Database and Management Systems

(UEC716)

Lab Project

on

Health Hub

Hospital Database Management System

Submitted by:

Pranav Bakshi	102215220

Krish Juneja 102215237

Prerna Nagpal 102215243

Angad Singh 102215345

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING THAPAR INSTITUTE OF ENGINEERING & TECHNOLOGY PATIALA August-December 2024

Table of Contents

S.NO.	CONTENT	PAGE NO.
1	Requirements	3
2	ER Diagram & assumptions	4
3	Relational Schema	5
4	Normalization	6
5	SQL statements for table creation	8
6	SQL statements for insertion commands	12
7	Conclusion & References	17

REQUIREMENTS

The doctor-patient management system is a software application that is designed to manage the interactions between doctors and patients. The system allows doctors to manage their appointments, prescriptions, and medical records for their patients. Patients can use the system to schedule appointments, view their medical records, and receive prescriptions.

The system is implemented using a database to store the doctor, patient, appointment, prescription, billing, and payment information. The system also includes a user interface that allows doctors and patients to interact with the database.

The doctor-patient management system can be used in a variety of healthcare settings, such as hospitals, clinics, and private practices. The system can improve the efficiency and accuracy of managing patient information, reduce errors, and enhance communication between doctors and patients.

To commercialize the system, it can be marketed to healthcare organizations and private practices. The system can be sold as a subscription-based service or a one-time purchase. The system can also be customized to meet the specific needs of healthcare organizations and practices, which can provide an additional source of revenue.

In summary, the doctor-patient management system is a valuable tool for managing patient information, improving communication, and enhancing the overall quality of healthcare. It can be implemented in various healthcare settings and can be commercialized through subscriptions or customized solutions for organizations and practices.

MODELLING OF REQUIREMENTS AS ER-DIAGRAM

ASSUMPTIONS:

A Doctor can have many Appointments, but each Appointment is with only one Doctor.

A Patient can have only one Appointment and each Appointment has only one Patient.

A Prescription is associated with one Appointment and can have many Medicines.

Many Medicines can be associated with one Prescription and one Billing.

Many supporting staff assist many Doctors.

A Billing is associated with one Appointment and can have many Medicines.

A Payment is associated with one Appointment.

ER- DIAGRAM INTO RELATIONAL SCHEMA

Doctors

doctor_id	First Name	Last Name	Specialization
-----------	------------	-----------	----------------

DOCTORS(doctor_id , Firstname , Lastname , Specialization)

Patients

Patient_id	Name	Address	Phone
------------	------	---------	-------

PATIENTS(Patients_id , name , Address, Phone)

Billing

BILLI NG(Bill_id	Quantity	Price per unit	Total price	Prescription_id
IN(-1					

Bill_id , Quantity , price_per_unit , Total_price,prescription_id)

Medicines

Medicine_id Name	Description	Price
------------------	-------------	-------

MEDICINES(Medicines_id , Name , Description , price)

Supporting Staff

Supporting_id	Name
---------------	------

SUPPORTING STAFF(Staff_id , Name)

Appointments

APPOINTMENTS(Appointment_id,Appointment_Date, Appointment_time,Patient_id,Doctor_id)

Prescriptions

Prescription_id	Dosage	Quantity	Appointment_id	Medicine_id
-----------------	--------	----------	----------------	-------------

PRESCRIPTION(Prescription_id,Dosage,Quantity,Appointment_id,Medicine_id)

AFTER NORMALIZATION

Doctors

doctor_id	First name	Last name	Specialization

Primary Key: doctor _id Foreign Keys: staff id

Patients

patient_id	name	address
------------	------	---------

· Primary Key: patient_id

patient_id Phone

Primary Key: Phone Foreign Key: patient_id

Appointments

appointment_id	doctor_id	patient_id	appointment_date	appointment_time

Primary Key: appointment_id
Foreign Keys: doctor_id ,patient_id

Medicines

medicine_id name	description	price	Bill_id
------------------	-------------	-------	---------

Primary Key: medicine _id Foreign Keys: bill id

Prescriptions

prescrip appoir tion_id nt_i		dosage	quantity
------------------------------	--	--------	----------

Primary Key: prescription_id

Foreign Keys:appointment_id, medicine_id

Billing

bill_id	appointment_id	medicine_id	quantity	price_pe r_unit	total_pri ce

Primary Key: bill_id

Foreign Keys: appointment_id, medicine_id

Payments

· Primary Key: payment_id

· Foreign Keys:appointment_id

Supporting_Staff

staff_id	name

· Primary Key: staff_id

SQL STATEMENTS FOR TABLE CREATION

Creating DOCTORS Table

CREATE TABLE Doctors (doctor_id NUMBER(10) PRIMARY KEY, name VARCHAR2(50) NOT NULL, specialization VARCHAR2(50) NOT NULL);

