Combinational Automatic Test-Pattern Generation (ATPG) Basics

Functional Vs Structural ATPG

Carry Circuit

Functional vs. Structural (Cont)

- Functional ATPG generate complete set of tests for circuit inputoutput combinations
 - ▶ 129 inputs, 65 outputs:
 - > 2¹²⁹ = 68,05,64,73,38,41,87,69,26,92,67,49,21,48,63,53,64,22,912 patterns
 - **▶** Using I GHz ATE, would take 2.15 x 10²² years
- Structural test:
 - ▶ 64 bit slices
 - Each with 27 faults
 - At most 64 x 27 = 1728 faults (tests)
 - ▶ Takes 0.000001728 s on I GHz ATE
- Designer gives small set of functional tests augment with structural tests to boost coverage to 98* %

Random-Pattern Generation

Flow chart for method

Use to get tests for 60-80% of faults, then switch to D-algorithm or other ATPG for rest

Forward Implication

- Results in logic gate inputs that are significantly labeled so that output is uniquely determined
- **AND** gate forward implication table:

a\b	0	1	X	D	D
0	0	0	0	0	0
1	0	1	X	D	D
Х	0	X	X	X	X
D	0	D	Х	D	0
D	0	D	X	0	D

Fault detection. A fault is detected when a D or D reaches to a circuit output

Backward Implication

Unique determination of all gate inputs when the gate output and some of the inputs are given

- Fault activation. Initially, in a test generation procedure, a D or \overline{D} value is formed at the site of fault.
- This value is formed by adjusting input values to put a value opposite to the faulty value of faulty line.
- ▶ When this happens, fault is said to be activated.

Table 6.1 D Notation

Composite	Definition	D notation
0/0	Good 0, Faulty 0	0
1/1	Good 1, Faulty 1	1
1/0	Good 1, Faulty 0	D
0/1	Good 0, Faulty 1	$\overline{\mathbf{D}}$
X	Don't care	X

Sensitized line. A line in a circuit to which a fault has propagated is called a sensitized line

- Instification. The process of adjusting circuit input values to activate a fault or to facilitate propagation of a fault toward an output is called input justification
- Back tracking. Where choices exist, we make a selection based on what seems to be the best for propagation of values.
 - However, through implication, a choice, which may seem the best at first, may block propagation of fault values elsewhere in the circuit.
- In such cases, we return to places where choices exist, reset all circuit values to their values before the first choice was made, and make a different choice.
- This process is referred to as back tracking.

Path Sensitization Method Circuit

- **1 Fault Sensitization**
- 2 Fault Propagation
- 3 Line Justification

Path Sensitization Method Circuit

■ Try simultaneous paths f - h - k - L and

g-i-j-k-L blocked at k because **D-frontier** (chain of D or \overline{D}) disappears

Path Sensitization Method Circuit

• Final try: path g-i-j-k-L – test found!

