FRANK ALVAREZ

MECHANICAL ENGINEERING AT THE UNIVERSITY OF SOUTH FLORIDA

Frank.Alvarez.1121@gmail.com

www.linkedin.com/in/frankalvarez mechanicalengineer

(941)404-9919

DEPLOYABLE FIN MECHANISM

What?

 Design and fabricate a onedegree-of freedom mechanism that deploys fins through a servo motor that is controlled via a switch and an Arduino board

How?

- Used SolidWorks to design this
- Constructed through 3D
 Printing tolerance parts and off the shelf threaded rod, servo and screws.

Results

 Using the change point for the mechanism as the locked position, the maximum output angle of the fins were 66.81 degrees.

CONTRA-ROTATING PROPELLER AND GEARBOX

What?

- Design of contra-rotating propeller and gearbox system for RC plane.
- Analyze the effect of material selection with respect to the life cycle of the motor through
 Sodaberg and Goodman failure anaylsis

How?

- Designed on SolidWorks
- Selection of parts were done through McMaster-Carr to assure that this product could be constructed if budget permitted.

Results

- A safety factor of 2 was successfully achieved for each part of the system.
- Implemented **DFMA** principles to reduce overall part production cost

FRANK ALVAREZ

MECHANICAL ENGINEERING AT THE UNIVERSITY OF SOUTH FLORIDA

Frank.Alvarez.1121@gmail.com

www.linkedin.com/in/frankalvarez mechanicalengineer

(941)404-9919

NASA STUDENT LAUNCH FLIGHT VEHICLE

What?

 Design, manufacture, and assemble a reusable solid motor rocket that can transport the payload system to its mission target.

How?

- Rocket Stability software was used to verify and improve design
- **Solidworks** modeling to fit payload and avionics system.
- CNC machining and resin curing to assemble competition rocket

Results

 Flight ready vehicle to be used in the NASA competition with proper space for the recovery system and payload system.

MATLAB SCRIPT FOR ROCKET RECOVERY SYSTEMS

What?

- Adjustments to rocket weight and desired altitude can change recovery dynamics.
- Develop a rapid way of testing main and drogue parachute sizes without doing hand calculations.

How?

 The equations that relate a parachute's coefficient of drag, diameter, and velocity were coded using MATLAB to find the flight vehicle's velocity, kinetic energy, and descent time.

Results

 The calculated descent time was on average 2-3% lower than actual time due to the variation in wind speeds.

FRANK ALVAREZ

MECHANICAL ENGINEERING AT THE UNIVERSITY OF SOUTH FLORIDA

Frank.Alvarez.1121@gmail.com

www.linkedin.com/in/frankalvarez mechanicalengineer

(941)404-9919

AVIONICS SLED DESIGN

What?

 Design a sled to mount sensitive avionics equipment to withstand the flight time of the rocket.

How?

- Used Solidworks to design the sled and model avionics electronics
- 3D Printing of the avionics bay provided a cost effective solution to the manufacturing of the sled.

Results

 Vibration testing and flight testing verified the effectiveness of the sled design.

DESIGN, BUILD, FLY

What?

 Create a RC electronic plane from the ground up to fit the given mission requirements

How?

- XFLR5 software was used to give estimate of stability of plane design and flight characteristics.
- Used solidworks to create sub-assemblies, attachment points and FEA analysis.

Results

 Current design is being manufactured through CNC milling of foam, plasma cutting of metal brackets, and a carbon fiber-resin skin will be laid on external stress points to minimize wing flutter.