

DATASHEET

JMS583 USB 3.2 Gen 2 to PCIe Gen3x2 Bridge

Document No.: PDS-17001 / Revision: 2.11 / Date: 01/05/2021

JMicron Technology Corporation

1F, No. 13, Innovation Road 1, Science-Based Industrial Park,

Hsinchu, Taiwan 300, R.O.C.

Tel: 886-3-5797389 Fax: 886-3-5799566

Email: sales@jmicron.com

Website: http://www.jmicron.com

Copyright © 2019, JMicron Technology Corp. All Rights Reserved.

Printed in Taiwan 2019

JMicron and the JMicron Logo are trademarks of JMicron Technology Corporation in Taiwan and/or other countries.

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use implantation or other life supports application where malfunction may result in injury or death to persons. The information contained in this document does not affect or change JMicron's product specification or warranties. Nothing in this document shall operate as an express or implied license or environments, and is presented as an illustration. The results obtained in other operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will JMicron be liable for damages arising directly or indirectly from any use of the information contained in this document.

For more information on JMicron products, please visit the JMicron web site at http://www.JMicron.com or send e-mail to sales@jmicron.com.

JMicron Technology Corporation

1F, No.13, Innovation Road 1, Science-Based Industrial Park, Hsinchu, Taiwan 300, R.O.C.

Tel: 886-3-5797389 Fax: 886-3-5799566

Revision History

Revision	Effective		A41n	
number	date	Reference	Author	
0.1	11/09/2017	-	Draft release.	Joe Chang
0.2	04/12/2018	Table 9 Section 5.4.1	Add XAVDDH signal description GPIO [4] is used as LED indicator by default	Joe Chang
0.3	06/06/2018	Figure 4 Section 6.5 Chapter 6	 Package outline drawing of QFN64 8x8 Update crystal electrical Update electrical characteristics 	Joe Chang
1.0	06/30/2018	Section 2.3 Table 11	 Support SCSI/ NVMe Pass-through command Change the typical value of 1.0V power supply 	Joe Chang
1.1	03/29/2019	Section 6.9 Section 6.8	 Modified T4 measure point of Figure 4 Modified Table 26 	Mika Cheng
1.2	04/12/2019	Chapter 5	Change pin assignment diagram Added note on pin19	Mika Cheng
2.0	06/12/2019	Section 5.4 Table 11 · 13 Section 6.6	 Add Function Description for GPIO use Add Note for testing result Add IC condition and setting environment 	Katie Shih
2.1	07/16/2019	Table 13	1. Delete DC Driving at I _{OH} and I _{OL}	Katie Shih
2.11	01/05/2021	Figure 4	Modified Mechanical Dimensions	Katie Shih

Table of Contents

Re	visio	on History	ii
Та	ble o	of Contents	iii
Fiç	gure	List	v
Та	ble L	_ist	vi
1	Ove	erview	1
2	Fea	tures	2
	2.1	General Features	2
	2.2	Universal Serial Bus	2
		PCI Express	
3	Blo	ck Diagram	3
4	App	plication	4
5	Pac	kage and Pin Assignments	5
	5.1	Pin Diagram	5
	5.2	Mechanical Dimensions	6
	5.3	Signal Descriptions	8
	5.3.	1 Pin Type Definitions	8
	5.3.	2Pin Descriptions	9
	•	PCIe Interface Signals	9
	•	USB 3.2 Gen1 and Gen2 Shard Interface Signals	10
	•	USB 2.0 Interface Signals	10
	•	Switching Regulator Interface	11
	•	Crystal Interface	11
	•	USB Type-C [™] Configuration Channel	11
	•	Control and GPIO Interface	12
	•	Power Supply Interface	13
	5.4	Function Description	13
	5.4.	1LED Indicator	13

