

Hi3130 V200 Demodulation and Decoding Processor

Data Sheet

Issue 00B20

Date 2013-07-11

Copyright © HiSilicon Technologies Co., Ltd. 2013. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of HiSilicon Technologies Co., Ltd.

Trademarks and Permissions

HISILICON, and other HiSilicon icons are trademarks of HiSilicon Technologies Co., Ltd.

All other trademarks and trade names mentioned in this document are the property of their respective holders.

Notice

The purchased products, services and features are stipulated by the contract made between HiSilicon and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

HiSilicon Technologies Co., Ltd.

Address: Huawei Industrial Base

> Bantian, Longgang Shenzhen 518129

People's Republic of China

Website: http://www.hisilicon.com

Email: support@hisilicon.com

Contents

i

About This Document......1

About This Document

Purpose

Hi3130 V200 is a cable digital TV channel receiver chipset. This document describes the features, logic architecture, QAM, operating mode, and hardware design of Hi3130 V200 for guiding user design.

Related Version

The following table lists the product versions related to this document.

Product Name	Version
Hi3130	V200

Intended Audience

This document is intended for:

- Design and maintenance personnel for electronics
- Sales personnel for electronics

Symbol Conventions

The symbols that may be found in this document are defined as follows.

Symbol	Description
A DANGER	Alerts you to a high risk hazard that could, if not avoided, result in serious injury or death.
MARNING	Alerts you to a medium or low risk hazard that could, if not avoided, result in moderate or minor injury.

Symbol	Description
A CAUTION	Alerts you to a potentially hazardous situation that could, if not avoided, result in equipment damage, data loss, performance deterioration, or unanticipated results.
©—¹ TIP	Provides a tip that may help you solve a problem or save time.
NOTE	Provides additional information to emphasize or supplement important points in the main text.

Register Attributes

The register attributions that may be found in this document are defined as follows.

Symbol	Description	Symbol	Description
RO	The register is read-only.	RW	The register is read/write.
RC	The register is cleared on a read.	WC	The register can be read. The register is cleared when 1 is written. The register keeps unchanged when 0 is written.

Reset Value Conventions

In the register definition tables:

- If the reset value (for the Reset row) of a bit is "?", the reset value is undefined.
- If the reset values of one or multiple bits are "?", the total reset value of a register is undefined and is marked as "-".

Numerical System

The expressions of data capacity, frequency, and data rate are described as follows.

Type	Symbol	Value
Data capacity (such as the RAM capacity)	K	1024
	M	1,048,576
	G	1,073,741,824
Frequency, data rate	k	1000

Type	Symbol	Value
	M	1,000,000
	G	1,000,000,000

The expressions of addresses and data are described as follows.

Symbol	Example	Description
0x	0xFE04, 0x18	Address or data in hexadecimal
0b	0ь000, 0ь00 00000000	Data or sequence in binary (register description is excluded.)
X	00X, 1XX	In data expression, X indicates 0 or 1. For example, 00X indicates 000 or 001 and 1XX indicates 100, 101, 110, or 111.

Change History

Changes between document issues are cumulative. Therefore, the latest document issue contains all changes made in previous issues.

Issue 00B20 (2013-07-11)

This issue is the first official release.

Issue 00B10 (2012-12-30)

This issue is the reviewed draft release.

Issue 00B01 (2012-07-17)

This issue is the first draft release.

i

Contents

1 Product Description	
1.1 Introduction to Hi3130 V200	
1.2 Key Specifications	1-1
1.3 Logical Architecture	
1.4 Application Fields	1-3
1.5 Typical Application	1_3

Figures

Figure 1-1 Logical architecture	. 1-	2
Figure 1-2 Typical application	.1-	3

1 Product Description

1.1 Introduction to Hi3130 V200

Hi3130 V200 is a cable digital TV channel demodulation and decoding chipset. It supports high-performance 16-/32-/64-/128-/256-QAM demodulation and forward error correction (FEC), which implement complete digital cable signal processing from sampling at the intermediate frequency (IF) to outputting MPEG-TSs. Hi3130 V200 complies with the DVB-C (ETS 300 429), ITU J83-A/C, and ITU J83-B standards.

Hi3130 V200 integrates a 12-bit and 40 Msps high-performance analog-to-digital converter (ADC), which ensures precise sampling of up to 256-QAM signals from the IF. After sampling, all the signals are processed in the digital domain. Based on the complex channel conditions, Hi3130 V200 supports demodulation, micro-reflection cancellation, and Reed-Solomon (RS) forward correction, and monitors signal quality to work with the decoder. It also provides two automatic gain control (AGC) outputs and two-wire buses to control the tuner, which simplifies the board design.

The MPEG-TSs output by Hi3130 V200 comply with standard DVB interfaces and can seamlessly connect to the MPEG decoder.

1.2 Key Specifications

Hi3130 V200 has the following features:

- Supports the DVB-C, ITU J83-A/C, and ITU J83-B standards.
- Supports 16-/32-/64-/128-/256-QAM demodulation.
- Integrates a 12-bit ADC to provide IF solutions and low-IF solutions.
- Supports adaptive digital down sampling, anti-aliasing filtering, and variable symbol rate ranging from 0.87 Msps to 7.19 Msps.
- Supports adaptive digital carrier recovery and a maximum of ±800 kHz frequency offset.
- Supports adaptive digital timing recovery and a maximum of 1% symbol rate deviation.
- Automatically selects the matched filter based on the bandwidth and supports the raised cosine roll-off factor ranging from 0.12 to 0.18.
- Supports adaptive blind equalization and decree feedback equalization to effectively correct micro-reflection and typical distortion in the cable channel.
- Integrates the FEC decoding functionality that complies with the ITU J83-A/C and ITU J83-B standards.

1 Product Description

- Controls and monitors internal registers over two-wire buses.
- Monitors signal quality in real time.
- Outputs TSs in serial or parallel mode.
- Supports automatic spectrum inversion recognition and correction.
- Supports channel blind scanning.
- Integrates PLLs and requires only an external low-frequency passive crystal.
- Integrates a crystal oscillator circuit and internally generates the system clock by using the external passive crystal.
- Requires typical power consumption of 200 mW when the symbol rate is 6.9 Msps.
- Supports software-controlled power-saving mode.
- Uses the QFN40 package.
- Supports working voltage of 1.2 V or 3.3 V.

1.3 Logical Architecture

Figure 1-1 shows the logic architecture of Hi3130 V200.

1.4 Application Fields

Hi3130 V200 applies to:

- Cable tuner
- Cable STB and integrated digital TV
- Cable modem and digital TV card

1.5 Typical Application

Figure 1-2 shows the typical application of Hi3130 V200. The radio frequency (RF) signals are converted into IF signals by the tuner and transmitted to Hi3130 V200. Hi3130 V200 performs timing recovery, carrier recovery, equalization, and FEC, and outputs standard TS packets to the decoder over the TS interface in parallel or serial mode.

Hi3130 V200 configures and controls the tuner and reads the tuner status over the I^2C interface. The integrated ADC converts the IF or low- IF signals input by the tuner into digital signals, and outputs one or two AGC signals for controlling the IF and RF gains of the tuner.

The decoder configures drivers and reads Hi3130 V200 status over the I²C interface, and resets Hi3130 V200 over the reset interface after Hi3130 V200 is powered on.

Figure 1-2 Typical application

Contents

2 Function Description	2-1
2.1 ADC	2-1
2.2 AGC	2-1
2.3 Down Conversion and Frequency Scanning	2-2
2.4 AAF	2-3
2.5 Timing Recovery Module	2-3
2.6 Matched Filter	2-3
2.7 Equalizer and Carrier Recovery Module	2-3
2.8 Demap and Differential Decoder	2-3
2.9 Frame Sync Module	2-4
2.10 Deinterleaver	2-4
2.11 RS Decoder	2-4
2.12 Descrambler	2-4
2.13 Channel Blind Scanning	2-4
2.14 J83B TCM Module	2-5
2.15 J83B Frame Sync Module	2-5
2.16 J83B Descrambler	2-5
2.17 J83B Deinterleaver	2-5
2.18 J83B RS Decoder	2-5
2.19 J83B MPEG Frame Sync Module	2-6
2.20 Monitoring the Signal Quality	2-6
2.21 TS Output Interface	2-8
2.22 Two-Wire Bus Interface	2-8
2.23 Register Configuration	2-9
2.24 QAM Register Summary	2-9
2.25 QAM Register Description	
2.26 System Control Register Summary	2-61
2.27 System Control Register Description	2_63

Figures

Figure 2-1 AGC working principle	2-2
Figure 2-2 Connection between Hi3130 V200 and an external tuner over a two-wire bus	2-9

Tables

Table 2-1 QAM register summary (base address = $0x0000_0000$)	2-9
Table 2-2 System control register summary (base address = 0x0000)	2-61

2 Function Description

2.1 ADC

Hi3130 V200 integrates a high-precision 12-bit ADC that supports a maximum of 40 MHz sampling frequency. The ADC can directly sample intermediate frequency (IF) signals output by the front-end tuner. The ADC works in differential input mode. The signal input voltage is $1.0~V_{p-p}$ and the common-mode voltage is internally generated.

2.2 AGC

The QAM module provides two automatic gain control (AGC) output signals: AGC1 and AGC2. AGC1 controls the radio frequency (RF) gain of the tuner and AGC2 controls the IF gain. The AGC compares the average power consumption during ADC sampling with the reference power consumption to obtain two gain control signals. After being transmitted to the Sigma-Delta DAC, the gain control signals are converted into two PWM signals. The analog gain control level is generated after the PWM signals are transmitted to the off-chip resistor-capacitor (RC) filter.

Figure 2-1 demonstrates the AGC working principle.

The AGC supports two operating modes: dual-AGC mode and separate IF AGC mode. In dual-AGC mode, AGC1 and AGC2 work from initial values. That is, AGC1 and AGC2 work from state_2 and retain in state_2 or switch to state_3. The AGC switch register controls the switch between state_2 to state_3. In state_2 and state_3, the rate variances of AGC1 and AGC2 depend on the configured gain adjustment step. For details about other configurations, see the descriptions of AGC and BAGC registers.

2.3 Down Conversion and Frequency Scanning

The signal f_{Tuner} centered on the tuner IF is subsampled and then down-converted by the ADC (the sampling clock is f_{ckext}). The down-converted signal is centered on the sampled IF f_1 .

$$f1 = f_{Tuner} - f_{ckext} \tag{1-1}$$

where

- $f_1 = 7.2 \text{ MHz}$
- $f_{Tuner} = 36 \text{ MHz}$
- $f_{ckext} = 28.8 \text{ MHz}$

The frequency offset transfer module works closely with the frequency scanning module to automatically scan channels. The demodulation frequency is incremented from the specified value based on a specified step. You can set the interval between steps, determines whether to automatically stop scanning channels when the chip detects the locked status, or completely controls frequency scanning.

2.4 **AAF**

The anti-aliasing filter (AAF) is used to remove aliasing generated during ADC sampling and perform down sampling at a symbol rate.

2.5 Timing Recovery Module

The timing recovery module is used to estimate and correct the clock errors at the RX end, obtaining the optimum sampling time at the RX end.

The timing recovery module consists of a clock error detector, a loop filter, and an interpolator. The interpolator performs interpolation operations on the baseband signals at the optimum time to obtain a correct sampling value. The loop filter parameters can be set by configuring tr_ctrl_2 to tr_ctrl_6.

2.6 Matched Filter

The matched filter is a raised cosine filter and its roll-off factor ranges from 0.12 to 0.18. This filter is used to perform matched filtering on baseband signals.

2.7 Equalizer and Carrier Recovery Module

The equalizer eliminates the influences caused by echoes and linear channel distortion based on the blind equalization algorithm and decree feedback equalization algorithm.

The carrier recovery module traces and compensates the frequency offset and phase offset of the carrier. Different loop parameters are used in the acquisition status and trace status, which brings high acquisition bandwidth but small trace errors.

2.8 Demap and Differential Decoder

According to the DVB-C and ITU J83-A/C standards, the demap and differential decoder implements differential decoding and demapping and converts symbol streams into byte streams. The subsequent modules process streams by byte. 16-QAM, 32-QAM, 64-QAM, 128-QAM, and 256-QAM correspond to 4-bit, 5-bit, 6-bit, 7-bit, and 8-bit symbols respectively.

2.9 Frame Sync Module

The frame sync module detects the sync bytes (0x47 and 0xB8) in TSs to provide frame start signals for subsequent modules.

2.10 Deinterleaver

At the TX end, data is interleaved after Reed-Solomon (RS) encoding to avoid continuous bit errors due to burst interference and avoid information inaccuracy due to inadequate RS correction range. After interleaving, the sequence of transferring signals is changed and the continuous bit errors are separated. In this way, the protection against burst bit errors is improved. At the RX end, data must be restored by the deinterleaver before RS decoding.

According to the DVB-C and ITU J83-A/C standards, the interleave depth of the channel demodulation and decoding chip is 12. The interleaver can be bypassed by configuring internal registers.

2.11 RS Decoder

According to the DVB-C and ITU J83-A/C standards, the RS decoder implements channel correction. The length of each input data packet is 204 bytes (including 16-byte check words). A maximum of 8-byte errors can be corrected.

The correction function of the RS decoder can be bypassed by configuring ts ctrl 1[bend bypass] to facilitate the evaluation of the bit error rate (BER) before RS.

2.12 Descrambler

According to the DVB-C and ITU J83-A/C standards, the descrambling polynomial for the RX end is $1 + x^{14} + x^{15}$ and the initialization sequence of the descrambler is 10010100000000.

The descrambler starts after the reversible synchronization header (0xB8) of a TS packet is detected. Then the descrambler performs the following operations on every eight TS packets: configures ts_ctrl_1[sync_byte_inv] to revert or retain the reversible synchronization word of the first TS packet (0xB8 is reverted to 0x47), retains the packet headers (0x47) of other TS packets, and descrambles all other bytes in frames.

2.13 Channel Blind Scanning

Hi3130 V200 supports automatic spectrum inversion recognition and correction and channel blind scanning.

Automatic spectrum inversion can be disabled by configuring registers. You can configure the current spectrum status based on the channel conditions.

Channel blind scanning applies to the following cases:

• Queries the signal symbol rate when the modulation mode is known.

- Queries the modulation mode when the signal symbol rate is known.
- Queries both the modulation mode and signal symbol rate with the aid of software.

The symbol rate query range is 3.6 Mbuad to 6.9 Mbaud. If channel blind scanning is disabled by configuring registers, the current modulation mode and signal symbol rate must be manually configured.

2.14 J83B TCM Module

The trellis coding modulation (TCM) module uses the Viterbi algorithm. It searches for the path with the minimum metric based on the forward-processed data and hard-decision data, decodes the data processed by using the Viterbi algorithm to generate the data corresponding to constellation points, and outputs serial data in the sequence defined in the J83B standard. For 64 QAM, 28-bit data is output each time for every five input symbols; for 256 QAM, 38-bit data is output each time for every five input symbols.

2.15 J83B Frame Sync Module

The J83B frame sync module detects the sync bytes in TSs. In normal mode, it synchronizes data (including identifying sync feature sequences) and outputs symbols in parallel, 4-bit control bit words in the trailer, and locked or unlocked signals.

2.16 J83B Descrambler

According to the ITU J83-B standard, the descrambling polynomial at the RX end is $x^3 + x + \alpha^3$. The descrambler processes all input valid payloads at random. It outputs the trailer directly without processing.

2.17 J83B Deinterleaver

At the TX end, data is interleaved after RS encoding to avoid continuous bit errors due to burst interference and avoid information inaccuracy due to inadequate RS correction range. After interleaving, the sequence of transferring signals is changed and the continuous bit errors are separated. In this way, the protection against burst bit errors is improved. At the RX end, data must be restored by the deinterleaver before RS decoding.

According to the ITU J83B standard, the interleaver of the forward error correction (FEC) encoder is a convolutional interleaver. It supports the interleaving modes of 128x1, 128x2, 128x3, 128x4, 64x2, 32x4, 16x8, and 8x16.

2.18 J83B RS Decoder

The J83B RS decoder supports decoding of the data processed by the FEC encoder. It decodes the input 128-symbol frames and corrects or detects errors. The J83B RS decoder can correct a maximum of three-symbol errors each time and output the data after error correction. If the

number of errors is greater than three, the decoder identifies the excessive errors but does not correct them.

2.19 J83B MPEG Frame Sync Module

The J83B MPEG frame sync module detects the synchronization bytes in TSs. In normal mode, it synchronizes data and outputs bytes in parallel.

2.20 Monitoring the Signal Quality

BER Statistics

The internal BER status registers ber_2, ber_3, and ber_4 of Hi3130 V200 provide statistics on error bits or bytes before RS correction. You can select auto-stop statistical mode or auto-repeat statistical mode.

- Auto-stop statistical mode
- MOTE

In this mode, ber_1[err_mode] must be set to 0.

To conduct a BER test in auto-stop statistical mode, perform the following steps:

- **Step 1** Set ber_1[bert_en] to 0 to disable the BER test.
- **Step 2** Configure ber_1[nbyte] to set a statistics interval. The statistics interval indicates that bit errors are counted within a certain number of output data segments.
- **Step 3** Set ber 1[err mode] to 0 to select the auto-stop statistical mode.
- **Step 4** Configure ber_1[err_source] to set the statistical unit to bit or byte.
- Step 5 Set ber_1[bert_en] to 1 to start the BER test. The counter starts after being cleared.
- **Step 6** After a statistics interval, the counter stops counting and ber_1[bert_en] is automatically cleared. The statistical results are stored in ber_2-ber_4[error_cnt].

----End

The BER is calculated as follows:

Byte error rate =
$$\frac{\text{error } \underline{\text{cnt}}}{2^{2 \times \text{nbyte} + 12}}$$

Bit error rate =
$$\frac{\text{error } \underline{\text{cnt}}}{8 \times 2^{2 \times \text{nbyte} + 12}}$$

When the BER is high, an overflow may occur in the counter. During the statistical interval, if overflows occur in the counters ber_2[error_cnt] to ber_4[error_cnt], the maximum value is retained.

The statistical error data is stored in ber_2[error_cnt] to ber_4[error_cnt]. You can read the data for the BER test.

Auto-repeat statistical mode

M NOTE

In this mode, ber 1[err mode] must be set to 1.

To conduct a BER test in auto-repeat statistical mode, perform the following steps:

- **Step 1** Set ber_1[bert_en] to 0 to disable the BER test.
- **Step 2** Configure ber_1[nbyte] to set a statistics interval. The statistics interval indicates that bit errors are counted within a certain number of output data segments.
- **Step 3** Set ber_1[err_mode] to 1 to select the auto-repeat statistical mode.
- **Step 4** Configure ber_1[err_source] to set the statistical unit to bit or byte.
- **Step 5** Set ber_1[bert_en] to 1 to start the BER test. The counter starts after being cleared.
- **Step 6** Set ber 1[bert en] to 0 to stop the counter.

----End

If an overflow occurs in the counter during the test, the maximum value is retained.

When a statistical interval is reached, the counter restarts to count after being cleared and stores statistical results in registers. In auto-repeat statistical mode, software can read data from BER registers any time. The counter stops counting only after ber 1[bert en] is set to 0.

M NOTE

Before reading the BER status registers, you must write a value to cr ctrl 21.

PER Statistics

The packet error rate (PER) statistics use the same statistical interval register (ber_1[nbyte]) and statistical enable register (ber_1[bert_en]) as the BER statistics.

When the counter reaches the statistical threshold, the total packet count, uncorrectable packet count, and correctable packet count are stored in the retain register. You can read the rs_ctrl register and calculate the PER.

To calculate the PER, perform the following steps:

- Step 1 Write a value to cr_ctrl_21.
- **Step 2** Read rs_ctrl_1 and rs_ctrl_2 to obtain the total packet count. The number of total packets is calculated as follows:

pkt total = rs ctrl
$$1 << 8 + rs$$
 ctrl 2

Step 3 Read rs_ctrl_5 and rs_ctrl_6 to obtain the total error packet count. The number of total error packets is calculated as follows:

pkt err = rs ctrl
$$5 \ll 8 + rs$$
 ctrl 6

Step 4 Calculate the PER in the statistical interval as follows:

PER = pkt err/pkt total

----End

SNR Estimation

Hi3130 V200 provides two signal-to-noise ratio (SNR) estimation registers equ_stat_2 and equ_stat_3. Their values reflect the average distance between the calculated constellation point and the mapped constellation point. In addition, a lookup table is used to calculate the equivalent noise level (equivalent C/N estimation) to estimate the signal quality.

2.21 TS Output Interface

Hi3130 V200 provides two MPEG2-TS output modes: parallel mode, serial mode.

The signals from the TS output interface include the data signal ts_dat[7:0], clock signal ts_clk, data validity signal ts_val, sync header signal ts_sync, and frame error signal ts_err.

- ts_dat: TS frame data signal (In the serial mode, ts_dat[0] is TS output.)
- ts_clk: data clock signal. The polarity is programmable. The signal can be output continuously or discontinuously in different modes.
- ts_val: TS frame data validity signal (Bytes are valid in parallel mode, and bits are valid in serial mode.)
- ts_sync: TS frame sync validity flag signal, which identifies the data frame header (Bytes are valid in parallel mode, and bits are valid in serial mode.)
- ts_err: TS frame error signal. It is set to 1 when TS frames with errors that cannot be corrected by RS decoding are output.

The TS output interface is configured by configuring ts_ctrl_1 and ts_ctrl_2.

2.22 Two-Wire Bus Interface

The QAM module accesses internal registers and external tuner registers by using a two-wire bus. Before the QAM accesses tuner registers, mctrl_7[i2ct_en] must be set to 1. After the access, the QAM module automatically clears mctrl_7[i2ct_en]. That is, the QAM returns to the mode of accessing internal registers of the QAM module.

Figure 2-2 shows the connection between Hi3130 V200 and an external tuner over a two-wire bus.

scl pscl 4

Master

Sda Systemal On/Off

Figure 2-2 Connection between Hi3130 V200 and an external tuner over a two-wire bus

2.23 Register Configuration

Bit 1 and bit 0 of four_reg_sel (0xE0) are the control signals of register select. Therefore, you have to confirm whether four_reg_sel bit[1:0] are mapped to the register to be configured before configuring a register.

The definitions of four reg sel bit[1:0] are as follows:

- 2'b00: QAM register configuration
- 2'b10: system control register configuration
- Other values: reserved

For example, to configure the system control register (0x03), perform the following steps:

- **Step 1** Set the lower two bits of 0xE0 to 2'b10.
- **Step 2** Set 0x03 to the specified value.

----End

2.24 QAM Register Summary

Table 2-1 describes QAM registers.

