Exercise sheet 10

supporting the lecture Mathematical Finance and Stochastic Integration

(Submission of Solutions: July 4th 2016, 12:15 p.m.; Discussion: July 7th 2016)

Exercise 37. (4 points)

- a) Let $(B_t)_{t\geq 0}$ be a Brownian motion and $f\in C^1([0,\infty),\mathbb{R})$. Use integration by parts to find a semimartingale representation X=M+A for $X=(f(t)B_t)_{t\geq 0}$.
- b) Show that the definition of the Paley-Wiener integral (compare Exercise 25) is consistent with the definition of the stochastic integral, i.e. show

$$\int_0^1 f(t) * dB_t = \int_0^1 f(t) dB_t$$

for all $f \in C^1([0,1])$ with f(1) = 0.

Exercise 38. (4 points)

Let $N = (N_t)_{t \in [0,T]}$ be a Poisson process with intensity 1 (compare Exercise 27) under the probability measure \mathbb{P} . For $\lambda > 0$ we define a probability measure \mathbb{Q} via the \mathbb{P} -density

$$\frac{d\mathbb{Q}}{d\mathbb{P}} = \exp((1 - \lambda)T + N_T \log(\lambda)).$$

Show, that the above defines a valid density process and that under \mathbb{Q} N is a Poisson process with intensity λ .

Hint: The moment generating function of a random variable $Z \sim Poisson(\lambda)$ is given by

$$\mathbb{E}[\exp(uZ)] = \exp(\lambda(e^u - 1)), \quad u \in \mathbb{R}.$$

The moment generating function characterizes a probability distribution uniquely just like the characteristic function, if the moment generating function exits for all $u \in \mathbb{R}$.

Exercise 39. (4 points)

Let \mathbb{P} and \mathbb{Q} be equivalent measures on \mathcal{F}_T with density process $L = (L_t)_{t \in [0,T]}$.

- a) Prove, that if $X = (X_t)_{t \in [0,1]}$ is a semimartingale with respect to \mathbb{P} , then X is also a semimartingale with respect to \mathbb{Q} .
- b) Prove, that the stochastic integral is invariant under equivalent measure transformations i.e. if H is in $\mathcal{L}(X)$ under \mathbb{P} (notation: $H \in \mathcal{L}_{\mathbb{P}}(X)$) it is also in $\mathcal{L}(X)$ under \mathbb{Q} (i.e $H \in \mathcal{L}_{\mathbb{Q}}(X)$) and the integrals

$$\int H d_{\mathbb{P}} X, \int H d_{\mathbb{Q}} X$$

defined under \mathbb{P} and \mathbb{Q} are \mathbb{P}/\mathbb{Q} -a.s. identical for continuous H.

Hint: Use $\int H^m d_{\mathbb{P}} M \stackrel{\mathbb{P}}{\longrightarrow} \int H d_{\mathbb{P}} M$ as $m \to \infty$ for L^2 -martingales $M, H \in \mathcal{L}(M)$ and suitable $(H^m)_{m \in \mathbb{N}}$, which was used in the proof of Theorem 6.4.

Exercise 40. (4 points)

Consider the market model $S = (S^0, S^1)^*$ given by

$$S_t^0 = \mathcal{E}(Z^0)_t, \qquad Z_t^0 = \rho t,$$

$$S_t^1 = s_0 \mathcal{E}(Z^1)_t, \qquad Z_t^1 = \mu t + \sigma B_t,$$

with $\rho, \sigma, s_0 > 0$, $\mu \in \mathbb{R}$ and $B = (B_t)_{t \geq 0}$ is a standard Brownian motion. For a self-financing strategy $\varphi = (\varphi^0, \varphi^1)$ with value process $V = V(\varphi)$ it holds V > 0. Show that with

$$\pi_t = \frac{\varphi_t^1 S_t^1}{V_t}$$

it holds

$$V_t = V_0 \mathcal{E} \left(\int (1 - \pi) dZ^0 + \int \pi dZ^1 \right)_t.$$