	5.4.2	2 GPIO Initial Value	13
6	Elec	ctrical Specifications	13
	6.1	Absolute Maximum Ratings	13
	6.2	Recommended Operating Voltage and Temperature	14
	6.3	External Clock Source Conditions	15
	6.4	DC Electrical Characteristics	15
	6.5	Crystal input	16
	6.6	Power Consumption	16
	6.6.	1 USB 2.0 to PCIe	17
	•	Operation with PCIe L0 state	17
	•	Idle with PCIe L0 state	17
	•	Suspend with PCIe L2 state	17
	6.6.2	2 USB 3.2 Gen 1 to PCle	18
	•	Operation with PCIe L0 state	18
	•	Idle with PCIe L0 state	18
	•	Suspend with PCIe L2 state	18
	6.6.3	3 USB 3.2 Gen 2 to PCle	19
	•	Operation with PCIe L0 state	19
	•	Idle with PCIe L0 state	19
	•	Suspend with PCIe L2 state	20
	6.7	Internal Linear Regulator	20
	6.8	Power-on Sequence	21
7	Pro	duct Naming Rule	23
	7.1	Format of Part Number	23
	7.2	Explanation of Part Number	23
	7.0	Too Made	0.4

Figure List

Figure 1	Block Diagram	3
Figure 2	Application Scenarios	4
Figure 3	Pin Assignment of JMS583	5
Figure 4	Package Outline Drawing of QFN64 8x8	7
Figure 5	Power-on Sequence	21
Figure 6	Format of the Part Number	23
Figure 7	Illustration of Device Top Mark	24

Table List

Table 1	Pin Type Definitions	8
Table 2	PCle Interface Signals	9
Table 3	USB 3.2 Gen1 and Gen2 Shard Interface Signals	10
Table 4	USB 2.0 Interface Signals	10
Table 5	Switching Regulator Interface	11
Table 6	Crystal Interface	11
Table 7	USB Type-C [™] Configuration Channel	11
Table 8	Control and GPIO Interface	12
Table 9	Power Supply Interface	13
Table 10	Absolute Maximum Ratings	14
Table 11	Operating Voltage and Temperature	14
Table 12	External Clock Source Conditions	15
Table 13	DC Specifications	15
Table 14	Crystal Electrical Specification	16
Table 15	Power Dissipation – USB 2.0 to PCle L0	17
Table 16	Power Dissipation – USB 2.0 to PCle L0	17
Table 17	Power Dissipation – USB 2.0 to PCle L2	17
Table 18	Power Dissipation –USB 3.2 Gen 1 to PCIe L0	18
Table 19	Power Dissipation –USB 3.2 Gen 1 to PCIe L0	18
Table 20	Power Dissipation – USB 2.0 to PCle L0	18
Table 21	Power Dissipation – USB 3.2 Gen 2 to PCle L0	19
Table 22	Power Dissipation – USB 3.2 Gen 2 to PCle L0	19
Table 23	Power Dissipation – USB 3.2 Gen 2 to PCle L2	20
Table 24	Internal Linear Regulator Specification	20
Table 25	Power-on timing Requirements	21
Tahla 26	Explanation of Part Number	23

1 Overview

JMS583 is a bridge controller between the USB host and the storage devices with PCle/NVMe interface. Its upstream port provides a USB which data speed can reach up to ten gigabits per second (10 Gb/s), or the data transmission rate for USB 3.2 Gen2 specification. Meanwhile, its downstream port can connect to PCle/NVMe storage devices, such as a solid-state drive (SSD). The data speed for the PCle port can arrive at 16 Gb/s, or the data rate for the PCle Gen3x2 requirements.

Also, JMS583 has USB Type-CTM connectivity built in to the controller that any device using JMS583 can have a USB Type-CTM connector without adding any additional peripheral part. It can save costs to buy parts, and efforts to build inventory, and it can reduce printed circuit board area for the system designs.

JMS583 supports TRIM to the SSD and can transmit and receive data by both of the USB Mass Storage Class Bulk-Only Transport (BOT) and USB Attached SCSI Protocol (UASP) to and from the host respectively. The data storage devices can achieve its summit of performance by taking advantage of these built-in unmatched features.

JMS583 is well equipped for power management that it can meet a wide variety of power requirements from different scales of data storage systems: those for data center, network attached storage (NAS) systems, and portable SSDs, and even those for thumb-sized Internet-of-Thing (IoT) devices.

Owing to its USB Type-CTM connectivity, JMS583 can work with some power management controllers to a USB Power Delivery (PD) enabled data storage device. The data storage devices having SSDs of large capacity can accept the electrical power from sources of energy, such as hosts acting as a power provider of USB PD to supply sufficient electricity to the device after they negotiate with each other, without plugging in.

