

中文资料技术手册

版本号: V1.0 翻译者: 出迷者 时间: 12-23-14

MPU-9250 寄存器中文参考手册 版本 V1.4

中文资料技术手册

版本号: V1.0 翻译者: 出迷者 时间: 12-23-14

1.版本资料

修订时间	修订版	概述
9/9/16	1.4	修订人: 出迷者

本书提供了书中涉及的相关资料,包括底层驱动和芯片资料等。读者可通过以下方式与作者联系下载资料,若有新增或修改,赎不在本书告知:

- □ 百度云: http://pan.baidu.com/s/1bGAQb8
- □ CSDN 博客/新浪微博:出迷者
- □ 提议邮箱: 7@riddler.top
- □ B站 ID: 出迷者
- ☐ GitHub: https://github.com/TomRiddler/MPU-9250
- □ 微信公众号

中文资料技术手册

版本号: V1.0 翻译者: 出迷者 时间: 12-23-14

2.文档说明

文档概述了 MPU9250 运动处理器的寄存器的信息。本文档应和 MPU9250 (PS-MPU9250A-00) 中文规格书配合阅读。

中文资料技术手册

版本号: V1.0 翻译者: 出迷者 时间: 12-23-14

3.陀螺仪和加速度计寄存器

中文资料技术手册

版本号: V1.0 翻译者: 出迷者 时间: 12-23-14

下表展示了 MPU-9250 的加速度寄存器的信息。

Addr (Hex)	Addr (Dec.)	Register Name	Serial I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
00	0	SELF_TEST_X_GYRO	R/W		xg_st_data [7:0]						
01	1	SELF_TEST_Y_GYRO	R/W		yg_st_data [7:0]						
02	2	SELF_TEST_Z_GYRO	R/W				zg_st_d	ata [7:0]			
0D	13	SELF_TEST_X_ACCEL	R/W				XA_ST_D	ATA [7:0]			
0E	14	SELF_TEST_Y_ACCEL	R/W				YA_ST_D	ATA [7:0]			
0F	15	SELF_TEST_Z_ACCEL	R/W				ZA_ST_D	ATA [7:0]			
13	19	XG_OFFSET_H	R/W				X_OFFS_	USR [15:8]			
14	20	XG_OFFSET_L	R/W				X_OFFS_	USR [7:0]			
15	21	YG_OFFSET_H	R/W				Y_OFFS_	USR [15:8]			
16	22	YG_OFFSET_L	R/W				Y_OFFS_	USR [7:0]			
17	23	ZG_OFFSET_H	R/W				Z_OFFS_	USR [15:8]			
18	24	ZG_OFFSET_L	R/W				Z_OFFS_	USR [7:0]			
19	25	SMPLRT_DIV	R/W				SMPLRT	_DIV[7:0]			
1A	26	CONFIG	R/W		FIFO_ MODE	E)	(T_SYNC_SET[2	::0]		DLPF_CFG[2:0]	
1B	27	GYRO_CONFIG	R/W	XGYRO_Ct en	YGYRO_Ct en	ZGYRO_Ct en	GYRO_FS	S_SEL [1:0]	-	FCHOIC	E_B[1:0]
1C	28	ACCEL_CONFIG	R/W	ax_st_en	ay_st_en	az_st_en	ACCEL_F	S_SEL[1:0]		-	
1D	29	ACCEL_CONFIG 2	R/W					ACCEL_F	CHOICE_B	A_DLP	F_CFG
1E	30	LP_ACCEL_ODR	R/W		,				Lposc_cl	ksel [3:0]	
1F	31	WOM_THR	R/W				WOM_Thre	eshold [7:0]			
23	35	FIFO_EN	R/W	TEMP _FIFO_EN	GYRO_XO UT	GYRO_YO UT	GYRO_ZO UT	ACCEL	SLV2	SLV1	SLV0
24	36	I2C_MST_CTRL	R/W	MULT _MST_EN	WAIT _FOR_ES	SLV_3 _FIFO_EN	I2C_MST _P_NSR		I2C_MST	_CLK[3:0]	
25	37	I2C_SLV0_ADDR	R/W	I2C_SLV0 _RNW				I2C_ID_0 [6:0]			
26	38	I2C_SLV0_REG	R/W				I2C_SLV0	_REG[7:0]			
27	39	I2C_SLV0_CTRL	R/W	I2C_SLV0 _EN	I2C_SLV0 _BYTE_SW	I2C_SLV0 _REG_DIS	I2C_SLV0 _GRP		I2C_SLV0_	LENG[3:0]	
28	40	I2C_SLV1_ADDR	R/W	I2C_SLV1 _RNW				I2C_ID_1 [6:0]			
29	41	I2C_SLV1_REG	R/W				I2C_SLV1	_REG[7:0]			
2A	42	I2C_SLV1_CTRL	R/W	I2C_SLV1 _EN	I2C_SLV1 _BYTE_SW	I2C_SLV1 _REG_DIS	I2C_SLV1 _GRP		I2C_SLV1_	LENG[3:0]	
2B	43	I2C_SLV2_ADDR	R/W	I2C_SLV2 _RNW				I2C_ID_2 [6:0]			
2C	44	I2C_SLV2_REG	R/W					_REG[7:0]			
2D	45	I2C_SLV2_CTRL	R/W	I2C_SLV2 _EN	I2C_SLV2 _BYTE_SW	I2C_SLV2 _REG_DIS	I2C_SLV2 _GRP		I2C_SLV2_	LENG[3:0]	
2E	46	I2C_SLV3_ADDR	R/W	12C_SLV3 _RNW 12C_ID_3 [6:0]							
2F	47	I2C_SLV3_REG	R/W	I2C_SLV3_REG[7:0]							
30	48	I2C_SLV3_CTRL	R/W	12C_SLV3							
31	49	I2C_SLV4_ADDR	R/W	12C_SLV4 _RNW							
32	50	I2C_SLV4_REG	R/W				I2C_SLV4	_REG[7:0]			
33	51	I2C_SLV4_DO	R/W				I2C_SLV	4_DO[7:0]			
34	52	I2C_SLV4_CTRL	R/W	I2C_SLV4 _EN	C_SLV4 SLV4_DON I2C_SLV4 I2C_MST_DLV[4:0]						

