問題1-6 χ に関する 3 次方程式 $\chi^3 - 3 \mu \chi + q = 0$ の解法を作れ、 Π

解答例 (問題1-4の解答例を見よ、) $\omega^2 + \omega + 1 = 0$ と仮定する、 $\omega = 3$ ($\omega^2 + \omega + 1 = 0$ と仮定する、 $\omega = 3$ ($\omega^2 + \omega + 1 = 0$ と仮定する、 $\omega = 3$ ($\omega = 3$ ($\omega = 3$) $\omega = 3$ ($\omega = 3$ ($\omega = 3$ ($\omega = 3$) $\omega = 3$ ($\omega = 3$ ($\omega = 3$ ($\omega = 3$) $\omega = 3$ ($\omega = 3$ ($\omega = 3$ ($\omega = 3$) $\omega = 3$ ($\omega = 3$ ($\omega = 3$ ($\omega = 3$) $\omega = 3$ ($\omega = 3$ ($\omega = 3$ ($\omega = 3$) $\omega = 3$ ($\omega = 3$ ($\omega = 3$ ($\omega = 3$) $\omega = 3$ ($\omega = 3$ ($\omega = 3$ ($\omega = 3$) $\omega = 3$ ($\omega = 3$ ($\omega = 3$ ($\omega = 3$) $\omega = 3$ (

 $\chi^{3} - 3yz \cdot \chi + (y^{3} + z^{3}) = (\chi + y + z)(\chi + wy + \omega^{2}z)(\chi + \omega^{2}y + \omega z)$

ゆえた、もしも 与えられた $P(\pm 0)$, をに対して、 y = P, $y^3 + z^3 =$ をみたす (y, z) を 作れれば、 $\chi^3 - 3P\chi + 9 = D$ は $\chi = -y - z$, $-\omega y - \omega^2 z$, $-\omega^2 y - \omega z$ と 角なける、

 $Y = P^3$, Y + Z = P をみたす Y, Z は Z 次方程式 $\lambda^2 - q\lambda + P^3 = D$ の解になる. Z = P と Z と

解決まとめ ① パータル+ドニリの解の1つをYと書く、

- ② りゅートをみたすりを1つ取り、そ二年とかく、
- 3 x = -y z, $-wy w^2 z$, $-w^2 y wz$ $(w^2 + w + 1 = 0)$.