

High-Obliquity Impact of a Compact Penetrator on a Thin Plate: Penetrator Splitting and Adiabatic Shear

by J. W. Walter and P. W. Kingman

ARL-TR-1584 January 1998

19980202 041

DIAC QUALITY INSPICATED 3

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory

Aberdeen Proving Ground, MD 21005-5066

ARL-TR-1584

January 1998

High-Obliquity Impact of a Compact Penetrator on a Thin Plate: Penetrator Splitting and Adiabatic Shear

J. W. Walter, P. W. Kingman Weapons and Materials Research Directorate, ARL

DITC QUALITY ENERGYED 3

Approved for public release; distribution is unlimited.

Abstract

Computational simulations were performed of the impact of a compact, nonideal penetrator on a thin plate at high obliquities. These computations simulated two series of experiments at velocities of 1.5 km/s and 4.1 km/s, respectively, with obliquities of 55–70°.

The experimental results indicated penetrator splitting at obliquities between 55 and 65°. Preliminary three-dimensional simulations with the CTH code, using either maximum tensile stress failure or the Johnson-Cook model, captured some aspects of fragment splitting but in a less than satisfactory manner. Simulations utilizing the Silling shear band model were also performed, with somewhat more realistic results.

In addition to graphical descriptions of the target hole geometry and debris cloud, numerical histories of the target hole area and up-range/down-range partitioning of mass, momentum, and energy were extracted for comparison with the experiments.

Acknowledgment

This work was supported in part by the U.S. Army CORPSAM Project Office.

INTENTIONALLY LEFT BLANK.

Table of Contents

		Page
	Acknowledgment	iii
	List of Figures	vii
	List of Tables	vii
1.	Introduction	1
2.	Experimental Motivation	1
3.	Simulation Methodology	2
4.	Results of Simulations	6
5.	Discussion	12
6.	References	17
	Distribution List	19
	Report Documentation Page	29

INTENTIONALLY LEFT BLANK.

List of Figures

<u>Figure</u>		<u>Page</u>
1.	Computational Domain for $\theta = 55^{\circ}$ Showing Symmetry Plane at $y = 0 \dots$	3
2.	Combined Effects of Obliquity, θ , and Rotation, ϕ , on Debris Cloud Evolution at 4.1 km/s and 26 μ s; Impact Velocity Vector Lies in x-z Plane	7
3.	Time History of the Penetrator Mass Fraction Exiting the Bottom of the Target at 4.1 km/s	11
4.	Time History of Target Hole Area Normalized by Sphere-Equivalent Penetrator Area at 4.1 km/s.	11
5.	Central Section (y = 0) Plots at 1.5 km/s, 60 µs, and 60° Obliquity Showing Effect of Penetrator Material Failure Model on Fragmentation	13
6.	Behavior of the Two-Dimensional (2D) Explicit Shear Band Model at 1.5 km/s, 24 μs	14
	List of Tables	
1.	Summary of Three-Dimensional (3D) Simulations Performed for UAH Shots	4
2.	Summary of 3D Simulations Performed for ARL Shots	4

INTENTIONALLY LEFT BLANK.

1. Introduction

A generic problem arising in penetration mechanics is the impact of a compact, nonideal penetrator on a thin plate or shell at high obliquity. We are concerned generally with impacts for which $\theta \geq 55^\circ$, 1.5 km/s $\leq V \leq 5$ km/s, t/d < 1, 1/d < 3, where θ is the obliquity, V the impact speed, t the plate thickness, and I and d the penetrator length and diameter. Ballistic impact under these conditions has been studied relatively little as compared with the large volume of extant work concerned with rigid penetrators and/or low obliquities. Consequently, analytic penetration/debris models and algorithms that are acceptably accurate for encounter conditions of the latter sort may not be so for those considered here. High-obliquity impact on thin targets may produce very asymmetric debris clouds, whereas current penetration algorithms often assume the debris cloud is axisymmetric. Moreover, in thin-target impacts, the relative strength of shear loading as compared with pressure loading increases dramatically at high obliquity so that the operative material failure mechanisms may be quite different from those that apply at the same impact speed but low obliquity.

The work reported herein represents our preliminary effort to include in numerical simulations some of the critical material failure mechanisms which we believe underlie the complex penetration phenomena observed experimentally for encounter conditions described in the previous paragraph. Therefore, we restrict attention to a single prismatic penetrator and single-element target configuration. Geometric variation is primarily with respect to obliquity; we also present results arising from combined effects of penetrator obliquity, θ , and rotation about the shot line, ϕ . Because this study is exploratory, we restrict attention to impact speeds near the extrema of the test matrix.

2. Experimental Motivation

Our simulations were motivated by two series of experiments. The first series was performed at the University of Alabama-Huntsville (UAH) Light Gas Gun for the U.S. Army Missile Command (MICOM); we received a summary of the experiments from Mr. Mike Cole of MICOM. In all shots, the penetrator was a $1.4 \times 2 \times 2$ cm rectangular prism of 4130 steel (density 7.9 g/cm³, mass 44.2 g)

hardened to Rockwell C43. The target was a $0.476 \times 150 \times 300$ cm plate of 304 stainless steel. In the experiments, the penetrator orientation (pitch, yaw and 0) varied widely. Rather than attempting to match the geometry of each shot exactly, we performed simulations at each combination of (V, θ) represented in the experiments; at the extreme values of (V, θ) we also varied 0. Figure 1 illustrates the initial geometry used in the simulations. The penetrator faces are parallel and perpendicular to the shot line, and it travels to the right and down. Note that in all the simulations y = 0 is exploited as a symmetry plane. Table 1 summarizes the matrix of simulations for the UAH shots.

