SVAR OCH ANVISNINGAR

Svaren är inte kontrollräknade.

1.

$$\lim_{x \to 0} \frac{\ln(1+x^2) - \ln(1-x^2)}{e^{x^2} - e^{-x^2}} =$$

$$= \lim_{x \to 0} \frac{(x^2 - \frac{(x^2)^2}{2} + \dots) - (-x^2 - \frac{(-x^2)^2}{2} + \dots)}{\left[1 + x^2 + \frac{(x^2)^2}{2!} + \dots\right] - \left[1 + (-x^2) + \frac{(-x^2)^2}{2!} + \dots\right]} =$$

$$= \lim_{x \to 0} \frac{2x^2 + \dots}{2x^2 + \dots} = \lim_{x \to 0} \frac{2 + \dots}{2 + \dots} = 1.$$

2. Den homogena ekvationen y'' + 4y = 0 har karakteristiska ekvationen $r^2 + 4 = 0$ med rötterna $\pm 2i$ så lösningarna till homogena ekvationen är $y_H = C_1 \cos 2x + C_2 \sin 2x$. För att bestämma en partikulärlösning y_P till den inhomogena ekvationen $y'' + y = \sin x$ ansättes $y_P = A \sin x + B \cos x$. Derivering och insättning ger $A = \frac{1}{3}, B = 0$ så den allmänna lösningen till den givna ekvationen ges av

$$y = C_1 \cos 2x + C_2 \sin 2x + \frac{1}{3} \sin x.$$

Man finner slutligen att villkoret y(0) = 1, y'(0) = 0 ger $C_1 = 1$, $C_2 = -\frac{1}{6}$ så lösningen är $y = \cos 2x - \frac{1}{6}\sin 2x + \frac{1}{3}\sin x$.

3.

$$\int_0^1 \frac{\ln(1+x)}{1+x} dx = \frac{1}{2} \ln^2(1+x) \Big|_0^1 = \frac{1}{2} \ln^2 2.$$

$$\int_1^\infty \frac{\ln(1+x^2)}{x^2} dx = -\frac{1}{x} \ln(1+x^2) \Big|_1^\infty - \int_1^\infty -\frac{1}{x} \frac{2x}{1+x^2} dx =$$

$$= \ln 2 + 2 \tan^{-1} x \Big|_1^\infty = \ln 2 + \frac{\pi}{2}.$$

4. Definitionsområdet är $x \neq 0$. Funktionen är udda, dvs y(-x) = -y(x). Det är alltså tillräckligt att studera kurvan för x > 0 och sedan spegla den i origo.

Funktionens nollställen är $x = \pm 1$.

x < 1 och x > 1.

Vertikal asymptot är x = 0. $\lim_{x \to 0+} y = +\infty$. $\lim_{x \to 0-} y = -\infty$.

 $\lim_{x \to \pm \infty} (y(x) - x) = \mp 0$. Linjen y = x är alltså sned asymptot.

$$y' = 1 + \frac{2}{x^2} - \frac{3}{x^4}$$
 $y'' = -\frac{4}{x^3} + \frac{12}{x^5}$.

 $y'(\pm 1)=0$ så $x=\pm 1$ är lokala extrempunkter, t
 ex enligt andra derivatans tecken. $y''(\pm \sqrt{3})=0$ och det följer at
t $x=\pm \sqrt{3}$ är inflexionspunkter, t
 ex enligt andraderivatans teckenväxling. Intressant observation är att kurvan skär sin sneda asympto
ty=x i $x=\pm \frac{1}{\sqrt{3}}.$

5. Eftersom funktionen f(x) är kontinuerlig på \mathbf{R} , $\lim_{x \to \pm \infty} f(x) = 0$ och det finns en punkt x där f(x) > 0 så har funktionen ett största värde enligt en sats i Adams Calculus (Adams Gift). Det största värdet finns i detta fall i en punkt x_0 där antingen $f'(x_0) = 0$, dvs i en kritisk punkt, eller där $f'(x_0)$ inte existerar, dvs i en singulär punkt. Vi skriver först funktionen utan beloppstecken och deriverar på de öppna intervallen

$$f(x) = \begin{cases} x^2 e^{x-1}, & x < 1\\ 1, & x = 1\\ x^2 e^{1-x}, & x > 1 \end{cases} \qquad f'(x) = \begin{cases} (2x + x^2)e^{x-1}, & x < 1\\ (2x - x^2)e^{1-x}, & x > 1 \end{cases}$$

Vi ser att på de öppna intervallen x < 1 och x > 1 är f(x) deriverbar och det finns två punkter x_0 där $f'(x_0) = 0$ nämligen $x_0 = -2$ och $x_0 = 2$. Punkten x = 1 kan eventuellt vara singulär punkt. Vi behöver inte undersöka detta. Punkterna -2, 1 och 2 är kandidater för det största värdet och är ändligt många.

Vi finner $f(-2) = 4e^{-3} < 1$, f(1) = 1 och $f(2) = 4e^{-1} > 1$. Största värdet är alltså $\frac{4}{e}$.

- 6. En integrerande faktor är $e^{2\ln x}=e^{\ln x^2}=x^2$. Efter multiplikation av ekvationen med denna erhålles ekvationen $(x^2y)'=1-\cos x$ som ger $x^2y=x-\sin x+C$ så allmänna lösningen är $y=\frac{x-\sin x}{x^2}+\frac{C}{x^2}$.
- 7. Den första serien $\sum a_n$ är positiv och här testar vi med kvotkriteriet.

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)!}{n!} \cdot \frac{n^n}{(n+1)^{n+1}} = \frac{1}{\left(1 + \frac{1}{n}\right)^n} \to \frac{1}{e} < 1$$

då $n \to \infty$. Serien är alltså konvergent.

Den andra serien $\sum b_n$ är inte positiv så vi studerar $\sum |b_n|$ och eventuell absolut konvergens. Vi jämför med $\sum c_n = \sum \frac{1}{n^2}$, som är konvergent och använder jämförelsesatsen. Olikheterna $|\sin n| \le 1$ och $\sin \frac{1}{n^2} \le \frac{1}{n^2}$ ger $\sum |b_n| \le \sum \frac{1}{n^2}$. Det följer att den andra serien till och med är absolutkonvergent.

8.

$$f(x) = \begin{cases} e^{-1/x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}, \quad f'(x) = \frac{2}{x^3} e^{-1/x^2}, x \neq 0.$$

 $\lim_{x \to 0} x^{-n} e^{-1/x^2} = \lim_{t \to \pm \infty} t^n e^{-t^2} = 0, \ n \in \mathbf{Z}. \text{ Därför följer att } f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = 0.$

Derivatorna är alla av formen $P(\frac{1}{x})e^{-1/x^2}$ där P är ett polynom. Därför blir på samma sätt som ovan $f^{(n)}(0) = \lim_{x \to 0} \frac{f^{(n-1)}(x) - f^{(n-1)}(0)}{x} = 0.$

Det finns inga lodräta asymptoter.

$$\lim_{x \to \pm \infty} e^{-1/x^2} == \lim_{t \to \pm 0} (1 - t^2 + \frac{1}{2!}t^4 + \dots) = 1 - \frac{1}{2!} e^{-1/x^2}$$

så y=1 är horisontell asymptot då $x\to\pm\infty$.