Конспект по геометрии

Коченюк Анатолий

15 апреля 2019 г.

Глава 1

1 четверть

```
Задача 1.1. \alpha \cap \beta = \emptyset a пересекает \alpha \Rightarrow a пересекает \beta 

Доказательство. фиксируем прямую \alpha пересекающую \alpha 

Через a и плоскость B можно провести единственную плоскость \gamma \gamma \cap \alpha = x – прямая \gamma \cap \beta = y – прямая (есть общая точка B) x \cap y = \emptyset, т.к. \alpha и \beta не пересекаются x, y, a \subseteq \gamma x||y a \cap x = A \Rightarrow а пересекается с y \Rightarrow x пересекается с \beta
```

1.1 Взаимное расположение прямых в пространстве

- 1. Прямые пересекаются (в какой-то плоскости)
- 2. Прямые параллельны (в одной плоскости, но не пересекаются)
- 3. Прямые скрещиваются (в разных плоскостях)

Признак 1.1. Если две прямые содержат четыре точки, которые не лежат в одной плоскости, то эти прямые скрещивающиеся

Признак 1.2. Прямая, пересекающая плоскость, скрещивается с каждой прямой, лежащей в этой плоскости и не проходящей через точку пересечения.

```
\mathbf{Д/3} – доказать признак 1.2
```

Теорема 1.1. Через каждую точку пространства, не лежащую на данной прямой проходит прямая, параллельная данной и при том только одна.

Доказательство. фиксируем прямую a и точку $A \not\in a \quad \exists ! \alpha : A \in \alpha, a \in \alpha$ Тогда в $\alpha \exists ! b : a || b$

• Единственность

$$\sqsupset b_1.b_2\ni A$$
 и $b_1||a\Rightarrow b_1\in\alpha\quad b_2||a\Rightarrow b_2\in\alpha$ $b_1\cap b_2=A\quad b_1,b_2||\alpha$ в плоскости $\alpha\Rightarrow b_1=b_2$

Теорема 1.2 (свойство транзитивности). $a||b \& b||c \Rightarrow a||c$

Доказательство.

Лемма 1.1. Если плоскость пересекает одну из параллельных прямых, то она пересекает вторую

Доказательство. $\mathcal{A}/3$

```
a||b\Rightarrow они лежат они лежат в одной плоскости b||c\Rightarrow они лежат в одной плоскости a,c-3 варианта:
```

- \bullet они пересекутся в точке $X \Rightarrow$ Через точку X провели две прямые параллельные b??!
- они параллельны
- они скрещиваются

```
Докажем, что они лежат в одной плоскости.
```

```
\sqsupset a,cне лежат в одной плоскости фиксируем A\in a и cлежат в плоскости \gamma aне пересекает \gamma и a||b\Rightarrow b пересекает \gamma и b||c\Rightarrow c пересекает \gamma
```

1.2 Параллельное проектирование

```
Определение 1.1 (проекция точки). плоскость \alpha, прямая а пересекающая \alpha фиксируем точку x \Rightarrow \exists! a' || a, \quad a' \ni X a' пересекается c \alpha (по лемме) x' = a' \cap a -  будет называться проекцией точки X на плоскость \alpha при проектировании параллельно прямой а \alpha - плоскость проекции a - направление проекции
```

Определение 1.2. Проекция фигуры F – множество проекций всех точек F

Теорема 1.3 (о парадлельном проектировании). $\alpha, a.$ Прямые не параллельны a. Отрезки лежат на прямых не параллельных a

- 1. Проекция отрезка отрезок
 - Проекция прямой прямая
- 2. Проекции парамельных прямых парамельны ими совпадают
- 3. Отношение длин отрезков, лежащих на одной прямой или на параллельных прямых равно отношению самих отрезков.

Доказательство. 1. Построим проекцию прямой b

```
a_1||a.\ a_1 пересекает b \beta – плоскость, проходящая через a_1 и b \beta пересекается с \alpha (т.к. a_1 пересекается с \alpha) Докажем, что b'=\beta\cap\alpha: X\in\beta\Rightarrow прямая, параллельная a_1 и проходящая через X пересекает b' в точке X' Y'\in b' по аналогии Y\in b AB\in b,\,b' – проекция b\Rightarrow(A\to A'\in b') и (B\to B'\in b') Тогда \forall x\in AB x'\in A'B' (прямые AA',BB',CC' лежат в одной плоскости)
```

2. $b||c \quad \exists \ l||a$ пересекает b и $c \Rightarrow \exists !\beta,$ которая содержит l,b и $\Rightarrow b'=c'=\beta \cap \alpha$

```
\sqsupset \not\exists lпересекающая b и cодновременно \Rightarrow
```

 $l_1 || a$ пересекается с b — по l_1 и b построим β

 $|l_2||a$ пересекается с c по l_2 и c построим γ

$$b' = \alpha \cap \beta \quad c' = \alpha \cap \gamma \text{ и } \beta \cap \gamma = \emptyset \Rightarrow b' \cap c' = \emptyset, b', c' \in \alpha \Rightarrow b' || c'$$

3. $b \not | a A, B, C, D \in b \Rightarrow b$ и b' лежат в одной плоскости β

AA', BB', CC', DD' параллельны в плоскости β (т.к. параллельны прямой a) $\Rightarrow \frac{|AB|}{|CD|} = \frac{|A'B'|}{C'D'}$ (по обобщению теоремы Фалеса из планиметрии)

фиксируем b||c $Ab \subseteq b$ $CD \subseteq c$

 γ – плоскость, в которой b||c

Проведём через $A \in \gamma$ прямую. Она пересекает c в точке A_1

Через B проведём прямую, параллельную AA1

Тогда ABB_1A_1 — параллелограмм

Тогда $|AB| = |A_1B_1|$ $A'B'A'_1B'_1$ – параллелограмм (т.к $A'B'||A'_1B'_1$)

 $A'A'_1||B'B'_1$ (по предыдущим пунктам) $\Rightarrow |A'B'| = |A'_1B'_1|$

$$CD$$
 и A_1B_1 лежат на $c\Rightarrow \frac{|A_1B_1|}{|CD|}=\frac{|A_1'B_1'|}{|C'D'|}\Rightarrow \frac{|AB|}{|CD|}=\frac{|A'B'|}{|C'D'|}$

 $\mathbb{Z}/3$ (на 18.09.2018) на двойном листочке, который подписан и на котором табличка (на полях) с номером задания (по возрастанию). должен быть номер и, если требуется ответ, красиво аккуратно оформленный:

Письменно: 2.15, 2.16, 3.1, 3.2, 3.3, 3.8

Устно: 3.6, 3.16, 3.19 + Упр

ДЗ(на 21.09.2018)

AB и CD скрещиваются \Rightarrow AC и BD скрещиваются

4.5, I.2, I.4, I.10 ctp 50

всё письменно

21.09.2018

Лемма 1.2. $a||b,\alpha\cap a=\{A\}\Rightarrow \alpha\cap\beta=\{B\}$

Доказательство.
$$a||b\Rightarrow \exists \beta: a,b\subseteq \beta$$

$$a \cap b \neq \emptyset$$
?

$$\alpha \cap a \Rightarrow \alpha \cap \beta = c \Rightarrow c \subseteq \alpha, \beta \& a \neq c \& a \cap c = \{Y\} \Rightarrow c \cap b = \{Y\} \Rightarrow \alpha \cap b = \{Y\}$$

 Γ ЛАВА 1. 1 ЧЕТВЕРТЬ

Глава 2

Перпендикулярность и параллельность

2.1 Перпендикулярность прямой и плоскости

Определение 2.1. Прямая называется **перпендикулярной** плоскости, если она пересекает плоскость и она перпендикулярна всем прямым в этой плоскости, проходящим через точку пересечения.

