

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
18 October 2001 (18.10.2001)

PCT

(10) International Publication Number
WO 01/77350 A2

- (51) International Patent Classification⁷: **C12N 15/79**
- (21) International Application Number: **PCT/US01/11436**
- (22) International Filing Date: 4 April 2001 (04.04.2001)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
09/545,574 7 April 2000 (07.04.2000) US
- (71) Applicant (for all designated States except US): **LARGE SCALE BIOLOGY CORPORATION [US/US]; 3333 Vaca Valley Parkway, Vacaville, CA 95688 (US).**
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): **PALMER, Kenneth, E. [ZA/US]; 707 West Monte Vista Avenue, Vacaville, CA 95688 (US). POGUE, Gregory, P. [US/US]; 419 Trillick Court, Vacaville, CA 95688 (US).**
- (74) Agent: **HALLUIN, Albert, P. Howrey Simon Arnold & White, 301 Ravenswood Avenue, Box 34, Menlo Park, CA 94025 (US).**

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/77350 A2

(54) Title: COMPOSITIONS AND METHODS FOR INHIBITING GENE EXPRESSION

(57) Abstract: The present invention provides an eukaryotic recombinant vector suited for bi-directional transcription of a transgene to yield both sense and antisense RNA transcripts of the transgene in an eukaryotic cell. The invention vectors are particularly suited for mediating gene silencing in a variety of biological systems. The present invention also provides host cells and transgenic plants comprising the invention vectors. Further provided by the invention are methods of inhibiting expression of an endogenous gene present in an eukaryotic cell. Also included is a method of identifying a biological function(s) of an endogenous gene of interest in an eukaryotic cell by selectively inhibiting the expression of the endogenous gene.

COMPOSITIONS AND METHODS FOR INHIBITING GENE EXPRESSION

5

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the priority benefit of U.S. Patent Application
10 09/545,574, filed April 7, 2000, pending, which is hereby incorporated herein by
reference in its entirety.

STATEMENT OF RIGHTS TO INVENTIONS MADE UNDER
FEDERALLY SPONSORED RESEARCH

15

Not applicable.

TECHNICAL FIELD

This invention is in the field of genetic analysis. Specifically, the invention
relates to the generation of a eukaryotic vector that allows bi-directional
transcription of a transgene to yield both sense and antisense RNA transcripts from
20 the same transgene. The compositions and methods embodied in the present
invention are particularly useful for targeted inhibition of gene expression in a
eukaryotic cell.

25

BACKGROUND OF THE INVENTION

The structure and biological behavior of a cell is determined by the pattern of
gene expression within that cell at a given time. Perturbations of gene expression
have long been acknowledged to account for a vast number of diseases including,
numerous forms of cancer, vascular diseases, neuronal and endocrine diseases.
30 Abnormal expression patterns, in form of amplification, deletion, gene
rearrangements, and loss or gain of function mutations, are now known to lead to
aberrant behavior of a disease cell. Aberrant gene expression has also been noted as
a defense mechanism of certain organisms to ward off the threat of pathogens.

One of the major challenges of genetic engineering has been to regulate the expression of targeted genes that are implicated in a wide diversity of physiological responses. While overexpression of an exogenously introduced transgene in a eukaryotic cell is relatively straightforward, targeted inhibition of specific genes has been more difficult to achieve. Traditional approaches for suppressing gene expression, including site-directed gene disruption, antisense RNA or co-suppressor injection, require complex genetic manipulations or heavy dosages of suppressors that often exceeds the toxicity tolerance level of the host cell.

Recently, a new technique, "double-stranded RNA interference" has emerged in the study of gene silencing. Several research groups have demonstrated a marked inhibition of a specific nuclear gene expression in a wide range of eukaryotes by introduction into cells of dsRNA fragments that bear sequence homology with the nuclear gene. For instance, Fire et al. (1998) *Nature* 395: 854 reported the success of gene-specific interference in *C. elegans* that was mediated by ingested *E. coli* carrying a prokaryotic vector capable of producing both sense and antisense RNAs of the selected *C. elegans* genes. Misquitta et al. demonstrated the targeted disruption of *nautilus* gene in *Drosophila melanogaster* by injecting into the Drosophila embryo multiple copies of *nautilus* dsRNA. See Misquitta et al. (1999) *PNAS U.S.A.* 96:1451-1456. Studies by Ngô et al. (1998) *Proc. Natl. Acad. of Sci. U.S.A.*, 96:1451-1456 confirmed that dsRNA interference also occurs in certain protozoan species. Earlier studies by Cogoni et al. and Hamilton et al. suggested that formation of dsRNA play a pivotal role in gene silencing in fungi *Neurospora crassa* and other plants. See Cogoni et al. (1999) *Nature* 399: 166-169; Hamilton et al. (1999) *Science* 286: 950-952; and Waterhouse et al. (1999) *PNAS U.S.A.* 95: 13959-13964. More recent investigations by Wargelius et al. revealed that this phenomenon is also conserved in vertebrates such as the zebrafish. Wargelius et al. *Biochem. Biophys. Res. Commun.* 263: 156-161.

Current techniques for achieving RNA mediated gene silencing include: (a) use of prokaryotic vectors capable of transcribing both sense and antisense RNA (Fire et al. (1998) *Nature* 395: 854; (b) *in vitro* transcription of individual strands of a selected gene followed by annealing the transcribed sense and antisense RNAs (see, e.g. Misquitta et al. (1999) *PNAS U.S.A.* 96:1451-1456); and possibly (c) viruses induced gene silencing (see, e.g. Angell et al. (1997) *EMBO Journal* 16:

3675-3684; Angell et al. (1999) *Plant Journal* 20: 357-362). However, these methods bear a number of intrinsic limitations. First, none of these methods employs gene delivery vehicles that are applicable for consistent and persistent inhibition of gene expression in a eukaryote. Second, these existing methods do not necessarily result in production of a substantially homogenous population of dsRNAs. Notably, the *in vitro* preparation of double-stranded RNAs by transcribing and annealing sense RNA transcripts to antisense transcripts is time consuming, labor intensive, and not amenable for mass production or high-throughput analyses.

5 Thus, there remains a considerable need for compositions and methods to effect dsRNA-mediated gene silencing. An ideal reagent would be a self-replicating vector that is (a) capable of autonomous replication and expression of a selected transgene in a eukaryotic cell; and (b) capable of yielding both sense and antisense RNA transcripts from the same transgene, so as to effect production of dsRNA transcripts in a eukaryotic host cell. The present invention satisfies these needs and provides related advantages as well.

10 **SUMMARY OF THE INVENTION**

A principal aspect of the present invention is the design of a eukaryotic recombinant vector to effect gene silencing in a eukaryotic cell that is susceptible to 20 dsRNA-mediated reduction of gene expression. Such a vector allows bi-directional transcription of a transgene to yield both sense and antisense RNA transcripts of the same transgene in a eukaryotic cell. While not being bound to any one theory, the production of dsRNAs induces transcriptional and/or post-transcriptional gene silencing in the host cell. Accordingly, the present invention provides a recombinant 25 vector having the following unique characteristics: it comprises a viral replicon having two overlapping transcription units arranged in an opposing orientation and flanking a transgene of interest, wherein the two overlapping transcription units yield both sense and antisense RNA transcripts from the same transgene fragment in a eukaryotic host cell.

30 In one aspect of this embodiment, each of the overlapping transcription units of the vector comprises a promoter and a terminator that are arranged in one of the configurations shown in Figure 2(a)-(d). The promoter can be constitutive or

inducible; it can be active in all tissues and cell types of an organism or operative only in selected tissues (i.e. tissue-specific).

In another aspect, the recombinant vector comprises a viral replicon that is derived from a DNA virus. Such DNA viruses can be selected from the group consisting of *Geminivirus*, *Caulimoviridae*, *Badnaviridae*, *Circoviridae*, *Circinoviridae*, *Parvoviridae*, *Papovaviridae*, *Polyomaviridae*, *Adenoviridae*, *Herpesviridae*, *Poxviridae*, *Iridoviridae*, *Baculoviridae*, *Hepadnaviridae*, *Retroviridae*, *Gyrovirus*, *Nanovirus*, and African Swine Fever virus.

In yet another aspect, the subject vector is capable of autonomous replication in a eukaryotic cell.

In still another aspect, the subject vector is capable of inhibiting expression of genes endogenous to a eukaryotic host cell. Non-limiting representative eukaryotic cells whose gene expression can be inhibited upon introduction of the subject vectors are fungi, yeast cells, plant cells, insect, avian, mammalian or other animal cells. Preferably, the vectors effect a reduced expression of an endogenous gene that is substantially homologous to the transgene contained in the overlapping transcription units of the vectors. More preferably, delivery of the vectors into a suitable host cell results in a phenotypic change of the host cell. In certain preferred embodiments, the endogenous gene is native to the host cell. The endogenous gene can also be heterologous to the host cell. In some embodiments, the endogenous gene is a pathogenic gene derived from one or more members of the group consisting of virus, bacterium, fungus, and protozoa. The transgene carried in the vector can be a nucleotide sequence that encodes a membrane protein, a cytosolic protein, a secreted protein, a nuclear protein, or a chaperon protein.

The present invention also provides host cells transformed with the invention vectors. The present invention further provides a transgenic plant comprising a eukaryotic recombinant vector of the present invention.

Also provided by the present invention is a kit for generating a double-stranded RNA transcript in a eukaryotic cell that contains the subject vectors in suitable packaging.

Further embodied in the present invention is a method of inhibiting expression of an endogenous gene present in a eukaryotic cell. The method involves: (a) providing a eukaryotic recombinant vector containing a transgene

that is substantially homologous to the endogenous gene; (b) introducing the eukaryotic recombinant vector into the eukaryotic cell; and (c) culturing the eukaryotic cell of (b) under conditions favorable for expression of both sense and antisense RNA transcripts from the transgene that is contained in the transcription units of the vector, and thereby inhibiting expression of the corresponding endogenous gene in the eukaryotic cell.

Also included in the present invention is a method of identifying a biological function(s) of an endogenous gene of interest in a eukaryotic cell by selectively inhibiting the expression of the endogenous gene. The method comprises: (a) providing a eukaryotic recombinant vector containing a transgene that is substantially homologous to the endogenous gene; (b) introducing the eukaryotic recombinant vector of (a) into the eukaryotic cell; (c) culturing the eukaryotic cell of (b) under conditions favorable for expression of both sense and antisense RNA transcripts from the transgene contained in the eukaryotic recombinant vector and thereby inhibiting expression of the endogenous gene in the eukaryotic cell; and (d) determining one or more phenotypic changes in the eukaryotic cell that correlate with the inhibited expression of the endogenous gene, thereby identifying the biological function(s) of the endogenous gene in the eukaryotic cell. In essence, the subject methods allow the creation of a transient or more long-term gene-specific knock-out system for analyzing the biological function of any endogenous gene of interest.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic representation of the process for production of dsRNA transcripts by a subject vector containing two overlapping transcription units.

Figure 2 (a)-(d) depict four different configurations of the overlapping transcription units of the subject vectors.

Figure 3 is a schematic representation of an exemplary construct MSVLSB-

30 6.

Figure 4 depicts the nucleotide sequence of the vector pMSVLSB-1 (SEQ ID NO:9) described in Examples 1-2.

Figure 5 depicts the nucleotide sequence of the vector pMSVLSB-2 (SEQ ID NO:10) described in Examples 1-2.

Figure 6 depicts the nucleotide sequence of the vector pMSVLSB-3 (SEQ ID NO:11) described in Examples 1-2.

5 Figure 7 depicts the nucleotide sequence of the vector pMSVLSB-4 (SEQ ID NO:12) described in Examples 1-2.

Figure 8 depicts the nucleotide sequence of the vector pMSVLSB-5 (SEQ ID NO:13) described in Examples 1-2.

10 Figure 9 depicts the nucleotide sequence of the vector pMSVLSB-6 (SEQ ID NO: 14) described in Examples 1-2.

MODES FOR CARRYING OUT THE INVENTION

Throughout this disclosure, various publications, patents and published patent specifications are referenced by an identifying citation. The disclosures of these publications, patents and published patent specifications are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this invention pertains.

General Techniques:

20 The practice of the present invention will employ, unless otherwise indicated, conventional techniques of immunology, biochemistry, chemistry, molecular biology, microbiology, cell biology, genomics and recombinant DNA, which are within the skill of the art. See, e.g., Matthews, PLANT VIROLOGY, 3rd edition (1991); Sambrook, Fritsch and Maniatis, MOLECULAR CLONING: A LABORATORY MANUAL, 2nd edition (1989); CURRENT PROTOCOLS IN MOLECULAR BIOLOGY (F. M. Ausubel, et al. eds., (1987)); the series METHODS IN ENZYMOLOGY (Academic Press, Inc.); PCR 2: A PRACTICAL APPROACH (M.J. MacPherson, B.D. Hames and G.R. Taylor eds. (1995)), Harlow and Lane, eds. (1988) ANTIBODIES, A LABORATORY MANUAL, and ANIMAL CELL CULTURE (R.I. Freshney, ed. (1987)).

25 30 As used in the specification and claims, the singular form "a", "an" and "the" include plural references unless the context clearly dictates otherwise. For example, the term "a cell" includes a plurality of cells, including mixtures thereof.

Definitions:

A "plant cell" refers to the structural and physiological unit of plants, consisting of a protoplast and the cell wall.

5 A "protoplast" is an isolated cell without cell walls, having the potency for regeneration into cell culture, tissue or whole plant.

10 A "host cell" includes an individual cell or cell culture which can be or has been a recipient for vector(s) or for incorporation of nucleic acid molecules and/or proteins. Host cells include progeny of a single host cell, and the progeny may not necessarily be completely identical (in morphology or in genomic of total DNA complement) to the original parent cell due to natural, accidental, or deliberate mutation. A host cell includes cells transfected *in vivo* with a polynucleotide(s) of this invention.

15 The terms "polynucleotide", "nucleotides" and "oligonucleotides" are used interchangeably. They refer to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides, or analogs thereof. Polynucleotides may have any three-dimensional structure, and may perform any function, known or unknown. The following are non-limiting examples of polynucleotides: coding or non-coding regions of a gene or gene fragment, loci (locus) defined from linkage analysis, exons, 20 introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers. A polynucleotide may comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs. If present, modifications to the nucleotide structure may be imparted before or after assembly of the polymer. The sequence of nucleotides may be interrupted by non-nucleotide components. A polynucleotide may be further modified after polymerization, such as by conjugation with a labeling component.

25 A "gene" refers to a polynucleotide containing at least one open reading frame that is capable of encoding a particular protein after being transcribed and translated.

"Genes of a specific developmental origin" refer to genes expressed at certain but not all developmental stages. For instance, a gene may be of embryonic or adult origin depending on the stage during which the gene is expressed.

5 A "disease-associated" or "disease-causing" gene refers to any gene which is yielding transcription or translation products at an abnormal level or in an abnormal form in cells derived from a disease-affected tissues compared with tissues or cells of a control. It may be a gene that becomes expressed at an abnormally high level; it may be a gene that becomes expressed at an abnormally low level, where the altered expression correlates with the occurrence and/or progression of the disease. A disease-
10 associated gene also refers to gene possessing mutation(s) or genetic variation that is directly responsible or is in linkage disequilibrium with gene(s) that is responsible for the etiology of a disease. The transcribed or translated products may be known or unknown, and may be at normal or abnormal level.

15 A gene "database" denotes a set of stored data which represent a collection of sequences including nucleotide and peptide sequences, which in turn represent a collection of biological reference materials.

20 As used herein, "expression" refers to the process by which a polynucleotide is transcribed into mRNA and/or the process by which the transcribed mRNA (also referred to as "transcript") is subsequently being translated into peptides, polypeptides, or proteins. The transcripts and the encoded polypeptides are collectedly referred to as gene product.. If the polynucleotide is derived from genomic DNA, expression may include splicing of the mRNA in an eukaryotic cell.

25 "Differentially expressed", as applied to nucleotide sequence or polypeptide sequence in a subject, refers to over-expression or under-expression of that sequence when compared to that detected in a control. Underexpression also encompasses absence of expression of a particular sequence as evidenced by the absence of detectable expression in a test subject when compared to a control.

30 "Differential expression" refers to alterations in the abundance or the expression pattern of a gene product.

A "primer" is a short polynucleotide, generally with a free 3' -OH group, that binds to a target or "template" potentially present in a sample of interest by hybridizing with the target, and thereafter promoting polymerization of a polynucleotide complementary to the target.

The term "hybridize" as applied to a polynucleotide refers to the ability of the polynucleotide to form a complex that is stabilized via hydrogen bonding between the bases of the nucleotide residues in a hybridization reaction. The hydrogen bonding may occur by Watson-Crick base pairing, Hoogstein binding, or in any other sequence-specific manner. The complex may comprise two strands forming a duplex structure, three or more strands forming a multi-stranded complex, a single self-hybridizing strand, or any combination of these. The hybridization reaction may constitute a step in a more extensive process, such as the initiation of a PCR reaction, or the enzymatic cleavage of a polynucleotide by a ribozyme.

Hybridization can be performed under conditions of different "stringency". Relevant conditions include temperature, ionic strength, time of incubation, the presence of additional solutes in the reaction mixture such as formamide, and the washing procedure. Higher stringency conditions are those conditions, such as higher temperature and lower sodium ion concentration, which require higher minimum complementarity between hybridizing elements for a stable hybridization complex to form. In general, a low stringency hybridization reaction is carried out at about 40 °C in 10 x SSC or a solution of equivalent ionic strength/temperature. A moderate stringency hybridization is typically performed at about 50 °C in 6 x SSC, and a high stringency hybridization reaction is generally performed at about 60 °C in 1 x SSC.

When hybridization occurs in an antiparallel configuration between two single-stranded polynucleotides, the reaction is called "annealing" and those polynucleotides are described as "complementary". A double-stranded polynucleotide can be "complementary" or "homologous" to another polynucleotide, if hybridization can occur between one of the strands of the first polynucleotide and the second. "Complementarity" or "homology" (the degree that one polynucleotide is complementary with another) is quantifiable in terms of the proportion of bases in opposing strands that are expected to form hydrogen bonding with each other, according to generally accepted base-pairing rules.

In the context of polynucleotides, a "linear sequence" or a "sequence" is an order of nucleotides in a polynucleotide in a 5' to 3' direction in which residues that neighbor each other in the sequence are contiguous in the primary structure of the

polynucleotide. A "partial sequence" is a linear sequence of part of a polynucleotide which is known to comprise additional residues in one or both directions.

The terms "cytosolic", "nuclear" and "secreted" as applied to cellular proteins specify the extracellular and/or subcellular location in which the cellular protein is mostly localized. Certain proteins are "chaperons", capable of translocating back and forth between the cytosol and the nucleus of a cell.

A "subject" as used herein refers to a biological entity containing expressed genetic materials. The biological entity is preferably can be plant, animal, or microorganisms including bacteria, viruses, fungi, and protozoa. Tissues, cells and their progeny of a biological entity obtained *in vivo* or cultured *in vitro* are also encompassed.

A "control" is an alternative subject or sample used in an experiment for comparison purpose. A control can be "positive" or "negative". For example, where the purpose of the experiment is to detect a differentially expressed transcript or polypeptide in cell or tissue affected by a disease of concern, it is generally preferable to use a positive control (a subject or a sample from a subject, exhibiting such differential expression and syndromes characteristic of that disease), and a negative control (a subject or a sample from a subject lacking the differential expression and clinical syndrome of that disease).

"Heterologous" means derived from a genotypically distinct entity from the rest of the entity to which it is being compared. For example, a promoter removed from its native coding sequence and operatively linked to a coding sequence other than the native sequence is a heterologous promoter.

A "cell line" or "cell culture" denotes bacterial, plant, insect or higher eukaryotic cells grown or maintained *in vitro*. The descendants of a cell may not be completely identical (either morphologically, genotypically, or phenotypically) to the parent cell.

A "vector" is a nucleic acid molecule, preferably self-replicating, which transfers an inserted nucleic acid molecule into and/or between host cells. The term includes vectors that function primarily for insertion of a DNA or RNA into a cell, replication of vectors that function primarily for the replication of DNA or RNA, and expression vectors that function for transcription and/or translation of the DNA

or RNA. Also included are vectors that provide more than one of the above functions.

5 An "expression vector" is a polynucleotide which, when introduced into an appropriate host cell, can be transcribed and translated into a polypeptide(s). An "expression system" usually connotes a suitable host cell comprised of an expression vector that can function to yield a desired expression product.

10 A "replicon" refers to a polynucleotide comprising an origin of replication (generally referred to as an ori sequence) which allows for replication of the polynucleotide in an appropriate host cell. Examples of replicons include episomes (such as plasmids), as well as chromosomes (such as the nuclear or mitochondrial chromosomes).

15 A "transcription unit" is a DNA segment capable of directing transcription of a gene or fragment thereof. Typically, a transcription unit comprises a promoter operably linked to a gene or a DNA fragment that is to be transcribed, and optionally regulatory sequences located either upstream or downstream of the initiation site or the termination site of the transcribed gene or fragment.

Vectors of the present invention

20 A central aspect of the present invention is the design of a recombinant vector suited for bi-directional transcription of a transgene to yield both sense and antisense RNA transcripts of the transgene in a eukaryotic cell. The invention vectors are particularly suited for mediating nuclear gene silencing in a variety of biological systems. Distinguished from the previously described DNA vectors, the subject vectors have the following unique characteristics: (a) the vector replicates and directs expression of a transgene in a eukaryotic cell; and (b) the vector 25 comprises a replicon having two overlapping transcription units arranged in an opposing orientation and flanking a transgene of interest, wherein the two overlapping transcription units yield both sense and antisense RNA transcripts from the same transgene in a eukaryotic host cell.

30 Several factors apply to the design of vectors having the above-mentioned characteristics. First, the vector comprises a replicon having an origin of replication (generally referred to as an ori sequence) which permits replication of the vector in a eukaryotic host cell. A preferred replicon is one comprising viral sequences capable

of directing autonomous replication of the vector in an appropriate host cell. Non-limiting examples of viral replicons include sequences derived from DNA viruses such as *Geminivirus*, *Caulimoviridae*, *Badnaviridae*; *Circoviridae*, *Circinoviridae*, *Parvoviridae*, *Papovaviridae*, *Polyomaviridae*, *Adenoviridae*, *Herpesviridae*,
5 *Poxviridae*, *Iridoviridae*, *Baculoviridae*, *Hepadnaviridae*, *Retroviridae*, *Gyrovirus*, *Nanovirus*, and African Swine Fever virus, or the like. In addition to the replication origin, a replicon typically carries a transcription unit that directs transcription of a transgene or a fragment thereof to yield a plurality of RNA transcripts.

A second consideration in designing the subject vector is to select two
10 overlapping transcription units. By "overlapping" is meant that the two transcription units directs transcription of both DNA strands of the same transgene to yield a plurality of partially or perfectly double stranded RNA transcripts. The two overlapping transcription units are typically arranged in an opposing orientation so that each unit can drive transcription of one of the complementary strands from the
15 same transgene, and thus facilitate the generation of double stranded RNA. transscripts. Elements within a transcription unit include but are not limited to promoter regions, enhancer regions, repressor binding regions, transcription initiation sites, ribosome binding sites, translation initiation sites, protein encoding regions and introns, and termination sites for transcription and translation. Preferred transcription
20 units are arranged in a configuration shown in Figure 2(a)-(d).

As used herein, a "promoter" is a DNA region capable under certain conditions of binding RNA polymerase and initiating transcription of a coding region located downstream (in the 3' direction) from the promoter. It can be constitutive or inducible. In general, the promoter sequence is bounded at its 3'
25 terminus by the transcription initiation site and extends upstream (5' direction) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background. Within the promoter sequence is a transcription initiation site, as well as protein binding domains responsible for the binding of RNA polymerase. Eukaryotic promoters will often, but not always, contain "TATA" boxes and "CAT" boxes.
30

The choice of promoters will largely depend on the host cells in which the vector is introduced. Commonly employed plant promoters include but are not limited those from agrobacterium, nopaline synthase gene, octopine synthase gene,

mannopine synthase, rbcS (small subunit of ribulose bis-phosphate carboxylase). In addition, the promoter sequences may be provided by viral material. Any RNA virus subgenomic promoters described in Dawson et al. Advances in Virus Research, 38:307-342 and WO93/03161 can thus be employed. For animal cells, a variety of robust promoters, both viral and non-viral promoters, are known in the art. Non-limiting representative viral promoters include CMV, the early and late promoters of SV40 virus, promoters of various types of adenoviruses (e.g., adenovirus 2) and adeno-associated viruses. It is also possible, and often desirable, to utilize promoters normally associated with a desired transgene sequence, provided that such control sequences are compatible with the host cell system. See Goeddel et al., Gene Expression Technology Methods in Enzymology Volume 185, Academic Press, San Diego, (1991), Ausubel et al, Protocols in Molecular Biology, Wiley Interscience (1994).

Suitable promoter sequences for other eukaryotic cells such as yeast cells include the promoters for 3-phosphoglycerate kinase, or other glycolytic enzymes, such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase. Other promoters, which have the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, and the aforementioned glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization.

To optimize the yield of double-stranded RNAs formed from the sense and anti-sense strands transcribed by the overlapping units, it is preferable to use two promoters of comparable strength. The relative strength of the promoters can be determined or ascertained by any conventional recombinant techniques and methods exemplified herein. Representative techniques are Northern blot hybridization and DNA array-based technologies. An illustrative promoter pair comprises MSV mp promoter and CaMV 35S RNA promoter.

Where desired, heterologous promoters that are removed from their native coding sequences and operatively linked to a transgene which it is not naturally

found linked, can be used in constructing the invention vectors. As such, any viral promoters described above can be used to drive the transcription of a non-viral transgenes; promoters of one class of genes can be employed to direct transcription of transgenes coding for other related or unrelated classes of proteins. In certain 5 embodiments of the invention, it is preferable to employ inducible promoters to control the transcription of a transgene. A diverse variety of inducible promoters have been described in the art. Promoters of any endogenous genes whose expressions are inducible by internal or external factors can be employed. Factors applicable for transcription induction include but are not limited to hormones, heat 10 shock, oxygen deficiency, light, stress and various chemicals. Commonly employed inducible promoters are β -gal promoter that is activated upon addition of IPTG; hps70 promoter that is inducible by heat shock; and ribulose-1,5-biphosphate carboxylase (RUBISCO) promoter that is regulated by light.

Tissue-specific promoters may also be used. A vast diversity of tissue 15 specific promoters have been described and employed by artisans in the field. Representative plant tissue promoters include that of legumin (or other seed storage protein promoters), patatin and the like. Exemplary promoters operative in selective animal tissue include hepatocyte-specific promoters and cardiac muscle specific promoters. Depending on the intended use of the subject vectors, those skilled in the 20 art will know of other suitable tissue-specific promoters applicable for non-constitutive bi-directional transcription.

In constructing the subject vectors, the termination sequences associated with the transgene are also inserted into the 3' end of the sequence desired to be transcribed to provide polyadenylation of the mRNA and/or transcriptional 25 termination signal. The terminator sequence preferably contains one or more transcriptional termination sequences (such as polyadenylation sequences) and may also be lengthened by the inclusion of additional DNA sequence so as to further disrupt transcriptional read-through. Preferred terminator sequences (or termination sites) of the present invention have a gene that is followed by a transcription 30 termination sequence, either its own termination sequence or a heterologous termination sequence. Examples of such termination sequences, including stop codons coupled to various polyadenylation sequences that are known in the art, widely available, and exemplified below. Where the terminator comprises a gene, it

can be advantageous to use a gene which encodes a detectable or selectable marker; thereby providing a means by which the presence and/or absence of the terminator sequence (and therefore the corresponding inactivation and/or activation of the transcription unit) can be detected and/or selected. Alternatively, a terminator may simply be a second promoter, arranged in inverted orientation to the promoter described above.

The terminators and promoters of the two overlapping transcription units may take a variety of configurations. In one aspect, terminators 1 and 2 of the overlapping transcription units are arranged to immediately flank the transgene as shown in Figure 2(a). In another aspect, the two terminators are placed at the 5' end or the 3' end of their respective promoters as depicted in Figure 2(b). In other aspects, terminator 1 and promoter 1 are flanked by terminator 2 and promoter 2 as shown in Figure 2(c), or vice versa (see Figure 2(d)). Any other variations in configuring the two overlapping transcription units that permit bi-directional transcription are encompassed by the present invention.

