SYAM KRISHNA REDDY PULAGAM

REG NO: 21BAI1725 VIT CHENNAI CAMPUS

AI&ML ASSIGNMENT-3

1. IMPORTING ALL THE NECCESARY LIBRARIES AND DOWNLOADING THE DATASET

In [2]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn import svm

from sklearn.metrics import accuracy_score
from sklearn import metrics
from sklearn.metrics import confusion_matrix
```

2. Loading the dataset

In [10]:

```
df=pd.read_csv("penguins_size.csv")
df.head()
```

Out[10]:

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass
0	Adelie	Torgersen	39.1	18.7	181.0	3750
1	Adelie	Torgersen	39.5	17.4	186.0	3800
2	Adelie	Torgersen	40.3	18.0	195.0	3250
3	Adelie	Torgersen	NaN	NaN	NaN	N
4	Adelie	Torgersen	36.7	19.3	193.0	3450
4						•

In [11]:

```
df.dtypes
```

Out[11]:

species object island object culmen_length_mm float64 culmen_depth_mm float64 flipper_length_mm float64 body_mass_g float64 sex object

dtype: object

3. VISUALIZATIONS

- Univariate Analysis
- Bi- Variate Analysis
- Multi-Variate Analysis

Univariate Analysis

In [12]:

```
df['species'].value_counts()
```

Out[12]:

Adelie 152 Gentoo 124 Chinstrap 68

Name: species, dtype: int64

In [254]:

```
a=df['species'].value_counts().index
fig,ax = plt.subplots(1,2, figsize=(15,9))
ax[0].pie(df['species'].value_counts(),labels=a,autopct = "%1.1f%%")
ax[1].bar(a,df['species'].value_counts())
```

Out[254]:

<BarContainer object of 3 artists>

In [255]:

df['island'].value_counts()

Out[255]:

Biscoe 168 Dream 124 Torgersen 52

Name: island, dtype: int64

In [256]:

```
plt.figure(figsize=(10,5))
a=df['island'].value_counts().index
plt.bar(a,df['island'].value_counts())
plt.show()
```


In [257]:

```
plt.figure(figsize=(15,6))
plt.plot(df['culmen_depth_mm'])
plt.title("visualizing culmen_depth_mm column")
```

Out[257]:

Text(0.5, 1.0, 'visualizing culmen_depth_mm column')

In [258]:

```
df1=df.sex.dropna()
```

In [259]:

```
df1=df1.replace(".","MALE")
df1.value_counts()
```

Out[259]:

MALE 169 FEMALE 165

Name: sex, dtype: int64

In [260]:

```
fig,ax = plt.subplots(1,2, figsize=(12,8))
a=['male','female']
ax[0].pie(df1.value_counts(),labels=a,autopct = "%1.1f%%")
ax[1].bar(a,df1.value_counts())
plt.show()
```


In [261]:

```
sns.distplot(df1.value_counts())
```

C:\Users\HP\anaconda3\lib\site-packages\seaborn\distributions.py:2619: Fut ureWarning: `distplot` is a deprecated function and will be removed in a f uture version. Please adapt your code to use either `displot` (a figure-le vel function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[261]:

<AxesSubplot:xlabel='sex', ylabel='Density'>

Bi- Variate Analysis

In [262]:

```
plt.figure(figsize=(15,6))
plt.plot(df['culmen_length_mm'],'o-')
plt.plot(df['culmen_depth_mm'],'o-')
plt.title("visualizing culmen_depth_mm and culmen_length_mm together")
plt.xlabel("index of culmen_depth_mm and culmen_length_mm")
plt.ylabel("values of culmen_depth_mm and culmen_length_mm")
plt.legend(['culmen_length_mm','culmen_depth_mm'])
```

Out[262]:

<matplotlib.legend.Legend at 0x1c1d4aad850>

In [263]:

```
plt.figure(figsize=(15,9))
plt.plot(df['flipper_length_mm'])
plt.plot(df['culmen_length_mm'])
plt.title("visualizing culmen_length_mm and flipper_length_mm together")
plt.xlabel("index of culmen_length_mm and flipper_length_mm")
plt.ylabel("values of culmen_length_mm and flipper_length_mm")
plt.legend(['flipper_length_mm','culmen_length_mm'])
```

Out[263]:

<matplotlib.legend.Legend at 0x1c1d5094fa0>

In [264]:

```
sns.lineplot(x = df.culmen_depth_mm,y=df.culmen_length_mm)
```

Out[264]:

<AxesSubplot:xlabel='culmen_depth_mm', ylabel='culmen_length_mm'>

In [265]:

```
sns.jointplot(x= 'flipper_length_mm',y ='body_mass_g',data=df)
```

Out[265]:

<seaborn.axisgrid.JointGrid at 0x1c1d5142970>

Multi-Variate Analysis

In [266]:

sns.pairplot(df,diag_kind='kde')

Out[266]:

<seaborn.axisgrid.PairGrid at 0x1c1d5231a30>

In [267]:

```
sns.pairplot(
  df,
  x_vars=['culmen_length_mm', 'culmen_depth_mm','flipper_length_mm'],
  y_vars=['culmen_length_mm', 'culmen_depth_mm']
)
```

Out[267]:

<seaborn.axisgrid.PairGrid at 0x1c1d6d6bf70>

In [268]:

df.corr()

C:\Users\HP\AppData\Local\Temp/ipykernel_15880/1134722465.py:1: FutureWarn
ing: The default value of numeric_only in DataFrame.corr is deprecated. In
a future version, it will default to False. Select only valid columns or s
pecify the value of numeric_only to silence this warning.
 df.corr()

Out[268]:

	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g
culmen_length_mm	1.000000	-0.235053	0.656181	0.595110
culmen_depth_mm	-0.235053	1.000000	-0.583851	-0.471916
flipper_length_mm	0.656181	-0.583851	1.000000	0.871202
body_mass_g	0.595110	-0.471916	0.871202	1.000000
4				•

In [269]:

sns.heatmap(df.corr(),annot=True)

C:\Users\HP\AppData\Local\Temp/ipykernel_15880/4277794465.py:1: FutureWarn
ing: The default value of numeric_only in DataFrame.corr is deprecated. In
a future version, it will default to False. Select only valid columns or s
pecify the value of numeric_only to silence this warning.
 sns.heatmap(df.corr(),annot=True)

Out[269]:

<AxesSubplot:>

In [270]:

```
plt.plot(df['culmen_length_mm'])
plt.plot(df['culmen_depth_mm'])
plt.plot(df['flipper_length_mm'])
plt.title("visualizing culmen_length_mm, culmen_depth_mm and flipper_length_mm together"
plt.xlabel("index of culmen_length_mm, culmen_depth_mm and flipper_length_mm")
plt.ylabel("values of culmen_length_mm,culmen_depth_mm and flipper_length_mm")
plt.legend(['culmen_length_mm','culmen_depth_mm','flipper_length_mm'])
```

Out[270]:

<matplotlib.legend.Legend at 0x1c1d7595fd0>

visualizing culmen_length_mm, culmen_depth_mm and flipper_length_mm together

4. DESCRIPTIVE STATISTICS ON OUR DATASET

```
In [272]:
```

df.shape

Out[272]:

(344, 7)

In [273]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 344 entries, 0 to 343

Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	species	344 non-null	object
1	island	344 non-null	object
2	culmen_length_mm	342 non-null	float64
3	culmen_depth_mm	342 non-null	float64
4	flipper_length_mm	342 non-null	float64
5	body_mass_g	342 non-null	float64
6	sex	334 non-null	object

dtypes: float64(4), object(3)

memory usage: 18.9+ KB

In [274]:

df.dtypes

Out[274]:

species object
island object
culmen_length_mm float64
culmen_depth_mm float64
flipper_length_mm float64
body_mass_g float64
sex object

dtype: object

In [275]:

```
df.describe()
```

Out[275]:

	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g
count	342.000000	342.000000	342.000000	342.000000
mean	43.921930	17.151170	200.915205	4201.754386
std	5.459584	1.974793	14.061714	801.954536
min	32.100000	13.100000	172.000000	2700.000000
25%	39.225000	15.600000	190.000000	3550.000000
50%	44.450000	17.300000	197.000000	4050.000000
75%	48.500000	18.700000	213.000000	4750.000000
max	59.600000	21.500000	231.000000	6300.000000

5. CHECKING FOR MISSING VALUES AND IMPUTING THEM WITH STATISTICAL METHODS

(MEAN FOR NUMERIC DATA AND MODE FOR CATEGORICAL DATA)

In [276]:

```
df.isnull().any()
```

Out[276]:

dtype: bool

In [277]:

df.isnull().sum() # columns except species and island are having null values.
#except sex columns remaining columns are of type float

Out[277]:

dtype: int64

In [4]:

```
x=['culmen_length_mm', 'culmen_depth_mm','flipper_length_mm', 'body_mass_g']
for column in x:
    df[column].fillna(df[column].mean(),inplace =True)
df['sex'].fillna(df['sex'].mode()[0],inplace =True)
```

In [279]:

