Totes les respostes han d'acompanyar-se del seu raonament i els seus càlculs.

- **1** (2 punts)
 - a) Empreu el polinomi de Taylor de grau 2 a l'origen de la funció $f(x) = \sqrt[3]{1728 + x}$ per tal d'obtenir un valor aproximat de $\sqrt[3]{1731}$.
 - b) Fiteu l'error comès en l'apartat anterior.
- **2** (2 punts)
 - a) Per a la funció $f(x) = e^{x^2 1}$, demostreu que $0 < f^{(4)}(x) \le 76$ si $0 \le x \le 1$.
 - b) Fent ús del mètode de Simpson, calculeu l'àrea de la regió del pla limitada per les rectes $y=0,\ x=0,\ x=1$ i la corba $y=e^{x^2-1},$ amb un error menor que $10^{-3}.$
- **3** (2 punts)
 - a) Feu un esboç de les corbes de nivell de la superfície $z=e^{y-x^2}$ corresponents als nivells $z=-1,\frac{1}{e},1,e,e^2.$
 - b) Trobeu la derivada direccional de $f(x,y) = e^{y-x^2}$ en el punt $P = \left(\frac{1}{2}, \frac{1}{4}\right)$ i en la direcció $\overrightarrow{v} = (3,4)$.
 - c) Quina és la direcció en la qual $f(x,y) = e^{y-x^2}$ creix més ràpidament en el punt $P = (\frac{1}{2}, \frac{1}{4})$? Trobeu el valor de la derivada direccional de f(x,y) en aquesta direcció.
- 4 (4 punts) Considereu la funció $f(x,y)=x^2+y^2-2y$ i el conjunt

$$\mathcal{K} = \{(x, y) \in \mathbb{R}^2 : y \ge |x|, x^2 + y^2 \le 2\}.$$

- a) Representeu gràficament el conjunt \mathcal{K} .
- b) Justifiqueu l'existència d'extrems absoluts de f en K.
- c) Determineu tots els candidats a màxim i a mínim absoluts de f en \mathcal{K} .
- d) Trieu els punts on f assoleix el màxim i el mínim absoluts en \mathcal{K} i digueu quins són aquests valors.