

DBMS LEARN

Documentation

Abstract

[Draw your reader in with an engaging abstract. It is typically a short summary of the document. When you're ready to add your content, just click here and start typing.]

INDEX

1	INTRODUCTION TO DATABASE		1
	1.1	Introduction	1
	1.2	ADVANTAGES	
	1.3	BASIC TERMS	
2	B 4	MYSQL	,
_			
	2.1	Introduction	
3	0	OVERVIEW OF MYSQL WORKBENCH	5
	3.1	INTRODUCTION	
	3.2	FUNCTIONALITY	
	3.3	EDITIONS	
	3.4	Overview	
4	D	DATABASE DESIGN	
	4.1	Introduction	
	4.1	DATABASE DEVELOPMENT LIFE CYCLE	
	4.2	DATABASE DESIGN TECHNIQUE	
5	BASIC SQL		
3		•	
	5.1	INTRODUCTION	
	5.2	DATA DEFINITION LANGUAGE	
	5.3	DATA QUERY LANGUAGE	
	5.4	DATA MANIPULATION LANGUAGE	
	5.5	Data Control Language Transaction Control Language	
	5.6		
6 DATA SORTING		DATA SORTING	20
	6.1	Introduction	20
7	N	NULL VALUE & KEYWORD	2 1
	7.1	Introduction	21
8	K	(EYS AND AUTO INCREMENT	22
	8.1	Primary Key	23
	8.2	AUTO INCREMENT	
	8.3	FOREIGN KEY	
	8.4	UNIQUE KEY	
9		AGGREGATE FUNCTIONS	
_			
	9.1	INTRODUCTION	
	9.2	AGGREGATE FUNCTION	
	9.3	GROUP BY	
	9.4	HAVING	t

9.5	EQUENCE OF STATEMENT	27

INTRODUCTION TO DATABASE

1.1 INTRODUCTION

Data:

- Fact that ca be record or stored
- For ex: Person Name, Age, Gender and Weight...

Database:

- Collection of logically related data
- For ex: Books Database in Library, Student Database in University...

Management:

- Manipulation, Searching and Securing of data.
- Viewing result in GTU website, Searching exam papers in GTU website...

System:

- Program or tool that used to manage database
- MS SQL, MySQL, Postgres SQL, Oracle...

Database Management System:

It is a software designed to define, manipulate, retrieve and manage data in a database.

1.2 ADVANTAGES

- Reduce data duplication
- Remove inconsistency
- > Data isolation
- ➤ Guaranty of atomicity(0% or 100%)
- Allow implementing integrity constraints
- Sharing among the multiple user
- Restricted unauthorized access
- Provides backup and recovery services

1.3 BASIC TERMS

Data:

- Data is raw, unorganized facts that need to be processed.
- For ex: Marks of students...

Information:

- ➤ When data is processed, organized, structured or presented in a given context so as to make it useful, it is called information.
- For ex: Result of students (Pass or Fail)...

Metadata:

- Metadata is data about data.
- ➤ Data such as table name, column name, data type, authorized user and user access privileges for any table is called metadata for that table.

Data Dictionary:

➤ A data dictionary is an information repository which contains metadata.

Data Warehouse:

A data warehouse is an information repository which stores data.

Field:

- A field is a character or group of characters that have a specific meaning.
- For ex: The value of Emp Name, Address, Mobile No etc are all fields of Faculty table.

Record/Tuple:

- A record is a collection of logically related fields.
- For ex: The collection of fields (Emp_Name, Address, Mobile_No, Subject) forms a record for the Faculty.

Primary Key:

A key which is unique as well as not null.

Unique Key:

A key which is unique but it could be null.

Foreign Key:

> A key which liked two table.

Compose Key:

> A key that consists of multiple columns, because one column is not sufficiently identify record uniquely.

MYSQL

2.1 Introduction

- MySQL is a fast, easy-to-use RDBMS being used for many small and big businesses.
- MySQL is developed, marketed and supported by MySQL AB, which is a Swedish company.
- MySQL is released under an open-source license.
- So you have nothing to pay to use it.
- MySQL is a very powerful program in its own right.
- ➤ It handles a large subset of the functionality of the most expensive and powerful database packages.
- MySQL uses a standard form of the well-known SQL data language.
- ➤ MySQL works on many operating systems and with many languages including PHP, PERL, C, C++, JAVA, etc.
- > MySQL works very quickly and works well even with large data sets.
- MySQL is very friendly to PHP, the most appreciated language for web development.
- MySQL supports large databases, up to 50 million rows or more in a table.
- The default file size limit for a table is 4GB, but you can increase this (if your operating system can handle it) to a theoretical limit of 8 million terabytes (TB).
- MySQL is customizable.
- The open-source GPL license allows programmers to modify the MySQL software to fit their own specific environments.

