

Quantum Computing with Neutral Atoms Pulser & MyQLM

20th May 2025

Krisztian BENYO, Ph. D. Quantum Solutions Expert

1

Introduction

Unique mix of Excellence in Science and Engineering

Georges-Olivier Reymond

Co-founder & CEO

16 years in bringing new tech to the market

Prof. Alain Aspect

Co-founder & Scientific Advisor

2022 Nobel Prize Laureate in Physics

Prof. Antoine Browaeys

Co-founder & Scientific Lead

2022 Solvay conference. Nature 2021 & 2023

2024 Member French Academy of Sciences

OUR MISSION

From single atoms to global impact, our passion for science helps interpret the complexity of the world

OUR VISION

Our ambition is to break through the limits of computing by leading the delivery of state-of-the art quantum computing

"When there are no fundamental limitations, engineers find a path."

- Prof. Alain Aspect

We Co-invented Neutral Atom Quantum Computing

1983

Bell's inequalities violation by A. Aspect

2001

First single atom in an optical tweezer by G. Reymond
Nature 411, 1024–1027

2009

First Rydberg blockade by A. Browaeys Nature Physics volume 5, 115–118

2018

Simulation with 49 qubits, 3D and 72 atoms in tweezers

by T. Lahaye & A. Browaeys
Nature volume 561, 79–82
Phys. Rev. X 8, 021070

2016

Simulation with 30 qubits by T. Lahaye & A. Browaeys
Nature volume 534, 667–670

2019

Founding of Pasqal by T. Lahaye, A. Browaeys, G. Reymond, C. Jurczak

2021

Simulation with 196 qubits-Quantum Advantage- by T. Lahaye & A. Browaeys Nature volume 595, 233–238

2019

Pasqal Founded Headquarters: France 2021

Pasqal raises €25 M in Series A 2022

Pasqal merges with Qu & Co.

2022

Prof. Alain Aspect, co-founder, is awarded the Nobel Prize in Physics

2023

Highlighted by the BCG company developing enterprisegrade ready offer

2022

Pasqal acquires My Cryo Firm 2022

First Neutral Atoms Quantum
Computer available on the cloud

2023

Pasqal raises €100 M in Series B 2024

Pasqal exceeds 1,000 atoms in quantum processor

2024

IBM collaboration

2024

First quantum computers delivered to GENCI and CEA

2024

CMA CGM Group and Pasqal join forces

Pasqal at a Glance

7 QPUs in operations & manufacturing; 5 sold (2 already deployed)

400+ Publications & patents by 2024

20+ Public Customer Use cases¹

75+ International PhDs

HQ in Europe (France) and presence in Europe, Asia, North America and Middle East

2x Quantum Factories in Paris (France) and Sherbrooke (Canada)

Partnership	Partners
End-User Pool (Public and Private)	American Section Secti
Cloud Access & Remote HPC	Microsoft Azure Google Cloud OVHcloud
Development of Application Portfolio & Software Stack	Capgemini KIPU Mila MULTIVERSE NOTICE DAME Capgemini KIPU Mila MULTIVERSE Parity Composition Sumitomo Corporation Tech Mahindra Multipuration Notre Dame Universität innsbruck
Programming Environment (QC Framework and Open- Source Library)	Atos Google

Multiple Paths to build Quantum Computers

QPUs can be built using different technologies

NEUTRAL ATOMS	MATURITY	Trapping atoms with lasers and encoding qubits in the atoms' energy levels	Pasqal OUENO COMPUTING INC.
SUPERCONDUCTING	111	Cooling down electronic circuits to near absolute zero to create superconducting qubits out of artificial atoms, or quantum dots	Google Al Quantum
PHOTONIC	11	Using photons in light as qubits themselves	Ψ PsiQuantum \otimes X \wedge N \wedge D \cup
trapped ions	111	Confining and suspending ions, or charged atomic particles, in free space using electromagnetic fields	QUANTINUUM ONQ
SPIN QUBITS	11	Based on controlling the spin of charge carriers (electrons and electron holes) in semiconductor devices	intel. Silicon Quantum Computing

Scalability No major roadblocks near-term to scale the qubit count to 10,000 qubits and beyond, following our roadmap Dual digital-The unique dual analog-digital analog modes capability, offers the opportunity of near-term value with analog while developing FTQC Uniformity and Since we use atoms as qubits, they are naturally identical and Quality free from any imperfections No cryogenics required, the Room temperature system operates at room temperature, significantly operation reducing power consumption

Pasqal is the only company delivering commercially ready QPUs

Pasqal is delivering quantum-powered solutions today with QPUs shipped to industry leaders and institutions worldwide.

