B.5 12-Bit Core Instruction Set

Microchip's base-line 8-bit microcontroller family uses a 12-bit wide instruction set. All instructions execute in a single instruction cycle unless otherwise noted. Any unused opcode is executed as a NOP. The instruction set is grouped into the following catagories:

Table B.5: 12-Bit Core Literal and Control Operations

Hex	Mnemonic	Description	Function
Ekk	ANDLW	k AND literal and W	k .AND. W $ ightarrow$ W
9kk	CALL	k Call subroutine	$PC + 1 \rightarrow TOS, k \rightarrow PC$
004	CLRWDT	Clear watchdog timer	$0 \rightarrow WDT$ (and Prescaler if assigned)
Akk	GOTO	k Goto address (k is nine bits)	$k \rightarrow PC(9 bits)$
Dkk	IORLW	k Incl. OR literal and W	k .OR. W $ ightarrow$ W
Ckk	MOVLW	k Move Literal to W	$k \rightarrow W$
002	OPTION	Load OPTION Register	$ exttt{W} ightarrow exttt{OPTION Register}$
8kk	RETLW	k Return with literal in W	$k \to W$, TOS \to PC
003	SLEEP	Go into Standby Mode	$0 \rightarrow \mathtt{WDT}$, stop oscillator
00f	TRIS	f Tristate port f	$W \rightarrow I/O$ control reg f
Fkk	XORLW	k Exclusive OR literal and W	k .XOR. W $ ightarrow$ W

Table B.6: 12-Bit Core Byte Oriented File Register Operations

Hex	Mnemonic		Description	Function
1Cf	ADDWF	f,d	Add W and f	$W + f \rightarrow d$
14f	ANDWF	f,d	AND W and f	W .AND. f $ ightarrow$ d
06f	CLRF	f	Clear f	$0 \rightarrow f$
040	CLRW		Clear W	$0 \rightarrow W$
24f	COMF	f,d	Complement f	.NOT. f $ ightarrow$ d
0Cf	DECF	f,d	Decrement f	$f - 1 \rightarrow d$
2Cf	DECFSZ	f,d	Decrement f, skip if zero	f - 1 \rightarrow d, skip if zero
28f	INCF	f,d	Increment f	$f + 1 \rightarrow d$
3Cf	INCFSZ	f,d	Increment f, skip if zero	$f + 1 \rightarrow d$, skip if zero
10f	IORWF	f,d	Inclusive OR W and f	W .OR. f \rightarrow d
20f	MOVF	f,d	Move f	$f \rightarrow d$
02f	MOVWF	f	Move W to f	$ exttt{W} ightarrow exttt{f}$
000	NOP		No operation	
34f	RLF	f,d	Rotate left f	register f C

Table B.6: 12-Bit Core Byte Oriented File Register Operations (Continued)

Hex	Mnemonic	Description	Function
30f	RRF f,d	Rotate right f	register f
			7 · · · · · 0
08f	SUBWF f,d	Subtract W from f	$f - W \rightarrow d$
38f	SWAPF f,d	Swap halves f	$f(0:3) \leftrightarrow f(4:7) \rightarrow d$
18f	XORWF f,d	Exclusive OR W and f	W .XOR. f $ ightarrow$ d

Table B.7: 12-Bit Core Bit Oriented File Register Operations

Hex	Mnemonic	Description	Function
4bf	BCF f,	b Bit clear f	$0 \rightarrow f(b)$
5bf	BSF f,	b Bit set f	$1 \rightarrow f(b)$
6bf	BTFSC f,	b Bit test, skip if clear	skip if $f(b) = 0$
7bf	BTFSS f,	b Bit test, skip if set	skip if f(b) = 1

B.6 14-Bit Core Instruction Set

Microchip's mid-range 8-bit microcontroller family uses a 14-bit wide instruction set. This instruction set consists of 36 instructions, each a single 14-bit wide word. Most instructions operate on a file register, f, and the working register, W (accumulator). The result can be directed either to the file register or the W register or to both in the case of some instructions. A few instructions operate solely on a file register (BSF for example). The instruction set is grouped into the following catagories:

Table B.8: 14-Bit Core Literal and Control Operations

Hex	Mnemonic	Description	Function	
3Ekk	ADDLW k	Add literal to W	$k + W \rightarrow W$	
39kk	ANDLW k	AND literal and W	k .AND. W $ ightarrow$ W	
2kkk	CALL k	Call subroutine	$PC + 1 \rightarrow TOS, k \rightarrow PC$	
0064	CLRWDT T	Clear watchdog timer	$0 \rightarrow WDT$ (and Prescaler if assigned)	
2kkk	GOTO k	Goto address (k is nine bits)	$k \rightarrow PC(9 bits)$	
38kk	IORLW k	Incl. OR literal and W	k .OR. W $ ightarrow$ W	
30kk	MOVLW k	Move Literal to W	$k \rightarrow W$	
0062	OPTION	Load OPTION register	$ exttt{W} ightarrow exttt{OPTION}$ Register	
0009	RETFIE	Return from Interrupt	TOS $ ightarrow$ PC, 1 $ ightarrow$ GIE	
34kk	RETLW k	Return with literal in W	$k \to W$, TOS \to PC	
0008	RETURN	Return from subroutine	TOS → PC	
0063	SLEEP	Go into Standby Mode	$0 \rightarrow \mathtt{WDT}$, stop oscillator	
3Ckk	SUBLW k	Subtract W from literal $k - W \rightarrow W$		
006f	TRIS f	Tristate port f	ort f $W o I/O$ control reg f	
3Akk	XORLW k	Exclusive OR literal and W	k .XOR. W \rightarrow W	

Table B.9: 14-Bit Core Byte Oriented File Register Operations

Hex	Mnemonic	Description	Function
07ff	ADDWF f,d	Add W and f	$W + f \rightarrow d$
05ff	ANDWF f,d	AND W and f	W .AND. f $ ightarrow$ d
018f	CLRF f	Clear f	$0 \rightarrow f$
0100	CLRW	Clear W	$0 \rightarrow W$
09ff	COMF f,d	Complement f	.NOT. f $ ightarrow$ d
03ff	DECF f,d	Decrement f	$f - 1 \rightarrow d$
0Bff	DECFSZ f,d	Decrement f, skip if zero	f - 1 \rightarrow d, skip if 0
0Aff	INCF f,d	Increment f	$f + 1 \rightarrow d$
OFff	INCFSZ f,d	Increment f, skip if zero	$f + 1 \rightarrow d$, skip if 0
04ff	IORWF f,d	Inclusive OR W and f	W .OR. f \rightarrow d
08ff	MOVF f,d	Move f	$f \rightarrow d$

Table B.9: 14-Bit Core Byte Oriented File Register Operations (Continued)

Hex	Mnemonic	Description	Function
008f	MOVWF f	Move W to f	$W \rightarrow f$
0000	NOP	No operation	
ODff	RLF f,d	Rotate left f	register f C 70
OCff	RRF f,d	Rotate right f	register f C 70
02ff	SUBWF f,d	Subtract W from f	$f - W \rightarrow d$
0Eff	SWAPF f,d	Swap halves f	$f(0:3) \leftrightarrow f(4:7) \rightarrow d$
06ff	XORWF f,d	Exclusive OR W and f	W .XOR. f $ ightarrow$ d

Table B.10: 14-Bit Core Bit Oriented File Register Operations

Hex	Mnemonic	Description	Function
1bff	BCF f,b	Bit clear f	$0 \rightarrow f(b)$
1bff	BSF f,b	Bit set f	$1 \rightarrow f(b)$
1bff	BTFSC f,b	Bit test, skip if clear	skip if $f(b) = 0$
1bff	BTFSS f,b	Bit test, skip if set	skip if f(b) = 1

