An introduction to the analysis of extreme values using R and extRemes

Eric Gilleland,
National Center for
Atmospheric Research,
Boulder, Colorado, U.S.A.
http://www.ral.ucar.edu/staff/ericg

Graybill VIII
6th International Conference on Extreme Value Analysis
22 June 2009

The R programming language

R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.r-project.org

Vance A, 2009. Data analysts captivated by R's power. New York Times, 6 January 2009. Available at:

http://www.nytimes.com/2009/01/07/technology/business-computing/07program.html?_r=2

Assuming R is installed on your computer...

In linux, unix, and Mac (terminal/xterm) the directory in which R is opened is (by default) the current working directory. In Windows (Mac GUI?), the working directory is usually in one spot, but can be changed (tricky).

Open an R workspace:

Type R at the command prompt (linux/unix, Mac terminal/xterm) or double click on R's icon (Windows, Mac GUI).

getwd() # Find out which directory is the current working directory.

Assigning vectors and matrices to objects:

```
# Assign a vector containing the numbers -1, 4
# and 0 to an object called 'x'
x < -c(-1, 4, 0)
# Assign a 3 \times 2 matrix with column vectors: 2, 1, 5 and
# 3, 7, 9 to an object called 'y'.
y \leftarrow cbind(c(2, 1, 5), c(3, 7, 9))
# Write 'x' and 'y' out to the screen.
Χ
У
```

Saving a workspace and exiting

```
# To save a workspace without exiting R.
save.image()
# To exit R while also saving the workspace.
q("yes")
# Exit R without saving the workspace.
q("no")
# Or, interactively...
q()
```

Subsetting vectors:

```
# Look at only the 3-rd element of 'x'.
x[3]
# Look at the first two elements of 'x'.
x[1:2]
# The first and third.
x[c(1,3)]
# Everything but the second element.
x[-2]
```

Subsetting matrices:

```
# Look at the first row of 'y'. y[1,]
# Assign the first column of 'y' to a vector called 'y1'. # Similarly for the 2nd column. y1 \leftarrow y[1,1]
y2 \leftarrow y[1,2]
```

Assign a "missing value" to the second row, first column # element of 'y'. $y[2,1] \leftarrow NA$

Logicals and Missing Values:

```
# Do 'x' and/or 'y' have any missing values?
any( is.na( x))
any( is.na( y))

# Replace any missing values in 'y' with -999.0.
y[ is.na( y)] <- -999.0

# Which elements of 'x' are equal to 0?
x == 0</pre>
```

Contributed packages

library(evdbayes)

library(SpatialExtremes)

library(ismev)

```
# Install some useful packages.
                              Need only do once.
install.packages( c("fields",
                                 # A spatial stats package.
                      "evd",
                                # An EVA package.
                 "evdbayes", # Bayesian EVA package.
                    "ismev", # Another EVA package.
                    "maps", # For adding maps to plots.
               "SpatialExtremes")
# Now load them into R. Must do for each new session.
library(fields)
library( evd)
```

See hierarchy of loaded packages:

```
search()

# Detach the 'SpatialExtremes' package.
detach(pos=2)

See how to reference a contributed package:
citation("fields")
```

Help files

Getting help from a package or a function help(ismev)

Alternatively, can use ?. For example,

?extRemes

For functions,

?gev.fit

Example data sets:

?HEAT

Basics of plotting in R:

- First must open a device on which to plot.
 - Most plotting commands (e.g., plot) open a device (that you can see) if one is not already open. If a device is open, it will write over the current plot.
 - X11() will also open a device that you can see.
 - To create a file with the plot(s), use postscript, jpeg, png, or pdf (before calling the plotting routines. Use dev.off() to close the device and create the file.
- plot and many other plotting functions use the par values to define various characteristics (e.g., margins, plotting symbols, character sizes, etc.). Type help(plot) and help(par) for more information.

Simple plot example.

Motivation

Sums, averages and proportions (Normality)

- Central Limit Theorem (CLT)
- Limiting distribution of binomial distribution

Extremes

- Normal distribution inappropriate
- Bulk of data may be misleading
- Extremes are often rare, so often not enough data

Simulations

Extremal Types Theorem

Let X_1, \ldots, X_n be a sequence of independent and identically distributed (iid) random variables with common distribution function, F. Want to know the distribution of

$$M_n = \max\{X_1, \dots, X_n\}.$$

Example: X_1, \ldots, X_n could represent hourly precipitation, daily ozone concentrations, daily average temperature, etc. Interest for now is in maxima of these processes over particular blocks of time.

