Lezione 29 Cenni al Pi-calcolo

Roberto Gorrieri e Davide Sangiorgi

Da CCS-value passing al pi-calcolo

- Trasmettere valori: ma quali?
- Se l'insieme dei valori trasmittibili è separato dall'insieme dei nomi di canali, allora CCS-VP
 - Struttura del flow graph abbastanza statica (c'è un po' di dinamicità, ma poco interessante)
- Se si assume che esista un solo insieme di nomi (di canali e/o di valori), allora mobilità di canali!!
- Esempio di server/printer/client

Server-Printer-Client

- b̄a.S | b(c).c̄d.C –tau-> S | ād.C
 il nome a viene passato dal server al client sul canale comune b
- → si può instaurare un nuovo canale tra client e printer via a
- (va)(b̄a.S | P) | b(c).c̄d.C --tau-> (va)(S|P|ād.C)
 se il nome a è inizialmente privato tra server e printer, dopo la comunicazione diventa privato anche col client (scope extrusion!)

Mobility IV: movement of *private* **links**

scope extrusion

The π -calculus (core)

$$a,b,\ldots,x,y,z,\ldots$$
 Processes
 $P ::= 0$ nil process
 $P \mid P \mid P$ parallel
 $P \mid P$ restriction
 $P \mid a(x) \mid a(x)$

 For simplicity (and because less useful), operators of sum and matching are omitted

An attempt at labelled transitions (à la CCS)

inp:
$$a(b).P \xrightarrow{a(b)} P$$

out:
$$\overline{a}b \cdot P \xrightarrow{\overline{a}b} P$$

$$\mathtt{parL:} \quad \frac{P \overset{\alpha}{\longrightarrow} P'}{P \mid Q \overset{\alpha}{\longrightarrow} P' \mid Q}$$

Late semantics

res:
$$\frac{P \xrightarrow{\alpha} P'}{\nu a P \xrightarrow{\alpha} \nu a P'} \quad (\alpha \text{ is not an action at } a)$$

But then:

 $\blacksquare \ a(x). \ P \mid x(y). \ Q \xrightarrow{a(x)} P \mid x(y). \ Q, \quad \text{hence}$

la sostituzione si applica erroneamente anche a x(y).Q

$$(a(x). P \mid x(y). Q) \mid \overline{a} c. R \xrightarrow{\tau} (P \mid x(y). Q) \{c/x\} \mid R$$

 $\blacksquare \nu b \overline{a} b . \overline{b} c \xrightarrow{\overline{a} b} \nu b \overline{b} c$, hence

(dynamic binding!!)

$$(\nu b \,\overline{a}\, b \,.\, \overline{b}\, c) | a(x) . x(y) . Q \xrightarrow{\tau} (\nu b \,\overline{b}\, c) | b(y) . Q$$

Nome bound b estromesso!!

Labeled transition semantics (amended)

Semantica late – regole simmetriche omesse

Abbr.: $\overline{a}(b) \triangleq \boldsymbol{\nu} b \, \overline{a} \, b$

Bound output b

$$\begin{array}{ccc} \operatorname{inp:} & a(b).\,P \xrightarrow{a(b)} P & \operatorname{out:} & \overline{a}\,b\,.\,P \xrightarrow{\overline{a}\,b} P \\ & \operatorname{Bound\ input\ b} & \end{array}$$

$$\mathtt{parL:} \quad \frac{P \overset{\alpha}{\longrightarrow} P'}{P \mid Q \overset{\alpha}{\longrightarrow} P' \mid Q} \operatorname{bn}(\alpha) \cap \operatorname{fn}(Q) = \emptyset$$

Usa bound output b

$$\text{res:}\quad \frac{P \overset{\alpha}{\longrightarrow} P'}{\boldsymbol{\nu} a \ P \overset{\alpha}{\longrightarrow} \boldsymbol{\nu} a \ P'} \ a \not\in \mathbf{n}(\alpha) \qquad \text{open:}\quad \frac{P \overset{\overline{a} \ b}{\longrightarrow} P'}{\boldsymbol{\nu} b \ P \overset{\overline{a}(b)}{\longrightarrow} P'} \ a \neq b \qquad \text{Genera bound output b}$$

rep:
$$\frac{P\mid !P \xrightarrow{\alpha} P'}{!P \xrightarrow{\alpha} P'}$$
 alpha:
$$\frac{P =_{\alpha} Q}{P \xrightarrow{\alpha} Q'}$$

Esempio1 - alpha-conversione per parL

$$a(x).P - a(x)-> P$$
------ $x \notin fn(Q)$
 $a(x).P \mid Q - a(x)-> P \mid Q$
 $a \in G(X)$
 $a \in G(X)$

