Prof. F. Bottacin, M. Candilera, E. Detomi, G. Gerotto, R. Kloosterman

3º Appello — 5 settembre 2017

Esercizio 1. Supponiamo che i vettori $v_1, v_2, v_3 \in \mathbb{R}^3$ siano linearmente indipendenti e che, al contrario, i vettori $w_1, w_2, w_3 \in \mathbb{R}^3$ siano linearmente dipendenti. Esiste un endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $f(v_1) = w_1, f(v_2) = w_2, f(v_3) = w_3$?

Quale sarebbe la risposta se invece i vettori v_1 , v_2 , v_3 fossero linearmente dipendenti e i vettori w_1 , w_2 , w_3 fossero linearmente indipendenti?

Esercizio 2. Esiste una matrice simmetrica 2×2 che abbia autovalori $\lambda_1 = 2$, $\lambda_2 = -3$ e autovettori $v_1 = (1, -2)$ e $v_2 = (3, 1)$?

Esercizio 3. Dato un numero reale a, sia A = aI, ove I è la matrice identica. Dimostrare che se una matrice B è simile ad A allora deve necessariamente essere B = A.

Esercizio 4. Sia $V_t \subset \mathbb{R}^4$ il sottospazio vettoriale di equazioni $x_1 - 2x_3 - 3x_4 = 0$ e $-2x_1 + tx_3 + 6x_4 = 0$.

- (a) Al variare di $t \in \mathbb{R}$ determinare la dimensione e una base di V_t .
- (b) Si dica se è possibile trovare un sottospazio vettoriale non nullo $W \subset \mathbb{R}^4$ che sia in somma diretta con V_t , per ogni t. Se un tale sottospazio W esiste se ne trovi una base.
- (c) Si ponga ora t = 0. Si scriva la matrice (rispetto alle basi canoniche) di un endomorfismo $f: \mathbb{R}^4 \to \mathbb{R}^4$ tale che $\operatorname{Ker}(f) = \langle e_1, e_2 \rangle$ e $\operatorname{Im}(f) = V_0$.

Esercizio 5. (a) Sia $g: \mathbb{R}^3 \to \mathbb{R}^3$ un endomorfismo il cui polinomio caratteristico è $x^2(x+2)$. Sappiamo inoltre che Ker(g) è il sottospazio di equazione $2x_1 - x_3 = 0$ e che v = (1, 1, 4) è un autovettore di g relativo all'autovalore $\lambda = -2$. Si scriva la matrice G di g rispetto alle basi canoniche.

- (b) Si determinino una matrice diagonale D e due matrici invertibili P e R tali che $G = PDP^{-1}$ e $G = RDR^{-1}$.
- (c) Sia ora $f: \mathbb{R}^3 \to \mathbb{R}^3$ un endomorfismo con lo stesso polinomio caratteristico di g e la cui immagine è generata dai vettori (1,0,1) e (0,2,-1). Con queste informazioni è possibile stabilire se f è diagonalizzabile? Se ciò è possibile si dica se f è diagonalizzabile oppure no.

Esercizio 6. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia V il sottospazio di equazione $2x_1 - 3x_2 + x_3 - x_4 = 0$ e sia $U \subset V$ il sottospazio generato dai vettori $u_1 = (1, 0, -1, 1)$, $u_2 = (2, 1, 0, 1)$.

- (a) Determinare una base ortogonale di U.
- (b) Determinare una base di un sottospazio $W \subset U^{\perp}$ tale che $V = U \oplus W$.
- (c) Dato il vettore $v_t = (5, 4, -3, t)$, si determini per quale valore di t è possibile scrivere $v_t = u + w$, con $u \in U$ e $w \in W$. Si trovino inoltre esplicitamente tali vettori u e w.

$$r: \begin{cases} x - y + 1 = 0 \\ 2x + z - 5 = 0 \end{cases} \qquad s_k: \begin{cases} x = (3k - 4)t + 1 \\ y = -kt \\ z = 2t - 1 \end{cases}$$

- (a) Determinare per quale valore di k le rette r e s_k sono complanari.
- (b) Per il valore di k trovato nel punto (a), scrivere l'equazione cartesiana del piano che contiene le rette r e s_k .
- (c) Fra tutte le rette passanti per il punto A = (0, 2, 1) e ortogonali al vettore v = (1, -2, 3) trovare quella che ha distanza minima dal punto B = (5, -1, 2) e scriverne le equazioni parametriche.

