

Apresentação Professor

Apresentação Professor

Ricardo Molinari dos Prazeres

Formação Acadêmica

- Graduação: Processamento de dados FATEC
- Especialização: Análise e desenv. de sistemas –
 UFABC
- Licenciatura: Centro Paula Souza
- Mestrado: Sistemas de Informação USP

Experiência Profissional

- Estagiário: Help desk
- Programador: Cobol / Java
- Analista: Sistemas bancários
- Professor: Desenv. de sistemas em geral

Disciplina

ESTRUTURA DE DADOS - 80 AULAS

Gentro Paula Souza

EMENTA

• Alocação dinâmica e ponteiros;

Arquivos;

• Introdução à notação assintótica;

• Tipos abstratos de dados:

conceitos, operações, representações, manipulação, listas, pilhas e filas.

EMENTA

• Estruturas de representação de grafos (matriz de adjacência e de incidência);

- Estruturas para representação de árvores;
- Árvores binárias e suas aplicações.

Array Estático

Ana	João	null	null	•••	null
0	1				n - 1

Arquivos

▲ Não seguro | igm.univ-mlv.fr/AlgoB/gramofone/

GraMoFoNe, a Plugin for Cytoscape

GraMoFoNe

Download

Help & Snapshots

Publication

Contact

What is GraMoFoNe

GraMoFoNe (Graph Motif For Networks) is under GPL licence, written in Java 1.6 and developed as a plugin for Cytoscape. Cytoscape is an open-source software platform for network visualization and analysis, which supports the development of external plugin tools extending its functionality.

Our plugin seeks for connected occurrences of a motif (set or multiset of proteins), given by the user, into a Protein-Protein Interaction network previously loaded into the Cytoscape workspace (many file format are supported). Similarity is measured among sequence-similarity via a blastp analysis: proteins in the motif got different colors, proteins of the network are colored with the colors of motif proteins which are homologous. Note that a network node can have 0, 1 or more colors. GraMoFoNe allows deletions (proteins in the motif but not in the resulting connected subnetwork), and insertions (proteins in the results but not in the motif) of colored or uncolored network nodes.

It uses an exact algorithm to perform this task. To this end, we choose to express our problem as a linear pseudo-boolean optimization problem (LPB), *i.e.* as a linear program whose variables are boolean. We choose <u>Sat4JPseudo</u>.

Download

GraMoFoNe Program

- Cytoscape (has to be installed to run the plugin)
- Blast (has to be installed to run the plugin)
- GraMoFoNe Version 0.1 (2009-10)
 - The easiest way to install GraMoFoNe is to use the "Manage Plugin" menu in Cytoscape software
 - o Plugin Jar. Recommended. Save this file in the Cytoscape's Plugin directory.
 - Source Code. If you want to modify GraMoFoNe. (The plugin (sources, javadoc, external libraries) and dirty program for batch tests)

Biological Data

- PPI Networks (from Torque website) as .sif files (can be imported in Cytoscape). Date: 2009-08.
 - Saccharomyces cerevisiae (Yeast, about 5.500 proteins and 40.000 interactions)
 - <u>Drosophila melanogaster</u> (Fly, about 6.500 proteins and 21.000 interactions)
 - Homo sapiens (about 8.000 proteins and 29.000 interactions)
- Motifs (kindly supplied by Torque authors) as .txt files. One motif by line, tab separated, with

Arquivos

HomoSapiens_Torque - Bloco de Notas				
Arquivo	Editar Formatar Exibir Ajuda			
143379	0.412423346186800	56159		
22903	0.182771084534359	5365		
79098	0.412423346186800	9456		
57586	0.182771084534359	9378		
122769	0.182771084534359	3604		
4681	0.182771084534359	7917		
79363	0.412423346186800	80199		
23564	0.412423346186800	9319		
30819	0.182771084534359	3751		
10742	0.412423346186800	1488		
2978	0.182771084534359	3000		
23132	0.182771084534359	367		
11275	0.412423346186800	59349		
27330	0.113033111253752	3164		
4520	0.412423346186800	8907		
154075	0.412423346186800	2189		
28966	0.113033111253752	6457		
2592	0.412423346186800	9319		
27123	0.733226324163718	4040		
11103	0.412423346186800	2130		
10421	0.733226324163718	914		
10421	0.182771084534359	24148		
10725	0.182771084534359	50943		
3207	0.182771084534359	51053		
51450	0.182771084534359	6663		