Extremal Types Theorem

If interest is in the minimum over blocks of data (e.g., monthly minimum temperature), then note that

$$\min\{X_1,\ldots,X_n\} = -\max\{-X_1,\ldots,-X_n\}$$

Therefore, we can focus on the maxima.

Extremal Types Theorem

Could try to derive the distribution for M_n exactly for all n as follows.

$$\Pr\{M_n \le z\} = \Pr\{X_1 \le z, \dots, X_n \le z\}$$

$$\stackrel{\text{indep.}}{=} \Pr\{X_1 \le z\} \times \dots \times \Pr\{X_n \le z\}$$

$$\stackrel{\text{ident. dist.}}{=} \{F(z)\}^n.$$

Extremal Types Theorem

Could try to derive the distribution for M_n exactly for all n as follows.

$$\Pr\{M_n \le z\} = \Pr\{X_1 \le z, \dots, X_n \le z\}$$

$$\stackrel{\text{indep.}}{=} \Pr\{X_1 \le z\} \times \dots \times \Pr\{X_n \le z\}$$

$$\stackrel{\text{ident. dist.}}{=} \{F(z)\}^n.$$

But! If F is not known, this is not very helpful because small discrepancies in the estimate of F can lead to large discrepancies for F^n .

Extremal Types Theorem

Could try to derive the distribution for M_n exactly for all n as follows.

$$\Pr\{M_n \le z\} = \Pr\{X_1 \le z, \dots, X_n \le z\}$$

$$\stackrel{\text{indep.}}{=} \Pr\{X_1 \le z\} \times \dots \times \Pr\{X_n \le z\}$$

$$\stackrel{\text{ident.}}{=} \text{dist.} \{F(z)\}^n.$$

But! If F is not known, this is not very helpful because small discrepancies in the estimate of F can lead to large discrepancies for F^n .

Need another strategy!

Extremal Types Theorem

If there exist sequences of constants $\{a_n > 0\}$ and $\{b_n\}$ such that

$$\Pr\left\{\frac{M_n - b_n}{a_n} \le z\right\} \longrightarrow G(z) \text{ as } n \longrightarrow \infty,$$

where G is a non-degenerate distribution function, then G belongs to one of the following three types.

Extremal Types Theorem

I. Gumbel

$$G(z) = \exp\left\{-\exp\left[-\left(\frac{z-b}{a}\right)\right]\right\}, -\infty < z < \infty$$

II. Fréchet

$$G(z) = \begin{cases} 0, & z \le b, \\ \exp\left\{-\left(\frac{z-b}{a}\right)^{-\alpha}\right\}, & z > b; \end{cases}$$

III. Weibull

$$G(z) = \begin{cases} \exp\left\{-\left[-\left(\frac{z-b}{a}\right)^{\alpha}\right]\right\}, & z < b, \\ 1, & z \ge b \end{cases}$$

with parameters a, b and $\alpha > 0$.

Extremal Types Theorem

The three types can be written as a single family of distributions, known as the generalized extreme value (GEV) distribution.

$$G(z) = \exp \left\{ -\left[1 + \xi \left(\frac{z - \mu}{\sigma}\right)\right]_{+}^{-1/\xi} \right\},$$

where $y_{+} = \max\{y, 0\}, -\infty < \mu, \xi < \infty \text{ and } \sigma > 0.$

GEV distribution

Three parameters: location (μ) , scale (σ) and shape (ξ) .

- 1. $\xi = 0$ (Gumbel type, limit as $\xi \longrightarrow 0$)
- 2. $\xi > 0$ (Fréchet type)
- 3. $\xi < 0$ (Weibull type)

Gumbel type

- Light tail
- Domain of attraction for many common distributions (e.g., normal, lognormal, exponential, gamma)

Fréchet type

- Heavy tail
- $\mathcal{E}[X^r] = \infty$ for $r \geq 1/\xi$ (i.e., infinite variance if $\xi \geq 1/2$)
- Of interest for precipitation, streamflow, economic impacts

Weibull type

- Bounded upper tail at $\mu \frac{\sigma}{\xi}$
- Of interest for temperature, wind speed, sea level

