TABLA DE TRANSFORMADAS DE FOURIER

#	f(t)	$F(\omega)$
1	$a_1 f_1(t) + a_2 f_2(t)$	$a_1F_1(\omega) + a_2F_2(\omega)$
2	f(at)	$\frac{1}{ a }F\left(\frac{\omega}{a}\right)$
3	f(-t)	$F(-\omega)$
4	$f(t-t_0)$	$F(\omega)e^{-j\omega t_0}$
5	$f(t)e^{j\omega_0t}$	$F(\omega - \omega_0)$
6	$f(t)\cos\omega_0 t$	$\frac{1}{2}F(\omega-\omega_0) + \frac{1}{2}F(\omega+\omega_0)$
7	$f(t)\sin\omega_0 t$	$\frac{1}{2j}F(\omega-\omega_0)-\frac{1}{2j}F(\omega+\omega_0)$
8	$f_e(t) = \frac{1}{2} [f(t) + f(-t)]$	$R(\omega)$
9	$f_o(t) = \frac{1}{2} [f(t) - f(-t)]$	$jX(\omega)$
10	$f(t) = f_e(t) + f_o(t)$	$F(\omega) = R(\omega) + jX(\omega)$
11	F(t)	$2\pi f(-\omega)$
12	f'(t)	$j\omega F(\omega)$
13	$f^{(n)}(t)$	$(j\omega)^n F(\omega)$
14	$\int_{-\infty}^{t} f(x) dx$	$\frac{1}{j\omega}F(\omega) + \pi F(0)\delta(\omega)$
15	-jtf(t)	$F'(\omega)$

1

16	$(-jt)^n f(t)$	$F^{(n)}(\omega)$
17	$e^{-at}u(t)$	$\frac{1}{j\omega + a}$
18	$e^{-a t }$	$\frac{2a}{a^2 + \omega^2}$
19	e^{-at^2}	$\sqrt{rac{\pi}{a}}e^{-\omega^2/4a}$
20	$P_a(t) = \begin{cases} 1 & t < a/2 \\ 0 & t > a/2 \end{cases}$	$a Sa\left(\frac{\omega a}{2}\right)$
21	$\frac{\sin(at)}{\pi t}$	$P_{2a}(\omega)$
22	$te^{-at}u(t)$	$\frac{1}{(j\omega+a)^2}$
23	$e^{-at}\sin(bt)u(t)$	$\frac{b}{(j\omega+a)^2+b^2}$
24	$e^{-at}\cos(bt)u(t)$	$\frac{j\omega + a}{(j\omega + a)^2 + b^2}$
25	$\frac{1}{a^2+t^2}$	$rac{\pi}{a}e^{-a \omega }$
26	$\delta(t)$	1
27	$\delta(t-t_0)$	$e^{-j\omega t_0}$
28	u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$
29	1	$2\pi\delta(\omega)$
30	t	$2\pi j\delta'(\omega)$

31	$e^{j\omega t_0}$	$2\pi\delta(\omega-\omega_0)$
32	$\cos \omega_0 t$	$\pi \big[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \big]$
33	$\sin \omega_0 t$	$-j\pi \left[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)\right]$
34	$\sin(\omega_0 t)u(t)$	$\frac{\omega_0}{\omega_0^2 - \omega^2} + \frac{\pi}{2j} \left[\delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right]$
35	$\cos(\omega_0 t)u(t)$	$\frac{j\omega}{\omega_0^2 - \omega^2} + \frac{\pi}{2} \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right]$
36	tu(t)	$j\pi\delta'(\omega)-\frac{1}{\omega^2}$
37	$\frac{1}{t}$	$\pi j - 2\pi j u(\omega)$
38	sgn(t)	$\frac{2}{j\omega}$
39	$\delta_T(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT)$	$\omega_0 \delta_{\omega_0}(\omega) = \omega_0 \sum_{n=-\infty}^{+\infty} \delta(\omega - n\omega_0)$
40	f(t) = f(t+T)	$F(\omega) = 2\pi \sum_{n=-\infty}^{+\infty} F_n \delta(\omega n\omega_0)$
41	$\sum_{i=1}^{+\infty} a_i f_i(t)$	$\sum_{i=1}^{+\infty} a_i F_i(w)$
42	$1- t /\tau, t <\tau$	$\sim 2(\omega\tau)$
	τ	$ au Sa^2 \left(rac{\omega au}{2} ight)$
43	А	$2\pi A\delta(\omega)$
44	t	$\frac{-2}{\omega^2}$

45	$\frac{j}{\pi t}$	sgn(w)
46	$f^*(t)$	$F^*(-\omega)$
47	$f_1(t) \otimes f_2(t)$	$F_1(\omega)F_2(w)$
47	$f_1(t)f_2(t)$	$\frac{1}{2\pi}F_1(\omega)\otimes F_2(w)$

$$f(t) \longleftrightarrow F(w)$$

Par de Transformadas de Fourier

$$F_n = \frac{F(w)}{T} \big|_{w = nw_0}$$

Relación Transformada y Serie de Fourier

Teorema: Integral de Inversión Compleja

Sea $F(w) = F(iw) = \phi(s)$

a) $\phi(s)$ es analítica en el eje imaginario

b) $\lim_{s\to\infty}\phi(s)=0$

c) $\phi(s)$ tiene polos en SPI y/o SPD

Entonces:

$$f(t) = \sum_{i=1}^{n} \operatorname{Re} s[\phi(s)e^{st}, \quad s \in SPI], \quad t > 0$$

$$f(t) = -\sum_{i=1}^{n} \operatorname{Re} s[\phi(s)e^{st}, \quad s \in SPD], \quad t < 0$$

Super ejercicio.- Graficar la mayor cantidad de propiedades que puedas comparando las señales en tiempo y frecuencia.

Respuesta.- El ser propiedades conocidas podrás encontrar las gráficas en los libros de la bibliografía del curso.