Finally, JMS583 is a new product that almost reaches USB3.2 Gen2 line bandwidth. Using JMS583, the security system can transfer higher quality video, such as 4K or even 8K, and quicker to their data storage devices than ever.

2 Features

2.1 General Features

- Design for Windows 7, Windows 10 and MAC 10.10.5 or later version
- Embedded 5V to 1.0V voltage regulator
- Embedded 5V to 3.3V linear voltage regulator (LDO)
- Provide hardware controlled PWMs
- Provide software utilities for downloading the upgraded firmware code under USB2.0/ USB 3.2 Gen1 and Gen2
- QFN64 8x8 package
- Support 25MHz external crystal
- Support 3.3V I/O
- Thirteen GPIOs for customization

2.2 Universal Serial Bus

- Comply with USB 3.2 Gen 1 and Gen 2 Specification,
- Comply with USB Mass Storage Class, Bulk-Only Transport Specification (Revision 1.0)
- Comply with USB Attached SCSI Protocol (UASP) Specification (Revision 4)
- Integrate with USB Type-CTM multiplexer & configuration channel (CC) logic
- Support USB Super-Speed/ High-Speed/ Full-Speed Operation
- Support USB2.0/ USB 3.2 Gen 1/ Gen 2 power saving mode
- Support external SPI NVRAM for Vendor VID/PID of USB2.0/USB 3.2 Gen 1/2 device controller

2.3 PCI Express

- Comply with PCI Express Base Specification Revision 3.1a
- Comply with NVM Express 1.3
- Support TRIM to the SSD
- Support SCSI/ NVMe Pass-through command to allow an application client to transmit a NVMe command to a NVMe device.

3 Block Diagram

Figure 1 Block Diagram

4 Application

Figure 2 Application Scenarios

5 Package and Pin Assignments

5.1 Pin Diagram

Figure 3 Pin Assignment of JMS583

5.2 Mechanical Dimensions

× C□NTR□LLING DIMENSI□N : MM

SYMBOL	MI	LLIME	TER	INCH			
	MIN.	NOM.	MAX.	MIN.	NDM,	MAX.	
Α			0,900			0.035	
Aı	0.000		0.050	0.000		0.002	
A2		0.650	0.700		0.026	0.028	
Аз	0.	203 RE	F.	0.	008 RE	F.	
b	0.150	0.200	0.250	0.006	0.008	0.010	
D	8	BS	SC.	0.	315 BS	SC SC	
De	4.160	4.460	4.560	0.164	0.176	0.180	
Ε	8	BS	SC SC	0.315 BSC		SC SC	
Ea	4.160	4.460	4.560	0.164	0.176	0.180	
L	0.300	0,400	0.500	0.012	0.016	0.020	
е	0.	400 BS	SC SC	0.016 BSC		SC	
R	0.075			0.003			
TOLE	RANCE	S OF	FORM	AND P	DITIC	N	
aaa		0.100		0.004			
bbb		0.070		0.003			
CCC		0.100		0.004			
ddd		0.050			0.002		
eee	0,080			0,003			
fff	. (0.100		0.004			

1.ALL DIMENSIONS ARE IN MILLIMETERS.

2.DIE THICKNESS ALLOWABLE IS 0.305 mm MAXIMUM(.012 INCHES MAXIMUM)
3.DIMENSIONING & TOLERANCES CONFORM TO ASME Y14.5M. -1994.

4.THE PIN #1 IDENTIFIER MUST BE PLACED ON THE TOP SURFACE OF THE PACKAGE BY USING INDENTATION MARK OR OTHER FEATURE OF PACKAGE BODY.

5.EXACT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL.

6.PACKAGE WARPAGE MAX 0.08 mm.

7.APPLIED FOR EXPOSED PAD AND TERMINALS, EXCLUDE EMBEDDING PART OF EXPOSED PAD FROM MEASURING.

8,APPLIED ONLY TO TERMINALS.

