et al., J Lab. Clin. Med. 126:330-41 (1995).

Human Fc γ RI is a heteroligomeric complex composed of an α -chain and γ -chain. The α -chain is a 70-72 kDa glycoprotein having 3 extracellular C-2 Ig like domains, a 21 amino acid membrane domain and a charged cytoplasmic tail of 61 amino acids. van de Winkel et al., 1993, *Immunology Today* 14:215-221. The γ -chain is a homodimer that is involved in cell surface assembly and cell signaling into the interior of the cell. Each chain of γ homodimer includes a motif involved in cellular activation designated the ITAM motif. Human Fc γ RI binds monomeric IgG with high affinity (10^{-7} - 10^{-9} M) through the action of the third extracellular C-2 domain.

10

15

20

25

30

FcγRII is a 40 kDa glycoprotein having two C2 set Ig-like extracellular domains, a 27-29 amino acid transmembrane domain, and a cytoplasmic domain having variable length, from 44 to 76 amino acids. There are six known isoforms of the human FcγRII, differing for the most part in their heterogeneous cytoplasmic domains. Human FcγRIIA includes an ITAM motif in the cytoplasmic region of the molecule, and upon crosslinking of the receptor this motif is associated with cellular activation. In contrast, human FcγRIIB includes an inhibitory motif in its cytoplasmic region designated ITIM. When the FcγRIIB is crosslinked, cellular activation is inhibited. In general, FcγRII binds monomeric IgG poorly (>10⁷ M⁻¹), but has high affinity for complexed IgG.

Human FcyRIII has two major isoforms, FcyRIIIA and FcyRIIIB, both isoforms are between 50 to 80 kDa, having two C2 Ig-like extracellular domains. The FcyRIIIA α -chain is anchored to the membrane by a 25 amino acid transmembrane domain, while FcyRIIIB is linked to the membrane via a glycosyl phosphatidyl-inositol (GPI) anchor. Human FcyRIIIA is a heteroligomeric complex with the α -chain complexed with a heterodimeric γ - δ (gamma-delta) chain or γ - γ chain. The γ -chain includes a cytoplasmic tail with an ITAM motif. The δ -chain is homologous to the α -chain and is also involved in cell signaling and cell surface assembly. The γ - δ (gamma-delta)

chain also includes an ITAM motif in its cytoplasmic region. In both cases, the FcyRIII binds monomeric IgG with low affinity, and binds complexed IgG with high affinity.

Human FcRn is a heterodimer composed of a β -2 microglobulin chain and a α chain. The β -2 microglobulin chain is approximately 15 kDa and is similar to the β -2 microglobulin chain present in MHC class I heterodimers. The presence of a β -2 microglobulin chain in FcRn makes it the only known Fc receptor to fall within the MHC class I family of proteins. Ghetie et al., 1997 Immunology Today 18(12):592-598. The α chain is a 37-40 kDa integral membrane glycoprotein having a single glycosylation site. Evidence suggests that FcRn is involved in transferring maternal IgG across the neonatal gut and in regulating serum IgG levels. FcRn is also found in adults on many tissues.

10

15

20

25

30

As discussed above, human FcyRs, with the exception of FcyRIIB, contain a cytoplasmic ~26 amino acid immunoreceptor tyrosine-based activation motif (ITAM). It is believed that this motif is involved in cell signaling and effector cell function. Crosslinking of FcyRs may lead to the phosphorylation of tyrosine residues within the ITAM motif by src-family tyrosine kinases (PTKs), followed by association and activation of the phosphorylated ITAM motif with syk-family PTKs. Deo et al., 1997, Immunology Today 18:127-135. Once activated, a poorly understood signaling cascade is translated into biological responses.

Human FcyRIIB members contain a distinct 13 amino acid immuno-receptor tyrosine-based inhibitory motif (ITIM) in their cytoplasmic domain. Human FcyRIIB is expressed on B lymphocytes and binds to IgG complexes. However, rather than activating cells, crosslinking of the IIB receptor results in a signal inhibiting B cell activation and antibody secretion. (Camigorea et al., 1992, Cytoplasmic Domain Heterogeneity and Function of IgG Receptors in B Lymphocytes, Science 256:1808.)

Because of the central role of FcγR as a trigger molecule in numerous immune responses, it has become a target for developing potential therapeutics. For example, several ongoing clinical trials are based on activating a cancer patient's effector cells by treating the patient with tumor-specific monoclonal antibodies (Mabs). These studies have shown that the tumor-specific antibodies mediate their effects in part through FcγR binding, and subsequent effector cell activity. Adams et al., 1984, *Proc. Natl. Acad. Sci.* 81:3506-3510; Takahashi et al., 1995, *Gastroenterology* 108:172-182; Riethmeuller et al., 1994, *Lancet* 343:1177-1183, Clynes, R. A., Towers, T. L., Presta,

5

25

30

L. G., and Ravetch, J. V., 2000, *Nature Med.* 6:443-446. Further, a novel series of bispecific molecule antibodies (BSMs), molecules engineered to have one arm specific for a tumor cell and the other arm specific for a target FcγR, are in clinical trials to specifically target a tumor for FcγR mediated, effector cell destruction of the tumor cells. Valone et al., 1995, *J. Clin. Oncol.* 13:2281-2292; Repp et al., 1995, *Hematother* 4:415-421. In addition, FcγRs can be used as therapeutic targets in a number of infectious diseases, and for that matter, a number of autoimmune disorders. With regard to infectious diseases, BSMs are being developed to target any number of microorganisms to a patient's FcγR expressing effector cells (Deo et al., 1997, *Immunology Today* 18:127-135), while soluble FcγRs have been used to inhibit the Arthus reaction, and FcγR blocking agents have been used to reduce the severity of several autoimmune disorders. Ierino et al., 1993, *J. Exp. Med.* 178:1617-1628; Debre et al., 1993, *Lancet* 342:945-949.

As antibodies have become increasingly used as therapeutic agents, there is a need to develop animal models for evaluating the toxicity, efficacy and pharmacokinetics of such therapeutic agents. In addition to rodent models for evaluating efficacy of antibody therapeutics, primate models have been used for evaluation of therapeutic antibody pharmacokinetics, toxicity, and efficacy (Anderson, D. R., Grillo-Lopez, A., Varns, C., Chambers, K. S., and Hanna, N. (1997) Biochem.

Soc. Trans. 25, 705-708). However, there is only sparse information available regarding the interaction of human antibodies with primate Fcy receptors and the effects of this interaction on interpretation of pharmacokinetic, toxicity, and efficacy studies in primates.

Although many advances have been made in elucidating FcyR activity and identifying and engineering FcyR ligands, there still remains a need in the art to identify other FcyRs and to identify and engineer other FcyR ligands, both activating and inhibiting. These new receptors and receptor ligands possess potential therapeutic value in a number of disease states, including, the destruction of tumor cells and infectious material, as well as in blocking portions of the immune response involved in several autoimmune disorders. As antibodies and other FcyR ligands are used as therapeutic agents, there is also a need to develop models to test the efficacy, toxicity, and pharmacokinetics of these therapeutic agents, especially *in vivo*.

SUMMARY OF INVENTION

The invention is based upon, among other things, the isolation and sequencing of polynucleotides encoding Fc receptor polypeptides from non-human primates, such as cynomolgus monkeys and chimps. The cynomolgus monkey or chimp FcR polynucleotides and polypeptides of the invention are useful, inter alia, for evaluation of binding of antibodies of any subclass (especially antibodies with prospective therapeutic utility) to cynomolgus or chimpanzee FcR polypeptides prior to in vivo evaluation in a primate.

The invention provides polynucleotide molecules encoding non-human primate Fc receptor polypeptides. The polynucleotides of the invention encode non-human primate Fc receptor polypeptides with an amino acid sequence of SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 25, SEQ ID NO. 29, SEQ ID NO. 64 or fragments thereof. Fc receptor polynucleotide molecules of the invention include those molecules having a nucleic acid sequence as shown in SEQ ID NOs: 1, 3, 5, 7, 13, 22, and 27, as well as polynucleotides having substantial nucleic acid identity with the nucleic acid sequences of SEQ ID NOs 1, 3, 5, 7, 13, 22, and 27. β-2 microglobulin polynucleotide molecules of the invention also include molecules having a nucleic acid sequence as shown in SEQ ID NO: 23, as well as polynucleotides having substantial nucleic acid identity with the nucleic acid identity with the nucleic acid sequences of SEQ ID NO: 23, as well as polynucleotides having substantial nucleic acid identity with the nucleic acid sequences of SEQ ID NO: 23.

10

15

20

25

30

The present invention also provides non-human primate Fc γ receptors and non-human primate β -2 microglobulin. Fc γ polypeptides of the invention include those having an amino acid sequence shown in SEQ ID NOs: 9, 11, 15, 17, 18, 20, 29, and 64 as well as polypeptides having substantial amino acid sequence identity to the amino acid sequences of SEQ ID NOs 9, 11, 15, 17, 18, 20, 29, and 64 and useful fragments thereof. β -2 microglobulin polypeptides of the invention include those having an amino acid sequence shown in SEQ ID NO: 25, as well as polypeptides having substantial amino acid sequence identity to the amino acid sequence of SEQ ID NO: 25 and useful fragments thereof.

In another aspect the invention provides polynucleotide molecules encoding mature non-human primate Fc receptor polypeptides. The polynucleotides of the invention encode mature non-human primate Fc receptor polypeptides with an amino acid sequence of SEQ ID NO: 65, SEQ ID NO: 66, SEQ ID NO: 67, SEQ ID NO: 68,

5

10

15

20

25

30

SEQ ID NO: 69, SEQ ID NO: 70, SEQ ID NO. 71, SEQ ID NO. 72 or fragments thereof. Fc receptor polynucleotide molecules of the invention include those molecules having a nucleic acid sequence as shown in SEQ ID NOs: 1, 3, 5, 7, 13, 22, 23 and 27, as well as polynucleotides having substantial nucleic acid identity with the nucleic acid sequences of SEQ ID NOs 1, 3, 5, 7, 13, 22, 23, and 27.

In another aspect of the invention, a method of obtaining a nucleic acid encoding a nonhuman primate Fc receptor is provided. The method comprises amplifying a nucleic acid from a nonhuman primate cell with a primer set comprising a forward and a reverse primer, wherein the primer sets are selected from the group consisting of SEQ ID NO:31 and SEQ ID NO:32, SEQ ID NO:33 and SEQ ID NO:34, SEQ ID NO:35 and SEQ ID NO:36, SEQ ID NO:37 and SEQ ID NO:38, SEQ ID NO:39 and SEQ ID NO:40, SEQ ID NO:41 and SEQ ID NO:42, SEQ ID NO:43 and SEQ ID NO:44, SEQ ID NO:45 and SEQ ID NO:46, SEQ ID NO:47 and SEQ ID NO:48, SEQ ID NO:49 and SEQ ID NO:50, SEQ ID NO:51 and SEQ ID NO:52, and SEQ ID NO:53 and SEQ ID NO:54; and isolating the amplified nucleic acid. The nonhuman primate cell is a preferably a cynomologus spleen cell or a chimp spleen cell.

The invention includes variants, derivatives, and fusion proteins of the non-human primate Fc γ receptor polypeptides and β -2 microglobulin. For example, the fusion proteins of the invention include the non-human primate Fc γ receptor polypeptides fused to heterologous protein or peptide that confers a desired function, *i.e.*, purification, stability, or secretion. The fusion proteins of the invention can be produced, for example, from an expression construct containing a polynucleotide molecule encoding one of the polypeptides of the invention in frame with a polynucleotide molecule encoding the heterologous protein.

The invention also provides vectors, plasmids, expression systems, host cells, and the like, containing the polynucleotides of the invention. Several recombinant methods for the production of the polypeptides of the invention include expression of the polynucleotide molecules in cell free expression systems, in cellular hosts, in tissues, and in animal models, according to known methods.

The non-human primate Fcy receptors are useful in animal models for the evaluation of the therapeutic safety, efficacy and pharmacokenetics of agents, especially agents having a Fc region. A method of the invention involves contacting an

agent with Fc receptor binding domain with a non-human primate Fc receptor polypeptide, preferably a mature soluble polypeptide, and determining the effect of contact on at least biological property of the Fc region containing molecule. A method of the invention involves contacting a cell expressing at least one non-human primate Fcy receptor polypeptide with an agent having a Fc region and determining whether the agent alters biological activity of the cell or is toxic to the cell. The invention also includes a method for screening variants of agents including an Fc region for the ability of such variants to bind to and activate FcRs. An example of such variants include antibodies that have amino acid substitutions at specific residues that may alter binding affinity for one or more Fc receptor classes.

5

10

15

20

25

30

Another example, of screening for agents with FcR binding domains includes identifying agents that have an altered affinity for a Fcy receptor having an ITAM region compared to a Fcy receptor having an ITIM region. In addition, the invention provides reagents, compositions, and methods that are useful identifying an agent that has an altered affinity for a Fcy receptor having an ITIM region, or for a method for identifying an agent with increased binding affinity for a Fcy receptor having an ITAM region.

These and various other features as well as advantages which characterize the invention will be apparent from a reading of the following detailed description and a review of the appended claims.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1A illustrates monomeric IgG subclass binding to human FcyRI.

Figure 1B illustrates monomeric IgG subclass binding to cynomolgus FcyRI.

Figure 2 illustrates hexameric immune complex binding to cynomolgus

FcyRIIA.

Figure 3A illustrates hexameric immune complex binding to human FcyRIIB.

Figure 3B illustrates hexameric immune complex binding to cynomolgus

FcyRIIB.

Figure 4A illustrates hexameric immune complex binding to human FcyRIIIA-F158.

Figure 4B illustrates hexameric immune complex binding to human FcγRIIIA-V158.

Figure 4C illustrates hexameric immune complex binding to cynomolgus FcyRIIIA.

Figure 5 illustrates hexameric immune complex binding of human IgG1 variants to cynomolgus FcqRIIA.

Figure 6 illustrates hexameric immune complex binding of human IgG variants to cynomolgus FcγRΠΒ.

Figure 7 illustrates hexameric immune complex binding of human IgG variants to cynomolgus $Fc\gamma R\Pi IA$.

Figure 8 illustrates concentration dependent monomeric IgG subclass binding to human FcRn.

Figure 9 illustrates concentration dependent monomeric IgG subclass binding to cynomolgus FcRn (S3).

Figure 10 illustrates concentration dependent monomeric IgG subclass binding to cynomolgus FcRn (N3).

15

5

IDENTIFICATION OF SEQUENCES AND SEQUENCE IDENTIFIERS

SEQ ID NO.	DESCRIPTION	LOCATION	ACCESSION NO.
1	Cynomolgus DNA for a FcγRI α-chain	Table 3	
2	Human DNA for a FcyRI α-chain	Table 3	GenBank L03418
3	Cynomolgus DNA for a FcyRIIA	Table 5	
4	Human DNA for a FcyRIIA	Table 5	GenBank M28697
5	Cynomolgus DNA for a FcyRIIB	Table 6	
6	Human DNA for a FcyRIIB	Table 6	GenBank X52473
7	Cynomolgus DNA for a FcγRIIIA α-chain	Table 7	
8	Human DNA for a FcγRIIIA α-chain	Table 7	GenBank X52645
9	Amino acid sequence of a cynomolgus FcγRI α-chain	Table 10	
10	Amino acid sequence of a human FcγRI α-chain	Table 10	GenBank P12314
11	Amino acid sequence of a cynomolgus FcyRI/III gamma chain	Table 12	w-

		•	
12	Amino acid sequence of a human FcyRI/III gamma chain	Table 12	GenBank P30273
13	DNA sequence for a cynomolgus gamma chain DNA	Table 4	
14	DNA sequence for a human gamma chain DNA	Table 4	GenBank M33195
15	Amino acid sequence of a cynomolgus FcyRIIA	Table 11	
16	Amino acid sequence of a human FcyRIIA	Table 11	GenBank P12318
17	Amino acid sequence of a chimp FcyRIIA	Table 11	
18	Amino acid sequence of a cynomolgus FcγRIIB	Table 11	
19	Amino acid sequence of a human FcyRIIB	Table 11	GenBank X52473
20	Amino acid sequence of a cynomolgus FcγRIIIA α-chain	Table 11	
21	Amino acid sequence of a human FcγRIIIA α-chain	Table 11	GenBank P08637
22	DNA sequence for a chimp FcyRIIA	Table 5	
23	Cynomolgus B-2 microglobulin DNA	Table 8	
24	Human B-2 microglobulin DNA	Table 8	AB 021288
25	Amino acid sequence of cynomolgus B-2 microglobulin	Table 13	~~
26	Amino acid sequence of human β -2 microglobulin	Table 13	P01884
27	Cynomolgus FcRn α -chain DNA	Table 9	
28	Human FcRn α -chain DNA	Table 9	U12255
29	Amino acid sequence of cynomolgus FcRn α -chain (S3)	Table 14	
30	Amino acid sequence of human FcRn α -chain	Table 14	U12255
31	Cynomolgus FcyRI full-length forward primer	Table 1	
32	Cynomolgus FcyRI full-length reverse primer	Table 1	

33	Cynomolgus FcyRI-H6-GST forward primer	Table 1
34	Cynomolgus FcyRI-H6-GST reverse primer	Table 1
35	Cynomolgus FcyRIIB full-length forward primer	Table 1
36	Cynomolgus FcyRIIB full-length reverse primer	Table 1
37	Cynomolgus FcyRIIB-H6-GST forward primer	Table 1
38	Cynomolgus FcyRIIB-H6-GST reverse primer	Table 1
39	Cynomolgus FcyRIIIA full-length forward primer	Table 1
40	Cynomolgus FcyRIIIA full-length reverse primer	Table 1
41	Cynomolgus FcyRIIIA-H6-GST forward primer	Table 1
42	Cynomolgus FcyRIIIA-H6-GST reverse primer	Table 1
43	Cynomolgus Fc gamma chain forward primer	Table 1
44	Cynomolgus Fc gamma chain reverse primer	Table 1
45	Cynomolgus β -2 Microglobulin forward primer	Table 1
46	Cynomolgus β-2 Microglobulin reverse primer	Table 1
47	Cynomolgus FcyRIIA full-length forward primer	Table 1
48	Cynomolgus FcyRIIA full-length reverse primer	Table 1
49	Cynomolgus FcqRIIA-H6-GST forward primer	Table 1
50	Cynomolgus FcqRIIA-H6-GST reverse primer	Table 1
51	Cynomolgus FcRn full-length forward primer	Table 1
52	Cynomolgus FcRn full-length reverse primer	Table 1

primer

53	Cynomolgus FcRn-H6 forward primer	Table 1
54	Cynomolgus FcRn-H6 reverse primer	Table 1
55	PCR primer 0F1	Table 2
56	PCR primer 0R1	Table 2
57	PCR primer 0F2	Table 2
58	PCR primer 0F3	Table 2
59	PCR primer 0R2	Table 2
60	PCR primer 0F4	Table 2
61	PCR primer 0R3	Table 2
62	PCR primer 0F5	Table 2
63	PCR primer 0R4	Table 2
64	Amino acid sequence of cynomologus FcRn α -chain (N3)	Table 14
65	Amino acid sequence of a mature cynomolgus FcγRI α-chain	Table 10
66	Amino acid sequence of a mature cynomolgus FcyRIIA	Table 11 Table 21
67	Amino acid sequence of a mature chimp FcyRIIA	Table 11
68	Amino acid sequence of a mature	Table 11
	cynomolgus FcγRIIB	Table 22
69	Amino acid sequence of a mature	Table 11
	cynomolgus FcγRIIIA α-chain	Table 23
70	Amino acid sequence of a mature cynomolgus β -2 microglobulin	Table 13
71	Amino acid sequence of a mature cynomolgus FcγRn α-chain (S3)	Table 14
72	Amino acid sequence of a mature cynomolgus FcRn α-chain (N3)	Table 14

5

10

15

20

25

30

DETAILED DESCRIPTION OF THE INVENTION

The following definitions are provided to facilitate understanding of certain terms used frequently herein and are not meant to limit the scope of the present disclosure.

Throughout the present specification and claims, the numbering of the residues in an IgG heavy chain is that of the EU index as in Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991), expressly incorporated herein by reference. The "EU index as in Kabat" refers to the residue numbering of the human IgG1 EU antibody.

The term "amino acids" refers to any of the twenty naturally occurring amino acids as well as any modified amino acid sequences. Modifications may include natural processes such as posttranslational processing, or may include chemical modifications which are known in the art. Modifications include but are not limited to: phosphorylation, ubiquitination, acetylation, amidation, glycosylation, covalent attachment of flavin, ADP-ribosylation, cross linking, iodination, methylation, and alike.

The term "antibody" is used in the broadest sense and specifically covers monoclonal antibodies (including full length monoclonal antibodies), polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), chimeric antibodies, humanized antibodies, fully synthetic antibodies, and antibody fragments so long as they exhibit the desired biological activity.

The term "antisense" refers to polynucleotide sequences that are complementary to a target "sense" polynucleotide sequence.

The term "complementary" or "complementarity" refers to the ability of a polynucleotide in a polynucleotide molecule to form a base pair with another polynucleotide in a second polynucleotide molecule. For example, the sequence A-G-T is complementary to the sequence T-C-A. Complementarity may be partial, in which only some of the polynucleotides match according to base pairing, or complete, where all the polynucleotides match according to base pairing.

The term "expression" refers to transcription and translation occurring within a host cell. The level of expression of a DNA molecule in a host cell may be determined on the basis of either the amount of corresponding mRNA that is present within the cell or the amount of DNA molecule encoded protein produced by the host cell (Sambrook et al., 1989, *Molecular cloning: A Laboratory Manual*, 18.1-18.88).

5

10

15

20

25

30

The term "Fc region" is used to define a C-terminal region of an immunoglobulin heavy chain. Although the boundaries of the Fc region of an IgG heavy chain might vary slightly, the human IgG heavy chain Fc region stretches from amino acid residue at position Cys226 to the carboxyl-terminus. The term "Fc region-containing molecule" refers to an molecule, such as an antibody or immunoadhesin, which comprises an Fc region. The Fc region of an IgG comprises two constant domains, CH2 and CH3. The "CH2" domain of a human IgG Fc region (also referred to as "Cγ2" domain) usually extends from amino acid 231 to amino acid 340. The CH2 domain is unique in that it is not closely paired with another domain. Rather, two N-linked branched carbohydrate chains are interposed between the two CH2 domains of an intact native IgG molecule. Burton, Molec. Immunol.22:161-206 (1985).

The term "Fc receptor" refers to a receptor that binds to the Fc region of an antibody or Fc region containing molecule. The preferred Fc receptor is a receptor which binds an IgG antibody (FcyR) and includes receptors of the FcyRI, FcyRII, FcyRIII, and FcRn subclasses, including allelic variants and alternatively spliced forms of these receptors. The term "FcR polypeptide" is used to describe a polypeptide that forms a receptor that binds to the Fc region of an antibody or Fc region containing molecule. The term "Fc receptor polypeptide" also includes both the mature polypeptide and the polypeptide with the signal sequence. The term " $Fc\gamma R$ polypeptide" is used to describe a polypeptide that forms a receptor that binds to the Fc region of an IgG antibody or IgG Fc region containing molecule. For example, FcyRI and Fc γ RIII receptors each include a Fc receptor polypeptide α -chain and a Fc receptor polypeptide homo or hetereodimer of a γ- chain. FcRn receptors include an Fc receptor polypeptide alpha chain and a β -2 microglobulin. Typically, the α -chains have the extracellular regions that bind to the Fc-region containing agent. FcRs are reviewed in Ravetch and Kinet, Annu. Rev. Immunol 9:457-92 (1991); Capel et al., Immunomethods 4:25-34 (1994); and de Haas et al., J. Lab. Clin. Med. 126:330-41 (1995). Other FcRs, including those to be identified in the future, are encompassed by the term "FcR" herein.

The term "fragment" is used to describe a portion of an Fc receptor polypeptide or a nucleic acid encoding a portion of an Fc receptor polypeptide. The fragment is preferably capable of binding to a Fc region containing molecule. The structure of human Fc γ α -chain of Fc γ RI/III and Fc γ RIIA or B has been characterized and includes

5

10

15

20

25

30

a signal sequence, 2 or 3 extracellular C-2 Ig like domains; a transmembrane domain; and an intracellular cytoplasmic tail. Fragments of an Fc receptor α-chain or FcγRIIA or B include, but are not limited to, soluble Fc receptor polypeptides with one or more of the extracellular C-2 Ig like domains, the transmembrane domain, or intracellular domain of the Fc receptor polypeptides.

The term "binding domain" refers to the region of a polypeptide that binds to another molecule. In the case of an Fc receptor polypeptide or FcR, the binding domain can comprise a portion of a polypeptide chain thereof (e.g. the α-chain thereof) which is responsible for binding an Fc region of an immunoglobulin or other Fc region containing molecule. One useful binding domain is the extracellular domain of an Fc receptor α-chain polypeptide.

The term "fusion protein" is a polypeptide having two portions combined where each of the portions is a polypeptide having a different property. This property may be a biological property, such as activity *in vitro* or *in vivo*. The property may also be a simple chemical or physical property, such as binding to a target molecule, catalysis of a reaction etc. The two portions may be linked directly by a single peptide bond or through a peptide linker containing one or more amino acid residues. The fused polypeptide may be used, among other things, to determine the location of the fusion protein in a cell, enhance the stability of the fusion protein, facilitate the oligomerization of the protein, or facilitate the purification of the fusion protein. Examples of such fusion proteins include proteins expressed as fusion with a portion of an immunoglobulin molecule, proteins expressed as fusion proteins with a leucine zipper moiety, Fc receptors polypeptides fused to glutathione S-transferase, and Fc receptor polypeptides fused with one or more amino acids that serve to allow detection or purification of the receptor such as Gly6-His tag.

The term "homology" refers to a degree of complementarity or sequence identity between polynucleotides.

The term "host cell" or "host cells" refers to cells established in ex vivo culture. It is a characteristic of host cells discussed in the present disclosure that they be capable of expressing Fc receptors. Examples of suitable host cells useful for aspects of the present invention include, but are not limited to, insect and mammalian cells. Specific examples of such cells include SF9 insect cells (Summers and Smith, 1987, Texas Agriculture Experiment Station Bulletin, 1555), human embryonic kidney cells (293

5

10

15

20

25

30

cells), Chinese hamster ovary (CHO) cells (Puck et al., 1958, *Proc. Natl. Acad. Sci. USA* 60, 1275-1281), human cervical carcinoma cells (HELA) (ATCC CCL 2), human liver cells (Hep G2) (ATCC HB8065), human breast cancer cells (MCF-7) (ATCC HTB22), and human colon carcinoma cells (DLD-1) (ATCC CCL 221), Daudi cells (ATCC CRL-213), and the like.

The term "hybridization" refers to the pairing of complementary polynucleotides during an annealing period. The strength of hybridization between two polynucleotide molecules is impacted by the homology between the two molecules, stringency of the conditions involved, the melting temperature of the formed hybrid and the G:C ratio within the polynucleotides.

As used herein, the term "immunoadhesin" designates antibody-like molecules which combine the "binding domain" of a heterologous "adhesin" protein (e.g. a receptor, ligand or enzyme) with one or more immunoglobulin constant domains. Structurally, the immunoadhesins comprise a fusion of the adhesin amino acid sequence with the desired binding specificity which is other than the antigen recognition and binding site (antigen combining site) of an antibody (i.e. is "heterologous") and an immunoglobulin constant domain sequence. The immunoglobulin constant domain sequence is preferably the Fc portion of an immunoglobulin.

"Immune complex" refers to the relatively stable structure which forms when at least one target molecule and at least one Fc region-containing polypeptide bind to one another forming a larger molecular weight complex. Examples of immune complexes are antigen-antibody aggregates and target molecule-immunoadhesin aggregates.

Immune complex can be administered to a mammal, e.g. to evaluate clearance of the immune complex in the mammal or can be used to evaluate the binding properties of FcR or Fc receptor polypeptides.

The term "isolated" refers to a polynucleotide or polypeptide that has been separated or recovered from at least one contaminant of its natural environment. Contaminants of one natural environment are materials, which would interfere with using the polynucleotide or polypeptide therapeutically or in assays. Ordinarily, isolated polypeptides or polynucleotides are prepared by at least one purification step.

A "native sequence" polypeptide refers to a polypeptide having the same amino acid sequence as the corresponding polypeptide derived from nature. The term specifically encompasses naturally occurring truncated or secreted forms of the

polypeptide, naturally occurring variant forms (e.g. alternatively spliced forms) and naturally occurring allelic variants. A "mature polypeptide" refers to a polypeptide that does not contain a signal peptide.

The term "nucleic acid sequence" refers to the order or sequence of deoxyribonucleotides along a strand of deoxyribonucleic acid. The order of these deoxyribonucleotides determines the order of amino acids along a polypeptide chain. The deoxyribonucleotide sequence thus codes for the amino acid sequence.

5

10

15

20

25

30

The term "polynucleotide" refers to a linear sequence of nucleotides. The nucleotides are either a linear sequence of polyribonucleotides or polydeoxyribonucleotides, or a mixture of both. Examples of polynucleotides in the context of the present invention include - single and double stranded DNA, single and double stranded RNA, and hybrid molecules that have both mixtures of single and double stranded DNA and RNA. Further, the polynucleotides of the present invention may have one or more modified nucleotides.

The terms, "protein," "peptide," and "polypeptide" are used interchangeably to denote an amino acid polymer or a set of two or more interacting or bound amino acid polymers.

The term "purify," or "purified" refers to a target protein that is free from at least 5-10% of the contaminating proteins. Purification of a protein from contaminating proteins can be accomplished through any number of well known techniques, including, ammonium sulfate or ethanol precipitation, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Various protein purification techniques are illustrated in Current Protocols in Molecular Biology, Ausubel et al., eds. (Wiley & Sons, New York, 1988, and quarterly updates).

The term "Percent (%) nucleic acid or amino acid sequence identity" describes the percentage of nucleic acid sequence or amino acid residues that are identical with amino acids in a reference polypeptide, after aligning the sequence and introducing gaps, if necessary to achieve the maximum sequence identity, and not considering any conservative substitutions as part of the sequence identity. For purposes herein, the % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B (which can alternatively be phrased as a given amino acid

sequence A that has or comprises a certain % amino acid sequence identity to, with, or against a given amino acid sequence B) is calculated as follows:

100 times the fraction X/Y

5

10

15

20

25

30

where X is the number of amino acid residues scored as identical matches by the sequence alignment program ALIGN-2 in that program's alignment of A and B, and where Y is the total number of amino acid residues in B. It will be appreciated that where the length of amino acid sequence A is not equal to the length of amino acid sequence B, the % amino acid sequence identity of A to B will not equal the % amino acid sequence identity of B to A. Preferably, % sequence identity can be determined by aligning the sequences manually and again multiplying 100 times the fraction X/Y, where X is the number of amino acids scored as identical matches by manual comparison and Y is the total number of amino acids in B. Further, the above described methods can also be used for purposes of determining % nucleic acid sequence identity. Alternatively, computer programs commonly employed for these purposes, such as the Gap program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, Madison Wisconsin), that uses the algorithm of Smith and Waterman, 1981, Adv. Appl. Math., 2: 482-489 can be used.

Unless specifically stated otherwise, all % amino acid sequence identity values used herein are obtained by manual alignment. However, the ALIGN-2 sequence comparison computer program can be used as described in WO 00/15796.

The term "stringency" refers to the conditions (temperature, ionic strength, solvents, etc) under which hybridization between polynucleotides occurs. A hybridization reaction conducted under high stringency conditions is one that will only occur between polynucleotide molecules that have a high degree of complementary base pairing (about 85% to 100% of sequence identity). Conditions for high stringency hybridization, for example, may include an overnight incubation at about 42°C for about 2.5 hours in 6 X SSC/0.1% SDS, followed by washing of the filters in 1.0 X SSC at 65°C, 0.1% SDS. A hybridization reaction conducted under moderate stringency conditions is one that will occur between polynucleotide molecules that have an intermediate degree of complementary base pairing (about 50% to 84% identity).

As used herein the term "variant" means a polynucleotide or polypeptide with a sequence that differs from a native polynucleotide or polypeptide. Variants can include changes that result in amino acid substitutions, additions, and deletions in the resulting variant polypeptide when compared to a full length native sequence or a mature polypeptide sequence.

The term "vector," "extra-chromosomal vector" or "expression vector" refers to a first piece of DNA, usually double-stranded, which may have inserted into it a second piece of DNA, for example a piece of heterologous DNA like the cDNA of cynomolgus FcyRI. Heterologous DNA is DNA that may or may not be naturally found in the host cell and includes additional copies of nucleic acid sequences naturally present in the host genome. The vector transports the heterologous DNA into a suitable host cell. Once in the host cell the vector may be capable of integrating into the host cell chromosomes. The vector may also contain the necessary elements to select cells containing the integrated DNA as well as elements to promote transcription of mRNA from the transfected DNA. Examples of vectors within the scope of the present invention include, but are not limited to, plasmids, bacteriophages, cosmids, retroviruses, and artificial chromosomes.

10

15

20

25

30

Modes of carrying out the Invention

The invention is based upon, among other things, the isolation and sequencing of nucleic acids encoding Fc receptor polypeptides from non-human primates, such as cynomolgus monkeys and chimps. In particular, the invention provides isolated polynucleotides encoding FcR polypeptides with an amino acid sequence of SEQ ID NO: 9, 11, 15, 17, 18, 20, 29, 64 or fragments thereof. The invention also provides isolated polynucleotides encoding mature FcR polypeptides with an amino acid sequence of SEQ ID NO: 65, 66, 67, 68, 69, 71 or 72, or fragments thereof. The invention also provides an isolated polynucleotide encoding β -2 microglobulin having an amino acid sequence of SEQ ID NO: 25 or SEQ ID NO: 70.

The cynomolgus monkey or chimp Fc receptor polynucleotides and polypeptides of the invention are useful for evaluation of binding of antibodies of any subclass (especially antibodies with prospective therapeutic utility) to cynomolgus or chimpanzee FcR polypeptides prior to in vivo evaluation in a primate. Evaluation could include testing binding to primate FcRs or Fc receptor polypeptides in an ELISA-

format assay or to transiently- or stably-transfected human or primate cells (e.g. CHO, COS). Evaluation of the ability of a human antibody to bind to cynomolgus or other primate FcRs or Fc receptor polypeptides (either in an ELISA- or transfected cell format) could be used as a preliminary test prior to evaluation of pharmacokinetics/pharmacodynamics *in vivo*. Binding of antibodies or antibody

pharmacokinetics/pharmacodynamics *in vivo*. Binding of antibodies or antibody variants to cynomolgus FcRn or FcRn polypeptides would be useful to identify antibodies or antibody variants that could have a longer half life *in vivo*. Binding of antibodies to FcRn correlates with a longer half life *in vivo*.

10

15

20

25

30

The primate FcRs or Fc receptor polypeptides could also be used to screen for variants (e.g. protein-sequence or carbohydrate) of primate or human IgG which exhibit either improved or reduced binding to these receptors or receptor polypeptides; such variants could then be evaluated in vivo in a primate model for altered efficacy of the antibody, e.g. augmentation or abrogation of IgG effector functions. In addition, soluble cynomolgus or chimpanzee Fc receptor polypeptides could be evaluated as therapeutics in primate models.

For example, in one aspect of the invention, a method is provided for identifying agents that selectively activate ITAM motifs in target Fc receptors while failing to activate ITIM motifs in other Fc receptors. Preferably these agents are antibodies and more preferably these agents are monoclonal antibodies. These identified agents may have uses in designing therapeutic antibodies which preferentially bind to and activate only ITAM-containing FcyR (i.e. not simultaneously engaging the inhibitory ITIM-containing receptors) which could thereby improve the cytotoxicity or phagocytosis ability of the therapeutic antibody or the ability of the therapeutic antibody to be internalized by antigen-presenting cells for increased immune system response against the target antigen.

Finally, the cynomolgus FcγR polynucleotides and polypeptides of the invention permit a more detailed analysis of FcγR -mediated molecular interactions. The amino acids in human IgG1 which interact with human FcγR have been mapped (Shields, R. L., Namenuk, A. K., Hong, K., Meng, Y. G., Rae, J., Briggs, J., Xie, D., Lai, J., Stadlen, A., Li, B., Fox, J. A., and Presta, L. G. (2001) J. Biol. Chem. 276, 6591-6604). Testing the binding of these same human IgG1 variants against cynomolgus FcγR can aid in mapping the interaction of specific amino acids in the human IgG1 with amino acids in the FcγR.

Within the application, unless otherwise stated, the techniques utilized may be found in any of several well-known references, such as: *Molecular Cloning: A Laboratory Manual* (Sambrook et al. (1989) Molecular cloning: A Laboratory Manual), *Gene Expression Technology* (Methods in Enzymology, Vol. 185, edited by D.

Goeddel, 1991 Academic Press, San Diego, CA), "Guide to Protein Purification" in Methods in Enzymology (M.P. Deutshcer, 3d., (1990) Academic Press, Inc.), PCR Protocols: A Guide to Methods and Applications (Innis et al. (1990) Academic Press, San Diego, CA), Culture of Animal Cells: A Manual of Basic Technique, 2nd ed. (R.I. Freshney (1987) Liss, Inc., New York, NY), and Gene Transfer and Expression
 Protocols, pp 109-128, ed. E.J. Murray, The Humana Press Inc., Clifton, N.J.).

Polynucleotide Sequences

One aspect of the invention provides isolated nucleic acid molecules encoding Fc receptor polypeptides from cynomolgus monkeys and chimps. Due to the degeneracy of the genetic code, two DNA sequences may differ and yet encode identical amino acid sequences. The present invention thus provides isolated nucleic acid molecules comprising a polynucleotide sequence encoding cynomolgus FcR polypeptides, wherein the polynucleotide sequences encode a polypeptide with an amino acid sequence of SEQ ID NO: 9, or SEQ ID NO: 11, or SEQ ID NO: 15, or SEQ ID NO: 18, or SEQ ID NO: 20, or SEQ ID NO: 29, or SEQ ID NO: 64, or fragments thereof. The present invention also provides isolated nucleic acid molecules comprising a polynucleotide sequence encoding a chimp FcγR polypeptide of the invention, wherein the polynucleotide sequence encodes a polypeptide with an amino acid sequence of SEQ ID NO: 17 or fragments thereof. The invention also provides for isolated nucleic acid molecules comprising a polynucleotide sequence encoding cynomolgus β-2 microglobulin with an amino acid sequence of SEO ID NO: 25.

15

20

25

30

The present invention also provides isolated nucleic acid molecules comprising a polynucleotide sequence encoding mature nonprimate FcR polypeptides, wherein the polynucleotide sequences encode a polypeptide with an amino acid sequence of SEQ ID NO: 65, 66, 68, 67, 69, 70, 71, or 72.

The nucleotide sequences shown in the tables, in most instances, begin at the coding sequence for the signal sequence of the Fc receptor polypeptide.

Nucleotide sequences of the non-human primate receptors have been aligned with human sequences for FcR polypeptides or β -2 microglobulin to determine % sequence

identity. Nucleotide sequences of primate and human proteins are aligned manually and differences in nucleotide or protein sequence noted. Percent identity is calculated as number of identical residues/number of total residues. When the sequences differ in the total number of residues, two values for percent identity are provided, using the two different numbers for total residues. Some nucleic acid sequences for human FcR are known to those of skill in the art and are identified by GenBank accession numbers.

