Advanced Computer Networks

Video Basics

Jianping Pan
Spring 2017

Video is a sequence of images

- Recorded/displayed at a certain rate
- Types of video signals
 - component video
 - separate RGB signals; e.g., VGA CRT
 - composite video
 - luminance and chrominance in one signal carrier
 - S-video
 - 1 luminance and 1 composite chrominance signal

3/10/1GA, DVI, HDMI, etc

Video

- Image
 - picture resolution: e.g., 640x480
 - pixel depth: e.g., 8-bit
- Video
 - frame rate > flicker-free rate
 - movie: 24 frames/second
 - TV: 25 or 30 frames/second
 - VGA CRT: e.g., 50Hz

newer: 120fps

We see most video on

- Television
 - PAL (Phase Alternating Line)
 - 625 lines interlaced (576 visible)
 - 25 frames/second
 - aspect ratio 4:3
 - YUV
 - NTSC (National TV Standards Committee)
 - 525 lines interlaced (480 visible)
- 30 frames/second (29.97 to be exact), 4:3, YIQ 3/10/17 csc466/579 4

Interlaced vs progressive

Interlaced

- odd line: $P \Rightarrow Q$
- -Q => R (H retrace)
- $-R \Rightarrow S$
- **—** ...
- $-T \Rightarrow U (V retrace)$
- even line: dash-dot

Progressive

TV broadcasting

- NTSC (6MHz channel)
 - lower band: guard; upper band: audio (FM)
 - Y: 4.2MHz
 - − I: 1.6MHz; Q: 0.6MHz

6 MHz

3/10/17 csc466/579

now go digital white space?

Digital video

Standards for Video

	HDTV	CCIR 601 NTSC	CCIR 601 PAL	CIF	QCIF
Luminance Resolution	1920 x 1080	720 x 486	720 x 576	352 x 288	176 x 144
Chrominance Resolution	960 x 540	360 x 486	360 x 576	176 x 144	88 x 72
Color Subsampling	4:2:2	4:2:2	4:2:2	4:2:0	4:2:0
Fields/sec	60	60	50	30	30
Aspect Ratio	16:9	4:3	4:3	4:3	4:3
Interlacing	Yes	Yes	Yes	No	No

CCIR – Consultative Committee for International Radio
CIF – Common Intermediate Format (approximately VHS quality)

Chroma subsampling

- 4:4:4: no subsampling
- 4:2:2, 4:1:1: chroma as 1/2 or 1/4 luma
- 4:2:0: vertical subsampling as well

3/10/17 csc466/579

8

Chroma subsampling examples

- Common Intermediate Format (CIF)
 - -4:2:0
 - Y: 352 x 288; U and V: 176 x 144
- Quarter CIF (QCIF): 176x144; 4:2:0

Y: 176 x 144

U: 88 x 72

V: 88 x 72

HDTV

High Definition TV: better video/audio

# of Active	# of Active	Aspect Ratio	Picture Rate	
Pixels per line	Lines			
1,920	1,080	16:9	60I 30P 24P	
1,280	720	16:9	60P 30P 24P	
704	480	16:9 & 4:3	60I 60P 30P 24P	
640	480	4:3	60I 60P 30P 24P	

3/10/17

csc466/57/9

TV resolution evolution

- LDTV: low definition
 - 240i60, 288i50
- SDTV: standard definition
 - 480i60, 480p30, 576i50, 576p25
- EDTV: enhanced definition
 - 480p60, 576p50, 720i50/60, 720p24/25/30
- HDTV: high definition
 - -720p50/60, 1080p24/25/30, 1080i50, 1080i60 3/10/17 csc466/579 11_{4KTV}, 8KTV

Temporal redundancy

- Video is a sequence of images
 - e.g., motion JPEG: M-JPEG
- Correlation between consecutive images
 - "difference" due to object or camera motion

Frame i 3/10/17

Frame i+1 csc466/579

Direct Difference 12

Motion estimation

- Macro-block: 16x16 pixels
 - find a similar macro-block in the reference frame
 - record the motion "vector": (dx,dy)=(x1-x0,y1-y0)
 - encode the "difference" between two macro-blocks

Anchor Frame

Target Frame

3/10/17

Motion vector example

Motion Vector Field For Train Sequence

Macro-block similarity

- Similarity measures
 - mean square error (MSE)
 - mean absolute distance (MAD)

$$MAD(i,j) = \frac{1}{N^2} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} |C(x+k,y+l) - R(x+i+k,y+j+l)|$$

N – size of the macroblock,

k and l – indices for pixels in the macroblock,

i and j – horizontal and vertical displacements,

C(x+k,y+l) – pixels in macroblock in Target frame,

R(x+i+k,y+j+l) – pixels in macroblock in Reference frame.

3/10/17

csc466/579

slower encoder?

15

Search window

- Rectangle: x: [x0-p, x0+p]; y: [y0-p,y0+p]
- (2p+1)² all possible reference macro-blocks
 - need better search algorithms!

