# **Least Squares Approximation**

Mei-Chen Yeh

#### Approximation

Solving inconsistent systems of equations

$$x_1 + x_2 = 2$$
  
 $x_1 - x_2 = 1$   
 $x_1 + x_2 = 3$ 

- No solution
- Find the "closest" <u>x</u> instead

#### Least squares approximation

Fitting model to data



 Seek to locate the specific instance of the model that best fits the data points

### Today

- Normal equations for least squares
  - Solving an inconsistent system
  - Fitting data
- A survey of models

#### An inconsistent system

$$x_1 + x_2 = 2$$
  
 $x_1 - x_2 = 1$   
 $x_1 + x_2 = 3$ 

• The matrix form (Ax = b):

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

Or

$$x_1 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} \quad \text{or} \quad x_1 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

$$v_1 \quad v_2 \quad b$$

• Any  $m \times n$  system  $A\underline{x} = \underline{b}$  can be viewed as a vector equation.

$$x_1\underline{v}_1 + x_2\underline{v}_2 + \dots + x_n\underline{v}_n = \underline{b}$$

- $\underline{b}$  is a linear combination of the columns  $v_i$  of A, with coefficients  $x_1, ..., x_n$ .
- Has a solution if b lies on the plane.

$$R^3$$

$$Ax$$

$$\underline{v_1}$$

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} \quad \text{or} \quad x_1 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

- What if not?
  - No solution.
  - Find "closest" instead.
  - Least squares solution?



$$x_{1}\begin{bmatrix}1\\1\\1\end{bmatrix} + x_{2}\begin{bmatrix}1\\-1\\1\end{bmatrix} = \begin{bmatrix}2\\1\\3\end{bmatrix}$$

$$\underline{v}_{1}$$

$$\underline{v}_{2}$$

$$\underline{b}$$

• Find a point in the plane Ax closest to b



$$x_{1}\begin{bmatrix}1\\1\\1\end{bmatrix} + x_{2}\begin{bmatrix}1\\-1\\1\end{bmatrix} = \begin{bmatrix}2\\1\\3\end{bmatrix}$$

$$\underline{v}_{1}$$

$$\underline{v}_{2}$$

$$\underline{b}$$

Find a point in the plane Ax closest to b



• 
$$\underline{\tilde{b}} = A\underline{\tilde{x}}$$

• Residual vector  $\underline{b} - \tilde{b} = b - A\tilde{x}$ 

$$x_{1}\begin{bmatrix}1\\1\\1\end{bmatrix} + x_{2}\begin{bmatrix}1\\-1\\1\end{bmatrix} = \begin{bmatrix}2\\1\\3\end{bmatrix}$$

$$\underline{v}_{1}$$

$$\underline{v}_{2}$$

$$\underline{b}$$

Find a point in the plane Ax closest to b



- $(\underline{b} A\underline{\tilde{x}}) \perp A\underline{x}$
- $(A\underline{x})^T (\underline{b} A\underline{\tilde{x}}) = 0$  for all  $\underline{x}$

• 
$$(A\underline{x})^T (b - A\underline{\tilde{x}}) = 0$$

• 
$$\underline{x}^T A^T (b - A \underline{\tilde{x}}) = 0$$

• 
$$A^T(b-A\tilde{x})=0$$

• 
$$A^T A \tilde{x} = A^T b$$
 The normal equations!

• 
$$(A^TA)\underline{\tilde{x}} = (A^Tb)$$

The solution  $\underline{\tilde{x}}$  is the **least squares solution** of the system Ax = b.

### Normal equations for least squares

Given an inconsistent system

$$Ax = b,$$

$$m * n = m * 1$$

solve

$$(A^T A) \underline{\tilde{x}} = A^T \underline{b}_{n*1}$$

for the least squares solution  $\underline{\tilde{x}}$  that minimizes the Euclidean length of the residual  $\underline{r} = \underline{b} - A\underline{\tilde{x}}$ .

