- 1. (4 points) Find the equation of the form $p(x) = a + bx + cx^2$ of the quadratic polynomial that passes through the points (-1,6), (1,-8), and (2,-9).
- 2. (3 points) Consider the following augmented matrix of a linear system.

$$\begin{bmatrix} 1 & 0 & h \\ 0 & h^2 - 4 & 8 - 4h \end{bmatrix}$$

Find all values of *h* such that the system has:

- (a) A unique solution
- (b) Infinitely many solutions
- (c) No solution
- 3. (3 points) It is given that $[\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \mathbf{v}_4 \ \mathbf{v}_5]$ is row equivalent to $\begin{bmatrix} 1 & 1 & 4 & 1 & 2 \\ 0 & 1 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 3 \end{bmatrix}$.

Determine whether the following sets are linearly independent or linearly dependent. Justify.

- (a) $\{\mathbf{v}_1, \ \mathbf{v}_3\}$
- (b) $\{\mathbf{v}_3, \mathbf{v}_4\}$
- (c) $\{\mathbf{v}_2, \mathbf{v}_4, \mathbf{v}_5\}$
- 4. (3 points) Let $A = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 3 & x & 1 & 0 & 14 \\ 2 & 6 & y & 1 & 11 \end{bmatrix}$ and $R = \begin{bmatrix} 1 & 3 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$.

If R is the reduced row echelon form (RREF) of A, determine the missing values x and y.

- 5. (a) (2 points) Find a basis for the line y = 4x in \mathbb{R}^2 .
- (b) (2 points) Write a specific matrix A whose column space is the line y = 4x in \mathbb{R}^2 and whose null space is in \mathbb{R}^4 .
- 6. Suppose that $R = \begin{bmatrix} 1 & 0 & -8 & 0 & 0 & 9 \\ 0 & 1 & 10 & 0 & 0 & -3 \\ 0 & 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ is the reduced row echelon form (RREF) of

 $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{a}_4 \ \mathbf{a}_5 \ \mathbf{a}_6].$ (Note: Matrix A is not given. You only have the reduced form R)

- (a) (4 points) Fill in the blank with the word must, might, or cannot, as appropriate.
 - (i) The set $\{a_1, a_3, a_6\}$ form a basis for Col(A).
 - (ii) The top three rows of A form a basis for Row(A).

(iii)	$\begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	 be in Col(A).
	LUJ	

(iv)
$$\begin{bmatrix} 2 \\ 0 \\ -16 \\ 0 \\ 0 \\ 18 \end{bmatrix}$$
 be in Row(A).

- (b) (2 points) Find a basis for Nul(A).
- 7. (4 points) Given $A = \begin{bmatrix} 2 & 0 & -5 \\ -3 & 3 & 2 \\ -3 & k & 4 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 7 \end{bmatrix}$, use Cramer's Rule to find the value(s) of k such the matrix equation $A\mathbf{x} = \mathbf{b}$ has a unique solution where $x_3 = 2$.
- 8. (2 points) Let M be a 3×3 matrix such that $M^2 = 4I$. Find all possible values for det(M).
- 9. (3 points) Let $A = \begin{bmatrix} 0 & -2 \\ 4 & 1 \end{bmatrix}$. Find a matrix X such that $AX = A^T$.
- 10. (4 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that reflects points through the y-axis. Let $S: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation $S\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 4x_1 + x_2 \\ -x_1 + x_2 \end{bmatrix}$. Find the standard matrix for $T \circ S$.
- 11. Let W be the subspace of $M_{2\times 2}$ where the sum of the entries in the first row is equal to twice the sum of the entries in the second column.
- (a) (4 points) Find a basis for W.
- (b) (1 point) What is the dimension of W?
- 12. (4 points) Let $T(\mathbf{x}) = A\mathbf{x}$ where $A = \begin{bmatrix} 4 & -6 & 0 \\ 0 & 2 & 1 \\ 0 & 8 & k \end{bmatrix}$.

For each statement below, determine all values of k (if any) that would make the statement true.

- (i) *T* is an *onto* transformation.
- (ii) The column space of A is a plane.
- (iii) The kernel of T is plane.
- (iv) T is a linear transformation.

