时两/控制器设计

21-22

五、时序逻辑电路(共15分,得分____)

试用 D 触发器、8 选 1 数据选择器和门电路设计一个序列信号发生器,要求当 M=0 时产生序列信号 100110, 当 M=1 时产生序列信号 10010110。要求写出设计过程,画出电路图,标明序列信号输出端。)

解:没&选1选择器地址是A1.A1.A0、

.. 前端有:

净	Di	þ,	Pο	M	Or*	Q1*	Q.¥
0	O	0	D	X	0	0	
,	О	0	1	Χ	Q	1	D
2	0	1	0	0	1	0	1
				ı	0	l	1
3	D	1		X	1	0	D
¥	1	0	D	×	1	D	1
5	1	0	/	×	1	l	0
Ь	1	1	0	×	1	L	l
7	1	1	1	×	D	D	0

.. 如本丰波周,

BD,	00	0	11	10
0 C C C C C C C C C C C C C C C C C C C	0	00	0 -	

Q*卡港图.

	1			
D-D, M	00	١٥	П	10
00	0	ь		
0	0	(1)	0	0
1.1	(1	0	0	b
10	0	0	1	1

- · & + = D Q + D PO M + R D B

Qx : Qx まかえき るたのな = D

、 电路:不用画完整的:1.

七、控制器设计(共22分,得分____)

有一控制器状态图如下所示,其中 X_1X_0 为外部输入,Y 为输出,且 $X_1X_0=11$ 不会出现。

- (2) 如用微程序控制器设计此控制器,请画出 ASM 流程图,设计指令格式,并做必要说明,写出相应的微控制器代码。

山解:计数器型

' /	19 年 :	N	1 8	とくつ	2 1	_ •			
	ı			Py			NS		输出
	编	: C	В	A	Χı	χ _o	编了(19) B(D)	ALD)	Y
	5,	U	U	0	b	X	5000	O	D
					1	O	ه ۷ ا۶	J	0
	51	0	ט	1	D	Χ	50 ° 0	7	D
)	0	52 0 1	0	0
	57	0	1	0)	0	53 "	þ	8
					b	X	50 0	0	Ø
	53	0	١	1	0	0	,		0
					0	1	50 0 0	ט	1
)	O	وا 'أم	0	0
	Sy	0)	0	1	0	٥ ۲۶	D	0
	1				b	X	5000	0	Ø

-: m x 见穿, X X x x x x x : 是痉 (到每只?) X x X y x : 1 · : 计数

(2) ASN流程图:

31指令:

:、代码:

22-23:

四、时序电路分析(共12分,得分____)

下图是一个由与门、四位二进制加法器、四位二进制寄存器(触发器)构成的电路,输出为 $Q_0Q_0Q_0$ 。请分析这个电路,写出四个触发器输入 $D_0D_0D_0$ 的逻辑表达式,画出包含 $Q_0Q_0Q_0$ 所有状态的状态转换图,并判断该电路能否自启动。

解:

$$D_0 = Q_0 \oplus I = \overline{Q_0 \cdot I} + Q_0 \cdot O = \overline{Q_0}$$

$$D_{|} = Q_{\circ} \oplus Q_{1} \oplus Q_{1}Q_{3}$$

$$= (\overline{Q_{\circ}} Q_{1} + Q_{p} \overline{Q_{1}})(\overline{Q_{1}}Q_{3})$$

$$= \overline{Q_{p}} Q_{1} Q_{3}$$

$$= Q_{0} Q_{1} Q_{3}$$

$$C_1 \oplus Q_1 Q_3 = (Q_0 + Q_3 7 Q_1 \cdot \overline{Q_1 Q_3}$$

-'· b2 = Q. Q1 Q3 P Q2. (Q2 = 0

C2 = G Q2 + Q, Q2 Q3 + G Q, Q3

$$= Q_0 Q_1 Q_3 + Q_1 Q_3 = Q_1 Q_3$$

= 000,00+ 6,03

= 04 (Ro Ro + 03)

120111 FR 1X0X TR1

鱼红钱的粉笋籍3…

* X X

120=0 DX Q1=0 DX Q3=1 -> 0

(0 - 1 | 1 0 0 - 1 | 1 0 1 0 0 0 0 | 1 1 → 10.