The transgene transcribed by an invention vector can be any gene expressed in a eukaryotic cell. The selection of transgene is determined largely by the intended purpose of the vector. Where the vector is used to inhibit expression of an endogenous gene present in a host cell, the transgene selected are substantially homologous to the target endogenous gene. In general, substantially homologous nucleotide sequences are at least about 60% identical with each other, after alignment of the homologous regions. Preferably, the sequences are at least about 75% identical; more preferably, they are at least about 80% identical; more preferably, they are at least about 90% identical; still more preferably, the sequences are 95% identical.

Sequence alignment and homology searches are often determined with the aid of computer methods. A variety of software programs are available in the art. Non-limiting examples of these programs are Blast (<http://www.ncbi.nlm.nih.gov/BLAST/>), Fasta (Genetics Computing Group package, Madison, Wisconsin), DNA Star, MegAlign, and GeneJockey. Any sequence databases that contains DNA sequences corresponding to a target gene or a segment thereof can be used for sequence analysis. Commonly employed databases include but are not limited to GenBank, EMBL, DDBJ, PDB, SWISS-PROT, EST,

STS, GSS, and HTGS. Sequence similarity can be discerned by aligning the transgene sequence against a target endogenous gene sequence. Common parameters for determining the extent of homology set forth by one or more of the aforementioned alignment programs include p value and percent sequence identity.

5 P value is the probability that the alignment is produced by chance. For a single alignment, the p value can be calculated according to Karlin et al. (1990) *Proc. Natl. Acad. Sci.* 87: 2264. For multiple alignments, the p value can be calculated using a heuristic approach such as the one programmed in Blast. Percent sequence identity is defined by the ratio of the number of nucleotide matches between the query sequence and the known sequence when the two are optimally aligned. A selected

10 transgene and target endogenous sequences are considered to be substantially homologous when the regions of alignment exhibit the aforementioned range of percentage of identity using Fasta or Blast alignment program with the default settings.

15 Sequence homology can also be determined by functional analyses. A sequence that preserves the functionality of the nucleic acid with which it is being compared is particularly preferred. Functionality may be established by different criteria, such as ability to hybridize with a target polynucleotide, ability to effectively amplify a target sequence to yield a substantially homogenous

20 multiplicity of products, and the ability to extend the 3' end sequence complementary to a target sequence in a nucleotide sequencing reaction.

25 Where desired, the transgene may comprise heterologous sequences that facilitate detection of the expression and purification of the gene product. Examples of such sequences are known in the art and include those encoding reporter proteins, such as β -galactosidase, β -lactamase, chloramphenicol acetyltransferase (CAT), luciferase, green fluorescent protein (GFP) and their derivatives. Other heterologous sequences that facilitate purification may code for epitopes such as Myc, HA (derived from influenza virus hemagglutinin), His-6, FLAG, glutathione S-transferase (GST), maltose-binding protein (MBP), or the Fc portion of immunoglobulin.

30 The target endogenous genes whose expression is to be inhibited encompass native and heterologous genes present in the host cell. "Native" genes are nucleic acid sequences originated from the host cell. Non-limiting illustrative native genes

5 include those encode membrane proteins, cytosolic proteins, secreted proteins, nuclear proteins and chaperon proteins. Heterologous genes are sequences acquired exogenously by the host cell. Exogenous sequences can be either integrated into the host cell genome, or maintained as episomal sequences. An exemplary class of heterologous genes includes pathogenic genes derived from viruses, bacteria, fungi, and protozoa.

10 The endogenous genes suitable for the present invention may also be characterized based on one or more of the following features: ability to induce a phenotypic change in a host cell or organism, species origin, developmental origin, primary structural similarity, involvement in a particular biological process, association with or resistance to a particular disease or disease stage, tissue, sub-tissue or cell-specific expression pattern, and subcellular location of the expressed gene product. In one aspect, the endogenous gene may be any gene expressed in a eukaryote cell, such as a plant cell, animal cell or a yeast cell. In another aspect, the 15 endogenous gene confers a phenotypic characteristic detectable by visual, microscopic, genetic, or chemical means. Within this class of genes, of particular interest are plant genes involved in growth phenotypes, e.g. stunting, hyperbranching, vein banding, ring spot, etching, and those responsible for color characteristics including bleaching and chlorosis. Also, of particular relevance are genes which upon inhibition provide an enhanced resistance to pathogens (e.g. 20 bacteria, fungi, viruses, insects, and protozoa), and resistance to adverse environmental factors (e.g. temperature fluctuation, nutritional deficiency, adverse soil conditions, moisture, dryness, etc.).

25 In another aspect, the endogenous genes are of a specific developmental origin, such as those expressed in an embryo or an adult organism, during ectoderm, mesoderm, or endoderm formation in a multi-cellular animal, or during development of leaves, tubers, bud of a plant. In yet another aspect, the endogenous genes belong to a family of genes, or a sub-family of genes that share primary structural similarities. Structural similarities can be discerned with the aid of computer 30 software described above. Non-limiting examples of gene families include those encoding proteinase, proteinase inhibitors, cell surface receptors, protein kinases (e.g. tyrosine, serine/threonine or histidine kinases), trimeric G-proteins, cytokines, PH-, SH2-, SH3-, PDZ-domain containing proteins, and any of those gene families

published by the Institute for Genomic Research (TIGR), Incyte Pharmaceuticals, Inc., Human Genome Sciences Inc., Monsanto, and PE-Celera.

In yet another aspect, the endogenous genes are involved in a specific biological process, including but not limited to cell cycle regulation, cell differentiation, chemotaxis, apoptosis, cell motility and cytoskeletal rearrangement.

5 In still another aspect, the endogenous genes embodied in the invention are associated with a particular disease or with a specific disease stage. Such genes include but are not limited to those associated with autoimmune diseases, obesity, hypertension, diabetes, neuronal and/or muscular degenerative diseases, cardiac diseases, endocrine disorders, any combinations thereof. In yet still another aspect, 10 the endogenous genes encompass those exhibiting restricted expression patterns. Non-limiting exemplary gene transcripts of this class include those that are not ubiquitously expressed, but rather are differentially expressed in one or more of the plant tissues including leaf, seed, tuber, stems, root, and bud; or expressed in animal body tissues including heart, liver, prostate, lung, kidney, bone marrow, blood, skin, bladder, brain, muscles, nerves, and selected tissues that are affected by various 15 types of cancer (malignant or non-metastatic), affected by cystic fibrosis or polycystic kidney disease. Additional examples of non-ubiquitously expressed genes are those whose gene products are localized to certain subcellular locations:

20 extracellular matrix, nucleus, cytoplasm, cytoskeleton, plasma and/or intracellular membranous structures which include but are not limited to coated pits, Golgi apparatus, endoplasmic reticulum, endosome, lysosome, and mitochondria.

In addition to the above-described elements, the vectors may contain a selectable marker (for example, a gene encoding a protein necessary for the survival 25 or growth of a host cell transformed with the vector), although such a marker gene can be carried on another polynucleotide sequence co-introduced into the host cell. Only those host cells into which a selectable gene has been introduced will survive and/or grow under selective conditions. Typical selection genes encode protein(s) 30 that (a) confer resistance to antibiotics or other toxins substances, e.g., ampicillin, neomycin, methotrexate, etc.; (b) complement auxotrophic deficiencies; or (c) supply critical nutrients not available from complex media. The choice of the proper marker gene will depend on the host cell, and appropriate genes for different hosts are known in the art.

The vectors embodied in this invention can be obtained using recombinant cloning methods and/or by chemical synthesis. A vast number of recombinant cloning techniques such as PCR, restriction endonuclease digestion and ligation are well known in the art, and need not be described in detail herein. One of skill in the art can also use the sequence data provided herein or that in the public or proprietary databases to obtain a desired vector by any synthetic means available in the art.

Host cell and transgenic organisms of the present invention:

10 The invention provides eukaryotic host cells transformed with the recombinant DNA vectors described above. The recombinant vectors containing the transgene of interest can be introduced into a suitable eukaryotic cell by any of a number of appropriate means, including electroporation, transfection employing calcium chloride, rubidium chloride, calcium phosphate, DEAE-dextran, or other substances; microprojectile bombardment; lipofection; and infection (where the vector is coupled to an infectious agent). The choice of introducing vectors will often depend on features of the host cell.

15 For most animal cells, any of the above-mentioned methods is suitable for vector delivery. For plant cells, a variety of techniques derived from these general methods is available in the art. The host cells may be in the form of whole plants, isolated cells or protoplasts. Preferably, the cells are "intact" in that the cell comprises an outer layer of cell wall, typically composed of cellulose for protection and maintaining the rigidity of the plant cell. Illustrative procedures for introducing vectors into plant cells include Agrobacterium-mediated plant transformation, protoplast transformation, gene transfer into pollen, injection into reproductive organs and injection into immature embryos. As is evident to one skilled in the art, each of these methods has distinct advantages and disadvantages. Thus, one particular method of introducing genes into a particular plant species may not necessarily be the most effective for another plant species.

20 25 30 Agrobacterium *tumefaciens*-mediated transfer is a widely applicable system for introducing genes into plant cells because the DNA can be introduced into whole plant tissues, bypassing the need for regeneration of an intact plant from a protoplast. The use of Agrobacterium-mediated expression vectors to introduce

DNA into plant cells is well known in the art. This technique makes use of a common feature of *Agrobacterium* which colonizes plants by transferring a portion of their DNA (the T-DNA) into a host cell, where it becomes integrated into nuclear DNA. The T-DNA is defined by border sequences which are 25 base pairs long, and any DNA between these border sequences is transferred to the plant cells as well.

5 The insertion of a recombinant plant viral nucleic acid between the T-DNA border sequences results in transfer of the recombinant plant viral nucleic acid to the plant cells, where the recombinant plant viral nucleic acid is replicated, and then spreads systemically through the plant. Agro-infection has been accomplished with potato spindle tuber viroid (PSTV); CaV; and Lazarowitz, S., *Nucl. Acids Res.* 16:229

10 (1988)) digitaria streak virus (Donson *et al.*, *Virology* 162:248 (1988)), wheat dwarf and tomato golden mosaic virus (TGMV). Therefore, agro-infection of a susceptible plant could be accomplished with a virion containing a recombinant plant viral nucleic acid based on the nucleotide sequence of any of the above viruses. Particle bombardment or electroporation or any other methods known in the art may also be used.

15

Because not all plants are natural hosts for *Agrobacterium*, alternative methods such as transformation of protoplasts may be employed to introduce the subject vectors into the host cells. For certain monocots, transformation of the plant protoplasts can be achieved using methods based on calcium phosphate precipitation, polyethylene glycol treatment, electroporation, and combinations of these treatments. See, for example, Potrykus *et al.*, *Mol. Gen. Genet.*, 199:167-177 (1985); Fromm *et al.*, *Nature*, 319:791 (1986); Callis *et al.*, *Genes and Development*, 1:1183 (1987). Applicability of these techniques to different plant species may depend upon the feasibility to regenerate that particular plant species from protoplasts.

20

25

In addition to protoplast transformation, particle bombardment is an alternative and convenient technique for delivering the invention vectors into a plant host cell. Specifically, the plant cells may be bombarded with microparticles coated with a plurality of the subject vectors. Bombardment with DNA-coated microparticles has been successfully used to produce stable transformants in both plants and animals (see, for example, Sanford *et al.* (1993) *Methods in Enzymology*, 217:483-509). Microparticles suitable for introducing vectors into a plant cell are

30

typically made of metal, preferably tungsten or gold. These microparticles are available for example, from BioRad (e.g., Bio-Rad's PDS-1000/He). Those skilled in the art will know that the particle bombardment protocol can be optimized for any plant by varying parameters such as He pressure, quantity of coated particles, 5 distance between the macrocarrier and the stopping screen and flying distance from the stopping screen to the target.

Vectors can also be introduced into plants by direct DNA transfer into pollen as described by Zhou et al., *Methods in Enzymology*, 101:433 (1983); Luo et al., *Plant Mol. Biol. Reporter*, 6:165 (1988). Alternatively, the vectors can be injected 10 into reproductive organs of a plant as described by Pena et al., *Nature*, 325:274 (1987).

Other techniques for introducing nucleic acids into a plant cell include:

- (a) Hand Inoculations. Hand inoculations are performed using a neutral pH, low molarity phosphate buffer, with the addition of celite or carborundum 15 (usually about 1%). One to four drops of the preparation is put onto the upper surface of a leaf and gently rubbed.
- (b) Mechanized Inoculations of Plant Beds. Plant bed inoculations are performed by spraying (gas-propelled) the vector solution into a tractor-driven mower while cutting the leaves. Alternatively, the plant bed is mowed and the vector solution sprayed immediately onto the cut leaves. 20
- (c) High Pressure Spray of Single Leaves. Single plant inoculations can also be performed by spraying the leaves with a narrow, directed spray (50 psi, 6-12 inches from the leaf) containing approximately 1% carborundum in the buffered vector solution.
- (d) Vacuum Infiltration. Inoculations may be accomplished by subjecting a host 25 organism to a substantially vacuum pressure environment in order to facilitate infection.

Once introduced into a suitable host cell, expression of the transgene can be 30 determined using any assay known in the art. For example, the presence of transcribed sense or anti-sense strands of the transgene can be detected and/or quantified by conventional hybridization assays (e.g. Northern blot analysis), amplification procedures (e.g. RT-PCR), SAGE (U.S. Patent No. 5,695,937), and

array-based technologies (see e.g. U.S. Pat. Nos. 5,405,783, 5,412,087 and 5,445,934). In conducting these analytical procedures, it is preferable to induce transcription of one strand of the transgene at a time. As is apparent to one skilled in the art, the simultaneous transcription of both sense and anti-sense strands facilitates formation of double stranded RNA molecules, which may obscure the accurate determination of the levels of sense and anti-sense RNA transcripts.

5 Expression of the transgene can also be determined by examining the protein product. A variety of techniques are available in the art for protein analysis. They include but are not limited to radioimmunoassays, ELISA (enzyme linked 10 immunoradiometric assays), "sandwich" immunoassays, immunoradiometric assays, in situ immunoassays (using e.g., colloidal gold, enzyme or radioisotope labels), western blot analysis, immunoprecipitation assays, immunofluorescent assays, and PAGE-SDS.

15 In general, determining the protein level involves (a) providing a biological sample containing polypeptides; and (b) measuring the amount of any immunospecific binding that occurs between an antibody reactive to the transgene product and a component in the sample, in which the amount of immunospecific binding indicates the level of expressed proteins. Antibodies that specifically recognize and bind to the protein products of the transgene are required for 20 immunoassays. These may be purchased from commercial vendors or generated and screened using methods well known in the art. See Harlow and Lane (1988) *supra*. and Sambrook et al. (1989) *supra*. The sample of test proteins can be prepared by homogenizing the eukaryotic transformants (e.g. plant cells) or their progenies made therefrom, and optionally solubilizing the test protein using detergents, preferably 25 non-reducing detergents such as triton and digitonin. The binding reaction in which the test proteins are allowed to interact with the detecting antibodies may be performed in solution, or on a solid tissue sample, for example, using tissue sections or solid support that has been immobilized with the test proteins. The formation of the complex can be detected by a number of techniques known in the art. For 30 example, the antibodies may be supplied with a label and unreacted antibodies may be removed from the complex; the amount of remaining label thereby indicating the amount of complex formed. Results obtained using any such assay on a sample

from a plant transformant or a progeny thereof is compared with those from a non-transformed source as a control.

The eukaryotic host cells of this invention are grown under favorable conditions to effect transcription of the transgene. Non-limiting examples of eukaryotic hosts are fungus, yeast, plant cells, insect, avian, mammalian or other animal cells. The host cells can be used, *inter alia*, as repositories of the transgene and/or vehicles for production of the transgene-specific double stranded RNAs. The host cells may also be employed to generate transgenic organisms such as transgenic animals and plants comprising the recombinant DNA vectors of the present invention. Preferred host cells are those having the propensity to regenerate into tissue or a whole organisms. Examples of these preferred host cells are oocytes, blastocutes, and certain plant cells exemplified herein.

Accordingly, this invention provides transgenic plants carrying the subject vectors. In a preferred embodiment, the transgenic plant exhibits a reduced expression (when compared to a control plant) of an endogenous gene that is substantially homologous to the transgene carried in the subject vector.

The regeneration of plants from either single plant protoplasts or various explants is well known in the art. See, for example, Methods for Plant Molecular Biology, Mary A. Shuler and Raymond E. Zielinski, Academic Press, Inc., San Diego, Calif. (1988). This regeneration and growth process includes the steps of selection of transformant cells and shoots, rooting the transformant shoots and growth of the plantlets in soil.

The regeneration of plants containing the subject vector introduced by Agrobacterium tumefaciens from leaf explants can be achieved as described by Horsch et al., *Science*, 227:1229-1231 (1985). In this procedure, transformants are grown in the presence of a selection agent and in a medium that induces the regeneration of shoots in the plant species being transformed as described by Fraley et al., *Proc. Natl. Acad. Sci. U.S.A.*, 80:4803 (1983). This procedure typically produces shoots within two to four weeks and these transformant shoots are then transferred to an appropriate root-inducing medium containing the selective agent and an antibiotic to prevent bacterial growth. Transformant shoots that rooted in the presence of the selective agent to form plantlets are then transplanted to soil to allow

the production of roots. These procedures will vary depending upon the particular plant species employed, as is apparent to one of ordinary skill in the art.

A population of progeny can be produced from the first and second transformants of a plant species by methods well known in the art including cross fertilization and asexual reproduction. Transgenic plants embodied in the present invention are useful for production of desired proteins, and as test systems for analysis of the biological functions of a gene.

Uses of the vectors of the present invention:

The subject vectors provide specific reagents for inhibiting expression of an endogenous gene present in a host cell. The expression inhibition methods may be used in a wide variety of circumstances including suppression of a gene associated with a particular disease or disease stage; delineating the biological functions of a gene by analyzing a phenotypic change in the host cell that correlates with the selective suppression of gene expression; and facilitating drug screening by rendering the host cell more susceptible or resistant to a therapeutic agent of interest.

Accordingly, this invention provides a method of inhibiting expression of an endogenous gene present in a eukaryotic cell. The method comprises the steps of: (a) providing a subject vector containing a transgene that is substantially homologous to an endogenous gene of a eukaryotic cell; (b) introducing the recombinant vector into the eukaryotic cell; (c) culturing the eukaryotic cell of (b) under conditions favorable for expression of both sense and antisense RNA transcripts from the transgene, and thereby inhibiting expression of the corresponding endogenous gene in the eukaryotic cell.

In a separate embodiment, the invention provides a method of identifying a biological function(s) of an endogenous gene of interest in a eukaryotic cell by selectively inhibiting the expression of the endogenous gene. The method involves: (a) providing a recombinant vector of the present invention, wherein the transgene contained in the vector is substantially homologous to the endogenous gene; (b) introducing the recombinant vector of (a) into the eukaryotic cell; (c) culturing the eukaryotic cell of (b) under conditions favorable for expression of both sense and antisense RNA transcripts from the transgene contained in the recombinant vector and thereby inhibiting expression of the endogenous gene in the eukaryotic cell; and

(d) determining one or more phenotypic changes in the eukaryotic cell that correlate with the inhibited expression of the endogenous gene, thereby identifying the biological function(s) of the endogenous gene in the eukaryotic cell.

The host cells encompassed by these embodiments are eukaryotic cells susceptible to dsRNA-mediated "genetic interference". dsRNA induced gene silencing has been observed in a variety of multi-cellular organisms including but not limited to worms, fruitflies, protozoa, fungi, mammals, and zebrafish. Thus, cells from any of these exemplary organisms can be employed. Suitable host cells may be derived from primary cultures or subcultures generated by expansion and/or cloning of primary cultures. Any cells capable of growth in culture can be used as host cells. Of particular interest is the type of cell that differentially expresses (over-expresses or under-expresses) a disease-causing gene. As is apparent to one skilled in the art, various cell lines may be obtained from public or private repositories. The largest depository agent is American Type Culture Collection (<http://www.atcc.org>), which offers a diverse collection of well-characterized cell lines derived from a vast number of organisms and tissue samples.

Upon delivery of the subject vectors, the host cells are cultured under conditions favorable for gene transcription. The parameters governing eukaryotic cell survival are generally applicable for induction of gene transcription. The culture conditions are well established in the art. Physicochemical parameters which may be controlled *in vitro* are, e.g., pH, CO₂, temperature, and osmolarity. The nutritional requirements of cells are usually provided in standard media formulations developed to provide an optimal environment. Nutrients can be divided into several categories: amino acids and their derivatives, carbohydrates, sugars, fatty acids, complex lipids, nucleic acid derivatives and vitamins. Apart from nutrients for maintaining cell metabolism, most cells also require one or more hormones from at least one of the following groups: steroids, prostaglandins, growth factors, pituitary hormones, and peptide hormones to survive or proliferate (Sato, G.H., et al. in "Growth of Cells in Hormonally Defined Media", Cold Spring Harbor Press, N.Y., 1982; Barnes and Sato (1980) *Anal. Biochem.*, **102**:255. Given the vast wealth of information on the nutrient requirements, medium conditions optimized for cell survival, one skilled in the art can readily fashion various culture conditions using

any one of the aforementioned methods and compositions, alone or in any combination.

The inhibition of expression of the endogenous gene sharing substantial sequence homology with the transgene carried in the vectors can be determined by assaying for a difference, between the host cell and the control cell, in the level of mRNA transcripts of the endogenous gene. Alternatively, a suppression in expression is determined by detecting a difference in the level of the polypeptide(s) encoded by the endogenous gene. A preferred method is to detect a phenotypic change resulting from the decrease in expression of the endogenous gene of interest.

In assaying for an alteration in mRNA level, nucleic acid contained in the host cells is first extracted according to standard methods in the art. For instance, mRNA can be isolated using various lytic enzymes or chemical solutions according to the procedures set forth in Sambrook et al. (1989), *supra* or extracted by nucleic-acid-binding resins following the accompanying instructions provided by manufacturers. The mRNA contained in the extracted nucleic acid sample is then detected by hybridization (e.g. Northern blot analysis) and/or amplification procedures according to methods widely known in the art or based on the methods exemplified herein.

Reduction in expression of the endogenous gene can also be determined by examining the protein product of the endogenous gene. A variety of techniques is available in the art for protein analysis. They include but are not limited to radioimmunoassays, ELISA (enzyme linked immunoradiometric assays), "sandwich" immunoassays, immunoradiometric assays, *in situ* immunoassays (using e.g., colloidal gold, enzyme or radioisotope labels), western blot analysis, immunoprecipitation assays, immunofluorescent assays, and SDS-PAGE. In addition, cell sorting analysis can be employed to detect cell surface antigens. Such analysis involves labeling target cells with antibodies coupled to a detectable agent, and then separating the labeled cells from the unlabeled ones in a cell sorter. A sophisticated cell separation method is fluorescence-activated cell sorting (FACS). Cells traveling in single file in a fine stream are passed through a laser beam, and the fluorescence of each cell bound by the fluorescently labeled antibodies is then measured.

Antibodies that specifically recognize and bind to the protein products of interest are required for conducting the aforementioned protein analyses. These antibodies may be purchased from commercial vendors or generated and screened using methods well known in the art. See Harlow and Lane (1988) *supra*, and 5 Sambrook et al. (1989) *supra*.

Inhibition of gene expression can also result in phenotypic change(s) in a host cell. As used herein, phenotypic change refers to any non-genotypic change that can be detected visually, or analyzed biochemically or genetically. The choice of detection methods will largely depend on the nature of the phenotypic 10 characteristics that are under investigation. For instance, certain phenotypic features of a plant cell can be detected microscopically or macroscopically. These features include improved tolerance to herbicides, improved tolerance to extremes of heat or cold, drought, salinity or osmotic stress; improved resistance to pests (insects, nematodes or arachnids) or diseases (fungal, bacterial or viral), production of 15 enzymes or secondary metabolites; male or female sterility; dwarfness; early maturity; improved yield, vigor, heterosis, nutritional qualities, flavor or processing properties, and the like. Other detectable phenotypic changes are morphological alterations including but not limited to stunting, hyperbranching, vein banding, ring spot, etching, and those responsible for color characteristics including bleaching and 20 chlorosis.

For animal cells, detectable phenotypic changes may encompass alterations in cell cycle regulation, cell differentiation, apoptosis, chemotaxis, cell motility and cytoskeletal rearrangement. Methods for detecting these phenotypic changes are well-established in the art and hence are not detailed herein.

Other phenotypic changes commonly observed in both plant and animal cells 25 involve differential expression (over-expression or under-expression) of a particular protein due to the selective inhibition of the endogenous gene of interest. Differential gene expression may be analyzed by any chemical means available in the art or those disclosed herein. As is also apparent to artisans, altering expression 30 of one endogenous gene may lead to changes in gene expression profile of a host of genes mapped to the same or related signal transduction pathways. As used herein, "signal transduction" refers to the process by which stimulatory or inhibitory signals are transmitted into and within a cell to elicit an intracellular response. Any

fluctuation in intracellular response of a eukaryotic host cell is also considered as a type of phenotypic change.

Alteration in intracellular response is often determined with the aid of reporter molecules. For example, when examining a signaling cascade involving a fluctuation of intracellular pH condition, pH sensitive molecules such as fluorescent pH dyes can be used as the reporter molecules. In another example where the signaling pathway of a trimeric G_q protein is analyzed, calcium-sensitive fluorescent probes can be employed as reporters. As is apparent to artisans in the field of signal transduction, trimeric G_q protein is involved in a classic signaling pathway, in which activation of G_q stimulates hydrolysis of phosphoinositides by phospholipase C to generate two classes of well-characterized second messengers, namely, diacylglycerol and inositol phosphates. The latter stimulates the mobilization of calcium from intracellular stores, and thus resulting in a transient surge of intracellular calcium concentration, which is a readout measurable with a calcium-sensitive probe.

Another exemplary class of reporter molecules is a reporter gene operably linked to an inducible promoter that can be activated upon the stimulation or inhibition of a signaling pathway. Reporter proteins can also be linked with other proteins whose expression is dependent upon the stimulation or suppression of a given signaling cascade. Commonly employed reporter proteins can be easily detected by a colorimetric or fluorescent assay. Non-limiting examples of such reporter proteins include : β-galactosidase, β-lactamase, chloramphenicol acetyltransferase (CAT), luciferase, green fluorescent protein (GFP) and their derivatives. Those skilled in the art will know of other suitable reporter molecules for assaying changes in a specific signaling transduction readout, or will be able to ascertain such, using routine experimentation.

To discern inhibition of gene expression, one typically conducts a comparative analysis of the subject and appropriate controls. Preferably, a test includes a positive control sample exhibiting a decrease in gene expression and a negative control having an unaltered expression level. The selection of an appropriate control cell or tissue is dependent on the sample cell or tissue initially selected and its phenotype which is under investigation.

In one aspect, the invention methods can be employed to selectively inhibit expression of an endogenous gene that is native to the eukaryotic host cell. Such a gene may encode encodes a protein selected from the group consisting of a membrane protein, a cytosolic protein, a secreted protein, a nuclear protein and a chaperon protein. Of particular interests are endogenous genes that confer phenotypic changes as a result of inhibition of the expression and/or function of the endogenous genes. In another aspect within this embodiment, the endogenous gene is heterologous to the host cell. As used herein, heterologous genes are acquired exogenously by the host cell. Non-limiting examples of heterologous genes are those derived from virus, bacterium, fungus, and protozoa.

In a separate embodiment, the invention methods are used to identify a biological function(s) of an endogenous gene in a eukaryotic cell by examining a phenotypic change associated with the inhibition in its expression and thus loss of biological function. In essence, the subject methods allow the creation of a transient or more long-term gene-specific knock-out system for analyzing the biological function of any endogenous gene of interest.

Kits comprising the vectors of the present invention

The present invention also encompasses kits containing the vectors of this invention in suitable packaging. Kits embodied by this invention include those that allow generation of a double-stranded RNA transcript in a eukaryotic cell.

Each kit necessarily comprises the reagents which render the delivery of vectors into a eukaryotic host cell possible. The selection of reagents that facilitate delivery of the vectors may vary depending on the particular transfection or infection method used. The kits may also contain reagents useful for generating labeled polynucleotide probes or proteinaceous probes for detection of gene silencing. Each reagent can be supplied in a solid form or dissolved/suspended in a liquid buffer suitable for inventory storage, and later for exchange or addition into the reaction medium when the experiment is performed. Suitable packaging is provided. The kit can optionally provide additional components that are useful in the procedure. These optional components include, but are not limited to, buffers, capture reagents, developing reagents, labels, reacting surfaces, means for detection, control samples, instructions, and interpretive information. The kits can be

employed to generate eukaryotic cells whose endogenous genes are selectively inhibited, and transgenic organisms comprising these eukaryotic cells.