Prof. F. Bottacin, M. Candilera, E. Detomi, G. Gerotto, R. Kloosterman

3º Appello — 5 settembre 2017

Esercizio 1. Supponiamo che i vettori $v_1, v_2, v_3 \in \mathbb{R}^3$ siano linearmente indipendenti e che, al contrario, i vettori $w_1, w_2, w_3 \in \mathbb{R}^3$ siano linearmente dipendenti. Esiste un endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $f(v_1) = w_1, f(v_2) = w_2, f(v_3) = w_3$?

Quale sarebbe la risposta se invece i vettori v_1 , v_2 , v_3 fossero linearmente dipendenti e i vettori w_1 , w_2 , w_3 fossero linearmente indipendenti?

Esercizio 2. Esiste una matrice simmetrica 2×2 che abbia autovalori $\lambda_1 = 3$, $\lambda_2 = -2$ e autovettori $v_1 = (1, 2)$ e $v_2 = (3, -1)$?

Esercizio 3. Dato un numero reale a, sia A = aI, ove I è la matrice identica. Dimostrare che se una matrice B è simile ad A allora deve necessariamente essere B = A.

Esercizio 4. Sia $V_t \subset \mathbb{R}^4$ il sottospazio vettoriale di equazioni $3x_1 - x_2 + x_4 = 0$ e $tx_1 + 3x_2 - 3x_4 = 0$.

- (a) Al variare di $t \in \mathbb{R}$ determinare la dimensione e una base di V_t .
- (b) Si dica se è possibile trovare un sottospazio vettoriale non nullo $W \subset \mathbb{R}^4$ che sia in somma diretta con V_t , per ogni t. Se un tale sottospazio W esiste se ne trovi una base.
- (c) Si ponga ora t = 0. Si scriva la matrice (rispetto alle basi canoniche) di un endomorfismo $f: \mathbb{R}^4 \to \mathbb{R}^4$ tale che $\operatorname{Ker}(f) = \langle e_1, e_3 \rangle$ e $\operatorname{Im}(f) = V_0$.

Esercizio 5. (a) Sia $g: \mathbb{R}^3 \to \mathbb{R}^3$ un endomorfismo il cui polinomio caratteristico è $x^2(x-1)$. Sappiamo inoltre che Ker(g) è il sottospazio di equazione $x_1 + 3x_2 = 0$ e che v = (2, -1, -1) è un autovettore di g relativo all'autovalore $\lambda = 1$. Si scriva la matrice G di g rispetto alle basi canoniche.

- (b) Si determinino una matrice diagonale D e due matrici invertibili P e R tali che $G = PDP^{-1}$ e $G = RDR^{-1}$.
- (c) Sia ora $f: \mathbb{R}^3 \to \mathbb{R}^3$ un endomorfismo con lo stesso polinomio caratteristico di g e la cui immagine è generata dai vettori (0,1,2) e (3,-1,0). Con queste informazioni è possibile stabilire se f è diagonalizzabile? Se ciò è possibile si dica se f è diagonalizzabile oppure no.

Esercizio 6. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia V il sottospazio di equazione $x_1 + 2x_2 - 3x_3 - x_4 = 0$ e sia $U \subset V$ il sottospazio generato dai vettori $u_1 = (1, -1, 0, -1)$, $u_2 = (0, 2, 1, 1)$.

- (a) Determinare una base ortogonale di U.
- (b) Determinare una base di un sottospazio $W \subset U^{\perp}$ tale che $V = U \oplus W$.
- (c) Dato il vettore $v_t = (0, t, 5, -7)$, si determini per quale valore di t è possibile scrivere $v_t = u + w$, con $u \in U$ e $w \in W$. Si trovino inoltre esplicitamente tali vettori u e w.

$$r: \begin{cases} 4x - y - 7 = 0 \\ y - 4z + 11 = 0 \end{cases} \qquad s_k: \begin{cases} x = kt \\ y = (2k+4)t + 2 \\ z = 2t + 1 \end{cases}$$

- (a) Determinare per quale valore di k le rette r e s_k sono complanari.
- (b) Per il valore di k trovato nel punto (a), scrivere l'equazione cartesiana del piano che contiene le rette r e s_k .
- (c) Fra tutte le rette passanti per il punto A = (1, 1, -1) e ortogonali al vettore v = (3, -1, 2) trovare quella che ha distanza minima dal punto B = (3, 1, 3) e scriverne le equazioni parametriche.