Ma questo ha senso solo se $x \notin fn(Q)$, perché altrimenti la sostituzione $\{u/x\}$ si applicherebbe erroneamente anche a Q. Altrimenti bisogna prima alpha-convertire a(x). P in a(z). P $\{z/x\}$, con $z \notin fn(Q)$

$$a(x).P =_{\alpha} a(z).P\{z/x\}$$
 $a(z).P\{z/x\} - a(z)-> P\{z/x\}$ $a(x).P - a(z)-> P\{z/x\}$ $a(x).P - a(z)-> P\{z/x\}$ $a(x).P | Q - a(z)-> P\{z/x\}|Q$ $a(x).P | Q | a(z)-> P\{z/x\}|Q$ $a(x).P | Q | a(z)-> P\{z/x\}|Q$ $a(x).P | Q | a(z)-> P\{z/x\}|Q$

Esempio2 - alpha conversione per closeL

Nella regola close-L, se $b \in fn(P)$, è necessario prima alpha-convertire Q = (vb)R con un nuovo bound name c al posto di b, ottenendo $(vc)R\{c/b\}$, in modo tale che $c \notin fn(P)$

$$(vb)R =_{\alpha} (vc)R\{c/b\}$$
 $(vc)R\{c/b\}$ — $\bar{a}(c)$ -> R' bound output $(vb)R - \bar{a}(c)$ -> R'

$$P - a(x) -> P'$$
 (vb)R $-a^{-}(c) -> R'$
----- $c \notin fn(P)$
 $P \mid (vb)R - tau -> (vc)(P'\{c/x\} \mid R')$

Se $c \in fn(P)$, allora la restrizione su c legherebbe in P' non solo le x sostituite in c, ma erroneamente anche le altre c libere in P'

Esempio3 – altra alpha-conversione per parL (bound output)

```
(vb)P - a\bar{}(b) - > P'
------ b \notin fn(Q)
(vb)P|Q - a\bar{}(b) - > P'|Q
R - a(x) - > R'
------ b \notin fn(R)
((vb)P|Q)|R - tau - > (vb)((P'|Q)|R'\{b/x\})
```

Ma questo ha senso solo se $b \notin fn(Q)$, perché ora Q è sotto restrizione! Altrimenti bisogna prima alpha-convertire (vb)P in (vc)P{c/b}, con $c \notin fn(Q)$ (e $c \notin fn(R)$ per la closeR)

(Tau)
$$\tau.p \xrightarrow{\tau} p$$

(In)
$$x(z).p \xrightarrow{xy} p\{y/z\}$$

(Out)
$$\bar{x}y.p \xrightarrow{\bar{x}y} p$$

(Sum)
$$\frac{p \xrightarrow{\alpha} p'}{p + q \xrightarrow{\alpha} p'}$$

(Par)
$$\frac{p \xrightarrow{\alpha} p'}{p \mid q \xrightarrow{\alpha} p' \mid q} \quad bn(\alpha) \cap fn(q) = \emptyset$$

(Com)
$$\frac{p \xrightarrow{\bar{x}y} p' \qquad q \xrightarrow{xy} q'}{p \mid q \xrightarrow{\tau} p' \mid q'}$$

(Close)
$$\xrightarrow{p \xrightarrow{\bar{x}(w)} p'} q \xrightarrow{xw} q'$$

 $p \mid q \xrightarrow{\tau} (\nu w)(p' \mid q')$ $w \notin fn(q)$

(Res)
$$\frac{p \xrightarrow{\alpha} p'}{(\nu y)p \xrightarrow{\alpha} (\nu y)p'} \quad y \notin n(\alpha)$$

(Open)
$$\xrightarrow{p \xrightarrow{\bar{x}y} p'} p' \{w/y\}$$
 $y \neq x \land w \notin fn((\nu y)p')$ • Regola per !p omessa

Semantica op. early

- No alfa-conversione (implementata implicitamente per mezzo di (In) e (Open))
- Input label aggiuntiva (not bound!)
- x(z).p -xy-> p{y/z} è molto diversa da x(z).p - x(z) - p
- Regola (Com) à la CCS
- Regole simmetriche omesse

