$\frac{4}{9}$ קומבינטוריקה - תרגיל מס' פתרוו

תרגיל מס' 1

בכנסת בוחרים יו"ר מבין 4 מועמדים. כמה תוצאות שונות אפשריות ϵ (הנח שכל אחד מבין ϵ 120 חברי הכנסת יכול להצביע בעד אחד המועמדים או להימנע. תוצאת ההצבעה היא מספר הקולות להם זכה כל מועמד ומספר הנמנעים.)

פתרון:

נסמן x_{0} - מספר הנמנעים, x_{1} - מספר הקולות שקיבל המועמד הראשון, x_{2} - מספר הקולות שקיבל . מספר הקולות שקיבל המועמד השלישי, x_4 - מספר הקולות שקיבל המועמד הרביעי x_4 - מספר הקולות שקיבל המועמד הרביעי אז מספר התוצאות האפשריות הוא בדיוק מספר הפתרונות של המשוואה

$$x_0 + x_1 + x_2 + x_3 + x_4 = 120, \quad x_0, x_1, x_2, x_3, x_4 \ge 0$$

 $\binom{120+5-1}{5-1} = \binom{124}{4}$ יהוא שווה ל-

תרגיל מס' 2

- $1 \leq a_1 < a_2 < \ldots < a_k \leq n$ כך ש: a_1, a_2, \ldots, a_k והנח ש: $1 \leq a_1 < a_2 < \ldots < a_k \leq n$ א. בכמה דרכים ניתן לבחור מספרים טבעיים (0 < k < n)
 - $1.1 \leq a_1 \leq a_2 \leq \ldots \leq a_k \leq n$ ב. אותה שאלה, כאשר התנאי הוא:
 - $a_1 \neq a_k$:מותה שאלה כמו בחלק ב', כאשר דורשים בנוסף

פתרון:

א. מספר האפשרויות לבחור את המספרים a_1,a_2,\ldots,a_k מבין המספרים לבחור את המספרים א. ולכן מספרים, ולכן מספרים שונים מבין מספרים, ולכן מספרים, ולכן האפשרויות מספרים אונים מבין מספרים, ולכן $1 \leq a_1 < a_2 < \ldots < a_k \leq n$ $\binom{n}{k}$ התשובה לסעיף זה היא

ב. בסעיף זה הפתרון הוא לא פשוט כמו בסעיף קודם. נגדיר משתני עזר הבאים:

$$x_1 = a_1 - 1, x_2 = a_2 - a_1, x_3 = a_3 - a_2, \dots, x_k = a_k - a_{k-1}, x_{k+1} = n - a_k$$

נשים לב כי לכל אוסף (a_1,a_2,\ldots,a_k) מתאים אוסף (a_1,a_2,\ldots,a_k) אחד ויחיד (חשבו למהיי). כמו כן נשים לב כי תמיד מתקיים

$$x_1 + x_2 + x_3 + \ldots + x_k + x_{k+1} = (a_1 - 1) + (a_2 - a_1) + (a_3 - a_2) + \ldots + (a_k - a_{k-1}) + (n - a_k) = n - 1$$

לכן מספר הדרכים לבחור את $x_1, x_2, \ldots, x_{k+1}$ שווה למספר הדרכים לבחור את a_1, a_2, \ldots, a_k שווה למספר הפתרונות של המשוואה

$$x_1 + x_2 + \ldots + x_{k+1} = n - 1, \quad x_1, x_2, \ldots, x_{n+1} \ge 0$$

 $a(n-1+k+1-1)=\binom{n-k-1}{k}$ מכאן שהתשובה היא

<u>תרגיל מס' 3</u>

כמה פתרונות במספרים שלמים חיוביים יש לכל אחת מן המשוואות הבאותי

$$x_1 + x_2 + \cdots + x_7 = 20$$
 .8

$$2x_1 + x_2 + 5x_3 + x_4 = 14$$
 .

$$(x_1 + x_2 + x_3)(x_4 + x_5 + x_6) = 18$$
 .3

פתרון:

<u>הערה חשובה לגבי תרגיל מס' 3 כולו:</u> שימו לב שהפתרונות עליהם אנו נשאלים בשאלה זו הם שלמים חיוביים. התעלמות מנקודה זו גורמת לטעויות בפתרון השאלה.