Normal vs. GEV

Normal vs. GEV		1 0	1		1.0	
$\Pr\{X > \cdot\}$	1	2	4	8	16	32
N(0,1)	0.16	0.02	$< 10^{-4}$	$< 10^{-15}$	$< 10^{-50}$	$< 10^{-200}$
Gumbel(0,1)	0.31	0.13	0.02	$< 10^{-3}$	$< 10^{-6}$	$< 10^{-13}$
$Fr\'{e}chet(0,1,0.5)$	0.36	0.22	0.11	0.04	0.01	0.003
Weibull $(0,1,-0.5)$	0.22	0	0	0	0	0

Normal vs. GEV

Fort Collins, Colorado daily precipitation amount http://ccc.atmos.colostate.edu/~odie/rain.html

- Time series of daily precipitation amount (in), 1900–1999.
- Semi-arid region.
- Marked annual cycle in precipitation (wettest in late spring/early summer, driest in winter).
- No obvious long-term trend.
- Recent flood, 28 July 1997. (substantial damage to Colorado State University)

Fort Collins, Colorado precipitation

Fort Collins daily precipitation

Fort Collins, Colorado precipitation

Fort Collins, Colorado precipitation Annual Maxima

```
> class( FortAM)
"extRemesDataObject"
> names( FortAM)
"data" "name" "file.path"
> class( FortAM$data)
"data.frame"
> names( FortAM$data)
```

"Year" "Prec"

Fort Collins, Colorado precipitation Annual Maxima

Fort Collins, Colorado precipitation

Fort Collins, Colorado precipitation Annual Maxima

Fort Collins annual maximum daily precipitation

Fort Collins, Colorado precipitation

How often is such an extreme expected?

- Assume no long-term trend emerges.
- Using annual maxima removes effects of annual trend in analysis.
- Annual Maxima fit to GEV.

Fort Collins, Colorado precipitation

Fort Collins, Colorado precipitation

Likelihood ratio test for $\xi = 0$ rejects hypothesis of Gumbel type (p-value ≈ 0.038).

Fort Collins, Colorado precipitation

To see the (underlying) code used to execute this fit, look at the extRemes.log file found in your working R directory (use getwd() to find this directory).

Should periodically clear this file because it will get larger as more

commands are executed.

Fort Collins, Colorado precipitation

Estimate 95% CI's for shape parameter using profile likelihood.

Fort Collins, Colorado precipitation

95% Confidence intervals for ξ , using profile likelihood, are: (0.009, 0.369).

Fort Collins, Colorado precipitation

Return Levels

Fort Collins, Colorado precipitation Return Levels

Return Level Plot

95% CI's (blue line) based on delta method. Not accurate for longer return periods.

Fort Collins, Colorado precipitation

Return Levels

Use profile likelihood to determine CI's for longer return periods.

Fort Collins, Colorado precipitation

Return Levels

Fort Collins, Colorado precipitation

Return Levels

Highly skewed!

Profile likelihood gives approximate 95% CI for the 100-year return leve of (3.9, 8.0).

Fort Collins, Colorado precipitation

Probability of annual maximum precipitation at least as large as that during the 28 July 1997 flood (i.e., $\Pr\{\max(X) > 1.54 \text{ in.}\}$). Where the flood occurred, the value was 4.6 in. Find both, based on this rain guage's data.

```
# Using the 'pgev' function from the "evd" package.

pgev(c(1.54, 4.6),

loc=1.347, scale=0.533, shape=0.174,

lower.tail=FALSE)
```

Results: $\Pr\{X > 1.54 \text{ in.}\} \approx 0.51 \text{ and } \Pr\{X > 4.6 \text{ in.}\} \approx 0.02$

Let X_1, X_2, \ldots be an iid sequence of random variables, again with marginal distribution, F. Interest is now in the conditional probability of X's exceeding a certain value, given that X already exceeds a sufficiently large threshold, u.

$$\Pr\{X > u + y | X > u\} = \frac{1 - F(u + y)}{1 - F(u)}, y > 0$$

Once again, if we know F, then the above probability can be computed. Generally not the case in practice, so we turn to a broadly applicable approximation.

