

«Анализ транскриптомных данных»

Лекция #7.

Контроль качества клеток в scRNA-Seq

Серёжа Исаев

аспирант ФБМФ МФТИ аспирант MedUni Vienna

Содержание курса

1. Bulk RNA-Seq:

- а. экспериментальные подходы,
- b. выравнивания и псевдовыравнивания,
- с. анализ дифференциальной экспрессии,
- d. функциональный анализ;

2. Single-cell RNA-Seq:

- а. экспериментальные подходы,
- b. отличия от процессинга bulk RNA-Seq,
- с. методы снижения размерности,
- d. кластера и траектории,
- е. мультимодальные омики одиночных клеток.

Подсчёт экспрессии

Прочтения в формате .fastq

Выравнивание

Подсчёт экспрессии на клетку (demultiplexing — это процедура, в результате которой мы понимаем, из какой клетки прочтение)

Эти стадии обычно выполняет одна и та же программа автоматически

Проблема демультиплексации: dropEst

Для корректного восстановления последовательности баркода и UMI используются порой нетривиальных подходы типа dropEst

Cell Ranger

- Подходит только для библиотек, полученных при помощи 10x Chromium
- Автоматически определяет версию химии 10х ⇒ не нужно прописывать координаты баркода / UMI в прочтениях (это сильно облегчает работу)
- Основан на STAR, а потому очень требовательный к ресурсам (1 Тб дискового пространства, 128 Гб RAM, 16 ядер)
- Очень долго работает (один образец может рассчитываться 12 часов)
- Умеет работать с данными CITE-Seq и большим количеством иных модификаций scRNA-Seq-эксперимента
- Может вернуть .bam-файл с картированием, если попросить его это сделать

Cell Ranger

• Очень просто запускается:

```
cellranger count \
 --id={id запуска} \
 --transcriptome={путь до директории с референсным геномом}
 --fastqs={директория с прямыми прочтениями}, {директория с обратными прочтениями} \
 --sample={название образца} \
 --localcores={число ядер}
```

• Подготовленный к работе референсный геном можно найти на сайте Cell Ranger (можно сделать и свой)

Cell Ranger

- В простейшем случае аутпут содержит 4 файла:
 - 1. raw_feature_bc_matrix.tar.gz матрица со всеми "клетками" из датасета
 - a. barcodes.tsv.gz названия клеток (баркоды)
 - b. features.tsv.gz названия и id генов
 - c. matrix.mtx.gz непосредственно матрица экспрессии в sparce-виде
 - 2. filtered_feature_bc_matrix.tar.gz то же, что и пункт 1, только с уже отфильтрованными клетками (Cell Ranger фильтрует очень неплохо)
 - a. barcodes.tsv.qz
 - b. features.tsv.gz
 - c. matrix.mtx.gz
 - **3.** metrics_summary.csv таблица с основными метриками
 - **4.** web_summary.html графический веб-отчёт о качестве выравнивания и т. п.

kallisto | bustools

- Подходит для большого числа различных библиотек (в основном 10х Chromium, но не только). BUS расшифровывается как barcode | UMI | sequence, поэтому подойдут практически любые UMI-based методы
- kallisto | bustools основан на псевдовыравниваниях с использованием kallisto, поэтому он не требовательный к железу
- Работает, как правило, в **несколько раз быстрее**, чем Cell Ranger

- Умеет работать с **CITE-Seq** и некоторыми другими протоколами
- Не возвращает выравнивание!

kallisto | bustools

• Запускается очень просто:

```
kb count \
-i {файл с индексом} \
-g {файл с соответствием транскриптов генам} \
-x {версия химии 10х или описание координатов баркода и UMI} \
{прямые прочтения} {обратные прочтения}
```

- Индекс (он же референс) можно сделать самостоятельно или загрузить с сайта kallisto | bustools уже созданный
- Не делает автоматическую фильтрацию клеток! Выводит относительно мало статистики

kallisto | bustools

- В простейшем случае аутпут содержит 1 файл и 1 папку:
 - 1. counts_unfiltered матрица со всеми "клетками" из датасета
 - a. cells x genes.barcodes.txt— названия клеток (баркоды)
 - b. cells x genes.genes.txt— названия и id генов
 - c. cells x genes.mtx— непосредственно матрица экспрессии в sparce-виде
 - 2. inspect.json .json-файл с краткой статистикой по QC клеток

kallisto | bustools и паралоги

Из-за того, что прочтения, которые были откартированы неоднозначно, просто отбрасываются при процессинге при помощи STAR (= CellRanger), то часто возникает проблема различить типы клеток, отличающиеся по экспрессии паралогичных генов

kallisto | bustools и паралоги

Из-за того, что прочтения, которые были откартированы неоднозначно, просто отбрасываются при процессинге при помощи STAR (= CellRanger), то часто возникает проблема различить типы клеток, отличающиеся по экспрессии паралогичных генов

kallisto | bustools

Картирование snRNA-Seq

Wu et al. 2018

• В snRNA-Seq большая часть прочтений ложится в интронные регионы, это необходимо учитывать при выравнивании

Сравнение пайплайнов

• Cell Ranger — это самый затратный и медленный пайплайн, однако именно он является сейчас «золотым стандартом» препроцессинга данных scRNA-Seq

Обработка данных

Обработка данных

QC клеток

QC клеток

- Для идентификации пустых капель (без клеток)
 можно использовать пакет DropletUtils с его
 функцией emptyDrops (есть только на R)
- Всегда необходимо смотреть на распределение числа UMI / генов / митохондриальной экспрессии на клетку
- Клетки с высокой митохондриальной экспрессией мы считаем плохими (их тоже имеет смысл выфильтровывать)

Влияние QC на результат

Различные типы клеток могут иметь разное количество UMI на клетку из-за биологической разницы (например, в случае с нейтрофилами это явнее всего — почему?)

Строгая фильтрация

Влияние QC на результат

Различные типы клеток могут иметь разное количество UMI на клетку из-за биологической разницы (например, в случае с нейтрофилами это явнее всего — почему?)

Нестрогая фильтрация

Scrublet (Single-Cell Remover of Doublets)

- Помимо пустых капель существует и иная проблема — дублеты клеток
- Дублеты могут мешать работе с scRNA-Seq-данными (как минимум их сложно типировать)
- Существуют эффективные методы их идентификации (например, Scrublet)