

AD-A093 572

WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER
SHARP EXISTENCE RESULTS FOR A CLASS OF SEMILINEAR ELLIPTIC PROB--ETC(U)
AUG 80 H BERESTYCKI, P L LIONS

F/G 12/1
DAAG29-80-C-0741
NL

UNCLASSIFIED MRC-TSR-2111

10H
20 Sept 80

END
DATE ISSUED
2-24-80
DTIC

AD A093572

MRC Technical Summary Report # 2111

SHARP EXISTENCE RESULTS FOR A CLASS
OF SEMILINEAR ELLIPTIC PROBLEMS

H. Berestycki and P. L. Lions

B. S.

(1)

LEVEL

**Mathematics Research Center
University of Wisconsin-Madison
610 Walnut Street
Madison, Wisconsin 53706**

August 1980

Received July 16 1980

**Approved for public release
Distribution unlimited**

DDC FILE COPY

Sponsored by

U. S. Army Research Office
P.O. Box 12211
Research Triangle Park
North Carolina 27709

80 12 22 058

(1) HF-T57-2111 / (1) DAA-29-1-1-1142

UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

SHARP EXISTENCE RESULTS FOR A CLASS OF
SEMITLINEAR ELLIPTIC PROBLEMS.

10 H./Berestycki ~~P.~~ P. L./Lions ~~P.~~

9 Technical Summary Report # 2111
August 1980

ABSTRACT

In this paper a semilinear elliptic second-order problem is considered. Under very general assumptions we give a precise description of the number of solutions of the problem. These results extend in particular a result due to A. Ambrosetti and G. Prodi.

AMS(MOS) Subject Classification: 35J60, 35P30

Key Words: Semilinear elliptic equations, topological degree

Work Unit Number 1: Applied Analysis

^fC.N.R.S.; Laboratoire d'Analyse Numérique, Université P. et M. Curie, 4 Place Jussieu, 75230 Paris Cedex 05.

^fMathematics Research Center, University of Wisconsin-Madison, and C.N.R.S., Laboratoire d'Analyse Numérique, Université P. et M. Curie, 4 Place Jussieu, 75230 Paris Cedex 05.

SIGNIFICANCE AND EXPLANATION

Semilinear elliptic equations (that is, for example, the Laplace equation perturbed by a nonlinearity) occur in many applications, for example in combustion theory, biology, population genetics, astrophysics . . . Under general assumptions, we give a precise description of the number of solutions of the equation.

Accession For	DIS-CRA&I
INFO FOR	1. General
Classification	<input checked="" type="checkbox"/>
Permit	<input type="checkbox"/>
Distribution	<input type="checkbox"/>
Availability Codes	<input type="checkbox"/>
Serial Number	<input type="checkbox"/>
File Number	<input type="checkbox"/>
Special	<input type="checkbox"/>

A

The responsibility for the wording and views expressed in this descriptive summary lies with MPC, and not with the authors of this report.

SHARP EXISTENCE RESULTS FOR A CLASS
OF SEMILINEAR ELLIPTIC PROBLEMS

H. Berestycki[†] and P. L. Lions [‡]

Introduction.

The problem considered here is of the following type: let Ω be a bounded regular domain in \mathbb{R}^N , we look for solutions u of

$$(1) \quad -\Delta u = g(x, u) + f(x) \text{ in } \Omega, \quad u \in C^2(\bar{\Omega}), \quad \frac{\partial u}{\partial v} = 0 \text{ on } \partial\Omega;$$

where v is the unit outward normal to $\partial\Omega$, $f \in C^{0,\alpha}(\bar{\Omega})$ (f s.r some

$0 < \alpha < 1$) and $g(x, u)$ is a smooth nonlinearity satisfying essentially:

$$(2) \quad \lim_{t \rightarrow -\infty} \frac{g(x, t)}{t} < 0 < \lim_{t \rightarrow +\infty} \frac{g(x, t)}{t} \quad (\text{uniformly in } x \in \bar{\Omega});$$

and some appropriate growth condition at $+\infty$.

If $f(x) = t\varphi(x) + f_1(x)$, where $t \in \mathbb{R}$, $\varphi \in C^{0,\alpha}(\bar{\Omega})$ with

$$(3) \quad \varphi > 0 \text{ in } \bar{\Omega}, \quad \varphi \not\equiv 0$$

we prove (see Section I) that there exists $t_0 (= t_0(\varphi, f_1)) \in \mathbb{R}$ such that

- i) if $t > t_0$, there is no solution of (1);
- ii) if $t = t_0$, there is at least a minimum solution of (1);
- iii) if $t < t_0$, there is a minimum solution of (1) and there are at least two distinct solutions.

