CLAIMS

Having thus described our invention, what we claim as new and desire to secure by Letters Patent is as follows:

1	1. A method for resource allocation where only a marginal utility is known,
2	comprising the steps of:
3	determining an initial step size;
4	evaluating step size effectiveness with only information on the
5	marginal utility;
6	reducing the step size if necessary; and
7	deploying an effective step size for utility optimization.
1	2. The method of claim 1, wherein allocated resources are database memory
2	components.
1	3. The method of claim 1, wherein allocated resources are computer memory
2	resources.
1	4. The method of claim 1, wherein allocated resources are computer system
2	resources and resources are allocated to achieve optimal service level
3	objectives.
1	5. An apparatus for resource allocation comprising:
2	a step size determination engine;
3	an optimization module for evaluating step size effectiveness with only
4	information on the marginal utility;
5	a constraint module for reducing the step size if necessary; and

6	an interface module for deploying an effective step size for utility
7	optimization.
1	6. The apparatus of claim 5, wherein allocated resources are database memory
2	components.
1	7. The apparatus of claim 5, wherein allocated resources are computer
2	memory resources.
1	8. The apparatus of claim 5, wherein allocated resources are computer system
2	resources and resources are allocated to achieve optimal service level
3	objectives.
1	9. A method of maximizing or minimizing an objective function $f(x)$, subject
2	to constraints on a vector x where each vector x denotes a particular allocation
3	of resources and the constraints generally describe properties of the resources
4	which must be satisfied, the method maximizing or minimizing the objective
5	function $f(x)$ while satisfying the constraints on x without a knowledge of f,
6	said method comprising the steps of:
7	starting from an initial allocation, calculating a marginal utility of said
8	allocation;
9	calculating constraint functions of said allocation;
10	applying the calculated constraint function information and marginal
11	utility information to obtain a next allocation;
12	repeating the steps of calculating a marginal utility, calculating
13	constraint functions and applying the calculated constraint function
14	information and marginal utility information until a stopping criteria is
15	satisfied; and

16	returning a locally optimal allocation of resources.
1	10. The method of maximizing or minimizing an objective function $f(x)$ as
2	recited in claim 9, wherein said marginal utility is the gradient of the function
3	f.
1	11. The method of maximizing or minimizing the objective function $f(x)$ as
2	recited in claim 9, wherein only the gradient ∇f is known and there is no
3	procedure to evaluate the objective function f.
1	12. The method of maximizing or minimizing the objective function $f(x)$ as
2	recited in claim 9, wherein only the gradient ∇f and the Hessian $\nabla^2 f$ are known
3	and there is no procedure to evaluate the objective function f.
1	13. The method of maximizing or minimizing the objective function $f(x)$ as
2	recited in claim 9, wherein the objective function is a utility function and the
3	method maximizes the utility function.
1	14. The method of maximizing or minimizing the objective function $f(x)$ as
2	recited in claim 13, wherein said utility function is time saved.
1	15. The method of maximizing or minimizing the objective function $f(x)$ as
2	recited in claim 13, wherein said utility function is utilization of computer
3	processors.
1	16. The method of maximizing or minimizing the objective function $f(x)$ as
2	recited in claim 13, wherein said utility function is a number of transactions
3	processed

- 1 17. The method of maximizing or minimizing the objective function f(x) as
- recited in claim 13, wherein said utility function is utilization of computer
- 3 memory.
- 1 18. The method of maximizing or minimizing the objective function f(x) as
- recited in claim 9, wherein the objective function is a cost function and the
- 3 method minimizes the cost function.
- 1 19. The method of maximizing or minimizing the objective function f(x) as
- recited in claim 18, wherein said cost function is power consumption.
- 1 20. The method of maximizing or minimizing the objective function f(x) as
- 2 recited in claim 18, wherein said cost function is total disk input/output time.
- 1 21. The method of maximizing or minimizing the objective function f(x) as
- 2 recited in claim 18, wherein said cost function is average system response
- 3 time.
- 1 22. The method of maximizing or minimizing the objective function f(x) as
- recited in claim 9, wherein a backtracking line search is implemented in which
- a step α is decreased until the following condition is satisfied:
- $(\nabla f(x+\alpha p) c_1 \nabla f(x))^T p \leq 0,$
- where p is a search direction, c_1 is a constant, and $(\nabla f(x+\alpha p) c_1 \nabla f(x))^T$ is
- 6 the transpose of $(\nabla f(x+\alpha p) c_1 \nabla f(x))$.

- 1 23. The method of maximizing or minimizing the objective function f(x) as
- recited in claim 9, the method optimally allocating resources wherein the
- 3 allocated resources are database memory components.
- 1 24. The method of maximizing or minimizing the objective function f(x) as
- 2 recited in claim 9, the method optimally allocating resources wherein allocated
- 3 resources are computer memory resources.
- 1 25. The method of maximizing or minimizing the objective function f(x) as
- 2 recited in claim 9, the method optimally allocating resources wherein allocated
- resources are computer system resources and resources are allocated to
- 4 achieve optimal service level objectives