# 赛题: 股指期货高频交易



股指期货作为金融衍生品的核心工具,其高频预测与交易能力广泛应用于各类策略,如对冲,套利,择时等。在股票策略领域,可以利用其进行系统性风险动态对冲,基差管理,暴露优化等。

同时,股指期货的高频预测和交易是一项非常有挑战的任务。存在噪声大,信号弱,微观结构复杂,实时性要求高,成本敏感,模型容易过拟合等诸多问题。解决这些问题,将对各类策略的表现有显著的增益。

欢迎有能力的你加入信弘股指期货高频交易大赛!

# X ASSET MANAGEMENT

## 数据集说明



数据集: 比赛提供股指期货高频行情数据 (L2数据)

#### 数据存储方式

./train ./test 20220722 20241008 20220725 ... 20220726 20241129 ... 20240930

#### ./train/20220722

#### 数据说明

- 数据分为训练集和测试集,分别按照以交易日命名的文件夹存储;按照交易日区分样本内外;
- 每天的数据按照合约保存为多个csv文件,csv文件命名规则: 标的\_交割月\_交割月顺序\_是否主力(标记M为主力合约);
- 交割月顺序: L1-L4分别为近月/次月/次季月/远季月合约;

# 数据集说明



数据集: 行情数据示例

例 ./train/20220722/IC\_2208\_L1\_M.csv

|          | TRADINGTIME                | SYMBOL | OPENPRICE | LASTPRICE | HIGHPRICE | LOWPRICE | SETTLEPRICE | PRESETTLEPRICE | CLOSEPRICE | PRECLOSEPRICE | <br>CHANGERATIO | CONTINUESIGN | POSITIONCHANGE | AVERAGEPRICE | ORDERRATE | ORDERDIFF | AMPLITUDE |
|----------|----------------------------|--------|-----------|-----------|-----------|----------|-------------|----------------|------------|---------------|-----------------|--------------|----------------|--------------|-----------|-----------|-----------|
| 0        | 2022-07-22<br>09:29:00.400 | IC2208 | 6328.2    | 6328.2    | 6328.2    | 6328.2   | 0.0         | 6337.0         | 0.0        | 6310.2        | -0.0014         | ICL1         | 0.0            | 6328.200     | 0.1852    | 20.0      | 0.0000    |
| 1        | 2022-07-22<br>09:30:00.400 | IC2208 | 6328.2    | 6327.2    | 6329.0    | 6325.0   | 0.0         | 6337.0         | 0.0        | 6310.2        | -0.0015         | ICL1         | -17.0          | 6328.160     | 0.5942    | 41.0      | 0.0006    |
| 2        | 2022-07-22<br>09:30:00.900 | IC2208 | 6328.2    | 6327.4    | 6329.0    | 6325.0   | 0.0         | 6337.0         | 0.0        | 6310.2        | -0.0015         | ICL1         | -20.0          | 6328.126     | -0.3889   | -14.0     | 0.0006    |
| 3        | 2022-07-22<br>09:30:01.400 | IC2208 | 6328.2    | 6327.0    | 6329.0    | 6325.0   | 0.0         | 6337.0         | 0.0        | 6310.2        | -0.0016         | ICL1         | -30.0          | 6327.992     | 0.6216    | 46.0      | 0.0006    |
| 4        | 2022-07-22<br>09:30:01.900 | IC2208 | 6328.2    | 6327.0    | 6329.0    | 6325.0   | 0.0         | 6337.0         | 0.0        | 6310.2        | -0.0016         | ICL1         | -34.0          | 6327.859     | 0.5506    | 49.0      | 0.0006    |
|          |                            |        |           |           |           |          |             |                |            |               |                 |              |                |              |           |           |           |
| 28043    | 2022-07-22<br>14:59:58.900 | IC2208 | 6328.2    | 6245.2    | 6347.0    | 6176.6   | 0.0         | 6337.0         | 0.0        | 6310.2        | -0.0145         | ICL1         | 1.0            | 6259.509     | 0.0000    | 0.0       | 0.0269    |
| 28044    | 2022-07-22<br>14:59:59.400 | IC2208 | 6328.2    | 6245.2    | 6347.0    | 6176.6   | 0.0         | 6337.0         | 0.0        | 6310.2        | -0.0145         | ICL1         | 0.0            | 6259.509     | -0.0435   | -1.0      | 0.0269    |
| 28045    | 2022-07-22<br>14:59:59.900 | IC2208 | 6328.2    | 6244.8    | 6347.0    | 6176.6   | 0.0         | 6337.0         | 0.0        | 6310.2        | -0.0145         | ICL1         | 1.0            | 6259.507     | -0.2381   | -5.0      | 0.0269    |
| 28046    | 2022-07-22<br>15:00:00.400 | IC2208 | 6328.2    | 6244.8    | 6347.0    | 6176.6   | 0.0         | 6337.0         | 6244.8     | 6310.2        | -0.0145         | ICL1         | 0.0            | 6259.507     | -0.2727   | -6.0      | 0.0269    |
| 28047    | 2022-07-22<br>15:29:23.900 | IC2208 | 6328.2    | 6244.8    | 6347.0    | 6176.6   | 6233.2      | 6337.0         | 6244.8     | 6310.2        | -0.0145         | ICL1         | 0.0            | 6259.507     | -0.2727   | -6.0      | 0.0269    |
| 28048 rd | ows × 56 columns           |        |           |           |           |          |             |                |            |               |                 |              |                |              |           |           |           |

