GROUP 10

R SHREJA - COE18B043

RITHIC KUMAR N - COE18B044

SREEDHAR ARUMUGAM - COE18B051

Consider the 128- dimensional feature vectors (d=128) given in the "gender_feature_vectors.csv" file. (2 classes, male and female)

- a) Use PCA to reduce the dimension from d to d'. (Here d=128)
- b) Display the eigenvalue based on increasing order, select the d' of the corresponding eigenvector which is the appropriate dimension d' (select d' S.T first 95% of λ values of the covariance matrix are considered).
- c) Use d' features to classify the test cases (any classification algorithm taught in class like Bayes classifier, minimum distance classifier, and so on)

Dataset Specifications:

- Total number of samples = 800
- Number of classes = 2 (labeled as "male" and "female")
- Samples from "1 to 400" belongs to class "male"
- Samples from "401 to 800" belongs to class "female"
- Number of samples per class = 400
- Number of dimensions = 128
- Use the following information to design classifier:
- Number of test cases (first 10 in each class) = 20
- Number of training feature vectors (remaining 390 in each class) = 390
- Number of reduced dimensions = d' (map 128 to d' features vector)

In [1]:

```
import pandas as pd
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
```

In [2]:

```
df=pd.read_csv('gender_feature_vectors.csv')
```

In [3]:

df

Out[3]:

	Unnamed: 0	Unnamed: 1	0	1	2	3	4	5	
0	1	male	-0.066420	0.151611	0.027740	0.052771	-0.066105	-0.041232	-(
1	2	male	-0.030614	0.049667	0.008084	-0.050324	0.007649	-0.063818	-(
2	3	male	-0.096178	0.061127	0.035326	-0.035388	-0.090728	-0.018634	-(
3	4	male	-0.103057	0.085044	0.078333	-0.035873	-0.028163	0.004924	(
4	5	male	-0.125815	0.120046	0.023131	-0.042901	0.038215	-0.049677	-(
795	796	female	-0.164731	0.064301	0.058630	-0.017420	-0.157600	-0.022536	(
796	797	female	-0.095308	0.051095	0.092913	-0.101745	-0.083153	-0.028159	(
797	798	female	-0.202852	0.037039	0.079731	-0.047156	-0.140062	-0.080246	(
798	799	female	-0.088300	0.063530	0.049627	-0.026011	-0.172773	0.086218	(
799	800	female	-0.156201	0.055165	0.142716	-0.115393	-0.128982	-0.139830	-(

800 rows × 130 columns

In [4]:

df['Unnamed: 1'].value_counts()

Out[4]:

female 401
male 399

Name: Unnamed: 1, dtype: int64

In [5]:

df.drop(columns=df.columns[0],inplace=True)
df

Out[5]:

	Unnamed: 1	0	1	2	3	4	5	6	
0	male	-0.066420	0.151611	0.027740	0.052771	-0.066105	-0.041232	-0.002637	-0
1	male	-0.030614	0.049667	0.008084	-0.050324	0.007649	-0.063818	-0.019530	- C
2	male	-0.096178	0.061127	0.035326	-0.035388	-0.090728	-0.018634	-0.024315	-0
3	male	-0.103057	0.085044	0.078333	-0.035873	-0.028163	0.004924	0.007829	-0
4	male	-0.125815	0.120046	0.023131	-0.042901	0.038215	-0.049677	-0.054258	-0
795	female	-0.164731	0.064301	0.058630	-0.017420	-0.157600	-0.022536	0.002864	-0
796	female	-0.095308	0.051095	0.092913	-0.101745	-0.083153	-0.028159	0.009090	-0
797	female	-0.202852	0.037039	0.079731	-0.047156	-0.140062	-0.080246	0.057668	-0
798	female	-0.088300	0.063530	0.049627	-0.026011	-0.172773	0.086218	0.042710	-0
799	female	-0.156201	0.055165	0.142716	-0.115393	-0.128982	-0.139830	-0.037305	-0

800 rows × 129 columns

In [6]:

```
df.rename(columns={df.columns[0]:"Class"},inplace=True)
df
```

Out[6]:

	Class	0	1	2	3	4	5	6	
0	male	-0.066420	0.151611	0.027740	0.052771	-0.066105	-0.041232	-0.002637	-0.158
1	male	-0.030614	0.049667	0.008084	-0.050324	0.007649	-0.063818	-0.019530	-0.119
2	male	-0.096178	0.061127	0.035326	-0.035388	-0.090728	-0.018634	-0.024315	-0.139
3	male	-0.103057	0.085044	0.078333	-0.035873	-0.028163	0.004924	0.007829	-0.017
4	male	-0.125815	0.120046	0.023131	-0.042901	0.038215	-0.049677	-0.054258	-0.130
795	female	-0.164731	0.064301	0.058630	-0.017420	-0.157600	-0.022536	0.002864	-0.072
796	female	-0.095308	0.051095	0.092913	-0.101745	-0.083153	-0.028159	0.009090	-0.114
797	female	-0.202852	0.037039	0.079731	-0.047156	-0.140062	-0.080246	0.057668	-0.122
798	female	-0.088300	0.063530	0.049627	-0.026011	-0.172773	0.086218	0.042710	-0.161
799	female	-0.156201	0.055165	0.142716	-0.115393	-0.128982	-0.139830	-0.037305	-0.101

800 rows × 129 columns

In [7]:

df_test=df.iloc[np.r_[390:400, 790:800]]

In [8]:

df_test

Out[8]:

	Class	0	1	2	3	4	5	6	
390	male	-0.080683	0.097440	0.006550	0.018112	-0.114999	0.160041	-0.002373	-0.057
391	male	-0.010301	0.135185	0.049710	-0.046424	-0.041742	0.016607	-0.041778	-0.048
392	male	-0.112450	0.080098	0.030571	0.000952	-0.097450	-0.045070	-0.003641	-0.142
393	male	-0.087855	0.100264	0.069775	0.037204	-0.047182	-0.047233	-0.013604	-0.189
394	male	-0.139066	0.141988	0.070456	-0.003518	-0.065637	-0.037767	-0.094195	-0.195
395	male	-0.129449	0.132177	0.055916	-0.009390	-0.080541	-0.072362	-0.067433	-0.192
396	male	-0.158460	0.109948	0.019088	0.015506	-0.069668	0.032311	0.015062	-0.140
397	male	-0.101499	0.119739	0.016951	-0.013677	-0.055524	0.028399	0.028164	-0.152
398	male	-0.149516	0.081588	0.090796	-0.053116	-0.133314	0.001096	0.019941	-0.117
399	female	0.039844	0.070357	0.130196	-0.007683	-0.077825	-0.021298	-0.024133	-0.085
790	female	-0.184166	0.122040	0.064143	-0.116653	-0.140633	0.041252	0.014207	-0.108
791	female	-0.128052	0.082184	0.148978	-0.074984	-0.113145	-0.031003	0.018468	-0.130
792	female	-0.109618	0.094507	0.043757	-0.162004	-0.191951	0.027582	-0.033507	-0.112
793	female	-0.201133	0.068051	0.088596	-0.084936	-0.055628	-0.069027	-0.003922	-0.191
794	female	-0.185053	0.136105	0.096279	-0.139661	-0.244312	0.015234	-0.007418	-0.077
795	female	-0.164731	0.064301	0.058630	-0.017420	-0.157600	-0.022536	0.002864	-0.072
796	female	-0.095308	0.051095	0.092913	-0.101745	-0.083153	-0.028159	0.009090	-0.114
797	female	-0.202852	0.037039	0.079731	-0.047156	-0.140062	-0.080246	0.057668	-0.122
798	female	-0.088300	0.063530	0.049627	-0.026011	-0.172773	0.086218	0.042710	-0.161
799	female	-0.156201	0.055165	0.142716	-0.115393	-0.128982	-0.139830	-0.037305	-0.101

