DSA5105 Principles of Machine Learning

Supervised Learning

Empirical Risk Minimization (ERM) The learning process aims to find a function $f \in \mathcal{H}$ that minimizes the empirical risk, $R_{emp}(f) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i))$, where $y_i = f^*(x_i)$.

Common Loss Function Mean squared error (MSE) for regression tasks: $L(y, \hat{y}) = \frac{1}{2}(y - \hat{y})^2$, cross-entropy loss for classification task: $L(y,p) = -\sum_i y_i \log(p_i)$, and huber loss for robust regression: $L_{\delta}(y,\hat{y}) = -\sum_i y_i \log(p_i)$ $\int \frac{1}{2} (y - \hat{y})^2$ $\delta |y - \hat{y}| - \frac{1}{2} \delta^2$ otherwise

Softmax Function For a multi-class classification problem with K classes: softmax $(z_i) = \frac{\exp(z_i)}{\sum_{i=1}^K \exp(z_i)}$

General Ordinary Least Squares Formula Consider $x \in \mathbb{R}^d$ and the new hypothesis space \mathcal{H}_M = $\left\{f: f(x) = \sum_{j=0}^{M-1} w_j \varphi_j(x)\right\} \quad \text{Each } \varphi_j: \mathbb{R}^d \to \mathbb{R} \text{ is called a basis function or feature map.}$

We can rewrite the ERM $\min_{w \in \mathbb{R}^M} \frac{1}{2N} \sum_{i=1}^N \left(\sum_{j=0}^{M-1} w_j \varphi_j(x_i) - y_i \right)^2$ into $\min_{w \in \mathbb{R}^M} \frac{1}{2N} \|\Phi w - y\|^2$. Solving by setting $\nabla R_{\text{emp}}(\hat{w}) = 0$, we have $\hat{w} = (\Phi^T \Phi)^{-1} \Phi^T y$, given invertible $\Phi^T \Phi$.

For cases where $\Phi^T\Phi$ is not invertible, the formula using the Moore-Penrose pseudoinverse is: $\hat{w}(u)=\Phi^\dagger y+$ $(I - \Phi^{\dagger}\Phi)u \quad u \in \mathbb{R}^M$

Regularization To prevent overfitting, regularization techniques add a penalty to the loss function: $\min_{w \in \mathbb{R}M} \ \frac{1}{2N} \|\Phi w - y\|^2. \quad \text{For ridge regression, minimizing the ERM we get} \ \hat{w} = \left(\Phi^\top \Phi + \lambda I_M\right)^{-1} \Phi^\top y \ \text{which}$ is always invertible for positive λ . Common regularization terms include Ridge(L2): $\lambda \sum_{i=1}^{p} w_i^2$ and Lasso(L1):

Lecture 2

Reformulation of Ridge Regression We rewrite the regularized least squares solution in another way:

$$\hat{w} = \left(\Phi^{\top}\Phi + \lambda I_{M}\right)^{-1}\Phi^{\top}y = \Phi^{\top}\left(\Phi\Phi^{\top} + \lambda I_{N}\right)^{-1}y$$

 $\hat{f}(x) = \sum_{i=1}^{N} \alpha_i \varphi(x_i)^\top \varphi(x) \ \alpha = (G + \lambda I_N)^{-1} y \quad \text{where} \quad G_{ij} = \varphi(x_i)^\top \varphi(x_j) \text{ is the gram matrix}$ $\mathbf{Mercer's \ Theorem \ and \ SPD \ Kernels \ Suppose \ k \ is \ a \ SPD \ kernel. \ Then, there \ exists \ a \ feature \ space \ \mathcal{H}} \ \text{and} \ a \ \text{feature}$

map $\varphi: \mathbb{R}^d \to \mathcal{H}$ such that $k(x, x') = \varphi(x)^{\frac{1}{4}} \varphi(x')$ SPD kernels properties: K(x, x') = K(x', x) (Symmetry) For any n and $\{x_1, \ldots, x_n\}$, the Gram matrix $G_{ij} = G_{ij}$ $k(x_i, x_i)$ is positive semi-definite. (Recall: a matrix G is positive semi-definite if $c^T G c \geq 0$ for any vector c) (Positive Semi-definiteness)

