Mathematical Analysis Vol.1

@Souez3

22.11.2024

1 Билет 1

1.1 Последовательность

f(n) - последовательность задана на множестве N Когда каждому $n \in N$ поставлено в соответствие некоторого закона $a(n) \in R$, тогда говорят, что задана числовая последовательность a_n^{\inf}

Примеры: n-ный член арифметической прогрессии: $a_n = a_1 + \alpha(n-1)$ геометрическая прогрессия: $b_n = b_1 * q^(n-1)$

1.2 Предел числовой последовательности

Определение: Число A называют пределом числовой последовательности X_n , если $\forall \epsilon > 0 \exists N(\epsilon)$: $\forall n > N(\epsilon)$ выполняется $|X_n - A| < \epsilon$

Определение: Сходящаяся последовательность - последовательность, которая имеет конечный предел

Определение: Расходящаяся последовательность - последовательность, которая имеет бесконечный предел либо предела не существует.

Последовательноть ограничена, если $\exists M>0: \forall n\in N$ выполняется $a_n <= M$ (существует такое число M, что для любого номера последовательности все члены последовательности не превосходят это число по модулю.

2 Билет 2

2.1 Теорема о единственности предела последовательности

Теорема: Если у последовательности есть предел, то он единственный **Доказательство:** Докажем от противного. Допустим существует 2 предела.

$$\exists \lim_{x\to\infty} X_n = A \ \exists \lim_{x\to\infty} X_n = B$$
, при этом $B! = A$ (1)

Тогда возьмем
$$\epsilon = (B-A)/3 > 0, \ (\epsilon_A \cap \epsilon_B! = 0)$$

Следовательно

$$n>=N$$
 $\exists N_1: \forall n>N$ выполняется $|X_n-A|<\epsilon$ (2)

 $\exists N_2 \forall_n >= N_2$ и тоже выполняется, что $|X_n - B| < \epsilon$ (3)

Тогда $|a-b|=|a-X_n+X_n-b|<=|X_n-A|+X_n-B|<\epsilon+\epsilon=2\epsilon=\frac{2*|A-B|}{3},$ тогда получим $|A-B|<=\frac{2}{3}*|B-A|$ Получим противорчие

3 Билет 3

Определение: Последовательность ограничена, если $\exists M>0: \forall b\in N$ выполняется $|a_n|<=M$ Теорема об ограниченности сходящейся последовательности: Всякая сходящаяся последовательность ограничена!

Доказательство: $\Box A = \lim_{n \to \infty} X_n \in R$, тогда и только тогда, когда $\forall \epsilon > 0 \exists N(\epsilon) \in mathdsN$ такое что $\forall n \in mathdsN : n > N(\epsilon)$ выполняется $|X_n - A| < \epsilon \forall n > N(\epsilon)X_n \in (A - \epsilon; A + \epsilon)$ содержит конечное число $\mathbf{x}_1, \mathbf{x}_2, ... \mathbf{x}_k \Box m = minX^-; A - \epsilon M = maxA - \epsilon; x^+$ Тогда на отрезке [m; M] находятся $\mathbf{x}_1, \mathbf{x}_2, ... \mathbf{x}_k (A - \epsilon; A + \epsilon)[m; M] \mathbf{x}_n, \forall n \in mathdsN \mathbf{x}_n <= m\mathbf{x}_n >= M$ Примеры:

1)

 $1_{\overline{n^2=1;\frac{1}{4},\frac{1}{4};\frac{1}{9};\frac{1}{16}...}}$ $\lim \frac{1}{n^2}=0$ - ограничена сверху 2) $\frac{n^2}{n+1}=\frac{1}{2};\frac{4}{3};\frac{9}{4};\frac{16}{5};...$ $\lim \frac{n^2}{n+1}>=\frac{1}{2}$ - ограничена снизу (4)

4 Билет 4

Арифметические операции над сходящимися последовательностями

 $\Box X_n; Y_n$ - две сходящиеся последовательности. Тогда $\exists \lim_{n \to \infty} X_n = A; \lim_{n \to \infty} Y_n = B$ Свойства 1) $X_n + = Y_n; X_n * Y_n; \frac{X_n}{Y_n}$ - тоже сходящиеся последовательности. 2) $\lim_{n \to \infty} (X_n + Y_n) = A + B$ 3) $\lim_{n \to \infty} (X_n - Y_n) = A - B$ 4) $\lim_{n \to \infty} (X_n * Y_n) = A * B$ 5) $\lim_{n \to \infty} \frac{X_n}{Y_n} = \frac{A}{B}$ Доказательство: 1) $\forall N > 0_0$: $\forall n > N_0$ выполняется $|X_n - A| < \frac{\epsilon}{2}() \exists N_1$: $\forall n > N_1$ выполняется $|Y_n - B| < \frac{\epsilon}{2}$ Пусть $N = \max(N_2; N_1), n > N \forall n > N | (X_n + Y_n) - (A + B) | = |X_n - A + Y_n - B| < = |X_n - A| + |Y_n - B| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$

5 Билет 5

5.1 Понятие функции через последовательность

Если каждому $x \in X$ по некоторому закону поставлен в соответствии единственный у, то говорят что на множестве X задана функция f

 $\forall x \in X \exists ! y \in R : f(x) = y$ (5)

5.2 Предел функции в точке

Определение по Гейне: $\supset f(x)$ - определена в некоторой проколотой окрестности точки х

 $\lim_{x\to x_0} f(x) = A$ если $\forall x_n \exists \mathring{U}_{x0} > 0$ $\lim_{x\to x_0} f(x) - g(x) > 0 => f(x) - g(x) > 0$ по теореме если f(x) имеет предел A и в окрестности (а) принимает значения больше нуля, то A>=0 (6)

5.3 Теорема о единственности предела

Если функция имеет предел в точке, то он единственнй.

Доказательство от противного: $\exists X_n = \lim_{n \to \infty} X_n = A$ и $\lim_{n \to \infty} X_n = B$, A! = B; $A, B \in R$ Возьмем $\epsilon_n \cap \epsilon_b! =$, тогда $|f(x) - A| < \frac{\epsilon}{2}; |f(x) - B| < \frac{\epsilon}{2} |A - B| = |A - B + f(x) - f(x)| = |A - f(x) + f(x) - B| < = |A - f(x)| + |B - f(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ То есть получили $\forall \epsilon > 0 - > |A - B| < \epsilon$

6 Билет 6

6.1 Ограниченная функция

Определение: Функция ограничена, если $\exists M>0: \forall x\in X$ выполняется |f(x)|<=M

Определение: Функция называется ограниченной сверху на х если $\exists M: \forall x \in X$ выполняется F(x) < M

Определение: Функция называется ограниченной снизу на х если $\exists M: \forall x \in X$ выполняется F(x) > M

6.1.1 Теорема об ограниченности функции, имеющей предел (конечный)

Если функция f(x) определена в точке x_0 и имеет в точке конечный предел, то она ограничена в некоторой окрестности этой точки.

$$\exists \lim_{x \to x_0} f(x) = A \iff \forall \varepsilon > 0 \,\exists \delta > 0 : \forall x \in \dot{U}(\delta),$$
$$|x - x_0| < \delta \implies |f(x) - A| < \varepsilon.$$

 $|x-x_0| < b \longrightarrow |f(x)|$ Пусть $\varepsilon = 1$, тогда $\forall x \in \dot{U}(\delta)$:

$$|f(x) - A| < 1,$$

раскрыв модуль:

$$-1 < f(x) - A < 1.$$

Отсюда:

$$A-1 < f(x) < A+1 \implies f(x)$$
 ограничена.

