Лабораторная работа №7

Дискретное логарифмирование в конечном поле

Доборщук В.В.

10 декабря 2022

Российский университет дружбы народов, Москва, Россия

Информация

Докладчик

- Доборщук Владимир Владимирович
- студент группы НФИмд-02-22, студ. билет 1132223451
- учебный ассистент кафедры прикладной информатики и теории вероятностей
- Российский университет дружбы народов
- · doborshchuk-vv@rudn.ru

<u> Цели и задачи</u>

Цели и задачи

Цель — Изучить алгоритмы для задач дискретного логарифмирования.

Задачи:

 Реализовать алгоритм для задач дискретного логарифмирования через р-метод Полларда Выполнение лабораторной работы

```
# --- mod(a, b) ---
def mod(a ,b):
   return a % b
# --- find mod order ---
def order(a, p):
   x = 1
   while mod(a**x - 1, p) != 0:
       x += 1
    return x
```

```
def po method(a: int, b: int, p: int):
   print(f"\n{a}^(x) = \{b\} \bmod \{p\}")
   print("-----
   print('|\tc\t|\tlog c\t|\td\t|\tlog d\t|')
   print("-----")
   u = np.random.randint(4)
   v = np.random.randint(4)
   r = order(a, p)
   c = mod(np.power(a, u) * np.power(b, v), p)
   d = c
   u c. u d = u. u
   v c, v d = v, v
```

```
print(f'|\t{c}\t|\t{u c}+\{v c\}x\t|\t{d}\t|\t{u d}+\{v d\}x\t|')
def f(x, u_x, v_x):
    if x < r:
        return mod(a*x, p), u_x + 1, v_x
    else:
        return mod(b*x, p), u_x, v_x + 1
c, u_c, v_c = f(c, u_c, v_c)
tmp_d = f(d, u_d, v_d)
d. u d. v d = f(tmp d[0], tmp d[1], tmp d[2])
while mod(c, p) != mod(d, p):
    print(f'|\t{c}\t|\t{u c}+\{v c}x\t|\t{d}\t|\t{u d}+\{v d}x\t|')
    c. u c. v c = f(c. u c. v c)
    tmp d = f(d, u d, v d)
    d, u d, v d = f(tmp d[0], tmp d[1], tmp d[2])
```

```
print(f'|\t\{c\}\t|\t\{u\_c\}+\{v\_c\}\x\t|\t\{d\}\t|\t\{u\_d\}+\{v\_d\}\x\t|')
 print("----")
 x = 1
 # print(v c - v d, u d - u c)
 while mod((v c - v d)*x, r) != mod(u d - u c, r):
    x += 1
 print(f"x = \{x\}")
 print(f'' \setminus n\{a\}^{(x\})} = \{b\} \mod \{p\}''\}
 print("-----")
 return x
```

Результаты тестирования

$10^{(x)} = 64 \mod 107$								
I	С	 	log c	I	d	 	log d	
1	101	ı	0+3x	1	101	1	0+3x	ī
1	44	1	0+4x	1	12	-1	1+4×	1
1	12	1	1+4x	1	23	-1	3+4x	1
1	13	1	2+4x	1	53	-1	5+4x	1
1	23	1	3+4x	1	92	-1	5+6x	1
1	16	1	4+4x	1	30	-1	6+7x	1
1	53	1	5+4x	-1	47	-1	7+8x	1
1	75	1	5+5x	1	99	-1	9+8x	1
1	92	1	5+6x	1	16	-1	10+9x	1
1	3	1	5+7x	1	75	-1	11+10×	1
1	30	1	6+7x	1	3	-1	11+12x	1
1	86	T	7+7x	1	86	I	13+12x	I

x = 20

10⁽²⁰⁾ = 64 mod 107

В рамках выполненной лабораторной работы мы изучили и реализовали р-метод Полларда для задач дискретного логарифмирования.