Определение 2.2. *Отрезок и луч* называются **перпендикулярными** к плоскости, если они пересекают её и лежат на прямой, перпендикулярной этой плоскости.

Определение 2.3. *Перпендикуляр* – отрезок, имеющий общую точку с плоскостью (один конец) и перпендикулярный этой плоскости.

Определение 2.4. *Наклонная* – отрезок, имеющий общую точку с плоскостью (конец отрезка) и не перпендикулярный этой плоскости.

Задача 2.1. α – плоскость, $B \notin \alpha$ Тогда BA – перпендикуляр который короче любой наклонной.

Утверждение 2.1. Через любую точку проходит не более полной перпендикулярной прямой к данной плоскости.

```
Доказательство. \square через точку O проходят b,c:b\perp\alpha,c\perp\alpha тогда \exists!\beta\supset b,c a=\beta\cap\alpha Тогда в плоскости \beta через точку O построенные две прямые, перпендикулярные a?!!
```

Признак 2.1 (перпендикулярности прямой и плоскости). *Прямая, перпендикулярная двум пересекающимся прямым в данной плоскости, перпендикулярна плоскости.*

```
Доказательство. фиксируем две прямые b,c\in\alpha b\cap c=O a\perp b a\perp c фиксируем d\subseteq\alpha d\ni O
```

Возьмём $A\in a, B\in b$: $BC\cap d=D$ B_1, C_1, D_1 — симметричны относительно точки O точкам B, C, D Тогда $OD=OD_1$ $BC=B_1C_1$ $BD=B_1D_1$

Возьмём на a точку $A \neq O$

 $a\perp b$ $BO=OB_1\Rightarrow AO$ – серединный перпендикуляр

 $a\perp c, CO=OC_1\Rightarrow AO$ – серединный перпендикуляр к CC_1

 \Rightarrow $AC=AC_1$ и $AB=AB_1$ и $BC=B_1C_1\Rightarrow \triangle ABC=\triangle AB_1C_1\Rightarrow \triangle ADB=\triangle AD_1B_1\Rightarrow AD=AD_1$ $OD=OD_1\Rightarrow A$ лежит на серединном перпендикуляре к $DD_1\Rightarrow a\perp d$

Теорема 2.1. Через любую точку можно провести плоскость, перпендикулярную данной прямой. и при том только одну.

```
Доказательство. 1. A \in a b \in \beta: b \perp a b \cap a = A c \in \gamma: c \perp a c \cap a = A \Rightarrow \exists! \alpha \supseteq b, c по теореме a \perp \alpha Единственность: \exists \ \alpha, \beta \ni A \quad a \perp \alpha \quad a \perp \beta P \subseteq \beta \quad a \perp p \quad p \not\subseteq Через a и p построим \gamma \quad \gamma пересекается c \alpha \quad q := \alpha \cap \gamma \quad q \subseteq \gamma \quad p \subseteq \gamma \quad a \subseteq \gamma
```

Построили через точку A две прямые, перпендикулярные данной a)

2.

Задача 2.2. $A \notin a$

Теорема 2.2 (о параллельности перпендикуляра). Две прямые, перпендикулярные одной и той же плоскости параллельны.

Доказательство. $a\perp \alpha$ $b\perp \alpha$ $a\cap \alpha=A$ $b\cap \alpha=B$ $\exists ! \beta \ni B, \beta \ni (!)b \subset B$ $M,N \in \alpha: MN \perp Ab$ AM = AN Тогда B, = BNфиксируем $C \in b, c \neq B$ Рассмотрим прямоугольные треугольники $\triangle CBN = \triangle CBM \Rightarrow CM = CN$

 $\triangle CMN$ – равнобедренный, высота совпадает с медианой CA – высота, т.е. $CA \perp MN$

 $a \perp MN, AC \perp MN, AB \perp MN$

Задача 2.3. a –прямая, $A \in a \Rightarrow bce$ прямые, проходящие через точку A, лежат в одной плоскости

 $\Rightarrow a, AC, AB$ лежат в одной плоскости. это может быть только $\beta \Rightarrow C \in \beta \Rightarrow b \subseteq \beta$ Тогда в плоскости β $a \perp AB, b \perp Ab \Rightarrow a||b|$

ДЗ:

7.1, 7.2, 7.3, 7.15 — письменно

24.09.2018

Теорема 2.3. Если все точки пересечения различны, тогла прямые лежат в одной плоскости

Доказательство. a и b пересекаются в точке O? лежат в γ

фиксируем $d: d \cap a = A d \cap b = B$ $d \cap \gamma \ni A, B \Rightarrow d \in \gamma$

Определение 2.5. Параллелепипед – многогранник у которого все стороны параллелограммы.

Теорема 2.4.

Доказательство. 1. $x||a\&y||a \quad \alpha = (ABC) \Rightarrow a \perp \alpha$

2. $\phi X \in \alpha \quad X = (XA) \Rightarrow a \perp x$

2.2О построении

В плоскости

- доказывать возможность построения
- построение циркулем и линейкой

В пространстве

- Можем доказывать возможность построения
- Утверждения о существовании и единственности
- Построение на поверхности тел
- Построение на изображении (чертеже)

Изображение – проекция на плоскость. Оно должно быть:

- правильным
- наглядным

Определение 2.6. Куб – многогранник, у которого шесть граней и все они квадраты

Определение 2.7. Параллелепипед – многогранник, у которого шесть граней и все они параллелограммы.

Определение 2.8. п-угольная пирамида – многоугольник, у которого одна грань (называемая основанием) – п-угольник, а п других – треугольники с общей вершиной (называемой вершиной пирамиды)

 $Ecлu\ n=3\Rightarrow пирамида-тетраэдр$

Пирамида называется правильной, если её основание – правильная фигура

Определение 2.9. п - угольная призма – многогранник, две грани которого (называемые основаниями) – равные пугольники, а остальные п граней - параллелограммы

Определение 2.10. След секущей плоскости на плоскости грани – прямая, по которой секущая плоскость пересекается с плоскостью грани

ДЗ:1, 2, 3, 4, 5

ДЗ (с 08.10.2018): 7.4, 7.5 – устно из учебника. 7.7 – письменно на листочке (в табличке указать все пункты)

Теорема 2.5. Через каждую точку проходит прямая, перпендикулярная данной плоскости

Доказательство.

1. $a \in \alpha$ Тогда построим прямую $a : A \in a \subset \alpha$

Построим плоскость $\beta \perp a$ в точке A. Тогда через $b = \alpha \cap \beta \ni A$

Построим прямую $c \perp b$ в точке а.

 $c\perp b$ и $c\perp a$ (т.к. $c\subset\beta$ и $\beta\perp a$) Следует, что $c\perp\alpha$

2. $a \notin \alpha$ Возьмём точку $B \in \alpha$ Тогда существует $b \ni B : b \perp \alpha$

Если b содержит точку A, то всё ок

Если $A \not\in b$, то проведём через точку A прямую a:a||b|

Т.к. $b \perp \alpha$ и $b||a \Rightarrow a \perp \alpha$

Через любую точку пространства модно провести 3 перпендикулярных прямых.

Как? Возьмём точку. Построим какую-то прямую, проходящую через неё.В этой плоскости проведём прямую, перпендикулярную первой. По только что доказанной теореме проведём через данную точку перпендикуляр через эту плоскость в этой точке. Больше перпендикулярных прямых не провести.