Table B.11: 12-Bit/14-Bit Core Special Instruction Mnemonics

Mnemonic		Description	Equivalent Operation(s)		Status	
ADDCF	f,d	Add Carry to File		,0 ,d	Z	
ADDDCF	f,d	Add Digit Carry to File		,1 ,d	Z	
В	k	Branch	GOTO	k	-	
BC	k	Branch on Carry	BTFSC 3 GOTO	,0 k	-	
BDC	k	Branch on Digit Carry	BTFSC 3 GOTO	,1 k	-	
BNC	k	Branch on No Carry	BTFSS 3 GOTO	,0 k	-	
BNDC	k	Branch on No Digit Carry	BTFSS 3 GOTO	,1 k	-	
BNZ	k	Branch on No Zero	BTFSS 3 GOTO	,2 k	-	
BZ	k	Branch on Zero	BTFSC 3 GOTO	,2 k	-	

Quick Reference

Table B.11: 12-Bit/14-Bit Core Special Instruction Mnemonics (Continued)

Mnemo	nic	Description	Equival Operatio		Status
CLRC		Clear Carry	BCF	3,0	-
CLRDC		Clear Digit Carry	BCF	3,1	-
CLRZ		Clear Zero	BCF	3,2	-
LCALL	k				
LGOTO	k				
MOVFW	f	Move File to W	MOVF	f,0	Z
NEGF	f,d	Negate File	COMF INCF	f,1 f,d	Z
SETC		Set Carry	BSF	3,0	-
SETDC		Set Digit Carry	BSF	3,1	-
SETZ		Set Zero	BSF	3,2	-
SKPC		Skip on Carry	BTFSS	3,0	-
SKPDC		Skip on Digit Carry	BTFSS	3,1	-
SKPNC		Skip on No Carry	BTFSC	3,0	-
SKPNDC		Skip on No Digit Carry	BTFSC	3,1	-
SKPNZ		Skip on Non Zero	BTFSC	3,2	-
SKPZ		Skip on Zero	BTFSS	3,2	-
SUBCF	f,d	Subtract Carry from File	BTFSC	3,0	Z
			DECF	f,d	
SUBDCF	f,d	Subtract Digit Carry from File	BTFSC DECF	3,1 f,d	Z
TSTF	f	Test File	MOVF	f,1	Z

B.7 16-Bit Core Instruction Set

Microchip's high-performance 8-bit microcontroller family uses a 16-bit wide instruction set. This instruction set consists of 55 instructions, each a single 16-bit wide word. Most instructions operate on a file register, f, and the working register, W (accumulator). The result can be directed either to the file register or the W register or to both in the case of some instructions. Some devices in this family also include hardware multiply instructions. A few instructions operate solely on a file register (BSF for example).

Table B.12: 16-Bit Core Data Movement Instructions

Hex	Mnemonic		Description	Function
6pff	MOVFP	f,p	Move f to p	$f \rightarrow p$
b8kk	MOVLB	k	Move literal to BSR	$k \rightarrow BSR (3:0)$
bakx	MOVLP	k	Move literal to RAM page select	$k \rightarrow BSR (7:4)$
4pff	MOVPF	p,f	Move p to f	$p \rightarrow W$
01ff	MOVWF	f	Move W to F	$W \rightarrow f$
a8ff	TABLRD	t,i,f	Read data from table latch into file f, then update table latch with 16-bit contents of memory location addressed by table pointer	TBLATH \rightarrow f if t=1, TBLATL \rightarrow f if t=0; ProgMem(TBLPTR) \rightarrow TBLAT; TBLPTR + 1 \rightarrow TBLPTR if i=1
acff	TABLWT	t,i,f	Write data from file f to table latch and then write 16-bit table latch to program memory location addressed by table pointer	f → TBLATH if t = 1, f → TBLATL if t = 0; TBLAT → ProgMem(TBLPTR); TBLPTR + 1 → TBLPTR if i=1
a0ff	TLRD	t,f	Read data from table latch into file f (table latch unchanged)	TBLATH \rightarrow f if t = 1 TBLATL \rightarrow f if t = 0
a4ff	TLWT	t,f	Write data from file f into table latch	$f \rightarrow TBLATH if t = 1$ $f \rightarrow TBLATL if t = 0$

