

Research Project Presentation

Improving Navigation through code-based landscapes

Objective: Misdetection Error Model

Project Context

- Understanding the relationship between landscape and navigation safety
- Shaping architecture around robotics
- Ensuring localization integrity in regions where GNSS is unavailable
- Lidar Localization for periodic reset on IMU

Diagram of State Street Transect

Project Proposal - NRI: FND: The Urban Design and Policy implications of Ubiquitous Robots and Navigation Safety

Code-based landscape

- Association problem
 - The right measurement to the right mapped object
 - Maximum likelihood and nearest neighbor process create uncertainty
- Providing a landmark signature though code-based landscape
- Retrieving the localization of the landmark

ID 107 → *Landmark (42° N, 88° W)*

Basis concept of Code based landmark identification

Project Proposal - NRI: FND: The Urban Design and Policy implications of Ubiquitous Robots and Navigation Safety

Creating IDs from a set of measurements

This can get complicated

- Numerous sources of Noise
 - GNSS
 - Lidar
 - IMU
- Irregularity of landmark placement – spatial and temporal
- Misdetection possibilities
 - 0 to 1: Measuring an inexistant landmark
 - 1 to 0: Not measuring an existing landmark

A more realistic view of Code based landmark identification

Project Proposal - NRI: FND: The Urban Design and Policy implications of Ubiquitous Robots and Navigation Safety

Error Correcting Codes A brief Overview

- Procedures:
 - Detect if and how many errors have occurred
 - Pinpoint the location of the error(s)
 - Correct the error(s)
 - Retrieve the initial message

Hamming (7, 4) Codes:

- Message: a b c d 1 1 0 1
- Redundancy bits: x y z 1 0 0
 - $x = a \oplus b \oplus d$
 - $y = a \oplus c \oplus d$
 - $z = b \oplus c \oplus d$
- Codeword = a b c d x y z 1101100
- Parity check: Adding a 1 if uneven number of bits, else 0
- Correction of one bit error by checking redundancy bits

Bose-Chaudhuri-Hocquenghem Codes

- BCH [n, k, d] code
- Subclass of cyclic code with multiple errors capability
 - Cyclic code for handling sequences of landmarks
 - At each step, a single bit changes in the sequence
- Choosing the number of errors to correct generates the code

Code vector v:

$$v = (a_{n-1}, a_{n-2}, ..., a_0)$$

Polynomial representation of a code vector:

$$f(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_0$$

Cyclic nature of the IDs

Error Model Probability of misdetection

- Focusing on the misdetection
- 1 \rightarrow 0: not detecting an existing landmark
- Referred as the transitional probability
- $p(1 \rightarrow 0)$: probability of not detecting our landmark from the ratio between dimensions of landmark and section of detection

Uncertainty	bearing:	$\sigma_{\theta} = \Delta \theta + \Delta \sigma + \frac{\Delta}{2}$	5
-------------	----------	--	---

— Δθ: lidar resolution

 $-\Delta\sigma$: vehicle yaw

– Δδ: divergence of lidar

Uncertainty position σ_x and σ_y

Parameters	Values
σχ	1 cm
σγ	2 cm
Δθ	0.2 deg
Δσ	6.6 cm
Δδ	0.1 deg
d	6.35 to 10.2 cm

Sections of bit assignments

- Imposing sections of measurements and bit assignement
- Unambiguously Identifying and replacing landmarks

Measurement Ld vs Truth Ld

To many sections creates lots of zeros

Not enough sections potentially looses information

Selected Sections of detection

- Imposing step between or sections of measurements
- Practical for constructing a code
 - Placing a 1 in the section if a landmark is detected
 - Placing a 0 if not

Selected sections with a nominal range

Shape of sections of detections

- Proposed Shape:
 - Rectangular
 - Trapezoid
- Construction by edge cases of
 - Incertitude of position
 - GNSS sigmas
 - IMU drift
 - Incertitude of lidar

$$\omega_2 = 2[\sigma_x + (L_1 + L_2 + \sigma_y)\sigma_\theta]$$

$$\omega_1 = 2[\sigma_x + (L_1 + \sigma_y)\sigma_\theta]$$

Rectangular and Trapezoid: 1 to 5 meters from sidewalk

Trapezoid Section – 10 cm tree – σ and 3 σ

Ratio and probabilities

- σ values for probabilities:
 - σ for 67%
 - 3 σ for 99%

$\omega_1 = 2[\sigma_x + (L_1 + \sigma_y)\sigma_\theta]$	σ	3 σ
w1 for L1 = 1m	0.0331 m	0.1007
w1 for L1 = 5m	0.0842 m	0.2543

Widths of sections vs distance from sidewalk

$\frac{2r}{w}$	σ	3 σ
L1 = 1m, r = 3 cm	1.9184	0.6306
L1 = 5m, r = 3 cm	0.7542	0.2497
L1 = 1m, r = 5 cm	3.0816	1.0129
L1 = 5m, r = 5 cm	1.2114	0.4011

Ratio for projected curve

$\frac{\pi r}{w}$	σ	3 σ
L1 = 1m, r = 3 cm	3.0135	0.9905
L1 = 5m, r = 3 cm	1.1846	0.3922
L1 = 1m, r = 5 cm	4.8405	1.5911
L1 = 5m, r = 5 cm	1.9029	0.6300

Ratio for circular curve

Conclusion and Perspective

- Defining the error model to take incertitude of IMU drift into account
- Adding noisy landmark and test the process with BCH encoding decoding

References

- [Pet72] W. Wesley (William Wesley) Peterson. Error-correcting codes. eng. Second edition. Cambridge, Mass: MIT Press, 1972. ISBN: 0262160390.
- [Ind18] Ranjan Bose Indian Institute of Technology. Introduction to BCH Codes: Generator Polynomials. https://www.youtube.com/watch?v=16aggpH4Meg&list=WL&index=2. 2018.
- [Ara19] Guillermo Duenas Arana. "Evaluating integrity for mobile robot localization safety". PhD thesis. Illinois Institute of Technology, 2019.
- [eig21] eigenchris. Error Correcting Codes (ECCs). Youtube. 2021. URL: https://www.youtube.com/playlist?list=PLJHszsWbB6hqk0yFCQ0AlQtfzC1G9sf2_.
- [Bla] Mario Blaum. "A Short Course on Error-Correcting Codes". In: ().

