Решенија на задачите за домашна работа

Домашна работа 1

- 1. а) Да се покаже дека ако \overline{ABCD} е паралелограм, тогаш спротивните страни му се складни, т.е. $\overline{AB} = \overline{CD}$ и $\overline{AD} = \overline{BC}$.
 - б) Ако во четириаголник спротивните страни се еднакви, тогаш тој е паралелограм.

Решение. a) Ќе ги разгледаме \triangle *ABC* и \triangle *CDA*. За нив важи:

- i) $\angle ACB = \angle CAD$ како агли со паралелни краци.
- іі) $\overline{AC}=\overline{CA}$ заедничка страна.
- iii) $\angle ACD = \angle CAB$ како агли со паралелни краци.

т.е. дека ABCD е паралелограм (види ја сликата лево). Ќе ги разгледаме $\triangle ABC$ и $\triangle CDA$. Имаме дека: i) $\overline{AB} = \overline{CD}$ - од условот на задачата; ii) $\overline{AC} = \overline{CA}$ - заедничка страна; iii) $\overline{AD} = \overline{CB}$ - од условот на задачата б). Заради i), ii) и iii) важи $\triangle ABC \cong \triangle CDA$ (според признакот ССС). Затоа важи дека $\measuredangle ACB = \measuredangle CAD$. Овие два агла, покрај тоа што се еднакви, имаат по еден

крак кој лежи на правата AC, а другите два крака им се во различни полурамнини во однос на правата AC. Тоа значи дека овие агли имаат паралелни краци, т.е. AB||DC.

Слично, $\angle ACD = \angle CAB$. И овие два агла, покрај тоа што се еднакви, имаат по еден крак кој лежи на правата AC, а другите краци им се во различни полурамнини во однос на правата AC. Тоа значи дека овие агли имаат паралелни краци, т.е. AB || DC.

Забелешка. Докажавме дека: кај четириаголник двата пара спротивни страни се еднакви, ако и само ако тој четириаголник е паралелограм.

- 2. а) Докажете дека кај паралелограмот дијагоналите се преполовуваат.
- б) Да се докаже дека ако во четириаголник дијагоналите се преполовуваат, тогаш тој четириаголник е паралелограм.

Решение. Нека ABCD е паралелограм и пресекот на дијагоналите AC и BD е точката E (види слика десно). Треба да се покаже дека $\overline{AE} = \overline{CE}$ и

 $\overline{BE} = \overline{DE}$. Ќе ги разгледаме $\triangle ABE$ и $\triangle CDE$.

- 1) $\angle ABE = \angle CDE$ како агли со паралелни краци,
- 2) $\overline{AB} = \overline{CD}$ како спротивни страни,
- 3) $\angle BAE = \angle DCE$ како агли со паралелни краци.

Според признакот ACA, \triangle $ABE \cong \triangle$ CDE. Затоа важи дека $\overline{AE} = \overline{CE}$ и $\overline{BE} = \overline{DE}$.

б) Нека ABCD е четириаголник и пресекот на дијагоналите AC и BD е точката E (види слика лево). Од условот, дијагоналите се преполовуваат, т.е. $\overline{AE} = \overline{CE}$ и $\overline{BE} = \overline{DE}$. Ќе

покажеме дека $\overline{AB}=\overline{CD}$ и $\overline{AD}=\overline{CB}$. Со таа цел ќе ги разгледаме \triangle ABE и \triangle CDE. Важи: 1) $\overline{AE}=\overline{CE}$ - од условот на задачата; 2) $\angle AEB=\angle CED$ - како накрсни агли; 3) $\overline{BE}=\overline{DE}$ - од условот на задачата. Од 1), 2) и 3), се добива дека \triangle $ABE\cong\triangle$ CDE (признак CAC) па $\overline{AB}=\overline{CD}$.

