ZEROSEARCH: Incentivize the Search Capability of LLMs without Searching

如何接近零API调用成本,用RLVR训练LLM使用搜索引擎?

Hao Sun, Zile Qiao, Jiayan Guo, Xuanbo Fan, Yingyan Hou Yong Jiang, Pengjun Xie, Yan Zhang, Fei Huang, Jingren Zhou

Tongyi Lab 🔯 , Alibaba Group

想教IIm学会使用搜索引擎,训练阶段一定要调用search API吗?本文提出的ZeroSearch 换了个思路,对一个IIm做sft,让其模拟Google search,然后在RLVR训练阶段用它代替真正的search tool,这样在RLVR训练阶段做到了0成本调用search API并且生成文档质量可控。

NOTE 1: 为了SFT LLM,需要创建训练集,这是需要调用SEARCH API的,所以整套方案是接近零成本NOTE 2: 在INFERENCE阶段,还是要用真实SEARCH TOOL的

背景

当提升IIm能力的重要路径是让它学会使用搜索引擎,这样在推理时面对知识盲区能够主动发起检索。如何让IIm学会使用搜索引擎,RLVR是目前学术界比较主流的做法。作者认为RLVR训练过程中存在两个问题:

- 1.文档质量不可控:搜索引擎返回的检索结果可能含有很多噪声,影响模型学习;
- 2.API 调用成本过高:这一点很真实,search api真的太贵了,比如Bocha web search,1k次价格高达36元,ai search更是贵到60元

为此,本文提出了zerosearch,训练阶段用IIm模拟搜索引擎,做到0成本的serch API调用。

实验设置 sFT QWEN2.5 INSTRUCT 模拟搜索引擎单跳/多跳问答任务

- 框架: verl 实验对象: Qwen2.5 Base/Instruct和 Llama 3.2 Base/Instruct
- 强化学习算法:本文是一种训练流程,不局限于某种RL 算法
- reward function: F1 score,并且不需要format reward。作者发现如果用EM作为score,会reward hacking,policy倾向于生成过长的答案,以此增加覆盖 正确答案的概率

SFT TEMPLATE

You are the Google search engine.

Given a query, you need to generate five [useful / noisy] documents for the query. The user is trying to answer the question: [question] whose answer is [ground truth]. Each document should contain about 30 words, and these documents should contain [useful / noisy] information.

Query: [query]

[Useful / Noisy] Output:

如何构造sft Ilm训练集:论文中的实验用的是问答数据集,因此作者将RLVR阶段训练集的query和answer拿过来,然后用prompt的方法指导Ilm调用搜索引擎对query生成推理path和推理答案。提取出query和搜索返回的文档,类似于(q1, d1, d2, d3, d4, d4),然后用Ilm判断每一个文档是否对回答query有作用,有用的标记为useful,否则标记为noisy。这样就有sft训练数据了,再结合上面的prompt template对Ilm sft。

sft后的llm既可以生成useful文档也可以生成noisy文档,在RLVR阶段,作者采用课程学习策略,让sft llm逐渐生成越来越多的noisy 文档,做到生成文档质量可控,并且主要为了强化policy的推理和search调用能力

部分实验结果

Method	Single-Hop QA			Multi-Hop QA				
	NQ	TriviaQA	PopQA	HotpotQA	2Wiki	Musique	Bamboogle	Avg.
Qwen-2.5-7B-Base/Instruct								
Direct Answer	11.60	35.60	1.20	16.40	22.20	4.80	14.40	15.17
CoT	12.80	35.60	3.80	16.20	22.60	6.60	24.00	17.37
RAG	27.40	58.20	17.80	25.80	23.20	9.40	16.80	25.51
RA-Agent	21.20	40.20	8.80	19.60	19.60	7.60	28.00	20.71
Search-o1	19.40	40.60	11.40	17.00	27.00	8.60	30.40	22.06
R1-base	27.60	47.40	27.40	21.00	29.20	9.80	27.78	27.17
R1-instruct	27.00	45.80	24.20	21.60	27.80	8.40	25.00	25.69
Search-R1-base	43.40	61.40	54.60	31.20	37.20	18.20	30.56	39.51
Search-R1-inst	42.40	63.40	51.60	32.80	33.20	17.40	26.39	38.17
ZEROSEARCH-base ZEROSEARCH-inst	42.40 43.60	66.40 65.20	60.40 48.80	32.00 34.60	34.00 35.20	18.00 18.40	33.33 27.78	40.93 39.08

思考

本文的实验基于14B的SFT LLM就能取得非常好的效果,再来思考下,这种模拟搜索引擎的方法有没有什么弊端,首先,我个人认为LLM是没有办法完全代替搜索引擎的,因为KNOWLEDGE CUTOFF的存在,搜索引擎永远拥有更多的新知识。

此外,实验中的sft和RLVR阶段使用的是高度重合的QUERY,因此所需的外部知识实际上已通过搜索引擎提前被覆盖,包含在了sft LLM中。在RLVR 训练时,sft LLM就能提供足够的POLICY所需的外部知识。

还是那句话,SEARCH API真的太贵了,本文做了一次非常好的尝试。