Advanced Topics

YOLO

YOLO is a state-of-the-art object detection model in computer vision.

Unlike traditional methods that require multiple passes over an image, YOLO performs real-time object detection in a single pass, making it incredibly fast.

It divides an image into a grid and predicts bounding boxes and class probabilities for objects within each grid cell.

YOLO (1/3)

YOLO is just a CNN with a specific depth of the output tensor

YOLO (2/3)

Non-Maximum Suppression

Non-Maximum Suppression (NMS) is a **technique** in computer vision used **to filter** out **redundant** bounding boxes in **object detection** tasks.

It **keeps** only the **most relevant** bounding boxes by **suppressing** those with **lower confidence** scores **or** significant **overlap** with others.

YOLOv8 (3/3)

Last version of the YOLO architecture released in 2023

YOLOv8: Implementation

A very famous and **well-maintained** implementation of **YOLOv8** is **ultralytics**. it has significantly contributed to the **YOLO** object detection framework by providing an **efficient** and **user-friendly implementation** of YOLOv8.

```
# Load a model
model = YOLO("yolov8n.yaml") # build a new model from scratch
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)

# Use the model
model.train(data="coco128.yaml", epochs=3) # train the model
metrics = model.val() # evaluate model performance on the validation set
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
path = model.export(format="onnx") # export the model to ONNX format
```

YOLOv8: Inference

```
from ultralytics import YOLO
from PIL import Image
import cv2
model = YOLO("model.pt")
# accepts all formats - image/dir/Path/URL/video/PIL/ndarray. 0 for webcam
results = model.predict(source="0")
results = model.predict(source="folder", show=True) # Display preds. Accepts all YOLO predict arguments
# from PIL
im1 = Image.open("bus.jpg")
results = model.predict(source=im1, save=True) # save plotted images
# from ndarray
im2 = cv2.imread("bus.jpg")
results = model.predict(source=im2, save=True, save_txt=True) # save predictions as labels
# from list of PIL/ndarray
results = model.predict(source=[im1, im2])
```

Faster R-CNN

Faster R-CNN is a deep learning framework for **object detection**.

It combines a Region Proposal Network (RPN) with a CNN to efficiently generate region proposals and classify objects within those regions.

Faster R-CNN: Architecture

Faster R-CNN vs YOLO

Detection Frameworks	Train	mAP	FPS
Fast R-CNN [5]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[15]	2007+2012	73.2	7
Faster R-CNN ResNet[6]	2007+2012	76.4	5
YOLO [14]	2007+2012	63.4	45
SSD300 [11]	2007+2012	74.3	46
SSD500 [11]	2007+2012	76.8	19
YOLOv2 288 × 288	2007+2012	69.0	91
YOLOv2 352×352	2007+2012	73.7	81
YOLOv2 416×416	2007+2012	76.8	67
YOLOv2 480×480	2007+2012	77.8	59
YOLOv2 544×544	2007+2012	78.6	40

Faster R-CNN: Detectron2

Detectron2 is a popular **deep learning framework** for **object detection** and **segmentation tasks**. Developed by **Facebook AI Research (FAIR)**, it builds upon the original Detectron framework and provides a more **modular** and **flexible** architecture.

UNET

U-Net is a **convolutional neural network** architecture designed for semantic **image segmentation** tasks.

Its distinctive **U-shaped** architecture allows it to **capture fine-grained** details while **maintaining spatial** information.

U-Net has been **widely** used in **medical image** analysis and other fields where **precise image segmentation** is required.

UNET: Architecture

It consists of a **U-shaped** structure with two main parts: an **encoder** (the contracting path) and a **decode**r (the expansive path)

CLIP

CLIP is a deep learning **model** developed by **OpenAI** that stands for "Contrastive Language-Image Pretraining."

It combines vision and language by learning to associate images and text in a way that allows it to perform a wide range of tasks, including image classification and natural language understanding, without task-specific training.

CLIP: Architecture

CLIP is composed of **two** neural networks: an **image encoder** and a **text encoder**. These two encoders **work together** to enable the model's **cross-modal** understanding of **images** and **text**.

CLIP: Implementation

The **official CLIP** repository from **OpenAI** provides a **robust implementation** of CLIP, along with a **wide variety** of **pretrained models**.

```
import torch
import clip
from PIL import Image
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)
image = preprocess(Image.open("CLIP.png")).unsqueeze(0).to(device)
text = clip.tokenize(["a diagram", "a dog", "a cat"]).to(device)
with torch.no_grad():
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)
    logits_per_image, logits_per_text = model(image, text)
    probs = logits_per_image.softmax(dim=-1).cpu().numpy()
print("Label probs:", probs) # prints: [[0.9927937 0.00421068 0.00299572]]
```

Denoising Diffusion Probabilistic Models

DDPM are a method of **generating** high-quality **samples** from a **probabilistic model**. It involves **iteratively refining** an **initially noisy** or **low-quality sample** by applying a **sequence** of **invertible transformations**. This process **gradually** makes the **sample more coherent** and **realistic**.

Latent Diffusion

Latent Diffusion is a **variant** of the **diffusion models (DDPM)** that **operates** in the **latent space** of a generative model.

In this approach, a **diffusion process** is **applied** to the **latent** representations of data, allowing for **more efficient generation** of high-quality samples.

DALLE-2

DALL-E 2 is an advanced version of the **DALL-E** model by **OpenAI**, which is a generative model capable of creating images from text descriptions.

It is based on a pretrained CLIP, a diffusion prior and a decoder.

Stable Diffusion: Implementation

Diffusers from **Hugging Face** offers a comprehensive suite of tools for building and utilizing diffusion models, in addition to providing access to thousands of pretrained models.

```
import torch
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler

model_id = "stabilityai/stable-diffusion-2"

scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
```

```
prompt = "oil painting of the Leaning Tower of Pisa at night with the moon"
image = pipe(prompt).images[0]
image.save("night.png")
```

Stable Diffusion: Implementation

Huggingface

Hugging Face is a leading organization and platform in the field of natural language processing (NLP) and machine learning. They are known for their contributions to the development and democratization of state-of-the-art NLP models and tools. Hugging Face provides a wide range of open-source libraries and pre-trained models.

Transformers

 Hugging Face's Transformers library is a comprehensive framework for working with state-ofthe-art natural language processing (NLP) models, including BERT, GPT, and many others. It provides easy access to pretrained models and tools for fine-tuning them on specific NLP tasks.

Diffusers

• Hugging Face's Diffusion library is designed for working with diffusion models, which use diffusion processes to generate and denoise data. It offers tools for creating, training, and using diffusion models, making it easier to apply these advanced generative models.

Datasets

Hugging Face's Datasets library is a collection of high-quality, preprocessed datasets for a
wide range of NLP and machine learning tasks. It simplifies data loading and preprocessing,
making it convenient for researchers and developers to work with diverse datasets.

Huggingface: models

Huggingface: datasets