中文资料技术手册

版本号: V1.0 翻译者: 出迷者 时间: 12-23-14

		-									
Addr (Hex)	Addr (Dec.)	Register Name	Serial I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
35	53	I2C_SLV4_DI	R		[2C_SLV4_DI[7:0]						
36	54	I2C_MST_STATUS	R	PASS_ THROUGH	I2C_SLV4 _DONE	I2C_LOST _ARB	I2C_SLV4 _NACK	I2C_SLV3 _NACK	I2C_SLV2 _NACK	I2C_SLV1 _NACK	I2C_SLV0 _NACK
37	55	INT_PIN_CFG	R/W	ACTL	OPEN	LATCH _INT_EN	INT_ANYR D _2CLEAR	ACTL_FSY NC	FSYNC _INT_MOD E_EN	BYPASS _EN	-
38	56	INT_ENABLE	R/W	-	WOM_EN	-	FIFO _OFLOW _EN	FSYNC_INT _EN	-	-	RAW_RDY_ EN
3A	58	INT_STATUS	R		WOM_INT	-	FIFO _OFLOW _INT	FSYNC _INT	-	-	RAW_DATA _RDY_INT
3B	59	ACCEL_XOUT_H	R				ACCEL_XC	OUT_H[15:8]			
3C	60	ACCEL_XOUT_L	R				ACCEL_X	OUT_L[7:0]			
3D	61	ACCEL_YOUT_H	R				ACCEL_YC	OUT_H[15:8]			
3E	62	ACCEL_YOUT_L	R				ACCEL_Y	OUT_L[7:0]			
3F	63	ACCEL_ZOUT_H	R				ACCEL_ZC	OUT_H[15:8]			
40	64	ACCEL_ZOUT_L	R				ACCEL_Z	OUT_L[7:0]			
41	65	TEMP_OUT_H	R				TEMP_OL	JT_H[15:8]			
42	66	TEMP_OUT_L	R				TEMP_O	UT_L[7:0]			
43	67	GYRO_XOUT_H	R				GYRO_XO	UT_H[15:8]			
44	68	GYRO_XOUT_L	R				GYRO_X	OUT_L[7:0]			
45	69	GYRO_YOUT_H	R				GYRO_YO	UT_H[15:8]			
46	70	GYRO_YOUT_L	R					OUT_L[7:0]			
47	71	GYRO_ZOUT_H	R				GYRO_ZO	UT_H[15:8]			
48	72	GYRO_ZOUT_L	R				GYRO_ZO	OUT_L[7:0]			
49	73	EXT_SENS_DATA_00	R					DATA_00[7:0]			
4A	74	EXT_SENS_DATA_01	R				EXT_SENS_I	DATA_01[7:0]			
4B	75	EXT_SENS_DATA_02	R				EXT_SENS_I	DATA_02[7:0]			
4C	76	EXT_SENS_DATA_03	R				EXT_SENS_I	DATA_03[7:0]			
4D	77	EXT_SENS_DATA_04	R				EXT_SENS_I	DATA_04[7:0]			
4E	78	EXT_SENS_DATA_05	R				EXT_SENS_I	DATA_05[7:0]			
4F	79	EXT_SENS_DATA_06	R				EXT_SENS_I	DATA_06[7:0]			
50	80	EXT_SENS_DATA_07	R				EXT_SENS_I	DATA_07[7:0]			
51	81	EXT_SENS_DATA_08	R				EXT_SENS_I	DATA_08[7:0]			
52	82	EXT_SENS_DATA_09	R				EXT_SENS_I	DATA_09[7:0]			
53	83	EXT_SENS_DATA_10	R				EXT_SENS_I	DATA_10[7:0]			
54	84	EXT_SENS_DATA_11	R				EXT_SENS_I	DATA_11[7:0]			
55	85	EXT_SENS_DATA_12	R					DATA_12[7:0]			
56	86	EXT_SENS_DATA_13	R				EXT_SENS_I	DATA_13[7:0]			
57	87	EXT_SENS_DATA_14	R				EXT_SENS_I	DATA_14[7:0]			
58	88	EXT_SENS_DATA_15	R				EXT_SENS_I	DATA_15[7:0]			
59	89	EXT_SENS_DATA_16	R				EXT_SENS_I	DATA_16[7:0]			
5A	90	EXT_SENS_DATA_17	R				EXT_SENS_I	DATA_17[7:0]			
5B	91	EXT_SENS_DATA_18	R				EXT_SENS_I	DATA_18[7:0]			
5C	92	EXT_SENS_DATA_19	R				EXT_SENS_I	DATA_19[7:0]			
5D	93	EXT_SENS_DATA_20	R				EXT_SENS_I	DATA_20[7:0]			
5E	94	EXT_SENS_DATA_21	R				EXT_SENS_I	DATA_21[7:0]			
5F	95	EXT_SENS_DATA_22	R	EXT_SENS_DATA_22[7:0]							
60	96	EXT_SENS_DATA_23	R	EXT_SENS_DATA_23[7:0]							
63	99	I2C_SLV0_DO	R/W		12C_SLV0_DO[7:0]						
64	100	I2C_SLV1_DO	R/W				I2C_SLV	1_DO[7:0]			
65	101	I2C_SLV2_DO	R/W				I2C_SLV	2_DO[7:0]			

中文资料技术手册

版本号: V1.0 翻译者: 出迷者 时间: 12-23-14

Addr (Hex)	Addr (Dec.)	Register Name	Serial I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
66	102	I2C_SLV3_DO	R/W				I2C_SLV	3_DO[7:0]			
67	103	I2C_MST_DELAY_CTRL	R/W	DELAY_ES _SHADOW	-	-	I2C_SLV4 _DLY_EN	I2C_SLV3 _DLY_EN	I2C_SLV2 _DLY_EN	I2C_SLV1 _DLY_EN	I2C_SLV0 _DLY_EN
68	104	SIGNAL_PATH_RESET	R/W		-		-	-	GYRO _RST	ACCEL _RST	TEMP _RST
69	105	MOT_DETECT_CTRL	R/W	ACCEL_INT EL_EN	ACCEL_INT EL_MODE	,	-				-
6A	106	USER_CTRL	R/W		FIFO_EN	I2C_MST _EN	I2C_IF _DIS	-	FIFO _RST	I2C_MST _RST	SIG_COND _RST
6B	107	PWR_MGMT_1	R/W	H_RESET SLEEP CYCLE GYRO_ PD_PTAT CLKSEL[2:0]			CLKSEL[2:0]				
6C	108	PWR_MGMT_2	R/W			DIS_XA	DIS_YA	DIS_ZA	DIS_XG	DIS_YG	DIS_ZG
72	114	FIFO_COUNTH	R/W						FIFO_CNT[12:8]		
73	115	FIFO_COUNTL	R/W				FIFO_C	NT[7:0]			
74	116	FIFO_R_W	R/W				D[7	7:0]			
75	117	WHO_AM_I	R				WHOA	MI[7:0]			
77	119	XA_OFFSET_H	R/W				XA_OFF	S [14:7]			
78	120	XA_OFFSET_L	R/W				XA_OFFS [6:0]				
7A	122	YA_OFFSET_H	R/W	YA_OFFS [14:7]							
7B	123	YA_OFFSET_L	R/W	YA_OFFS [6:0] -					-		
7D	125	ZA_OFFSET_H	R/W	ZA_OFFS [14:7]							
7E	126	ZA_OFFSET_L	R/W		_		ZA_OFFS [6:0]			_	-

