1 Opener

- 1.1 Suppose a 4×4 matrix U has dim(row(U)) = 3. What is its rank?
- 1.2 Suppose a 4×4 matrix U has dim(row(U)) = 1. What is its nullity (the dimension of its null space)?
- 1.3 Loosely describe the process to find the null space of a matrix.

2 Orthogonal Vectors

2.1 Conditions for Orthogonality

Two vectors \vec{u}, \vec{v} are orthogonal if their dot product is 0:

$$\vec{u} \cdot \vec{v} = 0$$

Subsequently, an *orthogonal set of vectors* is a set $\{\vec{u_1}, \vec{u_2}, \dots, \vec{u_k}\}$ where each vector is mutually orthogonal:

- 1. $\vec{u_j} \cdot \vec{u_j} = 0$ if $i \neq j$
- 2. $\vec{u_1} \neq \vec{0}$ for all i

Additionally, the set is orthonormal if each such dot product is either 0 or 1 (when i = j).

Also, orthogonal vectors are definitionally linearly independent!

We can normalize an orthonormal set by dividing each vector by its magnitude. For example:

$$\left\{ \frac{1}{||\vec{u_1}||} \vec{u_1}, \frac{1}{||\vec{u_2}||} \vec{u_2}, \dots, \frac{1}{||\vec{u_k}||} \vec{u_k} \right\}$$

This is just changing the vector to point in the same direction but with its magnitude coerced to 1.

- 2.1 If the dot product of a vector times itself is 1, what does this mean in practice?
- 2.2 An orthogonal set/orthonormal set is a basis of the subspace $V = span\{\vec{u_1}, \vec{u_2}, \dots, \vec{u_k}\}$.
- 2.3 Suppose $\{\vec{u_1}, \vec{u_2}\} = \{[1, 1]^T, [-1, 1]^T\}$. Find whether this set is orthogonal and/or orthonormal.

3 Orthogonal Matrices

An $n \times n$ matrix U is orthogonal if $UU^T = U^TU = I$. Since U is assumed to be square, it's enough to check that one of these equalities to I holds.

It turns out that the rows of an $n \times n$ orthogonal matrix form an *orthonormal* basis of \mathbb{R}^n ! Similarly, you can construct an $n \times n$ orthogonal matrix using an orthonormal basis of \mathbb{R}^n .

The determinant of an orthogonal matrix is ± 1 .

3.1 Is the matrix
$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$
 orthogonal? What is its determinant?

4 Gram-Schmidt Process

(Live walkthrough using textbook)

- 4.1 Find an orthogonal basis for the space spanned by $[-1, -2, 1]^T$ and $[0, 1, -2]^T$.
- 4.2 Find an orthogonal basis for the column space of $\begin{bmatrix} 2 & 1 \\ 2 & 1 \\ 6 & 0 \end{bmatrix}$.
- 4.3 Find an orthonormal basis for the column space of $\begin{bmatrix} 2 & -1 \\ 8 & -1 \\ 0 & 2 \end{bmatrix}$.

5 Closing

Let's finish up with a few conceptual questions!

- Suppose we have a set of three vectors with magnitudes of 1 in \mathbb{R}^n such that $\vec{u_1}$ lies along the x-axis, $\vec{u_2}$ lies along the z-axis, and $\vec{u_3}$ lies along the y-axis. What space do these vectors form a basis of? Is the basis orthogonal? Orthonormal?
- 5.2 Suppose we construct a matrix using the same vectors, $U = \begin{bmatrix} \vec{u_1}^T \\ \vec{u_2}^T \\ \vec{u_3}^T \end{bmatrix}$. What is the determinant of this matrix?