Aula 12

Recorrências Lineares Homogêneas Passadas a Limpo

Definição 17. Dados $a_1, a_2, \ldots, a_k \in \mathbb{C}$, denotamos por $\mathcal{R}(a_1, a_2, \ldots, a_k)$ o conjunto das funções $f : \mathbb{N} \to \mathbb{C}$ que satisfazem a recorrência

$$f(n) = a_1 f(n-1) + a_2 f(n-2) + \ldots + a_k f(n-k)$$
, para todo $n \ge k$, isto é,

$$\mathcal{R}(a_1, a_2, \dots, a_k) := \{ f : \mathbb{N} \to \mathbb{C} \mid f(n) = a_1 f(n-1) + a_2 f(n-2) + \dots + a_k f(n-k),$$

para todo $n \ge k \}.$

Teorema 37. Dados $a_1, a_2, \ldots, a_k \in \mathbb{C}$, o conjunto $\mathcal{R}(a_1, a_2, \ldots, a_k)$ é um subespaço vetorial de $(\mathbb{C}^{\mathbb{N}}, +)$.

Demonstração. Exercício 47

Definição 18. O polinômio característico do espaço vetorial $\mathcal{R}(a_1, a_2, \dots, a_k)$ é o polinômio

$$X^k - a_1 X^{k-1} - \ldots - a_{k-1} X^1 - a_k.$$

Exemplo 8. O conjunto das funções $f: \mathbb{N} \to \mathbb{C}$ satisfazendo

$$f(n) = 2f(n-1) - f(n-2)$$
, para todo $n \ge 2$,

é o espaço vetorial $\mathcal{R}(2,-1)$, cujo polinômio característico é X^2-2X+1 .

O conjunto $\{r_1^n, r_2^n\}$, onde r_1 e r_2 são as raízes de $X^2 - 2X + 1$ é linearmente independente em $\mathcal{R}(2, -1)$.

$$S\acute{o} que r_1 = r_2 \dots$$

Teorema 38. A função $n^{m-1}r^n$ pertence ao espaço vetorial $\mathcal{R}(a_1, a_2, \ldots, a_k)$ se e somente se $(X-r)^m$ divide o polinômio característico de $\mathcal{R}(a_1, a_2, \ldots, a_k)$.

Teorema 39. Se $r \in \mathbb{C}$ é uma raiz de multiplicidade m do polinômio característico de $\mathcal{R}(a_1, a_2, \dots, a_k)$, então o conjunto

$$\left\{ n^j r^n \mid 0 \le j < m \right\}$$

 \acute{e} linearmente independente em $\mathcal{R}(a_1, a_2, \ldots, a_k)$.

Exemplo 9. O conjunto $\{n^0r_1^n, n^1r_1^n\}$, é linearmente independente em $\mathcal{R}(2, -1)$.

Então toda função $f \in \mathcal{R}(2,-1)$ pode ser escrita como uma combinação linear de $n^0r_1^n$ e $n^1r_1^n$, isto é, existem $c_{1,0}, c_{1,1} \in \mathbb{C}$ tais que

$$f = c_{1,0}n^0r_1^n + c_{1,1}n^1r_1^n.$$

ou seja,

$$f = c_{1,0}r_1^n + c_{1,1}nr_1^n.$$

Os valores de $c_{1,0}$ e $c_{1,1}$ podem ser determinados pelo sistema

$$f(0) = c_{1,0}r_1^0 + c_{1,1}(0)r_1^0,$$

$$f(1) = c_{1,0}r_1^1 + c_{1,1}(1)r_1^1,$$

ou seja,

$$f(0) = c_{1,0},$$

$$f(1) = c_{1,0}r_1 + c_{1,1}r_1,$$

e portanto,

$$c_{1,0} = f(0),$$

 $c_{1,1} = \frac{f(1)}{r_1} - f(0),$

e portanto,

$$f = f(0)r_1^n + \left(\frac{f(1)}{r_1} - f(0)\right)nr_1^n = \left(f(0) + \left(\frac{f(1)}{r_1} - f(0)\right)n\right)r_1^n$$

No exemplo tínhamos $r_1 = 1$ e portanto,

$$f = (f(1) - f(0))n + f(0),$$

ou seja,

$$f(n)=(f(1)-f(0))n+f(0), \ \textit{para todo} \ n \in \mathbb{N}.$$

Corolário 40. Sejam r_1, r_2, \ldots, r_l as distintas raízes do polinômio característico de $\mathcal{R}(a_1, a_2, \ldots, a_k)$ com multiplicidades m_1, m_2, \ldots, m_l , respectivamente. Então o conjunto

$$\{n^j r_i^n \mid 1 \le i \le l \text{ e } 0 \le j < m\}$$

 \acute{e} uma base de $\mathcal{R}(a_1, a_2, \ldots, a_k)$.