In one embodiment, the invention provides isolated nucleic acid molecules comprising a polynucleotide encoding a cynomolgus Fc γ RI α - chain. One example of a cynomolgus Fc γ RI α -chain has an amino acid sequence including the signal sequence as shown in Table 10 (SEQ. ID. NO: 9). The mature cynomolgus Fc γ RI α -chain has an amino acid sequence shown in Table 10 (SEQ ID NO: 65). An example of an isolated nucleic acid encoding a cynomolgus Fc γ RI α -chain is shown in Table 3 (SEQ ID NO: 1). A nucleic acid sequence encoding a cynomolgus Fc γ RI α -chain has about 91% or 96% sequence identity when aligned with a human nucleic acid sequence (SEQ ID NO: 2) encoding a Fc γ RI α -chain as shown in Table 3 (GenBank Accession No. L03418).

10

15

20

25

30

In another embodiment, the invention provides an isolated nucleic acid comprising a polynucleotide sequence encoding a cynomolgus gamma chain of FcγRI/III. An example of such a nucleic acid sequence is shown in Table 4 (SEQ ID NO: 13). An example of a cynomolgus gamma chain polypeptide is shown in Table 12 (SEQ ID NO: 11). A nucleic acid encoding a cynomolgus gamma chain has about 99% sequence identity when aligned with a human nucleic acid sequence (SEQ ID NO: 14) encoding a FcR gamma chain as shown in Table 4 (GenBank Accession No. M33195).

In another embodiment, the invention provides isolated nucleic acid molecules comprising a polynucleotide encoding a cynomolgus FcγRIIA. One example of cynomolgus FcγRIIA has an amino acid sequence including the signal sequence as shown in Table 11 (SEQ. ID. NO: 15). The mature cynomolgus FcγRIIA has an amino acid sequence as shown in Table 21 (SEQ ID NO: 66). An example of an isolated nucleic acid encoding a cynomolgus FcγRIIA is shown in Table 5 (SEQ ID NO: 3). A nucleic acid sequence encoding a cynomolgus FcγRIIA α-chain has about 94% sequence identity when aligned with a human nucleic acid sequence (SEQ ID NO: 4) encoding a FcγRIIA as shown in Table 5 (Genbank Accession No. M28697).

The invention also provides for isolated nucleic acids comprising a polynucleotide encoding FcyR from chimps such as an isolated nucleic acid comprising a

polynucleotide encoding a FcγRIIA receptor. One example of a chimp FcγRIIA has an amino acid sequence including the signal sequence as shown in Table 11 (SEQ. ID. NO: 17). The mature chimp FcγRIIA has an amino acid sequence as shown in Table 11 (SEQ ID NO: 67). An example of an isolated nucleic acid encoding a chimp FcγRIIA is shown in Table 5 (SEQ ID NO: 22). A nucleic acid sequence having a sequence of SEQ ID NO: 22 has about 99% sequence identity when aligned with a human nucleic acid sequence (SEQ ID NO: 4) encoding a FcγRIIA as shown in Table 5 (GenBank Accession No. M28697).

In another embodiment, the invention provides isolated nucleic acid molecules comprising a polynucleotide encoding a cynomolgus FcyRIIB. One example of a cynomolgus FcyRIIB has an amino acid sequence as shown in Table 11 (SEQ. ID. NO: 18). The mature cynomolgus FcyRIIB has an amino acid sequence as shown in Table 22 (SEQ ID NO: 68). An example of an isolated nucleic acid encoding a cynomolgus FcyRIIB is shown in Table 6 (SEQ ID NO: 5). A nucleic acid sequence encoding a cynomolgus FcyRIIB has about 94% sequence identity when aligned with a human nucleic acid sequence (SEQ ID NO: 6) encoding a FcyRIIB as shown in Table 6 (GenBank Accession No.X52473).

10

15

20

25

30

In another embodiment, the invention provides isolated nucleic acid molecules comprising a polynucleotide encoding a cynomolgus FcγRIIIA α-chain. One example of a cynomolgus FcγRIIIA has an amino acid sequence as shown in Table 11 (SEQ. ID. NO: 20). The mature cynomolgus FcγRIIIA has an amino acid sequence as shown in Table 23 (SEQ ID NO: 69). An example of an isolated nucleic acid encoding a cynomolgus FcγRIIIA α-chain is shown in Table 7 (SEQ ID NO: 7). A nucleic acid sequence cynomolgus FcγRIIIA α-chain has about 96% sequence identity when aligned with a human nucleic acid sequence (SEQ ID NO: 8) encoding a FcγRIIIA α-chain as shown in Table 7 (GenBank Accession No.X52645).

The invention also provides isolated nucleic acid molecules having a polynucleotide sequence encoding a cynomolgus Fc receptor (FcRn) α -chain. One example of a cynomolgus Fc receptor α -chain (S3) has an amino acid sequence of SEQ ID NO. 29 as shown in Table 14. An allele has been identified encoding a polypeptide with an amino acid sequence which differs from that of SEQ ID NO: 29 by a substitution of an asparagine for a serine at the third residue in the mature polypeptide. This polypeptide sequence has been designated SEQ ID NO: 64. The mature polypeptides of

5

10

15

20

25

30

FcRn α-chain (S3) and FcRn α-chain (N3) have the amino acid sequences of SEQ ID NO: 71 and 72, respectivly. An example of an isolated nucleic acid encoding a cynomolgus FcRn α-chain is SEQ ID NO: 27 shown in Table 9. A nucleic acid encoding a cynomolgus FcRn has about 97% sequence identity when aligned with a human sequence (SEQ ID NO: 28) encoding a human FcRn α-chain as shown in Table 9 (GenBank Accession No. U12255).

In another embodiment, the invention provides isolated nucleic acid molecules comprising a polynucleotide sequence encoding cynomolgus β -2 microglobulin. One example of a cynomolgus β -2 microglobulin has an amino acid sequence as shown in Table 13 (SEQ ID NO: 25). The mature β -2 microglobulin has a sequence as shown in Table 13 (SEQ ID NO: 70). An example of an isolated nucleic acid encoding a cynomolgus β -2 microglobulin is shown in Table 8 (SEQ ID NO: 23). A nucleic acid cynomolgus β -2 microglobulin has about 95% sequence identity when aligned with a human sequence (SEQ ID NO: 24) encoding β -2 microglobulin as shown in Table 8 (GenBank Accession No. AB021288).

The non-human primate nucleic acids of the invention include cDNA, chemically synthesized DNA, DNA isolated by PCR, and combinations thereof. RNA transcribed from cynomolgus or chimp cDNA is also encompassed by the invention. The cynomolgus DNA can be obtained using standard methods from tissues such as the spleen or liver and as described in the Examples below. The chimp FcyR DNA can be obtained using standard methods from tissues such as spleen or liver and as described in the Examples below.

In another aspect of the invention, a method of obtaining a nucleic acid encoding a nonhuman primate Fc receptor is provided. The method comprises amplifying a nucleic acid from a nonhuman primate cell with a primer set comprising a forward and a reverse primer, wherein the primer sets are selected from the group consisting of SEQ ID NO:31 and SEQ ID NO:32, SEQ ID NO:33 and SEQ ID NO:34, SEQ ID NO:35 and SEQ ID NO:36, SEQ ID NO:37 and SEQ ID NO:38, SEQ ID NO:39 and SEQ ID NO:40, SEQ ID NO:41 and SEQ ID NO:42, SEQ ID NO:43 and SEQ ID NO:44, SEQ ID NO:45 and SEQ ID NO:46, SEQ ID NO:47 and SEQ ID NO:48, SEQ ID NO:49 and SEQ ID NO:50, SEQ ID NO:51 and SEQ ID NO:52, and SEQ ID NO:53 and SEQ ID NO:54; and isolating the amplified nucleic acid. The nonhuman primate cell is a preferably a cynomologus spleen cell or a chimp spleen

5

10

15

20

25

30

cell. Some of the primer sets provide for amplification of an extracellular fragment of the Fc receptor polypeptides fused to GlyHis-GST.

Fragments of the cynomolgus and chimp FcyR-encoding nucleic acid molecules described herein, as well as polynucleotides capable of hybridizing to such nucleic acid molecules, may be used in a number of ways including as a probe or as primers in a polymerase chain reaction (PCR). Such probes may be used, e.g., to detect the presence of FcyR polynucleotides in *in vitro* assays, as well as in Southern and Northern blots. Cell types expressing the FcyR may also be identified by the use of such probes. Such procedures are well known, and the skilled artisan will be able to choose a probe of a length suitable to the particular application. For PCR, 5' and 3' primers corresponding to the termini of the nucleic acid molecules are employed to isolate and amplify that sequence using conventional techniques. Fragments useful as probes are typically oligonucleotides about 18 to 20 nucleotides, including up to the full length of the polynucleotides encoding the FcyR. Fragments useful as PCR primers typically are oligonucleotides of 20 to 50 nucleotides.

Other useful fragments of the different cynomolgus FcyR polynucleotides are antisense or sense oligonucleotides comprising a single-stranded nucleic acid sequence capable of binding to a target FcyR mRNA (using a sense strand), or DNA (using an antisense strand) sequence.

Other useful fragments include polynucleotides that encode domains of a Fc γ receptor polypeptide. The fragments are preferably capable of binding to a Fc region containing molecule. One embodiment of a polynucleotide fragment is a fragment that encodes extracellular domains of a Fc γ receptor polypeptide in which the transmembrane and cytoplasmic domains have been deleted. Other domains of Fc γ receptors are identified in, for example, Table 10 and Table 11. Nucleic acid fragments encoding one or more polypeptide domains are included within the scope of the invention.

The invention also provides variant cynomolgus and chimp $Fc\gamma R$ nucleic acid molecules as well as variant cynomolgus β -2 microglobulin nucleic acid molecules. Variant polynucleotides can include changes to the nucleic acid sequence that result in amino acid substitutions, additions, and deletions in the resultant variant polypeptide when compared to a native polypeptide, for instance SEQ ID NOs: 9, 11, 15, 17, 18, 20, 25, 29, or 64. The changes to the variant nucleic acid sequences can include changes to the nucleic acid sequence that result in replacement of an amino acid by a residue having

similar physiochemical properties, such as substituting one aliphatic residue (Ile, Val, Leu, or Ala) for another, or substitutions between basic residues Lys and Arg, acidic residues Glu and Asp, amide residues Gln and Asn, hydroxyl residues Ser and Tyr, or aromatic residues Phe and Tyr. Variant polynucleotide sequences of the present invention are preferably at least about 95% identical, more preferably at least about 96% identical, more preferably at least about 97% or 98% identical, and most preferably at least about 99% identical, to a nucleic acid sequence encoding the full length native sequence, a polypeptide lacking a signal sequence, an extracellular domain of the polypeptide, or a nucleic acid encoding a fragment of the Fcγ receptor polypeptide or β-2 microglobulin of sequences of SEQ ID NOs: 1, 3, 5, 7, 23 or 27.

5

10

15

20

25

30

The percentage of sequence identity between the sequences and a variant sequence as discussed above may also be determined, for example, by comparing the variant sequence with a reference sequence using any of the computer programs commonly employed for this purpose, such as ALIGN 2 or by using manual alignment. Percent identity is calculated as [number of identical residues]/[number of total residues]. When the sequences differed in the total number of residues, two values for percent identity are provided, using the two different numbers for total residues.

Alterations of the cynomolgus monkey and chimp FcγR polypeptides, and cynomolgus monkey β-2 microglobulin, nucleic acid and amino acid sequences may be accomplished by any of a number of known techniques. For example, mutations may be introduced at particular locations by procedures well known to the skilled artisan, such as oligonucleotide-directed mutagenesis, which is described by Walder et al.,1986, *Gene*, 42:133; Bauer et al., 1985, *Gene* 37:73; Craik, 1985, *BioTechniques*, 12-19; Smith et al., 1981, *Genetic Engineering: Principles and Methods*, Plenum Press; and U.S. Patent No. 4,518,584 and U.S. Patent No. 4,737,462.

The invention also provides cynomolgus and chimp Fc γ R polypeptides, cynomolgus FcRn polypeptide, β -2 microglobulin nucleic acid molecules, or fragments and variants thereof, ligated to heterologous polynucleotides to encode fusion proteins. The heterologous polynucleotides can be ligated to the 3' or 5' end of the nucleic acid molecules of the invention, for example SEQ ID NOs: 1, 3, 5, 7, 13, 22, 25 or 27, to avoid interfering with the in-frame expression of the resultant cynomolgus and chimp Fc γ R, cynomolgus FcRn, and β -2 microglobulin polypeptides. Alternatively, the heterologous polynucleotide can be ligated within the coding region of the nucleic acid

molecule of the invention. Heterologous polynucleotides can encode a single amino acid, peptide, or polypeptides that provide for secretion, improved stability, or facilitate purification of the cynomolgus and chimp encoded polypeptides of the invention.

A preferred embodiment is a nucleic acid sequence encoding an extracellular domain of the α-chain of FcγRI, FcγIII or FcRn fused to Gly(His)₆-gst tag or FcγRIIA or IIB fused to Gly(His)₆-gst tag obtained as described in Example 1. The Gly(His)₆-gst tag provides for ease of purification of polypeptides encoded by the nucleic acid.

The cynomolgus and chimp FcγR polypeptide and β-2 microglobulin nucleic acid molecules of the invention can be cloned into prokaryotic or eukaryotic host cells to express the resultant polypeptides of the invention. Any recombinant DNA or RNA method can be use to create the host cell that expresses the target polypeptides of the invention, including, but not limited to, transfection, transformation or transduction. Methods and vectors for genetically engineering host cells with the polynucleotides of the present invention, including fragments and variants thereof, are well known in the art, and can be found in Current Protocols in Molecular Biology, Ausubel et al., eds. (Wiley & Sons, New York, 1988, and updates). Vectors and host cells for use with the present invention are described in the Examples provided herein.

10

15

20

25

30

The invention also provides isolated nucleic acids comprising a polynucleotide encoding the mature Fc receptor polypeptide. The isolated nucleic acids can further comprise a nucleic acid sequence encoding a heterologous signal sequence. A heterologous signal sequence is one obtained from a polynucleotide encoding a polypeptide different than the native sequence non-human primate Fc receptor polypeptides of the invention. Heterologous signal sequences include signal sequences from human Fc receptor polypeptides as well as from polypeptides like tissue plasminogen activator.

Polypeptide Sequences

Another aspect of the invention is directed to FcR polypeptides from non-human primates such as cynomolgus monkeys and chimps. The Fc γ R polypeptides include Fc γ RI α -chain, Fc γ RIIA, Fc γ RIIB, Fc γ RIIIA α -chain, FcRn α -chain, FcR γ I/III γ -chain, and β -2 microglobulin. The polypeptides bind IgG antibody or other molecules having a Fc region. Some of the receptors are low affinity receptors which preferably bind to IgG antibody complexes. FcR polypeptides also mediate effector cell functions such as

5

10

15

20

25

30

antibody dependent cellular cytotoxicity, induction of mediator release from the cell, uptake and destruction of antibody coated particles, and transport of immunoglobulins.

Amino acid sequences of the Fc\(\gamma\)R polypeptides derived from cynomolgus monkeys and chimps are aligned with the amino acid sequences encoding human Fc\(\gamma\)R polypeptides to determine the % of sequence identity with the human sequences. Amino acid sequences of primate and human proteins are aligned manually and differences in nucleotide or protein sequence noted. Percent identity is calculated as number of identical residues/number of total residues. When the sequences differ in the total number of residues, two values for percent identity are provided, using the two different numbers for total residues. Some amino acid sequences encoding human Fc\(\gamma\)R polypeptides are known to those skill in the art and are identified by GenBank Accession numbers.

The polypeptide sequences shown in the tables are numbered starting from the signal sequence or from the first amino acid of the mature protein. When the amino acid residues of the polypeptide are numbered starting from the signal sequence the numbers are identified by the number of the residue and a line. When the amino acid residues of the polypeptide are also numbered from the first amino acid of the mature human protein, the amino acid is designated by the number and Δ symbol. In Table 11, the first N terminal residue of the cynomologus sequences is designated with an asterisk, but the numbering is still that corresponding to the mature human protein. The numbering of the amino acid residues of the FcR polypeptides is sequential.

The non-human primate receptors were also analyzed to compare the binding of the non-human primate Fc receptor polypeptides to various subclasses of human IgG and IgG variants to human Fc receptors. The binding to the subclasses also included binding to IgG4b. IgG4b is a form of IgG4, but has a change in the hinge region at amino acid residue 228 from serine to a proline. This change results in a molecule that is more stable than the native IgG4 due to increase formation of interchain disulfide bonds as described in Angal, S., King, D.J., Bodmer, M.W., Turner, A., Lawson, D.G., Robert, G., Pedley B. and Adair, J.R. (1993) A single amino acid substitution abolishes heterogeneity of chimeric - mouse/human (IgG4) antibody. *Molec. Immunology* 30:105-108.

One embodiment of the invention is a cynomolgus FcγRI polypeptide. A cynomolgus FcγRI binds to IgG and other molecules having an Fc region, preferably human monomeric IgG. One example of an α-chain of a cynomolgus FcγRI is a

5

10

15

20

25

30

polypeptide having a sequence of SEQ ID NO: 9. Based on the alignment with the human sequence, the mature cynomolgus Fc γ RI has a sequence of SEQ ID NO: 65. An extracellular fragment obtained as described in example 1 has an amino acid sequence of Δ 1 to Δ 269 as shown in table 10.

An alignment of the amino acid sequence α -chain of the Fc γ RI from human and cynomolgus monkeys is also shown in Table 10. The amino acid numbers shown below the amino acids with the symbol Δ are numbered from the start of the mature polypeptide not including the signal sequence. The numbers above the amino acid residues represent the numbering of the residues starting at the signal sequence. Each of the domains of the Fc γ RI α -chain are shown including signal sequence, extracellular domain 1, extracellular domain 2, extracellular domain 3, and the transmembrane and intracellular sequence. The alignment of a human sequence of SEQ ID NO: 10 (GenBank Accession No. P12314) with a cynomolgus Fc γ RI α -chain sequence starting from the signal sequence shows about a 90% or 94% sequence identity with the human sequence depending on whether the 3' extension present on the human sequence was used in the calculation.

This alignment of the cynomolgus sequence with the human sequence shows that the cynomolgus Fc γ RI α -chain has the same number of amino acids in the signal sequence, the three extracellular domains, and transmembrane domain as found in the human Fc γ RI sequence (Table 10). In contrast, the cynomolgus Fc γ RI α -chain intracellular domain is shorter than that of the human Fc γ RI α -chain by seventeen amino acids (Table 10). A cynomolgus Fc γ RI α -chain binds to human monomeric subclasses as follows: IgG3 \geq IgG1 > IgG4b >>> IgG2, which is similar to that of the human Fc γ RI.

Fc receptors of the I and IIIA subclass are complex molecules including an α-chain complexed to either a homo or hetero dimer of a γ-chain. The invention also includes a cynomolgus FcR gamma chain. One example of a gamma chain polypeptide has an amino acid sequence of SEQ ID NO: 11 as shown in Table 12. When the cynomolgus gamma chain amino acid sequence is aligned with a human sequence for the gamma chain of SEQ ID NO: 12 (GenBank Accession No. P30273) it has about 99% sequence identity with the human sequence. The ITAM motif of the cynomolgus gamma chain is identical to that of the human gamma chain.

Another embodiment of the invention is a cynomolgus FcyRIIA. A cynomolgus FcyRIIA binds to immunoglobulins and other molecules having an Fc region, preferably

immunoglobulins complexed to an antigen or each other. More preferably, the receptor binds a dimeric or hexameric immune complex of human Ig. One example of a cynomolgus Fc γ RIIA has an amino acid sequence of SEQ ID NO: 15. The mature cynomolgus Fc γ RIIA has an amino acid sequence of SEQ ID NO: 66 (Table 21). an extracellular fragment obtained with the primers of example 1 has an amino acid sequence of Δ 1 to Δ 182 as shown in Table 21.

The cynomolgus Fc γ RIIA sequence was aligned with a human amino acid sequence of Fc γ RIIA as shown in Table 11 (SEQ ID NO: 16) (Accession No. P12318). In table 11, the amino acid numbers shown below the amino acids with the symbol Δ are numbered from the start of the mature human polypeptide not including the signal sequence. The numbers above the amino acid residues represent the numbering of the residues starting at the signal sequence. When the cynomolgus sequence is aligned with the human sequence it has about 87% or 89% sequence identity with the human sequence depending on whether the alignment starts with the MAMETQ sequence. This alignment shows that the cynomolgus Fc γ RIIA has fewer amino acids in the signal peptide sequence than found in the human Fc γ RIIA (Table 11). Cynomolgus Fc γ RIIA has about the same number of amino acids in the two extracellular domains, transmembrane domain, and intracellular domain as found in the human Fc γ RIIA sequence (Table 11). Notably, the cynomolgus Fc γ RIIA contains the identical two ITAM motifs as found in the human receptor (Table 11).

10

15

20

25

30

The cynomolgus FcyRIIA binds to hexameric complexes of subclasses IgG with the following binding pattern: IgG3=IgG2 > IgG1 > IgG4b, IgG4. A human FcyRIIA isoform with an arginine at the amino acid corresponding to the amino acid 131 (R131) binds hexameric IgG subclasses as follows: IgG3 \geq IgG1 >>> IgG2 \geq IgG4. A human FcyRIIA isoform with a histidine at the amino acid corresponding to the amino acid 131 (H131) binds hexameric IgG subclasses as follows: IgG3 \geq IgG1=IgG2 >>> IgG4. Cynomolgus FcyRIIA with an amino acid sequence of SEQ ID NO: 15 has H131 and binds to human subclasses of IgG in a similar manner to those human Fc receptors with the H131 isoform variant. However, the cynomolgus Fc receptor binds IgG2 as efficiently as it binds IgG3.

Another embodiment of the invention is a chimp FcyRIIA. A chimp FcyRIIA binds to immunoglobulins and other molecules having an Fc region, preferably immunoglobulins complexed to an antigen or each other. Preferably the receptor binds a

5

15

20

25

30

dimeric or hexameric immune complex of human Ig. One example of a chimp FcyRIIIA has an amino acid sequence of SEQ ID NO: 17. Based on the alignment with the human sequence, the mature chimp FcyRIIA has an amino acid sequence of SEQ ID NO: 67.

The chimp Fc γ RIIA amino acid sequence was aligned starting with the signal sequence with a human sequence for Fc γ RIIA of SEQ ID NO: 16 as shown in Table 11 (Accession No. P12318). The alignment shows that when compared to the human sequence, the chimp sequence has about 97% sequence identity. This alignment also shows that the chimpanzee Fc γ RIIA has one less amino acid in the signal peptide sequence than found in the human Fc γ RIIA α -chain (Table 11). Chimpanzee Fc γ RIIA has the same number of amino acids in the two extracellular domains, transmembrane domain, and intracellular domain as found in the human Fc γ RIIA sequence (Table 11). Notably, the chimpanzee Fc γ RIIA contains the identical two ITAM motifs as found in the human and cynomolgus receptors (Table 11).

Another embodiment of the invention is a cynomolgus FcγRIIB. A cynomolgus FcγRIIB binds to immunoglobulins and other molecules having an Fc region, preferably immunoglobulins complexed to an antigen or each other. More preferably, the receptor binds a dimeric or hexameric immune complex of human Ig. One example of a cynomolgus FcγRIIB has an amino acid sequence of SEQ ID NO: 18. The mature cynomolgus FcγRIIB has an amino acid sequence of SEQ ID NO: 68 (Table 22). an extracellular fragment obtained with the primers of example 1 has an amino acid sequence of Δ1 to Δ184 as ahown in table 22.

The cynomolgus FcγRIIB has about 92% sequence identity with a human amino acid sequence of FcγRIIB as shown in Table 11 (SEQ ID NO: 19) (Accession No. X52473). An alignment of the cynomolgus sequence with the human sequence shows that the cynomolgus FcγRIIB has about the same number of amino acids in the signal peptide, two extracellular domains, and transmembrane domain as found in the human FcγRIIB sequence (Table 11). The cynomolgus FcγRIIB has three amino acids inserted in the N-terminal portion of the intracellular domain (compared to human FcγRIIB) (Table 11). Notably, the cynomolgus FcγRIIB intracellular domain contains the identical ITIM motif as found in the human receptor (Table 11).

The cynomolgus Fc γ RIIB binds to hexameric complexes of subclasses IgG with the following binding pattern: IgG2 \geq IgG3 > IgG1 > IgG4b, IgG4. A human Fc γ RIIB

binds hexameric IgG subclasses as follows: $IgG3 \ge IgG1 > IgG2 > IgG4$. The cynomolgus FcyRIIB binds IgG2 much more efficiently than the human FcyRIIB.

5

10

15

20

25

30

Another embodiment of the invention is a cynomolgus Fc γ RIIIA. A cynomolgus receptor Fc γ RIIIA binds to immunoglobulins and other molecules having an Fc region, preferably immunoglobulins complexed. Preferably, the receptor binds a dimeric or hexameric immune complex of human Ig. One example of an amino acid sequence of the α -chain of Fc γ RIIIA is SEQ ID NO: 20. The mature cynomolgus Fc γ RIIIA α -chain has a sequence of SEQ ID NO: 69 (Table 23). An extracellular fragment obtained using the primer as described in example 1 has an amino acid sequence of Δ 1 to Δ 187 as ahown in Table 23.

The cynomolgus Fc γ RIIIA α -chain sequence was aligned with a human amino acid sequence of Fc γ RIIIA as shown in Table 11 (SEQ ID NO: 21) (Accession No. P08637). In table 11, the amino acid numbers shown below the amino acids with the symbol Δ are numbered from the start of the mature human polypeptide not including the signal sequence. The numbers above the amino acid residues represent the numbering of the residues starting at the signal sequence. The alignment with the human and cynomolgus Fc γ RIIIA sequence shows the sequence has about 91% sequence identity to the human sequence. This alignment of the cynomolgus sequence with the human sequence shows that the cynomolgus Fc γ RIIIA α -chain has about the same number of amino acids in the signal peptide, the two extracellular domains, the transmembrane domain, and intracellular domain as found in the human Fc γ RIIIA sequence (Table 11). Neither the cynomolgus nor human intracellular domains contain an ITAM motif; the activating ITAM motif for human Fc γ RIIIA is supplied by the associated γ -chain and the same situation most likely occurs in cynomolgus monkeys.

The cynomolgus Fc γ RIIIA α -chain binds to hexameric complexes of subclasses IgG with the following binding pattern: IgG1 > IgG3 >> IgG2 \geq IgG4b, IgG4. A human Fc γ RIIIA isoform with a phenylalanine at the amino acid corresponding to the amino acid 158 (F158) binds hexameric IgG subclasses as follows: IgG3= IgG1 >>> IgG2, IgG4. A human Fc γ RIIA isoform with a valine at the amino acid corresponding to the amino acid 158 (V158) binds hexameric IgG subclasses as follows: IgG1 > IgG3 >>> IgG2A, IgG4. Cynomolgus Fc γ RIIIA with an amino acid sequence of SEQ ID NO: 20

has an isoleucine at amino acid position corresponding to amino acid 158 and binds human Ig subclasses similar to human FcyRIIIA V158.

Human IgG1 binds to human FcyRIIIA-V158 better than it does to human FcyRIIIA-F158 (Koene, H. R., Kleijer, M., Algra, J., Roos, D., von dem Borne, E. G. K., and de Hass, M. (1997) Blood 90, 1109-1114; Wu, J., Edberg, J. C., Redecha, P. B., Bansal, V., Guyre, P. M., Coleman, K., Salmon, J. E., and Kimberly, R. P. (1997) J. Clin. Invest. 100, 1059-1070; Shields, R. L., Namenuk, A. K., Hong, K., Meng, Y. G., Rae, J., Briggs, J., Xie, D., Lai, J., Stadlen, A., Li, B., Fox, J. A., and Presta, L. G. (2001) J. Biol. Chem. 276, 6591-6604). In humans, the FcyRIIIA-F158 allele predominates with approximately 90% of humans having at least one FcyRIIIA-F158 10 allele (Lehrnbecher, T., Foster, C. B., Zhu, S., Leitman, S. F., Goldin, L. R., Huppi, K., and Chanock, S. J. (1999) Blood 94, 4220-4232). In addition, recent studies have begun to correlate specific disease states with the FcyRIIIA polymorphic status of individuals (Wu, J., Edberg, J. C., Redecha, P. B., Bansal, V., Guyre, P. M., Coleman, K., Salmon, J. E., and Kimberly, R. P. (1997) J. Clin. Invest. 100, 1059-1070; 15 Lehrnbecher, T., Foster, C. B., Zhu, S., Venzon, D., Steinberg, S. M., Wyvill, K., Metcalf, J. A., Cohen, S. S., Kovacs, J., Yarchoan, R., Blauvelt, A., and Chanock, S. J. (2000) Blood 95, 2386-2390; Nieto, A., Caliz, R., Pascual, M., Mataran, L., Garcia, S., and Martin, J. (2000) Arthritis & Rheumatism 43, 735-739). Notably, the chimpanzee and cynomolgus FcyRIIIA have valine and isoleucine, respectively, at position 158. 20 The similarity of binding of the four human subclasses of IgG to cynomolgus FcyRIIIA and human FcyRIIIA-V158 (as opposed to human FcyRIIIA-F158) suggests that evaluation of human antibodies in primate models should account for the primate model reflecting only a minority of humans with respect to binding to FcyRIIIA receptors, i.e. FcyRIIIA-V158/V158 homozygotes. For example, since human 25 FcγRIIIA-V158 exhibits superior antibody-dependent cellular cytotoxicity (ADCC) compared to human FcyRIIIA-F158 (Shields, R. L., Namenuk, A. K., Hong, K., Meng, Y. G., Rae, J., Briggs, J., Xie, D., Lai, J., Stadlen, A., Li, B., Fox, J. A., and Presta, L. G. (2001) J. Biol. Chem. 276, 6591-6604), primate models may overestimate the efficacy of human antibody effector functions associated with FcyRIIIA. 30

However, the binding patterns of human IgG subclasses to other cynomolgus FcRs, especially FcγRI, indicate that the non-human primates can be used as effective

models to evaluate the safety, efficacy and pharmokenetics of Fc region binding molecules.

The invention also provides for Fc receptor polypeptides identified as FcRn. Amino acid sequences of cynomolgus FcRn are shown in Table 14. In Table 14, the numbers shown below the amino acids and designated with the signal Δ are numbered from the start of the mature polypeptide. Two alleles were identified and are shown in Table 14. A cynomologus FcRn α -chain has an amino acid sequence of SEQ ID NO: 29 with a serine at residue 3 of the mature polypeptide. A cynomolgus FcRn α -chain has a sequence of SEQ ID NO: 64 and has an asparagine at residue 3 of the mature polypeptide. The mature polypeptides of FcRn α -chain S3 and FcRn α -chain N3 have a sequence of SEQ ID NO: 71 and 72, respectively. A extracellular fragment of a FcRn as obtained using the primers as described in example 1 has an amino acid sequence of Δ 1 to Δ 274 as shown in table 14.

10

15

20

25

30

A sequence alignment of cynomolgus FcRn α -chain sequences to human FcRn α -chain (SEQ ID NO: 20) (GenBank Accession No. U12255) shows that the cynomolgus sequence is about 97% identical to the human sequence. Cynomolgus FcRn (S3) and FcRn (N3) α -chains bind to subclasses of IgG with the following binding pattern: IgG3 >> IgG4 > IgG2 > IgG1, which is similar to that of the human FcRn α -chain.

The invention also includes cynomolgus β -2 microglobulin polypeptides. A cynomolgus β -2 microglobulin polypeptide has a sequence of SEQ ID NO: 25, Table 13. The mature β -2 microglobulin polypeptide has a sequence of SEQ ID NO: 70. When the cynomolgus β -2 microglobulin sequence is aligned with a human sequence for β -2 microglobulin (SEQ ID NO: 26; GenBank Accession No. P01884), it shows that the cynomolgus sequence has about 92% sequence identity to human β -2 microglobulin.

Variants, derivatives, fusion proteins, and fragments of the different cynomolgus and chimp $Fc\gamma R$ polypeptides that retain any of the biological activities of the FcRs, are also within the scope of the present invention. Note that one of ordinary skill in the art will readily be able to determine whether a variant, derivative, or fragment of a $Fc\gamma R$ polypeptide displays activity by subjecting the variant, derivative, or fragment to a immunoglobulin binding assay as described below in Example 3.

Derivatives of the different cynomolgus and chimp FcyRs can be polypeptides modified by forming covalent or aggregative conjugates with other chemical moieties,

such as glycosyl groups, polyethylene glycol (PEG) groups, lipids, phosphate, acetyl groups and the like.

5

10

15

20

25

30

In another embodiment, the polypeptides of the invention include fragments of the polypeptides that lack a portion or all of the transmembrane and intracellular domains: e.g. amino acid residues of the mature polypeptide as follows: FcγRI α-chain amino acid residues 270-336 of SEQ ID NO: 65; FcγRIIA amino acid residues 183 to 282 of SEQ ID NO: 66; chimp FcγRIIA amino acid residues 172 to 281 of SEQ ID NO: 67; FcγRIIB amino acid residues 185 to 252 of SEQ ID NO: 68, FcγRIIIA α-chain amino acid residues 188 to 234 of SEQ ID NO: 69; or FcRn amino acid residues 275 to 342 of SEQ ID NO: 71 or SEQ ID NO: 72. A soluble FcγR polypeptide may include a portion of the transmembrane domain and intracellular, as long as the polypeptide is secreted from the cell in which it is produced. Preferably, the fragments are capable of binding to an Fc region containing molecule.

Fragments of polypeptides also include one or more domain of the polypeptide identified in Table 10 or Table 11, including signal peptide, domain 1, domain 2, domain 3, transmembrane/intracellular, or a cytoplasmic domain including the ITAM or ITIM motif. Exemplary fragments of the polypeptides also include soluble polypeptides having only domain 1, domain 2 and domain 3 amino acid sequences of the corresponding mature FcyR polypeptides: e.g., amino acid residues $\Delta 1$ to $\Delta 269$ of cynomolgus FcyRI (Table 10), amino acid residues $\Delta 1$ to $\Delta 182$ of cynomolgus FcyRIIA (Table 21), amino acid residues $\Delta 1$ to $\Delta 184$ of cynomolgus FcyRIIB (Table 22), amino acid residues $\Delta 1$ to $\Delta 187$ of cynomolgus FcyRIIIA (Table 23), and amino acids $\Delta 1$ to $\Delta 274$ of cynomolgus FcRI (Table 14).

Cynomolgus or chimp FcyR variants within the scope of the invention may comprise conservatively substituted sequences, meaning that one or more amino acid residues of each polypeptide may be replaced by different residues that do not alter the secondary and/or tertiary structure of the polypeptide. Such substitutions may include the replacement of an amino acid by a residue having similar physicochemical properties, such as substituting one aliphatic residue (Ile, Val, Leu or Ala) for another, or substitution between basic residues Lys and Arg, acidic residues Glu and Asp, amide residues Gln and Asn, hydroxyl residues Ser and Tyr, or aromatic residues Phe and Tyr. Further information regarding making phenotypically silent amino acid exchanges may be found in Bowie *et al.*, *Science 247*:1306-1310 (1990). Other variants which might

5

10

15

20

25

30

retain substantially the biological activities of the proteins are those where amino acid substitutions have been made in areas outside functional regions of the protein.

The invention also provides variant cynomolgus and chimp FcR polypeptides. Variant polypeptide can include changes to the polypeptide sequence that result in the amino acid substitutions, additions, and deletions in the resultant variant polypeptide when compared to the native polypeptide, for instance SEQ ID NOs: 9, 15, 17, 18, 20, 25, 29, or 64. The changes to the variant polypeptide sequences can include changes to the nucleic acid sequence that result in replacement of an amino acid by a residue having similar physiochemical properties, such as substituting one aliphatic residue (Ile, Val, Leu, or Ala) for another, or substitutions between basic residues Lys and Arg, acidic residues Glu and Asp, amide residues Gln and Asn, hydroxyl residues Ser and Tyr, or aromatic residues Phe and Tyr. Variant polypeptide sequences of the present invention are preferably at least about 90% identical, more preferably at least about 91% identical, more preferably at least 92% or 93% identical, more preferably 94% identical, more preferably 95% or 96% identical, more preferably 97% or 98% identical, and most preferably at least about 99% identical, to a full length native sequence, a polypeptide lacking a signal sequence, an extracellular domain of the polypeptide, or a fragment of the Fcγ receptor or β-2 microglobulin of sequences of SEQ ID NOs: 9, 15, 17, 18, 20, 25, 29, or 64.

Another embodiment of the present invention are polypeptides of the invention fused to heterologous amino acids, peptides, or polypeptides. Such amino acids, peptides, or polypeptides, preferably facilitate purification of the polypeptide. Many of the available peptides used for such a function allow selective binding of the fusion protein to a binding partner. For example, the cynomolgus FcyRI polypeptide, having a sequence as shown in SEQ ID NO:9, may be modified to comprise a peptide to form a fusion protein which specifically binds to a binding partner, or peptide tag. Non-limiting examples of such peptide tags include the 6-His tag, Gly/His₆/GST tag, thioredoxin tag, hemaglutinin tag, Glylh156 tag, and OmpA signal sequence tag. Full length, variable and truncated polypeptides of the present invention may be fused to such heterologous amino acids, peptides, or polypeptides. For example, the transmembrane and intracellular domains of cynomolgus FcyRIA can be replaced by DNA encoding the Gly/His₆/GST tag fused as His271. As will be understood by one of skill in the art, the binding partner which recognizes and binds to the peptide may be any molecule or

compound including metal ions (e.g., metal affinity columns), antibodies, or fragments thereof, and any protein or peptide which binds the peptide, such as the FLAG tag. The polypeptides of the present invention can also be fused to the immunoglobulin constant domain of an antibody to form immunoadhesin molecules.

5

10

15

20

25

30

The polypeptides of the present invention are preferably provided in an isolated form, and preferably are purified. The polypeptides may be recovered and purified from recombinant cell cultures by well-known methods, including ammonium sulfate or ethanol precipitation, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. In a preferred embodiment, high performance liquid chromatography (HPLC) is employed for purification.

Vectors and Host Cells

The present invention also relates to vectors comprising the polynucleotide molecules of the invention, as well as host cell transformed with such vectors. Any of the polynucleotide molecules of the invention may be joined to a vector, which generally includes a selectable marker and an origin of replication, for propagation in a host. Host cells are genetically engineered to express the polypeptides of the present invention. The vectors include DNA encoding any of the polypeptides described above or below, operably linked to suitable transcriptional or translational regulatory sequences, such as those derived from a mammalian, microbial, viral, or insect gene. Examples of regulatory sequences include transcriptional promoters, operators, or enhancers, mRNA ribosomal binding sites, and appropriate sequences which control transcription and translation. Nucleotide sequences are operably linked when the regulatory sequence functionally relates to the DNA encoding the target protein. Thus, a promoter nucleotide sequence is operably linked to a cynomolgus monkey or chimp $Fc\gamma R$ DNA sequence, $FcRn \alpha$ -chain DNA sequence, or β -2 microglobulin DNA sequence if the promoter nucleotide sequence directs the transcription of the $Fc\gamma R$ sequence.

Expression of non-human primate receptors of the invention can also be accomplished by removing the native nucleic acid encoding the signal sequence or replacing the native nucleic acid signal sequence with a heterologous signal sequence. Heterologous signal sequences include those from human Fc receptor polypeptides or other polypeptides, such as tissue plasminogen activator. Nucleic acids encoding signal sequences from heterologous sources are known to those of skill in the art.

Selection of suitable vectors to be used for the cloning of polynucleotide molecules encoding the target polypeptides of this invention will depend upon the host cell in which the vector will be transformed, and, where applicable, the host cell from which the target polypeptide is to be expressed. Suitable host cells for expression of the polypeptides of the invention include prokaryotes, yeast, and higher eukaryotic cells, each of which is discussed below.

