

Setor de Biologia Molecular

Detecção Molecular do HPV

Agledison Vieira do Nascimento

Farmacêutico

Juazeiro do Norte-CE 2023

ROTEIRO

- HPV
- Captura Híbrida
- PCR/Eletroforese
- RT-qPCR
- Painel Molecular (Genotipagem)

HPV

Papiloma Vírus Humano

Trata-se de uma das infecções sexualmente transmissíveis (IST's) mais frequentes.

Segundo a Organização Mundial da Saúde, mais de 630 milhões de homens e mulheres estão infectados pelo HPV.

No Brasil, estima-se que haja 9 a 10 milhões de infectados por esses vírus e que, a cada ano, 700 mil casos novos surjam, podendo ser considerado, portanto, uma epidemia.

HPV – Estrutura Morfológica

Figura 1: Morfologia do papilomavirus humano (HPV).

HPV – Estrutura Genômica

Regulatória (LCR ou long control region), precoce (Early ou E) e tardia (Late ou L)

HPV - Genótipos

Mais de 200 tipos de HPV descritos

Aproximadamente 40 tipos infectam o trato anogenital

Pelo menos 20 subtipos estão associados ao carcinoma do colo uterino

- **Baixo risco oncogênico**: detectados em lesões anogenitais benignas e lesões intraepiteliais de baixo grau tipos 6, 11, 40, 42, 43, 44, 54, 61, 70, 72 e 81.
- Alto risco oncogênico: detectados em lesões intraepiteliais de alto grau e, especialmente, nos carcinomas tipos 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73 e 82.

HPV - Oncogênico

TABELA 5-3 Vírus oncogênicos humanos

(MADIGAN, 2016)

Tipo de vírus	Família do vírus	Tipo de câncer associado			
HTLV-1	Retrovírus (vírus RNA)	Leucemia de células T/linfoma			
Hepatite B	Hepadnavírus (vírus DNA hepatotrófico)	Carcinoma hepatocelular			
Hepatite C	Hepadnavírus	Carcinoma hepatocelular			
Epstein-Barr	Herpes-vírus (vírus DNA)	Carcinoma de nasofaringe			
		Linfoma de Burkitt			
		Linfoma imunoblástico			
		Doença de Hodgkin			
HHV-8 (KSHV)	Herpes-vírus	Sarcoma de Kaposi			
		Linfoma de cavidade corporal			
HPV sorotipos	Papilomavírus (vírus DNA)	Carcinoma de colo de útero			
16, 18, 33, 39		Carcinoma anal			
HPV sorotipos 5, 8, 17	Papilomavírus	Câncer de pele			

Legenda: HTLV, vírus linfotrófico humano da leucemia/linfoma de células T; HHV-8, herpes-vírus humano 8; KSHV, herpes-vírus do sarcoma de Kaposi.

HPV – Mecanismo Patogenicidade

Imortalização
Proliferação
celular
aumentada
Instabilidade
genômica

(KUMAR, 2010)

FIGURA 6.33 Efeitos transformadores das proteínas E6 e E7 do HPV. O efeito das proteínas E6 e E7 do HPV é imortalizar as células e remover as restrições sobre a proliferação celular.

HPV - Infecção

Epitélio escamoso infectado

Ciclo de infecção do HPV

HPV - Lesões Celulares

Normal

HPV – Lesão Tecidual

Lesão intraepitelial de	Lesão intraepitelial			
baixo grau	escamosa de alto grau			
NIC 1 / HPV	NIC 2	NIC 3		

Invasão

HPV - HPV Alto e Baixo Risco

FIGURA 19.8 Óstio cervical com carcinoma cervical circunjacente, invasivo e exofítico.

HPV - Vacinação

Quadro 2. Programa oficial de vacinação contra HPV do PNI de acordo com o gênero, para o período de 2017-2020 (PNI – Junho/2017)(18,19) (CARDIAL et al, 2019)

	Meninos e	homens	Meninas e mulheres		
Ano	Idade	Nº doses	Idade	Nº doses	
2017-2018	11 e 14 anos	2 (0-6 meses)		2 (0-6 meses)	
2019	10 e 11 anos	2 (0-6 meses)	9 e 14 anos		
2020	9 e 10 anos	2 (0-6 meses)			
2017-2020	HIV+ e imunossuprimido* 9 a 26 anos	3 (0-2-6 meses)	HIV+ e imunossuprimido* 9 a 26 anos	3 (0-2-6 meses)	

^{*} Imunossupressão por transplante e tratamento oncológico.

