Detecting and Repairing Arbitrage

Mohammadsaeed Haghi, Fatemeh Ebrahimi Spring 2023

Why must we detect and repair it?

- Model calibration
- Smoothing and filtering
- Data repair

Assumptions

- $T^e = \{T_i\}_{1 \le i \le m}$
- $P^{T,K} = \{(T_i, K_j^i)\}_{1 \le i \le m, 1 \le j \le n_i}$
- C_j^i
- Deterministic interest and dividends
- Zero-coupon bonds and forward contracts
- Static arbitrage

Constraints

- First Fundamental Theorem of Asset Pricing
- Necessary and sufficient constraints
- Strategies

Constraints

- Vertical spread
- Calendar spread
- Calendar vertical spread
- Vertical butterfly
- Calendar butterfly

Vertical spread

- Long $\frac{1}{K^i_{\{j_1\}}-K^i_{\{j_2\}}}$ of $(i,j_1)th$ option
- Short $\frac{1}{K^i_{\{j_1\}}-K^i_{\{j_2\}}}$ of $(i,j_2)th$ option

• cost =
$$\frac{C_{\{j_2\}}^i - C_{\{j_1\}}^i}{K_{\{j_1\}}^i - K_{\{j_2\}}^i}$$

• $0 \le payoff \le 1$

Reduction of constraints

Table 1. The reduced set of static arbitrage constraints.

Category	Constraints	Number
C1 Outright	$i \in [1,m], c^i_{n_i} \geq 0$	m
C2 Vertical spread	$i \in [1, m], j \in [1, n_i],$ $VS_{j,j-1}^i \ge 0$ and $VS_{1,0}^i \le 1$	N + m
C3 Vertical butterfly	$i \in [1, m], j \in [1, n_i - 1], VB^i_{j, j - 1, j + 1} \ge 0$	N — m
C4 Calendar spread	$1 \le i_1 < i_2 \le m, j_1 \in [0, n_{i_1}], j_2 \in [0, n_{i_2}], $ $CS^{i_1, j_2}_{j_1, j_2} \ge 0$	$\mathcal{O}(\textit{mN})$
C5 Calendar vertical spread	$i^* \in [1, m], j^* \in [1, n_{i^*}],$ define $\mathcal{I} := \{i, j : T_i > T_{i^*}, k_{j^*-1}^{i^*} < k_j^i < k_{j^*}^{i^*}\},$ then $i, j \in \mathcal{I}, CVS_{j^*, j}^{i^*, i} \ge 0$	$\mathcal{O}(\textit{mN})$
C6.1 Calendar butterfly I (Absolute location convexity)	$\begin{split} i^* &\in [1,m], j^* \in [1,n_{i^*}-1], \\ \text{define } \mathcal{I} &:= \{i,j:T_i>T_{i^*},k_{j^*-1}^{i^*} < k_j^i < k_{j^*}^{i^*}\}, \\ \text{then } &i,j \in \mathcal{I}, CB_{j^*,j,j^*+1}^{i^*,j,i^*} \geq 0; \\ &i^* \in [1,m], j^* \in [2,n_{i^*}], \\ \text{define } \mathcal{I} &:= \{i,j:T_i>T_{i^*},k_{j^*-1}^{i^*} < k_j^i < k_{j^*}^{i^*}\}, \\ \text{then } &i,j \in \mathcal{I}, CB_{j^*-1,j^*-2,j}^{i^*,j^*} \geq 0; \\ &i^* \in [1,m], \\ \text{define } \mathcal{I} &:= \{i,j:T_i>T_{i^*},k_j^i>k_{n_{i^*}}^{i^*}\}, \\ \text{then } &i,j \in \mathcal{I}, CB_{n_{i^*},n_{i^*}-1,j}^{i^*,j} \geq 0 \end{split}$	$\mathcal{O}(m^2N)$
C6.2 Calendar butterfly II (Relative location convexity)	$i^* \in [1, m], j^* \in [1, n_{i^*} - 1],$ $\text{define } \mathcal{I}_1 := \{i, j : T_i > T_{i^*}, k_{j^*-1}^{i^*} < k_j^i < k_{j^*}^{i^*}\},$ $\mathcal{I}_2 := \{i, j : T_i > T_{i^*}, k_{j^*}^{i^*} < k_j^i < k_{j^*+1}^{i^*}\},$ $i_1, j_1 \in \mathcal{I}, i_2, j_2 \in \mathcal{I}_2, CB_{j^*, j_1, j_2}^{i^*, j_1, j_2} \ge 0;$ $i^* \in [1, m],$ $\text{define } \mathcal{I}_1 := \{i, j : T_i > T_{i^*}, k_{n_{i^*}-1}^{i^*} < k_j^i < k_{n_{i^*}}^{i^*}\},$ $\mathcal{I}_2 := \{i, j : T_i > T_{i^*}, k_j^i > k_{n_{i^*}}^{i^*}\},$ $i_1, j_1 \in \mathcal{I}, i_2, j_2 \in \mathcal{I}_2, CB_{n_{i^*}, j_1, j_2}^{i^*, j_1, j_2} \ge 0$	$\mathcal{O}(m^2N)$

Equivalent optimization problem

minimize $f(\epsilon)$ subject to $A\epsilon \geq b - Ac$

How to choose *f*

- $l^2 norm$
- $l^0 norm$
- $l^1 norm$
- $l_{BA} norm$

 $l^{0} - norm \& l^{1} - norm$

$l_{BA}-norm$

•
$$f(\epsilon) = \sum f_j(\epsilon_j)$$

$$\bullet \ f_j(0) = \inf f_j(x) = 0$$

• $f_j(x)$ is increasing for x > 0

•
$$f_j(-\delta_j^b) = f_j(\delta_j^a) = \delta_0$$

•
$$\frac{df_j(x)}{d|x|} = 1 \text{ for } x \neq (-\delta_j^b, \delta_j^a)$$

$l_{BA}-norm$

$$f_j(x) = \max(-x - \delta_j^b + \delta_0, x - \delta_j^a + \delta_0, -\frac{\delta_0}{\delta_j^b}x, \frac{\delta_0}{\delta_j^a}x)$$

$$f(\varepsilon) = \sum_{j=1}^{N} \max \left(-\mathbf{e}_{j}^{\top} \varepsilon - \delta_{j}^{b} + \delta_{0}, -\frac{\delta_{0}}{\delta_{j}^{b}} \mathbf{e}_{j}^{\top} \varepsilon, \frac{\delta_{0}}{\delta_{j}^{a}} \mathbf{e}_{j}^{\top} \varepsilon, \mathbf{e}_{j}^{\top} \varepsilon - \delta_{j}^{a} + \delta_{0} \right)$$

Programming using Python

- Requirements
- Constraints
- Repair
- Arbitrage_repair

Comparison

Comparison

