А. Ю. Пирковский ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ ЛЕКЦИЯ 17

Наша ближайшая стратегическая задача — познакомиться с двумя важными классами линейных операторов, а именно, компактными и фредгольмовыми операторами. Компактные операторы были впервые введены в работах Ф. Рисса в 1910-х гг., т.е. на самой заре функционального анализа. Фредгольмовы операторы заметно моложе, впервые они появились в работах Ж. Дьедонне, Ф. Аткинсона и С. М. Никольского в 1940-х гг. Компактные и фредгольмовы операторы в определенном смысле противоположны друг другу по своим свойствам: интуитивно, компактные операторы — «маленькие», а фредгольмовы — «большие». Несмотря на это, между этими двумя разновидностями линейных операторов есть тесная связь, поэтому изучать их удобно одновременно.

Прежде чем переходить к изучению компактных и фредгольмовых операторов, нам понадобится ненадолго отвлечься от функционального анализа и обсудить некоторые общие факты о компактных метрических пространствах.

17.1. Компактные метрические пространства

Определение 17.1. Пусть (X, ρ) — метрическое пространство, $Y \subseteq X$ и $\varepsilon > 0$. Подмножество $S \subseteq X$ называется ε -сетью для Y, если для каждого $y \in Y$ найдется такой $s \in S$, что $\rho(y, s) < \varepsilon$. Если Y = X, то S называется ε -сетью в X.

Пример 17.1. Целочисленная решетка \mathbb{Z}^2 на евклидовой плоскости \mathbb{R}^2 является ε -сетью, если $\varepsilon > 1/\sqrt{2}$.

Определение 17.2. Метрическое пространство X называется *вполне ограниченным*, если для каждого $\varepsilon > 0$ в X существует конечная ε -сеть.

Иначе говоря, метрическое пространство вполне ограничено, если оно покрывается конечным числом шаров сколь угодно малого радиуса.

Замечание 17.1. По-английски "вполне ограниченное" будет "totally bounded"; не следует путать этот термин с "completely bounded", который, хотя и переводится на русский язык точно так же, имеет совершенно другой смысл. Впрочем, путаницы здесь быть не должно, т.к. термин "totally bounded" относится к метрическим пространствам, а "completely bounded" — к линейным операторам. Вполне ограниченные операторы нам в этом курсе не встретятся; они изучаются в сравнительно молодой и активно развивающейся области функционального анализа — теории операторных пространств (эту науку иногда еще называют «квантовым функциональным анализом»). Познакомиться с этой теорией можно по книге А. Я. Хелемского «Квантовый функциональный анализ» (М.: МЦНМО, 2009) или Е. Effros, Z.-J. Ruan "Operator spaces" (Oxford, 2000).

Наблюдение 17.1. Легко видеть, что вполне ограниченное метрическое пространство ограничено (т.к. оно является конечным объединением шаров, а конечное объединение

Лекция 17 113

ограниченных множеств ограничено). Скоро мы увидим, что для подмножеств в \mathbb{R}^n верно и обратное, но в общем случае — нет.

Если метрическое пространство Y содержится в некотором большем метрическом пространстве X, то для того, чтобы Y было вполне ограниченным, не обязательно, чтобы конечная ε -сеть из определения 17.2 содержалась в самом Y:

Предложение 17.2. Подмножество Y метрического пространства X вполне ограничено тогда и только тогда, когда для каждого $\varepsilon > 0$ в X существует конечная ε -сеть для Y.

Доказательство. Покроем Y конечным числом шаров радиуса $\varepsilon/2$ и в каждом из них выберем по точке подмножества Y (игнорируя те шары, которые не пересекаются с Y). Получим конечную ε -сеть в Y.

Следствие 17.3. Подмножество вполне ограниченного метрического пространства вполне ограничено.

Вот еще одно простое наблюдение:

Предложение 17.4. Подмножество Y метрического пространства X вполне ограничено тогда и только тогда, когда вполне ограничено его замыкание.

Доказательство. Любая $\varepsilon/2$ -сеть в Y будет ε -сетью в его замыкании.

