Sistemi

Giovanni Tosini

Indice

1	Numeri complessi			
	1.1	Formula di Eulero		
	1.2	Operazioni con i numero complessi	;	
	1.3	Teorema fondamentale dell'algebra		
2	Segnali			
	2.1	Segnali elementari a tempo continuo		
		2.1.1 Segnale sinusoidale		
		2.1.2 Fasore	1	
		2.1.3 Segnale sinusoidale modulato esponenzialmente	1	
		2.1.4 Segnale esponenziale complesso	1	
		2.1.5 Funzioni generalizzate	1	

Capitolo 1

Numeri complessi

Un numero complesso $s = \sigma + j\omega$ con $j = \sqrt{-1}$ e $\sigma, \omega \in R$ in cui

- $\sigma = Re(s)$ parte reale
- $\omega = Im(s)$ parte immaginaria
- $C = st.c.s = \sigma + j\omega, \sigma, \omega \in R$ insieme dei numeri complessi

Forma polare dei numeri complessi, $s = \rho(\cos\theta + j\sin\theta)$

- $\rho = \sqrt{\sigma^2 + \omega^2}$ il modulo di s con $\rho \in R^+$
- $\theta = \text{argomento di } s$

Osservazione 1 $Re(s) = \rho cos\theta \in Im(s) = \rho sin\theta$

Osservazione 2 L'argomento θ è determinato a meno di multipli interi di 2π . Imponendo $\theta \in [0, 2\pi)$ oppure $(-\pi, \pi]$ (deve essere un intervallo lungo 2π) si ottiene l'argomento principale θ che notiamo con arg(s)

1.1 Formula di Eulero

$$\theta \in R, j = \sqrt{-1}$$
abbiamo $e^{j\theta} = cos\theta + jsin\theta$

Forma esponenziale $s = \rho e^{j\theta}$

$$|e^{j\theta} = \sqrt{\cos^2\theta + \sin^2\theta} = 1$$

Esempio: $e^{j\frac{\pi}{2}} = j$

$$s = 0 + 1j = j$$

Def: i numeri immaginari puri hanno la parte reale nulla

Def: dato $s:\sigma+j\omega\in C$ $\bar{s}:\sigma-j\omega$ coniugato complesso

La forma polare di \bar{s} sarà uguale a $\rho(\cos\theta - j\sin\theta)$

Osservazione $|s| = |\bar{s}| arg(\bar{s}) = -arg(s)$

Esempio: $e^{j\pi} = -1 = e^{j\pi} + 1 = 0$

1.2 Operazioni con i numero complessi

- $s_1 = \sigma_1 + j\omega_1, s_2 = \sigma_2 + j\omega_2 \in C$
- $s_1 + s_2 = \sigma_1 + \sigma_2 + j(\omega_1 + \omega_2)$
- $s_1 s_2 = \sigma_1 \sigma_2 + j(\omega_1 \omega_2)$

Osservazione: $Re(s) = \frac{s+\bar{s}}{2}$ e $Im(s) = \frac{s+\bar{s}}{2j}$

Per la formula di Eulero $e^{j\theta} = \cos\theta + j\sin\theta \Rightarrow \cos\theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$ e $\sin\theta = \frac{e^{j\theta} - e^{-j\theta}}{2j}$

Osservazione: $2Re(s) = s + \bar{s} \ e \ 2jIm(s) = s - \bar{s}$

$$s = \bar{s} \Rightarrow Im(s) = 0 \text{ e } s = -\bar{s} \Rightarrow Re(s) = 0$$

- $s_1 = \rho_1(\cos\theta_1 + j\sin\theta_1)$
- $s_2 = \rho_1(\cos\theta_2 + j\sin\theta_2)$
- $s_1 s_2 = \rho_1 \rho_2 (\cos(\theta_1 + \theta_2) + j \sin(\theta_1 + \theta_2))$
- $s_1 s_2 = \rho_1 \rho_2 (\cos \theta_1 \cos \theta_2 + j \cos \theta_1 \sin \theta_2 + j \sin \theta_1 \cos \theta_2 \sin \theta_1 \sin \theta_2)$
- $s_1s_2 = \rho_1\rho_2(cos\theta_1cos\theta_2 sin\theta_1sin\theta_2 + j(cos\theta_1sin\theta_2 + sin\theta_1cos\theta_2))$