Notable Deliveries of Pasqal Hardware:

- June 2024: CEA Genci (France) delivery
- November 2024: Delivered processors to Jülich, Germany
- Planned Deliveries in 2025: Saudi Aramco (KSA)

From finance to energy, businesses are unlocking value with Pasqal's quantum computing solutions right now

A Roadmap Articulating Our Vision

		2022	2-2023	2024-2025		2026-2027		2028+
	HARDWARE PLATFORM							
Technology PASQAL & affiliated ecosystem	Max qubits	200		1,000		10,000		
	Addressability	_	Z add	Z+X add	Addressable IQ	and 2Q gates		
	Base repetition rate		1 Hz	3 Hz	10 Hz			100 Hz
	FTQC Program			Atom shuttling	Ultra High Fidelity Gates	Scalable logical architecture	l qubits	
	HARDWARE ACCELERATED LIBRARIES	_						
	Quantum Matter & Quantum Al	Algorithm Blueprint		Algorithm Development		Production		
Products	QUANTUM PROCESSORS							
	Generation		Orion Alpha ~3M gates	Orion Beta ~5M gates On premise delivery	Orion Gamma ~10M gales On premise delivery	Vela ~40M gales	Pegasus ~200M gates	Centaurus FTQC QPU 200+ Logical qubits 200M+ gates
	Total hours of QPU for users	_	500	5-10,000	20-30,000	60-70,000	200-250,000	500-550,000
	Factories	_	France	Canada	Factory 3			
	COMMUNITY							
	Platform			Learn	Interact	Collaborate		
	Open-source Software Stack	Pulser		Qadence	Solvers & Emulat	ion		

Neutral Atoms Quantum Computing

Our Plug and Play Quantum Computers for Customers

Quantum computers compatible with **standard environment**

Setup at room temperature

Industrial **off-the-shelf** components

Low energy consumption (equivalent to 4 hair dryers)

Neutral atom quantum processors

Single atom trapping/detection

Qubits are encoded into two of the many electronic states of neutral atoms.

Register made with tweezers

The register is prepared using laser cooling and trapping techniques

Processing using laser fields

Lasers are used to manipulate the internal degree of freedom

Rydberg atomic arrays as quantum processing units

Neutral atoms (typically Rubidium or Strontium), trapped in an optical tweezer array.

Nat. Phys. 16, 132 (2020).

Scalable to hundreds of atoms – can capture both short-range order and lack of long-range order.

Adapted from Nature, **595**, 233–238 (2021)

Can realise both the Ising model and XY model

$$\mathcal{H}(t) = \frac{\hbar}{2}\Omega(t)\sum_{j}\sigma_{j}^{x} - \hbar\delta(t)\sum_{j}n_{j} + \sum_{i\neq j}\frac{C_{6}}{r_{ij}^{6}}n_{i}n_{j},$$

$$\mathcal{H}(t) = \frac{\hbar}{2}\Omega(t)\sum_{j}\sigma_{j}^{x} - \frac{\hbar}{2}\delta(t)\sum_{j}\sigma_{j}^{z} + 2\sum_{i\neq j}\frac{C_{3}}{r_{ij}^{3}}\left(\sigma_{i}^{x}\sigma_{j}^{x} + \sigma_{i}^{y}\sigma_{j}^{y}\right).$$

Flexible atomic register

Adapted from Phys. Rev. A 102, 063107

How does one make qubits out of atoms?

- 1. We need to identify a $|0\rangle$ and a $|1\rangle$ state
 - Ground states and hyper-excited Rydberg states of Rubidium atoms
- 2. We need to be able to address **transition** between |0⟩ and |1⟩ states
 - Laser beams
- 3. We need to know where the atoms are
 - Optical tweezers
- 4. We need to be able to produce **entanglement** between the atoms
 - Rydberg blocade
- 5. We need to be able to **measure** the system
 - Fluorescence imaging

Neutral Atoms Drive Our Quantum Technology

"After 20 years in the field, I now strongly believe that Neutral Atoms technology has all the assets to embrace Quantum Computing challenges and unlock all its opportunities"

 Prof. Antoine Browaeys, CSO and Co-founder of Pasgal; Research Director of CNRS

Machine cycle

Antiferromagnetic states / Maximum Independent Set

Algorithmic components

How to map graph problems onto a neutral atoms QPU? Pasqal

Nodes -> atoms Edges -> interactions

Graph topology

$$H_{\mathcal{G}} = \sum_{(i,j) \in E(\mathcal{G})} n_i n_j$$

Entangling atomic qubits

- Rydberg states are highly excited states
- Atoms in those states behave as electric dipoles
- dipole-dipole interactions generate entanglement

420 nm

6*P*

5*P*

5*S*

Morgado, Withlock, AVS Quantum Sci. (2021)

