

ФГОБУ ВПО "СибГУТИ" **Кафедра вычислительных систем**

Дисциплины "ЯЗЫКИ ПРОГРАММИРОВАНИЯ" "ПРОГРАММИРОВАНИЕ"

Практическое занятие

Работа с десятичными разрядами

Преподаватель:

Доцент Кафедры ВС, к.т.н.

Поляков Артем Юрьевич

Целочисленная арифметика (на базе отрезков)

a b

(a / b), (a % b) (a % b) (a / b) = 0

$$a = (a / b) \cdot b + (a \% b)$$

C12.1 Вывод десятичных разрядов числа в обратном порядке

Задача:

На вход программы поступает десятичное число $x = x_n \dots x_3 x_2 x_1$, где $x_i - i$ -й разряд числа x. Необходимо вывести разряды числа x в обратном порядке через пробел.

Пример:

x = 1456, Вывод на экран: 6 5 4 1

Решение:

На вход программы подается только число x. Количество разрядов n в нем может быть произвольным и в задачу пользователя не входит подсчет их количества.

Используя операции **div** (Cu - /) и **mod** (Cu - %) запишем рекуррентные отношения для вычисления разрядов числа x, начиная с младшего. Пусть i_k – номер текущего разряда, w_k – рабочая копия (не обязательно всех) разрядов числа x, d (digit) – текущий разряд числа.

 $\begin{cases} i_0 = 0, w_0 = x :$ разряды начинаются с $0, w_0$ содержит все разряды числа x. $i_{k+1} = i_k + 1$ $d = w_k$ **mod** 10 // Остаток от деления на 10 $w_{k+1} = w_k$ **div** 10 // Целая часть от деления на 10

С12.1 Вывод десятичных разрядов числа в обратном порядке (2)

 $\begin{cases} i_0 = 0, \, w_0 = x : \text{разряды начинаются с } 0, \, w_0 \text{ содержит все разряды числа } x. \\ i_{k+1} = i_k + 1 \\ d = w_k \text{ mod } 10 \text{ // Остаток от деления на } 10: w_k \% 10 \\ w_{k+1} = w_k \text{ div } 10 \text{ // Целая часть от деления на } 10: w_k \text{ / } 10 \end{cases}$

Пусть x = 1056

k	i_k	w_k	d
0	0	1056	6
1	1	105	5
2	2	10	0
3	3	1	1
4	4	0	0
5	5	0	0
6	6	0	0

После того, как будут обработаны разряды с 0 по 3 w_k обращается в 0 и дальше не изменяется.

Таким образом прекратить вычисления необходимо на первом шаге k, на котором $w_k = 0$.

C12.1 Вывод десятичных разрядов числа в обратном порядке (2)

 $\begin{cases} i_0 = 0, \, w_0 = x : \text{разряды начинаются с } 0, \, w_0 \text{ содержит все разряды числа } x. \\ i_{k+1} = i_k + 1 \\ d = w_k \bmod 10 \text{ // Остаток от деления на } 10: w_k \% 10 \\ w_{k+1} = w_k \det 10 \text{ // Целая часть от деления на } 10: w_k \text{ / } 10 \end{cases}$

x = 1234567

\boldsymbol{k}	i_k	w_k	d	
0				
1				OTHWTh
2			\	Заполнить таблицу!
3			,	1
4				,
5				
6				

. . .

C12.1 Вывод десятичных разрядов числа в обратном порядке (3)

Вычисление количества значащих разрядов числа

Часто при работе с числами возникает задача определить, сколько значащих разрядов имеет некоторое число x. Данная задача решается аналогично **C12.2** за тем исключением, что сейчас нас интересует количество делений нацело, при котором w_k остается ненулевым.