20 rows × 129 columns

In [9]:

df_train=df.iloc[np.r_[0:390,400:790]]

In [10]:

df_train

Out[10]:

	Class	0	1	2	3	4	5	6	
0	male	-0.066420	0.151611	0.027740	0.052771	-0.066105	-0.041232	-0.002637	-0.158
1	male	-0.030614	0.049667	0.008084	-0.050324	0.007649	-0.063818	-0.019530	-0.119
2	male	-0.096178	0.061127	0.035326	-0.035388	-0.090728	-0.018634	-0.024315	-0.139
3	male	-0.103057	0.085044	0.078333	-0.035873	-0.028163	0.004924	0.007829	-0.017
4	male	-0.125815	0.120046	0.023131	-0.042901	0.038215	-0.049677	-0.054258	-0.130
785	female	-0.017931	0.045591	0.059826	-0.059833	-0.126832	0.070365	0.026347	-0.090
786	female	-0.039572	0.049409	0.100950	-0.092940	-0.152356	-0.057714	-0.000538	-0.11
787	female	-0.015170	-0.001116	0.132143	-0.078673	-0.134462	-0.155683	-0.030665	-0.164
788	female	-0.151263	0.096725	0.075206	-0.047269	-0.233372	-0.019918	-0.072370	-0.118
789	female	-0.179743	0.104404	0.052260	-0.074608	-0.166008	0.023287	0.006970	-0.149

780 rows × 129 columns

Covariance

```
In [11]:
```

```
df_dim=df_train[[i for i in df.columns[1:]]]
```

In [12]:

```
df_dim.shape
```

Out[12]:

(780, 128)

```
In [13]:
```

```
cov=np.cov(df_dim.T)
cov
```

Out[13]:

```
array([[ 2.95108480e-03, -3.70158184e-04, -2.16257469e-04, ..., 4.34218359e-04, -1.10121464e-04, -2.23638279e-05], [-3.70158184e-04, 2.50417089e-03, 6.23082137e-05, ..., -3.84633702e-04, -1.45010282e-04, -2.40364718e-05], [-2.16257469e-04, 6.23082137e-05, 2.60834145e-03, ..., -3.21716028e-04, -2.00431637e-04, 1.91564799e-05], ..., [ 4.34218359e-04, -3.84633702e-04, -3.21716028e-04, ..., 2.36909122e-03, 1.84584670e-06, 1.79111827e-04], [-1.10121464e-04, -1.45010282e-04, -2.00431637e-04, ..., 1.84584670e-06, 2.49192480e-03, 5.51925391e-05], [-2.23638279e-05, -2.40364718e-05, 1.91564799e-05, ..., 1.79111827e-04, 5.51925391e-05, 2.26553560e-03]])
```

In [14]:

```
cov.shape
```

Out[14]:

(128, 128)

getting eigen values

In [15]:

```
def sorted_eig(A): # For now we sort 'by convention'. For PCA the sorting is key.
    lambdas, vs = np.linalg.eig(A)
    # Next line just sorts values & vectors together in order of decreasing eigenvalues
    lambdas, vs = zip(*sorted(zip(list(lambdas), list(vs.T)),key=lambda x: x[0], revers
e=True))
    return lambdas, np.array(vs).T # un-doing the list-casting from the previous line
```

In [16]:

```
lambdas,vs=sorted_eig(cov)
print("Lambda values in sorted order")
lambdas
```

Out[16]:

```
(0.04137574503460549,
0.02360849711562386,
0.017077038743770187,
0.014451291776124938,
0.012633313809123732,
0.011714705691204017,
0.010189552276534721,
0.009087057091511646,
0.008482770886136562,
0.008039865359807597,
0.00760030905912849,
0.007145776669589233
0.006771403338885542,
0.006509757015262208,
0.0062636178632257625,
0.005842316913291985,
0.005564646916617724,
0.005510877415737265,
0.005215948451115262,
0.005052886212394662,
0.004814955569113215,
0.004563226306426189,
0.0044474704013512225,
0.004268294677809414,
0.004229219580396081.
0.003926267119388022,
0.0038579422169492264,
0.003691394876422616,
0.003477780068960983,
0.0033675627685272884,
0.003202721657676988,
0.0030656341277170433,
0.0030408421988791347,
0.0028325439794659106,
0.0027758324222281914,
0.002700415370836653,
0.0026746600113390874,
0.0025363760389129028,
0.002515055042077224,
0.0024227300289765487,
0.002357721538014705,
0.002321156393347481,
0.0022633127203457093,
0.002177699886331758,
0.0020620451101881617,
0.0020097613332662047,
0.0019102064874178648,
0.001856074146743188,
0.0018327018105405322,
0.0017736034036216462,
0.0016454665395786428,
0.0016042741311068861,
0.0015387653014735222,
0.001473453780781087,
0.0014437964392814296,
0.0013681760840532897,
0.0012991285501252154,
0.0012360134625372231,
0.0011793992314895738,
```

```
0.0011756810795875475,
```

- 0.0011101014875846825,
- 0.0010686852603078684,
- 0.0010080061093842574,
- 0.0009981204169890476,
- 0.0009303374948736985,
- 0.0008861924584951544,
- 0.0008578262872595781,
- 0.0008314607222984141,
- 0.0007511239148571716,
- 0.0007304558969953307,
- 0.0007090358458285729,
- 0.0006463634060030550
- 0.0006463624868829558,
- 0.0005869581784766859,
- 0.0005630997907502456,
- 0.00038966919693531906,
- 0.0003491875729506964,
- 0.00017423761449379173,
- 4.589566755200929e-06,
- 8.578427835079057e-07,
- 3.059268608435976e-07,
- 9.355187331571268e-08,
- 9.061524745412814e-09,
- 1.23602304949623e-09,
- 5.425056669644469e-10,
- 2.7954655365346586e-10,
- 9.449981920708562e-11,
- 2.3908232170159416e-11,
- 9.426540816467547e-12,
- 4.18888495467226e-12,
- 2.5704593491045257e-12,
- 7.83886053141938e-13,
- 6.746061771312841e-13,
- 3.000746804666171e-13,
- 1.6010753954830057e-13,
- 7.979081251285144e-14,
- 5.3879530947440807e-14,
- 4.361637600750955e-14,
- 3.0905150060949546e-14, 2.0321363896017388e-14,
- 1.116330505050113006 14
- 1.1463095068504483e-14,
- 1.0643313860501104e-14,
- 8.132710422215743e-15, 6.9957037506392524e-15,
- 6.65297665108662e-15,
- 6.286844255079942e-15,
- 5.6095001472050975e-15,
- 5.328087543481544e-15,
- 5.071977414370759e-15,
- 4.9223449211747615e-15,
- 4.624848293407667e-15,
- 4.398807452238238e-15,
- 4.171949273130997e-15,
- 3.796127583127979e-15,
- 3.60845946278965e-15,
- 3.199356133416859e-15,
- 2.95836610690943e-15,
- 2.85193636134112e-15,
- 2.725376477179258e-15,
- 2.7001704617578923e-15,
- 2.4056221409956062e-15,

```
2.3629505630551914e-15,
 2.177118779513895e-15,
 2.0409126404096537e-15,
 1.9264089736652567e-15,
 1.7448796144443188e-15,
 1.586320349179776e-15,
 1.369477040839034e-15,
 1.142219401624541e-15)
In [17]:
٧S
Out[17]:
array([[-0.07127427, -0.06435239, -0.05941313, ..., 0.01756089,
        -0.06551164, 0.03609231],
       [-0.03849229, 0.00910902,
                                   0.02515185, ..., 0.06466022,
        -0.1574927 , 0.01232222],
                      0.03575751, -0.11693621, ..., -0.03149788,
       [ 0.09235571,
         0.0080926 , 0.07226275],
       [-0.01535881, -0.00290511, 0.04327725, ..., 0.10022143,
        -0.01055383, -0.12365049],
       [-0.04780239, 0.02650115, -0.08556776, ..., -0.02240944,
        -0.04477904, -0.18795663],
       [-0.03681228, -0.07247092, -0.07462774, ..., -0.02856651,
        -0.08375543, -0.028343 ]])
In [18]:
plt.plot(lambdas)
plt.xlabel('number of dimensions')
plt.ylabel('eigen value');
  0.04
  0.03
eigen value
  0.02
  0.01
```

