Unidad Nota:Losejerciciosconlasiguiente leyendasepresentanresueltos:

Coma Flotante

Ejercicios de Normalización

Ejercicio 1: Normalizar los siguientes números

- **a)** 0,0033₁₀
- **c)** 222,12₁₀
- **e)** 0,000000712₁₀
- **g)** 0,00006₁₀
- i) 1234567,89₁₀
- **k)** 97600000000000000₁₀

- **b)** 110,101₂
- **d)** 1010,1₂
- **f)** 0,001111₂
- **h)** 111₂
- **j)** 0,1₂
- **I)** 0,01010101₂

<u>✓ Ejercicio 2</u>: Desnormalizar los siguientes números

- **a)** 0,222₁₀ x 10⁴
- **c)** $0.333_{10} \times 10^{-5}$
- **e)** $0.444_{10} \times 10^2$
- **g)** $0.555_{10} \times 10^{-9}$
- i) $0.666_{10} \times 10^3$
- **k)** $0,777_{10} \times 10^0$

- **b)** 0,110101₂ x 2³
- **d)** 0,1111110₂ x 2⁻²
- f) $0,1100110_2 \times 2^5$
- **h)** $0,101010_2 \times 2^{-7}$
- j) 0,11010000111101₂x2⁹
- **I)** $0,10001_2 x 2^8$

ESTANDAR IEEE-754

Ejercicios aplicando el Estandar IEEE-754 en Simple Precisión

Ejercicio 3: Representar los siguientes números en formato IEEE-754 y en Simple Precisión:

- **a)** 5777₁₀
- **c)** 347,2₁₀
- **e)** 444,40₁₀
- **g)** 3 E 0 3₁₆
- h) ABCD₁₆

- **b)** $-57,23_{10}$
- **d)** 1,312₁₀
- **f)** -0,8899₁₀
- i) 4033A₁₆
- **j)** 5127₁₆

Ejercicio 4: Obtener el número decimal a partir de un número en Simple Precisión:

- a) 1 10000001 0100100111000100000000
- **b)** 0 10000000 100001111110100100000000

SOLUCIONES

Ejercicio 1: Normalizar los siguientes números

a)
$$0.0033_{10} = 0.33 \times 10^{-2}$$

c)
$$222,12_{10} = 0,22212 \times 10^3$$

e)
$$0.000000712_{10} = 0.712 \times 10^{-6}$$

g)
$$0.00006_{10} = 0.6 \times 10^{-4}$$

b)
$$110,101_2 = 0,110101 \times 2^3$$

d)
$$1010,1_2 = 0,1010 \times 2^4$$

f)
$$0.001111_2=0.1111x2^{-2}$$

h)
$$111_2 = 0.111 \times 2^3$$

j)
$$0.1_2 = 0.1 \times 2^0$$

I)
$$0.01010101_2 = 0.1010101x2^{-1}$$

La coma se ubica a la izquierda del número más significativo.

Ejercicio 2: Desnormalizar los siguientes números

a)
$$0.222_{10} \times 10^4 = 2220_{10}$$

c)
$$0.333_{10} \times 10^{-5} = 0.000003333_{10}$$

e)
$$0.444_{10} \times 10^2 = 44.4_{10}$$

g)
$$0.555_{10} \times 10^{-9} = 0.000000000555_{10}$$

i)
$$0.666_{10} \times 10^3 = 666_{10}$$

k)
$$0.777_{10} \times 10^0 = 0.777_{10}$$

b)
$$0.110101_2 \times 2^3 = 110.101_2$$

d)
$$0.11111110_2 \times 2^{-2} = 0.0011111110_2$$

f)
$$0,1100110_2 \times 2^5 = 11001,10_2$$

h)
$$0.101010_2 \times 2^{-7} = 0.0000000101010_2$$

j)
$$0,11010000111101_2 \times 2^9 = 110100001,11101_2$$

1)
$$0.10001_2$$
x $2^8 = 10001000_2$

ESTANDAR IEEE-754

Eiercicios aplicando el Estandar IEEE-754 en Simple Precisión

En el Estandard IEEE-754 la coma se coloca a la derecha del bit más significativo.

a) 5 7 7
$$7_{10}$$
 = 1 0 1 1 0 1 0 0 1 0 0 1 $\frac{1}{2}$ = 1, $\frac{0.1101001001}{0.10001}$ x 2^{12} (normalizamos el número)

Exponente =
$$12 + (2^{8-1} - 1) = 12 + (2^7 - 1) = 12 + (128 - 1) = 12 + 127 = 139_{10} = 10001011_2$$

(se calcula el exponente en exceso 2ⁿ⁻¹ -1)

Mantiza = 0 1 1 0 1 0 0 1 0 0 0 1₂ (número de la coma a la derecha)

	SIGNO(1)	EXPONENTE(8)			MAN	ΓΙΖΑ(23)		
	0	10001011	0110	1001	0001	00000	0000	0 0
,	4	5	В	4	8	8	0	0 ₁₆

 $5777_{10} = 1,011010101001_2 \times 2^{12} = 45B48800_{16}$

b) - 5 7, 2
$$3_{10}$$
 = 1 1 1 0 0 1, 0 0 1 1_2 = 1,1 1 0 0 1 0 0 1 1_2 x 2^5 (normalizamos el número)

Signo = 1 (negativo)

Exponente =
$$5 + (2^{8-1} - 1) = 5 + (2^7 - 1) = 5 + (128 - 1) = 5 + 127 = 132_{10} = 10000100_2$$

(se calcula el exponente en exceso 2ⁿ⁻¹ -1)

Mantiza = $1\ 1\ 0\ 0\ 1\ 0\ 0\ 1\ 1_2$ (número de la coma a la derecha)

SIGNO(1)	EXPONENTE(8)			MAN	ΓΙΖΑ(23)		
1	10000100	110	01001	1000	00000	00000	0 0
С	2	6	4	С	0	0	0 ₁₆

-57, $23_{10} = (-)1$, 11001011, $2x2^5 = C264C000_{16}$

c) 3 4 7,
$$2_{10}$$
 = 1 0 1 0 1 1 0 1 1, 0 0 1_2 = 1, 0 1 0 1 1 0 1 1 0 0 1_2 x 2^8 (normalizamos el número)

Signo = 0 (positivo)

Exponente =
$$8 + (2^{8-1} - 1) = 8 + (2^7 - 1) = 8 + (128 - 1) = 8 + 127 = 136_{10} = 10000111$$

(se calcula el exponente en exceso 2^{n-1} -1)

Mantiza = $0\ 1\ 0\ 1\ 1\ 0\ 1\ 1\ 0\ 0\ 1_2$ (número de la coma a la derecha)

SIGNO(1)	EXPONENTE(8)			MAN	TIZA(23)	
0	10000111	010	1101	1001	0000	0000	0000
4	3		D	9	0	0	0 ₁₆

347, $2_{10} = 1$, $01011011011001_2 \times 2^9 = 43 A D 9 0 0 0_{16}$

d) – 1, 3 1 2_{10} = 1, 0 1 0 0 1_2 = 1, 0 1 0 0 1_2 x 2^0 (normalizamos el número)

Signo = 1 (negativo)

Exponente =
$$0 + (2^{8-1} - 1) = 0 + (2^7 - 1) = 0 + (128 - 1) = 0 + 127 = 127_{10} = 0 1 1 1 1 1 1 1 1_2$$
 (se calcula el exponente en exceso 2^{n-1} -1)

Mantiza = $0.1.0.01_2$ (número de la coma a la derecha)

SIGNO(1)	EXPONENTE(8)			MAN	ΓΙΖΑ(23)		
1	01111111	010	0100	00000	00000	00000	0 0
В	F	Α	4	0	0	0	0 ₁₆

-1, 3 1 2₁₀ = (-) 1, 0 1 0 0 1₂ x 2⁰ = B F A 4 0 0 0 0₁₆

e) 4 4 4, 4_{10} = 1 1 0 1 1 1 1 0 0, 0 1_2 = 1 ,1 0 1 1 1 1 0 0 0 1_2 x 2^8 (normalizamos el número)

Signo = 0 (positivo)

Exponente =
$$8 + (2^{8-1} - 1) = 8 + (2^7 - 1) = 8 + (128 - 1) = 8 + 127 = 135_{10} = 10000111_2$$

(se calcula el exponente en exceso 2^{n-1} -1)

Mantiza = $1\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 1_2$ (número de la coma a la derecha)

	SIGNO(1)	EXPONENTE(8)			MAN	TIZA(23)	
	0	10000111	1011	110	0010	0000	0000	0000
,	4	3	D	Е	2	0	0	0 ₁₆

4 4 4, $4_{10} = 1$, $1 0 1 1 1 1 1 0 0 0 1₂ x <math>2^8 = 4 3$ D E 2 0 0 0_{16}

f) $-0.8899_{10} = -0.111_{2} = -1.11_{2} \times 2^{-1}$ (normalizamos elnúmero)

Signo = 1 (negativo)

Exponente = -1 +
$$(2^{8-1} - 1)$$
 = -1 + $(2^7 - 1)$ = -1 + $(128 - 1)$ = -1 + $127 = 126_{10}$ = **0 1 1 1 1 1 1 0**₂

(se calcula el exponente en exceso 2ⁿ⁻¹ -1)

Mantiza = 1 1₂(número de la coma a la derecha)

SIGNO(1)	EXPONENTE(8)			MAN	ΓΙΖΑ(23)		
1	01111110	110	0000	0000	00000	00000	0 0
B	F	6	0	0	0	0	016

 $-0,8899_{10} = (-)0,111_2 \times 2^0 = BF600000_{16}$

g) $3E03_{16}=00111111000000011_2=1,1111000000011_2x2^{13}$

Signo = 0 (positivo)

Exponente =
$$13 + (2^{8-1} - 1) = 13 + (2^7 - 1) = 13 + (128 - 1) = 13 + 127 = 140_{10} = 10001100_2$$

(se calcula el exponente en exceso 2ⁿ⁻¹ -1)

Mantiza = 1 1 1 1 0 0 0 0 0 0 1 1₂(número de la coma a la derecha)

SIGNO(1)	EXPONENTE(8)			MAN	TIZA(23)	ı	
0	10001100	111	1000	00001	10000	00000	0 0 0
4	6	7	8	0	С	0	0

3 E 0 3₁₆ = 1, 1 1 1 1 0 0 0 0 0 0 1 1₂ x 2¹³ = 4 6 7 4 0 C 0 0 ₁₆

h) A B C D_{16} = 1 0 1 0 1 0 1 1 1 1 1 0 0 1 1 0 1_2 = 1, 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1_2 x 2^{15}

Signo = 0 (positivo)

Exponente =
$$15 + (2^{8-1} - 1) = 15 + (2^7 - 1) = 15 + (128 - 1) = 15 + 127 = 142_{10} = 10001110_2$$

(se calcula el exponente en exceso 2ⁿ⁻¹ -1)

Mantiza = 0.1.0.1.0.1.1.1.1.0.0.1.1.0.1.2 (número de la coma a la derecha)

SIGNO(1)	EXPONENTE(8)	MANTIZA(23)
0	10001110	01010111100110100000000
4	7 :	B C D 0 0

A B C $D_{16} = 1,0101011111001101_2 \times 2^{15} = 472 B C D 0 0_{16}$

i) $4033A_{16}=01000000001100111010_2=1,000000001100111010_2x2^{18}$

Signo = 0 (positivo)

Exponente =
$$18 + (2^{8-1} - 1) = 18 + (2^7 - 1) = 18 + (128 - 1) = 18 + 127 = 145_{10} = 1001001_2$$

(se calcula el exponente en exceso 2ⁿ⁻¹ -1)

Mantiza = 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 2 (número de la coma a la derecha)