This result extends and sharpens many earlier results due to A. Ambrosetti and G. Prodi [2], M. S. Berger and E. Podolak [5], P. Hess and B. Ruf [9], J. L. Kazdan and F. W. Warner [11], H. Berestycki [4], H. Amann and P. Hess [1], E. N. Dancer [8]. The main assumption that we remove is the "at most linear

[†]C.N.R.S.; Laboratoire d'Analyse Numérique, Université P. et M. Curie, 4 Place Jussieu, 75230 Paris Cedex 05.

[‡]Mathematics Research Center, University of Wisconsin-Madison and C.N.R.S., Laboratoire d'Analyse Numérique, Université P. et M. Curie, 4 Place Jussieu, 75230 Paris Cedex 05.

growth at $+\infty$ " and in addition we prove the existence for $t < t_0$ of two ordered solutions.

In Section II, we consider the special case of $f(x,t)$ convex in t and we give some results of a geometrical nature concerning the set of functions f for which (1) admits a solution. Our main concern is to extend the results of H. Berestycki [4] to the case in which we no longer assume that g grows at most linearly at $+\infty$.

I. The general case.

Let α be in $(0,1)$ and let $f \in C^{0,\alpha}(\bar{\Omega})$. We assume that the nonlinearity $g(x,t)$ belongs to $C^{0,\alpha}(\bar{\Omega})$ (uniformly for t bounded) and $g(x,t)$ is Lipschitz continuous in t , uniformly for x in $\bar{\Omega}$. In addition, we restrict the growth of $g(x,t)$ for t large by the following assumption:

$$(4) \quad \lim_{t \rightarrow +\infty} g(x,t) t^{-p} = 0, \text{ uniformly in } x \in \bar{\Omega}, \text{ for some } p < \frac{N}{N-2};$$

(if $N = 2$, $\frac{N}{N-2}$ may be replaced by any $p < \infty$; and if $N = 1$, we make no assumption at all). We then have

Theorem I.1: Under assumptions (2), (4) and if $f(x) = t\varphi(x) + f_1(x)$ with $\varphi \in C^{0,\alpha}(\bar{\Omega})$ satisfying (3), there exists $t_0 \in \mathbb{R}$ ($t_0 = t_0(\varphi, f_1)$) such that:

- i) if $t > t_0$, there is no solution of (1);
- ii) if $t = t_0$, there is at least a minimum solution of (1);
- iii) if $t < t_0$, there is a minimum solution of (1) and there are at least two distinct solutions.

Remark I.1.: As it will be clear from an inspection of the proof, the same result holds if we replace $-\Delta$ by any uniformly elliptic second-order operator (with smooth coefficients) and if we suppose that g depends also on $\nabla u: g = g(x,u,p)$ for $(x,u,p) \in \bar{\Omega} \times \mathbb{R} \times \mathbb{R}^N$; we then need to assume that $g(x,t,p)$ is bounded for $(x,p) \in \bar{\Omega} \times \mathbb{R}^N$ and t bounded and that the limits in (3), (4) hold uniformly in $p \in \mathbb{R}^N$. In addition, we may also replace (1) by

$$(1') \quad -\Delta u = f(x,u,t) \text{ in } \Omega, u \in C^2(\bar{\Omega}), \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial\Omega;$$

assuming as in [1]:

$$(5) \quad \forall m \in \mathbb{R}, \exists \varphi \in C(\bar{\Omega}) \text{ such that } \frac{\partial f}{\partial t}(x,\xi,t) > \varphi(x) > 0, \\ \text{for } x \text{ in } \Omega, \xi > m \text{ and } t \in \mathbb{R}.$$

Remark I.2. Assumption (4) is a technical assumption which insures that solutions of (1) are a priori bounded (cf. the proof of Theorem I.1 below). We believe that the same result is true with $\frac{N}{N-2}$ replaced by $\frac{N+2}{N-2}$. For a similar reason, if we replace Neumann boundary condition by a more general one, then we need to replace $\frac{N}{N-2}$ by $\frac{N+1}{N-1}$ (we then use in the proof of Theorem I.1, the a priori estimates of H. Brezis and R. E. L. Turner [6]).

