	Note that the eigen vectors are
	found as spans. Indeed, for each
	eigen value à une get a subspace of dom(T)
	called the Teigenspace Ex. We find a
	basis for E_{λ_0} , so $E_{\lambda_0} = span\{\vec{x}_1, \vec{\chi}_2, \vec{\chi}_{\mu}\}$
\rightarrow	We define the I geometric multiplicity of 20
	as the dimension (number of busis vectors) k
	of Elo.
7	There is also the Lalgebraic multiplicity of do
	which is the power pon the factor (20-2)
	in the characteristic polynomial det (A-) I).
	We can prove that for similar.
	matrices A and B, B = P'AP,
	the eigenvalues are the same for both.
	T-78 1 F-78
	That's the for [T] and [T]e, two
	matrices for the same lin. trans. T: V -> V using two different bases, B and C.
	Using + wo different bases, is and C.
<i>→</i>	Till Diagnoli Zuldo I if Iloua il a basis 12
	T is (diagonalizable) if there is a basis B such that [T] is a diagonal matrix (any entry not on the main diagonal is zero).
	(any entry not on the main dia aonal ic sovo)
	The Man of the Man is the
-)	Note that for a diagonal matrix the eigenvalues are
	Note that for a diagonal matrix, the eigenvalues are the diagonal entries.

Theorem: For T: V -V with eigen values 2, 2, ..., 2; if the algebraic multiplicity of each λ_i is equal to the corresponding geometric multiplicity of that λ_i then T is diagonalizable, that is,
there is a basis B such that [T] is diagonal. Moreover, the diagonal entries of [T] B are the eigenvalues of T, with deplicates according to their algebraic multiplicities. The basis B is the set of eigenvectors found by listing all the bases of the eigenspaces Ex: together. ex) T(f(x)) = 2xf(x) + 3xf'(x) $\lambda = 0$, alg.mult. = 1 = geom. mult. $\lambda_2 = 2$, alg. mult. = 1 = geom, mult. $\lambda_3 = 4$, alg. mult = 1 = geom. mult. diagonalizable! $B = \{1, x, 3x + x^2\}, [T]_B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$

```
Note: if 1=0 is an eigenvalue of T
     then N(T) $ 0, and Tis not 1-1;
     not onto, and de+([T]_{n}^{B})=0
ex) T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2
   given by T(x) = \begin{pmatrix} 3x + y \\ 3y \end{pmatrix}
 diagonalizable?
A = [T]_{\varepsilon}^{\varepsilon} = \begin{bmatrix} 3(1) + 0 & 3(0) + 1 \\ 3(0) & 3(1) \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}
\det (A - \lambda I) = \det \left( \begin{bmatrix} 3 - \lambda & 1 \\ 0 & 3 - \lambda \end{bmatrix} \right) = 0
                      = (3-\lambda)(3-\lambda) = 0
= (3-\lambda)^{2} = 0
\lambda = 3
(power \rho = 2
Find eigenspace for \lambda = 3: Solve (A - \lambda I)\vec{x} = \vec{0}.
                3-3 1 0 ~ 0 1 0
\exists \begin{cases} x, = x, \text{ free} \\ \chi_2 = 0 \end{cases} \vec{\chi} = \chi_1(1)
 That is E3 = Span { (o) } basis
So alg. mult. of \lambda = 3 is 2
       geom mult. of \lambda = 3 is
=> Not diagonalizable.
```