Progress update

Joe and Sohail

April 11, 2017

Statement of problem

- Can we predict which ablation procedures will lead to de novo RD sites and recurrent AF?
- What can we glean from a cardiac model that will allow us to make that prediction?

Classification problem: (AF->AF) vs. (AF->AT)

Extracting features from the dataset: workflow

Extract features

# PS clusters (Arrhythmogenicity			Borderiness	Dist. to nearest obstacle	
	#PSs No Duplic	# PSs	RA	LA	Dijkstra	Euclid
43	74573	212618	0.912888	0.917387	0	751.0435
5	13528	47702	0.956899	0.972907	16043.06	13611.81
11:	229358	710802	0.956899	0.972907	9181.866	8477.269
13	127725	454788	0.956899	0.972907	27920.55	25876.79
4	33973	120752	0.956899	0.972907	3942.711	3949.004
11	120684	410655	0.956899	0.972907	5668.737	4826.955
19	457830	1276515	0.959208	0.942288	52036.84	26432.16
125	285590	852256	0.959208	0.942288	68357.24	48615.86
186	496741	1357392	0.959208	0.942288	51135.34	42078.65
14	167293	610199	0.959208	0.942288	35072.87	26273.6
5	72183	256278	0.959208	0.942288	12146.94	7619.392
9	145912	461982	0.959208	0.942288	47769.9	37461.22
8	132417	426362	0.927156	0.971103	19303.79	15728.83

Importance weighting

Apply classifiers

Measure classifying success

Most discriminative features

- Evaluated by χ^2 , F-statistic, mutual information, and regression
- Top three performing features:
 - Fibrotic burden
 - Lesion size
 - Proximity of lesion to nearest obstacle (by Dijkstra's algorithm)

Classification is effective by multiple approaches

Precision recall curves

Classification is robust to approaches and test set portion

Example recurrent heart

• Should I include something here?

Example non recurrent heart

Conclusions

- We can extract fundamentally informative features from:
 - Individual fibrotic architecture
 - Ablation lesion characteristics
- These features allow discrimination of patients into recurrent and nonrecurrent subsets without the need for simulation
- The features are simple and can be easily estimated, making them more accessible and implementable

Future directions

- Check if these features are indicative of recurrence in the clinic
- Run simulations modulating...
 - Ablation size, perimeter/area
 - Closeness to nonconducting obstacle
 - ...and view reinducibility in each case:
 - Do less circular lesions allow anchoring?
 - Is it the *connection* to nonconducting obstacles, or the proximity?