L. Vandenberghe ECE133A (Fall 2018)

8. Least squares

- least squares problem
- solution of a least squares problem
- solving least squares problems

Least squares problem

given $A \in \mathbf{R}^{m \times n}$ and $b \in \mathbf{R}^m$, find vector $x \in \mathbf{R}^n$ that minimizes

$$||Ax - b||^2 = \sum_{i=1}^m \left(\sum_{j=1}^n A_{ij}x_j - b_i\right)^2$$

• "least squares" because we minimize a sum of squares of affine functions:

$$||Ax - b||^2 = \sum_{i=1}^m r_i(x)^2, \qquad r_i(x) = \sum_{j=1}^n A_{ij}x_j - b_i$$

• the problem is also called the *linear* least squares problem

Example

$$A = \begin{bmatrix} 2 & 0 \\ -1 & 1 \\ 0 & 2 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

• the least squares solution \hat{x} minimizes

$$f(x) = ||Ax - b||^2 = (2x_1 - 1)^2 + (-x_1 + x_2)^2 + (2x_2 + 1)^2$$

• to find \hat{x} , set derivatives with respect to x_1 and x_2 equal to zero:

$$10x_1 - 2x_2 - 4 = 0$$
, $-2x_1 + 10x_2 + 4 = 0$

solution is $(\hat{x}_1, \hat{x}_2) = (1/3, -1/3)$

Least squares and linear equations

minimize
$$||Ax - b||^2$$

• solution of the least squares problem: any \hat{x} that satisfies

$$||A\hat{x} - b|| \le ||Ax - b||$$
 for all x

- $\hat{r} = A\hat{x} b$ is the *residual vector*
- if $\hat{r} = 0$, then \hat{x} solves the linear equation Ax = b
- if $\hat{r} \neq 0$, then \hat{x} is a *least squares approximate solution* of the equation
- in most least squares applications, m > n and Ax = b has no solution

Column interpretation

least squares problem in terms of columns a_1, a_2, \ldots, a_n of A:

minimize
$$||Ax - b||^2 = ||\sum_{j=1}^n a_j x_j - b||^2$$

$$range(A) = span(a_1, \dots, a_n)$$

- $A\hat{x}$ is the vector in range $(A) = \text{span}(a_1, a_2, \dots, a_n)$ closest to b
- geometric intuition suggests that $\hat{r} = A\hat{x} b$ is orthogonal to range(A)

Example: advertising purchases

- *m* demographic groups; *n* advertising channels
- A_{ij} is # impressions (views) in group i per dollar spent on ads in channel j
- x_i is amount of advertising purchased in channel j
- $(Ax)_i$ is number of impressions in group i
- b_i is target number of impressions in group i

Example: m = 10, n = 3, $b = 10^3 1$

Example: illumination

- *n* lamps at given positions above an area divided in *m* regions
- A_{ij} is illumination in region i if lamp j is on with power 1 and other lamps are off
- x_j is power of lamp j
- $(Ax)_i$ is illumination level at region i
- b_i is target illumination level at region i

Example: $m = 25^2$, n = 10; figure shows position and height of each lamp

Least squares

Example: illumination

- left: illumination pattern for equal lamp powers (x = 1)
- right: illumination pattern for least squares solution \hat{x} , with b = 1

Least squares

Outline

- least squares problem
- solution of a least squares problem
- solving least squares problems

Solution of a least squares problem

if A has linearly independent columns (is left-invertible), then the vector

$$\hat{x} = (A^T A)^{-1} A^T b$$
$$= A^{\dagger} b$$

is the unique solution of the least squares problem

minimize
$$||Ax - b||^2$$

- in other words, if $x \neq \hat{x}$, then $||Ax b||^2 > ||A\hat{x} b||^2$
- recall from page 4.23 that

$$A^{\dagger} = (A^T A)^{-1} A^T$$

is called the *pseudo-inverse* of a left-invertible matrix

Proof

we show that $||Ax - b||^2 > ||A\hat{x} - b||^2$ for $x \neq \hat{x}$:

$$||Ax - b||^{2} = ||A(x - \hat{x}) + (A\hat{x} - b)||^{2}$$
$$= ||A(x - \hat{x})||^{2} + ||A\hat{x} - b||^{2}$$
$$> ||A\hat{x} - b||^{2}$$

• 2nd step follows from $A(x - \hat{x}) \perp (A\hat{x} - b)$:

$$(A(x - \hat{x}))^{T}(A\hat{x} - b) = (x - \hat{x})^{T}(A^{T}A\hat{x} - A^{T}b) = 0$$

