Para entregarse el 8/03/2022.

La información se debe generar en LATEX, el nombre del archivo a entregar para esta tarea debe ser boleta_Ofn.pdf, donde boleta es su número de boleta. Si lo entregado contiene otros archivos no solicitados, se descartará y se considerará como tarea no entragada.

Definición 1 Suponga que $f, g : \mathbb{N} \to \mathbb{R}^+$ y que existen $n_0 \in \mathbb{N}$ y $C \in \mathbb{R}^+$ tales que para todo $n \ge n_0$ se cumple $f(n) \le Cg(n)$, entonces decimos que f = O(g).

1. Muestre que si $f, g: \mathbb{N} \to \mathbb{R}^+$ y

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \text{alguna constante},$$

entonces f = O(g).

- 2. Suponga que $f, g, f', g', h : \mathbb{N} \to \mathbb{R}^+$. Demuestre que se cumplen las siguientes propiedades.
 - (a) Si g = O(f) y h = O(f), entonces g + h = O(f).
 - (b) Si f = O(q) y q = O(h), entonces f = O(h).
 - (c) $f + q = O(\max\{f, q\})$.
 - (d) $O(f+q) = O(\max\{f, q\}).$
 - (e) Si f = O(f') y g = O(g'), entonces f + g = O(f' + g').
 - (f) Si f = O(f') y g = O(g'), entonces fg = O(f'g').
 - (g) Si f = O(q) y a > 0, entonces af = O(q).
 - (h) Si f = O(g) y $n \ge 1$ un natural, entonces $f^n = O(g^n)$.

Para cada f(n) en los ejercicios del 3 al 13 indique el inciso que sea una mejor estimación entre las siguientes:

- a) $f(n) = O(\ln n)$ d) $f(n) = O(\ln^2 n)$ g) $f(n) = O(\ln^3 n)$

- b) f(n) = O(n) e) $f(n) = O(n^2)$ h) $f(n) = O(n^3)$
- c) $f(n) = O(2^n)$ f) f(n) = O(n!) i) $f(n) = O(n^n)$

 $3. \binom{n}{3}.$

- 4. $10 \ln^3 n + 20n^2$.
- 5. El número de monomios en x, y, z de grado total a lo más n.
- 6. El número de polinomios en x de grado a lo más n cuyos coeficientes son 0 o 1.
- 7. El número de polinomios en x de grado a lo más n-1 cuyos coeficientes son enteros entre 0 o n.
- 8. Dado $k \in \{0, 1, 2, n-1\}$, la suma $\sum_{i=1}^{n} i^k$.
- 9. La cantidad de espacio de memoria que una computadora requiere para almacenar el número n.
- 10. La cantidad de espacio de memoria que una computadora requiere para almacenar n^2 .
- 11. La suma de los primeros n enteros positivos.
- 12. La suma de los cuadrados de los primeros n enteros positivos.
- 13. El número de bits en la suma de los cuadrados de los primeros n enteros positivos.