. AMENDMENTS UNDER 37 C.F.R. 1.111

CLAIMS AS AMENDED: CLEAN VERSION

Please replace existing claims 1, 6, 10, 14, and 17 respectively with amended claims, 1,6, 10,14, and 17, all of which are presented below in clean form.

A marked-up version of all claims showing the amendments presented herein is attached at the end of this Amendment and Response.

1 (Amended) A thermal mass flow controller housing, comprising: 1. 2 a) a first chamber for enclosing a bypass tube, the first chamber including a 3 wall for mounting a second chamber; b) a second chamber for enclosing a sensor tube, the second chamber 4 including a wall for mounting to said wall of the first chamber, both walls including 5 6 input and output apertures formed therethrough to provide access to the bypass tube 7 for the sensor tube; c) a thermal ground formed between the first and second chambers, the thermal ground 8 9 comprising substantially the entire thermal conductive path between the first and second chambers, the thermal ground positioned to substantially preclude the 10 11 conduction of a thermal gradient from the first chamber to the second chamber; and 12 d) a heatsink in conductive thermal contact with at least a portion of the first chamber and formed to conduct thermal energy from within the first chamber away from the 13 14 second chamber. 1 6. (Amended) A thermal mass flow controller housing according to claim 3, wherein the 2 conductive thermal element includes one or more exterior surfaces that face substantially toward the first chamber and one or more exterior surfaces that face 3 4 substantially away from the first chamber and one or more of those surfaces that face 5 substantially away from the first chamber includes structure to dissipate thermal 6 energy away from the first chamber.

1	10. (Amended) A thermal mass flow controller comprising:
2		a) a control valve assembly for controlling the rate of fluid flow through a conduit, the
3		control valve assembly in thermally conductive communication with a thermal mass
4		flow controller housing;
5		b) a sensor assembly for sensing the rate of flow of the fluid through the conduit as a
6		function of the difference in temperature between first and second regions of the
7		conduit and for generating a control signal as a function of said rate of fluid flow, the
8		sensor assembly in thermally conductive communication with said mass flow
9		controller housing;
10		c) a thermal ground formed between the mass flow controller housing_and the sensor
11	•	assembly, the thermal ground comprising substantially the entire thermal conductive
12		path between the sensor assembly and the valve assembly the thermal ground
13		positioned to substantially preclude the conduction of a thermal gradient from the
14		mass flow controller housing to the sensor assembly; and
15		d) a heatsink in conductive thermal contact with at least a portion of the control valve
16		assembly and formed to conduct thermal energy from within the control valve
17		assembly away from the sensor assembly.
1	14.	(Amended) A thermal mass flow controller according to claim 13 wherein the mass

flow sensor assembly includes a sensor tube having an operational section and the

major axis of the thermal ground is perpendicular to an axis defined by the operational

2

3

 4	section of the mass flow sensor.
1 17.	(Amended) A thermal mass flow controller according to claim 11, wherein the
2	conductive thermal element includes one or more exterior surfaces that face
3	substantially toward the sensor assembly and one or more exterior surfaces that face
4	substantially away from the sensor assembly and one or more of those surfaces that
5	face substantially away from the sensor assembly includes structure to dissipate
6	thermal energy away from the sensor assembly.