A similar series of experiments were conducted (Bjerke, Luther, and Scheffler 1994) at the U.S. Army Research Laboratory (ARL) (also for MICOM) in which the same penetrator impacted a laminate target at $V \approx 2.2\,$ km/s and $55^\circ \le \theta \le 70^\circ$; yaw and pitch at impact were negligible. The ARL target consisted of a thin, (t $\approx 1.5\,$ cm), mild steel layer in front, a middle layer of very low-density material, and finally the same stainless plate used in the UAH experiments. For obliquities between 55° and 65° , the penetrator split so that a substantial fragment penetrated the target (and was captured in a witness pack), while other large fragments ricocheted down the front surface of the target. Similar behavior has also been observed for mild steel cube and sphere penetrators against single mild steel and stainless steel plates (Finnegan et al. 1993; Finnegan and Schulz 1992). It appears that this *splitting* mode of penetration is not due primarily to the laminate nature of the ARL target but is dependent upon material strength-related failure mechanisms. In particular, the larger penetrator fragments retained sharp edges and appeared to have suffered little gross plastic deformation. Thus, we chose to examine this phenomenon with simulations at low velocity (V = 1.5 km/s, ϕ = 0) and the same obliquities as in the UAH series. However, we employed several different material models for the penetrator, as noted in Table 2.

3. Simulation Methodology

All simulations were performed with the Eulerian wavecode, CTH (McGlaun and Thompson 1990). The SESAME Mie-Grüneisen EOS model and parameter values for 304 stainless steel were used for the target plate. The deviatoric response was modeled with an elastic-perfectly plastic

Figure 1. Computational Domain for $\theta = 55^{\circ}$ Showing Symmetry Plane at y = 0. (a) Shot Line Rotation $\phi = 45^{\circ}$. Pitch and Yaw Relative to the Shot Line Are Always Zero.

Table 1. Summary of Three-Dimensional (3D) Simulations Performed for UAH Shots

ID	q	w	g	е	m	k	b	r	С	d	a	v
V (km/s)	4.16	4.16	4.19	4.10	4.16	4.16	3.19	3.19	3.12	3.07	3.11	3.11
θ (deg.)	55	55	60	65	70	70	55	55	60	65	70	70
φ (deg.)	0	45	0	0	0	45	0	45	0	0	0_	45

Table 2. Summary of 3D Simulations Performed for ARL Shots

ID	θ (deg.)	Penetrator Material Model
x	60	Johnson-Cook flow and failure, $e^{pf} = 0.6$.
z	60	Johnson-Cook flow and failure, $e^{pf} = 0.15$.
0	60	Elastic-perfectly plastic, fracture stress = 1.5 Y ₀ .
1	60	Elastic-perfectly plastic, fracture stress = 0.375 Y_0 .
3	55	Elastic-perfectly plastic, fracture stress = 1.5 Y ₀ .
4	65	Elastic-perfectly plastic, fracture stress = 1.5 Y_0 .
5	70	Elastic-perfectly plastic, fracture stress = $1.5 Y_0$.

(EPP), von Mises yield surface with low-density and high-temperature strength reduction (EPP); the initial yield strength Y_{02} = 0.34 GPa was obtained from the Steinberg-Guinan-Lund viscoplasticity model database distributed with CTH. In all UAH simulations, the penetrator was also treated with the Mie-Grüneisen EOS (using parameter values for Vascomax-250 steel) and the EPP strength model. The initial yield strength Y_{01} = 1.16 GPa was obtained by converting the measured R_c hardness to Brinell (BHN 400) and using a handbook value for oil-quenched and tempered 4130 steel (Brades 1978).

An important factor in the use of CTH is the numerical fracture algorithm. Since strength effects were believed significant in the experiments, we used the maximum principal stress criterion,

 $p_f = \max\left(0, \sigma_{max}^d - \sigma_f\right)$, in which σ_f is the smallest (user input) tensile *fracture stress* in the cell, σ_{max}^d the maximum principal deviatoric stress, and p_f is the cell *fracture pressure*. If the cell pressure falls below p_f , void is introduced to raise the pressure. Use of an experimentally determined spall strength for the fracture stress may not produce good results in all problems; no fracture stress values are supplied in the CTH material libraries. As a baseline value we used $\sigma_f = 1.5 \ Y_0$ for both materials. The yield strength for mixed cells is given by a volume average over the materials with strength (void volume is not counted). The penetrator-target interface is treated as a contact (continuous velocity). All 3D simulations used a uniform space mesh of 0.075-cm cubes; the mesh and target are longer in the x-direction than indicated in Figure 1.

The Johnson-Cook flow law and failure models (Johnson and Cook 1985) were used for some of the 3D ARL simulations and with the explicit shear band calculations. The flow stress is given by

$$\sigma = \left[A + B(\epsilon^p)^n\right] \left[1 + C\ln(\max(1, \dot{\epsilon}))\right] \left[1 - T^{*m}\right], \tag{1}$$

where ϵ^p is the equivalent plastic strain, $\dot{\epsilon}$ the strain rate and T * the homologous temperature. The equivalent plastic strain at failure is given by

$$\epsilon^{pf}\left(p,\sigma,T^*,\dot{\epsilon}\right) = \left[D_1 + D_2\left(-D_3p/\sigma\right)\right]\left[1 + D_4\ln(\max(1,\dot{\epsilon}))\right]\left[1 + D_5T^*\right], \quad (2)$$

where p is the pressure and D_1 , ..., D_5 are constants. Damage accumulates according to $D = \int (e^{pf})^{-1} de^p$; failure occurs when D = 1, at which point (in CTH) the stress deviator and fracture stress, p_f , are set to zero. Material constants were obtained by taking published values for 4340 steel and adjusting A, B, D_1 , D_2 so that the yield strength, ultimate strength and e^{pf} in a quasistatic tension test matched handbook values (Brades 1978) for the penetrator.

