CARLINGFORD HIGH SCHOOL

DEPARTMENT OF MATHEMATICS

Year 10 5.1 Mathematics

Term 3 Test 2017

Name :	Time allowed: 55 minutes
--------	--------------------------

Class: 10M5.1 Teacher: Mr GonG

Instructions:

- All necessary working should be shown in the spaces provided.
- Marks will not be awarded for careless or badly arranged work.
- Board approved calculators may be used.
- Complete the examination in blue or black pen.

	Algebra	Pythagoras	Trigonometry	Indices	Total
Mark	/28	/ 9	/23	/2.4	/84-

Al	gebra (28 marks) Show wo	rki	ng where necessary	
1.	Convert 'twice the sum of x and y into an algebraic expression. [1]	7.	Simplify $16xy - 4x - y + 2yx$.	[2]
	$\mathbf{A} x+y \qquad \qquad \mathbf{B} 2x+y$			
	C $2(x+y)$ D $x+2y$			
2.	Find an algebraic expression for the area of a square of side $4a$. [1]	8.	Simplify $-4x \times (-3y)$.	[2]
	A $4a^2$ B $16a$			
	C 8a D $16a^2$			
3.	To find triple the sum of two numbers, which is the correct order? [1]	9.	Simplify – $9uv \times (-7vw)$.	[2]
	A multiply by 3 and then add			
	B divide by 3 and then add			
	C add and then multiply by 3			
	D add and then divide by 3			
4.	How many minutes are there in x hours? [1]	10.	Simplify $36ab \div (-4b)$.	[2]
	A $x + 60$ B $\frac{x}{60}$			
	C 60 D 60x			
5.	Simplify $3x - 5y - 2x + 8y$. [1]	11.	Simplify $\frac{-15bc}{-25ac}$.	[2]
	A $x - 13y$ B $x + 3y$			
	C $5x + 3y$ D $-5x - 13y$			

[2]

12. Find a simplified algebraic expression for the area of this rectangle. [2]

13.	Is each equation true or false? (Justify)

a).
$$5(3a-1) = 15a-1$$

[2]

[2]

b).
$$-4(3x+2) = -12x - 8$$

14. Expand and simplify 2(5m-1) - (m+3).

[2]

15. Factorise each expression.

a).
$$8a - 12b$$

[1]

b).
$$8x^2 - 28xy$$

Pythagoras (9 marks) Show working where necessary

1. Paul leans a ladder against a 8 m high wall so that it reaches the top of it. He places the ladder 1.9 m from the base of the wall. Which is the correct diagram for this situation? Select A, B or C.

[1]

A

В

C

2. Find, correct to 2 decimal places, the length of the ladder in question 1. [Hint: $c^2 = a^2 + b^2$] [2]

3. Find the length of the diagonal in the rectangle and square correct to the nearest whole number. [4]

a).

b).

4. Find, correct to 1 decimal place, the length of the longest umbrella that can fit inside a suitcase measuring 1.5 m long & 0.6 m wide. [2]

Trigonometry (23 marks) Show working where necessary

1. In a right-angled triangle, what is the hypotenuse?

[1]

A the shortest side

the side opposite the marked angle

- C the side opposite the right angle
- **D** the side adjacent to the marked angle
- 2. Which phrase describes the side a in $\triangle ABC$?

[1]

A opposite the right angle

 \mathbf{B} opposite angle A

C adjacent to angle A

D opposite the hypotenuse

3. For $\triangle ABC$, find the value of $\cos B$.

- $\mathbf{A} = \frac{12}{13}$
- $\mathbf{B} = \frac{5}{12}$
- $C = \frac{5}{13}$
- $D = \frac{12}{5}$

4. Evaluate 6.4tan36° correct to 2 decimal places.

[1]

- **A** 4.64
- **B** 46.49
- **C** 12.56
- **D** 4.65
- 5. For this triangle, which side is adjacent to the marked angle?

[1]

- **A** 20
- **B** 16
- **C** 12
- **D** 12 or 16

6. Find the value of each pronumeral, correct to 2 decimal places.

[4]

a).

b).

9. Find the value of p in the triangle below, correct to 1 decimal place.

10. Find the value of θ in the triangle below, correct to the nearest degree

11. Find the angle of elevation when looking up at a 36 m high hill from a point on the ground that is 18 m from the foot of the hill, to the nearest degree.

