Reinforcement Learning II

Lecture 20

Reinforcement Learning Components

Policy (agent behavior), $\pi(s)$

- Determines action given current state
- Agent's way of behaving at a given time

Reward function (the goal), r_t

 Objective is to maximize total returns (cumulative reward)

Value (expected returns), v(s), q(s,a)

 Expected returns from a state and following a specific policy

Maze Example: Policy, Value, and Reward

Each location in the maze represents a **state**

The **reward** is -1 for each step the agent is in the maze

Available **actions**: move $\uparrow,\downarrow,\leftarrow,\rightarrow$ (as long as that path is not blocked)

Adapted from David Silver, 2015

Policy $\pi(s)$

(which actions to take in each state)

Start

Policy

Policy, $\pi(s)$

- Agent's way of behaving at a given time
- Maps state to actions

Deterministic: $a = \pi(s)$

Stochastic: $\pi(a|s) = P(a_t = a|s_t = s)$ Helps us "explore" the state space

RL tries to learn the "best" policy

Policy $\pi(s)$

(which actions to take in each state)

Start

Reward r_t

(rewards are received as you transition OUT OF the state)

Start

	-1		
-1	1	1	-1
-1		-1	
	-1	-1	-1
	-1		-1
-1	-1		-1
			Exit

Adapted from David Silver, 2015

Goals and rewards

Rewards are the only way of communicating what to accomplish

Ex 1: Robot learning a maze

- 0 until it escapes, then +1 when it does
- -1 until it escapes (encourages it to escape quickly)

Ex 2: Robot collecting empty soda cans

- +1 for each empty soda can
- Negative rewards for bumping into things

Chess: what if we set +1 for capturing a piece? (it may not win the game and still maximize rewards)

What you want achieved not how

Returns / cumulative reward

Episodic tasks (finite number, T, of steps, then reset)

$$G_t = r_{t+1} + r_{t+2} + \dots + r_T$$

Continuing tasks with discounting $(T \rightarrow \infty)$

$$G_t=r_{t+1}+\gamma r_{t+2}+\gamma^2 r_{t+3} \ldots=\sum_{k=0}^\infty \gamma^k r_{t+k+1}$$
 where $0\leq \gamma\leq 1$ is the discount rate

This makes the agent care more about immediate rewards

Policy $\pi(s)$

(which actions to take in each state)

Start

Reward r_t

(rewards are received as you transition OUT OF the state)

Start

	1		
-1	1	-1	-1
-1		-1	
	-1	-1	-1
	-1		-1
-1	-1		-1
			Exit

State Value $v_{\pi}(s)$

(expected cumulative rewards starting from current state if we follow the policy)

Start

	-8		
-8	-7	-6	-7
-9		-5	
	- 5	-4	3
	-6		-2
-8	-7		-1
			Exit

Adapted from David Silver, 2015

Kyle Bradbury

Value functions

State Value function, $v_{\pi}(s)$

• Expected returns (cumulative reward) assuming we follow policy π

$$v_{\pi}(s) = E_{\pi}[G_t|s_t = s]$$

Action Value function, $q_{\pi}(s, a)$

• Expected returns from state, s, and taking action a, then follow policy π Total expected rewards

$$q_{\pi}(s, a) = E_{\pi}[G_t | s_t = s, a_t = a]$$

Where
$$G_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

Model

Model

Transition probabilities: predicts what state the environment will transition to next

$$P_{ss'}^a = P(s_{t+1} = s' | s_t = s, a_t = a)$$

Expected Rewards: anticipates the next reward given an action

$$R_s^a = E[r_{t+1}|s_t = s, a_t = a]$$

"Planning" is the process of using these predictions

 s_t Agent action a_t reward r_t Environment (internal state, s_t^e)

Model-based RL uses a model
Model-free RL does not use a model

Reinforcement Learning Components

Policy (agent behavior), $\pi(s)$

- Determines action given current state
- Agent's way of behaving at a given time

Reward function (the goal), r_t

 Objective is to maximize total returns (cumulative reward)

Value (expected returns), v(s, a), q(s)

 Expected returns from a state and following a specific policy

Environment

Markov Decision Process

(assumed form for most RL problems)

Goal Maximize returns (expected rewards)

Find the best policy to guide our actions in an environment

Here, environment = Markov Decision Process

Kyle Bradbury Reinforcement Learning II Lecture 20

History

The record of all that has happened in this system

Step 0: s_0, a_0

Step 1: r_1, s_1, a_1

Step 2: r_2, s_2, a_2

•

Step T: r_t, s_t, a_t

History at time $t: H_t = \{s_t, a_t, r_{t-1}, s_{t-1}, a_{t-1}, \dots r_1, s_1, a_1, s_0, a_0\}$

