

CONTENTS

- 01 Overview(개요)
- 02 Data(데이터)
- 03 Method(방법론)
- 04 Conclusion(결론)

Data tell truth.

01 Overview(개요)

- 1. 주제 선정 이유
- 2. 문제 정의
- 3. 가설 및 목표

1. 주제 선정 이유

- 국내 와인 수입액: 2018년 3118억 → 2021년 7154억
- 지난 2년간 코로나로 인한 '홈술족'이 늘며 와인 판매량 증가
- 주류 스마트오더 시스템으로 인한 수요 증가
- 종류가 다양하여 입맛에 맞는 와인을 고르기 어려운데,
 고르기 쉽게 도와주는 구독 서비스 생겨남

2. 문제 정의

기존에는 미각, 후각으로 측정하던 와인의 품질을 와인의 화학 측정 데이터로부터 추정한다.

3. 가설 및 목표

• 가설 수립

산성도, 알코올 도수 등 정량적으로 측정되는 화학데이터를 통해 특징 데이터를 구성하여 미각, 후각 측정 없이 와인의 품질을 추정할 수 있다.

• 목표

정량적으로 측정되는 화학데이터를 통해 와인의 품질이 "좋은지""나쁜지"예측할 수 있는 분류 모델을 SVM 알고리즘을 이용하여 모델링하고 정확도(Accuracy)로 성능을 측정한다.

Data tell truth.

02 Data(데이터)

- 1. Info(정보)
- 2. EDA(탐색적 자료 분석)
- 3. PreProcessing(전처리)

1. Info

항목	내용			
데이터 출처	Kaggle wine-quality-dataset			
행 개수	1143			
열 개수	12			
컬럼명	fixed acidity	residual sugar	total sulfur dioxide	sulphates
	volatile acidity	chlorides	density	alcohol
	citric acid	free sulfur dioxide	рН	quality
타겟 컬럼	quality			
타겟 컬럼 분포도	3: 6건 4: 33건 5: 483건 6: 462건 7: 143건 8: 16건	Target Distribution		
훈련/평가 데이터셋	Train : 70%(800건) Test : 30%(343건)			

2. EDA(1/4)

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

✔ Correlation Matrix(상관계수) HeatMap

2. EDA(2/4)

✔ Correlation Matrix(상관계수) Bar

2. EDA(3/4)

✓ 상관관계 상위 변수 별 수치 분포도

2. EDA(4/4)

✓ 상관관계 상위 변수 별 박스플롯

3. PreProcessing(1/2)

✓ Categorize

✓ Label Encoder

3. PreProcessing(2/2)

✓ StandardScaler

- ✓ MinMaxScaler
 - ➤ 최대값이 1, 최소값이 0이 되도록 스케일링

Data tell truth.

03 Method(방법론)

- 1. SVM이란?
- 2. 핵심 요소
- 3. 구현 내용
- 4. Library VS Coding

1. SVM이란?

- ✓ Support Vector Machine의 약자
- ✓ 결정 경계(Decision Boundary)를 정의하는 모델
 - ▶ 결정 경계 : 분류를 위한 기준 선
 - ▶ 마진이 가장 큰 결정 경계를 찾는 모델
 - ➤ 초평면(Hyperplane): 속성이 3개 초과인 경우의 결정 경계
- ✓ Support Vectors는 결정 경계와 가까이 있는 데이터 포인트들을 의미
- ✓ 기본 수식 $\sum_{i} \alpha_{i} k(x_{i}, x) = constant.$

Support Vector Machine

2. 핵심 요소

- 1) 마진(Margin)
 - ▶ 결정 경계와 서포트 벡터 사이의 거리
 - ▶ n개의 속성을 가진 데이터는 최소 n+1개의 서포트 벡터가 존재

- 2) 커널(Kernel)
 - ▶ 선형으로 분류할 수 없는 경우, 고차원으로 변환하여 초평면으로 분류하기 위해 사용
 - 동차다항식(Homogeneous polynomial)
 - 다항식 커널(Polynomial kernel)
 - 가우시안 방사 기저 함수(Gaussian radial basis function)
 - 쌍곡탄젠트(Hyperbolic tangent)

