The Mean

Probability and Statistics for Data Science

Carlos Fernandez-Granda

These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

Define an averaging operation for random variables

Motivation

Data: 3,4,3,4,6,3, ...

Averaging is a reasonable way to compute typical value

$$\frac{3+4+3+4+\cdots}{n}$$

What is the average of a random variable?

Intuitive definition of probability

If we observe many samples from \tilde{a}

$$P(\tilde{a} = a) = \frac{\text{number of data equal to } a}{\text{total}}$$

Discrete random variable

Data interpreted as samples from random variable \tilde{a} with range A

$$\frac{3+4+3+4+\cdots}{n} = \sum_{a \in A} a \cdot \frac{\text{number of data equal to } a}{n}$$

$$\approx \sum_{a \in A} a \, p_{\widetilde{a}}(a)$$

Mean of a discrete random variable

The mean, first moment or expected value of a discrete random variable \tilde{a} with range A is

$$\mathrm{E}\left[\tilde{a}\right]:=\sum_{a\in A}a\,p_{\tilde{a}}\left(a\right)$$

if the sum converges

Goal difference

$$E[\tilde{g}] = \sum_{g=-2}^{2} g \, p_{\tilde{g}}(g)$$

$$= -2 \cdot 0.1 - 1 \cdot 0.2 + 0 \cdot 0.3 + 1 \cdot 0.25 + 2 \cdot 0.1 + 3 \cdot 0.05$$

$$= 0.2$$

Function of a random variable

Data: 3,4,3,4,6,3, ...

We are interested in a function of the data (e.g. their square)

Average of transformed values

$$\frac{h(3) + h(4) + h(3) + h(4) + \cdots}{n} = \sum_{a \in A} h(a) \cdot \frac{\text{number of data equal to } a}{n}$$

$$\approx \sum_{a \in A} h(a) \, p_{\widetilde{a}}(a)$$

Function of a random variable

The expected value of $h(\tilde{a}), h: \mathbb{R} \to \mathbb{R}$ is

$$\mathrm{E}\left[h\left(\tilde{a}\right)\right] := \sum_{a \in A} h\left(a\right) p_{\tilde{a}}\left(a\right)$$

if \tilde{a} is discrete and the sum converges

Converting goal difference to points

Points: $\tilde{x} := h(\tilde{g})$, where

$$h(g) := \begin{cases} 0 & \text{if } g < 0 \\ 1 & \text{if } g = 0 \\ 3 & \text{if } g > 0 \end{cases}$$

Goal difference

$$E[\tilde{x}] = E[h(\tilde{g})]$$

$$= \sum_{g=-2}^{2} h(g)p_{\tilde{g}}(g)$$

$$= 0 \cdot 0.1 + 0 \cdot 0.2 + 1 \cdot 0.3 + 3 \cdot 0.25 + 3 \cdot 0.1 + 3 \cdot 0.05$$

$$= 1.5$$

Multiple discrete random variables

Data:
$$(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$$

Function of the data h(x, y)

Average:

$$\frac{h(x_1, y_1) + h(x_2, y_2) + \dots + h(x_n, y_n)}{n}$$

$$= \sum_{a \in A} \sum_{b \in B} h(a, b) \cdot \frac{\text{number of pairs } (x, y) \text{ for which } x = a \text{ and } y = b}{n}$$

$$\approx \sum_{a \in A} \sum_{b \in B} h(a, b) p_{\tilde{a}, \tilde{b}}(a, b)$$

Multiple discrete random variables

If \tilde{a} (range: A) and \tilde{b} (range: B) are discrete, the expected value of $h(\tilde{a}, \tilde{b})$ is

$$\mathrm{E}[h(\tilde{a},\tilde{b})] := \sum_{a \in A} \sum_{b \in B} h(a,b) \, p_{\tilde{a},\tilde{b}}(a,b) \,,$$

if the sum converges

Function of discrete random vector

If \tilde{x} is a d-dimensional discrete random vector the expected value of $h(\tilde{x})$ of \tilde{x} is

$$\mathrm{E}\left[h(\tilde{x})\right] := \sum_{x|1| \in X_1} \sum_{x|2| \in X_2} \cdots \sum_{x|d| \in X_d} h(x) \, \rho_{\tilde{x}}\left(x\right)$$

if the sum converges

Cats and dogs

		Cats			
		0	1	2	3
Dogs	0	0.35	0.15	0.1	0.05
	1	0.2	0.05	0.03	0
	2	0.05	0.02	0	0

$$E[\tilde{c} + \tilde{d}]$$

$$= \sum_{c=0}^{3} \sum_{d=0}^{2} (c+d) p_{\tilde{c},\tilde{d}}(c,d)$$

$$= 0.15 + 2 \cdot 0.1 + 3 \cdot 0.05 + 0.2 + 2 \cdot 0.05 + 3 \cdot 0.03 + 2 \cdot 0.05 + 3 \cdot 0.02$$

$$= 1.05$$

Continuous quantity

Data: 3.67, 4.91, 3.02, 4.83, ...

Averaging is still a reasonable way to compute typical value

$$\frac{3.67 + 4.91 + 3.02 + \cdots}{n}$$

What is the average of a continuous random variable?

