Structural Report for the Secondary Waste Transfer Station at Polashi

1904070- Humaira Jannat Taki

1904072- Shahriare Mahmud Sakib

1904075- Muaz Hossain Mahi

1904076- Fahim Zafri

1904080- Md. Ausaf Alam

1904082- Akash Saha

Office Building

Calculation of Uniformly Distributed Load on Roof

For Office Room-1

Slab Thickness of Roof= 5"

Self Weight of roof= (5/12)*150 psf= 62.5 psf

Floor Finish, FF=25 psf

Live Load, LL=40 psf

Total DL= SW+FF= (62.5+25) psf= 87.5 psf

Total DL on 18' long beam= (87.5*66.94)/18

= 325.4 lb/ft

Total LL on 18' long beam = (40*66.94)/18

= 148.76 lb/ft

Fig: Tributary Area of office roof

Total DL on 10.5' long beam= (87.5*27.66)/10.5 lb/ft

= 230.5 lb/ft

Total LL on 10.5' long beam= (40*27.66)/10.5 lb/ft

= 105.37 lb/ft

For Office Room-2

Total DL= 87.5 psf

LL=40 psf

DL on 18' long beam= (87.5*80)/18 lb/ft = 388.89 lb/ft

LL on 18' long beam= (40*80)/18 lb/ft= 177.78 lb/ft

DL on 16' beam= (87.5*64)/16 lb/ft = 350 lb/ft

Fig: Tributary Area of office roof

Calculation of Uniformly Distributed Load on Ground For Office Room-1

FF=25 psf

PW = 80 psf

DL=105 psf

SW =

Total DL on 18' long beam= (87.5*66.94)/18

= 325.4 lb/ft

Total LL on 18' long beam = (40*66.94)/18

= 148.76 lb/ft

Total DL on 10.5' long beam= (87.5*27.66)/10.5 lb/ft = 230.5 lb/ft

Total LL on 10.5' long beam= (40*27.66)/10.5 lb/ft = 105.37 lb/ft

For Office Room-2

DL on 18' long beam= (87.5*80)/18 lb/ft = 388.89 lb/ft

LL on 18' long beam= (40*80)/18 lb/ft= 177.78 lb/ft

DL on 16' beam= (87.5*64)/16 lb/ft = 350 lb/ft

LL on 16' beam= (40*64)/16 lb/ft = 160 lb/ft

Calculation of Wind Load

For Office Room-1

Wind Design Data:

 $L_x = 18/3.28 \text{ m} = 5.4878 \text{ m}$

 $L_y = 10.5/3.28 m = 3.20122 m$

Total height= 10/3.28 m = 3.04878 m

No of Stories=1

Story Height= 3.04878 m

Exposure: A, Wind Speed = 65.7 m/s

Importance Factor, I=1.15

Structure Type: Concrete Moment Resisting Frame

Assuming, topographic Factor, $K_{zt} = 1$, Directionality Factor, $K_d = 0.85$

Velocity pressure, $q_z = 0.000613k_zk_{zr}k_dv^2I$ = $0.000613*k_z*1*0.85*(65.7)^2*1.15$ = $2.586k_z$

Velocity Pressure Coefficient, $k_z = k_h = 0.575$

Velocity Pressure, $q_z = (2.586*0.575) \text{ kN/m}^2$ = 1.487 kN/m²

Gust Factor, $G_x = 0.895$, $G_y = 0.888$

External Pressure Coefficient (Windward), $C_{pwx} = 0.8$

External Pressure Coefficient (Leeward), $C_{plx} = 0.36$

External Pressure Coefficient (Windward), $C_{pwy} = 0.8$

External Pressure Coefficient (Leeward), $C_{ply} = 0.5$

For Wind Load in X-direction (10' x10.5' face):

Design Pressure,
$$P_x$$
 (Windward) = $q_z*G_x*C_{pwx}$ = 1.487*0.895*0.8 kN/m² = 1.064 kN/m²

Design Pressure,
$$P_x$$
 (Leeward) = $q_z*G_y*C_{plx}$ = 1.487*0.888*0.36 kN/m² = 0.475 kN/m²

