Lecture 8 1 Oct 07

Last time: Voter-Candidate Model

(can not choose position)

lessons (1) Many NE, not all "at center" (cd. Downs)

(2) Entry can lead to a more distant candidate winning

« 13) If too far apart, someone will jump into the center >>

A How far apart can equilibrium condidates be? >>

« claim: inside (6,5%) >>

(3) If the 2 candidates are too extreme someone in center will enter

Game Theory (4) Guess and check effective

Location Model

trategies
Two towns E and W holds 100th people

nayor Two types of people Tand S 100th of each

Rules: simultaneous choice

if there is no room, then randomize to ration

<< outcome : segregation >>

<< Equilibria; 2 Segregated equilibria

exactly 50-50 integrated >

Open Yale courses

Integrated equilibria:

weak equil.
indifferent between 2 towns
Unstable equil.

NE (1) Two segregated) NE (Tin E) and vice-versal stab sinw and vice-versal stab (2) (integrated) NE 2 of each in each town "weat

"Tipping Point"

(3) all choose same town and get randomized lesson: • seemingly irrelevant details can matter • having society randomize for you ended up better than active choice

Lessons

1) "sociology" sceing segregation > preference for segregation

@ policy randomization, busing

3 (individual randomization) NE > randomized or "mixed strategies"

e.g. Rock, Paper, Sc	issors R	.5	P
R	0,0	1,-1	-1,1
5	-1,1	0,0	1,-1
p [1,-1	-1,1	0,0

No NE in "pure strategies"

Pure strategies = {R,P,S}

Claim: NE each player chooses $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$

Expected payoff of R vs $(\frac{1}{3},\frac{1}{3},\frac{1}{3}) = \frac{1}{3}[0] + \frac{1}{3}[1] + \frac{1}{3}[1] = 0$ S vs (") = $\frac{1}{3}[-1] + \frac{1}{3}[0] + \frac{1}{3}[1] = 0$ Expected payoff of $(\frac{1}{3},\frac{1}{3},\frac{1}{3})$ vs $(\frac{1}{3},\frac{1}{3},\frac{1}{3}) = \frac{1}{3}[0] + \frac{1}{3}[0] + \frac{1}{3}[0] = 0$ Expected payoff of $(\frac{1}{3},\frac{1}{3},\frac{1}{3})$ vs $(\frac{1}{3},\frac{1}{3},\frac{1}{3}) = \frac{1}{3}[0] + \frac{1}{3}[0] + \frac{1}{3}[0] = 0$

In RPS, playing $(\frac{1}{3},\frac{1}{3},\frac{1}{3})$ against $(\frac{1}{3},\frac{1}{3},\frac{1}{3})$ is a BR. So $[(\frac{1}{3},\frac{1}{3},\frac{1}{3}),(\frac{1}{3},\frac{1}{3},\frac{1}{3})]$ is a NE.