Table 2-1 QAM register summary (base address = $0x0000_0000$)

Offset Address	Register	Description	Page
0x02	equ_ctrl_3	Equalization control register 3	2-13
0x0A	equ_stat_2	Equalization status register 2	2-13

Offset Address	Register	Description	Page
0x0B	equ_stat_3	Equalization status register 3	2-14
0x10	tr_ctrl_2	TIMING RECOVERY control register 2	2-14
0x11	tr_ctrl_4	Timing recovery control register 4	2-15
0x12	tr_ctrl_5	Timing recovery control register 5	2-15
0x13	tr_ctrl_6	Timing recovery control register 6	2-16
0x14	tr_ctrl_8	Timing recovery control register 8	2-16
0x15	tr_ctrl_9	Timing recovery control register 9	2-17
0x16	tr_ctrl_10	Timing recovery control register 10	2-17
0x1A	tr_stat_1	Timing recovery status register 1	2-18
0x1B	tr_stat_2	Timing recovery status register 2	2-18
0x25	cr_ctrl_21	Carrier recovery control register 21	2-18
0x26	cr_ctrl_22	Carrier recovery control register 22	2-19
0x27	cr_ctrl_23	Carrier recovery control register 23	2-19
0x28	cr_ctrl_24	Carrier recovery control register 24	2-19
0x29	cr_ctrl_25	Carrier recovery control register 25	2-20
0x32	cr_stat_4	Carrier recovery status register 4	2-20
0x33	cr_stat_5	Carrier recovery status register 5	2-21
0x34	cr_stat_6	Carrier recovery status register 6	2-21
0x35	cr_stat_7	Carrier recovery status register 7	2-21
0x36	j83b_tcm_1	J83B TCM control register 1	2-22
0x37	j83b_tcm_2	J83B TCM control register 2	2-22
0x38	j83b_tcm_3	J83B TCM control register 3	2-23
0x39	j83b_tcm_4	J83B TCM control register 4	2-23
0x3A	j83b_tcm_5	J83B TCM control register 5	2-23
0x3B	j83b_tcm_6	J83B TCM status register 6	2-24
0x3C	j83b_di_1	J83B deinterleaving control register 1	2-24
0x3D	j83b_di_2	J83B deinterleaving control register 2	2-25
0x3E	j83b_mfsync_1	J83B MPEG frame sync control register 1	2-25
0x3F	j83b_mfsync_2	J83B MPEG frame sync status register 2	2-26
0x40	mctrl_1	Main control register 1	2-27

Offset Address	Register	Description	Page
0x44	mctrl_5	Main control register 5	2-28
0x45	mctrl_6	Main control register 6	2-29
0x46	mctrl_7	Main control register 7	2-30
0x48	mctrl_9	Main control register 9	2-31
0x4A	mctrl_11	Main control register 11	2-31
0x59	agc_ctrl_15	AGC control register 15	2-32
0x5C	agc_ctrl_19	AGC control register 19	2-33
0x5D	agc_ctrl_20	AGC control register 20	2-34
0x5F	agc_ctrl_22	AGC control register 22	2-34
0x60	bagc_ctrl_1	BAGC control register 1	2-34
0x61	bagc_ctrl_2	BAGC control register 2	2-35
0x62	bagc_ctrl_3	BAGC control register 3	2-35
0x65	bagc_ctrl_6	BAGC control register 6	2-36
0x68	bagc_ctrl_9	BAGC control register 9	2-36
0x69	bagc_ctrl_10	BAGC control register 10	2-36
0x6B	bagc_ctrl_12	BAGC control register 12	2-37
0x6E	bagc_ctrl_13	BAGC control register 13	2-37
0x6F	bagc_ctrl_14	BAGC control register 14	2-37
0x70	bagc_stat_1	BAGC status register 1	2-38
0x71	bagc_stat_2	BAGC status register 2	2-38
0x72	bagc_stat_3	BAGC status register 3	2-39
0x73	bagc_stat_4	BAGC status register 4	2-39
0x79	bagc_stat_7	BAGC status register 7	2-39
0x7C	j83b_tcm_ber0	J83B TCM status register 0	2-40
0x7D	j83b_tcm_ber1	J83B TCM status register 1	2-40
0x7E	j83b_tcm_ber2	J83B TCM status register 2	2-40
0x7F	j83b_tcm_ber3	J83B TCM status register 3	2-41
0x87	sfreq_agc1_init	AGC control register	2-41
0x90	sync_ctrl_1	Frame sync control register 1	2-42
0x93	ber_1	BER control register 1	2-42
0x94	ber_2	BER status register 2	2-43

Offset Address	Register	Description	Page
0x95	ber_3	BER status register 3	2-44
0x96	ber_4	BER status register 4	2-44
0x98	ts_ctrl_1	Output control register 1	2-44
0x99	ts_ctrl_2	Output control register 2	2-45
0x9B	rs_ctrl_1	RS decoding control register 1	2-46
0x9C	rs_ctrl_2	RS decoding control register 2	2-47
0x9D	rs_ctrl_3	RS decoding control register 3	2-47
0x9E	rs_ctrl_4	RS decoding control register 4	2-47
0x9F	rs_ctrl_5	RS decoding control register 5	2-48
0xA0	rs_ctrl_6	RS decoding control register 6	2-48
0xA1	rs_ctrl_8	RS decoding control register 8	2-49
0xA6	bs_ctrl_1	Blind scanning control register 1	2-50
0xA7	bs_ctrl_2	Blind scanning control register 2	2-51
0xAC	bs_stat_1	Blind scanning status register 1	2-52
0xAD	bs_stat_2	Blind scanning status register 2	2-53
0xAE	bs_stat_3	Blind scanning status register 3	2-53
0xAF	bs_stat_4	Blind scanning status register 4	2-54
0xB0	bs_stat_5	Blind scanning status register 5	2-54
0xB1	fs_ctrl_1	Scanning control register 1	2-55
0xB2	fs_ctrl_2	Scanning control register 2	2-55
0xB4	fs_ctrl_4	Scanning control register 4	2-56
0xB5	fs_ctrl_5	Scanning control register 5	2-56
0xB6	fs_ctrl_6	Scanning control register 6	2-57
0xB7	fs_ctrl_7	Scanning control register 7	2-57
0xB8	fs_stat_1	Scanning status register 1	2-58
0xB9	fs_stat_2	Scanning status register 2	2-58
0xBA	j83b_ffsync_1	J83B FFSYNC control register 1	2-58
0xBB	j83b_ffsync_2	J83B FFSYNC control register 2	2-59
0xBC	j83b_ffsync_3	J83B FFSYNC control register 3	2-59
0xBD	j83b_dr_1	J83B descrambling control register 1	2-60
0xBE	j83b_dr_2	J83B descrambling control register 2	2-60

Offset Address	Register	Description	Page
0xBF	j83b_dr_3	J83B descrambling control register 3	2-60
0xE0	four_reg_sel	Register block select register	2-61

2.25 QAM Register Description

equ_ctrl_3

equ_ctrl_3 is equalization control register 3.

	Offset Address			Register	Register Name Total Reset Value			lue
	0x02			equ_c	trl_3		0x20	
Bit	7	6	5	4	3	2	1	0
Name	step_lms					step_1	olind	
Reset	0	0	1	0	0	0	0	0
	Bits	Access	Name	Description				
	[7:4]	RW		Equalizer step in least mean square (LMS) mode. It is set to 0x0–0x7 in normal cases.				
	[3:0]	RW	step_blind	Equalizer step cases.	o in blind moo	de. It is set to	0x0–0x7 in r	ormal

equ_stat_2

equ_stat_2 is equalization status register 2.

	Offset Address			Register Name Total Reset Value			alue	
	0x0A			equ_s	tat_2	0x00		
Bit	7	7 6 5			3	2	1	0
Name				noise	e_cal			

Reset 0 0 0 0 0 0 0 0 Bits Access Name Description [7:0] RO Upper eight bits of the internal noise estimation accumulator. noise_cal The accumulator value is related to the dispersion degree of the constellation diagram. The value reflects the average distance between the calculated constellation point and the mapped constellation point. A lookup table is used to calculate equivalent noise level (equivalent C/N estimation). For details, see the description of cr ctrl 21.

equ_stat_3

equ_stat_3 is equalization status register 3.

	Offset Address 0x0B			Č	Register Name Total Reset Value equ_stat_3 0x00			alue
Bit	7	6	5	5 4 3 2 1			0	
Name			noise_cal					
Reset	0	0	0	0	0	0	0	0
	Bits	Access	Name	Description				
	[7:0]	RO	_	Lower eight bits of the internal noise estimation accumulator. The accumulator value is related to the dispersion degree of the constellation diagram. The value reflects the average distance between the calculated constellation point and the mapped constellation point. A lookup table is used to calculate equivalent noise level (equivalent C/N estimation). For details, see the description of cr ctrl 21.				

tr_ctrl_2

tr_ctrl_2 is timing recovery control register 2.

	Offset Address			Register Name Total Reset Value			alue	
	0x10			tr_ct	rl_2		0xA0	
Bit	7	6	5	4	3	2	1	0
Name			t_gain_int					
Reset	1	0	1	0	0	0	0	0
	Bits	Access	Name	Description	l			
	[7:0]	RW		Lower eight bits of the integration tributary gain for the timing recovery module in acquisition mode. A larger value indicates higher loop bandwidth and a smaller damping coefficient.				

tr_ctrl_4

tr_ctrl_4 is timing recovery control register 4.

	Offset Address 0x11			Č	Register Name Total Reset Value tr ctrl 4 0x7C			llue
Bit	7	7 6 5			3	2	1	0
Name			t_gain_dir					
Reset	et 0 1 1 1 1			1	1	0	0	
	Bits	Access	Name	Description				
	[7:0]	RW		Lower eight bits of the direct tributary gain for the timing recovery module in acquisition mode. A larger value indicates a larger loop damping coefficient.				

tr_ctrl_5

tr_ctrl_5 is timing recovery control register 5.

	Of	ffset Address		Register	Name Total Reset Value			alue	
	0x12			tr_ct	rl_5		0x00		
Bit	7	6	5	4	3	2	1	0	
Name		reserved		t_gain_int		reserved		t_gain_dir	
Reset	0	0	0	0	0	0	0	0	
	Bits	Access	Name	Description					
	[7:5]	-	reserved	Reserved.					

[4]	RW		Upper bits of the integration tributary gain for the timing recovery module in acquisition mode.
[3:1]	_	reserved	Reserved.
[0]	RW		Upper bits of the direct tributary gain for the timing recovery module in acquisition mode.

tr_ctrl_6

tr_ctrl_6 is timing recovery control register 6.

	Oi	Offset Address 0x13 7 6 5			r Name rl_6		Total Reset Value 0x76				
Bit	7	6	5	4	3	2	1	0			
Name	reserved		t_gain_int2	reserved t_gain_dir2							
Reset	0	1	1	1	0	1	1	0			
	Bits	ts Access Name			Description						
	[7]				Reserved.						
	[6:4]				Attenuation coefficient of the integration tributary gain for the timing recovery module in trace mode.						
	[3]	- reserved									
	[2:0]	RW		Attenuation coefficient of the direct tributary gain for the timing recovery module in trace mode.							

tr_ctrl_8

tr_ctrl_8 is timing recovery control register 8.

	Ot	ffset Address		Register	Name		Total Reset Value		
	0x14			tr_ct	rl_8				
Bit	7	6	5	4	3	2	1	0	
Name			reserved			itpl_ratio			
Reset	0 0 0			0	0	0 0 0			
	Bits Access Name			Description					
	[7:3] - reserved			Reserved.	1.				

tr_ctrl_9

tr_ctrl_9 is timing recovery control register 9.

		Offset Address				Register Name Total Reset Value			alue	
			0x15			tr_ctrl_9 0x86				
Bit	7 6		5	4	3	3 2 1				
Name					itpl_ratio					
Reset	1 0		0	0	0 1 1			0		
	Bits Access Name			Description						
	[7:0] RW itpl_rat			Middle eight bits of the ratio of the AD sampling frequency F_{sam} to the symbol rate F_{symbol} . The ratio is calculated as follows: $Ratio = \frac{F_{sample}}{2 x F_{symbol}} x 2^{14}$						

tr_ctrl_10

tr_ctrl_10 is timing recovery control register 10.

		Offset A	Address		Register Name Total Reset Value			alue	
		0x	16		tr_ctrl_10 0x			0x0D	
Bit	7	7 6 5		5	4	3	2	1	0
Name	itpl_ratio								
Reset	0		0	0	0	1 1 0			
	Bits Access		Name		Description				
	[7:0] RW it		itpl_ra		Lower eight I to the symbol The ratio is c $Ratio = \frac{F_s}{2x}$	l rate F _{symbol} .	The ratio is ca		

tr_stat_1

tr_stat_1 is timing recovery status register 1.

	C	Offset Address		Register	r Name		Total Reset Value		
		0x1A			tr_stat_1				
Bit	7	6	5	4	3	2	1	0	
Name		t_offset_est							
Reset	0 0 0			0	0	0 0 0			
	Bits	Access	Name	Description					
	[7:0]	RO	t_offset_e st	Upper eight bits of the frequency offset of the symbol clock. For details, see the description of cr_ctrl_21.					

tr_stat_2

tr_stat_2 is timing recovery status register 2.

		Offset Address		Register Name			Total Reset Value		
		0x1B			at_2		0x00		
Bit	7	6	5	4	3	2	1	0	
Name	t_offset_est								
Reset	0 0 0			0	0	0 0 0			
	Bits Access Name			Description					
	[7:0]	RO	t_offset_e st	Lower eight bits of the frequency offset of the symbol clock. For details, see the description of cr_ctrl_21.					

cr_ctrl_21

cr_ctrl_21 is carrier recovery control register 21.

	Offset Address			Register Name			Total Reset Va	alue		
		0x25		cr_ctrl_21			0x 0 0			
Bit	7	6	5	4	3	2	0			
Name		crl_snapshot								
Reset	0	0	0	0	0 0			0		

Bits	Access	Name	Description
[7:0]	RW	crl_snapsh ot	Before reading an RO register with more than eight bits (such as t_offset_est), you need to write a value to cr_ctrl_21. Otherwise, the value read from the register is uncertain.

cr_ctrl_22

cr_ctrl_22 is carrier recovery control register 22.

	Offset Address 0x26 7 6 5			Register		Total Reset Value 0x17				
Bit	7	6	5	4	3	2	1	0		
Name		reserved				f_gain_dir				
Reset	0 0 0			1	0 1 1 1					
	Bits	Bits Access Name			Description					
	[7:5]	[7:5] - reserved			Reserved.					
	[4:0] RW f_gain_dir			Upper five bits of the direct tributary gain of the carrier recovery module in reduced acquisition mode.						

cr_ctrl_23

cr_ctrl_23 is carrier recovery control register 23.

	O	ffset Address		Register Name			Total Reset Value		
		0x27		cr_ctrl_23			0x7D		
Bit	7	6	5	4	3	2	1	0	
Na me				f_gain_dir					
Res et	0	1	1	1	1	1	0	1	
	Bits	Access	Name	Description					
	[7:0] RW f_gain_dir			Lower eight bits of the direct tributary gain of the carrier recovery module in reduced acquisition mode.					

cr_ctrl_24

cr_ctrl_24 is carrier recovery control register 24.

	C	Offset Address		Register	r Name		Total Reset Va	ılue		
		0x28		cr_ctrl_24 0x0F						
Bit	7	6	5	4	3	2	1	0		
Name		reserved				f_gain_int				
Reset	0 0 0			0	1	1 1 1				
	Bits	Bits Access Name			Description					
	[7:5] - reserved			Reserved.						
	[4:0] RW f_gain_int			Upper five bits of the integration tributary gain of the carrier recovery module in reduced acquisition mode.						

cr_ctrl_25

cr_ctrl_25 is carrier recovery control register 25.

	Offset Address 0x29			Č	Register Name cr_ctrl_25			alue	
Bit	7	6	5	4	3	2	1	0	
Name	e f_gain_int								
Reset	0 1 1			0	0	1	0	1	
	Bits	Access	Name	Description					
	[7:0]	RW	f_gain_int	Lower eight bits of the integration tributary gain of the carrier recovery module in reduced acquisition mode.					

cr_stat_4

cr_stat_4 is carrier recovery status register 4.

	Offset Address			Register	r Name	Total Reset Value			
	0x32			cr_sta	at_4	0x 0 0			
Bit	7	6	5	4	3	2	1	0	
Name	reserved				f_offset_est				
Reset	0	0	0	0	0	0	0	0	
	Bits	Access	Name	Description					
	[7:4]	-	reserved	Reserved.					
	[3:0]	RO	f_offset_e st	Uppermost four bits of the demodulation frequency offset. For details, see the description of cr_ctrl_21.					

cr_stat_5

cr_stat_5 is carrier recovery status register 5.

	Offset Address			Register	r Name	Total Reset Value			
	0x33			cr_st	at_5	0x00			
Bit	7	6	5	4	3	2	1	0	
Name	f_offset_est								
Reset	0	0	0	0	0	0	0	0	
	Bits	Access	Name	Description					
	[7:0]	RO	f_offset_e st	Upper eight bits of the demodulation frequency offset. For details, see the description of cr_ctrl_21.					

cr_stat_6

cr_stat_6 is carrier recovery status register 6.

	Offset Address			Register	r Name	Total Reset Value			
	0x34			cr_st	at_6	0x00			
Bit	7	6	5	4	3	2	1	0	
Name	f_offset_est								
Reset	0	0	0	0	0	0	0	0	
	Bits	Access	Name	Description					
	[7:0]	RO	f_offset_e st	Middle eight bits of the demodulation frequency offset. For details, see the description of cr_ctrl_21.					

cr_stat_7

cr_stat_7 is carrier recovery status register 7.

	(Offset Address		Register	r Name	Total Reset Value			
	0x35			cr_st	at_7	0x00			
Bit	7	6	5	4	3	2	1	0	
Name				f_of	fset_est				

Reset

0	0	0	0	0	0	0	0	
Bits	Access	Name	Description	n				
[7:0]	RO	f_offset_e st	Lowest eight bits of the demodulation frequency offset. For details, see the description of cr_ctrl_21.					

j83b_tcm_1

j83b_tcm_1 is J83B TCM control register 1.

	Offset Address 0x36			Register		Total Reset Value 0x08			
Bit	7	6	5	4	3	2	1	0	
Name	reserved res				reg2j83b_phase				
Reset	0	0	0	0	1	0	0	0	
	Bits	Access	Name	Description					
	[7:4]	-	reserved	Reserved.					
	[3]	RW	reg2j83b_ auto	Whether TCM automatically searches for the phase to initialize the configuration in J83B mode. 1: automatic search 1: manual configuration					
	[2:0]	RW	reg2j83b_ phase	TCM phase that is manually configured in J83B mode.					

j83b_tcm_2

j83b_tcm_2 is J83B TCM control register 2.

	Offset Address			Register	r Name	Total Reset Value			
	0x37			j83b_t	cm_2		0x7F		
Bit	7	6	5	4	3	2	1	0	
Name	reg2j83b_thres								
Reset	0	1	1	1	1	1	1	1	
	Bits	Access	Name	Description					
	[7:0]	RW	reg2j83b_ thres	TCM lock threshold in J83B mode.					

j83b_tcm_3

j83b_tcm_3 is J83B TCM control register 3.

		Offset Address		Register Name			Total Reset Value		
		0x38		j83b_t	cm_3		0x91		
Bit	7	6	5	4	3	2	1	0	
Name		reg2j83b_lost_i	num	re	eg2j83b_syncnu	m	reg2j83b	_stanum	
Reset	1	0	0	1 0 0 0				1	
	Bits	Access	Name	Description					
	[7:5]	RW	reg2j83b_ lost_num	the TCM unlock status is reported. The value 0 indicates that the unlock status is reported when the TCM is unlocked once, the value 1 indicates that the unlock status is reported when the TCM is unlocked twice, and so on. TCM sync count in J83B mode. When the count is reached, the					
	[4:2]	RW	reg2j83b_ syncnum						
	[1:0]	RW	reg2j83b_ stanum	_ Number of TCM sync symbols in J83B mode. It is calculated follows: 256 << mc2tcm _stacnt x 15.				alculated as	

j83b_tcm_4

j83b_tcm_4 is J83B TCM control register 4.

		Offset Address		Register Name			Total Reset Value		
		0x39		j83b_tcm_4 0x			0x32		
Bit	7	6	5	4	3	2	1	0	
Name		reg2j83b_hold_thres							
Reset	0	0	1	1	0	0	1	0	
	Bits	Access	Name	Description					
	[7:0]				TCM unlock threshold in J83B mode.				

j83b_tcm_5

j83b_tcm_5 is J83B TCM control register 5.

	1	Offset Address 0x3A		Register			Total Reset Value 0x00			
Bit	7	6	5	4	3	2	1	0		
Name			reserved	to	cm2reg_ber_thro	es				
Reset	0 0 0			0	0	0 0 0				
	Bits	Access	Name	Description	n					
	[7:3]	-	reserved	Reserved.						
·	[2:0]	RW	tcm2reg_b er_thres	calculated as				_ber_thres		

j83b_tcm_6

j83b_tcm_6 is J83B TCM status register 6.

	,	Offset Address 0x3B		Č	Register Name j83b_tcm_6			Total Reset Value 0x00	
Bit	7	6	5	4	3	2	1	0	
Name		j83b2re	eg_ctrl_bits		reserved	tem	2reg_syn_fail_r	num	
Reset	0 0 0			0	0	0	0	0	
	Bits Access Name			Description					
	[7:4]	RO	j83b2reg_ctrl _bits	Interleaving mode of the deinterleaver in J83B mode.					
	[3] - reserved			Reserved	d.				
	[2:0]	RO	tcm2reg_syn_ fail_num	Phase se	arched by the	TCM in J831	3 mode.		

j83b_di_1

j83b_di_1 is J83B deinterleaving control register 1.

	Offset Address			Register	r Name	Total Reset Value			
	0x3C			j83b_	_di_1	0x24			
Bit	7	6	5	4	3	2	1	0	
Name	reg2j83b_lost_per				reserved	reg2j83b_di_lev el	reg2j83b_di_err _allow	reg2j83b_di_ctrl _word_en	

0	0	1	0	0	1	0	0	
Bits	Access	Name	Description					
[7:4]	RW	reg2j83b_ lost_per	MPEG frame sync statistical period threshold in J83B mode. MPEG frame sync is unlocked when the number of invalid frames in the statistical period is greater than the reg2j83b_mpeg_lostlen threshold.					
[3]	-	reserved	Reserved.					
[2]	RW	reg2j83b_ di_level	Interleaving level of the deinterleaver in J83B mode. 0: level 1 1: level 2					
[1]	RW	reg2j83b_ di_err_all ow		errors are allo interleaver str			formation	
[0]	RW	reg2j83b_ di_ctrl_w ord_en	Manual configuration enable for the interleaving mode of the deinterleaver in J83B mode. 0: automatic 1: manual					

j83b_di_2

j83b_di_2 is J83B deinterleaving control register 2.

