Motion Graph—Video Textures

Slides and videos from http://cpl.cc.gatech.edu/projects/videotexture/SIGGRAPH2000

Motion Synthesis from Examples

- High Quality, Expressive Motion
 - Need motion capture (examples)

- Flexible, long-running, controllable
 - Need synthesis

Synthesis from Examples!

Motion Graph

- Hand build motion graphs in games
 - Many short, carefully planned, labeled motion clips
 - Significant amount of work required

Motion Graph (cont.)

- Motion graphs can also be built automatically
 - Unlabelled motion database
 - Continuous, long sequence

Inspiration from Video Textures

Schödl et al., "Video Textures", SIGGRAPH'00

video clip

video texture

Slides and videos from http://cpl.cc.gatech.edu/projects/videotexture/SIGGRAPH2000

Video Textures

How do we find good transitions?

Finding good transitions

Compute L₂ distance D_{i, j} between all frames

Similar frames make good transitions

Markov Chain Representation

Similar frames make good transitions

Transition Costs

Transition from i to j
if successor of i is similar to j

Cost function:
$$C_{i \rightarrow j} = D_{i+1, j}$$

Transition Probabilities

Probability for transition P_{i→j} inversely related to cost

$$P_{i o j} \sim \exp\left(-C_{i o j}/\sigma^2\right)$$
high σ low σ

Preserving Dynamics

Preserving Dynamics

Preserving Dynamics

Preserving Dynamics—effect

• Cost for transition $i \rightarrow j$

$$C_{i o j} = \sum_{k=-N}^{N} W_k D_{i+k+1,j+k}$$

Dead Ends

No good transition at the end of sequence

Future Cost

- Propagate future transition costs backward
- Iteratively compute new cost

$$F_{i \rightarrow j} = C_{i \rightarrow j} + \alpha \min_{k} F_{j \rightarrow k}$$

Future Cost

- Propagate future transition costs backward
- Iteratively compute new cost

$$F_{i \rightarrow j} = C_{i \rightarrow j} + \alpha \min_{k} F_{j \rightarrow k}$$

Future Cost—effect

Visual Discontinuities

- Lowest transition cost doesn't guarantee no discontinuities
- Blending frames at transition is needed
- This is even more important for motion data!

Blending at Transition

• C(t) = w(t)A(t) + (1-w(t)) B(t), t=i-M, ..., i+M

Beyond Random Walk

Interactive control

blue screen matting and velocity estimation

Adding Control

Augmented transition cost

$$C_{i o j}^{\text{Animation}} = \alpha \ C_{i o j} + \beta \ \text{angle}$$
 velocity vector Similarity term Control term

Adding Control

- Need future cost computation
- Precompute future costs for a few angles.

Switch between precomputed angles according

to user input

Interactive Fish

More Fish

Controlled Animation of Video Sprites Schödl and Essa, SCA'02

Apply "video textures" to mocap data

SIGGRAPH'02

- Li et al., "Motion Textures"
- Kovar & Gleicher, "Motion Graphs"
- Arkan & Forsyth, "Interactive Motion Generation from Examples"
- Lee et al., "Interactive Control of Avatars
 Animated with Human Motion Data"
- Pullen & Bregler, "Motion Capture Assisted Animation: Texturing and Synthesis"

Transition Costs

Pose Difference

- Various definitions
 - weighted joint angle and velocity difference
 - Lee et al.
 - weighted joint position and velocities in root coord.
 - Arikan & Forsyth
 - weighted point clouds difference (simplified mesh)
 - Kovar & Gleicher

Pose Difference at Root Joint

Global, fixed, object-relative coordinates

Local, moving, body-relative coordinates

Pruning Transitions

- Reduce storage space
 - Graph is usually represented as a matrix
 - O(n^2) will be prohibitive
- Better quality
 - Pruning "bad" transitions
- Efficient search
 - Sparse graph

Pruning Transitions

- Contact state:
 Avoid transition to dissimilar contact state
- Likelihood:
 User-specified threshold
- Similarity: Local maxima
- Avoid dead-ends:
 Strongly connected components

Aligning Root Joints at Transition

Motion Graphs Kovar and Gleicher, SIGGRAPH'02

Interactive Avatar Control Lee, Chai, Reitsma, Hodgins, Pollard, SIGGRAPH'02

Sketch interface

Application: Video-based Animation

 Liu et al. "Learning Silhouette Features for control of human motion", TOG'05

System overview Example: swingtime

Application: Generating Motion in Large Virtual Environment

- Lee at al., "Motion Patches," SIGGRAPH'06
 - Storing environment annotation in database
 - Synthesizing motion according to assembled virtual environment blocks

Application: Plant Animation

- Chris Twigg et al., "Mesh Ensemble Motion Graphs," TOG '07
 Demo Video
 - Using precomputed dynamics as motion database
 - Curse of dimensionality: few valid transitions

Increasing good transition using asynchronous transition

Inverse-Foley animation: synchronizing rigid-body motions to sound, SIG'15

Neural Motion Graph, SIGGRAPH Asia 2023

Evaluating Motion Graphs

- Reitsma and Pollard, "Evaluating motion graphs for character navigation," SCA'04
- Analyzing the properties of motion graphs to determine their capabilities with a target environment

