Lecture 09:

Convolutional Neural Networks (CNN) – Part I

Markus Hohle
University California, Berkeley

Machine Learning Algorithms
MSSE 277B, 3 Units

Lecture 1: Course Overview and Introduction to Machine Learning

Lecture 2: Bayesian Methods in Machine Learning

classic ML tools & algorithms

Lecture 3: Dimensionality Reduction: Principal Component Analysis

Lecture 4: Linear and Non-linear Regression and Classification

Lecture 5: Unsupervised Learning: K-Means, GMM, Trees

Lecture 6: Adaptive Learning and Gradient Descent Optimization Algorithms

Lecture 7: Introduction to Artificial Neural Networks - The Perceptror

ANNs/AI/Deep Learning

Lecture 8: Introduction to Artificial Neural Networks - Building Multiple Dense Layers

Lecture 9: Convolutional Neural Networks (CNNs) - Part I

Lecture 10: CNNs - Part II

Lecture 11: Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTMs)

Lecture 12: Combining LSTMs and CNNs

Lecture 13: Running Models on GPUs and Parallel Processing

Lecture 14: Project Presentations

Lecture 15: Transformer

Lecture 16: GNN

Berkeley Machine Learning Algorithms:

Outline

- The Problem
- What is Convolution
- The CNN Architectures
- Data Preparation & Training
- A Simple Example

Berkeley Machine Learning Algorithms:

<u>Outline</u>

- The Problem
- What is Convolution
- The CNN Architectures
- Data Preparation & Training
- A Simple Example

so far:

now:

so far: now:

data features

[[5.1 3.5 1.4 0.2]
[4.9 3. 1.4 0.2]
[4.7 3.2 1.3 0.2]
[4.6 3.1 1.5 0.2]
[5. 3.6 1.4 0.2]
[5.4 3.9 1.7 0.4]
[4.6 3.4 1.4 0.3]
[5. 3.4 1.5 0.2]

row = data point

matrix = data point

image curtesy: Mathworks

classification:

between different images

different pixel within images aka segmentation

segmentation for classification

motif finding / sequence analysis

one – hot encoded NT or AA sequences can be interpreted as b/w images!

regression:

turning images the right way

part of GenAl:

source: TopviewAl

Berkeley Machine Learning Algorithms:

<u>Outline</u>

- The Problem
- What is Convolution
- The CNN Architectures
- Data Preparation & Training
- A Simple Example

goal:

- maintaining the spatial information
- learning which features are important

- → convolution
- → training the convolution filter

What is convolution?

$$(f * g)(x) \coloneqq \int_{\mathbb{R}^n} f(\zeta) g(x - \zeta) d\zeta$$
 image f and filter g

image

filter (aka kernel)

<u>What is convolution?</u> image ${\it f}$ and filter ${\it g}$

What is convolution?

image **f** and filter **g**

different techniques:

- 1) multiplying matrix values pixelwise
- 2) summing up products
- 3) → value for new matrix

padding = 2; stride length = 1

padding = 0; stride length = 3

What is convolution?

image **f** and filter **g**

different techniques:

padding = 0; stride length = 3

1) multiplying matrix values pixelwise

2) summing up products

3) → value for new matrix

the resulting image has the following size (N is the number of rows/columns):

$$N_{out} = \frac{\left(N_{in} - N_{filt} + 2 * padding\right)}{stride\ length} + 1$$

What is convolution?

image **f** and filter **g**

the resulting image has the following size (N is the number of rows/columns):

$$N_{out} = \frac{\left(N_{in} - N_{filt} + 2 * padding\right)}{stride\ length} + 1$$

What is convolution?

image **f** and filter **g**

filters:

- 1) multiplying matrix values pixelwise
- 2) summing up products
- 3) → value for new matrix

DOI:10.1016/j.actbio.2017.09.025

see Convolution.ipynb for visualizing the impact of different convolution filter on the image

image

filter

200

Convolution

see Convolution.ipynb for the impact of different convolution filter on the image

CNN:

- kernel act like neurons with weights
- start with random values for all kernels
- → the ANN learns the filter values
- → that's how the ANN learns which features are important

$$(f * g)(x) \coloneqq \int_{\mathbb{R}^n} f(\zeta) g(x - \zeta) d\zeta$$

$$net = \sum_{i} I_i \cdot w_i + b$$

inputs are pixel values

kernel weights

$$\sum_{i} I_{i} \mathbf{w_{i}} + \mathbf{b}$$

can be interpreted as a neuron!

