Teorema de Bayes
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$= \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^c)P(A^c)}$$

Ley de Probabilidad Total

Si $P = 7B_1, B_2, ..., BNJ eg una partición$ de <math>N y $Bi \in F$, $A \in F$ entances $P(A) = \sum_{n=1}^{N} P(A | B_n) P(B_n)$

...

and the second s

and the second s

. W. W. W. W. W.

And the second

. .

. . . .

Examen:
$$\oplus$$
 = Besilbado del examen es posibile. Modico \ominus = Racienbe biene la enfermedad G = Racienbe Géa gano.

hopongamos que $P(\bigoplus)$ = 0,99

• $P(\bigoplus)$ = 0.99

• $P(E)$ = $\frac{1}{10,000}$ = $\frac{10}{10}$ (al what $P(E|\bigoplus)$ = $\frac{10}{10}$ = \frac

$$= \underbrace{P(\oplus | E) - P(E)}_{P(\oplus | E) P(E) + P(\oplus | 5) P(5)}$$

$$= \frac{(0.99) \cdot 10^{-4}}{0.99 \cdot 10^{-4} + (0.01) \cdot (1-10^{-4})}$$

$$= \frac{1}{1 + \frac{0.01}{0.99} \frac{(1 - 10^{-4})}{10^{-4}}} = 0.0098$$

Variables Aleatorias

variable alea toria si X-1(-0,a] & F the para todo a & 1R.

anberior en equivalente q pedir

X (2a3) & F para cada a & Imy X

E Etemplosi F= Z , infonces valgues función X: N-1/B es una variable aleaforiq

e lunsideremon fi definido anteriormente en el lanzamiento de dos monedas

X (w)= 2 1 si algon tiro es H
0 si ningon tiro es H

Willw)=2 1 si el primer biro es # T

Verifica que Xa gi en variable alea boria pero Kay no lo es.

Lema O : lada 5-álgebra & genera una

partición de A denutada por P,

de acuerdo a la relación de equivalencia

w. ~wz 6; pora todo A & w. & A & vzeA

Ejemplo La partición asociada a F1 es

B1=2 {H,H}, XHT, THZ, XTTZZ

Lema 1: Una variable aleatoria en (N, F, P)

Esercicio 2 les constante en cada conjunto de la partición 8 que implica genera F.

Lema?: Una varrable aleaborra X genera una 6-algebra fx de acuerdo a la regla

FX = MG
6071 X es v.a en el espacio (MG,P)

entonces $f_{X}=$ 2 th, HT, TH3, Y*TT3, Z HH, HT, TH, TT3, 43

Observacion f_{X} contiene solamente las preguntas que se pueden responder conociendo el valor de X.

Valor esperado $f_{X}=$ the discreto: X: The LEXTERNA LEXTE

Lema 3: 5; Yes una varrable aleatorra en (S, Fx, P)

Exercicio 3 entoncer existe g: IR - 1/R tal que

Stediturdo Y=9(x)

Valor equerade:
$$F = Z^{\Lambda}$$
, Λ discreto, X v.a. $(\Lambda_{i}Y, P)$

• $E[X] = \sum_{\omega \in \Lambda} X(\omega) P(\omega)$ (Valor equivado de X)

• $E[X|B] = \sum_{\omega \in B} X(\omega) P(\omega|B)$ (Valor equivado de X)

• $S: P = \{B_1, ..., B_N \}$ es una partición de X

• $E[X] = \sum_{n=1}^{\infty} E[X|B_n] P(B_n)$

• $S: P = \{B_1, ..., B_n\} P(B_n)$

• $S: P = \{B_1, ..., B_n\} P(B_n)$

• $E[X] = \sum_{n=1}^{\infty} E[X|B_n] P(B_n)$

• $E[X] = \sum_{n=1}^{\infty} E[X|B_n] P(B_n)$

 $E[X|G]: \mathcal{N} \longrightarrow IR.$ $E[X|G](\omega) = E[X|Bn] \quad para \quad \omega \in Bn$ $Lema \quad U: \quad i) \quad E[X|G] \quad eq \quad v.a. \quad en \quad (\mathcal{N}_{T}G, P)$ $\hat{oi}) \quad E[E[X|G]] = E[X]$ $\begin{cases} c \quad Ley \quad de \quad proloabilitded \quad fo \quad fal \\ (Tower \quad proper fx) \end{cases}$

Etemplo
$$F = 2^{\circ}$$
, dos lan zamientos

YM= $\frac{1}{20}$ si primer lanzamiento es H

G = F1

i) Calcula $E[XY|G]$, ii) Calcula $E[Y]$
 $\frac{\omega}{H}$
 $\frac{E[Y|G]}{HT}$
 $\frac{1}{12}$
 $\frac{1}{17}$
 $\frac{1}{17}$

V) Calcula E[X] [Calcula] $E[Y|G] = \times/Z$ E[X] = 1 $E[Y] = E[E[Y|G]] = E[X|Z] = \frac{1}{2} E[X] = \frac{1}{2}$

á.