FTP_Alg Selection in linear time Optional part (it will be not examinated)

jungkyu.canci@hslu.ch

14. October 2024

Order Statistics

- ► For a given set of *n* points in a total ordered order (example real numbers), the *i*—th order statistic is the *i*—th smallest element (in statistics the *i*/*n*—quantile).
- For example the minimum is the first order statistic (i.e. i=1) and the maximum is the n-th order statistic.
- ▶ In this lecture we consider the following so called selection problem:

Input A set P of n (distinct) points and an integer i, with $1 \le i \le n$. **Output** The element x that is larger than exactly i-1 other elements of P.

- We could solve the selection problem in $O(n \log n)$ running time, simply by sorting the set by using heapsort or merge sort.
- We will see an algorithm that solve selection problem with an running expected time O(n).

Minimum/Maximum

We determine the minimum of a set of n (distinct) numbers by considering n-1 comparisons.

```
MINIMUM(A)

1 min = A[1]

2 for i = 2 to A.length

3 if min > A[i]

4 min = A[i]

5 return min
```

The code runs in $\Theta(n)$. Since we have to compare n-1 values, to be sure to have a minimum, we can not reduce the running time. Similar arguments and code apply for the maximum.

The general selection problem seems to be more difficult than just finding the minimum of a set. But, we will see an algorithm, which solves general problem in O(n) expected time.

Selection in expected linear time

In the algorithm below we use RANDOMIZED–PARTITION, already used in Quick sort, which produces two subarrays $A[p,\ldots,q-1]$ and $A[q+1,\ldots,r]$, such that all elements in $A[p,\ldots,q-1]$ are less of the pivot A[q] and the one in $A[q+1,\ldots,r]$ are greater of the pivot. The pivot A[q] is randomly chosen.

```
RANDOMIZED-SELECT (A, p, r, i)

1 if p == r

2 return A[p]

3 q = \text{RANDOMIZED-PARTITION}(A, p, r)

4 k = q - p + 1

5 if i == k // the pivot value is the answer

6 return A[q]

7 elseif i < k

8 return RANDOMIZED-SELECT (A, p, q - 1, i)

9 else return RANDOMIZED-SELECT (A, q, q + 1, r, i - k)
```

RANDOMIZED-SELECT: Running Time

- Since RANDOMIZED–SELECT use RANDOMIZED–PARTITION, then the running time in the worst case is $\Theta(n^2)$. The worst case is when the partition splits into two subarrays where one has no elements. But this is an unlikely situation.
- We will see that the expected running time for RANDOMIZED-SELECT is $\Theta(n)$.
- ▶ We denote by T(n) the random variable running time for RANDOMIZED–SELECT. The goal is to prove that the expectation E[T(n)] is $\Theta(n)$.
- ▶ Recall that RANDOMIZED–PARTITION divides the array into two subarrays A[p, ..., q-1] and A[q+1, ..., r].
- Let us denote X_k the random variable that has value 1 if $A[p, \ldots, q-1]$ contains exactly k points and 0 otherwise.

- The cardinality of A[p, ..., q-1] is an integer i with $0 \le i \le n-1$, all with probability 1/n. Thus $E(X_k) = 1/n$.
- If $X_k = 1$, then the problem is divided in a subproblem of size k 1 or n 1 (k 1) = n k. Thus:

$$T(n) \leq \sum_{k=1}^{n} \left(X_k \cdot T(\max(k-1, n-k)) + O(n) \right).$$

By considering the expectation we obtain:

$$E[T(n)] \leq \sum_{k=1}^{n} E[X_k \cdot T(\max(k-1, n-k)) + O(n)]$$

$$= \sum_{k=1}^{n} E[X_k] \cdot E[T(\max(k-1, n-k)) + O(n)]$$

$$= \sum_{k=1}^{n} \frac{1}{n} \cdot E[T(\max(k-1, n-k)) + O(n)]$$

We have used the fact that X_k and $T(\max(k-1,n-k))$ are two independent random variables.

Now we observe that

$$\max(k-1, n-k) = \begin{cases} k-1 & \text{if } k > \lceil n/2 \rceil \\ n-k & \text{if } k \le \lceil n/2 \rceil \end{cases}$$

if n is even each term from $T(\lceil n/2 \rceil)$ up to T(n-1) appears twice in the sum and if n is odd they appears twice as well and $T(\lfloor n/2 \rfloor)$ appears once. Thus we have proven that

$$E[T(n)] = \frac{2}{n} \sum_{k=\lceil n/2 \rceil}^{n-1} (E[T(k)] + O(n)).$$

By induction one can prove that E[T(n)] = O(n) (exercise).

SELECT Algorithm

SELECT uses a deterministic partitioning algorithm PARTITION from quick sort, but it takes the pivot element around an input parameter. Let n be as usual the cardinality of the set where we operate the selection. SELECT executes the following steps.

- 1. Divide the *n* numbers in $\lfloor n/5 \rfloor$ groups, each with 5 elements and one with the remaining *r* points. (Note that $0 \le r \le 4$).
- 2. Find the median of each group, by using insertion—sorting.
- 3. Use SELECT recursively to find the median *x* of the medians find in the previous step.
- 4. Use the modified PARTITION to split the input array around the median of medians *x* calculated in previous step. Let *k* the number obtained by adding one to the cardinality of the low side of the partition. So *x* is the *k*—order statistics.
- 5. If i = k return x. Otherwise if i < k use SELECT recursively on the low side. If i > k on the high side.

SELECT Running Time

Step 1, Step 2 and Step 4 have O(n) running time. Step 3 takes $T(\lceil n/5 \rceil$. So in order to determine the running time T(n) we have to estimate the time in Step 5.

At least half of the median in Step 2 are greater than or equal to the median x of the medians. At least half of the $\lceil n/5 \rceil$ contribute with at least 3 elements that are greater than x, except at most for the group with less than 5 elements and the one containing x.

Threrefore the number of the elements greater than x is at least $3\left(\left\lceil\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil\right\rceil-2\right)$, which is greater than or equal $\frac{3n}{10}-6$.

Thus Step 5 calls SELECT recursively on a problem of size at most

$$n - \left(\frac{3n}{10} - 6\right) = \frac{7n}{10} + 6$$

which is greater than $\frac{3n}{10} - 6$.

Therefore we have proven that for n big enough, we have

$$T(n) \leq T(\lceil n/5 \rceil) + T(7n/10+6) + O(n).$$

We can obtain the recurrence

$$T(n) \le \begin{cases} = O(1) & \text{if } n < 140 \\ T(\lceil n/5 \rceil) + T(7n/10 + 6) + O(n) & \text{if } n \ge 140 \end{cases}$$

The number 140 is given so that we are able to prove by induction that the running time is O(n) (exercise).

Reference

The material of these slides is taken form the book "Introduction to Algorithms" by de Cormen et al., Section 9.1, Section 9.2 and Section 9.3.