Is the generic algorithm for first-order model-checking automatic structures optimal?

Antoine Durand-Gasselin Peter Habermehl

LIAFA, Université Paris Diderot

September 21st, 2013

Contents

Automatic Structures

② Generic Automata based algorithm

Complexity Analysis

First-Order Logics

Interpreted relational structure

the domain

a set of symbols with arity

$$\mathcal{A} = (D, \mathcal{S}, (P^{\mathcal{A}})_{P \in \mathcal{S}})$$

for $P_i \in \mathcal{S}$, $P_i^{\mathcal{A}} \subseteq D^{ar_{P_i}}$

interpretation of predicates over D

First-Order Logics

Interpreted relational structure

the domain

a set of symbols with arity

$$\mathcal{A} = (D, \mathcal{S}, (P^{\mathcal{A}})_{P \in \mathcal{S}})$$

for $P_i \in \mathcal{S}$, $P_i^{\mathcal{A}} \subseteq D^{ar_{P_i}}$

interpretation of predicates over D

First-order formulas

Defined inductively:
$$\varphi ::= (x_i = x_j) \mid P(x_1, \dots, x_{ar_P}) \mid \varphi_1 \wedge \varphi_2 \mid \neg \varphi \mid \exists x \cdot \varphi$$

First-Order Logics

Interpreted relational structure

the domain

a set of symbols with arity

$$\mathcal{A} = (\boxed{D, \mathcal{S}, (P^{\mathcal{A}})_{P \in \mathcal{S}}})$$

for $P_i \in \mathcal{S}$, $P_i^{\mathcal{A}} \subseteq D^{ar_{P_i}}$

interpretation of predicates over D

First-order formulas

Defined inductively: $\varphi ::= (x_i = x_j) \mid P(x_1, \dots, x_{ar_P}) \mid \varphi_1 \wedge \varphi_2 \mid \neg \varphi \mid \exists x \cdot \varphi$

First-order model-checking problem over ${\cal A}$

Input: First-order formula over some signature ${\cal S}$

Output: Whether the formula is satisfiable in the structure

- The domain D is a regular language over alphabet Σ (accepted by A_D)
- Predicates are also regular languages... synchronously regular relations

- The domain D is a regular language over alphabet Σ (accepted by A_D)
- Predicates are also regular languages... synchronously regular relations
 - ▶ How can an automaton test whether $P(w_1, w_2, w_3)$ holds ?

- The domain D is a regular language over alphabet Σ (accepted by A_D)
- Predicates are also regular languages... synchronously regular relations
 - ▶ How can an automaton test whether $P(w_1, w_2, w_3)$ holds ?
 - ... with an automaton over alphabet Σ^3

- The domain D is a regular language over alphabet Σ (accepted by A_D)
- Predicates are also regular languages... synchronously regular relations
 - ▶ How can an automaton test whether $P(w_1, w_2, w_3)$ holds ?
 - ... with an automaton over alphabet $(\Sigma \cup \{\diamond\})^3$
 - we need an additional padding symbol if words don't have same length: $aa \otimes \varepsilon \otimes abbaab = (\diamond, \diamond, a)(\diamond, \diamond, b)(\diamond, \diamond, b)(\diamond, \diamond, a)(a, \diamond, a)(a, \diamond, b)$

- The domain D is a regular language over alphabet Σ (accepted by A_D)
- Predicates are also regular languages... synchronously regular relations
 - ▶ How can an automaton test whether $P(w_1, w_2, w_3)$ holds ?
 - ... with an automaton over alphabet $(\Sigma \cup \{\diamond\})^3$
 - we need an additional padding symbol if words don't have same length: $aa \otimes \varepsilon \otimes abbaab = (\diamond, \diamond, a)(\diamond, \diamond, b)(\diamond, \diamond, b)(\diamond, \diamond, a)(a, \diamond, a)(a, \diamond, b)$

Theorem [Hodgson, 1982, Khoussainov and Nerode, 1994]

For automatic structures, any FO relation is synchronously regular

For each formula φ , there exists an automaton (denoted A_{φ}) that accepts exactly the set of solutions of φ .

