```
入力 [83]:

# Import the modules
import numpy as np
import pandas as pd
from pathlib import Path
from sklearn.metrics import balanced_accuracy_score, confusion_matrix, classification_report
from datetime import datetime
from math import radians, cos, sin, asin, sqrt
from datetime import datetime
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import ttest_ind
```

入力 [84]:

1 df_cc_data = pd. read_csv("fraudTest. csv")

入力 [85]:

1 df_cc_data. head (5)

出力[85]:

	Unnamed: 0	trans_date_trans_time	cc_num	merchant	category	amt	first	last
0	0	2020-06-21 12:14:25	2291163933867244	fraud_Kirlin and Sons	personal_care	2.86	Jeff	Elliott
1	1	2020-06-21 12:14:33	3573030041201292	fraud_Sporer- Keebler	personal_care	29.84	Joanne	Williams
2	2	2020-06-21 12:14:53	3598215285024754	fraud_Swaniawski, Nitzsche and Welch	health_fitness	41.28	Ashley	Lopez
3	3	2020-06-21 12:15:15	3591919803438423	fraud_Haley Group	misc_pos	60.05	Brian	Williams
4	4	2020-06-21 12:15:17	3526826139003047	fraud_Johnston- Casper	travel	3.19	Nathan	Massey

5 rows × 23 columns

入力 [86]:

- 1 # Convert the transaction date and date of birth to datetime format for easier manipulation
- 2 | df_cc_data["trans_date_trans_time"] = pd. to_datetime(df_cc_data["trans_date_trans_time"])
- 3 | df_cc_data["dob"] = pd. to_datetime(df_cc_data["dob"])

```
入力 [87]:
```

Print the datatypes of each column to ensure proper formats
print(df_cc_data.dtypes)

Unnamed: 0 int64 trans_date_trans_time datetime64[ns] cc_num int64 merchant object category object amt float64 object first object last gender object street object city object state object zip int64 lat float64 long float64 int64 city_pop job object datetime64[ns] dob trans_num object int64 unix_time float64 merch_lat merch_long float64 int64 is_fraud dtype: object

入力 [88]:

1 df_cc_data.isnull().sum()

出力[88]: Unnamed: 0

0 trans_date_trans_time 0 0 cc_num 0 merchant 0 category amt 0 first 0 0 last gender 0 0 street 0 city 0 state 0 zip 0 lat 0 long 0 city_pop job 0 dob 0 0 trans_num 0 unix_time 0 merch_lat 0 merch_long is_fraud 0 dtype: int64

Feature Engineering

```
入力 [89]:

1 # Extract time-based features for further analysis
2 df_cc_data['hour'] = df_cc_data['trans_date_trans_time'].dt.hour
3 df_cc_data['day'] = df_cc_data['trans_date_trans_time'].dt.dayofweek
4 df_cc_data['week'] = df_cc_data['trans_date_trans_time'].dt.isocalendar().week

入力 [91]:

1 # Calculate the time gap between transactions for each customer (using cc_num)
2 df_cc_data['time_gap'] = df_cc_data.groupby('cc_num')['trans_date_trans_time'].diff()
3 df_cc_data['time_gap'] = df_cc_data['time_gap'].fillna(pd.Timedelta(seconds=0))
```