7 Билет 7

7.1 Арифметические действия с пределами функции

$$\lim_{x \to x_0} f(x) = A \quad \text{if} \quad \lim_{x \to x_0} \varphi(x) = B.$$

Тогда:

1.

$$\lim_{x \to x_0} (f(x) + \varphi(x)) = A + B.$$

2.

$$\lim_{x \to x_0} C \cdot f(x) = C \cdot A, \quad \text{где } C = \text{const.}$$

3.

$$\lim_{x \to x_0} (f(x) \cdot \varphi(x)) = A \cdot B.$$

4. Если $B \neq 0$, то:

$$\lim_{x \to x_0} \frac{f(x)}{\varphi(x)} = \frac{A}{B}.$$

Условие: $\forall x \in \text{Dom}(\varphi) \quad \varphi(x) \neq 0$.

Доказательство: Арифметическое свойство предела (Сумма)

Условие

$$\lim_{x\to x_0} f(x) = A \quad \text{if} \quad \lim_{x\to x_0} \varphi(x) = B.$$

Доказательство

По определению предела:

$$\lim_{x \to x_0} f(x) = A \iff \forall \varepsilon_1 > 0 \,\exists \delta_1 > 0 : \forall x \in \dot{U}(\delta_1),$$
$$|x - x_0| < \delta_1 \implies |f(x) - A| < \varepsilon_1.$$

$$\lim_{x \to x_0} \varphi(x) = B \iff \forall \varepsilon_2 > 0 \,\exists \delta_2 > 0 : \forall x \in \dot{U}(\delta_2),$$
$$|x - x_0| < \delta_2 \implies |\varphi(x) - B| < \varepsilon_2.$$

Пусть $\varepsilon = \varepsilon_1 + \varepsilon_2$, и $\delta = \min(\delta_1, \delta_2)$. Тогда:

$$|f(x) + \varphi(x) - (A+B)| = |f(x) - A + \varphi(x) - B| \le |f(x) - A| + |\varphi(x) - B|.$$

Из условий следует:

$$|f(x) - A| < \varepsilon_1$$
 и $|\varphi(x) - B| < \varepsilon_2$.

Таким образом:

$$|f(x) + \varphi(x) - (A+B)| < \varepsilon_1 + \varepsilon_2 = \varepsilon.$$

Вывод

$$\lim_{x \to x_0} (f(x) + \varphi(x)) = A + B.$$

Теорема о суперпозиции

- 1) f(x) u g(x) : F(x) = F(f(g(x)))
 - $2) \lim_{x \to x_0} g(x) = A$
 - $3) \lim_{x \to x_0} f(x) = B$

Следовательно:

$$\lim_{x \to x_0} F(f(g(x))) = B$$

Доказательство: $\exists x = Dom(g); y = Dom(f)$ Тогда по определению предела $\lim_{x \to x_0} g(x) = A \iff \forall \varepsilon_1 > 0 \exists \delta_1 > 0 : \forall x \in \dot{U}(\delta_1) \ |g(x) - A| < \varepsilon \lim_{y \to A} f(y) = B \iff \forall \varepsilon_2 > 0 \exists \varepsilon_1 > 0 : \forall y \in \dot{U}(A) \ |f(y) - B| < \varepsilon_2$ Следовательно: $\forall \varepsilon_2 > 0 \exists \dot{U}_\delta(x_0) > 0 : \forall x \in \dot{U}_\delta(x_0) \implies f(g(x)) \in \dot{U}_{\varepsilon_2}(B) \implies B = \lim_{x \to x_0} f(g(x)) \ |f(g(x)) - B| < \varepsilon_2 \implies B = \lim_{x \to x_0} f(g(x))$

Теоремы о пределах функции: о предельном переходе в неравенство

Рассмотрим неравенство:

$$a_n \leq b_n$$

Пусть $\lim_{n\to\infty}a_n=A$ и $\lim_{n\to\infty}b_n=B$. Тогда, если $a_n\leq b_n$ для всех n, то по свойству пределов:

$$\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$$

Следовательно:

$$A \le B$$

Доказательство от противного: $\Box A>B$ Тогда $\lim_{x\to x_0}(f(x)-g(x))=A-B>0$ Из арифметических свойств пределов следует: $f(x)-g(x)>0 \implies f(x)>g(x)$ Это противоречит условию f(x)<=g(x)

Теорема о сжатой функции

Теорема о сжатой функции

Пусть f(x), g(x) и h(x) — функции, определенные на множестве $E \subset \mathbb{R}$ и выполняется неравенство

$$f(x) \le h(x) \le g(x),$$

и при этом

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = b,$$

то

$$\lim_{x \to a} h(x) = b.$$

Доказательство:

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = C \tag{7}$$

Тогда:

$$\forall \varepsilon_1 > 0 \exists \dot{U}_f(x_0) : \forall x \in \dot{U}_f(x_0) \tag{8}$$

$$|f(x) - C| < \varepsilon_1 \implies -\varepsilon_1 < f(x) - C < \varepsilon_1 \implies C - \varepsilon_1 < f(x) < \varepsilon_1 + C \tag{9}$$

$$\lim_{x \to x_0} h(x) = C \tag{10}$$

$$\forall \varepsilon_2 > 0 \exists \dot{U}_h(x_0) : \forall x \in \dot{U}_h(x_0) \tag{11}$$

$$|h(x) - C| < \varepsilon_2 \implies -\varepsilon_2 < h(x) - C < \varepsilon_2 \implies C - \varepsilon_2 < h(x) < \varepsilon_2 + C$$
 (12)

$$f(x) \le g(x) \le h(x) \implies C - \varepsilon_1 < f(x) \le g(x) \le h(x) < \varepsilon_2 + C \tag{13}$$

Отсюда:

$$-\varepsilon_1 < g(x) < \varepsilon_2 + C - \varepsilon_1 < g(x) - C < \varepsilon_2 \tag{14}$$

Пересечём окрестности ε_1 и ε_2 и возьмем $min(-\varepsilon_2; \varepsilon_2)$ Тогда

$$-\varepsilon_2 < g(x) - < \varepsilon_2 \implies |g(x) - C| < \varepsilon_2 \implies \lim_{x \to x_0} g(x) = C$$
 (15)

1 замечательный предел

Рассмотрим предел:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Доказательство:

Рассмотрим односторонние пределы и докажем, что они равны 1. Рассмотрим случай $x \to +0$. Отложим этот угол на единичной окружности так, чтобы его вершина совпадала с началом координат, а одна сторона совпадала с осью OX. Пусть A — точка пересечения второй стороны угла с единичной окружностью, а точка B — с касательной к этой окружности в точке A. Точка C — проекция точки A на ось OX. Очевидно, что:

$$S_{\triangle OAC} < S_{\text{сектора }OAC} < S_{\triangle OAB}$$

где S — площадь. Поскольку $|OC| = \cos x$, $|AC| = \sin x$, $|AB| = \tan x$, то:

$$\frac{\sin x}{2} < \frac{x}{2} < \frac{\tan x}{2}$$

Так как при $x \to +0$: $\sin x > 0$, x > 0, $\tan x > 0$:

$$\frac{1}{\tan x} < \frac{1}{x} < \frac{1}{\sin x}$$

Умножаем на $\sin x$:

$$\cos x \le \frac{\sin x}{x} \le 1$$

Переходя к пределу:

$$\lim_{x\to +0}\cos x \leq \lim_{x\to +0}\frac{\sin x}{x} \leq 1$$

Так как $\lim_{x\to+0}\cos x=1$, то:

$$\lim_{x \to +0} \frac{\sin x}{x} = 1$$

Аналогично доказывается для $x \to -0$. Следовательно:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

9 Билет 9

Предел функции на бесконечности

Определение: Число A называется пределом функции f(x) при $x \to \infty$ если $\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) > 0$: $\forall x \in Dom(f)$ из $|x| > \Rightarrow |f(x) - A| < \varepsilon$.