If $\Pr{\max{X_1,\ldots,X_n} \le z} \approx G(z)$, where

$$G(z) = \exp\left\{-\left[1 + \xi\left(\frac{z - \mu}{\sigma}\right)\right]^{-1/\xi}\right\}$$

for some μ, ξ and $\sigma > 0$, then for sufficiently large u, the distribution [X - u|X > u], is approximately the generalized Pareto distribution (GPD). Namely,

$$H(y) = 1 - \left(1 + \frac{\xi y}{\tilde{\sigma}}\right)_{+}^{-1/\xi}, y > 0,$$

with $\tilde{\sigma} = \sigma + \xi(u - \mu)$ (σ , ξ and μ as in G(z) above).

- Pareto type $(\xi > 0)$ heavy tail
- Beta type $(\xi < 0)$ bounded above at $u - \sigma/\xi$
- Exponential type $(\xi = 0)$ light tail

Hurricane damage

Economic damage caused by hurricanes from 1926 to 1995.

Trends in societal vulnerability removed.

Excess over threshold of u = 6 billion US\$.

Hurricane damage

Likelihood ratio test for

$$\xi = 0$$
 (p-value ≈ 0.018)

95% CI for shape parameter using profile likelihood. $0.05 < \xi < 1.56$

Choosing a threshold

Variance/bias trade-off

Low threshold allows for more data (low variance).

Theoretical justification for GPD requires a high threshold (low bias).

Choosing a threshold

Dependence above threshold

Often, threshold excesses are *not* independent. For example, a hot day is likely to be followed by another hot day.

Various procedures to handle dependence.

- Model the dependence.
- De-clustering (e.g., runs de-clustering).
- Resampling to estimate standard errors (avoid tossing out information about extremes).

Dependence above threshold

Phoenix (airport) minimum temperature $({}^{o}F)$.

July and August 1948–1990.

Urban heat island (warming trend as cities grow).

Model lower tail as upper tail after negation.

Dependence above threshold

Fit without de-clustering.

$$\hat{\sigma} \approx 3.93$$

$$\hat{\xi} \approx -0.25$$

With runs de-clustering (r=1).

$$\hat{\sigma} \approx 4.21$$

$$\hat{\xi} \approx -0.25$$

Point Process: frequency and intensity of threshold excesses

Event is a threshold excess (i.e., X > u).

Frequency of occurrence of an event (rate parameter), $\lambda > 0$.

 $\Pr\{\text{no events in } [0,T]\} = e^{-\lambda T}$

Mean number of events in $[0, T] = \lambda T$.

GPD for excess over threshold (intensity).

Point Process: frequency and intensity of threshold excesses Relation of parameters of $\text{GEV}(\mu, \sigma, \xi)$ to parameters of point process (λ, σ^*, ξ) .

- Shape parameter, ξ , identical.
- $\log \lambda = -\frac{1}{\xi} \log \left(1 + \xi \frac{u \mu}{\sigma}\right)$
- $\bullet \ \sigma^* = \sigma + \xi(u \mu)$

More detail: Time scaling constant, h. For example, for annual maximum of daily data, $h \approx 1/365.25$. Change of time scale, h, for $\text{GEV}(\mu, \sigma, \xi)$ to h'

$$\sigma' = \sigma \left(\frac{h}{h'}\right)^{\xi} \text{ and } \mu' = \mu + \frac{1}{\xi} \left\{ \sigma' \left[1 - \left(\frac{h}{h'}\right)^{-\xi} \right] \right\}$$

Point Process: frequency and intensity of threshold excesses
Two ways to estimate PP parameters

• Orthogonal approach (estimate frequency and intensity separately).

Convenient to estimate.

Difficult to interpret in presence of covariates.

• GEV re-parameterization (estimate both simultaneously).

More difficult to estimate.

Interpretable even with covariates.

Point Process: frequency and intensity of threshold excesses Fort Collins, Colorado daily precipitation

Analyze daily data instead of just annual maxima (ignoring annual cycle for now).

Orthogonal Approach

$$\hat{\lambda} = 365.25 \cdot \frac{\text{No. } X_i > 0.395}{\text{No. } X_i} \approx 10.6 \text{ per year}$$

$$\hat{\sigma}^* \approx 0.323, \, \hat{\xi} \approx 0.212$$

Point Process: frequency and intensity of threshold excesses Fort Collins, Colorado daily precipitation

Analyze daily data instead of just annual maxima (ignoring annual cycle for now).