Continuous random variables

Grid with step size ϵ

$$a_m := m\epsilon$$
 where $m \in \mathbb{Z}$

As $\epsilon \to 0$ for large n

$$rac{1}{n}\sum_{i=1}^n x_i pprox \sum_{m\in\mathbb{Z}} rac{a_m\cdot ext{number of data between } a_m - \epsilon ext{ and } a_m}{n}$$
 $pprox \sum_{m\in\mathbb{Z}} a_m ext{P}(a_m - \epsilon \leq ilde{a} \leq a_m)$
 $pprox \sum_{m\in\mathbb{Z}} a_m f_{ ilde{a}}(a_m)\epsilon$
 $= \int_{a\in\mathbb{R}} a f_{ ilde{a}}(a) \, \mathrm{d}a \qquad ext{when } \epsilon o 0$

Continuous random variable

The mean, first moment or expected value of a continuous random variable \tilde{a} is

$$\mathrm{E}\left[\widetilde{a}\right] := \int_{a=-\infty}^{\infty} a f_{\widetilde{a}}\left(a\right) \, \mathrm{d}a$$

if the integral converges

Uniform random variable in [a, b]

$$E[\tilde{u}] = \int_{u=-\infty}^{\infty} u f_{\tilde{a}}(u) du$$
$$= \int_{u=a}^{b} \frac{u}{b-a} du$$
$$= \frac{b^2 - a^2}{2(b-a)}$$
$$= \frac{a+b}{2}$$

Uniform random variable in [0,1]

Function of a random variable

The mean of $h(\tilde{a})$, $h: \mathbb{R} \to \mathbb{R}$ is

$$\mathrm{E}\left[h\left(\tilde{a}
ight)
ight] := \int_{a=-\infty}^{\infty} h\left(a
ight) f_{\tilde{a}}\left(a
ight) \, \mathsf{d}a$$

if \tilde{a} is continuous and the integral converges

Circuit

Current \tilde{c} with pdf $f_{\tilde{c}}$

Power $\tilde{w} = r\tilde{c}^2$

Circuit

$$E[\tilde{w}] = E[r\tilde{c}^2]$$

$$= \int_{c=-1}^{1} \frac{rc^2}{2} dc$$

$$= \frac{r}{3}$$

Multiple random variables

If \tilde{a} , and \tilde{b} are continuous, the expected value of $h(\tilde{a},\tilde{b})$ is

$$\mathrm{E}[h(\tilde{a},\tilde{b})] := \int_{a=-\infty}^{\infty} \int_{b=-\infty}^{\infty} h(a,b) f_{\tilde{a},\tilde{b}}(a,b) \, \mathrm{d}a \, \mathrm{d}b$$

if the integral converges

Function of random vector

If \tilde{x} is a d-dimensional continuous random vector the expected value of $h(\tilde{x})$ is

$$\mathrm{E}\left[h(\tilde{x})\right] := \int_{x \in \mathbb{R}^d} h(x) \, f_{\tilde{x}}(x) \, \mathrm{d}x$$

if the integral converges

Sugar

You grab an amount of sugar uniformly distributed between 0 and 1 kg $\,$

You spill an amount that is uniformly distributed between 0 and the quantity that you grabbed

Expected amount of spilled sugar?

Sugar

Distribution of sugar \tilde{g} you grab? Uniform in [0,1]

Distribution of sugar \tilde{s} you spill? Uniform in [0,g] given $\tilde{g}=g$

Mean of \tilde{s} ?

Sugar

$$E[\tilde{s}] = \int_{g} \int_{s} s \, f_{\tilde{g},\tilde{s}}(g,s) \, \mathrm{d}g \, \mathrm{d}s$$

$$= \int_{g} \int_{s} s \, f_{\tilde{g}}(g) f_{\tilde{s}|\tilde{g}}(s|g) \, \mathrm{d}g \, \mathrm{d}s$$

$$= \int_{g=0}^{1} \int_{s=0}^{g} \frac{s}{g} \, \mathrm{d}g \, \mathrm{d}s$$

$$= \int_{g=0}^{1} \frac{g}{2} \, \mathrm{d}g$$

$$= \frac{1}{4}$$

Discrete and continuous quantities

If \tilde{c} is continuous and \tilde{d} is discrete with range D, the mean of $h\left(\tilde{c},\tilde{d}\right)$ is

$$E\left[h(\tilde{c},\tilde{d})\right] := \int_{c=-\infty}^{\infty} \sum_{d \in D} h(c,d) f_{\tilde{c}}(c) p_{\tilde{d} \mid \tilde{c}}(d \mid c) dc$$
$$= \sum_{d \in D} \int_{c=-\infty}^{\infty} h(c,d) p_{\tilde{d}}(d) f_{\tilde{c} \mid \tilde{d}}(c \mid d) dc,$$

if the sum and integral converge

Bayesian coin flip

We flip a coin but don't know the probability of heads $\tilde{\theta}$

We assume $\tilde{\theta}$ is uniform in [0,1]

Mean of the coin flip (heads = 1, tails = 0)?

$$E[\tilde{a}] = \int_{c=-\infty}^{\infty} \sum_{a=0}^{1} a f_{\tilde{\theta}}(\theta) p_{\tilde{a}|\tilde{\theta}}(a|\theta) d\theta$$
$$= \int_{0}^{1} \theta d\theta$$
$$= \frac{1}{2}$$

How do we estimate the mean from data?

We average

The sample mean of $X := \{x_1, x_2, \dots, x_n\}$ is the arithmetic average

$$m(X) := \frac{\sum_{i=1}^{n} x_i}{n}$$

Same for discrete and continuous variables

If data are i.i.d. samples from distribution with finite variance, sample mean converges to the mean as $n \to \infty$ (law of large numbers)

Temperature dataset

Hourly temperatures at 134 weather stations in the US

What have we learned?					
Definition of the mean, as an averaging operation for random variables					