OVERVIEW OF MYSQL WORKBENCH

3.1 Introduction

- MySQL Workbench is graphical user interface tool that used for working with database architects, developers, and Database Administrators.
- > It is developed and maintained by Oracle.
- ➤ It provides SQL development, data modelling, data migration, and comprehensive administration tools for server configuration, user administration, backup, and many more.
- ➤ We can use this Server Administration for creating new physical data models, E-R diagrams, and for SQL development (run queries, etc.).
- It is available for all major operating systems like Mac OS, Windows, and Linux.
- MySQL Workbench fully supports MySQL Server version v5.6 and higher.

3.2 FUNCTIONALITY

SQL Development:

This functionality provides the capability that enables you to execute SQL queries, create and manage connections to the database Servers with the help of built-in SQL editor.

Data Modelling (Design):

- ➤ This functionality provides the capability that enables you to create models of the database Schema graphically, performs reverse and forward engineering between a Schema and a live database, and edit all aspects of the database using the comprehensive Table editor.
- > The Table editor gives the facilities for editing tables, columns, indexes, views, triggers, partitioning, etc.

Server Administration:

This functionality enables you to administer MySQL Server instances by administering users, inspecting audit data, viewing database health, performing backup and recovery, and monitoring the performance of MySQL Server.

Data Migration:

- This functionality allows you to migrate from Microsoft SQL Server, SQLite, Microsoft Access, PostgreSQL, Sybase ASE, SQL Anywhere, and other RDBMS tables, objects, and data to MySQL.
- > It also supports migrating from the previous versions of MySQL to the latest releases.

MySQL Enterprise Supports:

This functionality gives the support for Enterprise products such as MySQL firewall, MySQL Enterprise Backup, and MySQL Audit.

3.3 EDITIONS

- MySQL Workbench is mainly available in three editions...
 - Community Edition (Open Source, GPL)
 - Standard Edition (Commercial)
 - Enterprise Edition (Commercial)

Community Edition:

- The Community Edition is an open-source and freely downloadable version of the most popular database management system.
- It came under the GPL license and is supported by a hug community of developers.

Standard Edition:

- ➤ It is the commercial edition that provides the capability to deliver high-performance and scalable Online Transaction Processing (OLTP) applications.
- It has made MySQL famous along with industrial-strength, performance, and reliability.

Enterprise Edition:

- It is the commercial edition that includes a set of advanced features, management tools, and technical support to achieve the highest scalability, security, reliability, and uptime.
- This edition also reduces the risk, cost, complexity in the development, deployment, and managing MySQL applications.

3.4 OVERVIEW

When we open my sql workbench we have this type of window open.

DATABASE DESIGN

4.1 Introduction

- ➤ Database Design is a collection of processes that facilitate the designing, development, implementation and maintenance of enterprise data management systems.
- Properly designed database are easy to maintain, improves data consistency and are cost effective in terms of disk storage space.
- > The database designer decides how the data elements correlate and what data must be stored.

4.2 DATABASE DEVELOPMENT LIFE CYCLE

- The database development life cycle has a number of stages that are followed when developing database systems.
- But it is not necessary to follow every stapes.

4.2.1 REQUIREMENT ANALYSIS:

Planning:

- > This stages of database design concepts are concerned with planning of entire Database Development Life Cycle.
- It takes into consideration the Information Systems strategy of the organization.

System definition:

This stage defines the scope and boundaries of the proposed database system.

4.2.2 DATABASE DESIGNING:

Logical model:

- This stage is concerned with developing a database model based on requirements.
- The entire design is on paper without any physical implementations or specific DBMS considerations.

Physical model:

This stage implements the logical model of the database taking into account the DBMS and physical implementation factors.

4.2.3 IMPLEMENTATION:

Data conversion and loading:

➤ This stage of relational databases design is concerned with importing and converting data from the old system into the new database.

Testing:

- This stage is concerned with the identification of errors in the newly implemented system.
- It checks the database against requirement specifications.

4.3 DATABASE DESIGN TECHNIQUE

- We have two types of database design techniques.
 - Normalization
 - o ER Modeling

4.3.1 ER MODELING

- Entity Relationship Model (ER Modeling) is a graphical approach to database design.
- ➤ It is a high-level data model that defines data elements and their relationship for a specified software system.
- An ER model is used to represent real-world objects.