2-D Log motion search

3/10/17

csc466/579

17

Hierarchical motion search

Group of pictures

- B: bidirectionally interpolated frame
- P: predicted frame
- I: intra-coded frame

Video encoder

Video decoder

- Decoder is simpler than encoder
 - usually only the decoder is standardized
 - allow innovations at encoders

H.261

- H.261: p*64Kbps (p: 1~30)
 - ITU-T recommendation (1990)
 - real-time video telephony over ISDN (2B+D)
 - end-to-end delay less than 150ms
 - QCIF (required): 176x144, 4:2:0, ~30fps,3 GOB
 - CIF (optional): 352x288, 4:2:0, ~30fps, 12GOB
 - GOB: group of 3x11 macro-blocks
 - 1 macro-block: 4 Y block, 1 Cr block, 1 Cb block
 - 1 block: 8x8 pixel (e.g., in luminance) 3/10/17 csc466/579

H.261: more

- I-frame (JPEG-like)
 - RGB=>YUV, 8x8 blocks
 - DCT
 - Scalar quantization
 - ZigZag scanning, DC/AC encoding, entropy encoding
- P-frame
 - search window p=15
 - pixel precision

H.263

- H.263: initially < 64Kbps; later higher bps
 - ITU-T Rec (1995); v2(1998); v3 (2000)
- More video formats
 - sub-QCIF, QCIF, CIF, 4CIF, 16CIF
- More motion estimation techniques
 - half-pixel precision
 - modes: unrestricted motion vector, arithmetic coding, advanced prediction, PB-frames, etc

3/10/17

csc466/579

24

MPEG

- Motion Picture Experts Group
 - MPEG-1: VCD (VCR-quality)
 - MPEG-2: DVD & HDTV
 - MPEG-3: aborted due to MPEG-2
 - MPEG-4: content-based
 - (future compression standards)
 - MPEG-7: meta-data
- MPEG-21: DRM (21st century) 3/10/17 csc466/579

MPEG-1

- MPEG-1 (1991): VCD (VCR+CD quality)
 - 352x240, 1.2Mbps video CBR, 256Kbps audio
 - progressive scan only (1x CD-ROM)
- MPEG-1 video compression
 - similar to H.261, with a few differences
 - more formats, flexible slices, quantization table
 - I-frame: JPEG-like compression
 - P-frame: prediction-based; <u>B-frame</u>

MPEG-1: more

- Bi-directional search
 - search both previous and next frames for similar macro-blocks
- MPEG-1 GOP
 - I-frame, P-frame, B-frame
 - display order: IBBPBBPBBPBBPBBI (M=3, N=15)
 - coding order: IPBBPBBPBBPBBIBB; timestamps
 - D-frame: for search through the video, DC only

MPEG-2

- MPEG-2 (1994): DVD, HDTV, etc
 - also adopted as ITU-T H.262
 - many video formats and data rates; better audio
 - profiles: simple (4:2:0, I/P), main (+B), SNR (+variable quality), spatial (+variable resolution), high (+4:2:2)
 - levels: low (352x288), main (720x576), high 1440 (1440x1152), high (1920x1152)
 - support interlaced video (broadcasting!)

LEVELS and PROFILES	Simple Profile	Main Profile	SNR Scalable Profile	Spatial Scalable Profile	High Profile
	No B- frames	B-frames	B-frames	B-frames	B-frames
	4:2:0	4:2:0	4:2:0	4:2:0	4:2:0 or 4:2:2
	Not Scalable	Not Scalable	SNR Scalable	SNR Scalable or Spatial Scalable	SNR Scalable or Spatial Scalable
High Level 1920 pixels/ line 1152 lines		≤ 80 Mbit/ s			≤ 100 Mbit/ s
High-1440 Level 1440 pixels/ line 1152 lines		≤ 60 Mbit/ s		≤ 60 Mbit/s	≤80 Mbit/s
Main Level 720 pixels/ line 576 lines	≤ 15 Mbit/ s	≤ 15 Mbit/ s	≤ 15 Mbit/ s		≤20 Mbit/s
Low Level 352 pixels/ line 288 lines		≤ 4 Mbit/s	≤ 4 Mbit/s		

MPEG-2 profiles and levels

3/10/17

csc466/579

MPEG-2 scalability

- Layered encoding
 - base layer: independent for basic quality
 - enhancement layer: dependent on the base layer
- E.g., SNR scalability
 - base: low SQNR (coarse quantization)
 - enhance: high SQNR (fine Q on actual-base)
- E.g., spatial scalability
 - base: low resolution; enhance: high resolution 3/10/17 csc466/579 30

MPEG-4

- MPEG-4 (1999): content-based, object-oriented
 - based on H.263, initially for low bit-rate apps
 - video sequence: a collection of media objects
 - · objects: still image, moving object, audio, etc
 - how to decompose is NOT specified (encoder)
 - VOP: video object plane
 - GOV: I-VOP, P-VOP, B-VOP
 - VOP is divided into many macro-blocks
 - motion estimation: bounding box; padding csc466/579

audiovisual objects

Object coding

- Texture coding
 - DCT-based
 - SA-DCT: shape adaptive
- Shape coding
 - binary shape; grayscale (transparency) shape
- Static texture coding
 - wavelet-based (good for scaling)
- 2-D and 3-D mesh coding 3/10/17 csc466/579

Sprite coding

MPEG-4: more

- Fine gain scalability
 - spatial scalability
 - temporal scalability
 - quality scalability
- MPEG-4 audio
 - general audio (2~64Kbps)
 - speech (2~4Kbps: HVXC; 4~24Kbps: CELP)
 - synthesized (e.g., MIDI, TTS)

3/10/17

csc466/579

H.264

- H.264 (2003)
 - also as MPEG-4 AVC (advance video coding)
 - initially: low data rate for high picture quality
 - now a wide variety of bit-rates, applications, systems
 - enhanced motion estimation and compensation
 - multi-picture, variable block-size, quarter-pixel precision, weighted prediction, etc
 - profiles: baseline, main, extended; 15 levels
 - fidelity range extension: high, 10, 4:2:2, 4:4:4 $\frac{-10}{3}$

* H.265 (HEVC)?

SVC,MVC, etc

This lecture

- Video representation
- Video compression
 - motion vector
 - how to find a similar macro-block
 - generic video encoder/decoder
- Video standards
 - H.263v2 (H.263+) and H.263v3 (H.263++)
 - MPEG/AVC, H.264, H.265