UMB CS 420 Mapping Reducibility

Wednesday, April 19, 2023

Announcements

- HW 9 still out
 - Due Sun 4/23 11:59pm EST

Quiz Preview

• Mapping reducibility is a relation between two ...?

No algorithm can compute **anything** about the language of a Turing Machine, Last time: Undecidable ... i.e., about the runtime behavior of programs ...

- $REGULAR_{TM} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a regular language} \}$
- $CONTEXTFREE_{TM} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a CFL} \}$
- $DECIDABLE_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a decidable language} \}$
- $FINITE_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a finite language} \}$

Rice's Theorem

• $ANYTHING_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and "... anything ..." about } L(M) \}$

known

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$ unknown

Thm: $HALT_{TM}$ is undecidable

<u>Proof</u>, by **contradiction**:

• Assume: $HALT_{TM}$ has decider R; use it to create A_{TM} decider:

Essentially, we convert decidability of an A_{TM} string ...

S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:

1. Run TM R on input $\langle M, w \rangle$. Use R to first check if M will loop on w

2. If R rejects, reject.

Then run *M* on *w* knowing it won't loop

... into decidability of a *HALT*_{TM} string

- 3. If B accepts, simulate M on w until it halts.
- 4. If M has accepted, accept; if M has rejected, reject."

A potential problem: could the

Contradicti conversion itself go into an infinite loop? no decider!

Let's formalize this conversion, i.e., mapping reducibilty

Flashback: A_{NFA} is a decidable language

 $A_{\mathsf{NFA}} = \{ \langle B, w \rangle | \ B \text{ is an NFA that accepts input string } w \}$

Decider for A_{NFA} :

N = "On input $\langle B, w \rangle$, where B is an NFA and w is a string:

- 1. Convert NFA B to an equivalent DFA C, using the procedure NFA \rightarrow DFA
- **2.** Run TM M on input $\langle C, w \rangle$.
- 3. If M accepts, accept; otherwise, reject."

We said this NFA→DFA algorithm is a decider TM, but it doesn't accept/reject?

More generally, our analogy has been: "programs ~ TMs", but programs do more than accept/reject?

Definition: Computable Functions

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

- A computable function is represented with a TM that, instead of accept/reject, "outputs" its final tape contents
- Example 1: All arithmetic operations
- Example 2: Converting between machines, like DFA→NFA
 - E.g., adding states, changing transitions, wrapping TM in TM, etc.

Definition: Mapping Reducibility

notation

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

 $w \in A$ "if and only if" $f(w) \in B$

The function f is called the **reduction** from A to B.

"forward" direction (\Rightarrow): if $w \in A$ then $f(w) \in B$ f"reverse" direction (\Leftarrow): if $f(w) \in B$ then $w \in A$

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

Flashback: Equivalence of Contrapositive

"If X then Y" is equivalent to ...?

1. "If *Y* then *X*" (converse)

2. "If not X then not Y" (inverse)

3. "If **not** *Y* then **not** *X*" (contrapositive)

Flashback: Equivalence of Contrapositive

"If X then Y" is equivalent to ...?

- \times "If Y then X" (converse)
 - No!
- × "If **not** X then **not** Y" (inverse)
 - No!
- ✓ "If not Y then not X" (contrapositive)
 - Yes!

Definition: Mapping Reducibility

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \Longleftrightarrow f(w) \in B$$
. "if and only if"

The function f is called the **reduction** from A to B.

Reverse direction just as important: don't convert non-As into Bs

"reverse" direction (\Leftarrow): if $f(w) \in B$ then $w \in A$

Equivalent (contrapositive): if $w \notin A$ then $f(w) \notin B$

Easier to prove

Proving Mapping Reducibility: 2 Steps

Step 1:

Show there is computable

Language A is mapping reducible to language B, written $A \leq_{\mathrm{m}} B$, fn f ... by creating a TM if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
. "if and only if"

Step 2: Prove the iff is true for that computable fn TM

The function f is called the **reduction** from A to B.

