Optimal Skill Mixing Under Technological Advancements

Elmer Zongyang Li

Department of Economics

Cornell University

August, 2023

• The nature of work in the US has changed dramatically

Intro

Evidence

Returns

1odel

Intro

Evidence

Returns

Model

Conclusion

• The nature of work in the US has changed dramatically

o Decline in "routine" tasks and related worker skills Acemoglu(1999), Autor, Levy and

Murane (2003), Autor and Dorn (2013)

o Rising importance of social skills Cortes, Jaimovich, and Siu (2021), Deming (2017)

Intro

Evidence

Returns

Model

Conclusion

- The nature of work in the US has changed dramatically
 - Decline in "routine" tasks and related worker skills Acemoglu(1999), Autor, Levy and Murane (2003), Autor and Dorn (2013)
 - o Rising importance of social skills Cortes, Jaimovich, and Siu (2021), Deming (2017)
- Remains unclear

specific specialized skill \iff a broad range of skills ("skill mixing")

Intro

Evidence

Returns

Model

Conclusion

The nature of work in the US has changed dramatically

 Decline in "routine" tasks and related worker skills Acemoglu(1999), Autor, Levy and Murane (2003), Autor and Dorn (2013)

o Rising importance of social skills Cortes, Jaimovich, and Siu (2021), Deming (2017)

Remains unclear

specific specialized skill \iff a broad range of skills ("skill mixing")

- Different implications
 - Specialization in skill demand → experts in a single dimension
 - Skill mixing → multidisciplinary schooling and training

This Paper

1. Documents **new facts** about skill mixing

- Substantial ↑ in skill mixing 2005-2018, even within granular occ.
 - ▶ Mainly for non-routine(analytical, interpersonal, computer, leadership, design, ...)
 - ▶ Mainly for medium- to low-wage occupations
- Source: within-occupation > worker reallocation
 - Persists controlling gender, industry, occ, skill supply (edu, exp)
- Explains major part of employment/wage polarization
- Wage returns: 1.5 3 percent in skill mixed occupation/major

Intro

Evidence

Returns

Model

Quantitativ

This Paper

1. Documents new facts about skill mixing

- Substantial ↑ in skill mixing 2005-2018, even within granular occ.
- Source: within-occupation > worker reallocation
- Explains major part of employment/wage polarization
- Wage returns: 1.5 3 percent in skill mixed occupation/major

2. A directed search model with occupation design

- Before producing, firms first design the occupation, st a cost Acemoglu(1999)
- Multi-dimensional skills, non-linear technology

Intro

Evidence

Returns

Mode

Quantitativ

This Paper

Intro

- 1. Documents new facts about skill mixing
 - Substantial ↑ in skill mixing 2005-2018, even within granular occ.
 - Source: within-occupation > worker reallocation
 - Explains major part of employment/wage polarization
 - Wage returns: 1.5 3 percent in skill mixed occupation/major

2. A directed search model with occupation design

- Before producing, firms first design the occupation, st a cost Acemoglu(1999)
- Multi-dimensional skills, non-linear technology

3. Quantitative analysis

- Estimation: ↑ complementarity & cost of skills
- Experts of analytical, computer / routine skills becomes ↑/↓ efficienct
- These drive skill mixing & employment, wage dynamics

aturne

1odel

Literature

Long-term trend of skill demand

 Skill/task biased: Tinbergen (1975); Katz and Murphy (1992); ALM (2003); Acemoglu and Autor (2011); Autor and Dorn (2013); Deming (2017); Deming and Kahn (2018)

Within-occupation variation: Autor and Handel (2013); Atalay et al. (2020); Freeman,
 Ganguli, and Handel (2020); Cortes, Jaimovich, and Siu (2021)

Directed search model

Menzio and Shi (2010,2011); Kaas and Kircher (2015); Schaal (2017); Baley, Figueiredo, and
 Ulbricht (2022); Braxton and Taska (2023)

