

Lecture 07

Dr. Colin Rundel

What is SciPy

Fundamental algorithms for scientific computing in Python

Subpackage	Description	Subpackage	Description
cluster	Clustering algorithms	odr	Orthogonal distance
			regression
constants	Physical and mathematical constants	optimize	Optimization and root-finding
			routines
fftpack	Fast Fourier Transform routines	signal	Signal processing
integrate	Integration and ordinary differential	sparse	Sparse matrices and
	equation solvers		associated routines
interpolate	Interpolation and smoothing splines	spatial	Spatial data structures and
			algorithms
io	Input and Output	special	Special functions
linalg	Linear algebra	stats	Statistical distributions and
			functions
ndimage	N-dimensional image processing		

SciPy vs NumPy

In an ideal world, NumPy would contain nothing but the array data type and the most basic operations: indexing, sorting, reshaping, basic elementwise functions, etc. All numerical code would reside in SciPy. However, one of NumPy's important goals is compatibility, so NumPy tries to retain all features supported by either of its predecessors. Thus, NumPy contains some linear algebra functions and Fourier transforms, even though these more properly belong in SciPy. In any case, SciPy contains more fullyfeatured versions of the linear algebra modules, as well as many other numerical algorithms. If you are doing scientific computing with Python, you should probably install both NumPy and SciPy. Most new features belong in SciPy rather than NumPy.

Example 1 k-means clustering

Data

```
1 rng = np.random.default_rng(seed = 1234)
2
3 cl1 = rng.multivariate_normal([-2,-2], [[1,-0.5],[-0.5,1]], size=100)
4 cl2 = rng.multivariate_normal([1,0], [[1,0],[0,1]], size=150)
5 cl3 = rng.multivariate_normal([3,2], [[1,-0.7],[-0.7,1]], size=200)
6
7 pts = np.concatenate((cl1,cl2,cl3))
```


k-means clustering

```
1 from scipy.cluster.vq import kmeans
2 ctr, dist = kmeans(pts, 3)

1 ctr

1 ctr

1 c11.mean(axis=0)

array([-2.0047, -1.8728])

1 c12.mean(axis=0)

array([1.0385, 0.0142])

[ 0.9112, -0.1872],
        [ 0.9112, -0.1872],
        [ 2.864 , 1.954 ]])

1 dist

1 cl1.mean(axis=0)

array([2.0047, -1.8728])

array([1.0385, 0.0142])

1 cl3.mean(axis=0)

array([2.9464, 2.0251])
```


k-means distortion plot

The mean (non-squared) Euclidean distance between the observations passed and the centroids generated.

```
1 ks = range(1,8)
2 dists = [kmeans(pts, k)[1] for k in ks]

1 np.array(dists).reshape(-1)
```

```
array([2.547 , 1.5701, 1.2204, 1.0461, 0.9528, 0.8804, 0.8195])
```


Example 2 Numerical integration

Basic functions

For general numeric integration in 1D we use scipy.integrate.quad(), which takes as arguments the function to be integrated and the lower and upper bounds of the integral.

```
1 from scipy.integrate import quad
 1 quad(lambda x: x, 0, 1)
(0.5, 5.551115123125783e-15)
 1 quad(np.sin, 0, np.pi)
(2.0, 2.220446049250313e-14)
 1 quad(np.sin, 0, 2*np.pi)
(2.0329956258200796e-16, 4.3998892617845996e-14)
 1 quad(np.exp, 0, 1)
(1.7182818284590453, 1.9076760487502457e-14)
                                  Sta 663 - Spring 2023
```

Normal PDF

0.0

The PDF for a normal distribution is given by,

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right)$$

```
1 def norm_pdf(x, μ, σ):
2    return (1/(σ * np.sqrt(2*np.pi))) * np.exp(-0.5 * ((x - μ)/σ)**2)

1 norm_pdf(0, 0, 1)

0.3989422804014327

1 norm_pdf(np.Inf, 0, 1)

0.0

1 norm_pdf(-np.Inf, 0, 1)
```

Checking the PDF

We can check that we've implemented a valid pdf by integrating the pdf from – inf to inf,

```
1 quad(norm_pdf, -np.inf, np.inf)
Error: TypeError: norm_pdf() missing 2 required positional arguments: '\(\mu'\) and
'\(\sigm'\)

1 quad(lambda x: norm_pdf(x, 0, 1), -np.inf, np.inf)

(0.99999999999997, 1.0178191380347127e-08)

1 quad(lambda x: norm_pdf(x, 17, 12), -np.inf, np.inf)

(1.00000000000000002, 4.113136862574909e-09)
```