Table B.13: 16-Bit Core Arithmetic and Logical Instruction

Hex	Mnemonic		Description	Function
b1kk	ADDLW	k	Add literal to W	(W + k) → W
0eff	ADDWF	f,d	Add W to F	$(W + f) \rightarrow d$
10ff	ADDWFC	f,d	Add W and Carry to f	$(W + f + C) \rightarrow d$
b5kk	ANDLW k		AND Literal and W	$(W .AND. k) \rightarrow W$
0aff	ANDWF	f,d	AND W with f	$(W .AND. f) \rightarrow d$
28ff	CLRF	f,d	Clear f and Clear d	$0x00 \rightarrow f,0x00 \rightarrow d$
12ff	COMF	f,d	Complement f	.NOT. f $ ightarrow$ d
2eff	DAW	f,d	Dec. adjust W, store in f,d	W adjusted $ ightarrow$ f and d
06ff	DECF	f,d	Decrement f	$(f - 1) \rightarrow f$ and d
14ff	INCF	f,d	Increment f	$(f + 1) \rightarrow f$ and d
b3kk	IORLW	k	Inclusive OR literal with W	$(W .OR. k) \rightarrow W$

Table B.13: 16-Bit Core Arithmetic and Logical Instruction (Continued)

Hex	Mnemo	onic	Description	Function
08ff	IORWF	f,d	Inclusive or W with f	$(W .OR. f) \rightarrow d$
b0kk	MOVLW	k	Move literal to W	$k \rightarrow W$
bckk	MULLW	k	Multiply literal and W	$(k \times W) \rightarrow PH:PL$
34ff	MULWF	f	Multiply W and f	$(W \times f) \rightarrow PH:PL$
2cff	NEGW	f,d	Negate W, store in f and d	$(W + 1) \rightarrow f, (W + 1) \rightarrow d$
laff	RLCF	f,d	Rotate left through carry	register f 70
22ff	RLNCF	f,d	Rotate left (no carry)	register f 70 ◀
18ff	RRCF	f,d	Rotate right through carry	register f 70
20ff	RRNCF	f,d	Rotate right (no carry)	register f → 70
2aff	SETF	f,d	Set f and Set d	$0xff \rightarrow f, 0xff \rightarrow d$
b2kk	SUBLW	k	Subtract W from literal	(k - W) → W
04ff	SUBWF	f,d	Subtract W from f	$(f - W) \rightarrow d$
02ff	SUBWFB	f,d	Subtract from f with borrow	$(f - W - c) \rightarrow d$
1cff	SWAPF	f,d	Swap f	$f(0:3) \rightarrow d(4:7),$ $f(4:7) \rightarrow d(0:3)$
b4kk	XORLW	k	Exclusive OR literal with W	$(W .XOR. k) \rightarrow W$
0cff	XORWF	f,d	Exclusive OR W with f	$(W .XOR. f) \rightarrow d$

Table B.14: 16-Bit Core Bit Handling Instructions

Hex	Mnemonic		Description	Function
8bff	BCF	f,b	Bit clear f	$0 \rightarrow f(b)$
8bff	BSF	f,b	Bit set f	1 → f(b)
9bff	BTFSC	f,b	Bit test, skip if clear	skip if f(b) = 0
9bff	BTFSS	f,b	Bit test, skip if set	skip if f(b) = 1
3bff	BTG	f,b	Bit toggle f	.NOT. $f(b) \rightarrow f(b)$

