Tutorial I

Problem 3:

If To The are two topology on X.

$$\begin{cases} \mathcal{T}_1 \text{ is a hase for } \mathcal{T}_2 \\ \mathcal{T}_2 \text{ is a bose for } \mathcal{T}_1 \end{cases} \Rightarrow \mathcal{T}_1 = \mathcal{T}_2$$

. d'(d so the d'halls are larger than the d-balls and the topology induced by d is abose of the one induced by d.

then the topology induced by d' is a base of the one induced by d.

Tutorial II

Publem 4:

if $A \subset A$ at A, A^{C} both infinite than $\dot{A} = \emptyset$, A = X. Indeed: OCA open => $A^{C}CO^{C}$ infinite so $O = \emptyset$ $A \subset F$ close => F infinite close => F = X.

Tutorial III

Problem 3:

K compact (=)
$$\forall (\sigma_i)_{i \in I}$$
 open, $\bigcup_{i \in I} K =) \exists J \subset I$ finite | $\bigcup_{i \in J} \sigma_i = K$

(=) $\forall (F_i)_{i \in I}$ close, $\bigcap_{i \in I} F_i = \emptyset$

set $F_i = \sigma_i^c$

(=) $\forall (F_i)_{i \in I}$ close, $\forall J \subset I$ finite, $\bigcap_{i \in J} F_i \neq \emptyset$

contraposition

Tutorial IV

1) = Let 5 par while of (2) than I cope who of x with f(co)(v. Up to a rook an EU so f(nn) E 5.

Controposition: obsume $\exists U$ open with of J(x) at VU open with of x, J(x) J(

3) $x \neq y = \int (x) \neq \int (y)$, $\exists U_n U_y = \int (x) \int (x) \int (y) \int (x) \int (x)$

Roslam :

1) We prove that & is proper: Kcompat => & 1 (K) compat. J-1(K) doed since & C' and K doed, and bounded otherwise F(xn), C R at Iten 1- to and J(xn) EK which contradict the boundedness of K. so f-1(K) is compact.

2) We prove that f is closed. Let & CR' dosed. Prove that R' I (t) open: Let $x \in \mathbb{R}^n | f(E)$ and U open noth of x with compact dosure $E := E \cap f^{-1}(\bar{\sigma}) \text{ is compact and } (f(C))$ dose compact $f(E) = f(C) \cap \bar{\sigma} \text{ is also compact.} \qquad U := \mathcal{O} | f(E) \text{ is an open } f(E) \text{ open } f(E) \text$

non of x since $x \in S$ and $x \notin f(E) \subset f(E)$.

Morcover UCF/J(E) = 5/J(E) CRMJ(E) so RMJ(E) is open.

3) of co, bijective, open map => g-1 co so f is a homeoma phism.

Prodem 3: see next tutorial.

Tutorial V

1) K is uniformly continuous so I n: R+ or R+ st m(v)-10 and \texpz.t C [0,1), [K(x,y)-K(z,t)] < y (11(x,y)-(z,t) 11 pz). Let x,y & To, 17, then $|Tf(x)-Tf(y)|=\left|\int\limits_{0}^{1}\left(K\left(x,z\right)-K\left(y,z\right)\right)f(z)dz\right|\leqslant \eta\left(|x-y|\right)\int\limits_{0}^{1}|f(z)|dz\longrightarrow 0$ $|x-y|\to 0$ 2) if Ilflu & 1 (ben from 1) we have With dscoli theorem [T], JEC([0,1], IR) | IIJII a (13) is relatively compact. 3) Let K = Bu (0,1) non ampty dosed convex secloset of CB (To,1), R) (Banada) Let JEK, IIT II W & IKII II II II & I so TJEK and by Z) T(K) CK is chatively compact so by Schauder fixed point theorem, That a fixed point. Vidsam 4: (In) country in C(X,4), then $\forall x \in X$, $(P_n(x))_{n \in \mathbb{N}}$ Cauchy so

In (x) - f(x), then

If $n(x) \rightarrow f(x)$, then

If $n(x) \rightarrow f(x)$, then

If n(x) - f(x)! (sup II $f_n(x) - f_m(x)$!! (sup II) $n - f_m$!! $n - f_m$!!