Worker sort and matching

- o 1-D: Shi (2001); Hagedorn, Law, and Manovskii (2017)
- o Multi-D: Yamaguchi (2012); Lindenlaub (2017); Lise and Vinay (2020); Ocampo (2022)
- Bundling: Rosen (1983); Murphy (1986); Heckman and Sedlacek (1985), Choné and Kramarz (2021): Edmond and Mongey (2021)

Intro

Evidence

1odel

uantitati

Table of Contents

Intro

Evidence of Skill Mixing

Returns to Skill Mixing

A Directed Search Model with Occupation Design

Quantitative Analysis

√ode|

Conclusion

Evidence of Skill Mixing

Occupations in Multidimensional Space

Definition (Degree of Skill Mixing of an occupation)

The skill mixing index for an occupation $\mathbf{y} = \{y^1, ..., y^k, ..., y^K\} \in S \subset \mathbb{R}^{K+}$ is the cosine similarity between its skill vector and the norm $\hat{\mathbf{v}}$.

$$Mix(\mathbf{y}) = \frac{\mathbf{y}\hat{\mathbf{v}}}{||\mathbf{y}|| \cdot ||\hat{\mathbf{v}}||}, where \,\hat{\mathbf{v}} = [1, 1, ..., 1]' \subseteq \mathbb{R}^{K+}$$

Intro

Evidence

Returns

Mode

Quantitativ

Data and Skill Measures

- Occupational Information Network (O*NET) 2005-2018
 - Detailed 270 descriptors into 9 modules for 970 7-digit occupations
 - Source: surveys of job analysts + <u>incumbent workers</u>
 - Info on skill requirements and work environments (intensive margin)
 - Challenge: annually, avg. of 110 occupations updated
 - ▶ Broad and 4-year intervals using 4 versions; 274 7-digit occs consistently updated
- Lightcast (formerly "Burning Glass") 2007-2017
 - Analyzes millions of online job postings into codified skills
 - Info on whether a skill is required for a vacancy (extensive margin)
- Skill Measures Acemoglu and Autor (2011) & More
 - Non-routine analytical, interpersonal, routine (cognitive and manual)
 - Additional skills: computer; leadership and design (other non-routine)
 - Lightcast: keywords based Braxton & Taska (2022)

Intro

Evidence

Returns

1odel

Zuantitativ

First look of data: trend at 7-digit occupatoins

Figure: Density for Skill Mixing Indexes (Cosine Distances), 2005 vs. 2018

Weighted Density Non-parametric

Intro

Evidence

Returns

Model

Quantitativ

Time Pattern

(1) Full O*NET

Figure: Trend of Skill Mixing in the US Economy, 2005-2018

(2) Constant Updates

Robust - measure Robust - index Skill pairs Composition of updates

Intro

Evidence

Returns

Model

Quantitativ

Conclusion

(3) Lightcast

	Clail Crouns	6-di	6-digit Occupations			4-digit Occupations		
	Skill Groups	total	within	across	total	within	across	
Full O*NET	RNR Skills	6.78	4.93	1.85	12.23	9.26	2.97	
	Non-routine Skills	9.21	5.62	3.59	14.07	9.53	4.54	
Constant Updates	RNR Skills	5.59	6.73	-1.14	9.70	10.57	-0.87	
	Non-routine Skills	4.05	5.33	-1.29	10.58	9.50	1.09	
Lightcast	Non-routine Skills				4.66	4.37	0.28	

Table: Shift-Share Decomposition of Skill Mixing Index Changes

Notes: This table shows a shift-share decomposition of changes in the average level of different mixing indexes between 2005-2018 in percentile units. Specifically, for a change in the percentile of a mixing index over two periods t and τ , its change $\Delta T_{\tau} = T_{\tau} - T_{t}$ which can be decomposed to $\Delta T = \sum_{j} \left(\Delta E_{j\tau} \alpha_{j} \right) + \sum_{j} \left(E_{j} \Delta \alpha_{j\tau} \right) = \Delta T^{a} + \Delta T^{w}$ where $E_{j\tau}$ is employment weight in occupation j in year τ , and $\alpha_{j\tau}$ is the level of mixing index h in occupation j in year τ , $E_{j} = \frac{1}{2} \left(E_{jt} + E_{j\tau} \right)$ and $\alpha_{j} = \frac{1}{2} \left(\alpha_{jt} + \alpha_{j\tau} \right)$. ΔT^{a} and ΔT^{w} then represent across-occupation and within-occupation change.

