

 $\underline{\mathsf{Home}}\,\, \blacktriangleright \,\, \mathsf{Chemistry}\,\, \blacktriangleright \,\, \mathsf{Inorganic}\,\, \blacktriangleright \,\, \mathsf{Bonding}\,\, \blacktriangleright \,\, \mathsf{Hydrogen}\,\, \mathsf{bonding}\,\, \mathsf{and}\,\, \mathsf{methane}$

Hydrogen bonding and methane

Part A Effects of intermolecular hydrogen bonding
Which of the following statements describes a phenomenon which can be explained by intermolecular hydrogen-bonding?
$ m CH_3OCH_3$ (M_r = 46) has a higher boiling point than $\rm CH_3CH_2CH_3$ (M_r = 44).
The melting points of the Group 1 hydroxides increase with increasing relative molecular mass (M_r)
The boiling points of the alkanes increase with increasing relative molecular mass.
Hydrogen chloride forms an acidic solution when dissolved in water.
$igcup$ Ice has a lower density than water at $0^{\circ}\mathrm{C}$.
Part B Condensed methane
The Voyager 2 probe has shown that the surface of Triton, a moon of the planet Neptune, contains condensed methane which flows rapidly.
Which statement explains the flow within the condensed methane?
Methane molecules have a tetrahedral structure.
Condensed methane has a metallic structure.
The intermolecular forces between methane molecules are weak.
Methane molecules contain strong C-H bonds.

Part A adapted with permission from UCLES, A-Level Chemistry, November 1990, Paper 1, Question 4; Part B adapted with permission from UCLES, A-Level Chemistry, November 1996, Paper 4, Question 4

 $\underline{\mathsf{Home}}\,\, \boldsymbol{\succ}\,\, \mathsf{Chemistry}\,\, \boldsymbol{\succ}\,\, \mathsf{Inorganic}\,\, \boldsymbol{\succ}\,\, \mathsf{Bonding}\,\, \boldsymbol{\succ}\,\, \mathsf{Hydration}\,\, \mathsf{and}\,\, \mathsf{solubility}$

Hydration and solubility

Part A Enthalpy of hydration

^

For which of the following ions is the enthalpy change of hydration likely to be the most exothermic?

ion	ionic radius / nm	charge on ion
Α	0.065	+2
В	0.095	+1
С	0.135	+2
D	0.169	+1
E	0.181	-1

/	1	
)	А

() B

() E

Which of the following compounds is least soluble in water?

$$C_6H_5 = \begin{bmatrix} H & H \\ C & C \\ H & H \end{bmatrix}$$

Figure 1: C_6H_5 group

- CH₃CH(NH₂)CO₂H
- CH₃CH(OH)CH₃
- CH₃CH₂CH₂NH₂
- C₆H₅CO₂Na
- $C_6H_5NH_2$

Part A adapted with permission from UCLES, A-Level Chemistry, November 1991, Paper 1, Question 8; Part B adapted with permission from UCLES, A-Level Chemistry, June 1993, Paper 4, Question 5

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

<u>Home</u> > Chemistry > Inorganic > Bonding > Ammonia

Ammonia

Part A Lone pair on ammonia	^
Which of the following does not involve the lone pair of electrons on the nitrogen atom of the ammonia molecule?	
the dissolving of silver chloride in aqueous ammonia	
the hydrogen bonding that occurs between molecules of ammonia	
$igcup$ the formation of $\mathrm{NH_4}^+$ ions in aqueous ammonia	
the formation of $\mathrm{NH_2}^-$ ions during the reaction of ammonia with sodium	
Part B Ammonia in water	~
Which combination of molecules and ions exists in a solution of ammonia in water?	
ions only	
simple molecules and ions only	
hydrogen-bonded molecules and ions only	
simple molecules and hydrogen-bonded molecules only	

Part A adapted with permission from UCLES, A-Level Chemistry, November 1995, Paper 4, Question 18; Part B adapted with permission from UCLES, A-Level Chemistry, November 1998, Paper 3, Question 18

All materials on this site are licensed under the $\underline{\textbf{Creative Commons license}}$, unless stated otherwise.