Time-based features such as hour, day, and week are extracted to analyze transaction patterns over time. 'time_gap' represents the time difference between consecutive transactions for the same credit card number, which could be a useful feature in fraud detection.

```
入力 [92]:
                # Function to calculate the great circle distance between customer and merchant based on latitude
             3
                def haversine(lon1, lat1, lon2, lat2):
             4
             5
                     Calculate the great circle distance in kilometers between two points
             6
                     on the earth (specified in decimal degrees)
             7
             8
             9
                     lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
             10
            11
                     dlon = lon2 - lon1
            12
                     dlat = lat2 - lat1
            13
                     a = \sin(d \cdot at/2) **2 + \cos(at1) * \cos(at2) * \sin(d \cdot at/2) **2
            14
            15
                     c = 2 * asin(sqrt(a))
            16
                     r = 6371
            17
                     return c * r
            18
            19
入力 [93]:
             1 | # Apply the Haversine formula to calculate the distance between the customer and merchant
```

```
入力 [93]:

# Apply the Haversine formula to calculate the distance between the customer and merchant df_cc_data['distance_km'] = df_cc_data.apply(lambda row: haversine(row['long'], row['lat'], row[df_cc_data['distance_km'] = df_cc_data['distance_km'].round(2)
```

```
入力 [94]: 1 df_cc_data['amt'].describe()
```

```
出力[94]: count
                     555719, 000000
                         69. 392810
           mean
           std
                        156. 745941
           min
                          1.000000
                          9.630000
           25%
           50%
                         47. 290000
           75%
                         83.010000
                      22768. 110000
           max
           Name: amt, dtype: float64
```

```
入力 [95]:
                bin_edges = [0, 9.63, 47.29, 83.01, 1000, df_cc_data['amt'].max()]
                bin_labels = ['Very Low', 'Low', 'Medium', 'High', 'Very High']
                df_cc_data['transaction_bins'] = pd.cut(df_cc_data['amt'], bins=bin_edges, labels=bin_labels, in
                print(df_cc_data[['amt', 'transaction_bins']])
             5
             6
                       amt transaction_bins
           0
                      2.86
                                   Very Low
           1
                     29.84
                                        Low
           2
                     41. 28
                                        Low
           3
                     60.05
                                     Medium
           4
                      3. 19
                                   Very Low
                                        . . .
           555714
                    43.77
                                        Low
           555715
                   111.84
                                       High
           555716
                    86.88
                                       High
           555717
                     7.99
                                   Very Low
                     38.13
           555718
                                        Low
```

[555719 rows x 2 columns]

Note: "Transaction amounts are categorized into bins (Very Low to Very High) to simplify the analysis and make it easier to observe fraud patterns across different transaction ranges."

```
入力 [96]:
                 df_cc_data['dob']
出力[96]: 0
                     1968-03-19
                     1990-01-17
            1
            2
                     1970-10-21
            3
                     1987-07-25
            4
                     1955-07-06
            555714
                     1966-02-13
                     1999-12-27
            555715
            555716
                     1981-11-29
            555717
                     1965-12-15
            555718
                     1993-05-10
           Name: dob, Length: 555719, dtype: datetime64[ns]
入力 [97]:
                today = datetime. today()
              2
              3
                 df_cc_data['age'] = today.year - df_cc_data['dob'].dt.year - (
              4
                     (today. month < df_cc_data['dob']. dt. month)
              5
                     ((today. month == df_cc_data['dob']. dt. month) & (today. day < df_cc_data['dob']. dt. day))</pre>
              6
                )
              7
```

Note: "The age of each customer is calculated based on their date of birth. Age can be a key factor when analyzing patterns in fraudulent transactions."

3]:	0	56
	1	34
	2	53
	3	37
	4	69
	555714	58
	555715	24
	555716	42
	555717	58
	555718	31
	Name: age	e, Length: 555719, dtype: int64

入力 [99]:

1 df_cc_data.describe()

出力[99]:

	Unnamed: 0	cc_num	amt	zip	lat	long	city_pop
count	555719.000000	5.557190e+05	555719.000000	555719.000000	555719.000000	555719.000000	5.557190e+05
mean	277859.000000	4.178387e+17	69.392810	48842.628015	38.543253	-90.231325	8.822189e+04
std	160422.401459	1.309837e+18	156.745941	26855.283328	5.061336	13.721780	3.003909e+05
min	0.000000	6.041621e+10	1.000000	1257.000000	20.027100	-165.672300	2.300000e+01
25%	138929.500000	1.800429e+14	9.630000	26292.000000	34.668900	-96.798000	7.410000e+02
50%	277859.000000	3.521417e+15	47.290000	48174.000000	39.371600	-87.476900	2.408000e+03
75%	416788.500000	4.635331e+15	83.010000	72011.000000	41.894800	-80.175200	1.968500e+04
max	555718.000000	4.992346e+18	22768.110000	99921.000000	65.689900	-67.950300	2.906700e+06
4)

入力 [100]:

1 df_cc_data['gender'].value_counts()

出力[100]: F

F 304886 M 250833

Name: gender, dtype: int64

Data Visualization

入力 [101]: 1 plt.figure(figsize=(10, 6)) sns.countplot(data=df_cc_data, x='hour', hue='is_fraud', palette='Set1') plt.title('Transaction Frequency by Hour (Fraud vs. Non-Fraud)') plt.xlabel('Hour of the Day') plt.ylabel('Transaction Count') plt.legend(title='Fraudulent?', labels=['Non-Fraud (0)', 'Fraud (1)']) plt.show()