The first n - f(x) is a since if f(x) - f(x)!! (If $f(x) - f_n(x)$!! + 2!) f(x) - f(x)!!

and of continuous since || f(x) - f(x)!! (If $f(x) - f_n(x)$!! + 2!) f(x) - f(x)!!

uniform in $x \rightarrow y$

Tutorial VI

Problem 1: Let
$$T, u \in \mathcal{L}(X, y)$$
, $x, y \in X$.

$$||Tx - Uy||_{Y} \leqslant ||T(x-y)||_{Y} + ||T(y-u)y||_{Y}$$

Problem 2:

$$\int_{\Lambda} (x) = \min(nx, \sqrt{x}), \quad hx \in \sqrt{x} = x \left(\frac{1}{n} = x\right) \sqrt{x} = nx \left(\frac{1}{n} = x\right) \sqrt{x} = nx \left(\frac{1}{n} = x\right) \sqrt{x}$$

$$\int_{\Lambda} (x) = \min(nx, \sqrt{x}), \quad hx \in \sqrt{x} = x \left(\frac{1}{n} = x\right) \sqrt{x} = nx \left(\frac{1}{n} = x\right) \sqrt{x}$$

2)
$$(f_n)$$
 comby, f appoints, $f_n = f_n = f_$

$$|f(x) - f_n(x) - (f(y) - f_n(y))| \le \sup_{m > n} |f_m(x) - f_n(x) - (f(y) - f_n(y))|$$

so
$$Lip(J-J_n) \leqslant \sup_{n \geq 1} Lip(J_m-J_n) \rightarrow 0$$

ve just need f'= g, this follows from:

$$\begin{aligned} |f(x) - \tilde{g}(y)dy - f(0)| &\leq ||f - f_n||_{\sigma} + |f_n(x) - \tilde{g}(y)dy - f(0)| \\ &= ||f - f_n||_{\sigma} + |\tilde{f}(f_n' - g) + |f_n(0) - f(0)| + ||f - f_n||_{\sigma} + ||x||_{\sigma} + ||f_n' - g||_{\sigma} \\ &\leq ||f - f_n||_{\sigma} + ||f_n' - g||_{\sigma} - ||f - g||_{\sigma} \\ &\approx |f(n) - f(0)| + ||f - g||_{\sigma} + ||f - g||_{\sigma} \\ &\approx ||f - f_n||_{\sigma} + ||f - g||_{\sigma} - ||f - g||_{\sigma} \\ &\approx ||f - f_n||_{\sigma} + ||f - g||_{\sigma} - ||f - g||_{\sigma} \\ &\approx ||f - f(0)| + ||f - g||_{\sigma} - ||f - g||_{\sigma} \\ &\approx ||f - g||_{\sigma} + ||f - g||_{\sigma} - ||f - g||_{\sigma} \\ &\approx ||f - g||_{\sigma} + ||f - g||_{\sigma} - ||f - g||_{\sigma} \\ &\approx ||f - g||_{\sigma} + ||f - g||_{\sigma} - ||f - g||_{\sigma} \\ &\approx ||f - g||_{\sigma} + ||f - g||_{\sigma} - ||f - g||_{\sigma} \\ &\approx ||f - g||_{\sigma} + ||f - g||_{\sigma} - ||f - g||_{\sigma} \\ &\approx ||f - g||_{\sigma} + ||f - g||_{\sigma} - ||f - g||_{\sigma} \\ &\approx ||f - g||_{\sigma} + ||f - g||_{\sigma} - ||f - g||_{\sigma} \\ &\approx ||f - g||_{\sigma} + ||f - g||_{\sigma} - ||f - g||_{\sigma} \\ &\approx ||f - g||_{\sigma} + ||f - g||_{\sigma} + ||f - g||_{\sigma} \\ &\approx ||f - g||_{\sigma} + ||f - g||_{\sigma} + ||f - g||_{\sigma} \\ &\approx ||f - g||_{\sigma} + ||f - g||_{\sigma} + ||f - g||_{\sigma} + ||f - g||_{\sigma} \\ &\approx ||f - g||_{\sigma} + ||f - g||$$

