# ALGORYTMY I STRUKTURY DANYCH WYKŁAD V (materiały pomocnicze)

Struktury danych, kolejka priorytetowa, struktura Find-Union



Polsko Japońska Wyższa Szkoła Technik Komputerowych

Warszawa, 7 grudnia 2008

### Plan wykładu:

- kolejka priorytetowa:
  - kopiec binarny drzewo,
  - kopiec binarny tablica,
  - kopiec binarny efektywna budowa,
  - kopiec binarny algorytm sortowania,
  - kopiec lewicowy,
- struktura Find-Union:
  - listy z balansowaniem,
  - drzewa n-arne z balansowaniem i kompresją ścieżek.

#### Idea (model standardowy kolejki priorytetowej):

- $\langle E \cup PQ \cup \{true, false\}, empty, member, min, insert, delmin \rangle$ , gdzie PQ jest uniwersum multizbiorów,
- $empty(pq) \equiv_{df} (pq = \emptyset)$ ,
- $member(pq, e) \equiv_{df} (e \in pq)$ ,
- $min(pq) =_{df} (min(\{e : e \in pq\})),$
- $insert(pq, e) =_{df} (pq \cup \{e\}),$
- $delmin(pq, e) =_{df} (pq \setminus min(\{e : e \in pq\})).$

### Specyfikacja kolejki priorytetowej:

- sygnatura:
  - $-\langle E \cup PQ, empty, member, min, insert, delmin \rangle$ ,
  - $empty: PQ \rightarrow \{true, false\},\$
  - member :  $PQ \times E \rightarrow \{true, false\}$ ,

#### Specyfikacja kolejki(c.d.):

• sygnatura:

```
-min: PQ \rightarrow E,
-insert: PQ \times E \rightarrow PQ,
-delmin: PQ \rightarrow PQ,
```

- aksjomaty:
  - $-\langle E, \leq \rangle$  jest zbiorem liniowo uporządkowanym,
  - $\ member \, (pq,e) \equiv P \, (pq,e), \, \text{gdzie P jest następującym programem} \\ \text{while (!empty(pq)) } \{ \\ \text{if (min(pq)==e) return true; else pq=delmin(pq);} \\ \} \\ \text{return false;}$

#### Specyfikacja kolejki(c.d.):

- aksjomaty:
  - $-\neg empty(pq) \Rightarrow (\forall e \in E (member(pq, e) \Rightarrow min(pq) \leq e)),$
  - member (insert (pq, e), e), $e \neq e' \Rightarrow member (pq, e) \equiv member (insert (pq, e'), e),$
  - member(min(pq), pq),  $e \neq min(pq) \Rightarrow member(pq, e) \equiv member(delmin(pq), e)$ ,
  - program while (!empty(pq)) pq=delmin(pq); ma własność stopu.

**Twierdzenie.** Dowolna struktura, która spełnia aksjomaty specyfikacji kolejki priorytetowej jest izomorficzna z pewną standardową strukturą kolejek priorytetowych.

**Pytanie.** Jaka jest złożoność średnia i pesymistyczna operacji kolejki priorytetowej min, insert oraz delmin w przypadku implementacji struktury odpowiednio w drzewie BST i AVL (zakładamy, że elementy kolejki priorytetowej nie powtarzają się)?

(kopiec binarny – drzewo)

**Definicja**. Kopcem binarnym (typu min) nazywamy drzewo binarne  $G = (V_G, E_G, et)$ , gdzie:

- $et: V_G \to E$  jest funkcją etykietowania wierzchołków i E jest pewnym niepustym, liniowo uporządkowanym zbiorem etykiet  $\langle E, \leq \rangle$ ,
- ullet dla każdej trójki wierzchołków u,v,w, jeżeli:
  - -v jest lewym następnikiem wierzchołka u, to  $et(u) \leq et(v)$ ,
  - -w jest prawym następnikiem wierzchołka u, to  $et\left(u\right)\leq et\left(w\right)$ ,



Uwaga! W dalszej części wykładu kopiec binarny będziemy nazywali kopcem.

#### Definicja (c.d.).

• drzewo jest drzewem doskonałym, z ewentualnym wyjątkiem ostatniego poziomu, na którym wszystkie liście są zgrupowane skrajnie na lewo (tzw. lewostronne wypełnienie)



**Uwaga!** Analogiczną definicję można wprowadzić dla kopców typu max. W dalszej części tego wykładu kopcem będziemy domyślnie nazywali kopiec typu min.

