Alexandros "Alex" Tsolovikos

tsolovikos@utexas.edu • +1 (737) 210-9243 • linkedin.com/in/alextsolovikos • github.com/alextsolovikos

Education

MS/PhD, Aerospace Engineering. The University of Texas at Austin

[May 2023]

- Master's and Doctoral student in the Department of Aerospace Engineering and Engineering Mechanics.
- GPA: 4.00/4.00
- Relevant Coursework: Reinforcement Learning, Robot Learning, Stochastic Optimal Control, Autonomous Robots, Statistical Estimation Theory, Linear Systems, Optimal Control, Nonlinear Dynamics, Dynamics of Turbulence, Multivariable Control Systems, Fluid Mechanics

BS/MS, Mechanical Engineering, National Technical University of Athens

[February 2018]

- Bachelor of Science & Master of Science; 5-year joint degree; 300 ECTS
- GPA: 9.06/10.00 (early graduate with highest honors; top 10 among undergraduate class of 180 students)
- Concentration: Air and Ground Transport Vehicles
- Relevant Coursework: Computational Fluid Dynamics, Optimization Methods in Aerodynamics, Computational Methods in Turbomachines, Flight Dynamics, Control Systems, Microprocessor-Based Control
- Thesis: "Deformation of Computational Meshes Using Delaunay Graph Parameterization Applications in the Adjoint-Based Aerodynamic Shape Optimization"

Work Experience

Radar Machine Learning Intern, Aptiv, Agoura Hills, CA

[May 2022 – August 2022]

- Deep learning-based radar-only object detection.
- Trained and compared performance of different backbones and detection heads with raw radar data as inputs and oriented bounding boxes as outputs.
- Extended MMDetection & MMRotate libraries to work with low-level radar inputs.

Environment Perception Engineering Intern, Aptiv, Remote

[June 2021 – August 2021]

- Remote internship supporting the Advanced Engineering/Road Model team in Agoura Hills, CA.
- Developed a Radar-based Simultaneous Localization and Mapping (SLAM) framework that uses pose graphs and loop closures to create a Radar occupancy gridmap from scratch.
- Integrated occupancy gridmap updates from multiple visits of the same area in the SLAM framework.
- Developed ROS pipeline in Python and C++.

Environment Perception Engineering Intern, Aptiv, Remote

[June 2020 – July 2020]

- Remote internship supporting the Advanced Engineering/Road Model team in Agoura Hills, CA.
- Developed a sensor fusion framework for lane marker estimation from vision, HD maps, GNSS, and odometry information, along with necessary data pipelines and visualization tools in Python.

Research Experience

Graduate Researcher, The University of Texas at Austin

[August 2018 - Present]

- Research interests:
 - Data-driven control of high-dimensional, nonlinear dynamical systems.

- Reduced-order modeling of turbulent flows using modal analysis and non-parametric methods.
- Turbulent flow control via model predictive control (MPC) and reduced-order models.
- Stochastic optimal control with learned non-parametric models (Gaussian processes).
- Reinforcement-learning for flow control.
- Motion prediction in autonomous driving settings using Transformers and Gaussian processes.
- Computational engineering and high-performance computing with an emphasis on direct numerical simulations of turbulent flows.

Undergraduate/Associate Researcher, National Technical University of Athens [May 2017 – July 2018]

- Group: Parallel CFD and Optimization Unit
- Research interests:
 - Adjoint-based optimization of partial differential equations (e.g. aerodynamic shape optimization).
 - Grid generation and manipulation; computational geometry.
 - Computational fluid dynamics (CFD).
- Developed and programmed a fast dynamic grid morpher based on Delaunay triangulation parameterization for OpenFOAM in C++ and coupled it with the adjoint-based aerodynamic shape optimization software.
- Set up a fluid-structure interface between ANSYS and an in-house CFD software for simulating the deformation of an inflatable wing.
- Programmed an adjoint error-based grid refinement tool for the OpenFOAM environment for use in automatic mesh generation and for improving the accuracy of computing functionals of interest.