	RNR Skills	Non-routine Skills
Full O*NET	0.70***	0.71***
Tun O IVET	[0.10]	[0.09]
Constant Updates	0.75***	0.65***
Constant Opulies	[0.11]	[0.11]
Lightcast		0.33**
Ligiticast		[0.15]
Sex \times Industry \times Occ. FE	X	X
Exp. and edu. controls	X	X

Table: Within Occupation Changes in Skill Mixing Indexes

Notes: This table reports the results of regressing values of RNR skills and Non-routine skills on a time trend variable (year values) for the full ONET, Constant Updates, and Lightcast datasets combined with the ACS. The regressions include controls for sex-industry-occupation fixed effects, as well as 5-category (no high-school, high-school graduate, some college, college graduate, post-college) education fixed effects, polynomials of years of work experience up to power 4, and the interaction of experience polynomials and education as well as gender fixed effects. Robust standard errors are reported in brackets. *** pj0.01, ** pj0.05, and * pj0.1.

Occupation Heterogeneity

Figure: Skill Mixing Index Change by Occupation Groups and Gender, 2005-2018

Notes: The categorization into four groups is based on Acemoglu and Autor (2011). "High Wage" includes Managers, Professionals, and Technicians; "White Collar" comprises Office/Administrative and Sales roles; "Blue Collar" includes Production, as well as Operators/Laborers; and "Service" consists of Protective Services, Food/Cleaning Service, and Personal Care occupations.

By industry Skill pairs

Intro

Evidence

Returns

Model

Qualititativ

Distributional Implications

Figure: Smoothed Employment and Wage Changes by Skill Percentile, 2005-2018

ntro

Evidence

Returns

Model

Model

Conclusion

Returns to Skill Mixing

Data and Measurement

- National Longitudinal Survey of Youth (NLSY) 2005-2019
 - Detailed employment and educational histories + pre-market abilities
 - Both 79 & 97 cohorts (median age: 37), outcome: real log hourly wage
 - Skill measures:
 - Analytical: AFQT; Interpersonal: social skill (Deming, 2017); Routine: ASVAB mechanical;
 Computer: occ/major's computer skill
- College Major's Skill Mixing
 - Uses NLSY college major, emp-weighted avg. of O*NET measures
 - Top majors:
 - ▶ Non-routine: Arch. & Environ. Design, Computer and Info Sciences, Communications
 - Routine & non-routine: Social Sciences, Agriculture and Natural Resources

Correspond skill measures

Non-parametric

ntro

Evidence

Returns

1odel

Quantitat

Wage Returns

Dependent: ln(hourly wage)	(1)	(2)	(3)	(4)
Mix (analytical + computer + social)	0.017***	0.015***	0.014***	0.005
	[0.005]	[0.005]	[0.005]	[0.009]
Mix (afqt + computer + social)		0.065***		0.030**
		[0.017]		[0.013]
Ethnicity*Gender, Age/Year, Region, Edu FE	X	X	X	X
Occupation FE	X	X	X	X
Worker FE			X	X
Observations	88,391	79,343	88,391	31,029
R-squared	0.416	0.430	0.756	0.704

Table: Return to Skill Mixing: Occupations, Workers, and Collge Majors

Full table Robust - measures and index

Intro

Fyidence

Returns

Model

Quantitativ

Model

Quantitativ

Conclusion

A Directed Search Model with Occupation Design

Environment

- Multi-dimensional Skill Set-up
 - Discrete time, 1-1 matching, $K \ge 2$ skills
 - A unit of heterogeneous workers $\mathbf{x} = \{x^1, ..., x^k, ..., x^K\} \in S \subset \mathbb{R}^{K+1}$
 - A mass of risk-neutral firms $\mathbf{v} = \{y^1, ..., y^k, ..., y^K\} \in S \subset \mathbb{R}^{K+}$
 - CES Matching production Lindenlaub (2017); Lise & Postel-Vinay (2020)

$$f(\mathbf{x}, \mathbf{y}) = \left[\sum_{k=1}^{K} (x^k y^k)^{\sigma} \right]^{\frac{1}{\sigma}}$$

