WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: WO 91/20028 (11) International Publication Number: A1 G06F 7/52 26 December 1991 (26.12.91) (43) Laternational Publication Date:

(21) International Application Number: PCT/SE91/00384

(22) International Filing Date: 31 May 1991 (31.05.91)

(30) Priority data:

9002124-7

15 June 1990 (15.06.90)

SE

(71)(72) Applicant and Inventor: MASTROVITO, Edoardo [IT/ ŚE]; Fårullsvägen 73, S-583 21 Linköping (SE).

(74) Agent: H W BARNIESKE PATENTBYRÅ AB; P.O. Box 25, S-151 21 Södertälje (SE).

(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FI, FR (European patent), GB (European patent), GR (European patent), IT (European patent), LU (European patent), NL (European patent), NO, SE (European patent) tent), US.

Published

With international search report

(54) Title: UNIVERSAL GALOIS FIELD MULTIPLIER

(57) Abstract

The present invention provides a novel apparatus for computing products in Galois fields $GF(p^m)$ with emphasis on the case p = 2. The elements of the field are represented in polynomial basis and no basis conversion is required. The apparatus consists of two distinct subunits. The first subunit simultaneously produces the first m a-multiples of one of the two elements to be multiplied. The second subunit simultaneously produces the m inner products of the second element and the m vectors consisting of suitable components of the above mentioned α-multiples. Both subunits are capable of operating over any Galois field GF(pm) where m is an integer in the range [2, M]. Consequently, the apparatus is programmable for operation over any of the above mentioned Galois fields.

3NSDQCID: <WQ 9120028A1 | >

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑT	Austria	ES	Spain	MG	Madagascar
ΑÜ	Australia	FI	Finland	ML	Mali
BB	Barbacios	FR	France	MN	Mongolia
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Faso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GN	Guinea	NL	Netherlands
BJ	Benin	GR	Greece	NO	Norway
BR	Brazil	HU	Hungary	PL	Poland
. CA	Canada	łT	Italy	RO	Romania
CF.	Central African Republic	JP .	Japan	SD	Sudan
ÇG	Congo	KP	Democratic People's Republic	SE	Sweden
CH	Switzerland		of Korea	SN	Senegal
CI	Côte d'Ivoire	KR	Republic of Korea	SU	Soviet Union
CM	Cameroon	LI	Liechtenstein	TD	Chad
CS	Czechoslovakia	LK	Sri Lanka •	TG	Togo
DE	Germany '	ĹÜ	Luxembourg	us	United States of America
D.V	Ó				

WO 91/20028 PCT/SE91/00384

Universal galois field multiplier

The invention is concerned with the multiplication of two arbitrary elements belonging to a Galois field, especially an apparatus for performing such multiplication.

Galois fields are finite fields consisting of p^m elements, where p is a prime number and m a positive integer. The field $GF(2^m)$ is of particular importance in practice because its elements can be represented by binary polynomials of degree at most m-1 in a particular primitive element. This primitive element is a root of the irreducible primitive polynomial of degree m that generates the Galois field.

- 10 Galois fields are of fundamental importance in the construction, encoding and decoding of several classes of powerful error-control codes (here abbreviated ECC) like Bose-Chaudury-Hocqenhem codes (called BCH codes), Reed-Solomon codes (called RS codes) and Goppa codes. The reader is referred to F.J. MacWilliams, N.J.A. Sloane "The Theory of Error-
- 15 Correcting Codes", Amsterdam: North-Holland 1977, for details on the theory of ECC and an introduction to the theory of finite fields. The book by R.E. Blahut, "Theory and practice of Error Control Codes", Cambridge, MA:Addison-Wesley, 1984, gives another treatment of the same theories with emphasis on the practical aspects.
- The main parameters of an ECC are the block length n, the number of information symbols k (also called the dimension) and the minimum (Hamming) distance d between two any codewords of the code. A code with minimum distance d is capable of correcting t errors and s erasures as long as 2t + s ≤ d-1. ECCs are very useful in practice for improving the
- 25 reliability of a noisy communication channel. However, different applications require different codes with different parameters n, k, d. These parameters are all directly or indirectly related to the number $(=2^m)$ of elements of the Galois field $GF(2^m)$. For example the maximum block length n of an RS code is $2^m + 1$. This means that, if we are constrained to 30 use one single Galois field we are also limited in our selection of ECC.

