

Operating Systems I

Unit 1 – Introduction

Prof. Dr. Alejandro Zunino
ISISTAN-CONICET

Normas de la cátedra

- No se admiten condicionalidades (no haber aprobado la cursada de una correlativa)
- Las revisiones de parciales son:
 - en las fechas y horarios establecidos
 - excepciones únicamente con certificado médico
- Consultas sobre la cursada:
 - únicamente en los horarios de clase
- Consultas sobre el final:
 - todos los viernes a partir de las 14:00 en el ISISTAN
 - No en vacaciones, feriados ni fines de semana

Cursada

- 13 teóricos
- 7 trabajos prácticos
 - 1 sobre Linux: ir instalando alguno! (se recomienda Ubuntu)
 - Con nota para el parcial
 - 1 requiere de conocimientos básicos de programación (C, C++, Java, ...)
- Apuntes y Prácticos
- http://www.exa.unicen.edu.ar/catedras/sisop1/
- Parcial/recuperatorio/prefinal:
 - fechas a definir

Quiénes somos?

- Profesores:
 - Dr. Alejandro Zunino: http://users.exa.unicen.edu.ar/~azunino/
 - Dr. Cristian Mateos: http://users.exa.unicen.edu.ar/~cmateos/
- Auxiliares
 - Dr. Juan Manuel Rodriguez
 - Dr. Alejandro Corbellini
 - Dr. Ana Victoria Rodriguez
 - Dr. Matías Hirsch

Bibliografía

- Bibliografía requerida:
 - Operating system concepts. Abraham Silberschatz, Peter Galvin (>= 5ta edicion):
 - Ed. 1994: 001.6425, Si582 (4 ejemplares)
 - Ed. 1998: 001.6425, Si582-1 (5 ejemplares)
 - Ed. 2004: 001.6425, Si582-2 (1 ejemplar, castellano)
 - The MACH System. Abraham Silberschatz, Peter Galvin:
 - http://www.exa.unicen.edu.ar/catedras/sisop1/
- Programa y más bibliografía en la página

Qué hacemos?

- ISISTAN (Instituto Superior de Ingeniería del Software de Tandil):
 - http://www.isistan.unicen.edu.ar
 - https://www.facebook.com/isistan.conicet/
 - https://twitter.com/ISISTAN CONICET
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas):
 - https://www.conicet.gov.ar

Algunos tips...

- Hacer los prácticos
 - entre el 20% y el 40% desaprueban el parcial por no hacer el práctico de Linux
- · Leer con detenimiento los enunciados:
 - muchos desaprueban porque no leen el enunciando del parcial
- · Leer el libro durante la cursada:
 - ~ 500 páginas
- Rendir el final lo más pronto posible
- Evitar delirios de persecución. Se desaprueba por no saber y no por:
 - Persecución ideológica
 - · Ojotas, traje, rastas, cumbia, etc.

Unit 1: Introduction

- What is an Operating System?
- Mainframe Systems
- Desktop Systems
- Multiprocessor Systems
- Distributed Systems
- Clustered System
- Real -Time Systems
- Handheld Systems
- Computing Environments

Qué **no** es la materia?

- Curso de instalación, configuración y uso de Windows/Linux/Mac OS/...
- Curso de desarrollo de sistemas operativos
- Curso de filosofía de software libre, open, free, ...

Curso de certificación de productos, obtener estrellas, ...

What is an Operating System?

- A program that acts as an intermediary between a user of a computer and the computer hardware.
- Operating system goals:
 - Execute user programs and make solving user problems easier.
 - Make the computer system convenient to use.
 - Use the computer hardware in an efficient manner.
 - Permit effective development, testing, and introduction of new system functions without interfering with service

Qué **si** es la materia?

- Curso de introducción a:
 - · conceptos de SO
 - estructuras internas
 - factores que influencian el diseño de los SO
 - implicancias del SO en las aplicaciones
 - implicancias de las aplicaciones en los SO
 - implicancias del hardware en los SO
 - cuáles SO, cómo y por qué están hechos así y para qué sirven

Computer System Components

- 1. Hardware provides basic computing resources (CPU, memory, I/O devices).
- Operating system controls and coordinates the use of the hardware among the various application programs for the various users.
- Applications programs define the ways in which the system resources are used to solve the computing problems of the users (compilers, database systems, video games, business programs).
- 4. Users (people, machines, other computers).