4. Results of Simulations

The UAH results are typified by Figure 2. The flow is pressure-dominated and results in considerable fragmentation, although large sections of the debris bubble are still intact. The rotation, ϕ , has a mild effect on the bubble at $\theta = 55^{\circ}$ but a much stronger effect at 70° . In both cases the edge strike produces a considerably stronger initial shock, which contributes to debris bubble asymmetry. Although little penetrator mass has traveled downrange at 70° , the plate is perforated nonetheless; in all cases, the target hole is still growing at $26 \,\mu s$. At 65° and 70° , a large section of plate has been accelerated and deformed by the penetrator, but it is unclear whether these areas will ultimately fragment, tear off as intact petals, or remain attached. Shearing-induced flow instabilities appear to influence the fragmentation significantly, but mesh size dependence of this aspect of the simulations has not yet been explored. Note that although initial shock pressures at $\theta = 55^{\circ}$ approach 50 GPa (not shown) the impact geometry results in poor focusing of release waves, so there is essentially no shatter of the penetrator. Apparently for the same reason, the well-known $\alpha - \epsilon$ phase transition at 13 GPa has no significant effect. By using the CTHED post-processor to sum material masses over subregions of the computational domain, the uprange/downrange partitioning of penetrator mass and target hole growth can be calculated as in Figures 3 and 4.

Figure 5 shows the effect of varying the material failure model at 1.5 km/s. The penetrator fragments in all cases, but only after suffering very extensive plastic deformation, contrary to the experimental results of Bjerke, Luther, and Scheffler (1994). Tensile stresses occur because the penetrator material is flowing laterally against the target. The Johnson-Cook model does not encourage fragmentation, because plastic strain must be accompanied by significant tension in order that damage may accumulate rapidly. During early shock release wave interaction, there is little plastic strain and at later times (as in this figure) the tensile stresses are weak.

To obtain better fragmentation behavior, we have also employed in two dimensions a model intended to capture effects of *adiabatic shear band* formation (Silling 1992). In our version, shear bands are assumed to nucleate (at preassigned locations identified by *Lagrangian tracer particles*)

Figure 2. Combined Effects of Obliquity, θ , and Rotation, ϕ , on Debris Cloud Evolution at 4.1 km/s and 26 µs; Impact Velocity Vector Lies in x-z Plane. Plot Volumes Are $9 \times 9 \times 9$ cm, Centered at (x, y, z) = (4.5, 4.5, -2.5). ID = q: V = 4.16 km/s,

Figure 2. Combined Effects of Obliquity, θ , and Rotation, ϕ , on Debris Cloud Evolution at 4.1 km/s and 26 µs; Impact Velocity Vector Lies in x-z Plane. Plot Volumes Are $9 \times 9 \times 9$ cm, Centered at (x, y, z) = (4.5, 4.5, -2.5). ID = w: V = 4.16 km/s, $\theta = 55^{\circ}, \, \varphi = 45^{\circ} \, (continued).$

Figure 2. Combined Effects of Obliquity, θ, and Rotation, φ, on Debris Cloud Evolution at 4.1 km/s and 26 μs; Impact Velocity Vector Lies in x-z Plane. Plot Volumes Are 9 × 9 × 9 cm, Centered at (x, y, z) = (4.5, 4.5, -2.5). ID = m: V = 4.16 km/s, θ = 70°, φ = 0° (continued).

Figure 2. Combined Effects of Obliquity, θ, and Rotation, φ, on Debris Cloud Evolution at 4.1 km/s and 26 μs; Impact Velocity Vector Lies in x-z Plane. Plot Volumes Are 9 × 9 × 9 cm, Centered at (x, y, z) = (4.5, 4.5, -2.5). ID = k: V = 4.16 km/s, θ = 70°, φ = 45° (continued).

Figure 3. Time History of the Penetrator Mass Fraction Exiting the Bottom of the Target at 4.1 km/s.

Figure 4. Time History of Target Hole Area Normalized by Sphere-Equivalent Penetrator Area at 4.1 km/s.

when the equivalent plastic strain, ϵ^p , reaches an assigned value, ϵ_{init} . Each nucleator spawns four shear band tips that propagate at speed v_g in the directions of maximum shear stress if ϵ^p exceeds another value $\epsilon_{prop} < \epsilon_{init}$ in the CTH cell containing the band tip. When the tip moves to a new cell, a tracer is inserted and the stress deviator set to zero. On the time scale of our simulations, shear bands are hot and thus weak in tension as well as shear. To account for this, we use (2) with $D_1 = 1$ and $D_2 = ... = D_5 = 0$, so that when $\epsilon^p \ge 1$, $p_f = 0$. The results in Figure 6 were obtained with $v_g = 2$ km/s, $\epsilon_{init} = 0.3$, $\epsilon_{prop} = 0.05$. In spite of the crude shear band kinetics currently employed, the model does capture a crucial feature of the ARL experiments: the penetrator fractures without the individual fragments having first suffered large plastic deformation. This is particularly evident at the higher obliquities. Among several improvements we intend to make to the physics in this model are:

- a. Directly modify the fracture pressure in shear-banded cells [rather than use equation (2)] to prevent nonphysical softening in unbanded cells.
- b. Allow partial rather than total loss of shear strength in banded cells using results from one-dimensional (1D) analyses of adiabatic shear bands (Walter 1992; Wright 1995).
 - c. Allow random band nucleation with spacing determined from 1D analyses (Wright 1995).