表 1 MPU-9250 陀螺仪和加速度寄存器

说明: 寄存器以高低位的名字_H和_L或者序号结尾。

下表中,寄存器的值是大写字母字母表示,数值是以大写字母或斜体表示。比如说:

ACCEL_XOUT_H 寄存器(地址为 59 的寄存器)包含的值为寄存器的高八位。

ACCEL_XOUT[15:8]表示 16 位 X 轴加速度 ACCEL_XOUT 值的第 8 位到第 15 位。

除了下面的寄存器,其他均可设为 0x00 来重置。

- 寄存器 107(0x01)Power_Management 1
- 寄存器 117 (0x71) WHO_AM_I

中文资料技术手册

版本号: V1.0 翻译者: 出迷者 时间: 12-23-14

4 寄存器

本章将着重介绍 MPU9250 中每个寄存器的功能及使用方法。

4.1 寄存器 0-2 陀螺仪自检寄存器

使用方式:读/写 复位值: 0x00

寄存器名	寄存器位	功能
SELF_TEST_X_GYRO	XG_ST_DATA[7:0]	 这个寄存器的值表示生产时的自测输出值。这
SELF_TEST_Y_GYRO	YG_ST_DATA[7:0]	达千奇存益的值表小生)的的自刎拥血值。这 个值是用户在使用时检测用的。
SELF_TEST_Z_GYRO	ZG_ST_DATA[7:0]	但定用广任使用时位侧用时。

更多 MPU-9250 自检功能请参阅: AN-MPU-9250A-03,包含 MPU-9250 加速度,陀螺仪,电子 罗盘。

4.2 寄存器 13-15 加速度自检寄存器

使用方法:读/写 复位值: 0x00

寄存器	寄存器位	功能
SELF_TEST_X_ACCEL	XA_ST_DATA[7:0]	一 这个寄存器的值表示生产时的自测输出值。这
SELF_TEST_Y_ACCEL	YA_ST_DATA[7:0]	个值是用户在使用时检测用的。
SELF_TEST_Z_ACCEL	ZA_ST_DATA[7:0]	恒起用/征使用时恒侧用的。

更多 MPU-9250 自检功能请参阅: AN-MPU-9250A-03,包含 MPU-9250 加速度, 陀螺仪, 电子 罗盘。

中文资料技术手册

版本号: V1.0 翻译者: 出迷者 时间: 12-23-14

4.3 寄存器 19-24 陀螺仪偏移寄存器

使用方法:读/写 复位值: 0x00

寄存器位		功能
	寄存器名	
		USR 寄存器的高低字节(14h)
		精度偏移量 OffsetLSB= X_OFFS_USR * 4 / 2^FS_SEL
		角度 OffsetDPS= X_OFFS_USR * 4 / 2^FS_SEL / Gyro_Sensitivity
[7:0]	X_OFFS_USR[15:8]	计算条件 FS_SEL = 0
[,,0]	__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Gyro_Sensitivity = 2^16 LSB / 500dps
		最大值 999.969dps
		最小值 -1000dps
		精度 0.0305dps
[7:0]	X_OFFS_USR[7:0]	USR 寄存器内部高低字节(13h)
[7:0]	Y_OFFS_USR[15:8]	USR 寄存器的高低字节(16h)
		精度偏移量 OffsetLSB= Y_OFFS_USR * 4 / 2^FS_SEL
	_	角度 OffsetDPS= Y_OFFS_USR * 4 / 2^FS_SEL / Gyro_Sensitivity
		计算条件 FS_SEL = 0
		Gyro_Sensitivity = 2^16 LSB / 500dps
		最大值 999.969dps
		最小值-1000dps
		精度 0.0305dps
[7:0]	Y_OFFS_USR[7:0]	USR 寄存器内部高低字节(15h)
[7:0]	Z_OFFS_USR[15:8]	USR 寄存器的高低字节(16h)
		精度偏移量 OffsetLSB= Y_OFFS_USR * 4 / 2^FS_SEL
		角度 OffsetDPS= Y_OFFS_USR * 4 / 2^FS_SEL / Gyro_Sensitivity
		计算条件 FS_SEL = 0
		Gyro_Sensitivity = 2^16 LSB / 500dps
		最大值 999.969dps
		最小值-1000dps
		精度 0.0305dps
[7:0]	Z_OFFS_USR[7:0]	USR 寄存器的高低字节(17h)

这个寄存器是用于做陀螺仪三轴输出数据的 DC 偏移计算所用。本寄存器内部的值是和陀螺仪传感器值分开的,若想参考请移步 67-72 寄存器。

4.4 寄存器 25---分频采样寄存器

使用方法:读/写复位值:0x00

寄存器位	寄存器名	功能
[7:0]	SMPLRT_DIV[7:0]	控制内部输出的采样率 (详见配置寄存器) 的频率 FIFO

中文资料技术手册

版本号: V1.0 翻译者: 出迷者 时间: 12-23-14

采样率。说明: 当配置 Fchoice = 2'b11 (fchoice_b 寄存器的值为 2'b00)并且(0 < dlpf_cfg < 7)时,此寄存器生效。
数据更新频率:

SAMPLE_RATE= Internal_Sample_Rate / (1 + SMPLRT_DIV)

采样率按照上面的速率采样,而 SMPLRT_DIV 只用于 1KHz 的内部采样。

4.5 寄存器 26-配置寄存器

寄存器位	寄存器名	功能
[7]	-	保留位
[6]	FIFO_MODE	当设置为1时,FIFO缓冲区满后将不再写入数值。
		当设置为 0 时, FIFO 缓冲区满后新数据会不停更新以替
		换老数据。
[5:3]	EXT_SYNC_SET[2:0]	使能 FSYNC 引脚以采样数据。
		EXT_SYNC_SET FSYNC 位地址
	_	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
		1 TEMP_OUT_L[0]
		2 GYRO_XOUT_L[0]
		3 GYRO_YOUT_L[0]
		4 GYRO_ZOUT_L[0]
		5 ACCEL_XOUT_L[0]
		6 ACCEL_YOUT_L[0]
		7 ACCEL_ZOUT_L[0]
		Fsync 将会捕捉到一个短的信号并产生一次锁存值,同
		一个信号只能产生一次锁存值。条件是必须外接第三方
		驱动设备,而且 fsync 通信速率要低于我们的正常设备
		的采样率。
[2: 0]	DLPF_CFG[2:0]	若要使用 DLPF, fchoice[1:0]必须设置成 2'b11,
		fchoice_b[1:0]设置成 2'b00.
		详见下面表

DLPF 功能是由 DLPF_CFG 决定的,当 FCHOICE_B[1:0]=2b'00,陀螺仪和温度传感器的值会按照如下的参数配置。注意。下表中 FCHOICE 的值和 FCHOICE_B 是反的。(例如: FCHOICE=2b'00和 FCHOICE_B=2b'11是一样的)

