

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 11-020207

(43)Date of publication of application : 26.01.1999

(51)Int.CI.

B41J 2/21

B41J 2/175

B41J 2/125

(21)Application number : 09-179520

(71)Applicant : SEIKO EPSON CORP

(22)Date of filing : 04.07.1997

(72)Inventor : KUWATA NAOKI
MARUYAMA TAKASHI

(54) APPARATUS AND METHOD FOR CORRECTING PRINT DATA, AND SOFTWARE-RECORDING MEDIUM HAVING PRINT DATA CORRECTION PROGRAM RECORDED THEREIN

(57)Abstract:

PROBLEM TO BE SOLVED: To correctly reproduce colors irrespective of instrumental errors of a printing head, etc., by correcting print data based on a predetermined correction amount compensating for a bias of a usage of a recording material set for every element, and reducing the correction amount more when color elements are combined to carry out mixed color recording than at the time of monochromatic recording.

SOLUTION: A correcting means 30a1 corrects print data on the basis of a predetermined correction amount compensating for a bias of a usage of a recording material set for every element color. A printing apparatus adheres the recording material of each element color in matrix to a recording medium, thereby printing and outputting color images in a plurality of element colors. A correction-reducing means 30a2 reduces the correction amount more when the element colors are combined to realize recording in mixed colors than at the time of monochromatic recording. A print data-correcting apparatus 30a corrects in a predetermined manner print data when the print data are generated. The correcting means 30a1 preliminarily holds the correction amount for correcting an instrumental error for every element color and corrects the print data based on a reduction instruction from the correction amount-reducing means 30a2.

LEGAL STATUS

[Date of request for examination] 11.06.2001

[Date of sending the examiner's decision of rejection] 13.05.2003

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-20207

(43)公開日 平成11年(1999)1月26日

(51)Int.Cl.⁶

B 41 J
2/21
2/175
2/125

識別記号

F I

B 41 J 3/04

101 A
102 Z
104 K

審査請求 未請求 請求項の数5 O.L (全 11 頁)

(21)出願番号

特願平9-179520

(22)出願日

平成9年(1997)7月4日

(71)出願人 000002369

セイコーエプソン株式会社

東京都新宿区西新宿2丁目4番1号

(72)発明者 鍾田 直樹

長野県諏訪市大和3丁目3番5号 セイコ
ーエプソン株式会社内

(72)発明者 丸山 貴士

長野県諏訪市大和3丁目3番5号 セイコ
ーエプソン株式会社内

(74)代理人 弁理士 鈴木 喜三郎 (外2名)

(54)【発明の名称】 印刷データ修正装置、印刷データ修正方法および印刷データ修正プログラムを記録したソフトウ
エア記録媒体

(57)【要約】

【課題】 機体差のある印字ヘッドではパッチを比較して対比するとなると、再現可能な全色について対比することはとてもできなかつた。

【解決手段】 インクジェット方式のプリンタ31のようにドットを構成する色インクなどの記録材が機体差によって変動する場合、各色ごとに色ずれの修正量を設定することは不可能であるが、少なくとも単色での修正量を求めておき、照準色を決めれば最適な低減量で単色の修正量を低減させて適用することにより、二次色や三次色においても容易に好適な色修正が可能となる。

【特許請求の範囲】

【請求項1】 印刷データに基づいて複数の要素色でカラー画像を印刷出力するために各要素色毎の記録材をドットマトリクス状に記録媒体に付着させる印刷装置に対し、同記録材の使用量の偏りに基づく色変化を補償するために上記印刷データを修正する印刷データ修正装置であって、

各要素色毎に設定した上記記録材の使用量の偏りを補償する所定の修正量に基づいて上記印刷データを修正する修正手段と、

各要素色を組み合わせて実現する混色時に単色時よりも上記修正手段による上記修正量を低減させる修正量低減手段とを具備することを特徴とする印刷データ修正装置。

【請求項2】 上記請求項1に記載の印刷データ修正装置において、上記修正量低減手段は、混色する色数が多くなるにつれて上記修正量をより低減させることを特徴とする印刷データ修正装置。

【請求項3】 上記請求項1または請求項2のいずれかに記載の印刷データ修正装置において、上記修正量低減手段は、混色する色数に応じた最適な低減量を記憶する低減量記憶手段と、各画素の混色する色数を集計とともに画素数に対応する重み付けで上記低減量を加算する低減量重み付け加算手段とを具備することを特徴とする印刷データ修正装置。