5. Discussion

This work is part of an ongoing effort within the Weapons and Materials Research Directorate to provide improved analytical modeling of high-obliquity impacts. In achieving this end, direct simulation with wavecodes is a critical adjunct to experimentation, provided the simulations include appropriate models for operative material flow and failure mechanisms. In order to maximize the utility of these simulations, one further capability that is required is a statistical description of the debris evolution. This sort of information has traditionally not been available from wavecodes and the current version of CTH is no exception. At present, the CTHED post-processor can sum mass

on Fragmentation. (See Table 2 for Parameter Values.) Tensile Fracture Stress, σ_n, in (c) Is 1/4 That in (a), Johnson-Cook Failure Strain, ε^{pt}, in (d) Is 1/4 That in (b). Baseline Target Plate Material Parameters Are Used in All Cases. Figure 5. Central Section (y = 0) Plots at 1.5 km/s, 60 µs, and 60° Obliquity Showing Effect of Penetrator Material Failure Model

Figure 6. Behavior of the Two-Dimensional (2D) Explicit Shear Band Model at 1.5 km/s and 24 µs. The Black Curves Running Through the Darker Penetrator Material Are the Shear Bands. The Bands Nucleated From Three Tracers Along the Short Edge and Five Along the Long Edge Meeting at the Penetrator Vertex That First Impacted the Target. (a) Obliquity = 60°; (b) Obliquity = 65°.

Figure 6. Behavior of the Two-Dimensional (2D) Explicit Shear Band Model at 1.5 km/s and 24 µs. The Black Curves Running Through the Darker Penetrator Material Are the Shear Bands. The Bands Nucleated From Three Tracers Along the Short Edge and Five Along the Long Edge Meeting at the Penetrator Vertex That First Impacted the Target. (c) Obliquity = 70°; (d) Obliquity = 75° (continued).

over rectangular subregions of the mesh, but more detailed information is not available. More fundamentally, the fragment size produced by the numerical fracture algorithm is generally dependent on the size of the computational cells, although the overall distributions of mass, energy, etc., are less strongly affected by the mesh.

In conclusion, we have presented results that indicate a significant effect of penetrator shape on the debris cloud at high velocity and obliquity. At lower velocity, we have shown that a crude adiabatic shear band model can account for experimentally observed penetrator splitting and that simpler failure models do not.

6. References

- Bjerke, T. W., L. A. Luther, and D. R. Scheffler. "Single Fragment Impact With Laminate Targets." ARL-MR-132, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, 1994.
- Brades, B. P. (ed.). Metals Handbook: 9th edition. Vol. 1, p. 422, 1978.
- Finnegan, S. A., L. F. Dimaranan, O. E. R. Heimdahl, and J. K. Pringle. "A Study of Obliquity Effects on Perforation and Ricochet Processes in Thin Plates Impacted by Compact Penetrators." *Proceedings of the 14th International Symposium on Ballistics*, Quebec Canada, 1993.
- Finnegan, S. A., and J. C. Schulz. "Fragmentation Processes for High-Velocity Impacts." *Shock-Wave and High-Strain-Rate Behavior in Materials*. New York: Marcel Dekker, pp. 705–712, edited by M. A. Meyers, L. E. Murr, and K. R. Staudhammer, 1992.
- Johnson, G. R., and W. H. Cook. "Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures." *Engineering Fracture Mechanics*, vol. 21, pp. 31–48, 1985.
- McGlaun, J. M., and S. L. Thompson. "CTH: A Three-Dimensional Shock Wave Physics Code." *Journal of Impact Engineering*, vol. 10, pp. 351–360, 1990.
- Silling, S. A. "Shear Band Formation and Self-Shaping in Penetrators." SAND92-2692, Sandia National Laboratory, Albuquerque, NM, 1992.
- Walter, J. W. "Numerical Experiments on Adiabatic Shear Band Formation in One Dimension." *International Journal of Plasticity*, vol. 8, pp. 657–693, 1992.
- Wright, T. W. "Scaling Laws for Adiabatic Shear Bands." To appear in the *International Journal of Solids and Structures*, vol. 32, pp. 2745–2750, 1995.

INTENTIONALLY LEFT BLANK.

- 2 DEFENSE TECHNICAL INFORMATION CENTER DTIC DDA 8725 JOHN J KINGMAN RD STE 0944 FT BELVOIR VA 22060-6218
- 1 HQDA
 DAMO FDQ
 DENNIS SCHMIDT
 400 ARMY PENTAGON
 WASHINGTON DC 20310-0460
- 1 DPTY ASSIST SCY FOR R&T SARD TT F MILTON RM 3EA79 THE PENTAGON WASHINGTON DC 20310-0103
- 1 OSD
 OUSD(A&T)/ODDDR&E(R)
 J LUPO
 THE PENTAGON
 WASHINGTON DC 20301-7100
- 1 CECOM
 SP & TRRSTRL COMMCTN DIV
 AMSEL RD ST MC M
 H SOICHER
 FT MONMOUTH NJ 07703-5203
- 1 PRIN DPTY FOR TCHNLGY HQ US ARMY MATCOM AMCDCG T M FISETTE 5001 EISENHOWER AVE ALEXANDRIA VA 22333-0001
- 1 PRIN DPTY FOR ACQUSTN HQS
 US ARMY MATCOM
 AMCDCG A
 D ADAMS
 5001 EISENHOWER AVE
 ALEXANDRIA VA 22333-0001
- 1 DPTY CG FOR RDE HQS
 US ARMY MATCOM
 AMCRD
 BG BEAUCHAMP
 5001 EISENHOWER AVE
 ALEXANDRIA VA 22333-0001