Truncated normal PDF

$$f(x) = \begin{cases} \frac{c}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right), & \text{for } a \le x \le b\\ 0, & \text{otherwise.} \end{cases}$$

```
def trunc_norm_pdf(x, μ=0, σ=1, a=-np.inf, b=np.inf):
    if (b < a):
        raise ValueError("b must be greater than a")

x = np.asarray(x).reshape(-1)
full_pdf = (1/(σ * np.sqrt(2*np.pi))) * np.exp(-0.5 * ((x - μ)/σ)**2)
full_pdf[(x < a) | (x > b)] = 0
return full_pdf
```

Testing trunc_norm_pdf

```
1 trunc norm pdf(0, a=-1, b=1)
array([0.3989])
 1 trunc norm pdf(2, a=-1, b=1)
array([0.])
 1 trunc norm pdf(-2, a=-1, b=1)
array([0.])
 1 trunc norm pdf([-2,1,0,1,2], a=-1, b=1)
array([0. , 0.242 , 0.3989, 0.242 , 0. ])
 1 quad(lambda x: trunc_norm_pdf(x, a=-1, b=1), -np.inf, np.inf)
(0.682689492137086, 2.0147661317082566e-11)
 1 quad(lambda x: trunc norm pdf(x, a=-3, b=3), -np.inf, np.inf)
(0.9973002039367396, 7.451935936375609e-09)
```

Fixing trunc_norm_pdf

```
1 def trunc norm pdf(x, \mu=0, \sigma=1, a=-np.inf, b=np.inf):
      if (b < a):
          raise ValueError("b must be greater than a")
 3
      x = np.asarray(x).reshape(-1)
 4
 5
 6
      nc = 1 / quad(lambda x: norm pdf(x, \mu, \sigma), a, b)[0]
 7
      full pdf = nc * (1/(\sigma * np.sqrt(2*np.pi))) * np.exp(-0.5 * ((x - \mu)/\sigma)**2)
 8
      full pdf[(x < a) \mid (x > b)] = 0
1.0
      return full pdf
11
 1 trunc norm pdf(0, a=-1, b=1)
                                                             1 quad(lambda x: trunc norm pdf(x, a=-1, b=1), -np
```

Multivariate normal

$$f(x) = \det (2\pi\Sigma)^{-1/2} \exp \left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right)$$

```
1 norm_pdf(0,0,1)
```

0.3989422804014327

```
1 mv_norm([0], [0], [[1]])
```

0.3989422804014327

```
1 mv_norm([0,0], [0,0], [[1,0],[0,1]])
```

0.15915494309189535

```
1 mv_norm([0,0,0], [0,0,0],
2 [[1,0,0],[0,1,0],[0,0,1]])
```

0.06349363593424098

2d & 3d numerical integration

are supported by dblquad() and tplquad() respectively (see nquad() for higher dimensions)

```
1 from scipy.integrate import dblquad, tplquad
   dblquad(lambda y, x: mv norm([x,y], [0,0], np.identity(2)),
           a=-np.inf, b=np.inf,
           gfun=lambda x: -np.inf, hfun=lambda x: np.inf)
(1.000000000000322, 1.315012783660615e-08)
 1 tplquad(lambda z, y, x: mv norm([x,y,z], [0,0,0], np.identity(3)),
           a=0, b=np.inf,
           gfun=lambda x: 0, hfun=lambda x: np.inf,
           qfun=lambda x,y: 0, rfun=lambda x,y: np.inf)
 4
```

(0.1250000000036066, 1.4697203688867502e-08)

Example 3 (Very) Basic optimization

Scalar function minimization

```
1 def f(x):

2 return x**4 + 3*(x-2)**3 - 15*(x)**2 + 1
```

```
1 from scipy.optimize import minimize_scalar
2 minimize_scalar(f, method="Brent")
```

```
1 minimize_scalar(f, method="bounded", bounds=[0,6
```

```
message: Solution found.
success: True
status: 0
fun: -54.21003937712762
x: 2.668865104039653
nit: 12
nfev: 12
```

```
1 minimize_scalar(f, method="bounded", bounds=[-8,
```

```
message: Solution found.
success: True
status: 0
  fun: -803.3955308825871
    x: -5.528801009134004
  nit: 12
  nfev: 12
```

Results

```
1 res = minimize_scalar(f)
 2 type(res)
<class 'scipy.optimize._optimize.OptimizeResult'>
 1 dir(res)
['fun', 'message', 'nfev', 'nit', 'success', 'x']
 1 res.success
True
 1 res.x
-5.528801125219663
 1 res.fun
-803.3955308825884
```

More details

```
1 from scipy.optimize import show_options
2 show_options(solver="minimize_scalar")
```

Local minima

```
1 def f(x):
2 return -np.sinc(x-5)
```



```
1 res = minimize_scalar(f); res
```

message:

Optimization terminated successfully; The returned value satisfies the

termination criteria

(using xtol = 1.48e-08)

success: True

fun: -0.049029624014074166

x: -1.4843871263953001

nit: 10 nfev: 14

Random starts

Back to Rosenbrock's function

$$f(x, y) = (1 - x)^2 + 100(y - x^2)^2$$

```
1 \text{ def } f(x):
     return (1-x[0])**2 + 100*(x[1]-x[0]**2)**2
 1 minimize(f, [0,0])
                                                         1 minimize(f, [-1,-1])
 message: Optimization terminated successfully.
                                                         message: Optimization terminated successfully.
 success: True
                                                         success: True
  status: 0
                                                           status: 0
     fun: 2.843987518235081e-11
                                                              fun: 1.9950032694539075e-11
      x: [ 1.000e+00 1.000e+00]
                                                               x: [ 1.000e+00 1.000e+00]
     nit: 19
                                                              nit: 31
     jac: [ 3.987e-06 -2.844e-06]
                                                              jac: [ 2.789e-07 -1.275e-07]
hess inv: [[ 4.948e-01 9.896e-01]
                                                        hess inv: [[ 5.085e-01 1.016e+00]
           [ 9.896e-01 1.984e+00]]
                                                                    [ 1.016e+00 2.037e+00]]
    nfev: 72
                                                             nfev: 120
    njev: 24
                                                             njev: 40
```

Example 4 Spatial Tools

Nearest Neighbors

```
1 rng = np.random.default_rng(seed=12345)
2 pts = rng.multivariate_normal(
3    [0,0], [[1,.8],[.8,1]],
4    size=10
5 )
6 pts
```


Sta 663 - Spring 2023

KD Trees

Convex hulls

```
1 from scipy.spatial import ConvexHull
2 hull = ConvexHull(pts)

1 hull.vertices

array([3, 0, 9, 5, 4, 1], dtype=int32)

1 scipy.spatial.convex hull plot 2d(hull)
```


Delaunay triangulations

Voronoi diagrams

Example 5 statistics

Distributions

Implements classes for 104 continuous and 19 discrete distributions,

- rvs Random Variates
- pdf Probability Density Function
- cdf Cumulative Distribution Function
- sf Survival Function (1-CDF)
- ppf Percent Point Function (Inverse of CDF)
- isf Inverse Survival Function (Inverse of SF)
- stats Return mean, variance, (Fisher's) skew, or (Fisher's) kurtosis
- moment non-central moments of the distribution

Basic usage

```
1 from scipy.stats import norm, gamma, binom, uniform
 1 norm().rvs(size=5)
array([-0.3006, -0.172, 0.5723, 0.9794, -1.9397])
 1 uniform.pdf([0,0.5,1,2])
array([1., 1., 1., 0.])
 1 binom.mean(n=10, p=0.25)
2.5
 1 binom.median(n=10, p=0.25)
2.0
 1 gamma(a=1,scale=1).stats()
(1.0, 1.0)
 1 norm().stats(moments="mvsk")
                                  Sta 663 - Spring 2023
```

Freezing

Model parameters can be passed to any of the methods directory, or a distribution can be constructed using a specific set of parameters, which is known as freezing.

```
1  norm_rv = norm(loc=-1, scale=3)
2  norm_rv.median()

-1.0

1  unif_rv = uniform(loc=-1, scale=2)
2  unif_rv.cdf([-2,-1,0,1,2])

array([0. , 0. , 0.5, 1. , 1. ])

1  unif_rv.rvs(5)

array([ 0.1149,  0.5345,  0.4967, -0.913 , -0.5714])
```

```
1  g = gamma(a=2, loc=0, scale=1.2)
2  x = np.linspace(0, 10, 100)
4  plt.plot(x, g.pdf(x), "k-")
5  plt.axvline(x=g.mean(), c="r")
6  plt.axvline(x=g.median(), c="b")
```


MLE

Maximum likelihood estimation is possible via the fit() method,

```
1 x = norm.rvs(loc=2.5, scale=2, size=1000, random state=1234)
 2 norm.fit(x)
(2.5314811643075235, 1.946132398754459)
 1 norm.fit(x, loc=2.5) # provide a guess for the parameter
(2.5314811643075235, 1.946132398754459)
 1 x = gamma.rvs(a=2.5, size=1000)
 2 gamma.fit(x) # shape, loc, scale
(2.3525886566168865, 0.01972945620989893, 1.0868982157388611)
 1 y = \text{gamma.rvs}(a=2.5, loc=-1, scale=2, size=1000)
 2 gamma.fit(y) # shape, loc, scale
(2.9173472217905676, -1.1499921149325845, 1.7505550912408578)
```