第1章

はじめに

1.1 宇宙での元素合成過程

身の回りには多種多様な物質が存在している.これらの物質は原子が組み合わさることで形成される.現在の地球には水素(原子番号 1)からウラン(原子番号 92)までの元素が天然で存在してる.原子は更に小さい原子核と電子で構成されており原子核は陽子と中性子で構成されている.現在までに天然,人工合わせて 118 種類の元素が確認されている.しかし,ビッグバン直後には水素とヘリウムと僅かな軽元素しか存在していなかったと考えられている.これは,質量数 (A) が 5 及び 8 の安定な原子核が存在しないことに由来する. 4 He 原子核 $(\alpha$ 粒子)は安定な原子核である.2 つの α 粒子が反応し 8 Be が生成されても,2 つの α 粒子に分裂するほうが安定であるためすぐに崩壊してしまう.同様に A=5 の原子核が生成してもすぐに軽い核 2 つに分裂してしまう.

そのため,宇宙初期では水素を主成分とする恒星しか存在しなかったと考えられる.このような恒星が重力により収縮し中心温度が $10^7\,\mathrm{K}$ を超えると,陽子(水素)同士が反応して α が合成される pp チェインによって水素の燃焼が行われるようになる. pp チェインでは図 1.1 に示した 3 つの系列が重要とされる.どの系列も最終的に 4 つの陽子から 1 つの α 粒子が生成される. pp チェインのような陽子が順番に原子核に吸収される反応では, $\mathrm{A}=5,8$ の壁を超えることはできない.この壁を超えるためには $\mathrm{A}=4$ 以下の原子核から $\mathrm{A}=9$ 以上の原子核が直接生成されなければならない.

pp チェインにより α が十分に生成された恒星では水素よりも重い α がより恒星の中心に集まり He コアを生成する。He コアが重力により圧縮され温度がおよそ 10^8 K に達するとヘリウム燃焼が始まる。He コアには十分な量の α が存在するため,2 つの α から 8 Be が合成され,さらに,崩壊するより早くもう 1 つ α が融合して 12 C* が生成される。このときに作られる 12 C の多くは Fred Hoyle が予言した 3α の共鳴状態 (Hoyle 状態,Ex = 7.65 MeV, 0_2^+) [?] となる。 12 C(0_2^+) が γ 線を放出し脱励起することで安定な 12 C になる(図 1.2 左)。この 3 つの α 粒子から 12 C が直接合成される反応はトリプルアルファ反応と呼ばれる。トリプルアルファ反応が恒星中で起こることで A=4 から A=12 へと直接移るため,A=5, 8 の壁を乗り越えることができる。生成された 12 C が更に α を吸収することで O や Si などの更に重い核の合成へ進んでいく。

1.2 高温高密度中でのトリプルアルファ反応

通常,トリプルアルファ反応で生成された 3α 共鳴状態は図 1.2 の左のように γ 線を放出することによって脱励起し,安定な 12 C の基底状態になる. 近年,高温高密度領域では γ 線による脱励起以外に,図

図 1.1: 代表的な pp チェイン. pp チェインでは 4 つの陽子から 1 つの α が生成される.

1.2 (右) のように粒子との非弾性散乱による脱励起が増加することが示唆されている [?]. これにより g.s. や $2_1^+(\mathrm{Ex}=4.44\,\mathrm{MeV})$ への脱励起が増加し,トリプルアルファ反応が促進されると考えられる.粒子の中でも中性子は電荷を持っておらず,クーロン斥力を受けずに反応することができるため,脱励起を促進する効果が大きいと考えられる.

