

Elements of Linear Discriminant Functions

Battista Biggio

Department of Electrical and Electronic Engineering
University of Cagliari, Italy

Introduction

- We assume here that the form of the discriminant functions $f_k(x; \theta)$, k = 1, ..., K is given, and that we can use the training data to estimate their parameters θ
 - In Part 4, instead, we assumed that the underlying probability densities were known
- These methods are known as nonparametric
 - No assumption on the form of the underlying data probability distributions is made
- We focus here on functions that are linear in x, i.e., $f(x; \theta) = w^T x + b$, with $\theta = (w, b)$

Example of linear discriminant functions on a 3-class classification problem

- Linear function: $f(x) = w^T x + b = \sum_{j=1}^d w_j x_j + b$
 - w is the weight vector, and b the bias
- Two-class classification
 - Positive (y = +1) vs negative (y = -1) class
 - Decision rule: $y = \begin{cases} +1 & \text{if } f(x) \ge 0 \\ -1, & \text{otherwise} \end{cases}$

Graphical representation

- Each input feature value x_j is multiplied by the corresponding weight value w_i
- Bias is multiplied by 1
- The output unit sums all its inputs, computing f(x) and thresholds it to estimate y (+1 or -1)

$$D = \{x_i, y_i\}_{i=1}^n$$

$$x \in \mathbb{R}^d$$

$$y \in \{-1, +1\}$$

- The function $f(x) = w^T x + b$ projects x onto the hyperplane normal
 - Its value is proportional to the distance of x to the hyperplane

- By linearity, it is easy to see that multiplying f(x) by a constant factor amounts to multiplying its parameters by the same factor
 - For example: $2 \cdot f(x) = 2 \mathbf{w}^T x + 2b = \hat{\mathbf{w}}^T x + \hat{b}$, with $\hat{\mathbf{w}} = 2\mathbf{w}$ and $\hat{b} = 2b$
- While the boundary at f(x) = 0 does not change, the slope of the function changes!

A Simple Example: The Nearest Mean Classifier (NMC)

• This classifier estimates the mean values μ_1 and μ_2 of the two classes from the training set and assigns unknown samples x^* to the class with the smallest Euclidean distance:

$$d(\mathbf{x}^*, \boldsymbol{\mu}_2) \overset{\omega_1}{\underset{\omega_2}{\leq}} d(\mathbf{x}^*, \boldsymbol{\mu}_1)$$

- It is easy to see that the decision boundary is the hyperplane perpendicular to the vector $(\mu_1 \mu_2)$ and passing through the mean point $(\mu_1 + \mu_2)/2$
- Accordingly, the NMC is a linear classifier
 - Try to find its w and b parameter values!

- How do we estimate the classifier parameters w and b?
- Modern approaches formulate the learning problem as an optimization problem
 - This is generally true also for nonlinear classification functions $f(x; \theta)$, including modern deep-learning approaches and neural networks

- The loss function $\ell(y_i, f(x_i))$ measures how much a prediction is wrong
 - e.g., the zero-one loss is 0 if points are correctly predicted, and 1 if they are not
- The regularization term $\Omega(\theta)$ imposes a penalty on the magnitude of the classifier parameters to avoid overfitting and promote smoother functions, i.e., functions that change more gradually as we move across the feature space
- The hyperparameter λ tunes the trade-off between the training loss and regularization
 - Larger values tend to promote more regularized functions but with a larger training error
 - Smaller values tend to reduce the training error but learn more complex functions

• We start by considering a simplified setting in which we aim to find the best parameters $\theta = (w, b)$ that minimize the loss function $L(D, \theta)$, being $D = (x_i, y_i)_{i=1}^n$ the training dataset:

$$\boldsymbol{\theta}^* = \operatorname{argmin}_{\boldsymbol{\theta}} L(D, \boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, f(\boldsymbol{x}_i; \boldsymbol{\theta}))$$

- The loss function quantifies the error that the classifier, parameterized by θ , is making on its predictions on the training data D
 - This is also known as the principle of **Empirical Risk Minimization (ERM)**
- How do we select the loss function $L(D, \theta)$ and solve the above problem?

In principle, we would like to minimize

$$L(D, \boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(\boldsymbol{x}_i; \boldsymbol{\theta}))$$

- where $\ell(y_i, f(x_i; \boldsymbol{\theta}))$ is the zero-one loss
 - equal to 1 for correct predictions and 0 otherwise

$$\ell(y_i, f(\mathbf{x}_i; \boldsymbol{\theta})) = \begin{cases} 1, & \text{if } y \cdot f(\mathbf{x}) < 0 \\ 0, & \text{if } y \cdot f(\mathbf{x}) \ge 0 \end{cases}$$

 However, minimizing this step function is hard and computationally inefficient

Note that yf(x) is positive for correct predictions and negative for wrong ones.

For correct (wrong) predictions, y and f(x) agree (disagree) in sign.

The Zero-One Loss Landscape

Non convex, hard to optimize (flat regions, bad local minima)

Why Is Convexity Important for Optimization?

• Convexity: $f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$

Desirable properties for optimization: no local minima, convergence guarantees, etc.

Loss Functions

Now, recall that we aim to minimize:

$$L(D, \boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(\boldsymbol{x}_i; \boldsymbol{\theta}))$$

- being $\ell(y_i, f(x_i; \boldsymbol{\theta}))$ the zero-one loss
- However, we know that minimizing this nonconvex function is particularly difficult
- For this reason, convex (surrogate) loss functions are typically preferred
 - The tighter convex upper bound on the zero-one loss is called the hinge loss

Hinge Loss

The hinge loss is computed as:

$$\ell(y, f(x; \theta)) = \max(0, 1 - yf)$$

- It is the closest convex upper bound on the 0-1 loss
- Why are we interested in an upper bound?
 - since minimizing it, we also minimize the 0-1 loss
- Convexity helps finding solutions efficiently while also providing guarantees on the uniqueness of the solution, algorithmic convergence, etc.
 - This is why convex surrogate functions are typically preferred in optimization

Note that yf(x) is positive for correct predictions and negative for wrong ones

The Hinge Loss Landscape

Piecewise linear and convex, easier to optimize

A Closer Look at the Loss Minimization Problem

- Let's assume we fix b = 0 and aim to minimize the training loss only w.r.t. w_1, w_2
- Each pair w_1, w_2 thus represents a different linear classifier (passing through the origin)
- For each of these classifiers, we report the corresponding training loss in a colored plot
 - this will show us the optimization landscape, i.e., the surface of the function we aim to minimize

