初二物理春季班

教师		日期	
学生			
课程编号		课型	同步
课题	杠杆滑轮复习		

教学目标

- 1. 理解杠杆的分类
- 2. 掌握杠杆平衡条件及计算
- 3. 理解滑轮的分类及滑轮组的定义
- 4. 掌握定、动滑轮及滑轮组的应用及计算

教学重难点

- 1. 掌握杠杆平衡条件及计算(考试要求 B; 出题频率高)
- 2. 掌握定、动滑轮的应用及计算(考试要求 B; 出题频率高)

教学安排 时长 版块 30 分钟 知识梳理 1 例题解析 20 分钟 2 随堂检测 3 30 分钟 课堂总结 4 10 分钟 5 课后作业 30 分钟 6 能力提升 20 分钟

知识梳理

_	杠	杆	

个上个 十
1、杠杆的定义:在力的作用下绕转动的硬棒。
2、杠杆的五要素
(1) 支点: 杠杆绕着转动的点,一般用表示,支点一定在上。
(2) 动力: 使杠杆的力,一般用表示。
(3) 阻力:杠杆转动的力,一般用表示。
(4) 动力臂:从到的垂直距离,一般用表示。
(5) 阻力臂:从到的垂直距离,一般用表示。
3、杠杆的作图
画力臂方法:一找支点、二画线、三连距离、四标签
(1) 找O
(2) 画力的(虚线)
(3) 画(虚线,过支点垂直力的作用线作垂线并标注垂直符号)
(4) 标力臂(大括号)
4、杠杆平衡条件
(1) 杠杆平衡是指: 杠杆或绕支点。
(2) 杠杆平衡条件(或杠杆原理):。
公式是,变形公式:。
5、杠杆的分类
由杠杆的平衡条件 $F_1L_1=F_2L_2$,
当 L ₁ >L ₂ 时, F ₁ <f<sub>2, 省力杠杆;</f<sub>
当 L_1 = L_2 时, F_1 = F_2 ,等臂杠杆;
当 $L_1 < L_2$ 时, $F_1 > F_2$,费力杠杆。
【答案】1、固定点
2 、(1) O ; 杠杆(2) 转动; F_1 (3) 阻碍; F_2 (4) 支点; 动力作用线; L_1 (5) 支点; 阻力作
用线; L ₂
3、支点;作用线;力臂

4、(1) 静止不动; 匀速转动
(2) 动力乘以动力臂等于阻力乘以阻力臂; $F_1 \times L_1 = F_2 \times L_2$; $F_1/F_2 = L_2/L_1$
NEI 4A
滑轮
1、定滑轮
(1) 定义:。
(2) 定滑轮的实质:。
(3) 使用特点:。
(4) 理想的定滑轮: FG(不计轮轴间摩擦)
绳子自由端移动距离 S_F (或速度 V_F)重物移动的距离 S_G (或速度 V_G)
2、动滑轮
(1) 定义:。
(2) 动滑轮的实质:。
(3) 特点:。
(4) 理想的动滑轮: $F_{\underline{\hspace{1cm}}}$ 1/2 G (不计轴间摩擦和动滑轮重力); $F_{\underline{\hspace{1cm}}}$ 1/2 (G %+ G ${}_{a}$) (不计轴
间摩擦但考虑滑轮重力);绳子自由端移动距离 S_F (或 V_F)2 倍的重物移动的距离 S_G (或
${ m V_G}$) $_{\circ}$
【答案】1、(1)中间的轴固定不动的滑轮(2)等臂杠杆(3)使用定滑轮不能省力但是能改变
用力的方向(4)=;=
2、(1) 和重物一起移动的滑轮(2) 省力杠杆(3) 使用动滑轮能省力但不能改变力的方向(4
=; =; =
滑轮组
1 28 +6 60 +6 +2 W

三、

1、滑轮组的定义
(1) 定义:由定滑轮和动滑轮(至少有定滑轮和动滑轮)组成的滑轮组合。
(2) 实质:杠杆。
(3) 特点: 既可以又可以。
(4) 理想的滑轮组:理想的滑轮组(不计轴间摩擦和动滑轮重力)则:
只忽略轮轴间的摩擦则拉力;
绳子自由端移动距离 S_F (或 V_F)n 倍的重物移动的距离 S_G (或 V_G)。