12C と中性子の反応レートは

$$r = N_{\rm n} N_{\rm ^{12}C} \langle \sigma v \rangle 1/({\rm cm}^3 {\rm s}) \tag{1.1}$$

で与えられる。ここで, $N_{\rm n}$ は中性子の個数密度, $N_{\rm ^{12}C}$ は 12 C の個数密度を表す。 σ は中性子との散乱により始状態(g.s. または 2_1^+)から 0_2^+ 状態へ励起する全断面積であり,v は中性子と 12 C の相対速度である.相対速度が Maxwell 分布に従うとすると, 12 C(${\rm n,n'}$) 12 C(0_2^+) では

$$\langle \sigma v \rangle_{\rm nn'} = \left(\frac{8}{\pi \mu}\right)^{1/2} \left(\frac{1}{kT}\right)^{3/2} \int_0^\infty E' \sigma_{\rm n,n'}(E') \exp(-E'/kT) dE'$$
 (1.2)

となる. T は温度, μ は換算質量, $\sigma_{n,n'}$ は ^{12}C の中性子非弾性散乱断面積である.我々が考える反応は上記の逆過程 $^{12}C(0_2^+)(n',n)^{12}C$ なので,

$$\langle \sigma v \rangle_{\text{n'n}} = \left(\frac{2I+1}{2I'+1}\right) \exp(-Q/kT) \langle \sigma v \rangle_{\text{nn'}},$$
 (1.3)

γ deexcitation

n deexcitation

図 1.2: トリプルアルファ反応. 左は γ 線を放出して脱励起するルート,右は中性子との散乱により脱励起するルートを表す.

となる.ここで,I および I' は始状態(g.s. または 2_1^+)および終状態(0_2^+ 状態)のスピンである.Q は $-7.65\,\mathrm{MeV}$ (g.s. の場合)または $-3.21\,\mathrm{MeV}$ (2_1^+ の場合)となる. $^{12}\mathrm{C}(0_2^+)$ の中性子非弾性散乱による脱励起の寿命は

$$\tau_{\mathbf{n},\mathbf{n}}(^{12}\mathrm{C}(0_2^+)) = (N_{\mathbf{n}} \langle \sigma v \rangle_{\mathbf{n},\mathbf{n}})^{-1}\mathrm{s}$$

$$\tag{1.4}$$

となる.

中性子非弾性散乱による脱励起の寿命と γ 線による脱励起の寿命 $(\tau_{\gamma}=1.710\times 10^{-13}\,\mathrm{s})$ との比を R とすると,

$$R = 6.557 \times 10 - 6 \times \rho_{\rm n} T_9^{-1.5} C_{\rm spin} \int_0^\infty \sigma_{\rm nn'}(E)(E - Q) \exp(-11.605 E/T_9) dE$$
 (1.5)

と表される. E は c.m. 系のエネルギー, $\rho_{\rm n}$ は中性子の質量密度 (g/cm³), $\sigma_{\rm nn'}(E')$ は断面積 (mb), T_9 は 温度 (10^9 K) である. $C_{\rm spin}$ は g.s. からの場合 1, 2_1^+ からの場合 5 となる. 式 (1.5) からわかるように,中性子によって脱励起する過程は特に温度に大きく依存する. Beard らによる R と温度の依存性の計算結果 [?] を図 1.3 に示す.図 1.3 は $\rho=10^6$ g/cm³ の場合の結果を示している. $\rho=10^6$ g/cm³ という高密度下では γ 線による脱励起に対して,粒子による脱励起の寄与が大きくなることが分かる. 特に,中性子による寄与は γ 線による寄与の 40–100 倍ととても大きい.

図 1.3: γ 線による脱励起の寿命と粒子散乱による脱励起の寿命の比 [?]. Rnn, Rpp, R $\alpha\alpha$ はそれぞれ中性子, 陽子, α 粒子と散乱した際の寿命の比を表す.

 $\rho \sim 10^6\,\mathrm{g/cm^3}, T \sim 10^9\,\mathrm{K}$ のような高温高密度の環境は宇宙の何処にあるだろうか. 一つの候補として超新星爆発が考えられる. 10–30 M_\odot 程度の大質量星は,重力崩壊を起こして星の一生を終える. 重力崩壊の際に恒星の中心にある鉄コアの温度が急激に上昇する. 極めて高い温度では高エネルギーの光子によって鉄コアの原子核が陽子や中性子に分解される (光分解反応). また,密度が非常に高いため式 (1.6) のように陽子が中性子へ変わる電子捕獲が起きる.

$$p + e^- \to p + \nu_e \tag{1.6}$$

すると,恒星の中心に原始中性子星が形成される.重力によって中心に降ってくる物質は原始中性子星で跳ね返りが起こる.この物質の跳ね返りが超新星爆発である.崩壊前の恒星が持っていた重力エネルギーが熱エネルギーに変換されるので,原始中性子星の表面温度は $10^{10}\,\mathrm{K}$ に達する.跳ね返った物質が膨張することで温度が下がっていき, $7\times10^9\,\mathrm{K}$ ほどになると 2 つの陽子と 2 つの中性子が融合し α 粒子が生成される.このとき, α 粒子と中性子が高密度かつ高温で存在する環境ができるのである.

