Project Report Format

1. INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2. LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule
- 6.3 Reports from JIRA

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

- 7.1 Feature 1
- 7.2 Feature 2
- 7.3 Database Schema (if Applicable)

8. TESTING

- 8.1 Test Cases
- 8.2 User Acceptance Testing

9. RESULTS

9.1 Performance Metrics

10.ADVANTAGES & DISADVANTAGES

11.CONCLUSION

12.FUTURE SCOPE

13.APPENDIX

Source Code

GitHub & Project Demo Link

INTRODUCTION

1.1 PROJECT OVERVIEW

Machine learning and deep learning play an important role in computer technology and artificial intelligence. With the use of deep learning and machinelearning, human effort can be reduced in recognizing, learning, predictions and inmany more areas.

Handwritten Digit Recognition is the ability of computer systems to recognize handwritten digits from various sources, such as images, documents, and so on. This project aims to let users take advantage of machine learning to reduce manual tasks in recognizing digits.

The handwritten digit recognition is the ability of computers to recognize human handwritten digits. It is a hard task for the machine because handwritten digits are not perfect and can be made with many different flavors.

Handwritten digit recognition using MNIST dataset is a major project made with the help of Neural Network. It basically detects the scanned images of handwritten digits

1.2 PURPOSE

Digit recognition systems are capable of recognizing the digits from differentsources like emails, bank cheque, papers, images, etc. and in different real-worldscenarios for online handwriting recognition on computer tablets or system, recognize number plates of vehicles, processing bank cheque amounts, numeric entries in forms filled up by hand (tax forms) and so on.

LITERATURE SURVEY

2.1 EXISTING PROBLEM

The fundamental problem with handwritten digit recognition is that handwritten digits do not always have the same size, width, orientation, and marginssince they vary from person to person. Additionally, there would be issues with identifying the numbers because of similarities between numerals like 1 and 7, 5 and 6, 3 and 8, 2 and 5, 2 and 7, etc. Finally, the individuality and variation of each individual's handwriting influence the structure and appearance of the digits.

2.2 REFERENCE

- Handwritten digit recognition is a translational problem of human writings into machine editable text format. Author Ganesh Khekare Year-2021.
- A human may not appreciate how difficult it is to solve handwriting. Author B.Ali Alameer. Year 2021.
- Handwritten Digit Recognition using Machine Learning. Author Nazmule Siddique Year – 2021.
- A progressive learning approach for low resource handwritten text recognition.
 Author- Mohamed Ali Souibgui Year-2022.
- Improved Handwritten Digit Recognition Using Quantum K-Nearest Neighbor Algorithm (2019) Wang, Yuxiang and Wang, Ruijin and Li, Dongfen and Adu-Gyamfi, Daniel and Tian, Kaibin and Zhu, Yixin

2.3 PROBLEM STATEMENT DEFINITION

- In this paper, Convolutional Neural Networks (CNN) is presented for handwritten digit recognition. Edges of the extracted graph were categorized into shape types and vertices were extracted from each of the edges and their layer wise evaluation using deep learning.
- The challenge of visual pattern recognition is only apparent to develop a computer system to read handwriting. The artificial neural networks approach is considered as the best way to develop systems for recognizing handwriting.
- Handwritten character recognition is one of the practically important issues in pattern recognition applications.
- Handwritten text recognition in low resource scenarios, such as manuscripts with rare alphabets, is a challenging problem. we propose a few-shot learning-based handwriting recognition approach that significantly reduces the human annotation process, by requiring only a few images of each alphabet symbols.

IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 IDEATION & BRAINSTORMING

3.3 Proposed Solution

S.no	Parameter	Description
1.	Problem Statement (Problem to be solved)	In this digital world, everything including documents, notes is kept in digital form the requirement of converting these digital documents into processed information is in demand. Handwriting recognition is one of the compelling research works going on because every individual in this world has their own style of writing. It is the capability of the computer to identify and understand handwritten digits or characters automatically. Because of the progress in the field of science and technology, everything is being digitalized to reduce human effort. Hence, there comes a need for handwritten digit recognition in many real-time
2.	Idea / Solution description	applications. Convolutional Neural Networks (CNN) becomes one of the most appealing approaches and has been an ultimate factor in a variety of recent success and challenging machine learning applications such as challenge ImageNet object Detection image segmentation and face recognition. Therefore, we choose CNN for our challenging tasks of image classification. We can use it for hand writing digits recognition which is one of high academic and business transactions. There are many applications of hand writing digit recognition in our real life purposes. Precisely, we can use it in banks for reading checks, post offices for sorting letter, and many other related works.

