Haskell basics

Joe Moore 07508617059, Joe.Moore@warwick.ac.uk

Lists

List examples:

```
[1,2,3]
['a','b','c','d']
["cat","dog"]
[True,False,False,True,True,False]
```

You can have a list of everything including tuples

Built-in functions that can be applied to lists:

```
Head [1,2,3]
=> 1
Tail [1,2,3]
=> [2,3]
Take 2 [1,2,3]
=> [1,2]
Drop 1 [1,2,3]
=> [2,3]
```

Since strings are lists of chars everything that works on list will work on strings:

```
take 2 "cake"
=> "ca"
```

This is because cake can be represented as a list of chars, ['c','a','k','e'] and so by applying the function take 2 we return the first 2 elements, ['c','a'] or in other words the string "ca"

Boolean expressions of the length of lists can be applied in console like as below:

```
null []
=> True
```

```
null [ 1 , 2 , 3] => False
```

Replication is a built in command that can be used on elements to return lists:

Write a splitAt function that given a list and an integer splits the list into 2 at the position specified by the given integer:

```
splitAt :: Int -> [a] -> ([a], [a])
splitAt n xs = (take n xs, drop n xs)
```

Mathematical operations can also be used in lists:

```
[1+2,2*3]
=> [3,6]
```

Alongside Boolean operations:

```
[even 5, odd 3, True, not False]
=> [False,True,True,False]
```

Operators can even be used in lists not just operands:

```
(head [(+), (-)]) 5 1
=> (+) 5 1
=> 6
```

Ranges can be given by filling in 2 or more in a list accompanied by a ... such as below:

```
[1..4]
=> [1,2,3,4]
['D'..'H']
=> ['D','E','F','G','H']
```

Set intervals (known in Haskell as **ranges**) can be implemented by including 2 values at the start:

```
['a','d'..'m']
=> ['a','d','g','j','m']
[1,3..10]
=> [1,3,5,7,9]
[1.0,1.5..3.0]
=> [1.0,1.5,2.0,2.5,3.0]
```

An example of a list **comprehension** can be seen below:

```
[even n | n <- [0..5]
=> [True, False, True, False, True, False]
```

Multiple generators can be included:

```
 [n*m \mid n < -[0..2], m < -[0..2]] 
 => [0,0,0,0,1,2,0,2,4] 
 = [0*0,0*1,0*2,1*0,1*1,1*2,2*0,2*1,2*2] 
 [n*m \mid n < -[0..2], m < -[0..n]] 
 => [0,0,1,0,2,4] 
 = [0*0,1*0,1*1,2*0,2*1,2*2]
```

Here we see that the each time the multiplications increase up to the bigger number so if we had n equal to [0..4] Then the final list would include up to 4*4 or 16

Statements can also contain patterns in the left hand side of the generator:

```
[x | (c,x) <- [('a',5),('b',7)]]
=> [5,7]
```

In this example above the pattern is the $x \mid (c,x)$ which is saying that the function should return the second element, x of any pair (c,x) passed into it. In the example above those x values are 5 and 7 so the function returns [5,7].

Let's look at another example:

```
[length xs | x:xs <- [[1,2],[3,4,5]]]
=> [1,2]
```

Here the pattern is showing that the length of the tail, xs of list x:xs is what should be returned by the function for all elements passed into it. In the above example the tails of the 2 lists are 2 and [4,5] and so have lengths 1 and 2 respectively. Ergo the function returns [1,2]

Functions involving lists may also contain predicates.

```
[n \mid n < -[0..4], \mod n \ 2 = 0]
=> [0,2,4]
```

Here the predicate is mod n 2 = 0 and so only values between 0 and 4 where, $\frac{n}{2}=0$ are returned. Hence the result of [0,2,4]

Recursive Functions

How do we express loops without mutable state? Recursive functions.

