An Introduction to Quantum Error Correction

with a particular appetite for surface code

Yiming Zhang

2024-11-14

USTC

Outline

1.	Background	. 2
2.	Surface Code	. 8
3.	Experiment Progress	24

1. Background

1.1 Stabilizers

A compact <u>representation of quantum states</u> with (signed) Pauli operators:

$$|\Psi\rangle = \frac{1}{\sqrt{2}} |000\rangle + |111\rangle \Rightarrow \langle +XXX, +ZZI, +IZZ\rangle$$

The state $|\Psi\rangle$ is *stabilized* by the 3 independent stabilizers.

For complex states, it's tedious or even impossible to write down the full state vector. The stabilizer representation comes to rescue.

1.2 Stabilizer Sign

The sign of a stabilizer is useful for detecting errors. For a *Pauli error* E that anticommutes with a stabilizer S:

$$|\Psi\rangle = S|\Psi\rangle \xrightarrow{E} E|\Psi\rangle = ES|\Psi\rangle = -SE|\Psi\rangle$$

1.3 Stabilizer Projector

Figure 1: Operator Projector

Two perspectives of the above circuit:

- 1. If $|\Psi\rangle=\pm U\ |\Psi\rangle$, then it's a simple phase kickback to measure the eigenvalue, i.e. the sign of the stabilizer.
- 2. Otherwise, it plays the role of a projector operator $\frac{I\pm U}{2} |\Psi\rangle$ with the measurement backaction. Continuous errors will be digitized as Pauli errors.

1.4 Identify Errors

For the state
$$|\Psi\rangle = \frac{1}{\sqrt{2}} |000\rangle + |111\rangle \Rightarrow \langle +XXX, +ZZI, +IZZ\rangle$$
:

•
$$X_0|\Psi\rangle = \frac{1}{\sqrt{2}}|100\rangle + |011\rangle \Rightarrow \langle +XXX, -ZZI, +IZZ\rangle$$
:

•
$$X_1 |\Psi\rangle = \frac{1}{\sqrt{2}} |010\rangle + |101\rangle \Rightarrow \langle +XXX, -ZZI, -IZZ\rangle$$
:

•
$$X_2|\Psi\rangle = \frac{1}{\sqrt{2}}|001\rangle + |110\rangle \Rightarrow \langle +XXX, +ZZI, +IZZ\rangle$$
:

By measuring the stabilizers, we get the so-called *syndromes*.

1.5 Logical Qubit

What is a logical qubit?

- Error Detection: A set of independent stabilizer generators to detect errors on the state.
- Degree of Freedom: #Stabilizers ≤ #Data Qubits

We can define a three-qubit state under the stabilizer constraints $\langle ZZI, IZZ \rangle$, then

$$|\Psi\rangle_L = \alpha |0\rangle_L + \beta |1\rangle_L$$

where

$$|0\rangle_L = \frac{1}{\sqrt{2}} |000\rangle + |111\rangle, |1\rangle_L = \frac{1}{\sqrt{2}} |000\rangle - |111\rangle,$$

And we can define the logical operator pairs $X_L = XXX, Z_L = ZII$

2. Surface Code

2.1 Definition

Figure 2: Surface Code

Figure 3: Stabilizer Measurements

2.2 Logical Operations

It's all about how to map the logical operators!

• I_L :

$$Z_L \xrightarrow{I_L} Z_L, X_L \xrightarrow{I_L} X_L$$

• X_L :

$$Z_L \stackrel{X_L}{\longrightarrow} -Z_L, X_L \stackrel{X_L}{\longrightarrow} X_L$$

• H_L :

$$Z_L \stackrel{H_L}{\longrightarrow} X_L, X_L \stackrel{H_L}{\longrightarrow} Z_L$$

2.2 Logical Operations

• $CNOT_L$:

$$Z_{L}^{C}I_{L}^{T} \stackrel{CNOT_{L}}{\longrightarrow} Z_{L}^{C}I_{L}^{T},$$

$$I_{L}^{C}Z_{L}^{T} \stackrel{CNOT_{L}}{\longrightarrow} Z_{L}^{C}Z_{L}^{T},$$

$$X_{L}^{C}I_{L}^{T} \stackrel{CNOT_{L}}{\longrightarrow} X_{L}^{C}X_{L}^{T},$$

$$I_{L}^{C}X_{L}^{T} \stackrel{CNOT_{L}}{\longrightarrow} I_{L}^{C}X_{L}^{T}$$

2.3 Move the Logical Operators

Spacetime Stabilizer: another way to think about "gate as map".

2.3 Move the Logical Operators

Look at the code at circuit level under a 3D picture. The logical operators can be moved by multiplying the spacetime stabilizers.

Stabilizer measurement circuits revisited:

- <u>Logical operator preserved in time</u>
- <u>Logical operator moved in space</u>: be careful about the measurements.

What is the famous *Lattice Surgery*?

Nothing more than logical operator movements

2.4 Logical Memory

The simplest logical operation is "doing nothing".

Or... Everything?

Figure 6: Logical Memory Spacetime Diagram

Figure 7: Logical Memory Correlation
Surface

2.5 Logical Pauli Gates

$$X_L,Z_L - \hspace{-2mm} \overline{\hspace{2mm}} Z_L^a - \hspace{-2mm} \overline{\hspace{2mm}} X_L^b - \hspace{-2mm} \overline{\hspace{2mm}} (-1)^a X_L, (-1)^b Z_L$$

Track the byproduct operators in software(Logical Pauli Frame) to avoid applying logical Pauli gates on hardware.

Byproduct will change over the circuit:

2.6 Logical Hadamard

A layer of transversal H gates on data qubits will do the hadamard transition, but the boundary will be changed:

Figure 11: Temporal Hadamard

Think about that: it's all about mapping the logical operators. We can actually rotate the spacetime! (Ummm... the circuit details will change though...)

Figure 12: Spatial Hadamard

2.7 Logical CNOT

Forget about the "Lattice Surgery" for now, just build a topological structure that can move and map the logical operators correctly.

Figure 13: Logical CNOT

Figure 14: $XI \rightarrow XX$

2.8 Logical S

Gate teleportation with inplace Y basis measurement.

Figure 15: Logical S via gate teleportation

Figure 16: $X \to Y$

Non-clifford Gate: beyond the Gottesman–Knill theorem, necessary for practical universal quantum computation.

Figure 17: Logical T gate

Figure 18: Magic state preparation improvements over the years

Figure 19: Magica State Cultivation

An Introduction to Quantum Error Correction Figure 20: Logical T diagram

2.10 TQEC

- Building software tools to manage the complexity.
- It's not for good, but necessary...
- Take a look at https://github.com/tqec/tqec, it's still in early stage.

3. Experiment Progress

3.1 Stepping into the QEC era

Neutral Atoms

Bluvstein, D., Evered, S.J., Geim, A.A. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–65 (2024).

- Connectivity: arbitray in theory, tradeoffs in practice.
- Scalability: not clear for millions of qubits.
- Gates: qubit loss problem, not suitable for repeated measurements yet.
- Clock time: $\sim ms$, extremely slow compared to superconducting qubits. This is important for practical large-scale FT quantum algorithm.

Trapped Ions

High-fidelity teleportation of a logical qubit using transversal gates and lattice surgery

3.1 Stepping into the QEC era

Superconducting Qubits

Quantum error correction below the surface code threshold

Figure 21: Google d=3,5,7 surface code