2、滑轮组的应用

至少由一个_____和一个____组成。根据绕线的方式不同,可以分为图甲和图乙两种,在滑轮重力的摩擦不考虑的情况下,匀速提升重物时拉力 F_2 =_______; F_3 =_____。若重物上升的高度为 h,则 S_2 =_____; S_3 =_____。

【答案】1、(1) 一个; 一个(2) 省力(3) 省力; 改变用力方向(4)

F=G/n; $F=(G_{4\eta}+G_{\bar{z}\eta})/n$; =

2、动滑轮; 定滑轮; G/2; G/3; 2h; 3h

例题解析

一、杠杆

知识点一: 杠杆

- 【例1】下列关于杠杆的说法中,错误的是 ()
 - A. 杠杆可以是直的,也可以是弯的
 - B. 杠杆的长度等于动力臂和阻力臂之和
 - C. 支点可以在杠杆的端点,也可以在力的作用线之间
 - D. 动力、阻力使杠杆转动方向相反,但他们的方向不一定相反

【难度】★

【答案】B

【解析】A: 杠杆是硬棒,形状可以是直棒,也可以是弯曲的,故 A 正确; B: 力臂是从支点到力作用线之间的距离,不是到力作用点之间的距离,所以动力臂与阻力臂之和不一定等于杠杆的长度,故 B 错误; C: 杠杆绕着转动的点叫支点,支点一定在杠杆上,可以在杠杆上的任何位置,故 C 正确; D: 动力、阻力是一个使杠杆转动、一个是阻碍杠杆转动。故使杠杆转动方向相反,但他们的方向不一定是相反的,故 D 正确

【例2】在力的	作用下,绕	某一	转动的一根硬棒叫杠杆。	。杠杆的五个要素是、
	`	`	。从支点到	的距离叫动力臂,
从支点到		的距离叫	阻力臂。	

【难度】★

【答案】固定点; 支点; 动力; 阻力; 动力臂; 阻力臂; 动力作用线; 阻力作用线

【例3】画出图中力F的力臂L。

【难度】★

【答案】

【解析】先找支点,再作力的作用线,过支点作力的作用线的垂线,画垂直符号、大括号,标 力臂。

知识点二: 杠杆的分类

【例 4】生活中的杠杆可以分成三类,一是省力杠杆,例如 ; 二是 ,例如 ;三是等臂杠杆,例如 。(把"钓鱼竿,跷跷板,瓶起子"填在"如"字后 的横线上)

【难度】★

【答案】瓶起子:费力杠杆:钓鱼竿:跷跷板

【解析】杠杆分为三类:省力杠杆(动力臂大于阻力臂)、费力杠杆(动力臂小于阻力臂)、等 臂杠杆(动力臂等于阻力臂)

【例 5】下列所示工具中,使用时不能省力但能省距离的是(

- A. 天平 B. 订书机 C. 铡刀 D. 理发剪刀

【难度】★

【答案】D

【解析】天平是等臂杠杆,不省力也不省距离;订书机和铡刀是省力杠杆,省力费距离;理发 剪刀是费力杠杆,费力省距离

知识点三: 杠杆平衡

【例 6】三个和尚挑水吃的故事大家耳熟能详,如图所示,甲图中和尚们商量出新的挑水方案, 胖和尚一人挑两小桶,瘦和尚和小和尚两人和抬一大桶,以下说法不正确的是 ()

- A. 乙图中水桶 B 向下沉,为保持水平平衡,胖和尚可以将他的肩往后移动一点距离
- B. 乙图中水桶 B 向下沉,为保持水平平衡,胖和尚可以将后面水桶 B 往前移动一点距离
- C. 丙图中小和尚为减轻瘦和尚的负担,可以让瘦和尚往前移动一点距离
- D. 丙图中小和尚为减轻瘦和尚的负担,可以将水桶往前移动一点距离

