

3

## Fundamental Data Structures

21 October 2025

Prof. Dr. Sebastian Wild

## **Learning Outcomes**

#### **Unit 3:** Fundamental Data Structures

- 1. Understand and demonstrate the difference between *abstract data type (ADT)* and its *implementation*
- 2. Be able to define the ADTs stack, queue, priority queue and dictionary/symbol table
- 3. Understand array-based implementations of stack and queue
- **4.** Understand *linked lists* and the corresponding implementations of stack and queue
- **5.** Know *binary heaps* and their performance characteristics
- **6.** Understand *binary search trees* and their performance characteristics
- 7. Know high-level idea of basic *hashing strategies* and their performance characteristics

#### **Outline**

## 3 Fundamental Data Structures

- 3.1 Stacks & Queues
- 3.2 Resizable Arrays
- 3.3 Priority Queues & Binary Heaps
- 3.4 Operations on Binary Heaps
- 3.5 Symbol Tables
- 3.6 Binary Search Trees
- 3.7 Ordered Symbol Tables
- 3.8 Balanced BSTs
- 3.9 Hashing

What's the running time (on our word-RAM model with word size w) of this Java instruction?

Object[] A = new Object[n];



**(A)** 1

 $\left(\mathbf{D}\right) \Theta(w)$ 

**G**)  $\Theta(n \log n)$ 

 $\mathbf{B} \quad \Theta(1)$ 

 $oldsymbol{\mathbb{E}} \Theta(n/w)$ 

 $\mathbf{H}) \ \Theta(nw)$ 

 $\Theta(\log n)$ 

 $oldsymbol{\mathsf{F}}$   $\Theta(n)$ 

 $\Theta(n^2)$ 



→ sli.do/cs566

What's the running time (on our word-RAM model with word size w) of this Java instruction?

Object[] A = new Object[n]; //  $n \cdot \omega$  bit

A  $\frac{1}{2}$  D  $\frac{\Theta(nw)}{2}$  G  $\frac{\Theta(n \log n)}{2}$ B  $\frac{\Theta(1)}{2}$  H  $\frac{\Theta(nw)}{2}$ C  $\frac{\Theta(\log n)}{2}$  F  $\Theta(n)$  I  $\frac{\Theta(n^2)}{2}$ 



## **Recap: The Random Access Machine**

- ▶ Data structures make heavy use of pointers and dynamically allocated memory.
- ► Recall: Our RAM model supports
  - ▶ basic pseudocode (≈ simple Python/Java code)
  - creating arrays of a fixed/known size.
  - creating instances (objects) of a known class.

## **Recap: The Random Access Machine**

- ▶ Data structures make heavy use of pointers and dynamically allocated memory.
- ► Recall: Our RAM model supports
  - ▶ basic pseudocode (≈ simple Python/Java code)
  - creating arrays of a fixed/known size.
  - creating instances (objects) of a known class.



Python abstracts this away!

no predefined capacity!

There are no arrays in Python, only its built-in lists.

But: Python implementations create lists based on fixed-size arrays (stay tuned!)



Not every built-in Python instruction runs in O(1) time!

# 3.1 Stacks & Queues

## **Abstract Data Types**

#### abstract data type (ADT)

- list of supported operations
- what should happen
- **not:** how to do it
- **not:** how to store data

abstract base classes

≈ Java interface, Python ABĆs (with comments)

#### data structures

- specify exactlyhow data is represented
- **algorithms** for operations
- has concrete costs (space and running time)
- ≈ Java/Python class (non abstract)

## **Abstract Data Types**

#### abstract data type (ADT)

- list of supported operations
- what should happen
- **not:** how to do it
- **not:** how to store data

abstract base classes

VS.

≈ Java interface, Python ABĆs (with comments)

#### data structures

- specify exactlyhow data is represented
- **algorithms** for operations
- has concrete costs (space and running time)
- ≈ Java/Python class (non abstract)

#### Why separate?

- ► Can swap out implementations → "drop-in replacements"
- → reusable code!
- ► (Often) better abstractions
- ► Prove generic lower bounds ( → Unit 3)

## **Abstract Data Types**

#### abstract data type (ADT)

- list of supported operation
- ▶ what should happen
- ▶ not: how to do it
- ▶ **not:** how to store data

≈ Java interface, Python A (with comments)

#### Why separate?

- ► Can swap out implemen
- → reusable code!
- ► (Often) better abstractions
- ► Prove generic lower bounds ( → Unit 3)



Which of the following are examples of abstract data types?