Figure 4 Package Outline Drawing of QFN64 8x8

5.3 Signal Descriptions

5.3.1 Pin Type Definitions

Table 1 Pin Type Definitions

Pin Type	Definitions
Α	Analog
D	Digital
Р	Power
I	Input
О	Output
IO	Bi-directional
OD	Open-Drain
Н	Internal weak pull-high
L	Internal weak pull-low

5.3.2 Pin Descriptions

PCIe Interface Signals

Table 2 PCIe Interface Signals

Signal Name	Pin Number	Туре	Description
P_RXN1	34	Al	PCle Port RX- Signal of Lane 1
P_RXP1	35	AI	PCle Port RX+ Signal of Lane 1
P_TXN1	37	AO	PCle Port TX- Signal of Lane 1 A 220 nF capacitor should be connected between this pin and PCle connector.
P_TXP1	38	AO	PCIe Port TX+ Signal of Lane 1 A 220 nF capacitor should be connected between this pin and PCIe connector.
REXT	39	Al	External Reference Resistance A $12k\Omega$ ±1% external resistor should be connected to this pin.
P_RXN0	41	Al	PCle Port RX- Signal of Lane 0
P_RXP0	42	Al	PCle Port RX+ Signal of Lane 0
P_TXN0	44	AO	PCle Port TX- Signal of Lane 0 A 220 nF capacitor should be connected between this pin and PCle connector.
P_TXP0	45	AO	PCle Port TX+ Signal of Lane 0 A 220 nF capacitor should be connected between this pin and PCle connector.
CLKP	48	DO	Differential Clock P 100Mhz reference clock for Device.
CLKN	47	DO	Differential Clock N 100Mhz reference clock for Device.
P_RSTN	54	DO	PCIe Reset for Device
P_CLKREQN	55	DIO	This is for L1 substrate

USB 3.2 Gen1 and Gen2 Shard Interface Signals

Table 3 USB 3.2 Gen1 and Gen2 Shard Interface Signals

Signal Name	Pin Number	Туре	Description
U_RXP2	29	Al	Super Speed RX+ 2 signal
U_RXN2	28	AI	Super Speed RX- 2 signal
U_RXN1	27	Al	Super Speed RX- 1 signal
U_RXP1	26	Al	Super Speed RX+ 1 signal
U_TXP2	24	AO	Super Speed TX+ 2 signal A 100 nF capacitor should be connected between this pin and USB connector.
U_TXN2	23	АО	Super Speed TX- 2 signal A 100 nF capacitor should be connected between this pin and USB connector.
U_TXN1	22	АО	Super Speed TX- 1 signal A 100 nF capacitor should be connected between this pin and USB connector.
U_TXP1	21	АО	Super Speed TX+ 1 signal A 100 nF capacitor should be connected between this pin and USB connector.

USB 2.0 Interface Signals

Table 4 USB 2.0 Interface Signals

Signal Name	Pin Number	Туре	Description	
DP	18	AIO	USB 2.0 Bus D+ Signal	
DM	17	AIO	USB 2.0 Bus D- Signal	
VBUS	16	PI	USB 5V V _{BUS} power for LDO input	
AVDD33	19	PO	USB 2.0 Analog 3.3V Output A capacitor to ground is recommended on this pin. The value should be one uF. The output voltage range is 3.3V ±10% Note: 1. This pin provides power less than 100mA @ 3.3V. 2. This pin can afford chip internal power usage only. 3. If this pin does not provide an external power supply,	

Signal Name	Pin Number	Type	Description
			this pin must be connected to a 4.7uF capacitor to ground.

Switching Regulator Interface

 Table 5
 Switching Regulator Interface

Signal Name	Pin Number	Туре	Description
VDDREG	1	PI	Voltage Regulator 5V Power Supply
GND	63	PI	Voltage Regulator Ground
LXO	64	РО	Voltage Regulator 1.0V Output Switch node. Connect with external power inductor with a value of 4.7 uH.

Crystal Interface

Table 6 Crystal Interface

Signal Name	Pin Number	Туре	Description
XIN	50	Al	Crystal Input/ Oscillator Input It is connected to a 25MHz crystal or crystal oscillator. The variation range should be ± 30 ppm. And the input voltage should range in 3.3V $\pm 5\%$.
хоит	51	AO	Crystal Output It is connected to a crystal. While crystal oscillator is applied, this pin should be reserved for No Connection (NC). The output variation range is around ±30ppm (input dependent). And the input voltage range is 3.3V ±5% (input dependent).

