Método Newton Raphson.

Consiste en un procedimiento que lleva la ec. f(x) = 0.

La solución única es tener un valor inicial que sea "suficiente" cercano a la raíz.

Encuentra una raíz, siempre y cuando se conozca una estimación inicial para la raíz deseada.

Utiliza de forma interactiva las rectas tangentes que pasan por aproximaciones consecutivas de la raíz.

Requiere una buena estimación inicial, de lo contrario la solución iterativa puede divergir o converger a una solución irrelevante.

La razón de convergencia iterativa es alta, cuando funciona el método.

y
$$f(x)$$
Pendiente
$$f(x_0)$$

$$x_{i+1} = x_i - \left(\frac{f(x_i)}{f'(x_i)}\right)$$

X inicial puede ser "0" o un valor cercano a la raíz.

El margen de error es igual a "0" cero.

Ejemplo .- Encuentre la raíz real de la ecuación $f(x) = x^3 + 2x^2 + 10x - 20$

$$f'(x) = 3x^2 + 4x + 10$$

i	X i+1	€= x _{i+1} - x _i
0	x _o = 1	
1	$x_1 = x_0 - \left(\frac{x_0^3 + 2 x_0^2 + 10 x_0 - 20}{3x_0^2 + 4x_0 + 10} \right)$ $x_1 = 1 - \left(\frac{(1)^3 + 2(1)^2 + 10(1) - 20}{3(1)^2 + 4(1) + 10} \right)$	$ \mathbf{x}_1 - \mathbf{x}_0 =$ $ 1.411764706 - 1 $ $= 0.411764706$
2	$x_1 = 1.411764706$	
	$x_2 = x_1 - \left(\frac{x_1^3 + 2 x_1^2 + 10 x_1 - 20}{3x_1^2 + 4x_1 + 10}\right)$	1.369336471 - 1.411764706
	$\begin{array}{lll} X_2 & = \\ 1.411764706 & - \left(\frac{(1.411764706)^3 + 2 (1.411764706)^2 + 10 (1.411764706) - 20}{3(1.411764706)^2 + 4 (1.411764706) + 10} \right) \end{array}$	= 0.042428235
	$x_2 = 1.369336471$	
3	$x_3 = x_2 - \left(\frac{x_2^3 + 2 x_2^2 + 10 x_2 - 20}{3x_2^2 + 4x_2 + 10} \right)$	x ₃ - x ₂ = 1.368808189 - 1.369336471
	$x_3 = 1.369336471 - \left(\frac{(1.369336471)^3 + 2 (1.369336471)^2 + 10 (1.369336471) - 20}{3(1.369336471)^2 + 4 (1.369336471) + 10} \right)$	=0.000528282
4	x ₃ = 1.368808189	
4	$X_{4} = X_{3} - \left(\frac{X_{3}^{3} + 2 X_{3}^{2} + 10 X_{3} - 20}{3X_{3}^{2} + 4X_{3} + 10} \right)$ $X_{4} = 1.368808189 - \left(\frac{(1.368808189)^{3} + 2 (1.368808189)^{2} + 10 (1.368808189) - 20}{3(1.368808189)^{2} + 4 (1.368808189) + 10} \right)$	x ₄ - x ₃ = 1.368808108 - 1.368808189
		= 0.0000000
	x ₄ = 1.368808108	