Relational Algebra

R & G, Chapter 4

Databases: the continuing saga

- When last we left databases...
 - We learned how to conceptually model them using ER diagrams
 - We learned how to logically model them using relational schemas
 - We learned how to translate ER diagrams to relational schemas

We're almost ready to use SQL to query it, but first...

Relational Query Languages

- Query languages: Allow manipulation and retrieval of data from a database.
- Relational model supports simple, powerful QLs:
 - Strong formal foundation based on logic.
 - Allows for optimization.
- Query Languages != programming languages!
 - QLs not intended to be used for complex calculations.
 - QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:

Relational Algebra: More operational, very useful for representing execution plans.

Relational Calculus: Lets users describe what they want, rather than how to compute it. (Non-procedural, declarative.)

We only cover Relational Algebra in CS442

Preliminaries

- A query is applied to relation instances, and the result of a query is also a relation instance.
 - Schemas of input relations for a query are fixed
 - The schema for the *result* of a given query is also fixed.
 - It is determined by the definitions of the query language constructs.

Relational Algebra: 5 Basic Operations

- 1. <u>Selection</u> (σ): Selects a subset of **rows** from relation (horizontal).
- 2. <u>Projection</u> (π): Retains only wanted **columns** from relation (vertical).
- 3. <u>Cross-product</u> (\times): Combine two relations.
- 4. <u>Set-difference</u> (): Return records in r1, but not in r2.
- *5.* <u>Union</u> (\cup): Return records in r1 and/or in r2.

Since each operation returns a relation, operations can be composed!

Example Instances R1

*S*2

Sid	Bid	day
22	101	10/10/96
58	103	11/12/96

Bid	Bname	Color
101	Interlake	Blue
102	Interlate	Red
103	Clipper	Green
104	Marine	red

Boats

S1	Sid	Sname	Rating	Age
)1	22	Dustin	7	45.0
	31	Lubber	8	55.5
	58	Rusty	10	35.5

Rating Sid **Sname** Age 28 9 35.0 Yuppy Lubber 8 31 55.5 35.0 Guppy 5 44 Rusty 58 10 35.5

Projection (π)

- Notation: $\pi_{A1,A2...Ak}^{(r)}$
 - where A1, ..., Ak are attributes (the projection list) and r is a relation.
- Retains attributes A1, ..., Ak that are in the "projection list".

• Examples: $\pi_{age}(S2)$;

$$\pi_{sname,rating}(S2)$$

Projection (π)

- *Schema* of result of $\pi_{A1,A2...Ak}^{(r)}$
 - Contains (A1, ...Ak)
- Projection operator has to eliminate duplicates
 (How do they arise? Why remove them?)
 - Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it.

Projection

Sid	Sname	Rating	Age
28	Yuppy	9	35.0
31	Lubber	8	55.5
44	Guppy	5	35.0
58	Rusty	10	35.5

S2

Sname	Rating
Yuppy	9
Lubber	8
Guppy	5
Rusty	10

$$\pi_{sname,rating}(S2)$$

Age	
35.0	
55.5	

$$\pi_{age}(S2)$$
(after duplicates elimination)

Selection (σ)

- Notation: $\sigma_{\mathbf{p}}(\mathbf{r})$
- Selects rows that satisfy selection condition p.
- Selection condition p
 - consisting of: connectives : ∧ (and), ∨ (or), ¬ (not)

And **predicates:**

- <attribute> op <attribute> or
- <attribute> op <constant>
- •op: <, <=, =, ≠, >=, >

Selection (σ)

- Selection result is a relation.
 - **Schema** of result is same as that of the input relation.
- Do we need to do duplicate elimination?

Selection (σ)

Sid	Sname	Rating	Age
28	Yuppy	9	35.0
31	Lubber	8	55.5
44	Guppy	5	35.0
58	Rusty	10	35.5

$$\sigma_{rating>8}(S2)$$

Selection (σ) and Projection (π)

- Order rule:
 - Projection is always applied AFTER selection.
 - Format:

$$\pi_{A1,A2...Ak} \sigma_{p}(r)$$

Example of Selection (σ) and Projection (π)

Sid	Sname	Rating	Age
28	Yuppy	9	35.0
31	Lubber	8	55.5
44	Guppy	5	35.0
58	Rusty	10	35.5

Sname	Rating
Yuppy	9
Rusty	10

$$\sigma_{rating>8}(S2)$$

$$\pi_{sname,rating}(\sigma_{rating} > 8^{(S2)})$$

Example (I)

Bid	Bname	Color
101	Interlake	Blue
102	Interlate	Red
103	Clipper	Green
104	Marine	red

Boats

Find the color of the boat named "Marine"

$$\pi_{color}(\sigma_{bname='Marine'}(Boats))$$

Example (II)

Sid	Sname	Rating	Age
22	Dustin	7	45.0
31	Lubber	8	55.5
58	Rusty	10	35.5

*S*1

 Find the name of the sailor whose rating is at least 8

$$\pi_{name}(\sigma_{rating>=8}(S1))$$

Union and Set-Difference

- All of these operations take two input relations, which must be <u>union-compatible</u>:
 - Same schema:
 - The same number of attributes;
 - Corresponding' attributes have the same type.

Union

• Notation: $R \cup S$

 Returns a relation instance containing all tuples that in either R or S (or both)

Sid	Sname	Rating	Age
22	Dustin	7	45.0
31	Lubber	8	55.5
58	Rusty	10	35.5

C	1
J	T

Sid	Sname	Rating	Age
28	Yuppy	9	35.0
31	Lubber	8	55.5
44	Guppy	5	35.0
58	Rusty	10	35.5

Sid	Sname	Rating	Age
22	Dustin	7	45.0
31	Lubber	8	55.5
58	Rusty	10	35.5
28	Yuppy	9	35.0
44	Guppy	5	35.0

Set Difference

- Notation: R S
- returns a relation instance containing all tuples that in R but not S.

Sid	Sname	Rating	Age
22	Dustin	7	45.0
31	Lubber	8	55.5
58	Rusty	10	35.5

Sid	Sname	Rating	Age		
22	Dustin	7	45.0		
S1-S2					

C	1
J	1

Sid	Sname	Rating	Age
28	Yuppy	9	35.0
31	Lubber	8	55.5
44	Guppy	5	35.0
58	Rusty	10	35.5

Sid	Sname	Rating	Age
28	Yuppy	9	35.0
44	Guppy	5	35.0

$$S2-S1$$

Q: Do we need to eliminate duplicate tuples from the set difference result?

Cross-Product

- Notation: **S** × **R**
- Each row of S paired with each row of R
- Q: How many rows in the result?
- Result schema has one field per field of S and R, with field names `inherited' if possible.
 - May have a naming conflict: Both S and R have a field with the same name.
 - In this case, can use the *renaming operator*. $\rho(C(S.sid \rightarrow sid1, R.sid \rightarrow sid2), S \times R)$
 - Q: How many attributes in the result?

Cross Product Example

sid	<u>bid</u>	day
22	101	10/10/96
58	103	11/12/96

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

R

S

	(S1.sid)	sname	rating	age	(R1.sid)	bid	day
	22	dustin	7	45.0	22	101	10/10/96
	22	dustin	7	45.0	58	103	11/12/96
RXS =	31	lubber	8	55.5	22	101	10/10/96
	31	lubber	8	55.5	58	103	11/12/96
	58	rusty	10	35.0	22	101	10/10/96
	58	rusty	10	35.0	58	103	11/12/96