Notes on filtrations for logics that contain **K5**

Daniel Rogozin

1 Preliminaries

Definition 1. A normal modal logic is a set of formulas that contains all Boolean tautologies, formulas $\Diamond p \lor \Diamond q \leftrightarrow \Diamond (p \lor q)$ and $\Diamond \bot \leftrightarrow \bot$, and is closed under Modus Ponens, Substitution, and Monotonicity: from $\varphi \to \psi$ infer $\Diamond \varphi \to \Diamond \psi$.

Definition 2. An Kripke model is a triple $\mathcal{M} = \langle W, R, \vartheta \rangle$, where $R \subseteq W \times W$, $\vartheta : PV \to 2^W$, and the connectives have the following semantics:

- 1. $\mathcal{M}, w \models p \Leftrightarrow w \in \vartheta(p)$
- 2. $\mathcal{M}, w \models \neg \varphi \Leftrightarrow \mathcal{M}, w \not\models \varphi$
- 3. $\mathcal{M}, w \models \varphi \lor \psi \Leftrightarrow \mathcal{M}, w \models \varphi \text{ or } \mathcal{M}, w \models \psi$
- 4. $\mathcal{M}, w \models \Diamond \varphi \Leftrightarrow \exists v \in R(w) \mathcal{M}, v \models \varphi$

A modal logic \mathcal{L} is called locally finite, if every fragment of \mathcal{L} with a finite number of variables is finite. Equivalently, its weak canonical model generated by $k < \omega$ variables is finite. Moreover, if \mathcal{L} is locally finite, then $\mathcal{L} = Log(\mathcal{F}_{\mathcal{L}} \upharpoonright k \mid k < \omega)$, where $\mathcal{F}_{\mathcal{L}} \upharpoonright k$ is a weak canonical frame generated by k variables.

Definition 3. The modal depth of a formula is defined recursively by the following function:

$$md(p_i) = 0$$

$$md(\neg \varphi) = md(\varphi)$$

$$md(\varphi \lor \psi) = \max(md(\varphi), md(\psi))$$

$$md(\diamondsuit \varphi) = 1 + md(\psi)$$

Let \mathcal{L} be a modal logic, then the modal depth of \mathcal{L} , denoted as $md(\mathcal{L})$, is the minimal n such that any $\varphi \in \mathcal{L}$ is equivalent to some ψ such that $md(\psi) = n$. If such an n does not exists, then $md(\mathcal{L}) = \infty$.

1.1 Filtrations

Let $\mathcal{M} = \langle W, R_1, \dots, R_n, \vartheta \rangle$ be a Kripke model and Γ a set of formulas closed under subformulas. An equivalence relation \sim is set to have a finite index if the quotient set W/\sim is finite. The equivalence relation \sim_{Γ} induced by Γ is defined as

$$w \sim_{\Gamma} v \Leftrightarrow \forall \varphi \in \Gamma (\mathcal{M}, w \models \varphi \Leftrightarrow \mathcal{M}, v \models \varphi).$$

If Γ is finite, then \sim_{Γ} has a finite index. An equivalence relation \sim respects \sim_{Γ} , if $w \sim v$ implies $w \sim_{\Gamma} v$.

The following definition of a filtration is due to, e.g., [9].

Definition 4. Let $\mathcal{M} = \langle W, R_1, \dots, R_n, \vartheta \rangle$ be a Kripke model and Γ be a Sub-closed set formulas. A Γ -filtration of \mathcal{M} is a model $\widehat{\mathcal{M}} = \langle \widehat{W}, \widehat{R_1}, \dots, \widehat{R_n}, \widehat{\vartheta} \rangle$ such that:

- 1. $\widehat{W} = W/\sim$, where \sim is an equivalence relation that respects Γ
- 2. $\widehat{\vartheta}(p) = \{ [x]_{\sim} \mid x \in W \& x \in \vartheta(p) \}$
- 3. For each $i \in I$ one has $\widehat{R}_i^{min} \subseteq \widehat{R}_i \subseteq \widehat{R}_i^{max}$. $\widehat{R}_{i,\sim}^{min}$ is the i-th minimal filtered relation on \widehat{W} defined as

$$\hat{x}\hat{R}_{i,\sim}^{min}\hat{y} \Leftrightarrow \exists x' \sim x \; \exists y' \sim y \; xR_i y$$

 $\widehat{R}_{\Gamma,i}^{max}$ is the i-th maximal filtered relation on \widehat{W} induced by Γ defined as

$$\hat{x}\hat{R}_{\Gamma_i}^{max}\hat{y} \Leftrightarrow \forall \Box_i \varphi \in \Gamma \left(\mathcal{M}, x \models \Box_i \varphi \Rightarrow \mathcal{M}, y \models \varphi \right)$$

Alternatively, one may reformulate the condition of the maximal filtered relations using \diamondsuit 's as follows. We will use this formulation occasionally:

$$\hat{x}\hat{R}_{\Gamma,i}^{\max}\hat{y} \Leftrightarrow \forall \Diamond_i \varphi \in \Gamma \left(\mathcal{M}, y \models \varphi \Rightarrow \mathcal{M}, x \models \Diamond_i \varphi \right)$$

If Φ is an extension of Γ and $\sim = \sim_{\Phi}$, then $\widehat{\mathcal{M}}$ is a definable Γ -filtration of \mathcal{M} through Φ . If $\sim = \sim_{\Gamma}$, then such a filtration by means of the definition above is called *strict*.