4.3.2 NORMALIZATION

- Normalization is the process of removing redundant data from tables to improve data integrity(completeness, accuracy and consistency of data), scalability and storage efficiency.
- ➤ We have 6 type of normal forms
 - o 1NF
 - o 2NF
 - 3NF
 - o BCNF

- o 4NF
- o 5NF

Normal Form	Description
1NF	A relation is in 1NF if it contains an atomic value.
2NF	A relation will be in 2NF if it is in 1NF and all non-key attributes are fully functional dependent on the primary key.
3NF	A relation will be in 3NF if it is in 2NF and no transition dependency exists.
BCNF	A stronger definition of 3NF is known as Boyce Codd's normal form.
4NF	A relation will be in 4NF if it is in Boyce Codd's normal form and has no multi-valued dependency.
5NF	A relation is in 5NF. If it is in 4NF and does not contain any join dependency, joining should be lossless.

BASIC SQL

5.1 Introduction

- SQL have basic five components,
 - Data Definition Language
 - DQL Data Query Language
 - DML Data Manipulation Language
 - DCL Data Control Language
 - TCL Transaction Control Language

5.2 DATA DEFINITION LANGUAGE

- It contains SQL command that used for define schema.
- > DDL is a set of SQL commands used to create, modify, and delete database structures but not data.
- DDL contains following commands,
 - o Create
 - o Drop
 - Alter

- Truncate
- Comment
- Rename

Create:

This command is used to create the database or its objects (like table, index, function, views, store procedure, and triggers).

Example:

```
Create Database CollageDB;

Create Table Student(
    Id int Not Null Auto_Increment,
    Name Varchar(250) Not Null,
    DateOfBirth Date Not Null,
    ContactNo Varchar(25),
    Gender Varchar(1),
    Primary Key(Id)
);
```

Drop:

This command is used to delete objects from the database.

Example:

```
Drop Database CollageDB;

Drop Table Faculty;
```

Alter:

This is used to update the structure of the database.

```
-- For Single Column
-- Add new column in table
Alter Table Faculty
Add Email Varchar(50);
-- Edit column in table
Alter Table Faculty
Modify Column Email Varchar(250);
```

```
-- Delete column in table
Alter Table Faculty
Drop Column Email;

-- For Multiple Column
-- Add new columns in table
Alter Table Faculty
Add Email Varchar(50),
Add Subject Varchar(50);

-- Edit columns in table
Alter Table Faculty
Modify Column Email Varchar(250),
Modify Column Subject Varchar (25);

-- Delete colomuns in table
Alter Table Faculty
Drop Column Email,
Drop Column Subject;
```

Truncate:

This is used to remove all records from a table, including all spaces allocated for the records are removed.

Example:

```
Truncate Table student;
```

Comment:

This is used to add comments to the data dictionary.

Example:

Rename:

This is used to rename an object existing in the database.

Example:

```
-- Raname table name
Alter Table Faculty
Rename To FacultyNew
```

5.3 DATA QUERY LANGUAGE

- DQL is used to perform a query on schema.
- > It is used to retrieve data from schema.
- > It have only one command which is select.
- ➤ When we fired select command on table that time data stored in temporary table and this table we should see in output window.

```
Select * From Student;
Select Id, Name, Email From Student;
Select * from Student
Where Id = 1;
Select * from Student
Where Id != 1;
Where Id <> 1;
SELECT * from Student
Where RollNo > 5 and RollNo <= 10
SELECT * from Student
Where RollNo = 5 or RollNo = 10
SELECT * from Student
Where RollNo In(5, 10, 15, 20)
SELECT * from Student
Where RollNo BETWEEN 5 and 10
SELECT * from Student
Where RollNo not BETWEEN 5 and 10
Select * from Student
Where Email is not Null;
-- (%) represent more the one character
Select * from Student
Where RollNo like "1_";
Select * from Student
```

```
Where Name like "a%";
-- starting name from a

Select * from Student
Where Name like "%e";
-- starting name from e

Select * from Student
Where Name like "a%e";
-- starting name from a and ending from b

-- orderby
Select * from Student
ORDER BY Name, Email, RollNo, Id;

Select * from Student
ORDER BY Name Desc;

Select DISTINCT RollNo from Student

Select Name from Student
Limit 5;

Select Name as Username from Student;
```

5.4 DATA MANIPULATION LANGUAGE

- These commands is used for data manipulation in existing schema.
- It is the component of the SQL statement that controls access to data and to the database.
- Basically, DCL statements are grouped with DML statements.
- It contains following commands,
 - o Insert
 - o Update
 - o Delete
 - o Lock
 - o Call
 - Explain Plan

Insert:

> It is used to insert data into a table.

```
-- Insert one record
Insert into Student (Name, DateOfBirth, ContactNo, Gender) values ("Dhruvil Dobariya", "2002-04-04", "9487587380", "M");
```

```
-- Insert multiple record

Insert into Student (Name, DateOfBirth, ContactNo, Gender) values

("Dhaval Dobariya", "2001-04-12","","M"),

("Bhargav Vachhani", "2002-01-04", "9408574858", ""),

("Jenil Vasoya", "2002-04-11", "", ""),

("Dhruv Rathod", "2002-07-11", "8594003858", "M");
```

Update:

It is used to update existing data within a table.