【請求項4】 印刷データに基づいて複数の要素色でカラー画像を印刷出力するために各要素色毎の記録材をドットマトリクス状に記録媒体に付着させる印刷装置に対し、同記録材の使用量の偏りに基づく色変化を補償するために上記印刷データを修正する印刷データ修正方法であって、各要素色毎に上記記録材の使用量の偏りを補償する所定の修正量を設定してあるとともに、各要素色を組み合わせて実現する混色時に単色時よりも同修正量を低減させて上記印刷データを修正することを特徴とする印刷データ修正方法。

【請求項5】 印刷データに基づいて複数の要素色でカラー画像を印刷出力するために各要素色毎の記録材をドットマトリクス状に記録媒体に付着させる印刷装置に対し、コンピュータにて同記録材の使用量の偏りに基づく色変化を補償するために上記印刷データを修正する印刷データ修正プログラムを記録したソフトウェア記録媒体であって、各要素色毎に上記記録材の使用量の偏りを補償する所定の修正量を設定してあるとともに、各要素色を組み合わせて実現する混色時に単色時よりも同修正量を低減させて上記印刷データを修正することを特徴とする印刷データ修正プログラムを記録したソフトウェア記録媒体。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、印刷データ修正装

置、印刷データ修正方法および印刷データ修正プログラムを記録したソフトウェア記録媒体に関する。

【0002】

【従来の技術】 近年、カラーインクジェットプリンタの高精細化が進み、いわゆる写真画質と呼ばれるまでに至っている。このようなインクジェットプリンタは、所定の色インクを粒状に吐出することにより、所望の位置に所定色のドットを付し、画像をドットマトリクス状に表現している。この場合、カラー画像であれば、シアン(C)、マゼンタ(M)、イエロー(Y)の三色あるいはこれにブラック(K)を加えた四色の色インクを使用して再現する。

【0003】 ところで、写真画質と呼ばれるようになるには、ドットが微少化することも重要であるが、色再現性も極めて重要となる。コンピュータの内部では色を赤緑青(RGB)の多階調データで表現しているにも関わらず、プリンタではCMYKの二階調データにしか対応できないため、色空間の変換と、階調変換が行われている。すなわち、RGBの多階調で表現される色を維持しながらCMYKの二階調表示で実現している。むろん、ここでは一つ一つのドットが規定どおりの濃度で発色しているということを前提としている。

【0004】 しかしながら、印刷データ的には色の再現性を維持して出力されているにも関わらず、印字ヘッドごとの機体差によって色インク粒の重量が異なり、この結果、各ドットが本来の濃度で発色しているとはいえない場合がある。

【0005】

【発明が解決しようとする課題】 上述した従来の印刷装置においては、印字ヘッドの機体差によって吐出するインク粒の量が異なると、各ドットが本来の濃度で発色しているとはいえないとなり、結果的に色の再現性が劣化することがあるという課題があった。

【0006】 このため、本出願人の場合、あらかじめ印刷データを修正して機体差を補償しておき、修正後の印刷データに基づいて印刷することによって色の再現性を向上させることにした。このような修正は修正テーブルを使用する。この修正テーブルを作成するには、まず、基準重量の色インク粒を吐出する基準印字ヘッドにて全階調にわたってパッチを印刷するとともに、機体差のある印字ヘッドでも同様に全階調にわたってパッチを印刷する。そして、各パッチを対比して誤差のないパッチ同士の組み合わせを求め、その組み合わせ一覧を修正テーブルとしている。

【0007】 このようにパッチを比較して対比する必要があるため、再現可能な全色についてパッチを対比することはとてもできない。従って、各要素色毎に修正テーブルを作成したところ、単色を印刷する場合には基準ヘッドの場合とほぼ同様の発色を得ることができたが、混色になると再びずれが生じてしまった。

【0008】本発明は、上記課題にかんがみてなされたもので、印字ヘッドなどの機体差に関わらずより正確に色を再現できるようにすることが可能な印刷データ修正装置、印刷データ修正方法および印刷データ修正プログラムを記録したソフトウェア記録媒体の提供を目的とする。

【0009】

【課題を解決するための手段】上記目的を達成するため、請求項1にかかる発明は、印刷データに基づいて複数の要素色でカラー画像を印刷出力するために各要素色毎の記録材をドットマトリクス状に記録媒体に付着させる印刷装置に対し、同記録材の使用量の偏りに基づく色変化を補償するために上記印刷データを修正する印刷データ修正装置であって、各要素色毎に設定した上記記録材の使用量の偏りを補償する所定の修正量に基づいて上記印刷データを修正する修正手段と、各要素色を組み合わせて実現する混色時に単色時よりも上記修正手段による上記修正量を低減させる修正量低減手段とを具備する構成としてある。