• 3rd step follows from linear independence of columns of *A*:

$$A(x - \hat{x}) \neq 0$$
 if $x \neq \hat{x}$

Derivation from calculus

$$f(x) = ||Ax - b||^2 = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} A_{ij} x_j - b_i \right)^2$$

partial derivative of f with respect to x_k

$$\frac{\partial f}{\partial x_k}(x) = 2\sum_{i=1}^m A_{ik} \left(\sum_{j=1}^n A_{ij} x_j - b_i \right) = 2(A^T (Ax - b))_k$$

gradient of f is

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}(x), \frac{\partial f}{\partial x_2}(x), \dots, \frac{\partial f}{\partial x_n}(x)\right) = 2A^T(Ax - b)$$

• minimizer \hat{x} of f(x) satisfies $\nabla f(\hat{x}) = 2A^T(A\hat{x} - b) = 0$

Geometric interpretation

residual vector $\hat{r} = A\hat{x} - b$ satisfies $A^T\hat{r} = A^T(A\hat{x} - b) = 0$

- residual vector \hat{r} is orthogonal to every column of A; hence, to range(A)
- projection on range(A) is a matrix-vector multiplication with the matrix

$$A(A^T A)^{-1} A^T = A A^{\dagger}$$

Outline

- least squares problem
- solution of a least squares problem
- solving least squares problems

Normal equations

$$A^T A x = A^T b$$

- these equations are called the *normal equations* of the least squares problem
- coefficient matrix $A^T A$ is the Gram matrix of A
- equivalent to $\nabla f(x) = 0$ where $f(x) = ||Ax b||^2$
- all solutions of the least squares problem satisfy the normal equations

if *A* has linearly independent columns, then:

- $A^T A$ is nonsingular
- normal equations have a unique solution $\hat{x} = (A^T A)^{-1} A^T b$

QR factorization method

rewrite least squares solution using QR factorization A = QR

$$\hat{x} = (A^T A)^{-1} A^T b = ((QR)^T (QR))^{-1} (QR)^T b$$

$$= (R^T Q^T QR)^{-1} R^T Q^T b$$

$$= (R^T R)^{-1} R^T Q^T b$$

$$= R^{-1} R^{-1} R^T Q^T b$$

$$= R^{-1} Q^T b$$

Algorithm

- 1. compute QR factorization $A = QR (2mn^2 \text{ flops if } A \text{ is } m \times n)$
- 2. matrix-vector product $d = Q^T b$ (2mn flops)
- 3. solve Rx = d by back substitution (n^2 flops)

complexity: $2mn^2$ flops

Example

$$A = \begin{bmatrix} 3 & -6 \\ 4 & -8 \\ 0 & 1 \end{bmatrix}, \qquad b = \begin{bmatrix} -1 \\ 7 \\ 2 \end{bmatrix}$$

1. QR factorization: A = QR with

$$Q = \begin{bmatrix} 3/5 & 0 \\ 4/5 & 0 \\ 0 & 1 \end{bmatrix}, \qquad R = \begin{bmatrix} 5 & -10 \\ 0 & 1 \end{bmatrix}$$

- 2. calculate $d = Q^T b = (5, 2)$
- 3. solve Rx = d

$$\left[\begin{array}{cc} 5 & -10 \\ 0 & 1 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 5 \\ 2 \end{array}\right]$$

solution is $x_1 = 5$, $x_2 = 2$

Solving the normal equations

why not solve the normal equations

$$A^T A x = A^T b$$

as a set of linear equations?

Example: a 3×2 matrix with "almost linearly dependent" columns

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 10^{-5} \\ 0 & 0 \end{bmatrix}, \qquad b = \begin{bmatrix} 0 \\ 10^{-5} \\ 1 \end{bmatrix},$$

we round intermediate results to 8 significant decimal digits

Solving the normal equations

Method 1: form Gram matrix A^TA and solve normal equations

$$A^{T}A = \begin{bmatrix} 1 & -1 \\ -1 & 1 + 10^{-10} \end{bmatrix} \implies \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \qquad A^{T}b = \begin{bmatrix} 0 \\ 10^{-10} \end{bmatrix}$$

after rounding, the Gram matrix is singular; hence method fails

Method 2: QR factorization of A is

$$Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \qquad R = \begin{bmatrix} 1 & -1 \\ 0 & 10^{-5} \end{bmatrix}$$

rounding does not change any values (in this example)

- problem with method 1 occurs when forming Gram matrix A^TA
- QR factorization method is more stable because it avoids forming A^TA