Документация к диплому

Quasar NN GMM - модель оценки photo-z рентгеновских квазаров.

- data каталог с данными для обучения и проведения экспериментов.
 Содержит наборы данных:
 - train20 (DR14Q + VHzQ) для обучения модели оценки photo-z рентгеновских квазаров.
 - train15 для обучения модели оценки photo-z галактик.
 - S82X.
 - DR16Q (Z > 5).
 - HELP.
 - Bandos.
 - Yang.
- feature_lists каталог с наборами признаков для различных конфигураций модели.
- trained_models каталог с обученными моделями.{#1}_{#2}_g{#3}_m{#4}_model_{#5}.pkl
 - 1 название обучающего набора данных.
 - 2 набор признаков (18, 20, 21, 22, 35).
 - 3 число гауссиан в смеси.
 - 4 число моделей в ансамбле.
 - 5 full/01/02 обучена на полном наборе данных или с помощью двойной кросс-валидации (номер фолда).
- NN_GMM_photoz.py скрипт для применения обученной модели.
 - model file файл с модель.
 - features file файл с признаками.
 - features no набор признаков.

- out_file файл с результатами.
- Пример запуска: NN_GMM_photoz.py
 trained_models/train20_35_g5_m5_model_full.pkl data/Yang/part-0.features.gz_pkl 35 out.pkl_gz
- Файл с признаками должен представлять из себя pickle файл объекта pandas.DataFrame, сжатый алгоритмом gzip, и содержать признаки указанного набора.
- DeepEnsemble.py содержит классы:
 - HZ_dataloader_new класс загрузчика данных для обучения и применения модели на PyTorch. Дублирование объектов n_dup раз, каждый раз с вероятностью, определяемой функцией p_func(z). Батч формируется из объектов с z < z_thr и z > z_thr пропорционально распределению объектов в выборке.
 - MLP_GMM класс многослойного полносвязного перцептрона для оценки смеси нормальных распределений.
 - DeepEnsemble_GMM Класс модели глубокого ансамбля для оценки смеси нормальных распределений.
- metric.py функции для расчета нормализованного медианного нормального отклонения.
- train_predict_35_5models_05.ipynb jupyter notebook с примером обучения и первичного анализа модели на наборе данных train20.
- train_all.ipynb jupyter notebook, в котором осуществляется обучение на наборах данных train20 и 15 и получение предсказаний на всех наборах данных из каталога data.
- requirements.txt необходимый набор зависимостей.
- Запуск осуществлялся на ОС Ubuntu 20.04.5 LTS. Необходимо наличие GPU.

Clusters&Filaments - модель построения карты волокон и модель оценки вероятности скопления галактик в заданном направлении и расстояния до него.

- disperse.py модель на языке python3 для построения карт филаментов. Использует пакет disperse, инструкция по установке http://www2.iap.fr/users/sousbie/web/html/index888d.html?archive.
- disperse 03 собранный пакет disperse.
- ACT_02.ipynb jupyter notebook для обучения и оценки моделей отождествления галактических скоплений.
- ACT_01_galaxies.csv каталог галактик (подвыборка SDSS 16) для обучения моделей.
- ACT_01_clusters.csv каталог скоплений (подвыборка ACT) для обучения и оценки моделей.
- Файлы с промежуточными данными (признаки):
 - ACT_01_dists_ext_train.npy
 - o ACT 01 dists train.npy
 - ACT_02_clusters_ext.csv
 - ACT 02 feas.npy
 - ACT_02_feas_ext.npy
- boosting ACT 02 {0|1}.txt файлы с сохраненными моделями.
- requirements.txt необходимый набор зависимостей.
- Запуск осуществлялся на ОС Ubuntu 20.04.4 LTS.
- Для запуска ACT_02.ipynb необходимо указать путь к папке bin установленного пакета disperse (по инструкции, указанной выше) при инициализации класса алготирма disperse в ячейке 10.