- Endogeneous Occupation Design
 - Both vacant & incumbent firms optimally choose y before producing
 - o Pay $C(\mathbf{y}) = \tau[\sum_{k=1}^K (y^k)^{
 ho}]$ rep. cost of operating an occ for given \mathbf{y}
- Labor Market
 - Continuum submarkets by (x, y) and surplus share ω , tightness $\theta(x, y, \omega)$
 - \circ δ separatn, matching $M(s,v)=\mu s^{\eta}v^{1-\eta}$, markov evolvement $\pi(x_j'|x_j,y_j)$

Intro

Evidence

Returns

Model

Quantitative

Model Equilibrium

Worker's Problem

$$U(\mathbf{x}) = b + \beta E \left\{ \max_{\mathbf{y}',\omega'} p(\theta(\mathbf{x}',\mathbf{y}',\omega')) W(\mathbf{x}',\mathbf{y}',\omega') + \left[(1 - p(\theta(\mathbf{x}',\mathbf{y}',\omega'))) \right] U(\mathbf{x}') \right\}$$

 $W(\mathbf{x}, \mathbf{y}, \omega) = \omega(f(\mathbf{x}, \mathbf{y}) - C(\mathbf{y})) + \beta(1 - \delta)E\left\{\max_{\tilde{\mathbf{y}}', \tilde{\upsilon}'} p(\theta(\mathbf{x}', \tilde{\mathbf{y}}', \tilde{\omega}'))W(\mathbf{x}', \tilde{\mathbf{y}}', \tilde{\omega}')\right\}$

 $+ [(1 - p(\theta(\mathbf{x}', \tilde{\mathbf{y}}', \tilde{\omega}'))]W(\mathbf{x}', \mathbf{y}', \omega) \} + \delta U(\mathbf{x}')$

Firm's Problem

$$J(\mathbf{x}, \mathbf{y}, \omega) = \max_{\mathbf{y}} (1 - \omega) (f(\mathbf{x}, \mathbf{y}) - C(\mathbf{y})) + \beta (1 - \delta) E \left\{ (1 - p(\theta(\mathbf{x}', \tilde{\mathbf{y}}', \tilde{\omega}')) J(\mathbf{x}', \mathbf{y}', \omega) \right\}$$

By free-entry: $c = \beta E \{ q(\theta(\mathbf{x}, \mathbf{y}, \omega)) J(\mathbf{x}, \mathbf{y}, \omega) \}$

- **Equilibrium Properties**
 - Block-recursive Menzio & Shi (2010,2011) due to directed search + submarkets
 - Δ skill mixing, wage, employment: complementarity, cost, skill supply

Model

Intr

Evidence

Return

Model

Quantitative

Conclusion

Quantitative Analysis

Measurement and Calibration

Simulated Methods of Moments

NLSY 79 & 97 + O*NET, 2 periods: 2005–2006 and 2016–2019

Occ: high-skill (high-wage & white-collar), low-skill (blue-collar & service)

• Worker: low-type (avg. of below median x_j), high-type ($\alpha_j x_j^{low}$)

	First Period		Secon	d Period
	Data	Model	Data	Model
Worker moments				
Relative wage of high type				
Analytical/computer	1.30	1.29	0.95	1.02
Interpersonal	1.00	1.00	1.25	1.28
Routine	1.52	1.53	1.54	1.40
Unemployment rate	0.05	0.06	0.04	0.04
Occupation moments				
Relative wage of high skill	1.30	1.30	1.56	1.41
Employ. share (low skill)	0.43	0.42	0.37	0.32
Employ. share (high skill)	0.57	0.58	0.63	0.68
100 × Skill mixing (low skill)	97.54	96.83	98.96	99.10
100 × Skill mixing (high skill)	95.74	96.84	94.12	95.11

