

FIG. 2

NAME	BIT LENGTH	DESCRIPTION
		OP CODE
OP	4	Operation Code
SOP	4	Sub-Operation Code
MF	4	Mode F Operand
MT	4	Mode T Operand
L	16	Length
F	16	From Operand (F Operand)
T	16	To Operand (T Operand)
S	16	Sink Operand (S Operand)

*1 DOUBLE WORD
 *2 ONLY MULTIPLE LENGTH
 MULTIPLICATION INSTRUCTION

FIG. 3 (a)

OPERAND DESIGNATION MODE	BINARY CODE	DESCRIPTION OF MODE
D	0000	INTERPRET VALUE OF F OR T OPERAND AS ARITHMETIC REGISTER NUMBER AND ACCESS CONTENT OF THAT REGISTER (DIRECT REGISTER DESIGNATION)
I	0001	INTERPRET VALUE OF F OR T OPERAND AS ARITHMETIC REGISTER NUMBER AND ACCESS MEMORY USING CONTENT OF THE REGISTER AS ADDRESS (INDIRECT REGISTER DESIGNATION)
A	0010	INTERPRET VALUE OF F OR T OPERAND AS ADDRESS AND ACCESS MEMORY ACCORDING TO THAT ADDRESS (DIRECT ADDRESS DESIGNATION)
IP	0011	CONDUCT INDIRECT REGISTER DESIGNATION AND THEN INCREASE ACCESSED REGISTER VALUE BY ONE
MI	0100	DECREASE DESIGNATED REGISTER VALUE BY ONE AND THEN ACCESS MEMORY USING THE RESULTING VALUE AS ADDRESS
IV16	0101	DIRECTLY USE 16-BIT VALUE DESIGNATED IN F OPERAND FOR CALCULATION
IV64	0110	DIRECTLY USE 64-BIT VALUE DESIGNATED IN NEXT INSTRUCTION FOR CALCULATION
LI	1000	INDIRECT REGISTER DESIGNATED DOUBLE LENGTH CALCULATION MODE. CALCULATE DOUBLE LENGTH DATA DESIGNATED IN L FIELD USING CONTENT OF REGISTER DESIGNATED BY F OR T OPERAND AS START ADDRESS OF DOUBLE LENGTH DATA
LA	1001	DIRECT ADDRESS DESIGNATED DOUBLE LENGTH CALCULATION MODE. CALCULATE DOUBLE LENGTH DATA DESIGNATED IN L FIELD USING ADDRESS DESIGNATED BY F OR T OPERAND AS START ADDRESS OF DOUBLE LENGTH DATA

FIG. 3 (b)

