```
#2. SAS code:
proc glm   data = trout;
      title "Problem 2 Analysis: Hemoglobin & Code";
   class code;
   model hemoglobin = code;
   lsmeans code / cl;
   contrast "Contrast 1" Code 1 -1 0 0;
   contrast "Contrast 2" Code 0 -1 1 0;
run;
```

Output (exercepted):

Problem 2 Analysis: Hemoglobin & Code

The GLM Procedure

Dependent Variable: hemoglobin

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	3	26.80275000	8.93425000	5.70	0.0027
Error	36	56.47100000	1.56863889		
Corrected Total	39	83.27375000			

code	hemoglobin LSMEAN	95% Confidence Limits			
1	7.200000	6.396752	8.003248		
2	9.330000	8.526752	10.133248		
3	9.030000	8.226752	9.833248		
4	8.690000	7.886752	9.493248		

Problem 2 Analysis: Hemoglobin & Code

The GLM Procedure

Dependent Variable: hemoglobin

Contrast	DF	Contrast SS	Mean Square	F Value	Pr > F
Contrast 1	1	22.68450000	22.68450000	14.46	0.0005
Contrast 2	1	0.45000000	0.45000000	0.29	0.5955

#3. SAS code:

```
proc glm data = batteries;
    title "Problem 3 Analysis: Battery life and brand and temperature";
    class brand temperature;
    model life = brand|temperature;
    lsmeans brand|temperature / cl;
    contrast "Redundant contrast?" brand*temperature 1 -1 -1 1;
    contrast "Contrast 3" brand 1 -1;
    contrast "Contrast 4" temperature 1 -1;
    run;
```

Output (excerpted):

Problem 3 Analysis: Battery life and brand and temperature

The GLM Procedure

Dependent Variable: life

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	3	11374.00000	3791.33333	93.04	<.0001
Error	8	326.00000	40.75000		
Corrected Total	11	11700.00000			

R-Square	Coeff Var	Root MSE	life Mean	
0.972137	5.550933	6.383573	115.0000	

Source	DF	Type I SS	Mean Square	F Value	Pr > F
brand	1	8965.333333	8965.333333	220.01	<.0001
temperature	1	2408.333333	2408.333333	59.10	<.0001
brand*temperature	1	0.333333	0.333333	0.01	0.9302

Problem 3 Analysis: Battery life and brand and temperature

The GLM Procedure Least Squares Means

brand	life LSMEAN	
1	87.666667	
2	142.333333	

temperature	life LSMEAN
1	100.833333
2	129.166667

Problem 3 Analysis: Battery life and brand and temperature

The GLM Procedure

Dependent Variable: life

Contrast	DF	Contrast SS	Mean Square	F Value	Pr > F
Test contrast	1	0.333333	0.333333	0.01	0.9302
Contrast 3	1	8965.333333	8965.333333	220.01	<.0001
Contrast 4	1	2408.333333	2408.333333	59.10	<.0001

```
#2
```

```
### Problem 2 ###
> setwd("C:/Users/Melissa/Dropbox (Personal)/STA 674/exam 2") #Path
> library(multcomp)
> library(emmeans)
> hemoglobin = read.csv("hemoglobin.csv", header = T)
> Code = as.factor(hemoglobin$Code)
> Hemoglobin = hemoglobin$Hemoglobin
> Hemoglobin = data.frame(Code, Hemoglobin)
> model_2 = lm(Hemoglobin~Code-1, data = Hemoglobin)
> anova(mode1_2)
Analysis of Variance Table
Response: Hemoglobin
          Df Sum Sq Mean Sq F value Pr(>F)
4 2959.46 739.86 471.66 < 2.2e-16 ***
Code
Residuals 36
              56.47
                         1.57
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
> #Part c
> model_2c = lm(Hemoglobin~Code, data = Hemoglobin)
> code_1s = 1smeans(mode1_2c, ~(Code))
> code_1s
 Code 1smean
                 SE df lower.CL upper.CL
        7.20 0.396 36
                            6.40
                                     8.00
        9.33 0.396 36
                            8.53
                                    10.13
        9.03 0.396 36
                            8.23
 3
                                     9.83
        8.69 0.396 36
                                     9.49
                            7.89
Confidence level used: 0.95
> #Contrast 1
> L1 <- matrix(c(1,-1,0,0),1)
> L.1 <- glht(model_2,linfct=mcp(Code=L1))
> summary(L.1)
         Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: User-defined Contrasts
Fit: lm(formula = Hemoglobin ~ Code - 1, data = Hemoglobin)
Linear Hypotheses:
       Estimate Std. Error t value Pr(>|t|)
                     0.5601 -3.803 0.000534 ***
1 == 0 -2.1300
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)
> #Contrast 2
> L2 <- matrix(c(0,-1,1,0),1)
> L.2 <- glht(model_2,linfct=mcp(Code=L2))
> summary(L.2)
```

```
Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: User-defined Contrasts
Fit: lm(formula = Hemoglobin ~ Code - 1, data = Hemoglobin)
Linear Hypotheses:
       Estimate Std. Error t value Pr(>|t|)
                   0.5601 -0.536
(Adjusted p values reported -- single-step method)
#3
### Problem 3 ###
> batterytemp = read.csv("batterytemp.csv", header = T)
> Brand = as.factor(batterytemp$Brand)
 Temp = as.factor(batterytemp$Temp)
 Minutes = batterytemp$Minutes
> Batterytemp = data.frame(Brand, Temp, Minutes)
> model_3 = lm(Minutes~Brand + Temp + Brand*Temp, data = Batterytemp)
> anova(mode1_3)
Analysis of Variance Table
Response: Minutes
           Df Sum Sq Mean Sq F value Pr(>F)
1 8965.3 8965.3 220.0082 4.203e-07 ***
Brand
                       2408.3 59.1002 5.810e-05 ***
            1 2408.3
Temp
Brand: Temp
                                0.0082
            1
                  0.3
                          0.3
                                           0.9302
Residuals
            8
               326.0
                         40.7
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
> #Brand
> batt_brand = lsmeans(model_3, 'Brand')
> batt_brand
 Brand 1smean
                SE df lower.CL upper.CL
         87.7 2.61 8
 1
                           81.7
                                     93.7
        142.3 2.61
                    8
                          136.3
                                    148.3
 2
Results are averaged over the levels of: Temp
Confidence level used: 0.95
> #Temp
> batt_temp = lsmeans(model_3, 'Temp')
> batt_temp
 Temp 1smean
                SE df lower.CL upper.CL
         101 2.61 8
                          94.8
                                     107
                   8
         129 2.61
                         123.2
                                     135
Results are averaged over the levels of: Brand Confidence level used: 0.95
> #Contrast3
> pairs(batt_brand)
 contrast estimate
                      SE df t.ratio p.value
```

1 - 2 -54.7 3.69 8 -14.833 <.0001

Results are averaged over the levels of: Brand