## Example

Find the least squares solution of the system

$$x_1 + x_2 = 2$$
  
 $x_1 - x_2 = 1$   
 $x_1 + x_2 = 3$ 

• 
$$A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}$$
,  $b = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$ 

• 
$$A^T A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

• 
$$A^Tb = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

• Solve 
$$\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$
 Get  $\underline{\tilde{x}} = (7/4, 3/4)$ 

Substituting back to the system:

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{7}{4} \\ \frac{3}{4} \end{bmatrix} = \begin{bmatrix} 2.5 \\ 1 \\ 2.5 \end{bmatrix} \neq \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

• The residual  $A \stackrel{\text{L4J}}{\underline{\tilde{x}}} \stackrel{\underline{\tilde{b}}}{\underline{b}} = \underline{b}$ 

$$\underline{r} = \underline{b} - \underline{\tilde{b}} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} - \begin{bmatrix} 2.5 \\ 1 \\ 2.5 \end{bmatrix} = \begin{bmatrix} -0.5 \\ 0.0 \\ 0.5 \end{bmatrix}$$

Need to measure the residual size

### Popular methods

Euclidean length (2-norm)

$$\left\|\underline{r}\right\|_2 = \sqrt{r_1^2 + \dots + r_m^2}$$

Squared error

$$SE = r_1^2 + \dots + r_m^2$$

Root mean squared error

RMSE = 
$$\sqrt{SE/m} = \sqrt{(r_1^2 + \dots + r_m^2)/m}$$

$$\underline{r} = \underline{b} - \underline{\tilde{b}} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} - \begin{bmatrix} 2.5 \\ 1 \\ 2.5 \end{bmatrix} = \begin{bmatrix} -0.5 \\ 0.0 \\ 0.5 \end{bmatrix}$$

Euclidean length (2-norm)

$$\left\| \underline{r} \right\|_2 = \sqrt{-0.5^2 + 0^2 + 0.5^2}$$

Squared error

$$SE = -0.5^2 + 0^2 + 0.5^2$$

Root mean squared error

RMSE = 
$$\sqrt{\text{SE/}m} = \sqrt{(-0.5^2 + 0^2 + 0.5^2)/3}$$

#### Today

- Normal equations for least squares
  - Solving an inconsistent system
  - Fitting data
- A survey of models

## Fitting models to data

Find the model parameters that minimize the residual of the fit



#### Example 1

• Find the line that best fits (1, 2), (-1, 1), (1, 3)



**Model**:  $y = c_1 + c_2 x$ 

Model parameters:  $c_1$ ,  $c_2$ 

$$c_1 + c_2(1) = 2$$
  
 $c_1 + c_2(-1) = 1$   
 $c_1 + c_2(1) = 3$ 

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

$$(c_1, c_2) = (7/4, 3/4)$$

#### Example 2

Find the parabola that best fits (-1, 1), (0, 0),
 (1, 0), (2, -2)



**Model**:  $y = c_1 + c_2 x + c_3 x^2$ 

Model parameters:  $c_1$ ,  $c_2$ ,  $c_3$ 

$$c_1 + c_2(-1) + c_3(-1)^2 = 1$$

$$c_1 + c_2(0) + c_3(0)^2 = 0$$

$$c_1 + c_2(1) + c_3(1)^2 = 0$$

$$c_1 + c_2(2) + c_3(2)^2 = -2$$

$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ -2 \end{bmatrix}$$

#### Example 2 (cont.)

Find the parabola that best fits (-1, 1), (0, 0),
 (1, 0), (2, -2)



Compute the normal equations:

$$A^{T} A \frac{\widetilde{\mathbf{x}}}{\widetilde{\mathbf{x}}} = A^{T} \underline{b}$$

$$\begin{bmatrix} 4 & 2 & 6 \\ 2 & 6 & 8 \\ 6 & 8 & 18 \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix} = \begin{bmatrix} -1 \\ -5 \\ -7 \end{bmatrix}$$

Get 
$$c_1 = 0.45$$
  
 $c_2 = -0.65$   
 $c_3 = -0.25$ 

$$y = 0.45 - 0.65x - 0.25x^2$$

## Fitting data by least squares

Given a set of m data points  $(x_1, y_1),...,(x_m, y_m)$ 

- 1. Choose a model. Example:  $y = c_1 + c_2 x$
- 2. Force the model to fit the data
  - Let the unknown variables represent the model parameters
- 3. Solve the normal equations
  - $\Box A^T A \underline{\tilde{c}} = A^T \underline{b}$

#### Today

- Normal equations for least squares
  - Solving an inconsistent system
  - Fitting data
- A survey of models

#### Previously seen models

- Linear:  $y = c_1 + c_2 x$
- Parabola:  $y = c_1 + c_2 x + c_3 x^2$
- Others?