NO. OF COPIES ORGANIZATION

- 1 INST FOR ADVNCD TCHNLGY THE UNIV OF TEXAS AT AUSTIN PO BOX 202797 AUSTIN TX 78720-2797
- 1 USAASA MOAS AI W PARRON 9325 GUNSTON RD STE N319 FT BELVOIR VA 22060-5582
- 1 CECOM PM GPS COLS YOUNG FT MONMOUTH NJ 07703
- 1 GPS JOINT PROG OFC DIR COL J CLAY 2435 VELA WAY STE 1613 LOS ANGELES AFB CA 90245-5500
- 1 ELECTRONIC SYS DIV DIR CECOM RDEC J NIEMELA FT MONMOUTH NJ 07703
- 3 DARPA L STOTTS J PENNELLA B KASPAR 3701 N FAIRFAX DR ARLINGTON VA 22203-1714
- 1 USAF SMC/CED DMA/JPO M ISON 2435 VELA WAY STE 1613 LOS ANGELES AFB CA 90245-5500
- 1 US MILITARY ACADEMY
 MATH SCI CTR OF EXCELLENCE
 DEPT OF MATHEMATICAL SCI
 MDN A MAJ DON ENGEN
 THAYER HALL
 WEST POINT NY 10996-1786
- 1 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL CS AL TP
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145

- 1 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL CS AL TA
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145
- 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL CI LL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145

ABERDEEN PROVING GROUND

4 DIR USARL AMSRL CI LP (305)

- 3 COMMANDER
 US ARMY ARDEC
 AMSTA AR FSA E
 W P DUNN
 J PEARSON
 E BAKER
 PICATINNY ARSENAL NJ
 07806-5000
- 1 COMMANDER
 USA STRATEGIC DEFNS CMD
 CSSD H LL T CROWLES
 HUNTSVILLE AL 35807-3801
- 2 COMMANDER
 US ARMY MICOM
 AMSMI RD ST WF
 D LOVELACE
 M SCHEXNAYDER
 REDSTONE ARSENAL AL
 35898-5250
- 1 MIS DEFNS & SPACE TECH CSSD SD T K H JORDAN PO BOX 1500 HUNTSVILLE AL 34807-3801
- 4 COMMANDER
 US ARMY BELVOIR RD&E CTR
 STRBE NAE B WESTLICH
 STRBE JMC T HANSHAW
 STRBE NAN
 S G BISHOP
 J WILLIAMS
 FORT BELVOIR VA
 22060-5166
- 2 COMMANDER
 US ARMY RSRCH OFFC
 K IYER
 J BAILEY
 PO BOX 12211
 RESEARCH TRIANGLE PARK NC
 27709-2211
- 1 NVL RSRCH LABORATORY A E WILLIAMS CODE 6684 4555 OVERLOOK AVE SW WASHINGTON DC 20375

NO. OF COPIES ORGANIZATION

- 1 DIRECTOR
 NAVAL CIVIL ENGRNG LAB
 J YOUNG CODE L56
 PORT HUENEME CA 93043
- 1 NAVAL AIR WARFARE CTR S A FINNEGAN PO BOX 1018 RIDGECREST CA 93556
- 3 COMMANDER
 NAVAL WEAPONS CTR
 T T YEE CODE 3263
 D THOMPSON CODE 3268
 W J MCCARTER CODE 6214
 CHINA LAKE CA 93555
- 12 COMMANDER **NVL SURFACE WARFARE CTR** DAHLGREN DIVISION **H CHEN** D L DICKINSON CODE G24 C R ELLINGTON C R GARRETT CODE G22 W HOLT CODE G22 R MCKEOWN W MORTON JR J M NELSON M J SILL CODE H11 W J STROTHER A B WARDLAW JR L F WILLIAMS CODE G33 17320 DAHLGREN RD **DAHLGREN VA 22448**
- 5 AIR FORCE ARMAMENT LAB
 AFATL DLJW
 W COOK
 M NIXON
 AFATL DLJR J FOSTER
 AFATL MNW
 LT D LOREY
 R D GUBA
 EGLIN AFB FL 32542

- 13 COMMANDER NVL SURFACE WARFARE CTR D TASKER CODE 9220 W WILSON P C HUANG CODE G402 **B A BAUDLER CODE R12** R H MOFFETT CODE R12 R GARRETT CODE R12 T L JUNGLING CODE R32 R DAMINITY CODE U43 J P MATRA P WALTER L MENSI K KIDDY F J ZERILLI 10901 NEW HAMPSHIRE AVE
- 1 USAF PHILLIPS LABORATORY PL WSCD FIROOZ ALLAHDADI 3550 ABERDEEN AVE SE KIRTLAND AFB NM 87117-5776

SILVER SPRING MD

20903-5000

- 5 WRIGHT LABS
 MNMW JOEL W HOUSE
 ARMAMENT DIRECTORATE
 STE 326 B1
 R D HUNT
 B MILLIGAN
 B C PATTERSON
 W H VAUGHT
 101 W EGLIN BLVD
 EGLIN AFB FL 32542-6810
- DIRECTOR
 LANL
 D MANDELL
 J V REPA MS A133
 E J CHAPYAK MS F664
 J DIENES MS B214
 D SHARP MS B213
 L MARGOLIN MS D413
 P HOWE MS P915
 L SCHWALBE
 J GROVE MS B220
 M GITTINGS MS B220
 PO BOX 1663
 LOS ALAMOS NM 87545