タ

A ADT

**B** Stack

**C**) Deque

Linked list

**E**) binary search tree

**F** Queue

**G**) resizable array

**H**) heap

priority queue

**J** dictionary/symbol table

**(**) hash table



→ sli.do/cs566

Which of the following are examples of abstract data types? **B** Stack √ C Deque  $\sqrt{\ }$ priority queue dictionary/symbol table 🗸 Queue 🗸



#### **Stacks**



#### Stack ADT

- top()Return the topmost item on the stackDoes not modify the stack.
- push(x) Add x onto the top of the stack.
- pop()Remove the topmost item from the stack (and return it).
- ► isEmpty()
  Returns true iff stack is empty.
- create()Create and return an new empty stack.

## Linked-list implementation for Stack

#### **Invariants:**

- ▶ maintain pointer *top* to topmost element
- each element points to the element below it (or null if bottommost)



```
1 class Node
       value
2
      next
3
5 class Stack
       top := null
      procedure top():
           return top.value
      procedure push(x):
9
           top := new Node(x, top)
10
      procedure pop():
11
           t := top()
12
           top := top.next
13
           return t
14
```

## **Linked-list implementation for Stack – Discussion**

#### Linked stacks:

require  $\Theta(n)$  space when n elements on stack

All operations take O(1) time

 $\bigcap$  require  $\Theta(n)$  space when n elements on stack

Can we avoid extra space for pointers?

## Array-based implementation for Stack

If we want no pointers  $\ \leadsto \$  array-based implementation

#### **Invariants:**

- ▶ maintain array *S* of elements, from bottommost to topmost
- ▶ maintain index *top* of position of topmost element in S.



## Array-based implementation for Stack

If we want no pointers  $\ \rightsquigarrow \$  array-based implementation

#### **Invariants:**

- ▶ maintain array *S* of elements, from bottommost to topmost
- ▶ maintain index *top* of position of topmost element in S.



What to do if stack is full upon push?

#### Array stacks:

- ► require *fixed capacity C* (decided at creation time)!
- ▶ require  $\Theta(C)$  space for a capacity of C elements
- ▶ all operations take O(1) time

### Queues

#### **Operations:**

- enqueue(x)Add x at the end of the queue.
- dequeue()Remove item at the front of the queue and return it.





Implementations similar to stacks.

## **Bags**

What do Stack and Queue have in common?

## **Bags**

What do Stack and Queue have in common?

They are special cases of a *Bag*! Update Operations:

- ▶ insert(x)Add x to the items in the bag.
- delAny()Remove any one item from the bag and return it.(Not specified which; any choice is fine.)
- ► roughly similar to Java's java.util.Collection Python's collections.abc.Collection
- ▶ always support iterating over content (read only)

Sometimes it is useful to *state* that order is irrelevant  $\leadsto$  Bag Implementation of Bag usually just a Stack or a Queue



## 3.2 Resizable Arrays

## Digression – Arrays as ADT

Arrays can also be seen as an ADT!

#### **Array operations:**

- reate(n) Java: A = new int[n]; Python: A = [0] \* n Create a new array with n cells, with positions 0, 1, ..., n-1; we write A[0..n) = A[0..n-1]
- ► get(i) Java/Python: A[i] Return the content of cell i
- ▶ set(i,x) Java/Python: A[i] = x; Set the content of cell i to x.
- → Arrays have fixed size (supplied at creation). (≠ lists in Python)

## Digression – Arrays as ADT

Arrays can also be seen as an ADT! ... but are commonly seen as specific data structure

#### Array operations:

- create (n) Java: A = new int[n]; Python: A = [0] \* nCreate a new array with n cells, with positions 0, 1, ..., n-1; we write A[0..n) = A[0..n-1]
- ► get(i) Java/Python: A[i]
  Return the content of cell i
- ► set (i, x) Java/Python: A[i] = x; Set the content of cell i to x.
- Arrays have fixed size (supplied at creation). (≠ lists in Python)

Usually directly implemented by compiler + operating system / virtual machine.