USB Type-C[™] Configuration Channel

Table 7 USB Type-CTM Configuration Channel

Signal Name	Pin Number	Type	Description
CC1	62	AI	CC Pin1 input for voltage detection The maximum tolerant input voltage is 3.3V.
CC2	61	Al	CC Pin2 input for voltage detection The maximum tolerant input voltage is 3.3V.

Control and GPIO Interface

Table 8 Control and GPIO Interface

Signal Name	Pin Number	Туре	Description
RST	15	DI	System Global Reset Input Active-low to reset the entire chip. An external RC should be connected to this pin.
TME	60	DI	MP Test Mode Enable The pin is reserved for IC mass production testing. Keep this pin to logic "0" in normal operation.
GPIO [0]	3	DIOH	Serial Flash (SO) After power on status detecting, this pin becomes Data Output of serial flash. This pin is by default set to input.
GPIO [1]	4	DIOH	Serial Flash (SCK) This pin is Serial Flash Data Clock (SCK) of serial flash. This pin is by default set to output.
GPIO [2]	5	DIOH	Serial Flash (SI) Serial Flash Data Input (SI) of Serial Flash. This pin is by default set to output.
GPIO [3]	7	DIOH	Serial Flash (CE0#) This pin functions as Chip Enable (CE#0) of Serial Flash.
GPIO [4]	8	DIOH	GPIO [4] Can be configured by customer firmware.
GPIO [5]	9	DIOH	GPIO [5] Can be configured by customer firmware.
GPIO [6]	10	DIOH	GPIO [6] Can be configured by customer firmware.
GPIO [7]	12	DIOH	GPIO [7] Can be configured by customer firmware.
UAO/GPIO [8]	13	DIOH	RISC UART TX Interface/ GPIO[8] Can be configured by customer firmware.
UAO/GPIO [9]	14	DIOH	RISC UART RX Interface/ GPIO[9] Can be configured by customer firmware.
GPIO [10]	59	DIOH	GPIO[10] Can be configured by customer firmware.
GPIO [11]	58	DIOH	GPIO[11] Can be configured by customer firmware.
GPIO [12]	57	DIOH	GPIO[12] Can be configured by customer firmware.

Power Supply Interface

Table 9 Power Supply Interface

Signal Name	Pin Number	Туре	Description
vcco	6, 11, 32, 56	PI	3.3V I/O power supply
VCCK	2, 31, 53	PI	1.0V core power supply
AVDDL	20, 25, 30, 33, 36, 40, 43, 46, 49	PI	Analog 1.0V power supply
XAVDDH	52	PI	3.3V crystal pad power (i.e., AVDDXTAL)

5.4 Function Description

5.4.1 LED Indicator

By default, GPIO [4] is used as LED indicator. If the user has a different application for LED function, please contact JMicron's AE before PCB layout.

5.4.2 GPIO Initial Value

All GPIOs set as input mode and enable internal pull-up function while in reset. After reset, the firmware will program all GPIOs as input mode. Afterward, the initial value of GPIOs is read and stored in the system RAM for future using.

V_{BUS} detector

GPIO[6] is used for V_{BUS} detection. There is a voltage divider circuit on a board. Power source is connected from V_{BUS} 5V. The output is connected to GPIO[6] for V_{BUS} detection.

6 Electrical Specifications

6.1 Absolute Maximum Ratings

Warning: Absolute maximum rating may cause the device permanent damage or reliability will be affected. All voltage is a specified reference to the ground unless otherwise specified.

