$\overline{\mathcal{R}}$ OBERT \mathcal{S} TAŃCZY

http://www.math.uni.wroc.pl/~stanczr/A/15.pdf

Zadanie 171. Sformułować twierdzenie Picarda-Lindolöfa oraz w zależności od parametrów $\alpha \ge 0$ oraz $\beta \ge 0$ zbadać istnienie i jednoznaczność rozwiązań zagadnienia początkowego

$$x'(t) = |x(t)|^{\alpha}, \ x(0) = \beta.$$

Zadanie 172. Sformułować twierdzenie Peano. Znaleźć maksymalny przedział $[0, \alpha]$ (jeśli istnieje, jeśli nie to wyznaczyć kres górny wartości α) na którym istnieje rozwiązanie zagadnienia z poprzedniego zadania dla $\alpha = 0, 1, 2$ oraz $\beta = 0, 1$.

Zadanie 173. Podać wzór ogólny dla iteracji Picarda dla zagadnienia początkowego

$$x'(t) = f(t, x(t)), x(0) = x_0.$$

Wykazać zbieżność iteracji Picarda dla zagadnienia początkowego

$$x'(t) = 2x(t), x(0) = 1.$$

oraz pokazać, że granica ciągu tych iteracji jest rozwiązaniem tego zagadnienia.

Zadanie 174. Wykazać, że każde równanie o zmiennych rozdzielonych jest równaniem zupełnym. Rozwiązać równanie $y'(x) = (y(x)^2 + 1)x$ dwoma metodami: jako równanie zupełne oraz rozdzielając zmienne.

Zadanie 175. Sformułować lemat Gronwalla i wykorzystać do wykazania jednoznaczności rozwiązań zagadnienia początkowego

$$x'(t) = 3x(t), x(0) = 4.$$

Zadanie 176. Dla jakich wartości parametru α równanie

$$x''(t) + 4x(t) = \sin(\alpha t)$$

- a) posiada przynajmniej jedno rozwiązania ograniczone,
- b) posiada przynajmniej jedno rozwiązanie, którego granica przy $t \to \infty$ wynosi zero,
- c) posiada przynajmniej jedno rozwiązanie nieograniczone.

Zadanie 177. Dla jakich wartości parametru c równanie x'' + cx' + x = 0 posiada rozwiązania: a) ograniczone, b) zbieżne do zera, c) nieograniczone. Jakiemu modelowi odpowiada to równanie.

Zadanie 178. Znaleźć rozwiązania ograniczone układu zachowawczego z jednym stopniem swobody dla równania $x'' = 2x - 4x^3$. Wsk. posłużyc się portretem fazowym w przestrzeni (x, x').

Zadanie 179. Dla zagadnienia poczatkowego

$$\bar{x}' = \begin{pmatrix} a & 1 \\ 0 & -1 \end{pmatrix} \bar{x}, \quad \bar{x}(0) = \begin{pmatrix} c \\ d \end{pmatrix};$$

wyznaczyć takie wartości a, c, d aby $x_1^2(t) + x_2^2(t)$ było nieograniczone.

Zadanie 180. Obliczyć $\exp(At)$ dla macierzy diagonalnej. Znaleźć zagadnienie początkowe dla jakiego ta funkcja jest rozwiązaniem.

Zadanie 181. Pokazać różnicę w przypadku układów liniowych z macierzami o wartościach własnych dwukrotnych (algebraicznie) o krotności geometrycznej 1 oraz 2.

Zadanie 182. Załóżmy, że ciąg $(a_k)_{k=1}^{\infty}$ jest ograniczony. Wykazać, że funkcja

$$u(x,t) = \sum_{k=1}^{\infty} a_k \sin(k\pi x) e^{-k^2 \pi^2 t}$$

jest dwukrotnie różniczkowalna w zbiorze $(x,t) \in [0,1] \times (0,\infty)$ oraz, że jest w tym zbiorze rozwiązaniem równania ciepła. Wsk. założyć najpierw, że $t \ge \delta > 0$.

Zadanie 183. Metodą szeregów potęgowych rozwiązać zagadnienie początkowe

$$tx'' - tx' - x = 0$$
, $x(0) = 0$, $x'(0) = 1$,

a następnie wyznaczyć promień zbieżności odpowiedniego szeregu i jego pochodnych.

Zadanie 184. Obliczyć transformatę Laplace'a obydwu stron równania $y''(t) + y'(t) = -te^t$. Wykazać, że $\mathcal{L}(-tf(t)) = (\mathcal{L}(f(t)))'$ oraz sformułować założenia dotyczące funkcji f aby powyższe wyrażenia były dobrze określone.

Zadanie 185. Podać definicję stabilności rozwiązania stałego $x(t) \equiv x_0$ dla równania x'(t) = f(x(t)) dla którego $f(x_0) = 0$. Zbadać korzystając z definicji stabilność rozwiązań stałych dla funkcji $f(x) = x - x^2$.

Zadanie 186. Sformułować wzór d'Alamberta dla równania struny $u_{tt} = u_{xx}$ oraz warunków początkowcych $u(x,0) = x^2$, $u_t(x,0) = 0$ oraz znaleźć krzywą na płaszczyźnie (x,t) na której funkcja u przyjmuje najmniejszą wartość. Znaleźć charakterystyki dla tego równania i uzasadnić, że rozwiązanie zagadnienia początkowego jest tylko jedno.

Zadanie 187. Wykazać, że funkcje $\xi(x,t) = x + t$ i $\eta(x,t) = x - t$ są charakterystykami równania oraz że przy ich pomocy można sprowadzić równanie $u_{xx} - u_{tt} = u_x + u_t$ do postaci kanonicznej, a następnie je rozwiązać Dla jakiej funkcji g rozwiązanie tego równania spełniające $u(x,x) = x, u_x(x,x) + u_t(x,x) = g(x)$ posiada dokładnie jedno rozwiązanie? Zinterpretować wynik nawiązując do tw. Cauchy-Kowalewskiej.

Zadanie 188. Znaleźć charakterystyki dla równania

$$xu_x + yu_y = 0$$

oraz wykazać, że funkcja u(x,y) = x/y jest stała na charakterystykach. Znaleźć inne rozwiązania zdefiniowane także na półprostych zawartych w y = 0. Znaleźć rozwiązanie równania z warunkiem poczatkowym u(x,0) = 0.

Zadanie 189. Wykazać, że funkcja u dana wzorem uwikłanym u = f(x - ut) spełnia równanie $uu_x + u_t = 0$. Znaleźć poziomice funkcji u dla f(x) = x, x > 0 oraz $f(x) = 0, x \le 0$. Znaleźć związek między poziomicami funkcji u a charakterystykami podanego równania. Zinterpretować rozwiązanie zagadnienia początkowego w przypadku gdy u oznacza prędkość samochodów.

Zadanie 190. Wykazać, że dowolne zagadnienie początkowe dla liniowego równania eliptycznego o stałych współczynnikach posiada lokalnie rozwiązanie. Podać przykład.