N.B.: $cos\theta_1cos\theta_2 - sin\theta_1sin\theta_2 = cos(\theta_1 + \theta_2) e cos\theta_1sin\theta_2 + sin\theta_1cos\theta_2 = sin(\theta_1 + \theta_2)$

Def: Dato $s \in C$ il numero s^{-1} t.c. $ss^{-1} = 1$, $s^{-1} = \frac{\bar{s}}{|s|^2}$ reciproco (inverso) di s.

$$ss^{-1} = s\frac{\bar{s}}{|s|^2} = \frac{s\bar{s}}{|s|^2}$$

$$s\bar{s} = \rho^2(\cos(\theta - \theta) + j\sin(\theta - \theta)) = \rho^2 = |s|^2$$

Osservazione: l'argomento di un numero complesso si può chiamare anche

$$\frac{s_1}{s_2} = s_1 s_2^{-1} = s_1 \frac{\bar{s_2}}{|s_2|^2} = \frac{\rho_1}{\rho_2} (\cos(\theta_1 - \theta_2) j \sin(\theta_1 - \theta_2))$$

Osservazione: $s\bar{s} = \rho^2(\cos(\theta - \theta) + j\sin(\theta - \theta)) = \rho^2 \Rightarrow |s|^2 = s\bar{s}$

Def: $u \in C$ si dice complesso unitario se |u|=1. In forma polare $u=cos\theta+jsin\theta$. In forma esponenziale $u=e^{j\theta}$ e $|e^{j\theta}|=1$

Sia $u = cos\alpha + jsin\alpha$ con $s = \rho(cos\theta + jsin\theta)$ avremo che $su = \rho(cos(\theta + \alpha) + jsin(\theta + \alpha))$ (rotazione intorno all'origine)

$$s^n = \rho^n(\cos(n\theta) + j\sin(n\theta))$$

Esempio:

$$(e^{j\theta})^n = e^{jn\theta}$$

Radici complesse Ogni $s \in C$ ammette n distinte radici n-esime $\omega_1, \ldots, \omega_{n-1} \in C$. Dobbiamo trovare $\omega \in C$ t.c. $\omega^n = s$.

$$]\forall k \in [0, n-1], \omega_k \sqrt[n]{\rho}(\cos(\frac{\theta}{n} + \frac{2\pi}{n}k) + j\sin(\frac{\theta}{n} + \frac{2\pi}{n}k))$$

Prova:

$$\omega_k^n = (\sqrt[n]{\rho}^n)(\cos(n(\frac{\theta}{n} + \frac{2\pi}{n}k)) + j\sin(n(\frac{\theta}{n} + \frac{2\pi}{n}k))) =$$
$$= \rho(\cos(\theta + 2\pi k) + j\sin(\theta + 2\pi k)) =$$

Notare che $cos(\theta + 2\pi k)$ è equivalente a $cos\theta$ e $sin(\theta + 2\pi k)$ equivale a $sin\theta$ questo $\forall k = 0, ..., n - 1$.

L'equazione: $s^4 = 1 + 2j$ ha 4 radici distinte nel campo C. Esempio: le radici complesse dell'unità

$$s^{n} = 1\omega_{k} = \cos(\frac{2\pi}{n}k) + j\sin(\frac{2\pi}{n}k)k = 0, ..., n-1$$

Funzioni di variabile complessa Gli insieme su cui definiamo una funzione di variabile complessa f si scrivono D(f), $D(f) \subseteq C$