Table B.15: 16-Bit Core Program Control Instructions

Hex	Mnemo	nic	Description	Function
ekkk	CALL	k	Subroutine call (within 8k page)	$PC+1 \rightarrow TOS, k \rightarrow PC(12:0),$ $k(12:8) \rightarrow PCLATH(4:0),$ $PC(15:13) \rightarrow PCLATH(7:5)$
31ff	CPFSEQ	f	Compare f/w, skip if f = w	f-W, skip if f = W
32ff	CPFSGT	f	Compare f/w, skip if f > w	f-W, skip if f > W
30ff	CPFSLT	f	Compare f/w, skip if f< w	f-W, skip if f < W
16ff	DECFSZ	f,d	Decrement f, skip if 0	$(f-1) \rightarrow d$, skip if 0
26ff	DCFSNZ	f,d	Decrement f, skip if not 0	$(f-1) \rightarrow d$, skip if not 0
ckkk	GOTO	k	Unconditional branch (within 8k)	$k \rightarrow PC(12:0)$ $k(12:8) \rightarrow PCLATH(4:0),$ $PC(15:13) \rightarrow PCLATH(7:5)$
1eff	INCFSZ	f,d	Increment f, skip if zero	$(f+1) \rightarrow d$, skip if 0
24ff	INFSNZ	f,d	Increment f, skip if not zero	$(f+1) \rightarrow d$, skip if not 0
b7kk	LCALL	k	Long Call (within 64k)	$(PC+1) \rightarrow TOS; k \rightarrow PCL,$ $(PCLATH) \rightarrow PCH$
0005	RETFIE		Return from interrupt, enable interrupt	$\begin{array}{ccc} (\texttt{PCLATH}) & \to & \texttt{PCH:k} & \to & \texttt{PCL} \\ 0 & \to & \texttt{GLINTD} \end{array}$
b6kk	RETLW	k	Return with literal in W	$k \rightarrow W$, TOS $\rightarrow PC$, (PCLATH unchanged)
0002	RETURN		Return from subroutine	TOS \rightarrow PC (PCLATH unchanged)
33ff	TSTFSZ	f	Test f, skip if zero	skip if f = 0

Table B.16: 16-Bit Core Special Control Instructions

Hex	Mnemonic	Description	Function
0004	CLRWT	Clear watchdog timer	$0 \rightarrow \text{WDT}, 0 \rightarrow \text{WDT prescaler}, \\ 1 \rightarrow \text{PD}, 1 \rightarrow \text{TO}$
0003	SLEEP	Enter Sleep Mode	Stop oscillator, power down, 0 \rightarrow WDT, 0 \rightarrow WDT Prescaler 1 \rightarrow PD, 1 \rightarrow TO

B.8 Key to Enhanced 16-Bit Core Instruction Set

Field	Description				
File Addre	sses				
f	8-bit file register address				
fs	12-bit source file register address				
fd	12-bit destination file register address				
dest	W register if d = 0; file register if d = 1				
r	0, 1, or 2 for FSR number				
Literals					
kk	8-bit literal value				
kb	4-bit literal value				
kc	bits 8-11 of 12-bit literal value				
kd	bits 0-7 of 12-bit literal value				
Offsets, Ad	ddresses				
nn	8-bit relative offset (signed, 2's complement)				
nd	11-bit relative offset (signed, 2's complement)				
ml	bits 0-7 of 20-bit program memory address				
mm	bits 8-19 of 20-bit program memory address				
XX	any 12-bit value				
Bits					
b	bits 9-11; bit address				
d	bit 9; 0=W destination; 1=f destination				
а	bit 8; 0=common block; 1=BSR selects bank				
S	bit 0 (bit 8 for CALL); 0=no update; 1(fast)=update/save W, STATUS, BSR				

B.9 Enhanced 16-Bit Core Instruction Set

Microchip's new high-performance 8-bit microcontroller family uses a 16-bit wide instruction set. This instruction set consists of 76 instructions, each a single 16-bit wide word (2 bytes). Most instructions operate on a file register, f, and the working register, W (accumulator). The result can be directed either to the file register or the W register or to both in the case of some instructions. A few instructions operate solely on a file register (BSF for example)