Building a dedicated hardware for every code of practical interest is obviously unreasonable. Sometimes dedicated hardware can though be motivated by standardization and/or by extreme speed requirements. In many other situations a flexible, programmable device capable of implementing different codes over different Galois fields would be the most appropriate choice. The most crucial and important single unit in a device capable of providing the aforementioned flexibility, is a fast universal Galois field multiplier (here abbreviated UGM) capable of operating over a

number of different Galois fields. Actually, multiplication is by far the most common operation occurring in the encoding/decoding procedures of, for example, BCH and RS codes. Successive multiplications can also be used to compute the inverse of a field element. Inversion is required in the decoding of, for example, BCH and RS codes.

A prior art UGM has resulted in a cellular-array multiplier which is too slow to be really practical. The poor performance of the prior art UGM is due to a worst signal path of about 6m levels of logic when the UGM is operated over $GF(2^m)$. Details on the prior art UGM are found in B.A. Laws,

10 C.K. Rushforth, "A Cellular-Array Multiplier for $GF(2^m)$ ", IEEE Trans. Comput., Vol. C-20, pp. 1573-1578, December 1971.

The principal object of the invention is to provide a novel apparatus for computing products of elements belonging to a Galois field $GF(p^m)$ with emphasis on the case p = 2. The new apparatus has fewer components and 15 higher speed than previous art apparatus.

It is a feature of this invention to be programmable for operation over any Galois field $GF(p^m)$ with $2 \le m \le M$ where M is an arbitrary positive integer greater than one.

The invention, as well as the embodiments thereof, is defined in the 20 appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

- FIG. 1 is a block diagram of apparatus according to a preferred organization.
- FIG. 2 is a more detailed block diagram of a sub-unit of apparatus used 25 to compute α -A over different fields of characteristic two.
 - FIG. 3 is yet a more detailed block diagram of a sub-unit of apparatus used to compute the inner product of two binary vectors.
 - FIG. 4 is an example of apparatus for the fields $GF(2^m)$, $2 \le m \le 4$.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

- The discussion of apparatus requires a review of some basic properties of a Galois field. A Galois field $GF(p^m)$ is an algebraic finite field consisting of p^m elements, where p is a prime and m a positive integer. Among the field elements are included the null element, 0, and the unit element, 1. Upon the elements in the field are defined the operations of addition, subtraction,
- 35 multiplication and division. Addition, subtraction and multiplication are

associative and commutative and multiplication is distributive with respect to addition and subtraction. Further, any of the four aforementioned operations results always in an element of the field.

The present invention is primarily concerned with, but not limited to fields of characteristic two (i.e. p=2) which are denoted by $GF(2^m)$. The smallest of these fields (m=1) consists actually only of a null element 0 and a unit element 1 and it is called the binary field GF(2). Addition and multiplication in GF(2) are performed modulo 2, i.e. 0+0=1+1=0, 0+1=1+0=1, $0\cdot 0=0\cdot 1=1\cdot 0=0$, $1\cdot 1=1$ and -1=1. Addition is thus the same as exclusive-or 10 (XOR) whereas multiplication is the same as logical AND.

In $GF(2^m)$, m > 1, each element can be represented by a polynomial of degree m-1 or less with binary coefficients. Each element is a residue modulo an irreducible polynomial of degree m over GF(2), and all arithmetic operations on the coefficients are performed modulo 2. 15 Alternatively, the field $GF(2^m)$ can be seen as a linear vector space over GF(2) of dimension m (in which case it should be denoted $GF(2)^m$).

For each integer m there exists only one finite field with 2^m elements (this is true in general for fields of any characteristic). In general, however, there exist several different representations of the elements of a 20 finite field. The particular representation is given by the particular irreducible polynomial chosen to generate the finite field.

Representing an element A as a polynomial $a_0 + a_1x + ... + a_{m-2}x^{m-2} + a_{m-1}x^{m-1}$ corresponds to choosing the set of field elements $\{1, \alpha, ..., \alpha^{m-2}, \alpha^{m-1}\}$ as a basis of $GF(2^m)$. Every element can thus be expressed as a linear 2-5 combination of the basis elements. In particular, the elements α^i , i=0, 1,...,m-1 are represented in this basis by the polynomials x^i , i=0,1,...,m-1 and the expression $a_0 + a_1x + ... + a_{m-2}x^{m-2} + a_{m-1}x^{m-1}$ is equivalent to $a_0 + a_1\alpha + ... + a_{m-2}\alpha^{m-2} + a_{m-1}\alpha^{m-1}$. The type of basis discussed above is naturally called the polynomial basis.

