

Departamento de Física

T9- ÓTICA GEOMÉTRICA. REFLEXÃO E REFRAÇÃO. LEI DE SNELL. ANGULO CRITICO

(adaptado do guião do trabalho T9 da UC Laboratórios Integrados de Física (2019/2020) MIEBIOL)

1. Introdução

Índice de refração

Uma perturbação do campo eletromagnético pode propagar-se no espaço criando uma onda. Para uma certa gama de frequências (ou comprimentos de onda) chamamos luz a essa radiação que inclui o infravermelho, o visível e o ultravioleta. Neste trabalho vamos usar os nossos olhos como detetores e por isso vamos restringirmo-nos à luz visível.

Fig 1 – espectro eletromagnético mostrando em detalhe a gama visível. Note-se que o nosso olho é mais sensível na zona central da gama visível.

O comprimento de onda da luz visível é pequeno à escala humana, varia aproximadamente entre $0.4~\mu m$ (violeta) e $0.7~\mu m$ (vermelho).

A velocidade com que a luz se propaga depende do meio em que se propague. A velocidade máxima verifica-se no vácuo e tem o valor:

$$c = 299 792 458 \text{ m/s}$$
 (1)

Em qualquer outro meio a velocidade da luz terá um valor inferior, v. Esse meio é caracterizado pelo *índice de refração n*:

$$n = c / v \tag{2}$$

O índice de refração do vidro mais comum é pouco superior a 1.5 o que significa que a luz se propaga nesse vidro cerca de vez e meia mais lentamente do que no vácuo. O índice de refração do ar é, aproximadamente 1, $n_{ar} = 1.0003$.

Lei da Reflexão e Lei de Snell

Uma das consequências da mudança de velocidade da luz ao atingir/atravessar uma interface entre dois meios (dioptro) é que o feixe de luz poderá dividir-se em dois: um refletido que volta para o mesmo meio e outro, refratado, que continua pelo segundo meio. Em geral, ambos os feixes refratado e refletido propagam-se em direções diferentes da do feixe original.

Fig 2 - Divisão de um raio de luz incidente na interface entre dois meios de índice de refração diferentes. À esquerda uma representação bidimensional e à direita uma representação tridimensional.

A figura 2 mostra dois meios, o meio de cima de índice de refração n₁ e o meio de baixo de índice de refração n₂. A vermelho está desenhada a trajetória do feixe de luz incidente na interface, a azul o feixe refletido para o meio de origem e a verde o feixe refratado que se propaga no meio de baixo. As direções destes três feixes estão contidas no plano de incidência que também contém a normal à superfície. Por convenção os ângulos são medidos em relação à normal e não em relação à interface.

A lei da reflexão relaciona o ângulo do feixe refletido com o ângulo do feixe incidente:

$$\theta_{\rm r} = \theta_{\rm i} \tag{3}$$

A lei de Snell relaciona o ângulo do feixe refratado (transmitido) com o ângulo do feixe incidente:

$$n_1 \sin \theta_i = n_2 \sin \theta_t \tag{4}$$

Ângulo crítico e reflexão total

A lei de Snell, equação 4, envolve senos que não podem assumir valores maiores do que 1. Isso significa que, se o índice de refração do meio incidente for maior do que o índice de refração do segundo meio, a lei de Snell só tem solução se $\theta_i < \theta_c$, ou seja, se o ângulo de incidência é menor que o chamado ângulo crítico θ_c :

$$\theta_{\rm c}=\sin^{-1}(n_2/n_1)$$

Fig 3 - Representação do fenómeno da reflexão total. Na figura da esquerda, a luz propaga-se de um índice de refração menor para um maior e há sempre raios refletidos e refratados. Na figura da direita o índice de refração do meio 1 é maior que o do segundo meio e o raio refratado afasta-se da normal mas só há raios refratados se o ângulo de incidência for inferior ao ângulo crítico.

II. PARTE EXPERIMENTAL

I - Luz propaga-se de um meio de menor índice de refração para um de maior índice de refração

1. Familiarize-se com o kit de ótica. Evite tocar com as mãos ou qualquer outro objeto nas superfícies óticas dos diversos componentes, isto é, as superfícies que vão interagir com a luz (superfícies polidas de lentes, espelhos, alvos, etc.).

2. Monte o sistema da fig. 4:

Fig. 4 Reflexão e refração.

- **3.** Antes de colocar o meio cilindro de acrílico na mesa rotativa, ajuste o feixe de luz até (i) ele passar pelo centro da mesa rotativa e (ii) ser suficientemente estreito para permitir a melhor leitura dos ângulos.
- **4.** Coloque o meio cilindro de acrílico como mostrado, alinhando a superfície plana com a linha que diz componente (perpendicular à normal a partir de onde estão graduados os ângulos) e centrando o meio cilindro com a normal.

Sugestão: alinhe o feixe de luz com a reta normal antes de colocar o semicilindro. O ângulo medido nos dois lados da mesa deve ser 0°. Em seguida, sem rodar a mesa, coloque o meio cilindro. Quando ele estiver perfeitamente alinhado com o traço "componente" e centrado, o feixe de luz deve continuar a medir 0° em ambos os lados da mesa.

