Andrew Neuman

Skin Lesion Identification

What is the project about?

- The goal of the project is to accurately classify images of different skin lesions.
- Some of the lesions are cancerous while others are not.

Why is it interesting?

- Wait times to see a dermatologists can be over a year.
- Hope to develop something that might be able to be used as a prescreening tool.
- Ease nerves of people while they wait to see a specialist.

Dataset

Class Imbalance

Abbreviation	Full
NV	Melanocytic nevus
MEL	Melanoma
BCC	Basal cell carcinoma
BKL	Benign keratosis
AK	Actinic keratosis
SCC	Squamous cell carcinoma
VASC	Vascular lesion
DF	Dermatofibroma

Dealing with Imbalanced Data

- Image augmentation is used to balance the dataset.
- Augmentations were selected that a Doctor could expect to see in practice.
- For instance, rotated images, flipped images, or slightly blurred images.

Sample of Augmentation Code

```
import torch
import torchvision
from torchvision import datasets, transforms
from torchvision.transforms import v2
# Info about augmentation https://pytorch.org/vision/main/transforms.html
transforms = v2.Compose([
    v2.RandomHorizontalFlip(0.5),
    v2.RandomVerticalFlip(0.5),
    v2.RandomApply(transforms=[v2.RandomAdjustSharpness(sharpness factor=2)], p=0.5),
    v2.RandomApply(transforms=[v2.RandAugment()], p=0.5),
    v2.RandomApply(transforms=[v2.RandomRotation(degrees=(0, 360))], p=0.6),
    v2.RandomApply(transforms=[v2.GaussianBlur(kernel size=(5, 9), sigma=(0.1, 5.))], p=0.5),
```


Problem Formulation

- Training set: Perfectly balanced using image augmentation.
- Validation/Testing set: Still imbalanced. Want these to represent the true sample.
- Various image sizes cut down to images of only size 1024x1024.
- Model: InceptionV3, fully trained
- Fine-tuned hyperparameters:

• Epochs: 20

• Learning Rate: 0.0001

• Batch Size: 16

Weight Decay: 0.001

• Learning rate decay scheduler: 0.1 every 7 epochs

Optimizer: Adam

Results Training and Validation

Results Testing – Confusion Matrix

Results Testing – Classification Report

	precision	recall	f1-score	support
0	0.63	0.74	0.68	200
1	0.70	0.70	0.70	200
2	0.74	0.67	0.71	200
3	0.65	0.72	0.69	147
4	0.80	0.56	0.66	200
5	0.66	0.88	0.75	24
6	0.67	0.82	0.73	22
7	0.58	0.69	0.63	86
accuracy			0.68	1079
macro avg	0.68	0.72	0.69	1079
weighted avg	0.70	0.68	0.68	1079

Conclusion

- These results are not as good as I had hoped for.
- Great learning experience.
- Very humbling.
- Still lots to learn.
- Not done working on it yet.
- Will continue to work on it until it is in a deployable state.