Diskrete Wahrscheinlichkeitstheorie

Aufgabe 1 (3 Punkte)

Wahr oder falsch? Begründen Sie Ihre Antwort!

- 1. Die Menge $\mathcal{B}(\mathbb{R})$ der Borelschen Mengen über \mathbb{R} enthält alle Intervalle [a, b] mit $a, b \in \mathbb{R}$ und $a \leq b$.
- 2. Seien X_1 und X_2 unabhängige exponentialverteilte Zufallsvariablen. Dann ist die Summe X_1+X_2 ebenfalls exponentialverteilt.
- 3. Der Maximum-Likelihood-Schätzwert für den Parameter δ einer Verteilungsdichte $f(x;\delta)$ ist definiert als der Erwartungswert für δ .

Aufgabe 2 (6 Punkte)

Wir betrachten 5 Körbe, die jeweils weiße und schwarze Bälle enthalten. 3 von diesen Körben (Variante A) enthalten je 4 Bälle, nämlich 3 weiße Bälle und 1 schwarzen Ball. Die 2 übrigen Körbe (Variante B) enthalten je 3 Bälle, nämlich 2 schwarze Bälle und 1 weißen Ball.

Ein <u>Gewinnspiel</u> bestehe darin, dass ein Spieler zunächst mit Laplace-Wahrscheinlichkeit einen Korb wählt und anschließend aus dem Korb mit Laplace-Wahrscheinlichkeit einen Ball zieht.

Nun rät der Spieler, ob der Ball aus einem Korb mit mehr weißen Bällen gezogen wurde, d.h., ob der Korb zur Variante A gehört, oder andernfalls zu B gehört. Falls richtig geraten wurde, erhält der Spieler 1 Euro, andernfalls muss er 2 Euro zahlen.

Wir nehmen an, dass der Spieler stets den Korb der Variante A rät, falls er einen weißen Ball gezogen hat, und andernfalls die Variante B rät.

Sei X die Zufallsvariable des Spielergebnisses in Euro mit $W_X = \{1, -2\}$.

- 1. Berechnen Sie die Wahrscheinlichkeiten Pr[w] und Pr[s] für die Ereignisse, dass ein weißer bzw. schwarzer Ball gezogen wird.
- 2. Berechnen Sie die bedingten Wahrscheinlichkeiten Pr[A|w] und Pr[B|s], dass ein weißer Ball aus einem Korb der Variante A bzw. ein schwarzer Ball aus einem Korb der Variante B gezogen wurde.
- 3. Berechnen Sie den Erwartungswert $\mathbb{E}[X]$.

Aufgabe 3 (6 Punkte)

Wir nehmen an, dass sich in einem vorliegenden Kartenspiel mit 32 Karten 16 rote und 16 schwarze Karten befinden. Ein Geber verteilt an 2 Spieler A und B je 3 Karten. Die Zufallsvariablen X_A bzw. X_B zählen die roten Karten für A bzw. B.

- 1. Welchen Wert hat $\Pr[X_A \geq 2]$, d.h., mit welcher Wahrscheinlichkeit bekommt A mindestens 2 rote Karten?
- 2. Wie hoch ist die Wahrscheinlichkeit, dass sowohl Spieler A genau 2 rote Karten bekommt als auch Spieler B genau 2 rote Karten bekommt?

Aufgabe 4 (6 Punkte)

Seien X und Y kontinuierliche Zufallsvariablen mit gemeinsamer Dichtefunktion

$$f_{X,Y}(x,y) = \begin{cases} 12x^2y^3 : 0 \le x \le 1, \ 0 \le y \le 1 \\ 0 : \text{sonst} \end{cases}$$

- 1. Berechnen Sie die Randdichte $f_X(x)$.
- 2. Sind die Variablen X und Y unabhängig? Begründung!
- 3. Bestimmen Sie den Wert der Verteilungsfunktion $F_{X,Y}(a, b)$ für alle $a, b \in [0, 1]$.

Aufgabe 5 (6 Punkte)

Seien X_1 und X_2 unabhängige Bernoulli-verteilte Indikatorvariablen mit Erfolgswahrscheinlichkeit p_1 bzw. p_2 . Wir betrachten die Zufallsvariable $Z = X_1 + X_2$.

- 1. Berechnen Sie Erwartungswert und Varianz von Z in Abhängigkeit der Parameter p_1 und p_2 .
- 2. Geben Sie für $p_1=\frac{1}{4},\,p_2=\frac{1}{3}$ die wahrscheinlichkeitserzeugende Funktion $G_Z(z)$ als quadratisches Polynom in z an.
- 3. Seien N eine geometrisch verteilte Zufallsvariable mit Dichte $f_N(i) = \frac{2}{3}(\frac{1}{3})^{i-1}$ und $Z_i, i = 1, 2, \ldots$ eine unabhängige Zufallsvariable, die gleichverteilt sind wie Z für $p_1 = \frac{1}{4}, p_2 = \frac{1}{3}$. Sei $S = \sum_{i=1}^{N} Z_i$ die von N abhängige Summe der Z_i .

Berechnen Sie den Erwartungswert für $\mathbb{E}[S]$.

Aufgabe 6 (6 Punkte)

Seien X_i , i=1,2,3 unabhängige Bernoulli-verteilte Zufallsvariablen mit gleicher Erfolgswahrscheinlichkeit p und $S=\sum_{i=1}^3 X_i$ eine Stichprobenvariable zum Test der Hypothese $H_0: p \leq \frac{1}{5}$ mit Ablehnungsbereich $\tilde{K}=\{2,3\}$.

- 1. Berechnen Sie die Verteilungsfunktion ${\cal F}_S$ von S in Abhängigkeit von p!
- 2. Berechnen Sie die Fehlerwahrscheinlichkeit 1. Art α_1 !
- 3. Welchen Wert hat die Fehlerwahrscheinlichkeit 2. Art α_2 unter der Annahme der trivialen Alternative $H_1: p > \frac{1}{5}$, wenn man einen leeren Ablehnungsbereich \tilde{K} wählt?

Aufgabe 7 (7 Punkte)

Sei $(X_t)_{t\in\mathbb{N}_0}$ eine endliche (zeit)homogene Markov-Kette mit diskreter Zeit über der Zustandsmenge $S=\{0,1,2,3,4\}$. Die positiven Übergangswahrscheinlichkeiten seien durch das folgende Übergangsdiagramm gegeben:

- 1. Geben Sie die Menge der transienten Zustände der Markov-Kette $(X_t)_{t\in\mathbb{N}_0}$ an. Begründung!
- 2. Berechnen Sie die Ankunftswahrscheinlichkeit f_{01} !
- 3. Berechnen Sie die erwartete Übergangszeit h_{24} !