Когда говорят проекция, обычно подразумевают параллельное проектирование относительно перпендикулярной пря-

Задача 2.4. В правильной п-угольной пирамиде вершина проектируется в центр основания. Что из этого следует.

Доказательство. Спроектируем вершину на основание. Фиксируем некоторые две точки A, B принадлежащие основанию. P – вершина. $PO \perp OA$ – $PO \perp OB \Rightarrow \triangle POA$, $\triangle POB$ – прямоугольные. PA = PB, т.к. это правильная пирамида. PO – общая $\Rightarrow \triangle POA = \triangle POB \Rightarrow OA = OB$ Это выполняется для любых двух вершин $\Rightarrow O$ – центр основания

Определение 2.11. Расстояние между двумя точками определено по аксиоме VI как расстояние в какой-то плоскости

Определение 2.12. Расстояние от точки до прямой – расстояние от точки до её проекции

Определение 2.13. Расстояние от точки до плоскости – расстояние от точки до её проекции на данную плоскостью

Задача 2.5. $A \in \alpha$ $AB \perp AC, AD \subset \alpha$

 $BA = BA_1$

фиксируем $AK \neq AC, AD\&L \in CD$

AD – общая $\&AD = Ab\&AB \perp AD \Rightarrow BD = DB_1\&$

 $\langle ... \rangle \triangle BCD = \triangle B_1CD \Rightarrow \langle ... \rangle$

ДЗ: 7.12 (а, б, в), 7.23 – Письменно

7.25, 7.17 - Устно

Готовится к к/р по всему пройденному

Теорема 2.6 (Обобщённая теорема Фалеса). Если AA'||BB'| пересекают стороны угла, то $\frac{OA}{OA'} = \frac{AB}{A'B'}$

П

2.3 Теорема о трёх перпендикулярах

Определение 2.14. Ортогональное проектирование – это параллельное проектирование относительно прямой, перпендикулярной плоскости проектирования.

Определение 2.15. Две скрещивающиеся прямые a,b будем называть перпендикулярными, если $\exists c: \quad c||b \ \& \ c \perp b|$

Теорема 2.7 (Корректность). $: c_1, c_2 || b \quad c_1 \cap a \neq \emptyset \quad c_2 \cap a \neq \emptyset$ Если $c_1 \perp a \mod u$ $c_2 \perp a$

```
Доказательство. c_1||c_2 \exists \alpha \supseteq c_1, c_2 т.к. c_1 \cap a \neq \emptyset c_2 \cap a \neq \emptyset то a \subseteq \alpha В плоскости \alpha a \perp c_1 и c_1||c_2 \Rightarrow a \perp c_2
```

Теорема 2.8 (О трёх перпендикулярах). Если прямая, лежащая на плоскости, перпендикулярна ортогональной проекции наклонной на эту плоскость, то данная прямая перпендикулярна и самой плоскости.

Доказательство. AB — наклонная. $AC \perp \alpha$ — ортогональная проекции $m \perp BC$ — какая-то прямая. Давайте построим прямую m'||m проходящую через точку C

```
т.к. AC \perp \alpha \Rightarrow AC \perp m' m' \perp AC и m'BC \Rightarrow m' \perp (ABC) m''||m проходит через точку B Тогда m'' \perp (ABC) \Rightarrow m'' \perp AB \Rightarrow m \perp AB
```

2.4 Перпендикулярность плоскостей

Определение 2.16. Две плоскости называются взаимно перпендикулярными $\alpha \perp \beta$, если в каждой из них через любую точку проходит прямая, перпендикулярная второй плоскости

Замечание 2.1. *Если* $\alpha \perp \beta$, *mo* $\alpha \cap \beta \neq \emptyset$

Замечание 2.2. $\alpha \perp \beta$, если каждая из них покрыта перпендикулярами к другой.

Свойство 2.1. $\alpha \perp \beta$ $a \perp b \ u \ \alpha \cap a$, mo $a \subset \alpha$

Доказательство. $A \in \alpha \cap a$ возьмём прямую $b \perp \beta$, проходящую через $A.\ A \in a \perp \beta$ и $A \in b \perp \beta$ т.е. мы нашли две перпендикулярные прямые, но она единственна, а значит $a = b \subset \alpha$

Свойство 2.2. $\alpha \perp \beta$ $a \subset \alpha$ $a \perp \alpha \cap \beta$, тогда $a \perp \beta$

```
Доказательство. A=a\cap b c – прямая в \beta проходящая через точку A, перпендикулярно \alpha c\perp \alpha \Rightarrow c\perp a a\perp b \Rightarrow a\perp \beta
```

Теорема 2.9 (Первый признак перпендикулярности плоскостей). Если в плоскости есть хотя бы одна прямая перпендикулярная другой плоскости, то эти плоскости взаимно перпендикулярны

```
Доказательство. a \subset \alpha a \perp \beta \Rightarrow \alpha \cap \beta = c ф. X \in \alpha Тогда опустим перпендикуляр из этой точки к прямой c b \perp C и b \ni X т.к. C \in \beta \Rightarrow a \perp c a \perp c и b \perp c и a, c \subset \alpha \Rightarrow a || b и a \perp b \Rightarrow b \perp \beta ф. Y \in \beta построим b \perp c и b \ni Y b \perp c \Rightarrow A = b \cap c Через точку A построим прямую a' в плоскости \alpha: a' || a
```

т.к. a'||a и $a \perp b \Rightarrow a' \perp \beta$ $a' \perp \beta \Rightarrow a' \perp b$ $a' \perp b$ и $c \perp b$ и $a', c \subset \alpha \Rightarrow b \perp \alpha$

Теорема 2.10 (Второй признак перпендикулярности двух плоскостей). Две пересекающиеся плоскости перпендикулярные, если они содержат две взаимно перпендикулярные прямые, перпендикулярные общей прямой

```
Доказательство. \alpha \cap \beta \subset c a \in \alpha, b \in \beta, a \perp c \quad b \perp c \quad a \perp b \quad (!)\alpha \perp \beta A = a \cap c Тогда проведём через A прямую b'||b Тогда b' \perp a и b' \perp c a \perp b и a \perp c и c, b \in \beta \Rightarrow a \perp b \Rightarrow по первому признаку \alpha \perp \beta
```

Теорема 2.11. Если две плоскости, перпендикулярны третьей плоскости, пересекаются, то прямая их пересечения перпендикулярна третьей плоскости

Доказательство. Упр

 $\alpha\perp\beta$ и $\alpha\perp\gamma$ и $\gamma\cap\beta$ Что можно сказать о прямых их пересечений. – упражнение

Задача 2.6. Даны два равносторонних треугольника на перпендикулярных плоскостях $(ABC) \perp (ADC)$ равносторонние. |AC| = 1 |BD| = ?

