Linear Algebra Game

Huiyu Chen Adam Kern Letian Yang

Justin Morrill Runtian Zhou Colleen Robles

July 22, 2025

Tutorial World

This world introduces basic concepts of Lean 4 and formal theorem proving. Players learn fundamental tactics and proof techniques through simple mathematical statements.

1.1 Basic Tactics and Reflexivity

Lemma 1. For any element x, we have x = x.

Proof. This follows directly from the reflexivity of equality. In Lean, this is proven using the rfl tactic.

1.2 Natural Numbers and Induction

The tutorial world introduces basic properties of natural numbers and the principle of mathematical induction.

Lemma 2. For any natural number n, we have 0 + n = n.

Lemma 3. For any natural number n, we have n + 0 = n.

1.3 Proof Techniques

Students learn essential proof techniques including:

- Direct proof using exact
- Rewriting using rw
- Function application using apply
- Introduction of assumptions using intro
- Simplification using simp
- Mathematical induction using induction'

Vector Spaces

2.1 Zero Scalar Multiplication

Definition 4. A vector space V over a field K is an abelian group equipped with scalar multiplication that satisfies four key axioms:

• Distributivity over vector addition:

$$\forall a \in K, \forall x, y \in V: \quad a \cdot (x+y) = a \cdot x + a \cdot y$$

• Distributivity over field addition:

$$\forall a, b \in K, \forall x \in V: (a+b) \cdot x = a \cdot x + b \cdot x$$

• Compatibility with field multiplication:

$$\forall a, b \in K, \forall x \in V : (a \cdot b) \cdot x = a \cdot (b \cdot x)$$

• Identity element:

$$\forall x \in V: \quad 1 \cdot x = x$$

Theorem 5. In any vector space V over field K, scalar multiplication by zero yields the zero vector:

$$\forall v \in V: \quad 0 \cdot v = 0$$

Proof. Using distributivity: $0 \cdot v = (0+0) \cdot v = 0 \cdot v + 0 \cdot v$. Subtracting $0 \cdot v$ from both sides gives $0 = 0 \cdot v$.

2.2 Multiplying By The Zero Vector

Theorem 6. In any vector space V over field K, scalar multiplication of any scalar by the zero vector yields the zero vector:

$$\forall a \in K: \quad a \cdot 0 = 0$$

Proof. This follows from the distributive property of scalar multiplication and the fact that 0+0=0.

2.3 Scaling By Negative One

Theorem 7. In any vector space V over field K, multiplying any vector by -1 yields its additive inverse:

$$\forall v \in V: \quad (-1) \cdot v = -v$$

Proof. We have $v + (-1) \cdot v = 1 \cdot v + (-1) \cdot v = (1 + (-1)) \cdot v = 0 \cdot v = 0$. Therefore $(-1) \cdot v$ is the additive inverse of v, i.e., $(-1) \cdot v = -v$.

2.4 Zero Must Belong

Definition 8. A subset W of a vector space V over a field K is called a **subspace** if it satisfies the following three conditions:

- Non-empty: $W \neq \emptyset$
- Closure under addition: For all $x, y \in W$, we have $x + y \in W$
- Closure under scalar multiplication: For all $a \in K$ and $x \in W$, we have $a \cdot x \in W$

Theorem 9. Every subspace W contains the zero vector: $0 \in W$.

Proof. Since W is non-empty, there exists some vector $v \in W$. By closure under scalar multiplication with scalar 0, we have $0 \cdot v = 0 \in W$.

2.5 Negatives In Subspace

Theorem 10. If a subspace W contains a vector x, then it also contains its additive inverse -x:

$$\forall x \in V: \quad x \in W \implies (-x) \in W$$

Proof. Since W is closed under scalar multiplication and contains x, we have $(-1) \cdot x = -x \in W$.

Linear Independence Span

3.1 Linear Combinations

Definition 11. Let V be a vector space over a field K, and let $S \subseteq V$. A vector $x \in V$ is called a **linear combination** of vectors in S if there exist finitely many vectors $v_1, v_2, \ldots, v_n \in S$ and scalars $a_1, a_2, \ldots, a_n \in K$ such that

$$x = a_1 v_1 + a_2 v_2 + \dots + a_n v_n = \sum_{i=1}^n a_i v_i$$

Theorem 12. If $v \in S$, then v is a linear combination of S.

Proof. Take the linear combination with coefficient 1 for v and coefficient 0 for all other vectors.

