ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Μάθημα Σήματα και Συστήματα	AEM
Όνομα Επώνυμο	$\operatorname{mod}(AEM,5)$
Βαθμολογία	Εξάμηνο

Να λύσετε τα προβλήματα, να επισυνάψετε τις λύσεις μετά τις εκφωνήσεις, να σκανάρετε το δοκίμιο και να το μετατρέψετε σε pdf. Να αναρτήσετε στο elearning το αρχείο pdf ως την **Τετάρτη 11 Ιανουαρίου 2023 και ώρα 13:00** Για να προσμετρηθεί ο επιπρόσθετος βαθμός στην τελική βαθμολογία θα πρέπει να συγκεντρώσετε τουλάχιστον 1.8 από τις 3.5 μονάδες στην 2η ενδιάμεση εξέταση είτε στο μέρος B της τελικής γραπτής εξέτασης.

ΘΕΜΑ Β1 (Μονάδες 0.5)

- $\mod(AEM,5)=0$: Οι συχνότητες αποκοπής ενός ζωνοδιαβατού φίλτρου διακριτού χρόνου ορίζονται για τη ζώνη διάβασης $\omega_p=\frac{AEM}{80000}\,\pi$ και τη ζώνη αποκοπής $\omega_s=\frac{AEM}{40000}\,\pi$ ακτίνια ανά κύκλο δειγματοληψίας. Αν η περίοδος δειγματοληψίας είναι $T_s=1$ msec, να εκφράσετε τις δύο συχνότητες σε Hz.
- $\operatorname{mod}(AEM,5)=1$: Έστω σήμα διαχριτού χρόνου με μετασχηματισμό Fourier διαχριτού χρόνου $X(\omega)$ που μηδενίζεται για $\frac{AEM}{10000}$ $\pi \leq \omega < \pi$. Το σήμα μετατρέπεται σε σήμα συνεχούς χρόνου χρησιμοποιώντας το Θεώρημα Δειγματοληψίας του Shannon με περίοδο δειγματοληψίας $T_s=1$ msec. Να προσδιορίσετε τις συχνότητες σε Hz για τις οποίες μηδενίζεται ο μετασχηματισμός Fourier συνεχούς χρόνου.
- $\mod(AEM,5)=2$: Ένα σήμα συνεχούς χρόνου υποβάλλεται σε δειγματοληψία με συχνότητα δειγματοληψίας $F_s=10~\mathrm{KHz}$. Υπολογίζετε το διαχριτό μετασχηματισμό Fourier μήχους $N=2048~\mathrm{δειγμάτων}$. Να προσδιορίσετε την απόσταση δύο διαδοχικών δειγμάτων συχνότητας σε Hz .
- $\operatorname{mod}(AEM,5)=3$: Έστω δύο σήματα x[n] μήκους P=15 δειγμάτων και h[n] μήκους L=30 δειγμάτων. Υπολογίζουμε το διακριτό μετασχηματισμούς Fourier των δύο σημάτων για N=30, τους πολλαπλασιάζουμε και αντιστρέφουμε την ακολουθία W[k]=X[k]H[k]. Ποιά δείγματα του σήματος w[n] αντιστοιχούν σε έγκυρα δείγματα της γραμμικής συνέλιξης των σημάτων x[n] και h[n];
- $\mod(AEM,5)=4$: Να περιγράψετε τα βήματα του υπολογισμού της γραμμικής συνέλιξης δύο σημάτων x[n] μήκους $N_1=20$ δειγμάτων και h[n] μήκους $N_2=25$ δειγμάτων χρησιμοποιώντας διακριτούς μετασχηματισμούς Fourier.