SIGNO(1)	EXPONENTE(8)	MANTIZA(23)
0	10010001	0000000110011101000000
4	8 8	0 6 7 4 0

 $4033A_{16} = 1,000000001100111010_2 \times 2^{18} = 48806740_{16}$

j) 5127₁₆=0101000100100111₂=1,01000100100111₂x2¹⁴

Signo = 0 (positivo)

Exponente =
$$14 + (2^{8-1} - 1) = 14 + (2^7 - 1) = 14 + (128 - 1) = 14 + 127 = 141_{10} = 10001101_2$$

(se calcula el exponente en exceso 2ⁿ⁻¹ -1)

Mantiza = 0 1 0 0 0 1 0 0 1 0 0 1 1 1 1₂(número de la coma a la derecha)

SIGNO(1)	EXPONENTE	(8)			MAN	TIZA(23)		
0	10001101		01000	0 0	1001	11000	0000	000
4	6	Α		2	4	E	0	0

 $5 1 2 7_{16} = 1,01000100100111_2 \times 2^{14} = 46 A 2 4 E 0 0_{16}$

Eiercicio 4: Obtener el número decimal a partir de un número en Simple Precisión o en hexadecimal:

a)

SIGNO(1)	EXPONENTE(8)	MANTIZA(23)
1	10000001	01001001110001000000000

Signo = 1 (negativo)

Exponente = 1 0 0 0 0 0 1₂- $127_{10} = 129_{10}$ - $127_{10} = 2_{10}$ (se saca el exceso y se obtiene el exponente)

 $5, 2 7 1 0 0 0 0 0_{16}$

-5, 271₁₆ = $5 \times 16^{0} + 2 \times 16^{-1} + 7 \times 16^{-2} + 1 \times 16^{-3}$

 $= 5 \times 1 + \frac{2}{16} + \frac{7}{256} + \frac{1}{4096}$

= 5 + 0.125 + 0.027 + 0.00024

5, 271₁₆= -5, 15224₁₀

b)

SIGNO(1)	EXPONENTE(8)	MANTIZA(23)
0	10000000	1000011111010010000000

Signo = 0 (positivo)

Exponente = 1 0 0 0 0 0 0 $_{2}$ - 127₁₀ = 128₁₀- 127₁₀= 1₁₀(se saca el exceso y se obtiene el exponente)

Número = 1, 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 $\times 2^{1}$ (desnormalizo)

11,00001111110100100000000

 $3, 0 F A 4 0 0_1$

3,0FA4₁₆=3 \times 16⁰+ 0 \times 16⁻¹+ F \times 16⁻²+ A \times 16⁻³+ 4 \times 16⁻⁴

 $= 3 \times 1 + 0 + 15 / 256 + 10 / 4096 + 0$

= 3 + 0.0585 + 0.00244

 $C3E90_{16} = 3,06094_{10}$

c)

SIGNO(1)	EXPONENTE(8)	MANTIZA(23)
0	10010010	10100010000000000000000

Signo = 0 (positivo)

Exponente = $1\ 0\ 0\ 1\ 0\ 1\ 0\ 2\ -\ 127_{10} = 146_{10} - 127_{10} = 19_{10}$ (se saca el exceso y se obtiene el exponente)

D 1 0 0, 0_{16}

D 1 0 0 0₁₆ = D x 16^4 + 1 x 16^3 + 0 x 16^2 + 0 x 16^1 + 0 x 16^0

= 13 X 65536 + 1 x 4096

 $= 856064_{10}$

D 1 0 0 $0_{16} = 856064_{10}$

d)

SIGNO(1)	EXPONENTE(8)	MANTIZA(23)
1	10001000	10101010100000000000000

Signo = 1 (negativo)

Exponente = 1 0 0 0 1 0 0 0_{2} - 127_{10} = 136_{10} - 127_{10} = 9_{10} (se saca el exceso y se obtiene el exponente)

= 110101010101, 0000000000000000

1101010101

3 5 5₁₆

3 5 5₁₆ = $3 \times 16^2 + 5 \times 16^1 + 5 \times 16^0$

 $= 3 \times 256 + 5 \times 16 + 5 \times 1$

= 768 +80 +5

 $-355_{16} = 853_{10}$