Decision Tree Visualization

Exp No: 4A	Support Vector Machines (SVM)
------------	-------------------------------

Aim:

To build an SVM model for a binary classification task, tune its hyperparameters, and evaluate it using accuracy, precision, recall, F1-score, confusion matrix, and ROC-AUC.

Algorithm:

- 1. Import libraries: numpy, pandas, matplotlib, sklearn.
- Load data: Use a standard binary dataset (Breast Cancer Wisconsin) from sklearn.datasets.
- 3. Train/Test split: 80/20 split with a fixed random_state.
- Preprocess: Standardize features (StandardScaler).
- 5. SVMs are sensitive to feature scale.
- 6. Model selection: Use SVC (RBF kernel).
- 7. Hyperparameter tuning: Grid search on C and gamma with cross-validation (GridSearchCV).
- 8. Train final model: Fit on training data using best parameters.

- 9. Evaluate: Predict on test set; compute metrics and plot ROC curve.
- 10. Report: Best params, metrics, and brief observations.

```
CODE:
# EXPERIMENT 4A — SVM (RBF)
# 1) Imports
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import (
  accuracy_score, precision_score, recall_score, f1_score,
  confusion_matrix, classification_report, roc_auc_score, roc_curve
# 2) Load dataset (binary classification)
data = load_breast_cancer()
X = pd.DataFrame(data.data, columns=data.feature_names)
y = pd.Series(data.target, name="target") # 0 = malignant, 1 = benign
# 3) Train/test split
X_train, X_test, y_train, y_test = train_test_split(
  X, y, test_size=0.20, random_state=42, stratify=y
```

```
# 4) Standardize features (important for SVMs)
scaler = StandardScaler()
X_train_sc = scaler.fit_transform(X_train)
X_{test_sc} = scaler.transform(X_{test})
# 5) Define model
svm = SVC(kernel='rbf', probability=True, random_state=42)
# 6) Hyperparameter grid & tuning
param_grid = {
  "C": [0.1, 1, 10, 100],
  "gamma": ["scale", 0.01, 0.001, 0.0001]
grid = GridSearchCV(
  estimator=svm,
  param_grid=param_grid,
  scoring='f1', # You can change to 'accuracy' or 'roc_auc'
  cv=5,
  n_{jobs}=-1,
  verbose=0
grid.fit(X_train_sc, y_train)
print("Best Parameters from Grid Search:", grid.best_params_)
best_svm = grid.best_estimator_
#7) Train final model & predict
best_svm.fit(X_train_sc, y_train)
```

```
y_pred = best_svm.predict(X_test_sc)
y_prob = best_svm.predict_proba(X_test_sc)[:, 1]
# 8) Evaluation
acc = accuracy_score(y_test, y_pred)
prec = precision_score(y_test, y_pred, zero_division=0)
rec = recall_score(y_test, y_pred)
f1 = f1\_score(y\_test, y\_pred)
auc = roc_auc_score(y_test, y_prob)
cm = confusion_matrix(y_test, y_pred)
print("\n=== SVM (RBF) — Test Metrics ===")
print(f"Accuracy : {acc:.4f}")
print(f"Precision: {prec:.4f}")
print(f"Recall : {rec:.4f}")
print(f"F1-Score : {f1:.4f}")
print(f"ROC-AUC: {auc:.4f}")
print("\nConfusion Matrix:\n", cm)
print("\nClassification Report:\n", classification_report(y_test, y_pred, zero_division=0))
#9) Plot ROC Curve
fpr, tpr, thresholds = roc_curve(y_test, y_prob)
plt.figure()
plt.plot(fpr, tpr, label=f"SVM (AUC = {auc:.3f})")
plt.plot([0, 1], [0, 1], linestyle="--", color='gray')
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC Curve — SVM (RBF)")
plt.legend()
plt.grid(True)
```

plt.show()

OUTPUT:

```
Best Parameters from Grid Search: {'C': 10, 'gamma': 0.01}
=== SVM (RBF) - Test Metrics ===
Accuracy: 0.9825
Precision: 0.9861
Recall : 0.9861
F1-Score : 0.9861
ROC-AUC : 0.9977
Confusion Matrix:
[[41 1]
[ 1 71]]
Classification Report:
              precision
                         recall f1-score support
                           0.98
                  0.98
                                     0.98
                                                42
                  0.99
                           0.99
                                     0.99
          1
                                                72
                                     0.98
                                               114
   accuracy
                  0.98
                           0.98
                                     0.98
                                               114
  macro avg
weighted avg
                  0.98
                           0.98
                                     0.98
                                               114
```


Exp No: 4B	Ensemble Methods: Random Forest
------------	---------------------------------

Aim:

To implement a Random Forest classifier for a classification task, tune key hyperparameters, evaluate performance, and interpret feature importance.