	(Offset Address		Register	r Name		Total Reset Va	lue		
		0x3D		j83b_di_2 0x00						
Bit	7	6	5	4	3	2	1	0		
Name		reg2j83b	_di_err_max			reg2j83b_di_	_ctrl_word_in			
Reset	0 0 0			0	0	0	0	0		
	Bits	Access	Name	Description	n					
	[7:4]	RW	reg2j83b_ di_err_ma x				d in the interle eams in J83B	_		
	[3:0]	RW	reg2j83b_ di_ctrl_w ord_in	_	mode of the on J83B mode		that is manual	lly		

j83b_mfsync_1

j83b_mfsync_1 is J83B MPEG frame sync control register 1.

Hi3130 V200 Demodulation and Decoding Processor

	(Offset Address 0x3E		Register			Total Reset Va	alue	
Bit	7	6	5	4	3	2	1	0	
Name	reg2j83b_mpeg_ _lost_en	reg2	ij83b_mpeg_lock	klen		reg2j83b_n	npeg_lostlen		
Reset	0	0	0	0	0	0	0	0	
	Bits	Access	Name	Descri	iption				
	[7]	RW	reg2j83b_mp _lost_en	beg Whether mode.	Whether MPEG frame sync unlock is allowed in J83B mode.				
	[6:4]	RW	reg2j83b_mp _locklen	peg MPEG	MPEG frame sync lock threshold in J83B mode.				
	[3:0]	0] RW reg2j83b_mpeg _lostlen			old for allowi	ng MPEG fra	me sync unlo	ck in J83B	

j83b_mfsync_2

j83b_mfsync_2 is J83B MPEG frame sync status register 2.

	Offset Address 0x3F				•	ter Name Total Reset Value mfsync_2 0x00					
Bit	7	6	5		4	3	2	1	0		
Name	tcm2reg_dumm y_data	j83b	2reg_fec_sync_s	state		reserved	j83b2	j83b2reg_mpeg_sync_state			
Reset	0	0 0			0	0	0	0	0		
	Bits	Access	Name		Descri	iption					
	[7]	RO	tcm2reg_dur y_data	mm	Not use	ed.					
	[6:4]	RO				FEC frame sync state machine in J83B mode.					
	[3]	- reserved			Reserved.						
	[2:0]	RO j83b2reg_mpeg _sync_state			MPEG frame sync state machine in J83B mode.						

mctrl_1 is main control register 1.

		Offset Address 0x40		Register mctr			Total Reset Value 0xA0		
Bit	7	6	5	4	3	2	1	0	
Name		version		soft_reset	rst_equali zer	rst_rs_tmp	rst_di_tmp	rst_qam	
Reset	1	0	1	0	0	0	0		
	Bits	Access	Name	Descrip	tion				
	[7:5]	RO	version	QAM ve	ersion 101.				
	[4]	RW	soft_reset	Soft reset. 0: The QAM module works properly. 1: The AGC and ADC are reset. This bit cannot be automatically cleared. During reset, software needs to write 1 and then 0 to the bit.					
	[3]	RW	rst_equalizer	Equalizer reset. 0: The QAM module works properly. 1: The equalizer is reset. This bit cannot be automatically cleared. During reset, software needs to write 1 and then 0 to the bit.					
	[2]	RW	rst_rs_tmp	1: The R This bit	AM module vs S module is recannot be auto	eset.	ared. During	reset,	
	[1]	RW	rst_di_tmp	software needs to write 1 and then 0 to the bit. Channel decoding part reset. 0: The QAM module works properly. 1: The deinterleaver, frame sync module, and descrambler reset. This bit cannot be automatically cleared. During reset, software needs to write 1 and then 0 to the bit.					
	[0]	RW	rst_qam	Channel demodulation part reset. 0: The QAM module works properly. 1: The channel demodulation part is reset. This bit cannot be automatically cleared. During reset, software needs to write 1 and then 0 to the bit.					

mctrl_5 is main control register 5.

		Offset Address 0x44		Register			Total Reset Value 0xA8		
Bit	7	6	5	4	3	2	1	0	
Name	agc_output_sel	reg2j83b_itu_sel	mf_roll_sel	swap	data_formate	itu_sel	qam_input_ctrl		
Reset	1	0	1	0 1 0 0				0	
	Bits	Access	Name	Description					
	[7]	RW	agc_output_sel	0: The AGC1 and AGC2 pins are CMOS outputs. 1: The AGC1 and AGC2 pins are open drain (OD) outputs. tu_s ITU standard select. 1: J83-B 0: J83-A/C					
	[6]	RW	reg2j83b_itu_s el						
	[5]	RW	mf_roll_sel						
	[4]	RW	swap	0: norn	a format conv nal format lange betweer		wer bits		
	[3]	RW	data_formate	0: norn	a format conv nal format MSB is inver				
[2] RW itu_sel ITU-J83 mode. 1: ITU-J83C mode 0: DVB-C and ITU-J83A modes									
[1:0] RW qam_input_ctrl Input control. 00: The QAM starts to work only 01 and 10: The QAM starts to work only not locked. 11: The QAM starts to work only once and the subsequent unlock					A starts to wo	rk even when after the AGC	the AGC is		

mctrl_6 is main control register 6.

	•	Offset Address 0x45		Register metr			Total Reset Va 0xE0	Total Reset Value 0xE0			
Bit	7	6	5	4	3	2	1	0			
Name	lock_pol_sel	auto_srst_en	para_sel	rs_uncorr_reg	g de de						
Reset	1	1	1	0	0	0	0	0			
	Bits	Access	Name	Description	n						
	[7]	RW	lock_pol_ sel	1: active hig	Int signal polarity. 1: active high 0: active low						
	[6]	RW	auto_srst_ en	Auto reset enable. 0: disabled 1: enabled							
	[5]	RW	para_sel	Timing recovery, equalizer, and carrier recovery parameter select. 1: user-configured parameters 0: internal parameters If this bit is set to 0, the equalizer compensation coefficient and scheduled synchronization parameter are set internally.							
	[4]	RW	rs_uncorr _reg	RS error correction failure. 1: failed This interrupt is generated if the number of errors in the data frame exceeds the threshold of RS error correction. 0: normal							
	[3]	RW	de_syn_m sk	Frame sync 1: Enable th 0: Mask the	-	rupt mask.					
	[2]	RW	de_syn_ev ent_reg	Frame sync detector interrupt mask. 1: Enable the interrupt. 0: Mask the interrupt.							
	[1]	RO	de_syn_ev ent_type	•							

[0]	RO	lms_blind	Equalizer working mode.
			0: LMS mode
			1: blind mode

mctrl_7 is main control register 7.

		Offset Address		Register		Total Reset Value		
		0x46		metr	·1_7		0x60	
Bit	7	6	5	4	3	2	1	0
Name	i2ct_en	scl_output_sel	extad_clken	itlock_sel	itpwm_sel	lock_sel		fir_en
Reset	0	1	1	0	0	0	0	0
	Bits	Access	Name	Description	n			
	[7]	WC i2ct_en External two-wire operation enable. When this bit is set to 1, an external two-wire operation allowed. When the operation is complete, this bit is automatically cleared. RW scl_output scl output					ion is	
	[6]	RW	scl_output _sel	0: The pscl 1	lled up to the	5.5 V		
	[5]	RW	extad_clk en	Not used.				
	[4]	RW	itlock_sel	Interrupt sou 1: interrupt sou 0: locking si	signal			
	[3]	RW	itpwm_sel int_pwm pin multiplexing select. 1: interrupt 0: PWM signal					
	[2:1]	RW	lock_sel	Interrupt sou 00: sync loc 01: reserved 10: equaliza 11: AGC loc				

[0]	RW	fir_en	Notch filter enable.
			0: disabled. Data is directly transmitted to the next level.
			1: enabled

mctrl_9 is main control register 9.

	C	Offset Address 0x48		Register Name mctrl_9			Total Reset Value 0x08			
Bit	7	6	5	4	3	2	1	0		
Name	state_sel		agc1_inv	agc2_inv	gpwm_en	reserved	agc12_sel	agc12b_sel		
Reset	0	0	0	0	1	0	0	0		
	Bits	Access	Name	Description						
	[7:6]	RW	state_sel	Working mode of the timing recovery module. 00 and 10: threshold mode 01 and 11: count mode						
	[5]	RW	agc1_inv	AGC1 invert enable. 1: enabled 0: disabled						
	[4]	RW	agc2_inv	AGC2 invert enable. 1: enabled 0: disabled						
	[3]	RW	gpwm_en	General PWM enable. 1: enabled 0: disabled						
	[2]	-	reserved	Reserved.						
	[1]	RW	agc12_sel	Not used.						
	[0]	RW	agc12b_se							

$mctrl_11$

mctrl_11 is main control register 11.

Sheet		2 Function Descripti	ion

	Offset Address			Register Name			Total Reset Value					
		0x4A		metr	l_11		0x00					
Bit	7	6	5	4	3	2	1	0				
Name	agc_lock	st_lock	ca_lock	equ_lock	sync_lock	tcm2reg_sync_lo ck	j83b2reg_fec_sy nc_event	j83b2reg_mpeg_ sync_event				
Reset	0	0	0	0	0	0	0	0				
	Bits	Access	Name	Description	n							
	[7]	RO	agc_lock	AGC lock. 0: unlocked 1: locked								
	[6]	RO	st_lock	Timing recovery lock. 0: unlocked 1: locked								
	[5]	RO	ca_lock	Carrier recovery lock. 0: unlocked 1: locked								
	[4]	RO	equ_lock	Equalization lock. 0: unlocked 1: balance lock								
	[3]	RO	sync_lock	Frame sync lock. 0: unlocked. 1: locked								
	[2]	RO	tcm2reg_s ync_lock	TCM lock in J83B mode. 0: unlocked 0: locked								
	[1]	RO	j83b2reg_ fec_sync_ event									
	[0]	RO	j83b2reg_ mpeg_syn c_event	MPEG frame sync lock in J83B mode. 0: unlocked 1: locked								

agc_ctrl_15

agc_ctrl_15 is AGC control register 15.

	Offset Address 0x59			Register		Total Reset Value 0x80				
Bit	7	6	5	4	3	2	1	0		
Name	del_agc_on	frz2_ctrl		frz1_ctrl		agc_off	adsat_judge_en	certain_en		
Reset	1	0	0	Description				0		
	Bits	Access	Name	Description						
	[7]	RW	del_agc_o n	O: AGC1 enable. 0: AGC2 works properly and the AGC1 gain is fixed at agc1_max. 1: AGC1 and AGC2 work at the same time and the tune controlled optimally.						
	[6:5]	RW	frz2_ctrl	Test register	. It defines th	e reset value	reset value in normal mode.			
	[4:3]	RW	frz1_ctrl	Test register	. It defines th	e reset value	in normal mo	de.		
[4:3] RW frz1_ctrl Test register. It defines the reset value in nor agc_off AGC1 and AGC2 output enable. 0: enabled 1: disabled										
	[1]	RW	adsat_jud ge_en	Test register	. It defines th	e reset value	in normal mo	de.		
						3 1 1	rly.			

agc_ctrl_19

agc_ctrl_19 is AGC control register 19.

	C	Offset Address		Register	r Name		Total Reset Value		
		0x5C		agc_ct	rl_19	0x 0 0			
Bit	7	6	5	4	3	2	1	0	
Name	agc1_certain								
Reset	0	0	0	0 0 0 0					
	Bits	Access	Name	Name Description					
	[7:0] RW agc1_cert ain Upper eight bits of the fixed AGC1 gain. If the fixed AGC gain is enabled (agc_ctrl_15[certain_en] = 1), the upper eight bits of AGC1 gain are fixed at the field value.								

agc_ctrl_20

agc_ctrl_20 is AGC control register 20.

	C	Offset Address			r Name	Total Reset Value				
	0x5D			agc_ct	trl_20	0x00				
Bit	7	6	5	4	3	2	1	0		
Name				agc2_certain						
Reset	0	0	0	0 0 0 0						
	Bits	Access	Name	Description						
	[7:0]	RW	agc2_cert ain	Upper eight bits of the fixed AGC2 gain. If the fixed AGC gain is enabled (agc_ctrl_15[certain_en] = 1), the upper eight bits of AGC2 gain are fixed at the field value.						

agc_ctrl_22

agc_ctrl_22 is AGC control register 22.

	C	Offset Address		Register	r Name		Total Reset Value		
		0x5F		agc_ct	trl_22		0x00		
Bit	7	6	5	4	3	2	1	0	
Name		agc2_	_certain			agc1_	certain		
Reset	0	0	0	0 0 0 0				0	
	Bits	Access	Name	Description					
	[7:4]	RW	agc2_cert ain	Lower four bits of the fixed AGC2 gain. If the fixed AGC gain is enabled (agc_ctrl_15[certain_en] = 1), the lower four bits of AGC2 gain are fixed at the field value.					
	[3:0]	RW	agc1_cert ain	_					

bagc_ctrl_1

bagc_ctrl_1 is BAGC control register 1.

	Offset Address			Register	r Name	Total Reset Value			
	0x60			bagc_	ctrl_1	0x14			
Bit	7	6	5	4	3	2	1	0	
Name	agc_i_ref								
Reset	0	0	0	0 1 0 1 0					
	Bits	Access	Name	Description					
	[7:0]	RW	agc_i_ref	Reference average power consumption of the AGC.					

bagc_ctrl_2

bagc_ctrl_2 is BAGC control register 2.

	C	Offset Address		Register	r Name	Total Reset Value		
		0x61		bagc_ctrl_2			0x02	
Bit	7	6	5	4	3	2	1	0
Name			rese	erved		agc2_sd		
Reset	0	0	0	0	0	0	1	0
	Bits	Access	Name	Description				
	[7:2]	-	reserved	Reserved.				
	[1:0]	RW agc2_sd Upper two bits of the initial AGC2 gain. After the AGC is reset by software, AGC value.						ed from this

bagc_ctrl_3

bagc_ctrl_3 is BAGC control register 3.

	C	Offset Address		Register	r Name	Total Reset Value			
		0x62		bagc_c	ctrl_3	0x 0 0			
Bit	7	6	5	4	3	2	1	0	
Name	agc2_sd								
Reset	0 0 0			0 0 0 0					
	Bits	Access	Name	Description					
	[7:0]	RW	agc2_sd	Lower eight bits of the initial AGC2 gain. After the AGC is reset by software, AGC2 is adjusted from this value.					

bagc_ctrl_6

bagc_ctrl_6 is BAGC control register 6.

	C	Offset Address		Register	r Name	Total Reset Value			
		0x65		bagc_c	ctrl_6	0x10			
Bit	7	6	5	4	3	2	1	0	
Name	i_thres2								
Reset	0	0	0	1 0 0 0					
	Bits	Access	Name	Description	n				
	[7:0]	RW	i_thres2	Bandwidth consumed at average power consumption for checking whether the AGC is unlocked when the AGC is locked.					

bagc_ctrl_9

bagc_ctrl_9 is BAGC control register 9.

	Offset Address			Register	Register Name			Total Reset Value	
		0x68			ctrl_9		0x04		
Bit	7	6	5	4	3	2	1	0	
Name	rate_update								
Reset	0	0	0	0	0	1	0	0	
	Bits Access Name Description								
	[7:0]	RW	rate_update	Upper ei	Upper eight bits of the AGC gain adjustment period.				

bagc_ctrl_10

bagc_ctrl_10 is BAGC control register 10.

	(Offset Address		Register	r Name	Total Reset Value			
		0x69		bagc_c	etrl_10	0xB0			
Bit	7	6	5	4	3	1	0		
Name	rate_update								

1	0	1	1	0	0	0	0		
Bits	Access	Name	Description						
[7:0]	RW	rate_update	Lower eight bits of the AGC gain adjustment period.						

bagc_ctrl_12

bagc_ctrl_12 is BAGC control register 12.

		Offset Address			Register	r Name	Total Reset Value			
		0x6B			bagc_ctrl_12			0x 0 0		
Bit	7	6	5		4	3	2	1	0	
Name	pulse_width									
Reset	0	0 0 0			0	0	0	0	0	
	Bits Access Name Description									
	[7:0] RW pulse_width			l	Refresh cycle of the output PWM wave of the AGC.					

bagc_ctrl_13

bagc_ctrl_13 is BAGC control register 13.

		Offset Address		Register	r Name	Total Reset Value			
		0x6E		bagc_c	trl_13	0x00			
Bit	7	6	5	4	3	2	1	0	
Name	if_pwm								
Reset	0	0	0	0	0	0	0	0	
	Bits	Access	Name	Description					
	[7:0]	RW	if_pwm	Upper eight bits of the general-purpose PWM control register. This register is used to generate PWM signals, which are output from int_pwm.					

bagc_ctrl_14

bagc_ctrl_14 is BAGC control register 14.

		Offset Address		Register	r Name	Total Reset Value			
		0x6F		bagc_c	etrl_14	0x 0 0			
Bit	7	6	5	4	3	2	1	0	
Name	if_pwm								
Reset	0	0	0	0	0	0	0	0	
	Bits	Access	Name	Description					
	[7:0]	RW	if_pwm	Lower eight bits of the general-purpose PWM control register. This register is used to generate PWM signals, which are output					
				from int_pwm.					

bagc_stat_1

bagc_stat_1 is BAGC status register 1.

	Offset Address 0x70			Register		Total Reset Value 0x00			
Bit	7	6	5	4	3	2	1	0	
Name	agc1_gain								
Reset	0 0 0			0 0 0 0				0	
	Bits	Access	Name	Descriptio	n				
	[7:0] RO agc1_gain Upper eight bits of the AGC1 gain. For details, see the description of cr_ctrl_21.								

bagc_stat_2

bagc_stat_2 is BAGC status register 2.

		Offset Address		Register	r Name	Total Reset Value			
		0x71		bagc_s	stat_2	0x00			
Bit	7	6	5	4	3	2	1	0	
Name		ago	c1_gain		reserved				
Reset	0	0	0	0	0 0 0				
	Bits Access Name			Description					
	[7:4]	RO	agc1_gain		Lower four bits of the AGC1 gain. For details, see the description of cr_ctrl_21.				
	[3:0] RO reserved Reserve				ed.				

bagc_stat_3

bagc_stat_3 is BAGC status register 3.

	Offset Address			Register	r Name	Total Reset Value				
	0x72			bagc_s	stat_3	0x00				
Bit	7	6	5	4	3	2	1	0		
Name				age	agc2_gain1					
Reset	0	0	0	0	0 0		0	0		
	Bits	Access	Name	Descrip	Description					
	[7:0]	RO	agc2_gain1		ght bits of AC	GC2 gain 1. scription of cr	_ctrl_21.			

bagc_stat_4

bagc_stat_4 is BAGC status register 4.

	•	Offset Address 0x73		Register		Total Reset Value 0x00				
Bit	7	6	5	4	3	2	1	0		
Name		age	2_gain1		reserved					
Reset	0	0 0 0			0	0	0	0		
	Bits	Access	Name	Description	Description					
	[7:4]	RO	agc2_gain	2_gain Lower four bits of AGC2 gain 1. For details, see the description of cr_ctrl_21.						
	[3:0]	RO	reserved	Reserved.						

bagc_stat_7

bagc_stat_7 is BAGC status register 7.

	Offset Address			Register	r Name	Total Reset Value			
		0x79		bagc_s	stat_7	0x00			
Bit	7 6 5			4 3 2			1	0	
Name		agc_average_power							

0	0	0	0	0	0	0	0
Bits	Access	Name	Description				
[7:0]	RO	agc_average_power	Average AGC power consumption.				

j83b_tcm_ber0

j83b_tcm_ber0 is J83B TCM status register 0.

	C	Offset Address		Register Name			Total Reset Value		
		0x7C		j83b_tcm_ber0			0x00		
Bit	7	6	5	4	3	2	1	0	
Name	res	erved		tcm2reg_ber_errnum_lat					
Reset	0 0 0			0	0	0	0	0	
	Bits Access Name			Description					
	[7:6] - reserved			Reserved.					
	[5:0]	RO	tcm2reg_ber_ errnum_lat	Uppermost six bits of the number of TCM BER errors. For details, see the description of cr_ctrl_21.					

j83b_tcm_ber1

j83b_tcm_ber1 is J83B TCM status register 1.

	C	Offset Address		Register	r Name	Total Reset Value				
		0x7D		j83b_tcı	m_ber1		0x 0 0			
Bit	7	6	5	4	3	2	1	0		
Name		tcm2reg_ber_errnum_lat								
Reset	0	0 0 0			0	0	0	0		
	Bits	Bits Access Name			Description					
	[7:0]	RO	tcm2reg_ber_e rnum_lat	Upper eight bits of the number of TCM BER errors. For details, see the description of cr_ctrl_21.						

j83b_tcm_ber2

j83b_tcm_ber2 is J83B TCM status register 2.

	C	Offset Address		Register	Register Name			alue
		0x7E		j83b_tci	j83b_tcm_ber2			
Bit	7	6	5	4	3	2	1	0
Name	tcm2reg_ber_errnum_lat							
Reset	0	0	0	0	0	0	0	0
	Bits Access Name Description							
	[7:0]	RO	tcm2reg_ber_ errnum_lat	Lower eight bits of the number of TCM BER errors. For details, see the description of cr_ctrl_21.				

j83b_tcm_ber3

j83b_tcm_ber3 is J83B TCM status register 3.

	C	Offset Address		Register	r Name		Total Reset Value		
		0x7F		j83b_tci	j83b_tcm_ber3				
Bit	7	6	5	4	3	2	1	0	
Name	tcm2reg_ber_errnum_lat								
Reset	0	0 0 0			0	0	0	0	
	Bits	Access	Name	Description					
	[7:0]	RO	tcm2reg_ber_ errnum_lat	Lowest eight bits of the number of TCM BER errors. For details, see the description of cr_ctrl_21.					

sfreq_agc1_init

sfreq_agc1_init is an AGC control register.

	C	Offset Address		Register	r Name	Total Reset Value			
		0x87		sfreq_agc1_init		0x80			
Bit	7	6	5	4	3	2	1	0	
Name			agc1_init						
Reset	1	0	0	0	0	0	0	0	
	Bits	Access	Name	Description					
	[7:0]	RW	agc1_init	Initial AGC1 value.					

sync_ctrl_1

sync_ctrl_1 is frame sync control register 1.

	Offset Address 0x90			Register	r Name		Total Reset Value		
		0x90		sync_c	ctrl_1		0x0A		
Bit	7	6	5	4	3	2	1	0	
Name	reserved	sync_correct_ enb	mismatch		acg_mode		trk_mode		
Reset	0	0	0	0	1	0	1	0	
	Bits	Access	Name	Description					
	[7]	-	reserved	Reserved.					
	[6]	RW	sync_corr ect_enb	Correction enable for the sync header and reverse sync header, active high.					
	[5:4]	RW	mismatch						
	[3:2]	RW	acg_mode	field value, mismatch is considered.					
[1:0] RW trk_mode Frame lock after lock if consecutive (<i>m</i> x 204) bytes are detected as invalid frames (no frame header is detected). The inverted sync byte is detected again. The values of <i>m</i> is calculated as follows: m = trk_mode*2 + 1						ed). Then			

ber_1

ber_1 is BER control register 1.

