Высшая математика

Лисид Лаконский

April 2023

Содержание

		2
.1	Задание №1	2
.2	Задание №2	2
.3	Задание №3	2
.4	Задание №4	2
.5	Задание №5	
.6	Задание №6	9
.7	Задание №7	
.8	Задание №8	4
.9	Задание №9	4
.10	Задание №10	4
	.1 .2 .3 .4 .5 .6 .7 .8	'яды, вариант №21 .1 Задание №1 .2 Задание №2 .3 Задание №3 .4 Задание №4 .5 Задание №5 .6 Задание №6 .7 Задание №7 .8 Задание №8 .9 Задание №9 .10 Задание №10

Ряды, вариант №21

Задание №1 1.1

Исследовать ряд на сходимость.

$$\sum_{n=0}^{\infty} \frac{1}{n^{10} + 9}$$

тешение.
$$\sum_{n=0}^{\infty} \frac{1}{n^{10}+9} \sim \sum_{n=0}^{\infty} \frac{1}{n^{10}}$$
 — эталонный ряд Степень при n больше единицы — следовательно, ряд сходится.

Ответ: ряд сходится

Задание №2 1.2

Исследовать ряд на сходимость.

$$\sum_{n=2}^{\infty} \frac{\sqrt[4]{n^2 + 1}}{n^3 - 1}$$

Решение.

Более большой ряд: $\sum\limits_{n=2}^{\infty}\frac{n^{1/2}}{n^2}=\sum\limits_{n=2}^{\infty}\frac{1}{n^{3/2}}$ — эталонный ряд, сходящийся

По признаку сравнения из сходимости большего ряда следует сходимость более маленького ряда, следовательно, исходный ряд сходится.

Ответ: ряд сходится

Задание №3 1.3

Исследовать ряд на сходимость.

$$\sum_{n=0}^{\infty} \frac{(n+5)^8}{(n+7)^7}$$

Решение. $\lim_{n\to\infty}\frac{(n+5)^8}{(n+7)^7}=\infty -\text{необходимый признак сходимости не выполнен, следовательно, ряд расходится }$

Ответ: ряд расходится

Задание №4 1.4

Исследовать ряд на сходимость.

$$\sum_{n=1}^{\infty} \frac{n^2}{(n!)^4}$$

Решение.
$$\lim_{n\to\infty}(\frac{(n+1)^2}{(n!*(n+1))^4}*\frac{(n!)^4}{n^2})=\lim_{n\to\infty}\frac{(n+1)^2}{(n+1)^4*n^2}=\lim_{n\to\infty}\frac{1}{(n+1)^2*n^2}=0$$
 По признаку Д'Аламбера, ряд является сходящимся

Ответ: ряд сходится

Задание №5

Исследовать ряд на сходимость (абсолютную и условную).

$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{n+7}$$

Решение.

Проверим абсолютную сходимость, для этого исследуем ряд $\sum_{n=1}^{\infty} \frac{n}{n+7}$ на сходимость.

 $\lim_{n \to \infty} \frac{n}{n+7} = 1$ — не выполнен необходимый признак сходимости, следовательно, исходный ряд не является абсолютно сходящимся

Проверим условную сходимость.

Проверим выполнение первого условия теоремы Лейбница: $\sum_{n=1}^{\infty} \frac{(-1)^n n}{n+7} = -\frac{1}{8} + \frac{2}{9} - \frac{3}{10}$ — условие выполняется Проверим выполнение второго условия: $\lim_{n \to \infty} \frac{n}{n+7} = 1$ — условие не выполняется, ряд не является условную сходящимся

по теореме Лейбница

Ответ: ряд не сходится ни абсолютно, ни условно

1.6 Задание №6

Исследовать ряд на сходимость (абсолютную и условную)

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[4]{n^3 + 2}}$$

Решение.

Проверим абсолютную сходимость, для этого исследуем ряд $\sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{n^3+2}}$ на сходимость.

Пусть
$$f(x) = \frac{1}{\sqrt[4]{n^3 + 2}}$$
.

 $\int\limits_{1}^{\infty}(rac{1}{\sqrt[4]{n^3+2}})\,\mathrm{d}n=\infty$ — интеграл расходится, следовательно, ряд тоже является расходящимся, согласно интегральному

Проверим выполнение первого условия теоремы Лейбница: $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[4]{n^3+2}} = -\frac{1}{\sqrt[4]{3}} + \frac{1}{\sqrt[4]{10}} - \dots$ первое условие выполняется Проверим выполнение второго условия: $\lim_{n\to\infty}\frac{1}{\sqrt[4]{n^3+2}}=0$ — условие выполняется, следовательно, ряд является условно сходящимся по теореме Лейбница

Ответ: ряд не сходится абсолютно, но сходится условно

1.7 Задание №7

Исследовать ряд на сходимость (абсолютную и условную).

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3 + n}$$

Решение.