3.2 Introducing Span

Definition 13. Let V be a vector space over a field K, and let $S \subseteq V$. The **span** of S, denoted span(S) or $\langle S \rangle$, is the set of all linear combinations of vectors in S:

$$\mathrm{span}(S) = \left\{ \sum_{i=1}^n a_i v_i : n \in \mathbb{N}, v_i \in S, a_i \in K \right\}$$

Theorem 14. If $v \in S$, then $v \in span(S)$.

Proof. Since $v \in S$, we can write $v = 1 \cdot v$, which is a linear combination of elements in S.

3.3 Monotonicity Of Span

Theorem 15. The span operation is monotonic: if $A \subseteq B$, then $span(A) \subseteq span(B)$.

Proof. Let $v \in \text{span}(A)$. Then v is a linear combination of vectors in A. Since $A \subseteq B$, these same vectors are also in B, so v is also a linear combination of vectors in B. Therefore $v \in \text{span}(B)$. \square

3.4 Linear Independence

Definition 16. A set of vectors $S \subseteq V$ is **linearly independent** if the only solution to the equation

$$a_1v_1+a_2v_2+\cdots+a_nv_n=0$$

where $v_1, v_2, \dots, v_n \in S$ are distinct and $a_1, a_2, \dots, a_n \in K$, is the trivial solution $a_1 = a_2 = \dots = a_n = 0$.

Equivalently, S is linearly independent if no vector in S can be written as a linear combination of the other vectors in S.

Theorem 17. The empty set \emptyset is linearly independent.

Proof. There are no vectors in the empty set, so there are no non-trivial linear combinations to consider. \Box

3.5 Linear Independence Of Subsets

Theorem 18. If A is a linearly independent set and $B \subseteq A$, then B is also linearly independent.

Proof. Suppose we have a linear combination $\sum_{v \in B} a_v v = 0$ where $a_v \in K$. Since $B \subseteq A$, this is also a linear combination of vectors in A that equals zero. By the linear independence of A, we must have $a_v = 0$ for all $v \in B$. Therefore B is linearly independent. \square

3.6 Supersets Span The Whole Space

Theorem 19. If a set A spans the whole space V and $A \subseteq B$, then B also spans V.

Proof. Since $\operatorname{span}(A) = V$ and $A \subseteq B$, by monotonicity of span we have $V = \operatorname{span}(A) \subseteq \operatorname{span}(B) \subseteq V$. Therefore $\operatorname{span}(B) = V$.

3.7 Uniqueness Of Linear Combinations

Theorem 20. Let $S \subseteq V$ be a linearly independent set. If

$$\sum_{v \in T_1} a_v \cdot v = \sum_{v \in T_2} b_v \cdot v$$

where T_1, T_2 are finite subsets of S, $a_v = 0$ for $v \notin T_1$, and $b_v = 0$ for $v \notin T_2$, then $a_v = b_v$ for all $v \in V$.

Proof. This follows from the definition of linear independence: if a linear combination of linearly independent vectors equals zero, then all coefficients must be zero. \Box

3.8 Linear Independence Of Set With Insertion

Theorem 21. Let S be a linearly independent set and v be a vector not in the span of S. Then the set $S \cup \{v\}$ is also linearly independent.

Proof. Suppose we have a linear combination $\sum_{s \in S} a_s s + a_v v = 0$. If $a_v \neq 0$, then we could solve for $v = -\frac{1}{a_v} \sum_{s \in S} a_s s$, which would mean $v \in \operatorname{span}(S)$, contradicting our assumption. Therefore $a_v = 0$, and since S is linearly independent, we must have $a_s = 0$ for all $s \in S$.

3.9 Span After Removing Elements

Theorem 22. If S is a set of vectors and $v \in S$ can be written as a linear combination of other vectors in $S \setminus \{v\}$, then $span(S) = span(S \setminus \{v\})$.

Proof. Since $S \setminus \{v\} \subseteq S$, we have $\operatorname{span}(S \setminus \{v\}) \subseteq \operatorname{span}(S)$ by monotonicity. For the reverse inclusion, since v is a linear combination of vectors in $S \setminus \{v\}$, any linear combination involving v can be rewritten using only vectors from $S \setminus \{v\}$.

Inner Product World

4.1 Inner Product Spaces

Definition 23. An inner product space over the real numbers \mathbb{R} is a vector space V over \mathbb{R} together with an inner product $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ satisfying the axioms of positivity, definiteness, additivity, and homogeneity.

