Dépannage 10

Thierry Paré

Chapitre 7

Ce chapitre s'intéresse aux concepts de duration, de convexité, d'appariement et d'immunisation.

Duration

Duration modifiée

Soit P_v , le prix de l'obligation.

$$DM = \frac{-\frac{dP_y}{dy}}{P_y} = \frac{\sum_{t=1}^{n} tCF_t(1+y)^{-t-1}}{\sum_{t=1}^{n} CF_t(1+y)^{-t}}$$

Duration de Macauley

Nous pouvons exprimer la duration de Macauley (notée D) comme un fonction de la duration modifiée :

$$D = (1 + y)DM$$

Convexité

Convexité modifiée

La convexité est calculée ainsi :

$$CM = \frac{\frac{d^2 P_y}{dy^2}}{P_y} = \frac{\sum_{t=1}^{n} t(t+1)CF_t(1+y)^{-t-2}}{\sum_{t=1}^{n} CF_t(1+y)^{-t}}$$

Convexité de Macaulay

Il existe aussi un lien entre la convexité de Macaulay (notée \mathcal{C}) et la convexité modifiée :

$$CM = \frac{C+D}{(1+y)^2}$$

4/7

Appariement

Il est possible de se protéger des mouvements des taux d'intérêts avec l'appariement. Nous verrons un exemple plus tard dans les exercices.

Immunisation de Redington

Une immunisation de Redington respecte les 3 conditions suivantes:

•
$$VA_A(i_0) = VA_L$$

•
$$\frac{d}{di}VA_A(i)|_{i=i_0} = \frac{d}{di}VA_L(i)|_{i=i_0}$$

•
$$VA_A(i_0) = VA_L$$

• $\frac{d}{di}VA_A(i)|_{i=i_0} = \frac{d}{di}VA_L(i)|_{i=i_0}$
• $\frac{d^2}{di^2}VA_A(i)|_{i=i_0} > \frac{d^2}{di^2}VA_L(i)|_{i=i_0}$

Immunisation complète

Une immunisation complète respecte les 2 conditions suivantes:

- $VA_A(i_0) = VA_L$ $\frac{d}{di}VA_A(i)|_{i=i_0} = \frac{d}{di}VA_L(i)|_{i=i_0}$