Boulicaut Julien Note: 7/20 (score total : 7/20)

+292/1/10+

QCM THLR 4

	om et prénom, lisibles : Identifiant (de haut en bas) :
1.0	Souliant □0 □1 ■2 □3 □4 □5 □6 □7 □8 □9
	Bauliant 0 1 2 3 4 5 6 7 8 9 9 9 9 9 9 9
sieu plus pas	Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ». Noircir les cases sôt que cocher. Renseigner les champs d'identité. Les questions marquées par « » peuvent avoir plusers réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la s'restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les priectes pénalisent; les blanches et réponses multiples valent 0.
Q.2	Le langage $\{ \mathbf{Z}^n \mathbf{Z}^n \mid \forall n \in \mathbb{N} \}$ est
	🥰 rationnel 🗌 vide 🌘 non reconnaissable par automate fini 🔲 fini
Q.3	Le langage $\{ \boxtimes^n \mathbb{Z}^n \mid \forall n \in \mathbb{N} \}$ est
	☐ fini ☐ rationnel ☐ vide 🐉 non reconnaissable par automate fini
Q.4	Un automate fini qui a des transitions spontanées
	$oxed{oxed}$ n'est pas déterministe $oxed{oxed}$ n'accepte pas $arepsilon$ $oxed{oxed}$ accepte $arepsilon$ $oxed{oxed}$ est déterministe
Q.5 Q.6	A propos du lemme de pompage Si un langage ne le vérifie pas, alors il n'est pas rationnel Si un langage le vérifie, alors il est rationnel Si un langage ne le vérifie pas, alors il n'est pas forcement rationnel Si un automate de n états accepte a ⁿ , alors il accepte
	$\boxtimes a^p(a^q)^*$ avec $p \in \mathbb{N}, q \in \mathbb{N}^* : p + q \le n$ $\square (a^n)^m$ avec $m \in \mathbb{N}^*$ $\square a^n a^m$ avec $m \in \mathbb{N}^*$ $\square a^{n+1}$
Q.7	Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b\}$ at la n -ième lettre avant la fin est un a (i.e., $(a+b)^*a(a+b)^{n-1}$):
	\square Il n'existe pas. \square $\frac{n(n+1)}{2}$ \square $n+1$ \boxtimes 2^n
Q.8	Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ at la n -ième lettre avant la fin est un a (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$):
	\square 4 ⁿ \square Il n'existe pas. \boxtimes 2 ⁿ \square $\frac{n(n+1)(n+2)(n+3)}{4}$
Q.9	Déterminiser cet automate. a,b a b a b a b a a b a a b a a a b a
	1/12/

- Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

Fin de l'épreuve.

0/2