Online Learning in Games Lecture 2: Zero-sum games with infinitely many actions

Rida Laraki and Guillaume Vigeral

Master IASD, 2024

• A zero-sum game is a two player game G = (I, J, g) where g is a bounded function from $I \times J$ to \mathbb{R} that player 1 maximizes and player 2 minimizes.

- A zero-sum game is a two player game G = (I, J, g) where g is a bounded function from $I \times J$ to $\mathbb R$ that player 1 maximizes and player 2 minimizes.
- In this lecture, we are interested by the infinite case (I and/or J is infinite). Examples: duels, biggest integer, electoral competition, GANs.

- A zero-sum game is a two player game G = (I, J, g) where g is a bounded function from $I \times J$ to \mathbb{R} that player 1 maximizes and player 2 minimizes.
- In this lecture, we are interested by the infinite case (I and/or J is infinite). Examples: duels, biggest integer, electoral competition, GANs.
- ullet The maxmin \underline{v} is the highest quantity player 1 can guarantee

$$\underline{v} = \sup_{i \in I} \inf_{j \in J} g(i, j)$$

The minmax \overline{v} is :

$$\overline{v} = \inf_{j \in J} \sup_{i \in I} g(i, j)$$

- A zero-sum game is a two player game G = (I, J, g) where g is a bounded function from $I \times J$ to \mathbb{R} that player 1 maximizes and player 2 minimizes.
- In this lecture, we are interested by the infinite case (I and/or J is infinite). Examples: duels, biggest integer, electoral competition, GANs.
- ullet The maxmin \underline{v} is the highest quantity player 1 can guarantee

$$\underline{v} = \sup_{i \in I} \inf_{j \in J} g(i, j)$$

The minmax \overline{v} is :

$$\overline{v} = \inf_{j \in J} \sup_{i \in I} g(i, j)$$

• The game has a value v if $\underline{v} = \overline{v} = v$.

- A zero-sum game is a two player game G = (I, J, g) where g is a bounded function from $I \times J$ to \mathbb{R} that player 1 maximizes and player 2 minimizes.
- In this lecture, we are interested by the infinite case (I and/or J is infinite). Examples: duels, biggest integer, electoral competition, GANs.
- ullet The maxmin \underline{v} is the highest quantity player 1 can guarantee

$$\underline{v} = \sup_{i \in I} \inf_{j \in J} g(i, j)$$

The minmax $\overline{\mathbf{v}}$ is:

$$\overline{v} = \inf_{j \in J} \sup_{i \in I} g(i, j)$$

- The game has a value v if $v = \overline{v} = v$.
- When a value exists, a strategy that achieves the argmax in the maxmin (resp. the argmin in the minmax) is called optimal for P1 (resp. P2).

- A zero-sum game is a two player game G = (I, J, g) where g is a bounded function from $I \times J$ to \mathbb{R} that player 1 maximizes and player 2 minimizes.
- In this lecture, we are interested by the infinite case (I and/or J is infinite). Examples: duels, biggest integer, electoral competition, GANs.
- ullet The maxmin \underline{v} is the highest quantity player 1 can guarantee

$$\underline{v} = \sup_{i \in I} \inf_{j \in J} g(i, j)$$

The minmax \overline{v} is :

$$\overline{v} = \inf_{j \in J} \sup_{i \in I} g(i, j)$$

- The game has a value v if $v = \overline{v} = v$.
- When a value exists, a strategy that achieves the argmax in the maxmin (resp. the argmin in the minmax) is called optimal for P1 (resp. P2).
- Question: general sufficient conditions for existence of the value (either in pure or mixed strategies).

Contents

- Pure Strategies
- 2 Mixed Strategies
- Fictitious Play
- Application to GANs

Berge lemma

Lemma (Berge, 1965)

Let C_1, \ldots, C_n be non-empty convex compact subsets of a Euclidean space. Assume that the union $\bigcup_{i=1}^n C_i$ is convex and that for each $j=1,\ldots,n$, $\bigcap_{i\neq j} C_i$ is non-empty.

Berge lemma

Lemma (Berge, 1965)

Let C_1, \ldots, C_n be non-empty convex compact subsets of a Euclidean space. Assume that the union $\bigcup_{i=1}^n C_i$ is convex and that for each $j=1,\ldots,n$, $\bigcap_{i\neq j} C_i$ is non-empty. Then $\bigcap_{i=1}^n C_i$ is non-empty.

• The lemma is clear if n = 1. Let $n \ge 2$.

