Préliminaires géométriques

Guillaume TOCHON

Laboratoire de Recherche de l'EPITA

La résolution d'un problème classique d'optimisation (arg) $\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$ pour une fonction $f: \mathbb{R}^n \to \mathbb{R}$ nécessite la capacité à se repérer et se déplacer dans \mathbb{R}^n :

La résolution d'un problème classique d'optimisation (arg) $\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$ pour une fonction $f: \mathbb{R}^n \to \mathbb{R}$ nécessite la capacité à se repérer et se déplacer dans \mathbb{R}^n :

- comment décrire une direction de déplacement ?

La résolution d'un problème classique d'optimisation (arg) $\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$ pour une fonction $f: \mathbb{R}^n \to \mathbb{R}$ nécessite la capacité à se repérer et se déplacer dans \mathbb{R}^n :

- comment décrire une direction de déplacement ?

- comment évaluer des distances entre points ?

La résolution d'un problème classique d'optimisation (arg) $\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$ pour une fonction $f: \mathbb{R}^n \to \mathbb{R}$ nécessite la capacité à se repérer et se déplacer dans \mathbb{R}^n :

- comment décrire une direction de déplacement ?

- comment évaluer des distances entre points ?

- comment décrire des sous parties "simples" de \mathbb{R}^n (droite, plan, etc) ?

La résolution d'un problème classique d'optimisation (arg) $\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$ pour une fonction $f: \mathbb{R}^n \to \mathbb{R}$ nécessite la capacité à se repérer et se déplacer dans \mathbb{R}^n :

- comment décrire une direction de déplacement ?

- comment évaluer des distances entre points ?

- comment décrire des sous parties "simples" de \mathbb{R}^n (droite, plan, etc) ?

 \Rightarrow Besoin d'éléments de base de géométrie euclidienne (produit scalaire, norme, etc).

G. TOCHON (LRE) OCVX1 2/17

Notations

On utilisera dans ce cours la convention standard anglo-saxonne pour les notations : Les scalaires (éléments de $\mathbb R$) en minuscule classique : $x \in \mathbb R$.

Notations

On utilisera dans ce cours la convention standard anglo-saxonne pour les notations :

Les scalaires (éléments de \mathbb{R}) en minuscule classique : $x \in \mathbb{R}$.

- **Les vecteurs** (éléments de \mathbb{R}^n) en minuscule et gras : $\mathbf{x} \in \mathbb{R}^n$ \rightarrow par défaut, un vecteur est écrit en colonne : $\mathbf{x} \in \mathbb{R}^n \leftrightarrow \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$
 - o on écrit aussi **x** comme transposé d'un vecteur ligne : $\mathbf{x} \in \mathbb{R}^n \leftrightarrow \mathbf{x} = (x_1, \dots, x_n)^T$

Notations

On utilisera dans ce cours la convention standard anglo-saxonne pour les notations :

Les scalaires (éléments de \mathbb{R}) en minuscule classique : $x \in \mathbb{R}$.

- **Les vecteurs** (éléments de \mathbb{R}^n) en minuscule et gras : $\mathbf{x} \in \mathbb{R}^n$
 - ecteurs (elements de \mathbb{R}) en innuscate \mathbf{z} \mathbf{z}
 - \to on écrit aussi **x** comme transposé d'un vecteur ligne : $\mathbf{x} \in \mathbb{R}^n \leftrightarrow \mathbf{x} = (x_1, \dots, x_n)^T$

Les matrices (éléments de $\mathbb{R}^{m \times n}$) en majuscule et gras : $\mathbf{A} \in \mathbb{R}^{m \times n}$

- ightarrow Écriture matricielle : $\mathbf{A} = [a_{ij}]_{m \times n} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{-n} & \ddots & \ddots \end{pmatrix}$
- \rightarrow Écriture "en ligne" : $\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_n]$ comme n vecteurs colonne $\mathbf{a}_i \in \mathbb{R}^m$
- ightarrow Écriture "en colonne" : $\mathbf{A} = \begin{pmatrix} \mathbf{a}_1' \\ \vdots \\ \mathbf{a}^T \end{pmatrix}$ comme m vecteurs ligne $\mathbf{a}_i \in \mathbb{R}^n$

G. Tochon (LRE)

Définition

Un produit scalaire sur \mathbb{R}^n est une application $\phi:\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ qui vérifie les propriétés suivantes :

symétrie :

bilinéarité :

définition:

positivité:

Définition

Un produit scalaire sur \mathbb{R}^n est une application $\phi:\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ qui vérifie les propriétés suivantes :

symétrie : $\forall x, y \in \mathbb{R}^n$, $\phi(x, y) = \phi(y, x)$

 $\mathsf{bilin\'earit\'e}: \ \forall \mathsf{x}, \mathsf{y}, \mathsf{z} \in \mathbb{R}^n \ \mathsf{et} \ \forall \lambda \in \mathbb{R}, \ \phi(\mathsf{x}, \mathsf{y} + \lambda \mathsf{z}) = \phi(\mathsf{x}, \mathsf{y}) + \lambda \phi(\mathsf{x}, \mathsf{z})$

définition : $\phi(\mathbf{x}, \mathbf{x}) = 0 \Rightarrow \mathbf{x} = \mathbf{0}_n$

positivité : $\forall \mathbf{x}, \in \mathbb{R}^n$, $\phi(\mathbf{x}, \mathbf{x}) \geq 0$

Définition

Un produit scalaire sur \mathbb{R}^n est une application $\phi: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ qui vérifie les propriétés suivantes :

symétrie : $\forall x, y \in \mathbb{R}^n$, $\phi(x, y) = \phi(y, x)$

bilinéarité : $\forall x, y, z \in \mathbb{R}^n$ et $\forall \lambda \in \mathbb{R}$, $\phi(x, y + \lambda z) = \phi(x, y) + \lambda \phi(x, z)$

définition: $\phi(\mathbf{x}, \mathbf{x}) = 0 \Rightarrow \mathbf{x} = \mathbf{0}_n$

positivité : $\forall x \in \mathbb{R}^n$, $\phi(x, x) > 0$

On note en général par $\langle \mathbf{x}, \mathbf{y} \rangle$ le produit scalaire de \mathbf{x} et \mathbf{y} : $\langle \cdot, \cdot \rangle = \phi(\cdot, \cdot)$

Dans \mathbb{R}^n , le produit scalaire *canonique* est définit par $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i y_i = \mathbf{x}^T \mathbf{y}$

$$\left|\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i = \mathbf{x}^T \mathbf{y} \right|$$

Définition

Un produit scalaire sur \mathbb{R}^n est une application $\phi: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ qui vérifie les propriétés suivantes :

symétrie : $\forall x, y \in \mathbb{R}^n$, $\phi(x, y) = \phi(y, x)$

bilinéarité : $\forall x, y, z \in \mathbb{R}^n$ et $\forall \lambda \in \mathbb{R}$, $\phi(x, y + \lambda z) = \phi(x, y) + \lambda \phi(x, z)$

définition: $\phi(\mathbf{x}, \mathbf{x}) = 0 \Rightarrow \mathbf{x} = \mathbf{0}_n$

positivité : $\forall x \in \mathbb{R}^n$, $\phi(x,x) > 0$

On note en général par $\langle {\bf x}, {\bf y} \rangle$ le produit scalaire de ${\bf x}$ et ${\bf y}$: $\langle \ , \ \rangle = \phi (\ , \)$

Dans \mathbb{R}^n , le produit scalaire *canonique* est définit par $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i y_i = \mathbf{x}^T \mathbf{y}$

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i = \mathbf{x}^{T} \mathbf{y}$$

Tour produit scalaire permet de définir une norme par $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$, qui correspond intuitivement à la longueur du vecteur x