Algorithm:

- 1. Import libraries.
- 2. Load data (use same dataset to compare with SVM).
- 3. Train/Test split with stratification.
- 4. (Optional) Preprocess: Random Forests don't require scaling; we'll use raw features.

- Model: RandomForestClassifier.
- Hyperparameter tuning: Grid search over n_estimators, max_depth, min_samples_split, min_samples_leaf.
- 7. Train the best model on training data.
- 8. Evaluate with accuracy, precision, recall, F1, confusion matrix, ROC-AUC.
- 9. Interpretation: Plot top feature importances.

```
CODE:
# EXPERIMENT 4B — Random Forest Classifier
# 1) Imports
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import (
  accuracy_score, precision_score, recall_score, f1_score,
  confusion matrix, classification report, roc auc score, roc curve
# 2) Load dataset (same as 4A for comparison)
data = load_breast_cancer()
X = pd.DataFrame(data.data, columns=data.feature_names)
y = pd.Series(data.target, name="target")
# 3) Train/test split (no scaling needed for RF)
X_train, X_test, y_train, y_test = train_test_split(
  X, y, test_size=0.20, random_state=42, stratify=y
```

```
#4) Define model
rf = RandomForestClassifier(random_state=42, n_jobs=-1)
# 5) Hyperparameter grid & tuning
param_grid = {
  "n_estimators": [100],
  "max_depth": [None, 10],
  "min_samples_split": [2],
  "min_samples_leaf": [1]
grid = GridSearchCV(
  estimator=rf,
  param_grid=param_grid,
  scoring="f1",
  cv=3,
  n_{jobs}=-1,
  verbose=0)
grid.fit(X_train, y_train)
print("Best Parameters (CV):", grid.best_params_)
best_rf = grid.best_estimator_
# 6) Train final model & predict
best_rf.fit(X_train, y_train)
y_pred = best_rf.predict(X_test)
y_prob = best_rf.predict_proba(X_test)[:, 1]
#7) Evaluate
acc = accuracy_score(y_test, y_pred)
prec = precision_score(y_test, y_pred, zero_division=0)
```

```
rec = recall_score(y_test, y_pred)
f1 = f1\_score(y\_test, y\_pred)
auc = roc_auc_score(y_test, y_prob)
cm = confusion_matrix(y_test, y_pred)
print("\n=== Random Forest — Test Metrics ===")
print(f"Accuracy : {acc:.4f}")
print(f"Precision: {prec:.4f}")
print(f"Recall : {rec:.4f}")
print(f"F1-Score : {f1:.4f}")
print(f"ROC-AUC : {auc:.4f}")
print("\nConfusion Matrix:\n", cm)
print("\nClassification Report:\n", classification_report(y_test, y_pred, zero_division=0))
# 8) Feature Importance (Top 10)
importances = pd.Series(best_rf.feature_importances_, index=X.columns)
top10 = importances.sort_values(ascending=False).head(10)
plt.figure()
top10[::-1].plot(kind="barh")
plt.xlabel("Importance")
plt.title("Top 10 Feature Importances — Random Forest")
plt.grid(axis="x", alpha=0.3)
plt.show()
# 9) ROC Curve
fpr, tpr, thresholds = roc_curve(y_test, y_prob)
plt.figure()
plt.plot(fpr, tpr, label=f"Random Forest (AUC = {auc:.3f})")
plt.plot([0, 1], [0, 1], linestyle="--", color='gray')
```

```
plt.xlabel("False Positive Rate")

plt.ylabel("True Positive Rate")

plt.title("ROC Curve — Random Forest")

plt.legend()

plt.grid(True)

plt.show()
```

OUTPUT:

Best Parameters (CV): {'max_depth': None, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 100}

