Logistic Regression

Example - Two Features

Explanation

- L is not the line of best fit as in linear regression.
- It is a line dividing regions where $a_1 * x_1 + a_2 * x_2 + b$ is < and > 0.
- It is the line of best separation.
- Lets call $f(x) = a_1 * x_1 + a_2 * x_2 + b$
- yhat = g(f(x))

Explanation

- the further to the right of the line you are
 - f(x) gets larger
 - → g(f(x)) gets closer to 1
- The further to the left of the line you are
 - f(x) gets larger negative
 - → g(f(x)) gets closer to 0

Solution for p Dependent Variables

Estimate of
$$P(y=1|x_1..x_n)=g(f(x))$$

Estimate of
$$P(y=1|x_1..x_n) = \frac{1}{(1+e^{-(\sum_k a_k x_k + b)})}$$

Example - Decision Boundary

- [Finding $a_1 a_2$ and b later.]
- Suppose $a_1=1$ and $a_2=1$ and b=-3
- Predict 1 when
 - $x_1 + x_2 3 >= 0$
 - $+ x_1 + x_2 >= 3$

Example - Decision Boundary

Non Linear Decision Boundaries

Non Linear Decision Boundaries

Add non linear terms to the regression equation.

$$\hat{y} = g (a_1 * x_1 + a_2 * x_2 + a_3 * x_1^2 + a_4 * x_2^2 + b)$$

Get

$$\bullet$$
 $a_1 = 0$, $a_2 = 0$, $a_3 *= 1$, $a_4 = 1$, $b = -1$

Decision boundary

$$x_1^2 + x_2^2 \ge 1$$

Add more complex terms (e.g. $x_1^2 * x_2^2$) to get more complicated decision boundaries.

Non Linear Decision Boundaries

