Cryptography and Network Security

Professor Dr. Rafiqul Islam

Number Theory Outline

- Basic Number theory
- Congruence
- Chinese Remainder Theorem
- Modular Exponentiation
- Fermat and Euler's theorem
- Finite Fields

Basic Number Theory

• Division Algorithm

$$A = QN + R$$

$$11 = 1 \times 7 + 4$$

Q = quotient

R = Remainder

Greatest Common Divisor (GCD)

- a common problem in number theory
- GCD (a,b) of a and b is the largest integer that divides evenly into both a and b
 - eg GCD(60,24) = 12
- define gcd(0, 0) = 0
- often want no common factors (except 1) define such numbers as relatively prime
 - eg GCD(8,15) = 1
 - hence 8 & 15 are relatively prime

Example GCD(1970,1066)

$$1970 = 1 \times 1066 + 904$$

$$1066 = 1 \times 904 + 162$$

$$904 = 5 \times 162 + 94$$

$$162 = 1 \times 94 + 68$$

$$94 = 1 \times 68 + 26$$

$$68 = 2 \times 26 + 16$$

$$26 = 1 \times 16 + 10$$

$$16 = 1 \times 10 + 6$$

$$10 = 1 \times 6 + 4$$

$$6 = 1 \times 4 + 2$$

$$4 = 2 \times 2 + 0$$

$$\gcd(1066, 904)$$

$$\gcd(904, 162)$$

$$\gcd(162, 94)$$

$$\gcd(48, 26)$$

$$\gcd(68, 26)$$

$$\gcd(16, 10)$$

$$\gcd(10, 6)$$

$$\gcd(10, 6)$$

$$\gcd(4, 2)$$

$$\gcd(4, 2)$$

$$\gcd(2, 0)$$

Example GCD

To find $d = \gcd(a,b) = \gcd(1160718174,316258250)$							
$a = q_1 b + r_1$	1160718174 = 3	3 × 316258250 +	211943424	$d = \gcd(316258250, 211943424)$			
$b=q_2r_1+r_2$	316258250 = 1	1 × 211943424 +	104314826	$d = \gcd(211943424, 104314826)$			
$r_1 = q_3 r_2 + r_3$	211943424 = 2	2 × 104314826 +	3313772	$d = \gcd(104314826, 3313772)$			
$r_2 = q_4 r_3 + r_4$	104314826 =	31 × 3313772 +	1587894	$d = \gcd(3313772, 1587894)$			
$r_3=q_5r_4+r_5$	3313772 =	2 × 1587894 +	137984	$d = \gcd(1587894, 137984)$			
$r_4=q_6r_5+r_6$	1587894 =	11 × 137984 +	70070	$d = \gcd(137984, 70070)$			
$r_5 = q_7 r_6 + r_7$	137984 =	1×70070 +	67914	$d = \gcd(70070, 67914)$			
$r_6=q_8r_7+r_8$	70070 =	$1 \times 67914 +$	2156	$d = \gcd(67914, 2156)$			
$r_7 = q_9 r_8 + r_9$	67914 =	31 × 2516 +	1078	$d = \gcd(2156, 1078)$			
$r_8 = q_{10}r_9 + r_{10}$	2156 =	$2 \times 1078 +$	0	$d = \gcd(1078, 0) = 1078$			
Therefore, $d = \gcd(1160718174, 316258250) = 1078$							

Inverse Mod

$$26 = 1 * 23 + 3$$
 $23 = 7 * 3 + 2$
 $3 = 1 * 2 + 1$
 $2 = 2 * 1 + 0$

Back-substitutions yield:

1 =
$$3 - 2$$

= $3 - (23 - 7*3)$
= $8*3 - 23$
= $8*(26-23) - 23$
= $8*26 - 9*23$

Modular Arithmetic

- define modulo operator "a mod n" to be remainder when a is divided by n
 - where integer *n* is called the **modulus**
- > b is called a **residue** of a mod n
 - since with integers can always write: a = qn + b
 - usually chose smallest positive remainder as residue
 - ie. $0 \le b \le n-1$
 - process is known as modulo reduction
 - eg. $-12 \mod 7 = -5 \mod 7 = 2 \mod 7 = 9 \mod 7$

Modular Arithmetic

- a & b are **congruent** if: a mod n = b mod n
 - when divided by n, a & b have same remainder
 - eg. 100 mod 11 = 34 mod 11 so 100 is congruent to 34 mod 11

Two integers a and b are said to be **congruent modulo** n, if $(a \mod n) = (b \mod n)$. This is written as $a \equiv b \pmod n$.

$$73 \equiv 4 \pmod{23}$$
; $21 \equiv -9 \pmod{10}$

Modular Arithmetic

- 1. $a \equiv b \pmod{n}$ if n | (a b).
- 2. $a \equiv b \pmod{n}$ implies $b \equiv a \pmod{n}$.
- 3. $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ imply $a \equiv c \pmod{n}$.

