

2.5V outputs from the FPGA for debugging, etc. 2.5V inputs and outputs to/from the FPGA for status monitoring and control of things, etc. These go to LEDs for monitoring 50_1M_CONTROL2 ACDC_CONTROL2 ATT_CONTROL2 1KHZOUT 50 Ohm external trigger input 50 Ohm 1kHz / Aux output 1kOhm 1kHz output for probe compensation 1KHZOUT 1 R31 k 47 R160 Extra clock input and output CLKOUT2 CLKEXT E LVDS outputs and inputs for sync between boards 50 MHz clock for FPGA LVDSOUT_TRIG_P LVDSOUT_TRIG_N LVDSOUT_SPAREO_P LVDSIN_TRIGB_N LVDSIN_TRIGB_N LVDSOUT_SPAREO_N LVDSOUT_CLK_N LVDSIN_TRIG_P LVDSIN_TRIG_N LVDSIN_SPAREO_P LVDSOUT_TRIGB_N LVDSIN_SPAREO_N LVDSIN_CLK_P LVDSIN_CLK_P 0.1ul VCC OUT GND GND VCC OUT g 🚭 GND OSCILLATORSMD-5X3

Cyclone IV E left and right I/O banks support true LVDS transmitters, so use them for LVDS outputs

All the inputs and outputs for the FPGA (Yes, this schematic symbol is even terribler.)

IC5 EP4CE30F23C6N | Chicago | Company | Chicago | Chic

LVDS receivers require an external 100 Ohm termination resistor between the two signals at the input buffer

We use 0201 resistors that fit on the bottom of the board and connect the vias under the FPGA for each LVDS input pair

Hard reset (reload firmware) and soft reset (send reset signal to firmware) buttons