Further illustration of the development and use of vectors and assays according to this invention are provided in the Example section below. The examples are provided as a guide to a practitioner of ordinary skill in the art, and are not meant to be limiting in any way.
5

EXAMPLES

Example 1: Construction of recombinant vectors comprising two opposing transcription units

5

We have designed a recombinant vector construct useful for silencing nuclear genes in many of the agriculturally-important cereal crops. The vector comprises sequences derived from maize streak geminivirus, isolated MSV-Kom (genbank accession number AF003952, classification: Family *Geminiviridae*, genus *Mastrevirus*, species maize streak virus, designated MSV-Komatipoort. Maize streak virus has a broad host range that encompasses all agriculturally important cereal crops, including but not limited to corn, wheat, rice, barley, rye, sorghum and millet. The methods for construction of infectious geminiviruses are well known to those skilled in the art, and are described in European patent application 8687015.5 as well as in US Patent No. 5,569,597.

10

15

20

25

We have synthesized a 1618 base pair synthetic DNA that contains the MSV-Kom *repA* and *repB*, long intergenic region (LIR) and short intergenic region (SIR) and thus all sequences that are required for viral replication. Palmer et al.(1999) *Archives of Virology* 144:1345-1360. This fragment was cloned into the pZeRO-2 vector (Invitrogen) as an *EcoRI-XbaI* fragment, to create the plasmid pMSVLSB-1, the sequence of which is shown in Figure 4. A 171 base pair fragment containing the movement protein (mp) promoter of MSV-Kom is synthesised and cloned into the pZeRO-2 vector as an *HindIII-EcoRI* fragment to create pMSVLSB-2 (sequence shown in Figure 5). The *ApaI* fragment containing the mp promoter is inserted between the two *ApaI* sites in pMSVLSB-1, to create pMSVLSB-3 (sequence shown in Figure 6).

30

The cauliflower mosaic virus 35S RNA promoter (CaMV 35S promoter) sequence is amplified with a vector containing this sequence (pBI121, from Clontech) as template DNA, using the following PCR primers containing the following restriction sites (shown in italicized): *EcoRI* in CaMV35SF and *SalI* in CaMV35SR.

CaMV35SF:

TTTGAATTCGTCAACATGGTGGAGCAC (SEQ ID NO:1)

CaMV35SR:

TTTGTGACGTCCCTCTCAAATGAAATGAAC (SEQ ID NO:2)

5

The CaMV 35S promoter PCR product yielded is digested with *Eco*RI and *Sa*II and the restricted fragments are purified.

10 The zeocin resistance gene is amplified by PCR with the vector pZeRO-1 (Invitrogen) as template, using the following primers containing the following restriction sites shown in italicized: *Sa*II, *Pac*I and *Not*I in ZeoF and *Xho*I, *Pac*I and *Not*I in ZeoR:

ZeoF:

15 CCCGTCGACTTAATTAAGCGGCCGCGTTACAATTTCGCCTGATGC
(SEQ ID NO:3)

ZeoR:

20 CCCCTCGAGTTAATTAAGCGGCCGCTCAAAAGGATCTCACCTA
G (SEQ ID NO:4)

The zeocin resistance gene product yielded is digested with *Xho*I and *Sa*II and purified.

25 The nopaline synthase (nos) terminator sequence is amplified by PCR with the vector pBI121 (Clontech) as template, using the following primers, with restriction sites *Xho*I in nosF and *Spe*I in nosR italicized:

NosF:

30 TTTCTCGAGCGAATTCCCCGATCGTTAACAC (SEQ ID NO:5)

NosR:

TTTACTAGTCCCGATCTAGAACATAGATGAC (SEQ ID NO:6)

The nos terminator product yielded is digested with *Xba*I and *Spe*I and purified.

5 The digested CaMV35S promoter, zeocin resistance gene and nos terminator sequences are ligated together with T4 DNA ligase. The ligated product is diluted 1:100 in sterile water and the whole ligation product is re-amplified with the CaMV35SF and nosR primers. The resulting PCR product is digested with *Eco*RI and *Spe*I, purified and ligated with pMSVLSB-3 that is pre-digested with *Eco*RI and *Spe*I. The ligation reaction is used to transform *E. coli* competent cells.
10 Transformants are selected on Luria Agar plates containing both kanamycin (100 µg/ml) and zeocin (50 µg/ml) to select for colonies containing the CaMV35S promoter-zeocin resistance gene-nos terminator cassette inserted into pMSVLSB-3 (Figure 6 and SEQ ID NO:11). Colonies putatively containing the correct plasmid
15 are chosen, plasmid DNA isolated and screened by digestion with *Eco*RI and *Spe*I. One plasmid designated pMSVLSB-4 (Figure 7 and SEQ ID NO:12) is selected.

One of the methods in the art of construction of infectious clones of geminivirus genomes is to clone tandemly duplicated sequences of the geminivirus genome, with at least the LIR duplicated. This allows the virus sequence to escape from the cloning vector *in planta* by a replicative release mechanism. The virus Rep protein is transiently expressed in transfected cells, and induces a nick at each of the stem loop sequences contained within the origin of replication in the LIR. Rolling circle replication is initiated at each nick point, and this results in release of a ssDNA copy of the virus replicon, which is circularized by the Rep protein, and which then replicates autonomously in the plant cell nucleus. The *Xba*I-*Spe*I fragment from pMSVLSB-3, containing the viral LIR and Rep genes is inserted into the unique *Spe*I site in pMSVLSB-4 to create pMSVLSB-5 (Figure 8 and SEQ ID NO:13). The zeocin resistance gene is deleted by digestion with *Not*I; the DNA is recircularized and used to transform *E. coli* to kanamycin resistance with a new vector, pMSVLSB-6 (Figure 9 and SEQ ID NO:14). When the vector is introduced into plant cells, a monomeric copy of the insert is released by replicative release (described above) and replicates autonomously as construct MSVLSB-6 in the nuclei of infected cells.

The restriction map of construct MSVLSB-6 is shown in Figure 3; this genetic construct possesses the following features: (a) the *rep* genes and origins of replication from maize streak geminivirus that are necessary and sufficient for the autonomous replication of the viral construct and its associated foreign DNA in the host plant cell; (b) two overlapping transcription units present in the DNA replicon. The two overlapping transcription units are arranged according to the configuration shown in Figure 2. With reference to Figure 2, "promoter 1" and "terminator 1" in MSVLSB-6 are the MSV mp promoter and transcription termination signals present in the SIR, respectively, and "promoter 2" and "terminator 2" are the CaMV 35S RNA promoter and nos terminator sequences, respectively. The two overlapping transcription units share three unique restriction sites (*Sall*, *PacI* and *NotI*) and one non-unique restriction site (*XbaI*) where foreign DNA may be inserted so that it may be transcribed by both promoters to yield at least a partially double stranded RNA duplex of the foreign DNA sequence.

15

Example 2: Use of recombinant vectors to inhibit or silence gene expression in cereal crops:

20

Application of pMSVLSB-6 in inhibition of Dwarfl gene expression in rice

25

The vector pMSVLSB-6 exemplified above can be employed to inhibit expression of any endogenous gene in a variety of plant host cells. By way of illustration, the rice gene *Dwarf1* is inhibited to duplicate known mutant phenotype using a pMSVLSB-6 containing a fragment of the coding sequence of *Dwarf1* (Genbank accession number AB028602). The gene is amplified from cDNA isolated from rice seedlings. Primer sequences are designed to have homology with the published sequence of *Dwarf1*. Ashikari *et al.* (1999) *PNAS U.S.A.* **96**:10284-10289. The primer sequences contain *NotI* restriction sites at their 5' ends. The PCR product is digested with *NotI* and cloned into the *NotI* site of pMSVLSB-6 to generate pMSVLSB-6::dwarf1s and pMSVLSB-6::dwarf1a, with the insert cloned in the sense and antisense orientation with respect to the MSV mp promoter, respectively. The *XbaI-SpeI* fragment from each of these plasmids is transferred into an *Agrobacterium* binary vector that is commonly used for rice transformation. This vector is used to transform electrocompetent *Agrobacterium* strain LBA4404

(Life Technologies). *Agrobacterium* cultures containing the appropriate plasmids are used in transformation of rice. Transgenic rice is generated by standard protocols (see, e.g. US Patent 5,591,616). The transgenic rice plants display similar phenotypes to the *dwarf1* mutant described by Ashikari *et al.* (1999) *supra*: they are giberellin-insensitive, dwarfed in comparison with un-silenced transgenic controls, and having broad, dark green leaves, compact panicles and short, round grains.

5
10
Application of pMSVLSB-6 in inhibition of phytoene desaturase expression in maize seedlings

15
The coding sequence for the maize phytoene desaturase gene (*pds*), having the Genbank accession number U37285, is amplified from cDNA made from RNA isolated from four-day-old maize seedlings, of the cultivar "Golden Cross Bantam". The primers used for amplification of this cDNA have the following sequences containing the *PacI* sites (italicized) at the 5' ends:

20
zeapds1330:
TTTTTA~~ATTA~~AAGGTCCGCCTGAATTCTCG (SEQ ID NO:7)

25
zeapds1873
TTTTTA~~ATTA~~ACGGCAAGGCTCACAGTTG (SEQ ID NO:8)

PCR amplification with these primers and cDNA made from RNA isolated from maize seedlings yields a product of 565 base pairs, which is then digested with *PacI*. The progenitor plasmid to pMSVLSB-6, pMSVLSB-5 is digested with *XbaI* and *SpeI* to release the MSV and associated overlapping transcription unit sequences from the pZeRO-2 cloning vector as a single 4816 base pair fragment. This fragment is cloned into the *Agrobacterium* binary vector pBin19 (Genbank: U09365) digested with *XbaI* to yield pMSVLSB-7. The plasmid pMSVLSB-7 is digested with *PacI* and the *pds* PCR fragment is inserted into this position, generating plasmid pMSVLSB-7::*pds1* (cloned in the sense orientation with respect to the MSV mp promoter) and pMSVLSB-7::*pds2* (cloned in the antisense orientation with respect to the MSV mp promoter. These two plasmids are each

introduced into *Agrobacterium* strain C58C1(pMP90) (Koncz and Schell, 1985) by electroporation. The *Agrobacterium* containing the binary vector plasmids is grown overnight in Luria Bertani medium containing appropriate selective antibiotics. The bacterial suspension is loaded into a 100 µl Hamilton syringe and injected into three day old maize seedlings (cultivar Golden Cross Bantam) according to methods described by Escudero et al. (1994) in the chapter "Agroinfection" of The Maize Handbook, Freeling M, Walbot V (eds). Plants that are successfully agroinfected display a photobleaching phenotype on the first three leaves, similar to that induced by spraying the plants with the phytoene desaturase-inhibitor norfluorazon.

10

CLAIMS

What is claimed is:

1. A eukaryotic recombinant vector comprising a viral replicon having two overlapping transcription units arranged in an opposing orientation and flanking a transgene of interest, wherein the two overlapping transcription units yield both sense and antisense RNA transcripts from the same transgene in a eukaryotic host cell.
2. The eukaryotic recombinant vector of claim 1, wherein each of the overlapping transcription units comprises a promoter and a terminator.
3. The eukaryotic recombinant vector of claim 2, wherein the promoter is a constitutive promoter.
4. The eukaryotic recombinant vector of claim 2, wherein the promoter is an inducible promoter.
5. The eukaryotic recombinant vector of claim 2, wherein the promoter is a tissue-specific promoter.
6. The eukaryotic recombinant vector of claim 1, wherein the promoter and the terminator of the overlapping transcription units are arranged in a configuration shown in Figure 2(a).
7. The eukaryotic recombinant vector of claim 1, wherein the promoter and the terminator of the overlapping transcription units are arranged in a configuration shown in Figure 2(b).
8. The eukaryotic recombinant vector of claim 1, wherein the promoter and the terminator of the overlapping transcription units are arranged in a configuration shown in Figure 2(c).

9. The eukaryotic recombinant vector of claim 1, wherein the promoter and the terminator of the overlapping transcription units are arranged in a configuration shown in Figure 2(d).

5 10. The eukaryotic recombinant vector of claim 1 that inhibits gene expression of the eukaryotic host cell.

10 11. The eukaryotic recombinant vector of claim 1, wherein the eukaryotic host cell is selected from the group consisting of fungus, yeast cell, plant cell and animal cell.

15 12. The eukaryotic recombinant vector of claim 1 that inhibits expression of an endogenous gene present in the host cell, wherein the endogenous gene is substantially homologous to the transgene contained in the overlapping transcription units.

13. The eukaryotic recombinant vector of claim 12, wherein the endogenous gene is native to the host cell.

20 14. The eukaryotic recombinant vector of claim 12, wherein the endogenous gene is heterologous to the host cell.

25 15. The eukaryotic recombinant vector of claim 12, wherein the endogenous gene is a pathogenic gene derived from one or more members of the group consisting of virus, bacterium, fungus, and protozoa.

16. The eukaryotic recombinant vector of claim 1, wherein expression of the transgene to yield double-stranded RNA transcripts confers a phenotypic change in the eukaryotic host cell.

30 17. The eukaryotic recombinant vector of claim 1, wherein the transgene encodes a protein selected from the group consisting of a membrane protein, a cytosolic protein, a secreted protein, a nuclear protein, and a chaperon protein.

18. The eukaryotic recombinant vector of claim 1 that is an autonomously replicating vector.

5 19. The eukaryotic recombinant vector of claim 1, wherein the viral replicon is derived from a DNA virus.

10 20. The eukaryotic recombinant vector of claim 19, wherein the DNA virus is selected from the group consisting of *Geminivirus*, *Caulimoviridae*, *Badnaviridae*; *Circoviridae*, *Circinoviridae*, *Parvoviridae*, *Papovaviridae*, *Polyomaviridae*, *Adenoviridae*, *Herpesviridae*, *Poxviridae*, *Iridoviridae*, *Baculoviridae*, *Hepadnaviridae*, *Retroviridae*, *Gyrovirus*, *Nanovirus*, and African Swine Fever virus.

15 21. A host cell transformed with a vector of claim 1 or 10.

20 22. The host cell of claim 21 that is a eukaryotic cell selected from the group consisting of fungus, yeast cell, plant cell and animal cell.

23. A transgenic plant comprising a eukaryotic recombinant vector of claim 1 or 10.

25 24. The transgenic plant of claim 23 exhibiting reduced expression of an endogenous gene that is substantially homologous to the transgene contained in the eukaryotic recombinant vector.

30 25. A kit for generating a double-stranded RNA transcript in a eukaryotic cell comprising a eukaryotic recombinant vector of claim 1 in suitable packaging.

26. A method of inhibiting expression of an endogenous gene present in a eukaryotic cell, comprising:

(a) providing a eukaryotic recombinant vector of claim 12;

- 5
- (b) introducing the eukaryotic recombinant vector into the eukaryotic cell;
 - (c) culturing the eukaryotic cell of (b) under conditions favorable for expression of both sense and antisense RNA transcripts from the transgene that is contained in the transcription units of the vector, and thereby inhibiting expression of the corresponding endogenous gene in the eukaryotic cell.

10

27. The method of claim 26, wherein the endogenous gene is native to the host cell.

15

28. The method of claim 26, wherein the endogenous gene is heterologous to the host cell.

20

29. The method of claim 26, wherein the endogenous gene is a pathogenic gene derived from one or more members of the group consisting of virus, bacterium, fungus, and protozoa.

25

30. The method of claim 26, wherein inhibition of the endogenous gene confers a phenotypic change in the host cell.

30

31. The method of claim 26, wherein the host eukaryotic cell is selected from the group consisting of fungus, yeast cell, plant cell, and animal cell.

35

32. The method of claim 26, wherein the eukaryotic recombinant vector is an autonomously replicating vector.

40

33. The method of claim 26, wherein the eukaryotic recombinant vector comprises a viral replicon derived from a DNA virus.

45

34. The method of claim 26, wherein the DNA virus is selected from the group consisting of *Geminivirus*, *Caulimoviridae*, *Badnaviridae*; *Circoviridae*, *Circinoviridae*, *Parvoviridae*, *Papovaviridae*, *Polyomaviridae*, *Adenoviridae*,

Herpesviridae, Poxviridae, Iridoviridae, Baculoviridae, Hepadnaviridae, Retrovirida, Gyrovirus, Nanovirus, and African Swine Fever virus.

35. The method of claim 26, wherein the eukaryotic recombinant vector
5 comprises two overlapping transcription units, wherein each transcription unit
comprises a promoter and a terminator.

36. The method of claim 26, wherein the promoter is a constitutive promoter.
10 37. The method of claim 26, wherein the promoter is an inducible promoter.

38. The method of claim 26, wherein the promoter is a tissue-specific
promoter.

15 39. The method of claim 35, wherein the promoter and the terminator of the
overlapping transcription units are arranged in a configuration shown in Figure 2(a).

40. The method of claim 35, wherein the promoter and the terminator of the
overlapping transcription units are arranged in a configuration shown in Figure 2(b).
20

41. The method of claim 35, wherein the promoter and the terminator of the
overlapping transcription units are arranged in a configuration shown in Figure 2(c).

25 42. The method of claim 35, wherein the promoter and the terminator of the
overlapping transcription units are arranged in a configuration shown in Figure 2(d).

43. A method of identifying a biological function(s) of an endogenous gene
of interest in a eukaryotic cell by selectively inhibiting the expression of the
endogenous gene, the method comprising:

- 30 (a) providing a eukaryotic recombinant vector of claim 12;
(b) introducing the eukaryotic recombinant vector of (a) in to the
eukaryotic cell;

- (c) culturing the eukaryotic cell of (b) under conditions favorable for expression of both sense and antisense RNA transcripts from the transgene contained in the eukaryotic recombinant vector and thereby inhibiting expression of the endogenous gene in the eukaryotic cell;
5 and
- (d) determining one or more phenotypic changes in the eukaryotic cell that correlate with the inhibited expression of the endogenous gene, thereby identifying the biological function(s) of the endogenous gene in the eukaryotic cell.

10

44. The method of claim 43, wherein the eukaryotic cell is selected from the group consisting of fungus, yeast cell, plant cell, and animal cell.

45. The method of claim 43, wherein the eukaryotic cell is a plant cell.

15

46. The method of claim 43, wherein the eukaryotic cell is an animal cell.

Figure 1

Figure 2

Figure 3

Figure 4

pMSVLSB-1: 4881 bp;
 Composition 1161 A; 1260 C; 1251 G; 1209 T; 0 OTHER
 Percentage: 24% A; 26% C; 26% G; 25% T; 0% OTHER

Molecular Weight (kDa) ssDNA: 1506.65 dsDNA: 3009.2
 ORIGIN

```

1      AGCGCCCAAT ACGCAAACCG CCTCTCCCCG CGCGTTGGCC GATTCAATTAA TGCAGCTGGC
61     ACGACAGGT TCCCGACTGG AAAGCGGGCA GTGAGCGCAA CGCAATTAAAT GTGAGTTAGC
121    TCACTCATTA GGCACCCCAG GCTTACACT TTATGCTTCC GGCTCGTATG TTGTGTGGAA
181    TTGTGAGCGG ATAACAATT ACACAGGAA ACAGCTATGA CCATGATTAC GCCAAGCTAT
241    TTAGGTGACA CTATAGAATA CTCAAAGCTAT GCATCAAGCT TGGTACCGAG CTCGGATCCA
301    CTAGTAACGG CCGCCAGTGT GCTGGAATTIC ATGGGCAGAC CGCTCTGTAC TTTAAGAGTG
361    TTGGCAACCA GTAATGAATA AAAACTCCCG TTTTATTATA TTGTGATGAAT GCTGAAAGCT
421    TACAAATTATA TGTCGTGCGA TGGCAAGAAA AAACACACCC AAACAAATACA GGGGGGTAGT
481    CGGGGGGGCGG CTAAGGGTGG TGCCTGGCGG CGAAGAACATC GAAAAATCAA GATCTATATG
541    AATTACACTT CCTCCGTAGG AGGAACCCACA GGGGGAGAAAT ACCACTCTC CCCCAGGCGAC
601    ATAATGTAAA TGACCGAGTT TGCCTCGAAA TACTCCAGCT GCCCTGGAGT CATTTCCTTC
661    ATCCAATCTT CATCCGAGTT GGCAGGAGT ATTGTAGGGCT TAGACTCTT CTGCACCTTT
721    TCTCTCTTAC CATACTTGGG GTTACATG AAATCCCTCT GACAGCCAAC TAATGTTTC
781    CAACAGGAC AGAATTAAA CGGAATATCA TCTACGATGT TGTAGATTGC GTCTTGTGIG
841    TATGAAGACC AATCAACATT ATTTGCCAG TAATTATGAA CCCCTAGGCT TCTGGCCCAA
901    GTAGATTTTC CGGTTCTGT TGGGGCGACG ATGTAGAGGC TCTGCTTCT TGATCTTCA
961    TCTGATGACT GGATACAGAA TCCATCCATT GGAGGTCAAG AATTGCAATCC TCGAGGGTAT
1021   AACAGGTAGG TTGAAGGGAGC ATGTAAGCTT CGGGACTAAC CTGGAAAGATG TTAGGCTGGA
1081   GCCAATCGTT GATTGACTCA TTACAAAGTA AATCAGGTGA GGAGGGTGGG TGAGGATTGG
1141   TGAACCTTTC CTGAATCTCA GGAAAAAGCT TATTTGCAGA GTATTCAAAA TACTGCAATT
1201   TTGTGGACCA ATCAAAGGGG AGCTCTTTCT GGATCATEGGA GAGGTACTCT TCTTGGAGG
1261   TAGCGTGTGA AATAATGTCT CGCATTATTT CATCTTITAGA AGGCTTTT TCCTTACCT
1321   CTGAATCAGA TTTTCTTAGG AAGGGGGACT TCCTAGGART GAARGTACCT CTCTCAAACA
1381   CAGCCAGAGG TTCCCTGAGA ATGTAATCCC TCACTCTGT AACTGACTTIG GCACCTGAA
1441   TATTTGGGTG AAACCCATT ATATCAAAGA ACCTTIGAGTC AGATATCCTT ATCGCTTCT
1501   CTGGCTGAAG CATTGCTATG AAATGCAAAAC TTCCATCTT ATGTCCTCT CGGGCACATA
1561   GAATATATTG GGGAAATCCAA CGAACGACGA GCTCCCAGAT CATCTGACAG CGGATTTCA
1621   GATTTCTGG ACACTTGGG TAGTTAGGA ACCTGTTAGC GTTCTGTGT GAGAACTGAC
1681   GGTGGATGA GGAGGGAGCC ATAGCCGACG ACGGAGGGTG AGGCTGAGGG ATGGCAGACT
1741   GGGAGCTCCA AACTCTATAG TATACCCGTG CGCTTTCGAA ATCCGCCGCT CCATTGTCTT
1801   ATAGTGGTTC TAAATGGCC GGACCGGGCC GGCCCAGCAG GAAAAGAAGG CGCGCACTAA
1861   TATTACCGG CCGTCTTTC CTGCGAGGGC CGGTAGGGG CCGAGCGCTT TGATTTAAAG
1921   CCTGGTTCTG CTTTGGGGCC GCTCGAGCAT GCATCTAGAG GGCCCAATTC GCCCTATAGT
1981   GAGTCGTATT ACAATTCACT GGCGTCGTT TTACAAACGTC GTGACTGGGA AAACCCCTGGC
2041   GTTACCCAACT TAAATCGCTT TGCAGCACAT CCCCTTTCG CCAGCTGGCG TAAATAGCGAA
2101   GAGGCCCGCA CGGATCGCCC TTCCCAACAG TTGCGCAGCC TATACTGACG GCAGTTAAAG
2161   GTTTACACCT ATAAAAGAGA GAGCCGTTAT CGTCTGTGTTG TGGATGTACA GAGTGATATT
2221   ATTGACACGC CGGGCGACG GATGGTGATC CCCCTGGCCA GTGCACGTCT GCTGTCAGAT
2281   AAAGTCTCCC GTGAACCTTA CCCGGTGGTG CATATGGGGG ATGAANCTG CGCGCATGATG
2341   ACCACCGATA TGGCCAGTGT CGGGGTCTCT GTTATCGGGG AAGAAGTGGC TGATCTCAGC
2401   CACCGCGAAA ATGACATCAA AAACGCCATT AACCTGATGT TCTGGGAAT ATAAATGTCA
2461   GGCTGAAATG GCGAATGGAC GCGCCCTGTA CGGGCGCATT AAGCGCGCGG GTGTGGTGGT
2521   TACCGCGACG GTGACCGCTA CACTTGGCAG CGCCCTAGCG CCCGCTCTT TCGCTTCTT
2581   CCCITCTTT CTGGCCACGT TCGCCGGCTT TCCCCGTCAA GCTCTAAATC GGGGGCTCCC
2641   TTTAGGGTTC CGATTTAGAG CTTTACGGCA CCTCGACCGC AAAAAACTTG ATTTGGGTGA
2701   TGGTTCACGT AGTGGGCCAT CGCCCTGATA GACGGTTTTT CGCCCTTGA CGTTGGAGTC
2761   CACGTTCTTT AATAGTGGAC TCTTGTCTCA AACTGGAACA ACACCAACCTT CTATCGCGGT
2821   CTATTCTTTT GATTTATAAG GGATGTGCGC GATTTGGCC TATTGGTTAA AAAATGAGCT
2881   GATTTAACAA AAATTAAAC AAAATTCAAG AGAACCTCGTC AAGAAGGGCA TAGAAGGGCA
  
```

Figure 4 (cont'd)

2941 TCGCCTGCGA ATCGGGAGCG GCGATACCGT AAAGCACGAG GAAGCGGTCA GCCCATTGCG
 3001 CGCCAAGCTC TTCAGCARATA TCACGGTAG CCAACGCTAT GTCCCTGATAG CGGTCCGCCA
 3061 CACCCAGCCG GCCACAGTCG ATGARATCCAG AAAAGCGGCC ATTTTCCACC ATGATATTG
 3121 GCAAGCAGGC ATCGCCATGG GTCAAGACGA GATCCCTGCC GTCGGGCATG CTGGCCCTG
 3181 GCCTGGCAA CAGTTGGCT GGCGCGAGCC CCTGATGCTC TTGCTCCAGA TCATCCTGAT
 3241 CGAACAGGACG GGCTTCCATC CGAGTACGTG CTCGCTCGAT GCGATGTTTC GCTTGGTGGT
 3301 CGAATGGCA GGTAGCGGGA TCAAGCGTAT GCAGCCGCCG CATTGCATCA GCCATGATGG
 3361 ATACTTTCTC GGCAAGGAGCA AGGTGAGATG ACAGGAGATC CTGCCCCGGC ACTTCGCCCCA
 3421 ATAGCAGCCA GTCCCCTTCCC GCTTCAGTGA CAACGTCGAG CACAGCTGCG CAAGGAACGC
 3481 CGTCGTGGC CAGCCACGAT AGCCGCGCTG CCTCGTCTTG CAGTTCATTC AGGGCACCGG
 3541 ACAGGTGGT CTTGACAAA AGAACCGGGC GCCCCTGCC TGACAGCCGG AACACGGCG
 3601 CRTCAAGAGCA GCCGATTGTC TGTGTTGCCC AGTCATAGCC GAATAGCCTC TCCACCCAAG
 3661 CGGGCGGAGA ACCTGCGTGC AATCCATCTT GTTCAATCAT GCGAAACGAT CCTCATCTG
 3721 TCTCTTGATC AGATCTTGAT CCCCTGCCGC ATCAGATCTT TGGCGGGAG AAAGCCATCC
 3781 AGTTTACTTT GCAGGGCTTC CCAACCTTAC CAGAGGGCGC CCCAGCTGGC AATTCCGGT
 3841 CGCTTGCTGT CCATAAAACC GCCCCAGTCTA GCTATGCCA TGTAAAGCCCA CTGCAAGCTA
 3901 CCTGCTTTCTC CTTTGGCTT GCGTTTTCCC TTGTCAGAT AGCCCAAGTAG CTGACATTCA
 3961 TCCGGGGTCA GCACCGTTTC TGCGGACTGG CTTTCTACGT GAAAAGGATC TAGGTGAAGA
 4021 TCCCTTTGTA TAATCTCATG ACCAAAATCC CTTAACGTGA GTTTTGGTTC CACTGAGCGT
 4081 CAGACCCCGT AGAAAAGATC AAAGGATCTT CTTGAGATCC TTTTTTCTG CGCGTATCT
 4141 GCTGCTTGCA AACAAAAAAA CCACCGCTAC CAGCGGTGGT TTGTTGGCG GATCAAGAGC
 4201 TACCAACTCT TTTTCCGAAG GTAACTGGCT TCAGCAGAGC GCAGATACCA AATACTGTCC
 4261 TTCTAGTGTGTA GCCGTAGTTA GGCCACCACT TCAAGAACCTC TGTAGCACCG CCTACATACC
 4321 TCGCTCTGCT AATCCCTGTA CCAGTGGCTG CTGCCAGTGG CGATAAGTCG TGTCTTACCG
 4381 GGTGGACTC AAGACGATAG TTACCGGATA AGCCGCAGCG GTGGGGCTGA ACGGGGGTT
 4441 CGTGCACACA GCCCAGCTG GAGCGAACGA CCTACACCGA ACTGAGATAC CTACAGCTG
 4501 AGCTATGAGA AAGCGCCACG CTTCCCGAAG GGAGAAAGGC GGACAGGTAT CCGGTAAGCG
 4561 GCAGGGTCGG AACAGGAGAG CGCACCGAGG AGCTTCCAGG GGGAAACGCC TGGTATCTT
 4621 ATAGTCCCTGT CGGGTTTCGC CACCTCTGAC TTGAGCGTGG ATTITTTGTA TGCTCGTCAG
 4681 GGGGGCGGAG CCTATGGAAA AACGCCAGCA AGCGGGCCCTT TTACGGTTC CTGGGCTTT
 4741 GCTGGCCCTT TCTCACATG TTCTTCTG CGTTATCCCC TGATTCTGTG GATAACCGTA
 4801 TTACCGCCCTT TGAGTGAAGCT GATACCGCTC GCGCAGCG AACGACCGAG CGCAGCGAGT
 4861 CAGTGAAGCGA GGAGCGGAA G