Problem 3:

3). take a sequence in
$$\mathbb{R}^{(N)}$$
 that onverges eniformly to $(\frac{1}{n+1})$ $n \in \mathbb{N}$.

Tutorial VII

$$z) \ni g \in x^{**} \text{ st} \quad |g(q)| = ||q||, \quad x := i^{-1}(y) \in x$$

$$i : x \rightarrow x^{**} \quad \text{then} \quad g(q) = q(x)$$

Problem 2: Y: {convergent-sequences (ClUR) - IR extended on loll (R) by H.B.

If
$$9: l^{\circ}(\mathbb{R}) \rightarrow \mathbb{R}$$
(Un) heim $\longrightarrow \mathcal{L}$ conv

If $9: l^{\infty}(\mathbb{R}) \to \mathbb{R}$ with $(u_n)_n \in e^{1}(i_n)$. then $9(e_n) = 0 = u_n \forall n \in \mathbb{N}$ $e_i = (0, ..., 0, 1, 0, ...)$

so 9=0 absurd.

Problem 3: 1) Lat
$$GC(T0,1), R)$$
, $J = (J-J(0)) + J(0)$ and $C \cap X = \{0\}$.

2) $F: C(T0,1), R) \rightarrow R$.

In $J(0)$

and
$$C \cap X = \{0\}$$

Production 4: Y: X* Injedie, merjedie by Hahn-Banada

Tutorial VIII-IX

FREE, 11Trly = sup (9(Tr) (+0) 146 F* 1991461 Problam 1:

SPOT, 46F+111411 (13 CE*, by the uniform boundedness:

Yohlm 2:

.
$$(C) = (C) + (C) + (C) = (C) + (C$$

Two Idam 3:

1) linearity of the limit

2)
$$\forall n \in \mathbb{E}$$
 sap $||T_n x||_{\mathbb{E}} < +\infty$ by U.S. sap $||T_n||_{\mathcal{L}(\mathbb{E},F)} < +\infty$

ntin

4)
$$T_{\mathbf{V}}((b_n)_n) = \sum_{n=0}^{N} a_n b_n \quad (continuous as map on $\mathbb{R}^{N+1} \rightarrow \mathbb{R})$$$

5)
$$b_n := lanl^{q-1} D(an) A_n(N) \left(\overline{D(an)} an = lanl \right), (bn)_{n \in N} \in ellC) so$$

$$T(bn)_{n=0} = \sum_{n=0}^{N} |a_n|^q \leq ||T|| \left(\sum_{n=0}^{N} |b_n|^p \right)^{\frac{1}{p}} = ||T|| \left(\sum_{n=0}^{N} |a_n|^q \right)^{\frac{1}{p}}$$

$$\int_{N=0}^{N} |a_{1}|^{q} \int_{N=0}^{N} |a_{1}|^{q} \left(||T|| \right) take N-1 + 0.$$

Tutorial X

Russen 2:

https://math.stackexchange.com/questions/324538/separable-hilbert-space-have-a-countable-orthonormal-basis

2) Let (E, II.II) be a Banach space. Assume by contradiction that (en) nEIN* is an algebraic basis of E.

