

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3F03 Advanced Differential Equations

Instructor: David Earn

Lecture 18
Matrix Exponentials
Wednesday 16 October 2013

Announcements

Test #1

Date: Wednesday 30 October 2013

Time: 11:30am to 1:20pm

Location: T29 / 101

■ Further info may be posted on the course wiki closer to the test date.

Announcements

- Assignment 3 due on Friday 25 Oct 2013.
 - Check course wiki for updates!
 - More questions will be posted by the end of the week!
- Tutorial this Friday, 18 Oct 2013.

Generalizing the solution of the 1D linear equation

Lemma (What you learned in Kindergarten)

If $a \in \mathbb{R}$ then the unique solution to the one-dimensional initial value problem

$$x'=ax$$
, $x(0)=x_0\in\mathbb{R}$,

is
$$x(t) = x_0 e^{at}$$
.

How can we generalize this?

Generalizing the solution of the 1D linear equation

Theorem (Solution of Arbitrary Linear Systems in \mathbb{R}^n)

If A is an $n \times n$ real matrix then the unique solution of the IVP

$$X'=AX\,,\qquad X(0)=X_0\in\mathbb{R}^n\,,$$

is

$$X(t)=e^{tA}X_0.$$

- Wow!
- What exactly does this mean?
- How do we even **define** e^A if A is a matrix?

The Matrix Exponential

- We know meaning of matrix powers, A^k , where $k \in \mathbb{N}$.
- We know power series representation of e^x for $x \in \mathbb{R}$.
- So define the matrix exponential via the series!

Definition (Matrix Exponential e^A)

If A is an $n \times n$ matrix then

$$e^A = \lim_{n \to \infty} \sum_{k=0}^n \frac{1}{k!} A^k \,,$$

where $A^0 \equiv I_n$, the $n \times n$ identity matrix.

- For this definition to be useful, we must prove that the matrix series *converges* for any *A*.
- We'll return to this later...
- Let's first look at an example.

Example: diagonal matrix

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \qquad A^3 = \begin{pmatrix} 1 & 0 \\ 0 & 8 \end{pmatrix} A^2 = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} \qquad A^k = \begin{pmatrix} 1 & 0 \\ 0 & 2^k \end{pmatrix} \qquad \therefore \quad e^A = \begin{pmatrix} e & 0 \\ 0 & e^2 \end{pmatrix}$$

Lemma (e^A for diagonal matrices)

If
$$A=diag(a_1,\ldots,a_n)$$
, with $a_i\in\mathbb{R}$ for all i , then

$$e^A = diag(e^{a_1}, \ldots, e^{a_n}).$$

Calculating e^A for general A

- How do we calculate e^A if A is not diagonal?
- Hint: $(S^{-1}BS)^k = S^{-1}B^kS$.
- .: Change to a more convenient basis! Such as... a basis in which A is diagonal!
- Is that always possible?
- No.
- Best we can do in general is Jordan Canonical Form (JCF).
- After coverting to JCF, task reduces to
 - Compute e^B for each Jordan block B separately.
 - Convert back to original coordinates.

Important Properties of Matrix Exponentials

Proposition

For $n \times n$ matrices A, B, T:

- (i) $e^{T^{-1}AT} = T^{-1}e^{A}T$
- (ii) $AB = BA \implies e^{A+B} = e^A e^B$
- (iii) e^A is invertible and $(e^A)^{-1} = e^{-A}$
 - Proof of (ii) is non-trivial.
 - Is there a (non-trivial) condition on the *entries* of A and B that guarantees that $e^{A+B} = e^A e^B$?