Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет безопасности информационных технологий

Дисциплина:

«Теория вероятностей»

ОТЧЕТ ПО ДОМАШНЕМУ ЗАДАНИЮ №1

Вариант 18

Суханкулиев Мухаммет,
студент группы N3246
- Aberlo
(подпись)
Проверил:
Лимар Иван Александрович,
ассистент, НОЦ математики
(отметка о выполнении)
(подпись)

Выполнил:

Санкт-Петербург 2024 г.

СОДЕРЖАНИЕ

1		Задание №1	4		
	1.1	Задание	4		
	1.2	Ход работы	4		
	1.3	Ответ	4		
2		Задание №2	5		
	2.1	Задание	5		
	2.2	Ход работы	5		
	2.3	Ответ	6		
3		Задание №3	7		
	3.1	Задание	7		
	3.2	Ход работы	7		
	3.3	Ответ	7		
4		Задание №4	8		
	4.1	Задание	8		
	4.2	Ход работы	8		
	4.3	Ответ	9		
\mathbf{C}	Список использованных источников				

Непосредственный подсчет вероятностей по классической схеме. Теоремы сложения и умножения вероятностей.

1.1 Задание

В электрическую цепь включены параллельно два прибора. Вероятность отказа первого прибора равна 0,1, второго 0,2. Найти вероятность того, что откажет хотя бы один прибор этой цепи.

1.2 Ход работы

Множество элементарных исходов — это все возможные комбинации работы или отказа двух приборов. Возможные исходы:

- Оба прибора работают;
- Хотя бы один прибор отказывает;
- Оба прибора отказывают.

 A_1 — событие, что первый прибор откажет (вероятность отказа $P(A_1) = 0.1$),

 A_2 — событие, что второй прибор откажет (вероятность отказа $P(A_2) = 0.2$).

Вероятность того, что оба прибора работают:

Вероятность, что первый прибор не откажет: $P(\overline{A_1}) = 1 - 0.1 = 0.9$,

Вероятность, что второй прибор не откажет: $P(\overline{A_2}) = 1 - 0.2 = 0.8$.

События независимы, ⇒ вероятность того, что оба прибора работают:

$$P(\overline{A_1} \cap \overline{A_2}) = P(\overline{A_1}) \cdot P(\overline{A_2}) = 0.9 \cdot 0.8 = 0.72.$$

Вероятность того, что хотя бы один прибор откажет:

$$P(A_1 \cup A_2) = 1 - P(\overline{A_1} \cap \overline{A_2}) = 1 - 0.72 = 0.28.$$

1.3 Ответ

Вероятность того, что хотя бы один прибор откажет равна 0.28.

Формула полной вероятности и формула Байеса

2.1 Задание

Если при бросании кости выпадает больше 2-х очков, то вынимают 2 шара из первой урны, содержащей 1 красный и 4 черных шара. Иначе два шара берутся из второй урны, содержащей 3 красных и 2 черных шара. Вытащили 1 красный и 1 черный шар. Какова вероятность, что они взяты из первой урны?

2.2 Ход работы

А – событие, что шары взяты из первой урны.

В – событие, что шары взяты из второй урны. (События А и В – несовместны)

С – событие, что вытащили 1 красный и 1 черный шар.

Нужно найти P(A|C) — вероятность события A, при условии выполнения события C (Формула Байеса):

$$P(A|C) = \frac{P(C|A) \cdot P(A)}{P(C)}.$$

Бросок кости и выбор шаров – независимы.

Вероятность того, что при броске кости выпадает больше 2 очков (Событие А):

$$P(A) = \frac{4}{6} = \frac{2}{3}$$
.

Вероятность того, что при броске кости выпадает 2 или меньше очков (Событие В):

$$P(B) = \frac{2}{6} = \frac{1}{3}.$$

Найдём условные вероятности P(C|A) и P(C|B), то есть вероятности того, что вытащили 1 красный и 1 черный шар из первой или второй урны соответственно. (В первой урне содержится 1 красный и 4 черных шара).

Вероятность вытащить сначала красный, а потом черный:

$$\frac{1}{5} \cdot \frac{4}{4} = \frac{1}{5}.$$

Вероятность вытащить сначала черный, а потом красный:

$$\frac{4}{5} \cdot \frac{1}{4} = \frac{1}{5}.$$

5

Общая вероятность для первой урны:

$$P(C|A) = \frac{1}{5} + \frac{1}{5} = \frac{2}{5}.$$

Аналогично для второй урны: (Во второй урне содержится 3 красных и 2 черных шара)

$$P(C|B) = \frac{3}{5} \cdot \frac{2}{4} + \frac{2}{5} \cdot \frac{3}{4} = \frac{6}{10} = \frac{3}{5}.$$

Найдём полную вероятность события С:

$$P(C) = P(C|A) \cdot P(A) + P(C|B) \cdot P(B).$$
$$P(C) = \frac{2}{5} \cdot \frac{2}{3} + \frac{3}{5} \cdot \frac{1}{3} = \frac{7}{15}.$$

Применим формулу Байеса:

$$P(A|C) = \frac{\frac{2}{5} \cdot \frac{2}{3}}{\frac{7}{15}} = \frac{4}{7}.$$

2.3 Ответ

Вероятность того, что вытащили 1 красный и 1 черный шар из первой урны равна $\frac{4}{7} \approx 0.571.$

Повторение опытов (схема Бернулли).

