

Chapter 1: Concrete Design

Corbel Design

ACI 318

Page: 4

Chapter 1: Concrete Design

Design of Corbel as per ACI 318-11 Chapter 11

System

Corbel Width, b=			14.0 in
Corbel Height, h=			12.0 in
Concrete Cover, co=			1.0 in
Corbel Depth, d=	h - co = 12.0 - 1.0	=	11.0 in
Distance from Column Face to Vertical Load, a,=			3.0 in

Load

Ultimate Vertical Load, V _u =	88.8 kips
Ultimate Horizontal Load, Nuc=	32.0 kips

Material Properties

Concrete Strength, f' _c =		5000 psi
Yield Strength of Reinforcement, f _y =	6	0000 psi
Shear Strength Reduction Factor (According to Cl.9.3.2 of ACI318), Φ =		0.75
Modification Factor for Lightweight Concrete, λ =		1.00
Friction Factor (According to Cl.11.6.4.3 of ACI318), μ = 1.4* λ	=	1.40

Chapter 1: Concrete Design

Corbel Design

ACI 318

Page: 5

Check Vertical Load Capacity

 V_{n1} = 0.2*f'_c*b*d/1000 = 154.0 Kips

 V_{n2} = (480+0.08* f_c)*b*d/1000 = 135.5 Kips

 V_{n3} = 1600*b*d/1000 = 246.4 Kips

Nominal Vertical Capacity (According to Cl.11.8.3.2.1 of ACI318),

 $\Phi V_n = \Phi *MIN(V_{n1}; V_{n2}; V_{n3}) = 101.6 \text{ Kips}$

Vertical Load Capacity= $IF(V_{II}>\Phi V_{n};"Not Pass";"Pass")$ = Pass

Determine Shear Friction Reinforcement (A_{vf})

Required Area of Reinforcement for Shear Friction (According to Cl.11.6.4.1 of ACI318),

 $A_{vf} = V_{u} \times 1000/(\Phi \times f_{v} \times \mu) = 1.41 \text{ in}^{2}$

Determine Direct Tension Reinforcement (An)

Minimum Horizontal Force on Corbel, Nuc_min= $0.2 \times V_{II}$ = 17.8 Kips

Horizontal Force on Corbel, Nuc_act= MAX (Nuc; Nuc_min) = 32.0 kips

Required Area of Reinforcement for Direct Tension (According to Cl.11.8.3.1 of ACI318),

 $A_n = Nuc_act *1000/((\Phi)*f_V) = 0.71 in^2$

Determine Flexural Reinforcement (A_f)

 M_{II} = V_{II} *a_V+Nuc_act*(h-d) = 298.4 kip*in

Required Area of Reinforcement for Flexural (According to Cl.11.8.3.3 of ACI318),

 $A_f = M_{II} \times 1000/(\Phi \times f_V \times 0.9 \times d) = 0.67 \text{ in}^2$

Determine Primary Tension Reinforcement (Asc)

Required Area of Reinforcement for Primary Tension (According to Cl.11.8.3.5 of ACI318),

 A_{sc} = MAX ((2/3 * A_{vf}) + A_n ; A_f + A_n) = 1.65 in²

Minimum Area of Reinforcement for Primary Tension (According to Cl.11.8.5 of ACI318),

 $A_{sc\ min} = 0.04 * f'_{c} / f_{y} * b * d = 0.51 in^{2}$

 $A_{sc Req}$ = MAX $(A_{sc}; A_{sc min})$ = 1.65 in²

Provided Reinforcement, Bar= SEL("ACI/Bar"; Bar;) = No.9

Provided Area of Bar Reinforcement, A_{sb} = TAB("ACI/Bar"; Asb; Bar=Bar) = 1.00 in²

Number of Provided Bars, n= 2

Provided Area of Reinforcement, A_{sc} Prov = $n * A_{sb}$ = 2.00 in^2

Check Validity= $IF(A_{sc\ Prov} \ge A_{sc\ Reg}; "Valid"; "Invalid") = Valid$

Interactive Design Aids for Structural Engineers

Chapter 1: Concrete Design

Corbel Design

ACI 318

Page: 6

Determine Horizontal Reinforcement (A_h)

Required Area of Reinforcement for Horizontal Shear (According to Cl.11.8.4 of ACI318),

 $A_{h Req} = 0.5*(A_{sc Prov} - A_{n}) = 0.65 in^{2}$

Provided Reinforcement, Bar= SEL("ACI/Bar"; Bar;) = No.3

Provided Area of Bar Reinforcement, A_{sb} = TAB("ACI/Bar"; Asb; Bar=Bar) = 0.11 in²

Number of Provided Bars, n= 6

Provided Area of Reinforcement, $A_{h Prov} = n * A_{sb}$ = 0.66 in²

Check Validity= $IF(A_{h Prov} \ge A_{h Req}; "Valid"; "Invalid") = Valid$

Distribute in two-thirds of Effective Corbel Depth adjacent to A_{sc}

Design Summary

Area of Reinforcement for Primary Tension A_{sc} = A_{sc_Prov} = 2.00 in²

Area of Reinforcement for Horizontal Shear, A_h = A_h Prov = 0.66 in²

Distribute in two-thirds of Effective Corbel Depth adjacent to A_{sc}