A Bayesian two-step integrative procedure incorporating prior knowledge for the identification of miRNA-mRNAs involved in hepatocellular carcinoma.

Marie Denis, R.S. Varghese, M.E. Barefoot, M.G. Tadesse, H.W. Ressom

EMBC 2022, July 12, 2022

Outline

- Introduction
- 2 Methods
- Results
- 4 Conclusion/Perspectives

Biological context - HCC context

Hepatocellular carcinoma (HCC) is the **most common** type of liver cancer and the **third cause** of cancer deaths worldwide.

An aggressive cancer because:

- diagnosed at advanced stages (in many cases, HCC detected in people with liver cirrhosis (CIRR)),
- known diagnostic markers have low sensitivity for early detection.

The identification of **novel** diagnostic biomarkers for early detection of HCC is **crucial** and is still an active research area.

Biological context - General context

MicroRNAs (miRNAs) are small single-stranded non-coding RNAs that regulate target gene expression [1]

Role of miRNAs is **crucial** in many biological processes, in particular those underlying diseases.

 \hookrightarrow The study of their effects may be achieved by linking miRNAs to target genes.

Figure 1: Possible relationships between miRNAs and mRNAs: one miRNA may have multiple mRNA targets and vice-versa.

Biological context - Coming back to HCC

Goal

• A better understanding of the biological mechanisms involved in HCC through the identification of miRNA-mRNA disease-associated pairs.

Why?

 Previous studies: miRNA-mRNA pairs play a crucial role in the activation of oncogenic or carcinogenesis pathways in liver diseases or HCC.

But

• The characterization of the relationships between miRNAs and mRNAs is still a **challenge**.

Need to use/develop appropriate statistical methods for a better understanding of links between miRNAs and mRNAs and for identifying relevant pairs.

Statistical context

Objectives

- to improve the understanding of associations / to discover new ones between miRNAs and mRNAs,
- to improve the understanding of associations among mRNAs after considering effects of miRNAs,
- to identify relevant disease-associated miRNA-mRNA pairs.

Many works have shown that:

- the integration of data from various molecular levels leads to better results than analyses considering only one dataset,
- the integration of prior knowledge into statistical models leads to promising results.

We propose a Bayesian two-step **integrative** procedure for analyzing miRNA-seq and mRNA-seq data from patients with HCC or CIRR while integrating **prior knowledge** accumulated from biological experiments or statistical analyses.

Outline

- Introduction
- 2 Methods
- Results
- 4 Conclusion/Perspectives

Samples

Human liver tissues from 64 adult patients recruited at MedStar Georgetown University Hospital.

Table 1: Characteristics of patient-derived samples

		HCC	CIRR	p-value	
		(N=39)	(N=25)	p-value	
Age	Mean(SD)	62.02 (11.46)	50.05 (12.1)	0.0013	
Gender	Male	77%	72%	0.7683	
Race	EA	41%	64%	0.0202	
	AA	33%	32%		
	Asian	26%	0%		
	other	0%	4%		

miRNA-seq and mRNA-seq data

Samples

- RNA samples extracted from the 64 liver tissues and analyzed by Illumina Hiseq 4000 [2],
- Gaussianization of data with the R package huge [3],
- Selection of 106 mRNAs and 261 miRNAs selected by using Student t-tests and a p-value cut-off of 0.05 after false discovery rate correction.

Prior knowledge between miRNAs and mRNAs

Scores measuring **the belief in the association** between mRNAs and miRNAs (Ingenuity Pathway Analysis (IPA) Target filter analysis tool [4]):

- Experimentally verified associations (score = 1),
- Predicted associations (scores = 0.75 for highly predicted, score = 0.5 for moderate predicted, and score = 0 otherwise).

n **x** n

Statistical model

Bayesian two-step intgrative procedure

Extension of the approach proposed by [5] and consists of two submodels:

- a mechanistic submodel: relating miRNAs and mRNAs,
- a clinical submodel: relating the phenotypic outcome to mRNA and miRNA expression levels

Bayesian two-step integrative procedure

<ロト 4部ト 4 差ト 4 差ト

Mechanistic submodel - Variable selection

Bayesian variable selection using spike-and-slab prior integrating prior knowledge from biological experiments

The expression level of gene j (j = 1, ..., q) is modeled by:

$$G_j = miRNA_1\beta_1 + miRNA_2\beta_2 + \dots + miRNA_m\beta_m + \dots + miRNA_p\beta_p + \varepsilon_j$$

• Prior inclusion probability of miRNA k: $p(\gamma_{jk}|\tau) = \frac{\exp(\eta + \tau s_{jk})}{1 + \exp(\eta + \tau s_{jk})}$, s_{jk} score between gene j and miRNA k, $\tau \sim \mathcal{G}(a, b)$ and η fixed

\hookrightarrow Selection of the relevant miRNAs ($\beta_k \neq 0$ for $k = 1, \dots, p$) while integrating prior knowledge

Decomposition of the mRNA expression level into two parts:

$$G_j = \underbrace{G_{miRNA}}_{ ext{modulation via miRNAs}} + \underbrace{G_{\overline{miRNA}}}_{ ext{modulation via other factors than miRNAs}}$$

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 840383.

