Tutorato AFL

Linpeng Zhang

3 aprile 2019

Sommario

Per errori/dubbi/problemi: linpeng.zhang@studenti.unipd.it. Gli esercizi contrassegnati dal simbolo (C) sono (a mio parere) molto simili, se non identici, ad esercizi assegnati a compitini di anni passati.

Indice

1	Lez5		
	1.1	Riassunto informale	1
	1.2	Esercizi	1
	1.3	Soluzioni	2

1 Lez5

1.1 Riassunto informale

- in genere, data una CFG G, per dimostrare che L = L(G) si dimostra sia che $L \subseteq L(G)$ e $L \supseteq L(G)$; spesso la prima parte si fa per induzione sulla lunghezza della stringa, mentre la seconda per induzione sul numero di passi di derivazione;
- se una CFG G ha più variabili per dimostrare che L = L(G) si possono dimostrare prima i linguaggi prodotti da alcune variabili interne alla grammatica per poi dimostrare la tesi di partenza.

1.2 Esercizi

- 1. Sia $L = \{x \in \{a, b\}^* | \text{ il numero di a è minore del numero di b } \}$. Dire se il linguaggio è regolare e, a seconda della risposta (da motivare), definire una CFG o un FA che accetti tale L;
- 2. (C) Sia $L = \{$ stringhe di 0 e 1 che iniziano e finiscono con 0 $\}$. Dire se il linguaggio è regolare e definire, se possibile, una CFG o un FA che accetti L;

- 3. (C) Sia $L = \{a^{n-m}b^mc^n|n>m>0\}$. Dire se il linguaggio è regolare e definire, se possibile, una CFG o un FA che accetti L;
- 4. (C) Sia L un linguaggio regolare sull'alfabeto Σ . Dire (e motivare) se $L' = \{w \in \Sigma^* : \exists x \in \Sigma^* \text{ tale che } wx \in L\}$ è regolare;

1.3 Soluzioni

- 1. si può dimostrare con il PL che L non è regolare. Intuitivamente per trovare una CFG notiamo che data una stringa in L che abbia n_b occorrenze di b e n_a occorrenze di a, allora o $n_b = n_a + 1$ o $n_b > n_a + 1$. In particolare:
 - (a) nel primo caso, le stringhe saranno del tipo *ebe* dove e è una stringa con $n_a = n_b$;
 - (b) nel secondo caso, le stringhe saranno costituite dalla concatenazione di due stringhe entrambe appartenenti a L;

segue allora una possibile CFG:

$$S \to EbE|SS \ E \to \epsilon|aEb|bEa|EE$$

La dimostrazione consta dei seguenti passi, di cui diamo una traccia:

- (a) $L(E) = L_e = \{x \in \Sigma^* \text{ tale che } n_a = n_b\}$:
 - i. (" \Rightarrow ") sia $w \in L(E)$. Dimostriamo per induzione sul numero di passi di derivazione. È immediato constatare che con un passo si ha $E \Rightarrow \epsilon \in L$.

Induttivamente, se si hanno n+1 passi di derivazione, il primo passo sarà: $E \Rightarrow aEb$ o $E \Rightarrow bEa$ o $E \Rightarrow EE$. In tutti i casi, utilizzando altri n passi di derivazione si avrà una nuova stringa in L;

- ii. (" \Leftarrow ") sia $w \in L_e$. Dimostriamo per induzione sulla lunghezza della stringa. Se |w| = 0 allora $w = \epsilon \in L(E)$ perchè esiste la produzione che lo fa.
 - Se |w| = 2n+2 allora sembrerebbe che w = w'w'' con $w', w'' \in L_e$, ma non è vero, anche se la cosa sembrava convincente tant'è che nessuno se n'è accorto. Ad esempio aaabbbbbbb non è del tipo w'w'' con $w', w'' \in L$

Versione corretta: se |w| = 2n + 2 allora esiste una suddivisione del tipo w = xaby o w = xbay con $x, y \in L_e$. Per l'ipotesi induttiva x e y si possono derivare, perché hanno una lunghezza minore di 2n + 2, e usando un'opportuna prima produzione, si deriva proprio w;

(b) L(S) = L:

- i. (" \Rightarrow ") sia $w \in L(S)$. Dimostriamo per induzione sul numero di passi di derivazione. È immediato constatare che con due passi si ha $S \Rightarrow^2 b \in L$.
 - Induttivamente, se si hanno n+1 passi di derivazione, il primo passo sarà: $S \Rightarrow EbE$ o $S \Rightarrow SS$. In tutti i casi, utilizzando altri n passi di derivazione si avrà una nuova stringa in L;
- ii. (" \Leftarrow ") sia $w \in L$. Allora sarà del tipo w = ebe oppure $w = x_1x_2...x_k$ dove x_i è una stringa che ha esattamente una b in più del numero di a; nel primo caso basta usare la prima produzione di S, nel secondo basterà usare la seconda produzione un opportuno numero di volte. Poi la E sappiamo che deriva una stringa con $n_a = n_b$ e quindi si ha la tesi.
- 2. è immediato dare una regexp, ad esempio R = 0(0+1)*0+0 oppure (per gli short-coder) $R_{sc} = 0(1*0)*$;
- 3. si può dimostrare con il PL che L non è regolare, prendendo ad esempio $w = a^h b^h c^{2h}$ e un qualsiasi k;
- 4. sia $A = (Q, \Sigma, q_0, \delta, F)$ l'automa che riconosce L. Allora $A' = (Q, \Sigma, q_0, \delta, F')$, $F' = \{q \in Q | \text{ esiste una sequenza di transizioni da } q \text{ ad uno stato finale } f \in F\}$ è l'automa uguale ad A se non per l'insieme degli stati finali. Certamente questo si può fare per ogni automa (prendete un FA qualsiasi e fatelo, se non vi fidate). Dimostriamo ora che L' = L(A'):
 - (" \Rightarrow ") sia $w \in L'$. Per la definizione $\exists x \in \Sigma^*$ tale che $wx \in L$. Poiché A è un DFA, esiste una sola sequenza da q_0 che accetta wx. Ma se da q_0 leggo w arrivando in q e poi leggo x arrivando in uno stato finale, allora sicuramente q è uno stato finale di A', per come è stato costruito!
 - (" \Leftarrow ") sia $w \in L(A')$. Allora, per come è stato costruito A' esiste una sequenza da q ad uno stato finale di A, quindi $w \in L'$.