Pytanie. Czy kopiec jest drzewem zrównoważonym w sensie zrównoważenia struktury AVL?

Pytanie. Z ilu co najmniej i co najwyżej wierzchołków składa się kopiec wysokości 6?

### Przykłady:

• zbiór etykiet  $\langle \mathbb{N}, \leq \rangle$ :



ullet zbiór etykiet  $\langle \Pi, \leq_{leks} \rangle$ , gdzie  $\Pi$  jest zbiorem słów języka polskiego:



Szczegóły implementacji.



**Operacji** insert (pq, e) – **idea.** Niech H będzie kopcem-drzewem, będącym implementacją kolejki priorytetowej pq dla uniwersum elementów E, i niech e będzie elementem uniwersum E, wtedy:

- utwórz nowy wierzchołek z etykietą e na ostatnim poziomie drzewa i na "pierwszej wolnej" skrajnie lewej pozycji (odpowiednio dowiązania free.left albo free.right),
- ullet rozpoczynając od nowo utworzonego wierzchołka v:
  - jeżeli  $et\left(v\right) < et\left(v.parent\right)$ , zamień etykiety wierzchołków v oraz v.parent, przejdź do wierzchołka v.parent i powtórz postępowanie, w p.p. zakończ działanie algorytmu.

**Przykład.** Wstawiamy do kolejki priorytetowej  $pq = \{1, 2, 3, 3, 6, 8\}$  element 2.



**Operacja**  $delmin\left(pq\right)$  – **idea.** Niech H będzie kopcem-drzewem, będącym implementacją kolejki priorytetowej pq dla uniwersum elementów E, wtedy:

- ullet zamień etykiety wierzchołka korzenia oraz wierzchołka v znajdującego się na ostatnim poziomie drzewa i na "ostatniej zajętej" skrajnie prawej pozycji (dowiązanie last),
- usuń wierzchołek v,
- rozpoczynając od korzenia kopca (jeżeli  $empty\left(pq\right)=false$ ):
  - $-\,$  niech v będzie aktualnie rozważanym wierzchołkiem, wtedy jeżeli

$$et(v) > min(\{et(v.left), et(v.right)\}),$$

to zamień etykietę wierzchołka v z mniejszą z etykiet wierzchołków następników wierzchołka v, niech będzie to  $et\left(u\right)$ , przejdź do wierzchołka u i powtórz powyższe postępowanie, w p.p. zakończ działanie algorytmu.

**Przykład.** Usuwamy wierzchołek minimalny z kolejki priorytetowej  $pq = \{1, 2, 3, 3, 6, 8\}$ .



**Pytanie.** Jaka jest złożoność średnia i pesymistyczna operacji kolejki priorytetowej min, insert oraz delmin w przypadku implementacji struktury w kopcu-drzewie?

**Pytanie.** Jaka jest złożoność średnia i pesymistyczna operacji member w przypadku implementacji struktury w kopcu-drzewie?

(kopiec binarny - tablica)

### Kolejka priorytetowa – kopiec binarny - tablica

Pytanie. Czy kopiec binarny można efektywnie zaimplementować w tablicy statycznej?

**Odpowiedź.** Tak, przy założeniu, że "z góry" znamy maksymalną liczbę n elementów przechowywanych w strukturze kopca. Wtedy dla każdego wierzchołka kopca-drzewa v, jeżeli indeks elementu v w tablicy statycznej T równy jest i, to (dla ułatwienia przyjmujemy, że tablica T indeksowana jest począwszy od wartości 1 do n):

- $\bullet$  następnik lewy oraz prawy wierzchołka v, o ile istnieją, to elementy tablicy  $T\left[2\cdot i\right]$  oraz  $T\left[2\cdot i+1\right]$ ,
- poprzednik wierzchołka v, o ile istnieje, to element  $T\left[\left\lfloor \frac{i}{2}\right\rfloor\right]$ .

**Przykład.** Kolejka priorytetowa  $pq = \{B, C, D, H, G, S\}$  i jej równoważne implementacje, kopiec-drzewo i kopiec-tablica.



