Topology of tropical moduli spaces of weighted stable curves in higher genus

Shiyue Li (Brown University)
Joint with Siddarth Kannan, Stefano Serpente, Claudia Yun
Slides will be available at http://www.shiyue.li
04/24/2021

1. A brief history and motivation for studying tropical spaces $\Delta_{g,w}$.

- 1. A brief history and motivation for studying tropical spaces $\Delta_{g,w}$.
- 2. Definition of the tropical spaces $\Delta_{g,w}$.

- 1. A brief history and motivation for studying tropical spaces $\Delta_{g,w}$.
- 2. Definition of the tropical spaces $\Delta_{g,w}$.
- 3. Related work on $\Delta_{g,w}$.

- 1. A brief history and motivation for studying tropical spaces $\Delta_{g,w}$.
- 2. Definition of the tropical spaces $\Delta_{g,w}$.
- 3. Related work on $\Delta_{g,w}$.
- 4. Examples, revealing topological properties.

- 1. A brief history and motivation for studying tropical spaces $\Delta_{g,w}$.
- 2. Definition of the tropical spaces $\Delta_{g,w}$.
- 3. Related work on $\Delta_{g,w}$.
- 4. Examples, revealing topological properties.
- 5. Simple connectivity of $\Delta_{g,w}$ for g > 0.

- 1. A brief history and motivation for studying tropical spaces $\Delta_{g,w}$.
- 2. Definition of the tropical spaces $\Delta_{g,w}$.
- 3. Related work on $\Delta_{g,w}$.
- 4. Examples, revealing topological properties.
- 5. Simple connectivity of $\Delta_{g,w}$ for g > 0.
- 6. Euler characteristics of $\Delta_{g,w}$.

- 1. A brief history and motivation for studying tropical spaces $\Delta_{g,w}$.
- 2. Definition of the tropical spaces $\Delta_{g,w}$.
- 3. Related work on $\Delta_{g,w}$.
- 4. Examples, revealing topological properties.
- 5. Simple connectivity of $\Delta_{g,w}$ for g > 0.
- 6. Euler characteristics of $\Delta_{g,w}$.
- 7. Future directions.

History and Motivation

• Given $g \geq 0, n \geq 1$ and $w \in (\mathbb{Q} \cap (0,1])^n$ satisfying

$$2g-2+\sum w_i>0,$$

Hassett defined the Deligne-Mumford (DM) stack $\overline{\mathcal{M}}_{g,w}$ as an alternate compactification of DM stack $\mathcal{M}_{g,n}$ of *n*-marked smooth curves of genus g in [Has03].

The space $\overline{\mathcal{M}}_{g,w}$ parametrizes n-marked curves of genus g

$$\mathcal{M}_{g,n}\subset \mathcal{M}_{g,w}\subset \overline{\mathcal{M}}_{g,w}.$$

• Given $g \geq 0, n \geq 1$ and $w \in (\mathbb{Q} \cap (0,1])^n$ satisfying

$$2g-2+\sum w_i>0,$$

Hassett defined the Deligne-Mumford (DM) stack $\overline{\mathcal{M}}_{g,w}$ as an alternate compactification of DM stack $\mathcal{M}_{g,n}$ of *n*-marked smooth curves of genus g in [Has03].

The space $\overline{\mathcal{M}}_{g,w}$ parametrizes *n*-marked curves of genus g

• with at most nodal singularities;

$$\mathcal{M}_{g,n}\subset \mathcal{M}_{g,w}\subset \overline{\mathcal{M}}_{g,w}.$$

• Given $g \geq 0, n \geq 1$ and $w \in (\mathbb{Q} \cap (0,1])^n$ satisfying

$$2g-2+\sum w_i>0,$$

Hassett defined the Deligne-Mumford (DM) stack $\overline{\mathcal{M}}_{g,w}$ as an alternate compactification of DM stack $\mathcal{M}_{g,n}$ of *n*-marked smooth curves of genus g in [Has03].

The space $\overline{\mathcal{M}}_{g,w}$ parametrizes n-marked curves of genus g

- with at most nodal singularities;
- ullet marked points are allowed to coincide if their weights sum up to ≤ 1 ;

$$\mathcal{M}_{g,n}\subset \mathcal{M}_{g,w}\subset \overline{\mathcal{M}}_{g,w}.$$

• Given $g \geq 0, n \geq 1$ and $w \in (\mathbb{Q} \cap (0,1])^n$ satisfying

$$2g-2+\sum w_i>0,$$

Hassett defined the Deligne-Mumford (DM) stack $\overline{\mathcal{M}}_{g,w}$ as an alternate compactification of DM stack $\mathcal{M}_{g,n}$ of *n*-marked smooth curves of genus g in [Has03].

