Airbnb Pricing Prediction

Amine OMRI

Résumé

Ce projet vise à traiter des données collectées sur le site Aribnb pour la date du 14 décembre 2020 qui comporte toutes les données relatives aux listings a cette date.

Pré-traitement

Ce projet comporte trois parties principales :

Anayse

le premier est une

vise à effectuer une

visualisations, ce qui

inclut le traitement des

données nécessaires.

01

La seconde consiste données, Features engineering).

analyse de données qui

analyse exploratoire des

données et à réaliser des

à effectuer un prétraitement des données (nettoyage, encodage des

02

Prédiction

03

Le dernier est la modélisation et la prédiction qui comprend également certaines étapes de traitement telles que le traitement des valeurs aberrantes et la sélection des features, ainsi que des visualisations.

Cycle du projet

ANALYSE

Analyser et explorer les données, établir des graphiques et vérifier le type de chaque donnée,

PRE-TRAITEME NT

Traiter les types de colonnes (Object, float, int), imputer les valeurs manquantes, créer de

rrélatio

PREDICTION

La modélisation et la sélection des features basées sur l'analyse de corrélation et XGB

disjon t

d'évalu

La partie Pré-traitement de données

Nettoyage et encodage et feature engineering

Pré-traitement

- 1 Nettoyage du dataset listings
- 2 Traiter les valeurs manquantes
- 3 One-hot encode les variables catégorielles
- 4 Feature Engineering:
 - last_review: cette colonnne servira à filtrer les listes qui ne sont plus active
 - host_location: nous pouvons l'utiliser pour déterminer si l'hôte est local ou non
 - host_since: peut être utilisé pour calculer l'expérience des hôtes en fonction du nombres d'années depuis leur première inscription
 - amenities: créer des features à partir de cette colonne en Prétraiter la colonne amenities pour extraire tous les valeur amenities possibles et affecter un identifiant à chacun d'entre eux, après avoir défini une fonction d'encodage qui mettra 1 dans l'index correspondant dans une matrice. Et enfin, on va avoir la matrice document terme en appliquant cette fonction d'encodage à tous les documents du corpus.

Pré-traitement

- Del meme facon (bag-of-words binaire) créer des features à partir de host_verifications
- 6 Créer des Feature à partir de colonnes de texte **description**

```
def nlp_pipeline(book_texts):
  clean_books = []
  for book in book texts:
    book = remove_hypens(book)
    book_i = tokenize_text(book)
    book_i = remove_characters_after_tokenization(book_i)
    book_i = convert_to_lowercase(book_i)
    book_i = remove_stopwords(book_i, custom_stopwords)
    book_i = get_lemma(book_i)
    book_i = remove_short_tokens(book_i)
    book_i = keep_only_words_in_wordnet(book_i)
    book_i = apply_lemmatize(book_i)
    clean_books.append(book_i)
  return clean books
```

Apré avoir passer les documents par le pipline NLP il faut vectoriser le corpus maintenant que nous avons le corpus nettoyé, nous pouvons utiliser **TfidfVectorizer** pour convertir le texte en format vectoriel.

S	abbess	able	absence	absolute	absolutely
0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	0.0

La partie Analyse de données

Analyser les données afin de répondre aux questions et d'obtenir des informations sur le prix des listings.

Répartition des listings par property_type

Répartition des biens par qurtier

Répartition des listings par nombre de pesonnes (accommodates)

Répartition des listings par nombre de pesonnes (accommodates) classés par room_type

last_review: ce champ servira à filtrer les listes qui ne sont plus actives

Nombre de biens par dernière année où il a été commenté

last_review: ce champ servira à filtrer les listes qui ne sont plus actives

Nombre de biens par dernière année et mois où il a été commenté

hôte vit en français ou pas

host_since: peut être utilisé pour calculer l'expérience des hôtes en fonction de la durée depuis leur première inscription

Répartition des hots par l'année depuis laquelle ils gèrent le listings

host_since: peut être utilisé pour calculer l'expérience des hôtes en fonction de la durée depuis leur première inscription