Definition 24. An inner product space over the complex numbers \mathbb{C} is a vector space V over \mathbb{C} together with an inner product $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ satisfying five key axioms:

- 1. **Positivity**: $\langle v, v \rangle \in \mathbb{R}$ and $\langle v, v \rangle \geq 0$ for all $v \in V$
- 2. **Definiteness**: $\langle v, v \rangle = 0$ if and only if v = 0
- 3. Additivity in first slot: $\langle u+v,w\rangle=\langle u,w\rangle+\langle v,w\rangle$
- 4. Homogeneity in first slot: $\langle a \cdot v, w \rangle = a \cdot \langle v, w \rangle$
- 5. Conjugate symmetry: $\langle v, w \rangle = \overline{\langle w, v \rangle}$

4.2 Basic Properties of Inner Products

Lemma 25. For any vector v in an inner product space, $\langle v, v \rangle$ is real.

Proof. By the conjugate symmetry axiom of inner products, we have $\langle v, v \rangle = \overline{\langle v, v \rangle}$. A complex number equals its conjugate if and only if it is real.

Lemma 26. For any vectors u, v in an inner product space, $\langle -u, v \rangle = -\langle u, v \rangle$.

Proof. By the homogeneity axiom, $\langle -u,v\rangle = \langle (-1)\cdot u,v\rangle = (-1)\cdot \langle u,v\rangle = -\langle u,v\rangle.$

4.3 Complex Conjugation Properties

Lemma 27. Complex conjugation is injective: if $\overline{z} = \overline{w}$, then z = w.

Proof. If $\overline{z} = \overline{w}$, then taking the conjugate of both sides gives $\overline{\overline{z}} = \overline{\overline{w}}$. Since $\overline{\overline{z}} = z$ for any complex number z, we have z = w.

Lemma 28. Complex conjugation distributes over addition: $\overline{z+w} = \overline{z} + \overline{w}$.

Proof. Let
$$z=a+bi$$
 and $w=c+di$ where $a,b,c,d\in\mathbb{R}$. Then $z+w=(a+c)+(b+d)i$, so $\overline{z+w}=(a+c)-(b+d)i=(a-bi)+(c-di)=\overline{z}+\overline{w}$.

Lemma 29. Complex conjugation distributes over multiplication: $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$.

Proof. Let
$$z = a + bi$$
 and $w = c + di$. Then $z \cdot w = (ac - bd) + (ad + bc)i$, so $\overline{z \cdot w} = (ac - bd) - (ad + bc)i$. Also, $\overline{z} \cdot \overline{w} = (a - bi)(c - di) = ac - bd - (ad + bc)i = \overline{z \cdot w}$.

Lemma 30. The complex conjugate of zero is zero: $\overline{0} = 0$.

Proof.
$$0 = 0 + 0i$$
, so $\overline{0} = 0 - 0i = 0$.

4.4 Additional Inner Product Properties

Lemma 31. For any vector v, $\langle v, v \rangle$ equals its real part: $\langle v, v \rangle = Re(\langle v, v \rangle)$.

Proof. Since $\langle v, v \rangle$ is real by the previous lemma, its real part equals itself.

Lemma 32. Inner products are additive in the second argument: $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$.

Proof. By conjugate symmetry and additivity in the first argument:

$$\langle u,v+w\rangle = \overline{\langle v+w,u\rangle} = \overline{\langle v,u\rangle + \langle w,u\rangle} = \overline{\langle v,u\rangle} + \overline{\langle w,u\rangle} = \langle u,v\rangle + \langle u,w\rangle$$

Lemma 33. The inner product of zero with any vector is zero: $\langle 0, v \rangle = 0$.

Proof. Since $0 = 0 \cdot v$ for any vector v, by homogeneity we have $\langle 0, v \rangle = \langle 0 \cdot v, v \rangle = 0 \cdot \langle v, v \rangle = 0$. \square

Lemma 34. The inner product of any vector with zero is zero: $\langle v, 0 \rangle = 0$.

Proof. By conjugate symmetry and the previous lemma: $\langle v, 0 \rangle = \overline{\langle 0, v \rangle} = \overline{0} = 0.$

Lemma 35. Inner products are conjugate-homogeneous in the second argument: $\langle u, a \cdot v \rangle = \overline{a} \cdot \langle u, v \rangle$.

Proof. By conjugate symmetry and homogeneity in the first argument:

$$\langle u, a \cdot v \rangle = \overline{\langle a \cdot v, u \rangle} = \overline{a \cdot \langle v, u \rangle} = \overline{a} \cdot \overline{\langle v, u \rangle} = \overline{a} \cdot \langle u, v \rangle$$

4.5 Norms and Orthogonality

Definition 36. The **norm** of a vector v in an inner product space is defined as:

$$||v|| = \sqrt{\operatorname{Re}(\langle v, v \rangle)}$$

Definition 37. Two vectors u and v are **orthogonal** if $\langle u, v \rangle = 0$. We write $u \perp v$.