【0010】上記のように構成した請求項1にかかる発明においては、修正手段は各要素色毎に設定した記録材の使用量の偏りを補償する所定の修正量に基づいて印刷データを修正し、当該修正された印刷データに基づいて印刷装置は各要素色毎の記録材をドットマトリクス状に記録媒体に付着させ、複数の要素色でカラー画像を印刷出力する。この場合、修正量低減手段は上記修正手段が印刷データを修正するにあたって各要素色を組み合わせて実現する混色時には単色時よりも上記修正量を低減させていている。

【0011】単色時の修正量を混色に適用したときには単色として設定した修正量が強すぎるという実験結果が得られた。これは各種の要因が考えられるが、混色することによって各要素色毎の修正量が強く影響しすぎると考えるのが妥当であり、混色時に同修正量を低減することによって、単色の状態で設定した修正量がそのまま混色の場合に使用されることにはならず、混色の再現性が向上することになる。

【0012】ここで、修正手段は、少なくとも各要素色毎に単色での修正量を備えており、修正量低減手段の指示に基づいて同修正量を低減させて印刷データを修正する。修正するのは各印刷データ毎に個別に行っても良いし、同印刷データが参照することになる変換テーブルなどがあれば同変換テーブルを一括的に修正しておき、個々に同変換テーブルを参照すれば変換と修正とが行われるようなものでも良い。

【0013】また、修正量低減手段は結果的に混色時には単色時よりも修正手段による修正量を低減させねばよく、その低減量は画一的ではない。ただし、その一例として、請求項2にかかる発明は、請求項1に記載の印刷データ修正装置において、上記修正量低減手段は、混色

する色数が多くなるにつれて上記修正量をより低減させる構成としてある。

【0014】上記のように構成した請求項2にかかる発明においては、混色する色数が多くなればなるほど、修正量低減手段は修正量を低減させていく。

【0015】単色時の設定を混色時に使用するとそれが生じるのは単色時の修正量が強すぎると考えられ、この考え方を延長させると混色する色数が増えるほど修正量を弱めていくと好適となる。

【0016】修正量を低減させるにあたってその傾向は上述したとおりであるが、現実には単色もあるし、混色もあり、さらにその色数も雑多である。従って、修正量を決定するには調整が必要となる。そのような場合に好適な一例として、請求項3にかかる発明は、請求項1または請求項2のいずれかに記載の印刷データ修正装置において、上記修正量低減手段は、混色する色数に応じた最適な低減量を記憶する低減量記憶手段と、各画素の混色する色数を集計するとともに画素数に対応する重み付けで上記低減量を加算する低減量重み付け加算手段とを具備する構成としてある。

【0017】上記のように構成した請求項3にかかる発明においては、低減量記憶手段が混色する色数に応じた最適な低減量を記憶しており、低減量重み付け加算手段が各画素の混色する色数を集計するとともに画素数に対応する重み付けで上記低減量を加算する。

【0018】従って、混色する色数ごとに最適な低減量がその画素数の割合に応じた重み付けで加算されることになり、印刷物全体として調和のとれた低減量となる。

【0019】このように各要素色毎に設定した修正量を混色時には低減して適用する手法は必ずしも実体のある装置でなければならないわけではなく、その一例として、請求項4にかかる発明は、印刷データに基づいて複数の要素色でカラー画像を印刷出力するために各要素色毎の記録材をドットマトリクス状に記録媒体に付着させる印刷装置に対し、同記録材の使用量の偏りに基づく色変化を補償するために上記印刷データを修正する印刷データ修正方法であって、各要素色毎に上記記録材の使用量の偏りを補償する所定の修正量を設定してあるとともに、各要素色を組み合わせて実現する混色時に単色時よりも同修正量を低減させて上記印刷データを修正する構成としてある。

【0020】すなわち、必ずしも実体のある装置で修正する作業に限らず、その方法としても有効であることに相違はない。

【0021】ところで、上述したように印刷データを修正する印刷データ修正装置は単独で存在する場合もあるし、ある機器に組み込まれた状態で利用されることもあるなど、発明の思想としては各種の態様を含むものである。また、ハードウェアで実現されたり、ソフトウェアで実現されるなど、適宜、変更可能である。

【0022】発明の思想の具現化例として色修正するソフトウェアとなる場合には、かかるソフトウェアを記録したソフトウェア記録媒体上においても当然に存在し、利用されるといわざるをえない。