5. Construa uma tabela com os ângulos dos raios de reflexão e de transmissão em função do ângulo de incidência, variando este de 10° em 10°, de 0° até 80°.

II - Luz propaga-se de um meio de maior índice de refração para um de menor índice de refração

- **1.** Mantendo a montagem anterior, continue a rodar a mesa para que o feixe incidente incida na face esférica do meio cilindro.
- 2. Construa uma tabela com os ângulos dos raios de reflexão e de transmissão em função do ângulo de incidência, variando este de 10° em 10°, de 0° até 80°. Esta nova tabela distingue-se da anterior na medida em que os feixes incidem e são refletidos na face curva e o feixe refratado sai pela face plana do meio cilindro.
- **3.** Há um ângulo de incidência a partir do qual deixa de haver luz refratada. Determine esse ângulo com a melhor precisão que conseguir, verificando se é igual para todas os comprimentos de onda (cor) da luz incidente (pode depois usar também os filtros vermelho, verde e azul disponíveis).

TRABALHO T7 – ÍNDICE DE REFRAÇÃO, REFLEXÃO E REFRAÇÃO. LEI DE SNELL

FOLHA DE RESULTADOS

Grupo:.	;	data://
Alunos:		no
		no
		no

I Registo dos dados experimentais

1. Preencha a tabela seguinte de acordo com o ponto 5 da parte I do procedimento experimental

Tabela 1 – Luz incidente na face plana vinda do ar

$\theta_{\rm i}$	0.0°	10.0°	20.0°	30.0°	40.0°	50.0°	60.0°	70.0°	80.0°
θ_{r}									
θ_{t}									

2. Preencha a tabela seguinte de acordo com o ponto 2 da parte II do procedimento experimental

Tabela 2 – Luz incidente na face plana vinda de dentro do meio cilindro.

θ_{i}	0.0°	10.0°	20.0°	30.0°	40.0°	50.0°	60.0°	70.0°	80.0°
$\theta_{\rm r}$									
θ_{t}									

3. Preencha a tabela seguinte de acordo com o ponto 3 da parte II do procedimento experimental

Tabela 3 – Ângulo crítico para a interface acrílico – ar em função de λ .

	Luz azul	Valor intermédio	Luz vermelha
θ_{c}			

II Análise dos dados experimentais

1. Um cilindro de acrílico é cortado ao meio criando a forma representada na figura 5

Fig 5 - Luz a incidir num meio cilindro de acrílico.

- 1.1. Faz-se incidir um raio de luz em direção ao centro do cilindro. Porque é que esse raio <u>nunca</u> é desviado na superfície curva?
- 1.2. Vai haver reflexão e refração em todas as quatro situações representadas? Tens evidência experimental a apoiar a resposta? Qual?

2. Com os dados da <u>tabela 1</u> e da <u>tabela 2</u> verifica a lei da reflexão. Discute a incerteza nos resultados e o modo como eles afetam a validação da lei da reflexão.

3. Com os dados da <u>tabela 1</u> verifica a lei de Snell e calcula o valor do índice de refração do acrílico. Para tal, preenche a tabela seguinte e traça o gráfico sin (θ_t) em função de sin (θ_i) e faz uma regressão linear.

Tabela 4 - Luz incidente na face plana vinda do ar

$\theta_{\rm i}$	0.0°	10.0°	20.0°	30.0°	40.0°	50.0°	60.0°	70.0°	80.0°
$\sin (\theta_i)$									
$\sin (\theta_t)$									

Gráfico 1 – sin (θ_t) em função de sin (θ_i) para luz a incidir do ar para o acrílico.

Tabela 5 – Índice de refração do acrílico (luz incide ar → acrílico).

N a	
$n_{ m acrílico}$	

4. Com os dados da <u>tabela 2</u> verifica a lei de Snell e calcula o valor do índice de refração do acrílico. Para tal, preenche a tabela seguinte e traça o gráfico sin (θ_t) em função de sin (θ_i) e fazendo a regressão linear.

Tabela 6 - Luz incidente na face plana vinda do acrílico

$\theta_{\rm i}$	0.0°	10.0°	20.0°	30.0°	40.0°	50.0°	60.0°	70.0°	80.0°
$\sin (\theta_i)$									
$\sin (\theta_t)$									

Gráfico 2 – sin (θ_t) em função de sin (θ_i) para luz a incidir do ar para o acrílico.

Tabela 7 – Índice de refração do acrílico (luz incide acrílico → ar).

$n_{ m acrílico}$	
-------------------	--

5. Com os dados da <u>tabela 3</u> (ângulo crítico para a interface acrílico – ar) calcula o valor do índice de refração do acrílico para o azul, o vermelho e um valor médio. Discute a incerteza no resultado.

Tabela 8 - Índice de refração do acrílico.

	Luz azul	Valor intermédio	Luz vermelha
n _{acrílico}			

Valor médio: $< n_{acrílico} > =$

7. Tendo em atenção todas as medidas e cálculos que efetuou apresente o melhor valor para o índice de refração do acrílico do semicilindro que usou.