Тема 1.

Вектори. Линейни операции със свободни вектори. Линейни пространства и подпространства. Геометрично векторно пространство

1. Свободен вектор

Определение 1.1. Наредена двойка точки (A,B) се означава с \overrightarrow{AB} и се нарича *насочена отсечка*. Точка A се нарича *начало*, а точка B - $\kappa pa \ddot{u}$ на \overrightarrow{AB} .

Ако началото и краят съвпадат (т. е. $A \equiv B$), то насочената отсечка \overrightarrow{AA} се нарича y ева (в този случай насочената отсечка съвпада с точката A).

На фиг. 1.1 са изобразени насочените отсечки \overrightarrow{AB} и \overrightarrow{BA} .

Определение 1.2. Насочените отсечки \overrightarrow{AB} и \overrightarrow{CD} се наричат колинеарни, ако правите AB и CD са успоредни или съвпадат. Записваме $\overrightarrow{AB} \parallel \overrightarrow{CD}$.

За точките A, B, C и D също се казва, че са колинеарни, ако лежат върху една права.

Ако лъчите \overrightarrow{AB} и \overrightarrow{CD} са еднопосочно успоредни, то насочените отсечки \overrightarrow{AB} и \overrightarrow{CD} се наричат еднопосочно колинеарни и записваме \overrightarrow{AB} $\uparrow\uparrow$ \overrightarrow{CD} .

Ако лъчите \overrightarrow{AB} и \overrightarrow{CD} са разнопосочно успоредни, то насочените отсечки \overrightarrow{AB} и \overrightarrow{CD} се наричат разнопосочно колинеарни и записваме $\overrightarrow{AB}\uparrow\downarrow\overrightarrow{CD}$.

На фиг. 1.3. са изобразени еднопосочно колинеарните насочени отсечки \overrightarrow{AB} и \overrightarrow{CD} (в ляво) и разнопосочно колинеарните насочени отсечки \overrightarrow{AB} и \overrightarrow{CD} (в дясно).

Определение 1.3. Насочените отсечки \overrightarrow{AB} , \overrightarrow{CD} и \overrightarrow{EF} се наричат *компланарни*, ако правите AB, CD и EF лежат в една равнина или са успоредни на една равнина. Точките A, B, C, D, E и F, лежащи в една равнина, също се наричат компланарни.

Фиг. 1.4

Определение 1.4. Ненулевите насочени отсечки \overrightarrow{AB} и \overrightarrow{CD} се наричат paehu, ако:

- 1) отсечките AB и CD имат равни дължини;
- 2) насочените отсечки \overrightarrow{AB} и \overrightarrow{CD} са еднопосочно колинеарни, т. е. $\overrightarrow{AB}\uparrow\uparrow\overrightarrow{CD}$.

Следствие. Фигурата \overrightarrow{ABCD} е успоредник, точно когато $\overrightarrow{AB} = \overrightarrow{DC}$ или $\overrightarrow{AD} = \overrightarrow{BC}$ (като при това четирите точки не са колинеарни).

Фиг. 1.5

Равенството на насочени отсечки е *релация на еквивалентност* и като такава притежава свойствата:

- 1) рефлексивност $\overrightarrow{AB} = \overrightarrow{AB}$;
- 2) $\overrightarrow{cumempuчнocm}$ ако $\overrightarrow{AB} = \overrightarrow{CD}$, то $\overrightarrow{CD} = \overrightarrow{AB}$;
- 3) mpaнзumuвносm ако $\overrightarrow{AB} = \overrightarrow{CD}$ и $\overrightarrow{CD} = \overrightarrow{EF}$, то $\overrightarrow{AB} = \overrightarrow{EF}$ за произволни насочени отсечки \overrightarrow{AB} , \overrightarrow{CD} , \overrightarrow{EF} .

Отбелязваме, че всяка релация, притежаваща свойствата 1), 2) и 3) е релация на еквивалентност.

