V46 Faraday-Effekt an Halbleitern

Miriam Simm miriam.simm@tu-dortmund.de

Katrin Bolsmann katrin.bolsmann@tu-dortmund.de

Durchführung: 25.05.2020, Abgabe: -

1 Auswertung

1.1 Bestimmung der maximalen magnetischen Flussdichte

In Tabelle 1 sind die gemessenen Werte für die magnetische Flussdichte zu sehen.

Tabelle 1: Messwerte der Magnetischen Flussdichte B(z).

z/mm	B/mT	z/mm	B/mT
100	116	114	396
101	150	115	395
102	184	116	393
103	215	117	386
104	252	118	376
105	289	119	364
106	314	120	345
107	339	121	323
108	357	122	293
109	372	123	262
110	382	124	227
111	390	125	190
112	394	126	153
113	396	127	125

Diese wurden in Abbildung 1 gegen z aufgetragen und das Maximum bestimmt. Der Maximalwert der magnetischen Flussdichte entspricht dem Feld am Ort der Probe, somit wird für die nachfolgenen Rechnungen der Werte

$$B = 396 \,\mathrm{mT} \tag{1}$$

verwendet.

Abbildung 1: Messwerte der Magnetische Flussdichte B(z). Der Maximalwert liegt bei $B=396\,\mathrm{mT}.$

1.2 Bestimmung der Rotationswinkel der Faraday Rotation

Es wurden drei verschiedene Proben von Galliumarsenid untersucht. Hierbei handelt es sich um eine undotierte und zwei n-dotierte Proben, deren Eigenschaften in Tabelle 2 zu finden sind.

Tabelle 2: Eigenschaften der untersuchten Galliumarsenidproben.

	Probe 1	Probe 2	Probe 3
Dotierung N/cm^{-3}	-	$1,2\cdot 10^{18}$	$2,8 \cdot 10^{18}$
Dicke d/mm	5,11	1,36	1,296

Die Messwerte der Drehwinkel sind in Tabelle 3 aufgelistet. Hierbei handelt es sich bei θ_1 und θ_2 je um die Winkel die bei unterschiedlich gepolten Magnetfeld gemessen wurden.

Tabelle 3: Messdaten für die Rotationswinkel für je zwei Polrichtungen des Magnetfeldes B, für 3 verschiedene Proben bei verschiedenen Wellenlängen.

	Pro	be 1	Pro	be 2	Pro	be 3
$\lambda/\mu\mathrm{m}$	$\overline{\theta_1}$	θ_2	$\overline{\theta_1}$	θ_2	$\overline{\theta_1}$	θ_2
1,06	143°50'	167°00'	148°20'	158°00'	150°10'	159°30'
1,29	148°00'	164°00'	150°00'	157°20'	150°35'	157°20'
1,45	$148^{\circ}20'$	160°15′	$146^{\circ}35'$	154°50'	150°10'	159°00'
1,72	151°00'	160°00'	$149^{\circ}40'$	$156^{\circ}15'$	$149^{\circ}20'$	161°10'
1,96	157°30'	$164^{\circ}40'$	$250^{\circ}35'$	161°50'	$154^{\circ}25'$	164°30'
$2,\!156$	159°15'	$169^{\circ}45'$	$249^{\circ}10'$	$164^{\circ}10'$	$156^{\circ}15'$	168°00'
2,34	182°50'	187°00'	223°20′	191°10'	$176^{\circ}00'$	191°35'
$2,\!51$	193°30'	$218^{\circ}35'$	213°10′	$203^{\circ}15'$	178°00'	203°30'
2,65	239°30'	$248^{\circ}15'$	$239^{\circ}45'$	249°40'	151°00'	174°45'

Für die nachfolgenden Rechnungen werden die Winkel, welche in Gradmaß angegeben sind, mittels der Formel

$$1 \operatorname{rad} = \frac{360^{\circ}}{2\pi} \tag{2}$$

in Bogenmaß umgerechnet. Hierbei ist zu beachten, dass die Gradmaß Skala auf 60 skaliert ist und somit

$$1'=0.1\bar{6}^{\circ}$$

entspricht. Der auf die Probenlänge normierte Rotationswinkel der Polarisationsebene errechnet sich dann mittels der Formel

$$\theta = \frac{1}{2L}(\theta_1 - \theta_2) \qquad . \tag{3}$$

Damit die Längeneinheiten die gleiche Einheit besitzen, wurde L hierzu in Mikrometer umgerechnet, da auch λ diese Einheit hat. In Tabelle 4 sind die umgerechneten und skalierten Werte des Rotationswinkels der einzelnen Proben zu finden. Diese Werte wurden anschließend für jede der Proben gegen λ^2 aufgetragen, wie in den Abbildungen 2, 3 und 4 zu sehen ist.

