Guía de Trabajo de Investigación

Unidad 2: Funciones

1. Contexto general

En el curso se consideran 5 notas, cada una con un peso del 20 % en la nota final. En particular, una de estas calificaciones corresponde al EID de la Unidad 2: Funciones, cuya evaluación se desglosa de la siguiente manera:

- 50 %: Trabajo de investigación (Parte A y Parte B).
- 50 %: Prueba grupal de resolución de problemas de funciones (al término de la unidad).

2. Resumen de ponderaciones Unidad 2

Actividad	Porcentaje en la Unidad 2	Porcentaje en la nota
		final del curso
Parte A: Investigación	25%	5%
Matemática (video)		
Parte B: Proyecto en Python	25%	5 %
(defensa presencial)		
Prueba grupal de problemas	50 %	10%
de funciones		
Total Nota Unidad 2	100 %	$\boldsymbol{20\%}$

3. Organización del trabajo

La investigación que deben realizar durante la semana online se compone de dos partes, Parte A y Parte B, cada una con un peso del 50 % dentro del trabajo de investigación.

Parte A. Investigación Matemática (Video)

- Objetivo: Explicar los conceptos fundamentales relacionados con las funciones. Para ello, deberán realizar un video en el que participen todos los integrantes del grupo. En el video deberán:
 - Explicar la definición de función, con énfasis en funciones polinómicas y racionales.
 - Describir las formas de representación gráfica, identificando claramente las variables independiente y dependiente.
 - Evaluar un punto en cada función e interpretar el resultado obtenido.
 - Explicar los conceptos de dominio y recorrido, ejemplificándolos con un gráfico elaborado en GeoGebra de una función racional.
 - Identificar las intersecciones con los ejes, interpretando su significado directamente en el gráfico.
- Producto: Un video de 4 a 5 minutos en grupo de 4 integrantes.

Parte B. Proyecto en Python (Defensa presencial)

■ Objetivo: Implementar un programa en Python que funcione como un analizador de funciones con interfaz gráfica. La aplicación debe permitir al usuario ingresar una función matemática y, opcionalmente, un valor x para evaluar, es decir, dos campos de entrada. El programa deberá analizar la función para calcular y mostrar su dominio, recorrido e intersecciones con los ejes, exponiendo además el desarrollo computacional que justifica dichos resultados.

Al evaluar un punto, el programa deberá mostrar de forma detallada el **paso a paso de la sustitución y cálculo de** f(x), concluyendo con la presentación del par ordenado resultante. Posteriormente, se debe generar una **gráfica** clara y profesional (con títulos y etiquetas) que represente la función y sus intersecciones, **resaltando el punto evaluado en un color distinto sin alterar la gráfica original**.

Se espera que el programa cuente con una interfaz de usuario intuitiva y un robusto manejo de errores.

- Producto: Código fuente en Python, alojado en un repositorio de GitHub aplicando una estructura de proyecto organizada.
 - Se **prohibe** el uso de la librería numpy o similares.
 - Se **recomienda** utilizar librerias como Matplotlib para los graficos, sympy para el parser/entrada limpia de las respectivas funciones.

Defensa:

- Las defensas se realizarán los días lunes 15 y martes 16 de septiembre.
- Cada grupo dispondrá de 5 a 6 minutos para explicar su código y su funcionamiento.
- Posteriormente habrá una **ronda de preguntas**, alcanzando un máximo de 10 minutos por grupo.
- Las defensas se organizarán en tres bloques:
 - 1. Lunes 15 de 08:00 a 10:00 hrs.
 - 2. Lunes 15 de 15:00 a 17:00 hrs.
 - 3. Martes 16 de 15:00 a 17:00 hrs
- El día 15 de septiembre no se realizará la clase en horario regular, pues en ese periodo habrá defensa.
- Los ayudantes del curso participarán formulando preguntas técnicas.
- Evaluación: Se aplicará la rúbrica de Python diseñada por los ayudantes (ver sección correspondiente).

