AnaliseShopping

November 10, 2024

```
[]: import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
[6]: sales_data = pd.read_excel('sales_data.xlsx')
    customers = pd.read_excel('customer_data.xlsx')
    mall_data = pd.read_excel('shopping_mall_data.xlsx')
[7]: sales_data.info()
    sales_data.isna().sum()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 99457 entries, 0 to 99456
    Data columns (total 7 columns):
                       Non-Null Count Dtype
         Column
     0
         invoice_no
                      99457 non-null object
     1
         customer_id 99457 non-null object
     2
         category
                       99457 non-null object
     3
         quantity
                      99457 non-null int64
         invoice date 99457 non-null object
     5
         price
                       99457 non-null float64
         shopping_mall 99457 non-null object
    dtypes: float64(1), int64(1), object(5)
    memory usage: 5.3+ MB
[7]: invoice_no
    customer_id
    category
    quantity
                     0
    invoice date
                     0
    price
                     0
    shopping_mall
    dtype: int64
```

- 0.1 Análise de Vendas e Desempenho de produtos
- 0.1.1 Análise por Categoria e Shopping Mall: Avaliar o desempenho de vendas de cada categoria de produto (como roupas ou sapatos) em diferentes shoppings. Isso pode revelar quais produtos têm mais aceitação em determinadas localidades ou tipos de shoppings.

```
[8]: # Agrupando e somando as vendas por shopping e categoria
sales_pivot = sales_data.pivot_table(index='shopping_mall', columns='category',
values='quantity', aggfunc=sum)
sales_pivot
```

C:\Users\angel\AppData\Local\Temp\ipykernel_13904\839806654.py:2: FutureWarning:
The provided callable <built-in function sum> is currently using
DataFrameGroupBy.sum. In a future version of pandas, the provided callable will
be used directly. To keep current behavior pass the string "sum" instead.
 sales_pivot = sales_data.pivot_table(index='shopping_mall',
columns='category', values='quantity', aggfunc=sum)

[8]:	category	Books (Clothing	Cosmetics	Food & Beverage	Shoes	\
	shopping_mall						
	Beverly Center	756	5239	2342	2072	1459	
	Del Amo Fashion Center	3099	20813	9193	8878	6112	
	Fashion Valley	809	5228	2385	2216	1589	
	Glendale Galleria	720	5101	2279	2186	1471	
	Irvine Spectrum	792	5180	2174	2293	1473	
	South Coast Plaza	2969	20513	9155	8695	6065	
	Stanford Shopping Center	1468	10552	4569	4586	3237	
	The Grove	730	5038	2272	2109	1452	
	Westfield Century City	2271	15729	6700	6764	4349	
	Westfield Valley Fair	1368	10165	4396	4478	3010	
	category	Souveni	r Techno	logy Toys			
	shopping_mall						
	Beverly Center	77!	5	673 1536			
	Del Amo Fashion Center	292:	1	3067 6031			
	Fashion Valley	716	6	765 1526			
	Glendale Galleria	65:	1	784 1524			
	Irvine Spectrum	708	3	780 1549			
	South Coast Plaza	302	5	3050 5985			
	Stanford Shopping Center	1586	6	1396 3136			
	The Grove	726	6	795 1379			
	Westfield Century City	219	7	2273 4611			
	Westfield Valley Fair	1566	6	1438 3044			

[9]: # Plotando um gráfico para visualizar os dados referentes a vendas por shopping $_{\sqcup}$ \hookrightarrow e categoria

[9]: <Axes: title={'center': 'Vendas por categoria em cada Shopping'},
 xlabel='Shopping Mall', ylabel='Quantidade Vendida'>

Todos os Shoppings parecem manter um padrão em relação as categorias, Roupas lideram em todos, Cosméticos e Alimentos se mantém quase sempre no mesmo nível

0.1.2 Análise de tendências temporais: Examinar como as vendas variam ao longo do tempo

]: sale	s_data.h	ead()					
2]:		invoice_no	customer_id	category	quantity	price	\
invo	ice date						
2022	-05-08	I138884	C241288	Clothing	5	1500.40	
2021	-12-12	I317333	C111565	Shoes	3	1800.51	
2021	-09-11	I127801	C266599	Clothing	1	300.08	
2021	-05-16	I173702	C988172	Shoes	5	3000.85	
2021	-10-24	I337046	C189076	Books	4	60.60	
		shopping_mall					
invo	ice date						
2022	-05-08	South Coast Plaza					
2021	-12-12	Beverly Center					
2021	-09-11	Westfield Century City					
2021	-05-16	Stanford S	Stanford Shopping Center				
2021	-10-24	Sou	South Coast Plaza				

```
[24]: #sales_data['invoice date'] = pd.to_datetime(sales_data['invoice date'])
    #sales_data.set_index('invoice date', inplace=True)

monthly_sales = sales_data.resample('ME').quantity.sum()

monthly_sales.plot(title='Vendas Mensais', figsize=(16,8))
plt.show()
```