Table B.17: Enhanced 16-Bit Core Literal Operations

Hex	Mnemo	nic	Description	Function
0F <i>kk</i>	ADDLW	kk	ADD literal to WREG	$W+kk \rightarrow W$
0B <i>kk</i>	ANDLW	kk	AND literal with WREG	W .AND. kk \rightarrow W
0004	CLRWDT		Clear Watchdog Timer	$0 \rightarrow \text{WDT}, 0 \rightarrow \text{WDT postscaler}, \\ 1 \rightarrow \text{TO}, 1 \rightarrow \text{PD}$
0007	DAW		Decimal Adjust WREG	if W<3:0> >9 or DC=1, W<3:0>+6 \rightarrow W<3:0>, else W<3:0> \rightarrow W<3:0>; if W<7:4> >9 or C=1, W<7:4>+6 \rightarrow W<7:4>, else W<7:4> \rightarrow W<7:4>;
09 <i>kk</i>	IORLW	kk	Inclusive OR literal with WREG	W .OR. $kk \rightarrow W$
EF <i>kc</i> F0 <i>kd</i>	LFSR	r,kd:kc	Load 12-bit Literal to FSR (second word)	$kd:kc \rightarrow FSRr$
01 <i>kb</i>	MOVLB	kb	Move literal to low nibble in BSR	$kb \rightarrow BSR$
0E <i>kk</i>	MOVLW	kk	Move literal to WREG	$kk \rightarrow W$
0D <i>kk</i>	MULLW	kk	Multiply literal with WREG	$W * kk \rightarrow PRODH:PRODL$
08 <i>kk</i>	SUBLW	kk	Subtract W from literal	$kk-W \rightarrow W$
0A <i>kk</i>	XORLW	kk	Exclusive OR literal with WREG	W .XOR. $kk \rightarrow W$

Table B.18: Enhanced 16-Bit Core Memory Operations

	, i				
Hex	Mnemonic	Description	Function		
8000	TBLRD *	Table Read (no change to TBLPTR)	Prog Mem (TBLPTR) → TABLAT		
0009	TBLRD*+	Table Read (post-increment TBLPTR)	Prog Mem (TBLPTR) → TABLAT TBLPTR +1 → TBLPTR		
000A	TBLRD *-	Table Read (post-decrement TBLPTR)	Prog Mem (TBLPTR) \rightarrow TABLAT TBLPTR -1 \rightarrow TBLPTR		
000B	TBLRD +*	Table Read (pre-increment TBLPTR)	TBLPTR +1 → TBLPTR Prog Mem (TBLPTR) → TABLAT		
000C	TBLWT *	Table Write (no change to TBLPTR)	TABLAT → Prog Mem(TBLPTR)		
000D	TBLWT *+	Table Write (post-increment TBLPTR)	TABLAT → Prog Mem(TBLPTR) TBLPTR +1 → TBLPTR		

Table B.18: Enhanced 16-Bit Core Memory Operations (Continued)

Hex	Mnemonic		Description	Function
000E	TBLWT *-		Table Write (post-decrement TBLPTR)	TABLAT → Prog Mem(TBLPTR) TBLPTR -1 → TBLPTR
000F	TBLWT +*		Table Write (pre-increment TBLPTR)	TBLPTR +1 → TBLPTR TABLAT → Prog Mem(TBLPTR)