3.	Novelty / Uniqueness	Handwritten digit recognition is the
] 3.	140 veity / Omqueness	capability of computer applications to
		recognize the human the handwritten digits.
		It is a hard task for the machine because
		handwritten digits are not perfect and can be
		made with many different shapes and sizes.
		The handwritten digit recognition system is a
		way to tackle this problem which uses the
		image of a digit and recognizes the digit
		present in the image. Handwritten Digit
		Recognition is the capability of a computer
		to fete the mortal handwritten integers from
		different sources like images, papers, touch
		defenses, etc. And classify them into 10
		predefined classes(0-9). This is the existing
		method along with this we add some features
		to make our project unique among them. We
		create a model that recognize multiple-digits
		present in the image in offline mode. The
		future scope of this method is, we can
		recognize number in License plate, bank
		cheques and postal mail sorting. We get a
		predicted result in two manner one is, the
		recognized digits is showned in the interface
		and the another manner is, we can get a
		predicted result through voice mode. This
		means the model tell the multiple-digit in
		voice mode. This feature helps the old age
		people they are difficult in understanding
		handwritten digits, blind people and who
		contain eye sight issues.
4.	Social Impact / Customer	Digit recognition plays an role in the modern
4.	Satisfaction	world. 'Digits' are a part of our everyday
	Saustaction	life, be it License plate on our cars or bike,
		-
		the price of a product, speed limit plate on
		our cars or bike, the price of a product, speed
		limit on a road, or details associated with a
		bank account. In the case of a text which is
		unclear, it is easier to guess the digits in
		comparison to the alphabets. Machine

	T	
		Learning and Deep Learning are reducing
		human efforts in almost every field.
		Moreover, a solution achieved using ML and
		DL can power various applications at the
		same time, thereby reducing human effort
		and increasing the flexibility to use the
		solution. One such solution is a handwritten
		digit recognition system that can be used in
		postal mail sorting, bank check processing,
		form data entry, etc.
5.	Business Model (Revenue	Digit recognition plays an important roles
	Model)	in many places. It is independent of
	,	environment, while using the recognizer
		we don't need the network. The benefits of
		hand written digit recognizer is high. In
		banking sector, it is very useful. It is used
		to recognize the account number, figure of
		cash and checks. It is also used to
		recognize the written digits on cash,
		deposit /withdrawal. So, the requirement
		of manpower is less, because the machine
		done the work of bank employees. So, we
		can earn the profit by using the hand
		written digit recognizer.
6.	Scalability of the Solution	To make the path toward digitalization
0.	Scalability of the Solution	
		clearly by providing high accuracy and
		faster computational for recognizing the
		handwritten digits. The present Neural
		Network as classifier, MNIST as dataset
		with suitable parameter for training and
		testing and frame work for hand written
		recognition. The aforementioned system
		successfully impart accuracy up to 99.20%
		which is higher than formally proposed
		scheme.

3.4 Problem Solution fit

REQUIREMENT ANALYSIS

4.1 Functional Requirements

FR NO.	Functional Requirement (Epic)	Description
FR-1	User Registration	Registration through Gmail
FR-2	User Confirmation	Confirmation via Email
FR-3	User Login	Login via registered Username and Password
FR-4	Uploading images	Able to input the handwritten images into the application
FR-5	Input correlation	Image Correlation is a technique used to recognize characters from images. Collecting data and prepare it for training
FR-6	Feature extraction	Feature extraction is analysing the images and deriving some characteristics from these images that identify each specific element Feature extraction is analysing the images and deriving some characteristics from these images that identify each specific element
FR-7	Recognizing digits	Display the recognized digits from the input images to the user.

