Relatório - Exercício Programa 6 (EP6)

José Victor Santos Alves Nr. USP: 14713085 Marcos Elias Jara Grubert Nr. USP: 1295930

Julho de 2025

1 Introdução

Este relatório apresenta a solução desenvolvida para o sexto Exercício Programa (EP6) da disciplina de Laboratório de Computação e Simulação (MAP2212), ministrada pelo professor Julio Stern no âmbito do Bacharelado em Matemática Aplicada e Computacional (BMAC) do IME-USP.

O objetivo central deste trabalho é computar o **e-valor padronizado (SEV)** para testar a **hipótese de equilíbrio de Hardy-Weinberg** em um modelo estatístico trinomial-Dirichlet. Este método, proposto por C.A.B. Pereira e J.M. Stern (1999), oferece uma alternativa Bayesiana ao p-valor da estatística frequentista, medindo a evidência que os dados fornecem contra uma hipótese nula precisa.

A metodologia baseia-se no cálculo da credibilidade de uma região no espaço paramétrico que é tangente ao conjunto que define a hipótese nula. Para isso, fazemos uso da **função verdade**, W(v), que foi o objeto de estudo do EP5. A função verdade é definida como a massa de probabilidade a posteriori contida na região T(v):

$$W(v) = \int_{T(v)} f(\theta \mid x, y) d\theta, \quad \text{onde} \quad T(v) = \{ \theta \in \Theta \mid f(\theta \mid x, y) \le v \}$$
 (1)

Utilizamos uma aproximação computacional U(v) para W(v), construída a partir de um método de Monte Carlo via Cadeias de Markov (MCMC). O e-valor (ev) é então obtido avaliando U(v) no ponto s^* , que representa o valor máximo da função de densidade de probabilidade posterior dentro do subespaço da hipótese nula.

O modelo estatístico subjacente é a distribuição de Dirichlet, que descreve a densidade de probabilidade posterior dos parâmetros θ do modelo multinomial:

$$f(\theta \mid x, y) = \frac{1}{B(x+y)} \prod_{i=1}^{m} \theta_i^{x_i + y_i - 1}$$
 (2)

onde x é o vetor de observações, y é o vetor de informações a priori, m=3 é a dimensão do problema e $B(\cdot)$ é a função Beta multivariada.

Nas seções seguintes, detalhamos a estrutura do algoritmo MCMC utilizado, a justificativa para a escolha dos parâmetros da simulação e, por fim, apresentamos e analisamos os resultados dos testes para 72 conjuntos de dados distintos, considerando duas priors diferentes, y = [0, 0, 0] e y = [1, 1, 1].

2 Estrutura do Algoritmo de MCMC

A metodologia do Método de Monte Carlo via Cadeias de Markov (MCMC) consiste em gerar amostras de pontos em regiões onde a função a ser integrada possui maior relevância. A localização dessas amostras no domínio da função tende a convergir de forma análoga a uma Cadeia de Markov. A implementação da estrutura do algoritmo, que utiliza a linguagem Python e suas bibliotecas, segue os passos detalhados abaixo.

2.1 Geração e Validação de Candidatos

O processo inicia-se com a geração de amostras a partir de uma distribuição multivariada , especificamente a distribuição normal multivariada com média zero. A matriz de covariância utilizada nesta etapa é definida pela variância e covariância da distribuição de Dirichlet:

$$\operatorname{Var}(X_{i,j}) = \begin{cases} \frac{\alpha_i(\alpha_0 - \alpha_i)}{\alpha_0^2(\alpha_0 + 1)} & \text{se } i = j\\ \frac{-\alpha_i \alpha_j}{\alpha_0^2(\alpha_0 + 1)} & \text{se } i \neq j \end{cases} \quad \text{onde, } \alpha_0 = \sum_k \alpha_k$$
 (3)

O vetor aleatório gerado é somado ao valor atual da cadeia, θ_i , para criar um ponto candidato. Este candidato é então validado para assegurar que pertence ao domínio de um simplex, o que requer que todos os seus elementos sejam estritamente positivos e que a soma de seus elementos seja unitária.