3.1 Задание

Центр наблюдения поддерживает связь с шестью самолетами, выполняющими учебное задание при условии создания противником активных помех. Связь после ее нарушения не восстанавливается. Вероятность потери связи за период выполнения задания 0,2. Найти вероятность того, что в момент окончания задания центр потеряет связь не более чем с третью самолетов.

3.2 Ход работы

n = 6 — количество испытаний (в данном случае количество самолётов);

p = 0.2 — вероятность успеха (здесь успех — это потеря связи);

q = 1 - p = 1 - 0.2 = 0.8 — вероятность неуспеха (сохранение связи);

k — число успехов (количество самолётов, с которыми потеряна связь).

Схема Бернулли:

$$P_n(k) = C_n^k \cdot p^k \cdot q^{n-k}$$

Нужно найти вероятность того, что центр потеряет связь не более чем с третью самолётов, т.е. не более чем с 2 самолётами:

$$P_6(k \le 2) = P_6(k = 0) + P_6(k = 1) + P_6(k = 2)$$

Вычислим каждую вероятность отдельно:

$$P_6(k=0) = C_6^0 \cdot 0.2^0 \cdot 0.8^{6-0} = 1 \cdot 1 \cdot \left(\frac{4}{5}\right)^6 = \frac{4096}{15625}$$

$$P_n(k=1) = C_6^1 \cdot 0.2^1 \cdot 0.8^{6-1} = 6 \cdot 0.2 \cdot \left(\frac{4}{5}\right)^5 = \frac{6144}{15625}$$

$$P_n(k=2) = C_6^2 \cdot 0.2^2 \cdot 0.8^{6-2} = \frac{6 \cdot 5}{2} \cdot 0.04 \cdot \left(\frac{4}{5}\right)^4 = \frac{768}{3125}$$

Тогда:

$$P_n(k \le 2) = \frac{4096}{15625} + \frac{6144}{15625} + \frac{768}{3125} = \frac{2816}{3125} = 0.90112.$$

3.3 Ответ

Вероятность того, что в момент окончания задания центр потеряет связь не более чем с третью самолётов равна 0.90112.

Расчет вероятностей по геометрической схеме.

4.1 Задание

Из промежутка [1, 2] наудачу выбираются два числа. Какова вероятность того, что их сумма меньше 3, а произведение больше 2?

4.2 Ход работы

Пусть x, y - 2 возможных числа. При этом $x, y \in [1, 2]$

Тогда:

(a)
$$x + y < 3$$
;

(6)
$$x \cdot y > 2$$
.

Вероятность того, что эти оба условия выполняются будет равна:

$$P = \frac{\Pi$$
лощадь, удовлетворяющая уравнениям (a) и (б) область определения x,y .

Построим график:

Область, ниже графика функции (a) и выше графика (б) – это будет наша площадь, удовлетворяющая обоим уравнениям.

Область определения для $x,y \in [1,2]$ будет равна площади квадрата с длиной стороны 1, т.е. 1.

Для приближенной оценки можно визуально заметить, что пересечение занимает \approx 10% квадрата.

Для более точного ответа можно найти площадь методом интегрирования:

$$\int_{1}^{2} \left((3-x) - (\frac{2}{x}) \right) dx = \int_{1}^{2} 3 - x - \frac{2}{x} dx = \left(3x - \frac{x^{2}}{2} - 2\ln|x| \right) \Big|_{1}^{2}$$

$$= \left(3 \cdot 2 - \frac{2^{2}}{2} - 2\ln 2 \right) - \left(3 \cdot 1 - \frac{1^{2}}{2} - 2\ln 1 \right) = \frac{3}{2} - 2\ln 2 \approx 0.1137.$$

$$P \approx \frac{0.1137}{1} \approx 0.1137.$$

4.3 Ответ

Вероятность того, что сумма наудачу выбранных двух чисел из промежутка [1, 2] меньше 3, а их произведение больше 2 равна ≈ 0.1137 .

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. <u>ИТМО ТВ 2024-25 Google Диск</u>
- 2. И. А. Лимар Теория вероятностей и математическая статистика pre- α version.