38 43 892

3,60 ppm (s; 3 H)

C4H8N4 * 1,1 H2SO4 (220,01) Berechnet: C 21,84 H 4,67 N 25,46 Gefunden: C 21,83 H 4,63 N 25,18

Beispiel 6: Synthese von 4-Amino-1-methyl-3-methylaminopyrazoliumhydrogensulfat

Stufe 1: Synthese von 3-Trifluoracetylamino-1-methyl-4-nitropyrazol

Methode A

10

7,50 ml Trifluoracetanhydrid werden portionsweise mit 1,50 g (10,6 mmol) 3-Amino-1-methyl-4-nitropyrazol versetzt. Nach 17-stündigem Rühren bei Raumtemperatur wird das Lösungsmittel am Rotationsverdampfer im Vakuum abdestilliert und der Rückstand mit Hexan/Ether versetzt, wobei ein weißer Niederschlag auskristallisiert.

Ausbeute:

2,40 g (95,4 Prozent der Theorie) 3-Trifluoracetylamino-1-methyl-4-nitropyrazol als weiße Nadeln mit einem Schmelzpunkt von 104 Grad Celsius (Ether).

60-MHz-1H-NMR (CDCl3):

 $\delta = 9.72$ (s; 1 H; mit D₂O austauschbar) 8.12 (s: 1 H)

25

3,98 ppm (s; 3 H).

MS(70 eV): m/e (Prozent) = 238 (81; M⁺), 169 (100), 152 (63), 125 (13), 69 (31), 52 (37), 42 (66). UV (CH₂Cl₂): $\lambda_{max}(\log \varepsilon) = 292 \text{ nm } (3.89)$.

30

 $C_6H_5F_3N_4O_3$ (238,12)

Berechnet: C 30,26 H 2,11 N 23,53 Gefunden: C 30,21 H 1,94 N 23,51

35

Methode B

5,00 ml konzentrierte Schwefelsäure werden portionsweise mit 1,00 g (5,21 mmol) 3-Trifluoracetylamino-1-methylpyrazol versetzt. Danach wird 1 ml 100-prozentige Nitriersäure zugetropft und 17 Stunden lang bei Raumtemperatur gerührt. Die Lösung wird auf 40 g Eis gegossen, wobei ein farbloser Niederschlag auskristallisiert, der abgesaugt und getrocknet wird.

Ausbeute:

270 mg (22,2 Prozent der Theorie) 3-Trifluoracetylamino-1-methyl-4-nitropyrazol mit einem Schmelzpunkt 45 von 104 Grad Celsius (Ether).

Die Mutterlauge wird mit konzentriertem Ammoniak neutralisiert und 24 Stunden lang mit Ether in einem Rotationsperforator extrahiert. Beim Einengen der organischen Phase können weitere 220 mg (18,1 Prozent der Theorie) 3-Trifluoracetylamino-1-methyl-4-nitropyrazol isoliert werden.

50

Stufe 2: Synthese von 1-Methyl-3-methylamino-4-nitropyrazol

1,00 g (4,20 mmol) 3-Trifluoracetylamino-1-methyl-4-nitropyrazol werden mit 2,12 g (16,8 mmol) Methyliodid in 10 ml absolutem Aceton auf 50 Grad Celsius erhitzt. Sodann werden 940 mg (16,8 mmol) gepulvertes Kaliumhydroxid zugegeben und das Reaktionsgemisch 5 Minuten lang zum Sieden erhitzt. Das Lösungsmittel wird am Rotationsverdampfer im Vakuum abdestilliert und der Rückstand durch Säulenchromatographie an Kieselgel mit Ether/Toluol (5:1) aufgetrennt.

1. Fraktion:

370 mg (62,0 Prozent der Theorie) 1-Methyl-3-methylamino-4-nitropyrazol als leuchtend gelbe Kristalle mit einem Schmelzpunkt von 176 Grad Celsius (Ether).