Expression of functional cynomolgus monkey or chimp Fc γ R polypeptides of the invention may require the genetic engineering of a host cell to contemporaneously express two or more polypeptide molecules. As was discussed previously, most Fc γ Rs are complex molecules requiring the expression of both a IgG binding and a signal transducing polypeptide chain. The complex of two or more polypeptide chains forms the functional receptor. As such, for example, a host cell may be co-transfected with a first vector expressing the Fc γ RI α -chain, having a first selection marker, and a second vector expressing the Fc γ RI γ -chain, having a second selection marker. Only host cells that have acquired both vectors and are expressing both polypeptides would survive and express functional Fc γ RI. Other methods are envisioned for the co-transfection of multiple polypeptide chains into target host cells, including the linked expression of target polypeptides from the same vector.

The cynomolgus monkey or chimp FcγR, FcRn, or β-2 microglobulin polypeptides to be expressed in such host cells may also be fusion proteins which include regions from heterologous proteins. Such regions may be included to allow, e.g., secretion, improved stability, or facilitated purification of the polypeptide. For example, a sequence encoding an appropriate signal peptide can be incorporated into expression vectors. A DNA sequence for a signal peptide (secretory leader) may be fused in-frame to the target sequence so that target protein is translated as a fusion protein comprising the signal peptide. The DNA sequence for a signal peptide can replace the native nucleic acid encoding a signal peptide or in addition to the nucleic acid sequence encoding the native sequence signal peptide. A signal peptide that is functional in the intended host cell promotes extracellular secretion of the polypeptide. Preferably, the signal sequence will be cleaved from the target polypeptide upon secretion from the cell. Non-limiting examples of signal sequences that can be used in practicing the invention include the yeast I-factor and the honeybee melatin leader in Sf9 insect cells.

5

10

15

20

25

30

Suitable host cells for expression of target polypeptides of the invention include prokaryotes, yeast, and higher eukaryotic cells. Suitable prokaryotic hosts to be used for the expression of these polypeptides include bacteria of the genera *Escherichia*, *Bacillus*, and *Salmonella*, as well as members of the genera *Pseudomonas*, *Streptomyces*, and *Staphylococcus*. For expression in, e.g., E. coli, a target polypeptide may include an N-terminal methionine residue to facilitate expression of the recombinant polypeptide in a prokaryotic host. The N-terminal Met may optionally then be cleaved from the expressed polypeptide.

Expression vectors for use in prokaryotic hosts generally comprise one or more phenotypic selectable marker genes. Such genes generally encode, *e.g.*, a protein that confers antibiotic resistance or that supplies an auxotrophic requirement. A wide variety of such vectors are readily available from commercial sources. Examples include pSPORT vectors, pGEM vectors (Promega), pPROEX vectors (LTI, Bethesda, MD), Bluescript vectors (Stratagene), and pQE vectors (Qiagen).

The cynomolgus monkey or chimp Fc γ R, FcRn, or β -2 microglobulin, may also be expressed in yeast host cells from genera including *Saccharomyces*, *Pichia*, and *Kluveromyces*. Preferred yeast hosts are *S. cerevisiae* and *P. pastoris*. Yeast vectors will often contain an origin of replication sequence from a 2T yeast plasmid, an autonomously replicating sequence (ARS), a promoter region, sequences for polyadenylation, sequences for transcription termination, and a selectable marker gene. Vectors replicable in both yeast and *E. coli* (termed shuttle vectors) may also be used. In addition to the above-mentioned features of yeast vectors, a shuttle vector will also include sequences for replication and selection in *E. coli*. Direct secretion of the target polypeptides expressed in yeast hosts may be accomplished by the inclusion of nucleotide sequence encoding the yeast I-factor leader sequence at the 5' end of the cynomolgus Fc γ R-encoding nucleotide sequence.

Insect host cell culture systems may also be used for the expression of the polypeptides of the invention. In a preferred embodiment, the target polypeptides of the invention are expressed using a baculovirus expression system. Further information regarding the use of baculovirus systems for the expression of heterologous proteins in insect cells are reviewed by Luckow and Summers, *Bio/Technology* 6:47 (1988).

In another preferred embodiment, the cynomolgus FcyR polypeptides are individually expressed in mammalian host cells. Non-limiting examples of suitable

mammalian cell lines include the COS-7 line of monkey kidney cells (Gluzman et al., Cell 23:175 (1981)), Chinese hamster ovary (CHO) cells (Puck et al., Proc. Natl. Acad. Sci. USA, 60:1275-1281 (1958), CV-1 and human cervical carcinoma cells (HELA) (ATCC CCL 2). Preferably, HEK293 cells are used for expression of the target proteins of this invention.

5

10

15

20

25

30

The choice of a suitable expression vector for expression of the target polypeptides of the invention will of course depend upon the specific mammalian host cell to be used, and is within the skill of the ordinary artisan. Examples of suitable expression vectors include pcDNA3.1/Hygro (Invitrogen), 409, and pSVL (Pharmacia Biotech). A preferred vector for expression of the cynomolgus FcyR polypeptides is pRK. Eaton, D. L., Wood, W. I., Eaton, D., Hass, P. E., Hollingshead, P., Wion, K., Mather, J., Lawn, R. M., Vehar, G. A., and Gorman, C. (1986) *Biochemistry* 25:8343-47. Expression vectors for use in mammalian host cells may include transcriptional and translational control sequences derived from viral genomes. Commonly used promoter sequences and enhancer sequences which may be used in the present invention include, but are not limited to, those derived from human cytomegalovirus (CMV), Adenovirus 2, Polyoma virus, and Simian virus 40 (SV40). Methods for the construction of mammalian expression vectors are disclosed, for example, in Okayama and Berg (*Mol. Cell. Biol.* 3:280 (1983)); Cosman *et al.* (*Mol. Immunol. 23*:935 (1986)) and Cosman *et al.* (*Nature* 312:768 (1984)).

Method of Evaluating Biological Properties, Safety and Efficacy of Fc Region Containing Molecules

One aspect of the invention includes a method for the evaluation of the pharmacokinetics/pharmacodynamics of FcR binding molecules such as humanized antibodies with cynomolgus monkey or chimp Fc receptors prior to an *in vivo* evaluation in a primate. This aspect of the invention is based on the finding that cynomolgus and chimp FcR polypeptides have a high degree of sequence identity with human Fc receptor polypeptides and bind to IgG subclasses in a similar manner. Evaluations can include testing, for example, humanized antibodies of any subclass (especially antibodies with prospective therapeutic utility) on target Fc receptors of the invention in an ELISA-format assay or to transiently expressing cells.

A method of the invention involves evaluating the binding of a Fc region containing polypeptide or agent to cynomolgus or chimp Fc receptor polypeptide by

contacting the Fc region containing molecule with a cynomolgus or chimp Fc receptor polypeptide. The cynomolgus or chimp Fc receptor polypeptide can be soluble or can be expressed as a membrane bound protein on transiently infected cells. Binding of the Fc region containing molecule to the cynomolgus or chimp Fc receptor polypeptide indicates that the Fc region containing molecule or polypeptide is suitable for *in vivo* evaluation in a primate. Binding to cynomolgus FcRn molecules provides an indication that Fc region containing molecule or polypeptide will have a longer half-life *in vivo*.

The invention also provides for screening variants of Fc region containing molecules such as antibody variants for their biological properties, safety, efficacy and pharmcokenetics. Antibody variants are typically altered at one or more residues and then the variants are analyzed for alteration in biological activities including altered binding affinity for Fc receptors. Screening for alterations in biological activities by variants may be tested both *in vivo* and *in vitro*. For example, receptor polypeptides of the present invention can be used in an ELISA-format assay or transiently infected cells. Antibody variants which bind to cynomolgus and/or chimp FcR polypeptides, such as the α-chain of FcγRII, FcγRIII or FcRn or FcγRIIA or FcγRIIB, are variants that are suitable for *in vivo* evaluation in primates as a therapeutic agent.

10

15

20

25

30

Direct binding and binding affinity determination between the different Fc region containing molecules is preferably performed against soluble extracellular domains of cynomolgus FcγR polypeptides. For example, the transmembrane domain and intracellular domain of a target FcγR can be replaced by DNA encoding a Gly-His6 tag or glutathione S-transferase (GST) (see Example 3). The Gly-His6 tag or GST provide a convenient method for immobilizing the Fc binding region of the receptor to a solid support for identification and/or determination of binding affinities between the receptor and target antibody variant. Potential assays include ELISA-format assays, co-precipitation format assays, and column chromatographic format assays. Identified Fc region containing molecules should directly interact with the soluble cynomolgus FcγR and have equivalent or greater binding affinities for the cynomolgus FcγR, as compared to corresponding human FcγR.

Another aspect of the invention provides methods of identifying agents that have altered binding to a cynomolgus FcyR comprising an ITAM and/or ITIM region.

A method of the invention involves identifying an agent that has increased binding

affinity for an FcR comprising an ITAM region and a decreased affinity for a FcR comprising an ITIM region.

Target agents include molecules that have a Fc region, preferably an antibody and more preferably an IgG antibody. If the target agent is an antibody it may be a variant antibody with an altered amino acids sequence compared to the native sequence of the antibody. Preferably variant antibodies have had amino acid substitutions in regions of the antibody that are involved in binding to Fcγ receptor, including amino acids corresponding to amino acids 226 to 436 in a human IgG. Variant antibodies can be prepared using standard methods such as site specific oligonucleotide or PCR mediated methods as described previously. Examples of variant antibodies includes alanine variants of human IgG1, anti IgE E27 prepared as described in Shields et al., *J. Biol. Chem.* 276:6591 (2001).

10

15

20

25

30

Binding affinities of antibodies and/or variant antibodies are determined using standard methods as described in Shields et al., *J. Biol. Chem.* 276:6591 (2001) and in Examples 3-7 below. Binding affinities are preferably determined by binding to cells that express a Fc γ receptor of the type being analyzed. However, binding affinities of antibodies or Fc region containing molecules can also be determined using soluble Fc γ receptors or Fc γ receptors expressed on or secreted from a host cell.

A variant antibody that has an increased affinity for a cynomolgus FcγRIIA compared with a human FcγRIIA is an antibody that has a change in amino acid sequence at the position corresponding to amino acid 298 of human IgG1. One such variant has a change at that position from serine to alanine and is designated as S298A. Another variant antibody with a change at that position is designated as S298A/E333A/K334 which is a variant antibody with alanine in positions corresponding to amino acid 298, 333 and 334 of native sequence IgG1. These variants have increased binding affinity to a cynomolgus FcγRIIA compared to a human FcγRIIA.

In another method of the invention, target agents with altered binding affinity to a cynomolgus FcyRIIB as compared to human FcyRIIB are identified. The agents are preferably variants of native sequence antibodies. Binding affinities are determined as described above and as shown in the Examples below. Agents with enhanced binding to a FcyRIIB may preferentially stimulate ITIM inhibitory functions. Agents with

decreased affinity for a cynomolgus FcqRIIB may have decreased stimulation of inhibitory function.

Variant antibodies that have decreased affinity for a cynomolgus FcγRIIB compared to a human FcγRIIB are: R255A, E258A, S37A, D280A and R301M.

Another embodiment of the invention involves the use of variant antibodies S298A or S298A/E333A/K334 to identify agents that can activate Fcy receptors comprising an ITAM while not engaging Fcy receptors comprising an ITIM region.

Variant antibodies with S298A, and S292A/E333A/K334, have increased binding affinity to a cynomolgus FcyRIIA, and decreased binding affinity to a cynomolgus FcyRIIB. Such methods can be conducted *in vivo* or *in vitro*.

These methods are also useful for identifying the location of amino acid in native sequence antibodies that can be modified to increase binding of the antibody to FcR polypeptides, preferably human and cynomolgus FcyR, comprising an ITAM region and/or to decrease binding affinity to FcyR comprising an ITIM region.

Modifications to the amino acid sequence at the identified locations can be prepared by

Having generally described the invention, the same will be more readily understood by reference to the following examples, which are provided by way of illustration and are not intended as limiting.

20

30

5

10

15

EXAMPLES

Example 1: Molecular Cloning of Cynomolgus and Chimp Fc Receptor DNA And β-2 Microglobulins

25 Materials and Methods:

standard methods.

Cloning of Cynomolgus Monkey FcyR

Since cynomolgus monkey DNA shares approximately 90% homology to human DNA, a series of PCR primers for each FcyR was designed based on the sequence of the corresponding human receptor. Each sense primer starts at a site immediately 5' of the coding region or at the start of the coding region. The antisense primers were designed in the same way, i.e. immediately 3' of the C terminal stop codon or at the C terminal stop codon. Primers incorporated endonuclease restriction sites used to subclone PCR product into a pRK vector (Eaton et al.). The sequences of the primers are shown in Table 1.

Table 1

T	• .		4 1	
Restriction	in citec	are un	deri	Ined
Tronuicut	בטונט ווע	arc un	u_{U1}	micu.

Receptor	Cyno FcyRI Full-Length
Forward Primer	CAGGTCAATC <u>TCTAGA</u> CTCCCACCAGCTTGGAG
	(SEQ ID NO: 31)
Reverse Primer	GGTCAACTAT <u>AAGCTT</u> GGACGGTCCAGATCGAT
	(SEQ ID NO: 32)
Restriction Sites	XbaI/HindIII
Receptor	Cyno FcyRI-H6-GST
Forward Primer	CAGGTCAATC <u>ATCGAT</u> ATGTGGTTCTTGACAGCT
	(SEQ ID NO: 33)
Reverse Primer	GGTCAACTAT <u>GCTAGC</u> ATGGTGATGATGGTGGTC
	AGACAGGAGTTGGTA
	(SEQ ID NO: 34)
Restriction Sites	ClaI/NheI
Receptor	Cyno FcyRIIB Full-Length
Forward Primer	CAGGTCAATC <u>TCTAGA</u> ATGGGAATCCTGTCATTC
	(SEQ ID NO: 35)
Reverse Primer	GGTCAACTAT <u>AAGCTT</u> CTAAATACGGTTCTGGTC
	(SEQ ID NO: 36)
Restriction Sites	XbaI/HindIII
Receptor	Cyno FcγRIIB-H6-GST
Forward Primer	CAGGTCAATC <u>ATCGAT</u> ATGCTTCTGTGGACAGC
	(SEQ ID NO: 37)
Reverse Primer	GGTCAACTAT <u>GGTGACC</u> TATCGGTGAAGAGCTGC
	(SEQ ID NO: 38)
Restriction Sites	ClaI/BstEII

Receptor Cyno FcyRIIIA Full-Length

Forward Primer CAGGTCAATCTCTAGAATGTGGCAGCTGCTCCT

(SEQ ID NO: 39)

Reverse Primer TCAACTATAAGCTTATGTTCAGAGATGCTGCTG

(SEQ ID NO: 40)

Restriction Sites Xbal/HindIII

5

20

Receptor Cyno FcyRIIIA-H6-GST

Forward Primer CAGGTCAATCTCTAGAATGTGGCAGCTGCTCCT

10 (SEQ ID NO: 41)

Reverse Primer GGTCAACTATGGTCACCTTGGTACCCAGGTGGAAA

(SEQ ID NO: 42)

Restriction Sites XbaI/BstEII

15 Receptor Cyno Fc γ Chain

Forward Primer CAGGTCAATCATCGATGAATTCCCACCATGATTCCA

GCAGTGGTC (SEQ ID NO: 43)

Reverse Primer GGTCAACTATAAGCTTCTACTGTGGTGGTTTCTCA

(SEQ ID NO: 44)

Restriction Sites EcoRI/HindIII

Receptor Cyno β-2 Microglobulin

Forward Primer CAGGTCAATCATCGATTCGGGCCGAGATGTCT

25 (SEQ ID NO: 45)

Reverse Primer GGTCAACTAT<u>TCTAGA</u>TTACATGTCTCGATCCCA

(SEQ ID NO: 46)

Restriction Sites ClaI/XbaI

30 Receptor Cyno FcyRIIA Full-Length

Forward Primer CAGGTCAATCTCTAGAATGTCTCAGAATGTATGTC

(SEQ ID NO: 47)

Reverse Primer GGTCAACTATAAGCTTTTAGTTATTACTGTTGTCATA

(SEQ ID NO: 48)

35 Restriction Sites XbaI/HindIII

Receptor Cyno FcyRIIA-H6-GST

Forward Primer CAGGTCAATCATCGATATGTCTCAGAATGTATGTC

(SEQ ID NO: 49)

Reverse Primer GGTCAACTATGGTGACCCATCGGTGAAGAGCTGC

(SEQ ID NO: 50)

Restriction Sites ClaI/BstEII

5

10

Receptor Cyno FcRn Full-Length

Forward Primer CAGGTCAATCATCGATAGGTCGTCCTCTCAGC

(SEQ ID NO: 51)

Reverse Primer GGTCAACTATGAATTCTCGGAATGGCGGATGG

(SEQ ID NO: 52)

Restriction Sites ClaI/EcoRI

15 Receptor Cyno FcRn-H6

Forward Primer CAGGTCAATCATCGATAGGTCGTCCTCTCAGC

(SEQ ID NO: 53)

Reverse Primer GGTCAACTATGAATTCATGGTGATGATGGTGCG

AGGACTTGGCTGGAGTTTC

20 (SEQ ID NO: 54)

Restriction Sites ClaI/EcoRI

The cDNA for FcRs was isolated by reverse transcriptase-PCR (GeneAmp, PerkinElmer Life Sciences) of oligo(dT)-primed RNA from cynomologus spleen cells 25 using primers as shown in Table 1. The cDNA was subcloned into previously described pRK mammalian cell expression vectors, as described in Eaton et al., 1986, Biochemistry, 25:8343-8347. PCR reactions were set up using 200 ng of cDNA vector library from cynomolgus spleen and ExTaq Premix (Panvera, Madison, WI) according to the manufacturers instructions. After denaturation at 90°C for 30 s, 25 cycles were 30 run with annealing at 55 °C for 1 min, elongation at 72 °C for 3 min, and denaturation at 98 °C for 30 s. DNA bands migrating at the expected size (FcyRI, FcyRIIIA, FcRn, 1100 base pairs; FcγRIIA, FcγRIIB, 1000 base pairs; Fcγ chain, 300 base pairs; β-2 microglobulin, 400 base pairs) were isolated, cloned into pRK vectors, then transformed into Escherichia coli XL1-Blue (Stratagene, San Diego, CA). Individual 35 clones were selected and double-stranded DNA for each was purified using Qiagen mini-prep DNA kits (cat. #27106; Qiagen). DNA sequencing was performed on an

Applied Biosystems model 377 sequencer using Big-Dye Terminator Cycle Sequencing kits (Applied Biosystems, Foster City, CA).

Initial PCR reactions for FcyRIIA did not reveal a PCR product. To determine whether or not FcyRIIA was present in cynomolgus monkeys, a sense primer was designed in a region conserved between human FcyRIIA, human FcyRIIB, and cynomolgus FcyRIIB (OF1, Table 2). An antisense primer was designed based on the consensus sequence in the region encoding the ITAM of human FcyRIIA (OR1, Table 2). Using these two PCR primers (OF1, OR1) and the PCR protocol described above, a PCR product of approximately 700 base pairs was obtained. The PCR band was isolated and subcloned into a pRK vector, individual clones were isolated and sequenced as described above. Sequence analysis revealed that the fragment had 90% identity to human FcyRIIA.

In order to determine the DNA sequence at the 5' end of the receptor, a nested PCR reaction was utilized. For the first step of the nested PCR reaction, a sense PCR primer (OF2, Table 2) was designed to lay down on the pRK vector 5' of the vector cloning site. This primer was used in conjunction with reverse primer OR1. The PCR reaction was performed on the cDNA library as described above, the product was diluted 1:500 and 1 μL was used as a template for the second step of the nested PCR reaction. Due to the fact that primer OF2 would lay down on all members of the cDNA library (all members being cloned into separate pRK vectors), only a small quantity of PCR fragment was obtained and hence this was used as a template for amplification in the second step. The sense primer (OF3, Table 2) for the second step was designed to lay down on the pRK vector sequence 3' of OF2 and the reverse primer (OR2, Table 2) was based on partial sequence of FcγRIIA determined above. The second step of the nested PCR reaction revealed a band of approximately 600 base pairs. The band was isolated and individual clones were prepared and sequenced as described above.

The DNA sequence at the 3' end of the receptor was determined in a similar manner. An initial PCR reaction on the cDNA library was performed using the forward primer OF4, designed from the sequence of the FcyRIIA fragment, and the reverse primer OR3, designed to lay down in the pRK vector 3' from the end of the FcyRIIA. The resultant fragment was used as template for the second step of the nested PCR reaction. The second step used the forward primer OF5, designed from the sequence of the FcyRIIA fragment, and the reverse primer OR4, designed to lay down in the pRK vector 5' from primer OR3. The second step of the nested PCR reaction revealed a band of approximately 800 base pairs. The band was isolated and individual clones were sequenced as described above. PCR primers for the full length FcyRIIA were designed based on the information acquired from the nested PCR reactions. Full length

FcyRIIA was cloned using the method described for all other receptors. The sequences of the primers described above are shown in Table 2.

Table 2

OF1 CAGGTCAATCTCTAGACAGTGGTTCCACAATGG (SEQ ID NO: 55)
OR1 GGTCAACTATAAGCTTAAGAGTCAGGTAGATGTTT (SEQ ID NO: 56)
OF2 CAGGTCAATC TCTAGA ATACATAACCTTATGTATCAT (SEQ ID NO: 57)
OF3 CAGGTCAATC TCTAGA TATAGAATAACATCCACTTTG (SEQ ID NO: 58)
OR2 GGTCAACTAT AAGCTT CAGAGTCATGTAGCCG (SEQ ID NO: 59)
OF4 CAGGTCAATC TCTAGA ATTCCACTGATCCTGTGAA (SEQ ID NO: 60)
OR3 GGTCAACTAT AAGCTT GCTTTATTTGTGAAATTTGTG (SEQ ID NO: 61)
OF5 CAGGTCAATC TCTAGA ACTTGGACGTCAAACGATT (SEQ ID NO: 62)
OR4 GGTCAACTAT AAGCTT CTGCAATAAACAAGTTGGG (SEQ ID NO: 63)

Example 2: Alignment of Nucleotide and Amino Acid Sequences of Cynomolgus, Chimp and Human FcyR

Nucleotide and amino acid sequences for FcR polypeptides from human, cynomolgus and chimps were aligned and % sequence identity calculated.

15

20

25

30

Nucleotide and amino acid sequences of primate and human proteins were aligned manually and differences in nucleotide or protein sequence noted. Percent identity was calculated as [number of identical residues]/[number of total residues]. When the sequences differed in the total number of residues, two values for percent identity are provided, using the two different numbers for total residues. Nucleotide sequences begin at the coding sequence for the signal sequence.

The alignment of nucleic acid sequences for human (SEQ ID NO: 2) and cynomolgus $Fc\gamma RI$ α -chain (SEQ ID NO: 1) as shown in Table 3 below. The dots indicate locations of nucleotide sequence differences. An analysis of the % sequence identity shows that the human and cynomolgus nucleotide sequences encoding $Fc\gamma RI$ α -chain have about 91% or 96% sequence identity depending on whether the nucleotides of 3' extensions are included in the calculation.

TABLE 3

Alignment of Human and Cynomolgus High-Affinity FcyRI DNA

	Allgimen	C OI Human	and of	02.0	. 5	-3	•	
5	1030 mate	ches in an	overlap overlap	of of	1074: 1128:	95.9% 91.3%	identity identity	
			.0	20		30	40	50
	Human	ATGTGGTTC	TTGACAAC	TCT	CTCCT	TTGGGT.	rccagttga'	rgggcaagt
10	Cyno	ATGTGGTTC	TTGACAGC	TCT	CTCCT	TTGGGT	rccagttga'	IGGGCAAGT
			0	70		80	90	100
	Human	GGACACCAC	CAAAGGCAG	TGAT	CACTT	TGCAGC	CTCCATGGG	rcagcgtgt
15	Cyno	GGATACCAC	CAAAGGCAG	TGAT	TCACTT	TGCAGC	CTCCATGGG	TCAGCGTGT
		13		120		130	140	150
	Human	TCCAAGAG	BAAACCGTA	ACC.	rtgcac	TGTGAG	GTGCTCCAT	CTGCCTGGG
20		maan n an a	• የአአአአርምርምን	א כיכיי	• • ተጥልሮልር	ጥር ጥር ልር	GTGCCCCGT	CTGCCTGGG
	Cyno	TCCAAGAG	JAAACTG1A	MCC.	IIACAG	IGIGAG	G10000001	01000100
	Human		50 FACACAGTO	170 GTT	TCTCAA	180 TGGCAC	190 AGCCACTCA	200 GACCTCGAC
25			•					a. aamaa. a
	Cyno	AGCAGCTC	CACACAGTO	GTT'	TCTCAA	TGGCAC	AGCCACTCA	GACCTCGAC
			10	220		230	240	250
	Human	CCCCAGCT	ACAGAATC	ACCT	CTGCCA	GTGTCA	ATGACAGTG	GTGAATACA
30	Cyno	• TCCCAGCT	ACAGAATC!	ACCT	CTGCCA	GTGTCA	• AGGACAGTG	GTGAATACA
		2	60	270		280	290	300
35	Human		•					CTGGAAATC
33	Cyno	GGTGCCAG	AGAGGTCC	CTCA	GGGCGA	AGTGAC		CTGGAAATC
		3	10	320		330	340	350 מא כככא אפפ
	Human	CACAGAGG	CTGGCTAC:	ract	GCAGGT	CTCCAG	CAGAGICII	CACGGAAGG
40	Cyno	CACAGAGA	CTGGCTAC	TACT	GCAGGI	TATCCAG	CAGAGTCT	CACAGAAGG
		3	60	370		380	390	400
	Human	AGAACCTC	TGGCCTTG	AGGT	GTCATO	ECGTGGA	AGGATAAG	TGGTGTACA
45	Cyno	AGAACCTC	TGGCCTTG	AGGT	GTCATO	• SCATGGA	AGGATAAG	TGGTGTACA
			10	420		430	440	450
	Human	ATGTGCTT	TACTATCG.	TAAA	GGCAA	AGCCTTT	TAAGTTTTTC	CCACTGGAAT
50	Cyno	ATGTGCTT	• TACTATCA	TAAA	GGCAA	AGCCTT	TTTTTT	TACCGGAAT
		Δ	60	470)	480	490	500
	Human						TCACAATG(GCACCTACCA
55		• •						•
	Cyno	TCTCAACT	CACCATTC	TGA	AACCA	ACATAA	GTCACAACG(GCGCCTACCA

		510	520	530	540	550
	Human	TTGCTCAGGCATG			GCAGGAATA	CTGTCA
		•			• •	namaman
5	Cyno	CTGCTCAGGCATG	GGAAAGCATCG	CTACACATCA	IGCAGGAGTA.	ICIGICA
		560	570	580	590	600
	Human	CTGTGAAAGAGCT	ATTTCCAGCTC	CAGTGCTGA	ATGCATCTGT(GACATCC
		CTGTGAAAGAGCT.	3 mmm (G3 G G M)	ION CITICOTON I	● \™⊄₽¤™₽₽₽₩	ገጋጥ ፈ ጋሪድ
10	Cyno	CTGTGAAAGAGCT.	ATTTCCAGCIC	CAGIGCIGA	MIGCAICCOI	JACAICO
		610	620	630	640	650
	Human	CCACTCCTGGAGG	GGAATCTGGTC	ACCCTGAGC	rgtgaaacaa.	AGTTGCT
1.5	G	• CCGCTCCTGGAGG	ረረ አ አጥ ርጥርርጥር	'ACCCTGAGC	rgtgaaacaa	
15	Cyno	CCGCTCCTGGAGG	GGARICICGIC			
		660	670	680	690	700
	Human	CTTGCAGAGGCCT	GGTTTGCAGCT	TTACTTCTC	CTTCTACATG	GGCAGCA
20	Cyno	• • TCTGCAGAGGCCT	GGTTTGCAGCT	TTACTTCTC	CTTCTACATG	GGCAGCA
20	·					
		710 AGACCCTGCGAGG	720	730	740 accaaatact	750 AACTGCT
	Human	AGACCCTGCGAGG	CAGGAACACA	CCICIGAMI	HCCHMINCI	AACIOCI
25	Cyno	AGACCCTGCGAGG	CAGGAACACG	CCTCTGAAT.	ACCAAATACT	AACTGCT
	-			500	700	800
	Iluman	760 AGAAGAGAAGACT	770	780 PROGRACIONA	790 GCTGCCACAG	
	Human		CIGGGIIAIA	JIGGIGCGAG	• •	• •
30	Cyno	AGAAGAGAAGACT	•		• •	• •
30		AGAAGAGAAGACT	• CTGGGTTTA(CTGGTGCGAG	• • GCCACCACAG	• •
30	Cyno	AGAAGAGAAGACT	CTGGGTTTTAC	CTGGTGCGAG 830	•• GCCACCACAG 840	AAGACGG
30		AGAAGAGAAGACT 810 AAATGTCCTTAAG	• CTGGGTTTA 820 CGCAGCCCTG	ETGGTGCGAG 830 AGTTGGAGCT	•• GCCACCACAG 840 TCAAGTGCTT	AAGACGG 850 GGCCTCC
30 35	Cyno	AGAAGAGAAGACT	• CTGGGTTTA 820 CGCAGCCCTG	ETGGTGCGAG 830 AGTTGGAGCT	•• GCCACCACAG 840 TCAAGTGCTT	AAGACGG 850 GGCCTCC
	Cyno Human	AGAAGAGAAGACT 810 AAATGTCCTTAAGAATGTCCTTAAG	eCTGGGTTTTAG 820 CGCAGCCCTGA CGCAGCCCTGA	CTGGTGCGAG 830 AGTTGGAGCT AGTTGGAGCT	eccaccacag 840 TCAAGTGCTT TCAAGTGCTT	AAGACGG 850 GGCCTCC
	Cyno Human	AGAAGAGAAGACT 810 AAATGTCCTTAAG	eCTGGGTTTTAG 820 CGCAGCCCTGA CGCAGCCCTGA	CTGGTGCGAG 830 AGTTGGAGCT AGTTGGAGCT	eccaccacag 840 TCAAGTGCTT TCAAGTGCTT	AAGACGG 850 GGCCTCC
35	Cyno Human Cyno Human	AGAAGAGAAGACT 810 AAATGTCCTTAAG AAATGTCCTTAAG 860 AGTTACCAACTCC	820 SCGCAGCCCTGA SCGCAGCCCTGA SCGCAGCCCTGA	CTGGTGCGAG 830 AGTTGGAGCT AGTTGGAGCT 880 CATGTCCTTT	840 TCAAGTGCTT TCAAGTGCTT 890 TCTATCTGGC	AAGACGG 850 GGCCTCC GGCCTCC 900 AGTGGGA
	Cyno Human Cyno	AGAAGAGAAGACT 810 AAATGTCCTTAAGAATGTCCTTAAG	820 SCGCAGCCCTGA SCGCAGCCCTGA SCGCAGCCCTGA	CTGGTGCGAG 830 AGTTGGAGCT AGTTGGAGCT 880 CATGTCCTTT	840 TCAAGTGCTT TCAAGTGCTT 890 TCTATCTGGC	AAGACGG 850 GGCCTCC GGCCTCC 900 AGTGGGA
35	Cyno Human Cyno Human	AGAAGAGAAGACT 810 AAATGTCCTTAAG AAATGTCCTTAAG 860 AGTTACCAACTCG AGTTACCAACTCG	820 GCGCAGCCCTGA 870 TGTCTGGTTTC 920	ETGGTGCGAG 830 AGTTGGAGCT 880 CATGTCCTTT CATGTCCTTT	840 TCAAGTGCTT 890 TCTATCTGGC TCTATCTGGT	AAGACGG 850 GGCCTCC GGCCTCC 900 AGTGGGA CAGTGGGA
35	Cyno Human Cyno Human	AGAAGAGAAGACT 810 AAATGTCCTTAAG 860 AGTTACCAACTCC	820 GCGCAGCCCTGA 870 TGTCTGGTTTC 920	ETGGTGCGAG 830 AGTTGGAGCT 880 CATGTCCTTT CATGTCCTTT	840 TCAAGTGCTT 890 TCTATCTGGC TCTATCTGGT	AAGACGG 850 GGCCTCC GGCCTCC 900 AGTGGGA CAGTGGGA
35 40	Cyno Human Cyno Human Cyno Human	AGAAGAGAAGACT 810 AAATGTCCTTAAG 860 AGTTACCAACTCC AGTTACCAACTCC 910 ATAATGTTTTTAG	820 8CGCAGCCCTGA 8CGCAGCCCTGA 870 TTGTCTGGTTTC CTGTCTGGCTTC	ETGGTGCGAG 830 AGTTGGAGCT 880 CATGTCCTTT CATGTCCTTT 930 TCTCTGGGTG	840 TCAAGTGCTT TCAAGTGCTT 890 TCTATCTGGC TCTATCTGGT	AAGACGG 850 GGCCTCC GGCCTCC 900 AGTGGGA CAGTGGGA 950 AAGAACT
35	Cyno Human Cyno Human Cyno	AGAAGAGAAGACT 810 AAATGTCCTTAAG AAATGTCCTTAAG 860 AGTTACCAACTCG AGTTACCAACTCG	820 8CGCAGCCCTGA 8CGCAGCCCTGA 870 TTGTCTGGTTTC CTGTCTGGCTTC	ETGGTGCGAG 830 AGTTGGAGCT 880 CATGTCCTTT CATGTCCTTT 930 TCTCTGGGTG	840 TCAAGTGCTT TCAAGTGCTT 890 TCTATCTGGC TCTATCTGGT 940 ACAATACGTA	AAGACGG 850 GGCCTCC GGCCTCC 900 CAGTGGGA CAGTGGGA AAGAACT AAAGAACT
35 40	Cyno Human Cyno Human Cyno Human Cyno	AGAAGAGAAGACT 810 AAATGTCCTTAAG 860 AGTTACCAACTCC AGTTACCAACTCC 910 ATAATGTTTTTAC ATAATGTTTTTAC	820 GCGCAGCCCTGA 870 CTGTCTGGTTTC 920 GTGAACACTGT	B30 AGTTGGAGCT AGTTGGAGCT 880 CATGTCCTTT CATGTCCTTT 930 TCTCTGGGTG	840 TCAAGTGCTT TCAAGTGCTT 890 TCTATCTGGC TCTATCTGGT 940 ACAATACGTA	AAGACGG 850 GGCCTCC GGCCTCC 900 CAGTGGGA CAGTGGGA AAGAACT LAAGAACT
35 40	Cyno Human Cyno Human Cyno Human	AGAAGAGAAGACT 810 AAATGTCCTTAAG 860 AGTTACCAACTCC AGTTACCAACTCC 910 ATAATGTTTTTAC	820 GCGCAGCCCTGA 870 CTGTCTGGTTTC 920 GTGAACACTGT	B30 AGTTGGAGCT AGTTGGAGCT 880 CATGTCCTTT CATGTCCTTT 930 TCTCTGGGTG	840 TCAAGTGCTT TCAAGTGCTT 890 TCTATCTGGC TCTATCTGGT 940 ACAATACGTA	AAGACGG 850 GGCCTCC GGCCTCC 900 CAGTGGGA CAGTGGGA AAGAACT LAAGAACT
35 40	Cyno Human Cyno Human Cyno Human Cyno	AGAAGAGAAGACT 810 AAATGTCCTTAAG 860 AGTTACCAACTCC AGTTACCAACTCC 910 ATAATGTTTTTAC ATAATGTTTTTAC	820 SCGCAGCCCTGA SCGCAGCCCTGA 870 CTGTCTGGTTTC 920 STGACACTGT STGAACACTGT 970 AAAGTGGGATT	B30 AGTTGGAGCT AGTTGGAGCT 880 CATGTCCTTT 930 TCTCTGGGTG TCTCTGGGTG	840 TCAAGTGCTT TCAAGTGCTT 890 TCTATCTGGC TCTATCTGGT 940 ACAATACGTA ACAATACGTA	AAGACGG 850 GGCCTCC GGCCTCC 900 AGTGGGA AAGAACT AAGAACT 1000 CGGTCATG
35 40 45	Cyno Human Cyno Human Cyno Human Cyno Human	AGAAGAGAAGACT 810 AAATGTCCTTAAG 860 AGTTACCAACTCC AGTTACCAACTCC 910 ATAATGTTTTTAC ATAATGTTTTTAC 960 GAAAAGAAAGAA	820 GCGCAGCCCTGA 870 TGTCTGGTTTC 920 STGAACACTGT 970 AAAGTGGGATT	B30 AGTTGGAGCT 880 CATGTCCTTT 930 TCTCTGGGTG TCTCTGGGTG 980 TAGAAATCTC	840 840 TCAAGTGCTT 890 TCTATCTGGC TCTATCTGGT 940 ACAATACGTA ACAATACGTA 990 TTTTGGATTCT	AAGACGG 850 GGCCTCC GGCCTCC 900 AGTGGGA P50 AAGAACT AAGAACT 1000 CGGTCATG
35 40 45	Cyno Human Cyno Human Cyno Human Cyno Human Cyno	AGAAGAGAAGACT 810 AAATGTCCTTAAG 860 AGTTACCAACTCC AGTTACCAACTCC 910 ATAATGTTTTTAC ATAATGTTTTTAC 960 GAAAAGAAAGAA	820 GCGCAGCCCTGA 870 GCGCAGCCCTGA 870 GCGCAGCCCTGA 870 GCGCAGCCCTGA 870 GCGCAGCCCTGA 870 GCGCAGCCCTGA 870 GCGCAGCCCTGA 920 GCGCAGCCCTGA 920 GCGCAGCCCTGA 920 GCGCAGCCCTGA 920 GCGCAGCCCTGA 920 GCGCAGCCCTGA 940 GCGCAGCCCTGACCA 940 GCGCA	B30 AGTTGGAGCT 880 CATGTCCTTT 930 TCTCTGGGTG TCTCTGGGTG TAGAAATCTC 1030	840 R40 TCAAGTGCTT 890 TCTATCTGGC TCTATCTGGT ACAATACGTA ACAATACGTA P90 TTTTGGATTCT TTTGGATTCT	AAGACGG 850 GGCCTCC GGCCTCC 900 AGTGGGA AAGAACT AAGAACT 1000 CGGTCATG GCTCATG
35 40 45	Cyno Human Cyno Human Cyno Human Cyno Human	AGAAGAAGAAGACT 810 AAATGTCCTTAAG 860 AGTTACCAACTCC AGTTACCAACTCC 910 ATAATGTTTTTAC ATAATGTTTTTAC GAAAAGAAAGAAGAAGAAGAAAGAAGAAGAAGAAGAAG	820 GCGCAGCCCTGA 870 CTGTCTGGTTTC 920 STGAACACTGT 970 AAAGTGGATT AAAGTGGAATT 1020 FTTCCAGCCTT	B30 AGTTGGAGCT 880 CATGTCCTTT 930 TCTCTGGGTG TCTCTGGGTG TAGAAATCTC 1030 CAAGAAGACA	840 840 TCAAGTGCTT 890 TCTATCTGGC TCTATCTGGT 940 ACAATACGTA ACAATACGTA TTTGGATTCT 1040 AGACATTTAGA	AAGACGG 850 GGCCTCC GGCCTCC 900 AGTGGGA PS0 AAGAACT AAGAACT 1000 CGGTCATG CGCTCATG AGGAAGAGA
35 40 45	Cyno Human Cyno Human Cyno Human Cyno Human Cyno	AGAAGAGAAGACT 810 AAATGTCCTTAAG 860 AGTTACCAACTCC AGTTACCAACTCC 910 ATAATGTTTTTAC ATAATGTTTTTAC 960 GAAAAGAAAGAA	820 GCGCAGCCCTGA 870 CTGTCTGGTTTC 920 STGAACACTGT 970 AAAGTGGATT AAAGTGGAATT 1020 FTTCCAGCCTT	B30 AGTTGGAGCT 880 CATGTCCTTT 930 TCTCTGGGTG TCTCTGGGTG TAGAAATCTC 1030 CAAGAAGACA	840 840 TCAAGTGCTT 890 TCTATCTGGC TCTATCTGGT 940 ACAATACGTA ACAATACGTA TTTGGATTCT 1040 AGACATTTAGA	AAGACGG 850 GGCCTCC GGCCTCC 900 AGTGGGA PS0 AAGAACT AAGAACT 1000 CGGTCATG CGCTCATG AGGAAGAGA

1060 1070 1080 1090 1100

Human CTGAAATGTCAGGAACAAAAAGAAGAACAGCTGCAGGAAGGGGTGCACCG

Cyno CTGAAGAGTCAGGAACAAGAATAA

1110 1120

Human GAAGGAGCCCCAGGGGGCCACGTAGCAG 3' extension

5

15

The Human DNA sequence shown in Table 3 has GenBank Accession No. L03418. Porges, A.J., Redecha, P.B., Doebele, R., Pan, L.C., Salmon, J.E. and Kimberly, R.P., Novel Fc gamma receptor I family gene products in human mononuclear cells, J. Clin. Invest. 90, 2102-2109 (1992).

