### Digital Thermometer

Balu - Aizsbtechllol7 Manohar-Aizsbtechllo28

### AIM:

The objective of this project is to design and Implement a digital thermometer that measures temperature using a PT-100 Resistance Temperature Detector (RTD), Processes the signal through an Ardvino microcontroller, and Displays the Temperature on a 16x2 LCD. The Temperature is Determined using linear regression (least squares method).

## Components:-

- · PT-100 RTD
- · Arduino Uno
- · Jumper wires
- · Bread board
- · Potentiometer
- · LCD (16x2)
- · 100-22 Resistor

### Procedure:

- 1) Boild the circuit.
- 2) write arduino code to measure voltage.
- 3) Take Data Set of Temparature and voltage using thermometer.
- 4) callendux van dusen equations.
  - 1)  $V = N_0 + N_1 + N_2 T^2$
  - 2) T= a0+ a1 + a2 v2
- 5) use least savakes method on pota set and find the coefficients.
- 6) Vulidate this model using 10 pata points (T, V).
- analyze parameters.

## Circuit :







### Quadratic Fit: $T = 8.213e + 02V^2 + (-3.641e + 03)V + (4.073e + 03)V$



| V      | Т     |
|--------|-------|
| 2.0283 | 66.25 |
| 2.0332 | 64.4  |
| 2.0381 | 63.5  |
| 2.043  | 62.2  |
| 2.0479 | 61.2  |
| 2.0528 | 60.0  |
| 2.0577 | 58.8  |
| 2.0626 | 57.54 |
| 2.0674 | 55.77 |
| 2.0723 | 54.45 |
| 2.0821 | 51.85 |
| 2.087  | 50.2  |
| 2.0919 | 49.0  |
| 2.1114 | 45.06 |
| 2.1212 | 44.34 |
| 2.131  | 43.9  |
| 2.1408 | 42.8  |
| 2.1652 | 40.8  |
| 2.175  | 39.8  |
| 2.1799 | 38.76 |
| 2.1848 | 37.23 |
| 2.2092 | 36.58 |

method of solving to find coefficients:

let the measured data points be (Ti, Vi) i=1,2, - - h

Callendux van busen eauation

V= no+n, T+ not?

In matrix form

where 
$$C = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$
  $X = \begin{pmatrix} 1 & T_1 & T_1^2 \\ 1 & 1 & 1 \\ 1 & T_2 \end{pmatrix}$   $N = \begin{pmatrix} n_0 \\ n_1 \\ n_2 \end{pmatrix}$ 

In linear regression we tend to minimize the Som of Sourced residuals

$$= (c^{\tau} - n^{\tau} x^{\tau}) (c - x n)$$

we want  $\frac{d(E(m))}{dn} = 0$ 

$$n = (x^T \times )^T \times T \vee$$

we got 
$$\binom{n_0}{n_1} = \binom{2.773782}{1.5400376-04}$$

#### Quadratic Fit: $T = 8.115e+02V^2 + (-3.600e+03)V + (4.030e+03)$ Data points 60 Quadratic fit 58 56 54 52 50 48 46 44 2.09 2.12 2.05 2.06 2.07 2.08 2.10 2.11 2.13 ٧ Τ 2.0528 60.39 2.0674 56.64 2.0772 54.33 2.087 52.18 2.0919 51.16 2.1017 49.24 2.1065 48.34 2.1114 47.48 2.1163 46.65 2.1212 45.86 2.131 44.41

## Calculating exxox:

By mean abodute essor (M.A.E) for 10 pata points

T; - Temporature by model

Ti- Tempasatuse by Thesometes

# performance of model:

The model is moderate - good with deviation of 2.5°c.

## Source of expors:

- i) availability of poor ovality and defect materials.
- 2) providing Small data set to model.
- 3) Human exxors while measuring.
- 4) Appronimation excess in the least savaries method.
- 5) Sensor material uncertainties.

## Arduino Code

```
# include < Liquid Crystal.h>
 11 Initialize LCD with Pin numbers: RS, E, D4, D5, D6, D7
 Liquid Crystal (cd (12,11,5,4,3,2);
float a0 = 4026.380134;
float a1 = -3597.164799;
float az = 810.934776;
11 Pen definitions
 Const int PT100_PIN = A1;
 11 Constants for PT100 and voltage divider
 Const float VCC = 5.0;
 H. Constants
 1/ calibration Parameters (adjust after Calebration)
float offset = 1.0:
float sensitivity =10;
 Void setup() {
 Serial begin (9600);
// Instialize LCD, 16 columns
                         and
                              2 x0ws
  lcd. begin (16,2);
11 Display startup message
  lcd . Print ("PT100 Temp");
```

lcd. clear ();

```
analog Reference CDEFAULT);
 4
Noig foob()?
  11 Read analog value from Voltage divider
     adc Value = analog Read (PT100_PIN);
  11 Convert APC value to voltage
 float voltage = (adevalue* vcc)/1023.0;
 float temperature = a0+ a1* voltage + a2*voltage * voltage;
 (Calibrating the temperature by 10
   temperature = (temperature * Sensitivity) + Offset;
  11 show temperature on LCD
    led·dear();
    lcd. set Cursor (0,0):
    ked · print (" Temp: ").
    lcd. Print (temperature, 2);
    lcd · print ("c");
    lcd. set cursor (0,1):
    Lcd. print ("V: ");
    Icd. Prent (voltage, 4);
    led- print ("V");
   deby (1000):
```

# linear regression code

impost numpy as np

T= NP. array ([66.25, 64.40, 63.50, 62.20, 61.20, 60.00, 58.80 67.54, 55.77, 54.45, 51.85, 50.20, 49.00, 45.06, 44.34, 43.9, 42.8, 40.8, 39.80, 38.76, 37.23, 36.58])

5.5005])

5.114, 5.1515, 5.1310, 5.1408, 5.1695, 5.1790, 5.1709, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0811, 5.0870, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.0810, 5.081

# v= no+nr\* T + n2x Txx2

X = Mp. VStack ((Mp. ones\_like(T), T, Txx2)).T

coeffs = np. linaig. 1stsa (x, v, xcond = None)[0]

no, ni, nz= coeffs

point ("voitage moder: V(T) = {:.6+3+ }:.6+3\*T + {:.6+3\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*.

format (no, ni, 12))

# T= a0 + a1 x v+ a2 x V xx 2

 $X - inv = np. vstack((np. ones _ like(u), V, V^{X}2)).T$   $coepps_inv = np. linalg. lstsov(X_inv, T, rcond = none)[o]$   $Qo.QI, Q2 = coepps_inv$ 

Print (" Temperature model:  $T(u) = \{:.6f\} + \{:.6f\}^{x} V + \{:.6f\}^{x} V^{xx} \}$ .