Lemma 38. If $u \perp v$, then $a \cdot u \perp v$ for any scalar a.

Proof. If $u \perp v$, then $\langle u, v \rangle = 0$. By homogeneity, $\langle a \cdot u, v \rangle = a \cdot \langle u, v \rangle = a \cdot 0 = 0$, so $a \cdot u \perp v$. \square

Lemma 39. Orthogonality is symmetric: if $u \perp v$, then $v \perp u$.

Proof. If $u \perp v$, then $\langle u, v \rangle = 0$. By conjugate symmetry, $\langle v, u \rangle = \overline{\langle u, v \rangle} = \overline{0} = 0$, so $v \perp u$.

4.6 Norm Properties

Theorem 40. The norm of any vector is non-negative: $||v|| \ge 0$ for all v.

Proof. By definition, $||v|| = \sqrt{\text{Re}(\langle v, v \rangle)}$. Since $\langle v, v \rangle \geq 0$ by the positivity axiom, we have $\text{Re}(\langle v, v \rangle) \geq 0$, and therefore $||v|| = \sqrt{\text{Re}(\langle v, v \rangle)} \geq 0$.

Theorem 41. A vector has norm zero if and only if it is the zero vector: $||v|| = 0 \iff v = 0$.

Proof. $||v|| = 0 \iff \sqrt{\operatorname{Re}(\langle v, v \rangle)} = 0 \iff \operatorname{Re}(\langle v, v \rangle) = 0$. Since $\langle v, v \rangle$ is real and non-negative, this is equivalent to $\langle v, v \rangle = 0$, which by the definiteness axiom is equivalent to v = 0.

Theorem 42. The norm is homogeneous: $||a \cdot v|| = |a| \cdot ||v||$ for any scalar a and vector v.

Proof.

$$||a \cdot v||^2 = \text{Re}(\langle a \cdot v, a \cdot v \rangle) \tag{4.1}$$

$$= \operatorname{Re}(\langle a \cdot v, a \cdot v \rangle) \tag{4.2}$$

$$= \operatorname{Re}(a \cdot \langle v, a \cdot v \rangle) \tag{4.3}$$

$$= \operatorname{Re}(a \cdot \overline{a} \cdot \langle v, v \rangle) \tag{4.4}$$

$$= \operatorname{Re}(|a|^2 \cdot \langle v, v \rangle) \tag{4.5}$$

$$= |a|^2 \cdot \text{Re}(\langle v, v \rangle) \tag{4.6}$$

$$= |a|^2 \cdot ||v||^2 \tag{4.7}$$

Taking square roots of both sides gives $||a \cdot v|| = |a| \cdot ||v||$.

Theorem 43. Every vector is orthogonal to the zero vector: $v \perp 0$ for all v.

Proof. By definition of orthogonality and the lemma that $\langle v, 0 \rangle = 0$, we have $v \perp 0$ for all v. \square

Theorem 44. A vector is orthogonal to itself if and only if it is the zero vector: $v \perp v \iff v = 0$.

Proof. $v \perp v \iff \langle v, v \rangle = 0 \iff v = 0$ by the definiteness axiom of inner products.

4.7 Major Theorems

Theorem 45. Pythagorean Theorem: If $u \perp v$, then $||u + v||^2 = ||u||^2 + ||v||^2$.

Proof.

$$||u+v||^2 = \operatorname{Re}(\langle u+v, u+v\rangle) \tag{4.8}$$

$$= \operatorname{Re}(\langle u, u + v \rangle + \langle v, u + v \rangle) \tag{4.9}$$

$$= \operatorname{Re}(\langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle) \tag{4.10}$$

$$= \operatorname{Re}(\langle u, u \rangle) + \operatorname{Re}(\langle u, v \rangle) + \operatorname{Re}(\langle v, u \rangle) + \operatorname{Re}(\langle v, v \rangle)$$
(4.11)

Since $u \perp v$, we have $\langle u, v \rangle = 0$ and $\langle v, u \rangle = 0$. Therefore:

$$\|u+v\|^2 = \operatorname{Re}(\langle u,u\rangle) + \operatorname{Re}(\langle v,v\rangle) = \|u\|^2 + \|v\|^2$$

Theorem 46. For any vector v, $||v||^2 = Re(\langle v, v \rangle)$.

Proof. By definition, $||v|| = \sqrt{\text{Re}(\langle v, v \rangle)}$, so $||v||^2 = \text{Re}(\langle v, v \rangle)$.