Example:

```
Update Student
Set Name = "Dhruvi Savaliya", Gender = "F"
Where Id = 5
```

Delete:

> It is used to delete records from a database table.

Example:

```
Delete From Student Where Id = 6
```

Lock:

- Data consistency is an important mechanism, and it can be done by means of SQL Locks.
- A lock is established in SQL Server when a transaction starts, and it will released when it is ended.
- We have different types of locks available in relational database,
 - Shared (S) Locks:
 - When the object needs to be read, this type of lock will occur.
 - But this is not harmful.
 - Exclusive (X) Locks:
 - It prevents other transactions like inserting/updating/deleting.
 - So no modifications can be done when we apply this type of lock on object.
 - Update (U) Locks:
 - It's like Exclusive lock but here the operation can be viewed as "read phase" and "write phase".
 - During the read phase, other transactions are prevented.
 - o Intent Locks:

Intent lock happens on a table, when the shared (S) lock or exclusive (X) lock or Update (U) lock happens on the row.

Regular intent locks:

- Intent exclusive (IX)
- Intent shared (IS)
- Intent update (IU).

Conversion locks:

- Shared with intent exclusive (SIX)
- Shared with intent update (SIU)
- Update with intent exclusive (UIX)
- We have hierarchy for lock.

(Select)

(Update/Insert/Delete)

Call:

➤ Call a PL/SQL

Explain Plan:

It describes the access path to data.

5.5 DATA CONTROL LANGUAGE

- > DCL includes commands which mainly use for user rights, permissions and other controls on database.
- It contains two command,
 - Grant
 - o Revoke

Grant:

➤ This command is used to give user access privileges of database to user.

Example:

```
GRANT insert,
select on studentdb to root
-- We give permision of insrt into studentdb to root
```

Revoke:

This command revoke the user privileges of database from the user.

Example:

```
REVOKE insert,
select on studentdb from root
-- We revoke permision of insrt into studentdb from root
```

5.6 Transaction Control Language

- ➤ We have group of some transection which used for execute single query.
- Transection done when this group of transections id done,
- If any one is failed then whole transection is failed.
- So transection have only two result, success and failure.
- > Transection contains some commands.

- o Begin
- o Commit
- o Rollback
- o Savepoint
- o Set Transection

Begin:

> Opens a Transaction.

Commit:

> Commits a Transaction.

Rollback:

> Rollback transection if any error occur during transaction.

Savepoint:

> Set a save point within the transection.

Set Transection:

> Specify characteristics for transection.

DATA SORTING

6.1 INTRODUCTION

- We have "Order By" key word to sort our result set.
- > By default it's sort in ascending order, But we can specify if we want to sort in descending using "Desc" Key word.

Syntax:

```
SELECT column1, column2, ...

FROM table_name

ORDER BY column1, column2, ... ASC|DESC;
```

```
-- ascending order

SELECT * FROM Customers

ORDER BY Country;

-- descending order

SELECT * FROM Customers

ORDER BY Country; DESC
```

NULL VALUE & KEYWORD

7.1 Introduction

- ➤ If a field in a table is optional, it is possible to insert a new record or update a record without adding a value to this field.
- Then, that field will be saved with a NULL value.
- Null value different from zero or empty.
- Null means nothing.
- ➤ We have two key work to check null value, "Is Null" and "Is Not Null".

Syntax:

```
SELECT column_names
FROM table_name
WHERE column_name IS NULL | IS NOT NULL;
```

```
-- Get rows which have address is null
SELECT CustomerName, ContactName, Address
FROM Customers
WHERE Address IS NULL;
-- Get rows which have address is not null
SELECT CustomerName, ContactName, Address
FROM Customers
WHERE Address IS NOT NULL;
```

