5. Arbeitsblatt zur Vorlesung Mathematik und Simulation

Wintersemester 2022/23

Präsenzübungen

Aufgabe P 12. Diskrete Fouriertransformation (DFT)

Wir betrachten in dieser Aufgabe Signale, deren Werte an 4 Abtaststellen vorliegen. Wir bezeichnen diese mit x(0), x(1), x(2) und x(3) und fassen sie in einem Spaltenvektor zusammen: $x=\begin{pmatrix} x(0)\\x(1)\\x(2)\\x(3)\end{pmatrix}$ bzw. in platzsparender Notation: $x=\begin{pmatrix} x(0),x(1),x(2),x(3)\end{pmatrix}^{\mathsf{T}}$.

Als Beispiel betrachten wir die Funktion $c\colon\mathbb{R}\to[-1,1],\,c(t)=\cos\left(\frac{2\,\pi}{4}\cdot t\right)$. Diese ist periodisch mit Periodendauer T=4, ihre Frequenz ist also $f=\frac{1}{4}$. In der Grafik ist ein Ausschnitt des Funktionsgraphen gezeigt sowie Abtastpunkte $A=\left(0,\,c(0)\right)=(0,1),\,\,B=\left(1,\,c(1)\right)=(1,0),\,\,C=\left(2,\,c(2)\right)=(2,-1)$ und $D=\left(3,\,c(3)\right)=(3,0)$. Aus den vier Abtastwerten $c(0),\,c(1),\,\,c(2)$ und c(3) ergibt sich der Wertevektor $c=(1,0,-1,0)^{\mathrm{T}}$. Wir betrachten nun die vier (Basis-)Vektoren $s_0,\,s_1,\,s_2$ und s_3 , deren

Komponenten jeweils Potenzen der vierten Haupteinheitswurzel $w_4=e^{i\cdot\frac{2\pi}{4}}$ sind. Genau gilt

$$s_k(n) = e^{i \cdot \frac{2 \pi \cdot k \cdot n}{4}} = \left(\left(e^{i \cdot \frac{2 \pi}{4}} \right)^k \right)^n = \left(w_4^k \right)^n.$$

(a) Schreiben Sie die Vektoren s_0 bis s_3 in möglichst einfacher Form hin:

$$s_0 = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \quad s_1 = \begin{pmatrix} 1\\i\\-1\\-i \end{pmatrix}, \quad s_2 = \dots$$

(b) Wir stellen Sie die (komplexen) Werte jedes Basisvektors jeweils in der komplexen Zahlenebene dar. Mit Blick darauf, dass sich alle Werte auf dem Einheitskreis befinden, wollen wir im Folgenden von **Drehzeigerdiagrammen** sprechen. **Vollziehen Sie** die folgenden Diagramme **nach**. In diesen sind die Drehzeigerstellungen mit dem Parameter t (anstelle von n) bezeichnet, um auf die **zeitliche** Veränderung hinzuweisen.

- (a) Drehzeiger für $s_0\,$ mit Frequenz $0\,$
- (b) Drehzeiger für s_1 mit Frequenz $f_1 = \frac{1}{4}$.

- (c) Drehzeiger für s_2 mit Frequenz $f_2 = 2 \cdot f_1$.
- (d) Drehzeiger für s_3 mit Frequenz $f_3 = 3 \cdot f_1$.

Abbildung 2: Drehzeigerdarstellungen der Basisfunktionen bei 4 Abtastungen je Periode.

Die Ausführung der **diskreten Fouriertransformation** bedeutet einfach, dass man einen gegebenenen Wertevektor x als Linearkombination dieser Basisvektoren schreibt:

$$x = \hat{x}(0) s_0 + \hat{x}(1) s_1 + \hat{x}(2) s_2 + \hat{x}(3) s_3.$$

Man erhält die Vorfaktoren (auch Koeffizienten oder Fourierkoeffizienten genannt) unter Verwendung des Skalarprodukts¹ wie folgt:

$$\hat{x}(0) = \frac{\langle x \mid s_0 \rangle}{\langle s_0 \mid s_0 \rangle}, \quad \hat{x}(1) = \frac{\langle x \mid s_1 \rangle}{\langle s_1 \mid s_1 \rangle}, \quad \hat{x}(2) = \frac{\langle x \mid s_2 \rangle}{\langle s_2 \mid s_2 \rangle}, \quad \hat{x}(3) = \frac{\langle x \mid s_3 \rangle}{\langle s_3 \mid s_3 \rangle}.$$