Difference to "real" ADTs: *Implementation usually fixed* to "a contiguous chunk of memory".

## **Doubling trick**

Can we have unbounded stacks based on arrays?

Yes!

## **Doubling trick**

Can we have unbounded stacks based on arrays? Yes!

#### **Invariants:**

- ► maintain array *S* of elements, from bottommost to topmost
- ▶ maintain index *top* of position of topmost element in S
- ▶ maintain capacity C = S.length so that  $\frac{1}{4}C \le n \le C$

## **Doubling trick**

Can we have unbounded stacks based on arrays?

#### **Invariants:**

▶ maintain array *S* of elements, from bottommost to topmost

Yes!

- ▶ maintain index *top* of position of topmost element in S
- ▶ maintain capacity C = S.length so that  $\frac{1}{4}C \le n \le C$
- → can always push more elements!

#### How to maintain the last invariant?

- before push If n = C, allocate new array of size 2n, copy all elements.
- ▶ after pop If  $n < \frac{1}{4}C$ , allocate new array of size 2n, copy all elements.
- → "Resizing Arrays"

  ¬ an implementation technique, not an ADT!

Which of the following statements about resizable array that currently stores *n* elements is correct?



- The elements are stored in an array of size 2n.
- **B** Adding or deleting an element at the end takes constant time.
- A sequence of m insertions or deletions at the end of the array takes time O(n + m).
- D Inserting and deleting any element takes O(1) amortized time.



→ sli.do/cs566



## **Amortized Analysis**

- Any individual operation push / pop can be expensive!  $\Theta(n)$  time to copy all elements to new array.
- **But:** An one expensive operation of cost T means  $\Omega(T)$  next operations are cheap!

$$= \sum_{i=1}^{m} C_i \leq m \cdot A - \alpha \left( \underline{\uparrow}_m - \underline{\uparrow}_o \right)$$

to residen carays

$$\sum_{c} c_{c} \leq 5 \cdot m + 4 \cdot E_{m} \leq 5 m + 2.4 \cdot n$$

$$\sum_{i=1}^{\infty} C_i \leq S_{im} + 4 \cdot \sum_{m} \leq S_{m} + 2.4 \cdot m$$

## **Amortized Analysis**

- Any individual operation push / pop can be expensive!  $\Theta(n)$  time to copy all elements to new array.
- ▶ **But:** An one expensive operation of cost T means  $\Omega(T)$  next operations are cheap!



since  $n \le C \le 4n$ 

**Formally:** consider "credits/potential"  $\Phi = \min\{n - \frac{1}{4}C, C - n\} \in [0, 0.6n]$ 

- ▶ amortized cost of an operation = actual cost (array accesses) (-4) change in  $\Phi$ 
  - ► cheap push/pop: actual cost 1 array access, consumes  $\leq$  1 credits  $\xrightarrow{\cdot, \leftrightarrow}$  amortized cost  $\leq$  5
  - ▶ copying push: actual cost 2n + 1 array accesses, creates  $\frac{1}{2}n + 1$  credits  $\rightarrow$  amortized cost  $\leq 5$
  - ▶ copying pop: actual cost 2n + 1 array accesses, creates  $\frac{1}{2}n 1$  credits  $\rightarrow$  amortized cost 5
- $\rightarrow$  sequence of *m* operations: total actual cost  $\leq$  total amortized cost + final credits

here: 
$$\leq$$
 5m +  $4 \cdot 0.6n = \Theta(m+n)$ 



Which of the following statements about resizable array that currently stores *n* elements is correct?



- lack The elements are stored in an array of size 2n.
- **B** Adding or deleting an element at the end takes constant time.
- A sequence of m insertions or deletions at the end of the array takes time O(n + m).
- Inserting and deleting any element takes O(1) amortized time.



→ sli.do/cs566

Which of the following statements about resizable array that currently stores *n* elements is correct?



- A The elements are stored in an array of size 2m.
- Adding or deleting an element at the end takes constant time.
- A sequence of m insertions or deletions at the end of the array takes time O(n + m).
- D Inserting and deleting any element takes O(1) amortized time.



→ sli.do/cs566