Universidade de Brasília

Delineamento e Análise de Experimentos

Professora Juliana Betini Fachini Gomes e-mail: jfachini@unb.br

Brasília - 2023

 Em alguns experimentos fatoriais, podemos ser incapazes de aleatorizar completamente todas as N observações;

 Para resolver esses casos, geralmente usamos uma generalização dos experimentos fatoriais, os experimentos em parcelas subdivididas ("Split-plot");

EXEMPLO

- Um fabricante de papel está interessado em estudar o efeito de dois fatores na resistência à tração do papel;
- Para isso ele usa três métodos de preparação de polpa (os métodos diferem na quantidade de madeira dura na mistura da polpa) e quatro temperaturas de cozimento diferentes para a polpa;
- Ao pensar em um experimento fatorial, ele terá 12 observações em cada repetição;
- O pesquisador decidiu executar três réplicas. Então, isso implica em 36 observações.

EXEMPLO

- No entanto, só é possível executar 12 operações por dia;
- Então, o pesquisador decide realizar cada repetição em um dia, e considera os dias ou repetição como bloco;
- Em cada dia, o pesquisador conduz o experimento da seguinte maneira:

EXEMPLO

- Um lote de polpa é produzido por um dos três métodos em estudo;
- Então, o lote é dividido em quatro amostras e cada amostra é cozida em uma das quatro temperaturas;
- Em seguida, um segundo lote de polpa é feito usando outro dos três métodos. E esse segundo lote também é dividido em quatro amostras que são testadas nas quatro temperaturas;
- O processo é então repetido, até que todas as três repetições (36 execuções) do experimento sejam obtidas.

The Experiment on the Tensile Strength of Paper

Pulp Preparation Method	Replicate 1		Replicate 2			Replicate 3			
	1	2	3	1	2	3	1	2	3
Temperature (°F)									
200	30	34	29	28	31	31	31	35	32
225	35	41	26	32	36	30	37	40	34
250	37	38	33	40	42	32	41	39	39
275	36	42	36	41	40	40	40	44	45

- Inicialmente, podemos considerar que este é um experimento fatorial com três níveis do método de preparo (fator A) e quatro níveis de temperatura (fator B);
- Se esse é o caso, então a ordem de experimentação dentro de cada repetição deve ser completamente aleatória;
- Ou seja, devemos selecionar aleatoriamente uma combinação de tratamento (um método de preparação e um temperatura) e obter uma observação;
- Em seguida, devemos selecionar aleatoriamente outra combinação de tratamento e obter uma segunda observação, e assim por diante, até que todas as 36 observações ocorram.

- No entanto, o pesquisador n\u00e3o coletou os dados dessa maneira;
- Ele considerou um lote de polpa e obteve as observações para todas as quatro temperaturas desse lote;
- Pela economia de preparar os lotes e o tamanho dos lotes, esta é a única maneira viável de executar este experimento;
- Um experimento fatorial completamente aleatório requer 36 lotes de celulose, o que é completamente irreal;
- O experimento de parcelas subdivididas requer apenas 9 lotes.
 O que resulta em considerável eficiência experimental.

Split Plot

- Cada parcela inteira é dividida em quatro partes chamadas subparcelas (ou parcelas divididas), e uma temperatura é atribuída a cada uma;
- A temperatura é chamada de tratamento de subparcela;
- Observe que os dois fatores foram essencialmente "aplicados" em momentos diferentes. Consequentemente, um experimento de parcela subdividida pode ser visto como dois experimentos "combinados" ou sobrepostos;
- Um "experimento" tem o fator de parcela inteira aplicado às grandes unidades experimentais (ou é um fator cujos níveis são difíceis de mudar) e o outro "experimento" tem o fator subplot aplicado às unidades experimentais menores (ou é um fator cujos níveis são fáceis de mudar).

Split Plot

O modelo para experimento em parcela subdividida é definido por:

$$y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \gamma_k + (\beta \gamma)_{jk} + \varepsilon_{ijk}, \tag{1}$$

em que i=1,2,...,r; j=1,2,...,a; k=1,2,...,b; μ é a média geral, τ_i é o efeito da repetição (bloco); β_j é o efeito do j-ésimo nível do fator A; $(\tau\beta)_{ij}$ é o erro da parcela (fator A); γ_k é o efeito do k-ésimo nível do fator B; $(\beta\gamma)_{jk}$ efeito da interação entre fator A e B; e ε_{ijk} é o componente de erro aleatório.

