Assignment-3 CHAPETR-20 Vector Algebra

EE24BTECH11048-NITHIN.K

I. Section-D

- 1) Let a and b be two be non-collinear unit vectors. If $u = a - (a \cdot b) b$ and $v = a \times b$, then (1999-3 Marks) |v| is
 - a) |u|
 - b) $|u| + |u \cdot a|$
 - c) $|u| + |u \cdot b|$
 - d) $|u| + u \cdot (a+b)$
- 2) Let A be vector parallel to line of intersection of planes P_1 and P_2 . Plane P_1 is parallel to the vectors $2\hat{j} + 3\hat{k}$ and $4\hat{j} - 3\hat{k}$ and that P_2 is paral lel to $\hat{j} - \hat{k}$ and $3\hat{i} + 3\hat{j}$, then the angle between vector **A** and a given vector $2\hat{i} + \hat{j} - 2\hat{k}$ is (2006-5M,-1)
 - a) $\frac{\pi}{2}$ b) $\frac{\pi}{4}$ c) $\frac{\pi}{6}$

 - d) $\frac{6}{4}$
- 3) The vector(s) which is/are coplanar with vectors $\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} + 2\hat{j} + \hat{k}$, and perpendicular to the vector $\hat{i} + \hat{j} + \hat{k}$ is/are (2011)
 - a) $\hat{j} \hat{k}$
 - b) $\hat{i} + \hat{j}$
 - c) $\hat{i} \hat{j}$
 - d) $\hat{i} + \hat{k}$
- 4) If the straight lines $\frac{x-1}{2} = \frac{y+1}{k} = \frac{z}{2}$ and $\frac{x+1}{5} = \frac{y+1}{2} = \frac{z}{k}$ are coplanar, then the plane(s) containing these two lines is (are) (2012)
 - a) y + 2z = -1
 - b) y + z = -1
 - c) y z = -1
 - d) y 2z = -1
- 5) A line I passing through the origin is perpendicular to the lines

$$l_1: (3+t)\hat{i} + (1+2t)\hat{j} + (4+2t)\hat{k}, -\infty < t < \infty$$

$$l_2: (3+2s)\hat{i} + (3+2s)\hat{j} + (2+s)\hat{k}, -\infty < s < \infty$$

Then, the coordinate(s) of the point(s) on l_2 at a distance of $\sqrt{17}$ from the point of intersection of 1 and l_1 is(are) (JEE Adv.2013)

- b) (-1, -1, 0)
- c) (1, 1, 1)
- d) $(\frac{7}{9}, \frac{7}{9}, \frac{8}{9})$
- 6) Two lines $L_1: x = 5, \frac{y}{3-\alpha} = \frac{z}{-2}$ and $L_2: x = \alpha, \frac{y}{-1} = \frac{z}{2-\alpha}$ are coplanar. Then α can take (JEE Adv.2013)
 - a) 1
 - b) 2
 - c) 3
 - d) 4
- 7) Let x, y and z be three vectors each of magnitude $\sqrt{2}$ and the angle between each pair of them is $\frac{\pi}{3}$. If **a** is a non-zero vector perpendicular to \mathbf{x} and $\mathbf{y} \times \mathbf{z}$ and \mathbf{b} is a non-zero vector perpendicular to y and $z \times x$, then (JEE Adv.2014)
 - a) $\mathbf{b} = (\mathbf{b} \cdot \mathbf{z})(\mathbf{z} \mathbf{x})$
 - b) $\mathbf{a} = (\mathbf{a} \cdot \mathbf{y}) (\mathbf{y} \mathbf{z})$
 - c) $\mathbf{a} \cdot \mathbf{b} = -(\mathbf{a} \cdot \mathbf{y})(\mathbf{b} \cdot \mathbf{z})$
 - d) $\mathbf{a} = -(\mathbf{a} \cdot \mathbf{y})(\mathbf{z} \mathbf{y})$
- 8) From a point $P(\lambda, \lambda, \lambda)$, perpendicular PQ and PR are drawn respectively on the lines y =x, z = 1 and y = -x, z = -1. If P is such that $\angle QPR$ is a right angle, then t he possible value(s) of λ is/(are) (JEE Adv.2014)
 - a) $\sqrt{2}$
 - b) 1
 - c) -1
 - d) $\sqrt{2}$
- 9) In R^3 , consider the planes P_1 : y = 0 and P_2 : x + z - 1.Let P_3 be the plane different from P_1 and P_2 which passes through the intersection of P_1 and P_2 . If the distance of

the point (0, 1, 0) from P_3 is 1 and the distance of point (α, β, γ) from P_3 is 2, then which of the following relation is(are) true (JEE Adv.2015)

