

EDSP Mentoring Program Data Preparation, EDA, and Feature Engineering

Jon Tupitza

Sr. Cloud Solution Architect – Data & Analytics – Azure Data Scientist Professor of Data Science at University of Virginia

Jon.Tupitza@Microsoft.com

The Microsoft Team Data Science Process

Iterative & Exploratory: Largely Based on Conducting Experiments

Business **Understanding Data Acquisition** Deployment & Understanding Modeling

Business Understanding

- Identify the Problem Domain
- Identify the Solution Scenario

Acquire & Understand Data

- Load, Prepare & Explore Data
- Identify Influential Features

Develop Machine Learning Models

- Develop Machine Select & Engineer Features
 - Train, Evaluate & Tune Models

Deployment

- Publish Models as Webservices
- Consume Models Visually and Programmatically

CRISP-DM: Cross-Industry Standard Process-Data Mining

First Introduced in 1996!

Business Understanding

- Identify the Problem Domain
- Identify the Solution Scenario

Data Understanding

- Load and Explore Data
- Identify Influential Features

Data Preparation

- Remove Duplicates & Nulls
- Impute Missing Values
- Select & Engineer Features

Modeling

- Train Models Using a Variety of Algorithms
- Tune Hyper-parameters

Evaluation

- Test Models' Performance & Predictive Power
- Cross-Validate to Appraise Goodness-of-Fit
- Select Most Effective Model for Deployment

Deployment

- Publish Models On-premises or in the Cloud
- Consume Models Visually & Programmatically

Data Profiling: Understanding the Data

Sourcing and Understanding Data that Pertains to the Business Case

Identify the *Shape* of the Dataset:

- Number of Observations (Rows) and their Meaning
- Number of Features (Columns) and their Meaning
 - DataType of Each Feature (e.g., Numerical or Categorical)
 - Cardinality (Number of Unique Values) and Rare Categories
 - Distribution of Values (e.g., Normal, Bernoulli, Binomial, Poisson, Exponential)
 - Statistics: Mean, Standard Deviation, Min, Max, Interquartile Range (IQR)

Identify any *Flaws* in the Data:

- Duplicate Observations *or* Redundant Features
- Missing Data NULL or NaN (Not a Number)
- Inappropriate Data Type Definitions
- Outliers Are they erroneous or do they represent the general truth?

Data Understanding: Define the Unit of Analysis

What Does Each Row (Observation) Represent?

Loan Risk Data

Education	Married	Purpose	Late Payments	Annual Income	Loan Is Bad
1	Yes	Car Purchase	0	\$107,000	0
3	No	Small Business	3	\$99,000	1
1	Yes	House Purchase	5	\$85,000	1
2	No	Marriage	1	\$72,000	0
2	No	Debt Consolidation	0	\$120,000	0

Data Understanding: Define the Target

What Do You Want to Predict?

Loan Risk Data

Education	Married	Purpose	Late Payments	Annual Income	Loan Is Bad
1	Yes	Car Purchase	0	\$107,000	0
3	No	Small Business	3	\$99,000	1
1	Yes	House Purchase	5	\$85,000	1
2	No	Marriage	1	\$72,000	0
2	No	Debt Consolidation	0	\$120,000	0

Data Understanding: Target Leakage

Data Not Known at the Time of Prediction

Data Understanding: Target Leakage

Data Not Known at the Time of Prediction

Loan Risk Data

Education	Married	Purpose	Late Payments	Annual Income	Loan Is Bad
1	Yes	Car Purchase	0	\$107,000	0
3	No	Small Business	3	\$99,000	1
1	Yes	House Purchase	5	\$85,000	1
2	No	Marriage	1	\$72,000	0
2	No	Debt Consolidation	0	\$120,000	0

Prepare Data, Engineer & Select Features Data Science & Machine Learning Development

Data Preparation: Feature Engineering

Impute Missing Values

Date/Time Parsing

Scaling

Encoding

Generalization

Discretization (Binning)

Credibility Estimates

DayOfWeek **MonthOfYear IsWeekend** DateOfSale 03/07/2020 Saturday March 06/07/2020 Sunday June 09/02/2020 Wednesday September 0 10/08/2020 Thursday October 12/07/2020 Monday December 0

Age Group

DateOfBirth	Age	Age Group
02/13/1969	51	Fifties
03/05/1972	48	Forties
04/11/1984	36	Thirties
05/21/1995	25	Twenties
06/24/2002	18	Teens

Feature Engineering: Numerical Features

- Impute missing values and create a flag to indicate imputed values:
 - Mean, Median, Mode
 - Custom or Calculated (e.g., MICE)

Price	Mean	Median	Imputed Flag
7	7	7	0
null	7	5	1
5	5	5	0
NaN	7	5	1
9	9	9	0

- Scaling:
 - Standardize: Rescale so mean $(\mu) = 0$ and Standard Deviation $(\sigma) = 1$

$$z = (x_i - \mu)/\sigma$$

 Normalize: Rescale so the range falls between 0 and 1

z = (x - min(x) / max(x) - min(x)

Feature Engineering: Encoding Categorical Features

Because machine learning algorithms cannot interpret text data, categorical features must first be transformed (encoded) into numerical values.

aka, Dummy Features

Feature Engineering: Credibility Estimates

Categorical features often have unequal member distributions.

Credibility estimates help compensate for this imbalanced representation.

Target	Group	Credibility Estimate
0	А	3 * (0.33 – 0.4)
0	В	1 * (0 – 0.4)
1	С	1 * (0 – 0.4)
1	Α	3 * (0.33 – 0.4)
0	Α	3 * (0.33 – 0.4)

The more of a value we observe in a group, the more we trust that group's deviation from the overall mean.

$$count_k \times (\bar{Y}_k - \bar{Y})$$

Feature Selection: Partial Dependence

A Univariate Method: The influence of each feature's influence is measured before modeling

Iteratively sets all observations in the column to each unique value contained in that column.

Then observe the correlation each value of the column has to the response variable (target).

Feature Selection: Permutation Importance

A Model-based Method: The performance of the model is measured before and after...

Randomly shuffling the values in each column, one-at-a-time, to break the correlation that each column has to the target variable

Then

Measuring the impact the change to each column's influence has upon the model's overall performance according to one of many applicable metrics:

\$4,000

Generates a stack-ranked list of features by their scores

Classification: Accuracy, Precision, or Recall

Regression: MAE, RMSE, RAE, RSE, R²

Original Values

Loan	Income	IsBad
\$11,200	\$108,000	False
\$10,000	\$65,000	False
\$8,000	\$20,000	True
\$16,000	\$110,000	True
\$4,000	\$155,000	False

Shuffle Column 1

Loan	Income	IsBad
\$8,000	\$108,000	False
\$4,000	\$65,000	False
\$16,000	\$20,000	True
\$10,000	\$110,000	True
\$11,200	\$155,000	False

Loan	Income	IsBad
\$11,200	\$65,000	False
\$10,000	\$155,000	False
\$8,000	\$108,000	True
\$16,000	\$20,000	True

\$110,000

False

Shuffle Column 2