2.2 Critério de Aceitação e Geração da Cadeia

Um candidato que satisfaz as condições de domínio é submetido ao critério de aceitação do algoritmo de Metropolis-Hastings. A probabilidade de aceitação $\alpha(\theta_{i+1}, \theta_i)$ é calculada com base na razão dos potenciais entre o ponto candidato e o ponto atual:

$$\alpha(\theta_{i+1}, \theta_i) = \min\left(1, \frac{f(\theta_{i+1}|x, y)}{f(\theta_i|x, y)}\right) \tag{4}$$

Um número aleatório é gerado de uma distribuição uniforme em [0,1], e se este número for menor que α , o candidato é aceito. Caso contrário, o candidato é rejeitado e o valor atual é mantido, ou seja, $\theta_{i+1} = \theta_i$. Para o ponto inicial da cadeia, utiliza-se o centro do simplex, o vetor [1/3, 1/3, 1/3], e as primeiras 1000 amostras são descartadas (período de aquecimento ou queima) para garantir a estabilidade da cadeia.

2.3 Cálculo e Processamento dos Potenciais

Após a geração de n amostras, calcula-se a função potencial para cada ponto θ_i da cadeia:

$$p(\theta|x,y) = \prod_{i=1}^{m} \theta_i^{x_i + y_i - 1}$$

$$\tag{5}$$

A lista resultante de potenciais é então ordenada de forma crescente e normalizada utilizando a função Gamma. Para otimizar o processamento, esta lista ordenada é condensada em uma lista menor contendo $k\ bins$, onde cada bin representa a informação de n/k pontos da amostra original.

2.4 Cálculo da Integral Condensada U(v)

Finalmente, para um dado valor de corte (cut-off) v, o algoritmo percorre a lista de bins para localizar a posição i que corresponde a este valor. O valor da integral condensada, U(v), é então determinado pela proporção i/k. O valor de U(v) é definido como 0 se v for menor que o potencial mínimo da amostra e 1 se for maior que o potencial máximo.

3 Definindo o valor de n

Para a definição do valor de n, utilizaremos a mesma abordagem do **EP5** baseada em distribuição Bernoulli para determinar a quantidade necessária de pontos em cada bin, de modo que o erro máximo tolerável seja respeitado, definido como $\epsilon = 0.05\%$. A quantidade de bins, denotada por k, deve ser tal que a resolução seja maior que o erro ϵ , ou seja, cada bin deve representar uma fração de probabilidade que respeite a desigualdade:

$$W(v_j) - W(v_{j-1}) = \frac{1}{k} \ge \epsilon \tag{6}$$

3.1 Aproximação Assintótica

Assumindo um número de amostras suficientemente grande, podemos utilizar o Teorema do Limite Central para aproximar a distribuição Bernoulli por uma Normal. Com isso, a probabilidade do erro relativo ser menor que ϵ pode ser escrita como:

$$P(|\hat{p} - p| \le \varepsilon) \ge \gamma$$

Aplicando a normalização, temos:

$$P(-\varepsilon \le \hat{p} - p \le \varepsilon) = P\left(\frac{-\sqrt{n}\varepsilon}{\sigma} \le Z \le \frac{\sqrt{n}\varepsilon}{\sigma}\right) \approx \gamma$$

Dessa forma, podemos isolar n para obter:

$$n = \frac{\sigma^2 Z_{\gamma}^2}{\varepsilon^2} \tag{7}$$

O valor de n obtido em 7 será utilizado para determinar a quantidade de amostras necessárias para atingir o erro relativo estipulado.

3.2 Escolha de k: número de bins

A quantidade de bins na distribuição de probabilidade discreta deve respeitar o critério de resolução mínima exigida por ε , conforme a equação 8, o que implica:

$$k \ge \frac{1}{\varepsilon} \Rightarrow k \ge 2000 \tag{8}$$

portanto:

$$k_{\min} = 2000$$

3.3 Intervalo de confiança adotado

Utilizamos um nível de confiança de 95%, escolhido de forma convencional. Com isso, o valor crítico Z_{γ} da distribuição normal padrão N(0,1) corresponde a:

$$Z_{\gamma} = 1.96$$

3.4 Precisão desejada (ε)

O erro permitido entre o valor real de W(u) e sua aproximação foi fixado em:

$$\varepsilon = 0.0005$$

3.5 Estimativa da variância

Considerando que, dentro de um bin, os dados seguem uma distribuição de Bernoulli com probabilidade igual à largura do bin (i.e., ε), a variância pode ser estimada como:

$$\sigma^2 = \frac{\varepsilon}{2} \left(1 - \frac{\varepsilon}{2} \right) \approx \frac{\varepsilon}{2} \tag{9}$$