В таблице видно, что после при k=4 w_4 обращается в 0 при этом i_4 на этом шаге содержит значение 4, что и соответствует количеству значащих разрядов.

$$x = 1056$$

$$\begin{cases} i_0 = 0, w_0 = x : \\ i_{k+1} = i_k + 1 \\ \frac{d = w_k \mod 10}{w_{k+1}} = w_k \text{ div } 10 \end{cases}$$

k	i_k	w_k
0	0	1056
1	1	105
2	2	10
3	3	1
4	4	0
5	5	0
6	6	0

Вычисление количества значащих разрядов числа

 $\begin{cases} i_0 = 0, \, w_0 = x : \text{разряды начинаются c } 0, \, w_0 \text{ содержит все разряды числа } x. \\ i_{k+1} = i_k + 1 \\ \frac{d = w_k \mod 10 \, /\! / \, \text{Остаток от деления на } 10 : w_k \, \% \, 10}{w_{k+1} = w_k \, \text{div } 10 \, /\! / \, \text{Целая часть от деления на } 10 : w_k \, / \, 10} \end{cases}$

Пусть x = 1056

k	$oldsymbol{i}_k$	w_k
0	0	1056
1	1	105
2	2	10
3	3	1
4	4	0
5	5	0
6	6	0

Данный алгоритм аналогичен алгоритму решения задачи $Nolemonthal{o}1$ за тем исключением, что сейчас нас интересует количество делений нацело, при котором w_k остается ненулевым.

В таблице видно, что после при k=4 w_4 обращается в 0 при этом i_4 на этом шаге содержит значение 4, что и соответствует количеству значащих разрядов.

. . .

Алгоритм подсчета количества *п* значащих разрядов целого числа

С12.2 Вычисление количества значащих разрядов числа

Задача:

Разработать программу. На ее вход поступает десятичное целое положительное число. Необходимо определить количество значащих разрядов в этом числе. Например:

Число	Ответ
1200	4
0121	3
15	2
10000000	8

C12.2 Вычисление количества значащих разрядов числа (2)

Алгоритм решения этой задачи подобен алгоритму **C12.1** за тем исключением, что сейчас нас интересует количество делений нацело, при котором w_k остается ненулевым.

- 1. Модифицируйте рекуррентное соотношение С12.1 так, чтобы оно решало данную задачу.
- 2. Постройте таблицу, описывающую применение построенного рекуррентного соотношения к числу x = 12012012. На каком шаге целесообразно прекратить вычисление рекуррентных соотношений? Как из имеющихся переменных рекуррентного соотношения получить ответ на поставленный вопрос о количестве значащих разрядов числа x.

Выделение заданного разряда числа

Также часто встречается задача выделить цифру, стоящую в заданном разряде i числа. Обычно, для решения данной задачи осуществляется поразрядный сдвиг на i разрядов вправо с последующим остатком от деления на 10:

- І. Выделить 3-й (начиная с 0) разряд
- 1. Порязрядный сдвиг на 3 вправо:
- а) формируем десятичное число *у*, в котором первые **три** разряда нулевые, а четвертый единица: 1000;
- б) делим число x на y нацело:

$$x \text{ div } y = 1234$$

2. Остаток от деления дает младший разряд, который в числе $(x \ \mathbf{div} \ y)$ соответствует 3-му разряду числа x:

$$(x \text{ div } y) \text{ mod } 10 = 4$$

- II. Выделить 5-й (начиная с 0) разряд
- 1. Порязрядный сдвиг на 5 вправо:
- а) формируем десятичное число y, в котором первые **пять** разрядов нулевые, а шестой единица: 100000;
- б) делим число x на y нацело:

$$x \, \mathbf{div} \, y = 12$$

2. Остаток от деления дает младший разряд, который в числе $(x \ \mathbf{div} \ y)$ соответствует 5-му разряду числа x:

$$(x \text{ div } y) \text{ mod } 10 = 2$$

С12.3 Выделение заданного разряда числа

Задача:

Разработать программу. На ее вход поступает десятичное целое положительное число x, а также номер i разряда в этом числе.

На выход программы подается значение цифры, стоящей в i-й позиции числа x. Если номер разряда превышает разрядность x, то результат — 0.