Examples of SPD Kernels: Linear Kernel: $K(x, x') = x^{\top}x'$ Polynomial Kernel: $K(x, x') = (1 + x^{\top}x')^d$

Gaussian RBF Kernel: $K(x, x') = \exp\left(-\frac{\|x - x'\|^2}{2\sigma^2}\right)$

Constructing kernels Given valid kernels $k_1(x, x')$ and $k_2(x, x')$, the following new kernels will also be valid: $ck_1(x,x')$ $f(x)k_1(x,x')f(x')$ $q(k_1(x,x'))$ $exp(k_1(x,x'))$ $k_1(x,x')+k_2(x,x')$ $k_1(x,x')k_2(x,x')$ $k_3(\varphi(x), \varphi(x')) = x^\top A x' - k_a(x_a, x'_a) + k_b(x_b, x'_b) - k_a(x_a, x'_a) k_b(x_b, x'_b)$

SVM Max Margin Formulation $\max_{\mathbf{w},b} \frac{1}{\|\mathbf{w}\|} \min_{i=1,...,N} |\mathbf{w}^T \mathbf{x}_i + b|$ subject to $y_i(\mathbf{w}^T \mathbf{x}_i + b) > 0 \quad \forall i \in \mathbb{N}$

Optimization Problem $\min_{w,b} \frac{1}{2} ||w||^2$ subject to: $y_i(w^\top x_i + b) \ge 1 \quad \forall i$. Introducing Lagrange multipliers $\alpha_i \ge 0$, the Lagrangian is: $\mathcal{L}(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{N} \alpha_i [y_i(w^{\top} x_i + b) - 1]$

- KKT conditions for SVM 1. From Stationarity $\hat{w} = \sum_{i=1}^{N} \hat{\mu}_i y_i x_i$, $0 = \sum_{i=1}^{N} \hat{\mu}_i y_i$ 2. From Dual Feasibility $\hat{\mu}_i \geq 0$ for $i = 1, \dots, N$
- 3. From Complementary Slackness $\hat{\mu}_i = 0 \quad \text{or} \quad y_i (\hat{w}^T x_i + \hat{b}) = 1$
- **4. The multipliers** $\hat{\mu}$ can be found by the dual problem $\max_{\mu \in \mathbb{R}^N} \sum_{i=1}^N \mu_i \frac{1}{2} \sum_{i,j} \mu_i \mu_j y_i y_j (x_i^T x_j)$

 $\begin{array}{ll} \textbf{Dual formulation of SVM} \\ \hat{\mu} = \arg\max_{\mu \in \mathbb{R}^N} \sum_{i=1}^N \mu_i - \frac{1}{2} \sum_{i,j} \mu_i \mu_j y_i y_j (x_i^T x_j) \text{ Subject to: } \hat{\mu} \geq 0 \quad \text{and} \quad \sum_{i=1}^N \hat{\mu}_i y_i = 0 \end{array}$

Decision function: $\hat{f}(x) = \operatorname{sgn}\left(\sum_{i=1}^{N} \hat{\mu}_i y_i x_i^T x + \hat{b}\right)$ Complementary slackness: $\hat{\mu}_i = 0$ or $1 = y_i(\hat{w}^T x_i + \hat{b})$

Kernel SVMs

 $\hat{\mu} = \arg\max_{\mu \in \mathbb{R}^N} \sum_{i=1}^N \mu_i - \frac{1}{2} \sum_{i,j=1}^N \mu_i \mu_j y_i y_j k(x_i, x_j) \text{ Subject to: } \hat{\mu} \geq 0 \quad \text{and} \quad \sum_{i=1}^N \hat{\mu}_i y_i = 0$

Decision function: $\hat{f}(x) = \operatorname{sgn}\left(\sum_{i=1}^{N} \hat{\mu}_i y_i k(x_i, x) + \hat{b}\right)$

Only support vectors satisfying $1 = y_i(\hat{w}^T \varphi_i(x) + \hat{b})$ matter for predictions. This is a sparse kernel method.