【0023】その一例として、請求項5にかかる発明は、印刷データに基づいて複数の要素色でカラー画像を印刷出力するために各要素色毎の記録材をドットマトリクス状に記録媒体に付着させる印刷装置に対し、コンピュータにて同記録材の使用量の偏りに基づく色変化を補償するために上記印刷データを修正する印刷データ修正プログラムを記録したソフトウェア記録媒体であって、各要素色毎に上記記録材の使用量の偏りを補償する所定の修正量を設定してあるとともに、各要素色を組み合わせて実現する混色時に単色時よりも同修正量を低減させて上記印刷データを修正する構成としてある。

【0024】むろん、そのソフトウェア記録媒体は、磁気記録媒体であってもよいし光磁気記録媒体であってもよいし、今後開発されるいかなるソフトウェア記録媒体においても全く同様に考えることができる。また、一次複製品、二次複製品などの複製段階については全く問う余地無く同等である。その他、供給方法として通信回線を利用して行う場合でも本発明が利用されていることは変わりないし、半導体チップに書き込まれたようなものであっても同様である。

【0025】さらに、一部がソフトウェアであって、一部がハードウェアで実現されている場合においても発明の思想において全く異なるものではなく、一部をソフトウェア記録媒体上に記憶しておいて必要に応じて適宜読み込まれるような形態のものとしてあってもよい。

【0026】

【発明の効果】以上説明したように本発明は、各要素色毎に修正量を設定するという意味で混色の修正量を求めるような困難さはないし、また、混色時には修正量を弱めることによって対応するようにしたため、実質的に機体差による色ずれを無くし、色の再現性を向上させることができることが可能な印刷データ修正装置を提供することができる。

【0027】また、請求項2にかかる発明によれば、混色色数が多くなるほど修正量を低減させることにより、色数が多くなる場合の各色単独での修正量が弱まり、良好な色再現性を実現できる。

【0028】さらに、請求項3にかかる発明によれば、混色色数ごとの画素数を集計してそれぞれに最適な低減量を重み付け加算するため、調和のとれた低減量を求めることができる。

【0029】さらに、請求項4にかかる発明によれば、同様に混色時の色再現性を向上させることができが可能な印刷データ修正方法を提供することができる。

【0030】さらに、請求項5にかかる発明によれば、同様に混色時の色再現性を向上させることができが可能な印刷

データ修正プログラムを記録したソフトウェア記録媒体を提供することができる。

【0031】

【発明の実施の形態】以下、図面にもとづいて本発明の実施形態を説明する。

【0032】図1は、本発明の一実施形態にかかる印刷データ修正装置をクレーム対応図により示しており、図2は同印刷データ修正装置を適用した印刷システムのハードウェア構成例をブロック図により示している。

【0033】この印刷システムは、概略、画像入力装置10と、画像処理装置20と、印刷装置30とに分類できる。画像入力装置10としては、スキャナ11やデジタルスチルカメラ12あるいはビデオカメラ14などが該当するし、画像処理装置20としては、コンピュータ21とハードディスク22とキーボード23とCD-R ROMドライブ24とフロッピーディスクドライブ25とモデム26とディスプレイ27などが該当し、印刷装置30の具体例はプリンタ31等が該当する。なお、モデム26については公衆通信回線に接続され、外部のネットワークに同公衆通信回線を介して接続し、ソフトウェアやデータをダウンロードして導入可能となっている。

【0034】ここで、画像入力装置10としてのスキャナ11やデジタルスチルカメラ12は画像データとしてRGB(緑、青、赤)の256階調の画像データを出力し、印刷装置30としてのプリンタ31はCMYK(シアン、マゼンダ、イエロー、ブラック)の二階調の画像データを入力として必要とする。従って、画像処理装置20としてのコンピュータ21内では上記256階調の画像データを入力して所定の画像処理及び印刷処を行って、二階調の画像データとして出力する。なお、コンピュータ21内ではオペレーティングシステム21aが稼働しており、プリンタ31やディスプレイ27に対応したプリンタドライバ21bやディスプレイドライバ21cが組み込まれているとともに、アプリケーション21dはオペレーティングシステム21aにて処理の実行を制御され、ディスプレイドライバ21cと連携してディスプレイ27への表示を行うとともに、必要に応じてプリンタドライバ21bと連携して印刷処理を実行している。

【0035】本実施形態においては、印刷データ修正装置30aはこのような印刷システムにおいて印刷データを生成する過程において、同生成された印刷データを入力し、所定のデータ修正を行って出力する。この場合、修正手段30a1は後述するようにして予め各要素色毎に機体差を修正するための修正量を保持しており、修正量低減手段30a2からの低減指示によって同修正量を低減させ、印刷データを修正する。以下、この工程を詳細に説明する。