Markov property

Instead of needing the full history:

$$H_t = \{s_t, a_t, r_{t-1}, s_{t-1}, a_{t-1}, \dots r_1, s_1, a_1, s_0, a_0\}$$

We can summarize everything in the current state

$$H_t = \{s_t, a_t\}$$

The future is independent of the past given the present

Another way of saying this is:

$$P(s_{t+1}|s_t) = P(s_{t+1}|s_t, s_{t-1}, \dots, s_1, s_0)$$

Example: student life

Two components: $\{S, P\}$

State space, S

Transition matrix, P

State transition probabilities

			To state	
		1	2	3
state	1	p_{11}	p_{12}	p_{13}
rom st	2	p_{21}	p_{22}	p_{23}
Fro	3	P_{31}	p_{32}	p_{33}

Transitions out of each state sum to 1

			To state	
		Netflix	Eat	Study
ate	Netflix	8.0	0.2	0]
m sta	Netflix Eat Study	0.3	0.1	0.6
Froi	Study	L0.4	0.1	0.5

Reinforcement Learning II

Example: student life

If we start in state 1, what's the probability we'll be in each state after one step?

$$P_1 = \begin{bmatrix} 0.8 & 0.2 & 0 \end{bmatrix}$$

This is the first row of the state transition probability matrix

Example: student life

If we started in state 1, we can calculate the probabilities of being in each state at step 1 as:

$$P_{0} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}^{T} \quad P_{1} = P_{0}P_{SS'}$$

$$P_{1} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.4 & 0.1 & 0.5 \end{bmatrix}$$

$$\mathbf{0.1} \qquad P_{1} = \begin{bmatrix} 0.8 & 0.2 & 0 \end{bmatrix}$$

To state

$$\mathbf{1} P_1 = P_0 P_{ss'}$$

$$P_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.4 & 0.1 & 0.5 \end{bmatrix}$$

$$P_1 = [0.8 \quad 0.2 \quad 0]$$

$$P_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}^T = \begin{bmatrix} 0.2 \\ 0.4 \\ 0.1 \end{bmatrix}$$
Study
$$\begin{bmatrix} \text{Study} \\ 3 \end{bmatrix} = \begin{bmatrix} 0.2 \\ 0.1 \\ 2 \end{bmatrix}$$
O.1

$$P_2 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.4 & 0.1 & 0.5 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.4 & 0.1 & 0.5 \end{bmatrix}$$
 As $n \to \infty$, we identify our steady state probabilities

$$P_2 = [0.7 \quad 0.18 \quad 0.12]$$

$$P_{\infty} = \begin{bmatrix} 0.64 & 0.16 & 0.20 \end{bmatrix}$$

Markov Chains with absorbing state

Example: student life

Kyle Bradbury

Example: student life

Markov chains can be used to represent sequential discrete-time data

Can estimate long-term state probabilities

Can simulate state sequences based on the model

Markov property applies (current state gives you all the information you need about future states)

$$P(s_{t+1}|s_t) = P(s_{t+1}|s_t, s_{t-1}, \dots, s_1, s_0)$$

Valid if the system is **autonomous** and the states are **fully observable**

Hidden Markov Models

Example: student life

What if we don't directly observe what state the system is in, but instead observe a quantity that depends on the state?

Example: the student wears an EEG monitor, and we see readings of brain **0.1** activity.

States are hidden or latent variables

Markov Models

States are **Fully Observable**

States are **Partially Observable**

Autonomous

(no actions; make predictions)

Controlled (can take actions)

Markov Chain & Markov Reward Process

Markov Decision Process (MDP)

Hidden Markov Model (HMM)

Partially Observable
Markov Decision
Process (POMDP)

Applications

HMMs: time series ML, e.g. speech + handwriting recognition, bioinformatics

MDPs: used extensively for reinforcement learning

Building blocks for the full RL problem

1	Markov Chain	{state space <i>S</i> , transition probabilities <i>P</i> }
2	Markov Reward Process (MRP)	$\{S, P, + \text{ rewards } R, \text{ discount rate } \gamma\}$ adds rewards (and values)
3	Markov Decision Process (MDP)	$\{S, P, R, \gamma, + \text{ actions } A\}$ adds decisions (i.e. the ability to control)

MDPs form the basis for most reinforcement learning environments

Adapted from David Silver, 2015