Let's define a factorial function which given a number n calculates the factorial of n,

```
factorial :: Int -> Int
factorial 0 = 1
factorial n = n * factorial (n-1)
```

Let us see how this is evaluated:

```
factorial 2
    => 2 * factorial (2-1)
    => 2 * factorial 1
    => 2 * 1 * factorial (1-1)
    => 2 * 1 * factorial 0
    => 2 * 1 * 1
    => 2
```

Now we'll apply this principle to make a function fib which given some number n will return the nth Fibonacci number

```
fib :: Int -> Int
fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n - 2)
```

Once more let's see this in action:

```
fib 3
=> fib (3-1) + fib (3-2)
=> fib 2 + fib 1
=> fib(2-1) + fib (2-2) + fib 1
=> fib 1 + fib 0 + fib 1
=> 1 + 1 + 1
=> 3
```

Each call of a function in a regular programming language will need a stack frame for each call. For example for a java function that calculates a factorial, fac for the number, n passed into it we have n stack frames. Say if n is 500 we have 500 stack frames, this is extremely poor memory wise and ergo one should lean towards use of a for, while or do while loop.

Haskell, however, optimises all recursive functions for us. It involves creating a second *prime* function. See the example below for the function fac

```
fac :: Int -> Int
fac 0 = 1
face n = n * fac (n-1)

fac' :: Int -> Int -> Int
fac' 0 m = m
fac' n m = fac' (n-1) (n*m)
```

Below is a worked example of how this is used to save memory:

Here we can see that 4 lines down we have a function call using no more data than in the first line of evaluation. And this continues in a pattern and again in line 6 of the evaluation we have a function that uses no more data than the one we started with. Therefore, the functional approach is much more memory efficient than the equivalent imperative approach. In fact, given a similar imperative method, frac(n), it would be 500 times less memory efficient to evaluate fac(500) than fac(1).

Let and where:

Let us revisit one of our programs from the first set of notes (01 Lists):

```
splitAt :: Int -> [a] -> ([a], [a])
splitAt n xs = (take n xs, drop n xs)
```

This is not as memory efficient as it could be since it isn't recursive, so we're going to redefine it:

```
splitAt :: Int -> [a] -> ([a], [a])
splitAt 0 xs = ([], xs)
splitAt n [] = ([], [])
splitAt n (x:xs) = (x:ys, zs)
   where (ys, zs) = splitAt (n-1) xs
```

The final line here is called a where clause and allows us to define a set of values in the context of a single specific line. It could also be written like this:

```
splitAt :: Int -> [a] -> ([a], [a])
splitAt n xs = (ys, zs)
    where
          ys = take n xs
          zs = drop n xs
```

Or even with use of a let:

This is called a let-binding or a let-expression. It is also possible to define functions with let and where:

```
fac :: Int -> Int
fac x = go x 1
    where go 0 m = n
    go n m = go (n-1) (n*m)
```

In the given example above go is not a global function. It cannot be called from the console. The best equivalent example in imperative programming would be say a private

function within a class.

```
intercalate :: String -> [String] -> String
intercalate sep xs = go xs
  where go [] = ""
     go [x] = x
     go (x:xs) = x ++ sep ++ go ++ xs
```

Another benefit is the fact that not all the parameters need to be implicitly defined or listed. (This is seen in the example above)

Algebraic Data Types

Booleans

It is rather unorthodox but the Boolean type is not built into the Haskell language. It is imported but we could define it ourselves:

```
data Bool = True | False
```

And this is also how we can define functions such as the not function:

```
not :: Bool -> Bool
not True = False
not False = True
```

We can add parameters to definition too,

And then we can use that in the definition of further shapes:

```
square :: Double -> Shape
square x = Rect x x

area :: Shape -> DOuble
area (Rect w h) = w * h
area (Circle r) = pi * r^2
```

Exceptions

Let's return a value of a new type, MaybeInt if we need something to fail:

```
data MaybeInt = Nothing | Just Int
```

Binary Trees in Haskell