Sit
$$x_n := \sum_{k=1}^{n} \frac{e_k}{k^2} \in E$$
, $(x_n)_{n \in \mathbb{N}}$ is landy:

$$||x_{n+p}-x_n||=\left\|\sum_{k=n+1}^{n+p}\frac{e_k}{b^2}\right\| \leqslant \sum_{k=n+1}^{n+p}\frac{1}{k^2}\leqslant \sum_{k\geq n}\frac{1}{b^2} \Rightarrow 0 \text{ since } \sum_{k\in\mathbb{N}^+}\frac{1}{k^2}\leqslant +\infty$$

since E is Banach, FXEE st. 11xn-x11 ->0.

Using the algebraic banis $(e_n)_{n \in \mathbb{N}^*}$, $\exists k_1,...,k_r \in \mathbb{N}$, $\exists \lambda_1,...,\lambda_r \in \mathbb{K}$ (=Ro. C) s.t. $x = \sum_{i=1}^r \lambda_i e_k$

this means: . Yx EE 7! (xx1x6) E Fx6 such that x=xx+x6 . F 16 = 20E3 Then the projections IT: FOG>F, ITG: FOG>6 are continuous. proof: F, G are Banach spaces with the induced norm. Fx 6 also with 11 (n,y) 11 Fx 6 := 11x11 + 11y11 for (n,y) & Fx 6. Consider P: 6 x K - 7 6 0 K linear and bijedire. and onlines: || 4(x,y)|| = || x+y|| = (|| x|| + || y|| = || (x+y)|| + x6 By the open mapping theorem 9-1 is ontinuous. PF: $F_{x}b \rightarrow F$ is continuous: $\|P_{F}(x,y)\|_{E} = \|x\|_{E} \le \|x\|_{E} \|y\|_{E} = \|(x,y)\|_{E}$ $(x,y) \mapsto x$ so The = Pro 9-1 is continuous by composition. Let k > max (k1,...,kr) consider IT k the projection on span (ek). dosed be come finite dimensional

then The (xn-x) = The xn - The x = le kn to this contradicts coof The.

Lemma: let E be a Banach space and F, 6 dozed subvedor susspaces

such that E=FOG.

Tutorial XI

Problem 1:

1) let
$$u \in e^{4}$$
, $||Su||_{e^{2}} = ||u||_{e^{2}} (|u||_{e^{4}})$

a $||S|| (1 \text{ sinc} ||Seo|| = 1 = ||e||_{e^{4}} \text{ where } ||S|| = 1$

2) $S^{+}: (e^{2})^{+} \rightarrow (e^{4})^{+}$ $(S^{*}u) \sigma$ $\exists a \in e^{2}, \sigma \in e^{4}$
 $\sigma \mapsto \sigma S$
 $S^{*} = \varphi_{1} T \varphi_{2}$ when $T: e^{2} \rightarrow e^{4}, \varphi_{1}: e^{4} \rightarrow e^{4}$

Let $u \in e^{2}, Tu = \varphi_{1}^{-4} S^{*}(\varphi_{1}^{-4}u) = \varphi_{1}^{-4}(\varphi_{2}^{-4}u) S$
 $(Tu)_{n} = (\varphi_{1}^{-4}u) S e_{n} = (\varphi_{1}^{-4}u) e_{n+1} = (u, e_{n+1}) = u_{n+1}$

so $Tu = (u_{1}, u_{2}, ...,)$.

 $||T|| = +\infty$ take $(\frac{4}{n})_{n \in IM} \in e^{2} \setminus e^{4}$

Problem 2:

In fact, let $f \in L^p$ and let γ be a fixed positive constant. Set

$$f_1(x) = \begin{cases} f(x), & |f(x)| > \gamma, \\ 0, & |f(x)| \leq \gamma, \end{cases}$$

and $f_2(x) = f(x) - f_1(x)$. Then

$$\int |f_1(x)|^{p_1} d\mu(x) = \int |f_1(x)|^p |f_1(x)|^{p_1-p} d\mu(x) \leqslant \gamma^{p_1-p} \int |f(x)|^p d\mu(x),$$

since $p_1 - p \le 0$. Similarly, due to $p_2 \ge p$,

$$\int |f_2(x)|^{p_2} d\mu(x) = \int |f_2(x)|^p |f_2(x)|^{p_2-p} d\mu(x) \leqslant \gamma^{p_2-p} \int |f(x)|^p d\mu(x),$$

so $f_1 \in L^{p_1}$ and $f_2 \in L^{p_2}$, with $f = f_1 + f_2$.