Установим теперь взаимосвязь между вполне ограниченными и компактными метрическими пространствами. Напомним, что топологическое пространство X называется секвенциально компактным, если каждая последовательность в X имеет сходящуюся подпоследовательность. Из курса анализа вы знаете, что отрезок прямой и компактен, и секвенциально компактен (теорема Больцано—Вейерштрасса). В общем случае компактность и секвенциальная компактность — несравнимые понятия в том смысле, что ни одно из них не влечет второе (попробуйте привести соответствующие примеры). Тем не менее, для метрических пространств справедлива следующая теорема.

Теорема 17.5. Следующие свойства метрического пространства X эквивалентны:

- (i) X компактно;
- (ii) X секвенциально компактно;
- (iii) X вполне ограничено и полно.

Доказательство этой теоремы удобно разбить на несколько этапов. Начнем с того, что дадим полезную характеризацию вполне ограниченных пространств в терминах последовательностей.

Теорема 17.6. Следующие свойства метрического пространства X эквивалентны:

- (i) X вполне ограничено;
- (ii) каждая последовательность в X имеет фундаментальную подпоследовательность;
- (iii) каждая последовательность (x_n) в X обладает свойством $\inf_{i\neq j} \rho(x_i,x_j)=0.$

Доказательство. (i) \Longrightarrow (ii). Пусть (x_n) — последовательность в X. Покроем X конечным числом шаров радиуса 1. Хотя бы один из них содержит подпоследовательность $(x_n^{(1)})$ последовательности (x_n) . Затем покроем X конечным числом шаров радиуса 1/2 и найдем подпоследовательность $(x_n^{(2)})$ последовательности $(x_n^{(1)})$, содержащуюся в одном из этих шаров. Продолжая этот процесс, на k-м шаге получим подпоследовательность $(x_n^{(k)})$ последовательности $(x_n^{(k-1)})$, содержащуюся в шаре радиуса 1/k. Легко видеть, что диагональная последовательность $y_n = x_n^{(n)}$ фундаментальна, поскольку для каждого $k \in \mathbb{N}$ все ее члены, начиная с k-го, содержится в шаре радиуса 1/k.

- (ii) ⇒ (iii): очевидно.
- (iii) \Longrightarrow (i). Предположим, что X не является вполне ограниченным, т.е. что для некоторого $\varepsilon > 0$ любая ε -сеть в X бесконечна. Возьмем произвольную точку $x_1 \in X$. Поскольку $\{x_1\}$ не ε -сеть, найдется такое $x_2 \in X$, что $\rho(x_2, x_1) \geqslant \varepsilon$. Множество $\{x_1, x_2\}$ также не является ε -сетью, поэтому для некоторого $x_3 \in X$ имеем $\rho(x_3, x_k) \geqslant \varepsilon$ для k = 1, 2. Продолжая этот процесс, получим последовательность (x_n) , у которой $\rho(x_i, x_j) \geqslant \varepsilon$ для всех $i \neq j$. Полученное противоречие завершает доказательство.

Из теоремы 17.6 легко следует эквивалентность пп. (ii) и (iii) теоремы 17.5:

Следствие 17.7. Метрическое пространство секвенциально компактно тогда и только тогда, когда оно вполне ограничено и полно.

Предположим теперь, что X вполне ограничено и полно. Снова применяя теорему 17.6, видим, что всякая последовательность в X обладает фундаментальной подпоследовательностью, которая сходится ввиду полноты X. Следовательно, X секвенциально компактно.

Докажем теперь импликацию (i) \Longrightarrow (ii) в теореме 17.5.

Лемма 17.8. Компактное метрическое пространство секвенциально компактно.

Доказательство. Пусть (x_n) — последовательность точек компактного метрического пространства X. Для каждого $n \in \mathbb{N}$ положим $F_n = \overline{\{x_k : k \geqslant n\}}$ и $U_n = X \setminus F_n$. Очевидно, U_n открыто и $U_n \subseteq U_{n+1}$ для всех n. Покажем, что $\bigcap_n F_n \neq \emptyset$. В самом деле, в противном случае выполнялось бы равенство $\bigcup_n U_n = X$, и из компактности X и возрастания U_n -ых следовало бы, что $U_N = X$ для некоторого N. Но тогда $F_N = \emptyset$, что невозможно. Следовательно, $\bigcap_n F_n \neq \emptyset$.