4. Procedimiento y entrega

- 1. Conformación de grupos: 4 estudiantes.
- 2. Entregas:

- Video (formato MP4 o link privado de YouTube).
- Archivo en Python: .py.
- 3. Plazo de entrega del video y código: Sábado 13 de septiembre hasta las 23:59 hrs, vía plataforma institucional.
- 4. Importante: Trabajos fuera de plazo tendrán como nota máxima 4,0.
- 5. Plagio y uso de IA: Se revisará la originalidad.

5. Bibliografía recomendada

Bibliografía obligatoria

- Baldor, A. (2007). Álgebra. México: Grupo Editorial Patria.
- Swokowski, E. W. (2006). Álgebra y trigonometría con geometría analítica. México: Cengage Learning Editores.
- Zill, D. G. (2000). Álgebra y trigonometría. Bogotá: McGraw-Hill Interamericana.

Bibliografía complementaria

- Lehmann, Ch. (1996). Álgebra. Limusa.
- Sullivan, M. (1996). *Precalculus*. Prentice-Hall International.
- Vance, E. (1990). Introducción a la matemática moderna. Addison-Wesley Iberoamericana.
- Vance, E. (1978). Álgebra y trigonometría. Fondo Educativo Interamericano.

Rúbrica Parte A: Investigación Matemática (Video)

Criterio	Deficiente	Aceptable	Bueno	Excelente		
1. Definición y conceptos						
Define qué es una función con claridad,	$\square (0)$	\Box (1)	\square (2)	\square (3)		
indicando la relación entre variable in-						
dependiente (x) y dependiente (y) .						
Explica qué son las funciones polinómi-	\Box (0)	\Box (1)	\Box (2)			
cas.						
Explica qué son las funciones raciona-	\Box (0)	\Box (1)	\square (2)			
les.						
2. Ejemplos y gráficas						
Presenta al menos un ejemplo de gráfi-	\square (0)	\Box (1)	\Box (2)	\square (3)		
ca en GeoGebra (u otro software).						
Muestra cómo se evalúa una función	□ (0–1)	\Box (2)	\Box (3)	\Box (4)		
en un punto e interpreta la coordena-						
da (x,y) en el gráfico.						
3. Dominio y recorrido						
Explica el concepto de dominio con un	\square (0)	\Box (1)	\Box (2)	\square (3)		
ejemplo.						
Explica las restricciones del dominio en	\Box (0)	\Box (1)	\Box (2)	\Box (3)		
funciones racionales.						
Explica el concepto de recorrido con un	\Box (0)	\Box (1)	\Box (2)	\Box (3)		
ejemplo.						
4. Intersecciones						
Determina e interpreta las interseccio-	□ (0–1)	\Box (2)	\Box (3)	\Box (4)		
nes de una función con los ejes.						
5. Presentación						
Claridad de la exposición (lenguaje	$\square (0)$	\Box (1)	\square (2)	\square (3)		
técnico adecuado, orden de ideas, du-						
ración entre 4 y 5 minutos).						
Participación equitativa de todos los in-	\Box (0)	\Box (1)	\Box (2)			
tegrantes en el video.						

Puntajes de referencia:

- Puntaje ideal (nota 7.0): 32 puntos.
- Puntaje de aprobación (nota 4.0): 19 puntos (60 % de exigencia).

Rúbrica Parte B: Aplicación informática en Python

- La evaluación constará de 8 preguntas para cada grupo, las cuales estarán relacionadas con los criterios de la siguiente rúbrica. Cada grupo deberá responder en base al desarrollo de su proyecto en Python.
- Cada grupo deberá presentar su código de forma cronometrada explicando su funcionamiento, y al finalizar cada integrante responderá dos preguntas técnicas relacionadas con las decisiones de implementación para comprobar su comprensión.

