

Contents

- > 0... Software & Bibliography
- > 1... Introduction to Bayesian Inference
- > 2... Markov Chain Monte Carlo
- > 5... The normal linear model
 - > The conjugate case
 - > The Gibbs Sampler
 - > Using the arm package
 - > Using the MCMCpack
- **≻** 6... R2WinBUGS
- > 7... Variable Selection Using BAS

@ 2014, I. Ntzoufras @ Dep of Statistics, Athens University of Economics and Business

O... Bibliography R, WinBUGS and Related Software

Stand Alone MCMC programs and R

- WINBUGS 1.4.3: http://www.mrc-bsu.cam.ac.uk/software/bugs/ [R2WinBUGS].
- OpenBUGS: http://www.openbugs.net/w/FrontPage
 [BRugs, R2WinBUGS].
- JAGS (Just Another Gibbs Sampler): http://mcmc-jags.sourceforge.net/ [rjags].
- > STAN: http://mc-stan.org/ [RStan].

(a) 2014, I. Nazaufras (a) Dop of Statistics, Athens University of Economics and Business

(

O... Bibliography R, WinBUGS and Related Software

R packages

- MCMCpack: model-specific Markov chain Monte Carlo (MCMC) algorithms for wide range of models. Regression models and GLMs, measurement models (item response theory and factor models), changepoint models.
- arm: Bayesian inference using lm, glm, mer and polr objects.
- MCMCglmm: for fitting Generalised Linear Mixed Models using MCMC methods.
- **BMA**, **BAS**, **BMS**: Bayesian model averaging and variable selection for regression and glms
- Mombf: model selection based on non-local priors.
- **BOA** & CODA: MCMC Convergence diagnostics.

For more details and packages see

http://cran.r-project.org/web/views/Bayesian.html

Ioannis Ntzoufras

O... Bibliography WinBUGS Books (1)

Ntzoufras, I. (2009). *Bayesian Modelling Using WinBUGS*. Wiley.

Book's web-site

http://stat-athens.aueb.gr/~jbn/winbugs_book

@ 2014, I. Ntzoufras @ Dep of Statistics, Athens University of Economics and Business

7

O... Bibliography WinBUGS Books (2)

Lunn D., Jackson C., Best N., Thomas A. and Spiegelhalter D.

(2012). The BUGS Book: A Practical Introduction to Bayesian

Analysis. Texts in Statistical Science, Chapman & Hall/CRC

@ 2014, I. Ntzoufras @ Dep of Statistics, Athens University of Economics and Business

0... Bibliography

Bayesian Data Analysis Books

- Gelman A., Carlin J.B., Sten H.S. and Rubin D.B. (2013). *Bayesian Data Analysis*. 3rd edition. London: Chapman and Hall.
- Carlin B. and Louis T. (2008). Bayesian Methods for Data Analysis. 3rd edition, London: Chapman and Hall.
- Christensen R., Johnson, W.O., Branscum A.J. and Hanson T.E. (2010). Bayesian Ideas and Data Analysis: An Introduction for Scientists and Statisticians. Chapman & Hall/CRC Texts in Statistical Science.
- Marin J.M. and Robert C. (2007). *Bayesian Core: A Practical Approach to Computational Bayesian Statistics*, Springer Texts in Statistics.
- Jackman, S. (2009). *Bayesian Analysis for the Social Sciences*, Wiley Series in Probability and Statistics, Wiley-Blackwell.
- ➤ Bolstad W.M. (2007). *Introduction to Bayesian Statistics*, 2nd Edition, Wiley-Blackwell.

0... Bibliography

Bayesian Modelling Books

- Books of P.D. Congdon:
 - 1. (2010). Applied Bayesian Hierarchical Methods. Chapman and Hall/CRC.
 - 2. (2007). Bayesian Statistical Modelling. 2nd Edition. Willey and Sons.
 - 3. (2003). Applied Bayesian Modelling. Wiley-Blackwell
 - 4. (2005). Bayesian Models for Categorical Data. Wiley-Blackwell.
- Gelman A. and Hill J. (2006). Data Analysis Using Regression and Multilevel/Hierarchical Models, Analytical Methods for Social Research, Cambridge University Press.
- Dey D., Ghosh S.K. and Mallick B.K. (2000). Generalized Linear Models: A Bayesian Perspective, Chapman & Hall/CRC Biostatistics Series, CRC Press.

