Stacionární ustálený stav v lineárních obvodech (XEO1)

Vzorové příklady ke zkoušce z předmětu

Obvody podle obrázků v tabulce jsou napájeny zdrojem stejnosměrného napětí U a zdrojem stejnosměrného proudu I.

- A. Určete napětí U_x a výkon P dodávaný obvodu zdrojem napětí U.
- B. Určete proud I_x a výkon P dodávaný obvodu zdrojem napětí U.
- C. Určete napětí U_x a výkon P dodávaný obvodu zdrojem proudu I.
- D. Určete proud I_x a výkon P dodávaný obvodu zdrojem proudu I.

$$R_1 = 1 \text{ k}\Omega, R_2 = 2 \text{ k}\Omega, R_3 = 3 \text{ k}\Omega, R_4 = 4 \text{ k}\Omega$$

 $U = 5 \text{ V}, I = 10 \text{ mA}$

<u>výsledek</u>

B.
$$R_1=1\,\mathrm{k}\Omega,\,R_2=2\,\mathrm{k}\Omega,\,R_3=3\,\mathrm{k}\Omega,\,R_4=4\,\mathrm{k}\Omega,\,U=5\,\mathrm{V},\,I=10\,\mathrm{mA}$$

<u>výsledek</u>

$$R_1 = 1 \,\mathrm{k}\Omega, \ R_2 = 2 \,\mathrm{k}\Omega, \ R_3 = 3 \,\mathrm{k}\Omega, \ R_4 = 4 \,\mathrm{k}\Omega$$
 $U = 5 \,\mathrm{V}, \ I = 10 \,\mathrm{mA}$

<u>výsledek</u>

D.
$$R_1 = 1 \,\mathrm{k}\Omega, \; R_2 = 2 \,\mathrm{k}\Omega, \; R_3 = 3 \,\mathrm{k}\Omega, \; R_4 = 4 \,\mathrm{k}\Omega$$
 $U = 5 \,\mathrm{V}, \; I = 10 \,\mathrm{mA}$

<u>výsledek</u>

$$R_1 = 1 \text{ k}\Omega, R_2 = 2 \text{ k}\Omega, R_3 = 3 \text{ k}\Omega, R_4 = 4 \text{ k}\Omega, R_1 = 1 \text{ k}\Omega, R_2 = 2 \text{ k}\Omega, R_3 = 3 \text{ k}\Omega, R_4 = 4 \text{ k}\Omega, U = 5 \text{ V}, I = 10 \text{ mA}$$

<u>výsledek</u>

B. B.
$$R_1 = 1 \text{ k}\Omega$$
, $R_2 = 2 \text{ k}\Omega$, $R_3 = 3 \text{ k}\Omega$, $R_4 = 4 \text{ k}\Omega$, $R_1 = 1 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$, $R_3 = 3 \text{ k}\Omega$, $R_4 = 4 \text{ k}\Omega$, $U = 5 \text{ V}$, $I = 10 \text{ mA}$

výsledek

C.
$$R_1 = 1 \text{ k}\Omega$$
, $R_2 = 2 \text{ k}\Omega$, $R_3 = 3 \text{ k}\Omega$, $R_4 = 4 \text{ k}\Omega$, $R_1 = 1 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$, $R_3 = 3 \text{ k}\Omega$, $R_4 = 4 \text{ k}\Omega$, $U = 5 \text{ V}$, $I = 10 \text{ mA}$

<u>výsledek</u>

D.
$$R_1 = 1 \,\mathrm{k}\Omega, \ R_2 = 2 \,\mathrm{k}\Omega, \ R_3 = 3 \,\mathrm{k}\Omega, \ R_4 = 4 \,\mathrm{k}\Omega, \ U = 5 \,\mathrm{V}, \ I = 10 \,\mathrm{mA}$$
 D. $R_1 = 1 \,\mathrm{k}\Omega, \ R_2 = 2 \,\mathrm{k}\Omega, \ R_3 = 3 \,\mathrm{k}\Omega, \ R_4 = 4 \,\mathrm{k}\Omega, \ U = 5 \,\mathrm{V}, \ I = 10 \,\mathrm{mA}$

<u>výsledek</u>

 $R_1 = 1 \,\mathrm{k}\Omega, \, R_2 = 2 \,\mathrm{k}\Omega, \, R_3 = 3 \,\mathrm{k}\Omega, \, R_4 = 4 \,\mathrm{k}\Omega, \, R_1 = 1 \,\mathrm{k}\Omega, \, R_2 = 2 \,\mathrm{k}\Omega, \, R_3 = 3 \,\mathrm{k}\Omega, \, R_4 = 4 \,\mathrm$ $U = 5 \, \text{V}, I = 10 \, \text{mA}$

