Malware Prediction Challenge

Akshay Punhani | Takuma Kinoshita | Sebastian Gude

Mentor: Henoch Wong

How to figure out if your computer is about to catch a cold?

Can 1 Billion machines be protected from damage?

Motivation

Goal &

Explore what a typical data science project in the security/fraud detection space looks like

Motivation

Microsoft has more than 1 billion enterprise and consumer customers*

Criticality

Predict a Windows machine's probability of getting infected by various families of malware

End Goal

*https://www.kaggle.com/c/microsoft-malware-prediction

Let's first take a look at the huge dataset

9 Million Records

81 Total Features

Feature	Total Missing	% Missing
PuaMode	8919174	99.97
Census_ProcessorCl ass	8884852	99.58
DefaultBrowsersIdenti fier	8488045	95.14
Census_IsFlightingInt ernal	7408759	83.04
Census_InternalBatte ryType	6338429	71.04
Census_ThresholdOp tln	5667325	63.52
Census_IsWIMBootE nabled	5659703	63.43

High Percentage of Missing Values

4

One-hot Encoding vs Label Encoding

One Hot Encoding

Apple	Chicken	Broccoli	Calories
1	0	0	95
0	1	0	231
0	0	1	50

Label Encoding

Food Name	Categorical #	Calories
Apple	1	95
Chicken	2	231
Broccoli	3	50

	One-hot Encoding	Label Encoding
Pros	 More interpretability of model parameters (category level) Not add meaningless ordinal relationship 	Low memory spaceKeep ordinal relationship
Cons	 More memory space Lose ordinal relationship 	 May add meaningless ordinal relationship Less interpretability of model parameters (feature level)

Getting a handle on the data - one-hot encoding (ohe) and filtering

Pre-processing Pipeline

Which features are actually important?

Six ohe features are of clearly higher importance (Random Forest Classifier)

How far can you get by simply picking your favorite feature?

A single feature can score an AUC of up to ~0.59 (Logistic Regression Classifier)

How much better do you do by using more than one feature?

Logistic Regression and Random Forest perform similarly (AUC)

Top Three

Features

Top Twelve

Features

Kaggle Scores

Public Leader's AUC: 0.714

Private Leader's AUC: 0.675

What could be done next?

• Fine-tune hyperparameters of classifiers

Use label encoding for ordered categorical features (e.g. version numbers)

• Engineer new features (e.g. extract timestamps from some feature labels)

Employ more complex classifiers (e.g. neural networks)

• Keep in mind that 'data leakage' limits power of machine learning approaches

A reduced set of features can already yield powerful predictions

https://github.com/tkino15/kaggle_malware.git