	Generanve models
	Dischiminative vs. Generative
	· care about classification . tou to lown underlying structure
	o don't core about underlying 'learn P(X, y) Smichire of dam 'can be used to generate dara according to model Generative Model France 1004
	Generative Model Franceioch
	1. ESTIMATE the parameters of model that best"
	2. PREDICT crassitization or generate/sample data from your model
	Examples of Generaline Models
1	"Mulhinomial/Categorical Distr. (Language/Shahespeare example
	Mulhinomial/Categorical Distr. (language/Shahespeare example Whelihood P(D+0) = TT On (w) in Lecture) of data weW
	where we the service of
-	· Spherical Gaussian Distr. N(x; 1,02) = 1 exp(-1/2/12/1/x-ull'
1	Spherical Gaussian Distr. N(x; M, o2) = 1 exp(-1/202 x-u ^2) likelihood Sh = {x (2) t = 1 . n} x e Rd (2002) d/2 represented square
	$L(Sn; M, \sigma^2) = \prod_{i=1}^{n} p(x^{(i)} \theta) = \prod_{i=1}^{n} N(x^{(i)}; M, \sigma^2)$ well-dean
	Maximum Whilipood Estimation
	« See lecture notes for language model multinomial distr. M estimation example
+	Ml Eshmahin for Sphenical Gaussian
k	$\max_{u,\sigma^2} L(S_n; u,\sigma^2) \Rightarrow \max_{u,\sigma^2} l(S_n; u,\sigma^2) = \max_{i=1} log N(x^{(i)}, u,\sigma^2)$
	$L(S_n; M, \sigma^2) = \sum_{i=1}^{n} log(2\pi\sigma^2)^{-d/2} exp(-\frac{1}{2}\sigma^2 x^2 - M ^2)$
	$= -\frac{nd}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} x^{(i)} - \mu ^2$
1	(21)

To find max ll. Sn; u, o2) just solve dl = 0 and $\frac{dl}{dr^2} = 0$ (= x (1)) - njû = 0 ni = Ex sample mean $\rightarrow \hat{\mu} = \frac{1}{n} \sum_{i} \chi^{(i)}$ Solve for $\hat{\theta}^2$: $\frac{dl}{d\hat{\theta}^2} = \frac{nd}{2} \cdot \frac{1}{\hat{\sigma}^2} + \frac{1}{2\hat{\sigma}^4} \cdot \frac{\hat{\Sigma} \|\chi^{(i)} - M\|^2}{\hat{\sigma}^2} = 0$ -ndo2 + & 11x - 1112 = 0 Sample 3 = 1 5 1/x 11 - û 1/2 Methodia for mulhountal V Gaussian mix model < up next! GMIM - clustering Gaussians/ Companels, each Gaussian has own Mij) of mixing proportions pupe. Pk of data l(sn10) = Elog EpiN(x"; u", o;) Still use ML ashmanin, except hard to directly opinize! use EM 1. Unitalize parameters (initialize random, as similar to uneans) 2. Estep: calcular soft assignants (posterior probabilities)
p(j/t) = pj N(x(t), M(x), Of) E PEN(x(c); MUE) 02) (partal assignments, unlike herd assignments in himcome)

$$\begin{split} & \varrho(G_{1} | \chi^{(1)}) \approx 1 & \varrho(G_{1} | \chi^{(1)}) = 0.5 & \varrho(G_{1} | \chi^{(1)}) = 0.5 \\ & \varrho(G_{2} | \chi^{(2)}) \approx 0 & \varrho(G_{2} | \chi^{(3)}) = 0.5 & \varrho(G_{2} | \chi^{(1)}) = 0.5 \\ & \varphi(G_{2} | \chi^{(2)}) \approx 0 & \varrho(G_{2} | \chi^{(3)}) = 0.5 & \varrho(G_{2} | \chi^{(1)}) = 0.5 \\ & \varphi(G_{2} | \chi^{(2)}) \approx 0 & \varrho(G_{2} | \chi^{(3)}) = 0.5 & \varrho(G_{2} | \chi^{(1)}) = 0.5 \\ & \varphi(G_{2} | \chi^{(2)}) \approx 0 & \varrho(G_{2} | \chi^{(3)}) = 1 & \varrho(G_{2} | \chi^{(3)}) = 1 & \varrho(G_{2} | \chi^{(3)}) = 1 \\ & \varphi(G_{2} | \chi^{(2)}) \approx 1 & \varrho(G_{2} | \chi^{(3)}) = 1 & \varrho(G_{2} | \chi^{($$

Somethings to note! 1. Initialization - sometimes my bad unitalization can become shich in local ophin. - what hoppens if Iruhalize the same? 2 How to select # of components (k)? - Can use validation on validation set