```
#again checking for null values
df.isnull().sum()
```

Out[279]:

```
species 0
island 0
culmen_length_mm 0
culmen_depth_mm 0
flipper_length_mm 0
body_mass_g 0
sex 0
dtype: int64
```

6. FINDING THE OUTLIERS AND REPLACING THEM

In [280]:

```
fig,ax = plt.subplots(2,2, figsize=(15,9))
ax[0][0].boxplot(df['culmen_length_mm'])
ax[0][1].boxplot(df['culmen_depth_mm'])
ax[1][0].boxplot(df['flipper_length_mm'])
ax[1][1].boxplot(df['body_mass_g']) #no outliers in following columns
```

Out[280]:

In [281]:

```
plt.figure(figsize=(8,4))
sns.boxplot(data=df['culmen_length_mm'])
plt.figure(figsize=(8,4))
sns.boxplot(data=df['culmen_depth_mm'])
plt.figure(figsize=(8,4))
sns.boxplot(data=df['flipper_length_mm'])
plt.figure(figsize=(8,4))
sns.boxplot(data=df['body_mass_g'])
Out[281]:
```

<AxesSubplot:>

In [282]:

```
def funct(col):
   print(col +"\n")
   q1 = df[col].quantile(0.25)
   q3 = df[col].quantile(0.75)
   print(f" First quartile of {col} is q1= {q1} \n Second quartile of {col} is q3= {q3}
   iqr=q3-q1
   print(f" IQR OF {col} is {iqr}")
   upper limit = q3+1.5*iqr
   lower limit =q1-1.5*iqr
   print(f" Upper limit of {col} is: {upper_limit} \n Lower limit of {col} is: {lower_l
   print()
```

```
In [283]:
z=['culmen length mm', 'culmen depth mm', 'flipper length mm', 'body mass g']
for col in z:
   funct(col)
culmen_length_mm
 First quartile of culmen_length_mm is q1= 39.275
 Second quartile of culmen_length_mm is q3= 48.5
 IQR OF culmen_length_mm is 9.225000000000001
Upper limit of culmen length mm is: 62.337500000000006
 Lower limit of culmen_length_mm is: 25.43749999999996
culmen_depth_mm
 First quartile of culmen_depth_mm is q1= 15.6
 Second quartile of culmen_depth_mm is q3= 18.7
 IQR OF culmen depth mm is 3.09999999999999
Upper limit of culmen_depth_mm is: 23.34999999999998
 Lower limit of culmen_depth_mm is: 10.95
flipper_length_mm
 First quartile of flipper_length_mm is q1= 190.0
 Second quartile of flipper_length_mm is q3= 213.0
 IQR OF flipper_length_mm is 23.0
Upper limit of flipper_length_mm is: 247.5
 Lower limit of flipper_length_mm is: 155.5
body_mass_g
 First quartile of body_mass_g is q1= 3550.0
 Second quartile of body_mass_g is q3= 4750.0
 IQR OF body_mass_g is 1200.0
 Upper limit of body mass g is: 6550.0
 Lower limit of body_mass_g is: 1750.0
```

7. CHECKING THE CORRELATION OF INDEPENDENT VARIABLES WITH TARGET

```
In [18]:
```

```
df.corr().species.sort_values(ascending=False)
```

Out[18]:

```
      species
      1.000000

      flipper_length_mm
      0.854307

      body_mass_g
      0.750491

      culmen_length_mm
      0.731369

      sex
      0.002262

      island
      -0.635659

      culmen_depth_mm
      -0.744076

      Name: species, dtype: float64
```

8. CHECKING FOR CATEGORICAL COLUMNS AND PERFORMING ENCODING

```
In [13]:
x=df.dtypes
x[1]
for i in range(len(x)):
    if x[i]=='0':
        print(x.index[i])
species
island
sex
In [14]:
df.species.value_counts()
Out[14]:
Adelie
             152
Gentoo
             124
              68
Chinstrap
Name: species, dtype: int64
In [15]:
df.island.value_counts()
Out[15]:
             168
Biscoe
Dream
             124
Torgersen
              52
Name: island, dtype: int64
In [16]:
df['sex']=df['sex'].replace(".","MALE")
df.sex.value_counts()
Out[16]:
MALE
          169
FEMALE
          165
```

Name: sex, dtype: int64

In [17]:

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

df.species= le.fit_transform(df.species)
df.island= le.fit_transform(df.island)
df.sex = le.fit_transform(df.sex)
```

In [290]:

df.head()

Out[290]:

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g
0	0	2	39.10000	18.70000	181.000000	3750.000000
1	0	2	39.50000	17.40000	186.000000	3800.000000
2	0	2	40.30000	18.00000	195.000000	3250.000000
3	0	2	43.92193	17.15117	200.915205	4201.754386
4	0	2	36.70000	19.30000	193.000000	3450.000000
4)

9. SPLIT THE DATA INTO DEPENDENT AND INDEPENDENT VARIABLES.

In [291]:

```
X=df.drop(columns =['sex'],axis =1) #dependent variables
y=df.sex #independent variables
```

10. SCALING THE DATA

In [292]:

from sklearn.preprocessing import MinMaxScaler
scale =MinMaxScaler()

In [293]:

```
X_scaled= pd.DataFrame(scale.fit_transform(X),columns =X.columns)
X_scaled.head()
```

Out[293]:

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g
0	0.0	1.0	0.254545	0.666667	0.152542	0.291667
1	0.0	1.0	0.269091	0.511905	0.237288	0.305556
2	0.0	1.0	0.298182	0.583333	0.389831	0.152778
3	0.0	1.0	0.429888	0.482282	0.490088	0.417154
4	0.0	1.0	0.167273	0.738095	0.355932	0.208333
4						•

11. SPLIT THE DATA INTO TRAINING AND TESTING

```
In [294]:

from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X_scaled,y,test_size=0.2,random_state=4)
```

12.CHECK THE TRAINING AND TESTING DATA SHAPE.

```
In [295]:

X_train.shape

Out[295]:
(275, 6)

In [296]:

X_test.shape

Out[296]:
(69, 6)

In [297]:

y_train.shape

Out[297]:
(275,)
```

```
In [298]:

y_test.shape

Out[298]:
(69,)
```

13. BUILDING THE CLASSIFICATION MODEL

LOGISTIC REGRESSION

```
In [299]:
```

```
model_1=LogisticRegression()
model_1.fit(X_train,y_train)

y_train_pred=model_1.predict(X_train)
accuracy_train= accuracy_score(y_train, y_train_pred)
accuracy_train
```

Out[299]:

0.8690909090909091

In [300]:

```
y_test_pred=model_1.predict(X_test)
accuracy_test= accuracy_score(y_test, y_test_pred)
accuracy_test
```

Out[300]:

0.855072463768116

In [301]:

```
print(confusion_matrix(y_test_pred, y_test))
```

```
[[23 3]
[ 7 36]]
```

DECISION TREES

In [302]:

```
model_2 = DecisionTreeClassifier(criterion = 'entropy', random_state = 0)
model_2.fit(X_train, y_train)
```

Out[302]:

DecisionTreeClassifier(criterion='entropy', random_state=0)

```
In [303]:
```

```
y_pred_d=model_2.predict(X_test)
accuracy_d=accuracy_score(y_test,y_pred_d)
accuracy_d
```

Out[303]:

0.8695652173913043

In [304]:

```
confusion_matrix(y_pred_d,y_test)
```

Out[304]:

```
array([[25, 4], [5, 35]], dtype=int64)
```

RANDOM FOREST CLASSIFIERS

In [305]:

```
model_3 = RandomForestClassifier(n_estimators = 10, criterion = 'entropy', random_state model_3.fit(X_train, y_train)
```

Out[305]:

RandomForestClassifier(criterion='entropy', n_estimators=10, random_state=
42)

In [306]:

```
y_pred_r=model_3.predict(X_test)
accuracy_r=accuracy_score(y_test,y_pred_d)
accuracy_r
```

Out[306]:

0.8695652173913043

In [307]:

```
confusion_matrix(y_pred_r,y_test)
```

Out[307]:

```
array([[26, 4],
       [ 4, 35]], dtype=int64)
```

SUPPORT VECTOR MACHINE

```
In [308]:
```

```
model_4= svm.SVC(kernel='linear')
model_4.fit(X_train, y_train)

Out[308]:
SVC(kernel='linear')

In [309]:

y_pred_s=model_4.predict(X_test)
```

Out[309]:

accuracy_s

0.8840579710144928

accuracy_s=accuracy_score(y_pred_s,y_test)

OUT OF ALL THE MODELS SVM GIVES BETTER ACCURACY

In [310]:

```
import pickle
pickle.dump(model_4,open('Syam.pkl','wb'))
```

C:\Users\HP\AppData\Local\Temp/ipykernel_15880/2735532712.py:2: ResourceWa
rning: unclosed file <_io.BufferedWriter name='Syam.pkl'>
 pickle.dump(model_4,open('Syam.pkl','wb'))
ResourceWarning: Enable tracemalloc to get the object allocation traceback