Proof of Theorem I.1: The proof is divided in several steps: we prove

- 1) there exist arbitrary negative subsolutions of (1), 2) the set of t such that (1) has a solution is of the form $(-\infty, t_0]$, 3) that (1) has always a minimum solution if $t < t_0$, and finally 4) that (1) has two distinct solutions for $t < t_0$.

a) Let $\psi \in C^{0,\alpha}(\bar{\Omega})$, then there exists $v \in C^2(\bar{\Omega})$ such that

$$-\Delta v \leq g(x,v) + f(x) \text{ in } \bar{\Omega}, \quad v \leq \psi \text{ in } \bar{\Omega}, \quad \frac{\partial v}{\partial \nu} = 0 \text{ on } \partial\Omega.$$

Indeed, because of (2) we have

$$(6) \quad g(x,t) \geq -at - c \quad \text{for } t, x \in \mathbb{R} \times \bar{\Omega} \quad \text{and for some } a, c > 0.$$

Then if we define v by $v = -\max\left(\frac{1}{a}(\|f\|_\infty + C), \|\psi\|_\infty\right)$ we have obviously $v \leq \psi$ and

$$-\Delta v = 0 \leq -a v - C + f(x) \leq g(x,v) + f(x).$$

b) we first prove that if t is bounded, all possible solutions of (1) are bounded in $C^{2,\alpha}(\bar{\Omega})$.

Indeed, because of (6), we deduce obviously from the maximum principle that

if u is a solution of (1), one has: $u(x) \geq -\frac{1}{a}(\|f\|_\infty + C)$. In particular u^+ is bounded in $L^\infty(\Omega)$. Next, if we integrate (1) on Ω , we obtain

$$\int g(x,u) = -\int f(x) + \text{Const.};$$

because u satisfies (2) and u^+ is bounded in $L^\infty(\Omega)$, this implies:

$$\int |g(x,u)| dx \leq \text{Const.}, \quad \int |f(x)| dx \leq \text{Const.}.$$

In particular we have: $\|\Delta u\|_{L^1}, \|u\|_{L^1} \leq \text{Const.}$. This implies by well-known regularity results: $\|u\|_{L^p} \leq \text{Const.}, \forall p < \frac{N}{N-2}$. Since g satisfies (4), it is easy to obtain by a bootstrap argument:

$$\|u\|_{L^\infty} \leq \text{Const.} .$$

Let us prove now that if (1) has a solution for some t , then for all $s < t$, (1) has a solution. Indeed let u be a solution of (1) for t and let $s < t$, obviously u is a supersolution of (1) (for s) i.e.:

$$-\Delta u = g(x, u) + t\varphi + f_1 \geq g(x, u) + s\varphi + f_1 .$$

On the other hand, by step 1) above, we know there exists v satisfying

$$-\Delta v \leq g(x, v) + s\varphi + f_1 , \quad v \leq u .$$

Then by classical results on sub and supersolutions, this proves our claim.

Thus we know that the set of t such that (1) has a solution is either $(-\infty, t_0]$ (with $t_0 < +\infty$) or $(-\infty, +\infty)$ (it is necessarily closed in view of the a priori bounds proved above). We just need to prove that (1) cannot have a solution for all t : we argue by contradiction and we suppose (1) has a solution u_t for all t . Then we define u_1, u_2 by

$$\begin{cases} -\Delta u_1 + \alpha u_1 = \varphi \text{ in } \Omega, \quad \frac{\partial u_1}{\partial \nu} = 0 \text{ on } \partial\Omega, \quad u_1 \in C^2(\bar{\Omega}) \\ -\Delta u_2 + \alpha u_2 = f_1 - C \text{ in } \Omega, \quad \frac{\partial u_2}{\partial \nu} = 0 \text{ on } \partial\Omega, \quad u_2 \in C^2(\bar{\Omega}) . \end{cases}$$

In view of (6), we have

$$u_t \geq t u_1 + u_2 \text{ in } \bar{\Omega} .$$

Since φ satisfies (3), we have $u_1 > 0$ in $\bar{\Omega}$ and thus for t large enough

$$u_t > 0 \text{ in } \bar{\Omega} .$$

Because of (2), we have: $g(x, t) \geq \alpha t - C$ for $t \geq 0$ for some $\alpha, C > 0$.