1.3 測定を行う中性子のエネルギー

式 (1.5) から分かるように R を計算するためには、中性子と 12 C の非弾性散乱断面積 $(\sigma_{nn'}(E))$ のエネルギー分布が必要となる。特に、天体中で 12 C と散乱した後に中性子が持つエネルギー領域を狙う必要がある。Beard ら [?] が考えているような $T\sim 10^9$ K では、 $k_BT\sim 100$ keV である。このような中性子が Hoyle 状態 $(\text{Ex}=7.65\,\text{MeV})$ の 12 C と散乱すると、散乱後の中性子は $E_n\sim 8\,\text{MeV}$ となる。つまり、式 (1.4) に示した脱励起の寿命の計算には数 MeV のエネルギーを持つ中性子と 12 C との断面積のエネルギー分布が必要となる。しかし、図 1.4 (\pm) からも分かるように、数 MeV の領域における g.s. \rightarrow Hoyle 状態のデータがない。そのため、このエネルギー領域での 12 C $(n,n')^{12}$ C (0^+_7) の断面積の測定が必要である。

本研究ではその第一歩として $E_{\rm n}=14\,{
m MeV}$ の中性子を用いて断面積の測定を行い, $^{12}{
m C(n,n')}^{12}{
m C(0_2^+)}$ 反応の断面積測定の実現可能性を確認する. $14\,{
m MeV}$ は式 (1.7) に示す DT 反応で単色で生成可能なエネルギーである.

$$d + t \rightarrow \alpha(3.5 \,\text{MeV}) + n(14 \,\text{MeV}) \tag{1.7}$$

図 1.4: 12 C と中性子 (上段) および陽子 (下段) との非弾性散乱断面積 [?]. 実線は TALYS [?] を用いた理論計算,点は測定値を表す.

単色エネルギーの中性子を用いることで、中性子のエネルギー測定を行う必要が無くなる。ITER [?] などの核融合炉ではこの DT 反応を用いて質量エネルギーを取り出す。核融合炉の中で生成される 14 MeV の中性子は構造材の原子核と反応し損傷させるため、構造材の中に多く含まれる炭素との反応が詳しく調べられている。そのため、既知の 14 MeV の中性子と 12 C との断面積のデータと、本研究での測定結果を比較することが可能となる。単色エネルギーの中性子を生成可能であること,他データと測定結果の比較が可能であることの 2 点より、測定方法の検証として 14 MeV の中性子で断面積の測定を行う。 $E_n=14$ MeV での 12 C(n,n') 12 C* の散乱断面積は Ref. [?,?] によりすでに測定されている。 12 C($n,n'+3\alpha$) 反応の全断面積は 20 mb,分岐比は表 20 1.1 の通りである。微分断面積の角度分布は図 20 1.5 [?] のようである。これらの測定値と比較することによって測定方法の妥当性を確認することが可能となる。

表 1.1: 12 C $(n, n' + 3\alpha)$ 反応のチャンネルとその分岐比. 12 C の励起状態から 3α に, 9 Be の励起状態から 2α に崩壊する.

Reaction channel	Branching ratio (%)
$^{12}C(n,n')^{12}C^{*}(7.65\mathrm{MeV})$	4
$^{12}C(n,n')^{12}C^{*}(9.64\mathrm{MeV})$	33
$^{12}C(n,n')^{12}C^*(10.3\mathrm{MeV})$	16
$^{12}C(n,n')^{12}C^*(10.84\mathrm{MeV})$	6
$^{12}C(n, n')^{12}C^*(11.83\mathrm{MeV})$	4
$^{12}{\rm C(n,\alpha)^9 Be^* (1.68-3.05MeV)}$	24
$^{12}{\rm C(n,\alpha)^9 Be^* (4.7MeV)}$	13

図 1.5: $^{12}C(n, n')^{12}C(0_2^+)$ の微分断面積の角度分布 [?].

