Gaussian Elimination

Geometric Algorithms Lecture 2

Practice Problem

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 4 & 5 & 6 \\ 1 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

Write a sequence of elementary row operations which transforms the left matrix to the right matrix without using the exchange operation

Solution

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 4 & 5 & 6 \\ 1 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

Outline

- » Introduce echelon forms as a kind of matrix
 which "represents" solutions
- » Learn how to "read off" a solution from an echelon form matrix
- » Discuss Gaussian elimination, an algorithm
 for solving linear systems

Keywords

```
leading entries
echelon form
(row-)reduced echelon form (RREF)
pivot positions
pivot columns
free variables
basic variables
general form solutions
forward elimination
back substitution
```

Recap

Recall: Linear Systems (General-form)

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Does a system have a solution?
How many solutions are there?
What are its solutions?

Recall: Matrix Representations

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix}$$

augmented matrix

Recall: Linear Systems (Pictorially)

Recall: Number of Solutions

zero the system is inconsistent

one the system has a unique solution

many the system has infinity solutions

These are the only options

Motivating Questions

echelon forms

What matrices "represent solutions"? (which have solutions that are easy to "read off"?)

How does the number of solutions affect the shape of these matrix?

How do we use row operations to get to those matrices?

Unique Solution Case

Unique Solution Case

$$\begin{bmatrix} 2 & -3 & 5 & 11 \\ 2 & -1 & 13 & 39 \\ 1 & -1 & 5 & 14 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

$$x = 1$$

$$y = 2$$

$$z = 3$$

x = 1 y = 2Like all incomples we've seen for far

The Identity Matrix

Unique Solution Case

coefficient matrix

a system of linear equations whose **coefficient matrix** is the identity matrix represents a
unique solution

No Solution Case

Example

Γ1	1	1	17
1	1	1	2
L1	2	3	4

No Solution Case

```
 \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 2 & 3 & 4 \end{bmatrix}  \sim  \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}  
two parallel row representing 0 = 1
```

No Solution Case

row representing 0 = 1

a system with no solutions can be reduced to a matrix with the row

Example

 [2
 4
 2
 14]

 1
 7
 1
 12]

demo

$$\begin{bmatrix} 2 & 4 & 2 & 14 \\ 1 & 7 & 1 & 12 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$x_1 + x_3 = 2$$
 $x_2 = 1$

a system with infinity solutions can be reduced to a system which leaves a variable <u>unrestricted</u>

$$x_1 + x_3 = 2$$
 $x_2 = 1$

$$x_1 = 2$$
 $x_2 = 1$
 $x_3 = 0$

it doesn't matter what x_3 is if we want to satisfy this system of equations

$$x_1 + x_3 = 2$$
 $x_2 = 1$

$$x_1 = 1.5$$
 $x_2 = 1$
 $x_3 = 0.5$

it doesn't matter what x_3 is if we want to satisfy this system of equations

$$x_1 + x_3 = 2$$
 $x_2 = 1$

it doesn't matter what x_3 is if we want to satisfy this system of equations

$$x_1 = 20$$
 $x_2 = 1$
 $x_3 = -18$

$$x_1 + x_3 = 2$$
 $x_2 = 1$

it doesn't matter what x_3 is if we want to satisfy this system of equations

$$x_1 = 2 - x_3$$

$$x_2 = 1$$

$$x_3 ext{ is free}$$

general form

In Sum

none reduces to a system with the

equation 0 = 1

one reduces to a system whose coefficient

matrix is the identity matrix

infinity reduces to a system which leaves a
 variable unrestricted

Ideally, we want one *form* that handles all three cases

Echelon Form

The Picture (and a bit of history)

Echelon Form (Pictorially)

```
\begin{bmatrix} 0 & \blacksquare & * & * & * & * & * & * & * & * \\ 0 & 0 & 0 & \blacksquare & * & * & * & * & * \\ 0 & 0 & 0 & 0 & \blacksquare & * & * & * & * \\ 0 & 0 & 0 & 0 & 0 & \blacksquare & * & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \blacksquare & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}
```

 \blacksquare = nonzero, * = anything

Leading Entries

Definition. the *leading entry* of a row is the first nonzero value

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & 3 \\ 0 & 0 & 0 \\ 1 & -1 & 10 \end{bmatrix} \leftarrow \begin{array}{c} \text{no leading} \\ \text{entry} \end{array}$$

Echelon Form

Definition. A matrix is in echelon form if

- 1. The leading entry of each row appears to the right of the leading entry above it
- 2. Every all-zeros row appears below any non-zero rows

Echelon Form (Pictorially)

```
next leading entry
   to the right
                         ll-zero rows at
```

= nonzero, * = anything

Question

Is the identity matrix in echelon form?

Answer: Yes

the leading entries of each row appears to the right of the leading entry above it

it has no all-zero rows

Question

$$\begin{bmatrix} 2 & 3 & -8 \\ 0 & 1 & 2 \\ 0 & 2 & 0 \end{bmatrix}$$

Is this matrix in echelon form?

Answer: No

The leading entry of the least row is not to the right of the leading entry of the second row

What's special about Echelon forms?

