Работа 1.2.4

Определение главных моментов инерции твердых тел с помощью крутильных колебаний

Балдин Виктор

23 октября 2023 г.

1 Аннотация

Цель работы: измерить периоды крутильных колебаний рамки при различных положениях закрепленного в ней тела, проверить теоретическую зависимость между периодами крутильных колебаний тела относительно различных осей, определить моменты инерции относительно нескольких осей для каждого тела, по ним найти главные моменты инерции тела и построить эллипсоид инерции.

Оборудование: установка для получения крутильных колебаний, набор исследуемых твердых тел, секундомер.

2 Теоретические сведения

Инерционные свойства твердого тела при вращении определяется пространственным распределением. Оно характеризуется тензором инерции тела. Тензор инерции твердого тела является симметричным тензором 2-ого ранга $J \in T_2^0(V)$ и имеет 6 независимых компонент, которые в прямоугольной декартовой системе координат выражаются как:

$$I_{ij} = \int (\delta_{ij}r^2 - r_ir_j) \ dm = I_{ji}, \tag{1}$$

где r — расстояния от точек до центра, относительно которого вычисляется тензор инерции, а r_i — координатные компоненты соответствующих отрезков, i и j — номера координат (от 1 до 3).

Если для какой либо системы координат все 6 компонент известны, то момент инерции тела относительно произвольной оси l, проходящей через начало координат может быть вычислен по формуле:

$$I_l = n^j n^i I_{ij} = \vec{n}^T I \vec{n} \tag{2}$$

где \vec{n} - единичный вектор-столбец который задает направление оси, I - тензор инерции. А момент импульса \vec{L} и вращательная энергия тела $E_{\rm вращ}$ тогда будут выражаться как:

$$E_{\text{вращ}} = \frac{1}{2} \vec{\omega}^T I \vec{\omega} = \frac{1}{2} \sum_{ij} \omega^i J_{ij} \omega^j$$
 (3)

$$\vec{L} = I\vec{\omega}, \quad L_i = \sum_j I_{ij}\omega^j$$
 (4)

Отложим вдоль оси l из начала координат радиус-вектор r равный по длине $1/\sqrt{I_l}$. Проведем множество таких отрезков, соответствующих различным направлениям оси l. Геометрическое место концов указанных отрезков, является поверхность второго порядка эллипсоид. Этот эллипсоид принято называть эллипсоидом инерции. Он жестко связан с телом для которого он построен. Знание эллипсоида инерции позволяет найти момент инерции тела относительно любой оси, проходящей через центр эллипсоида. Длина отрезка r будет определять момент инерции тела относительно оси l:

$$I_l = \frac{1}{r^2} \tag{5}$$

Рис. 1: Эллипсоиды вращения для разных тел

Как и всякий симметричный тензор второго ранга может быть диагонализован некоторой заменой координат. Пусть система координат, в которой он диагонализован имеет оси Ox, Oy, Oz, тогда эти оси совпадают с главными осями тела. Полученные диагональные элементы I_x, I_y, I_z называются главными моментами инерции тела, а уравнение эллипсоида инерции в этих координатах примет вид:

$$I_x r_x^2 + I_y r_y^2 + I_z r_z^2 = 1 (6)$$

Крутильные колебания рамки с телом описываются уравнением:

$$(I+I_p)\ddot{\varphi} + f\varphi = 0 \tag{7}$$

Здесь I и I_p - моменты инерции тела и рамки относительно оси вращения, φ - угол поворота рамки, меняющийся со временем t, f - модуль кручения проволоки. Отсюда период этих колебаний:

$$T = 2\pi \sqrt{\frac{I + I_p}{f}} \tag{8}$$

На рисунке показано, как проходят оси вращения в параллелепипеде. Оси AA', BB' и CC' являются главными. Моменты инерции относительно этих осей обозначим соответственно I_x, I_y, I_z .

Рис. 2: Оси вращения прямоугольного параллелепипеда

Момент инерции I_D при вращении относительно диагонали DD' выражается через главные моменты с помощью формулы:

$$I_d = I_x \frac{a^2}{d^2} + I_y \frac{b^2}{d^2} + I_z \frac{c^2}{d^2} \tag{9}$$

Используя связь момента инерции с периодом крутильных колебаний получаем соотношение между периодами колебаний относительно осей DD', EE', MM' и PP' с периодами крутильных колебаний относительно главных осей.

$$\begin{cases}
(b^2 + c^2)T_E^2 = b^2 T_y^2 + c^2 T_z^2 \\
(a^2 + c^2)T_P^2 = a^2 T_x^2 + c^2 T_z^2 \\
(a^2 + b^2)T_M^2 = a^2 T_x^2 + b^2 T_y^2
\end{cases}$$
(10)

Эти соотношения также необходимо проверить экспериментально.

3 Методика измерений

В данной работе используется установка для измерения крутильных колебаний, приведенная на рисунке 3. Рамка 1 жестко соединена с проволокой 2, закрепленной вертикально в специальных зажимах 3, позволяющих сообщить начальное закручивание для возбуждения крутильных колебаний вокруг вертикальной оси.

Рис. 3: Схема установки

4 Используемое оборудование

Установка для получения крутильных колебаний, набор исследуемых твердых тел, секундомер.