KEYS AND AUTO INCREMENT

8.1 PRIMARY KEY

- Primary key is key that used to uniquely identify record in table.
- Primary key must be unique and not null.
- One table contains one, primary key, but this primary key may combination one or more column.
- We are use "Primary Key" key word to define primary key.

```
- Define Primary Key
   LastName varchar(255) NOT NULL,
   FirstName varchar(255),
    Age int,
    PRIMARY KEY (ID)
CREATE TABLE Persons (
    LastName varchar(255) NOT NULL,
   FirstName varchar(255),
   Age int,
    CONSTRAINT PK Person PRIMARY KEY (ID, LastName)
);
ALTER TABLE Persons
ADD PRIMARY KEY (ID);
ALTER TABLE Persons
ADD CONSTRAINT PK_Person PRIMARY KEY (ID,LastName);
-- Drop Primary Key
ALTER TABLE Persons
DROP PRIMARY KEY;
```

8.2 Auto Increment

Auto Increment generate automatic unique and incremental number in particular field.

```
CREATE TABLE Persons (
Personid int NOT NULL AUTO_INCREMENT,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int,
PRIMARY KEY (Personid)
);
```

8.3 Foreign Key

- Foreign key is the key that used to linked two table.
- Parent table primary key is used as a foreign key in child table.
- We have "Foreign Key" keyword to define foreign key.

```
CREATE TABLE Orders (
    OrderID int NOT NULL,
    OrderNumber int NOT NULL,
    PersonID int,
    PRIMARY KEY (OrderID),
    FOREIGN KEY (PersonID) REFERENCES Persons(PersonID)
);
-- OR
CREATE TABLE Orders (
    OrderID int NOT NULL,
    OrderNumber int NOT NULL,
    PersonID int,
    PRIMARY KEY (OrderID),
    CONSTRAINT FK_PersonOrder FOREIGN KEY (PersonID)
    REFERENCES Persons(PersonID)
);
```

8.4 UNIQUE KEY

- Unique key is the key that used to set unique behavior of particular field.
- Unique key may null, primary key must not.
- Unique key may one or more in table.
- ➤ We have "Unique Key" keyword to define unique key.

```
CREATE TABLE Persons (
    ID int NOT NULL,
    LastName varchar(255) NOT NULL,
    FirstName varchar(255),
    Age int,
    UNIQUE (ID)
);
-- OR
CREATE TABLE Persons (
    ID int NOT NULL,
    LastName varchar(255) NOT NULL,
```

```
FirstName varchar(255),
  Age int,
  CONSTRAINT UC_Person UNIQUE (ID,LastName)
);
```

AGGREGATE FUNCTIONS

9.1 Introduction

- > Aggregate function is used to perform calculation on row of single column.
- > It return only single value.
- It is also used to summarize the data.

9.2 AGGREGATE FUNCTION

- We have five types of aggregate function,
 - Count
 - o Sum
 - Avg
 - o Min
 - Max

Count:

Count number is used to count number of rows in table.

Example:

```
select Count(*) from Product;
select count(distinct Company) from Product;
```

Sum:

- > Sum is used to calculate sum of all selected column.
- It works on only numeric fields.

Example:

```
SELECT Sum(Quantity) As TotalQuantity from Product;
```

Avg:

- Avg function is used to calculate average of selected column.
- > It works on only numeric fields.

SELECT AVG(Cost) from Product;

Min:

- Min is used to find minimum value of particular column.
- > It works on only numeric fields.

Example:

```
SELECT Min(Quantity) from Product;
```

Max:

- Max is used to find maximum value of particular column.
- > It works on only numeric fields.

Example:

```
SELECT Max(Quantity) from Product;
```

9.3 GROUP BY

- Group By is used to make collection of same value so we can summarize data.
- Group By statement is used with aggregate functions.

Example:

```
SELECT Company, Sum(Quantity) from Product
Group By Company
```

9.4 HAVING

- ➤ Having is used to specify condition after group by with aggregate function.
- ➤ We must use "Having" with aggregate function we can't use "Where".

```
SELECT Company, Count(Company) From Product
Group By Company
Having Count(Company) >= 5;

SELECT Company, Sum(Quantity) As TotalQuantity from Product
Group By Company
HAVING TotalQuantity > 50;
```

```
SELECT Company, Sum(Quantity) As TotalQuantity from Product
Where Quantity >= 4
Group By Company
HAVING TotalQuantity > 50;

SELECT Company, Sum(Quantity) As TotalQuantity from Product
Where Quantity >= 4
Group By Company
HAVING TotalQuantity > 40
ORDER BY Company
LIMIT 2;
```

9.5 SEQUENCE OF STATEMENT

We have particular sequence that we must follow in SQL queries.

Syntax:

```
SELECT column_name(s)

FROM table_name

WHERE condition

GROUP BY column_name(s)

HAVING condition

ORDER BY column_name(s)

LIMIT number;
```