Доказательство. DH – высота ADC Тогда DH – медиана, Тогда BH – высота ABC $DH \perp AC$ и $(ABC) \perp (ADC) \Rightarrow$ по свойству $2 \ DH \perp (ABC) \Rightarrow \triangle BHD$ – прямоугольный $Dh = BH = \sqrt{0.75} \ BD = \sqrt{1.5}$

Дз с 9 ноября: задачи: 10.3, 10.5, 10.12, 10.14(a, б) устные упражнения: 2.4, 2.4 ДЗ с 12 ноября: 10.13, 10.8, 10.14(r, д), 10.16(a, б, в, r)

2.5 Параллельные плоскости

Определение 2.17. ДВе плоскости называются параллельным $(\alpha||\beta)$, если у них нет общих точек

Теорема 2.12. Две плоскости, перпендикулярные одной прямой параллельны

Доказательство. $a\perp\alpha, a\perp\beta$ $\equiv \alpha\cap\beta\ni A$ тогда через точку A проведены две плоскости, перпендикулярные а $\Rightarrow \alpha\cap\beta=\emptyset$

Следствие 2.1. Парамлельные плоскости существуют

Лемма 2.1 (О пересечении параллельных плоскостей третьей плоскостью). *Прямые по которым две параллельные плоскости пересекают третью параллельны.*

```
Доказательство. \alpha||\beta,\gamma\cap\alpha=\gamma-d\cap\beta=b a,b лежат в \gamma и не имеют общих точек \Rightarrow a||b
```

Лемма 2.2 (О пересечении прямой двум параллельными плоскостями). *Если прямая пересекает одну из параллельных плоскостей, то она пересекает и другую.*

 \mathcal{A} оказательство. $c \cap \alpha = A$ $\alpha || \beta$ ϕ . $B \in \beta$ γ — плоскость, проходящая через c и B $\gamma \ni B \Rightarrow \gamma \cap \beta = a$ $\gamma \ni A \Rightarrow \gamma \cap \alpha = a$ a || b по предыдущей лемме $a \subseteq \gamma, b \subseteq \gamma, a || b, c \cap a \Rightarrow c \cap b, b \subseteq \beta \Rightarrow c \cap \beta$

Теорема 2.13 (Основная теорема о параллельных плоскостях). *Через каждую точку, не лежащую на данной плоскости проходит параллельная плоскость и при том только одна.*

Доказательство. $A \notin \alpha$

1. Существование. AB – перпендикуляр из A к α

Тогда $\beta \perp AB$ и $\beta \ni A$

По первой теореме $\beta || \alpha$

2. Единственность. $\sqsupset \beta, \gamma || \alpha$ и содержат точку A $a = \beta \cap \gamma$ $< \ldots >$

Следствие 2.2. Если плоскость пересекает одну из параллельны плоскостей, то она пересекает и другую.

Доказательство. $\alpha||\beta \quad \alpha \cap \gamma = c$ Тогда $\exists \ \gamma \cap \beta = \emptyset$ т.е. они параллельны. Тогда мы через точку C мы построили две плоскости α, γ параллельные β ?!!

Следствие 2.3. Две плоскости, параллельные третьей параллельные третьей параллельны.

Доказательство. $\alpha||\gamma$ и $\beta||\gamma$ $\exists \alpha \cap \beta$

Через точку C построили две плоскости параллельные $\gamma?!!\Rightarrow \alpha||\beta|$

Теорема 2.14. Если две плоскости параллельны, то прямая перпендикулярная одной из них перпендикулярна и второй

Доказательство. $\alpha|\beta \quad a \perp a$

По лемме 2: $a \cap \beta = b$

 $\sqsupset a$ не перпендикулярна β

Построим через B плоскость γ , перпендикулярную a

По первой теореме: $\gamma || \alpha$

Т.О. через B построим две плоскости β и γ параллельные α

Задача 2.7 (8.7 д). Построить сечение куба $ABCDA_1B_1C_1D_1$ плоскостью KLM $K \in A_1B_1$ $L \in DD_1$ $M \in BC$

Доказательство. Построим точку $M': MM'||CC_1|$

Построим прямую pMD_1 построим прямую ML

 $S_1 = M'D_1 \cap ML$ построим KS_1

мы знаем, что (KML) пересекает $(A_1B_1C_1)$ по прямой $KX \Rightarrow$ он пересекает (ABC) по прямой ||KX|

Построим MY||KX

плоскость (KLM) пересекает AA_1D_1 по прямой $XL \Rightarrow$

онаа пересекает плоскость BB_1C_1 по прямой параллельной L. Построим прямую MZ||XL

2.6 Взаимное положение прямой и плоскости

- 1. $a \subseteq \alpha$
- 2. $a \cap \alpha = A$
- 3. $a \cap \alpha = \emptyset$

Определение 2.18. Если прямая и плоскость не имеют общих точек, то они называются параллельными!

Лемма 2.3 (О плоскости параллелей). Прямые, параллельные плоскости и проходящие через данную точку, не лежащую на данной плоскости, содержатся в плоскости параллельной данной заполняют её.

Доказательство. $A \not\in \alpha$ $\beta||\alpha$ тогда $\forall b \in \beta, b \ni A$ $b||\alpha$ такие прямые замощают β ф. $c \ni A$ и $c \not\subseteq \beta$ т.е. c пересекает $\beta \Rightarrow C$ пересекает α (т.е. c не параллельна α)

Теорема 2.15 (признак параллельности прямой и плоскости). Если Если прямая параллельна некоторой прямой, лежащей в данной плоскости и не содержится в ней, то она параллельна той плоскости

Доказательство. $a \nsubseteq \alpha$ и a||b и $b \subseteq \alpha$ $\exists a \cap \alpha \neq \emptyset$ и $a \nsubseteq \alpha$ (т.е. a пересекает α) $\Rightarrow b$ пересекает α ?!!

Теорема 2.16 (2 признак параллельности прямой и плоскости). Если две пересекающиеся прямые, лежащие в одной плоскости соответственно параллельны двум прямым, лежащим в другой плоскости, то эти плоскости параллельны.

Доказательство. $a,b\subseteq\alpha$ $a\cap b=C$ $c,d\subseteq\beta$ a||c и b||d

$$a||c \Rightarrow a||\beta$$
$$b||d \Rightarrow b||\beta$$

a,b содержатся а лоскости параллельной β (по лемме) $\Rightarrow \alpha || \beta$

ДЗ: Задачи:

- 1. 8.2
- 2. 8.6
- 3. 8.7
- 4. 9.8

Упражнения:

- 1. 8.1
- 2. 8.3
- 3. 8.4

Построить граф утверждений. что из чего следует. ДЗ с 22 ноября:

- 1. 8.15
- 2. 9.3

Задача 2.8. $ABCA_1B_1C_1$ – правильная треугольная призма все рёбра = a $M \in AB$ AV : MB = 3 : 1 N – середина B_1C_1

- сечение α через точку M параллельно плоскости (A_1BC)
- найдите периметр сечения
- найдите площадь сечения

Доказательство. плоскость (ABC) пересекает (A_1BC) и α по параллельным прямым (MD||BC)плоскость (ABB_1) пересекает (A_1BC) и α по параллельным прямым $(ME||A_1B)$

$$ME = \frac{3}{4}\sqrt{2}a$$

$$MD = \frac{\bar{3}}{4}a$$

Плоскость (
$$ABB_1$$
) пер
Т.О. MBE — сечение $ME=\frac{3}{4}\sqrt{2}a$ $MD=\frac{3}{4}a$ $P=\frac{\frac{3}{4}}{2a+\sqrt{2}}$

ДЗ:

Упражнения

- 1. 10.1
- 2. 10.2
- 3. 0.10
- 4. 9.11

Письменно:

1. 9.14

П

2.	9.27
3.	10.16
ДЗ на 3 ноября:	
1.	4.018
2.	4.014
3.	4.020
4.	4.021

5. 4.0226. 4.025

2.7 Ортогональное проектирование

Определение 2.20. Ортогональное проектирование фигуры – множество ортогональных проекций точек этой фигуры

Теорема 2.17. Ортогональная проекция точки на прямую в пространстве – точка пересечения прямой и перпендикулярной ей плоскости, проходящей через эту точку.

