(1) Let $X = \{1,2,3\}$. Work with your group to find an example of a topology on X other than the discrete topology containing at least 4 open sets. Prove that your example is a topology.

(2) Let $X = \{1, 2\}$. There are four functions $X \to X$, namely

x	$f_{11}(x)$	$f_{12}(x)$	$f_{21}(x)$	$f_{22}(x)$	
1	1	1	2	2	
2	1	2	1	2	

We have been thinking about three topologies on *X*:

$$\tau_d = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$$

$$\tau_s = \{\emptyset, \{1\}, \{1, 2\}\}$$

$$\tau_i = \{\emptyset, \{1, 2\}\}.$$

Given the following topologies on the domain and codomain, decide whether each function $X \to X$ is continuous. Use any shortcuts you can. Do you see any patterns?

Domain topology	Codomain topology	f ₁₁	f ₁₂	f ₂₁	f ₂₂
$ au_d$	$ au_d$				
$ au_d$	$ au_s$				
$ au_d$	$ au_i$				
$ au_s$	$ au_d$				
$ au_s$	$ au_s$				
$ au_s$	$ au_i$				
$ au_i$	$ au_d$				
$ au_i$	$ au_{\scriptscriptstyle S}$				
$ au_i$	$ au_i$				

(3) (The finite complement topology) Let X be any set. The collection of subsets $\tau = \{U \subseteq X \mid U^c \text{ is finite } \}$

is called the **finite complement topology**.

(a) Show that the finite complement topology is a topology.

(b) How does the finite complement topology on $\mathbb R$ compare with the usual topology on $\mathbb R$? Justify your answer.

(4) Let Z be a finite subset of \mathbb{R} . What is the subspace topology on Z?

(5) Let $Z = \{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{Z}_{>0}\}$. Give Z the subspace topology it inherits from \mathbb{R} . Does Z have the discrete topology?

(6) (Open subsets in the finite complement topology are big.) Show that any two subsets of \mathbb{R} that are open in the finite complement topology have a non-empty intersection.

(7) Let τ be the finite complement topology on \mathbb{R} . What are the continuous functions $f:(\mathbb{R},\tau)\to(\mathbb{R},\tau)$? Give an answer in terms of the preimages of points.