Mechanistic submodel - Conditional Gaussian graph

Estimated graph

Gaussian graphical model (GGM) [6] used to estimate a graph structure for gene expressions adjusted for miRNAs ($G_{\overline{miRNA}}$):

 \hookrightarrow Covariate-adjusted Gaussian graph or conditional Gaussian graph or **adjusted** graph[7].

Note that we have also estimated an **undajusted** graph based on the raw gene expressions.

Clinical submodel

Bayesian variable using spike-and-slab prior integrating prior knowledge from statistical analysis

Probit model where the linear predictor is given by:

probit
$$P(Y = 1) \sim G_{miRNA} + \underbrace{G_{miRNA}}_{Adjusted graph} + \overline{mRNA} + \overline{miRNA}$$
 (1)

with

- ullet mRNA: the set of mRNAs with no related miRNA in the mechanistic submodel,
- miRNA: the set of miRNAs with no association to any of the mRNAs in the mechanistic submodel.

→ Selection of the relevant mRNAs, miRNAs, and miRNA-mRNA pairs associated with HCC status while integrating dependence structure
The project has recover funding from the project form the project has recovered funding from the project form the projec

Outline

- Introduction
- 2 Methods
- Results
- Conclusion/Perspectives

Mechanistic submodel

Spike-and-slab variable selection approach:

• 371 miRNA-mRNA pairs identified, 22 of which are experimentally verified.

Estimated graphs:

- before adjusting for miRNAs: 497 edges,
- after adjusting for miRNAS: 101 edges.
- → Majority of gene-gene interactions not maintained after accounting for the miRNA regulation of these genes.

Mechanistic submodel

Focus on 5 genes connected in the unadjusted graph and conditionnaly independent in the adjusted graph.

Figure 2: Unadjusted graph (left), adjusted graph (middle), and adjusted graph with associated miRNAs (right).

Clinical submodel

Clinical submodel selects: 21 mRNAs, 5 miRNAs, and 66 miRNA-mRNA pairs

• 3 of the 66 pairs are experimentally verified.

Figure 3: Boxplots of miRNA and mRNA expressions across disease status for three experimentally verified pairs.

Clinical submodel: Pathway analysis using the IPA tool

Top 10 pathways represented by the molecules selected from the clinical model. Darker red color for pathways with higher significance.

© 2000-2022 QIAGEN. All rights reserved.

 \hookrightarrow The three highest significant pathways are known to be significantly enriched in HCC

Outline

- Introduction
- Methods
- Results
- 4 Conclusion/Perspectives

Conclusion/Perspectives

New Bayesian integrative approach extending [5] and incorporating knowledge from various sources at the different stages of the modeling for studying diseases.

Conclusion

- Adjusted/unadjusted graphs help improve the understanding of relationships between genes,
- The proposed approach helps narrow down to the most important mRNAs and miRNAs as well as miRNA-mRNA pairs,
- Key pathways identified.
- Biological relevance of studying molecular interactions and of integrating prior knowledge when analyzing mRNA-seq and miRNA-seq.

Perspectives

- Computational improvement for analyzing high-dimensional dataset,
- Findings need to be experimentally validated on larger dataset to confirm their potential as diagnostic or prognostic biomarkers,.

Thanks for your attention!

marie.denis@cirad.fr

- Lin, Shuibin and Gregory, Richard I, MicroRNA biogenesis pathways in cancer, Nature reviews cancer, vol: 5(6), pp321333, 2015
- Y. Chen, M. E. Barefoot, R. Varghese, K. Wang, C. Di Poto, H. W. Ressom, Integrative Analysis to Identify Race-Associated Metabolite Biomarkers for Hepatocellular Carcinoma, 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp 53005303, 2020
- Zhaof, T., Liu, H., Roeder, K., Lafferty, J., and Wasserman, L., The huge package for high-dimensional undirected graph estimation in R, The Journal of Machine Learning Research, vol: 13(1), pp: 10591062, 2012
- Causal analysis approaches in Ingenuity Pathway Analysis, Bioinformatics, vol: 30(4), pp: 523530, 2014
- Denis, M. and Tadesse, M. G., Evaluation of hierarchical models for integrative genomic analyses, Bioinformatics, vol: 32(5), pp738746, 2016
- A.P., Dempster, Covariance selection, Biometrics, pages 157175, 1972
- Friedman, J., Hastie, T., and Tibshirani, R., Sparse inverse with the graphical lasso, Biostatistics, vol: 9(3), pp: 43244