Нека V е множеството на всички насочени отсечки. Релацията на еквивалентност "равенство на насочени отсечки" разбива V на непресичащи се класове на еквивалентност. Ако \vec{a} и \vec{b} са множествата от всички насочени отсечки, съответно равни на \overrightarrow{AB} и \overrightarrow{CD} , то \vec{a} и \vec{b} или нямат нито един общ елемент, или съвпадат. Втората възможност е налице, точно когато $\overrightarrow{AB} = \overrightarrow{CD}$. Така достигаме до следващото важно определение

Определение 1.5. Всеки клас \vec{a} от равни насочени отсечки се нарича $\pmb{ceoбodeh}$ $\pmb{eeкmop}$. Всеки елемент на \vec{a} се нарича представител на \vec{a} . Ако \overrightarrow{AB} е представител на \vec{a} , то вместо $\overrightarrow{AB} \in \vec{a}$ записваме $\overrightarrow{AB} = \vec{a}$.

Ако A е произволна точка, а \vec{a} е произволен свободен вектор, то съществува единствена точка B такава, че $\overrightarrow{AB} = \vec{a}$. Построяването на представителя \overrightarrow{AB} се нарича npenacane на \vec{a} в т. A. Hyлев cвободен вектор се нарича множеството от всички нулеви насочени отсечки и означаваме с \vec{o} .

Под дължина на насочената отсечка \overrightarrow{AB} разбираме дължината на отсечката AB. Под дължина на свободния вектор $\overrightarrow{a} = \overrightarrow{AB}$ разбираме дължината на произволен негов представител, т. е. дължината на насочената отсечка \overrightarrow{AB} и означаваме с $|\overrightarrow{a}|$.

Очевидно дължината на нулевия вектор е числото нула, т.е. $|\vec{o}|=0.$

Ако \vec{a} е свободен вектор с представител насочената отсечка \overrightarrow{AB} , то свободният вектор с представител \overrightarrow{BA} се означава с $(-\vec{a})$ и се нарича *противоположен свободен вектор* на \vec{a} . Следователно е изпълнено

$$\overrightarrow{AB} = -\overrightarrow{BA}.$$

Свободните вектори \vec{a} и \vec{b} се наричат колинеарни, ако съответните им представители са колинеарни. Нулевият вектор е колинеарен на всеки друг свободен вектор.

Свободните вектори \vec{a} , \vec{b} и \vec{c} се наричат компланарни, ако съответните им представители са компланарни.

2. Линейни действия със свободни вектори

Събиране на свободни вектори

Определение 1.6. (правило на триъгълника) Събиране на два свободни вектора \vec{a} и \vec{b} е действие, което им съпоставя свободния вектор $\vec{a} + \vec{b}$, наречен тяхна сума, определен по следния начин:

ако O е произволна точка и $\vec{a} = \overrightarrow{OA}, \ \vec{b} = \overrightarrow{AB}, \ \text{то} \ \vec{a} + \vec{b} = \overrightarrow{OB}.$

Фиг. 1.6

Релация на Шал за насочени отсечки: За произволни три точки $A,\,B$ и C е изпълнено равенството

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}.$$

Ako $\vec{a} \parallel \vec{b}$, to $\vec{a} + \vec{b} \parallel \vec{a} \parallel \vec{b}$.

Фиг. 1.7

Умножение на свободен вектор с число

Определение 1.7. Умножение на реално число λ със свободен вектор \vec{a} е действие, което им съпоставя свободен вектор $\lambda \vec{a}$, наречен тяхно произведение, определен по следния начин:

ако $\lambda=0$ или $\vec{a}=\vec{o}$, то $\lambda\vec{a}=\vec{o}$; в противен случай $\lambda\vec{a}$ е с дължина $|\lambda\vec{a}|=|\lambda|.|\vec{a}|$ и е еднопосочно или разнопосочно колинеарен на \vec{a} в зависимост от това дали $\lambda>0$ или $\lambda<0$.