Tutorial XII

Voldan 1:

E
$$\rightarrow R$$

Let $a \in E'$
 $a \mapsto a(nn) = a(nn) \rightarrow a(nn) \in R$

so sup $i(nn) = a(nn) \rightarrow a(nn) \in R$

3) Let
$$y \in X^*$$
, Let $\Sigma > 0$, $\exists m \in \mathbb{N} \mid \forall k \geq m$, $(y, xk - x) \in \mathbb{E}$

$$y\left(\frac{1}{x}\sum_{k=1}^{n}xk - x\right) = \frac{1}{x}\sum_{k=1}^{n}(y, xk - x) + \frac{1}{x}\sum_{k=m+1}^{n}(y, xk - x)$$

$$(+\omega)$$

として の

Problem 2:

$$1_{(n,n+1)} \rightarrow \int (bandel in L^2), \quad \forall 4 \in C_{\mathcal{L}}^{\mathcal{D}}(R) \langle 4, 1 \rangle = 0$$

$$\Rightarrow \int = 0.$$

a) Let
$$j \in L^2$$
, $j = L(ehil) ek$ $|j||^2 = L(ehil)|^2$

so $(e_{jk})^{-10} = 0$ os $(2\pi hn) = 0$

Tutorial XIII

4)
$$E(e)$$
 lette - $|V||_2$ lette - $||W||_2$ lette $||E||_2$

The $||E||^2$ $\left(1 - \frac{\varepsilon}{2} - ||W||_2\right) - \frac{||W||_2^2}{2\varepsilon} = ||e||^2 \frac{\varepsilon}{2} - \frac{||V||_2^2}{2\varepsilon}$

ab $\left(\frac{a^2 + \varepsilon b^2}{2\varepsilon}\right)$ dure $\varepsilon = 1 - ||w||_1$

$$||e||_{2}^{2} \leqslant \frac{2}{\epsilon} \left(\frac{E(e) + \frac{||v||_{2}^{2}}{2\epsilon}}{2\epsilon} \right) = \frac{1}{1 - ||w||_{1}} \left(\frac{2E(e) + \frac{||v||_{2}^{2}}{1 - ||w||_{1}}}{1 - ||w||_{2}} \right)$$

$$\int (p - e_{n}) \star w (p - e_{n}) = \int (p - e_{n}) \star \omega p + \int e_{n} \star w e_{n} - \int p \star \omega e_{n} \cdot \sum_{n=1+\infty}^{\infty} \frac{1}{2\epsilon} \left(\frac{2E(e) + \frac{||v||_{2}^{2}}{1 - ||w||_{2}}}{1 - ||w||_{2}} \right)$$

$$\int p \star \omega p \leqslant 2 \int p \star \omega (p - e_{n}) + \int e_{n} \star \omega e_{n} \cdot \int p \star \omega e_{n} \cdot \sum_{n=1+\infty}^{\infty} \frac{1}{2\epsilon} \left(\frac{2E(e) + \frac{||v||_{2}^{2}}{1 - ||w||_{2}}}{1 - ||w||_{2}} \right)$$

$$\int e^{-1} \int e$$

Let
$$r \geq 0$$
, $\inf V(n) \int A_{|n| \geq r} e(n) dn + \int A_{|n|} V(n) e(n) dn (\equiv (i))$

$$\Rightarrow \int A_{|n| \geq r} e(n) dn \left(\frac{2 E(e)}{\inf V(n)} \right)$$