Classification and Regression Trees Suppose that the input space is \mathcal{X} . A partition of \mathcal{X} is a collection of subsets $\mathcal{R}_1, \mathcal{R}_2, \ldots, \mathcal{R}_J$ such that $\mathcal{R}_i \cap \mathcal{R}_j = \emptyset$ for $i \neq j$ and $\bigcup_{i=1}^J \mathcal{R}_i = \mathcal{X}$

The general decision tree hypothesis space is: $\mathcal{H} = \left\{ f: f(x) = \sum_{i=1}^{J} a_i \mathbb{I}_{x \in \mathcal{R}_i}, \left\{ \mathcal{R}_i \right\} \right\}$ is a partition of $\mathcal{X}, a_i \in \mathcal{Y} \right\}$ where $\mathbb{I}_{x \in \mathcal{R}_i}$ is an indicator variable returning 1 if x is in \mathcal{R}_j .

A decision tree model $f(x) = \sum_{j=1}^J a_j \mathbb{I}_{x \in \mathcal{R}_j}$ depends on both a_j and \mathcal{R}_j . For regression we take the **average** label

values $a_j = y_j = \frac{\sum_i y_i \mathbb{I}_{x \in \mathcal{R}_j}}{\sum_i \mathbb{I}_{x \in \mathcal{R}_i}}$; For classification we take the **mode** label values $a_j = \text{mode}\{y_i : x_i \in \mathcal{R}_j\}$

Loss function for Decision Trees Classification Entropy: $-\sum_{k=1}^K \sum_{j=1}^J p_{jk} \log p_{jk}$

Gini Impurity: $\sum_{k=1}^{K} \sum_{j=1}^{J} p_{jk} (1-p_{jk})$ where p_{jk} is the proportion of samples in \mathcal{R}_j belonging to class k.

Bagging reduces the variance by aggregating predictions from multiple models trained on different random subsamples of the data: Regression $\bar{f}(x) = \frac{1}{m} \sum_{j=1}^{m} f_j(x)$ Classification $\bar{f}(x) = \text{Mode}\{f_j(x): j=1,\ldots,m\}$

Boosting works by training weak learner sequentially, where each learner focuses on correcting the mistakes of the previous ones. The combined model is a weighted sum of the weak learners: $f(x) = \sum_{t=1}^{T} \alpha_t f_t(x)$ where α_t are coefficients based on each learner's performance. Boosting helps reduce bias.

- 1. Initialize with uniform weight across all training samples
- 2. Train a classifier/regressor f_1
- 3. Identify the samples that f_1 got wrong (classification) or has large errors (regression)
- 4. Weight these samples more heavily and train f_2 on this reweighted dataset
- 5. Repeat steps 3-5

AdaBoost Implementation

Data: $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$, Initialize $w_i^{(1)} = \frac{1}{N}$ for all $i = 1, \dots, N$; For $j = 1, \ldots, m$ do

- 1. Obtain f_j from: $f_j = \arg\min_{f \in \mathcal{H}} \sum_{i=1}^N w_i^{(j)} \mathbb{I}_{y_i \neq f(x_i)}$
- 2. Compute combination coefficients: $\delta_j = \frac{\sum_{i=1}^N w_i^{(j)} \mathbb{I}_{y_i \neq f_j}(x_i)}{\sum_{i=1}^N w_i^{(j)}} \ \alpha_j = \log\left(\frac{1-\delta_j}{\delta_j}\right)$
- 3. Update weights: $w_i^{(j+1)} = w_i^{(j)} \exp\left(\alpha_j \mathbb{I}_{y_i \neq f_i(x_i)}\right)$

Return: $\bar{f}(x) = \operatorname{Sign}\left(\sum_{j=1}^{m} \alpha_j f_j(x)\right)$

Cross-Validation In k-fold cross-validation, the data is split into k subsets. The model is trained on k-1 subsets and validated on the remaining one. This process is repeated k-times.