100

120

Getting no of components

0 60 80 number of dimensions

20

0.00

In [19]:

```
#consider values which explain 95% of variance
print("Total lambda values:",len(lambdas))

total_eigen=np.sum(lambdas)
r_sum=0

for i in range(len(lambdas)):
    if(r_sum/total_eigen >=.95):
        index=i
        break
    else:
        r_sum+=lambdas[i]

lambda_rd=lambdas[:index]
vs_rd=vs[:index]
```

Total lambda values: 128

In [20]:

```
print("Reduced lambda ",len(lambda_rd))
```

Reduced lambda 57

Verifying with inbuilt PCA for no of components

In [21]:

```
from sklearn.decomposition import PCA

pca = PCA().fit(df_dim)
plt.plot(np.cumsum(pca.explained_variance_ratio_))
plt.xlabel('number of components')
plt.ylabel('cumulative explained variance');

#we can see for 0.95, we get around 60
```


Reducing the data

In [22]:

```
red_train_data=df_dim @ vs_rd.T
red_train_data
```

Out[22]:

	0	1	2	3	4	5	6	7	
0	-0.085922	-0.200630	0.193114	0.162222	0.005716	0.034162	0.029775	-0.081066	0.2
1	-0.055755	-0.124344	0.151680	0.157961	0.018568	0.030559	0.088235	-0.114077	0.2
2	-0.116070	-0.119059	0.114342	0.098051	0.045468	0.087185	0.125157	-0.029765	0.2
3	-0.082357	-0.187135	0.187303	0.177185	0.044054	-0.014291	0.103310	-0.039566	0.2
4	-0.076012	-0.152521	0.146189	0.112002	-0.001292	-0.000156	0.106822	-0.039447	0.1
785	-0.166122	-0.143068	0.166056	0.105643	-0.020830	0.119008	0.096983	-0.106037	0.2
786	-0.018686	-0.175362	0.225020	0.080913	-0.040170	0.181357	0.142460	-0.044167	0.2
787	-0.078697	-0.162946	0.220727	0.122436	0.027959	0.120039	0.052178	-0.042097	0.2
788	-0.141495	-0.130481	0.247952	0.166986	0.015830	0.134146	0.090760	-0.086861	0.2
789	-0.062910	-0.129503	0.198673	0.111234	-0.076534	0.146725	0.146133	-0.050591	0.2
700	·- -7 -	-1							

780 rows × 57 columns

In [23]:

```
red_test_data=df_test[[i for i in df_test.columns[1:]]] @ vs_rd.T
red_test_data
```

Out[23]:

	0	1	2	3	4	5	6	7	
390	-0.177132	-0.175115	0.269655	0.118365	0.038968	0.085124	0.057599	-0.065892	0.1
391	-0.103300	-0.160897	0.167615	0.201968	-0.008014	0.092952	0.045541	0.002151	0.2
392	-0.153435	-0.173594	0.193888	0.138280	0.034524	0.119990	0.119908	-0.088775	0.1
393	-0.115593	-0.050115	0.164323	0.055682	0.003437	0.064277	0.133570	-0.020624	0.1
394	-0.055370	-0.026352	0.158553	0.109222	0.025264	-0.003519	0.089221	0.029834	0.1
395	-0.075354	-0.085509	0.129584	0.130524	0.118713	0.045890	0.123421	-0.066907	0.1
396	-0.133736	-0.087822	0.116717	0.095699	0.107149	0.091118	0.136185	-0.025547	0.1
397	-0.009092	-0.165390	0.148819	0.110606	0.056945	0.022829	0.080098	-0.126040	0.1
398	-0.035924	-0.125528	0.161770	0.197797	-0.043080	0.037714	0.048948	-0.143283	0.1
399	-0.044933	-0.080137	0.083556	0.119618	0.004948	0.084383	0.091632	-0.087539	0.1
790	-0.106879	-0.175464	0.149705	0.078446	-0.025678	0.124027	0.123001	-0.064445	0.2
791	-0.036366	-0.197258	0.199854	0.082745	-0.076543	0.170693	0.068024	-0.083996	0.2
792	-0.126374	-0.273559	0.068183	0.110489	0.033757	0.167480	0.143893	-0.141644	0.2
793	-0.082626	-0.098502	0.064317	0.058600	0.027592	0.065021	0.152353	-0.007970	0.1
794	-0.124669	-0.244321	0.158432	0.100248	-0.001757	0.141562	0.168321	-0.042069	0.1
795	0.034578	-0.137226	0.070334	0.087678	-0.043030	0.057677	0.029719	-0.030424	0.2
796	-0.063201	-0.225409	0.158612	0.092467	0.023689	0.127564	0.171994	-0.043018	0.2
797	0.039070	-0.085903	0.126874	0.071063	-0.034993	0.092489	0.064239	-0.060878	0.1
798	-0.084401	-0.123668	0.107070	0.127319	-0.094750	0.087222	0.028819	-0.110238	0.2
799	-0.088090	-0.212623	0.193325	0.101219	0.022406	0.138563	0.145457	-0.036179	0.1

20 rows × 57 columns

Classification

In [24]:

We can see we get good accuracy even after reducing the dimensions (almost half of original dimension)

In []:

2. For the same dataset (2 classes, male and female)

- a) Use LDA to reduce the dimension from d to d'. (Here d=128)
- b) Choose the direction W to reduce the dimension d' (select appropriate d').
- c) Use d' features to classify the test cases (any classification algorithm will do, Bayes classifier, minimum distance classifier, and so on).

In [1]:

```
import pandas as pd
import numpy as np
import scipy as sp
```

In [2]:

```
df=pd.read_csv('gender_feature_vectors.csv')
```

In [3]:

df

Out[3]:

	Unnamed: 0	Unnamed: 1	0	1	2	3	4	5	
0	1	male	-0.066420	0.151611	0.027740	0.052771	-0.066105	-0.041232	-0.0
1	2	male	-0.030614	0.049667	0.008084	-0.050324	0.007649	-0.063818	-0.0
2	3	male	-0.096178	0.061127	0.035326	-0.035388	-0.090728	-0.018634	-0.0
3	4	male	-0.103057	0.085044	0.078333	-0.035873	-0.028163	0.004924	0.0
4	5	male	-0.125815	0.120046	0.023131	-0.042901	0.038215	-0.049677	-0.0
795	796	female	-0.164731	0.064301	0.058630	-0.017420	-0.157600	-0.022536	0.0
796	797	female	-0.095308	0.051095	0.092913	-0.101745	-0.083153	-0.028159	0.0
797	798	female	-0.202852	0.037039	0.079731	-0.047156	-0.140062	-0.080246	0.0
798	799	female	-0.088300	0.063530	0.049627	-0.026011	-0.172773	0.086218	0.0
799	800	female	-0.156201	0.055165	0.142716	-0.115393	-0.128982	-0.139830	-0.0

800 rows × 130 columns

In [4]:

```
df['Unnamed: 1'].value_counts()
```

Out[4]:

female 401 male 399

Name: Unnamed: 1, dtype: int64

In [5]:

df.drop(columns=df.columns[0],inplace=True)
df

Out[5]:

	Unnamed: 1	0	1	2	3	4	5	6	
0	male	-0.066420	0.151611	0.027740	0.052771	-0.066105	-0.041232	-0.002637	-0.15
1	male	-0.030614	0.049667	0.008084	-0.050324	0.007649	-0.063818	-0.019530	-0.11
2	male	-0.096178	0.061127	0.035326	-0.035388	-0.090728	-0.018634	-0.024315	-0.13
3	male	-0.103057	0.085044	0.078333	-0.035873	-0.028163	0.004924	0.007829	-0.01
4	male	-0.125815	0.120046	0.023131	-0.042901	0.038215	-0.049677	-0.054258	-0.13
795	female	-0.164731	0.064301	0.058630	-0.017420	-0.157600	-0.022536	0.002864	-0.07
796	female	-0.095308	0.051095	0.092913	-0.101745	-0.083153	-0.028159	0.009090	-0.11
797	female	-0.202852	0.037039	0.079731	-0.047156	-0.140062	-0.080246	0.057668	-0.12
798	female	-0.088300	0.063530	0.049627	-0.026011	-0.172773	0.086218	0.042710	-0.16
799	female	-0.156201	0.055165	0.142716	-0.115393	-0.128982	-0.139830	-0.037305	-0.10

800 rows × 129 columns

In [6]:

```
df.rename(columns={df.columns[0]:"Class"},inplace=True)
df
```

Out[6]:

	Class	0	1	2	3	4	5	6	
0	male	-0.066420	0.151611	0.027740	0.052771	-0.066105	-0.041232	-0.002637	-0.15846
1	male	-0.030614	0.049667	0.008084	-0.050324	0.007649	-0.063818	-0.019530	-0.11990
2	male	-0.096178	0.061127	0.035326	-0.035388	-0.090728	-0.018634	-0.024315	-0.13978
3	male	-0.103057	0.085044	0.078333	-0.035873	-0.028163	0.004924	0.007829	-0.01701
4	male	-0.125815	0.120046	0.023131	-0.042901	0.038215	-0.049677	-0.054258	-0.13075
795	female	-0.164731	0.064301	0.058630	-0.017420	-0.157600	-0.022536	0.002864	-0.07273
796	female	-0.095308	0.051095	0.092913	-0.101745	-0.083153	-0.028159	0.009090	-0.11451
797	female	-0.202852	0.037039	0.079731	-0.047156	-0.140062	-0.080246	0.057668	-0.12208
798	female	-0.088300	0.063530	0.049627	-0.026011	-0.172773	0.086218	0.042710	-0.16185
799	female	-0.156201	0.055165	0.142716	-0.115393	-0.128982	-0.139830	-0.037305	-0.10140

800 rows × 129 columns

In [7]:

```
df_test=df.iloc[np.r_[390:400, 790:800]]
```

In [8]:

```
df_train=df.iloc[np.r_[0:390,400:790]]
```

In [12]:

df_train[0:390]

Out[12]:

	Class	0	1	2	3	4	5	6	
0	male	-0.066420	0.151611	0.027740	0.052771	-0.066105	-0.041232	-0.002637	-0.15846
1	male	-0.030614	0.049667	0.008084	-0.050324	0.007649	-0.063818	-0.019530	-0.11990
2	male	-0.096178	0.061127	0.035326	-0.035388	-0.090728	-0.018634	-0.024315	-0.13978
3	male	-0.103057	0.085044	0.078333	-0.035873	-0.028163	0.004924	0.007829	-0.01701
4	male	-0.125815	0.120046	0.023131	-0.042901	0.038215	-0.049677	-0.054258	-0.13075
385	male	-0.064409	0.111391	0.204528	-0.061478	-0.007144	-0.185951	0.037198	-0.12249
386	male	0.002976	0.060769	-0.016651	0.053049	-0.099903	-0.082844	0.017824	-0.10680
387	male	-0.009311	0.077162	0.031294	-0.089573	-0.038689	-0.031663	-0.012356	-0.06409
388	male	-0.036479	0.063089	0.037658	-0.000695	-0.104741	-0.018407	0.030498	-0.08932
389	male	-0.201210	0.054217	0.173419	0.004309	-0.068915	-0.114538	0.124839	-0.06773

390 rows × 129 columns

In [13]:

df_train[390:]

Out[13]:

	Class	0	1	2	3	4	5	6	
400	female	0.001747	0.185678	0.073260	0.042142	-0.088674	0.028186	-0.027830	-0.06421
401	female	-0.091598	0.095340	0.072125	-0.092276	-0.079953	0.047782	-0.004701	-0.09200
402	female	-0.018751	0.088572	0.068894	-0.065700	-0.115126	0.024339	-0.028420	-0.15932
403	female	-0.130889	0.093262	0.122244	-0.110014	-0.157625	-0.036781	0.073908	-0.09857
404	female	-0.037433	0.078158	0.118061	-0.117658	-0.194807	-0.045464	-0.014104	-0.15882
785	female	-0.017931	0.045591	0.059826	-0.059833	-0.126832	0.070365	0.026347	-0.09353
786	female	-0.039572	0.049409	0.100950	-0.092940	-0.152356	-0.057714	-0.000538	-0.11599
787	female	-0.015170	-0.001116	0.132143	-0.078673	-0.134462	-0.155683	-0.030665	-0.16475
788	female	-0.151263	0.096725	0.075206	-0.047269	-0.233372	-0.019918	-0.072370	-0.11840
789	female	-0.179743	0.104404	0.052260	-0.074608	-0.166008	0.023287	0.006970	-0.14983

390 rows × 129 columns

df_test

Out[15]:

	Class	0	1	2	3	4	5	6	
390	male	-0.080683	0.097440	0.006550	0.018112	-0.114999	0.160041	-0.002373	-0.05795
391	male	-0.010301	0.135185	0.049710	-0.046424	-0.041742	0.016607	-0.041778	-0.04802
392	male	-0.112450	0.080098	0.030571	0.000952	-0.097450	-0.045070	-0.003641	-0.14282
393	male	-0.087855	0.100264	0.069775	0.037204	-0.047182	-0.047233	-0.013604	-0.18937
394	male	-0.139066	0.141988	0.070456	-0.003518	-0.065637	-0.037767	-0.094195	-0.19566
395	male	-0.129449	0.132177	0.055916	-0.009390	-0.080541	-0.072362	-0.067433	-0.19224
396	male	-0.158460	0.109948	0.019088	0.015506	-0.069668	0.032311	0.015062	-0.14081
397	male	-0.101499	0.119739	0.016951	-0.013677	-0.055524	0.028399	0.028164	-0.15210
398	male	-0.149516	0.081588	0.090796	-0.053116	-0.133314	0.001096	0.019941	-0.11780
399	female	0.039844	0.070357	0.130196	-0.007683	-0.077825	-0.021298	-0.024133	-0.08510
790	female	-0.184166	0.122040	0.064143	-0.116653	-0.140633	0.041252	0.014207	-0.10881
791	female	-0.128052	0.082184	0.148978	-0.074984	-0.113145	-0.031003	0.018468	-0.13028
792	female	-0.109618	0.094507	0.043757	-0.162004	-0.191951	0.027582	-0.033507	-0.11207
793	female	-0.201133	0.068051	0.088596	-0.084936	-0.055628	-0.069027	-0.003922	-0.19139
794	female	-0.185053	0.136105	0.096279	-0.139661	-0.244312	0.015234	-0.007418	-0.07761
795	female	-0.164731	0.064301	0.058630	-0.017420	-0.157600	-0.022536	0.002864	-0.07273
796	female	-0.095308	0.051095	0.092913	-0.101745	-0.083153	-0.028159	0.009090	-0.11451
797	female	-0.202852	0.037039	0.079731	-0.047156	-0.140062	-0.080246	0.057668	-0.12208
798	female	-0.088300	0.063530	0.049627	-0.026011	-0.172773	0.086218	0.042710	-0.16185
799	female	-0.156201	0.055165	0.142716	-0.115393	-0.128982	-0.139830	-0.037305	-0.10140
20 ro	ws × 12	9 columns							

