

Lo Data mon Leven ty Lo Data mon Leven ty eart ent d Electra in Co pute ngi en g October 26, 2021

Table of Contents

- Background
- Motivation
- Challenges
- Requirements
- Solution
- Major Decisions
- Cost
- Timeline
- Conclusion

Motivation

Requirements

Technical Requirements

- 1Gbps transmit/receive
- Infrared Wavelength (780nm-1mm)
- 20mm receiver tracking at 100m distance for maximum velocity of 100m/s
- Constant updating of tracking (software)
- Budget of ~\$500

Challenges

iviain challenges that need to be resolved in the project

- Cheap free space optical
 - Laser generation
 - Signal Generation
 - Computer limits
- Scanning
 - Stability
- Tracking
 - Moving target
 - Moving own-ship

https://i.ytimg.com/vi/Y9ejz-arlAg/maxresdefault.jpg

Solution

UAV mounted FSV

- Electro-optical transceiver
 - Small form-factor pluggable (SFP) module
- Near IR (850nm)
- DJ Scanning Galvanometer
- Static & Dynamic testing
- Raspberry Pi on-board

https://www.researchgate.net/publication/338257918/figure/fig1/AS:84216535372 1856@1577799275060/Flying-Ad-hoc-Network-FANET.ppm

The Team

Ian: The CS Guy
 Natal

Timeline

Previous

- Design
- Ordering

Fall

Static construction/testing

Spring

- Scanner
- Tracking

TASK	ASSIGNED TO	PROGRESS	START	END
Research and Development				
Static Design	Both	100%	9/12/21	9/15/21
Order parts	lan	100%	9/15/21	10/1/21
Scanner Design	Both	0%	12/6/21	12/13/21
Tracking Algorithm	Both	0%	2/14/22	2/19/22
FANET Design	Both	0%	5/28/22	5/30/22
Static Design				
Construct Transmitter	lan	0%	10/25/21	12/6/21
Construct Receiver	Natalia	0%	10/25/21	12/6/21
Lab Condition Testing	Both	0%	12/6/21	12/13/21
Single Motion Design				
Scanner Parts Ordering	Natalia	0%	12/13/21	12/18/21
Construct Scanner	Both	0%	1/10/22	1/17/22
Test Scanner	Natalia	0%	1/17/22	1/24/22
Scanner Tracking Implementation	lan	0%	1/17/22	1/31/22
One way tracking testing	Both	0%	1/31/22	2/10/22
Dual Motion Design				
Mount receiver on drone	Natalia	0%	2/10/22	2/17/22
Test drone receiver while moving	Natalia	0%	2/17/22	3/10/22
Mount transmitter on drone	lan	0%	2/10/22	2/17/22
Test drone transmitter while moving	lan	0%	2/17/22	3/10/22
Test drone-to-drone communication	Both		3/10/22	4/14/22
Demonstrate FANET feasbility	Both	0%	4/14/22	4/21/22

Major Decisions

Decision matrices for most important decisions

- Scanning
 - Mirrors
- Computer Connection
 - Wire type
- Laser Generation
 - Wavelength
 - Speed

Cost

Estimated Cost

Supplies	Quantity	Cost (\$) (total)	Need to Purchase
Raspberry Pi	2	\$0.00	No
SFP	2	\$26.01	Yes
Ethernet to USB-C Converter	2	\$29.46	Yes
Ethernet Cable	2	\$6.48	Yes
Lens	2	\$17.54	Yes
Scanning Motors	2	\$186.22	Yes
Media Converter	2	\$42.54	Yes
Camera	2	\$26.72	Yes
Laser (Aiming)	2	\$39.00	Yes
Total		\$397.97	Yes

Testing Results

Setup:	Bidirectional Throughput (Mbps)	Parallel Throughput (Mbps)	Unidirectional Throughput (Mbps)	Unidirectional Latency (ms)
Hardware-in- the-loop	941 ± 24	899 ± 71	941 ± 21	1.32 ± 0.32
Ethernet Control	924 ± 125	863 ± 112	940 ± 23	1.32 ± 0.30
Shared port	2893 ± 196	1632 ±260	2912 ± 195	1.05 ± 0.22
Host control	2719 ± 334	1577 ± 269	2714 ± 426	1.10 ± 0.26

Conclusion

visions of the Future

Building a FSOC system using SFP modules

- Testing in a dynamic system
- Proof of concept for further implementation

https://spie.org/Images/Graphics/Newsroom/2020articles/B3_2_HYDRON_920.jpg

Questions?

Backup Slides

Fiber Testbed

- Two VMs running 1 core, 2GB (3 core/4GB)
 - Lower performance due to system strain but reduced overhead for experimenters
 - Additional tests with more powerful machines required
- Bridged to Ethernet adapter
- Control was Ethernet cable only; experimental used SFP system

Latency Test

Latency Test (combined)

Difference in speed at beginning likely a result of 'test-isms'

Latency Averages

Test	Average Latency (ms)
Average Latency Control Unidirectional	1.30
Average Latency Control Bidirectional	1.62
Average Latency Experimental Bidirectional	1.57
Average Latency Experimental Unidirectional	1.57

- Minor differences
- Much more data required to determine statistical significance

Throughput Tests

Throughput Test (combined)

Experimental closely followed control, bidirectional slows down

Throughput Averages

- Bidirectional slower
- Unclear cause of slowdown
- Control/Experimental similar

	Experimental Average Throughput (Mbps)	Control Average Throughput (Mbps)
Average Throughput Experimental Bidirectional	894	898
Average Throughput Experimental Unidirectional	941	939
Average Throughput 3 Cores Experimental Bidirectional	909	873
Average Throughput 3 Cores Experimental Unidirectional	942	940

Pattern Analysis – No Lens

Pattern Analysis - Lens

SFP with Lens Fiber with Lens

Divergence

- Lens necessary
- Fiber has minimal impact

Setup	Divergence (mm)
SFP Only	117.7
Fiber Only	100.8
SFP with Lens	5.6
Fiber with Lens	4.8

KORUZA Diagram

KORUZA Links

- Description
 - https://www.hackster.io/musti/koruza-2b1824#toc-a--1-gbps-version-3
- Specifications
 - http://www.koruza.net/specs/
- GitHub
 - https://github.com/IRNAS/KORUZA

House of Quality

SFP 1000Base-SX Specifications

https://www.amazon.com/10Gtek-GLC-SX-MMD-GLC-SX-MM-Transceiver-1000Base-SX/dp/B00U77VPX2/ref=sr_1_3?dchild=1&keywords=sfp%2B 1000base-sx&gid=1633822790&sr=8-3&th=1

https://www.juniper.net/documentation/en_US/releaseindependent/junos/topics/reference/specifications/transceiver -m-mx-t-series-1000base-optical-specifications.pdf

GOO ON OPOS	
Parameter	1000Base-SX
Rate	1000 Mbps
Optical Interface	Multimode
Maximum Distance	62.5/125 MMF Cable 656 ft/200 m
	50/125 MMF Cable 1640 ft/500 m
Transmitter Wavelength	770 through 860 nm
Average Launch Power	-9.5 through 0 dBm
Average Receive Power	-17 through 0 dBm
Receiver Saturation	0 dBm
Receiver Sensitivity	-17 dBm

Other Sheets

 https://github.com/LMU-Capstone/microp/blob/baf11cad1060482e7e4 4d2270b1c400f65a833ad/docs/product%20sh eets/LC-Product-Spec.pdf