Q-Learning

A classical method of Reinforcement Learning

Guillaume.Lozenguez

@imt-nord-europe.fr

IMT Nord Europe

École Mines-Télécom IMT-Université de Lille

1. A teoritical framework: Markov Decision Process

2. On the go, model free learning

Acting over a system evolving under uncertainty

- ▶ **States**: set of configurations defining the studied system
- ▶ **Action**: finite set of possible actions to perform
- ▶ **Transitions**: Describe the possible evolution of the system state

Transition function:

The probabilistic evolution depends on the performed action.

 $T(s_t,\ a,\ s_{t+1})$ return the probability to reach s_{t+1} by doing a from s_t :

$$T(s_t,\ a,\ s_{t+1}) = P(s_{t+1}|s_t,a)$$

Acting to optimize Gain

Require to evaluate the interest of each action on the system evolution:

► *Reward/Cost function* (R):

$$R:S imes A imes S o \mathbb{R}$$

 $R(s_t, a, s_{t+1})$ is the reward by reaching s_{t+1} from doing a in s_t

OR, in a simplified version:

$$R:S imes A o \mathbb{R}$$

Acting to optimize gain (accumulated rewards)

Our objective: *a policy* (π): a function returning the action to perform considering the current state of the system:

$$\pi:S o A$$

 $\pi(s)$: the action to perform is s

Bellman Equation :

$$V^\pi(s) = R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') imes V^\pi(s')$$

with: $a = \pi(s)$ and $\gamma \in [0, 1[$ the discount factor (typically 0.99)

reward in 421-game

Over the final combination only with the action "keep-keep-keep" or when the horizon is 0

$$egin{array}{lll} score(4-2-1) &= 800 \\ score(1-1-1) &= 700 \\ score(x-1-1) &= 400 + x \\ score(x-x-x) &= 300 + x \\ score((x+2)-(x+1)-x) &= 202 + x \\ score(2-2-1) &= 0 \\ score(x-x-y) &= 100 + x \\ score(y-x-x) &= 100 + y \\ \end{array}$$

Markov Decision Process

MDP: $\langle S, A, T, R \rangle$:

S: set of system's states

A : set of possible actions

 $T: S \times A \times S \rightarrow [0, 1]:$ transitions

 $R: S \times A \rightarrow R: cost/rewards$

Optimal policy:

The policy π^* maximizing Bellman

Reinforcement Learning:

Learn the optimal policy

- Without knowledge over the transition probabilities and/or the rewards,
- but, by getting feedback from acting randomly.

2 approaches

- ightharpoonup model-based: Learn the model (T,R), and compute a policy.
- **model-free:** Learn the policy directly.

1. A teoritical framework: Markov Decision Process

2. On the go, model free learning

Model-Free Approaches

Concept

- ▶ Learn without generating **transition** and **reward** models.
- Build the **policy** directly from the interactions
- Use only the experience of sequences:

state, action, reward, state, action, ...

Common approaches:

- ▶ **Q-learning**: continuous computing of an expected gain (require rich feedback)
- Monte-Carlo: use random explorations until a 'finale' state (slow to converge).

Exploration–Exploitation tradeoff dilemma

The agent build an optimal behavior from trials and errors.

- Exploration
 - Try new actions to learn unknown feedback
 - Better understand the dynamics of the system
 - Risky output
- ► *Exploitation*
 - Use the best-known action
 - Potentially suboptimal

Exploration–Exploitation Tradeoff Dilemma

Examples:

- **Exploitation**: apply a known game strategy **vs Exploration** investigate new actions.
- **Exploitation**: go to your favorite restaurant **vs Exploration** try a new one.

Classical approach:

- Trigger exploration when the old fashion strategy doesn't work anymore Problems:
 - Determine that "a strategy doesn't work"?
 - Determine that "a new policy is well defined" (exploration end)?
- ► Continuously Explore and Exploite with a fixed ratio.
 - (take wrong decision periodically)

Continuous Exploration–Exploitation : ϵ -Greedy

A Simple heuristic for the Exploration–Exploitation Tradeoff Dilemma

- Random decision with:
 - a probability ϵ to choose a random action (exploration)
 - a probability $1-\epsilon$ to choose the best-known action (exploitation)
- ightharpoonup Classically ϵ is set to 0.1
- ightharpoonup A ϵ -greedy agent behavior punctually takes off-policy action

Then the challenge consists in varying ϵ depending of the knowledge the agent has of the area he is interacting in.