60-MHz-1H-NMR (D₆-DMSO):

65

 $\delta = 8.38 (s; 1 H)$

6,40 (s; 1 H; mit D₂O austauschbar)

3,68 (s; 3 H; Methylgruppe am Pyrazolring)

 $2,82-2,72 \text{ ppm} (d; 3 \text{ H}; J = 6 \text{ Hz}; -NH - CH_3).$

MS (70 eV): m/e (Prozent) = 156 (53; M⁺), 138 (15), 109 (24), 71 (53), 68 (56), 52 (44), 42 (100). UV (CH₂Cl₂): $\lambda_{max}(\log \epsilon) = 280$ (3,85), 373 nm (3,75).

C₅H₈N₄O₂ (156,14)

10

20

25

35

45

Berechnet: C 38,46 H 5,16 N 35,88 Gefunden: C 38,21 H 5,22 N 35,75

Als 2. Fraktion konnten 210 mg (35,2 Prozent der Theorie) 3-Amino-1-methyl-4-nitropyrazol isoliert werden.

Stufe 3: Synthese von 4-Amino-1-methyl-3-methylaminopyrazolium-hydrogensulfat

500 mg (3,20 mmol) 1-Methyl-3-methylamino-4-nitropyrazol werden in 50 ml absolutem Methanol mit katalytischen Mengen Palladium/Kohlenstoff bei Raumtemperatur und 30 bar hydriert. Nach 17 Stunden ist die Hydrierung beendet, aus der filtrierten Lösung fällt bei Zugabe von 314 mg (3,20 mmol) konzentrierter Schwefelsäure ein blaßorangener Niederschlag aus, der abgesaugt und getrocknet wird.

Ausbeute:

590 mg (82,2 Prozent der Theorie) 4-Amino-1-methyl-3-methylaminopyrazolium-hydrogensulfat als blaßorangene Kristalle mit einem Schmelzpunkt von 209 Grad Celsius.

 $60-MHz^{-1}H-NMR$ (D₆-DMSO):

 $\delta = 8.07$ (s; 5 H; mit D₂O austauschbar) 7,52 (s; 1 H) 3,58 (s; 3 H; Methylgruppe am Pyrazolring) 2,70 ppm (s; 3 H)

C₅H₁₂N₄O₄S (224,24)

Berechnet: C 26,78 H 5,39 N 24,99 Gefunden: C 26,42 H 5,38 N 24,91

Beispiel 7: Synthese von 4-Amino-5-(N,N-dimethylamino)-1-methylpyrazolium-dihydrogensulfat

Stufe 1: Umsetzung eines Gemisches aus 3- und 5-Trifluoracetylamino-1-methyl-4-nitropyrazol mit Methyliodid

3,94 g (16,5 mmol) eines Gemisches aus 3- und 5-Trifluoracetylamino-1-methyl-4-nitropyrazol werden mit 8,48 g (16,8 mmol) Methyljodid in 40 ml absolutem Aceton auf 50 Grad Celsius erhitzt, sodann werden 3,77 g (16,8 mmol) gepulvertes Kaliumhydroxid zugegeben und die Lösung 5 Minuten lang zum Sieden erhitzt. Das Lösungsmittel wird am Rotationsverdampfer im Vakuum abdestilliert und der Rückstand durch Säulenchromatographie an Kieselgel mit Ether/Toluol (5:1) aufgetrennt.

1. Fraktion:

980 mg (34,8 Prozent der Theorie) 5-(N,N-Dimethylamino)-1-methyl-4-nitropyrazol als gelbes Öl, das im Kugelrohr bei 50 Grad Celsius/0,04 Torr destilliert wird.

60-MHz-1H-NMR (CDCl₃):

 $\delta = 7,95 (s; 1 H)$ 3,72 (s; 3 H) 2,89 ppm (s; 6 H)

MS(70 eV): m/e (Prozent) = 170(22; M⁺), 153(31), 146(21), 125(90), 123(62), 108(55), 82(70), 70(99), 66(92), 42(100).