In der Vorlesung haben wir für den Vektor $c=\begin{pmatrix}1\\0\\-1\\0\end{pmatrix}$, der sich durch 4-Punkt-Abtastung der Kosinusfunktion ergibt, die Fourierkoeffizienten berechnet:

$$\hat{c}(0) \,=\, \frac{\langle c \mid s_0 \rangle}{\langle s_0 \mid s_0 \rangle} \,=\, \frac{0}{4}, \quad \hat{c}(1) \,=\, \frac{\langle c \mid s_1 \rangle}{\langle s_1 \mid s_1 \rangle} \,=\, \frac{2}{4}, \quad \hat{c}(2) \,=\, \frac{\langle c \mid s_2 \rangle}{\langle s_2 \mid s_2 \rangle} \,=\, \frac{0}{4}, \quad \hat{c}(3) \,=\, \frac{\langle c \mid s_3 \rangle}{\langle s_3 \mid s_3 \rangle} \,=\, \frac{2}{4}.$$

Wir fassen die Koeffizienten in einem Spaltenvektor zusammen und erhalten $\hat{c} = \begin{pmatrix} \frac{0}{2} \\ \frac{1}{2} \\ 0 \\ \frac{1}{2} \end{pmatrix}$. Dann ist \hat{c} die

(diskrete) Fouriertransformierte des diskreten Signals c. Die komplexen Zahlen $\hat{c}(0)$ bis $\hat{c}(3)$ bilden das sogenannte **Fourierspektrum** des Signals c. Man kann nun die Realteile und die Imaginärteile der einzelnen Komponenten des Spektrums grafisch darstellen.

Abbildung 3: Real- bzw. Imaginärteile des Spektrums der an vier Stellen abgetasteten Kosinusfunktion c.

- (c) Berechnen Sie die Fouriertransformierte \hat{s} des Signals $s = \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}$.
- (d) Stellen Sie das Spektrum \hat{s} grafisch dar, zeichnen Sie je ein Schaubild für die Real- und die Imaginärteile.

¹ Das Skalarprodukt zweier komplexer Vektoren $x = \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{pmatrix}$ und $y = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{pmatrix}$ in \mathbb{C}^4 ist so erklärt: $\langle x \mid y \rangle = \sum_{n=0}^3 x_n \cdot \overline{y_n} = x_0 \cdot \overline{y_0} + x_1 \cdot \overline{y_1} + x_2 \cdot \overline{y_2} + x_3 \cdot \overline{y_3}$.

(e) Verifzieren Sie durch Addition der entsprechenden Drehzeiger, dass die Linearkombination

$$0 s_0 + \frac{1}{2} s_1 + 0 s_2 + \frac{1}{2} s_3$$

in der Tat das Signal $\,c\,$ ergibt.

(f) Verfahren Sie analog mit dem Signal s. Verfizieren Sie also durch Drehzeigeraddition, dass für die von Ihnen in der vorletzten Teilaufgabe berechneten Fourierkoeffizienten $\hat{s}(k)$ die Gleichung

$$\hat{s}(0) s_0 + \hat{s}(1) s_1 + \hat{s}(2) s_2 + \hat{s}(3) s_3 = s$$

erfüllt ist.

(g) Berechnen Sie die Fouriertransformierte \hat{d} des Dreieckssignals $d=\begin{pmatrix}0,1,2,1\end{pmatrix}^{\mathsf{T}}$. Stellen Sie das Spektrum grafisch dar und verifizieren Sie wiederum, dass die Linearkombination

$$\hat{d}(0) s_0 + \hat{d}(1) s_1 + \hat{d}(2) s_2 + \hat{d}(3) s_3$$

gleich dem Signal d ist.

Hausübungen

Aufgabe H 24. Vergleich mit der Formel für allgemeine Abstastzahl N.

