Chemical Bonding

Why do atoms form molecules???

Chemical Bonding

We will examine this first using the simplest molecule: H₂

$$H + H \rightarrow H_2$$

Why is the H₂ molecule more stable than 2 separate H atoms?

Answer comes from Quantum Mechanics!

Chemical Bonding in H₂

Fig. 7.4;

We will examine this first using the simplest molecule: H₂

How do we think about bonding between atoms?

What happens when waves (orbitals) combine?

http://www.daviddarling.info/encyclopedia/I/interference.html

in combining waves we have to consider *constructive* and *destructive interference*

Chemical bonding in H₂

Let's examine the energy of interaction between two H atoms as the bond is formed

What holds H₂ together

$$V_{\text{repulsion}}^{\text{nuclear}} = \frac{e^2}{4\pi\epsilon_0 R_{\text{AB}}}$$

$$V_{\text{repulsion}}^{\text{electron}} = \frac{e^2}{4\pi\epsilon_0 R_{\text{ee}}}$$

$$V_{\text{repulsion}}^{\text{electron}} = \frac{e^2}{4\pi\epsilon_0 R_{\text{ee}}}$$

$$V_{\text{attraction}} = V_{e_1 A} + V_{e_1 B} + V_{e_1 A} + V_{e_1 A}$$

$$Energy = V_{\text{repulsion}}^{\text{nuclear}} + V_{\text{repulsion}}^{\text{electron}} + V_{\text{attraction}} + \text{electron KE}$$

When the orbitals overlap, they merge to form a *molecular orbital* and each electron can access the entire MO – decreasing its kinetic energy

(Similar to Figs. 7.3 & 7.4)

What holds H₂ together

Decreasing bond length

When the orbitals overlap, they merge to form a *molecular orbital* and each electron can access the entire MO

Bonding Molecular Orbitals H₂

To form the bonding molecular orbital – the atomic orbitals are added constructively

(see Fig. 7.13)

Bonding Molecular Orbitals H₂

To get the electron probability density we need to square the MO wavefunction

Covalent Bonding in H₂

What about destructive interference

The bonding MO was formed by adding together H atom wavefunctions (orbitals) constructively. We can also add them *destructively* to form another type of MO

An MO with a node between the two atoms is called an "anti-bonding" orbital

Antibonding orbitals in H₂

because the electron-nuclear attraction is less in the antibonding orbital, its energy is higher than a bonding MO

Antibonding orbitals in H₂

"Anti-bonding" results from destructive cancellation between the atomic orbitals

We see that combining two atomic orbitals we can form two types of molecular orbitals – *bonding* and *antibonding* – depending upon whether we have constructive or destructive interference

Bonding in H₂: Molecular Orbital Diagrams

Molecular Orbital Diagram for H₂

whether a molecule is stable or not is determined by the number of bonding vs. anti-bonding electrons

What do we mean by σ ?

Both the bonding and antibonding molecular orbitals formed from the 1s atomic orbitals are symmetric with respect to rotation around the bond axis

Any MO with this property is called a *sigma* MO and the bond is called a *sigma bond*

The electron configuration of H_2 is σ_{1s}^2

Bond Order

The bond order of a bond is defined as

Bond order =
$$\frac{(\# \text{ bonding } e^-) - (\# \text{ antibonding} | e^-)}{2}$$

BO for
$$H_2 = (2 - 0)/2$$

= 1

We say that H₂ has a single bond: H–H

Stability of a bond is related to Bond Order

Let's compare the molecular orbital diagrams (and properties for $\rm H_2^+,\ H_2^+$ and $\rm He_2^+$

Molecular Orbital Analysis predicts (correctly) that He₂ is unstable

$$\begin{array}{ccc}
\sigma_{1s}^{*} \\
& \downarrow \\
& \downarrow \\
& \downarrow \\
& \sigma_{1s}
\end{array}$$

$$\begin{array}{ccc}
& & \downarrow \\
& & \downarrow \\
& & \downarrow \\
& & \sigma_{1s}
\end{array}$$

$$\begin{array}{cccc}
& & \downarrow \\
& & \downarrow \\
& & \sigma_{1s}
\end{array}$$

$$\begin{array}{cccc}
& & \downarrow \\
& & \downarrow \\
& & \sigma_{1s}
\end{array}$$

$$\begin{array}{cccc}
& & \downarrow \\
& & \downarrow \\
& & \sigma_{1s}
\end{array}$$

$$\begin{array}{ccccc}
& & \downarrow \\
& & \downarrow \\
& & \sigma_{1s}
\end{array}$$

$$\begin{array}{ccccc}
& & \downarrow \\
& & \downarrow \\
& & \sigma_{1s}
\end{array}$$

$$\begin{array}{ccccc}
& & \downarrow \\
& & \downarrow \\
& & \sigma_{1s}
\end{array}$$

$$\begin{array}{ccccc}
& & \downarrow \\
& & \downarrow \\
& & \sigma_{1s}
\end{array}$$

$$\begin{array}{cccccc}
& & \downarrow \\
& & & \downarrow \\
&$$

The number of bonding electrons is equal to the number of anti-bonding electrons in He₂

 He_2 is not a stable molecule – its bond energy is $\leq 1 \text{ kJ/mol}$

How do we go beyond Hydrogen and Helium?

In bonding, generally only the valence electrons take part.

Look at Li_2 σ_{2s}^* $\sigma_$

Configuration: $(\sigma_{2s})^2$ Bond Order = 1

How do we go beyond Hydrogen and Helium?

Be₂: Configuration: $(\sigma_{2s})^2(\sigma_{2s}^*)^2$ Bond Order = 0 $E_{\text{bond}} < 10 \text{ kJ/mol}$

Li₂ Configuration: $(\sigma_{2s})^2$ Bond Order = 1 E_{bond} = 110 kJ/mol

Bonding with p Orbitals

Let's look now at B₂

We can create MOs from two p orbitals in two ways

There are 3 2p orbitals – oriented along each Cartesian direction: x, y and z

Let's take the bond axis to be the z axis. The $2p_z$ orbitals of the two B atoms are oriented head on. We can combine them constructively or destructively.....

Remember the definition of a σ orbital?

Electron density is cylindrically symmetric about the bond axis

How do you tell if it is bonding or antibonding?

Bonding with *p* Orbitals

The other two *p* orbitals are perpendicular to bond axis

What is π orbital?

Orbital changes sign when rotated by 180° about bond axis