Criterio	Deficiente	Aceptable	Bueno	Excelente
1. Funcionalidad Matemática				
Presenta un código en Python para eva-	\Box (0 pts)	\Box (1 pt)	\Box (2 pts)	\Box (3 pts)
luar funciones.				
El código determina el dominio de la	\Box (0 pts)	\Box (1 pt)	\Box (2 pts)	\Box (3 pts)
función ingresada.				
El código determina el recorrido de la	\Box (0 pts)	\Box (1 pt)	\Box (2 pts)	\Box (3 pts)
función ingresada.				
El código calcula y muestra las inter-	\Box (0 pts)	\Box (1 pt)	\Box (2 pts)	\Box (3 pts)
secciones con los ejes.				
La aplicación expone el desarrollo pa-	\Box (0 pts)	\Box (1 pt)	\Box (2 pts)	\Box (3 pts)
so por paso que justifica los resultados				
obtenidos (dominio, recorrido, etc.).				
Permite evaluar un punto x en la fun-	\Box (0 pts)	\Box (1 pt)	\Box (2 pts)	\Box (3 pts)
ción y remarca el punto resultante en				
la gráfica.				
2. Gráficas				
El gráfico incluye el dominio visible,	\Box (0-1 pts)	\square (2-3 pts)	\Box (4-5 pts)	□ (6-8 pts)
el recorrido visible y todas las inter-				
secciones con los ejes (este contiene				
títulos, etiquetas en ejes, leyenda				
clara y colores).				
3. Uso de librerías simbólicas				
El ingreso de funciones mediante in-	\Box (0 pts)	\Box (1 pt)	\Box (2 pts)	\Box (3 pts)
put() o similar debe ingresarse de la				
manera más limpia posible (por ejem-				
plo, $2x^2 + 2x$). Se puede utilizar una				
librería simbólica (Sympy u otra simi-				
lar).				
4. Calidad del código				
Se implementa manejo de errores	\Box (0 pts)	\Box (1 pt)	\Box (2 pts)	\Box (3 pts)
(entradas inválidas, divisiones por ce-				
ro, acepta fracciones, acepta decimales,				
etc.).				

UNIVERSIDAD CATÓLICA DE

TEMUCO

Criterio	Deficiente	Aceptable	Bueno	Excelente
El proyecto utiliza una arquitectura	\Box (0 pts)	\Box (1 pt)	\Box (2 pts)	\Box (3 pts)
limpia (main.py + módulos auxilia-				
res).				
5. Interfaz				
El proyecto contiene el uso de una in-	\square (0-1 pts)	\square (2-3 pts)	\Box (4-5 pts)	□ (6-8 pts)
terfaz, esta es intuitiva y amigable con				
el usuario.				
6. Documentación y GitHub				
El grupo contiene un repositorio en	\Box (0 pts)	\Box (1 pt)	\Box (2 pts)	\square (3 pts)
GitHub para su desarrollo con colabo-				
radores, ademas de contar con un mi-				
nimo de un commit por integrante.				
7. Presentación final				
El código es explicado con claridad.	\square (0-1 pts)	\square (2-3 pts)	\square (4-5 pts)	\square (6-8 pts)
Se utiliza un lenguaje técnico preciso y	\square (0-1 pts)	\square (2-3 pts)	\square (4-5 pts)	□ (6-8 pts)
adecuado durante la presentación.				
Se muestra una ejecución completa con	□ (0-1 pts)	\Box (2-3 pts)	\Box (4-5 pts)	□ (6-8 pts)
ingreso de función, cálculo y gráfico.				
Responde de manera correcta las pre-	\Box (0-1 pts)	\Box (2-3 pts)	\Box (4-5 pts)	\Box (6-8 pts)
guntas planteadas				
El tiempo de presentacion no debe pa-	□ (0-1 pts)	\Box (2-3 pts)	\Box (4-5 pts)	□ (6-8 pts)
sar de los 5-6 minutos				

Puntajes de referencia:

- Puntaje ideal (nota 7.0): 86 puntos.
- Puntaje de aprobación (nota 4.0): 52 puntos (60 % de exigencia).