@ 2014, I. Ntzoufras @ Dep of Statistics, Athens University of Economics and Business

1...Introduction to Bayesian Inference

1.1. The Bayesian Paradigm

1.2. Posterior distribution

@ 2014, I. Ntzoufras @ Dep of Statistics, Athens University of Economics and Business

11

1.1 The Bayesian Paradigm

The usual classical approach

- \triangleright is based on the likelihood function $f(y|\theta)$
- $\triangleright \theta$ parameter vector => unknown parameters that we wish to estimate
- ightharpoonup Estimation of heta is achieved via some estimators with some good statistical properties such as unbiasness
- Usually we obtain "good" estimators by maximising the likelihood function (maximum likelihood estimators or MLEs)
- EXAMPLE: for Y_i~N(μ,σ²) we estimate μ using the sample mean given by $\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

@ 2014, I. Ntzoufras @ Dep of Statistics, Athens University of Economics and Business

The Bayesian approach

Ladies and Gentlemen I present you

THE POSTERIOR DISTRIBUTION

 $f(\boldsymbol{\theta}|\mathbf{y})$

@ 2014, I. Ntzoufras @ Dep of Statistics, Athens
University of Economics and Business

13

The Bayesian approach

- Assumes that the parameters are random variables and not fixed unknowns.
- Specifies the prior distribution $f(\theta)$
- ▶Inference is based on the posterior distribution $f(\theta|y)$ which combines information coming from both the prior distribution and the likelihood (i.e. the data)

@ 2014, I. Ntzoufras @ Dep of Statistics, Athens University of Economics and Business

The Bayesian approach

Advantages

- ➤ Pure probability based approach
- ➤ Can incorporate information coming from experts or from previous studies (meta-analysis) via the prior.

Disadvantages

- ➤ Subjectivity (via the prior)
- Difficulties in computing or interpreting the posterior distribution

@ 2014, I. Ntzoufras @ Dep of Statistics, Athens University of Economics and Business

15

The Bayesian approach

Posterior distribution is calculated using BAYES THEOREM

$$f(\mathbf{\theta} | \mathbf{y}) = \frac{f(\mathbf{\theta}, \mathbf{y})}{f(\mathbf{y})} = \frac{f(\mathbf{y} | \mathbf{\theta}) f(\mathbf{\theta})}{f(\mathbf{y})}$$

$$\propto f(\mathbf{y}|\mathbf{\theta})f(\mathbf{\theta})$$

@ 2014, I. Ntzoufras @ Dep of Statistics, Athens University of Economics and Business

A simple example: Posterior distribution of the mean of the normal distribution

- $Y_i \sim N(\mu, \sigma^2)$ 1. Data/Likelihood: σ^2 here is assumed to be known and constant
- Prior: $\mu \sim N(\mu_0, \sigma_0^2)$ 2.
- $f(\mathbf{\theta} \mid \mathbf{y}) = N \left(w\overline{y} + (1 w)\mu_0, \ w \frac{\sigma^2}{n} \right)$ $w = \frac{\sigma_0^2}{\sigma_0^2 + \sigma^2/n}$ 3. Posterior:

@ 2014, I. Ntzoufras @ Dep of Statistics, Athens

17

1.2. Posterior distribution

Analytical Calculation of the posterior distribution is sometimes difficult

- ▶1970s: Conjugate priors resulting in posteriors of the same type (and known form)
- ▶ 1980s: Asymptotic approximations of the posterior
- ▶1990s: Obtaining random samples from the posterior using Markov Chain Monte Carlo (MCMC) methods.

@ 2014, I. Ntzoufras @ Dep of Statistics, Athens University of Economics and Business

2. Markov Chain Monte Carlo (MCMC) Methods

Introduction

2.1. Metropolis-Hastings Algorithm

2.2. Gibbs Sampling

@ 2014, I. Ntzoufras @ Dep of Statistics, Athens University of Economics and Business

19

2. Markov Chain Monte Carlo (MCMC) Methods

Existed in the past in physics

- ▶ 1954 Metropolis *et al.* (Metropolis Algorithm)
- ➤ 1970 Hastings (Metropolis-Hastings Algorithm)
- ▶1984 Geman and Geman (Gibbs Sampling)
- ➤ 1990 Smith *et al.* (Implementation of MCMC methods in Bayesian problems)
- ▶1995 Green (Reversible Jump MCMC)

@ 2014, I. Ntzoufras @ Dep of Statistics, Athens University of Economics and Business

2. Markov Chain Monte Carlo (MCMC) Methods

What is the idea:

Since we cannot analytically calculate the posterior distribution then we generate a random sample from this distribution and estimate the posterior

- Describe the posterior using posterior summaries estimated by the generated sample (e.g. posterior mean or variance)
- > Plot marginal posteriors
- Estimate posterior dependencies using sample correlations etc.

