PROJECT 2 REPORT MACHINE LEARNING -6363

Name: Sanket Manik Salunke

Student Id: 1001764897

This project is based on implementation of Naïve Bayes Classifier

CODE Language Used - Python

Environment- Anaconda(Jupyter Notebook):

Note: If nltk stopwords are not installed in your system then please run below commands as I am using 'nltk' package to generate stopwords just to compare results.

Please refer the link if you get any issue: https://stackoverflow.com/questions/41610543/corporastopwords-not-found-when-import-nltk-library

>>import nltk

>>nltk.download('stopwords')

Steps performed while implementation are as follows:

Data Analysis:

As per my observation data belongs to textbook like structure but data has random digits, symbols etc. which needs to be remove before training the model.

• Pre-processing:

 Given data has 20 different folders and inside those folders there were files so total files are around 1997. I am using following packages to peprocess the given data: Packages and usage explanation:

import os # to access the current working directory
import math #using for sum calculation
import random #using to generate random number in preprocessing
from sklearn.metrics import confusion_matrix # Just to print the confusion matrix
import copy # copy the data
import re # to implement regex in preprocessing- eliminate unwanted data

- I am taking the data path where **20_newsgroups** folder is present to access the data for further data processing & implementation.
- In pre-processing I am considering stopwords with all the frequent words and symbols which has been used for cleaning the data.
- As per analysis, accuracy result depends on the data cleaning process and I will be explaining that in my conclusion.
 Data Pre-processing:

```
#https://stackoverflow.com/questions/12851791/removing-numbers-from-string
def preprocess(data):
    #removing digits
    data = ''.join([i for i in data if not i.isdigit()])

#https://stackoverflow.com/questions/12628958/remove-small-words-using-python
    shortword = re.compile(r'\W*\b\w{1,3}\b')
    #remove symbols which are repeating
    test = re.compile(r'(.)\1{9,}')
    data = shortword.sub('', data)
    data = test.sub('', data)|
    words = data.split(' ')
    return words
```

- After pre- processing and removing all the stopwords and unnecessary data I am calculating bag of words to get the total number of words and their count. Bag of words gives clear understanding of the words along with their occurrence in the file.
- As per the Naïve Bayes which is based on the Bayes theorem we need to calculate the conditional probability for occurrences of words along with the total number of words.
 Bayes Theorem:

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Where P(A|B) is a conditional probability: the likelihood of event A occurring given that B is true.

Training the model:

After this I am training the model by giving 50% training data to create bag of words for the total data by reading all the files inside the **20_newsgroups** folder which gives me total data. After reading this whole data I am implementing bag of words logic to get the words and frequencies.

```
#dictionary of all the words
bag_dict
{'alt.atheism': {'xref': 131,
  'moder': 11,
'news': 840,
   'pple': 336,
'ndrew': 139,
  'gnus': 10,
   usenet': 123,
  'cwru': 186,
   'spool': 21,
   'uunet': 167
  'bmpcug': 20,
   'newsgro': 519,
  'subject': 590,
   'summ': 18,
'books': 70,
   'ddresses': 10,
   'nyth': 128,
   'keyw': 15,
   'follow': 142,
```

This gives me all the words as directory and which can be access for the particular folder as below:

• Probability Calculation using Bayes Theorem:

Then I am calculating the probability of word by iterating through all the words to calculate the total number of words in the dictionary.

And once word matches then I am calculating the occurrence of that word and adding it to the list.

This probability gives the testing value with all the classes and then I am calculating maximum in all of the values to get the actual probability.

So from this success of words I am calculating the accuracy of the model.

As per my observation, while pre-processing using stopwords we can see that if we increase the stop words and clean the data more then accuracy increases .

Please refer the graph for the same:

First, I have trained the model using total 217 stopwords which gave more accuracy of 78.5% Then I have used 179 stopwords to train the model which gave me 51.30% So it's important to clean the data as per the need by data analysis and usage. We can increase the accuracy by analysing the data and cleaning the data.

I got the confusion matrix & Classification Report for both of them as follows:

[[9429	10	6	32	47	6	121	52	95	49	2	9	a	20	
0				4	_		- 55	95	45		-		26	
F 593			_				228	81	36	37	34	144	21	
36	0	8	4											
[587	952	5062	1466	866	173	588	131	56	38	0	1	48	8	
24	0	0	0	0	0]									
[570	815	408	6100	1143	85	515	120	44	44	30	9	110	0	
0	0	0			0]									
[628							111	36	26	10	9	88	7	
6	0									_				
					5327		91	76	33	0	29	104	10	
6 727	949		944	765	1]		235	76	77	52	3	105	21	
14		16	944	765	ø1		235	76	//	52	- 5	165	21	
[1141				709			5297	310	75	21	0	96	15	
24	9	12	0	.00	11		3237	510						
Γ1232	_						466	5585	9	20	0	16	14	
6														
[1339	662	359	669	532			406	256	4945	92	0	10	7	
- 6	0	4	0	2	0]									
[1302	650	352	654	397	12	1026	284	140	364	4804	9	0	0	
0	0	2	0	4	0]									
-					387		299	224	27	6	4267	18	7	
12	_		0	_	0]									
[774							626	149	49	38	6	3090	0	
40	_			_	0]									
[2621 18			344		31		675	548	228	72	42	125	2889	
[1476			542				809	452	179	10	21	222	112	
2650			9	3	11		365	455	1/5	10	51	223	112	
[3146	_						490	910	561	108	8	60	128	
	2487				11		.50				_	-		
[3783				192			1576	1061	79	136	327	51	63	
103		1838	2	46										
[5560	242	57	187	273	12	576	656	303	131	57	101	95	65	
96		189		67										
[4053							1312	499	335	105	236	59	175	
134		547		703										
[6912 42					23 2911		588	325	207	42	44	26	49	

