Problem Formulation

with

- state vector $x: \mathbb{R} \to \mathbb{R}^{n_x}$
- control vector $u: \mathbb{R} \to \mathbb{R}^{n_{\mathrm{u}}}$
- algebraic state vector $z: \mathbb{R} \to \mathbb{R}^{n_z}$

 $s_{\text{u.h}}^{\text{e}}, s_{\text{u.bx}}^{\text{e}}, s_{\text{u.bu}}^{\text{e}}, s_{\text{u.g}}^{\text{e}} \ge 0,$

- model parameters $p \in \mathbb{R}^{n_{\mathrm{p}}}$
- slacks for path constraints $s_l(t) = (s_{l,bu}, s_{l,bx}, s_{l,g}, s_{l,h}) \in \mathbb{R}^{n_s}$ and $s_u(t) = (s_{u,bu}, s_{u,bx}, s_{u,g}, s_{u,h}) \in \mathbb{R}^{n_s}$
- slacks for terminal constraints $s^{\mathrm{e}}_{\mathrm{l}}(t) = (s^{\mathrm{e}}_{\mathrm{l,bx}}, s^{\mathrm{e}}_{\mathrm{l,g}}, s^{\mathrm{e}}_{\mathrm{l,h}}) \in \mathbb{R}^{n^{\mathrm{e}}_{\mathrm{s}}}$ and $s^{\mathrm{e}}_{\mathrm{u}}(t) = (s^{\mathrm{e}}_{\mathrm{u,bx}}, s^{\mathrm{e}}_{\mathrm{u,g}}, s^{\mathrm{e}}_{\mathrm{u,h}}) \in \mathbb{R}^{n^{\mathrm{e}}_{\mathrm{s}}}$

1 Dynamics

The function $f_{\text{impl}}: \mathbb{R}^{n_x} \times \mathbb{R}^{n_x} \times \mathbb{R}^{n_u} \times \mathbb{R}^{n_z} \times \mathbb{R}^{n_p} \to \mathbb{R}^{n_x+n_z}$ describes the dynamics as a fully implicit DAE. We offer to discretize F with a classic implicit Runge-Kutta (irk) or a structure exploiting implicit Runge-Kutta method (irk_gnsf).

Additionally, we offer an explicit Runge-Kutta integrator (erk), which can be used with explicit ODE models, i.e. models of the form

$$f_{\text{expl}}(x, u, p) = \dot{x}$$

Mathematical Expression	string identifier	data type	required
$f_{\rm impl}$ respectively $f_{\rm expl}$	dyn_expr_f	CasADi expression	yes
-	dyn_type	string (explicit or implicit)	yes

2 Cost

There are different acados modules to model the cost functions.

- $l: \mathbb{R}^{n_x} \times \mathbb{R}^{n_u} \times \mathbb{R}^{n_z} \to \mathbb{R}$ is the Lagrange objective term.
- $m: \mathbb{R}^{n_x} \times \mathbb{R}^{n_z} \to \mathbb{R}$ is the Mayer objective term.

to decide which one is used set $cost_type$ for l, $cost_type_e$ for m.

Setting the slack penalties is done in the same way for all cost modules, namely:

Mathematical Expression	string identifier	data type	required
$Z_{ m l}$	cost_Zl	double	no
$Z_{ m u}$	cost_Zu	double	no
$ z_{ m l} $	cost_zl	double	no
$z_{ m u}$	cost_zu	double	no
$Z_{ m l}^{ m e}$	cost_Zl_e	double	no
$Z_{ m u}^{ m e}$	cost_Zu_e	double	no
$z_{ m l}^{ m e}$	cost_zl_e	double	no
$z_{ m u}^{ m e}$	cost_zu_e	double	no

Moreover, you can specify $cost_Z$, to set Z_l , Z_u to the same values, i.e. use a symmetric L2 slack penalty. Similarly, $cost_Z_e$, $cost_Z_e$, $cost_Z_e$ can be used to set symmetric slack L1 penalties, respectively penalties for the terminal slack variables.

Cost module: auto

Set cost_type to auto (default). In this case we detect if the cost function specified is a linear least squares term and transcribe it in the corresponding form. Otherwise, it is formulated using the external cost module. Note: slack penalties are optional and we plan to detected them form the expressions in future versions.