- The domain D is a regular language over alphabet Σ (accepted by A_D)
- Predicates are also regular languages... synchronously regular relations
 - ▶ How can an automaton test whether $P(w_1, w_2, w_3)$ holds ?
 - ... with an automaton over alphabet $(\Sigma \cup \{\diamond\})^3$
 - we need an additional padding symbol if words don't have same length: $aa \otimes \varepsilon \otimes abbaab = (\diamond, \diamond, a)(\diamond, \diamond, b)(\diamond, \diamond, b)(\diamond, \diamond, a)(a, \diamond, a)(a, \diamond, b)$

Theorem [Hodgson, 1982, Khoussainov and Nerode, 1994]

For automatic structures, any FO relation is synchronously regular

For each formula φ , there exists an automaton (denoted A_{φ}) that accepts exactly the set of solutions of φ .

Example: Automatic Presentation of Presburger Arithmetic

Example: $(18, 170, 188) \in L(A_+)$ encoded by (0.11, 0.00, 0.11, 1.01, 0.01, 0.00, 0.00)

Contents

Automatic Structures

2 Generic Automata based algorithm

Complexity Analysis

Construction of the automaton A_{φ}

Construction of the automaton A_{φ}

We use the correspondance between logical connectives and automata operations:

We have by definition automata for atomic formulas

Construction of the automaton A_{φ}

- We have by definition automata for atomic formulas
- Conjunction corresponds to language intersection: Solutions of $\varphi \wedge \psi$ are $L(A_{\varphi}) \cap L(A_{\psi})$

Construction of the automaton A_{arphi}

- We have by definition automata for atomic formulas
- Conjunction corresponds to language intersection: Solutions of $\varphi \wedge \psi$ are $L(A_{\varphi}) \cap L(A_{\psi})$
- Negation corresponds to language complementation: Solutions of $\neg \varphi$ are tuples of elements of the domain among $\overline{L(A_{\varphi})}$

Construction of the automaton A_{arphi}

- We have by definition automata for atomic formulas
- Conjunction corresponds to language intersection: Solutions of $\varphi \wedge \psi$ are $L(A_{\varphi}) \cap L(A_{\psi})$
- Negation corresponds to language complementation: Solutions of $\neg \varphi$ are tuples of elements of the domain among $\overline{L(A_{\varphi})}$
- Existential quantification corresponds to language projection: From a language over $(\Sigma \cup \{\diamond\})^r$ we need to accept accept a language over $(\Sigma \cup \{\diamond\})^{r-1}$, erasing the track corresponding to the quantified variable.

Model-Checking through inductive automaton construction

- ullet Model-checking arphi is reduced to checking emptiness of A_{arphi}
- What is the complexity of this automaton construction?

We will characterize the deterministic time complexity of this construction.

Model-Checking through inductive automaton construction

- ullet Model-checking φ is reduced to checking emptiness of A_{φ}
- What is the complexity of this automaton construction?

We will characterize the *deterministic time complexity* of this construction.

A naive analysis

Theorem

- Some automatic structures have non-elementary first-order theory
- The complexity of the inductive automaton construction is non-elementary

Indeed a quantifier alternation corresponds to a language projection and a complementation: it may lead to an exponential blow-up.

Model-Checking through inductive automaton construction

- ullet Model-checking arphi is reduced to checking emptiness of A_{arphi}
- What is the complexity of this automaton construction?

We will characterize the *deterministic time complexity* of this construction.

A naive analysis

Theorem

- Some automatic structures have non-elementary first-order theory
- The complexity of the inductive automaton construction is non-elementary

Indeed a quantifier alternation corresponds to a language projection and a complementation: it may lead to an exponential blow-up.

Model-Checking through inductive automaton construction

- \bullet Model-checking φ is reduced to checking emptiness of A_φ
- What is the complexity of this automaton construction?

We will characterize the *deterministic time complexity* of this construction.

A naive analysis

Theorem

- Some automatic structures have non-elementary first-order theory
- The complexity of the inductive automaton construction is non-elementary

Indeed a quantifier alternation corresponds to a language projection and a complementation: it may lead to an exponential blow-up.

Yes, but what if we fix the structure?