Доказательство. $\exists ! \alpha : A \in \alpha \& \alpha \perp a$

 $A'=\alpha\cap a$

 $AA' \perp a$ по определению перпендикулярной плоскости.

Теорема 2.18. Ортогональная проекция отрезка на прямую – точка, если отрезок перпендикулярен прямой и отрезок, если не перпендикулярен.

Аналогично с проекцией на плоскость

Задача 2.9. Ортогональная проекция ромба ABCD на плоскость, проходящую через вершины A и параллельную его диагонали BD является квадратом $AB_1C_1D_1$ со стороной a. Найдите периметр ромба, если AC = m

ДЗ:

- 1. 9.21
- 2. 10.26
- 3. 11.1
- 4. 11.2
- 5. II.3
- 6. II.7
- 7. Упражнения:
 - (a) 11.4
 - (b) 11.14

Глава 3

Расстояние и углы

3.1 Расстояние между фигурами

X,Y – две точки можно провести единственную прямую. |XY| – длина отрезка XY

- 1. |XX| = 0
- 2. |XY| = |YX|
- 3. $|XY| \leq |XZ| + |ZY|$

Определение 3.1. X – точка, F – фигура. Тогда $|XF| = \inf\{|XY| \mid Y \in F\}$

Определение 3.2 (Ближайшая точка). A – точка, F – фигура, тогда B \in F называется ближайшей точкой к A, если $\forall X \in F \quad |AB| \leqslant |AX|$

Замечание 3.1. Если ближайшая точка есть, то расстояние до неё ровно расстояние до фигуры.

Лемма 3.1. A – точка, B – её проекция на α Тогда $\forall X \in \alpha \quad |AX|^2 = |AB|^2 + |BX|^2$

Теорема 3.1 (Теорема о ближайшей точке). Точка плоской фигуры К является ближайшей к некоторой точке тогда и только тогда, когда эта точка фигуры ближайшая к проекции данной точки на плоскость фигуры

Доказательство. 1. Если $A \in \alpha$, то A' = A

2. Если $A \not\in \alpha$, тогда $\forall X \in F \quad |AX|^2 = |AA'|^2 + |A'X|^2, \; |A'A|$ – постоянное Чем меньше |AX|, тем меньше |A'X| и наоборот

Следствие 3.1 (Теорема о проекциях). A – точка, a – прямая в плоскости α . Тогда проекции A и A' на прямую а совпадают

Доказательство. B – ближайшая точка прямой a к A(т.е. проекция точки A на a) B – ближайшая точка прямой a к точке A' (т.е. проекция точки A' на a)

Следствие 3.2 (Теорема о трёх перпендикулярах). *Прямая лежащая в плоскости перпендикулярна наклонной к этой плоскости тогда и только тогда, когда она перпендикулярна её проекциям*

Доказательство. AA' – перпендикуляр к α , тогда: $a \perp AB \Leftrightarrow a \perp A'B$

Определение 3.3. F_1, F_2 – фигуры, тогда $|F_1F_2| = \inf\{|XF_2| \mid X \in F_1\}$

Определение 3.4 (Ближайшая точка фигуры F_1 к фигуре F_2). это $B \in F_1 : \forall X \in F_1 \quad |BF_2| \leqslant |XF_2|$

Замечание 3.2. Если есть ближайшие точки фигур друг к другу, то расстояние между ними – расстояние между фигурами.

Замечание 3.3. • Расстояние от точки до прямой – длина перпендикуляра

- Расстояние от точки до плоскости длина перпендикуляра
- Расстояние между двумя параллельными плоскостями длина общего перпендикуляра
- Расстояние между прямой и параллельной ей плоскости длина их общего перпендикуляра
- Расстояние между двумя скрещивающимися прямыми. a и b скрещивающиеся. Возьмём $X \in B$. Построим a'||a через точку X

 β – плоскость, построенная по a' u b

Спроектируем а на плоскость β

 $a''||a'\Rightarrow a''\cap b\neq 0 (=\{Y\})$

YY' перпендикуляр на a, тогда |ab| = |YY'|

Лемма 3.2. Параллельные отрезки с концами на двух параллельных плоскостях равны.

Доказательство. Беседин доказывал

ДЗ:

- 1. 12.13
- 2. 12.14
- 3. 12.23
- 4. 12.37

Упражнение:

1. 12.1

3.2 Пространственная теорема Пифагора

Теорема 3.2 (Пространственная Теорема Пифагора). *Квадрат длины любого отрезка равен сумме квадратов длин его проекций на три взаимно перпендикулярные прямые.*

Доказательство. $\Box a, b, c$ – три взаимно перпендикулярные прямые и есть отрезок в этом пространстве AB γ – плоскость, проходящая через a и b. Спроектируем отрезок AB на плоскость $\gamma \to A'B'$

1. $A' = B' \Rightarrow AB||c$. Возьмём его проекцию на прямую c. Образуется параллелограмм, а тогда $A_3B_3 = AB$.

Проекция AB на a совпадает с проекцией точки A'.

Проекция AB на b совпадает с проекцией точки B'

А в таком случае $|AB|^2 = |A_1, B_1|^2 + |A_2B_2|^2 + |A_3B_3|^2$, где первые два слогаемых нулевые.

2. A'B' – отрезок. Тогда $|A'B'|^2 = |A_1B_1|^2 + |A_2B_2|^2$

Возьмём плоскость, проходящую через точку A параллельно плоскости $\gamma \to \alpha$. И плоскость β , проходящую через точку B параллельно плоскости γ .

- (a) $\alpha = \beta$ Упражнение
- (b) $A_3 = \alpha \cap c$ $B_3 = \beta \cap c$

 $A'' = AA' \cap \beta \Rightarrow A'A''BB'$ – параллелограмм (A''A'||BB'), т.к. A'B' – проекция. А тогда все 4 точки лежат в одной плоскости, т.е. это плоская фигура. A'B'||A''B), т.к. лежат в параллельных плоскостях. $\Rightarrow A''B = A'B'$) Кроме того $AA_3 \perp c$ (т.к. $c \perp \gamma, \alpha || \gamma$).

$$BB_3 \perp c(\text{T.K. } c \perp \gamma, \beta||\gamma)$$

A тогда A_3B_3 – проекция AB на c

 $AA'' = A_3B_3$ (как параллельные отрезки между параллельными плоскостями)

В треугольнике $ABA'' \quad |AB|^2 = |AA''|^2 + |A''B|^2$

$$|AB|^2 = |A_3B_3|^2 + |A_1B_1|^2 + |A_2B_2|^2$$

ДЗ:

Александров:

- 1. 13.1
- 2. 13.6
- 3. 13.11

Листочек:

- 1. 9
- 2. 12
- 3. 15.д
- 4. 32
- 5. 26

3.3 Углы в пространстве

Определение 3.5. Два луча в пространстве называются сонаправленными, если:

- 1. один из них содержит другой
- 2. лежат на параллельных прямых и находятся в одной полуплоскости относительно прямой, проходящей через их начала.

Определение 3.6 (Угол между двумя лучами). *Если два луча имеют общее начало, то угол между ними – угол в плоскости, которая их содержит*

Если у них разные начала, то возъмём в пространстве некую точку и отложим от неё луч, сонаправленный первому и луч сонаправленный второму лучу. Тогда угол между этими лучами будет углом между исходными лучами.

Лемма 3.3. Углы с соответственно сонаправленными сторонами равны.