10 Билет 10

Бесконечно большие функции.

Функция f(x) называется бесконечно большой при $x \to x_0$, если

$$\forall M>0\,\exists \delta>0$$
 такое, что $0<|x-x_0|<\delta\Rightarrow |f(x)|>M$

Пример: Функция $f(x) = \frac{1}{x}$ является бесконечно большой при $x \to 0$.

Устойчивость знака непрерывной функции

Теорема: Пусть f — непрерывная функция на множестве $D \subset \mathbb{R}$, и пусть $c \in D$ такая точка, что $f(c) \neq 0$. Тогда существует окрестность U(c) точки c, такая что для всех $x \in U(c) \cap D$ выполняется $f(x) \neq 0$ и знак функции f на $U(c) \cap D$ совпадает со знаком f(c).

12 Билет 21

1. Алгебраические функции

Алгебраические функции — это функции, которые могут быть выражены с использованием конечного числа операций сложения, вычитания, умножения, деления и извлечения корней. Примеры:

- линейная функция: f(x) = ax + b, где $a, b \in \mathbb{R}$;
- квадратичная функция: $f(x) = ax^2 + bx + c$, где $a, b, c \in \mathbb{R}$;
- корневая функция: $f(x) = \sqrt[n]{x}$, где $n \in \mathbb{N}$, $n \ge 2$.

2. Трансцендентные функции

Трансцендентные функции не могут быть выражены в виде конечных комбинаций алгебраических операций. Они включают:

- экспоненциальные функции, например, $f(x) = a^x$, где $a > 0, a \neq 1$;
- логарифмические функции, например, $f(x) = \ln(x)$ или $f(x) = \log_a(x)$;
- тригонометрические функции: $\sin(x)$, $\cos(x)$, $\tan(x)$ и т.д.;
- обратные тригонометрические функции: $\arcsin(x)$, $\arccos(x)$ и т.д.;
- гиперболические функции: sinh(x), cosh(x) и т.д.

3. Непрерывность элементарных функций

Элементарные функции являются непрерывными на своих областях определения. Это означает, что если функция определена в некоторой точке x_0 и в её окрестности, то:

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Примеры:

- Линейные и квадратичные функции непрерывны на всей числовой прямой $\mathbb{R}.$
- Тригонометрические функции $\sin(x)$ и $\cos(x)$ непрерывны на \mathbb{R} , а $\tan(x)$ на множестве $\mathbb{R} \setminus \left\{ x = \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \right\}$.

Операции над непрерывными функциями и переход к пределу под знаком непрерывной функции

Операции над непрерывными функциями

Пусть f и g — функции, непрерывные в точке x=a. Тогда следующие функции также непрерывны в точке a:

• Cymma: f(x) + g(x)

• Разность: f(x) - g(x)

• Произведение: $f(x) \cdot g(x)$

• Частное: $\frac{f(x)}{g(x)}$, если $g(a) \neq 0$

Переход к пределу под знаком непрерывной функции

Пусть f — непрерывная функция в точке a, и пусть $\lim_{x\to a} g(x) = L$. Тогда:

$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right) = f(L)$$

Доказательство: Так как f непрерывна в точке L, то по определению непрерывности для любого $\epsilon>0$ существует $\delta>0$ такое, что для всех y, удовлетворяющих условию $|y-L|<\delta$, выполняется $|f(y)-f(L)|<\epsilon$. Поскольку $\lim_{x\to a}g(x)=L$, существует такое $\delta'>0$, что для всех x, удовлетворяющих условию $|x-a|<\delta'$, выполняется $|g(x)-L|<\delta$. Следовательно, для таких x имеем:

$$|f(g(x)) - f(L)| < \epsilon$$

Таким образом, $\lim_{x\to a} f(g(x)) = f(L)$.

14 Билет 23

Теорема о непрерывности сложной функции

Теорема: Пусть f непрерывна в точке a, и g непрерывна в точке b = f(a). Тогда сложная функция h(x) = g(f(x)) непрерывна в точке a.

Доказательство: Так как f непрерывна в точке a, то для любого $\epsilon > 0$ существует $\delta_1 > 0$ такое, что если $|x - a| < \delta_1$, то $|f(x) - f(a)| < \delta_2$, где δ_2 будет определено далее.

Поскольку g непрерывна в точке b=f(a), то для любого $\epsilon>0$ существует $\delta_2>0$ такое, что если $|y-f(a)|<\delta_2$, то $|g(y)-g(f(a))|<\epsilon$.

Теперь, выберем $\delta = \delta_1$. Тогда, если $|x-a| < \delta$, то $|f(x)-f(a)| < \delta_2$, и, следовательно, $|g(f(x))-g(f(a))| < \epsilon$.

Таким образом, $|h(x) - h(a)| = |g(f(x)) - g(f(a))| < \epsilon$, что доказывает непрерывность h(x) в точке a.

15 Билет 24

Первый замечательный предел

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Следствия:

Следствия:

$$\lim_{x \to 0} \frac{\tan x}{x} = 1, \quad \lim_{x \to 0} \frac{\arcsin x}{x} = 1, \quad \lim_{x \to 0} \frac{\arctan x}{x} = 1$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2/2} = 1$$

Второй замечательный предел

$$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$$

$$\lim_{x \to 0} (1+x)^{1/x} = e$$

$$\lim_{k \to +\infty} \left(1 + \frac{1}{k}\right)^k = e$$

$$\lim_{x \to 0} \ln(1+x) = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln(a) \quad \text{для} \quad a > 0, \, a \neq 1$$

$$\lim_{x \to 0} \frac{\ln(1+ax)}{ax} = 1$$

16 Билет 25

Точки разрыва функции и их классификация

Точки разрыва первого и второго рода

Точка разрыва первого рода

Точка x=a называется точкой разрыва первого рода, если существуют конечные односторонние пределы, но они не равны:

$$\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x)$$

Пример: Функция $f(x) = \begin{cases} 1, & x < 0 \\ 2, & x \ge 0 \end{cases}$ имеет точку разрыва первого рода в x = 0.

Точка разрыва второго рода

Точка x=a называется точкой разрыва второго рода, если хотя бы один из односторонних пределов равен $\pm \infty$ или не существует:

$$\lim_{x o a^-} f(x) = \pm \infty$$
 или $\lim_{x o a^+} f(x) = \pm \infty$

Пример: Функция $f(x) = \frac{1}{x}$ имеет точку разрыва второго рода в x = 0.