### Kolejka priorytetowa – kopiec binarny - tablica

**Operacja** insert (pq, e) – **idea.** Niech T będzie kopcem-tablicą, będącą implementacją kolejki priorytetowej pq dla uniwersum elementów E, i niech e będzie elementem uniwersum E, wtedy:

- ullet wstaw element e na "pierwszą wolną" pozycję w tablicy T, niech będzie to pozycja i-ta,
- ullet rozpoczynając rozpoczynając od elementu  $T\left[i\right]$ :
  - jeżeli  $T\left[i\right] < T\left[\frac{i}{2}\right]$ , zamień elementy  $T\left[i\right]$  oraz  $T\left[\frac{i}{2}\right]$ , podstaw  $i = \left\lfloor \frac{i}{2} \right\rfloor$  i powtórz postępowanie, w p.p. zakończ działanie algorytmu.

**Przykład.** Wstawiamy do kolejki priorytetowej  $pq = \{B, C, D, H, G, S\}$  element A.



**Pytanie.** Jaka jest złożoność średnia i pesymistyczna operacji kolejki priorytetowej insert w przypadku implementacji struktury w kopcu-tablicy?

### Kolejka priorytetowa – kopiec binarny - tablica

**Operacja**  $delmin\left(pq\right)$  – **idea.** Niech H będzie kopcem-tablicą, będącą implementacją kolejki priorytetowej pq dla uniwersum elementów E, wtedy:

- ullet podstaw  $T\left[1
  ight]=T\left[i
  ight]$  , gdzie i jest indeksem "ostatniej zajętej" pozycji w tablicy T,
- usuń element i-ty tablicy T,
- rozpoczynając od elementu T[1] (jeżeli empty(pq) = false):
  - niech j będzie indeksem aktualnie rozważanego elementu w tablicy T, wtedy jeżeli

$$T[j] > \min \left( \left\{ T[2 \cdot j], T[2 \cdot j + 1] \right\} \right),$$

to zamień  $T\left[j\right]$  z mniejszym z elementów  $T\left[2\cdot j\right], T\left[2\cdot j+1\right]$ , niech będzie to  $T\left[k\right]$ , podstaw j=k i powtórz powyższe postępowanie, w p.p. zakończ działanie algorytmu.

### <u>Kolejka priorytetowa – kopiec binarny - tablica</u>

**Przykład.** Usuwamy wierzchołek minimalny z kolejki priorytetowej  $pq = \{B, C, D, H, G, S\}$ .



**Pytanie.** Jaka jest złożoność średnia i pesymistyczna operacji kolejki priorytetowej delmin w przypadku implementacji struktury w kopcu-tablicy?

**Pytanie.** Jaka jest złożoność średnia i pesymistyczna operacji min oraz member w przypadku implementacji struktury w kopcu-tablicy?

**Pytanie.** Jak efektywnie wyznaczyć pierwszą wolną/ostatnią zajętą pozycję w kopcu-tablicy T? Czy brak dodatkowej pamięci zmieni rząd złożoności operacji insert albo delete?

(kopiec binarny – efektywna budowa)

Paweł Rembelski

### Kolejka priorytetowa – kopiec binarny - efektywna budowa

**Idea algorytmu HeapConstruct.** Niech  $e_1, e_2, \ldots, e_n$  będzie ciągiem n elementów pewnego zbioru E z wyróżnioną relacją porządku liniowego  $\leq$ :

- ullet zapisz elementy ciągu w tablicy T (dla ułatwienia przyjmujemy, że tablica T indeksowana jest począwszy od wartości 1 do n),
- dla  $i = \lfloor \frac{n}{2} \rfloor, \lfloor \frac{n}{2} \rfloor 1, \dots, 1$  wykonaj (\*):
  - $-\,$  niech j będzie indeksem aktualnie rozważanego elementu w tablicy T, wtedy jeżeli

$$T[j] > min(\{T[2 \cdot j], T[2 \cdot j + 1]\}),$$

to zamień  $T\left[j\right]$  z mniejszym z elementów  $T\left[2\cdot j\right], T\left[2\cdot j+1\right]$ , niech będzie to  $T\left[k\right]$ , podstaw j=k i powtórz powyższe postępowanie, w p.p. przerwij działanie i powróć do (\*).