Слично се покажува дека \triangle $ADE\cong\triangle$ CBE (признак САС и: $\overline{AE}=\overline{CE}$ - од условот на задачата, $\angle AED=\angle CEB$ - како накрсни агли, $\overline{BE}=\overline{DE}$ - заедничка страна.) Затоа важи $\overline{AD}=\overline{BC}$. Бидејќи двата пара спротивни страни во ABCD се еднакви, добиваме дека ABCD е паралелограм.

Забелешка. Докажавме дека: еден четириаголник е паралелограм, ако и само ако неговите дијагонали се преполовуваат.

Забелешка. Добивме три различни и еквивалентни признаци кога еден четириаголник е паралелограм:

- I. ако двата пара спротивни страни му се паралелни,
- II. ако двата пара спротивни страни му се еднакви,
- III. ако дијагоналите му се преполовуваат.
- 3. $^{(*)}$ Во триаголникот ABC, $\angle ABC$ =120°. На продолжетоците на страните AB и CB, од страната на точката B, редоследно се означени точките P и Q, така што $\overline{AP} = \overline{CQ} = \overline{AC}$. Докажете дека $\angle PIQ$ =90°, каде точката I е центар на впишаната кружница во триаголникот ABC.

Решение. Најпрвин да приметиме дека аглите $\angle ABQ = \angle CBP = \angle ABI = \angle CBI = 60^\circ$. I е пресек на бисектрисите (симетралите) на аглите на триаголникот. Ако $\angle BAC = 2x$, а $\angle BCA = 2y$, тогаш (од триаголникот ABC) $2x + 2y + 120^\circ = 180^\circ$, т.е.

 $x + y = 30^{\circ}$. Триаголниците *ACI* и *QCI* се складни

 $(\overline{CQ} = \overline{AC}, \text{ CAC})$, поэтому ∠CQI = ∠CAI = x. Од триаголникот QBI: ∠ $QIB = 180^{\circ} - 120^{\circ} - x = 60^{\circ} - x$. Аналогно $PIB = 60^{\circ} - y$. Затоа,

$$\angle PIQ = \angle PIB + \angle QIB = (60^{\circ} - y) + (60^{\circ} - x) = 120^{\circ} - (x + y) = 120^{\circ} - 30^{\circ} = 90^{\circ}.$$

Домашна работа 2

1. Докажете дека во трапез средната линија е паралелна на основите. Решение. Нека е даден трапезот ABCD и во него средната линија EF. Важат

релациите \overline{AE} : $\overline{ED}=\overline{BF}$: $\overline{FC}=1$: 1 па според обратната теорема на Талес, важи $AB\parallel EF\parallel DC$.

2. На медианата CC_1 на триаголникот ABC е земена точка M, т.ш. \overline{CM} : $\overline{MC_1}=3$: 1. Низ неа е повлечена права, паралелна на страната BC, која ја сече страната AB во точка N. Најдете го односот \overline{AN} : \overline{NB} .

Решение.

Важи дека $\overline{AC_1} = \overline{C_1B} = \frac{1}{2}\overline{AB}$. Од теоремата за пропорционални отсечки, од триаголникот

$$CC_1$$
В, важи $\overline{C_1N}$: $\overline{NB} = \overline{C_1M}$: $\overline{MB} = 1$: 3, од каде

$$\overline{C_1N}=rac{1}{4}\overline{C_1B}=rac{1}{8}\overline{AB}$$
. Следува дека,

$$\overline{AN} = \overline{AC_1} + \overline{C_1N} = \frac{1}{2}\overline{AB} + \frac{1}{8}\overline{AB} = \frac{5}{8}\overline{AB}$$

Слично,
$$\overline{NB}=\overline{C_1B}-\overline{C_1N}=\frac{1}{2}\overline{AB}-\frac{1}{8}\overline{AB}=\frac{3}{8}\overline{AB}$$

па

$$\overline{AN}: \overline{NB} = \frac{5}{8}: \frac{3}{8} = 5:3$$

3. Во триаголник *ABC* се повлечени медиани AA_1 и CC_1 , кои се сечат во точка M. Најдете го односот \overline{CM} : $\overline{MC_1}$.