Computing mean and scatter matrix

In [16]:

```
df_male=df_train[[i for i in df.columns[1:]]][:390]
df_male
```

Out[16]:

	0	1	2	3	4	5	6	7	
0	-0.066420	0.151611	0.027740	0.052771	-0.066105	-0.041232	-0.002637	-0.158467	0.130
1	-0.030614	0.049667	0.008084	-0.050324	0.007649	-0.063818	-0.019530	-0.119905	0.186
2	-0.096178	0.061127	0.035326	-0.035388	-0.090728	-0.018634	-0.024315	-0.139786	0.05
3	-0.103057	0.085044	0.078333	-0.035873	-0.028163	0.004924	0.007829	-0.017016	0.114
4	-0.125815	0.120046	0.023131	-0.042901	0.038215	-0.049677	-0.054258	-0.130758	0.17
385	-0.064409	0.111391	0.204528	-0.061478	-0.007144	-0.185951	0.037198	-0.122494	0.166
386	0.002976	0.060769	-0.016651	0.053049	-0.099903	-0.082844	0.017824	-0.106804	0.12
387	-0.009311	0.077162	0.031294	-0.089573	-0.038689	-0.031663	-0.012356	-0.064096	0.17
388	-0.036479	0.063089	0.037658	-0.000695	-0.104741	-0.018407	0.030498	-0.089321	0.13
389	-0.201210	0.054217	0.173419	0.004309	-0.068915	-0.114538	0.124839	-0.067737	0.104

390 rows × 128 columns

In [17]:

```
df_female=df_train[[i for i in df.columns[1:]]][390:]
df_female
```

Out[17]:

	0	1	2	3	4	5	6	7	
400	0.001747	0.185678	0.073260	0.042142	-0.088674	0.028186	-0.027830	-0.064211	0.097
401	-0.091598	0.095340	0.072125	-0.092276	-0.079953	0.047782	-0.004701	-0.092005	0.222
402	-0.018751	0.088572	0.068894	-0.065700	-0.115126	0.024339	-0.028420	-0.159320	0.164
403	-0.130889	0.093262	0.122244	-0.110014	-0.157625	-0.036781	0.073908	-0.098571	0.120
404	-0.037433	0.078158	0.118061	-0.117658	-0.194807	-0.045464	-0.014104	-0.158824	0.159
785	-0.017931	0.045591	0.059826	-0.059833	-0.126832	0.070365	0.026347	-0.093537	0.278
786	-0.039572	0.049409	0.100950	-0.092940	-0.152356	-0.057714	-0.000538	-0.115991	0.206
787	-0.015170	-0.001116	0.132143	-0.078673	-0.134462	-0.155683	-0.030665	-0.164758	0.105
788	-0.151263	0.096725	0.075206	-0.047269	-0.233372	-0.019918	-0.072370	-0.118408	0.193
789	-0.179743	0.104404	0.052260	-0.074608	-0.166008	0.023287	0.006970	-0.149833	0.159

390 rows × 128 columns

```
In [18]:
```

```
mean_male=df_male.mean()
mean_male
Out[18]:
     -0.091137
1
      0.092309
2
      0.043384
3
     -0.030786
     -0.093000
123
    -0.118805
124
     0.021776
125
     -0.025222
126
       0.020244
127
       0.040089
Length: 128, dtype: float64
```

In [19]:

```
mean_female=df_female.mean()
mean_female
```

Out[19]:

```
0
      -0.116036
1
      0.076929
2
      0.081975
3
      -0.077089
      -0.122499
123
    -0.086894
124
      0.053799
      -0.031701
125
126
       0.004233
127
       0.025536
Length: 128, dtype: float64
```

Sw matrix (within class)

In [20]:

```
#Scatter matrix 1
S1= (df_male.values - np.array(mean_male) ).T @ (df_male.values - np.array(mean_male))
```

```
In [21]:
S1
Out[21]:
array([[ 1.21590589, -0.22385172, -0.12872454, ..., 0.24384893,
       -0.07807342, -0.03553427],
       [-0.22385172, 0.89023903, 0.14525314, ..., -0.14402007,
       -0.11400393, -0.08026288],
       [-0.12872454, 0.14525314, 0.98592786, ..., -0.1457067,
        0.0365962, -0.02872259],
       [0.24384893, -0.14402007, -0.1457067, ..., 0.951065]
        0.02352049, 0.00168977],
       [-0.07807342, -0.11400393, 0.0365962, ..., 0.02352049,
        0.97078087, 0.10619016],
       [-0.03553427, -0.08026288, -0.02872259, ..., 0.00168977,
         0.10619016, 0.68554017]])
In [22]:
S2 = (df_female.values - np.array(mean_female)).T @ (df_female.values - np.array(mean_femal
In [23]:
S2
Out[23]:
array([[ 0.9621001 , -0.13917361, 0.14762725, ..., 0.06294964,
       -0.08545036, -0.05254243],
                    1.01438579, 0.01902008, ..., -0.17504062,
       [-0.13917361,
       -0.04697787, 0.01789532],
       [0.14762725, 0.01902008, 0.75556753, ..., -0.05615372,
        -0.07224368, 0.15315488],
       . . . ,
       [0.06294964, -0.17504062, -0.05615372, \ldots, 0.88627125,
       -0.04231172, 0.11945256],
       [-0.08545036, -0.04697787, -0.07224368, ..., -0.04231172,
        0.92043746, -0.1086309 ],
       [-0.05254243, 0.01789532, 0.15315488, ..., 0.11945256,
        -0.1086309 , 1.0380166 ]])
In [24]:
Sw=S1+S2
```

For Sb (between class) we need mean of whole data

```
In [25]:
```

```
mean_whole=np.mean(df_train)
```

```
In [26]:

def Sb_i(mean_whole,mean_class,number_of_points,dim):
    return (number_of_points * np.subtract(mean_class,mean_whole).values.reshape(dim,1) @ r

In [27]:

Sb1=Sb_i(mean_whole,mean_male,390,128)

In [28]:

Sb2=Sb_i(mean_whole,mean_female,390,128)

In [29]:

Sb=Sb1+Sb2

In [30]:
```

eigen_vectors, eigen_values,_=np.linalg.svd(np.linalg.inv(Sw) @ Sb)

In [31]:

eigen values

Out[31]:

```
array([2.72333430e+06, 4.14087275e-04, 3.92718028e-04, 3.47948322e-04,
       3.21549303e-04, 3.08722475e-04, 2.99873459e-04, 2.75389943e-04,
       2.72325531e-04, 2.63408566e-04, 2.50202781e-04, 2.41079159e-04,
       2.33192792e-04, 2.29902802e-04, 2.20424901e-04, 2.12390727e-04,
       2.08723331e-04, 2.02983943e-04, 1.98274952e-04, 1.92096411e-04,
       1.87930711e-04, 1.83259321e-04, 1.79973511e-04, 1.68708968e-04,
       1.64019504e-04, 1.57551063e-04, 1.55982351e-04, 1.52701669e-04,
       1.49555675e-04, 1.44957772e-04, 1.38982285e-04, 1.36554861e-04,
       1.35132546e-04, 1.33338857e-04, 1.28368942e-04, 1.24689578e-04,
       1.19399238e-04, 1.17035283e-04, 1.15960905e-04, 1.11093987e-04,
       1.08886529e-04, 1.04481965e-04, 1.01524049e-04, 1.00881439e-04,
       9.74491377e-05, 9.51172349e-05, 9.35910544e-05, 8.99262536e-05,
       8.88186053e-05, 8.76201235e-05, 7.99192625e-05, 7.83831228e-05,
       7.68043061e-05, 7.57674485e-05, 7.44863358e-05, 7.08509161e-05,
       6.98792249e-05, 6.81283604e-05, 6.65086484e-05, 6.41987831e-05,
       6.04101777e-05, 5.99595235e-05, 5.88472506e-05, 5.64822859e-05,
       5.57394138e-05, 5.39642613e-05, 5.13365336e-05, 5.08517143e-05,
       4.84559338e-05, 4.75352581e-05, 4.73064850e-05, 4.57833601e-05,
       4.35205221e-05, 4.14972441e-05, 4.12446418e-05, 3.94001245e-05,
       3.75535651e-05, 3.70542609e-05, 3.46971925e-05, 3.44804253e-05,
       3.31875332e-05, 3.15001859e-05, 3.06431124e-05, 2.94046780e-05,
       2.80340966e-05, 2.78905436e-05, 2.73364007e-05, 2.41553891e-05,
       2.37390224e-05, 2.28896573e-05, 2.25135106e-05, 2.07032761e-05,
       2.00756602e-05, 1.83019631e-05, 1.74186818e-05, 1.67906905e-05,
       1.61982034e-05, 1.50486336e-05, 1.44613895e-05, 1.40479915e-05,
       1.36479073e-05, 1.17312851e-05, 1.12881342e-05, 1.07155906e-05,
       1.01684656e-05, 9.03868353e-06, 8.60895383e-06, 7.69794773e-06,
       7.07619203e-06, 6.35861567e-06, 5.65950430e-06, 5.08306307e-06,
       4.42827147e-06, 3.77289525e-06, 3.67781457e-06, 3.41245691e-06,
       2.91492001e-06, 2.18146763e-06, 1.79744983e-06, 1.45753050e-06,
       1.14460294e-06, 1.02814399e-06, 7.10385451e-07, 6.55616874e-07,
       4.17230863e-07, 2.33276401e-07, 1.30299101e-07, 9.41889153e-08])
```

In [32]:

import matplotlib.pyplot as plt

In [33]:

```
plt.plot(eigen_values)
plt.xlabel("No of dimensions")
plt.ylabel("Eigen values")
```

Out[33]:

Text(0, 0.5, 'Eigen values')

We take only first eigen value (2 classes --> take (2-1) eigen value).

Reducing data

```
In [34]:
```

```
red_train_data=df_train[df.columns[1:]] @ eigen_vectors[0]
red_train_data
```

Out[34]:

```
-0.076645
0
1
       0.011543
2
       0.075068
3
       0.100944
      -0.005650
785
      -0.060044
786
       0.072923
787
       0.010113
788
       0.093721
789
       0.084124
Length: 780, dtype: float64
```

In [35]:

```
red_test_data=df_test[[i for i in df_test.columns[1:]]] @ eigen_vectors[0]
red_test_data
```

Out[35]:

```
390
      0.093422
391
     -0.005016
392
      0.149489
393
      0.084264
394
      0.063795
395
    0.052293
396
      0.160087
397
      0.017396
398
      0.045768
399
      0.040492
790
      0.118789
791
      0.041542
792
      0.105642
793
      0.068019
794
      0.089727
795
      0.098056
796
      0.043459
797
      0.053029
798
      0.056282
799
      0.033971
dtype: float64
```

Classification

In [36]:

3 Give the comparative study for the above results w.r.t to classification accuracy in terms of the confusion matrix.

Naive Bayes classifier gives 60 percent accuracy for LDA. Whereas for PCA we get 95 percent accuracy. We can see that PCA outperforms LDA in classification.

From the confusion matrix we see PCA based classifier only misclassifies one sample. LDA based classifier misclassifies 8 samples out of 20

Q4. Eigenfaces - Face classification using PCA (40 classes)

- a) Use the following "face.csv" file to classify the faces of 40 different people.
- b) Do not use in-built function for implementing PCA.
- c) Use appropriate classifier taught in class (any classification algorithm taught in class like Bayes classifier, minimum distance classifier, and so on)
- d) Refer to the following link for a description of the dataset

In [2]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.naive_bayes import GaussianNB
from sklearn import metrics
```

In [3]:

```
df = pd.read_csv('face.csv')
df.drop(df.columns[-1], axis = 1, inplace = True)
df
```

Out[3]:

	0	1	2	3	4	5	6	7	8
0	0.309917	0.367769	0.417355	0.442149	0.528926	0.607438	0.657025	0.677686	0.690083
1	0.454545	0.471074	0.512397	0.557851	0.595041	0.640496	0.681818	0.702479	0.710744
2	0.318182	0.400826	0.491736	0.528926	0.586777	0.657025	0.681818	0.685950	0.702479
3	0.198347	0.194215	0.194215	0.194215	0.190083	0.190083	0.243802	0.404959	0.483471
4	0.500000	0.545455	0.582645	0.623967	0.648760	0.690083	0.694215	0.714876	0.723140
395	0.400826	0.495868	0.570248	0.632231	0.648760	0.640496	0.661157	0.636364	0.665289
396	0.367769	0.367769	0.351240	0.301653	0.247934	0.247934	0.367769	0.512397	0.574380
397	0.500000	0.533058	0.607438	0.628099	0.657025	0.632231	0.657025	0.669422	0.673554
398	0.214876	0.219008	0.219008	0.223140	0.210744	0.202479	0.276859	0.400826	0.487603
399	0.516529	0.462810	0.280992	0.252066	0.247934	0.367769	0.574380	0.615702	0.661157

400 rows × 4096 columns

```
In [5]:
```

```
train_data_set = df.iloc[2:10]

for i in range(10, 400, 10):
    train_data_set = train_data_set.append(df.iloc[i + 2:i + 10], ignore_index = True)
```

In [6]:

```
test_data_set = df.iloc[0:2]

for i in range(10, 400, 10):
    test_data_set = test_data_set.append(df.iloc[i:i + 2], ignore_index = True)
```

In [7]:

```
train_data_set = np.transpose(train_data_set)

test_data_set = np.transpose(test_data_set)

d = 4096
```

In [8]:

```
def mean_PCA(train_data_set):
    train_data_set_mean = np.mean(train_data_set, axis = 1)
    return np.array(train_data_set_mean)
```

In [9]:

```
train_data_set_mean = mean_PCA(train_data_set)
train_data_set_covariance_matrix = np.cov(train_data_set)
eigen_values, eigen_vectors = np.linalg.eigh(train_data_set_covariance_matrix)
```

In [10]:

```
eigen_vectors
```

Out[10]:

```
In [12]:
eigen_pairs = [(np.abs(eigen_values[i]), eigen_vectors[:, i]) for i in range(len(eigen_values[i]))
eigen_pairs.sort(key = lambda x : x[0], reverse = lambda x : x[0])
eigen_pairs
Out[12]:
[(19.105796095321377,
  array([-0.00274755, -0.00543887, -0.00760075, ..., -0.00294621,
          0.0008393 , 0.0015609 ])),
 (12.207087351051666,
  array([ 0.02907084, 0.03428108, 0.0390819 , ..., -0.02996215,
         -0.02740332, -0.02503931])),
 (6.166659790621014,
  array([ 0.00040754, -0.00151739, -0.00233185, ..., -0.01302683,
         -0.01025922, -0.00867573])),
 (3.766708963990769,
  array([-0.00253901, -0.00561563, -0.01419596, ..., 0.031047 ,
          0.02984297, 0.02726496])),
 (2.730287928495426,
  array([0.02352622, 0.02307565, 0.02036678, ..., 0.03885212, 0.03756989,
         0.0392973 ])),
 (2.491505137016736,
  array([-0.02104077, -0.0211751, -0.01811579, ..., 0.0269678,
          0.02674315. 0.026402751)).
In [13]:
def get_reduced_dimension(eigen_pairs, eigen_values, percent):
    eigen_values_sum = np.sum(eigen_values)
    eigen_values_sum_reduced_dimension = percent * eigen_values_sum / 100
    sum = 0.0
    count = 0
    for i in eigen_pairs:
```

