

**Universidade do Minho** Escola de Ciências

## Mestrado Integrado em Engenharia Informática

Departamento de Matemática

2019/2020

Exercício 8.1 Considere a função  $f:[0,5]\to\mathbb{R}$  representada graficamente na figura ao lado e seja  $F:[0,5]\to\mathbb{R}$  uma função primitiva de f.



- a) Encontre os pontos críticos de F.
- b) Classifique os pontos críticos de F.

Exercício 8.2 Calcule os seguintes integrais indefinidos:

a) 
$$\int (3x^2 - 2x^5) dx$$
 g)  $\int \frac{2x+1}{x^2 + x + 3} dx$  m)  $\int \frac{\sqrt{1+3 \ln a}}{a} da$   
b)  $\int (\sqrt{x} + 2)^2 dx$  h)  $\int \frac{t}{3-t^2} dt$  n)  $\int z \sin z^2 dz$   
c)  $\int (2\theta + 10)^{20} d\theta$  i)  $\int \frac{1}{4-3x} dx$  o)  $\int \frac{1}{x(\ln^2 x + 1)} dx$   
d)  $\int x^4 (x^5 + 10)^9 dx$  j)  $\int \tan x dx$  p)  $\int \left(\frac{2}{x} - 3\right)^2 \frac{1}{x^2} dx$   
e)  $\int y^2 e^{y^3} dy$  k)  $\int \frac{1}{e^{3x}} dx$  p)  $\int \left(\frac{2}{x} - 3\right)^2 \frac{1}{x^2} dx$   
f)  $\int \sqrt{2x+1} dx$  l)  $\int \frac{-7}{\sqrt{1-5x}} dx$  q)  $\int \sin(\pi - 2x) dx$ .

Exercício 8.3 Usando primitivação por partes calcule:

a) 
$$\int \ln x \, dx$$
 g)  $\int x^2 \sin x \, dx$  m)  $\int \frac{\arcsin \sqrt{x}}{\sqrt{x}} \, dx$   
b)  $\int x \sin(2x) \, dx$  h)  $\int x \sin x \cos x \, dx$  n)  $\int x \arctan x \, dx$   
c)  $\int \arctan x \, dx$  i)  $\int \ln^2 x \, dx$  o)  $\int x^2 \ln x \, dx$   
d)  $\int x \cos x \, dx$  j)  $\int e^x \cos x \, dx$  p)  $\int \operatorname{sen}(\ln x) \, dx$   
e)  $\int \ln(1-x) \, dx$  k)  $\int \operatorname{arcsen} x \, dx$  q)  $\int \operatorname{ch} x \operatorname{sen}(3x) \, dx$   
f)  $\int x \ln x \, dx$  l)  $\int e^{\operatorname{sen} x} \operatorname{sen} x \cos x \, dx$  r)  $\int x^3 e^{x^2} \, dx$ 

Exercício 8.4 Determine F, uma primitiva da função f, sabendo que F(1)=0. A solução encontrada é única?

a) 
$$f(x) = \sin x \cos x$$
   
b)  $f(x) = \sin(2x) \cos x$    
c)  $f(x) = \sin^2 x$    
d)  $f(x) = \frac{1}{x}, x > 0$ 

Exercício 8.5 Sendo  $f: \mathbb{R} \to \mathbb{R}$  definida por  $f(x) = x^2 \sin x$ , encontre a primitiva de f cujo gráfico passa pelo ponto  $(\frac{\pi}{2}, \pi)$ .

Exercício 8.6 Calcule os seguintes integrais indefinidos usando a substituição indicada:

a) 
$$\int x\sqrt{x-1} \, dx$$
,  $x = t^2 + 1$  c)  $\int \frac{e^{2x}}{1+e^x} \, dx$ ,  $x = \ln t$ 

c) 
$$\int \frac{e^{2x}}{1+e^x} dx, \quad x = \ln t$$

b) 
$$\int \sqrt{1-x^2} dx$$
,  $x = \operatorname{sen} t$  d)  $\int \sqrt{1+x^2} dx$ ,  $x = \operatorname{sh} t$ 

$$d) \quad \int \sqrt{1+x^2} \, dx, \quad x = \sin t$$

Exercício 8.7 Calcule os seguintes integrais indefinidos:

a) 
$$\int \frac{3x^2 - 4x - 1}{(x^2 - 1)(x - 2)} \, dx$$

d) 
$$\int \frac{27}{x^4 - 3x^3} dx$$

b) 
$$\int \frac{2x^2 + x + 1}{(x - 1)(x + 1)^2} dx$$

e) 
$$\int \frac{x^4 - 8}{x^3 - 2x^2} dx$$

c) 
$$\int \frac{4x^2 + x + 1}{x^3 - x} dx$$

f) 
$$\int \frac{x+3}{(x-2)(x^2-2x+5)} dx$$

Exercício 8.8 Calcule os seguintes integrais indefinidos.

a) 
$$\int \frac{x}{x^2 - 1} \, dx$$

1) 
$$\int \frac{\sin x}{\sqrt{1+\cos x}} \, dx$$

b) 
$$\int \frac{x}{\sqrt{x^2 - 1}} \, dx$$

$$m) \int \frac{1}{(2+\sqrt{x})^7 \sqrt{x}} \, dx$$

c) 
$$\int \frac{1}{x} \operatorname{sen}(\ln x) dx$$

n) 
$$\int tg^2 x dx$$

$$d) \int \frac{-3}{x (\ln x)^3} dx$$

o) 
$$\int \frac{x + \arcsin^4(3x)}{\sqrt{1 - 9x^2}} dx$$

$$e) \int \frac{e^x}{1 + e^{2x}} \, dx$$

$$p) \int \frac{x e^{\sqrt{1-x^2}}}{\sqrt{1-x^2}} dx$$

f) 
$$\int \frac{e^x}{1 - 2e^x} \, dx$$

$$q) \int \frac{1}{\cos^2 x \, \sin^2 x} \, dx$$

$$g) \int \frac{1}{\cos^2\left(7x\right)} \, dx$$

r) 
$$\int \cos^2 x \, \sin^2 x \, dx$$

h) 
$$\int \left(\sqrt{2x-1} - \sqrt{1+3x}\right) dx$$

s) 
$$\int \frac{1}{1+e^x} \, dx$$

i) 
$$\int \frac{1}{x} \left( 1 + \ln^2 x \right) \, dx$$

t) 
$$\int \frac{1}{x\sqrt{x^2 - 1}} \, dx$$

$$\int \frac{2 + \sqrt{\arctan(2x)}}{1 + 4x^2} dx$$

$$\mathrm{u)} \int \frac{1}{x^2 \sqrt{4-x^2}} \, dx$$

k)  $\int \frac{e^{\arctan x}}{1 + x^2} dx$ 

Em cada alínea, determine a única função  $f: \mathbb{R} \to \mathbb{R}$ , duas vezes derivável, tal Exercício 8.9 que:

2

a) 
$$f''(x) = 4x - 1$$
,  $x \in \mathbb{R}$ ,  $f(1) = 3$  e  $f'(2) = -2$ ;

b) 
$$f''(x) = \sin x \cos x$$
,  $x \in \mathbb{R}$ ,  $f(0) = 0$  e  $f'(0) = 1$ .