The space $\overline{\mathcal{M}}_{g,w}$ parametrizes n-marked curves of genus g

- with at most nodal singularities;
- \bullet marked points are allowed to coincide if their weights sum up to $\leq 1;$
- satisfies w-stability.

$$\mathcal{M}_{g,n}\subset \mathcal{M}_{g,w}\subset \overline{\mathcal{M}}_{g,w}.$$

• Given $g \geq 0, n \geq 1$ and $w \in (\mathbb{Q} \cap (0,1])^n$ satisfying

$$2g-2+\sum w_i>0,$$

Hassett defined the Deligne-Mumford (DM) stack $\overline{\mathcal{M}}_{g,w}$ as an alternate compactification of DM stack $\mathcal{M}_{g,n}$ of *n*-marked smooth curves of genus g in [Has03].

The space $\overline{\mathcal{M}}_{g,w}$ parametrizes n-marked curves of genus g

- with at most nodal singularities;
- \bullet marked points are allowed to coincide if their weights sum up to $\leq 1;$
- satisfies w-stability.

We have the containments

$$\mathcal{M}_{g,n}\subset \mathcal{M}_{g,w}\subset \overline{\mathcal{M}}_{g,w}.$$

• In [Uli15], Ulirsch gave that the boundary divisor $\overline{\mathcal{M}}_{g,w} \setminus \mathcal{M}_{g,w}$ is a normal crossings divisor.

Motivation

The boundary complex, or the dual complex of the boundary divisor $\overline{\mathcal{M}}_{g,w} \setminus \mathcal{M}_{g,w}$ is identified with $\Delta_{g,w}$.

 Shown by Harper in [Har17], simple homotopy types of the boundary complex is independent of the choice of compactification, for Deligne-Mumford stacks.

Motivation

The boundary complex, or the dual complex of the boundary divisor $\overline{\mathcal{M}}_{g,w} \setminus \mathcal{M}_{g,w}$ is identified with $\Delta_{g,w}$.

- Shown by Harper in [Har17], simple homotopy types of the boundary complex is independent of the choice of compactification, for Deligne-Mumford stacks.
- As a DM stack, the rational cohomology of $\mathcal{M}_{g,w}$ carries a mixed Hodge structure, i.e. there is a weight filtration of the rational homology. The top graded piece of the weight filtration on $\mathcal{M}_{g,w}$ is isomorphic to the reduced rational homology of the dual complex $\Delta_{g,w}$; see work by Deligne in [Del71].

What is $\Delta_{g,w}$

Given $g \ge 0$, $n \ge 1$, and a weight vector $w \in (\mathbb{Q} \cap (0,1])^n$,

Definition

A w-stable graph of genus g is a tuple (G, h, m) such that

Given $g \geq 0$, $n \geq 1$, and a weight vector $w \in (\mathbb{Q} \cap (0,1])^n$,

Definition

A w-stable graph of genus g is a tuple (G, h, m) such that

1. G is a finite connected graph with vertex set V(G), with loops and parallel edges allowed;

Given $g \ge 0$, $n \ge 1$, and a weight vector $w \in (\mathbb{Q} \cap (0,1])^n$,

Definition

A w-stable graph of genus g is a tuple (G, h, m) such that

- 1. G is a finite connected graph with vertex set V(G), with loops and parallel edges allowed;
- 2. (genus g) $h:V(G)\to\mathbb{Z}_{>0}$ is a (vertex weight) function such that,

$$b^1(G) + \sum_{v \in G} h(v) = g,$$

where $b^1(G)$ is the first betti number of G.

Given $g \geq 0$, $n \geq 1$, and a weight vector $w \in (\mathbb{Q} \cap (0,1])^n$,

Definition

A w-stable graph of genus g is a tuple (G, h, m) such that

- 1. G is a finite connected graph with vertex set V(G), with loops and parallel edges allowed;
- 2. (genus g) $h: V(G) \to \mathbb{Z}_{>0}$ is a (vertex weight) function such that,

$$b^1(G) + \sum_{v \in G} h(v) = g,$$

where $b^1(G)$ is the first betti number of G.

3. (w-stability) $m:[n] \to V(G)$ is a (marking) function such that for all $v \in V(G)$

$$2h(v) + val(v) + \sum_{i \in m^{-1}(v)} w_i > 2;$$

Figure 1: Okay (left), not okay (right).