Prof. F. Bottacin, M. Candilera, E. Detomi, G. Gerotto, R. Kloosterman

3º Appello — 5 settembre 2017

Esercizio 1. Supponiamo che i vettori $v_1, v_2, v_3 \in \mathbb{R}^3$ siano linearmente indipendenti e che, al contrario, i vettori $w_1, w_2, w_3 \in \mathbb{R}^3$ siano linearmente dipendenti. Esiste un endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $f(v_1) = w_1, f(v_2) = w_2, f(v_3) = w_3$?

Quale sarebbe la risposta se invece i vettori v_1 , v_2 , v_3 fossero linearmente dipendenti e i vettori w_1 , w_2 , w_3 fossero linearmente indipendenti?

Esercizio 2. Esiste una matrice simmetrica 2×2 che abbia autovalori $\lambda_1 = -2$, $\lambda_2 = 5$ e autovettori $v_1 = (1, -1)$ e $v_2 = (3, 1)$?

Esercizio 3. Dato un numero reale a, sia A = aI, ove I è la matrice identica. Dimostrare che se una matrice B è simile ad A allora deve necessariamente essere B = A.

Esercizio 4. Sia $V_t \subset \mathbb{R}^4$ il sottospazio vettoriale di equazioni $2x_2 - x_3 - 2x_4 = 0$ e $4x_2 + tx_3 - 4x_4 = 0$.

- (a) Al variare di $t \in \mathbb{R}$ determinare la dimensione e una base di V_t .
- (b) Si dica se è possibile trovare un sottospazio vettoriale non nullo $W \subset \mathbb{R}^4$ che sia in somma diretta con V_t , per ogni t. Se un tale sottospazio W esiste se ne trovi una base.
- (c) Si ponga ora t = 0. Si scriva la matrice (rispetto alle basi canoniche) di un endomorfismo $f: \mathbb{R}^4 \to \mathbb{R}^4$ tale che $\operatorname{Ker}(f) = \langle e_1, e_4 \rangle$ e $\operatorname{Im}(f) = V_0$.

Esercizio 5. (a) Sia $g: \mathbb{R}^3 \to \mathbb{R}^3$ un endomorfismo il cui polinomio caratteristico è $x^2(x-3)$. Sappiamo inoltre che Ker(g) è il sottospazio di equazione $2x_2+x_3=0$ e che v=(-1,1,1) è un autovettore di g relativo all'autovalore $\lambda=3$. Si scriva la matrice G di g rispetto alle basi canoniche.

- (b) Si determinino una matrice diagonale D e due matrici invertibili P e R tali che $G = PDP^{-1}$ e $G = RDR^{-1}$.
- (c) Sia ora $f: \mathbb{R}^3 \to \mathbb{R}^3$ un endomorfismo con lo stesso polinomio caratteristico di g e la cui immagine è generata dai vettori (3,0,-2) e (0,1,1). Con queste informazioni è possibile stabilire se f è diagonalizzabile? Se ciò è possibile si dica se f è diagonalizzabile oppure no.

Esercizio 6. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia V il sottospazio di equazione $3x_1 - x_2 + 2x_3 + x_4 = 0$ e sia $U \subset V$ il sottospazio generato dai vettori $u_1 = (0, 1, 1, -1)$, $u_2 = (1, -1, -2, 0)$.

- (a) Determinare una base ortogonale di U.
- (b) Determinare una base di un sottospazio $W \subset U^{\perp}$ tale che $V = U \oplus W$.
- (c) Dato il vettore $v_t = (4, t, -5, 3)$, si determini per quale valore di t è possibile scrivere $v_t = u + w$, con $u \in U$ e $w \in W$. Si trovino inoltre esplicitamente tali vettori u e w.

$$r: \begin{cases} x - 3z + 2 = 0 \\ y - z - 2 = 0 \end{cases} \qquad s_k: \begin{cases} x = (2k - 2)t + 2 \\ y = kt + 1 \\ z = -2t \end{cases}$$

- (a) Determinare per quale valore di k le rette r e s_k sono complanari.
- (b) Per il valore di k trovato nel punto (a), scrivere l'equazione cartesiana del piano che contiene le rette r e s_k .
- (c) Fra tutte le rette passanti per il punto A = (2, -1, 1) e ortogonali al vettore v = (1, 3, -2) trovare quella che ha distanza minima dal punto B = (2, 3, 0) e scriverne le equazioni parametriche.