Then integrating (1) on Ω and using the fact that u_t is positive, we obtain

$$\alpha \int_{\Omega} u_t dx + t \int_{\Omega} \varphi dx \leq \text{Const. (indep. of } t \text{)};$$

since $\int_{\Omega} \varphi dx > 0$, we obtain a contradiction for t large enough.

3) Now let $t < t_0$, then (1) has always a minimum solution if $t < t_0$.

We already know that (1) has a solution u and that all possible solutions of

(1) satisfy: $u \geq -\frac{1}{\alpha} (\|f\|_{\infty} + C)$ (α, C given by (6)). But

$v = -\frac{1}{\alpha} (\|f\|_{\infty} + C)$ is a subsolution of (1) (take $\psi = 0$ in Step 1)) and

thus $u > v$. Then, by well-known results, this implies that (1) has a minimum solution \tilde{u} among all solutions satisfying: $w \geq v$ in $\bar{\Omega}$. Since all solutions w of (1) satisfy: $w \geq v$ in $\bar{\Omega}$, \tilde{u} is in fact the minimum solution of (1).

4) Finally let $t < t_0$, and let us prove that (1) has two distinct solutions. We are going to use a topological degree argument (we refer to J. Leray and J. Schauder [12], or to L. Nirenberg [15] for a definition and the main properties of the Leray-Schauder degree).

Let us first introduce some notations, let u_{t_0} be the minimum solution of (1) where f is given by $t_0\varphi + f_1$. By Steps 1), 2), 3), we know there exists a strict subsolution v of

$$-\Delta v \leq g(x, v) + t\varphi + f_1, \quad \frac{\partial v}{\partial \nu} = 0 \quad \text{on } \partial\Omega$$

and a minimum solution u_t of (1) (with f given by $t\varphi + f_1$) satisfying:

$$v < u_t < u_{t_0} \quad \text{in } \bar{\Omega}.$$

We are going to prove the existence of a solution u of (1) which does not satisfy:

$$v < u < u_{t_0} \quad \text{in } \bar{\Omega}$$

and thus $u > u_t$ in $\bar{\Omega}$, $u \neq u_{t_0}$ in $\bar{\Omega}$.

By Step 2) and the a priori bounds, we may choose $C_1 > 0$ such that all solutions u of (1) satisfy: $\|u\|_{C(\bar{\Omega})} < C_1$, and we may assume

$$\|v\|_{C(\bar{\Omega})}, \|u_t\|_{C(\bar{\Omega})} < C_1.$$

Now in view of the smoothness of $g(x,t)$, there exists $\lambda > 0$ such that

$$g(x,t) + \lambda t \text{ is nondecreasing on } [-C_1, +C_1], \text{ for all } x \text{ in } \bar{\Omega}.$$

Obviously u is a solution of (1) if and only if u is a fixed point of the compact operator K defined on $C(\bar{\Omega})$ by: $Kv = u$ is given by

$$\begin{cases} -\Delta u + \lambda u = g(x,v) + \lambda v + t\varphi + f, & \text{in } \bar{\Omega}, u \in W^{2,p}(\Omega) \quad (p < \infty), \\ \frac{\partial u}{\partial v} = 0 & \text{on } \partial\Omega. \end{cases}$$

We first prove that if M is large enough, the degree of $I - K$ on $B_M = \{w \in C(\bar{\Omega}), \|w\|_{C(\bar{\Omega})} < M\}$ (with respect to 0) is well defined and $d(I - K, B_M, 0) = 0$.

In order to prove this, we define a family K_s of compact operators in $C(\bar{\Omega})$ defined by: $K_s v = u_s$ is given by

$$\begin{cases} -\Delta u_s + \lambda u_s = s(g(x,v) + \lambda v + f) + (1-s)(1+v^+ + \lambda v) & \text{in } \Omega, \\ \frac{\partial u_s}{\partial v} = 0 & \text{on } \partial\Omega. \end{cases}$$

The same proof as in Step 2) gives, that all solutions u_s of: $u_s = K_s u_s$ satisfy: $\|u_s\|_{C(\bar{\Omega})} < M$ (indep. of $s \in [0,1]$). We will also assume that $M > C_1$. Thus the degree of $I - K_s$ on B_M is well defined and independent of $s \in [0,1]$:

$$d(I - K, B_M, 0) = d(I - K_0, B_M, 0).$$

Now, if u_0 is a solution of: $u_0 = K_0 u_0$, we have

$$-\Delta u_0 = u_0^+ + 1, \quad \frac{\partial u_0}{\partial v} = 0 \text{ on } \partial\Omega, \quad u_0 \in C^2(\bar{\Omega}),$$

and thus $\int_{\Omega} (1 + u_0^+) dx = 0$, which is impossible; thus there is no fixed point of K_0 and $d(I - K_0, B_M, 0) = 0$.