	Offset Address			Register	r Name	Total Reset Value			
	0x93			ber_1			0x00		
Bit	7	6	5	4	3	2	1	0	
Name	bert_en	err_source	err_mode	nbyte			reserved		

0	0	0	0	0	0	0	0	
Bits	Access	Name	Description	n				
[7]	WC	bert_en	BER statistics enable. 0: invalid 1: valid When err_mode is 0 and an overflow occurs in the internal byte counter (the BER statistic threshold is exceeded), ber_en is automatically cleared.					
[6]	RW	err_source	BER statistics error source. 0: Error bits are counted. 1: Error bytes are counted.					
[5]	RW	err_mode	BER statistical mode. 0: auto-stop statistical mode. When the internal counter reaches the threshold or an overflow occurs in the BER counter, counting automatically stops and ber_en is automatically cleared. 1: auto-repeat statistical mode. When the internal counter reaches the statistics threshold, it is automatically reset and then restarts to count until ber en is 0.					
[4:2]	RW	nbyte	BER statistics threshold. The overflow threshold for the internal byte counter is 2^(2 x nbyte+12). This threshold is valid only when err_mode is 0. The value of the internal byte counter ranges from 4,096 to 2 ²⁶ .					
[1:0]	-	reserved	Reserved.					

ber_2

ber_2 is BER status register 2.

	C	Offset Address 0x94 7 6 5			Register Name ber_2			Total Reset Value 0x00		
Bit	7	6	5	4	3	2	1	0		
Name		error_cnt								
Reset	0	0	0	0 0 0				0		
	Bits	Access	Name	Description						
	[7:0]	RO	error_cnt	Upper eight bits of the internal error bit/byte counter. This value is the count of raw bit/byte errors, including all errors in the RS check bytes. For details, see the description of cr_ctrl_21.						

ber_3

ber_3 is BER status register 3.

	C	offset Address		Register	r Name		Total Reset Value		
		0x95		ber	_3		0x00		
Bit	7	6	5	4	3	2	1	0	
Name		error_cnt							
Reset	0	0 0 0		0	0	0	0		
	Bits	Bits Access Name			Description				
	[7:0]	RO	error_cnt	Middle eight bits of the internal error bit/byte counter. This value is the count of raw bit/byte errors, including all errors in the RS check bytes. For details, see the description of cr ctrl 21.					

ber_4

ber_4 is BER status register 4.

	C	Offset Address			r Name		Total Reset Value		
		0x96		ber	_4		0x00		
Bit	7	6	5	4	3	2	1	0	
Name	error_cnt								
Reset	0	0	0	0 0 0 0					
	Bits	Access	Name	Description					
	[7:0]	RO	error_cnt	This value is errors in the	t bits of the int s the count of e RS check by see the descri	raw bit/byte ottes.	errors, includi		

ts_ctrl_1

ts_ctrl_1 is output control register 1.

	C	Offset Address 0x98			r Name	Total Reset Value			
		0x98		ts_ct	rl_1		0x8E		
Bit	7	6	5	4	3	2	1	0	

NI	0	m	0
IN	\boldsymbol{a}		ı

sync_byte_inv	bend_bypass	m_ckout_ctrl	parity_en	ləs_qs	tei_enable	ds_enable	reserved
1	0	0	0	1	1	1	0

8,	_	<u> </u>							
1	0	0	0	1	1	1	0		
Bits	Access	Name	Description						
[7]	RW	sync_byte_inv	1: inve	Output data invert indicator of the descrambler. 1: inverted 0: normal					
[6]	RW	bend_bypass	Decoding module bypass. 0: The decoding-related modules are not bypassed. 1: All decoding related modules including the deinterleaver, RS decoding module, and descrambler after the demapping module are bypassed.						
[5]	RW	m_ckout_ctrl	Not used.						
[4]	RW	parity_en	Output enable for the RS check bit. 0: disabled 1: enabled						
[3]	RW	sp_sel	Mode select. 1: serial mode 0: parallel mode 2. This mode is only for tests and is not used in normal working. This bit is valid only when out ctrl 2[comm if en] is 0.						
[2]	RW	tei_enable	Transport error indicator (TEI) bit enable. 1: The MPEG-2 TEI bit is enabled when an uncorrectable frame error is found. 0: The MPEG-2 TEI bit is not enabled even when an uncorrectable frame error is found.						
[1]	RW	ds_enable	Descra 1: enab 0: disa		e. 				
[0]	-	reserved	Reserv	red.					

ts_ctrl_2

ts_ctrl_2 is output control register 2.

Offset Address	Register Name	Total Reset Value
0x99	ts_ctrl_2	0x20

Bit	7	6	5	4	3	2	1	0	
Name	sync_drop	comm_if_en	comm_if_clk_ct rl	comm_if_clk_b ase	reserved				
Reset	0	0	1	0	0	0	0	0	
	Bits	Access	Name	Description	n				
	[7]	RW	sync_drop	0: The sync bytes in the MPEG-TS frame header are output. 1: The sync bytes in the MPEG-TS frame header are not outp (the corresponding ts_val is invalid).					
	[6]	RW	comm_if_ en	Mode select. 1: parallel port mode 1 0: parallel port mode 2 or serial port mode. The mode is controlled by out ctrl 1[sp sel].					
	[5]	RW	comm_if_ clk_ctrl	ts_clk output polarity. This signal is used only in the field-programmable gate array (FPGA) version. 0: direct output 1: reverse output					
	[4]	RW	comm_if_ clk_base	Not used.					
	[3:0]	-	reserved	Reserved.					

rs_ctrl_1

rs_ctrl_1 is RS decoding control register 1.

	•	Offset Address		Register Name			Total Reset Value		
		0x9B		rs_ct	rl_1		0x 0 0		
Bit	7 6 5 0 0 0			4 3 2			1	0	
Name		pkt_cnt 0 0 0 0 0 0 0 0							
Reset	0	0	0	0 0 0 0					
	Bits	Access	Name	Description					
	[7:0]	RO	pkt_cnt	Upper eight bits of the TS frame counter. For details about the count of output TS frames, see the description of rs_ctrl_8 bit[5:4]. For details about the usage, see the description of cr_ctrl_21.					

rs_ctrl_2

rs_ctrl_2 is RS decoding control register 2.

	(Offset Address		Registe	r Name	Total Reset Value			
		0x9C		rs_ct	rl_2	0x00			
Bit	7	6	5	4	3	2	1	0	
Name				pkt_cnt					
Reset	0	0	0	0 0 0 0					
	Bits	Access	Name	Descriptio	n				
·	[7:0]	RO	pkt_cnt	For details a	bits of the TS bout the coun of rs ctrl 8 bi	t of output TS		the	
				•	bout the usag		cription of cr	_ctrl_21.	

rs_ctrl_3

rs_ctrl_3 is RS decoding control register 3.

		O	ffset Ac	ldress		Register	r Name		Total Reset Value		
			0x9I)		rs_ctrl_3			0x00		
Bit	7	7 6			5	4 3 2 1				0	
Name						pkt	_corr				
Reset	0				0	0 0 0 0					
	Bits Acces Name			e	Description						
	[7:0]	RO)	pkt_c	orr	After being corrected by rs_ctrl_8 bit	enabled, this the RS modu [5:4].	ıle. For detail	time counter. d to count the standard	cription of	

rs_ctrl_4

rs_ctrl_4 is RS decoding control register 4.

	C	Offset Address		Register	r Name	Total Reset Value				
		0x9E		rs_ct	rl_4		0x00			
Bit	7	6	5	4	3	2	1	0		
Name		pkt_corr								
Reset	0	0	0	0 0 0				0		
	Bits	Access	Name	Description						
	[7:0]	RO	pkt_corr	After being corrected by rs_ctrl_8 bit	enabled, this to the RS modules [5:4].	register is use ıle. For detail	d to count the	cription of		

rs_ctrl_5

rs_ctrl_5 is RS decoding control register 5.

	Offset Address 0x9F			Č	Register Name rs_ctrl_5			alue	
Bit	7	6	5	4	3	2	1	0	
Name		pkt_uncorr							
Reset	0	0	0	0	0 0 0 0				
	Bits	Access	Name	Descripti	Description				
	[7:0] RO pkt_uncorr Upper eight bits of the uncorrected TS frame counter. After being enabled, this register is used to count the TS frames that cannot be corrected by the RS module. For details, see the description of rs_ctrl_8 bit[5:4]. For details about the usage, see the description of cr_ctrl_21.							he TS	

rs_ctrl_6

rs_ctrl_6 is RS decoding status register 6.

	C	Offset Address		Register	Name	Total Reset Value			
	0xA0			rs_ct	rl_6	0x00			
Bit	7	6	5	4	3	2	1	0	
Name				pkt_	uncorr				

0	0	0	0	0	0	0	0
Bits	Access	Name	Description				
[7:0]	RO	pkt_uncorr	After bei frames th details, s	ght bits of the ing enabled, that cannot be ee the descrip ils about the u	his register is corrected by to tion of rs_ctr	used to count he RS modul 1_8 bit[5:4].	the TS e. For

rs_ctrl_8

rs_ctrl_8 is RS decoding control register 8.

	C	Offset Address 0xA1		Register Name rs_ctrl_8			Total Reset Value 0x40		
Bit	7	6	5	4	3	2	1	0	
Name	reg2rs_rs_sel	rs_corr_en	static_hold	static_clear	rs_mode127	rs2_rs_corr_en	rs2_mode127	reserved	
Reset	0	1	0	0	0	0	0	0	
	Bits	Access	Name	Description					
	[7]	RW	reg2rs_rs_ sel	RS mode select. This bit is valid only when reg2j83b_itu_sel is set to 1, that is, in J83B mode. 0: RS 1 1: RS 2					
	[6]	RW	rs_corr_en	1: The corre	nodule works ection function	n of the RS m	, , , , , , , , , , , , , , , , , , ,	ed, but	
other functions are not affected. [5] RW static_hol d Counter hold. 0: Counters work normally. 1: The TS frame counter (pkt_cnt), corrected (pkt_corr), and uncorrected TS frame counter retain corresponding count values.									
	[4]	RW	static_clea r		rected TS francounter (pkt_u				

[3]	RW	rs_mode1 27	Whether to erase the 128th code in RS 1 mode. This bit is valid only when reg2j83b_itu_sel is set to 1, that is, in J83B and RS 1 modes. 0: not erase
			1: erase
[2]	RW	rs2_rs_cor r_en	RS 2 correction mask. This bit is valid only when reg2j83b_itu_sel is set to 1, that is, in J83B mode.
			0: The RS module works properly (default).
			1: The correction function of the RS module is masked, but other functions are not affected.
[1]	RW	rs2_mode 127	Whether to erase the 128th code in RS 2 mode. This bit is valid only when reg2j83b_itu_sel is set to 1, that is, in J83B and RS 2 modes.
			0: not erase
			1: erase
[0]	-	reserved	Reserved.

bs_ctrl_1

bs_ctrl_1 is blind scanning control register 1.

		Offset Address 0xA6			r Name trl_1		Total Reset Value 0x04				
Bit	7	7 6 5			3	2	1	0			
Name	reserved				spec_inv_en	spec_search_en	rate_search_en	qam_search_en			
Reset	0	0	0	0	0	1	0	0			
	Bits	Access	Name	Desc	Description						
	[7:4]	-	reserved	Rese	Reserved.						
	[3] RW spec_inv_en			0: The spect 1: The	Spectrum invert. 0: The demodulator is not allowed to process any spectrum inversion caused by the transfer channel. 1: The demodulator is allowed to process any spectrum inversion caused by the transfer channel.						

[2]	RW	spec_search_en	Spectrum auto-inversion enable. 0: disabled
			1: enabled
			For details about the actual spectrum mode, see the description of bs_stat_1.
[1]	RW	rate_search_en	Symbol rate blind scanning enable.
			0: disabled
			1: enabled
			For details about the found modulation mode, see the description of bs_stat_1.
[0]	RW	qam_search_en	Modulation mode blind scanning enable.
			0: disabled
			1: enabled
			For details about the found modulation mode, see the description of bs_stat_1.

bs_ctrl_2

bs_ctrl_2 is blind scanning control register 2.

	C	Offset Address		Register	r Name	Total Reset Value		
		0xA7		bs_ct	trl_2	0x10		
Bit	7	6	5	4	3	2	1	0
Name	rate_search		qam_search					
Reset	0	0	0	1	0	0	0	0
	Bits	Access	Name	Description				
	[7:5]	RW	rate_search	blind scan disabled, t 000: inval: 001: 1.8–0 010: 1.8–3 011: 1.8–3 100: 3.6–7 101: 3.6–7	ning is enable his field is medid 0.9 MBaud 6.6 MBaud 6.6 Mbaud or 0 7.2 MBaud 7.2 Mbaud or 0 7.2 Mbaud or 0 7.2 Mbaud or 0 7.2 Mbaud or 0	te to be searched. When symeaningless. 0.9–1.8 MBau 0.9–1.8 MBau 1.8–3.6 MBau 8–3.6 Mbaud,	bol rate blind ud ud	scanning is

[4:0]	RW	qam_search	Modulation mode configured by the user when qam_search_en is 0. The details are as follows:
			0x01: QAM16
			0x02: QAM32
			0x04: QAM128
			0x08: QAM256
			0x10: QAM64
			Other values: reserved
			When qam_search_en is 1, multiple bits are valid, that is, multiple modulation modes can be searched for. For example:
			0x18: QAM64 and QAM256

bs_stat_1

bs_stat_1 is blind scanning status register 1.

	Offset Address 0xAC			Register Name bs_stat_1			Total Reset Value 0x80	
Bit	7	6	5	4	3	2	1	0
Name			qam_mode			rate_range		spec_inv
Reset	1	0	0	0	0	0	0	0
	Bits	Access	Name	Descripti	on			
	[7:3]	RO	qam_mode	QAM mode. 0x01: QAM16 0x02: QAM32 0x04: QAM128 0x08: QAM256 0x10: QAM64 Other values: reserved				
	[2:1]	RO	rate_range	Range of the symbol rate obtained after blind scanning. 00: 7.2–3.6 MBaud 01: 3.6–1.8 MBaud 10: 1.8–0.9 MBaud 11: reserved				
	[0]	RO	spec_inv	Spectrum invert. 0: not inverted 1: inverted				

bs_stat_2

bs_stat_2 is blind scanning status register 2.

	C	Offset Address			Register Name			Total Reset Value	
		0xAD		bs_stat_2			0x00		
Bit	7	6	5	4	3	2	1	0	
Name		res	erved		qam_sear	ch_status	rate_sear	ch_status	
Reset	0	0	0	0	0	0	0	0	
	Bits	Access	Name	Description					
	[7:4]	-	reserved	Reserved.					
	[3:2]	RO	qam_searc h_status	Result of modulation mode blind scanning. This field is valid only when modulation mode blink scanning is enabled. 00: Blind scanning is not complete. 01: meaningless 10: Blind scanning is complete but fails. 11: Blind scanning is complete and successful.					
	[1:0]	RO	rate_searc h_status Result of symbol rate blind scanning. 00: Blind scanning is not complete. 01: meaningless 10: Blind scanning is complete but fails. 11: Blind scanning is complete and successful.						

bs_stat_3

bs_stat_3 is blind scanning status register 3.

	Offset Address			Register		Total Reset Value		
	0xAE			bs_st	at_3	0x 0 0		
Bit	7	6	5	4	3	2	1	0
Name			reserved rate_ratio					rate_ratio
Reset	0	0	0	0	0	0	0	0
	Bits	Access	Name	Description				
	[7:1] - reserved			Reserved.				

[0]	RO	rate_ratio	After symbol rate blind scanning is complete and successful, the symbol rate is calculated as follows:
			$Fs = Fad/[2^{(rate_range + 1)} \times (rate_ratio)/(2^{14})]$
			When rate_range is 0, Fad is 28.8 MHz.
			When rate_range is 1, Fad is 14.4 MHz.
			When rate_range is 2, Fad is 7.2 MHz.
			This bit is the MSB of rate_ratio.

bs_stat_4

bs_stat_4 is blind scanning status register 4.

	C	Offset Address 0xAF		Register Name bs stat 4			Total Reset Value 0x86	
Bit	7	6	5	4 3 2 1 0				0
Name				rate_ratio				
Reset	1	0	0	0 0 1 1 0				
	Bits	Access	Name	Description				
	[7:0]	RO	rate_ratio	After symbol rate blind scanning is complete and successful, th symbol rate is calculated as follows: Fs=Fad/[2^(rate_range + 1) x (rate_ratio)/(2^14)] When rate_range is 0, Fad is 28.8 MHz. When rate_range is 1, Fad is 14.4 MHz. When rate_range is 2, Fad is 7.2 MHz. These bits are the upper eight bits of rate ratio.				

bs_stat_5

bs_stat_5 is blind scanning status register 5.

	Offset Address			Register	r Name	Total Reset Value		
		0xB0		bs_stat_5			0x0D	
Bit	7	6	5	4	3	2	1	0
Name	rate_ratio							

0	0	0	0	1	1	0	1	
Bits	Access	Name	Description	n				
[7:0]	RO	rate_ratio		ol rate blind so is calculated	•	nplete and suc	ccessful, the	
			Fs=Fad/[2^(rate_range + 1) x (rate_ratio)/(2^14)]					
			When rate_range is 0, Fad is 28.8 MHz.					
			When rate_range is 1, Fad is 14.4 MHz.					
			When rate_range is 2, Fad is 7.2 MHz.					
			These bits are the lower eight bits of rate_ratio.					

fs_ctrl_1

fs_ctrl_1 is scanning control register 1.

	(Offset Address 0xB1 7 6 5		Register Name fs_ctrl_1			Total Reset Value 0x00		
Bit	7	6	5	4 3 2 1				0	
Name	test fre_init								
Reset	0	0	0	0 0 0 0					
	Bits	Access	Name	Description					
	[7:6]	RW	test	Test register	r. It defines th	e reset value	in normal mo	de.	
	[5:0]	RW	fre_init	Test register. It defines the reset value in normal mode. Upper six bits of the initial demodulation frequency. Demodulation frequency = fre_init x $f_{clk}/[(2^11) \times 2 \times pi]$ The frequency scanning circuit works under the sampling clot $f_{clk}/[(2^11) \times 2 \times pi]$ is the resolution precision. For example, in DVB-C or ITU J83-A/C mode, when f_{clk} is 28.8 MHz, the resolution precision is 2238 Hz; in ITU J83-B mode, when f_{clk} 25 MHz, the resolution precision is 1943 Hz.					

fs_ctrl_2

fs_ctrl_2 is scanning control register 2.

	Offset Address			Register Name			Total Reset Value		
		0xB2		fs_ct	rl_2		0x00		
Bit	7	6	5	4	3	2 1 0			
Name	ne fre_init								

t	0	0	0	0	0	0	0	0
	Bits	Access	Name	Description	n			
	[7:0]	RW	fre_init	Demodulation The frequent $f_{clk}/[(2^{11})^{2}]$ in DVB-C or resolution properties of the properties	bits of the incon frequency cy scanning c x 2 x pi] is the or ITU J83-A/orecision is 22.2 e resolution pr	= fre_init x f _c ircuit works us resolution pr C mode, when 38 Hz; in ITU	nder the sam recision. For earlies 188 M J J83-B mode	x pi] pling clock. example, MHz, the

fs_ctrl_4

fs_ctrl_4 is scanning control register 4.

	C	Offset Address 0xB4 7 6 5		Register fs_ct		Total Reset Value 0x00				
Bit	7	6	5	4	3	2	1	0		
Name		scan_step								
Reset	0	0	0	0 0 0 0						
	Bits	Access	Name	Description						
	[7:0]	RW	scan_step	Upper eight bits of the scanning interval step. The step between two consecutive frequencies to be demodulated is calculated as follows: scan_step x f _{clk} /[(2^11) x 2 x pi]						

fs_ctrl_5

fs_ctrl_5 is scanning control register 5.

	C	Offset Address		Register	r Name		Total Reset Value		
		0xB5		fs_ct	rl_5	0x70			
Bit	7	6	5	4	3	2	1	0	
Name		scan_step							
Reset	0	1	1	1 0 0 0 0					
	Bits Access Name			Description					
	[7:0]	RW	scan_step	The step bet demodulated	Lower eight bits of the scanning interval step. The step between two consecutive frequencies to be demodulated is calculated as follows: scan_step x f _{clk} /[(2^11) x 2 x pi]				

fs_ctrl_6

fs_ctrl_6 is scanning control register 6.

	Offset Address 0xB6			Register Name Total Reset Value			alue		
		0xB6		fs_ct	rl_6		0x00		
Bit	7	6	5	4	3	2	1	0	
Name	reserved			scan_start	reserved		scan_end_flag	scan_lock_flag	
Reset	0	0	0	0	0	0	0	0	
	Bits	Access	Name	Description	n				
	[7:5]	-	reserved	Reserved.					
	[4]	RW	scan_start	Frequency s 0: disabled 1: enabled.	canning enab	le.			
	[3:2]	-	reserved	Reserved.					
	[1]	RO	scan_end_ flag	Frequency scanning end signal. 0: not ended 1: ended					
	[0]	RO	scan_lock _flag	Whether the frequency scanning is successful. 0: failure 1: success					

fs_ctrl_7

fs_ctrl_7 is scanning control register 7.

	C	Offset Address		Register	r Name		Total Reset Value			
		0xB7		fs_ct	rl_7	0x0A	0x0A			
Bit	7	6	5	4	3	2	1	0		
Name	reserved				fre_step_num					
Reset	0	0	0	0	1	0	1	0		
	Bits	Access	Name	Descri	iption					
	[7]	-	reserved	Reserv	Reserved.					
	[6:0]	6:0] RW fre_step_num			Maximum frequency scanning step.					

fs_stat_1

fs_stat_1 is scanning status register 1.

	C	Offset Address 0xB8		Register Name fs_stat_1			Total Reset Value 0x00			
,		UXD8		18_80	at_1		UXUU			
Bit	7	6	5	4	3	2	1	0		
Name	res	erved		freq_shift						
Reset	0	0	0	0 0 0			0	0		
	Bits	Access	Name	Description						
	[7:6]	7:6] - reserved			Reserved.					
	[5:0] RO freq_shift			Upper six bi		frequency of	fset obtained	after		

fs_stat_2

fs_stat_2 is scanning status register 2.

	C	Offset Address		Register	r Name	Total Reset Value		
		0xB9			fs_stat_2			
Bit	7	6	5	4	3	2	1	0
Name	freq_shift							
Reset	0	0	0	0	0	0	0	0
	Bits	Access	Name	Description				
	[7:0]	RO	freq_shift	Lower eight bits of the final frequency offset obtained after frequency scanning.				

j83b_ffsync_1

j83b_ffsync_1 is J83B FFSYNC control register 1.