Prof. F. Bottacin, M. Candilera, E. Detomi, G. Gerotto, R. Kloosterman

3º Appello — 5 settembre 2017

Esercizio 1. Supponiamo che i vettori $v_1, v_2, v_3 \in \mathbb{R}^3$ siano linearmente indipendenti e che, al contrario, i vettori $w_1, w_2, w_3 \in \mathbb{R}^3$ siano linearmente dipendenti. Esiste un endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $f(v_1) = w_1, f(v_2) = w_2, f(v_3) = w_3$?

Quale sarebbe la risposta se invece i vettori v_1 , v_2 , v_3 fossero linearmente dipendenti e i vettori w_1 , w_2 , w_3 fossero linearmente indipendenti?

Esercizio 2. Esiste una matrice simmetrica 2×2 che abbia autovalori $\lambda_1 = 4$, $\lambda_2 = -1$ e autovettori $v_1 = (2, -1)$ e $v_2 = (3, 1)$?

Esercizio 3. Dato un numero reale a, sia A = aI, ove I è la matrice identica. Dimostrare che se una matrice B è simile ad A allora deve necessariamente essere B = A.

Esercizio 4. Sia $V_t \subset \mathbb{R}^4$ il sottospazio vettoriale di equazioni $2x_1 - 3x_2 + x_3 = 0$ e $-6x_1 + 9x_2 + tx_3 = 0$.

- (a) Al variare di $t \in \mathbb{R}$ determinare la dimensione e una base di V_t .
- (b) Si dica se è possibile trovare un sottospazio vettoriale non nullo $W \subset \mathbb{R}^4$ che sia in somma diretta con V_t , per ogni t. Se un tale sottospazio W esiste se ne trovi una base.
- (c) Si ponga ora t = 0. Si scriva la matrice (rispetto alle basi canoniche) di un endomorfismo $f: \mathbb{R}^4 \to \mathbb{R}^4$ tale che $\operatorname{Ker}(f) = \langle e_2, e_4 \rangle$ e $\operatorname{Im}(f) = V_0$.

Esercizio 5. (a) Sia $g: \mathbb{R}^3 \to \mathbb{R}^3$ un endomorfismo il cui polinomio caratteristico è $x^2(x+1)$. Sappiamo inoltre che Ker(g) è il sottospazio di equazione $x_1+3x_3=0$ e che v=(2,3,-1) è un autovettore di g relativo all'autovalore $\lambda=-1$. Si scriva la matrice G di g rispetto alle basi canoniche.

- (b) Si determinino una matrice diagonale D e due matrici invertibili P e R tali che $G = PDP^{-1}$ e $G = RDR^{-1}$.
- (c) Sia ora $f: \mathbb{R}^3 \to \mathbb{R}^3$ un endomorfismo con lo stesso polinomio caratteristico di g e la cui immagine è generata dai vettori (0,2,1) e (3,-1,0). Con queste informazioni è possibile stabilire se f è diagonalizzabile? Se ciò è possibile si dica se f è diagonalizzabile oppure no.

Esercizio 6. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia V il sottospazio di equazione $2x_1 - x_2 + x_3 - 3x_4 = 0$ e sia $U \subset V$ il sottospazio generato dai vettori $u_1 = (1, -1, 0, 1)$, $u_2 = (0, -2, 1, 1)$.

- (a) Determinare una base ortogonale di U.
- (b) Determinare una base di un sottospazio $W \subset U^{\perp}$ tale che $V = U \oplus W$.
- (c) Dato il vettore $v_t = (4, 0, t, 5)$, si determini per quale valore di t è possibile scrivere $v_t = u + w$, con $u \in U$ e $w \in W$. Si trovino inoltre esplicitamente tali vettori u e w.

$$r: \begin{cases} x+z-3=0 \\ y+z-4=0 \end{cases} \qquad s_k: \begin{cases} x=(3k+6)t+3 \\ y=kt \\ z=3t-1 \end{cases}$$

- (a) Determinare per quale valore di k le rette r e s_k sono complanari.
- (b) Per il valore di k trovato nel punto (a), scrivere l'equazione cartesiana del piano che contiene le rette r e s_k .
- (c) Fra tutte le rette passanti per il punto A = (1, 1, -2) e ortogonali al vettore v = (3, -2, -1) trovare quella che ha distanza minima dal punto B = (3, -4, 0) e scriverne le equazioni parametriche.