We then prove that if $\mathcal{O} = \{w \in C(\bar{\Omega}), v < w < u_{t_0} \text{ in } \bar{\Omega}\}$ then $d(I - K, \mathcal{O}, 0)$ is well defined and is equal to +1. Indeed let $\varphi \in \mathcal{O}$, and let us define $\tilde{K}_s v$ on $C(\bar{\Omega})$ by

$$\tilde{K}_s v = s K_s v + (1-s)\varphi, \text{ for } s \in [0,1].$$

Because of the choice of v, u_{t_0} and λ we have obviously:

$$K : \bar{\theta} \mapsto \theta \text{ and thus } \tilde{K}_s : \bar{\theta} \mapsto \theta.$$

This implies that $d(I - \tilde{K}_s, \theta, 0)$ is well defined and independent of $s \in [0, 1]$, therefore we deduce

$$d(I - K, \theta, 0) = d(I - \tilde{K}_s, \theta, 0) = d(I - \tilde{K}_0, \theta, 0).$$

Now $\tilde{K}_0 v$ is constant, equal to φ which belongs to θ , thus

$$d(I - \tilde{K}_0, \theta, 0) = +1.$$

We are now able to conclude: indeed by the above arguments we have

$$d(I - K, B_M - \bar{\theta}, 0) = -1;$$

and this means that (1) has a solution which does not belong to $\bar{\theta}$.

III. The convex case.

We now consider the case where g is convex, more precisely we deal with the following problem:

$$(7) \quad -\Delta u = \varphi(u) + f(x) \text{ in } \Omega, \quad u \in C^2(\bar{\Omega}), \quad u = 0 \text{ on } \partial\Omega,$$

where $f \in C^{0,\alpha}(\bar{\Omega})$ (for some $\alpha \in (0,1)$) and where φ satisfies

$$(8) \quad \varphi \text{ is strictly convex on } \mathbb{R}, \quad \varphi \in C^1(\mathbb{R});$$

$$(9) \quad \lim_{t \rightarrow \infty} \frac{\varphi(t)}{t} < \lambda_1$$

where λ_1 is the first eigenvalue of $-\Delta$ in Ω , with Dirichlet boundary conditions.

It is well-known that if $\lim_{t \rightarrow \infty} \frac{\varphi(t)}{t} < \lambda_1$, then (1) has a unique

solution u for every $f \in C^{0,\alpha}(\bar{\Omega})$. In what follows, we will assume in addition to (8)-(9):

$$(10) \quad \lim_{t \rightarrow \infty} \frac{\varphi(t)}{t} > \lambda_1.$$

We then define K to be the set of functions f in $C^{0,1}(\bar{\Omega})$ such that (7) has at least one solution. In addition we set

$$A_m = \{f \in C^{0,1}(\bar{\Omega}), (7) \text{ has at least two distinct solutions}\}$$

$$A_1 = \{f \in C^{0,1}(\bar{\Omega}), (7) \text{ has exactly one solution}\}$$

obviously $K = A_m \cup A_1$.

Our first result states (setting $X = C^{0,1}(\bar{\Omega})$):

Theorem II.1: Under assumptions (8)-(9)-(10), K is a convex set, unbounded with $K \neq \emptyset$ and $E - K$ is nonempty, unbounded.

Furthermore for all $f \in K$, there exists a minimum solution u of (7) such that the first eigenvalue of the operator $-\Delta - \varphi'(u)$ (with Dirichlet boundary conditions) is nonnegative.

In addition $A_m \subset K$ (and $\partial K = A_1$), and for all $f \in K$ then the first eigenvalue of the operator $-\Delta - \varphi'(u)$ is positive.

Remark II.1: This result may be extended to the case of more general elliptic operators and to more general boundary conditions (in particular Neumann conditions). In addition, we may assume that φ depends on x ((9), (10) being uniform in $x \in \bar{\Omega}$).