Например:

Число	Разряд	Ответ
1234567	0	7
1234567	1	6
1234567	2	5
1234567	5	2
1024	2	0
1024	3	1
1024	4	0
1024	5	0

Имитация двоичных чисел на базе десятичной системы счисления

Выполнение арифметических действий над числами в десятичной и двоичной системах счисления выполняется по одинаковым законам. Однако, в связи с тем, что в двоичной системе разряд может принимать два значения, а в десятичной – десять, переполнение разряда ($1_2 + 1_2 = 10_2$, $1_{10} + 1_{10} = 2_{10}$) и заимствование ($10_2 - 1_2 = 1_2$, $10_{10} - 1_{10} = 9_{10}$) выполняются по-разному:

```
Сложение Вычитание 10101111_2 + 11110101_2 = 110100100_2 \qquad 11110101_2 - 10101111_2 = 1000110_2 \\ 10101111_{10} + 11110101_{10} = \mathbf{21211212}_{10} \qquad 11110101_{10} - 10101111_{10} = 100\mathbf{8990}_{10}
```

Однако закономерности, которые прослеживаются в обработке переполнений и заимствований, позволяют предусмотреть операцию **пост-обработки** десятичных чисел для приведения их к допустимому двоичному виду.

Сложение десятичных чисел как двоичных

$$10101111_2 + 11110101_2 = 110100100_2$$

 $10101111_{10} + 11110101_{10} = 21211212_{10}$

Процедура сложения десятичных чисел как двоичных состоит из двух шагов:

- 1. Вычислить десятичную сумму чисел.
- 2. Выполнить пост-обработку результата по следующему алгоритму: двигаясь справа налево, если текущий разряд d допустимый (0 или 1), пропустить, иначе заменить его на $(d \mod 2)$ и увеличить следующий разряд на $(d \dim 2)$.

- 1. 21211212
- 2. 21211220
- 3. 21211**3**00
- 4. 21212100
- 5. 212**2**0100
- 6. 21**3**00100
- 7. 2**2**100100
- 8. **3**0100100
- 9.110100100

Самостоятельно:

$$10101010_{10} + 100111111_{10} =$$
?

С12.4/Н12.1 Сложение десятичных чисел как двоичных

Общая задача

Реализовать имитацию работы с двоичными числами с использованием десятичных чисел, например, для хранения числа 5_{10} использовать число 101_{10} (разряды идентичны двоичному представлению).

Конкретная задача

Разработать программу вычисления суммы двух десятичных чисел как двоичных. На вход поступает два десятичных числа, все разряды которых аналогичны двоичным (принимают значение 0 или 1). Числа сохраняются в ячейках типа **unsigned int**, а для их ввода используются спецификаторы $%\mathbf{u}$.

Если среди разрядов есть цифра, не допустимая в двоичной системе счисления: вывести это число, сообщить об ошибке и завершить программу.

Если числа введены корректно, то вычислить их сумму, используя обычную операцию сложения языка Си. После этого применить процедуру пост-обработки, описанную на предыдущих слайдах.

Результат сохраняется также в ячейке типа **unsigned int**, а для его вывода используется спецификатор $%\mathbf{u}$.

Н12.2 Вывод разрядов числа в прямом порядке

Задача:

На вход программы поступает десятичное число $x = x_1 x_2 x_3 x_4 \dots x_n$, где $x_i - i$ -й разряд числа x. Необходимо вывести разряды числа x в прямом порядке через пробел.

Пример:

$$x = 1456$$
, Вывод на экран: 1 4 5 6

Решение:

Наиболее простым вариантом решения данной задачи является двухкратное применение алгоритма, рассмотренного в рамках **C12.1**.