Теорема 1.1. Линейните действия със свободни вектори притежават следните свойства:

- 1. $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ (комутативност при събиране);
- 2. $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$ (асоциативност при събиране);
- 3. съществува свободен вектор \vec{o} такъв, че $\vec{a} + \vec{o} = \vec{a}$ за всеки свободен вектор \vec{a} ;
- 4. за всеки свободен вектор \vec{a} съществува свободен вектор $(-\vec{a})$ такъв, че $\vec{a} + (-\vec{a}) = \vec{o}$;
- 5. $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$ (дистрибутивност относно числов множител);
- 6. $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$ (дистрибутивност относно векторен множител);
- 7. $(\lambda \mu)\vec{a} = \lambda(\mu \vec{a})$ (асоциативност при умножение с число);
- 8. $1\vec{a} = \vec{a}$,

където $\vec{a}, \vec{b}, \vec{c}$ са произволни свободни вектори, а λ, μ – произволни реални числа.

Доказателство.

1. Избираме представители на свободните вектори \vec{a} и \vec{b} . Нека това бъдат съответно насочените отсечки \overrightarrow{OA} и \overrightarrow{OB} (фиг. 1.9).

Фиг. 1.9 Правило на успоредника за събиране на свободни вектори

Допълваме ъгъла AOB до успоредника OACB. Тогава, съгласно правилото на триъгълника за събиране на насочени отсечки имаме

OT
$$\triangle OAC$$
: $\vec{a} + \vec{b} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{OC}$;

OT
$$\triangle OBC$$
: $\vec{b} + \vec{a} = \overrightarrow{OB} + \overrightarrow{BC} = \overrightarrow{OC}$.

Следователно $\vec{a} + \vec{b} = \vec{b} + \vec{a}$, т.е. събирането на свободни вектори е комутативно.

От горното доказателство следва правилото на успоредника за събиране на насочени отсечки (свободни вектори) (фиг. 1.9)

$$\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OC}.$$

3. Линейно (векторно) пространство

Определение 1.8. Непразно множество V се нарича $\mathit{линейно}$ ($\mathit{векторно}$) $\mathit{пространство}$ над $\mathit{числовото}$ поле \mathbb{K} , ако е снабдено с две действия - $\mathit{c56иранe}$, което на всеки два елемента $a,b \in V$ съпоставя елемент $a+b \in V$, наречен сума на a и b и $\mathit{умножение}$ с $\mathit{число}$, което на всеки елемент $a \in V$ и $\lambda \in \mathbb{K}$ съпоставя елемента $\lambda a \in V$, наречен произведение на λ и a, при което за произволни $a,b,c \in V$ и $\lambda,\mu \in \mathbb{K}$ са изпълнени следните свойства (аксиоми):

- 1. a + b = b + a (комутативност при събиране);
- 2. (a + b) + c = a + (b + c) (асоциативност при събиране);
- 3. съществува елемент о такъв, че a + o = a за всеки елемент a; елементът о се нарича нулев елемент;
- 4. за всеки елемент а съществува елемент (-a) такъв, че a + (-a) = o; елементът (-a) се нарича противоположен елемент на a;

- 5. $\lambda(a+b) = \lambda a + \lambda b \ (\partial истрибутивност относно множител от <math>\mathbb{K}$);
- 6. $(\lambda + \mu)a = \lambda a + \mu a$ (дистрибутивност относно множител от V);
- 7. $(\lambda \mu)a = \lambda(\mu a)$ (асоциативност при умножение с множител от \mathbb{K});
- 8. 1a = a.

Елементите на V се наричат вектори. Действията събиране на вектори и умножение на число с вектор се наричат линейни deйc-mвия (onepaquu).

Забележка. Ще разглеждаме предимно случая, когато $\mathbb{K} = \mathbb{R}$. Тогава V се нарича *реално векторно пространство*.

Ако $\mathbb{K} = \mathbb{C}$ - полето на комплексните числа, то V се нарича комплексно векторно пространство.

Някои следствия от аксиомите 1-8.

Следствие 1.1. *Нулевият елемент на всяко векторно пространство е единствен.*

Следствие 1.2. Противоположният елемент на всеки елемент на векторно пространство е единствен.

