Homework 2-7 Even and Odd Functions Algebraically

- 1. Given the partially filled out table below for f(x), fill out the rest of it based on the function type.
 - (a) Even -> exact

х	-3	-2	-1	0	1	2	3
у	5	-4	-7	4	-7	-4	5

(b) Odd > opposite

x	-3	-2	o=1	0	1	2	3
У	5	4	-7	0	7	-4	-5

zexact

- 2. If f(x) is an even function and f(3) = 5 then what is the value of 4f(3) + 2f(-3)?
 - (1)30

(3) 10

(2)60

(4)6

- 4(5)+2(5)
 - 20+10
 - 30
- 3. Which of the following functions is even? Explain how you arrived at your choice.
 - (1) $y = x^2 4x$
- (3) $y = 9 x^2$
- (2) y = |x 6|

(4) $v = 4^x$

4. Algebraically determine whether the function $f(x) = x^5 - 3x^3 + x$ is odd, even, or neither.

plug in

 $(-x)^{5}-3(-x)^{3}+(-x)$ - $x^{5}+3x^{3}-x$

5. Algebraically determine whether the function $f(x) = -x^4 - 6$ is odd, even, or neither.

6. Determine if the function $f(x) = \frac{4x^2 + 2}{x}$ is even or odd. You might want to explore the function using tables on your calculator. Provide evidence for your final choice.

7. Even functions have symmetry across the *y*-axis. Odd function have symmetry across the origin. Can a function have symmetry across the *x*-axis? Why or why not?

No, if a graph was symmetric with respect to the x-axis it would not be a function! (wouldn't pass the vertical line test)

8. Sketch the function $f(x) = -x^2(x - 7)(x + 5)^2$

I got I almost got it... I need more practice... I don't get it... Help!