Figure 5

pMSVLSB-2: 3413 bp;
 Composition 777 A; 950 C; 884 G; 802 T; 0 OTHER
 Percentage: 23% A; 28% C; 26% G; 23% T; 0% OTHER

Molecular Weight (kDa): ssDNA: 1052.40 dsDNA: 2104.2

ORIGIN

1 AGCGCCCAAT ACGCAAACCG CCTCTCCCCG CGCGTTGGCC GATTCAATTAA TGCAAGCTGGC
 61 ACGACAGGT TCCCGACTGG AAAGCGGGCA GTGAGCGCAA CGCAATTAAT GTGAGTTAGC
 121 TCACTCATTA GGCACCCCAG GCTTACACT TTATGCTTC GGCTCGTATG TTGTGTGGAA
 181 TTGTGAGCGG ATAACAATT CACACAGGAA ACAGCTATGA CCATGATTAC GCCAAGCTAT
 241 TTAGGTGACA CTATAGAATA CTCAGCTAT GCATCAAGCT TGCGCCCGGT AGGGACCGAG
 301 CGCTTGATT TAAAGCTGG TTCTGTTTG TATGATTAT CTAAGCAGC CCAATCTAAA
 361 GAAACCGGTC CCGGGCACTA TAAATTGCT AACAAAGTGGC ATTCAATTCA GGATECTTTA
 421 AACTCGAGTC TAGAGGGCCC GAATTGTCA GATATCCATC' ACACCTGGCGG CGCTCGAGC
 481 ATGCATCTAG AGGGCCCAAT TCGCCCTATA TGAGTCGTA TTACAAATTCA CTGCCGTGCG
 541 TTTTACAACG TCGTGACTGG GAAAACCTG CGGTACCCCA ACTTAATCGC TTGCGAGCAC
 601 ATCCCCCTTT CGCCAGCTGG CGTAATAGCG AAGAGGCCCC CACCGATCGC CCTTCCCAAC
 661 AGTTGCGCAG CCTATACTGA CGGCAGTTA AGGTTAACAC CTATAAAAGA GAGAGCCGTT
 721 ATCGTCCTGT TGTGGATGTA CAGATGTA TTATTGACAC GCGGGGGCGA CGGATGGTGA
 781 TCCCCCTGGC CAGTGCAGT CTGCTGTCAG ATAAAGTCTC CGGTGAACTT TACCCGGTGG
 841 TGCAATATCGG GGATGARAGC TGGCCATGA TGACCACCGA TATGGCCAGT GTGCCGGTCT
 901 CCGTTATCGG GGAAGAAATG GCTGATCTCA GCCACCGCGA AAATGACATC AAAACGCCA
 961 TTAACCTGAT GTTCTGGGAA ATATAAAATGT CAGGCCTGAA TGGCGAATGG ACGCGCCCTG
 1021 TAGCGCCGA TTAAGCGCGC GGGTGTGGTG GTACGCGCA GCGTGACCGC TACACTTGCC
 1081 ACGCCCTAG CGCCCGCTCC TTTGCTTTTC TTCCCTTCCT TTCTCGCCAC GTTCGCGGCG
 1141 TTTCCCCGTC AAGCTCTAA TCGGGGGCTC CTTTAGGGT TCCGATTAG AGCTTTACGG
 1201 CACCTCGGACC GCAAAAAACT TGATTGGGT GTGGGTTACAC GTAGTGGGCC ATGCCCTGAA
 1261 TAGACGGTTT TCGCCCTTT GACGTGGAG TCCACGGTTCT TTAAATAGTGG ACTCTTGTC
 1321 CAAACTGGAA CAACACTCAA CCCTATCGG GTCTATTCTT TTGATTATA AGGGATGTTG
 1381 CCGATTTCGG CCTATTGGTT AAAAATGAG CTGATTAAAC AAAAATTITA ACAAAATTCA
 1441 GAAGAACTCG TCAAGAAGGC GATAGAAGGC GATGCGCTGC GAATCGGGAG CGCGATACC
 1501 GTAAAGCACG AGGAAGCGGT CAGCCCCATTC GCGGCCAAGC TCTTCAGCAA TATCACGGGT
 1561 AGCCAAACGCT ATGTCCTGAT AGCGGTCCGC CACACCCAGC CGGCCACAGT CGATGAATCC
 1621 AGAAAAGCGG CCAATTTCGA CCATGATATT CGCGAAGCAG GCAATGCCAT GGGTCACGAC
 1681 GAGATCCTCG CGTCTGGGCA TGCTCGCTT GAGCCTGGGG AACAGTTCGG CTGGCGGAG
 1741 CCCCTGATGC TCTTCGTCGA GATCATCCTG ATGACAAAGA CGGGCTTCCA TCCGAGTACG
 1801 TGCTCGCTCG ATGCGATGTT TCGCTGGTG GTGAAATGGG CAGGTAGCCG GATCAAGCGT
 1861 ATGCAGCGC CGCATTGCA CAGCCATGAT GGAACTTTTC TCGGCAGGGAG CAAGGTGAGA
 1921 TGACAGGAGA TCCCTGCCCG GCACCTCGCC CAATAGCAGC CAGTCCCTTC CCGCTTCAGT
 1981 GACAACGTG AGCACAGCTG CGCAAGGAAC GCGCGTCTG GCGAGCCACG ATAGCGCGC
 2041 TGCCCTCGTCT TGCAGTTCAT TCAGGGCACCC GCAACAGTCG GTCTTGACAA AAAGAACCGG
 2101 GCGCCCCCTGC GCTGACAGCC GGAAACACGGC GGCATCAGAG CAGCCGATTG TCTGTGTGC
 2161 CCAGTCATAG CGGAATAGCC TCTCCACCCCA AGCGGCCGGA GAAACCTCGCT GCAATCCATC
 2221 TTGTTCAATC ATGCGAACG ATCCTCATCC TGTCTCTGTA TCAGATCTTG ATCCCCTGCG
 2281 CCATCAGATC CTGGCGCG AGAAAGCCAT CCAGTTTACT TTGCGAGGGCT TCCCACCTT
 2341 ACCAGAGGGC GCCCCAGCTG GCAATTCCGG TTGCTTGCT GTCCATAAAA CGGCCAGTC
 2401 TAGCTATCGC CATGTAAGCC CACTGCAAGC TACCTGCTT CTCCTTGCG TTGGTTTTC
 2461 CCTTGTCAGG ATAGCCCCAGT AGCTGACATT CATCCGGGGT CAGCACCGTT TCTGCGGACT
 2521 GGCTTCTAC GTGAAAAGGA TCTAGGTGAA GATCCTTTT GATAATCTCA TGACCAAAAT
 2581 CCCTTAACGT GAGTTTCTG TCCACTGAGC GTCAAGACCCC GTAGAAAAGA TCAAAGGATC
 2641 TTCTTGAGAT CCTTTTTTC TGGCGCTAAT CTGCTGCTTG CAAACAAAAA AACCAACCGCT
 2701 ACCAGCGGTG GTTGTGTC CGGATCAAGA GCTACCAACT CTTTTCCGA AGGTAACCTGG
 2761 CTTCAAGAAC TCTGTAGCAC CGCCTACATA CCTCGCTCTG CTAATCCTGT TACCAAGTGGC
 2821 CTGCTGCCAGT GGCATAAGT CGTGTCTTAC CGGGTTGGAC TCAAGACGAT AGTACCGGA

Figure 5 (cont'd)

2941 TAAGGGCCAG CGGTGGGCTT GAAACGGGGG TTCTGTGCACA CAGCCCAGCT TGGAGCGARC
3001 GACCTACACC GAAACTGAGAT ACCTACAGCG TGAGCTATGA GAAAGCGCCA CGCTTCGGCA
3061 AGGGAGAAAAG GCGGACAGGT ATCCGGTAAG CGGCAGGGTC GGAACAGGAG AGCGCACGGAG
3121 GGAGCTTCCA GGGGGAAACG CCTGGTATCT TTATAGTCCT GTCTGGGTTTC GCCACCTCTG
3181 ACTTGAGCGT CGATTTTTGT GATGCTCGTC AGGGGGGGGG AGCCTATGGA AAAACGCCAG
3241 CAACGCGGCC TTTTTACGGT TCCCTGGGCTT TTGCTGGCCT TTGCTGACA TGTTCTTCC
3301 TGCCTTATCC CCTGATTCTG TGGATAACCG TATTACCGCC TTGAGTGAG CTGATACCGC
3361 TCGCCGCAGC CGAACGACCG AGGGCAGCGA GTCAGTGAGC GAGGAAGCGG AAG

Figure 6

pMSVLSB-3:

pMSVLSB2 Apa fragment inserted: 4961 bp;
 Composition 1190 A; 1276 C; 1262 G; 1233 T; 0 OTHER
 Percentage: 24% A; 26% C; 25% G; 25% T; 0% OTHER

Molecular Weight. (kDa): ssDNA: 1531.26 dsDNA: 3058.5
 ORIGIN

```

1      AGCGCCCAAT ACAGCAAACCG CCTCTCCCCG CGCGTTGGCC GATTCAATTAA TGCAGCTGGC
61     ACGACAGGTT TCCCAGCTGG AAAGCGGGCAA GTGAGCGCAA CGCAATTAAAT GTGAGGTAGC
121    TCACTCATTA GGCACCCCGAG GCTTACACT TTATGCTTCC GGCTCGTATG TTGTGTGGAA
181    TTGTGAGCGG ATAACAATT CAACACAGGA ACAGCTATGA CCATGATTAC GCCAAGCTAT
241    TTAGGTGACA CTATAGAATA CTCAGCTAT GCATCAAGCT TGGTACCGAG CTCGGATCCA
301    CTAGTAACGG CCGCCAGTGT GCTGGAATTG ATGGGCAGAC CGGTCTGTC TTTAAGAGTG
361    TTGGCAACCA GTAATGAATA AAAACTCCCG TTTTATTATA TTGATGAAAT GCTGAAAGCT
421    TACATTAATA TGTCGTGCGA TGGCACGAAA AAACACACGC AAACAAATACA GGGGGGTAGT
481    CGGGGGGGGG CTAAGGGTGG TGCTCGGCGG CGAGAACATC GAAAATCAA GATCTATATG
541    AATTACACIT CCTCCGTAGG AGGAAGCACA GGGGGAGAAT ACCACITCTC CCCCAGGAC
601    ATAATGTAAA TGACGCAGTT TGCTCGAAA TACTCCAGCT GCCCTGGAGT CATTCTTC
661    ATCCAATCTT CATCCGAGTT GGCAGGATT ATTGAGGCT TAGACITCTT CTGCACCTT
721    TTCTCTTAC CATACTTGGG GTTACATG AAATCCCTCT GACAGCCAAAC TAATGTTTC
781    CAACAAGGAC ACAATTTAA CGGAATATCA TCTACGATGT TGTAGATTGC GTCTTCGTG
841    TATGAAGACC AATCAACATT ATTTTGCAG TAATATGAA CCCCTAGGCT TCTGGCCAA
901    GTAGATTTC CGGTTCTTGT TGGGGCAGC ATGTAGAGGC TCTGTTTCT TGATCTTCA
961    TCTGATGACT GGATACAGAA TCCATCATT GGAGGTCAGA AATIGCATCC TCGAGGGTAT
1021   AACAGGTAGG TTGAAGGAGC ATGTAAGCTT CGGGACTAAC CTGGAAGATG TTAGGTGGA
1081   GCCAATCGTT GATTGACTCA TTACAAAGTA AATCAGGTGA GGAGGGTGGG TGAGGATTGG
1141   TGAACITCTTC CTGAATCTCA GGAAGGAGCT TAATTGAGA GTATTCAAAA TACTGCAATT
1201   TTGTGGACCA ATCAAAGGGG AGCTCTTCT GGATCATGGA GAGGTACTCT TCTTGGAGG
1261   TAGCGTGTGA AATAATGTCT CGCATTATTT CATCTTAAAG AGGCTTTTTT TCCCTTACCT
1321   CTGAATCAGA TTTCTTAGG AAGGGGACT TCTCTAGGAAT GAAAGTACCT CTCTCAACAA
1381   CAGCCAGAGG TTCTTGAGA ATGTAATCCC TCACCTCTT AACTGACTTGC GCACCTGAA
1441   TATTGGGTG AAACCCATT ATATCAAGA ACCTTGAGTC AGATATCCTT ATGGGTCTCT
1501   CTGCGTGAAG CAATGCATGT AAATGCAAAAC TTCCATCTT ATGTGCCTCT CGGGCACATA
1561   GAATATATTG GGGAAATCAA CGAACGACGA GCTCCAGAT CATCTGACAG GCGATTTCAG
1621   GATTTCCTGG ACACCTTGG TAGGTTAGGA ACGTGTTAGC GTTCCCTGTT GAGAACTGAC
1681   GGTGGATGAA GGAGGAGGCC ATAGCCGACG ACGGAGGTG AGGCTGAGGG ATGGCAGACT
1741   GGGAGCTCCA AACTCTATAG TATACCCGTG CGCTTCGAA ATCCGCGCT CCATTGCTT
1801   ATAGCTGTG TAAATGGGCC GGACCGGGCC GGCCCAGCAG GAAAAGAAGG CGCGCACTAA
1861   TATTACCGCG CCTTCTTTTC CTGCGAGGGC CGGTAGGGG CCGAGCGCTT TGATTAAAG
1921   CCTGGTTCTG CTTTGTATGA TTTATCTAAA GCAGCCCAAT CTAAAGAAC CGGTCCCCGG
1981   CACTATAAT TGCCTAACAA GTGCGATTCA TTCATGGATC CTTTAAACTC GAGTCTAGAG
2041   GGCCCAATTG GCCCTATAGT GAGTCGTATT ACAATTCACT GGCGTCTGTT TTACAACGTC
2101   GTGACTGGGA AAACCTGGC GTTACCCAAAC TTAATGCGCT TGCAGCACAT CCCCCCTTCG
2161   CCAGCTGGCG TAATAGCGAA GAGGCCGCA CGATCGCCC TTCCCAACAG TTGGCAGGCC
2221   TATACTGACG CGAGTTAAAG GTTACACCT ATAAAAGAGA GAGCCCTTAT CGTCTGTTG
2281   TGGATGTACA GAGTGTATT ATTGACACGC CGGGCGAGC GATGGTGATC CCCCCTGGCCA
2341   GTGCACTGCT GCTGTCAGAT AAAGTCCTCC GTGAACTTTA CCCCCTGGTG CATATCGGG
2401   ATGAAAGCTG GCGCATGATG ACCACCGATA TGGCAGTGT GCGGGTCTCC GTTATCGGG
2461   AAGAAGTGGC TGATCTCAGC CACCGGAAATGACATCAA AAACGCCATT AACCTGATGT
2521   TCTGGGGAAAT ATAAATGTCA GGCGTGAATG GCGAATGGAC GCGCCCTGTA GCGGCCATT
2581   AAGCGCGCGG GTGTGGTGGT TACCGCGAGC GTGACCGCTA CACTTGCAG CGCCCIAGCG
2641   CCCGCTCTT TCGCTTTCTT CCCTTCCTT CTGCCACGT TCGCCGCTT TCCCCGTCAA
2701   GCTCTAAATC GGGGGCTCCC TTTAGGGTTC CGATTAGAG CTTTACGGCA CCTCGACCGC
2761   AAAAAGCTTG ATTGGGTGA TGGTCACGT AGTGGCCAT CGCCCTGATA GACGGTTTTT

```

Figure 6 (cont'd)

2821 CGCCCTTTGA CGTTGGAGTC CACGTTCTTT AATAGTGGAC TCTTGTCCA AACTGGAAACA
 2881 ACACTCAACC CTATCGGGT CTATTCTTIT GATTATAAG GGATGTTGCC GATTGGCC
 2941 TATTGGTTAA AAAATGAGCT GATTACAA AAATTTAAC AAAATTCAAG AGAACCTCGTC
 3001 AAGAAGGCAG TAGAAGGGCA TGCGCTGCGA ATCAGGGAGCG CGGATACCGT AAAGCACGAG
 3061 GAAGCGGTCA GCCCATTGCG EGCCAAGCTC TTCAGCAATA TCACGGGTAG CCAACGCTAT
 3121 GTTCTGATAG CGGTCCGCCA CACCCAGCG GCCACAGTCG ATGAATCCAG AAAAGCGGCC
 3181 ATTTCCTCACC ATGATATTGCG GCAAGCAGGC ATGCCATGG GTCACGACGA GATCTCGCC
 3241 GTCGGGCATG CTGGCTTGA GCCTGGCGAA CAGTTGGCT GGCGCGAGCC CCTGATGCTC
 3301 TTCTGCTCAGA TCATCTGAT CGACAAGACC GGCTTCCATC CGAGTACCTG CTCGCTCGAT
 3361 GCGATGTTTC GCTTGGTGGT CGAATGGCA GGTAAGCCGA TCAAGCGTAT GCACCCGCG
 3421 CATTGCATCA GCCATGATGG ATACTTCTC GGCAAGGAGCA AGGTGAGATG ACAGGAGATC
 3481 CTGCCCCGGC ACTTCGCCA ATAGCAGCCA GTCCCTTCCC GCTTCAGTGA CAACGTCGAG
 3541 CACAGCTGCG CAAGGAACGC CGTCGTGGC CAGCCACGAT AGCCGCGCTG CCTGGCTTIG
 3601 CAGTTCATTC AGGGCACCGG ACAGGTCGGT CTTGACAAAAA AGAACGGGC GCCCCCTGCGC
 3661 TGACAGCCGG AACACGGGG CATCAGAGCA GCGGATTGTC TGTGTCGCC AGTCATAGCC
 3721 GAATAGCCTC TCCACCCAAG CGGCCGGAGA ACCTGCGTGC AATCCATCTT GTTCATCCT
 3781 GCGAAAAGAT CCTCATCTG TCTCTTGATC AGATCTTGTAT CCCCTGCGCC ATCAGATCTT
 3841 TGGCGGGGAG AAAGCCATCC AGTTTACTTTT CGAGGGCTTC CCAACCTTAC CAGAGGGCGC
 3901 CCCAGCTGGC AATTCCGGT CGCTTGTGT CCATAAAACC GCGGAGTCTA GCTATGCCA
 3961 TGTAAGCCCA CTGCAAGCTA CCTGCTTCTC CTITGCCCTT GCGTTTCCC TTGTCAGAT
 4021 AGCCCCAGTAG CTGACATTCA TCCGGGGTCA GCACCGTTTC TCGGACTGG CTITCTACGT
 4081 GAAAAGGATC TAGGTGAAGA TCCCTTTGA TAATCTCATG ACCAAAATCC CTTAACGTGA
 4141 GTTTCTGTC CACTGAGGT CAGACCCCGT AGAAAAGATC AAAGGATCTT CTTGAGATCC
 4201 TTTTTCTG GATCAAGAGC TACCAACTCT TTTTCCGAAG GTAACTGGCT TCAGCAGAGC
 4261 GCAGATACCA AATACTGTC TTCTAGTGTG GCCGTAGTTA GCGCACCACT TCAAGAACTC
 4321 TGAGCACCG CCTACATACC TOGCTCTGCT AATCCTGTTA CCAGTGGCTG CTGGCAGTGG
 4381 CGATAAGTCG TGTCTTACCG GGTGGACTC AAGACGATAG TTACGGATA AGGCGCAGCG
 4441 GTCGGGCTGA ACGGGGGGTT CGTGCACACA GCCCAGCTTG GAGCGAACGA CCTACACCGA
 4501 ACTGAGATAC CTACAGCGTG AGCTATGAGA AAGCGCCACG CTTCGGAAAG GGAGAAAGGC
 4561 GGACAGGTAT CGGGTAAGCG GCAGGGTCGG AACAGGAGAG CGCACGAGGG AGCTTCCAGG
 4621 GGGAAACGCC TGGTATCTT ATACTCTGT CGGGTTTGGC CACCTCTGAC TTGAGSGTGC
 4681 ATTTCCTGTA TGCTCGTCAG GGGGGCGGAG CCTATGGAAR AACGCCAGCA ACAGGGCCTT
 4741 TTTACGGTTC CTGGGCTTT GCTGGCTTT TGCTCACATG TTCTTCTG CGTTATCCCC
 4801 TGATTCTGTG GATAACCGTA TTACCCCTT TGAGTGGAGCT GATAACCGCTC GCGCAGCG
 4861 AACGACCGAG CGCAGCGAGT CAGTGACCGA GGAAGCGGAA G
 4921

Figure 7

PMSVLSB4: 6309 bp;
 Composition 1522 A; 1620 C; 1590 G; 1577 T; 0 OTHER
 Percentage: 24% A; 26% C; 25% G; 25% T; 0% OTHER

Molecular Weight (kDa): ssDNA: 1947.08 dsDNA: 3889.6
 ORIGIN

1	ACCGCCCAAT ACGCAAACCG CCTCTCCCCG CGCGTTGGCC GATTCAATTAA TGCAAGCTGGC
61	ACGACAGGTT TCCCGACTGG AAAGCGGGCA GTGAGCGCAA CGCAATTAAAT GTGAGGTAGC
121	TCACTCATTA GGCACCCCG AGCTTACACT TTATGCTTCC GGCTCGTATG TTGTTGCGAA
181	TTGTGAGCGG ATAACAAATT CACACAGGA ACAGCTATGA CCAATGATTAC GCCAAGCTAT
241	TTAGCTGACA CTATAGAAC TAGATGACAC CGCGCGCGAT AATTATCCT AGTTTGCAGC
301	CTAGTCCCAGA TCTAGTAACA CGTATTAAAT GTATAATTGC GGGACTCTAA TCATAAAAAC
361	CTATATTTCG TTITCTATCG CGTATTAAAT GTATAATTGC AATPGCTTAA CGTAATTCAA
421	CCATCTCATTA AAAAACGTCG TGCATTAACAT GTTAATTATT ACATGCTTAA
481	CAGAAATTAT ATGATAATCA TCGACAGACCG CGCAACAGGA TTCAATCTTA AGAAACCTTA
541	TTGCCAAATG TTGAAACGAT CGGGGAAATT CGCTCGAGTT AATTAAGCGG CCCGCTCAA
601	AAGGATCTTC ACCTAGATCC TTTAAATTAA AAAATGAAGT TTAGCACTG GTCACTCTG
661	CTCTCGGCC ACGAAGTGCA CGCAGTTGCC GGGCGGGTCG CGCAGGGCGA ACTCCCGCCC
721	CCACGGCTGC TCGCCGATCT CGGTCACTGGC CGGCCCGGAG GCGTCCCCGA AGTTGTTGA
781	CAAGACCTCC GACCACCTGG CGTACAGCTC GTCCAGGCC CGCACCCACA CCCAGGCCAG
841	GGTGTGTCC GGCACCACCT GGTCTTGGAC CGCGCTGATG AACAGGTCA CGTCGTCCTG
901	GACCACACCG GCGAAGTCGT CCTCCACGAA GTCCCGGGAG GGAACGGCAC TGGTCAACTT
961	GAACTCGACC GCTCCGGGGA CGTCGCGGC GGTGAGCACC TATCAGGGTT ATTGTCAT
1021	GGCCATGGTG GCCCTCTCA CGTGTCTTAA TTGAAGCAATT ATAGGGTT ATTGTCAT
1081	GAGCGGATAC ATATTTGAAT GTATTAGAA AAATAAAACAA ATAGGGTTTC CGCGCACATT
1141	TCCCCGAAAA GTGCCACCTG TATGCGGTGT GAAATACCGC ACAGATGCGT AAGGAGAAA
1201	TACCGCATCA GGCAGAAATTG TAAACGGGGC CGCTTAATTAA AGTCGAGTC CTCTCCAAT
1261	GAATGAACCTTCCCTA GAGGAAGGGT CTGCGAAGG ATAGGGAT TGTGCTCAT
1321	CCCTTACGTC AGTGGAGATA TCACATCAAT CCACCTGGCTT TGAAGACCTG GTTGGAACGT
1381	CTTCTTTTC CACGTAGCTC CTGCTGGGTG GGGTCCATC TTTGGGACCA CTGTCGGCAG
1441	AGGCATCTTG AACGATAGCC TTTCCTTATC GCAATGATGG CAITGGTAG TGCCACCTTC
1501	CTTTCTACT GTCTTTTGA TGAAGTGACA GATAGCTGGG CAATGGATC CGAGGAGGT
1561	TCCCGATATT ACCCTTTGTT GAAAAGTCTC AATAGCCCTT TGGCTTCTG AGACTGTATC
1621	TTTGATATTTC TTGGAGTAGA CGAGAGAGTG TCGTGTCTCA CCATGTTGAC GAATTCATGG
1681	GCAGACCCGT CTGTAATTCA AGAGTGTGG CAACAGTAA TGAATAAAA CTCCCGTTT
1741	ATTATAATTG ATGAATGCTG AAAGCTTACA TAAATATGTC GTGGATGGC ACGAAAAAAC
1801	ACACGAAAC AATACAGGGG GGTAGTCGGC GGGCGGCTAA GGGTGGTCT CGGGGGCAG
1861	AAACATCGAAA AATCAAGATC TATATGAATT ACACCTTCTC CGTAGGAGGA AGCACAGGG
1921	GAGAATACCA CTCTCCCCC GGCGACATAA TGAAATGAC GCAGTTGCC TCGAAATACT
1981	CCAGCTGCC TGGAGTCATT TCCCTCATCC AATCTTCATC CGAGTTGCC AGGATTATTG
2041	TAGGCTTACA CTTCTTCTG ACCTTTTCT TCTTACCATCA CTTGGGTTT ACAATGAAAT
2101	CCCTCTGACA GCCAACTAAC TGTCTTCAAC AAGGACAGAA TTAAACGGA ATATCATCTA
2161	CGATGTTGTA GATTGCGCTC TCGTTGTATG AAGACCAATC AACATTATTT TGCCAGTAAT
2221	TATGAACCCC TAGGCTTCTG GCCCAAGTAG ATTTCGGGT TCTTGTGGG CCGACGATGT
2281	AGAGGCTCTG CTTCTTGAT CTTCATCTG ATGACTGGAT ACAGATCCA TCCATTGGAG
2341	GTCAGAAATT GCATCCTCGA GGGTATAACA GGTAGGGTGA AGGACCATGT AAGCTTCCGG
2401	ACTAACCTGG AAGATGTAG GCTGGAGCCA ATCGTTGATT GACTCATTAC AAAGTAAATC
2461	AGGTGAGGAG GGTGGATGAG GATTGGTGA CTCTTCTGAA ATCTCAGGAA AAAGTTATT
2521	TGCAAGAGTAT TCAAAATACT GCAATTGTTG GGAACAAATCA AAGGGAGCT CTTCTGGAT
2581	CATGGAGAGG TACTCTTCTT TGGAGGTAGC GTGIGAAATA ATGTCTCGCA TTATTCATC
2641	TTTAAAGGC TTTTTTCTT TTACCTCTGA ATCAGATTTC CCTAGGAAGG GGGACTTCC
2701	AGGAATGAAA GTACCTCTCT CAAACACAGC CAGGGTTC TTGAGAATGT AATCCCTCAC
2761	TCTGTTAACT GACTTGGCAC TCTGAAATT TGGGTGAAC CCATTTATAT CAAAGAACCT
2821	TGAGTCAGAT ATCGTTATCG GCTTCTCTGG CTGAAGCAAT GCATGTAAT GCAAACTTCC
2881	ATCTTATGT GCCTCTCGGG CACTAGAAAT ATATTTGGGA ATCCAACGAA CGACGAGCTC

