

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1 «ДЛИННАЯ АРИФМЕТИКА»

Студент Артемьев Илья Олегович

Группа ИУ7 – 33Б

Описание условия задачи

Смоделировать операцию деления целого числа длиной до 30 десятичных цифр на действительное число в форме $+\$ -m.n E $+\$ -K, где суммарная длина мантиссы (m+n) - до 30 значащих цифр, а величина порядка K - до 5 цифр. Результат выдать в форме $+\$ -0.m1 E $+\$ -K1, где m1 - до 30 значащих цифр, а K1 - до 5 цифр.

Десятичное число всегда представляется с точкой и знаком экспоненты "E". Возможны следующие варианты его представления: +.1E+0, +0.1E+0

Если при делении чисел длина мантиссы стала больше 30 знаков, то необходимо произвести округление (если 31-й разряд больше или равен 5, то к 30-му разряду добавляется единица, если меньше 5, то 31-й разряд отбрасывается).

При разработке интерфейса программы следует предусмотреть:

- указание операции, производимой программой,
- указание формата и диапазона вводимых данных,
- указание формата выводимых данных,
- наличие пояснений при выводе результата.

Описание технического задания

Входные данные:

Целое число: строка, содержащая целое число в виде +\- m. Знак перед числом обязательно. Длина модуля числа m - до 30 цифр.

Действительное число: строка, содержащая вещественное число в виде +\-m.nE+\-К. Знак перед числом и перед порядком обязательно вводить.

Символ экспоненты Е обязательно вводить. Суммарная длина m+n - до 31 цифры, включая точку; длина порядка — до 5 цифр.

Выходные данные:

Длинное число в виде $+\-0.m1E+\-K1$. Длинна мантиссы m1 - до 30 цифр; длинна порядка K1 — до 5 цифр.

Действие программы:

Деление целого числа на вещественное.

Обращение к программе:

Запускается через терминал: ./main.exe

Аварийные ситуации:

1. Некорректный ввод: строка с целым числом содержит символы, которые не цифра и не (+\-), если это не нулевой элемент строки.

На выходе сообщение: «Проверьте число на предмет записи лишних символов»

2. Некорректный ввод: строка с вещественным числом содержит символ не цифру и не символ из набора ("+", "-", "-", ". ", "Е").

На выходе сообщение: «Проверьте число на предмет записи лишних символов»

3. Некорректный ввод: переполнение порядка при вводе вещественного числа. (порядок превышает по модулю 99999)

На выходе сообщение: «Проверьте количество символов в порядке числа»

4. Некорректный ввод: превышение длины при вводе целого числа (больше 30 цифр).

На выходе: «Превышено допустимое количество символов в целом числе»

5. Некорректный ввод: превышение длины при вводе вещественного числа (больше 31 цифры, включая точку)

На выходе сообщение: «Проверьте количество символов в мантиссе числа»

6. Некорректный ввод: целое или вещественное число без знака (+\-).

На выходе сообщение: «Проверьте запись следующий символов: + - . E»

7. Деление на нуль: при вводе вещественного числа введен нуль.

На выходе сообщение: «Деление на нуль запрещено»

8. Некорректный ввод: введена пустая строка (т. е. просто введен знак "\n').

На выходе сообщение: «Проверьте запись следующий символов: + - . E»

- 9. Некорректный вывод: переполнение порядка. На выходе сообщение: «Произошло переполнение порядка»
- 10. Некорректный вывод: машинный нуль. На выходе сообщение: «Машинный нуль»

Описание структуры данных

После ввода числа, оно хранится в массиве символов длинной 42 (с учетом всех служебных знаков: точка ".", знак экспоненты "E", знак числа и знак порядка "+\-").

Далее число обрабатывается и записывается в структуру description.