Step 2a: "forward" direction (\Rightarrow): if $w \in A$ then $f(w) \in B$ e.g. $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \} \bullet$ $\vdash HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$ Step 2b: "reverse" direction (\Leftarrow): if $f(w) \in B$ then $w \in A$

Step 2b, alternate (contrapositive): if $w \notin A$ then $f(w) \notin B$

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

$\underline{\text{Thm}}$: A_{TM} is mapping reducible to $\underline{HALT}_{\mathsf{TM}}$

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$

To show: $A_{\mathsf{TM}} \leq_{\mathsf{m}} \mathit{HALT}_{\mathsf{TM}}$

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ halts on input } w \}$

Step 1: create computable fn $f: \langle M, w \rangle \rightarrow \langle M', w \rangle$ where:

Step 2: show $\langle M, w \rangle \in A_{\mathsf{TM}}$ if and only if $\langle M', w \rangle \in HALT_{\mathsf{TM}}$

The following machine F computes a reduction f.

F = "On input $\langle M, w \rangle$:

- 1. Construct the following machine M' M' = "On input x:
 - **1.** Run *M* on *x*.
 - 2. If M accepts, accept.
 - **3.** If *M* rejects, enter a loop."
- 2. Output $\langle M', w \rangle$."

Output new M'

M' is like M, except it always loops when it doesn't accept

Converts M to M'

<u>Step 2</u>:

M accepts *w* if and only if *M'* halts on *w*

Language A is *mapping reducible* to language B, written $A \leq_{\mathrm{m}} B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

- \Rightarrow If *M* accepts *w*, then *M'* halts on *w*
 - M' accepts (and thus halts) if M accepts
- \Leftarrow If M' halts on w, then M accepts w

The following machine F computes a reduction f.

F = "On input $\langle M, w \rangle$:

1. Construct the following machine M'.

$$M'$$
 = "On input x :

If *M* accepts this string

- $\begin{array}{ccc} M & = & \text{On input } x. \\ \mathbf{1.} & \text{Run } M \text{ on } x. \end{array}$
 - 2. If M accepts, accept.
- Then *M'* accepts it (and halts)
- **3.** If *M* rejects, enter a loop."
- **2.** Output $\langle M', w \rangle$."

Step 2:

M accepts *w* if and only if *M'* halts on *w*

- V
- \Rightarrow If M accepts w, then M' halts on w
 - M' accepts (and thus halts) if M accepts
- \Leftarrow If M' halts on w, then M accepts w
- V
- \leftarrow (Alternatively) If *M* doesn't accept *w*, then *M'* doesn't halt on *w* (contrapositive)
 - Two possibilities for "doesn't accept":
 - 1. M loops: M' loops and doesn't halt
 - 2. M rejects: M' loops and doesn't halt

The following machine F computes a reduction f.

F = "On input $\langle M, w \rangle$:

On input (M, w):

1. Construct the following machine M'.

M' = "On input x:

If *M* loops, then *M'* loops

- $\begin{array}{c} M = & \text{On input } x. \\ \textbf{1.} & \text{Run } M \text{ on } x. \end{array}$
 - 2. If M accepts, accept.
 - **3.** If M rejects, enter a loop." \leftarrow

If *M* rejects, then *M'* loops

M accepts w if and only if

<u>Step 2</u>:

M' halts on w

2. Output $\langle M', w \rangle$."

Now we know what mapping reducibility is, and how to prove it for two languages; but what is it used for?

Uses of Mapping Reducibility

To prove Decidability

To prove Undecidability

Thm: If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

Has a decider

Must create decider

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

N = "On input w:

1. Compute f(w).

decides 2. Run M on input f(w) and output whatever M outputs."

We know this is true bc of the iff (specifically the reverse direction)

Why is it true that:

If M accepts f(w) then N should accept w?? i.e., f(w) in B guarantees that w in A???

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

Corollary: If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

• <u>Proof</u> by **contradiction**.

• Assume B is decidable.

• Then A is decidable (by the previous thm).

• Contradiction: we already said A is undecidable

If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

Summary: Showing Mapping Reducibility

Language A is mapping reducible to language B, written $A \leq_{\mathrm{m}} B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
. "if and only if"

Step 1:

Show there is computable fn f ... by creating a TM

Step 2:

Prove the iff is true

The function f is called the **reduction** from A to B.