In the following we call P(x) the irreducible polynomial generating the field and which has the field element α as a root, i.e. $P(\alpha) = 0$. A(x) is the polynomial associated with the field element A, B(x) the polynomial associated with the field element B and C(x) the polynomial associated with the product of A and B. Then the product is given by the following 35 expression

$$C(x) = A(x) \cdot B(x) \mod P(x) =$$

$$= [b_0 A(x) + b_1 x A(x) + \dots + b_{m-1} x^{m-1} A(x)] \mod P(x) =$$

$$= [b_0 A(x) \bmod P(x)] + [b_1 x A(x) \bmod P(x)] + \dots + [b_{m-1} x^{m-1} A(x) \bmod P(x)]. \tag{1}$$

We define now the polynomials Z_i (x) as follows:

$$Z_{i,-}(x) = \sum_{j=0}^{m-1} z_{i,j} x^j = x^i A(x) \mod P(x) \quad i = 0, 1, \dots, m-1$$
 (2)

5 where $z_{i,j} \in GF(2)$. Then

$$C(x) = b_0 Z_{0,-}(x) + b_1 Z_{1,-}(x) + \dots + b_{m-1} Z_{m-1,-}(x).$$
(3)

And in matrix notation

$$C = \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{m-1} \end{pmatrix} = \begin{pmatrix} z_{0,0} & z_{1,0} & \dots & z_{m-1,0} \\ z_{0,1} & z_{1,1} & \dots & z_{m-1,1} \\ \vdots & \vdots & & \vdots \\ z_{0,m-1} & z_{1,m-1} & \dots & z_{m-1,m-1} \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_{m-1} \end{pmatrix} = Z \cdot B$$
(4)

where Z is the m by m binary matrix in equation (4). We see that the 10 product C can be obtained by computing the m inner products $Z_{.,j}B, j=0,1...,m-1$, where $Z_{.,j}$ denotes the j:th row of Z. First, though, the entries of Z have to be generated and this can be done as follows. We generate the m columns of Z simultaneously by cascading m-1 identical cells where each cell implements the operation $xA(x) \mod P(x)$ (the first column $Z_{0,-}$ is the 15 element A itself, see equation (2)). We call such a cell the α -cell and the cascaded structure the α -array.

The polynomial P(x) used to generate the field is of the form $x^m + x^{m-1}p_{m-1} + ... + xp_1 + 1$ (the first and last coefficient must necessarily be ones if P(x) is to be irreducible). Then the expression xA(x) mod P(x) can be written as 2.0 follows:

$$x \cdot A(x) = x^{m} a_{m-1} + x^{m-1} a_{m-2} + \dots + x^{2} a_{1} + x a_{0} =$$

$$= a_{m-1} (x^{m-1} p_{m-1} + \dots + x p_{1} + 1) + x^{m-1} a_{m-2} + \dots + x^{2} a_{1} + x a_{0} =$$

$$= a_{m-1} + \sum_{i=1}^{m-1} x^{i} (a_{m-1} p_{i} + a_{i-1}) \mod P(x). \tag{5}$$

In equation (5) we have utilized the fact that $\alpha^m = \alpha^{m-1} p_{m-1} + \ldots + \alpha p_1 + 1$ 25 (or equivalently $x^m = x^{m-1} p_{m-1} + \ldots + x p_1 + 1$). Equation (5) describes the

PCT/SE91/00384

function of the α -cell for fixed m: for each $p_i \neq 0$, i = 1, 2, ..., m-1, one sum $a_{m-1} + a_{i-1}$ has to be computed whereas the coefficient of x^0 is A's most significant coefficient a_{m-1} . We call a_{m-1} the feedback (FB) signal.

Having described the mathematical preliminaries, a preferred 5 embodiment of the novel UGM will now follow.

A. Hardware

Fig. 1 shows the general structure of the novel UGM. The notation is consistent with the previous section. Unit 1 is the α -array that generates the entries of the matrix Z as defined in equation (4). Unit 2 computes the m 10 inner products $c_j = Z_{.,j} B, j = 0,1..., m-1$ and is here called the IP network. The IP network consists in turn of m identical cells, where each cell, here called the IP-cell, computes one inner product. The UGM requires the input field elements to have zeros in the unused high-order positions, i.e. $a_i = b_i = 0, i > m-1$.