Доказательство. Дано два угла: (O, p, q); (O', p', q') p||p', q||q' $\Box A \in p, B \in q$ На другом угле отложим равные отрезки O'A' и O'B' OA = O'A' OB = O'B' OA = O'A' OA = O'A' OB = O'B' OA = O'B' OA = O'A' OB = O'B' OA = O'B' OA

Лемма 3.4. $a \uparrow \uparrow b, b \uparrow \uparrow c$ Тогда $a \uparrow \uparrow c$

Доказательство. Если лучи лежат на одной плоскости, то a,b лежат по одну сторону от прямой $AB,\,b,c$ лежат по одну сторону от прямой BC

Рассмотрим прямую AC. Пусть есть точка луча a и точка луча c

Пусть лучи не лежат на одной плоскости, тогда проведём плоскость через точки $A,B,C-\psi$

Проведём ещё три плоскости:

1. α через a, b

- 2. β через b, c
- 3. γ через c, a

 $\alpha \cap \psi = AB$ a, b – по одну сторону от $AB \Rightarrow$ в одном полупространстве относительно ψ

 $\beta \cap \psi = BC$ b, c – тоже в одном полупространстве относительно ψ

А значит a,c – в одном полупространстве относительно ψ

 $\gamma \cap \psi = AC \Rightarrow a,c$ находятся в одной полуплоскости относительно $AC \Rightarrow a \uparrow \uparrow c$

Теорема 3.3. Определение угла между лучами корректно

Доказательство. p, q – лучи

A, p', q' – сонапрваленные лучи через A

B, p'', q'' – сонаправленные лучи через B

 $p' \uparrow \uparrow p \uparrow \uparrow p'' \Rightarrow p' \uparrow \uparrow p'' q' \uparrow \uparrow q''$ аналогично

А тогда по лемме углы равны. А тогда определяется один и тот же угол независимо от выбранной точки, т.е. определение корректно

Определение 3.7 (Угол между прямыми).

- 1. Если прямые параллельны, угол равен нулю
- 2. Если пересекаются, образуются четыре луча. Выбираем меньший из возможных углов.
- 3. Если скрещиваются, возьмём точку в пространстве, проведём через неё две прямые параллельные данным и угол между получившимися прямыми примем за угол между исходными.

Корректно, потому что если взять две точки, то образуется четыре параллельных угла (между лучами), которые равны.

Определение 3.8. Угол между прямой и плоскостью – угол между прямой и её проекцией (ортогональной) на данную плоскость.

Если проекция – точка, то угол будем считать прямым

Задача 3.1. a, b – nрямые

 $a\perp b$ в общем смысле \Longleftrightarrow угол между a,b прямой

Утверждение 3.1. Угол между прямой и плоскостью – наименьший среди углов между прямой и содержащимися в этой плоскости прямыми

Доказательство. Если проекция прямой – точка, то угол между этой прямой и любой прямой в этой плоскости – прямой. Если проекция прямой – прямая, рассмотрим угол между исходной прямой и прямой, проходящей через точку пересечения исходной прямой и плоскости параллельно прямой в плоскости. Отложим на последней прямой OB = OA' – длине отрезка между точкой пересечения O и проекции выбранной точкой A

 φ угол между исходной прямой и её проекцией

$$\begin{split} \psi &- \text{угол } AOB \\ \cos \varphi &= \frac{OA^2 + OA'^2 - AA'^2}{2 \ OA \cdot OA'} \\ \cos \psi &= \frac{OA^2 - AB^2 + OB^2}{2 \ OA \cdot OB} \\ \text{т.к. } AB^2 &> AA'^2, \text{ To } \cos \varphi > \cos \psi \Rightarrow \varphi < \psi \end{split}$$

Упр:

- 1. 14.1
- 2. 14.3

ДЗ:

- 1. 14.9
- 2. 14.10

- 3. 14.18
- 4. 14.21

Определение 3.9. Двугранный угол – часть пространства, ограниченная двумя полуплоскостями, имеющими общую граничную прямую и не лежащими в одной плоскости и сами полуплоскости.

Полуплоскости называются гранями, а прямая называется ребром.

Определение 3.10. Линейный угол двугранного угла – плоский выпуклый угол, вершина которого лежит на ребре данного угла, а стороны лежат на его гранях и перпендикулярны его ребру.

Лемма 3.5. Величины любых двух линейных углов данного двугранного угла равны.

Доказательство. Рассмотрим два линейных угла данного двугранного угла

 $OA \uparrow \uparrow O_1A_1$ (т.к. $\bot OO_1$ и лежат в одной плоскости)

аналогично $OB \uparrow \uparrow O_1B_1 \Rightarrow$ это два угла равной величины

А тогда величина двугранного угла равна величине любого линейного угла.

Определение 3.11. Если две плоскости пересекаются, то угол между ними – наименьший из углов, образованных ими двугранных углов.

В противном случае, если плоскости парамельны, то угол равен 0 радиан.

Упр:

1.

Задача 3.2. a, b – прямые

 $a\perp b$ в общем смысле \iff угол между a,b прямой

- 2. 14.3
- 3. 14.4

ДЗ:

- 1. 14.13
- 2. 14.19
- 3. 14.22
- 4. 14.37

ДЗ+:

- 1. 4
- 2. 6
- 3. 7
- 4. 14
- 5. 17
- 6. 20
- 7. 21
- 8. 22

3.4 Трёхгранные углы

```
a,b,c — три луча с общим началом.  \angle a,b-\gamma \\  \angle b,c-\alpha \\  \angle c,a-\beta \\   Объединение \alpha,\beta и \gamma — трёхгранный угол O_{abc} лучи a,b и c — рёбра  \alpha,\beta,\gamma — грани  \widehat{\alpha},\widehat{\beta},\widehat{\gamma} — величины двугранных углов. плоскости, содержащие \gamma и \beta — составляют двугранный угол \widehat{\alpha}
```

3.4.1 Теорема косинусов для трёхгранного угла

Теорема 3.4.
$$\cos \widehat{\gamma} = \cos \widehat{\alpha} \cdot \cos \widehat{\beta} + \sin \widehat{\alpha} \cdot \sin \widehat{\beta} \cdot \cos \widehat{c}$$

Доказательство.
$$C \in c$$
 $\widehat{\alpha}, \widehat{\beta} < \frac{\pi}{2}$
$$OA^2 = AC^2 + OC^2$$

$$OB^2 = OC^2 + BC^2$$

$$\angle ACB = \widehat{C}$$

$$\angle AOB = \widehat{\gamma}$$

$$AB^2 = AC^2 + CB^2 - 2AC \cdot CB \cdot \cos \widehat{C}$$

$$AB^2 = AO^2 + BO^2 - 2AO \cdot BO \cdot \cos \widehat{\gamma}$$

$$AC^2 + CB^2 - 2AC \cdot CB \cdot \cos \widehat{C} = AO^2 + BO^2 - 2AO \cdot BO \cdot \cos \widehat{\gamma}$$

$$AO^2 - AC^2 + BO^2 - CB^2 = 2AC \cdot CB \cdot \cos \widehat{c} - 2AO \cdot BO \cdot \cos \widehat{\gamma}$$

$$OC^2 = AC \cdot CB \cdot \cos \widehat{c} - AO \cdot BO \cdot \cos \widehat{\gamma}$$

$$\cos \widehat{\gamma} = \frac{AC \cdot CB}{AO \cdot BO} \cos \widehat{c} + \frac{OC^2}{AO \cdot BO}$$

$$\cos \widehat{\gamma} = \frac{AC}{AO} \cdot \frac{BO}{AO} \cos \widehat{c} + \frac{OC}{AO} \cos \widehat{c}$$

$$\cos \widehat{\gamma} = \sin \widehat{\beta} \cdot \sin \widehat{\alpha} \cos \widehat{c} + \cos \widehat{\beta} \cdot \cos \widehat{\alpha}$$