3.6 Cálculo final de n

Com base nas equações anteriores, podemos determinar o valor necessário de n para garantir o erro máximo admissível, levando em conta a divisão em k = 2000 bins:

$$n = k \cdot \frac{1,96^2 \cdot \frac{\varepsilon}{2}}{\varepsilon^2} \ge 7.683.20$$

Portanto, o número mínimo de pontos necessário é:

$$n_{\min} = 7.683.200 \text{ pontos}$$

Ao utilizarmos essa quantidade de pontos em nosso programa, o tempo de execução para calcular U(V) foi de 1284 segundos (aproximadamente 21 minutos). Diante disso, decidimos executar testes empíricos diminuindo o número de pontos para observar se haveria uma diferença significativa nos resultados. Notou-se que não havia perda relevante mesmo reduzindo o tamanho da amostra em até dez vezes. Assim, para aumentar a eficiência do código e ainda manter uma boa acurácia, optamos por uma amostra final de:

$$n_{\rm final} = 200.000 \text{ pontos}$$

4 Resultados

Para avaliar o impacto do tamanho da amostra (n) no desempenho computacional, foram realizadas duas execuções do conjunto de testes. Na primeira, utilizou-se um tamanho de amostra de n=200.000, resultando em um tempo total de execução de 2.322 segundos (aproximadamente 40 minutos). Posteriormente, a mesma simulação foi conduzida com um valor de n dez vezes menor, n=20.000, o que reduziu o tempo de execução para 275 segundos (aproximadamente 5 minutos). Onde obtivemos os seguintes resultados

4.1 Resultados para a Prior Não Informativa (Y = [0, 0, 0]) e n = 200.000

Tabela 1: Resultados do teste com a prior Y = [0, 0, 0] e n = 200.000

Vetor X	e-valor (ev)	sev	Decisão ($\alpha = 0.05$)	
[1, 17, 2]	0.0010	0.0002	Rejeita H_0	
[1, 16, 3]	0.0030	0.0007	Rejeita H_0	
[1, 15, 4]	0.0110	0.0027	Rejeita H_0	
[1, 14, 5]	0.0285	0.0076	Rejeita H_0	
[1, 13, 6]	0.0645	0.0192	Rejeita H_0	
[1, 12, 7]	0.1275	0.0424	Rejeita H_0	
[1, 11, 8]	0.2305	0.0867	Não Rejeita H_0	
[1, 10, 9]	0.3545	0.1498	Não Rejeita H_0	
[1, 9, 10]	0.4950	0.2357	Não Rejeita H_0	
[1, 8, 11]	0.6345	0.3402	Não Rejeita H_0	
[1, 7, 12]	0.7555	0.4540	Não Rejeita H_0	
[1, 6, 13]	0.8580	0.5800	Não Rejeita H_0	
[1, 5, 14]	0.9250	0.6929	Não Rejeita H_0	
[1, 4, 15]	0.9700	0.8051	Não Rejeita H_0	
[1, 3, 16]	0.9915	0.8960	Não Rejeita H_0	
[1, 2, 17]	0.9995	0.9748	Não Rejeita H_0	
[1, 1, 18]	0.9985	0.9563	Não Rejeita H_0	
[5, 15, 0]	0.0000	1.0000	Não Rejeita H_0	
[5, 14, 1]	0.0265	0.0070	Rejeita H_0	
[5, 13, 2]	0.1315	0.0440	Rejeita H_0	
[5, 12, 3]	0.3865	0.1679	Não Rejeita H_0	
[5, 11, 4]	0.7215	0.4191	Não Rejeita H_0	
[5, 10, 5]	0.9655	0.7910	Não Rejeita H_0	
[5, 9, 6]	0.9705	0.8067	Não Rejeita H_0	
[5, 8, 7]	0.7645	0.4637	Não Rejeita H_0	
[5, 7, 8]	0.4790	0.2250	Não Rejeita H_0	
[5, 6, 9]	0.2410	0.0916	Não Rejeita H_0	
[5, 5, 10]	0.0990	0.0315	Rejeita H_0	
[9, 11, 0]	0.0000	1.0000	Não Rejeita H_0	
[9, 10, 1]	0.3615	0.1537	Não Rejeita H_0	
[9, 9, 2]	0.8525	0.5721	Não Rejeita H_0	
[9, 8, 3]	0.9680	0.7987	Não Rejeita H_0	
[9, 7, 4]	0.6090	0.3193	Não Rejeita H_0	
[9, 6, 5]	0.2430	0.0926	Não Rejeita H_0	
[9, 5, 6]	0.0650	0.0194	Rejeita H_0	
[9, 4, 7]	0.0125	0.0031	Rejeita H_0	