- 1. I2行情数据包含交易时间戳,标识,盘口信息,价量数据等特征。数据类型包含datetime, str, int, float;
- 2. 具体的字段说明见"字段说明.csv"文档;
- 3. 数据集中不包含预先构造好的label, label需各参赛队自行构造;

# 交易规则说明



在测试期间,每个交易日内,每个可交易时间点上,对每个主力合约标的(IC, IF, IH, IM),可以在多或空方向上最多持仓1个单位。为简化交易规则,当仓位变化即进行开仓/平仓操作时,会使用主力合约上下一个Tick的对手方1档价格作为成交价。开仓/平仓操作的手续费皆按照0.23‰(万分之0.23)计算。每个交易日开收盘时仓位为须为0,如果收盘时仓位不为0,会在收盘时进行强制平仓。

#### 交易序列示例



# X ASSET MANAGEMENT

# 交易策略构建说明



各参赛队利用提供的股指期货行情数据构建交易策略,策略类型不限。策略目标是生成测试交易期间,每个交易日4种股指期货主力合约对应的全天仓位。各参赛队须提交策略代码,并保证策略可在测试环境正常运行。

#### 策略要求

- 1. 策略只生成每天的主力合约对应的仓位;
- 2. 策略生成的仓位文件命名需与./test文件夹下对应的行情文件名对齐;
- 3. 生成的仓位时间戳须与对应的行情时间戳对齐;
- 4. 每个时间戳上的合约仓位取值为[0,1,-1],分别对应空仓,持有一个单位的多头,持有一个单位的空头;仓位变化对应交易发生;
- 4. 每个交易日起始和结束时间戳上的仓位回测时置为0;
- 6. 策略生成仓位时,只能使用到当前时间戳为止的行情数据,向前最多可使用前一天的行情数据,可以使用到 其它合约的数据,包括全部主力/非主力合约;
- 策略可使用gpu,注意提交策略时在测试环境调试通过;
- 7. 当前./test文件夹在最终测试环节会被替换;
- 8.测试交易日定义为./test文件夹下第2个交易日起的全部交易日;
- 9.运行策略,保存结果至./positions文件夹;
- 10.比赛提供示例策略代码,供各参赛队提交任务参考。