Step 2a: "forward" direction (\Rightarrow): if $w \in A$ then $f(w) \in B$

Step 2b: "reverse" direction (\Leftarrow): if $f(w) \in B$ then $w \in A$

Step 2b, alternate (contrapositive): if $w \notin A$ then $f(w) \notin B$

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

Summary: Using Mapping Reducibility

To prove decidability ...

• If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

• If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

Be careful with the <u>direction</u> of the **reduction**, i.e., what is known and what is unknown!

Alternate Proof: The Halting Problem

*HALT*_{TM} is undecidable

• If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

Must be known $A_{\mathsf{TM}} \leq_{\mathrm{m}} HALT_{\mathsf{TM}}$

Undecidability Proof Technique #4: **Mapping Reducibility** + this theorem

- Since A_{TM} is undecidable,
- ... and we showed mapping reducibility from A_{TM} to $HALT_{TM}$,
- then *HALT*_{TM} is undecidable _

Flashback:

EQ_{TM} is undecidable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

Proof by **contradiction**:

• Assume EQ_{TM} has decider R; use it to create E_{TM} decider:

 $=\{\langle M \rangle | \ M \text{ is a TM and } L(M)=\emptyset \}$

S = "On input $\langle M \rangle$, where M is a TM:

- 1. Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
- 2. If R accepts, accept; if R rejects, reject."

Alternate Proof: EQ_{TM} is undecidable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

Show mapping reducibility: $E_{\mathsf{TM}} \leq_{\mathsf{m}} EQ_{\mathsf{TM}}$

Step 1: create computable fn $f: \langle M \rangle \rightarrow \langle M_1, M_2 \rangle$, computed by S

```
S = "On input \langle M \rangle, where M is a TM:
```

- 1. Construct: $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
- **2.** Output: $\langle M, M_1 \rangle$

Step 2: show iff requirements of mapping reducibility (hw exercise)

And use theorem ...

Undecidability Proof Technique #4: **Mapping Reducibility** + theorem

If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

Flashback: E_{TM} is undecidable

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

<u>Proof</u>, by **contradiction**:

• Assume E_{TM} has decider R; use it to create A_{TM} decider:

S= "On input $\langle M,w \rangle$, an encoding of a TM M and a string w:

- 1. Use the description of M and w to construct the TM M_1
- 2. Run R on input $\langle M_1 \rangle$.

 1. If $x \neq w$, reject.
 2. If x = w, run M on input w and accept if M does."
- 3. If R accepts, reject; if R rejects, accept."
- So this only reduces A_{TM} to $\overline{E_{\mathsf{TM}}}$

If M accepts w, then M_1 accepts w, meaning M_1 is <u>not</u> in E_{TM} !

Alternate Proof: E_{TM} is undecidable

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

If *M* accepts *w*,

Show mapping reducibility??: $A_{TM} \leq_m E_{TM}$

Step 1: create computable fn $f: \langle M, w \rangle \rightarrow \langle M' \rangle$, computed by S

```
S= "On input \langle M,w \rangle, an encoding of a TM M and a string w:
```

- 1. Use the description of M and w to construct the TM M_1
- 2. Output: $\langle M_1 \rangle$. $M_1 = \text{``On input } x$:

 1. If $x \neq w$, reject.

 2. If x = w, run M on input w and accept if M does."
- 3. If R accepts, reject; if R rejects, accept."

• So this only reduces A_{TM} to $\overline{E_{\mathsf{TM}}}$ then M_1 accepts w, meaning M_1 is not in E_{TM} !

- It's good enough! Still proves E_{TM} is undecidable
 - If ... undecidable langs are <u>closed</u> under **complement**

Step 2: show iff requirements of mapping reducibility (hw exercise)

Language Complement

Complement (OPPO from hw3) of a language A, written \overline{A} ...

... is the set of all strings not in set A

```
Example:
```

$$E_{\mathsf{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$$

$$E_{\mathsf{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \neq \emptyset \}$$

$$\bigcup \{ w \mid w \text{ is a string that is not a TM description } \}$$

Undecidable Langs Closed under Complement

Proof by contradiction

- Assume some lang L is undecidable and \overline{L} is decidable ...
 - Then \overline{L} has a decider

• ... then we can create decider for L from decider for \overline{L} ...

• Because decidable languages are closed under complement (hw10?)!

Contradiction!

Next Time: Turing Unrecognizable?

Check-in Quiz 4/19

On gradescope