NO. OF COPIES ORGANIZATION

- 5 DIRECTOR
 LLNL
 R E TIPTON L35
 D BAUM L35
 G POMYKAL L178
 A HOLT L290
 BMDO R M HALL
 PO BOX 808
 LIVERMORE CA 94550
- 7 DIRECTOR
 SANDIA NATL LABS
 E S HERTEL JR MS 0819
 A ROBINSON MS 0819
 L N KMETYK MS 0819
 R BRANNON MS 0820
 M KIPP DIV 1533
 P YARRINGTON DIV 1533
 M FORRESTAL DIV 1551
 PO BOX 5800
 ALBUQUERQUE NM 87185
- 3 ENERGETIC MTRLS RSCH
 CTR/DOE
 NEW MEXICO INST OF
 MINING AND TECH
 D J CHAVEZ
 L LIBERSKY
 F SANDSTROM
 CAMPUS STATION
 SOCORRO NM 87801
- 1 MIT LINCOLN LAB ARMY SCIENCE BOARD W M KORNEGAY 244 WOOD ST RM S2 139 LEXINGTON MA 02173
- 3 BROWN UNIVERSITY
 DIV OF ENGINEERING
 R CLIFTON
 B FREAND
 A NEEDLEMAGA
 PROVIDENCE RI 02912

NO. OF NO. OF **COPIES ORGANIZATION** COPIES ORGANIZATION CALTECH UNIV OF DAYTON RSCH INST **T J AHRENS MS 252 21** W KNAUSS MS 105-50 N BRAR **G RAVICHANDRAN MS 105-50** A PIEKUTOWSKI 1201 E CALIFORNIA BLVD 300 COLLEGE PARK PASADENA CA 91125 DAYTON OH 45469-0182 **GEORGIA INST OF TECH** UNIV OF MARYLAND SCHOOL OF MATL SCIENCE **DEPT OF MECH ENGNR** AND ENGINEERING R ARMSTRONG K LOGAN J DALLY ATLANTA GA 30332-0245 COLLEGE PARK MD 20742 JOHNS HOPKINS UNIV 1 **UNIV OF TEXAS DEPT OF MECH ENGR DEPT OF MECH ENGNR** LATROBE HALL **E P FAHRENTHOLD** A DOUGLAS **AUSTIN TX 78712** K RAMESH 34TH AND CHARLES ST 1 NORTH CAROLINA STATE **BALTIMORE MD 21218** UNIVERSITY **DEPT OF MECH AND** SOUTHWEST RSRCH INST **AEROSPACE ENGINEERING** C ANDERSON M ZIKRY J WALKER RALEIGH NC 27695 **PO DRAWER 28510** SAN ANTONIO TX 78284 VIRGINIA POLYTECHNIC **INST UC SAN DIEGO** COLLEGE OF ENGNR **DEPT APPL MECH AND ENG** R BATRA SVCS R011 **BLACKSBURG VA 24061-0219** S NEMAT-NASSER M MEYERS 3 **ALLIANT TECH SYS INC** LA JOLLA CA 92093-0411 T HOLMQUIST MN11 2720 R STRYK 2 UNIV OF ALA HUNTSVILLE **G R JOHNSON MN11 2925** AEROPHYSICS RSCH CTR . 600 SECOND ST NE **G HOUGH HOPKINS MN 55343** D J LIQUORNIK PO BOX 999 1 APPLIED RSRCH ASSOC INC **HUNTSVILLE AL 35899** J D YATTEAU 5941 S MIDDLEFIELD RD UNIV OF ALA HUNTSVILLE STE 100 CIVIL ENGRNG DEPT LITTLETON CO 80123 W P SCHONBERG **HUNTSVILLE AL 35899** APPLIED RSRCH ASSOC D GRADY **F MAESTAS** 4300 SAN MATEO BLVD SE **ALBUQUERQUE NM 87110**

NO. OF	ORGANIZATION	NO. OF	ODG ANTZ ATTON
<u> </u>	<u> </u>	COPIES	ORGANIZATION
1	CALIFORNIA RSCH AND TECH	8	KAMAN SCIENCES CORP
	M MAJERUS		J ELDER
	PO BOX 2229		R P HENDERSON
	PRINCETON NJ 08543		D A PYLES
			F R SAVAGE
1	COMPUTATIONAL MECH		J A SUMMERS
	CONSULTANTS		J S WILBECK
	J A ZUKAS		T W MOORE
	PO BOX 11314		T YEM
	BALTIMORE MD 21239-0314		600 BLVD S STE 208 HUNTSVILLE AL 35802
3	DYNA EAST CORP		1101115 VILLED 7115 35002
	P C CHOU	3	KAMAN SCIENCES CORP
	R CICCARELLI	•	S JONES
	W FLIS		G L PADEREWSKI
	3620 HORIZON DRIVE		R G PONZINI
	KING OF PRUSSIA PA 19406		1500 GRDN OF THE GODS
	., ., .,		RD
2	GRC INTERNATIONAL		COLORADO SPRINGS CO
	T M CUNNINGHAM		80907
	W M ISBELL		00507
	5383 HOLLISTER AVE	1	KAMAN SCIENCES CORP
	SANTA BARBARA CA 93111		N ARI
			PO BOX 7463
	INST OF ADVANCED TECH		COLORADO SPRINGS CO
	UNIV OF TX AUSTIN		80933-7463
	S J BLESS		
	J CAZAMIAS	1	ORLANDO TECHNOLOGY INC
	H D FAIR		D A MATUSKA
	T M KIEHNE		PO BOX 855
	D LITTLEFIELD M NORMANDIA	ł	SHALIMAR FL 32579
	M NORMANDIA 4030 2 W BRAKER LN		
	AUSTIN TX 78759		ROCKWELL INTERNATIONAL
•	AUSIEN IA 70739		ROCKETDYNE DIV
1	INTERNATIONAL RSRCH		H LEIFER
	ASSOCIATION		16557 PARK LN CIRCLE
	D ORPHAL	,	OS ANGELES CA 90049
	4450 BLACK AVE	1 1	
	PLEASANTON CA 94566		ROCKWELL MISSILE SYS DIV FNEUHART
_			800 SATELLITE BLVD
1]	KAMAN SCIENCES CORP		OULUTH GA 30136
	LJONES		OCCUINGA 30136
2	2560 HUNTINGTON AVE	2 5	SAIC
	STE 200	_	FURLONG
A	ALEXANDRIA VA 22303		J STRUACH
			710 GOODRIDGE DR
			ICLEAN VA 22102
		Δ,	

