Лабораторная работа 3

Расчет трехфазных цепей Цель работы

Опытная проверка соотношений, связывающих напряжения и токи трёхфазных цепей при соединении приёмников звездой.

Теоретические сведения

1. Схемы соединения фаз источника и приемника

Трехфазная цепь – это совокупность трёхфазной системы ЭДС, трёхфазной нагрузки и соединительных проводов.

Трёхфазную систему ЭДС (напряжений) получают с помощью синхронного трёхфазного генератора, в обмотках которого при вращении ротора ин-

дуктируются три синусоидальные ЭДС одной и той же частоты, равные по амплитуде и сдвинутые по фазе относительно друг друга на угол 120°:

$$e_A = E_m \sin \omega t, \ \underline{E}_A = E_m / \sqrt{2}e^{j0^\circ} = E_\phi;$$

$$e_B = E_m \sin(\omega t - 120^\circ), \ \underline{E}_B = E_\phi e^{-j120^\circ};$$

$$e_C = E_m \sin(\omega t - 240^\circ) = E_m \sin(\omega t + 120^\circ),$$

$$\underline{E}_C = E_\phi e^{j120^\circ}.$$

Обмотки статора генератора соединяют по схеме звезда (рис. 1, a, слева) или треугольник (рис. 1, δ , слева). Фазы трёх-

фазного приёмника (нагрузки) также соединяют по схеме звезда или треугольник (рис. 1, a и δ , справа).

2. Соединение фаз приемника звездой

На рис. 2, *а* изображена трёхфазная цепь, у которой источник и приёмник соединены звездой с *нейтральным* (*нулевым*) проводом (четырёхпроводная система). Фазные напряжения приёмника в схеме звезда-звезда с нейтральным проводом равны фазным напряжениям источника:

$$\underline{U}_a = \underline{U}_A; \, \underline{U}_b = \underline{U}_B \text{ и } \underline{U}_C = \underline{U}_C,$$

а так называемое *напряжение смещения нейтрали* между точками n и N при нулевом сопротивлении нейтрального провода равно нулю ($\underline{U}_{nN} = 0$).

В четырёхпроводной системе обеспечивается независимый режим работы фаз приёмника (кроме короткого замыкания в фазе, которое недопустимо): в случае изменения сопротивления одной фазы (в том числе при её обрыве) напряжения и токи двух других фаз не изменяются.

При этом соблюдается соотношение между линейными и фазными напряжениями: $U_{\phi} = U_{\pi}/\sqrt{3}$, т. е. фазные напряжения в $\sqrt{3}$ раза меньше линейных.

В осветительных системах линейное напряжение $U_{\pi}=380$ В, а фазное $U_{\phi}=U_{\pi}/\sqrt{3}=220$ В (реже $U_{\pi}=220$ В, а $U_{\phi}=U_{\pi}/\sqrt{3}=127$ В).

При **неравномерной** нагрузке ($\underline{Z}_a \neq \underline{Z}_b \neq \underline{Z}_c$, например, $\underline{Z}_a = -jX_a$, $\underline{Z}_b = R_b - jX_b$ и $\underline{Z}_c = R_c - jX_c$), фазные и линейные токи (для каждой фазы) $\underline{I}_{\phi} = \underline{U}_{\phi} / \underline{Z}_{\phi} = \underline{I}_n$, а ток в нейтральном проводе (рис. 2, δ)

$$\underline{I}_N = \underline{I}_a + \underline{I}_b + \underline{I}_c$$
.

В случае *равномерной* нагрузки ($\underline{Z}_a = \underline{Z}_b = \underline{Z}_c = \underline{Z}_{\phi}$) модули фазных токов одинаковы и равны соответствующим линейным токам $I_{\phi} = I_{\pi} = U_{\phi}/Z_{\phi}$.

На векторной диаграмме векторы токов составляют симметричную звёзду (как и векторы фазных напряжений), поэтому сумма комплексов фазных токов

$$\underline{I}_N = \underline{I}_a + \underline{I}_b + \underline{I}_c = 0,$$

т. е. ток в нейтральном проводе равен нулю и нейтральный провод можно убрать. В результате получим трёхпроводную систему включения приёмника с генератором по схеме звезда-звезда (Y-Y).