Tunable Ising Hamiltonian

Transverse field Ising couplings:
$$J_{ij} \propto 1/R_{ij}^6$$
 $\mathcal{H}(t) = \sum_i \left(\frac{\hbar\Omega(t)}{2}\sigma_i^x - \hbar\delta(t)\hat{n}_i + \sum_{j < i} \frac{C_6}{(R_{ij})^6}\hat{n}_i\hat{n}_j\right)$ $\frac{1+\sigma_i^z}{2}$

Quantum Simulation

Permits the simulation of quantum many-body systems far beyond the limits of classical computers, allowing, for example, the:

- Observation of out-of-equilibrium dynamics
- Adiabatic preparation of ground states

Quantum for QUBO

Quantum computers promise a performance improvement for solving quadratic unconstrained binary optimization (QUBO) problems

Quantum optimization through adiabatic evolution can solve QUBO (quadratic unconstrained binary optimization) problems

$$f(x) = \sum_{i < j}^{N} Q_{i,j} x_i x_j + \sum_{i}^{N} Q_{i,i} x_i$$

with f(x) the optimization function, Q an NxN upper triangular matrix with real weights and x a vector of binary variables

This problem can also be formulated through an Ising type Hamiltonian

$$H(\sigma) = \sum_{i,j}^{N} J_{i,j} \sigma_i \sigma_j + \sum_{i}^{N} h_i \sigma_i$$

where J represents the spin-spin interaction, h represents an external field, and the σ are the individual spins on each of the lattice sites; or (when implemented in quantum): $\sigma^{(i)}_{x,z}$ are Pauli matrices operating on a qubit q_i , and h_i and h_i are the qubit biases and coupling strengths

Quantum for QUBO

Quantum computers promise a performance improvement for solving quadratic unconstrained binary optimization (QUBO) problems

In adiabatic quantum computation (such as D-Wave quantum annealer), we start in the ground state of some well known physical system with a trivial Hamiltonian H_0

Then, we evolve adiabatically (very slowly to remain in the ground state) the Hamiltonian towards that of the problem Hamiltonian, H₁

On gate-based (digital) quantum computers a similar process can be implemented using a variational qantum algorithm called QAOA

MIS (Maximum Independent Set)

没 Pasqal

Definition: Independent set (IS) = set of nodes of a graph where no two nodes are adjacent

Maximal independent set (mIS)

VS

Maximum independent set (MIS)

MIS (Maximum Independent Set) Solver

Neutral-atoms are good are finding MIS by design:

- Flexible atomic positions allow us to allow us to easily tackle graph problems by directly encoding the graph with the positions of the atoms and the distances between them.
- > Rydberg dynamics can be leveraged to naturally encode the constraints and solution to the MIS problem for unit-disk graphs.

MIS (Maximum Independent Set) Solver

Quantum optimization through adiabatic evolution

In adiabatic quantum computation, we start in the ground state of some well-known physical system with a trivial Hamiltonian H_0

Then, we evolve adiabatically (very slowly to remain in the ground state) the Hamiltonian towards that of the problem Hamiltonian, H_1

Pulser Studio

Exercise 1

In the antiferromagnetic state example, what happens if we remove a node?

In the antiferromagnetic state example, what happens if we remove two nodes?

Exercise 2A

Try to create a new quantum register, while keeping the pulse parameters the same! Let's define once again the geometry of the antiferromagnetic state example on a structured grid of 8 micrometers per neighbor, starting from (0,0).

What happens with the simulation now?

Bonus: What happens if we change the length between neighbours of the grid to larger or smaller, all the while keeping the same pulse?

Exercise 2B

For this newly created register, let us create a new pulse!
We will define a pulse as a continuous extension of the existing pulse, with a truncated Gaussian and a shifted detuning!
What are the simulation results now?

Bonus: What happens if we shift further the detuning parameter in time?

Exercise 3

Let us try this new pulse for other geometries! Construct a star shaped quantum register of 4 points. What happens after the simulation? How does it compare with the original pulse?

Now construct a star shaped register with 7 points by doubling the existing leaves. What is the result of the simulation?

How does it compare with the original pulse?

Exercise 4

Let us try this new pulse with yet another quantum register! Construct the following 5 point register. What is the result of the simulation? How does it compare with the original pulse?

Programming on a neutral atoms system

Neutral Atom QPUs can implement Algorithm with High Number of Equivalent Gates

Analog Control

Programming a Hamiltonian sequence

The Hamiltonian faithfully describes the dynamics of a physical quantum system or a reformulation of an operational case. Parameters can be tuned continuously.

Digital Control

Programming a quantum circuit with digital quantum gates

Elementary operations are discrete digital quantum gates, that can act either on individual qubits, or on several qubits at the same time.

Quantum Materials

Staggered magnetisation histograms for 10×10 and 14×14 arrays, with MPS shown on the lower part of the 10×10 array (14 days for simulation with TeNPy) [1].

