



## UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE  
United States Patent and Trademark Office  
Adress: COMMISSIONER FOR PATENTS  
P.O. Box 1450  
Alexandria, Virginia 22313-1450  
[www.uspto.gov](http://www.uspto.gov)

| APPLICATION NO.                 | FILING DATE | FIRST NAMED INVENTOR | ATTORNEY DOCKET NO. | CONFIRMATION NO.   |
|---------------------------------|-------------|----------------------|---------------------|--------------------|
| 10/603,990                      | 06/26/2003  | Mi-Sook Nam          | 053785-5120         | 3882               |
| 9629                            | 7590        | 08/23/2011           |                     |                    |
| MORGAN LEWIS & BOCKIUS LLP (WA) |             |                      |                     | EXAMINER           |
| 1111 PENNSYLVANIA AVENUE NW     |             |                      |                     | INADOMI, MICHAEL J |
| WASHINGTON, DC 20004            |             |                      | ART UNIT            | PAPER NUMBER       |
|                                 |             |                      | 2883                |                    |
|                                 |             |                      |                     |                    |
|                                 |             |                      | MAIL DATE           | DELIVERY MODE      |
|                                 |             |                      | 08/23/2011          | PAPER              |
|                                 |             |                      |                     |                    |

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

|                              |                                      |                                   |
|------------------------------|--------------------------------------|-----------------------------------|
| <b>Office Action Summary</b> | <b>Application No.</b><br>10/603,990 | <b>Applicant(s)</b><br>NAM ET AL. |
|                              | <b>Examiner</b><br>Michael Inadomi   | <b>Art Unit</b><br>2883           |

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --  
**Period for Reply**

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

#### Status

- 1) Responsive to communication(s) filed on 22 July 2011.
- 2a) This action is FINAL.      2b) This action is non-final.
- 3) An election was made by the applicant in response to a restriction requirement set forth during the interview on \_\_\_\_\_; the restriction requirement and election have been incorporated into this action.
- 4) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

#### Disposition of Claims

- 5) Claim(s) 1-5,8-15 and 17-21 is/are pending in the application.
- 5a) Of the above claim(s) \_\_\_\_\_ is/are withdrawn from consideration.
- 6) Claim(s) \_\_\_\_\_ is/are allowed.
- 7) Claim(s) 1-5,8-15 and 17-21 is/are rejected.
- 8) Claim(s) \_\_\_\_\_ is/are objected to.
- 9) Claim(s) \_\_\_\_\_ are subject to restriction and/or election requirement.

#### Application Papers

- 10) The specification is objected to by the Examiner.
- 11) The drawing(s) filed on 22 March 2011 is/are: a) accepted or b) objected to by the Examiner.  
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).  
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 12) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

#### Priority under 35 U.S.C. § 119

- 13) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).  
 a) All    b) Some \* c) None of:  
 1. Certified copies of the priority documents have been received.  
 2. Certified copies of the priority documents have been received in Application No. \_\_\_\_\_.  
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

\* See the attached detailed Office action for a list of the certified copies not received.

#### Attachment(s)

- 1) Notice of References Cited (PTO-892)
- 2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
- 3) Information Disclosure Statement(s) (PTO/GB-06)  
 Paper No(s)/Mail Date \_\_\_\_\_
- 4) Interview Summary (PTO-413)  
 Paper No(s)/Mail Date. \_\_\_\_\_
- 5) Notice of Informal Patent Application
- 6) Other: \_\_\_\_\_

## **DETAILED ACTION**

### ***Continued Examination Under 37 CFR 1.114***

A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on July 22, 2011 has been entered.

### ***Claim Objections***

Claims 1-5, 8-15, and 17-21 are objected to because of the following informalities:

In line 4 of claim 1, the recitation “a reflective portion and a transmissive portion” should be changed to read “the reflective portion and the transmissive portion” in order to prevent ambiguity in later use of the terms “the reflective portion” and “the transmissive portion”, as the terms “a reflective portion” and “a transmissive portion” are used multiple times in lines 2 and 4. Claims 2-5, 8, and 9 contain these informalities via their dependence from claim 1.

