## Álgebras Booleanas finitas

#### Gustavo Zambonin



Universidade Federal de Santa Catarina Departamento de Informática e Estatística INE5601 — Fundamentos Matemáticos da Informática

gustavo.zambonin@posgrad.ufsc.br

- Reticulados
  - Poset onde qualquer par de elementos tem supremo e ínfimo
  - ► Representado também como estrutura algébrica

- Reticulados
  - Poset onde qualquer par de elementos tem supremo e ínfimo
  - Representado também como estrutura algébrica
- Isomorfismo entre reticulados
  - Função bijetora que mapeia elementos entre dois reticulados

- Reticulados
  - Poset onde qualquer par de elementos tem supremo e ínfimo
  - Representado também como estrutura algébrica
- Isomorfismo entre reticulados
  - Função bijetora que mapeia elementos entre dois reticulados
- ► Tipos de reticulados
  - ► Limitado, complementado, distributivo

- Reticulados
  - Poset onde qualquer par de elementos tem supremo e ínfimo
  - Representado também como estrutura algébrica
- Isomorfismo entre reticulados
  - Função bijetora que mapeia elementos entre dois reticulados
- ► Tipos de reticulados
  - Limitado, complementado, distributivo
  - Mapa de reticulados

► Cálculo proposicional pode ser demonstrado logicamente equivalente a uma expressão Booleana

- Cálculo proposicional pode ser demonstrado logicamente equivalente a uma expressão Booleana
- Modelagem de circuitos em engenharia elétrica, para representar estados de alta e baixa tensão
  - Criação de portas lógicas (AND, OR, NAND, NOR, XOR, XNOR)

- Cálculo proposicional pode ser demonstrado logicamente equivalente a uma expressão Booleana
- Modelagem de circuitos em engenharia elétrica, para representar estados de alta e baixa tensão
  - Criação de portas lógicas (AND, OR, NAND, NOR, XOR, XNOR)
- Construção de caixas de substituição em criptografia simétrica, com funções Booleanas

- Cálculo proposicional pode ser demonstrado logicamente equivalente a uma expressão Booleana
- Modelagem de circuitos em engenharia elétrica, para representar estados de alta e baixa tensão
  - Criação de portas lógicas (AND, OR, NAND, NOR, XOR, XNOR)
- Construção de caixas de substituição em criptografia simétrica, com funções Booleanas
- ldeia geral: formalismo para descrever operações lógicas

#### Reticulados de conjuntos sob inclusão

- ▶ Considere um *poset*  $(\mathcal{P}(S), \subseteq)$ , onde S é finito
  - $orall \ orall \ t_1, t_2 \in \mathcal{P}(\mathcal{S}), \ \inf(\{t_1, t_2\}) = t_1 \cap t_2, \quad \sup(\{t_1, t_2\}) = t_1 \cup t_2$

## Reticulados de conjuntos sob inclusão

- ▶ Considere um *poset* ( $\mathcal{P}(S)$ ,  $\subseteq$ ), onde S é finito
  - $orall \ orall \ t_1, t_2 \in \mathcal{P}(\mathcal{S}), \ \inf(\{t_1, t_2\}) = t_1 \cap t_2, \quad \sup(\{t_1, t_2\}) = t_1 \cup t_2$
- ► Tome  $S_1 = \{x_1, ..., x_n\}, S_2 = \{y_1, ..., y_n\}$ 
  - Existe um isomorfismo f que mapeia  $x_i \rightarrow y_i, i \in \{1, ..., n\}$
  - Para quaisquer subconjuntos  $A, B \subseteq S$ , então  $A \subseteq B \Leftrightarrow f(A) \subseteq f(B)$

## Reticulados de conjuntos sob inclusão

- ▶ Considere um *poset* ( $\mathcal{P}(S)$ ,  $\subseteq$ ), onde S é finito
  - $orall \ orall \ t_1, t_2 \in \mathcal{P}(\mathcal{S}), \ \inf(\{t_1, t_2\}) = t_1 \cap t_2, \quad \sup(\{t_1, t_2\}) = t_1 \cup t_2$
- ► Tome  $S_1 = \{x_1, ..., x_n\}, S_2 = \{y_1, ..., y_n\}$ 
  - Existe um isomorfismo f que mapeia  $x_i \rightarrow y_i, i \in \{1, ..., n\}$
  - Para quaisquer subconjuntos  $A, B \subseteq S$ , então  $A \subseteq B \Leftrightarrow f(A) \subseteq f(B)$
- ▶ Então,  $(\mathcal{P}(S_1), \subseteq)$  e  $(\mathcal{P}(S_2), \subseteq)$  são isomórficos