OP (4bit)	SOP (4bit)	MF (4bit)	MT (4bit)	L (16bit)	F (16bit)	T (16bit)	MNEMONIC	OPERATION	PSW (N Z V C)	ATTRIBUTE
0000		D	D				HLT	HLT		
0001 0000	D	-ttt			T		CLR	0 → T	0100	
0001 0001							CLRS		0100	
0010 0000	D	-ttt			T		ASL	$T \times 2 \rightarrow T$	**0*	SFTs
0010 0001	D	-ttt			T		ASR	$T \div 2 \rightarrow T$	**0*	
0010 0010	D	tttt	L		T		LSL	SHIFT T LEFT LOGICALLY → T	**0*	
0010 0011	D	tttt	L		T		LSR	SHIFT T RIGHT LOGICALLY → T	**0*	
0010 0100	D	tttt	L		T		LSLC	SHIFT T LEFT LOGICALLY → T (INCLUDING CARRY)	**0*	
0010 0101	D	tttt	L		T		LSRC	SHIFT T RIGHT LOGICALLY → T (INCLUDING CARRY)	**0*	
0010 0110	D	-ttt			T		RSL	ROTATE T LEFT → T	**0*	
0010 0111	D	-ttt			T		RSR	ROTATE T RIGHT → T	**0*	
0011 0000	ffff	tttt	L	F	T		ADD	$T + F \rightarrow T$	****	ADDs
0011 0001	ffff	tttt	L	F	T		ADC	$T + F + CFlag \rightarrow T$	****	
0011 0010	ffff	tttt	L	F	T		INC	$T + 1 \rightarrow T$	****	
0011 0011	D	-ttt			T		NEG	$\neg T + 1 \rightarrow T$	****	
0100 0000	ffff	tttt	L	F	T		SUB	$T - F \rightarrow T$	****	SUBs
0100 0001	ffff	tttt	L	F	T		SBB	$T - F - CFlag \rightarrow T$	****	
0100 0010	ffff	tttt	L	F	T		DEC	$T - 1 \rightarrow T$	****	
0100 0011	ffff	tttt	L	F	T		CMP	$T - F \rightarrow T$	****	
0101 0000	ffff	tttt	L	F	T		AND	$T \wedge F \rightarrow T$	**0-	BITs
0101 0001	ffff	tttt	L	F	T		OR	$T \vee F \rightarrow T$	**0-	
0101 0010	ffff	tttt	L	F	T		XOR	$T \Delta F \rightarrow T$	**0-	
0101 0011	ffff	tttt	L	F	T		NOT	$\neg T \rightarrow T$	**0-	
0101 0100	-fff	-ttt		F	T		BIT	$T \wedge F \rightarrow T$	**0-	
0110 0000	ffff	tttt	L	F	T		MOV	$F \rightarrow T$	**0-	MOVs
0110 0001	-fff	IP		F	SP		PUSH	$F \rightarrow (SP) +$		
0110 0010	MI	-ttt		SP	T		POP	$(SP) \rightarrow T$		
0110 0011	-fff	D		F	?		IN	$F \rightarrow ?$		
0110 0100	D	-ttt		F	?		OUT	$? \rightarrow T$		
0111 0000	-fff	D		F	PC		JMP	$F \rightarrow PC$		JMPs
0111 0001	-fff	D		F	PC		RJP	$PC + F \rightarrow PC$		
0111 0010	MI	D		SP	PC		RET	$-(SP) \rightarrow PC$		
0111 0011	MI	D		SP	PC		RIT	$-(SP) \rightarrow PC, ITF \text{ reset}$		
1000 0000	-fff	D		F	PC		JSR	$PC \rightarrow (SP) +, F \rightarrow PC$		LINKs
1000 0001	-fff	D		F	PC		RJS	$PC \rightarrow (SP) +, PC + F \rightarrow PC$		
1000 0010	-fff	D		F	PC		SVC	$PC \rightarrow (SP) +, F \rightarrow PC, ITF \text{ set}$		
1001 0000	-fff	D		F	PC		BRN	$[N=1] F \rightarrow PC$		BRs
1001 0001	-fff	D		F	PC		BRZ	$[Z=1] F \rightarrow PC$		
1001 0010	-fff	D		F	PC		BRV	$[V=1] F \rightarrow PC$		
1001 0011	-fff	D		F	PC		BRC	$[C=1] F \rightarrow PC$		
1010 0000	-fff			F	PC		LOOP	$(PC)-1 \rightarrow (PC) [Z \neq 1] F \rightarrow PC$	-*-	
1010 0001	ffff	D	0011	F			DMV	$F(DIGEST) \rightarrow (D0,D1,D2)$		
1010 0010	-fff	tttt		F	T		XCHG	$F \rightarrow T, T \rightarrow F$		
1011 0000	-fff	-ttt		F	T		MUL	$F \times T \rightarrow RF, RE$	****	
1100 0000	D	D			PC		SIG	$PC \rightarrow (SP) +, \text{FIXED ADDRESS} \rightarrow PC, SF \text{ set}$		LINKs
1100 0001	MI	D		SP	PC		SIE	$[SF=1, KC=0] -(SP) \rightarrow PC, SF \text{ reset}$		
1100 0010	-fff	D		F			KCJ	$[SF=1 \cdot KCE \neq 0] F \rightarrow PC$		
1100 0011	LA	LA	L	F	T		ADO	$[SF=1] F + T + 1 \rightarrow T$		
1100 0100	LA	LA			T		SCMP	$[SF=1] \text{ compare } N \text{ with } T$		ROMs
1100 0101	LA	LA			T		SSB	$[SF=1] T - N \rightarrow T$		