- The lemma is clear if n = 1. Let $n \ge 2$.
- By contradiction, suppose the lemma holds for n-1 but not for n.

- The lemma is clear if n = 1. Let $n \ge 2$.
- By contradiction, suppose the lemma holds for n-1 but not for n.
- Let C_1, \ldots, C_n satisfy the hypotheses but have empty intersection.

- The lemma is clear if n = 1. Let $n \ge 2$.
- By contradiction, suppose the lemma holds for n-1 but not for n.
- Let C_1, \ldots, C_n satisfy the hypotheses but have empty intersection.
- Then C_n and $\bigcap_{i=1}^{n-1} C_i := D_n$ are $\neq \emptyset$, disjoint, convex and compact.

- The lemma is clear if n = 1. Let $n \ge 2$.
- By contradiction, suppose the lemma holds for n-1 but not for n.
- Let C_1, \ldots, C_n satisfy the hypotheses but have empty intersection.
- Then C_n and $\bigcap_{i=1}^{n-1} C_i := D_n$ are $\neq \emptyset$, disjoint, convex and compact.
- By Hahn-Banach, C_n and D_n can be strictly separated by a hyperplane H.

• By Hahn-Banach, C_n and D_n can be strictly separated by a hyperplane H.

• Define $\tilde{C}_i = C_i \cap H$ for $i = 1, \dots, n-1$, and $\tilde{C} = (\bigcup_{i=1}^n C_i) \cap H$.

• Since
$$C_n \cap H = \emptyset = D_n \cap H$$
, we have $\bigcup_{i=1}^{n-1} \tilde{C}_i = \tilde{C}$ and $\bigcap_{i=1}^{n-1} \tilde{C}_i = \emptyset$.

• By the induction hypothesis, $\exists j \in \{1,\ldots,n-1\}$ such that $\bigcap_{i \neq j,n} \tilde{C}_i = \emptyset$.

• Let
$$K = \bigcap_{i \neq i, n} C_i$$
. Then $D_n \subset K$ and $C_n \cap K \neq \emptyset$.

• As K is convex, we must have $K \cap H \neq \emptyset$.

• But
$$K \cap H = \bigcap_{i \neq i,n} \tilde{C}_i = \emptyset$$
, a contradiction.

• Let E be a convex subset of a topological vector space.

- Let E be a convex subset of a topological vector space.
- A real valued function $f: E \to \mathbb{R}$, is called **quasi-convex** if for all $\lambda \in \mathbb{R}$, $\{x \in E, f(x) \leq \lambda\}$ is convex.

- Let E be a convex subset of a topological vector space.
- A real valued function $f: E \to R$, is called **quasi-convex** if for all $\lambda \in R$, $\{x \in E, f(x) \le \lambda\}$ is convex.
- f is quasi-concave if for all $\lambda \in \mathbb{R}$, $\{x \in E, f(x) \ge \lambda\}$ is convex.

- Let E be a convex subset of a topological vector space.
- A real valued function $f: E \to R$, is called **quasi-convex** if for all $\lambda \in R$, $\{x \in E, f(x) \le \lambda\}$ is convex.
- f is quasi-concave if for all $\lambda \in \mathbb{R}$, $\{x \in E, f(x) \ge \lambda\}$ is convex.
- f is lower-semicontinuous (l.s.c) if for all λ , $\{x \in E, f(x) \le \lambda\}$ is closed.

- Let E be a convex subset of a topological vector space.
- A real valued function $f: E \to R$, is called **quasi-convex** if for all $\lambda \in R$, $\{x \in E, f(x) \le \lambda\}$ is convex.
- f is quasi-concave if for all $\lambda \in \mathbb{R}$, $\{x \in E, f(x) \ge \lambda\}$ is convex.
- f is lower-semicontinuous (l.s.c) if for all λ , $\{x \in E, f(x) \leq \lambda\}$ is closed.
- f is upper-semicontinuous (u.s.c.) if for all λ , $\{x \in E, f(x) \ge \lambda\}$ is closed.

- Let E be a convex subset of a topological vector space.
- A real valued function $f: E \to R$, is called **quasi-convex** if for all $\lambda \in R$, $\{x \in E, f(x) \le \lambda\}$ is convex.
- f is quasi-concave if for all $\lambda \in R$, $\{x \in E, f(x) \ge \lambda\}$ is convex.
- f is lower-semicontinuous (l.s.c) if for all λ , $\{x \in E, f(x) \le \lambda\}$ is closed.
- f is upper-semicontinuous (u.s.c.) if for all λ , $\{x \in E, f(x) \ge \lambda\}$ is closed.
- Remark: if E is compact and f u.s.c (resp l.s.c), then f achieves its maximum on E (resp. minimum).

