Reidentyfikacja plam zabrudzeń

Jan Kwiatkowski, Alicja Turowska, Konrad Gieleta Kwiecień 2023

- Celem zadania jest stworzenie modelu służącego do reidentyfikacji plam zabrudzeń.
- Reidentyfikacja jest niezbędna w celu śledzenia poruszających się obiektów w sekwencji klatek.
- Reidentyfikację można sprowadzić do problemu znalezienia "najbliższego" innego zdjęcia.

- Reidentyfikacja plam zabrudzeń nie jest zbyt popularnym problemem, sama reidentyfikacja jest często poruszana w kontekście reidentyfikacji osób, gdzie do najczęściej wykorzystywanych metod należą konwolucyjne sieci neuronowe (CNN).
- Zaletą tych sieci jest automatyczna ekstrakcja cech obrazu, co odróżnia je od innych algorytmów rozpoznawania obrazu, które wymagają wiedzy eksperckiej z zakresu inżynierii cech.

Popularna funkcja kosztu: Triplet Loss

dostarczanie trójek wektorów osadzenia:

- zdjęcia będącego odniesieniem,
- zdjęcia "bliskiego",
- zdjęcia "dalekiego"

ZHENG, Zhedong; ZHENG, Liang; YANG, Yi. A discriminatively learned cnn embedding for person reidentification. *ACM transactions on multimedia computing, communications, and applications (TOMM)*, 2017, 14.1: 1-20.

Inne podejście do problemu reidentyfikacji:

- Sieć syjamska (model identyfikacyjny i weryfikacyjny)
- dla pary obrazów szkoleniowych przewiduje tożsamość (model identyfikacyjny),
 oraz to czy należą do tej samej tożsamości, czyli kategorii (model weryfikacyjny)

Zbiory publiczne

- TILDA:
- nie dotyczy samych plam, co wszelakich defektów tkanin.
- Fabric Stain Dataset:
- dwie kategorie: tkaniny bez defektów oraz tkaniny z plamami
- 466 zdjęć: 68 zdjęć tkanin bez zabrudzeń oraz 398 zdjęć tkanin z plamami atramentu, brudu, oraz oleju (bez podziału na podkategorie)
- rozdzielczości: 1488x1984 (305 zdjęć) oraz 1984x1488 (161 zdjęć)
- brak podziału na zbiór treningowy, walidacyjny i testowy

Przykładowe zdjęcia ze zbioru Fabric Stain Dataset

Zdjęcia tkanin bez defektów

Zdjęcia tkanin z plamami

Założenia projektu

• Zbiory:

- publiczny zbiór Fabric Stain Dataset,
- zbiór stworzony na potrzeby projektu,

• Modele:

- ResNet50 z funkcją kosztu triplet loss,
- VGG16
- EfficientNet B7

Resnet-50

- Z rodziny głębokich sieci konwolucyjnych Residual Neural Network, rozwiązującej problem zanikania gradientów,
- 16 bloków rezydualnych zawierających po 3 warstwy konwolucyjne, po których jest funkcja aktywacji, do danych wyjściowych bloku dodawane są oryginalne dane wejściowe,
- Charakterystyczne "wąskie gardło" (1 i 3 warstwa w bloku z jądrem 1x1),
- Przed blokami dodatkowa warstwa konwolucyjna oraz warstwa MaxPool (łącznie 50 warstw)

Resnet-50

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer		
conv1	112×112	7×7, 64, stride 2						
	56×56	3×3 max pool, stride 2						
conv2_x		$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$		
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$		
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$		
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $		
	1×1	average pool, 1000-d fc, softmax						
FLOPs		1.8×10^9	3.6×10^{9}	3.8×10^{9}	7.6×10^9	11.3×10 ⁹		

architektury sieci rodziny resnet

Resnet-50

Przykładowe użycia w problemie reidentyfikacji:

- Peng Wang, Bingliang Jiao, Lu Yang, Yifei Yang, Shizhou Zhang, Wei Wei, Yanning Zhang, Vehicle Re-Identification in Aerial Imagery: Dataset and Approach; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 460-469 - Model służący do reidentyfikacji samochodów oparty o resnet50.
- Zuozhuo Dai, Mingqiang Chen, Xiaodong Gu, Siyu Zhu, Ping Tan; Batch DropBlock Network for Person Re-Identification and Beyond; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 3691-3701 - dwugałęziowa sieć (Batch DropBlock), gdzie jedną z gałęzi jest konwencjonalny resnet-50

VGG16

- Należy do rodziny VGGNet.
- Sieć złożona z 13 warstw konwolucyjnych (+maxpooling) oraz 3 warstw wpełni połączonych.
- Po każdym bloku ilość filtrów o rozmiarze 3x3 jest zwiększana dwukrotnie, a wielkość map zmniejszana o połowę.
- Zastosowanie niewielkich filtrów we wszystkich warstwach umożliwia zmniejszenie liczby parametrów w sieci w porównaniu z większymi filtrami. Dodatkowo, zwiększona liczba filtrów w warstwach zwiększa nieliniowość sieci, co z kolei zwiększa jej głębokość w porównaniu z pojedynczym filtrem o większym rozmiarze.

VGGNet Architekury sieci

ConvNet Configuration										
Α	A-LRN	В	С	D	E					
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight					
layers	layers	layers	layers	layers	layers					
input (224 × 224 RGB image)										
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64					
	LRN	conv3-64	conv3-64	conv3-64	conv3-64					
maxpool										
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128					
		conv3-128	conv3-128	conv3-128	conv3-128					
maxpool										
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256					
			conv1-256	conv3-256	conv3-256					
					conv3-256					
maxpool										
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
			conv1-512	conv3-512	conv3-512					
					conv3-512					
2.512	2.512	max		2.512	2.512					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
			conv1-512	conv3-512	conv3-512					
					conv3-512					
maxpool										
FC-4096										
FC-4096										
FC-1000										
soft-max										

EfficientNet B7

- EfficientNet-B7 jest jednym z zaawansowanych modeli z rodziny sieci EfficientNet
- Rodzina ta składa się z skalowalnych, wydajnych konwolucyjnych sieci neuronowych.
- Sieci te są oparte na technice Compound Scaling, która równocześnie skaluje głębokość, szerokość i rozdzielczość sieci.
- EfficientNet-B7 składa się z wielu bloków MBConv, które zawierają konwolucje 1x1, konwolucje z przestrzeni grupowej (DWConv) oraz mechanizm uwagi Squeeze and Excitation (SE).
- W niektórych blokach MBConv wykorzystuje się połączenia typu skip, które łączą wyjście z wcześniejszą warstwą.
- Sieć używa także warstw normalizacji wsadowej (Batch Normalization) oraz funkcji aktywacji Swish.
- Na początku sieci znajduje się warstwa konwolucyjna 3x3 z 64 filtrami.
- Na końcu sieci stosuje się Global Average Pooling (GAP) do agregacji informacji na przestrzeń pojedynczego wektora.
- Warstwa gęsta (Dense) przekształca wektor cech w wartości prawdopodobieństw dla poszczególnych klas.

Architektura sieci z rodziny EfficientNet

Bibliografia

- https://www.getklap.com/blog/what-is-reidentification,
- https://datagen.tech/guides/computer-vision/resnet-50/,
- ZHENG, Zhedong; ZHENG, Liang; YANG, Yi. A discriminatively learned cnn embedding for person reidentification. *ACM transactions on multimedia computing, communications, and applications (TOMM)*, 2017, 14.1: 1-20.
- https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/
- https://www.researchgate.net/figure/The-network-architecture-of-EfficientNet-It-can-output-a-feature-map-with-deep-semantic_fig3_349299852/
- Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Proceedings of the 36th International Conference on Machine Learning (ICML 2019), 97, 6105–6114.