ı	Α	В	L	E	D	0	1 (J١	3

Column	Null?	Туре
DOCTOR_ID	NOT NULL	NUMBER(10,0)
NAME	NOT NULL	VARCHAR2(50)
SPECIALIZATION	NOT NULL	VARCHAR2(50)

Creating Patients Table

CREATE TABLE Patients (patient_id

NUMBER(10) PRIMARY KEY,

nameVARCHAR2(50) NOT NULL,

addressVARCHAR2(100) NOT NULL,

phoneVARCHAR2(20) NOT NULL);

110112

Creating Appointments Table

CREATE TABLE Appointments (appointment_id NUMBER(10) PRIMARY KEY,

doctor id NUMBER(10) REFERENCES Doctors(doctor id),

patient id NUMBER(10) REFERENCES Patients(patient id),

appointment_date DATE NOT NULL,

appointment_timeVARCHAR2(20) NOT NULL

);

TABLE APPOINTMENTS		
Column	Null?	Туре
APPOINTMENT_ID	NOT NULL	NUMBER(10,0)
DOCTOR_ID	-	NUMBER(10,0)
PATIENT_ID	-1	NUMBER(10,0)
APPOINTMENT_DATE	NOT NULL	DATE
APPOINTMENT_TIME	NOT NULL	VARCHAR2(20)

Creating Medicines Table

CREATE TABLE Medicines (medicine_id NUMBER(10) PRIMARY KEY,

Name VARCHAR2(50) NOT NULL, description VARCHAR2(100) NOT NULL, price NUMBER(10, 2) NOT NULL

); TABLE MEDICINES

Column	Null?	Туре
MEDICINE_ID	NOT NULL	NUMBER(10,0)
NAME	NOT NULL	VARCHAR2(50)
DESCRIPTION	NOT NULL	VARCHAR2(100)
PRICE	NOT NULL	NUMBER(10,2)

Creating Prescriptions Table

CREATE TABLE Prescriptions (

prescription_id NUMBER(10) PRIMARYKEY,
appointment_id NUMBER(10) REFERENCES Appointments(appointment_id),
medicine_id NUMBER(10) REFERENCESMedicines(medicine_id),
dosage VARCHAR2(50) NOT NULL,
quantity NUMBER(10) NOT NULL);

TABLE PRESCRIPTIONS

Column	Null?	Туре
PRESCRIPTION_ID	NOT NULL	NUMBER(10,0)
APPOINTMENT_ID	-	NUMBER(10,0)
MEDICINE_ID	-	NUMBER(10,0)
DOSAGE	NOT NULL	VARCHAR2(50)
QUANTITY	NOT NULL	NUMBER(10,0)

Creating Billing Table

CREATE TABLE Billing (bill_id NUMBER(10) PRIMARY KEY, appointment_id NUMBER(10) REFERENCES Appointments(appointment_id), medicine_id NUMBER(10) REFERENCES Medicines(medicine_id), quantity NUMBER(10) NOT NULL, price_per_unit NUMBER(10, 2) NOT NULL, total_price NUMBER(10, 2) NOT NULL

);

Column	Null?	Туре
BILL_ID	NOT NULL	NUMBER(10,0)
APPOINTMENT_ID	-	NUMBER(10,0)
MEDICINE_ID	-	NUMBER(10,0)
QUANTITY	NOT NULL	NUMBER(10,0)
PRICE_PER_UNIT	NOT NULL	NUMBER(10,2)
TOTAL_PRICE	NOT NULL	NUMBER(10,2)

Creating Payments Table

CREATE TABLE Payments (payment_id NUMBER(10) PRIMARY KEY, appointment_id NUMBER(10) REFERENCES Appointments(appointment_id), amount_paid NUMBER(10, 2) NOT NULL, payment_date DATE NOT NULL);

TABLE PAYMENTS

Column	Null?	Туре
PAYMENT_ID	NOT NULL	NUMBER(10,0)
APPOINTMENT_ID	1-	NUMBER(10,0)
AMOUNT_PAID	NOT NULL	NUMBER(10,2)
PAYMENT_DATE	NOT NULL	DATE

Creating Supporting Staff Table

Create table supporting_staff(staff_id number primary key, name varchar(30));

Table created.