A class of models \mathbb{M} admits strict filtrations for models (ASF), if for every Sub-closed set Γ and for every $\mathcal{M} \in \mathbb{M}$ there exists a model $\widehat{\mathcal{M}}$ such that $\widehat{\mathcal{M}} \in \mathbb{M}$ and $\widehat{\mathcal{M}}$ is a filtration of \mathcal{M} through Γ .

A class of frames \mathbb{F} admits strict filtrations for frames, if for every Sub-closed set Γ and for every frame $\mathcal{F} \in \mathbb{F}$ and every model \mathcal{M} over \mathcal{F} there exists a Γ filtration of \mathcal{M} , and the underlying frame of this filtration belongs to \mathbb{F} .

If \mathcal{L} is canonical, then the ASF property for frames and ASF property for models are equivalent, see [7, Theorem 2.10].

The key lemma about filtrations is the following, see [1, Theorem 2.39]:

Lemma 1. Let Γ be a finite set of formulas closed under subformulas and $\widehat{\mathcal{M}}$ a filtration of \mathcal{M} through Γ , then for each $x \in W$ and for each $\varphi \in \Gamma$ one has

$$\mathcal{M}, x \models \varphi \Leftrightarrow \widehat{\mathcal{M}}, \hat{x} \models \varphi$$

Definition 5.

- 1. Let \mathbb{F} be a class of Kripke frames and Γ a finite set of formulas closed under subformulas. If for every model \mathcal{M} over $\mathcal{F} \in \mathbb{F}$ there exists a model that is a Γ -definable filtration of \mathcal{M} , then \mathbb{F} admits definable filtration.
- 2. A class of models \mathbb{M} admits definable filtration if for every $\mathcal{M} \in \mathbb{M}$ there exists a model belonging to the same class that is a definable Γ -filtration of \mathcal{M} .

Lemma 2.

- 1. Let \mathcal{L} be a complete normal modal logic. If Frames(\mathcal{L}) admits filtration, then \mathcal{L} has the finite model property.
- 2. If the class of models $Mod(\mathcal{L})$ admits filtration, then \mathcal{L} has the finite model property and it is Kripke complete as well.

1.2 Horn closure

Definition 6. A first-order formula is called Horn if it has the following form (see [3]):

$$\forall x_1, \ldots, x_n (x_{i_1} R x_{j_1} \wedge \cdots \wedge x_{i_s} R x_{j_s} \rightarrow A), \text{ where } A \text{ is either } x_k R x_l \text{ or } \bot.$$

Definition 7. Let H be a Horn property and $\langle W, R \rangle$ a Kripke frame. A Horn closure of a binary relation R is the minimal relation R^H containing R and satisfying H.

Lemma 3.
$$R^H = \bigcup_{n < \omega} R_n$$
 where

- 1. $R_0 = R$.
- 2. $R_{n+1} = R_n \cup \{(a,b) \in W \mid \exists \vec{c} \in W \ P(a,b,\vec{c})\}, \text{ where } P \text{ is a premise of } H.$

1.3 Bisimulations

A model \mathcal{M} is called *weak* model, if its valuation is restricted to some finite subset of variables, namely $PV \upharpoonright k$, if the cardinality of this subset equals k.

Definition 8. Let $\mathcal{M}_1 = \langle W_1, R_1, \vartheta_1 \rangle$ and $\mathcal{M}_2 = \langle W_2, R_2, \vartheta_2 \rangle$ be weak Kripke models (with the same variables), $x \in W_1$, and $y \in W_2$, then x and y are 0-equivalent, if the following holds:

$$x \equiv_0 y$$
 iff for each $p \in PV \upharpoonright k$ (or for each $p \in PV$) one has $\mathcal{M}_1, x \models p \Leftrightarrow \mathcal{M}_2, y \models p$

Definition 9. Let $\mathcal{M}_1 = \langle W_1, R_1, \vartheta_1 \rangle \mathcal{M}_2 = \langle W_2, R_2, \vartheta_2 \rangle$ be Kripke models, then a bisimulation between \mathcal{M}_1 and \mathcal{M}_2 is a binary relation $E \subseteq W_1 \times W_2$ between two models such that:

- (0) $x_1 E x_2$ implies $x_1 \equiv_0 x_1$
- (zig) x_1Ey_1 and x_1R_1z implies $y_1R_2y_2$ and zEy_2 for some $y_2 \in W_2$
- (zag) x_1Ey_1 and $y_1R_2y_2$ implies $x_1R_1x_2$ and x_2Ey_2 for some $x_2 \in W_1$

Models with designated points $\langle \mathcal{M}_1, x \rangle$ and $\langle \mathcal{M}_2, y \rangle$ are bisimilar, if there exists a bisimulation E between them with xEy. We denote that as $\langle \mathcal{M}_1, x \rangle \leftrightarrow \langle \mathcal{M}_2, y \rangle$. Moreover, we have

$$\langle \mathcal{M}_1, x \rangle \xrightarrow{\leftarrow} \langle \mathcal{M}_2, y \rangle$$
 implies $Th(\mathcal{M}_1, x) = Th(\mathcal{M}_2, y)$.