Fig. 2 shows a preferred implementation of the α -cell 11 for performing the operation xA(x) mod P(x) (or, equivalently, αA). The α -cell can be programmed to operate over any of the fields $GF(2^m)$, $2 \le m \le M$ by means of the binary vectors $P = (p_1, p_2, p_3, ..., p_{M-1})$ and $S = (s_1, s_2, s_3, ..., s_{M-1})$ shown in Fig. 2.

Suppose we want to program the UGM for operation over $GF(2^m)$ where m is a particular value in the usable range. Then the components of the vector S are set as follows:

$$s_i = \begin{cases} 1 & i = m-1 \\ 0 & i \neq m-1 \end{cases} \tag{6}$$

The vector S determines the feedback signal FB of Fig. 2. The first m-1 2.5 components of the vector P are the m-1 middle coefficients of the irreducible polynomial P(x) chosen to generate the field. The remaining coefficients p_m through p_{M-1} are, for example, set to zero.

We see in Fig. 2 that the α -cell has a regular bit-slice structure consisting of m-1 identical subcells (unit 111 in Fig. 2). In each subcell 30 there is one binary adder (XOR), one switch SW and one multiplexer MX. The switch SW in subcell #i is controlled by the signal s_i in the following way: SW is closed if $s_i = 1$, SW is open if $s_i = 0$. The multiplexer MX is controlled by the signal p_i in the following way: if $p_i = 1$ then MX passes the signal coming from the binary adder (= $a_{m-1} + a_{i-1}$), if $p_i = 0$ then MX passes 35 the other input (= a_{i-1}).

Fig. 3 shows a preferred implementation of the IP-cell 21 based on two-input gates. M AND gates and M-1 XOR gates are required. The multiplexer MX appended to the output of the IP-cell is required to zero the product coefficients c_i for i > m-1 since these are not used. In this case the 5 signal v_i is the i:th component of a vector $V = (v_0, v_1, ..., v_{M-1})$ that could be set as follows

$$v_i = \begin{cases} 0 & i \le m-1 \\ 1 & i > m-1 \end{cases} \tag{7}$$

The multiplexer MX would then zero the output if $v_i = 1$. If $v_i = 0$ the output of the XOR-tree is selected.

Fig. 4 shows the complete UGM for the case M=4 together with a table of values for the vectors S and V for $2 \le m \le 4$. Notice that $m \ge 2$ implies that the first two components s_0 and s_1 of S are always zero and need not be generated (the multiplexer could be skipped in those IP-cells). The field generator P(x) is not indicated but can be chosen as follows: $P(x) = x^4 + x + 1$ 15 for m = 4, $P(x) = x^3 + x + 1$ for m = 3 and $P(x) = x^2 + x + 1$ for m = 2.

The extension to a new value of M is straightforward.

Operating the UGM for m < M means that only a part of α -array is used. This fact can be easily illustrated by help of equation (4). First we define the vectors $C_{\rm L}$, $C_{\rm U}$, $B_{\rm L}$ and $B_{\rm U}$ as follows

20
$$C_{L} = (c_{0}, ..., c_{m-1})^{T}$$
 $C_{U} = (c_{m}, ..., c_{M-1})^{T}$ $B_{L} = (b_{0}, ..., b_{m-1})^{T}$ $B_{U} = (b_{m}, ..., b_{M-1})^{T}$

where the superscript T indicates transposition. Then we have

$$\begin{pmatrix} C_{L} \\ C_{U} \end{pmatrix} = \begin{pmatrix} z_{0,0} & \cdots & z_{m-1,0} \\ \vdots & \vdots & \vdots \\ z_{0,m-1} & \cdots & z_{m-1,m-1} \\ \vdots & \vdots & \vdots \\ z_{0,m} & \cdots & z_{m-1,m} \\ \vdots & \vdots & \vdots \\ z_{0,M-1} & \cdots & z_{m-1,M-1} \end{pmatrix} \begin{pmatrix} z_{m,0} & \cdots & z_{M-1,0} \\ \vdots & \vdots & \vdots \\ z_{m,m-1} & \cdots & z_{M-1,m-1} \\ \vdots & \vdots & \vdots \\ z_{m,M-1} & \cdots & z_{M-1,M-1} \end{pmatrix} \begin{pmatrix} b_{0} \\ \vdots \\ b_{m-1} \\ b_{m} \\ \vdots \\ b_{M-1} \end{pmatrix} = \begin{pmatrix} Z_{1} \\ Z_{2} \end{pmatrix} Z_{3} \begin{pmatrix} B_{L} \\ B_{U} \end{pmatrix} \tag{8}$$