[2]

12.	Write each compass bearing as a three-figure bearia). NE b).	[2]
13.	Steven charted a yacht from a port and then sailed How far is he east of the port, correct to 2 decimal	2]

Inc	dices	(24 marks)	Show working	ng whe	ere necessary	
1.	Simplif	$y 4^2 \times 4^5$.				[1]
	A 4 ¹⁰			В	16 ¹⁰	
	$C 4^7$			D	16 ⁷	
2.	Simplif	$(y(3^3)^2)$.				[1]
	A 3 ⁵			В	27 ⁵	
	$C = 3^6$			D	27 ²	
3.	Write $\frac{2}{x}$	with a negative	e index			[1]
	A 32x	ç-5		В	$5x^{-2}$	
	$\mathbf{C} = 2x^{-1}$	- 5		D	$25x^{-5}$	
4.	When n	nultiplying terms	with the same base, t	he indices	s are ?	[1]
	A add	led		В	subtracted	
	C mu	ltiplied		D	divided	
5.	Write 3	2 724 correct to 2	2 significant figures		***************************************	[1]
	A 32	000		В	33	
	C 32			D	33 000	
6.	Simplif	$(y(n^3)^7)$.	44004		,	[1]
7.	Simplif	fy $\left(\frac{m^2}{n}\right)^4$.				[2]
8.	Simplif	fy 4 <i>x</i> °.			, , , , , , , , , , , , , , , , , , ,	[1]
9.	Simplif	fy $\frac{1}{3}x^{-5}$.	,,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		1997	[2]

10.	Simplify $(2a^4)^2 \times 6a^o$.		[2]
11.	Round each number to 2 significant figures.		[2]
	a). 516 670	b). 0.003 277 6	
12.	Write each number in scientific notation.	NAME OF THE OWNER OWNER OF THE OWNER OWNE	[4]
	a). 452 200	b). 0.000 724	
13.	List these numbers in descending order: 6×10^{-1}	$^{-4}$, 7.2×10^6 , 5.6×10^{-4} .	נח
			··•
14.	Evaluate each expression, correct to 2 significant	figures.	[4]
	a). $(8.35 \times 10^8) \times (1.08 \times 10^{-3})$	b). $\frac{12.65 \times 10^{14}}{8.4 \times 10^{-6}}$	
	•		

CARLINGFORD HIGH SCHOOL

DEPARTMENT OF MATHEMATICS

Year 10 5.1 Mathematics

Term 3 Test 2017

Name:	Answers	Time allowed: 55 minutes

Class: 10M5.1 Teacher: Mr GonG

Instructions:

- All necessary working should be shown in the spaces provided.
- Marks will not be awarded for careless or badly arranged work.
- Board approved calculators may be used.
- Complete the examination in blue or black pen.

	Algebra	Pythagoras	Trigonometry	Indices	Total
Mark	/28	/9	/23	/24	/84

(28 marks) Show working where necessary Algebra

7.

- Convert 'twice the sum of x and y into an algebraic expression. [1]
 - $\mathbf{A} \quad x + y$
- **B** 2x + y
- C 2(x+y)
- **D** x + 2y
- Simplify $-4x \times (-3y)$. [2]

[2]

[2]

[2]

[2]

Simplify 16xy - 4x - y + 2yx.

=18xy-4x-y

- Find an algebraic expression for the area of 2. a square of side 4a. [1]
 - $A 4a^2$
- **B** 16a

- C 8a
- $16a^{2}$
- To find triple the sum of two numbers, 3. which is the correct order? [1]
 - multiply by 3 and then add
 - divide by 3 and then add
 - add and then multiply by 3
 - add and then divide by 3

Simplify $-9uv \times (-7vw)$. 9.

= 12 xy

- How many minutes are there in x hours? [1] 4.
 - **A** x + 60
- $\mathbf{B} = \frac{x}{60}$

- **C** 60
- $\boxed{\mathbf{D}}$ 60x

10. Simplify $36ab \div (-4b)$.

- Simplify 3x 5y 2x + 8y.
 - A x-13y
- $\boxed{\mathbf{B}} x + 3y$

 - **C** 5x + 3y **D** -5x 13y
- Simplify $\frac{-15bc}{-25ac}$. 11.

[1]

- If a = -6 and b = 0.3, 6. evaluate 12 - 2a + b. [2] = 12 - 2(-6) + 0.3 / = 24.3 /
- Find a simplified algebraic expression for the 12. area of this rectangle. [2]

$$A = 9m \times 4n \checkmark$$

$$= 36mn \checkmark$$

13. Is each equation true or false? (Justify)

a).
$$5(3a-1)=15a-1$$
 [2]
 $15a-5 \neq 15a-1 \checkmark$
LHS $\neq RHS$
False \checkmark

[2]

b).
$$-4(3x+2) = -12x-8$$

 $-12x-8 = -12x-8$
LHS = RHS

14. Expand and simplify
$$2(5m-1) - (m+3)$$
.

= $10m - 2 - m - 3 \checkmark$

= $9m - 5 \checkmark$

15. Factorise each expression.

a).
$$8a-12b$$

$$= 4(2\alpha -3b) \checkmark$$
[1]

b).
$$8x^2 - 28xy$$
 [2] $= 4x(2x-7y)$

Pythagoras (9 marks) Show working where necessary

Paul leans a ladder against a 8 m high wall so that it reaches the top of it. 1. He places the ladder 1.9 m from the base of the wall. Which is the correct diagram for this situation? Select A, B or C.

[1]

[2]

A

В

C

Find, correct to 2 decimal places, the length of the ladder in question 1. [Hint: $c^2 = a^2 + b^2$] [2] 2.

$$\ell^{2} = 1.9^{2} + 8^{2} \checkmark$$

$$\ell = \sqrt{1.9^{2} + 8^{2}}$$

$$= 8.22 \text{ m}$$

Find the length of the diagonal in the rectangle and square correct to the nearest whole number. [4] 3.

a).

