THE UNIVERSITY OF CHICAGO WARWICK

Improving Outcomes for Rough Sleepers in the UK

Lushi Chen

Fellow

University of Edinburgh

Zoë Kimpel

Fellow Northwestern University Austin Nguyễn Fellow

Williams College

sleep under a

bridge

Harrison Wilde Fellow University of Warwick

Josh Sidgwick Project Manager The Alan Turing Institute **Adolfo De Unanue**

Technical Mentor University of Chicago **Gareth Thomas**

Partner Team Lead

INTRODUCTION

4788 are rough sleepers

14% of alerts lead to finding a rough sleeper

Homelessness is a serious and growing issue in the UK. Rough sleepers are those who have no choice but to sleep on the street, leaving them amongst the most vulnerable of the homeless population. Homeless Link, a UK charity, works to help rough sleepers through StreetLink, a referral platform that connects them to essential services.

CURRENT PROCESS

Public Domain Bridge

rough sleeper

Homeless Link

outreach

Local Authorities

rough sleeper

to services

Temporal cross-validation allows us to test and

TEST

SPAN

TRAIN

LABEL

TIME

TEST

LABEL

TEST

SPAN

LABEL

TEST

LABEL

TEST

SPAN

TEST

LABEL

validate model performance over time.

TRAIN

LABEL

check

GOALS

We use our models to generate a prioritised list of incoming alerts based on their predictions to allow StreetLink to dispatch high quality referrals more quickly.

Faster referral dispatch will **connect** more rough sleepers to services in conjunction with rapid response teams.

Our exploratory analysis and models help to quantify the rough sleeper issue to encourage positive policy change in the future.

METHODOLOGY

We use internal StreetLink alert data from 2017 to 2019.

DEMOGRAPHICS

EXTRACT

STREETLINK

ALERT DATA

LOCAL

AUTHORITY

CAPACITY:

How often did a

local authority find

a person last

week?

LOCATION LOCAL AUTHORITY

extract-load-transform

LOAD

INTO DATABASE

SPATIAL +

TEMPORAL

How many alerts

have occurred in

the past week at a

given location?

feature engineering

FREE TEXT TEMPORAL FIELDS

WEATHER

TRANSFORM &

CLEAN

TEXTUAL

What was the

rough sleeper

wearing? Where is

the rough sleeper

located?

model selection

TRAIN SPAN

TRAIN SPAN

validation

TRAIN SPAN

We selected a Random Forest model that maximizes precision at k and recall at k, where k is defined by StreetLink's resource constraints. We selected k = 4000.

Precision & Recall of Random Forest Model 1.00 Precision Recall 0.25 0.00 Number of Referrals

Feature importance score by variable groups (Random Forest)

feature importance

Last 60 Days Alert Origin Last 6 Months Word Coun Within 5000n Location and Activity Topics Activity Keyword Feature Importance Score

This shows the highest feature importance score in each feature group from the random forest model. From 264 features, we grouped the features. Recent temporal data and demographic features were shown to be the most important in determining the likelihood a person would be found.

model interpretation

Our model prioritises high quality alerts and challenges any existing biases in StreetLink's current process.

Compared to low scoring alerts, the highest scoring alerts chosen by our model are:

23% farther away from hotspots on average

35% more cases of time seen

85% fewer alerts by phone

results

8%

INCREASE IN ROUGH SLEEPER FOUND RATE WITH OUR MODEL

IMPACT

Better connect rough **sleepers** to services

Reduce time a person is forced to sleep rough on the streets

Advocate for policy changes to help rough sleepers

Thank you to our partners at Homeless Link and the StreetLink Staff for sharing their time, data and knowledge with us.

pipeline & experiments

We built a machine learning pipeline to run experiments with various classification algorithms such as Random Forest, Gradient Boosting, KNN, and Decision Trees, with different combinations of hyperparameters and feature sets.

Each model returns an output a score for each alert indicating alert quality.