```
if(sum < eigen_values_sum_reduced_dimension):</pre>
        sum += i[0]
        count += 1
    else:
        break
return count
```

In [14]:

```
d prime = get reduced dimension(eigen pairs, eigen values, 95)
d_prime
```

Out[14]:

111

In [15]:

```
matrix_w = eigen_pairs[0][1].reshape(d, 1)
```

In [16]:

```
for i in range(1, d prime):
    matrix_w = np.hstack((matrix_w, eigen_pairs[i][1].reshape(d, 1)))
```

```
In [17]:
train_data_set_transformed = np.transpose(matrix_w.T.dot(train_data_set))
test_data_set_transformed = np.transpose(matrix_w.T.dot(test_data_set))
In [18]:
train_data_set_transformed
Out[18]:
array([[-3.84278500e+01, 1.05496914e+01,
                                          2.76257385e+00, ...,
        -1.49311834e-01, 2.64169294e-01,
                                          4.94872391e-01],
       [-3.80958302e+01, -2.36530844e+00,
                                          2.77395344e+00, ...,
         1.07242465e-01, -2.50675502e-01,
                                          2.44819087e-01],
       [-3.70319559e+01, 1.22432369e+01, 6.31392191e+00, ...,
       -1.36547366e-01, -4.01670809e-02, 3.49316185e-01],
       [-3.11444304e+01, 1.01462209e+01, 5.96225995e+00, ...,
       -6.70871573e-02, -1.75148272e-01, 3.32349524e-01],
       [-3.88338294e+01, 9.01930153e-01, 1.98477303e+00, ...,
        -2.30756990e-02, -3.69142681e-01, 3.00644319e-01],
       [-3.45162687e+01, 6.32423245e+00, 3.80672052e+00, ...,
        -3.53049751e-01, 2.48143830e-01, 2.12767436e-01]])
In [19]:
test_data_set_transformed
Out[19]:
array([[-3.95811272e+01, 9.73374957e+00,
                                          1.16472961e+00, ...,
         1.14704260e-02, 2.30335788e-02, 1.73677045e-01],
       [-3.39897567e+01, 1.54595402e+01, 4.52888350e+00, ...,
       -4.59040975e-01, -1.37985001e-01, 4.52161510e-01],
```

1.71149373e+00, ...,

4.28431021e+00, ...,

5.43861931e-01],

Bayes Classifier Code

Bayes Classifier with dimesion = 4096

[-2.30611479e+01, 9.42401369e+00,

-8.64847903e-02, -4.13596812e-01,

[-3.73080804e+01, 6.39686729e+00,

[-3.42602930e+01, 9.76087593e+00, -1.34650656e+00, ..., -1.48750983e-01, 2.39329589e-01, 3.29394425e-01],

[-3.18795206e+01, 1.02691521e+01, 5.97999216e+00, ..., -2.37681112e-02, 6.24611657e-02, 2.73599124e-01],

-2.95259371e-01, -4.42425011e-01, 2.70357075e-01]])

In [20]:

train_data_set

Out[20]:

	0	1	2	3	4	5	6	7	8
0	0.318182	0.198347	0.500000	0.549587	0.330578	0.128099	0.243802	0.380165	0.657025
1	0.400826	0.194215	0.545455	0.545455	0.305785	0.185950	0.297521	0.442149	0.677686
2	0.491736	0.194215	0.582645	0.541322	0.330578	0.247934	0.367769	0.483471	0.698347
3	0.528926	0.194215	0.623967	0.537190	0.351240	0.314050	0.454545	0.545455	0.706612
4	0.586777	0.190083	0.648760	0.537190	0.425620	0.388430	0.495868	0.582645	0.702479
4091	0.148760	0.743802	0.177686	0.661157	0.487603	0.157025	0.177686	0.173554	0.115702
4092	0.144628	0.764463	0.177686	0.690083	0.190083	0.152893	0.190083	0.173554	0.115702
4093	0.140496	0.752066	0.177686	0.714876	0.144628	0.152893	0.190083	0.173554	0.115702
4094	0.148760	0.752066	0.173554	0.706612	0.152893	0.173554	0.181818	0.173554	0.115702
4095	0.152893	0.739669	0.173554	0.702479	0.152893	0.173554	0.190083	0.173554	0.103306

4096 rows × 320 columns

In [21]:

test_data_set

Out[21]:

	0	1	2	3	4	5	6	7	8
0	0.309917	0.454545	0.541322	0.644628	0.578512	0.628099	0.169422	0.561983	0.454545
1	0.367769	0.471074	0.586777	0.690083	0.603306	0.665289	0.264463	0.665289	0.429752
2	0.417355	0.512397	0.640496	0.702479	0.632231	0.685950	0.219008	0.698347	0.537190
3	0.442149	0.557851	0.661157	0.702479	0.665289	0.694215	0.280992	0.698347	0.611570
4	0.528926	0.595041	0.685950	0.706612	0.677686	0.719008	0.421488	0.731405	0.652893
4091	0.132231	0.152893	0.363636	0.111570	0.194215	0.177686	0.363636	0.231405	0.376033
4092	0.148760	0.152893	0.111570	0.115702	0.165289	0.161157	0.198347	0.214876	0.409091
4093	0.152893	0.152893	0.095041	0.111570	0.177686	0.185950	0.210744	0.219008	0.409091
4094	0.161157	0.152893	0.111570	0.107438	0.161157	0.161157	0.235537	0.219008	0.384298
4095	0.157025	0.152893	0.111570	0.119835	0.152893	0.190083	0.214876	0.227273	0.384298

4096 rows × 80 columns

4

```
In [22]:
```

```
train_data_set = np.transpose(train_data_set)
test_data_set = np.transpose(test_data_set)

X_train = train_data_set
y_train = []

for i in range(40):
    for j in range(int(len(train_data_set)/ 40)):
        y_train.append(str(i))
```

In [23]:

```
X_test = test_data_set
y_test = []

for i in range(40):
    for j in range(int(len(test_data_set)/ 40)):
        y_test.append(str(i))
```

In [24]:

```
gnb = GaussianNB()
gnb.fit(X_train, y_train)
y_pred = gnb.predict(X_test)
overall_accuracy = metrics.accuracy_score(y_test, y_pred)
```

In [25]:

```
print("Bayes Classifier with dimension = " + str(d))
print("\nOverall Accuracy = " + str(overall_accuracy))
```

```
Bayes Classifier with dimension = 4096
Overall Accuracy = 0.9
```

Bayes Classifier with dimesion = 111

```
In [26]:
X_train_reduced_dimension = train_data_set_transformed
y_train_reduced_dimension = []
for i in range(40):
    for j in range(int(len(train_data_set_transformed)/ 40)):
        y_train_reduced_dimension.append(str(i))
X_train_reduced_dimension
Out[26]:
array([[-3.84278500e+01, 1.05496914e+01, 2.76257385e+00, ...,
        -1.49311834e-01, 2.64169294e-01,
                                          4.94872391e-01],
       [-3.80958302e+01, -2.36530844e+00, 2.77395344e+00, ...,
         1.07242465e-01, -2.50675502e-01, 2.44819087e-01],
       [-3.70319559e+01, 1.22432369e+01, 6.31392191e+00, ...,
        -1.36547366e-01, -4.01670809e-02, 3.49316185e-01],
       . . . ,
       [-3.11444304e+01, 1.01462209e+01, 5.96225995e+00, ...,
        -6.70871573e-02, -1.75148272e-01,
                                           3.32349524e-01],
       [-3.88338294e+01, 9.01930153e-01, 1.98477303e+00, ...,
       -2.30756990e-02, -3.69142681e-01, 3.00644319e-01],
       [-3.45162687e+01, 6.32423245e+00, 3.80672052e+00, ...,
        -3.53049751e-01, 2.48143830e-01, 2.12767436e-01]])
In [27]:
X_train_reduced_dimension.shape
Out[27]:
(320, 111)
In [28]:
X_test_reduced_dimension = test_data_set_transformed
y_test_reduced_dimension = []
for i in range(40):
    for j in range(int(len(test_data_set_transformed)/ 40)):
        y test reduced dimension.append(str(i))
X test reduced dimension
Out[28]:
                                           1.16472961e+00, ...,
array([[-3.95811272e+01, 9.73374957e+00,
         1.14704260e-02, 2.30335788e-02,
                                           1.73677045e-01],
       [-3.39897567e+01, 1.54595402e+01, 4.52888350e+00, ...,
       -4.59040975e-01, -1.37985001e-01, 4.52161510e-01],
```

