Detección de anomalías en los registros de tráfico ofrecidos por IPFIX

Agustín Walabonso Lara Romero

Universidad de Sevilla

2019

Introducción

- Ataques:
 - Viajan por la red
 - Huellas logs

Detección: IDS Protección: IPS/FW

Motivación y Objetivos

Limitaciones:

- Necesidad del tráfico (PCAP) → Baja escalabilidad
 - Inspección de paquetes (FW, DPI): ¿Y si va cifrado?
 - Necesidad de gran capacidad HW de procesamiento
 - Gran cantidad de firmas para comparar
 - Transporte del tráfico en red (¿Port mirroring?)
 - Grado de protección: ¿Ataques sin firmas?
- Objetivo: Sistema IDS basado en anomalías
 - Uso de flujos
 - Diseño del sistema, implementación de un piloto y evaluación de indicadores

Arquitectura propuesta

Arquitectura híbrida flexible

Adaptable a diversos escenarios (configurable)

- Flujos:
 - Generados localmente o por routers/switch intermedios
 - » Opcional: enriquecidos con DPI

Diseño del sistema

- Generación de flujos local: nProbe
 - Incluye nDPI
 - Indicadores de aplicaciones

Diseño del sistema (II)

- Generación de indicadores: en franja horaria
 - 8 indicadores por cada IP a analizar

Diseño del sistema (III)

Detector de anomalías

- Basado en comportamientos estadísticos
- Doble detector: $|x_i \mu| > \mu \pm k \times \sqrt{\sigma^2}$

a) Media móvil

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

b) Media móvil exponencial (EMA)

$$EMA(t) = \begin{cases} x_1, & t = 1 \\ \alpha \times x_i + (1 - \alpha) \times EMA(t - 1), & t > 1 \end{cases}$$

Implementación y evaluación

- Diseñada fuera de línea (piloto de pruebas)
 - Generación de indicadores
 - Detección de anomalías
 - Generación de alarmas

Evaluación sistema

- Escenario de validación
 - · Tráfico normal y tráfico de ataques
- Métricas de rendimiento
 - Capacidad de detección, falsos positivos
 - Accuracy

$$Accuracy(\%) = \frac{\sum_{i} Acierto_{i}}{N^{\circ} Total \ de \ muestras}$$

Escenario de pruebas

Escenario final y pruebas realizadas

· 14 Octubre: Virus trovano

Resultados

Evolución temporal indicadores: App-Unknown

Resultados (II)

Dst-Port

Icmp-Port

Resultados (III)

Día	Tráfico	App-Unknown	Puertos_destino	Icmp_destino
1	Bueno			
2	Bueno			
3	Bueno	Alerta		
4	Malo			Alerta
5	Bueno			
6	Bueno			
7	Malo	Alerta	Alerta	
8	Bueno			
9	Bueno			
10	Malo	-	-	-

Día	Tráfico	App-Unknown	Puertos_destino	Icmp_destino
11	Bueno			
12	Bueno			
13	Bueno			
14	Malo	Alerta		
15	Bueno			
16	Bueno		Alerta	Alerta
17	Bueno			
18	Bueno			
19	Bueno			

Indicador	Unknown	Puertos_destino	lcmp_destino
CD(Tasa detección)	50	25	25
TFP(Tasa falsos positivos)	7,14	7,14	7,14
Accuracy (3)	84,21	78,95	78,95

Conclusiones

Sistema de detección flexible y escalable

- Indicadores según el escenario
- Posibilidad DPI
- Rendimiento aceptable (Primer paso)

Líneas de avance

- Implementación en línea
- Definición de nuevos indicadores
- Evaluación de nuevos escenarios de ataque
- Mejora en el sistema de detección

iGracias!