Pour le produit scalaire canonique, la norme associée s'appelle norme euclidienne et se note $\|\cdot\|_2$: $\|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^T\mathbf{x}} = \sqrt{\sum_{i=1}^n (x_i)^2}$

G. TOCHON (LRE) OCVX1 4 / 17

$$\begin{split} &\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \left(\theta(\mathbf{x}, \mathbf{y})\right) \text{ avec } \theta(\mathbf{x}, \mathbf{y}) \text{ l'angle entre les vecteurs } \mathbf{x} \text{ et } \mathbf{y} \\ &\Rightarrow \theta(\mathbf{x}, \mathbf{y}) = \cos^{-1} \left(\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}\right) \to \text{le signe de } \langle \mathbf{x}, \mathbf{y} \rangle \text{ donne l'orientation entre } \mathbf{x} \text{ et } \mathbf{y} \end{split}$$

$$\begin{split} \langle \mathbf{x}, \mathbf{y} \rangle &= \mathbf{x}^T \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \left(\theta(\mathbf{x}, \mathbf{y})\right) \text{ avec } \theta(\mathbf{x}, \mathbf{y}) \text{ l'angle entre les vecteurs } \mathbf{x} \text{ et } \mathbf{y} \\ &\Rightarrow \theta(\mathbf{x}, \mathbf{y}) = \cos^{-1} \left(\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}\right) \to \text{le signe de } \langle \mathbf{x}, \mathbf{y} \rangle \text{ donne l'orientation entre } \mathbf{x} \text{ et } \mathbf{y} \\ &- \text{si } \langle \mathbf{x}, \mathbf{y} \rangle > 0, \ |\theta(\mathbf{x}, \mathbf{y})| < \frac{\pi}{2} \\ &\rightarrow \mathbf{x} \text{ et } \mathbf{y} \text{ pointent dans la même direction.} \end{split}$$

$$\begin{split} \langle \mathbf{x}, \mathbf{y} \rangle &= \mathbf{x}^T \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \left(\theta(\mathbf{x}, \mathbf{y})\right) \text{ avec } \theta(\mathbf{x}, \mathbf{y}) \text{ l'angle entre les vecteurs } \mathbf{x} \text{ et } \mathbf{y} \\ &\Rightarrow \theta(\mathbf{x}, \mathbf{y}) = \cos^{-1} \left(\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}\right) \rightarrow \text{le signe de } \langle \mathbf{x}, \mathbf{y} \rangle \text{ donne l'orientation entre } \mathbf{x} \text{ et } \mathbf{y} \end{split}$$

- si $\langle \mathbf{x}, \mathbf{y} \rangle > 0$, $|\theta(\mathbf{x}, \mathbf{y})| < \frac{\pi}{2}$ $\rightarrow \mathbf{x}$ et \mathbf{y} pointent dans la même direction.
- si $\langle \mathbf{x}, \mathbf{y} \rangle < 0$, $|\theta(\mathbf{x}, \mathbf{y})| > \frac{\pi}{2}$ $\rightarrow \mathbf{x}$ et \mathbf{y} pointent dans des directions opposées

G. TOCHON (LRE) OCVX1 5/17

$$\begin{split} \langle \mathbf{x}, \mathbf{y} \rangle &= \mathbf{x}^T \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \left(\theta(\mathbf{x}, \mathbf{y})\right) \text{ avec } \theta(\mathbf{x}, \mathbf{y}) \text{ l'angle entre les vecteurs } \mathbf{x} \text{ et } \mathbf{y} \\ \Rightarrow \theta(\mathbf{x}, \mathbf{y}) &= \cos^{-1} \left(\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|} \right) \to \text{le signe de } \langle \mathbf{x}, \mathbf{y} \rangle \text{ donne l'orientation entre } \mathbf{x} \text{ et } \mathbf{y} \end{split}$$

- si $\langle \mathbf{x}, \mathbf{y} \rangle > 0$, $|\theta(\mathbf{x}, \mathbf{y})| < \frac{\pi}{2}$ $\rightarrow \mathbf{x}$ et \mathbf{y} pointent dans la même direction.
- si $\langle \mathbf{x},\mathbf{y} \rangle <$ 0, $|\theta(\mathbf{x},\mathbf{y})| > \frac{\pi}{2}$ \rightarrow \mathbf{x} et \mathbf{y} pointent dans des directions opposées
- si $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, $\theta(\mathbf{x}, \mathbf{y}) = \frac{\pi}{2}$ $\rightarrow \mathbf{x}$ et \mathbf{y} sont orthogonaux

$$\begin{split} &\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \left(\theta(\mathbf{x}, \mathbf{y})\right) \text{ avec } \theta(\mathbf{x}, \mathbf{y}) \text{ l'angle entre les vecteurs } \mathbf{x} \text{ et } \mathbf{y} \\ &\Rightarrow \theta(\mathbf{x}, \mathbf{y}) = \cos^{-1} \left(\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}\right) \to \text{le signe de } \langle \mathbf{x}, \mathbf{y} \rangle \text{ donne l'orientation entre } \mathbf{x} \text{ et } \mathbf{y} \end{split}$$

- si $\langle \mathbf{x}, \mathbf{y} \rangle > 0$, $|\theta(\mathbf{x}, \mathbf{y})| < \frac{\pi}{2}$ $\rightarrow \mathbf{x}$ et \mathbf{y} pointent dans la même direction.
- si $\langle \mathbf{x}, \mathbf{y} \rangle <$ 0, $|\theta(\mathbf{x}, \mathbf{y})| > \frac{\pi}{2}$ $\rightarrow \mathbf{x}$ et \mathbf{y} pointent dans des directions opposées
- si $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, $\theta(\mathbf{x}, \mathbf{y}) = \frac{\pi}{2}$ $\rightarrow \mathbf{x}$ et \mathbf{y} sont orthogonaux

 $\mathbf{x}^{\perp}=\{\mathbf{y}\in\mathbb{R}^n,\langle\mathbf{x},\mathbf{y}\rangle=0\}$ définit l'espace orthogonal à \mathbf{x} et divise \mathbb{R}^n en deux demi-espaces :

- → demi-espace positif (où pointe x)
- → demi-espace négatif (opposé d'où pointe x)

D'une manière générale pour un ensemble $E \subset \mathbb{R}^n$, on appelle orthogonal de E l'ensemble $E^{\perp} = \{ \mathbf{y} \in \mathbb{R}^n \text{ tq } \forall \mathbf{x} \in E, \langle \mathbf{x}, \mathbf{y} \rangle = 0 \}$

G. TOCHON (LRE) OCVX1 5/17

$$\begin{split} &\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\mathsf{T}} \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \left(\theta(\mathbf{x}, \mathbf{y})\right) \text{ avec } \theta(\mathbf{x}, \mathbf{y}) \text{ l'angle entre les vecteurs } \mathbf{x} \text{ et } \mathbf{y} \\ &\Rightarrow \theta(\mathbf{x}, \mathbf{y}) = \cos^{-1} \left(\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}\right) \to \text{le signe de } \langle \mathbf{x}, \mathbf{y} \rangle \text{ donne l'orientation entre } \mathbf{x} \text{ et } \mathbf{y} \end{split}$$

- si $\langle \mathbf{x}, \mathbf{y} \rangle > 0$, $|\theta(\mathbf{x}, \mathbf{y})| < \frac{\pi}{2}$ $\rightarrow \mathbf{x}$ et \mathbf{y} pointent dans la même direction.
- si $\langle \mathbf{x},\mathbf{y} \rangle <$ 0, $|\theta(\mathbf{x},\mathbf{y})| > \frac{\pi}{2}$ \rightarrow \mathbf{x} et \mathbf{y} pointent dans des directions opposées
- si $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, $\theta(\mathbf{x}, \mathbf{y}) = \frac{\pi}{2}$ $\rightarrow \mathbf{x}$ et \mathbf{y} sont orthogonaux

