

Readme:

A. Command:

One CMD.ipynb is uploaded where command line argument codes are written to run the command.

!python3 /content/akankshadewangan_mt19049_hackathon.py
"Training_dataset.csv" "New_Validation_Dataset.csv"
"training_dipeptide_result.csv" "testing_dipeptide_result.csv"
"logistic.txt" "svm.txt" "randomforest.txt" "extraTree.txt" "mlp.txt"

B.Run code: Hackathon.py of best MCC and accuracy value:

- (i) Initially we go to the folder where python is installed and put our .py file and other input files .csv into that:
- (ii) Path where python is present:
- $\label{local-Programs-Python$
- (iii) >ipython3 !python3 /content/akankshadewangan_mt19049_hackathon.py

"Theiring detect one" "New Velidetic

"Training_dataset.csv" "New_Validation_Dataset.csv"

"logistic.txt" "svm.txt" "randomforest.txt" "extraTree.txt" "mlp.txt"

- (iv)prediction of training set are present in csv: ouput.csv
- (v) metrics value present in: "extraTree.txt"

REPORT

AIM:

Prediction of DNA interacting residue. Classify DNA interacting and noninteracting residue in DNA sequence.

Preprocessing and Methodology:

Complete description through flow chart:

- 1.Transformation of overall training data into two types of feature extraction/generated from a p-feature web server site.
 - A.Amino acid composition
 - **B.Dipeptide composition.**

A. Amino acid Composition:

Where, AACi= amino acid composition of residue type I

Ri and L =number of residues of type I and length of sequence.

B. Dipeptide Composition:

DPCi
$$j = Di j/L - j$$

Where, DPCj i = the fraction or composition of dipeptide of type i for jth order.

D j i and L = the number of dipeptides of type i and length of a protein.

-**Traditional dipeptide**:-(if j=1 then that dipeptide is traditional)

higher order dipeptide D j i is made of residue Ri and Ri+j where value of j is 2 or more.

2. Feature Selection:

- (i) SelectKBest RFE(Recursive feature elimination) for:
 - 100 feature extraction
 - 70 feature extraction
 - 40 feature extraction
- (ii) SelectKBest, f_classif sel_f = SelectKBest(score_func=f_classif, k=100)

- k = 70
- k = 40
- 2.Try to convert it into standardScalar() but it is not useful as the converted dipeptide data range between 0 to 1.
- 3. Then various models were applied and their observations were checked.
- 4. Deep learning LSTM is also tried; it didn't give any gud score.

MODEL-

- -Logistic regression
- -SVM classifier
- -MLP classifier
- -Extratree classifier
- -Random forest classifier.
- -Deep learning(sequential deep neural network)

The validation evaluation metric used is MCC (Mathews correlation coefficient) and accuracy value.

Classifiers Validation MCC Leaderboard Accuracy	
---	--

1. LogisticRegression(solve r='liblinear',class_weig ht='balanced').fit(X_train, y_train)	67.32	34.66	22-32
2.svm.SVC(kernel='linear')	87.6	67.66	48
3. RandomForestClassifier(m ax_depth=150,n_estimator s=500,n_jobs=-1,random_s tate=42)	84.6	69.2	47.101
4.ExtraTreesClassifier(n _estimators=500,max_dept h=110,random_state=0,war m_start=True)	86.66	72.88	47.33-48.082
5.MLPClassifier(solver='sgd', alpha=1e-50,hidden_layer_sizes=(70, 2), random_state=0)	67.8	38.5	37.55

6.model.fit(X_train.valu	78.87	57.7	35.55
es,np.asarray(y_train),			
epochs=100, validation_sp			
lit=0.2,callbacks=[mcp_s			
ave],batch_size=10,verbo			
se=0)			

All the above models are used and were trained with varying parameters. They are tuned with different values and observe the accuracies and MCC scores an evaluation metric.

CONCLUSION-

-ExtraTreeClassifier is best among all having following parameters:

ExtraTreesClassifier(n_estimators=500,max_depth=110,random_state=0,warm_st
art=True)

It is giving 49.088 MCC value in the leaderboard and 73 accuracy in validation data.