<u>výsledek</u>

B. $R_1 = 1 \,\mathrm{k}\Omega, \, R_2 = 2 \,\mathrm{k}\Omega, \, R_3 = 3 \,\mathrm{k}\Omega, \, R_4 = 4 \,\mathrm{k}\Omega, \, R_1 = 1 \,\mathrm{k}\Omega, \, R_2 = 2 \,\mathrm{k}\Omega, \, R_3 = 3 \,\mathrm{k}\Omega, \, R_4 = 4 \,\mathrm{k}\Omega,$ $U = 5 \,\text{V}, I = 10 \,\text{mA}$

<u>výsledek</u>

C. $U = 5 \,\text{V}, I = 10 \,\text{mA}$

<u>výsledek</u>

D. $U = 5 \, \text{V}, I = 10 \, \text{mA}$

<u>výsledek</u>

В. $U = 5 \, \text{V}, I = 10 \, \text{mA}$

<u>výsledek</u>

C. $R_1 = 1 \,\mathrm{k}\Omega, \, R_2 = 2 \,\mathrm{k}\Omega, \, R_3 = 3 \,\mathrm{k}\Omega, \, R_4 = 4 \,\mathrm{k}\Omega, \, R_1 = 1 \,\mathrm{k}\Omega, \, R_2 = 2 \,\mathrm{k}\Omega, \, R_3 = 3 \,\mathrm{k}\Omega, \, R_4 = 4 \,\mathrm{k}\Omega,$ $U = 5 \,\text{V}, I = 10 \,\text{mA}$

výsledek

D. $R_1 = 1 \,\mathrm{k}\Omega, \, R_2 = 2 \,\mathrm{k}\Omega, \, R_3 = 3 \,\mathrm{k}\Omega, \, R_4 = 4 \,\mathrm{k}\Omega, \, R_1 = 1 \,\mathrm{k}\Omega, \, R_2 = 2 \,\mathrm{k}\Omega, \, R_3 = 3 \,\mathrm{k}\Omega, \, R_4 = 4 \,\mathrm{k}\Omega,$ $U = 5 \, \text{V}, I = 10 \, \text{mA}$

<u>výsledek</u>

 $R_1 = 1 \,\mathrm{k}\Omega, \, R_2 = 2 \,\mathrm{k}\Omega, \, R_3 = 3 \,\mathrm{k}\Omega, \, R_4 = 4 \,\mathrm{k}\Omega, \, R_1 = 1 \,\mathrm{k}\Omega, \, R_2 = 2 \,\mathrm{k}\Omega, \, R_3 = 3 \,\mathrm{k}\Omega, \, R_4 = 4 \,\mathrm{k}\Omega,$ $U = 5 \,\text{V}, I = 10 \,\text{mA}$

<u>výsledek</u>

 $U = 5 \, \text{V}, I = 10 \, \text{mA}$

<u>výsledek</u>

C. $R_1 = 1 \,\mathrm{k}\Omega, \, R_2 = 2 \,\mathrm{k}\Omega, \, R_3 = 3 \,\mathrm{k}\Omega, \, R_4 = 4 \,\mathrm{k}\Omega, \, R_1 = 1 \,\mathrm{k}\Omega, \, R_2 = 2 \,\mathrm{k}\Omega, \, R_3 = 3 \,\mathrm{k}\Omega, \, R_4 = 4 \,\mathrm{k}\Omega,$ $U = 5 \,\text{V}, I = 10 \,\text{mA}$

<u>výsledek</u>

D. $U = 5 \,\text{V}, I = 10 \,\text{mA}$

<u>výsledek</u>

Α. $U = 5 \,\text{V}, I = 10 \,\text{mA}$

<u>výsledek</u>

 $R_1 = 1 \,\mathrm{k}\Omega, \, R_2 = 2 \,\mathrm{k}\Omega, \, R_3 = 3 \,\mathrm{k}\Omega, \, R_4 = 4 \,\mathrm{k}\Omega, \, R_1 = 1 \,\mathrm{k}\Omega, \, R_2 = 2 \,\mathrm{k}\Omega, \, R_3 = 3 \,\mathrm{k}\Omega, \, R_4 = 4 \,\mathrm{k}\Omega,$ $U = 5 \, \text{V}, I = 10 \, \text{mA}$

<u>výsledek</u>

C. $U = 5 \, \text{V}, I = 10 \, \text{mA}$

<u>výsledek</u>

 $R_1 = 1 \,\mathrm{k}\Omega, \, R_2 = 2 \,\mathrm{k}\Omega, \, R_3 = 3 \,\mathrm{k}\Omega, \, R_4 = 4 \,\mathrm{k}\Omega, \, R_1 = 1 \,\mathrm{k}\Omega, \, R_2 = 2 \,\mathrm{k}\Omega, \, R_3 = 3 \,\mathrm{k}\Omega, \, R_4 = 4 \,\mathrm{k}\Omega,$ $U = 5 \,\text{V}, I = 10 \,\text{mA}$

