Notes of "Linear Mapping and Matrix Operations"

Jinxin Wang

1 Linear Mapping and Matrix

2 Matrix Multiplication

2.1 Block Matrix Multiplication

3 Matrix Transposition

4 Rank of a Product of Matrices

5 Square Matrix

5.1 Commuting Matrices

Definition 1 (Diagonal Matrix and Scalar Matrix). A diagonal matrix is a a matrix in which all entries outside the main diagonal are all zero.

Definition 2 (Identity Matrix).

$$E = (\delta_{ij}), \delta_{ij} = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases}$$
 (1)

Definition 3 (Scalar Matrix). A scalar matrix is the result of the identity matrix multiplied with a scalar.

Definition 4 (Matrix Unit). A matrix unit is a matrix with only one nonzero entry with value 1. The matrix unit with the nonzero entry in the i-th row and j-th column is denoted as E_{ij}

Remark 1. A matrix unit is not necessarily a square matrix.

Definition 5 (Commuting Matrices). Given two matrices $A, B \in M_n(\mathbb{R})$, A and B are said to commute if AB = BA, or equivalently their commutator [A, B] = AB - BA = 0.

Remark 2. Notice that commuting matrices must be square matrix, because if $A \in M_{s \times n}$, $B \in M_{n \times r}$, $s \neq r$, then $AB \in M_{s \times r}$, $BA \in M_{r \times s}$, hence it is invalid to compare them.

Theorem 1. If a matrix $A \in M_n(\mathbb{R})$ commutes with $\forall B \in M_n(\mathbb{R})$, then A is a scalar matrix. 证明. Hint:

- If $AE_{12} = E_{12}A$, then $\forall k \neq 1, a_{k1} = 0$, and $\forall k \neq 2, a_{2k} = 0$, and $a_{11} = a_{22}$.
- If $AE_{ij} = E_{ij}A$, then $\forall k \neq i, a_{ki} = 0$, and $\forall k \neq j, a_{jk} = 0$, and $a_{ii} = a_{jj}$.
- Consider $\forall B \in M_n \mathbb{R}, AB = BA$.

Remark 3. When proving a property applies to any matrix in $M_{m \times n}$, one method is to consider all matrix units in $M_{m \times n}$, since the set of matrix units is a basis of $M_{m \times n}$.

5.2 Inverse Matrix

Lemma 1 (Uniqueness of Inverse Matrix).

$$A' = A'E = A'(AA'') = (A'A)A'' = A''$$

Definition 6 (Inverse Matrix).

Definition 7 (Non-degenerate Matrix and Degenerate Matrix). A matrix $A \in M_n(\mathbb{R})$ is non-degenerate if rank A = n. A is degenerate if rank A < n.

Remark 4. We only talk about non-degenerate matrices and degenerate matrices when it comes to square matrices.

Theorem 2. $A \in M_n(\mathbb{R})$ is non-degenerate if and only if A is inversible.

证明. Hint:

⇐: Use the rank of the product of two matrices.

 \Rightarrow : Use the unqueness of the solution of AX = 0, and the transpose of the product of two matrices. \square

Corollary 1. If $A \in M_n \mathbb{R}$ is inversible, then A^T is inversible, and $(A^T)^{-1} = (A^{-1})^T$.

Corollary 2. If $B \in M_m(\mathbb{R})$ and $C \in M_n(\mathbb{R})$ are non-degenerate, $\forall A \in M_{m \times n}(\mathbb{R})$, it holds that

$$\operatorname{rank} BAC = \operatorname{rank} A$$

Corollary 3. If $A, B \in M_n(\mathbb{R})$, and $AB = E \vee BA = E$, then $B = A^{-1}$.

Corollary 4. If $A, B, ..., C, D \in M_n(\mathbb{R})$ are non-degenerate, then $AB \cdots CD$ is non-degenerate, and its inverse matrix is

$$(AB \cdots CD)^{-1} = D^{-1}C^{-1} \cdots B^{-1}A^{-1}$$

5.3 Calculation of Powers of a Matrix

Example 1 (Powers of a Scalar Matrix).

Example 2.

$$A = \begin{pmatrix} a & c \\ 0 & b \end{pmatrix}$$

Example 3.

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

6 Equivalence Class of Matrices

Definition 8 (Elementary Matrix).

Theorem 3. $M_{m \times n}(\mathbb{R})$ has a partition of $\min(m,n) + 1$ equivalence classes. All matrices with its rank as r including the representative element is in a equivalence class.

Corollary 5. Every non-degenerate matrix $A \in M_n(\mathbb{R})$ can be expressed as the product of elementary matrices.

7 Calculation of Inverse Matrix

8 Solution Space