$$\operatorname{Ecлu} \widehat{\alpha}, \widehat{\beta} > \frac{\pi}{2}$$

$$\widehat{\alpha'} = \pi - \widehat{\alpha} \qquad \widehat{\beta'} = \pi - \widehat{\beta} - \operatorname{cMexhie} \operatorname{yfli}$$

$$\cos \widehat{\alpha'} = -\cos \widehat{\alpha} \qquad \cos \widehat{\beta'} = -\cos \widehat{\beta} \operatorname{dopmyna} \operatorname{ta} \operatorname{xe}$$

$$\operatorname{Torda} \operatorname{paccmatpubaem} \operatorname{yfon} O_{ac'b}$$

$$\operatorname{Eclu} \widehat{\alpha} = \widehat{\beta} = \frac{\pi}{2}, \operatorname{t.e} a \perp c \operatorname{u} b \perp c \operatorname{A} \operatorname{torda} \widehat{\gamma} = \widehat{c}$$

$$\cos \widehat{\gamma} = \cos \widehat{c}$$

3.4.2 Теорема синусов для трёхгранного угла

$$\begin{split} \cos \widehat{c} &= \frac{\cos \widehat{\gamma} - \cos \widehat{\alpha} \cos \widehat{\beta}}{\sin \widehat{\alpha} \sin \widehat{\beta}} \\ &\sin^2 \widehat{c} = 1 - \frac{(\cos \widehat{\gamma} - \cos \widehat{\alpha} \cos \widehat{\beta})^2}{\sin^2 \widehat{\alpha} \sin^2 \widehat{\beta}} \\ &\frac{\sin^2 \widehat{c}}{\sin^2 \widehat{\gamma}} = \frac{\sin^2 \widehat{\alpha} \cdot \sin^2 \beta - (\cos \widehat{\gamma} - \cos^2 \widehat{\alpha} \cos \widehat{\beta})^2}{\sin^2 \widehat{\alpha} \sin^2 \widehat{\beta} \sin^2 \widehat{\gamma}} = \frac{\sin^2 \widehat{\alpha} \sin^2 \widehat{\beta} - \cos^2 \widehat{\gamma} + 2 \cdot \cos \widehat{\alpha} \cos \widehat{\beta} \cos \widehat{\gamma} - \cos^2 \widehat{\alpha} \cos^2 \widehat{\beta}}{\sin^2 \widehat{\alpha} \sin^2 \widehat{\beta} \sin^2 \widehat{\alpha} \sin^2 \widehat{\beta}} \\ &\sin^2 \widehat{\alpha} \sin^2 \widehat{\beta} = 1 + \cos^2 \widehat{\alpha} \cdot \cos^2 \widehat{\beta} - \cos^2 \widehat{\alpha} - \cos^2 \widehat{\beta} \\ &\frac{1 - \cos^2 \widehat{\alpha} - \cos^2 \widehat{\beta} - \cos^2 \widehat{\gamma} + 2 \cos^2 \widehat{\alpha} \cos^2 \widehat{\beta}}{\sin^2 \widehat{\alpha} \sin^2 \widehat{\beta} \sin^2 \widehat{\gamma}} = \frac{\sin^2 \widehat{c}}{\sin^2 \widehat{\gamma}} \\ &\frac{\sin^2 \widehat{c}}{\sin^2 \widehat{\gamma}} = \frac{\sin^2 \widehat{a}}{\sin^2 \widehat{\alpha}} = \frac{\sin^2 \widehat{b}}{\sin^2 \widehat{\beta}} \end{split}$$

Глава 4

Пространственные фигуры и тела

Определение 4.1. *Сферой* называется множество точек пространства, удалённых от данной точки на заданное положительное расстояние. Данная точка называется **центром** сферы, а данное расстояние – **радиусом**.

Определение 4.2. *Шаром* называется множество точек пространства, находящихся от этой точки на расстоянии не больше данного положительного расстояния. Указанная точка называется **центром** шара, а расстояние – **радиусом** шара.

```
Поверхность шара – \{X: |OX| = R\} (т.о. поверхность шара – сфера) Множество точек X шара таких, что |OX| < R – называется внутренностью шара
```

Определение 4.3. Радиус – отрезок, соединяющий центр шара с точкой на поверхности шара

Определение 4.4. Диаметр – удвоенный радиус.

Диаметр – отрезок прямой, проходящей через центр шара по которому прямая пересекает шар.

4.1 Взаимное расположение шара и сферы с плоскостью

Пусть R — радиус шара/сферы с центром в точке O — α — плоскость. A — ближайшая точка α к точке O, тогда d = |OA| — расстояние от центра шара/сферы до точки плоскости.

Пусть прямая OA пересекает сферу в точке B. Фиксируем какую-то точку $X \in \alpha$, а тогда, по теореме о ближайшей точке $|OX|^2 = |OA|^2 + |AX|^2$

$$1. \ d>R \qquad |OX|^2=d^2+|AX|^2>R^2$$
 Т.е. для любой точки $X\in\alpha \quad X$ не принадлежит шару/сфере

2.
$$d=R \qquad |OX|^2=R^2+|AX|^2$$
 Получается $|OX|=R \Longleftrightarrow |AX|=0$

Т.е. X = A – единственная точка пересечения. Тогда говорят, что map/c фера касаются плоскости.

3.
$$d < R$$
 $|OX|^2 = d^2 + |AX|^2$. Нам нужно найти $X \in \alpha: |AX|^2 = R^2 - d^2$ $|AX| = \sqrt{R^2 - d^2}$

Т.е. пересечение сферы и α – окружность с центром в точке A и радиусом $\sqrt{R^2-d^2}$

а с шаром – диск
$$|AX| \leqslant \sqrt{R^2 - d^2}$$

Упражнение 4.1 (1). Если шар(сфера) касается плоскости, то радиус, проведённый к точке касания – перпендикулярен плоскости.

Упражнение 4.2 (2). Исследовать взаимное расположение двух сфер.

Упражнение 4.3 (3). Ортогональная проекция шара или сферы на плоскость – круг.

Определение 4.5. Круг, по которому пересекает плоскость, проходящая через центр шара, сам шар, называется **большим кругом**.

ДЗ:

1. Упражнения выше

- 2. Упражнения 15.1, 15.2
- 3. 15.7
- 4. 15.8
- 5. 15.20
- 6. 15.22

(конспект по трёхгранным углам в конце предыдущей главы) ДЗ:

- 1. 14.53
- 2. 14.57
- 3. 14.59
- 4. 15.4
- 5. 15.18

4.2 Сферические треугольники

Сфера с центром в точке O и радиусом $R.\ A,B,C$ не лежат на одной прямой

Определение 4.6. Сферическим треугольником назовём фигурами, вершинами которой будут точки A, B и C, a сторонами – малые дуги между ними.

Можно задать взаимно однозначное соответствие между треугольниками на сфере и трёхгранными углами с вершиной в центре сферы.

длина дуги $\gamma = R \cdot \widehat{\gamma}$

4.3 Опорная плоскость

Определение 4.7 (на плоскости). Прямая называется **опорной** для фигуры, если она имеет с фигурой хотя бы одну общую точку и эта фигура лежит по одну сторону от этой прямой. Т.е. фигура лежит в одной полуплоскости относительно прямой.

Определение 4.8. Плоскость называется**опорной** для фигуры, если она имеет хотя бы одну общую точку с этой фигурой и вся фигура лежит в одном полупространстве относительно этой плоскости.