Точки устранимого и неустранимого разрыва

Точка устранимого разрыва

Точка x=a называется точкой устранимого разрыва, если существует конечный предел, но функция не определена в этой точке или её значение не равно пределу:

$$\lim_{x \to a} f(x)$$
 существует, но $f(a) \neq \lim_{x \to a} f(x)$ или $f(a)$ не определена

Пример: Функция
$$f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 имеет устранимый разрыв в $x = 0$, так как $\lim_{x \to 0} \frac{\sin x}{x} = 1$

Точка неустранимого разрыва

Точка x=a называется точкой неустранимого разрыва, если невозможно сделать функцию непрерывной в этой точке ни одним способом:

$$\lim_{x\to a^-}f(x)\neq \lim_{x\to a^+}f(x)$$
или хотя бы один из этих пределов не существует

Пример: Функция
$$f(x) = \begin{cases} 1, & x < 0 \\ 2, & x \ge 0 \end{cases}$$
 имеет неустранимый разрыв в $x = 0.$

17 Билет 26

Непрерывность функции на интервале и на отрезке

Непрерывность на интервале

Функция f(x) непрерывна на интервале (a,b), если она непрерывна в каждой точке этого интервала.

Непрерывность на отрезке

Функция f(x) непрерывна на отрезке [a,b], если она непрерывна на интервале (a,b) и в точках a и b с учетом односторонних пределов:

$$\lim_{x \to a^+} f(x) = f(a)$$

$$\lim_{x \to b^{-}} f(x) = f(b)$$

Кусочно-непрерывные функции на отрезке

Функция называется кусочно-непрерывной на отрезке, если она непрерывна на каждом подотрезке, на который можно разбить исходный отрезок, за исключением, возможно, конечного числа точек разрыва первого рода.

18 Билет 27

Теоремы Больцано — Коши

Первая теорема Больцано — Коши (о существовании корня)

Теорема: Если функция f непрерывна на отрезке [a,b] и $f(a) \cdot f(b) < 0$, то существует точка $c \in (a,b)$, такая что f(c) = 0.

Доказательство: Поскольку f непрерывна на [a,b], то по теореме Вейерштрасса она достигает на этом отрезке своих максимума и минимума. Пусть f(a) < 0 и f(b) > 0 (случай f(a) > 0 и f(b) < 0 рассматривается аналогично).

Рассмотрим множество $A = \{x \in [a,b] \mid f(x) \leq 0\}$. Множество A непусто, так как $a \in A$, и ограничено сверху, так как $b \notin A$. Пусть $c = \sup A$. Тогда $a \leq c \leq b$.

Поскольку f непрерывна, то:

$$\lim_{x \to c^{-}} f(x) = f(c) = \lim_{x \to c^{+}} f(x)$$

Если f(c)=0, то теорема доказана. Если $f(c)\neq 0$, то возможны два случая: 1. f(c)>0. Тогда для достаточно малых $\epsilon>0$ имеем $f(c-\epsilon)<0$, что противоречит определению c как точной верхней грани множества A. 2. f(c)<0. Тогда для достаточно малых $\epsilon>0$ имеем $f(c+\epsilon)>0$, что также противоречит определению c.

Следовательно, f(c) = 0.

19 Билет 28

Вторая теорема Больцано — Коши (о промежуточном значении непрерывной функции)

Теорема: Если функция f непрерывна на отрезке [a,b] и $f(a) \neq f(b)$, то для любого числа y между f(a) и f(b) существует точка $c \in (a,b)$, такая что f(c) = y.

Доказательство: Без ограничения общности предположим, что f(a) < y < f(b) (случай f(a) > y > f(b) рассматривается аналогично).

Рассмотрим функцию g(x) = f(x) - y. Функция g непрерывна на [a,b], и g(a) = f(a) - y < 0 и g(b) = f(b) - y > 0.

По первой теореме Больцано — Коши существует точка $c \in (a,b)$, такая что g(c)=0, то есть f(c)=y.

Теоремы Вейерштрасса

Первая теорема Вейерштрасса (об ограниченности непрерывной функции)

Теорема: Всякая функция, непрерывная на отрезке [a,b], ограничена на этом отрезке.

Доказательство: Пусть f непрерывна на [a,b]. Предположим противное, что f не ограничена на [a,b]. Тогда для любого $n \in \mathbb{N}$ существует $x_n \in [a,b]$, такое что $|f(x_n)| > n$. Последовательность $\{x_n\}$ ограничена, поэтому по теореме Больцано-Вейерштрасса из неё можно выделить сходящуюся подпоследовательность $\{x_{n_k}\}$, сходящуюся к некоторому $c \in [a,b]$.

Так как f непрерывна в точке c, то $f(x_{n_k}) \to f(c)$ при $k \to \infty$. Но $|f(x_{n_k})| > n_k$, что стремится к бесконечности при $k \to \infty$. Это противоречие доказывает, что f ограничена на [a,b].

Вторая теорема Вейерштрасса (о наибольшем и наименьшем значении функции на отрезке)

Теорема: Всякая функция, непрерывная на отрезке [a,b], достигает на этом отрезке своих наибольшего и наименьшего значений.

Доказательство: Пусть f непрерывна на [a,b]. По первой теореме Вейерштрасса f ограничена на [a,b], то есть существует M>0 такое, что $|f(x)|\leq M$ для всех $x\in [a,b]$.

Рассмотрим множество $A = \{f(x) \mid x \in [a,b]\}$. Множество A ограничено и по теореме Вейерштрасса о супремуме и инфимуме существует $\sup A$ и $\inf A$. Пусть $\sup A = M$ и $\inf A = m$.

Так как M — точная верхняя грань множества A, то существует последовательность $\{x_n\} \subset [a,b]$, такая что $f(x_n) \to M$ при $n \to \infty$. Последовательность $\{x_n\}$ ограничена, поэтому по

теореме Больцано-Вейерштрасса из неё можно выделить сходящуюся подпоследовательность $\{x_{n_k}\}$, сходящуюся к некоторому $c \in [a, b]$.

Так как f непрерывна в точке c, то $f(x_{n_k}) \to f(c)$ при $k \to \infty$. Следовательно, f(c) = M, то есть f достигает своего наибольшего значения M в точке c.

Аналогично доказывается, что f достигает своего наименьшего значения m в некоторой точке $d \in [a,b].$

20 Билет 29

Монотонные и строго монотонные функции

Монотонная функция

Функция f(x) называется монотонной на промежутке I, если она либо не убывает, либо не возрастает на этом промежутке.

Неубывающая функция

Функция f(x) называется неубывающей на промежутке I, если для любых $x_1, x_2 \in I$ таких, что $x_1 < x_2$, выполняется неравенство:

$$f(x_1) \le f(x_2)$$

Невозрастающая функция

Функция f(x) называется невозрастающей на промежутке I, если для любых $x_1, x_2 \in I$ таких, что $x_1 < x_2$, выполняется неравенство:

$$f(x_1) \geq f(x_2)$$

Строго монотонная функция

Функция f(x) называется строго монотонной на промежутке I, если она либо строго возрастает, либо строго убывает на этом промежутке.

Строго возрастающая функция

Функция f(x) называется строго возрастающей на промежутке I, если для любых $x_1, x_2 \in I$ таких, что $x_1 < x_2$, выполняется неравенство:

$$f(x_1) < f(x_2)$$

Строго убывающая функция

Функция f(x) называется строго убывающей на промежутке I, если для любых $x_1, x_2 \in I$ таких, что $x_1 < x_2$, выполняется неравенство:

$$f(x_1) > f(x_2)$$

Теорема о непрерывности обратной функции

Теорема: Пусть функция f(x) определена, строго возрастает (убывает) и непрерывна на отрезке [a,b]. Тогда обратная функция $f^{-1}(y)$ определена, однозначна, строго возрастает (убывает) и непрерывна на отрезке с концами в точках f(a) и f(b).

Производная функции в точке. Односторонние производные

21.1 Определение 1. Производная функции в точке

Пусть функция f(x) определена в некоторой окрестности точки x_0 . Производной функции f(x) в точке x_0 называется предел отношения приращения функции к приращению аргумента, если этот предел существует:

 $f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$

Здесь $\Delta x = x - x_0$ — приращение аргумента.

21.2 Определение 2. Односторонние производные

Если предел существует только при одностороннем стремлении $\Delta x \to 0^+$ или $\Delta x \to 0^-$, то говорят об односторонних производных. Они определяются следующим образом:

$$f'_{+}(x_0) = \lim_{\Delta x \to 0^+} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}, \quad f'_{-}(x_0) = \lim_{\Delta x \to 0^-} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

21.3 Теорема 1. Существование производной

Если в точке x_0 существуют обе односторонние производные $f'_+(x_0)$ и $f'_-(x_0)$ и они равны, то существует производная $f'(x_0)$, и она равна $f'_+(x_0) = f'_-(x_0)$.

21.4 Пример 1. Вычисление производной в точке

Рассмотрим функцию $f(x) = x^2$. Найдем производную в точке $x_0 = 1$:

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

Подставим:

$$f'(1) = \lim_{\Delta x \to 0} \frac{(1 + \Delta x)^2 - 1^2}{\Delta x}.$$

Раскроем скобки:

$$f'(1) = \lim_{\Delta x \to 0} \frac{1 + 2\Delta x + (\Delta x)^2 - 1}{\Delta x} = \lim_{\Delta x \to 0} \frac{2\Delta x + (\Delta x)^2}{\Delta x}.$$

Упростим:

$$f'(1) = \lim_{\Delta x \to 0} (2 + \Delta x) = 2.$$

Таким образом, f'(1) = 2.

21.5 Пример 2. Односторонние производные

Рассмотрим функцию:

$$f(x) = \begin{cases} x^2, & x \ge 0, \\ -x^2, & x < 0. \end{cases}$$

Найдем односторонние производные в точке $x_0 = 0$:

$$f'_{+}(0) = \lim_{\Delta x \to 0^{+}} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0^{+}} \frac{(\Delta x)^{2} - 0}{\Delta x} = \lim_{\Delta x \to 0^{+}} \Delta x = 0.$$

$$f'_{-}(0) = \lim_{\Delta x \to 0^{-}} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0^{-}} \frac{-(\Delta x)^{2} - 0}{\Delta x} = \lim_{\Delta x \to 0^{-}} -\Delta x = 0.$$

Поскольку $f'_{+}(0) = f'_{-}(0) = 0$, то f'(0) = 0.

Функция, дифференцируемая в точке

22.1 Определение. Дифференцируемость функции в точке

Функция f(x), определённая в окрестности точки x_0 , называется дифференцируемой в точке x_0 , если её приращение $\Delta y = f(x_0 + \Delta x) - f(x_0)$ может быть представлено в виде:

$$\Delta y = A\Delta x + o(\Delta x)$$
, где A — постоянная, а $o(\Delta x)$ — бесконечно малая величина.

При этом число A называется производной функции f(x) в точке x_0 и обозначается как $f'(x_0)$.

22.2 Теорема. Необходимое и достаточное условие дифференцируемости функции в точке

Функция f(x), определённая в окрестности точки x_0 , дифференцируема в точке x_0 тогда и только тогда, когда:

1. функция f(x) непрерывна в точке x_0 , то есть:

$$\lim_{x \to x_0} f(x) = f(x_0);$$

2. существует конечная производная:

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x},$$

причём выполняется представление:

$$\Delta y = f'(x_0)\Delta x + o(\Delta x).$$

22.3 Пример 1. Проверка дифференцируемости функции

Рассмотрим функцию $f(x) = x^2$. Проверим, является ли она дифференцируемой в точке $x_0 = 1$. Приращение функции:

$$\Delta y = f(x_0 + \Delta x) - f(x_0) = (1 + \Delta x)^2 - 1^2 = 2\Delta x + (\Delta x)^2.$$

Разделим Δy на Δx :

$$\frac{\Delta y}{\Delta x} = 2 + \Delta x.$$

При $\Delta x \to 0$ получаем:

$$f'(1) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = 2.$$

Так как $\Delta y = f'(1)\Delta x + o(\Delta x)$, функция $f(x) = x^2$ дифференцируема в точке $x_0 = 1$.

22.4 Пример 2. Проверка необходимости непрерывности

Рассмотрим функцию:

$$f(x) = \begin{cases} x^2, & x \ge 0, \\ -x^2, & x < 0. \end{cases}$$

Для $x_0 = 0$ найдём производные слева и справа:

$$f'_{+}(0) = \lim_{\Delta x \to 0^{+}} \frac{(0 + \Delta x)^{2} - 0}{\Delta x} = \lim_{\Delta x \to 0^{+}} \Delta x = 0,$$

$$f'_{-}(0) = \lim_{\Delta x \to 0^{-}} \frac{-(0 + \Delta x)^{2} - 0}{\Delta x} = \lim_{\Delta x \to 0^{-}} -\Delta x = 0.$$

Производная существует, но:

$$\lim_{x \to 0^{-}} f(x) = 0, \quad \lim_{x \to 0^{+}} f(x) = 0, \quad f(0) = 0.$$

Функция f(x) непрерывна, а значит, и дифференцируема в $x_0 = 0$. Требование непрерывности выполняется.

23 Билет 32

Теорема о связи дифференцируемости функции в точке с непрерывностью в этой точке

23.1 Формулировка теоремы

Если функция f(x) дифференцируема в точке x_0 , то она непрерывна в этой точке.

23.2 Доказательство

Пусть функция f(x) дифференцируема в точке x_0 . Тогда по определению дифференцируемости её приращение можно записать в виде:

$$\Delta y = f'(x_0)\Delta x + o(\Delta x),$$

где $\Delta y = f(x_0 + \Delta x) - f(x_0)$.

Поделим обе части на Δx (при $\Delta x \neq 0$):

$$\frac{\Delta y}{\Delta x} = f'(x_0) + \frac{o(\Delta x)}{\Delta x}.$$

Переходя к пределу при $\Delta x \to 0$, получаем:

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0).$$

Так как $o(\Delta x) \to 0$ быстрее, чем Δx , то при $\Delta x \to 0$:

$$\Delta y \to 0 \implies f(x_0 + \Delta x) \to f(x_0).$$

Это и означает, что функция f(x) непрерывна в точке x_0 .