#### Exemplo

#### Isomorfismo entre reticulados



▶ Seja  $S_1 = \{2, 3, 5\}, S_2 = \{x, y, z\}$ , então n = 3

#### Exemplo

#### Isomorfismo entre reticulados



- ► Seja  $S_1 = \{2, 3, 5\}, S_2 = \{x, y, z\}$ , então n = 3
- ▶  $f: S_1 \to S_2$  $f(\emptyset) = \emptyset, \ f(\{2\}) = \{x\}, \ f(\{3\}) = \{y\}, \ \dots$

# Reticulado $(\mathcal{P}(S),\subseteq)$ genérico

- ▶ Portanto,  $(\mathcal{P}(S), \subseteq)$  independe de S
- ightharpoonup Reticulado determinado apenas por n = |S|
  - O número de elementos do reticulado sempre será da forma  $|\mathcal{P}(S)| = 2^n$

# Reticulado $(\mathcal{P}(S),\subseteq)$ genérico

- ▶ Portanto,  $(\mathcal{P}(S), \subseteq)$  independe de S
- ightharpoonup Reticulado determinado apenas por n = |S|
  - O número de elementos do reticulado sempre será da forma  $|\mathcal{P}(S)| = 2^n$
- ► É possível construir um reticulado genérico, composto de *n*-tuplas de 0 e 1, chamado *B<sub>n</sub>* 
  - 0 denota a ausência do elemento no subconjunto, e 1 a presença

► Tome  $x = x_1x_2...x_n, y = y_1y_2...y_n \in B_n$  quaisquer

- ► Tome  $x = x_1x_2...x_n, y = y_1y_2...y_n \in B_n$  quaisquer
  - Ordenação "lexicográfica":

$$x \preccurlyeq y \Leftrightarrow a_k \preccurlyeq b_k, k \in \{1, \ldots, n\}$$

- ► Tome  $x = x_1x_2...x_n, y = y_1y_2...y_n \in B_n$  quaisquer
  - Ordenação "lexicográfica":

$$x \leq y \Leftrightarrow a_k \leq b_k, k \in \{1, \ldots, n\}$$

$$\triangleright x \wedge y = s_1 s_2 \dots s_n, \quad s_k = \min(a_k, b_k)$$

- ► Tome  $x = x_1 x_2 \dots x_n, y = y_1 y_2 \dots y_n \in B_n$  quaisquer
  - Ordenação "lexicográfica":

$$x \leq y \Leftrightarrow a_k \leq b_k, k \in \{1, \ldots, n\}$$

- $ightharpoonup x \wedge y = s_1 s_2 \dots s_n, \quad s_k = \min(a_k, b_k)$
- $ightharpoonup x \lor y = z_1 z_2 \dots z_n, \quad z_k = \max(a_k, b_k)$

- ► Tome  $x = x_1x_2...x_n, y = y_1y_2...y_n \in B_n$  quaisquer
  - Ordenação "lexicográfica":

$$x \leq y \Leftrightarrow a_k \leq b_k, k \in \{1, \ldots, n\}$$

- $ightharpoonup x \wedge y = s_1 s_2 \dots s_n, \quad s_k = \min(a_k, b_k)$
- $ightharpoonup x \lor y = z_1 z_2 \dots z_n, \quad z_k = \max(a_k, b_k)$
- ▶ Complemento: se  $z_k = 1, z'_k = 0$  e vice-versa

- ► Tome  $x = x_1 x_2 \dots x_n, y = y_1 y_2 \dots y_n \in B_n$  quaisquer
  - Ordenação "lexicográfica":

$$x \leq y \Leftrightarrow a_k \leq b_k, k \in \{1, \ldots, n\}$$

- $\triangleright$   $x \lor y = z_1 z_2 \dots z_n, \quad z_k = \max(a_k, b_k)$
- ▶ Complemento: se  $z_k = 1, z'_k = 0$  e vice-versa
- ▶ Note que  $(B_n, \preccurlyeq)$  é isomórfico a  $(\mathcal{P}(S), \subseteq)$

- Então, existe uma correspondência entre reticulados sob conjuntos e  $B_n$ , da seguinte forma
- ▶ Para quaisquer subconjuntos  $A, B \in \mathcal{P}(S)$

- Então, existe uma correspondência entre reticulados sob conjuntos e  $B_n$ , da seguinte forma
- ▶ Para quaisquer subconjuntos  $A, B \in \mathcal{P}(S)$ 
  - $\triangleright$   $x \leq y \Leftrightarrow A \subseteq B$

