Programación con Restricciones Tarea 2

Daniel San Martín

Departamento de Informática Universidad Técnica Federico Santa María

14 de junio de 2017

EL PROBLEMA OPEN SHOP

Un conjunto finito de operaciones tiene que ser procesado en un conjunto dado de máquinas. Cada operación tiene un tiempo de procesamiento específico durante el cual no se puede interrumpir. Las operaciones se agrupan en trabajos, de modo que cada operación pertenece exactamente a un trabajo. Además, cada operación requiere exactamente una máquina para su procesamiento.

EL PROBLEMA OPNE SHOP

Objetivo (

El objetivo del problema es programar todas las operaciones, es decir, determinar su hora de inicio, para minimizar el tiempo máximo de finalización (makespan).

EL PROBLEMA OPEN SHOP

RESTRICCIONES

Las operaciones que pertenecen al mismo trabajo y las operaciones que utilizan la misma máquina no se pueden procesar simultáneamente.

EJEMPLO

FIGURA: Ejemplo

DESARROLLO

Para probar el código de *Gecode* se utilizaron 3 ejemplos con 3 máquinas y 3 tareas. Además, se realizaron 4 estrategias de *branching*.

- Selección de variable: Mayor recuento de fallos acumulados. Selección de mayor valor.
- Selección de variable: Mayor recuento de fallos acumulados. Selección de menor valor.
- Selección de variable: Menor recuento de fallos acumulados. Selección de mayor valor.
- Selección de variable: Menor recuento de fallos acumulados. Selección de menor valor.

EJEMPLO 1

	Job 0	Job 1	Job 2
Task 0	661	6	333
Task 1	168	489	343
Task 2	171	505	324

CUADRO: Ejemplo 1

Utilizando la estrategia 1 se obtienen los siguientes resultados:

Machine 0	0(661)	2(333)	1(6)	1168
Machine 1	2(343)	1(489)	0(168)	1168
Machine 2	1(505)	2(324)	0(171)	1000

Cuadro: Resultado ejemplo 1 E1

Resultado ejemplo 1

Utilizando la estrategia 2 se obtienen los siguientes resultados:

Machine 0	1(6)	2(333)	0(661)	1000
Machine 1	0(168)	1(489)	2(343)	1006
Machine 2	1(171)	2(324)	1(505)	1168

CUADRO: Resultado ejemplo 1 E2

Resultado ejemplo 1

Utilizando la estrategia 3 se obtienen los siguientes resultados:

Machine 0	0(661)	2(333)	1(6)	1168
Machine 1	2(343)	1(489)	0(168)	1168
Machine 2	1(505)	2(324)	0(171)	1000

Cuadro: Resultado ejemplo 1 E3

Resultado ejemplo 1

Utilizando la estrategia 4 se obtienen los siguientes resultados:

Machine 0	1(6)	2(333)	0(661)	1000
Machine 1	0(168)	1(489)	2(343)	1006
Machine 2	1(171)	2(324)	1(505)	1168

CUADRO: Resultado ejemplo 1 E4

Resultados ejemplo 1

Estrategia		1	2	3	4
Initial	Propagators:	45	45	45	45
	Branchers:	3	3	3	3
Summary	Runtime:	$0.467 \; \text{ms}$	0.452 ms	$0.544~\mathrm{ms}$	$0.493 \; { m ms}$
	Solutions:	1	1	1	1
	Propagations:	896	915	832	804
	Nodes:	14	14	14	14
	Failures:	5	5	5	5
	Restarts:	0	0	0	0
	No-goods:	0	0	0	0
	Peak depth:	6	6	6	6

CUADRO: Resumen ejemplo 1

Resultados ejemplo 1

FIGURA: Propagaciones ejemplo 1

EJEMPLO 2

	Job 0	Job 1	Job 2
Task 0	1000	603	123
Task 1	674	349	223
Task 2	271	467	874

CUADRO: Ejemplo 2

Utilizando la estrategia 1 se obtienen los siguientes resultados:

Machine 0	0(1000)	2(123)	1(603)	1944
Machine 1	1(349)	0(674)	2(223)	1987
Machine 2	2(874)	1(467)	0(271)	1945