Figure 7 (cont'd)

2941 CCAAGATCATC TGACAGGGCGA TTTCAGGATT TTCTGGACAC TTTGGATAGG TTAGGAACGT
 3001 GTTACCGTTC CTGTGTGAGA ACTGACGGTT GGATGAGGGAG GAGGCCATAG CCGACGACGG
 3061 AGGTTGAGGC TGAGGGATGG CAACTGGGA GCTCCAAACT CTATAGTATA CCCGTGCGCC
 3121 TTCTGAAATCC GCGCGCTCCAT TGTCTTATAG TGGTTGTAAGA TGGGCGGGAC CGGGCCGGCC
 3181 CAGCAGGAAA AGAAGGCCG CACTAATATT ACCGCGCCCTT CTTCCTGCG GAGGGCCGGG
 3241 GGTAGGGACC GAGCGCTTTG ATTTAAAGCC TGGTTCTGCT TTGTATGATT TATCTAAAGC
 3301 AGCCCAATCT AAAGAAACCG GTCCCGGGCA CTATAAATTG CCTAACAAAGT GCGATTCAATT
 3361 CATGGATCCT TTAAACTCGA GTCTAGAGGG CCCAACCTCGC CCTATAGTGA GTCGTATTAC
 3421 AATTCACTGG CGCTCGTTT ACAACGTCGT GACTGGAAA ACCCTGGCGT TACCCAACCTT
 3481 AATCGCCTTG CAGCACATCC CCCTTCGCG AGCTGGCGTA ATAGCGAAGA GGCCCGCACC
 3541 GATCGCCCTT CCCAACAGTT GCGCAGCGTA TACGTACGGC AGTTTAAGGT TTACACCTAT
 3601 AAARGAGAGA GCGGTTATCG TCTGTTGAG GATGTACAGA GTGATATTAT TGACACGCGG
 3661 GGGCGACCGA TGGTGTATCCC CCTGGCCAGT GCACGTCGTG TGTCAAGATAA AGTCTCCCGT
 3721 GAACCTTACCG CGGTGGTGCAT TATCGGGAT GAAAGCTGGC GCATGATGAC CACCGATATG
 3781 CGCAGTGTGC CGGTCTCCGT TATCGGGAA GAAGTGGCTG ATCTCAGCCA CGCGAAAAT
 3841 GACATCAGAAA AGCGCAATTAA CCTGATGTTC TGGGAAATAT AAAATGTCAGG CCTGAATGGC
 3901 GAATGGACGC GCGCTGTAGC GCGCGCATTAA GCGCGCGGGT GTGGTGGTTA CGCGCAGCGT
 3961 GACCGCTACA CTGCCAGCG CCCTAGCGCC CGCTCCCTTC GCTTTCTTCC CTTCTTCT
 4021 CGCCACGTT GCGGGCTTCC CCCGTCAAAGC TCTAAATCGG GGGCTCCCTT TAGGGTTCCG
 4081 ATTTAGAGCT TTAACGGCACCC TCGACCGCAA AAAACTTGTAT TTGGGTGATG GTTCACGTAG
 4141 TGGGCCATCG CCCTGATAGA CGGTTTTGCG CCCTTGTGACG TTGGAGTCCA CGTCTTTAA
 4201 TAGTGGACTC TTGTTCCAAA CTGGAACAAAC ACTCAACCTT ATCGCGGTCT ATTCTTTGA
 4261 TTTTATAAGGG ATGTTGCGGA TTTCGGCTA TTGGTTAAAA AATGAGGTGA TTAAACAAAA
 4321 ATTTTAACAA AATTCAAGAAG AACTCGTCAA GAAGGGCGATA GAAGGGCGATG CGCTGCGAAT
 4381 CGGGAGGGC GATAACGTAA AGCAGAGGA AGCGGTCAAGC CCATTGCGCG CCAAGCTCTT
 4441 CAGCAATATC ACGGGTGACG AACGGTATGT CCTGATAGCG GTCCGCCACA CCCAGCGCG
 4501 CACAGCTGAT GAATCCAGA AAGGGCCAT TTTCACCAT GATAATTGCG AAGCAGGCGAT
 4561 CGCCATGGGT CACGACGAGA TCCTCGCCGT CGGGCATGCT CGCCTTGAGC CTGCGCAACA
 4621 GTTCCGGTGG CGCGAGCCCC TGATGCTCTT CGTCCAGATC ATCTGATCG ACAAGACCGG
 4681 CTTCCATCGG AGTACGTGCT CGCTCGATGC GATGTTTCG TTGGTGGTGC AATGGCGAGG
 4741 TAGCCGGATC AAGCGTATGC AGCCGCGCA TTGCACTCAGC CATGATGGAT ACTTTCTCGG
 4801 CAGGAGCAAG GTGAGATGAC AGGAGATCCT GCCCCGGCAC TTGGCCCAAT AGCAGCCAGT
 4861 CCCTTCCCGC TTCACTGACA ACGTCGAGCA CAGCTGCGCA AGGAACGCC GTCGTGGCCA
 4921 GCCACGATAG CGCGCTGCG TCGCTCTGCA TTTCATTCAAG GGCACCGGAC AGGTGGTCT
 4981 TGACAAAAAG AACCGGGCGC CCCTGCGCTG ACAGCCGGAA CACGGCGGC TCAAGAGCAG
 5041 CGATTGTCIG TTGTGCCAG TCATAGCCATG GAAACGATCC TCAATCTGTC TCTTGATCAG
 5101 CTGCGTCAA TCCATCTGT TCAATCATGC GAAACGATCC TCAATCTGTC TCTTGATCAG
 5161 ATCTTGATCC CCTGCGCCAT CAGATCCTG GCGCGAGAA AGCCATCCAG TTACTTTGC
 5221 AGGGCTTCCC AACCTTACCA GAGGGCGCC CAGCTGGCA TTCCGGTTCG TTGCTGTC
 5281 ATAAAAACCGC CCAGTCTAGC TATGCCCAG TAAGGCCACT GCAAGCTACC TGCTTTCTCT
 5341 TTGGCCTTGC GTTTCCCTT GTCCAGATAG CCCAGTAGCT GACATTCACT CGGGGTCAAG
 5401 ACCGTTCTG CCGACTGGCT TTCTACGTGA AAAGGATCTA GGTGAAGATC CTTTTTGATA
 5461 ATCTCATGAC CAAATCCCT TAACGTGAGT TTTCGTTCCA CTGAGCGTCA GACCCCGTAG
 5521 AAAAGATCAA AGGATCTCT TGAGATCCTT TTTTCTGCG CGTAATCTGC TGTTGCAAA
 5581 CAAAAAAACCC ACCGCTACCA GCGGTGGTTT GTTGCGCGA TCAAGAGCTA CCAACTCTT
 5641 TTCCGPAAGT AACCTGGCTTC AGCAGAGCGC AGATACCAA TACTGCTCTT CTAGTGTAGC
 5701 CGTAGTTAGG CCACCACTTC AAGAACTCTG TAGCACCGCC TACATACCTC GCTCTGCTAA
 5761 TCCTGTTACG AGTGGCTGCT GCCAGTGGCG ATAAGCTGTC TCTTACCGGG TTGGACTCAA
 5821 GACGATAGTT ACCGGATAAG GCGCAGCGGT CGGGCTGAAAC GGGGGGTTCG TGCAACACAGC
 5881 CCAGCTTGGA GCGAACGACAC TACACCGAAC TGAGATACCT ACAGCGTGAG CTATGAGAAA
 5941 GCGCCACGCT TCCCGAAGGG AGAAAGGGCGG ACAGGTATCC GTTAAGCGGC AGGGTGGAA
 6001 CAGGAGAGCG CACGAGGGAG TTTCAGGGGG GAAACGCCCTG GTATCTTAT AGTCTGTC
 6061 GGTTTCCGCA CCTCTGACTT GAGCGCTGAT TTGTTGATG CTGTCAGGG GGGCGGAGCC
 6121 TATGGAAAAA CGCCAGCAAC GCGGCCTTTT TACGGTTCTT GGGCTTTGC TGGCTTTTG
 6181 CTCACATGTT TTTCCTGCG TTATCCCCCTG ATTCGTGGA TAACCGTATT ACCGCCTTTG
 6241 AGTGAGCTGA TACCGCTCGC CGCAGCCGAA CGACCGAGGG CAGCGACTCA GTGAGCGAGG
 6301 AAGCGGAAG

Figure 8

PMSVLSB-5: 8043 bp;
 Composition 1983 A; 1992 C; 2011 G; 2057 T; 0 OTHER
 Percentage: 25% A; 25% C; 25% G; 26% T; 0% OTHER

Molecular Weight (kDa): ssDNA: 2483.31 dsDNA: 4958.5

ORIGIN

1	AGCGCCCAAT	ACGCAAACCG	CCTCTCCCCG	CGCGTGGGCC	GATTCAATTAA	TGCAGCTGGC
61	ACGACAGGTT	TCCCGACTGG	AAAGCGGGCA	GTGAGCGCAA	CGCAATTAAAT	GTGAGCTTAGC
121	TCACTCATTA	GGCACCCCG	GCTTACACT	TTATGCTTCC	GGCTCGTATG	TTCGTGGA
181	TTGTGAGCGG	ATAACAATT	CACACAGGAA	ACAGCTATGA	CCATGATTAC	GCCAAGCTAT
241	TTAGGTGACA	CTATAGAATA	CTCAAGCTAT	GCATCAAGCT	TGGTACCGAG	CTCGGATCCA
301	CTAGTAACGG	CCGCCAGTGT	GCTGGAATT	ATGGGCAGAC	CCGCTGTAC	TTTAAGAGTG
361	TTGGCAACCA	GTAATGAATA	AAAACCTCCG	TTTATTATA	TTTGTGAAAT	GCTGAAAGCT
421	TACATTAATA	TGTCGTGCGA	TGGCACGAA	AAACACACGC	AAACAATACA	GGGGGTAGT
481	CGGGGGCGG	CTAAGGGTGG	TGCTCGGCG	GCAGAACATC	GAAAAATCAA	GATCTATATG
541	AATTACACTT	CCTCCGTAGG	AGGAAGCACA	GGGGGAGAAT	ACCACTCTC	CCCCGGCGAC
601	ATAATGTAAT	TGACGCAGT	TGCCTCGAAA	TACTCCAGCT	GCCCCTGGAGT	CATTTCCTTC
661	ATCCAATCTT	CATCCGGAT	GGCGAGGATT	ATTGTTAGGCT	TAGACTTCCTT	CTGCACCTTT
721	TTCCTCTTAC	CATACTGGG	TTTACAAATG	AAATCCCTCT	GACAGCCAAC	TAACTGTTTC
781	CAACAAGGAC	AAATTTAAA	CGGAATATCA	TCTACGATGT	TGTAGATTGC	GTCTTCGTTG
841	TATGAATTTTC	CGGTTCTTGT	TGGGCCGACG	ATGTAGAGGC	TCTGCTTTCT	TGATCTTICA
901	GTAGATTTC	GGATAACAGAA	TCCATCCATT	GGAGGTCAGA	AATTGATCC	TCGAGGGTAT
961	TCTGATGACT	GGATAACAGAA	TCCATCCATT	GGAGGTCAGA	AATTGATCC	TCGAGGGTAT
1021	AAACAGGTAGG	TTGAAGGGAGC	ATGTAAGCTT	CGGGACTAAC	CTTGAAGATG	TTAGGCTGGA
1081	GCCAAATCGTT	GATTGACTCA	TTACAAAGTA	AAATCAGGTGA	GGAGGGTGG	TGAGGATTGG
1141	TGAACCTCTC	CTGAATCTCA	GGAAAAGCT	TATTGTCAGA	GTATTCAAAA	TACTGCAATT
1201	TTGTGGACCA	ATCAAAGGGG	AGCTCTTTCT	GGATCATGGA	GAGGTACTCT	TCTTGGAGG
1261	TAGCGTGTGA	AATAATGCT	CGCAATTATT	CATCTTGTG	AGGCTTTT	TCTTACCT
1321	CTGAATCAGA	TTTCCCTAGG	AAGGGGACT	TCCTAGGAT	GAAAGTACCT	CTCTCAAACA
1381	CAGCCAGGAGG	TICCTTGAGA	ATGTAATCCC	TCACTCTGTT	AACGTGATG	GCACCTGAA
1441	TATTTGGGTG	AAACCCATT	ATATCAARAGA	ACCTTGAGTC	AGATATCCTT	ATCGGCTTCT
1501	CTGGCTGAAG	CAATGCAATG	AAATGCAAC	TTCCATCTT	ATGTGCCCT	CGGGCACATA
1561	GAATATATT	GGGAATCCAA	CGAACGACGA	GCTCCCGAGAT	CATCTGACAG	CGGATTTCAG
1621	GATTTCTGG	ACACTTTGGA	TAGGTTAGGA	ACGTGTTAGC	GTTCCTGTT	GAGAAGTGAC
1681	GGTTGGATGA	GGAGGAGGGC	ATAGCCGAGC	ACGGAGGTG	AGGCTGAGGG	ATGGCAGACT
1741	GGGAGCTCCA	AACTCTATAG	TATACCCGTG	CGCCCTTCGAA	ATCCGCCCT	CCATTGTCTT
1801	ATAGTGGTGT	TAATGGGCC	GGACGGGGCC	GGCCCGAGCAG	GAAAAGAAGG	CGCGCACTAA
1861	TATTACCGCG	CCCTCTTTTC	CTGCGAGGGC	CCGGTAGGG	CCGAGCGCTT	TGATTAAAG
1921	CCTGGTCTG	CTTGTATGA	TTTATCTAA	GCACCCCAAT	CTAAAGAAAC	CGGTCCCGGG
1981	CACTATAAT	TGCCTAACAA	GTGCGATTCA	TTCATGGATC	CTTTAAACTC	GAGTCAGTC
2041	CCGATCTAGT	AAACATAGATG	ACACCCGCGC	CGATAATTAA	TCCTAGTTG	CGCGCIAATAT
2101	TTTGTCTTC	ATCGCGTATT	AAATGTATAA	TTGCGGGACT	CTAATCATAA	AAACCCATCT
2161	CATAAATAAC	GTCATGCATT	ACATGTATAA	TATTACATGC	TTAACGTTAAT	TCAACAGAAA
2221	TTATATGATA	ATCATCGACA	GACGGCAAC	AGGATTCAAT	CTTAAGAAAC	TTTATGCCA
2281	AATGTTTGAA	CGATCGGGGA	AAATCCCTCG	AGTTAATTAA	GCGGCCGCT	AAAAAGGAT
2341	CTTCACCTAG	ATCCCTTTAA	ATTTAAATG	AAAGTTTACG	ACGTGTCAGT	CTGCTCTC
2401	GGCACCGAAG	TGCAACGAGT	TGCCGGCCGG	GTCCGGCAGG	GCGAACTCCC	GCCCCCACGG
2461	CTGCTCGCCG	ATCTCGGTCA	TGGCCGGCCC	GGAGGGCGTCC	CAGGAAGTTG	TGGACACGAC
2521	CTCCGACAC	TGGCGTACA	GCTCGTCCAG	GGCCGGCACC	CACACCCAGG	CCAGGGTGT
2581	GTCCGGCACC	ACCTGGTCT	GGACGGCGCT	GATGAACAGG	GTCACGTCGT	CCCGGACAC
2641	ACCGGCGAAG	TCGTCTCCA	CGAAGTCCC	GGAGAACCCG	AGCCGGTCG	TCCAGAACTC
2701	GACCGCTCCG	GCGACGTGCG	GGCGGGTGAG	CACCGGAACG	GCACGTGTC	ACTTGGCCAT
2761	GGTGGCCCTC	CTCACGTGCT	ATTATTGAAG	CATTATTCAG	GGTTATTGTC	TCATGAGCGG
2821	ATACATATT	GAAGTATTT	AGAAAAATAA	ACAAATAGGG	GTTCGGCGA	CAATTCCCCG
2881	AAAAGTGCCA	CCTGTATGCG	GTGTGAAATA	CCGCACAGAT	GGCTAAGGAG	AAAATACCGC

Figure 8 (cont'd)

2941 ATCAGGCAGA ATTGTAAACG CGGCCGCTTA ATTAAGTCGA CGTCCTCTCC AAATGAAATG
 3001 AACTTCCCTA TATAGAGGAA GGGTCTTGCG AAGGATAGTG GGATTGTGCG TCATCCCTTA
 3061 CGTCAGTGGA GATATCACAT CAATCCACTT GCTTIGAAGA CGTGGTTGGA ACCTCTTCTT
 3121 TTTCCACGTA GCTCCTCGTG GGTGGGGTC CATCTTGGG ACCACTGTCG GCAGAGGCAT
 3181 CTTGAACGAT AGCCCTTCTT TATGCCATG ATGGCAATTG TAGGTGCCAC CTTCCCTTTC
 3241 TACTGTCCCTT TTGATGAAGT GACAGATAGC TGGGCAATGG AATCCGAGGA GGTTTCCCAGA
 3301 TATTACCCCTT TGTTGAAAAG TCTCAATAGC CTTTGGTCT TCTGAGACTG TATCTTGTAT
 3361 ATCTCTGGAG TAGACGAGAG ATGTCGTGC TCCACCATGT TGACGAAITC ATGGGCAGAC
 3421 CCGCTCTGAC TTTAAGAGTG TTGCGAACCA GTAAATGAATA AAAACTCCCCG TTTTATTATA
 3481 TTGATGAAT GCTGAAAGCT TACATTAATA TGTCGTGCGA TGGCAGGAAA AAACACACGC
 3541 AAACAATACA GGGGGGTAGT CGGCCGGCGG CTAAGGGTGG TGCTCGGCGG GCAGAACATC
 3601 GAAAAATCAA GATCTATATG AATTACACTT CTCACGAGG AGGAAGGCACA GGGGGAGAAT
 3661 ACCACCTCTC CCCCCGGCAG ATAATGTAAA TGACGCACTT TGCCCTGAAA TACTCCAGCT
 3721 GCCCTGGAGT CATTTCCTTC ATCCAATCTT CATCCGAGTT GGCGAGGATT ATTGTAGGCT
 3781 TAGACCTCTT CTGCACCTTT TTCTTETTAC CATACTTGGG GTTTACRATG AAATCCCTCT
 3841 GACAGCCAAC TAACGTGTC CAACAAGGGAC AGAATTTAA CGGAATATCA TCTACGATGT
 3901 TGTAGATTGC GTCTTGTG TATGAAGACC ATACCAATTTTAA ATTTCGCAAG TAATTATGAA
 3961 CCCCTAGGCT TCTGGCCAA GTAGATTITC CGGTCTCTGT TGGCCGACCG ATGTAGAGGC
 4021 TCTGCTTCT TGATCTTCA TCTGATGACT GGATACAGAA TCCATCCATT GGAGGTCAGA
 4081 AATTGCATCC TCGAGGGTAT AACAGGTAGG TTGAAGGAGC ATGTAAGCTT CGGGACTAAC
 4141 CTGGAAAGATG TTAGGCTGGA GCCAATCGTT GATTGACTCA TTACAAAGTA AATCAGGTGA
 4201 GGAGGGTGGG TGAGGATTGG TGAACCTTTC CTGAATCTCA GGAAAAGCT TATTGCAAGA
 4261 GTATTCAAA TACTGCAATT TTGTTGGACCA ATCAAAAGGG AGCTCTTCTI GGATCATGGA
 4321 GAGGTACTCT TCTTTGGAGG TAGCGTGTGA AATAATGTCT CGCATTATT CATCTTAA
 4381 AGGCTTTTIT TCCCTTACCT CTGAATCAGA TTTTCTTAGG AAGGGGGACT TCTCTAGGA
 4441 GAAAGTACCT CTCTCAAAACA CAGCAGAGG TTCCCTTGAGA ATGTAATCCC TCACCTGTT
 4501 AACTGACTTG GCACTCTGAA TATTGGGTG AAACCCATT ATATCAAAAGA ACCTTGAGTC
 4561 AGATATCCTT ATCGGCTTCT CTGGCTGAAG CAATGCATGT AAATGCAAAAC TTCCATCTT
 4621 ATGTCCTCT CGGGCACATA GAATATATTG GGAATTCCTA CGAACGACGA GCTCCAGAT
 4681 CATCTGACAG GCGATTCTCG GATTTCTGG ACACTTCTGG ACAGTGTAGG ACGTGTAGC
 4741 GTTCTGTGTG GAGAAGTAC GGTGATGAG GGAGGAGGCC ATAGCCGACG ACGGAGGTG
 4801 AGGCTGAGGG ATGGCAGACT GGGAGCTCCA AACTCTATAG TATAACCGTG CGCCCTCGAA
 4861 ATCCGCGCGT CCATTGCTT ATAGTGGTTG TAAATGGGCC GGACCGGGCC GGCCACAGCAG
 4921 GAAAAGAAGG CGCGCACTAA TATTACCGCG CCTCTTTTC CTGCGAGGGC CGGGGGTAGG
 4981 GACCGAGGCC TTTGATTAA AGCCTGGTTC TGCTTGTAT GATTATCTA AAGCAGCCCA
 5041 ATCTAAAGAA ACCGGTCCCG GGCACATATAA ATTGCCTAAC AAGTGCAGATT CATTCTATGGA
 5101 TCCCTTAAAC TCGAGTCTAG AGGGCCCAAT TCGCCCTATA GTGAGTCGTA TTACAAATTCA
 5161 CTGGCCGTG TTTTACAACG TCGTACTGG GAAAACCTG CGTTACCCCA ACTTAATCGC
 5221 CTGTCAGCAC ATCCCCCTT CGCCAGCTGG CGTAAATAGCG AAGAGGCCCG CACCGATCGC
 5281 CCTTCCCAAC AGTTGCGCAG CCTATACGTA CGGCAGTTA AGGTTCACAC CTATAAAAGA
 5341 GAGAGCCGTT ATCGTCTGTT TGTGGATGTA CAGAGTGTATA TTATTGACAC GCCGGGGCGA
 5401 CGGATGGTGA TCCCCCTGGC CAGTGCACGT CTGCTGTCAAG ATAAAGTCTC CGGTGAACCT
 5461 TACCCGGTGG TGCATATCGG GGATGAAAGC TGGCGCATGA TGACCCCGA TATGGCCAGT
 5521 GTGCCGGTCT CGGTTATCGG GGAAGAAGTG CTGATCTCA GCCACCGCGA AAATGACATC
 5581 AAAAAACGCA TTAACCTGAT GTTCTGGGAA ATATAATGT CAGGCCCTGAA TGGCGAATGG
 5641 ACGGCCCTG TAGCGGGCGCA TTAAGCGCGC GGGTGTGGTG GTTACCGCGA GCGTGAACCG
 5701 TACACTTGCC AGCGCCCTAG CGCCCGCTCC TTGCGCTTTC TPCCTCTCCT TTCTCGCCAC
 5761 GTTCGCCGGC TTTCCCCGTC AAGCTCTAAA TCGGGGGCTC CCTTTAGGGT TCCGATTAG
 5821 AGCTTACGG CACCTCGACC GCAAAAAACT TGATTTGGGT GATGGTTCAC GTAGTGGGCC
 5881 ATCGCCCTGA TAGACGGTTT TTGCCCCCTT GACGTTGGAG TCCACGTTCT TTAATAGTGG
 5941 ACTCTTGTC CAAACTGAA CAACACTCAA CCTATCGCG GTCTATTCTT TTGATTATA
 6001 AGGGATGTG CCGATTTCGG CCTATTGGTT AAAAAATGAG CTGATTTAAC AAAAATTATA
 6061 ACAAAATCA GAAGAACCTG TCAAGAAGGC GATAGAAGGC GATGCCGTC GAATGGGAG
 6121 CGGCGATACC GTAAAGCAGC AGGAAGCGGT CAGCCCAITC GCCGCCAAGC TCTTCAGCAA
 6181 TATCACGGGT AGCCAACGCT ATGTCCTGAT AGCGGTCCGC CACACCCAGC CGGGCACAGT
 6241 CGATGAATCC AGAAAAGCGG CCTTTTCCA CCATGATATT CGGCAACCGAG GCATGCCCAT
 6301 GGGTCACGAC GAGATCCTCG CGTCGGGCA TGCTCGCCCTT GAGCCCTGGCG AACAGTTGG

Figure 8 (cont'd)

6361 CTGGCGCGAG CCCCTGATGC TCTTCGTCCA GATCATCCTG ATCGACAAGA CGCGCTTCCA
 6421 TCCGAGTACG TGCTCGTCG ATGCATGTT TCGCTTGGTG GTCGAAATGGG CAGGTAGCCG
 6481 GATCAAGCGT ATGCAGCCCG CGCATTCGAT CAGCCATGAT GGATACTTTC TCGGCAGGAG
 6541 CAAGGTGAGA TGACAGGAGA TCCCTGCCCG GCACTTCGCC CAATAGCAGC CAGTCCCTTC
 6601 CGCGCTTCAGT GACAACGTCG AGCACAGCTG CGCAAGGAAC GCGCGCTTCG TGCTTGACAA
 6661 ATAGCCGCGC TGCCCTCGT TGCAGTTCAT TCAGGGCACC GGACAGGTG TGCTTGACAA
 6721 AAAGAACCGG GCGCCCCCGC GCTGACAGCC GGAACACGGC GGCATCAGAG CAGCCGATTG
 6781 TCTGTTGTGC CCAGTCATAG CCGAATAGCC TCTCCACCCA AGCGGCCGGA GAACCTGCGT
 6841 GCAATCCATC TTGTTCAATC ATGCGAAACG ATCCTCATCC TGTCTCTTGA TCAGATCTTG
 6901 ATGCCCTGCG CCATCAGATC CTTGGGGCG AGAAAGCCAT CCAGTTTACT TTGCAAGGGCT
 6961 TCCCAACCTT ACCAGAGGGC GCCCCAGCTG GCAATTCCGG TTGCTTGCT GTCCATAAAA
 7021 CCGCCCAGTC TAGCTATCGC CATGTAAGCC CACTGCAAGC TACCTGCTT CTCTTGGC
 7081 TTGCGTTTC CCTTGTCCAG ATAGCCCAGT AGCTGACATT CATCGGGGT CAGCACCGTT
 7141 TCTGCGGACT GGCTTTCTAC GTGAAAAGGA TCTAGGTGAA GATCCTTTT GATAATCTCA
 7201 TGACCAAAAT CCCTTAACGT GAGTTTCTGT TCCACTGAGC GTCAGACCCC GTAGAAAAGA
 7261 TCAAAGGATC TTCTTGAGAT CCTTTTTTTC TGCGGTAAT CTGCTGGTIG CAAACAAAAA
 7321 AACCACCGCT ACCAGCGGTG GTTGTGTTGC CGGATCAAGA GCTACCAACT CCTTTTCCGA
 7381 AGGTAACCTGG CTTCAGCAGA CGCGCAGATAC CAAATACGT CCTTCTAGTG TAGCCSTAGT
 7441 TAGGCCACCA CTTCAGAAC TCTGTAGCAC CGCCTACATA CCTCGCTCTG CTAATCCCTGT
 7501 TACCAAGGGC TGCTGCCAGT GGCGATAAGT CGTGTCTTAC CGGGTTGGAC TCAAGACGAT
 7561 AGTTACCGGA TAAGGCGCAG CGGTGGGCT GAACGGGGGG TTGCTGCACA CAGCCAGCT
 7621 TGGAGCGAAC GACCTACACC GAACTGAGAT ACCTACAGCG TGAGCTATGA GAAGGCCA
 7681 CGCTTCCCGA AGGGAGAAAG GCGGACAGGT ATCCGGTAAG CGGCAGGGTC GGAACACGGAG
 7741 AGCGCACCGAG GGAGCTTCA GGGGAAACG CCTGGTATCT TTATAGTCTT GTGGGTTTC
 7801 GCCACCTCTG ACTTGAGCGT CGATTTTGT GATGCTCGTC AGGGGGCGG AGCTATGGA
 7861 AAAACGCCAG CAACGCCGCC TTTTACGGT TCCCTGGCTT TTGCTGGCTT TTGCTCACCA
 7921 TGGCTTTCG TGCGTTATCC CCTGATTCTG TGGATAACCG TATTACCGCC TTGAGTGAG
 7981 CTGATACCGC TCGCCGCAGC CGAACGACCG AGCGCAGCGA GTCACTGAGC GAGGAAGCGG
 8041 AAG

