1 Resolución de ecuaciones de recurrencia lineal de primer orden

1.1 Las Torres de Hanoi

La ecuación de recurrencia para el número de movimientos en las Torres de Hanoi es una ecuación de recurrencia lineal de primer orden:

$$T_n = 2T_{n-1} + 1$$

Sea a=2 y c=1, entonces $\frac{c}{1-a}=\frac{1}{1-2}=-1$, y cualquier secuencia T que satisfaga este RE está dado por la formula

$$\mathbf{T_n} = 2^n [I - (-1)] + (-1)$$

 $\mathbf{T_n} = 2^n [I + 1] - 1$

Asumiendo que T tiene el dominio \mathbb{N} y que denota T_0 por I, vimos al principio de este capítulo varias soluciones particulares:

Si
$$I = 0$$
, entonces $\mathbf{T} = (0, 1, 3, 7, 15, 31, ...); // $\mathbf{T}_n = 2^n[0+1] - 1 = 2^n - 1$$

Si
$$I=2$$
, entonces $\mathbf{T}=(4,9,19,39,79,159,...); $//\mathbf{T}_n=2^n[2+1]-1=3x2^n-1$$

Si
$$I = 4$$
, entonces $\mathbf{T} = (2, 5, 11, 23, 47, 95, ...)$; $//\mathbf{T}_n = 2^n[4+1] - 1 = 5x2^n - 1$

Si
$$I = -1$$
, entonces $\mathbf{T} = (-1, -1, -1, -1, -1, ...)$; $//\mathbf{T}_n = 2^n[-1 + 1] - 1 = -1$

1.2 Los tres piratas naufragados

Un barco pirata es naufragado en una tormenta en la noche. Tres de los piratas sobreviven y se encuentran en una playa la mañana después de la tormenta. Aceptan cooperar para asegurar su supervivencia. Ellos divisan a un mono en la selva cerca de la playa y pasan todo ese primer día recogiendo una gran pila de cocos y luego se van a dormir exhaustos.

Pero ellos son piratas.

El primero duerme bien, preocupado por su parte de los cocos; despierta, divide la pila en 3 montones iguales, pero encuentra uno sobrante que arroja en el arbusto para el mono, entierra su tercero en la arena, amontona los otros dos montones, y se va a dormir profundamente.

El segundo pirata duerme bien, preocupado por su parte de los cocos; se despierta, divide la pila en 3 montones iguales, pero encuentra uno sobrante que arroja en el arbusto para el mono, entierra su tercero en la arena, amontona los otros dos montones, y se va a dormir profundamente.

El tercero también duerme bien, preocupado por su parte de los cocos; despierta, divide la pila en 3 montones iguales, pero encuentra uno sobrante que arroja en el arbusto para el mono, entierra su tercero en la arena, amontona los otros dos montones juntos, y se va a dormir profundamente.

A la mañana siguiente, todos se despiertan y ven una pila algo más pequeña de cocos que se dividen en 3 montones iguales, pero encontrar uno sobrante que tiran en el arbusto para el mono.

¿Cuántos cocos recolectaron el primer día?

Dejar S_j denota el tamaño de la pila después del pirata j^{4h} y dejar S_0 será el número que recogieron en el primer día. Entonces

$$S_0 = 3x + 1$$
 para algún número entero "x" y $S_1 = 2x$,

 $S_1 = 3y + 1$ para algún número entero "y" y $S_2 = 2y$,

 $S_2 = 3z + 1$ para algún número entero "z" y $S_3 = 2z$,

 $y S_3 = 3w + 1$ para algún número entero "w".

//¿Hay una ecuación de recurrencia aquí?

$$S_1 = 2x \ donde \ x = (S_0 - 1)/3, \ entonces \ S_1 = (2/3)S_0 - (2/3);$$

$$S_2 = 2y \ donde \ y = (S_1 - 1)/3, \ entonces \ S_2 = (2/3)S_1 - (2/3);$$

$$S_3 = 2z$$
 donde $z = (S_2 - 1)/3$, entonces $S_3 = (2/3)S_2 - (2/3)$.

La ecuación de recurrencia satisfecha por los primeros $S_j's$ es

$$S_{i+1} = (2/3)S_i - (2/3) \tag{1}$$

Si ahora tenemos $S_4 = (2/3)S_3 - (2/3)$, entonces $S_4 = 2[S_3 - 1]/3 = 2w$ para algún número entero w.

Queremos saber qué valor (o valores) de S_0 producirá un número entero par para S_4 cuando aplicamos el RE (1).