Решение

Повлекуваме отсечка C_1D , паралелна на отсечката AA_1 . Таа е средна линија на триаголникот AA_1B (поминува низ средината на AB и е паралелна на AA_1) па затоа,

$$\overline{A_1D} = \overline{DB} = \frac{1}{2}\overline{A_1B} ,$$

а од $\overline{CA_1} = \overline{A_1B}$, се добива

$$\overline{CA_1}$$
: $\overline{A_1D} = \overline{A_1B}$: $\overline{A_1D} = 1$: $\left(\frac{1}{2}\right) = 2$

На крај, во триаголникот CC_1D , од теоремата за пропорционални отсечки имаме

$$\overline{CM}$$
: $\overline{MC_1} = \overline{CA_1}$: $\overline{A_1D} = 2$: 1.

Домашна работа 3

1. Проверете кои од триаголниците на цртежите се слични

Решение

АВС и JKL не се слични затоа што $7:8 \neq 6:7$.

АВС и RST се слични затоа што 7: 3.5 = 8: 4 = 12: 6. Коефициентот на сличност е 2.

JKL и RST не се слични затоа што 6: 7 ≠ 3,5: 4.

2. Определете ја непознатата на цртежот за триаголниицте да бидат слични

Решение. а) 5:10=(2x-1):14⇔

$$2x - 1 = 7 \Leftrightarrow 2x = 8 \Leftrightarrow x = 4$$
.

Коефициентот на сличност е 1/2. Проверуваме дали и третите страни се пропорционални; $5x + 2 = 2 \cdot 11 \Leftrightarrow 5x = 22 - 2 \Leftrightarrow x = 4$.

б) Според цртежот, најголеми се аглите кај темињата E и Y, а најмали се аглите кај темињата D и X. Затоа, треба да провериме дали $EDF \sim YXZ$. Тоа значи дека 8:4=10:(x-1)=3(x-1):7,5. Значи, коефициентот на сличност треба да биде k=8:4=2 Затоа, имаме дека $2=10:(x-1) \Leftrightarrow x-1=5 \Leftrightarrow x=6$. Проверуваме дали и третите страни се пропорционални:

$$3(x-1)$$
: $7.5 = 2 \Leftrightarrow 3x - 3 = 15 \Leftrightarrow 3x = 18 \Leftrightarrow x = 6$.

- 3. а) Докажете дека кај слични триаголници висините на соодветните страни се пропорционални и коефициентот на пропорционалност на висините е еднаков на коефициентот на пропорционалност на триаголниците. (Нека $\triangle ABC \sim \triangle DEF$ и CC_2 и FF_2 се две соодветни висини повлечени се од темињата C и F, кои одговараат едно на друго (види слика 5-3). Треба да покажеме дека $\frac{\overline{CC_2}}{\overline{FF_2}} = \frac{h_c}{h_f} = k$.)
 - б) Формулирајте ги и докажете ги соодветните тврдења за соодветните медиани и бисектриси кај слични триаголници.

Решение

Нека $\triangle ABC \sim \triangle EDF$ и коефициентот на пропорционалност на триаголниците е k.

а) Нека AA_2 и EE_2 се две соодветни висини, кои се повлечени од темиња кои одговараат едно на

друго (A и E). Ќе докажеме дека $\triangle ABA_2 \sim \triangle EDE_2$. Важи $\angle AA_2B = \angle EE_2D = 90^\circ$. Понатаму, важи дека $\angle ABA_2 = \angle ABC$ и $\angle EDF = \angle EDE_2$. Но, заради $\angle ABC = \angle EDF$ (од $\triangle ABC \sim \triangle EDF$), имаме дека $\angle ABA_2 = \angle EDE_2$, па од признакот AA, важи дека дека $\triangle ABA_2 \sim \triangle EDE_2$. Сега,

$$b$$
 h_a
 A_2
 B

$$\overline{AA_2}$$
: $\overline{EE_2} = \overline{AB}$: $\overline{ED} = k$

б) і) Кај слични триаголници медианите на соодветните страни се пропорционални и

коефициентот на пропорционалност на медианите е еднаков на коефициентот на пропорционалност на триаголниците.

