Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа <u>Р3340</u>

Лабораторная работа №8 «экспериментальное построение областей устойчивости линейной системы на плоскости двух параметров » Вариант - 4

Выполнил		(фамилия, и.о.)				
		(passion, n.o.)				
Проверил		(фамилия, и.о.)	(подпись)			
""	20г.	Санкт-Петербург,	20г.			
Работа выполне	на с оценкой					
Лата зашиты "	"	20 г.				

Цель работы

Ознакомление с экспериментальными методами построения областей устойчивости линейных динамических систем и изучение влияния на устойчивость системы ее параметров.

Исходные данные

Необходимо исследовать систему при $g=0,\ y(0)=1$ и $T_1=1.25.$ Сама система представлена на следующем рисунке.

Рисунок 1 - Схема моделирования

1 Устойчивость системы

На рисунках 2, 3, 4 и 5 показаны преходные характеристики системы при различный k и $T_2=0.1$. Соответственно на рисунке 2 при k=1,на рисунке 3 при k=0,на рисунке 4 при k=11,на рисунке 5 при k=15.

Рисунок 2 - Устойчивая система при $K{=}1$

Рисунок 3 - Граница устойчивости нейтрального типа при $K{=}0$

Рисунок 4 - Граница устойчивости колебательного типа при $K{=}11$

Рисунок 5 - Неустойчивость системы при К=15

2 Анализ устойчивости системы

Предаточная функция исходной сисемы выглядит следющим образом:

$$W(s) = \frac{K}{T_1 T_2 s^3 + (T_1 + T_2) s^2 + s + K}$$
(1)

Для анализа устойчивости системы составим матрицу Гурвица.

$$H_3 = \begin{bmatrix} T_1 + T_2 & K & 0 \\ T_1 T_2 & 1 & 0 \\ 0 & T_1 + T_2 & 1 \end{bmatrix}$$
 (2)

Из этой матрицы можем, исользуя условие Гурвица, получить уравнение для системы на границы устойчивости колебательного типа.

$$\begin{cases}
T_1 + T_2 - KT_1T_2 = 0 \\
T_1 + T_2 > 0 \\
K > 0
\end{cases}$$
(3)

$$K = \frac{T_1 + T_2}{T_1 T_2} \tag{4}$$

Таблица 1 – Сравнительный анализ теоретического и экспериментального расчета границы устойчивости системы

T_2 ,c	0.1	0.5	1	1.5	2	2.5	3	4	4.5	5
K_e	11	2.7	1.9	1.5	1.32	1.22	1.1	1	1	1
K_p	10.8	2.8	1.8	1.47	1.3	1.2	1.13	1.05	1.02	1

Получив все необходимые уравнения мы можем построить график зависимости

 $K(T_2), T_2 \in [0.1, 5]$. Как видно из уравнения (2) - эта зависимость является гиперболой, в случае же уравнения (3). График данной зависимости представлен ниже на рисунке 6 и 7.

Рисунок 6 - Расчетная граница устойчивости

Рисунок 7- Эксперементальная граница устойчивости

Выводы

При проектировании систем большое значение имеет определение областей устойчивости в плоскости реальных параметров, присущих системе.

В данной работе, изменяя параметры K и T_2 , а T_1 оставляя неизменным , с помощью математического моделирования и аналитических методов мы построили границы устойчивости системы исходя из условия Γ урвица.

Данные полученные при математическом моделировании и аналитическом методе совпали.