Total Load (Windward) at node =
$$1.064*20.88*(10/2)*(10.5/2)$$
 lb

Total Load (Leeward) at node
$$= 0.475*20.88*(10/2)*(10.5/2)$$
 lb $= 260.35$ lb

For Wind Load in Y-direction (10' x18' face):

$$\begin{split} \text{Design Pressure, P}_y \text{(Windward)} &= q_z ^* G_y ^* \ C_{pwy} = 1.487 ^* 0.888 ^* 0.8 \ kN/m^2 \\ &= 1.056 \ kN/m^2 \\ \text{Design Pressure, P}_x \text{(Leeward)} &= q_z ^* G_x ^* \ C_{ply} = 1.487 ^* 0.895 ^* 0.5 \ kN/m^2 \\ &= 0.665 \ kN/m^2 \end{split}$$

Total Load (Windward) at node = 1.056*20.88*(10/2)*(18/2) lb = 992.22 lb Total Load (Leeward) at node = 0.665*20.88*(10/2)*(18/2) lb = 624.8 lb

For Office Room-2

Wind Design Data:

$$L_x = 18/3.28 \text{ m} = 5.4878 \text{ m}$$

$$L_y = 16/3.28 m = 4.87805 m$$

Total height= 10/3.28 m = 3.04878 m

No of Stories=1

Story Height= 3.04878 m

Exposure: A, Wind Speed = 65.7 m/s

Importance Factor, I=1.15

Structure Type: Concrete Moment Resisting Frame

Assuming, topographic Factor, $K_{zt} = 1$, Directionality Factor, $K_d = 0.85$

Velocity pressure,
$$q_z = 0.000613k_zk_{zr}k_dv^2I$$

= $0.000613*k_z*1*0.85*(65.7)^2*1.15$
= $2.586k_z$

Velocity Pressure Coefficient, $k_z = k_h = 0.575$

Velocity Pressure, $q_z = (2.586*0.575) \text{ kN/m}^2$ = 1.487 kN/m²

Gust Factor, $G_x = 0.89$, $G_y = 0.888$

External Pressure Coefficient (Windward), $C_{pwx} = 0.8$

External Pressure Coefficient (Leeward), $C_{plx} = 0.48$

External Pressure Coefficient (Windward), $C_{pwy} = 0.8$

External Pressure Coefficient (Leeward), $C_{ply} = 0.5$

For Wind Load in X-direction (10' x16' face):

Design Pressure,
$$P_x$$
 (Windward) = $q_z*G_x*C_{pwx}$ = 1.487*0.89*0.8 kN/m² = 1.058 kN/m²

Design Pressure,
$$P_x$$
 (Leeward) = $q_z*G_y*C_{plx}$ = 1.487*0.888*0.48 kN/m² = 0.63 kN/m²

Total Load (Windward) at node =
$$1.058*20.88*(10/2)*(16/2)$$
 lb

$$= 883.6 lb$$

Total Load (Leeward) at node
$$= 0.63*20.88*(10/2)*(16/2)$$
 lb $= 526.18$ lb

For Wind Load in Y-direction (10' x18' face):

$$\begin{split} \text{Design Pressure, P}_y \, (\text{Windward}) &= q_z * G_y * \ C_{pwy} = 1.487 * 0.888 * 0.8 \ kN/m^2 \\ &= 1.056 \ kN/m^2 \\ \text{Design Pressure, P}_y \, (\text{Leeward}) &= q_z * G_x * \ C_{ply} = 1.487 * 0.89 * 0.5 \ kN/m^2 \\ &= 0.662 \ kN/m^2 \end{split}$$

Total Load (Windward) at node =
$$1.056*20.88*(10/2)*(18/2)$$
 lb = 992.22 lb
Total Load (Leeward) at node = $0.662*20.88*(10/2)*(18/2)$ lb = 622.02 lb