1.4 大阪大学 14 MeV 中性子工学実験装置 (OKTAVIAN)

大阪大学工学研究科の OKTAVIAN [?] では DT 反応により $14\,\mathrm{MeV}$ の中性子を発生させることができる. 図 $1.6\,\mathrm{c}$ OKTAVIAN の施設図を示す。 OKTAVIAN は $1981\,\mathrm{f}$ 年から運転を開始し,核融合中性子工学研究 に用いられてきた。 コッククロフト・ワルトン型加速器を用いて加速したデューテリウムをトリチウムター ゲットに照射することで, $14\,\mathrm{MeV}$ の中性子を生成する。 OKTAVIAN にはパルスビームラインと DC ビームラインの $2\,\mathrm{c}$ つのビームラインがある。 パルスビームラインは大実験室に設置されたトリチウムターゲットを 用いて, DC ビームラインは重照射室に設置されたトリチウムターゲットを用いて中性子を生成する。

DC ビームラインで生成された中性子はトリチウムターゲットを中心に放射状に重照射室へ放出される. この中性子を大実験室側へ取り出すための直径約 100 mm の取り出し穴が図 1.7 のように重照射室と大実験室を

図 1.6: OKTAVIAN の施設図 [?]. パルスビームラインと DC ビームラインがそれ ぞれ大実験室と重照射室に伸びている.

隔てる壁に開いている。この取り出し穴から中性子を取り出すことで直径が約 $100\,\mathrm{mm}$ にコリメートされた DC 中性子ビームを用いた測定を行うことができる。ただし,DC ビームであるため中性子が入射した時間情報を得ることはできない。一方で,パルスビームラインでは図 $1.8\,\mathrm{mag}$ のように大実験室中にトリチウム標的が設置されているため,中性子をコリメートすることができない。その反面,パルス状に中性子が発生するので,中性子の時間情報を得ることができる。本測定では,実験室内で反射した中性子によるバックグラウンドイベントを低減することや,中性子の入射領域を制限できることから,DC ビームラインを用いて測定を行う予定である。また,取り出し穴に任意の形状のコリメータを入れることで,ビームの形状を制御することができる。本実験では半径 $10\,\mathrm{mm}$ の穴が開いたコリメータを用いる。

1.5 測定に用いる実験装置

本研究では 12 C(0 C($^{+}$ C) から崩壊して生成した 3 つの $^{\alpha}$ 粒子の直接測定を行う。 12 C(0 C($^{+}$ C) から放出された $^{\alpha}$ 粒子は図 $^{1.9}$ のようなエネルギーの分布を持つ。 横軸は入射中性子のエネルギー,縦軸は崩壊後の $^{\alpha}$ 粒子のエネルギーである。図 $^{1.9}$ から中性子のエネルギーに関わらず約 $^{0.1}$ MeV が最大値となっている。1 MeV より大きい領域は重心運動と同じ方向に放出された $^{\alpha}$ 粒子がブーストされている。それに対し,重心運動と異なる方向に放出された $^{\alpha}$ 粒子は,あまりブーストされずに典型的には励起エネルギーと $^{3\alpha}$ 崩壊閾値の差分を 3 等分したエネルギー ($^{0.38}$ MeV \div 3 3 $^{0.1}$ MeV) を持つ。図 $^{1.5}$ から分かるように前方散乱の断面積が大きく, 12 C(0 C) が重心運動方向と異なる方向に散乱される確率が高い。そのため, $^{\alpha}$ 粒子はあまり重心運動によるブーストの効果を受けずに,中性子のエネルギーに関わらず $^{0.1}$ MeV 付近で最大となる。図 $^{1.10}$ は中性子のエネルギーが 14 MeV のときの分布である。図 $^{1.10}$ の塗りつぶし部分は最大値を中心に全体の 8 割となる領

図 1.7: 大実験室側から DC 中性子の取り出し穴のある壁を見たときの様子.

