Combinatorics

We want to choose k elements among n elements.

	Repetition not allowed	Repetition allowed
Order does not matter	$\frac{n!}{(n-k)!k!}$	$\binom{n-1+r}{n-1}$
	(n choices, then n-1 choices, etc. and we stop at n-k, we also remove n! because order does not matter and n! is the number of permutations)	It's stars and bars method. We want r stars + n stars for each box. Then, we transform n-1 of these stars into bars to separate the r stars into boxes.
Order matters	n!	n^k
	(n choices, then n-1 choices, etc.)	Cartesian product.

Probabilities

Solving a probability problem

- · list possible outcomes, define the probability space
- sometimes we keep a general Ω and different \mathcal{F} depending on the point of view (colorblind/not colorblind, etc.)

Terminology

- Ω is the **sample space**, containing all possible outcomes ω .
- \mathcal{F} is an **event space** (there are multiple event spaces!). It is a set of the subsets of Ω . The powerset of Ω includes all \mathcal{F} . $|\mathcal{F}| = 2^{|\Omega|}$ only if Ω is finite.

 ${\mathcal F}$ is also called a sigma-algebra.

Example for a fair die:

- Sample space: $\{1, 2, 3, 4, 5, 6\}$
- **Events**: $\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{1, 2\}, \{1, 3\}, ..., \{1, 2, 3, 4, 5, 6\}$ note that this is only for one throw! $\{a, b\}$ is read "getting a or getting b".
- Event space: all events

Axioms

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Generalization of the OR between events:

$$\begin{split} P(A_1) + P(A_2) + P(A_3) - P(A_1 \cap A_2) - P(A_2 \cap A_3) - P(A_1 \cap A_3) + P(A_1 \cap A_2 \cap A_3) \\ \mathbb{P}(\cup_{i=1}^n A_i) &= \sum_{r=1}^n \left(-1\right)^{r+1} \sum_{1 \leq i_1 < i_2 < \ldots < i_r < n} \left(A_{i_1} \cap \ldots \cap A_{i_r}\right) \end{split}$$

(les i_k doivent donc être différents)

Conditional probabilities:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Law of total probability

Let $\{B_i\}_{i=1}^\infty$ be pairwise disjoint events, and let $A\subset \cup_{i=1}^\infty B_i$ then:

$$P(A) = \sum_{i=1}^{\infty} P(A \cap B_i) = \sum_{i=1}^{\infty} \mathbb{P}(A|B_i)\mathbb{P}(B_i)$$

Bayes' Theorem:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$$

but we can replace P(B) by what we know, low of total probability:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B|A)\mathbb{P}(A) + \mathbb{P}(B|A^c)\mathbb{P}(A^c)}$$