<u>výsledek</u>

 $R_1 = 1 \,\mathrm{k}\Omega,\ R_2 = 2 \,\mathrm{k}\Omega,\ R_3 = 3 \,\mathrm{k}\Omega,\ R_4 = 4 \,\mathrm{k}\Omega,$ $U = 5 \,\text{V}, I = 10 \,\text{mA}$

<u>výsledek</u>

B.
$$R_1 = 1 \,\mathrm{k}\Omega, \, R_2 = 2 \,\mathrm{k}\Omega, \, R_3 = 3 \,\mathrm{k}\Omega, \, R_4 = 4 \,\mathrm{k}\Omega, \, U = 5 \,\mathrm{V}, \, I = 10 \,\mathrm{mA}$$

<u>výsledek</u>

$$R_1 = 1 \,\mathrm{k}\Omega, \; R_2 = 2 \,\mathrm{k}\Omega, \; R_3 = 3 \,\mathrm{k}\Omega, \; R_4 = 4 \,\mathrm{k}\Omega, \; U = 5 \,\mathrm{V}, \; I = 10 \,\mathrm{mA}$$

<u>výsledek</u>

D.
$$R_1 = 1 \text{ k}\Omega$$
, $R_2 = 2 \text{ k}\Omega$, $R_3 = 3 \text{ k}\Omega$, $R_4 = 4 \text{ k}\Omega$. $U = 5 \text{ V}$, $I = 10 \text{ mA}$

<u>výsledek</u>

 $R_1 = 1 \,\mathrm{k}\Omega, \; R_2 = 2 \,\mathrm{k}\Omega, \; R_3 = 3 \,\mathrm{k}\Omega, \; R_4 = 4 \,\mathrm{k}\Omega,$ $U = 5 \, \text{V}, I = 10 \, \text{mA}$

<u>výsledek</u>

B.
$$R_1 = 1 \text{ k}\Omega, R_2 = 2 \text{ k}\Omega, R_3 = 3 \text{ k}\Omega, R_4 = 4 \text{ k}\Omega, R_1 = 1 \text{ k}\Omega, R_2 = 2 \text{ k}\Omega, R_3 = 3 \text{ k}\Omega, R_4 = 4 \text{ k}\Omega, U = 5 \text{ V}, I = 10 \text{ mA}$$

<u>výsledek</u>

C.
$$R_1 = 1 \,\mathrm{k}\Omega, \; R_2 = 2 \,\mathrm{k}\Omega, \; R_3 = 3 \,\mathrm{k}\Omega, \; R_4 = 4 \,\mathrm{k}\Omega, \; U = 5 \,\mathrm{V}, \; I = 10 \,\mathrm{mA}$$

<u>výsledek</u>

D.
$$R_1 = 1 \text{ k}\Omega, R_2 = 2 \text{ k}\Omega, R_3 = 3 \text{ k}\Omega, R_4 = 4 \text{ k}\Omega, U = 5 \text{ V}, I = 10 \text{ mA}$$
 D. $R_1 = 1 \text{ k}\Omega, R_2 = 2 \text{ k}\Omega, R_3 = 3 \text{ k}\Omega, R_4 = 4 \text{ k}\Omega, U = 5 \text{ V}, I = 10 \text{ mA}$

<u>výsledek</u>

E. Obvody podle obrázků v tabulce jsou napájeny zdroji stejnosměrného napětí U₁ a U₂. Určete napětí U_x a výkon dodávaný obvodu zdrojem U₁.

F. Obvody podle obrázků v tabulce jsou napájeny zdroji stejnosměrného napětí U₁ a U₂. Určete výkon dodávaný obvodu oběma zdroji.

G. Obvody podle obrázků v tabulce jsou napájeny zdroji stejnosměrného napětí U_1 a U_2 . Určete proud I_x a výkon dodávaný obvodu zdrojem U_2 .

H. Obvody podle obrázků v tabulce jsou napájeny zdroji stejnosměrného proudu I₁ a I₂. Určete výkon dodávaný obvodu oběma zdroji.

I. Obvody podle obrázků v tabulce jsou napájeny zdroji stejnosměrného proudu I₁ a I₂. Určete proud I_x a výkon dodávaný obvodu zdrojem I₁.

J. Obvody podle obrázků v tabulce jsou napájeny zdroji stejnosměrného proudu I_1 a I_2 . Určete napětí U_x a výkon dodávaný obvodu zdrojem I_2 .