C₆H₁₀N₄O₂ (170,17) Berechnet: C 42,35 H 5,92 N 32,92 Gefunden: C 42,14 H 5,99 N 32,75

2. Fraktion:

1,38 mg (53,4 Prozent der Theorie) 1-Methyl-3-methylamino-4-nitropyrazol als leuchtend gelbe Kristalle mit einem Schmelzpunkt von 176 Grad Celsius (Ether).

Stufe 2: Synthese von 4-Amino-5-(N,N-dimethylamino-1-methylpyrazolium-dihydrogensulfat

560 mg (3,29 mmol) 5-(N,N-Dimethylamino)-1-methyl-4-nitropyrazol werden in 75 ml absolutem Methanol mit katalytischen Mengen Palladium/Kohlenstoff bei Raumtemperatur und 30 bar hydriert. Nach 17 Stunden ist die Hydrierung beendet. Es werden 645 mg (6,58 mmol) konzentrierte Schwefelsäure zugesetzt und der Katalysator abfiltriert. Das Lösungsmittel wird abdestilliert und der Rückstand mit 2-Propanol versetzt, wobei ein farbloser Niederschlag auskristallisiert.

Ausbeute:

300 mg (27,1 Prozent der Theorie) 4-Amino-5-(N,N-dimethylamino)-1-methylpyrazolium-dihydrogensulfat mit einem Schmelzpunkt von 139 Grad Celsius (2-Propanol).

60-MHz-1H-NMR (D6-DMSO):

 $\delta = 9,78 \text{ (s; 6 H; mit D}_2\text{O austauschbar})$ 7,35 (s; 1 H) 3,61 (s; 3 H)

3,61 (s; 3 H) 2,78 ppm (s; 6 H)

C₆H₁₆N₄O₈S₂ (336,35) Berechnet: C 21,42 H 4,79 N 16,66 Gefunden: C 21,11 H 4,72 N 16,37

Beispiele für Haarfärbemittel

Beispiel 8: Haarfärbemittel in Gelform

0,50 g 3,4-Diaminopyrazol-dihydrochlorid 0,50 g 5-Amino-2-methylphenol 30 Natriumsulfit, wasserfrei 0,15 gLaurylalkohol-diglykolethersulfat-Natriumsalz (28-prozentige wäßrige Lösung) 5,00 g Hydroxyethylcellulose, hochviskos 1,00 g Ammoniak (22-prozentige wäßrige Lösung) 10,00 g 35 Wasser 82,85 g 100,00 g

50 g des vorstehenden Haarfärbemittels werden kurz vor dem Gebrauch mit 50 g Wasserstoffperoxidlösung (6-prozentig) vermischt und das Gemisch anschließend auf blonde Naturhaare aufgetragen. Nach einer Einwirkungszeit von 30 Minuten bei 40 Grad Celsius wird das Haar mit Wasser gespült und getrocknet. Das Haar hat eine intensive leuchtend rotorange Färbung erhalten.

Beispiel 9: Haarfärbemittel in Gelform

4,5-Diamino-1-methylpyrazol-dihydrochlorid 0,35 g 3-Aminophenol 0,27 g Ascorbinsäure 0,30 g 15,00 g Ölsäure 7,00 g Isopropanol 50 Ammoniak (22-prozentige wäßrige Lösung) 10,00 g 67,08 g Wasser 100,00 g

Man vermischt kurz vor dem Gebrauch 50 g dieses Haarfärbemittels mit 50 g Wasserstoffperoxidlösung (6-prozentig) und läßt das Gemisch 30 Minuten lang bei 40 Grad Celsius auf weiße menschliche Haare einwirken. Sodann wird das Haar mit Wasser gespült und getrocknet. Das Haar ist in einem leuchtenden roten Farbton gefärbt.

