Лабораторная работа No10.

Понятие подпрограммы. Отладчик GDB.

Рассолова Маргарита Сергеевна

Содержание

1	Цель работы	5
2	Теоретическое введение	6
3	Выполнение лабораторной работы	7
4	Самостоятельная работа	15
5	Выводы	17
Список литературы		18

Список иллюстраций

3.1	Создание каталога и файла	7
3.2	Ввод текста программы	7
3.3	Создание исполняемого файла и проверка его работы	8
3.4	Создание исполняемого файла и проверка его работы	8
3.5	Создание второго файла	9
3.6	Ввод текста программы	9
3.7	Получение исполняемого файла и его загрузка в отладчик	9
3.8	Проверка	10
3.9	Проверка	10
3.10	Дисассимилированный код программы	10
3.11	Дисассимилированный код программы	11
3.12	Режим псевдографики	11
3.13	Проверка установки	11
3.14	Установка точки остановы	11
3.15	Просмотр информации об установках	12
3.16	Просмотр информации об установках	12
3.17	Просмотр информации об установках	12
3.18	Вывод в различных форматах значение регистра edx	13
3.19	Изменение значение регистра ebx	13
3.20	Изменение значение регистра ebx	13
3.21	Создание исполняемого файла и его загрузка в отладчик	14
3.22	Адрес вершины стека	14
3.23	Установка точки остановы и ее запуск	14
4.1	Установка точки остановы и ее запуск	15
4.2	Создание исполняемого файла и проверка его работы	16
4.3	Исправление ошибки	16
4.4	Создание исполняемого файла и проверка его работы	16

Список таблиц

1 Цель работы

Приобретение навыков написания программ с использованием подпрограмм. Знакомство с методами отладки при помощи GDB и его основными возможностями.

2 Теоретическое введение

Подпрограмма - это программа, которую можно выполнять в разных местах в составе одной или нескольких программ. Отладчик — это узкоспециализированное средство разработки, которое присоединяется к работающему приложению и позволяет проверять код.

3 Выполнение лабораторной работы

1. Создала каталог для 10 лабораторной и файл к ней. (рис. 3.1)

```
mikotseruba@mikotseruba-VirtualBox:~/work/study/2022-2023/Архитектура компьютер mtkotseruba@mikotseruba-VirtualBox:~/work/study/2022-2023/Архитектура компьютер mikotseruba@mikotseruba-VirtualBox:~/work/study/2022-2023/Архитектура компьютер a /arch-pc$ mkdir lab10 mikotseruba@mikotseruba-VirtualBox:~/work/study/2022-2023/Архитектура компьютер a/arch-pc$ cd lab10 mikotseruba@mikotseruba-VirtualBox:~/work/study/2022-2023/Архитектура компьютер a/arch-pc$/lab10$ touch lab10-1.asm
```

Рис. 3.1: Создание каталога и файла

2. Ввела в созданный файл текст программы из Листинга 1. (рис. 3.2)

```
        Открыть
        ✓

        _/work/study/2022-2023/Архитектура ко.

                                            *lab10-1.asm
                                                                                                 Сохранить
  1 %include 'in_out.asm'
 2 SECTION .data
3 msg: DB 'Введите х: ',0
  4 result: DB '2x+7=',0
 5 SECTION .bss
6 x: RESB 80
7 rezs: RESB 80
 8 SECTION .text
9 GLOBAL _start
10 _start:
11
12 mov eax, msg
13 call sprint
14
15 mov ecx, x
16 mov edx, 80
17 call sread
18 mov eax,x
19 call atoi
20 call _calcul
21 mov eax,result
22 call sprint
23 mov eax,[res]
24 call iprintLF
25 call quit
26
27 _calcul:
```