Figure 9

pMSVLSB-6: 7404 bp;

Composition 1839 A; 1794 C; 1835 G; 1936 T; 0 OTHER
 Percentage: 25% A; 24% C; 25% G; 26% T; 0% OTHER

Molecular Weight (kDa): ssDNA: 2286.33 dsDNA: 4564.5

ORIGIN

1 AGCGCCAAT ACGAAACCG CCTCTCCCCG CGCGTGGCC GATTCATTAA TGCAGCTGGC
 61 ACGAACGGTT TCCCGACTGG AAAGCAGGCA GTGAGCGAA CGCAATTAAAT GTGAGTTAGC
 121 TCACTCATTA GGCACCCCCAG GCTTACACT TTATGCTTC GGCTGTATG TTGTGTGGAA
 181 TTGTGAGCGG ATAACAATT CACACAGGAA ACAGCTATGA CCATGATTAC GCCAAGCTAT
 241 TTAGGTGACA CTATAGAATA CTCAAGCTAT GCATCAAGCT TGGTACCGAG CTCGGATCCA
 301 CTAGTAACGG CCGCCAGTGT GCTGGAATT ATGGGCAGAC CCGTCTGTAC TTTAAGACTG
 361 TTGGCAACCA GTAATGAAATA AAAACTCCCG TTTTATTATA TTGATGAAT GCTGAAAGCT
 421 TACATTAATA TGCGGTGCGA TGGCACGAAA AAACACACGC AAACAATACA GGGGGTAGT
 481 CGGGGGCGG CTAAGGGTGG TGCTCGCCG GCAGAACATC GAAAAATCAA GATCTATATG
 541 ATTACACTT CCTCCGTAGG AGGAAGCACA GGGGGAGAAT ACCACTTC CCCCCGGGAC
 601 ATAATGAAA TGACCGAGTT TGCGCTGAAA TACTCCAGCT GCGCTGGAGT CAITTCCTTC
 661 ATCCAATCTT CATCCGAGTT GGGGAGGATT ATTGTAGGCT TAGACTTCCTT CTGCACCTTT
 721 TTCTCTTAC CATACTGGG GTTACAAATG AAATCCCTCT GACAGCCAAC TAACTGTTTC
 781 CAACAAGGAC AGAATTTAA CGGAATATCA TCTACGATGT TGTAGATTCG GTCTTCCTTG
 841 TATGAAGACC ATCAACATT ATTTTGCAG TAATTATGAA CCCCTAGGCT TCTGGGCAA
 901 GTAGATTTTC CGGTTCTTGT TGGGCCGACG ATGAGAGGC TCTGCTTCT TGATCTTCA
 961 TCTGATGACT GGATACAGAA TCCATCATT GGAGGTGAGA AATTGATCC TCGAGGGTAT
 1021 AACAGGTAGG TTGAAGGAGC ATGTAAGCTT CGGGACTAAC CTGGAAGATG TTAGGCTGGA
 1081 GCCAATCGTT GATTGACTCA TTACAAGTA AATCAGGTGA GGAGGGTGGA TGAGGATTGG
 1141 TGAACCTTC CIGAACTCTCA GGAAAAAGCT TATTGAGA GTATTCAAAA TACTGCAATT
 1201 TTGIGGACCA ATCAAAGGGG AGCTCTTCT GGATCATGGA GAGGTACTCT TCTTTGGAGG
 1261 TAGCTGTGA ATAATGCT CGCATTATT CACTTTAGA AGGCTTTTT TCCCTTACCT
 1321 CTGAATCAGA TTTCTTAGG AAGGGGACT TCCTAGGAAT GAAAGTACCT CTCCTAAACA
 1381 CAGCCAGAGG TTCTTGAGA ATGTAATCCC TCACCTCTT AACTGACTTG GCACTCTGAA
 1441 TATTGTTGAA AACCCATT TATATCAGA ACCTTGAGTC AGATATCCTT ATGGCTTCT
 1501 CTGGCTGAG CAATGCATGT AAATGCAAAC TTCCATCTT ATGTGCCCT CGGGCACATA
 1561 GAATATATTG GGGAAATCCAA CGAACGACGA GCTCCCAGAT CATCTGACAG GCGATTTCAG
 1621 GATTCTCG ACACTTGGG TAGGTAGGA ACGTGTAGC GTTCTGTGT GAGAAGTGC
 1681 GGTGGATGA GGAGGAGGCC ATAGCCGACG ACGGAGGTTG AGGCTGAGGG ATGGCAGACT
 1741 GGGAGCTCCA AACTCTATAG TATACCGTG CGCTTCTGAA ATCCGCCGCT CCATGTCTT
 1801 ATAGGGTTG TAAATGGGC GGACCGGGC GGGCCAGCAG GAAAAGAAGG CGCGCACTAA
 1861 TATTACCGCG CCTCTCTTTC CTGCGAGGGC CGGTAGGGA CGAGCGCTT TGATTTAAAG
 1921 CCTGGTTCTG CTTTGTATGA TTATCTAAA GCAGCCAACT TAAAGAAC CGGTCCGGG
 1981 CACTATAAT TGCCTAACAA GTGCGATTCA TTCATGGATC CTTTAAACTC GAGTCAGTC
 2041 CCGATCTAGT ACATAGATG ACACCGCGCG CGATAATTAA TCCCTAGTTG CGCGCTATAT
 2101 TTTGTTTCT ATCGCTTATT AAATGTATAA TTGGGGACT CTAATCATAA AAACCCATCT
 2161 CATAATAAAC GTCATGCTT ACATGTTAAT TATTACATGC TAAAGTAAT TCAACAGAAA
 2221 TTATATGATA ATCATGACA GACGGGCAAC AGGATTCAAT CTTAAGAAC TTTATTGCA
 2281 ATGTTTGA CGATCGGGGA AATTGCTCG AGTTAATTAA GCGGCCGCTT AATTAAGTCG
 2341 ACCTCTCTC CAAATGAAAT GAACTCTT ATATAGAGGA AGGGCTTGC GAAGGATAGT
 2401 GGGATTGGC GTCACTCCCT ACGTCAGTGG AGATATCACA TCAATCCACT TGCTTGAAG
 2461 ACCTGGTTGG AACGTCTCTT TTTCACGT AGCTCTCGT GGGTGGGGGT CCATCTTGG
 2521 GACCACTGTC GGCAGAGGCA TCTTGAACGA TAGCCTTCC TTATCGCAAT GATGGCAATT
 2581 GTAGGTGCA CCTCTCTTCT CTACTGCTCT TTGATGAAG TGACAGATAG CTGGGCAATG
 2641 GAATCCGAGG AGGTTCCCG ATATTACCT TTGGTAAAA GTCTCAATAG CCCTTGGTC
 2701 TTCTGAGACT GATCTTGA TATTCTGGA GTAGACGAGA GAGTGTCTG CTCCACCATG
 2761 TTGACGAATT CATGGCAGA CCCGTCGTG CTTAAGAGT GTGGCAACC AGTAATGAAT
 2821 AAAACTCCC GTTTATTAT ATTGATGAA TGCTGAAAGC TTACATTAAAT ATGTCTGTGCG

Figure 9 (cont'd)

2881 ATGGCACGAA AAAACACACG CAAACARTAC AGGGGGTAG TCGGCAGGGCG GCTAAGGGTG
 2941 GTGCTCGCGC GGCAGAACAT CGAAAAATCA AGATCTATAT GAATTACACT TCCTCCGTAG
 3001 GAGGAAGCAC AGGGGGAGAA TACCACTTCT CCCCGCGCA CATAATGTAA ATGACGCAGT
 3061 TTGCTCGAA ATACTCCAGC TGCCCTGGAG TCATTTCTT CATCCAATCT TCATCCGAGT
 3121 TGGCGAGGAT TATTGTAGGC TTAGACTTCT TCTGCACCTT TTCTCTTAA CCATACTTGG
 3181 GTTTTACAAT GAAATCCCTC TGACAGCCAA CTAACTGTAA CCAACAAAGGA CAGAATTAA
 3241 ACGGAATATC ATCTACGATG TTGTAGATTG CGTCTTCGTT GTATGAAGAC CAATCRACAT
 3301 TATTTGCAA GTAAATTAGA ACCCCCTAGGC TTCTGGCCCA AGTAGATTT CCGGTTCTTG
 3361 TTGGCGGAC GATGTAGAGG CTCTGTTTC TTGATCTTTC ATCTGATGAC TGGATACAGA
 3421 ATCCATCCAT TGGAGGTCAAG AAATTGCATC CTCGAGGGTA TAACAGGTAG GTGGAAGGAG
 3481 CATGTAAGCT TCGGGACTAA CCTGGAAGAT GTAGGTCTG AGCCAATCGT TGATTGACTC
 3541 ATTACAAAGT AAATCAGGTG AGGAGGGTGG ATGAGGGATTG GTGAACCTCTT CCTGAATCTC
 3601 AGGAAAAGC TTATTTGCAAG AGTATTCAAA ATACTGCAAT TTGTTGGACC AATCAAAGGG
 3661 GAGCTTTTC TGGATCATGG AGAGGTACTC TTCTTTGGAG GTAGCGTGTG AAATAATGTC
 3721 TCGCATTATT TCATCTTGTAG AAGGTTTTT TTCTCTTACG TCTGAATCGA ATTTCTCTAG
 3781 GAAGGGGAC TTCTCTAGGAA TGAAAGTACG TCTCTCAAAAC ACAGCCAGAG GTTCCCTGAG
 3841 AAATGTAATCC CTCACCTCTG TAACTGACTT GGCACTCTGA ATATTTGGGT GAAACCCATT
 3901 TATATCAAAG AACCTTGAGT CAGATATCTT TATCGGCTTC TCTGGCTGAA GCAATGCAIG
 3961 TAAATGCAAA CTTCCATCTT TATGTGCTC TCGGGCACAT AGAATATATT TGGGAATCCA
 4021 ACGAACGACG AGCTCCCAGA TCATCTGACA GGCACTCTGA GGATTTCTG GACACTTTGG
 4081 ATAGGTTAGG AACGTGTTAG CGTCTCTG TGAGAAGCTGA CGGTGGATG AGGAGGAGGC
 4141 CATAGCCGAC GACGGAGGTT GAGGCTGAGG GATGGCAGAC TGGGAGCTCC AACTCTATA
 4201 GTATACCGT GCGCCCTTCGA AATCCGCCGC TCCATTGTCT TATAGTGGTT GTAAATGGC
 4261 CGGACGGGC CGGGCCAGCA GGAAAAGAAG GCGCGCACTA ATATTACCGC GCCTCTTTT
 4321 CCTGCGAGGG CGCGGGGTAG GGACCGAGCG CTTGATTTA AAGCCTGGTT CTGCTTGTG
 4381 TGATTTATCT AAAGCAGCCC AATCTAAAGA AACCGGTCGGC GGGCACTATA AATTGCTAA
 4441 CAAGTGCAT TCATTCTATGG ATCCTTTAAA CTGGAGTCTA GAGGGCCCAA TTGCGCTTAT
 4501 AGTGAGTCGT ATTACAATTC ACTGGCCGTC GTTTTACAAC GTGCGTGTG GAAAACCCCT
 4561 GCGCTTACCC AACTTAATCG CCTTGCGAGCA CATCCCCCTT TCGCCAGCTG CGTAATAGC
 4621 GAAGAGGCC GCACCGATCG CCCTTCCCAA CAGTTGCGCA GCCTATACGT ACGGCAGTTT
 4681 AAGGTTACA CCTATAAAAG AGAGAGCCGT TATCGTCTGT TTGTTGGATGT ACAGAGTGAT
 4741 ATTATTGACA CGCCGGGGCG ACGGATGGTG ATCCCCCTGG CCACTGCGACG TCTGCTGTCA
 4801 GATAAAGTCT CCGGTGAACG TTACCCCTGG GTGCAATATCG GGGATGAAAAG CTGGCGCATG
 4861 ATGACCAACCG ATATGGCCAG TGTGCGGTG TCCGTTATCG GGGAGAAGT GGCTGATCTC
 4921 AGCCACCGCG AAAATGACAT CAAAAACGCC ATTAACCTGA TGTTCTGGG AATATAATG
 4981 TCAGGCCCTGA ATGGCGAATG GACGCCCT GTACGCCGC ATTAAGCGCG CGGGTGTTGG
 5041 GGTTACGCGC AGCGTGAACCG CTACACTTGC CAGGCCCTA CGCCCGCTC TTTCGCTTT
 5101 CTTCCCTTCC TTTCCTCGCCA CGTTGCCCG CTTTCCCCGT CAAGCTCTAA ATCGGGGGCT
 5161 CCCTTTAGGG TTCCGATTTA GAGCTTACG GCACCTCGAC CGAAAAAAAC TTGATTGGG
 5221 TGATGGTTCA CGTAGTGGGC CATGCCCTG ATAGACGGTT TTTCGCTCTT TGACGTTGGA
 5281 GTCCACGTTT ITTAATAGTC GACTCTTGT CCAAACACTGA ACAACACTCA ACCCTATCGC
 5341 GGTCTATTCT TTGATTTAT AAGGGATGTT GCCGATTTCG GCCTATTGGT TAAAAAATGA
 5401 GCTGATTAA CAAAAATTTC AACAATTC AGAAGAACTC GTCAAGAAGG CGATAGAAGG
 5461 CGATGCGCTG CGAACATCGGGG GCGCGATAC CGTAAAGCAC GAGGAAGCGG TCAGCCATT
 5521 CGCCGCCAAG CTCCTCAGCA ATATCACGGG TAGCCAACGC TATGTCTCTGA TAGCGGTCCG
 5581 CCACACCCAG CGGGCCACAG TCGATGAATC CAGAAAAGCG GCCATTTC ACCATGATAT
 5641 TCGGCAAGCA GGCATCGCCA TGGGTACCGA CGAGATCTC GCGGTGGGGC ATGCTCGCT
 5701 TGAGGCTGGC GAACAGTTCG GCTGGCGCGA GCCCCCTGATG CTCTTCGTC AGATCATCCT
 5761 GATCCACAAG ACCGGCTTCC ATCCGAGTAC GTGCTCGCTC GATGCGATGT TTGCTTGGT
 5821 CGTCCAAATGG GCAGGTAGCC GGATCAAGCG TATGCAAGCCG CGCATTGCA TCAGCCATGA
 5881 TGGATACCTT CTGGCAGGA GCAAGGTGAG ATGACAGGGAG ATCCCTGCCCC GGCACCTCGC
 5941 CCAATAGCG CGAGTCCCTT CCGCTTCAG TGACAACTGC GAGCACAGCT GCGCAAGGAA
 6001 CGCCCGCTGT GGGCAGCCAC GATAGCGCG CTGCTCGTC TTGCAAGTCA TTGAGGGCAC
 6061 CGGACAGGTC GGTCTTGACA AAAAGAACCG GGCAGCCCTG CGCTGACAGC CGGAACACGG
 6121 CGGCATCAGA GCAGCCGATT GTCTGTTGTG CCCAGTCATA GCGAATAGC CTCTCCACCC
 6181 AAGCGGCCGG AGAACCTGCG TGCAATCCAT TTGTTCAAT CATGCAGAAC GATCCTCATC
 6241 CTGCTCTTG ATCAGATCTT GATCCCCCTGC GCCATCAGAT CCTTGGCGGC GAGAAAGCCA

Figure 9 (cont'd)

6301 TCCAGTTTAC TTTGCAGGGC TTCCCCAACCT TACCAAGAGGG CGCCCCAGCT GGCAATTCCG
 6361 GTTCGCTTGC TGTCCATAAA ACCGCCAGT CTAGCTATCG CCATGTAAGC CCACTGCAAG
 6421 CTACCTGCTT TCTCTTTCGCG CTTGCGTTTT CCCTGTCCA GATAGCCAG TAGCTGACAT
 6481 TCATCCGGGG TCAGCACCGT TTCTGCGGAC TGCGTTTCTA CGTAAAAAGG ATCTAGGTGA
 6541 AGATCCTTTTG TGATAATCTC ATGACCAAAA TCCCTTAACG TGAGTTTTCG TTCCACTGAG
 6601 CGTCAGACCC CGTAGAAAAAG ATCAAAAGGAT CTTCCTGAGA TCCCTTTTTT CTGGCGTAA
 6661 TCTGCTGCTT GCAACAAAAA AAACCAACCGC TACCAAGCGGT GGTTTGTITG CCGGATCAAG
 6721 AGCTACCAAC TCTTTTCCG AAGGTAACCTG GCTTCAGCAG AGCGCAGATA CCAAATACTG
 6781 TCCCTCTAGT GTAGCCGTAG TTAGGCCACC ACTCAAGAA CTCTGTAGCA CCGCCTACAT
 6841 ACCTCGCTCT GCTAATCCG TTACCAAGTGG CTGCTGCCAG TGGCGATAAG TCGTGTCTTA
 6901 CCGGGTTGGA CTCAGACGA TAGTTACCGG ATAAGGCGCA GCGGTGGGC TGAAAGGGGG
 6961 GTTCGTGCAC ACAGCCCAGC TTGGAGCGAA CGACCTACAC CGAACTGAGA TACCTACAGC
 7021 GTGAGCTATG AGAAAGCGCC ACGCTTCCCG AAGGGAGAAA GGGGACAGG TATCCGGTAA
 7081 GCGGCAGGGT CGGAACAGGA GAGGCGACGA GGGAGCTTCC AGGGGAAAC GCCTGGTATC
 7141 TTTATAGTCC TGTGGGGTT CGCCACCTCT GACTTGAGCG TCGATTTTG TGATGCTCGT
 7201 CAGGGGGGGCG GAGCCTATGG AAAAACGCCA GCAACGGGGC CTTTTTACGG TTCCCTGGCT
 7261 TTTGCTGGCC TTTTGCTCAC ATGTTCTTC CTGCGTTATC CCCTGATTCT GTGGATAACC
 7321 GTATTACCGC CTTGAGTGA GCTGATAACCG CTGCGCCAG CCGAACGACC GAGCCAGCG
 7381 AGTCAGTGAG CGAGGAAGCG GAAG

SEQUENCE LISTING

<110> LARGE SCALE BIOLOGY CORPORATION
<120> COMPOSITIONS AND METHODS FOR INHIBITING
GENE EXPRESSION
<130> 008010177PC00
<140> To Be Assigned
<141> 2001-04-04
<150> 09/545,574
<151> 2000-04-07
<160> 14
<170> FastSEQ for Windows Version 3.0
<210> 1
<211> 27
<212> DNA
<213> Cauliflower mosaic virus
<400> 1
tttgaattcg tcaacatggg ggagcac 27
<210> 2
<211> 31
<212> DNA
<213> Cauliflower mosaic virus
<400> 2
tttgtcgacg tcctctccaa atgaaaatgaa c 31
<210> 3
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> zeocin resistance gene
<400> 3
cccggtcgact taattaagcg gccgcgttta caatttcgcc tgatgc 46
<210> 4
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> zeocin resistance gene
<400> 4
ccccctcgagt taattaagcg gccgcctcaa aaaggatctt cacctag 47

```

<210> 5
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> nopaline synthase gene (nos) terminator sequence

<400> 5
tttctcgagc gaatttcccc gatcgttcaa ac 32

<210> 6
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> nopaline synthase (nos) terminator sequence

<400> 6
tttactagtc ccgatctagt aacatagatg ac 32

<210> 7
<211> 29
<212> DNA
<213> maize

<400> 7
tttttaatta aggtccgcct gaattctcg 29

<210> 8
<211> 30
<212> DNA
<213> maize

<400> 8
tttttaatta acggcaaggc tcacagttt 30

<210> 9
<211> 4881
<212> DNA
<213> Viral

<400> 9
agcgcccaat acgcaaaccg cctctccccg cgcggtggcc gattcattaa tgcagctggc 60
acgacaggtt tcccgactgg aaagcggca gtgagcgaa cgcaattaaat gtgagtttagc 120
tcactcatta ggcaccccgag gctttacact ttatgtttcc ggctcgatg ttgtgtggaa 180
tttgtgacgg atacaattt cacacaggaa acagctatga ccatgattac gccaagctat 240
tttaggtgaca ctatagaata ctcaagctat gcatcaagct tggtaccgag ctcggatcca 300
ctagtaacgg cccgcgtgt gctgaaattc atgggcagac ccgtctgtac tttaagagtg 360
ttggcaacca gtaatgaata aaaactcccg ttttattata tttgatgaat gctgaaagct 420
tacattaata tgcgtgcga tggcacgaaa aaacacacgc aaacaataca ggggggtagt 480
cggcggccgg ctaagggtgg tgctcgccgg gcagaacatc gaaaaatcaa gatctatatg 540
aattacactt cctccgttagg aggaagcaca gggggagaat accacttctc cccccggcgcac 600
ataatgtaaa tgacgcagtt tgcctcgaaa tactccagct gcccctggagt catttccttc 660
atccaatctt catccgagtt ggcgaggatt attgttaggt tagacttctt ctgcaccttt 720

```

tttttcttac catacttggg gtttacaatg aaatccctt gacagccaac taactgttc	780
caacaaggac agaatttaaa cggaatatca tctacgatgt tgttagattgc gtctcggt	840
tatgaagacc aatacacatt attttgcacg taattatgaa ccccttaggt tctggccaa	900
gtagatttc cggttcttgc tggggccgacg atgttagaggc tctgtttct tgatcttca	960
tctgtatgtact ggatacagaa tccatccatt ggaggtcaga aattgcattc tcgagggtat	1020
aacaggtagg ttgaaggagc atgtaagctt cgggactaac ctggaagatg ttaggttgg	1080
gccaatcggtt gattgactca ttacaaaatg aatcagggtga ggagggtggg tgaggattgg	1140
tgaactcttc ctgaatctca ggaaaaaagct tatttgcaga gtattcaaaa tactgcaatt	1200
tttgtggacca atcaaagggg agctcttctt ggatcatggg gaggtactct tctttggagg	1260
tagcgtgtga aataatgtct cgcattattt catctttaga aggctttttt tccttacct	1320
ctgaatcaga ttttccttagg aaggggggact tccttaggaat gaaagtaccc ctctcaaaca	1380
cagccagagg ttcccttgaga atgtaatccc tcactctgtt aactgacttg gcactctgaa	1440
tatttgggtg aaacccattt atatcaaaga acctttagtc agatatccctt atcggcttct	1500
ctggctgaag caatgcattt aatgcacaaat ttccatctt atgtgcctct cgggcacata	1560
gaatatattt gggaaatccaa cgaacgcacg gctcccagat catctgacag gcgatttcag	1620
gattttctgg acactttggg taggttagga acgtgttagc gttctgtgt gagaactgac	1680
ggttggatga ggaggaggcc atagccgacg acggagggtt aggctgaggg atggcagact	1740
gggagctcca aactctatag tataccctgt cgcccttcgaa atccggcgct ccattgttct	1800
atagtgggtt taaaatggcc ggaccgggccc ggcccagcag gaaaagaagg cgccactaa	1860
tattaccgcg ccttcttttc ctgcgaggggc ccggtagggg ccgagcgctt tgattaaag	1920
cctggttctg ctttgcggcc gctcgagcat gcatcttagag ggcccaattt gcccataagt	1980
gagtcgtatt acaattcaact ggccctgtt ttacaacgtc gtgactgggaa aacccctggc	2040
gttacccaac ttaatcgct tcgcagcacat ccccccttcg ccagctggcg taatagcgaa	2100
gaggccccca cccgatcgccc ttcccaacag ttgcgcagcc tatacgtacg gcagtttaag	2160
gtttacacct ataaaagaga gagccgttat cgtctgtttt tggatgtaca gagtgatatt	2220
attgacacgcg cgggcgacg gatgggtgatc cccctggccca gtgcacgtct gctgtcagat	2280
aaagtctccc gtgaacttta cccgggtggg catatcgggg atgaaagctg gcgcatgtat	2340
accacccgata tggccagtgt gccggcttcc gttatcgggg aagaagtggc tgatctcagc	2400
cacccgcgaaa atgacatcaa aaacgcattt aacctgtatgt tctggggaaat ataaatgtca	2460
ggcctgaatg gcaatggac gcccctgtt gcccgcatt aagcgcgcgg gtgtgggtt	2520
tacgcgcagc gtgaccgcta cacttgcacg ccgccttagcg cccgccttcc tgcctttctt	2580
cccttcctt ctcgcacgt tcgcgggtt tccccgtcaa gctctaaatc gggggctccc	2640
tttaggggtt cgtttagag ctttacggca cctcgaccgc aaaaaacttg atttgggtga	2700
tggttcacgt agtggggccat cgcctgtata gacggtttt cgccttttga cgttggagtc	2760
cacgttctt aatagtggac tcttgcattt aacttggaca acactcaacc ctatcgccgt	2820
ctattctttt gatttataag ggtatgttgc gatttgcgc tattgtttaa aaaatgagct	2880
gatttaacaa aaatttttaac aaaattcaga agaactcgac aagaaggcga tagaaggcga	2940
tgcgtcgca atcgggagcg gcgataccgt aaagcacgag gaagcgggtca gcccattcgc	3000
cgccaaatctc ttccagcaata tcacgggttgc ccaacgtat gtcctgtatcg cggtccgc	3060
cacccagccg gccacagtc atgaatccag aaaagccggcc attttccacc atgatattcg	3120
gcaaggcaggc atcgccttgc gtcacgcacgac gatcctcgcc gtcgggcattt ctcgccttgc	3180
gccttggcgaa cagttccggc ggcgcgagcc cctgtatgtc ttcgttccaga tcatctgtat	3240
cgacaagacc ggcttccatc cgagttacgt ctcgcctcgat ggcgttgc gttgtgttgc	3300
cgaaatggca ggtagccggta tcaacgtat gcagccgcgc cattgcataca gccatgtatgg	3360
atactttctc ggcaggaggca aggtgagatg acaggagatc ctgcggccgc acttcgc	3420
atagcagcca gtccttcccc gcttcgtatca caacgtcgat cacagctgcg caaggaacgc	3480
ccgtcggttgc cagccacgtt acggcgcttgc cctcgatccatc cagttcattt cggccacccgg	3540
acaggtcggtt ctggacaaaa agaaccgggc gcccctgcgc tgacagccgg aacacggcg	3600
catcagagca gcccattgtc tggatgttgc gtcatacgatcc gaaatgcctc tccaccaag	3660
cggccggaga acctgcgtgc aatccatctt gttcaatcat ggcggaaacgtat cctcatcttgc	3720
tctcttgcgttgc agatcttgc tccctgcgc atcagatctt tggccggcggaaagccatcc	3780
agtttactttt gcaaggcgttcc ccaacccatc cagaggccgc cccagctggc aattccgg	3840
cgcttgcgttgc ccataaaaacc gcccagtcata gctatcgccca tgtaagccca ctgcacatca	3900
cctgtttctt ctttgcgttgc gcttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc	3960
tccgggggtca gcaccgttcc tgcggactgg ctttgcgttgc gaaaaggatc taggttggaa	4020
tcttttttgcgttgc taatctcatc accaaaatcc ctttgcgttgc gtttgcgttgc cactgcgttgc	4080
cagacccgttgc agaaaaggatc aaaggatctt ctttgcgttgc ttttgcgttgc cgcgtatctt	4140

gctgcttgca aacaaaaaaaaa ccaccgctac cagcgggtgg tttttgccg gatcaagagc	4200
taccaactct tttccgaag gtaactggct tcagcagagc gcagatacca aatactgtcc	4260
ttcttagtcta gcccgttta ggccaccact tcaagaactc tgtagcaccc cctacatacc	4320
tcgcctctgt aatcctgtta cgagtggctg ctgcgcgtgg cgataagtctg tgtcttaccg	4380
ggttggactc aagacgatag ttaccggata aggccgcgcg gtcgggctga acgggggtt	4440
cgtgcacaca gcccagctt gaggcaacga cctacaccga actgagatac ctacagcgtg	4500
agctatgaga aaggccacg ctccccgaag ggagaaaaggc ggacaggtat cccgtaaagcg	4560
gcagggtcgg aacaggagag cgacgcggg agcttccagg gggaaacgcg tggtatctt	4620
atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg atttttgtga tgctcgtag	4680
ggggggcggag cctatggaaa aacgcccagca acgcggcett ttacgggtc ctgggcttt	4740
gctggcctt tgctcacatg ttcttcctg cgttatcccc tgattctgtg gataaccgta	4800
ttaccgcctt tgagtgagct gataccgctc gccgcagccg aacgaccgag cgacgcgagt	4860
cagtgagcga ggaagcggaa g	4881