65

10

15

20

25

40

45

55

60

Beispiel 10: Haarfärbemittel in Cremeform

	1,00 g	4-Amino-5-(N,N-dimethylamino)-1-methylpyrazoliumdihydrogensulfat nach Beispiel 7
	1,10 g	1-Naphthol
5	15,00 g	Cetylalkohol
	0,30 g	Natriumsulfit, wasserfrei
	3,50 g	Laurylalkohol-diglykolethersulfat- Natriumsalz (28-prozentige wäßrige Lösung)
	3,00 g	Ammoniak (22-prozentige wäßrige Lösung)
	76,10 g	Wasser
10	100,00 g	

50 g dieses Haarfärbemittels werden kurz vor dem Gebrauch mit 50 g Wasserstoffperoxidlösung (6-prozentig) vermischt. Anschließend trägt man das Gemisch auf blonde Naturhaare auf und läßt es 30 Minuten lang bei 40 Grad Celsius einwirken. Danach wird das Haar mit Wasser gespült und getrocknet. Das Haar hat eine intensive lachsrote Färbung erhalten.

Beispiel 11: Haarfärbelösung

20	0,50 g	3,4-Diaminopyrazol-dihydrochlorid
	0,50 g	2-Amino-5-methylphenol
	0,50 g	2-Amino-4-(2'-hydroxyethyl)amino-anisolsulfat
	0,05 g	1-Naphthol
	10,00 g	Laurylalkohol-diglykolethersulfat-Natriumsalz (28-prozentige wäßrige Lösung)
25	10,00 g	Ammoniak (22-prozentige wäßrige Lösung)
	78,45 g	Wasser
	100,00 g	

Man vermischt kurz vor dem Gebrauch 50 g des vorstehenden Haarfärbemittels mit 50 g Wasserstoffperoxidlösung (6-prozentig) und läßt die Mischung 30 Minuten lang bei 40 Grad Celsius auf blonde Naturhaare einwirken. Sodann wird das Haar mit Wasser gespült und getrocknet. Das Haar ist in einem modischen dunkelbraunen Palisanderton gefärbt.

Beispiel 12: Färbemittel in Gelform

2,00 g 2,5-Diaminotoluolsulfat 1,50 g 2-Amino-4-(2'-hydroxyethyl)amino-anisolsulfat 0,10 g 1-(2'-Ureidoethyl)amino-4-nitrobenzol 0,15 g Natriumsulfit, wasserfrei 2,50 g Laurylalkohol-diglykolethersulfat-Natriumsalz (28-prozentige wäßrige Lösung 0,80 g Hydroxyethylcellulose, hochviskos 6,00 g Ammoniak (22-prozentige wäßrige Lösung) 45 85,95 g Wasser		1,00 g	4,5-Diamino-1-methylpyrazol-dihydrochlorid
0,10 g 1-(2'-Ureidoethyl)amino-4-nitrobenzol 0,15 g Natriumsulfit, wasserfrei 2,50 g Laurylalkohol-diglykolethersulfat-Natriumsalz (28-prozentige wäßrige Lösung 0,80 g Hydroxyethylcellulose, hochviskos 6,00 g Ammoniak (22-prozentige wäßrige Lösung) 45 85,95 g Wasser		2,00 g	2,5-Diaminotoluolsulfat
0,15 g Natriumsulfit, wasserfrei 2,50 g Laurylalkohol-diglykolethersulfat-Natriumsalz (28-prozentige wäßrige Lösung 0,80 g Hydroxyethylcellulose, hochviskos 6,00 g Ammoniak (22-prozentige wäßrige Lösung) 45 85,95 g Wasser		1,50 g	2-Amino-4-(2'-hydroxyethyl)amino-anisolsulfat
2,50 g Laurylalkohol-diglykolethersulfat-Natriumsalz (28-prozentige wäßrige Lösung 0,80 g Hydroxyethylcellulose, hochviskos 6,00 g Ammoniak (22-prozentige wäßrige Lösung) 85,95 g Wasser	40	0,10 g	1-(2'-Ureidoethyl)amino-4-nitrobenzol
0,80 g Hydroxyethylcellulose, hochviskos 6,00 g Ammoniak (22-prozentige wäßrige Lösung) 45 85,95 g Wasser		0,15 g	Natriumsulfit, wasserfrei
6,00 g Ammoniak (22-prozentige wäßrige Lösung) 85,95 g Wasser		2,50 g	Laurylalkohol-diglykolethersulfat-Natriumsalz (28-prozentige wäßrige Lösung)
45 85,95 g Wasser		0,80 g	Hydroxyethylcellulose, hochviskos
		6,00 g	Ammoniak (22-prozentige wäßrige Lösung)
100,00 g	45	85,95 g	Wasser
		100,00 g	