ДН ГСПО	TCHOICE_B=20 11 Æ 4Fti)						
FCHC	ICE	DLPF CFG		陀螺仪	温度		
<1>	<0>	DLPF_GFG	带宽(Hz)	延时(ms)	Fs (kHz)	带宽(Hz)	延时 (ms)
х	0	Х	8800	0.064	32	4000	0.04
0	1	Х	3600	0.11	32	4000	0.04
1	1	0	250	0.97	8	4000	0.04
1	1	1	184	2.9	1	188	1.9
1	1	2	92	3.9	1	98	2.8
1	1	3	41	5.9	1	42	4.8

Inve	enSer	<i>ise</i>	MPU-9250	中文资料技术	手册	版本号: V1.0 翻译者: 出迷者 时间: 12-23-14	RIDDER
1	1	4	20	9.9	1	20	8.3
1	1	5	10	17.85	1	10	13.4
1	1	6	5	33.48	1	5	18.6
1	1	7	3600	0.17	8	4000	0.04

4.6 寄存器 27---陀螺仪设置

使用方法:读/写初始化值:0x00

NAVI I G IET •		
位	位名	位功能
[7]	XGYRO_Cten	x 轴陀螺仪自检
[6]	YGYRO_Cten	Y轴陀螺仪自检
[5]	ZGYRO_Cten	Z 轴陀螺仪自检
[4:3]	GYRO_FS_SEL[1:0]	陀螺仪全范围选择:
		00 = +250dps
		01 =+500dps
	_	10 =+1000dps
		11 =+2000dps
[2]	-	预留位 ————————————————————————————————————
[1:0]	Fchoice_b[1:0]	和上一个表格所表示相反。
		Fchoice _b 的上表的 Fchoice 相反。

4.7 寄存器 28- 加速度配置

使用方法:读/写初始值:0x00

DANH III.		
位	位名	位功能
[7]	ax_st_en	加速度X轴自检
[6]	ay_st_en	加速度Y轴自检
[5]	az_st_en	加速度Z轴自检
[4:3]	ACCEL_FS_SEL[1:0]	加速度全范围选择:
		± 2 g (00) , ± 4 g (01) , ± 8 g (10) , ± 16 g (11)
[2:0]	-	预留

4.8 寄存器 29-加速度配置 2

使用方法:读/写 复位值: 0x00

MPU-9250 中文资料技术手册

版本号: V1.0 翻译者: 出迷者 时间: 12-23-14

位	位名	位功能
[7:6]	预留	
[5:4]	预留	
[3]	accel_fchoice_b	和下表的 accel_fchoice 相反的
[2:0]	A_DLPFCFG	加速度低通滤波,设置如下表

加速度传输速率和带宽(普通模式)

ACCEL_FCHOICE	A_DLPF_CFG	输出			
		带宽(Hz)	延时 (ms)	信噪比	速率(kHz)
				(ug/rtHz)	
0	Х	1. 13K	0. 75	250	4
1	0	460	1. 94	250	1
1	1	184	5. 80	250	1
1	2	92	7. 80	250	1
1	3	41	11.80	250	1
1	4	20	19. 80	250	1
1	5	10	35. 70	250	1
1	6	5	66. 96	250	1
1	7	460	1. 94	250	1

DLPF 的输出输出速率和 1/(1+SMPLRT_DIV)的值成正比。(SMPLRT_DIV 是一个 8 位的整数)

然后 00Rs 就是一个加速度计在正常模式下的速率的子集(Hz): 3.91, 7.81, 15.63, 31.25, 62.50, 125, 250, 500, 1K

下表展现的是当加速度计工作在低功耗模式下的带宽速率和相关配置。

加速度速率和带宽(低功耗模式)

ACCEL_FCH01CE	ODR (Hz)	输	出
		带宽(Hz)	延时 (ms)
0	0. 24	1. 1k	1
0	0. 49	1. 1k	1
0	0. 98	1. 1k	1
0	1. 95	1. 1k	1
0	3. 91	1. 1k	1
0	7. 81	1. 1k	1
0	15. 63	1. 1k	1
0	31. 25	1. 1k	1
0	62. 50	1. 1k	1
0	125	1. 1k	1

诚如您所见,一些 ODRs 在加速度在正常模式下工作的时候也可以像在低功耗模式下一样配置。

想知道更多关于 ODRs 的细节,请查阅寄存器 30-加速度低功耗 ODR 控制位

4.9 寄存器 30-加速度低功耗 ODR 控制位

使用方法:读/写复位值:0x00

位	位名	功能	
[7:4]	预留		
[3:0]	Lposc_clksel[3:0]	设置加速度计的唤醒采样率-低功耗加速度输出速率	
		Lpose_clksel	Output Frequency(Hz)
	_	0	0.24
		1	0.49
		2	0.98
		3	1.95
		4	3.91
		5	7.81
		6	15.63
		7	31.25
		8	62.50
		9	125
		10	250
		11	500
		12-15	预留

4.10 寄存器 31-运动唤醒

使用方法:读/写复位值:0x00

位	位名	功能
[7:0]	WOM_Threshold	此位设置了加速度运动唤醒值的大小。LSB=4mg 范围
		是 0mg 到 1020mg

更多关于运动唤醒的细节请参考 MPU9250 产品说明文档

中文资料技术手册

版本号: V1.0 翻译者: 出迷者 时间: 12-23-14

4.11 寄存器 35-FIFO 使能

使用方法:读/写复位值:0x00

位	位名	功能
[7]	TEMP_OUT	1-写 TEMP_OUT_H 和 TEMP_OUT_L 值到 FIFO 的采样区 使能时,缓冲数据都会输出 0-功能关闭
[6]	GYRO_XOUT	1-写 GYRO_XOUT_H 和 GYRO_XOUT_L 到 FIFO 采样区 使能时,缓冲数据都会输出 0-功能关闭
[5]	GYRO_YOUT	1-写 GYRO_YOUT_H 和 GYRO_YOUT_L 到 FIFO 采样区 使能时,缓冲数据都会输出 0-功能关闭
[4]	GYRO_ZOUT	1-写 GYRO_ZOUT_H 和 GYRO_ZOUT_L 到 FIFO 采样区 使能时,缓冲数据都会输出 0-功能关闭
[3]	ACCEL	1-写加速度的 XYZ 轴的值到 FIFO 中 使能时,缓冲数据都会输出 0-功能关闭
[2]	SLV_2	1-写 EXT_SENS_DATA 寄存器和 SLV_2 的值到 FIFO 使能时,缓冲数据都会输出 0-功能关闭
[1]	SLV_1	1-写 EXT_SENS_DATA 寄存器和 SLV_1 的值到 FIFO 使能时,缓冲数据都会输出 0-功能关闭
[0]	SLV_0	1-写 EXT_SENS_DATA 寄存器和 SLV_0 的值到 FIFO 使能时,缓冲数据都会输出 0-功能关闭 说明: I2C_SLV3_CTRL 寄存器使能 SLV_3

说明: 更多关于 EXT_SENS_DATA 寄存器的信息请参考寄存器 73-96.