【难度】★★

【答案】D

【解析】如图乙所示,胖和尚的肩膀是支点,扁担就是杠杆,根据杠杆的平衡条件,要使扁担平衡,胖和尚可以将他的肩往后移动一点距离或者胖和尚可以将后面水桶 B 往前移动一点距离,A、B 都对;如图丙所示,水桶的绳和扁担的接触点是支点,根据杠杆平衡条件,为减轻瘦和尚的负担,可以让瘦和尚往前移动一点距离或者使水桶向小和尚那边移些,故 D 错误

【例7】如图所示,在已经处于水平位置平衡的杠杆的 A 点悬挂两个总重为 2N 的钩码,在 B 点用弹簧测力计竖直向上拉,使杠杆在水平位置再次平衡,则拉力应为_____N,此时的杠杆属于_____(选填"省力"或"费力") 杠杆。如果测力计的量程为 0~5N,在支点不变的情况下,采用图中的杠杆,能较为精确地测量出悬挂物体的最大质量为_____kg。(g 取 10N/kg)

【难度】★★

【答案】1.5; 省力; 3

【解析】设每个小格的长度为 L,则 L_A=3L、L_B=4L

根据杠杆的平衡条件: $F_1L_1=F_2L_2$ 则 $F_{\bullet}L_B=G_{\bullet}L_A$ 代入数据得, $F\times 4L=2N\times 3L$

所以 F=1.5N F<G,所以是省力杠杆

测力计的最大示数为 5N, 当测力计竖直向上拉并且拉力为 5N 时, 动力臂最长, 测出的物体质量最大。测力计的最大力臂是 6L, 最大示数为 5N, 物体拉力的最小力臂为 L,

F'•L_F'=G'•L_{G'} 代入数据得, 5N×6L=G'×L G'=30N; 据 G=mg 得, m=3kg

【例 8】一根直杆可以绕 O 点转动,在直杆的中点挂一个重为 G 的重物,在杆的另一端施加一个力 F,如图所示,在力 F 从水平方向缓慢转动到沿竖直向上的方向过程中,为使直杆保持在图示位置平衡,则拉力 F 的变化情况是 ()

- A. 一直变大
- B. 一直变小
- C. 先变大, 后变小
- D. 先变小,后变大

【难度】★★

【答案】D

【解析】根据杠杆平衡原理,在转动过程中,由几何关系知: F的力臂先变大后变小(力的方向与杠杆垂直时最大),所以力 F 先变小,后变大(在水平时最大)

【例 9】如图所示,一块长 1.5m 的薄板,自重不计,一端支起,另一端用细绳拉住,绳与水平夹角为 30°,所能承受的最大拉力是 20N。一只球从支点上方沿板向右以 10cm/s 的速度匀速运动,经 5s 绳子断了。求:球所受的重力。

【难度】★★

【答案】30N

【解析】5s 中球沿板向右的距离为 $0.1 \times 5 = 0.5 m$,绳子断了,说明绳子受到力为 20 N,将支起的那一端看为支点,那么球重的力臂为 0.5 m,30 度角所对的直角边长等于斜边的一半,绳子的力臂为 0.75 m。所以球的重力为 $20 \times 0.75 / 0.5 = 30 N$

方法与技

- 1、杠杆可以分为三类:省力杠杆: L₁>L₂、F₁<F₂、费距离;费力杠杆: L₁<L₂、F₁>F₂、省距离;等臂杠杆: L₁=L₂、F₁=F₂;
- 2、利用杠杆平衡条件解题
- (1) 建立杠杆模型, 找到五要素
- (2) 根据平衡原理,带入数据解题。(比较力臂之间的关系;比较动力和阻力的大小关系)