4.2 Non-Functional Requirements

FR	Non-Functional	Description
No.	Requirement (Epic)	
FR-1	Usability	The application needs to respond smoothly
		so that the user can use the application
		effectively and need to be an user friendly
		application. To recognize the digits from
		bank cheque, papers, numeric entry in
		forms etc.
FR-2	Security	Ensure the security by authenticating the
		users using their username and password.
FR-3	Reliability	This software will work reliably for low
		resolution images and not for graphical
		images.
FR-4	Performance	Needs to respond fast and provide the
		output even for complex handwritings. The
		input image will be recognized with an
		accuracy of about 90% and more
FR-5	Availability	Need to available for all users at any time
		and can able to process the handwritten
		image as input to the application easily
FR-6	Scalability	It consist thousands of handwritten digits
		that have been used in the development of
		programs
		It is able to handle N numbers of users at
		the same time with faster response and
		recognize the digits effectively.

PROJECT DESIGN

5.1 DATA FLOW DIAGRAM

Data Flow Diagram(Level-0)

5.2 SOLUTION & TECHNICAL ARCHITECTURE

Fig. Solution Architecture

Fig. Technical Architecture

5.3 USER STORIES

User Type	Functional Requiremen t (Epic)	User Sto ryNumb er	User Story/ Task	Acceptance criteria	Prio rity	Rele ase
Customer (Mobile user)	Registration	USN-1	As a user, I can register for the application byentering my email, password, and confirming my password.	I can access my account /dashboard	High	Spri nt-1
		USN-2	As a user, I will receive confirmati on email once I have registered for the application.	I can receive confirmation email & click confirm	High	Spri nt-1
		USN-3	As a user, I can view the guide and awarenessto use this application.	I can view the awarenessto use this application by a practical method.	Low	Spri nt-2
		USN-4	As a user, I can read the instructions to use this application I can read instructions to use it in user-friendly metho d.	Medi um	Spri nt-1	
	Login	USN-5	As a user, I can log into the application by entering email& password	I can access the application	High	Spri nt-1
	About	USN-6	I can click on the "About" to get the idea of a handwritten digit recognition tool forrecognition of digits.	I can get an idea aboutthe project	Low	Spri nt-1

Customer (Web user)	Predict	USN-7	As a user I can upload my handwritten digitsimages to be recognised from the computer.	I can choose any imagefrom my device	High	Spri nt-2
Customer Care Executive		USN-8	As a user I will train and test the input to getthe maximum accuracy of output	I can able to train and testthe application until it gets maxim um accuracy of the result.	High	Spri nt-4
Administrator	Launch	USN-9	As a user, I can upload my handwritten digit images to be recognised from the computer.	I can choose and upload the image from the system storage and also inany virtual storag e	and and High High	Spri nt-3
		USN-10	I can scan one page at once.	I can get the recognised digits from the input given	High	Spri nt-4
	Recognize	USN-11	As a user I can turnon the camera using the input button.	I can get the input to be digitized.	High	Spri nt-3
		USN-12	As a user, I can use the webapplication virtually anywhere.	I can use the application portably anywhere.	High	Spri nt-1
		USN-13	As it is open source, I can use it cost freely.	I can use it without any payment to be pa idfor it to access	Medi um	Spri nt-2