Lecture σ Activation Functions Sigmoid: $\sigma(z) = \frac{1}{1 + e^{-z}}$, [0, 1] ReLU $\sigma(z) = \max(0, z)$, $[0, \inf]$, leaky ReLU: δz if z < 0 instead of 0

Gradient Descent $w^{(t+1)} = w^{(t)} - \eta \frac{\partial L}{\partial x_0}$

Stochastic Gradient Descent (SGD): $\theta_{k+1} = \theta_k - \eta \frac{1}{B} \sum_{i \in I_B} \nabla \Phi_i(\theta_k)$, less likely to be locally optimal.

Deep Neural Networks (DNNs)Deep neural networks are an extension of shallow networks. The idea is to stack n hidden layers together and forward pass the x sequentially.

Initialize
$$x_0 = x \in \mathbb{R}^d$$
.
For $t = 0, 1, \dots, T$: $x_{t+1} = g_t(x_t, W_t) = \sigma(W_t x_t)$
Set $x_t = \nabla - L(x_{t+1}, y_t)$

Set
$$p_{T+1} = \nabla_x L(x_{T+1}, y)$$
.
For $t = T, T - 1, \dots, 1$:

$$- \nabla_{W_t} \Phi = p_{t+1}^T \nabla_W g_t(x_t, W_t)$$

$$- p_t = \left[\nabla_x g_t(x_t, W_t)\right]^T p_{t+1}$$

Return
$$\{\nabla_{W_t} \Phi : t = 0, \dots, T\}.$$

Back-propagation Example Computation The model is defined as: $y(x) = v\delta(w_1\delta(w_0x)), \quad x, w_0, w_1, v \in \mathbb{R}, \text{ where } \delta \text{ is the identity function, i.e., } \delta(z) = z.$ The loss function is: $L = (y(x) - y)^2$ We want to compute the gradients: $\frac{\partial L}{\partial y}$, $\frac{\partial L}{\partial w_1}$, $\frac{\partial L}{\partial w_0}$

Forward pass: $x_1 = w_0 x \ x_2 = v w_1 x_1 \ L = (x_2 - y)^2$

$$p_2 = \frac{\partial L}{\partial x_2} = 2(x_2 - y) \quad \frac{\partial L}{\partial v} = \frac{\partial L}{\partial x_2} \cdot \frac{\partial x_2}{\partial v} = 2(x_2 - y)w_1x_1 \qquad \frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial x_2} \cdot \frac{\partial x_2}{\partial w_1} = 2(x_2 - y)vx_1$$

$$p_1 = \frac{\partial L}{\partial x_1} = \frac{\partial L}{\partial x_2} \cdot \frac{\partial x_2}{\partial x_1} = 2(x_2 - y)vw_1 \qquad \frac{\partial L}{\partial w_0} = \frac{\partial L}{\partial x_1} \cdot \frac{\partial x_1}{\partial w_0} = 2(x_2 - y)vw_1x$$

Lecture 6

PCA Algorithm Simplified Flow Center the data o compute sample covariance matrix $S = \frac{1}{N} \sum_{i=1}^{N} x_i x_i^T$ compute top k eigenvalues and retrieve their corresponding eigenvectors. In feature space we replace all x with ϕ , the For whitening Transform Principal component scores are given by Z = XU where X is the raw design matrix. PCA Whitening Transform Principal component scores are given by Z = XU where X is the original features and U is

the matrix of eigenvectors. The transformation $X' = XU\Lambda^{-\frac{1}{2}}$, where Λ is the matrix of eigenvalues makes cov(X') = I.

Neural Network AutoEncoders Choose encoder T_{enc} and decoder T_{dec} as:

$$\begin{split} T_{enc}(x;\theta) &= A\sigma(Wx+b) & T_{dec}(x;\phi) = B\sigma(Vx+c) \\ \theta &= (A,W,b) \in \mathbb{R}^{m \times q} \times \mathbb{R}^{q \times d} \times \mathbb{R}^{q} & \phi = (B,V,c) \in \mathbb{R}^{d \times q'} \times \mathbb{R}^{q' \times m} \times \mathbb{R}^{q'} \end{split}$$

Given a dataset $\mathcal{D}=\{x_i\}_{i=1}^N$, we solve the empirical risk minimization to minimize the distance between x_i and x_i' : $\min_{\theta,\phi} \frac{1}{2N} \sum_{i} \|x_i - T_{\text{dec}}(T_{\text{enc}}(x_i;\theta);\phi)\|^2$, where the input is used as labels.