【0036】まず、修正された印刷データに基づいて印刷を行うプリンタ31について説明する。図3はプリン

タ31の概略構成を示しており、三つの印字ヘッドユニットからなる印字ヘッド31aと、この印字ヘッド31aを制御する印字ヘッドコントローラ31bと、当該印字ヘッド31aを軸方向に移動させる印字ヘッド軸移動モータ31cと、印字用紙を行方向に送る紙送りモータ31dと、これらの印字ヘッドコントローラ31bと印字ヘッド軸移動モータ31cと紙送りモータ31dにおける外部機器とのインターフェイスにあたるプリンタコントローラ31eとからなるドット印刷機構を備え、印刷データに応じて画像印刷可能となっている。

【0037】図4は印字ヘッド31aのより具体的な構成を示しており、図5はインク吐出時の動作を示している。印字ヘッド31aには色インクタンク31a1からノズル31a2へと至る微細な管路31a3が形成されており、同管路31a3の終端部分にはインク室31a4が形成されている。このインク室31a4の壁面は可撓性を有する素材で形成され、この壁面に電歪素子であるピエゾ素子31a5が備えられている。このピエゾ素子31a5は電圧を印加することによって結晶構造が歪み、高速な電気-機械エネルギー変換を行うものであるが、かかる結晶構造の歪み動作によって上記インク室31a4の壁面を押し、当該インク室31a4の容積を減少させる。すると、このインク室31a4に連通するノズル31a2からは所定量の色インク粒が勢いよく吐出することになる。このポンプ構造をマイクロポンプ機構と呼ぶことにする。

【0038】なお、一つの印字ヘッドユニットには独立した二列のノズル31a2が形成されており、各列のノズル31a2には独立して色インクが供給されるようになっている。従って、三つの印字ヘッドユニットでそれぞれ二列のノズルを備えることになり、最大限に利用して六色の色インクを使用することも可能である。図3に示す例では、左列の印字ヘッドユニットにおける二列を黒インクに利用し、中程の印字ヘッドユニットにおける一列だけを使用してシアン色インクに利用し、右列の印字ヘッドユニットにおける左右の二列をそれぞれマゼンタ色インクとイエロー色インクに利用している。

【0039】このように、本実施形態においては、マイクロポンプ機構を採用するインクジェット方式のプリンタ31について適用している。インクジェット方式からなるドット付着機構を有するプリンタ31においては、上述した印字ヘッド31aから一つのドットについて一つのインク粒を吐出させて印字させる。しかしながら、このようにして付される一つのドットの大きさが必ずしも一定ではなく、印字ヘッド31aに機体差が生じている。いわゆる重ね打ちによって印刷濃度が変化しないものにおいては、ドットの大きさは即ち印刷濃度に影響を与える。従って、ドットの大きさに機体差が生じるものにおいては印刷濃度にバラツキが生じ、カラーにおいては色のバランスと明度として、また、モノクロにおいて

はグレイの濃さとしてバラツキが生じることになる。

【0040】本実施形態では、マイクロポンプ機構を採用するインクジェット方式のプリンタ31を説明したが、ドットの大きさに機体差が生じるようなものであれば、他のドット付着機構を有するプリンタにおいても適用可能である。

【0041】例えば、図6に示すようにノズル31a6近傍の管路31a7の壁面にヒータ31a8を設けておき、このヒータ31a8を加熱して気泡を発生させ、その圧力で色インクを吐出するようなバブルジェット方式のポンプ機構も実用化されている。この場合においても、ヒータ31a8の能力やノズル31a6の開口形状などによって機体差が生じてしまうのは否めない。

【0042】また、他の機構として図7にはいわゆる電子写真方式のプリンタ33の概略構成を示している。感光体としての回転ドラム33aの周縁には回転方向に対応して帯電装置33bと露光装置33cと現像装置33dと転写装置33eとが配置され、帯電装置33bにて回転ドラム33aの周面を均一に帯電させた後、露光装置33cによって画像部分の帶電を除去し、現像装置33dで帶電していない部分にトナーを付着させ、転写装置33eによって同トナーを記録媒体としての紙上に転写させる。その後、ヒータ33fとローラ33gとの間を通過させて同トナーを溶融して紙に定着させている。

【0043】このような電子写真方式のプリンタ33の場合でも、帯電装置33bや露光装置33cあるいは回転ドラム33a自身の機体差によって付着されるトナーの量にバラツキが生じる。従って、インクジェット方式のプリンタ31と同様の問題が生じている。

