SPECIFICATIONS DU SYSTÈME

Une fonction égale une spécification/un cas d'utilisation

Les fonctions

- Avancer à vitesse réduite et s'arrêter après une certaine distance de progression,
- Déployer un bras articuler.
- Tourner un bras articulé autour de l'axe z de 90° à -90°.
- Scanner le sol pour rechercher des objets ferreux.
- Sweep (rotation de 90° à -90°) un nombre de fois déterminés par le mode de scan.
- Lever le bras articulé à une certaine hauteur du sol.
- Enregistrer les coordonnées GPS lorsqu'un objet ferreux est détecté.
- Envoyer via wifi ou Bluetooth les coordonnées GPS de l'objet ferreux détecté.
- Stream video via wifi.
- Détecter un obstacle.
- Éclairer le chemin dans la nuit,
- Afficher le niveau de batterie.
- Ranger le bras articulé.
- Afficher sur une interface utilisateur le flux d'images envoyées.
- Afficher en temps réel la position sous forme de marqueur
- Recevoir des commandes à distance par wifi ou Bluetooth.
- Envoyer des commandes à distance par wifi ou Bluetooth.

Les conditions d'activation et de réalisation des fonctionnalités

1- Détection d'obstacles

Quoi?

- Le bras dispose de capteurs infrarouges positionnés tout autour du détecteur de métal qui est attaché dessus (end-effector).
- Également un capteur ultrasons placé à l'avant du système pour détecter des objets.

Pourquoi?

- En mode autonome, il peut arriver que le système avance tout droit vers un obstacle de type (arbre, objet, etc.) donc il est important qu'il ne heurte pas l'obstacle.
- Également pendant la phase de scan du sol, le détecteur de métal peut être sur le même alignement d'un objet donc il faut ajuster sa position.

Comment?

- Lorsqu'un obstacle est visible pendant le scan, la position actuelle du bras (end-effector) est mis à jour afin d'éviter l'obstacle.
- Lorsque le bras articulé est rangé et que le système avance en mode autonome, le système doit soit changer de direction soit s'arrêter et tourner.

2- L'interface Monitoring

Quoi?

- Le suivi du système se fait aussi à travers une IU (interface utilisateur).
- L'opérateur dispose d'une application logiciel multiplate-forme (Windows, Linux, Mac os X).

Pourquoi?

- Pour voir ce qui se passe en temps réel et à distance.
- Traiter toutes les données collectées par le système (position GPS, mesure du capteurs IR, etc ...).
- Paramétrer à distance le système avant sa mise en opération.

Comment?

- Les données (images, mesures, position GPS, ...) sont envoyées via le wifi.
- Le flux d'image est affiché dans une fenêtre.
- La position GPS du système est visualisable sur une carte du type Google map ou open street map (simulateur 3D).
- Une zone de l'écran montre également les mesures de distance (capteurs ultrason, infra-rouge)
- Une autre zone de l'écran affiche une carte sous forme de radar avec la position de chaque objet détecté.

3- Le détecteur de métal

Quoi?

• un détecteur de métal en forme circulaire est placé le bras articulé.

Pourquoi?

- L'objectif premier du système est de détecter les mines antipersonnel.
- Pour cela il est équipé d'un scanner qui peut détecter la présence d'un objet ferreux enfouis dans le sol.

Comment?

- Pour scanner, le système déploie un bras articulé équipé d'un détecteur de métal.
- Deux modes (rapide ou approfondi) sont disponibles.
- Selon le mode choisi, la vitesse de scanner est paramétrée.
- Également le pas est proportionnel au mode du scanner (compris entre 5° ou 30°).
- Ensuite la distance maximale de déploiement du bras articulé doit être paramétrée.
- Distance doit être suffisante pour éviter des zones mortes (c'est à dire non scannées).
- Une fois cela définit alors le système peut positionner le bras et commencer à scanner de 90° à -90° avec un pas défini lors du paramétrage du mode de scanner.
- Le nombre de demi révolution est également paramétrable selon le mode de scanner.
- Après une demi révolution, la distance maximale de déploiement est incrémentée d'une certaine valeur dépendant du mode de scanner sélectionné.
- A chaque déplacement élémentaire du rayon, Les données mesurées sont transmises par wifi et visibles sur l'interface Utilisateur.

4- Inverse Kinematic (cinématique inversée)

Quoi?

- Le bras articulé (Pick and Place) se positionne grâce à un paramétrage du système réalisé depuis l'interface utilisateur.
- La position du bras articulé est mis à jour en temps grâce aux mesures des capteurs infrarouges disposés tout autour.

Pourquoi?

• Pour scanner le sol, et éviter des objets, le système doit ajuster sa position.

Comment?

 Ceci est possible si les angles de rotation des moteurs placés sur le bras sont contrôlés précisément grâce aux données de mesure produites par les capteurs infrarouges.

5- Éclairage automatique

Quoi?

• Des leds positionnées à l'avant du système s'allument à un certain moment de la journée.

Pourquoi?

- Afin d'obtenir une capture vidéo de bonne qualité, le système doit être éclairé dans le noir ou durant des missions dans la nuit.
- Par soucis d'économie d'énergie, l'éclairage est géré automatiquement par un capteur (photorésistance).

Comment?

- Le système pourra être déployé dans la nuit, il est donc important de voir ce qui passe grâce des leds.
- Le système dispose donc d'un circuit de mesure du taux de luminosité qui permet d'activer ou désactiver la lumière.