To demonstrate the first point, if n|(a-b), then (a-b)=kn for some k. So we can write a=b+kn. Therefore, $(a \bmod n)=(\text{remainder when } b+kn$ is divided by n)=(remainder when b is divided by $n)=(b \bmod n)$.

```
23 \equiv 8 \pmod{5} because 23 - 8 = 15 = 5 \times 3

-11 \equiv 5 \pmod{8} because -11 - 5 = -16 = 8 \times (-2)

81 \equiv 0 \pmod{27} because 81 - 0 = 81 = 27 \times 3
```

Modular Arithmetic Operations

- > can perform arithmetic with residues
- uses a finite number of values, and loops back from either end

$$Z_n = \{0, 1, \dots, (n-1)\}$$

- modular arithmetic is when do addition & multiplication and modulo reduce answer
- > can do reduction at any point, ie
 - $a+b \mod n = [a \mod n + b \mod n] \mod n$

Modular Arithmetic Operations

- 1. $[(a \mod n) + (b \mod n)] \mod n = (a + b) \mod n$
- 2. $[(a \mod n) (b \mod n)] \mod n = (a b) \mod n$
- 3. [(a mod n) x (b mod n)] mod $n = (a \times b) \mod n$

```
e.g.

[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2 (11 + 15) mod 8 = 26 mod 8 = 2

[(11 mod 8) - (15 mod 8)] mod 8 = -4 mod 8 = 4 (11 - 15) mod 8 = -4 mod 8 = 4

[(11 mod 8) x (15 mod 8)] mod 8 = 21 mod 8 = 5 (11 x 15) mod 8 = 165 mod 8 = 5
```

Modulo 8 Addition Example

+	0	1	2	3	4	5	6	7
0	0	1	2	3 4 5 6 7 0 1 2	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

Modulo 8 Multiplication

+	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0 2 4 6 0 2 4 6	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

Modular Arithmetic Properties

Property	Expression				
Commutative laws	$(w+x) \bmod n = (x+w) \bmod n$				
Commutative laws	$(w \times x) \bmod n = (x \times w) \bmod n$				
Associative laws	$[(w+x)+y] \bmod n = [w+(x+y)] \bmod n$				
Associative laws	$[(w \times x) \times y] \bmod n = [w \times (x \times y)] \bmod n$				
Distributive law	$[w \times (x + y)] \mod n = [(w \times x) + (w \times y)] \mod n$				
Identities	$(0+w) \bmod n = w \bmod n$				
identities	$(1 \times w) \mod n = w \mod n$				
Additive inverse (-w)	For each $w \in \mathbb{Z}_n$, there exists a z such that $w + z = 0 \mod n$				

Euclidean Algorithm

- \rightarrow an efficient way to find the GCD(a,b)
- > uses theorem that:
 - $GCD(a,b) = GCD(b, a \mod b)$
- Euclidean Algorithm to compute GCD(a,b) is:
 Euclid(a,b)
 if (b=0) then return a;
 - else return Euclid(b, a mod b);

Euclidean Algorithm

Table 4.1 Euclidean Algorithm Example

Dividend	Divisor	Quotient	Remainder	
a = 1160718174	b = 316258250	$q_1 = 3$	$r_1 = 211943424$	
b = 316258250	$r_1 = 211943434$	$q_2 = 1$	$r_2 = 104314826$	
$r_1 = 211943424$	$r_2 = 104314826$	$q_3 = 2$	$r_3 = 3313772$	
$r_2 = 104314826$	$r_3 = 3313772$	$q_4 = 31$	$r_4 = 1587894$	
$r_3 = 3313772$	$r_4 = 1587894$	$q_5 = 2$	$r_5 = 137984$	
$r_4 = 1587894$	$r_5 = 137984$	$q_6 = 11$	$r_6 = 70070$	
$r_5 = 137984$	$r_6 = 70070$	$q_7 = 1$	$r_7 = 67914$	
$r_6 = 70070$	$r_7 = 67914$	$q_8 = 1$	$r_8 = 2156$	
$r_7 = 67914$	$r_8 = 2156$	$q_9 = 31$	$r_9 = 1078$	
$r_8 = 2156$	$r_9 = 1078$	$q_{10} = 2$	$r_{10} = 0$	

Finite (Galois) Fields

- > finite fields play a key role in cryptography
- can show number of elements in a finite field
 must be a power of a prime pⁿ
- known as Galois fields
- denoted GF(pn)
- in particular often use the fields:
 - GF(p)
 - GF(2n)

Galois Fields GF(p)