PROJECTPLANNING AND SCHEDULING

6.1 SPRINT PLANNING AND ESTMATION

Sp ri nt	Functional Re quirement (Ep ic)	User Stor yNu mbe r	User Story / Task	Sto ry Poi nts	Pri ori ty	Team Member s
Sp rin t-1	Data Collection	USN-1	As a user, I can collect the dataset fromvarious resources with different handwritings.	10	Lo w	Santhosh Kumar D Lokesh B
Sp rin t-1	Data Pre processing	USN-2	As a user, I can load the dataset, handling the missing data, scaling and split data intotr ain and test.	10	Me diu m	Santhosh Kumar D Kaviarasan A
Sp rin t-2	Model Building	USN-3	As a user, I will get an application with MLmodel which provides high accuracy of recognized handwritten digit.	5	Hig h	Sarun A Lokesh B Kaviara san A
Sp rin t-2	Add CNN layers	USN-4	Creating the model and adding the input, hidden, and output layers to it.	5	Hig h	Sarun A Santhosh Kumar DKaviarasan A
Sp rin t-2	Compiling the model	USN-5	With both the training data defined and model defined, it's t ime to configure the learning process.	2	Me diu m	Sarun A Santhosh Kuma r D
rin	Train & test themodel	USN-6	As a user, let us train our model with ourimage dataset.	6	Me diu m	Sar un A Lo kes hB

Sp rin t-2		USN-7	As a user, the model is save d &integrated with an android application or web application in order to predict something.	2	Lo w	Santhosh Kuma rD
rin t-3	Buildin g UIAppl ication	USN-8	As a user, I will upload the handwritten digitimage to the application by clicking a uploadbutton.	5	Hig h	Sarun A Kavi arasan A
Sp rin t-3		USN-9	As a user, I can know the details of thefundamental usageof the application.	5	Lo w	Lokesh B
Sp rin t-3		USN-10	As a user, I can see the predicted / recognized digitsin the application.	5	Me diu m	Lokesh B S anthosh Kum arD
	el onIBM	USN-11	As a user, I train the model on IBM andintegrate flask/Django with scoring endpoint.	10	Hig h	Sarun A Kavi arasan A
Sp rin t-4		USN-12	As a user, I can accessthe web applicationand make the use of the product from anywhere.	10	Hig h	Sarun A Kav arasan A

6.2 SPRINT DELIVERY SCHEDULE

Spr int	Total Story Point s	Dura tion	Sprint Sta rt Date	Sprint End Date(P lanned	Story Points Comple ted (ason Planned EndDate)	Sprint Release Date(Actual)
Spri	20	6 Day	24 Oct2022	29 Oct2022	20	29 Oct 2022
nt-1		S				
Spri	20	6 Day	31 Oct 202	05 Nov 2022	20	04 Nov 2022
nt-2		S	2			
Spri	20	6 Day	07 Nov	12 Nov 2022	20	12 Nov 2022
nt-3		S	2022			
Spri	20	6 Day	14 Nov	19 Nov 2022	20	18 Nov 2022
nt-4		S	2022			

CODING AND SOLUTIONING

```
    app.py > ⊕ upload
    import numpy as np
    import os
    from PIL import Image
    from flask import Flask, request, render_template, url_for
    from werkzeug.utils import secure_filename, redirect
    from gevent pywsgi import WSGIServer
    from keras.models import load_model
    from keras.preprocessing import image
    from flask import send_from_directory
```

```
UPLOAD_FOLDER = 'C:/Users/Guru/flask/data'

app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER

model = load_model("models/mnistCNN.h5")

@app.route('/')
@app.route('/index.html')
def index():
    return render_template('index.html')
```

```
gapp.route('/predict', methods=['GET', 'POST'])
def upload():
    if request.method == "POST":
        f = request.files['image"]
        f : filepath = secure _filename(]f.filename()
        f.save(os.path.join(app.config['UPLOAD_FOLDER'], filepath))

upload_img = os.path.join(UPLOAD_FOLDER, filepath)

img = Image.open(upload_img).convert("L") # convert image to monochrome

img = img.resize((28, 28)) # resizing of input image

im2arr = np.array(img) # converting to image

im2arr = im2arr.reshape(1, 28, 28, 1) # reshaping according to our requirement

pred = model.predict(im2arr)

num = np.argmax(pred, axis=1) # printing our Labels

return render_template('web.html', num=str(num[0]))

return render_template('web.html', num=str(num[0]))

app.run(debug=True, threaded=False)
```