 $\mathbf{x}^{\perp}=\{\mathbf{y}\in\mathbb{R}^n,\langle\mathbf{x},\mathbf{y}\rangle=0\}$ définit l'espace orthogonal à \mathbf{x} et divise \mathbb{R}^n en deux demi-espaces :

- → demi-espace positif (où pointe x)
- → demi-espace négatif (opposé d'où pointe x)

D'une manière générale pour un ensemble $E \subset \mathbb{R}^n$, on appelle orthogonal de E l'ensemble $E^{\perp} = \{ \mathbf{y} \in \mathbb{R}^n \text{ tq } \forall \mathbf{x} \in E, \langle \mathbf{x}, \mathbf{y} \rangle = 0 \}$

Inégalité de Cauchy-Schwartz : $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n, \boxed{|\langle \mathbf{x}, \mathbf{y} \rangle| \leq \|\mathbf{x}\| \|\mathbf{y}\|}$

G. Tochon (LRE)

Une *norme* est une fonction $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}^+$ qui vérifie les propriétés de :

séparation :

homogénéité:

inégalité triangulaire :

Une *norme* est une fonction $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}^+$ qui vérifie les propriétés de :

séparation : $\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = \mathbf{0}_n$

homogénéité : $\forall \mathbf{x} \in \mathbb{R}^n$, $\forall \lambda \in \mathbb{R}$, $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$

inégalité triangulaire : $\forall x, y \in \mathbb{R}^n$, $||x+y|| \le ||x|| + ||y||$

Une *norme* est une fonction $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}^+$ qui vérifie les propriétés de :

séparation : $\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = \mathbf{0}_n$

homogénéité : $\forall \mathbf{x} \in \mathbb{R}^n$, $\forall \lambda \in \mathbb{R}$, $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$

inégalité triangulaire : $\forall x, y \in \mathbb{R}^n$, $\|x+y\| \le \|x\| + \|y\|$

 \rightarrow permet de déduire l'inégalité triangulaire inversée :

$$\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$$
, $|||\mathbf{x}|| - ||\mathbf{y}||| \le ||\mathbf{x} - \mathbf{y}||$

Une *norme* est une fonction $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}^+$ qui vérifie les propriétés de :

séparation :
$$\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = \mathbf{0}_n$$

homogénéité :
$$\forall \mathbf{x} \in \mathbb{R}^n$$
, $\forall \lambda \in \mathbb{R}$, $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$

inégalité triangulaire :
$$\forall x,y \in \mathbb{R}^n, \, \|x+y\| \leq \|x\|+\|y\|$$

→ permet de déduire l'inégalité triangulaire inversée :

$$\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$$
, $||\mathbf{x}|| - ||\mathbf{y}|| \le ||\mathbf{x} - \mathbf{y}||$

$$\begin{array}{c|c} x-y & \xrightarrow{x} & x+y \\ \hline \|x+y\| \leq \|x\| + \|y\| \\ \|\|x\| - \|y\| \| \leq \|x-y\| \end{array}$$

On appelle distance entre x et y la quantité $d_{\|\cdot\|}(x,y) = \|x - y\|$

- $\|\mathbf{x}\| = d_{\|\cdot\|}(\mathbf{x}, \mathbf{0}_n)$: la norme de \mathbf{x} est sa distance par rapport à l'origine $\mathbf{0}_n$
- \rightarrow La distance dépend de la norme. Deux normes différentes $\|\cdot\|_{\alpha}$ et $\|\cdot\|_{\beta}$ induisent deux distances différentes $d_{\|\cdot\|_{\alpha}}(\mathbf{x},\mathbf{y}) \neq d_{\|\cdot\|_{\beta}}(\mathbf{x},\mathbf{y})$ pour les deux mêmes vecteurs \mathbf{x} et \mathbf{y} .

G. TOCHON (LRE) OCVX1 6/17

Une *norme* est une fonction $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}^+$ qui vérifie les propriétés de :

séparation :
$$\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = \mathbf{0}_n$$

homogénéité :
$$\forall x \in \mathbb{R}^n$$
, $\forall \lambda \in \mathbb{R}$, $\|\lambda x\| = |\lambda| \|x\|$

inégalité triangulaire :
$$\forall x,y \in \mathbb{R}^n$$
, $\|x+y\| \leq \|x\| + \|y\|$ $\xrightarrow{x-y}$ $\xrightarrow{x-y}$ $\xrightarrow{x+y}$

 \rightarrow permet de déduire l'inégalité triangulaire inversée :

$$\forall \mathsf{x}, \mathsf{y} \in \mathbb{R}^n, \ \big| \|\mathsf{x}\| - \|\mathsf{y}\| \big| \le \|\mathsf{x} - \mathsf{y}\|$$

$$x-y \xrightarrow{x} x+y$$

$$||x+y|| \le ||x|| + ||y||$$

$$||x|| - ||y|| \le ||x-y||$$

On appelle distance entre \mathbf{x} et \mathbf{y} la quantité $d_{\|\cdot\|}(\mathbf{x},\mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$

- $\|\mathbf{x}\| = d_{\|\cdot\|}(\mathbf{x},\mathbf{0}_n)$: la norme de \mathbf{x} est sa distance par rapport à l'origine $\mathbf{0}_n$
- ightarrow La distance dépend de la norme. Deux normes différentes $\|\cdot\|_{lpha}$ et $\|\cdot\|_{eta}$ induisent deux distances différentes $d_{\|\cdot\|_{lpha}}(\mathbf{x},\mathbf{y})
 eq d_{\|\cdot\|_{eta}}(\mathbf{x},\mathbf{y})$ pour les deux mêmes vecteurs \mathbf{x} et \mathbf{y} .

On appelle boule centrée en x et de rayon r > 0 pour la norme $\|\cdot\|$ l'ensemble

$$\mathcal{B}_{\|\cdot\|}(\mathbf{x},r) = \{\mathbf{y} \in \mathbb{R}^n, \|\mathbf{x} - \mathbf{y}\| \le r\}$$
 \rightarrow on parle de boule *fermée* si $\le r$

ightarrow on parle de boule *ouverte* si < r

L'ensemble $\mathcal{B}_{\|\cdot\|}(\mathbf{0}_n,1)=\{\mathbf{x}\in\mathbb{R}^n,\|\mathbf{x}\|\leq 1\}$ est appelé boule unité pour la norme $\|\cdot\|$.

G. TOCHON (LRE) OCVX1 6/17

Normes de Hölder et distances associées

On appelle norme de Hölder d'indice $p \ge 1$, ou norme \mathcal{L}_p , la quantité $\|\mathbf{x}\|_p = \sqrt[p]{\sum_{i=1}^n |x_i|^p}$ Les cas particuliers fréquemment utilisés correspondent aux indices :

- p = 1 : $\mathcal{L}_1(\mathbf{x}) = \|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$
- p=2 : $\mathcal{L}_2(\mathbf{x}) = \|\mathbf{x}\|_2 =$ norme euclidienne usuelle
- $p=\infty$: $\mathcal{L}_{\infty}(\mathbf{x})=\|\mathbf{x}\|_{\infty}=\max_{i=1,...,n}|x_i|$

Normes de Hölder et distances associées

On appelle norme de Hölder d'indice $p \ge 1$, ou norme \mathcal{L}_p , la quantité $\|\mathbf{x}\|_p = \sqrt[p]{\sum_{i=1}^n |x_i|^p}$ Les cas particuliers fréquemment utilisés correspondent aux indices :