 Table 10
 Absolute Maximum Ratings

Parameter	Symbol	Min	Typical	Max	Units
Digital 3.3V	VCCO _(ABS)	-0.3	-	4.13	V
Digital 1.0V	VCCK _(ABS)	-0.3	-	1.15	V
Switching regulator power	AVDDS _(ABS)	-0.3	-	5.5	V
3.3V Crystal Pad power	XAVDDH _(ABS)	-0.3	-	4.13	V
Analog 1.0V	AVDDL _(ABS)	-0.3	-	1.15	V
USB V _{BUS}	V _{BUS}	-	-	5.5	V
Digital I/O input voltage	$V_{I(D)}$	-0.3	-	4.13	V
Storage temperature	T _{STORAGE}	-40	-	150	°C

6.2 Recommended Operating Voltage and Temperature

 Table 11
 Operating Voltage and Temperature

Parameter	Symbol	Min	Typical	Max	Units
Digital 3.3V Power Supply	VCCO	3.0	3.3	3.6	V
Digital 1.0V Power Supply	VCCK	0.95	1.0	1.1	V
Switching Regulator	AVDDS	4.5	5.0	5.5	V
3.3V Crystal Pad Power	XAVDDH	3.0	3.3	3.6	V
Analog 1.0V Power Supply	AVDDL	0.95	1.0	1.1	V

USB V _{BUS}	V_{BUS}	4.5	5.0	5.5	V
Digital I/O input voltage	$V_{I(D)}$	3.0	3.3	3.6	V
Ambient Operation Temperature	T _A	0	-	70	°C
Maximum Junction Temperature	TJ	-	-	125	°C

Note:

1. All supply mean voltage power noise <±5%

6.3 External Clock Source Conditions

Table 12 External Clock Source Conditions

Parameter	Symbol	Min	Typical	Max	Units
External reference clock		-30ppm	25	+30ppm	MHz
Clock Duty Cycle		45	50	55	%

6.4 DC Electrical Characteristics

 Table 13
 DC Specifications

Parameter	Symbol	Min	Typical	Max	Units
Input low voltage	V_{lL}	-0.3	-	0.8	V
Input high voltage	V_{IH}	2	-	5.5	V
Output low voltage	V _{OL}	-	-	0.4	V
Output high voltage	V _{OH}	2.4	-	-	V
Low Level Output Current	loL	9.7	-	21.5	mA

High Level Output Current	Іон	17.0	-	56.5	mA
Internal weak pull-high resistance	R _{pu}	27	38	59	ΚΩ
Internal pull-low resistance	R_{pd}	-	-	-	ΚΩ

Note:

1. The above test results are under the environment at ambient temperature 25 °C.

6.5 Crystal input

Signal crystal input (25MHz) is needed.

Table 14 Crystal Electrical Specification

Parameter	Symbol	Min	Typical	Max	Units
Crystal start up time vs. AVDDL	T _{Crystal}	-	-	5	mS
Crystal Frequency	F _{clk}	-	25	-	MHz
Long term stability (Crystal Only)	$\Delta f_{MAX_Crystal}$	-30	-	30	ppm
Long term stability (On Board)	$\Delta f_{ extsf{MAX_OnBoard}}$	-150	-	150	ppm
Equivalent Series Resistance	ESR	-	-	55	Ω

6.6 Power Consumption

The power consumption is tested by the following setting environment and IC condition.

Setting Environment

· Operation System: Windows 10 64bit

Test tool: IOMeter

· Connected device: SSD Samsung 960 pro

IC Condition

Device Under Test: Evaluation Board(JMS583-EV-01-01-2)

Voltage: 1.0V / 3.3V

Firmware version: v00.01.00.03

Device: JMS583

6.6.1 USB 2.0 to PCle

Operation with PCIe L0 state

Table 15 Power Dissipation – USB 2.0 to PCIe L0

Parameter	Symbol	Min	Typical	Max	Units	Details/ Conditions
Digital 2.2V	V666		1.0		A	Operate @ 3.3V
Digital 3.3V	VCCO	-	1.8	-	mA	Temperature = 25°C
Dinital 4 OV	VOOK		457.0		A	Operate @ 1.0V
Digital 1.0V	VCCK	-	157.6	-	mA	Temperature = 25°C
A	VAVDDI.		4.0		mA	Operate @ 3.3V
Analog 3.3V	XAVDDH	-	1.3	-		Temperature = 25°ℂ
A	A) (DD)		000.0			Operate @ 1.0V
Analog 1.0V	AVDDL	1	292.8	1	mA	Temperature = 25°C