2. 핵심 요소 - 마진(Margin) (1/4)

- ✔ 마진(Margin)
 - ▶ 하드 마진
 - ▶ 소프트 마진

2. 핵심 요소 - 마진(Margin) (2/4)

✓ 하드 마진

- ➤ 이상치(Outlier)를 허용하지 않는 기준
- ▶ 서포트 벡터와 결정 경계 사이의 거리가 가까움 (마진이 작음)
- ➤ 과적합(Overfitting)이 발생할 수 있음

2. 핵심 요소 - 마진(Margin) (3/4)

- ✓ 소프트 마진
 - ➤ 이상치(Outlier)가 마진 안에 어느정도 포함되도록 기준
 - ▶ 서포트 벡터와 결정 경계 사이의 거리가 멀어짐 (마진이 큼)
 - ➤ 과소적합(Underfitting)이 발생할 수 있음

2. 핵심 요소 - 마진(Margin) (4/4)

- ✓ 적용 파라미터: C
 - > SVM 모델 오류 허용 범위 설정
 - ▶ 클수록 하드마진(오류 허용 안 함)

➤ 작을수록 소프트마진(오류 허용)

2. 핵심 요소 - 커널(Kernel) (1/3)

✓ 커널 (Kernel)

2. 핵심 요소 - 커널(Kernel) (2/3)

✓ 커널 함수 종류

- > 동차다항식(Homogeneous polynomial)
 - 수식: $k(x_i, x_j) = (x_i \cdot x_j)^d$
- ➤ 다항식 커널(Polynomial kernel)
 - $\uparrow \dashv : k(x_i, x_j) = (x_i \cdot x_j + 1)^d$
- ➤ 가우시안 방사 기저 함수(Gaussian radial basis function)
- ➤ 쌍곡탄젠트(Hyperbolic tangent)

2. 핵심 요소 - 커널(Kernel) (3/3)

✓ 적용 파라미터 : kernel, Gamma

> kernel

커널 종류를 선택

- 동차다항식 : linear

- 다항식커널 : poly

- 가우시안 방사 기저 함수 : rbf

- 쌍곡탄젠트 : sigmoid

• linear 이외의 커널은 Gamma값이 필요

> Gamma

- 학습 데이터 민감 반응 정도 설정
- 값이 높을 경우
 - 학습 데이터에 많이 의존
 - 결정 경계가 곡선의 형태
 - 과적합(Overfitting) 발생 가능
- 값이 낮은 경우
 - 학습 데이터에 많이 의존하지 않음
 - 결정 경계가 직선의 형태
 - 과소적합(Underfitting) 발생 가능

2. 핵심 요소 - C와 Gamma 이해 (1/1)

- ✓ C & Gamma
 - > C
 - 클수록 하드마진
 - 작을수록 소프트마진
 - > Gamma
 - 클수록 데이터 의존
 - 작을수록 데이터 의존 적음

3. 구현 내용

- ✓ Case1) LinearSVC
 - > confusion matrix : 정확도 278개
 - ▶ 정확도 결과값: 0.8104956268221575

- ✓ Case2) SVC
 - ➤ GridSearch 결과
 - 최적 : C = 1, kernel = 'rbf', gamma = 0.5
 - ➤ confusion matrix : 정확도 310개
 - ▶ 정확도 결과값: 0.9037900874635568

26

Data tell truth.

04 Conclusion(결론)

- 1. 타 모델 비교
- 2. 향후 과제

1. 타 모델 비교

✓ 적용모델

- SVM(Support Vector Machine)
- Decision Tree
- ➤ KNN(K-Near Neighbors)
- > Random Forest
- > XGBoost

✓ 결과

	Accuracy	F1 Score
KNeighborsClassifier	0.877729	0.860344
DecisionTreeClassifier	0.877729	0.875850
XGBoost	0.899563	0.893534
SupportVectorClassifier	0.903930	0.895094
Random Forest Classifier	0.903930	0.897186

2. 향후 과제

- ✔ PCA(주성분분석)
 - ▶ 주성분분석을 통해 주성분을 추출하여 분류 및 예측 진행

- ✓ 타모델 학습
 - ➤ Random Forest, XGBoost 등의 방법론에 대한 연구