ANOVA

TABELA 1: Tabela de Análise de Variância para Experimento em Parcela Subdividida

Fonte de Variação	SQ	g.l.	QM	F
Bloco	SQ_{Bloco}	r-1	QM_{Bloco}	
Fator A	SQ_A	a - 1	QM_A	$\frac{QM_A}{QM_{Res(A)}}$
Resíduo(A)	SQRes(A)	(r-1)(a-1)	$QM_{Res(A)}$	nes(A)
Parcela	SQParcela	ar -1	-	
Fator B	SQ_B	b - 1	QM_B	$\frac{QM_B}{QM_{Res}}$
Interação <i>AB</i>	SQ_{AB}	(a - 1)(b-1)	QM_{AB}	$\frac{QM_{Res}}{QM_{AB}}$ $\frac{QM_{Res}}{QM_{Res}}$
Resíduo	SQ_{Res}	(ab - 1)(r-1)	QM_{Res}	, Nes
Total	SQ_T	abn-1		

ANOVA

As somas de quadrados são definidas por:

$$SQ_{T} = \sum_{i=1}^{r} \sum_{j=1}^{a} \sum_{k=1}^{b} (y_{ijk} - \bar{y}_{...})^{2}$$
 $SQ_{Bloco} = ab \sum_{i=1}^{r} (\bar{y}_{i..} - \bar{y}_{...})^{2}$
 $SQ_{A} = rb \sum_{j=1}^{a} (\bar{y}_{.j.} - \bar{y}_{...})^{2}$
 $SQ_{Parcela} = b \sum_{i=1}^{r} \sum_{j=1}^{a} (\bar{y}_{ij.} - \bar{y}_{...})^{2}$

$$SQ_{Res(A)} = SQ_{Parcela} - (SQ_{Bloco} + SQ_A)$$

ANOVA

$$SQ_B = ra \sum_{k=1}^{b} (\bar{y}_{..k} - \bar{y}_{...})^2$$

 $SQ_{AB} = r \sum_{i=1}^{a} \sum_{k=1}^{b} (\bar{y}_{.jk} - \bar{y}_{...})^2 - SQ_A - SQ_B$

$$SQ_{Res} = SQ_T - (SQ_{Parcela} + SQ_B + SQ_{AB})$$

SPLIT PLOT

Factor	E(MS)				
τ_i (Replicates)	$\sigma_{\epsilon}^2 + ab\sigma_{\tau}^2$				
$\beta_{j}(A)$	$\sigma_{\epsilon}^2 + b\sigma_{\tau\beta}^2 + \frac{rb\sum \beta_j^2}{a-1}$				
$(aueta)_{ij}$	$\sigma_{\epsilon}^2 + b\sigma_{\tau\beta}^2$ (whole-plot error)				
$\gamma_k(B)$	$\sigma_{\epsilon}^2 + \frac{ra\sum \gamma_k^2}{ab-1}$				
$(\beta\gamma)_{jk}(AB)$	$\sigma_{\epsilon}^2 + \frac{r \sum \sum (\beta \gamma)_{jk}^2}{(a-1)(b-1)}$				
$oldsymbol{\epsilon}_{ijk}$	σ_{ϵ}^2 (subplot error)				

Exercício

Considere os dados do quadro abaixo com os resultados do experimento sobre o efeito de diferentes cultivares e formas de preparo de solo em parcelas subdivididas. As diferentes formas de preparo do solo foram aplicados às parcelas e posteriormente subdivididos na aplicação dos diferentes cultivares.

Sistema de	Cultivar				
Preparo Solo		I	II	III	IV
Aração	A	4,2	4,6	4,5	4,4
	В	4,5	4,7	4,3	4,7
	C	5,2	5	6,8	5,8
Aração+Gradagem	A	3,8	4,4	4,8	3,9
	В	3,7	3,5	3,1	3,7
	C	3,5	3,1	3,4	3,3
Subsolagem	A	4,2	4,2	5,2	5,1
	В	4	3,8	3,7	4,1
	C	3.9	3.9	3.7	4

Exercício

- 1. Faça a análise de variância;
- 2. Verifique os pressupostos do modelo;
- Caso exista evidências de diferença de médias, realize o teste de Tukey.