Tutorial 1

Question1

Let V be a real vector space and **0** be the additive identity of V. Show that for any $\mathbf{x} \in V$,

- (a) 0x = 0
- (b) (-1)x = -x

Question 2

- (a) Show the $W_1 = \{ \begin{bmatrix} a_{11} & 0 \\ 0 & a_{22} \end{bmatrix} \mid a_{11}, a_{22} \in \mathbf{R} \}$ is a subspace of $M_{2 \times 2}(\mathbf{R})$.
- (b) Show that $W_2 = \{ \begin{bmatrix} 0 & a_{12} \\ 0 & 0 \end{bmatrix} \mid a_{12} \in \mathbf{R} \}$ is a subspace of $M_{2\times 2}(\mathbf{R})$.
- (c) Show that $W_1 \cap W_2 = \{0\}$ where **0** is the additive identity of $M_{2\times 2}(\mathbf{R})$.
- (d) Show that $W_1 \bigoplus W_2 = \text{Span} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \right)$
- * Notation: If $W_1 \cap W_2 = \{0\}$, denote $W_1 + W_2$ by $W_1 \bigoplus W_2$.

Question 3

Let V be a real vector space and W_1 and W_2 be subspaces of V. Show that every vector of $W_1 \bigoplus W_2$ is expressed uniquely. That is, if $\mathbf{x}_1 + \mathbf{y}_1 = \mathbf{x}_2 + \mathbf{y}_2$, $\mathbf{x}_1 = \mathbf{x}_2$ and $\mathbf{y}_1 = \mathbf{y}_2$, where $\mathbf{x}_1, \mathbf{x}_2 \in W_1$ and $\mathbf{y}_1, \mathbf{y}_2 \in W_2$.