

Lecture 17 Stackelberg games and bargaining

Thomas Marchioro

November 30, 2023

Previously on game theory

- Zero-sum games: games where players have opposite utility functions, i.e. $u_i(p) = -u_{-i}(p), \forall p \in \Delta S_i \times \Delta S_{-i}$
- Definitions:
 - Maximin_i: $\max_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i})$
 - $\mathsf{Maximin}_{i}^{p}$: $\mathsf{max}_{p_{i}} \mathsf{min}_{s_{-i}} u_{i}(p_{i}, s_{-i})$
 - Minimax_i: $\min_{s_{-i}} \max_{s_i} u_i(s_i, s_{-i})$
 - Minimax_i^p: min_{p-i} max_{si} $u_i(s_i, p_{-i})$
- Intuitions:
 - Maximin: imagine the opponent plays last
 - Minimax: imagine the opponent plays first

Previously on game theory

■ In general:

$$maximin \le maximin^p = minimax^p \le minimax$$

- Minimax theorem: In a zero-sum game with finitely many strategies
 - In pure strategies, if maximin=minimax for both players, then there is a pure NE with u(NE)=maximin=minimax
 - In mixed strategies, we know for a fact that $\max^p = u(NE)$ for every NE in mixed strategies

Previously on game theory

- To find NE in zero-sum games, you can model the minimax^p/maximin^p as a linear program
- Algorithm for minima x_i^p :
 - Draw the utility $u_i(s_i, p_{-i})$ of player i as a function of p_{-i} , for each possible pure strategy s_i of i
 - Consider all the possible values w such that $w \ge u_i(s_i, p_{-i})$
 - Choose the minimum value of w^* that satisfies all constraints
- That is the minimax_i^p, and the corresponding values of p_{-i} are the possible mixed strategies of player -i at the NE
- The lines/hyperplanes representing s_i that characterize the boundary at the minimax represent the support of p_i at the NE

Today on game theory

- Stackelberg games: turning static games into sequential games by making one player the "leader" and other players "followers"
 - \blacksquare Sequential games \to SPE is guaranteed to be played if players act rationally
- Bargaining: players need to choose how to split resources

Stackelberg games

Stackelberg games

- Proposed by Heinrich von Stackelberg (1934) to model incumbent vs outsider competition
- It is a sequential version of a static game (analogous to the sequential Battle of Sexes)
- Players move one after the other
- First player 1 (leader), then player 2 (follower)
- Can be represented again with a bi-matrix
- The outcome of backward induction is also called the Stackelberg equilibrium

Stackelberg game: Battle of the sexes

		В	
		R	S
_	R	2, 1	0, 0
_	S	0, 0	1, 2

- If A is the leader, the Stackelberg equilibrium is (R, R) with payoffs 2 and 1 for A and B
- If B is the leader, the Stackelberg equilibrium is (S, S) with payoffs 1 and 2 for A and B
- The leader has an advantage in Stackelberg games

■ If we treat this game as a normal static game, the only NE is (R, F) yielding payoff 2 to both Carl and Joe

Joe

3, 1

5. 4

4, 3

0, 0

6, 4

6. 2

Carl	R S
Ö	T

	Joe	
F	G	Н
2, 2	3, 1	0, 0
1, 6	5, 4	6, 4
0, 1	4, 3	6, 2

- If Carl is the leader, we can use backward induction
- However, we do not need to draw the tree, we can use the following algorithm
 - Step 1: maximize Joe's payoff across rows (find best responses)
 - Step 2: maximize Carl's payoff across the options selected by Joe

Carl	R S T

	Joe	
F	G	Н
2, 2	3, 1	0, 0
1, 6	5, 4	6, 4
0, 1	4, 3	6, 2

- The Stackelberg equilibrium is (T, G) yielding payoffs 4 and 3: an improvement over the NE
- The procedure is similar to the minimax but the outcome is different: the leader does not want to minimize the follower's payoff
 - The minimax for Joe here is 2

			Joe	
		F	G	Н
÷	R	2 , 2	3, 1	0, 0
Carl	S	1, 6	5, 4	6 , 4
	Т	0, 1	4, 3	6 , 2

- If Joe is the leader, we need to do the opposite: first we maximize Carl's payoff across rows and then we maximize Joe's payoff across Carl's choices
- However, we have a tie in the last column
- In normal sequential games, we just consider both options (and their combinations) in backward induction, leading to multiple SPE

_	R
Car	S
_	Т

	Joe	
F	G	Н
2 , 2	3, 1	0, 0
1, 6	5, 4	6, 4
0, 1	4, 3	6, 2

- In Stackelberg games, we would like a tie breaker to decide what players actually do in practice
- \blacksquare Assumption: generous follower \to in case of a tie, the follower maximizes the leader's payoff
- However now, we have a tie for Joe between G and H
- \blacksquare Assumption: generous leader \to in case of a tie, the leader maximizes the follower's payoff

_	R
Car	S
	Т

	Joe	
F	G	Н
2 , 2	3, 1	0, 0
1, 6	5, 4	6, 4
0, 1	4, 3	6, 2

- In Stackelberg games, we would like a tie breaker to decide what players actually do in practice
- \blacksquare Assumption: **generous follower** \to in case of a tie, the follower maximizes the leader's payoff
- However now, we have a tie for Joe between G and H
- Assumption: generous leader → in case of a tie, the leader maximizes the follower's payoff

