Multiclass Classification: One-vs-all (OvR) & All-pairs (OvO) using Binary Logistic Regression

Erica Brown, Mia Begic, Karolina Palac, Musa Tahir

Mathematical Background & Numerical Techniques

Binary Logistic Regression Representation

Sigmoid Function:

$$\sigma(z) = rac{1}{1 + e^{-z}}$$
 $z = <_{W,X}>$

Input: $X = \mathbf{R}^{d}$

Output: $[0, 1] \rightarrow \text{probabilities}$

$$Y = [-1, 1]$$

Decision Boundary: $\langle w, x \rangle = 0$

https://www.codecademy.com/resources/docs/ai/neural -networks/sigmoid-activation-function

Loss

$$\ell(h_{\mathbf{w}}, (\mathbf{x}, y)) = \log(1 + \exp(-y\langle \mathbf{w}, \mathbf{x} \rangle))$$

Log loss is convex!

Penalizes degree of incorrectness

y = 1 v = -1

Optimization

- Empirical Risk Minimization → minimize expected loss over *all* available data
- Log loss is convex \rightarrow at most one global minima
- Use **Stochastic Gradient Descent** to update weights:

$$w_j = w_j - lpha rac{\partial L}{\partial w_j}$$

- where α is learning rate, which is multiplied by gradients of L(w) with respect to each weight
- \bullet $\alpha = 0.01$

Convergence Criteria

- Max epoch limit = 1000
- Convergence Threshold = 1e-4

https://ai.stackexchange.com/questions/16348/what-isconvergence-in-machine-learning

One-vs-all & All-Pairs Approaches

Binary Classification → Multiclass Classification

One-vs-All Visualization

Musa: One-vs-All

Training data: \mathbf{X} (features), \mathbf{y} (labels) with k classes Logistic regression model for binary classification

- 1. Initialize an empty list, models, to store each class's logistic regression model
- 2. For each class i in range 1 to k:
 - a. Create a new binary label vector y_i where:
 - $-y_i[j] = 1$ if y[j] = i (current class)
 - $-y_i[j] = 0$ otherwise (all other classes)
 - b. Train a logistic regression model $model_i$ using **X** and y_i
 - c. Store $model_i$ in the list models
- 3. For a given input \mathbf{x} :

For each model i in range 1 to k:

- Use each model in *models* to predict the probability that \mathbf{x} belongs to each class
- Store the probabilities in a list *probabilities*

Select the class with the highest probability from *probabilities* as the predicted class

4. Return the predicted classes

All-Pairs Visualization

Erica: All-Pairs

Train method

Input training data **X** features and **Y** labels Binary logistic regression model

- Validate input data
- Create all possible class pairs (class_i, class_j) where class_i < class_j
- For each pair of classes :
 - Create mask [Y==class_i | class_j]
 - Filter X and Y to get SX and SY
 - Convert SY to binary values [1,0]
 - Initialize binary classifier
 - Train with SX and SY
 - Store trained classifier

Predict method

Input training data **X** features and **Y** labels Binary logistic regression model

- Validate input data
- Initialize vote array with zeros to store votes for each class for each sample
- For each pair of classes (class_i, class_j) and their classifiers:
 - Use classifier to predict binary labels [1,0]
 - If 1, add vote to class_i
 - If 0, add vote to class_j
- For each sample in X, assign class_label with highest vote count
- Return **predicted class label**

Previous Work

Dataset: Obesity Risk Prediction

Obesity Risk Prediction

Target variable: NObeyesdad (obesity level)

- 7 distinct obesity categories ranging from insufficient weight to severe obesity
 - o 0: Insufficient Weights
 - o 1: Normal Weight
 - o 2: Overweight Level 1
 - o 3: Overweight Level 2
 - o 4: Obesity Type 1
 - o 5: Obesity Type 2
 - o 6: Obesity Type 2

Categorical and quantitative data

Obesity Risk Prediction Cleaned | Kaggle

Previous Work: Scikit-learn & Kaggle Notebook

Mr. Amine

OvR_LR: 0.7508143567369544 OvO LR: 0.9578617970056797

Mia: Preliminary Results

One-vs-all

Our

- training accuracy: 73.26%

- test accuracy: 73.21%

Kaggle Data Scientist:

- training accuracy: 73.5%

- test accuracy: 71.53%

Heatmap
- Peak at 98% for batch size 1 and convergence threshold 0.001 and 0.01

Mia: Preliminary Results

All-pairs

Our

- training accuracy: 96.4%

- test accuracy: 95.22%

Kaggle Data Scientist:

- training accuracy: 94.42%

- test accuracy: 94%

Heatmap
- Peak at 94% for batch size 1 and convergence threshold 0.001

Mia: Summary

Strengths of the Algorithms:

- One-vs-all simplifies implementation and interpretation, excelling with smaller datasets and fewer classes
- **All-pairs** offers a more granular view of inter-class relationships, particularly for datasets with complex boundaries

<u>Challenged Encountered:</u>

Fine-tuning convergence

What Stood Out:

• Trade-off between simplicity and scalability

Why All-Pairs Excels

More robust voting system

- All-Pairs takes into account many more pairwise classifiers that combine to make arguably a more informed decision
- One-vs-all is less robust, since the decision for each class depends on a single classifier's input, which may be biased due to noise or overlapping features

• Simpler Decision Boundaries

- All-pairs trains models to distinguish between just two features at a time, which makes it easier to learn precise
 decision boundaries between two closely related classes (e.g. normal weight, overweight)
- One-vs-all must learn more complicated decision boundaries that may not be feasible for data that isn't linearly separable (using binary logistic regression)

Convergence Criteria

- Convergence Threshold = 1e-4
- Max epoch limit = 1000

Avoid overfitting!

• L2 Regularization

$$R(\mathbf{w}) = \lambda \|\mathbf{w}\|_2^2 \qquad \quad \|\mathbf{w}\|_2^2 = \sum_{i=1}^d w_i^2$$

 $\lambda \rightarrow controls$ contribution

• Implemented with SGD

$$\frac{\partial L_S(h_{\mathbf{w}}) + R(h_{\mathbf{w}})}{\partial w_{st}}$$

$$\frac{\partial \lambda \sum_{i=1}^d w_i^2}{\partial w_j} = 2\lambda w_j$$

Factors Influencing Minor Differences

- Regularization techniques (e.g. L1, L2)
- Hyperparameter settings (e.g. convergence thresholds)
- Weight Initialization
- Data Preprocessing