Unsupervised Learning

Clustering partition a dataset $\mathcal D$ into disjoint groups $\mathcal D=\mathcal D_1\cup\mathcal D_2\cup\cdots\cup\mathcal D_K$, such that data grouped together are similar and dissimilar if they are in different groups.

K-means Algorithm To minimize the distortion $\min_{Z,R} J(R,Z) = \frac{1}{2N} \sum_{i=1}^{N} \sum_{k=1}^{K} r_{ik} \|x_i - z_k\|^2$:

Data: $\mathcal{D} = \{x_i\}_{i=1}^N, x_i \in \mathbb{R}^d \text{ for all } i$

Hyperparameters: K (number of clusters); stopping criterion (convergence of loss function j for instance) Initialize $Z \in \mathbb{R}^{K \times d}$, that is, starting with some centroid set (which could determine algo performance) While stopping criterion not reached do

Assign point to the nearest centroid: $r_{ik} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|x_i - z_j\|^2 \\ 0 & \text{otherwise} \end{cases}$, $i = 1, \dots, N$

Recompute centroid by taking average of members of cluster: $z_k = \frac{\sum_{i=1}^N r_{ik} x_i}{\sum_{i=1}^i r_{ik}}, \ k=1,\ldots,K$

Return: centroids Z. assignment matrix R.

Depending on the initial condition, we can end up with global/local optimum or saddle point.

Maximum Likelihood Estimation Given dataset x_i , model them as i.i.d. samples from $p(x|\theta)$, θ are parameters to be determined: $\theta_{\text{MLE}} = \arg\max_{\phi} \log\left(\prod_i p(x_i|\phi)\right) = \sum_i \log(p(x_i|\phi))$

Gaussian Mixture Models (GMMs) Soft probabilistic labeling as compared to K-means (hard deterministic labeling as compared to K-means) ling): Model the data as samples from a linear convex combination of K Gaussian:

 $p(x) = \textstyle \sum_{k=1}^{K} \pi_k \, p_g(x; z_k, \Sigma_k), \, \text{where} \, p_g(x_i|z, \Sigma) = (2\pi)^{-\frac{d}{2}} |\Sigma|^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} (x-z)^{\top} \Sigma^{-1} (x-z) \right\},$ $\pi_k \geq 0$, $\sum_k \pi_k = 1$ (Mixture weights)

- Sample r (one-hot) according to π_k find a member Gaussian distribution Identify the "hot" coordinate of r Go to that distribution
- Sample x from $p_g(x; z_\ell, \Sigma_\ell)$ sampling by its mean and covariance matrix

MLE for GMM

Data: $\mathcal{D} = \{x_i\}_{i=1}^N, x_i \in \mathbb{R}^d \text{ for all } i$ Hyperparameters: $K \text{ (num_clusters)}; \text{ stopping criterion } Initialize: <math>\pi_k = 1/K, z_k \in \mathbb{R}^d, \Sigma_k \in \mathbb{R}^d \times d \text{ for } k = 1, \dots, K$ While stopping criterion not reached do

Update γ_{ik} , the responsibility term: $r_{ik} = \frac{\pi_k p_g(x; z_k, \Sigma_k)}{\sum_{\ell=1}^K \pi_\ell p_g(x; z_\ell, \Sigma_\ell)}, i = 1, \dots, N, k = 1, \dots, K$

Compute $\{N_k = \sum_{i=1}^N \gamma_{ik}\}$ and Update $\{\pi_k, z_k, \Sigma_k\}$

$$z_k = \frac{1}{N_k} \sum_{i=1}^N \gamma_{ik} x_i, \quad \Sigma_k = \frac{1}{N_k} \sum_{i=1}^N \gamma_{ik} (x_i - z_k) (x_i - z_k)^\top, \quad \pi_k = \frac{N_k}{N} \text{ for } k = 1, \dots, K$$
Return: cluster centers, covariances, and mixture coefficients $\{z_k, \Sigma_k, \pi_k\}$, cluster responsibilities or soft

assignments $\{\gamma_{ik}\}$ Relationship between K-means and GMM Set $\Sigma_k=\epsilon I_d$, then the responsibility term becomes $\gamma_{ik}=\epsilon I_d$