- 0.2 Segmentação de clientes e Análise de comportamento
- 0.2.1 Perfil dos clientes : Criar segmentos dos clientes baseado em idade, genêro e metodos de pagamento

gender	Female	Male
age_group		
<18	1078	765
18-30	13814	9338
30-45	17320	11476

45-60 16959 11441 60+ 10241 6906

C:\Users\angel\AppData\Local\Temp\ipykernel_13904\1067937034.py:2:
FutureWarning: The default of observed=False is deprecated and will be changed
to True in a future version of pandas. Pass observed=False to retain current
behavior or observed=True to adopt the future default and silence this warning.
 profile = customers.groupby(['age_group', 'gender']).size().unstack()

0.2.2 Preferência do método de Pagamento

```
[30]: payment_method_distribution = customers.groupby(['age_group', \_ \to 'payment_method']).size().unstack()

payment_method_distribution.plot(kind='bar',title='Metodo de Pagamento Por_ \to grupo de idade',colormap='viridis', figsize=(16,4))

plt.show()
```

C:\Users\angel\AppData\Local\Temp\ipykernel_13904\923264017.py:1: FutureWarning:
The default of observed=False is deprecated and will be changed to True in a
future version of pandas. Pass observed=False to retain current behavior or
observed=True to adopt the future default and silence this warning.
 payment_method_distribution = customers.groupby(['age_group',
'payment_method']).size().unstack()

0.3 Análise avançada de vendas por cliente: Calcularemos o número de compras realizadas por cada cliente para identificar quem são os clientes recorrentes

```
[41]: #Contar o número de transações por cliente
      customer_purchase_count = sales_data.groupby('customer_id')['invoice_no'].
       →nunique()
      print(customer_purchase_count)
      #Definir Cliente como recorrente se fez mais de uma compra
      recurring_customers = customer_purchase_count[customer_purchase_count > 1]
      recurring_customers_percentage = len(recurring_customers) / __
       →len(customer_purchase_count) * 100
      print(f'Porcentagem de clientes recorrentes:
       →{round(recurring_customers_percentage,1)}%')
     customer id
     C100004
     C100005
     C100006
     C100012
                1
     C100019
                1
     C999886
     C999910
     C999974
     C999976
                1
     C999995
                1
     Name: invoice_no, Length: 99457, dtype: int64
```

0.3.1 Cálculo do LTV(LifeTimeValue) dos clientes

Porcentagem de clientes recorrentes: 0.0%

```
[43]: sales_data['total_price'] = sales_data['quantity'] * sales_data['price']
    customer_ltv = sales_data.groupby('customer_id').total_price.sum()
    print(customer_ltv.head())

customer_id
    C100004    7502.00
    C100005    2400.68
    C100006    322.56
    C100012    130.75
    C100019    35.84
    Name: total_price, dtype: float64
```

0.4 Análise integrada entre customers e sales

```
[45]: # Merge entre costumers e sales
      merged_data = pd.merge(sales_data,customers, on='customer_id', how='inner')
      print(merged_data.head())
       invoice_no customer_id category quantity
                                                     price \
          I138884
                      C241288
                              Clothing
                                                5 1500.40
     0
     1
          I317333
                      C111565
                                  Shoes
                                                3 1800.51
     2
          I127801
                      C266599 Clothing
                                                1
                                                    300.08
     3
          I173702
                                  Shoes
                                                5 3000.85
                      C988172
     4
          I337046
                      C189076
                                  Books
                                                     60.60
                   shopping_mall total_price gender
                                                        age payment_method \
               South Coast Plaza
                                      7502.00 Female
                                                      28.0
                                                               Credit Card
     0
                  Beverly Center
                                                 Male 21.0
     1
                                      5401.53
                                                                Debit Card
     2
          Westfield Century City
                                                 Male 20.0
                                                                      Cash
                                       300.08
     3 Stanford Shopping Center
                                     15004.25 Female 66.0
                                                               Credit Card
               South Coast Plaza
                                       242.40 Female 53.0
                                                                      Cash
       age_group
     0
           18-30
     1
           18-30
     2
           18-30
     3
             60+
     4
           45-60
```

