

Less is More with Intelligent Packet Capture RANDY CALDEJON

FLOCON 2020

Objectives

- Consider merits of streaming analytics
- Expose to advanced open source tools
- Encourage to experiment with OpenArgus

Streaming Analytics at the Edge

- Increase speed
- Reduce bandwidth
- Local Resources

DragonFly Design Goals

Machine Learning

Analyzes data as it arrives

Incremental Updates

Receive updates before the flow is complete

Sustained Performance

Maintains 20Gbps+,

Single Node Architecture

High-performance without a cluster

Bolt-On Mindset

Integrate seamlessly with other security tools

A Practical Application of DragonFly

PCAP or it didn't happen.

Full Packet Capture is Ground Truth; but...

Typical Packet Capture Workflow: Retrospective

Intelligent Packet Capture

Intelligent Packet Capture: Real-Time

Intelligent PCAP

Using Machine Learning to Capture Packets with Forensic Value

Ground truth - Full packet capture has long been viewed as the "ground truth" for activity on the network, allowing analysts to identify the source of security incidents.

Expensive - Despite its value, full packet capture is not used to its fullest extent because lengthy retention periods are cost prohibitive and retention only shrinks as bandwidth utilization increases.

Alternatives Lack Payloads - Though valuable for portions of the security workflow, alternatives to PCAP such as Flow, and Application Metadata cannot provide the "ground truth" payload for irregular traffic.

Combine forces - Intelligent packet capture combined with augmented flow provides a powerful combination that supports a data friendly log format plus the full packets for anomalous traffic.

Intelligent Packet Capture

uses threat intelligence, advanced analytics, and Machine Learning to decide in near real-time what to record.

Intelligent PCAP Performance Requirements

Intelligent PCAP Open Source Framework

TCPDUMP& LIBPCAP

tcpdump -i eth0 -w /cache/pcap-%m-%d-%H-%M-%S \
-W 100 -G 300 -C 1000

eBPF for Filtering

eBPF Map

```
struct bpf map def SEC("maps") watchlist = {
     .type = BPF MAP TYPE PERCPU HASH,
     .key size = sizeof(u32), /* ipv4 address */
     .value size = sizeof(u64), /* counter/timeout */
     .max entries = 100000,
     .map flags = BPF F NO PREALLOC,
```


Mlpack for training

mlpack splitting data

1

```
/usr/local/bin/mlpack preprocess split
    --input file data/$filename.data.csv
    --input labels file data/$filename.labels.csv
    --training file data/$filename.train.csv
    --training labels file data/$filename.train.labels.csv
    --test file data/$filename.test.csv
    --test labels file data/$filename.test.labels.csv
    --test ratio 0.3
    --verbose
```


mlpack generating model

2

```
/usr/local/bin/mlpack_random_forest
    --training_file data/$filename.data.csv
    --labels_file data/$filename.labels.csv
    --num_trees 10
    --minimum_leaf_size 3
    --print_training_accuracy
    --output_model_file model/$filename.eval-model.bin
    --verbose
```


mlpack testing model

3

```
/usr/local/bin/mlpack_random_forest
--input_model_file model/$filename.eval-model.bin \
--test_file data/$filename.test.csv \
--test_labels_file data/$filename.test.labels.csv \
--probabilities_file probs.csv \
--verbose
```


Version 2.0

- Scalable
- Lightweight
- Flexible
- Extensible

DragonFly MLE

Fast - C/C++

DragonFly Engine

Lightweight - Small Library

Scriptable - Embedded LUA JIT

Easy - Arduino Programming Model

DragonFly Scriptable Analyzers

```
function M:setup()
   model = config['module.model']
   rf = RandomForest.load(model)
end
function M:loop (event)
   rf:classify (event)
end
```


DragonFly Scriptable Analyzers

```
function M:dns (event)
    rf:classify (event)
end
function M:tls (event)
    rf:classify (event)
end
```


DragonFly Plug-ins

mlpack eBPF iptree Redis cuckoo filter

argus

Argus

argus

ArgusReal-Time Flow Meter

100+ Features

Intelligent PCAP with ram

- Based on Argus client (library)
- Integrated with DragonFly (library)
- Able to run an instance per core

Intelligent PCAP with ram

raml: DGA Analyzer

```
function M:loop (event)
    local v = features (event.domain,
event.ttl)
    score = rf:classify (v)
    return score
end
```


raml: Threat Feed Analyzer

```
function M:setup()
    file = config['ioc.filename']
    iplist = iptree(file)
end
function M:loop (event)
    local daddr = event['daddr']
    match = iplist.lookup (daddr)
    return match
end
```


Intelligent PCAP Solutions

LESSONS LEARNED

Performance

Next Steps...

- Complete POCs
- Publish to GitHub
 - https://github.com/counterflow-ai/dragonfly2
- Merge raml with Argus
 - https://openargus.org/
- Explore additional use cases...

Streaming Analytics Use Cases

- Threat Intelligence Triage
- Encrypted Traffic Analysis
- Predictive Fault Detection

Questions?

RANDY CALDEJON

rc@counterflowai.com

https://github.com/counterflow-ai/dragonfly2