Verifizieren Sie, dass die in Aufgabe P 1 durchgeführten Berechnungen übereinstimmen mit der in der Vorlesung eingeführten allgemeinen Formel 2 für die DFT eines an N Stellen abgetasteten Signals:

$$\hat{x}(k) := X(k) = \frac{1}{N} \sum_{n=0}^{N-1} x(n) \cdot e^{-i\frac{2\pi \cdot n \cdot k}{N}}, \ k = 0, 1, 2, \dots, N-1.$$

Aufgabe H 25. Orthogonalität der Basisvektoren

Betrachten Sie die vier Vektoren s_0 , s_1 , s_2 und s_3 aus Aufgabe P 1.

- (a) Halten Sie noch einmal für sich fest, dass sich für die Skalarprodukte $\langle s_0 \mid s_0 \rangle$, $\langle s_1 \mid s_1 \rangle$, $\langle s_2 \mid s_2 \rangle$ und $\langle s_3 \mid s_3 \rangle$ jeweils der Wert 4 ergibt.
- (b) Zeigen Sie mithilfe der entsprechenden Skalarprodukte, dass die Vektoren s_0 , s_1 , s_2 und s_3 paarweise orthogonal sind.

Aufgabe H 26. Zusammenhang von Sinus-, Kosinus- und Exponentialfunktion

Benutzen Sie die Euler'sche Formel $e^{ix} = \cos(x) + i \sin(x)$, um die folgenden Identitäten nachzuweisen:

(a)
$$\cos(x) = \frac{1}{2} \cdot (e^{ix} + e^{-ix}).$$

(b)
$$\sin(x) = \frac{1}{2i} \cdot (e^{ix} - e^{-ix}).$$

Aufgabe H 27. Inverse diskrete Fouriertransformation (IDFT)

Man erhält ein Signal x aus der Fouriertransformierten \hat{x} durch Anwendung der inversen Fouriertransformation zurück:

$$x(n) = \sum_{k=0}^{N-1} \hat{x}(k) \cdot e^{i\frac{2\pi \cdot nk}{N}}, \ k = 0, 1, 2, ..., N-1.$$

- (a) Berechnen Sie das Signal x aus der Fourier-Transformierten $\hat{x} = \begin{pmatrix} 0 \\ \frac{1}{2} \\ 0 \\ \frac{1}{2} \end{pmatrix}$.
- (b) Berechnen Sie das Signal y aus $\hat{y} = \begin{pmatrix} 0 \\ -\frac{1}{2}i \\ 0 \\ \frac{1}{2}i \end{pmatrix}$.
- (c) Nutzen Sie die in Aufgabe H 3 angegebenen Identitäten, um sich davon zu überzeugen, dass Sie die Signale c bzw. s aus Aufgabe P 1 rekonstruiert haben.

² Neben dem Symbol $\hat{x}(k)$ ist auch das Symbol X(k) als generische Bezeichnung der Fourierkoeffizienten eines diskreten Signals mit Komponenten bzw. Abtastwerten x(n) gebräuchlich.

Aufgabe H 28. Einheitswurzeln und Lösungen von Potenzgleichungen

- (a) Stellen Sie die Zahl a = -16 in Exponentialform dar.
- (b) Schreiben Sie die vier vierten Einheitswurzeln u_0 , u_1 , u_2 , und u_3 auf.
- (c) Geben Sie die vier Lösungen z_0 , z_1 , z_2 und z_3 der Gleichung $z^4 = -16$ an.

Hinweis: Mit $z_0=2\cdot e^{irac{\pi}{4}}$ erhält man die vier Lösungen so: $z_k=z_0\cdot u_k.$

Aufgabe H 29. Diskrete Fouriertransformation (DFT)

Gegeben sei das durch Abtastung an 4 Punkten erhaltene diskrete Signal $x=\begin{pmatrix}1,&1,&2,&2\end{pmatrix}^\mathsf{T}$. Bestimmen Sie die Fourierkoeffizienten $\hat{x}(k)=X(k)$ für k=0,~k=1,~k=2 und k=3.

