

We claim:

- 1 1. A plasmid comprising:
 - 2 a primer sequence capable of annealing to a first portion of nucleic acid
 - 3 encoding a polypeptide;
 - 4 a collar sequence capable of annealing to a second portion of the nucleic acid
 - 5 encoding a polypeptide, the second portion of the nucleic acid encoding a polypeptide
 - 6 being at least 20 nucleotides removed from the first portion of the nucleic acid
 - 7 encoding a polypeptide; and
 - 8 at least one restriction site located between the primer and collar sequences.

1 1 2. A plasmid as in claim 1 wherein the primer and collar sequences are capable of
2 annealing to first strand cDNA encoding a polypeptide.

1 1 2. 3. A plasmid as in claim 1 wherein the primer and collar sequences are capable of
2 annealing to mRNA encoding a polypeptide.

1 1 2. 4. A plasmid as in claim 1 wherein the primer and collar sequences are capable of
2 annealing to mRNA encoding at least a portion of an antibody.

1 1 2. 3. 4. 5. A plasmid as in claim 1 wherein the collar sequence is capable of annealing to
2 a portion of the nucleic acid encoding a polypeptide that is remote in the 5' direction
3 from the portion of the nucleic acid to which the primer sequence is capable of
4 annealing.

1 1 6. A host cell transformed with a plasmid of claim 1.

1 1 7. A method of producing nucleic acid encoding a polypeptide, the method
2 comprising the steps of :

1 a) providing a plasmid containing a primer sequence adapted to anneal to a
2 first portion of nucleic acid encoding a polypeptide and a collar sequence adapted to
3 anneal to a second portion of the nucleic acid encoding a polypeptide, the second
4 portion of the nucleic acid encoding a polypeptide being at least 20 nucleotides
5 removed from the first portion of the nucleic acid encoding a polypeptide;
6 b) cleaving the plasmid at one or more restriction sites, the one or more
7 restriction sites being located on the plasmid between the primer and collar
8 sequences; and
9 c) exposing the cleaved plasmid to nucleic acid encoding a polypeptide in an
10 aqueous environment containing nucleotides and one or more enzymes selected from
11 the group consisting of polymerase, reverse transcriptase, ligases and combinations
12 thereof to form a nucleic acid strand that is complementary to the nucleic acid
13 encoding a polypeptide, the complementary nucleic acid strand being formed between
14 the primer and collar sequences whereby the plasmid is ligated and circularized.

1 8. The method of claim 7 further comprising the step of removing the
2 complementary nucleic acid strand from the plasmid.

1 9. A method as in claim 7 wherein the step of cleaving the plasmid comprises
2 exposing the plasmid to an oligonucleotide that hybridizes to the one or more
3 restriction sites on the plasmid prior to exposing the plasmid to a restriction enzyme.

1 10. A method as in claim 7 wherein the step of exposing the cleaved plasmid to a
2 nucleic acid encoding a polypeptide comprises exposing the cleaved plasmid to mRNA
3 encoding a polypeptide.

1 11. A method as in claim 10 wherein the cleaved plasmid is exposed to mRNA
2 encoding at least a portion of an antibody.

1 12. A method as in claim 7 wherein the step of exposing the cleaved plasmid to a
2 nucleic acid encoding a polypeptide comprises exposing the cleaved plasmid to first
3 strand cDNA.

1 13. A host cell transformed with a circularized plasmid produced in step c) of claim
2 7.

1 14. A polypeptide produced using the plasmid of claim 1.

1 15. A polypeptide produced using the circularized plasmid produced in step c) of
2 claim 7.

1 16. A plasmid comprising:

2 a primer sequence adapted to anneal to a first portion of a nucleic acid
3 encoding a polypeptide;

4 a collar sequence adapted to anneal to a second portion of the nucleic acid
5 encoding a polypeptide, the second portion of the nucleic acid encoding a polypeptide
6 being at least 20 nucleotides removed from the first portion of the nucleic acid
7 encoding a polypeptide; and

8 a nucleic acid strand that is complementary to the nucleic acid encoding a
9 polypeptide, the complementary nucleic acid strand being formed in situ between the
10 primer and collar sequences.