Theorem. Let A be the augmented matrix of an inconsistent linear system. If $A \sim B$ and B is in echelon form then B has the row

[00...00

If all we care about is consistency then we just need to find an echelon form

Example

$$x - 2z = 4$$

$$-x + y + 5z = -3$$

$$x + 2y + 4z = 7$$

The Problem with Echelon Forms

If our system *is* consistent, we can't get a solution quite yet

We need to simplify our matrix a bit more until it "represents" a solution

Reduced Echelon Form

Row-Reduced Echelon Form (RREF)

Definition. A matrix is in (row-)reduced echelon form if

- 1. The leading entry of each row appears to the right of the leading entry above it
- 2. Every all-zeros row appears below any non-zero rows
- 3. The leading entries of non-zero rows are 1
- 4. the leading entries are the only non-zero entries of their columns

Reduced Echelon Form (Pictorially)

leading entries are 1

Reduced Echelon Form (A Simple Example)

$$x_1 + x_3 = 2$$
 $x_2 = 1$

$$x_1 = 2 - x_3$$

$$x_2 = 1$$

$$x_3 ext{ is free}$$

The Fundamental Points

Point 1. we can "read off" the solutions of a system of linear equations from its RREF

Point 2. every matrix is row equivalent to a unique matrix in reduced echelon form

How-To: Solving a System of Linear Equations

1. Write your system as an augmented matrix

2. Find the RREF of that matrix

3. Read off the solution from the RREF

What's special about RREF?

Example

Why we care about Reduced Echelon Forms?

the goal of <u>back-substitution</u> is to reduce an echelon form matrix to a **reduced** echelon form

the goal of <u>Gaussian elimination</u> is to reduce an **augmented** matrix to a **reduced** echelon form

reduced echelon forms describe solutions to linear equations

General-Form Solutions

What's Left?

We know how to use an RREF to see if a system is inconsistent

We know how to use an RREF to read of a unique solution, if there is one

But how do we characterize *all* solutions in the infinite solution case?

Basic and Free Variables

Definition. a *pivot position* (i,j) in a matrix is the position of a leading entry in it's reduced echelon form

Definition. A variable is *basic* if its column has a pivot position (this is called a *pivot column*). It is *free* otherwise

 x_3 is free

Solutions of Reduced Echelon Forms

the row i of a <u>pivot position</u> describes the <u>value of x_i in a solution</u> to the system, in terms of the free variables

$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

How-To: General Form Solution

$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$x_1 = 2 - x_3$$

$$x_2 = 1$$

$$x_3 \text{ is free}$$

- 1. For each pivot position (i,j), isolate x_i in the equation in row i
- 2. If x_i is not in a pivot column then write

 x_i is free

Example

1	2	0	-2	4
0	0	1	3	5
0	0	0	0	0

Question

Circle the pivot positions, highlight the pivot rows.

Which variables are free? Which are basic?

Write down a solution in general form for this reduced echelon form matrix.

Write down a particular solution given the general form.

Answer

$$x_1 = 1 - 3x_4$$
 x_2 is free
$$x_3 = 4 - 2x_4$$
 x_4 is free

Gaussian Elimination

At a High Level

eliminations + back-substitution

we've already done this

but we'll take one step further and write down the algorithm as <u>pseudocode</u>

Keep in mind. How do we turn our intuitions into a formal procedure?

A Word of Warning

The details of Gaussian elimination are tricky

The goal is not to understand it entirely, but to get enough intuition to emulate it

You should roughly use Gaussian Elimination when solving a system by hand

demo

Gaussian Elimination (Specification)

```
FUNCTION GE(A):
    # INPUT: m × n matrix A
    # OUTPUT: equivalent m × n RREF matrix
    ...
```

Gaussian Elimination (High Level)

```
FUNCTION fwd_elim(A):
 # INPUT: m × n matrix A
 # OUTPUT: equivalent m × n echelon form matrix
FUNCTION back_sub(A):
 # INPUT: m × n echelon form matrix A
 # OUTPUT: equivalent m × n RREF matrix
FUNCTION GE(A):
 RETURN back_sub(fwd_elim(A))
```

Elimination Stage

Elimination Stage (High Level)

Input: matrix A of size $m \times n$

Output: echelon form of A

starting at the top left and move down, find a leading entry and eliminate it from latter equations

Edge cases

What if the first equation doesn't have the variable x_1 ?

Swap rows with an equation that does.

What if *none* of the equations have the variable x_1 ?

Find the *leftmost* variable which appears in *any* of the remaining equations.