【0044】本実施形態においては、画像入力装置10と印刷装置30との間にコンピュータシステムを組み込んで印刷処理を行うようになっているが、必ずしもかかるコンピュータシステムを必要とするわけではない。例えば、図8に示すように、コンピュータシステムを介すことなく画像データを入力して印刷するプリンタ32においては、スキャナ11bやデジタルスチルカメラ12bあるいはモデム26b等を介して入力される印刷データとしての画像データを入力し、機体差を解消するような修正を行うように構成することも可能である。

【0045】次に、修正手段30a1について説明する。図9は画像データの流れを示しており、画像入力装置10がドットマトリクス状の画素として表したRGBの多階調(256階調)の画像データを画像処理装置20へ出力し、同画像処理装置20は所定の画像処理をするとともにCMYKの二階調の画像データ(二値データ)として印刷装置30へ出力する。画像処理装置20内ではRGB色空間からCMYK色空間への色変換処理を行い、この処理でRGBの256階調の画像データはCMYKの256階調の画像データに変換される。この後、印刷装置30が入力可能なデータが2階調であるこ

とに鑑み、256階調の画像データを2階調の画像データに変換するハーフトーン処理を実行する。画像データはこのような過程を経て印刷データとして印刷装置30に出力されるが、それ以前の過程においても実質的に同じ画像についてのデータであるので広義の意味で印刷データと呼ぶことができる。そして、上述した印刷データ修正装置30aは原理的にもどの段階の印刷データに対して修正処理を行うことも可能であり、本実施形態においては、色変換処理と同時にCMYKの256階調の画像データに対して行なうものとする。

【0046】図10は色変換処理として修正処理を行うための色変換テーブルの書き換え手順を示している。ここでその手順に従ってその内容を説明する。

【0047】先ず、ステップS100では一次色（単色）での補正ルックアップテーブルを作成する。ここでこの補正ルックアップテーブルの作成手順を説明する。前述したように、まず、基準重量の色インク粒を吐出する基準印字ヘッド31aにて全階調にわたってパッチを印刷する。本実施形態においては、256階調であるので、印刷したパッチは図11に示すように縦横16ずつの升目状になる。次に、機体差のある印字ヘッド31aでも同様に全階調にわたってパッチを印刷する。機体差のある印字ヘッド31aでは吐出されるインク粒の重量がずれているので印刷濃度がずれ、基準印字ヘッド31aで全階調にわたって印刷したパッチとは一致しない。

【0048】従って、図12に示すように基準印字ヘッド31aで印刷した各パッチと、機体差のある印字ヘッド31aで印刷した各パッチとを個別に対比し、一致するパッチの階調を対比する。同図においては、共に所定の階調データを入力したときに印刷されたパッチであって同じ印刷濃度になったパッチ同士の組み合わせを示している。従って、この組み合わせはそのまま補正ルックアップテーブルを構成することになる。本実施形態においては三つの印字ヘッド31aを備えているため、各印字ヘッド31aごとに補正ルックアップテーブルを作成する。なお、かかる補正ルックアップテーブルは上述した修正量が内在するものであり、この意味で各要素色毎の修正量とも言える。

【0049】このようにして各印字ヘッド31aごとに作成した補正ルックアップテーブルを使用すれば一次色以外のものでも同様に補正することが可能と考えるが、現実には二次色や三次色というように混色状態となってくるとそれが表れる。

【0050】このため、ステップS110では上記補正¹⁾

$$\alpha_0 = 1.0 \times (s_1/S) + \alpha_2 \times (s_2/S) + \alpha_3 \times (s_3/S) \dots (1)$$

となる係数 α_0 を利用する。一方、ある要素色の成分に対して別の要素色の成分が少しでも混ざっている場合に必ずしも二次色であるとか三次色であるというように判断すると一次色や二次色の数はかなり少なくなってしま

* ルックアップテーブルにおける修正量を低減させて二次色のパッチを印刷させる。ここで低減量の調整は所定の係数を修正量に乘算して表すものとし、同係数を「0.1」刻みとした場合の補正ルックアップテーブルを図13に示している。低階調領域や高階調領域では修正量が小さいので変化は見にくいが、修正量が最大となる階調「180」付近を見ると、係数が「1.0」であるときに修正量として「20」階調データの差があったものが係数を「0.1」刻みに少なくしていくことによってほぼ「2」階調データずつ修正量が低減していることが分かる。むろん、二次色の場合はそれぞれの印字ヘッド31aにおける個別の補正ルックアップテーブルであって同じ係数を乗算したものを使用する。なお、この場合の係数の刻み幅は必ずしも「0.1」刻みである必要はない。