Berkeley Machine Learning Algorithms:

<u>Outline</u>

- The Problem
- What is Convolution
- The CNN Architectures
- Data Preparation & Training
- A Simple Example

classification pooling:

there are three different main pooling methods

→ average pool: blurs the image, reduces edges

(not what we want here)

→ max pool: reduces dark background (those pixel

values are usually low) and enhances

brighter foreground objects
(exactly what we need here)

→ min pool: does the opposite of max pool

classification

classification

sequential CNNs

Residual**Net**

Inception Net

many others...

classification

common pretrained classification CNNs

Network	Depth	Size	Parameters (Millions)	rel computation time	Image Input Size
nasnetlarge	*	360 MB	88,9	45	331-by-331
darknet19	19	72.5 MB	21	5,5	256-by-256
densenet201	201	77 MB	20	22	224-by-224
resnet50	50	96 MB	25,6	3,5	224-by-224
resnet101	101	167 MB	44,6	5	224-by-224
inceptionv3	48	89 MB	23,9	8	299-by-299
resnet18	18	44 MB	11,7	1,8	224-by-224
xception	71	85 MB	22,9	12	299-by-299
darknet53	53	145 MB	41	10	256-by-256
inceptionresnetv2	164	209 MB	55,9	14	299-by-299
shufflenet	50	6.3 MB	1,4	1,5	224-by-224
googlenet	22	27 MB	7	2	224-by-224
mobilenetv2	53	13 MB	3,5	4	224-by-224
alexnet	8	227 MB	61	1,2	227-by-227
nasnetmobile	*	20 MB	5,3	5	224-by-224
squeezenet	18	4.6 MB	1,24	1	227-by-227
vgg16	16	515 MB	138	6,5	224-by-224
vgg19	19	535 MB	144	8,5	224-by-224

Vijay Badrinarayanan et. al 2017 "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation"

1) down-sampling as before (= encoder)

Vijay Badrinarayanan et. al 2017 "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation"

- 1) down-sampling as before (= encoder)
- 2) down to bottle neck

Vijay Badrinarayanan et. al 2017 "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation"

- 1) down-sampling as before (= encoder)
- 2) down to bottle neck
- 3) up-sampling (= **decoder**; how: see later) in order to generate output image of the same size as input image, where number of channels = number of pixel classes

Vijay Badrinarayanan et. al 2017 "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation"

- 1) down-sampling as before (= encoder)
- 2) down to bottle neck
- 3) up-sampling (= **decoder**; how: see later) in order to generate output image of the same size as input image, where number of channels = number of pixel classes
- 4) softmax, in order to turn output of last layer into probabilities

Vijay Badrinarayanan et. al 2017 "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation"

- 1) down-sampling as before (= encoder)
- 2) down to bottle neck
- 3) up-sampling (= **decoder**; how: see later) in order to generate output image of the same size as input image, where number of channels = number of pixel classes
- 4) softmax, in order to turn output of last layer into probabilities
- 5) generates segmentation mask from highest probabilities
 - = (arbitrary) colors are class labels and correspond to pixel class

Vijay Badrinarayanan et. al 2017 "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation"

depending on the architecture, the decoder has different learning mechanisms

- standard: up-sampling = inverse convolution: weights and biases are learnables
- U-Net: skips connections and concatenates decoder layer with corresponding encoder layer information
- transformer encoder: use attention (see later)

U-net segmentation CNN

https://towardsdatascience.com/u-net-explained-understanding-its-image-segmentation-architecture-56e4842e313a

common pretrained segmentation CNNs

note: the input size is usually 5 – 10 times larger than compared to a classification CNN!