Структура description:

```
typedef struct
{
```

```
char signs[SIGNS_LEN];
char mantissa[MANTISSA_LEN_STRUCTURE];
int order;
} description;

Поля структуры:
signs[SIGNS_LEN] — хранит два знака: 0 — ой индекс — знак действительного числа, 1 — ый индекс — знак порядка; SIGNS_LEN = 3

mantissa[MANTISSA_LEN_STRUCTURE] — хранит мантиссу вещественного числа; MANTISSA_LEN_STRUCTURE = 35

order — хранит порядок вещественного числа
```

Описание алгоритма

- 1. Программа считывает две строки, одна содержит целое число, другая вещественное.
- 2. Проводится проверка на все возможные ошибки с помощью специальной функции.
- 3. Строки обрабатываются и записываются в структуру description.
- 4. Вещественное число приводится к виду целого числа, учитывая порядок.
- 5. Если все данные верны, то происходит деление первого (целого) числа на второе (вещественное) по методу «деление в столбик» с контролем округления.
- 6. После деления результат выводится в нормализованном виде в соответствии со спецификацией, указанной в ТЗ (+\-0.m1E+\-K1).

НАБОР ТЕСТОВ

№	Что проверяется	Целое число	Вещественное число	Вывод
1	Деление на нуль	+12	+0.E+0	Деление на нуль запрещено
2	Деление нуля на число	+0	-232.12E+3	+0.0E+0
3	Деление нуля на нуль	+0	+0.E+0	Деление на нуль запрещено
4	Округление	+2	+3.E+0	+0.6666667E+0
5	Деление чисел разных знаков	+12345	-123.45E+0	-0.1E+3
6	Деление целых чисел	+123456	+111.E+0	+0.111221621621 62162162162162 1622E+4
7	Граничные значения (целое число)	+999999 (30 девяток)	+1.E+0	+0.999999999999999999999999999999999999
8	Граничные значения (вещественное число)	+123	+9999999.E+ 0	+0.123E-27
9	Граничные значения (порядок)	+123	+123.E+99999	+0.1E-99998
10	Превышение длины мантиссы (вещественное число)	+1	+0.99999 (31 девятка).Е+0	Проверьте количество символов в мантиссе числа

11	Превышение длины целого числа	+999999 (31 девятка)	-	Превышено допустимое количество символов в целом числе
12	Превышение длины порядка (вещественное число)	+1	+1.E+999999	Проверьте количество символов в порядке числа
13	Некорректный ввод (буква вместо цифры)	+a	-	Проверьте число на предмет записи лишних символов
14	Некорректный ввод (без знака)	1	-	Проверьте запись следующий символов: + Е
15	Некорректный ввод (дробное вместо целого)	+123.34	-	Проверьте запись следующий символов: + Е
16	Некорректный ввод (дробное вместо целого)	+123E+45	-	Проверьте запись следующий символов: + Е
17	Некорректный ввод (несколько точек)	+123	+1.2.3.E+0	Проверьте запись следующий символов: + Е

18	Некорректный ввод (буква вместо числа)	+1	+f	Проверьте запись следующий символов: + Е
19	Некорректный ввод (без знака)	+123	1.E+0	Проверьте запись следующий символов: + Е
20	Некорректный ввод (неправильный порядок)	+1	+1.E+1.4	Проверьте запись следующий символов: + Е
21	Некорректный ввод (введен порядок, нет числа)	+1	+.E+1	Проверьте количество символов в мантиссе числа
22	Некорректный ввод (пустой ввод)	,,\n"	-	Проверьте запись следующий символов: + Е
23	Некорректный ввод (пустой ввод)	+1	'\n'	Проверьте запись следующий символов: + Е
24	Некорректный ввод (посторонний знак вместо «Е»)	+1	+1.Q+0	Проверьте запись следующий символов: + Е

25	Некорректный ввод (в порядке встречается не цифра)	+1	+1.E+13r	Проверьте число на предмет записи лишних символов
26	Некорректный ввод (число введено буквами)	+ten	-	Проверьте число на предмет записи лишних символов
27	Ввод вещественного числа (начинаем с точки)	+1	1E+0	-0.1E+2
28	Переполнение порядка (порядок меньше 99999)	+1	+100000E+9 9999	Машинный нуль
29	Переполнение порядка (порядок больше 99999)	+100000	+1.E-99999	Произошло переполнение порядка
30	Округление	+99999(30 девяток)	+2.E+0	+0.5E+30