23.3 Пример 1. Проверка теоремы на функции $f(x) = x^2$

Рассмотрим функцию $f(x) = x^2$. Найдём её производную в точке $x_0 = 1$:

$$\Delta y = f(x_0 + \Delta x) - f(x_0) = (1 + \Delta x)^2 - 1^2 = 2\Delta x + (\Delta x)^2.$$

Производная:

$$\frac{\Delta y}{\Delta x} = 2 + \Delta x, \quad f'(1) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = 2.$$

Так как $\Delta y \to 0$ при $\Delta x \to 0$, функция непрерывна в точке $x_0 = 1$.

23.4 Пример 2. Проверка непрерывности при отсутствии дифференцируемости

Рассмотрим функцию f(x) = |x|. Её производная не существует в точке $x_0 = 0$, так как:

$$\lim_{\Delta x \to 0^+} \frac{|\Delta x|}{\Delta x} = 1, \quad \lim_{\Delta x \to 0^-} \frac{|\Delta x|}{\Delta x} = -1.$$

Однако функция f(x) = |x| непрерывна в точке $x_0 = 0$, так как:

$$\lim_{x \to 0} f(x) = f(0) = 0.$$

Это показывает, что непрерывность не является достаточным условием для дифференцируемости.

24 Билет 33

Понятие дифференциала функции

24.1 Определение

Дифференциал функции f(x) в точке x_0 — это линейная часть приращения функции. Если функция f(x) дифференцируема в точке x_0 , то дифференциал df определяется как:

$$df = f'(x_0)dx$$
,

где dx — произвольное приращение аргумента.

24.2 Пример

Рассмотрим функцию $f(x) = x^2$. Её производная равна f'(x) = 2x. Тогда дифференциал функции равен:

$$df = 2xdx.$$

Если x = 1 и dx = 0.1, то дифференциал равен:

$$df = 2 \cdot 1 \cdot 0.1 = 0.2.$$

25 Билет 34

Геометрический смысл производной и дифференциала, секущая и касательная к графику функции в данной точке

25.1 Геометрический смысл производной

Производная функции f(x) в точке x_0 равна угловому коэффициенту касательной к графику функции в этой точке:

$$\tan \alpha = f'(x_0),$$

где α — угол наклона касательной к оси x.

25.2 Геометрический смысл дифференциала

Дифференциал df — это приращение ординаты касательной, соответствующее приращению dx:

$$df = f'(x_0)dx$$
.

25.3 Уравнение касательной и нормали

25.3.1 Касательная

Уравнение касательной к графику функции y = f(x) в точке x_0 :

$$y - f(x_0) = f'(x_0)(x - x_0).$$

25.3.2 Нормаль

Уравнение нормали к графику функции y = f(x) в точке x_0 :

$$y - f(x_0) = -\frac{1}{f'(x_0)}(x - x_0).$$

25.4 Пример

Рассмотрим функцию $f(x) = x^2$. В точке $x_0 = 1$:

$$f'(x) = 2x$$
, $f'(1) = 2$.

Уравнение касательной:

$$y-1=2(x-1), \quad y=2x-1.$$

Уравнение нормали:

$$y-1 = -\frac{1}{2}(x-1), \quad y = -\frac{1}{2}x + \frac{3}{2}.$$

25.5 Уравнение касательной и нормали

26 Билет 35

Теорема об арифметических действиях с дифференцируемыми функциями

26.1 Формулировка теоремы

Пусть функции f(x) и g(x) дифференцируемы в точке x_0 . Тогда:

1.
$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$
;

2.
$$(f-g)'(x_0) = f'(x_0) - g'(x_0)$$
;

3.
$$(cf)'(x_0) = cf'(x_0)$$
, где c — константа;

4.
$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0);$$

5.
$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}, \quad g(x_0) \neq 0.$$

26.2 Доказательство

Следует из определения производной и арифметических действий с пределами.

26.3 Пример

Рассмотрим функции $f(x) = x^2$ и g(x) = x + 1. Тогда:

1.
$$(f+g)'(x) = (x^2 + x + 1)' = 2x + 1$$
;

2.
$$(fq)'(x) = (x^2(x+1))' = 2x(x+1) + x^2 = 3x^2 + 2x$$
.

Теорема о производной сложной функции

27.1 Формулировка теоремы

Если функция y = f(u) дифференцируема в точке u_0 , а функция u = g(x) дифференцируема в точке x_0 , то сложная функция y = f(g(x)) дифференцируема в точке x_0 , и её производная равна:

$$\frac{dy}{dx} = \frac{df}{du} \cdot \frac{du}{dx}.$$

27.2 Доказательство

Следует из определения производной как предела и замены $\Delta y = f(g(x + \Delta x)) - f(g(x))$.

27.3 Пример

Рассмотрим функцию $y = \sin(x^2)$. Тогда $u = x^2$ и $f(u) = \sin u$. Найдём производную:

$$\frac{dy}{dx} = \cos(x^2) \cdot 2x = 2x \cos(x^2).$$

27.4 Свойство инвариантности формы первого дифференциала

28 Билет 37

Теорема о производной обратной функции

28.1 Формулировка теоремы

Пусть функция y = f(x) монотонна и дифференцируема на промежутке, причём $f'(x) \neq 0$. Тогда обратная функция $x = f^{-1}(y)$ дифференцируема, и её производная равна:

$$\frac{dx}{dy} = \frac{1}{f'(x)}.$$

28.2 Пример

Рассмотрим функцию $y=x^3.$ Тогда обратная функция $x=\sqrt[3]{y}.$ Найдём её производную:

$$\frac{dx}{dy} = \frac{1}{3x^2}.$$

Таблица производных основных элементарных функций

Функция	Производная
c	0
x^n	$nx^{n-1}, n \in \mathbb{R}$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$\sec^2 x, x \neq \frac{\pi}{2} + \pi k (k \in \mathbb{Z})$
$\cot x$	$-\csc^2 x, \ x \neq \pi k \ (k \in \mathbb{Z})$
e^x	e^x
a^x	$a^x \ln a, \ a > 0, \ a \neq 1$
$\ln x$	$\frac{1}{x}, x > 0$
$\log_a x$	$\frac{1}{x \ln a}, \ x > 0, \ a > 0, \ a \neq 1$

30 Билет 39

Производные и дифференциалы высших порядков

30.1 Формула Лейбница для производной n-го порядка от произведения двух функций

Формула Лейбница

Пусть функции u(x) и v(x) имеют производные до порядка n включительно. Тогда производная n-го порядка от их произведения вычисляется по формуле:

$$(u(x) \cdot v(x))^{(n)} = \sum_{k=0}^{n} \binom{n}{k} u^{(k)}(x) v^{(n-k)}(x),$$

где $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ — биномиальный коэффициент.

31 Билет 40

Параметрический способ задания функции

Функция может быть задана параметрически в виде:

$$x = \varphi(t), \quad y = \psi(t), \quad t \in [a, b],$$

где t — параметр.

Производная функции y по x в таком случае вычисляется по формуле:

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}},$$
 где $\frac{dx}{dt} \neq 0.$

32 Билет 41

Теорема Ролля

Пусть функция f(x):

- 1. непрерывна на отрезке [a, b],
- 2. дифференцируема на интервале (a, b),
- 3. удовлетворяет условию f(a) = f(b).

