

MEC-E1070 Selection of Engineering Materials

Prof. Junhe Lian
Prof. Sven Bossuyt
Zinan Li (Course assistant)

Learning objectives for this Lecture

Knowledge and Understanding

Understanding of the concept of **shape efficiency**

Skills and Abilities

Ability to select efficient material-shape combinations

Values and Attitudes

Awareness of how materials and shape interact

Resources

Text: "Materials: engineering, science, processing and design" 4th edition by M.F. Ashby, H.R. Shercliff and D. Cebon, Butterworth Heinemann, Oxford, 2011, Chapters 9-10.

Outline of Lecture

- Efficient shapes: tubes, I-beams etc
- The shape factor and shape limits
- Material indices that include shape
- Graphical ways of dealing with shape

Shape efficiency

- When materials are loaded in bending, in torsion, or are used as slender columns, section shape becomes important
- "Shape" = cross section formed to a tubes
 I-sections hollow box-section sandwich panels ribbed panels
- "Efficient" = use least material for given stiffness or strength
- Shapes to which a material can be formed are limited by the material itself
- Goals: understand the limits to shape develop methods for co-selecting material and shape

Shape and mode of loading

Standard structural members

Shape efficiency: bending stiffness

- Take ratio of bending stiffness S of shaped section to that (S_o) of a neutral reference section of the same cross-section area
- Define a standard reference section: a solid square with area A = b²
- Second moment of area is I; stiffness scales as EI.

Define shape factor for elastic bending, measuring efficiency, as

$$\varphi_e = \frac{S}{S_o} = \frac{EI}{EI_o} = 12\frac{I}{A^2}$$

Properties of the shape factor

- The shape factor is dimensionless a pure number.
- It characterizes shape.

 Each of these is roughly 10 times stiffer in bending than a solid square section of the same cross-sectional area

Shape efficiency: bending strength

- Take ratio of bending strength F_f of shaped section to that $(F_{f,o})$ of a neutral reference section of the same cross-section area
- Section modulus of area is Z; strength scales as σ_y Z

Define shape factor for onset of plasticity (failure), measuring efficiency, as

$$\phi_f = \frac{F_f}{F_{fo}} = \frac{\sigma_y Z}{\sigma_y Z_o} = 6 \frac{Z}{A^{3/2}}$$

What values of φ_e exist in reality?

Limits for Shape Factors ϕ_e and ϕ_f

There is an upper limit to shape factor for each material

Material	Max φ _e	Max φ _f
Steels	65	13
Aluminum alloys	44	10
GFRP and CFRP	39	9
Unreinforced polymers	12	5
Woods	8	3
Elastomers	<6	-
Other materials	can calculate	

- Limit set by:
- (a) manufacturing constraints
- (b) local buckling

Theoretical limit:

Indices that include shape

Function

Beam (shaped section).

Constraint

Bending stiffness = S:

$$S = \frac{CEI}{L^3}$$

I is the second moment of area:

$$\varphi_e = 12 \frac{I}{A^2}$$

$$A = \left(\frac{12I}{\phi_e}\right)^{1/2}$$

Objective

Minimise mass, m, where:

$$m = AL\rho$$

Area A

A = area

L = length

 $\rho = density$

b = edge length

S = stiffness

I = second moment of area

E = Youngs Modulus

$$\mathbf{m} = \left(\frac{12 \text{ S L}^5}{\text{C}}\right)^{1/2} \left(\frac{\rho}{(\varphi_e \text{E})^{1/2}}\right)$$

Chose materials with smallest

Selecting material-shape combinations

Materials for stiff, shaped beams of minimum weight

- Fixed shape (φ_e fixed): choose materials with low $\frac{\rho}{E^{1/2}}$
- Shape φ_e a variable: choose materials with low $\frac{\rho}{(\varphi_e E)^{1/2}}$

Material	ρ, Mg/m³	E, GPa	φ _{e,max}	ρ/E ^{1/2}	$\rho/(\varphi_{e,max}E)^{1/2}$
1020 Steel	7.85	205	65	0.55	0.068
6061 T4 AI	2.70	70	44	0.32	0.049
GFRP	1.75	28	39	0.35	0.053
Wood (oak)	0.9	13	8	0.25	0.088

• Commentary: Fixed shape (up to $\varphi_e = 8$): wood is best

Maximum shape ($\phi_e = \phi_{e,max}$): Al-alloy is best

Steel recovers some performance through high $\phi_{e,max}$

Shape on selection charts

Note that
$$\frac{\rho}{(\varphi_e E)^{1/2}} = \frac{\rho/\varphi_e}{(E/\varphi_e)^{1/2}}$$
 New material with $\begin{cases} \rho^* = \rho/\varphi_e \\ E^* = E/\varphi_e \end{cases}$

$$\begin{cases} \rho^* = \rho/\phi_e \\ E^* = E/\phi_e \end{cases}$$

Remarks

- When materials carry bending, torsion or axial compression, the section shape becomes important.
- The "shape efficiency" is the amount of material needed to carry the load. It is measured by the shape factor, φ.
- If two materials have the *same* shape, the standard indices for bending (e.g. $\rho/E^{1/2}$) guide the choice.
- If materials can be made -- or are available -- in different shapes, then indices which include the shape (e.g. $_{\rho}/(_{\phi}E)^{1/2}$) guide the choice.

