The **OSI** (Open Systems Interconnection) model and the **TCP/IP** (Transmission Control Protocol/Internet Protocol) model are both conceptual frameworks used to understand and design how different networking protocols interact in a networked communication system.

OSI Model (Open Systems Interconnection)

The **OSI model** is a **theoretical** framework developed by the **ISO** (International Organization for Standardization) to standardize networking functions into seven layers.

7 Layers of the OSI Model:

Layer	Name	Description
7	Application	End-user services (e.g., HTTP, FTP, SMTP)
6	Presentatio n	Data formatting, encryption, compression
5	Session	Establishing, managing sessions
4	Transport	Reliable data transfer (e.g., TCP, UDP)
3	Network	Path selection, IP addressing (e.g., IP)
2	Data Link	MAC addressing, error detection (e.g., Ethernet)
1	Physical	Hardware transmission (e.g., cables, signals)

TCP/IP Model

The **TCP/IP model** (also called the **Internet Protocol Suite**) is a **practical model** developed by the **U.S. Department of Defense** for designing and implementing real-world internet communication protocols.

4 Layers of the TCP/IP Model:

Layer	Corresponding OSI Layers	Description
Application	7, 6, 5	All end-user protocols (HTTP, DNS, FTP)

Transport	4	Reliable/unreliable communication (TCP, UDP)
Internet	3	Routing, IP addressing (IP, ICMP)
Network Access	2, 1	Hardware communication (Ethernet, Wi-Fi)

Ⅲ Comparison Summary:

Feature	OSI Model	TCP/IP Model
Layers	7	4
Developed By	ISO	DARPA/DoD
Used For	Teaching/Reference	Internet design
Protocol Dependency	Protocol-independen t	Protocol-specific (TCP/IP)
Structure	More rigid	More flexible

W Key Points:

- The OSI model is idealized and great for understanding and teaching network concepts.
- The TCP/IP model is practical and reflects the actual protocols used on the Internet.
- In practice, networking uses the **TCP/IP model**, but understanding both helps troubleshoot and design networks effectively.

Networking Before the OSI Model (Pre-1979)

Before the OSI model was developed, there was **no standard framework** for how computers should communicate over a network. Each computer manufacturer—such as Dell, HP, IBM, etc.—often created its **own proprietary communication protocols**. As a result:

• **Devices from the same vendor** could typically communicate with each other because they used the same internal design and protocols.

- Devices from different vendors often could not communicate, even if physically connected, because their communication methods were incompatible.
- Networking was limited, fragmented, and vendor-dependent, making system integration and expansion complex and costly.

This lack of standardization hindered the growth of computer networking, especially as the need for interoperability between systems became more important.

Why Standardization Was Needed

To solve these problems, there was a need for a universal model that would allow any two systems—regardless of their manufacturer—to communicate effectively. This led to the development of the OSI model, which introduced a layered architecture and standard communication protocols.

OSI Model with Protocols and Functions

The data transmission process is divided into seven layers, each with distinct responsibilities on both the sending and receiving ends.

Upper Layers (Sender Side to Receiver Side)

- 1. Application Layer
 - o **Function**: Provides services directly to the user.
 - Examples: Protocols like HTTP, FTP, HTTPS.
 - Sender: Initiates communication (e.g., web request).
 - **Receiver**: Receives the application data (e.g., webpage).

2. Presentation Layer

- **Function**: Data formatting, encryption, decryption, compression.
- Sender: Encrypts or compresses data.
- Receiver: Decrypts or decompresses data.

3. Session Layer

- Function: Establishes, manages, and terminates sessions.
- Sender: Sets up and maintains the session.
- Receiver: Uses the same session for consistent communication.

Middle Layer (Transport)

4. Transport Layer

- o **Function**: Reliable or unreliable data transport between host systems.
- o Protocols: TCP, UDP.
- Sender: Breaks data into segments and adds port information.
- Receiver: Reassembles data and ensures reliable delivery.

Lower Layers (Networking & Physical Transmission)

5. Network Layer

- Function: Routing and logical addressing.
- Protocols: IP.
- Sender: Adds source and destination IP addresses.
- **Receiver**: Uses IP address to direct data to the correct device.

6. Data Link Layer

- Function: Responsible for MAC addressing and framing.
- Technologies: LLC (Logical Link Control), MAC (Media Access Control).
- Sender: Adds MAC addresses for local delivery.
- Receiver: Uses MAC to identify correct interface.

7. Physical Layer

- Function: Transmits raw bits over a physical medium.
- **Sender**: Converts data into signals (electrical, optical, etc.).
- **Receiver**: Converts signals back into binary data.

Flow Summary

- Data flows **down** from the application to the physical layer on the **sender's side**.
- It flows **up** from the physical to the application layer on the **receiver's side**.
- Each layer on one side communicates with its **corresponding layer** on the other side using specific protocols.

For the send part, which layer first comes? For the receiver Part, which layer comes first?

📤 Sender Side – First Layer:

- The first layer involved when sending data is the Application Layer (Layer 7).
- Data flows from top to bottom:

```
Application \rightarrow Presentation \rightarrow Session \rightarrow Transport \rightarrow Network \rightarrow Data Link \rightarrow Physical
```

This means the sender starts at the top (Application) and moves down the OSI stack to the Physical Layer, which sends the actual bits over the medium.

📥 Receiver Side – First Layer:

• The first layer involved when receiving data is the Physical Layer (Layer 1).

• Data flows from bottom to top:

```
Physical \rightarrow Data Link \rightarrow Network \rightarrow Transport \rightarrow Session \rightarrow Presentation \rightarrow Application
```

This means the receiver starts at the bottom (Physical Layer receives the bits) and moves up the OSI stack to the Application Layer, where the user finally sees the data.