	Offset Address			Register	r Name	Total Reset Value		
	0xBA			j83b_ff	sync_1	0x 0 0		
Bit	7	6	5	4	3	2	1	0
Name	reserved		reg2j83b_fra_locklen			reg2j83b_fra_lostlen		

0	0	0	0	0	0	0	0	
Bits	Access	Name	Description					
[7:6]	1	reserved	Reserved.					
[5:3]	RW	reg2j83b_fra_ locklen	Frame sync lock after a sync timing and consecutive <i>n</i> valid frames are detected in sequence. The value of <i>n</i> is calculated as follows: n = reg2j83b_fra_locklen + 1					
[2:0]	RW	reg2j83b_fra_ lostlen	Frame sync unlock after errors are detected in consecutive <i>m</i> sync timing positions. Then sync timings are detected again. The value of <i>m</i> is calculated as follows: m = reg2j83b_fra_lostlen + 1					

j83b_ffsync_2

j83b_ffsync_2 is J83B FFSYNC control register 2.

	C	offset Address		Register Name			Total Reset Value			
		0xBB		j83b_ff	sync_2	0x00				
Bit	7	6	5	4 3 2				0		
Name	res	erved	reg	2j83b_unlock_to	oler	reg2	j83b_lock_misn	natch		
Reset	0	0	0	0	0	0	0	0		
	Bits Access Name		Name	Description						
	[7:6]	1	reserved	Reserved.						
	[5:3]	RW	reg2j83b_ unlock_tol er	When the frame sync module is not locked, the phase change pulse is sent to the TCM if the sync timings are not detected in consecutive p frames. The value of p is calculated as follows: $p = reg2j83bunlock_toler + 2$						
	[2:0]	RW	reg2j83b_ lock_mis match	b_ Number of allowed error bits in the sync timing posi						

j83b_ffsync_3

j83b_ffsync_3 is J83B FFSYNC control register 3.

	C	Offset Address		Register	r Name	Total Reset Value			
		0xBC		j83b_ff	sync_3	0x00			
Bit	7	6	5	4 3 2 1			0		
Name			reserved			reg2j83b_lost_mismatch			

0	0	0	0	0	0	0	0	
Bits	Access	Name	Description					
[7:3]	-	reserved	Reserved.					
[2:0]	RW	reg2j83b_ lost_mism atch	Number of allowed error bits in the sync timing positions after the frame sync module is locked. If the value is 0, bit errors are not allowed.					

j83b_dr_1

j83b_di_1 is J83B descrambling control register 1.

	C	Offset Address 0xBD			r Name dr_1		Total Reset Value 0x7F		
Bit	7	6	5	4	3	2	1	0	
Name	reserved			reg2j83b_dr_ini0					
Reset	0	1	1	1	1	1	1	1	
	Bits	Access	Name	Description	n				
	[7]	-	reserved	Reserved.					
	[6:0]	RW	reg2j83b_ dr_ini0	Initial value of the internal register a3.					

j83b_dr_2

j83b_di_2 is J83B descrambling control register 2.

	C	Offset Address			Registe	r Name	Total Reset Value			
		0xBE			j83b_dr_2			0x7F		
Bit	7	6	5	5 4		3	2	1	0	
Name	reserved					reg2j83b_dr_ini	1			
Reset	0	1	1		1	1	1	1	1	
	Bits	Access	Name		Description					
	[7]	-	reserved	reserved		Reserved.				
	[6:0]	RW	reg2j83b_dr	_ini1	Initial value of the internal register ff1.					

j83b_dr_3

j83b_di_3 is J83B descrambling control register 3.

	C	Offset Address			Registe		Total Reset Value			
		0xBF		j83b_dr_3				0x7F		
Bit	7	6	5	5 4		3	2	1	0	
Name	reserved			,		reg2j83b_dr_ini2	2			
Reset	0	1	1	1		1	1	1	1	
	Bits	Access	Name		Description					
	[7]	-	reserved	reserved		Reserved.				
	[6:0]	RW	reg2j83b_dr	_ini2	Initial value of the internal register ff2.					

four_reg_sel

four_reg_sel is a register block select register.

	C	Offset Address			Register Name			Total Reset Value		
		0xE0			four_reg_sel			0x00		
Bit	7	6	5	5 4		3	2	1	0	
Name			rese	erved				reg2m	em_sel	
Reset	0	0 0			0	0	0	0	0	
	Bits	Access	Name		Description					
	[7:2]	-	reserved		Reserved.					
	[1:0]	RW	reg2mem_se	el	Memory select control signal. 00: The QAM registers are configured. 10: The CRG and hardware IP registers are configured. Other values: reserved					

2.26 System Control Register Summary

Table 2-2 describes the system control registers.

Table 2-2 System control register summary (base address = 0x0000)

Offset Address	Register	Description	Page
0x00	crg_ctrl_0	CRG control register 0	2-63
0x01	crg_ctrl_1	CRG control register 1	2-64
0x02	crg_ctrl_2	CRG control register 2	2-64

Offset Address	Register	Description	Page
0x03	crg_ctrl_3	CRG control register 3	2-65
0x04	crg_ctrl_4	CRG control register 4	2-66
0x05	crg_ctrl_5	CRG control register 5	2-66
0x10	hard_ctrl_0	AD control register 0	2-67
0x11	hard_ctrl_1	AD control register 1	2-67
0x12	hard_ctrl_2	AD control register 2	2-67
0x13	hard_ctrl_3	AD control register 3	2-68
0x14	hard_ctrl_4	AD control register 4	2-68
0x15	hard_ctrl_5	AD control register 5	2-68
0x16	hard_ctrl_6	AD control register 6	2-69
0x17	hard_ctrl_7	PLL control register 0	2-69
0x18	hard_ctrl_8	PLL control register 1	2-69
0x19	hard_ctrl_9	PLL control register 2	2-70
0x1A	hard_ctrl_10	PLL control register 3	2-70
0x1B	hard_ctrl_11	PLL control register 4	2-70
0x1C	hard_ctrl_12	PLL control register 5	2-71
0x1D	hard_ctrl_13	PLL control register 6	2-71
0x1E	hard_ctrl_14	PLL control register 6	2-72
0x20	ioshare_ctrl_0	IOSHARE control register 0	2-72
0x21	ioshare_ctrl_1	IOSHARE control register 1	2-73
0x22	ioshare_ctrl_2	IOSHARE control register 2	2-74
0x23	ioshare_ctrl_3	IOSHARE control register 3	2-74
0x24	ioshare_ctrl_4	IOSHARE control register 4	2-75
0x25	ioshare_ctrl_5	IOSHARE control register 5	2-76
0x26	ioshare_ctrl_6	IOSHARE control register 6	2-77
0x27	ioshare_ctrl_7	IOSHARE control register 7	2-78
0x28	ioshare_ctrl_8	IOSHARE control register 8	2-79
0x29	ioshare_ctrl_9	IOSHARE control register 9	2-80

2.27 System Control Register Description

crg_ctrl_0

crg_ctrl_0 is CRG control register 0.

		Of	fset Address		Register	r Name		Total Reset Value		
			0x00		crg_c	trl_0		0x2B		
Bit	7 6			5	4	3	2	1	0	
Name	ad_out_clk_sel		qam_clk_out_s el	ext_ad_in_clk_sel	i2c_clk_sel	ads_clk_sel	adc_clk_sel	ts_clk_sel	ts_clk_out_sel	
Res et	0		0	1	0	1	0	1	1	
	Bits Access Name		Name	Descripti	on					
	[7] RW		ad_out_clk_ sel	0: The pha		clock signal. e as the adc_c rse of the adc	_			
	[6] RW			qam_clk_ou t_sel	qam_clk output clock signal. 0: The phase is the same as the qam_clk phase. 1: 1: The phase is the inverse of the qam_clk phase.					
	[5]	R	W	ext_ad_in_c lk_sel	External AD input clock signal. 0: exd_ad_in_clk, external AD associated clock 1: adc_clk, internal AD clock					
	[4]	R	W	i2c_clk_sel	I ² C clock signal. 0: xtal_clk 1: ref_div2_clk					
	[3] RW ads_cl		ads_clk_sel	AD associated clock signal (the QAM uses this clock to sample AD data). 0: The phase is the same as the AD clock phase. 1: The phase is the inverse of the AD clock phase.						
	[2] RW		adc_clk_sel	ADC clock signal. 0: xtal_clk 1: foutdiv_clk						
	[1] RW ts_clk_sel			ts_clk_sel	TS clock signal. 0: ts_clk_odd 1: ts_clk_even					

[0]	RW		TS output associated clock signal.
		sel	0: The phase is the same as the ts_clk phase.
			1: 1: The phase is the inverse of the ts_clk phase.

crg_ctrl_1

crg_ctrl_1 is CRG control register 1.

		О	offset Addre 0x01	SS		Register Name crg_ctrl_1			Total Reset Value 0x00		
Bit	7		6		5	4	3	2	1	0	
Name	reserved				qam_j83ac_srst_ req	qam_j83b_srst_r eq	chip_srst_req	qam_srst_req	i2c_srst_req	ts_srst_req	
Reset	0				0	0	0	0	0	0	
	Bits	A	ccess	N	ame	Description	n				
	[7:6]	-		res	served	Reserved.					
	[5]	R	W		m_j83ac_sr _req	J83-A/C soft reset request, active high.					
	[4]	R	W	-	m_j83b_srs req	J83-B soft re	eset request, a	active high.			
	[3]	R	W	ch	ip_srst_req	Chip reset re	equest, active	high.			
	[2]			qa	m_srst_req	QAM reset	request, active	e high.			
			i20	c_srst_req	eq I ² C reset request, active		igh.		_		
	[0]	R	W	ts_	_srst_req	TS reset req	uest, active h	igh.			

crg_ctrl_2

crg_ctrl_2 is CRG control register 2.

	C	Offset Address		Register	r Name		Total Reset Value			
		0x02		crg_ctrl_2			0xFF			
Bit	7	6	5	4	3	2	1	0		
Name	ad_out_clk_en	qam_j83ac_clk_ en	qam_j83b_clk_e n	ts_clk_en	ads_clk_en	qam2x_clk_en	qam_clk_en	i2c_clk_en		

1	1	1	1	1	1	1	1			
Bits	Access	Name	Description							
[7]	RW	ad_out_clk_en	0: disabled	nal of ADC o l (normal outp	•	ted clock ad_o	out_clk.			
[6]	RW	qam_j83ac_elk _en	qam_j83ac_clk gating signal. 0: disabled 1: enabled (normal output)							
[5]	RW	qam_j83b_clk_ en	0: disabled	_clk gating sig l (normal outp						
[4]	RW	ts_clk_en	ts_clk gating signal. 0: disabled 1: enabled (normal output)							
[3]	RW	ads_clk_en	0: disabled	ting signal. l (normal outp	ut)					
[2]	RW	qam2x_clk_en	0: disabled	gating signa l (normal outp						
[1]	RW	qam_clk_en	qam_clk gating signal. 0: disabled 1: enabled (normal output)							
[0]	RW	i2c_clk_en	i2c_clk gating signal.0: disabled1: enabled (normal output)							

crg_ctrl_3

crg_ctrl_3 is CRG control register 3.

	C	Offset Address		Register	Name	alue			
		0x03		crg_c	trl_3	0x06			
Bit	7	6	5	4	3	2	1	0	
Name		res	erved		ts_clk_div_odd				

0	0	0	0	0	1	1	0			
Bits	Access	Name	Description	n						
[7:4]	-	reserved	Reserved.							
[3:0]	RW	ts_clk_div _odd	TS frequency divider signal (frequency divider ratio). For example, if ts_clk_div_odd is set to 4'h6, the frequency of the reference clock is divided by 6.							

crg_ctrl_4

crg_ctrl_4 is CRG control register 4.

		O	offset Addres	SS	Register	r Name		Total Reset Value			
			0x04		crg_c	crg_ctrl_4 0x05					
Bit	7		6	5	4	3	2	1	0		
Name				reserved		ts_clk_div_even					
Reset	0 0		0	0	0	0	1	0	1		
	Bits Access			Name	Descrip	iption					
	[7:4]	-		reserved	Reserved	Reserved.					
	[3:0]	R	W	ts_clk_div_ever	n TS even	TS even frequency divider control signal.					
					$ts_clk = $	2 x (ts_clk_di	iv_even + 1)				
						For example, if ts_clk_div_even is set to 4'h1, the frequency of the reference clock is divided by 4.					

crg_ctrl_5

crg_ctrl_5 is CRG control register 5.

		O	Offset Addres	SS	Register	r Name	Total Reset Value			
			0x05		crg_c	trl_5		0x00		
Bit	7		6	5	4 3		2	1	0	
Name				reserved	dly_cell_ctrl					
Reset	0 0		0	0	0	0	0	0	0	
	Bits	A	ccess	Name	Description	n				
	[7:4] -			reserved	Reserved.					
	[3:0]	R	W	dly_cell_ctrl	Increased delay between the reference clock and the QAM clock.					

hard_ctrl_0 is AD control register 0.

		C	Offset Address		Registe	r Name	Total Reset Value			
			0x10		hard_o	ctrl_0	0x23			
Bit	7 6		5	4	3	2	1	0		
Name	ctrl0									
Reset	0		0	1	0 0		0	1	1	
	Bits	Bits Access		Name	Description					
	[7:0] RW		ctrl0	AD control register 0.						

hard_ctrl_1

hard_ctrl_1 is AD control register 1.

	C	Offset Address 0x11		Register		Total Reset Value 0x00						
Bit	7	6	5	4 3 2 1				0				
Name	ctrl1											
Reset	0	0	0	0 0 0				0				
	Bits	Bits Access Name Description										
	[7:0]	RW	ctrl1	AD control register 1.								

hard_ctrl_2

hard_ctrl_2 is AD control register 2.

	Offset Address					Register	r Name	Total Reset Value			
	0x12					hard_o	ctrl_2	0x 0 0			
Bit	7 6			5	4 3		2	1	0		
Name	ne ctrl2										
Reset	0		0		0	0 0		0	0	0	
	Bits Access		N	Name Descripti		tion					
	[7:0] RW		ct	ctrl2 AD control register 2		register 2.					

hard_ctrl_3 is AD control register 3.

		C	Offset Address		Registe	r Name	Total Reset Value				
			0x13		hard_e	ctrl_3	0x 0 0				
Bit	7 6		6	5	4 3		2	1	0		
Name	ctrl3										
Reset	0 0		0	0	0 0 0		0	0	0		
	Bits	Α	ccess	Name	Description						
	[7:0] RW		ctrl3	AD control	register 3.						

hard_ctrl_4

hard_ctrl_4 is AD control register 4.

		C	Offset Addres	SS		Register			Total Reset Value 0x00		
Bit	7	7 6			5	4	3	2	1	0	
Name	ctrl4										
Reset	0	0		0		0	0	0	0	0	
	Bits	A	ccess	N	ame	Description					
	[7:0] RW			ct	rl4	AD control	register 4.				

hard_ctrl_5

hard_ctrl_5 is AD control register 5.

	Offset Address				Registe	r Name	Total Reset Value			
	0x15					hard_e	etrl_5	0x00		
Bit	7		6		5	4	3	2	1	0
Name	ctrl5									
Reset	0		0		0	0	0	0	0	0
	Bits	Bits Access Name		me	Description					
	[7:0] RW ctrl5			5	AD control register 5.					

hard_ctrl_6 is AD control register 6.

		Offset Address			Register	r Name	Total Reset Value			
	0x16				hard_o	ctrl_6	0x00			
Bit	7		6	5	4	3	2	1	0	
Name	ctrl6									
Reset	0 0		0	0 0 0				0		
	Bits Access		ccess	Name	Description					
	[7:0] RW ctrl6			ctrl6	AD control register 6.					

hard_ctrl_7

hard_ctrl_7 is PLL control register 0.

	C	Offset Address		Register Name			Total Reset Value		
		0x17		hard_ctrl_7			0x08		
Bit	7	6	5	4	3	2	1	0	
Name	reserved				ref_	div			
Reset	0	0	0	0	1	0	0	0	
	Bits	Access	Name	Description	n				
	[7:6]	-	reserved	Reserved.					
	[5:0]	RW	ref_div Frequency divider parameter of the reference clock, ranging from 1 to 63.						

hard_ctrl_8

hard_ctrl_8 is PLL control register 1.

	C	Offset Address		Registe	r Name	Total Reset Value			
		0x18		hard_e	ctrl_8	0x20			
Bit	7	6	5	4	3	2	1	0	
Name	fb_div								

0	0	1	0	0	0	0	0	
Bits	Access	Name	Description					
[7:0]	RW	fb_div	Lower eight bits of the feedback frequency divider signal.					

hard_ctrl_9

hard_ctrl_9 is PLL control register 2.

		Offset Address			Register	r Name	Total Reset Value			
			0x19		hard_o	ctrl_9	0x01			
Bit	7 6		5	4	3	2	1	0		
Name	reserved				fb_div					
Reset	0 0		0	0	0 0 1					
	Bits	A	ccess	Name	Description					
	[7:4] - reserved			reserved	Reserved.					
	[3:0] RW fb_div U				Upper four bits of the feedback frequency divider signal.					

hard_ctrl_10

hard_ctrl_10 is PLL control register 3.

	C	Offset Address 0x1A		Register		Total Reset Value 0x00			
Bit	7	6	5	4	3	2	1	0	
Name	frac								
Reset	0	0	0	0 0 0 0					
	Bits Access Name Description								
	[7:0]	RW	frac	Lowest eight bits of the decimal frequency divider value.					

hard_ctrl_11

hard_ctrl_11 is PLL control register 4.

	Offset Address				Register	r Name	Total Reset Value		
	0x1B				hard_c	trl_11	0x00		
Bit	7		6	5	4	3	2	1	0
Name	frac								
Reset	0		0	0	0	0	0	0	0
	Bits	Bits Access N		Name	Description				
	[7:0] RW frac			Middle bits of the decimal frequency divider value.					

hard_ctrl_12 is PLL control register 5.

	Offset Address				Register	r Name	Total Reset Value		
	0x1C				hard_c	trl_12	0x00		
Bit	7		6	5	4	3	2	1	0
Name	frac								
Reset	0		0	0	0	0	0	0	0
	Bits Access		Name	Description					
	[7:0] RW frac			frac	Uppermost eight bits of the decimal frequency divider value.				

hard_ctrl_13

hard_ctrl_13 is PLL control register 6.

		Offset Address 0x1D			Register Name hard_ctrl_13			Total Reset Value 0x11		
Bit	7		6	5	4	3	2	1	0	
Name	reserved			post_div1			post_div2			
Reset	0		0	0	1	0	0	0	1	
	Bits	A	ccess	Name	Description					
	[7:6]	-		reserved	Reserved.					
	[5:3]	[5:3] RW post_div1			Level-1 post frequency divider value, ranging from 1 to 7.					
	[2:0] RW post_div2			Level-2 post frequency divider value, ranging from 1 to 7. Output frequency = FVCO/post_div1/post_div2						

hard_ctrl_14 is PLL control register 6.

	C	offset Address		Register Name			Total Reset Value		
		0x1E		hard_c	trl_14	0x26			
Bit	7	6	5	4	3	2	1	0	
Name	lock	pd	dac_pd	pd [_] usp	foutpost_div_pd	fout4_phase_pd	fout_vco_pd	bypass	
Reset	0	0	1	0	0	1	1	0	
	Bits	Access	Name	Descrip	tion				
	[7]	RO	lock	PLL lock indicator signal.					
	[6]	RW	pd	Global c	lock stop, act	ive high.			
	[5]	RW	dac_pd	DAGC c	lock stop, act	ive high.			
	[4]	RW	dsm_pd	Delta sig	ma modulato	r clock stop, a	active high.		
	[3]	RW	foutpost_div_ pd	All outpu	ut (excluding	VCO clock) s	stop, active hi	gh.	
	[2]	RW	fout4_phase_ pd	Phase-4 clock, 2x clock, 3x clock, and 4x clock stop, active high.					
	[1]	RW	fout_vco_pd	vco_pd VCO clock stop, active high.					
	[0] RW bypass PLL bypass. 0: invalid 1: bypassed								

ioshare_ctrl_0

ioshare_ctrl_0 is IOSHARE control register 0.

	Offset Address			Register	r Name	Total Reset Value				
		0x20			_ctrl_0	0x00				
Bit	7	6	5	4	3	2	1	0		
Name	mode_sel									
Reset	0	0	0	0	0	0	0	0		
	Bits	Access	Name	Description						

[7:0]	RW	mode_sel	I/O output mode select.
[7.0]	IXVV	mode_ser	
			mode_sel[0]: Reversing the upper and lower bits of TS output.
			0: not reversed
			1: reversed
			mode_sel[1]: I/O output AD data.
			0: disabled
			1: enabled
			mode_sel[2]: I/O input external AD data.
			0: disabled
			1: enabled
			mode_sel[3]: The I/O output the data output by the I/O data collection logic.
			0: disabled
			1: enabled
			mode_sel[4]: AGC1 output when mode_sel[2:1] is set to 0.
			0: AGC1
			1: PWM
			mode_sel[5]: TS_ERR output when mode_sel[3:1] is set to 0.
			0: reserved
			1: int_lock
			mode_sel[7]: oen control signal when the I/O interface outputs TSs.
			0: enabled
			1: disabled

ioshare_ctrl_1 is IOSHARE control register 1.

		C	Offset Addres	ss		Register Name			Total Reset Value	
	0x21					ioshare_ctrl_1			0xFF	
Bit	7		6		5	4	3	2	1	0
Name	mode_ctrl0									
Reset	1		1		1	1	1	1	1	1
	Bits	Bits Access		Name	Name Description					
	[7:0]	0] RW		mode_c	trl0	TS_DAT interface oen control signal.				
						0: ts_dat_oe	n			
						1: 1				

ioshare_ctrl_2 is IOSHARE control register 2.

		Of	fset Address 0x22			Register ioshare		Total Reset Va 0xFF	alue	
Bit	7 6 5			5	4 3 2 1 0					
Name					-	mode_ctrl1				
Res et	1 1 1					1 1 1 1 1				
	Bits	A	ccess	Naı	me	Description	n			
	[7:0]	R	W	moo	de_ctrl1	0: reversed p 1: 0 mode_ctrl1[0: tio_ts_err 1: 1 mode_ctrl1[0: tio_ts_vld 1: 1 mode_ctrl1[0: tio_ts_syr 1: 1 mode_ctrl1[0: tio_ts_syr 1: 1 mode_ctrl1[0: tio_agc1_ 1: 1	0]: io_ts_clk_chase of tio_ts 1]: io_ts_err_coen 2]: io_ts_vld_loen 3]: io_ts_symmu_oen 4]: io_ts_agc_oen	oe control signs_clk_oen oen control signs oen control signs oen control signs v_oen control t_oen control	ignal. ignal. signal.	

ioshare_ctrl_3

ioshare_ctrl_3 is IOSHARE control register 3.