4.12 寄存器 36-I2C 主机控制模式

操作方式:读/写 复位值: 0x00

MPU-9250 中文资料技术手册

版本号: V1.0 翻译者: 出迷者 时间: 12-23-14

-	<u> </u>				
位	位名	功能			
[7]	MULT_MST_EN	使能主机模式。	当美闭时,I2C_N	MST_IF 也可以关闭],同
		时数据仲裁也可	「以关闭。		
[6]	WAIT_FOR_ES	延时中断准备	数据直到其他传	感器数据加载。	如果
		I2C_MST_IF 未开	F启,中断将会维	继续。	
[5]	SLV_3_FIFO_EN	_	_	LV_3(I2C_SLV0_CTF	
			和 I2C_SLV2_CTR)	到 FIFO,在相同的	采样
		率下。			
		0关闭此功能。			
[4]	I2C_MST_P_NSR			机到另一个从机设	
		当为0时,再读	值时会从新开始	。当设置为1时,	再读
		值时会停止。			
[3: 0]	12C_MST_CLK[3:0]			符号整型数据来	
			的 8MHz 的振荡步	频率。I2C的主机时	钟速
		率配置如下表:			,
		I2C_MST_CLK	I2C MASTER	8MHz clock	
			CLOCK SPEED	divider	
			(kHz)		
		0	348	23	
		1	333	24	
		2	320	25	
		3	308	26	
		4	296	27	
		5	286	28	
		6	276	29	
		7	267	30	
		8	258	31	
		9	500	16	
		10	471	17	
		11	444	18	
		12	421	19	
		13	400	20	
		14	381	21	
		15	364	22	

说明: 更多关于 EXT_SENS_DATA 寄存器信息请参考 73 到 96 寄存器。

4.19 寄存器 55-INT 引脚/电路迂回使能配置寄存器

操作方式:读/写 复位值: 0x00

中文资料技术手册

版本号: V1.0 翻译者: 出迷者 时间: 12-23-14

位	位名	功能
[7]	ACTL	1-激活 INT 的逻辑电平为低电平
		0-激活 INT 的逻辑电平为高电平
[6]	OPEN	1INT 脚设置为开漏脚
		0INT 脚设置为推挽输出
[5]	LATCH_INT_EN	1INT 脚电平不变直到非中断状态
		0INT 脚电平表明中断脉冲宽度为 50us
[4]	INT_ANYRD_2CLEAR	1当有任何读取动作时处于非中断状态
		0当读取 INT_STATUS 寄存器时处于非中断状态
[3]	ACTL_FSYNC	1激活 FSYNC 的中断电平为低电平
		0激活 FSYNC 的中断电平位高电平
[2]	FSYNC_INT_MODE_	1开启 FSYNC 的中断功能,ACTL_FSYNC 位激活电平的
	EN	转换将产生中断。请在 I2C MASTER 状态寄存器的
		PASS_THROUGH 位读取中断状态。
		0关闭 FSYNC 引脚的中断功能。
[1]	BYPSS_EN	启动后,i2c 主机功能关闭时,接口的 ES_CL 和 ES_DA
		将会进入电路迂回模式。此时引脚会产生高电平。
[0]	保留	

4.22 寄存器 59 到 64-加速度测量

名称: ACCEL_XOUT_H 测量顺序: 同步

复位值: 0x00 (如果传感器不可用)

位	位名	功能
[7:0]	D[7:0]	加速度 X 轴高字节

名称: ACCEL_XOUT_L 测量顺序: 同步

复位值: 0x00 (如果传感器不可用)

位	位名	功能
[7:0]	D[7:0]	加速度X轴低字节

名称: ACCEL_YOUT_H

测量顺序: 同步

复位值: 0x00 (如果传感器不可用)

位	位名	功能
[7:0]	D[7:0]	加速度Y轴高字节

名称: ACCEL_YOUT_L 测量顺序: 同步

中文资料技术手册

版本号: V1.0 翻译者: 出迷者 时间: 12-23-14

复位值: 0x00 (如果传感器不可用)

位	位名	功能
[7:0]	D[7:0]	加速度Y轴低字节

名称: ACCEL_ZOUT_H

测量顺序: 同步

复位值: 0x00 (如果传感器不可用)

位	位名	功能
[7:0]	D[7:0]	加速度 Z 轴高字节

名称: ACCEL_ZOUT_L

测量顺序: 同步

复位值: 0x00 (如果传感器不可用)

位	位名	功能
[7:0]	D[7:0]	加速度 Z 轴低字节

4.23 寄存器 65 到 66-温度测量

名称: TEMP_OUT_H 测量顺序: 同步

复位值: 0x00 (如果传感器不可用)

位	位名	功能
[7:0]	D[7:0]	传感器温度值高字节

名称: TEMP_OUT_L 测量顺序: 同步

复位值: 0x00 (如果传感器不可用)

位	位名	功能	
[7:0]	D[7:0]	温度值输出低字节:	
		TEMP_degC	=((TEMP_OUT-
		RoomTemp_Offset)/Temp_Sensitivity)+	-21degC
		- Temp_degC 为摄氏度,TEMP_OUT 是传题。	感器测得的实际
		温度。	

4.24 寄存器 67 到 72 陀螺仪测量

名称: GYRO_XOUT_H 测量顺序: 同步

中文资料技术手册

版本号: V1.0 翻译者: 出迷者 时间: 12-23-14

复位值: 0x00 (如果传感器不可用)

位	位名	功能
[7:0]	D[7:0]	陀螺仪X轴高字节

名称: GYRO_XOUT_L 测量顺序: 同步

复位值: 0x00 (如果传感器不可用)

	7 · · · · · · · · · · · · · · · · · · ·	
位	位名	功能
[7:0]	D[7:0]	陀螺仪 X 轴低字节
		GYRO_XOUT = Gyro_Sensitivity * X_angular_rate
		此时 FS_SEL=0
		条件 Gyro_Sensitivity=131LSB/(°/s)

名称: GYRO_YOUT_H

测量顺序: 同步

复位值: 0x00 (如果传感器不可用)

位	位名	功能
[7:0]	D[7:0]	陀螺仪Y轴高字节

名称: GYRO_YOUT_L 测量顺序: 同步

复位值: 0x00 (如果传感器不可用)

位	位名	功能
[7:0]	D[7:0]	陀螺仪Y轴低字节
		GYRO_YOUT = Gyro_Sensitivity * Y_angular_rate
		此时 FS_SEL=0
		条件 Gyro_Sensitivity=131LSB/(°/s)

名称: GYRO_ZOUT_H

测量顺序: 同步

复位值: 0x00 (如果传感器不可用)

位	位名	功能
[7:0]	D[7:0]	陀螺仪Z轴高字节

名称: GYRO_ZOUT_L

测量顺序: 同步

复位值: 0x00 (如果传感器不可用)