Definition 10. Let $\langle \mathcal{M}_1, x \rangle$ and $\langle \mathcal{M}_2, y \rangle$ be models with designated points and $r < \omega$. The r-round bisimulation game $\mathcal{G}_r(\mathcal{M}_1, \mathcal{M}_2, x, y)$ is played by two players, \forall (Abelard, man) and \exists (Heloise, woman). The rules of the game are the following:

- 1. (Round 0) \exists wins, if $x \equiv_0 y$. Otherwise, \forall wins.
- 2. (Round n+1) Let n+1 < r. Suppose rounds $0, \ldots, n$ have been played. The n-th position is a pair (x_n, y_n) . \forall chooses x_{n+1} (or $y_n \in W_2$) with $x_n R_1 x_{n+1}$ (or $y_n R_1 y_{n+1}$). \exists chooses y_{n+1} (x_{n+1}) with $y_n R_1 y_{n+1}$ (or $y_n R_1 y_{n+1}$) and $x_{n+1} \equiv_0 y_{n+1}$. \forall (\exists) wins, if \exists (\forall) cannot move.

 \exists wins the game after r rounds. \forall wins the game, if there exists k < r such that \forall wins in Round k.

There are two *n*-equivalences for formulas and games (the first one is due to Fine [4]).

Definition 11.

- $(\mathcal{M}_1, x) \equiv_n (\mathcal{M}_2, y)$ iff for every φ such that $md(\varphi) \leqslant n$ we have $\mathcal{M}_1, x \models \varphi$ iff $\mathcal{M}_2, y \models \varphi$.
- $(\mathcal{M}_1, x) \equiv_n (\mathcal{M}_2, y)$ iff \exists has a winning strategy in $\mathcal{G}_n(\mathcal{M}_1, \mathcal{M}_2, x, y)$.

Lemma 4 (See [6]). The definitions of n-equivalence are equivalent for weak Kripke models.

Lemma 5. (Stabilisation lemma)

Let n be a natural number and \mathcal{L} a modal logic. If $\equiv_n = \equiv_{n+1}$ in a weak canonical model $\mathcal{M}_{\mathcal{L}} \upharpoonright k$, then $md(\mathcal{L} \upharpoonright k) \leqslant n$.

Theorem 1 (See [5]). Let \mathcal{L} be a modal logic such that $md(\mathcal{L}) = n$ for some $n < \omega$, then \mathcal{L} is locally finite.

2 Filtrations for K5

The $\mathbf{K5}$ -closure (the Euclidean Horn closure of a binary relation) has the following equivalent definitions:

Lemma 6. Let $\mathcal{F} = \langle W, R \rangle$ be a Kripke frame. The following are equivalent:

- 1. $R^{\mathbf{K5}}$ is the smallest Euclidean relation containing R, that is, the Horn closure of R.
- 2. $R^{\mathbf{K5}} = \bigcup_{i < \omega} R_i$, where
 - $R_0 = R$
 - $R_{n+1} = R_n \cup (R_n^{-1} \circ R_n)$
- 3. $xR^{\mathbf{K5}}y$ iff there exists $n < \omega$ such that either xRy or $\exists z_1, \ldots, z_n$ with z_1Rx and $z_{n-1}Ry$ and for each $1 < i \le n$ one has either $z_{i-1}Rz_i$ or z_iRz_{i-1} .

4.
$$R^{K5} = R \cup \bigcup_{i < \omega} (R^{-1} \circ (R \cup R^{-1})^n \circ R).$$

Theorem 2. K5 does not admit strict filtrations.

Proof. Let us consider a K5 model whose Euclidean closure of the minimal filtration does not give us a filtration.

Let us consider a frame called \mathcal{F}_{bad} . We define this frame with the following graph:

Let us define a valuation ϑ such that $\vartheta(p) = \{w_5\}$ and $\vartheta(q) = \{w_1\}$. Let us consider a minimal filtration of \mathcal{M}_{bad} through the Sub-closure of $\Gamma = \{\neg p, \neg \diamondsuit p\}$.

Clearly that $w_2 \sim_{\Gamma} w_3$, since $\neg p$ and $\neg \diamondsuit p$ are true both at w_2 and w_3 .

Moreover, $R_{min} \cup (R_{min}^{-1} \circ R_{min})$ is not a subset of R_{max} since $(\hat{w_1}, \hat{w_5}) \in (R_{min}^{-1} \circ R_{min})$, but $\diamond p$ is not true at w_5 .

Let us also note that strict filtrations of this model is not Euclidean. Suppose by contrary that $\hat{R}^{\mathcal{E}}$ is a strict filtraction of that model. So $R_{min}^{E} \subseteq \hat{R}^{\mathcal{E}}$, since R_{min}^{E} is the minimal Euclidean relation containing R_{min} . On the other hand, $R_{min}^{E} \subseteq R_{max}$, so is not $\hat{R}^{\mathcal{E}}$.

Theorem 3. K5 admits definable filtrations.

Theorem 4. K45 admits strict filtrations.

Proof. Let $\mathcal{M} = \langle W, R, \vartheta \rangle$ be a transitive Euclidean model and $\overline{\mathcal{M}} = \langle \overline{W}, \overline{R}, \overline{\vartheta} \rangle$ its minimal filtration through Γ , where Γ is finite and Sub-closed. Let us put $\widehat{R} = \overline{R}^+ \cup \overline{R}^{K5}$. Let us show that $\overline{R}^+ \cup \overline{R}^{K45} \subseteq \overline{R}^{max}$.