Find, correct to 1 decimal place, the length of the longest umbrella that can fit inside a suitcase 4. measuring 1.5 m long & 0.6 m wide.

$$\lambda^2 = 1.5^2 + 0.6^2 \checkmark$$

$$\ell = \sqrt{1.5^2 + 0.6^2}$$

 $0.6_m = 1.6_m$

Trigonometry (23 marks) Show working where necessary

In a right-angled triangle, what is the hypotenuse?

[1]

the shortest side

- the side opposite the right angle
- the side adjacent to the marked angle

the side opposite the marked angle

2. Which phrase describes the side a in $\triangle ABC$? [1]

opposite the right angle A

opposite angle A

adjacent to angle A \mathbf{C}

opposite the hypotenuse

3. For $\triangle ABC$, find the value of $\cos B$. [1]

- $\mathbf{D} = \frac{12}{5}$

Evaluate 6.4tan36° correct to 2 decimal places. 4.

[1]

- 4.64
- **B** 46.49
- 12.56
- 4.65
- For this triangle, which side is adjacent to the marked angle? 5.

[1]

- 20
- 12 \mathbf{C}
- 12 or 16

Find the value of each pronumeral, correct to 2 decimal places.

[4]

a).

b).

$$tanA = \frac{26}{32} \checkmark$$

$$A = \tan^{3}\left(\frac{26}{32}\right)$$

[2]

2

[2]

[2]

8. Find the value of
$$q$$
 in the triangle below, correct to 1 decimal place.

$$\sin 56^\circ = \frac{2}{14}$$

$$\cos 46^{\circ} = \frac{7.3}{P} \checkmark$$

$$P = \frac{7.3}{\cos 46^\circ}$$

10. Find the value of
$$\theta$$
 in the triangle below, correct to the nearest degree

$$\Theta = \cos^{-1}\left(\frac{7}{18}\right)$$

$$\tan \theta = \frac{36}{18} \checkmark$$

$$\theta = \tan^{-1}(\frac{36}{18})$$

$$\theta = \tan^{-1}(\frac{36}{18})$$
36m $10 = 63^{\circ}$

Write each compass bearing as a three-figure bearing (True bearing).

a). NE

b). SE

Steven charted a yacht from a port and then sailed 125° from north for 12 km. How far is he east of the port, correct to 2 decimal places?

[2]

$$\cos 35^{\circ} = \frac{x}{12}$$

$$x = 12 \times \cos 35^{\circ}$$

 $x = 9.83 \, \text{km} \cdot \sqrt{}$

In	dices (24 marks) Show working	whe	ere necessary	
1.	Simplify $4^2 \times 4^5$.	**************************************		[1]
	$A = 4^{10}$	В	16 ¹⁰	
	$\boxed{\mathbf{C}}$ 47	D	16 ⁷	
2.	Simplify $(3^3)^2$.			[1]
	$\mathbf{A} = 3^5$	В	27 ⁵	
	C 36	D	27 ²	
3.	Write $\frac{2}{x^5}$ with a negative index			[1]
	A $32x^{-5}$	В	$5x^{-2}$	*
	$C 2x^{-5}$	D	$25x^{-5}$	
4.	When multiplying terms with the same base, the	indices	s are ?	[1]
	A added	В	subtracted	
	C multiplied	D	divided	
5.	Write 32 724 correct to 2 significant figures			[1]
	A 32 000	В	33	
	C 32	D	33 000	
6.	Simplify $(n^3)^7$.		JAMA	[1]
	$=\eta^{21}$			
7.	Simplify $\left(\frac{m^2}{n}\right)^4 = \frac{m^8}{n^4}$			[2]
8.	Simplify $4x^0$. = $A \times 1$ = $A \times 1$			[1]
9.	Simplify $\frac{1}{3}x^{-5} = \frac{1}{3} \times \frac{1}{\chi^5}$ $= \frac{1}{3\chi^5}$			[2]
	3%			

10.	Simplify $(2a^4)^2 \times 6a^o$.	[2]
	= 408 x 6x 1 V	
	$= 24 a^8$	

11. Round each number to 2 significant figures.

12. Write each number in scientific notation.

a).
$$452200$$

= 4.522×10^5

b).
$$0.000724$$

$$= 7.24 \times 10^{-4}$$

13. List these numbers in descending order: 6×10^{-4} , 7.2×10^{6} , 5.6×10^{-4} .

14. Evaluate each expression, correct to 2 significant figures.

[4]

a).
$$(8.35 \times 10^8) \times (1.08 \times 10^{-3})$$

= $90,800$ \left\frac{1}{2} 90000

b).
$$\frac{12.65 \times 10^{14}}{8.4 \times 10^{-6}}$$

$$= 1.505952381 \times 10^{20} \checkmark$$

$$= 1.5 \times 10^{20} \checkmark$$