TESTING

8.1 TEST CASE

Test caseID	FeatureTyp e	Componen t	Test Scenario	Expected Result	Actual Result	Statu s
HP_TC_00 1	UI	Home Page	Verify UI elements inthe Home Page	The Home page must be displayedproperly	Working as expected	FAIL
HP_TC_00 2	UI	Home Page	Check if the UIelements are displayed properly in different screen sizes	The Home page must be displayedproperly in all siz es	The UI is notdisplayed properl y in screen size 2560 x 1801 and 768 x 630	FAIL
HP_TC_00 3	Functional	_	Check if usercan upload their file	The input image should be uploaded to the application successfully	Working as expected	PASS
HP_TC_00 4	Functional	Home Page	Check if usercannot uploadunsupportedfiles	he applicationshould not allowuser to select anon image file	User is able toupload any file	FAIL
HP_TC_00 5	Functional	Home Page	Check if the page redirects to the result page once theinput is given	The page shouldredirect to theresults page	Working as expected	PASS
BE_TC_00	Functional	Backend	Check if all theroutes are working properly	All the routes should properlywork	Working as expected	PASS
M_TC_001	Functional	Model	Check if the model can handle variousimage siz es	The model shouldrescale the image and predict the results	Working as expected	PASS

M_TC_002	Functional	Model	Check if themodel predicts thedigit	The model shouldpredict the number	Workingasexpected	PASS
M_TC_003	Functional	Model	Check if the model can handle complex inputimage	The model shouldpredict the number in the complex image	The model failsto identify the digit since themodel is not built to handlesuch data	FAIL
RP_TC_00	UI	Result Page	Verify UI elements inthe Result Page	The Result page must be displayed properly	Working as expected	PASS
RP_TC_00 2	UI	Result Page	Check if the input image is displayed properly	The input image should be displayed properly	The size of theinpu t image exceeds the display contain er	FAIL
RP_TC_00	UI	Result Page	Check if theresult is displayed properly	The result shouldbe displayed properly	Working asexpected	PASS
RP_TC_00 4	UI	Result Page	Check if the other predictions are displayedproperly	The other predictions shouldbe displayed properly	Working as expected	PASS

8.2 USER ACCEPTANCE TESTING DEFECT ANALYSIS

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Total
By Design	1	0	1	0	2
Duplicate	0	0	0	0	0
External	0	0	2	0	2
Fixed	4	1	0	1	6
Not Reproduced	0	0	0	1	1
Skipped	0	0	0	1	1
Won't Fix	1	0	1	0	2
Total	6	1	4	3	14

TEST CASE ANALYSIS

Section	TotalCases	Not Tested	Fail	Pass
Client Application	10	0	3	7
Security	2	0	1	1
Performance	3	0	1	2
Exception Reporting	2	0	0	2

RESULT

9.1 PERFORMANCE METRICS

5000/								
# Requests	# Fails	Average (ms)	Min (ms)	Max (ms)	Average size (by	/tes)	RPS	Failures/s
1043	0	13	4	290	1079		1.9	0.0
1005	0	39648	385	59814	2670		1.8	0.0
2048	0	19462	4	59814	1859		3.7	0.0
	1043	1043 0 1005 0	1043 0 13 1005 0 39648	1043 0 13 4 1005 0 39648 385	1043 0 13 4 290 1005 0 39648 385 59814	1043 0 13 4 290 1079 1005 0 39648 385 59814 2670	1043 0 13 4 290 1079 1005 0 39648 385 59814 2670	1043 0 13 4 290 1079 1.9 1005 0 39648 385 59814 2670 1.8

ADVANTAGE AND DISADVANTAGE

ADVANTAGES

- 1. Reduces manual work
- 2. More accurate than average human
- 3. Capable of handlinga lot of data
- 4. Can be used anywhere from any device

DISADVANTAGES

- 1. Cannot handle complexdata
- 2. All the data must be in digital format
- 3. Requires a high performance server for faster predictions
- 4. Prone to occasional errors

CONCLUSION

This project demonstrated a web application that uses machine learning torecognise handwritten numbers. Flask, HTML, CSS, JavaScript, and a few other technologies were used to create this project. The model predicts the handwritten digit using a CNN network. During testing, the model achieved a 99.61% r ecognition rate.