ΘΕΜΑ Β2 (Μονάδες 0.5)

- $\operatorname{mod}(AEM,5)=0$: Αν a>0, να υπολογίσετε τα μηδενικά και τους πόλους του συστήματος με κρουστική απόκριση $h[n]=a^n$ για $0\leq n\leq N-1$. Ποιά είναι η περιοχή σύγκλισης της συνάρτησης μεταφοράς του σήματος;
- $\operatorname{mod}(AEM,5)=1$: Να αντιστρέψετε τους μετασχηματισμούς \mathcal{Z} : α) $X(z)=\frac{2}{z-3},\ |z|>3.$ β) $X(z)=\frac{2}{z-3},\ |z|<3.$

- $\operatorname{mod}(AEM,5) = 2$: Να υπολογίσετε τη συνέλιξη $y[n] = x_1[n+3] * x_2[-n+2]$ αν $x_1[n] = (\frac{1}{2})^n u[n]$ και $x_2[n] = (\frac{1}{3})^n u[n]$ με χρήση του μετασχηματισμού \mathcal{Z} .
- $\mod(AEM,5)=3$: Έστω $x[n]=2\,u[n]$ και $h[n]=a^n\,u[n]$ με 0< a<1. Να υπολογίσετε την έξοδο του συστήματος χρησιμοποιώντας το μετασχηματισμό \mathcal{Z} .
- $\operatorname{mod}(AEM,5)=4$: Θεωρήστε το γραμμικό χρονοαμετάβλητο σύστημα διακριτού χρόνου με κρουστική απόκριση $h[n]=a^{-n}\,u[n]$. Με χρήση του μετασχηματισμού $\mathcal Z$ να προσδιορίσετε πότε το σύστημα είναι α) αιτιατό και β) ευσταθές.

ΘΕΜΑ Β3 (Μονάδες 0.5)

mod(AEM, 5) = 0: Θεωρήστε το σήμα διαχριτού χρόνου

$$x[n] = \left\{ \begin{array}{ll} 1 & \text{an } |n| \leq 2 \\ 0 & \text{alloid}. \end{array} \right.$$

- α) Να σχεδιάσετε το σήμα x[n]. Να υπολογίσετε και να σχεδιάσετε το μετασχηματισμό Fourier διακριτού χρόνου $X(\omega)$ του σήματος x[n].
- β) Να σχεδιάσετε το σήμα $x_{(2)}[n]$ και το μετασχηματισμό Fourier διακριτού χρόνου $X_{(2)}(\omega)$.
- mod(AEM,5)=1 ή mod(AEM,5)=2: Ένα αιτιατό γραμμικό χρονοαμετάβλητο σύστημα διακριτού χρόνου ορίζεται από τη σχέση εισόδου-εξόδου:

$$\begin{array}{lll} y[n] - \left(4/3\right)y[n-1] + \left(1/3\right)y[n-2] & = & x[n] & \text{an } \operatorname{mod}(AEM,5) = 1 \\ y[n] - \left(4/3\right)y[n-1] + \left(1/3\right)y[n-2] & = & x[n+1] & \text{an } \operatorname{mod}(AEM,5) = 2 \end{array}$$

όπου x[n] είναι η είσοδος και y[n] είναι η έξοδος.

- α) Να προσδιορίσετε τη συνάρτηση συστήματος.
- β) Να βρείτε την κρουστική απόκριση του συστήματος.
- γ) Να βρείτε τη βηματική απόκριση του συστήματος.
- mod(AEM,5)=3 ή mod(AEM,5)=4: Η έξοδος ενός συστήματος διαχριτού χρόνου σχετίζεται με την είσοδο x[n] μέσω της εξίσωσης

$$y[n] = x[n] + 0.9 x[n-1]$$
 and $mod(AEM, 5) = 3$
 $y[n] = x[n] - 0.8 x[n-1]$ and $mod(AEM, 5) = 4$.

- α) Να βρείτε τη συνάρτηση συστήματος, να προσδιορίσετε τους πόλους και τα μηδενικά της, να σχεδιάσετε το διάγραμμα πόλων-μηδενικών και να προσδιορίσετε την περιοχή σύγκλισης.
- β) Ποιό είναι το μέτρο της απόκρισης συχνότητας του συστήματος;
- γ) Ποιά είναι η συχνοτική συμπεριφορά του συστήματος.