- 13. Let $\mathcal{H} = \{1 + x, 3 + 2x 2x^2, -2 + 4x^2\}$ and let $p(x) = 3 + x 4x^2$.
- (a) (1 point) Is p(x) in \mathcal{H} ? Justify.
- (b) (3 points) Is p(x) in Span (\mathcal{H}) ? Justify.
- (c) (1 point) Find a basis for $Span(\mathcal{H})$.
- 14. Let $\mathbf{u} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} -3 \\ k \\ k^2 \end{bmatrix}$.
- (a) (2 points) Find all values for k such that \mathbf{u} and \mathbf{v} are orthogonal.
- (b) (1 point) Find a <u>unit</u> vector that is parallel to **u**.
- 15. Consider the plane $\mathcal{P}: x 2y + z = 3$ and the line $\mathcal{L}: \mathbf{x} = \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix} + t \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix}$.
- (a) (2 points) Determine the intersection of \mathcal{L} and \mathcal{P} .
- (b) (3 points) Find an equation of the form ax + by + cz = d for the plane that contains \mathcal{L} and is perpendicular to \mathcal{P} .
- 16. (2 points) Find the cosine of the acute angle between the vector $\begin{bmatrix} -4\\2\\-2 \end{bmatrix}$, positioned at the origin, and the *y*-axis.
- 17. (2 points) If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^4 such that $\|\mathbf{u}\| = 2$, $\|\mathbf{v}\| = 3$ and $\mathbf{u} \cdot \mathbf{v} = 1$, find $\|\mathbf{u} \mathbf{v}\|$.
- 18. (4 points) Let \mathcal{L} be the line $\mathbf{x} = \begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix} + t \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ and let P be the point (1, -4, -2). Find the point on \mathcal{L} closest to P.
- 19. (4 points) Fill in the blank with the word must, might, or cannot, as appropriate.
- (a) If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent, then \mathbf{w} _____ be a linear combination of \mathbf{u} and \mathbf{v} .
- (b) If A can be written as a product of elementary matrices, then $A\mathbf{x} = \mathbf{b}$ have infinitely many solutions.
- (c) Given $A = [\mathbf{a}_1 \quad \mathbf{a}_2 \quad \mathbf{a}_3]$, the matrix equation $A\mathbf{x} = \mathbf{a}_3$ be consistent.
- (d) Two lines in \mathbb{R}^3 that are perpendicular to a third line ______ be parallel.

ANSWERS

1.
$$p(x) = -3 - 7x + 2x^2$$

2. (a) $h \in \mathbb{R} \setminus \{-2, 2\}$ (b) h = 2 (c) h = -2

- 3. (a) Linearly dependent (b) Linearly independent (c) Linearly dependent

4. x = 9, y = 3

5. (a) $\left\{ \begin{bmatrix} 1\\4 \end{bmatrix} \right\}$ (b) $\begin{bmatrix} 1 & 1 & 0 & 2\\ 4 & 4 & 0 & 8 \end{bmatrix}$ (other answers exist)

6. (a) (i) must

(ii) might

- (iii) might
- (iv) must

(b)
$$\left\{ \begin{bmatrix} 8 \\ -10 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -9 \\ 3 \\ 0 \\ 0 \\ 2 \\ 1 \end{bmatrix} \right\}$$
 (other answers exist)

- 7. $k = \frac{42}{11}$
- 8. $det(M) \in \{-8, 8\}$
- 9. $\begin{bmatrix} -1/2 & 3/4 \\ 0 & -2 \end{bmatrix}$
- 10. $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} -4 & -1 \\ -1 & 1 \end{bmatrix}$
- 11. (a) $\left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ (other answers exist) (b) 3
- 12. (i) $k \in \mathbb{R} \setminus \{4\}$ (ii) k = 4 (iii) Not possible (iv) k is any real number
- 13. (a) No. It is not one of the three vectors in \mathcal{H} .
- (b) Yes. $3 + x 4x^2 = -3(1+x) + 2(3+2x-2x^2) + 0(-2+4x^2)$
- (c) $\{1+x, 3+2x-2x^2\}$ (other answers exist)
- 14. (a) k = -2 or k = 3 (b) $\frac{1}{\sqrt{6}} \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$
- 15. (a) t = -4: (-13, -5, 6) (b) y + 2z = 7

- 16. $\cos(\theta) = \frac{1}{\sqrt{6}}$
- 17. $\sqrt{11}$
- 18. (0, -5, 1)
- 19. (a) might (b) cannot (c) must (d) might