NO. OF	
	<u>ORGANIZATION</u>
5	CDI TATTETONIA TITONIA Y
3	SRI INTERNATIONAL
	J D COLTON
	D CURRAN
	R KLOOP
	R L SEAMAN
	D A SHOCKEY
	333 RAVENSWOOD AVE
	MENLO PARK CA 94025
1	ZERNOW TECHNICAL
•	SERVICES INC
	L ZERNOW
	425 W BONITA AVE STE 208
	SAN DIMAS CA 91773
	ABERDEEN PROVING GROUND
50	DIR USARL
	AMSRL WM I MAY
	AMSRL WM MC J WELLS
	AMSRL WM MF
	T WEERASCORIYA
	D DANDEKAR
	A RAJENDRAN
	AMSRL WM T W F MORRISON
	AMSRL WM TA
	M BURKINS
	W GILLICH
	W BRUCHEY
	J DEHN
	G FILBEY
	W A GOOCH
	H W MEYER
	E J RAPACKI
	J RUNYEON
4	AMSRL WM TB
	R FREY
	P BAKER
	R LOTTERO
	J STARKENBERG
A	AMSRL WM TC
	W S DE ROSSET
	T W BJERKE
	R COATES
	F GRACE
	K KIMSEY
	M LAMPSON
	D SCHEFFLER
	S SCHRAML

G SILSBY

NO. OF COPIES ORGANIZATION

B SORENSEN R SUMMERS W WALTERS AMSRL WM TD A M DIETRICH P KINGMAN (5 CPS) K FRANK **M RAFTENBERG** M SCHEIDLER S SCHOENFELD S SEGLETES J WALTER (5 CPS) T WRIGHT AMSRL WM WD J POWELL A PRAKASH

- 1 EMBASSY OF AUSTRALIA
 R WOODWARD
 COUNSELLOR DEFENCE
 SCIENCE
 1601 MASSACHUSETTS AVE NW
 WASHINGTON DC 20036-2273
- 1 CANADIAN ARSENALS LTD
 P PELLETIER
 5 MONTEE DES ARSENAUX
 VILLIE DE GRADEUR PQ J5Z2
 CANADA
- 1 DEFENCE RSRCH ESTAB SUFFIELD D MACKAY RALSTON ALBERTA TOJ 2NO RALSTON CANADA
- 1 DEFENCE RSRCH ESTAB
 SUFFIELD
 C WEICKERT
 BOX 4000 MEDICINE HAT
 ALBERTA TIA 8K6
 CANADA
- 1 DEUTSCHE AEROSPACE AG M HELD POSTFACH 13 40 D 86523 SCHROBENHAUSEN GERMANY
- 1 DIEHL GBMH AND CO M SCHILDKNECHT FISCHBACHSTRASSE 16 D 90552 RÖTBENBACH AD PEGNITZ GERMANY
- 5 ERNST MACH INST
 V HOHLER
 E SCHMOLINSKE
 E SCHNEIDER
 A STILP
 K THOMA
 ECKERSTRASSE 4
 D 7800 FREIBURG I BR 791 4
 GERMANY

NO. OF COPIES ORGANIZATION

- FRAUNHOFER INSTITUT FUER
 KURZZEITDYNAMIK
 ERNST MACH INSTITUT
 H ROTHENHAEUSLER
 H SENF
 E STRASSBURGER
 HAUPTSTRASSE 18
 D79576 WEIL AM RHEIN
 GERMANY
- 5 RAFAEL BALLISTICS CNTR E DEKEL Y PARTOM G ROSENBERG Z ROSENBERG Y YESHURUN PO BOX 2250 HAIFA 31021 ISRAEL
- TECHNION INST OF TECH
 FACULTY OF MECH ENG
 S BODNER
 TECHNION CITY
 HAIFA 32000
 ISRAEL
- 4 HIGH ENERGY DENSITY RSRCH
 V E FORTOV
 G I KANEL
 V A SKVORTSOV
 O YU VOJOBIEV
 IZHORSKAJA STR 13/19
 MOSCOW 127412
 RUSSIAN REPUBLIC
- 2 LAVRENTYEV INST HYDRODYNAMICS L A MERZHIEVSKY V V SILVESTROV NOVOSIBIRSK 630090 RUSSIAN REPUBLIC