Тогда существует хотя бы одна точка $c \in (a,b)$, такая что:

$$f'(c) = 0.$$

33 Билет 42

Теорема о среднем Лагранжа (формула Лагранжа)

Пусть функция f(x):

- 1. непрерывна на отрезке [a, b],
- 2. дифференцируема на интервале (a, b).

Тогда существует хотя бы одна точка $c \in (a, b)$, такая что:

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Геометрическая интерпретация

Точка c — это такая точка на интервале (a,b), в которой касательная к графику функции f(x) параллельна секущей, проходящей через точки (a,f(a)) и (b,f(b)).

Теорема о среднем Лагранжа (формула Лагранжа)

Пусть функция f(x):

- 1. непрерывна на отрезке [a, b],
- 2. дифференцируема на интервале (a, b).

Тогда существует хотя бы одна точка $c \in (a,b)$, такая что:

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Геометрическая интерпретация

Точка c — это такая точка на интервале (a,b), в которой касательная к графику функции f(x) параллельна секущей, проходящей через точки (a,f(a)) и (b,f(b)).

33.1 Геометрическая интерпретация

34 Билет 43

Теорема о среднем Коши

Пусть функции f(x) и g(x):

1. непрерывны на отрезке [a, b],

- 2. дифференцируемы на интервале (a, b),
- 3. $g'(x) \neq 0$ на (a, b).

Тогда существует хотя бы одна точка $c \in (a, b)$, такая что:

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Формула Коши

Формула Коши позволяет найти соотношение между изменениями функций f(x) и g(x), используя производные в точке c:

$$f'(c)(g(b) - g(a)) = g'(c)(f(b) - f(a)).$$

35 Билет 44

Правило Лопиталя

Пусть функции f(x) и g(x):

- 1. дифференцируемы в некоторой окрестности точки x_0 (за исключением, возможно, самой точки x_0),
- $2. \ g'(x) \neq 0$ в этой окрестности.

Если выполняется один из предельных случаев:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{0}{0} \quad \text{или} \quad \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\pm \infty}{\pm \infty},$$

то:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)},$$

если предел справа существует.

36 Билет 45

Формула Тейлора с остаточным членом в форме Пеано

Если функция f(x) n-раз дифференцируема в точке x=a, то она может быть представлена в окрестности a в виде:

$$f(x) = P_n(x) + o((x-a)^n),$$

где $P_n(x)$ — многочлен Тейлора степени n, определяемый как:

$$P_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n.$$

Остаточный член в форме Лагранжа

Остаточный член может быть записан в форме:

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1},$$

где $\xi \in (a, x)$.

Формула Маклорена

Формула Маклорена — это частный случай формулы Тейлора, когда a=0:

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + R_n(x).$$

Примеры разложения элементарных функций:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots,$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots,$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots$$

36.1 Формула Маклорена, разложение некоторых элементарных функций по формуле Маклорена

37 Билет 46

Теорема о невозрастающей и неубывающей функции

Пусть функция f(x) непрерывна на [a,b] и дифференцируема на (a,b). Тогда:

- Если $f'(x) \ge 0$ на (a, b), то f(x) неубывает на [a, b].
- Если $f'(x) \le 0$ на (a, b), то f(x) невозрастает на [a, b].

Теорема о достаточном условии возрастания или убывания функции в точке

Если производная f'(x) > 0 в некоторой окрестности точки x_0 , то функция f(x) возрастает в этой окрестности. Аналогично, если f'(x) < 0, то f(x) убывает.

38 Билет 47

Понятие локального экстремума функции

Точка x_0 называется точкой локального экстремума функции f(x), если существует окрестность $(x_0 - \delta, x_0 + \delta)$, такая что:

- $f(x_0)$ локальный минимум, если $f(x_0) \le f(x)$ для всех x из этой окрестности.
- $f(x_0)$ локальный максимум, если $f(x_0) \ge f(x)$ для всех x из этой окрестности.

39 Билет 48

Теорема о необходимом условии экстремума

Если функция f(x) имеет локальный экстремум в точке x_0 , и при этом f(x) дифференцируема в x_0 , то её производная в этой точке равна нулю:

$$f'(x_0) = 0.$$

Замечание

Условие $f'(x_0) = 0$ является необходимым, но не достаточным для экстремума. Такие точки x_0 , в которых $f'(x_0) = 0$, называются критическими точками.

40 Билет 49

Теорема 1 (достаточное условие максимума или минимума)

Пусть f(x) дважды дифференцируема в точке x_0 :

- Если $f'(x_0) = 0$ и $f''(x_0) > 0$, то x_0 точка локального минимума.
- Если $f'(x_0) = 0$ и $f''(x_0) < 0$, то x_0 точка локального максимума.

Теорема 2 (общее достаточное условие)

Пусть f(x) n-раз дифференцируема в точке x_0 , и пусть:

- $f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$,
- $f^{(n)}(x_0) \neq 0$, где n > 2.

Тогда:

- Если n чётное и $f^{(n)}(x_0) > 0$, то x_0 точка минимума.
- Если n чётное и $f^{(n)}(x_0) < 0$, то x_0 точка максимума.
- Если n нечётное, то в точке x_0 экстремума нет.

Правила нахождения экстремумов

- 1. Найти производную f'(x) и определить критические точки, решив уравнение f'(x) = 0.
- 2. Проверить знак второй производной f''(x) в критических точках для подтверждения характера экстремума.

41 Билет 50

Понятие направления выпуклости графика функции

Функция f(x) называется выпуклой вверх на интервале (a,b), если:

$$f''(x) > 0 \quad \forall x \in (a, b).$$

Функция f(x) называется выпуклой вниз на интервале (a,b), если:

$$f''(x) < 0 \quad \forall x \in (a, b).$$

Определение точки перегиба

Точка x_0 называется точкой перегиба графика функции f(x), если в этой точке функция f(x) меняет направление выпуклости:

$$f''(x) = 0$$
, и знак $f''(x)$ меняется в точке x_0 .

Теорема о достаточных условиях перегиба графика функции

Если f(x) трижды дифференцируема в точке x_0 , и:

- $f''(x_0) = 0$,
- $f'''(x_0) \neq 0$,

то x_0 — точка перегиба графика функции f(x).

42 Билет 51

Определение вертикальной асимптоты

Прямая x=a называется вертикальной асимптотой графика функции f(x), если хотя бы один из пределов:

$$\lim_{x \to a^-} f(x) = \pm \infty$$
 или $\lim_{x \to a^+} f(x) = \pm \infty$

существует.

Наклонные и горизонтальные асимптоты

• Прямая y=b называется горизонтальной асимптотой, если:

$$\lim_{x \to \pm \infty} f(x) = b.$$

• Прямая y = kx + b называется наклонной асимптотой, если:

$$\lim_{x \to \pm \infty} \left(f(x) - (kx + b) \right) = 0.$$

43 Билет 52

Понятие первообразной

Определение 1

Функция F(x) называется первообразной функции f(x) на промежутке X, если для любого $x \in X$ выполняется равенство:

$$F'(x) = f(x).$$

Теорема 1

Если F(x) является первообразной функции f(x) на промежутке X, то множество всех первообразных f(x) на X имеет вид:

$$F(x) + C$$

где C — произвольная постоянная.