Remark II.2: This result is an extension of a result due to H. Berestycki [4], where it is assumed in addition that: $\lim_{t \rightarrow +\infty} \frac{\varphi(t)}{t} < \lambda_2$, where λ_2 is the second eigenvalue of $-\Delta$. However in that special case a more precise description of K may be given: indeed (see [4]) i) K is closed, ii) $A_m^0 = K = \{f \in C^{0,1}(\bar{\Omega}), (7) \text{ has exactly two solutions}\}$. We will see below that if we relax the assumption: $\lim_{t \rightarrow +\infty} \frac{\varphi(t)}{t} < \lambda_2$, then we need some assumption to ensure that $A_m^0 = K$, and that K is closed.

Let us for the moment indicate that in general for f in K (7) may have more than two solutions (even an infinite number of solutions): take $\varphi(u) = \frac{2}{N-2} e^u$ and $f = 0$, $N < 10$ with Ω the unit ball in R^N - see D. D. Joseph and T. S. Lundgren [10]). Furthermore we do not know any other assumption than: $\lim_{t \rightarrow +\infty} \frac{\varphi(t)}{t} < \lambda_2$, to ensure that for f in K , (7) has exactly two solutions.

Remark II.3: For f in K , the minimum solution \underline{u} of (7) depends continuously on f .

To simplify notations, we may assume without loss of generality: $\varphi(0) = 0$.

Before going into the proof, let us give two results which answer the questions raised above (in Remark II.2): (we assume for the sake of simplicity $N \geq 3$).

Theorem II.2: Under assumptions (8)-(9)-(10) and if we assume:

$$(11) \quad \lim_{t \rightarrow +\infty} \{ \phi(t) h(t)^{-2/N} t^{-2} \} = 0, \quad \lim_{t \rightarrow +\infty} \varphi(t) t^{-\frac{N+2}{N-2}} = 0,$$

where $\phi(t) = \int_0^t \varphi(s) ds$ and $h(t) = \frac{1}{2} \varphi(t)t - \phi(t) \geq 0$; then $A_m = \frac{0}{K}$ and thus

$A_1 = \beta K$. In addition, for f in ∂K , the first eigenvalue of the operator

$(-\Delta - \varphi'(u))$ is zero, where u is the corresponding solution of (7).

Remark II.4: Let us give a few examples where the (technical) condition (11) is satisfied:

i) if φ satisfies: $\theta \varphi(t)t - F(t) \geq 0$ for $t \geq t_0$, and for some $\theta \in (0, \frac{1}{2})$ then $h(t) \geq (\frac{1}{2} - \theta) t \varphi(t)$, and if we know that

$$\lim_{t \rightarrow +\infty} \varphi(t) t^{-(N+2)/(N-2)} = 0$$

then $\phi(t) h(t)^{-2/N} t^{-2} \leq C t \varphi(t) t^{-2/N} \varphi(t)^{-2/N} t^{-2} \leq C \frac{\varphi(t)^{\frac{N-2}{N}}}{t^{\frac{N+2}{N}}}$ and thus

(11) is satisfied and soon as we have

$$(12) \quad \left\{ \begin{array}{l} \theta \varphi(t)t - F(t) \geq 0 \text{ for } t \geq t_0 \text{ and for some } \theta \in (0, \frac{1}{2}) \\ \lim_{t \rightarrow +\infty} \varphi(t) t^{-(N+2)/(N-2)} = 0. \end{array} \right.$$

(12) has been introduced by A. Ambrosetti and P. H. Rabinowitz [3], and

contains in particular $\varphi(t) = |t|^p$ for $1 < p < \frac{N+2}{N-2}$.

ii) if φ satisfies: $\lim_{t \rightarrow +\infty} \varphi(t) t^{-N/(N-2)} = 0$, then (11) is satisfied.

Indeed since φ is convex, it is easy to prove that $h(t) \geq \alpha \varphi(t) - C$; and then

$$\phi(t) h(t)^{-2/N} t^{-2} \leq C t \varphi(t) \varphi(t)^{-2/N} t^{-2} = C \frac{\varphi(t)^{\frac{N-2}{N}}}{t^{\frac{N+2}{N}}}.$$

If we consider the particular case $\varphi(t) = |t|^p$ (with $1 < p < \infty$) then (8)-(9)-(10) hold obviously and (11) holds if and only if $p < \frac{N+2}{N-2}$. The following example shows that such a restriction is needed and that $\frac{N+2}{N-2}$ is the critical exponent for A_m^0 to be equal to K .

