1

function is also a teletra

$$f(s_i)=s_i \iff f_{s_is_i}$$

$$f(S_4)=S_1$$

$$f = d(S_1, S_1), (S_2, S_3), (S_3, S_4), (S_4, S_1)$$

$$R_a = \{(s_i, s_i), (s_2, s_i)\}$$

$$R_{77}(pvg) = \{(s_2, s_2)\}$$

$$=\left\{\left(S_{2},S_{i}\right)\right\}$$

prove [x*] (-> [x][x*] (

١.	***************************************	[d*] P Ass.	
2		[d*] (QA[X][X]Q)	Mix Axrom
3.		en [x][x"]e	E > (1,2)
ч		[x][x*]4	En (3)
5.	[d*]($e \rightarrow [x][x^*]\varphi$	

[[α]((+)Ψ) Λ [α](Λ[β]()) ([αυβ](Λ[α]Ψ)

(3)

[x] [x] (e > 4)) N[x] (N[B] (
2. ([x]81[BJe) > [XUB] e	Choice axiom
3 [2] en	[6]4	$E_{\wedge}(i)$
4 [[XUB]	e)	$E \rightarrow (2,3)$
5 [x](e	$\rightarrow \psi$	$E_{\Lambda}(1)$
6. [Ex] (q	> ([x] (p) [x	Jy) principle(2)
7 [0]4	$\rightarrow [\alpha] \Psi$	E > (5,6)
0 / [x]	($E_{\Lambda}(3)$
9 - [Ex]	JY	E - (7,8)
10 [20	BJe / [x]y	In (9,4)
11' Stakener	1 (holazes to	In(1,10)
	copy)	