标答↓

	1的表 (D 1 1/2	ノーチが		CLOCK
序号	Q3Q2Q1Q0	$P_3P_2P_1P_0$	$D_3D_2D_1D_0$		
0	0000	0001	0001	1	Ω3 Σ Σ
1	0001	0001	0010	2	Q1 & 0 3 P (3 1D Q3
2	0010	0001	0011	3	1 0 0 02
3	0011	0001	0100	4	Q3 — 3) E Q1
4	0100	0001	0101	5	$\begin{array}{c c} 02 \\ 01 \\ 0 \end{array}$
5	0101	0001	0110	6	ão - o)
6	0110	0001	0111	7	
7	0111	0001	1000	8	
8	1000	0001	1001	9	
9	1001	0001	1010	10	
10	1010	0111	0001	1	
11	1011	0111	0010	2	(101) (001) (011) (010)
12	1100	0001	1101	13	(000)
13	1101	0001	1110	14	0000
14	1110	0111	0101	5	0110 0110
15	1111	0111	0110	6	(100)
0,-0.	Q0+Q'1Q0	Q1Qa D7= +Q3Q1Qa =, 可以自)	$D_{\theta} = Q'_{\theta}$	2'1+Q29	$ \begin{array}{l} \widehat{\mathcal{C}}_{0}+\widehat{\mathcal{C}}_{2},\widehat{\mathcal{C}}_{2},\widehat{\mathcal{C}}_{0}, \\ \widehat{\mathcal{C}}_{1}=\widehat{\mathcal{C}}_{0}, \\ \widehat{\mathcal{C}}_{1}=\widehat{\mathcal{C}}_{1}, \bigoplus (\widehat{\mathcal{C}}_{2}\widehat{\mathcal{C}}_{1}) \bigoplus \widehat{\mathcal{C}}_{0}=(\widehat{\mathcal{C}}_{2}\widehat{\mathcal{C}}_{1}) \bigoplus \widehat{\mathcal{C}}_{0}, \\ \widehat{\mathcal{C}}_{2}=\widehat{\mathcal{C}}_{2}, \bigoplus (\widehat{\mathcal{C}}_{2}\widehat{\mathcal{C}}_{1}) \bigoplus (\widehat{\mathcal{C}}_{3}\widehat{\mathcal{C}}_{1}+\widehat{\mathcal{C}}_{1}\widehat{\mathcal{C}}_{0}) \end{array} $

22-23.

推到器

八、控制器(共15分,得分_____)

有一木材裁料自动加工设备,其微码控制器微程序存储器内容如下所示: 海程序:

徽程序地	ht uA2uA1uA0	微码程序									
0	0 0	1	0	0	0	0	0	0	0	0	1
0	0 1	0	1	0	0	0	0	0	0	1	0
0	1 0	0	0	0	0	0	1	0	0	1	0
0	1 1	0	0	1	0	0	0	1	0	1	1
							••				
1	1 1	0	0	0	1	1	0	0	1	1	1

其中,輸出控制信号 5 个,按顺序为: 1) 启动加工设备信号 A; 2) 启动送料机构送料信号 B; 3) 启动延时电路的信号 D, 延时时间 T=5 秒; 4) 停止加工设备信号 X; 5) 停止送料信号 Y。 反馈信号 2 个为: 1) 送料机构木料状态信号 W, W=0 有木料, W=1 无木料, 在 P(1) 有效时测试判别。2) 延时单稳态电路模块输出信号 R, R=0 延时未到, R=1 延时到 (5 秒), 在 P(0) 有效时测试判别。

微地址修改逻辑为: $\mu A_2 = P(0) \cdot \mathbf{R} \cdot T_3$, $\mu A_0 = P(1) \cdot \mathbf{W} \cdot T_3$.

根据以上信息,请指出其微指令格式,并对各字段做必要说明,画出相应微程序控制器电路框图,并画出算法流程图 ASM 图。

解: 小级指令格式

12割1年3 判别位 T-towl ABDXY P(0). P(1) AA MAI AA.