CUADRO: Resultado ejemplo 2 E1

Utilizando la estrategia 2 se obtienen los siguientes resultados:

Machine 0	1(603)	2(123)	0(1000)	1945
Machine 1	2(223)	0(674)	1(349)	1419
Machine 2	0(271)	1(467)	2(874)	1944

CUADRO: Resultado ejemplo 2 E2

Utilizando la estrategia 3 se obtienen los siguientes resultados:

Machine 0	0(1000)	2(123)	1(603)	1944
Machine 1	1(349)	0(674)	2(223)	1867
Machine 2	2(874)	1(467)	0(271)	1945

CUADRO: Resultado ejemplo 2 E3

Utilizando la estrategia 4 se obtienen los siguientes resultados:

Machine 0	1(603)	2(123)	0(1000)	1945
Machine 1	2(223)	0(674)	1(349)	1419
Machine 2	0(271)	1(467)	2(874)	1944

CUADRO: Resultado ejemplo 2 E4

Estrategia		1	2	3	4
Initial	Propagators:	36	36	36	36
	Branchers:	3	3	3	3
Summary	Runtime:	0.348 ms	$0.450 \; \text{ms}$	0.344 ms	$0.347 \; { m ms}$
	Solutions:	1	1	1	1
	Propagations:	180	176	180	176
	Nodes:	9	10	9	10
	Failures:	1	1	1	1
	Restarts:	0	0	0	0
	No-goods:	0	0	0	0
	Peak depth:	8	9	8	9

CUADRO: Resumen ejemplo 2

FIGURA: Propagaciones ejemplo 2

EJEMPLO 3

	Job 0	Job 1	Job 2
Task 0	61	6	33
Task 1	18	89	243
Task 2	201	105	134

CUADRO: Ejemplo 3

Utilizando la estrategia 1 se obtienen los siguientes resultados:

Machine 0	0(61)	1(6)	2(33)	167
Machine 1	0(18)	1(89)	2(243)	411
Machine 2	2(134)	0(201)	1(105)	440

Cuadro: Resultado ejemplo 3 E1

Utilizando la estrategia 2 se obtienen los siguientes resultados:

Machine 0	2(33)	1(6)	0(61)	411
Machine 1	2(243)	1(89)	0(18)	350
Machine 2	1(105)	0(201)	2(134)	440

Cuadro: Resultado ejemplo 3 E2

Utilizando la estrategia 3 se obtienen los siguientes resultados:

Machine 0	0(61)	1(6)	2(33)	167
Machine 1	0(18)	1(89)	2(243)	411
Machine 2	2(134)	0(201)	1(105)	440

Cuadro: Resultado ejemplo 3 E3

Utilizando la estrategia 4 se obtienen los siguientes resultados:

Machine 0	2(33)	1(6)	0(61)	411
Machine 1	2(243)	1(89)	0(18)	350
Machine 2	1(105)	0(201)	2(134)	440

Cuadro: Resultado ejemplo 3 E4

Estrategia		1	2	3	4
Initial	Propagators:	36	36	36	36
	Branchers:	3	3	3	3
Summary	Runtime:	0.346 ms	$0.653~\mathrm{ms}$	$0.462~\mathrm{ms}$	0.371 ms
	Solutions:	1	1	1	1
	Propagations:	394	396	396	398
	Nodes:	16	13	15	12
	Failures:	3	3	3	3
	Restarts:	0	0	0	0
	No-goods:	0	0	0	0
	Peak depth:	14	11	13	10

CUADRO: Resumen ejemplo 3

FIGURA: Propagaciones ejemplo 3

CONCLUSIONES

Del desarrollo de la tarea se obtuvieron las siguientes conclusiones:

- Podemos notar del análisis anterior que la estrategia de asignación de variable y de valores es dependiente del ejemplo.
- Por esto último, según el tipo de problemas se necesitará evaluar la estrategia de asignación de variables y valores.
- Gecode también es una buena herramienta para resolver estos tipos de problemas.

REFERENCIAS

- Schulte, C., Lagerkvist, M., & Tack, G. (2017). Gecode. Software download and online material at the website: http://www.gecode.org.
- Gonzalez, T., & Sahni, S. (1976). Open shop scheduling to minimize finish time. Journal of the ACM (JACM), 23(4), 665-679.