50 g des obigen Haarfärbemittels werden kurz vor dem Gebrauch mit 50 g Wasserstoffperoxidlösung (6-prozentig) vermischt und die Mischung anschließend auf blonde Naturhaare aufgebracht. Nach einer Einwirkungszeit von 30 Minuten bei 40 Grad Celsius wird mit Wasser gespült und getrocknet. Das Haar hat eine schwarze Färbung erhalten.

Beispiele 13 bis 27: Haarfärbelösungen

Man verwendet die Lösung nach Beispiel 8 und ersetzt das 3,4-Diaminopyrazoldihydrochlorid mengengleich durch andere Pyrazolderivate ("Entwickler") der Formel (I) aus den Beispielen 1-7 sowie das 5-Amino-2-methyl-phenol mengengleich durch die in der Tabelle 1 angegebenen "Kuppler":

65

55

60

35

Tabelle 1:

Beispiel	Entwickler der Formel (I) aus Beispiel	Kuppler	Farbe	
13	1	5-Amino-2-methylphenol	leuchtend rotorange	
14	2	5-Amino-2-methylphenol	rot	
15	3	5-Amino-2-methylphenol	orange	
16	6	5-Amino-2-methylphenol	orange	
17	7	5-Amino-2-methylphenol	ziegelrot	
18	1	3-Aminophenol	leuchtend rot	
19	3	3-Aminophenol	rot	
20	6	3-Aminophenol	rot	
21	7	3-Aminophenol	rot	
22	1	2-Amino-4-(2'-hydroxyethyl)aminoanisolsulfat	violett	
23	2	2-Amino-4-(2'-hydroxyethyl)aminoanisolsulfat	graublau	
24	3	2-Amino-4-(2'-hydroxyethyl)aminoanisolsulfat	grauviolett	
25	5	2-Amino-4-(2'-hydroxyethyl)aminoanisolsulfat	grauviolett	
26	6	2-Amino-4-(2'-hydroxyethyl)aminoanisolsulfat	violett	
27	7	2-Amino-4-(2'-hydroxyethyl)aminoanisolsulfat	blauviolett	

Alle in der vorliegenden Patentanmeldung angegebenen Prozentzahlen stellen, sofern nicht anders angegeben, Gewichtsprozente dar.

25

30

35

40

Patentansprüche

1. Mittel zur oxidativen Färbung von Haaren auf der Basis einer Entwicklersubstanz-Kupplersubstanz-Kombination, dadurch gekennzeichnet, daß es als Entwicklersubstanz ein Diaminopyrazol der allgemeinen Formel(1)

 R^2R^3N NHR⁴ **(l)**

in der R¹, R² und R⁴ gleich oder verschieden sind und Wasserstoff, Alkyl mit 1 bis 4 Kohlenstoffatomen, Hydroxyalkyl mit 2 bis 4 Kohlenstoffatomen, Benzyl oder Phenyl bedeuten und R³ Wasserstoff, Alkyl mit 1 bis 4 Kohlenstoffatomen oder Hydroxyalkyl mit 2 bis 4 Kohlenstoffatomen darstellt, unter der Voraussetzung, daß die Aminogruppen in 3,4- oder 4,5-Stellung stehen, oder dessen physiologisch verträgliche, wasserlösliche Salze enthält.

2. Mittel nach Anspruch 1, dadurch gekennzeichnet, daß das Diaminopyrazol ausgewählt ist aus 3(5),4-Diaminopyrazol, 4,5-Diamino-1-methylpyrazol oder 4,5-Diamino-1-benzylpyrazol.

3. Mittel nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Entwicklersubstanz der Formel (I) in einer Menge von 0,01 bis 3,0 Gewichtsprozent enthalten ist.