The proposed projectis scalable and can easilyhandle a huge number of users. S inceit is a web application, it is compatible with any device that can run a browser. Thi sproject is extremely useful in real-world scenarios such as recognizing numberplates of vehicles, processing bank cheque amounts, numeric entries in forms filledup by hand (tax forms) and so on. There is so much room for improvement, which can be implemented in subsequent versions.

FUTURE SCOPE

This project is far from complete and there is a lot of room for improvem ent.

Some of the improvements that can be made to this projectare as follows:

- 1. Add support to detect from digits multipleimages and save the results
- 2. Add support to detect multiple digits
- 3. Improve model to detect digits from complex images
- 4. Add support to different languages to help users from all over the world

This project has endless potential and can always be enhanced to become better.Implementing this concept in the real world will benefit several industries and reduce the workload on many workers, enhancing overall work efficiency.

APPENDIX

SOURCE CODE MODEL BUILDING

APPLICATION APP.PY

```
import numpy as np
import os
from PIL import Image
from flask import Flask, request, render_template, url_for
from werkzeug.utils import secure filename, redirect
from gevent.pywsgi import WSGIServer
from keras.models import load_model
from keras.preprocessing import image
from flask import send_from_directory
UPLOAD_FOLDER = 'C:/Users/Guru/flask/data'
app = Flask(\underline{\quad name}\underline{\quad})
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
model = load_model("models/mnistCNN.h5")
@app.route('/')
@app.route('/index.html')
def index():
  return render_template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def upload():
  if request.method == "POST":
    f = request.files["image"]
    filepath = secure filename(f.filename)
    f.save(os.path.join(app.config['UPLOAD_FOLDER'], filepath))
    upload_img = os.path.join(UPLOAD_FOLDER, filepath)
    img = Image.open(upload_img).convert("L") # convert image to
monochrome
    img = img.resize((28, 28)) # resizing of input image
    im2arr = np.array(img) # converting to image
    im2arr = im2arr.reshape(1, 28, 28, 1) # reshaping according to our
requirement
    pred = model.predict(im2arr)
    num = np.argmax(pred, axis=1) # printing our Labels
    return render_template('web.html', num=str(num[0]))
if __name__ == '__main__':
  app.run(debug=True, threaded=False)
```

HOME PAGE INDEX.HTML

```
<html>
<head>
 <title>Digit Recognition</title>
 <meta name="viewport" content="width=device-width">
 link rel="stylesheet" type="text/css" href= "{{ url for('static',
filename='style.css') }}">
 k href="https://fonts.googleapis.com/css2?family=Prompt:wght@600&displa">https://fonts.googleapis.com/css2?family=Prompt:wght@600&displa
y=swap" rel="stylesheet">
 link href="https://fonts.googleapis.com/css2?family=Varela+Round&display=s">-Round&display=s
wap" rel="stylesheet">
 link href="https://fonts.googleapis.com/css2?family=Source+Code+Pro:wght@
500&display=swap" rel="stylesheet">
 link href="https://fonts.googleapis.com/css?family=Calistoga|Josefin+Sans:400,
700|Pacifico&display=swap" rel="stylesheet">
 <!-- bootstrap -->
 link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/cs"
s/bootstrap.min.css" integrity="sha384-
ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2M
Zw1T" crossorigin="anonymous">
 <!--fontawesome -->
 <script src="https://kit.fontawesome.com/b3aed9cb07.js" crossorigin="anonymou"</pre>
s"></script>
 <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-</pre>
q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo
" crossorigin="anonymous"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.m"</pre>
in.js" integrity="sha384-
UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHND
z0W1" crossorigin="anonymous"></script>
 <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.j</pre>
s" integrity="sha384-
JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM
" crossorigin="anonymous"></script>
 <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest"></script>
</head>
<script>
 function preview() {
```

```
frame.src=URL.createObjectURL(event.target.files[0]);
}
  $(document).ready(function() {
      $('#clear_button').on('click', function() {
        $('#image').val(");
        $('#frame').attr('src',"");
       });
     });
</script>
<body>
 <h1 class="welcome">Handwritten Digit Recognition</h1>
 <section id="title">
  <div class = "splitleft">
  <h4 class="heading">A Novel Method For Handwritten Digit Recognition</h4>
  <br>><br>>
  >
    This website is designed to predict the handwritten digit.
  <br>><br>>
```

Handwriting recognition is one of the compelling research works going on because every individual in this world

has their own style of writing. It is the capability of the computer to identify and understand

handwritten digits or characters automatically. Because of the progress in the field of science and technology,

everything is being digitalized to reduce human effort.

```
<br>><br>>
```

Hence, there comes a need for handwritten digit recognition in many real-time applications.