Q-learning

One of the most important discoveries in Reinforcement Learning (simple and efficient)

- ▶ At each step, **Q-learning** updates the value attached to a couple (state, action)
- Updates are performed integrate expected future gains
- ightharpoonup The update is performed accordingly to a learning rate $lpha \in]0,1[$
 - $\rightarrow \alpha$: ratio between new vs old accumulated information.

Q-learning based on a Q function

Considering it is not possible to evaluate state without a policy yet

$$V^\pi(s) = R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') imes V^\pi(s')$$

the **Q-values** evaluate each action performed from each state:

$$Q:S imes A o \mathbb{R}, \qquad Q(s,\ a) ext{ is the value of doing a from s}$$

and, a **Q-value** is updated iteratively from succession of: $\langle s,~a,~s',~r
angle$

$$Q(s,a) = (1-lpha)Q(s,a) + lpha\left(r + \gamma \max_{a' \in A}Q(s',a')
ight)$$

Q-learning: the algorithm

```
Input: state and action spaces: A; a step engine Perform; exploration ratio: \epsilon; learning rate: \alpha; discount factor \gamma
```

- 1. Read the initial state *s*
- 2. Initialize Q(s,a) to 0 for any action a
- 3. Repeat until convergence
 - 1. At ϵ random: get a random a or a maximizing Q(s,a)
 - 2. *Perform* a and read the reached state s' and the associated reward r
 - 3. If necessary, add s' to Q (with value 0 for any action a)
 - 4. Update Q(s,a) accordingly to α and γ
 - 5. set s = s'

Q-learning: the algorithm

In agent-based programming:

- ► As an initial step (wakeUp):
 - 1. Initialize Q
 - 2. Initialize state *s* and action *a* variables.
- ► At each itereration (**perceive**):
 - 1. Read the reached state s' and the associated reward r
 - 2. If necessary, add s' to Q (with value 0 for any action a)
 - 3. Update Q(s,a) accordingly to lpha and γ
 - 4. reccord s = s'
- taking decisions (decide):
 - 1. At ϵ random: get a random a or a maximizing Q(s,a)

Q-learning: the main equation

Update Q each time a tuple $\langle s^t, a, s^{t+1}, r angle$ is read

$$newQ(s^t,a) = (1-lpha)Q(s^t,a) + lpha\left(r + \gamma \max_{a' \in A}Q(s^{t+1},a')
ight)$$

- $ightharpoonup Q: S imes A o \mathbb{R}$: the value function we build.
- ightharpoonup lpha : the learning rate, ϵ : the Exploration-Exploitation ratio
- $ightharpoonup \gamma$: the discount factor

The known optimal policy:

$$\pi^*(s) = \max_{a \in A} Q(s,a)$$

- States: 4 positions s_0 , s_1 , s_2 and s_3
- ► **Actions**: left, right, up, down
- **▶ Transitions**: determinist
- Rewards: 10 for reaching s_3 , -1 else

$$(\epsilon=0.1, lpha=0.1 ext{ and } \gamma=0.99)$$

s ₀	s₃ (Goal)
s_1	s ₂

- From s_0 get action left (explore) reaches s_0 with -1 updates $Q(s_0, left) = -0.1$
- $lacksquare s_0$ gets $rac{right}{c}$ (best) ightarrow ($s_0,-1$) updates $Q(s_0,right)=-0.1$
- $lacksquare s_0$ gets down (exp.) ightarrow $(s_1,-1)$ updates $Q(s_0,\, down) = -0.1$...
- $lacksquare s_2$ gets up (exp.) ightarrow $(s_3, 10)$ updates $Q(s_2, up) = 1$ **End Episode**

$$(lpha=0.1,\epsilon=0.1$$
 and $\gamma=0.99)$

Episode 1: (**18** action)

Episode 2: (**15** action)

• • •

$$(lpha=0.1,\epsilon=0.1$$
 and $\gamma=0.99)$

Episode N: (3-4 actions)

s ₀	s₃ (Goal)
s_1	s ₂

Let's go on 421 game....