Def: un punto $s_0 \in D(f) \subseteq C$ è interno a D(f) se esiste un disco $B_{\rho}(s_0)$ di raggio ρ con $\rho \in R^+$ centrato in s_0 , t.c. $B_{\rho}(s_0) \subseteq D(f)$ dove $B_{\rho}(s_0) = s \in Ct.c.|s - s_0| < \rho$

Def: Un insieme $D(f) \subseteq C$ si dice aperto se tutti i suoi punti sono interni

Def: Una funzione $f:D(f)\to C$ con $D(f)\subseteq C$ aperto è una funzione complessa

Esempi di funzioni complesse con annesso dominio:

- f(s) = s, D(f) = C
- $f(s) = s^2, D(f) = C$
- $f(s) = Re(s) + jIm(s)^2, D(f) = C$
- $f(s) = \sum_{k=0}^{n} a_k s^k, D(f) = C$
- funzione polinomiale, $f(s) = \frac{P(s)}{Q(s)}$ dove $P(s) = \sum_{k=0}^{n} a_k s^k$ e funzione razionale $Q(s) = \sum_{k=0}^{n} b_k s^k$, $D = C \lambda_1, ..., \lambda_m$ dove λ_α è radice di Q(s) = 0 per k = 1, ..., m

1.3 Teorema fondamentale dell'algebra

Ogni polinomio P(s) a coefficienti complessi di grado n>0 ha n radici complesse e si può comporre come

 $P(s) = a_n(s - \lambda_1)_1^{\mu}(s - \lambda_2)_2^{\mu}...(s - \lambda_r)_r^{\mu}$ dove $\lambda_1, ...\lambda_r$ sono radici e $\mu_1, ..., \mu_r$ sono le **molteplicità** relative di ciascuna radice per cui $\mu_1 + ... + \mu_r = n$

Osservazione Un numero λ è una radice di molteplicità μ per un polinomio P(s) se e solo se $P(\lambda)=P'(\lambda)=P''(\lambda)=\dots=P^{\mu-1}(\lambda)=0$ e $P^{\mu}(\lambda)\neq 0$

Capitolo 2

Segnali

Sono funzioni matematiche definite su un dominio, esistono nel dominio:

- continuo $\rightarrow R, C, \dots;$
- discreto $\rightarrow Z$.

2.1 Segnali elementari a tempo continuo

2.1.1 Segnale sinusoidale

Consiste di una funzione:

$$v:R\to R, v(t)=A\overbrace{\cos}^{[-1,1]}(\omega t+\phi)\ \mathrm{con}\ A,\omega,\phi\in R$$

- A > 0 è l'ampiezza;
- ω la pulsazione;
- ϕ la fase;
- v è periodico di periodo $T = \frac{2\pi}{\omega}$;
- la frequenza $f = \frac{1}{T} \to f = \frac{\omega}{2\pi}$.

Figura 2.1: Funzione sinusoidale

2.1.2 Fasore

Una funzione:

$$v: R \to C, v(t) = Ae^{j(\omega t + \phi)} \text{1} \text{con } A, \omega, \phi \in R$$

Di conseguenza sarà uguale sempre ad A.

Osservazione: dalla formulla di Eulero, possiamo esprimere un segnale sinusoidale

$$A\cos(\omega t + \phi) = A \frac{e^{j(\omega t + \phi)} + e^{-j(\omega t + \phi)}}{2} =$$
$$= \frac{A}{2}e^{j(\omega t + \phi)} + \frac{A}{2}e^{-j(\omega t + \phi)}$$

Figura 2.2: Fasore

2.1.3 Segnale sinusoidale modulato esponenzialmente

$$v: R \to R \tag{2.1}$$

$$v(t) = Ae^{\sigma t}\cos(\omega t + \phi) \tag{2.2}$$

$$con \sigma, A, \omega, \phi \in R, A > 0 \tag{2.3}$$

(2.4)

non è periodico.