Рис. 3.2: Ввод текста программы

3. Создала исполняемый файл и проверила его работу. (рис. 3.3)

```
mikotseruba@mikotseruba-VirtualBox:~/work/study/2022-2023/Архитектура компьютер a/arch-pc/lab10$ nasm -f elf lab10-1.asm mikotseruba@mikotseruba-VirtualBox:~/work/study/2022-2023/Архитектура компьютер a/arch-pc/lab10$ ld -m elf_i386 -o lab10-1 lab10-1.o mikotseruba@mikotseruba-VirtualBox:~/work/study/2022-2023/Архитектура компьютер a/arch-pc/lab10$ ./lab10-1 Введите х: 6 2x+7=19
```

Рис. 3.3: Создание исполняемого файла и проверка его работы

4. Изменила текст программы в соответствии с инструкцией. (рис. ??, рис. ??)

```
lab10-1.asm
                                                                                                                           +
                                                                                                           Открыть ~
   Открыть У 🗐
                                                                 Сохранить
                                                                                                                                 ~/work/study/2022
                         ~/work/study/2022-2023/Архитектура ко.
                                                                                                        30 mov eax,x
 1 %include 'in out.asm
                                                                                                        31 call atoi
                                                                                                        32
 3 SECTION .data
                                                                                                        33 call _calcul
 4 msg: DB 'Bbequite x: ',0
5 prim1: DB 'f(x) = 2x+7',0
6 prim2: DB 'g(x) = 3x-1',0
7 result: DB 'f(g(x))= ',0
                                                                                                        35 mov eax, result
                                                                                                        36 call sprint
37 mov eax,[res]
                                                                                                        38 call iprintLF
 9 SECTION .bss
10 x: RESB 80
                                                                                                        40 call quit
11 res: RESB 80
                                                                                                        41
                                                                                                        42 calcul:
13 SECTION .text
                                                                                                        43
14 GLOBAL _start
15 _start:
                                                                                                        44 call _subcalcul
                                                                                                        45
16
                                                                                                        46 mov ebx,2
17 mov eax, prim1
18 call sprintLF
                                                                                                        47 mul ebx
                                                                                                        48 add eax.7
                                                                                                        49 mov [res],eax
20 mov eax, prim2
                                                                                                        50 ret
21 call sprintLF
                                                                                                        52 _subcalcul:
23 mov eax,msg
                                                                                                        53
24 call sprint
                                                                                                        54 mov ebx.3
25
                                                                                                        55 mul ebx
26 mov ecx,x
                                                                                                        56 sub eax,1
27 mov edx,80
                                                                                                        57 ret
```

5. Создала исполняемый файл и проверила его работу. (рис. 3.4)

```
mikotseruba@mikotseruba-VirtualBox:~/work/study/2022-2023/Архитектура компьютер a/arch-pc/lab10$ nasm -f elf lab10-1.asm mikotseruba@mikotseruba-VirtualBox:~/work/study/2022-2023/Архитектура компьютер a/arch-pc/lab10$ ld -m elf_i386 -o lab10-1 lab10-1.o mikotseruba@mikotseruba-VirtualBox:~/work/study/2022-2023/Архитектура компьютер a/arch-pc/lab10$./lab10-1 f(x) = 2x+7 g(x) = 3x-1 Введите x: 3 f(g(x))= 23
```

Рис. 3.4: Создание исполняемого файла и проверка его работы

6. Создала файл 2. (рис. 3.5)

```
mikotseruba@mikotseruba-VirtualBox:~/work/study/2022-2023/Архитектура компьютер a/arch-pc/lab10$ touch lab10-2.asm mikotseruba@mikotseruba-VirtualBox:~/work/study/2022-2023/Архитектура компьютер a/arch-pc/lab10$ ls in_out.asm lab10-1 lab10-1.asm lab10-1.o lab10-2.asm
```

Рис. 3.5: Создание второго файла

7. Ввела в созданный файл текст программы из Листинга 2. (рис. 3.6)

Рис. 3.6: Ввод текста программы

8. Получила исполняемый файл и загрузила его в отладчик gdb. (рис. 3.7)