Idle with PCIe L0 state

Table 16 Power Dissipation – USB 2.0 to PCle L0

Parameter	Symbol	Min	Typical	Max	Units	Details/ Conditions
Digital 3.3V	VCCO	-	1.6	-	mA	Operate @ 3.3V
Digital 1.0V	VCCK	-	152.1	-	mA	Operate @ 1.0V
Analog 3.3V	XAVDDH	-	1.2	-	mA	Operate @ 3.3V
Analog 1.0V	AVDDL	-	273.8	-	mA	Operate @ 1.0V

Suspend with PCIe L2 state

Table 17 Power Dissipation – USB 2.0 to PCIe L2

Parameter	Symbol	Min	Typical	Max	Units	Details/ Conditions
Digital 3.3V	VCCO	-	0.3	-	mA	Operate @ 3.3V
Digital 1.0V	VCCK	-	2.0	-	mA	Operate @ 1.0V
Analog 3.3V	XAVDDH	-	0.0	1	mA	Operate @ 3.3V

Parameter	Symbol	Min	Typical	Max	Units	Details/ Conditions
Analog 1.0V	AVDDL	-	0.6	ı	mA	Operate @ 1.0V

6.6.2 USB 3.2 Gen 1 to PCle

Operation with PCIe L0 state

Table 18 Power Dissipation –USB 3.2 Gen 1 to PCIe L0

Parameter	Symbol	Min	Typical	Max	Units	Details/ Conditions
Digital 3.3V	VCCO	-	1.6	-	mA	Operate @ 3.3V
Digital 1.0V	VCCK	-	177.3	-	mA	Operate @ 1.0V
Analog 3.3V	XAVDDH	-	1.2	-	mA	Operate @ 3.3V
Analog 1.0V	AVDDL	-	346.3	-	mA	Operate @ 1.0V

Idle with PCIe L0 state

Table 19 Power Dissipation –USB 3.2 Gen 1 to PCIe L0

Parameter	Symbol	Min	Typical	Max	Units	Details/ Conditions
Digital 3.3V	VCCO	-	1.6	-	mA	Operate @ 3.3V
Digital 1.0V	VCCK	-	150.0	-	mA	Operate @ 1.0V
Analog 3.3V	XAVDDH	-	1.2	-	mA	Operate @ 3.3V
Analog 1.0V	AVDDL	-	344.6	-	mA	Operate @ 1.0V

Suspend with PCIe L2 state

Table 20 Power Dissipation – USB 2.0 to PCle L0

Parameter	Symbol	Min	Typical	Max	Units	Details/ Conditions
Digital 3.3V	VCCO	-	0.3	-	mA	Operate @ 3.3V

Parameter	Symbol	Min	Typical	Max	Units	Details/ Conditions
Digital 1.0V	VCCK	-	2.0	-	mA	Operate @ 1.0V
Analog 3.3V	XAVDDH	-	0.0	-	mA	Operate @ 3.3V
Analog 1.0V	AVDDL	-	2.0	-	mA	Operate @ 1.0V

6.6.3 USB 3.2 Gen 2 to PCle

Operation with PCIe L0 state

Table 21 Power Dissipation – USB 3.2 Gen 2 to PCIe L0

Parameter	Symbol	Min	Typical	Max	Units	Details/ Conditions
Digital 3.3V	VCCO	-	1.7	-	mA	Operate @ 3.3V
Digital 1.0V	VCCK	-	238.3	-	mA	Operate @ 1.0V
Analog 3.3V	XAVDDH	-	1.2	-	mA	Operate @ 3.3V
Analog 1.0V	AVDDL	-	422.6	-	mA	Operate @ 1.0V

Idle with PCIe L0 state

Table 22 Power Dissipation – USB 3.2 Gen 2 to PCIe L0

Parameter	Symbol	Min	Typical	Max	Units	Details/ Conditions
Digital 3.3V	VCCO	-	1.6	-	mA	Operate @ 3.3V
Digital 1.0V	VCCK	-	176.3	-	mA	Operate @ 1.0V
Analog 3.3V	XAVDDH	-	1.2	-	mA	Operate @ 3.3V
Analog 1.0V	AVDDL	-	421.7	-	mA	Operate @ 1.0V

