סיכום משפטים – חבורות

תורת המספרים – משפטים

- בעל m,n אז הוא מחלק כל צייל של m,n בעל או מקסימלי). אם א מחלק משותף (לאו דווקא מקסימלי). מקדמים שלמים.
 - $\gcd(m,n)=\gcd(m,r)$ אזי n=am+r משפט אוקלידס.
- הוא $d\cdot d=am+bn$ כך שמתקיים $a,b\in\mathbb{Z}$ אזי קיימים $d=\gcd(m,n)$.3 המספר השלם הקטן ביותר המקיים תכונה זו.
 - $a,b\in\mathbb{Z}$ בין שמתקיים אם ורק אם ורק אם קיימים $a,b\in\mathbb{Z}$ מסקנה m,n זרים אם ורק אם יימים.
 - $gcd(m,n) \cdot lcm(m,n) = m \cdot n$.5
 - : אזי $n=p_1^{b_1}\cdot ...\cdot p_n^{b_n}$, $m=p_1^{a_1}\cdot ...\cdot p_n^{a_n}$ נניח כי .6

$$gcd(m, n) = p_1^{\min\{a_1, b_1\}} \cdot ... \cdot p_n^{\min\{a_n, b_n\}}$$
 -

$$lcm(m,n) = p_1^{\max\{a_1,b_1\}} \cdot \dots \cdot p_n^{\max\{a_n,b_n\}}$$

- $.n = \sum_{0 < d|n} \phi(d) \quad .7$
- $\phi(p^n) = p^{n-1}(p-1)$.8
- פיים x יחיד כך שמתקיים n, n זרים, n אחיני לכל m, n אחיני לכל m, n וגם $x=a\ (mod\ m)$
 - $m^{\phi(n)} = 1 \ (mod \ n)$ זרים, אזי m, n אם 10.

תמורות - משפטים

- עבור σ^m אזי שלם כלשהו, אזי $d=\gcd(k,m)$, S_n מעגל ב-k היא מכפלה של .1 מעגלים בגודל $\frac{k}{d}$
 - 2. צמידות תמורות הוא יחס שקילות.
 - $. au\sigma au^{-1}=ig(au(a_1),... au(a_n)ig)$ אזי $\sigma=(a_1,a_2,...,a_n)$ אם .3
 - .4 שתי תמורות הן צמודות אם ורק אם יש להן את אותו מבנה מעגלי.
- .5 כל תמורה ב- S_n ניתנת לכתיבה כמכפלה של טרנספוזיציות. בכל מכפלה כזאת, הזוגיות של מספר הטרנספוזיציות תהיה זהה.
- 6. מכפלה של תמורות מאותה זוגיות היא תמורה זוגית, מכפלה של תמורות מזוגיות שונה היא תמורה אי-זוגית.

חבורות - משפטים

- : בוחן תת-חבורה H- תת-חבורה של G אם ורק אם H-
 - $.e \in H$ -
 - H סגורה לכפל.
 - כל איבר ב-H הפיך.

:או באופן שקול

- $.H \neq \emptyset$ -
- $.g,h\in H\Rightarrow g\cdot h^{-1}\in H\quad -$
- 2. חיתוך של תתי-חבורות הוא תת-חבורה.
- 3. איחוד של תתי-חבורות הוא חבורה אם ורק אם חבורה אחת מוכלת באחרת.
 - .S אז $\langle S \rangle$ אז שמכילה את G אם הקטנה ביותר הקטנה התת-חבורה את S אז $\langle S \rangle$ אז אם S ביותר של .4
 - .0(g)|m איז $g^m=e$.5
 - 6. תת-חבורה של חבורה ציקלית היא ציקלית.
 - 7. אם סדר של חבורה הוא ראשוני, אז החבורה ציקלית.
- .#H $= \frac{n}{d}$ אזי (g^d) אזי ($d = \gcd(m,n)$,n = O(g) , $H = \langle g^m \rangle$.8
- - אבליות. H,G אם ורק אם $G \times H$.10
 - .11 מכפלה קרטזית של תתי-חבורות היא תת-חבורה של המכפלה הקרטזית.
 - .o((a,b)) = lcm(o(a),o(b)) .12
 - .13 לחבורה ציקלית יש תת-חבורה מכל סדר שמחלק אותה.
 - .14 המרכז של S_n הוא טריוויאלי.
 - p איבר מסדר G איבר האיבר השוני ו-p אוני ו-p איבר חבורה, G חבורה, משפט קושי
 - . אם G חבורה מסדר p>2 (p>2 ראשוני), אז G אם 16
 - . אם G אז המרכז של G אז המרכז של, חבורת-17

