UNIDAD 1

TAREA DE AUTO EVALUACIÓN 1.1

El proceso matemático para llegar a la solución a los ejercicios planteados puede no ser exactamente igual al proceso aquí presentado, lo cual no significa que este mal. Las respuestas deben coincidir. Si tiene dudas de sus resultados, consulte a su tutor.

- 1) El movimiento de una partícula está definido por $a = 3t 0.3t^2$ donde a está en m/s² y t en segundos. Considere que en t = 0, $x_0 = 0$.
 - a) ¿A qué distancia puede ir desde el reposo antes de empezar a cambiar la dirección de su movimiento? $R/\Delta x = 421.87 \, m$
 - b) ¿Cuál será su desplazamiento cuando t = 25 s? $R/(\Delta x)_{25} = -1953.13 \text{ m}$
 - c) ¿Cuál será la distancia total recorrida por la partícula en t = 25 s? R/ d = 2796.88 m

2)

Dos automóviles A y B se aproximan uno al otro en los carriles adyacentes de una autopista. En t = 0, A y B están a 3200 pies de distancia, sus rapideces son v_A = 65 mi/h y v_B = 40 mi/h, y se encuentran en los puntos P y Q, respectivamente. Si se sabe que A pasa por el punto Q 40 s después que B, y que B pasa por el punto P 42 s después que A, determine a) las aceleraciones uniformes de A y B cuando los vehículos pasan uno al lado del otro, c) la rapidez de B en ese momento.

$$R/a$$
) $\alpha_A = -0.767$ pies/s2. $\alpha_B = 0.834$ pies/s² b) $t = 20.7$ s c) $v_B = 51.8$ mi/h

3)

El elevador mostrado en la figura inicia su movimiento desde el reposo y se mueve hacia arriba con una aceleración constante. Si el contrapeso W recorre 30 pies en 5 s, determine a) la aceleración del elevador y el cable C, b) la velocidad del elevador después de 5 s.

R/ a) $\alpha_E = 2.40 \text{ pies/s}^2$ b) $v_E = 12.0 \text{ pies/s}$