We consider the category $\Gamma_{g,w}$ where

Figure 1: Okay (left), not okay (right).

We consider the category $\Gamma_{g,w}$ where

1. the objects are w-stable graphs of genus g, referred to as "combinatorial types".

Figure 1: Okay (left), not okay (right).

We consider the category $\Gamma_{g,w}$ where

- 1. the objects are w-stable graphs of genus g, referred to as "combinatorial types".
- 2. the morphisms are compositions of

Figure 1: Okay (left), not okay (right).

We consider the category $\Gamma_{g,w}$ where

- 1. the objects are *w*-stable graphs of genus *g*, referred to as "combinatorial types".
- 2. the morphisms are compositions of
 - 2.1 edge-contractions;

Figure 1: Okay (left), not okay (right).

We consider the category $\Gamma_{g,w}$ where

- 1. the objects are w-stable graphs of genus g, referred to as "combinatorial types".
- 2. the morphisms are compositions of
 - 2.1 edge-contractions;

2.2 graph isomorphisms that respect the vertex weights and markings.

Example Let $0 < \varepsilon \ll 1$, g = 1, $w = (1, \varepsilon)$.

Figure 2: The category $\Gamma_{1,(1,\varepsilon)}$, containing the category $\Gamma_{1,(\varepsilon,\varepsilon)}$ as a subcategory.

Given $g \geq 0$, $n \geq 1$ and weight vector $(\mathbb{Q} \cap (0,1])^n$,

Definition

An abstract w-stable genus-g tropical curve is (G, ℓ) where

Given $g \geq 0$, $n \geq 1$ and weight vector $(\mathbb{Q} \cap (0,1])^n$,

Definition

An abstract w-stable genus-g tropical curve is (G, ℓ) where

• G is a w-stable genus-g graph; and

Given $g \geq 0$, $n \geq 1$ and weight vector $(\mathbb{Q} \cap (0,1])^n$,

Definition

An abstract w-stable genus-g tropical curve is (G, ℓ) where

- G is a w-stable genus-g graph; and
- $\ell: E(G) \to \mathbb{R}_{>0}$.

Given $g \geq 0$, $n \geq 1$ and weight vector $(\mathbb{Q} \cap (0,1])^n$,

Definition

An abstract w-stable genus-g tropical curve is (G, ℓ) where

- G is a w-stable genus-g graph; and
- $\ell: E(G) \to \mathbb{R}_{>0}$.

Definition

The **volume** of (G, ℓ) is

$$\mathsf{vol}((\mathsf{G},\ell)) := \sum_{e \in E(G)} \ell(e).$$

A funtor $\Gamma_{g,w} \to \mathsf{Top}$

For each G, define

$$\Delta(\mathsf{G}) := \bigg\{ \ell : E(\mathsf{G}) o \mathbb{R}_{\geq 0}, \sum_{e \in E(\mathsf{G})} \ell(e) = 1 \bigg\},$$

which can be identified with a (|E(G)| - 1)-simplex.

For each morphism $f: G \to H$ in $\Gamma_{g,w}$, there is an induced morphism of topological spaces

$$f^*:\Delta(\mathsf{H}) o \Delta(\mathsf{G})$$

identifying $\Delta(H)$ as a face of $\Delta(G)$.

$$\ell_1 + \ell_2 = 1 \\ \ell_1 = 0, \ell_2 = 1 \\ 2 \xrightarrow{3} \\ 1 \\ 2 \xrightarrow{1} 2$$

Figure 3: The graph that is a loop is a face of the 1-simplex whose graph is the "fish".

Then " Δ " gives a diagram $\Gamma_{g,w}^{\text{op}} \to \text{Top}$.

Definition

The moduli space $\Delta_{g,w}$ is the colimit of the diagram Δ :

$$\Delta_{g,w} := \mathsf{colim}_{\mathsf{G} \in \mathsf{Obj}(\Gamma_{g,w})} \Delta(\mathsf{G}).$$

It parametrizes w-stable tropical curves of genus g with unit volume.

Warning: this is not in general a simplicial complex, but a "geometric realization of symmetric Δ -complex" which morally speaking, allows half edges, folded 2-simplexes, etc..

Motivation II: related work

Conventions:

• When w = (1, ..., 1), we call $\Delta_{g,w}$ as $\Delta_{g,n}$.

In g=0,

Motivation II: related work

Conventions:

- When w = (1, ..., 1), we call $\Delta_{g,w}$ as $\Delta_{g,n}$.
- When $w=(1^{(n)},\varepsilon^{(m)})$ for $0<\varepsilon<1/m$, we call this weight vector heavy/light.

In g=0,

Motivation II: related work

Conventions:

- When $w=(1,\ldots,1)$, we call $\Delta_{g,w}$ as $\Delta_{g,n}$.
- When $w=(1^{(n)},\varepsilon^{(m)})$ for $0<\varepsilon<1/m$, we call this weight vector heavy/light.

In g=0,

• Vogtmann [Vog90] showed that $\Delta_{0,n}$ is homotopic to a wedge of spheres.

Conventions:

- When $w=(1,\ldots,1)$, we call $\Delta_{g,w}$ as $\Delta_{g,n}$.
- When $w = (1^{(n)}, \varepsilon^{(m)})$ for $0 < \varepsilon < 1/m$, we call this weight vector heavy/light.

In g=0,

- Vogtmann [Vog90] showed that $\Delta_{0,n}$ is homotopic to a wedge of spheres.
- When w is heavy/light, Cavalieri-Hampe-Markwig-Ranganathan and later Cerbu et al. showed that $\Delta_{0,w}$ is homotopic to a wedge of spheres.

Conventions:

- When $w=(1,\ldots,1)$, we call $\Delta_{g,w}$ as $\Delta_{g,n}$.
- When $w = (1^{(n)}, \varepsilon^{(m)})$ for $0 < \varepsilon < 1/m$, we call this weight vector heavy/light.

In g=0,

- Vogtmann [Vog90] showed that $\Delta_{0,n}$ is homotopic to a wedge of spheres.
- When w is heavy/light, Cavalieri-Hampe-Markwig-Ranganathan and later Cerbu et al. showed that $\Delta_{0,w}$ is homotopic to a wedge of spheres.
- When w has at least two 1 entries, Cerbu et al. derived the homotopy types of $\Delta_{g,w}$.

For higher genus g,

• When g = 1, Chan-Galatius-Payne showed that $\Delta_{g,n}$ is homotopic to a wedge of spheres.

For higher genus g,

- When g = 1, Chan-Galatius-Payne showed that $\Delta_{g,n}$ is homotopic to a wedge of spheres.
- When g>1, same authors showed that $\Delta_{g,n}$ is at least (n-3)-connected, i.e. the first (n-3) homotopy groups are trivial.

For higher genus g,

- When g = 1, Chan-Galatius-Payne showed that $\Delta_{g,n}$ is homotopic to a wedge of spheres.
- When g > 1, same authors showed that $\Delta_{g,n}$ is at least (n-3)-connected, i.e. the first (n-3) homotopy groups are trivial.
- When w is heavy/light or has at least two 1's, Cerbu et al. showed that $\Delta_{1,w}$ is homotopic to a wedge of spheres.

For higher genus g,

- When g = 1, Chan-Galatius-Payne showed that $\Delta_{g,n}$ is homotopic to a wedge of spheres.
- When g > 1, same authors showed that $\Delta_{g,n}$ is at least (n-3)-connected, i.e. the first (n-3) homotopy groups are trivial.
- When w is heavy/light or has at least two 1's, Cerbu et al. showed that $\Delta_{1,w}$ is homotopic to a wedge of spheres.
- For $(g, n) \neq (0, 4), (0, 5)$, Allcock-Corey-Payne showed that $\Delta_{g,n}$ is simply connected.

Speculation: $\Delta_{g,w}$'s probably have trivial lower homotopy groups, for higher g and general w.

Example (Haven't shown up above) Let $0 < \varepsilon \ll 1$, g = 1 and $w = (\varepsilon, \varepsilon, \varepsilon)$.

Figure 4: The space $\Delta_{1,(\varepsilon,\varepsilon,\varepsilon)}$ is homotopy equivalent to S^2 .

The main theorems

Theorem (Kannan-L.-Serpente-Yun)

For any $g, n \geq 1$, and $w \in (\mathbb{Q} \cap (0,1])^n$, the space $\Delta_{g,w}$ is simply-connected.

Recall $\Delta_{g,n}$ is simply-connected for $(g,n) \neq (0,4), (0,5)$ by Allcock-Corey-Payne.

Proof: a double induction

Double induction on

$$\ell(w) := \text{length of } w$$

and

$$j(w) := \#\{w_i : w_i < 1\}.$$

Example

Let $\varepsilon < 1/3$.

For $w = (1, \varepsilon, \varepsilon)$, $\ell(w) = 3$, j(w) = 2.

For $w = (\varepsilon, \varepsilon, \varepsilon)$, $\ell(w) = 3$, j(w) = 3.

Base case: $\ell(w)=1, j(w)=0$, Allcock-Corey-Payne showed $\Delta_{g,1}$ is s.c.

Inductive step:

(1) For each w, reorder w s.t. $w_1 < 1$ and define $\bar{w} = (1, w_2, w_3, \ldots)$.

Proof: a double induction

Double induction on

$$\ell(w) := \text{length of } w$$

and

$$j(w) := \#\{w_i : w_i < 1\}.$$

Example

Let $\varepsilon < 1/3$.

For $w = (1, \varepsilon, \varepsilon)$, $\ell(w) = 3$, j(w) = 2.

For $w = (\varepsilon, \varepsilon, \varepsilon)$, $\ell(w) = 3$, j(w) = 3.

Base case: $\ell(w)=1, j(w)=0$, Allcock-Corey-Payne showed $\Delta_{g,1}$ is s.c.

Inductive step:

(1) For each w, reorder w s.t. $w_1 < 1$ and define $\bar{w} = (1, w_2, w_3, \ldots)$.

Example

For $w = (\varepsilon, \varepsilon, \varepsilon)$, $\bar{w} = (1, \varepsilon, \varepsilon)$.

Notice that $\Delta_{g,\bar{w}}$ contains $\Delta_{g,w}$ as a subcomplex.

Figure 5: $\Delta_{1,(1,\varepsilon,\varepsilon)}\subset\Delta_{1,\varepsilon,\varepsilon}$

(2) Define the subcomplex

$$\Sigma_{g,w} = \overline{\Delta_{g,\bar{w}} \smallsetminus \Delta_{g,w}} \subset \Delta_{g,\bar{w}}.$$

- (3) Decompose $\Sigma_{g,w}$.
- (i) Define

$$K(w) := \{S \subseteq [n] : \sum_{i \in S} w_i \le 1\}$$

$$K((\varepsilon,\varepsilon,\varepsilon)) = \{1,2,3,12,23,13,123\}.$$

$$K((1,\varepsilon,\varepsilon)) = \{2,3,23\}.$$

(ii) For a $S\subseteq [n]$, define $\Delta_{g,\bar{w}}(S)$ to be the subcomplex in $\Delta_{g,\bar{w}}$ representing tropical curves with a vertex supporting (at least) markings indexed by S.

Figure 6: For $w=(\varepsilon,\varepsilon,\varepsilon), \bar{w}=(1,\varepsilon,\varepsilon), S=\{12\}$, then $\Delta_{1,\bar{w}}(S)$ is as above.

(iii) Decompose
$$\Sigma_{g,w}$$
 as

$$\Sigma_{g,w} = \overline{\Delta_{g,\bar{w}} \setminus \Delta_{g,w}} = \bigcup_{S \in \mathcal{K}(w) \setminus \mathcal{K}(\bar{w})} \Delta_{g,\bar{w}}(S).$$

Example

Recall: for $w = (\varepsilon, \varepsilon, \varepsilon)$ and $\bar{w} = (1, \varepsilon, \varepsilon)$,

 $K((\varepsilon, \varepsilon, \varepsilon)) = \{1, 2, 3, 12, 23, 13, 123\},\$

 $K((1, \varepsilon, \varepsilon)) = \{2, 3, 23\},\$

Thus $\Sigma_{1,w}=\Delta_{1,\bar{w}}(1)\cup\Delta_{1,\bar{w}}(2)\cup\Delta_{1,\bar{w}}(12)\cup\Delta_{1,\bar{w}}(13)\cup\Delta_{1,\bar{w}}(123).$

Figure 7: Visualizing the decomposition of $\Sigma_{1,(\varepsilon,\varepsilon,\varepsilon)}$ in pink/light blue.

- (4) Each $\Delta_{g,\bar{w}}(S)$ is simply-connected.
- (i) Define w^S as the weight vector removing weights indexed by S and appending

$$\min(\sum_{i\in S} w_i, 1).$$

Example
$$w = (\frac{1}{4}, \frac{2}{3}, \frac{1}{2}, 1).$$

- (4) Each $\Delta_{g,\bar{w}}(S)$ is simply-connected.
- (i) Define w^S as the weight vector removing weights indexed by S and appending

$$\min(\sum_{i\in S} w_i, 1).$$

$$w = (\frac{1}{4}, \frac{2}{3}, \frac{1}{2}, 1).$$

•
$$S = \{1,3\}, \ w^S = \left(\frac{2}{3},1,\frac{3}{4}\right);$$

- (4) Each $\Delta_{g,\bar{w}}(S)$ is simply-connected.
- (i) Define w^S as the weight vector removing weights indexed by S and appending

$$\min(\sum_{i\in S} w_i, 1).$$

$$w = (\frac{1}{4}, \frac{2}{3}, \frac{1}{2}, 1).$$

- $S = \{1,3\}, w^S = (\frac{2}{3},1,\frac{3}{4});$
- $T = \{2,3\}, \ w^T = (\frac{1}{4},1,1).$

Crux of induction: study each sub-subcomplex $\Delta_{g,\bar{w}}(S)$

(ii) Prove a technical lemma: If $\sum_{i \in S} \bar{w}_i \leq 1$, then

$$\Delta_{g,\bar{w}}(S) = \Delta_{g,\bar{w}^S};$$

Otherwise

$$\Delta_{g,\bar{w}}(S) \cong \mathsf{Cone}(\Delta_{g,\bar{w}^S}).$$

Example (continued with old friends $w=(\varepsilon,\varepsilon,\varepsilon)$ and $\bar{w}=(1,\varepsilon,\varepsilon)$) When $S=23,\ \bar{w}^S=(1,\varepsilon)$,

$$\Delta_{1,\bar{w}}(23) = \Delta_{1,(1,\varepsilon)} \cong \Delta_{1,2}$$
.s.c. by I.H.;

when S = 12 or 13, $\bar{w}^S = (1, 1)$,

$$\Delta_{1,\bar{w}}(13)\cong \mathsf{Cone}(\Delta_{1,(1,1)}).\mathsf{s.c.}.$$

Crux of induction: study each sub-subcomplex $\Delta_{g,\bar{w}}(S)$

(iii) Seifert-van Kampen revisited: Let X be a path-connected CW-complex, and suppose that $X = \bigcup_{i=1}^N U_i$ where each U_i is a simply connected CW-subcomplex. Suppose further that for any $1 \leq i_1, \ldots, i_k \leq N$, the intersection $\bigcap_{j=1}^k U_{i_j}$ is simply connected. Then X is simply connected.

For any $S_1, \ldots, S_N \in K(w) \setminus K(\overline{w})$, we have $1 \in \cap_{i=1}^N S_i$,

$$\bigcap_{i=1}^N \Delta_{g,\overline{w}}(S_i) = \Delta_{g,\overline{w}}\left(\bigcup_{i=1}^N S_i\right), \text{s.c. for same reasons before}$$

Therefore, $\Sigma_{g,w}$ is simply connected.

Finally

Figure 8: Use van Kampen.

For a heavy/light weight vector $w = (1^{(n)}, \varepsilon^{(m)})$ where

• m > 0,

we have the following computation results for $\chi(\Delta_{g,w})$ for some (n,m).

g = 0	m = 1	m=2	m = 3	m=4
n=2	-	2	0	2
n=3	3	-3	9	-15
n=4	-5	19	-53	163
n=5	25	-95	385	-1535

g=2	m=1	m=2	m = 3	m=4
n=3	3	-7	33	-127
n=4	-9	51	-249	1251
n=5	61	-359	2161	-12959
n=6	-419	2941	-20579	144061

g = 1	m=1	m=2	m = 3	m=4
n=2	2	-1	5	-7
n = 3	-2	10	-26	82
n=4	13	-47	193	-767
n=5	-59	301	-1499	7501

g = 3	m = 1	m=2	m = 3	m=4
n=4	1	1	1	1
n=5	1	1	1	1
n=6	1	1	1	1
n=7	1	1	1	1

For a heavy/light weight vector $w = (1^{(n)}, \varepsilon^{(m)})$ where

- m > 0,
- $0 < \varepsilon < 1/m$;

we have the following computation results for $\chi(\Delta_{g,w})$ for some (n,m).

g = 0	m = 1	m=2	m = 3	m=4
n=2	-	2	0	2
n=3	3	-3	9	-15
n=4	-5	19	-53	163
n=5	25	-95	385	-1535

g=2	m=1	m=2	m = 3	m=4
n=3	3	-7	33	-127
n=4	-9	51	-249	1251
n=5	61	-359	2161	-12959
n=6	-419	2941	-20579	144061

g = 1	m=1	m=2	m=3	m=4
n=2	2	-1	5	-7
n = 3	-2	10	-26	82
n=4	13	-47	193	-767
n=5	-59	301	-1499	7501

g=3	m = 1	m=2	m = 3	m=4
n=4	1	1	1	1
n=5	1	1	1	1
n=6	1	1	1	1
n=7	1	1	1	1

For a heavy/light weight vector $w = (1^{(n)}, \varepsilon^{(m)})$ where

- m > 0,
- $0 < \varepsilon < 1/m$;
- $n \ge g + 1$,

we have the following computation results for $\chi(\Delta_{g,w})$ for some (n,m).

g = 0	m = 1	m=2	m = 3	m=4
n=2	-	2	0	2
n=3	3	-3	9	-15
n=4	-5	19	-53	163
n=5	25	-95	385	-1535

g=2	m = 1	m=2	m = 3	m=4
n=3	3	-7	33	-127
n=4	-9	51	-249	1251
n=5	61	-359	2161	-12959
n=6	-419	2941	-20579	144061

g = 1	m=1	m=2	m = 3	m=4
n=2	2	-1	5	-7
n = 3	-2	10	-26	82
n=4	13	-47	193	-767
n = 5	-59	301	-1499	7501

g = 3	m = 1	m=2	m = 3	m=4
n=4	1	1	1	1
n=5	1	1	1	1
n=6	1	1	1	1
n=7	1	1	1	1

A partition $P_1 \sqcup \cdots \sqcup P_r$ of [n] is w-admissible if for all $1 \leq j \leq r$,

$$\sum_{i\in P_j} w_i \leq 1.$$

Let $N_{r,w}$ denote the number of w-admissible [n]-partitions with r parts.

Example

For $w=(1,1,\frac{3}{4},\frac{1}{2})$, the partition $\{1,2\}\cup\{3,4\}$ is not w-admissible but $\{1\}\cup\{2\}\cup\{3\}\cup\{4\}$ is.

In particular, $N_{r,w} = 0$ for all $r \neq 4$ and $N_{4,w} = 1$.

Let B_g be the g-th Bernoulli numbers.

A partition $P_1 \sqcup \cdots \sqcup P_r$ of [n] is w-admissible if for all $1 \leq j \leq r$,

$$\sum_{i\in P_j} w_i \leq 1.$$

Let $N_{r,w}$ denote the number of w-admissible [n]-partitions with r parts.

Example

For $w=(1,1,\frac{3}{4},\frac{1}{2})$, the partition $\{1,2\}\cup\{3,4\}$ is not w-admissible but $\{1\}\cup\{2\}\cup\{3\}\cup\{4\}$ is.

In particular, $N_{r,w} = 0$ for all $r \neq 4$ and $N_{4,w} = 1$.

Let B_g be the g-th Bernoulli numbers.

$$B_1 = \pm \frac{1}{2}$$
, $B_2 = \frac{1}{6}$, $B_3 = 0$, $B_4 = -\frac{1}{30}$

A formula for Euler characteristics of $\Delta_{g,w}$

Theorem (Kannan-L.-Serpente-Yun)

$$\chi(\Delta_{g,w}) = 1 + \sum_{r=1}^{n} N_{r,w} (-1)^r \frac{(g+r-2)!}{g!} B_g.$$

A corollary for heavy/light Hassett spaces

Let S(m, r) denote the number of r-partitions of [m] for $m \ge 1$ and $r \ge 0$; these are called the Stirling numbers of the second kind.

Example (m = 4)

Figure 9: The lattice showing r partitions of [4] for $1 \le r \le 4$. Source: wikipedia. In particular, S(4,1)=1, S(4,2)=7, S(4,3)=5, S(4,4)=1.

Corollary

Given a heavy/light weight vector $w = (1^{(n)}, \varepsilon^{(m)})$ where $n \ge g + 1$, m > 0, and $0 < \varepsilon < 1/m$,

$$\chi(\Delta_{g,w}) = 1 + \sum_{r=1}^{m} \sum_{\ell=0}^{g} (-1)^{n+r+\ell} \frac{(g+n+r-2)!\ell!}{g!(\ell+1)} S(m,r) S(g,\ell).$$

How to study Euler characteristics of $\Delta_{g,w}$

• Analyze the stratification of the coarse moduli scheme $M_{g,w}$ of $\mathcal{M}_{g,w}$.

How to study Euler characteristics of $\Delta_{g,w}$

- Analyze the stratification of the coarse moduli scheme $M_{g,w}$ of $\mathcal{M}_{g,w}$.
- Write $[M_{g,w}]$ in the Grothedieck group of varieties as a decomposition into $[M_{g,r}]$.

How to study Euler characteristics of $\Delta_{g,w}$

- Analyze the stratification of the coarse moduli scheme $M_{g,w}$ of $\mathcal{M}_{g,w}$.
- Write $[M_{g,w}]$ in the Grothedieck group of varieties as a decomposition into $[M_{g,r}]$.
- Then use results on top weight Euler characteristics of $M_{g,r}$ by Chan-Faber-Galatius-Payne in [CFGP20].

Future directions

1. Use Harvey's curve complexes or Hatcher's sphere systems to identify $\Delta_{g,w}$ as a quotient complex by some group action (on-going with the same co-authors).

Future directions

- 1. Use Harvey's curve complexes or Hatcher's sphere systems to identify $\Delta_{g,w}$ as a quotient complex by some group action (on-going with the same co-authors).
- 2. What is the geometric significance of the simple connectivity of $\Delta_{g,w}$ (as a dual complex of boundary divisor of $\mathcal{M}_{g,w}$)?

Future directions

- 1. Use Harvey's curve complexes or Hatcher's sphere systems to identify $\Delta_{g,w}$ as a quotient complex by some group action (on-going with the same co-authors).
- 2. What is the geometric significance of the simple connectivity of $\Delta_{g,w}$ (as a dual complex of boundary divisor of $\mathcal{M}_{g,w}$)?
- 3. Study homotopy types of $\Delta_{g,w}$ for higher genus and general w.

Thank you!

Ask me questions.

Melody Chan, Carel Faber, Soren Galatius, and Sam Payne.

The s_n -equivariant top weight euler characteristic of $m_{g,n}$, 2020.

Melody Chan, Carel Faber, Soren Galatius, and Sam Payne.

The s_n -equivariant top weight euler characteristic of $m_{\varepsilon,n}$, 2020.

Pierre Deligne.

Théorie de hodge : li.

Publications Mathématiques de l'IHÉS, 40:5-57, 1971.

Melody Chan, Carel Faber, Soren Galatius, and Sam Payne.

The s_n -equivariant top weight euler characteristic of $m_{g,n}$, 2020.

Pierre Deligne.

Théorie de hodge : li.

Publications Mathématiques de l'IHÉS, 40:5-57, 1971.

Alicia Harper.

Factorization for stacks and boundary complexes, 2017.

Melody Chan, Carel Faber, Soren Galatius, and Sam Payne.

The s_n -equivariant top weight euler characteristic of $m_{g,n}$, 2020.

Pierre Deligne.

Théorie de hodge : li.

Publications Mathématiques de l'IHÉS, 40:5-57, 1971.

Alicia Harper.

Factorization for stacks and boundary complexes, 2017.

Brendan Hassett.

Moduli spaces of weighted pointed stable curves.

Advances in Mathematics, 173(2):316 - 352, 2003.

Melody Chan, Carel Faber, Soren Galatius, and Sam Payne.

The s_n -equivariant top weight euler characteristic of $m_{g,n}$, 2020.

Pierre Deligne.

Théorie de hodge : li.

Publications Mathématiques de l'IHÉS, 40:5–57, 1971.

Alicia Harper.

Factorization for stacks and boundary complexes, 2017.

Brendan Hassett.

Moduli spaces of weighted pointed stable curves.

Advances in Mathematics, 173(2):316 - 352, 2003.

Martin Ulirsch.

Tropical geometry of moduli spaces of weighted stable curves.

Journal of the London Mathematical Society, 92(2):427–450, 2015.

The s_n -equivariant top weight euler characteristic of $m_{g,n}$, 2020.

Pierre Deligne.

Théorie de hodge : li.

Publications Mathématiques de l'IHÉS, 40:5–57, 1971.

Alicia Harper.

Factorization for stacks and boundary complexes, 2017.

Brendan Hassett.

Moduli spaces of weighted pointed stable curves.

Advances in Mathematics, 173(2):316 - 352, 2003.

Martin Ulirsch.

Tropical geometry of moduli spaces of weighted stable curves.

Journal of the London Mathematical Society, 92(2):427–450, 2015.

Karen Vogtmann.

Decomposition of $\Sigma_{g,w}$

Figure 10: Underlying graphs in the interior of $\Sigma_{g,w}$ (right) and in the boundary of $\Sigma_{g,w}$ (left) and for some $S \in K(w) \setminus K(\bar{w})$.