Skills

Programming: Proficient in C/C++, Python, Matlab, Fortran 95, Unix

Libraries/Tools: PyTorch, ROS, GPyTorch, GTSAM, Numpy, Eigen (C++), Git, OpenCV, CGAL,

OpenFOAM, Arduino

Other Tools: LaTeX, MS Office (ECDL Expert), Solidworks, ANSYS, LS-DYNA, EASY

Languages: English (fluent), Italian (basic), Greek (native)

Publications

Journal Articles

- Tsolovikos, A., Suryanarayanan, S., Bakolas, E., Goldstein, D., (2020), "Model predictive control of material volumes with application to vortical structrues", AIAA Journal, 2021.
- Tsolovikos, A., Bakolas, E., Suryanarayanan, S., Goldstein, D., (2020), "Estimation and control of fluid systems using sparsity-promoting dynamic mode decomposition with control", *IEEE Control Systems Letters*.
- Gkaragkounis, K., Papoutsis-Kiachagias, E., **Tsolovikos, A.**, Giannakoglou, K., (2020), "The effect of grid displacement methods on continuous adjoint-based sensitivity derivatives in aerodynamic and conjugate heat transfer problems", *Engineering Optimization*.

Conference Papers

- Tsolovikos, A., Suryanarayanan, S., Bakolas, E., Goldstein, D. B. (2022). Multiple Model Dynamic Mode Decomposition for Flowfield and Model Parameter Estimation. In AIAA SCITECH 2022 Forum (p. 2427).
- Tsolovikos, A., Bakolas, E. (2021), "Cautious Nonlinear Covariance Steering using Variational Gaussian Process Predictive Models", to be presented at the *Modeling, Estimation and Control Conference 2021*.
- Saravanos, A.D., **Tsolovikos**, **A.**, Bakolas, E. and Theodorou, E.A. (2021), Distributed Covariance Steering with Consensus ADMM for Stochastic Multi-Agent Systems, *Robotics: Science and Systems 2021*.

- Bakolas, E., **Tsolovikos**, **A.**, (2020), "Greedy finite-horizon covariance steering for discrete-time stochastic nonlinear systems based on the unscented transform", *American Control Conference 2020*, Denver, CO, July 1-3, 2020.
- Tsolovikos, A., Suryanarayanan, S., Bakolas, E., Goldstein, D., (2020), "Toward model-based control of near-wall turbulent coherent structures", AIAA SciTech 2020, Orlando, FL, January 6-10, 2020.

Teaching Experience

Teaching Assistant, The University of Texas at Austin

[August 2018]

- Assisted in the *Linear Systems* course by grading and holding review sessions (Spring 2019, Fall 2020 & Spring 2021).
- Assisted in the Compressible Flow course by lecturing, grading and holding office hours (Spring 2019).
- Taught and supervised the Low-Speed Aerodynamics Lab; graded lab reports, and held office hours (Fall 2018).
- Assisted in the Applied Aerodynamics course by grading homework and holding office hours (Fall 2018).

Awards and Fellowships

- "Graduate Dean's Prestigious Fellowship Supplement" Fellow (September 2020)
- "A. Onassis Foundation Scholarship" for Ph.D. studies in Aerospace Engineering (September 2020 May 2023, valued at over \$40,000)
- "Hellenic Professional Society of Texas Scholarship" recipient (February 2020)
- "Gerondelis Foundation Graduate Study Scholarship" recipient (December 2019)
- "Graduate Continuing Fellowship" awarded by the Graduate School at the University of Texas at Austin (June 2019 May 2020, \$44,000 toward tuition and stipend)
- "KARY" award for the highest GPA in the Mechanical Engineering School during the academic year 2015 2016 (September 2017)
- "Thomaideio" award for the highest GPA in the 5^{th} and 6^{th} semesters in the Mechanical Engineering School (September 2017)
- "Christos Papakyriakopoulos" award for the highest score in mathematics courses (September 2015)
- "A Great Moment for Education" award for the highest score in University Entrance Examinations, Eurobank (2013)