При неравномерной нагрузке и в случае отсутствия нейтрального провода (трёхпроводная система Y-Y без нуля) имеет место зависимый режим работы фаз приёмника: при изменении сопротивления одной фазы изменяются все фазные напряжения. Между точками n и N (см. рис. 2, a) появится напряжение смещения нейтрали

$$\underline{U}_{nN} = \frac{\underline{E}_{A}\underline{Y}_{a} + \underline{E}_{B}\underline{Y}_{b} + \underline{E}_{C}\underline{Y}_{c}}{\underline{Y}_{a} + \underline{Y}_{b} + \underline{Y}_{c}},$$

где $\underline{Y}_a = 1/\underline{Z}_a; \underline{Y}_b = 1/\underline{Z}_b; \underline{Y}_c = 1/\underline{Z}_c$ – проводимости фаз нагрузки.

Напряжения фаз приёмника находят из соотношений:

$$\underline{U}_a = \underline{U}_A - \underline{U}_{nN}$$
; $\underline{U}_b = \underline{U}_B - \underline{U}_{nN}$ и $\underline{U}_c = \underline{U}_C - \underline{U}_{nN}$.

В результате получается несимметричная звезда фазных напряжений приёмника ("перекос" фаз), причем в одной фазе, например, в фазе a, напряжение \underline{U}_a может возрасти и значительно превысить фазное напряжение \underline{U}_A генератора (что в большинстве случаев недопустимо), а в других фазах – уменьшиться. Значительная асимметрия фазных напряжений приёмника образуется при разных по характеру сопротивлениях нагрузки, например, при

$$\underline{Z}_a = R_A$$
, $\underline{Z}_b = jX_L$ и $\underline{Z}_c = -jX_C$.

По этой причине в *осветительных системах* запрещается устанавливать предохранители и выключатели в нейтральном проводе.

Комплексы токов фаз приёмника:

 $\underline{I}_a = \underline{U}_a/\underline{Z}_a; \ \underline{I}_b = \underline{U}_b/\underline{Z}_b; \ \underline{I}_c = \underline{U}_c/\underline{Z}_c,$ а их сумма равна нулю, т. е. $I_a + I_b + I_c = 0.$

Учебные задания и методические указания к их выполнению

Задание 1. Собрать *схему* (рис. 3) *для исследования трёхфазной цепи* в различных режимах её работы при соединении источника и приёмника по схеме *звезда-звезда*.

С этой целью установить следующие режимы и параметры устройств и элементов:

- ЭДС фазы E_{ϕ} = 220 В и частоту f = 50 Гц трёхфазного источника напряжения **FG** (рис. 3);
 - режим **AC** и сопротивление $R_V = 10$ МОм вольтметров:
 - Ulin (для измерения линейного напряжения генератора);
 - Ua, Ub и Uc (ддя измерения фазных напряжений приёмника);
 - UnN (для измерения напряжения смещения нейтрали);
 - режим **AC** и сопротивление $R_A = 1$ мОм амперметров:
 - Ia, Ib и Ic (для измерения фазных токов приёмника);
 - In (для измерения тока в нейтральном проводе);
 - назначить клавиши Q, W и S клавиатуры для управления ключами;
 - значения сопротивлений фаз приёмника (нагрузки):

 $\underline{Z}_a = \underline{Z}_b = \underline{Z}_c = R + jX_L = [(20 + N) + j30],$ Ом для чётных вариантов N и $\underline{Z}_a = \underline{Z}_b = \underline{Z}_c = R - jX_C = [(20 + N) - j30],$ Ом для нечётных вариантов, где N – номер записи фамилии студента в учебном журнале группы.

По данным экспериментов **построить** векторную диаграмму фазных напряжений и токов (в масштабе) потребителей четырёхпроводной цепи при неравномерной нагрузке. Фазные углы φ_a , φ_b , φ_c **определить** по формуле

$$\varphi_{\phi} = \pm \operatorname{arctg}(X_{\phi}/R_{\phi}).$$

Задание 2. Расчет цепи трехфазного тока.