An alignment of nucleic acid sequences encoding human (SEQ ID NO: 14) and cynomolgus (SEQ ID NO: 13) gamma chain is shown in Table 4.

Analysis of the % sequence identity shows that the nucleic acid sequences encoding human and cynomolgus FcyRI/III gamma chain have about 99% identity.

20 TABLE 4 Alignment of Human and Cynomolgus Gamma-Chain DNA 258 matches in an overlap of 261: 98.9% identity 25 10 20 30 ATGATTCCAGCAGTGGTCTTGCTCTTACTCCTTTTGGTTGAACAAGCAGC Human ATGATTCCAGCAGTGGTCTTGCTCTTACTCCTTTTGGTTGAACAAGCAGC Cyno 30 60 70 80 90 100 Human GGCCCTGGGAGAGCCTCAGCTCTGCTATATCCTGGATGCCATCCTGTTTC GGCCCTGGGAGAGCCTCAGCTCTGCTATATCCTGGATGCCATCCTGTTTC Cyno 35 120 110 130 140 Human TGTATGGAATTGTCCTCACCCTCCTCTACTGTCGACTGAAGATCCAAGTG TGTATGGAATTGTCCTCACCCTCCTCTACTGTCGACTGAAGATCCAAGTG Cyno 40 160 170 180 190 200 Human CGAAAGGCAGCTATAACCAGCTATGAGAAATCAGATGGTGTTTACACGGG CGAAAGGCAGCTATAGCCAGCTATGAGAAATCAGATGGTGTTTACACGGG Cyno 45 250 210 220 230 240 Human CCTGAGCACCAGGAACCAGGAGACTTACGAGACTCTGAAGCATGAGAAAC Cyno CCTGAGCACCAGGAACCAGGAAACTTATGAGACTCTGAAGCATGAGAAAC 50

260 Human CACCACAGTAG

Cyno CACCACAGTAG

ر

10

15

The DNA sequence for the human gamma chain as GenBank Accession No. M33195 J05285. Kuester, H., Thompson, H. and Kinet, J.-P., Characterization and expression of the gene for the human receptor gamma subunit: Definition of a new gene family, J. Biol. Chem. 265, 6448-6452 (1990).

An alignment of the human (SEQ ID NO: 4), chimp (SEQ ID NO: 22) and cynomolgus (SEQ ID NO: 3) nucleic acid sequence encoding FcyRIIA is shown in Table 5. An analysis of the % sequence identity shows that the human and cynomolgus sequences encoding FcyRIIA have about 94% sequence identity. A comparison of chimp and human sequences encoding FcyRIIA have about 99% sequence identity.

TABLE 5

Alignment of Human, Cynomolgus and Chimp Low-Affinity FcyRIIA DNA 20 Human/Cyno 878 matches in an overlap of 933: 94.1% identity without one gap of three nucleotides 878 matches in an overlap of 936: 93.8% identity 25 with one gap of three nucleotides Human/Chimp 924 matches in an overlap of 933: 99.0% identity without one gap of three nucleotides 924 matches in an overlap of 936: 98.7% identity 30 with one gap of three nucleotides 50 40 10 20 30 ATGTCTCAGAATGTATGTCCCAGAAACCTGTGGCTGCTTCAACCATTGAC Chimp ATGTCTCAGAATGTATGTCCCAGAAACCTGTGGCTGCTTCAACCATTGAC 35 Human Cyno ATGTCTCAGAATGTATGTCCCGGCAACCTGTGGCTGCTTCAACCATTGAC 70 80 90 100 60 40 AGTTTTGCTGCTGCTGGCTTCTGCAGACAGTCAAGCT---GCTCCCCCAA Chimp AGTTTTGCTGCTGCTGGCTTCTGCAGACAGTCAAGCTGCAGCTCCCCCAA Human AGTTTTGCTGCTGCTGCTTCTGCAGACAGTCAAACT---GCTCCCCCGA Cyno 45

	Chimp	110 120 130 140 150 AGGCTGTGCTGAAACTTGAGCCCCCGTGGATCAACGTGCTCCAGGAGGAC
	Human	AGGCTGTGCTGAAACTTGAGCCCCCGTGGATCAACGTGCTCCAGGAGGAC
5	Cyno	AGGCTGTGCTGAAACTCGAGCCCCCGTGGATCAACGTGCTCCGGGAGGAC
		160 170 180 190 200
10	Chimp	TCTGTGACTCTGACATGCCGGGGGGCTCGCAGCCCTGAGAGCGACTCCAT •
10	Human	TCTGTGACTCTGACATGCCAGGGGGCTCGCAGCCCTGAGAGCGACTCCAT
	Cyno	TCTGTGACTCTGACGTGCGGGGGCGCTCACAGCCCTGACAGCGACTCCAC
15	Chimp	210 220 230 240 250 TCAGTGGTTCCACAATGGGAATCTCATCCCCACCCCACACGCAGCCCAGCT
	Human	TCAGTGGTTCCACAATGGGAATCTCATTCCCACCCACACGCAGCCCAGCT
20	Cyno	TCAGTGGTTCCACAATGGGAATCGCATCCCCACCCCACACACA
	Chimp	260 270 280 290 300 ACAGGTTCAAGGCCAACAACAATGACAGCGGGGAGTACACGTGCCAGACT
25	Human	ACAGGTTCAAGGCCAACAACAATGACAGCGGGGAGTACACGTGCCAGACT
	Cyno	ACAGGTTCAAGGCCAACAACAATGATAGCGGGGAGTACAGGTGCCAGACT
30	Chimp	310 320 330 340 350 GGCCAGACCAGCCTCAGCGACCCTGTGCATCTGACTGTGCTTTCCGAATG
	Human	GGCCAGACCAGCCTCAGCGACCCTGTGCATCTGACTGTGCTTTCCGAATG
35	Cyno	GGCCGGACCAGCCTCAGCGACCCTGTTCATCTGACTGTGCTTTCTGAGTG
33	Chimp	360 · 370 380 390 400 GCTGGTGCTCCAGACCCCTCACCTGGAGTTCCAGGAGGAGAAACCATCG
	Human	GCTGGTGCTCCAGACCCCTCACCTGGAGTTCCAGGAGGGAG
40	Cyno	GCTGGCGCTTCAGACCCCTCACCTGGAGTTCCGGGAGGGA
45	Chimp	410 420 430 440 450 TGCTGAGGTGCCACAGCTGGAAGGACAAGCCTCTGGTCAAGGTCACATTC
43	Human	TGCTGAGGTGCCACAGCTGGAAGGACAAGCCTCTGGTCAAGGTCACATTC
	Cyno	TGCTGAGGTGCCACAGCTGGAAGGACAAGCCTCTGATCAAGGTCACATTC
50	Chimp	460 470 480 490 500 TTCCAGAATGGAAAATCCCAGAAATTCTCCCATTTGGATCCCAACCTCTC
	Human	TTCCAGAATGGAAAATCCCAGAAATTCTCCCGTTTGGATCCCACCTTCTC
55	Cyno	TTCCAGAATGGAATAGCCAAGAAATTTTCCCATATGGATCCCAATTTCTC

	Chimp	510 520 530 540 550 CATCCCACAAGCAAACCACAGTCACAGTGGTGATTACCACTGCACAGGAA
_	Human	CATCCCACAAGCAAACCACAGTCACAGTGGTGATTACCACTGCACAGGAA
5	Cyno	CATCCCACAAGCAAACCACAGTCACAGTGGTGATTACCACTGCACAGGAA
10	Chimp	560 570 580 590 600 ACATAGGCTACACGCTGTCCAACCCTGTCCAA
10	Human	ACATAGGCTACACGCTGTTCTCATCCAAGCCTGTGACCATCACTGTCCAA
	Cyno	ACATAGGCTACACACCATACTCATCCAAACCTGTGACCATCACTGTCCAA
15	Chimp	610 620 630 640 650 GCGCCCAGCGTGGGCAGCTCTTCACCAGTGGGGATCATTGTGGCTGTGGT
	Human	GTGCCCAGCATGGGCAGCTCTTCACCAATGGGGATCATTGTGGCTGTGGT
20	Cyno	GTGCCCAGCGTGGGCAGCTCTTCACCGATGGGGATCATTGTGGCTGTGGT
	Chimp	660 670 680 690 700 CATTGCGACTGCTGTAGCAGCCATTGTTGCTGCTGTAGTGGCCTTGATCT
25	Human	${\tt CATTGCGACTGCTGTAGCAGCCATTGTTGCTGCTGTAGTGGCCTTGATCT}$
	Cyno	CACTGGGATTGCTGTAGCGGCCATTGTTGCTGCTGTAGTGGCCTTGATCT
30	Chimp	710 720 730 740 750 ACTGCAGGAAAAAGCGGATTTCAGCCAATTCCACTGATCCTGTGAAGGCT
	Human	${\tt ACTGCAGGAAAAAGCGGATTTCAGCCAATTCCACTGATCCTGTGAAGGCT}$
35	Cyno	ACTGCAGGAAAAAGCGGATTTCAGCCAATTCCACTGATCCTGTGAAGGCT
	Chimp	760 770 780 790 800 GCCCAATTTGAGCCACCTGGACGTCAAATGATTGCCATCAGAAAGAGACA
	Human	GCCCAATTTGAGCCACCTGGACGTCAAATGATTGCCATCAGAAAGAGACA
40	Cyno	GCCCGATTTGAGCCACTTGGACGTCAAACGATTGCCCTCAGAAAGAGACA
45	Chimp	810 820 830 840 850 ACTTGAAGAAACCAACAATGACTATGAAAACAGCTGACGGCGGCTACATGA
45	Human	ACTTGAAGAAACCAACAATGACTATGAAACAGCTGACGGCGGCTACATGA
	Cyno	ACTTGAAGAAACCAACAATGACTATGAAACAGCCGACGGCGGCTACATGA
50	Chimp	860 870 880 890 900 CTCTGAACCCCAGGGCACCTACTGACGATGATAAAAACATCTACCTGACT
	Human	CTCTGAACCCCAGGGCACCTACTGACGATGATAAAAACATCTACCTGACT
55	Cyno	• • • CTCTGAACCCCAGGGCACCTACTGATGATGATAGAAACATCTACCTGACT

The sequence for the human FcγRIIA receptor has GenBank Accession No.

10 M28697. Seki,T., Identification of multiple isoforms of the low-affinity human IgG Fc receptor, Immunogenetics 30, 5-12 (1989).

Alignment of the nucleic acid sequences encoding human (SEQ ID NO: 6) and cynomolgus (SEQ ID NO: 5) FcyRIIB is shown in Table 6.

Analysis of the % sequence identity shows that the human and cynomolgus sequences encoding FcyRIIB have about 94% identity.

TABLE 6

Alignment of Human and Cynomolgus Low-Affinity FcYRIIB DNA 20 837 matches out of 885: 94.6% identity (without gap) 837 matches out of 894: 93.6% identity (with gap) 10 20 30 40 50 25 Human ATGGGAATCCTGTCATTCTTACCTGTCCTTGCCACTGAGAGTGACTGGGC ATGGGAATCCTGTCATTCTTACCTGTCCTTGCTACTGAGAGTGACTGGGC Cyno 70 80 90 30 Human TGACTGCAAGTCCCCCCAGCCTTGGGGTCATATGCTTCTGTGGACAGCTG TGACTGCAAGTCCTCCCAGCCTTGGGGCCACATGCTTCTGTGGACAGCTG Cyno 130 140 120 35 TGCTATTCCTGGCTCCTGTTGCTGGGACACCTGCAGCTCCCCCAAAGGCT Human TGCTATTCCTGGCTCCTGTTGCTGGGACACCTGCAGCTCCCCCGAAGGCT Cyno 170 190 160 180 40 GTGCTGAAACTCGAGCCCCAGTGGATCAACGTGCTCCAGGAGGACTCTGT Human GTGCTGAAACTCGAGCCCCCGTGGATCAACGTGCTCCGGGAGGACTCTGT Cyno 210 220 230 240 250 45 Human GACTCTGACATGCCGGGGGACTCACAGCCCTGAGAGCGACTCCATTCAGT GACTCTGACGTGCGGGGGCGCTCACAGCCCTGACAGCGACTCCACTCAGT Cyno 260 270 290 300 280 50 GGTTCCACAATGGGAATCTCATTCCCACCCACACGCAGCCCAGCTACAGG Human

- -

	Cyno	GGTTCCACAATGGGAATCTCATCCCCACCCACACGCAGCCCAGCTACAGG
5	Human	310 320 330 340 350 TTCAAGGCCAACAACAATGACAGCGGGGAGTACACGTGCCAGACTGGCCA
	Cyno	TTCAAGGCCAACAACAATGATAGCGGGGAGTACAGGTGCCAGACTGGCCG
10	Human	360 370 380 390 400 GACCAGCCTCAGCGACCCTGTGCATCTGACTGTGCTTTCTGAGTGGCTGG
	Cyno	• GACCAGCCTCAGCGACCCTGTTCATCTGACTGTGCTTTCTGAGTGGCTGG
15	Human	410 420 430 440 450 TGCTCCAGACCCTCACCTGGAGTTCCAGGAGGAGAAACCATCGTGCTG
	Cyno	• CGCTCCAGACCCTCACCTGGAGTTCCGGGAGGAGAAACCATCTTGCTG
20	Human	460 470 480 490 500 AGGTGCCACAGCTGGAAGGACAAGCCTCTGGTCAAGGTCACATTCTTCCA
	Cyno	• AGGTGCCACAGCTGGAAGGACAAGCCTCTGATCAAGGTCACATTCTTCCA
25	Human	510 520 530 540 550 GAATGGAAAATCCAAGAAATTTTCCCGTTCGGATCCCAACTTCTCCATCC
	Cyno	GAATGGAATATCCAAGAAATTTTCCCATATGAATCCCAACTTCTCCATCC
30	Human	560 570 580 590 600 CACAAGCAAACCACAGTCACAGTGGTGATTACCACTGCACAGGAAACATA
	Cyno	CACAAGCAAACCACAGTCACAGTGGTGATTACCACTGCACAGGAAACATA
35	Human	610 620 630 640 650 GGCTACACGCTGTACTCCAAGCCTGTGACCATCACTGTCCAAGCTCC
	Cyno	GGCTACACACCATACTCATCCAAACCTGTGACCATCACTGTCCAAGTGCC
40	Human	660 670 680 690 700
	Cyno	••••••••• CAGCATGGGCAGCTCTTCACCGATAGGGATCATTGTGGCTGTGGTCACTG
45	Human	710 720 730 740 750 GGATTGCTGTAGCGGCCATTGTTGCTGCTGTAGTGGCCTTGATCTACTGC
	Cyno	${\tt GGATTGCTGTAGCGGCCATTGTTGCTGCTGTAGTGGCCTTGATCTACTGC}$
50	Human	760 770 780 790 800 AGGAAAAAGCGGATTTCAGCCAATCCCACTAATCCTGATGAGGCTGACAA
	Cyno	AGGAAAAAGCGGATTTCAGCCAATCCCACTAATCCTGACGAGGCTGACAA

		810	820	830	840	850
	Human	AGTTGGGGCTGAGA	ACACAATCA	CCTATTCACTT	CTCATGCAC	CGGATG
					•	•
5	Cyno	AGTTGGGGCTGAGA	ACACAATCA	CTATTCACT	CTCATGCAT	CGGACG
•		860	870	880		
	Human	CTCTGGAAGAGCCT	GATGACCAG	AACCGTATTT	₹G '	
			•	•		
	Cyno	CTCTGGAAGAGCCT	GATGACCAA	AACCGNGTTT!	 4G	
10	_					

15

20

25

The human sequence for FcyRIIB has GenBank Accession No. X52473. Engelhardt, W., Geerds, C. and Frey, J., Distribution, inducibility and biological function of the cloned and expressed human beta Fc receptor II, Eur. J. Immunol. 20 (6), 1367-1377 (1990).

Alignment of the nucleic acid sequences encoding a human (SEQ ID NO: 8) and cynomolgus (SEQ ID NO: 7) FcyRIIIA is shown in Table 7.

Analysis of the % sequence identity shows that the human and cynomolgus nucleic acid sequences encoding FcyRIIIA have about 96% identity.

TABLE 7

23	Alignmer	nt of H	ıman and Cy	nomolgus	Low-Affini	ty FcyRIII	A DNA
	733 mate	ches in	an overlap	of 765:	95.8% iden	tity	
30	Human	ATGTGG	10 CAGCTGCTCCT	20 CCCAACTGO	30 CTCTGCTACTT	40 CTAGTTTCAG	50 CTGG
	Cyno	ATGTGG	CAGCTGCTCCT	CCCAACTGO	CTCTGCTACTT	CTAGTTTCAG	CTGG
35	Human	CATGCG	60 GACTGAAGATO	70 TCCCAAAGO	80 GCTGTGGTGTT	90 CCTGGAGCCT	100 CAAT
	Cyno	CATGCG	• GGCTGAAGATO	TCCCAAAG	CTGTGGTGTT	CCTGGAGCCT	CAAT
40	Human	GGTACA	110 GGGTGCTCGAC	120 BAAGGACAG	130 rgtgactctga	140 AGTGCCAGGG	150 BAGCC
	Cyno	GGTACA	GGGTGCTCGAC	AAGGACCG	rgtgactctga	AGTGCCAGGC	AGCC
45	Human	TACTCC	160 CCTGAGGACA	170 ATTCCACACA	180 AGTGGTTTCAC	190 AATGAGAGCO	200 CTCAT
	Cyno	TACTCC	CCTGAGGACA	ATTCCACAC	GTGGTTTCAC	AATGAGAGCO	TCAT

	Human	210 CTCAAGCCAGGCCT	220 CGAGCTACT	230 CATTGACGCT	240 GCCACAGTCG	250 ACGACA
	Cyno	• CTCAAGCCAGACCT	CGAGCTACT	•• FCATTGCTGCT	GCCAGAGTCA	ACAACA
5	Human	260 GTGGAGAGTACAGG	270 TGCCAGACA	280 AACCTCTCCAC	290 CCTCAGTGAC	300 CCGGTG
10	Cyno	GTGGAGAGTACAGG	TGCCAGACAI	• AGCCTCTCCAC	• 'ACTCAGTGAC	CCGGTG
10	Human	310 CAGCTAGAAGTCCA	320 . TATCGGCTG	330 GCTGTTGCTCC	340 AGGCCCTCC	350 GTGGGT
15	Cyno	• CAGCTGGAAGTCCA	TATCGGCTG	GCTATTGCTCC	AGGCCCCTCG	
	Human	360 GTTCAAGGAGGAAG	370 ACCCTATTC	380 ACCTGAGGTGT	390 CACAGCTGG	400 AAGAACA
20	Cyno	GTTCAAGGAGGAAG	AATCTATTC			
	Human	410 CTGCTCTGCATAAG	420 GTCACATAT	430 TTACAGAATGO	440 CAAAGGCAG	450 BAAGTAT
25	Cyno	CTCTTCTGCATAAG	GTCACGTAT	TTACAGAATGO	GCAAAGGCAG(BAAGTAT
	Human	460 TTTCATCATAATTC	470 TGACTTCTA	480 CATTCCAAAA	490 GCCACACTCA	500 AAGACAG
30	Cyno	TTTCATCAGAATTC	TGACTTCTA	CATTCCAAAA(GCCACACTCA	AAGACAG
	Human	510 CGGCTCCTACTTCT	520 GCAGGGGGC		540 TAAAAATGTG' -	550 CCTTCAG
35	Cyno	CGGCTCCTACTTCT	GCAGGGGAC	• TTATTGGGAG	• TAAAAATGTA'	TCTTCAG
	Human	560 AGACTGTGAACATO	570 CACCATCACT	580 CAAGGTTTGG	590 CAGTGTCAAC	600 CATCTCA
40	Cyno	AGACTGTGAACATO	CACCATCACT	CAAGATTTGG	CAGTGTCATC	CATCTCA
	Human	610 TCATTCTTTCCACO	620 CTGGGTACC	630 AAGTCTCTTTC	640 TGCTTGGTGA	650 TGGTACT
45	Cyno	TCATTCTTTCCAC	CTGGGTACC	AGTCTCTTTC	TGCCTGGTGA	
	Human	660 CCTTTTTGCAGTG	670 GACACAGGA	680 CTATATTCTC	690 TGTGAAGACA	700 AACATTC
50	Cyno	CCTTTTTGCAGTG	GACACAGGA	CTATATTTCTC		
	Human	710 GAAGCTCAACAAG	720 AGACTGGAA	730 GACCATAAAT	740 TTAAATGGAG	750 AAAAGGAC
55	Cyno	• CAAGCTCAACAAG	GGACTGGGA	GACCATAAAT	TTAAATGGAG	CAAGGAC

760

CCTCAAGACAAATGA Human

CCTCAAGACAAATGA Cyno

5

10

Human

The human sequence for FcyIII has GenBank Accession No. X52645 M31937). Ravetch, J.V. and Perussia, B., Alternative membrane forms of Fc gamma RIII(CD16) on human natural killer cells and neutrophils. Cell type-specific expression of two genes that differ in single nucleotide substitutions, J. Exp. Med. 170 (2), 481-497 (1989).

Alignment of the nucleic acid sequences encoding a human (SEQ ID NO: 24) and cynomolgus (SEQ ID NO: 23) β -2 microglobulin is shown in Table 8.

Analysis of the % sequence identity shows that the human and cynomolgus nucleic acid sequences encoding β -2 microglobulin have about 95% identity. 15

TABLE 8

Alignment of Human and Cynomolgus $\beta 2$ -Microglobulin DNA 20 341/360 = 94.7% identity 50 30 40 20 10 Human 25 Cyno 100 80 70 60 CCTGGAGGCTATCCAGCGTACTCCAAAGATTCAGGTTTACTCACGTCATC Human 30 CCTGGAGGCTATCCAGCGTACTCCAAAGATTCAGGTTTACTCACGCCATC Cyno 150 130 140 120 110 CAGCAGAGAATGGAAAGTCAAATTTCCTGAATTGCTATGTGTCTGGGTTT Human 35 CACCAGAGAATGGAAAGCCAAATTTCCTGAATTGCTATGTGTCTGGATTT Cyno 190 200 180 160 170 Human 40 CATCCATCTGATATTGAAGTTGACTTACTGAAGAATGGAGAGAAAATGGG Cyno 250 210 220 230 240 AAAAGTGGAGCATTCAGACTTGTCTTTCAGCAAGGACTGGTCTTTCTATC Human 45 AAAAGTGGAGCATTCAGACTTGTCTTTCAGCAAAGACTGGTCTTTCTATC Cyno 260 280 290 270 TCTTGTACTACACTGAATTCACCCCCACTGAAAAAGATGAGTATGCCTGC

Cyno TCTTGTACTACACTGAATTCACCCCCAATGAAAAAGATGAGTATGCCTGC 310 320 330 340 350 5 CGTGTGAACCATGTGACTTTGTCACAGCCCAAGATAGTTAAGTGGGATCG Human Cyno CGTGTGAACCATGTGACTTTGTCAGGGCCCAGGACAGTTAAGTGGGATCG 360 10 Human **AGACATGTAA** AGACATGTAA Cyno

The DNA sequence for the human β-2 microglobulin has GenBank Accession No. ABO21288. Matsumoto,K., Minamitani,T., Human mRNA for beta 2-microglobulin, DDBJ/EMBL/GenBank databases (1998).

Alignment of the nucleic acid sequences encoding a human (SEQ ID NO: 28) and cynomolgus (SEQ ID NO: 27) FcRn α-chain is shown in Table 9.

Analysis of the % sequence identity shows that the human and cynomolgus nucleic acid sequences encoding FcRn α-chain have about 97% identity.

TABLE 9

25 Alignment of Human and Cynomolgus FcRn α -Chain DNA 1062/1098 = 96.7% identity

10 20 30 40 50 30 Human ATGGGGGTCCCGCGGCCTCAGCCCTGGGCGCTCGGGGCTCCTGCTCTTTCT Cyno ATGAGGGTCCCGCGGCCTCAGCCCTGGGCGCTCGGGGCTCCTGCTCTTTCT 60 70 80 90 100 35 Human CCTTCCTGGGAGCCTGGGCGCAGAAAGCCACCTCTCCCTCTGTACCACC CCTGCCCGGGAGCCTGGGCGCAGAAAGCCACCTCTCCCTGTACCACC Cyno 120 130 140 40 Human ${\tt TTACCGCGGTGTCCTCGCCTGCCCCGGGGGACTCCTGCCTTCTGGGTGTCC}$ Cyno TCACCGCGGTGTCCTCGCCCGCCCCGGGGACGCCTGCCTTCTGGGTGTCC 160 170 180 190 200 45 Human GGCTGGCTGGGCCCGCAGCAGTACCTGAGCTACAATAGCCTGCGGGGCGA Cyno GGCTGGCTGGGCCCGCAGCAGTACCTGAGCTACGACAGCCTGAGGGGCCA 210 220 230 240 250

	Human	GGCGGAGCCCTGTGGAGCTTGGGTCTGGGAAAACCAGGTGTCCTGGTATT
	Cyno	GGCGGAGCCCTGTGGAGCTTGGGTCTGGGAAAACCAAGTGTCCTGGTATT
5	Human	260 270 280 290 300 GGGAGAAAGAGCCACAGATCTGAGGATCAAGGAGAAGCTCTTTCTGGAA
	Cyno	GGGAGAAAGAGCCACAGATCTGAGGATCAAGGAGAAGCTCTTTCTGGAA
10	Human	310 320 330 340 350 GCTTTCAAAGCTTTGGGGGGAAAAGGTCCCTACACTCTGCAGGGCCTGCT
	Cyno	GCTTTCAAAGCTTTGGGGGGAAAAGGCCCCTACACTCTGCAGGGCCTGCT
15	Human	360 370 380 390 400 GGGCTGTGAACTGGGCCCTGACAACACCTCGGTGCCCACCGCCAAGTTCG
	Cyno	• GGGCTGTGAACTGAGCCCTGACAACACCTCGGTGCCCACCGCCAAGTTCG
20	Human	410 420 430 440 450 CCCTGAACGGCGAGGAGTTCATGAATTTCGACCTCAAGCAGGGCACCTGG
	Cyno	CCCTGAACGGCGAGGAGTTCATGAATTTCGACCTCAAGCAGGGCACCTGG
25	Human	460 470 480 490 500 GGTGGGGACTGGCCGAGGCCCTGGCTATCAGTCAGCGGTGGCAGCAGCA
	Cyno	GGTGGGGACTGGCCGAGGCCCTGGCTATCAGTCAGCGGTGGCAGCAGCA
30	Human	510 520 530 540 550 GGACAAGGCGCCAACAAGGAGCTCACCTTCCTGCTATTCTCCTGCCCGC
	Cyno	GGACAAGGCGCCAACAAGGAGCTCACCTTCCTGCTATTCTCCTGCCCAC
35	Human	560 570 580 590 600 ACCGCCTGCGGGAGCACCTGGAGAGGGGCCGCGGAAACCTGGAGTGGAAG
	Cyno	• ACCGGCTGCGGGAGCACCTGGAGAGGGGCCGTGGAAACCTGGAGTGGAAG
40	Human	610 620 630 640 650 GAGCCCCCCCCATGCGCCTGAAGGCCCGACCCAGCAGCCCTGGCTTTTC
	Cyno	GAGCCCCCTCCATGCGCCTGAAGGCCCGACCCGGCAACCCTGGCTTTTC
45	Human	660 670 680 690 700 CGTGCTTACCTGCAGCGCCTTCTCCTTCTACCCTCCGGAGCTGCAACTTC
	Cyno	• CGTGCTTACCTGCAGCGCCTTCTCCTTCTACCCTCCGGAACTGCAACTGC
50	Human	710 720 730 740 750 GGTTCCTGCGGAATGGGCTGGCCGCTGGCACCGGCCAGGGTGACTTCGGC
	Cyno	GGTTCCTGCGGAATGGGATGGCCGCTGGCACCGGACAGGGCGACTTCGGC

		760	770	780	790	800
	Human	CCCAACAGTGACG	ATCCTTCCAC	CGCCTCGTCGT	CACTAACAGI	CAAAAG
5	Cyno	CCCAACAGTGACGC	• GCTCCTTCCA(CGCCTCGTCG	CACTAACAGI	CAAAAG
,	Human	810 TGGCGATGAGCACO	820 CACTACTGCT	830 GCATTGTGCAC	840 GCACGCGGGG	850 CTGGCGC
10	Cyno	TGGCGATGAGCAC	CACTACTGCT	GCATCGTGCA(GCACGCGGGG	CTGGCGC
10	Human	860 AGCCCCTCAGGGT	870 GGAGCTGGAA	880 TCTCCAGCCA	890 AGTCCTCCGT	900 GCTCGTG
15	Cyno	AGCCCCTCAGGGT	GGAGCTGGAA	• ACTCCAGCCA	AGTCCTCGGT	SCTCGTG
13	Human	910 GTGGGAATCGTCA	920 TCGGTGTCTT	930 GCTACTCACG	940 GCAGCGGCTG	950 PAGGAGG
20	Cyno	GTGGGAATCGTCA	TCGGTGTCTT	GCTACTCACG	GCAGCGGCTG	TAGGAGG
20		960	970	980	990	1000
	Human	AGCTCTGTTGTGG	AGAAGGATGA	GGAGTGGGCT	GCCAGCCCCT"	TGGATCT
25	Cyno	AGCTCTGTTGTGG	AGAAGGATGA	GGAGTGGGCT	GCCAGCCCCT	TGGATCT
		1010	1020	1030	1040	1050
•	Human	CCCTTCGTGGAGA	CGACACCGGG	GTCCTCCTGC	CCACCCCAGG	GGAGGCC
30	Cyno	• CCCTCCGTGGAGA	• TGACACCGGG	•• TCCCTCCTGC	CCACCCCGGG	GGAGGCC
50		1060	1070	1080	1090	
	Human	CAGGATGCTGATT	TGAAGGATGT	AAATGTGATT	CCAGCCACCG	CCTGA
		CAGGATGCTGATT	• • •	● ንጥ ፈይነጥደንጥ ል ል ለ	• !CCAGCCACTG	CCTGA
25	Cyno	CAGGATGCTGATT	COMMODATAL	.mulolonic		
35						

The DNA sequence for the human FcRn α-chain has GenBank Accession No. U12255. Story, C.M., Mikulska, J., and Simister, N.E., A major histocompatibility complex class I-like Fc receptor cloned from human placenta: Possible role in transfer of immunoglobulin G from mother to fetus, J. Exp. Med. 180, 2377-2381 (1994).

40

45

An alignment of the amino acid sequences for human (SEQ ID NO: 10) and cynomolgus (SEQ ID NO: 9) Fc γ RI α -chain is shown in Table 10. As described previously, the α -chain of Fc γ RI has various domains, including a signal peptide, three extracellular C-2 Ig like domains, a transmembrane domain and an intracellular domain. The amino acid numbers shown below the amino acids with the symbol Δ are numbered from the start of the mature polypeptide not including the signal sequence. Based on the alignment with the human sequence, the mature cynomolgus Fc γ RI has an amino acid sequence of residues Δ 1 to Δ 336 (SEQ ID NO: 65). The n- terminal

sequence of cynomologus sequence Fc γ RI may vary from that shown below. It would be within the skill in the art to express the nucleic acid sequence encoding the cynomologus Fc γ RI sequence and identify the n-terminal sequence. An extracellular fragment of cynolomolgus Fc γ RI obtained using the primers of example 1 has an amino acid sequence of $\Delta 1$ to $\Delta 269$. Any numbers above the amino acid residues represent the numbering of the residues starting at the signal sequence.

Analysis of the % sequence identity shows that the amino acid sequences for human and cynomolgus FcyRI have about 90% identity when the 3' extension is taken into account and about 94% when the 3' extension is not included.

10

5

TABLE 10

Alignment of Human and Cynomolgus High-Affinity FcyRI

15	Human	MWFLTTLLLWVPVDGQVDTTK						
	Cyno	MWFLTALLLW	VPVDGQVDTT:	K				
	Domain	1						
20	Human	AVISLQPPWVSVFQEETVTLHCEVLHLPGSSSTQWFLNGTAT						
		•		• ••				
	Cyno	AVITLQPPWV	SVFQEETVTL	QCEVPRLPGSS	STQWFLNGT	T		
		Δ Δ		Δ	Δ			
		1 10	20	30	40			
25		70	80	90	100			
		, ĭ	l	Ì	1			
	Human	QTSTPSYRIT	SASVNDSGEY	RCQRGLSGRSI	PIQLEIHR			
			•	•				
30	Cyno	QTSTPSYRIT	SASVKDSGEY	RCQRGPSGRSI	PIQLEIHR			
		Δ	Δ	Δ	Δ			
		50	60	70 -	80			
	Domain	2						
35	Human		VETEGEDIAL.	RCHAWKDKLVY	NVI.YYRNGKI	YKE		
22	numan	GWDDDQVDDK	VI INCHI EME	icinimica (1				
	Cyno	DWLLLOVSSR	VFTEGEPLAL	RCHAWKDKLV	YNVLYYONGKA	AFKF		
	-1	Δ	Δ	Δ	Δ			
		90	100	110	120			
40								
		150	160	170	180	190		
						מני זיב 		
	Human	FHWNSNLTIL	KTNISHNGTY	HCSGMGKHRYT	SAGISVIVA	SLIFF		
45	Cyno	FYRNSOLTIL	● KTNTSHNGAV	HCSGMGKHRYT	● SAGVSVTVKT	er.FP		
73	Cyllo	Δ	Δ	Δ	Λ			
		130	140	150	160			

Domain 3 APVLNASVTSPLLEGNLVTLSCETKLLLQRPGLQLYFSFYMGSKTLRG Human APVLNASVTSPLLEGNLVTLSCETKLLLQRPGLQLYFSFYMGSKTLRG Cyno 5 Δ 210 190 200 170 180 RNTSSEYQILTARREDSGLYWCEAATEDGNVLKRSPELELQVLGLQLP Human 10 RNTSSEYQILTARREDSGFYWCEATTEDGNVLKRSPELELQVLGLQLP Cyno 260 230 240 250 220 transmembrane/intracellular 15 TPVWFHVLFYLAVGIMFLVNTVLWVTIRKELKRKKKWDLEISLDSGHE Human TPVWLHVLFYLVVGIMFLVNTVLWVTIRKELKRKKKWNLEISLDSAHE Cyno Δ Δ 300 310 290 20 270 280 KKVTSSLQEDRHLEEELKCQEQKEEQLQEGVHRKEPQGAT Human KKVTSSLQEDRHLEEELKSQEQE Cyno Δ 25 330 350 320 340 Human vs Cyno 335/357 = 93.8% identity without human 3' extension 335/374 = 89.6% identity 30

The amino acid sequence for human FcγRI has Accession Nos.: P12314;

P12315; EMBL; X14356; CAA32537.1. EMBL; X14355; CAA32536.1. PIR; S03018. PIR; S03019. PIR; A41357. PIR; B41357. HSSP; P12319; 1ALT. MIM; 146760; -. InterPro; IPR003006; -. Pfam; PF00047; Allen J.M., Seed B., Nucleic Acids Res. 16, 11824-11824, 1988, Nucleotide sequence of three cDNAs for the human high affinity Fc receptor (FcRI); Allen J.M., Seed B., Science 243, 378-381, 1989, Isolation and expression of functional high-affinity Fc receptor complementary DNAs.

with human 3' extension

An alignment of amino acid sequences for human, cynomolgus, and chimp sequences for FcyRIIA (cynomolgus/SEQ ID NO: 15; human/SEQ ID NO: 16; chimp/SEQ ID NO. 17), FcyRIIB (cynomolgus/SEQ ID NO: 18; human/SEQ ID NO: 19), and FcyRIIIA (cynomolgus/SEQ ID NO: 20; human/SEQ ID NO: 21) is shown in Table 11.

45

The sequence is divided into domains as described previously: signal peptide, 3 extracellular C-2 like domains, and a transmembrane intracellular domain. In Table 11, the amino acid numbers shown below the amino acids with the symbol Δ are numbered from the start of the mature human polypeptide not including the signal sequence. The mature polypeptides for cynomolgus and chimp FcγRIIA, cynomolgous FcγRIIB, and cynomolgus FcγRIIIA start at the amino acid identified with the asterisk in Table 11 and are separately shown in Tables 21,22, and 23, and are as follows:

cynomolgus FcγRIIA amino acids Δ1 to Δ282 (SEQ ID NO: 66), N
 terminal sequence TAPPKA (Table 21);

10

15

20

25

- 2) chimp Fc γ RIIA amino $\Delta 1$ to $\Delta 249$ (SEQ ID NO: 67)(based on alignment with the human sequence);
- 3) cynomolgus FcγRIIB amino acids Δ1 to Δ252 (SEQ ID NO: 68), N terminal sequence TPAAPP (table 22); and
- 4) cynomolgus FcγRIIIA amino acids Δ1 to Δ234 (SEQ ID NO: 69), N terminal sequence EDLPKA (table 23).

In table 11, any numbers above the amino acid residues represent the numbering of the residues starting at the signal sequence. The asterisks in the table indicate the start of the n-terminal sequence for cynomologus FcyRIIA, FcyRIIB, and FcyRIIIA.

Extracellular fragments of the Fc receptor polypeptides were obtained using the primers described in example 1. An extracellular fragment of Fc γ RIIA obtained using the primers of example 1 has an amino acid sequence of $\Delta 1$ to $\Delta 182$, as shown in table 21. An extracellular fragment of Fc γ RIIB obtained using the primers of example 1 has an amino acid sequence of $\Delta 1$ to $\Delta 184$, as shown in Table 22. An extracellular fragment of Fc γ RIIIA obtained using the primers of example 1 has an amino acid sequence of $\Delta 1$ to $\Delta 187$, as shown in Table 23.

Analysis of the % sequence identity shows the following:

- 1) Chimp and human amino acid sequences for FcyRIIA have about 97% identity;
- Cynomolgus and human amino acid sequences for FcγRIIA have about
 87% identity with MAMETQ (possible portion of signal peptide) and 89% identity without MAMETQ in the alignment;

Cynomolgus and chimp amino acid sequences for FcyRIIA have about 3) 87% identity including MAMETQ in the alignment and 89% without MAMETQ in the alignment;

- Cynomolgus and human amino acid sequences for FcyRIIB have about 4) 92% identity; and
 - Cynomolgus and human amino acid sequences for FcyRIIIA have about 5) 91% identity.

