1.
$$y' = \frac{y}{\sqrt{x^2 + 1}}$$
. mun 1

Нехай
$$y \neq 0$$
, відокремлюємо змінні: $\frac{dy}{y} = \frac{dx}{\sqrt{x^2 + 1}}$. Інтегруємо

$$|ln|y| = |ln|x + \sqrt{x^2 + 1} + |ln|c|.$$

$$y = C(x + \sqrt{x^2 + 1})$$
 (загальний розв'язок рівняння).

Розв'язок y=0 міститься у загальному при C=0.

2.
$$(xy^2 + x)dx + (y - x^2y)dy = 0$$
; $x(y^2 + 1)dy + y(1 - x^2)dy = 0$; mun 1

$$\int \frac{x \cdot dx}{x^2 - 1} = \int \frac{y \cdot dy}{y^2 + 1}; \quad \frac{1}{2} \ln|x^2 - 1| = \frac{1}{2} \ln|y^2 + 1| + \frac{1}{2} \ln C$$
nomina
$$\int \frac{x \cdot dx}{x^2 - 1} = \int \frac{y \cdot dy}{y^2 + 1}; \quad \frac{1}{2} \ln|x^2 - 1| = \frac{1}{2} \ln|y^2 + 1| + \frac{1}{2} \ln C$$
nogation $y \in C$
emorphism
$$\int \frac{x \cdot dx}{x^2 - 1} = \int \frac{y \cdot dy}{y^2 + 1}; \quad \frac{1}{2} \ln|x^2 - 1| = \frac{1}{2} \ln|y^2 + 1| + \frac{1}{2} \ln C$$
nogation $y \in C$
emorphism
$$\int \frac{x \cdot dx}{x^2 - 1} = \int \frac{y \cdot dy}{y^2 + 1}; \quad \frac{1}{2} \ln|x^2 - 1| = \frac{1}{2} \ln|y^2 + 1| + \frac{1}{2} \ln C$$
nogation $y \in C$
emorphism
$$\int \frac{x \cdot dx}{x^2 - 1} = \int \frac{y \cdot dy}{y^2 + 1}; \quad \frac{1}{2} \ln|x^2 - 1| = \frac{1}{2} \ln|y^2 + 1| + \frac{1}{2} \ln C$$
nogation $y \in C$
emorphism
$$\int \frac{x \cdot dx}{x^2 - 1} = \int \frac{y \cdot dy}{y^2 + 1}; \quad \frac{1}{2} \ln|x^2 - 1| = \frac{1}{2} \ln|y^2 + 1| + \frac{1}{2} \ln C$$
nogation $y \in C$
emorphism
$$\int \frac{x \cdot dx}{x^2 - 1} = \int \frac{y \cdot dy}{y^2 + 1}; \quad \frac{1}{2} \ln|x^2 - 1| = \frac{1}{2} \ln|y^2 - 1| + \frac{1}{2} \ln|x^2 - 1| = \frac{1}{2} \ln|y^2 - 1| + \frac{1}{2} \ln|x^2 - 1| = \frac{1}{2} \ln|y^2 - 1| + \frac{1}{2} \ln|x^2 - 1| + \frac{1}{2} \ln|x^2 - 1| = \frac{1}{2} \ln|x^2 - 1| + \frac$$

3.
$$y' + \frac{1}{y} \sqrt{\frac{1-y^2}{1-x^2}} = 0$$
; $Tun1$. $\frac{dy}{dx} = -\frac{\sqrt{1-y^2}}{y} \cdot \frac{1}{\sqrt{1-x^2}}$; $\frac{y \cdot dy}{\sqrt{1-y^2}} = -\frac{dx}{\sqrt{1-x^2}}$; $\frac{1}{\sqrt{1-x^2}}$; $\frac{y \cdot dy}{\sqrt{1-y^2}} = -\frac{dx}{\sqrt{1-x^2}}$; $\frac{1}{\sqrt{1-x^2}}$; $\frac{1}{\sqrt{1$

4.
$$y' = e^{x+y}$$
; $y' = e^{x} \cdot e^{y} - Tun 1$. $\int \frac{dy}{e^{y}} = \int e^{x} \cdot dx$

$$\int e^{-y} dy = e^{x} + C$$
; $-e^{-y} = e^{x} + C$ garandonum i'n merpan.
$$e^{-y} = C - e^{x}$$
; $-y = \ln(C - e^{x})$

$$y = \ln \frac{1}{C - e^{x}} - Jarandonum pozb's Joh$$

5.
$$y'tgx-y=a$$
; $y'=\frac{a+y}{tgx}$; $\int \frac{dy}{y+a} = \int \frac{dx}{tgx}$; $\ln |y+a| = \int ctgx\cdot dx$; $\ln |y+a| = \ln |\sin x| + \ln c$

$$y+a=C\cdot \sin x$$

$$y=C\sin x-a \quad \tan |\cos x| \cos x$$

6.
$$y' = \frac{1+y^2}{1+x^2}$$
 $npu \ y|_{x=0} = 1 - 3$ -ra Roun'

$$\frac{dy}{dx} = \frac{1+y^2}{1+x^2} ; \int \frac{dy}{1+y^2} = \int \frac{dx}{1+x^2} ; \text{ aretg } y = \text{aretg } x + C$$

3 maigeno C z noram roboi ynoby:

 $\text{arctg } 1 = \text{arctg } 0 + C$; $\frac{x}{y} = C$
 $\text{arctg } y = \text{arctg } x + \frac{x}{y} - \text{racmumuni immerpact}$