That is, if $\mathcal{M}, y \models \varphi$ for $\Diamond \varphi \in \Gamma$ and $\hat{x}\hat{R}\hat{y}$, then $\mathcal{M}, x \models \Diamond \varphi$. Let $\hat{x}\hat{R}\hat{y}$.

- 1. Suppose $(\hat{x}, \hat{y}) \in \overline{R}$, then $\mathcal{M}, x \models \Diamond \varphi$ holds trivially by the definition of the minimal filtration
- 2. Let us consider the case when $(\hat{x}, \hat{y}) \in \overline{R}^{K5}$. The second alternative is the same as for the K4-case, see [2, p. 141].

Suppose the statement holds \overline{R}_n and $(\hat{x}, \hat{y}) \in \overline{R}_{n+1} = \overline{R}_n \cup (\overline{R}_n^{-1} \circ \overline{R}_n)$. We consider the case of $(\hat{x}, \hat{y}) \in (\overline{R}_n^{-1} \circ \overline{R}_n)$.

Then there exists \hat{z} such that $(\hat{z}, \hat{x}), (\hat{z}, \hat{y}) \in \overline{R}_n$.

By IH, $\mathcal{M}, z \models \Diamond \varphi$.

 $(\hat{z}, \hat{y}) \in \overline{R}_n$ iff there are $\hat{u}_1, \dots, \hat{u}_n$ such that

$$\hat{z} \underset{\hat{R}}{\longleftarrow} \hat{u}_1 \xrightarrow{\hat{R}'} \hat{u}_2 \xrightarrow{\hat{R}'} \dots \xrightarrow{\hat{R}'} \hat{u}_{n-1} \xrightarrow{\hat{R}'} \hat{u}_n \xrightarrow{\hat{R}} \hat{y}$$

where \hat{R}' is either \hat{R} or \hat{R}^{-1} .

As it is known, $\Diamond \Diamond \varphi \rightarrow \Box \Diamond \varphi \in \mathbf{K}45$.

 $\hat{u}_1\hat{z}$, that is, $u_1'Rz'$ for some $u_1' \in \hat{u}_1$ and $z' \in \hat{z}$. That is, $\mathcal{M}, u_1' \models \Diamond \Diamond \varphi$, so $\mathcal{M}, u_1' \models \Diamond \varphi$ and $\overline{\mathcal{M}}, \hat{u}_1 \models \Diamond \varphi$.

We have $\hat{u}_1\hat{R}'\hat{u}_2$. Suppose $\mathcal{M}, u_1'' \models \Diamond \varphi$ and $u_1''Ru_2'$. We also have $\mathcal{M}, u_1'' \models \Box \Diamond \varphi$, thus, $\mathcal{M}, u_2' \models \Diamond \varphi$.

Suppose $\hat{u}_2 \hat{R} \hat{u}_1$ and $u'_2 R u''_1$, then $\mathcal{M}, u'_2 \models \Diamond \varphi$.

Similarly, we have $\mathcal{M}, u_i \models \Diamond \varphi$ iff $\mathcal{M}, u_{i+1} \models \Diamond \varphi$, whenever $\hat{u}_i \hat{R}' \hat{u}_{i+1}$.

Finally, we have $\hat{u}_n \hat{R} \hat{x}$. Thus, $u'_n R x'$ for some $u'_n \in \hat{u}_n$ and $x' \in \hat{x}$. $\mathcal{M}, u'_n \models \Diamond \varphi$, so $\mathcal{M}, u'_n \models \Box \Diamond \varphi$. Then $\mathcal{M}, x' \models \Diamond \varphi$.

3 i,j-Euclideaness

Definition 12. A binary relation $R \subseteq W \times W$ is called i, j-Euclidean for $i, j < \omega$, if for each x, y, z such that xR^iy and xR^jz implies xRz.

Proposition 1. Let $\mathcal{F} = \langle W, R \rangle$, then \mathcal{F} is i, j-Euclidean iff $\mathcal{F} \models \Diamond^i p \to \Box^j \Diamond p$. As a corollary, the logic $\mathbf{K}5^{i,j} = \mathbf{K} \oplus \Diamond^i p \to \Box^j \Diamond p$ is Kripke-complete.

Let R be a binary relation on $W \neq \emptyset$, then the i, j-Euclidean closure of R (where $i, j < \omega$), denoted as $R^{\mathbf{K}5_{i,j}}$, is a binary relation defined recursively as follows:

1.
$$R_0 = R$$

2.
$$R_{n+1} = R_n \cup (((R_n)^{-1})^i \circ R_n^j)$$

3.
$$R^{\mathbf{K}5_{i,j}} = \bigcup_{k < \omega} R_k$$

Note that the following property holds not for every $\mathbf{K5}^{i,j}$, consider \mathbf{KB} as an example (clearly, $\mathbf{KB} = \mathbf{K5}^{0,1}$), whose modal depth is ∞ .

Exercise 1. md(K5) = 2.

Proof. For the upper bound, let us show that $\equiv_2 = \equiv_3$ in every weak canonical model of **K5**, namely $\mathcal{L}_{\mathbf{K5}} \upharpoonright k$ for $k < \omega$. For that, we show that if \exists can win $\mathcal{G}_2(\mathcal{L}_{\mathbf{K5}} \upharpoonright k, \Gamma, \Delta)$ (where Γ and Δ are maximal consistent **K5** $\upharpoonright k$ -theories), then she can the game $\mathcal{G}_2(\mathcal{L}_{\mathbf{K5}} \upharpoonright k, \Gamma, \Delta)$ as well.