תתי-חבורות נורמליות - משפטים

- .1. כל הצמדה מהצורה gHg^{-1} היא תת-חבורה.
- 2. כל תת-חבורה של חבורה אבלית היא נורמלית.
 - $g \in G$ לכל $gHg^{-1} \subseteq H$ אסם $H \triangleleft G$.3
- 4. חיתוך של תתי-חבורות נורמליות הוא תת-חבורה נורמלית.

- מספיק לבדוק G מספיק לבדוק נורמליות של G או כדי לבדוק לבדוק או כדי S יוצרת של איברי אם קבוצה הפיכה S את התנאי ממשפט מסי $^{\circ}$ S על איברי S בלבד.
 - $H \cdot K = K \cdot H$ אם ורק אם $H \cdot K \leq G$ מתקיים $H, K \leq G$.6
 - $.H \cdot K = K \cdot H$ אזי אם G אם .7
 - $.H \cdot K \triangleleft G$ אזי א $K, H \triangleleft G$ אם .8
 - $H \cdot K = \langle H \cup K \rangle$ אזי $H \subseteq G$, $K \triangleleft G$ אם .9
 - .10 המרכז של חבורה הוא תת-חבורה נורמלית.
- מסוים מעגלי ממבנה שכל התמורות הכרחי שכל מסוים תהיה S_n תהיה של כדי שתת-חבורה של החבורה. אייכות לחבורה.

הומומורפיזמים - משפטים

- $.\alpha(e) = e$.1
- $.\alpha(g^{-1}) = \alpha(g)^{-1}$.2
- .3 הומומורפיזם נקבע באופן בלעדי על ידי הפעולה שלו על היוצרים של החבורה.
 - $.Ker(\alpha) \triangleleft G_1$.4
 - .Ker $(\alpha) = \{e\}$ חחייע אם ורק אם α .5
 - $.Im(\alpha) \leq G_2$.6
 - . אם lpha חחייע אז מתקיים שוויון בין השניים. O(lpha(g))|O(g) .7
 - $.\alpha(H_1) \leq G_2$ אם $H_1 \leq G_1$ אם .8
 - $\mathbb{Z}_m imes \mathbb{Z}_n \cong \mathbb{Z}_{mn}$ זרים אז m, n משפט השאריות הסיני
 - . \mathbb{Z}_n איזומורפית ל-חבורה ציקלית מסדר חבורה ציקלית מסדר 10
- במקרה של (Sym(G) במקרה לתת-חבורה של (G איזומורפית חבורה של (G במקרה .G במקרה .G $\cong H \leq S_n$ הסופי

קוסטים וחבורות מנה - משפטים

- 1. בתתי-חבורות נורמליות, הקוסטים השמאליים שווים לקוסטים הימניים.
 - |gH| = |Hg| = |H| .2
 - $g_1H = H \Leftrightarrow g_1 \in H, Hg_2 = H \Leftrightarrow g_2 \in H$.3
 - $g_1H = g_2H \Leftrightarrow g_1 \in g_2H \Leftrightarrow g_2 \in g_1H$.4
- (H שקילות על אוים או זרים (קבוצת הקוסטים מגדירה או שוים או זרים).
 - $x^{-1}y \in H \Leftrightarrow xH = yH$.6
 - .#H|#G אז סופיות, אז $H \leq G$ משפט לגרנזי אם .7