- 1. Рассчитайте линейные и фазные токи и напряжения в схеме согласно своему варианту (номер варианта соответствует номеру в журнале).
- 2. Определите активные мощности в ветвях.
- 3. Определите линейные и фазные токи и напряжения с использованием MS11.
- 4. Постройте векторные диаграммы токов и топографические диаграммы напряжений в схеме, выполните проверку.

Рисунок 1

Рисунок 2

Рисунок 3

Рисунок 4

Рисунок 5

Рисунок 6

Таблица 1 — Значения линейных напряжений и сопротивлений резисторов для цепей, схемы которых приведены на рисунках 1- 36

ценей, схемы которых приведены на рисунках 1- 50														
вар.	$N_{\underline{0}}$	$U_{J\!I}$,	R_a ,	R_b ,	R_c ,	X_a ,	X_b ,	X_c ,	R_{ab} ,	R_{bc} ,	R_{ca} ,	X_{ab} ,	X_{bc} ,	X_{ca} ,
	рис.	В	Ом	Ом	Ом	Ом	Ом	Ом						
1	1	127	6	8	-	4	2	10	-	-	-	-	-	-
2	2	127	5	1	-	2	4	17	-	-	-	-	-	-
3	3	127	5	8	2	11	15	12	-	-	-	-	-	-
4	4	220	10	6	7	3	4	15	-	-	-	-	-	-
5	5	127	1	3	7	-	-	-	-	-	-	-	-	-
6	6	380	-	-	12	20	15	7	-	-	-	-	-	-
7	7	380	5	10	2	2	17	4	-	-	-	-	-	-
8	8	127	2	12	16	-	8	-	-	-	-	-	-	-
9	9	380	6	12	2	-	-	9	-	-	-	-	-	-
10	10	127	5	6	19	-	2	15	-	-	-	-	-	-
11	11	380	2,5	6	12	4	-	2	-	-	-	-	-	-
12	12	127	7	4	19	-	-	15	-	-	-	-	-	-
13	13	380	-	-	-	1	4	25	-	-	-	-	-	-
14	14	380	-	-	7	7	25	15	-	-	-	-	-	-
15	15	220	-	10	-	3	25	19	-	-	-	-	-	-
16	16	127	-	-	19	-	-	25	-	-	-	-	-	-
17	17	220	12	-	-	10	8	15	-	-	-	-	-	-
18	18	220	-	-	-	2	10	25	-	-	-	-	-	-
19	19	127	2	12	15	15	2	3	-	-	-	-	-	-
20	20	220	5	4	10	-	31	-	-	-	-	-	-	-
21	21	220	1	6	3	-	-	4,5	-	-	-	-	-	-
22	22	127	6,5	5	11	-	4,5	9,	-	-	-	-	-	-
23	23	380	10	20	5	15	-	-	-	-	-	-	-	-
24	24	220	2	10	3	3	-	-	-	-	-	-	-	-
25	25	220	15	5	-	10	3	7	-	-	-	-	-	-
26	26	127	5	20	-	1	10	5	-	-	-	-	-	-
27	27	220	15	4	18	5	15	28	-	-	-	-	-	-
28	28	220	8	2	30	25	5	5	-	-	-	-	-	-
29	29	380	10	10	2	-	-	-	-	-	-	-	-	-
30	30	127	-	-	18	20	5	10	-	-	-	-	-	-
31	31	127	18	10	2	10	8	18	-	-	-	-	-	-
32	32	127	5	5	5	-	10	-	-	-	-	-	-	-
33	33	380	2	12	8	-	-	10	-	-	-	-	-	-
34	34	380	10	10	5	-	2	8	-	-	-	-	-	-
35	35	220	15	2	7	4	-	-	-	-	-	-	-	-
36	36	220	1	4	12	-	-	5	-	-	-	-	-	-

Содержание отчета

- 1. Наименование и цель работы.
- 2. Схемы трехфазных цепей с приемниками, соединенными звездой и треугольником.
- 3. Расчётные формулы и вычисления параметров трехфазных цепей. Таблицы с вычисленными и измеренными величинами.
 - 4. Векторные диаграммы напряжений и токов трехфазных цепей.
 - 5. Выводы по работе