Рис. 3.7: Получение исполняемого файла и его загрузка в отладчик

9. Проверила работу программы. (рис. 3.8)

```
(gdb) run
Starting program: /home/mikotseruba/work/study/2022-2023/Архитектура компьютера
/arch-pc/lab10/lab10-2
Hello, world!
[Inferior 1 (process 3512) exited normally]
(gdb)
```

Рис. 3.8: Проверка

10. Установила брейкпоинт на метку start. Запустила ее. (рис. 3.9)

Рис. 3.9: Проверка

11. Посмотрела дисассимилированный код программы. (рис. 3.10)

```
(gdb) disassemble _start

Dump of assembler code for function _start:

=> 0x08049000 <+0>: mov $0x4,%eax
0x08049005 <+5>: mov $0x1,%ebx
6x0404005 <+5>: mov $0x804a000,%ecx
6x864a000,%ecx
                                                          $0x8,%edx
                                             int
                                                          $0x80
                          <+20>:
                                                          $0x4,%eax
$0x1,%ebx
$0x804a008,%ecx
                                             mov
                                             mov
                          <+32>:
                                             mov
                                                           $0x7,%edx
                          <+37>:
                                             mov
                          <+42>:
                                             int
                                                           S0x80
                                                           $0x1,%eax
$0x0,%ebx
                                             mov
                          <+49>:
                          <+54>+
                                             int
                                                           S0x80
End of assembler dump.
```

Рис. 3.10: Дисассимилированный код программы

12. Подключилась на отображение команд с Intel'овским синтаксисом. Различия: В коде Интел отсутствуют суффиксы обозначения размера, код Интел опускает символ "%" перед именами регистров, имеет другой способ описания местоположений в памяти. (рис. 3.11)

```
(gdb) set disassembly-flavor intel
(gdb) disassemble _start
Dump of assembler code for function _start:
                                          eax,0x4
                                mov
                                mov
                                          ebx,0x1
                                          ecx,0x804a000
edx,0x8
                   <+10>:
                                mov
                   <+15>:
                                mov
                                int
                                          0x80
                   <+20>:
                                          eax,0x4
                                mov
                                          ebx,0x1
                                          ecx,0x804a008
edx,0x7
                   <+32>:
                                mov
                   <+37>:
                                mov
                   <+42>:
                                          0x80
                   <+44>:
                                          eax,0x1
                                 MOV
                                mov
int
                   <+49>:
                                          ebx,0x0
                   <+54>:
                                          0x80
End of assembler dump
```

Рис. 3.11: Дисассимилированный код программы

13. Включила режим псевдографики. (рис. 3.12)

```
[ Register Values Unavailable ]
 B+> 0x8049000 < start>
                                        eax,0x4
                                        ebx,0x1
ecx,0x804a000
edx,0x8
0x80
                                mov
                       t+10>
                                mov
                        t+15>
                                MOV
                                mov
                                        eax,0x4
                       t+27>
                                        ebx,0x1
                                         ecx.0x804a008
                        +32>
                                mov
native process 3532 In: _start
                                                                  L9
                                                                         PC: 0x8049000
(gdb) layout regs
```

Рис. 3.12: Режим псевдографики

14. Проверила установку точки останова. (рис. 3.13)

```
(gdb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y 0x08049000 lab10-2.asm:9
breakpoint already hit 1 time
```

Рис. 3.13: Проверка установки

15. Установила точку остановы по адресу инструкции. (рис. 3.14)

```
(gdb) b *0x8049000
Note: breakpoint 1 also set at pc 0x8049000.
Breakpoint 2 at 0x8049000: file lab10-2.asm, line 9.
```

Рис. 3.14: Установка точки остановы

16. Посмотрела информацию о всех установленных точках останова. (рис. 3.15)

```
(gdb) i b

Num Type Disp Enb Address What

1 breakpoint keep y 0x08049000 lab10-2.asm:9
breakpoint already hit 1 time

2 breakpoint keep y 0x08049000 lab10-2.asm:9
```