## 结果提交格式示例

#### 行情数据格式

./test/20241009

### ./test/20241009/IC\_2410\_L1\_M.parquet

|                            | SYMBOL  | OPENPRICE | LASTPRICE | HIGHPRICE | LOWPRICE | SETTLEPRICE | PRESET |
|----------------------------|---------|-----------|-----------|-----------|----------|-------------|--------|
| TRADINGTIME                |         |           |           |           |          |             |        |
| 2024-10-09<br>09:29:00.000 | IC2410  | 6013.0    | 6013.0    | 6013.0    | 6013.0   | 0.0         |        |
| 2024-10-09<br>09:30:00.500 | IC2410  | 6013.0    | 6008.0    | 6016.0    | 6000.0   | 0.0         |        |
| 2024-10-09<br>09:30:01.000 | IC2410  | 6013.0    | 6000.8    | 6016.0    | 5993.0   | 0.0         |        |
| 2024-10-09<br>09:30:01.500 | IC2410  | 6013.0    | 5992.8    | 6016.0    | 5990.0   | 0.0         |        |
| 2024-10-09<br>09:30:02.000 | IC2410  | 6013.0    | 5990.0    | 6016.0    | 5985.8   | 0.0         |        |
|                            |         |           |           |           |          |             |        |
| 2024-10-09<br>14:59:58.500 | IC2410  | 6013.0    | 5792.2    | 6108.2    | 5690.0   | 0.0         |        |
| 2024-10-09<br>14:59:59.000 | IC2410  | 6013.0    | 5792.8    | 6108.2    | 5690.0   | 0.0         |        |
| 2024-10-09<br>14:59:59.500 | IC2410  | 6013.0    | 5792.8    | 6108.2    | 5690.0   | 0.0         |        |
| 2024-10-09<br>15:00:00.000 | IC2410  | 6013.0    | 5790.8    | 6108.2    | 5690.0   | 0.0         |        |
| 2024-10-09<br>15:26:37.000 | IC2410  | 6013.0    | 5790.8    | 6108.2    | 5690.0   | 5843.8      |        |
| 28556 rows × 53 (          | columns |           |           |           |          |             |        |

#### 对应的仓位保存格式

./position/20241009

IC\_2410\_L1\_M.csv IF\_2410\_L1\_M.csv IH\_2410\_L1\_M.csv IM\_2410\_L1\_M.csv

./positions/20241009/IC\_2410\_L1\_M.csv

|          | TRADINGTIME             | position |  |  |  |  |  |  |  |
|----------|-------------------------|----------|--|--|--|--|--|--|--|
| 0        | 2024-10-09 09:29:00.000 | 0        |  |  |  |  |  |  |  |
| 1        | 2024-10-09 09:30:00.500 | 0        |  |  |  |  |  |  |  |
| 2        | 2024-10-09 09:30:01.000 | 0        |  |  |  |  |  |  |  |
| 3        | 2024-10-09 09:30:01.500 | 0        |  |  |  |  |  |  |  |
| 4        | 2024-10-09 09:30:02.000 | 0        |  |  |  |  |  |  |  |
|          |                         |          |  |  |  |  |  |  |  |
| 28551    | 2024-10-09 14:59:58.500 | 0        |  |  |  |  |  |  |  |
| 28552    | 2024-10-09 14:59:59.000 | 0        |  |  |  |  |  |  |  |
| 28553    | 2024-10-09 14:59:59.500 | 0        |  |  |  |  |  |  |  |
| 28554    | 2024-10-09 15:00:00.000 | 0        |  |  |  |  |  |  |  |
| 28555    | 2024-10-09 15:26:37.000 | 0        |  |  |  |  |  |  |  |
| 28556 ro | 28556 rows × 2 columns  |          |  |  |  |  |  |  |  |

- 时间戳对齐
- position取[0,1,-1]

# 结果评估方式



运行./backtest.py文件对预测生成的仓位进行回测,最终使用**夏普比率**作为评估指标;

## 单笔交易的收益率

$$\operatorname{sign}_{i} = \begin{cases} +1, \\ -1 \\ \text{otherwise} \end{cases} = BTO$$