- p = 1: $\mathcal{L}_1(\mathbf{x}) = ||\mathbf{x}||_1 = \sum_{i=1}^n |x_i|$
- p = 2: $\mathcal{L}_2(\mathbf{x}) = \|\mathbf{x}\|_2 = \text{norme euclidienne usuelle}$
- $p = \infty$: $\mathcal{L}_{\infty}(\mathbf{x}) = \|\mathbf{x}\|_{\infty} = \max_{i=1,\ldots,n} |x_i|$

La forme de $\mathcal{B}_{p}(\mathbf{0},1)$ dépend de l'indice p :

OCVX1 7/17

Normes de Hölder et distances associées

On appelle norme de Hölder d'indice $p \ge 1$, ou norme \mathcal{L}_p , la quantité $\|\mathbf{x}\|_p = \sqrt[p]{\sum_{i=1}^n |x_i|^p}$ Les cas particuliers fréquemment utilisés correspondent aux indices :

- p = 1 : $\mathcal{L}_1(\mathbf{x}) = \|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$
- p = 2 : $\mathcal{L}_2(\mathbf{x}) = \|\mathbf{x}\|_2 = \text{norme euclidienne usuelle}$
- $p = \infty$: $\mathcal{L}_{\infty}(\mathbf{x}) = \|\mathbf{x}\|_{\infty} = \max_{i=1,...,n} |x_i|$

La forme de $\mathcal{B}_p(\mathbf{0},1)$ dépend de l'indice p:

- ightarrow Distances associées aux normes 1, 2, et ∞ :
- $\|\mathbf{x} \mathbf{y}\|_1 = \sum_i |x_i y_i|$: distance de Manhattan
- $\|\mathbf{x} \mathbf{y}\|_2$: distance euclidienne usuelle

$$\|\mathbf{x} - \mathbf{y}\|_{\infty} = \max_{i} |x_i - y_i|$$
 : distance de Chebyshev

G. Tochon (LRE)

OCVX1

Et si p < 1?

Pour 0

Si l'indice p dans la norme de Hölder est $0 , l'inégalité triangulaire n'est plus respectée : <math>\|\mathbf{x}\|_p$ n'est pas une norme, mais une quasi-norme.

Et si p < 1?

Pour 0

Si l'indice p dans la norme de Hölder est $0 , l'inégalité triangulaire n'est plus respectée : <math>\|\mathbf{x}\|_p$ n'est pas une norme, mais une quasi-norme.

Pour p = 0

Il est d'usage de définir la "norme" \mathcal{L}_0 d'un vecteur \mathbf{x} comme le nombre de coordonnées non nulles de $\mathbf{x}: \|\mathbf{x}\|_0 = \sum_i |x_i|^0$ (avec $0^0 = 0$)

- ightarrow Propriété d'homogénéité non respectée.
- \rightarrow Distance associée : $\|\mathbf{x} \mathbf{y}\|_0 \equiv$ distance de Hamming.

G. TOCHON (LRE)

Et si p < 1?

Pour 0

Si l'indice p dans la norme de Hölder est $0 , l'inégalité triangulaire n'est plus respectée : <math>\|\mathbf{x}\|_p$ n'est pas une norme, mais une quasi-norme.

Pour p = 0

Il est d'usage de définir la "norme" \mathcal{L}_0 d'un vecteur \mathbf{x} comme le nombre de coordonnées non nulles de \mathbf{x} : $\|\mathbf{x}\|_0 = \sum_i |x_i|^0$ (avec $0^0 = 0$)

 \rightarrow Distance associée : $\|\mathbf{x} - \mathbf{y}\|_0 \equiv$ distance de Hamming.

La norme \mathcal{L}_0 a un grand nombre d'applications en traitement du signal (reconstruction parcimonieuse) et en machine learning (régularisation de modèles).

→ La minimisation est NP-difficile (2)

H

Normes équivalentes

Les normes induisent des topologies différentes en fonction de la forme de leur boule unité \rightarrow certains comportement locaux/asymptotiques (limite d'une suite de \mathbb{R}^n , continuité d'une fonction en un point de \mathbb{R}^n) peuvent-ils être impactés par le choix de la norme ? \square

Normes équivalentes

Les normes induisent des topologies différentes en fonction de la forme de leur boule unité \rightarrow certains comportement locaux/asymptotiques (limite d'une suite de \mathbb{R}^n , continuité d'une fonction en un point de \mathbb{R}^n) peuvent-ils être impactés par le choix de la norme ? \square

Normes équivalentes

Deux normes $\|\cdot\|_{\alpha}$ et $\|\cdot\|_{\beta}$ sont *équivalentes* s'il existe des constantes A>0 et B>0 telles que $\forall \mathbf{x} \in \mathbb{R}^n$, $A\|\mathbf{x}\|_{\alpha} \leq \|\mathbf{x}\|_{\beta} \leq B\|\mathbf{x}\|_{\alpha}$

Deux normes équivalentes induisent la même topologie

Normes équivalentes

Les normes induisent des topologies différentes en fonction de la forme de leur boule unité \rightarrow certains comportement locaux/asymptotiques (limite d'une suite de \mathbb{R}^n , continuité d'une fonction en un point de \mathbb{R}^n) peuvent-ils être impactés par le choix de la norme ? \square

Normes équivalentes

Deux normes $\|\cdot\|_{\alpha}$ et $\|\cdot\|_{\beta}$ sont *équivalentes* s'il existe des constantes A>0 et B>0 telles que $\forall \mathbf{x} \in \mathbb{R}^n$, $A\|\mathbf{x}\|_{\alpha} \leq \|\mathbf{x}\|_{\beta} \leq B\|\mathbf{x}\|_{\alpha}$

Deux normes équivalentes induisent la même topologie

Théorème : Toutes les normes sur \mathbb{R}^n sont équivalentes

 \Rightarrow Pas besoin de se soucier de l'identité de la norme dans \mathbb{R}^n , si ça converge pour l'une d'entre elles, ça converge pour toutes les autres !

Description des sous espaces de \mathbb{R}^n

La description des sous-espaces $\mathbb{R}^p\subset\mathbb{R}^n$ intervient fréquemment lors de la formulation et la résolution d'un problème d'optimisation :

- ightarrow droite : dérivée directionnelle, direction de descente, etc
- \rightarrow hyperplan : description d'une séparatrice, etc
- ightarrow le reste : description explicite des potentielles contraintes

Description des sous espaces de \mathbb{R}^n

La description des sous-espaces $\mathbb{R}^p\subset\mathbb{R}^n$ intervient fréquemment lors de la formulation et la résolution d'un problème d'optimisation :

- → droite : dérivée directionnelle, direction de descente, etc
- \rightarrow hyperplan : description d'une séparatrice, etc
- ightarrow le reste : description explicite des potentielles contraintes ,

On se restreint ici uniquement à la description des droites et des hyperplans de \mathbb{R}^n

Hyperplan (rappel)

Un hyperplan \mathcal{H} de \mathbb{R}^n est un sous-espace de dimension (n-1)

- \rightarrow dans \mathbb{R}^2 , les hyperplans sont des droites
- \rightarrow dans \mathbb{R}^3 , les hyperplans sont des plans
- ightarrow L'espace orthogonal \mathcal{H}^\perp d'un hyperplan \mathcal{H} est une droite (et vice versa)

Description des sous espaces de \mathbb{R}^n

La description des sous-espaces $\mathbb{R}^p\subset\mathbb{R}^n$ intervient fréquemment lors de la formulation et la résolution d'un problème d'optimisation :

- → droite : dérivée directionnelle, direction de descente, etc
- \rightarrow hyperplan : description d'une séparatrice, etc
- ightarrow le reste : description explicite des potentielles contraintes ,

On se restreint ici uniquement à la description des droites et des hyperplans de \mathbb{R}^n

Hyperplan (rappel)

Un hyperplan \mathcal{H} de \mathbb{R}^n est un sous-espace de dimension (n-1)

- \rightarrow dans \mathbb{R}^2 , les hyperplans sont des droites
- \rightarrow dans \mathbb{R}^3 , les hyperplans sont des plans
- ightarrow L'espace orthogonal \mathcal{H}^\perp d'un hyperplan \mathcal{H} est une droite (et vice versa)

Deux représentations possibles : représentation paramétrique et représentation implicite

G. TOCHON (LRE) OCVX1 10/17

Sous espaces de \mathbb{R}^2 Droite linéaire

Une droite linéaire (\mathcal{D}) peut être décrite de deux façons : par son vecteur directeur \mathbf{u} ou par son vecteur normal \mathbf{n} .

