DenseNet-based model for Defect Classification on Solar Panels

Exam project for

Computer Vision

Tuesday, 28th February 2023

powered by

Paolo Ruggirello

Agenda

- 1. Look at images
- 2. Preprocessing
- 3. Model experiments
- 4. Transfer learning **DenseNet**
- 5. Final complete model
- 6. How we improved performances
- 7. Results

1. Look at images

In the full dataset of 2624 images, there are:

- 1803 **WORKING** cells
- 821 NOT WORKING cells

Cracks

No reflection

2. Preprocessing

The preprocessing pipeline implemented gives in output a unique file with both transformed images and related labels.

2.1 Failed preprocessing

Different preprocessing pipelines have been tried, but the metrics were lower than the ones got with the final model and preprocessing chosen.

1. Mask

Applied the mask, calculated as the intersection of link lines of solar cells.

2. Gradient

Applied Sobel/Laplacian filters to try working on it.

3. Morphological operations

Applied opening/closing operations to remove small objects.

And much more:

- LBP;
- Reading images in RGB;
- Seam carving;
- Rescale intensity;
- Thresholding: Global, Otsu method, Variable local;
- Custom 3-channels image;
- Sharpening filters;

and combinations of above.

3. Model experiments

Before getting to the final model, different approaches were tried. The most relevant ones are:

Homemade CNN

DISCARDED

Too shallow to extract good features, low metrics, time consuming

ResNet-50

DISCARDED

Better features, short training time, but low metrics

4. Transfer learning - DenseNet

The approach chosen is based on transfer learning.

The base model selected is **DenseNet**:

- Obtained the best results related to handcrafted version;
- Transfer learning using pretrained model on ImageNet;
- Exploited its depth to extract better features;
- Skip connection as FEATURE MAPS CONCATENATION.

Thanks to that, feature maps extracted in first layers are propagated to all the next ones. Those FM contain information about local characteristics.

5. Final complete model

6. How we improved performances

In order to improve performances, the following elements were tuned for the training phase:

Class_weight: used to give more weight to class 1 (Not Working) to improve F1 score.

- Early Stopping: regularization method to avoid overfitting;
- Optimizer: Adam optimizer, evolution of stochastic gradient descent which perform well in computer vision tasks;

keras.optimizers.Adam()

- Data augmentation: np.flipud() | np.fliplr()

Other hyperparameters:

- **Epochs**: 20;
- Batch size: 32;
- Loss function: 'binary_cross_entropy'.

7 Results per fold

Fold	Accuracy	F1 score
1	83%	69%
2	84%	73%
3	84%	70%
4	85%	72%
5	85%	71%
6	85%	74%
7	82%	70%
8	84%	74%
9	85%	73%
10	83%	72%

7.1 Results

Accuracy	F1	St. Dev. Accuracy
84%	72%	0,01

Thanks for your attention!

Now, Q&A

Simone Pio & Paolo