$$pnl_i = (P_{c,i} - P_{o,i}) \cdot sign_i$$

$$\mathrm{fee}_i = (P_{o,i} + P_{c,i}) \cdot \mathrm{FEE\_RATE}$$

$$\operatorname{net\_pnl}_i = \operatorname{pnl}_i - \operatorname{fee}_i$$

$$r_i = \frac{\operatorname{net\_pnl}_i}{P_{o,i}}$$

## 合约k日收益率

$$\operatorname{cum\_return}_k = \sum_{i=1}^{n} r_i$$

## d日收益率

$$R_d = \frac{1}{4} \sum_{j=1}^{1} r_{d,j}$$

## 夏普比率

Sharpe = 
$$\frac{\sqrt{N} \, \overline{R}}{\sigma_R}$$
 其中,N = 252

# 结果评估方式



在测试环境,使用python ./backtest.py 遍历行情和持仓进行回测,生成回测结果。回测结果包含交易明细和收益统计,及策略在回测期间的夏普比率。

## 交易明细./backtest/20241120/IF\_2412\_L1\_M.csv

|   | time_o              | action_o | price_o | time_c                  | action_c | price_c | sign | pnl   | fee      | net_pnl    | return    | cum_return |
|---|---------------------|----------|---------|-------------------------|----------|---------|------|-------|----------|------------|-----------|------------|
| 0 | 2024-11-20 10:36:05 | STO      | 3956.6  | 2024-11-20 11:03:07.500 | STC      | 3977.0  | -1   | -20.4 | 0.182473 | -20.582473 | -0.005202 | -0.005202  |
| 1 | 2024-11-20 11:03:08 | вто      | 3977.2  | 2024-11-20 15:00:00.000 | втс      | 3979.8  | 1    | 2.6   | 0.183011 | 2.416989   | 0.000608  | -0.004594  |

## 收益统计./backtest/all\_rets.csv

| n                                                                       |
|-------------------------------------------------------------------------|
| 6                                                                       |
| 0                                                                       |
| 6                                                                       |
| 3                                                                       |
| 5                                                                       |
| 2                                                                       |
| 3                                                                       |
| 0                                                                       |
| 5                                                                       |
| 6                                                                       |
| 8                                                                       |
| 5                                                                       |
| 2                                                                       |
| 3                                                                       |
| 2                                                                       |
| 5                                                                       |
| 9<br>4<br>7<br>6<br>9<br>3<br>2<br>1<br>6<br>9<br>8<br>8<br>8<br>2<br>9 |

## 最终结果

Backtest Result:

annual\_ret: 0.7200139970084014

sharpe: 4.117084561254175





#### 随机生成仓位的策略 strategy 2.py

```
def generate_signals(df):
    df = df.copy()
    # 随机生成[0, 1, -1]之间的数,取到0的概率是0.98,取到1的概率是0.01,取到-1的概率是0.01
    df['position'] = np.random.choice([0, 1, -1], size=len(df), p=[0.98, 0.01, 0.01])
    ## 注意仓位的时间戳和主力合约的时间戳要对齐!
    return df['position']
```



#### 回测结果

```
Backtest Result:
annual_ret: -1.5589714081981738
sharpe: -56.73633680000261
```

### 一个简单的趋势突破策略 strategy.py

```
def generate signals optimized(
   df: pd.DataFrame,
   window: int = 7200.
   ema period: int = 1080,
   vol_multiplier: float = 1.8,
   atr period: int = 240,
   stop_loss_mult: float = 1.0,
   take profit mult: float = 3.0,
   time_stop: int = 21600,
   use obi: bool = True,
   obi_threshold: float = 0.15,
   bid col: str = "BUYVOLUME01",
   ask_col: str = "SELLVOLUME01",
   high_col: str = "HIGHPRICE",
   low col: str = "LOWPRICE",
   close col: str = "LASTPRICE",
   vol_col: str = "TRADEVOLUME",
  -> pd.Series:
    """High frequency breakout strategy with trend/VWAP/OBI filters & ATR risk control.
   Returns
   pd.Series
       Position series aligned with *df* (1 | long, 1 | short, 0 | flat).
```



### 回测结果

Backtest Result:

annual\_ret: 0.7200139970084014

sharpe: 4.117084561254175

# 结果提交方式说明



- 在训练周期内,各参赛队在测试环境中运行各自的策略脚本,对当前的测试集生成最终仓位, 将策略脚本和对应生成仓位结果保存在各自根目录的 ./final\_submit文件夹下;
- 最终提交的 ./final\_submit 须包含:
  - 1.strategy.py 策略脚本
  - 2../positions 当前测试集生成仓位
  - 2.策略其它依赖项 (可选)
  - 3.必要的运行说明(可选)

# X ASSET MANAGEMENT

# 比赛提供的数据/代码



- future\_L2 行情数据
  - train 训练集行情数据
  - test 测试集行情数据
- becktest.py 回测脚本
- strategy.py 预测脚本 (交易策略) 示例
- 字段说明.csv 行情文件字段说明

以上内容会在比赛开始时(7月1日)发布