Table B.19: Enhanced 16-Bit Core Control Operations

Hex	Mnen	nonic	Description	Function
E2nn	ВС	nn	Relative Branch if Carry	if C=1, PC+2+2*nn→ PC, else PC+2→PC
E6nn	BN	nn	Relative Branch if Negative	if N=1, PC+2+2*nn→PC,else PC+2→PC
E3nn	BNC	nn	Relative Branch if Not Carry	if C=0, PC+2+2*nn→PC, else PC+2→PC
E7nn	BNN	nn	Relative Branch if Not Negative	if N=0, PC+2+2*nn→PC, else PC+2→PC
E5nn	BNOV	nn	Relative Branch if Not Over-flow	if OV=0, PC+2+2*nn→PC, else PC+2→PC
E1 <i>nn</i>	BNZ	nn	Relative Branch if Not Zero	if Z=0, PC+2+2*nn→PC, else PC+2→PC
E4nn	BOV	nn	Relative Branch if Overflow	if OV=1, PC+2+2*nn→PC, else PC+2→PC
E0nd	BRA	nd	Unconditional relative branch	PC+2+2*nd→ PC
E0nn	BZ	nn	Relative Branch if Zero	if Z=1, PC+2+2*nn→PC, else PC+2→PC
ECml Fmm	CALL	mm:ml,s	Absolute Subroutine Call (second word)	$\label{eq:pc+4} \begin{array}{l} \text{PC+4} \rightarrow \text{TOS, mm:mI} \rightarrow \text{PC<20:1>,} \\ \text{if s=1,} \text{W} \rightarrow \text{WS,} \\ \text{STATUS} \rightarrow \text{STATUSS,} \text{BSR} \rightarrow \text{BSRS} \end{array}$
EF <i>mI</i> F <i>mm</i>	GOTO	mm:ml	Absolute Branch (second word)	mm:ml \rightarrow PC<20:1>
0000	NOP		No Operation	No operation
0006	POP		Pop Top of return stack	TOS-1 → TOS
0005	PUSH		Push Top of return stack	PC +2→ TOS
D8nd	RCALL	nd	Relative Subroutine Call	$PC+2 \rightarrow TOS, PC+2+2*nd \rightarrow PC$
00FF	RESET		Generate a Reset (same as MCR reset)	same as MCLR reset
0010	RETFIE	s	Return from interrupt (and enable interrupts)	$ \begin{split} & TOS \to PC, 1 \to GIE/GIEH \text{ or } PEIE/GIEL, \\ & if \; s \text{=} 1, \; \; WS \to W, STATUSS \to STATUS, \\ & BSRS \to BSR, PCLATU/PCLATH \; unchngd. \end{split} $
0Ckk	RETLW	kk	Return from subroutine, literal in W	$kk \rightarrow W$,
0012	RETURN	S	Return from subroutine	$\label{eq:total_total_total} \begin{split} &TOS \to PC, if s=1, WS \to W, \\ &STATUSS \to STATUS, BSRS \to BSR, \\ &PCLATU/PCLATH are unchanged \end{split}$
0003	SLEEP		Enter SLEEP Mode	$0 \rightarrow \text{WDT}, 0 \rightarrow \text{WDT postscaler}, \\ 1 \rightarrow \text{TO}, 0 \rightarrow \text{PD}$

Table B.20: Enhanced 16-Bit Core Bit Operations

Hex	Mnemonic		Description	Function
9 <i>bf</i>	BCF	f,b,a	Bit Clear f	$0 \rightarrow f < b >$
8 <i>bf</i>	BSF	f,b,a	Bit Set f	$1 \rightarrow f < b >$
Bbf	BTFSC	f,b,a	Bit test f, skip if clear	if f =0, PC+4→PC, else PC+2→PC
Abf	BTFSS	f,b,a	Bit test f, skip if set	if f =1, PC+4→PC, else PC+2→PC
7bf	BTG	f,b,a	Bit Toggle f	$f < b > \rightarrow f < b >$