Intro

Evidence

eturns

1odel

Quantitative

Parameter	Description	Va	lue
	A. Externally Calibrated		
β	Discount Rate	0.	99
δ	Job separation rate	0	.1
ω	Worker share of surplus	0	.6
b	Unemployment benefit	0.	25
η	Elasticity of the matching function	0.5	
μ	Matching efficiency	0.	65
	B. Internally Estimated	Period 1	Period 2
σ	Elasticity parameter of skills in production	0.5	0.3
au	Scaler of occupation operation cost	1.4	1.9
ϕ	Rate of increasing marginal cost	1.2	1.7
α_a	Efficiency differential of analytical/computer skill	1.2	1.6
α_p	Efficiency differential of interpersonal skill	1.0	1.5
α_r	Efficiency differential of routine skill	1.2	1.1
С	Vacancy posting cost as a share of output	0.1	0.4

Counterfactual Analysis

Notes: Panel 1 plots the model generated changes in skill mixing in low-skill occupations and Panel 2 changes in relative wage of high-skill occupation.

Different model channels are shut down individually by eliminating the changes in calibrated values.

Additional counterfactual

ntro

Fyidence

Returns

Model

Quantitative

Counterfactual Analysis back

Notes: These figures plot the model generated changes in skill mixing in high-skill occupations (panel 1) and changes in employment share of high-skill occupation (panel 2). Panel (3) and (4) depict the model generated changes in skill mixing in low-skill occupation and the relative wage of high-skill occupations by shutting down the skill efficiency differential for analytical/computer, interpersonal, and routine skills individually; also by shutting down τ and ϕ individually.

Intro

Evidence

Return

Mode

Quantitative

Conclusion

Intro

Skills are inevitably embedded in workers → demand of skill mixtures

• New facts about skill mixing, important for distributions & workers

4odol

• New framework of directed search & occ. design, complementarity matters

{uantitativ

In a world with inevitable technological advancements and an increasing trend of skill mixing, educators and policymakers ought to provide more "mixed" skills to workers to take advantage of the complementarity side of technological change.

Conclusion

Thank you!

Elmer Zongyang Li

elmerli.net | zl685@cornell.edu

Appendix

First Look: Skill Mixing at 7-digit Occupatoins (back)

Figure: Density for Skill Mixing Indexes (Weighted Cosine Distances), 2005 vs. 2018

Alternative Depiction of Skill Mixing back

Figure: Non-parametric Depiction of Skill Intensities, 2005 vs. 2018

Time Pattern back

Figure: Trend of Skill Mixing with Alternative Skill Measures

Time Pattern back

Figure: Trend of Skill Mixing with Alternative Indexes

Time Pattern back

Figure: Mixing Index Change by Industry and Occupation Groups, 2005-2018

Decomposition: Intensive vs. Extensive back

	Skill Groups	6-dig	6-digit Occupations			4-digit Occupations		
	Skiii Groups	total	within	across	total	within	across	
	analytical + computer	10.52	6.40	4.12	10.49	6.60	3.89	
	analytical + interpersonal	5.36	2.90	2.46	8.17	4.08	4.09	
Full O*NET	computer + routine	4.38	2.41	1.97	5.16	2.94	2.22	
Full O'NET	computer + interpersonal	7.23	3.60	3.63	11.81	7.51	4.30	
	routine + analytical	4.00	2.29	1.71	4.23	3.16	1.07	
	routine + interpersonal	1.93	0.12	1.81	2.35	1.08	1.26	
	analytical + computer	5.59	6.03	-0.44	6.42	5.89	0.53	
	analytical + interpersonal	3.53	4.58	-1.05	4.00	3.00	1.00	
Constant Updates	computer + routine	2.88	3.69	-0.81	0.52	1.93	-1.42	
Constant Opulies	computer + interpersonal	0.78	1.86	-1.09	6.86	5.93	0.93	
	routine + analytical	2.04	2.13	-0.09	1.48	3.60	-2.12	
	routine + interpersonal	0.81	0.82	-0.01	-0.33	1.47	-1.80	
Lightcast	analytical + computer				12.64	11.74	0.90	
	analytical + interpersonal				2.51	2.20	0.31	
	computer + interpersonal				-4.18	-3.79	-0.39	

Table: Decomposition of Mixing Indexes' Changes by Skill Pairs

Decomposition: Intensive vs. Extensive back

Figure: Mixing Index Change by Industry and Occupation Groups, 2005-2018

Appendix

Decomposition: Intensive vs. Extensive back

Figure: Mixing Index Change by Industry and Occupation Groups, 2005-2018

O*NET Measure	NLSY Measure	γ ^{learn} γschool	γ_j^{up}	γ_j^{down}
analytical	AFQT score	0.33	0.36	0.10
interpersonal	Deming (2017) social skill	0.33	0.05	0.00003
routine	ASVAB	0.33	1	0.36
computer	OCC/Major's 2005 Value	0.33	0.36	0.10

Table: Skill Measures in NLSY and Annual Skill Learning and Depreciation Rate

Notes: This table illustrates for each O*NET skill measure, its corresponding skill measure using NLSY79&97 data, and the learning and depreciation rate for these different skills. The AFQT is the same as the one used by Altonji, Bharadwaj, and Lange (2012) followed by Deming (2017), which controls for age-at-test, test format, and other idiosyncrasies. Deming (2017)'s social skill measure consists of sociability in childhood and sociability in adulthood in NLSY79, and two questions from the Big 5 inventory gauging the extraversion in NLSY97. The average of workers' ASVAB mechanical orientation and electronics test scores are used for mechanical skill. Since ASVAB scores are not available for the NLSY97 survey, they are imputed based on predictive regression using the NLSY79 survey. Workers' occupations' or college majors' O*NET computer skill scores in the year 2000 are used as their endowed computer skill. The skill accumulation/depreciation rate is directly from Lise and Postel-Vinay (2020)'s estimates based on monthly data converted to annual values. Skill learning/depreciating while attending college is specified to be 33% per year.

Top College Majors in Skill Mixing back

Health Professions

Hybrid Index - Level	Hybrid Index - Change			
analytical + compu	ter + interpersonal			
Physical Sciences	Architecture and Environmental Design			
Engineering	Computer and Information Sciences			
Letters	Communications			
analytical +	computer			
Physical Sciences	Interdisciplinary Studies			
Engineering	Area Studies			
Letters	Computer and Information Sciences			
analytical + interpersonal				
Public Affairs and Services	Architecture and Environmental Design			
Business and Management	Computer and Information Sciences			
Social Sciences	Communications			
computer + i	nterpersonal			
Social Sciences	Architecture and Environmental Design			
None, General Studies	Computer and Information Sciences			
Public Affairs and Services	Engineering			
routine +	computer			
Transportation	Social Sciences			
Fine and Applied Arts	Agriculture and Natural Resources			
Engineering	Foreign Languages			
routine +	analytical			
Transportation	Agriculture and Natural Resources			
Health Professions Social Sciences				
Computer and Information Sciences	Foreign Languages			
routine + in	terpersonal			
Transportation	Agriculture and Natural Resources			

Architecture and Environmental Design

Return to Skill Mixing Full Table with Individual Skills (back)