二、滑轮

知识点一: 滑轮的定义							
【例1】常用的滑轮有两种类型	和	,只能改变力的作用方向的是					
只能改变力的大小的是	0						

【难度】★

【答案】定滑轮;动滑轮;定滑轮;动滑轮

知识点二:滑轮的应用

【例 2】重 200N 的物体,使用定滑轮将它提起时,不计摩擦和滑轮重,所用拉力是_____N,如果使用动滑轮将它竖直提起,所用拉力是 N。

【难度】★

【答案】200N: 100N

【解析】定滑轮不改变力的大小,拉力为 200N;动滑轮省一半的力,拉力为 100N

【例 3】一个体重为 500N 的人,经测定他的手臂最大可发挥 700N 的拉力。若这个人用一个定滑轮来提升重物,他所能提起的最大物重为 ()

- A. 1200N
- B. 700N
- C. 500N
- D. 200N

【难度】★★

【答案】C

【解析】因为定滑轮的作用只是改变力的方向,如题所述,人在拉重物,同时重物也在拉人。 若物重超过人体重,则不是重物被拉起,而是人起来。所以最大拉起 500N 的重物。

【例 4】如图所示,用动滑轮把重为 40N 的物体匀速上提,弹簧测力计示数为 24N,则拉力为

N。不计摩擦和绳重,动滑轮重为 N。

【难度】★★

【答案】24;8

【解析】动滑轮两段绳子上的拉力相等, 所以 F=24N

根据 $F=(G_{\$}+G_{$\sharp})/2$, $G_{\$}=2F-G_{\$}=2\times24N-40N=8N$

- 1、定滑轮: 改变力的方向, 不能改变力的大小;
- 2、动滑轮:可以省力,但不改变力的方向,费距离。(作用在动滑轮上的三个力相互平行时,可以省一半的力,绳子自由端移动的距离是物端移动距离的两倍)。

三、滑轮组

知识点一: 滑轮组的定义

- 【例1】下列关于使用滑轮组的优点的论述,较全面的是 (
 - A. 一定是省力的,又能改变力的方向
 - B. 一定是省力的,但不能改变力的方向
 - C. 有时既省力, 又能改变力的方向, 有时可以省力, 但不改变力的方向
 - D. 肯定可以改变力的方向,省力与否要具体分析

【难度】★

【答案】C

【解析】滑轮组是将定滑轮与动滑轮结合在一起,既能省力,又能改变力的方向

知识点二: 滑轮组的应用

【例 2】在水平地面上放置一个质量为 360N 的物体用图中所示的装置匀速拉动物体 (不计绳子 与滑轮的摩擦), 拉力 F 等于 40N, 则物体与地面间的摩擦力应为 (

- A. 60N B. 80N C. 120N D. 240N

【难度】★★

【答案】C

【解析】从图可知,有三段绳子在拉物体,

- \therefore 水平拉力 F 为摩擦力 f 的三分之一,即 F=f/3
- ∴摩擦力 f=3F=3×40N=120N。故选 C

【例 3】如图所示,水平台上的物体 A 重 50N,在水平向右的拉力 F 的 作用下以 5cm/s 的速度做匀速直线运动,此时弹簧测力计的示数为 10N, 若滑轮重及绳与滑轮之间的摩擦忽略不计,则拉力F为 牛,物体 A 受到的摩擦力为__ 牛,拉力的功率为 W。

【难度】★★

【答案】10; 20; 1

【解析】因为拉力 F 与弹簧测力计的示数相等,所以 F=10N:

因为动滑轮省一半力, 拉力 F 是摩擦力的一半, 所以摩擦力 f=2F=20N;

因为动滑轮省一半力,但要多移动一半的距离,所以绳子自由端运动的速度是物体 A 运动速度 的 2 倍。所以, v ==2vA=2×5cm/s=0.1m/s; 拉力的功率为: P=Fv ==10N×0.1m/s=1W

方法与技巧

滑轮组:既可以省力,又可以改变力的方向。一般判断拉力的大小,通过动滑轮上绳子的股数来判断。绳端拉力 F=G/n (不考虑轮重和摩擦); $F=(G_{v}+G_{v})$ /n (不计摩擦);自由端移动距离是物端移动距离的 n 倍

随堂检测

- 1、下列工具中,属于省力杠杆的是 ()
 - A. 夹邮票用的镊子

- B. 理发师修剪头发用的剪刀
- C. 剪铁丝用的钢丝钳
- D. 钓鱼用的鱼竿

【难度】★

【答案】C

2、如图所示的各杠杆,无论怎样调节力的大小都不能使轻质杠杆在水平位置平衡的是 ()