	C	Offset Address		Register	r Name		Total Reset Value		
		0x23		ioshare_ctrl_3			0x10		
Bit	7	6	5	4	3	2	1	0	
Name	mode_ctrl2								

Reset

0	0	0	1	0	0	0	0		
Bits	Access	Name	Description	n					
[7:0]	RW	mode_ctrl2				rface for contr nd pull-up and			
]: PAD REU					
						es not take ef	fect.		
			1: The value 1 indicates PAD pull-up when OE is 0.						
			mode_ctrl[1]: PAD REU interface control						
			0: The value 0 indicates that this bit does not take effect.						
			1: The value 1 indicates PAD pull-down when OE is 0.						
			mode_ctrl[2]: PAD ST interface control						
			0: normal mode						
			1: Schmitt tr						
]: PAD DS0 i					
]: PAD DS1 i					
]: PAD DS2 i					
					•	apabilities. The cal conditions			
			000: 3.35mA	Λ;					
			001: 6.7mA;						
			010: 10.19m	A;					
			011: 13.56m	A;					
			100: 17.04m	A;					
			101: 20.42m	A;					
			110: 23.88m	A;					
			111: 27.24m	A.					
			mode_ctrl[6]]: PAD SL int	terface contro	ol.			
			0: high conv	ersion rate					
			1: low conve	ersion rate					

ioshare_ctrl_4 is IOSHARE control register 4.

	C	Offset Address		Register	r Name		Total Reset Value		
		0x24		ioshare_ctrl_4			0x00		
Bit	7	6	5	4	3	2	1	0	
Name	mode_ctrl3								

0	0		0	0	0	0	0	0	
Bits	Access	Nan	ne	Description	n	,			
[7:0]	RW	mod	e_ctrl3		3:0] are TS_E s ts_dat contr			S.	
				0000: ts_dat	_tmp[0]				
				0001: ts_dat	_tmp[1]				
				0010: ts_dat	_tmp[2]				
				0011: ts_dat	_tmp[3]				
				0100: ts_dat	_tmp[4]				
				0101: ts_dat	_tmp[5]				
				0110: ts_dat_tmp[6]					
				0111: ts_dat_tmp[7]					
				1000: ts_val					
				1001: ts_syr	nc				
				default: ts_e	rr				
					7:4] are TS_E s ts_dat contr			S.	
				0000: ts_dat	_tmp[1]				
				0001: ts_dat	_tmp[0]				
				0010: ts_dat	_tmp[2]				
				0011: ts_dat	_tmp[3]				
				0100: ts_dat	_tmp[4]				
				0101: ts_dat	_tmp[5]				
				0110: ts_dat	_tmp[6]				
				0111: ts_dat	_tmp[7]				
				1000: ts_val					
				1001: ts_syr	nc				
				default: ts_e	rr				

ioshare_ctrl_5 is IOSHARE control register 5.

	C	Offset Address		Registe	r Name		Total Reset Value		
		0x25		ioshare_ctrl_5			0x00		
Bit	7	6	5	4	3	2	1	0	
Name	mode_ctrl4								

0	0		0	0	0	0	0	0	
Bits	Access	Name		Description	n				
[7:0]	RW	mode_ctr	14		3:0] are TS_E s ts_dat contr			S.	
				0000: ts_dat	_tmp[2]				
				0001: ts_dat_tmp[0]					
				0010: ts_dat_tmp[1]					
				0011: ts_dat_tmp[3]					
				0100: ts_dat	_tmp[4]				
				0101: ts_dat	_tmp[5]				
				0110: ts_dat_tmp[6]					
				0111: ts_dat_tmp[7]					
				1000: ts_val					
				1001: ts_syr	nc				
				default: ts_e	rr				
					7:4] are TS_E s ts_dat contr			S.	
				0000: ts_dat	_tmp[3]				
				0001: ts_dat	_tmp[0]				
				0010: ts_dat	_tmp[1]				
				0011: ts_dat	_tmp[2]				
				0100: ts_dat	_tmp[4]				
				0101: ts_dat	_tmp[5]				
				0110: ts_dat	_tmp[6]				
				0111: ts_dat	_tmp[7]				
				1000: ts_val					
				1001: ts_syr	nc				
				default: ts_e	rr				

ioshare_ctrl_6 is IOSHARE control register 6.

	O	offset Address		Register Name			Total Reset Value		
		0x26		ioshare_ctrl_6			0x00		
Bit	7	6	5	4	3	2 1 0			
Name	mode_ctrl5								

1	7	1
L		
V		

0	0		0	0	0	0	0	0
Bits	Access	Naı	me	Description	n	,		
[7:0]	RW	mod	de_ctrl5	mode_ctrl5[3:0] are TS_DAT[4] output select signals. ts_dat_tmp is ts_dat controlled by mode_sel[0]. 0000: ts_dat_tmp[4] 0001: ts_dat_tmp[0] 0010: ts_dat_tmp[1] 0011: ts_dat_tmp[2] 0100: ts_dat_tmp[3]			s.	
				0101: ts_dat_tmp[5] 0110: ts_dat_tmp[6] 0111: ts_dat_tmp[7] 1000: ts_val 1001: ts_sync				
					7:4] are TS_E s ts_dat contr _tmp[5] _tmp[0] _tmp[1] _tmp[2] _tmp[3] _tmp[4] _tmp[6] _tmp[7]			s.

ioshare_ctrl_7 is IOSHARE control register 7.

	C	Offset Address		Register Name			Total Reset Value		
		0x27		ioshare_ctrl_7			0x00		
Bit	7	6	5	4	3	2 1 0			
Name	mode_ctrl6								

0	0	0	0	0	0	0	0		
Bits	Access	Name	Description	Description					
Bits [7:0]	Access RW	Name mode_ctrl6	mode_ctrl6[ts_dat_tmp i 0000: ts_dat 0001: ts_dat 0010: ts_dat 0100: ts_dat 0110: ts_dat 0110: ts_dat 1000: ts_val 1001: ts_syr default: ts_e mode_ctrl6[ts_dat_tmp i 0000: ts_dat 0010: ts_dat 0010: ts_dat 0010: ts_dat 0110: ts_dat 0111: ts_dat 0111: ts_dat	3:0] are TS_I s ts_dat contr ctmp[6] ctmp[0] ctmp[1] ctmp[3] ctmp[4] ctmp[7] ctmp[7] ctmp[7] ctmp[7] ctmp[7] ctmp[1] ctmp[1] ctmp[1] ctmp[1] ctmp[1] ctmp[2] ctmp[3] ctmp[4] ctmp[6] ctmp[6] ctmp[6]	olled by mod OAT[7] outpu	e_sel[0]. t select signal			
			1000: ts_val 1001: ts_syr default: ts_e	nc					

ioshare_ctrl_8

ioshare_ctrl_8 is IOSHARE control register 8.

	C	offset Address		Register Name			Total Reset Value		
		0x28		ioshare_ctrl_8			0x00		
Bit	7	6	5	4	3	2 1 0			
Name	mode_ctrl7								

0	0	0	0	0	0	0	0
Bits	Access	Name	Description	n			
[7:0]	RW	mode_ctrl7	mode_ctrl7[is ts_dat con 0000: ts_val 0001: ts_dat 0010: ts_dat 0100: ts_dat 0110: ts_dat 0110: ts_dat 1000: ts_dat 1001: ts_dat to ts_dat	3:0] are TS_V trolled by modern trolled trolled by modern trolled trol	ode_sel[0].	select signals. t	

ioshare_ctrl_9

ioshare_ctrl_9 is IOSHARE control register 9.

	C	offset Address		Register Name			Total Reset Value		
		0x29		ioshare_ctrl_9			0x00		
Bit	7	6	5	4	3	2 1 0			
Name	mode_ctr18								

0	0		0	0	0	0	0	0
Bits	Access	Na	me	Description				
[7:0]	RW	moo	de_ctrl8	is ts_dat cor 0000: ts_err 0001: ts_dat 0010: ts_dat 0011: ts_dat 0100: ts_dat 0110: ts_dat 0111: ts_dat 1000: ts_dat 1001: ts_syr default: ts_v	z_tmp[0] z_tmp[1] z_tmp[2] z_tmp[3] z_tmp[4] z_tmp[5] z_tmp[6] z_tmp[7] nc	ode_sel[0].	elect signals. t	s_dat_tmp

Contents

3 Hardware	3-1
3.1 Package and Pins	3-1
3.1.1 Package and Pinout	3-1
3.1.2 Pin Description.	3-3
3.2 Electrical Specifications	3-9
3.2.1 Power Consumption Specifications	3-9
3.2.2 Rated Working Conditions	3-9
3.2.3 Recommended Working Conditions	3-10
3.2.4 DC Electrical Specifications	3-10
3.2.5 Power-On Sequence	3-11
3.3 Design Recommendations for Schematic Diagrams	3-11
3.3.1 Power Supply	3-11
3.3.2 Clock Circuit	3-12
3.3.3 Reset Circuit	3-12
3.3.4 Tuner Interfaces	3-13
3.3.5 Decoder Interfaces	3-14
3.4 PCB Design Recommendations	3-18
3.4.1 Stack and Layout	3-18
3.4.2 PCB Design Recommendations for the Small System	3-20
3.4.3 PCB Design Recommendations for Digital and Analog Interfaces	3-21
3.5 Thermal Design Recommendations	3-23
3.5.1 Rated Operating Environment	3-23
3.5.2 Recommended Operating Environment	3-24
3.5.3 Junction Temperature Requirements	3-24
3.5.4 Package Thermal Resistance	3-24
3.5.5 Recommended Thermally Conductive Materials	3-25
3.5.6 Schematic Diagram Design.	3-25
3.6 Soldering Process Recommendations	3-26
3.6.1 Overview	3-26
3.6.2 Process Preparations	3-27
3.7 Moisture-Sensitive Specifications	3-28
3.7.1 Overview	3-28

Data Sheet	Contents
3.7.2 HiSilicon Moisture-proof Packaging	3-28
3.7.3 Storage and Usage	3-29
3.7.4 Rebaking	3-30
3.8 Interface Timings	3-31
3.8.1 TS Interface Timing	3-31
3.8.2 I ² C Interface Timing.	3-32

Figures

Figure 3-1 Package views.	3-1
Figure 3-2 Package dimensions	3-2
Figure 3-3 Pin map of the Hi3130 V200 QFN	3-3
Figure 3-4 Recommended connection mode of the crystal oscillator.	3-12
Figure 3-5 Recommended connection mode of the reset circuit	3-12
Figure 3-6 Recommended connection mode of the AGC circuit	3-13
Figure 3-7 Recommended connection mode of the I ² C circuit.	3-14
Figure 3-8 Common connection mode of the IF circuit	3-14
Figure 3-9 Topology in which Hi3130 V200 connects to a decoder over the TS serial interface	3-15
Figure 3-10 Topology in which Hi3130 V200 connects to a decoder over the TS parallel interface	3-15
Figure 3-11 Interconnection topology for TS_D[0:7] and a decoder chip when more than two PCB ladesigned	•
Figure 3-12 Interconnection topology for TS_CLK/TS_SYNC/TS_VLD and a decoder chip when m two PCB layers are designed	
Figure 3-13 Interconnection topology for TS_D[0:7] and a decoder chip when two PCB layers are de-	esigned3-1
Figure 3-14 Interconnection topology for TS_CLK/TS_SYNC/TS_VLD and a decoder chip when two layers are designed	
Figure 3-15 Board layout	3-19
Figure 3-16 PCB fanout design	3-19
Figure 3-17 Soldering temperatures	3-27
Figure 3-18 Vacuum packaging materials	3-29
Figure 3-19 TS interface timing	3-31
Figure 3-20 I ² C interface timing	3-32

Tables

Table 3-1 Pin quantity by pin type	3-2
Table 3-2 I/O pin types	3-3
Table 3-3 Pin arrangement	3-4
Table 3-4 Clock pins	3-5
Table 3-5 Multiplexed pin	3-6
Table 3-6 ADC pins	3-6
Table 3-7 PLL pins	3-6
Table 3-8 I ² C bus pins.	3-7
Table 3-9 AGC pins	3-7
Table 3-10 TS pins.	3-8
Table 3-11 Test pin.	3-8
Table 3-12 Digital power pins	3-8
Table 3-13 Power consumption specifications	3-9
Table 3-14 Rated working conditions	3-9
Table 3-15 Recommended working conditions	3-10
Table 3-16 DC electrical specifications	3-10
Table 3-17 Recommended match design for signals of the analog interface	3-22
Table 3-18 Rated operating environment parameters	3-24
Table 3-19 Recommended operating environment parameters.	3-24
Table 3-20 Package thermal resistance	3-24
Table 3-21 Recommended thermally conductive materials	3-25
Table 3-22 Reflow soldering specifications.	3-27
Table 3-23 Floor life	3-30
Table 3-24 Rebaking reference	3-30
Table 3-25 TS interface timing parameters	3-32
Table 3-26 I ² C interface timing parameters	3-32

3 Hardware

3.1 Package and Pins

3.1.1 Package and Pinout

3.1.1.1 Package

Hi3130 V200 uses the quad flat non-leaded (QFN) package. It has 40 pins, its body size is 5 mm x 5 mm (0.020 in. x 0.020 in.), and its pin pitch is 0.4 mm (0.016 in.). Figure 3-1 shows the package views, and Figure 3-2 shows the package dimensions.

Figure 3-1 Package views

Figure 3-2 Package dimensions

C	Dimension in mm			Dime	ension in	inch
Symbol	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.80	0.85	0.90	0.031	0.033	0.035
A1	0.00	0.02	0.05	0.000	0.001	0.002
A3		0.20 REF			0.008 RE	F
b	0.15	0.20	0.25	0.006	0.008	0.010
D/E	4.90	5.00	5.10	0.193	0.197	0.201
е	0.40 BSC				0.016 BS	С
L	0.30	0.40	0.50	0.012	0.016	0.020
K	0.20			0.008		
R	0.075			0.003		
aaa		0.10			0.004	
bbb	0.07				0.003	
ccc	0.10				0.004	
ddd	0.05				0.002	
eee	0.08				0.003	
fff		0.10			0.004	

Exposed Pad Size							
L/F	Dimen	sion ir	inch				
L/F	MIN	NOM	MAX	MIN	NOM	MAX	
D2/E2	3.55	3.70	3.85	0.140	0.146	0.152	

3.1.1.2 Pinout

Pin Quantity

The Hi3130 V200 QFN has 40 pins. Table 3-1 lists the number of each type of pins on Hi3130 V200.

Table 3-1 Pin quantity by pin type

Pin Type	Quantity
I/O (signal)	27
Digital power	6
Digital ground (GND)	2
Others/Analog power	3
Others/Analog GND	2
Total	40

Pin Map

Figure 3-3 shows the pin map of the Hi3130 V200 QFN.

Figure 3-3 Pin map of the Hi3130 V200 QFN

3.1.2 Pin Description

Pin Types

Table 3-2 describes the I/O pin types.

Table 3-2 I/O pin types

I/O	Description			
Ι	Input signal			
I_{PD}	Input signal, internal pull-down			
I_{PU}	Input signal, internal pull-up			

Hi3130 V200 Demodulation and Decoding Processor Data Sheet

I/O	Description				
I _S	Input signal with a Schmitt trigger				
I_{SPD}	Input signal with a Schmitt trigger, internal pull-down				
I_{SPU}	Input signal with a Schmitt trigger, internal pull-up				
О	Output signal				
O_{OD}	Output open drain (OD)				
I/O	Bidirectional (input/output) signal				
I _{PD} /O	Bidirectional signal, input pull-down				
I _{PU} /O	Bidirectional signal, input pull-up				
I _{SPU} /O	Bidirectional signal with a Schmitt trigger, input pull-up				
I _{PD} /O _{OD}	Bidirectional signal, input pull-down and output OD				
I _{PU} /O _{OD}	Bidirectional signal, input pull-up and output OD				
I _S /O	Bidirectional signal, input with a Schmitt trigger				
I _S /O _{OD}	Bidirectional signal, input with a Schmitt trigger and output OD				
CIN	Crystal oscillator input				
COUT	Crystal oscillator output				
P	Power supply				
G	GND				

Pin Arrangement

Table 3-3 lists the pins of Hi3130 V200 in order.

 Table 3-3 Pin arrangement

Position	Pin Name	Position	Pin Name
1	DVDD33	21	TS_ERR
2	PSCL	22	TS_SYNC
3	PSDA	23	DVDD12
4	DVDD12	24	DVDD33
5	AGC1	25	TS_CLK
6	GND	26	TS_VLD
7	AGC2	27	TS_D7
8	GND	28	TS_D6

Position	Pin Name	Position	Pin Name
9	SADDR1	29	TS_D5
10	SADDR0	30	TS_D4
11	AVSS	31	TS_D3
12	VIN	32	TS_D2
13	VIP	33	DVDD33
14	AVDD	34	TS_D1
15	AVDD12_PLL	35	DVDD12
16	AVSS_PLL	36	TS_D0
17	AVDD33_PLL	37	RST_N
18	TESTMODE	38	CLK_OUT
19	SDA	39	XIN
20	SCL	40	XOUT

Clock Pins

Table 3-4 describes clock pins.

Table 3-4 Clock pins

Position	Pin Name	Type	Drive Current (mA)	Voltage (V)	Description
39	XIN	CIN	None	None	Crystal oscillator input (from crystal) or external clock input. The frequency is 28.8 MHz.
40	XOUT	COUT	None	None	Crystal oscillator output (to crystal).
38	CLK_O UT	0	4	3.3	Auxiliary clock output. The frequency is the same as the crystal frequency. It can be disabled.

Multiplexed Pin

Table 3-5 describes the multiplexed pin.

Table 3-5 Multiplexed pin

Position	Pin Name	Type	Drive Current (mA)	Voltage (V)	Description
37	RST_N	I_{SPU}	None	3.3	Asynchronous reset, active low.

ADC Pins

Table 3-6 describes ADC pins.

Table 3-6 ADC pins

Position	Pin Name	Type	Drive Current (mA)	Voltage (V)	Description
13	VIP	I	None	None	Differential analog input signal, positive. The typical value is 0.5 Vpp in single-ended input mode (1 Vpp in differential input mode).
12	VIN	I	None	None	Differential analog input signal, negative.
14	AVDD	P	None	1.2	1.2 V ADC analog power.
11	AVSS	G	None	None	ADC analog power GND.

PLL Pins

Table 3-7 describes PLL pins.

Table 3-7 PLL pins

Position	Pin Name	Type	Drive Current (mA)	Voltage (V)	Description
15	AVDD1 2_PLL	P	None	1.2	1.2 V PLL analog power.
17	AVDD3 3_PLL	P	None	3.3	3.3 V PLL analog power.
16	AVSS_P LL	G	None	None	PLL analog power GND.

I²C Bus Pins

Table 3-8 describes I²C bus pins.

Table 3-8 I²C bus pins

Position	Pin Name	Type	Drive Current (mA)	Voltage (V)	Description
20	SCL	I_S	None	3.3	I ² C bus clock. The maximum frequency is
					400 kHz.
19	SDA	I _S /O _{OD}	None	3.3	I ² C bus data.
2	PSCL	O _{OD}	None	3.3/5	I ² C bus clock output.
					The maximum frequency is 400 kHz.
3	PSDA	I _S /O _{OD}	None	3.3/5	I ² C bus data output.
9/10	SADDR 1/0	I	None	3.3	I ² C bus address specified by SADDR[1:0].
					The address is {10100,SADDR[1:0]}.

AGC Pins

Table 3-9 describes automatic gain control (AGC) pins.

Table 3-9 AGC pins

Position	Pin Name	Type	Drive Current (mA)	Voltage (V)	Description
5	AGC1	O/ O _{OD}	8	3.3/5	Radio frequency (RF) AGC output. This function is invalid in the single AGC application.
7	AGC2	O/ O _{OD}	8	3.3/5	Intermediate frequency (IF) AGC output.

TS Pins

Table 3-10 describes TS pins.

Table 3-10 TS pins

Position	Pin Name	Type	Drive Current (mA)	Voltage (V)	Description
36/34/32– 27	TS_D0- TS_D7	О	8	3.3	Parallel or serial MPEG-TS output. (The TS_D0 pin is used in serial mode by default.)
25	TS_CLK	О	8	3.3	Parallel or serial MPEG-TS clock output. The maximum frequency is 86.6 MHz.
26	TS_VL D	О	8	3.3	MPEG-TS output flag.
22	TS_SYN C	О	8	3.3	MPEG-TS frame sync pulse.
21	TS_ERR	О	8	3.3	Reed-Solomon (RS) decoding error indicator.

Test Pin

Table 3-11 describes the test pin.

Table 3-11 Test pin

Position	Pin Name	Type	Drive Current (mA)	Voltage (V)	Description
18	TESTM ODE	I	None	None	Test pin. It connects to GND in normal mode.

Digital Power Pins

Table 3-12 describes digital power pins.

 Table 3-12 Digital power pins

Position	Pin Name	Type	Drive Current (mA)	Voltage (V)	Description
1/24/33	DVDD3	P	None	3.3	3.3 V digital I/O power.

Position	Pin Name	Туре	Drive Current (mA)	Voltage (V)	Description
4/23/35	DVDD1 2	P	None	1.2	1.2 V digital core power.
6/8	GND	G	None	None	Digital power GND.

3.2 Electrical Specifications

3.2.1 Power Consumption Specifications

Table 3-13 describes the power consumption specifications of Hi3130 V200.

Table 3-13 Power consumption specifications

Symbol	Description	Min	Тур	Max	Unit
DVDD33	Digital I/O power	TBD	TBD	TBD	mA
DVDD12	Digital core power	TBD	TBD	TBD	mA
AVDD	ADC analog power	TBD	TBD	TBD	mA
AVDD33_PLL	PLL analog power	TBD	TBD	TBD	mA
AVDD12_PLL	PLL analog power	TBD	TBD	TBD	mA

3.2.2 Rated Working Conditions

CALITION

Hi3130 V200 may be unstable or damaged when working beyond the rated working conditions listed in Table 3-14.

Table 3-14 Rated working conditions

Symbol	Description	Min	Max	Unit
DVDD33	Digital I/O power	-0.5	4.6	V
DVDD12	Digital core power	-0.5	1.8	V
AVDD	ADC analog power	-0.5	1.8	V

Symbol	Description	Min	Max	Unit
AVDD33_PLL	PLL analog power	-0.5	4.6	V
AVDD12_PLL	PLL analog power	-0.5	1.8	V

3.2.3 Recommended Working Conditions

Table 3-15 describes the recommended working conditions.

Table 3-15 Recommended working conditions

Symbol	Description	Min	Тур	Max	Unit
T_{OPT}	Operating environment temperature	0	None	70	°C
DVDD12	Digital core power	1.08	1.2	1.32	V
DVDD33	Digital I/O power	2.97	3.3	3.63	V
AVDD12_PLL	PLL analog power	1.08	1.2	1.32	V
AVDD33_PLL	PLL analog power	2.97	3.3	3.63	V
AVDD	ADC analog power	1.08	1.2	1.32	V

3.2.4 DC Electrical Specifications

Table 3-16 describes the direct current (DC) electrical specifications.

Table 3-16 DC electrical specifications

Symbol	Description	Min	Тур	Max	Unit	Remarks
DVDD3	Digital I/O voltage	2.97	3.3	3.63	V	None
$V_{ m IH}$	Input high voltage	2.0	None	DVDD33 + 0.3	V	5 V input voltage is not supported.
$V_{\rm IL}$	Input low voltage	-0.3	None	0.8	V	None
$I_{\rm L}$	Input leakage current	-1	None	+1	μА	None
I_{OZ}	Tristate output leakage current	-1	None	+1	μА	None
V_{OH}	Output high voltage	2.4	None	None	V	None
V _{OL}	Output low voltage	None	None	0.4	V	None

3.2.5 Power-On Sequence

The I/O power is turned on before the core power.

3.3 Design Recommendations for Schematic Diagrams

3.3.1 Power Supply

For details about system power supply design, see the schematic diagram of the Hi3130 V200 demo board

Hi3130 V200 has five types of power supplies: 3.3 V digital I/O power DVDD33, 1.2 V core power DVDD12, 3.3 V PLL analog power AVDD33, 1.2 V PLL analog power AVDD12, and 1.2 V ADC power AVDD.

The I/O power DVDD33 is digital power. It is supplied by the on-board 3.3 V digital power shared with the I/O power of the master chip, or supplied by any other power such as the 5 V power that is regulated to 3.3 V with a low dropout regulator (LDO) or by DC-DC conversion. Each DVDD33 pin connects to a 100 nF decoupling capacitor, which is placed close to the power supply pin.

The core power DVDD12 is digital power. It is supplied by the on-board 1.2 V power shared with the core power of the master chip (if the core power of the master chip is 1.2 V), or supplied by any other power such as the 5 V or 3.3 V power that is regulated to 1.2 V with an LDO or by DC-DC conversion. Each DVDD12 pin connects to a 100 nF decoupling capacitor, which is placed close to the power supply pin.

The PLL power AVDD33 is analog power. It is supplied by DVDD33 that connects to $10~\mu F$ and 100~nF filtering capacitors and then to GND after being isolated by using an electromagnetic interference (EMI) bead. The filtering capacitors are placed close to the power supply pin.

The PLL power AVDD12 is analog power. It is supplied by DVDD12 that connects to $10 \,\mu\text{F}$ and $100 \,\text{nF}$ filtering capacitors and then to GND after being isolated by using an EMI bead. The filtering capacitors are placed close to the power supply pin.

The ADC power AVDD is analog power. It is supplied by DVDD12 that connects to $10 \mu F$ and 100 nF filtering capacitors and then to GND after being isolated by using an EMI bead. The filtering capacitors are placed close to the power supply pin.

CAUTION

- Isolate the analog power from the digital power by using EMI beads to prevent interference to the analog power from digital noises.
- Do not generate the 1.2 V power by converting the 1.5 V power for the DDR3.

3.3.2 Clock Circuit

The system clock can be generated by combining the internal feedback circuit of Hi3130 V200 with an external 28.8 MHz crystal oscillator circuit. Figure 3-4 shows the recommended connection mode of the crystal oscillator.

Figure 3-4 Recommended connection mode of the crystal oscillator

The system clock can also be generated by using the external clock circuit and input over the XIN pin. The CLK_OUT pin can output the 28.8 MHz clock (3.3 V CMOS) for other components. This pin is floated when it is not in use.

3.3.3 Reset Circuit

The RST_N pin of Hi3130 V200 is a reset signal input pin. The valid reset signal must have low-level pulses. The RST_N pin can connect to a typical resistor—capacitor (RC) power-on reset circuit, or directly connect to a specific GPIO pin of the master chip to generate a reset signal. The latter mode is more flexible. Figure 3-5 shows the recommended connection mode of the reset circuit.

Figure 3-5 Recommended connection mode of the reset circuit

If the RC power-on reset is used, ensure that the reset signal is valid after the power is on, and the valid duration of low-level pulses is at least 2 us. This is especially important in low-power standby mode design, in which the reset signal uses the power for the standby mode.

3.3.4 Tuner Interfaces

AGC Circuit

The AGC circuit dynamically adjusts the amplifier gain for the receiver to maintain an approximately constant signal strength based on the average power consumption of the input signals. The PWM signals output by the AGC pins of Hi3130 V200 generate analog voltage to control the internal amplifier of the tuner by using filters, meeting the input power requirement. The AGC circuit uses two-order RC filters. You are advised to connect the first-order RC filter close to Hi3130 V200, and the second-order RC filter close to the tuner.

Early tuners require two AGC signals: RF_AGC and IF_AGC. The control voltage required by the RF amplifier is greater than 3.3 V, which is implemented by connecting the AGC OD output to an external pull-up resistor and then to the 5 V power or adjusting the pull-up or pull-down resistor. The amplifier features vary according to the tuners. Therefore, you must evaluate the amplifier features and adjust AGC parameters (including the maximum value, minimum value, and threshold) when replacing the tuner to meet requirements of the minimum level, maximum level, and anti adjacent-channel interference (ACI) feature.

Currently most tuners use the RF_AGC internal loop mode, and only the IF amplifier needs to be controlled externally. That is, only IF_AGC is output in CMOS output mode, and no external pull-up resistor is required. The AGC parameter values that are within specified ranges apply to various tuners. Figure 3-6 shows the recommended connection mode of the AGC circuit.

Figure 3-6 Recommended connection mode of the AGC circuit

M NOTE

The AGC1 pin and its circuit are required only when Hi3130 V200 connects to the tuner whose RF AGC needs to be controlled externally. Otherwise, this pin is floated.

I²C Circuit

Hi3130 V200 accesses and configures tuner registers over the I²C bus, which works at a maximum of 400 kHz. As required by the tuner, the I²C bus must connect to the 3.3 V or 5 V power through pull-up resistors and connect to resistors in series. The I²C bus must also connect to pF-level bypass filtering capacitors that are close to the tuner pins to filter out interference signals for the tuner. Figure 3-7 shows the recommended connection mode of the I²C circuit.

Figure 3-7 Recommended connection mode of the I²C circuit

IF Circuit

The IF interface is the traffic channel between Hi3130 V200 and the tuner. This interface uses differential signals to improve the anti-interference capability. The positive and negative differential signals are reversible. The differential traces will not be crossed in the printed circuit board (PCB) design. The IF circuit requirements vary according to the tuners. Figure 3-8 shows the common connection mode of the IF circuit. The IF traces connect to a capacitor and a resistor in series. The capacitor implements alternating current (AC) coupling of signals, and the resistor adjusts the signal range.

Figure 3-8 Common connection mode of the IF circuit

3.3.5 Decoder Interfaces

Introduction

Hi3130 V200 connects to the decoder over digital interfaces at the 3.3 V, LVCMOS level. The following digital interfaces are involved:

One TS serial/parallel interface. The working mode can be set to parallel or serial. The
working clock frequency is 60 MHz in serial mode or 7.5 MHz in parallel mode. The bit
width is 1 bit in serial mode or 8 bits in parallel mode. All the TS pins, except the clock
pin, can be flexibly configured to implement the functions of required TS signals,
facilitating PCB routing.

3 Hardware

One I²C interface. The decoder accesses the internal registers of Hi3130 V200 and tuner over the I²C interface. The maximum I²C working clock frequency is 400 kHz.

Connection Mode

Figure 3-9 shows the typical topology in which Hi3130 V200 connects to a decoder over the TS serial interface. Figure 3-10 shows the typical topology in which Hi3130 V200 connects to a decoder over the TS parallel interface.

Figure 3-9 Topology in which Hi3130 V200 connects to a decoder over the TS serial interface

Figure 3-10 Topology in which Hi3130 V200 connects to a decoder over the TS parallel interface

M NOTE

If the decoder does not have the TS ERR pin, the TS ERR pin of Hi3130 V200 is floated.

I²C Design Recommendations

The I^2C bus between Hi3130 V200 and a decoder connects to a 2 k Ω pull-up resistor and then to the 3.3 V power, depending on the I^2C bus rate. A 100 pF or less bypass filtering capacitor is connected on the I^2C bus close to the Hi3130 V200 I^2C pin.

NOTE

The I²C address of Hi3130 V200 is {10100, SADDR[1:0]}, the lower two bits of which are determined by pulling the SADDR1 or SADDR0 pin up or down. Therefore, a maximum of four Hi3130 V200s can be connected on a I²C bus.

In a solution in which Hi3130 V200 works with a Hi3XXXX decoder chip, the master chip can read and write to Hi3130 V200 registers over the I^2C interface by using the following commands:

- echo A B C D >/proc/msp/i2c (for HD chips)
- echo A B C D >/proc/i2c (for SD chips)

In the preceding commands:

- A is the I²C channel of the master chip, which depends on the hardware connection.
- *B* is the hexadecimal I²C address of Hi3130 V200 (the first seven bits and the last bit are stuffed with 0s). When the SADDR1 and SADDR0 pins both connect to GND, *B* is a0 (you cannot write **0x4a** in the command).
- C is the hexadecimal address of an Hi3130 V200 register to be read or written, for example, 4a (you cannot write **0x4a** in the command).
- *D* is the hexadecimal value to be written to an Hi3130 V200 register, for example, 7f (you cannot write **0x7f** in the command). If there are only read operations, *D* is not involved.

TS Matching Design Recommendations

The TS matching design is provided based on the number of PCB layers:

- If more than two PCB layers are designed, the trace characteristic impedance is 50 Ω .
 - A 33 Ω resistor is connected in series close to each pin of TS_D[0:7]. For details about the topology, see Figure 3-11.
 - A 33 Ω resistor is connected in series close to each of TS_CLK, TS_SYNC, and TS_VLD. For details about the topology, see Figure 3-12.
- If two PCB layers are designed, the trace characteristic impedance is 140 Ω .
 - A 75 Ω resistor is connected in series close to each pin of TS_D[0:7]. For details about the topology, see Figure 3-13.
 - A 75 Ω resistor is connected in series close to each of TS_CLK, TS_SYNC, and TS_VLD. For details about the topology, see Figure 3-14.

M NOTE

- The TS pins that are not in use are floated.
- The length 5000 mils shown in the topologies is the maximum trace length.

3 Hardware

Figure 3-11 Interconnection topology for TS_D[0:7] and a decoder chip when more than two PCB layers are designed

Figure 3-12 Interconnection topology for TS_CLK/TS_SYNC/TS_VLD and a decoder chip when more than two PCB layers are designed

Figure 3-13 Interconnection topology for TS_D[0:7] and a decoder chip when two PCB layers are designed

Figure 3-14 Interconnection topology for TS_CLK/TS_SYNC/TS_VLD and a decoder chip when two PCB layers are designed

3.4 PCB Design Recommendations

3.4.1 Stack and Layout

Stack

Hi3130 V200 uses the QFN package. It has 40 pins, and its pin pitch is 0.4 mm (0.016 in.).

You are advised to design a 4-layer PCB with the following stack:

• Top layer: signal traces

• Internal layer 1: GND plane

• Internal layer 2: power plane

• Bottom layer: signal traces

To reduce the cost, you can also design a 2-layer PCB with the following stack:

- Top layer: signal traces and part of power traces
- Bottom layer: GND plane and part of power traces

The PCB design precautions are as follows:

- Components and signal traces are routed at the top layer, and filtering capacitors with small capacitance are placed at the bottom layer.
- Power pins are connected by using wide traces.
- Ensure that the bottom layer is a complete GND plane.
- The recommended via diameter is 8 mils and the trace width is 5 mils.

The PCB material is FR-4, the PCB thickness is 1.6 mm (0.06 in.), and the copper foil thickness is 1 oz.

Board Layout

Figure 3-15 shows the board layout for the Hi3130 V200 reference design.

Figure 3-15 Board layout

Fanout Package

Figure 3-16 shows the PCB fanout design.

3.4.2 PCB Design Recommendations for the Small System

3.4.2.1 Power Circuits

Digital Power

The digital power supplies of Hi3130 V200 are the 3.3 V I/O power DVDD33 and 1.2 V core power DVDD12. Hi3130 V200 shares the 3.3 V and 1.2 V digital power with the decoder chip on the board. The exposed pad of Hi3130 V200 is used as the reference GND. The traces should be as wide as possible when the through-flow capacity is ensured. Ensure that digital power and analog power planes do not overlap and decoupling capacitors are placed close to Hi3130 V200.

Analog Power

The analog power supplies must be isolated from other power supplies by using EMI beads or generated by other power supplies using the LDO. The analog power supplies use the exposed pad of Hi3130 V200 as the reference GND. The design recommendations are as follows:

- Never route digital signal traces especially high-speed digital signal traces in the analog power area.
- Connect a decoupling capacitor to each power pin. Ensure that traces are as wide as possible and decoupling capacitors are placed close to Hi3130 V200.

GND

The signals of the tuner and QAM ADC module are analog signals. On a board that has mixed signals, analog circuits are susceptible to interference, which may affect indicators such as the signal to noise ratio (SNR). The following are the recommendations:

- Use a complete GND plane, and do not route traces across GND plane splits.
- Route power and signal traces in analog and digital zones respectively.

3.4.2.2 Clock and Reset Circuits

Clock Circuit

The clock circuit of Hi3130 V200 consists of the external crystal circuit and the power and GND circuits of the PLL units (AVDD12_PLL, AVDD33_PLL, and AVSS_PLL). Design the PCB according to the following guidelines:

- AVDD12_PLL is the 1.2 V PLL power. You are advised to isolate it from the board's 1.2 V digital power by using EMI beads. The level deviation of the 1.2 V power must be within ±5%.
- AVDD33_PLL is the 3.3 V PLL power. You are advised to isolate it from the 3.3 V digital power by using EMI beads. The level deviation of the 3.3 V power must be within ±5%.
- AVSS_PLL is the reference GND of the PLL circuit. The AVDD12_PLL, AVDD33_PLL, and the decoupling capacitors of AVDD33_PLL must be connected by referencing AVSS_PLL as the GND plane. AVSS_PLL must connect to the board's digital GND through a single point.
- Place the crystal close to Hi3130 V200 and at least 1000 mils away from the board edge. Never route traces under the crystal. The traces of the circuit must be at most 1/20 of the

wavelength corresponding to the crystal oscillator frequency in length, and surrounded by GND traces.

Reset Circuit

Pin 37 is a reset pin. The reset signal trace is a critical trace and is susceptible to interference. The following are design recommendations:

- If more than two PCB layers are designed, route the reset signal trace at an inner layer close to the GND plane. If two PCB layers are designed, ensure that the reset signal trace is surrounded by GND traces.
- Route the reset signal trace at least 1000 mils away from interfaces and power inputs.

3.4.3 PCB Design Recommendations for Digital and Analog Interfaces

3.4.3.1 Digital Interfaces

TS Signals

The following are TS signal requirements:

- The maximum signal trace length is 5000 mils.
- The length of all TS signal traces is determined based on the TS_CLK traces. The length deviation is ±100 mils.
- The serial matched resistors are connected close to Hi3130 V200.
- If two PCB layers are designed, the characteristic impedance of the TS signal trace should be 140 Ω . A 75 Ω matched resistor is recommended.
- If more than two PCB layers are designed, the characteristic impedance of the TS signal trace should be 50 Ω . A 33 Ω matched resistor is recommended.

I²C Bus

The following are recommendations for the I²C traces:

- The maximum serial clock (SCL) trace length is 5000 mils.
- The serial data (SDA) traces are routed based on SCL traces. The allowed length deviation is ±100 mils.

PCB Routing Recommendations

Route traces on a PCB according to the following guidelines:

CAUTION

The digital signal traces at all PCB layers must be routed in the digital part of the PCB.

Never cross the reference GND plane of TS signal traces when routing other signal traces, and ensure that GND traces are routed around signal traces. Place serial resistors close to Hi3130 V200. For details, see the PCB design document of the demo board.

- Route all the TS signal traces on the planes adjacent to the GND plane. Never route the signal traces across the power and GND plane splits. Ensure that signal traces have a complete reference GND plane.
- To ensure a good signal return path, punch vias around signal traces and changed layers and connect the punched vias to GND.
- Ensure that signal traces are as short as possible. Minimize the use of vias to ensure the impedance continuity of traces. If more than two PCB layers are designed, the characteristic impedance of the single-ended PCB signal trace is $50 \Omega \pm 10\%$. If two PCB layers are designed, the characteristic impedance of the single-ended PCB signal trace is $140 \Omega \pm 10\%$. The serial matched resistors are placed close to Hi3130 V200.
- If resistor networks are used, ensure that the TS_CLK trace and TS traces are not routed on the same resistor network.
- Ensure that the spacing between adjacent signal traces is 2–3 times of the trace width according to the 3W rule. The 3W rule indicates that the trace spacing is three times of the trace width.
- Route clock signal traces far away from the data and address buses.

3.4.3.2 Analog Interface Design

Route traces on a PCB according to the following guidelines:

CAUTION

The analog signal traces at all PCB layers must be routed in the analog part of the PCB.

The intermediate-frequency (ADC input) signals VIP/VIN are routed in differential mode. The trace impedance is not restricted. The trace length must be within 3 inches. It is recommended that the intermediate-frequency signals are surrounded with GND traces.

Table 3-17 describes the recommended match design for signals of the analog interface.

Table 3-17 Recommended match design for signals of the analog interface

Signal	Two-Layer PCB	Four-Layer PCB
VIP/VIN	AC coupled. A 33 Ω resistor and a 0.1 μ F capacitor are connected in series close to the tuner.	AC coupled. A 33 Ω resistor and a 0.1 μ F capacitor are connected in series close to the tuner.

Signal	Two-Layer PCB	Four-Layer PCB
PSDA/PSCL	A 33 Ω resistor is connected in series close to Hi3130 V200, and a 2 k Ω pull-up resistor is connected close to the tuner.	A 33 Ω resistor is connected in series close to Hi3130 V200, and a 2 k Ω pull-up resistor is connected close to the tuner.
AGC1/AGC2	The first-order RC filter is connected close to Hi3130 V200, and the second-order RC filter is connected close to the tuner.	The first-order RC filter is connected close to Hi3130 V200, and the second-order RC filter is connected close to the tuner.

3.4.3.3 Others

Integrity Simulation Design Recommendations for PCB Signals

By using board-level simulation tools, PCB designers can simulate and analyze signal integrity based on the input/output buffer information specification (IBIS) models of the Hi3130 V200 interfaces and interconnected components, transmission line models, and board topologies. Based on the simulation results, the PCB designers can adjust the typologies to meet the signal quality requirements in overshoot, undershoot, ringing, monotonicity, and others.

Note

If a clock signal trace connects to multiple loads, ensure good signal quality especially signal edge monotonicity regardless of the frequency.

3.5 Thermal Design Recommendations

3.5.1 Rated Operating Environment

Table 3-18 describes rated operating environment parameters.

The rated operating environment parameters are provided only for evaluation.

CAUTION

Hi3130 V200 may be damaged when working beyond the rated operating environment conditions listed in Table 3-18

Table 2 10 Dated	anaratina	anziranmant	noromotora
Table 3-18 Rated	operaning	CHVIIOIIIICIII	parameters

Description	Symbol	Min	Max	Unit
Ambient temperature	T_{A}	-20	70	°C
Junction temperature	T_{JMAX}	None	125	°C
Pin voltage	Vin	-0.5	4.6	V

3.5.2 Recommended Operating Environment

Table 3-19 describes recommended operating environment parameters. The derating standards during thermal design are subject to the data provided in Table 3-19.

Table 3-19 Recommended operating environment parameters

Description	Symbol	Min	Тур	Max	Unit
Ambient temperature	T_{A}	0	25	55	°C
Long-term junction temperature	$T_{ m JMAX}$	None	None	125	°C

3.5.3 Junction Temperature Requirements

3.5.4 Package Thermal Resistance

Table 3-20 describes the package thermal resistance of Hi3130 V200.

CAUTION

The thermal resistance is provided in compliance with the JEDEC JESD51-2 standard. The actual system design and environment may be different.

Table 3-20 Package thermal resistance

Description	Symbol	Value	Unit
Junction-to-ambient thermal resistance	θ_{JA}	40	°C/W
Junction-to-case thermal resistance	$\theta_{ m JC}$	12	°C/W
Junction-to-top center of case thermal resistance	$\Psi_{ m JT}$	None	°C/W
Junction-to-board thermal resistance	$\theta_{ m JB}$	15	°C/W

3.5.5 Recommended Thermally Conductive Materials

Table 3-21 describes recommended thermally conductive materials.

Table 3-21 Recommended thermally conductive materials

Mode of Fixing Heat Sinks	Model	Thermal Conductivity Coefficient (w/m x k)	Ambient Temperature (°C)	Colloid Type	Insulation (V/mil)	Flame Retar dance	Bearing Capacity (g)
Mechanical fixing	GF2000	2	-60 to +200	Silicone rubber	500	UL9V 0	None
Non- mechanical fixing	Locotite 315	0.808	None	Acrylic resin	6000	UL9V 2	None

3.5.6 Schematic Diagram Design

Power Supply

Ensure that the efficiency of the board power tree is the highest as long as the power supply is stable. To this end, design the board power supply optimally and use fewer LDO components with large voltage difference to reduce the heat produced during power conversion.

For example, the 1.2 V power of Hi3130 V200 can be supplied by the power on the board. If there is no 1.2 V power on the board, connect the 3.3 V power to diodes in series and regulate the power to 1.2 V by using an LDO. This reduces power consumption and ensures high efficiency.

Low-Power Configurations for Idle Modules

The loopback clock CLK_OUT may not be used in Hi3130 V200. In this case, you can set this module to the power-down mode or default mode.

CAUTION

Enable clock gating for the master chip to reduce power consumption.

PCB Design

Component Layout

Lay out components based on the product architecture and heat dissipation design:

• Evenly place the components that consume a large amount of power and produce much heat to avoid overheating of some parts, which may affect the reliability and efficiency

of components. Place Hi3130 V200 and the decoder chip away from power supplies. Increase the size of copper planes under and around the components, ensuring that the heat produced by the PCB is effectively dissipated.

• Design the product architecture properly to ensure that the heat produced internally can be efficiently dissipated.

