ØV12 — MULTIRATE

Innleveringsfrist: 20. november 2020.

Ukeoppgavene skal løses selvstendig og vurderes i øvingstimene. Det forventes at alle har satt seg inn i fagets øvingsopplegg og godkjenningskrav for øvinger. Dette er beskrevet påhjemmesiden til IN3190:

http://www.uio.no/studier/emmer/matnat/ifi/IN3190/h20/informasjon-om-ovingsopplegget/

Oppgave 1 — Opp- og nedsampling

1.5 Points

Et signal x[n] har Fourier transformasjon $X(\Omega)$ som gitt under

Signalet benyttes som inngangssignal på systemene I og II definert under:

I:
$$x[n] \rightarrow \uparrow 3 \rightarrow w_1[n] \rightarrow H_0(z) \rightarrow z_1[n] \rightarrow \downarrow 2 \rightarrow y_1[n]$$

II:
$$x[n] \rightarrow \downarrow 2 \rightarrow w_2[n] \rightarrow \uparrow 3 \rightarrow z_2[n] \rightarrow H_0(z) \rightarrow y_2[n]$$

" $\downarrow M$ \rightarrow " betyr nedsampling med faktor M (beholde hvert Mte sampel) og " $\uparrow N$ \rightarrow " betyr null-interpolering med faktor N (sette inn N-1 nuller mellom hvert sampel). $H_0(z)$ er et ideelt lavpassfilter med cut-off frekvens $w_c = \pi/3$ og forsterkning (gain) lik 2.

For begge systemer, skisser Fourier transformasjonen til signalene $w_1[n]$, $w_2[n]$, $z_1[n]$, $z_2[n]$, $y_1[n]$ og $y_2[n]$. Husk akser og benevning på alle plott. (1/4 poeng for hvert rett plott).

Oppgave 2 — MA-filtre

2 Points

Et MA-filter av orden K-1 er et kausalt FIR-filter med K koeffisienter, og en impulsrespons gitt ved:

$$h[n] = \frac{1}{K} \sum_{k=0}^{K-1} \delta[n-k]$$
 (1)

- a) Finn frekvensresponsen $H(\Omega)$ til MA-filteret av orden K-1.
- **b**) Finn ved regning hvor mange nullpunkter et MA-filter av orden K-1 har, og hvilke frekvenser de nuller ut.
- c) Hvilke ordner kan et MA-filter ha hvis det skal nulle ut frekvensen $\Omega = \frac{\pi}{\rho}$, der P er et heltall.
- **d)** Vis at et MA-filter av orden K-1 kan implementeres som et FIR-filter med impulsrespons $h_{FIR}[n]$ i kaskade med et IIR-filter med impulsrespons $h_{IIR}[n]$ der

$$h_{FIR}[n] = \frac{1}{K} (\delta[n] - \delta[n - K]), \quad h_{IIR}[n] = u[n]$$
 (2)

Oppgave 3 — Opp- og nedsampling

2 Points

Et analogt signal $x_c(t)$ konverteres til et digitalt signal, oppsamples og filtreres før det multipliseres med signalet $e^{j\pi n}$. Deretter utføres en kombinert nedsampling og konvertering tilbake til et analogt signal. Systemet er vist skjematisk i figuren under.

Skjematisk skisse av system.

Filteres som benyttes i systemet er spesifisert som følger:

$$H(\omega) = H(e^{j\omega}) = \begin{cases} 1, & |\omega| < \pi/L, \\ 0, & \pi/L < |\omega| \le \pi. \end{cases}$$

Inngangsignalet $x_c(t)$ har amplitudespekter, $X_c(j\Omega)$, som følger:

Amplitudespekter til inngangsignal $x_c(t)$.

a) Skisser spektrene til x[n], v[n], w[n], y[n] og $y_c(t)$ hvor dette er signalene som vist i skissen av systemet over.

Oppgave 4 — Flervalgsoppgave

2.5 Points

I de følgende 5 deloppgavene er det gitt flere svaralternativer, kun ett av disse er riktig. Du må angi ett og bare ett svaralternativ for hver deloppgave. Rett svar gir 1/2 poeng, galt svar gir -1/4 poeng, åpent svar gir 0 poeng. Gardering (mer enn ett svar på en deloppgave) gir 0 poeng.