4.2 Resultados para a Prior Uniforme (Y = [1, 1, 1]) e n = 200.000

Tabela 2: Resultados do teste com a prior $\mathbf{Y} = [1,\,1,\,1]$ e n = 200.000

Vetor X	e-valor (ev)	sev	Decisão ($\alpha = 0.05$)	
[1, 17, 2]	0.0040	0.0009	Rejeita H_0	
[1, 16, 3]	0.0145	0.0036	Rejeita H_0	
[1, 15, 4]	0.0400	0.0112	Rejeita H_0	
[1, 14, 5]	0.0960	0.0304	Rejeita H_0	
[1, 13, 6]	0.1860	0.0666	Não Rejeita H_0	
[1, 12, 7]	0.3325	0.1378	Não Rejeita H_0	
[1, 11, 8]	0.5005	0.2394	Não Rejeita H_0	
[1, 10, 9]	0.6765	0.3766	Não Rejeita H_0	
[1, 9, 10]	0.8430	0.5589	Não Rejeita H_0	
[1, 8, 11]	0.9575	0.7682	Não Rejeita H_0	
[1, 7, 12]	1.0000	0.0000	Rejeita H_0	
[1, 6, 13]	0.9630	0.7836	Não Rejeita H_0	
[1, 5, 14]	0.8480	0.5658	Não Rejeita H_0	
[1, 4, 15]	0.6770	0.3771	Não Rejeita H_0	
[1, 3, 16]	0.4795	0.2253	Não Rejeita H_0	
[1, 2, 17]	0.2960	0.1187	Não Rejeita H_0	
[1, 1, 18]	0.1480	0.0506	Não Rejeita H_0	
[5, 15, 0]	0.0180	0.0046	Rejeita H_0	
[5, 14, 1]	0.0960	0.0304	Rejeita H_0	
[5, 13, 2]	0.2875	0.1143	Não Rejeita H_0	
[5, 12, 3]	0.5975	0.3102	Não Rejeita H_0	
[5, 11, 4]	0.8885	0.6268	Não Rejeita H_0	
[5, 10, 5]	1.0000	0.0000	Rejeita H_0	
[5, 9, 6]	0.8980	0.6427	Não Rejeita H_0	
[5, 8, 7]	0.6540	0.3568	Não Rejeita H_0	
[5, 7, 8]	0.3945	0.1726	Não Rejeita H_0	
[5, 6, 9]	0.2000	0.0728	Não Rejeita H_0	
[5, 5, 10]	0.0785	0.0241	Rejeita H_0	
[9, 11, 0]	0.2445	0.0933	Não Rejeita H_0	
[9, 10, 1]	0.6800	0.3798	Não Rejeita H_0	
[9, 9, 2]	0.9930	0.9056	Não Rejeita H_0	
[9, 8, 3]	0.8520	0.5714	Não Rejeita H_0	
[9, 7, 4]	0.4825	0.2273	Não Rejeita H_0	
[9, 6, 5]	0.1945	0.0704	Não Rejeita H_0	
[9, 5, 6]	0.0595	0.0175	Rejeita H_0	
[9, 4, 7]	0.0130	0.0032	Rejeita H_0	

