

LED 驱动控制/键盘扫描专用集成电路

概述

UMW ET6226M是一种带键盘扫描电路接口的 LED 驱动控制专用电路。内部集成有 MCU 输入输出控制数字接口、数据锁存器、LED 驱动、键盘扫描、辉度调节等电路。本芯片性能稳定、质量可靠、抗干扰能力强,可适应于 24 小时长期连续工作的应用场合。

功能特点

- 显示模式: 8 段×4 位
- 段驱动电流不小于 25mA, 字驱动电流不小于 150mA
- 提供8级亮度控制
- 键盘扫描: 7×4bit
- 高速两线式串行接口
- 内置时钟振荡电路
- 内置上电复位电路
- 支持 3V-5.5V 电源电压
- 提供 DIP16(UMW ET6226P)及SOP16(UMW ET6226M) 封装

管脚排列图

管脚说明

符 号	管脚名称	说明				
SG1/KS1~	 段驱动输出/键扫描输入	LED 段驱动输出,高电平有效,				
SG7/KS7		也用作键扫描输入,高电平有效,内置下拉				
GR1∼GR4	位/键扫描输出	LED 位驱动输出,低电平有效,				
GR1/~GR4	位/挺扫捆面	也用作键盘扫描输出,高电平有效				
DP/KP	段/位输出	LED 段输出,也用作键盘标志输出				
CLK	时钟输入	I2C 串行接口的数据时钟输入,内置上拉电阻				
DAT	数据输入/输出	I2C 串行接口的数据输入输出,内置上拉开漏模式				
VCC	电源端	3-5.5V				
GND	地端	接地				

功能说明

I2C 总线接口

通过 DAT 和 CLK 串行信号,可以使 UMW6226与MCU之间进行信号传输。因此,DAT 与 CLK 构成了 I^2 C 总线接口。

数据信号

当 CLK 信号为高电平时, DAT 上的信号才会被认为是正确而稳定的信号。而当 CLK 信号在低电平时, DAT 上的信号才能做高低电平的转换。

如下图所示:

开始和结束条件

当 CLK 信号为高电平,DAT 信号由高电平切换为低电平时表示串行信号传输"开始"。 当 CLK 信号为高电平,DAT 信号由低电平切换为高电平时表示串行信号传输"结束"。 如下图所示:

指令信号格式

DAT 线的指令信号格式有八位 (bit),每一个指令信号后面需要有一个"确认"信号,并且以最大符号位"MSB"为首传送出去。

"确认"信号格式(Acknowledge)

在第九个时钟周期时 MCU 先将 DAT 总线设为高阻状态,如果UMWET6226M确认此信号,则 DAT 总线会被UMWET6226M拉至低电平,使 DAT 总线保持一个稳定的低电平状态。如下图所示:

UMW ET6226M在收到每一个指令信号后即会产生一个"确认"信号,否则在第九个时钟脉冲(CLOCK)时间内将会一直保持高电平。

无"确认"信号的传输

如果你想省略UMW ET6226M对"确认"信号的检测,可使用一种简单的传输方式。其方式为 UMW ET6226M在接收到一组指令信号后,等待一个时钟脉冲,不做确认。如果使用此种方法,将很有可能造成传输错误,并且会降低抗干扰能力。

UMW ET6226M控制程序格式

UMW ET6226M控制程序格式如下图所示,下图所示指令为SYSON。

Start	0	1	0	0	1	0	0	0	Ack	0	0	0	0	0	0	0	1	Ack	Stop
且休‡	空制指	今加	下表	所示.					· ·		· · · · · ·				· · ·	-			

高8位	低8位	功能						
48	00	关闭显示						
48	01	开启显示 (八段模式)						
48	09	开启显示(七段模式)						
48	04	开启睡眠						
48	X1	开启显示、键盘、X 级亮度 X=1,一级亮度; X=4,四级亮度; X=0,八级亮度, 其余依此类对						
68	XX	数码管位 0 显示, XX 为 8 位数据, 最高位为标点						
6A	XX	数码管位 1 显示, XX 为 8 位数据,最高位为标点						
6C	XX	数码管位 2 显示, XX 为 8 位数据,最高位为标点						
6E	XX	数码管位 3 显示, XX 为 8 位数据,最高位为标点						
4F	_	获取按键,返回按键代码						