1 17. A plasmid as in claim 16 wherein the primer and collar sequences are adapted
2 to anneal to first strand cDNA encoding a polypeptide.

1 18. A plasmid as in claim 16 wherein the primer and collar sequences are adapted
2 to anneal to mRNA encoding a polypeptide.

1 19. A plasmid as in claim 16 wherein the primer and collar sequences are adapted
2 to anneal to a portion of mRNA encoding at least a portion of an antibody.

- 1 20. A host cell transformed with a plasmid of claim 16.
- 1 21. A polypeptide produced using a plasmid of claim 16.
- 1 22. A plasmid containing a nucleic acid sequence encoding at least a portion of a
2 polypeptide prepared in accordance with the method of claim 7.
- 1 23. A plasmid comprising:
2 a downstream primer capable of annealing to a first portion of mRNA encoding
3 at least a portion of an antibody;
4 an upstream collar sequence capable of annealing to a second portion of the
5 mRNA encoding at least a portion of an antibody; and
6 at least one restriction site located between the downstream primer and
7 upstream collar sequence.
- 1 24. A plasmid as in claim 23 wherein the upstream collar sequence is capable of
2 annealing to a portion of the mRNA encoding a framework region of an antibody.
- 1 25. A plasmid as in claim 23 wherein the upstream collar sequence is capable of
2 annealing to a leader sequence of the mRNA encoding an antibody.
- 1 26. A plasmid as in claim 23 wherein the upstream collar sequence is capable of
2 annealing to a portion of the mRNA encoding a framework region associated with a
3 light chain of an antibody.
- 1 27. A plasmid as in claim 23 wherein the upstream collar sequence is capable of
2 annealing to a portion of the mRNA encoding a framework region associated with a
3 heavy chain of an antibody.
- 1 28. A plasmid as in claim 23 wherein the downstream primer is capable of
2 annealing to a portion of the mRNA encoding a constant region of an antibody.

1 29. A plasmid as in claim 23 wherein the downstream primer is capable of
2 annealing to a portion of the mRNA encoding a constant region associated with a light
3 chain of an antibody.

1 30. A plasmid as in claim 23 wherein the downstream primer is capable of
2 annealing to a portion of the mRNA encoding a framework two (FR2), framework three
3 (FR3) or framework four (FR4) region associated with a light chain of an antibody.

1 31. A plasmid as in claim 23 wherein the downstream primer is capable of
2 annealing to a portion of the mRNA encoding a constant region associated with a
3 heavy chain of an antibody.

1 32. A plasmid as in claim 23 wherein the downstream primer is capable of
2 annealing to a portion of the mRNA encoding a framework two (FR2), framework three
3 (FR3) or framework four (FR4) region associated with heavy chain of an antibody.

1 33. A plasmid as in claim 23 wherein the downstream primer comprises SEQ. ID.
2 NO: 4.

1 34. A plasmid as in claim 23 wherein the downstream primer comprises SEQ. ID.
2 NO: 8.

1 35. A plasmid as in claim 23 wherein the upstream collar sequence comprises
2 SEQ. ID. NO: 3.

1 36. A plasmid as in claim 23 wherein the upstream collar sequence comprises
2 SEQ. ID. NO: 7.

1 37. A host cell transformed with a plasmid of claim 23.

- 1 38. A method of producing nucleic acid encoding at least a portion of an antibody,
2 the method comprising the steps of :
- 3 a) providing a plasmid containing a downstream primer adapted to anneal to a
4 first portion of mRNA encoding at least a portion of an antibody and an upstream collar
5 sequence adapted to anneal to a second portion of the mRNA encoding at least a
6 portion of an antibody;
- 7 b) cleaving a plasmid at one or more restriction sites, the one or more
8 restriction sites being located on the plasmid between the downstream primer and
9 upstream collar sequence;
- 10 c) exposing the cleaved plasmid to the mRNA encoding at least a portion of an
11 antibody in an aqueous environment containing reverse transcriptase and nucleotides
12 to form a nucleic acid strand that is complementary to the mRNA, the complementary
13 nucleic acid strand being formed between the downstream primer and upstream collar;
14 and
- 15 d) ligating the complementary nucleic acid strand to the upstream collar
16 whereby the plasmid is ligated and circularized.
- 1 39. The method of claim 38 further comprising the step of removing the
2 complementary nucleic acid strand from the plasmid.
- 1 40. A method as in claim 38 wherein the step of cleaving the plasmid comprises
2 exposing the plasmid to a restriction enzyme.
- 1 41. A method as in claim 40 wherein the step of cleaving the plasmid comprises
2 exposing the plasmid to an oligonucleotide that hybridizes to the one or more
3 restriction sites on the single strand plasmid prior to exposing the plasmid vector to a
4 restriction enzyme.
- 1 42. A method as in claim 38 wherein the step of exposing the cleaved plasmid to
2 the mRNA forms a complementary nucleic acid strand encoding at least a light chain
3 of an antibody.