1. На первом шаге применяется немного модифицированный вариант C12.1, при котором вычисляемые разряды не выводятся на экран, а формируют новое число y, разряды которого расположены в обратном порядке относительно x:

$$x = 1456 \Rightarrow y = 6541.$$

Этого можно достичь, если применить следующее рекуррентное соотношение:

$$y_{k+1} = y_k \cdot 10 + w_k \text{ mod } 10$$

2. На втором шаге достаточно применить алгоритм С12.1 в его исходном виде:

$$C12.1(y = 6541) => 1 4 5 6$$

Н12.3 Вывод разрядов числа в прямом порядке

Задача:

На вход программы поступает десятичное число $x = x_1 x_2 x_3 x_4 \dots x_n$, где $x_i - i$ -й разряд числа x. Необходимо вывести разряды числа x в прямом порядке через пробел.

Пример:

$$x = 1456$$
, Вывод на экран: 1 4 5 6

Решение:

Другим подходом к решению задачи **H12.1** является пошаговое выделение разрядов в порядке от старшего к младшему.

Для этого необходимо вычислить количество n разрядов в x (**C12.2**). Далее сформировать число 10^{n-1} и с помощью него отсечь все разряды кроме старшего:

$$d = x \operatorname{div} 10^{n-1}$$
.

Для получения второго по значимости разряда формируется число 10^{n-2} :

$$d = (x \operatorname{div} 10^{n-2}) \operatorname{mod} 10.$$

И так далее. Для решения задачи данным способом необходимо разработать рекуррентное соотношение для степеней 10, которые обеспечивают поразрядный десятичный сдвиг 1 на k разрядов влево.

Вычитание десятичных чисел как двоичных

$$11110101_2 - 101011111_2 = 1000110_2$$
$$11110101_{10} - 10101111_{10} = 1008990_{10}$$

Процедура вычитания десятичных чисел как двоичных состоит из двух шагов:

- 1. Вычислить десятичную разность чисел.
- 2. Выполнить пост-обработку результата по следующему алгоритму: двигаясь справа налево, если текущий разряд d допустимый (0 или 1) пропустить, иначе заменить 9 на 1, а 8 на 0.

В результате заимствования могут появиться только два варианта недопустимых разрядов: 9 и 8. 9 появиться, если заимствование сделано на данный разряд и отнимается 1-ца или заимствование на более младший разряд и отнимается 0, а 8 — когда заимствование сделано на более младший разряд и вычитается 1:

		9	9
	1	0	1
1	0	0	0
0	9	9	10

Вычитание десятичных чисел как двоичных

$$11110101_2 - 101011111_2 = 1000110_2$$

 $11110101_{10} - 101011111_{10} = 1008990_{10}$

Процедура вычитания десятичных чисел как двоичных состоит из двух шагов:

- 1. Вычислить десятичную разность чисел.
- 2. Выполнить пост-обработку результата по следующему алгоритму: двигаясь справа налево, если текущий разряд d допустимый (0 или 1) пропустить, иначе заменить 9 на 1, а 8 на 0.

Рассмотрим пример:

- 1.1008990
- 2.10089**1**0
- 3.1008**1**10
- 4.1000110

А12.1 Вычитание десятичных чисел как двоичных

Общая задача

Реализовать имитацию работы с двоичными числами с использованием десятичных чисел, например, для хранения числа 5_{10} использовать число 101_{10} (разряды идентичны двоичному представлению).

Конкретная задача

Разработать программу вычисления вычитания двух десятичных чисел как двоичных. На вход поступает два десятичных числа, все разряды которых аналогичны двоичным (принимают значение 0 или 1). Числа сохраняются в ячейках типа **unsigned int**, а для их ввода используются спецификаторы $%\mathbf{u}$.

Если среди разрядов есть цифра, не допустимая в двоичной системе счисления: вывести это число, сообщить об ошибке и завершить программу.

Если числа введены корректно, то вычислить их разность, используя обычную операцию сложения языка Си. После этого применить процедуру пост-обработки, описанную на предыдущих слайдах.

Результат сохраняется также в ячейке типа **unsigned int**, а для его вывода используется спецификатор $%\mathbf{u}$.