- per $\sigma > 0$ e $t \to \infty \Rightarrow v(t) = \infty$
- per $\sigma < 0$ e $t \to \infty \Rightarrow v(t) = 0$

 $[\]frac{1}{1}e^{j\theta} = \cos\theta + j\sin\theta \to |e^{j\theta}| = 1$

Figura 2.3: Segnale sinusoidale modulato esponenzialmente

Osservazione: segnali sinusoidali, modulati esponenzialmente, si possono scrivere come combinazione lineare di fasori:

$$\begin{split} Ae^{\sigma t}\cos(\omega t + \phi) &= Ae^{\sigma t}\frac{e^{j(\omega t + \phi)} + e^{-j(\omega t + \phi)}}{2} = \\ &= \frac{Ae^{\sigma t}e^{j(\omega t + \phi)}}{2} + \frac{Ae^{\sigma t}e^{-j(\omega t + \phi)}}{2} = \\ &= \underbrace{\frac{A}{2}e^{j\phi}e^{t(\sigma + j\omega)} + \frac{A}{2}e^{-j\phi}e^{t(\sigma - j\omega)}}_{\text{sono complessi coniugati}} \end{split}$$

2.1.4 Segnale esponenziale complesso

$$v: R \to C, v(t) = Ae^{\sigma t}e^{j(\omega t + \phi)}$$

2.1.5 Funzioni generalizzate

2.1.5.1 Segnali polinomiali

$$\delta_{-n}: R \to R\delta_{-n} = \begin{cases} \frac{t^{n-1}}{(n-1)!}, t \ge 0; \\ 0, \text{ altrimenti} \end{cases}$$

Da un certo istante ha un valore e quello sarà l'istante 0.

Osservazione:

$$\delta_{-n}(t) = \int_{-\infty}^{t} \delta_{-(n-1)}(\Psi) d\Psi$$

Il segnale polinomiale n-esimo può essere ottenuto come integrale del segnale (n - 1)-esimo

$$\delta_{-n}(t) = \frac{d\delta_{-(n+1)}^t}{dt}$$

Esempio per n = 1

$$\delta_{-1}(t) = \begin{cases} 1, t \ge 0 \\ 0, \text{altrimenti} \end{cases}$$

Per n = 2

$$\delta_{-2}(t) = \begin{cases} t, t \ge 0 \\ 0, \text{altrimenti} \end{cases}$$

Osservazione: l'integrale del gradino è la rampa e viceversa la derivata della rampa è il gradino.

$$\int_{-\infty}^{t} \delta_{-1} d\alpha = \delta_{-2}(t) \frac{d\delta_{-2}(t)}{dt} = \delta_{-1}(t)$$

2.1.5.2 Finestra rettangolare unitaria

$$\Pi: R \to R\Pi(t) = \begin{cases} 1, -\frac{1}{2} \le t \le \frac{1}{2}^2 \\ 0, \text{altrimenti} \end{cases}$$

Figura 2.4: Finestra rettangolare unitaria, ampiezza = 1

Osservazione: La finestra rettangolare unitaria è una combinazione lineare di due gradini:

$$\Pi(t) = \delta_{-1}(t + \frac{1}{2}) - \delta_{-1}(t - \frac{1}{2})$$

2.1.5.3 Finestra rettangolare ad ampiezza A con diverso supporto

 $\textbf{N.B.:}\,$ il supporto è il sotto
insieme del dominio per cui la funzione è $\neq 0$

L'ampiezza A, centrata in t_0 , con supporto $(t_0 - \frac{\pi}{2}, t_0 + \frac{\pi}{2})$.

$$A\Pi(\frac{t-t_0}{T}) = \begin{cases} A, t_0 - \frac{\pi}{2} \le t \le t_0 + \frac{\pi}{2} \\ 0, \text{altrimenti} \end{cases}$$

2.1.5.4 Finestre (o impulso) triangolare unitaria

$$\Lambda:R\to R, \Lambda(t)=\begin{cases} 1-|t|, -1\leq t\leq 1\\ 0, \text{altrimenti} \end{cases}$$

Figura 2.5: Impulso, supporto [-1, 1], area = 1