Point Process

$$\hat{\mu} \approx 1.384$$

$$\hat{\sigma} = 0.533$$

$$\hat{\xi} \approx 0.213$$

$$\hat{\lambda} = \left[1 + \frac{\hat{\xi}}{\hat{\sigma}}(u - \hat{\mu})\right]^{-1/\hat{\xi}} \approx 10.6 \text{ per year}$$

Risk Communication Under Stationarity

Unchanging climate

Return level, z_p , is the value associated with the **return period**, 1/p. That is, z_p is the level expected to be exceeded on average once every 1/p years.

That is, Return level, z_p , with 1/p-year return period is

$$z_p = F^{-1}(1 - p).$$

For example, p = 0.01 corresponds to the 100-year return period.

Easy to obtain from GEV and GP distributions (stationary case).

Risk Communication Under Stationarity

Unchanging climate

For example, GEV return level is given by

$$z_p = \mu - \frac{\sigma}{\xi} [1 - (-\log(1-p))]^{-\xi}$$

Return level with (1/p)-year return period

Similar for GPD, but must take λ into account.

Sources

- Trends: climate change: trends in frequency and intensity of extreme weather events.
- Cycles:
 Annual and/or diurnal cycles often present in meteorological variables.
- Other.

Theory

No general theory for non-stationary case.

Only limited results under restrictive conditions.

Can introduce covariates in the distribution parameters.

Phoenix minimum temperature

Phoenix summer minimum temperature

Phoenix minimum temperature

Recall: $\min\{X_1, ..., X_n\} = -\max\{-X_1, ..., -X_n\}.$

Assume summer minimum temperature in year t = 1, 2, ... has GEV distribution with:

$$\mu(t) = \mu_0 + \mu_1 \cdot t$$

$$\log \sigma(t) = \sigma_0 + \sigma_1 \cdot t$$

$$\xi(t) = \xi$$

Phoenix minimum temperature

Note: To convert back to $\min\{X_1, \ldots, X_n\}$, change sign of location parameters. But note that model is $\Pr\{-X \leq x\} = \Pr\{X \geq -x\} = 1 - F(-x)$.

$$\hat{\mu}(t) \approx 66.170 + 0.196t$$

$$\log \hat{\sigma}(t) \approx 1.338 - 0.009t$$

$$\hat{\xi} \approx -0.21$$

Likelihood ratio test

for
$$\mu_1 = 0$$
 (p-value $< 10^{-5}$),
for $\sigma_1 = 0$ (p-value ≈ 0.366).

Phoenix minimum temperature

Model Checking. Found the best model from a range of models, but is it a good representation of the data? Transform data to a common distribution, and check the qq-plot.

1. Non-stationary GEV to exponential

$$\varepsilon_t = \left\{ 1 + \frac{\hat{\xi}(t)}{\hat{\sigma}(t)} [X_t - \hat{\mu}(t)] \right\}^{-1/\xi(t)}$$

2. Non-stationary GEV to Gumbel (used by ismev/extRemes

$$\varepsilon_t = \frac{1}{\hat{\xi}(t)} \log \left\{ 1 + \hat{\xi}(t) \left(\frac{X_t - \hat{\mu}(t)}{\hat{\sigma}(t)} \right) \right\}$$

Phoenix minimum temperature

Model Checking. Found the best model from a range of models, but is it a good representation of the data? Transform data to a common distribution, and check the qq-plot.

Q-Q Plot (Gumbel Scale): Phoenix Min Temp

Physically based covariates

Winter maximum daily temperature at Port Jervis, New York

Let X_1, \ldots, X_n be the winter maximum temperatures, and Z_1, \ldots, Z_n the associated Arctic Oscillation (AO) winter index. Given Z = z, assume conditional distribution of winter maximum temperature is GEV with parameters

$$\mu(z) = \mu_0 + \mu_1 \cdot z$$
$$\log \sigma(z) = \sigma_0 + \sigma_1 \cdot z$$
$$\xi(z) = \xi$$

Physically based covariates

Winter maximum daily temperature at Port Jervis, New York

$$\hat{\mu}(z) \approx 15.26 + 1.175 \cdot z$$

$$\log \hat{\sigma}(z) = 0.984 - 0.044 \cdot z$$

$$\xi(z) = -0.186$$

Likelihood ratio test for $\mu_1 = 0$ (p-value < 0.001)