Earthquake Load Calculation of Office Building

For Office Room-1

Column wt= 2*(12*12)/144*0.15*10 kip= 3 kip

Beam wt= (12*12)/144*0.15*2*(18+10.5) + (12*18)/144*0.15*(18+10.5) = 17.1 kip

DL from Roof Slab:

SW = (5/12)*0.15 = 6.25 kip

(25+6.25)*(18*10.5)=5.9 kip

LL from Roof Slab= 40*18*10.5 kip= 1.56 kip

DL from Ground Floor, Slab= (6.25+105)*(18+10.5)= 21.02 kip

LL from GF slab= 7.56 kip

Total Seismic Weight= (3+17.1+5.9+21.02)+0.25*(7.56+7.56) kip= 50.8 kip

 $V = S_a*W = 0.0749*50.8 \text{ kip} = 3.87 \text{ kip}$

h	W	w*h	F _{x (kip)}
2	25.40	50.8	0.544
12	25.40	304.8	3.26

355.6

 $dE_5 = 0.544*(9*5.25)/(18*10.5)=0.136$

 $dE_8 = 0.544*(9*5.15)/(18*10.5) = 0.136$

 $dD_5 = 0.136 \text{ kip}$

 $dD_8 = 0.136 \text{ kip}$

 $UE_5 = UE_8 = UD_5 = UD_8 = 0.815$

For Office Room-2

Column wt= 2*(12*12)/144*0.15*10 kip= 3 kip

Beam wt= (12*12)/144*0.15*2*(18+16) + (12*18)/144*0.15*(18+16) = 20.4 kip

DL from Roof Slab=(25+6.25)*18*16 = 9 kip

LL from Roof Slab= (40*18*16) kip= 11.52 kip

DL from Ground Floor, Slab= 32.04 kip

LL from GF slab= 11.52 kip

Total Seismic Weight= (3+20.4+9+32.04)+0.25*(11.52+11.52) kip= 70.2 kip

 $V = S_a*W = 0.0749*70.2 \text{ kip} = 5.26 \text{ kip}$

h	W	w*h	$F_{x (kip)}$
2	35.10	70.2	0.75
12	35.10	421.2	4.51

Secondary Transfer Station

UDL on roof Calculation

Gravity= DL+l1

DL:

0.8 mm thick GI Sheet= 0.096 kPa= 0.096*20.89 psf= 2 psf

Purlin + others= 3 psf (Assumed)

LL: 1 kPa = 20 psf

DL+LL: 2+3+20= 25 psf

Interior:

Dead Load on Rafter: 5*14 lb/ft = 70 lb/ft

Live Load on Rafter: 20*14 lb/ft = 280 lb/ft

Exterior:

Dead Load on Rafter: 5*7 lb/ft= 35 lb/ft

Live Load on Rafter: 20*7 lb/ft= 140 lb/ft

Wind Load Calculation of Station

WL(Normal to Ridge) Calculation of a Warehouse Building									
Surface	z(m)	q(psl)	G	Cp	qGCp(psf)	qi(pd)	(+Gepi)	(-Gepi)	
Windward Wall	6.097560976	29.04	0.85	K0	19.75	30.71	0.55	-0.55	
Leeward Wall	Full Height	30.71	0.85	-0.5	-13.05	30.71	0.55	-0.55	
Side wall	Full Height	30.71	0.85	-0.7	-18.27	30.71	0.55	-0.55	
Windward Roof	Along Full length	30.71	0.85	-0.8476	-22.13	30.71	0.55	-0.55	
		30.71	0.85	-0.18	4.7	30.71	0.55	-0.55	
Leeward Roof	Along Full length	30.71	0.85	-0.5	-13.05	30.71	0.55	-0.55	

sign Wind Pre	soure	Interior			Exterior
21(psf)	P2(psf)	PI Nei(lli/ft)	P2 Net(lb/ft)	P1 Net(th/ft)	P2 Net(lb/ft)
2.86	36.64	40.04	512.96	20.02	256.48
-29.94	3.84	-419.16	53.76	-209.58	26.88
-35.16	-1.38	-369.18	-14.49	-184.59	-7.245
-39.02	-5.24	-546.28	-73.36	-273.14	-36.68
-21.59	12.19	-302.26	170.66	-151.13	85.33
-29.94	3.84	419.16	53.76	-209.58	26.88

