2A - ¿Cuántos Elementos Distintos?

Tiempo límite: 2 segundos

Memoria límite: 256 MB

Dado un arreglo a de n elementos:

Sea f(l,r) la cantidad de elementos distintos de a_l, a_{l+1}, \dots, a_r .

Calcule
$$\sum_{l=1}^{n} \sum_{r=l}^{n} f(l,r)$$

Es decir, la suma de f(l,r) para todo par (l,r) tal que $1 \le l \le r \le n$.

Entrada:

La primera línea contendrá un entero $n~(1 \le n \le 200\,000)$, la cantidad de elementos de arreglo a.

La segunda línea contendrá n elementos $a_1,a_2,\cdots a_n \ (1\leq a_i\leq n)$, los elementos del arreglo a.

Salida:

En la primera línea, imprima $\sum_{l=1}^n \sum_{r=l}^n f(l,r)$

Luego, si q>0, imprima q líneas, cada una con el valor de $\sum_{l=1}^n \sum_{r=l}^n f(l,r)$ después de cada consulta.

Subtareas:

- Subtarea 1: $n \le 100$, todos los elementos de a son 1, es decir, $a_i = 1$ para $1 \le i \le n$ (10 puntos)
- Subtarea 2: $n \le 100$, todos los elementos de a son 1 o 2, es decir, $a_i \in \{1,2\}$ para $1 \le i \le n$ (17 puntos)
- Subtarea 3: $n \le 100$ (18 puntos)
- Subtarea 4: $n \le 5000$ (15 puntos)
- Subtarea 5: Sin restricciones adicionales (40 puntos)

Ejemplo de entrada

4 1 2 3 3

Ejemplo de salida