Droite linéaire

Une droite linéaire (\mathcal{D}) peut être décrite de deux façons : par son vecteur directeur \mathbf{u} ou par son vecteur normal \mathbf{n} .

Représentation paramétrique

Elle fait intervenir le vecteur directeur u

 \rightarrow (D) est l'ensemble des vecteurs x colinéaires à u

$$\rightarrow (\mathcal{D}) = \{ \mathbf{x} \in \mathbb{R}^2, \mathbf{x} = \lambda \mathbf{u}, \lambda \in \mathbb{R} \}$$

 \rightarrow (D) est l'image de l'application linéaire $\lambda \mapsto \lambda \mathbf{u}$

ightarrow besoin de 1 paramètre ($\lambda \in \mathbb{R}$) pour décrire (\mathcal{D})

Droite linéaire

Une droite linéaire (\mathcal{D}) peut être décrite de deux façons : par son vecteur directeur \mathbf{u} ou par son vecteur normal \mathbf{n} .

Représentation paramétrique

Elle fait intervenir le vecteur directeur u

- \rightarrow (D) est l'ensemble des vecteurs x colinéaires à u
- $\rightarrow (\mathcal{D}) = \{ \mathbf{x} \in \mathbb{R}^2, \mathbf{x} = \lambda \mathbf{u}, \lambda \in \mathbb{R} \}$
- \rightarrow (D) est l'image de l'application linéaire $\lambda \mapsto \lambda \mathbf{u}$
- ightarrow besoin de 1 paramètre $(\lambda \in \mathbb{R})$ pour décrire (\mathcal{D})

Représentation implicite

Elle fait intervenir le vecteur normal n

- \rightarrow (\mathcal{D}) est l'ensemble des vecteurs **x** orthogonaux à **n**
- $\rightarrow (\mathcal{D}) = \mathbf{n}^{\perp} = \{ \mathbf{x} \in \mathbb{R}^2, \langle \mathbf{n}, \mathbf{x} \rangle = \mathbf{n}^T \mathbf{x} = 0 \}$
- ightarrow (\mathcal{D}) est le noyau de l'application linéaire $\mathbf{x}\mapsto \mathbf{n}^T\mathbf{x}$
- \rightarrow besoin de 1 vecteur ($\mathbf{n} \in \mathbb{R}^2$) pour décrire (\mathcal{D})

Droite linéaire

Une droite linéaire (\mathcal{D}) peut être décrite de deux façons : par son vecteur directeur \mathbf{u} ou par son vecteur normal \mathbf{n} .

Équation cartésienne ax + by = 0

représentation implicite de vecteur normal $\mathbf{n} = (a, b)^T$

Représentation paramétrique

Elle fait intervenir le vecteur directeur u

- \rightarrow (D) est l'ensemble des vecteurs **x** colinéaires à **u**
- $\rightarrow (\mathcal{D}) = \{ \mathbf{x} \in \mathbb{R}^2, \mathbf{x} = \lambda \mathbf{u}, \lambda \in \mathbb{R} \}$
- ightarrow (\mathcal{D}) est l'image de l'application linéaire $\lambda \mapsto \lambda \mathbf{u}$
- ightarrow besoin de 1 paramètre $(\lambda \in \mathbb{R})$ pour décrire (\mathcal{D})

Représentation implicite

Elle fait intervenir le vecteur normal n

- ightarrow (\mathcal{D}) est l'ensemble des vecteurs \mathbf{x} orthogonaux à \mathbf{n}
- $\rightarrow (\mathcal{D}) = \mathbf{n}^{\perp} = \{ \mathbf{x} \in \mathbb{R}^2, \langle \mathbf{n}, \mathbf{x} \rangle = \mathbf{n}^T \mathbf{x} = 0 \}$
- \rightarrow (\mathcal{D}) est le noyau de l'application linéaire $\mathbf{x} \mapsto \mathbf{n}^T \mathbf{x}$

11 / 17

 \rightarrow besoin de 1 vecteur ($\mathbf{n} \in \mathbb{R}^2$) pour décrire (\mathcal{D})

Droite affine

Un sous-espace $F \subset \mathbb{R}^n$ est dit affine s'il existe un sous-espace linéaire $E \subset \mathbb{R}^n$ et un point $\mathbf{a} \in \mathbb{R}^n$ tels que $F = \mathbf{a} + E = \{\mathbf{a} + \mathbf{x}, \mathbf{x} \in E\}$

Une droite affine (\mathcal{D}_a) passant par a, de vecteur directeur u et de vecteur normal n peut être décrite de deux façons :

Droite affine

Un sous-espace $F \subset \mathbb{R}^n$ est dit affine s'il existe un sous-espace linéaire $E \subset \mathbb{R}^n$ et un point $\mathbf{a} \in \mathbb{R}^n$ tels que $F = \mathbf{a} + E = \{\mathbf{a} + \mathbf{x}, \mathbf{x} \in E\}$

Une droite affine (\mathcal{D}_a) passant par a, de vecteur directeur u et de vecteur normal n peut être décrite de deux façons :

Représentation paramétrique

Elle fait intervenir le point a et le vecteur directeur $u \to (\mathcal{D}_a)$ est l'ensemble des vecteurs x d'origine a et colinéaires à u

- $o (\mathcal{D}_a) = \mathbf{a} + (\mathcal{D}) = \mathbf{a} + \{\lambda \mathbf{u}, \lambda \in \mathbb{R}\} = \{\mathbf{a} + \lambda \mathbf{u}, \lambda \in \mathbb{R}\}$
- o $(\mathcal{D}_{\mathsf{a}})$ est l'image de l'application affine $\lambda\mapsto\mathsf{a}+\lambda\mathsf{u}$
- ightarrow besoin de 1 paramètre $(\lambda \in \mathbb{R})$ pour décrire $(\mathcal{D}_{\mathsf{a}})$

Droite affine

Un sous-espace $F \subset \mathbb{R}^n$ est dit affine s'il existe un sous-espace linéaire $E \subset \mathbb{R}^n$ et un point $\mathbf{a} \in \mathbb{R}^n$ tels que $F = \mathbf{a} + E = \{\mathbf{a} + \mathbf{x}, \mathbf{x} \in E\}$

Une droite affine (\mathcal{D}_a) passant par a, de vecteur directeur u et de vecteur normal n peut être décrite de deux façons :

Représentation paramétrique

Elle fait intervenir le point a et le vecteur directeur u \rightarrow (\mathcal{D}_a) est l'ensemble des vecteurs x d'origine a et colinéaires à u

$$\rightarrow (\mathcal{D}_{\mathbf{a}}) = \mathbf{a} + (\mathcal{D}) = \mathbf{a} + \{\lambda \mathbf{u}, \lambda \in \mathbb{R}\} = \{\mathbf{a} + \lambda \mathbf{u}, \lambda \in \mathbb{R}\}$$

$$o$$
 $(\mathcal{D}_{\mathsf{a}})$ est l'image de l'application affine $\lambda\mapsto \mathsf{a}+\lambda\mathsf{u}$

