Идентификация кратных корней знаменателя спектральной плотности стационарных моделей

Круглова Валентина Викторовна, гр. 422

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: к.ф.-м.н., доц. Товстик Т.М. Рецензент: к.ф.-м.н., доц. Москалева Н. М.

Санкт-Петербург 2016г.

Цель работы и основные задачи

Цель работы состоит в том, чтобы исследовать возможность идентификации и оценки кратных корней знаменателя спектральной плотности стационарных моделей.

Задачи:

- Моделирование гауссовских стационарных процессов авторегрессии
- Построение адекватной модели
- Выявление возможности оценки кратности корней знаменателя спектральной плотности построенных моделей

Необходимые определения

Определение

 X_t – процесс авторегрессии порядка n (AP(n)), если

$$X_t + q_1 X_{t-1} + \dots + q_n X_{t-n} = p_0 \xi_t,$$

где ξ_t – независ. сл. величина с $\mathsf{E}\xi_t=0$, $\mathsf{E}\xi_t^2=1$.

Спектральная плотность X_t : $f(\lambda)=\frac{1}{2\pi}\left|\frac{p_0}{q(e^{-i\lambda})}\right|^2$ При этом характеристический полином

$$q(z) = \sum_{k=0}^{n} q_k z^k, \qquad q_0 = 1$$

имеет действительные коэффициенты и корни вне единичного круга.

План работы

Пусть X_t – стационарный процесс $\mathsf{AP}(n)$

Задачи:

- Промоделировать рассматриваемый процесс и получить его реализацию x_1, x_2, \dots, x_N
- Оценив параметры процесса q_1, \dots, q_n , построить модель по временному ряду
- Проверить на стационарность полученную модель и определить корни характеристического полинома модели
- Идентифицировать наличие кратных корней в знаменателе спектральной плотности

Используемые методы,

- Для получения реализаций процесса был использован метод моделирования гауссовских стационарных процессов
- Для построения модели был реализован метод Юла–Уокера

Проблема: При наличии кратных корней в знаменателе спектральной плотности этот метод не всегда дает положительный результат: не всегда правильно определяется их кратность.

В качестве решения был построен и исследован метод (пошаговый алгоритм), который позволяет выявить корни знаменателя спектральной плотности и определить их кратность (по крайней мере, у всех рассмотренных примеров).

Метод Юла-Уокера: оценивание параметров процесса

- Пусть X_t стационарный процесс AP(n), x_1, x_2, \dots, x_N — реализация.
- Система Юла-Уокера:

$$\hat{q}_0 R_k^N + \hat{q}_1 R_{k-1}^N + \dots + \hat{q}_n R_{k-n}^N = 0, \qquad k = 1, 2, \dots, n$$

Систему Юла–Уокера можно продолжить:

$$\hat{q}_0 R_{n+k}^N + \hat{q}_1 R_{n+k-1}^N + \dots + \hat{q}_n R_k^N = 0, \qquad k = 1, 2, \dots$$

• Метод наименьших квадратов:

$$\sum_{j=0}^{n} \hat{q}_{j} \sum_{k=1}^{v} R_{k-j}^{N} R_{k-t}^{N} = 0, \qquad \hat{q}_{0} = 1, \qquad t = 1, \dots, n$$

$$\hat{p_0} = \sqrt{R_0^N + \hat{q_1}R_1^N + \dots + \hat{q_n}R_n^N}$$

ullet Для процесса $\mathsf{AP}(n)$ справедлива гипотеза $H_0:q_{n+1}=0$

Пошаговый алгоритм

- Пусть процесс AP(n), причем n=2k, k>1: q(z) имеет корни $z_{1,2}=e^{\alpha}(\cos\omega\pm i\sin\omega)$ кратности k. Пусть x_1,x_2,\ldots,x_N наблюдения.
- ШАГ 1. Считая, что порядок модели n=2, вычислим

$$\hat{q}^{(1)}(z) = 1 + \hat{q}_1^{(1)}z + \hat{q}_2^{(1)}z^2, \qquad \hat{z}_{1,2}^{(1)} = e^{\alpha^{(1)}}(\cos\omega^{(1)} \pm i\sin\omega^{(1)}).$$

ШАГ 2. Составим Y_t : $Y_t=X_{t+2}+\hat{q}_1^{(1)}X_{t+1}+\hat{q}_2^{(1)}X_t$. Получим y_1,\dots,y_{N-2} . Выполним ШАГ 1 с наблюдениями y_1,\dots,y_{N-2} :

$$\hat{q}^{(2)}(z) = 1 + \hat{q}_1^{(2)}z + \hat{q}_2^{(2)}z^2, \qquad \hat{z}_{1,2}^{(2)} = e^{\alpha^{(2)}}(\cos\omega^{(2)} \pm i\sin\omega^{(2)}).$$

- ШАГ 3. Повторим ШАГ 2 еще (k-2) раза, используя наблюдения и оценки коэффициентов из предыдущего шага. Получим $(\alpha^{(1)},\omega^{(1)}),(\alpha^{(2)},\omega^{(2)}),\dots,(\alpha^{(k)},\omega^{(k)}).$
 - При этом, для рассматриваемых примеров все $\alpha^{(j)}$ оказывались близкими к α , а все $\omega^{(j)}$ к ω .
- ШАГ 4. Реализуем ШАГ 2 при условии, что n=1: $\hat{q}^{(k+1)}(z)=1+\hat{q}_1^{(k+1)}z.$ Проверим $H_0:q_1^{(k+1)}=0.$ Если гипотеза не отвергается, то остался только белый шум.

Преимущества пошагового алгоритма

- Позволяет оценить параметры процесса по временному ряду для построения адекватной модели
- Дает возможность идентификации наличия кратных корней знаменателя спектральной плотности и определения их кратности
- Применим в случаях с высоким порядком кратности корней и при наличии «мешающего воздействия»

Оценка погрешностей $\hat{\alpha}$ и $\hat{\omega}$ у процесса AP(2)

Модель AP(2): $X_t + \hat{q_1}X_{t-1} + \hat{q_2}X_{t-2} = \hat{p_0}\xi_t$, где

$$\hat{q}_1 = -2e^{-\hat{\alpha}}\cos(\hat{\omega}), \qquad \hat{q}_2 = e^{-2\hat{\alpha}} \qquad \qquad \hat{\alpha} = \alpha + \mathcal{E}_1, \qquad \hat{\omega} = \omega + \mathcal{E}_2,$$

где $\mathcal{E}_1,\mathcal{E}_2$ – завис. сл. величины с $\mathsf{E}\mathcal{E}_1=0,\;\mathsf{E}\mathcal{E}_2=0.$

$$m{\bullet}$$
 $ilde{F} = \sum_{k=0}^{+\infty} ilde{B}^k ilde{\sigma} (ilde{B}^{\mathrm{T}})^k$, где $ilde{B} = egin{pmatrix} q_1 & q_2 \ -1 & 0 \end{pmatrix}, \qquad ilde{\sigma} = egin{pmatrix} p_0^2 & 0 \ 0 & 0 \end{pmatrix}$

$$\bullet \ \tilde{F}^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Longrightarrow \mathsf{D}\hat{q_1} = \frac{p_0^2 a}{N} = \frac{C_1}{N}, \ \mathsf{D}\hat{q_2} = \frac{p_0^2 d}{N} = \frac{C_2}{N}$$

- $\bullet \ \ \mathsf{D} \hat{q_2} = 4 e^{-4\alpha} \mathsf{E} \mathcal{E}_1^2 \qquad \Longrightarrow \qquad \mathsf{E} \mathcal{E}_1^2 = \tfrac{C_2}{4N} e^{4\alpha}$
- Из уравнений Юла–Уокера получаем:

$$\begin{cases} \frac{1}{2}\cos(\omega)(\mathsf{E}\mathcal{E}_1^2 - \mathsf{E}\mathcal{E}_2^2) + \sin(\omega)\mathsf{E}\mathcal{E}_1\mathcal{E}_2 = 0\\ \cos^2(\omega)\mathsf{E}\mathcal{E}_1^2 + \sin^2(\omega)\mathsf{E}\mathcal{E}_2^2 + \sin(2\omega)\mathsf{E}\mathcal{E}_1\mathcal{E}_2 = \frac{C_1}{4N}e^{2\alpha} \end{cases} \implies \mathsf{E}\mathcal{E}_2^2 = \frac{C_1}{4N}e^{2\alpha}$$

- ullet Проверка совпадения $\hat{\omega}^{(1)}$ и $\hat{\omega}^{(2)}$: $\mathsf{E}|\hat{\omega}^{(1)}-\hat{\omega}^{(2)}|\leq 2\sigma_{\omega}$, $\ \sigma_{\omega}^2=\mathsf{E}\mathcal{E}_2^2$
- С вероятностью 0.95: $|\hat{\omega}^{(1)} \hat{\omega}^{(2)}| \leq 2(1.96\sigma_{\omega})$ $|\hat{\omega}^{(i)} \omega| < 1.96\sigma_{\omega}, \ i = 1, 2$

Результаты

- Проведено моделирование процесса с дискретным параметром и спектральной плотностью, имеющей в знаменателе корни разной кратности
- Реализован метод Юла–Уокера для построения модели и оценивания параметров стационарного процесса с дробно–рациональной спектральной плотностью
- Предложен вариант решения проблемы идентификации кратных корней знаменателя спектральной плотности и определения их кратности
- Построенный пошаговый алгоритм исследован на процессах, у которых характеристический полином содержал действительные и комплексно-сопряженные корни, как кратные, так и простые

Результаты: пример

Пусть X_t – процесс **AP(6)**:

$$X_t - 4.615X_{t-1} + 9.665X_{t-2} - 11.531X_{t-3} + 8.260X_{t-4} - 3.372X_{t-5} + 0.624X_{t-6} = 0.0028\xi_t$$

Корни q(z): $0.9 \pm 0.6i$ кратности 3 $\alpha = 0.07706, \ \omega = 0.58871$

Спектральная плотность:

Подбор модели по методу Юла-Уокера

Точные характеристики процесса				
$Kophu\ q(z)$	α	ω	Период	
$z_{1,2} = 0.9 \pm 0.6i$	0.07706	0.58871	10.6728	
кратности 3				
Характеристики модели АР(7)				
Корни $\hat{q}(z)$	$\hat{\alpha}$	$\hat{\omega}$	Период	
$\hat{z}_{1,2} = 0.897 \pm 0.542i,$	0,04715,	0,54354,	11.56,	
	$\varepsilon_1^{(\alpha)} = 0.03,$	$\varepsilon_1^{(\omega)} = 0.05,$		
$\hat{z}_{3,4} = 0.836 \pm 0.6i,$	0,02877,	0,62278,	10.09,	
	$\varepsilon_2^{(\alpha)} = 0.05,$	$\varepsilon_2^{(\omega)} = 0.03,$		
$\hat{z}_{5,6} = 1.001 \pm 1.123i,$	0,4087,	0,84275,	7.46,	
	$\varepsilon_3^{(\alpha)} = 0.3,$	$\varepsilon_3^{(\omega)} = 0.25,$		
$\hat{z}_7 = -1.28$	0,24707,	3,14159,	2	
	$\varepsilon_4^{(\alpha)} = 0.17$	$\varepsilon_4^{(\omega)} = 2.6$		

Модель АР(7) по методу Юла-Уокера:

$$X_{t} - 3.315X_{t-1} + 4.514X_{t-2} - 2.291X_{t-3} - 1.045X_{t-4} + 2.182X_{t-5} - 1.241X_{t-6} + 0.296X_{t-7} = 0.016\xi_{t-7}$$

Подбор модели по пошаговому алгоритму

		2 11145 4		
Результат оценивания при $n=2$, ШАГ 1				
Корни $\hat{q}^{(1)}(z)$	$\alpha^{(1)}$	$\omega^{(1)}$	Период	
$z_{1,2}^{(1)} = 0.844 \pm 0.562i,$	0.01434,	0,58724,	10.69	
$\sqrt{E\mathcal{E}_1^2} = 0.0224,$	$\varepsilon_1^{(\alpha)} = 0.06$	$\varepsilon_1^{(\omega)} = 0.001$		
$\sqrt{E\mathcal{E}_2^2} = 0.0171$				
Результат оценивания при $n=2$, ШАГ 2				
Корни $\hat{q}^{(2)}(z)$	$\alpha^{(2)}$	$\omega^{(2)}$	Период	
$z_{1,2}^{(2)} = 0.907 \pm 0.582i$	0.07433,	0,57043,	11.01	
,	_ _	$\varepsilon_2^{(\omega)} = 0.02$		
Результат оценивания при $n=2$, ШАГ 3				
Корни $\hat{q}^{(3)}(z)$	$\alpha^{(3)}$	$\omega^{(3)}$	Период	
$z_{1,2}^{(3)} = 0.999 \pm 0.699i$	0,19874,	0,6109,	10.29	
,	$\varepsilon_3^{(\alpha)} = 0.12$	$\varepsilon_3^{(\omega)} = 0.02$		
Результат оценивания при $n=1$, ШАГ 4				
Корни $\hat{q}^{(4)}(z)$	$\alpha^{(4)}$	$\omega^{(4)}$	Период	
$z_1^{(4)} = 21.74087$	3.07919	0	_	

Пример: подведение итогов

- Методом Юла–Уокера кратные корни выявить не удалось, разница между исходными корнями и полученными оценками существенна
- Пошаговый алгоритм позволил идентифицировать кратные корни и определить их порядок кратности
- При пошаговом алгоритме величины погрешности оказались меньше, чем при методе Юла–Уокера
- По пошаговому алгоритму оценивание ω оказалось лучше, чем оценивание α

Реализация процессов

Рис.: Реализация процесса АР(2), кратность 1

Рис.: Реализация процесса АР(4), кратность 2

Рис.: Реализация процесса АР(6), кратность 3