where Z_1 , Z_2 and Z_3 are submatrices of Z defined according to the subdivision of Z indicated in equation (8). The product of interest for us is $Z_1 B_L$ and we want it to appear on the lines of C_L . To have this product

WO 91/20028 PCT/SE91/00384

correctly computed we must ensure that the product $Z_3 \cdot B_U$ is always zero. But this is the case since B_U is required to be zero. What remains to take care of is the product $Z_2 \cdot B_L$ since this is normally non-zero and it would appear on the lines of C_U (the unused lines that we wish to be zero). The zeroing of these lines is done through the multiplexer MX and the control signal v_i mentioned above and shown in Fig. 3.

B. Complexity.

The α-array consists of m-1 α-cells where each cell contains m-1 XOR gates, m-1 switches and m-1 multiplexers. Since switches and 10 multiplexers are much simpler than XOR gates we approximate the complexity of a switch-multiplexer pair by that of one XOR gate. Then the complexity of the α-array can be estimated to $2(m-1)^2$ gates. The IP-network consists of m IP-cells where each cell contains 2m-1 gates. Totally $2m^2-m$ gates for the IP-network. Finally we need 3m register to store the vectors P, 15 S and V needed to program the UGM (these registers are loaded from an external unit). The complexity N_{UGM} for the whole UGM can therefore be estimated by

$$N_{UGM} = 2(m-1)^2 + 2m^2 - m + 3m$$
.

Compared to a prior art UGM with complexity $\sim 7m^2 + 3m$ the present 20 UGM requires about 50% less components.

C. Performance

The performance of the UGM is directly related to the worst signal path (WSP) between any input and any output of the UGM. We will give an upper bound on the length L_{WSP} (in gates) of the WSP. In doing this we 25 approximate the delay of a switch-multiplexer pair by that of one XOR gate.

The WSP through the UGM must go through m-1 α -cells and one IP-cell. The length of the WSP through the IP-cell is fixed and it is easily found to be $1+\lceil \log_2 M \rceil$ gates.

The WSP through the α -array depends on the choice of P(x). It consists 30 however of three parts: switches, XOR gates and multiplexers. The number of XOR gates along the WSP can be much less than m-1 by smart choice of P(x). The following is a table over the number of XOR gates along the WSP through the α -array for some good P(x) and $m \le 16$:

		<u> </u>			
m	P(x)	# of XOR gates			
2	2,1,0	1			
3	3,1,0	1			
4	4,1,0	1			
5	5,2,0	2			
. 6	6,1,0	1			
7	7,1,0	1			
8	8,5,3,2,0	4			
9	9,4,0	2			
10	10,3,0	2			
- 11	11,2,0	2			
12	12,8,5,1,0	4			
13	13,7,6,1,0	4			
14	14,9,7,2,0	4			
15	15,1,0	1			
16	16,11,6,5,0	. 5			

In the table we indicate only the powers of x in P(x) whose coefficients are non-zero. We see that the number of XOR gates is at least one and at most $\frac{m}{2}$ for $m \le 8$. For m > 8 a better upper bound seems to be $\frac{m}{3}$. We use $\frac{m}{2}$ as an upper bound for all m.

The number of switches and multiplexers along the WSP is not easily determined exactly. We assume worst case and say therefore that the WSP goes through m-1 switches and m-1 multiplexers. According to the approximation above this corresponds to about m-1 XOR gates.

10 The total length L_{WSP} of the WSP can now be upper bounded by

$$L_{\text{WSP}} \le (m-1) + m/2 + 1 + \lceil \log_2 M \rceil = 1.5m + \lceil \log_2 M \rceil \text{ [Gates]}$$

which is considerably better than the $\sim 6m$ gates of a prior art UGM.