Theorem (Sion, 1958)

Let G = (I, J, g) be a zero-sum game satisfying :

(i) I and J are convex;

Theorem (Sion, 1958)

Let G = (I, J, g) be a zero-sum game satisfying :

- (i) I and J are convex;
- (ii) I or J is compact;

Theorem (Sion, 1958)

Let G = (I, J, g) be a zero-sum game satisfying :

- (i) I and J are convex;
- (ii) I or J is compact;
- (iii) for each j in J, $g(\cdot,j)$ is quasi-concave u.s.c. in i,

Theorem (Sion, 1958)

Let G = (I, J, g) be a zero-sum game satisfying :

- (i) I and J are convex;
- (ii) I or J is compact;
- (iii) for each j in J, $g(\cdot, j)$ is quasi-concave u.s.c. in i,
- (iv) for each i in I, $g(i,\cdot)$ is quasi-convex l.s.c. in j.

Sion minmax theorem

Theorem (Sion, 1958)

Let G = (I, J, g) be a zero-sum game satisfying :

- (i) I and J are convex;
- (ii) I or J is compact;
- (iii) for each j in J, $g(\cdot, j)$ is quasi-concave u.s.c. in i,
- (iv) for each i in I, $g(i, \cdot)$ is quasi-convex l.s.c. in j.

Then G has a value:

$$\sup_{i\in I}\inf_{j\in J}g(i,j)=\inf_{j\in J}\sup_{i\in I}g(i,j).$$

If I or J is compact, the corresponding player has an optimal strategy.

Sion minmax theorem

Theorem (Sion, 1958)

Let G = (I, J, g) be a zero-sum game satisfying :

- (i) I and J are convex;
- (ii) I or J is compact;
- (iii) for each j in J, $g(\cdot, j)$ is quasi-concave u.s.c. in i,
- (iv) for each i in I, $g(i, \cdot)$ is quasi-convex l.s.c. in j.

Then G has a value:

$$\sup_{i\in I}\inf_{j\in J}g(i,j)=\inf_{j\in J}\sup_{i\in I}g(i,j).$$

If I or J is compact, the corresponding player has an optimal strategy.

• Assume I compact. By contradiction suppose there is v such that

$$\sup_{i \in I} \inf_{j \in J} g(i,j) < v < \inf_{j \in J} \sup_{i \in I} g(i,j).$$

• Assume I compact. By contradiction suppose there is v such that

$$\sup_{i \in I} \inf_{j \in J} g(i,j) < v < \inf_{j \in J} \sup_{i \in I} g(i,j).$$

• Define for each j in J the set $I_i = \{i \in I, g(i,j) < v\}$.

• Assume I compact. By contradiction suppose there is v such that

$$\sup_{i \in I} \inf_{j \in J} g(i,j) < v < \inf_{j \in J} \sup_{i \in I} g(i,j).$$

- Define for each j in J the set $I_j = \{i \in I, g(i,j) < v\}$.
- $(I_j)_{j\in J}$ is an open covering of I, hence \exists a finite subset J_0 of J s.t.

$$I=\bigcup_{j\in J_{\mathbf{0}}}I_{j}$$

• Assume I compact. By contradiction suppose there is v such that

$$\sup_{i \in I} \inf_{j \in J} g(i,j) < v < \inf_{j \in J} \sup_{i \in I} g(i,j).$$

- Define for each j in J the set $I_i = \{i \in I, g(i,j) < v\}$.
- $(I_j)_{j\in J}$ is an open covering of I, hence \exists a finite subset J_0 of J s.t.

$$I=\bigcup_{j\in J_{\mathbf{0}}}I_{j}$$

• Define $J' = co(J_0)$, then J' is compact and $\max_{i \in I} \inf_{j \in J'} g(i,j) < v < \inf_{j \in J'} \sup_{i \in I} g(i,j)$.

Remark : if g is bilinear this is over because this contradicts von Neumann result in the finite case.