### Kolejka priorytetowa – kopiec binarny - efektywna budowa

**Zadanie.** Przedstaw "krok po kroku" działanie algorytmu HeapConstruct dla ciągu liczb 4,5,2,8,9,4,1,7,6.

Fakt. Pesymistyczną złożoność czasową algorytmu HeapConstruct można ograniczyć przez

$$W(n) \leq \sum_{h=0}^{\lfloor \lg n \rfloor} \left( \left\lceil \frac{n}{2^{h+1}} \right\rceil \cdot O(h) \right),$$

gdzie  $\left\lceil \frac{n}{2^{h+1}} \right\rceil$  jest górnym ograniczeniem liczby węzłów będących korzeniami poddrzew wysokości h w kopcu n-elementowym, stąd

$$W(n) \leq n \sum_{h=0}^{\lfloor \lg n \rfloor} \left\lceil \frac{O(h)}{2^{h+1}} \right\rceil = O\left(n \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h}\right)$$

i ponieważ  $\sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h} \leq \sum_{h=0}^{\infty} \frac{h}{2^h} = 2$ , to  $W\left(n\right) = O\left(n\right)$ .

**Pytanie.** Czy złożoność czasową algorytmu HeapConstruct w wariancie implementacji strukturze dowiązaniowej (drzewie binarnym) jest także rzędu  $O\left(n\right)$ ?

Pytanie. Jaka jest złożoność pamięciowa algorytmu HeapConstruct?

(kopiec binarny – sortowanie)

### Kolejka priorytetowa – kopiec binarny - algorytm sortowania

Idea algorytmu HeapSort. Niech  $e_1, e_2, \ldots, e_n$  będzie ciągiem n elementów pewnego zbioru E z wyróżnioną relacją porządku liniowego  $\leq$  , wtedy:

- zbuduj kopiec prze kolejne wstawienie elementów rozważanego ciągu do początkowo pustej struktury albo stosując algorytm HeapConstruct,
- wykonaj n razy operację min oraz delmin.

Rezultatem działania algorytmu jest uporządkowana niemalejąco permutacja elementów ciągu $e_1,e_2,\ldots,e_n$ .

**Zadanie.** Przedstaw "krok po kroku" działanie algorytmu HeapSort dla ciągu liczb 4,5,2,8,9,4,1,7,6.

Pytanie. Jaka jest średnia i pesymistyczna złożoność czasowa algorytmu HeapSort?

Pytanie. Jaka jest złożoność pamięciowa algorytmu HeapSort?

(kopiec lewicowy)

**Definicja**. Kopcem lewicowym nazywamy drzewo binarne  $G=(V_G,E_G,et)$ , gdzie:

- $et: V_G \to E$  jest funkcją etykietowania wierzchołków i E jest pewnym niepustym, liniowo uporządkowanym zbiorem etykiet  $\langle E, \leq \rangle$ ,
- etykiety wierzchołków ułożone są zgodnie z porządkiem kopcowym (typu min albo max),



#### Przykłady:

• drzewa binarne będące kopcami lewicowymi, zbiór etykiet  $\langle \mathbb{N}, \leq \rangle$ :



• drzewa binarne nie będące kopcami lewicowymi, zbiór etykiet  $\langle \Pi, \leq_{leks} \rangle$ :



**Lemat.** Niech H będzie kopcem lewicowym składającym się z n wierzchołków. Długość skrajnie prawej ścieżki w kopcu H jest nie większa niż  $\lfloor \lg n \rfloor$ .

**Dowód.** Załóżmy, że H jest n-elementowym kopcem lewicowym, w którym skrajnie prawa ścieżka jest długości d większej niż  $\lfloor \lg n \rfloor$ . Ponieważ kopiec H jest drzewem lewicowym, to do poziomu d włącznie jest także drzewem doskonałym (w p.p. istniałaby ścieżka korzeń-wierzchołek nie posiadający lewego lub prawego następnika o długości mniejszej niż d, czyli kopiec H nie byłby drzewem lewicowym). Stąd kopiec H zbudowany jest z co najmniej  $2^{d+1}-1$  wierzchołków. Ponieważ z założenia  $d>\lfloor \lg n \rfloor$ , to  $2^{d+1}-1>2^{\lfloor \lg n \rfloor+1}-1\geq 2^{\lg n}$ , czyli liczba wierzchołków w kopcu H jest większa niż  $2^{\lg n}=n$  – sprzeczność.