Aufgabe H 30. Inverse diskrete Fouriertransformation (IDFT)

Gegeben seien die Fourierkoeffizienten $\hat{x}(k)$ eines 4-Punkt- Signals: $\hat{x} = \frac{1}{4} \left(6, -1+i, 0, -1-i \right)^{\mathsf{T}}$. Rekonstruieren Sie das Signal $x = \begin{pmatrix} x_0, x_1, x_2, x_3 \end{pmatrix}^{\mathsf{T}}$.

Aufgabe H 31. Diskrete Fouriertransformation (DFT)

Betrachten Sie die Diskrete Fouriertransformation (DFT) für Signale, die an acht Punkten abgetastet werden, sowie das Skalarprodukt $\langle \cdot | \cdot \rangle$ auf \mathbb{C}^8 .

- (a) **Skizzieren Sie** die acht Komponenten von s_7 in der Gauß'schen Zahlenebene und erläutern Sie, inwiefern eine Mehrdeutigkeit (Aliasing) bzgl. des Umlaufsinns und der Winkelgeschwindigkeit besteht.
- (b) Aus der Tatsache, dass $s_7(n) = s_{-1}(n)$ für alle $n \in \{0, 1, ..., 7\}$ gilt, folgt

$$c(n) = \cos\left(n \cdot \frac{2\pi}{8}\right) = \frac{1}{2} \cdot \left(e^{i \cdot n \cdot \frac{2\pi}{8}} + e^{-i \cdot n \cdot \frac{2\pi}{8}}\right) = \frac{1}{2} \cdot \left(s_1(n) + s_7(n)\right).$$

Bestimmen Sie hieraus die Diskrete Fouriertransformierte $\hat{c} = (\hat{c}(k))_{k \in \{0, 1, ..., 7\}}$ der an acht Stellen abgetasteten Kosinusfunktion c.

(c) **Zeigen Sie** durch explizite Rechnung, dass die Basisvektoren s_1 und s_7 bzgl. des Skalarprodukts $\langle \cdot | \cdot \rangle$ orthogonal sind. *Hinweis: Wenn Sie die achten Einheitswurzeln skizzieren, sehen Sie, welche Paare von Wurzeln sich zu Null addieren.*

Aufgabe H 32. Komplexe Lösungen quadratischer Gleichungen

(a) Notieren Sie die beiden komplexen Lösungen der Gleichung $w^2 = -1$.

- (b) Betrachten Sie die Gleichung $z^2-8z+17=0$. Verifizieren Sie, dass sich die Gleichung (b) in die Gleichung $(z-4)^2=-1$ umformen lässt. Setzen Sie w:=z-4 und nutzen Sie Teilaufgabe (a), um die beiden komplexen Lösungen dieser Gleichung bzw. der Gleichung (b) zu finden. Führen Sie eine Probe durch.
- (c) Betrachten Sie die quadratische Gleichung $a\,z^2+b\,z+c=0$, wobei a,b und c reelle Koeffizienten sind. Modifizieren Sie die bekannte Lösungsformel für quadratische Gleichungen

$$z_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 a c}}{2 a}$$

durch eine Fallunterscheidung so, dass sich die reellen bzw. komplexen Lösungen ablesen lassen.

- (d) Schreiben Sie die Lösungen der Gleichung (b) mithilfe der Lösungsformel aus (c) hin.
- (e) Zerlegen Sie die Polynome z^2-5z+6 , z^2+2z+1 und z^2+2z+5 in Linearfaktoren, stellen Sie sie also jeweils als Produkte der Form $(z-z_1)\cdot(z-z_2)$ dar.

Tutoriumsübungen

Aufgabe T 19. Komplexe Zahlen

Es sei $z = \frac{1}{2} + \frac{\sqrt{3}}{2}i$.

- (a) Berechnen Sie z in Exponentialdarstellung.
- (b) Skizzieren Sie z in der komplexen Zahlenebene.
- (c) Berechnen Sie $(e^{-i\frac{3\pi}{2}}) \cdot i$.