D. Comments

One skilled in the art will immediately recognize that several changes could be made in the above design without departing form the basic structure. For example, instead of storing the three vectors P, S and V in registers one could design some simple logic that generates both S and V from P (in this case also the highest coefficient p_m of P(x) must be entered into the UGM). The programming of the UGM would thus be simplified to one single operation instead of three. The UGM is also easily modified to perform the operation $A \cdot B + D$ by adding one input and one XOR gate to each IP-cell. Further, the design of the sub-cell 111 can alternatively be done by using an AND gate instead of the multiplexer MX. The AND gate

computes the product $a_{m-1}p_i$. This product enters then the XOR gate (instead of the feedback signal a_{m-1}) to produce the sum $a_{m-1}p_i + a_{i-1}$.

The same general structure of Fig. 1 can be utilized for UGMs operating over fields of characteristic other than two. Only the details get slightly 5 more complicated since all coefficient operations must be performed modulo the prime p, p > 2, that is the XOR gate becomes a mod p-adder and the AND gate a mod p-multiplier. Further, for prime p > 2 we have $-1 \neq 1$ mod p which means that signs must be considered. For example, suppose P(x) is a monic (i.e. with the highest coefficient $p_M = 1$) irreducible 10 polynomial of degree M over GF(p) that has α as a root, i.e. $P(\alpha) = 0$. Then

$$\alpha^{M} = -\alpha^{M-1} p_{M-1} - \dots - \alpha p_1 - p_0 = \alpha^{M-1} p_{M-1}' + \dots + \alpha p_1' + p_0'$$
(9)

where p_i is the additive inverse of p_i in GF(p). Now equation (5) becomes

$$\begin{split} x \cdot A(x) &= x^M a_{M-1} + x^{M-1} a_{M-2} + \dots + x^2 a_1 + x a_0 = \\ &= a_{M-1} (-x^{M-1} p_{M-1} - \dots - x p_1 - p_0) + x^{M-1} a_{M-2} + \dots + x^2 a_1 + x a_0 = \end{split}$$

$$= p_0' a_{M-1} + \sum_{i=1}^{M-1} x^i (p_i' a_{M-1} + a_{i-1}) \mod P(x).$$
 (10)

The design of the α -cell follows directly from equation (10). The α -cell consists of M-1 identical sub-cells where each sub-cell performs the operation $p_i'a_{M-1} + a_{i-1}$ plus one cell for computing $p_0'a_{M-1}$, where juxtaposition means modulo p-multiplication and "+" modulo p-addition. 20 Since P is known in advance the additive inverses p_i , i = 0, 1, 2, ..., m-1 can be precomputed and input to the multiplier instead of the original coefficients p_i . The α -cell is made programmable for operation over different fields $GF(p^m)$, $2 \le m \le M$ just the same way as for p = 2 by means of switches and the control vector S. The new α -array is obtained simply by 25 cascading M-1 α -cells just as before. The α -array is connected to the IP network as before to compute the necessary inner products. The IP cell is modified to compute the inner product of two p-ary vectors of length M. The control vector V is used as for p = 2. The vectors S and V can either be stored in registers which are loaded from outside or they can be derived from the 30 coefficients of P (in fact only the position of the highest coefficient p_m is relevant to this purpose) by some simple logic. We notice finally that the binary representation of each coefficient will require $\lceil \log_2 p \rceil$ bits. For example the three elements of GF(3) require two bits.

Accordingly, it is intended that all matter contained in the above descriptions and the following drawings shall be interpreted as illustrative and not in a limiting sense.

