Esercizi dielettrico

1) Calcolo lo spostamento elettrico (o induzione) $\hat{\nabla}(\hat{r})$

2) Ricavare P da D usando le formule precedenti

3) Calcolare le cariche di polarizzazione

4) Campo nel dielettrico

5) Calcolare capacità ed energia nel caso di un dielettrico in un condensatore

Esempio

Considerare un sfera conduttrice con una carica Q, lo spazio esterno è riempito di dielettrico.

- 1) Calcolare il campo D
- 2) Calcolare le cariche di polarizzazione
- 3) Cosa succede al campo elettrostatico?
- 4) Calcolare la capacità del conduttore

$$\overset{\rightharpoonup}{D}(v) = \begin{cases}
\frac{Q}{4\pi v^{2}} & v > R \\
0 & v < R
\end{cases}$$

2) Per calcolare le cariche di polarizzazione calcolo il campo di polarizzazione

$$\overrightarrow{P}(r) = \frac{K-1}{K} \overrightarrow{D} = \frac{K-1}{K} \frac{Q_{1i} \circ e_{No}}{4\pi r^2}$$

$$|\overrightarrow{O_{Pol}}| = P(r=R) = \frac{K-1}{K} \frac{Q_{1i} \circ e_{No}}{4\pi R^2} = \frac{K-1}{K} \overrightarrow{O_0}^{(r)}$$

sfere di raggio r

3) Campo E_k

$$\vec{E}_{K}(r) = \frac{Q}{4\pi\epsilon_{0}Kr^{2}} \hat{r} \left[\begin{matrix} V \\ m \end{matrix} \right]$$

4) Capacità

$$C_{K}=kC_{0}=k\left(\frac{Q}{V}\right)=k\left(\frac{Q}{2\pi\epsilon_{0}R}\right)=k4\pi\epsilon_{0}R\left[F\right]$$