4.3 Resultados para a Prior Não Informativa (Y = [0, 0, 0]) e n = 20.000

Tabela 3: Resultados do teste com a prior $Y=[0,\,0,\,0]$ e n = 20.000

Vetor X	e-valor (ev)	sev	Decisão ($\alpha = 0.05$)	
[1, 17, 2]	0.0000	1.0000	Não Rejeita H_0	
[1, 16, 3]	0.0020	0.0004	Rejeita H_0	
[1, 15, 4]	0.0055	0.0013	Rejeita H_0	
[1, 14, 5]	0.0235	0.0062	Rejeita H_0	
[1, 13, 6]	0.0675	0.0202	Rejeita H_0	
[1, 12, 7]	0.1205	0.0397	Rejeita H_0	
[1, 11, 8]	0.2480	0.0949	Não Rejeita H_0	
[1, 10, 9]	0.3535	0.1493	Não Rejeita H_0	
[1, 9, 10]	0.5055	0.2428	Não Rejeita H_0	
[1, 8, 11]	0.6270	0.3339	Não Rejeita H_0	
[1, 7, 12]	0.7505	0.4487	Não Rejeita H_0	
[1, 6, 13]	0.8560	0.5771	Não Rejeita H_0	
[1, 5, 14]	0.9220	0.6869	Não Rejeita H_0	
[1, 4, 15]	0.9735	0.8167	Não Rejeita H_0	
[1, 3, 16]	0.9920	0.8991	Não Rejeita H_0	
[1, 2, 17]	1.0000	0.0000	Rejeita H_0	
[1, 1, 18]	0.9985	0.9563	Não Rejeita H_0	
[5, 15, 0]	0.0000	1.0000	Não Rejeita H_0	
[5, 14, 1]	0.0305	0.0082	Rejeita H_0	
[5, 13, 2]	0.1400	0.0474	Rejeita H_0	
[5, 12, 3]	0.3765	0.1622	Não Rejeita H_0	
[5, 11, 4]	0.7225	0.4201	Não Rejeita H_0	
[5, 10, 5]	0.9680	0.7987	Não Rejeita H_0	
[5, 9, 6]	0.9670	0.7956	Não Rejeita H_0	
[5, 8, 7]	0.7700	0.4697	Não Rejeita H_0	
[5, 7, 8]	0.4740	0.2217	Não Rejeita H_0	
[5, 6, 9]	0.2480	0.0949	Não Rejeita H_0	
[5, 5, 10]	0.0940	0.0297	Rejeita H_0	
[9, 11, 0]	0.0000	1.0000	Não Rejeita H_0	
[9, 10, 1]	0.3430	0.1435	Não Rejeita H_0	
[9, 9, 2]	0.8545	0.5749	Não Rejeita H_0	
[9, 8, 3]	0.9640	0.7866	Não Rejeita H_0	
[9, 7, 4]	0.6005	0.3125	Não Rejeita H_0	
[9, 6, 5]	0.2410	0.0916	Não Rejeita H_0	
[9, 5, 6]	0.0610	0.0180	Rejeita H_0	
[9, 4, 7]	0.0090	0.0021	Rejeita H_0	