TABLE 11

10 Alignment of Human, Cynomolgus and Chimp Low-Affinity FcyRIIA, FCYRIIB, FCYRIIIA signal peptide

15 IIA-human -----MAMETQMSQNVCPRNLWLLQPLTVLLLLASADSQAA -----MAMETQMSQNVCPRNLWLLQPLTVLLLLASADSQA-IIA-chimp IIA-cyno

MGILSFLPVLATESDWADCKSPQPWGHMLLWTAVLFLAPVAGTPA IIB-human MGILSFLPVLATESDWADCKSSQPWGHMLLWTAVLFLAPVAGTPA IIB-cyno

MWOLLLPTALLLLVSAGMRTE IIIA-human MWOLLLPTALLLLVSAGMRAE IIIA-cyno Δ *

30 1

Domain 1

IIIA-cyno

20

25

APPKAVLKLEPPWINVLQEDSVTLTCQGARSPESDSIQWFHN IIA-human APPKAVLKLEPPWINVLQEDSVTLTCRGARSPESDSIQWFHN 35 IIA-chimp APPKAVLKLEPPWINVLREDSVTLTCGGAHSPDSDSTQWFHN IIA-cyno Δ 30 40 10 20

40 APPKAVLKLEPQWINVLQEDSVTLTCRGTHSPESDSIQWFHN IIB-human APPKAVLKLEPPWINVLREDSVTLTCGGAHSPDSDSTQWFHN IIB-cyno

DLPKAVVFLEPQWYRVLEKDSVTLKCQGAYSPEDNSTQWFHN 45 IIIA-human DLPKAVVFLEPQWYRVLEKDRVTLKCQGAYSPEDNSTRWFHN

> 10 20 30 40

50

	IIA-human IIA-chimp IIA-cyno	GNLIPT	HTQPSYRFI HTQPSYRFI HTQPSYRFI	CANNNDSG CANNNDSG	EYTCQTG(EYRCQTGI	QTSLSDPV RTSLSDPV	HLTVLSE HLTVLSE
5		!		Δ 60	Δ 70	8	Δ 0
10	IIB-human IIB-cyno	GNLIPT!	HTQPSYRFI HTQPSYRFI	KANNNDSG KANNNDSG	• EYTCQTG EYRCQTG	● QTSLSDPV RTSLSDPV	HLTVLSE HLTVLSE
15	IIIA-human IIIA-cyno	ESLISS ESLISS Δ 50	QASSYFIDA QTSSYFIAA 6	aarvnnsc A	errcqtn seyrcqts Δ 70	LSTLSDPV LSTLSDPV A 80	OTEAHIG
20	Domain 2			•		•	•••
20	IIA-human IIA-chimp IIA-cyno	WLVLQT	PHLEFQEG PHLEFQEG PHLEFREG	ETIVLRC	ISWKDKPL ISWKDKPL	VKVTFFQN IKVTFFQN	IGKSQKFS IGIAKKFS
25		Δ 90	Δ 10		Δ 110	Δ 120	Δ 13
IIB-human WLVLQTPHLEFQEGETIVLRCHSWKDKPLV IIB-cyno WLALQTPHLEFREGETILLRCHSWKDKPLI 30						● ,VKVTFFQN ,IKVTFFQN	• IGKSKKFS IGISKKFS
	IIIA-human IIIA-cyno	WLLLQA	.PRWVFKEE .PRWVFKEE	• • DPIHLRCI ESIHLRCI	• HSWKNTAL HSWKNTLL	'HKALAPŌJ 'HKALAPŌJ	IGKGRKYF IGKGRKYF
35		Δ 90	Δ 100	Δ 11		Δ 120	Δ 130
40	IIA-human IIA-chimp IIA-cyno	HLDPNI	SIPQANHS SIPQANHS SIPQANHS	HSGDYHC	TGNIGYTI	JFSSKPVT:	ITVQA
		Δ 131	Δ 140	Δ 150	1	Δ 160	Δ 170
45	IIB-human IIB-cyno	•• • RSDPNI HMNPNI	SIPQANHS	SHSGDYHC SHSGDYHC	TGNIGYTI TGNIGYTI	• LYSSKPVT: PYSSKPVT:	• ITVQA ITVQV
50	IIIA-human IIIA-cyno	HQNSDI	FYIPKATLI FYIPKATLI Δ	OSGSYFC Δ	RGLIGSKI A	NVSSETVN '	ITITQ A
		•	140	150	158	1	70

transmembrane/intracellular

	Clansmanniane/inclacellulai					
5	IIA-human IIA-chimp IIA-cyno	PSVGSSSPV	GIIVAVVIA	TAVAAIVAAV	VALIYCRKKR VALIYCRKKR VALIYCRKKR	ISANSTD ISANSTD
		Δ.				Δ
		18	10 1	90 2	00 2	10
10	TTD leaves	D GGGDW	ottiminma:		VALIYCRKKR	T C' N NTD/FNT
10	IIB-human				VALIYCRKKR	
	IIB-cyno	PSMG222F1	.GIIVAVVIG.	LAVAALVAAV	VAULICANA.	LOAMPIN
					•	•• •
15	IIIA-human	GLAVSTISS	FFPPGYQVS	CLVMVLLFA	VDTGLYFSVK'	INIRSST
	IIIA-cyno				VDTGLYFSMK	
	•	Δ	Δ	Δ	Δ	
		180	190	200	210	
20				_		
		•	• • •			M motif
	IIA-human				YETADGG <u>YMT</u>	
	IIA-chimp	_			YETADGGYMT	_
	IIA-cyno		_		YETADGG <u>YMT</u>	
25		Δ 220	Δ 230	∆ 240	Δ 250	Δ 260
		220	230	240	250	200
					•	
•	IIB-human	PDEADKVGA	ENTITYSLL	MHPDALEEPD:	DQNRI	
30	IIB-cyno	PDEADKVGA	ENTITYSLL	MHPDALEEPD	DQNRV	
			ITIM me	otif		
		•	•			
25	IIIA-human	RDWKDHKF				
35	IIIA-cyno	RDWEDHKF				
		Δ 220	Δ 230			
		220	230			
40		ITA	M motif			
		•	• ••			
	IIA-human	DDDKNIATI	<u>L</u> PPNDHVNS	NN .		
	IIA-chimp		<u>L</u> PPNDHV N S			
	IIA-cyno	DDDRNIYLI	<u>L</u> SPNDYDNS	NN		
45		2	_	Δ		
	IIA chimp/hum	27		80 % identity		
	cyno/huma	•		identity identity	(+MAMETO)	
	Cyno, nulla			identity		
50	cyno/chim			identity		
-	4 ,			dentity		
		Ž		_		
	IIB cyno/huma	an 270/2	94 = 91.8	<pre>identity</pre>		
55	IIIA cyno/huma	an 232/2	254 = 91.3	ł identity		

The human amino acid sequence for FcRIIA has the following Accession Nos.: P12318; EMBL; M31932; AAA35827.1. EMBL; Y00644; CAA68672.1. EMBL; J03619; AAA35932.1. EMBL; A21604; CAA01563.1. PIR; A31932. PIR; JL0118. PIR; S02297. PIR; S00477. PIR; S06946. HSSP; P12319; 1ALT. MIM; 146790; -. InterPro; IPR003006; -. Pfam; PF00047. Brooks D.G., Qiu W.Q., Luster 5 A.D., Ravetch J.V., J. Exp. Med. 170, 1369-1385, 1989, Structure and expression of human IgG FcRII(CD32). Functional heterogeneity is encoded by the alternatively spliced products of multiple genes; Stuart S.G., Trounstine M.L., Vaux D.J.T., Koch T., Martens C.L., Moore K.W., J. Exp. Med. 166, 1668-1684, 1987, Isolation and expression of cDNA clones encoding a human receptor for IgG (Fc gamma RII); Hibbs 10 M.L., Bonadonna L., Scott B.M., Mckenzie I.F.C., Hogarth P.M., Proc. Natl. Acad. Sci. U.S.A. 85, 2240-2244, 1988, Molecular cloning of a human immunoglobulin GFc receptor; Stengelin S., Stamenkovic I., Seed B., EMBO J. 7, 1053-1059, 1988, Isolation of cDNAs for two distinct human Fc receptors by ligand affinity cloning; Salmon J.E., Millard S., Schachter L.A., Arnett F.C., Ginzler E.M., Gourley M.F., 15 Ramsey-Goldman R., Peterson M.G.E., Kimberly R.P., J. Clin. Invest. 97, 1348-1354, 1996, Fc gamma RIIA alleles are heritable risk factors for lupus nephritis in African Americans.

The human sequence for FcγRIIB has Accession No. X52473. Engelhardt, W., Geerds, C. and Frey, J., Distribution, inducibility and biological function of the cloned and expressed human beta Fc receptor II, Eur. J. Immunol. 20 (6), 1367-1377 (1990).

20

25

30

The human amino acid sequence for FcyRIIIA has Accession Nos.: P08637; EMBL; X52645; CAA36870.1. EMBL; Z46222; CAA86295.1. PIR; JL0107. MIM; 146740; -. InterPro; IPR003006; -. Pfam; PF00047; Ravetch J.V., Perussia B., J. Exp. Med. 170, 481-497, 1989, Alternative membrane forms of Fc gamma RIII(CD16) on human natural killer cells and neutrophils. Cell type-specific expression of two genes that differ in single nucleotide substitutions; Gessner J.E., Grussenmeyer T., Kolanus W., Schmidt R.E., J. Biol. Chem. 270, 1350-1361, 1995, The human low affinity immunoglobulin G Fc receptor III-A and III-B genes: Molecular characterization of the promoter regions; de Haas M., Koene H.R., Kleijer M., de Vries E., Simsek S., van Tol M.J.D., Roos D., von dem Borne A.E.G.K., J. Immunol. 156, 3948-3955, 1996, A triallelic Fc gamma receptor type IIIA polymorphism influences the binding of human IgG by NK cell Fc gamma RIIIa; Koene H.R., Kleijer M., Algra J., Roos D., von dem

5

Borne A.E.G.K., de Haas M., Blood 90, 1109-1114, 1997, Fc gammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype; Wu J., Edberg J.C., Redecha P.B., Bansal V., Guyre P.M., Coleman K., Salmon J.E., Kimberly R.P., J. Clin. Invest. 100, 1059-1070, 1997, A novel polymorphism of FcgammaRIIIa (CD16) alters receptor function and predisposes to autoimmune disease.

Table 21

			1.0	ibic 21				
10	Sequence of Mature FcRIIA							
	Domain 1	L						
	TAPPKAVI	KLEPPWIN	VLREDS	SVTLTCGGAE	ISPDSDSTQV	VFHN		
15	Δ	Δ	Δ	Δ		Δ		
	1	10	20	30	4	10		
	GNRIPTHI	TQPSYRFKA	NNNDS	BEYRCQTGRI	SLSDPVHL	TVLSE		
	Δ		Δ	Δ	Δ			
20	50		60	70	80			
•	Domain 2	2						
25	WLALQTPH	ILEFREGET	IMLRC	HSWKDKPLI	CVTFFQNGI	AKKFS		
	Δ	Δ		Δ	Δ	Δ		
	90	100		110	120	130		
	HMDPNFS	PQANHSHS	GDYHC'	rgnigytpys	SKPV T ITV(δΛ		
30		Δ	Δ	Δ	Δ			
		140	150	160) 13	70		
•	Intracellular/transmembrane domain							
35	PSVGSSSPMGIIVAVVTGIAVAAIVAAVVALIYCRKKRISANSTD							
		AUGIIVAVV	Δ		Δ	JAMOID		
		180	190	200	210			
40					ITAM			
	${ t PVKAARFEPLGRQTIALRKRQLEETNNDYETADGG\underline{YMTL}NPRAPT}$							
	Δ	Δ		Δ	Δ	Δ		
	220	230		240	250	260		
45		ГАМ						
	DDDRNIYI	<u>TL</u> SPNDYI	NSNN					
		\ 270	Δ 280					
50								

Table 22

Sequence of Mature FcyRIIB

5	Domain 1			•		
	TPAAPPKAVLKLEPPWINVLREDSVTLTCGGAHSPDSDSTQWFHN					
	Δ 1	Δ 10	Δ 20	Δ 30	Δ 40	
10 GNLIPTHTQPSYRFKANNNDSGEYRCQTGRTSI				TGRTSLSDPVI	ILTVLSE	
	Δ 50	Δ 60	Δ 70	Δ 80		
15	Domain 2	2				
	WLALQTP	HLEFREGETI	LLRCHSWKDK	PLIKVTFFQNO	SISKKFS	
20	Δ 90	Δ 100	Δ 110	Δ 120	Δ 130	
	HMNPNFS	I PQANHSHSG	DYHCTGNIGY'	TPYSSKPVTI'	TVQV	
	Δ 1				70	
25						
	Transmembrane/intracellular					
	PSMGSSS:	PIGIIVAVVT	GIAVAAIVAA	VVALIYCRKK	RISANPTN	
30	Δ 180	Δ 190	Δ 200	Δ 210		
35	ITIM motif PDEADKVGAENTITYSLLMHPDALEEPDDQNRV					
	Δ 220	Δ 230	Δ 240	Δ 250		
40						

Table 23

Sequence for Mature FcyRIIIA

5	Domain 1						
	EDLPKAV	VFLE	PQWYF	VLEKDI	RVTLKCQG	AYSPEDN	STRWFHN
	Δ 1	Δ 10		Δ 20	3	Δ	Δ 40
10	_		ም ፕ አ አ ን		פעשר העשבי	מתפ.זייפ.זי	VQLEVHIG
	Δ			Δ 50	Δ 70		Δ
15	Domain	2					
	WLLLQAI	RWVF		SIHLRC			NGKGRKYF
20	Δ 90		Δ 100		Δ 110	Δ 120	Δ 130
	HQNSDFY	YIPKA	TLKD	GSYFC	RGLIGSKI	IVSSETVN	VITITQ
25		Δ 140		Δ 150	16	7 20	Δ 170
30	Transme	embra	ne/i	ntrace	llular		
30	DLAVSS	ISSFF	PPGY	QVSFCL			MKKSIPSST
		Δ 180		Δ 190	Δ 20	00	Δ 210
35	RDWEDH	KFKWS	KDPQ	ЭK			
	Δ 220		Δ 230				

An alignment of the nucleic acid sequence encoding the human (SEQ ID NO: 12) and cynomolgus (SEQ ID NO: 11) gamma chain of Fc\(gamma\)RI/III is shown in Table 12.

Analysis of % sequence identity shows that the nucleic acid sequences encoding human and cynomolgus gamma chain Fc\(gamma\)RI/III have about 99% identity.

45

TABLE 12

Alignment of Human and Cynomolgus FcyRI/III

5 Gamma-Chain 1 10 MIPAVVLLLLLLVEQAAA Human 10 Cyno MIPAVVLLLLLLVEQAAA 40 50 30 20 LGEPQLCYILDAILFLYGIVLTLLYCRLKIQV 15 Human LGEPQLCYILDAILFLYGIVLTLLYCRLKIQV Cyno 70 80 60 20 ${\tt RKAAITSYEKSDGV\underline{YTGL}STRNQET\underline{YETL}KHEKPPQ}$ Human ${\tt RKAAIASYEKSDGV\underline{YTGL}STRNQET\underline{YETL}KHEKPPQ}$ Cyno ITAM motif ITAM motif 25

Cyno vs Human = 85/86 = 98.8% identity

An amino acid sequence for human gamma chain has Accession Nos.: P30273; EMBL; M33195; AAA35828.1. EMBL; M33196; -. PIR; A35241. MIM;

147139; -. Kuester H., Thompson H., Kinet J.-P., J. Biol. Chem. 265, 6448-6452, 1990, Characterization and expression of the gene for the human Fc receptor gamma

subunit. Definition of a new gene family.

30

35

40

An alignment of the amino acid sequences for human (SEQ ID NO: 26) and cynomolgus (SEQ ID NO: 25) β -2 microglobulin is shown in Table 13. The mature β -2 microglobulin has an amino acid sequence of amino acids Δ 1 to Δ 99 (SEQ ID NO: 70).

Analysis of the % sequence identity shows that the amino acid sequences for human and cynomolgus β -2 microglobulin have about 92% identity with no deletions or insertions.

TABLE 13

Alignment of Human and Cynomolgus \$2-Microglobulin

5			>			
	Human	MSRSVALAVL	ALLSLSGLEA			
	Cyno	MSPSVALAVI	ALLSLSGLEA			
10	Human	IQRTPKIQVY	SRHPAENGKSN	FLNCYVSGFHP	SDIEVDLLKNGE	RIEKVEHSD
			• •			•••
	Cyno	IQRTPKIQVY	SRHPPENGKPN	FLNCYVSGFHP	SDIEVDLLKNGE	KMGKVEHSD
		Δ	Δ	Δ	Δ	Δ
		1 10	20	30	40	50
15						
	Human	LSFSKDWSFY	LLYYTEFTPTE	EKDEYACRVNHV	TLSQPKIVKWDR	DM
			•		• ••	
	Cyno	LSFSKDWSFY	(LLYYTEFTPNE	EKDEYACRVNHV	TLSGPRTVKWDR	DM
20		Δ	Δ	Δ	Δ	
		60	70	80	90	
	Cyno v	s Human 1	109/119 = 91	1.6% identit	У	

25 The human amino acid sequence for β-2 microglobulin has Accession Nos.: P01884; EMBL; M17987; AAA51811.1. EMBL; M17986; AAA51811.1. EMBL; AB021288; BAA35182.1. EMBL; AF072097; AAD48083.1. EMBL; V00567; CAA23830.1. EMBL; M30683; AAA87972.1. EMBL; M30684; AAA88008.1. PIR; A02179. PIR; A28579. PDB; 1HLA. Guessow D., Rein R., Ginjaar I., Hochstenbach 30 F., Seemann G., Kottman A., Ploegh H.L., The human beta 2-microglobulin gene. Primary structure and definition of the transcriptional unit, J. Immunol. 139, 3132-3138 (1987); Matsumoto K., Minamitani T., Human mRNA for beta 2-microglobulin, Medline: Embl/genbank/ddbj database (1998); Zhao Z., Huang X., Li N., Zhu X., Cao X., A novel gene from human dendritic cell, Embl/genbank/ddbj databases (1998); 35 Rosa F., Berissi H., Weissenbach J., Maroteaux L., Fellous M., Revel M., The beta-2microglobulin mRNA in human Daudi cells has a mutated initiation codon but is still inducible by interferon, EMBO J. 2, 239-243 (1983); Suggs S.V., Wallace R.B., Hirose T., Kawashima E.H., Itakura K., Use of synthetic oligonucleotides as hybridization probes: isolation of cloned cDNA sequences for human beta 2-40 microglobulin, Proc. Natl. Acad. Sci. USA 78, 6613-6617 (1981); Cunningham B.A., Wang J.L., Berggard I., Peterson P.A., The complete amino acid sequence of beta 2microglobulin, Biochem. 12, 4811-4822 (1973); Lawlor D.A., Warren E., Ward F.E., Parham P., Comparison of class I MHC alleles in human and apes, Immunol. Rev.

113, 147-185 (1990); Bjorkman P.J., Saper M.A., Samraoui B., Bennett W.S., Strominger J.L., Wiley D.C., Structure of the human class I histocompatibility antigen, HLA-A2, Nature 329, 506-512 (1987); Saper M.A., Bjorkman P.J., Wiley D.C., Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 A resolution, J. Mol. Biol. 219, 277-319 (1991); Collins E.J., Garboczi D.N., Karpusas M.N., Wiley D.C., The three-dimentional structure of a class I major histocompatibility complex molecule missing the alpha 3 domain of the heavy chain, Proc. Natl. Acad. Sci USA 92, 1218-1221 (1995).

An alignment of the amino acid sequences for human (SEQ ID NO: 30) and cynomolgus FcRn α -chain (SEQ ID NO: 29) is shown in Table 14. Two alleles of cynomolgus FcRn were identified. One sequence is that of SEQ ID NO: 29 and has a serine at position 3 (S3) of the mature polypeptide. Another sequence is SEQ ID NO: 64 has an asparagine at position 3 (N3) in the mature polypeptide. The mature polypeptide of FcRnS3 α -chain has a sequence of amino acids $\Delta 1$ to $\Delta 342$ (SEQ ID NO: 71). The mature polypeptide of FcRnN3 α -chain has a sequence of $\Delta 1$ to $\Delta 342$ (SEQ ID NO: 72). An extracellular fragment of the FcRnprepared by the method of example 1, has an amino acid sequence of $\Delta 1$ to $\Delta 274$.

Analysis of the % sequence identity shows that the amino acid sequences for human and cynomolgus FcRn have about 97% identity with no deletions or insertions.

20

5

10

15

多

TABLE 14

Alignment of Human and Cynomolgus FcRn α -Chain

25 354/365 = 97% identity

Signal

Cyno MRVPRPQPWALGLLLFLLPGSLG

30 Human MGVPRPQPWALGLLLFLLPGSLG

Extracellular Domain

Cyno AESHLSLLYHLTAVSSPAPGTPAFWVSGWLGPQQYLSYDSLRGQAEPCGA

35 CynoN3 N

Human AESHLSLLYHLTAVSSPAPGTPAFWVSGWLGPQQYLSYNSLRGEAEPCGA $\Delta \qquad \Delta \qquad \Delta \qquad \Delta \qquad \Delta \qquad \Delta \qquad \Delta \qquad 10 \qquad 20 \qquad 30 \qquad 40 \qquad 50$

40

Cyno wwwenquswywekettdlrikeklfleafkalggkgpytlqgllgCelsp

	Human	WVWENQVSWYWI	EKETTDLRIK	EKLFLEAFKAL	GGKGPYTLQGL	LGCELGP
		Δ	Δ	Δ	Δ	Δ
		60	70	80	90	100
5						
	Cyno	DNTSVPTAKFA	LNGEEFMNFD	LKQGTWGGDWF	EALAISQRWQQ	QDKAANK
	Human	DNTSVPTAKFA	LNGEEFMNFD	LKQGTWGGDWF	EALAISQRWQQ	
		Δ	Δ	Δ	Δ	Δ
10		110	120	130	140	150
	Cyno	ELTFLLFSCPH	RLREHLERGR	GNLEWKEPPSM	IRLKARPGNPGF	SVLTCSA
					ee marannanan	errr maek
15	Human	ELTFLLFSCPH				
		Δ	Δ	Δ 180	Δ 190	Δ 200
		160	170	100	190	200
••		FSFYPPELQLR	ыт омама аст	COCDEC DNSDC	STHASSSITVK	CSGDRHHY
20	Cyno	FSFYPPELQLR	r DRNGMAAG1	GOGDI GENODO	,011D400021V1	
	Human	FSFYPPELQLR	FI.DNGI.DAGT	GOGDFGPNSD	SFHASSSLTV	SGDEHHY
	numan	Δ	Δ	Δ	Δ	Δ
		210	220	230	240	250
25						
	Cyno	CCIVQHAGLAQ	PLRVELETPA	KSS		
	-		•			
	Human	CCIVQHAGLAQ	PLRVELESPA	KSS		
30		Δ	Δ			
		260	270			
			_			
		embrane/Intra	cellular		DA DUT GI DGDD	OCCI I DED
35	Cyno	AFAAGIAIGAF	LLTAAAVGGA	TUNKKMKSGU	PAPWISHRGDD.	IGSPDATA
		VLVVGIVIGVL	* * ** * * * * * * * * * * * * * * * * *	TTWDDMDCCI.	ימרסטי. פו אס אם	מיליליני.
	Human				Δ	Δ
		Δ 280	Δ 290	Δ 300	310	320
40		200	230	300		
40						
	Cyno	GEAODADSKDI	NVTPATA			
	CYIIO					

Human

45

GEAQDADLKDVNVIPATA

340

330

The human amino acid sequence for FcRn has Accession No.: U12255. Story C.M., Mikulska J., Simister N.E., A major histocompatibility complex class I-like Fc receptor cloned from human placenta: Possible role in transfer of immunoglobulin G from mother to fetus, J. Exp. Med. 180, 2377-2381 (1994).

and a substitution of

Example 3: Cynomolgus FcyRI And Human FcyRI Bind Human IgG Subclasses Equivalently

Materials and Methods:

5

10

15

20

25

30

Human IgG2, IgG3, and IgG4 isotypes of E27 (IgG1) were constructed by subcloning the appropriate heavy chain Fc cDNA from a human spleen cDNA library into a pRK vector containing the E27 variable heavy domain. All IgG subclasses and variants were expressed using the same E27 κ light chain as described in Shields, R. L., Namenuk, A. K., Hong, K., Meng, Y. G., Rae, J., Briggs, J., Xie, D., Lai, J., Stadlen, A., Li, B., Fox, J. A., and Presta, L. G. (2001) *J. Biol. Chem.* 276:6591-6604 or U.S. Patent No. 6,194,551.

Following cotransfection of heavy and light chain plasmids into 293 cells, IgG1, IgG2, IgG4 and variants were purified by protein A chromatography. IgG3 was purified using protein G chromatography. All protein preparations were analyzed using a combination of SDS-polyacrylamide gel electrophoresis, ELISA, and spectroscopy.

The cDNA for Human FcγRI was isolated by reverse transcriptase-PCR (GeneAmp, PerkinElmer Life Sciences) of oligo(dT)-primed RNA from U937 cells using primers that generated a fragment encoding the α-chain extra-cellular domain. Human FcγR extracellular domains bound to Gly/6-His/GST fusions were prepared as described in Shields, R. L., Namenuk, A. K., Hong, K., Meng, Y. G., Rae, J., Briggs, J., Xie, D., Lai, J., Stadlen, A., Li, B., Fox, J. A., and Presta, L. G. (2001) *J. Biol. Chem.* 276:6591-6604 or U.S. Patent No. 6,194,551. The cDNA was subcloned into previously described pRK mammalian cell expression vectors, as described in Eaton et al., 1986, *Biochemistry*, 25:8343-8347. The cDNA for cynomolgus FcγRI was isolated as described in Example 1.

To facilitate the purification of the expressed human and cynomologus Fc γ RI, the transmembrane domain and intracellular domain of each were replaced by DNA encoding a Gly-His $_6$ tag and human glutathione S-transferase (GST). The GST sequence was obtained by PCR from the pGEX-4T2 plasmid (Amersham Pharmacia Biotech) with NheI and XbaI restriction sites at the 5' and 3' ends, respectively. The expressed Fc γ RI contained the extracellular domains of the α -chain fused at His271 to Gly/His $_6$ /GST. Primers used to subclone the extracellular portion of the cynomolgus Fc γ RI α -chain are shown in Table 1.

The cynomolgus and human FcγRI plasmids were transfected into human embryonic kidney 293 cells by calcium phosphate precipitation (Gorman, C. M., Gies, D. R., and McCray, G. (1990) DNA Prot. Engineer. Tech. 2, 3-10). Supernatants were collected 72 hours after conversion to serum-free PSO₄ medium supplemented with 10 mg/liter recombinant bovine insulin, 1 mg/liter human transferrin, and trace elements. Proteins were purified by nickel-nitrilotriacetic acid chromatography (Qiagen, Valencia, CA). Purified protein was analyzed through a combination of 4-20% SDS-polyacrylamide gel electrophoresis, ELISA, and amino acid analysis.

5

10

15

20

25

30

Standard enzyme-linked immunoabsorbent assays (ELISA) were performed in order to detect and quantify interactions between cynomologus FcyRI or human FcyRI and human IgG1, IgG2, IgG3, or IgG4 (Table 15). ELISA plates (Nunc) were coated with 150 ng/well by adding 100 µL of 1.5 µg/ml stock solution cynomologus FcyRI or human FcyRI in PBS for 48 hours at 4°C. After washing plates five times with wash buffer, (PBS, pH 7.4 containing 0.5% Tween-20), plates were blocked with 250 µL of assay buffer (50mM Tris-buffered saline, 0.05% Tween-20, 0.5% RIA-grade bovine serum albumin, 2mM EDTA, pH 7.4) at 25 °C for 1 hours. Plates were washed five times with wash buffer.

Serial 3-fold dilutions of monomeric antibody (10.0 -.0045 μg/ml) were added to plates and incubated for 2 hours. After washing plates five times with assay buffer, the detection reagent was added. Several different horseradish peroxidase (HRP)-conjugated reagents were used to detect the IgG-FcγRI interaction, including: HRP-Protein G (Bio-Rad), goat HRP-anti-human IgG (Boehringer-Mannheim, Indianapolis, IN), and murine HRP-anti-human Kappa light chain. After incubation with detecting reagent at 25°C for 90 minutes, plates were washed five times with wash buffer and 100 μl of 0.4 mg/ml o-phenylenediamine dihydrochloride (Sigma, St. Louis, MO) was added. Absorbance at 490 nm was read using a Vmax plate reader (Molecular Devices, Mountain View, CA). Note that values reported in Table 15 are the mean ± deviation relative to binding of human IgG1 at an IgG1 concentration of 0.370 μg/ml. Titration plots for human IgG using murine HRP-anti-human Kappa light chain as detecting reagent are shown for cynomolgus FcγRI (FIG. 1B) and human FcγRI (FIG. 1A).

Results and Discussion:

As illustrated in Table 15, the pattern of binding of cynomolgus Fc γ RI and human Fc γ RI to the four human IgG subclasses was similar, regardless of the detection reagent. In each case, human or cynomolgus showed the highest level of binding to IgG3 and the lowest level of binding to IgG2. In particular, the pattern for both human and cynomolgus receptor-IgG interaction was IgG3 \geq IgG1 > IgG4 >>> IgG2. Note that the data from the human Fc γ RI-IgG binding interactions corresponds to data previously reported. Gessner et al, 1998, *Ann. Hematol.* 76:231-248; Deo et al., 1997, *Immunology Today* 18:127-135; Van de Winkel, 1993, *Immunology Today* 14:215-221.

10

5

Table 15

Binding of monomeric human IgG subclasses to cynomolgus and human FcγRI^a

1	5
T	J

	=	C	Human FcyRI		
20	Subclass	ProtG ^b	anti-huIgG	anti-kappa	ProtG
	E27IgG1	1.00	1.00	1.00	1.00
	E27IgG2	0.13 ± 0.04	0.04, 0.04	0.11, 0.14	0.08, 0.08
25	E27IgG3	1.01 ± 0.06	1.22, 1.15	1.32, 1.37	1.14, 1.03
	E27IgG4	0.52 ± 0.04	0.44, 0.45	0.60, 0.63	0.27, 0.27

³⁰

40

As illustrated in FIGs 1A and 1B, binding affinity of the human and cynomolgus FcyRI is similar for each of the tested IgG subclasses. In both cases, human and cynomolgus receptors showed a markedly higher affinity for IgG3 and IgG1 as compared to the IgG4 and IgG2. FIG 1A and 1B also shows that the IgG subclass binding to FcyRI is concentration-dependent and saturable.

a Detection reagents were HRP-conjugated Protein G (ProtG), HRP-conjugated murine anti-human IgG, heavy chain specific (anti-huIgG), or HRP-conjugated murine anti-human kappa light chain (anti-kappa). Values are the ratio of OD_{490nm} (E27IgG subclass) to OD_{490nm} (E27IgG1) at 0.37 µg/ml.

³⁵ b Mean \pm S.D., n = 4.

This data illustrates that cynomolgus FcyRI can replace human FcyRI in the detection of IgG subclasses as human and cynomolgus reveal similar binding patterns of interaction with similar affinities for each IgG subclass.

5 Example 4: Cynomolgus FcyRIIA Binds Human IgG2

Materials and Methods:

ELISA assays analyzing human IgG subclass binding to cynomolgus FcγRIIA were performed using essentially the methods as described in Example 3. However, because FcγRIIA is a low-affinity FcγR, hexameric complexes of each human IgG subclass was formed prior to addition to the Fc receptor. Hexameric complexes were formed by mixing the human IgG subclass with a human IgG at a 1:1 molar ratio. Liu, J., Lester, P., Builder, S., and Shire, S. J. (1995) *Biochemistry* 34:10474-10482. Preparation of the hexameric complexes and their use in FcγRII and FcγRIII assays were as described in Shields, R. L., Namenuk, A. K., Hong, K., Meng, Y. G., Rae, J., Briggs, J., Xie, D., Lai, J., Stadlen, A., Li, B., Fox, J. A., and Presta, L. G. (2001) *J. Biol. Chem.* 276:6591-6604. A plasmid encoding human FcγRIIA(R131) can be readily prepared using the sequence information as described in GenBank or other published sources and see Warmerdam et al., 1991 *J. of Immunology* 147:1338-1343 and Clark et al., 1991 *J of Immunology* 21:1911-1916.

20

25

30

15

Results and Discussion:

As illustrated by Table 16, the pattern of cynomolgus $Fc\gamma RIIA$ binding to hexameric complexes of the human IgG subclasses was IgG3 = IgG2 > IgG1 > IgG4. Previous analysis of human IgG subclass binding to the two polymorphic human $Fc\gamma RIIA$ forms showed the pattern: human $Fc\gamma RIIA(R131)$ - $IgG3 \ge IgG1 >>> IgG2 \ge IgG4$ and $Fc\gamma RIIA(H131)$ - $IgG3 \ge IgG1 = IgG2 >>> IgG4$. Gessner et al, 1998, Ann. Hematol. 76:231-248; Deo et al., 1997, Immunology Today 18:127-135; Van de Winkel, 1993, Immunology Today 14:215-221. These binding patterns show that cynomolgus $Fc\gamma RIIA$, which has a histidine at amino acid 131, is comparable to the human $Fc\gamma RIIA(H131)$, both of which bind human IgG2. In contrast, human $Fc\gamma RIIA(R131)$ has been reported to bind human IgG2 poorly. Note also that

cynomolgus FcyRIIA binds human IgG2 as efficiently as it binds human IgG3, a difference from the human FcyRIIA(H131) receptor.

Table 16

Binding of hexameric complexes of human IgG subclasses to cynomolgus and human FcγRIIA^a

10	=			
			ynomolgus l	FcyRIIA
	Subclass	ProtG	anti-huIgG	anti-kappa
15	E27IgG1	1.00	1.00	1.00
	E27IgG2	2.11	1.27	2.20 ± 0.93 b
20	E27IgG3	1.10	1.56	2.44 ± 0.47
20	E27IgG4	0.12	0.12	0.42 ± 0.18
		Hum	an FcγRIIA(H131)
25	E27IgG1	1.00	1.00	1.00
	E27IgG2	0.95	0.83	0.84
70	E27IgG3	0.78	1.03	0.98
30	E27IgG4	0.25	0.47	0.19
		Hum	an FcγRIIA(I	R131)
35	E27IgG1	1.00	1.00	1.00
	E27IgG2	0.63	0.40	0.47
40	E27IgG3	1.17	1.14	0.85
40	E27IgG4	0.59	0.44	0.27

a Detection reagents were HRP-conjugated Protein G (ProtG), HRP-conjugated murine anti-human IgG,
 heavy chain specific (anti-huIgG), or HRP-conjugated murine anti-human kappa light chain (anti-kappa).
 Values are the ratio of OD_{490nm} (E27IgG subclass) to OD_{490nm} (E27IgG1) at 0.123 μg/ml.

b Mean \pm SD, n = 3.

The binding of cynomolgus FcyRIIA to each IgG subclass generally increased as the concentration of each antibody subclass increased (FIG. 2).

The data from table 16 and FIG. 2 illustrates that cynomolgus FcyRIIA binds human IgG2 and IgG3 with high efficiency and may be a preferable agent for use in detecting these human subclasses to either of the two human polymorphic forms of FcyRIIA.

Example 5: Cynomolgus FcyRIIB Binds Human IgG2

10 Materials and Methods:

5

The methods used to detect Fc γ RIIB binding to human IgG subclasses was essentially as shown in Examples 3 and 4. Plasmid encoding human Fc γ RIIB is known and readily obtainable by those of skill in the art and see Kurucz et al., 2000, *Immunol Lett* 75(1):33-40. Data reported in Table 17 represent the mean \pm deviation relative to binding of human IgG1 at an IgG1 concentration of 0.370 μ g/ml.

Results and Discussion:

Table 17 illustrates the binding of hexameric complexes of the human IgG subclasses to human and cynomolgus Fc γ RIIB. The binding pattern between the IgG subclasses and human Fc γ RIIB is IgG3 \geq IgG1 > IgG2 > IgG4 and between the IgG subclasses and cynomolgus Fc γ RIIB is IgG2 \geq IgG3 > IgG1 > IgG4. This binding pattern was the same for both human (FIG. 3A) and cynomolgus (FIG. 3B) over a range of IgG concentrations.

This data illustrates that cynomolgus FcyRIIB has a stronger binding affinity for IgG2 than does human FcyRIIB.

25

Table 17

Binding of Hexameric Complexes of Human IgG Subclasses to Cynomolgus and Human FcγRIIB

5	=	C	Human FcyRIIB		
	Subclass	ProtG ^b	anti-huIgG ^c	anti-kappa ^d	ProtGd
10	E27IgG1	1.00	1.00	1.00	1.00
	E27IgG2	1.89 ± 0.37	1.26 ± 0.15	2.73 ± 1.00	0.43 ± 0.10
15	E27IgG3	1.25 ± 0.17	1.69 ± 0.20	2.99 ± 1.26	1.03 ± 0.13
	E27IgG4	0.48 ± 0.11	0.58 ± 0.16	0.64 ± 0.21	0.23 ± 0.08

²⁰ a Detection reagents were HRP-conjugated Protein G (ProtG), HRP-conjugated murine anti-human IgG, heavy chain specific (anti-huIgG), or HRP-conjugated murine anti-human kappa light chain (anti-kappa). Values are the ratio of OD_{490nm} (E27IgG subclass) to OD_{490nm} (E27IgG1) at 0.37 μg/ml.

b Mean \pm SD, n = 8.

25 c Mean \pm SD, n = 5.

35

40

d Mean \pm SD, n = 3.

30 Example 6: Cynomolgus FcyRIIIA And Human FcyRIIIA-V158 Exhibit Equivalent Binding To Human IgG Subclasses

Materials and Methods:

The methods used to detect Fc γ RIIIA binding to human IgG subclasses was essentially as shown in Examples 3 and 4. As described previously, a human DNA sequence for Fc γ RIIA α -chain is known and readily obtainable by those of skill in the art. Data reported in Table 18 represents the mean \pm deviation relative to binding of human IgG1 at an IgG1 concentration of 0.370 μ g/ml.

Results and Discussion:

As illustrated in Table 18, cynomolgus Fc γ RIIIA and human Fc γ RIIIA-V158 both bind human IgG subclasses with essentially the same pattern, IgG1 > IgG3 >> IgG2 \geq IgG4, as compared to human Fc γ RIIIA-F158, which binds with the pattern, IgG3 = IgG1 >>> IgG2 = IgG4. The human Fc γ RIIIA-F158-human IgG subclass

10

15

40

binding data is in agreement with previous reports. Gessner et al, 1998, Ann. Hematol. 76:231-248; Deo et al., 1997, Immunology Today 18:127-135; Van de Winkel, 1993, Immunology Today 14:215-221. FIGs 4A, 4B, and 4C illustrate the binding pattern for human FcyRIIIA-F158, human FcyRIIIA-V158, and cynomolgus FcyRIIIA, respectively, for increasing concentrations of each IgG subclass and indicate that the

The data illustrates that cynomolgus FcyRIIIA and human FcyRIIIA-V158 have equivalent binding interactions with the human IgG subclasses, and in particular that cynomolgus FcyRIIIA has preferred binding to the IgG2 subclass as compared to the human FcyRIIIA.

binding interactions are specific and concentration dependent and saturable.