Oppgave 4-1

Figur 1 viser en anvendelse av multi-rate signalbehandling, kalt en *filterbank*, som blir brukt i f.eks. MP3-koding. Filterbanken splitter et innsignal f[n] (som her antas samplet ved laveste frekvens som tilfredsstiller Shannons samplingsteorem) opp i 4 delsignaler $f_1[n]$, $f_2[n]$, $f_3[n]$ og $f_4[n]$. Filtrene $H_1(z), \dots, H_4(z)$ er ideelle båndpass-filtre med magnituderespons som vist i Figur 2. Disse filtrene blir brukt til å båndbegrense de 4 delsignalene. Anta at nedsamplingsfaktorene D_1, \dots, D_4 velges slik at hvert delsignal er samplet med laveste samplingsrate som tilfredsstiller Shannons samplingsteorem. Avgjør om summen av antall sampler pr. sekund for signalene $f_1[n], \dots, f_4[n]$ er, i forhold til antall sampler pr. sekund for signalet f[n]:

- a) Større.
- **b**) Like stort.
- c) Mindre.
- d) Dette er umulig å avgjøre ut fra informasjonen gitt i oppgaveteksten.

Figur 1: Oppgave 4-1

0.5 p.

Figur 2: Oppgave 4-1

Oppgave 4-2

Gitt et signal x(t) i kontinuerlig tid, med magnitudespektrum |X(F)| som vist i Figur 3. Hva er minste tilstrekkelige samplingsrate for dette signalet?

0.5 p.

0.5 p.

- a) $2(m+1)F_0 2mF_0$
- **b)** $2mF_0 + 2F_0$
- c) $2[(m+1)F_0 + mF_0]$
- **d**) $(2m+1)F_0$

Figur 3: Oppgave 4-2

Oppgave 4-3

I multi-rate signalbehandling kan vi endre samplingsraten fra f_s til en vilkårlig brøk $\frac{I}{D}f_s$ ved å kombinere oppsampling med en faktor I og nedsampling med en faktor D. Hvis I og D er store tall som ikke er primtall ($I = I_1I_2 \cdots I_M$, $D = D_1D_2 \cdots D_N$), så er det mulig å gjennomføre oppsampling og nedsampling i hhv. M og N steg. Under er det gitt fire ulike implementasjoner som alle endrer samplingsraten fra f_s til $\frac{16}{25}f_s$, der $H_m(z)$ er et lavpassfilter med knekkfrekvens π/m . Hvilken av implementasjonene har minst tap av informasjon gitt et inn-signal der f_s tilsvarer Nyquist-raten?

e) Det er umulig å avgjøre uten mer informasjon om signalet.

Oppgave 4-4

Gitt et filter h[n] med systemfunksjon $H(z) = \frac{1 - 1.6z^{-1} + z^{-2}}{1 - 1.5z^{-1} + 0.8z^{-2}}$. Hvor mye forsterker dette filteret dc-komponenten (dvs. komponenten med frekvens f = 0) i et signal?

a) 0

b) 1.33

c) 1

d) 1.6

Oppgave 4-5

Et filter har pol-nullpunkts plott som gitt i Figur 4. Hvilken av følgende differanselikninger beskriver dette systemet?

a) y[n] = -4.7880y[n-1] - 0.5630y[n-2] + x[n] + x[n-1]

b) y[n] = 1.2990y[n-1] - 0.5625y[n-2] + x[n] + x[n-1]

c) y[n] = -1.7190y[n-1] - 0.5620y[n-2] + x[n] + x[n-1]

d) y[n] = 2.5y[n-1] - 0.5610y[n-2] + x[n] + x[n-1]

Figur 4: Oppgave 4-5

Oppgave 5 — Sampling og nedsampling

2 Points

0.5 p.

Vi har gitt et båndbegrenset signal $x_a(t)$ med en kontinuerlig-tid Fourier transform $X_a(j\Omega)$ som er symmetrisk om $\Omega=0$, gitt for $\Omega\geq 0$ ved

$$X_a(j\Omega) = \begin{cases} 1, & 0 \le \Omega \le \Omega_m/2 \\ 2 - \frac{2\Omega}{\Omega_m}, & \frac{\Omega_m}{2} < \Omega \le \Omega_m \\ 0, & \Omega > \Omega_m. \end{cases}$$

En skisse av $X_a(j\Omega)$ er vist i Figur 1. Signalet $x_a(t)$ samples så til sekvensen x[n] med samplingsperioden $T = \pi/(2\Omega_m)$.

Figur 1: $x_a(t)$ vist i frekvensdomenet.

Oppgave a

Lag en skisse av $X(e^{j\omega})$ for $0 \le \omega < 2\pi$.

Oppgave b

x(n) nedsamples så med en faktor 4 til $x_d(n)$. Forklar sammenhengen mellom $X(e^{j\omega})$ og $X_d(e^{j\omega})$. Bruk dette til å lage en skisse av $|X_d(e^{j\omega})|$ for $0 \le \omega < 2\pi$.