- ➤ GF(p) is the set of integers {0,1, ..., p-1} with arithmetic operations modulo prime p
- > these form a finite field
 - since have multiplicative inverses
 - find inverse with Extended Euclidean algorithm
- hence arithmetic is "well-behaved" and can do addition, subtraction, multiplication, and division without leaving the field GF(p)

GF(7) Multiplication Example

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	4 0 4 1 5 2 6 3	2	1

Relatively Prime Numbers & GCD

- two numbers a, b are relatively prime if have no common divisors apart from 1
 - eg. 8 & 15 are relatively prime since factors of 8 are 1,2,4,8 and of 15 are 1,3,5,15 and 1 is the only common factor
- conversely can determine the greatest common divisor by comparing their prime factorizations and using least powers
 - eg. $300=21\times31\times52$ $18=21\times32$ hence GCD $(18,300)=21\times31\times50=6$

Fermat's Theorem

- ap-1 = 1 (mod p)
 where p is prime and gcd (a, p) = 1
- also known as Fermat's Little Theorem
- also have: $ap = a \pmod{p}$
- useful in public key and primality testing

Fermat's Theorem

```
a = 7, p = 19

7^2 = 49 \equiv 11 \pmod{19}

7^4 \equiv 121 \equiv 7 \pmod{19}

7^8 \equiv 49 \equiv 11 \pmod{19}

7^{16} \equiv 121 \equiv 7 \pmod{19}

a^{p-1} = 7^{18} = 7^{16} \times 7^2 \equiv 7 \times 11 \equiv 1 \pmod{19}
```

An alternative form of Fermat's theorem is also useful: If p is prime and a is a positive integer, then

$$a^p \equiv a(\bmod p) \tag{8.3}$$

Euler Totient Function Ø (n)

- when doing arithmetic modulo n
- complete set of residues is: 0 . . n−1
- reduced set of residues is those numbers (residues) which are relatively prime to n
 - eg for n=10,
 - complete set of residues is $\{0,1,2,3,4,5,6,7,8,9\}$
 - reduced set of residues is {1,3,7,9}
- number of elements in reduced set of residues is called the Euler Totient Function ø(n)

Euler Totient Function Ø (n)

- to compute ø(n) need to count number of residues to be excluded
- in general need prime factorization, but
 - for p (p prime) \varnothing (p) =p-1
 - for p.q (p,q prime) \varnothing (p.q) = (p-1) x (q-1)
- eg.

```
\emptyset (37) = 36
\emptyset (21) = (3-1)x(7-1) = 2x6 = 12
```

Euler's Theorem

- a generalisation of Fermat's Theorem
- $a^{g(n)} = 1 \pmod{n}$ - for any a, n where gcd(a, n) = 1
- eg.

```
a=3; n=10; \varnothing (10)=4;
hence 3^4=81=1 \mod 10
a=2; n=11; \varnothing (11)=10;
hence 2^{10}=1024=1 \mod 11
```

• also have: $a^{\emptyset(n)+1} = a \pmod{n}$

- used to speed up modulo computations
- if working modulo a product of numbers

```
- eg. mod M = m_1 m_2 ... m_k
```

- Chinese Remainder theorem lets us work in each moduli m_i separately
- since computational cost is proportional to size, this is faster than working in the full modulus M

- can implement CRT in several ways
- to compute A (mod M)
 - first compute all a_i = A mod m_i separately
 - determine constants c_i below, where $M_i = M/m_i$
 - then combine results to get answer using:

$$A \equiv \left(\sum_{i=1}^k a_i c_i\right) \pmod{M}$$

$$c_i = M_i \times (M_i^{-1} \mod m_i) \quad \text{for } 1 \le i \le k$$

• Let p and q be co-prime. Then the system of equations:

$$x = a \pmod{p}$$

 $x = b \pmod{q}$

• Has a unique solution for x (modulo pq)

Problem: Find x

$$x = 2 \pmod{3}$$

$$x = 3 \pmod{5}$$

$$x = 2 \pmod{7}$$

Solution:

$$M =$$

$$3 \times 5 \times 7 = 105; M1 = \frac{105}{3} = 35; M2 = \frac{105}{5} = 21; M3 = \frac{105}{7} = 15;$$

- $M1^{-1} \pmod{3} = 35^{-1} \pmod{3} = 35^{3-2} \pmod{3} = 2$
- $M2^{-1} \pmod{5} = 21^{-1} \pmod{5} = 21^{5-3} \pmod{5} = 1$
- $M3^{-1} \pmod{7} = 15^{-1} \pmod{7} = 15^{7-2} \pmod{7} = 1$
- $x = [2 \times 35 \times 2 + 3 \times 21 \times 1 + 2 \times 15 \times 1] \pmod{105} = 233 \pmod{105} = 23$