Table 18

Binding of Hexameric Complexes of Human IgG Subclasses to Cynomolgus and Human FcyRIIIA

	Subclass	Cynomolgusb	Human(F158) ^C	Human(V158) ^c
20	E27IgG1	1.00	1.00	1.00
	E27IgG2	0.11 ± 0.02	0.06, 0.13	0.06, 0.03
	E27IgG3	0.82 ± 0.08	0.75, 0.82	0.79, 0.82
25	E27IgG4	0.15 ± 0.04	0.06, 0.11	0.06, 0.04

a Detection reagent was HRP-conjugated Protein G. Values are the ratio of OD_{490nm} (E27IgG
 subclass) to OD_{490nm} (E27IgG1) at 0.37 μg/ml for cynomolgus FcγRIIIA and human FcγRIIIA(V158) and 1.11 μg/ml for human FcγRIIIA(F158).

Example 7: Cynomolgus FcγRIIA Binds Human IgG1 Variants S298A and S298A/E333A/K334A

Materials and Methods:

Site-directed mutagenesis on E27 IgG1 was essentially as described in Shields et al., 2001, *J. Biol. Chem.*, 276:6591-6604. Briefly, site-directed mutagenesis was used to generate IgG1 variants in which a number of solvent-exposed residues in the

b Mean \pm SD, n = 4.

³⁵ c Human(F158) and Human(V158) are polymorphic forms of human FcγRIIIA with phenylalanine or valine at receptor position 158.

WO 03/054213

5

10

15

20

25

30

PCT/US02/38805

CH2 and CH3 domains were individually altered to alanine. The alanine variants were D265A, S298A, S37A, R292A, D280A and S298A/E333A.

ELISA reactions were essentially as described in Examples 3-6, where IgG variants were incubated with the Fc receptors, rather than native IgG protein. Note that for the values provided in Table 19, human receptors are (Absorbance Variant/Absorbance Native IgG1) at 1μg/ml and for cynomolgus receptors, values are (Absorbance Variant/Absorbance Native IgG1) at 0.370 μg/ml.

Results and Discussion:

As illustrated by Table 19 and FIGs 5-7, the binding pattern of all IgG variants to cynomolgus FcyRI was similar to that for human FcyRI. With regard to IgG variant binding to cynomolgus FcyRIIA, the pattern generally followed the same pattern for human polymorph FcyRIIA(H131). (FIG. 5). As above, this likely reflects the fact that the cynomolgus FcyRIIA has a histidine as residue 131. Note, however, that there were two notable exceptions, variant S298A and variant S298A/E333A/K334A had improved binding to the cynomolgus FcyRIIA as compared to native human IgG1, and these same variants bound poorly to human FcyRIIA.

Referring to Table 19 and FIG. 6, the pattern of variant IgG binding to cynomolgus FcyRIIB exhibited several differences from the binding pattern for human FcyRIIB. In particular, variants R255A, E255A, E258A, S37A, D280A, and R301A bound the cynomolgus FcyRIIB equivalently as they had native human IgG, whereas these same variants all exhibited improved binding to the human FcyRIIB when compared to native human IgG.

Referring to Table 19 and FIG. 7, the binding pattern of the variant IgG to cynomolgus FcyRIIIA followed the binding pattern established for human polymorph FcyIIIA-V158, as compared to the binding pattern for human polymorph FcyIIIA-F158. This likely reflects the fact that the cynomolgus FcyRIIIA has a similar amino acid residue, isoleucine, at position 158 as does human FcyRIIIA-V158 (compared to the phenylalanine located in FcyRIIIA-F158).

Blocking the inhibitory signals (e.g., ITIM-containing FcyRIIB) mediated by Fc receptors, which counterbalance the activating signals (e.g., ITAM-containing FcyRI, FcyRIIA, and FcyRIIA) mediated by Fc receptors, may provide for improved

therapeutic efficacy of antibodies. An unexpected result shown in Table 19 is that variants having S298A showed improved binding to cynomolgus FcyRIIA, maintained native-like binding to cynomolgus FcyRI and FcyRIIIA, and showed significantly decreased binding to cynomolgus FcyRIIB. Two variants in particular, S298A and S298A/E333A/K334A may be used to selectively engage the activating ITAM-containing Fc receptors, while simultaneously not engaging the inhibitory ITIM-containing FcyRIIB.

Table 19
Binding of Human E27 IgG1 Variants to Human and Cynomolgus FcγR

Variant	FcyRI .	FcyRIIA	FcyRIIB	FcyRIIIA
S239A				
Human	0.81 ± 0.09	0.73 ± 0.25	0.76 ± 0.36	0.26 ± 0.08
Cynomolgus	N/A	0.68 ± 0.04	N/A	N/A
R255A				
Human	0.99 ± 0.12	1.30 ± 0.20	1.59 ± 0.42	0.98 ± 0.18
Cynomolgus	0.85 ± 0.15	1.09 ± 0.07	0.80 ± 0.06	0.91 ± 0.08
E258A				
Human	1.18 ± 0.13	1.33 ± 0.22	1.65 ± 0.38	1.12 ± 0.12
Cynomolgus	0.91 ± 0.08	0.88 ± 0.05	0.99 ± 0.07	0.93 ± 0.11
D265A				
Human	0.16 ± 0.05	0.07 ± 0.01	0.13 ± 0.05	0.09 ± 0.06
Cynomolgus	N/A	0.05 ± 0.02	0.05	0.04 ± 0.01
S37A				
Human	1.09 ± 0.08	1.52 ± .22(R)	1.84 ± 0.43	1.05 ± 0.24
		1.10 ± .12(H)		
Cynomolgus	1.02 ± 0.09	1.23 ± 0.34	1.04 ± 0.30	0.88 ± 0.11
H268A				
Human	1.10 ± 0.11	1.21 ± .14(R)	1.44 ± 0.22	0.54 ± 0.12
		0.97 ± .15(H)		
Cynomolgus	1.02 ± 0.09	0.99 ± 0.07	1.20	0.86 ± 0.07

D280A				
Human	1.04 ± 0.08	1.34 ± 0.14	1.60 ± 0.31	1.09 ± 0.20
Cynomolgus	0.97 ± 0.08	1.45 ± 0.18	1.20 ± 0.11	0.99 ± 0.04
R292A				
Human	0.95 ± 0.05	0.27 ± 0.13	0.17 ± 0.07	0.89 ± 0.17
Cynomolgus	0.87 ± 0.08	0.80 ± 0.23	0.63 ± 0.06	0.90 ± 0.09
E293A		,		
Human	1.11 ± 0.07	1.08 ± 0.19	1.07 ± 0.20	0.31 ± 0.13
Cynomolgus	N/A	0.92 ± 0.07	N/A	N/A
S298A				
Human	1.11 ± 0.03	$0.40 \pm .15(R)$	0.23 ± 0.13	1.34 ±
		0.24 ± .08(H)		0.20(F)
Cynomolgus	1.06 ± 0.09	2.07 ± 0.30	0.20 ± 0.09	1.07 ± .07(V)
				0.98 ± 0.13
R301M				
Human	1.06 ± 0.12	1.29 ± 0.17	1.56 ± 0.12	0.48 ± 0.21
Cynomolgus	1.00 ± 0.09	1.62 ± 0.30	1.27 ± 0.20	0.85 ± 0.08
P329A		<u> </u>		
Human	0.48 ± 0.10	0.08 ± 0.02	0.12 ± 0.08	0.21 ± 0.03
Cynomolgus	N/A	0.21 ± 0.06	N/A	N/A
E333A				
Human	0.98 ± 0.15	0.92 ± 0.12	0.76 ± 0.11	1.27 ± 0.17
Cynomolgus	N/A	0.67 ± 0.09	N/A	N/A
K334A				
Human	1.06 ± 0.07	1.01 ± 0.15	0.90 ± 0.12	1.39 ±
				0.19(F)
Cynomolgus	1.08 ± 0.09	0.92 ± 0.15	0.66 ± 0.14	1.10 ± .07(V)
				1.00 ± 0.15
A339T				
Human	1.06 ± 0.04	1.09 ± 0.03	1.20 ± 0.03	1.34 ± 0.09
Cynomolgus	N/A	1.05 ± 0.02	N/A	N/A

WO 03/054213		PCT/US02/38805
--------------	--	----------------

S298A/E333A/K334A				
Human	N/A	0.35 ± 0.13	0.18 ± 0.08	1.51 ±
				0.31(F)
Cynomolgus	1.19 ± 0.08	1.99 ± 0.24	0.12 ± 0.04	1.11 ± .08(V)
				1.08 ± 0.15

Example 8: Cynomolgus FcRn And Human FcRn Bind Human IgG Subclasses Equivalently

Materials and Methods:

5

10

15

20

25

Human IgG2, IgG3, and IgG4 isotypes of E27 (IgG1) were constructed by subcloning the appropriate heavy chain Fc cDNA from a human spleen cDNA library into a pRK vector containing the E27 variable heavy domain. All IgG subclasses and variants were expressed using the same E27 κ light chain.

Following cotransfection of heavy and light chain plasmids into 293 cells, IgG1, IgG2, IgG4 and variants were purified by protein A chromatography. IgG3 was purified using protein G chromatography. All protein preparations were analyzed using a combination of SDS-polyacrylamide gel electrophoresis, ELISA, and spectroscopy.

Herceptin[™] IgG1 was essentially constructed as described in Coussens et al., 1985, *Science*, 230:1132-39. Herceptin[™] IgG1 is a recombinant DNA-derived monoclonal antibody having an IgG1 κ chain that contains a consensus amino acid framework with complementary-determining regions of a murine antibody (4D5) that binds HER2.

The cDNA for cynomologus FcRn was isolated by reverse transcriptase-PCR (GeneAmp, PerkinElmer Life Sciences) of oligo(dT)-primed RNA from cynomologus spleen cells using primers that generated a fragment encoding the α-chain extra-cellular domain as described in Example 1. The cDNA was subcloned into previously described pRK mammalian cell expression vectors, as described in Eaton et al., 1986, *Biochemistry*, 25:8343-8347. Two DNA sequences were identified and confirmed that differed at base 77, one sequence had base G, giving Ser 3 in the mature polypeptide, and the other had base A giving Aspargine 3 in the mature polypeptide. The cDNA for cynomolgus FcRn (S3) and FcRn (N3) were isolated essentially as described in Example 1.

The cynomolgus and human FcRn plasmids were transfected into human embryonic kidney cells by calcium phosphate precipitation (Gorman, C.M., Gies, D.R., and McCray, G, 1990, *DNA Prot. Engineer. Tech.*, 2:3-10). Supernatants were collected 72 hours after conversion to serum-free PSO₄ medium supplemented with 10 mg/liter recombinant bovine insulin, 1 mg/liter human transferrin, and trace elements. Proteins were purified using nickel nitrothiacetic acid chromatography (Qiagen, Valencia, CA). Purified protein was analyzed through a combination of 4-20% SDS-polyacrylamide gel electrophoresis, ELISA, and amino acid analysis.

Standard enzyme-linked immunoabsorbent assays (ELISA) were performed in order to detect and quantify interactions between cynomolgus FcRn (S3), FcRn (N3) or human FcRn and human IgG1 (including herceptin IgG1), IgG2, IgG3, or IgG4 (table 20). ELISA plates (Nunc) were coated with 2µg /ml streptavidin (Zymed Laboratories Inc., South San Francisco, CA) in 50 mM carbonate buffer, pH 9.6, at 4 °C overnight. Plates were blocked with PBS, 0.5% BSA, 10 ppm Proclin 300 (Supelco, Bellefonte, PA), pH 7.2 at 25 °C for 1h. FcRn-Gly-His₆ was biotynylated using a standard protocol with biotin-X-NHS (Research Organics, Cleveland, OH) and bound to streptavidin coated plates at 2 µg/ml in PBS, 0.5 BSA, 0.05% polysorbate-20 (sample buffer), pH 7.2 at 25 °C for 1h. Plates were then rinsed with sample buffer, pH 6.0. Eight serial 2fold dilutions of E27 standard or variants in sample buffer at pH 6.0 were incubated for 2h. Plates were rinsed with sample buffer pH 6.0 and bound IgG was detected with peroxidase-conjugated goat F(ab')₂ anti-human IgG F(ab')₂ (Jackson ImmunoResearch) in pH 6.0 sample buffer using 3,3',5,5' - tetramethlbenzidine (Kirkegaard & Perry Laboratories, Gaithersburg, MD) as substrate. Absorbance at 450 nm was read on a V_{max} plate reader (Molecular Devices).

The data shown in Table 20 was plotted as saturation binding curves.

Results and Discussion:

10

15

20

25

30

As illustrated in Table 20 and corresponding FIGs 8-10, the pattern of binding of cynomolgus FcRn (S3), FcRn (N3) and human FcRn to the four human IgG subclasses was similar. In each case, human and cynomolgus FcRns showed the highest level of binding to IgG3 and the lowest level of binding to IgG1. In particular, the pattern for both human and cynomolgus receptor-IgG interaction was IgG3 >> IgG4 > IgG2 > IgG1. Note that the data from the human FcRn-IgG binding

interactions corresponds to data previously reported. AP West Jr. and P.J. Bjorkman Biochemistry 39:9698 (2000).

In addition, the data illustrates that the binding affinity of the human and cynomolgus FcRns is similar for IgG1, IgG2, and IgG3, and is slightly stronger for IgG4, as compared to the human FcRn for IgG4. As illustrated graphically in FIGs 8-10, binding of the human and cynomolgus FcRns to the human IgG subclasses is concentration-dependent and saturable.

Table 20
Binding of Human IgG Subclasses to Human FcRn

10

40

	= Subclass	Cyno S3 ^a	Cyno N3 ^a	Humanb	Human ^c
15	E27IgG1	1.00, 1.00	1.00, 1.00	1.00	1.00
	E27IgG2	1.30, 1.15	1.49, 1.39	1.06 ± 0.10	0.93 ± 0.16
20	E27IgG3	3.82, 3.59	4.34, 3.97	5.60 ± 1.31	1.55 ± 0.45
	E27IgG4	1.52, 1.44	1.59, 1.62	1.06 ± 0.23	0.95 ± 0.14

a Assay with NeutrAvidin coated on plate followed by FcRn-biotin, then sample and detection with HRP-conjugated goat anti-human F(ab')₂. Values are the ratio of OD_{490nm} (E27IgG subclass) to OD_{490nm} (E27IgG1) at [mAb]=50 ng/ml for two assays. Cyno S3 and N3 differ only in the amino acid at position 3.

This data illustrates that cynomolgus FcRn can replace human FcRn in the detection of human IgG subclasses as human and cynomolgus FcRn reveal similar binding patterns of interaction with similar affinities for each IgG subclass.

It will be clear that the invention is well adapted to attain the ends and advantages mentioned as well as those inherent therein. While a presently preferred

b Assay with NeutrAvidin coated on plate followed by FcRn-biotin, then sample and detection with HRP-conjugated goat anti-human F(ab')₂. Values are the ratio of OD_{490nm} (E27IgG subclass) to OD_{490nm} (E27IgG1) at [mAb]=50 ng/ml for five assays. A second, separate lot of E27IgG1 showed a ratio of 0.81 ± 0.03 (mean ± S.D., n=3) compared to the E27IgG1 used as standard.

c Assay with human IgE coated on the plate followed by sample, then FcRn-biotin and detection with HRP-conjugated streptavidin. Values are the ratio of OD_{490nm} (E27IgG subclass) to OD_{490nm} (E27IgG1) at [mAb]=50 ng/ml for four assays. A second, separate lot of E27IgG1 showed ratios of 0.92 and 0.88 compared to the E27IgG1 used as standard.

embodiment has been described for purposes of this disclosure, various changes and modifications may be made which are well within the scope of the invention.

Numerous other changes may be made which will readily suggest themselves to those skilled in the art and which are encompassed in the spirit of the invention disclosed herein and as defined in the appended claims.

All publications cited herein are hereby incorporated by reference.

5 X. J. Same

What is claimed is:

1. An isolated nucleic acid comprising a polynucleotide sequence that encodes a non-human primate Fc receptor polypeptide with an amino acid sequence of SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 25, SEQ ID NO: 29, SEQ ID NO: 64, SEQ ID NO: 65, SEQ ID NO: 66, SEQ ID NO: 67, SEQ ID NO: 68, SEQ ID NO: 69, SEQ ID NO: 70, SEQ ID NO: 71, SEQ ID NO: 72, or fragments thereof.

- 2. An isolated nucleic acid sequence of claim 1, wherein the polynucleotide sequence comprises the nucleotide sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 13, SEQ ID NO: 22, SEQ ID NO: 23, or SEQ ID NO: 27.
- 15 3. A method for obtaining a nucleic acid sequence encoding an Fc receptor polypeptide comprising:
 - a) amplifying a nucleic acid from a nonhuman primate cell with a primer set comprising a forward and a reverse primer, wherein the primer sets are selected from the group consisting of SEQ ID NO: 31 and SEQ ID NO: 32, SEQ ID NO: 33 and SEQ ID NO: 34, SEQ ID NO: 35 and SEQ ID NO: 36, SEQ ID NO: 37 and SEQ ID NO: 38, SEQ ID NO: 39 and SEQ ID NO: 40, SEQ ID NO: 41 and SEQ ID NO: 42, SEQ ID NO: 43 and SEQ ID NO: 44, SEQ ID NO: 45 and SEQ ID NO: 46, SEQ ID NO: 47 and SEQ ID NO: 48, SEQ ID NO: 49 and SEQ ID NO: 50, SEQ ID NO: 51 and SEQ ID NO: 52, and SEQ ID NO: 53 and SEQ ID NO: 54;
- b) isolating the amplified nucleic acid.

- 4. An isolated nucleic acid prepared according to the method of claim 3.
- 5. A method according to claim 3, wherein the nonhuman primate cell is a spleen cell.
 - 6. A method according to claim 3, wherein the nonhuman primate cell is a cynomologus cell or a chimp cell.

7. An isolated nucleic acid of claims 1, 2, or 4, wherein the polynucleotide encodes an extracellular fragment of the Fc receptor polypeptide.

- 8. A vector comprising a nucleic acid of claims 1, 2, or 4.
- 9. A host cell comprising a vector of claim 8.

5

20

25

- 10. A host cell according to claim 9, wherein the cell is a mammalian cell.
- 10 11. A nucleic acid of claims 1, 2, or 4, further comprising a nucleotide sequence encoding a heterologous polypeptide operably linked to the nucleotide sequence encoding a Fc receptor polypeptide.
- 12. A nucleic acid according to claim 11, wherein the heterologous polypeptide
 provides for purification of the Fc receptor polypeptide.
 - 13. A nucleic acid according to claim 12, wherein the heterologous polypeptide is selected from the group consisting of Gly/His₆ fused to glutathione S-transferase, 6-His tag, thioredoxin tag, hemaglutinin tag, Glylh156 tag, and OmpA signal sequence tag.
 - 14. An isolated polypeptide comprising an amino acid sequences of SEQ ID NO: 9, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 29, SEQ ID NO: 25, SEQ ID NO: 11, SEQ ID NO: 64, SEQ ID NO: 65, SEQ ID NO: 66, SEQ ID NO: 67, SEQ ID NO: 68, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 72, or SEQ ID NO: 70, or a fragment thereof.
 - 15. An isolated fusion protein comprising a heterologous polypeptide joined to a Fc receptor polypeptide fragment having an amino acid sequence of amino acid 1 to 269 or SEQ ID NO: 65, 1 to 182 of SEQ ID NO: 66, 1 to 184 of SEQ ID NO: 68, 1 to 187 of SEQ ID NO: 69, 1 to 274 of SEQ ID NO: 71, or 1 to 274 of SEQ ID NO: 72.
 - 16. An isolated fusion polypeptide according to claim 15, wherein the heterologus polypeptide is a gly/his6-gst tag.

17. An isolated fusion polypeptide comprising a heterologous polypeptide joined to a Fc receptor polypeptide of claim 14.

- 18. An isolated polypeptide variant having an amino acid sequence having at least 95% sequence identity with the amino acid sequence of SEQ ID NO: 9.
 - 19. An isolated polypeptide variant having an amino acid sequence having at least 90% sequence identity with the amino acid sequence of SEQ ID NO: 15.
- 20. An isolated polypeptide variant having an amino acid sequence having at least 98% sequence identity with the amino acid sequence of SEQ ID NO: 17.
 - 21. An isolated polypeptide variant having an amino acid sequence having at least 92% sequence identity with the amino acid sequence of SEQ ID NO: 18.

22. An isolated polypeptide variant having an amino acid sequence having at least 92% sequence identity with the amino acid sequence of SEQ ID NO: 20.

15

- 23. An isolated polypeptide variant having an amino acid sequence having at least 93% sequence identity with the amino acid sequence of SEQ ID NO: 25.
 - 24. An isolated polypeptide variant having an amino acid sequence having at least 97% sequence identity with the amino acid sequence of SEQ ID NO: 29.
- 25. A method for evaluating at least one biological property of an Fc region containing molecule comprising:
 - a) contacting an isolated non-human primate Fc receptor polypeptide with an Fc region containing molecule; and
 - b) determining the effect of the contact on at least one biological property of the Fc region containing molecule.
 - 26. A method according to claim 25 or 35, wherein the Fc region containing molecule is an antibody.

27. A method according to claim 26 or 35, wherein the antibody is a humanized antibody.

- 5 28. A method according to claim 25 or 35, wherein the non-human primate Fc receptor polypeptide is a soluble receptor.
 - 29. A method according to claim 28 or 35, wherein the non-human primate receptor polypeptide is selected from the group consisting of FcγRI α-chain, FcγRIIA, FcγRIIB, FcγRIIIA α-chain, FcRn α-chain and mixtures thereof.
 - 30. A method according to claim 25 or 35, wherein the non-human primate receptor polypeptide is expressed on a cell.
- 15 31. A method according to claim 25 or 35, wherein the biological property is the binding affinity of the Fc region containing molecule for the non-human primate receptor polypeptide.
- 32. A method according to claim 25 or 35, wherein the biological property is the toxicity of the Fc region containing molecule.
 - 33. A method according to claim 25 or 35, wherein the isolated non-human primate Fc receptor polypeptide is a FcRn α -chain and the biological property is the half-life of the Fc region containing molecule.
 - 34. A method according to claim 25 or 35, wherein the nonhuman primate receptor comprises an amino acid sequence of 1 to 265 of SEQ ID NO: 65, 1 to 172 of SEQ ID NO: 66, 1 to 174 of SEQ ID NO: 68, 1 to 172 of SEQ ID NO: 69, or 1 to 171 of SEQ ID NO: 67.

30

25

35. A method for evaluating at least one biological property of an Fc region containing molecule comprising:

5

10

20

25

- a) contacting a Fc region containing molecule with a cell transformed with an isolated nucleic acid according to any of claims 1, 2, or 4; and
- b) determining the effect of the contact on at least one biological property of the Fc region containing molecule.
- 36. A method for identifying an agent that has an increased affinity for at least one cynomolgus Fc receptor polypeptide with an ITAM region compared to human Fc receptor polypeptide comprising:
 - determining the binding affinity of the agent to at least one cynomolgus
 Fc receptor polypeptide associated a polypeptide with an ITAM region;
 - b) determining the binding affinity of the agent to the corresponding human Fc receptor polypeptide; and
- c) selecting agents that have an increased affinity for the cynomolgus Fcγ receptor polypeptide associated with a polypeptide with an ITAM region compared to the corresponding human Fc receptor.
 - 37. A method according to claim 36, wherein the agent is an antibody.
 - 38. A method according to claim 37, wherein the agent is an IgG antibody.
 - 39. A method according to claim 37, wherein the Fc receptor polypeptide is selected from the group consisting of Fc γ R1 α -chain, Fc γ RIIA, Fc γ RIIIA α -chain and mixtures thereof.
 - 40. A method for identifying an agent that has an altered affinity for a cynomolgus Fc receptor polypeptide with an ITIM region compared to corresponding human Fc receptor polypeptide comprising:
 - a) determining a binding affinity for the agent to be at least one cynomolgus FcγRIIB receptor polypeptide;
 - b) determining a binding affinity of the agent to corresponding human FcγRIIB receptor polypeptide; and

- c) selecting agents with altered affinity for a cynomolgus FcγRIIB receptor polypeptide with an ITIM region compared to corresponding human FcγRIIB polypeptide.
- 5 41. A method according to claim 40, wherein the agent is an antibody.

is the second

FIGURE 1A

FIGURE 1B

FIGURE 2

3/14

FIGURE 3A

A CHISPON

FIGURE 3B

FIGURE 4B

FIGURE 4C

FIGURE 5

. 8

ي قد قيوت

FIGURE 6

FIGURE 7

ar Aller Shame.

Figure 8

Figure 9

Figure 10

SEQUENCE LISTING

<110>	Presta, Leonard G. Namenuk, Angela K.
<120>	NON-HUMAN PRIMATE FC RECEPTORS AND METHODS OF USE
<130>	11669.92US01
	US 10/027,736 2001-12-19
<160>	72
<170>	PatentIn version 3.1
<210> <211> <212> <213>	1074
	misc_feature

<223>

FcgammaRI alpha-chain

<400> 1 atgtggttct tgacagctct gctcctttgg gttccagttg atgggcaagt ggataccaca 60 aaggcagtga tcactttgca gcctccatgg gtcagcgtgt tccaagagga aactgtaacc 120 ttacagtgtg aggtgccccg tctgcctggg agcagctcca cacagtggtt tctcaatggc 180 acagccactc agacctcgac teccagetac agaateacet etgecagtgt caaggacagt 240 ggtgaataca ggtgccagag aggtccctca gggcgaagtg accccataca gctggaaatc 300 cacagagact ggctactact gcaggtatcc agcagagtct tcacagaagg agaacctctg 360 gccttgaggt gtcatgcatg gaaggataag ctggtgtaca atgtgcttta ctatcaaaat 420 ggcaaagcct ttaagttttt ctaccggaat tctcaactca ccattctgaa aaccaacata 480 agtcacaacg gcgcctacca ctgctcaggc atgggaaagc atcgctacac atcagcagga 540 600 gtatctgtca ctgtgaaaga gctatttcca gctccagtgc tgaatgcatc cgtgacatcc ccgctcctgg aggggaatct ggtcaccctg agctgtgaaa caaagttgct tctgcagagg 660 cctggtttgc agctttactt ctccttctac atgggcagca agaccctgcg aggcaggaac 720 acgtectetg aataccaaat actaactget agaagagaag actetgggtt ttactggtge 780 840 gaggccacca cagaagacgg aaatgtcctt aagcgcagcc ctgagttgga gcttcaagtg cttggcctcc agttaccaac tcctgtctgg cttcatgtcc ttttctatct ggtagtggga 900 ataatgtttt tagtgaacac tgttctctgg gtgacaatac gtaaagaact gaaaagaaag 960

1

- Thiston

aaaaagtgga	atttagaaat	atctttggat	tctgctcatg	agaagaaggt	aacttccagc	1020
cttcaagaag	acagacattt	agaagaagag	ctgaagagtc	aggaacaaga	ataa	1074

<210>	2
<211>	1128
<212>	DNA
<213>	Homo sapiens
<220> <221> <222> <223>	misc_feature (1)(1128) FcgammaRI alpha-chain

<400> 2 atgtggttct tgacaactct gctcctttgg gttccagttg atgggcaagt ggacaccaca 60 aaggcagtga tcactttgca gcctccatgg gtcagcgtgt tccaagagga aaccgtaacc 120 ttgcactgtg aggtgctcca tctgcctggg agcagctcta cacagtggtt tctcaatggc 180 acagccacte agacctcgac ccccagctac agaatcacct ctgccagtgt caatgacagt 240 ggtgaataca ggtgccagag aggtctctca gggcgaagtg accccataca gctggaaatc 300 cacagagget ggetactact gcaggtetec ageagagtet teaeggaagg agaacetetg 360 gccttgaggt gtcatgcgtg gaaggataag ctggtgtaca atgtgcttta ctatcgaaat 420 ggcaaagcct ttaagttttt ccactggaat tctaacctca ccattctgaa aaccaacata 480 agtcacaatg gcacctacca ttgctcaggc atgggaaagc atcgctacac atcagcagga 540 atatctgtca ctgtgaaaga gctatttcca gctccagtgc tgaatgcatc tgtgacatcc 600 ccactcctgg aggggaatct ggtcaccctg agctgtgaaa caaagttgct cttgcagagg 660 ectggtttgc agctttactt ctccttctac atgggcagca agaccctgcg aggcaggaac 720 acatectetg aataceaaat actaactget agaagagaag actetgggtt atactggtge 780 gaggetgeca cagaggatgg aaatgteett aagegeagee etgagttgga getteaagtg 840 900 cttggcctcc agttaccaac tcctgtctgg tttcatgtcc ttttctatct ggcagtggga ataatgtttt tagtgaacac tgttctctgg gtgacaatac gtaaagaact gaaaagaaag 960 aaaaagtggg atttagaaat ctctttggat tctggtcatg agaagaaggt aatttccagc 1020 cttcaagaag acagacattt agaagaagag ctgaaatgtc aggaacaaaa agaagaacag 1080 1128 ctgcaggaag gggtgcaccg gaaggagccc cagggggcca cgtagcag

<210> 3 <211> 933 <212> DNA <213> Cynomolgus

<220>	
<221>	misc feature
<222>	(1)(933)
<223>	FcgammaRIIA

<400> 3 atgteteaga atgtatgtee eggeaacetg tggetgette aaceattgae agttttgetg 60 ctgctggctt ctgcagacag tcaaactgct ccccgaagg ctgtgctgaa actcgagccc 120 ccgtggatca acgtgctccg ggaggactct gtgactctga cgtgcggggg cgctcacagc 180 cctgacagcg actccactca gtggttccac aatgggaatc gcatccccac ccacacacag 240 cccagctaca ggttcaaggc caacaacaat gatagegggg agtacaggtg ccagactggc 300 cggaccagcc tcagcgaccc tgttcatctg actgtgcttt ctgagtggct ggcgcttcag 360 accectcace tggagttccg ggagggagaa accatcatge tgaggtgcca cagetggaag 420 gacaagcete tgatcaaggt cacattette cagaatggaa tagecaagaa atttteecat 480 atggatecca atttetecat eccaeaagca aaccaeagte acagtggtga ttaceaetge 540 600 acaggaaaca taggctacac accatactca tccaaacctg tgaccatcac tgtccaagtg cccagcgtgg gcagctcttc accgatgggg atcattgtgg ctgtggtcac tgggattgct 660 720 gtagcggcca ttgttgctgc tgtagtggcc ttgatctact gcaggaaaaa gcggatttca gccaattcca ctgatcctgt gaaggctgcc cgatttgagc cacttggacg tcaaacgatt 780 gccctcagaa agagacaact tgaagaaacc aacaatgact atgaaacagc cgacggcggc 840 tacatgactc tgaaccccag ggcacctact gatgatgata gaaacatcta cctgactctt 900 933 teteccaacg actatgacaa cagtaataac taa

<210> 4 <211> 936 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)..(936) <223> FcgammaRIIA

<400> 4
atgtctcaga atgtatgtcc cagaaacctg tggctgcttc aaccattgac agttttgctg 60
ctgctggctt ctgcagacag tcaagctgca gctcccccaa aggctgtgct gaaacttgag 120
cccccgtgga tcaacgtgct ccaggaggac tctgtgactc tgacatgcca gggggctcgc 180
agccctgaga gcgactccat tcagtggttc cacaatggga atctcattcc cacccacacg 240

3

400

WO 03/054213	•	PCT/US02/38805
WO 03/054213		PCT/U

cagcccagct acaggttcaa	ggccaacaac	aatgacagcg	gggagtacac	gtgccagact	300
ggccagacca gcctcagcga	ccctgtgcat	ctgactgtgc	tttccgaatg	gctggtgctc	360
cagacccctc acctggagtt	ccaggaggga	gaaaccatca	tgctgaggtg	ccacagctgg	420
aaggacaagc ctctggtcaa	ggtcacattc	ttccagaatg	gaaaatccca	gaaattctcc	480
cgtttggatc ccaccttctc	catcccacaa	gcaaaccaca	gtcacagtgg	tgattaccac	540
tgcacaggaa acataggcta	cacgctgttc	tcatccaagc	ctgtgaccat	cactgtccaa	600
gtgcccagca tgggcagctc	ttcaccaatg	gggatcattg	tggctgtggt	cattgcgact	660
gctgtagcag ccattgttgc	tgctgtagtg	gccttgatct	actgcaggaa	aaagcggatt	720
tcagccaatt ccactgatcc	tgtgaaggct	gcccaatttg	agccacctgg	acgtcaaatg	780
attgccatca gaaagagaca	acttgaagaa	accaacaatg	actatgaaac	agctgacggc	840
ggctacatga ctctgaaccc	cagggcacct	actgacgatg	ataaaaacat	ctacctgact	900
cttcctccca acgaccatgt	caacagtaat	aactaa			936

<210> 5 <211> 885 <212> DNA <213> Cynomolgus <220>

<221> misc_feature
<222> (1)..(885)
<223> FcgammaRIIB

<220>

<221> misc_feature
<222> (879)..(879)

<223> n = a or g or c or t/u unknown or other

<400> 5 atgggaatcc tgtcattctt acctgtcctt gctactgaga gtgactgggc tgactgcaag 60 tecteccage ettggggcca catgettetg tggacagetg tgetatteet ggeteetgtt 120 getgggacae etgeagetee eccgaagget gtgetgaaae tegageeece gtggateaae 180 gtgctccggg aggactctgt gactctgacg tgcggggggg ctcacagccc tgacagcgac 240 tccactcagt ggttccacaa tgggaatctc atccccaccc acacgcagcc cagctacagg 300 ttcaaggcca acaacaatga tagcggggag tacaggtgcc agactggccg gaccagcctc 360 agcgaccctg ttcatctgac tgtgctttct gagtggctgg cgctccagac ccctcacctg 420 gagttccggg agggagaaac catcttgctg aggtgccaca gctggaagga caagcctctg 480

į	atcaaggtca	cattcttcca	gaatggaata	tccaagaaat	tttcccatat	gaatcccaac	540
1	ttctccatcc	cacaagcaaa	ccacagtcac	agtggtgatt	accactgcac	aggaaacata	600
,	ggctacacac	catactcatc	caaacctgtg	accatcactg	tccaagtgcc	cagcatgggc	660
	agctcttcac	cgatagggat	cattgtggct	gtggtcactg	ggattgctgt	agcggccatt	720
	gttgctgctg	tagtggcctt	gatctactgc	aggaaaaagc	ggatttcagc	caatcccact	780
	aatcctgacg	aggctgacaa	agttggggct	gagaacacaa	tcacctattc	acttctcatg	840
	catccggacg	ctctggaaga	gcctgatgac	caaaaccgng	tttag		885

<210> 6 <211> 876 <212> DNA <213> Homo sapiens <220> <221> misc feature

<222> (1)..(876) <223> FcgammaRIIB

<400> 6 atgggaatcc tgtcattctt acctgtcctt gccactgaga gtgactgggc tgactgcaag 60 tececeage ettggggtea tatgettetg tggacagetg tgetatteet ggeteetgtt 120 gctgggacac ctgcagctcc cccaaaggct gtgctgaaac tcgagcccca gtggatcaac 180 gtgctccagg aggactctgt gactctgaca tgccggggga ctcacagccc tgagagcgac 240 tocattcagt ggttccacaa tgggaatctc attcccaccc acacgcagcc cagctacagg 300 ttcaaggcca acaacaatga cagcggggag tacacgtgcc agactggcca gaccagcctc 360 agcgaccctg tgcatctgac tgtgctttct gagtggctgg tgctccagac ccctcacctg 420 gagttccagg agggagaaac catcgtgctg aggtgccaca gctggaagga caagcctctg 480 gtcaaggtca cattcttcca gaatggaaaa tccaagaaat tttcccgttc ggatcccaac 540 ttctccatcc cacaagcaaa ccacagtcac agtggtgatt accactgcac aggaaacata 600 ggctacacgc tgtactcatc caagcctgtg accatcactg tccaagctcc cagctcttca 660 ccgatgggga tcattgtggc tgtggtcact gggattgctg tagcggccat tgttgctgct 720 gtagtggcct tgatctactg caggaaaaag cggatttcag ccaatcccac taatcctgat 780 840 gaggetgaca aagttgggge tgagaacaca atcacetatt caetteteat geaceeggat 876 gctctggaag agcctgatga ccagaaccgt atttag

<210> 7 <211> 765

PCT/US02/38805
PC

<212> DNA <213> Cynomolgus	
<220> <221> misc_feature <222> (1)(765) <223> FcgammaRIIIA alpha-chain	
<400> 7	60
atgtggcage tgctcctccc aactgctctg ctacttctag tttcagctgg catgcgggct	120
gaagatetee caaaggetgt ggtgtteetg gageeteaat ggtacagggt getegagaag	180
gaccgtgtga ctctgaagtg ccagggagcc tactcccctg aggacaattc cacacggtgg	
tttcacaatg agageeteat eteaageeag acetegaget aetteattge tgetgeeaga	240
gtcaacaaca gtggagagta caggtgccag acaagcctct ccacactcag tgacccggtg	300
cagctggaag tecatategg etggetattg etceaggeee eteggtgggt gtteaaggag	360
gaagaatcta ttcacctgag gtgtcacagc tggaagaaca ctcttctgca taaggtcacg	420
tatttacaga atggcaaagg caggaagtat tttcatcaga attctgactt ctacattcca	480
aaagccacac tcaaagacag cggctcctac ttctgcaggg gacttattgg gagtaaaaat	540
gtatcttcag agactgtgaa catcaccatc actcaagatt tggcagtgtc atccatctca	600
tcattettte cacetgggta ecaagtetet ttetgeetgg tgatggtaet eetttttgea	660
gtggacacag gactatattt ctctatgaag aaaagcattc caagctcaac aagggactgg	720
gaggaccata aatttaaatg gagcaaggac cctcaagaca aatga	765
<pre><210> 8 <211> 765 <212> DNA <213> Homo sapiens </pre> <pre><220> <221> misc_feature </pre> <pre><222> (1)(765) </pre> <pre><223> FcgammaRIIIA alpha-chain</pre>	
<400> 8 atgtggcagc tgctcctccc aactgctctg ctacttctag tttcagctgg catgcggact	60
gaagatetee caaaggetgt ggtgtteetg gageeteaat ggtacagggt getegagaag	120
gacagtgtga ctctgaagtg ccagggagec tacteceetg aggacaatte cacacagtgg	180
tttcacaatg agagecteat etcaagecag geetegaget actteattga egetgeeaca	240
gtcgacgaca gtggagagta caggtgccag acaaacetet ccaccetcag tgacceggtg	300
	360
cagctagaag tccatatcgg ctggctgttg ctccaggccc ctcggtgggt gttcaaggag	500

gaagacccta ttcacctg	ag gtgtcacagc	tggaagaaca	ctgctctgca	taaggtcaca	420
tatttacaga atggcaaa	gg caggaagtat	tttcatcata	attctgactt	ctacattcca	480
aaagccacac tcaaagac	ag cggctcctac	ttctgcaggg	ggctttttgg	gagtaaaaat	540
gtgtcttcag agactgtg	aa catcaccatc	actcaaggtt	tggcagtgtc	aaccatctca	600
tcattctttc cacctggg	ta ccaagtctct	ttctgcttgg	tgatggtact	cctttttgca	660
gtggacacag gactatat	tt ctctgtgaag	acaaacattc	gaagctcaac	aagagactgg	720
aaggaccata aatttaaa	tg gagaaaggac	cctcaagaca	aatga		765