```
array([[-3.95811272e+01, 9.73374957e+00, 1.16472961e+00, ..., 1.14704260e-02, 2.30335788e-02, 1.73677045e-01], [-3.39897567e+01, 1.54595402e+01, 4.52888350e+00, ..., -4.59040975e-01, -1.37985001e-01, 4.52161510e-01], [-3.42602930e+01, 9.76087593e+00, -1.34650656e+00, ..., -1.48750983e-01, 2.39329589e-01, 3.29394425e-01], ..., [-2.30611479e+01, 9.42401369e+00, 1.71149373e+00, ..., -8.64847903e-02, -4.13596812e-01, 5.43861931e-01], [-3.18795206e+01, 1.02691521e+01, 5.97999216e+00, ..., -2.37681112e-02, 6.24611657e-02, 2.73599124e-01], [-3.73080804e+01, 6.39686729e+00, 4.28431021e+00, ..., -2.95259371e-01, -4.42425011e-01, 2.70357075e-01]])
```

```
In [29]:

X_test_reduced_dimension.shape

Out[29]:
(80, 111)

In [30]:

gnb_reduced_dimension = GaussianNB()
gnb_reduced_dimension.fit(X_train_reduced_dimension, y_train_reduced_dimension)

y_pred_reduced_dimension = gnb_reduced_dimension.predict(X_test_reduced_dimension)

overall_accuracy_reduced_dimension = metrics.accuracy_score(y_test_reduced_dimension, y_pred_reduced_dimension)

print("Bayes Classifier with dimension = " + str(d_prime))

print("\noverall Accuracy = " + str(overall_accuracy_reduced_dimension))

Bayes Classifier with dimension = 111

Overall Accuracy = 0.975

In []:
```

April 5, 2021

1 5. Fisherfaces- Face classification using LDA (40 classes)

Use the following "face.csv" file to classify the faces of 40 different people.

```
[18]: | pip install scikit-plot
     Collecting scikit-plot
       Downloading https://files.pythonhosted.org/packages/7c/47/32520e259340c140a4ad
     27c1b97050dd3254fdc517b1d59974d47037510e/scikit_plot-0.3.7-py3-none-any.whl
     Requirement already satisfied: scipy>=0.9 in /usr/local/lib/python3.7/dist-
     packages (from scikit-plot) (1.4.1)
     Requirement already satisfied: matplotlib>=1.4.0 in
     /usr/local/lib/python3.7/dist-packages (from scikit-plot) (3.2.2)
     Requirement already satisfied: scikit-learn>=0.18 in
     /usr/local/lib/python3.7/dist-packages (from scikit-plot) (0.22.2.post1)
     Requirement already satisfied: joblib>=0.10 in /usr/local/lib/python3.7/dist-
     packages (from scikit-plot) (1.0.1)
     Requirement already satisfied: numpy>=1.13.3 in /usr/local/lib/python3.7/dist-
     packages (from scipy>=0.9->scikit-plot) (1.19.5)
     Requirement already satisfied: kiwisolver>=1.0.1 in
     /usr/local/lib/python3.7/dist-packages (from matplotlib>=1.4.0->scikit-plot)
     Requirement already satisfied: python-dateutil>=2.1 in
     /usr/local/lib/python3.7/dist-packages (from matplotlib>=1.4.0->scikit-plot)
     (2.8.1)
     Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in
     /usr/local/lib/python3.7/dist-packages (from matplotlib>=1.4.0->scikit-plot)
     (2.4.7)
     Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-
     packages (from matplotlib>=1.4.0->scikit-plot) (0.10.0)
     Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-
     packages (from python-dateutil>=2.1->matplotlib>=1.4.0->scikit-plot) (1.15.0)
     Installing collected packages: scikit-plot
     Successfully installed scikit-plot-0.3.7
[52]: import numpy as np
      import pandas as pd
```

from sklearn.naive_bayes import GaussianNB

```
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
import scikitplot as skplt
```

2 Function for LDA

```
[86]: def LDA(X, labels):
              d = X.shape[1]
              classes=np.unique(labels)
              c=len(classes)
              d = c-1
              class_dict={}
              for i in range(len(classes)):
                      class_dict[classes[i]]=i
              class_wise_data=[np.empty((0,)+X[0].shape,float) for i in classes]
              for i in range(len(X)):
                      class_wise_data[class_dict[labels[i]]]=np.
       →append(class_wise_data[class_dict[labels[i]]], np.array([X[i],]),axis=0)
              means=[]
              for i in class_wise_data:
                      means.append(np.mean(i,axis=0))
              Sw = np.zeros((d,d))
              for i,data in enumerate(class_wise_data):
                      z=data-means[i]
                      Sw += (z.T @ z)
              Sw_inv=np.linalg.inv(Sw)
              overall_mean = np.mean(X,axis=0)
              Sb = np.zeros((d,d))
              for i, data in enumerate(means):
                      Ni=len(class_wise_data[i])
                      z=np.array([means[i]-overall_mean])
                      Sb+=(Ni * (z.T @ z))
              M = Sw_inv @ Sb
              eigen_values , eigen_vectors = np.linalg.eigh(M)
              eigen_values , eigen_vectors = eigen_values.astype(np.float64) ,__
       →eigen_vectors.astype(np.float64)
              sorted_index = np.argsort(eigen_values)[::-1]
              sorted_eigenvectors = eigen_vectors[:,sorted_index]
              sorted_eigenvalue = eigen_values[sorted_index]
```

```
eigenvector_subset = sorted_eigenvectors[:,0:d_]

plt.bar(list(range(1,eigen_vectors.shape[0]+1)),sorted_eigenvalue)
plt.ylabel("eigen values")

Y=X @ eigenvector_subset
return Y,eigenvector_subset
```

3 Read data and split it to test and train

```
[87]: data=pd.read_csv('face.csv')

[88]: x = data.iloc[:,:-1]
    target = data.iloc[:,-1]

[89]: train_data = pd.concat([data.iloc[i*10+2:(i+1)*10] for i in range(40)])
    test_data = pd.concat([data.iloc[i*10:i*10+2] for i in range(40)])
    train_data.reset_index(drop=True, inplace=True)
    test_data.reset_index(drop=True, inplace=True)
```

4 Use LDA function to reduce dim


```
[91]: reduced = pd.DataFrame(reduced)
```

5 Classify test data and find accuracy

	0	1	2	•••	target	predicted	correctness
0	-14.907826	-4.569430	-0.827318	•••	0	0	correct
1	-12.912718	-2.557044	0.112835	•••	0	9	wrong
2	-14.155274	-4.687639	-1.662370	•••	1	1	correct
3	-13.903795	-4.280577	-1.522141	•••	1	1	correct
4	-12.324845	-2.570033	-1.145355		2	25	wrong
	•••	•••		•••	•••		
75	-13.024525	-2.618749	-0.415230	•••	37	37	correct
76	-9.124297	-3.698598	-0.485431	•••	38	38	correct
77	-8.225609	-2.829540	-0.746084	•••	38	38	correct
78	-11.922242	-1.713910	-1.664928	•••	39	39	correct
79	-14.177076	-3.706217	-1.264375	•••	39	39	correct

[80 rows x 42 columns]
Accuracy =87.5%

[]:[