FIG. 4-1 (a)

OP (4bit)	SOP (4bit)	L (8bit)	F (16bit)	T (16bit)	S (16bit)	MNEMONIC	OPERATION	PSW
1101	0000	L	F	T	S	MLS	[SF=1] F × T → S	
1101	0001	L		T	S	MDK	[SF=1] T × D ^{Kc} → S, KC-1 → KC	
1101	0010	L		T	S	MLD	[SF=1] T × D → S	
1101	0011	L		T	S	MLL	[SF=1] N' (rom) × T の 下位 → S	
1101	0100	L		T	S	MLH	[SF=1] N(rom) × T の 上位 → S	
1101	0101	L		T	S	MLP	[SF=1] CONSTANT R ² mod N(rom) × T → S	

FIG. 4-2 (b)

DESCRIPTION OF FIELD AND SYMBOL

FIELD	SYMBOL	DESCRIPTION
	D	FIXED TO D MODE. BINARY CODE CORRESPONDING TO D MODE IS SET.
	IP	FIXED TO IP MODE. BINARY CODE CORRESPONDING TO IP MODE IS SET.
	M1	FIXED TO M1 MODE. BINARY CODE CORRESPONDING TO M1 MODE IS SET.
	LA	FIXED TO LA MODE. BINARY CODE CORRESPONDING TO LA MODE IS SET.
MF,MT *1,*2	L1	FIXED TO L1 MODE. BINARY CODE CORRESPONDING TO L1 MODE IS SET.
	f	ARBITRARY BIT IS DESIGNATED.
	t	ARBITRARY BIT IS DESIGNATED.
	-	NO DESIGNATION. IGNORE EVEN IF DESIGNATED.
	L	LENGTH OF ARBITRARY DOUBLE LENGTH DATA IS DESIGNATED.
L	0011	FIXED LENGTH OF TRIPLE LENGTH DATA(64 X 3) IS DESIGNATED.
	F	REGISTER NUMBER OR ADDRESS, AND DATA ARE DESIGNATED. MEANING CHANGES ACCORDING TO MODE. *2
F,T	T	REGISTER NUMBER OR ADDRESS, AND DATA ARE DESIGNATED. MEANING CHANGES ACCORDING TO MODE. *2
	PC *3	PROGRAM COUNTER (PC) REGISTER IS DESIGNATED.
	SP	STACK POINTER (SP) REGISTER IS DESIGNATED.
	?	NOT DESIGNED. DESIGNATION TARGET IS NOT DECIDED.
S	S	UPPER SPECIFIC ADDRESS OF MAIN MEMORY IS DESIGNATED.
	*	DON'T CARE (EITHER 1 OR 0 IS SET)
PSW	-	NOT USED
	0	0 IS FIXED.
	1	1 IS FIXED.

FIG. 4-2 (c)

DESCRIPTION OF OPERATIONS

SYMBOL	DESCRIPTION
\wedge	AND OPERATION
\vee	OR OPERATION
Δ	XOR OPERATION
\neg	NOT OPERATION
(\sim)	INDIRECTLY ACCESS VALUE OF \sim *4
$(\sim)^+$	INDIRECTLY ACCESS VALUE OF \sim AND INCREASE IT BY ONE
$-(\sim)$	DECREASE VALUE OF \sim BY ONE AND ACCESS IT INDIRECTLY
$[\sim]$	USE \sim AS CONDITION

FIG. 4-2 (d)