@ 2014, I. Ntzoufras @ Dep of Statistics, Athens University of Economics and Business

21

2. Markov Chain Monte Carlo (MCMC) Methods

The logic:

We construct a Markov chain which has a stationary distribution the posterior distribution of interest

Every iteration (step) of the algorithm depends only on the previous one.

We use this chain to "generate" a sample from the stationary (target) distribution

@ 2014, I. Ntzoufras @ Dep of Statistics, Athens University of Economics and Business

2. Markov Chain Monte Carlo (MCMC) Methods

The procedure

- We specify some arbitrary initial values $\theta^{(0)}$ for the parameters θ
- For t=1,2, ..., T we generate random values $\theta^{(t)}$ according to our algorithm
- When the chain has converged then we have values from the stationary distribution
- We eliminate the initial K values to avoid any possible effect due to the arbitrary selection of initial values. (*Burn-in* period)

@ 2014, I. Ntzoufras @ Dep of Statistics, Athens

23

2. Markov Chain Monte Carlo (MCMC) Methods

Terminology

- ▶ Initial values: Starting values $\theta^{(0)}$ of the parameter vector θ . They are used to initialize the algorithm.
- Iteration: Refers to one iteration of the algorithmto one observation of the generated sample
- ➤ Burn—in Period: The period (and the number of iterations) until the algorithm stabilizes and starts to give random values from the posterior distribution

@ 2014, I. Ntzoufras @ Dep of Statistics, Athens University of Economics and Business

2. Markov Chain Monte Carlo (MCMC) Methods

Terminology (2)

- ➤ Convergence: When the chain is giving values from the stationary (target) distribution
- ➤ Convergence diagnostics: Tests to assure convergence
- MCMC output: The simulated sample

@ 2014, I. Ntzoufras @ Dep of Statistics, Athens University of Economics and Business

25

2. Markov Chain Monte Carlo (MCMC) Methods

Terminology (3)

- MCMC algorithms are based on Markov chains
 - => the generated sample is not IID
 - => i.e. there is *autocorrelation* between the subsequently generated values (as in time series data)
- We are interested to eliminate this autocorrelation
 - 1. We monitor autocorrelations using ACF plots
 - 2. If there are significant ACs of order L
 - => we keep 1 iteration every L
- **Thin**: is the number of iterations we eliminate in order to keep one iteration.

Thinning can be also used to save storing space.

2. Markov Chain Monte Carlo (MCMC) Methods

ALGORITHMS

- ► METROPOLIS-HASTINGS ALGORITHM
- ➤ GIBBS SAMPLING
- MANY OTHERS MORE ADVANCED (too much for this sort course)

@ 2014, I. Ntzoufras @ Dep of Statistics, Athens University of Economics and Business

27

2.1. Metropolis-Hastings Algorithm

- ➤ If we are in t iteration of the algorithm => set $\theta^{cur} = \theta^{(t-1)}$ i.e. the current values of θ .
- Senerate a new proposed (or candidate) values θ^{prop} from a proposal distribution $q(\theta^{prop}|\theta^{cur})$.
- Calculate $a = \min \left\{ 1, \frac{f(\boldsymbol{\theta}^{prop} \mid \boldsymbol{y})q(\boldsymbol{\theta}^{cur} \mid \boldsymbol{\theta}^{prop})}{f(\boldsymbol{\theta}^{cur} \mid \boldsymbol{y})q(\boldsymbol{\theta}^{prop} \mid \boldsymbol{\theta}^{cur})} \right\}$
- Set $\theta^{(t)} = \theta^{prop}$ with probability α kal $\theta^{(t)} = \theta^{cur}$ with probability $(1-\alpha)$