Туре	Names					
VGG	'vgg16' 'vgg19'					
ResNet	'resnet18' 'resnet34' 'resnet50' 'resnet101' 'resnet152'					
SE-ResNet	'seresnet18' 'seresnet34' 'seresnet50' 'seresnet101' 'seresnet152'					
ResNeXt	'resnext50' 'resnext101'					
SE- ResNeXt	'seresnext50' 'seresnext101'					
SENet154	'senet154'					
DenseNet	'densenet121' 'densenet169' 'densenet201'					
Inception	'inceptionv3' 'inceptionresnetv2'					
MobileNet	'mobilenet' 'mobilenetv2'					
EfficientNet	'efficientnetb0' 'efficientnetb1' 'efficientnetb2' 'efficientnetb3' 'efficientnetb4' 'efficientnetb5' efficientnetb6' efficientnetb7'					

Berkeley Machine Learning Algorithms:

<u>Outline</u>

- The Problem
- What is Convolution
- The CNN Architectures
- Data Preparation & Training
- A Simple Example

data acquisition

- 1) classes should be well balanced
- dataset should be diverse

example Cryo-EM:

all grids (Cu, Au, ...) all cameras all grid manufacturers all resolutions

3) augmentation: blurred, skewed, fragmented, stretched, turned etc

tip: write your own augmentation routine!

data labeling

be as accurate as possible!

micrograph Cryo-EM image

- → good, medium and bad based on ice crystals
- → Undergrad, Grad, PostDoc, Senior Scientist

data preprocessing

scaling:

Image Input Size

331-by-331

256-by-256

224-by-224

224-by-224

All images have to be scaled to the input size of the CNN!

normalization:

images can be

- logical (values are zero or one)

- gray scale (2D) → adding two more "color channels"

- 8bit (range 255), 16bit (range 512) etc

training

normalization: complex CNNs have many layers for normalization/re-centering/re-scaling

→ batch normalization

the training set is huge

- → loading only a few images at the time (mini batch)
- → the larger the mini batch, the better
- → run only a few iterations per mini batch (avoiding local minima)
- → check training loss vs evaluation loss

training

check out:

Training MLP

Training CNN 2D

Training CNN 3D

Berkeley Machine Learning Algorithms:

<u>Outline</u>

- The Problem
- What is Convolution
- The CNN Architectures
- Data Preparation & Training
- A Simple Example

constructing, running and testing LeNet → LeNet.ipynb

constructing, running and testing LeNet → LeNet.ipynb

epoch: passing the entire dataset through the network

```
60, 000 images / batch size = 512 = 117 iterations per epoch = 117 * 80% for training = 94 iterations per epoch
```


constructing, running and testing LeNet → LeNet.ipynb

training loss should \approx validation loss if validation loss \Rightarrow overfitting

- too many parameter
- too few images in batch
- too specific/unique batch)

constructing, running and testing LeNet → LeNet.ipynb

7, P = 1.0	7, P = 0.99	7, P = 1.0	5	8, P = 1.0	4, P = 1.0	0, P = 1.0
6, P = 10	4, P = 1.0	7	3	0, P = 1.0	5, P = 0.99	3 , P = 1.0
5, P = 1.0	5, P = 0.99	2, P = 0.98	1, P = 1.0	5, P = 0.99	8 , P = 0.98	7, P = 1.0
6, P = 0.99	8, P = 1.0	7, P = 0.99	7, P = 1.0	1, P = 1.0	7, P = 0.74	8, P = 1.0
3, P = 0.97	6, P = 0.93	7, P = 0.99	1, P = 1.0	8, P = 0.91	3, P = 1.0	9, P = 1.0
3, P = 1.0	6, P = 4.0	4 , P = 1.0	5, P = 1.0	5, P = 1.0	7, P = 1.0	9
4, P = 0.99	D	1, P = 1.0	5, P = 0.99	5, P = 1.0	5, P = 1.0	7, P = 0.99

Berkeley Machine Learning Algorithms:

Thank you for your attention!

