NR. I TYTUŁ Ć	WICZENIA:								
6-1. Wyznaczanie stałej szybkości i energii aktywacji reakcji hydrolizy sacharozy									
IMIĘ I NAZWIS	KO OSOBY PROV	VADZĄCEJ	ĆWICZENIA:						
dr Bożena Parczewska-Plesnar									
Data wykona-	Nr. grupy stu-	Zespół	Imiona i nazwiska osób wykonują-	Ocena	wys-				
nia ćwiczenia	denckiej		cych ćwiczenie	tawiona	przez				
	-			prowadza	ącego				
17.04.2019	1	Е	Dominika Dmowska						
			Aleksandra Gawinowska						
			Jakub Guzek						
			Grzegorz Jakubiak						
Uwagi									
prowadzącego									

1 Cel ćwiczenia

Zapoznanie się z metodami pomiaru szybkości reakcji pierwszego rzędu. Wyznaczanie stałej szybkości reakcji hydrolizy – reakcji pierwszego rzędu, w różnych wartościach temperatury. Zbadanie wpływu temperatury na wartość stałej szybkości reakcji i wyznaczenie energii aktywacji.

2 Wstęp teoretyczny

Szybkość reakcji chemicznej – stosunek zmiany stężenia substratu lub produktu do czasu w którym nastąpiła ta zmiana. $^{[1]}$

Równanie kinetyczne reakcji – równanie wyrażające zależność szybkości reakcji chemicznej od stężenia każdej z substancji wpływających na szybkość ^[1]

Dla reakcji pierwszego rzędu postaci

$$A \longrightarrow X$$
 (1)

Równanie kinetyczne będzie miało postać:

$$v = kc_A \tag{2}$$

gdzie: k – współczynnik proporcjonalności nazywany stałą szybkości reakcji, stały dla danej reakcji w danej temperaturze;

 c_A – stężenie substratu A

Wzór na stałą prędkości reakcji (1) k ma postać

$$k = \frac{1}{t} \ln \frac{c_A^{\circ}}{c_A} \tag{3}$$

gdzie: t - czas;

 c_A° – początkowe stężenie substancji A (dla t=0);

 $c_A \quad - \quad$ stężenie substancji A w czasie t

Po przekształceniu

$$k = \frac{1}{t} \ln \frac{a}{a - x} \tag{4}$$

gdzie: a – stężenie początkowe substratu; x – stężenie produktu po czasie t

Stężenie substancji w próbce można określić na podstawie pomiaru wartości kąta skręcenia płaszczyzny światła spolaryzowanego próbki.

Korzystając z faktu, że $a = u(\alpha_o - \alpha_\infty^1)$ oraz $a - x = u(\alpha_t - \alpha_\infty^1)$ otrzymujemy

$$k = \frac{1}{t} \ln \frac{\alpha_o - \alpha_\infty}{\alpha_t - \alpha_\infty} \tag{5}$$

gdzie: u – współczynnik proporcjonalności;

t – czas od rozpoczęcia reakcji;

 α_o – kat skręcenia płaszczyzny światła spolaryzowanego przed rozpoczęciem reakcji;

 α_t – kat skręcenia płaszczyzny światła spolaryzowanego po czasie t;

 α_{∞} – kąt skręcenia płaszczyzny światła spolaryzowanego po zakończeniu reakcji

Wartość stałej k dla reakcji (1) można także wyznaczyć graficznie, nanosząc na wykres wyniki pomiarów stężenia substratu A w zależności od czasu. Przy tej metodzie nie jest konieczna znajomość wartości c_A°

Rysunek 1: Graficzna metoda wyznaczania stałej szybkości reakcji k. a – współczynnik kierunkowy prostej.

3 Wykonanie ćwiczenia

- 1. Wykonanie roztworów do pomiarów kąta płaszczyzny światła spolaryzowanego.
 - a) Przygotowanie 100g 40% roztworu sacharozy w opłukanej wodą destylowaną kolbie stożkowej o objętości $250cm^3$.
 - b) Przygotowanie dwóch kolb o pojemności 100cm³ (uprzednio przepłukanych wodą destylowaną).
 - c) Odpipetowanie po $20cm^3$ 40% roztworu sacharozy do przygotowanych kolb na $100cm^3$.
 - d) Dodanie do pierwszej kolby pipetą $20cm^3$ wody destylowanej (W ten sposób uzyskany zostaje 20% roztwór sacharozy).
 - e) Zmierzenie temperatury i przygotowanie stopera
 - f) Otrzymanie reagującego, 20% roztworu sacharozy poprzez odpipetowanie do drugiej kolby $20cm^3$ roztworu wodnego HCl i $20cm^3$, 40% roztworu sacharozy.
 - g) Uruchomienie stopera w momencie spuszczenia około połowy roztworu sacharozy do drugiej kolby.
- 2. Pomiar kąta skręcenia płaszczy
zny światła spolaryzowanego (α_o) roztworu sacharozy przed hydroliza.

 $^{^{1}\}alpha_{\infty} = -\alpha_{o}(0,44-0,005^{\circ}C^{-1}\cdot T)$

- a) Uruchomienie polarymetru.
- b) Napełnienie rurki polarymetru 20% roztworem sacharozy i wody destylowanej (po uprzednim jej opłukaniu wodą destylowaną i tym roztworem).
- c) Wykonanie pomiaru kąta skręcenia płaszczyzny światła spolaryzowanego (α_o) i zapisanie jego wartości.
- 3. Pomiar kata skręcenia płaszczyzny światła spolaryzowanego (α_t) roztworu reagującego.
 - a) Napełnienie rurki roztworem reagującym po uprzednim dokładnym jej opłukaniu wodą wodociągową a następnie destylowaną i niewielką ilością roztworu reagującego.
 - b) Zmierzenie kąta skręcenia płaszczyzny światła spolaryzowanego roztworu reagującego (α_t) i zapisanie jego wartości w tabeli 1 wraz z odczytanym ze stopera czasem (od rozpoczęcia reakcji).
 - c) Wykonanie pomiarów jeszcze dziewięć razy, co cztery minuty.

Tabela 1: Zestawienie wyników pomiarów polarymetrycznych									
Temperatura w której zachodzi badana reakcja $T=24^{\circ}\mathrm{C}$									
$\alpha_o = 17,20^{\circ}$		$\alpha_{\infty} = -5,50^{\circ}$		$\alpha_o - \alpha_\infty = 22,70^\circ$					
Czas trwania									
reakcji t	$\alpha_t \ [^{\circ}]$	$\alpha_t - \alpha_{\infty} \ [^{\circ}]$	$\ln \frac{\alpha_o - \alpha_\infty}{\alpha_t - \alpha_\infty}$	$k \ [min^{-1}]$	$\ln\left(\alpha_t - \alpha_\infty\right)$				
[min]			$\alpha_t - \alpha_{\infty}$						
19,92	9,05	14,55	0,4447	0,0223	2,6779				
24	8,60	14,10	0,4761	0,0198	2,6465				
28	7,40	12,90	0,5650	0,0202	2,5575				
32	6,95	12,45	0,6005	0,0188	2,5220				
36	6,30	11,80	0,6541	0,0182	2,4684				
40	5,65	11,15	0,7107	0,0178	2,4118				
44	5,15	10,65	0,7566	0,0172	2,3659				
48	4,60	10,10	0,8096	0,0169	2,3129				
52	4,20	9,70	0,8500	0,0163	2,2725				
56	3,95	9,45	0,8761	0,0156	2,2464				
$k_{srednie} = 0.0183min^{-1}$									

Tabela 1: Zestawienie wyników pomiarów polarymetrycznych

4 Obliczenia

$$\alpha_{\infty} = -\alpha_o(0, 44 - 0, 005^{\circ}C^{-1} \cdot T) = -17, 20^{\circ}(0, 44 - 0, 005^{\circ}C^{-1} \cdot 24^{\circ}C) = -5, 50^{\circ}$$

$$\alpha_o - \alpha_{\infty} = 17, 20^{\circ} - (-5, 50^{\circ}) = 22, 70^{\circ}$$

4.1 Wyznaczanie stałej k ze wzoru

Obliczenia wykonane dla pierwszej wartości t=19,92, stanowią reprezentację obliczeń 2 dla pozostałych pomiarów.

$$\alpha_t - \alpha_\infty = 9,05^\circ - (-5,50^\circ) = 14,55^\circ$$

$$\ln \frac{\alpha_o - \alpha_\infty}{\alpha_t - \alpha_\infty} = \ln \frac{22,70\%}{14,55\%} = 0,4447$$

$$\ln (\alpha_t - \alpha_\infty) = \ln (14,55^\circ) = 2,6779$$

Korzystając ze wzoru 5:

$$k = \frac{1}{t} \ln \frac{\alpha_o - \alpha_\infty}{\alpha_t - \alpha_\infty} = \frac{1}{19,92min} \ln \frac{22,70\%}{14,55\%} = 0,0223min^{-1}$$

²obliczenia dla wszystkich wartości zostały wykonane przy użyciu programu MS Office Excel 365

4.2 Wyznaczanie stałej k graficznie

Rysunek 2: Wykres zależności $f(t) = \ln (\alpha_t - \alpha_\infty)^3$

Równanie prostej

$$y = -0.0125x + 2.9225$$

gdzie:
$$y = \ln (\alpha_t - \alpha_\infty) = \ln (a - x)$$

 $x = t \ [min]$
 $a = -0,0125min^{-1} = -k$
 $b = 2,9225$

Ostatecznie równanie prostej ma postać

$$\ln\left(\alpha_t - \alpha_{\infty}\right) = -kt + \ln\left(\alpha_o - \alpha_{\infty}\right)$$

Co wynika z równania (5).

Więc stała szybkości reakcji k wyznaczona graficznie wynosi

$$k = 0.0125 min^{-1}$$

Rachunek jednostek

$$[a] = \left[\frac{\Delta y}{\Delta x}\right] = \left[\frac{y_2 - y_1}{x_2 - x_2}\right] = \left[\frac{1}{min - min}\right] = \left[\frac{1}{min}\right] = [min^{-1}]$$

5 Wnioski

Wartość stałej szybkości reakcji k wyznaczona na postawie średniej arytmetycznej $(0,0183min^{-1})$ różni się od wartości stałej szybkości reakcji wyznaczonej metodą graficzną na postawie wykresu funkcji $f(t) = \ln(\alpha_t - \alpha_\infty)$ $(0,0125min^{-1})$. Wśród przyczyn tej rozbieżności można wyróżnić m. in:

- $\bullet\,$ Niedokładność pomiaru czasu ze stopera
- Niedokładność odczytania wartości α_t przy pomiarze kąta skręcenia płaszczyzny światła spolary-zowanego roztworu reagującego

 $^{^3 \}mathrm{Wykres}$ wykonany przy użyciu programuMS Office Excel 365

 \bullet Fakt, że na wartość wyznaczoną na podstawie średniej arytmetycznej ma wpływ wartość α_o a na wartość wyznaczoną metodą graficzną nie.

Rozbieżność ta wynosi $|0,0183min^{-1}-0,0125min^{-1}|=0,0058min^{-1}$

Na podstawie:

[1] Jerzy Bryłka, Ewa Więckowska-Bryłka, Bożena Parczewska-Plesnar, and Barbara Bortnowska-Bareła. Eksperymentalna chemia fizyczna. Wydawnictwo SGGW, Warszawa, 2017.