En (1), a = 2/3 y c = -2/3, entonces c/(1-a) = -2, y así la solución general de (1) es

$$S_n = (2/3)^n [S_0 + 2] - 2$$

Por lo tanto, $S_4 = (2/3)^4 [S_0 + 2] - 2 = (16/81)[S_0 + 2] - 2$

 S_4 será un número entero

- $\Leftrightarrow S_4 + 2$ es (un aún) el número entero
- \Leftrightarrow 81 divide en $[S_0 + 2]$
- $\Leftrightarrow [S_0 + 2] = 81k$ para algún número entero k
- $\Leftrightarrow S_0 = 81k 2$ para algún número entero k.

 S_0 debe ser un número entero positivo, pero hay un número infinito de respuestas posibles:

//Necesitamos más información para determinar S_0 . //Si nos hubieran dicho que el primer día los piratas recolectaron //entre 200 y 300 cocos, ahora podríamos decir

//"el número que recogieron el primer día fue exactamente 241."

1.3 Interés Compuesto

Supongamos que se le ofrecen dos planes de ahorro para la jubilación. En el Plan A, empiezas con \$1,000, y cada año (en el aniversario del plan), te pagan un 11% de interés simple, y agregas \$1,000.En el Plan B, empiezas con \$100, y cada mes, te pagan una-duodécima parte del 10% de interés simple (anual), y agregas \$100.¿Qué plan será más grande después de 40 años?.

//¿Podemos aplicar una ecuación de recurrencia?

Considere el Plan A y deje que S_n denote el número de dólares en el plan después de (exactamente) n años de operación. Entonces $S_0 = \$1,000$ y

$$S_{n+1} = S_n + interes \ sobre \ S_n + \$1000$$

$$S_{n+1} = S_n + 11\% \ deS_n + \$1000$$

$$S_{n+1} = S_n(1+0.11) + \$1000.$$

En esta RE,a = 1.11, c = 1000, entonces $\frac{c}{1-a} = \frac{1000}{-0.11}$. y

$$S_n = (1.11)^n \left[1000 - \frac{1000}{-0.11} \right] + \frac{1000}{+0.11}$$
$$S_n = (1.11)^n \left[\frac{1110}{+0.11} \right] - \frac{1000}{+0.11}$$

Por lo tanto,

$$\begin{split} S_{40} &= (1.11)^{40}(10090.090909...) - (-9090.909090...) \\ S_{40} &= (65.000867...)(10090.090909...) - (9090.909090...) \\ S_{40} &= 655917.842... - (9090.909090...) \\ S_{40} &\cong \$646826. \end{split}$$

//¿Puede ser cierto? Pusiste 40,000ysacaste > 600,000 en intereses.

Ahora considere el Plan B y deje T_n denota el número de dólares en el plan después de (exactamente) n meses de funcionamiento. Entonces $T_0 = \$100$ y

$$T_{n+1} = T_n + interes \ sobre T_n + \$100$$

 $T_{n+1} = T_n + (1/2) de \ 10\% de \ T_n + \100
 $T_{n+1} = T_n [1 + 0.1/12] \ \100

En esta RE, a=12.1/12, c=100, entonces $\frac{c}{1-a}=\frac{100}{-0.1/12}=-12000$ y

$$T_n = (12.1/12)^n [100 + 12000] - 12000$$

De ahí, después 40x12 meses,

$$\begin{split} T_{480} &= (12.1/12)^{480}(12100) - (12000) \\ T_{480} &= (1.008333...)^{480}(12100) - (12000) \\ T_{480} &= (53.700663...)(12100) - (12000) \\ T_{480} &= 649778.0234... - (12000) \end{split}$$

 $T_{480} \cong $637778.$

Por lo tanto, el Plan A tiene un valor ligeramente mayor después de 40 años.

2 Resolución de ecuaciones de recurrencia lineal de segundo orden

Una ecuación de la recurrencia lineal del segundo-orden relaciona entradas consecutivas en una secuencia por una ecuación de la forma

$$S_{n+2} = aS_{n+1} + bS_n + c \ \forall \ n \ en \ el \ dominio \ de \ S$$
 (2)

Pero vamos a asumir que el dominio de S es N. Supongamos también que no a y b son 0; de lo contrario, $S_n = c$ para $\forall n \in \{2..\}$, y las soluciones para (2) no son muy interesante.

// ¿Qué es de ellos?

//El primer orden RE son sólo un caso especial de segundo orden RE's cuando b=0.

Cuando c = 0, se dice que la RE es homogénenea (todos los términos se ven igual – una constante veces una entrada de secuencia).

Cuando c = 0, se dice que la RE es homogénea (todos los términos se ven igual – una constante veces una entrada de secuencia).

//El Fibonacci RE es homogéneneo.

