

Sistema de Auto-Reposição de ficheiros / Anti-Ransomware

Relatório final

Unidade curricular de Sistemas Distribuídos, prof. Pedro Rosa João Pires, 20200459

Link de acesso ao repositório do projeto: https://github.com/joaoppiresp/Sistemas Distribuidos

Identificação do Problema

Um dos grandes problemas atuais no mundo digital é a segurança, sendo as empresas alvo constante de ataques informáticos que infetam os seus sistemas e roubam dados importantes. Um dos mais utilizados métodos de ataque é o Ransomware. Ransomware toma várias formas, mas consistem todas nos mesmos passos base, isto é, penetrar um sistema sem autorização, infetá-lo com um virus que encripta todos os ficheiros possíveis e pedir um resgate aos donos dos ficheiros.

Este método é bastante eficaz pois muitas vezes as empresas não têm todos os seus sistemas com backups atualizados e redundâncias preparadas para este tipo de situação, nem têm garantia nenhuma que ao pagarem o resgate serão entregues as chaves de desencriptação nem que não voltaram a ser infetados.

Resumindo, o Ransomware é um ataque informático com a possibilidade de causar danos irreversíveis a um sistema.

SOLUÇÃO

Como solução a este problema propomos o desenvolvimento de um software que, como descrição base, funciona como um intermediário entre o acesso dos utilizadores de um sistema e o dito sistema e seus ficheiros.

Como primeira fronteira ao sistema, propomos que os utilizadores tenham que realizar login, sendo este processo previamente autorizado manualmente, com identificação de 2 fatores. As tentativas de acesso indevidas são bloqueadas pelo sistema e a informação do atacante recolhida para avaliação posterior.

Após um acesso autorizado, todas as alterações a ficheiros realizadas pelos utilizador serão registadas.

Os ficheiros terão backups automáticos, realizados periodicamente e atualizados consoante alterações feitas pelos utilizadores.

Para mitigar alterações não autorizadas, os hashs dos ficheiros serão guardados para comparação com os mais recentes. Se forem detetadas diferenças, o ficheiro alterado será apagado e reposto pelo original.

Os acessos ao sistema terão um *time limit*, sendo necessário o utilizador realizar novamente o login, passado algum tempo, para continuar a fazer alterações.

Todo este sistema enquadra-se bem com as unidades curricular lecionadas no presente semestre. Sistemas Distribuidos entra maioritariamente na necessidade do sistema ter redundâncias implementadas, como backups em vários lugares prontos a ser utilizados e necessidade de existir uma sincronização entre os ficheiros originais, alterados e em alteração. Sendo também de caráter bastante importante a segurança do sistema, como a utilização de autenticação 2 fatores por exemplo.

Alterações realizadas ao longo do projeto

1. Autenticação 2 fatores (e-mail/telefone ou app, por decidir).

Sistema de login não implementado. O programa corre apenas no computador do utilizador.

2. Backup de ficheiros em Cloud (AWS EC2)

Implementação com AWS começou a inferir em custos logo tornou-se inviavel.

3. Controlo de tempo de vida de sessão

Visto não ter sido implementado o sistema de login, não existe controlo de sessões.

4. Comparação de Hashs

É realizado armazenamento de hashs na base de dados e é possível a sua visualização em tabela antes de proceder ao download do arquivo novamente.

5. Alteração de passwords periódicas

Visto que não existem utilizadores nesta versão do sistema, não são utilizadas passwords.

6. Implementação com HAProxy/NGINX

Foi utilizado o NGINX como load balancer e como webserver

7. Registo automático de alterações a ficheiros

Não foi atingida esta meta.

8. HoneyPot

Não aplicável.

9. Controlo de Formatos de ficheiros/tamanho

Formatos permitidos nesta implementação – txt/html/pdf.

Tamanho máximo permitido – 8M por ficheiro

Arquitetura da solução

Tecnologias a utilizar

Segue uma lista das tecnologias que pretendemos utilizar para o desenvolvimento do sistema:

- NginX para o loadBalancing do sistema e implementação da API;
- MySQL para base de dados relacional;
- PHP para desenvolvimento componentes web;
- Docker para virtualização dos servidores;

Melhoramento em relação à entrega

O load balancing do projeto esta a funcionar, existem 2 apps php-fpm, se uma for abaixo os pedidos são feitos à outra.

É feita uma atualização da tabela dos dados presentes na base dados automaticamente após uma inserção nova.

É criado um link de download para o cada ficheiro presente na base de dados.

A replicação esta a funcionar entre o servidor databaseA (master) e servidor databaseB (master) e é feita após cada inserção de ficheiros novos.

É feita uma restrição do tipo e tamanho dos dados inseridos para proteger de inserção de executaveis por exemplo.

Como correr a aplicação

Para correr a aplicação é necessário ter o docker instalado e a correr.

Passo 2:

>docker volume create -name=dataB

>docker volume create -name=dataB

Passo 3: Correr a aplicação

>docker-compose build

>docker-compose -p g02 up

Passo 4: base de dados

- Para aceder às bases de dados pode entrar no browser>localhost:8081
 - o Credências: root/Password
- Ao ser a primeira vez que lança o projeto, é necessário estabelecer a conecção MASTER>SLAVE.
 - o guarde os valores das variáveis log_file e log_pos
 - aceder à databaseB e correr o sql presente no ficheiro createsB.sql, pode ser feito copy/paste.
 - substituir os valores MASTER_LOG_FILE e MASTER_LOG_POS pelos valores registados anteriormente.

Após estes passos a aplicação esta a funcionar no localhost:8080 e é possivel ver as configurações do php em localhost:8080/phpinfo.php