Notas Análisis Matemático IV

Cristo Daniel Alvarado

16 de abril de 2024

Índice general

3.	Series de Fourier	2
	3.1. Series de Fourier de funciones en $\mathcal{L}_1^{2\pi}$	2

Capítulo 3

Series de Fourier

3.1. Series de Fourier de funciones en $\mathcal{L}_1^{2\pi}$

Definición 3.1.1

Se llama serie de Fourier trigonométrica a una serie de funciones de $\mathbb R$ en $\mathbb C$ de la forma

$$\sum_{k \in \mathbb{Z}} c_k e^{ikx} \tag{3.1}$$

donde $c_k \in \mathbb{C}$ para todo $k \in \mathbb{Z}$ son coeficientes constantes. Por definición, las sumas parciales de la serie son:

$$s_m(x) = \sum_{k=-m}^{m} c_k e^{ikx}, \forall m \in \mathbb{N}^*$$

Se dice que la serie **converge en un punto** x **a una suma** f(x), si

$$f(x) = \lim_{m \to \infty} s_m(x) = \lim_{m \to \infty} \sum_{k=-m}^{m} c_k e^{ikx}$$

En este caso,

$$f(x) = \sum_{k \in \mathbb{Z}} c_k e^{ikx} = \sum_{k = -\infty}^{\infty} c_k e^{ikx}$$

Usando la identidad $e^{ikx} = \cos kx + i \sin kx$, podemos reescribir s_m como

$$s_m(x) = c_0 + \sum_{k=1}^m (c_k + c_{-k}) \cos kx + i \sum_{k=1}^m (c_k - c_{-k}) \sin kx, \quad \forall m \in \mathbb{N}^*$$
 (3.2)

definamos

$$a_k = c_k + c_{-k}$$
 y $b_k = c_k - c_{-k}$, $\forall k \in \mathbb{Z}$

es claro que

$$a_{-k} = a_k$$
 y $b_{-k} = -b_k$, $\forall k \in \mathbb{Z}$

conociendo los coeficientes a_k y b_k se recobran los c_k por las fórmulas

$$c_k = \frac{a_k - ib_k}{2}, \quad \forall k \in \mathbb{Z} \setminus \{0\}$$

y, $c_0 = \frac{a_0}{2}$. En términos de los a_k y b_k , las funciones (2) y (1) pueden ser reescritas como sigue:

$$s_m(x) = \frac{a_0}{2} + \sum_{k=1}^m a_k \cos kx + \sum_{k=1}^m b_k \sin kx, \quad \forall m \in \mathbb{N}^*$$
 (3.3)

y,

$$\sum_{k \in \mathbb{Z}} c_k e^{ikx} = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + \sum_{k=1}^{\infty} b_k \sin kx$$
 (3.4)

Definición 3.1.2

Se dice que la serie trigonométrica es **real** si $s_m(x) \in \mathbb{R}$ para todo $m \in \mathbb{N}^*$ y para todo $x \in \mathbb{R}$. Se sigue de (3.2) que la serie es real si y sólo si $a_k, b_k \in \mathbb{R}$, para todo $k \in \mathbb{N}^*$.

Esta condición es equivalente a que

$$c_{-k} = \overline{c_k}, \quad \forall k \in \mathbb{Z}$$

¿Qué relación hay entre f y los coeficientes c_k ?

Proposición 3.1.1

Considere una serie trigonométrica $\sum_{k\in\mathbb{Z}} c_k e^{ikx}$. Suponga que esta serie converge uniformemente en \mathbb{R} a alguna función f. Entonces, $f\in\mathcal{C}^{2\pi}$ y

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx}dx, \quad \forall n \in \mathbb{Z}$$

Demostración:

Se supone que $f(x) = \sum_{k \in \mathbb{Z}} c_k e^{ikx}$ uniformemente en \mathbb{R} . Como el límite uniforme de una sucesión de funciones continuas es continua, se tiene entonces que $f \in \mathcal{C}^{2\pi}$. Para un $n \in \mathbb{Z}$

$$f(x)e^{-inx} = \sum_{k \in \mathbb{Z}} c_k e^{i(k-n)x}$$
 uniformemente en \mathbb{R} (3.5)

pues,

$$|f(x)e^{-inx} - s_m(x)e^{-inx}| = |f(x) - s_m(x)|, \quad \forall m \in \mathbb{N}^*$$

Se puede pues integrar término por término (3.5) en el compacto $[-\pi,\pi]$. Veamos que

$$\int_{-\pi}^{\pi} e^{i(n-k)x} dx = \begin{cases} 2\pi & \text{si} \quad n=k\\ 0 & \text{si} \quad n \neq k \end{cases}$$

por tanto,

$$\int_{-\pi}^{\pi} f(x)e^{-inx}dx = \sum_{k \in \mathbb{Z}} \int_{-\pi}^{\pi} e^{i(k-n)x}dx$$
$$= 2\pi c_n$$
$$\Rightarrow c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx}dx$$

Este resultado sugiere la definición siguiente:

Definición 3.1.3

Para todo $f \in \mathcal{L}_{1}^{2\pi}(\mathbb{C})$ se define

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-ikx}dx, \quad \forall k \in \mathbb{Z}$$

en particular, $c_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$. Los coeficientes c_k se llaman los coeficientes de Fourier trigonométricos de f y, la serie

$$\sum_{k \in \mathbb{Z}} c_k e^{ikx}$$

se llama serie de Fourier trigonométrica de f.

Observación 3.1.1

Los correspondientes coeficientes a_k y b_k son los siguientes:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

también,

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx$$
 y $b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx$

para todo $k \in \mathbb{Z}$ (esto se obtiene usando la igualdad entre los c_k y a_k, b_k).

Observación 3.1.2

Para fines prácticos, conviene tener en cuenta lo siguiente. Si f es una función impar en $]-\pi,\pi[$, entonces

$$a_k = 0 \quad \forall k \in \mathbb{N}^*$$

у,

$$b_k = \frac{2}{\pi} \int_0^{\pi} f(x) \sin kx, \quad \forall k \in \mathbb{N}$$

Si f es una funció npar en] $-\pi,\pi[$ se invierte el resultado, es decir

$$a_k = \frac{2}{\pi} \int_0^{\pi} f(x) \cos kx, \quad \forall k \in \mathbb{N}^*$$

у,

$$b_k = 0 \quad \forall k \in \mathbb{N}$$