Следствие 1.3. 0a = o за всяко $a \in V$.

Следствие 1.4. (-1)a = -a за всяко $a \in V$.

Следствие 1.5. $A \kappa o \ \lambda a = o, \ mo \ u \wedge u \ \lambda = 0, \ u \wedge u \ a = o.$

Следствие 1.6. Ако а и b са произволни вектори от V, то уравнението a + x = b има единствено решение $x \in V$, което се определя от x = b + (-a) и се нарича разлика на векторите а и b (означаваме с b - a).

Определение 1.9. Непразното подмножество W на векторното пространство V ($\emptyset \neq W \subseteq V$) се нарича векторно подпространство ство на V, ако W е векторно пространство относно линейните действия, дефинирани над елементите на V. В такъв случай записваме $W \leq V$.

Определение 1.10. Нека V е векторно пространство над полето \mathbb{K} , а $\{a_1, a_2, ..., a_k\}$ е произволна система (съвкупност) от вектори на V. Вектор от вида

$$\lambda_1 a_1 + \lambda_2 a_2 + \dots + \lambda_k a_k$$

се нарича Λu нейна комбинация на векторите $a_1, a_2, ..., a_k$, а числата $\lambda_1, \lambda_2, ..., \lambda_k \in \mathbb{K}$ се наричат коефициенти на тази линейна комбинация.

Твърдение 1.1. Непразното подмножество W на векторното пространство V е векторно подпространство на V, точно когато е изпълнено едно от следните еквивалентни условия:

- 1) W е затворено относно линейните действия над елементите на V, m. е. за произволни $a,b \in W$ и $\lambda \in \mathbb{K}$ имаме: $a+b \in W$ и $\lambda a \in W$;
- 2) W е затворено относно взимането на линейни комбинации на елементи на W, m. е. за всеки $a,b \in W$ и $\lambda,\mu \in \mathbb{K}$ имаме $\lambda a + \mu b \in W$.

Множеството $\{o\}$ е векторно пространство и се нарича *нулево* векторно пространство.

Очевидно за всяко векторно пространство V е изпълнено $V \leq V, \{o\} \leq V.$ Тези векторни подпространства се наричат mpuвиални векторни подпространства на V.

Примери за векторни пространства и подпространства

Пример 1.1. Всяко числово поле **К** е векторно пространство над себе си. Следователно векторни пространства са множеството на рационалните числа **Q** и множеството на реалните числа **R** относно естествените операции събиране и умножение с число, дефинирани над тези числови множества.

Нека разгледаме множеството $\mathbb{R}^2 = \{z = (x,y) | x,y \in \mathbb{R}\}$. Дефинираме следните операции:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2),$$

$$(x_1, y_1) \cdot (x_2, y_2) = (x_1 x_2 - y_1 y_2, x_1 y_2 + x_2 y_1).$$
(1.1)

Множеството \mathbb{R}^2 с операциите (1.1) се нарича множество на комплексните числа и се бележи с \mathbb{C} .

Ако $a \in \mathbb{R}$, то $a = (a,0) \in \mathbb{C}$, т. е. \mathbb{R} е подмножество на \mathbb{C} . Имаме $\omega = (0,0) = 0$ и $\varepsilon = (1,0) = 1$. Комплексното число i = (0,1) се нарича *имагинерна единица на* \mathbb{C} . Съгласно (1.1)

имаме

$$i^2 = i \cdot i = (0, 1) \cdot (0, 1) = -1.$$

Тогава за произволно комплексно число z = (x, y) е в сила

$$z = (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1) \cdot (0, y) = x + iy$$

Изразът z = x + iy се нарича алгебричен вид на комплексното число z. Геометричното му представяне е точка в декартовата равнина с координати (x,y).

Множеството \mathbb{C} е числово поле и векторно пространство над себе си относно естествените операции с комплексни числа, т. е. операциите (1.1).