2.1. Metropolis-Hastings Algorithm

 \triangleright Note that for the calculation of α we do not need to know the normalizing constant since

$$a = \min \left\{ 1, \frac{f(\boldsymbol{\theta}^{prop} \mid \boldsymbol{y})q(\boldsymbol{\theta}^{cur} \mid \boldsymbol{\theta}^{prop})}{f(\boldsymbol{\theta}^{cur} \mid \boldsymbol{y})q(\boldsymbol{\theta}^{prop} \mid \boldsymbol{\theta}^{cur})} \right\}$$

$$= \min \left\{ 1, \frac{\left\{ f(\boldsymbol{y} \mid \boldsymbol{\theta}^{prop})f(\boldsymbol{\theta}^{prop}) / f(\boldsymbol{y}) \right\} q(\boldsymbol{\theta}^{cur} \mid \boldsymbol{\theta}^{prop})}{\left\{ f(\boldsymbol{y} \mid \boldsymbol{\theta}^{cur})f(\boldsymbol{\theta}^{cur}) / f(\boldsymbol{y}) \right\} q(\boldsymbol{\theta}^{prop} \mid \boldsymbol{\theta}^{cur})} \right\}$$

$$= \min \left\{ 1, \frac{f(\boldsymbol{y} \mid \boldsymbol{\theta}^{prop})f(\boldsymbol{\theta}^{prop})q(\boldsymbol{\theta}^{cur} \mid \boldsymbol{\theta}^{prop})}{f(\boldsymbol{y} \mid \boldsymbol{\theta}^{cur})f(\boldsymbol{\theta}^{cur})q(\boldsymbol{\theta}^{prop} \mid \boldsymbol{\theta}^{cur})} \right\}$$

2.1. Metropolis-Hastings Algorithm

 \triangleright Note that for the calculation of α we do not need to know the normalizing constant since

$$a = \min \left\{ 1, \frac{f(\mathbf{y} | \boldsymbol{\theta}^{prop}) f(\boldsymbol{\theta}^{prop}) q(\boldsymbol{\theta}^{cur} | \boldsymbol{\theta}^{prop})}{f(\mathbf{y} | \boldsymbol{\theta}^{cur}) f(\boldsymbol{\theta}^{cur}) q(\boldsymbol{\theta}^{prop} | \boldsymbol{\theta}^{cur})} \right\}$$

 α depends on

- > The likelihood
- ➤ The prior
- ➤ The proposal

@ . Un

2.1. Metropolis-Hastings Algorithm

Random walk Metropolis

Usual choice for the proposal:

$$q(\boldsymbol{\theta}^{prop}|\ \boldsymbol{\theta}^{cur}) = N(\ \boldsymbol{\theta}^{cur},\ c^2).$$

- We propose a new value θ^{prop} with mean equal to the current value of the chain and variance controlled by c^2 .
- c² is also called tuning parameter since it affects the convergence of the chain and must be tuned appropriately.
- > The acceptance probability is simplified to

$$a = \min \left\{ 1, \frac{f(\boldsymbol{\theta}^{prop} \mid \boldsymbol{y})}{f(\boldsymbol{\theta}^{cur} \mid \boldsymbol{y})} \right\} = \min \left\{ 1, \frac{f(\boldsymbol{y} \mid \boldsymbol{\theta}^{prop}) f(\boldsymbol{\theta}^{prop})}{f(\boldsymbol{y} \mid \boldsymbol{\theta}^{cur}) f(\boldsymbol{\theta}^{cur})} \right\}$$

due to the symmetry of the proposal

2.1. Metropolis-Hastings Algorithm

Random walk Metropolis

Tuning of c²

It affects the convergence of the chain and must be tuned appropriately.

- Small values make the chain to move slowly
 - => Propose values very close to the current values
 - => accept them with high probability
 - => High autocorrelations
- Large values make the chain to move less but with bigger moves
 - => Propose values away from the current values
 - => reject them with high probability
 - => The chain may stack to the same set of values for a long time
 - => High autocorrelations

2.1. Metropolis-Hastings Algorithm

Random walk Metropolis

Tuning of c² – Optimal acceptance

- Roberts et al. (1997), Neal and Roberts (2008)
 - > 23% for multidimensional problems
 - > 45% for univariate cases
- \triangleright Any choice of c^2 from 20–40% should be fine "there is little to be gained by fine tuning of acceptance rates"

(Roberts and Rosental, 2001)

2.2. Gibbs Sampling

- If we are in titeration of the algorithm
 - => set $\theta^{cur}=\theta^{(t-1)}$ i.e. the current values of θ .

$$\boldsymbol{\theta}^{cur} = (\theta_1^{cur}, \theta_2^{cur}, \dots, \theta_p^{cur})$$