Semantica late alternativa

(senza alfa-conversione e con regole alternative per replicazione)

$$(\text{OUTPUT-ACT}) \xrightarrow{\overline{x}z.P \xrightarrow{\overline{x}z} P} (\text{INPUT-ACT}) \xrightarrow{w \notin fn((y)P)} \frac{w \notin fn((y)P)}{x(y).P \xrightarrow{x(w)} P\{w/y\}}$$

$$(\text{PAR}) \xrightarrow{P \xrightarrow{\alpha} P'} bn(a) \cap fn(Q) = \emptyset$$

$$P|Q \xrightarrow{\alpha} P'|Q$$

$$(\text{COM}) \xrightarrow{P \xrightarrow{\overline{x}z} P'} Q \xrightarrow{x(y)} Q'$$

$$P|Q \xrightarrow{\tau} P'|Q'\{z/y\}$$

$$(\text{CLOSE}) \xrightarrow{P \xrightarrow{\overline{x}(w)} P'} Q \xrightarrow{\tau} (w)(P'|Q')$$

$$(\text{RES}) \xrightarrow{P \xrightarrow{\alpha} P'} y \notin n(a)$$

$$(y)P \xrightarrow{\alpha} (y)P'$$

$$(y)P \xrightarrow{\overline{x}(w)} P'\{w/y\}$$

$$(\text{REP-ACT}) \xrightarrow{P \xrightarrow{\alpha} P'} P \xrightarrow{\alpha} P'|P$$

$$(\text{REP-ACT}) \xrightarrow{P \xrightarrow{\alpha} P'} P \xrightarrow{x(w)} P'$$

$$(\text{REP-CLOSE}) \xrightarrow{P \xrightarrow{\overline{x}(w)} P'} P \xrightarrow{x(w)} P'$$

$$(P^{\overline{x}(w)}) \xrightarrow{P \xrightarrow{\tau} P'} P^{\overline{x}(w)} P' = P \xrightarrow{x(w)} P''$$

$$(\text{REP-CLOSE}) \xrightarrow{P \xrightarrow{\tau} P'} P \xrightarrow{\tau} (w)(P'|P'')|P''$$

Table 1. SOS rules for the synchronous mini- π -calculus. PAR, COM and CLOSE also have symmetric rules.

Reduction semantics

[Milner '91, following: Gamma language, Banâtre & Le Métayer '88, Chemical Abstract Machine, Berry & Boudol '90]

Structural congruence The smallest congruence \equiv s.t.:

1. $P \equiv Q$ if P and Q are alpha convertible

2.
$$P \mid 0 \equiv P$$
, $P \mid Q \equiv Q \mid P$, $P \mid (Q \mid R) \equiv (P \mid Q) \mid R$

3.
$$\nu x 0 \equiv 0$$
, $\nu x \nu y P \equiv \nu y \nu x P$

4.
$$\nu x (P \mid Q) \equiv (\nu x P) \mid Q$$
, if x not free in Q

5.
$$!P \equiv P \mid !P$$

Reduction relation (→)

$$\mathsf{R\text{-}INTER} \quad \overline{(\overline{x}\,y\,.\,P_1) \mid (x(z).\,P_2) \longrightarrow P_1 \mid P_2\{y\!/\!z\}}$$

$$\begin{array}{lll} \text{R-PAR} & \frac{P_1 \longrightarrow P_1'}{P_1 \mid P_2 \longrightarrow P_1' \mid P_2} & & \text{R-RES} & \frac{P \longrightarrow P'}{\nu z \, P \longrightarrow \nu z \, P'} \end{array}$$

R-STRUCT
$$P_1 \equiv P_2 \longrightarrow P_2' \equiv P_1'$$
 $P_1 \longrightarrow P_1'$

Teorema: P→P' iff P-tau->P'' congruente a P'

Reduction semantics: examples

$$x(y). P \mid R \mid \overline{x} z . Q \equiv$$

$$\overline{x} z . Q \mid x(y). P \mid R \longrightarrow$$

$$Q \mid P\{z/x\} \mid R \equiv P$$

$$\{z/x\} \mid R \mid Q$$

Let $P \triangleq \nu y (\overline{x} y.0)$.

$$x(z). \, \overline{a} \, z \, . \, 0 \mid !P \quad \equiv$$

$$x(z). \, \overline{a} \, z \, . \, 0 \mid \boldsymbol{\nu} y \, (\overline{x} \, y \, . \, 0) \mid !P \quad \equiv$$

$$\boldsymbol{\nu} y \, (x(z). \, \overline{a} \, z \, . \, 0 \mid \overline{x} \, y \, . \, 0) \mid !P \quad \equiv$$

$$\boldsymbol{\nu} y \, (\overline{x} \, y \, . \, 0 \mid x(z). \, \overline{a} \, z \, . \, 0) \mid !P \quad \longrightarrow$$

$$\boldsymbol{\nu} y \, (0 \mid \overline{a} \, y \, . \, 0) \mid !P \quad \equiv$$

