Вариант #2

1 (тип 24)

На одну из двух близко расположенных горизонтальных металлических пластин положили легкий шарик из алюминиевой фольги. Одна из пластин лежит на земле, а вторая укреплена на изолирующей ручке (см. рисунок). Когда верхнюю пластину подсоединили к отрицательной клемме высоковольтного источника постоянного тока, шарик пришел в движение. Опираясь на законы электростатики и механики, опишите и объясните движение шарика.

2 (тип 25)

Тележка массой 50 кг движется со скоростью 1 м/с слева направо по гладкой горизонтальной дороге. Каким станет модуль скорости тележки, если мальчик массой 50 кг запрыгнет на тележку со скоростью равной 2 м/с относительно дороги и направленной справа налево?

3 (тип 26)

На оси $O\!X$ в точке $x_1=10$ см находится оптический центр тонкой рассеивающей линзы с фокусным расстоянием $F_1=-10$ см, а в точке $x_2=25$ см — оптический центр тонкой собирающей линзы. Главные оптические оси обеих линз совпадают с осью $O\!X$. Свет от точечного источника, расположенного в точке x=0, пройдя данную оптическую систему, распространяется параллельным пучком. Найдите фокусное расстояние собирающей линзы F_2 . Сделайте рисунок с указанием хода лучей через данную систему линз.

4 (тип 27)

В запаянной с одного конца трубке находится влажный воздух, отделенный от атмосферы столбиком ртути длиной $\ell=76$ мм. Когда трубка лежит горизонтально, относительная влажность воздуха ϕ_1 в ней равна 80%. Какой станет относительная влажность этого воздуха ϕ_2 , если трубку поставить вертикально, открытым концом вверх? Атмосферное давление равно 760 мм рт. ст. Температуру считать постоянной.

5 (тип 28)

Какая тепловая мощность выделяется на лампе 2 в схеме, изображённой на рисунке? Сопротивление ламп 1 и 2 $R_1=20~{\rm OM}$; ламп 3 и 4 $R_2=10~{\rm OM}$. Внутреннее сопротивление источника $r=5~{\rm OM}$; его ЭДС $\mathcal{E}=100~{\rm B}$.

6 (тип 29)

При облучении фотокатода ультрафиолетовым излучением с длиной волны $\lambda = 300$ нм задерживающее напряжение для фотоэлектронов равно 0,9 В. Какова длина волны, соответствующая «красной границе» фотоэффекта для материала фотокатода?

7 (тип 30)

Груз массой $M=600~\mathrm{r}$ соединён невесомой и нерастяжимой нитью, перекинутой через гладкий невесомый блок, с бруском массой $m=200~\mathrm{r}$. К этому бруску на лёгкой пружине подвешен второй такой же брусок. Длина нерастянутой пружины $\ell=12~\mathrm{cm}$, коэффициент трения груза о поверхность стола $\mu=0,2$. Определите жёсткость k пружины, если при движении брусков длина пружины L постоянна и равна $14~\mathrm{cm}$. Сделайте рисунок с указанием сил, действующих на тела. Обоснуйте применимость используемых законов к решению задачи.