<210> 10

<211> 3413

<212> DNA

<213> viral

<400> 10

agcgcacaaat acgcaaaccg cctctcccg cgccgtggcc gattcattaa tgcagctggc	60
acgacagggtt tcccgactgg aaagcggca gtgagcgc当地 cgcaattaat gtgaggtagc	120
tcactcatta ggcaccccgag gctttacact ttatgtttcc ggctcgatg ttgtgtggaa	180
ttgtgagcgg ataaacaattt cacacagaa acagctatga ccatgattac gccaagctat	240
tttaggtgaca ctatagaata ctcaagctat gcatcaagct tggggcccggt agggaccgag	300
cgctttgatt taaagcctgg ttctgtttt tatgattttt ctaaagcagc ccaatctaaa	360
gaaaccggtc cccggcacta taaaattgcct aacaagtgcg attcattcat ggatcctta	420
aactcgcagtc tagagggccc gaattctgca gatatccatc acactggcgg cccgtcgagc	480
atgcatctag agggccaaat tcgcccata gtgagtcgta ttacaattca ctggccgtcg	540
ttttacaacg tcgtgactgg gaaaaccctg gcggttaccca acttaatcgc cttgcagcac	600
atcccccttt cgccagctgg cgtaatacgca aagaggcccg cccggatcgc cttcccaac	660
agttgcgcag cctatacgta cggcagtttta aggttacac cttaaaaaaa gagagccgtt	720
atcgtctgtt tggatgtta cagagtata ttattgacac gcccggcga cggatggta	780
tccccctggc cagtcacgt ctgctgtcg ataaaggctc cctgtacccg taccgggtt	840
tgcataatcggtt ggtgaaagc tggcgtatca tgaccaccga tatggccagt gtccggct	900
ccgttatcggtt ggaagaagtg gtcgtatca gcccggcga aatgacatc aaaaacgc当地	960
ttaacctgtat gttctgggaa atataaaatgt caggcctgaa tggcgaatgg acgcgcctg	1020
tagcggcgc当地 ttaagcgc当地 ggggtgtggg gttacgcgc当地 gcggtaccc tacacttgc当地	1080
agcgccttag cgcgcgtcc ttgcgttcc ttcccttcc ttctcgccac gttccggc	1140
tttccccgtc aagctctaaa tggggggctc cctttagggg tccgatttag agcttacgg	1200
cacctcgacc gcaaaaaact tgatttggg gatgttccac gtagtggggcc atgcgc当地	1260
tagacggttt ttcgc当地 gacgttggag tccacgttct ttaatagtgg actcttgc当地	1320
caaaactggaa caacactcaa ccctatcgcc gtctatttctt ttgattata agggatgtt	1380
ccgatttggcc cctattgggtt aaaaaatggg ctgatttaac aaaaattttt aaaaaattca	1440
gaagaactcg tcaagaaggc gatagaaggc gatgcgc当地 gaatggggag cggcgatacc	1500
gtaaaggcagc aggaaggcgg gaccccattt gcccggccaaatc tcttcgc当地 tatcacggg	1560
agccaaacgc当地 atgcctgtat agcggccgc当地 cacacccggc cggccacagc cgtatgc当地	1620
agaaaaggcgcc ccatatttcca ccatgatatt cggcaaggc gatcgccat ggggtcaccg	1680
gagatcctcg cggcggcc当地 tgctcgccctt gagcctggcg aacagttccg ctggccgc当地	1740
cccctgtatcg tcttcgc当地 gatcatcctg atcgacaaga cccgcttcca tccgagatc	1800
tgctcgctcg atgcgtatgtt tgcgttggg gtcgaatggg caggtacccg gatcaaggct	1860
atgcaggccgc cgcattcgat cagccatgat ggatacttcc tccggcaggag caagggtgaga	1920
tgacaggaga tcctgcccccg gcaacttcgc当地 caatagcgc当地 cagtccttc cccgttccat	1980
gacaacgtcg agcacagctg cgcaaggaaac gcccgtcg gcccggccaaatc atagccgc当地	2040
tgcctcgctcg tgcgtatcat tcaggggcacc ggacaggctg gtcttgacaa aaagaaccgg	2100
gcccggccatcg gctgacagcc ggaacacggc ggc当地 catcagag cagccgatgg tctgttgc当地	2160
ccagtcatag ccgaatagcc tctccaccca agggccggaa gaacctgc当地 gcaatccatc	2220

tgtttcaatc	atgcgaaacg	atcctcatcc	tgtctcttga	ttagatcttg	atccccctcg	2280
ccatcagatc	cttggcgccg	agaaaggccat	ccagtttact	ttgcaggggct	tcccaacatt	2340
accagagggc	gccccagctg	gcaattccgg	ttcgcttgct	gtccataaaa	cgccccagtc	2400
tagctatcgc	catgtaaagcc	cactgcaagc	tacctgcttt	ctctttgcgc	ttgegttttc	2460
ccttgtccag	atagcccagt	agctgacatt	catccggggt	cagcacccgtt	tctgcggact	2520
ggcttttctac	gtgaaaagga	tctaggtgaa	gatcctttt	gataatctca	tgacccaaaat	2580
cccttaaacgt	gagtttgcgt	tccactgagc	gtcagacccc	gtagaaaaga	tcaaaggatc	2640
ttcttgagat	ccttttttc	tgcgctaat	ctgctgcttg	caaacaaaaa	aaccacccgt	2700
accagcggtg	gtttgttgc	cggatcaaga	gctaccaact	ctttttccga	aggttaactgg	2760
cttcagcaga	gcgcagatac	caaatactgt	ccttctagtg	tagccgtagt	taggccacca	2820
cttcaagaac	tctgttagcac	cgcctacata	cctcgctctg	ctaattctgt	taccagtggc	2880
tgctgccagt	ggcgataagt	cgtgtttac	cgggttggac	tcaagacgt	agttaccgg	2940
taaggcgccag	cggcgccgct	gaacgggggg	ttcgtgcaca	cagccccagct	tggagcgaac	3000
gacctacacc	gaactgagat	acctacagcg	tgagctatga	gaaaggcgcca	cgctttcccg	3060
agggagaaaag	gccccacaggt	atccggtaag	cggcagggtc	ggaacaggag	agcgcacgag	3120
ggagcttcca	gggggaaaacg	cctggtatct	ttatagtcct	gtcggttttc	gccacccctg	3180
acttgagcg	cgatttttgt	gatgctcg	agggggggcg	agcctatgga	aaaacccag	3240
caaccgccgc	tttttacgg	tcctgggctt	ttgctggcct	ttgctcaca	tgttcttcc	3300
tgcgttatcc	cctgattctg	tggataaccg	tattaccggc	tttgagttag	ctgataccgc	3360
tcqccqcacg	cgaacgaccg	agcgcagcga	gtcagtggc	gaggaagccg	aag	3413

<210> 11
<211> 4961
<212> DNA
<213> Viral

<400> 11	60
acgcggccaaat acgcaaaccg cctctccccg cgcgttggcc gattcattaa tgcagctggc	120
acgacagggtt tcccgactgg aaagcgggca gtgagcgc当地 cgcaattaat gtgaggtagc	180
tcactcatta ggcacccccag gctttacact ttatgttcc ggctcgatg ttgtgtggaa	240
tttgtgagcgg ataacaattt cacacaggaa acagctatga ccatgattac gccaagctat	300
tttaggtgaca ctatagaata ctcaagctat gcatcaagct tggtaccgag ctggatcca	360
ctagtaacgg ccggcagtgt gcttggaaattc atggcagac ccgtctgtac tttaagagtg	420
ttggcaaccca gtaatgaata aaaactccccg ttttattata ttgtatgaat gctgaaagct	480
tacattaata tgcgtgcga tggcacgaaa aaacacacgc aaacaataca ggggggtagt	540
cggcggggcgg ctaagggtgg tgctcggcgg gcagaacatc gaaaaaatcaa gatctatag	600
aattacactt cctccgtagg aggaagcaca gggggagaat accacttctc ccccggcgcac	660
ataatgtaaa tgacgcagtt tgccctcgaaa tactccagct gccctggagt cattttcttc	720
atccaatctt catcccgagtt ggcgaggatt attgttaggct tagactttt ctgcacett	780
tttcttcttac catacttggg gtttacaatg aaatccctt gacagccaaac taactttc	840
caacaaggac agaattttaaa cggaatatca tctacgatgt tgtagattgc gtcttcgttg	900
tatgaagacc aatcaacatt attttgcacag taatttatgaa ccccttaggt tctggcccaa	960
gttagatttc cggttcttgc tggggcgcac atgttaggagc tgctgttct tgatcttca	1020
tctgtatgact ggatcacagaa tccatccatt ggaggtcaga aattgcattc tcgagggtat	1080
aacaggttagg ttgaaggcgc atgtaaagctt cgggactaac ctggaaagatg ttaggctgga	1140
gccaatcggtt gattgactca ttacaaaagta aatcaggtga ggaggggtgga tgaggattgg	1200
tgaactttc ctgaatctc ggaaaaaagct tatttgcaga gtattcaaaa tactgcaatt	1260
tttgtggacca atcaaagggg agctctttt ggatcatgga gaggtactt tctttggagg	1320
tagcgtgtga aataatgtct cgcattattt catctttaga aggcttttt tccttacct	1380
ctgaatcaga ttttccttagg aaaaaaaaaact tccttaggaat gaaagtacct ctctcaaaca	1440
cagccagagg ttcttgaga atgtatccc tcactctgtt aactgacttg gcactctgaa	1500
tatTTGGGTG aaacccattt atatcaaaaac accttgagtc agatatcctt atcggcttct	1560
ctggctgtga caatgcattt aaatgc当地 accttgatgtt atgtgc当地 cgggcacata	1620
gaatatattt gggaaatccaa cgaacgc当地 gctcccagat catctgacag gcgatttc当地	1680
gatTTCTGG acactttggg taggttagga acgtgttagc gttctgtgt gagaactgac	1740
ggTTGGATGA ggaggaggcc atagccgacg acggagggtt aggctgaggg atggcagact	1800
gggagctcca aactctatag tataccccgtg cgccttc当地 atccggccgtt ccattgttct	1800

atagtgggttgc	taaatggggcc	ggaccggggcc	ggccccagcag	aaaaagaagg	cgcgcactaa	1860
tattaccgcg	ccttttttc	ctgcgagggc	ccggtaggga	ccgagcgctt	tgatttaaag	1920
cctggttctg	ctttgtatga	tttatctaaa	gcagcccaat	ctaaagaaaac	cggtcccggg	1980
cactataaat	tgcctaacaa	gtgcgattca	ttcatggatc	ctttaaactc	gagtctagag	2040
ggcccaattc	gccctatagt	gagtcgtatt	acaattcaact	ggccgtcggt	ttacaacgtc	2100
gtgactggaa	aaaccttggc	gttacccaac	ttaatcgctt	tgcagcacat	cccccttctg	2160
ccagctgccc	taatagcgaa	gaggcccgc	ccgatcgccc	ttcccaacag	ttgcgcagcc	2220
tatacgtacg	gcagtttaag	gtttacacct	ataaaaagaga	gagccgttat	cgtctgtttg	2280
tggatgtaca	gagtatatt	attgacacgc	cgggggcgacg	gatgggtgatc	ccccctggcca	2340
gtgcacgtct	gctgtcagat	aaagtctccc	gtgaacttta	cccggtgggt	catatcgggg	2400
atgaaaagctg	gogcatgtat	accaccgata	tggccagtgt	gcccgtctcc	gttatcgggg	2460
aagaagtggc	tgatctcage	caccgcgaaa	atgacatcaa	aaacgcccatt	aacctgatgt	2520
tctgggaaat	ataaaatgtca	ggcctgaatg	gcgaatggac	gcccctgtta	gccccgcatt	2580
aagcgcgcgg	gtgtgggtgt	tacgcgcagc	gtgaccgcta	cacttgcac	cgccttagcg	2640
cccgctcctt	tcgctttttt	cccttccttt	ctcgccacgt	tgcgggctt	ccccgtca	2700
gctctaaatc	gggggctccc	tttagggttc	cgatttagag	cttacggca	cctcogaccgc	2760
aaaaaaacttgc	atttgggtga	tggttcacgt	agtggccat	cgccctgata	gacggtttt	2820
cgcctttaga	cggtggagtc	cacgttctt	aatagtggac	tcttgttcca	aactggaaaca	2880
acactcaacc	ctatcgccgt	ctattttttt	gatttataag	gatgttgtcc	gatttcggcc	2940
tattggttaa	aaaatgagct	gattnaacaa	aaatttttaac	aaaattcaga	agaactcgtc	3000
aagaaggcga	tagaaggcga	tgcgctgcga	atcgggagcg	gcgataccgt	aaagcacag	3060
gaagcggtca	gcccatcgc	cgccttgc	ttcagcaata	tcacgggtag	ccaaacgctat	3120
gtccctgatag	cggtccgcca	cacccagccg	gccacagtcg	atgaatccag	aaaagcggcc	3180
attttccacc	atgatattcg	gcaaggcagc	atcggcatgg	gtcacgcacg	gatcctcgcc	3240
gtcgggcatg	ctcgcttgc	gcctggcgaa	cagttcggt	ggcgcgagcc	cctgatgtc	3300
ttcgtccaga	tcatcctgtat	cgacaagacc	ggcttccatc	cgagtaacgt	ctcgctcgat	3360
gcgatgttcc	gcttgggtgt	cgaatggca	ggtagccgga	tcaagcgtat	gcagccgccc	3420
cattgcatca	gccatgatgg	atactttctc	ggcaggagca	aggtgagatg	acaggagatc	3480
ctgccccggc	acttcgccc	atagcagcca	gtcccttccc	gcttcagtga	caacgtcgag	3540
cacagctgcg	caaggaacgc	ccgtcgtggc	cagccacgat	agccgcgtcg	cctcgcttgc	3600
cagttcatcc	agggcacccgg	acaggtcgt	cttgacaaaa	agaacccgggc	ccccctgcgc	3660
tgacagccgg	aacacggcgg	catcagagca	gcccattgtc	tgttgtgccc	agtcatagcc	3720
gaatagcctc	tccacccaa	cggccggaga	acctgcgtc	ateccatctt	gttcaatcat	3780
gcgaaacgat	cctcatectg	tctcttgatc	agatcttgat	ccccctgcgc	atcagatct	3840
ttggccggag	aaagccatcc	agtttactt	gcagggcttc	ccaaacccat	cagaggcgc	3900
cccgacttgc	aattccgggt	cgcttgcgt	ccataaaaacc	gcccagtcta	gtatcgcca	3960
tgtaagccca	ctgcaagcta	cctgttttc	cttgcgtt	gctttttccc	ttgtccagat	4020
agcccagtag	ctgacattca	tccggggtca	gcaccgtttc	tgccgacttg	cttctacgt	4080
aaaaaggatc	tagtgaaga	tccttttgc	taatctcatg	acccaaatcc	cttaacgtga	4140
gttttcgttc	cactgagcgt	cagaccccgat	agaaaaagatc	aaaggatctt	tttgagatcc	4200
ttttttctgc	cgcgtatattc	gctgcttgc	aaaaaaaaaaa	ccaccgcgtac	cagcgtgtt	4260
ttgtttggcg	gatcaagagc	taccaactt	ttttccgaag	gtaactggct	tcagcagagc	4320
gcagatacc	aataactgtcc	ttcttagtgc	gccgtatgtt	ggccaccact	tcaagaactc	4380
tgttagcaccc	cctacatacc	tcgctctgt	aatctgtt	ccagtggtct	ctgcccagtgg	4440
cgataagtcg	tgtcttaccg	ggttggactc	aagacgatag	ttacccggata	aggcgcagcg	4500
gtcgggctga	acgggggttgc	cgtgcacaca	gcccgatctt	gagcgaacga	cctacaccga	4560
actgagatac	ctacagcgt	agctatgaga	aagcgccacg	tttcccgaag	ggagaaaaggc	4620
ggacaggat	ccgtaagcg	gcagggtcgg	aacaggagag	cgcacgaggg	agcttccagg	4680
gggaaacgcc	tggtatctt	atgtcctgt	cggtttcgc	cacctctgac	ttgagcgtcg	4740
atttttgtga	tgctcgtcag	ggggggcgag	cctatggaaa	aacgccagca	acgcggcctt	4800
tttacggttc	ctgggtttt	gctggcctt	tgctcacatg	ttctttctgt	cgttatcccc	4860
tgattctgtg	gataaccgt	ttaccgcctt	tgagttagct	gataccgcctc	gccgcagccg	4920
aacqaccqag	cgcaqcgagt	cagtgagcga	ggaagcggaa	g		4961

<210> 12

<211> 6309

<212> DNA

<213> Viral

<400> 12

agcggcccaat acgcaaaccg cctctccccg cgcggtggcc gattcattaa tgcagctggc
acgacaggtt tcccactgg aaagcgggcgca gtgagcgcaa cgcaattaat gtgagtttagc
tcactcatta ggcaccccgag gctttacact ttatgctcc ggctcgatg ttgtgtggaa
ttgtgagcgg ataacaattt cacacaggaa acagctatga ccatgattac gccaagctat
tttagtgaca ctataagaata ctcagctat gcatcaagct tggtaccgag ctcggatcca
ctagtcccgta tctagtaaca tagatgacac cgcgccgcat aatttacatc agtttgcg
ctatattttg ttttctatcg cgtattaaat gtataattgc gggactctaa tcataaaaaac
ccatctcata aataacgtca tgcattacat gttattttt acatgcttaa cgtaattcaa
cagaaattat atgataatca tcgacagacc ggcaacacagga ttcaatctta agaaacttta
ttgccaaatg tttgaacgtat cggggaaatt cgctcgatg aattaagcgg ccgcctcaaa
aaggatctt acctagatcc tttttaattt aaaatgaagt tttagcacgt gtcagtcgt
ctccctcgcc acgaagtgcg cgcagttgcc ggccgggtcg cgcaaggcga actccccccc
ccacggctgc tcgcgcgtct cggtcatggc cggccggag gcgtcccgga agttcggtga
cagcaccccg gaccactcg cgtacagctc gtccaggccg cgcacccaca cccaggccag
ggtgttgc ggcaccacct ggtcttggac cgcgctgtat aacagggtca cgtcgtcccg
gaccacacccg gcgaaagtgcg cttccacgaa gtccccggag aacccgagcc ggtcggtcca
gaactcgacc gtcggcgcg cgtcgccgcg ggtgagcacc ggaacggcact tggtaactt
ggccatgttgc gccccttcata cgtgttattt ttgaagcatt tatcagggtt attgtctcat
gagcggatac atatttgaat gtattttaaa aaataaaacaa ataggggttc cgcgacatt
tccccgaaaa gtgcacccctg tatgcgggtg gaaataccgc acagatgcgt aaggagaaaa
taccgcacatca ggcgaaattt gaaacgcgcg cgcttaattt agtgcacgcgc ctctccaaat
gaaatgaact tccttatata gaggaaagggt cttgcgaagg atagtgggtat tgcgttcat
cccttacgtc agtggagata tcacatcaat ccacttgc ttgaagacgtg gttggAACGT
cttcttttc acgttagctc ctcgtgggtg ggggtccatc ttgggacca ctgtcgcc
aggcatctt aacgatagcc ttcttattt gcaatgttgg cattttgttgc tgccacccctc
cttttctact gtcctttgtt gtaagtgcaca gatactggg caatggaaatc cgaggagggt
tcccgtatatt accctttgtt gaaaagtctc aatagccctt ttgtcttctg agacttata
tttgcatttc ttggagtaga cgagagatg tgcgttccca ccatgttgcgaa gattcatgg
gcagaccctgt ctgtacttta agagtttgg caaccatgaa tgaataaaaaa ctcccgaaaa
attatatttgc atgaatgtt aaggtttaca ttaatatgtc gtgcgttggc acgaaaaaac
acacgcaaac aatacagggg ggtatcgcc gggcggctaa ggggtgggtgc cggcggcc
aacatcgaaa aatacagatc tatatgaat acatttccctc cgttaggaggaa agcacagggg
gagaataccat ctttcccccc ggcgcacataa tgtaatgac gcaatgttggc tgcaccaact
ccagctgccc tggagtctt accttttccatcc aatcttcatttcc ctagttggcg aggattattt
taggtttaga ctttctctgc ccctctgaca gccaactaac tggttccac aaggacagaa tttaaacgg
cgatgttgc gattgcgtct tatgaacccctt taggttctgc agaggctctg ctttcatctg
gtaacccatgg ggttggatgat gtcagaaattt gcatcctcgactt ggtataaca
actaacctgg aagatgttag aggtgaggag ggttggatgat gtcagat tcaaaaatact
catggagagg tactttctt ttttagaaggc tttttttctt aggtgaggag
aggaatgaaa gtacctctt tctgttaact gacttggcac tgagtcagat atccttacat
tctgttact gacttggcac tgacttgcatac tttttttctt ttttagaaggc
ttttagtgcatac tttttttctt ttttagtgcatac tttttttctt ttttagaaggc
ccagatcatac tgacaggcga gttagcttcc ctgtgtgaga aggttggatgg
ttcggaaatcc ggcgtccat cagactggga gtcacaaact ttttagtgcatac
cagcaggaaa agaaggcgcg cactaatattt accggccctt tttttctgc gagggccgg
cactaatattt accggccctt tttttctgc gagggccgg

ggtagggacc gagcgcttg atttaaagcc tggttctgct ttgtatgatt tatctaaagc	3300
agcccaatct aaagaaaccc gtcggggca ctataaattt cctaacaagt gcgattcatt	3360
catggatct ttaaactcga gtctagaggg cccaattcgc cctatagtga gtcgtattac	3420
aattcaactgg cegtgtttt acaacgttgt gactggaaa accctggcg tacccaactt	3480
aatcgccctg cagcacatcc cccttcgcc agctggcgta atagcagaaga ggcccgcacc	3540
gatcgccctt cccaacagtt ggcgagccat tacgtacggc agttaaggt ttacacctat	3600
aaaagagaga gccgttatcg tctgtttgtg gatgtacaga gtgatattat tgacacgccc	3660
gggcgacgga tggtgatccc cctggccagt gcaacgtctgc tgcagatata agtctccgt	3720
gaacttacc cgggtgtca tattcggggat gaaagctggc gcatgatgac caccgatatg	3780
gccagtgtgc cggtctccgt tattcggggaa gaagtggctg atctcagcca ccgcgaaaat	3840
gacatcaaaa acgcattaa cctgatgtt tggggaatat aaatgtcagg cctgaatggc	3900
aatggacgc gcctgtacg ggcgcattaa ggcgcgggt gtgggtgtta cgcgacgcgt	3960
gaccgcatac cttggcagcg ccctagegcc cgctccccc ttttttttcc ttcccttct	4020
cggcacgttc gcccgttcc cccgtcaagc tctaaatcgg gggctccctt taggggtccg	4080
attnagact ttacggcacc tcgaccgcaa aaaacttgat ttgggtgatg gttcacgtag	4140
tggccatcg ccctgataga cggtttttcg cccttgcacg ttggagtcoa cgttctttaa	4200
tagtgactc ttgttccaaa ctggaacaaac actcaaccct atcgcgttot attctttga	4260
tttataaggg atgttgcga tttcggccta ttggtaaaaa aatgagctga tttaaacaaa	4320
attnaacaa aattcagaag aactcgtaa gaaggcgata gaaggcgatg cgctcgaaat	4380
cgggagccgc gataccgtaa agcacgagga agcgtcagc ccattcgccg ccaagcttt	4440
cagcaatatac acgggtagcc aacgctatgt cctgatagcg gtccggcaca cccagccgc	4500
cacagtcgat gaatccagaa aagcggccat tttcaccat gatattcggc aagcaggcat	4560
cgcattgggt cacgacgaga tcctcgccgt cgggcatgct cgccttgagc ctggcgaaca	4620
gttcggctgg cgcgagcccc tgatgtctt cgtccagatc atcctgatcg acaagaccgg	4680
cttccatccg agtacgtct cgtcgatgc gatgttgcg ttgggtgtcg aatggcagg	4740
tagccggatc aagcgatgac agccgccc ttcgatcagc catgatggat actttctcg	4800
caggagaacat gtgagatgac aggagatctt gccccggac ttgcggcaat agcaggcagt	4860
ccctcccgcc ttcaagtgaca acgtcgagca cagtcgcga aggaacgccc gtcgtggcca	4920
gccacgatag ccgcgtgc tcgtcttgc gttcattcag ggcacccggac aggtcggtct	4980
tgacaaaaag aaccgggcgc ccotcgctg acagccggaa cacggcgccgca tcagagcagc	5040
cgattgtctg ttgtgcccag tcatagccga atagcccttc cacccaagcg gccggagaac	5100
ctgcgtgcaa tccatcttgc tcaatcatgc gaaacgatcc tcatctgtc ttttgc	5160
atcttgcattt cctgcggcat cagatcctt gccccggagaa agccatccag ttactttgc	5220
agggcttccc aaccttacca gagggcgccc cagctggcaa ttccgggtcg cttgcgttcc	5280
ataaaaaccgc ccagtctagc tatcgccatg taagccact gcaagctacc tgctttctct	5340
ttgcgttgc gtttccctt gtccagatag cccagtagct gacattcattc cggggtcagc	5400
accgtttctg cggactggct ttctacgtga aaaggatcta ggtgaagatc cttttgata	5460
atctcatgac caaaatccct taacgtgagt tttcggttca ctgagcgtca gacccgttag	5520
aaaagatcaa aggatctt tgagatctt ttttctgcg cgtaatctgc tgcttgc	5580
caaaaaaaaaacc accgttacca ggggtggtt gtttccggaa tcaagagcta ccaactctt	5640
tccgaaggt aactggcttc agcagagcgc agataccaaa tactgtcattt ctatgttagc	5700
cgtagttagg ccaccacttc aagaactctg tagcaccggc tacataacctc gctctctaa	5760
tcctgttacc agtggctgtc gccagtgccg ataagtcgtg ttttccggg ttggactcaa	5820
gacgatagtt accggataag ggcgaggggt cgggtgtac ggggggttcg tgcacacagc	5880
ccagcttggc gcaacgacc tacaccgtac acagcgttag ctatgagaaa	5940
gcccacgct tccgaaaggc agaaaggccg acaggtatcc ggtaaagccgc agggtcgaa	6000
caggagagcg caccgggggg cttccagggg gaaacgcctg gtatctttat agtccgtcg	6060
gttttcgcca cctctgactt gagcgtcgat ttttgcgtac ctgcgtcagg gggcgagcc	6120
tatggaaaaa cgccagcaac gccccttt tacgttccctt gggctttgc tggcccttttgc	6180
ctcacatgtt cttccctgc ttatccctg attctgtgga taaccgtatt accgccttgc	6240
agtgagctga taccgtcgcc cgacggcggaa cgaccgagcg cagcgtacta gtgagcgagg	6300
aagcggaaag	6309