Foco em número grande de entrada de dados


```
public boolean contem(Aluno aluno) {
    for(int i = 0; i < totalDeAlunos; i++) {
        if(aluno.equals(alunos[i])) {
            return true;
        }
    }
    return false;
}</pre>
```

O que está fazendo?


```
public boolean contem(Aluno aluno) {
    for(int i = 0; i < totalDeAlunos; i++) {
        if(aluno.equals(alunos[i])) {
            return true;
        }
    }
    return false;
}</pre>
```

O que está fazendo?


```
public boolean contem(Aluno aluno) {
    for(int i = 0; i < totalDeAlunos; i++) {
        if(aluno.equals(alunos[i])) {
            return true;
        }
    }
    return false;
}</pre>
```

Quantas vezes será executado?

Ο, Ω e Θ

Pior, melhor e caso médio.


```
Classes O
 O(1)
                   constante
 O(lg n)
                    logarítmica
                   linear
 O(n)
O(n lg n)
                    n log n
O(n^2)
                    quadrática
O(n^3)
                    cúbica
O(n^k) com k \ge 1
                    polinomial
                    exponencial
 O(a<sup>n</sup> ) com a > 1
                    exponencial
```



```
public boolean contem(Aluno aluno) {
    for(int i = 0; i < totalDeAlunos; i++) {
        if(aluno.equals(alunos[i])) {
            return true;
        }
    }
    return false;
}</pre>
```

Quando é constante?


```
public boolean contem(Aluno aluno) {
    for(int i = 0; i < totalDeAlunos; i++) {
        if(aluno.equals(alunos[i])) {
            return true;
        }
    }
    return false;
}</pre>
```

Quando é polinomial?

GPS sempre acha melhor rota?

Pilhas;

filas;

listas.

Pilhas

Pilhas

Pilhas

LIFO: Last In, First Out

Pilhas

Principais operações:

```
estaVazia;
estaCheia;
empilhar;
desempilhar;
topo;
```


Pilhas

Fato interessante

supondo que tamanho = 3

estaCheia: verdadeiro

empilhar:

Pilhas

Fato interessante

supondo que tamanho = 3

estaCheia: verdadeiro

empilhar:

Pilhas

Histórico / navegação web

Pilhas

Recursividade

```
fatorial(5)
5 * fatorial(5 - 1)
4 * fatorial(4 - 1)
3 * fatorial(3 - 1)
2 * fatorial(2 -1)
1 * fatorial(1 -1)
1
```


Pilhas

Recursividade

Filas

Filas

operações: adiciona, remove, primeiro etc;

Filas

operações: adiciona, remove, primeiro etc;

FIFO: First In, First Out

Filas

Aplicações:

Listas

Listas encadeadas

Listas duplamente encadedas

Ordenação (Sort)

Ordenação (Sort): bubble

Ordenação (Sort)

Algoritmo	Tempo		
	Melhor	Médio	Pior
Merge sort	$O(n \log_2 n)$	$O(n \log_2 n)$	$O(n \log_2 n)$
Quick sort	$O(n \log n)$	$O(n \log n)$	$O(n^2)$
Bubble sort	O(n)	$O(n^2)$	$O(n^2)$
Insertion sort	O(n)	$O(n^2)$	$O(n^2)$
Selection sort	$O(n^2)$	$O(n^2)$	$O(n^2)$

Árvores

Árvores

Árvores binária

MÉTODO

Aulas expositivas

Aulas práticas

LINGUAGEM

Bibliografia

GOODRICH, M. T.; TAMASSIA, R. Estruturas de Dados e Algoritmos em Java

CAELUM. CS-14 Algoritmos e Estruturas de Dados em Java

Critérios Avaliativos

- Exercícios em laboratório
- Observação direta
- Avaliação individual (data?)
 P1, P2 e PS

Considerações Finais

Revisão / Nivelamento