Ostatecznie w każdym n-elementowym kopcu lewicowym długość skrajnie prawej ścieżki jest mniejsza albo równa  $\lfloor \lg n \rfloor$ .

**Operacja**  $merge(v_1,v_2)$  – **idea.** Niech  $v_1$  oraz  $v_2$  będą dowiązaniami do korzeni kopców lewicowych odpowiednio  $H_1$  oraz  $H_2$ . Wykonaj kolejno:

- ullet jeżeli drzewo  $H_1$  albo  $H_2$  jest drzewem pustym, to:
  - jeżeli drzewo  $H_1$  jest drzewem pustym, to rezultatem scalania jest drzewo  $H_2$ , w.p.p. rezultatem scalania jest drzewo  $H_1$ ,
- w p.p.:
  - jeżeli  $et(v_1) > et(v_2)$ , to zamień miejscami poddrzewa o korzeniach  $v_1$  oraz  $v_2$ ,
  - wykonaj rekurencyjnie scalanie  $v_1.right = merge(v_1.right, v_2)$ ,
  - jeżeli  $d\left(sps\left(v_1.left\right)\right) < d\left(sps\left(v_1.right\right)\right)$ , to zamień miejscami poddrzewa o korzeniach  $v_1.left$  oraz  $v_1.right$ ,
  - rezultatem scalania jest drzewo o korzeniu w wierzchołku  $v_1$ .

**Przykład.** Scalanie dwóch kopców lewicowych z użyciem metody merge. Kolorem czerwonym zaznaczono wierzchołki będące argumentami porównania  $et\left(v_1\right)>et\left(v_2\right)$ , kolorem zielonym właściwe scalanie a kolorem niebieskim wierzchołek korzeń będący argumentem porównania  $d\left(sps\left(v_1.left\right)\right)< d\left(sps\left(v_1.right\right)\right)$ .



Wniosek. Jeżeli  $v_1$  oraz  $v_2$  są dowiązaniami do korzeni kopców lewicowych, to rezultat operacji  $merge(v_1.right, v_2)$  jest także kopcem lewicowym.

**Wniosek.** Niech  $v_1$  oraz  $v_2$  będą dowiązaniami do korzeni kopców lewicowych odpowiednio n i m wierzchołkowego, wtedy

$$W\left(merge(v_1.right, v_2), n, m\right) = O\left(\lg\left(\max\left(n, m\right)\right)\right).$$

.**Prytanie.** Jaka jest złożoność pamięciowa operacji merge?

**Operacja** insert (pq, e) – **idea**. Niech  $H_1$  będzie kopcem lewicowym z wierzchołkiem korzeniem  $v_1$ , będącym implementacją kolejki priorytetowej pq dla uniwersum elementów E, i niech e będzie elementem uniwersum E, wtedy:

- ullet utwórz nowy 1-wierzchołkowy kopiec lewicowy  $H_2$  o korzeniu  $v_2$  z etykietą e,
- wykonaj  $v_1 = merge(v_1, v_2)$ .

**Operacja** delmin(pq) – **idea.** Niech H będzie kopcem lewicowym z wierzchołkiem korzeniem v, będącym implementacją kolejki priorytetowej pq dla uniwersum elementów E, wtedy:

- usuń wierzchołek v,
- wykonaj v = merge(v.left, v.right).

**Pytanie.** Jaka jest złożoność czasowa i pamięciowa operacji kolejki priorytetowej min, insert, delmin w przypadku implementacji struktury w kopcu lewicowym?

**Przypomnienie.** Niech  $E = \{e_1, e_2, \dots, e_n\}$  będzie zbiorem, podziałem zbioru E nazywamy rodzinę zbiorów  $U = \{S_1, S_2, \dots, S_k\}$  taką, że:

- $S_i \neq \emptyset$ , dla każdego  $1 \leq i \leq k$ ,
- $S_i \cap S_j = \emptyset$ , dla każdego  $1 \le i < j \le k$ ,
- $\bullet \bigcup_{i=1}^k S_i = E.$

Idea struktury Find-Union: niech  $U=\{S_1,S_2,\ldots,S_k\}$  będzie podziałem zbioru  $E=\{e_1,e_2,\ldots,e_n\}$  a  $\mathcal U$  zbiorem wszystkich możliwych podziałów zboru E, wtedy

- $\langle E \cup \mathcal{U}, init, find, union \rangle$ ,
- $init(E) =_{df}(U)$  taki, że dla każdego  $1 \le i \le k$  zachodzi  $|S_i| = 1$ ,
- $find(U, e) =_{df} (S_i \in U)$  taki, że  $e \in S_i$  i  $1 \le i \le k$ ,
- $union(U, S_i, S_j) =_{df} (U')$  taki, że  $U' = (U \setminus \{S_i, S_j\}) \cup \{S_i \cup S_j\}$  i  $1 \le i < j \le k$ .