Tabelle 4: Die gemessenen Rotationswinkel der drei Proben je auf die Probendicke skaliert

0 //10 5	0 //10 5	0 //10 5
$\theta_{\rm Probe1}/(10^{-5}\mu{\rm m})$	$\theta_{\rm Probe2}/(10^{-5}\mu{\rm m})$	$\theta_{\mathrm{Probe}3}/(10^{-5}\mathrm{\mu m})$
4,03	6,20	6,28
2,73	4,70	$4,\!55$
2,03	$5,\!29$	$5,\!95$
1,54	$4,\!22$	7,97
1,22	-56,94	6,79
1,79	-54,54	7,91
0,71	-20,64	8,42
4,28	-6.37	4,94
1,49	6,37	10,83

Abbildung 2: Messwerte des Faraday-Roationswinkels der Messung mit der reinen Galliumarsenidprobe (Probe 1). Der Roationswinkel wurde hierzu auf die Länge der Probe $L=5110\mu$ m skaliert und gegen λ^2 aufgetragen.

Abbildung 3: Messwerte des Faraday-Roationswinkels der Messung mit der dotierten Galliumarsenidprobe (Probe 2) mit einer Dotierungsdichte von $N=1,2\cdot 10^{18}\,\mathrm{cm}^{-3}$. Der Roationswinkel wurde hierzu auf die Länge der Probe $L=1360\mu\mathrm{m}$ skaliert und gegen λ^2 aufgetragen.

Abbildung 4: Messwerte des Faraday-Roationswinkels der Messung mit der dotierten Galliumarsenidprobe (Probe 2) mit einer Dotierungsdichte von $N=2,8\cdot 10^{18}\,\mathrm{cm}^{-3}$. Der Roationswinkel wurde hierzu auf die Länge der Probe $L=1296\mu\mathrm{m}$ skaliert und gegen λ^2 aufgetragen.

1.3 Bestimmung der effektiven Masse der Elektronen in Galliumarsenid

Um die effektive Masse der Elektronen in dem Halbleiter zu bestimmen, wird der Rotationswinkel der durch die Leitungselektronen hervorgerufen wird gemäß

$$\theta_{\rm frei} = |\theta_{\rm undotiert} - \theta_{\rm dotiert}| \tag{4}$$

berechnet und anschließend gegen λ^2 aufgetragen, wie in Abbildungen 5 und 6 für je beide dotierte Proben zu sehen ist.

Abbildung 5: Der Rotationswinkel, welcher durch die Leitungselektronen hervorgerufen wird, aufgetragen gegen λ^2 . Hierbei wurde $\theta_{\rm frei}$ aus dem Rotationswinkel der undotierten und der leicht dotierten Probe (Probe 2) gemäß 4 berechnet.

Abbildung 6: Der Rotationswinkel, welcher durch die Leitungselektronen hervorgerufen wird, aufgetragen gegen λ^2 . Hierbei wurde $\theta_{\rm frei}$ aus dem Rotationswinkel der undotierten und der stärker dotierten Probe (Probe 3) gemäß 4 berechnet.

Zur Ermittlung des Proportionalitätsfaktors zwischen $\theta_{\rm frei}$ und λ^2 wird eine Ausgleichrechnung

$$\theta_{\rm frei}(\lambda^2) = a \cdot \lambda^2$$

durchgeführt. Für diese ergeben sich die Proportianilitätsfaktoren

$$\begin{split} a_1 &= (4,196 \pm 0,003) 10^{-5} \, \mathrm{\mu m^{-3}} \\ a_2 &= (1,127 \pm 0,004) 10^{-5} \, \mathrm{\mu m^{-3}} \end{split}$$

Der Zusammenhang zwischen dem Rotationswinkel $\theta_{\rm frei}$ und der Wellenlänge λ ist gemäß Formel ?? gegeben, woraus sich mittels Koeffizientenvergleich für den Proportionalitätsfaktor der Zusammenhang 6 ergibt. Durch Umstellen der Gleichung 6 ergibt sich der Ausdruck, mit welchem die effektive Masse berechnet werden kann.

$$a = \frac{e_0^3 NB}{8\pi\epsilon_0 c^3 n(m^*)^2} \tag{5}$$

$$\Leftrightarrow \qquad m = \sqrt{\frac{e_0^3 NB}{8\pi\epsilon_0 c^3 na}} \tag{6}$$

ergibt. Zur Berechnung der effektiven Masse wird für den Brechungsindex der Literaturwert n=3,57 [v]erwendet. Somit ergibt sich für die effektive Masse die beiden Werte

$$\begin{split} m_1^* &= (0,02889 \pm 0.0001) \cdot m_e \\ m_2^* &= (0.08516 \pm 0.0017) \cdot m_e \end{split}$$