- $|G\backslash H|=[G:H]=rac{\#G}{\#H}$ עבור אתיהן סופיות, שתיהן סופיות, אתיהן אתיהן .8
 - $.#H \cdot N = \frac{#H \cdot #N}{\#H \cap N}$ אמ $H \leq G, N \vartriangleleft G$ אם .9
 - $G \cong H \times K$ אז אוK = G, $H \cap K = \{e\}$ כך ש-H, $K \triangleleft G$ אם 10.
 - .G\Ker(α) \cong $Im(\alpha)$ משפט האיזמורפיזם הראשון.
- $(H\cdot N)\setminus N\cong H\setminus (H\cap N)$ אזי אזי $H\leq G,N\vartriangleleft G$ השני השני השני השני. 12.
 - . $\frac{G\setminus N}{N\setminus K}\cong G\setminus K$ אזי $K\leq N,K,N\vartriangleleft G$ האיזומורפיזם השלישי יהיו . אזי 13
- לבין $\{H|N\leq H\leq G\}$ משפט ההתאמה אז קיימת אז קיימת התאמה תהא אז התאמה התאמה אז התאמה וו משפט .14 $H\mapsto H\setminus N$ המוגדרת עייי וו מקיימת $\{U|U\leq G\setminus N\}$
 - .(שימור יחס הסדר) $H_1 \setminus N \leq H_2 \setminus N \Leftarrow H_1 \leq H_2$ -
 - .(שימור הנורמליות) אז $H \setminus N \lhd G \setminus N$ אז $H \lhd G$
 - . (שימור האינדקס) [$G \setminus N: H \setminus N$] = [$G \setminus H$] -
 - . אם G אבלית/ציקלית הוא כל חבורת מנה שלה היא אבלית/ציקלית בהתאמה.
 - $g \in G$ לכל $g^n \in H$ אז אז אז אז אז אבלית, G מאינדקס $H \lhd G$
 - $N \leq Z(G)$ אז (מאינדקס p < 2) אז N $\triangleleft G$ ראשוני), אם חבורה מסדר p < 2
 - :ומתקיים אזי $N_1\times N_2 \vartriangleleft G_1\times G_2$ אזי אזי א $N_1 \vartriangleleft G_1, N_2 \vartriangleleft G_2$.18

$$\frac{G_1 \times G_2}{N_1 \times N_2} \cong \frac{G_1}{N_1} \times \frac{G_2}{N_2}$$

HK=G או $K\leq H$ - מתקיים $K\leq G$ מתקיים ראשוני, או לכל מאינדקס או $H \vartriangleleft G$ או

פעולת חבורה על קבוצה - הגדרות

- $\alpha: G \to Sym(X)$ פעולה של חבורה X על קבוצה איא חבורה פעולה של חבורה 1
- : נקראת מקיימת אם א X על G על פעולה פעולה $\alpha:G\times X\to X\to X$ באופן שקול .2
 - $.\alpha(e,x) = x \ \forall x \in X$
 - $.\alpha(gh,x) = \alpha(g,\alpha(h,x)) -$
 - .Ker(α) = { $g \in G | \alpha(g) = Id$ } מוגדר להיות α מוגדר פעולה 3

<u>פעולת חבורה על קבוצה - משפטים</u>

- $.Ker(\alpha) = \bigcap stab(x)$.1
- איחוד הוא זר. X = Uorb(x) .2
 - $.stab(x) \leq G$.3

- |orb(x)| = [G:stab(x)] .4
- .# $G = |orb(x)| \cdot |stab(x)|$ משפט מסלול-מייצב.
- .6 במקרה של פעולת ההצמדה $\frac{\#G}{t}=\frac{\#G}{t}=\frac{\#G}{t}$ הוא הרכז).
 - .#G = #Z(G) + \sum |cl(x)| == #Z(G) + $\frac{\sum (\#G)}{\#C(x)}$ משוואת המחלקה .7
 - .8 מסדר p יש נקודת שבת. אבורה מסדר p יש נקודת שבת.

משפטי סילו

- $d_p(G)=k$ נסמן (p,m) באשר p ראשוני, $G=p^km$ אם .1
 - . מסדר p^{d_p} מסדר מסדר P $\leq G$ מסדר חבורת P.
 - . משפט סילו הראשון אם p#G אז ל-p יש תת-חבורת -3
- בם הילו השני כל שתי תתי-חבורות p-סילו הן צמודות אחת לשנייה, ועל כן הן גם 4 איזומורפיות.
- וגם $n_p\equiv_p 1$ אזי G אזי .G משפט סילו של השלישי היהא מספר תתי-חבורות מספר $n_p\equiv_p 1$ אזי $n_p\equiv_p 1$ מספר . $n_p=\frac{\#G}{p^dp}$ מסקנה מסקנה . $n_p|[G:P]$
 - היא יחידה. מסקנה ממשפט סילו השני תת-חבורת p-סילו היא נורמלית אם ורק אם היא יחידה.