HPV

RASTREAMENTO DO CC: do que dispomos?

Test	Principle	Comments	Low-Risk Strains	High-Risk Strains
Reverse Line Blot (Roche)	Target amplification; genotyping; consensus PCR and line blot	Research use only	6, 11, 61, 62, 64, 67, 69, 72, 81, 89	16,18, 26, 31, 33, 35, 39, 40, 42, 45, 51 to 59, 66, 68, 73, 82, 83, 84
LINEAR ARRAY HPV Genotyping Test (Roche)	Target amplification; genotyping; PCR followed by line hybridization	CE-Marked for use in Europe	6, 11, 40, 42, 53, 54, 55, 61, 62, 64, 67, 69, 70, 71, 72, 81, 84, IS39, CP6108	16, 18, 26, 31, 33, 35, 39, 45, 51, 52,
INNO-LiPA HPV Genotyping Extra (Innogenetics)	Target amplification; genotyping; SPF10 primers at L1 region, reverse hybridization	CE-Marked for use in Europe	6, 11, 40, 43, 44, 54, 70	16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 69, 71, 73, 74, 82
AMPLICOR HPV (Roche)	Target amplification; detection; PCR and nucleic acid hybridization	CE-Marked for use in Europe	N/A	16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68
PapilloCheck (Greiner Bio-One)	Target amplification of E1 for genotyping; PCR/DNA-array	CE-Marked for use in Europe	6, 11, 40, 42, 43, 44	16, 18, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 70, 73, 82
Multiplex HPV Genotyping Kit (Multimetrix)	Target amplification; genotyping; PCR and fluorescent bead array	Research use only	6, 11, 42, 43, 44, 70	16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 73, 82
GenoID Real-Time HPV Assay (GenoID)	Target amplification for detection or semi-genotyping; real-time PCR	CE-Marked for use in Europe	6, 11, 42, 43, 44 (Lightcycler only)	16, 18, 31, 33, 35, 39, 45, 51,52, 56, 58, 59, 66, 68
Digene Hybrid Capture II (HC2) HR HPV DNA Test (Digene/Qiagen)	Signal amplification for detection; hybrid capture, semi-quantitative	FDA-approved	N/A	16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68
Digene Hybrid Capture II (HC2) HPV DNA Test (Digene/Qiagen)	Signal amplification for detection; hybrid capture, semi-quantitative	FDA-approved	6, 11, 42, 43, 44	16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68
CareHPV (Qiagen)	Signal amplification for detection; rapid test related to HC2	For use in developing countries	N/A	16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68
Cervista HPV HR (Hologic)	Signal amplification for detection; Invader technology	FDA-approved	N/A	16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68
Cervista HPV 16/18 (Hologic)	Signal amplification for genotyping;	FDA-approved	N/A	16, 18
	Invader technology		((ARNEY; BENNETT, 2010)

HPV

1. Coletar 2. Destacar 3. Enviar

100% das células coletadas são transferidas para o frasco.

CAPTURA HÍBRIDA

Hibridização com sonda de RNA

Captura dos híbridos

Reação com anticorpo conjugado

Amplificação do sinal por quimioluminescência

PCR/ELETROFORESE

RT-qPCR

Multi HPV Flow-Chip

Teste de diagnóstico in vitro para a detecção e genotipagem simultânea de 35 diferentes tipos do HPV,

Alto risco (**16**, **18**, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 73 e 82)

Baixo risco (**6**, **11**, 40, 42, 43, 44, 54, 55, 61, 62, 67, 69, 70, 71, 72, 81 e 84)

Amostras de swabs citológico e retal, tecidos em parafina e citologia em meio líquido.

