Лабораторный практикум по курсу «Математическая статистика»

# Лабораторная работа № 4 «Корреляционный анализ»

| студента | Мельниковой    | M.H.          |         | _Дата сдачи: |  |
|----------|----------------|---------------|---------|--------------|--|
| Ведущий  | преподаватель: | Трофимов А.Г. | оценка: | подпись:     |  |

### Вариант №9

*Цель работы*: изучение функций Statistics and Machine Learning Toolbox™ MATLAB / Python SciPy.stats для проведения корреляционного анализа данных.

#### 1. Исходные данные

Характеристики наблюдаемых случайных величин:

| СВ | Распределение | Параметры             | Математическое ожидание, $m_i$ | Дисперсия, $\sigma_i^2$ | Объем<br>выборки, <i>п</i> |
|----|---------------|-----------------------|--------------------------------|-------------------------|----------------------------|
| X  | N(10, 2)      | $m = 10$ $\sigma = 2$ | 10                             | 4                       | 200                        |
| Y  | N(5, 2)       | $m = 5$ $\sigma = 2$  | 5                              | 4                       | 200                        |

Примечание: для генерации случайных чисел использовать функции rand, randn, chi2rnd (scipy.stats: uniform.rvs, norm.rvs, chi2.rvs)

Выборочные характеристики:

| СВ | Среднее, $\overline{x}_i$ | Оценка дисперсии, $s_i^2$ | КК по Пирсону, $\tilde{r}_{\chi \gamma}$ | КК по Спирмену, $\tilde{\rho}_{XY}$ | КК по Кендаллу, $\tilde{\tau}_{XY}$ |
|----|---------------------------|---------------------------|------------------------------------------|-------------------------------------|-------------------------------------|
| X  | 9.887208                  | 5.331838                  | -0.064485                                | -0.088461                           | -0.062311                           |
| Y  | 4.039111                  | 4.226291                  | -0.004463                                | -0.068401                           | -0.002311                           |

Проверка значимости коэффициентов корреляции:

| Статистическая гипотеза, $H_0$ | p-value            | Статистическое решение при $\alpha = 0.05$ | Ошибка стат.<br>решения |
|--------------------------------|--------------------|--------------------------------------------|-------------------------|
| $H_0: r_{XY} = 0$              | 0.3643074413164177 | Н <sub>0</sub> принимается                 | нет                     |
| $H_0: \rho_{XY} = 0$           | 0.2128967786706946 | Н <sub>0</sub> принимается                 | нет                     |
| $H_0$ : $\tau_{XY} = 0$        | 0.1900758510657695 | $H_0$ принимается                          | нет                     |

Примечание: для проверки гипотез использовать функцию corr (scipy.stats.pearsonr)

2. Визуальное представление двумерной выборки Диаграмма рассеяния случайных величин *X* и *Y*:



Примечание: для построения диаграммы использовать функции plot, scatter (matplotlib.pyplot.scatter)

#### 3. Проверка независимости методом таблиц сопряженности

Статистическая гипотеза:  $H_0: F_y(y \mid X \in \Delta_1) = ... = F_y(y \mid X \in \Delta_k) = F_y(y)$ 

Эмпирическая/теоретическая таблицы сопряженности:

| Y                          | [-4.7215e-03; | [2.1058e+00; | [4.2164e+00; | [6.3270e+00; | [8.4376e+00; |
|----------------------------|---------------|--------------|--------------|--------------|--------------|
| X                          | 2.1058e+00)   | 4.2164e+00)  | 6.3270e+00)  | 8.4376e+00)  | 1.0548e+01]  |
| $\Delta_1 = [4.82618929;$  | 0             | 3            | 3            | 4            | 1            |
| 6.88403027)                | 0.605         | 2.75         | 4.125        | 2.695        | 0.825        |
| $\Delta_2 = [6.88403027;$  | 3             | 8            | 20           | 18           | 5            |
| 8.94187124)                | 2.97          | 13.5         | 20.25        | 13.23        | 4.05         |
| $\Delta_3 = [8.94187124;$  | 4             | 21           | 34           | 14           | 4            |
| 10.99971221)               | 4.235         | 19.25        | 28.875       | 18.865       | 5.775        |
| $\Delta_4 = [10.99971221;$ | 4             | 14           | 16           | 6            | 5            |
| 13.05755318)               | 2.475         | 11.25        | 16.875       | 11.025       | 3.375        |
| $\Delta_5 = [13.05755318;$ | 0             | 4            | 2            | 7            | 0            |
| 15.11539416]               | 0.715         | 3.25         | 4.875        | 3.185        | 0.975        |

Примечание: для группировки использовать функцию hist3

(matplotlib.pyplot.hist2d)

| Выборочное значение статистики критерия | p-value            | Статистическое решение при $\alpha = 0.05$ | Ошибка стат.<br>решения |
|-----------------------------------------|--------------------|--------------------------------------------|-------------------------|
| 21.530446465511403                      | 0.1590100708861939 | Н <sub>0</sub> принимается                 | нет                     |

Примечание: для проверки гипотезы использовать функцию crosstab (scipy.stats.chi2 contingency)

### 4. Исследование корреляционной связи

Случайная величина  $U = \lambda X + (1 - \lambda)Y$ ,  $\lambda \in [0; 1]$ 

Случайная величина  $V = \lambda X^3 + (1-\lambda)Y^3$   $\lambda \in [0; 1]$ 

Графики зависимостей коэффициента корреляции  $\tilde{r}_{_{X\!U}}(\lambda)$ , рангового коэффициента корреляции по Спирмену  $\tilde{\rho}_{_{X\!U}}(\lambda)$ , по Кендаллу  $\tilde{\tau}_{_{X\!U}}(\lambda)$ 

Лабораторный практикум по курсу «Математическая статистика»



## Графики зависимостей $\tilde{r}_{XV}(\lambda)$ , $\tilde{\rho}_{XV}(\lambda)$ , $\tilde{\tau}_{XV}(\lambda)$



Выводы: из графиков видно, что по мере возрастания  $\lambda$  увеличиваются и корреляционные коэффициенты по Пирсону, Спирмену и Кендаллу, что при отсутствии функциональной связи попарно между величинами X и V, X и U, то есть при  $\lambda$ =0, значения коэффициентов будут равняться нулю. А при  $\lambda$ =1 на первом графике наблюдаем равенство всех коэффициентов единице, что свидетельствует о линейной функциональной связи между величинами X и U, на втором графике — корреляционный коэффициент по Пирсону не достигает значения единицы, но очень близок к нему, что отвечает наличию нелинейной функциональной связи между X и V(при KД = 1), в то время как значение  $\tau$  = 1 свидетельствует о монотонно возрастающей зависимости между X и V.



Диаграмма рассеяния **рангов** случайных величин X и V при  $\lambda = 0$ :



Диаграмма рассеяния случайных величин X и V при  $\lambda = 1$ :

Диаграмма рассеяния **рангов** случайных величин X и V при  $\lambda = 1$ :



# Примечание: для расчёта рангов использовать функцию tiedrank (scipy.stats.rankdata)

Выводы: из диаграммы рассеяния случайных величин X и V и диаграммы рассеяния рангов случайных величин X и V при  $\lambda=0$  видно, что зависимость между случайными величинами X и V отсутствует, для независимых случайных величин характерно практически равномерное рассеяние выборочных рангов. А для случая  $\lambda=1$  на диаграмме рассеяния случайных величин X и V наблюдается монотонно возрастающая зависимость, «выпрямляющаяся» на диаграмме рассеяния рангов величин X и V.