Rida Laraki

Assume I compact. By contradiction suppose there is v such that

$$\sup_{i \in I} \inf_{j \in J} g(i,j) < v < \inf_{j \in J} \sup_{i \in I} g(i,j).$$

- Define for each j in J the set $I_j = \{i \in I, g(i,j) < v\}$.
- $(I_j)_{j\in J}$ is an open covering of I, hence \exists a finite subset J_0 of J s.t.

$$I=\bigcup_{j\in J_{\mathbf{0}}}I_{j}$$

- Define $J' = co(J_0)$, then J' is compact and $\max_{i \in I} \inf_{j \in J'} g(i,j) < v < \inf_{j \in J'} \sup_{i \in I} g(i,j)$.
- Similarly, \exists a finite subset I_0 of I s.t.

$$\forall i \in \text{co}(I_0), \exists j \in J_0, \quad g(i,j) < v,$$

 $\forall j \in \text{co}(J_0), \exists i \in I_0, \quad g(i,j) > v.$

$$\forall i \in co(I_0), \exists j \in J_0, \quad g(i,j) < v,$$

 $\forall j \in co(J_0), \exists i \in I_0, \quad g(i,j) > v.$

• We proved that, \exists a finite subset S_0 of S s.t.

$$\forall i \in co(I_0), \exists j \in J_0, \quad g(i,j) < v,$$

 $\forall j \in co(J_0), \exists i \in I_0, \quad g(i,j) > v.$

• Let (I_0, J_0) be a minimal pair (for inclusion) satisfying the property.

$$\forall i \in co(I_0), \exists j \in J_0, \quad g(i,j) < v,$$

 $\forall j \in co(J_0), \exists i \in I_0, \quad g(i,j) > v.$

- Let (I_0, J_0) be a minimal pair (for inclusion) satisfying the property.
- For each $i \in I_0$, define now $A_i = \{j \in co(J_0), g(i,j) \le v\}$.

$$\forall i \in \operatorname{co}(I_0), \exists j \in J_0, \quad g(i,j) < v,$$

 $\forall j \in \operatorname{co}(J_0), \exists i \in I_0, \quad g(i,j) > v.$

- Let (I_0, J_0) be a minimal pair (for inclusion) satisfying the property.
- For each $i \in I_0$, define now $A_i = \{j \in co(J_0), g(i,j) \le v\}$.

•
$$\bigcap_{i \in I_0} A_s = \emptyset$$

$$\forall i \in \operatorname{co}(I_0), \exists j \in J_0, \quad g(i,j) < v,$$

 $\forall j \in \operatorname{co}(J_0), \exists i \in I_0, \quad g(i,j) > v.$

- Let (I_0, J_0) be a minimal pair (for inclusion) satisfying the property.
- For each $i \in I_0$, define now $A_i = \{j \in co(J_0), g(i,j) \le v\}$.
- $\bigcap_{i \in I_0} A_s = \emptyset$
- By minimality of I_0 , $\bigcap_{i \in I_0 \setminus \{i_0\}} A_i \neq \emptyset$ for each i_0 in I_0 .

$$\forall i \in \operatorname{co}(I_0), \exists j \in J_0, \quad g(i,j) < v,$$

 $\forall j \in \operatorname{co}(J_0), \exists i \in I_0, \quad g(i,j) > v.$

- Let (I_0, J_0) be a minimal pair (for inclusion) satisfying the property.
- For each $i \in I_0$, define now $A_i = \{j \in co(J_0), g(i,j) \le v\}$.
- $\bigcap_{i \in I_0} A_s = \emptyset$
- By minimality of I_0 , $\bigcap_{i \in I_0 \setminus \{i_0\}} A_i \neq \emptyset$ for each i_0 in I_0 .
- By Berge lemma, the union $\bigcup_{i \in S_0} A_i$ is not convex.

$$\forall i \in \operatorname{co}(I_0), \exists j \in J_0, \quad g(i,j) < v,$$

 $\forall j \in \operatorname{co}(J_0), \exists i \in I_0, \quad g(i,j) > v.$

- Let (I_0, J_0) be a minimal pair (for inclusion) satisfying the property.
- For each $i \in I_0$, define now $A_i = \{j \in co(J_0), g(i,j) \le v\}$.
- $\bigcap_{i \in I_0} A_s = \emptyset$
- By minimality of I_0 , $\bigcap_{i \in I_0 \setminus \{i_0\}} A_i \neq \emptyset$ for each i_0 in I_0 .
- By Berge lemma, the union $\bigcup_{i \in S_0} A_i$ is not convex.
- Consequently $\exists j_0 \text{ in } \operatorname{co}(J_0) \setminus \bigcup_{i \in I_0} A_i$.