【难度】★

【答案】B

3、如图所示的杠杆中,动力的力臂用 L 表示,图中所画力臂正确的是 ()

【难度】★

【答案】D

- A. 沿 AD 方向最省力
- B. 沿 AE 方向最省力
- C. 沿 AF 方向最省力
- D. 沿 AG 方向最省力

【难度】★

【答案】C

- 5、如图所示,滑轮重力和摩擦均不计,物体重均为 100N,与水平面间的摩擦力都是 30N,作用于各绳端的拉力分别为 F_1 、 F_2 、 F_3 ,要使物体做匀速直线运动,则下列说法中正确的是 ()
 - A. $F_1=100N$, $F_2=50N$, $F_3=200N$
 - B. $F_1=30N$, $F_2=60N$, $F_3=15N$
 - C. $F_1=100N$, $F_2=50N$, $F_3=50N$
 - D. $F_1=30N$, $F_2=15N$, $F_3=60N$

【难度】★★

【答案】D

- 6、如图所示的两种情况,OB=AB,物重均为 G,两轻质杠杆均平衡. 比较 F、F的大小,满足关系式 ()
 - A. F=F'
- B. F=2F'
- C. F = 1/2F'
- D. F = 1/4F'

【难度】★

【答案】D

- 7、如图所示的装置中,甲物重 5N,乙物重 3N。甲、乙均保持静止状态,不计弹簧测力计自重。则甲受到的合力和弹簧测力计的示数分别是 () 4444
 - A. 0N, 3N
- B. 0N, 5N
- C. 2N, 5N
- D. 2N, 3N

【难度】★★

【答案】A

8、作用在杠杆上的动力为 50N, 阻力为 600N, 杠杆恰好平衡, 则杠杆的动力臂和阻力臂之比为

【难度】★

【答案】12:1

9、如图所示,杠杆每小格的长度相等,质量不计,以O为支点。杠杆的左端挂有物体 M,支点右边的 A 处挂钩码,杠杆平衡。若将支点移到 B 点,要使杠杆重新平衡,在 A 点应挂______个相同的钩码。

【难度】★★

【答案】5

10、B 为一根质量不计的细棒,用绳在 O 处吊起, 当 A、B 两端分别挂两个重物甲、乙时恰好平衡。若 OA=0.8m, OB=0.4m, 甲的质量为 10kg,则乙的质量为____kg。

【难度】★

【答案】20

11、如图所示,AOB 为一轻质杠杆(杠杆自重忽略不计),O 为支点,OA=OB,在杠杆的 B 端挂一重 20N 的重物,要使杠杆平衡,则在 A 端施加的力 F 至少为_____N。

【难度】★★

【答案】20

12、如图所示甲、乙两个装置,已知 A 在地面上滑动时所受的摩擦力为 40 牛(不考虑绳与滑轮的摩擦)。要使 A 向右匀速滑动,拉力 $F_{\mathbb{P}}$ 与 $F_{\mathbb{Z}}$ 的大小分别为______N 和_____N。

【难度】★★

【答案】40;20

13、如图所示,动滑轮重为 50 牛,绳重和摩擦不计,人对绳子的拉力 F 是 260N,则物重是____N;若重物上升的高度是 0.2m,则绳子自由端下降____m。

【难度】★★

【答案】730; 0.6

14、如图所示,OB 为轻质杠杆,OA=60cm,AB=20cm。在杠杆的 B 端挂一个所受重力为 60N 的重物,要使杠杆在水平位置上平衡,在 A 点加一个多大的竖直向上的拉力?

【难度】★

【答案】80N

15、小叶利用如图所示的滑轮,用 100N 的拉力在 20s 内将重力为 180N 的物体匀速提高 2m,若不计摩擦与绳重。求:(1)动滑轮重;

- (2) 绳子自由端的速度;
- (3) 若再增加 50N 重物,要使物体匀速上升,作用在绳子自由端的拉力是多大?