If \exists has a winning strategy in $\mathcal{G}_2(\mathcal{L}_{\mathbf{K5}} \upharpoonright k, \Gamma_0, \Delta_0)$, then, by Lemma 4, $\langle \mathcal{L}_{\mathbf{K5}} \upharpoonright k, \Gamma_0 \rangle \equiv_2 \langle \mathcal{L}_{\mathbf{K5}} \upharpoonright k, \Delta_0 \rangle$.

Therefore, Γ_0 and Δ_0 consist of the same formulas whose modal depth is less than or equal to 2.

Suppose (Γ_2, Δ_2) is the second position. Clearly $\Gamma_2 \equiv_0 \Delta_2$

Let us assume that \forall picks Γ_3 such that $\Gamma_2 R_{\mathbf{K5} \uparrow k} \Gamma_3$. \exists has to find a proper response, namely Δ_3 , to win the game.

Exercise 2. Let i = j, then $md(\mathbf{K5}^{i,i}) = i + 1$. So $\mathbf{K5}^{i,i}$ is locally finite.

Theorem 5. $md(\mathbf{K5}^{i,j}) = 1 + j + i$, where i > 0.

Theorem 6. $\mathbf{K5}^{i,j}$ admits definable filtrations.

Proof. Let $\mathcal{M} = \langle W, R, \vartheta \rangle$ and Γ a finite Sub-closed of formulas. We extend Γ as

$$\Delta = \Gamma \cup \operatorname{Sub}\{\Diamond^i \psi \mid \Box \psi \in \Gamma\} \cup \operatorname{Sub}\{\Box^j \Diamond \psi \mid \Diamond \psi \in \Gamma\}$$

Let $(\hat{x}, \hat{y}) \in R^{\mathbf{K}_{5_{i,j}}}$, $\mathcal{M}, x \models \Box \psi$ for $\Box \psi$ in Δ . If n = 0, then the statement is obvious. Suppose n = 1. Then $(\hat{x}, \hat{y}) \in R_{min} \cup (((R_{min})^{-1})^i \circ R_{min}^j)$. Consider the second alternative. Then there exists \hat{z} such that $(\hat{x}, \hat{z}) \in ((R_{min})^{-1})^i$ and $(\hat{z}, \hat{y}) \in R_{min}^j$.

That is, there are $\hat{x_1}, \hat{x_2}, \dots, \hat{x_i}$ and $\hat{y_1}, \hat{y_2}, \dots, \hat{y_j}$ such that

$$\hat{z} \xrightarrow{R_{min}} \hat{x_1} \xrightarrow{R_{min}} \hat{x_2} \xrightarrow{R_{min}} \dots \xrightarrow{R_{min}} \hat{x_i} \xrightarrow{R_{min}} \hat{x}$$

$$\hat{z} \xrightarrow{R_{min}} \hat{y}_1 \xrightarrow{R_{min}} \hat{y}_2 \xrightarrow{R_{min}} \dots \xrightarrow{R_{min}} \hat{y}_j \xrightarrow{R_{min}} \hat{y}$$

???

4 The case of 2-transitivity

Let us define the logic \mathcal{L} as $\mathbf{K} \oplus \Diamond \Diamond \Diamond p \to \Diamond p$. Let R be a binary relation, the \mathcal{L} -closure of R is defined (denoted as $R^{\triangleright \!\!\!\!/}$) as the following union:

$$R^{\triangleright} = R \cup R^3 \cup R^5 \cup \cdots \cup R^{2k+1} \cup \cdots$$

Theorem 7. \mathcal{L} does not admit strict filtrations.

Proof. Consider the following frame $\mathcal{F} = \langle W, R \rangle$:

Clearly that \mathcal{F} is an \mathcal{L} -frame. We define the valuation ϑ as follows:

$$\vartheta(p) = \{x\}
\vartheta(q) = \{y, y_1\}
\vartheta(r) = \{z\}$$

Let us put $\Gamma = \operatorname{Sub}\{p, q, \diamond r\}$. We factorise W through \sim_{Γ} and consider a model $\widehat{\mathcal{M}} = \langle W/\sim_{\Gamma}, \widehat{R}, \widehat{\vartheta} \rangle$, where $\widehat{R} = (\widehat{R}_{min})^{\diamondsuit}$. We have $(\widehat{x}, \widehat{z}) \in \widehat{R} \circ \widehat{R} \circ \widehat{R}$, but $\diamond r$ is not true at x.

5 Fusion stuff

Definition 13. Let \mathcal{L}_1 and \mathcal{L}_2 be modal logics, then the fusion $\mathcal{L}_1 * \mathcal{L}_2$ is the minimal bimodal logic that contains \mathcal{L}_1 and \mathcal{L}_2 [8].

Lemma 7. Let Γ be a finite and Sub-closed set of formulas.

- 1. $\mathcal{M} = \langle W, R, \vartheta \rangle$ be a K5-model. Consider $\Gamma' = \Gamma \cup \{ \Diamond \Box \psi \mid \Box \psi \in \Gamma \}$. Let Δ be any finite and Sub-closed extension of Γ' tThen a model $\widehat{M} = \langle W / \sim_{\Delta}, (R_{\Gamma'}^{min})^{\mathbf{K5}}, \widehat{\vartheta} \rangle$ is a filtration of \mathcal{M} through Γ' .
- 2. Let $\mathcal{L} = \mathbf{K} \oplus \Diamond \Diamond \Diamond p \to \Diamond p$, then we have the similar statement for \mathcal{L} , where Δ is a Sub-closed extension extension of Γ'

Proof.