Vamos a restringir también nuestra atención (por el momento) a una ecuación de segundo orden lineal, la recurrencia homogénea

$$S_{n+2} = aS_{n+1} + bS_n \quad para \quad \forall \ n \in \mathbb{N}$$
 (3)

Tal como hicimos para la ecuación de la recurrencia de Fibonacci, supongamos que hay una secuencia geométrica, $S_n=r^n$, que satisface (3)

Si hubiera; entonces $r^{n+2} = ar^{n+1} + br^n$ para $\forall n \in \mathbb{N}$.

Cuando n=0, $\mathbf{r}^2=ar+b$.

La "ecuación caractreristica" de (3) es $x^2 - ax - b = 0$,

que tiene "raíces"
$$r = \frac{-(-a)\pm\sqrt{(-a)^2-4(1)(-b)}}{2(1)} = \frac{a\pm\sqrt{a^2+4b}}{2}$$

Sea
$$\Delta = \sqrt{a^2 + 4b}$$
, $r_1 = \frac{a + \Delta}{2}$, y $r_2 = \frac{a - \Delta}{2}$.

Entonces
$$r_1 + r_2 = a$$
, $r_1 x r_2 = -b$, y $r_1 - r_2 = \Delta$

// ¿estos son derechos?

// The Greek capital letter delta denotes the "difference" in the roots.

// Tanto r_1 como r_2 satisfacen la ecuación $x^2 = ax + b$, y son las únicas soluciones.

2.1 Eiemplo.

Si $S_{n+2}=10S_{n+1}-21S_n$ para $\forall n\in\mathbb{N},$ la ecuación característica es $x^2-10x+21=0$.

$$//\mathbf{O}(x-7)(x-3) = 0$$

Donde, a = 10, b = -21, $a^2 + 4b = 100 - 84 = 16$, $\Delta = 4$, entonces $r_1 = 7$ y $r_2 = 3$.

2.2 Ejemplo.

Si $S_{n+2}=3S_{n+1}-2S_n$ para $\forall n\in\mathbb{N}$, la ecuación caraterística es $x^2-3x+2=0$.

$$//\mathbf{O}(x-2)(x-1)=0$$

Donde, a = 3, b = -2, $a^2 + 4b = 9 - 8 = 1$, $\Delta = 1$, entonces $r_1 = 2$ y $r_2 = 1$.

2.3 Ejemplo.

Si $S_{n+2}=2S_{n+1}-S_n$ para $\forall n\in\mathbb{N}$, la ecuación caraterística es $x^2-2x+1=0$.

$$//\mathbf{O}(x-1)(x-1) = 0$$

Donde, a=2, b=-1, $a^2+4b=4-4=0$, $\Delta=0$, entonces $r_1=1$ y $r_2=1$. // ¿Pero qué hay de una fórmula que da la solución general?

2.4 Teorema.

//La solución general de la RE homogénea (3) es

$$S_n = A(r_1)^n + B(r_2)^n \text{ si } r_1 \neq r_2, //Si\Delta \neq 0$$

 $S_n = A(r)^n + Bn(r)^n \text{ si } r_1 = r_2 = r, //Si\Delta = 0$

Prueba. Supongamos que T es cualquier solución particular de la RE homogénenea // Nos ocupamos de los dos casos por separado.

Caso 1. Si $\Delta \neq 0$, entonces las dos raíces son distintas (pero pueden ser números "complejos").

```
// Encontraremos valores para A y B, luego probaremos que T_n = A(r_1)^n + B(r_2)^n para \forall n \in \mathbb{N} // Mostraremos A(r_1)^n + B(r_2)^n arranca correctamente para valores especialmente elegidos // de A y B, y luego mostrar A(r_1)^n + B(r_2)^n continúa correctamente.
```

Vamos a resolver las ecuaciones (para A y B) que garantizaría $T_n = A(r_1)^n + B(r_2)^n$ entonces n = 0 y n = 1. Si

$$T_0 = A(r_1)^0 + B(r_2)^0 = A + B$$
....(1)
y $T_1 = A(r_1)^1 + B(r_2)^1 = A(r_1) + B(r_2)$(2)

entonces $(r_1)T_0 = A(r_1) + B(r_1)$//multiplicamos (1) por r_1 y $T_1 = A(r_1) + B(r_2)$// (2) otra vez restamos, obtenemos

$$(r_1)T_0 - T_1 = B(r_1 - r_2) = B\Delta$$
....../ $/r_1 - r_2 = \Delta \neq 0$

entonces $B = \frac{(r_1)T_0 - T_1}{\Delta}$

Tenemos, $A=T_0-B=\frac{\Delta T_0}{\Delta}-\frac{(r_1)T_0-T_1}{\Delta}=\frac{-(r_2)T_0+T_1}{\Delta}$ // No importa cómo comience la secuencia T (no importa cuáles sean los valores para T_0 y T_1) //hay números únicos A y B tales que $T_n=A(r_1)^n+B(r_2)^n$ para n=0 y 1 // Continuando la prueba por la inducción matemática que $T_n=A(r_1)^n+B(r_2)^n$ para $\forall~n\in\mathbb{N}$

Paso 1. Si n=0 o 1, entonces $T_n=A(r_1)^n+B(r_2)^n$, por nuestra "opción" A y B.

