TEORÍA DE LA COMPUTACIÓN

Grado en Ingeniería Informática - 2020/2021

Examen Parcial nº 2

1. (1,5 puntos) Obtenga el autómata finito que reconoce el lenguaje generado por la siguiente gramática regular:

$$S \rightarrow a b c A \mid b c B \mid c$$
 $A \rightarrow a b S$ $B \rightarrow a S$

- 2. (1,5 puntos) Pase a forma normal de Chomsky la gramática del ejercicio anterior.
- 3. (2 puntos) Considere las siguientes gramáticas independientes del contexto:

$$G_1: E \to E + T \mid T$$
 $G_2: E \to E + E \mid E \times E \mid (E) \mid a$ $T \to T \times F \mid F$ $F \to (E) \mid a$

En ambas gramáticas, escriba todas las posibles derivaciones y dibuje todos los posibles árboles de análisis sintáctico de la cadena $w = a + a \times a$.

¿Generan G_1 y G_2 el mismo lenguaje?

En caso afirmativo, y en función de los fenómenos observados al analizar la cadena w, explique en términos de ventajas y desventajas cuál es la diferencia esencial entre ambas gramáticas.

4. (1,5 puntos) Escriba una gramática independiente del contexto que genere el siguiente lenguaje:

$$\{a^n \, b^m \mid n \neq m\}$$

- 5. (1,5 puntos) Responda de manera breve y justificada a las siguientes cuestiones:
 - (a) Dada G, una gramática independiente del contexto, ¿cómo podemos saber si L(G) es vacío o no?
 - (b) Si G es una gramática independiente del contexto ambigua, $\sharp L(G)$ es siempre un lenguaje ambiguo?
 - (c) ¿Qué representa realmente la constante k en el lema del bombeo para lenguajes independientes del contexto?
- 6. (2 puntos) Construya un autómata de pila no determinista que acepte el siguiente lenguaje:

$$\{w \, w^I \mid w \in \{a, b\}^*\}$$