Относно операциите събиране и умножение с реално число имаме $\mathbb{R} \leq \mathbb{C}$. Обаче относно същите операции \mathbb{Q} не е подпространство на \mathbb{R} , тъй като, можем да съставим линейна комбинация на елементи от \mathbb{Q} с реални коефициенти (например ирационални), която да не принадлежи на \mathbb{Q} .

Множеството на естествените числа № не е векторно пространство относно операциите събиране на естествени числа и умножение с естествено число, тъй като не са изпълнени аксиоми 3 и 4 (не съществува нулев елемент, противоположният елемент на всеки елемент от \mathbb{N} не принадлежи на \mathbb{N}). Множеството на целите числа \mathbb{Z} също не е векторно пространство над себе си, тъй като не е поле.

Пример 1.2. Множеството $\mathbb{R}^n = \{x_1, x_2, ..., x_n\}, n \in \mathbb{N}$, на *наредените п-торки от реални числа* е векторно пространство над \mathbb{R} относно операциите събиране и умножение с реално число, дефинирани съответно чрез:

$$(x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n) = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n),$$

 $\lambda(x_1, x_2, ..., x_n) = (\lambda x_1, \lambda x_2, ..., \lambda x_n)$

за произволни $(x_1,...,x_n), (y_1,...,y_n) \in \mathbb{R}^n$ и $\lambda \in \mathbb{R}$. Нулевият елемент на \mathbb{R}^n е наредената n-торка (0,0,...,0). Тогава противоположният елемент на $(x_1,...,x_n) \in \mathbb{R}^n$ е $(-x_1,-x_2,...,-x_n)$.

B частност, $\mathbb{R}^1 = \mathbb{R}$.

Пример 1.3. Множеството от свободните вектори е векторно пространство над \mathbb{R} относно операциите събиране на свободни вектори и умножение на свободен вектор с число. Това пространство се нарича *геометрично векторно пространство*.

Векторите, колинеарни с дадена права, образуват едно векторно подпространство на геометричното векторно пространство.

Същото важи и за векторите, компланарни с дадена равнина.

Пример 1.4. Множеството C[a,b] от всички реални непрекъснати функции в интервала $[a,b], a,b \in \mathbb{R}$ е реално векторно пространство относно следните операции:

$$(f+g)(x) = f(x) + g(x), \qquad (\lambda f)(x) = \lambda f(x),$$

където $f(x), g(x) \in C[a,b], \lambda \in \mathbb{R}$. Нулевият елемент на C[a,b] е нулевата функция, т. е. числото 0. Противоположният елемент на $f(x) \in C[a,b]$ е -f(x).

Пример 1.5. Множеството $\mathbb{R}_n[x]$ на полиномите на x с реални коефициенти от степен $\leq n, n \in \mathbb{N}$, е векторно пространство над \mathbb{R} относно операциите събиране на полиноми и умножение на полином с реално число. Ако $f(x) = a_n x^n + ... + a_1 x + a_0$ и $g(x) = b_n x^n + ... + b_1 x + b_0$ са елементи на $\mathbb{R}_n[x]$, а $\lambda \in \mathbb{R}$, то:

$$f(x) + g(x) = (a_n + b_n)x^n + \dots + (a_1 + b_1)x + (a_0 + b_0),$$

$$\lambda f(x) = \lambda a_n x^n + \dots + \lambda a_1 x + \lambda a_0.$$

 $\mathbb{R}_n[x]$ е векторно подпространство на пространството $\mathrm{C}(\mathbb{R})$ на всички непрекъснати функции, дефинирани над \mathbb{R} .

В следващата тема ще разгледаме още един пример на реално векторно пространство, което играе важна роля в математиката.

Използвана литература

- 1. Д. Мекеров, Н. Начев, Ст. Миховски, Е. Павлов, Линейна алгебра и аналитична геометрия, Пловдив, 1997.
- 2. L. Hogben, Handbook of linear algebra, CRC, 2007.
- 3. D. C. Lay, *Linear algebra and its applications*, University of Maryland.
- 4. C. D. Meyer, Matrix analysis and applied linear algebra, SIAM.
- 5. G. Strang, Linear algebra and its applications, 3rd ed., MIT, 1988.