<210> 9 <211> 357

<212> PRT <213> Cynomolgus

<220>

<221> MISC_FEATURE
<222> (1)..(357)
<223> FcgammaRI <chain</pre>

<400> 9

Met Trp Phe Leu Thr Ala Leu Leu Leu Trp Val Pro Val Asp Gly Gln

Val Asp Thr Thr Lys Ala Val Ile Thr Leu Gln Pro Pro Trp Val Ser 25

Val Phe Gln Glu Glu Thr Val Thr Leu Gln Cys Glu Val Pro Arg Leu

Pro Gly Ser Ser Ser Thr Gln Trp Phe Leu Asn Gly Thr Ala Thr Gln

Thr Ser Thr Pro Ser Tyr Arg Ile Thr Ser Ala Ser Val Lys Asp Ser 70

Gly Glu Tyr Arg Cys Gln Arg Gly Pro Ser Gly Arg Ser Asp Pro Ile

Gln Leu Glu Ile His Arg Asp Trp Leu Leu Leu Gln Val Ser Ser Arg

Val Phe Thr Glu Gly Glu Pro Leu Ala Leu Arg Cys His Ala Trp Lys 120 115

Asp Lys Leu Val Tyr Asn Val Leu Tyr Tyr Gln Asn Gly Lys Ala Phe 130 135 140

Lys Phe Phe Tyr Arg Asn Ser Gln Leu Thr Ile Leu Lys Thr Asn Ile 145 150 155 160

Ser His Asn Gly Ala Tyr His Cys Ser Gly Met Gly Lys His Arg Tyr 165 170 175

Thr Ser Ala Gly Val Ser Val Thr Val Lys Glu Leu Phe Pro Ala Pro 180 185 190

Val Leu Asn Ala Ser Val Thr Ser Pro Leu Leu Glu Gly Asn Leu Val 195 200 205

Thr Leu Ser Cys Glu Thr Lys Leu Leu Gln Arg Pro Gly Leu Gln 210 215 220

Leu Tyr Phe Ser Phe Tyr Met Gly Ser Lys Thr Leu Arg Gly Arg Asn 225 230 235 240

Thr Ser Ser Glu Tyr Gln Ile Leu Thr Ala Arg Arg Glu Asp Ser Gly 245 250 255

Phe Tyr Trp Cys Glu Ala Thr Thr Glu Asp Gly Asn Val Leu Lys Arg 260 265 270

Ser Pro Glu Leu Glu Leu Gln Val Leu Gly Leu Gln Leu Pro Thr Pro 275 280 285

Val Trp Leu His Val Leu Phe Tyr Leu Val Val Gly Ile Met Phe Leu 290 295 300

Val Asn Thr Val Leu Trp Val Thr Ile Arg Lys Glu Leu Lys Arg Lys 305 310 315 320

Lys Lys Trp Asn Leu Glu Ile Ser Leu Asp Ser Ala His Glu Lys Lys 325 330 335

Val Thr Ser Ser Leu Gln Glu Asp Arg His Leu Glu Glu Glu Leu Lys 340 345 350

'<u>م</u>يان<u>اف</u> ال<u>حاطب</u>ويا

Ser Gln Glu Gln Glu 355

<210> 10 <211> 374

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (1)..(374)

<223> FcgammaRI alpha-chain

<400> 10

Met Trp Phe Leu Thr Thr Leu Leu Leu Trp Val Pro Val Asp Gly Gln 1 5 10 15

Val Asp Thr Thr Lys Ala Val Ile Ser Leu Gln Pro Pro Trp Val Ser 20 25 30

Val Phe Gln Glu Glu Thr Val Thr Leu His Cys Glu Val Leu His Leu 35 40 45

Pro Gly Ser Ser Ser Thr Gln Trp Phe Leu Asn Gly Thr Ala Thr Gln 50 55 60

Thr Ser Thr Pro Ser Tyr Arg Ile Thr Ser Ala Ser Val Asn Asp Ser 65 70 . 75 80

Gly Glu Tyr Arg Cys Gln Arg Gly Leu Ser Gly Arg Ser Asp Pro Ile 85 90 95

Gln Leu Glu Ile His Arg Gly Trp Leu Leu Gln Val Ser Ser Arg 100 105 110

Val Phe Thr Glu Gly Glu Pro Leu Ala Leu Arg Cys His Ala Trp Lys 115 120 125

Asp Lys Leu Val Tyr Asn Val Leu Tyr Tyr Arg Asn Gly Lys Ala Phe 130 135 140

Lys Phe Phe His Trp Asn Ser Asn Leu Thr Ile Leu Lys Thr Asn Ile 145 150 155 160

Ser His Asn Gly Thr Tyr His Cys Ser Gly Met Gly Lys His Arg Tyr 165 170 175

Thr Ser Ala Gly Ile Ser Val Thr Val Lys Glu Leu Phe Pro Ala Pro 180 185 190

Val Leu Asn Ala Ser Val Thr Ser Pro Leu Leu Glu Gly Asn Leu Val 195 200 205

Thr Leu Ser Cys Glu Thr Lys Leu Leu Gln Arg Pro Gly Leu Gln
210 215 220

Leu Tyr Phe Ser Phe Tyr Met Gly Ser Lys Thr Leu Arg Gly Arg Asn 225 230 235

Thr Ser Ser Glu Tyr Gln Ile Leu Thr Ala Arg Arg Glu Asp Ser Gly 245 250 255

Leu Tyr Trp Cys Glu Ala Ala Thr Glu Asp Gly Asn Val Leu Lys Arg 260 265 270

Ser Pro Glu Leu Glu Leu Gln Val Leu Gly Leu Gln Leu Pro Thr Pro 275 280 285

Val Trp Phe His Val Leu Phe Tyr Leu Ala Val Gly Ile Met Phe Leu 290 295 300

Val Asn Thr Val Leu Trp Val Thr Ile Arg Lys Glu Leu Lys Arg Lys 305 310 315

Lys Lys Trp Asp Leu Glu Ile Ser Leu Asp Ser Gly His Glu Lys Lys 325 330 335

Val Thr Ser Ser Leu Gln Glu Asp Arg His Leu Glu Glu Glu Leu Lys 340 .345 350

Cys Gln Glu Gln Lys Glu Glu Gln Leu Gln Glu Gly Val His Arg Lys 355 360 365

Glu Pro Gln Gly Ala Thr 370

<210> 11

<211> 86

<212> PRT

<213> Cynomolgus

<220>

<221> MISC_FEATURE

<222> (1)...(86)

<223> FcgammaRI/III gamma-chain

\$. 1840 Day

<400> 11

Met Ile Pro Ala Val Val Leu Leu Leu Leu Leu Val Glu Gln Ala
1 5 10 15

Ala Ala Leu Gly Glu Pro Gln Leu Cys Tyr Ile Leu Asp Ala Ile Leu 20 25 30

Phe Leu Tyr Gly Ile Val Leu Thr Leu Leu Tyr Cys Arg Leu Lys Ile 35 40

Gln Val Arg Lys Ala Ala Ile Ala Ser Tyr Glu Lys Ser Asp Gly Val 50 55 . 60

Tyr Thr Gly Leu Ser Thr Arg Asn Gln Glu Thr Tyr Glu Thr Leu Lys 65 70 75 80

His Glu Lys Pro Pro Gln 85

<210> 12

<211> 86

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (1)..(86)

<223> FcgammaRI/III gamma-chain

<400> 12

Met Ile Pro Ala Val Val Leu Leu Leu Leu Leu Val Glu Gln Ala 1 5 10 15

Ala Ala Leu Gly Glu Pro Gln Leu Cys Tyr Ile Leu Asp Ala Ile Leu 20 25 30

Phe Leu Tyr Gly Ile Val Leu Thr Leu Leu Tyr Cys Arg Leu Lys Ile 35 40

Gln Val Arg Lys Ala Ala Ile Thr Ser Tyr Glu Lys Ser Asp Gly Val 50 60

Tyr Thr Gly Leu Ser Thr Arg Asn Gln Glu Thr Tyr Glu Thr Leu Lys 70 75 80

in a second second

7

His Glu Lys Pro Pro Gln 85

<210> <211> <212> <213>	13 261 DNA Cync	omolgus					
	(1).	c_feature .(261) na chain					
<400> atgatto	13 cag	cagtggtctt	gctcttactc	cttttggttg	aacaagcagc	ggccctggga	60
gagccto	agc	tctgctatat	cctggatgcc	atcctgtttc	tgtatggaat	tgtcctcacc	120
ctcctct	act	gtcgactgaa	gatccaagtg	cgaaaggcag	ctatagccag	ctatgagaaa	180
tcagato	gtg	tttacacggg	cctgagcacc	aggaaccagg	aaacttatga	gactctgaag	240
catgaga	aac	caccacagta	g				261
	misc (1).	sapiens c_feature .(261) na chain					
<400> atgatto	14 cag	cagtggtctt	gctcttactc	cttttggttg	aacaagcagc	ggeeetggga	60
gageete	agc	tctgctatat	cctggatgcc	atcctgtttc	tgtatggaat	tgtcctcacc	120
ctcctct	act	gtcgactgaa	gatccaagtg	cgaaaggcag	ctataaccag	ctatgagaaa	180
tcagato	gtg	tttacacggg	cctgagcacc	aggaaccagg	agacttacga	gactctgaag	240
catgaga	aac	caccacagta	g				261
<210> <211> <212> <213> <220> <221> <222> <223>	MIS(omolgus C_FEATURE (310) ammaRIIA					

<400> 15

Met Ser Gln Asn Val Cys Pro Gly Asn Leu Trp Leu Leu Gln Pro Leu 1 5 10 15

Thr Val Leu Leu Leu Leu Ala Ser Ala Asp Ser Gln Thr Ala Pro Pro 20 25 30

Lys Ala Val Leu Lys Leu Glu Pro Pro Trp Ile Asn Val Leu Arg Glu 35 40 45

Asp Ser Val Thr Leu Thr Cys Gly Gly Ala His Ser Pro Asp Ser Asp 50 55 60

Ser Thr Gln Trp Phe His Asn Gly Asn Arg Ile Pro Thr His Thr Gln 65 70 75 80

Pro Ser Tyr Arg Phe Lys Ala Asn Asn Asn Asn Ser Gly Glu Tyr Arg

Cys Gln Thr Gly Arg Thr Ser Leu Ser Asp Pro Val His Leu Thr Val 100 105 110

Leu Ser Glu Trp Leu Ala Leu Gln Thr Pro His Leu Glu Phe Arg Glu 115 120 125

Gly Glu Thr Ile Met Leu Arg Cys His Ser Trp Lys Asp Lys Pro Leu 130 140

Ile Lys Val Thr Phe Phe Gln Asn Gly Ile Ala Lys Lys Phe Ser His 145 150 155 160

Met Asp Pro Asn Phe Ser Ile Pro Gln Ala Asn His Ser His Ser Gly 165 170 175

Asp Tyr His Cys Thr Gly Asn Ile Gly Tyr Thr Pro Tyr Ser Ser Lys 180 185 190

Pro Val Thr Ile Thr Val Gln Val Pro Ser Val Gly Ser Ser Ser Pro 195 200 205

Met Gly Ile Ile Val Ala Val Val Thr Gly Ile Ala Val Ala Ala Ile 210 215 220

Val Ala Ala Val Val Ala Leu Ile Tyr Cys Arg Lys Lys Arg Ile Ser

.....

225

230

235

240

Ala Asn Ser Thr Asp Pro Val Lys Ala Ala Arg Phe Glu Pro Leu Gly 245 250 255

Arg Gln Thr Ile Ala Leu Arg Lys Arg Gln Leu Glu Glu Thr Asn Asn 260 265 270

Asp Tyr Glu Thr Ala Asp Gly Gly Tyr Met Thr Leu Asn Pro Arg Ala 275 280 285

Pro Thr Asp Asp Asp Asp Asn Ile Tyr Leu Thr Leu Ser Pro Asn Asp 290 295 300

Tyr Asp Asn Ser Asn Asn 305 310

<210> 16

<211> 317

<212> PRT

<213> Homo sapiens

<220>

<221> MISC FEATURE

<222> (1)...(317)

<223> FcgammaRIIA

<400> 16

Met Ala Met Glu Thr Gln Met Ser Gln Asn Val Cys Pro Arg Asn Leu 1 5 10 15

Trp Leu Leu Gln Pro Leu Thr Val Leu Leu Leu Leu Ala Ser Ala Asp
20 25 30

Ser Gln Ala Ala Pro Pro Lys Ala Val Leu Lys Leu Glu Pro Pro 35 40 45

Trp Ile Asn Val Leu Gln Glu Asp Ser Val Thr Leu Thr Cys Gln Gly 50 55 60

Ala Arg Ser Pro Glu Ser Asp Ser Ile Gln Trp Phe His Asn Gly Asn 65 70 75 80

Leu Ile Pro Thr His Thr Gln Pro Ser Tyr Arg Phe Lys Ala Asn Asn 85 90 95

the state of the s

Asn Asp Ser Gly Glu Tyr Thr Cys Gln Thr Gly Gln Thr Ser Leu Ser 105

Asp Pro Val His Leu Thr Val Leu Ser Glu Trp Leu Val Leu Gln Thr

Pro His Leu Glu Phe Gln Glu Gly Glu Thr Ile Met Leu Arg Cys His 130

Ser Trp Lys Asp Lys Pro Leu Val Lys Val Thr Phe Phe Gln Asn Gly

Lys Ser Gln Lys Phe Ser Arg Leu Asp Pro Thr Phe Ser Ile Pro Gln

Ala Asn His Ser His Ser Gly Asp Tyr His Cys Thr Gly Asn Ile Gly 185

Tyr Thr Leu Phe Ser Ser Lys Pro Val Thr Ile Thr Val Gln Val Pro

Ser Met Gly Ser Ser Pro Met Gly Ile Ile Val Ala Val Val Ile

Ala Thr Ala Val Ala Ala Ile Val Ala Ala Val Val Ala Leu Ile Tyr 230

Cys Arg Lys Lys Arg Ile Ser Ala Asn Ser Thr Asp Pro Val Lys Ala 245

Ala Gln Phe Glu Pro Pro Gly Arg Gln Met Ile Ala Ile Arg Lys Arg 260

Gln Leu Glu Glu Thr Asn Asn Asp Tyr Glu Thr Ala Asp Gly Gly Tyr 280

Met Thr Leu Asn Pro Arg Ala Pro Thr Asp Asp Asp Lys Asn Ile Tyr

Leu Thr Leu Pro Pro Asn Asp His Val Asn Ser Asn Asn

<210> 17 <211> 316

<212> PRT

<213> Chimp

Joseph Williams

. Adab missission.

<220>

<221> MISC_FEATURE

<222> (1)..(316)

<223> FcgammaRIIA

<400> 17

Met Ala Met Glu Thr Gln Met Ser Gln Asn Val Cys Pro Arg Asn Leu 1 5 10 15

Trp Leu Leu Gln Pro Leu Thr Val Leu Leu Leu Leu Ala Ser Ala Asp 20 25 30

Ser Gln Ala Ala Pro Pro Lys Ala Val Leu Lys Leu Glu Pro Pro Trp 35 40 45

Ile Asn Val Leu Gln Glu Asp Ser Val Thr Leu Thr Cys Arg Gly Ala 50 55 60

Arg Ser Pro Glu Ser Asp Ser Ile Gln Trp Phe His Asn Gly Asn Leu 65 70 75 80

Ile Pro Thr His Thr Gln Pro Ser Tyr Arg Phe Lys Ala Asn Asn Asn 85 90 95

Asp Ser Gly Glu Tyr Thr Cys Gln Thr Gly Gln Thr Ser Leu Ser Asp 100 105 110

Pro Val His Leu Thr Val Leu Ser Glu Trp Leu Val Leu Gln Thr Pro 115 120 125

His Leu Glu Phe Gln Glu Gly Glu Thr Ile Val Leu Arg Cys His Ser 130 135 140

Trp Lys Asp Lys Pro Leu Val Lys Val Thr Phe Phe Gln Asn Gly Lys 145 150 155 160

Ser Gln Lys Phe Ser His Leu Asp Pro Asn Leu Ser Ile Pro Gln Ala 165 170 175

Asn His Ser His Ser Gly Asp Tyr His Cys Thr Gly Asn Ile Gly Tyr 180 185 190

Thr Leu Phe Ser Ser Lys Pro Val Thr Ile Thr Val Gln Ala Pro Ser 195 200 205

- water

Val Gly Ser Ser Pro Val Gly Ile Ile Val Ala Val Val Ile Ala

Thr Ala Val Ala Ala Ile Val Ala Ala Val Val Ala Leu Ile Tyr Cys 235 230

Arg Lys Lys Arg Ile Ser Ala Asn Ser Thr Asp Pro Val Lys Ala Ala

Gln Phe Glu Pro Pro Gly Arg Gln Met Ile Ala Ile Arg Lys Arg Gln 265

Leu Glu Glu Thr Asn Asn Asp Tyr Glu Thr Ala Asp Gly Gly Tyr Met 285

Thr Leu Asn Pro Arg Ala Pro Thr Asp Asp Asp Lys Asn Ile Tyr Leu 290 300

Thr Leu Pro Pro Asn Asp His Val Asn Ser Asn Asn 310

<210> 18

<211> 294

<212> PRT <213> Cynomolgus

<220>

<221> MISC_FEATURE

<222> (1)..(294)

<223> FcgammaRIIB

<400> 18

Met Gly Ile Leu Ser Phe Leu Pro Val Leu Ala Thr Glu Ser Asp Trp

Ala Asp Cys Lys Ser Ser Gln Pro Trp Gly His Met Leu Leu Trp Thr 25

Ala Val Leu Phe Leu Ala Pro Val Ala Gly Thr Pro Ala Ala Pro Pro

Lys Ala Val Leu Lys Leu Glu Pro Pro Trp Ile Asn Val Leu Arg Glu 55

Asp Ser Val Thr Leu Thr Cys Gly Gly Ala His Ser Pro Asp Ser Asp 70

4 14 1

Ser Thr Gln Trp Phe His Asn Gly Asn Leu Ile Pro Thr His Thr Gln 85 90 95

Pro Ser Tyr Arg Phe Lys Ala Asn Asn Asn Asp Ser Gly Glu Tyr Arg 100 105 110

Cys Gln Thr Gly Arg Thr Ser Leu Ser Asp Pro Val His Leu Thr Val 115 120 125

Leu Ser Glu Trp Leu Ala Leu Gln Thr Pro His Leu Glu Phe Arg Glu 130 135 140

Gly Glu Thr Ile Leu Leu Arg Cys His Ser Trp Lys Asp Lys Pro Leu 145 150 155 160

Ile Lys Val Thr Phe Phe Gln Asn Gly Ile Ser Lys Lys Phe Ser His 165 170 175

Met Asn Pro Asn Phe Ser Ile Pro Gln Ala Asn His Ser His Ser Gly 180 185 190

Asp Tyr His Cys Thr Gly Asn Ile Gly Tyr Thr Pro Tyr Ser Ser Lys 195 200 205

Pro Val Thr Ile Thr Val Gln Val Pro Ser Met Gly Ser Ser Ser Pro 210 215 220

Ile Gly Ile Ile Val Ala Val Val Thr Gly Ile Ala Val Ala Ala Ile 225 230 235

Val Ala Ala Val Val Ala Leu Ile Tyr Cys Arg Lys Lys Arg Ile Ser 245 250 255

Ala Asn Pro Thr Asn Pro Asp Glu Ala Asp Lys Val Gly Ala Glu Asn 260 265 270

Thr Ile Thr Tyr Ser Leu Leu Met His Pro Asp Ala Leu Glu Glu Pro 275 280 285

Asp Asp Gln Asn Arg Val 290

<210> 19 <211> 291

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (1)..(291)

<223> FcgammaRIIB

<400> 19

Met Gly Ile Leu Ser Phe Leu Pro Val Leu Ala Thr Glu Ser Asp Trp 1 5 10 15

Ala Asp Cys Lys Ser Pro Gln Pro Trp Gly His Met Leu Leu Trp Thr 20 25 30

Ala Val Leu Phe Leu Ala Pro Val Ala Gly Thr Pro Ala Ala Pro Pro 35 40 45

Lys Ala Val Leu Lys Leu Glu Pro Gln Trp Ile Asn Val Leu Gln Glu 50 55 60

Asp Ser Val Thr Leu Thr Cys Arg Gly Thr His Ser Pro Glu Ser Asp 65 70 75 80

Ser Ile Gln Trp Phe His Asn Gly Asn Leu Ile Pro Thr His Thr Gln 85 90 95

Pro Ser Tyr Arg Phe Lys Ala Asn Asn Asn Asp Ser Gly Glu Tyr Thr 100 105 110

Cys Gln Thr Gly Gln Thr Ser Leu Ser Asp Pro Val His Leu Thr Val 115 120 125

Leu Ser Glu Trp Leu Val Leu Gln Thr Pro His Leu Glu Phe Gln Glu 130 135 140

Gly Glu Thr Ile Val Leu Arg Cys His Ser Trp Lys Asp Lys Pro Leu 145 150 155

Val Lys Val Thr Phe Phe Gln Asn Gly Lys Ser Lys Lys Phe Ser Arg 165 170 175

Ser Asp Pro Asn Phe Ser Ile Pro Gln Ala Asn His Ser His Ser Gly 180 185 190

Asp Tyr His Cys Thr Gly Asn Ile Gly Tyr Thr Leu Tyr Ser Ser Lys

195

200

205

Pro Val Thr Ile Thr Val Gln Ala Pro Ser Ser Pro Met Gly Ile 215

Ile Val Ala Val Val Thr Gly Ile Ala Val Ala Ala Ile Val Ala Ala

Val Val Ala Leu Ile Tyr Cys Arg Lys Lys Arg Ile Ser Ala Asn Pro

Thr Asn Pro Asp Glu Ala Asp Lys Val Gly Ala Glu Asn Thr Ile Thr 265

Tyr Ser Leu Leu Met His Pro Asp Ala Leu Glu Glu Pro Asp Asp Gln 280

Asn Arg Ile 290

<210> 20 <211> 254 <212> PRT <213> Cynomolgus

<220>

<221> MISC_FEATURE

<222> (1)..(254) <223> FcgammaRIIIA

<400> 20

Met Trp Gln Leu Leu Pro Thr Ala Leu Leu Leu Val Ser Ala

Gly Met Arg Ala Glu Asp Leu Pro Lys Ala Val Val Phe Leu Glu Pro

Gln Trp Tyr Arg Val Leu Glu Lys Asp Arg Val Thr Leu Lys Cys Gln

Gly Ala Tyr Ser Pro Glu Asp Asn Ser Thr Arg Trp Phe His Asn Glu 55

Ser Leu Ile Ser Ser Gln Thr Ser Ser Tyr Phe Ile Ala Ala Ala Arg 75

a arek z

Val Asn Asn Ser Gly Glu Tyr Arg Cys Gln Thr Ser Leu Ser Thr Leu 85 90 95

Ser Asp Pro Val Gln Leu Glu Val His Ile Gly Trp Leu Leu Gln 100 105 110

Ala Pro Arg Trp Val Phe Lys Glu Glu Ser Ile His Leu Arg Cys 115 120 125

His Ser Trp Lys Asn Thr Leu Leu His Lys Val Thr Tyr Leu Gln Asn 130 135 140

Gly Lys Gly Arg Lys Tyr Phe His Gln Asn Ser Asp Phe Tyr Ile Pro 145 150 155 160

Lys Ala Thr Leu Lys Asp Ser Gly Ser Tyr Phe Cys Arg Gly Leu Ile 165 170 175

Gly Ser Lys Asn Val Ser Ser Glu Thr Val Asn Ile Thr Ile Thr Gln 180 185 190

Asp Leu Ala Val Ser Ser Ile Ser Ser Phe Phe Pro Pro Gly Tyr Gln
195 200 205

Val Ser Phe Cys Leu Val Met Val Leu Leu Phe Ala Val Asp Thr Gly 210 215 220

Leu Tyr Phe Ser Met Lys Lys Ser Ile Pro Ser Ser Thr Arg Asp Trp 225 230 235

Glu Asp His Lys Phe Lys Trp Ser Lys Asp Pro Gln Asp Lys 245 250

<210> 21

<211> 254

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (1)...(254)

<223> FcgammaRIIIA

<400> 21

Met Trp Gln Leu Leu Pro Thr Ala Leu Leu Leu Leu Val Ser Ala 1 5 10 15

التسمية المستقدية

Gly Met Arg Thr Glu Asp Leu Pro Lys Ala Val Val Phe Leu Glu Pro 20 25 30

- Gln Trp Tyr Arg Val Leu Glu Lys Asp Ser Val Thr Leu Lys Cys Gln 35 40 45
- Gly Ala Tyr Ser Pro Glu Asp Asn Ser Thr Gln Trp Phe His Asn Glu 50 60
- Ser Leu Ile Ser Ser Gln Ala Ser Ser Tyr Phe Ile Asp Ala Ala Thr 65 70 75 80
- Val Asp Asp Ser Gly Glu Tyr Arg Cys Gln Thr Asn Leu Ser Thr Leu 85 90 95
- Ser Asp Pro Val Gln Leu Glu Val His Ile Gly Trp Leu Leu Leu Gln 100 105 110
- Ala Pro Arg Trp Val Phe Lys Glu Glu Asp Pro Ile His Leu Arg Cys 115 120 125
- His Ser Trp Lys Asn Thr Ala Leu His Lys Val Thr Tyr Leu Gln Asn 130 135 140
- Gly Lys Gly Arg Lys Tyr Phe His His Asn Ser Asp Phe Tyr Ile Pro 145 150 155 160
- Lys Ala Thr Leu Lys Asp Ser Gly Ser Tyr Phe Cys Arg Gly Leu Phe 165 170 175
- Gly Ser Lys Asn Val Ser Ser Glu Thr Val Asn Ile Thr Ile Thr Gln 180 185 190
- Gly Leu Ala Val Ser Thr Ile Ser Ser Phe Phe Pro Pro Gly Tyr Gln 195 200 205
- Val Ser Phe Cys Leu Val Met Val Leu Leu Phe Ala Val Asp Thr Gly 210 215 220
- Leu Tyr Phe Ser Val Lys Thr Asn Ile Arg Ser Ser Thr Arg Asp Trp 225 230 235 240
- Lys Asp His Lys Phe Lys Trp Arg Lys Asp Pro Gln Asp Lys 245 250

<210> <211> <212> <213>	933 DNA Chim	np					
<220> <221> <222> <223>	(1).	c_feature (933) ammaRIIA					
<400> atgtcto	22 caga	atgtatgtcc	cagaaacctg	tggctgcttc	aaccattgac	agttttgctg	60
ctgctg	gctt	ctgcagacag	tcaagctgct	ccccaaagg	ctgtgctgaa	acttgagccc	120
ccgtgga	atca	acgtgctcca	ggaggactct	gtgactctga	catgccgggg	ggctcgcagc	180
cctgaga	agcg	actccattca	gtggttccac	aatgggaatc	tcatccccac	ccacacgcag	240
cccagci	taca	ggttcaaggc	caacaacaat	gacagcgggg	agtacacgtg	ccagactggc	300
cagacca	agcc	tcagcgaccc	tgtgcatctg	actgtgcttt	ccgaatggct	ggtgctccag	360
acccct	cacc	tggagttcca	ggagggagaa	accatcgtgc	tgaggtgcca	cagctggaag	420
gacaag	cctc	tggtcaaggt	cacattcttc	cagaatggaa	aatcccagaa	attctcccat	480
ttggate	ccca	acctctccat	cccacaagca	aaccacagtc	acagtggtga	ttaccactgc	540
acagga	aaca	taggctacac	gctgttctca	tccaagcctg	tgaccatcac	tgtccaagcg	600
cccagc	gtgg	gcagctcttc	accagtgggg	atcattgtgg	ctgtggtcat	tgcgactgct	660
gtagca	gcca	ttgttgctgc	tgtagtggcc	ttgatctact	gcaggaaaaa	gcggatttca	720
gccaat	tcca	ctgatcctgt	gaaggctgcc	caatttgagc	cacctggacg	tcaaatgatt	780
gccatc	agaa	agagacaact	tgaagaaacc	aacaatgact	atgaaacagc	tgacggcggc	840
tacatg	actc	tgaaccccag	ggcacctact	gacgatgata	aaaacatcta	cctgactctt	900
cctccc	aacg	accatgtcaa	cagtaataac	taa			933
<210> <211> <212> <213>	DNA	omolgus					
<220> <221> <222> <223>	(1).	c_feature (360) microglobul	Lin				
<400> atgtct	23 ccct	cagtggcctt	agccgtgctg	gcgctactct	ctctttctgg	cctggaggct	60

WO 03/054213	PCT/US02/38805

180
240
300
360

<210> 24

<211> 360

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(360)

<223> B-2 microglobulin

<400> 24
atgtctcgct ccgtggcctt agctgtgctc gcgctactct ctctttctgg cctggaggct 60
atccagcgta ctccaaagat tcaggtttac tcacgtcatc cagcagagaa tggaaagtca 120
aatttcctga attgctatgt gtctgggttt catccatccg acattgaagt tgacttactg 180
aagaatggag agagaattga aaaagtggag cattcagact tgtcttcag caaggactgg 240
tcttctatc tcttgtacta cactgaattc accccactg aaaaagatga gtatgcctgc 300
cgtgtgaacc atgtgacttt gtcacagccc aagatagtta agtgggatcg agacatgtaa 360

<210> 25

<211> 119

<212> PRT

<213> Cynomolgus

<220>

<221> MISC_FEATURE

<222> (1)..(119)

<223> Beta-2 microglobulin

<400> 25

Met Ser Pro Ser Val Ala Leu Ala Val Leu Ala Leu Leu Ser Leu Ser 1 5 10 15

Gly Leu Glu Ala Ile Gln Arg Thr Pro Lys Ile Gln Val Tyr Ser Arg 20 25 30

His Pro Pro Glu Asn Gly Lys Pro Asn Phe Leu Asn Cys Tyr Val Ser 35 40 45

the market

Gly Phe His Pro Ser Asp Ile Glu Val Asp Leu Leu Lys Asn Gly Glu

Lys Met Gly Lys Val Glu His Ser Asp Leu Ser Phe Ser Lys Asp Trp

Ser Phe Tyr Leu Leu Tyr Tyr Thr Glu Phe Thr Pro Asn Glu Lys Asp

Glu Tyr Ala Cys Arg Val Asn His Val Thr Leu Ser Gly Pro Arg Thr

Val Lys Trp Asp Arg Asp Met

<210> 26 <211> 119 <212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (1)..(119)

<223> Beta-2 microglobulin

<400> 26

Met Ser Arg Ser Val Ala Leu Ala Val Leu Ala Leu Leu Ser Leu Ser 5

Gly Leu Glu Ala Ile Gln Arg Thr Pro Lys Ile Gln Val Tyr Ser Arg

His Pro Ala Glu Asn Gly Lys Ser Asn Phe Leu Asn Cys Tyr Val Ser

Gly Phe His Pro Ser Asp Ile Glu Val Asp Leu Leu Lys Asn Gly Glu

Arg Ile Glu Lys Val Glu His Ser Asp Leu Ser Phe Ser Lys Asp Trp

Ser Phe Tyr Leu Leu Tyr Tyr Thr Glu Phe Thr Pro Thr Glu Lys Asp

Glu Tyr Ala Cys Arg Val Asn His Val Thr Leu Ser Gln Pro Lys Ile 100 105

Val Lys Trp Asp Arg Asp Met 115

<210> 27 <211> 1098 <212> DNA <213> Cynomolgus

<220>

<221> misc_feature
<222> (1)..(1098)
<223> FcRn alpha-chain

<400> 27						
	cgcggcctca	gccctgggcg	ctggggctcc	tgctctttct	cctgcccggg	60
agcctgggcg	cagaaagcca	cctctccctc	ctgtaccacc	tcaccgcggt	gtcctcgccc	120
gccccgggga	cgcctgcctt	ctgggtgtcc	ggctggctgg	gcccgcagca	gtacctgagc	180
tacgacagcc	tgaggggcca	ggcggagccc	tgtggagctt	gggtctggga	aaaccaagtg	240
tcctggtatt	gggagaaaga	gaccacagat	ctgaggatca	aggagaagct	ctttctggaa	300
gctttcaaag	ctttgggggg	aaaaggcccc	tacactctgc	agggcctgct	gggctgtgaa	360
ctgagccctg	acaacacctc	ggtgcccacc	gccaagttcg	ccctgaacgg	cgaggagttc	420
atgaatttcg	acctcaagca	gggcacctgg	ggtggggact	ggcccgaggc	cctggctatc	480
agtcagcggt	ggcagcagca	ggacaaggcg	gccaacaagg	agctcacctt	cctgctattc	540
tcctgcccac	accggctgcg	ggagcacctg	gagaggggcc	gtggaaacct	ggagtggaag	600
gagcccccct	ccatgcgcct	gaaggcccga	cccggcaacc	ctggcttttc	cgtgcttacc	660
tgcagcgcct	tctccttcta	ccctccggaa	ctgcaactgc	ggttcctgcg	gaatgggatg	720
gccgctggca	ccggacaggg	cgacttcggc	cccaacagtg	acggctcctt	ccacgcctcg	780
togtcactaa	cagtcaaaag	tggcgatgag	caccactact	gctgcatcgt	gcagcacgcg	840
gggctggcgc	agcccctcag	ggtggagctg	gaaactccag	ccaagtcctc	ggtgctcgtg	900
gtgggaatcg	tcatcggtgt	cttgctactc	acggcagcgg	ctgtaggagg	agctctgttg	960
tggagaagga	tgaggagtgg	gctgccagcc	ccttggatct	ccctccgtgg	agatgacacc	1020
gggtccctcc	tgcccacccc	gggggaggcc	caggatgctg	attcgaagga	tataaatgtg	1080
atcccagcca	ctgcctga					1098

<210> 28 <211> 1098 <212> DNA

<213> Homo sapiens	
<220> <221> misc_feature <222> (1)(1098) <223> FcRn alpha-chain	
<400> 28	
• • • • • • • • • • • • • • • • • • •	60
agcetgggeg cagaaageea cetetecete etgtaceace ttacegeggt gteetegeet 12	20
gccccgggga ctcctgcctt ctgggtgtcc ggctggctgg gcccgcagca gtacctgagc 18	30
tacaatagcc tgcggggcga ggcggagccc tgtggagctt gggtctggga aaaccaggtg 24	10
tcctggtatt gggagaaaga gaccacagat ctgaggatca aggagaagct ctttctggaa 30	00
gctttcaaag ctttgggggg aaaaggtccc tacactctgc agggcctgct gggctgtgaa 36	50
ctgggccctg acaacacctc ggtgcccacc gccaagttcg ccctgaacgg cgaggagttc 42	30
atgaattteg accteaagea gggeaectgg ggtggggaet ggeeegagge eetggetate 48	30
agtcagcggt ggcagcagca ggacaaggcg gccaacaagg agctcacctt cctgctattc 54	10
tectgeeege accgeetgeg ggageaeetg gagaggggee geggaaaeet ggagtggaag 60	00
gagccccct ccatgcgcct gaaggcccga cccagcagcc ctggcttttc cgtgcttacc 66	50
tgcagcgcct tctccttcta ccctccggag ctgcaacttc ggttcctgcg gaatgggctg 72	20
gccgctggca ccggccaggg tgacttcggc cccaacagtg acggatcctt ccacgcctcg 78	30
togtcactaa cagtcaaaag tggcgatgag caccactact gctgcattgt gcagcacgcg 84	10
gggctggcgc agcccctcag ggtggagctg gaatctccag ccaagtcctc cgtgctcgtg 90	00
gtgggaatcg tcatcggtgt cttgctactc acggcagcgg ctgtaggagg agctctgttg 96	50
tggagaagga tgaggagtgg getgecagee eettggatet eeettegtgg agaegaeace 102	20
ggggtcctcc tgcccacccc aggggaggcc caggatgctg atttgaagga tgtaaatgtg 108	30
attccagcca ccgcctga 109	98
<210> 29 <211> 365 <212> PRT <213> Cynomolgus <220> <221> MISC_FEATURE <222> (1)(365) <223> FcRn (S3)	

<400> 29

Met Arg Val Pro Arg Pro Gln Pro Trp Ala Leu Gly Leu Leu Leu Phe 1 5 10 15

Leu Leu Pro Gly Ser Leu Gly Ala Glu Ser His Leu Ser Leu Leu Tyr 20 25 30

His Leu Thr Ala Val Ser Ser Pro Ala Pro Gly Thr Pro Ala Phe Trp 35 40 45

Val Ser Gly Trp Leu Gly Pro Gln Gln Tyr Leu Ser Tyr Asp Ser Leu 50 55 60

Arg Gly Gln Ala Glu Pro Cys Gly Ala Trp Val Trp Glu Asn Gln Val 65 70 75 80

Ser Trp Tyr Trp Glu Lys Glu Thr Thr Asp Leu Arg Ile Lys Glu Lys 85 90 95

Leu Phe Leu Glu Ala Phe Lys Ala Leu Gly Gly Lys Gly Pro Tyr Thr 100 105 110

Leu Gln Gly Leu Leu Gly Cys Glu Leu Ser Pro Asp Asn Thr Ser Val 115 120 125

Pro Thr Ala Lys Phe Ala Leu Asn Gly Glu Glu Phe Met Asn Phe Asp 130 135 140

Leu Lys Gln Gly Thr Trp Gly Gly Asp Trp Pro Glu Ala Leu Ala Ile 145 150 155 160

Ser Gln Arg Trp Gln Gln Gln Asp Lys Ala Ala Asn Lys Glu Leu Thr 165 170 175

Phe Leu Leu Phe Ser Cys Pro His Arg Leu Arg Glu His Leu Glu Arg 180 185 190

Gly Arg Gly Asn Leu Glu Trp Lys Glu Pro Pro Ser Met Arg Leu Lys 195 200 205

Ala Arg Pro Gly Asn Pro Gly Phe Ser Val Leu Thr Cys Ser Ala Phe 210 215 220

Ser Phe Tyr Pro Pro Glu Leu Gln Leu Arg Phe Leu Arg Asn Gly Met 225 230 235 240

Ala Ala Gly Thr Gly Gln Gly Asp Phe Gly Pro Asn Ser Asp Gly Ser 245 250 255

Phe His Ala Ser Ser Ser Leu Thr Val Lys Ser Gly Asp Glu His His 260 265 270

Tyr Cys Cys Ile Val Gln His Ala Gly Leu Ala Gln Pro Leu Arg Val 275 280 285

Glu Leu Glu Thr Pro Ala Lys Ser Ser Val Leu Val Val Gly Ile Val 290 295 300

Ile Gly Val Leu Leu Thr Ala Ala Ala Val Gly Gly Ala Leu Leu 305 310 315 320

Trp Arg Arg Met Arg Ser Gly Leu Pro Ala Pro Trp Ile Ser Leu Arg 325 330 335

Gly Asp Asp Thr Gly Ser Leu Leu Pro Thr Pro Gly Glu Ala Gln Asp 340 345 350

Ala Asp Ser Lys Asp Ile Asn Val Ile Pro Ala Thr Ala 355 360 365

<210> 30

<211> 365

<212> PRT

<213> Homo sapiens

<220>

<221> MISC FEATURE

<222> (1)...(365)