$$\forall i \in \operatorname{co}(I_0), \exists j \in J_0, \quad g(i,j) < v,$$

 $\forall j \in \operatorname{co}(J_0), \exists i \in I_0, \quad g(i,j) > v.$

- Let (I_0, J_0) be a minimal pair (for inclusion) satisfying the property.
- For each $i \in I_0$, define now $A_i = \{j \in co(J_0), g(i,j) \le v\}$.
- $\bigcap_{i \in I_0} A_s = \emptyset$
- By minimality of I_0 , $\bigcap_{i \in I_0 \setminus \{i_0\}} A_i \neq \emptyset$ for each i_0 in I_0 .
- By Berge lemma, the union $\bigcup_{i \in S_0} A_i$ is not convex.
- Consequently $\exists j_0 \text{ in } \operatorname{co}(J_0) \setminus \bigcup_{i \in I_0} A_i$.
- Thus, $\forall i \in I_0$, $g(i,j_0) > v$ and by quasi-concavity, $g(i,j_0) > v \ \forall i \in co(I_0)$.

$$\forall i \in \operatorname{co}(I_0), \exists j \in J_0, \quad g(i,j) < v,$$

 $\forall j \in \operatorname{co}(J_0), \exists i \in I_0, \quad g(i,j) > v.$

- Let (I_0, J_0) be a minimal pair (for inclusion) satisfying the property.
- For each $i \in I_0$, define now $A_i = \{j \in co(J_0), g(i,j) \le v\}$.
- $\bigcap_{i \in I_0} A_s = \emptyset$
- By minimality of I_0 , $\bigcap_{i \in I_0 \setminus \{i_0\}} A_i \neq \emptyset$ for each i_0 in I_0 .
- By Berge lemma, the union $\bigcup_{i \in S_0} A_i$ is not convex.
- Consequently $\exists j_0 \text{ in } \operatorname{co}(J_0) \setminus \bigcup_{i \in I_0} A_i$.
- Thus, $\forall i \in I_0$, $g(i, j_0) > v$ and by quasi-concavity, $g(i, j_0) > v \ \forall i \in co(I_0)$.
- Similarly, $\exists s_0 \in co(I_0)$ s.t. $g(i_0, j) < v$ for each j in $co(J_0)$. A contradiction.

We can weaken the topological conditions by strengthening the convexity hypothesis on $g(i,\cdot)$.

Proposition

Let G = (I, J, g) be a zero-sum game such that :

(i) I is convex and compact;

We can weaken the topological conditions by strengthening the convexity hypothesis on $g(i, \cdot)$.

Proposition

Let G = (I, J, g) be a zero-sum game such that :

- (i) I is convex and compact;
- (ii) J is convex;

We can weaken the topological conditions by strengthening the convexity hypothesis on $g(i, \cdot)$.

Proposition

Let G = (I, J, g) be a zero-sum game such that :

- (i) I is convex and compact;
- (ii) J is convex;
- (iii) for each j in J, $g(\cdot,j)$ is quasi-concave u.s.c., and for each i in I, $g(i,\cdot)$ is convex

We can weaken the topological conditions by strengthening the convexity hypothesis on $g(i,\cdot)$.

Proposition

Let G = (I, J, g) be a zero-sum game such that :

- (i) I is convex and compact;
- (ii) J is convex;
- (iii) for each j in J, $g(\cdot,j)$ is quasi-concave u.s.c., and for each i in I, $g(i,\cdot)$ is convex.

Then G has a value: $\sup_{i \in I} \inf_{j \in J} g(s, t) = \inf_{j \in J} \sup_{i \in I} g(i, j)$, and player 1 has an optimal strategy.

Contents

- Pure Strategies
- Mixed Strategies
- Fictitious Play
- Application to GANs

• We can convexify a set X either by considering the set $\Delta_f(X)$ of probabilities with finite support over X or, if X has a topological structure, by considering the set $\Delta(X)$ of regular probabilities over X.

- We can convexify a set X either by considering the set $\Delta_f(X)$ of probabilities with finite support over X or, if X has a topological structure, by considering the set $\Delta(X)$ of regular probabilities over X.
- Given a game (I, J, g), the payoff function g can be multi-linearly extended to (finite support or regular) probability distributions:

$$g(\sigma, au) = \mathbb{E}_{\sigma \otimes au}(g) = \int_I \int_J g(i, j) d\sigma(i) d au(j)$$

- We can convexify a set X either by considering the set $\Delta_f(X)$ of probabilities with finite support over X or, if X has a topological structure, by considering the set $\Delta(X)$ of regular probabilities over X.
- Given a game (I, J, g), the payoff function g can be multi-linearly extended to (finite support or regular) probability distributions:

$$g(\sigma, \tau) = \mathbb{E}_{\sigma \otimes \tau}(g) = \int_I \int_J g(i, j) d\sigma(i) d\tau(j)$$

ullet σ and au are called mixed strategies.