Elimination Stage (Pseudocode)

```
FUNCTION fwd_elim(A):
 FOR [i from 1 to m]: # for each row from top to bottom
    IF [rows i...m are all-zeros]: # if remaining rows are zero
      RETURN A
    ELSE:
      (j, k) \leftarrow [position of leftmost entry in the rows i...m]
      [swap row i and row j]
      FOR [l from i + 1 to m]: # for all remaining rows
        [zero out A[l, k] using a replacement operation]
 RETURN A
```

```
\begin{bmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ \hline 3 & -9 & 12 & -9 & 6 & 15 \end{bmatrix}
entry
```

Swap R_1 and R_3

 $R_3 \leftarrow R_3 - R_1$

swap R_2 with R_2

$$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix}$$

$$R_{3} \leftarrow R_{3} - \frac{3R_{2}}{2}$$

Elimination Stage (Example)

```
\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}
leftmost nonzero entry
```

swap R_3 with R_3

Elimination Stage (Example)

done with elimination stage going to back substitution stage

Back Substitution Stage

Back Substitution Stage (High Level)

Input: matrix A of size $m \times n$ in echelon form

Output: reduced echelon form of A

scale pivot positions and eliminate the variables for that column from the other equations

Back Substitution (Psuedocode)

```
FUNCTION back_sub(A):
  FOR [i from 1 to m]: # for each row from top to bottom
    IF [row i has a leading entry]:
      j ← index of leading entry of row i
      R_i(A) \leftarrow R_i(A) / A[i, j] \# divide by leading entry
      FOR [k from 1 to i - 1]: # for the rows above the current one
        R_k(A) \leftarrow R_k(A) - R[k, j] * R_i(A)
        # zero out R[k, j] above the leading entry
  RETURN A
```

$$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$

 $R_1 \leftarrow R_1 / 3$

$$R_2 \leftarrow R_2 / 2$$

$$\begin{bmatrix} 1 & -3 & 4 & -3 & 2 & 5 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$

 $R_1 \leftarrow R_1 + 3R_2$

$$\begin{bmatrix} 1 & 0 & -2 & 3 & 5 & -4 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$

 $R_3 \leftarrow R_3 / 1$

$$R_2 \leftarrow R_2 - R_1$$

```
\begin{bmatrix} 1 & 0 & -2 & 3 & 5 & -4 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}
```

$$R_1 \leftarrow R_1 - 5R_3$$

$$\begin{bmatrix} 1 & 0 & -2 & 3 & 0 & -24 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$

done with back substitution phase

$$x_1 = (-24) + 2x_3 - 3x_4$$

 $x_2 = (-7) + 2x_3 - 2x_4$
 x_3 is free
 x_4 is free
 $x_5 = 4$

How-To: Solving a System of Linear Equations

1. Write your system as an augmented matrix

2. Find the RREF of that matrix Gaussian elimination

3. Read off the solution from the RREF

Extra Topic: Analyzing the Algorithm

Analyzing the Algorithm

```
We will not use O(\cdot) notation!
```

For numerics, we care about number of **FL**oating-oint **OP**erations (FLOPs):

- >> addition
- >> subtraction
- >> multiplication
- >> division
- >> square root

```
2n vs. n is very different when n \sim 10^{20}
```

Dominant Terms

that said, we don't care about exact bounds

A function f(n) is asymptotically equivalent to g(n) if

$$\lim_{i \to \infty} \frac{f(i)}{g(i)} = 1$$

for polynomials, they are equivalent to their dominant term

Dominant Terms

The **dominant term** of a polynomial is the monomial with the highest degree

$$\lim_{i \to \infty} \frac{3x^3 + 100000x^2}{3x^3} = 1$$

 $3x^3$ dominates the function even though the coefficient for x^2 is so large

Parameters

n: number of variables

m : number of equations (we will assume m=n)

n+1: number of rows in the augmented matrix

The Cost of a Row Operation

$$R_i \leftarrow R_i + aR_i$$

n+1 multiplications for the scaling

n+1 additions for the row additions

Tally: 2(n+1) FLOPS

Cost of First Iteration of Elimination

$$R_2 \leftarrow R_2 + a_2 R_1$$

$$R_3 \leftarrow R_3 + a_3 R_1$$

$$\vdots$$

$$R_n \leftarrow R_n + a_n R_1$$

Repeated row operations for each row except the first

Tally: $\approx 2n(n+1)$ FLOPS

Rough Cost of Elimination

repeating this last process at most n times gives us a dominant term $2n^3$

we can give a better estimation...

Tally: $\approx 2n^2(n+1)$ FLOPS

Cost of Elimination

At iteration *i*, we're only interested in rows after *i*

And to the right of column *i*

Cost of Elimination

```
Iteration 1: 2n(n+1)
Iteration 2: 2(n-1)n
Iteration 3: 2(n-2)(n-1)
\vdots
```

$$\sum_{k=1}^{n} 2k(k+1) \approx \frac{2n(n+1)(2n+1)}{6} \sim (2/3)n^3$$

Tally: $\sim (2/3)n^3$ FLOPS

Cost of Back Substitution

```
(Let's assume no free variables)
for each pivot, we only need to:
    >> zero out a position in 1 row (0 FLOPS)
    >> add a value to the last row (1 FLOP)
at most 1 FLOP per row per pivot ~ n²
```

Tally: $\sim (2/3)n^3$ FLOPS

Cost of Gaussian Elimination

Tally:
$$\sim (2/3)n^3$$
 FLOPS

(dominated by elimination)

Summary

Echelon form matrices "represent solutions"

General form solutions can be used to describe the infinite solution sets

Gaussian elimination uses forward elimination and back-substitution to solve linear equations in general