位	位名	功能
[7:0]	D[7:0]	陀螺仪Z轴低字节
		GYRO_ZOUT = Gyro_Sensitivity * Z_angular_rate
		此时 FS_SEL=0
		条件 Gyro_Sensitivity=131LSB/(°/s)

中文资料技术手册

版本号: V1.0 翻译者: 出迷者 时间: 12-23-14

4.31 寄存器 104-信号重置

名称: GYRO_ZOUT_L 响应顺序: 同步 复位值: 0x00

位	位名	功能	
[7:3]	预留		
[2]	GYRO_RST	重置陀螺仪 说明:寄存器未清空,使用 SIG_COND_RST	
[1]	ACCEL_RST	重置加速度 说明:寄存器未清空,使用 SIG_COND_RST	
[0]	TEMP_RST	重置温度计 说明:寄存器未清空,使用 SIG_COND_RST	

4.33 寄存器 106-用户控制

名称: GYRO_ZOUT_L

响应顺序: 同步

<u> </u>		
位	位名	功能
[7]	Reserved	
[6]	FIFO_EN	1-使能 FIFO 模式
		0-关闭 FIFO 模式
		关闭 FIFO 从 dma 写,用 FIFO_EN 寄存器。 要关闭 FIFO
		从 DMP 写数据,关闭 DMP
[5]	I2C_MST_EN	1-使能 I2C 主模式; ES_DA 和 ES_SCL 和 SDA/SDI 以及
		SCL/SCLK 隔离
		0-关闭 I2C 主机模式,引脚 ES_DA 和 ES_SCL 被 SDA/SDI
		和 SCL/SCLK 的逻辑电平驱动
[4]	I2C_IF_DIS	1-重置 I2C 从机模式并进入 SPI 模式
		此位将会在一个时钟周期后自动清零
[3]	Reserved	
[2]	FIFO_RST	1-重置 FIFO 模式,异步重置
		一个时钟周期后此位也会自动清理
[1]	I2C_MST_RST	1-重置 I2C 主机模式,异步重置,一个时钟周期后此位
		清零
		说明:此位只能在 I2C 主模式时设置,当设置时,从机
		将会被挂载。
[0]	SIG_COND_RST	1-重置所有数据。一个时钟周期后此位将清零。

中文资料技术手册

版本号: V1.0 翻译者: 出迷者 时间: 12-23-14

4.34 寄存器 107-电源管理 1

名称: PWR_MGMT_1

功能:读/写

复位值: (被 PU_SLEEP_MODE 位决定,见下表)

位	位名	功能
[7]	H RESET	1-重置所有寄存器和已经配置数据,重置后此位将自
[,]	H_KESET	动清 0
[6]	SLEEP	设置时,芯片进入休眠模式(加载 OTP 后,
[6]	SLEEP	
		PU_SLEEP_MODE 位将会被写在此位)
[5]	CYCLE	设置后,当 SLEEP 和 STANDBY 没有设置时,芯片将进
		入休眠和读数的循环状态,此时速率由 LP_ACCEL_ODR
		寄存器决定。
		说明: 当加速度计关闭时, 芯片还是会被中断唤醒,
		但是芯片此时不读值。
[4]	GYRO STANDBY	当被设置时, 陀螺仪驱动电路使能, 但传感器不工作。
	_	这是专门用在低功耗模式快速使能陀螺仪用的。
[3]	PD_PTAT	PTAT 和 PTAT ADC 掉电
[2:0]	CLKSEL[2:0]	代码 时钟源
		0 内部 20MHz 振荡
		1 自动选择最佳时钟源-否则使用外部振荡
		2 自动选择最佳时钟源-否则使用外部振荡
		3 自动选择最佳时钟源-否则使用外部振荡
		4 自动选择最佳时钟源-否则使用外部振荡
		5 自动选择最佳时钟源-否则使用外部振荡
		6 内部 20MHz 振荡
		6 内部 20MHz 振荡 7 停止时钟源并保持
		, , , , , , , , , , , , , , , , , , , ,

4.35 寄存器 108-电源管理 2

名称: PWR_MGMT_2

功能:读/写 复位值: 0x00

位	位名	功能
[7:6]	保留	
[5]	DISABLE_XA	1-X 轴加速度 关闭
		0-X 轴加速度 开启
[4]	DISABLE_YA	1-Y 轴加速度 关闭

中文资料技术手册

版本号: V1.0 翻译者: 出迷者 时间: 12-23-14

		0-Y 轴加速度 开启
[3]	DISABLE_ZA	1-Z 轴加速度 关闭
		0-Z 轴加速度 开启
[2]	DISABLE_XG	1-X 轴陀螺仪 关闭
		0-X 轴陀螺仪 开启
[1]	DISABLE_YG	1-Y 轴陀螺仪 关闭
		0-Y 轴陀螺仪 开启
[0]	DISABLE_ZG	1-Z 轴陀螺仪 关闭
		0-Z 轴陀螺仪 开启

要进入 MPU-9250 的低功耗加速度计模式:

- (i) 设置 CYCLE 位为1
- (ii) 设置 SLEEP 位为 0
- (iii) 设置 TEMP_DIS 位为 1
- (iv) 设置 DIS_XG,DIS_YG,DIS_ZG 位为 1

第(i)和(iii)提到的位可以去管理器 1 寄存器里面寻找(寄存器 107) 在这种模式下,只有 I2C 在工作中,其他全部设备都将关闭,等待着加速度数据的变化将他 们唤醒。

4.36 寄存器 114 和 115-FIFO 计数寄存器

名称: FIFO_COUNTH

地址: 114

操作方法: 只读 复位值: 0x00

位	位名	功能
[7:5]	预留	
[4:0]	FIFO_CNT[12:8]	高位数据表明的是 FIFO 中写入字节的数量
		此位和 115 是链接在一起的。

名称: FIFIO_COUNTL

地址: 115

操作方式: 只读 重置值: 0x00

节的数
=

中文资料技术手册

版本号: V1.0 翻译者: 出迷者 时间: 12-23-14

4.37 寄存器 116-FIFO 读写

名称: FIFO_R_W 操作方式: 读/写 复位值: 0x00

位	位名	功能
[7:0]	D[7:0]	FIFO 的读/写命令

说明:

此寄存器被用来读写 FIFO 的缓存数据。

未翻译

4.38 寄存器 117-WHO AM I

名字: WHOAMI 操作方式: 只读 复位值: 0x68

位	位名	功能
[7:0]	WHOAMI	寄存器指示当前被接入的设备地址

本寄存用来核实是否正确接入设备,返回值应该是 0x71

4.39 寄存器 119,120,122,123,125,126 加速度偏移寄存器

MPU9250 模式: 名称: XA_OFFS_H

地址: 119

操作方式:读/写 重置值: 0x00

位	位名	功能
[7:0]	XA_OFFS[14:7]	加速度偏移量 X 轴高位 +/- 16g 全范围模式偏移
		15 位 0.98-mg 步进

名称: XA_OFFS_L

地址: 120

操作方式:读/写 复位值: 0x00

中文资料技术手册

版本号: V1.0 翻译者: 出迷者 时间: 12-23-14

Ī	位	位名	功能
	[7:1]	XA_OFFS[6:0]	上一位的低字节部分
	[0]	预留	

名称: YA_OFFS_H

地址: 122

操作方式:读/写 重置值: 0x00

位	位名	功能
[7:0]	YA_OFFS[14:7]	加速度偏移量 Y 轴高位 +/- 16g 全范围模式偏移
		15 位 0.98-mg 步进

名称: YA_OFFS_L

地址: 123

操作方式:读/写 复位值: 0x00

位	位名	功能
[7:1]	YA_OFFS[6:0]	上一位的低字节部分
[0]	预留	- 1111 -/-

名称: ZA_OFFS_H

地址: 125

操作方式:读/写 重置值: 0x00

位	位名	功能
[7:0]	XA_OFFS[14:7]	加速度偏移量 Z 轴高位 +/- 16g 全范围模式偏移
		15 位 0.98-mg 步进

名称: ZA_OFFS_L

地址: 126

操作方式:读/写 复位值: 0x00

位	位名	功能
[7:1]	XA_OFFS[6:0]	上一位的低字节部分
[0]	预留	

中文资料技术手册

版本号: V1.0 翻译者: 出迷者 时间: 12-23-14

5 磁力计寄存器

MPU-9250 中的磁力计(AK8963)寄存器清单。

名称	地址	读/写	描述	位宽	解释
WIA	00H	读	设备 ID	8	
INFO	01H	读	数据	8	
ST1	02H	读	状态 1	8	数据状态
HXL	03H	读	测量数据	8	X 轴数据
HXH	04H			8	
HYL	05H			8	Y轴数据
НҮН	06H			8	
HZL	07H			8	Z轴数据
HZH	08H			8	
ST2	09H	读	状态 2	8	数据状态
CNTL	0AH	读/写	控制	8	
RSV	OBH	读/写	保留	8	不可进入
ASTC	0CH	读/写	自检	8	
TS1	0DH	读/写	测试 1	8	不可进入
TS2	0EH	读/写	测试 2	8	不可进入
12CDIS	OFH	读/写	I2C 关闭	8	
ASAX	10H	读	x 轴灵敏度调节	8	
ASAY	11H	读	Y轴灵敏度调节	8	
ASAZ	12H	读	z轴灵敏度调节	8	

表 2 寄存器表

5.2 寄存器表

地址	寄存器名	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0			
只读寄花	只读寄存器											
00H	WIA	0	1	0	0	1	0	0	0			
01H	INFO	INFO7	INFO6	INFO5	INFO4	INFO3	INFO2	INFO1	INFO0			
02H	ST1	0	0	0	0	0	0	DOR	DRDY			
03H	HXL	HX7	HX6	HX5	HX4	HX3	HX2	HX1	HX0			
04H	НХН	HX15	HX14	HX13	HX12	HX11	HX10	HX9	HX8			
05H	HYL	HYZ7	HY6	HY5	HY4	HY3	HY2	HY1	HY0			
06H	НҮН	HY15	HY14	HY13	HY12	HY11	HY10	HY9	HY8			
07H	HZL	HZ7	HZ6	HZ5	HZ4	HZ3	HZ2	HZ1	HZ0			
08H	HZH	HZ15	HZ14	HZ13	HZ12	HZ11	HZ10	HZ9	HZ8			

中文资料技术手册

版本号: V1.0 翻译者: 出迷者 时间: 12-23-14

09H	ST2	0	0	0	BITM	HOFL	0	0	0
读写寄存	字器								
0AH	CNTL1	0	0	0	0	MODE3	MODE2	MODE1	MODE0
OBH	CNTL2	0	0	0	0	0	0	0	SRST
0CH	ASTC	=	SELF	-	-	-	-	-	-
0DH	TS1	-	-	-	-	-	-	-	-
0EH	TS2	-	-	-	-	-	-	-	-
0FH	12CDIS	I2CDIS7	I2CDIS6	I2CDIS5	I2CDIS4	I2CDIS3	I2CDIS2	I2CDIS1	I2CDIS0
只读寄存	字器								
10H	ASAX	COEFX7	COEFX6	COEFX5	COEFX4	COEFX3	COEFX2	COEFX1	COEFX0
11H	ASAY	COEFY7	COEFY6	COEFY5	COEFY4	COEFY3	COEFY2	COEFY1	COEFY0
12H	ASAZ	COEFZ7	COEFZ6	COEFZ5	COEFZ4	COEFZ3	COEFZ2	COEFZ1	COEFZ0

表 3 寄存器表

说明: 当 VDD 上电以后,AK893 的寄存器和功能就初始化了。TS1 和 TS2 是测试寄存器的储存器,请不要使用。RSV 是预留寄存器,也请勿使用。

5.2 磁力计寄存器详细说明

这部分讲解 MPU-9250 的磁力计寄存器

5.3 WIA: 设备 ID

地址	寄存器名	D7	D6	D5	D4	D3	D2	D1	D0	
只读寄存器										
00H	00H WIA 0 1 0 0 1 0 0									

磁力计设备 ID,一个字节而且值不变。

48H: 不变的

5.4 INFO: 信息

地址	寄存器名	D7	D6	D5	D4	D3	D2	D1	D0		
只读寄存器											
01H	01H INFO INFO7 INFO6 INFO5 INFO4 INFO3 INFO2 INFO1 INFO0										

INFO[7:0]: 磁力计信息

中文资料技术手册

版本号: V1.0 翻译者: 出迷者 时间: 12-23-14

5.5 ST1: 状态 1

地址	寄存器名	D7	D6	D5	D4	D3	D2	D1	D0		
	只读寄存器										
02H	ST1	0	0	0	0	0	0	0	DRDY		
Ē	重置	0	0	0	0	0	0	0	0		

DRDY: 准备数据 "0": 正常

"1": 数据准备

测试模式下 DRDY 位会变 1, 当在状态 2 或测量数据(HXL 到 HZH)被读取后会变 0.

DOR: 数据溢出 "0": 正常

"1": 数据溢出

DOR 位变"1"当数据跳过测试模式, 当在状态 2 或测量数据时变为 0 (HXL~HZH).