- We can convexify a set X either by considering the set $\Delta_f(X)$ of probabilities with finite support over X or, if X has a topological structure, by considering the set $\Delta(X)$ of regular probabilities over X.
- Given a game (I, J, g), the payoff function g can be multi-linearly extended to (finite support or regular) probability distributions:

$$g(\sigma,\tau) = \mathbb{E}_{\sigma\otimes\tau}(g) = \int_I \int_J g(i,j)d\sigma(i)d\tau(j)$$

- ullet σ and au are called mixed strategies.
- \bullet Elements of I and J are pure strategies.

- We can convexify a set X either by considering the set $\Delta_f(X)$ of probabilities with finite support over X or, if X has a topological structure, by considering the set $\Delta(X)$ of regular probabilities over X.
- Given a game (I, J, g), the payoff function g can be multi-linearly extended to (finite support or regular) probability distributions:

$$g(\sigma,\tau) = \mathbb{E}_{\sigma\otimes\tau}(g) = \int_I \int_J g(i,j)d\sigma(i)d\tau(j)$$

- ullet σ and au are called mixed strategies.
- \bullet Elements of I and J are pure strategies.
- If X has a topological structure, $\Delta(X)$ is usually endowed with the weak* topology (the weakest topology such that $\hat{\phi}: \mu \mapsto \int_X \phi \ d\mu$ is continuous for each real continuous function ϕ on X).

Theorem

Let G = (I, J, g) be a zero-sum game such that :

(i) I and J are compact Hausdorff topological spaces;

Theorem

Let G = (I, J, g) be a zero-sum game such that :

- (i) I and J are compact Hausdorff topological spaces;
- (ii) for each j in J, $g(\cdot,j)$ is u.s.c., and for each i in I, $g(i,\cdot)$ is l.s.c.;

Theorem

Let G = (I, J, g) be a zero-sum game such that :

- (i) I and J are compact Hausdorff topological spaces;
- (ii) for each j in J, $g(\cdot,j)$ is u.s.c., and for each i in I, $g(i,\cdot)$ is l.s.c.;
- (iii) g is bounded and measurable with respect to the product Borel σ -algebra $\mathcal{B}_I \otimes \mathcal{B}_I$.

Theorem

Let G = (I, J, g) be a zero-sum game such that :

- (i) I and J are compact Hausdorff topological spaces;
- (ii) for each j in J, $g(\cdot, j)$ is u.s.c., and for each i in I, $g(i, \cdot)$ is l.s.c.;
- (iii) g is bounded and measurable with respect to the product Borel σ -algebra $\mathcal{B}_l \otimes \mathcal{B}_l$.

Then the mixed extension $(\Delta(I), \Delta(J), g)$ of G has a value. Each player has a mixed optimal strategy, and for each $\varepsilon > 0$ each player has an ε -optimal strategy with finite support.

Theorem

Let G = (I, J, g) be a zero-sum game such that :

- (i) I and J are compact Hausdorff topological spaces;
- (ii) for each j in J, $g(\cdot, j)$ is u.s.c., and for each i in I, $g(i, \cdot)$ is l.s.c.;
- (iii) g is bounded and measurable with respect to the product Borel σ -algebra $\mathcal{B}_l \otimes \mathcal{B}_l$.

Then the mixed extension $(\Delta(I), \Delta(J), g)$ of G has a value. Each player has a mixed optimal strategy, and for each $\varepsilon > 0$ each player has an ε -optimal strategy with finite support.

Proof: a direct consequence of Sion minmax theorem in pure strategies.

Proposition

Consider a zero-sum game (I, J, g) satisfying :

(i) I is a compact Hausdorff topological space;

Proposition

Consider a zero-sum game (I, J, g) satisfying :

- (i) I is a compact Hausdorff topological space;
- (ii) for each j in J, $g(\cdot, j)$ is u.s.c.

Proposition

Consider a zero-sum game (I, J, g) satisfying :

- (i) I is a compact Hausdorff topological space;
- (ii) for each j in J, $g(\cdot, j)$ is u.s.c.

Then the game $(\Delta(I), \Delta_f(J), g)$ has a value and player 1 has an optimal strategy.