Mathematical Expression	string identifier	data type	required
l	cost_expr_ext_cost	CasADi expression	yes
\overline{m}	cost_expr_ext_cost_e	CasADi expression	yes

Cost module: external

Set cost_type to ext_cost.

Mathematical Expression	string identifier	data type	required
$\overline{ }$	cost_expr_ext_cost	CasADi expression	yes
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	cost_expr_ext_cost_e	CasADi expression	yes

Cost module: linear least squares

Set cost_type to linear_ls.

The Lagrange cost term has the form

$$l(x, u, z) = \left\| \underbrace{V_x x + V_u u + V_z z}_{y} - y_{\text{ref}} \right\|_{W}^{2}$$

with matrices V_x, V_u, V_z, W of appropriate dimensions.

Similarly, the Mayer cost term has the form

$$m(x, u, z) = \left\| \underbrace{V_x^{\mathrm{e}} x}_{y^{\mathrm{e}}} - y_{\mathrm{ref}}^{\mathrm{e}} \right\|_{W^{\mathrm{e}}}^{2}$$

with matrices $V_x^{\mathrm{e}}, W^{\mathrm{e}}$ of appropriate dimensions.

Mathematical Expression	string identifier	data type	required
V_x	cost_V_x	double	yes
V_u	cost_V_u	double	yes
V_z	cost_V_z	double	yes
W	cost_W	double	yes
$y_{ m ref}$	cost_y_ref	double	yes
$V_x^{ m e}$	cost_V_x_e	double	yes
W^{e}	cost_W_e	double	yes
$y_{ m ref}^{ m e}$	cost_y_ref_e	double	yes

Cost module: nonlinear least squares

Set cost_type to nonlinear_ls.

The cost function has the same form as in the linear least squares module.

The only difference is that y, respectively y^e are defined as CasADi expressions, instead of the matrices V_x, V_u, V_z , respectively V_x^e

Mathematical Expression	string identifier	data type	required
y	cost_expr_y	CasADi expression	yes
$\overline{ }$ W	cost_W	double	yes
$y_{ m ref}$	cost_y_ref	double	yes
y^{e}	cost_expr_y_e	CasADi expression	yes
$y_{ m ref}^{ m e}$	cost_y_ref_e	double	yes

3 Constraints

3.1 Initial State

Note an initial state is not required. For example for MHE problems it should not be set.

Mathematical Expression	string identifier	data type	required
$ar{x}_0$	constr_x0	double	no

3.2 Path Constraints

Mathematical Expression	string identifier	data type	required
$J_{ m bx}$	constr_Jbx	double	no
\underline{x}	constr_lbx	double	no
\bar{x}	$constr_ubx$	double	no
$J_{ m bu}$	constr_Jbu	double	no
\underline{u}	constr_lbu	double	no
\bar{u}	constr_ubu	double	no
C	constr_C	double	no
D	constr_D	double	no
g	constr_lg	double	no
$rac{g}{ar{g}}$	constr_ug	double	no
h	constr_expr_h	CasADi expression	no
$rac{ar{h}}{ar{h}}$	constr_lh	double	no
$ar{h}$	${\tt constr_uh}$	double	no
$J_{ m sbx}$	constr_Jsbx	double	no
$J_{ m sbu}$	constr_Jsbu	double	no
$J_{ m sg}$	constr_Jsg	double	no
$J_{ m sbx}$	constr_Jsh	double	no

3.3 Terminal Constraints

Mathematical Expression	string identifier	data type	required
$J_{ m bx}$	constr_Jbx_e	double	no
$rac{oldsymbol{x}^{ ext{e}}}{ar{x}^{ ext{e}}}$	constr_lbx_e	double	no
$ar{x}^{\mathrm{e}}$	constr_ubx_e	double	no
C^{e}	constr_C_e	double	no
$rac{ar{g}^{ m e}}{ar{g}^{ m e}}$	constr_lg	double	no
$ar{ar{g}}^{ ext{e}}$	$constr_ug$	double	no
$h^{ m e}$	constr_expr_h_e	CasADi expression	no
$rac{ar{h}^{ m e}}{ar{h}^{ m e}}$	constr_lh_e	double	no
$ar{h}^{ ext{e}}$	constr_uh_e	double	no
$J_{ m sbx}$	constr_Jsbx	double	no
$J_{ m sg}^{ m e}$	constr_Jsg_e	double	no
$J_{ m sbx}^{ m e}$	constr_Jsh_e	double	no