【难度】★★

【答案】20N: 0.2m/s: 125N

16、如图甲所示,小明在探究"杠杆的平衡条件"实验中所用的实验器材有:杠杆、支架、弹簧测力计、刻度尺、细线和质量相同的钩码若干个。

- (1) 实验前,将杠杆中点置于支架上,当杠杆静止时,发现杠杆右端下沉。此时,应把杠杆两端的 平衡螺母向 _____(选填"左"或"右")调节。
- (3)如图乙所示,用弹簧测力计在 C 处竖直向上拉,当弹簧测力计逐渐向右倾斜时,使杠杆仍然在水平位置平衡,则弹簧测力计的示数将_____(选填"变大"、"变小"或"不变"),其原因是____。
- (4) 实验结束后,小明提出了新的探究问题: "若支点不在杠杆的中点时,杠杆的平衡条件是否仍然成立?"于是小组同学利用如图丙所示装置进行探究,发现在杠杆左端的不同位置,用弹簧测力计竖直向上拉使杠杆处于水平平衡状态时,测出的拉力大小都与杠杆平衡条件不相符,其原因是:

【难度】★★

【答案】(1) 左(2) 6; (3) 变大; 该力的力臂短了(4) 杠杆自身受重力作用

课后作业
保石作业

1.	下列物体中不能看成杠杆的是	()
1)			,

- A. 筷子

- B. 火钳 C. 剪刀 D. 橡皮筋

【难度】★

【答案】D

2、	一位同学邓	双手的最	大拉力为 500 牛,	现在他用一	一个动滑轮和一	一个定滑轮组成的滑轮组,	最多能提
起角	的物重为	()				

- A. 500 牛
- B. 1000 牛 C. 1500 牛 D. 250 牛

【难度】★★

【答案】C

- 3、实际生活中,有一杆刻度准确的杆秤,若误用了质量较轻的秤砣,那么杆秤表示出来的质量比实 际质量 ()

- A. 偏大 B. 偏小 C. 相等 D. 偏大偏小都有可能

【难度】★

【答案】A

4、如图所示,在竖直向上的力 F 的作用下,重物 A 沿竖直方向匀速上升。已 知 A 的重力 G=100N, 重物 A 上升速度为 0.2m/s, 不计绳与滑轮摩擦以及滑 轮重和绳重,则拉力 F 的大小和滑轮上升的速度分别为

- A. 50N: 0.4m/s
- B. 50N; 0.1m/s
- C. 200N; 0.4m/s
- D. 200N; 0.1m/s

【难度】★★

【答案】D

- 5、如图所示, AOB 为一杠杆, O 为支点, 杠杆重不计, AO=OB。在杠杆右端 A 处用细绳悬挂重为 G 的物体, 当 AO 段处于水平位置时, 为保持杠杆平衡, 需在 B 端施加最小的力为 F_1 ; 当 BO 段在 水平位置时保持杠杆平衡,这时在 B 端施加最小的力为 F_2 ,则 (
 - A. $F_1 < F_2$
- B. $F_1 > F_2$
- C. F₁=F₂ D. 无法比较

【难度】★★

【答案】B

6、物体 A 重 120N, 在重力为 G_B 的物体 B 的作用下在水平桌面上做匀速直线运动, A 与桌面之间 的摩擦力为 f。如果在 A 上加一个水平向左大小为 180N 的拉力 F, 物体 B 匀速上升,则下列选项正 确的是(不计摩擦、绳重及滑轮重) ()

B. $G_B=90N$

C. f=180N

D. f=90N

【难度】★★

【答案】D

7、筷子是我国古代劳动人民的伟大发明,用筷子夹菜时,筷子是_____杠杆,它的动力是____ 于")

