Data Science CS301 The Vaccine Lab

Week 11
Fall 2024
Oliver BONHAM-CARTER

Are you here today?!

https://forms.gle/iaY7zBmxj8KvsDMa8

Let's Talk About Lab 5 For A Moment...

- How do you know if something to prevent sickness is working?
- Are the Vaccines working?
 - Are there fewer people with Measles, mumps, Hepatitis B (and other illnesses) as a result of receiving vaccines in 1966?

History of Vaccines: https://historyofvaccines.org/

Why Vaccines?

Vaccines do not provide full (100%) protection, so breakthrough infections can happen.

But as more people get vaccinated, it is expected fewer people will come into contact with the virus.

World Health Organization:

What Does Research Say?

Comparison of 20th Century Annual Morbidity & Current Morbidity

Disease	20 th Century Annual Morbidity*	2010 Reported Cases [†]	% Decrease
Smallpox	29,005	0	100%
Diphtheria	21,053	0	100%
Pertussis	200,752	21,291	89%
Tetanus	580	8	99%
Polio (paralytic)	16,316	0	100%
Measles	530,217	61	>99%
Mumps	162,344	2,528	98%
Rubella	47,745	6	>99%
CRS	152	0	100%
Haemophilus influenzae (<5 years of age)	20,000 (est.)	270 (16 serotype b and 254 unknown serotype)	99%

Sources:

- * JAMA. 2007;298(18):2155-2163
- † CDC. MMWR January 7, 2011;59(52);1704-1716. (Provisional MMWR week 52 data)
- Vox Article:

ALLEGHENY COLLEGE

What Does Our Data Say About (All) Vaccines of Data?

library(tidyverse)

library(dslabs)

library(dplyr)

ggplot(data = us_contagious_diseases) + geom_point(mapping = aes(x = year, y = count, color = year)) + geom_vline(xintercept = 1965, color = "red")

Cases of Illness

Lab Results

 Use the us contagious disease and dplyr tools to create an object that stores only the Measles data, includes a per 100,000 people rate, and removes Alaska and Hawaii. Note that there is a weeks reporting column. Take that into account when computing the rate.

- # Add the rate column to the data:
 - dat_measles_rate <- filter(us_contagious_diseases, disease == "Measles") %>% mutate(rate = (((count*52)/weeks_reporting)) / ((population)/100000))
- # Note: the rate is one of several possible calculations...

Trim Out Two States

```
# Remove the two states (Alaska and Hawaii)
dat measles rate lessTwoStates <- filter(dat measles rate, state
!= "Alaska", state != "Hawaii")
View(dat measles rate lessTwoStates)
# Plot the results across 48 states
ggplot(data = dat measles rate lessTwoStates, mapping = aes(x
= year, y = rate, color = year)) + geom point() +
geom vline(xintercept = 1963, color = "red") + labs(y = "Counts of
Measels")
```


Plot Across 48 States

ggplot(data = dat_measles_rate_lessTwoStates, mapping = aes(x = year, y = rate, color = year)) + geom_point() + geom_vline(xintercept = 1963, color = "red") + labs(y = "Counts of Measels")

Focus On California

```
# Create table to focus on California

dat_caliFocus <- filter(dat_measles_rate_lessTwoStates, state == "California")

View(dat_caliFocus)

ggplot(data = dat_caliFocus, mapping = aes(x = year, y = rate, color = count)) + geom_point() + geom_vline(xintercept = 1963, color = "red") + labs(y = "Counts of Measles")
```


Data From California, Only

ggplot(data = dat_caliFocus, mapping = aes(x = year, y = rate, color = count)) + geom_point() + geom_vline(xintercept = 1963, color = "red") + labs(y = "Counts of Measles")

Discussion Points

- Vaccines administered in 1964 cause a decline in measles cases.
- California was used as a sample study: less data but still a good representation of the rest of the dataset
- The decades following the vaccines of 1964 show that new threats appear.
 Vaccines must be updated.

Transformations Helped Visualize

- Allows us to visually compare data by changing shape
- The square root, x to $x^{(1/2)} = sqrt(x)$, is a transformation with a moderate effect on distribution shape.
- Weaker than the logarithm and the cube root transformations
- Used for reducing right skewness
- Has the advantage that it can be applied to zero values

Effects of Transformations on Variables

2 3846.153846 62.01736729 15.6678312 3.585026652 3 5769.230769 75.95545253 17.93518953 3.761117911 4 7692.307692 87.70580193 19.74023034 3.886056648

Effects of Transformations on Vars Zoom-in

Common Transformations

- Reduce the Y into a smaller space to see trends.
- Places all points on a similar playing ground
- $P \leftarrow (x,y)$
- Trans(p) ← (x, sqrt(y))

More On Transformations

The 1950's, 1960's and 1970's Without Transformation

```
# plot three bars to see what happened in the 1950's, 1960's and 1970's.
```

```
ggplot(data = dat_caliFocus %>% filter(year == 1950 | year == 1960 | year == 1970)) + geom_bar(mapping = aes(x = year, y = count), stat = "identity")
```

Back to our conversation about vaccines

The 1950's, 1960's and 1970's Without Transformation

The 1950's, 1960's and 1970's With Sqrt() Transformation

```
#plot three bars to see what happened in the 1950's, 1960's and 1970's.

ggplot(data = dat_caliFocus %>% filter(year == 1950 | year == 1960 | year == 1970)) + geom_bar(mapping = aes(x = year, y = sqrt(count)), stat = "identity")
```


The 1950's, 1960's and 1970's With Sqrt() Transformation

The 1950's, 1960's and 1970's Without Transformation

#create some "block", containers to hold the data for each year.

dat_measles_rate_lessTwoStates\$yearBlock[dat_measles_rate_lessTwoStates\$year == 1950] <- "1950's"

dat_measles_rate_lessTwoStates\$yearBlock[dat_measles_rate_lessTwoStates\$year == 1960] <- "1960's"

dat_measles_rate_lessTwoStates\$yearBlock[dat_measles_rate_lessTwoStates\$year == 1970] <- "1970's"

#Without transformation, Multi-bar per state,

ggplot(data = dat_measles_rate_lessTwoStates) + geom_bar(mapping = aes(x = state, y = count, fill = yearBlock), position = "dodge", stat = "identity") + theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust=-0.01))

The 1950's, 1960's and 1970's Without Transformation

yearBlock


```
dat_measles_rate %>%
filter(!is.na(rate)) %>% mutate(state = reorder(state, rate, FUN = mean)) %>%
ggplot(aes(year,rate, color = state)) + geom line(alpha = 0.5) + theme classic() +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) + scale_y_sqrt() +
stat_summary(fun.y=mean, geom="line",lwd=0.7,col="black") + annotate("text", x =
1950, y = 490, label = "US average", size = 3) + ggtitle("US Measles Distribution") +
annotate("text", x = 1963, y = 2000, angle = 90, label = paste("paste(Vaccine)", collapse
= "_"), vjust = 1.2, parse = TRUE, size = 2.5) + geom_vline(xintercept = 1963, col =
"grey")
dat measles rate%>% filter(!is.na(rate)) %>%
ggplot(aes(year, state)) + geom_tile(aes(fill = rate), color = "white") +
scale_fill_gradient(low = "white", high = "blue", trans = "sqrt") +
scale_x continuous(expand = c(0,0)) + ggtitle("Measles disease rate per year in the
United States") + theme(plot.title = element_text(hjust = 0.5)) + geom_vline(xintercept =
1963, col = "black")
```


Measles disease rate per year in the United States


```
dat measles rate %>%
 filter(!is.na(rate)) %>% mutate(state = reorder(state, rate, FUN =
mean)) %>%
 ggplot(aes(year, sqrt(rate), color = state)) + geom line(alpha = 0.5) +
 theme classic() + theme(axis.text.x = element text(angle = 90, hjust
= 1)) +
 scale_y_sqrt() + stat_summary(fun.y=mean,
geom="line",lwd=0.7,col="black") +
 annotate("text", x = 1950, y = 490, label = "US average", size = 3) +
 ggtitle("US Measles Distribution") +
 annotate("text", x = 1963, y = 2000, angle = 90, label =
paste("paste(Vaccine)", collapse = "_"), vjust = 1.2, parse = TRUE, size
= 2.5) + geom_vline(xintercept = 1963, col = "grey")
```

Does this help compare?


```
# with transform
dat measles rate%>% filter(!is.na(rate)) %>%
 ggplot(aes(year, state)) + geom tile(aes(fill = sqrt(rate)),
color = "white") + scale fill gradient(low = "white", high =
"blue", trans = "sqrt") + scale x continuous(expand = c(0,0))
+ ggtitle("Measles disease rate per year in the United
States") + theme(plot.title = element text(hjust = 0.5)) +
geom vline(xintercept = 1963, col = "black")
```

Does this help compare?

Measles disease rate per year in the United States

Going back... Did the 1960's show an increase in cases?

Urban Versus Rural

Urbanization has occurred in all major areas, yet Africa and Asia remain mostly rural

d in all major
Urban and rural population as proportion of total population, by major areas, 1950–2050

- Rural: Country dwelling
- Vaccinations:
 - Were there fewer people available from whom to contract viruses?
- Less opportunity to see others?

Urban population

Rural population

Figure 3.

More People, More Contact

Could a crowding of cities in the 1960's create a better place for measles to spread?

As good as this explanation seems, we still need to verify it by facts.

Concluding Ideas Why is this *also* important?

Open and Transparent: By making the data about vaccines available to the general public, anyone can study the data to resolve questions of their own.

Building Further: This promotes further transparency, credibility, and encourages further exploration of the topic.

Implications: The potential implications of the findings on vaccine policy, public health, or vaccine development may be further explored, with new data released to the public to increase trust.

Concluding Ideas Why is this *also* important?

Furthering Trust: Similar studies may be convinced to also release their data to facilitate investigators to study it and develop deeper understandings of health-related research.

Positive impact: The stakeholders of vaccine education and development would be able to help healthcare providers, patients, and members of communities make informed decisions about vaccine usage.