(listy z balansowaniem)

### Struktura Find-Union - listy z balansowaniem

### Reprezentacja zbioru $S_i$ :



gdzie:

- ullet  $e_1$  reprezentant zbioru  $S_i$ ,
- i licznik elementów zbioru  $S_i$ , tj.  $i = |S_i|$ .

### Struktura Find-Union - listy z balansowaniem

#### Szkic realizacji operacji:

- init(E) utworzenie n jednoelementowych list,
- find(U, e) odczytanie etykiety elementu e.head,
- $union(U, S_i, S_j)$  przyłączenie listy krótszej na koniec dłuższej (tzw. balansowanie), dla każdego elementu listy krótszej zmiana dowiązań do reprezentanta zbioru.

**Zadanie.** Przedstaw krok po kroku stan struktury Find-Union U dla zbioru  $E=\{1,2,3,4,5,6\}$  i ciągu operacji:

```
init\left(E\right); union\left(U, find\left(U, 1\right), find\left(U, 2\right)\right); union\left(U, find\left(U, 5\right), find\left(U, 6\right)\right); \\ union\left(U, find\left(U, 2\right), find\left(U, 6\right)\right); union\left(U, find\left(U, 3\right), find\left(U, 6\right)\right).
```

**Twierdzenie.** Koszt ciągu operacji init, oraz przemieszanych m operacji find oraz n operacji union dla implementacji struktury Find-Union w postaci zbioru list z balansowaniem jest rzędu  $O\left(m+n\lg n\right)$ .

(drzewa n-arne z balansowaniem i kompresją ścieżek)

### <u>Struktura Find-Union – drzewa n-arne z balansowaniem i kompresją ścieżek</u>

#### Reprezentacja zbioru $S_i$ :



gdzie:

- ullet  $e_1$  reprezentant zbioru  $S_i$ ,
- i licznik elementów zbioru  $S_i$ , tj.  $i = |S_i|$ .

### <u>Struktura Find-Union – drzewa n-arne z balansowaniem i kompresją ścieżek</u> Szkic realizacji operacji:

- init(E) utworzenie n jednoelementowych drzew,
- find (U,e) przejście ścieżki z wierzchołka o etykiecie e do korzenia drzewa i odczytanie
  etykiety w korzeniu drzewa, w trakcie przechodzenia "dowiązanie" atrybutu parent,
  wszystkich odwiedzonych wierzchołków, bezpośrednio do korzenia drzewa (tzw. kompresja
  ścieżek), np.



### <u>Struktura Find-Union – drzewa n-arne z balansowaniem i kompresją ścieżek</u> Szkic realizacji operacji (c.d.):

•  $union(U, S_i, S_j)$  – przyłączenie mniejszego drzewa bezpośrednio do korzenia drzewa większego (tzw. balansowanie).

**Zadanie.** Przedstaw krok po kroku stan struktury Find-Union U dla zbioru  $E=\{1,2,3,4,5,6\}$  i ciągu operacji:

$$init(E); union(U, find(U, 1), find(U, 2)); union(U, find(U, 5), find(U, 6));$$
  $union(U, find(U, 2), find(U, 6)); union(U, find(U, 3), find(U, 6)).$ 

**Twierdzenie.** Koszt ciągu operacji init, oraz przemieszanych m operacji find oraz n operacji union dla implementacji struktury Find-Union w postaci zbioru drzew z balansowaniem i kompresją ścieżek jest rzędu  $O\left((m+n)\lg^*n\right)$ , gdzie

$$\lg^* n = \min \left( i \in \mathbb{N} : \left\lfloor \underbrace{\lg \lg \dots \lg}_{i}(n) \right\rfloor = 1 \right).$$