Recall that $(R_{\Delta}^{min})^{\mathbf{K5}}$ is defined inductively as:

- (a) $R_{\Gamma'}^0 = R_{\Gamma'}^{min}$
- (b) $R_{\Gamma'}^{n+1} = R_{\Gamma'}^n \cup (R_{\Gamma'}^{n-1} \circ R_{\Gamma'}^n)$
- (c) $(R_{\Gamma'}^{min})^E = \bigcup_{k < \omega} R_{\Gamma'}^k$

If $R_{\Gamma'}^{min}$ is already a subrelation of R^{max} , so the base case is self-evident.

Suppose the statement holds for $R_{\Gamma'}^n$, $(\hat{x}, \hat{y}) \in R_{\Gamma'}^{n+1}$ such that $\mathcal{M}, y \models \psi$ for $\Diamond \psi \in \Gamma'$.

According to the third item of Lemma 6, this is the same as there exist $\widehat{z_0}, \widehat{z_1}, \ldots, \widehat{z_{n-1}}, \widehat{z_n}$ such that $\widehat{z_1} R_{\Gamma'}^{min} \widehat{x}, \widehat{z_n} R_{\Gamma'}^{min} \widehat{y}$, and for each $i \in n+1$ we have either $\widehat{z_i} R_{\Gamma'}^{min} \widehat{z_{i+1}}$ or $\widehat{z_{i+1}} R_{\Delta}^{min} \widehat{z_i}$.

We visualise this with the following graph:

$$\hat{x} \overset{R_{\Gamma'}^{min}}{\longleftrightarrow} \hat{z_0} \overset{R'}{\longleftrightarrow} \hat{z_1} \overset{R'}{\longleftrightarrow} \dots \overset{R'}{\longleftrightarrow} \widehat{z_{n-1}} \xrightarrow{R'} \widehat{z_n} \xrightarrow{R_{\Gamma'}^{min}} \hat{y}$$

where R' is either $R_{\Gamma'}^{min}$ or its converse. We have $\mathcal{M}, z \models \Box \psi, \mathcal{M}, y \models \psi$, so $\mathcal{M}, z_n \models \Diamond \psi$. Since \mathcal{M} is a **K**5-model, we have $\mathcal{M}, z_n \models \Box \Diamond \psi$.

After that we apply the following property of K5-models:

Let $\mathcal{M} \models \mathbf{K}5$ and φ a formula, then for each $a, b \in \mathcal{M}$ such that aRb we have $\mathcal{M}, a \models \Box \Diamond \varphi$ iff $\mathcal{M}, b \models \Box \Diamond \varphi$

So we have $\mathcal{M}, z_0 \models \Box \Diamond \varphi$. Note that we always stay within Γ' . Thus, $\mathcal{M}, x \models \Diamond \varphi$.

2. Let us prove the second item. Let \mathcal{M} be an \mathcal{L} -model. The \mathcal{L} -closure of the minimal filtered relation modulo Δ , namely $R_{\Gamma'}^{min^{\mathcal{L}}}$ has the following form:

$$R^{\min \mathcal{L}}_{\Gamma'} = \bigcup_{k < \omega} R^{\min 2k + 1}_{\Gamma'}$$

We reformulate this closure equivalently as follows:

- (a) $R_0 = R_{\Gamma'}^{min}$
- (b) $R_{n+1} = R_n \cup ((R_{\Delta}^{min})^2 \circ R_n)$
- (c) $R_{\Gamma'}^{min^{\mathcal{L}}} = \bigcup_{k < \omega}$

The base case is self-evident. Suppose the statement holds for R_n and $(\hat{x}, \hat{y}) \in (R_{\Gamma'}^{min})^2 \circ R_n$, that is, there exists \hat{z} such that $(\hat{x}, \hat{z}) \in (R_{\Gamma'}^{min})^2$ and $(\hat{z}, \hat{y}) \in R_n$. By IH, we have $\mathcal{M}, z \models \Diamond \varphi$.

We have the following:

$$\hat{x} \xrightarrow{R_{\Delta}^{min}} \hat{y_1} \xrightarrow{R_{\Gamma'}^{min}} \hat{z}$$

The sequence of implications if the following:

$$\widehat{\mathcal{M}}, \hat{z} \models \Diamond \varphi \Rightarrow \widehat{\mathcal{M}}, \hat{y_1} \models \Diamond \Diamond \varphi \Rightarrow \mathcal{M}, x \models \Diamond \Diamond \varphi \Rightarrow \mathcal{M}, x \models \Diamond \varphi$$

Theorem 8.

1. K5 * K5 admits definable filtrations.

2. $\mathbf{K}5 * \cdots * \mathbf{K}5$ admits definable filtrations.

3. If \mathcal{L} admits strict filtrations, then $\mathbf{K5} * \mathcal{L}$ admits definable filtrations

4. If $\mathcal{L}_1, \ldots, \mathcal{L}_n$ admit strict filtrations, then $\mathbf{K}_5 * \cdots * \cdots * \mathbf{K}_5 * \mathcal{L}_1 * \cdots * \mathcal{L}_n$

5. Let $\mathcal{L} = \mathbf{K} \oplus \Diamond \Diamond \Diamond p \rightarrow \Diamond p$ (here and below), then $\mathcal{L} * \mathcal{L}$ admits definable filtrations.