Répartition des hots par l'année depuis laquelle ils gèrent le listings

amenities: Créer des features à partir de amenities (équipements)

description : extraction de features à partir de la description (colonne textuelle) à l'aide d'un pipline NLP

calculated_host_listings_count: valeur continue qui correspond aux nombres effectifs de listings pour les hôtes - mesure permettant de déterminer l'expérience des hôtes ou de distinguer les entreprises et les

Nombre de listings qui peuvent être détenus par une personne particulière (le nombre doit être <= 5)

Visualisation du prix moyen du jour pour deux personnes

Calculer les revenus estimés pour chaque listing, les revenus estimés pour chaque listing seront calculés sur la base du prix d'une nuit et du nombre minimum de nuits à partir de la base de données

Les listings dans le quartier de l'Hôtel-de-Ville en utilisant folium

Cette fois-ci en se basant sur la colonne prix au lieu de revenu je récupère les 100 listings les plus chers

Type de bien a acherter

Répartition des property_type sur les 1000 listings les plus chères

Cette fois-ci en se basant sur la colonne prix au lieu de revenu je récupère les 100 listings les plus chers

Répartition des property_type sur les 1000 listings les plus chères

La partie prédiction du prix des listings

lci, j'ai fait une sélection de features et une analyse de corrélation afin de trouver le meilleur modèle qui pourrait s'adapter à nos données

Le premier essai : j'ai utilisé un ensemble de données de toutes les colonnes prétraitées sauf celles créées dans la partie ingénierie de données (menities, host_verifications, description)

Suppression des colonnes comportant beaucoup de valeurs aberrantes

établir une graphique collinearity heatmap pour détecter les features corrélées qui pourraient empêcher notre modèle de converger

Normalisation et standardisation:

A l'exception de accommodates et de host_experience, les autres features numériques sont toutes asymétriques et pourraient bénéficier d'une transformation logarithmique

J'ai utilisé différentes méthodes pour standardiser mes données :

- StandardScaler
- MinMaxScaler
- RobustScaler

Et j'ai gardé MinMaxScaler puisqu'il conserve la structure globale des données

R SQUARED et RMSE

	RL	RIDGE	LASSO	XGB trees
TRAIN	Training RMSE: 0.1914	Training RMSE: 0.1915	Training RMSE: 0.1914	Training MSE: 0.1827
	Training r2: 0.5128	Training r2: 0.5125	Training r2: 0.5128	Training r2: 0.5351
TEST	Validation RMSE: 0.191	Validation RMSE: 0.191	Validation RMSE: 0.191	Validation MSE: 0.1843
	Validation r2: 0.5193	Validation r2: 0.5193	Validation r2: 0.5193	Validation r2: 0.5361

0.10

Le deuxième essai : J'ai utilisé un ensemble de données de toutes les colonnes prétraitées et aussi celles créées dans la partie ingénierie des données (menities, host_verifications, description)

Mon jeu de données était de taille (65917, 2673)

R SQUARED et RMSE

	RL	RIDGE	LASSO	XGB trees
TRAIN	Training RMSE: 0.1504	Training RMSE: 0.1424	Training RMSE: 0.1421	Training MSE: 0.1714
	Training r2: 0.6172	Training r2: 0.6376	Training r2: 0.6384	Training r2: 0.5637
TEST	Validation RMSE: 2.8569801186007695 e+18	Validation RMSE: 0.1567	Validation RMSE: 0.1572	Validation MSE: 0.1783
	Validation r2: -7.190735871508386 e+18	Validation r2: 0.6056	Validation r2: 0.6043	Validation r2: 0.5512

RANDOM FOREST

AVEC n_estimators = 20	AVEC n_estimators = 100
Training RMSE: 0.0271 Validation RMSE: 0.1774	Training RMSE: 0.0234 Validation RMSE: 0.1688
Training r2: 0.931 Validation r2: 0.5535	Training r2: 0.9403 Validation r2: 0.5753

MERCI POUR VOTRE ATTENTION

Questions?