4.4.2 表面态和界面层对接触势垒的影响 $eV_{\rm D} = \varphi_{\rm m} - \varphi_{\rm s}$

理想肖特基模型与实验结果不符合:

模型: 肖特基模型的势垒高度由金属和半导体的功函数决定

实验: 90%的金属同半导体接触的势垒高度几乎相同

与金属的功函数无关,只与所用半导体的种类相关

巴丁势垒模型:

理想半导体表面(n型半导体)

原子的周期性排列中断

出现半饱和的悬挂键、一些电子能量状态

表面能级 (界面态)

表面态一般分为施主型和受主型

施主型:能级被电子占据时呈现电中性,施放电子后带正电;

受主型:能级空着时呈电中性,接受电子后带负电

半导体表面的界面态分布示意图

三维晶体中,每个表面 原子对应禁带中的一个 表面能级,这些表面能 级构成表面能带。

 $q\phi_0$ 位于禁带宽度的1/3位置。

- 电子正好填满 $q\phi_0$ 以下所有的表面态时,表面呈电中性;
- $q\phi_0$ 以下的表面态空着时,表面带正电,呈施主型。
- ullet $q\phi_0$ 以上的表面态被电子填充时,表面带负电,呈受主型。

半导体表面的界面态:

三维晶体中,每个表面原子 对应禁带中的一个表面能级, 这些表面能级构成表面能带。 表面电中性:

 $E_{\rm F0}$ 界面态费米能级

表面带正电:

EFO界面态费米能级

表面带负电:

 $E_{\rm F0}$ 界面态费米能级

金属与n型半导体接触:

1. n型半导体表面

n型半导体表面存在表面态

体内电子流向表面,填满 $q\phi_0$ 与 $E_{\rm Fn}$ 之间表面能级 $q\phi_0 < E_{\rm Fn}$

表面带负电,表面附近形成正的空间电荷区(电子的势垒)

表面态密度很大,能带弯曲明显, 表面处 $E_{\rm En}$ 接近 $q\phi_{\rm L}$

势垒高度等于是费米能级与qφo之差

$$eV_{\rm D} = E_{\rm g} - q\phi_0 - E_{\rm n}$$
 $\phi_{\rm s} = \chi + E_{\rm g} - q\phi_0$

势垒高度被表面态高度钉扎

- 1.接触前,半导体的功函数 $\phi_s = \chi + E_g q \phi_0$,与施主浓度无关, ϕ_s 由表面性质决定。
- 2.接触后, $\phi_{
 m m} > \phi_{
 m s}$,电子流向金属,金属侧费米能级相对半导体侧上升 $\phi_{
 m m} \phi_{
 m s}$ 。
- 3. 表面态密度很高时,表面态可释放出足够的电子。半导体表面屏蔽金属接触的影响, 半导体内的势垒高度和能带形状与金属的功函数无关,只由半导体表面的性质决定。
- 4.接触电势差大部分落在两个表面之间。

- 真空能级 E_0 连续(一般性)
- 电子亲和势 χ 始终不变 $\chi = E_0 E_C$ (一般性)
 - 费米能级的"钉扎"效应: 价带以上 $E_g/3$ (特殊性)

- 真空能级 E_0 连续(一般性)
- 电子亲和势 χ 始终不变 $\chi = E_0 E_C$ (一般性)
 - 费米能级的"钉扎"效应: 价带以上 $E_{
 m g}/3$ (特殊性)

- 真空能级 E_0 连续(一般性)
- 电子亲和势 χ 始终不变 $\chi = E_0 E_C$ (一般性)
- 费米能级的"钉扎"效应: 价带以上 $E_{
 m g}/3$ (特殊性)

感应库仑势的影响

金属外的电子,会在金属表面感应出正电荷<u>,</u> 同时受到正电荷的吸引。等效等量正电荷。

金属与n型半导体接触:

半导体导带底的电子从半导体流向企属

感应 image charge加速

镜象正电荷,产生镜象库仑势

$$\phi(x) = -e^2/16\pi\varepsilon_s x$$

- 半导体一侧的势垒高度降低
- 导带底向下弯曲(电子势垒)

空穴镜象力

空穴势垒

 $E_{\mathbf{C}}$

 $E_{
m F0}$ $E_{
m F0}$

价带顶向上弯曲

导带底与价带顶都向费米能级 E_{F0} 接近

能带图:

色散关系: 能带与波矢的关系, 材料特性

在第3张重点介绍

器件能带: 能带与位置的关系,器件特性

在第4章及以后重点介绍

绘制器件能带草图:

真空能級 E_0 :表面外真空中电子势能(真空能级连续)