- a) $2\alpha + \beta + 2\gamma + 2 = 0$
- b) $2\alpha \beta + 2\gamma + 4 = 0$
- c) $2\alpha + \beta + 2\gamma 10 = 0$
- d) $2\alpha \beta + 2\gamma 8 = 0$
- 10) In \mathbb{R}^3 , let L be a straight line passing through the origin. Suppose that all the points on L are at a costant distance from two planes P_1 : x+2y-z+1=0 and $P_2: 2x-y+z-1=0$. Let M be the locus of the foot of the perpendicular drawn from the points on L to plane P_1 . Which of the following points lie(s) on M? (JEE Adv.2015)
 - a) $\left(0, -\frac{5}{6}, -\frac{2}{3}\right)$
 - b) $\left(-\frac{1}{6}, -\frac{1}{3}, \frac{1}{6}\right)$ c) $\left(-\frac{5}{6}, 0, \frac{2}{3}\right)$
- 11) Let $\triangle PQR$ be a triangle. Let $\mathbf{a} = \overrightarrow{QR}, \mathbf{b} = \overrightarrow{RP}$ and $\mathbf{c} = \overrightarrow{PQ}$. If $|\mathbf{a}| = 12$, $|\mathbf{b}| = 4\sqrt{3}$, $b \cdot c = 24$, then which of the following is(are)true? (JEE Adv.2015)
 - a) $\frac{|c|}{2} |a| = 2$
 - b) $\frac{|\bar{c}|}{2} + |\mathbf{a}| = 30$
 - c) $| \mathbf{a} \times \mathbf{b} | = \sqrt[48]{3}$
 - d) $\mathbf{a} \cdot \mathbf{b} = -42$
- 12) Consider a pyramid OPQRS located in the first octant $(x \ge 0, y \ge 0, z \ge 0)$ with O as origin, and OP and OR along the x-axis and the y-axis respectively. The base OPQR of the pyramid is a square with OP=3. The point S is directly above the mid-point, T of diagonal OQ such that TS=3. Then (JEE Adv.2016)
 - a) the acute angle between OQ and OS is $\frac{\pi}{3}$
 - b) the equation of the plane containg the triangle OQS is x - y = 0
 - c) the length of the perpendicular from P to the plane containing the triangle OQS is $\frac{3}{\sqrt{2}}$
 - d) the perpendicular distance from O to the staright line containing RS is $\sqrt{\frac{15}{2}}$
- 13) Let $\hat{u} = u_1 \hat{i} + u_2 \hat{j} + u_3 \hat{k}$ be a unit vector in R^3 and $\hat{w} = \frac{1}{\sqrt{6}} (\hat{i} + \hat{j} + 2\hat{k})$. Given that there exists a vector \mathbf{v} in \mathbb{R}^3 such that $|\hat{\mathbf{u}} \times \mathbf{v}| = 1$ and $\hat{w}(\hat{u} \times \mathbf{v}) = 1$. Which of the following

- statement(s) is(are) correct? (JEE Adv.2016)
- a) there is exactly one choice for such v
- b) There are infinitely many choices for such v
- c) If \hat{u} lies in the xy-plane then $|u_1| = |u_2|$
- d) If \hat{u} lies in the xz-plane then $2|u_1| = |u_3|$
- 14) Let $P_1: 2x + y z = 3$ and $P_2: x + 2y + z =$ 2 be two planes. Then, which of the following statement(s) is(are) TRUE? (JEE Adv.2018)
 - a) The line of intersection of P_1 and P_2 has direction ratios 1,2,-1
 - b) The line $\frac{3x-4}{9} = \frac{1-3y}{9} = \frac{z}{3}$ is perpendicular to the line of intersection of P_1 and P_2
 - c) The acute angle between P_1 and P_2 is 60 \circ .
 - d) If P_3 is the plane passing through the point (4,2,-2) and perpendicular to the line of intersection of P_1 and P_2 , then the distance of the point (2, 1, 1) from the plane P_3 is
- 15) Let L_1 and L_2 denote the lines $\mathbf{r} = \hat{i} + \lambda \left(-\hat{i} + 2\hat{j} + 2\hat{k} \right), \lambda \in R$ and $\mathbf{r} = \mu \left(2\hat{i} - \hat{j} + 2\hat{k} \right), \mu \in R$

respectively. If L_3 is a line which is perpendicular to both L_1 and L_2 and cuts both of them, then which of the following option describe(s) L_3 ? (JEE Adv.2019)

a)
$$\mathbf{r} = \frac{2}{9} (4\hat{i} + \hat{j} + \hat{k}) + t(2\hat{i} + 2\hat{j} - \hat{k}), t \in \mathbb{R}$$

b)
$$\mathbf{r} = \frac{2}{9} (2\hat{i} - \hat{j} + 2\hat{k}) + \hat{t} (2\hat{i} + 2\hat{j} - \hat{k}), t \in \mathbb{R}$$

c) $\mathbf{r} = t(2\hat{i} + 2\hat{j} - \hat{k}), t \in R$

d)
$$\mathbf{r} = \frac{1}{3} (2\hat{i} + \hat{k}) + t'(2\hat{i} + 2\hat{j} - \hat{k}), t \in \mathbb{R}$$