#### **BLG311E - FORMAL LANGUAGES AND AUTOMATA**

## **2013 SPRING**

#### **RECITEMENT 5**

1) Design a DFA that recognizes words in the form {a<sup>2m</sup>b}, m≥0 and defined over alphabet {a,b}.

### **Solution:**

$$m=0 \rightarrow b$$
  
 $m=1 \rightarrow a^2b$ 

•••

Even number of 'a' followed by a single 'b'



2) Design a NFA that recognizes words defined over alphabet {a, b} where the second-to-last letter is 'b'.

**Solution:** 

$$L(M) = (a v b)^* b (a v b)$$



3) <S> ::= \(\a\a\a<S>\a<A>\b<B> <A> ::= b

Consider the grammar rules in BNF notation given on the left.

- **a)** Heuristically, draw the NFA diagram of the automata with this grammar.
- **b)** Heuristically, find its regular expression.
- c) Construct the DFA for this NFA.

**Solution:** 

a)



**b)** L(G) = a\* v a\*ab v a\*bb

c) 
$$S = q_0$$

$$\delta(q_0,a)=\delta(S,a)=\{S,A\}=q_1$$

$$\delta(q_0,b) = \delta(S,b) = \{B\} = q_2$$

$$\delta(q_1,a) = \delta(\{S,A\},a) = \{S,A\} = q_1$$

$$\delta(q_1,b) = \delta(\{S,A\},b) = \{B,C\} = q_3$$

$$\delta(q_2,a) = \delta(\{B\},a) = \emptyset$$

$$\delta(q_2,b) = \delta(\{B\},b) = \{C\} = q_4$$

$$\delta(q_3,a) = \delta(\{B,C\},a) = \emptyset$$

$$\delta(q_3,b) = \delta(\{B,C\},b) = \{C\} = q_4$$

$$\delta(q_4,a) = \delta(\{C\},a) = \emptyset$$

$$\delta(q_4,b) = \delta(\{C\},b) = \emptyset$$

$$\delta(\emptyset,a) = \delta(\emptyset,b) = \emptyset = q_5$$

## State transition table:

|                       | а                     | b                     |
|-----------------------|-----------------------|-----------------------|
| $\mathbf{q}_{0}$      | $q_1$                 | $q_2$                 |
| $q_1$                 | $q_1$                 | $q_3$                 |
| q <sub>2</sub>        | $q_5$                 | $q_4$                 |
| q₃                    | <b>q</b> <sub>5</sub> | $q_4$                 |
| $q_4$                 | <b>q</b> <sub>5</sub> | <b>q</b> <sub>5</sub> |
| <b>q</b> <sub>5</sub> | $q_5$                 | $q_5$                 |

# State transition diagram:



$$s_0 = q_0$$
 and  $F = \{ q_0, q_1, q_3, q_4 \}$