WL(Paralle	l to Ridge) Calculation o	f a Warehouse	Building					
Surface	z(m)	q(psf)	G	Ср	qGCp(psf)	qi(psf)	(+Gcpi)	(-Gepi)
Windward Wall	6.097560976	29.04	0.85	0.8	19.75	30.71	0.55	-0.55
WELLWARD WALL	#REF!	#REF!	0.85	0.8	#REF!	30.71	0.55	-0.55
Leeward Wall	Full Height	30.71	0.85	-0.29	-7.57	30.71	0.55	-0.55
Side Wall	Full Height	30.71	0.85	-0.7	-18.27	30.71	0.55	-0.55
	0 to h	30.71	0.85	-0.9	-23.49	30.71	0.55	-0.5
Roof	h to 2h	30.71	0.85	-0.5	-13.05	30.71	0.55	-0.53
	>2h	30.71	0.85	-0.3	-7.83	30.71	0.55	-0.55
	0 to h	30.71	0.85	-0.18	-4.7	30.71	0.55	-0.53
Roof	h to 2h	30.71	0.85	+0.18	-4.7	30.71	0.55	-0.5
	>2h	30.71	0.85	-0.18	-4.7	30.71	0.55	-0.53

Design Wind	Pressure	Interior			Exterior
P1(psf)	P2(psf)	P1 Neu(lb/ft)	P2 Net(lb/ft)	PI Net(Ih/ft)	P2 Net(lb/ft)
2.86	36.64	30.03	384.72	15.015	192.36
#REF!	#REF!	#REF!	#REF!	#REF!	#REF!
-24.46	9.32	-256.83	97.86	-128.415	48.93
-35.16	-1.38	-492.24	-19.32	-246.12	-9.66
-40.38	-6.6	-565.32	-92.4	-282.66	-46.2
-29.94	3.84	-419.16	53.76	-209.58	26.88
-24.72	9.06	-346.08	126.84	-173.04	63.42
-21.59	12.19	-302.26	170.66	-151.13	85.33
-21.59	12.19	-302.26	170.66	-151.13	85.33
-21.59	12.19	-302.26	170.66	-151.13	85.33

Earthquake Load Calculation

Calculation of Seismic Weight

Column Load=
$$14*(16*16)/144*20*0.150 \text{ kip} = 74.67 \text{ kip}$$

Beam
$$Wt = (12*18)/144*0.15*4*(56+49)$$
 kip

$$= 94.5 \text{ kip}$$

Partition Wall Load =
$$(56+56+49) *(10/12)* 0.12 \text{ kip}$$

$$= 24.15 \text{ kip}$$

Total Seismic Weight,
$$W = 70.67+94.5+24.15$$
 kip

$$= 193.32 \text{ kip}$$

Design spectral acceleration, S_a = 0.0958

Base Shear, $V = S_a*W = 0.0958*193.32 \text{ kip} = 18.52 \text{ kip}$

h	W	w*h	F _{x (kip)}
2	36.60	193.32	1.54
22	96.6	2126.52	16.376

2319.84

Nodal Load:

$$E_1 = E_5 = 1.54* (7*5.25) / (56*49) \text{ kip} = 0.0206 \text{ kip}$$

$$E_2=E_3=E_4=1.54*(14*21.75)/(56*49) \text{ kip} = 0.171 \text{ kip}$$

$$D_5 = 1.54* (16.5*7)/ (56*49) \text{ kip} = 0.065 \text{ kip}$$

$$B_5 = 1.54* (19.3*7)/ (56*49) \text{ kip} = 0.076 \text{ kip}$$

$$A_1 = A_5 = 1.54 * (8*7) / (56*49) \text{ kip} = 0.0314 \text{ kip}$$

$$A_2 = A_3 = A_4 = 1.54* (14*27.25) / (56*49) \text{ kip} = 0.214 \text{ kip}$$