$$\boldsymbol{\nu} y \, (\overline{a} \, y \, . \, 0) \mid !P \quad \equiv$$

$$\boldsymbol{\nu} y \, (\overline{a} \, y \, . \, 0) \mid !P \quad =$$

Weak barbed bisimulation

- A process P has a **strong** barb on $x \in N$, denoted by $P \downarrow x$, iff there is a P' with $P-x(y) \rightarrow P'$ for some $y \in N$.
- It has a strong barb on $\bar{x}, P \downarrow \bar{x}$, iff there is a P' with $P \bar{x}z \rightarrow P'$ or $P \bar{x}(z) \rightarrow P'$ for some $z \in N$.
- A process P has a weak barb on a (a \in {x, $x\bar{}$ | x \in N}), P \Downarrow a, iff there is a P' such that P $-\tau*\rightarrow$ P' and P' \downarrow a.

Definition 8. A symmetric relation \mathcal{R} on \mathcal{P}_{π} is a weak barbed bisimulation iff $P \mathcal{R} Q$ implies

- 1. if $P \downarrow_a$ with $a \in \{x, \bar{x} \mid x \in \mathcal{N}\}$ then $Q \Downarrow_a$ and
- 2. if $P \xrightarrow{\tau} P'$ then a Q' exists with $Q \xrightarrow{\tau}^* Q'$ and $P' \mathcal{R} Q'$.

The largest weak barbed bisimulation is denoted by $\stackrel{\bullet}{\approx}$, or \approx_{WBB} .

Weak Barbed congruence

- Nota che l'equivalenza ha poco senso:
- $x\bar{z}$.0 e $x\bar{y}$.0 e (vz) $x\bar{z}$.0 sono tutti barbed equivalenti
- Tuttavia, la congruenza indotta ha molto senso: la (weak) barbed congruence è la congruenza ottenuta chiudendo per contesti la (weak) barbed bisimulation equivalence.
- Coincide con l'equivalenza (weak) early bisimulation congruence sul labeled transition system del pi-calcolo.

Problemi per labeled semantics(1)

• P = a(b).0 e Q = a(x).(vc). cb

P e Q intuitivamente sono equivalenti: fanno un input e poi terminano.

Tuttavia, P—a(b)-> 0 mentre Q non può, nemmeno con alphaconversione, perché b \in fn(Q) (Esercizio: Fare esempio in cui b \in bn(Q))

Questa differenza non è importante: se P può fare a(b), allora, per alpha-conversione, può fare a(w) per infiniti nomi w!

A Q basta simulare **ogni azione bound** (bound input e bound output per late sem.op., solo bound output per early sem.op.) dove l'oggetto bound non sia usato in Q (cioè né libero né bound).

Sotto questa ipotesi, P e Q sono equivalenti perché Q non necessita di match-are la transizione a(b) di P.

Problemi per labeled semantics(2)

• $P = (vb)c\bar{b}.0$ e $Q = (va)(c\bar{a}.0 | (vb). b\bar{a})$

P e Q intuitivamente sono equivalenti: fanno un bound output sul canale c e poi terminano.

Tuttavia, P-c(b)-> (vb)0 mentre Q non può, nemmeno con alphaconversione, perché $b \in bn(Q)$ (Esercizio: Fare esempio in cui $b \in fn(Q)$)

Questa differenza non è importante: se P può fare \bar{c} (b), allora, per alpha-conversione, può fare \bar{c} (w) per infiniti nomi w!

A Q basta simulare **ogni azione bound** (bound input e bound output per late op., solo bound output per early op.) dove l'oggetto bound non sia usato in Q.

Sotto questa ipotesi, P e Q sono equivalenti perché Q non necessita di match-are la transizione \bar{c} (b) di P.

Problemi per labeled **late** semantics – come gestire il bound input?

- P a(x) -> P' come risponde Q?
- In caso strong, Q—a(x)->Q'

Però il nome x è un place-holder per qualsiasi cosa possa essere ricevuta.