5.6 HXL 到 HZH:测量数据

地址	寄存器名	D7	D6	D5	D4	D3	D2	D1	D0		
只读寄存器											
03H	HXL	HX7	HX6	HX5	HX4	HX3	HX2	HX1	HX0		
04H	НХН	HX15	HX14	HX13	HX12	HX11	HX10	HX9	HX8		
05H	HYL	HY7	HY6	HY5	HY4	HY3	HY2	HY1	HY0		
06H	HYH	HY15	HY14	HY13	HY12	HY11	HY10	HY9	HY8		
07H	HZL	HZ7	HZ6	HZ5	HZ4	HZ3	HZ2	HZ1	HZ0		
08H	HZH	HZ15	HZ14	HZ13	HZ12	HZ11	HZ10	HZ9	HZ8		
Ī	重置	0	0	0	0	0	0	0	0		

磁力计的三轴测量数据:

HXL[7:0]:X-轴数据低 8 位

HXH[15:8]:X 轴数据高 8 位

HYL[7:0]:Y 轴数据低 8 位

HYH[15:8]:Y 轴数据高 8 位

HZL[7:0]:Z 轴数据低 8 位

HZH[15:8]:Z 轴数据高 8 位

测量数据被存在 2 个寄存器中,每个轴的 16 位测量范围在-32760~32760

类	女据测量(每个轴)[15:	0]	磁流密度[uT]
2个寄存器	十六进制	十位	
0111 1111 1111 1000	7FF8	32760	4912(最大)
0000 0000 0000 0001	0001	1	0.15
0000 0000 0000 0000	0000	0	0

中文资料技术手册

版本号: V1.0 翻译者: 出迷者 时间: 12-23-14

1111 1111 1111 1111	FFFF	-1	-0.15
1		1	1
1000 0000 0000 1000	8008	-32760	-4912(最小)

表 4 测量数据版式

5.7 ST2:状态 2

地址	寄存器名	D7	D6	D5	D4	D3	D2	D1	D0	
只读寄存器										
09H	ST2	0	0	0	BITM	HOFL	0	0	0	
Ī	重置	0	0	0	0	0	0	0	0	

HOFL:磁力计溢出

"0":正常

"1": 磁力计发生溢出

在单独测量模式,连续测量模式,外部触发测量模式和自测模式下,磁力计在数据未满的情况下也可能发生溢出。这种模式下,测量数据错误 HOFL 位置"1".当下次测量开始时,此位将置"0".

BITM 位:输出位设置(镜像)

"0": 14 位输出 "1": 16 位输出

CNTL1 寄存器位的镜像。

ST2 寄存器做位数据读取的最后一个寄存器,请确保在每次读取新一组数据的时候,ST2 始终是最后读取的寄存器。

5.8 CNTL1: 控制 1

地址	寄存器名	D7	D6	D5	D4	D3	D2	D1	D0			
	只读寄存器											
0AH	CNTL1	0	0	0	BIT	MODE3	MODE2	MODE1	MODE0			
重置		0	0	0	0	0	0	0	0			

MODE[3:0]:操作模式设置

"0000":掉电模式 "0001":单独测试

"0010":连续测量模式 1 "0110":连续测量模式 2 "0100":外部触发测量模式

"1000":自检模式

"1111":烧写 ROM 模式

此外其他的指令都是禁止设置的

BIT: 输出位设置 "0":14 位输出

中文资料技术手册

版本号: V1.0 翻译者: 出迷者 时间: 12-23-14

"1":16 位输出

当设置完成后,磁力计(AK8963)就退出设置模式。

当 CNTL 寄存器进入写入模式时, 02H 到 09H 已经被加载完成。

5.9 CNTL2: 控制 2

地址	寄存器名	D7	D6	D5	D4	D3	D2	D1	D0	
只读寄存器										
ОВН	CNTL2	0	0	0	0	0	0	0	SRST	
Ē	0	0	0	0	0	0	0	0		

SRST:软复位

"0":正常

"1":复位

当设置1时,所有的寄存器将初始化。之后,SRST 位将自动归0.

5.10 ASTC: 自测控制

地址	寄存器名	D7		D6	D5	D4	D3	D2	D1	D0	
	读写寄存器										
0CH	ASTC	-		SELF		-	-	-	1	-	
重置 0				0	0	0	0	0	0	0	

SELF:自测控制

"0":正常

"1":产生测试磁场

千万不要将除 SELF 位之外的其他位上写 1,若写 1 后,将无法正常测量数据。

5.11 TS1 TS2: 测试 1, 2

地址	寄存器名	D7	D6	D5	D4	D3	D2	D1	D0		
读写寄存器											
0DH	TS1	=	ı	ı	ı	ı	ı	ı	1		
0EH	TS2	-	-	-	-	-	-	-	-		
<u>Ī</u>	重置	0	0	0	0	0	0	0			

TS1 和 TS2 寄存器为测试用寄存器,请勿使用。

5.12 I2CDIS: I2C 关闭

5.12 (26b)3. (26 XM)											
地址	寄存器名	D7	D6	D5	D4	D3	D2	D1	D0		
读写寄存器											
0FH	12CDIS	I2CDI	12CDI	12CDIS	12CDIS	12CDIS	12CDIS	12CDIS	12CDIS		
		S7	S6	5	4	3	2	1	0		
重置 0			0	0	0	0	0	0	0		

此寄存器关闭 I2C 总线接口。I2C 接口默认开启。如果要关闭 I2C 接口请配置 I2CDIS 寄存器 为"00011011"到 I2CDIS 寄存器。此时 I2C 接口关闭。

一但 I2C 接口关闭,将无法继续写入 I2CDIS 寄存器数据。若想重新启动 I2C 总线,需要重

中文资料技术手册

版本号: V1.0 翻译者: 出迷者 时间: 12-23-14

置磁力计或输入开始条件 8 次。

5.13 ASAX ASAY ASAZ: 灵敏值调节

地址	寄存器名	D7	D6	D5	D4	D3	D2	D1	D0			
	只读寄存器											
10H	ASAX	COEF	COEF	COEFX	COEFX	COEFX	COEFX	COEFX	COEFX			
		X7	Х6	5	4	3	2	1	0			
11H	ASAY	COEF	COEF	COEFY	COEFY	COEFY	COEFY	COEFY	COEFY			
		Y7	Y6	5	4	3	2	1	0			
12H	ASAZ	COEFZ	COEF	COEFZ	COEFZ	COEFZ	COEFZ	COEFZ	COEFZ			
		7	Z6	5	4	3	2	1	0			
Ī	重置	-	-	-	-	-	-	-	-			

每个轴的灵敏度数据调节,配置将存入 ROM

ASAX[7:0]:磁力计 X 轴调节值 ASAY[7:0]:磁力计 Y 轴调节值 ASAZ[7:0]:磁力计 Z 轴调节值

灵敏度调节

H 为寄存器测量数据, ASA 为灵敏度调节值, Hadj 位调节测量数据。

6.硬件特性

MPU-9250 具有支持安卓的先进硬件属性,你可以通过他简单的配置开关寄存器的功能的 属性。这些配置不是一上电就会开启,而是通过配置来开关。下面的这些数据均可以自己 计算而不需要外部处理器计算。

安卓定位

设置计算

运动唤醒

Batch 模式

四元素

更多的特性:

记步,方向

低功耗 4 元数

支持 WIN8 UMDF:

支持 CS/CSI 输出

中文资料技术手册

版本号: V1.0 翻译者: 出迷者 时间: 12-23-14

更多特性细节请参考 APP 说明: DMP 硬件功能编程说明文档