Proposition

Consider a zero-sum game (I, J, g) satisfying :

- (i) I is a compact Hausdorff topological space;
- (ii) for each j in J, $g(\cdot, j)$ is u.s.c.

Then the game $(\Delta(I), \Delta_f(J), g)$ has a value and player 1 has an optimal strategy.

Proof:

• When I is compact and $g(\cdot,t)$ u.s.c., then $\Delta(I)$ (endowed with the weak* topology) is compact and $(\sigma \mapsto g(\sigma,j) = \int_S g(i,j)\sigma(di))$ is u.s.c.

Proposition

Consider a zero-sum game (I, J, g) satisfying:

- (i) I is a compact Hausdorff topological space;
- (ii) for each j in J, $g(\cdot, j)$ is u.s.c.

Then the game $(\Delta(I), \Delta_f(J), g)$ has a value and player 1 has an optimal strategy.

Proof:

- When I is compact and $g(\cdot,t)$ u.s.c., then $\Delta(I)$ (endowed with the weak* topology) is compact and $(\sigma \mapsto g(\sigma,j) = \int_S g(i,j)\sigma(di))$ is u.s.c.
- Moreover, $g(\sigma, \tau)$ is well defined on $\Delta(I) \times \Delta_f(J)$ and is bilinear.

Mixed minmax theorem (second version)

Proposition

Consider a zero-sum game (I, J, g) satisfying:

- (i) I is a compact Hausdorff topological space;
- (ii) for each j in J, $g(\cdot, j)$ is u.s.c.

Then the game $(\Delta(I), \Delta_f(J), g)$ has a value and player 1 has an optimal strategy.

Proof:

- When I is compact and $g(\cdot,t)$ u.s.c., then $\Delta(I)$ (endowed with the weak* topology) is compact and $(\sigma \mapsto g(\sigma,j) = \int_S g(i,j)\sigma(di))$ is u.s.c.
- Moreover, $g(\sigma, \tau)$ is well defined on $\Delta(I) \times \Delta_f(J)$ and is bilinear.
- Assumptions of last proposition are satisfied.

Contents

Pure Strategies

- 2 Mixed Strategies
- Fictitious Play
- Application to GANs

Fictitious play: Danskin (1954-1981)

Fictitious play can be defined for any zero sum game G = (I, J, g), not necessarily finite.

Fictitious play: Danskin (1954-1981)

Fictitious play can be defined for any zero sum game G = (I, J, g), not necessarily finite.

Principle

- We start from any (i_1, j_1) in $I \times J$.
- At each stage $n \ge 2$, each player will play an approximate best response to the sum of past behavior of the opponent up to stage n-1.

Fictitious play: Danskin (1954-1981)

Fictitious play can be defined for any zero sum game G = (I, J, g), not necessarily finite.

Principle

- We start from any (i_1, j_1) in $I \times J$.
- At each stage $n \ge 2$, each player will play an approximate best response to the sum of past behavior of the opponent up to stage n-1.

Definition

A sequence $(i_n,j_n)_{n\geq 1}$ is an $\eta\text{-FP}$ process for some fixed $\eta\geq 0$ if for each $n\geq 1$:

- i_{n+1} is an η -best response of player 1 against $y_n := \frac{1}{n} \sum_{t=1}^n \delta_{j_t} \in \Delta(J)$,
- j_{n+1} is an η -best response of player 2 against $x_n := \frac{1}{n} \sum_{t=1}^n \delta_{i_t} \in \Delta(I)$.

Fictitious play: Theorem

Theorem (Danskin, 1954-1981)

Let $(i_n,j_n)_{n\geq 1}$ be the realization of a η -fictitious play process. If the game is compact and continuous and if val(g) denotes its value in mixed strategies, then $\forall \varepsilon>0, \exists N, \forall n\geq N, \forall x\in \Delta(I), \forall y\in \Delta(J)$

$$g(x_n, y) \ge val(g) - \varepsilon - \eta$$
 and $g(x, y_n) \le val(g) + \varepsilon + \eta$.

Contents

- Pure Strategies
- 2 Mixed Strategies
- Fictitious Play
- Application to GANs

• The generator (G) tries to trick the classifier (C) into classifying its generated fake data as true samples from a target distribution.

- The generator (G) tries to trick the classifier (C) into classifying its generated fake data as true samples from a target distribution.
- Mathematically: let (X, P) be a probability space representing the target data distribution, and let (Z, Q) denote the generator's distribution (for example, noise).