Определение 2

Совокупность всех первообразных функции f(x) на промежутке X называется неопределённым интегралом функции f(x) и обозначается:

$$\int f(x) \, dx.$$

Определение 3

Операция нахождения первообразной функции f(x), или нахождение неопределённого интеграла, называется интегрированием.

Запись неопределённого интеграла

Неопределённый интеграл записывается в виде:

$$\int f(x) \, dx = F(x) + C,$$

где F(x) — первообразная, а C — произвольная постоянная интегрирования.

44 Билет 53

Основные свойства неопределённого интеграла

Пусть $\int f(x) dx = F(x) + C$ и $\int g(x) dx = G(x) + C$. Тогда:

1. Линейность:

$$\int (af(x) + bg(x)) dx = a \int f(x) dx + b \int g(x) dx,$$

где a, b — постоянные.

2. Интеграл от нуля:

$$\int 0 \, dx = C.$$

3. Интеграл от производной:

$$\int f'(x) \, dx = f(x) + C.$$

Метод интегрирования подстановкой

Если $x=\phi(t)$ — дифференцируемая функция, то:

$$\int f(x) dx = \int f(\phi(t))\phi'(t) dt.$$

Пример

Вычислить $\int x \cos(x^2) dx$.

Пусть
$$u = x^2 \implies du = 2x \, dx$$
.

Тогда:

$$\int x \cos(x^2) \, dx = \frac{1}{2} \int \cos(u) \, du = \frac{1}{2} \sin(u) + C = \frac{1}{2} \sin(x^2) + C.$$

Интегрирование по частям

Если u(x) и v(x) дифференцируемы, то:

$$\int u(x)v'(x) dx = u(x)v(x) - \int v(x)u'(x) dx.$$

Пример

Вычислить $\int xe^x dx$.

Пусть
$$u = x$$
, $dv = e^x dx \implies du = dx$, $v = e^x$.

Тогда:

$$\int xe^x \, dx = xe^x - \int e^x \, dx = xe^x - e^x + C = e^x(x-1) + C.$$

Понятие многочлена

Многочлен (полином) от одной переменной x степени n имеет вид:

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

где $a_n, a_{n-1}, \ldots, a_0$ — коэффициенты многочлена, $a_n \neq 0$.

Сумма и произведение многочленов

• Сумма многочленов P(x) и Q(x) есть многочлен:

$$(P+Q)(x) = P(x) + Q(x).$$

• Произведение многочленов P(x) и Q(x) есть многочлен:

$$(P \cdot Q)(x) = P(x) \cdot Q(x).$$

Деление многочленов

Каждый многочлен P(x) можно представить в виде:

$$P(x) = Q(x) \cdot D(x) + R(x),$$

где Q(x) — частное, R(x) — остаток, причём $\deg R(x) < \deg D(x)$.

Теорема Безу

Если P(a) = 0, то x - a является делителем многочлена P(x). Более того:

$$P(x) = (x - a)Q(x),$$

где Q(x) — частное от деления P(x) на x-a.

45 Билет 57

Основная теорема высшей алгебры

Теорема. Любой многочлен P(x) степени $n \ge 1$ с комплексными коэффициентами имеет хотя бы один корень в поле комплексных чисел \mathbb{C} .

Следствие

Любой многочлен степени n с комплексными коэффициентами представим в виде:

$$P(x) = a_n(x - x_1)(x - x_2) \cdots (x - x_n),$$

где x_1, x_2, \ldots, x_n — корни многочлена P(x) (возможно, кратные), а a_n — старший коэффициент.

Свойства корней многочленов с вещественными коэффициентами

Если многочлен P(x) имеет вещественные коэффициенты, то:

- 1. Корни комплексно-сопряжённые. Если $z=a+bi\ (b\neq 0)$ корень, то $\overline{z}=a-bi$ также корень.
- 2. Если степень n нечётная, то P(x) имеет хотя бы один вещественный корень.

Разложение на неприводимые множители

Любой многочлен P(x) с вещественными коэффициентами представим в виде произведения:

$$P(x) = a_n(x - x_1)(x - x_2) \cdots (x - x_k)Q(x),$$

где x_1, \dots, x_k — вещественные корни, а Q(x) — произведение неприводимых квадратных множителей:

$$Q(x) = (x^2 + px + q),$$

где $p^2 - 4q < 0$.

Понятие рациональной дроби

Определение. Рациональной дробью называется выражение вида:

$$R(x) = \frac{P(x)}{Q(x)},$$

где P(x) и Q(x) — многочлены, причём $Q(x) \neq 0$.

Правильная и неправильная рациональные дроби

- Правильная рациональная дробь: $\deg P(x) < \deg Q(x)$.
- **Неправильная рациональная дробь:** $\deg P(x) \ge \deg Q(x)$. Любую неправильную дробь можно представить в виде суммы:

$$R(x) = Q(x) + \frac{P_1(x)}{Q(x)},$$

где Q(x) — частное, а $\frac{P_1(x)}{Q(x)}$ — правильная дробь.

Теорема о разложении правильной рациональной дроби в сумму простейших дробей

Теорема. Любая правильная рациональная дробь $R(x) = \frac{P(x)}{Q(x)}$, где Q(x) разложим на неприводимые множители, представима в виде суммы простейших дробей:

$$R(x) = \sum_{i} \frac{A_i}{(x - a_i)^{m_i}} + \sum_{j} \frac{B_j x + C_j}{(x^2 + p_j x + q_j)^{n_j}},$$

где:

- $x a_i$ линейные множители Q(x);
- $x^2 + p_j x + q_j$ неприводимые квадратичные множители Q(x);
- A_i, B_j, C_j постоянные, определяемые из условий разложения.

Интегрирование дробно-рациональных выражений

Определение. Интеграл от дробно-рационального выражения $R(x) = \frac{P(x)}{Q(x)}$, где P(x) и Q(x) — многочлены, вычисляется путём разложения на простейшие дроби.

Методы интегрирования

1. **Разложение на простейшие дроби:** Представить R(x) в виде суммы дробей вида:

$$\frac{A}{x-a}$$
, $\frac{Bx+C}{x^2+px+q}$, $\frac{A}{(x-a)^n}$.

Затем интегрировать каждую дробь отдельно.

2. Замена переменных: При интегрировании выражений, содержащих квадратичные множители, полезно использовать подстановку:

$$x = a\sin(t), \quad x = a\cosh(t), \quad x = \tan(t), \text{ и др.}$$

3. **Интегрирование по частям:** Применимо, если дробь содержит логарифмические или обратные тригонометрические функции.

Пример

Вычислить $\int \frac{1}{x^2+4} dx$.

Пусть
$$x^2 + 4 = 4(1 + \frac{x^2}{4}), x = 2\tan(t) \implies dx = 2\sec^2(t) dt$$
.

Тогда:

$$\int \frac{1}{x^2 + 4} \, dx = \int \frac{1}{4 \sec^2(t)} \cdot 2 \sec^2(t) \, dt = \frac{1}{2} \int dt = \frac{1}{2} t + C.$$

Возвращая замену, получаем:

$$t = \arctan\left(\frac{x}{2}\right) \implies \int \frac{1}{x^2 + 4} dx = \frac{1}{2}\arctan\left(\frac{x}{2}\right) + C.$$