Topologie (Bachelor)

zur Vorlesung von Prof. Dr. Birgit Richter

17. Oktober 2024

Inhaltsverzeichnis

	Mengentheoretische Topologie 1.1 Metrische Räume	2 2
2	Algebraische Topologie 2.1	4 4

Konventionen

• TBD

Dies ist ein inoffizielles Skript zur Vorlesung Topologie bei Prof. Dr. Birgit Richter im Wintersemester 24/25. Fehler und Verbesserungsvorschläge immer gerne an rasmus.raschke@uni-hamburg.de.

1 Mengentheoretische Topologie

1.1 Metrische Räume

Definition 1.1.1. Metrischer Raum

Ein metrischer Raum ist ein Paar (X, d), bestehend aus einer Menge X und einer Abstandsfunktion

$$d: X \times X \to \mathbb{R},\tag{1.1.1}$$

genannt Metrik, die die folgenden Axiome erfüllt:

- (M1) Positivität: $\forall x, y \in X : d(x, y) > 0$
- (M2) Symmetrie: $\forall x, y \in X : d(x, y) = d(y, x)$
- (M3) Dreiecksungleichung: $\forall x, y, z \in X : d(x, z) \leq d(x, y) + d(y, z)$

Beispiele. 1. Im \mathbb{R}^n ist die **Standardmetrik** oder **euklidische Metrik** für $x, y \in \mathbb{R}$ gegeben durch

$$d_2(x,y) := \sqrt{\sum_{i=1}^n (x_i - y_i)^2}.$$
(1.1.2)

2. Auf (\mathbb{R}^n, d_n) ist eine Metrik durch

$$d_n(x,y) := \sum_{i=1}^n |x_i - y_i|$$
(1.1.3)

gegeben.

3. Die **Maximumsnorm** $(\mathbb{R}^n, d_{\infty})$ ist gegeben durch

$$d_{\infty}(x,y) = \max_{i \in \{1,\dots,n\}} |x_i - y_i|. \tag{1.1.4}$$

4. Eine weitere Metrik auf \mathbb{R}^n ist gegeben durch

$$d_{\sqrt{.}}(x,y) = \sqrt{d_2(x,y)}. (1.1.5)$$

Diese Metrik kommt nicht von einer Norm.

5. Die diskrete Metrik auf einer beliebigen Menge X ist gegeben durch

$$d(x,y) := \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$$
 (1.1.6)

6. Auf $X = \mathcal{C}([0,1],\mathbb{R})$ ist für $f,g \in X$ durch das Integral eine Metrik

$$d(f,g) := \int_0^1 |f(x) - g(x)| dx \tag{1.1.7}$$

definiert.

Bemerkungen. 1. Wenn (X, d) ein metrischer Raum ist, so ist $Y \subseteq X$ als $(Y, d|_{Y \times Y})$ auch ein metrischer Raum.

- 2. Wenn (X_1, d_1) und (X_2, d_2) metrische Räume sind, so ist $(X_1 \times X_2, d_1 \times d_2)$ wieder ein metrischer Raum.
- 3. Vorsicht: Für eine Familie $(X_i, d_i)_{i \in I}$ ist der Sachverhalt komplizierter.

Definition 1.1.2. ϵ -Ball

Sei (X,d) ein metrischer Raum, $x \in X$ und $\epsilon > 0$. Dann ist der ϵ -Ball mit x im Zentrum definiert als

$$B_{\epsilon}(x) := \{ y \in X \mid d(x, y) < \epsilon \}. \tag{1.1.8}$$

Definition 1.1.3. Umgebung

Sei (X, d) ein metrischer Raum. Eine Menge $U \subseteq X$ heißt **Umgebung** von $x \in X$, falls ein $\epsilon > 0$ mit $B_{\epsilon}(x) \subseteq U$ existiert.

Definition 1.1.4. Offen und Abgeschlossen

Sei (X, d) ein metrischer Raum. Eine Teilmenge $O \subseteq X$ heißt **offen**, falls für alle $x \in O$ ein $\epsilon > 0$ existiert, sodass $B_{\epsilon}(x) \subseteq O$ gilt. O ist also eine Umgebung all seiner Elemente.

Eine Menge $A \subseteq X$ heißt **abgeschlossen**, falls $X \setminus A$ offen ist.