In line 5 of claim 10, the recitation “a reflective portion and a transmissive portion” should be changed to read “the reflective portion and the transmissive portion” in order to prevent ambiguity in later use of the terms “the reflective portion” and “the transmissive portion”, as the terms “a reflective portion” and “a transmissive portion” are used multiple times in lines 3 and 5. Claim 11 contains these informalities via its dependence from claim 10.

In line 5 of claim 12, the recitation “a reflective portion and a transmissive portion” should be changed to read “the reflective portion and the transmissive portion” in order to prevent ambiguity in later use of the terms “the reflective portion” and “the transmissive portion”, as the terms “a reflective portion” and “a transmissive portion” are used multiple times in lines 3-5. Claims 13-15, 17, and 18 contain these informalities via their dependence from claim 12.

In line 5 of claim 19, the recitation “a reflective portion and a transmissive portion” should be changed to read “the reflective portion and the transmissive portion” in order to prevent ambiguity in later use of the terms “the reflective portion” and “the transmissive portion”, as the terms “a reflective portion” and “a transmissive portion” are used multiple times in lines 3-5. Claim 20 contains these informalities via its dependence from claim 19.

In line 4 of claim 21, the recitation “a reflective portion and a transmissive portion” should be changed to read “the reflective portion and the transmissive portion” in order to prevent ambiguity in later use of the terms “the reflective portion” and “the transmissive portion”, as the terms “a reflective portion” and “a transmissive portion” are used multiple times in lines 2 and 4.

Appropriate correction is required.

***Claim Rejections - 35 USC § 103***

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

Art Unit: 2883

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

Claims 1-5, 8, 9, and 21 are rejected under 35 U.S.C. 103(a) as being unpatentable over

Ha et al. (US PGPub No. 2003/0058389 A1) in view of Maeda et al. (US PGPub No.

2002/0140887 A1).

Applicant note: Ha et al. (US PGPub No. 2003/0058389 A1) may be subject to 35 U.S.C. 103(c) exclusion.

Regarding **claim 1**, Ha et al. teach a transreflective liquid crystal display device (see Figs. 10A-10D with reference to Fig. 3), comprising a substrate 311 having a switching portion, a reflective portion not overlapping the switching portion, and a transmissive portion overlapping neither the switching portion nor the reflective portion, a pixel region being defined to include the reflective and transmissive portions (see Fig. 3), a gate line 325 (see paragraph 67) on the substrate, a data line 338 crossing the gate line (see Fig. 3), a thin film transistor connected to the gate line and the data line and including a gate electrode 323, an active layer 331, and source and drain electrodes 335 and 337 (see paragraph 67), the thin film transistor and the drain electrode being on the switching portion (see Fig. 3), and the drain electrode being an electrode directly connected to a drain region of the thin film transistor (see Fig. 10D) and not overlapping the pixel region, wherein the thin film transistor is disposed within the switching portion.

Ha et al. further teach a first insulating layer 343 within the reflective portion, a second insulating layer 353 (see paragraph 70 and Fig. 10D) made of an organic material on the first insulating layer, the second organic material layer having an open portion 357 at the transmissive portion, a reflective layer 349 on the first insulating layer having a transmissive hole at the open

portion (see Fig. 10D), the reflective layer disposed on the pixel region and not overlapping the drain electrode, and a pixel electrode 365 on the reflective layer and in direct contact with the drain electrode (see Fig. 10D). Ha et al. further teach (see paragraph 9 and Fig. 2) an opposing substrate 15 facing the substrate and a common electrode 13 on an inner surface of the opposing substrate, the common electrode being substantially flat.

Ha et al. do not explicitly disclose the presence of a plurality of uneven patterns consisting of a first organic material layer within the reflective portion, the uneven patterns partially covering the substrate, a second organic material layer on the first organic material layer, the second organic material layer having an open portion at the transmissive portion, and a reflective layer on the second organic material layer having a transmissive hole at and corresponding to the open portion.