电子亲和势以:真空能级与半导体导带底之差(不变)

$$\chi = E_0 - E_C$$

功函数φ: 电子从材料逸出到表面外的真空中, 至少需要的能量

$$\varphi = E_0 - E_{\rm F}$$

金属功函数 $\varphi_{\rm m} = E_0 - E_{\rm Fm}$ 金属 $E_{\rm Fm}$ 以上为空态、 $E_{\rm Fm}$ 以下充满电子

半导体功函数 $\varphi_{\rm s} = E_0 - E_{\rm F}$

热平衡态,统一的费米能级

耗尽层部分能级弯曲

中性区(N区、p区)能级不弯曲(有压降除外,例如欧姆接触)

"冶金结"位置能带不变

4.4.3 肖特基势垒的I-V特性

金属与n型半导体接触

正向偏压 一电流 多子: 电子

• 电子1: 导带电子越过势垒顶, 进入金属

• 电子2: 导带电子通过隧道效应,进入金属

• 电子3: 空间电荷区与空穴复合

• 电子4: 中性区与空穴复合

实际肖特基二极管主要是

第一种电流机制,其它

三种作为理想情况偏离

的修正

无偏压: 热平衡时,金属与n型半导体的费米能级拉平

外加偏压主要落在半导体一侧阻挡层

加正向偏压: 正向偏压V_F

V_F上升 forward bias 半导体侧势垒下降

正向电流密度上升

加反向偏压: 反向偏压-V_R
reverse bias V_R上升
金属侧势垒几乎不变

反向电流密度几乎不随VR变化

反向饱和电流密度

4.4.4 肖特基势垒二极管Schottky barrier diode

肖特基势垒二极管 I-V 特性 与pn结二极管相似:

pn结二极管方程:

pn结二极管方程:
$$J=J_{\rm S} \left[\exp \left(\frac{eV}{k_{\rm B}T} \right) - 1 \right]$$
 反向饱和电流密度:
$$J_{\rm S} = \frac{eD_{\rm n}n_{\rm p0}}{L_{\rm n}} + \frac{eD_{\rm p}p_{\rm n0}}{L_{\rm p}}$$

肖特基势垒二极管:

$$J = J_{\text{ST}} \left[\exp \left(\frac{eV}{k_{\text{B}}T} \right) - 1 \right]$$

反向饱和电流密度: A*为有效理查逊常数

$$J_{\rm ST} = A * T^2 \exp \left(-\frac{eV_{\rm Dm}}{k_{\rm B}T} \right)$$

反向饱和电流密度

reverse-saturation current density

effective Richardson constant for thermionic emission

肖特基势垒二极管和pn结二极管的特性差异:

- 步基势垒二极管为多子越过势垒的热电子发射(微观机理)
 thermionic emission of majority carrier
- pn 结二极管为少子的注入和扩散(微观机理)
 diffusion of minority carrier
- 反向饱和电流密度特性(宏观特性): 肖特基势垒二极管的反向饱和电流密度(10⁻⁵ A/cm²)
 - >>pn结二极管(10⁻¹¹ A/cm²)
- 开关特性(宏观特性): 肖特基势垒二极管是多子器件,正向偏置时没有扩散电容 (高频特性好,开关时间为ps,pn结二极管为ns)
- · 肖特基势垒二极管的导通电压比pn结二极管低(宏观特性)

4.4.5 欧姆接触ohmic contact

任何半导体器件或集成电路必须要与外界电学接触

- 非整流接触低阻抗双向导通

金属与重掺杂半导体的金—半接触(欧姆接触)

接触电阻由势垒高度、掺杂浓度决定

欧姆接触:

理论的: · 非整流势垒型接触nonrectifying barrier

实际的: · 隧道势垒型接触tunneling barrier

1. 非整流势垒型接触

金属-n型半导体接触:

 $\varphi_{\rm m} < \varphi_{\rm S}$ 时形成反阻挡层和非整流结

- ▶ 电压都落在中性区
- > 金属接正电压,没有势垒
- > 半导体加正电压, 很小的势垒
- ✓ 结两边电子可以顺利交换(低电阻)
- ✓ 在外电场作用下,不起整流作用

金属加亚电压:

金属加负电压:

结本身是低电阻,尽管结两边中性区是低 电阻,结两边中性区能带不再是水平的

金属-p型半导体接触, 热平衡时的能带图:

金属-p型半导体接触:

 $\varphi_{\rm m} > \varphi_{\rm S}$ 时形成反阻挡层和非整流结

选择有合适功函数的金属就能得到欧姆接触?

