```
In [1]:
```

```
import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
```

In [2]:

```
data=pd.read_csv(r"C:\Users\Prathyusha\Downloads\ionosphere.csv")
data
```

Out[2]:

	column_a	column_b	column_c	column_d	column_e	column_f	column_g	column_h	column_i	column_j	 column_z	column_aa	column_ab	C
0	True	False	0.99539	-0.05889	0.85243	0.02306	0.83398	-0.37708	1.00000	0.03760	 -0.51171	0.41078	-0.46168	
1	True	False	1.00000	-0.18829	0.93035	-0.36156	-0.10868	-0.93597	1.00000	-0.04549	 -0.26569	-0.20468	-0.18401	
2	True	False	1.00000	-0.03365	1.00000	0.00485	1.00000	-0.12062	0.88965	0.01198	 -0.40220	0.58984	-0.22145	
3	True	False	1.00000	-0.45161	1.00000	1.00000	0.71216	-1.00000	0.00000	0.00000	 0.90695	0.51613	1.00000	
4	True	False	1.00000	-0.02401	0.94140	0.06531	0.92106	-0.23255	0.77152	-0.16399	 -0.65158	0.13290	-0.53206	
										•••	 			
346	True	False	0.83508	0.08298	0.73739	-0.14706	0.84349	-0.05567	0.90441	-0.04622	 -0.04202	0.83479	0.00123	
347	True	False	0.95113	0.00419	0.95183	-0.02723	0.93438	-0.01920	0.94590	0.01606	 0.01361	0.93522	0.04925	
348	True	False	0.94701	-0.00034	0.93207	-0.03227	0.95177	-0.03431	0.95584	0.02446	 0.03193	0.92489	0.02542	
349	True	False	0.90608	-0.01657	0.98122	-0.01989	0.95691	-0.03646	0.85746	0.00110	 -0.02099	0.89147	-0.07760	
350	True	False	0.84710	0.13533	0.73638	-0.06151	0.87873	0.08260	0.88928	-0.09139	 -0.15114	0.81147	-0.04822	

351 rows × 35 columns

→

In [3]:

```
pd.set_option('display.max_row',10000000000)
pd.set_option('display.max_columns',10000000000)
pd.set_option('display.width',95)
print('this dataframe has %d rows and %d columns'%(data.shape))
```

this dataframe has 351 rows and 35 columns

In [4]:

data.head()

Out[4]:

	column_a	column_b	column_c	column_d	column_e	column_f	column_g	column_h	column_i	column_j	column_k	column_l	column_m	column_n
)	True	False	0.99539	-0.05889	0.85243	0.02306	0.83398	-0.37708	1.00000	0.03760	0.85243	-0.17755	0.59755	-0.44945
1	True	False	1.00000	-0.18829	0.93035	-0.36156	-0.10868	-0.93597	1.00000	-0.04549	0.50874	-0.67743	0.34432	-0.69707
2	True	False	1.00000	-0.03365	1.00000	0.00485	1.00000	-0.12062	0.88965	0.01198	0.73082	0.05346	0.85443	0.00827
3	True	False	1.00000	-0.45161	1.00000	1.00000	0.71216	-1.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
4	True	False	1.00000	-0.02401	0.94140	0.06531	0.92106	-0.23255	0.77152	-0.16399	0.52798	-0.20275	0.56409	-0.00712
4														•

In [5]:

```
features_matrix=data.iloc[:,0:34]
target_vector=data.iloc[:,-1]
print('the features matrix has %d rows and %d colomns(s)'%(features_matrix.shape))
print('the features matrix has %d rows and %d colomns(s)'%(np.array(target_vector).reshape(-1,1).shape))
```

the features matrix has 351 rows and 34 colomns(s) the features matrix has 351 rows and 1 colomns(s)

In [6]:

 $features_matrix_standardized=StandardScaler().fit_transform(features_matrix)$

In [17]:

```
,class_weight=None,random_state=None,solver='lbfgs',max_iter=100,multi_class='auto',verbose=0,warm_start=False,n_jobs=None,l1_ratio=None)
```

```
In [18]:
Logistic_Regression_model=algorithm.fit(features_matrix_standardized,target_vector)
In [19]:
observation=[[1,0,0.99539,-0.05889,0.852429999999999,0.02306,0.8339799999999,-0.37708,1.0,0.0376,0.85242999999999,-0.17755,0.59755,-0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.59755,0.
In [20]:
predictions=Logistic_Regression_model.predict(observation)
In [22]:
print('the model predicted the observation to belong to class %s'%(predictions))
print('the algorithm was trained to predict one of the two classes:%s'%(algorithm.classes_))
the model predicted the observation to belong to class ['g']
the algorithm was trained
to predict one of the two classes:
['b' 'g']
In [23]:
 model says the probability of the observations we passed belonging to class ['b'] is %s"""%(algorithm.predict_proba(observation)[0][0]))
the model says the probability of the observations we passed belonging to class ['b'] is 0.00941163165589376
In [24]:
model says the probability of the observations we passed belonging to class ['g'] is %s"""%(algorithm.predict_proba(observation)[0][1]))
 •
the model says the probability of the observations we passed belonging to class ['g'] is 0.9905883683441062
In [ ]:
```