 $\pi_k \exp\left(-\frac{1}{2\epsilon} \|x_i - z_k\|^2\right)$, and when we take $\epsilon \to 0$ we will get the hard label assignment as K-means. $\frac{\sum_{\ell} \pi_{\ell} \exp\left(-\frac{1}{2\epsilon} \|x_i - z_{\ell}\|^2\right)}{\sum_{\ell} \pi_{\ell} \exp\left(-\frac{1}{2\epsilon} \|x_i - z_{\ell}\|^2\right)}$

Reinforcement Learning

Key Elements of RL Action (action space, policy/chain of actions leading to optimal reward), State (match with action to form transition function, terminal / goal state), Reward (reward function)

Markov Property The future does not depend on the past, i.e. for transition probability $\mathbb{P}(S_{t+1} = s' | S_t = s, S_{t-1} = s')$ $s_{t-1}, \ldots, s_0 = s_0$), it is simply $\mathbb{P}(S_{t+1} = s' | S_t = s)$.

Transition Matrix In time homogeneous Markov Chain, The transition probability is independent of time: $\mathbb{P}(S_{t+1} =$ $s'|S_t = s) = P_{ss'} = p(s'|s)$ and $\{P_{ss'}\}$ is the transition matrix.

Markov Decision Process (MDP) $p(s', r|s, a) = \mathbb{P}[S_{t+1} = s', R_{t+1} = r|S_t = s, A_t = a]$, which integrate reward R and action a to the transition probability. It is finite if the action space is discrete finite for each state.

Policy $\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$, and deterministic policy is a constant mapping from the state space to action space

(Discounted) Return $G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$, $\gamma \in (0,1]$, where γ is the discount factor. The goal is typically to maximize the expected return, and in the context of time homogeneous case, $\mathbb{E}_{\pi}[G_t|S_t=s]$ $\mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \middle| S_t = s \right]$

Dynamic Programming Memoization / caching the result of overlapping optimal substructures. Trade space for cost of recomputation for naive implementations and space usage can be optimized through iterative approach. Bellman's Equation $v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} {}_{r} p(s', r|s, a) [r + \gamma v_{\pi}(s')]$

This can be derived using DP to formulate a recursive solver for value function $v_\pi(s) = \mathbb{E}_\pi\left[G_t|S_t=s\right]$ and action value function $q_{\pi}(s, a) = \mathbb{E}_{\pi} [G_t | S_t = s, A_t = a]$. and substitute the action value function to the value function. Bellman's Equation for Finite MDP $v_{\pi} = \gamma P(\pi)v_{\pi} + b(\pi)$, where:

- $P(\pi)_{s,s'} = \sum_a \pi(a|s) \sum_r p(s',r|s,a)$ is the state transition matrix for the policy π (N * N matrix with N being number of states, so we only sum over r)
- $b(\pi)(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \cdot r$ is the expected immediate reward for the policy π (N*1 matrix)

The unique solution would thus be $v_{\pi} = (I - \gamma P(\pi))^{-1}b(\pi)$. Optimal Policy $\pi_* \geq \pi \quad \forall \pi \neq \pi_*$ Always exist but may not be unique. Policy Improvement For any two policies π , π' , if $\sum_a \pi'(a|s)q_{\pi}(s,a) \geq \sum_a \pi(a|s)q_{\pi}(s,a) \forall s$ then $v_{\pi'}(s) \geq v_{\pi}(s) \forall s$, and we assert π' is better than π .