 \rightarrow besoin de 1 paramètre ($\lambda \in \mathbb{R}$) pour décrire (\mathcal{D}_a)

Représentation implicite

Elle fait intervenir le point a et vecteur normal n \rightarrow (\mathcal{D}_a) est l'ensemble des vecteurs x d'origine a et orthogonaux à n

$$\rightarrow (\mathcal{D}_{a}) = \{ \mathbf{x} \in \mathbb{R}^{2}, \langle \mathbf{n}, \mathbf{x} - \mathbf{a} \rangle = \mathbf{n}^{T} (\mathbf{x} - \mathbf{a}) = 0 \}$$

$$\rightarrow (\mathcal{D}_{a})$$
 est le noyau de l'application affine $\mathbf{x} \mapsto \mathbf{n}^{T}\mathbf{x} - \mathbf{n}^{T}\mathbf{a}$
 \rightarrow besoin de 1 vecteur ($\mathbf{n} \in \mathbb{R}^{2}$) pour décrire (\mathcal{D}_{a})

Droite affine

Un sous-espace $F \subset \mathbb{R}^n$ est dit affine s'il existe un sous-espace linéaire $E \subset \mathbb{R}^n$ et un point $\mathbf{a} \in \mathbb{R}^n$ tels que $F = \mathbf{a} + E = \{\mathbf{a} + \mathbf{x}, \mathbf{x} \in E\}$

Une droite affine (\mathcal{D}_a) passant par a, de vecteur directeur u et de vecteur normal n peut être décrite de deux façons :

Équation cartésienne ax + by + c = 0

représentation implicite de vecteur normal $\mathbf{n} = (a, b)^T$ et passant par $\mathbf{a} = \left(0, -\frac{c}{b}\right)^T$

Représentation paramétrique

Elle fait intervenir le point \mathbf{a} et le vecteur directeur \mathbf{u} \to (\mathcal{D}_a) est l'ensemble des vecteurs \mathbf{x} d'origine \mathbf{a} et colinéaires à \mathbf{u} \to $(\mathcal{D}_a) = \mathbf{a} + (\mathcal{D}) = \mathbf{a} + \{\lambda \mathbf{u}, \lambda \in \mathbb{R}\} = \{\mathbf{a} + \lambda \mathbf{u}, \lambda \in \mathbb{R}\}$

$$\rightarrow (\mathcal{D}_a) = \mathbf{a} + (\mathcal{D}) = \mathbf{a} + \{\lambda \mathbf{u}, \lambda \in \mathbb{R}\} = \{\mathbf{a} + \lambda \mathbf{u}, \lambda \in \mathbb{R}\}$$

 $\rightarrow (\mathcal{D}_a)$ est l'image de l'application affine $\lambda \mapsto \mathbf{a} + \lambda \mathbf{u}$

ightarrow besoin de 1 paramètre $(\lambda \in \mathbb{R})$ pour décrire $(\mathcal{D}_{\mathsf{a}})$

Représentation implicite

Elle fait intervenir le point **a** et vecteur normal **n** $\rightarrow (\mathcal{D}_a)$ est l'ensemble des vecteurs **x** d'origine **a** et orthogonaux à **n** $\rightarrow (\mathcal{D}_a) = (\mathbf{x} \in \mathbb{R}^2 / \mathbf{n}, \mathbf{x}, \mathbf{a}) = \mathbf{n}^T / (\mathbf{x}, \mathbf{a}) = 0$

$$\to (\mathcal{D}_a) = \{ \mathbf{x} \in \mathbb{R}^2, \langle \mathbf{n}, \mathbf{x} - \mathbf{a} \rangle = \mathbf{n}^T (\mathbf{x} - \mathbf{a}) = 0 \}$$

$$\rightarrow (\mathcal{D}_a)$$
 est le noyau de l'application affine $\mathbf{x} \mapsto \mathbf{n}^T \mathbf{x} - \mathbf{n}^T \mathbf{a}$
 \rightarrow besoin de 1 vecteur ($\mathbf{n} \in \mathbb{R}^2$) pour décrire (\mathcal{D}_a)

Sous espaces de $\ensuremath{\mathbb{R}}^3$

Plan affine

Un plan (\mathcal{P}) passant par a, de vecteurs générateurs $(\mathbf{u}_1,\mathbf{u}_2)$ et de vecteur normal n peut être décrit de deux façons :

Plan affine

Un plan (\mathcal{P}) passant par a, de vecteurs générateurs $(\mathbf{u}_1,\mathbf{u}_2)$ et de vecteur normal n peut être décrit de deux façons :

Représentation paramétrique

Plan contenant le point a et engendré par $(\textbf{u}_1,\textbf{u}_2),$ famille libre de \mathbb{R}^3

 \rightarrow ($\mathcal{P})$ est l'ensemble des vecteurs x d'origine a et combinaison linéaire de $\left(u_1,u_2\right)$

ightarrow besoin de 2 paramètre $(\lambda_1,\lambda_2)\in\mathbb{R}^2$ pour décrire (\mathcal{P})

Plan affine

Un plan (\mathcal{P}) passant par \mathbf{a} , de vecteurs générateurs $(\mathbf{u}_1,\mathbf{u}_2)$ et de vecteur normal \mathbf{n} peut être décrit de deux façons :

Représentation paramétrique

Plan contenant le point a et engendré par $(\textbf{u}_1,\textbf{u}_2),$ famille libre de \mathbb{R}^3

 $\to (\mathcal{P})$ est l'ensemble des vecteurs x d'origine a et combinaison linéaire de $\left(\textbf{u}_1,\textbf{u}_2\right)$

$$\rightarrow (\mathcal{P}) = \mathbf{a} + \{\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2, (\lambda_1, \lambda_2) \in \mathbb{R}^2\}
= \{\mathbf{a} + \lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2, (\lambda_1, \lambda_2) \in \mathbb{R}^2\}$$

ightarrow besoin de 2 paramètre $(\lambda_1,\lambda_2)\in\mathbb{R}^2$ pour décrire (\mathcal{P})

Représentation implicite

Plan contenant le point a et de vecteur normal n

- $\rightarrow (\mathcal{P})$ est l'ensemble des vecteurs x d'origine a et orthogonaux à $\overset{\ \, }{\mathbf{n}}$
- $\rightarrow (\mathcal{P}) = \{ \mathbf{x} \in \mathbb{R}^3, \langle \mathbf{n}, \mathbf{x} \mathbf{a} \rangle = \mathbf{n}^T (\mathbf{x} \mathbf{a}) = 0 \}$
- o (\mathcal{P}) a la **même** écriture implicite que (\mathcal{D}_{a}) dans \mathbb{R}^{2}
- ightarrow besoin de 1 vecteur (n) pour décrire ($\mathcal P$)

G. TOCHON (LRE) OCVX1 13/17

Plan affine

Un plan (\mathcal{P}) passant par \mathbf{a} , de vecteurs générateurs $(\mathbf{u}_1,\mathbf{u}_2)$ et de vecteur normal \mathbf{n} peut être décrit de deux façons :

Équation cartésienne
$$ax + by + cz + d = 0$$

représentation implicite de vecteur normal $\mathbf{n} = (a, b, c)^T$ et passant par $\mathbf{a} = \left(0, 0, -\frac{d}{c}\right)^T$

Représentation paramétrique

Plan contenant le point ${\bf a}$ et engendré par $({\bf u}_1,{\bf u}_2)$, famille libre de \mathbb{R}^3