Aufgabe T 20. Einheitswurzeln

- (a) Bestimmen Sie die drei komplexen Lösungen der Gleichung $z^3=1$ und skizzieren Sie diese in der Gauß'schen Zahlenebene.
- (b) Bestimmen Sie die sechs komplexen Lösungen der Gleichung $z^6=1$ und skizzieren Sie diese in der Gauß'schen Zahlenebene.
- (c) Die sechste Haupteinheitswurzel w_6 hat die kartesische Darstellung $w_6=\frac{1}{2}+\frac{\sqrt{3}}{2}\cdot i$. Berechnen Sie die Potenzen w_6^2 , w_6^3 und w_6^6 .

Aufgabe T 21. In Anlehnung an einer Klausuraufgabe aus dem Sommersemester 2015

(a) Geben Sie die komplexen Zahlen $w_3=e^{i\frac{2\pi}{3}}$ und $\overline{w_3}=e^{-i\frac{2\pi}{3}}$ jeweils in kartesischer Form an. *Hinweis: Euler-Identität:* $e^{i\,\varphi}=\cos(\varphi)+i\,\sin(\varphi)$.

Wir betrachten nun Signale, deren Werte an drei Abtaststellen vorliegen, ein entsprechender Wertevektor hat somit die Form $u=\begin{pmatrix}u_0\\u_1\\u_2\end{pmatrix}$. Wir verwenden ferner das Skalarprodukt $\langle\cdot\mid\cdot\rangle$ auf \mathbb{C}^3 mit $\langle u\mid v\rangle=u_0\cdot\overline{v_0}+u_1\cdot\overline{v_1}+u_2\cdot\overline{v_2}$. Schließlich benötigen wir die Fourierbasis,

die aus den Vektoren
$$s_0=\begin{pmatrix}1\\1\\1\end{pmatrix}$$
, $s_1=\begin{pmatrix}1\\w_3\\w_3^2\end{pmatrix}$ und $s_2=\begin{pmatrix}1\\w_3^2\\w_3^4\end{pmatrix}=\begin{pmatrix}e^i\frac{4}{3}\\e^i\frac{8\pi}{3}\end{pmatrix}=\begin{pmatrix}e^i\frac{4}{3}\\e^i\frac{2\pi}{3}\end{pmatrix}$

besteht, wobei $\;w_3=e^{i\,rac{2\,\pi}{3}}\;$ die dritte Haupteinheitswurzel ist.

(b) Berechnen Sie das diskrete Fourierspektrum \hat{x} des Signals $x = \begin{pmatrix} 1 \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}$:

$$\hat{x}(0) = \frac{\langle x \mid s_0 \rangle}{\langle s_0 \mid s_0 \rangle} = \frac{1}{3} \langle x \mid s_0 \rangle \dots$$

$$\hat{x}(1) = \frac{\langle x \mid s_1 \rangle}{\langle s_1 \mid s_1 \rangle} = \frac{1}{3} \langle x \mid s_1 \rangle \dots$$

$$\hat{x}(2) = \frac{\langle x \mid s_2 \rangle}{\langle s_2 \mid s_2 \rangle} = \frac{1}{3} \langle x \mid s_2 \rangle \dots$$

(c) Weisen Sie zur Probe Ihrer Berechnungen nach, dass der Ausdruck $\hat{x}(0) s_0 + \hat{x}(1) s_1 + \hat{x}(2) s_2$ gleich dem Vektor $\begin{pmatrix} 1 \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}$ ist.

Aufgabe T 22. DFT – Fortsetzug von Aufgabe P 1

- (a) Bestimmen Sie die Fouriertransformierten der Signale $d_1 = (0, 1, 2, 1)^\mathsf{T}$ und $d_2 = (2, 1, 0, 1)^\mathsf{T}$ und zeichnen Sie jeweils die Spektren.
- (b) Verifizieren Sie jeweils durch Addition der Drehzeiger, dass die Linearkombinationen

$$\hat{d}_i(0) s_0 + \hat{d}(1) s_1 + \hat{d}(2) s_2 + \hat{d}(3) s_3$$

gleich dem Signal d_j ist.

(c) Verfahren Sie analog mit den Signalen $r = \begin{pmatrix} 0, 0, 1, 1 \end{pmatrix}^\mathsf{T}$. und $t = \begin{pmatrix} 0, 1, 2, -1 \end{pmatrix}^\mathsf{T}$.