Allora il comportamento di P' deve essere considerato rispetto a tutte le sostituzioni {u/x} e dobbiamo richiedere che (due alternative!):

- Early: per ogni sostituzione {u/x}, esista un Q' tale che Q—a(x)->Q' e (P'{u/x},Q' {u/x}) in R
- Late: esista un Q' tale che Q—a(x)->Q' e per ogni sostituzione {u/x}, (P'{u/x},Q' {u/x}) in R

Early weak bisimulation (su sem.op. late)

Definition 7. A symmetric binary relation \mathcal{R} on π -processes P, Q is a early weak bisimulation iff $P \mathcal{R} Q$ implies

- 1. if $P \xrightarrow{\tau} P'$ then a Q' exists with $Q \xrightarrow{\tau}^* Q'$ and $P' \mathcal{R} Q'$,
- 2. if $P \xrightarrow{\alpha} P'$ where $\alpha = \bar{x}z$ or $\bar{x}(y)$ with $y \notin n(P) \cup n(Q)$, then a Q' exists with $Q \xrightarrow{\tau}^* \xrightarrow{\alpha} \xrightarrow{\tau}^* Q'$ and $P' \mathcal{R} Q'$,
- 3. if $P \xrightarrow{x(y)} P'$ with $y \notin n(P) \cup n(Q)$ then for all w a Q' exists satisfying $Q \xrightarrow{\tau} \xrightarrow{*} \xrightarrow{x(y)} \xrightarrow{\tau} \xrightarrow{*} Q'$ and $P'\{w/y\} \mathcal{R} Q'\{w/y\}$.

We denote the largest early weak bisimulation by \approx_{EWB} .

 Early (strong) bisimulation è una equivalenza ed anche una congruenza per tutti gli operatori tranne il prefisso di input.

Prefisso di input: no congruence

- a | b è strong bisimile a a. b + b .a
- Tuttavia

c(a).(a | b̄) non è strong bisimile a c(a).(a. b̄ + b̄.a) perché il primo può fare c(b) raggiungendo lo stato (b | b̄), mentre il secondo, facendo c(b), diventa (b. b̄ + b̄.b), che non è strong bisimile a (b | b̄)

Per ottenere la congruenza, bisogna "chiudere" l'equivalenza rispetto alle sostituzioni:

P è congruente a Q sse P σ è equivalente a Q σ per ogni sostituzione σ .

(Early weak bisimulation non è una congruenza anche per il +, come al solito.)

Tante semantiche

- Abbiamo visto la weak early bisimilarity su sem.op di tipo late. Ma è possibile definire anche
- (weak) late bisimilarity su sem.op. di tipo late, Le semantiche behavioral di tipo late sono leggermente più fini di quelle early.
- Ed altre ancora (e.g., open di Sangiorgi che richiede di effettuare la chiusura per sostituzioni già nella definizione di bisimulazione).
- Una particolarmente semplice è bisimilarity su sem.op. di tipo early (che coincide con early bisimilarity su sem.op. late)

(Tau)
$$\tau \cdot p \xrightarrow{\tau} p$$

(In)
$$x(z).p \xrightarrow{xy} p\{y/z\}$$

(Out)
$$\bar{x}y.p \xrightarrow{\bar{x}y} p$$

(Sum)
$$\frac{p \xrightarrow{\alpha} p'}{p + q \xrightarrow{\alpha} p'}$$

$$(\operatorname{Par}) \qquad \frac{p \overset{\alpha}{\longrightarrow} p'}{p \mid q \overset{\alpha}{\longrightarrow} p' \mid q} \qquad bn(\alpha) \cap fn(q) = \emptyset$$

$$\text{(Com)} \ \frac{p \xrightarrow{\bar{x}y} p' \qquad q \xrightarrow{xy} q'}{p \mid q \xrightarrow{\tau} p' \mid q'}$$

(Close)
$$\frac{p \xrightarrow{\bar{x}(w)} p' \qquad q \xrightarrow{xw} q'}{p \mid q \xrightarrow{\tau} (\nu w)(p' \mid q')} w \notin fn(q)$$

$$(\mathrm{Res}) \qquad \frac{p \stackrel{\alpha}{\longrightarrow} p'}{(\nu y) p \stackrel{\alpha}{\longrightarrow} (\nu y) p'} \quad y \not\in n(\alpha)$$

(Open)
$$\frac{p \xrightarrow{\bar{x}y} p'}{(\nu y) p \xrightarrow{\bar{x}(w)} p' \{ w/y \}} \quad y \neq x \land w \not\in fn((\nu y)p')$$

Esempio di behavioral semantics su sem.op. early: strong early bisimulation (caso molto semplice)

$$n(p,q) = fn(p) \cup fn(q) \cup bn(q)$$

Definition 2.1 A binary relation R over the set of terms is an early bisimulation if $(p, q) \in R$ implies:

- if $p \xrightarrow{\alpha} p'$ and $bn(\alpha) \cap n(p,q) = \emptyset$ there exists then q' such that $q \xrightarrow{\alpha} q'$ and $(p', q') \in R$;
- symmetrically for q derivations.

Two terms p and q are bisimilar, written $p \sim q$, if there exists a bisimulation R such that $(p,q) \in R$.