However, Maeda et al. teach an analogous transflective LCD (see Fig. 10K) wherein the insulating layer under the reflective layer 31 and the pixel electrode 81 has a plurality of uneven patterns consisting of a first organic (see paragraph 74) material layer 51 within the reflective portion, the uneven patterns partially covering the substrate, and a second organic material layer 52 on the first organic material layer. It would have been obvious to a person having ordinary skill in the art at the time of the invention to modify the invention of Ha et al. by providing the first insulating layer 343 of Ha et al. as a thin inorganic passivation layer analogous to layer 54 of Maeda et al., providing a plurality of uneven patterns consisting of a first organic material layer within the reflective portion, the uneven patterns partially covering the substrate, providing the second insulating layer 353 of Ha et al. as a second organic material layer on the first organic material layer, and providing the reflective layer on the second organic material layer, as taught

by Maeda et al., motivated by the desire to make the surface of the reflective layer bumpy in order to diffusely reflect light off the surface of the reflective layer, thus improving display quality. The examiner notes that a person having ordinary skill in the art would have maintained the open portion 357 of Ha et al. in the second organic material for the purpose of matching the retardation of the transmissive and reflective portions (see paragraph 70 of Ha et al.).

Regarding **claims 2 and 3**, the first and second organic material layers are formed from a photosensitive material comprising a photo-acrylic resin PC403 (see paragraph 74 of Maeda et al.).

Regarding **claim 4**, Ha et al. teach the presence of an inorganic material layer 343 covering the gate line, the data line, and the thin film transistor (see Fig. 10D and paragraph 71).

Regarding **claim 5**, Ha et al. further teach the inorganic material layer as being formed of one of silicon nitride and silicon oxide (see paragraph 68).

Regarding **claim 8**, Ha et al. further teach the presence of a gate pad 327 connected to the gate line (see Fig. 3 and paragraph 67), a data pad 341 connected to the data line, and a capacitor electrode 339 overlapping the gate line.

Regarding **claim 9**, in the invention Ha et al. as modified by Maeda et al., the second organic material layer is formed as a replacement of the second insulating layer 353 of Ha et al., which has a drain contact hole 355 (see Fig. 10D) exposing the drain electrode, a gate pad contact hole 361 exposing the gate pad, and a data pad contact hole 363 exposing the data pad. At the time of the invention, it would have been obvious to a person having ordinary skill in the art in the above modification of Ha et al. by Maeda et al. to form the second organic material

layer to have those same contact holes in order to facilitate electrical connections between various parts of the device.

Regarding **claim 21**, the invention of Ha et al. as modified by Maeda above further teaches the presence of inorganic material layer 343 covering substantially the entire surface of the substrate including the gate line, the data line, and the thin film transistor (see Fig. 10D and paragraph 71 of Ha et al.). As discussed above, a plurality of uneven patterns consisting of a first organic material layer covers portions of the inorganic material layer within the reflective portion. As the patterns are uneven, the reflective portion and pixel region may be defined to contain at least one peripheral portion wherein the uneven patterns do not cover portions of the inorganic material layer. Uncovered portions of this inorganic material layer are covered by the second organic material layer.

**Claim 10** is rejected under 35 U.S.C. 103(a) as being unpatentable over Ha et al. (US PGPub No. 2003/0058389 A1) as modified by Maeda et al. (US PGPub No. 2002/0140887 A1), as applied to claim 1 above, and further in view of Kubota et al. (US PGPub No. 2002/0171792 A1).

Considering the additional limitations of claim 10, the invention of Ha et al. as modified by Maeda et al. teaches first and second substrates facing into and spaced apart from each other (the substrate having a gate line and data line thereon as discussed in the above rejection of claim 1 being the first substrate and the previously mentioned opposing substrate being the second substrate), the first and second substrates having a switching portion, a reflective portion, and a transmissive portion, a pixel region being defined to include the reflective and transmissive

portions, a liquid crystal layer 14 (see Figs. 1 and 2 of Ha et al.) interposed between the common electrode and the pixel electrode, wherein the pixel electrode and the common electrode are separated by a first cell gap in the transmissive portion, and a second cell gap in the reflective portion (see Fig. 10D). However, the invention of Ha et al. as modified by Maeda et al. does not explicitly disclose the first cell gap as being twice greater than the second cell gap.

Kubota et al. teach an analogous transflective liquid crystal display wherein a first cell gap in a transmissive portion is twice greater than a second cell gap in a reflective portion (see paragraph 84). At the time of the invention, it would have been obvious to a person having ordinary skill in the art to modify the invention of Ha et al. as modified by Maeda et al. to have the first cell gap twice greater than the second cell gap, as taught by Kubota et al., in order to match the retardation of the liquid crystal layer in the reflective and transmissive portions and thereby improve display quality.

