Cord-Operated Prosthetic Finger

Tom McIlwain

Overview

A prosthetic finger that is operated by cords running through it and is designed to be attached to a corresponding prosthetic hand.

Cords run through holes in each of the individual 'bones' on both sides. By pulling the cords, the finger can flex or elongate.

Design Iterations

Design

Two pins are inserted through holes at the interface between the artificial bones to create a hinge joint.

The holes vary in size for press fitting.

Redesign for Scaled Manufacturing

Material:

Nylon (polyamide plastic)

Manufacturing Process:

Solidification using Injection Molding

- Each part is split in half for 2 individual injection molding parts
- Constant wall thickness of 0.03"
- Smooth edges
- 1° draft angles added (shown in green)

Cost per finger

- Each finger = 3.072 grams
- Rounding to include sprues = 3.5 grams

Material: Nylon Plastic Pellets from McMaster-Carr (\$364 for 50 lbs (22,680 grams))

22680 / 3.5 = 6480 prosthetic fingers

\$364 / 6480 fingers = **\$0.056 per finger***

*This does not include the cost of manufacturing, only the materials.

