Intervals, Transformations, and Slope Solution (version 131)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-5, -1) \cup (3, 10)$
Negative	$(-10, -5) \cup (-1, 3)$
Increasing	$(-10, -2) \cup (0, 6)$
Decreasing	$(-2,0) \cup (6,10)$
Domain	(-10, 10)
Range	(-10,6)

Intervals, Transformations, and Slope Solution (version 131)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=18$ and $x_2=58$. Express your answer as a reduced fraction.

\overline{x}	g(x)
18	61
58	86
61	58
86	18

$$\frac{f(58) - f(18)}{58 - 18} = \frac{86 - 61}{58 - 18} = \frac{25}{40}$$

The greatest common factor of 25 and 40 is 5. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{5}{8}$$

2