4.4 Resultados para a Prior Uniforme (Y = [1, 1, 1]) e n = 20.000

Tabela 4: Resultados do teste com a prior $Y=[1,\,1,\,1]$ e n = 20.000

Vetor X	e-valor (ev)	sev	Decisão ($\alpha = 0.05$)	
[1, 17, 2]	0.0035	0.0008	Rejeita H_0	
[1, 16, 3]	0.0105	0.0025	Rejeita H_0	
[1, 15, 4]	0.0385	0.0107	Rejeita H_0	
[1, 14, 5]	0.1015	0.0324	Rejeita H_0	
[1, 13, 6]	0.1745	0.0617	Não Rejeita H_0	
[1, 12, 7]	0.3235	0.1330	Não Rejeita H_0	
[1, 11, 8]	0.4960	0.2363	Não Rejeita H_0	
[1, 10, 9]	0.6905	0.3894	Não Rejeita H_0	
[1, 9, 10]	0.8375	0.5515	Não Rejeita H_0	
[1, 8, 11]	0.9520	0.7538	Não Rejeita H_0	
[1, 7, 12]	1.0000	0.0000	Rejeita H_0	
[1, 6, 13]	0.9660	0.7925	Não Rejeita H_0	
[1, 5, 14]	0.8430	0.5589	Não Rejeita H_0	
[1, 4, 15]	0.6945	0.3932	Não Rejeita H_0	
[1, 3, 16]	0.4785	0.2247	Não Rejeita H_0	
[1, 2, 17]	0.2720	0.1066	Não Rejeita H_0	
[1, 1, 18]	0.1500	0.0514	Não Rejeita H_0	
[5, 15, 0]	0.0130	0.0032	Rejeita H_0	
[5, 14, 1]	0.0895	0.0280	Rejeita H_0	
[5, 13, 2]	0.2850	0.1131	Não Rejeita H_0	
[5, 12, 3]	0.6010	0.3129	Não Rejeita H_0	
[5, 11, 4]	0.8920	0.6326	Não Rejeita H_0	
[5, 10, 5]	1.0000	0.0000	Rejeita H_0	
[5, 9, 6]	0.9005	0.6471	Não Rejeita H_0	
[5, 8, 7]	0.6625	0.3642	Não Rejeita H_0	
[5, 7, 8]	0.3835	0.1662	Não Rejeita H_0	
[5, 6, 9]	0.1935	0.0699	Não Rejeita H_0	
[5, 5, 10]	0.0820	0.0253	Rejeita H_0	
[9, 11, 0]	0.2440	0.0930	Não Rejeita H_0	
[9, 10, 1]	0.6770	0.3771	Não Rejeita H_0	
[9, 9, 2]	0.9930	0.9056	Não Rejeita H_0	
[9, 8, 3]	0.8500	0.5686	Não Rejeita H_0	
[9, 7, 4]	0.4940	0.2350	Não Rejeita H_0	
[9, 6, 5]	0.1825	0.0651	Não Rejeita H_0	
[9, 5, 6]	0.0600	0.0177	Rejeita H_0	
[9, 4, 7]	0.0120	0.0029	Rejeita H_0	

Análise e Discussão dos Resultados

Decidimos fixar um nível de significância $\alpha=5\%$ e rejeitar toda hipótese que apresentasse um valor de **SEV** inferior a 0.05.

Com isso, obtivemos a seguinte tabela:

Tabela 5: Sumário quantitativo das decisões por cenário de simulação.

Cenário de Simulação	Rejeições de H_0	Não Rejeições	Total de Casos
n = 200.000, y = [0, 0, 0]	11	25	36
n = 20.000, y = [0, 0, 0]	11	25	36
n = 200.000, y = [1, 1, 1]	11	26	37
n = 20.000, y = [1, 1, 1]	11	26	37

À primeira vista, a Tabela 5 sugere uma notável estabilidade nos resultados, pois o número agregado de rejeições (11 casos) permanece constante em todos os cenários.

O tamanho da amostra (n) afetou a estabilidade da simulação. Embora o número total de rejeições não tenha mudado, a execução com menos amostras (n=20.000) apresentou uma variação muito maior nos valores de sev para casos específicos especialmente os mais extremos em comparação com a execução mais longa (n=200.000).

Portanto, Observa-se que no geral, as decisões sobre as hipóteses nulas não se alteraram muito, tanto ao se trocar o vetor de observações a priori y = [1, 1, 1] por y = [0, 0, 0], quanto com a redução do tamanho da amostra n em dez vezes para alguns casos.

5 Conclusão

Podemos concluir que o Teste de Significância Totalmente Bayesiano , utilizado neste trabalho, representa uma alternativa robusta aos métodos frequentistas. Sua abordagem, fundamentada na geometria do espaço de parâmetros, utiliza apenas a amostra observada e o ponto de máxima verossimilhança sob a hipótese nula. Uma vantagem notável é sua invariância à forma como a hipótese é parametrizada, uma característica que o diferencia de métodos clássicos e reforça sua consistência.