Likelihood ratio test for $\sigma_1 = 0$ (p-value ≈ 0.635)

Cyclic variation

Fort Collins, Colorado precipitation

Fort Collins daily precipitation

Cyclic variation

Fort Collins, Colorado precipitation Orthogonal approach. First fit annual cycle to Poisson rate parameter (T = 365.25):

$$\log \lambda(t) = \lambda_0 + \lambda_1 \sin \left(\frac{2\pi t}{T}\right) + \lambda_2 \cos \left(\frac{2\pi t}{T}\right)$$

Giving

$$\log \hat{\lambda}(t) \approx -3.72 + 0.22 \sin \left(\frac{2\pi t}{T}\right) - 0.85 \cos \left(\frac{2\pi t}{T}\right)$$

Likelihood ratio test for $\lambda_1 = \lambda_2 = 0$ (p-value ≈ 0).

Cyclic variation

Fort Collins, Colorado precipitation Orthogonal approach. Next fit GPD with annual cycle in scale parameter.

$$\log \sigma^*(t) = \sigma_0^* + \sigma_1^* \sin\left(\frac{2\pi t}{T}\right) + \sigma_2^* \cos\left(\frac{2\pi t}{T}\right)$$

Giving

$$\log \hat{\sigma}^*(t) \approx -1.24 + 0.09 \sin \left(\frac{2\pi t}{T}\right) - 0.30 \cos \left(\frac{2\pi t}{T}\right)$$

Likelihood ratio test for $\sigma_1^* = \sigma_2^* = 0$ (p-value < 10^{-5})

Cyclic variation

Fort Collins, Colorado precipitation

Annual cycle in location and scale parameters of the GEV re-parameterization approach point process model with t = 1, 2, ..., and T = 365.25.

$$\mu(t) = \mu_0 + \mu_1 \sin\left(\frac{2\pi t}{T}\right) + \mu_2 \cos\left(\frac{2\pi t}{T}\right)$$
$$\log \sigma(t) = \sigma_0 + \sigma_1 \sin\left(\frac{2\pi t}{T}\right) + \sigma_2 \cos\left(\frac{2\pi t}{T}\right)$$
$$\xi(t) = \xi$$

Cyclic variation

Fort Collins, Colorado precipitation

$$\hat{\mu}(t) \approx 1.281 - 0.085 \sin\left(\frac{2\pi t}{T}\right) - 0.806 \cos\left(\frac{2\pi t}{T}\right)$$
$$\log \hat{\sigma}(t) \approx -0.847 - 0.123 \sin\left(\frac{2\pi t}{T}\right) - 0.602 \cos\left(\frac{2\pi t}{T}\right)$$
$$\hat{\xi} \approx 0.182$$

Likelihood ratio test for $\mu_1 = \mu_2 = 0$ (p-value ≈ 0). Likelihood ratio test for $\sigma_1 = \sigma_2 = 0$ (p-value ≈ 0).

Cyclic variation

Fort Collins, Colorado precipitation

Residual quantile Plot (Exptl. Scale)

Risk Communication (Under Non-Stationarity)

Return period/level does not make sense anymore because of changing distribution (e.g., with time). Often, one uses an "effective" return period/level instead. That is, compute several return levels for varying probabilities over time. Can also determine a single return period/level assuming temporal independence.

$$1 - \frac{1}{m} = \Pr \left\{ \max(X_1, \dots, X_n) \le z_m \right\} \approx \prod_{i=1}^n p_i,$$

where

$$p_i = \begin{cases} 1 - \frac{1}{n} y_i^{-1/\xi_i} & \text{for } y_i > 0, \\ 1 & \text{otherwise} \end{cases}$$

where $y_i = 1 + \frac{\xi_i}{\sigma_i}(z_m - \mu_i)$, and (μ_i, σ_i, ξ_i) are the parametrs of the point process model for observation i. Can be easily solved for z_m (using numerical methods). Difficulty is in calculating the uncertainty (See Coles, 2001, chapter 7).

References

- Coles S, 2001. An introduction to statistical modeling of extreme values. Springer, London. 208 pp.
- Katz RW, MB Parlange, and P Naveau, 2002. Statistics of extremes in hydrology. Adv. Water Resources, 25:1287–1304.
- Stephenson A and E Gilleland, 2006. Software for the analysis of extreme events: The current state and future directions. *Extremes*, 8:87–109.