Contents

Automatic Structures

2 Generic Automata based algorithm

Complexity Analysis

Saturated structure

Given an automatic presentation, we define its saturated structure:

- Its domain is Σ^*
- For each state in each automaton we define a predicate (with the corresponding arity) that states reachability of that state

Saturated structure

Given an automatic presentation, we define its saturated structure:

- Its domain is Σ^*
- For each state in each automaton we define a predicate (with the corresponding arity) that states reachability of that state

Saturated structure

Given an automatic presentation, we define its saturated structure:

- Its domain is Σ^*
- For each state in each automaton we define a predicate (with the corresponding arity) that states reachability of that state

$$\begin{aligned} &0_{\text{XXX}} = \{(\varepsilon, \varepsilon, \varepsilon)\} \\ &0_{\text{XOO}} = \{(\varepsilon, w, w) | w \in 1\Sigma^*\} \\ &1_{\text{XOO}} = \{(0, x, x + 1)\} \\ &0_{\text{OOO}} = \{(x, y, x + y)\} \\ &1_{\text{OOO}} = \{(x, y, x + y + 1)\} \end{aligned}$$

Remark that words of the form $0\Sigma^*$ are elements in the domain of the saturated structure but are not in any relation.

The saturated structure exhibits the complexity

Theorem: [Durand-Gasselin and Habermehl, 2012]

The deterministic time complexity of this automaton construction is the same as for model-checking the saturated structure

Remark

The first-order theory of the saturated structure of that Presburger Arithmetic presentation is no harder than Presburger Arithmetic

Corrolary

The inductive construction of an automaton accepting solutions of a Presburger formula is in 3EXPTIME

This algorithm is optimal in this case

Bonus: the automaton has at most a triple exponential number of states

An effective criterion

The complexity of the saturated structure characterizes the complexity of the automata inductive construction.

An effective criterion

The complexity of the saturated structure characterizes the complexity of the automata inductive construction.

Open questions

• Is the saturated structure harder than the presented structure ?

An effective criterion

The complexity of the saturated structure characterizes the complexity of the automata inductive construction.

- Is the saturated structure harder than the presented structure ?
 - Remark: there has always been a "good" presentation

An effective criterion

The complexity of the saturated structure characterizes the complexity of the automata inductive construction.

- Is the saturated structure harder than the presented structure ?
 - ▶ Remark: there has always been a "good" presentation
- Is it possible to establish space-constrained algorithm?

An effective criterion

The complexity of the saturated structure characterizes the complexity of the automata inductive construction.

- Is the saturated structure harder than the presented structure ?
 - ▶ Remark: there has always been a "good" presentation
- Is it possible to establish space-constrained algorithm?
 - Informal remark: we have polynomial time language projection, we would need "NL language projection"

An effective criterion

The complexity of the saturated structure characterizes the complexity of the automata inductive construction.

- Is the saturated structure harder than the presented structure ?
 - Remark: there has always been a "good" presentation
- Is it possible to establish space-constrained algorithm?
 - Informal remark: we have polynomial time language projection, we would need "NL language projection"
- Can we decide the complexity of an automatic presentation ?

An effective criterion

The complexity of the saturated structure characterizes the complexity of the automata inductive construction.

- Is the saturated structure harder than the presented structure ?
 - ▶ Remark: there has always been a "good" presentation
- Is it possible to establish space-constrained algorithm?
 - Informal remark: we have polynomial time language projection, we would need "NL language projection"
- Can we decide the complexity of an automatic presentation ?
 - Are there automatic structures with elementary first-order theory harder than 3EXPTIME?

An effective criterion

The complexity of the saturated structure characterizes the complexity of the automata inductive construction.

Open questions

- Is the saturated structure harder than the presented structure ?
 - ▶ Remark: there has always been a "good" presentation
- Is it possible to establish space-constrained algorithm?
 - Informal remark: we have polynomial time language projection, we would need "NL language projection"
- Can we decide the complexity of an automatic presentation ?
 - Are there automatic structures with elementary first-order theory harder than 3EXPTIME?

Thank you for your attention!

References

Durand-Gasselin, A. and Habermehl, P. (2012).

Ehrenfeucht-fraïssé goes elementarily automatic for structures of bounded degree.

In *STACS*, volume 14 of *LIPIcs*, pages 242–253. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.

Hodgson, B. R. (1982).

On direct products of automaton decidable theories.

Theoretical Computer Science, 19(3):331–335.

Khoussainov, B. and Nerode, A. (1994).

Automatic presentations of structures.

In *Logical and Computational Complexity*, volume 960 of *LNCS*, pages 367–392. Springer.