- The generator (G) tries to trick the classifier (C) into classifying its generated fake data as true samples from a target distribution.
- Mathematically: let (X, P) be a probability space representing the target data distribution, and let (Z, Q) denote the generator's distribution (for example, noise).
- A generator strategy may then be viewed as a function $g \in \mathcal{G}$, where \mathcal{G} is a fixed subset of the set of measurable functions from Z to X.

- The generator (G) tries to trick the classifier (C) into classifying its generated fake data as true samples from a target distribution.
- Mathematically: let (X, P) be a probability space representing the target data distribution, and let (Z, Q) denote the generator's distribution (for example, noise).
- A generator strategy may then be viewed as a function $g \in \mathcal{G}$, where \mathcal{G} is a fixed subset of the set of measurable functions from Z to X.
- A classifier strategy is a function $c \in \mathcal{C}$, where \mathcal{C} is a fixed subset of measurable functions from X to [0,1].

- The generator (G) tries to trick the classifier (C) into classifying its generated fake data as true samples from a target distribution.
- Mathematically: let (X, P) be a probability space representing the target data distribution, and let (Z, Q) denote the generator's distribution (for example, noise).
- A generator strategy may then be viewed as a function $g \in \mathcal{G}$, where \mathcal{G} is a fixed subset of the set of measurable functions from Z to X.
- A classifier strategy is a function $c \in C$, where C is a fixed subset of measurable functions from X to [0,1].
- The payoff function for this zero-sum game is given by is :

$$\Phi(g,c) = \int_X \log(c(x))dP(x) + \int_Z \log(1 - c(g(z))dQ(z)$$
 (1)

$$= \int_{X} \log(c(x)) dP(x) + \int_{X} \log(1 - c(x)) dQ(g^{-1}(x))$$
 (2)

- The generator (G) tries to trick the classifier (C) into classifying its generated fake data as true samples from a target distribution.
- Mathematically: let (X, P) be a probability space representing the target data distribution, and let (Z, Q) denote the generator's distribution (for example, noise).
- A generator strategy may then be viewed as a function $g \in \mathcal{G}$, where \mathcal{G} is a fixed subset of the set of measurable functions from Z to X.
- A classifier strategy is a function $c \in C$, where C is a fixed subset of measurable functions from X to [0,1].
- The payoff function for this zero-sum game is given by is :

$$\Phi(g,c) = \int_{X} \log(c(x))dP(x) + \int_{Z} \log(1 - c(g(z))dQ(z)$$
(1)
= $\int_{Y} \log(c(x))dP(x) + \int_{Y} \log(1 - c(x))dQ(g^{-1}(x))$ (2)

• The G-player minimizes with respect to g, the C-player maximizes in c.

Proposition

If ${\cal G}$ is the whole set of measurable functions from Z to X, then the game has a value in pure strategies and optimal strategies are

- $c^*(x) = 1/2 \ \forall x \ \textit{for player 1}$
- g^* such that $P = Q \circ (g^*)^{-1}$

Proposition

If $\mathcal G$ is the whole set of measurable functions from Z to X, then the game has a value in pure strategies and optimal strategies are

- $c^*(x) = 1/2 \ \forall x \ \textit{for player 1}$
- g^* such that $P = Q \circ (g^*)^{-1}$

Proof: (c^*, g^*) is a saddle point.

Proposition

If $\mathcal G$ is the whole set of measurable functions from Z to X, then the game has a value in pure strategies and optimal strategies are

- $c^*(x) = 1/2 \ \forall x \ \textit{for player 1}$
- g^* such that $P = Q \circ (g^*)^{-1}$

Proof: (c^*, g^*) is a saddle point.

Proposition

Assume that $\mathcal G$ is any set, and that $\mathcal C$ is convex compact. Then the game has a value in mixed strategy and player 1 has a pure optimal strategy.

Proposition

If $\mathcal G$ is the whole set of measurable functions from Z to X, then the game has a value in pure strategies and optimal strategies are

- $c^*(x) = 1/2 \ \forall x \ for \ player 1$
- g^* such that $P = Q \circ (g^*)^{-1}$

Proof: (c^*, g^*) is a saddle point.

Proposition

Assume that $\mathcal G$ is any set, and that $\mathcal C$ is convex compact. Then the game has a value in mixed strategy and player 1 has a pure optimal strategy.

Proof:

Apply Sion's theorem to $I=\mathcal{C}$ and $J=\Delta_f(\mathcal{G})$. Observe that Φ is continuous, and concave in c.