0.4.1 Análisando o gasto medio por faixa etária

age_group

0-18 19-30

31-45

2384.7

2530.0

2537.2

```
[49]: #Calculando o total gasto por cliente
      merged_data['total_spent'] = merged_data['price'] * merged_data['quantity']
      #Criando faixa etárias
      merged_data['age_group'] = pd.cut(merged_data['age'], bins=[0,18,30,45,60,100],
       ⇔labels=['0-18', '19-30', '31-45', '46-60', '60+'])
      #Gasto médio por faixa etária
      avg_spent_age_group = merged_data.groupby('age_group',__
       ⇔observed=False)['total_spent'].mean()
      print('Gasto médio por faixa etária: ')
      print(round(avg_spent_age_group,1))
     Gasto médio por faixa etária:
```

7

```
46-60 2525.9
60+ 2534.7
Name: total_spent, dtype: float64
```

0.4.2 Análise de Preferência por categoria

```
[53]: # Agrupando por categoria de produto e genero, somando as quantidades compradas
      category_preference = merged_data.groupby(['gender', 'category'],__
       →observed=False).quantity.sum().unstack()
      print(f'Preferencia de categoria por genero{category_preference}')
     Preferencia de categoria por generocategory Books Clothing Cosmetics Food &
     Beverage
               Shoes Souvenir \
     gender
     Female
                8776
                         62039
                                    27261
                                                     26362 17906
                                                                       8976
     Male
                6206
                         41519
                                    18204
                                                     17915 12311
                                                                       5895
     category Technology
                            Toys
     gender
     Female
                     8977 18362
     Male
                     6044 11959
```

Plotando os resultados

0.4.3 Visualizando o gasto médio por faixa etária

0.4.4 Visualizando as preferências de categoria por gênero

```
[57]: category_preference.plot(kind='bar', title='Preferência de categoria por⊔
Gênero', figsize=(16,4),colormap='viridis')
plt.xlabel("Gênero")
plt.ylabel("Quantidade comprada")
plt.show()
```


0.5 Modelagem e Previsão

0.5.1 Modelo de Previsão de Vendas

```
[87]: from sklearn.model_selection import train_test_split
      from sklearn.linear_model import LinearRegression
      from sklearn.metrics import mean_absolute_error, mean_squared_error, __
       -root_mean_squared_error, r2_score, mean_absolute_percentage_error
[80]: # Preparação dos dados
      sales_data['month'] = sales_data.index.month
      x = sales_data[['month']]
      y = sales_data[['quantity']]
      #Dividirem conjunto de treino e teste
      x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.2,_
       →random_state=0)
      #treinar o modelo
      model = LinearRegression()
      model.fit(x_train, y_train)
      #Previsoes
      y_pred = model.predict(x_test)
      print(y_pred)
     [[2.99809114]
      [2.99809114]
      [3.00247418]
      [2.99370811]
      [3.00247418]
      [2.99370811]]
```

0.5.2 Avaliando o Modelo

```
[84]: # Plotando a linha de regressão
plt.figure(figsize=(10, 6))

# Plotando os dados reais
plt.scatter(x_train, y_train, color='blue', label='Dados de Treinamento')

# Plotando a linha de regressão
plt.plot(x_test, y_pred, color='red', linewidth=2, label='Linha de Regressão')
```

```
plt.title('Linha de Regressão')
plt.xlabel('Mês')
plt.ylabel('Quantidade de Vendas')
plt.legend()
plt.show()
```



```
[88]: mae = mean_absolute_error(y_test, y_pred)
    mse = mean_squared_error(y_test, y_pred)
    rmse = root_mean_squared_error(y_test, y_pred)
    r2 = r2_score(y_test, y_pred)
    mape = mean_absolute_percentage_error(y_test,y_pred)

print(f"Erro Médio Absoluto (MAE): {mae:.2f}")
    print(f"Coeficiente de Determinação (R²): {r2:.2f}")
    print(f"Raiz do Erro Quadrático Médio (RMSE): {rmse:.2f}")
    print(f"Erro Quadrático Médio (MSE): {mse:.2f}")
    print(f"Erro Absoluto Médio Percentual (MAPE): {mape:.2f}%")
```

Erro Médio Absoluto (MAE): 1.20 Coeficiente de Determinação (R²): -0.00 Raiz do Erro Quadrático Médio (RMSE): 1.42 Erro Quadrático Médio (MSE): 2.00 Erro Absoluto Médio Percentual (MAPE): 0.63%

0.5.3 Conclusao

R2: O modelo não parece estar se ajustando bem aos dados, a escolha do modelo poderia passar por uma revisão MAE, RMSE, MSE: as métricas são razoáveis, mas o R score negativo sugere que o modelo nao capta a dinâmica dos dados completamente MAPE: 0.63% é excelente, o que significa que, apesar de não explicar bem os dados, o modelo é preciso na maioria das previsões individuais. Podemos entao tentar ajusar o modelo de alguma maneira melhor.