Econ 703 Note 4

Chia-Min Wei *

August 18, 2025

1 Topology of a General Metric Space

Definition 1.1 (Open Ball): Let (X,d) be a metric space. For any point $x \in X$ and $\delta > 0$, the set

$$B(x,\delta) = \{ y \in X : d(x,y) < \delta \}$$

is called an open ball centered at x with radius δ .

Definition 1.2 (Open and Closed Sets): A subset $O \subset X$ is open in X if for all $x \in O$, there exists $\delta > 0$ such that $B(x, \delta) \subset O$. A subset $C \subset X$ is closed in X if its complement $X \setminus C$ is open.

It is important to note that whether a set is open or closed depends on the metric space we are working in. The collection of all open sets in a metric space is called the **topology** of the metric space.

Example 1.1: Under the Euclidean metric, (0,1] is not open in \mathbb{R} , however, it is open in [-1,1].

Example 1.2: Recall the metric in TA Note 2:

$$d(x,y) = \begin{cases} 0 & \text{if } x = y\\ 1 & \text{if } x \neq y. \end{cases}$$

Every subset of \mathbb{R} is an open set under this metric.

Theorem 1.1 (Characterization of Closed Sets): Let (X, d) be a metric space and $A \subset X$. A is closed if and only if whenever a sequence $\{x_n\}$ in A converges to some $x \in X$, we have $x \in A$.

Theorem 1.2: Let (X, d) be a complete metric space. Then $A \subset X$ is closed if and only if (A, d) is a complete metric space.

2 Continuous Functions on a General Metric Space

Definition 2.1: Let $f:(X,d_X)\to (Y,d_Y)$. f is said to be continuous if for any sequence $\{x_n\}$ with $\lim_{n\to\infty}x_n=x$, we have

$$\lim_{n \to \infty} f(x_n) = f\left(\lim_{n \to \infty} x_n\right).$$

^{*}This TA note is based on Prof. John Kennan's math camp lecture in 2025 at UW-Madison. All errors are mine.

3 Continuous Functions on \mathbb{R}

3.1 Extreme Value Theorem

Theorem 3.1: Let $f: A \to \mathbb{R}$ be **continuous** where $A \subset \mathbb{R}$ is **closed and bounded**. Then f(A) is closed and bounded.

Proof. It suffices to prove that f(A) is closed and bounded.

First show that f(A) is bounded. Suppose f(A) is not bounded from above. Then there exists a sequence $\{y_n\} \subset f(A)$ such that

$$\lim_{n\to\infty} y_n = +\infty.$$

There exists a corresponding sequence $\{x_n\} \subset A$ such that $y_n = f(x_n)$. Since A is bounded, by Bolzano-Weierstrass Theorem, there exists a subsequence such that $\{x_{n_k}\}$ that converges to some point x. And since A is closed, $x \in A$. By continuity,

$$\lim_{k \to \infty} f(x_{n_k}) = f(x) < \infty.$$

But $\{f_{n_k}\}_{k=1}^{\infty}$ as a subsequence of $\{y_n\}$, a sequence that goes to infinity, should also go to infinity. A contradiction. We can also show f(A) is bounded from below using the same method.

Next we show that f(A) is closed. Let $\{y_n\} \subset f(A)$ and suppose that it converges to y. We want to show f(x) = y for some $x \in A$. There exists a corresponding sequence $\{x_n\} \subset A$ such that $y_n = f(x_n)$. Since A is closed and bounded, there exists a subsequence $\{x_{n_k}\}$ that converges to some point $x \in A$. By continuity,

$$\lim_{n \to \infty} f(x_{n_k}) = f(x).$$

And since $\{f(x_{n_k})\}$ is a subsequence of $\{y_n\}$, they must have the same limit, therefore f(x) = y.

Corollary (Extreme Value Theorem): Let $f: A \to \mathbb{R}$ be continuous where $A \subset \mathbb{R}$ is closed and bounded. Then f admits a maximum and minimum in A. Namely, there exists $\overline{a} \in A$ such that $f(\overline{a}) \geq f(a)$ for all $a \in A$. There also exists $\underline{a} \in A$ such that $f(\underline{a}) \leq f(a)$ for all $a \in A$.

3.2 Intermediate Value Theorem

Theorem 3.2 (Intermediate Value Theorem): Let $f:[a,b]\to\mathbb{R}$ be continuous, and suppose f(a)< f(b). Then for any $\xi\in (f(a),f(b))$, there exists $c\in (a,b)$ such that $f(c)=\xi$.

Proof. Consider the set $A = \{x \in [a,b] : f(x) \leq \xi\}$. First note that $a \in A$ and $b \in [a,b] \setminus A$. So A and $[a,b] \setminus A$ are both nonempty. Since A is nonempty and bounded, $c = \sup A$ exists. We claim that $f(c) = \xi$. Fix $\epsilon > 0$. There exists $\delta > 0$ such that $|x - c| < \delta$ implies $|f(x) - f(c)| < \epsilon$. By Proposition 2.2 in Note 3, there exists $x \in A$ such that $|x - c| < \delta$. Hence, we have

$$f(c) \le f(x) + |f(x) - f(c)| \le \xi + \epsilon.$$

On the other hand, since $A \setminus [a, b]$ is not empty and $\xi < b$, there exists $y \in A \setminus [a, b]$ such that $|y - c| < \delta$. Hence, we also have

$$f(c) \ge f(y) - |f(y) - f(c)| \ge \xi - \epsilon.$$

We conclude that

$$\xi - \epsilon \le f(c) \le \xi + \epsilon$$
.

Since this holds for all $\epsilon > 0$, $f(c) = \xi$.