PCB Heat Dissipation

The recommendations are as follows:

- For the connect style of the vias under Hi3130 V200, select the full connect style but not the thermal connect style, In addition, use an opening copper plane at the PCB bottom layer on which the exposed pad of Hi3130 V200 is soldered to improve the dissipation efficiency of the board.
- The 1.2 V power traces, 3.3 V power traces, and GND traces should be as wide as possible when the over-current capability is ensured.
- Never place components that produce much heat around Hi3130 V200.
- Increase the size of copper planes under and around the components that produce much heat to ensure that PCB heat can be effectively dissipated. Place inductors and power chips in a distributed manner and increase the size of copper planes around

them. Soldering Process Recommendations

3.6.1 Overview

The appropriate reflow soldering temperatures must be determined based on the reflow profiles supported by all the components, ICs, and PCB, and the reflow profile recommended by the solder paste vendor. This chapter describes only the reflow soldering temperature range supported by Hi3130 V200.

Solder Ball Material

Pure stannum is used on the QFN package of Hi3130 V200.

Component Package and Storage

The following describes the component package and storage:

- Package of surface-mount components: tray or tape&reel
- Allowed storage duration (at most 60% RH): 12 months at 40°C (104°F)
- Packaging material: electrostatic discharge (ESD) material

Soldering Process

Reflow soldering can be used.

Figure 3-17 shows the reflow profiles supported by Hi3130 V200 but not the reflow profiles recommended during soldering. The actual soldering temperatures must be determined based on the reflow profiles of the solder paste, PCB, and all ICs and components. For details, see the JEDEC020D standard.

Figure 3-17 Soldering temperatures

Table 3-22 describes the reflow soldering specifications.

Table 3-22 Reflow soldering specifications

Zone	Duration	Heating Up Slope	Peak Temperature	Cooling Down Slope
Preheat zone (40–150°C or 104–302°F)	60-150s	≤ 2.0°C/s (≤ 35.6°F/s)	None	None
Soak zone (150– 200°C or 302– 392°F)	60-120s	< 1.0°C/s (< 33.8°F/s)	None	None
Reflow zone (> 217°C or 423°F)	30-90s	None	230-260°C (446-500°F)	None
Cooling zone (Tmax to 180°C or 356°F)	None	None	None	1.0°C/s ≤ Slope ≤ 4.0°C/s (33.8°F/s ≤ Slope ≤ 39.2°F/s)

3.6.2 Process Preparations

Confirm that all products are dry and materials have not expired.

Test the first sample such as checking the solder paste thickness before mass production. Start mass production only when the first sample passes all tests.

3.7 Moisture-Sensitive Specifications

3.7.1 Overview

Objective

Defines the usage rules for moisture-sensitive integrated circuits (ICs), ensuring that ICs are properly used.

Application Scope

All HiSilicon products for external customers

Terminology

- Floor life: time during which a HiSilicon chip can be stored in the workshop at 30°C (86°F) and 60% RH, that is, the time ranging from MBB unpacking to reflow soldering
- Desiccant: a material for absorbing moisture to keep things dry
- Humidity indicator card (HIC): a card that indicates the humidity status
- Moisture sensitivity level (MSL): a level for measuring the moisture degree
- Moisture barrier bag (MBB): a vacuum bag for protecting products against moisture
- Solder reflow: reflow soldering
- Shelf life: storage period

3.7.2 HiSilicon Moisture-proof Packaging

Basic Information

The vacuum packaging materials consist of the following:

- An HIC
- An MBB
- Desiccant

Incoming Inspection

When the vacuum bag is unpacked before SMT in the factories of customers or their partners:

If the largest indicator dot of the HIC is not blue or khaki, rebake the chip by referring to Table 3-24

• If the 10% RH dot of the HIC is blue or khaki, the chip is dry. In this case, replace the desiccant and pack the chip into a vacuum bag.

If the 10% RH dot is not blue or khaki and the 5% RH dot is red or light green, the chip is moist. In this case, rebake the chip by referring to Table 3-24

3.7.3 Storage and Usage

Storage Environment

You are advised to store products at 30°C (86°F) or lower and at most 60% RH.

Shelf Life

At 30°C (86°F) or lower and at most 60% RH, the shelf life is greater than or equal to 12 months for vacuum packaging.

Floor Life

Table 3-23 describes the floor life at 30°C (86°F) or lower and at most 60% RH.

Table 3-23 Floor life

MSL	Floor Life (Out of Bag) at Factory Ambient ≤ 30°C (86°F)/60% RH or As Stated
1	Unlimited at 30°C (86°F) or lower and at most 85% RH
2	1 year
2a	4 weeks
3	168 hours
4	72 hours
5	48 hours
5a	24 hours
6	Mandatory bake before use. After bake, the product must be reflowed within the time limit specified on the label.

Usage

If a chip has been exposed to air for 2 hours at 30°C (86°F) or lower and at most 60% RH, rebake it and pack it into a vacuum bag.

If a chip has been exposed to air for less than 2 hours at 30°C (86°F) or lower and at most 60% RH, replace the desiccant and pack the chip into a vacuum bag.

For details about other storage modes and usage rules, see the JEDEC J-STD-033A standard.

3.7.4 Rebaking

Application Products

All moisture-sensitive ICs of HiSilicon

Application Scope

All ICs that need to be rebaked

Rebaking Reference

Table 3-24 Rebaking reference

Body Thickness	Level	Baking at 125°C (257°F)	Baking at 90°C (194°F) ≤ 5% RH	Baking at 40°C (104°F) ≤ 5% RH	
≤ 1.4 mm (0.06 in.)	2a	3 hours	11 hours	5 days	
	3	7 hours	23 hours	9 days	
	4	7 hours	23 hours	9 days	

Body Thickness	Level	Baking at 125°C (257°F)	Baking at 90°C (194°F) ≤ 5% RH	Baking at 40°C (104°F) ≤ 5% RH	
5		7 hours	24 hours	10 days	
	5a	10 hours	24 hours	10 days	
≤ 2.0 mm	2a	16 hours	2 days	22 days	
(0.08 in.)	3	17 hours	2 days	23 days	
	4	20 hours	3 days	28 days	
	5	25 hours	4 days	35 days	
	5a	40 hours	6 days	56 days	
≤4.5 mm (0.18 in.)	2a	48 hours	7 days	67 days	
	3	48 hours	8 days	67 days	
	4	48 hours	10 days	67 days	
	5	48 hours	10 days	67 days	
	5a	48 hours	10 days	67 days	

□ NOTE

- Table 3-24 lists the minimum rebaking time for moist chips.
- Low-temperature rebaking is recommended.
- For details, see the JEDEC standard.

3.8 Interface Timings

3.8.1 TS Interface Timing

Figure 3-19 shows the TS interface timing.

Figure 3-19 TS interface timing

Table 3-25 describes the TS interface timing parameters.

Table 3-25 TS interface timing parameters

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
TS_CLK clock cycle	T_{clk}	76.8	None	None	ns	Parallel
		11.52	None	None	ns	Serial
Input signal setup time	T_{su}	67	None	None	ns	Parallel
		5.52	None	None	ns	Serial
Input signal hold time	T_{hd}	2.5	None	None	ns	Parallel
		1.1	None	None	ns	Serial

3.8.2 I²C Interface Timing

Figure 3-20 shows the I²C interface timing.

Figure 3-20 I²C interface timing

Table 3-26 describes the I²C interface timing parameters.

Table 3-26 I²C interface timing parameters

Parameter	Symbol	Standard Mode		Fast Mode		Unit
		Min	Max	Min	Max	
SCL frequency	f_{SCL}	0	100	0	400	kHz
Start hold time	t _{HD;STA}	4.0	None	0.6	None	μs
SCL low-level cycle	t_{LOW}	4.7	None	1.3	None	μs
SCL high-level cycle	t _{HIGH}	4.0	None	0.6	None	μs
Start setup time	t _{SU;STA}	4.7	None	0.6	None	μs
Data hold time	t _{HD;DAT}	0	3.45	0	0.9	μs

eet 3 Hardware

Parameter	Symbol	Standard Mode		Fast Mode		Unit
		Min	Max	Min	Max	
Data setup time	$t_{\mathrm{SU;DAT}}$	250	None	100	None	ns
SDA and SCL rising time	t _r	None	1000	20 + 0.1C _b	300	ns
SDA and SCL falling time	t_{f}	None	300	20 + 0.1C _b	300	ns
End setup time	$t_{\mathrm{SU;STO}}$	4.0	None	0.6	None	μs
Bus release time from start to end	$t_{ m BUF}$	4.7	None	1.3	None	μs
Bus load	C _b	None	400	None	400	pF
Low-level noise tolerance	V _{nL}	$0.1V_{DD}$	None	$0.1V_{DD}$	None	V
High-level noise tolerance	V_{nH}	$0.2V_{\mathrm{DD}}$	None	$0.2V_{DD}$	None	V

Contents

i

A Acronyms and Abbreviations......2

A

Acronyms and Abbreviations

 \mathbf{A}

AAC advanced audio coding

AAF anti-aliasing filter

ABR average bit rate

AC alternating current

ACA accessory charge adapter

ACC automatic contrast control

ACD auto command done

ACM adaptive coding and modulation

ADP attach detection protocol

ADC analog-to-digital converter

AE automatic exposure

AEC audio echo cancellation

AES advanced encryption standard

AF adaption field

AGC automatic gain control

AHB advanced high-performance bus

AI audio input

AIU audio input unit

ALU arithmetic logic unit

AMBA advanced microcontroller bus architecture

AMP asymmetric multi-processing

ANI automatic number identification

ANR automatic noise reduction

AO audio output

AOU audio output unit

AP access point

APB advanced peripheral bus

API application programming interface

APLL analog phase-locked loop

APSK amplitude phase shift keying

AQTD alternate queue transfer descriptor

ARM advanced RISC machines

ARGB alpha, red, green, blue

ASF advanced specification format

ATA advanced technology attachment

ATAH ATA host controller

ATAPI advanced technology attachment packet interface

ATR answer to reset

ATTR attribute

AUD audio

AV audio & video

AVI auxiliary video information

AVS audio video coding standard

AWB automatic white balance

AXI advanced eXtensible interface

В

BB baseband

BCH Bose-Chaudhuri-Hocquenghem

BCM byte counter modified

BEP boot entrance point

BER bit error rate

BGA ball grid array

BIST built-in self test

BIU bus interface unit

BMC bi-phase mark coding

BND bayonet nut connector

BOM bill of material
BPD bit plan decoder

BPSK binary phase shift keying

BRG bridge

BSP board support package

BVACT bottom vertical active area

BVBB bottom vertical back blank

BVFB bottom vertical front blank

 \mathbf{C}

CA conditional access

CABAC context-based adaptive binary arithmetic coding

CAR committed access rate
CAS column address signal.

CAVLC context adaptive variable length coding

CBC cipher block chaining

CBR constant bit rate

CCB change control board

CCC command completion coalescing

CCD charge-coupled device

CCM constant coding and modulation

CD command done or collision detection

CDR clock data recovery

CEC consumer electronics control

CFB compact flash
cipher feedback

CFR crest factor reduction

CGI common gate interface

CGMS copy generation management system

CI common interface

CIC cascaded integrator comb

CIU card interface unit

CL CAS latency

CLK clock

CML current mode logic

CMOS complementary metal-oxide semiconductor

CN carrier noise

CNG comfort noise generator

CODEC coder/decoder
CP charge pump
CPL completion

CPLD complex programmable logic device

CPU central processing unit

CR carrier recovery

CRAMFS compressed ROM file system

CRC cyclic redundancy check
CRG clock and reset generator
CRS completion retry request

CS chip select

CSA common scramble algorithm

CSI camera serial interface

CSIX common switch interface

CSMD carrier sense multiple access

CTI chroma transient improvement

CTR counter

CTS clear to send

CVBS composite video broadcast signal

CW cipher word

D

DAC digital-to-analog converter

DAG digital automatic gain

DAGC digital automatic gain control

DAV DMA of audio and video

DC direct current

DCD data connect detection

DCRC data CRC error

DDC display data channel

DDR double data-rate

DDRC double data rate controller

DHCP dynamic host configuration protocol

DEM dynamic-element matching

DES data encryption standard

DFT design for test

DIP dual in-line package

DIS digital image stabilization

DiSEqC digital satellite equipment control

DLL delay locked loop

DM data mask

DMA direct memory access

DMAC direct memory access controller

DNR digital noise reduction

DP data path

DPLL digital phase-locked loop

DQ data input/output

DOS data strobe

DR design requirement

DRAM dynamic random access memory

DRC dynamic range compression

DRM digital rights management

DRTO data read timeout

DSI display serial interface

DSU dedicated scaling unit

DTMF dual tone multi frequency

DTO data transfer over

DVB digital video broadcasting

DVB-S digital video broadcasting-satellite

DVD digital versatile disc

DVI digital visual interfaceDVR digital video recorder

DWA data weighted averaging

 \mathbf{E}

E2PROM electrically erasable programmable read-only memory

EAV end of active video
EB eviction buffer

EBE end-bit error

EBI external bus interface

ECB electronic codebook

ECC error correcting code

ECS embedded CPU subsystem

ED exposed die

EDID extended display identification data

EEE energy efficient Ethernet

EHCI enhanced host controller interface

EMI electromagnetic interference

EMM entitlement management message

eMMC embedded multimedia card

EOP end of PES

EoS Ethernet over SONET/SDH

EP end point

EPG electronic program guide

EQU equalizer

ERR error

ES element stream

eSATA external serial advanced technology attachment

ESD electrostatic discharge

ESR equivalent series resistance

ETH Ethernet

ETU elementary time unit

F

FAS frame aligning signal FBE feedback equalizer

FC switch fabric

FCBGA flip-chip ball grid array

FCCSP flip-chip chip scale package

FEC forward error correction

FER frame error rate
FFC flexible flat cable

FFE feed forward equalizer

FIFO first in first out

FIQ fast interrupt request

FIR finite impulse response

FIS frame information structure

FOD field order detect

FPC flexible printed connector

FPU floating-point unit

FRUN FIFO underrun/overrun error

FSK frequency shift keying
FTP File Transfer Protocol

 \mathbf{G}

GFP-F frame-mapped generic framing procedure

GFP-T transparent generic framing procedure

GHB global history buffer

GIC generic interrupt controller

GOP group of picture
GS generic stream

GMAC gigabit media access control

GND ground

GPIO general purpose input/output
GPL GNU general public license

GPU graphics processing unit

H

HBA host bus adapter

HBP horizontal back porch

HD high definition

HDCP high-bandwidth digital content protection

HDI high density interconnector

HDMI high definition multimedia interface

HFP horizontal front porch

HIAO high-performance audio output interface

HPW horizontal pulse width

HSTL high speed transceiver logicHTML hypertext markup language

HACT horizontal active areaHFB horizontal front blank

HL high level

HLDC horizontal lens distortion correction

HLE hardware locked error

HNP host negotiation protocol

HTO data starvation-by-host timeout

HP high profile

HSIC high-speed inter-chip

HSS high-speed serializer/deserializer

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

HVBB horizontal back blank

I

I in-phase

IBIS input/output buffer information specification

IC integrated circuit

I²C inter-integrated circuit

I²S inter-IC sound

I/O input/output

IOC I/O configuration
IP Internet Protocol

ISI input stream identifier

ISP image signal processor

IDE integrated device electronic

LDPC low density parity check code

IDR intermediate data rate

IF intermediate frequency

IGMP Internet Group Management Protocol

LMS linear mean square

IPF IP filter

IPv4 Internet Protocol Version 4

IR infrared

IRQ interrupt request

ISI input stream identifier

ISP image signal processor

ISR interrupt service routine

ITCM instruction tightly coupled memory

ITLA integrated tunable laser assembly

ITU International Telecommunication Union

IV initialization vector

J

JFFS2 journaling flash file system version 2

JPEG Joint Photographic Experts Group

JPGE JPEG encoder

JTAG Joint Test Action Group

K

KL key ladder

L

LCD liquid crystal display

LDO low dropout regulator

LDPC low-density parity check code

LED light emitting diode

LFB line fill buffer

LFSR linear feedback shifting register

LMR load mode register

LMS least mean square

LNB low noise block

LOS loss of signal

LPI low-power idle

LRB line read buffer

LSB least significant bit
LSP label switched path
LSN logic sector number

LTI luma transient improvement

LVDS low-voltage differential signaling

LVPECL low-voltage positive emitter coupled logic

LVTTL low-voltage transistor-transistor logic

LVPECL low-voltage positive emitter-coupled logic

 \mathbf{M}

MAC media access control

MBAFF macroblock adaptive frame field

MCE media control engine

MCU microprogrammed control unit

MD motion detection

MDDRC multiport DDRC

MDIO management data input/output

MDU motion detect unit
MF matched filter

MQFN mapped quad flat non-leaded

MHL mobile high-definition link

MII media independent interface

MIPI mobile industry processor interface

MIPS microprocessor without interlocked pipeline stages

MLC multi-level cell

MLF malformed

MMB media memory block

MMC multimedia card

MMU memory management unit

MMZ media memory zone

MP main profile

MPI MPP programming interface

MPE media processing engine

MPLL multiplying phase-locked loop

MPP media processing platform

MRL manually-operated retention latch

MSB most significant bit

MSE mean square error

MSG message

MV motion vector

N

NAL network abstraction layer

NANDC NAND flash controller

NC not connect

NCQ native command queuing

NLP non-linear processor

NR noise reduction

NRZ non-return-to-zero

NTSC National Television Systems Committee

NVR network video recorder

 \mathbf{o}

OCT on-chip termination

OD open drain

ODT on-die termination

OEN output enable
OFB output feedback

OHCI open host controller interface

OOB out of band

OP operational amplifier
OR original requirement

OSC oscillator

OSD on screen display

OTG on-the-go

OTP one time programmable

OTU optical transponder unit

P

PAD packet assembler/disassembler

PAFF picture adaptive frame field

PAL phase alternating line
PCB printed circuit board

PCI peripheral component interconnect

PCIe peripheral component interconnect express

PCIV PCI view

PCR program clock reference
PCM pulse code modulation
PDM pulse density modulation

PECL positive emitter coupled logic

PER packet error rate

PES packetized elementary stream

PG power/ground

PHY physical
PID packet ID

PIM-DM protocol independent multicast dense mode

PIM-SM protocol independent multicast sparse mode

PIO programmable input/output

SSA secure software authentication

PLL phase-locked loop

PLS physical layer signaling

PM port multiplexer

PMoC power management of chip

PMP personal media player

POR power-on reset

PPP Point-to-Point Protocol

PPS picture parameter set

PRBS pseudo random binary sequence

PRDT physical region descriptor table

PSI program specific information

PSK phase shift keying

PSRAM pseudo static random access memory

RTCP Real-time Transport Control Protocol

RTP Real-time Transport Protocol

PT packet type

PTS presentation time stamp

PUB PHY utility block

PUSI payload unit start indicator

PWM pulse width modulation

Q

Q quadrant

QAM quadrature amplitude modulation

QDR quad data rate

QoS quality of service

QP quantizer parameter

QPSK quaternary phase shift keying

 \mathbf{R}

RAM random access memory

RAS row address signal RC resistor-capacitor

10000001 cupuction

RCA Radio Corporation of America

RCRC response CRC error

RE response error
RF radio frequency
RGB red-green-blue

RGMII reduced gigabit media independent interface

RH relative humidity

RoHS restriction of the use of certain hazardous substances

ROI region of interest

ROM read-only memory

ROP raster operation

RPR resilient packet ring

RLDRAM reduced latency dynamic random access memory

RMII reduced media-independent interface

RS Reed-Solomon
RTC real-time clock
RTO response timeout
RTS request to send

RVDS RealView development suite

RX receive

RXDR receive FIFO data request

 \mathbf{S}

SAP service access point

SAD sum of absolute difference SAR successive approximation

SATA serial advanced technology attachment

SAV start of active video

SBE start-bit error

SBP secure boot procedure

SCD start code detect

SCI smart card interface

SCL serial clock

SCR system clock reference

SCS secure chipset start-up

SCU snoop control unit

SD secure digital

SDA serial data

SDB set device bits

SDH synchronous digital hierarchy

SDHC secure digital high capacity

SDI serial digital interface

SDIO secure digital input/output

SDK software development kit

SDRAM synchronous dynamic random access memory

SDV system design verification

SI specific information

SIO sonic input/output

SLC single-level cell

SMI static memory interface

SNAP subnetwork access point

SNR signal-to-noise ratio

SNTF serial ATA notification

SOA semiconductor optical amplifier

SoC system-on-chip

SONET synchronous optical network

SOP start of PES

SP simple profile

SPDIF Sony/Philips digital interface

SPI serial peripheral interface

SPS sequence parameter set

SRAM static random access memory

SRP Session Request Protocol

SSA secure software authentication

SSD secure software download

SSMC synchronous static memory controller

SSP synchronous serial port

SSRAM synchronous static random access memory

SSTL-18 stub series terminated logic for 1.8 V

STA station

STB set-top box

STM-1 synchronous transport module level 1

SVB selective voltage bing

SYNC synchronization

SYS system

 \mathbf{T}

TBD to be determined

TBGA tape ball grid array

TC traffic class

TCP Transmission Control Protocol

TD TLP digest

TDES triple data encryption standard

TDE two-dimensional engine

TE tearing effect

TEI transport error indicator

TFD task file data

TFPBGA tape fine-pitch ball grid array

TFT thin-film technology

TI Texas Instruments

TLV type-length-value

TOE TCP/IP offload engine

TP transponder

TPIT TS packet index table

TR timing recovery

TS transport stream

TSI transport stream interface

TT teletext

TV television

TVACT top vertical active area

TVBB top vertical back blank

TVFB top vertical front blank

TVS transient voltage suppressor

TX transmit

TXDR transmit FIFO data request

U

UART universal asynchronous receiver transmitter

U-boot universal boot loader

UC unexpected completion

UDP User Datagram Protocol

ULPI UTMI low pin interface

UPnP universal plug and play

UR unsupported request

USB universal serial bus

USIM universal subscriber identity module

UTMI USB 2.0 transceiver macrocell interface

 \mathbf{V}

VACT vertical active area

VAD voice activity detector

VAPU video analysis&process unit

VBB vertical back blank

VBI vertical blanking interval

VBR variable bit rate

VCC common connector voltage
VCO voltage controller oscillator

VCM variable coding and modulation

VCMP video compress

VCXO voltage control crystal oscillator

VDA video detection analysis

VDH video decoder for high-definition

VDM video decoding module

VDEC video decoding
VDP video display

VEDU video encoding/decoding unit

VENC video encoding

VFB vertical front blank

VFMW video firmware

VFP vertical front porch

VGA video graphics array

VI video input

VIC vector interrupt controller

VICAP video capture

VIU video input unit

VLD valid

VLL virtual leased line

VO video output
VOIE voice encoder

VOU video output unit

_

VPP video pre-processing

VPS video programming system

VPSS video process subsystem

VPW vertical pulse width

VSA vertical sync start

VQE voice quality enhancement

VQM voice quality monitor

W

WDG watchdog
WE write enable
WFE wait for event

WFI wait for interrupt

WRED weighted random early discard

WSS wide screen signaling

X

XAUI 10 gigabit attachment unit interface

Y

YAFFS yet another flash file system

YUV luminance-bandwidth-chrominance

 \mathbf{Z}

ZME zoom engine