Bellman's Optimality Equations Given an optimal policy $\pi_*(s) \in \arg \max_a q_*(s,a)$, we can recursively find optimal value and action value functions:

 $v_*(s) = \max_{a \in \mathcal{A}} \sum_{s',r} p(s',r|s,a)[r + \gamma v_*(s')] \qquad q_*(s,a) = \sum_{s',r} p(s',r|s,a) \left[r + \gamma \max_{a' \in \mathcal{A}} q_*(s',a')\right]$

 $v_*(s) = \max_a q_*(s, a)$ Optimal Policy: $\pi_*(s) \in \arg \max_a q_*(s, a)$

Lecture 9

Model-Based vs Model-Free Model-based assumes that the transition function is known: Value iteration, policy iteration. Model-free improves through sampling/ Monte Carlo simulations: Temporal Difference (TD), Q-learning. Value Iteration Algorithm Start with some value function, update utility estimate iteratively and keep track of corresponding current optimal actions.

Model Parameters: MDP transition probability p(s', r|s, a), discount rate $\gamma < 1$

Input: Policy π , Stopping criterion Initialize $v \in \mathbb{R}^n$

While stopping criterion not reached do

Update value function: $v \leftarrow F(v) = \max_{\pi} \{ \gamma P(\pi) v + b(\pi) \}$ (Make use of P, model-based)

Return v

Contraction Mapping Theorem Fix point iteration will lead to a unique $v_* \in V$ such that $v_* = F(v_*)$, and v_* can be estimated by starting at arbitrary v_0 and iterate for many times (towards infinity).

Value Iteration Convergence Rate Given error ϵ being the difference between v_K and v_{∞} , and number of iterations k, to achieve $\mathcal{O}(\epsilon)$ we need $k \sim \mathcal{O}(\log(1/\epsilon))$

Policy Iteration Algorithm Start with some policy, plug into value function and derive a better policy. Repeat until

Model Parameters: MDP transition probability p(s', r|s, a), discount rate $\gamma < 1$

Initialize: Deterministic policy $\pi \leftarrow \pi_0$

While $\pi \neq \pi'$ do $\pi' \leftarrow \pi$ (Set the next policy for evaluation)

$$v_{\pi} \leftarrow (I - \gamma P(\pi))^{-1} b(\pi)$$
 (Evaluate policy π using P, model-based) $\pi' \leftarrow \arg \max_{\pi} \{b(\pi) + \gamma P(\pi) v_{\pi}\}$ (Retrieve subsequent best policy)

Its convergence can be shown by $v_{\pi_k} \leq v_{\pi_{k+1}} \leq v_*$ from the algorithm (argmax, minimally equivalent values) and $\pi_{k+1} \neq \pi_k$ if and only if $v_{\pi_{k+1}} > v_{\pi_k}$ (otherwise the while loop ends)

Monte Carlo Method IID sampling and compute expectation: $\mathbb{E}_{x \sim \mu} f(x) \approx \frac{1}{N} \sum_{i=1}^{N} f(X_i)$ where $X_i \sim \mu$ is IID Model-free Policy Iteration Instead of relaying on the transition matrix P we sample episodes according current π to get samples of state and reward sequence (S and R), and get the value by averaging discounted rewards. Concretely, update estimation for action-value function by: $q(s,a) \leftarrow \frac{1}{N} \sum_{n=1}^{N} \left[\sum_{k=0}^{\infty} \gamma^k R_{k+1}^{(n)} \middle| S_0^{(n)} = s, A_0^{(n)} = a \right]$ and

Temporal Difference (TD) Algorithm

Input: State-reward simulator, initial state sampler, Stopping criterion, Policy π

Initialize: Initial value v_0 , Episode length T, Start with $v \leftarrow v_0$;

While stopping criterion not reached do

 $s \leftarrow \overline{\text{InitialStateSampler()}}(\text{The start of the new episode})$ For t=0 to T-1 do

 $a \leftarrow a \sim \pi(\cdot|s)$

 $s', r \leftarrow \text{StateRewardSimulator}(s, a)$

 $v(s) \leftarrow (1 - \alpha)v(s) + \alpha \left(r + \gamma v(s')\right)$

Return v

Q-learning Algorithm

Input: State-reward simulator, initial state sampler, Stopping criterion, Policy π

Initialize: Initial value q_0 , Episode length T, Start with $q \leftarrow q_0$

While stopping criterion not reached do

 $s \leftarrow InitialStateSampler()$ For t = 0 to T - 1 do

 $s', r \leftarrow \text{StateRewardSimulator}(s, a)$ $q(s, a) \leftarrow (1 - \alpha)q(s, a) + \alpha \left[r + \gamma \max_{a'} q(s', a')\right]$

Return a

Graph-Based Methods

Page Rank Let $L_k \subset \{1,2,\ldots,n\}$ denote the set of pages with a link to page k; that is, L_k is the set of page k's backlinks. For each k we require $x_k = \sum_{j \in L_k} \frac{x_j}{n_j}$ where n_j is the number of outgoing links from page j.

The resultant matrix A representing pairwise values of x_k is a column-stochastic matrix with an eigenvalue equal to

1, and 1 is also its largest eigenvalue. For instance: $A = \begin{bmatrix} \overset{\circ}{0} & \overset{\circ}{0} & \overset{\circ}{0} & \overset{\circ}{0} \\ \frac{1}{3} & 0 & 0 & 0 \\ \frac{1}{3} & \frac{1}{2} & 0 & 0 \\ \frac{1}{3} & \frac{1}{2} & 0 & 0 \end{bmatrix}$

Power Iteration Let the eigenvalues of A be $\lambda_1 > \lambda_2 > \cdots > \lambda_n$ and the associated eigenvectors be v_1, v_2, \ldots, v_n . Then any vector x_0 can be written as $x_0 = c_1v_1 + c_2v_2 + \cdots + c_nv_n$. Then $A^{k}x_{0} = c_{1}\lambda_{1}^{k}v_{1} + c_{2}\lambda_{2}^{k}v_{2} + \dots + c_{n}\lambda_{n}^{k}v_{n} = c_{1}\lambda_{1}^{k}\left(v_{1} + \frac{c_{2}}{c_{1}}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k}v_{2} + \dots + \frac{c_{n}}{c_{1}}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k}v_{n}\right) \rightarrow c_{1}\lambda_{1}^{k}v_{1}$

Graph Laplacian $L_G := D - W = \sum_{i < j} w_{ij} (e_i - e_j) (e_i - e_j)^{\top}$, the diagnol entries are the degree of each node and other entries are $-w_{ij}$

Cheeger's cut $h(S) = \frac{\text{cut}(S)}{\min\{\text{vol}(S), \text{vol}(S^c)\}}$ Normalized cut (Ncut) $Ncut(S) = \frac{\text{cut}(S)}{\text{vol}(S)} + \frac{\text{cut}(S^c)}{\text{vol}(S^c)}$

From Ncut to relaxed balanced cut $Ncut(S) = y^{\top}L_Gy$ $y_i = \begin{cases} \left(\frac{\operatorname{vol}(S^c)}{\operatorname{vol}(S)\operatorname{vol}(G)}\right)^{\frac{1}{2}} & \text{if } i \in S, \\ -\left(\frac{\operatorname{vol}(S)}{\operatorname{vol}(G)}\right)^{\frac{1}{2}} & \text{if } i \in S^c. \end{cases}$

Spectral Clustering for multi-clusters

Given a graph G = (V, E, W), let v_2, \ldots, v_k be the eigenvectors corresponding to the second through (k-1)th eigenvalues of the normalized Laplacian $\mathcal{L}_C = D^{-\frac{1}{2}} L_C D^{-\frac{1}{2}}$;

Let $\phi_m = D^{-\frac{1}{2}} v_m \in \mathbb{R}^n$;

Consider the map $\phi: V \to \mathbb{R}^{k-1}$ defined as $\phi(v_i) = [\phi_2(i) \quad \cdots \quad \phi_k(i)]^T$, where D is the degree matrix with $D_{ii} = \deg(i) = \sum_{j=1}^n w_{ij}$; Cluster the n points in k-1 dimensions into k clusters using k-means.

For example, given k=2, we can compute $\phi_2=D^{-\frac{1}{2}}v_2$, choose a threshold τ (try and error or k-means for k=2), and set $S=\{i\in V: \phi_2(i)\leq \tau\}$.

Cheeger's inequality $\frac{1}{2}\lambda_2(\mathcal{L}_G) \leq h_G \leq \sqrt{2\lambda_2(\mathcal{L}_G)}$