Рис. 3.15: Просмотр информации об установках

17. Посмотрела содержимое регистров. (рис. ??, рис. ??)

native pro	ocess 3020 In: _start	L9_	PC: 0X8049000	native proc	ess 3020 In: _sta	
eax	0×0	0		eip	0x8049000	0x8049000 <_st
ecx	0×0	0		Type <ret< td=""><td>> for more, q to</td><td>quit, c to continue w</td></ret<>	> for more, q to	quit, c to continue w
edx	0×0	0		0x202	[IF	1
ebx	0×0	0		cs	0x23	35
esp	0xffffd110	0xffffd110		SS	0x2b	43
ebp	0x0	0×0		ds	0x2b	43
esi	0×0	0		es	0x2b	43
edi	0×0	0		fs	0x0	0
eip	0x8049000	0x8049000 <_start>		gs	0x0	0
Type <ri< td=""><td>ET> for more, q to qu</td><td>it, c to continue without paging</td><td></td><td>(gdb)</td><td></td><td></td></ri<>	ET> for more, q to qu	it, c to continue without paging		(gdb)		

18. Посмотрела значения переменных.(рис. ??, рис. ??)

```
(gdb) x/1sb &msg1 (gdb) x/1sb 0x804a008 0x804a008 -msg1>: "Hello, " 0x804a008 <msg2>: "world!\n\034"
```

19. Изменила первый символ переменной msg1. (рис. 3.16)

```
(gdb) set {char}&msg1='h'
(gdb) x/1sb &msg1
0x804a000 <msg1>: "hello, "
```

Рис. 3.16: Просмотр информации об установках

20. Заменила символ в msg2. (рис. 3.17)

```
(gdb) set {char}&msg2='k'
(gdb) x/1sb &msg2
0x804a008 <msg2>: "korld!\n\034"
```

Рис. 3.17: Просмотр информации об установках

21. Вывела в шестнадцатиричном, двоичном форматах и символьном виде значение регистра edx. (рис. 3.18)

```
(gdb) p/x $edx

$1 = 0x0

(gdb) p/t $edx

$2 = 0

(gdb) p/s $edx

$3 = 0
```

Рис. 3.18: Вывод в различных форматах значение регистра edx

22. Изменила значение регистра ebx. (рис. 3.19)

```
(gdb) set $ebx='2'
(gdb) p/s $ebx
$4 = 50
(gdb) set $ebx=2
(gdb) p/s $ebx
$5 = 2
```

Рис. 3.19: Изменение значение регистра ebx

23. Скопировала файл 9 лабораторной в третий файл десятой лабораторной. (рис. 3.20)

```
mikotseruba@mikotseruba-VirtualBox:~/work/study/2022-2023/Архитектура компьютер a/arch-pc/lab10$ cp ~/work/study/2022-2023/Архитектура\ компьютера/arch-pc/lab0 9/lab9-2.asm ~/work/study/2022-2023/Архитектура\ компьютера/arch-pc/lab10/lab10 -3.asm
```

Рис. 3.20: Изменение значение регистра ebx

24. Создала исполняемый файл и загрузила его в отладчик, указав аргументы. (рис. 3.21)

```
Reading symbols from lab10-3...
(gdb) b _start
Breakpoint 1 at 0x80490e8: file lab10-3.asm, line 7.
(gdb) run
Starting program: /home/mikotseruba/work/study/2022-2023/Архитектура компьютера
/arch-pc/lab10/lab10-3 аргумент 1 аргумент 2 аргумент\ 3

Breakpoint 1, _start () at lab10-3.asm:7
7 _ pop ecx
```

Рис. 3.21: Создание исполняемого файла и его загрузка в отладчик

25. Посмотрела адрес вершины стека. (рис. 3.22)