Classification Re	port			
	precision	recall	f1-score	support
alt.atheism	0.20	0.94	0.33	10000
comp.graphics	0.29	0.55	0.38	10000
comp.os.ms-windows.misc	0.51	0.51	0.51	10000
comp.sys.ibm.pc.hardware	0.33	0.61	0.43	10000
comp.sys.mac.hardware	0.35	0.61	0.45	10000
comp.windows.x	0.79	0.53	0.64	10000
misc.forsale	0.34	0.57	0.43	10000
rec.autos	0.37	0.53	0.43	10000
rec.motorcycles	0.50	0.56	0.53	10000
rec.sport.baseball	0.66	0.49	0.57	10000
rec.sport.hockey	0.85	0.48	0.61	10000
sci.crypt	0.83	0.43	0.56	10000
sci.electronics	0.69	0.31	0.43	10000
sci.med	0.80	0.29	0.42	10000
sci.space	0.82	0.27	0.40	10000
soc.religion.christian	0.88	0.25	0.39	9960
talk.politics.guns	0.62	0.18	0.28	10000
talk.politics.mideast	0.92	0.13	0.22	10000
talk.politics.misc	0.72	0.07	0.13	10000
talk.religion.misc	0.65	0.03	0.06	10000
accuracy			0.42	199960
macro avg	0.61	0.42	0.41	199960
weighted avg	0.61	0.42	0.41	199960

Accura	icy = !	51.3												
Confus	ion M	artix	:											
[[5974	172	211	1619	432	21	601	257	139	246	35	0	54	10	
1					80	1								
[736	3181	416	2437	557	279	1208	500	276	126	56	6	66	28	
6	15	35	14	4	4]]								
[714	762	2898	2525	581	117	1327	441	221	156	70	0	120	14	
24	_		6		3]									
[689			5206		_		395	171	98	64	18	170	28	
_ 37			0	_	1]									
	684			3936			424	204	88	40	0	72	22	
F 745	0 1323		2101	496	1] 3227		240	193	154	50	45	132	7	
2 2			2101		1		549	193	154	50	45	132	/	
_	1016		2035				334	137	91	72	3	120	14	
100			6		2		554					120		
[859			1748				3788	272	138	23	13	120	15	
18			9		2									
[842	865	455	1590	677			555	3895	126	20	18	28	7	
- (9	12	0	2	1]]								
[92	661	490	1768	559	31	1459	461	306	3185	82	9	45	0	
13	2 0	4	3	2	0]									
[104:			1695				797	149	546	2777	0	52	10	
_ 1			1		3]									
[1014			2379				345	238	61	25	3172	51	0	
	11		1	21	2]								_	
-	1525			1283			944	13	20	14	13	3093	8	
[1128	938			1007	0]		597	393	371	70		151	1672	
20			1022	4	4		55/	555	5/1	70	9	151	10/3	
	1167		1906				945	219	228	40	9	217	55	
163			3		4		2.5	-10			_			
_	421		2270				629	438	438	57	3	67	60	
-	1844	28	6	5	9								_	
[1534	561	462	1853	667	47	799	1156	745	433	160	85	150	75	
39		1125	13											
[199			1895				819	296	379	134	31	143	25	
- 82														
[152:			1915				1224	696	515	85	76	98	72	
- 68														
[4024			1401	809			//8	426	3/5	61	4	67	50	
34	132	188	6	97	197]	IJ								

Classification Re	nort			
Classificacion Re	precision	recall	f1-score	support
alt.atheism	0.20	0.60	0.30	10000
comp.graphics	0.18	0.32	0.23	10000
comp.os.ms-windows.misc	0.27	0.29	0.28	10000
comp.sys.ibm.pc.hardware	0.13	0.52	0.20	10000
comp.sys.mac.hardware	0.25	0.39	0.31	10000
comp.windows.x	0.62	0.32	0.42	10000
misc.forsale	0.18	0.44	0.25	10000
rec.autos	0.24	0.38	0.29	10000
rec.motorcycles	0.41	0.39	0.40	10000
rec.sport.baseball	0.41	0.32	0.36	10000
rec.sport.hockey	0.71	0.28	0.40	10000
sci.crypt	0.90	0.32	0.47	10000
sci.electronics	0.62	0.31	0.41	10000
sci.med	0.77	0.17	0.27	10000
sci.space	0.76	0.16	0.27	10000
soc.religion.christian	0.81	0.19	0.30	9960
talk.politics.guns	0.54	0.11	0.19	10000
talk.politics.mideast	0.84	0.08	0.14	10000
talk.politics.misc	0.52	0.03	0.06	10000
talk.religion.misc	0.51	0.02	0.04	10000
accuracy			0.28	199960
macro avg	0.49	0.28	0.28	199960
weighted avg	0.49	0.28	0.28	199960

References:

- 1: https://sebastianraschka.com/Articles/2014 naive bayes 1.html
- 2, https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
- 3. https://www.geeksforgeeks.org/python-string-replace/
- 4. https://www.programiz.com/python-programming/methods/string/lower
- 5. https://www.programiz.com/python-programming/methods/list/append
- 6. https://www.w3schools.com/python/python file open.asp
- 7. https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification report.html
- 8. https://geronimo.ai/an-introduction-to-the-naive-bayes-classifier-for-text-classification-why-so-serious/
- 9. https://towardsdatascience.com/word-bags-vs-word-sequences-for-text-classification-e0222c21d2ec
- 10. https://www.youtube.com/watch?v=PPeaRc-r1OI&t=655s
- 11. https://www.youtube.com/watch?v=BqUmKsfSWho