Dependent: ln(hourly wage)	(1)	(2)	(3)	(4)
Occupation Skills				
Analytical	-0.019**	-0.019**	-0.012	-0.033***
•	[0.009]	[0.009]	[0.008]	[0.011]
Computer	-0.002	-0.008	-0.003	-0.017
	[0.010]	[0.011]	[0.009]	[0.013]
Interpersonal	-0.019**	-0.022**	-0.021***	-0.027**
	[0.009]	[0.009]	[0.008]	[0.011]
Routine	0.027***	0.035***	0.025***	0.047***
	[0.010]	[0.011]	[0.009]	[0.015]
Mix (analytical + computer)	0.007	0.011**	0.013***	0.012
	[0.005]	[0.005]	[0.005]	[0.008]
Mix (analytical + interpersonal)	0.016***	0.016***	0.015***	0.028***
36 ([0.005]	[0.005]	[0.004]	[0.007]
Mix (computer + routine)	-0.022**	-0.029***	-0.021***	-0.026**
Min (annual and internal and	[0.009]	[0.009] -0.012**	[0.008]	[0.012]
Mix (computer + interpersonal)	-0.008	[0.006]	-0.014*** [0.005]	-0.012 [0.009]
Min (modile a constant of)	-0.050***	-0.056***	-0.050***	-0.058***
Mix (routine + analytical)	[0.008]	[0.009]	[0.008]	[0.012]
Min (modile on internet)	0.023***	0.029***	0.019**	0.023*
Mix (routine + interpersonal)	[0.008]	[0.009]	[0.008]	[0.012]
Norker Skills	[0.000]	[0.007]	[0.000]	[0.012]
		0.065***		-0.038
Afqt (analytical)		[0.012]		[0.023]
Computer		0.045***		0.017
Computer		[0.006]		[0.023]
Social (interpersonal)		0.015***		-0.003
oodii (interpersonii)		[0.005]		[0.029]
ASVAB (routine)		-0.008		-0.012
		[0.016]		[0.022]
Mix (afqt + computer)		0.044*		0.017
• • •		[0.023]		[0.013]
Mix (afqt + social)		0.028*		-0.075***
• •		[0.015]		[0.020]
Mix (computer + asvab mech)		0.013		-0.070***
-		[0.025]		[0.026]
Mix (computer + social)		0.008		0.061***
		[0.013]		[0.019]
Mix (asvab mech + afqt)		0.001		0.096**
		[0.009]		[0.039]
Mix (asvab mech + social)		-0.040***		-0.045
		[0.011]		[0.042]
Ethnicity*Gender, Age/Year, Region, Edu FE	X	X	X	X
Occupation FE	X	X	X	X
Worker FE			X	X
Observations	87,655	78,719	87,655	50,580

Robustness Checks of Return to Skill Mixing (back)

Dependent: ln(hourly wage)	(1)	(2)	(3)	(4)
Occupation Skills				
Analytical	-0.014*	-0.008	-0.009	-0.013
,	[0.008]	[0.033]	[0.008]	[0.008]
Computer	-0.002	0.069**	0.002	-0.038***
•	[0.009]	[0.027]	[0.009]	[0.010]
Interpersonal	-0.019**	-0.118***	-0.018**	-0.014*
•	[0.008]	[0.030]	[0.008]	[0.008]
Routine	0.026***	0.091***	0.005	0.010
	[0.009]	[0.017]	[0.008]	[0.008]
Mix (analytical + computer)	0.007	-0.040	0.008*	0.020***
	[0.005]	[0.036]	[0.005]	[0.007]
Mix (analytical + interpersonal)	0.010**	0.156***	0.006	0.025***
•	[0.004]	[0.042]	[0.004]	[0.005]
Mix (computer + routine)	-0.028***	-0.045***	-0.021**	-0.087***
,	[0.007]	[0.015]	[0.008]	[0.013]
Mix (computer + interpersonal)	-0.011**	-0.019	-0.013***	-0.021***
. 1	[0.005]	[0.033]	[0.005]	[0.008]
Mix (routine + analytical)	-0.033***	-0.080***	-0.041***	-0.041**
•	[0.007]	[0.015]	[0.008]	[0.018]
Mix (routine + interpersonal)	0.010	0.033**	0.033***	0.026**
•	[0.007]	[0.016]	[0.006]	[0.012]
Ethnicity × Gender, Age, Region, Edu FE	X	X	X	X
Occupation FE	X	X	X	X
Worker FE	X	X	X	X
Observations	87,655	87,655	87,655	87,655
R-squared	0.757	0.757	0.757	0.758