TP3

Caracterización fisicoquímica

Objetivos

- 1) Calcular propiedades fisicoquímicas de moléculas
- 2) Analizar la información obtenida a partir de descriptores moleculares
- 3) Aplicar reglas basadas en propiedades fisicoquímicas para evaluar compuestos químicos

Organización de la clase

9:00 a 9:30	Introducción al TP
9:30 a 10:30	Trabajo en la guía de ejercicios (Parte 1: Cálculo de propiedades fisicoquímicas de una molécula)
10:30 a 11:00	Recreo
11:00 a 12:00	Trabajo en la guía de ejercicios (Parte 2: Análisis de conjuntos de datos)
12:00 a 13:00	Lectura de paper y puesta en común

Parte 1

Cálculo de propiedades fisicoquímicas de una molécula

Descriptores

```
# Calcular el peso molecular exacto de la molécula
molecular weight = Descriptors.ExactMolWt(molecula)
# Calcular el logP (coeficiente de partición octanol-agua) de la molécula
logp = Descriptors.MolLogP(molecula)
# Calcular el número de donodores de enlaces de hidrógeno en la molécula
h bond donor = Descriptors.NumHDonors(molecula)
# Calcular el número de aceptores de enlaces de hidrógeno en la molécula
h bond acceptors = Descriptors.NumHAcceptors(molecula)
# Calcular el número de enlaces rotativos en la molécula
rotatable bonds = Descriptors.NumRotatableBonds(molecula)
# Obtener el número total de átomos en la molécula
number of atoms = Chem.rdchem.Mol.GetNumAtoms(molecula)
# Calcular la refractividad molar de la molécula
molar refractivity = Chem.Crippen.MolMR(molecula)
# Obtener el área superficial topológica mapeada de la molécula
topological surface area mapping = Chem.QED.properties(molecula).PSA
# Obtener la carga formal de la molécula
formal charge = Chem.rdmolops.GetFormalCharge(molecula)
```

Descriptores

```
def drug likness decriptors(df):
    # Desactivar las advertencias de asignación encadenada en pandas
   pd.options.mode.chained_assignment = None
    # Crear listas vacías para almacenar los descriptores
   NumHDonors list = []
   NumHAcceptors list = []
   MW list = []
   LogP list = []
   rotatable bonds list = []
   # Calcular los descriptores para cada molécula en la columna 'ROMol'
    for element in df['ROMol']:
        try:
            # Calcular el número de donadores de enlaces de hidrógeno
           NumHDonors = Descriptors.NumHDonors(element)
           NumHDonors list.append(NumHDonors)
           NumHDonors list.append('N/A') # Si ocurre una excepción, agregar 'N/A' a la lista
```

```
# Agregar las listas de descriptores al DataFrame
df['HBD'] = NumHDonors_list
df['HBA'] = NumHAcceptors_list
df['MW'] = MW_list
df['logP'] = LogP_list
df['nRotB'] = rotatable_bonds_list
return df
```

Descriptores

MolLogP

MolMR

MolWt

ExactMolWt

NHOHCount

NOCount

HeavyAtomCount

HeavyAtomMolWt

NumHAcceptors

NumHDonors

Descriptor/Descriptor Family	Notes	Language
Gasteiger/Marsili Partial Charges	Tetrahedron 36:3219-28 (1980)	C++
BalabanJ	Chem. Phys. Lett. 89:399-404 (1982)	Python
BertzCT	J. Am. Chem. Soc. 103:3599-601 (1981)	Python
lpc	J. Chem. Phys. 67:4517-33 (1977)	Python
HallKierAlpha	Rev. Comput. Chem. 2:367-422 (1991)	C++
Kappa1 - Kappa3	Rev. Comput. Chem. 2:367-422 (1991)	C++
Phi	New in 2021.03 release <i>Quant. StructAct. Rel.</i> 8 :221–224 (1989)	C++
Chi0, Chi1	Rev. Comput. Chem. 2:367-422 (1991)	Python
Chi0n - Chi4n	Rev. Comput. Chem. 2:367-422 (1991)	C++
Chi0v - Chi4v	Rev. Comput. Chem. 2:367-422 (1991)	C++

Wildman and Crippen JCICS 39:868-73 (1999)

Wildman and Crippen JCICS 39:868-73 (1999)

C++

https://www.rdkit.org/docs/GettingStartedInPython.html#list-of-available-descriptors

PAINS | Brenk

PAINS

Brenk

PAINS | Brenk

PAINS | Brenk

	PAINS	Brenk
True	Tiene grupos promiscuos que pueden presentar actividad contra varios targets	Tiene al menos un grupo posiblemente reactivo o tóxico
False	No tiene grupos promiscuos que pueden presentar actividad contra varios targets	No tiene grupos posiblemente reactivo o tóxico

SwissADME

Open Access | Published: 03 March 2017

SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules

Daina, A., Michielin, O. & Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7, 42717 (2017). https://doi.org/10.1038/srep42717

Parte 2

Cálculo de propiedades fisicoquímicas de una lista de moléculas

Visualización de la distribución de las propiedades fisicoquímicas

Visualización de la distribución de las propiedades fisicoquímicas

Objetivos

- 1) Calcular propiedades fisicoquímicas de moléculas
- 2) Analizar la información obtenida a partir de descriptores moleculares
- 3) Aplicar reglas basadas en propiedades fisicoquímicas para evaluar compuestos químicos

Cierre

This article is licensed under CC-BY 4.0 (cc) (1)

pubs.acs.org/jcim

Application Note

Chemprop: A Machine Learning Package for Chemical Property Prediction

Esther Heid, Kevin P. Greenman, Yunsie Chung, Shih-Cheng Li, David E. Graff, Florence H. Vermeire, Haoyang Wu, William H. Green, and Charles J. McGill*

Cite This: J. Chem. Inf. Model. 2024, 64, 9-17

https://pubs.acs.org/doi/10.1021/acs.jcim.3c01250?ref=pdf https://github.com/chemprop/chemprop