按键代码

	GR1	GR2	GR3	GR4
SG1/KS1	44H	45H	46H	47H
SG2/KS2	4CH	4DH	4EH	4FH
SG3/KS3	54H	55H	56H	57H
SG4/KS4	5CH	5DH	5EH	5FH
SG5/KS5	64H	65H	66H	67H
SG6/KS6	6СН	6DH	6ЕН	6FH
SG7/KS7	74H	75H	76H	77H

极限参数(Ta = 25℃)

参数	符 号	范 围	单 位
电源电压	VCC	-0.5 ∼ +6.5	V
输入电压	VI	-0.5 ∼ VCC + 0.5	V
工作温度	Topt	-40 ∼ +85	${\mathbb C}$
储存温度	Tstg	-55 ∼ +125	$^{\circ}$

电参数 (测试条件: Ta = 25℃, VCC =5V)

参数	符号	最 小	典 型	最 大	单 位
电源电压	VCC	3	5	5.5	V
电源电流	IC	_	80	150	mA
静态电流(CLK、DAT、KP 为高电平)	ICs		0.3	0.6	mA
睡眠电流(CLK、DAT、KP 为高电平)	ICslp		0.05	0.1	mA
CLK 和 DAT 引脚低电平输入电压	VIL	-0.5		0.8	V
CLK 和 DAT 引脚高电平输入电压	VIH	2.0		VCC+0.5	V
KS 引脚低电平输入电压	VILki	-0.5		0.5	V
KS 引脚高电平输入电压	VIHki	1.8		VCC+0.5	V
GR 引脚低电平输出电压(-200mA)	VOLdig			1.2	V
GR 引脚低电平输出电压(-100mA)	VOLdig			0.8	V
GR 引脚高电平输出电压(5mA)	VOHdig	4.5			V
KS 引脚低电平输出电压(-20mA)	VOLki			0.5	V
KS 引脚高电平输出电压(20mA)	VOHki	4.5			V
KS 引脚输入下拉电流	IDN1	-30	-50	-90	uA
CLK 引脚输入上拉电流	IUP1	100	200	300	uA
DAT 引脚输入上拉电流	IUP2	150	300	400	uA
KP引脚输出上拉电流	IUP3	500	2000	5000	uA
上电复位的默认电压门限	VR	2.3	2.6	2.9	V

内部时序参数 (测试条件: Ta = 25℃, VCC =5V)

参数	符号	最 小	典 型	最 大	单 位
电源上电检测产生的复位时间	TPR	10	25	60	ms
显示扫描周期	TP	4	8	20	ms
键盘扫描间隔,按键响应时间	TKS	20	40	80	ms

注: 本表时序参数是内置时钟周期的倍数,内置时钟频率随电源电压的降低而降低。

接口时序参数 (测试条件: Ta = 25℃, VCC =5V)

参数	符号	最 小	典 型	最大	单 位
DAT 下降沿启动信号的建立时间	TSSTA	100			ns
DAT 下降沿启动信号的保持时间	THSTA	100			nS
DAT 上升沿停止信号的建立时间	TSSTO	100			ns
DAT 上升沿停止信号的保持时间	THSTO	100			ns
CLK 时钟信号的低电平宽度	TCLOW	100			nS
CLK 时钟信号的高电平宽度	TCHIG	100			nS
DAT 输入数据对 CLK 上升沿的建立时间	TSDA	30			nS
DAT 输入数据对 CLK 上升沿的保持时间	THDA	10			nS
DAT 输出数据有效对 CLK 下降沿的延时	TAA	2		30	nS
DAT 输出数据无效对 CLK 下降沿的延时	TDH	2		40	nS
平均数据传输速率	Rate	0		4M	bps

注: 本表计量单位以纳秒即 10-9, 未注明最大值则理论值可以无穷大。

参考应用线路图

*: 此电路仅供参考。

封装尺寸

DIP16

SOP16