NOTE

- *1: A MODE MAY BE DESIGNATED EVEN THOUGH F OR T OPERAND CANNOT BE ARBITRARILY DESIGNATED. THIS IS BECAUSE EVEN THOUGH REGISTER OR ADDRESS IS NOT DESIGNATED, THE SAME OPERATION AS THAT IN DESIGNATED MODE IS NECESSARY FOR CONTROL. E.G., HLT AND ASL.
- *2: SEE 'DESCRIPTION OF MODE' IN THE NEXT PAGE FOR DESCRIPTION OF MODE DESIGNATION.
- *3: ALTHOUGH STACK POINTER (SP) IS NOT SHOWN IN SEP-4 BLOCK DIAGRAM, IT EXISTS.
- *4: INDIRECT ACCESS DENOTES TO ACCESS MEMORY USING CONTENT OF REGISTER AS ADDRESS AND ACCESS VALUE STORED IN THE ADDRESS.
- *5: L FIELD AND F, T, AND S OPERAND IN INSTRUCTIONS WITH CONDITION OF 'SF = 1' CAN BE USED FOR SPECIFIC ADDRESS THAT IS USED IN SIGNATURE CALCULATION.

FIG. 4-2 (e)

FIG. 5

PROCEDURE	INSTRUCTION	OPERATION	NOTE
(01)	AR*	R* × A → Z	ZH DENOTES UPPER 1024 BITS OF Z WHILE ZL DENOTES LOWER 1024 BITS THEREOF. CALCULATION THEREOF IS NOT NECESSARY.
(02)	AR* mod R	MLP	
(03)	(02) × N*	MLL	PROCESSING OF '(03)' AND '(04)' IS PERFORMED AT ONCE USING MLL.
(04)	(03) mod R		UPPER BITS OF '(04)' X N' ARE ACTUALLY NEEDED FOR '(06)'. LOWER BITS CAN BE NEGLECTED.
(05)	(04) × N	MLH	PROCESSING OF '(06)' AND '(07)' IS PERFORMED AT ONCE USING ADO. THIS IS BECAUSE 'ZH + AC + 1' IS ALWAYS MULTIPLE OF R.
(06)	(01) + (05)	ADO	ZH + AC + 1 → AC
(07)	(06) / R	SCMP	COMPARISON RESULTS REFLECT ON NEXT INSTRUCTION WHETHER TO SUBTRACT N IS DETERMINED ACCORDING TO COMPARISON RESULTS. VALUE OF AC BECOMES "AR ² mod N"
(08)	(07) - N	SSB	[AC > N] AC - N → AC
(09)	(08) × D	MDK	ZH DENOTES UPPER 1024 BITS OF Z WHILE ZL DENOTES LOWER 1024 BITS THEREOF. CALCULATION THEREOF IS NOT NECESSARY.
(10)	(09) mod R	AC × D ^{k_e} → Z	PROCESSING OF '(11)' AND '(12)' IS PERFORMED AT ONCE USING MLL.
(11)	(10) × N*	MLL	UPPER BITS OF '(12)' X N' ARE ACTUALLY NEEDED FOR '(14)'. LOWER BITS CAN BE NEGLECTED.
(12)	(11) mod R		PROCESSING OF '(14)' AND '(15)' IS PERFORMED AT ONCE USING ADO. THIS IS BECAUSE 'ZH + AC + 1' IS ALWAYS MULTIPLE OF R.
(13)	(12) × N	MLH	COMPARISON RESULTS REFLECT ON NEXT INSTRUCTION WHETHER TO SUBTRACT N IS DETERMINED ACCORDING TO COMPARISON RESULTS. VALUE OF AC BECOMES "AD mod N"
(14)	(09) + (13)	ADO	ZH + AC + 1 → AC
(15)	(06) / R	SCMP	
(16)	(14) - N	SSB	[AC > N] AC - N → AC

FIG. 6 (a)

SYMBOL	MEANING OF SYMBOL
R*	CONSTANT: $R^2 \bmod N$
R	CONSTANT: R
N	CONSTANT: N
N*	CONSTANT: VALUE SATISFYING $NN* \bmod R = R - 1$
A	ARBITRARY VALUE
D	DIGEST
Z	TEMPORARY VARIABLE. 2048 BITS.
ZH	UPPER 1024 BITS OF Z
ZL	LOWER 1024 BITS OF Z
U	TEMPORARY VARIABLE. 1024 BITS.
AC	ACCUMULATED INTERMEDIARY RESULTS. 1024 BITS.

FIG. 6 (b)

FIG. 7