Suspend with PCIe L2 state

Table 23 Power Dissipation – USB 3.2 Gen 2 to PCIe L2

Parameter	Symbol	Min	Typical	Max	Units	Details/ Conditions
Digital 3.3V	VCCO	-	0.3	-	mA	Operate @ 3.3V
Digital 1.0V	VCCK	-	2.0	-	mA	Operate @ 1.0V
Analog 3.3V	XAVDDH	-	0.0	-	mA	Operate @ 3.3V
Analog 1.0V	AVDDL	-	2.0	-	mA	Operate @ 1.0V

6.7 Internal Linear Regulator

 Table 24
 Internal Linear Regulator Specification

Parameter	Symbol	Min	Typical	Max	Units	Details/ Conditions
Input Voltage Range	V _{IN_LINEAR}	-	5	-	V	
Output Voltage Range	V _{OUT_LINEAR}	-	3.3	-	V	
Max Output Current	I _{MAX}	-	-	150	mA	

6.8 Power-on Sequence

The power-on sequence is defined in Figure 5. Designers should follow all the rules for external power designs.

Figure 5 Power-on Sequence

T_{5V}: Rise time for 5Vpowerrailfrom 10% to 90%

T1: Rise time for 3V3 power rail from 5V 10% to 3V3 90%

T2: Rise time for 1V0power rail from 10% to 90%

T3: Time interval between 3V3power and 1V0Power

T4: Rise time for RST# signal from 0V to 1V77

T_{Clock}: Time interval between3V3and 90% clock swing

Note: Clock must meet 25MHz +/-30ppm during the sequence.

The recommended power sequence and timing requirements are listed in Table 25.

Table 25 Power-on timing Requirements

Time	Minimum	Maximum
T _{5V}	-	20 ms
T1	0 ms	10 ms
T2	0 ms	10 ms
Т3	-5 ms	5 ms
T4	120 ms	500 ms

Revision 2.11 21 Document No.: PDS-17001

Time	Minimum	Maximum
T _{Clock}	-	5 ms

The RESET timing constraint is based on the external RC reset circuits. To control the charge and discharge time for RC circuits, minimum, and maximum requirements are listed. If designers apply timing control chip to control the reset signal, the only requirement will be the minimum value. In other words, the maximum value can be ignored without problems.

7 Product Naming Rule

7.1 Format of Part Number

The part number consists of the information of provider, product category, device number, package type, material type, product grade (operating temperature), mask ROM version and device version. The format of the part number is illustrated in Figure 6 below.

Figure 6 Format of the Part Number

7.2 Explanation of Part Number

Table 26 Explanation of Part Number

Section	Length	Purpose	Code(s)	Meaning
a (JM)	2 digits	Brand name	JM	The provider JMicron
b (S)	1 digit	Product category	S	SoC, system-on-a-chip
c (583)	3 digits	Device number	583	The serialnumber assigned randomly to form the device name "JMS583"in conjunction with brand name and product category.
d (P)	1 digit	Package type	B, L, Q, T	B = BGA; L = LQFP; Q = QFN; T = TQFP
e (M)	1 digit	Material & grade	G, H, I, J	G = Gold wired RoHS compliant halogen-free green product; Ta: 0 ~ 70°C. H = Copper wired RoHS compliant halogen-free green product; Ta: 0 ~ 70°C. I = Gold wired RoHS compliant halogen-free green product; Ta: -40 ~ 85°C. J= Copper wired RoHS compliant

				halogen-free green product;
				Ta: -40 ~ 85° C.
f (B)	1 digit	Internal bonding type	A, B, C,	A, B, C,
			A0, A1, A2,	Version A0, A1, A2,
g (RN)	2 digit	Version of mask ROM	B0, B1, B2,	Version B0, B1, B2,
			Z0	Version Z0= no mask ROM
h (V)	1 digit	Version of the IC	A, B, C,	Version A, B, C,

7.3 Top Mark

Each device has its unique top mark containing the information of provider, device name, part number, manufacturing date code, lot number and pin one identifier for identification. The top mark is illustrated in Figure 7 below.

Figure 7 Illustration of Device Top Mark

Note: The above information is only for use in this product datasheet. For more detailed ordering information, please contact to JMicron's Sales Department, representatives, or distributors when ordering parts.

How to Reach Us:

➤ Home Page: http://www.jmicron.com

> Technical & Order Support: sales@jmicron.com

