Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 6: Complementi di algebra lineare

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2021-2022

In questa lezione

- ▶ Altri fatti utili su matrici
- ▶ Forma canonica di Jordan
- ▶ Comandi Matlab[®]

Calcolo determinante e inversa

1. Sia $F \in \mathbb{R}^{n \times n}$, per ogni $i = 1, \ldots, n$ $(j = 1, \ldots, n)$, si ha

$$\det(F) = \sum_{i=1}^{n} (-1)^{i+j} F_{ij} \det(F_{i-,j-}), \ \left(\det(F) = \sum_{i=1}^{n} (-1)^{i+j} F_{ij} \det(F_{i-,j-}) \right)$$

dove F_{i-j-} è la matrice ottenuta cancellando la riga i e la colonna j di F.

Calcolo determinante e inversa

1. Sia $F \in \mathbb{R}^{n \times n}$, per ogni $i = 1, \ldots, n$ $(j = 1, \ldots, n)$, si ha

$$\det(F) = \sum_{i=1}^{n} (-1)^{i+j} F_{ij} \det(F_{i-,j-}), \ \left(\det(F) = \sum_{i=1}^{n} (-1)^{i+j} F_{ij} \det(F_{i-,j-})\right)$$

dove $F_{i-,i-}$ è la matrice ottenuta cancellando la riga i e la colonna j di F.

2. Una matrice $F \in \mathbb{R}^{n \times n}$ è detta invertibile se esiste una matrice $H \in \mathbb{R}^{n \times n}$ tale che FH = HF = I, dove I è la matrice identità; $F^{-1} = H$ è detta inversa di F. F è invertibile se e solo se $det(F) \neq 0$. La matrice inversa F^{-1} si può calcolare come

$$F^{-1} = rac{\operatorname{\mathsf{adj}}(F)}{\det(F)},$$

dove adj(F) è la matrice aggiunta di F, $[adj(F)]_{ij} = (-1)^{i+j} det(F_{i-,i-})$.

G. Baggio

Lez. 6: Richiami di algebra lineare

0.14 0000

Matrici triangolari (a blocchi)

1. Una matrice $F \in \mathbb{R}^{n \times n}$ si dice triangolare superiore (inferiore) se è della forma

$$F = \begin{bmatrix} \star & \star & \cdots & \star \\ 0 & \star & \cdots & \star \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \star \end{bmatrix} \quad \left(F = \begin{bmatrix} \star & 0 & \cdots & 0 \\ \star & \star & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \star & \cdots & \star & \star \end{bmatrix} \right).$$

Gli autovalori di una matrice triangolare F sono gli elementi sulla diagonale. L'inversa di una matrice triangolare F (quando esiste) è ancora triangolare e i suoi elementi sulla diagonale soddisfano $[F^{-1}]_{ii}=1/F_{ii}$.

G. Baggio	Lez. 6: Richiami di algebra lineare	9 Marzo 2022

Matrici triangolari (a blocchi)

2. Una matrice $F \in \mathbb{R}^{n \times n}$ si dice triangolare superiore (inferiore) a blocchi se

$$F = \begin{bmatrix} \frac{\star}{0} & \star & \cdots & \star \\ \hline 0 & \star & \cdots & \star \\ \hline \vdots & \ddots & \ddots & \vdots \\ \hline 0 & \cdots & 0 & \star \end{bmatrix} \quad \left(F = \begin{bmatrix} \frac{\star}{0} & 0 & \cdots & 0 \\ \hline \star & \star & \cdots & 0 \\ \hline \vdots & \ddots & \ddots & \vdots \\ \star & \cdots & \star & \star \end{bmatrix} \right),$$

dove gli " \star " sulla diagonale sono matrici quadrate di dimensioni anche diverse tra loro. Gli autovalori di una matrice triangolare a blocchi F sono l'unione degli autovalori dei blocchi sulla diagonale. L'inversa di una matrice triangolare F a blocchi (quando esiste) è ancora triangolare a blocchi con blocchi diagonali di F^{-1} pari alle inverse dei blocchi diagonali di F.