Привести на бумаге процедуру работы программы для чисел и сравнить результат с двоичной арифметикой:

 $1)\ 101111100 - 1011;\ 2)\ 11100110 - 1111111;\ 3)\ 10101010 - 1110001.$

Умножение десятичных чисел как двоичных

$$111_2 \times 111_2 = 110001_2$$

 $111_{10} \times 111_{10} = 12321_{10}$

Умножение чисел в двоичной системе сводится к сложению умножаемого самого с собой, сдвинутого на смещения, задаваемые множителем:

В отличие от сложения умножение, обычно, предполагает к многократное сложение и, следовательно, в десятичном результате будут присутствовать не только недопустимые в двоичной системе разряды, равные 2, а все допустимые в десятичной системе разряды.

Однако алгоритм пост-обработки, описанный для операции сложения подойдет и для умножения.

Умножение десятичных чисел как двоичных (2)

$$111_2 \times 111_2 = 110001_2$$

 $111_{10} \times 111_{10} = 12321_{10}$

Умножение Процедура умножения десятичных чисел как двоичных состоит из двух шагов:

- 1. Вычислить десятичное умножение чисел.
- 2. Выполнить пост-обработку результата по следующему алгоритму: двигаясь справа налево, если текущий разряд d допустимый (0 или 1), пропустить, иначе заменить его на (d mod 2) и увеличить следующий разряд на (d div 2). Рассмотрим пример:
 - 1. 12321
 - 2. 12401
 - 3. 1**40**01
 - 4. **30**001
 - 5. **11**0001

А12.3 Умножение десятичных чисел как двоичных

Общая задача

Реализовать имитацию работы с двоичными числами с использованием десятичных чисел, например, для хранения числа 5_{10} использовать число 101_{10} (разряды идентичны двоичному представлению).

Конкретная задача

Разработать программу вычисления произведения двух десятичных чисел как двоичных. На вход поступает два десятичных числа, все разряды которых аналогичны двоичным (принимают значение 0 или 1). Числа сохраняются в ячейках типа **unsigned int**, а для их ввода используются спецификаторы $%\mathbf{u}$.

Если среди разрядов есть цифра, не допустимая в двоичной системе счисления: вывести это число, сообщить об ошибке и завершить программу.

Если числа введены корректно, то вычислить их произведение, используя обычную операцию сложения языка Си. После этого применить процедуру постобработки, описанную на предыдущих слайдах.

Результат сохраняется также в ячейке типа **unsigned int**, а для его вывода используется спецификатор $%\mathbf{u}$.

Привести на бумаге процедуру работы программы для чисел и сравнить результат с двоичной арифметикой:

1) 10111100 *1011; 2) 11100110 * 1111111; 3) 10101010 * 1110001.

А12.4 Деление десятичных чисел как двоичных

Общая задача

Реализовать имитацию работы с двоичными числами с использованием десятичных чисел, например, для хранения числа 5_{10} использовать число 101_{10} (разряды идентичны двоичному представлению).

Конкретная задача

Разработать программу вычисления частного двух десятичных чисел как двоичных. На вход поступает два десятичных числа, все разряды которых аналогичны двоичным (принимают значение 0 или 1). Числа сохраняются в ячейках типа **unsigned int**, а для их ввода используются спецификаторы **%u**. При этом делимое *должно быть кратно* делителю.

Если среди разрядов есть цифра, не допустимая в двоичной системе счисления: вывести это число, сообщить об ошибке и завершить программу.

Если числа введены корректно, то вычислить их частное, используя обычную операцию целочисленного деления языка Си. После этого применить процедуру постобработки, алгоритм которой необходимо разработать самостоятельно и подробно описать в тетради!

Результат сохраняется также в ячейке типа **unsigned int**, а для его вывода используется спецификатор $%\mathbf{u}$.

Привести на бумаге процедуру работы программы для чисел и сравнить результат с двоичной арифметикой:

1) 101111100 *1011; 2) 11100110 * 11111111; 3) 10101010 * 1110001.