TRIGONOMETRY

Chapter 2

Razones trigonométricas
de un ángulo agudo II

5TO SAN MARCOS

¿como se midió el tamaño de la tierra en la antigüedad?

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO II

TRIÁNGULOS NOTABLES

Son aquellos triángulos más importantes y conocidos de las matemáticas, donde los lados son proporcionales. Entre los más conocidos tenemos:

CÁLCULO DE LAS R.T DE ÁNGULOS NOTABLES

Para calcular las R.T. de los ángulos notables tenemos que recordar los triángulos notables ya que de ahí es de donde se deducen.

Recordar:

sen	cos	tan	cot	sec	csc
Co	Ca	Co	Ca	Н	н
н	Н	Ca	Co	Ca	Co

$$sen 37^{\circ} = \frac{Co}{H} = \frac{3k}{5k} = \frac{3}{5}$$

$$\therefore \text{ sen } 37^\circ = \frac{3}{5}$$

Si hacemos para todos los triángulos tenemos:

	30°	60°	45°	37°	53°	16°	74°
sen	1	$\sqrt{3}$	$\sqrt{2}$	3	4	7	24
	$\overline{2}$	2	2	$\frac{3}{5}$	$\frac{4}{5}$	25	$\frac{24}{25}$
cos	$ \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} $ $ \frac{\sqrt{3}}{3}$	$\frac{1}{2}$	$\frac{\boxed{2}}{\sqrt{2}}$	$\frac{4}{5}$	$\frac{3}{5}$	$\frac{24}{25}$	I
	2	2	2	5	5	25	25
tan	$\sqrt{3}$	√3	1	$\frac{3}{4}$	$\frac{4}{3}$	7	$ \begin{array}{r} 7 \\ 25 \\ \hline 24 \\ 7 \end{array} $
	3			4	3	24	7
cot	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	1	$\frac{4}{3}$	3	24	7
				3	$\frac{3}{4}$	$\frac{24}{7}$	24
sec	$\frac{2\sqrt{3}}{3}$	2	$\sqrt{2}$	$\frac{5}{4}$	$\frac{5}{3}$	25	$\frac{25}{7}$
	3			4	3	24	7
csc	2	$\frac{2\sqrt{3}}{3}$	$\sqrt{2}$	<u>5</u> 3	5	$\frac{25}{7}$	25
				3	$\frac{5}{4}$	7	24

PROPIEDADES DE LAS R.T DE ÁNGULOS AGUDOS

· R.T RECÍPROCAS

R.T. DE ÁNGULOS COMPLEMENTARIOS

$$sen\alpha = \frac{a}{c}$$

$$\cos \beta = \frac{a}{c}$$

$$\alpha$$
+ β =90°

 α y β Son ángulos complementarios

$$tan\alpha = cot\beta$$

Del gráfico, calcule x.

B)
$$\sqrt{29}$$
 D) $\sqrt{41}$

Recordar:

Resolución:

Del gráfico:

Teorema de pitágoras:

$$x^{2} = (2)^{2} + (3\sqrt{3})^{2}$$
$$\Rightarrow x^{2} = 31$$

$$\therefore x = \sqrt{31}$$

2.

Calcule $\cot \theta$.

- A) 1
- C) $\frac{1}{3}$

- B) $\frac{1}{2}$
- **D**) 2

Resolución:

Del gráfico:
$$\cot \theta = \frac{4k}{2k} = \frac{2}{1}$$

$$\therefore \cot \theta = 2$$

3.

Del gráfico calcule tan α.

A) $\frac{1}{5}$

B) $\frac{2}{3}$

C) $\frac{1}{3}$

Recordar:

Resolución:

Del gráfico:
$$\tan \alpha = \frac{1}{2 + \frac{1}{2}} = \frac{\frac{1}{5}}{\frac{5}{2}}$$

$$\therefore \tan \alpha = \frac{2}{5}$$

Halle el valor numérico de

$$Q = \frac{\sec 53^{\circ} \cdot \cot 60^{\circ} + \sec 37^{\circ} \cdot \sec 60^{\circ}}{(\csc^{2}45^{\circ} - 1) \cdot \tan 60^{\circ} - \frac{1}{3}\csc 60^{\circ}}.$$

