Zadanie: SWI Świąteczny łańcuch

XXIII OI, etap II, dzień próbny. Plik źródłowy swi.* Dostępna pamięć: 1024 MB.

9.02.2016

Każdego roku na święta Bożego Narodzenia Bajtazar dekoruje swój dom łańcuchem złożonym z różnokolorowych lampek. Tym razem Bajtazar zamierza samemu dobrać kolory lampek, które będą wchodziły w skład łańcucha. Bajtazar ma w głowie pewne wymagania estetyczne, które streszczają się w tym, że pewne fragmenty łańcucha powinny mieć identyczny układ lampek jak inne. Ponadto żona Bajtazara poprosiła go, aby tegoroczny łańcuch był jak najbardziej urozmaicony, co Bajtazar rozumie tak, że powinno w nim być jak najwięcej różnych kolorów lampek. Pomóż naszemu bohaterowi stwierdzić, ile kolorów lampek będzie musiał kupić.

Wejście

Pierwszy wiersz standardowego wejścia zawiera dwie liczby całkowite n oraz m ($n \geq 2$, $m \geq 1$) oddzielone pojedynczym odstępem, określające liczbę lampek w planowanym łańcuchu i liczbę wymagań estetycznych Bajtazara. Zakładamy, że kolejne lampki łańcucha będą ponumerowane od 1 do n. Każdy z m kolejnych wierszy opisuje jedno z wymagań za pomocą trzech liczb całkowitych a_i , b_i i l_i ($1 \leq a_i$, b_i , l_i ; $a_i \neq b_i$; a_i , $b_i \leq n - l_i + 1$) oddzielonych pojedynczymi odstępami. Taki opis oznacza, że fragmenty łańcucha złożone z lampek o numerach $\{a_i, \ldots, a_i + l_i - 1\}$ oraz $\{b_i, \ldots, b_i + l_i - 1\}$ powinny być jednakowe. Innymi słowy, lampki o numerach a_i oraz b_i powinny mieć taki sam kolor, podobnie lampki o numerach $a_i + 1$ oraz $b_i + 1$, i tak dalej aż do lampek o numerach $a_i + l_i - 1$ i $b_i + l_i - 1$.

Wyjście

Twój program powinien wypisać na standardowe wyjście jedną dodatnią liczbę całkowitą k oznaczającą maksymalną liczbę różnych kolorów lampek, jakie mogą wystąpić w łańcuchu spełniającym wymagania estetyczne opisane na wejściu.

Przykład

Dla danych wejściowych:

10 3
1 6 3
5 7 4
3 8 1

natomiast dla danych wejściowych:
4 2
1 2 2
2 3 2

Wyjaśnienie do pierwszego przykładu: Niech a, b i c oznaczają trzy różne kolory lampek. Przykładowy łańcuch spełniający wymagania Bajtazara i jego żony to abacbababa.

Testy "ocen":

10cen: n=2000, m=2; Bajtazar wymaga, aby fragmenty $\{1,\ldots,1000\}$ i $\{1001,\ldots,2000\}$ były równe oraz aby fragmenty $\{1,\ldots,500\}$ i $\{501,\ldots,1000\}$ były równe; w łańcuchu może wystąpić maksymalnie 500 kolorów lampek.

20cen: $n = 500\,000$, $m = 499\,900$; i-te wymaganie jest postaci $a_i = i$, $b_i = i + 100$, $l_i = 1$; w łańcuchu może wystąpić maksymalnie 100 kolorów lampek.

30cen: $n=80\,000,\,m=79\,995,\,i$ -te wymaganie jest postaci $a_i=i,\,b_i=i+2,\,l_i=4;\,$ w łańcuchu mogą wystąpić maksymalnie dwa kolory lampek.

40cen: $n = 500\,000$, $m = 250\,000$, i-te wymaganie jest postaci $a_i = 1$, $b_i = i + 1$, $l_i = i$; łańcuch może składać się jedynie z lampek o tym samym kolorze.

Ocenianie

Zestaw testów dzieli się na podzadania spełniające poniższe warunki. Testy do każdego podzadania składają się z jednej lub większej liczby osobnych grup testów.

Podzadanie	Warunki	Liczba punktów
1	$n, m \le 2000$	30
2	$n, m \leq 500000$, wszystkie liczby l_i są równe 1	20
3	$n, m \le 80000$	30
4	$n, m \le 500000$	20