

RONDA II - NIVEL I OLIMPIADA HONDURENA DE FÍSICA

NOMBRE COMPLETO:	
CENTRO EDUCATIVO: _	
TELÉFONO:	FECHA DE NACIMIENTO:

PROBLEMA 1: FRENADO DE GOLPE

Un bloque de masa $M=2\,\mathrm{kg}$ se encuentra sobre la paila de un carro cuyo coeficiente de fricción cinético y estático con el bloque es $\mu=0.5$.

- a) ¿Cuál es la desaceleración más grande a_{max} a la que puede frenar de modo que el bloque no se mueva?
- b) Suponga que no se cerró la puerta, y el bloque puede caer en la carretera. Si el carro acelera con $a=6\,\mathrm{m/s}$. ¿Cuál es la aceleración del bloque respecto al carro?

PROBLEMA 2: LET'S GO TOGETHER!

Un pequeño disco de masa $m=2\,\mathrm{kg}$ se desliza por una colina lisa de altura $h=5\,\mathrm{m}$ sin velocidad inicial (en reposo) y llega a un tablón de masa $M=4\,\mathrm{kg}$ que se encuentra en un plano horizontal liso en la base de la figura de la colina. Debido a la fricción entre el disco y la tabla, el disco se ralentiza y finalmente se mueve como una sola pieza con la tabla.

- a) Determine el trabajo total realizado por la fuerza de fricción en este proceso.
- b) ¿Puede afirmar que el resultado obtenido no depende de la elección del sistema de referencia?

Consejo: Utiliza las leyes de conservación (que son independientes del tiempo) para evitar álgebra engorrosa.

Fecha: 10/10/2024

PROBLEMA 3: ¡DÉJAME SALIR!.

En la disposición que se muestra en la figura, la varilla de masa $m=3\,\mathrm{kg}$ sostenida por dos paredes lisas, permanece siempre perpendicular a la superficie de la cuña de masa $M=10\,\mathrm{kg}$ con ángulo $\alpha=60^\circ$. Asuma que todas las superficies no tengan fricción.

- a) Encuentre una relación cinemática entre a_1 y a_2 .
- b) Determine la aceleración de la varilla y la de la cuña.

PROBLEMA 4: CAMBIO DE ROTACIÓN

Dos bolas puntuales de masa m_A y m_B están conectadas por una cuerda sobre una mesa horizontal libre de fricción. La bola A está sujetada por una persona, mientras que la bola B gira con velocidad angular ω . Si la bola A es liberada:

- a) ¿Cuál es la velocidad del centro de masa? ¿Cambia la velocidad angular de rotación?
- b) Si la longitud de la cuerda es L, encuentre su tensión.

Pista: Trabaje desde un marco de referencia donde el centro de masas está en reposo. Para esto, si la velocidad del centro de masa es v_{cm} , sume $-v_{cm}$ a la velocidad de cada bola.

Tiempo: 4.5 horas Cada problema vale: 10pts