Функции

int number_characters(char *const str, const char el, const int str_len)

Функция считает количество вхождений определенного символа в строку

Аргументы

Str - строка

El - элемент, который ищем

Str_len - длина строки

Возвращаемые значения

Количество вхождений символа в строку

int number_check(char *const str, const int start_index, const int end_index)

Функция бежит по строке и проверяет ее на лишние символы

Аргументы

Str - строка

Start_index - индекс элемента, с которого идет проверка

End_index – индекс элемента, на котором заканчивается проверка

Возвращаемые значения

0 – не встречено лишних символов

7 – встречен лишний символ

int index_find(char *const str, const char el, const int str_len)

Функция ищет индекс определенного элемента в строке

Аргументы

Str - строка

El - элемент, индекс которого ищем

Str_len - длина строки

Возвращаемые значения

Возвращаемые значения

Число типа int

void subtraction(char *first_number, char *second_number)

Функция вычитает из первого числа второе

Аргументы

First_number – число, из которого вычитают

Second_number – число, которое вычитают

Возвращаемые значения

_

int numbers_compare(char *first_number, char *second_number)

Функция сравнивает два числа

Аргументы

First_number – первое число

Second_number – второе число

Возвращаемые значения

- 0 числа равны
- 1 первое число больше второго
- 2 первое число меньше второго

int division_two_numbers(char *const integer_number)

Функция делит два числа (внутри функции вызывается структура)
Аргументы
Integer_number – челое число (делимое)
Возвращаемые значения
0 – функция сработала успешно 2 – второе число равно 0
int normalized_output(void)
Функция нормализует число для вывода (внутри функции вызывается структура)
Аргументы
-
Возвращаемые значения
0 — функция сработала успешно 11 — произошло переполнение порядка 12 — машинный нуль
<pre>void print_invite(void)</pre>
Функция печатает приглашение на ввод

Аргументы

Возвращаемые значения

void print_error(const int error_code)

Функция печатает информацию об ошибке

Аргументы

Error_code – код ошибки

Возвращаемые значения

_

int condition_test(char *const integer_number, char *const floating_point_number)

Функция проверяет все возможные ошибки при вводе чисел

Аргументы

Integer_number – целое число

Floating_point_number – действительное число

Возвращаемые значения

Код ошибки или успешное выполнение функции

ОТВЕТЫ НА КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Каков возможный диапазон чисел, представляемых в ПК?

Возможный диапазон чисел зависит от их типа, размера выделенной для их хранения памяти, разрядности процессора. Для беззнакового целого числа выделяется 64 двоичных разряда, то есть его максимальное значение — 18 446 744 073 709 551 615 (long long unsigned int).

2. Какова возможная точность представления чисел, чем она определяется?

Точность представления вещественных чисел определяется количеством памяти, выделяемой для хранения мантиссы числа. Для мантиссы числа типа double выделяется 52 бита, с помощью этого мантисса числа может иметь значение до 4 503 599 627 370 496.

3. Какие стандартные операции возможны над числами?

Возможны операции сложения, вычитания, умножения, деление, взятие остатка, сравнение.

4. Какой тип данных может выбрать программист, если обрабатываемые числа превышают возможный диапазон представления чисел в ПК?

Программист может выбрать структуру, куда он сможет записать не только мантиссу, но и знак числа и порядка. Так же может использовать массив символов.

5. Как можно осуществить операции над числами, выходящими за рамки машинного представления?

Для этого можно использовать некоторые языки — где уже есть поддержка длинных чисел — или библиотеки, или написать свой алгоритм, реализующий нужную операцию.

Вывод

В процессе выполнения данной лабораторной работы, была реализована функция деления чисел, превышающих допустимый диапазон. Был получен опыт в работе с массивами, структурами и типами данных. При

необходимости обрабатывать числовые данные выходящие за пределы разрядной сетки, следует использовать структуры для хранения и обработки.