多数重要半导体(Si, Ge, GaAs) 有很大的表面态密度

势垒高度和金属功函数无关

选用适当的金属材料很困难

2. 隧道势垒型接触

金属-半导体接触,形成势垒

半导体重掺杂

势垒区宽度大幅下降

隧道效应

结两边等价交换电子, 形成隧道电流

欧姆接触

4.5 场效应晶体管FET: field-effect transistor 掺杂半导体

电场

表面势变化、电阻率变化

与电场垂直方向的电流变化

场效应: 垂直的电场控制半导体的导电能力

场效应晶体管(FET):

单极型晶体管

- · 结型场效应晶体管JFET
- 绝缘栅场效应晶体管IGFET(主要是以SiO2作栅极绝缘物的金属Metal—氧化物Oxide—半导体Semiconductor场效应Field-Effect晶体管Transistor: MOSFET)
- · 肖特基势垒栅场效应晶体管MESFET

4.5.1 结型场效应晶体管JFET: junction FET

source源极S: 接地

gate栅极G:上、下栅外部相连,加控制电压 V_{GS}

drain漏极D: 电压 V_{DS} , 输出电流 I_{D}

n沟道: 通电流

栅结反偏 $V_{\rm GS}$ <0、漏极接地 $V_{
m DS}$ =0

栅结反偏 程度增加 两个p⁺n栅结上的 反向偏压增加

耗尽层depletion layer 宽度增加

n沟道channel region 宽度变窄

n沟道电阻增加 n沟道导电能力下降

漏极正偏 $V_{DS} > 0$

栅结反偏 $V_{\rm GS}$ < 0

电子从源极S沿n沟道流向漏极D,形成漏极电流 I_D

栅结反偏程度增加

漏极电流ID下降

沿n沟道产生压降

从S到D,p⁺n栅结的 反向偏压增加

从S到D,耗尽层宽度增加

从S到D,n沟道宽度变窄

从S到D, n沟道电阻增加 n沟道导电能力下降

漏极D正偏 $V_{DS} > 0$

从S到D, n沟道宽度变窄, 电阻增加

n沟道导电能力下降

 $V_{\rm DS}$ 增加 到 $V_{\rm DS0}$ (饱和电压)

沟道被夹断(沟道宽度为0)

V_{DS} 继续增加

夹断处从D侧向S侧移动

 $I_{\rm D}$ 随 $V_{\rm DS}$ 变化变缓: $I_{\rm D} \sim I_{\rm D0}$ $V_{\rm DS}$ 增加 1 到 $V_{\rm DSa}$ (击穿电压)

击穿: In随Vns急剧增加

漏极D正偏 $V_{DS} > 0$

- V_{DS} < V_{DS0}:
 I_D与V_{DS}接近线性变化 (线性区)
- $V_{DS0} < V_{DS} < V_{DSa}$: I_D 基本不变化
 (饱和区)
- • $V_{
 m DS}$ > $V_{
 m DSa}$: $I_{
 m D}$ 随 $V_{
 m DS}$ 急剧增加
 (雪崩区)

饱和电压受栅压的控制

4.5.2 金属—氧化物—半导体场效应晶体管 MOSFET: metal-oxide-semiconductor FET

绝缘栅场效应晶体管IGFET: insulated-gate FET

以氧化物作为绝缘层的IGFET,就是金属—氧化物—半导体 场效应管MOSFET

金属—氧化物—p型半导体场效应管

1. 栅极G不加电压

理想情况:

- > 金属半导体功函数相同
- > 忽略表面态影响
- > 氧化层完全绝缘

热平衡时的能带图:

两个背靠背的pn+结

2. 栅极G加反向电压

栅极上加外电压 V_{C}

绝缘层隔离

- > 没有电流流通 (相当于电容)
- ▶ S侧正电荷分布于一定厚度表面层(空间电荷区)
- >M侧负电荷分布在一个原子层范围内
- \rightarrow 金属 $E_{\rm Fm}$ 向上移动 $eV_{\rm G}$
- >半导体处于热平衡状态,固定的E_{FS}
- ▶空间电荷区导致表面处能带向上弯曲

 $V_{\rm G} < 0$

半导体表面 $E_{
m V}$ 更接近 $E_{
m FS}$

accumulation of majority carriers

- > 表面空穴(多子)积累
- > 越靠近表面,空穴浓度越高

3. 栅极G加正向电压

电离受主

p型半导体表面耗尽 形成表面耗尽层 栅极电压 $V_{\rm G} > 0$

小电压

半导体侧空间电荷区带负电,表面处能带向下弯曲, $E_{
m V}$ 远离 $E_{
m FS.}$

半导体表面空穴(多子)耗尽,表面层 负电荷浓度等于电离受主杂质浓度 depletion of majority carriers

栅极电压/€>>0 大电压

- \rightarrow 半导体表面 E_{V} 更远离 E_{FS}
- \rightarrow 半导体表面 E_{C} 更接近 E_{ES}

- >表面空穴(多子)耗尽
- >表面电子(少子)积累

进一步加大电压

形成反型层(n型表面)

inversion of minority carriers

n沟道

耗尽区

表面反型

连接源区与漏区两个n+区