#### Periodic models

- Periodic data
- Example

| time of day | t                                | temp (C) |
|-------------|----------------------------------|----------|
| 12 mid.     | 0                                | -2.2     |
| 3 am        | $\frac{1}{8}$                    | -2.8     |
| 6 am        | $\frac{1}{4}$                    | -6.1     |
| 9 am        | $\frac{3}{8}$                    | -3.9     |
| 12 noon     | $\frac{1}{2}$                    | 0.0      |
| 3 pm        | $\frac{5}{8}$                    | 1.1      |
| 6 pm        | 14<br>38<br>12<br>58<br>34<br>78 | -0.6     |
| 9 pm        | $\frac{7}{8}$                    | -1.1     |

#### Model:

$$y = c_1 + c_2 \cos 2\pi t + c_3 \sin 2\pi t$$

#### Model:

$$y = c_1 + c_2 \cos 2\pi t + c_3 \sin 2\pi t$$

#### Periodic data

#### Example

| t             | temp (C) |
|---------------|----------|
| 0             | -2.2     |
| $\frac{1}{8}$ | -2.8     |
| $\frac{1}{4}$ | -6.1     |
| $\frac{3}{8}$ | -3.9     |
| $\frac{1}{2}$ | 0.0      |
| <u>5</u> 8    | 1.1      |
| $\frac{3}{4}$ | -0.6     |
| $\frac{7}{8}$ | -1.1     |
|               | 0        |

$$c_1 + c_2 \cos 2\pi (0) + c_3 \sin 2\pi (0) = -2.2$$

$$c_1 + c_2 \cos 2\pi \left(\frac{1}{8}\right) + c_3 \sin 2\pi \left(\frac{1}{8}\right) = -2.8$$

$$c_1 + c_2 \cos 2\pi \left(\frac{1}{4}\right) + c_3 \sin 2\pi \left(\frac{1}{4}\right) = -6.1$$

$$c_1 + c_2 \cos 2\pi \left(\frac{3}{8}\right) + c_3 \sin 2\pi \left(\frac{3}{8}\right) = -3.9$$

$$c_1 + c_2 \cos 2\pi \left(\frac{1}{2}\right) + c_3 \sin 2\pi \left(\frac{1}{2}\right) = 0.0$$

$$c_1 + c_2 \cos 2\pi \left(\frac{5}{8}\right) + c_3 \sin 2\pi \left(\frac{5}{8}\right) = 1.1$$

$$c_1 + c_2 \cos 2\pi \left(\frac{3}{4}\right) + c_3 \sin 2\pi \left(\frac{3}{4}\right) = -0.6$$

$$c_1 + c_2 \cos 2\pi \left(\frac{7}{8}\right) + c_3 \sin 2\pi \left(\frac{7}{8}\right) = -1.1$$

$$A = \begin{bmatrix} 1 & \cos 0 & \sin 0 \\ 1 & \cos \frac{\pi}{4} & \sin \frac{\pi}{4} \\ 1 & \cos \frac{\pi}{2} & \sin \frac{\pi}{2} \\ 1 & \cos \frac{3\pi}{4} & \sin \frac{3\pi}{4} \\ 1 & \cos \frac{5\pi}{4} & \sin \frac{5\pi}{4} \\ 1 & \cos \frac{5\pi}{4} & \sin \frac{5\pi}{4} \\ 1 & \cos \frac{7\pi}{4} & \sin \frac{7\pi}{4} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & \sqrt{2}/2 & \sqrt{2}/2 \\ 1 & 0 & 1 \\ 1 & -\sqrt{2}/2 & \sqrt{2}/2 \\ 1 & -1 & 0 \\ 1 & -\sqrt{2}/2 & -\sqrt{2}/2 \\ 1 & 0 & -1 \\ 1 & \sqrt{2}/2 & -\sqrt{2}/2 \end{bmatrix} \text{ and } b = \begin{bmatrix} -2.2 \\ -2.8 \\ -6.1 \\ -3.9 \\ 0.0 \\ 1.1 \\ -0.6 \\ -1.1 \end{bmatrix}$$

The normal equations  $A^T A c = A^T b$  are

$$\begin{bmatrix} 8 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} -15.6 \\ -2.9778 \\ -10.2376 \end{bmatrix}$$

- $c_1 = -1.95$ ,  $c_2 = -0.7445$ ,  $c_3 = -2.5594$
- $y = -1.95 0.7445\cos 2\pi t 2.5594\sin 2\pi t$



