Artificial Neural Networks

Symbols

1. i^{th} input:

2. Expected output:

3. Weight from $k^{\rm th}$ neuron in (l-1) to $j^{\rm th}$ neuron in $l^{\rm th}$ layer: w_{ik}^l

4. Summation of j^{th} neuron in l^{th} layer: z_i^l

5. Summation of $j^{\rm th}$ neuron in the output layer: z_j^L

6. Activation of j^{th} neuron in l^{th} layer:

7. Activation of j^{th} neuron in the output layer:

8. Bias of j^{th} neuron in l^{th} layer:

9. Activation function:

10. Cost of j^{th} output:

11. Learning rate:

12. Mini batch size: m

Equations

1. $z_i^l = \sum_k a_k^{l-1} w_{ik}^l + b_i^l$

2. $a_i^l = \sigma(z_i^l)$

3. $C_i = \frac{1}{2} (a_i^L - y)^2$

Definitions

1. Rate of change of cost relative to sum (delta): $\delta_j^L = \frac{\partial c_j}{\partial z_i^L}$

Derivations

1.
$$C_j = \frac{1}{2} (a_j^L - y)^2$$
$$\frac{\partial C_j}{\partial a_i^L} = (a_j^L - y)$$

Four Fundamental Equations

1. Output error =
$$\delta_j^L = \frac{\partial C_j}{\partial a_j^L} \sigma'(z_j^L)$$

Proof:

We start with the definition of δ_i^L

$$\delta_j^L = \frac{\partial C_j}{\partial z_j^L}$$

$$\delta_j^L = \frac{\partial c_j}{\partial a_j^L} \frac{\partial a_j^L}{\partial z_j^L}$$

$$a_j^L = \sigma \big(z_j^L \big)$$

$$\delta_j^L = \frac{\partial C_j}{\partial a_j^L} \frac{\sigma(z_j^L)}{\partial z_j^L}$$

$$\delta_j^L = \frac{\partial C_j}{\partial a_i^L} \sigma'(z_j^L)$$

2. Error in
$$l^{th}$$
 layer in terms of error in $(l+1)$ layer $= \delta_j^l = \sum_p w_{pj}^{l+1} \delta_p^{l+1} \sigma'(z_j^l)$

Proof:

$$\begin{split} \delta_j^l &= \frac{\partial C_i}{\partial z_j^l} \\ &= \sum_p \frac{\partial C_i}{\partial z_p^{l+1}} \frac{\partial z_p^{l+1}}{\partial z_j^l} \\ &= \sum_p \delta_p^{l+1} \frac{\partial z_p^{l+1}}{\partial z_j^l} \end{split}$$

$$z_p^{l+1} = \sum_j a_j^l w_{pj}^{l+1} + b_p^{l+1}$$
$$= \sum_j \sigma(z_j^l) w_{pj}^{l+1} + b_p^{l+1}$$

By differentiating,

$$\frac{\partial z_p^{l+1}}{\partial z_j^l} = \, \sigma' \big(z_j^l \big) \, w_{pj}^{l+1}$$

Substituting,

$$\delta_j^l = \sum_p w_{pj}^{l+1} \, \delta_p^{l+1} \, \sigma'(z_j^l)$$

3. Rate of change of cost relative bias
$$=\frac{\partial C_i}{\partial b_i^l}=\delta_j^l$$

Proof:

$$\begin{split} \frac{\partial c_i}{\partial b_j^l} &= \frac{\partial c_i}{\partial z_j^l} \frac{\partial z_j^l}{\partial b_j^l} \\ &= \frac{\partial c_i}{\partial z_j^l} \frac{\partial z_j^l}{\partial b_j^l} \\ &= \frac{\partial c_i}{\partial z_j^l} \frac{\partial \left[\sum_k a_k^{l-1} w_{jk}^l + b_j^l\right]}{\partial b_j^l} \\ &= \frac{\partial c_i}{\partial z_j^l} \frac{\partial b_j^l}{\partial b_j^l} \\ &= \delta_i^l \end{split}$$

4. Rate of change of cost relative to weight
$$=\frac{\partial c_i}{\partial w_{jk}^l}=a_k^{l-1}\delta_j^l$$

Proof:

$$\begin{split} \frac{\partial C_i}{\partial w_{jk}^l} &= \frac{\partial C_i}{\partial z_j^l} \frac{\partial z_j^l}{\partial w_{jk}^l} \\ &= \frac{\partial C_i}{\partial z_j^l} \frac{\partial \left[\sum_k a_k^{l-1} w_{jk}^l + b_j^l \right]}{\partial w_{jk}^l} \\ &= \frac{\partial C_i}{\partial z_j^l} a_k^{l-1} \\ &= a_k^{l-1} \delta_j^l \end{split}$$

Algorithm

- 1. Initialize weights and biases w, b
- 2. Input *x*
- 3. Feedforward

$$a^{1} = x$$

$$for l = 2,3,...,L$$

$$z^{l} = w^{l}.a^{l-1} + b^{l}$$

$$a^{l} = \sigma(z^{l})$$

4. Output error

$$\delta^L = (a^L - y) * \sigma'(z^L)$$

5. Backpropagate error and calculate gradient

$$for \ l=L-1,L-2,...,2$$

$$\delta^l = ((w^{l+1})^T . \delta^{l+1}) * \sigma'(z^l)$$

6. Adjust weights and biases for every mini batches

 $for \ mini_batch: mini_batches$

$$w^{l,t} = w^{l,t-1} - \frac{\eta}{m} \sum_{x} \delta^{x,l} (a^{x,l-1})^{T}$$
$$b^{l,t} = b^{l,t-1} - \frac{\eta}{m} \sum_{x} \delta^{x,l}$$