Три случая рсположения плоскости и фигуры:

- 1. плоскость не пересекает фигуру
- 2. плоскость является опорной для фигуры
- 3. плоскость пересекает фигуру.

Определение 4.9. Фигура называется **ограниченной**, если расстояние между любыми двумя её точками конечное расстояние

В противном случае фигура неограниченная.

Утверждение 4.1. В ограниченной фигуре найдутся две точки, расстояние между которыми максимальное. Расстояние между этими точками назовём диаметром фигуры

Теорема 4.1. Плоскость, проходящая через один из концов диаметра фигуры и перпендикулярная ему не имеет с фигурой других общих точек и является опорной

Доказательство. Пусть диаметр AC. плоскость α касается фигуры в точке $A: \quad \alpha \perp AC$.

Допустим, что есть ещё одна точка – $B \in \alpha \cap F$ – фигура

Но она является касательной к плоскости, а значит по теореме Пифагора AB > AC, но AC – диаметр, т.е. наибольшее такое расстояние, которое может возникнуть между двумя точками фигуры?!!

А тогда плоскость касается фигуры \Rightarrow она является опорной

Д3: 16.2 - 16.14 (чётные)

П

4.4 Выпуклые фигуры

Определение 4.10. Фигура называется выпуклой, если для любых двух точек $x, y \in F$ XY содержится в F

Примеры:

- 1. Все выпуклые плоские фигуры
- 2. шар
- 3. точка и пустое множество

Теорема 4.2. Пересечение двух выпуклых фигур – выпуклая фигура

Доказательство. F_1, F_2 – выпуклые точки. Возьмём две точки из их пересечении $X, Y \in F_1 \cap F_2$ $X, Y \in F_1 \Rightarrow XY \in F_1$ $X, Y \in F_2 \Rightarrow XY \in F_2$

 $XY \in F_1 \cap F_2$

Следствие 4.1. Пересечение конечного числа выпуклы фигур - выпуклая фигура

Задача 4.1. Пересечение счётного числа?

Следствие 4.2. Пересечение выпуклой фигуры и плоскости – выпуклая фигура

Следствие 4.3. Каждая плоскость делит любую выпуклую фигуру на две выпуклые фигуры

Теорема 4.3. Проекция выпуклой фигуры – выпуклая фигура

Доказательство. F – выпуклая фигура

F' – проекция на плоскость α или прямую a

Берём две точки проекции $X', Y' \in F'$ Есть по крайней мере один прообраз $X, Y \in F, XY \in F$

Проекция отрезка – отрезок с концами в проекциях точек конца (или точка)

 $X'Y' \subset F'$

4.5 Определение движения

X, Y – два подмножества плоскости

 $f: X \to Y$ – движение, если:

- 1. биекция
- 2. $A, B \in X |AB| = |f(A)f(B)|$

Замечание 4.1. Композиция движений – движение

4.6 Определение и свойства цилиндра

Определение 4.11. $\alpha, F \subseteq \alpha, A \in \alpha, AA' \nsubseteq$

 $\forall X \in F$ проведём отрезок XX' в том же полупространстве, что AA' и XX'||AA' и |XX'| = |AA'|Терминология:

F – основание цилиндра

AA' – образующий

Теорема 4.4. F' cocmoum из всех точек X'

 $Toz\partial a$:

- 1. F' лежит в плоскости параллельной α
- 2. F' = F

```
Доказательство. \beta – плоскость, проходящая через три конца отрезков (A', B', B'). AA'C'C, AA'B'B, BB'C'C – параллелограммы \Rightarrow \alpha||\beta \Box X' \notin \beta Луч XX' пересекает \beta а точке Y, т.е. XY = XX', т.е. Y = X' Докажем, что F = F' f: F \to F' X \mapsto X' A, B \in F тогда f(A) = A', f(B) = B' AA' = BB' и AA'||BB' из определения цилиндра \Rightarrow AB = A'B' ч.т.д. \Box
```

Замечание 4.2. Фигура F' тоже называется основанием

Следствие 4.4. Все сечения цилиндра плоскостями параллельными плоскости основания равны основанию цилиндра

Определение 4.12. Высота цилиндра – перпендикуляр из точки одного основания на плоскость другого. (или же его длина)

Определение 4.13. Ширна фигуры – наименьшее расстояние между

ДЗ:

- 1. 17.1
- 2. 17.2
- 3. 17.8
- 4. параграфы 18.2, 18.3
- 5. 18.1
- 6. 18.2
- 7. 18.4

Определение 4.14. Иилиндр – прямой, если все его образующие перпендикулярны его основанию.

Определение 4.15. Прямой круговой цилиндр – прямой цилиндр с кругом в качестве основания

Определение 4.16. Поверхность цилиндра – объединение его оснований и боковой поверхности (образуется из образующих, который соединяют граничные точки его основания)

Определение 4.17. Ось цилиндра – отрезок, соединяющий центры оснований цилиндра.

Замечание 4.3. Сечение поверхности цилиндра является окружность

Теорема 4.5. Сечение цилиндра плоскостью, параллельной плоскости основания является окружностью (в случае кругового цилиндра)

 \square

Определение 4.18. Цилиндр выпуклый $\stackrel{def}{\Longleftrightarrow}$ его основания выпуклые

Доказательство. Цилиндр выпуклый. Основания – пересечения цилиндра и плокостей, на которые он опирается. Пересечение выпуклых фигур – выпукло.

Основания выпуклы. Пусть есть две точки цилиндра, отрезок между ними не включён в цилиндр. Тогда рассмотрим какие-то образующие, проходящие через эти две точки.

ДЗ:

- 1. 16.14
- 2. 18.6, 10, 13, 15, 16

4.7. КОНУС 25

4.7 Конус

Определение 4.19. $\supset F$ – плоская фигура и O – точка не лежащая в плоскости фигуры. Тогда конусом называется объединение всевозможных отрезков $OX, X \in F$

F - основание, a O - вершина

Определение 4.20. Высота конуса – перпендикуляр к плоскости основания (длина перпендикуляра)

Теорема 4.6. Сечение конуса плоскостью, параллельной основанию есть фигура, подобная основанию.

Доказательство. Пусть дан конус с вершиной O и основанием $F \subset \alpha$ и пусть дана плоскость $\beta || \alpha$

$$\sphericalangle OX, X \in F \quad OX \cap \beta = X' \quad F \to F' \quad X \mapsto X'$$
 (очевидно биективное отображение)

 $\triangleleft OY, Y \in F, OY \cap beta = Y'$

O, Y, X – лежат в одной плоскости.

Есть два треугольника $\triangle OXY, \triangle OY'X' - YX||Y'X',$ т.к. $\alpha||\beta|$

 $\triangle OXY \sim \triangle OX'Y'$ Тогда коэффициент подобия будет равен $\frac{OA}{OX'}$

Возьмём точку
$$Z \in F$$

$$\frac{Y'X'}{YX} = \frac{OX'}{OX} \quad \frac{Z'X'}{ZX} = \frac{OX'}{OX} \Rightarrow \frac{Y'X'}{YX} = \frac{Y'X'}{YX} = \frac{Z'X'}{ZX}$$

Определение 4.21. Прямой круговой конус (конус вращения) – основание круг, а вершина проецируется в центр круга.

Определение 4.22. Боковая поверхность для кругового конуса – те отрезки, которые соединяют вершины с окружностью основания.

ДЗ:

- 1. 19.16
- 2. 19.22
- 3. 19.23
- 4. Дана плоская фигура с диаметром 1. Доказать, что она может быть заключена в прямоугольник с площадью < 1