• 
$$c_1 = -1.95$$
,  $c_2 = -0.7445$ ,  $c_3 = -2.5594$ 

• 
$$y = -1.95 - 0.7445\cos 2\pi t - 2.5594\sin 2\pi t$$



a) 
$$y = c_1 + c_2 \cos 2\pi t + c_3 \sin 2\pi t$$
  
b)  $y = c_1 + c_2 \cos 2\pi t + c_3 \sin 2\pi t + c_4 \cos 4\pi t$ 

### Exponential model

- Exponential data
- Example

| t    | $\mathcal{Y}$        |
|------|----------------------|
| year | cars $(\times 10^6)$ |
| 1950 | 53.05                |
| 1955 | 73.04                |
| 1960 | 98.31                |
| 1965 | 139.78               |
| 1970 | 193.48               |
| 1975 | 260.20               |
| 1980 | 320.39               |

Model:  $y = c_1 e^{c_2 t}$ 



Can it be directly fit by least squares?

No.  $c_2$  does not appear *linearly* in the model equation.

#### Data linearization

- Exponential model:  $y = c_1 e^{c_2 t}$
- Applying the natural logarithm!

$$\ln y = \ln(c_1 e^{c_2 t})$$

$$\ln y = \ln c_1 + \ln e^{c_2 t} = \ln c_1 + c_2 t$$

$$\text{Let } k = \ln c_1$$

$$\ln y = k + c_2 t$$



#### Exponential model

#### Example

| t |      | y                    |
|---|------|----------------------|
|   | year | cars $(\times 10^6)$ |
|   | 1950 | 53.05                |
|   | 1955 | 73.04                |
|   | 1960 | 98.31                |
|   | 1965 | 139.78               |
|   | 1970 | 193.48               |
|   | 1975 | 260.20               |
|   | 1980 | 320.39               |
|   |      | i .                  |

**Model**:  $y = c_1 e^{c_2 t}$  t: since 1950

Linearized Model:  $\ln y = k + c_2 t$ 

$$(k = \ln c_1)$$

$$ln(53.05) = k + c_2(1950-1950)$$

$$ln(73.04) = k + c_2(1955-1950)$$

$$\ln(98.31) = k + c_2(1960-1950)$$

2 unknown variables, 7 equations

$$k = 3.9896, c_2 = 0.06152$$

$$k = \ln c_1 \Rightarrow c_1 = e^k = 54.03$$

$$y = 54.03e^{0.06152(t-1950)}$$

# $y = 54.03e^{0.06152(t-1950)}$

| t    | y                        |
|------|--------------------------|
| year | cars (×10 <sup>6</sup> ) |
| 1950 | 53.05                    |
| 1955 | 73.04                    |
| 1960 | 98.31                    |
| 1965 | 139.78                   |
| 1970 | 193.48                   |
| 1975 | 260.20                   |
| 1980 | 320.39                   |





- Model linearization changes the least squares problem!
- The original problem minimizes

$$(c_1e^{c_2t_1}-y_1)^2+\cdots+(c_1e^{c_2t_m}-y_m)^2$$

• The "linearized" problem minimizes

$$(\ln c_1 + c_2 t_1 - \ln y_1)^2 + \dots + (\ln c_1 + c_2 t_m - \ln y_m)^2$$

Errors in "log space"

#### Power law model

- Model:  $y = c_1 t^{c_2}$
- Linearized model:  $\ln y = \ln c_1 + c_2 \ln t$ =  $k + c_2 \ln t$

#### Example

| age (yrs.) | height (m) | weight (kg) |
|------------|------------|-------------|
| 2          | 0.9120     | 13.7        |
| 3          | 0.9860     | 15.9        |
| 4          | 1.0600     | 18.5        |
| 5          | 1.1300     | 21.3        |
| 6          | 1.1900     | 23.5        |
| 7          | 1.2600     | 27.2        |
| 8          | 1.3200     | 32.7        |
| 9          | 1.3800     | 36.0        |
| 10         | 1.4100     | 38.6        |
| 11         | 1.4900     | 43.7        |



# 程式練習

And, please upload your program on moodle.

For the data given by the vectors x = 0:0.25:3 and

$$y = [6.3806\ 7.1338\ 9.1662\ 11.5545\ 15.6414\ 22.7371\ 32.0696\ ...$$

47.0756 73.1596 111.4684 175.9895 278.5550 446.4441]

fit the function:

$$f(x) = a + bx + cx^2 + dx^3$$

Please report a, b, c, and d.