Weekly Report - 07.11.2017

Figure 1: The circuit in GaNFET

Figure 2: GaN Model

Figure 3: Top and Bottom Switch Characteristics (Yellow-> TOP, Blue-> BOTTOM)

Figure 4: Top Switch Turn OFF, Bottom Switch Turn ON

Figure 5: Top Switch Turn ON, Bottom Switch Turn OFF

Figure 6: Reasons for Oscillation

Figure 7: Top Switch Turn ON/OFF Curves

Ids vs Vds curves for different Vgs values for Top Switch RED ARROW shows TURN OFF BLUE ARROW shows TURN ON

Figure 8: Top Switch Turn ON/OFF

lds vs Vds curves for different Vgs values for Top Switch **RED ARROW shows TURN OFF BLUE ARROW shows TURN ON** 14 12 Vgs = -3 Vgs = -2 10 Vgs = -1 Vgs = 0 8 Vgs = 1 Ids(A) Vgs = 2 6 Vgs = 3 Vgs = 4 4 Vgs = 5 2 0 -2 -2 0 2 6 8 Vds(V)

Figure 9: Top Switch Turn ON / OFF

Figure 10: Bottom Switch Turn ON/OFF Curves

Ids vs Vds curves for different Vgs values for Bottom Switch BLACK ARROW shows TURN OFF MAGENTA ARROW shows TURN ON

Figure 11: Bottom Switch Turn ON/OFF

lds vs Vds curves for different Vgs values for Bottom Switch BLACK ARROW shows TURN OFF

Figure 12: Bottom Switch Turn ON/OFF

Figure 13: Top Switch Turn OFF, Bottom Switch Turn ON when Ls and Lg are connected

Figure 14: Top Switch Turn ON, Bottom Switch Turn ON when Ls and Lg are connected

Figure 15: Switch Characteristics when Ld is connected too

Figure 16: Top Switch Turn OFF, Bottom Switch Turn ON when all parasitic exist

Figure 17: Top Switch Turn ON, Bottom Switch Turn OFF when all parasitic exist

GS66508 I/V curve (T_J=25°C)

Figure 18: I-V Curve for GaNFET

Figure 19: Small Signal Equivalent Circuit for Reverse Conduction

Figure 20: Our Small Signal Circuit for Reverse Conduction

Figure 21: Simplification

Figure 22: Block Diagram for Reverse Conduction

$$A(s) = \frac{i_{ch}(s)}{v_{gd}(s)} = g_m$$

$$F(s) = \frac{v_{gd}(s)}{i_{ch}(s)} = -\frac{Z_7 * Z_9}{Z_7 + Z_8 + Z_9}$$

$$G(s) = A(s) * F(s)$$

Figure 23: Proper Block Diagram for Reverse Conduction

$$T(s) = \frac{A(s)}{1 - G(s)}$$

GS66508 I/V curve (T_J=25°C)

Figure 24: I-V Curve for GaNFET

Figure 25: Small Signal Circuit for Forward Conduction

$$Z1 = Z1'$$

$$Z2 = Z2'$$

$$Z3 = Z3'$$

$$A(s) = \frac{i_{ch}(s)}{v_{ds}(s)} = g_{m}'$$

$$F(s) = \frac{v_{ds}(s)}{i_{ch}(s)} = -\frac{(Z_7 + Z_8) * Z_9}{Z_7 + Z_8 + Z_9}$$

Same characteristic equations for open loop transfer functions!

Figure 26: Pole Zero Map for Closed Loop Transfer Function

Figure 27: Pole Zero Map - Zoomed

$$\omega = 2 * \pi * f = 2.92 * 10^9 \ rad/s$$

 $f = 464.7 \ MHz$

Figure 28: Reverse Conduction Oscillation

Figure 29: Forward Conduction Oscillation

Figure 30: Root-Locus

Fig. 12. Damping ratio ζ vs. transconductance g_{∞}

Fig. 13. Damping ratio ζ vs. common-source inductance L_S .

Fig. 15. Damping ratio ζ vs. power loop resistance R_{loop}

Fig. 16. Damping ratio ζ vs. external capacitance C_{ext} paralleled with C_{ass2} .

Figure 31: Damping Control

Next Week

Capacitance Modelling

Figure 32: Ciss, Coss, Crss vs Vds Graph

- Loss Analyzation
- Stability Analyzation