【难度】★

【答案】费力; 手; 筷子; 小于

8、地面上有一条大木杆, 抬起 A 端需用力 300N, 抬起 B 端需用力 200N。这条木杆的 端 较粗,整个木杆的重量(所受的重力)为 N 【难度】★★★ 【答案】A; 500N 9、如图所示, 杠杆 AC(刻度均匀, 不计杠杆重)可绕支点 O 自由转动, 在 B 点挂一重为 G 的物 体。为使杠杆平衡,应在杠杆上的 点施加一个作用力,才能使作用力最小,该最小作用力 与物重 G 的比值是 _____。 【难度】★ 【答案】A; 1:4 10、在水平桌面上放一个 200N 的重物,现用如图所示装置将物体匀速拉动,物体与桌面的摩擦力 是 48N, 不考虑滑轮重力和滑轮与绳间摩擦, 水平拉力 F 为 N。若绳子自由端移动速度为 0.6m/s,则物体移动速度为。 【难度】★★ 【答案】16; 0.2m/s 11、在"探究杠杆的平衡条件"实验中: (1) 实验前,发现杠杆左端偏高,应向____端调节螺母,使 杠杆在水平位置平衡。

(2) 如图所示, 把钩码挂在杠杆左侧 A 点, 为使 OB 成为力臂,

应在 B 点沿着 的方向拉动弹簧测力计,使杠杆在水平位置

平衡。

(3) 若每个钩码重为 0.5N,将 A 点的钩码全部移到 B 点,弹簧测力计作用在 C 点,为使杠杆在水 平位置平衡, 所加最小力为 N。

【难度】★★

【答案】(1) 左(2) 竖直向上(3) 1

12、如图所示, 电灯重 100N。此时杠杆在水平位置上平衡。已知 AO=4m, AB=0.8m, 细绳与杠杆 之间的夹角是30度(不计杠杆重、细绳重和摩擦),求细绳上的拉力。

【难度】★★

【答案】250N

13、如图是小明同学三次实验的情景,实验时所用的每个钩码重 0.5 牛,杠杆上每一格长 5 厘米,部分实验数据已记录在下表中。

实验次数	动力 F ₁ (牛)	动力臂 L1(厘米)	阻力 F ₂ (牛)	阻力臂 L2 (厘米)
1	1.5	10	1	
2	1	20		10
3	1	20	1.5	10

- (1) 将表格中的实验数据补充完整。
- (2) 小明的第3次实验存在错误,其错误是

【难度】★

【答案】(1) 15; 2

(2) 弹簧测力计没有沿竖直向下的方向拉杠杆,力臂记录错误

14、小华、小明两位同学通过实验探究杠杆平衡的条件,所用实验器材有杠杆、弹簧测力计、钩码和支架等。他们分别在已调水平平衡的杠杆上施加动力 F_1 、阻力 F_2 并使杠杆在水平位置平衡,记录动力臂 I_1 及阻力臂 I_2 ,小华、小明的操作情况分别如图(a)、(b)所示,表一、表二为他们记录的实验数据。

表一 小华同学

实验	F ₁	11	F_2	12
序号	(牛)	(厘米)	(牛)	(厘米)
1	1	8	8	1
2	3	6	6	3
3	2	8	8	2

表二 小明同学

实验	F ₁	l ₁	F ₂	12
序号	(牛)	(厘米)	(牛)	(厘米)
4	1	8	4	2
5	2	8	4	4
6	4	5	2	10

(1)	分析比较	で实验序号1、2点	5 3 的数据及相关条件,小华得出结论:杠杆平衡的条件是 Fı+lı	=F2
$+1_2$.	请判断:	小华的结论是	的(选填"正确"或"错误"),依据是:	

(2) 进一步综合分析比较表一和表二中的数据及相关条件,可归纳得出结论: 杠杆平衡的条件是

【难度】★★

【答案】(1)错误,不同的物理量不能相加。

- (2) 动力乘以动力臂等于阻力乘以阻力臂或 $(F_1L_1=F_2L_2)$
- (3)能,将弹簧测力计沿竖直向下的方向作用在 A 点,且满足 $F_1L_1=F_2L_2$;或(不能,将弹簧测力计沿竖直向上的方向作用在 A 点)

能力提升

【难度】★★

【答案】F₂; 25

【解析】读图可知,图中 AB 相当于杠杆,O 为支点, F_A 可视为动力,阻力施到 B 点,此时为了使用力最小,应使力臂最长,且所施力的方向应阻碍杠杆的转动,故想让转盘反方向转动,乙应沿图中 F_2 方向施力。