STATEMENTS FOR INSERT COMMANDS

Inserting data into Doctors Table

INSERT INTO Doctors (doctor_id, name, specialization) VALUES (1, 'Dr. John Doe', 'General Medicine'); INSERT INTO Doctors (doctor_id, name, specialization) VALUES (2, 'Dr. Jane Smith', 'Pediatrics');

INSERT INTO Doctors (doctor id, name, specialization) VALUES (3, 'Dr. Ross Garg', 'Cardiologist');

INSERT INTO Doctors (doctor_id, name, specialization) VALUES (4, 'Dr. Grey Webber', 'Psychiatrist');

INSERT INTO Doctors (doctor_id, name, specialization) VALUES (5, 'Dr. Pinky', 'Pediatrics');

DOCTOR_ID	NAME	SPECIALIZATION	
1	Dr. John Doe	General Medicine	
2	Dr. Jane Smith	Pediatrics	
3	Dr. Ross Garg	Cardiologist	
4	Dr. Grey Webber	Psychiatrist	
5	Dr. Pinky	Pediatrics	

Inserting data into Patients Table

INSERT INTO Patients (patient_id, name, address, phone) VALUES (1, 'Smith', '123 Main St, Anytown, USA', '555-1234');

INSERT INTO Patients (patient_id, name, address, phone) VALUES (2, 'Doe', '456 Elm St, Anytown, USA', '555-5678');

INSERT INTO Patients (patient_id, name, address, phone) VALUES (3, 'Amy', '59 Broadway Avenue, Anytown, USA', '555-4321');

INSERT INTO Patients (patient_id, name, address, phone) VALUES (2, 'Doe', '461,Bury Street,,Anytown USA', '555-3396');

INSERT INTO Patients (patient_id, name, address, phone) VALUES (1, 'Smith', '58 Main St, Anytown, USA', '555-6474');

INSERT INTO Patients (patient_id, name, address, phone) VALUES (2, 'Doe', '92 Elm St, Anytown, USA', '555-3992');

PATIENT_ID	NAME	ADDRESS	PHONE
1	Smith	123 Main St, Anytown, USA	555-1234
2	Doe	456 Elm St, Anytown, USA	555-5678
3	Amy	59 Broadway Avenue, Anytown, USA	555-4321
4	Doe	461,Bury Street,,Anytown USA	555-3396
5	Smith	58 Main St, Anytown, USA	555-6474
6	Doe	92 Elm St, Anytown, USA	555-3992

Inserting data into Appointments Table

INSERT INTO Appointments (appointment_id, doctor_id, patient_id, appointment_date, appointment_time) VALUES (1, 1, 1, TO_DATE('2024-10-1', 'YYYY-MM-DD'), '10:00 AM');

INSERT INTO Appointments (appointment_id, doctor_id, patient_id, appointment_date, appointment_time) VALUES (2, 2, 7, TO_DATE('2024-10-4', 'YYYY-MM-DD'), '2:00 PM');

INSERT INTO Appointments (appointment_id, doctor_id, patient_id, appointment_date, appointment_time) VALUES (3, 3, 3, TO DATE('2024-10-6', 'YYYY-MM-DD'), '1:00 PM');

INSERT INTO Appointments (appointment_id, doctor_id, patient_id, appointment_date, appointment_time) VALUES (5, 5, 5, TO_DATE('2024-10-12', 'YYYY-MM-DD'), '4:00 PM');

APPOINTMENT_ID	DOCTOR_ID	PATIENT_ID	APPOINTMENT_DATE	APPOINTMENT_TIME
1	1	1	01-OCT-24	10:00 AM
2	2	2	04-0CT-24	2:00 PM
3	3	3	06-OCT-24	1:00 PM
5	5	5	12-OCT-24	4:00 PM

Inserting data into Medicines Table

INSERT INTO Medicines (medicine_id, name, description, price) VALUES (1, 'Tylenol', 'Pain reliever', 5.99); INSERT INTO Medicines (medicine_id, name, description, price) VALUES (2, 'Amoxicillin', 'Antibiotic',12.99); INSERT INTO Medicines (medicine_id, name, description, price) VALUES (3, 'Paracetamol', 'Pain reliever', 7.59);

INSERT INTO Medicines (medicine_id, name, description, price) VALUES (4, 'Dolo-560', 'Antibiotic',4.95); INSERT INTO Medicines (medicine_id, name, description, price) VALUES (5, 'Ofloxin', 'Pain reliever', 5.87); INSERT INTO Medicines (medicine id, name, description, price) VALUES (6, 'Lisinopril', 'hypertension', 12.99);

MEDICINE_ID	NAME	DESCRIPTION	PRICE
1	Tylenol	Pain reliever	5.99
2	Amoxicillin	Antibiotic	12.99
3	Paracetamol	Pain reliever	7.59
4	Dolo-560	Antibiotic	4.95
5	Ofloxin	Pain reliever	5.87
6	Lisinopril	hypertension	12.99