1 43. A method as in claim 38 wherein the step of exposing the cleaved plasmid to
2 the mRNA forms a complementary nucleic acid strand encoding at least a heavy chain
3 of an antibody.

1 44. A method as in claim 39 wherein the step of removing the complementary
2 nucleic acid strand from the plasmid comprises digesting the plasmid containing the
3 complementary nucleic acid strand.

1 45. A method as in claim 44 wherein the step of digesting the plasmid containing
2 the complementary nucleic acid strand comprises the steps of hybridizing a
3 oligonucleotide to a portion of the single strand antibody DNA to provide a double
4 stranded restriction site and exposing the double stranded restriction site to a
5 restriction enzyme.

1 46. A method as in claim 38 wherein the step of providing a plasmid comprises
2 providing a plasmid wherein the upstream collar sequence is adapted to anneal to a
3 portion of the mRNA encoding a framework region of an antibody.

1 47. A method as in claim 38 wherein the step of providing a plasmid comprises
2 providing a plasmid wherein the upstream collar sequence is adapted to anneal to a
3 portion of the mRNA encoding a framework region associated with a light chain of an
4 antibody.

1 48. A method as in claim 38 wherein the step of providing a plasmid comprises
2 providing a plasmid wherein the upstream collar sequence is adapted to anneal to a
3 portion of the mRNA encoding a framework region associated with a heavy chain of an
4 antibody.

1 49. A method as in claim 38 wherein the step of providing a plasmid comprises
2 providing a plasmid wherein the downstream primer is adapted to anneal to a portion
3 of the mRNA encoding a constant region of an antibody.

1 50. A method as in claim 38 wherein the step of providing a plasmid comprises
2 providing a plasmid wherein the downstream primer is adapted to anneal to a portion
3 of the mRNA encoding a constant region associated with a light chain of an antibody.

1 51. A method as in claim 38 wherein the step of providing a plasmid comprises
2 providing a plasmid wherein the downstream primer is adapted to anneal to a portion
3 of the mRNA encoding a constant region associated with a heavy chain of an
4 antibody.

1 52. A method as in claim 38 wherein the step of providing a plasmid comprises
2 providing a plasmid wherein the upstream collar sequence comprises SEQ. ID. NO: 3.

1 53. A method as in claim 38 wherein the step of providing a plasmid comprises
2 providing a plasmid wherein the upstream collar sequence comprises SEQ. ID. NO: 7.

1 54. A method as in claim 38 wherein the step of providing a plasmid comprises
2 providing a plasmid wherein the downstream primer comprises SEQ. ID. NO: 4.

1 55. A method as in claim 38 wherein the step of providing a plasmid comprises
2 providing a plasmid wherein the downstream primer comprises SEQ. ID. NO: 8.

1 56. A host cell transformed with a circularized plasmid produced in step d) of claim
2 38.

1 57. An antibody or antibody fragment produced using the plasmid of claim 23.

1 58. An antibody or antibody fragment produced using the circularized plasmid
2 produced in step d) of claim 38.

1 59. A plasmid comprising:

1 a downstream primer adapted to anneal to a first portion of mRNA encoding at
2 least a portion of an antibody;
3 an upstream collar sequence adapted to anneal to a second portion of the
4 mRNA encoding at least a portion of an antibody; and
5 a nucleic acid strand that is complementary to the mRNA, the complementary
6 nucleic acid strand being formed in situ between the downstream primer and upstream
7 collar sequence to close the plasmid.