 $\rightarrow (\mathcal{P})$ est l'ensemble des vecteurs x d'origine a et combinaison linéaire de $(\textbf{u}_1, \textbf{u}_2)$

$$\rightarrow (\mathcal{P}) = \mathbf{a} + \{\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2, (\lambda_1, \lambda_2) \in \mathbb{R}^2\}
= \{\mathbf{a} + \lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2, (\lambda_1, \lambda_2) \in \mathbb{R}^2\}$$

ightarrow besoin de 2 paramètre $(\lambda_1,\lambda_2)\in\mathbb{R}^2$ pour décrire (\mathcal{P})

Représentation implicite

Plan contenant le point ${\bf a}$ et de vecteur normal ${\bf n}$ $\to (\mathcal P)$ est l'ensemble des vecteurs ${\bf x}$ d'origine ${\bf a}$ et orthog-

$$\rightarrow (\mathcal{P}) = \{ \mathbf{x} \in \mathbb{R}^3, \langle \mathbf{n}, \mathbf{x} - \mathbf{a} \rangle = \mathbf{n}^T (\mathbf{x} - \mathbf{a}) = 0 \}$$

normal $\mathbf{n} = (a, b, c)^T$ et passant par $\to (\mathcal{P})$ a la **même** écriture implicite que (\mathcal{D}_a) dans \mathbb{R}^2

 \rightarrow besoin de 1 vecteur (n) pour décrire (\mathcal{P})

onaux à n

Sous espaces de \mathbb{R}^3 Droite affine

Une droite affine (\mathcal{D}_a) passant par a et de vecteur directeur u peut être décrite de deux façons :

Droite affine

Une droite affine (\mathcal{D}_a) passant par a et de vecteur directeur u peut être décrite de deux façons :

Représentation paramétrique

- \rightarrow (\mathcal{D}_a) est l'ensemble des vecteurs x d'origine a et colinéaires à u
- $\to (\mathcal{D}_{\mathsf{a}}) = \mathsf{a} + \{\lambda \mathsf{u}, \lambda \in \mathbb{R}\} = \{\mathsf{a} + \lambda \mathsf{u}, \lambda \in \mathbb{R}\}$
- $o (\mathcal{D}_a)$ a la **même** écriture paramétrique que dans \mathbb{R}^2
- ightarrow besoin de 1 paramètre ($\lambda \in \mathbb{R}$) pour décrire (\mathcal{D}_a)

Droite affine

Une droite affine (\mathcal{D}_a) passant par a et de vecteur directeur u peut être décrite de deux façons :

Représentation paramétrique

- \rightarrow (\mathcal{D}_a) est l'ensemble des vecteurs x d'origine a et colinéaires à u
- $\rightarrow (\mathcal{D}_{a}) = \mathbf{a} + \{\lambda \mathbf{u}, \lambda \in \mathbb{R}\} = \{\mathbf{a} + \lambda \mathbf{u}, \lambda \in \mathbb{R}\}\$
- $\to (\mathcal{D}_a)$ a la **même** écriture paramétrique que dans \mathbb{R}^2
- \rightarrow besoin de 1 paramètre ($\lambda \in \mathbb{R}$) pour décrire (\mathcal{D}_a)

Représentation implicite

 $\rightarrow (\mathcal{D}_a)$ est l'intersection de deux (hyper)plans (\mathcal{P}_1) et

$$\rightarrow (\mathcal{P}_1) : \mathbf{n}_1' (\mathbf{x} - \mathbf{a}) = 0 \text{ et } (\mathcal{P}_2) : \mathbf{n}_2' (\mathbf{x} - \mathbf{a}) = 0$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \xrightarrow{\begin{array}{c} (\mathcal{P}_2) \text{ contenant le point a et de vecteurs normaux } \mathbf{n_1} \text{ et } \mathbf{n_2} \\ \rightarrow (\mathcal{P}_1) : \mathbf{n_1}^T (\mathbf{x} - \mathbf{a}) = 0 \text{ et } (\mathcal{P}_2) : \mathbf{n_2}^T (\mathbf{x} - \mathbf{a}) = 0 \\ \rightarrow \mathbf{x} \in \mathbb{R}^3 \in (\mathcal{D}_{\mathbf{a}}) \Leftrightarrow \begin{cases} \mathbf{n_1}^T (\mathbf{x} - \mathbf{a}) = 0 \\ \mathbf{n_2}^T (\mathbf{x} - \mathbf{a}) = 0 \end{cases} \Leftrightarrow \mathbf{N}(\mathbf{x} - \mathbf{a}) = 0$$

avec
$$\mathbf{N} = [\mathbf{n}_1, \mathbf{n}_2]^T \in \mathbb{R}^{2 \times 3}$$

- $\rightarrow (\mathcal{D}_a)$ est le noyau de l'application affine $\mathbf{x} \mapsto \mathbf{N}(\mathbf{x} \mathbf{a})$
- \rightarrow besoin de 2 vecteurs $(\mathbf{n}_1, \mathbf{n}_2 \in \mathbb{R}^3)$ pour décrire (\mathcal{D}_a)

Cas général

Pour un sous-espace $E \subset \mathbb{R}^n$ de dimension p < n et contenant un point $\mathbf{a} \in \mathbb{R}^n$

Cas général

Pour un sous-espace $E \subset \mathbb{R}^n$ de dimension p < n et contenant un point $\mathbf{a} \in \mathbb{R}^n$

Représentation paramétrique

- ightarrow E est l'ensemble des vecteurs $\mathbf x$ d'origine $\mathbf a$ et combinaison linéaire de p vecteurs générateurs $(\mathbf u_1,\ldots,\mathbf u_p)$ de $E:E=\mathbf a+{\rm Vect}(\mathbf u_1,\ldots,\mathbf u_p)=\mathbf a+\left\{\sum_{j=1}^p\lambda_j\mathbf u_j,(\lambda_1,\ldots,\lambda_p)\in\mathbb R^p\right\}$
- $\rightarrow \textit{E} \text{ est I'image de I'application affine } \pmb{\lambda} \mapsto \pmb{a} + \pmb{\mathsf{U}} \pmb{\lambda} \text{ avec } \pmb{\mathsf{U}} = [\pmb{\mathsf{u}}_1, \dots, \pmb{\mathsf{u}}_p] \in \mathbb{R}^{n \times p} \text{ et } \pmb{\lambda} \in \mathbb{R}^p$
- \rightarrow Besoin de p = dim(E) paramètres pour la représentation paramétrique:
 - $\stackrel{\longleftarrow}{d}$ la description d'une droite affine nécessite un seul paramètre λ : $\mathcal{D}_a=\mathbf{a}+\{\lambda\mathbf{u},\lambda\in\mathbb{R}\}$
 - extstyle ext

Cas général

Pour un sous-espace $E \subset \mathbb{R}^n$ de dimension p < n et contenant un point $\mathbf{a} \in \mathbb{R}^n$

Représentation paramétrique

- o E est l'ensemble des vecteurs **x** d'origine **a** et combinaison linéaire de p vecteurs générateurs $(\mathbf{u}_1,\ldots,\mathbf{u}_p)$ de $E:E=\mathbf{a}+\mathrm{Vect}(\mathbf{u}_1,\ldots,\mathbf{u}_p)=\mathbf{a}+\left\{\sum_{j=1}^p\lambda_j\mathbf{u}_j,(\lambda_1,\ldots,\lambda_p)\in\mathbb{R}^p\right\}$
- o E est l'image de l'application affine $\lambda\mapsto \mathbf{a}+\mathbf{U}\lambda$ avec $\mathbf{U}=[\mathbf{u}_1,\ldots,\mathbf{u}_p]\in\mathbb{R}^{n imes p}$ et $\lambda\in\mathbb{R}^p$
- \rightarrow Besoin de p = dim(E) paramètres pour la représentation paramétrique:

 - \P la description d'un hyperplan nécessite (n-1) paramètres $(\lambda_1,\dots,\lambda_{n-1})$