Example: We assume that Ω is starshaped ($N \geq 3$), $\varphi(t) = |t|^p$ with $p \geq \frac{N+2}{N-2}$, and we take $f = 0$. Then (7) is equivalent to

$$(7') -\Delta u = u^p \text{ in } \Omega, u \geq 0 \text{ in } \Omega, u = 0 \text{ on } \partial\Omega, u \in C^2(\bar{\Omega}).$$

Then in view of the results of S. I. Pohozaev [16], (7') has a unique solution $u \equiv 0$. Thus $0 \in A_1^0$. But by an obvious application of the implicit function theorem, for f in $C^{0,\alpha}(\bar{\Omega})$ small, (7') has still a solution and therefore $f \in K$. Hence $0 \in K^0$.

Finally concerning the question of the closedness of K , let us just indicate that problem is entirely similar to the following problem: let $(0, \lambda^*)$ be the maximal interval such that there exists a solution of (13) $-\Delta u = \lambda(\varphi(u) + f(x)), u \in C^2(\bar{\Omega}), u = 0 \text{ on } \partial\Omega;$ where we assume $f \geq 0, \varphi(0) > 0$; then does there exist a solution of (13) for $\lambda = \lambda^*$? This question is answered in M. G. Crandall and P. H. Rabinowitz [7] (see also F. Mignot and J. P. Puel [14]) and just applying their results and techniques, we obtain:

Proposition II.1: If one of the following conditions is satisfied

$$(14) \quad \left\{ \begin{array}{l} t \varphi'(t) \geq 0 \varphi(t), \text{ for } t \geq t_0 \text{ and for some } 0 > 1, t_0 > 0, \\ \lim_{t \rightarrow +\infty} \varphi(t) t^{-(N+2)/(N-2)} = 0; \end{array} \right.$$

$$(15) \quad \left\{ \begin{array}{l} \varphi(t) = at^m + \psi(t), \text{ for } t \geq 0 \text{ and for some } a > 0, \text{ where } : \text{satisfies} \\ \lim_{t \rightarrow +\infty} \frac{\psi(t)}{t^m} = \lim_{t \rightarrow +\infty} \frac{\psi'(t)}{t^{m-1}} = 0; \end{array} \right.$$

or

$$(16) \quad \left\{ \begin{array}{l} \varphi \text{ is a class } C^2 \text{ and satisfies: } \beta \cdot (t)^2 + \varepsilon(t)\varphi''(t) + \mu(\varepsilon(t)) \geq 0 \\ \text{for } t > t_0 ; \text{ with } 0 < \beta < 2 + \mu + \sqrt{\mu} \text{ and } N < 4 + 2\mu + 4\sqrt{\mu} \end{array} \right.$$

where $t_0 > 0$; then K is closed.

Let us remark that the results of D. D. Joseph and T. S. Lundgren [13] show that these conditions are nearly optimal (see also [7], [14], for examples of nonlinearities φ satisfying (14), or (15), or (16)).

Let us now prove Theorems II.1 and Theorems II.2:

Proof of Theorem II.1: We only prove that $A_m^0 \subset K$, since all the other statements follow directly from the proof of H. Berestycki [4].

Let $f_0 \in A_m^0$, there exist at least a minimum solution of (2) \underline{u} and another distinct solution, say $u > \underline{u}$. Since we have

$$-\Delta(u - \underline{u}) = \varphi(u) - \varphi(\underline{u}) = \left\{ \frac{\varphi(u) - \varphi(\underline{u})}{u - \underline{u}} \right\} (u - \underline{u}) ;$$

this implies that the first eigenvalue of the operator

$-\Delta - \frac{\varphi(u) - \varphi(\underline{u})}{u - \underline{u}}$ (this last function being extended by $\varphi'(\underline{u})$ on $\partial\Omega$) is 0. But since φ is strictly convex, we have

$$\frac{\varphi(u) - \varphi(\underline{u})}{u - \underline{u}} > \varphi'(\underline{u}) \text{ in } \Omega ,$$

therefore the first eigenvalue of the operator $-\Delta - \varphi'(\underline{u})$ is positive. Thus by an obvious application of the implicit function theorem, for f near f_0 in X , (7) has a solution i.e.: $f_0 \in K^0$.