6. Let $\mathcal{L} = \mathbf{K} \oplus \Diamond \Diamond \Diamond p \rightarrow \Diamond p$ and \mathcal{L}_1 a logic that admits strict filtrations, then $\mathcal{L} * \mathcal{L}_1$

Proof.

1. Let Γ be a finite Sub-closed set of bimodal formulas, $\mathcal{F} = \langle W, R_1, R_2 \rangle$ a K5 * K5-frame, and ϑ a valuation on \mathcal{F} . Denote $\langle \mathcal{F}, \vartheta \rangle$ as \mathcal{M} .

We introduce the set of fresh variables $V = \{p_{\psi} | \psi \in \Gamma\}$ and define a new model $\mathcal{M}' = \langle \mathcal{F}, \vartheta' \rangle$ as follows:

For all
$$\psi \in \Gamma$$
, $\mathcal{M}, x \models \psi \Leftrightarrow \mathcal{M}', x \models \psi \Leftrightarrow \mathcal{M}', x \models p_{\psi}$.

Consider these modifications of Γ and V:

$$\Gamma' = \Gamma \cup \{ \diamondsuit_1 \square_1 \psi \mid \square_1 \psi \in \Gamma \} \cup \{ \diamondsuit_2 \square_2 \psi \mid \square_2 \psi \in \Gamma \}$$
$$\Delta = V \cup \text{Sub}(\{ \diamondsuit \square p_\psi \mid \square_i \psi \in \Gamma, in = 1, 2 \})$$

Let us define an equivalence relation \sim_{Δ} induced by Δ .

Consider $\mathcal{M}_i = \langle W, R_i, \vartheta' \rangle$, a reduct of \mathcal{M}' , we have:

- (a) $\mathcal{M}_i, x \models \Box p_{\psi} \text{ iff } \mathcal{M}, x \models \Box_i \psi$
- (b) $\mathcal{M}_i, x \models \Diamond \Box p_{\psi} \text{ iff } \mathcal{M}, x \models \Diamond_i \Box_i \psi$

So $\sim = \sim_{\Gamma'}$ by the construction. Let us put $\widehat{W} = W / \sim_{\Gamma'}$. Lemma 7 implies the following claim:

Claim 1. Let $\widehat{R}_i = (R_{\Delta}^{min})^E$ and $\widehat{\vartheta(p)} = \{[x]_{\sim_i} \mid \mathcal{M}_i, x \models p\}$ for $p \in \Delta_1$, define $\widehat{\mathcal{M}}_i = \widehat{W}, \widehat{R}_i, \widehat{\vartheta}$. Then $\widehat{\mathcal{M}}_i \models \mathbf{K}_5$ and $\widehat{\mathcal{M}}_i$ is a filtration of \mathcal{M}_i through Δ .

Finally, we consider a model $\widehat{\mathcal{M}} = \langle \widehat{W}, \widehat{R}_1, \widehat{R}_2, \vartheta \rangle$, where $\widehat{R_{\Gamma'}}_i = R_{i\Gamma'}^{min^E}$ and $\vartheta(p)$ is defined as usual for $p \in \Gamma$. $\widehat{\mathcal{M}}$ is a filtration of \mathcal{M} through Γ' .

Let $\hat{x}\widehat{R}_{\Gamma'i}\hat{y}$ and $\mathcal{M}, x \models \Box_i \psi$ for $\Box_i \psi \in \Gamma$. Then $\mathcal{M}_i, x \models \Box p_{\psi}$, so $\widehat{\mathcal{M}}_i, \hat{x} \models \Box p_{\psi}$. By the claim above, $\widehat{\mathcal{M}}_i$ is a filtration of \mathcal{M}_i through Δ , so $\mathcal{M}_i, y \models p_{\psi}$. Then $\mathcal{M}, y \models \psi$.

- 2. Likewise
- 3. The argument is the same as in the proof of the first item, except for **Claim** 1 that has the following formulation: Let $\widehat{R}_1 = (R_{\Delta}^{min})^E$ and $\widehat{R}_2 = (R_{\Delta}^{min})^{\mathcal{L}_1}$ Define a valuation as usual as $\widehat{\vartheta(p)} = \{[x]_{\sim_i} \mid \mathcal{M}_i, x \models p\}$ for $p \in \Delta_1$, define $\widehat{\mathcal{M}}_1 = \langle \widehat{W}, \widehat{R}_1, \widehat{\vartheta} \rangle$ and $\widehat{\mathcal{M}}_2 = \langle \widehat{W}, \widehat{R}_2, \widehat{\vartheta} \rangle$. Then $\widehat{\mathcal{M}}_1 \models \mathbf{K}_5$ and $\widehat{\mathcal{M}}_1 \models \mathbf{L}$ and $\widehat{\mathcal{M}}_i$ is a filtration of \mathcal{M}_i through Δ .
- 4. Likewise
- 5. The argument is similar to the proof of first item, but filtrations are slightly different. Let $\mathcal{M} = \langle W, R_1, R_2, \vartheta \rangle$ be a $\mathcal{L} * \mathcal{L}$ model and Γ a Sub-closed set of formulas. As above, we define a set V and a model \mathcal{M}' . Define extensions of Γ and V:

$$\Gamma' = \Gamma \cup \{ \diamondsuit_1 \diamondsuit_1 \psi \mid \diamondsuit_1 \psi \in \Gamma \} \cup \{ \diamondsuit_2 \diamondsuit_2 \psi \mid \diamondsuit_2 \psi \in \Gamma \}$$
$$\Delta = V \cup \text{Sub}(\{ \diamondsuit \diamondsuit_{p_{\psi}} \mid \diamondsuit \psi \in \Gamma, i = 1, 2 \})$$