K. Obvody podle obrázků v tabulce jsou napájeny zdrojem stejnosměrného napětí U_1 . Vypočítejte napětí U_2 na výstupu obvodu a výkon spotřebovávaný v rezistoru R_4 .

L. Obvody podle obrázků v tabulce jsou napájeny zdrojem stejnosměrného proudu I_1 . Vypočítejte napětí U_2 na výstupu obvodu a výkon spotřebovávaný v rezistoru R_4 .

M. Obvody podle obrázků v tabulce jsou ve stacionárním ustáleném stavu. Vypočítejte proud I₅ tekoucí rezistorem R₅ a výkon spotřebovávaný v tomto rezistoru.

N. $\overline{\text{Obvody podle obrázků v tabulce jsou ve stacionárním ustáleném stavu. Vypočítejte proud <math>I_5$ tekoucí rezistorem R_5 a výkon spotřebovávaný v tomto rezistoru.

O. Pro obvody podle obrázků v tabulce nakreslete z hlediska výstupních svorek A a B náhradní zapojení podle <u>Théveninova teorému</u> a určete jeho parametry. Určete výkon v zatěžovacím rezistoru připojeném mezi svorky A a B při výkonovém přizpůsobení.

<u>výsledek</u> <u>výsledek</u>

P. Pro obvody podle obrázků v tabulce nakreslete z hlediska výstupních svorek A a B náhradní zapojení podle Nortonova teorému a určete jeho parametry. Určete výkon v zatěžovacím rezistoru připojeném mezi svorky A a B při výkonovém přizpůsobení.

Q. Pro obvody podle obrázků v tabulce nakreslete z hlediska výstupních svorek A a B náhradní zapojení podle <u>Théveninova teorému</u> a určete jeho parametry. Vypočítejte výstupní napětí a výkon v zátěži uvedeného obvodu, je-li zatížen rezistorem o odporu R₄.

R. Pro obvody podle obrázků v tabulce nakreslete z hlediska výstupních svorek A a B náhradní zapojení podle <u>Nortonova teorému</u> a určete jeho parametry. Vypočítejte výstupní proud tekoucí zatěžovacím rezistorem o odporu R₄ připojeným mezi výstupní svorky A a B a výkon v zátěži R₄.

S. Pro obvody podle obrázků v tabulce nakreslete z hlediska výstupních svorek A a B náhradní zapojení podle <u>Théveninova teorému</u> a určete jeho parametry. Vypočítejte výstupní napětí a výkon v zátěži uvedeného obvodu, je-li zatížen rezistorem o odporu R₄.

 $R_1 = 1 \,\mathrm{k}\Omega, \, R_2 = 2 \,\mathrm{k}\Omega, \, R_3 = 3 \,\mathrm{k}\Omega, \, R_4 = 1 \,\mathrm{k}\Omega, \, R_1 = 1 \,\mathrm{k}\Omega, \, R_2 = 2 \,\mathrm{k}\Omega, \, R_3 = 3 \,\mathrm{k}\Omega, \, R_4 = 1 \,\mathrm{k}\Omega,$ $I_1 = 5 \,\mathrm{mA}, I_2 = 10 \,\mathrm{mA}$

<u>výsledek</u>

$$R_1 = 1 \,\mathrm{k}\Omega, \ R_2 = 2 \,\mathrm{k}\Omega, \ R_3 = 3 \,\mathrm{k}\Omega, \ R_4 = 1 \,\mathrm{k}\Omega, \ I_1 = 5 \,\mathrm{mA}, \ I_2 = 10 \,\mathrm{mA}$$

výsledek

$$R_1 = 1 \,\mathrm{k}\Omega, \; R_2 = 2 \,\mathrm{k}\Omega, \; R_3 = 3 \,\mathrm{k}\Omega, \; R_4 = 1 \,\mathrm{k}\Omega, \; I_1 = 5 \,\mathrm{mA}, \; I_2 = 10 \,\mathrm{mA}$$

<u>výsledek</u>

T. Pro obvody podle obrázků v tabulce nakreslete z hlediska výstupních svorek A a B náhradní zapojení podle Nortonova teorému a určete jeho parametry. Vypočítejte výstupní proud tekoucí zatěžovacím rezistorem o odporu R₄ připojeným mezi výstupní svorky A a B a výkon v zátěži R₄.

<u>výsledek</u>

úloha 2 R_1

 I_1

Pro obvody podle obrázků v tabulce nakreslete z hlediska výstupních svorek A a B náhradní zapojení podle

- U. <u>Théveninova teorému</u>
- V. Nortonova teorému a určete jeho parametry.