Bemerkungen. 1. Sei $\epsilon > 0$ und (X, d) ein metrischer Raum. Dann ist $B_{\epsilon}(x) \subseteq X$ offen und eine Umgebung von x.

2. ÜA: Sei (X, d) ein metrischer Raum und $x \in X$. Dann ist $\{x\}$ abgeschlossen.

Satz 1.1.5. Umgebungseigenschaften metrischer Räume

Sei (X, d) ein metrischer Raum. Dann gilt:

- 1. Jede Umgebung von $x \in X$ enthält x und X ist eine Umgebung von x.
- 2. Ist $U \subseteq X$ eine Umgebung von X und $U \subseteq V \subseteq X$, so ist V auch eine Umgebung von x.
- 3. Wenn U_1 und U_2 Umgebungen von x sind, so auch $U_1 \cap U_2$.
- 4. Ist $U \subseteq X$ eine Umgebung von x, so existiert eine weitere Teilmenge $V \subseteq X$, sodass U eine Umgebung von allen $y \in V$ ist.

Beweis.

- 1. Trivial.
- 2. Trivial.
- 3. Nach Voraussetzung existiert für $x \in U_1 \cap U_2$ ein $\epsilon_1 > 0$, sodass $B_{\epsilon_1}(x) \subseteq U_1$ und ein $\epsilon_2 > 0$, sodass $B_{\epsilon_2}(x) \subseteq U_2$. Definiere $\epsilon := \min(\epsilon_1, \epsilon_2)$. Dann gilt $B_{\epsilon}(X) \subseteq U_1$ und $B_{\epsilon}(x) \subseteq U_2$, also $B_{\epsilon}(x) \subseteq U_1 \cap U_2$.
- 4. Nach Voraussetzung existiert ein $\epsilon > 0$ mit $B_{\epsilon}(x) \subseteq U$. Dann ist die Behauptung durch $V := B_{\epsilon}(x)$ erfüllt.

Satz 1.1.6. Eigenschaften offener Mengen

Sei (X, d) ein metrischer Raum. Dann gilt:

- 1. \emptyset und X sind offen.
- 2. Sind $O_1, O_2 \subseteq X$ offen, so auch $O_1 \cap O_2$.
- 3. Ist $(O_i)_{i \in I}$ eine Familie offener Teilmengen $O_i \subseteq X$, so ist $\cup_i O_i$ auch offen.

Beweis.

- 1. Trivial.
- 2. Mit $min(\epsilon_1, \epsilon_2)$ analog zum obigen Beweis.
- 3. Sei $x \in \bigcup_i O_i$. Dann existiert ein $i \in I$ mit $x \in O_i$, sodass ein $\epsilon > 0$ existiert mit $B_{\epsilon}(x) \subseteq O_i \subseteq \bigcup_i O_i$.

Satz 1.1.7. Eigenschaften abgeschlossener Mengen

Sei (X, d) ein metrischer Raum. Dann gilt:

- 1. \emptyset und X sind abgeschlossen.
- 2. Wenn $A_1, A_2 \subseteq X$ abgeschlossene Teilmengen sind, so ist auch $A_1 \cup A_2$ abgeschlossen.
- 3. Seien $(A_i)_{i\in I}$ abgeschlossene Teilmengen von X. Dann ist $\cup_i A_i$ wieder abgeschlossen.

Beweis.

- 1. Da $\emptyset = X \setminus X$ und $X = X \setminus \emptyset$ gilt, sind X und \emptyset gemäß Satz 1.1.6 offen.
- 2. Sei $A_1 = X \setminus O_1$ und $A_2 = X \setminus O_2$ mit $O_1, O_2 \subseteq X$ offen. Gemäß Satz 1.1.6 (2.) folgt

$$X \setminus (A_1 \cup A_2) = (X \setminus A_1) \cap (X \setminus A_2) = O_1 \cap O_2, \tag{1.1.9}$$

wobei $O_1 \cap O_2$ wieder offen ist.

3. Wir betrachten offene Teilmengen $O_i := X \backslash A_i$. Gemäß Satz 1.1.6 ist

$$X \setminus \bigcap_{i \in I} A_i = \bigcup_{i \in I} X \setminus A_i = \bigcup_{i \in I} O_i$$
 (1.1.10)

offen.

2 Algebraische Topologie

2.1 ...