BTA100 Series

Description:

High current density due to double mesa trchnology; BTA100 Series triacs is suitable for general purpose AC switching.

Applications:

they can be used as an ON/OFF function in applications such as static relays,heating regulation,induction motor stating circuits... or for phase contol operation light dimmers,motorspeed controllers

Features:

BTA100 series are insulated design
Blocking voltage to 800/1000/12000/1600V
On-state RMS current to 100A
Non-repetitive peak on-state current to 1000A

Absolute Maximum Ratings

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DRM}	Repetitive peak off-state voltage	T _J =25℃	800	1600	V
V_{RRM}	Repetitive peak Reverse voltage	T _J =25℃	800	1600	V
I _{T(RMS)}	RMSon-statecurrent	F=60Hz,Tc=110°C	-	100	Α
I _{TSM}	Non-repetitive peak On-state current	F=50Hz, t=10ms	-	1000	Α
		F=60Hz, t=8.3ms	-	1000	А
l ² t	I ² t for fusing	T _P =10ms	-	4000	A ² S
di/dt	Rate of rise of on-state current	I _G =2×I _{GT} ,t _r ≤100ns, T _J =125°C	-	50	A/µs
I _{GM}	Peak gate current		-	8.0	Α
P_{GM}	Peak gate power		-	10	W
$P_{G(AV)}$	Average gate power	_	-	2.0	W
T _{STG}	Storage temperature		-40	150	$^{\circ}\!$
T _J	Junction temperature		-40	125	$^{\circ}\!\mathbb{C}$

BTA100 Series

Electrical Characteristics

Symbol	Conditions	Quadrant		Numerical				
				BTA100- 800	BTA100- 1000	BTA100- 1200	BTA100- 1600	Unit
V_{TM}	I _T =17A,tp=380μs	T _J =25℃	MAX	1.3	1.3	1.3	1.55	V
I _{DRM} I _{RRM}	$V_D = V_{DRM}, V_R = V_{RRM}$	T _J =25°C	MAX	50				μΑ
		T _J =125℃	MAX	15				mA
I _{GT}	$V_D=12V,R_L=33\Omega$	1-11-111	MAX	50 80			mA	
		IV						
V_{GT}		I-II-III-IV	MAX	1.5				V
$V_{\sf GD}$	$V_D=V_{DRM}, R_L=3.3K\Omega,$ $T_J=125^{\circ}C$	I-II-III-IV	MIN	0.2			V	
I _L	I _T =1.2I _{GT}	I-III-IV	MAX	120				mA
		II	MAX		20	00		mA
I _H	I _T =0.5A		MAX		12	20		mA
dv/dt	V _{DM} =67%V _{DRM} ,gate open,T _J =125℃ M		MIN	500				V/µs

• Package Outline Dimensions

Typical Characteristics

FIG.1:Maximum power dissipation versus RMS on-state current(full cycle)

FIG.3:Relative variation of thermal impedance versus pulse duration

FIG.5:Surge peak on-state current versus number of cycles

FIG.7:Relative variation of gate trigger current, holding current and latching current versus junction temperature (typical values)

FIG.2:RMS on-state current versus case temperature(full cycle)

FIG.4:On-state characteristics(maximum values)

FIG.6:Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp< 10 ms and corresponding value of I²t