Помош. Докажете дека \triangle $ABA_1 \sim \triangle$ EDE_1 според CAC.

Решение. Нека AA_1 и EE_1 се две соодветни медиани, кои се повлечени од темиња кои одговараат едно на друго (А и Е). Ќе докажеме дека \triangle $ABA_1 \sim \triangle$ EDE_2 . Важи дека $\angle ABA_1 = \angle ABC$ и $\angle EDF = \angle EDE_1$. Но, заради $\angle ABC = \angle EDF$ (од \triangle $ABC \sim \triangle$ EDF), имаме дека $\angle ABA_1 = \angle EDE_1$. Заради \triangle $ABC \sim \triangle$ EDF, важи \overline{AB} : $\overline{ED} = k$ и

$$\overline{BA_1}:\overline{DE_1} = \left(\frac{1}{2}\overline{AB}\right):\left(\frac{1}{2}\overline{ED}\right) = \overline{AB}:\overline{ED} = k$$

Значи, триаголниците \triangle $ABA_1 \sim \triangle$ EDE_1 имаат еден еднаков агол и страните кои ги формираат тие агли се пропорционални па од признакот САС, важи дека \triangle $ABA_2 \sim \triangle$ EDE_2 . Сега,

$$\overline{AA_1}$$
: $\overline{EE_1} = \overline{AB}$: $\overline{ED} = k$

ii) Кај слични триаголници бисектрисите на соодветните агли се пропорционални и коефициентот на пропорционалност на бисектрисите е еднаков на коефициентот на пропорционалност на триаголниците. Γ

Помош. Докажете дека \triangle $ABA_3 \sim \triangle$ EDE_3 според AA.

а) Нека AA_3 и EE_3 се две соодветни бисектриси, кои се повлечени од темиња кои одговараат едно на друго (А и Е). Ќе докажеме дека \triangle $ABA_3 \sim \triangle$ EDE_3 . Важи $\angle ABC = \angle EDF$. Понатаму, важи дека $\angle BAA_3 = \frac{1}{2} \angle BAC$ и $\angle DEE_3 = \frac{1}{2} \angle DEF$. Но, заради

 $\angle BAC = \angle DEF$ (од $\triangle ABC \sim \triangle EDF$), имаме дека $\angle BAA_3 = \angle DEE_3$, па од признакот АА, важи дека $\triangle ABA_3 \sim \triangle EDE_3$. Сега,

$$\overline{AA_3}$$
: $\overline{EE_3} = \overline{AB}$: $\overline{ED} = k$

Заклучуваме дека: кај слични триаголници, висините, медианите и бисектрисите се пропорционални на страните на триаголниците.

Домашна работа 4

1. $(^{**})$ Нека AA', BB', CC' се висини на триаголникот ABC; A₀, C₀ се пресечните точки на опишаната кружница околу триаголникот A'BC' со правите A'B' и C'B' соодветно. Докажете, дека правите AA₀ и CC₀ се сечат на медианата на триаголникот ABC или се паралелни на неа.

Решение. Нека правите AA_0 и BC се сечат во точката X, а правите CC_0 и AB — во точката Y. Заради теоремата на Чева, ако отсечките AA_0 и CC_0 и медианата BB_1 минуваат низ иста точка, ќе важи $\frac{\overline{BX}}{\overline{XC}} \cdot \frac{\overline{CB_1}}{\overline{B_1A}} \cdot \frac{\overline{AY}}{\overline{YB}} = 1$, па заради $\overline{CB_1} = \overline{AB_1}$, доволно е да се докаже дека $\overline{BX} : \overline{XC} = \overline{BY} : \overline{YA}$. Бидејќи центарот на кружницата која минува низ точките A', B, C' лежи на правата BB', која е бисектриса на аголот A'B'C', точките A_0 и C' се симетрични во однос на правата BB', исто како и точките A' и C_0 . Нека BA_0 и AC се сечат во точката Z. Точката Z е