Рис. 3.22: Адрес вершины стека

25. Установила точку останова и запустила ее. (рис. 3.23)

```
(gdb) x/s *(void**)($esp + 4)
0xffffd321: "/home/mikotseruba/work/study/2022-2023/Архитектура компьютера/
arch-pc/lab10/lab10-3"
(gdb) Quit
(gdb) x/s *(void**)($esp + 8)
0xffffd38a: "aprумент"
(gdb) x/s *(void**)($esp + 12)
0xffffd39b: "1"
(gdb) x/s *(void**)($esp + 16)
0xffffd39d: "aprумент"
(gdb) x/s *(void**)($esp + 20)
0xffffd3ae: "2"
(gdb) x/s *(void**)($esp + 24)
0xffffd3bo: "aprумент 3"
```

Рис. 3.23: Установка точки остановы и ее запуск

4 Самостоятельная работа

26. Преобразовала программу из девятой лабораторной. (рис. 4.1)

Рис. 4.1: Установка точки остановы и ее запуск

27. Создала исполняемый файл и проверила его работу. (рис. 4.2)

```
mikotseruba@mikotseruba-VirtualBox:~/work/study/2022-2023/Архитектура компьютер mikotseruba@mikotseruba-VirtualBox:~/work/study/2022-2023/Архитектура компьютер mikotseruba@mikotseruba-VirtualBox:~/work/study/2022-2023/Архитектура компьютер a/arch-pc/lab10$ nasm -f elf sam10-1.asm mikotseruba@mikotseruba-VirtualBox:~/work/study/2022-2023/Архитектура компьютер a/arch-pc/lab10$ ld -m elf_i386 -o lab10-4 lab10-4.o ld: невозможно найти lab10-4.o: Heт такого файла или каталога mikotseruba@mikotseruba-VirtualBox:~/work/study/2022-2023/Архитектура компьютер a/arch-pc/lab10$ nasm -f elf sam10-1.asm mikotseruba@mikotseruba-VirtualBox:~/work/study/2022-2023/Архитектура компьютер a/arch-pc/lab10$ ld -m elf_i386 -o sam10-1 sam10-1.o mikotseruba@mikotseruba-VirtualBox:~/work/study/2022-2023/Архитектура компьютер a/arch-pc/lab10$ ./sam10-1 1 2 3 f(x)=10x-4 Pesyльтат: 48 mikotseruba@mikotseruba-VirtualBox:~/work/study/2022-2023/Архитектура компьютер a/arch-pc/lab10$ ./sam10-1 1 2 3 4 f(x)=10x-4 Pesyльтат: 84
```

Рис. 4.2: Создание исполняемого файла и проверка его работы

28. С помощью отладчика определила и исправила ошибку в листинге 3. (рис. 4.3)

Рис. 4.3: Исправление ошибки

29. Создала исполняемый файл и проверила его работу. (рис. 4.4)

```
mikotseruba@mikotseruba-VirtualBox:~/work/study/2022-2023/Архитектура компьютер a/arch-pc/lab10$ touch lab10-4.asm mikotseruba@mikotseruba-VirtualBox:~/work/study/2022-2023/Архитектура компьютер a/arch-pc/lab10$ nasm -f elf lab10-4.asm mikotseruba@mikotseruba-VirtualBox:~/work/study/2022-2023/Архитектура компьютер a/arch-pc/lab10$ ld -m elf_i386 -o lab10-4 lab10-4.o mikotseruba@mikotseruba-VirtualBox:~/work/study/2022-2023/Архитектура компьютер a/arch-pc/lab10$ ./lab10-4
Peayльтат: 25
```

Рис. 4.4: Создание исполняемого файла и проверка его работы

5 Выводы

Приобрела навыки написания программ с использованием подпрограмм. Ознакомилась с методами отладки при помощи GDB и его основными возможностями.

Список литературы