B)
$$\frac{7}{11}$$

C)
$$\frac{7}{3}$$

D)
$$\frac{13}{17}$$

Recordar:

Resolución:

$$Q = \frac{\sec 53^{\circ} \cdot \cot 60^{\circ} + \sec 37^{\circ} \cdot \sec 60^{\circ}}{(\csc^{2} 45^{\circ} - 1)^{2} \cdot \tan 60^{\circ} - \frac{1}{3} \csc 60^{\circ}}$$

Reemplazamos valores numéricos:

$$Q = \frac{\frac{5}{3} \cdot \frac{\sqrt{3}}{3} + \frac{3}{5} \cdot \frac{\sqrt{3}}{2}}{(\sqrt{2}^2 - 1)^2 \cdot \sqrt{3} - \frac{1}{3} \cdot \frac{2\sqrt{3}}{3}} = \frac{\frac{77\sqrt{3}}{90}}{\frac{7\sqrt{3}}{9}}$$

$$\therefore Q = \frac{11}{10}$$

Halle x

$$\cos\left(\frac{7x+4^{\circ}}{2}\right)\cdot\sec\left(\frac{10x+7^{\circ}}{3}\right)=1.$$
 Dato:

Recordar:

$$\cos \alpha . \sec \alpha = 1$$

iguales

Resolución:

$$\cos\left(\frac{7x+4^{\circ}}{2}\right) \cdot \sec\left(\frac{10x+7^{\circ}}{3}\right) = 1$$
iguales

$$\Rightarrow \frac{7x + 4^{\circ}}{2} = \frac{10x + 7^{\circ}}{3}$$

$$\Rightarrow$$
 21x +12° = 20x +14°

$$\therefore x = 2^{\circ}$$

$$\operatorname{Si} \operatorname{sen} \left(10^{\circ} + \frac{x}{3} \right) = \cos \left(\frac{x}{2} + 40^{\circ} \right)$$

Halle x.

- A) 22°
- C) 36°

Recordar:

Resolución:

Dato:

$$\operatorname{sen}\left(10^{\circ} + \frac{x}{3}\right) = \cos\left(\frac{x}{2} + 40^{\circ}\right)$$

$$\Rightarrow 10^{\circ} + \frac{x}{3} + \frac{x}{2} + 40^{\circ} = 90^{\circ}$$

$$\frac{5x}{6} = 40^{\circ} \qquad \therefore \quad x = 48^{\circ}$$

$$\therefore x = 48^{\circ}$$

Reduzca

$$M = (7 sen 22^{\circ} - 3 cos 68^{\circ}) 2 csc 22^{\circ}$$
.

- A) 2
- C)6

- B) 4
- D) 8

1) R.T. RECÍPROCAS 2) R.T. DE ÁNGULOS

 $sen\alpha.csc\alpha = 1$

 $\cos\alpha.\sec\alpha=1$

tan α .cot $\alpha = 1$

2) R.T. DE ÁNGULOS COMPLEMENTARIOS

senα=cosβ

 $tan\alpha = cot\beta$

 $sec\alpha = csc\beta$

T_____T
Suman 90°

Resolución:

Calculamos:

$$M = (7 \sin 22^{\circ} - 3 \cos 68^{\circ}) \cdot 2 \csc 22^{\circ}$$
$$\sec 22^{\circ}$$

$$M = (4 sen 22^{\circ}) \cdot 2 csc 22^{\circ}$$

$$M = 8 sen 22^{\circ}. csc 22^{\circ}$$

1

$$\therefore M = 8$$

8.

Desde un punto en tierra ubicado a 20 m de la base de un edificio; el ángulo de elevación para su parte más alta mide 37°. Calcule la I altura del edificio.

- A) 18 m
- C) 12 m

- B) 10 m

Resolución:

Del gráfico:

:. Altura del edificio = 15m

9.

Subiendo por una colina inclinada 45° respecto a la horizontal se observa a 20 m, la parte superior de un poste con un ángulo de elevación de 53°. ¿Cuál es la longitud del poste?

A) 1 m

C) 3 m

B) 2 m

D) 4 m

Recordar:

Resolución:

Del gráfico:

$$h+12=16 \implies h=4$$

 \therefore Longitud del poste = 4m

Desde un punto que se encuentra a 48 m del pie de una torre el ángulo de elevación para la parte más alta es 45°. ¿Cuánto debe acercar dicho punto para que el nuevo ángulo de elevación sea 53°?

A) 10 m

C) 4 m

B) 6 m D) 12 m

Recordar:

Del gráfico : $4k = 48 \implies k = 12$

Se cumple: x + 36 = 48

 \therefore x = 12m

PREGUNTAS ADICIONALES

Desde un auto ubicado en C, se observan la parte más alta de los pilares ubicados en A y B con ángulos de elevación de 53° y 30°. ¿Cuál es la distancia entre los pilares mencionados?

A B B

Resolución:

Del enunciado:

Calculamos DE:

DE =
$$15 + 20\sqrt{3} \implies DE = 5(3 + 4\sqrt{3})$$

$$\therefore DE = 5(3+4\sqrt{3})m$$

El niño Pepito tiene un **nuevo rompecabezas** de tres piezas que forman un triángulo equilátero de lado $10\,\mathrm{cm}$, tal como muestra la figura. Si $\mathrm{CN} = 4\,\mathrm{NB}$ y $\mathrm{AM} = \mathrm{MN}$; calcule $\tan\theta$.

$$CEM: \tan\theta = \frac{ME}{EC}$$

$$\tan\theta = \frac{2\sqrt{3}}{7}$$

HELICO

Si (4ϕ) y $(\phi + 45^{\circ})$ representan las medidas de dos ángulos agudos que cumplen:

$$\sec(4\phi)\cos(\phi+45^\circ) = \frac{\tan 25^\circ \tan 65^\circ \sec 10^\circ}{\cos 80^\circ} \cdots (*)$$

Calcule: $\cot(\phi) - \cot(2\phi)$

RT de ángulos complementarios: $\tan 65^{\circ} = \cot 25^{\circ} | \operatorname{sen} 10^{\circ} = \cos 80^{\circ} |$

$$\tan 65^\circ = \cot 25^\circ | \sin 10^\circ =$$

Reemplazamos en (*):

$$\sec(4\phi).\cos(\phi + 45^\circ) = \frac{\tan 25^\circ.\cot 25^\circ.\cos 80^\circ}{\cos 80^\circ} \Rightarrow E = \cot 15^\circ - \cot 30^\circ$$

$$\Rightarrow E = 2 + \sqrt{3} - \sqrt{3}$$

Luego:
$$4\phi = \phi + 45^{\circ} \implies \phi = 15^{\circ}$$

Calculamos: $E = \cot(\phi) - \cot(2\phi)$

$$\Rightarrow$$
 E = cot 15° - cot 30°

$$\Rightarrow$$
 E = 2 + $\sqrt{3}$ - $\sqrt{3}$

$$\therefore E = 2$$

Un avión Mirage 2000 que vuela a 3km de altitud se aproxima a su objetivo ubicado en el punto A, como se observa en la figura. Si se cumple que $4\cot\alpha\sec\alpha=\cot\beta\csc\beta$; ¿a qué distancia del objetivo se encuentra en ese instante?

Resolución:

$$\triangle$$
 ACB: $\alpha + \beta = 90^{\circ}$

$$tan\alpha = \cot\beta \quad sec\alpha = \csc\beta$$

Condición:
$$4\cot\alpha\sec\alpha = \cot\beta\csc\beta$$

 $\Rightarrow 4\cot\alpha\sec\alpha = \tan\alpha\sec\alpha$

$$\Rightarrow 4.\frac{1}{\tan \alpha} = \tan \alpha \Rightarrow 4 = \tan^2 \alpha \Rightarrow \tan \alpha = 2$$

Así, tenemos:
$$\tan \alpha = \frac{2}{1}$$
 k α $\sqrt{5k}$ $2k$

Comparamos

en el
$$\triangle$$
 ACB: $k = 3$

$$\therefore AB = 3\sqrt{5} \text{ km}$$