5 Результаты измерений и обработка данных

1. Измерим период сначала для ненагруженной рамки (здесь и далее период измеряем N=15 раз, погрешность секундомера считаем приблизительно равной $\sigma_t^{\rm cuct}=0.20$ с):

Таблица 1: Колебания рамки

			-						
t, c									
T, c	2.56	2.57	2.57	2.57	2.57				

Отсюда средний период

$$\overline{T}_p = \frac{1}{N} \sum_{i} T_i = 2.57 \text{ c},$$

Среднеквадратичное отклонение

$$\sigma_T^{\text{случ}} = \sqrt{\frac{\sum_i (T_i - \overline{T})^2}{N}} = 0.01 \text{ c}$$

Общая погрешность таким образом равна:

$$\sigma_T = \frac{\sigma_t^{\text{ chct}}}{N} + \sigma_T^{\text{ случ}} = 0.03 \text{ c}$$

2. Измерим размеры и массу цилиндра:

Таблица 2: Измерения размеров цилиндра

				1				1	/ 1			
$N_{ar{o}}$	1	2	3	4	5	6	7	8	9	10	Среднее	σ
h, mm	49.1	49.5	49.3	49.3	49.2	49.2	49.2	49.4	49.2	49.2	49.3	0.2
d, mm	88.3	88.1	88.1	88.1	88.1	88.1	88.1	88.1	88.1	88.0	88.1	0.2

Масса $m_{\text{цил}} = 2.264 \pm 0.001$ кг. Отсюда момент инерции

$$I_{\text{цил}} = \frac{1}{8} m d^2 = 2197 \text{ кг} \cdot \text{мм}^2,$$

$$\sigma_I = I\sqrt{\left(\frac{\sigma_m}{m}\right)^2 + 2\left(\frac{\sigma_d}{\overline{d}}\right)^2} = 8 \text{ kg} \cdot \text{mm}^2$$

3. Измерим период колебаний цилиндра

Таблица 3: Колебания цилиндра

Главная ось										
t, c	47.9	47.6	47.4	47.6						
T, c	3.19	3.17	3.15	3.16	3.17					
Боковая ось										
t, c	45.1	45.0	45.3	45.0	44.9					
T, c	3.01	3.00	3.02	3.00	2.99					

$$\overline{T}_{z}^{\text{цил}} = 3.17 \text{ c}, \ \overline{T}_{x}^{\text{цил}} = 3.00 \text{ c}$$

4. Найдем момент инерции рамки через формулу (8):

$$rac{T_p}{T_z^{ ext{ iny Iun}}} = \sqrt{rac{I_p}{I_p + I_{ ext{ iny Iun}}}},$$

$$I_p=I_{ ext{цил}}rac{T_p^2}{(T_z^{ ext{цил}})^2-T_p^2}=4213\ ext{kg}\cdot ext{mm}^2$$
 $arepsilon_{I_p}=rac{\sigma_I}{I}+4arepsilon_T=0.06$

5. Вычислим величины $1/\sqrt{T^2-T_p^2}$ для осей x и z.

$$\frac{1}{\sqrt{T_x^2 - T_p^2}} = 0.64 \text{ c}^{-2}$$

$$\frac{2}{\sqrt{T_z^2 - T_p^2}} = 0.54 \text{ c}^{-2}$$

6. Нарисуем сечения эллипсоида инерции плоскостью XOZ для цилиндра:

Рис. 4: Сечение плоскостью АА'М

7. Повторим все те же действия теперь для куба:

Таблица 4: Измерения для куба

Измерения длины												
Nº	1	2	3	4	5	6	7	8	9	10	\overline{a}	σ_a
a, MM	92.7	92.8	92.8	92.6	92.6	92.6	92.6	92.6	92.7	92.8	92.7	0.1
Ось АА′												
№	1	2	3	4	5	Среднее						
t, c	45.4	45.4	45.3	45.3	45.2	45.3						
T, c	3.03	3.03	3.02	3.02	3.01	3.02						
Ось MM'												
$N_{\overline{0}}$	1	2	3	4	5	Среднее						
t, c	45.6	45.6	45.5	45.3	45.5	45.5						
T, c	3.04	3.04	3.03	3.02	3.03	3.03						
Ось DD'												
$N_{\overline{0}}$	1	2	3	4	5	Среднее						
t, c	45.5	45.7	45.4	45.5	45.5	45.5						
<i>T</i> , c	3.03	3.05	3.03	3.03	3.03	3.03						

Вычислим моменты инерции:

$$\begin{split} I_{AA'} &= I_p \frac{T_{AA'}^2 - T_p^2}{T_p^2} = 1605 \text{ kg} \cdot \text{mm}^2, \\ I_{MM'} &= I_p \frac{T_{MM'}^2 - T_p^2}{T_p^2} = 1643 \text{ kg} \cdot \text{mm}^2, \\ I_{DD'} &= I_p \frac{T_{DD'}^2 - T_p^2}{T_p^2} = 1643 \text{ kg} \cdot \text{mm}^2. \end{split}$$

Так как они примерно одинаковые, можно рассчитать погрешность лишь для одного случая:

$$\varepsilon_I = \varepsilon_{I_p} + 4\varepsilon_T = 0.12$$