此时动力的力臂为 L_1 =50cm=0.5m,阻力的力臂 L_2 =40cm=0.4m, 由杠杆的平衡条件得, F_A • L_1 = F_2 • L_2 ,则 F_2 =25N 2、如图所示,密度均匀的直尺 AB 放在水平桌面上,尺子伸出桌面的部分 OB 是全尺长的三分之一, 当 B 端挂 10N 的重物 P 时,直尺的 A 端刚刚翘起,则此直尺受到的重力为 ()

A. 20N

B. 10N

C. 5N

D. 2.5N

【难度】★★

【答案】A

【解析】设直尺长为 L,

从图示可以看出: 杠杆的支点为 O,动力大小等于物重 10N,动力臂为 L/3;阻力为直尺的重力 G' ,阻力的力臂为 L/2-L/3=L/6 由杠杆平衡的条件得: G' L' =GL,即: G' ×L/6=10N×L/3,解得: G' =20N

- 3、如图是胖子和瘦子两人用滑轮组锻炼身体的简易装置(不考虑轮重和摩擦),使用时:
- (1) 瘦子固定不动,胖子用力 FA 拉绳使货物 G 匀速上升。
- (2) 胖子固定不动,瘦子用力 F_B 拉绳使货物 G 匀速上升。

下列说法中正确的是 ()

所以直尺的重力大小为 20N。故选 A

A. $F_A < G$

B. $F_B < G$

C. $F_A=2G$

D. $F_B=2G$

【难度】★★★

【答案】C

【解析】读图分析可知,上下两只都是定滑轮,只是改变了力的方向,而中间一只相对于瘦子来讲,只是改变了力的方向,为定滑轮,相对于胖子来讲,则是一只费力的动滑轮,因此,可知当装置匀速运动时,各力的关系为 $F_B=G$, $F_A=F_B+G$,所以 $F_A=2G$ 符合题意。故选 C

- 4、如图所示,有一粗细均匀,重为 40N,长为 4m 的长木板 AB,置于支架上,支点为 0,且 AO=1m,长木板的右端 B 用绳子系住,绳子另一端固定在 C 处,当长木板 AB 水平时,绳与水平成 30° 的夹角,且绳子所能承受的最大拉力为 60N。一个重为 50N 的体积不计的滑块 M 在 F=10N 的水平拉力作用下,从 AO 之间某处以 V=1m/s 的速度向 B 端匀速滑动,求:
- (1) 滑块匀速运动时所受的摩擦力的大小;
- (2) 当滑块匀速运动时拉力 F 做功的功率;
- (3) 滑块在什么范围内滑动才能使 AB 保持水平;

【难度】★★★

【答案】(1) 滑块匀速运动时所受的摩擦力为 10N

- (2) 当滑块匀速运动时拉力 F 做功的功率为 10W
- (3) 滑块在 O 点左侧 0.8m 到右测 1m 范围内滑动才能使 AB 保持水平

【解析】(1) f=F=10N;

- (2) $P=Fv=10N\times 1m/s=10W$;
- (3) 当 M 在 O 点左侧离 O 点 X₁ 米, 且 T=0,

则 $G \cdot X_1 + G_{OA} \cdot L_{OA} / 2 = G_{OB} \cdot L_{OB} / 2$,

即 $50N \times X_1 + 10N \times (1/2) \times 1m = 30N \times (1/2) \times 3m$,

解得: X₁=0.8m;

AB 保持水平

当 M 在 O 点右侧离 O 点 X_2 米时,且 T=60N,

则 $G_{OA} \cdot L_{OA}/2 = G \cdot X_2 + G_{OB} \cdot L_{OB}/2 - T \cdot L_{OB} sin 30^{\circ}$,

即 10N× (1/2)×1m=50N×X₂+30N× (1/2)×3m - 60N×3m× (1/2),

解得: $X_2=1m$, 故滑块在 O 点左侧 0.8m 到右测 1m 范围内滑动才能使