<u>Home</u> > Chemistry > Inorganic > Bonding > Breaking hydrogen bonds

Breaking hydrogen bonds

Part A Hydrogen bonding between same molecules

^

Which of the following molecules will **not** form a hydrogen bond with another of its own molecules?

- CH₄
- H_2O
- CH₃OH
- NH₃

Part B Breaking hydrogen bonds

In which of the following processes will hydrogen bonds be broken?

- $H_2(l) \longrightarrow H_2(g)$
- $H_2(g) \longrightarrow 2H(g)$
- $NH_3(l) \longrightarrow NH_3(g)$
- $2 \operatorname{HI}(g) \longrightarrow \operatorname{H}_{2}(g) + \operatorname{I}_{2}(g)$

Part A adapted with permission from UCLES, A-Level Chemistry, June 1994, Paper 4, Question 8; Part B adapted with permission from OCSEB, A-Level Chemistry, June 1995, Paper 1, Question 5

 $\underline{\mathsf{Home}}$ > Chemistry > Inorganic > Bonding > Dissolving salts

Dissolving salts

Part A Barium and magnesium sulfates	^
Barium sulfate occurs naturally as barite, which is a solid ore. Magnesium sulfate, however, occurs mainly in solution,	
Why is this?	
Magnesium sulfate is hydrolysed by naturally acidic solutions, but barium sulfate is not.	
Barium sulfate is more resistant to oxidation than magnesium sulfate.	
Barium ions are less readily hydrated than magnesium ions.	
Barium sulfate has a stronger crystalline lattice.	
Part B Dissolving ammonium nitrate	~
Which of the following statements correctly explains why the temperature falls when ammonium nitrate dissolves in water?	
The vapour pressure over a salt solution is always less than that of the pure solvent.	
The lattice enthalpy of the salt is greater in magnitude than the enthalpy of solvation of the ions.	
Six bonds have to be broken in the crystal and only one is formed in solution.	
The lattice enthalpy of the salt has a negative value.	
The strength of the bonding between ammonium and nitrate ions in the crystal is greater than that between ammonium and hydroxide ions in solution.	

Part A adapted with permission from OCR, A-Level Chemistry, November 1999, Paper 3, Question 14; Part B adapted with permission from OCSEB, A-Level Chemistry, June 1999, Paper 1, Question 7

<u>Home</u> > Chemistry > Inorganic > Bonding > Dipoles

Dipoles

Part A Dipoles 1		^
Which of the following molecules	s has no permanent dipole?	
CHCl ₃		
\bigcirc C ₂ H ₅ Cl		
$igcup ext{CCl}_2 ext{F}_2$		
\bigcirc C ₂ Cl ₄		

In which pair of molecules is the permanent dipole in molecule I greater than that in molecule II?

Figure 1: Dipoles.

- () A
- () C
- O D

Part A adapted with permission from UCLES, A-Level Chemistry, June 1994, Paper 4, Question 9; Part B adapted with permission from UCLES, A-Level Chemistry, June 1999, Paper 3, Question 18

 $\underline{\sf Home}\,$ > Chemistry > Inorganic > Bonding > Van der Waals and paraffin wax

Van der Waals and paraffin wax

Which of the following compounds in their solid states consist of atoms or molecules held together only by van der Waals forces (due to some form of dipole-dipole interaction)?
\bigcirc H ₂ O
\bigcirc CO ₂
○ MgO
Cu
\bigcirc SiO $_2$
Part B Melting point of paraffin wax
The melting point of paraffin wax (a mixture of saturated hydrocarbons which have high relative molar mass) is determined by
covalent bonds within hydrocarbon molecules
covalent bonds between hydrogen carbon molecules
ionic bonds between molecules
hydrogen bonds between molecules
van der Waals (London dispersion) forces between the molecules

Part A adapted with permission from UCLES, A-Level Chemistry, November 1990, Paper 1, Question 1; Part B adapted with permission from OCSEB, A-Level Chemistry, June 1994, Paper 1, Question 3

 $\underline{\mathsf{Home}}$ > Chemistry > Inorganic > Bonding > Hydrogen bonding

Hydrogen bonding

Which of the following contain hydrogen bonds?		
1 NH ₄ Cl(s)		
$2 \mathrm{NH_3} (\mathrm{l})$		
$3 \text{ HNO}_3 (1)$		
1, 2 and 3		
1 and 2 only		
2 and 3 only		
O 1 only		
3 only		

All materials on this site are licensed under the $\underline{\textbf{Creative Commons license}}$, unless stated otherwise.

Adapted with permission from UCLES, A-Level Chemistry, November 1998, Paper 3, Question 31

 $\underline{\mathsf{Home}} \; \; \blacktriangleright \; \; \mathsf{Chemistry} \; \; \blacktriangleright \; \; \mathsf{Inorganic} \; \; \blacktriangleright \; \; \mathsf{Bonding} \; \; \blacktriangleright \; \; \mathsf{Dry} \; \mathsf{ice} \; \mathsf{and} \; \mathsf{carbon} \; \mathsf{tetrachloride}$

Dry ice and carbon tetrachloride

art A	Interactions in dry ice
	lid carbon dioxide, ${ m CO_2}\left({ m s}\right)$, (dry ice) is used as a refrigerating agent because it readily changes directly m the solid into vapour state at a low temperature.
W	nat does this indicate the main intermolecular interactions in $\mathrm{CO}_2\left(\mathrm{s}\right)$ to be?
	covalent bonding
	hydrogen bonding
	ionic bonding
	van der Waals' forces
Dt. D.	Liquid tetrachloromethane
art B	Enquia tetracitoromethane
	nich type of interaction is responsible for intermolecular forces in liquid tetrachlomethane, ${ m CCl_4}$?
	nich type of interaction is responsible for intermolecular forces in liquid tetrachlomethane, $\mathrm{CCl_4}$?
Part B W	nich type of interaction is responsible for intermolecular forces in liquid tetrachlomethane, ${ m CCl_4}$?

Part A adapted with permission from OCR, A-Level Chemistry, June 1998, Paper 3, Question 7; Part B adapted with permission from UCLES, A-Level Chemistry, June 1998, Paper 3, Question 5

 $\underline{\mathsf{Home}}\,\, \boldsymbol{\succ}\,\, \mathsf{Chemistry}\,\, \boldsymbol{\succ}\,\, \mathsf{Inorganic}\,\, \boldsymbol{\succ}\,\, \mathsf{Bonding}\,\, \boldsymbol{\succ}\,\, \mathsf{Sulfates}\,\, \mathsf{and}\,\, \mathsf{detergents}$

Sulfates and detergents

Part A Solubility of sulfates	^
Which of the following factors helps to explain the differing solubility in water of magnesium sulfate compared with that of barium sulfate?	
1 Barium sulfate has a numerically (in terms of magnitude) larger lattice energy than magnesium sulfate.	
2 The enthalpy change of hydration of magnesium ions is more exothermic than that of barium ions.	
3 The charge density of magnesium ions is greater than that of barium ions.	
1, 2 and 3 are correct	
1 and 2 only are correct	
2 and 3 only are correct	
1 only is correct	
3 only is correct	

art	t B Detergents	•
	Long-chain alkanes are converted on an industrial scale into alkyl sulfates for use as detergents, e.g. sodium lauryl sulfate.	
	Which of the following are properties of this substance?	
	 It possesses both a water-attracting and a water-repelling part. The sulfate group is anionic in aqueous solutions. The alkyl chain is soluble in oil droplets. 	
	$CH_3(CH_2)_{10}CH_2O - S - ONa$	
	Figure 1: Sodium lauryl sulfate	
	1, 2 and 3 are correct	
	1 and 2 only are correct	
	2 and 3 only are correct	
	1 only is correct	
	3 only is correct	

Part A adapted with permission from UCLES, A-Level Chemistry, November 1995, Paper 4, Question 35; Part B adapted with permission from UCLES, A-Level Chemistry, November 1990, Paper 1, Question 32

All materials on this site are licensed under the $\underline{\textbf{Creative Commons license}}$, unless stated otherwise.