- Senerate θ_1^{new} from $f(\theta_1|\theta_2^{cur},...,\theta_p^{cur},y)$ Senerate θ_2^{new} from $f(\theta_2|\theta_1^{new},\theta_3^{cur},...,\theta_p^{cur},y)$
- ► Generate θ_j^{new} from $f(\theta_j|\theta_l^{new},...,\theta_{j-l}^{new},\theta_{j+l}^{cur},...,\theta_p^{cur},y)$
- Senerate θ_p^{new} from $f(\theta_p|\theta_l^{new},...,\theta_{p-l}^{new},y)$
- \searrow Set $\theta(t) = \theta$ new @ 2014, I. Ntzoufras @ Dep of Statistics, Athens University of Economics and Business

2.2. Gibbs Sampling

 $f(\theta_j|\theta_1,...,\theta_{j-1},\theta_{j+1},...,\theta_p,\mathbf{y})$

- ▶ is called the full conditional of the posterior distribution
- \triangleright it is frequently denoted by $f(\theta_i|\bullet)$ or $f(\theta_i|rest)$

@ 2014, I. Ntzoufras @ Dep of Statistics, Athens University of Economics and Business

35

2.2. Gibbs Sampling

Differences with Metropolis-Hastings algorithm

- $\triangleright \theta^{(t-1)} \neq \theta^{(t)}$ A new set of values is always generated
- The Gibbs sampler is a special case of MH with proposal $q()=f(\theta_i|\bullet)$
- ➤ Every time we update one parameter at a time (or a block of parameters)

@ 2014, I. Ntzoufras @ Dep of Statistics, Athens University of Economics and Business

2.2. Gibbs Sampling

 $f(\theta_i|\bullet)$ may be unknown

- ➤ Use adaptive rejection sampling for log-convave distributions (Gilks & Wild, 1992)
- For generalized linear models (GLMs), posterior distributions are log-concave (Dellaportas & Smith, 1993)
- ➤ This is the main approach used in WinBUGS
- Metropolis steps for the unknown conditionals can be used

@ 2014, I. Ntzoufras @ Dep of Statistics, Athens University of Economics and Business

37

2.2. Gibbs Sampling

Advantages

- ➤ Simple to implement
- ➤ No tuning automatic

Disadvantages

- ➤ Need to calculate conditional posteriors
- ➤ Some conditional posteriors may not be available
- ➤ No flexibility if high autocorrelations exist

@ 2014, I. Ntzoufras @ Dep of Statistics, Athens University of Economics and Business

2.2. Gibbs Sampling

Gibbs sampling for a Normal regression model

$$Y_i \sim N(\mu_i, \sigma^2)$$
 for $i=1,2,...,n$
 $\mu_i = \alpha + \beta X_i$
 $\boldsymbol{\theta} = (\alpha, \beta, \sigma^2)^T$

> PRIORS:

$$f(\boldsymbol{\theta}) = f(\alpha, \beta, \sigma^2) = f(\alpha) f(\beta) f(\sigma^2)$$

- $\triangleright f(\alpha) \sim Normal(\mu_{\alpha}, \sigma_{\alpha}^{2})$
- $\triangleright f(\beta) \sim Normal(\mu_{\beta}, \sigma_{\beta}^2)$
- \triangleright $f(\sigma^2) \sim Inverse Gamma(\gamma, \delta)$ $=> f(\tau) = Gamma(\gamma, \delta) \text{ for } \tau = 1/\sigma^2$

Gibbs Sampling for normal regression

$$\beta \mid \alpha, \sigma^{2}, \mathbf{y} \sim N \left(w_{2} \frac{\sum_{i=1}^{n} x_{i} y_{i} - a n \overline{x}}{\sum_{i=1}^{n} x_{i}^{2}} + (1 - w_{2}) \mu_{\beta}, w_{2} \frac{\sigma^{2}}{\sum_{i=1}^{n} x_{i}^{2}} \right)$$

$$w_1 = \frac{\sigma_{\alpha}^2}{\sigma_{\alpha}^2 + \sigma^2 / n} \qquad w_2 = \frac{\sigma_{\beta}^2}{\sigma_{\beta}^2 + \sigma^2 / \sum_{i=1}^n x_i^2}$$

@ 2014, I. Ntzoufras @ Dep of Statistics, Athens University of Economics and Business

Gibbs Sampling for normal regression

Full Conditional Posteriors

$$\sigma^2 \mid \alpha, \beta, y \sim \text{Inverse Gamma} \left(\frac{n}{2} + \gamma, \frac{1}{2} \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2 + \delta \right)$$

@ 2014, I. Ntzoufras @ Dep of Statistics, Athens University of Economics and Business