A Book of Abstract Algebra (2nd Edition)

		-			
Chapter 24, Problem 2EF	Bookmark	Show all steps: ON			
Pro	blem				
Let A be an integral domain. Explain why the kernel of h in part 1 consists of this the same as the principal ideal $\square_{\mathbf{X}}\square$ in A [.		for all $a(x) \in A[x]$. Why is			
Step-by-s	tep solution				
Step 1	l of 3				
Consider an integral domain $A[x]$ and let h : coefficient.	$A[x] \to A$ map every p	oolynomial to its constant			
That is $h(a_n x^n + a_{n-1} x^{n-1} + + a_2 x^2 + a_1 x + a_0)$	$=a_0$				
Objective of the question to prove the kernel of h is $\square x \square$.					
Comment					
Step 2	2 of 3				
Let any polynomial $a(x) \in A[x]$ and consider	the product $xa(x)$.				
$\{xa(x) \text{ for all } a(x) \in A[x]\}$ is the set of all elements generated by x in $A[x]$.					
And it is denoted as $\Box x \Box$.					
First prove $\Box x \Box \subseteq \text{kernel of } h$					

Then,

$$h(xa(x)) = h(x)h(a(x)) \qquad \text{(since h is a homomorphism)}$$

$$h(x) = 0$$

$$h(a(x)) = k$$
Here, $k \in A$.
Then,
$$h(xa(x)) = 0 \times k$$

$$= 0$$
Hence $xa(x) \in \text{kernel of } h$
Since $xa(x) \in \text{kernel of } h$ implies
$$x \subseteq \text{kernel of } h = 0$$
Comment

Step 3 of 3

Now prove kernel of $h \subseteq x \subseteq 0$
Then $h(p(x)) = 0$
That is its constant term is zero.
Then the polynomial should be in the form of $p(x) = a_x x^n + a_{x-1} x^{x-1} + ... + a_2 x^2 + a_1 x$.
Take the common factor x outside.
$$p(x) = x(a_x x^{x-1} + a_{x-1} x^{x-2} + ... + a_2 x^1 + a_1)$$

$$= xq(x)$$
Therefore $p(x)$ is the form of elements in $|x| = 0$.
Therefore $p(x) \in |x| = 0$.
It implies kernel of $h \subseteq |x| = 0$.
Combining both equation (1) and (2) then kernel of $h = 0$.