симетрична на A во однос на BB'. Тогаш, применувајќи ја теоремата на Менелај на триаголникот BCZ и правата на која лежат точките A, A₀, X, добиваме дека важи

$$\frac{\overline{BX}}{\overline{XC}} \cdot \frac{\overline{CA}}{\overline{AZ}} \cdot \frac{\overline{ZA_0}}{\overline{A_0B}} = 1,$$
 од каде,

$$\frac{\overline{BX}}{\overline{XC}} = \frac{\overline{AZ}}{\overline{CA}} \cdot \frac{\overline{A_0B}}{\overline{ZA_0}} = \frac{2 \cdot \overline{AB'}}{\overline{AC}} \cdot \frac{\overline{BC'}}{\overline{C'A}} = \frac{2}{\overline{AC}} \cdot \frac{\overline{BC'}}{\overline{C'A}} \cdot \overline{AB'}$$

Аналогно се добива израз за односот \overline{BY} : \overline{YA} .

Останува да се докаже дека

$$\frac{\overline{BC'}}{\overline{C'A}} \cdot \overline{AB'} = \frac{\overline{BA'}}{\overline{A'C}} \cdot \overline{CB'} \Leftrightarrow \frac{\overline{BC'}}{\overline{C'A}} \cdot \frac{\overline{AB'}}{\overline{CB'}} \cdot \frac{\overline{CA'}}{\overline{A'B}} = 1$$

Но, ова е точно теоремата на Чева за ортоцентарот Н на триаголникот.

2. Низ точката P, која лежи на медианата CC_1 на триаголникот ABC, се повлечени прави AA_1 и BB_1 (точките A_1 и B_1 лежат на страните BC и CA соодветно). Докажете, дека $A_1B_1 \mid \mid AB$.

Решение

Нека A_2 е средина на отсечката A_1 В. Тогаш C_1A_2 е средна линија на триаголникот ABA_1 , и следователно, $A_1P \parallel C_1A_2$. Тогаш, од теоремата на Талес имаме $\overline{CA_1}$: $\overline{A_1A_2} = \overline{CP}$: $\overline{PC_1}$, и, бидејќи $\overline{A_1B} = 2\overline{A_1A_2}$, важи

$$\overline{CA_1}$$
: $\overline{A_1B} = \overline{CA_1}$: $(2\overline{A_1A_2}) = \overline{CP}$: $(2\overline{PC_1})$

Аналогно се добива дека $\overline{CB_1}$: $\overline{B_1A}=\overline{CP}$: $(2\overline{PC_1})_*$ Затоа, $\overline{CA_1}$: $\overline{A_1B}=\overline{CB_1}$: $\overline{B_1A}$, па, од обратната теорема на Талес, $A_1B_1 \mid AB$.

3. $(^{**})$ Четириаголникот ABCD е впишан во кружница, DC=m, DA=n. На страната BA се земени точки A₁ и K, а на страната BC — точки C₁ и M. Се знае дека BA₁=a, BC₁=c, BK=BM и дека отсечките A₁M и C₁K се сечат на диагоналата BD. Најдете ги BK и BM.

Решение

Ќе го разгледаме случајот кога точката A_1 е помеѓу точките A и K, а точката C_1 е помеѓу точките B и M (Останатите случаи се разгледуваат аналогно). Нека P е пресечната точка на отсечките KM и BD, $\angle ADC = 2\alpha$, и $\overline{BK} = \overline{BM} = x$. Имаме дека

$$\angle BKM = \angle BMK = \frac{1}{2}(180^{\circ} - \angle ABC) = \alpha$$
.