Proof of Theorem 11.1: Let $\varphi \in E_1$, we know (by Theorem 11.1) there exist \underline{u} minimum solution of (7) and that the first eigenvalue of $-\Delta + \varphi'(u)$ is positive. To prove that $\varphi \in A_m$, we just need to show there exists a solution v of

$$(17) \quad \begin{cases} -\Delta v = \varphi(\underline{u}(x)) + \varphi'(\underline{u}'(x)) & \text{in } \Omega, \quad v \in C^2(\bar{\Omega}) \\ v > 0 \quad \text{in } \Omega, \quad v = 0 \quad \text{on } \partial\Omega. \end{cases}$$

Since φ satisfies (11) and since the first eigenvalue of $-\Delta + \varphi'(u)$ is positive, we may apply the existence results of P. L. Lions [13] to conclude.

References

1. H. Amann and P. Hess: A multiplicity result for a class of elliptic boundary value problems. Proc. Roy. Soc. Edinburg, 84 A (1979), p. 145-151.
2. A. Ambrosetti and G. Prodi: On the inversion of some differentiable mappings with singularities between Banach spaces. Ann. Math. Pura. Appl., 93 (1972), p. 231-247.
3. A. Ambrosetti and P. H. Rabinowitz: Dual variational methods in critical point theory and applications. J. Func. Anal., 14 (1973), p. 349-381.
4. H. Berestycki: Le nombre de solutions de certains problemes semilinéaire elliptiques. To appear in J. Func. Anal. .
5. M. S. Berger and E. Podolak: On the solutions of a nonlinear Dirichlet problem. Indiana Univ. Math. J., 24 (1975) p. 837-846.
6. H. Brezis and R. E. L. Turner: On a class of superlinear elliptic problems. Comm. in P. D. E., 2 (6) (1977), p. 601-614.
7. M. G. Crandall and P. H. Rabinowitz: Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems. Arch. Rat. Mech. Anal., 58 (1975), p. 207-218.
8. P. N. Dancer: On the ranges of certain weakly nonlinear elliptic partial differential equations, J. Math. Pure Appl., 57 (1978), p. 351-366.
9. P. Hess and R. Puf: On a superlinear elliptic boundary value problem, Math. Z., 164 (1978), p. 9-14.

10. D. D. Joseph and T. S. Lundgren: Quasilinear Dirichlet problems driven by positive sources. *Arch. Rat. Mech. Anal.*, 49 (1973), p. 241-269.
11. J. L. Kazdan and F. W. Warner: Remarks on some quasilinear elliptic equations. *Comm. Pure Appl. Math.*, 28 (1975), p. 567-597.
12. J. Leray and J. Schauder: Topologie et équations fonctionnelles. *Am. Sc. Ec. Norm. Sup.* 3, 51 (1934), p. 45-78.
13. P. L. Lions: A note on an extension of a result due to Ambrosetti and Rabinowitz, to appear.
14. F. Mignot and J. P. Puel: Sur une classe de problemes nonlinéaires avec nonlinéarité positive, croissante, convexe. To appear in *Comm. P. D. E.*
15. L. Nirenberg: Topics in nonlinear functional analysis. Lecture Notes, Courant Institute of Mathematical Sciences, New York (1974).
16. S. I. Pohozaev: Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$. *Sov. Math. Dokl.*, 5 (1965), p. 1408-1411.

HP:PLL/db

REPORT DOCUMENTATION PAGE			READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2111	2. GOVT ACCESSION NO. <i>AD-A093 572</i>	3. RECIPIENT'S CATALOG NUMBER	
4. TITLE (and Subtitle) SHARP EXISTENCE RESULTS FOR A CLASS OF SEMILINEAR ELLIPTIC PROBLEMS		5. TYPE OF REPORT & PERIOD COVERED Summary report - no specific reporting period	
7. AUTHOR(s) H. Berestycki and P. L. Lions		6. PERFORMING ORG. REPORT NUMBER DANG29-84-C-00	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Mathematics Research Center, University of Wisconsin 610 Walnut Street Madison, Wisconsin 53706		10. PROGRAM ELEMENT PROJECT TASK AREA & WORK UNIT NUMBERS Work Unit Number 1 - Applied Analysis	
11. CONTROLLING OFFICE NAME AND ADDRESS U. S. Army Research Office P.O. Box 12211 Research Triangle Park, North Carolina 27700		12. REPORT DATE AUGUST 1984	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 16	
		15. SECURITY CLASS (of this report) UNCLASSIFIED	
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.			
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)			
18. SUPPLEMENTARY NOTES			
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Semilinear elliptic equations, topological degree			
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) In this paper a semilinear elliptic second-order problem is considered. Under very general assumptions we give a precise description of the set of solutions of the problem. These results extend in part those obtained by A. Ambrosetti and G. Prodi.			