G. Baggio

Lez. 6: Richiami di algebra lineare

9 Marzo 2022

Esempio: determinante e matrice inversa

$$F = egin{bmatrix} 1 & 0 & 0 \ 2 & 2 & 1 \ 1 & 0 & 1 \end{bmatrix}, \qquad \det(F)? \ F^{-1}?$$

$$\det(F)=2 \implies F \text{ invertibile,} \qquad F^{-1}=\begin{bmatrix} 1 & 0 & 0 \\ -1/2 & 1/2 & -1/2 \\ -1 & 0 & 1 \end{bmatrix}$$

Forma di Jordan: idea generale

 $F \in \mathbb{R}^{n \times n}$ con autovalori $\{\lambda_i\}_{i=1}^k$

 $\nu_i = \text{molteplicità algebrica } \lambda_i$

 $g_i = \mathsf{molteplicita}$ geometrica λ_i

Caso 1: $\nu_i = g_i$ per ogni $i \implies F$ diagonalizzabile \checkmark

Caso 2: Esiste i tale che $\nu_i > g_i \implies F$ non diagonalizzabile \times

possiamo trasformare la matrice in una forma a blocchi diagonali o "quasi" diagonali (forma di Jordan)

G. Baggio

Lez. 6: Richiami di algebra lineare

9 Marzo 2022

Forma di Jordan: teorema

Teorema: Siano $\{\lambda_i\}_{i=1}^k$ gli autovalori di $F \in \mathbb{R}^{n \times n}$. Esiste una $T \in \mathbb{R}^{n \times n}$ tale che

$$F_{J} \triangleq T^{-1}FT = \begin{bmatrix} \frac{J_{\lambda_{1}} & 0 & \cdots & 0}{0 & J_{\lambda_{2}} & \ddots & \vdots} \\ \vdots & \ddots & \ddots & 0 \\ \hline 0 & \cdots & 0 & J_{\lambda_{k}} \end{bmatrix}, J_{\lambda_{i}} = \begin{bmatrix} \frac{J_{\lambda_{i},1}}{0} & 0 & \cdots & 0 \\ \hline 0 & J_{\lambda_{i},2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \hline 0 & \cdots & 0 & J_{\lambda_{i},g_{i}} \end{bmatrix}, J_{\lambda_{i},j} = \begin{bmatrix} \lambda_{i} & 1 & \cdots & 0 \\ 0 & \lambda_{i} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & \lambda_{i} \end{bmatrix} \in \mathbb{R}^{r_{ij} \times r_{ij}}.$$

Inoltre F_J è unica a meno di permutazioni dei blocchi $\{J_{\lambda_i}\}$ e miniblocchi $\{J_{\lambda_i,j}\}$.

 $F_J =$ forma canonica di Jordan di F

G. Baggio

Lez. 6: Richiami di algebra lineare

9 Marzo 2022

Forma di Jordan: osservazioni

- 1. Esiste una procedura algoritmica per il calcolo della trasformazione T
- **2.** Dim. blocco J_{λ_i} associato a $\lambda_i =$ molteplicità algebrica ν_i
- **3.** # miniblocchi $\{J_{\lambda_i,j}\}$ associati a λ_i = molteplicità geometrica g_i
- **4.** In generale, per determinare F_J non è sufficiente conoscere gli autovalori $\{\lambda_i\}$ e i valori di $\{\nu_i\}$, $\{g_i\}$, ma bisogna anche conoscere i valori di $\{r_{ii}\}$!
- **5.** Se $\nu_i \leq 3 \ \forall i$, è possibile calcolare F_J conoscendo solo $\{\lambda_i\}$, $\{\nu_i\}$, $\{g_i\}$!

G. Baggio

Lez. 6: Richiami di algebra lineare

9 Marzo 2022

Forma di Jordan: esempi

1.
$$F = \begin{bmatrix} 3 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \implies \lambda_1 = 2, \ \nu_1 = 3, \ g_1 = 2 \implies F_J = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

2.
$$F = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & \alpha \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
, $\alpha = 0, 1 \implies \lambda_1 = 1$, $\nu_1 = 4$, $g_1 = 2$
$$\implies F_J = \begin{cases} \begin{bmatrix} \frac{1}{0} & \frac{1}{0} & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, & \alpha = 0 \\ \begin{bmatrix} \frac{1}{0} & \frac{1}{0} & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, & \alpha = 1 \end{cases}$$

G. Baggio

Lez. 6: Richiami di algebra lineare

9 Marzo 2022

Comandi Matlab® – Matrio	ci
eig(F)	calcola autovalori della matrice F ;
[V,D] = eig(F)	calcola matrice V con autovettori di F e matrice diagonale D con autovalori corrispondenti;
<pre>det(F) null(F) orth(F) rank(F) inv(F)</pre>	calcola determinante di F ; calcola base (ortonormale) di ker F ; calcola base (ortonormale) di im F ; calcola rango di F ; calcola inversa di F ;
[T,J] = jordan(F)	calcola forma di Jordan di F (matrice J) e matrice di cambio base di Jordan (matrice T) (N.B. richiede Symbolic Math Toolbox);
G. Baggio Lez.	6: Richiami di algebra lineare 9 Marzo 2022