- ❖ Identifica a presença do material genético do patógeno
- ❖ Permite detecção já nos primeiros dias da infecção
- Permite identificar infecção antes do aparecimento de sintomas
- ❖ Técnica permite rápida liberação (aproximadamente 4 h)
- ❖ Técnica de interpretação assertiva
- ❖ Metodologia com alta sensibilidade e especificidade
- * Mais sensível e informático que os métodos de sorologia

Multi HPV Flow-Chip

O princípio do ensaio é baseado na amplificação da região L1 do HPV por PCR Multiplex, seguido por hibridização reversa (*Dot Blot*) com sondas específicas de DNA imobilizadas em um chip composto por membrana de nylon (**Tecnologia Flow-Chip**)

- Sondas de DNA fita simples são utilizadas para localizar um gene do HPV
- ❖ Detecção de sequências de nucleotídeos específicas do HPV
- ❖ Membrana de nylon: Tecnologia Flow-Chip
- Ligação dos produtos de PCR biotinilados às sondas complementares presentes na membrana
- Sinal de hibridização: Reação colorimétrica enzimática
- Substrato + cromógeno = precipitado roxo;
 Presença do alvo

Multi HPV Flow-Chip

		1	2	3	4	5	6	7	8	9
	Α	В	33	58	42	71	16	52	В	
	В	В	35	59	43	72	18	53	6	69
	С	С	39	66	44/45		26	56	11	70
	D	U	45	68	54	84	31	58	40	71
ı	E	16	51	73	61	В	33	59	22/55	72
1	F	18	52	82	62/81	С	35	66	54	
	G	26	53	6	67	U	39	68	61	84
ı	н	31	56	11	69	42	45	73	62/81	
	1		В	40	70	43	51	82	67	

Legenda:

- B: Controle de hibridização.
- C: Controle de amplificação endógeno MM HPV (fragmento B-Globina humana).
- U: Sonda Universal para HPV.
- X: Sondas específicas para cada genótipo.

hybriSpot24

INOVAÇÃO!

TECNOLOGIA!

QUALIDADE!

PCR Convencional Multiplex

Hibridização Reversa Chip Marcação Estreptavidina Revelação Cromógeno-Substrato

HPV

REFERÊNCIAS

ARNEY, A.; BENNETT, K. M. Molecular diagnostics of human papillomavirus. **Laboratory Medicine**, v. 41, n. 9, p. 523-530, 2010.

BRASIL. Ministério da Saúde. **Diretrizes brasileiras para o rastreamento do câncer do colo do útero**. 2016.

BRASIL. Ministério da Saúde . **Protocolo Clínico e Diretrizes Terapêuticas** para Atenção Integral às Pessoas com Infecções Sexualmente Transmissíveis – IST. 2022.

CARDIAL, M.; et al. Papilomavírus humano (HPV). **Rev Femina**, v. 47, n.2, p. 94-100, 2019.

CARVALHO, C.F; et al. Rastreamento do câncer do colo do útero com teste de DNA-HPV: atualizações na recomendação. **Rev Femina**. 2022;50(4):200-7.

MADIGAN, M.; et al. Microbiologia de Brock-14^a Ed. Artmed Editora, 2016.

REFERÊNCIAS

KROUPIS, C.; VOURLIDIS, Nikolaos. Human papilloma virus (HPV) molecular diagnostics. **Clinical chemistry and laboratory medicine**, v. 49, n. 11, p. 1783-1799, 2011.

KUMAR, V. Robbins & cotran-patologia bases patológicas das doenças 8a edição. Elsevier Brasil, 2010.

NETO, J.C.S. Citologia Clínica do trato genital feminino. Thieme Revinter, 2020.

PINTO, A.P; et al. Co-fatores do HPV na oncogênese cervical. **Revista da associação médica brasileira**, v. 48, p. 73-78, 2002.

WUERDEMANN, N.; et al. Cell-Free HPV-DNA as a biomarker for oropharyngeal squamous cell carcinoma—a step towards personalized medicine?. **Cancers**, v. 12, n. 10, p. 2997, 2020.

Setor de Biologia Molecular

Muito Obrigado!!!

Agledison Vieira do Nascimento Farmacêutico

Juazeiro do Norte-CE 2023