Wersja:	$oldsymbol{A}$
---------	----------------

Numer	indeksu:	
	000000	

Grupa ⁺ :		
8–10 s. 5	8–10 s.103	8–10 s.104
8–10 s.105	8–10 s.140	12–14 zaaw
12–14 LPA	14-16 s. 105	14-16 s.139

Logika dla informatyków

Kolokwium nr 3, 16 stycznia 2015 czas pisania: 30+60 minut

Zadanie 1 (2 punkty). Rozważmy zbiór trzyelementowy $A = \{a, b, c\}$. W prostokąt poniżej wpisz (jeśli wolisz, możesz je narysować) wszystkie podziały zbioru A odpowiadające relacjom o dokładnie dwóch klasach abstrakcji.

$$\{\{a\},\{b,c\}\},\ \{\{b\},\{a,c\}\},\ \{\{c\},\{a,b\}\}$$

Zadanie 2 (2 punkty). Wpisz w puste pola poniższej tabelki moce odpowiednich zbiorów.

$\bigcup_{n=1}^{\infty} \mathbb{Q} \times \{n\}$	$\mathcal{P}(\mathbb{N}{\times}\{0,1,2\})$	$\{0,1\}^{\mathbb{Q}}$	$\mathbb{R}^{\{0,1\}}$	$(\{1\} \times \{2,3\})^{\{4,5\}}$	$(\mathbb{Q}\setminus\mathbb{N})$	$\mathbb{Q}^{\mathbb{N}}$	$\boxed{\mathcal{P}(\mathbb{Q}\cap[0,1))}$

Zadanie 3 (2 punkty). Rozważmy funkcje

 $f: A^C \times B^C \to (A \times B)^C,$ $g_1: C \to A,$ $g_2: C \to B,$ $h: A \times B \to C$

oraz elementy $a \in A$, $b \in B$ i $c \in C$. W tym zadaniu uznamy wyrażenie za poprawne jeśli dla każdej użytej w nim funkcji jej argument należy do dziedziny tej funkcji. Np. wyrażenie f(a) nie jest poprawne, bo $a \notin (A^C \times B^C)$. Wpisz słowo "TAK" w prostokąty obok tych spośród podanych niżej wyrażeń, które są poprawne. W pozostałe prostokąty wpisz słowo "NIE".

$(f(g_1,g_2))(c)$	TAK	$f(g_1(c),g_2(c))$	NIE
$\langle h(a), h(b) \rangle$	NIE	$g_1(h(a,b))$	TAK

¹Proszę zakreślić dzień tygodnia, godzinę i numer sali, w której odbywają się ćwiczenia.

Zadanie 4 ($^{(2)}$	punkty).	Na	zbiorze	\mathbb{N}	$\times \mathbb{N}$	definiujemy	relacie	rówr	noważności	\approx	wzorem
Zadamic + (punkty /.	110	ZDIOLZC	T/ \	✓ I /	deminajemy	TCIACIC	TOWL	10 W az 1105C1	\sim	WZOICIII

$$\langle m, n \rangle \approx \langle m', n' \rangle \stackrel{\text{df}}{\iff} \min(m, n) = \min(m', n').$$

W prostokąty poniżej wpisz odpowiednio moc klasy abstrakcji $[\langle 42,17\rangle]_{\approx}$ oraz taką formułę φ , że $[\langle 42,17\rangle]_{\approx}=\{\langle m,n\rangle\in\mathbb{N}\times\mathbb{N}\mid\varphi\}$. W formule φ nie wolno użyć symbolu \approx .

$$|[\langle 42,17
angle]_pprox|=$$
 $ext{min}(m,n)=17$

Zadanie 5 (2 punkty). Rozważmy funkcję $f: \mathbb{N} \times \{0,1\} \to \mathbb{N}$ daną wzorem f(n,i) = 2n + i. Jeśli f ma funkcję odwrotną, to w prostokąt poniżej wpisz funkcję odwrotną f. W przeciwnym przypadku wpisz uzasadnienie, dlaczego funkcją odwrotna nie istnieje.