Corolário 41. Se $f: \mathbb{N} \to \mathbb{C}$ satisfaz

$$f(n) = a_1 f(n-1) + a_2 f(n-2) + \ldots + a_k f(n-k)$$
, para todo $n \ge k$,

 $ent ilde{a}o$

$$f(n) = \sum_{i=1}^l \sum_{j=0}^{m_i-1} c_{i,j} n^j r_i^n, \; extstyle{para-todo} \; n \in \mathbb{N},$$

onde r_1, r_2, \ldots, r_l são as distintas raízes do polinômio característico de $\mathcal{R}(a_1, a_2, \ldots, a_k)$ com multiplicidades m_1, m_2, \ldots, m_l , respectivamente, e $\{c_{i,j} \mid 1 \leq i \leq l \ e \ 0 \leq j < m\}$ é a solução do sistema

$$f(a) = \sum_{i=1}^{l} \sum_{j=0}^{m_i - 1} c_{i,j} a^j r_i^a, 0 \le a < k.$$

Exemplo 10. A recorrência

$$f(n) = 6f(n-1) - 13f(n-2) + 19f(n-3) - 14f(n-4) + 4f(n-5)$$

define o subespaço $\mathcal{R}(6, -13, 19, -14, 4)$ cujo polinômio característico é

$$X^{5} - 6X^{4} + 13X^{3} - 19X^{2} + 14X - 4 = (X - 1)^{3}(X - 2)^{2},$$

que tem l=2 raízes distintas,

$$r_1 = 1$$

$$r_2 = 2$$

com multiplicidades

respectivamente.

$$m_1 = 3,$$

$$m_2 = 2,$$

60

 m_2 —

Pelo Corolário 41, temos que

$$f(n) = \sum_{i=1}^{2} \sum_{j=0}^{m_i - 1} c_{i,j} n^j r_i^n$$

$$= \sum_{j=0}^{m_1 - 1} c_{1,j} n^j r_1^n + \sum_{j=0}^{m_2 - 1} c_{2,j} n^j r_2^n$$

$$= \sum_{j=0}^{2} c_{1,j} n^j 1^n + \sum_{j=0}^{1} c_{2,j} n^j 2^n$$

$$= c_{1,0} n^0 1^n + c_{1,1} n^1 1^n + c_{1,2} n^2 1^n + c_{2,0} n^0 2^n + c_{2,1} n^1 2^n$$

$$= c_{1,0} + c_{1,1} n + c_{1,2} n^2 + c_{2,0} 2^n + c_{2,1} n^2^n,$$

onde $c_{i,j}$: $1 \le i \le 2, 0 \le j < m_i$ são determinados pelo sistema

$$f(0) = c_{1,0} + c_{1,1}0 + c_{1,2}0^2 + c_{2,0}2^0 + c_{2,1}02^0$$

$$f(1) = c_{1,0} + c_{1,1}1 + c_{1,2}1^2 + c_{2,0}2^1 + c_{2,1}12^1$$

$$f(2) = c_{1,0} + c_{1,1}2 + c_{1,2}2^2 + c_{2,0}2^2 + c_{2,1}22^2$$

$$f(3) = c_{1,0} + c_{1,1}3 + c_{1,2}3^2 + c_{2,0}2^3 + c_{2,1}32^3$$

$$f(4) = c_{1,0} + c_{1,1}4 + c_{1,2}4^2 + c_{2,0}2^4 + c_{2,1}42^4$$

ou seja,

$$f(0) = c_{1,0} + c_{2,0}$$

$$f(1) = c_{1,0} + c_{1,1} + c_{1,2} + 2c_{2,0} + 2c_{2,1}$$

$$f(2) = c_{1,0} + 2c_{1,1} + 4c_{1,2} + 4c_{2,0} + 8c_{2,1}$$

$$f(3) = c_{1,0} + 3c_{1,1} + 9c_{1,2} + 8c_{2,0} + 24c_{2,1}$$

$$f(4) = c_{1,0} + 4c_{1,1} + 16c_{1,2} + 16c_{2,0} + 64c_{2,1}.$$

Exercícios 49, 50.