MNIST data set is widely used for this recognition process and it has 70000 handwritten digits.

We use Artificial neural networks to train these images and build a deep learning model.

Web application is created where the user can upload an image of a handwritten digit.

This image is analyzed by the model and the detected result is returned on to UI

```
</div>
<div id="content">
<div class = "splitright">
```

```
<div class="rightside">
     <form action="/predict" method="POST" enctype="multipart/form-data">
     <label style=" padding-left: 12px;">Select a image:</label>
     <input id="image" type="file" name="image" accept="image/png,</pre>
image/jpeg" onchange="preview()"><br><br>
      <img id="frame" src="" width="150px" height="150px"/>
      <div class="buttons div">
       <button type="submit" class="btn btn-
dark" id="predict_button">&nbsp&nbsp Predict &nbsp&nbsp</button>
       <button type="button" class="btn btn-
dark" id="clear_button">&nbsp&nbsp Clear &nbsp&nbsp</button>
      </div>
     </form>
     </div>
   </div>
 </section>
</body>
</html>
WEB.HTML
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <title>Prediction</title>
  k rel="stylesheet" type="text/css" href= "{{ url_for('static',
filename='web.css') }}">
  <link href="https://fonts.googleapis.com/css2?family=Prompt:wght@600&displ</pre>
ay=swap" rel="stylesheet">
  k href="https://fonts.googleapis.com/css2?family=Varela+Round&display=s">
wap" rel="stylesheet">
  k href="https://fonts.googleapis.com/css2?family=Source+Code+Pro:wght">https://fonts.googleapis.com/css2?family=Source+Code+Pro:wght
@500&display=swap" rel="stylesheet">
  k href="https://fonts.googleapis.com/css?family=Calistoga|Josefin+Sans:40
0,700|Pacifico&display=swap" rel="stylesheet">
  <!-- bootstrap -->
  <link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/</pre>
css/bootstrap.min.css" integrity="sha384-
```

```
ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2M
Zw1T" crossorigin="anonymous">
  <!--fontawesome -->
  <script src="https://kit.fontawesome.com/b3aed9cb07.js" crossorigin="anonymo</pre>
us"></script>
  <script src="https://code.jquery.com/jquery-</pre>
3.3.1.slim.min.js" integrity="sha384-
q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo
" crossorigin="anonymous"></script>
  min.js" integrity="sha384-
UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHND
z0W1" crossorigin="anonymous"></script>
  <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.</pre>
is" integrity="sha384-
JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM
" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest"></script>
</head>
<script>
  function preview() {
   frame.src=URL.createObjectURL(event.target.files[0]);
   $(document).ready(function() {
      $('#clear_button').on('click', function() {
        $('#image').val(");
        $('#frame').attr('src',"");
       });
     });
 </script>
<body>
  <div id="rectangle">
    <h1 id="ans">Predicted Number : {{num}}</h1>
    <button type="submit" class="btn btn-dark" id="goback" ><a href="/">
&nbsp&nbsp Go Back &nbsp&nbsp</a></button>
  </div>
  <div id="content">
    <div class = "splitright">
    <div class="rightside">
    <form action="/predict" method="POST" enctype="multipart/form-data">
```

OUTPUT HOME PAGE

UPLOADING INPUT IMAGE

PROCESS THE IMAGE FOR PREDITION

PREDICTED OUTPUT

GITHUB LINK

https://github.com/IBM-EPBL/IBM-Project-45034-1660727964

PROJECT DEMO LINK

https://www.youtube.com/embed/4z1HzYKOwjE