Проверим абсолютную сходимость.

Введем
$$f(x) = \frac{1}{x^3 + x}$$

$$\int\limits_{1}^{\infty} \frac{1}{x^3+x} \, \mathrm{d}x = \int\limits_{1}^{\infty} (\frac{1}{x} - \frac{x}{x^2+1}) \, \mathrm{d}x = \lim_{\beta \to \infty} (\ln x - \frac{1}{2} \ln(x^2+1)) \bigg|_{1}^{\beta} = \frac{\ln 2}{2} - \text{ряд сходится абсолютно, так как сходится интеграл, согласно интегральному признаку Коши$$

Проверим условную сходимость.

Первое условие теоремы Лейбница выполняется — каждый последующий член по модулю меньше предыдущего. $\lim_{x\to\infty}\frac{1}{x^3+x}=0$ — второе условие теоремы Лейбница выполняется. Следовательно, ряд сходится условно

Ответ: ряд сходится и абсолютно, и условно

Задание №8 1.8

Исследовать ряд на сходимость (абсолютную и условную)

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n - 2\ln n}$$

Решение.

Проверим абсолютную сходимость. Для этого исследуем на сходимость ряд $\sum_{n=0}^{\infty} \frac{1}{n-2\ln n}$

Более маленький ряд: $\sum\limits_{n=2}^{\infty}\frac{1}{n}$ — эталонный ряд, расходится.

Так как более маленький ряд расходится, то, согласно признаку сравнения, данный ряд тоже расходится. То есть, исходный ряд не сходится абсолютно.

Проверим условную сходимость.

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n - 2\ln n} = -\frac{1}{2 - 2\ln 2} + \frac{1}{3 - 2\ln 3} - \frac{1}{4 - 2\ln 4}$$

 $\sum_{n=2}^{\infty} \frac{(-1)^n}{n-2\ln n} = -\frac{1}{2-2\ln 2} + \frac{1}{3-2\ln 3} - \frac{1}{4-2\ln 4}.$ Видим, что первое условие теоремы Лейбница выполняется. $\lim_{n\to\infty} \frac{1}{n-2\ln n} = 0$ — второе условие теоремы Лейбница выполняется. То есть, исходный ряд сходится условно.

Ответ: ряд не сходится абсолютно, но сходится условно.

1.9 Задание №9

Найти область сходимости функционального ряда.

$$\sum_{n=1}^{\infty} \frac{1}{n^3 + x^2}$$

$$\lim_{n\to\infty} |\frac{u_{n+1}(x)}{u_n(x)}| = \lim_{n\to\infty} \frac{n^3+x^2}{(n+1)^3+x^2} = \lim_{n\to\infty} \frac{n^3+x^2}{n^3+3n^2+3n+1+x^2} = \lim_{n\to\infty} \frac{1+\frac{x^2}{n^3}}{1+\frac{3}{n}+\frac{1}{n^3}+\frac{x^2}{n^3}} = 1 - \text{признак неприменим}$$

Задание №10 1.10

Найти область сходимости функционального ряда.

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 2^n x^{2n}}{\sqrt{n}}$$

$$\lim_{n \to \infty} |\frac{u_{n+1}(x)}{u_n(x)}| = \lim_{n \to \infty} |\frac{2^{n+1}x^{2(n+1)}}{\sqrt{n+1}} * \frac{\sqrt{n}}{2^nx^{2n}}| = \lim_{n \to \infty} |\frac{2*x^2*\sqrt{n}}{\sqrt{n+1}}| = 2x^2$$
 Ряд сходится при $2x^2 < 1 \Longleftrightarrow x^2 < \frac{1}{2} \Longleftrightarrow -\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$

$$x = -\frac{1}{\sqrt{2}}, \sum_{n=1}^{\infty} \frac{(-1)^{n+1} 2^n (-\frac{1}{\sqrt{2}})^{2n}}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} * 2^n * 1^n}{2^n * \sqrt{n}} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} * 1^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(-1)^{3n+1}}{\sqrt{n}}$$

Отдельно проверям граничные зна иних. $x = -\frac{1}{\sqrt{2}}, \sum_{n=1}^{\infty} \frac{(-1)^{n+1}2^n(-\frac{1}{\sqrt{2}})^{2n}}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}*2^n*1^n}{2^n*\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}*1^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(-1)^{3n+1}}{\sqrt{n}}$ Проверим сходимость данного ряда: $\lim_{n \to \infty} \frac{(-1)^{3(n+1)+1}}{\sqrt{n+1}} * \frac{\sqrt{n}}{(-1)^{3n+1}} = \lim_{n \to \infty} \frac{-\sqrt{n}}{\sqrt{n+1}} = -1$ по признаку Д'Аламбера, ряд

При $x = \frac{1}{\sqrt{2}}$ ряд так же сходится.

Ответ: $-\frac{1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}}$