**Claims 11-15 and 17-20** are rejected under 35 U.S.C. 103(a) as being unpatentable over Ha et al. (US PGPub No. 2003/0058389 A1) as modified by Maeda et al. (US PGPub No. 2002/0140887 A1) and Kubota et al. (US PGPub No. 2002/0171792 A1), as applied to claim 10 above, and further in view of admitted prior art.

Regarding the additional limitations of **claims 12 and 19**, the invention of Ha et al. as modified by Maeda et al. discloses the method of fabricating the above LCD, including formation of the first and second organic material layers from a photosensitive material (see paragraph 74 of Maeda et al.) except perhaps for the step of performing an exposure and development process on the first and second photosensitive organic material layers. Maeda et al.

discuss using organic layers which are photosensitive, but do not necessarily disclose the particular patterning steps recited. The admitted prior art (see page 7 of the office action mailed June 3, 2010) states that performing an exposure and development process on organic layers was well known. It would have been obvious to one of ordinary skill in the art at the time of the invention to do so, motivated by this being the standard technique for patterning organic materials in the art.

Regarding **claims 11 and 20**, the difference in cell gaps is provided by the height of the organic material layers, and for the first (transmissive) cell gap to be twice the second (reflective) cell gap, the height needs to be equal to the second cell gap. The uneven patterns are equal to or less than this height, so they have a height equal to or less than the second cell gap. Even were this not true, adjusting the height of the uneven patterns to improve the reflective properties of the reflective layer, or to optimize the relative cell gaps for better liquid crystal behavior, would have been obvious to one of ordinary skill in the art at the time of the invention, motivated by the desire to optimize these features of the device.

Regarding **claim 13**, the invention of Ha et al. as modified by Maeda et al., Kubota et al., and admitter prior art teaches the first and second photosensitive material layers as being formed of the photo-acrylic resin PC403, made by JSR Co. (see paragraph 74 of Maeda et al.).

Regarding **claim 14**, Ha et al. teach the method as further comprising forming an inorganic material layer 343 covering the gate line, the data line, and the thin film transistor (see Fig. 10D and paragraph 71).

Regarding **claim 15**, Ha et al. further teach the inorganic material layer as being formed of one of silicon nitride and silicon oxide (see paragraph 68).

Regarding **claim 17**, Ha et al. further teach the formation of a gate pad 327 connected to the gate line (see Fig. 3 and paragraph 67), a data pad 341 connected to the data line, and a capacitor electrode 339 overlapping the gate line.

Regarding **claim 18**, in the invention Ha et al. as modified by Maeda et al., Kubota et al., and admitted prior art, the second organic material layer is formed as a replacement of the second insulating layer 353 of Ha et al., which has a drain contact hole 355 (see Fig. 10D) exposing the drain electrode, a gate pad contact hole 361 exposing the gate pad, and a data pad contact hole 363 exposing the data pad. At the time of the invention, it would have been obvious to a person having ordinary skill in the art in the above modification of Ha et al. by Maeda et al. to form the second organic material layer to have those same contact holes in order to facilitate electrical connections between various parts of the device.

#### *Response to Arguments*

Applicant's arguments filed July 22, 2011 have been fully considered but they are not persuasive.

On page 12 of the Remarks, Applicant calls attention to an overlap between a reflective layer and a thin film transistor of Maeda et al. (US PGPub No. 2002/0140887 A1). However, this teaching by Maeda et al. does not cause the invention of Ha et al. (US PGPub No. 2003/0058389 A1) as modified by Maeda et al. as discussed in the rejections above to fail to teach “the switching portion, [the] reflective portion and [the] transmissive portion [to] not overlap each other” due to the fact that Ha et al. is the primary reference of the 35 U.S.C. 103(a)

rejection and is not being modified by the Maeda et al. reference in such a manner as to eliminate the teaching by Ha et al. of the aforementioned portions not overlapping each other.

***Conclusion***

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Michael Inadomi whose telephone number is (571)270-7808. The examiner can normally be reached on Monday through Thursday, 9 a.m. through 6:00 p.m.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Mark A. Robinson can be reached on (571)272-2319. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/M. I./  
Examiner, Art Unit 2883

/Mark A. Robinson/  
Supervisory Patent Examiner, Art Unit 2883