BNSDOCID: <WO____9120028A1_I_>

15

20

25

CLAIMS

- 5 1. A multiplier for performing multiplication of two elements in the finite field $GF(p^m)$ with p^m elements, and obtaining a product vector of m p-ary components, where m is an integer equal to or greater than 2 or equal to or less than M, where M is an integer equal to or greater than 2, each of said p^m elements of $GF(p^m)$ represented by a vector of m p-ary coefficients 10 according to a polynomial basis representation, c haracterized by
 - a) first logic means (1) including a cascade of at least one α -cell (11) for developing for the first of said two elements the first m α -multiples, each α -multiple being the product of α^i and said element for i=0,1,2,...,m-1, where α is an element of the field $\mathrm{GF}(p^m)$ satisfying the equation P(x)=0 for $x=\alpha$, where P(x) is a polynomial of degree m which is irreducible over the field $\mathrm{GF}(p)$; and
 - b) second logic means (2) including at least two IP cells (21), where each IP cell will simultaneously develop the inner product of the second element and every p-ary vector whose components are the j:th components of all said α -multiples for j=0,1,2,...,m-1, each of said m inner products being one component of said product vector.
 - 2. The multiplier recited in claim 1 w h e r e i n:
 - a) said first logic means (1) comprise means for changing of said irreducible polynomial, whereby said first logic means are programmable for operation over any of said finite fields $GF(p^m)$, $2 \le m \le M$, including all possible representations of said finite fields; and
 - b) means for selectively connecting the output of said second logic means (2) to a logical zero.
- 3. The multiplier recited in claim 1 or 2 w h e r e i n each of the p^m 30 elements of $GF(p^m)$ is represented by a vector of m p-ary components according to a polynomial basis representation of the form $A = a_0 + a_1\alpha + ... + a_{m-2}\alpha^{m-2} + a_{m-1}\alpha^{m-1}$, where A is an element of $GF(p^m)$, a_0 , a_1 , ..., a_{m-2} , a_{m-1} are the p-ary components of A, and α is an element of $GF(p^m)$

satisfying the equation P(x) = 0 for $x = \alpha$, where P(x) is a polynomial of degree m which is irreducible over the field GF(p).

- 4. The multiplier recited in claim 2 or 3 where in:
 - a) the unused inputs of said first logic means (1) are set to logical zero; and
 - b) the unused inputs and outputs of said second logic means (2) are set to logical zero.
- 5. The multiplier recited in claim 1, 2, 3 or 4 w h e r e i n p = 2.

FIG. 1

FIG. 3

INTERNATIONAL SEARCH REPORT

			•		Application I		/SE 91/0	10384
I. CLAS	SIFICATIO	N OF SUBJECT MATTER	(il several class	ification symbols	apply, indica	te all) ⁶	•	
E .	ng to Interna G 06 F	tional Patent Classification 7/52	(IPC) or to both	National Classifi	cation and IP	3	•	
II. FIELD	S SEARCH	ED			<u> </u>			
		M	linimum Docum	entation Searche	d ⁷			
Classifica	tion System			Classification Sy	mbots			
				-			• • • •	•
•						•		
IPC5		G 06 F	•				· 	
:				er than Minimum its are Included in				
SE,DK,	FI,NO c	lasses as above	•				. •	
III. DOCL	MENTS CO	NSIDERED TO BE RELEVA	ANT 9				-	
Category *	Citati	on of Document, ¹¹ with indi	cation, where a	propriate, of the	relevant pass	ages ¹²	Relevant to	Claim No. ¹³
A	US, A,	3805037 (J. T. e the whole docu	ELLISON)			*	1-5	
A .		4251875 (J.M. M	ARVER ET	AL)	-		1-5	
		February 1981, e the whole docu	ment 					
A		4697248 (N. SHI e the whole docu		September	1987,		1-5	
				-				
•								
						·		
"A" doct con: "E" earl	ument defini sidered to be	s of cited documents: ¹⁰ ng the general state of the a of particular relevance at but published on or after t	40	invention				al filing date plication but lerlying the
"L" docu	ument which	may throw doubts on priorit establish the publication da special reason (as specified	ly claim(s) or ate of another d)		n inventive si	ep		invention tep when the
othe	er means	ing to an oral disclosure, us		documents, so ments, so in the art	t is combined uch combinet L	on being o	or more other obvious to a p	such docu-
late V. CERTII		hed prior to the internationa fority date claimed		"&" documen	t member of t	ne same p	atent lamily	
Date of the		pletion of the International S	earch	Date of Mailing	of this Intern -09- 17	ational Se	arch Report	
Internationa	I Searching	Authority		Signature of Au	thorized Offic	er		
	SWEDI	SH_PATENT_OFFICE		ANDERS H	OLMBERG	~i~		フ・・・

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.PCT/SE 91/00384

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the Swedish Patent Office EDP file on 91-07-31. The Swedish Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

	Patent document cited in search report	Publication date	Patent memb		Publication date
US-A-	3805037	74-04-16	DE-A-	2306323	73-08-30
US-A-	4251875	81-02-17	CA-A-	1120595	82-03-23
US-A-	4697248	87-09-29	EP-A-B- JP-A-	0152702 60144834	85-08-28 85-07-31

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the item	is checked:
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	<u>.</u>
☐ GRAY SCALE DOCUMENTS	4
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QU	ALITY ·
Потиев.	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)