131 -: pAz = P(0). R. T3. pAo = P(0). W- T3

12) 电路柱图:

EX.]. 7.7/2,

五、(15分,得分____ __) 试用 JK 触发器及必要的门电路,设计一个采用余 3 码编码的十进 制同步加法计数器,并且在计数到"9" 时产生进位信号 C。要求:

- 1、写出 JK 触发器特性方程;
- 2、写出电路的状态方程,输出方程,驱动方程;
- 3、画出电路图并说明电路能否自启动。

		_		
1.	Q=	JK	+	JK

2.	Ø3	Qz	۵,	Q,	\ Q;*	Q2*	01*	Q.*	C
מ	O	b	ı	1	ט	1	O	0	0
1	0	1	0	0	Ø	l	D		0
2	ь	1	0	1	D	J	-	0	0
3	0	1	-	0	ט	1	1	-	O
lp	D	l	-	1	1	0	0	0	b
5	ı	0	0	0	ı	0	0		O
ļ	l	D	D			D	l	D	O
7		0	1	0	l	0	1	1	0
8	1	0	1		0	0			10
9	1	1	o	0	0	D	1		l
1.0	3						(b) **		

,					
6,02	0 0	0		10	
0 0	X	X	0	X	
	(X)	<u>×</u> /	$\begin{pmatrix} \times \end{pmatrix}$	X	
1 0			0		

03 02 61

Jo 401

Q1 Q2	00	0	11	10
00	Х	X	0	X
0	0		0	/ 1
()	×	×	X	X
10	0	\ I <i>]</i>	(1)	
			0	

$$2 \overrightarrow{f} \otimes_{2}^{+} = (\overrightarrow{Q_{3}}) ((\overrightarrow{Q_{1}} + (\overrightarrow{Q_{1}}) + (\overrightarrow{Q_{0}})))$$

$$(3)_{2} = (\overrightarrow{Q_{1}}) ((\overrightarrow{Q_{1}} + (\overrightarrow{Q_{0}})))$$

$$\begin{cases} J_2 = k_3 \left(Q_1 + Q_0 \right) \\ k_2 = Q_3 + Q_3 \left(Q_1 + Q_0 \right) = Q_3 \end{cases}$$

$$2 + \overline{f} Q_1^* = \overline{Q_1} Q_0 + \overline{Q_1} \overline{Q_0} + \overline{Q_2} Q_1$$

$$\begin{cases} J_1 = Q_0 \\ V_1 = \overline{Q_0} + \overline{Q_0} \end{cases}$$

$$Q_2^{+} = \overline{Q_3} \overline{Q_2} + \overline{Q_3} \overline{Q_1} + \overline{Q_3} \overline{Q_0}$$

$$= \overline{Q_3} (\overline{Q_2} + \overline{Q_1} + \overline{Q_0})$$

Q3 & 0. Q2. Q1. Q0

电路图略;

- 2. K全部没取及
- 3. 输出方程漏写了一

uātka

2019-2020

推制器设计:

某控制器的状态转移图如下所示, 其中 X 为输入信号, Y1、Y0 为输出信号。要求:

- 1) 画出 ASM 流程图,写出状态转移表;
- 2) 设计一个 MUX 型控制器, 画出电路图:
- 3) 如果采用微程序控制器,请设计微指令格式,并对每部分名称和含义加以说明。

Mux:

	l	?5		输入(条件)				本作	弘
	Az	A_{I}	Ao	X	۸٤¥	A ₁ *	A o*	Yı	Yo
0	0	0	0	X	O	0	1	D	1.
b	O	U	0	X	0	O	0		
1	O	0	J	X	0	b	D		
l	v	0	l	X	0	l	0		
2	0	1	0	Χ	O	l	0		
2	0		O	X	0			-	
3	O	1		\overline{X}	0	0	D		
3	0	1	1	X	1	0	0		

时序电路:

译码器 74LS138 和 16 进制计数器 74LS161 连接组成电路如下图所示。试分析回答:

- 1) 列出 74LS161 的输出 QpQcQaQa 状态转换关系图;
- 2) 写出输出 F 的序列信号。

解:1. 疗是数 1000

(1000 → 1001 → 1100 → 1101 → 1110 → 1111 →