Ја повлекуваме бисектрисата DQ на триаголникот ADC. Сега, добиваме дека $\angle ADQ = \angle BMP = \alpha$,

 $\angle QAD = \angle CAD = \angle CBD = \angle CBP$ па затоа триаголниците ADQ и BMP се слични. Значи, \overline{AD} : $\overline{BM} = \overline{DQ}$: \overline{PM} . Аналогно се добива дека \overline{CD} : $\overline{KB} = \overline{DQ}$: \overline{PK} . Од овие равенства следува, дека

$$\overline{PK}:\overline{PM} = (\overline{CD}:\overline{KB}): (\overline{AD}:\overline{BM}) = \overline{CD}:\overline{AD} = m:n$$

Бидејќи отсечките КС1, МА1, ВР се сечат во една точка, од теоремата на Чева

$$\frac{\overline{BA_1}}{\overline{A_1K}} \cdot \frac{\overline{KP}}{\overline{PM}} \cdot \frac{\overline{MC_1}}{\overline{C_1B}} = 1,$$
 или $\frac{a}{x-a} \cdot \frac{m}{n} \cdot \frac{x-c}{c} = 1$

од каде

$$x = \frac{ac(m-n)}{cn-am}.$$

Домашна работа 5

1. Даден е правоаголен триаголник ABC со прав агол во темето В и страни $\overline{AB}=4$, $\overline{BC}=3$. Точката E е средина на страната AB, а точката D лежи на страната AC и $\overline{DA}=1$. Нека F е пресек на DE и BC. Најдете ја должината на отсечката BF.

Решение. Од Питагоровата теорема, имаме дека

 $\overline{AC}^2 = \overline{AB}^2 + \overline{BC}^2$ па со смена се добива $\overline{AC}^2 = 4^2 + 3^2 = 16 + 9 = 25$, од каде $\overline{AC} = 5$. Заради теоремата на Менелај, за триаголникот АВС и правата DE, имаме:

$$\frac{\overline{BF}}{\overline{FC}} \cdot \frac{\overline{CD}}{\overline{DA}} \cdot \frac{\overline{AE}}{\overline{EB}} = 1$$

$$\overline{CD} = \overline{CA} - \overline{DA} = 5 - 1 = 4, \qquad \overline{AE} = \overline{AE} = \frac{\overline{AE}}{2} = \frac{4}{2} = 2$$

Сега, со замена во равенството (1), имаме

$$\frac{x}{3+x} \cdot \frac{4}{1} \cdot \frac{2}{2} = 1 \Leftrightarrow 4x = 3+x \Leftrightarrow 3x = 3 \Leftrightarrow x = 1$$

2. Во триаголникот ABC медианата AK ја сече медианата BD во точката L. Најдете ја плоштината на триаголникот ABC, ако плоштината на четириаголникот KCDL е еднаква на 5.

Решение. Ја повлекуваме средната линија DK. Триаголниците ABC и DKC се слични со коефициент на сличност \overline{AB} : $\overline{DK}=2$, па затоа $P(ABC)=2^2P(DKC)=4\ P(DKC)$. Исто така, триаголниците ABL и KDL се слични со коефициент на сличност \overline{AL} : $\overline{LK}=2$, па затоа

$$P(ABL) = 2^2 P(KDL) = 4 P(KDL).$$

Збирот на висините на триаголниците ABL и KDL е половина од висината h_{c} во триаголникот ABC кон страната

АВ и нивниот однос е 2:1. Тоа значи дека висината на триаголникот ABL кон страната AB изнесува $\overline{LL'}=\frac{2}{3}\overline{KK'}=\frac{2}{3}\cdot\frac{1}{2}h_c=\frac{1}{3}h_c$ па плоштината $P(ABL)=\frac{1}{3}P(ABC)$ (триаголници со иста основа имаат плоштини кои се однесуваат како нивните висини). Сега, плоштината на четириаголникот е $P(DLKC)=P(DKC)+P(DKL)=\frac{1}{4}P(ABC)+\frac{1}{4}\cdot\frac{1}{3}P(ABC)=\frac{1}{3}P(ABC)$ од каде, $P(ABC)=3P(DLKC)=3\cdot5=15$.