5.1.

Teoría de vibraciones II

Rafael Torres

Responsable del Dpto. de Ingeniería en Vibroacústica de VIBCON Gerente de AV ENGINYERS

rafa@vibcon.es

Todos los cuerpos que poseen masa y elasticidad son capaces de vibrar

INERCIA + ELASTICIDAD

Las 3 condiciones básicas para que un cuerpo vibre

+ fuerzas externas

Edificios antisísmicos

....en la forma que son producidas: visión energética

Libres

Cris: 3 años

Forzadas

Autoexcitadas

Ed:12 02/2013

Rafael Torres del Castillo

Profesor externo Ingeniería Arquitectura La Salle URL

...en f. de su comportamiento durante la vibración.

Lineales

Sistema clásico de masa-muelle

No Lineales

Ref: Ángel Franco García Física. U.Pais Vasco

Figura 3.a – Suspensión. Sistema real

Figura 3.b – Modelo matemático discretizado

Figura 6.a – Farola modelizada como un sistema de 1 gdl

Figura 5 – Modelización por Elementos Finitos

Parámetro independiente 1: Amplitud Y

Fuente: Apuntes Rafa VIB. 5/95

Rafael Torres del Castillo Profesor externo Ingeniería Arquitectura La Salle URL

6 GD

Observación estática

El sistema está DESACOPLADO

Eje imaginario de rotación X debajo

Eje imaginario de rotación X encima

ACOPLAMIENTO

Asimetría mecánica

Critero esbeltez :H/B

H/B>5

En maquinaria y edificios; carga de viento, lluvia y nieve

Modificado:20/02/2012
Ed:12 02/2013
Rafael Torres del Castillo
Profesor externo Ingeniería Arqu

Unidades VRV de volumen variable de frio/calor

ventilador

baterías

compresor

medidas PREVENTIVAS
"Control de Vibraciones"

Estrategia adoptada: Rediseño del montaje antivibratorio.

Ed:12 02/2013 Rafael Torres del Castillo Profesor externo Ingeniería Arquitectura La Salle URL

H/B>5

Estrategias adoptadas

Colocar aisladores de rigideces diferentes.

Realizar una bancada excéntrica con perfiles metálicos.

Realizar una bancada de hormigón suspendida con aisladores

medidas PREVENTIVAS "Control de Vibraciones"

Estrategia adoptada: Rediseño del montaje antivibratorio.

Unidades exteriores splits

Apoyo	Reacciones carga en %	
Α	25%	
В	35%	
С	18%	
D	22%	

Enfriadoras agua pequeñas

Apoyo	Reacciones carga en %
Α	26%
В	25%
С	25%
D	24%

Ref: Elecnor 10/02/2012

Enfriadoras agua grandes

Nº.	Nombre	
1	Cubierta superior	
2	Condensador	
3	Compresor	
4	Evaporador	
5	Caja de control eléctrica de la entrada de aire	
6	Salida de agua	
7	Entrada de agua	
8	Compresor	

1.150Kg

Ed:12 02/2013 Rafael Torres del Castillo Profesor externo Ingeniería Arquitectura La Salle UR

Ref: enviado por Gasifred 3/07/2012

Enfriadoras agua grandes

MCAC-ATSM-2011-08 Unidad enfriadora modular refrigerada por aire 50 Hz Módulo 130 O Vista frontal Vista lateral Instalando pernos de sujeción Agujero de instalación Φ 15mmx Vista desde arriba Orificio de anclaje

Eu. 12 02/2013 Rafael Torres del Castillo Profesor externo Ingeniería Arquitectura La Salle URI

Ref: enviado por Gasifred 3/07/2012

Ventiladores a 900rpm

Ed:12 02/2013 Rafael Torres del Castillo Profesor externo Ingeniería Arquitectura La Salle URI

Fuente: Consulta de Dasil MAAM 2010:30/08/2012

No siempre es frecuente que el fabricante facilite la distribución de cargas

Ed:12 02/2013 Rafael Torres del Castillo Profesor externo Ingeniería Arquitectura La Salle URL

Rafa 10/08/2011

No siempre es frecuente que el fabricante facilite la distribución de cargas

Enfriadoras refrigeradas por agua condensadas por aire

Rafael Torres del Castillo Profesor externo Ingeniería Arquitectura La Salle URL

$$M_{x} = R_{X} \cdot d_{x}$$

$$R_{\scriptscriptstyle A} + R_{\scriptscriptstyle B} + R_{\scriptscriptstyle C} + R_{\scriptscriptstyle D} + P = 0$$

$$R_{A} = \frac{b2}{B} \cdot \frac{a2}{A} P$$

$$R_{B} = \frac{b1}{B} \cdot \frac{a2}{A} P$$

$$R_{D} = \frac{b1}{B} \cdot \frac{a1}{A} P$$

$$R_{C} = \frac{b2}{B} \cdot \frac{a1}{A} P$$

(ref: Criterio Rafa Torres)

6 Apoyos es + ESTABLE

$$2R_A + 2R_B + 2R_D = P$$

$$2R_A + 2R_B + 2R_D = P$$

$$R_A = R_B = R_C = \frac{1}{6}P$$

$$MR_{A} + MR_{B} - MR_{C} = 0$$

$$MR_A + MR_B = MR_C$$

$$(R_A \cdot a1) + (R_A \cdot a2) = R_A \cdot a3$$

$$R_{A}(a1+a2) = R_{A}a3$$

$$a1 + a2 = a3$$

$$R_A = \frac{1}{6}P$$

3,5<A< 5 m. (ref: Criterio Rafa Torres)

HCT-40C

Caso 3: Aislamiento ventiladores axiales

Actualizado18/12/2012.Ref: Curso B&K-2008

Ed:12 02/2013 Rafael Torres del Castillo Profesor externo Ingeniería Arquitectura La Salle URI

Ref: Jesús Uriol Acusticsambient 30/04/2012 en Sort (Llelida)

Vigas y forjados en edificios

Ref: Acústica Aparejadores BCN 2013

Modo (1,1)

Modo (1,2)

Modo (2,1)

Modo (2,2)

Rafael Torres de

Profesor externo Ingeniería Arquitectura La Salle URI

750 rpm (12,5 hz.)

Fuente: MNAC SALA 2 FORTUNY 12/2004

$$f_0 = \frac{600}{\sqrt{md}}$$

- m=masa superficial de la membrana Kg/m²
- •d= distancia de la cámara de aire en cm.

m	d	fO
28	70	14 Hz

1. Estrategias de actuación

2.Grado de libertad-1

3. Montaje antivibratorio

4. Vibraciones forzadas

5. Tipos de MA