<223> FcRn alpha-chain

<400> 30

Met Gly Val Pro Arg Pro Gln Pro Trp Ala Leu Gly Leu Leu Leu Phe 1 5 10 15

Leu Leu Pro Gly Ser Leu Gly Ala Glu Ser His Leu Ser Leu Leu Tyr 20 25 30

His Leu Thr Ala Val Ser Ser Pro Ala Pro Gly Thr Pro Ala Phe Trp 35 40 45

Val Ser Gly Trp Leu Gly Pro Gln Gln Tyr Leu Ser Tyr Asn Ser Leu 50 60

was a service of the service of the

Arg Gly Glu Ala Glu Pro Cys Gly Ala Trp Val Trp Glu Asn Gln Val 65 70 75 80

Ser Trp Tyr Trp Glu Lys Glu Thr Thr Asp Leu Arg Ile Lys Glu Lys 85 90 95

Leu Phe Leu Glu Ala Phe Lys Ala Leu Gly Gly Lys Gly Pro Tyr Thr 100 105 110

Leu Gl
n Gly Leu Leu Gly Cys Glu Leu Gly Pro Asp Asn Thr Ser Val
 115 $$ 120 $$ $$ 125

Pro Thr Ala Lys Phe Ala Leu Asn Gly Glu Glu Phe Met Asn Phe Asp 130 135 140

Leu Lys Gln Gly Thr Trp Gly Gly Asp Trp Pro Glu Ala Leu Ala Ile 145 150 155 160

Ser Gln Arg Trp Gln Gln Gln Asp Lys Ala Ala Asn Lys Glu Leu Thr 165 170 175

Phe Leu Leu Phe Ser Cys Pro His Arg Leu Arg Glu His Leu Glu Arg 180 185 190

Gly Arg Gly Asn Leu Glu Trp Lys Glu Pro Pro Ser Met Arg Leu Lys 195 200 205

Ala Arg Pro Ser Ser Pro Gly Phe Ser Val Leu Thr Cys Ser Ala Phe 210 215 220

Ser Phe Tyr Pro Pro Glu Leu Gln Leu Arg Phe Leu Arg Asn Gly Leu 225 235 240

Ala Ala Gly Thr Gly Gln Gly Asp Phe Gly Pro Asn Ser Asp Gly Ser 245 250 255

Phe His Ala Ser Ser Ser Leu Thr Val Lys Ser Gly Asp Glu His His 260 265 270

Tyr Cys Cys Ile Val Gln His Ala Gly Leu Ala Gln Pro Leu Arg Val 275 280 285

Glu Leu Glu Ser Pro Ala Lys Ser Ser Val Leu Val Val Gly Ile Val 290 295 300

```
Ile Gly Val Leu Leu Thr Ala Ala Ala Val Gly Gly Ala Leu Leu
                                        315
                    310
Trp Arg Arg Met Arg Ser Gly Leu Pro Ala Pro Trp Ile Ser Leu Arg
                325
Gly Asp Asp Thr Gly Val Leu Leu Pro Thr Pro Gly Glu Ala Gln Asp
            340
Ala Asp Leu Lys Asp Val Asn Val Ile Pro Ala Thr Ala
                            360
                                                365
<210> 31
<211> 33
<212> DNA
<213> Cynomolgus
<220>
<221> misc_feature
<222>
      (1)...(33)
<223> FcgammaRI - forward primer
<400> 31
                                                                       33
caggicaatc totagactcc caccagcitg gag
<210> 32
<211> 33
<212> DNA
<213> Cynomolgus
<220>
<221> misc_feature
       (1)...(33)
<222>
<223> FcgammaRI - reverse primer
<400> 32
                                                                       33
ggtcaactat aagcttggac ggtccagatc gat
<210> 33
<211> 34
<212> DNA
<213> Cynomolgus
<220>
<221> misc_feature
<222> (1)..(34)
<223> FcgammaRI-H6-GST - forward primer
```

A _ constitution to

<400> 33

caggicaatc atcgatatgt ggitcitgac agct 34		
	34 51 DNA Cynomolgus	
<222>	<pre>misc_feature (1)(51) FcgammaRI-H6-GST - reverse primer</pre>	
<400> ggtcaac	34 etat gctagcatgg tgatgatggt ggtgccagac aggagttggt a	51
<212>	35 36 DNA Cynomolgus	
<222>	misc_feature (1)(36) FcgammaRIIB - forward primer	
<400> caggtca	35 aatc tctagaatgg gaatcctgtc attctt	36
<210> <211> <212> <213>	36 34 DNA Cynomolgus	
<222>	misc_feature (1)(34) FcgammaRIIB - reverse primer	
<400> ggtcaad	36 ctat aagettetaa ataeggttet ggte	34
<210> <211> <212> <213>	37 33 DNA Cynomolgus	
<220> <221> <222> <223>	misc_feature (1)(33) FcgammaRIIB-H6-GST - forward primer	
<400>	37	

WO 03/054213	•	PCT/US02/38805

caggtca	caatc atcgatatgc ttctgtggac agc	33	
<210> <211> <212> <213>	34		
<222>	misc_feature (1)(34) FcgammaRIIB-H6-GST - reverse primer		
<400> ggtcaac	38 actat ggtgacctat cggtgaagag ctgc	34	
<210> <211> <212> <213>	33		
<222>	misc_feature (1)(33) FcgammaRIIIA - forward primer		
<400> caggtc	· 39 caatc tctagaatgt ggcagctgct cct	33	
<210> <211> <212> <213>	DNA		
<222>	misc_feature (1)(33)		
<400> tcaact	 40 stataa gettatgtte agagatgetg etg 	33	
<210> <211> <212> <213>	> 33 > DNA		
<220> <221> <222> <223>	<pre>> misc_feature > (1)(33)</pre>	·	
<400>	> 41		

VO 03/054213	 _	PCT/US02/3880
10 00,001210		1 0 1/0 002/0000

caggtca	late tetagaatgt ggeagetget eet	33
	42 35 DNA Cynomolgus	
<222>	misc_feature (1)(35) FcgammaRIIIA-H6-GST - reverse primer	
<400> ggtcaac	42 ctat ggtcaccttg gtacccaggt ggaaa	35
<210> <211> <212> <213>		
<222>	misc_feature (1)(45) Fc gamma - forward primer	
<400> caggtca	43 aatc atcgatgaat toccaccatg attocagoag tggto	45
<210> <211> <212> <213>	35	
<222>	misc_feature (1)(35) Fc gamma - reverse primer	
<400> ggtcaa	44 ctat aagettetae tgtggtggtt tetea	35
<210> <211> <212> <213>	45 32 DNA Cynomolgus	
	<pre>misc_feature (1)(32) B-2 microglobulin - forward primer</pre>	
<400>	45	

	_	
W/A 02/05/212		DCT/IICA3/20065
WO 03/054213		PCT/US02/38805

caggtea	aatc atcgattegg geegagatgt et	32
<211> <212>		
<222>	<pre>misc_feature (1)(34) B-2 microglobulin - reverse primer</pre>	
<400> ggtcaa	46 ctat totagattac atgtotogat coca	34
<210> <211> <212> <213>	47 35 DNA Cynomolgus	
<220> <221> <222> <223>	$(i).\overline{.}(35)$	
<400> caggtc	47 aatc tctagaatgt ctcagaatgt atgtc	35
	48 37 DNA Cynomolgus	
<222>	misc_feature (1)(37) FcgammaRIIA - reverse primer	
<400> ggtcaa	48	37
<210> <211> <212> <213>		
<220> <221> <222> <223>	$(1).\overline{.}(35)$	
<400>	49	

caggtca	atc atcgatatgt c	ctcagaatgt atgtc		35
<212>	50 34 DNA Cynomolgus			
<222>	misc_feature (1)(34) FcgammaRIIA-H6-G	GST - reverse pr	rimer	
<400> ggtcaac	50 Stat ggtgacccat c	eggtgaagag etge		34
<212>	32			
<222>	misc_feature (1)(32) FcRn - forward p	primer		
<400> caggtca	51 aatc atcgataggt o	cgtcctctca gc		32
<210> <211> <212> <213>	52 32 DNA Cynomolgus			
<222>	misc_feature (1)(32) FcRn - reverse p	primer		
<400> ggtcaa	52 ctat gaattctcgg a	aatggċggat gg		32
<210> <211> <212> <213>	32 DNA			
<220> <221> <222> <223>	misc_feature (1)(32) FcRn-H6 - forwa	rd primer		
<400>	53		36	

WO 03/054213	PCT/US02/38805
caggtcaatc atcgataggt cgtcctctca gc	32
<210> 54 <211> 55 <212> DNA <213> Cynomolgus	
<220> <221> misc_feature <222> (1)(55) <223> FcRn-H6 - reverse primer	
<400> 54 ggtcaactat gaattcatgg tgatgatggt ggtgcgagga cttggctgga gtttc	55
<210> 55 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> PCR primer OF1	
<400> 55 caggtcaatc tctagacagt ggttccacaa tgg	33
<210> 56 <211> 35 <212> DNA <213> artificial sequence	
<220> <223> PCR primer OR1	
<400> 56 ggtcaactat aagcttaaga gtcaggtaga tgttt	35
<210> 57 <211> 37 <212> DNA <213> artificial sequence	
<220> <223> PCR primer OF2	
<400> 57 caggtcaatc tctagaatac ataaccttat gtatcat	37
<210> 58 <211> 37 <212> DNA <213> artificial sequence	

<220>

WO 03/054213		PCT/US02/38805

<223>	PCR primer OF3	
<400> caggtca	58 atc tctagatata gaataacatc cactttg	37
<212>	59 32 DNA artificial sequence	
<220> <223>	PCR primer OR2	
<400> ggtcaac	59 Stat aagsttsaga gtsatgtags sg	32
<210> <211> <212> <213>	60 35 DNA artificial sequence	
<220> <223>	PCR primer OF4	
<400> caggtca	60 matc tctagaattc cactgatcct gtgaa	35
<210> <211> <212> <213>	61 37 DNA artificial sequence	
<220> <223>	PCT primer OR3	
<400> ggtcaad	61 ctat aagettgett tatttgtgaa atttgtg	37
<210> <211> <212> <213>	62 35 DNA artificial sequence	
<220> <223>	PCR primer OF5	
<400> caggtc	62 aatc tctagaactt ggacgtcaaa cgatt	35
<210> <211> <212> <213>	63 35 DNA artificial sequence	
<220>		

<223> PCR primer OR4

<400> 63
ggtcaactat aagcttctgc aataaacaag ttggg

35

<210> 64

<211> 365

<212> PRT

<213> Cynomolgus

<220>

<221> MISC_FEATURE

<222> (1)..(365)

<223> FcRn (N3)

<400> 64

Met Arg Val Pro Arg Pro Gln Pro Trp Ala Leu Gly Leu Leu Phe 1 5 10 15

Leu Leu Pro Gly Ser Leu Gly Ala Glu Asn His Leu Ser Leu Leu Tyr 20 25 30

His Leu Thr Ala Val Ser Ser Pro Ala Pro Gly Thr Pro Ala Phe Trp $35 \hspace{1cm} 40 \hspace{1cm} 45$

Val Ser Gly Trp Leu Gly Pro Gln Gln Tyr Leu Ser Tyr Asp Ser Leu 50 55 60

Arg Gly Gln Ala Glu Pro Cys Gly Ala Trp Val Trp Glu Asn Gln Val 65 70 75 80

Ser Trp Tyr Trp Glu Lys Glu Thr Thr Asp Leu Arg Ile Lys Glu Lys 90 95

Leu Phe Leu Glu Ala Phe Lys Ala Leu Gly Gly Lys Gly Pro Tyr Thr
100 105 110

Leu Gln Gly Leu Leu Gly Cys Glu Leu Ser Pro Asp Asn Thr Ser Val 115 120 125

Pro Thr Ala Lys Phe Ala Leu Asn Gly Glu Glu Phe Met Asn Phe Asp 130 135 140

Leu Lys Gln Gly Thr Trp Gly Gly Asp Trp Pro Glu Ala Leu Ala Ile 145 155 160

Ser Gln Arg Trp Gln Gln Gln Asp Lys Ala Ala Asn Lys Glu Leu Thr

170 175 165

Phe Leu Leu Phe Ser Cys Pro His Arg Leu Arg Glu His Leu Glu Arg

Gly Arg Gly Asn Leu Glu Trp Lys Glu Pro Pro Ser Met Arg Leu Lys 200

Ala Arg Pro Gly Asn Pro Gly Phe Ser Val Leu Thr Cys Ser Ala Phe

Ser Phe Tyr Pro Pro Glu Leu Gln Leu Arg Phe Leu Arg Asn Gly Met

Ala Ala Gly Thr Gly Gln Gly Asp Phe Gly Pro Asn Ser Asp Gly Ser 245 250

Phe His Ala Ser Ser Ser Leu Thr Val Lys Ser Gly Asp Glu His His

Tyr Cys Cys Ile Val Gln His Ala Gly Leu Ala Gln Pro Leu Arg Val

Glu Leu Glu Thr Pro Ala Lys Ser Ser Val Leu Val Val Gly Ile Val 295

Ile Gly Val Leu Leu Thr Ala Ala Ala Val Gly Gly Ala Leu Leu

Trp Arg Arg Met Arg Ser Gly Leu Pro Ala Pro Trp Ile Ser Leu Arg

Gly Asp Asp Thr Gly Ser Leu Leu Pro Thr Pro Gly Glu Ala Gln Asp 340 345

Ala Asp Ser Lys Asp Ile Asn Val Ile Pro Ala Thr Ala

<210> 65

<211> 336

<212> PRT

<213> Cynomolgus

<220>

<221> MISC_FEATURE

<222> (1)..(336) <223> FcgammaRI alpha-chain

<400> 65

Ala Val Ile Thr Leu Gln Pro Pro Trp Val Ser Val Phe Gln Glu Glu 1 5 10 15

Thr Val Thr Leu Gln Cys Glu Val Pro Arg Leu Pro Gly Ser Ser Ser 20 25 30

Thr Gln Trp Phe Leu Asn Gly Thr Ala Thr Gln Thr Ser Thr Pro Ser 35 40 45

Tyr Arg Ile Thr Ser Ala Ser Val Lys Asp Ser Gly Glu Tyr Arg Cys
50 55 60

Gln Arg Gly Pro Ser Gly Arg Ser Asp Pro Ile Gln Leu Glu Ile His 65 70 75 80

Arg Asp Trp Leu Leu Gln Val Ser Ser Arg Val Phe Thr Glu Gly 85 90 95

Glu Pro Leu Ala Leu Arg Cys His Ala Trp Lys Asp Lys Leu Val Tyr 100 105 110

Asn Val Leu Tyr Tyr Gln Asn Gly Lys Ala Phe Lys Phe Phe Tyr Arg 115 120 125

Asn Ser Gln Leu Thr Ile Leu Lys Thr Asn Ile Ser His Asn Gly Ala 130 135 140

Tyr His Cys Ser Gly Met Gly Lys His Arg Tyr Thr Ser Ala Gly Val 145 150 155 160

Ser Val Thr Val Lys Glu Leu Phe Pro Ala Pro Val Leu Asn Ala Ser 165 170 175

Val Thr Ser Pro Leu Leu Glu Gly Asn Leu Val Thr Leu Ser Cys Glu 180 185 190

Thr Lys Leu Leu Gln Arg Pro Gly Leu Gln Leu Tyr Phe Ser Phe 195 200 205

Tyr Met Gly Ser Lys Thr Leu Arg Gly Arg Asn Thr Ser Ser Glu Tyr 210 215 220

No. of the last of

Gln Ile Leu Thr Ala Arg Arg Glu Asp Ser Gly Phe Tyr Trp Cys Glu 225 230 235 240

Ala Thr Thr Glu Asp Gly Asn Val Leu Lys Arg Ser Pro Glu Leu Glu 245 250 255

Leu Gln Val Leu Gly Leu Gln Leu Pro Thr Pro Val Trp Leu His Val 260 265 270

Leu Phe Tyr Leu Val Val Gly Ile Met Phe Leu Val Asn Thr Val Leu 275 280 285

Trp Val Thr Ile Arg Lys Glu Leu Lys Arg Lys Lys Lys Trp Asn Leu 290 295 300

Glu Ile Ser Leu Asp Ser Ala His Glu Lys Lys Val Thr Ser Ser Leu 305 310 315 320

Gln Glu Asp Arg His Leu Glu Glu Glu Leu Lys Ser Gln Glu Glu 325 330 335

<210> 66

<211> 282

<212> PRT

<213> Cynomolgus

<220>

<221> MISC_FEATURE

<222> (1)..(282)

<223> FcgammaRIIA

<400> 66

Thr Ala Pro Pro Lys Ala Val Leu Lys Leu Glu Pro Pro Trp Ile Asn 1 5 10 15

Val Leu Arg Glu Asp Ser Val Thr Leu Thr Cys Gly Gly Ala His Ser 20 25 30

Pro Asp Ser Asp Ser Thr Gln Trp Phe His Asn Gly Asn Arg Ile Pro 35 40 45

Thr His Thr Gln Pro Ser Tyr Arg Phe Lys Ala Asn Asn Asn Asp Ser
-50 55 60

Gly Glu Tyr Arg Cys Gln Thr Gly Arg Thr Ser Leu Ser Asp Pro Val 65 70 75 80

the state of the

His Leu Thr Val Leu Ser Glu Trp Leu Ala Leu Gln Thr Pro His Leu 85 90 95

Glu Phe Arg Glu Gly Glu Thr Ile Met Leu Arg Cys His Ser Trp Lys 100 105 110

Asp Lys Pro Leu Ile Lys Val Thr Phe Phe Gln Asn Gly Ile Ala Lys 115 120 125

Lys Phe Ser His Met Asp Pro Asn Phe Ser Ile Pro Gln Ala Asn His 130 135 140

Ser His Ser Gly Asp Tyr His Cys Thr Gly Asn Ile Gly Tyr Thr Pro 145 150 155 160

Tyr Ser Ser Lys Pro Val Thr Ile Thr Val Gln Val Pro Ser Val Gly
165 170 175

Ser Ser Ser Pro Met Gly Ile Ile Val Ala Val Val Thr Gly Ile Ala 180 185 190

Val Ala Ala Ile Val Ala Ala Val Val Ala Leu Ile Tyr Cys Arg Lys 195 200 205

Lys Arg Ile Ser Ala Asn Ser Thr Asp Pro Val Lys Ala Ala Arg Phe 210 215 220

Glu Pro Leu Gly Arg Gln Thr Ile Ala Leu Arg Lys Arg Gln Leu Glu 225 235 240

Glu Thr Asn Asn Asp Tyr Glu Thr Ala Asp Gly Gly Tyr Met Thr Leu 245 250 255

Asn Pro Arg Ala Pro Thr Asp Asp Asp Arg Asn Ile Tyr Leu Thr Leu 260 265 270

Ser Pro Asn Asp Tyr Asp Asn Ser Asn Asn 275 280

<210> 67

<211> 281

<212> PRT

<213> Chimp

<220>

<221> MISC_FEATURE

Tend Ton

WO 03/054213

<222> (1)..(281) <223> FcgammaRIIA

<400> 67

Ala Pro Pro Lys Ala Val Leu Lys Leu Glu Pro Pro Trp Ile Asn Val 1 5 10 15

Leu Gln Glu Asp Ser Val Thr Leu Thr Cys Arg Gly Ala Arg Ser Pro 20 25 30

Glu Ser Asp Ser Ile Gln Trp Phe His Asn Gly Asn Leu Ile Pro Thr 35 40 45

His Thr Gln Pro Ser Tyr Arg Phe Lys Ala Asn Asn Asn Asp Ser Gly 50 55 60

Glu Tyr Thr Cys Gln Thr Gly Gln Thr Ser Leu Ser Asp Pro Val His 65 70 75 80

Leu Thr Val Leu Ser Glu Trp Leu Val Leu Gln Thr Pro His Leu Glu 85 90 95

Phe Gln Glu Gly Glu Thr Ile Val Leu Arg Cys His Ser Trp Lys Asp 100 105 110

Lys Pro Leu Val Lys Val Thr Phe Phe Gln Asn Gly Lys Ser Gln Lys

Phe Ser His Leu Asp Pro Asn Leu Ser Ile Pro Gln Ala Asn His Ser 130 135 140

His Ser Gly Asp Tyr His Cys Thr Gly Asn Ile Gly Tyr Thr Leu Phe 145 150 155 160

Ser Ser Lys Pro Val Thr Ile Thr Val Gln Ala Pro Ser Val Gly Ser 165 170 175

Ser Ser Pro Val Gly Ile Ile Val Ala Val Val Ile Ala Thr Ala Val 180 185 190

Ala Ala Ile Val Ala Ala Val Val Ala Leu Ile Tyr Cys Arg Lys Lys 195 200 205

Arg Ile Ser Ala Asn Ser Thr Asp Pro Val Lys Ala Ala Gln Phe Glu 210 215 220

No.

Pro Pro Gly Arg Gln Met Ile Ala Ile Arg Lys Arg Gln Leu Glu Glu 235

Thr Asn Asn Asp Tyr Glu Thr Ala Asp Gly Gly Tyr Met Thr Leu Asn

Pro Arg Ala Pro Thr Asp Asp Lys Asn Ile Tyr Leu Thr Leu Pro

Pro Asn Asp His Val Asn Ser Asn Asn 280

<210> 68

<211> 252

<212> PRT

<213> Cynomolgus

<220>

<221> MISC_FEATURE

<222> (1)...(252)

<223> FcgammaaRIIB

<400> 68

Thr Pro Ala Ala Pro Pro Lys Ala Val Leu Lys Leu Glu Pro Pro Trp

Ile Asn Val Leu Arg Glu Asp Ser Val Thr Leu Thr Cys Gly Gly Ala

His Ser Pro Asp Ser Asp Ser Thr Gln Trp Phe His Asn Gly Asn Leu 40

Ile Pro Thr His Thr Gln Pro Ser Tyr Arg Phe Lys Ala Asn Asn Asn 50

Asp Ser Gly Glu Tyr Arg Cys Gln Thr Gly Arg Thr Ser Leu Ser Asp

Pro Val His Leu Thr Val Leu Ser Glu Trp Leu Ala Leu Gln Thr Pro

His Leu Glu Phe Arg Glu Gly Glu Thr Ile Leu Leu Arg Cys His Ser 100

Trp Lys Asp Lys Pro Leu Ile Lys Val Thr Phe Phe Gln Asn Gly Ile

WO 03/054213		PCT/US02/38805
--------------	--	----------------

115 120 125

Ser Lys Lys Phe Ser His Met Asn Pro Asn Phe Ser Ile Pro Gln Ala 130 135 140

Asn His Ser His Ser Gly Asp Tyr His Cys Thr Gly Asn Ile Gly Tyr 145 150 155

Thr Pro Tyr Ser Ser Lys Pro Val Thr Ile Thr Val Gln Val Pro Ser 165 170 175

Met Gly Ser Ser Pro Ile Gly Ile Ile Val Ala Val Val Thr Gly 180 185 190

Ile Ala Val Ala Ala Ile Val Ala Ala Val Val Ala Leu Ile Tyr Cys 195 200 205

Arg Lys Lys Arg Ile Ser Ala Asn Pro Thr Asn Pro Asp Glu Ala Asp 210 215 220

Lys Val Gly Ala Glu Asn Thr Ile Thr Tyr Ser Leu Leu Met His Pro 225 235 240

Asp Ala Leu Glu Glu Pro Asp Asp Gln Asn Arg Val 245 250

<210> 69

<211> 234

<212> PRT

<213> Cynomolgus

<220>

<221> MISC_FEATURE

<222> (1)..(234)

<223> FcgammaRIIIA - Alpha chain

<400> 69

Glu Asp Leu Pro Lys Ala Val Val Phe Leu Glu Pro Gln Trp Tyr Arg 1 5 10 15

Val Leu Glu Lys Asp Arg Val Thr Leu Lys Cys Gln Gly Ala Tyr Ser 20 25 . 30

Pro Glu Asp Asn Ser Thr Arg Trp Phe His Asn Glu Ser Leu Ile Ser 35 40 45

Ser Gln Thr Ser Ser Tyr Phe Ile Ala Ala Ala Arg Val Asn Asn Ser 50 55 60

Gly Glu Tyr Arg Cys Gln Thr Ser Leu Ser Thr Leu Ser Asp Pro Val 65 70 75 80

Gln Leu Glu Val His Ile Gly Trp Leu Leu Leu Gln Ala Pro Arg Trp 85 90 95

Val Phe Lys Glu Glu Glu Ser Ile His Leu Arg Cys His Ser Trp Lys 100 105 110

Asn Thr Leu Leu His Lys Val Thr Tyr Leu Gln Asn Gly Lys Gly Arg 115 120 125

Lys Tyr Phe His Gln Asn Ser Asp Phe Tyr Ile Pro Lys Ala Thr Leu 130 135 140

Lys Asp Ser Gly Ser Tyr Phe Cys Arg Gly Leu Ile Gly Ser Lys Asn 145 150 155 160

Val Ser Ser Glu Thr Val Asn Ile Thr Ile Thr Gln Asp Leu Ala Val 165 170 175

Ser Ser Ile Ser Ser Phe Phe Pro Pro Gly Tyr Gln Val Ser Phe Cys 180 185 190

Leu Val Met Val Leu Leu Phe Ala Val Asp Thr Gly Leu Tyr Phe Ser 195 200 205

Met Lys Lys Ser Ile Pro Ser Ser Thr Arg Asp Trp Glu Asp His Lys 210 215 220

Phe Lys Trp Ser Lys Asp Pro Gln Asp Lys 225 230

<210> 70

<211> 99

<212> PRT

<213> Cynomolgus

<220>

<221> MISC_FEATURE

<222> (1)..(99)

<223> Beta-2 microglobulin

<400> 70

Marie F.

Ile Gln Arg Thr Pro Lys Ile Gln Val Tyr Ser Arg His Pro Pro Glu

Asn Gly Lys Pro Asn Phe Leu Asn Cys Tyr Val Ser Gly Phe His Pro

Ser Asp Ile Glu Val Asp Leu Leu Lys Asn Gly Glu Lys Met Gly Lys

Val Glu His Ser Asp Leu Ser Phe Ser Lys Asp Trp Ser Phe Tyr Leu

Leu Tyr Tyr Thr Glu Phe Thr Pro Asn Glu Lys Asp Glu Tyr Ala Cys

Arg Val Asn His Val Thr Leu Ser Gly Pro Arg Thr Val Lys Trp Asp

Arg Asp Met

<210> 71

<211> 342 <212> PRT

<213> Cynomolgus

<220>

<221> MISC_FEATURE

<222> (1)..(342)

<223> FcgammaRn alpha-chain (S3)

<400> 71

Ala Glu Ser His Leu Ser Leu Leu Tyr His Leu Thr Ala Val Ser Ser

Pro Ala Pro Gly Thr Pro Ala Phe Trp Val Ser Gly Trp Leu Gly Pro

Gln Gln Tyr Leu Ser Tyr Asp Ser Leu Arg Gly Gln Ala Glu Pro Cys

Gly Ala Trp Val Trp Glu Asn Gln Val Ser Trp Tyr Trp Glu Lys Glu 50

Thr Thr Asp Leu Arg Ile Lys Glu Lys Leu Phe Leu Glu Ala Phe Lys 70

_ سيعديد _ التعاد

Ala Leu Gly Gly Lys Gly Pro Tyr Thr Leu Gln Gly Leu Leu Gly Cys 85 90 95

Glu Leu Ser Pro Asp Asn Thr Ser Val Pro Thr Ala Lys Phe Ala Leu 100 105 110

Asn Gly Glu Glu Phe Met Asn Phe Asp Leu Lys Gln Gly Thr Trp Gly 115 120 125

Gly Asp Trp Pro Glu Ala Leu Ala Ile Ser Gln Arg Trp Gln Gln 130 135 140

Asp Lys Ala Ala Asn Lys Glu Leu Thr Phe Leu Leu Phe Ser Cys Pro 145 150 155 160

His Arg Leu Arg Glu His Leu Glu Arg Gly Arg Gly Asn Leu Glu Trp 165 170 175

Lys Glu Pro Pro Ser Met Arg Leu Lys Ala Arg Pro Gly Asn Pro Gly 180 185 190

Phe Ser Val Leu Thr Cys Ser Ala Phe Ser Phe Tyr Pro Pro Glu Leu 195 200 205

Gln Leu Arg Phe Leu Arg Asn Gly Met Ala Ala Gly Thr Gly Gln Gly 210 215 220

Asp Phe Gly Pro Asn Ser Asp Gly Ser Phe His Ala Ser Ser Ser Leu 225 230 235 240

Thr Val Lys Ser Gly Asp Glu His His Tyr Cys Cys Ile Val Gln His 245 250 255

Ala Gly Leu Ala Gln Pro Leu Arg Val Glu Leu Glu Thr Pro Ala Lys 260 265 270

Ser Ser Val Leu Val Val Gly Ile Val Ile Gly Val Leu Leu Leu Thr 275 280 285

Ala Ala Ala Val Gly Gly Ala Leu Leu Trp Arg Arg Met Arg Ser Gly 290 295 300

Leu Pro Ala Pro Trp Ile Ser Leu Arg Gly Asp Asp Thr Gly Ser Leu 305 310 315 320

San and

and the second second

Leu Pro Thr Pro Gly Glu Ala Gln Asp Ala Asp Ser Lys Asp Ile Asn 325 330 335

Val Ile Pro Ala Thr Ala 340

<210> 72

<211> 342

<212> PRT

<213> Cynomolgus

<220>

<221> MISC_FEATURE

<222> (1)..(342)

<223> FcgammaRn alpha-chain (N3)

<400> 72

Ala Glu Asn His Leu Ser Leu Leu Tyr His Leu Thr Ala Val Ser Ser $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Pro Ala Pro Gly Thr Pro Ala Phe Trp Val Ser Gly Trp Leu Gly Pro 20 25 30

Gln Gln Tyr Leu Ser Tyr Asp Ser Leu Arg Gly Gln Ala Glu Pro Cys 35 40

Gly Ala Trp Val Trp Glu Asn Gln Val Ser Trp Tyr Trp Glu Lys Glu 50 60

Thr Thr Asp Leu Arg Ile Lys Glu Lys Leu Phe Leu Glu Ala Phe Lys 65 70 75 80

Ala Leu Gly Gly Lys Gly Pro Tyr Thr Leu Gln Gly Leu Leu Gly Cys
85 90 95

Glu Leu Ser Pro Asp Asn Thr Ser Val Pro Thr Ala Lys Phe Ala Leu 100 105 110

Asn Gly Glu Glu Phe Met Asn Phe Asp Leu Lys Gln Gly Thr Trp Gly
115 120 125

Gly Asp Trp Pro Glu Ala Leu Ala Ile Ser Gln Arg Trp Gln Gln Gln 130 140

Asp Lys Ala Ala Asn Lys Glu Leu Thr Phe Leu Leu Phe Ser Cys Pro 50

Ri de

Tulan .

145

150

155

160

His Arg Leu Arg Glu His Leu Glu Arg Gly Arg Gly Asn Leu Glu Trp
165 170 175

Lys Glu Pro Pro Ser Met Arg Leu Lys Ala Arg Pro Gly Asn Pro Gly 180 185 190

Phe Ser Val Leu Thr Cys Ser Ala Phe Ser Phe Tyr Pro Pro Glu Leu 195 200 205

Gln Leu Arg Phe Leu Arg Asn Gly Met Ala Ala Gly Thr Gly Gln Gly 210 215 220

Asp Phe Gly Pro Asn Ser Asp Gly Ser Phe His Ala Ser Ser Ser Leu 225 230 235 240

Thr Val Lys Ser Gly Asp Glu His His Tyr Cys Cys Ile Val Gln His 245 250 255

Ala Gly Leu Ala Gln Pro Leu Arg Val Glu Leu Glu Thr Pro Ala Lys 260 265 270

Ser Ser Val Leu Val Val Gly Ile Val Ile Gly Val Leu Leu Thr 275 280 285

Ala Ala Ala Val Gly Gly Ala Leu Leu Trp Arg Arg Met Arg Ser Gly 290 295 300

Leu Pro Ala Pro Trp Ile Ser Leu Arg Gly Asp Asp Thr Gly Ser Leu 305 310 315 320

Leu Pro Thr Pro Gly Glu Ala Gln Asp Ala Asp Ser Lys Asp Ile Asn 325 330 335

Val Ile Pro Ala Thr Ala 340

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 3 July 2003 (03.07.2003)

(10) International Publication Number WO 2003/054213 A3

(51) International Patent Classification7: C12N 15/00, 5/00

C07H 21/04,

(21) International Application Number:

PCT/US2002/038805

(22) International Filing Date: 3 December 2002 (03.12.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

10/027,736

19 December 2001 (19.12.2001) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US

10/027.736 (CON)

Filed on

19 December 2001 (19.12.2001)

- (71) Applicant (for all designated States except US): GENEN-TECH, INC. [US/US]; 1 DNA Way, South San Francisco, CA 94080 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): PRESTA, Leonard, G. [US/US]; 1900 Gough Street, #206, San Francisco, CA 94109 (US). NAMENUK, Angela, K. [US/US]; 2948 Florida Street, Oakland, CA 94602 (US).

(74) Agent: DAIGNAULT, Ronald, A.; Merchant & Gould P.C. P.O. Box 2903, Minneapolis, MN 55402-0903 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- (88) Date of publication of the international search report: 22 January 2004

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NON-HUMAN PRIMATE FC RECEPTORS AND METHODS OF USE

(57) Abstract: The invention provides isolated non-human primate Fc receptor polypeptides, the nucleic acid molecules encoding the Fc receptor polypeptides, and the processes for production of recombinant forms of the Fc receptor polypeptides, including fusions, variants, and derivatives thereof. The invention also provides methods for evaluating the safety, efficacy and biological properties of Fc region containing molecules using the non-human primate Fc receptor polypeptides.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/38805

	SIFICATION OF SUBJECT MATTER				
US CL	IPC(7) : C07H 21/04; C12N 15/00, 5/00 US CL : 536/23.5; 435/320.1,325				
	International Patent Classification (IPC) or to both r	national classification and IPC			
B. FIEL	DS SEARCHED				
	cumentation searched (classification system followed 36/23.5; 435/320.1,325	by classification symbols)			
Documentation	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched				
	ta base consulted during the international search (nau GENESEQ, EST, PGPUB, GENEMBL	ne of data base and, where practicable, s	earch terms used)		
C. DOC	UMENTS CONSIDERED TO BE RELEVANT				
Category *	Citation of document, with indication, where a		Relevant to claim No.		
A	GenEmbl Database, National Center For Biotechno Medicine, NIH (Bethesda, MD, USA), Accession I "Binding of human IgG to cynomolgus FcR", Gene identical to SEQ ID NO:9.	Number AF485812, NAMENUK et al,	1-2, 7-13		
Further	documents are listed in the continuation of Box C.	See patent family annex.			
* Si	pecial categories of cited documents:	"T" later document published after the inte date and not in conflict with the appli			
	defining the general state of the art which is not considered to be lar relevance	principle or theory underlying the inv			
"E" earlier ap	plication or patent published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be considered when the document is taken alone			
"L" document establish t specified)	which may throw doubts on priority claim(s) or which is cited to the publication date of another citation or other special reason (as	"Y" document of particular relevance; the considered to involve an inventive ste combined with one or more other suc-	p when the document is		
"O" document	referring to an oral disclosure, use, exhibition or other means	being obvious to a person skilled in th	e art		
"P" document published prior to the international filing date but later than the "&" document member of the same patent family priority date claimed					
	ctual completion of the international search	Date of mailing of the international sea	rch reported of the definite		
	003 (22.10.2003)	Authorized officer O	1.1		
Mai Con	Name and mailing address of the ISA/US Mail Stop PCT, Attn: ISA/US Commissioner for Patents Authorized officer Cary B. Nickol Ph.D.				
P.O. Box 1450 Alexandria, Virginia 22313-1450 Facsimile No. (703)305-3230 Telephone No. 703-308-0196					

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

PCT/US02/38805

Continuation of Item 4 of the first sheet:

There is a misspelled word in the title.

NEW TITLE:

NON-HUMAN PRIMATE FC RECEPTORS AND METHODS OF USE

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group 1-17, claim(s) 1-2, 7-13, drawn to the special technical feature of ONE isolated nucleic acid encoding ONE of the seventeen non-human primate Fc receptor polypeptide from those sequences listed in Claims 1 and 2. Upon payment of additional search fees, applicant should indicate the nucleic acid and corresponding encoded polypeptide by SEQ ID NO. If no additional search fees are provided, the first sequence in Claim 1 (i.e. SEQ ID NO:9) will be searched together with the first sequence listed in Claim 2 (SEQ ID NO:1).

Groups 18-29, claim(s) 3-13, drawn to the special technical feature of a method for obtaining one nucleic acid sequence encoding an Fc receptor polypeptide comprising using ONE of the twelve sets of forward and reverse primers listed in Claim 3. Upon payment of additional search fees, applicant should indicate the sets of primers to be searched. If no additional search fees are provided, the first set of primers (i.e. SEQ ID NO: 31 and SEQ ID NO:32) will be searched.

Groups 30-46, claim(s) 14, 18-24 drawn to the special technical feature of ONE of the seventeen isolated polypeptides listed in Claim 14 and corresponding variant polypeptides cited in Claims 18-24. Upon payment of additional search fees, applicant should indicate the polypeptide by SEQ ID NO. If no additional search fees are provided, the first sequence in Claim 14 (i.e. SEQ ID NO:9 & variants) will be searched.

Groups 47-52, claim(s) 15-17, drawn to the special technical feature of ONE of the six isolated fusion polypeptides listed in Claim 15. Upon payment of additional search fees, applicant should indicate the selected fusion polypeptide by SEQ ID NO. If no additional search fees are provided, the first sequence in Claim 15 (i.e. amino acids 1-269 of SEQ ID NO: 65) will be searched.

Groups 53-57, claim(s) 25-35, drawn to the special technical feature of a method for evaluating at least one biological property of an Fc region containing molecule comprising contacting ONE of the five isolated non-human FC receptor polypeptides from those listed in Claim 34. Upon payment of additional search fees, applicant should indicate the non-human FC receptor polypeptide by SEQ ID NO. If no additional search fees are provided, the first sequence in Claim 34 (i.e. amino acids 1-265 of SEQ ID NO: 65) will be searched.

Group 58, claim(s) 36-39, drawn to the special technical feature of a method for identifying agents that have increased affinity for at least one cynomolgus FC receptor polypeptide with an ITAM region compared to human Fc receptor polypeptides.

Group 59, claim(s) 40-41, drawn to the special technical feature of a method for identifying an agent that has an altered affinity for a cynomolgus Fc receptor polypeptide with an ITIM region compared to corresponding human Fc receptor polypeptide.

The inventions listed as Groups 1-59 do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/38805

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1 Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claim Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claim Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows: Please See Continuation Sheet
 As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-2, 7-13 (SEQ ID NO:9ix and 1)
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.
Mo protest accompanies the payment of authitorial scalett tees.

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1998)

PCT/US02/38805

INTERNATIONAL SEARCH REPORT

The technical feature linking Groups 1-59 are isolated nucleic acids comprising polynucleotide sequences that encode non-human primate FC receptor polypeptides or fragments thereof. The polypeptide or fragments thereof can be any one of SEQ ID Nos: 9, 11, 15, 17-18, 20, 25, 29, or 64-72. It is noted that the specification teaches (page 13) that the term "fragment" is used to describe a portion of an Fc receptor polypeptide or a nucleic acid encoding a portion of an Fc receptor polypeptide.

However, the (GenEmbl Database, Accession No.L03418, May 1993) teaches an isolated nucleic acid comprising a polymucleotide sequence that encodes a polypeptide with 95% similarity to SEQ ID NO:9. Hence, the prior art reads on an isolated nucleic acid encoding a fragment of SEQ ID NO:9.

Therefore, the technical feature linking the inventions of Groups 1-59 does not constitute a special technical feature as defined by PCT Rule 13.2 as it does not define a contribution over the prior art.

Form PCT/ISA/210 (second sheet) (July 1998)