Theorem 47. Orthogonal Decomposition: Any vector can be decomposed into orthogonal components.

Proof. Given vectors u and v with $v \neq 0$, define $w = u - \frac{\langle u, v \rangle}{\langle v, v \rangle} v$. Then:

$$\langle w, v \rangle = \langle u, v \rangle - \frac{\langle u, v \rangle}{\langle v, v \rangle} \langle v, v \rangle = \langle u, v \rangle - \langle u, v \rangle = 0$$

So $w \perp v$, and $u = w + \frac{\langle u, v \rangle}{\langle v, v \rangle} v$ is the desired orthogonal decomposition.

Theorem 48. If $a^2 \le b^2$ and both $a, b \ge 0$, then $a \le b$.

Proof. This follows from the monotonicity of the square root function on non-negative real numbers. If $a, b \ge 0$ and $a^2 \le b^2$, then taking square roots preserves the inequality: $a = \sqrt{a^2} \le \sqrt{b^2} = b$.

Theorem 49. Cauchy-Schwarz Inequality: For any vectors u and v, $|\langle u, v \rangle| \leq ||u|| \cdot ||v||$.

Proof. If v=0, then both sides equal 0 and the inequality holds. Assume $v\neq 0$.

Using orthogonal decomposition, write $u = w + \frac{\langle u, v \rangle}{\langle v, v \rangle} v$ where $w \perp v$.

By the Pythagorean theorem:

$$||u||^2 = ||w||^2 + \left|\left|\frac{\langle u, v \rangle}{\langle v, v \rangle}v\right|\right|^2$$

Since $||w||^2 \ge 0$:

$$\|u\|^2 \geq \left\|\frac{\langle u,v\rangle}{\langle v,v\rangle}v\right\|^2 = \frac{|\langle u,v\rangle|^2}{|\langle v,v\rangle|^2}\|v\|^2 = \frac{|\langle u,v\rangle|^2}{\|v\|^4}\|v\|^2 = \frac{|\langle u,v\rangle|^2}{\|v\|^2}$$

Multiplying by $||v||^2$ gives $|\langle u, v \rangle|^2 \le ||u||^2 ||v||^2$, and taking square roots yields the desired inequality.

Theorem 50. Triangle Inequality: For any vectors u and v, $||u+v|| \le ||u|| + ||v||$.

Proof.

$$||u+v||^2 = \operatorname{Re}(\langle u+v, u+v\rangle) \tag{4.12}$$

$$= \operatorname{Re}(\langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle) \tag{4.13}$$

$$= ||u||^2 + \operatorname{Re}(\langle u, v \rangle + \langle v, u \rangle) \tag{4.14}$$

$$= \|u\|^2 + \|v\|^2 + \operatorname{Re}(\langle u, v \rangle + \overline{\langle u, v \rangle}) \tag{4.15}$$

$$= ||u||^2 + ||v||^2 + 2\operatorname{Re}(\langle u, v \rangle) \tag{4.16}$$

Since $\operatorname{Re}(\langle u, v \rangle) \leq |\langle u, v \rangle| \leq ||u|| ||v||$ by Cauchy-Schwarz:

$$||u + v||^2 < ||u||^2 + ||v||^2 + 2||u|||v|| = (||u|| + ||v||)^2$$

Taking square roots gives $||u+v|| \le ||u|| + ||v||$.

Linear Maps World

This world introduces linear transformations between vector spaces and studies their fundamental properties.

5.1 Definition and Basic Properties

Definition 51. Let K be a field and V, W be vector spaces over K. A function $T:V\to W$ is called a **linear map** if it satisfies:

- 1. Additivity: T(u+v) = T(u) + T(v) for all $u, v \in V$
- 2. Homogeneity: $T(a \cdot v) = a \cdot T(v)$ for all $a \in K, v \in V$

Lemma 52. If $T: V \to W$ is a linear map, then T(0) = 0.

Proof. Using the homogeneity property with a = 0: $T(0 \cdot v) = 0 \cdot T(v) = 0$.

5.2 Null Space and Range

Definition 53. The null space (or kernel) of a linear map $T: V \to W$ is:

$$\text{null}(T) = \{ v \in V : T(v) = 0 \}$$

Definition 54. The range (or image) of a linear map $T: V \to W$ is:

$$range(T) = \{T(v) : v \in V\}$$

5.3 Injectivity and Surjectivity

Linear maps have special characterizations of injectivity and surjectivity in terms of their null space and range.

Theorem 55. A linear map $T: V \to W$ is injective if and only if $null(T) = \{0\}$.