【0051】ステップ120では、このようにして二次色について印字した基準印字ヘッド31aでのパッチと、係数 α_2 を変えた機体差のある印字ヘッド31aでのパッチとをそれぞれ測色し、全体として誤差の少なくなる係数 α_2 を決定する。実験結果によれば、係数 α_2 は「0.8」が最も好適であった。

【0052】次に、同様の手法で三次色についての係数 α_3 を決定する。すなわち、ステップS130では係数 α_3 を変えて三次色のパッチを印刷し、ステップS140では基準印字ヘッド31aでのパッチと対比して最適な係数 α_3 を決定する。この三次色についての最適な係数 α_3 は「0.6」位であることが確認された。

【0053】ただし、上述したように一次色から三次色までそれぞれに最適な係数がある一方で、印刷データには一次色から三次色まで雑多に含まれている。従って、どの次元の色の再現性を重視するかによって係数は調整せざるを得ない。ステップS150ではそのような照準色を決定し、どの係数を採用するかを決定する。

【0054】なお、ここでは照準色を決め、その照準色によって係数を決定するようしているが、実際の一次色と二次色と三次色の画素数を集計して係数を決めるようにも良い。図14は、印刷データの全画素に基づいて一次色～三次色の画素数を集計した結果を示している。この集計結果から係数に重み付けする。同図に示す例では、一次色の画素数が s_1 個、二次色の画素数が s_2 個、三次色の画素数が s_3 個であるため、全画素数の $(S = s_1 + s_2 + s_3)$ 個に対する割合で係数を重み付け加算する。

【0055】すなわち、

$$\alpha_0 = s_1 \times (s_1/S) + s_2 \times (s_2/S) + s_3 \times (s_3/S) \dots (2)$$

う。しかしながら、このような場合にはより強めに修正をかけたとしてももとの成分が小さいので悪影響は少ない。従って、相対的に他の要素色が無視できないような混色状態に限り二次色であるとか三次色であるとい

う判断を行うのも有効である。

【0056】図15は一例として各要素色毎の成分比に基づく判断を行なった場合の集計結果を示しており、最大の成分値のものに対して20%以下の成分値の要素色を無視した場合である。このようにした結果、一次色や二次色の画素数が増え、係数 α_0 を求める際にも影響を与えることになる。

【0057】以上のように、印刷データに基づいて画素を集計し、その集計結果を反映させる場合には、一次色、二次色、三次色毎に最適な係数が得られているため、これらを記憶するハードウェア及びソフトウェアが低減量記憶手段を構成し、また、現実の印刷データから一次色、二次色、三次色毎の画素数を集計して重み付け加算する処理が低減量重み付け加算手段を構成することになる。

【0058】色修正はCMYKの印刷データでこの補正ルックアップテーブルを参照しても構わないが、RGBからCMYKへの色変換の際にも色変換テーブルを参照することになるため、この色変換テーブルを書き換えることにより、一度のテーブル参照で修正作業も終了させる。このため、ステップS160では決定した係数の補正ルックアップテーブルを色変換テーブルに書き込む。むろん、このようにして照準色に対応させて係数を決定し、同係数を乗算した修正量を色変換テーブルに書き込むことになるため、これらの処理が修正量低減手段30a2を構成する。

【0059】上述した手順はコンピュータ21にてプリンタドライバ21bが起動されたときに実行することになり、以下、図16に示すプリンタドライバ21bのフローチャートを参照しながら上記構成からなる本実施形態の動作を説明する。

【0060】スキャナ11で読み込んだ画像データをプリンタ31で印刷する場合を想定すると、まず、コンピュータ21にてオペレーティングシステム21aが稼働しているもとで、アプリケーション21dを起動させ、スキャナ11に対して読み取りを開始させる。読み取られた画像データが同オペレーティングシステム21aを介してアプリケーション21dに取り込まれたら、所定の画像処理を行い、印刷処理を選択する。

【0061】印刷処理が選択されるとオペレーティングシステム21aはプリンタドライバ21bを起動させる。プリンタドライバ21bの最初の起動時には一次色の補正ルックアップテーブルがないので、ステップS200の判断を経てステップS205にて単色のパッチを印刷する。一方、基準印字ヘッド31aで印刷したパッチは別途用意しておき、各プリンタ31ごとに備えられている印字ヘッド31aで印刷したパッチと対比させ、ステップS210では対応が得られた値を入力する。