With typical error level of 1% of the analog mode, 10^6 gates are required with 1-F < 10^{-6} to simulate the same quantum dynamics of a 10x10 2D Ising-like model system^[2].

[1] Scholl, et al., Nature 595 (2021)

[2] Flannigan, Pearson, Low, Buyskikh, Kokail, Bloch, Zoller, Troyer, Daley (Nature 2022, Q Sci. Technol. 2022)

Quantum Computing software stack - overview

Quantum Computing software stack - analog

Pasqal software stack

Quantum Software solutions: Pulser and Qadence

Pulser is central in our software stack.

It is an open-source Python library for programming neutral atoms quantum processing units (QPUs) at the pulse level.

The low-level nature of Pulser makes it a versatile framework for quantum control both in digital and analog settings.

The library also contains simulation routines for studying and exploring the outcome of pulse sequences for small systems.

Pulser is also used today as the main interface for writing quantum jobs meant for PASQAL QPUs.

Qadence builds upon Pulser to provide a stable, higher level coding environment.

> To remember

In Pulser Studio, using the Code panel, you can view the Pulser code that is generated from the sequence being created.

Programming on a neutral atoms device

Pulser

The open source Python library Pulser is designed with the flexibility and control of Pasqal's neutral atoms QPU in mind to provide full influence on all relevant physical parameters.

It is fully tailored to be compatible with the physical device, moreover it allows for experimentation on both analog and digital quantum computational paradigms.

Qadence

The open source Python library Qadence builds upon the fundaments of Pulser to provide a simple, higher level interface for digital-analog quantum computing programs with full compatibility for arbitrary register topologies featured in a neutral atoms device.

```
from qadence import Register, AnalogRX, sample, PI

# Global analog RX block.
block = AnalogRX(PI)

# Almost non-interacting qubits as too far apart.
register = Register.from_coordinates([(0,0), (0,15)])
samples = sample(register, block)

# Interacting qubits are close to each other.
register = Register.from_coordinates([(0,0), (0,5)])
samples = sample(register, AnalogRX(PI))
```

```
from qadence import CNOT, H, chain, sample

# Preparing a Bell state by composing a Hadamard and CNOT gates in sequence.
bell_state = chain(H(0), CNOT(0,1))

# Sample with 100 shots.
samples = sample(bell_state, n_shots=100)
```


Integrating Neutral Atoms Systems into HPC

Future of HPC

We envision that future HPC workflows will combine multiple type of specialized compute resources; each of them best positioned to solve a specific mathematical challenge

Diversity in computational resources employed in a future HPC workflow

^{1:} CPU = Central Processing Unit (like the processor in most laptops)

^{2:} GPU = Graphics Processing Unit, nowadays mostly used for parrallel computing

^{3:} NC = Neuromorphic Computing, containing electronic analogue circuits aiming o exploit massive parallelism

^{4:} SA = Simulated Annealing a probabilistic technique for approximating the global optimum of a given objective function

Europe Envisions Hybrid HPC – Quantum Infrastructures

Community

International

platforms

Events

HQI – FRANCE HYBRID HPC QUANTUM INITIATIVE

Scope: 2022-2026 **Applications** Pilot design and Exploration 2 implementation Hands-on Hosted at training TGCC **Applications** HPC support team (HLST) Shared software stack use cases relationships **Emulation** Maisons du Photonic QPU QPU **PERCEVAL EuroQCS-**Quantique WORK IN France PASQAL PROGRESS (HPC OS) EuroHPC **PULSER**

FIRST SERVICES AVAILABLE SINCE THE END OF 2022

Europe Envisions Hybrid HPC – Quantum Infrastructures

Existing approaches & architectures

Current HPC-QC integration efforts:

Predominantly loose coupling with individual quantum jobs scheduled via Slurm

IBM Quantum

Schedule a Quantum Access Node, tighter logical integration

- Tight integration moving the quantum stack onto the HPC node
- Cloud bursting to test integration

Pasqal's perspectives – physical integration

Temperature

- Room temperature is not data-center temperature
- Fresnel weather report ©

Accessability

Software environment

Pasqal's perspectives – software integration

Which tasks / which applications are good fit for hybrid quantum-HPC?

Quantum accelerators or quantum-centric supercomputing?

Scheduling for an optimal usage of the devices:

- Reduce idle time
- Parallelism at the input layer
- Exclusive usage mode

Pasqal's perspectives – the myQLM example

Convert (1):

Serialize Sequence

Convert (2):

Sequence -> QLM compatible coefficients for schedule (+ atom positions)

Convert (3):

From Pulser Result to myQLM Result

Convert (4):

From QLM compatible coefficients for schedule (+ atom positions) to Sequence

Thank you for your attention