10

11 12 13

Hour of the Day

14 15 16 17 18 19 20 21 22 23

5000

The state of the

The standard error fraud_se_by_hour = fraud_std_by_hour / np. sqrt(fraud_count_by_hour) # Standard error fraud_se_by_hour = fraud_std_by_hour / np. sqrt(fraud_count_by_hour) plt. figure(figsize=(10, 6)) plt. bar(fraud_rate_by_hour. index, fraud_rate_by_hour, yerr=fraud_se_by_hour, color='orange', caps plt. title('Fraud Rate by Hour of the Day with Confidence Intervals') plt. ylabel('Hour of the Day') plt. ylabel('Fraud Rate') plt. show()


```
入力 [104]:

1  plt.figure(figsize=(10, 6))
2  sns.countplot(data=df_cc_data, x='gender', hue='is_fraud', palette='Set1')
3  plt.title('Gender (Fraud vs. Non-Fraud)')
4  plt.xlabel('Gender')
5  plt.ylabel('Transaction Count')
6  plt.legend(title='Fraudulent?', labels=['Non-Fraud (0)', 'Fraud (1)'])
7  plt.show()
```



```
入力 [105]:

1    fraud_rate_by_amt_bin = df_cc_data.groupby('transaction_bins')['is_fraud'].mean()

2    plt.figure(figsize=(10, 6))
4    fraud_rate_by_amt_bin.plot(kind='bar', color='orange')
5    plt.title('Fraud Rate by Transaction Amount Bin')
6    plt.ylabel('Fraud Rate')
7    plt.show()
```



```
入力 [106]:

1 sns.boxplot(data=df_cc_data, x='is_fraud', y='amt', palette='Set1')
2 plt.title('Transaction Amount Distribution by Fraud Status')
3 plt.show()
```


入力 [108]: 1 plt.figure(figsize=(12, 6)) 2 plt.subplot(1, 2, 1) 4 sns.boxplot(data=df_cc_data[df_cc_data['is_fraud'] == 0], y='log_amt', color='skyblue') 5 plt.title('Non-Fraudulent Transactions') 6 plt.ylabel('Log(Transaction Amount)') 7 plt.subplot(1, 2, 2) 9 sns.boxplot(data=df_cc_data[df_cc_data['is_fraud'] == 1], y='log_amt', color='salmon') 10 plt.title('Fraudulent Transactions') 11 plt.ylabel('') 12 plt.show()

14

入力 [109]: 1 plt.figure(figsize=(10, 6)) 2 plt.hexbin(df_cc_data['distance_km'], df_cc_data['is_fraud'], gridsize=50, cmap='Blues', mincnt= 3 plt.colorbar(label='Counts') 4 plt.title('Hexbin Plot of Distance from Merchant vs. Fraud Status') 5 plt.xlabel('Distance (km)') 6 plt.ylabel('Fraud Status') 7 plt.show()

Statistical Analysis

Note: "Statistical tests are performed to determine if there is a significant difference in transaction amounts between fraudulent and non-fraudulent transactions. The t-test assumes normality, while the Mann-Whitney U test is used as a non-parametric alternative."

T-statistic: 138.1883771290534, P-value: 0.0

入力 [112]: 1 from scipy. stats import mannwhitneyu fraud_amt = df_cc_data[df_cc_data['is_fraud'] == 1]['amt'] non_fraud_amt = df_cc_data[df_cc_data['is_fraud'] == 0]['amt'] stat, p_value = mannwhitneyu(fraud_amt, non_fraud_amt) 7 print(f"Mann-Whitney U Test: Statistic={stat}, p-value={p_value}") 8

Mann-Whitney U Test: Statistic=989380266.5, p-value=0.0

```
入力 [114]:
```

```
fraud_corr = df_cc_data.corr(numeric_only=True)['is_fraud'].sort_values(ascending=False)
2
  print(fraud_corr)
3
```

```
is fraud
               1.000000
               0. 182267
amt
               0.098374
log_amt
hour
               0.011686
day
               0.009365
               0.007543
age
lat
               0.005863
merch_lat
               0.005812
               0.000233
distance_km
              -0.000972
long
merch_long
              -0.001060
              -0.001540
cc num
              -0.002271
zip
              -0.004910
city_pop
unix_time
              -0. 013066
              -0.013446
week
Unnamed: 0
              -0.013892
Name: is_fraud, dtype: float64
```

Note: "Correlation analysis is conducted to quantify the strength of the relationships between various features and the fraud indicator. This can help identify which features are most predictive of fraudulent behavior."

入力[]: