数学分析习题课讲义

参考答案

Chapter 2

数列极限

数列极限的基本概念 2.1

2.1.1 思考题

- 1. 数列收敛有很多等价定义. 例如:
 - (1) 数列 $\{a_n\}$ 收敛于 $a \iff \forall \varepsilon > 0, \exists N \in \mathbb{N}_+, \forall n \geqslant N,$ 成立 $|a_n a| < \varepsilon$;
 - (2) 数列 $\{a_n\}$ 收敛于 $a \iff \forall m \in \mathbb{N}_+, \exists N \in \mathbb{N}_+, \forall n > N, 成立 |a_n a| < 1/m;^1$
 - (3) 数列 $\{a_n\}$ 收敛于 $a \iff \forall \varepsilon > 0, \exists N \in \mathbb{N}_+, \forall n > N, 成立 |a_n a| < K\varepsilon$. 其中 K 是一个与 ε 和 n 无关的正常数.

试证明以上定义与数列收敛等价.

证明. (1) \Rightarrow 取 $N = N_0 + 1$. \Leftarrow 显然.

- (2) \Rightarrow 取 $\varepsilon = 1/m, m \in \mathbb{N}_+$. \Leftarrow 由于 $\lim 1/m = 0$, 故存在 $M \in \mathbb{N}_+$, $\exists m > M$ 时, $1/m < \varepsilon$. 选 定 m, 使用定义, 存在 $N_0 \in \mathbb{N}_+$, $\forall n > N$, 有 $|a_n - a| < 1/m < \varepsilon$.
- $(3) \Rightarrow \mathbb{R} K = 1. \Leftarrow \mathbb{R} \varepsilon' = \varepsilon/K, \ \mathbb{M} \ \exists N \in \mathbb{N}_+, \forall n > N, |a_n a| < K\varepsilon' = \varepsilon.$
- 2. 问: 在数列收敛的定义中, N 是否是 ε 的函数?

答. 否. 对于任意的 ε , 存在一个 $N_0 \in \mathbf{N}_+$, 使得当 $n > N_0$ 时都有 $|a_n - a| < \varepsilon$, 而 $\forall N > N_0$ 都可 以是符合定义的 N, 即每一个 ε 都可以对应无穷多个 N, 故不是.

3. 判断: 若 $\{a_n\}$ 收敛, 则有 $\lim_{n\to\infty} (a_{n+1}-a_n)=0$ 和 $\lim_{n\to\infty} a_{n+1}/a_n=1$.

答. $\lim (a_{n+1}-a_n)=0$. 对于任意给定的 $\varepsilon>0$, 存在 N>0, 当 n>N时有 $|a_n-a|<\varepsilon/2$, 从而 $|a_{n+1}-a|<\varepsilon/2$, 于是对于 n>N,

$$|a_{n+1} - a_n| \leqslant |a_{n+1} - a| + |a_n - a| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

П

¹有些像级数的 Weierstrass-M 判别法, 事实上也可以用 Cauchy 收敛准则给出一个和 Weierstrass-M 判别法类似的证明. 本条 是所有二分法/三分法证明的基础.

4. 设收敛数列 $\{a_n\}$ 的每一项都是整数, 问: 该数列有什么特殊性质?

答. 从某一项开始后每一项均相同. 取 $\varepsilon = 1/2$, 则存在 $N \in \mathbb{N}_+$, 使对 n > N 有 $|a_{n+1} - a_n| < 1/2$, 注意到 $a_n \in \mathbf{Z}, n \in \mathbf{N}_+,$ 知 $a_{n+1} = a_n, \forall n > N.$

- 5. 问: 收敛数列是否一定是单调数列? 无穷小量是否一定是单调数列?
 - 答. 均不一定. 如分别取 $\{a + (-1)^n 1/m\}$ (收敛但不单调) 和 $\{(-1)^n 1/n\}$ (无穷小量但不单调).
- 6. 2问: 正无穷大量数列是否一定单调增加? 无界数列是否一定为无穷大量?
 - 答. 均不一定. 如分别取 $\{n+2\sin n\}$ (正无穷大量但不单调) 和 $\{n\cdot\sin n\}$ (无界但非无穷大).
- 7. 问: 如果数列 $\{a_n\}$ 收敛于 a, 那么绝对值 $|a_n-a|$ 是否随着 n 的增加而单调减少趋于 0?
 - 答. 不一定. 如取 $\{a_n\}$ 为形如

$$1, 1/2, 1/3, 1/6, 1/4, 1/8, 1/12, \cdots, 1/n, 1/2n, \cdots, 1/n(n-1), 1/(n+1), \cdots$$

的数列, 由于 1/n 和 1/(n+1) 之间的所有项都严格小于 1/(n+1), 于是 $\{a_n\}$ 的上控数列³ $\{\overline{a_n}\}$ 为 $1, 1/2, 1/3, 1/4, 1/4, \cdots$, 其中 1/n 连续出现了 n-3 次 $(n \ge 3)$, 显然 $\lim_{n \to \infty} \overline{a_n} = 0$. 而全为正项的数 列 $\{a_n\}$ 有一个子列 $\{1/n\}$ 收敛于 0, 故

$$\lim_{n \to \infty} a_n = \overline{\lim}_{n \to \infty} a_n = 0.$$

即 $\lim_{n \to \inf} a_n = 0$,但显然 $\{|a_n|\}$ 并不单调。

8. 判断: 非负数列的极限是非负数, 正数列的极限是整数.

答. 非负数列的极限是非负数. 反证法. 假设非负数列 $\{a_n\}$ 的极限为 A < 0, 则存在 $N \in \mathbb{N}_+$, 当 n > N 时有 $|a_n - A| < -A/2$, 即当 n > N 时有 $3A/2 < a_n < A/2 < 0$, 与 $\{a_n\}$ 非负矛盾.

正数列的极限不一定为正数, 如取 $\{1/n\}$, 其极限为 0.

2.1.2练习题

1. 按极限定义证明:

(1)
$$\lim_{n \to \infty} \frac{3n^2}{n^2 - 4} = 3;$$
 (2) $\lim_{n \to \infty} \frac{\sin n}{n} = 0;$
(3) $\lim_{n \to \infty} (1 + n)^{\frac{1}{n}} = 1;$ (4) $\lim_{n \to \infty} \frac{a^n}{n!} = 0.$

(3)
$$\lim_{n \to \infty} (1+n)^{\frac{1}{n}} = 1;$$
 (4) $\lim_{n \to \infty} \frac{a^n}{n!} = 0.$

证明. 对于任何 $\varepsilon > 0$,

$$(1) \ \ \mathbb{R} \ N = [\sqrt{12/\varepsilon + 4}] + 1, \ \ \, \underline{\exists} \ n > N \ \ \, \mathbb{N}, \ |\frac{3n^2}{n^2 - 4} - 3| = \frac{12}{n^2 - 4} < \varepsilon;$$

(2) 取
$$N = [1/\varepsilon]$$
, 当 $n > N$ 时, $|\frac{\sin n}{n} \leqslant \frac{1}{n} < \varepsilon$;

²原本的6题中,一个很小很小的量显然不是一个无穷小量,注意无穷小量是一个趋于零的极限过程即可.

³请结合数列的上下极限部分.

(3) 由于
$$(1+n)^{\frac{1}{n}} > 1$$
, $\forall n \in \mathbf{N}_+$, 故令 $y_n = (1+n)^{\frac{1}{n}} - 1 > 0$, $f(n+1) = (1+y_n)^n \geqslant \frac{n(n-1)}{2}y_n^2$,

$$\sqrt[n]{n+1} - 1 = y_n \leqslant \sqrt{\frac{2(n+1)}{n(n-1)}}.$$

又由 $\lim_{n\to\infty}\frac{2(n+1)}{n(n-1)}$, 故存在 $N\in\mathbf{N}_+$, 使当 n>N 时有 $\frac{2(n+1)}{n(n-1)}<\varepsilon<1$, 故当 n>N 时有

$$\sqrt[n]{n+1} - 1 = y_n \leqslant \sqrt{\frac{2(n+1)}{n(n-1)}} < \sqrt{\varepsilon} < \varepsilon;$$

(4) 若
$$0 < a \le 1$$
, 显然取 $N = [\varepsilon] + 1$, 当 $n > N$ 时

$$\frac{a^n}{n!} \leqslant \frac{1}{n} < \varepsilon.$$

$$\frac{a^n}{n!} \leqslant \frac{1}{n} < \varepsilon.$$
 若 $a > 1$, 则存在 $k \in \mathbb{N}_+$ 使得 $k < a < k+1$, 于是
$$\frac{a^n}{n!} = \frac{a \cdot a \cdots a \cdot a \cdot a \cdots a \cdot a}{n \cdot (n-1) \cdots (k+1)k(k-1) \cdots 2 \cdot 1} \leqslant \frac{a}{n} \frac{a \cdots a}{a \cdots a} \cdot \frac{a}{k} \frac{a}{k-1} \cdots \frac{a}{2} \frac{a}{1}.$$

注意上式中最后一项是一常数, 可记为 K, 取 $N = [aK/\varepsilon] + 1$, 当 n > N 时有 $\frac{a^n}{n!} < \varepsilon$.