<210> 13
<211> 8043

<212> DNA
 <213> Viral

<400> 13

agcgcccaat acgcaaaccg cctctccccg cgcggtggcc gattcattaa tgcagctggc	60
acgacagggt tcccactgg aaagcgggca gtgagcgcaa cgcaattaat gtgagtttagc	120
tcactcatta ggcaccccaag gtttacact ttatgctcc ggctcgatg ttgtgtggaa	180
ttgtgagcg ataacaattt cacacaggaa acagctatga ccatgattac gccaagctat	240
ttaggtgaca ctatagaata ctcaagctat gcatcaagct tggtaaccgag ctcggatcca	300
ctagtaacgg cgcgcagtgt gctggattc atggcagac ccgtctgtac tttaaagatg	360
ttggcaacca gtaatgaata aaaactcccg ttttattata ttgtatgaat gctgaaaagct	420
tacattaata tgcgtgcga tggcacgaaa aaacacacgc aaacaataca ggggggttagt	480
cggcggcgg ctaagggtgg tgctcgccg gcagaaacatc gaaaaatcaa gatctatatg	540
aattacactt cctccgtagg aggaagcaca gggggagaat accacttctc ccccgccgac	600
ataatgtaaa tgacgcagtt tgccctcgaaa tactccagct gccctggagt catttccttc	660
atccaatctt catccgagtt ggcgaggatt attgtaggct tagacttctt ctgcaccttt	720
ttcttcttac catacttggg gtttacaatg aaatccctct gacagccaaac taacttttc	780
caacaaggac agaattttaa cggaatatca tctacgatgt ttagatattgc gtcttcgttg	840
tatgaagacc aatcaacatt attttgcacg taattatgaa ccccttaggc tctggcccaa	900
gtagatttc cggttcttgt tggggcgcacg atgttagaggc tctgtttct tgatcttca	960
tctgtatgact ggatacagaa tccatccatt ggaggtcaga aattgcattc tcgagggtat	1020
aacaggtagg ttgaaggagc atgtaaagctt cgggactaaac ctggaaagatg ttaggctgga	1080
gccaatcggtt gattgactca ttacaaagta aatcaggtga ggagggttgg tgaggattgg	1140
tgaactttc ctgaatctca gggaaaagct tatttgcaga gtattcaaaa tactgcaatt	1200
ttgtggacca atcaaagggg agcttcttct ggatcatggg gaggtactct tctttggagg	1260
tagcgtgtga aataatgtct cgcattattt catctttaga aggctttttt tcttttacct	1320
ctgaatcaga ttttcttagg aagggggact tccttaggaat gaaagtacct ctctcaaaaca	1380
cagccagagg ttccttgaga atgtaaatccc tcactctgtt aactgacttg gcactctgaa	1440
tatttgggtg aaaccctattt atatcaaaga accttggatc agatatcctt atcggcttct	1500
ctggctgaag caatgcattgt aaatgcacac ttccatcttt atgtgcctct cgggcacata	1560
gaatatattt gggaatccaa cgaacgcacga gctcccgat catctgacag gcgatttcag	1620
gattttctgg acactttggaa taggttaga acgtgttagc ttctgtgtg gagaactgac	1680
ggttggatga ggaggaggcc atagccgcacg acggagggttgg aggctgggg atggcagact	1740
gggagctcca aactctatag tatacccgtg cgcctcgaa atccggcgct ccattgtctt	1800
atagtgggtt taaatgggcc ggaccggggc ggcccacgc gaaaagaagg cgcgcactaa	1860
tattaccgcg ccttcttttc ctgcgagggc cggtagggc cggagcgtct tgatttaaag	1920
cctgggtctg ctggatgtaa ttatctaa gcagcccaat ctaaagaaac cggccccggg	1980
cactataat tgcctaacaat gtgcgattca ttcatggat ctttaaactc ggtctagtc	2040
ccgatctagt aacatagatg acaccgcgc cgataattt tccttagtttgc cgegctat	2100
tttgtttct atgcgttataa aatgtataa ttgcgggact ctaatcataa aaaccatct	2160
cataaataaac gtcatgcatt acatgttaat tattacatgc ttaacgtaat tcaacagaaa	2220
tttatatgata attcatgcaca gaccggcaac aggattcaat ctaaagaaac ttatttgcac	2280
aatgtttgaa cgatcgggga aattcgctcg agttaattaa gcggccgcct caaaaaggat	2340
cttacacccat tagtccatccat atccctttaa attaaaaat aagtttttagc acgtgtcagt	2400
ggccacgaag tgcacgcagt tgccggccgg gtcgcgcagg gcgaaactccc gccccccacgg	2460
ctgcgtccgg attcgcgtca tggccggccc ggaggcggtcc cggaaagttcg tggacacgc	2520
ctccgaccac tggcgatca gctcgccat gccgcgcacc cacacccagg ccagggtgtt	2580
gtccggcacc acctggctt ggaccgcgt gatgaacagg gtcacgtcg cccggaccac	2640
accggcgaag tcgtccatcca cgaagtcccg ggagaaccccg agccggtcgg tccagaactc	2700
gaccgcgtcc ggcacgtcgc ggcgcgttag caccggaaacg gcaactggatca acttggccat	2760
ggtggccctc ctacacgtgtt attattgtaaat cattttatcg gttatttgc tcatgagcgg	2820
atacatattt gaatgtatattt aaaaaaaaaa acaaataatggg ttccgcgcac cattttcccg	2880
aaaagtggca cctgtatgcg gtgtgaaataa cccgcacagat gctgttggaaa aaaaataccgc	2940
atcaggcgaa attgtaaacg cggccgccta attaagtgcg cgtctctcc aatgaaatg	3000
aacttcctta tataaggaa ggttcttgcg aaggatagtg ggattgtgcg tcatccctta	3060
cgtcgttggaa gatatcacat caatccactt gtttgcgaa cgtgggttggg acgtcttctt	3120
tttccacacgtat gtcctcgat ggtgggggttc catctttggg accactgtcg gcagaggcat	3180

cttgaacat	agcccccct	tatcgcaatg	atggcatttgc	taggtgccac	cttccttttc	3240
tactgtcctt	tttgatgaagt	gacagatagc	tgggcaatgg	aatccgagga	ggtttcccgaa	3300
tattaccctt	tgttggaaaag	tctcaatagc	ccttgggtct	tctgagactg	tatctttgat	3360
attcttggag	tagacgagag	agtgtcgtagc	tccaccatgt	tgacgaattc	atgggcagac	3420
ccgtctgtac	ttaaagagtg	ttggcaacc	gtaatgaata	aaaactcccg	ttttattata	3480
tttgatgaat	gctgaaaagct	tacattaata	tgtcgtgcga	tggcacgaaa	aaacacacgc	3540
aaacaataca	ggggggtagt	ccggccccgg	ctaagggtgg	tgtcggccgg	gcagaacatc	3600
aaaaaatcaa	gatctatatg	attacactt	cctccgttag	agaaggcaca	gggggagaat	3660
accacttc	ccccggcgac	ataatgtaaa	tgacgcgtt	tgcctcgaaa	tactccagct	3720
gcctggagt	catttccttc	atccaatctt	catccgagtt	ggcgaggatt	attgttaggct	3780
tagacttctt	ctgcacccctt	ttcttcttac	catacttggg	gttacaatg	aaatccctct	3840
gacagccaa	taactgtttc	caacaaggac	agaattaaa	cggaaatatca	tctacgatgt	3900
tgtagattgc	gtctcggtt	tatgaagacc	aatcaacatt	atttgccag	taattatgaa	3960
cccccttaggt	tctggccaa	gtagattttc	cgggttctgt	tggggccgacg	atgttagaggc	4020
tctgctttct	tgatctttca	tctgatgact	ggatacagaa	tccatccatt	ggaggtcaga	4080
aattgcattc	tcgagggat	aacaggtagg	ttgaaggagc	atgtaagctt	cgggactaac	4140
ctggaaagat	ttaggtcgga	gcataatcggtt	gattgactca	ttacaaagta	aatcagggtga	4200
ggaggggtgga	tgaggattgg	tgaactcttc	ctgaatctca	ggaaaaagct	tatttgacgaa	4260
gtattcaaaa	tactgcaatt	ttgtggacca	atcaaagggg	agctttttct	ggatcatggaa	4320
gaggactct	tcttggagg	tagcgtgtga	aataatgtct	cgcattattt	catctttaga	4380
aggctttttt	tcctttagct	ctgaatcaga	ttttcttagg	aaggggggact	tccttaggaat	4440
gaaagtagct	ctctaaaca	cagccagagg	ttccttgaga	atgtaatccc	tcactctgtt	4500
aactgacttgc	gactctgaa	tatttgggtg	aaaccattt	atataaaga	accttgagtc	4560
agatatcctt	atcggttct	ctggctgaag	caatgcattt	aatatgcac	ttccatctt	4620
atgtgcctt	cgggcacata	gaatatattt	gggaatccaa	cgaacgacga	gctcccgat	4680
catctgacag	gcatgtttag	gattttctgg	acactttgga	taggttagga	acgtgttagc	4740
gttcctgtgt	gagaactgac	ggttggatga	ggaggaggcc	atagccgacg	acggaggttg	4800
aggctgaggg	atggcagact	gggagctcca	aactctatag	tatacccggt	cgccttcgaa	4860
atccgcgcgt	ccatgtctt	atagtgggt	taaatggggc	ggaccggggcc	ggcccagcag	4920
gaaaagaagg	cgcgcactaa	tattaccgg	ccttcttttc	ctgcgaggggc	ccggggtaggg	4980
gaccgagcgc	tttgatttaa	agcctgggtc	tgcttggat	gatttatcta	aagcagccca	5040
atctaaagaa	accggcccc	ggcactataa	attgccta	aagtgcgatt	cattcatggaa	5100
tcctttaaac	tcgagtctag	agggcccaat	tcgcctata	gtgaggtcgta	ttacaattca	5160
ctggccgtcg	ttttacaacg	tcgtgactgg	gaaaaccctg	gcttaccca	acttaatcg	5220
cttgcagcac	atccccctt	cgccagctgg	cgtaatagcg	aagaggcccc	caccgatcg	5280
ccttcccaac	agttgcgcag	cctatacgt	cggcagttt	agtttacac	ctataaaaaga	5340
gagagccgtt	atcgctgtt	tgtggatga	cagagtata	ttatgtacac	gccggggcga	5400
cggtatggta	tccccctggc	cagtgcacgt	ctgtgtcg	ataaaagtctc	ccgtgaactt	5460
tacccgggtt	tgcataatcg	ggatgaaagc	tggcgcata	tgaccacca	tatggccagt	5520
gtgcccgtt	ccgttatcg	ggaagaagtg	gtgtatctca	gccaccgcga	aaatgacatc	5580
aaaaacgcac	ttaacctgt	tttctgggg	atataaatgt	caggcctgaa	tggcgaatgg	5640
acgcgcctt	tagcgccgca	ttaagcgcgc	gggtgtgggt	gttacgcgc	gcgtgaccgc	5700
tacacttgc	agcgccttag	cgcggcgtt	tttcgttctt	ttcccttcct	ttctcgccac	5760
gttcgcggc	tttccccgtc	aagctttaaa	tcgggggctc	cctttaggtt	tccgatttag	5820
agctttacgg	caccccgacc	gaaaaaaaaact	tgatttgggt	gatgggttac	gtagtggcc	5880
atcgccctga	tagacggttt	ttcgccttt	gacgttggag	tccacgttct	ttaatagtgg	5940
actcttggtc	caaactggaa	caacactcaa	ccctatcg	gtctattttt	ttgatttata	6000
agggatgttgc	ccgatttccg	cctattgggtt	aaaaaatgag	ctgatataac	aaaaattttt	6060
acaaaattca	gaagaactcg	tcaagaaggc	gatagaaggc	gatgcgtgc	gaatcgggag	6120
ccgcgatacc	gtaaaagcagc	aggaaggcgt	cagcccatc	gccgccaagc	tcttcagca	6180
tatcacgggt	agccaaacgt	atgtcctgt	agcggccgc	cacacccagc	cgcccacagt	6240
cgatgaatcc	agaaaaagcgg	ccatccatc	ccatgatatt	cgcaagcag	gcatcgccat	6300
gggtcacgac	gagatcctcg	ccgtcgccgt	tgctcgcc	gagcctggcg	aacagttcg	6360
ctggcgcgag	ccccctgtgc	tcttcgttca	gatcatcctg	atcgacaaga	ccggcttcca	6420
tccgagtgac	tgctcgctcg	atgcgttgtt	tcgcttgggt	gtcgaatggg	caggtagccg	6480
gatcaaggcgt	atgcagccgc	cgcatgtat	cagccatgtat	ggatactttc	tcggcaggag	6540
caaggtgaga	tgacaggaga	tcctgcccc	gcacttcg	caatagcagc	cagtcccttc	6600

ccgcttcagt	gacaaacgtcg	agcacagctg	cgcaaggAAC	gccccgtcgt	gccaggCCACG	6660
atagccgcgc	tgcctcgct	tgcatgttcat	tcaggggacc	ggacaggTCG	gtcttgacAA	6720
aaaagaacgg	gcggcccgtc	gctgacagcc	ggaacacGGC	ggcatcagAG	cagccgattG	6780
tctgttgtc	ccagtcata	ccgaatagcc	tctccaccca	agcggggcgg	gaacctgcgt	6840
gcaatccatc	ttgttcaatc	atgcggaaacg	atcctcatcc	tgtcttctgt	tcaagatcttg	6900
atccccctcg	ccatcagatc	cttggccggcg	agaaaagccat	ccagtttact	ttgcaggggct	6960
tcccaacctt	accagaggGC	gccccagctg	gcaattccgg	ttcgcttgc	gtccataaaa	7020
ccgccccagtc	tagctatcg	catgtaaGCC	cactgcaagc	tacctgttt	ctctttgcgc	7080
tttgcgtttc	ccttgcgtcg	atagccccagt	agctgacatt	catccgggg	cagcaccgtt	7140
tctgcggact	ggctttctac	gtgaaaagga	tcttaggtgaa	gatcctttt	gataatctca	7200
tgaccaaaat	cccttaacgt	gagtttctgt	tccactgagc	gtcagacccc	gtagaaaaga	7260
tcaaaggatc	ttcttgagat	ccttttttcc	tgcgctaat	ctgctgttt	caaacaaaaa	7320
aaccaccgct	accagcggtg	gtttgttgc	cggatcaaga	gttaccaact	ctttttccga	7380
aggttaactgg	cttcagcaga	gcmcagatAC	caaatactgt	ccttctagtg	tagccgtagt	7440
taggccacca	cttcaagaac	tctgttagcac	cgccctacata	cctcgctctg	ctaattctgt	7500
taccagtggc	tgctgcccagt	ggcgataagt	cgtgtttac	cggttggac	tcaagacgt	7560
agtttacccga	taaggcgcag	cgggtcggt	gaacgggggg	ttcgtgcaca	cagcccgact	7620
tggagcgaac	gacctacacc	gaactgagat	acctacagcg	ttagctatga	gaaaggcgc	7680
cgcttcccg	aggggagaaag	ggggacaggt	atccggtaag	cgccgggg	ggaacaggag	7740
agcgacacgg	ggagcttcca	ggggggaaacg	cctgttatct	ttatagtcct	gtcggttcc	7800
gccacacctg	acttgagcgt	cgatTTTGT	gatgtcg	agggggggcgg	agcctatgga	7860
aaaacgcgg	caacgcggcc	tttttacggt	tcctgggctt	ttgctggcct	tttgcgtcaca	7920
tgttcttcc	tgcgttatcc	cctgattctg	tggataaccg	tattacccg	tttgagtgag	7980
ctgataccgc	tcggccgcgc	cgaacgaccg	agcgcagcga	gtcagtgagc	gaggaagcgg	8040
aag						8043

<210> 14
<211> 7404
<212> DNA
<213> Viral

<400>	14	60				
acgcggccaaat	acgcaaaacccg	cctctccccg	cgcgttggcc	gattcattaa	tgcagctggc	120
acgacagggt	tcccgaactgg	aaagcgggca	gtgagcCAA	cgcaattaat	tgaggttagc	180
tcactcatta	ggcacccccag	gctttacact	ttatgtttcc	ggctcgatg	ttgtgtggaa	240
ttgtgagcgg	ataacaattt	cacacaggaa	acagctatga	ccatgattac	gccaagctat	300
ttaggtgaca	ctatagaata	ctcaagctat	gcatcaagct	ttgttaccgag	ctcgatcca	360
ctagtaacgg	ccggccagtgt	gctggaaattc	atgggcagac	ccgtctgtac	tttaagagtg	420
ttggcaacca	gtaatgaata	aaaactcccc	tttttattata	tttgatgaat	gctgaaagct	480
tacattaata	tgtcggtgcga	tggcacgaaa	aaacacacgc	aaacaataca	gggggttagt	540
cgcgccccgg	ctaagggtgg	tgctcgccgg	gcagaacatc	aaaaaatcaa	gatctatatg	600
aattacactt	cctccgttagg	aggaagcaca	gggggagaat	accacttctc	ccccggcgcac	660
ataatgtaaa	tgacgcagtt	tgccctcgaaa	tactccagct	gccctggagt	catttccttc	720
atccaatctt	catccgagtt	ggcgaggatt	atttaggct	tagacttctt	ctgcacccccc	780
ttcttcttac	catacttggg	gtttacaatg	aaatccctct	gacagccaaac	taactgtttc	840
caacaaggac	agaatttaaa	cggaatatca	tctacgatgt	tgttagattgc	gtttcgttg	900
tatgaagacc	aatcaacatt	attttgcacag	taattatgaa	ccctctaggt	tctggcccaa	960
gtagatttc	cggttcttgt	tggggccgacg	atgtagaggc	tctgtttctt	tgatctttca	1020
tctgtatgact	ggatacagaa	tccatccatt	ggaggtcaga	aattgcattcc	tcgagggttat	1080
aacaggtagg	ttgaaggagc	atgtaaagctt	cgggactaac	ctggaaagatg	ttaggctgg	1140
gccaatcggt	gattgactca	ttacaaaagta	aatcaggtga	ggaggggtgga	tgaggattgg	1200
tgaactcttc	ctgaatctca	ggaaaaaagct	tatttgcaga	gtattcaaaa	tactgcaatt	1260
ttgtggacca	atcaaagggg	agctctttct	ggatcatgga	gaggtaactt	tctttggagg	1320
tagcgtgtga	aataatgtct	cgcattatTT	catctttaga	aggcttttt	tcctttacct	1380
ctgaatcaga	ttttccttagg	aagggggact	tccttaggaat	gaaagtacct	ctctcaaaca	

cagccagagg ttcccttgaga atgtaatccc tcactctgtt aactgacttg gcactctgaa	1440
tattttgggt aaaccattt atatcaaaga accttgagtc agatatcctt atcggtttct	1500
ctggctgaag caatgcattt aatgcacaa ttccatctt atgtgcctct cgggcacata	1560
aatatattt gggaaatccaa cgaacgacga gctcccat gatctgacag gcgatttcag	1620
gattttctgg acactttgg taggttagga acgtgttagc gtccctgtgt gagaactgac	1680
ggttggatga ggaggaggcc atagccgacg acggagggtt aggctgaggg atggcagact	1740
gggagctcca aactctatag tataccccgtg cgccttcgaa atccgcgcct ccattgtctt	1800
atagtgggtt taaaatggggc ggaccggggc ggcccgacag gaaaagaagg cgccgcactaa	1860
tattaccgcg ccttctttc ctgcgagggc cccgttaggg cccggcgctt tgatttaaag	1920
cctgggttctg ctttgtatga ttatctaaa gcagccaaat ctaaagaaaac cggtcccccgg	1980
cactataat tgcccaacaa gtgcgattca ttcatggatc ctttaaactc gagtctagtc	2040
ccgatctagt aacatagatg acaccgcgcg cgataattt taatcgatgg cgcgcctat	2100
tttgcgttct atcgcgtatt aatgtataa ttgcgggact ctaatcataa aaaccatct	2160
cataaataac gtcatgcatt acatgttaat tattacatgc ttaacgtaat tcaacagaaa	2220
tttatatgata atcatcgaca gaccggcaac aggattcaat ctaagaaaac tttattgcca	2280
aatgtttgaa cgatcgggga aattcgctcg agttaattaa gcccgcgtt aattaatcg	2340
acgttcttc caaatgaaat gaacttccctt atatagagga agggcttgc gaaggatagt	2400
gggattgtgc gtcatccctt acgtcagttt agatatcaca tcaatccact tgctttgaag	2460
acgtgggtgg aacgttctt tttccacgt agtctctcg aggtgggggtt ccattttgg	2520
gaccactgtc ggcagaggca tcttgcacca tagcccttcc ttatcgcaat gatggcattt	2580
gttaggtggca ccttctttt ctactgtcct ttgtatgaa tgacagatag ctggcaatg	2640
gaatccgagg aggtttcccg atattaccct ttgttggaaa gtctcaatag ccctttggc	2700
ttctgagact gtatcttga tattcttggaa gtagacgaga gagtgcgtgt ctccaccatg	2760
ttgacgaatt catggggcaga cccgtctgtt cttaagagt gttggcaacc agtaatgaat	2820
aaaaactccc gttttattat atttgatgaa tgctgaaagc ttacattaaat atgtcg	2880
atggcacaa aaaacacacag caaacaatac aggggggttag tcggcgggtag gctaagggtg	2940
gtgctcgccg ggcagaacat cggaaaatca agatctatataaattacact tcctccgt	3000
gaggaagcac agggggagaa taccacttcc ccccccgcataatgtaa atgacgcagt	3060
ttgcctcgaa atactccagc tgccctggag tcatttcctt catccaaatct tcattccgagt	3120
ttggcgaggat tattgttaggc tttagacttct tctgcaccc ttctttctt ccataacttgg	3180
ggtttacaat gaaatccctc tgacagccaa ctaactgttt ccaacaaggaa cagaattaa	3240
acggaatatac atctacgtat ttgttagatg cgtctcggtt gtatgaagac caatcaacat	3300
tatTTTggca gtaattatga accccttaggc ttctggccca agtagattt ccgggttcttgc	3360
ttggggccgac gatgttaggg ctctgcattt tcgtatcttcc atctgtatgac tggatacaga	3420
atccatccat tggagggttag aaattgcata ctcgagggttta acacgggttag gttgaaggag	3480
catgtaaatc tcgggactaa ccttggaaat gtttaggtcg agccaatcg tgattgactc	3540
attacaatgtt aaatcagggtt aggggggtgg atgaggattt gtgaactctt cctgaatctc	3600
aggaaaaaaggc ttatttgccg agtattcaaa atactgcattt tttgtggacc aatcaaagg	3660
gagctcttc tggatcatgg agaggtaatc ttctttggag gtacgtgtt aaataatgtc	3720
tcgcatttatt tcatttttag aaggctttt ttcccttacc tctgaatcaat tttttcttag	3780
gaagggggac ttcttaggaa tgaaaatgtt tctctcaaaac acagccagag gttccttgag	3840
aatgtatcc ctcactctgt taactgcattt ggcactctga atattttgggt gaaaccat	3900
tatataaag aacccgttgcgat cagatataatc tateggcttc tctggctgaa gcaatgcatt	3960
taaatgcataa ctccatctt tatgtgcctc tcgggcacat agaataatatt tggaaatcca	4020
acgaacgcacg agctcccaga tcattgcata ggcgatttca ggattttctg gacactttgg	4080
atagggttagg aacgtgttag cgttctgtg tgagaactga cgggtggatg aggaggaggc	4140
catagccgac gacggaggtt gaggctgagg gatggcagac tgggagctcc aaactctata	4200
gtataccctg ggccttcgaa aatccggccgc tccattgttct tatgtgggtt gtaaatggc	4260
cggaccgggc cggcccgacca gggaaagaaag ggcgcacta atattaccgc gccttcttt	4320
cctgcgagggg cccggggtagg ggaccgcgcg ctggatcta aagcctgggtt ctgtttgtt	4380
tgattttatct aaagcagccc aatctaaaga aaccggccc gggcactata aattgcctaa	4440
caagtgcgtat tcattcatgg atccctttaaa ctgcgtctt gaggggcccaat tccgcctat	4500
agtgtgtcgat attacaattc actggccgtc gtttacaac gtgcgtactg gggaaaccct	4560
ggcgttaccc aacttaatcg cttgcagca catccccctt tcgcgcgtt ggcgtatagc	4620
gaagaggccc gcaccgcgtc cccttcccaaa cagttgcgcga gcctataacgt acggcgttt	4680
aaggttaca cctataaaag agagagccgt tttgtgttgcgtt tttgtggatgt acagagtgtat	4740
attattgaca cgcggggcgc acggatgggtt atccccctgg ccagtcacg tctgcgttca	4800

gataaaagtct cccgtgaact ttacccgggt gtcatatacg gggatgaaag ctggcgcatt	4860
atgaccacccg atatggccag tggccgggtc tccgttatcg gggagaaggat ggctgtatctc	4920
agccacccggaaaatgacat caaaaaacgcc attaacctga ttgttctgggg aatataaaatg	4980
tcaggccctga atggcgaatg gacgcgcctt gtagccgcg attaagcgcg cgggtgtgg	5040
ggtaacgcgc agcgtgaccg ctacacttgc cagcgcctta gcgcgcgc tc tttcgctt	5100
cttcccttcc tttctcgcca ctttcgcggg ctttccccgt caagctctaa atcgggggct	5160
cccttttaggg ttccgattta gagcttacg gcacctcgac cgcaaaaaac ttgatttggg	5220
tgtatggttca cgtagtgggc catcgccctg atagacgggt ttgcgcctt tgacgttgga	5280
gtccacgttc ttaatagtg gactcttggt ccaaactgga acaacactca accctatcgc	5340
ggctattct tttgatttat aaggatgtt gcccattcg gcttattggg taaaaaaatga	5400
gtgtatattaa caaaaaatttt aacaaaatttca agaagaactc gtcaagaagg cgatagaagg	5460
cgatgcgtg cgaatcgggg gcccgcatac cgtaaaagcac gaggaaagcgg tcagccatt	5520
cgccgcacag ctcttcagca atatcacggg tagccaaacgc tatgttctga tagcggccg	5580
ccacaccccg ccggccacag tcgatgaatc cagaaaaagcg gccattttcc accatgatat	5640
tcggcaagca ggcacatcgcca tgggtcaca ctttcgcgttgcgcgc atgctcgct	5700
tgagccttgc gaacagttcg gctggcgcga gcccctgatg ctcttcgtcc agatcatct	5760
gatcgacaag accggcttcc atccgagtac gtgctcgctc gatgcgtatgt ttgcgttggt	5820
ggtcgaatgg gcaggttagcc ggtcaagcg tatgcagccg cccgatttgc taagccatga	5880
tggatactt ctcggcagga gcaagggtgag atgacaggag atcttgtcccc ggcacttcgc	5940
ccaatagcag ccagtccctt cccgttccag tgacaacgtc gaggacacat ggcacaggaa	6000
cgcccgctgt ggccagccac gatagccgcg ctgcctcgctc ttgcagttca ttgcaggcac	6060
cggacaggcgt ggtttgaca aaaagaaccc ggccgcctcg cgctgacacgc cggaacacgg	6120
cggcacatcaga gcagccgatt gtctgttgcg cccagtcata gccaatagc ctctccaccc	6180
aaggccgcgg agaacctgcg tgcaatccat ttgttcaat catgcgaaac gatcctcatc	6240
ctgtcttttgc atcagatctt gatccccctgc gccatcatat ctttggcggc gagaaggcca	6300
tccagttac tttgcagggc ttcccaacct taccagaggg cggcccaactt ggcaattccg	6360
tttcgttgc tttccataaa accggccactt ctgttatcg ccatgtaaac ccactgcaag	6420
ctacctgttct tcttttgcg tttgcgtttt cccttgcata gatagcccg tagctgacat	6480
tcatccgggg tcagcaccgt ttctgcggac tggcttcta cgtgaaaagg atcttaggtga	6540
agatccttt tgataatctc atgacccaaa tcccttaacg tgatgtttcg ttccactgag	6600
cgtcagaccc cgtagaaaag atcaaaggat ttcttgaga tccctttttt ctgcgcgtaa	6660
tctgtgttt gcaaacaaaa aaaccacccgc taccagccgt ggtttgtttt ccggatcaag	6720
agctaccaac tcttttccg aaggttaactg gcttcagcag agcgcacata ccaaataactg	6780
tccttctagt gttagccgt tagtgcacc acttcaagaa ctctgttagca ccgcctacat	6840
acctcgctct gctaattctg ttaccagttt ctgtgcgcag tggcgataag tctgttctt	6900
ccgggttggc ctcaagacga tagttaccgg ataaggcgca ggggtcgccc tgaacgggg	6960
tttcgtgcac acagcccgac ttggagcgaa cgacccatcac cgaactgaga tacctacagc	7020
gtgagctatg agaaagcgcc acgttcccg aaggagaaaa ggcggacagg tatccggtaa	7080
ggccgcagggt cggaacaggaa gagcgcacga gggagttcc agggggaaac gcttggatc	7140
tttatagtcc tttccatggtttt ccgcacccatct gacttgcggc tegatttttt tgatgtctgt	7200
caggggggcg gagctatgg aaaaaacgcga gcaacgcgcgc ctttttacgg ttccctgggct	7260
tttgcgtggcc ttttgcgtac atgttcttgc ctgcgttatac ccctgtattct gtggataacc	7320
gtattacccgc ctttgagttga gctgataccg ctgcgcgcgag ccgaacgcacc gagcgcagcg	7380
agtcagtgagcg cgaggaagcg gaag	7404