1 60. A plasmid as in claim 59 wherein the upstream collar sequence is adapted to
2 anneal to a portion of the mRNA encoding a framework region of an antibody.

1 1 61. A plasmid as in claim 59 wherein the upstream collar sequence is adapted to
2 anneal to a portion of the mRNA encoding a framework region associated with a light
3 chain of an antibody.

1 1 62. A plasmid as in claim 59 wherein the upstream collar sequence is adapted to
2 anneal to a portion of the mRNA encoding a framework region associated with a heavy
3 chain of an antibody.

1 1 63. A plasmid as in claim 59 wherein the downstream primer is adapted to anneal
2 to a portion of the mRNA encoding a constant region of an antibody.

1 64. A plasmid as in claim 59 wherein the downstream primer is adapted to anneal
2 to a portion of the mRNA encoding a constant region associated with a light chain of
3 an antibody.

1 65. A plasmid as in claim 59 wherein the downstream primer is adapted to anneal
2 to a portion of the mRNA encoding a constant region associated with a heavy chain of
3 an antibody.

1 66. A plasmid as in claim 59 wherein the upstream collar sequence comprises
2 SEQ. ID. NO: 3.

1 67. A plasmid as in claim 59 wherein the upstream collar sequence comprises
2 SEQ. ID. NO: 7.

1 68. A plasmid as in claim 59 wherein the downstream primer comprises SEQ. ID.
2 NO: 4.

1 69. A plasmid as in claim 59 wherein the downstream primer comprises SEQ. ID.
2 NO: 8.

1 70. A host cell transformed with a plasmid of claim 59.

1 71. An antibody or antibody fragment produced using the plasmid of claim 59.

1 72. A plasmid containing a nucleic acid sequence encoding at least a portion of an
2 antibody prepared in accordance with the method of claim 38.

1 73. A plasmid as in claim 1 wherein two restriction sites that are the same or
2 different are located between the downstream primer and upstream collar sequences.

1 74. A plasmid as in claim 23 wherein two restriction sites that are the same or
2 different are located between the downstream primer and upstream collar sequence.

1 75. A library containing a repertoire of antibodies or antibody fragments made using
2 the plasmid of claim 23.

1 76. A library containing a repertoire of antibodies or antibody fragments made using
2 the method of claim 38.

1 77. A library containing a repertoire of antibodies or antibody fragments made using
2 the plasmid of claim 59.

1 78. A method of producing nucleic acid encoding a polypeptide, the method
2 comprising the steps of :
3 a) providing a plasmid containing a primer sequence adapted to anneal to a
4 first portion of nucleic acid encoding a polypeptide;
5 b) cleaving the plasmid at one or more restriction sites, the one or more
6 restriction sites being located on the plasmid to provide a cleaved plasmid having the
7 primer at one end thereof and a free end; and
8 c) exposing the cleaved plasmid to nucleic acid encoding a polypeptide in an
9 aqueous environment containing nucleotides and one or more enzymes selected from
10 the group consisting of polymerase, reverse transcriptase, ligases and combinations
11 thereof to form a nucleic acid strand that is complementary to the nucleic acid
12 encoding a polypeptide, the complementary nucleic acid strand being formed attached
13 to the primer and having a free end.

1 79. A method as in claim 78 further comprising the step of joining the free end of
2 the complementary nucleic acid strand to the free end of the plasmid whereby the
3 plasmid is circularized.

1 80. A method as in claim 79 wherein the step of joining comprises providing a
2 bridging oligonucleotide.

1 81. The method of claim 78 further comprising the step of removing the
2 complementary nucleic acid strand from the cleaved plasmid.

1 82. A method as in claim 78 wherein the step of exposing the cleaved plasmid to a
2 nucleic acid encoding a polypeptide comprises exposing the cleaved plasmid to first
3 strand cDNA.

- 1 83. A method as in claim 82 wherein the cleaved plasmid is exposed to antibody
 - 2 cDNA encoding at least a portion of an antibody.
 - 1 84. A method as in claim 82 wherein the first strand cDNA is cleaved at a restriction
 - 2 site prior to being exposed to the cleaved plasmid.

— 18 —

卷之三