Nik Novik	1	Σ
Matr: 5491274		
Paul Kaifler		
Matr: 5993286		

Assignment Sheet Nr. 5

Network design 1: CN-Network

Batch size	64
Epochs	30
Learning rate	0.1
Weight decay	0.001
Learning decay	0.1 @ 10 epochs
final validation loss	< 0.0001

Layers

- 1. CONV-Layer1:
 - Conv2D(3, 8, kernel_size=11, stride=4)
 - ReLu
 - MaxPool(kernel_size=3, stride=2)
- 2. CONV-Layer2:
 - Conv2D(8, 32, kernel_size=5, padding=2)
 - ReLu
 - MaxPool(kernel_size=3, stride=2)
- 3. CONV-Layer3:
 - Conv2D(32, 64, kernel_size=3, padding=1)
 - ReLu
 - MaxPool(kernel_size=2, stride=2, padding=1)
- 4. CONV-Layer4:
 - Conv2D(64, 64, kernel_size=3, padding=1)
 - ReLu
- 5. CONV-Layer5:
 - Conv2D(64, 64, kernel_size=3, padding=1)
 - ReLu
 - MaxPool(kernel_size=3, stride=2)
- 6. FC-Layer6:
 - Linear(128+1, 1)

For every picture we computed the mean over every pixel value in each channel (RGB) and the standard deviation of every channel (as a improvised measure of contrast) and fed it as input to a linear layer, which took these 6 inputs and connected them to 1 output. This output was used as an input for the last layer. The idea was to increase the prediction accuracy with the help of image features as predictors. (source: AlexNet)