Paso 2. Asuma que $\exists k \geq 1$ tal que si $0 \leq n \leq k$, entonces $T_n = A(r_1)^n + B(r_2)^n$.

Paso 3. Si n = k + 1, entonces $n \ge 2$ entonces, porque T satisface la RE homogénea (3)

$$\begin{array}{l} T_{k+1} = aT_k + bT_{k-1} \\ T_{k+1} = a[A(r_1)^k + B(r_2)^k] + b[A(r_1)^{k-1} + B(r_2)^{k-1}]........//\textit{por paso 2} \\ T_{k+1} = [aA(r_1)^k + bA(r_1)^{k-1}] + [aB(r_2)^k + bB(r_2)^{k-1}] \\ T_{k+1} = A(r_1)^{k-1}[a(r_1) + b] + B(r_2)^{k-1}[a(r_2) + n] \\ T_{k+1} = A(r_1)^{k+1} + B(r_2)^{k+1} \text{ Asi, si } r_1 \neq r_2, \, T_n = A(r_1)^n + B(r_2)^n \text{ para } \forall \, n \in \mathbb{N} \end{array}$$

2.5 Ejemplo.

Si $S_{n+2}=10S_{n+1}-21S_n$ para $\forall~n\in\mathbb{N}$ entonces $r_1=7$ y $r_2=3$. Tenemos, la solución general de la RE es $S_n=A7^n+B3^n$

2.6 Ejemplo.

Si $S_{n+2}=3S_{n+1}-2S_n$ para $\forall n\in\mathbb{N}$ entonces $r_1=2$ y $r_2=1$. Tenemos, la solución general de la RE es $S_n=A2^n+B1^n=A2^n+B$ Caso 2. Si $\Delta=0$, entonces las raíces son (ambos) iguales a r donde r=a/2. También,

```
b=-a^2/4=-r^2. Si a eran 0, entonces b=0; pero asumimos que no tanto a y b son 0. De ahí, r\neq 0.
```

Vamos a resolver las ecuaciones (para A y B) que garantizarían $T_n = A(r)^n + nB(r)^n$ cuando n = 0 y n = 1. Si

$$T_0 = A(r)^0 + 0B(r)^0 = A$$
.....(1)
 $\mathbf{y} \ T_1 = A(r)^1 + 1B(r)^1 = Ar + Br$,(2)

entonces $A = T_0$ y $B = (T_1 - Ar)/r$

- // No importa cómo comience la secuencia T (no importa cuáles sean los valores para T_0 y T_1) //hay números únicos A y B tales que $T_n = A(r)^n + B(r)^n$ para n = 0 y 1 // Continuando la prueba por la inducción matemática que $T_n = A(r)^n + B(r)^n$ para $\forall n \in \mathbb{N}$
- Paso 1. Si n=0 o 1, entonces $T_n=A(r)^n+B(r)^n$, por nuestra "opción" A y B.
- Paso 2. Asuma que $\exists k \geq 1$ tal que si $0 \leq n \leq k$, entonces $T_n = A(r)^n + B(r)^n$.
- Paso 3. Si n = k + 1, entonces $n \ge 2$ entonces, porque T satisface la RE homogénea (3)

$$T_{k+1} = aT_k + bT_{k-1}$$

$$T_{k+1} = a[A(r)^k + kB(r)^k] + b[A(r)^{k-1} + (k-1)B(r)^{k-1}]......//por \ paso \ 2$$

$$T_{k+1} = [aAr^k + bAr^{k-1}] + [akBr^k + b(k-1)Br^{k-1}]$$

$$T_{k+1} = Ar^{k-1}[ar + b] + Br^{k-1}[akr + b(k-1)]$$

$$T_{k+1} = Ar^{k-1}[r^2] + Br^{k-1}[k(r^2) + r^2]......//r^2 = ar + b$$

$$T_{k+1} = Ar^{k+1} + Br^{k-1}[k(r^2) + r^2]......//-b = r^2$$

$$T_{k+1} = Ar^{k+1} + (k+1)Br^{k+1}$$