Carl	R S T

	Joe	
F	G	Н
2, 2	3, 1	0, 0
1, 6	5, 4	6, 4
0, 1	4, 3	6, 2

- In this case, the Stackelberg equilibrium is (S, H), with payoffs 6 and 4 \rightarrow an even better outcome
- In general: at the Stackelberg equilibrium, both the leader and the follower are never worse compared to the Nash equilibrium
 - Main idea: the follower plays a best response, and the leader anticipates that

Stackelberg zero-sum games

		Even	
		0	1
ppO	0	-4, 4	4, -4
	1	4, -4	-4, 4

- In this game, if Odd is the leader and declares their move, that's an automatic loss
- Assumption: the leader has the option to not reveal their strategy (or to reveal a mixed strategy)
- Here, Stackelberg equilibrium = Nash equilibrium

Comments on Stackelberg

- The leader has the "first-move advantage"
 - lacktriangle His/her payoff in Stackelberg equilibrium \geq payoff in NE of the static game
- The follower is not necessarily worse off in Stackelberg equilibrium
 - In general, his/her payoff ≥ minimax

		В	
		R	S
⋖	R	2, 1	0, 0
	S	0, 0	1, 2

Comments on Stackelberg

- However, in adversarial/competitive setups (specifically, in zero-sum games), the leader being better off implies that the follower is worse off
- That might seem strange: the follower has more information
 - lacktriangle in this case, more information o lower payoff
 - consequence of rationality: player 1 can anticipate player's 2 knowledge and therefore his/her response

Dynamic bargain

Bargain

- Bargain = negotiation of resource sharing
- Assume two players need to split a given amount of resources
 - Player 1 gets a fraction x, player 2 gets 1-x
- Two main approaches
 - Nash bargaining (axiomatic, static)
 - Modeled as a dynamic game with alternate stages where players 1 and 2 switch proposer/responder roles

Dynamic bargain

- At stage t = 1: the proposer (P) is player 1, the responder (R) is 2
 - P proposes split (x, 1-x) and R can decide to accept or refuse. If R accepts, the game ends, otherwise they go to stage 2.
- At stage t = 2: P is 2, the R is 1.
 - As before, P proposes (x', 1-x') and R decides whether to accept or not. If R refuses, they go to stage 3.

:

- At a generic stage t: P is player 1 if t is odd, otherwise P is 2.
 - R accepts \Rightarrow game ends; R refuses \Rightarrow go to stage t + 1.
- Assumption: if disagreement persists after a deadline *T*, then they both get payoff 0.

Dynamic bargain

- If the game ends at stage 1 < t < T, both players get discounted payoff with δ^{t-1}
 - Intuition: for a same split (x, 1 x), players prefer to reach an agreement first
- If the deadline is T = 1 (either they agree immediately or the resources are wasted), this is called the **Ultimatum game**
 - All joint strategies with P proposing (x, 1-x) and R accepting and are NE
 - \blacksquare P proposing (1,0) and R accepting is the only SPE

SPE of dynamic bargain

- The Ultimatum game can be used to deduce the outcome of a generic dynamic bargain game
- This can be done via backward induction
 - lacksquare Suppose that the deadline is at stage T, with T odd
 - Then 1 is the last proposer and knows that 2 is going to accept any split. If stage T is reached, the game ends with payoffs $u_1 = \delta^{T-1}$; $u_2 = 0$
 - At round T-1, 2 is the proposer and can anticipate that by offering $x \ge \delta$. Of course, being rational, 2 chooses $x = \delta$: the game ends with payoffs $u_1 = \delta \cdot \delta^{T-2}$, $u_2 = (1 \delta) \cdot \delta^{T-2}$.
 - By iterating this reasoning, they can reach an agreement at stage 1 with payoffs

$$u_1 = \frac{1+\delta^T}{1+\delta}$$
 $u_2 = \frac{\delta-\delta^T}{1+\delta}$

SPE of dynamic bargain

- **Proposition**: Any SPE of the dynamic bargaining game must have the players reaching an agreement in the first round
 - Simply a consequence of backward induction
 - Iterating the game: (i) wastes reward because of the discount;
 (ii) sends the players to another round of proposer-responder,
 which rational players want to avoid
- Note: this is not a repeated game because of the termination option (in a multistage game, players always play all stages, which must give independent payoffs)

Infinite dynamic bargain

- Interestingly, this reasoning applies even to infinite horizon
 - Backward induction does not work, but player still have incentive not to waste resources
- For $T \to \infty$,

$$u_1 = \frac{1}{1+\delta} \qquad u_2 = \frac{\delta}{1+\delta}$$

which for $\delta o 1$ approaches an equal split

Also in the infinite-horizon case, we can prove that any SPE requires players to reach an agreement in the first round

Infinite dynamic bargain

- Still, we need to prove that the SPE is unique (without resorting to backward induction)
- Intuition: this can be proven by contradiction
 - Assume that there is more than one SPE
 - We know that in all SPE players agree on the first round, so the difference must be in the payoffs
 - Suppose that the best for 1 yields payoff v_1 and the worst yields payoff w_1
 - Player 2 gets the remaining part, so either $1 v_1$ or $1 w_1$
 - If stage 2 is reached, 2 can either get $v_2 = \delta v_1$ or $w_2 = \delta w_1$ (same infinite game, but with reversed roles)
 - That means that the split proposed by player 1 at stage 1 should be $1 v_1 = \delta v_1$ or $1 w_1 = \delta w_1$
 - In both cases, that leads to $v_1 = w_1 = \frac{1}{1+\delta}$

Send me questions via e-mail