域を示しており、0– $0.6\,\mathrm{MeV}$ の範囲である.このような低エネルギーの α 粒子を効率よく検出するためには、標的中で α 粒子が停止しないようにしなければならない.例えば、 $500\,\mathrm{keV}$ の α 粒子ではおよそ $350\,\mathrm{\mu g/cm^2}$ の炭素箔標的で停止してしまう.更に低いエネルギーの α 粒子も検出しようとすると,更に標的を薄くしなければならない.このような低エネルギー粒子の測定には,検出器そのものが標的となるアクティブ標的が有効である.

図 1.11 は α 粒子の角度分布である。 横軸は入射中性子のエネルギー,縦軸は α 粒子の入射中性子の運動方向に対する角度を表す。 α 粒子のエネルギー分布と同様に入射中性子のエネルギーにあまり依存していない。 図 1.12 は入射中性子が 14 MeV のときの角度分布である。 図 1.12 の塗りつぶしは最大値を中心に全体の 8 割となる領域を示しており,0.13–1.31 rad である。そのため,3 つの α 粒子すべてを効率的に検出するためには大立体角を覆う検出器が必要となる。このような要求を満たす検出器として MAIKo TPC (μ -PIC based active target for inverse kinematics . time projection chamber) [?, ?] がある。 MAIKo TPC は TPC の検出ガスを散乱標的として用いた TPC であり,低エネルギーの荷電粒子を大立体角で検出することができる検出器である。 MAIKo TPC を用いることで低エネルギーの α 粒子を 4π で検出することができる。よって,本研究では MAIKo TPC を用いて 12C(n, n')12C(00 欠応を測定する。

1.6. 本研究の目的 9

図 1.8: 大実験室およびパルスビームライン. 写真中央にパルスビームラインのトリチウムターゲットが設置されている. 写真右手前から加速されたデューテリウムが照射される.

1.6 本研究の目的

MAIKo TPC を用いた 12 C(n, n') 12 C(1 0½) 反応の断面積測定のためには,低エネルギーの α 粒子を検出する必要がある。1.5 節で述べたように,MAIKo TPC を用いることで効率的に 3 つの低エネルギー α 粒子を検出することが可能となる。しかし,崩壊してできた 3 つの α 粒子が持つ運動エネルギーは広がりを持ち,それぞれの α 粒子が持つ運動エネルギーが数十倍違うこともある。そのため,より効率的に全ての粒子を測定するための条件を検討する必要がある。MAIKo TPC では使用する検出ガスの種類,圧力,電圧等の多くのパラメータを調整することができる。本研究では効率的に α 粒子を検出することができる検出ガスの候補を複数選出し, α 線源を用いて性能試験を行う。それらのガスについて中性子との散乱で 12 C 原子核が 3 つの α 粒子に崩壊するイベントをシミュレートし,MAIKo TPC から得られるであろう画像を生成する。シミュレーションで生成した画像に対して解析を行い,検出効率,エネルギー分解能,角度分解能を評価する。評価結果から実験で用いる検出ガスを決定する。また,正しく解析を行える割合やこの測定方法で期待される収量の評価を行い,実験の実現可能性を検討する。

図 1.9: $^{12}{\rm C}(0_2^+)$ から放出された α 粒子のエネルギー分布.横軸は入射中性子のエネルギー,縦軸は崩壊後の α 粒子のエネルギーである.赤いラインは $E_\alpha=0.1\,{\rm MeV}$ を表す.

図 1.10: $^{12}\mathrm{C}(0_2^+)$ から放出された α 粒子のエネルギー分布.入射中性子のエネルギーが 14 MeV のときの分布.図は $^{12}\mathrm{C}$ から放出される 3 つの α 粒子すべての分布を表している.

1.6. 本研究の目的 11

図 1.11: $^{12}\mathrm{C}(0_2^+)$ から放出された α 粒子の角度分布.

図 1.12: $^{12}{\rm C}(0_2^+)$ から放出された α 粒子の角度分布.入射中性子のエネルギーが 14 MeV のときの分布.図は $^{12}{\rm C}$ から放出される 3 つの α 粒子すべての分布を表している.