Convex analysis

Olivier Fercoq

Télécom Paris

Existence of minimizers

Theorem

If $f:C\to\mathbb{R}$ is and the set C is

then $\exists x^*$ such that $f(x^*) \leq f(x)$ for all $x \in C$.

Existence of minimizers

Theorem

If $f: C \to \mathbb{R}$ is continuous and the set C is compact

then $\exists x^*$ such that $f(x^*) \leq f(x)$ for all $x \in C$.

Theorem

If $f: \mathbb{R}^d \to \mathbb{R}$ is lower semi-continuous and coercive then $\exists x^*$ such that $f(x^*) \leq f(x)$ for all $x \in C$.

Lower semi-continuity

Coercivity

Convex functions

Definition

A function $f: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ is convex if $\forall x, y \in \mathbb{R}^d, \forall t \in [0, 1]$,

Convex functions

Definition

A function $f:\mathbb{R}^d o \mathbb{R} \cup \{+\infty\}$ is convex if $\forall x,y \in \mathbb{R}^d, \forall t \in [0,1]$,

$$f(tx+(1-t)y) \leq tf(x)+(1-t)f(y)$$

Why do we allow $+\infty$ values?

Let C be a convex set and let the convex indicator of C be $\iota_C(x) = \begin{cases} 0 & \text{if } x \in C \\ +\infty & \text{if } x \notin C \end{cases}$

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} f(x) + \iota_C(x)$$

st $x \in C$

ightarrow Nonsmooth optimization generalizes constrained optimization

Gradients of convex functions

Proposition

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a convex function, differentiable at x. Then for all $y \in \mathbb{R}^d$,

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$$

▷ proof last week in lecture

Proposition

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a twice differentiable convex function. Then for all $x \in \mathbb{R}^d$, $\nabla^2 f(x)$ is a positive semi-definite matrix.

▷ proof on next slide

Proposition

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a differentiable function, whose gradient is L-Lipschitz. Then for all $x, y \in \mathbb{R}^d$,

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||x - y||^2$$

▷ proof in tutorial session

Hessian matrix of a convex function

Proposition

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a twice differentiable convex function. Then for all $x \in \mathbb{R}^d$, $\nabla^2 f(x)$ is a positive semi-definite matrix.

Subgradient

Definition

Let $f: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$.

A vector $\phi \in \mathbb{R}^d$ is a *subgradient* of f at x if

$$\forall y \in \mathbb{R}^d$$
, $f(y) \ge f(x) + \langle \phi, y - x \rangle$

The set of all subgradients is called the *subdifferential*:

$$\partial f(x) = \{ \phi : \forall y \in \mathbb{R}^d, \ f(y) \ge f(x) + \langle \phi, y - x \rangle \}$$

Examples:
$$f(x) = |x|$$
 $f(x) = \iota_{\mathbb{R}_+}(x)$

Operations on subdifferentials

Theorem

If $f: \mathbb{R}^m \to \mathbb{R}^n$ and $g: \mathbb{R}^d \to \mathbb{R}^m$ are two differentiable function, then

$$J_{f\circ g}(x)=J_f(g(x))\times J_g(x)$$

Corollary

If f is differentiable and M is a linear operator, then

$$\nabla (f \circ M)(x) = M^{\top} \nabla f(Mx)$$

Theorem

If f and g are convex and g is differentiable, then

$$\partial(f+g)(x) = \partial f(x) + {\nabla g(x)}$$

Proof

Theorem

If f and g are convex and g is differentiable, then $\partial(f+g)(x)=\partial f(x)+\{\nabla g(x)\}.$

Fermat's rule

Theorem

 $x \in \arg\min f \Leftrightarrow 0 \in \partial f(x)$

Corollary

Suppose that f is convex and differentiable.

$$x \in \operatorname{arg\,min} f \Leftrightarrow \nabla f(x) = 0$$