【0062】この結果を利用してステップS215では二次色のパッチを印刷する。このとき係数を変えていく

つかのパッチを印刷し、ステップS220で最適と思われるパッチについての係数 α_2 を決定する。同様にしてステップS225では三次色のパッチを印刷し、ステップS230では最適と思われるパッチについての係数 α_3 を決定する。係数 α_2 と係数 α_3 は最適と思われるものについての係数を入力することになる。以上の処理は一度行っておけば印字ヘッド31aが変わらない限り有効である。

【0063】ただ、これらのステップS215～S230の処理については係数 α_2 、 α_3 を求める必要があることを前提としている。係数 α_2 、 α_3 については実験的に求めたところそれぞれ「0.8」および「0.6」という数値が好適であることが分かっており、これらの値をデフォルトとして使用しても十分効果的な結果を得られる。従って、少なくともステップS205、S210にて単色のパッチを印刷して所定の対応値さえ入力できれば、ステップS215～S230の処理を省略するようにも構わない。

【0064】最初の起動時は上述した印刷と入力とを行うとともに、次のステップS235での照準色を決定し、対応する係数を決定してステップS240では色変換テーブルに書き込む処理を行う。

【0065】但し、ここでの処理は照準色を変化させたい場合に実行する必要があり、ステップS200にて一次色の補正ルックアップテーブルを作成する必要がないと判断された場合でもステップS245にて照準色を変更する必要があるかないかを問い合わせ、必要があればステップS235、S240の処理を実行することになる。

【0066】この後、アプリケーション21dで作成されたRGBの印刷データをステップS250にてCMYKの印刷データに色変換する。むろん、このときの色変換に使用されるのはステップS240にて所定の修正量が書き込まれている色変換テーブルであり、色変換と同時に必要な修正も加えられている。

【0067】色変換が終了した時点では印刷データは256階調のままであるから、ステップS255ではプリンタ31で入力可能な2階調の印刷データに変換して同プリンタ31に出力する。プリンタ31がかかる印刷データを入力した場合、照準色の近辺で補正ルックアップテーブルの低減量が最適な値となっており、基準印字ヘッド31aで印字する場合と同様に色ずれのないきれいな印字が可能となる。

【0068】このように、インクジェット方式のプリンタ31のようにドットを構成する色インクなどの記録材が機体差によって変動する場合、各色ごとに色ずれの修正量を設定することは不可能であるが、少なくとも単色での修正量を求めておき、照準色を決めれば最適な低減量で単色の修正量を低減させて適用することにより、二次色や三次色においても容易に好適な色修正が可能とな

る。

【図面の簡単な説明】

【図1】本発明の印刷データ修正装置のクレーム対応図である。

【図2】同印刷データ修正装置が適用される印刷システムの具体的ハードウェア構成例を示すブロック図である。

【図3】プリンタの概略ブロック図である。

【図4】同プリンタにおける印字ヘッドユニットのより詳細な概略説明図である。

【図5】同印字ヘッドユニットで色インクを吐出させる状況を示す概略説明図である。

【図6】バブルジェット方式の印字ヘッドで色インクを吐出させる状況を示す概略説明図である。

【図7】電子写真方式のプリンタの概略説明図である。

【図8】本発明の印刷データ修正装置の他の適用例を示す概略ブロック図である。

【図9】印刷処理の具体的手順を示すブロック図である。

【図10】色変換テーブルの書き換え手順を示すフロー*20

*チャートである。

【図11】印刷するパッチを示す図である。

【図12】基準印字ヘッドによるパッチと機体差のある印字ヘッドによるパッチの比較状況を示す図である。

【図13】係数を変化させた補正ルックアップテーブルを示す図である。

【図14】画素の分布割合に応じて係数を決定する場合のヒストグラムを示す図である。

【図15】同じく画素の分布割合に対応するヒストグラムであって集計時にしきい値を利用した場合の図である。

【図16】プリンタドライバのフローチャートである。

【符号の説明】

10 10…画像入力装置

20 20…画像処理装置

21 21…コンピュータ

23 23…キーボード

30 30…印刷装置

31～33 31～33…プリンタ

【図1】

【図3】

【図2】

【図4】

【図5】

【図6】

【図7】

【図14】

【图8】

〔四〕 10

〔図9〕

【図15】

〔図11〕

【図12】

【図13】

α	1.0	0.9	0.8	0.7	0.6
0	0	0	0	0	0
1	0	0	0	0	0
2	1	1	1	1	1
⋮	⋮	⋮	⋮	⋮	⋮
179	159	161	163	165	167
180	160	162	164	166	168
181	161	163	165	167	169
⋮	⋮	⋮	⋮	⋮	⋮
254	254	254	254	254	254
255	255	255	255	255	255

【図16】

