Econometria I

Lista de exercícios # 1

Data de entrega: conforme plano de ensino [correção no item Q.2.c feita em 17/09]

- **(Q.1)** O que diz a Lei das Expectativas Iteradas?
- **(Q.2)** Demonstre os resultados a seguir, partindo, para isso, das definições dos valores populacionais das estatísticas variância (V[X]) e covariância (cov(X,Y)). E considerando que $\overline{X} = \frac{1}{N} \sum_{i=1}^{N} x_i$ e $\overline{Y} = \frac{1}{N} \sum_{i=1}^{N} y_i$.
- (a) $V[X] = E[X^2] E[X]^2$
- (b) cov(X,Y) = E[XY] E[X]E[Y]
- (c) V[X+Y] = V[X] + V[Y] + 2cov(X,Y)
- (d) $E[(X \overline{X}) + (Y \overline{Y}) | X, Y] = 0$

(e)
$$\sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=1}^{N} (x_i - \overline{x})y_i$$

(Q.3) A variável aleatória *X* tem a seguinte função densidade de probabilidade:

$$f(x) = \begin{cases} c(x-1)se & 0 \le x \le 1 \\ c(x+1)se & 1 < x \le 2 \\ cx & se & 2 < x \le 3 \\ 0 & caso & contrário \end{cases}$$

- (a) Qual o valor de c?
- (b) Qual a função distribuição cumulativa de *X*?
- (c) Calcule E[X] e Var[X].
- **(Q.4)** É possível dividir uma amostra estatística em subamostras de igual tamanho, selecionadas aleatoriamente. Isso foi feito com os dados da POF 2008 do IBGE, gerando-se nove subamostras, cada uma com 1.217 observações. Dentro de cada subamostra, foi calculada a média para a variável "renda per capita". Posteriormente, calculou-se a variância das médias subamostrais, obtendo-se um valor de 22,17. Explique porque este valor se mostra consideravelmente inferior ao valor da variância da amostra, i.e., trata-se da variância calculada na amostra como um todo, sem divisão em subamostras, o qual corresponde a 35.621,24. Considere, para isso, a tabela abaixo.

Tabela Q.4 Médias e variâncias para a renda per capita dentro das subamostras

Subamostr	Média	Variância
a		
1	267.79	36,338.93
2	270.28	34,318.42
3	273.24	36,996.46
4	281.04	36,909.41
5	273.78	36,756.27
6	270.82	34,368.63
7	263.76	35,114.03
8	269.96	35,175.32
9	270.68	34,670.53

- **(Q.5)** Seja X_1 , X_2 ,..., X_N uma sequência de variáveis aleatórias (VAs) independentes e identicamente distribuídas (i.i.d) com média e variância populacionais dadas, respectivamente, por μ e σ^2 , i.e., $E[X_i] = \mu$ e $V[X_i] = \sigma^2$, i=1,...,N. Responda as perguntas abaixo.
- (a) Verifique se a propriedade de ausência de viés na estimação da média populacional é atendida pelo estimador $\widetilde{X} = \frac{1}{N-1} \sum_{i=1}^{1} X_i$;
- (b) Obtenha a variância populacional do estimador do item anterior e verifique se tal estimador é eficiente (i.e., apresenta menor variância populacional) relativamente a um segundo estimador para a média populacional correspondente à $\overline{X} = \frac{1}{N} \sum_{i=1}^{1} X_i$.
- (Q.6) O governo do Estado de São Paulo implementou um programa de qualificação para trabalhadores vítimas de desemprego tecnológico no setor rural. Um exemplo é o da introdução de máquinas colheitadeiras em substituição à colheita manual em plantios de cana-de-açúcar. Você foi contratado para determinar se os trabalhadores que passaram por este programa de qualificação tiveram sua remuneração aumentada significativamente. O indicador de impacto do programa, calculado para cada trabalhador, é a diferença de remuneração antes e depois do treinamento, sendo representado por Wi, i=1,...,N. Este se distribui normalmente com Wi $\sim N(\mu, \sigma^2)$, i=1,...,N. É tomada uma amostra de N=100 trabalhadores e obtida a estimativa pontual para o valor populacional do impacto médio, μ . O valor da estimativa pontual é de

$$\overline{W} = N^{-1} \sum_{i=1}^{N} W_i = 100$$
, o desvio padrão estimado, $s = \sqrt{N^{-1} \sum_{i=1}^{N} (W \wr i - \overline{W})^2 \wr} = 640$.

Neste caso, o valor populacional do desvio padrão é desconhecido e, portanto, a estatística do teste é $T = \frac{\overline{W} - \mu_0}{s/\sqrt{N}} t_{N-1}$, uma VA com distribuição t de Student com N-1

graus de liberdade. O símbolo μ_0 representa o valor da média populacional de W_i definido pela hipótese nula, zero, no caso, i.e., μ_0 = 0.

Os comandos do R para funções de distribuição de probabilidades (FDs) estão explicados no apêndice ao final dessa lista.

- **(Q.6.a)** Obtenha os valores críticos para o teste de hipóteses bicaudal. Para isso você pode utilizar a tabela da distribuição t ao final dos livros-texto ou empregar a função qt() do R (ver nota em negrito acima);
- **(Q.6.b)** Obtenha o p-valor do teste (o que pode ser feito com base nas tabelas ao final dos livros-texto ou utilizando a função pt() do R);
- **(Q.6.c)** Qual é o resultado do teste? Explique com detalhe como, com base nos resultados dos itens anteriores e na estimativa pontual, é possível concluir acerca da existência de um impacto relevante ou não do programa de qualificação.

Apêndice Funções de distribuição de probabilidades no R

[Copie o texto abaixo e cole em um script do R ($R \rightarrow file \rightarrow open script/abrir script$)]

###Funções de distribuição de probabilidades (FD) no R

#Há uma família de funções do R para FDs, são elas

#dW: retorna a probabilidade de ocorrência de um valor informado, de acordo com a FD W;

#pW: retorna a probabilidade acumulada (FDA) até um valor informado, segundo a FD W;

#qW: retorna o valor tal que a área a esquerda dele e abaixo da FD W é equivalente

#à probabilidade informada

#W é uma FD genérica, podendo ser normal (W=norm), t de Student (W=t),

#Qui-quadrado(W=chisq), F de Snedecor (W=f), etc.

#É preciso informar não apenas o valor ou probabilidade desejados, mas também os parâmetros

#da FD.Vejamos alguns exemplos

#Probabilidade de ocorrência do valor 1,645 segundo a FD N(0,1)

dnorm(1.645, mean=0, sd=1)

#Valor até o qual é acumulada uma probabilidade de 5% segundo a t de Student com

#10 graus de liberdade

qt(0.05,df=10)