

NFA to DFA by subset construction

- Let N = { $Q_N, \sum, \delta_N, q_0, F_N$ }
- Goal: Build D={ $Q_D, \sum, \delta_D, \{q_0\}, F_D$ } s.t. L(D)=L(N)
- Construction:
 - 1. Q_D = all subsets of Q_N (i.e., power set)
 - ₂. F_D =set of subsets S of Q_N s.t. S∩ F_N ≠Φ
 - $δ_D$: for each subset S of Q_N and for each input symbol a in Σ :
 - $\bullet \quad \delta_{D}(S,a) = \bigcup_{p \text{ in } s} \delta_{N}(p,a)$

Idea: To avoid enumerating all of power set, do "lazy creation of states"

NFA to DFA construction: Example

• $L = \{ w \mid w \text{ ends in } 01 \}$

<u>NFA:</u>

δ_{N}	0	1
\rightarrow q ₀	{q ₀ ,q ₁ }	{q _o }
q_1	Ø	{q ₂ }
*q ₂	Ø	Ø

DFA:

δ_{D}	0	1
 ▶ {q₀}	$\{q_0,q_1\}$	{q ₀ }
$\{q_0,q_1\}$	{q ₀ ,q ₁ }	{q ₀ ,q ₂ }
*{q ₀ ,q ₂ }	{q ₀ ,q ₁ }	{q ₀ }

- 0. Enumerate all possible subsets
- 1. Determine transitions
- 2. Retain only those states reachable from {q₀}