4. Mittel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Kupplersubstanz ausgewählt

ist aus 1-Naphthol, Resorcin, 4-Chlorresorcin, 4,6-Dichlorresorcin, 2-Methylresorcin, 2-Amino-4-(2'-hydroxyethyl)amino-anisol, 5-Amino-2-methylphenol, 2.4-Diaminophenoxyethanol, 4-Amino-2-hydroxyphenoxyethanol, 3-Amino-phenol, 3-Amino-2-methylphenol, 4-Hydroxy-1,2-methylendioxybenzol, 4-Amino-1,2-methylendioxybenzol, 4-(2'-Hydroxyethyl)amino-1,2-methylendioxybenzol, 2,4-Diaminophenetol, 2,4-Diamino-5-methylphenetol, 2,4-Diaminobenzylalkohol, m-Phenylendiamin, 2,4-Diaminophenylalkohol, 4-Hydroxyindol, 3-Amino-5-hydroxy-2,6-dimethoxypyridin und 3,5-Diamino-2,6-dimethoxypyridin.

5. Mittel nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Gesamtmenge der Entwickler-Kupplersubstanz-Kombinationen 0,1 bis 5,0 Gewichtsprozent, vorzugsweise 0,5 bis 4,0 Gewichtsprozent, beträgt.

6. Mittel nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß es eine Farbkomponente enthält, die ausgewählt ist aus 6-Amino-2-methylphenol, 2-Amino-5-methylphenol, Diamond Fuchsine (C.I. 42 510), Leather Ruby HF (C.I. 42 520), 2-Nitro-1,4-diaminobenzol, 2-Amino-4-nitrophenol, 2-Amino-5-nitrophenol, 2-Amino-4,6-dinitrophenol, 2-Amino-5-(2'-hydroxyethyl)amino-nitrobenzol, 2-Methylamino-5-bis-(2'-hydroxyethyl)aminonitrobenzol, Acid Brown 4 (C.I. 14 805), 1,4-Diaminoanthrachinon und 1,4,5,8-Tetraamino-

anthrachinon.

5

10

15

20

25

30

40

45

50

55

60

7. 3,4-Diamino-1-methylpyrazol

8. Diaminopyrazolderivat der allgemeinen Formel (II)

in der R⁵ ein Benzylrest ist, R⁶ und R⁸ gleich oder verschieden sind und Wasserstoff, Alkyl mit 1 bis 4 Kohlenstoffatomen, Hydroxyalkyl mit 2 bis 4 Kohlenstoffatomen, Benzyl oder Phenyl bedeuten und R⁷ Wasserstoff, Alkyl mit 1 bis 4 Kohlenstoffatomen oder Hydroxyalkyl mit 2 bis 4 Kohlenstoffatomen darstellt, unter der Voraussetzung, daß die Aminogruppen in 3,4- oder 4,5-Stellung stehen.

9. 4,5-Diamino-1-benzylpyrazol

10.3,4-Diamino-1-benzylpyrazol

11.4-Amino-1-benzyl-3-(2'-hydroxyethyl)amino-pyrazol

12.4-Amino-1-benzyl-3-benzylaminopyrazol.

13. Diaminopyrazolderivat der allgemeinen Formel (III)

in der R⁹ ein Methylrest ist, R¹⁰ und R¹² gleich oder verschieden sind und Wasserstoff, Alkyl mit 1 bis 4 Kohlenstoffatomen, Hydroxyalkyl mit 2 bis 4 Kohlenstoffatomen, Benzyl oder Phenyl bedeuten und R¹¹ Wasserstoff, Alkyl mit 1 bis 4 Kohlenstoffatomen, Hydroxyalkyl mit 2 bis 4 Kohlenstoffatomen darstellt, unter der Voraussetzung, daß die Aminogruppen in 3,4- oder 4,5-Stellung stehen und mindestens einer der Reste R¹⁰ bis R¹² von Wasserstoff verschieden ist.

14

14.4-Amino-1-methyl-3-methylaminopyrazol

15.4-Amino-1-methyl-5-N,N-dimethylaminopyrazol