Optimization of GEANT4/GATE hadronic models for in-beam PET dose monitoring in carbon ion therapy

Charlotte Robert¹, Loïc Lestand², Gérard Montarou², Paul Force², Nicoleta Pauna² and Irène Buvat¹

1 Unité Imagerie et Modélisation en Neurobiologie et Cancérologie, CNRS UMR 8165, F-91406,

Orsay Cedex France

² Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, BP 10448, F-63000 Clermont-Ferrand

The GATE simulation toolkit (GATE v6) based on GEANT4 v9.4 has all the necessary features to model in-beam Positron Emission Tomography (PET). In this work, we characterize the accuracy of the physics models included in GEANT4 v9.4 to describe β^+ emissions induced by ^{12}C ion beam that give rise to the detected signal in in-beam PET monitoring of carbon ion therapy.

Carbon ion therapy

Carbon ion therapy is a new type of radiotherapy treatment for cancer using Carbon ion beams. It is especially appealing for radioresistant tumors or tumors close to organs at risk.

Principle of in-beam PET monitoring

- Primary ions interact through nuclear collisions with the target
- Among the secondary particles resulting from these interactions, β^+ emitters are produced (10 C ($\rm T_{1/2}\sim 20$ s), 11 C ($\rm T_{1/2}\sim 20$ min) and 15 O ($\rm T_{1/2}\sim 2$ min) mostly)
- ullet The eta^+ activity spatial distribution is closely correlated to the dose distribution

ullet Treatment monitoring: beam induced eta^+ activity map is measured using PET

P.CRESPO PhD Thesis 2005

GEANT4 and **GATE** toolkits

- GEometry ANd Tracking (GEANT4) is a toolkit dedicated to the simulation of the passage of particles through matter. Its areas of application include high energy, nuclear and accelerator physics, and studies in medical and space science.
- GEANT4 Application for Emission Tomography (GATE) is an advanced opensource software developed by the international OpenGATE collaboration and dedicated to numerical simulations in medical imaging and radiotherapy.
 - \Rightarrow It encapsulates the Geant4 libraries in a modular versatile, scripted simulation software
- Agostinelli *et al.* GEANT4, a simulation toolkit. NIM A 506 (2003) 250-303
- Allison *et al.* Geant4 developments and applications. IEEE Trans. Nucl. Sci 53 (2006) 270-278
- Jan *et al.* GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy. Phys. Med. Biol. 56 (2011) 881-901
- Jan et al. GATE: a simulation toolkit for PET and SPECT. Phys. Med. Biol. 49 (2004) 4543-4561
- http://www.opengatecollaboration.org

Hadronic models

Two models suitable for nuclear collision description are available in GEANT4 v9.4: Binary Cascade (BiC) and Quantum Molecular Dynamics (QMD) models.

Methods

Experimental and simulated production rates were compared considering a ^{12}C beam in a $30\times10\times10\times$ cm 3 PMMA target, with beam energy of 212.12 MeV/u, 259.5 MeV/u and 343.46 MeV/u. The relative deviation between experimental yield \mathcal{Y} and simulated yield \mathcal{Y}_{model} was calculated as $\epsilon_{model} = \frac{|\mathcal{Y} - \mathcal{Y}_{model}|}{\mathcal{Y}_{model}}$.

- green values correspond to relative deviation < 20 %
- orange values correspond to relative deviation between 20 % and 40 %
- red values correspond to relative deviation > 40 %

Experimental and simulated production rates as a function of depth were compared considering a 12 C beam in a $30\times10\times10\times$ cm 3 PMMA target, with beam energy of 215 MeV/u, 260 MeV/u and 337 MeV/u. Only shapes of the profiles were considered.

Conclusions

- The QMD nuclear collision model included in GEANT4 v9.4 accurately reproduces the β^+ production rates experimentally measured as a function of depth for different ^{12}C beam energies
- GATE/GEANT4 appears as a promising tool to accurately model in-beam PET monitoring of carbon ion treatment and to study the potential of this innovative treatment monitoring approach