NO. OF

COPIES ORGANIZATION

- DEFENCE RESEARCH AGENCY
 W A J CARSON
 I CROUCH
 C FREW
 T HAWKINS
 B JAMES
 B SHRUBSALL
 CHOBHAM LANE CHERTSEY
 SURREY KT16 OEE
 UNITED KINGDOM
- 1 ROYAL ARMAMENT R&D ESTAB I CULLIS FORT HALSTEAD SEVEN OAKS KENT TN14 7BJ UNITED KINGDOM
- 1 UK MINISTRY OF DEFENCE G J CAMBRAY CBDE PORTON DOWN SALISBURY WITTSHIRE SPR OJQ UNITED KINGDOM
- 2 UNIVERSITY OF KENT
 UNIT FOR SPACE SCIENCES
 P GENTA
 P RATCLIFF
 CANTERBURY KENT CT2 7NR
 UNITED KINGDOM
- 7 INSTITUTE FOR PROBLEMS
 IN MATERIALS STRENGTH
 S FIRSTOV
 B GALANOV
 O GRIGORIEV
 V KARTUZOV
 V KOVTUN
 Y MILMAN
 V TREFILOV
 3, KRHYZHANOVSKY STR
 252142, KIEV-142
 UKRAINE
- 1 INSTITUTE FOR PROBLEMS
 OF STRENGTH
 G STEPANOV
 TIMIRYAZEVSKAYU STR 2
 252014 KIEV
 UKRAINE

INTENTIONALLY LEFT BLANK.

REPORT DO		Form Approved OMB No. 0704-0188				
Public reporting burden for this collection of infigethering and maintaining the data needed, and						
collection of information, including suggestions Davis Highway, Suite 1204, Artington, VA 22202	for reducing t	his burden, to Washington Headquarter	s Services, Directorate for Information	Operations a	nd Reports, 1215 Jefferson	
1. AGENCY USE ONLY (Leave blan	k)	2. REPORT DATE	3. REPORT TYPE AND	DATES C	OVERED	
		January 1998	Final, October 199	94 - Octo	ober 1995	
4. TITLE AND SUBTITLE High-Obliquity Impact of a C Splitting and Adiabatic Shear	5. FUND	ING NUMBERS				
				626	18AH80	
6. AUTHOR(S)						
J. W. Walter and P. W. King	man					
7. PERFORMING ORGANIZATION N		ND ADDRESS(ES)			ORMING ORGANIZATION ORT NUMBER	
U.S. Army Research Laborate	ory			١ ,,	T 700 1504	
ATTN: AMSRL-WM-TD	6 0100	of 50//		AR	L-TR-1584	
Aberdeen Proving Ground, M	1D 2100	2-2060				
9. SPONSORING/MONITORING AGE	ENCY NAM	ES(S) AND ADDRESS(ES)			NSORING/MONITORING NCY REPORT NUMBER	
11. SUPPLEMENTARY NOTES						
12a. DISTRIBUTION/AVAILABILITY	STATEMEN	NT		12h DIS	TRIBUTION CODE	
	• · · · · · · · · · · · · · · · · · · ·	••		122. 2.0		
Approved for public release;	distributi	ion is unlimited.		Ĭ		
			<u></u>	<u> </u>		
13. ABSTRACT (Maximum 200 word	•					
					rator on a thin plate at high	
obliquities. These computation with obliquities of 55–70°.	ons simu	lated two series of exper	riments at velocities of	1.5 km/	s and 2.2 km/s, respectively,	
The evacuimental as	anita inc	diaatad mamatuutan am1:		-4	55 and 65°. Preliminary	
three-dimensional simulation						
model, captured some aspec						
Silling shear band model were				111011110	Dimining unitarity unit	
	· moo po.	,				
In addition to graphical of	lescriptic	ons of the target hole go	eometry and debris clo	ud. num	erical histories of the target	
hole area and up-range/down-range partitioning of mass, momentum, and energy were extracted for comparison with the experiments.						

14. SUBJECT TERMS					15. NUMBER OF PAGES	
and the second second second	31					
penetration, high-obliquity de		16. PRICE CODE				
17. SECURITY CLASSIFICATION OF REPORT		RITY CLASSIFICATION IIS PAGE	19. SECURITY CLASSIFIC OF ABSTRACT	ATION	20. LIMITATION OF ABSTRACT	
UNCLASSIFIED	UNCLA	ASSIFIED	UNCLASSIFIED		UL	

INTENTIONALLY LEFT BLANK.

USER EVALUATION SHEET/CHANGE OF ADDRESS

	lertakes a continuing effort to improve the ns below will aid us in our efforts.	quality of the reports it publishes. Y	our comments/answers
1. ARL Report Nur	nber/Author ARL-TR-1584 (Walter)	Date of Report _	January 1998
2. Date Report Reco	eived		
	atisfy a need? (Comment on purpose, relat		
•	is the report being used? (Information so		
avoided, or efficience	tion in this report led to any quantitative s ries achieved, etc? If so, please elaborate.		
	ts. What do you think should be changed to rmat, etc.)	• • •	
	Organization		
CURRENT	Name	E-mail Name	
ADDRESS	Street or P.O. Box No.		
	City, State, Zip Code		
7. If indicating a Chaor Incorrect address	ange of Address or Address Correction, pleaselow.	ase provide the Current or Correct add	iress above and the Old
	Organization		
OLD ADDRESS	Name		
-INDKE99	Street or P.O. Box No.		
	City, State, Zip Code		

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

DEPARTMENT OF THE ARMY

OFFICIAL BUSINESS

BUSINESS REPLY MAIL FIRST CLASS PERMIT NO 0001, APG, MD

POSTAGE WILL BE PAID BY ADDRESSEE

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL WM TD
ABERDEEN PROVING GROUND MD 21005-5066

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES