$t ::= x \quad Variable$ $| \lambda x.t \quad Abstraction$ $| (t,t) \quad Application$

Grammar 1: λ -calculus syntax

1 Terms, Types and Kinds

For programming language, three levels: terms, types, and kinds, have proved sufficient .

base types: base types are sets of simple, unstructured values, such as numbers, booleans, or characters, plus appropriate primitive operations for manipulating these values.

uninterpreted base type is with no primitive operations at all. uninterpreted base types come with no operations for introducing or eliminating terms.

Recap term-level abstraction and application in the λ -calculus as shown in Grammar 1.

 $\Gamma \vdash T :: K$ is read as "type T has kind K in context Γ ".

kinding is a well-formedness relation.

To treat type-level functions, collectively called *type operators* more formally, it is required to:

- 1. Add a collection of rules of *kinding* which specify how type expressions can be combined to yield new type expressions.
- 2. Whenever a type T appears in a term $(\lambda x : T.t)$, check whether T is well formed.
- 3. Add a collection of rules for the definitional equivalence relations between types.