Inserting data into Presciptions Table

INSERT INTO Prescriptions (prescription_id, appointment_id, medicine_id, dosage, quantity) VALUES (1, 1, 1, 1 tablet every 4 hours', 20);

INSERT INTO Prescriptions (prescription_id, appointment_id, medicine_id, dosage, quantity) VALUES (2,2, 2, '500mg three times a day', 30);

INSERT INTO Prescriptions (prescription_id, appointment_id, medicine_id, dosage, quantity) VALUES (3, 3, 3, '1 tablet every day', 50);

INSERT INTO Prescriptions (prescription_id, appointment_id, medicine_id, dosage, quantity) VALUES (5,5, 5, '500mg once a day', 10);

PRESCRIPTION_ID	APPOINTMENT_ID	MEDICINE_ID	DOSAGE	QUANTITY
1	1	1	1 tablet every 4 hours	20
2	2	2	500mg three times a day	30
3	3	3	1 tablet every day	50
5	5	5	500mg once a day	10

Inserting data into Billing Table

INSERT INTO Billing (bill_id, appointment_id, medicine_id, quantity, price_per_unit, total_price) VALUES (1, 1, 1, 20, 5.99, 119.80);

INSERT INTO Billing (bill_id, appointment_id, medicine_id, quantity, price_per_unit, total_price) VALUES (2, 2, 30, 12.99, 389.70);

INSERT INTO Billing (bill_id, appointment_id, medicine_id, quantity, price_per_unit, total_price) VALUES (3, 3, 3, 50, 7.59, 909.282);

INSERT INTO Billing (bill_id, appointment_id, medicine_id, quantity, price_per_unit, total_price) VALUES (5, 5, 5, 10, 5.87, 58.7);

BILL_ID	APPOINTMENT_ID	MEDICINE_ID	QUANTITY	PRICE_PER_UNIT	TOTAL_PRICE
1	1	1	20	5.99	119.8
2	2	2	30	12.99	389.7
3	3	3	50	7.59	909.28
5	5	5	10	5.87	58.7

Inserting data into Payments Table

INSERT INTO Payments (payment_id, appointment_id, amount_paid, payment_date) VALUES (1, 1, 119.80, TO_DATE('2024-04-11', 'YYYY-MM-DD'));

INSERT INTO Payments (payment_id, appointment_id, amount_paid, payment_date) VALUES (2, 2, 389.70, TO_DATE('2024-07-18', 'YYYY-MM-DD'));

INSERT INTO Payments (payment_id, appointment_id, amount_paid, payment_date) VALUES (3, 3, 900.00, TO_DATE('2024-03-11', 'YYYY-MM-DD'));

INSERT INTO Payments (payment_id, appointment_id, amount_paid, payment_date) VALUES (4, 5, 58.7, TO_DATE('2024-02-12', 'YYYY-MM-DD'));

PAYMENT_ID	APPOINTMENT_ID	AMOUNT_PAID	PAYMENT_DATE
1	1	119.8	11-OCT-24
2	2	389.7	18-OCT-24
3	3	900	11-OCT-24
4	5	58.7	12-OCT-24

Inserting data into Supporting Staff Table

Insert into supporting_staff values(1,'Aditi'); Insert into supporting_staff values(2,'Rahul'); Insert into supporting_staff values(3,'Abhay'); Insert into supporting_staff values(4,'Ananya');

STAFF_ID	NAME
1	Aditi
2	Rahul
3	Abhay
4	Ananya

CONCLUSIONS

In conclusion, the doctor-patient management system represents a significant advancement in healthcare technology, offering streamlined management of patient interactions, appointments, prescriptions, and medical records. Its implementation can lead to improved efficiency, accuracy, and communication between healthcare providers and patients, ultimately enhancing the quality of care delivered. By offering customizable solutions and flexible commercial models, such as subscription-based services or one-time purchases, this system can cater to the diverse needs of healthcare organizations and practices. Overall, it stands as a valuable asset in modernizing healthcare delivery and optimizing patient outcomes.

References

- https://drive.google.com/file/d/1DABTfDAGois13Zw9hNT9rwY6HE66V-vu/view?usp=sharing
- https://www.geeksforgeeks.org/how-to-design-a-database-for-healthcare-management-system/
- https://medium.com/@apoorvchowdhry55/hospital-management-system-f21b978a1b8c
- https://chat.openai.com/c/ee4fbf42-3ec8-41c6-b17b-bc29d408c58b
- https://github.com/topics/hospital-management-system