-	,	O	· ·	· ·		

Grupa ⁺ :		
8–10 s. 5	8 10 s. 103	8–10 s.104
8–10 s.105	8-10 s. 140	12–14 zaaw
12–14 LPA	14-16 s. 105	14-16 s.139

Zadanie 6 (5 punktów). W tym zadaniu div : $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ oznacza (pisaną infiksowo) operację dzielenia całkowitego w zbiorze liczb naturalnych, np. 5 div 2=2. Na zbiorze liczb naturalnych \mathbb{N} wprowadzamy relację równoważności \simeq wzorem

$$m \simeq n \iff m \text{ div } 2 = n \text{ div } 2$$

a następnie definiujemy funkcję fi relację \preceq działające na klasach abstrakcji relacji \simeq wzorami

$$f([x]_{\simeq}) = [x+2]_{\simeq} \tag{1}$$

$$[x_1]_{\simeq} \preceq [x_2]_{\simeq} \quad \stackrel{\text{df}}{\Longleftrightarrow} \quad x_1 \le x_2$$
 (2)

Które z tych dwóch definicji (mamy tu na myśli definicje (1) i (2)) są poprawne? Uzasadnij odpowiedź.

Zadanie 7 (5 punktów). Na zbiorze $\mathcal{P}(\mathbb{N})$ wszystkich podzbiorów zbioru liczb naturalnych wprowadzamy relację binarną R wzorem

$$R(X,Y) \iff \forall n \in \mathbb{N} \ \exists m > n \ m \in X \Leftrightarrow m \in Y.$$

Czy R jest relacją równoważności? Uzasadnij odpowiedź.

Zadanie 8 (5 punktów). Na zbiorze $\mathbb{N}^{\mathbb{N}}$ wszystkich funkcji z \mathbb{N} w \mathbb{N} wprowadzamy relację binarną R wzorem

$$R(f,g) \iff \forall n > 2015 \ f(n) = g(n).$$

Łatwo zauważyć, że R jest relacją równoważności; w rozwiązaniu tego zadania nie trzeba tego dowodzić. Udowodnij, że wszystkie klasy abstrakcji relacji R są równoliczne.

¹Proszę zakreślić dzień tygodnia, godzinę i numer sali, w której odbywają się ćwiczenia.

Wersja:	$oldsymbol{\mathrm{B}}$
---------	-------------------------

Numer	indeksu:	
	000000	

Grupa ¹ :	

8–10 s. 5	8-10 s. 103	8-10 s. 104
8–10 s.105	8–10 s.140	12–14 zaaw
12–14 LPA	14-16 s. 105	14-16 s. 139

Logika dla informatyków

Kolokwium nr 3, 16 stycznia 2015 czas pisania: 30+60 minut

Zadanie 1 (2 punkty). Rozważmy zbiór czteroelementowy $A = \{a, b, c, d\}$. W prostokąt poniżej wpisz (jeśli wolisz, możesz je narysować) wszystkie podziały zbioru A odpowiadające relacjom, których każda klasa abstrakcji ma parzysta liczbe elementów.

Zadanie 2 (2 punkty). Wpisz w puste pola poniższej tabelki moce odpowiednich zbiorów.

$\bigcup_{n=1}^{\infty} \mathbb{N}^n$	$\mathbb{N}^{\{0,1,2\}}$	$\mathcal{P}(\mathbb{N}\setminus\{0,1\})$	$\mathbb{R}^{\{0\}}$	$\{0,1,2\}^{\{3,4\}}$	$(\mathbb{Q}\setminus\mathbb{N})$	$\mathbb{Q}^{\mathbb{N}\cup\{\pi\}}$	$\mathcal{P}(\{a,b\}\times\{c\})$

Zadanie 3 (2 punkty). Rozważmy funkcje

 $f: A^C \times B^C \to C^{(A \times B)}, \qquad g_1: C \to A,$ $g_2: C \to B, \qquad h: A \times B \to C$

oraz elementy $a \in A$, $b \in B$ i $c \in C$. W tym zadaniu uznamy wyrażenie za poprawne jeśli dla każdej użytej w nim funkcji jej argument należy do dziedziny tej funkcji. Np. wyrażenie f(a) nie jest poprawne, bo $a \notin (A^C \times B^C)$. Wpisz słowo "TAK" w prostokąty obok tych spośród podanych niżej wyrażeń, które są poprawne. W pozostałe prostokąty wpisz słowo "NIE".

$$f(h(a,b))$$
 NIE $h\Big(g_1(h(a,b)),g_2(h(a,b))\Big)$ TAK
$$(f(g_1,g_2))(a,b)$$
 TAK $(f(h))(c)$ NIE

¹Proszę zakreślić dzień tygodnia, godzinę i numer sali, w której odbywają się ćwiczenia.