Table B.21: Enhanced 16-Bit Core File Register Operations

Hex	Mnemo	onic	Description	Function
24 <i>f</i>	ADDWF	f,d,a	ADD WREG to f	$W+f \rightarrow dest$
20 <i>f</i>	ADDWFC	f,d,a	ADD WREG and Carry bit to f	$W+f+C \rightarrow dest$
14 <i>f</i>	ANDWF	f,d,a	AND WREG with f	W .AND. $f \rightarrow dest$
6A <i>f</i>	CLRF	f,a	Clear f	$0 \rightarrow f$
1C <i>f</i>	COMF	f,d,a	Complement f	$f \rightarrow dest$
62 <i>f</i>	CPFSEQ	f,a	Compare f with WREG, skip if f=WREG	f–W, if f=W, PC+4 \rightarrow PC else PC+2 \rightarrow PC
64 <i>f</i>	CPFSGT	f,a	Compare f with WREG, skip if f > WREG	f–W, if f > W, PC+4 \rightarrow PC else PC+2 \rightarrow PC
60 <i>f</i>	CPFSLT	f,a	Compare f with WREG, skip if f < WREG	f–W, if f < W, PC+4 \rightarrow PC else PC+2 \rightarrow PC
04 <i>f</i>	DECF	f,d,a	Decrement f	f–1 → dest
2Cf	DECFSZ	f,d,a	Decrement f, skip if 0	f–1 \rightarrow dest, if dest=0, PC+4 \rightarrow PC else PC+2 \rightarrow PC
4Cf	DCFSNZ	f,d,a	Decrement f, skip if not 0	f-1 \rightarrow dest, if dest \neq 0, PC+4 \rightarrow PC else PC+2 \rightarrow PC
28 <i>f</i>	INCF	f,d,a	Increment f	f+1 → dest
3Cf	INCFSZ	f,d,a	Increment f, skip if 0	f+1 \rightarrow dest, if dest=0, PC+4 \rightarrow PC else PC+2 \rightarrow PC
48 <i>f</i>	INFSNZ	f,d,a	Increment f, skip if not 0	f+1 \rightarrow dest, if dest \neq 0, PC+4 \rightarrow PC else PC+2 \rightarrow PC
10 <i>f</i>	IORWF	f,d,a	Inclusive OR WREG with f	W .OR. f \rightarrow dest
50 <i>f</i>	MOVF	f,d,a	Move f	$f \rightarrow dest$
Cfs Ffd	MOVFF	fs,fd	Move fs to fd (second word)	$fs \rightarrow fd$
6E <i>f</i>	MOVWF	f,a	Move WREG to f	$W \rightarrow f$
02 <i>f</i>	MULWF	f,a	Multiply WREG with f	$W * f \rightarrow PRODH:PRODL$
6Cf	NEGF	f,a	Negate f	$f + 1 \rightarrow f$
34 <i>f</i>	RLCF	f,d,a	Rotate left f through Carry	register f C 70

Table B.21: Enhanced 16-Bit Core File Register Operations (Continued)

Hex	Mnemo	onic	Description	Function
44 <i>f</i>	RLNCF	f,d,a	Rotate left f (no carry)	register f 70 ◀
30 <i>f</i>	RRCF	f,d,a	Rotate right f through Carry	register f C → 70
40 <i>f</i>	RRNCF	f,d,a	Rotate right f (no carry)	register f 70
48 <i>f</i>	SETF	f,a	Set f	$0xFF \rightarrow f$
54 <i>f</i>	SUBFWB	f,d,a	Subtract f from WREG with Borrow	W–f–C → dest
5Cf	SUBWF	f,d,a	Subtract WREG from f	$f-W \rightarrow dest$
58 <i>f</i>	SUBWFB	f,d,a	Subtract WREG from f with Borrow	f–W–C → dest
38 <i>f</i>	SWAPF	f,d,a	Swap nibbbles of f	f<3:0> → dest<7:4>, f<7:4> → dest<3:0>
66 <i>f</i>	TSTFSZ	f,a	Test f, skip if 0	$PC+4 \rightarrow PC$, if f=0, else $PC+2 \rightarrow PC$
18 <i>f</i>	XORWF	f,d,a	Exclusive OR WREG with f	W .XOR. $f \rightarrow dest$

B.10 Hexadecimal to Decimal Conversion

	Ву	Byte					
Hex	Dec	Hex	Dec	Hex	Dec	Hex	Dec
0	0	0	0	0	0	0	0
1	4096	1	256	1	16	1	1
2	8192	2	512	2	32	2	2
3	12288	3	768	3	48	3	3
4	16384	4	1024	4	64	4	4
5	20480	5	1280	5	80	5	5
6	24576	6	1536	6	96	6	6
7	28672	7	1792	7	112	7	7
8	32768	8	2048	8	128	8	8
9	36864	9	2304	9	144	9	9
Α	40960	Α	2560	Α	160	Α	10
В	45056	В	2816	В	176	В	11
С	49152	С	3072	С	192	С	12
D	53248	D	3328	D	208	D	13
Е	57344	Е	3584	Е	224	Е	14
F	61440	F	3840	F	240	F	15

Using This Table: For each Hex digit, find the associated decimal value. Add the numbers together. For example, Hex A38F converts to 41871 as follows:

İ	Hex 1000's Digit	Hex 100's Digit	Hex 10's Digit	Hex 1's Digit	Result
	40960 -	+ 768 -	128 -	+ 15 =	41871 Decimal