As above $\sim_{\Delta} = \Gamma'$ and $\widehat{\mathcal{M}'} = \langle W/\sim_{\Delta}, \widehat{R_i}, \widehat{\vartheta} \rangle$ are filtrations of reducts of \mathcal{M}' through Δ . Then $\widehat{\mathcal{M}} = \langle W/\sim_{\Delta}, \widehat{R_1}, \widehat{R_2}, \widehat{\vartheta} \rangle$ is a required filtration of the original \mathcal{M} .

6. Extend Γ with $\{\diamondsuit_i\diamondsuit_i\psi\mid \diamondsuit_i\psi\in\Gamma, i=1,2\}$ and V with $\{\diamondsuit\diamondsuit p_\psi\mid \diamondsuit_i\psi, i=1,2\}$

Theorem 9. Let \mathcal{L}_1 and \mathcal{L}_2 be modal logics that admit definable filtrations. If $\operatorname{Mod}(\mathcal{L}_1)$ and $\operatorname{Mod}(\mathcal{L}_2)$ admit definable filtrations, so does $\operatorname{Mod}(\mathcal{L}_1 * \mathcal{L}_2)$.

Proof. Let $\mathcal{M} = \langle W, R_1, R_2, \vartheta \rangle$ be an $\mathcal{L}_1 * \mathcal{L}_2$ -model. We define a notation $\nabla = \{\neg \diamondsuit, \diamondsuit \neg, \diamondsuit\}$. Both logics admit definable filtrations, so for every finite Sub-closed set Γ and for every \mathfrak{M} , an \mathcal{L}_1 -model (or an \mathcal{L}_2 one) there exists there exists Δ , a extension of Γ having the form:

9

$$\Delta_{1} = \Gamma \cup \operatorname{Sub}\{\nabla_{1}\nabla_{2} \dots \nabla_{n} \diamondsuit \psi \mid \diamondsuit \psi \in \Gamma\} \text{ (for } \mathcal{L}_{1})$$

$$\Delta_{2} = \Gamma \cup \operatorname{Sub}\{\nabla_{1}\nabla_{2} \dots \nabla_{k} \diamondsuit \psi \mid \diamondsuit \psi \in \Gamma\} \text{ (for } \mathcal{L}_{2})$$

such that $\widehat{\mathfrak{M}} = \langle W/\sim_{\Delta_i}, \widehat{R}, \vartheta \rangle$ is a filtration of \mathfrak{M} through the corresponding Δ_i .

Let V be a set of fresh variables indexed over Γ as in the proof for a fusion of **K5** with something else. Let \mathcal{M}' be a model defined as previously. We extend V and Γ in the following way:

$$\Gamma' = \Gamma \cup \operatorname{Sub}\{\nabla_{11}\nabla_{21} \dots \nabla_{n1} \diamondsuit_1 \psi \mid \diamondsuit_1 \psi \in \Gamma\} \cup \operatorname{Sub}\{\nabla_{12}\nabla_{22} \dots \nabla_{n2} \diamondsuit_2 \psi \mid \diamondsuit_2 \psi \in \Gamma\}$$

$$\Delta = V \cup \operatorname{Sub}\{\nabla_1 \nabla_2 \dots \nabla_n \diamondsuit_p \psi \mid \nabla_{n+11} \psi \in \Gamma'\} \cup \operatorname{Sub}\{\nabla_1 \nabla_2 \dots \nabla_k \diamondsuit_p \psi \mid \diamondsuit_2 \psi \in \Gamma\}.$$

By the construction, $\sim_{\Gamma'} = \sim_{\Delta}$. So we have filtrations for the corresponding reducts of \mathcal{M}' through Δ as well as for the original \mathcal{M} .

References

- [1] Patrick Blackburn, Maarten de Rijke, and Yde Venema. *Modal Logic*. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2001.
- [2] Alexander Chagrov and Michael Zakharyaschev. *Modal Logic*. Oxford Logic Guides, Volume 35. Oxford University Press, 1997.
- [3] Chen Chung Chang and H Jerome Keisler. Model theory. Elsevier, 1990.
- [4] Kit Fine. Logics containing k4. part i. The Journal of Symbolic Logic, 39(1):31-42, 1974.
- [5] Dov M Gabbay and Valentin B Shehtman. Products of modal logics, part 1. Logic journal of IGPL, 6(1):73–146, 1998.
- [6] Valentin Goranko and Martin Otto. Model theory of modal logic. In *Studies in Logic and Practical Reasoning*, volume 3, pages 249–329. Elsevier, 2007.
- [7] Stanislav Kikot, Ilya Shapirovsky, and Evgeny Zolin. Completeness of logics with the transitive closure modality and related logics. arXiv preprint arXiv:2011.02205, 2020.
- [8] Agi Kurucz. Combining modal logics. Studies in Logic and Practical Reasoning, 3:869–924, 2007.
- [9] Valentin B Shehtman. Filtration via bisimulation. Advances in modal logic, 5:289–308, 2004.