Zadanie 4 ($^{(2)}$	punkty).	Na	zbiorze	\mathbb{N}	$\times \mathbb{N}$	definiujemy	relacie	rówr	noważności	\approx	wzorem
Zadamic + (_	pulling,	110	ZDIOLZC	T // /	\\ T \	acming	TCIGCIC	I O W I	IO W GIZITOSCI	, 0	WZOICIII

$$\langle m, n \rangle \approx \langle m', n' \rangle \stackrel{\text{df}}{\iff} \max(m, n) = \max(m', n').$$

W prostokąty poniżej wpisz odpowiednio moc klasy abstrakcji $[\langle 42,17\rangle]_{\approx}$ oraz taką formułę φ , że $[\langle 42,17\rangle]_{\approx}=\{\langle m,n\rangle\in\mathbb{N}\times\mathbb{N}\mid\varphi\}$. W formule φ nie wolno użyć symbolu \approx .

$$|[\langle 42,17
angle]_{pprox}|=$$
 85 $arphi=$ $\max(m,n)=42$

Zadanie 5 (2 punkty). Rozważmy funkcję $f: \mathbb{Z} \to \mathbb{N} \times \{0,1\}$, gdzie \mathbb{Z} oznacza zbiór liczb całkowitych, daną wzorem $f(k) = \left\{ \begin{array}{ccc} \langle k-1,0 \rangle & \mathrm{dla} & k>0 \\ \langle -k,1 \rangle & \mathrm{dla} & k\leq 0 \end{array} \right.$. Jeśli f ma funkcję odwrotną, to w prostokąt poniżej wpisz funkcję odwrotną f. W przeciwnym przypadku wpisz uzasadnienie, dlaczego funkcja odwrotna nie istnieje.

Wersja:	\mathbf{R}
wersja.	В

Numer indeksu:					
	00000	0			

Grupa ⁺ :								
	8–10 s. 5	8-10 s. 103	8-10 s. 104					
	8-10 s. 105	8–10 s.140	12–14 zaaw					
	12–14 LPA	14-16 s. 105	14-16 s. 139					

Zadanie 6 (5 punktów). W tym zadaniu div : $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ oznacza (pisaną infiksowo) operację dzielenia całkowitego w zbiorze liczb naturalnych, np. 5 div 2=2. Na zbiorze liczb naturalnych \mathbb{N} wprowadzamy relację równoważności \simeq wzorem

$$m \simeq n \iff m \text{ div } 2 = n \text{ div } 2$$

a następnie definiujemy funkcje f i \oplus działające na klasach abstrakcji relacji \simeq wzorami

$$f([x]_{\simeq}) = [x \operatorname{div} 2]_{\simeq} \tag{1}$$

$$[x_1]_{\simeq} \oplus [x_2]_{\simeq} = [x_1 + x_2]_{\simeq} \tag{2}$$

Które z tych dwóch definicji (mamy tu na myśli definicje (1) i (2)) są poprawne? Uzasadnij odpowiedź.

Zadanie 7 (5 punktów). Na zbiorze $\mathbb{N}^{\mathbb{N}}$ wszystkich funkcji z \mathbb{N} w \mathbb{N} wprowadzamy relację binarną R wzorem

$$R(f,g) \iff \forall n \in \mathbb{N} \ \exists m > n \ f(m) = g(m).$$

Czy R jest relacją równoważności? Uzasadnij odpowiedź.

Zadanie 8 (5 punktów). Na zbiorze $\mathcal{P}(\mathbb{N})$ wszystkich podzbiorów zbioru liczb naturalnych wprowadzamy relację binarną R wzorem

$$R(X,Y) \iff \forall n > 2014 \ n \in X \Leftrightarrow n \in Y.$$

Łatwo zauważyć, że R jest relacją równoważności; w rozwiązaniu tego zadania nie trzeba tego dowodzić. Udowodnij, że wszystkie klasy abstrakcji relacji R są równoliczne.

¹Proszę zakreślić dzień tygodnia, godzinę i numer sali, w której odbywają się ćwiczenia.