Зафиксируем произвольную точку $x \in \bigcap_n F_n$. Из включения $x \in F_1$ следует, что $\rho(x, x_{n_1}) < 1$ для некоторого $n_1 \in \mathbb{N}$. Далее, поскольку $x \in F_{n_1+1}$, мы можем найти число $n_2 > n_1$ так, чтобы $\rho(x, x_{n_2}) < 1/2$. Продолжая этот процесс, получим подпоследовательность (x_{n_k}) последовательности (x_n) , сходящуюся к x.

Доказательство оставшейся импликации (ii) \Longrightarrow (i) в теореме 17.5 проведем в четыре шага.

Лемма 17.9. Вполне ограниченное метрическое пространство сепарабельно.

Лекция 17 115

Доказательство. Если S_n — конечная 1/n-сеть в X, то множество $\bigcup_n S_n$ не более чем счетно и плотно в X.

Напомним, что семейство \mathscr{B} открытых множеств в топологическом пространстве X называется $\mathit{базой}$, если каждое открытое подмножество пространства X является объединением множеств из \mathscr{B} . Например, шары в метрическом пространстве образуют базу.

Лемма 17.10. Сепарабельное метрическое пространство имеет счетную базу.

Доказательство. Нетрудно проверить (проверьте!), что шары рациональных радиусов с центрами из счетного плотного подмножества образуют базу. □

Лемма 17.11. Пусть X — топологическое пространство со счетной базой. Тогда каждое открытое покрытие пространства X имеет не более чем счетное подпокрытие.

Доказательство. Пусть $\mathscr{U}-$ открытое покрытие пространства X и $\mathscr{B}-$ счетная база в X. Положим

$$\mathscr{B}_1 = \{B \in \mathscr{B} : B \subseteq U \text{ для некоторого } U \in \mathscr{U} \}.$$

Легко видеть, что \mathcal{B}_1 — не более чем счетное открытое покрытие пространства X. Для каждого $B \in \mathcal{B}_1$ зафиксируем произвольное множество $U_B \in \mathcal{U}$, содержащее B. Тогда $\{U_B : B \in \mathcal{B}_1\}$ — не более чем счетное подпокрытие покрытия \mathcal{U} .

Лемма 17.12. Секвенциально компактное метрическое пространство компактно.

Доказательство. Пусть \mathscr{U} — открытое покрытие пространства X. Применяя следствие 17.7 и леммы 17.9–17.11, мы видим, что \mathscr{U} имеет не более чем счетное подпокрытие. Не ограничивая общности, будем считать, что само \mathscr{U} не более чем счетно. Предположим, что из \mathscr{U} нельзя выбрать конечное подпокрытие, и для каждого $n \in \mathbb{N}$ выберем точку $x_n \in X \setminus \bigcup_{i \leqslant n} U_i$. Пусть (x_{n_k}) — подпоследовательность последовательности (x_n) , сходящаяся к точке $x \in X$. Поскольку \mathscr{U} — покрытие X, для некоторого $m \in \mathbb{N}$ имеем $x \in U_m$. С другой стороны, $x_{n_k} \notin U_m$, как только $n_k \geqslant m$. Это противоречит сходимости (x_{n_k}) к x и завершает доказательство.

Объединяя следствие 17.7, лемму 17.8 и лемму 17.12, получаем доказательство теоремы 17.5.

Следствие 17.13. Метрическое пространство вполне ограничено тогда и только тогда, когда его пополнение компактно.

Доказательство. Следует из предложения 17.4 и теоремы 17.5.

Напомним, что подмножество Y топологического пространства X называется *относительно компактным* в X, если замыкание Y в X компактно.

Следствие 17.14. Подмножество полного метрического пространства вполне ограничено тогда и только тогда, когда оно относительно компактно.