- Traditional computer
 - Blurring over time
 - Office environment
 - PCs connected to a network, terminals attached to mainframe or minicomputers providing batch and timesharing
 - Now portals allowing networked and remote systems access to same resources
 - · Home networks
 - Used to be single system, then modems
 - Now firewalled, networked

Operating System Definitions

- OS is a resource allocator
 - Manages all resources
 - Decides between conflicting requests for efficient and fair resource use
- OS is a control program
 - Controls execution of programs to prevent errors and improper use of the computer
- "The one program running at all times on the computer" is the **kernel**.
 - Everything else is either a system program (ships with the operating system) or an application program

Mainframe Systems

- Reduce setup time by batching similar jobs
- Automatic job sequencing automatically transfers control from one job to another.
 First rudimentary operating system.
- Resident monitor
 - · initial control in monitor
 - control transfers to job
 - when job completes control transfers pack to monitor

Computer Startup

- bootstrap program is loaded at power-up or reboot
- Typically stored in ROM or EPROM, generally known as firmware
- Initializes all aspects of system
- Loads operating system kernel and starts execution

Memory Layout for a Simple Batch System

operating system

user program area

Multiprogrammed Batch Systems

Desktop Systems

- Personal computers computer system dedicated to a single user.
- I/O devices keyboards, mice, display screens, small printers.
- User convenience and responsiveness.
- Can adopt technology developed for larger operating system' often individuals have sole use of computer and do not need advanced CPU utilization of protection features.
- May run several different types of operating systems (Windows, MacOS, UNIX, Linux)

OS Features Needed for Multiprogramming

- I/O routine supplied by the system.
- Memory management the system must allocate the memory to several jobs.
- CPU scheduling the system must choose among several jobs ready to run.
- Allocation of devices.

Parallel Systems

- Multiprocessor systems with more than one CPU in close communication.
- Tightly coupled system processors share memory and a clock; communication usually takes place through the shared memory.
- Advantages of parallel system:
 - Increased throughput
 - Economical
 - · Increased reliability
 - graceful degradation
 - fail-soft systems

Time-Sharing Systems—Interactive Computing

- The CPU is multiplexed among several jobs that are kept in memory and on disk (the CPU is allocated to a job only if the job is in memory).
- A job swapped in and out of memory to the disk.
- On-line communication between the user and the system is provided; when the operating system finishes the execution of one command, it seeks the next "control statement" from the user's keyboard.
- On-line system must be available for users to access data and code.

Parallel Systems (Cont.)

- Symmetric multiprocessing (SMP)
 - Each processor runs an identical copy of the operating system.
 - Many processes can run at once without performance deterioration.
- Most modern operating systems support SMP
- Asymmetric multiprocessing
 - Each processor is assigned a specific task; master processor schedules and allocates work to slave processors.
 - More common in extremely large systems

Distributed Systems

- Distribute the computation among several physical processors.
- Loosely coupled system each processor
 has its own local memory; processors
 communicate with one another through
 various communications lines, such as highspeed buses or telephone lines.
- Advantages of distributed systems.
 - Resources Sharing
 - Computation speed up load sharing
 - Reliability
 - Communications

Clustered Systems

- Clustering allows two or more systems to share storage.
- Provides high reliability.
- Asymmetric clustering: one server runs the application while other servers standby.
- Symmetric clustering: all N hosts are running the application.

Distributed Systems (Cont.)

- Network Operating System
 - provides file sharing
 - provides communication scheme
 - runs independently from other computers on the network
- Distributed Operating System
 - less autonomy between computers
 - gives the impression there is a single operating system controlling the network.

Real-Time Systems

- Often used as a control device in a dedicated application such as controlling scientific experiments, medical imaging systems, industrial control systems, and some display systems.
- Well-defined fixed-time constraints.

Real-Time Systems

- Hard real-time system.
 - Secondary storage limited or absent, data stored in short-term memory, or read-only memory (ROM)
 - Conflicts with time-sharing systems, not supported by general-purpose operating systems.
- Soft real-time system
 - Limited utility in industrial control or robotics
 - Useful in applications (multimedia, virtual reality) requiring advanced operating-system features.

Computing Environments

- Traditional computing
- Web-Based Computing
- Embedded Computing
- Mobile Computing

Handheld Systems

- Tablets
- Cellular telephones
- Issues:
 - Limited memory
 - Slow processors
 - · Small display screens.
 - Battery powered

Migration of Operating-System Concepts and Features 1950 1960 MULTICS mainframes ro compilers time shared multiuser systems batch resident monitors minicomputers resident monitors minicomputers resident monitors desktop computers software resident monitors reside