Ensemble Methods, Random Forests and Boosting

Data Science Dojo

Agenda

- Overview and rationale
- Why ensemble?
 - Binomial Distribution
- Ensemble models
 - Bagging
 - Random Forests
 - Boosting
 - AdaBoost

Ensemble Methods

- Improve model performance by combining multiple models
- Can be used for both classification and regression

Ensemble of Decision Tree Models

Ensemble of Decision Tree Models

BINOMIAL DISTRIBUTION

Binomial Distribution

Consider...

- Flipping a coin 3 times in a row
- Each coin flip is considered independent
- A fair coin has a 50% rate of heads and tails

Properties of a binomial distribution:

- Well studied statistical property
- You cannot tell how each individual coin toss session will behave or their individual outcomes (such as HHH or HTH)
- However you can tell and predict the behavior of the aggregations of many coin toss sessions

Binomial Distribution

$$f(k; n, p) = P(X = k) = {n \choose k} p^k (1-p)^{n-k}$$

Exercises

Supplementary Material

Applications

- Number of life insurance holders who will claim in a given period
- Number of loan holders who will default in a certain period
- Number of false starts of a car in n attempts
- Number of faulty items in n samples from a production line
- AND Ensemble Methods

Why Does It Work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, $\varepsilon = 0.35$
 - Assume classifiers are independent
 - Probability that the ensemble classifier makes a wrong prediction:

$$\sum_{i=13}^{25} {25 \choose i} \varepsilon^i (1-\varepsilon)^{25-i} = 0.06$$

Examples of Ensemble Methods

Bagging

All classifiers are created equal

Boosting

Not all classifiers are created equal

BAGGING

Bagging

Bagged Decision Forest

data science for everyone

Bagging

Sampling with replacement

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

- Build classifier on each bootstrap sample
- For a training data of size n, each sample has probability $[1 (1 1/n)^n]$ of being selected
- If n is large, this approximates to 1-1/e ~ 0.632

Bagging

- Reduces variance in estimate
- Prevents overfitting
- Robust to outliers

RANDOM FORESTS

What Is A Random Forest?

- An ensemble classifier using many decision tree models
- Can be used for classification or regression
- Accuracy and variable importance information is built-in

How Do Random Forests Work?

- A different subset of the training data are selected (~2/3), with replacement, to train each tree
- Remaining training data (aka out-of-bag data or simply OOB) is used to estimate error and variable importance
- Class assignment is made by the number of votes from all of the trees, and for regression, the average of the results is used

Which Features Are Used For Learning?

- A randomly selected subset of variables is used to split each node
- The number of variables used is decided by the user (mtry parameter in R)
- A smaller subset produces less correlation (lower error rate)

Rules of Thumb

Given:

- N: Total number of training data points
- M: Number of features in training data
- m: Number of features randomly selected for training each node
- Sample the data with replacement N times for building the training data for each tree.
- m<<M</p>
- Classification: m = sqrt(M)
- Regression: m = M/3

Learning a Forest

- Dividing training examples into T subsets improves generalization
 - Reduces memory requirements & training time
- Train each decision tree t on subset I_t
 - Same decision tree learning as before
- Multi-core friendly (GPU implementation)

Implementation Details

- How many features and thresholds to try?
 - Just one = "extremely randomized" [Geurts *et al.* 06]
 - Few → fast training, may under-fit, may be too deep
 - Many → slower training, may over-fit
- When to stop growing the tree?
 - Maximum depth
 - Minimum entropy gain
 - Delta class distribution
 - Pruning

Random Forest: R Exercise

BOOSTING

Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, all N records are assigned equal weights
 - Unlike bagging, weights may change at the end of boosting round

Boosting

- Records that are wrongly classified will have their weights increased
- Records that are classified correctly will have their weights decreased

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4

- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds

Boosting Intuition

- We adaptively weight each data case.
- Data cases which are wrongly classified get high weight (the algorithm will focus on them).
- Each boosting round learns a new (simple) classifier on the weighed dataset.
- These classifiers are weighed to combine them into a single powerful classifier.
- Classifiers that obtain low training error rate have high weight.
- We stop by monitoring a hold out set.

Boosting in a Picture

ADABOOST

AdaBoost (Adaptive Boosting)

- Base classifiers: C₁, C₂, ..., C_T
- Error rate [Weighted loss function]:

$$\varepsilon_i = \frac{1}{N} \sum_{j=1}^{N} w_j \delta(C_i(x_j) \neq y_j)$$

Importance of a classifier:

$$\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

What's interesting about this curve?

AdaBoost

Weight update:

$$w_i^{(j+1)} = \frac{w_i^{(j)}}{Z_j} \begin{cases} \exp^{-\alpha_j} & \text{if } C_j(x_i) = y_i \\ \exp^{\alpha_j} & \text{if } C_j(x_i) \neq y_i \end{cases}$$
 Ensure weights add up to 1.0 where Z_j is the normalization factor

If any intermediate rounds produce error rate higher than 50%, the weights are reverted back to 1/n and the resampling procedure is repeated.

• Classification:
$$C*(x) = \underset{y}{\operatorname{arg\,max}} \sum_{j=1}^{T} \alpha_{j} \delta(C_{j}(x) = y)$$

Common Misconception

A Random Forest and a Boosted Decision Tree are **not** the same

QUESTIONS