א. נחליף משתנים (כדי לקבל משוואה בשלמים אי שליליים)

$$y_i = x_i - 1$$
 $i = 1, 2, \dots, 7$

נקבל שהמשוואה שלנו שקולה למשוואה

$$y_1 + y_2 + \ldots + y_7 = 13$$
 $y_1, y_2, \ldots, y_7 \ge 0$

ומספר הפתרונות של המשוואה המקורית שווה למספר הפתרונות של המשוואה החדשה שהוא כידוע

$$\binom{13+7-1}{7-1} = \binom{19}{6}$$

ב. נפרק את הבעיה למקרים לפי הערכים של x_1,x_3 . גם בסעיף זה חשוב לא לשכוח שהמשתנים גדולים ממש מ-0. נרכז את הממצאים בטבלה:

x_3	x_1	x_2,x_4 המשואה שמתקבלת על	מספר הפתרונות במקרה זה
1	1	$x_2 + x_4 = 7$	6
1	2	$x_2 + x_4 = 5$	4
1	3	$x_2 + x_4 = 3$	2
2	1	$x_2 + x_4 = 2$	1
			13 סה״כ

לכן התשובה היא 13.

ג. נפרק את הבעיה למקרים לפי הערכים של $x_1+x_2+x_3$ ושל הבעיף זה מסעיף זה חשוב לא ג. נפרק את הבעיה למקרים לפי הערכים של 0. נרכז את הממצאים בטבלה:

$x_1 + x_2 + x_3$	$x_4 + x_5 + x_6$	מספר האפשרויות	מספר האפשרויות	סה"כ מספר האפשרויות
		x_{1}, x_{2}, x_{3} - ל	x_4, x_5, x_6 - ל	למקרה זה
3	6	1	10	10
6	3	10	1	10
				20 סה"כ

והתשובה היא 20.

תרגיל מס' 4

, לגבי האד מן הביטויים הבאים, קיבעו האם הוא מופיע בפיתוח של $\left(x^6+y^5\right)^7$ לפי נוסחת הבינום, ואם כן - מה המקדם שלו.

$$x^{30}y^{10}$$
 . $(x^{12}y^{25})$. $(x^{24}y^{20})$.

:פתרון

$$(x^6+y^5)^7 = \binom{7}{0}x^{42} + \binom{7}{1}x^{36}y^5 + \binom{7}{2}x^{30}y^{10} + \binom{7}{3}x^{24}y^{15} + \binom{7}{4}x^{18}y^{20} + \binom{7}{5}x^{12}y^{25} + \binom{7}{6}x^6y^{30} + \binom{7}{7}y^{35}y^{10} + \binom{7}{10}x^{10}y^{10} + \binom{7$$

לכן

א. $x^{24}y^{20}$ לא מופיע בפיתות.

 $x^{12}y^{25}$ ב. מופיע מפיתוח אם מקדם $x^{12}y^{25}$ ב.

 $x^{30}y^{10}$ ג. מופיע בפיתוח עם מקדם $x^{30}y^{10}$ ג.

$\underline{\mathsf{(בונוס)}},5^*$

עבור ($\binom{n}{k}$) בדומה לצורה בה ניתן היה להגדיר את באמצעות משולש פסקל, נגדיר את המספרים עבור את בדומה לצורה בה ניתן היה להגדיר את המצעות משולש הבא:

או באופן יותר פורמלי:

$$n\geq 1$$
 לכל ($\binom{n}{1}$) = $\binom{n}{n}$ או א

$$n\geq 1, 0< k< n$$
 לכל, $\left(inom{n+1}{k+1}
ight)=\left(inom{n}{k}
ight)+\left(inom{n}{k+1}
ight)$ בי

מצא ביטוי סגור ל- $\binom{n}{k}$ באמצעות המקדמים הבינומיים הרגילים.

פתרוו

$$(\binom{n}{k}) = \binom{n}{k-1} + \binom{n-1}{k} = \frac{n}{k}$$

את התשובה ניתן לנחש או להגיע אליה מהאבחנה, כי המשולש החדש הוא סכום של שני משולשים "מוזזים".

נראה כי בשפת המשולש התנאים מתקיימים:

$$\binom{n}{0} + \binom{n-1}{1} = n = \left(\binom{n}{1}\right)$$

$$\binom{n}{n-1} + \binom{n-1}{n} = n = \binom{n}{n}$$

בתוך המשולש, נוכיח את נכונות הנוסחא באנדוקציה על מספר השורה n=1 עבור n=1 הנוסחא טריוויאלית. בתוך המשולש, נוכיח עבור n+1:

$$\binom{n+1}{k-1} + \binom{(n+1)-1}{k} = \binom{n}{k-2} + \binom{n}{k-1} + \binom{n-1}{k} + \binom{n-1}{k-1} = \binom{n}{k} + \binom{n}{k-1} = \binom{n}{k} + \binom{n-1}{k-1} = \binom{n}{k} + \binom{n-1}{k-1} = \binom{n-1}{k} + \binom{n-1}{k-1} = \binom{n-1}$$

<u>הערה:</u> את התשובה הסופית ניתן לכתוב בהרבה דרכים נכונות.