Totorium 4

THEMA: Integration

Process of rommon for sains

0= Umkehrung der Ableitung

· +(x) in (a,b) Stammft un f(x), wenn \xe(a,b) +(x) = f(x)

of
$$f(x) dx = F(x) + C = conbestimates integral von $f(x)$

integrand inductionable$$

Designation opitions

1		
f(x)	Sf(x)dx [GER]	
×n	$\frac{1}{n+1} \times \frac{n+1}{n+1} + C$, $n \neq 1$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Ox.	$\frac{1}{\ln(\alpha)} \cdot \alpha^{\times} + C \qquad , \alpha > 0 \land \alpha \neq 1$	
Gax	$\frac{1}{\alpha}e^{\alpha x} + C$, $\alpha \neq 0$	
ax	1. 1. ln ax1 + C , a+0, x+0	
$-\cos + C = Bsp. \int sin(ax) dx = \frac{1}{a} sin(ax) + C,$ $a \neq 0$		
sin ² (ax)	$-\frac{\Lambda}{\alpha}\cot(x)+C$ $\alpha\neq0, z\neq n. T$	
- (0x)	$\frac{1}{\alpha} \tan(\alpha x) + C \qquad (\alpha \neq 0) + (n + \frac{1}{2}) \pi$	
ton2(x)	$\tan(x) - x + C = x \neq (n + \frac{1}{2}) \Re$	
ln(x)	xln(x) -x +C , x ≠0	

· Right

 $sin^{2}(x) + cos^{2}(x) = 1$

Summentegel	St(x) ± g(x) dx	Sfcx)dx + Sg(x)dx	
Faktorregge	Ja f(x) dx	a. Sf(x)dx	
Partielle Integra	hior Sexidx = So'. v'dx	V.v-So-v'dx	
The state of the s		Jorn, was on togues so influence	
Substitution (1.5bst.: u=g(x) wähler			
$\frac{dv}{dx} = g'(x) \longrightarrow dx = \frac{dv}{g'(x)}$			
$ \int falls + form \int f(g(x)) - g'(x) dx = \int f(u) du $			
Term g(x) im Integral durch u esseteer dx im Integral durch du esseteer			
torres x im interior noon norman : 0=d(x) = x			
and x auch esetain			
@ Integral S u du nach u integriesen [+a nicht regessen]			
(3)	ROSCOSA! mit U= g(x)	= x va aper alle n's elseten	
Lagarithmisera Integration Jacx dx ln(g(x)) + C			
	eul. Zähler mit Falter arpass	14 100 19	

Autgaben

Between das unbestimmte Integral

a. $\int x^2 + 2x + \frac{\Lambda}{x} dx$ b. $\int \frac{\Lambda}{4x^7} dx$ e. $\int \frac{\Lambda}{(x+\Lambda)^2} dx$ e. $\int \frac{\Lambda}{(x+\Lambda)^2} dx$ f. $\int 2 \cdot 3^x dx$

Q.
$$\int x^2 + 2x + \frac{\Lambda}{x} dx$$

b.
$$\int \frac{1}{\sqrt{1+x^2}} dx$$

(2) Beredone das unbestimmte integral mittels partieller integration

a.
$$\int x^2 \cdot \sin x \, dx$$
 c. $\int \ln(2x) \cdot (4x^3 - 1) \, dx$

3 Besechne das unbestimmte Integral unter Verwardung dar Substitution u Q. $\int \sin^2(x) \cos(x) dx$, $u = \sin x$ C. $\int \frac{x+1}{1+2+2x+3} dx$, $u = x^2 + 2x + 3$

a.
$$\int \sin^2(x)\cos(x)dx$$
, $v = \sin x$
b. $\int \int \frac{1}{4x-1} dx$, $v = \frac{1}{4x-1}$

c.
$$\int \frac{x+1}{\sqrt{x^2+2x+3}} dx$$
, $v=x^2+2x+3$

- (4) Berechne dos unbestimmte Integral Jasinx cosxdx
 - a. noiteels partieller integration.
 - b. unter vousiered des Blostitution u= cosx.
- S Gebe alla Stammfortations van $f(x) = \frac{1-e^x}{1+e^x}$ an mithilfe der logarithmischen Integration.
- (6) Bestimme die allgemeine Form einer Finktion f(x) mit den Eigenechnetten P"(x) = III und souch f(x) als ouch P'(x) gehen beide Tx-1 durch den Rinkt P(212).