Représentation implicite

- \rightarrow E est l'intersection de (n-p) hyperplans $\mathcal{H}_1,\ldots,\mathcal{H}_{n-p}$ contenant \mathbf{a} et de vecteurs normaux $(\mathbf{n}_1,\ldots,\mathbf{n}_{n-p}):E=\mathcal{H}_1\cap\cdots\cap\mathcal{H}_{n-p}:\mathbf{x}\in E\Leftrightarrow (\mathbf{x}\in\mathcal{H}_1)\cap\cdots\cap(\mathbf{x}\in\mathcal{H}_{n-p})$
- o E est le noyau de l'application affine $\mathbf{x}\mapsto \mathbf{N}(\mathbf{x}-\mathbf{a})$ avec $\mathbf{N}=[\mathbf{n}_1,\ldots,\mathbf{n}_{n-p}]^T\in\mathbb{R}^{(n-p) imes n}$
- ightarrow Besoin de $(n-p)= exttt{dim}(E^\perp)$ vecteurs normaux pour la représentation implicite:
 - la description d'un hyperplan nécessite un seul vecteur normal \mathbf{n} : $\mathcal{H}: \mathbf{n}^T(\mathbf{x} \mathbf{a}) = 0$ (en machine learning, un hyperplan se note classiquement $\mathbf{w}^T \mathbf{x} + \mathbf{b} = 0$)
 - \P la description d'une droite affine nécessite (n-1) vecteurs normaux $(\mathbf{n}_1,\ldots,\mathbf{n}_{n-1})$

Un petit tour du côté des matrices

Valeurs propres et vecteurs propres

Vecteurs et valeurs propres, diagonalisation et spectre (rappels)

Pour une matrice $\mathbf{A} \in \mathbb{R}^{n \times n}$, on appelle *vecteur propre* \mathbf{u} associé à la *valeur propre* λ le couple (\mathbf{u}, λ) tel que $\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$.

On dit que \mathbf{A} est diagonalisable s'il existe un matrice $\mathbf{\Lambda} = \text{diag}(\lambda_1, \dots, \lambda_n)$ et une matrice inversible $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_n] \in \mathbb{R}^{n \times n}$ tels que $\mathbf{\Lambda} = \mathbf{U}^{-1} \mathbf{A} \mathbf{U}$.

La $i^{\text{ème}}$ colonne \mathbf{u}_i de \mathbf{U} est un vecteur propre associé à la $i^{\text{ème}}$ valeur propre λ_i de la diagonale de $\boldsymbol{\Lambda}$.

 $(\lambda_1, \ldots, \lambda_n)$ s'appelle le *spectre* de **A**, et se note $Sp(\mathbf{A})$

Un petit tour du côté des matrices

Valeurs propres et vecteurs propres

Vecteurs et valeurs propres, diagonalisation et spectre (rappels)

Pour une matrice $\mathbf{A} \in \mathbb{R}^{n \times n}$, on appelle *vecteur propre* \mathbf{u} associé à la *valeur propre* λ le couple (\mathbf{u}, λ) tel que $\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$.

On dit que \mathbf{A} est diagonalisable s'il existe un matrice $\mathbf{\Lambda} = \mathrm{diag}(\lambda_1, \dots, \lambda_n)$ et une matrice inversible $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_n] \in \mathbb{R}^{n \times n}$ tels que $\mathbf{\Lambda} = \mathbf{U}^{-1} \mathbf{A} \mathbf{U}$.

La $i^{\text{ème}}$ colonne \mathbf{u}_i de \mathbf{U} est un vecteur propre associé à la $i^{\text{ème}}$ valeur propre λ_i de la diagonale de $\boldsymbol{\Lambda}$.

 $(\lambda_1,\ldots,\lambda_n)$ s'appelle le *spectre* de **A**, et se note $Sp(\mathbf{A})$

Propriétés

 $\rightarrow \ \, \text{Toute matrice symétrique (A = A}^{T}) \,\, \text{est (ortho)diagonalisable (U unitaire : U}^{-1} = \textbf{U}^{T})$

$$\rightarrow \begin{cases} \mathsf{tr}(\mathbf{A}) &= \sum_{i=1}^n \lambda_i \\ \det(\mathbf{A}) &= \prod_{i=1}^n \lambda_i \end{cases} \rightarrow \text{en particulier lorsque } n=2: \begin{cases} \mathsf{tr}(\mathbf{A}) &= \lambda_1 + \lambda_2 \\ \det(\mathbf{A}) &= \lambda_1 \lambda_2 \end{cases}$$

 \rightarrow **A** inversible (det(**A**) \neq 0) \Leftrightarrow 0 \notin $Sp(\mathbf{A})$

Un petit tour du côté des matrices Le cas particulier des matrices symétriques

Positivité/négativité d'une matrice symétrique

On dit qu'une matrice $\mathbf{A} \in \mathbb{R}^{n \times n}$ symétrique est :

- (semi-définie) positive ssi $\forall \mathbf{x} \in \mathbb{R}^n, \mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0 \Leftrightarrow Sp(\mathbf{A}) \subset \mathbb{R}^+$ Notation usuelle : $\mathbf{A} \succeq 0$
- définie positive ssi $\forall \mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}_n\}, \mathbf{x}^T \mathbf{A} \mathbf{x} > 0 \Leftrightarrow Sp(\mathbf{A}) \subset \mathbb{R}^+_*$ $\to \mathbf{A}$ est positive et inversible Notation usuelle : $\mathbf{A} \succ 0$
- (semi-définie) négative ssi $\forall \mathbf{x} \in \mathbb{R}^n, \mathbf{x}^T \mathbf{A} \mathbf{x} \leq 0 \Leftrightarrow Sp(\mathbf{A}) \subset \mathbb{R}^-$ Notation usuelle : $\mathbf{A} \leq 0$
- définie négative ssi ∀x ∈ ℝⁿ\{0_n}, x^TAx < 0 ⇔ Sp(A) ⊂ ℝ_{*}⁻
 → A est négative et inversible
 Notation usuelle : A ≺ 0

Un petit tour du côté des matrices

Le cas particulier des matrices symétriques

Positivité/négativité d'une matrice symétrique

On dit qu'une matrice $\mathbf{A} \in \mathbb{R}^{n \times n}$ symétrique est :

- (semi-définie) positive ssi $\forall \mathbf{x} \in \mathbb{R}^n, \mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} \geq 0 \Leftrightarrow Sp(\mathbf{A}) \subset \mathbb{R}^+$ Notation usuelle : $\mathbf{A} \succ 0$
- définie positive ssi $\forall \mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}_n\}, \mathbf{x}^T \mathbf{A} \mathbf{x} > 0 \Leftrightarrow \mathit{Sp}(\mathbf{A}) \subset \mathbb{R}^+_*$

 \rightarrow **A** est positive et inversible

Notation usuelle : $\mathbf{A} \succ 0$

- (semi-définie) négative ssi $\forall \mathbf{x} \in \mathbb{R}^n, \mathbf{x}^T \mathbf{A} \mathbf{x} \leq 0 \Leftrightarrow Sp(\mathbf{A}) \subset \mathbb{R}^-$ Notation usuelle : $\mathbf{A} \leq 0$
- définie négative est inversible $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}_n\}, \mathbf{x}^T \mathbf{A} \mathbf{x} < 0 \Leftrightarrow Sp(\mathbf{A}) \subset \mathbb{R}^-_*$

→ A est négative et inversible

Notation usuelle : $\mathbf{A} \prec 0$

Lien entre matrice symétrique et produit scalaire

Soit **A** une matrice symétrique définie positive, alors l'application $(x, y) \mapsto x^T A y$ est un produit scalaire.

G. Tochon (LRE) OCVX1 17/17