- Então, existe uma correspondência entre reticulados sob conjuntos e  $B_n$ , da seguinte forma
- ▶ Para quaisquer subconjuntos  $A, B \in \mathcal{P}(S)$ 
  - $\triangleright$   $x \leq y \Leftrightarrow A \subseteq B$
  - $\triangleright$   $x \land y \Leftrightarrow A \cap B$

- Então, existe uma correspondência entre reticulados sob conjuntos e  $B_n$ , da seguinte forma
- ▶ Para quaisquer subconjuntos  $A, B \in \mathcal{P}(S)$ 
  - $\triangleright$   $x \leq y \Leftrightarrow A \subseteq B$
  - $\triangleright$   $x \land y \Leftrightarrow A \cap B$
  - $\triangleright$   $x \lor y \Leftrightarrow A \cup B$

- Então, existe uma correspondência entre reticulados sob conjuntos e  $B_n$ , da seguinte forma
- ▶ Para quaisquer subconjuntos  $A, B \in \mathcal{P}(S)$ 
  - $\triangleright$   $x \leq y \Leftrightarrow A \subseteq B$
  - $\triangleright$   $x \land y \Leftrightarrow A \cap B$
  - $\triangleright$   $x \lor y \Leftrightarrow A \cup B$
  - $ightharpoonup x' \Leftrightarrow \overline{A}$

# Álgebras Booleanas finitas

- Um reticulado complementado distributivo é chamado de álgebra Booleana
- De maneira equivalente, um reticulado finito isomórfico a B<sub>n</sub> é uma álgebra Booleana
- Note que é possível representar quaisquer reticulados  $(\mathcal{P}(S),\subseteq)$  como  $\mathcal{B}_{|S|}$ 
  - ightharpoonup Ou seja, todo reticulado isomórfico a  $(\mathcal{P}(S),\subseteq)$  também é uma álgebra Booleana

## Exemplo

#### Álgebras Booleanas finitas



- $\blacktriangleright$  Álgebras Booleanas mais simples:  $B_0, B_1, B_2, B_3$
- Número de elementos:  $2^0 = 1, 2^1 = 2, 2^2 = 4, 2^3 = 8$

▶ Reticulados que não são da forma  $(\mathcal{P}(S), \subseteq)$  também podem ser álgebras Booleanas

- ▶ Reticulados que não são da forma  $(\mathcal{P}(S), \subseteq)$  também podem ser álgebras Booleanas
- ► Considere o reticulado  $D_n$ , onde S é composto pelos divisores de n e a relação parcial é de divisibilidade
  - $D_{30} = (\{1, 2, 3, 5, 6, 10, 15, 30\}, |)$

- ▶ Reticulados que não são da forma  $(\mathcal{P}(S), \subseteq)$  também podem ser álgebras Booleanas
- ► Considere o reticulado  $D_n$ , onde S é composto pelos divisores de n e a relação parcial é de divisibilidade
  - $D_{30} = (\{1, 2, 3, 5, 6, 10, 15, 30\}, |)$
- ▶ Observe que  $D_{30}$  é isomórfico a  $B_3$

- ▶ Reticulados que não são da forma  $(\mathcal{P}(S), \subseteq)$  também podem ser álgebras Booleanas
- ► Considere o reticulado  $D_n$ , onde S é composto pelos divisores de n e a relação parcial é de divisibilidade
  - $D_{30} = (\{1, 2, 3, 5, 6, 10, 15, 30\}, |)$
- ▶ Observe que  $D_{30}$  é isomórfico a  $B_3$ 
  - f(1) = 000, f(2) = 100, f(3) = 010, f(5) = 001, f(6) = 110, f(10) = 101, f(15) = 011, f(30) = 111

## Determinação de álgebras Booleanas

► Todo reticulado que não tenha 2<sup>n</sup> elementos não pode ser uma álgebra Booleana

#### Determinação de álgebras Booleanas

- ► Todo reticulado que não tenha 2<sup>n</sup> elementos não pode ser uma álgebra Booleana
- ▶ Um reticulado com 2<sup>n</sup> elementos é uma condição necessária, mas não suficiente

## Determinação de álgebras Booleanas

- ▶ Todo reticulado que não tenha 2<sup>n</sup> elementos não pode ser uma álgebra Booleana
- ► Um reticulado com 2<sup>n</sup> elementos é uma condição necessária, mas não suficiente
  - É necessário demonstrar o isomorfismo com  $B_n$  ou  $(\mathcal{P}(S),\subseteq)$
  - Comparar o diagrama de Hasse é possível para conjuntos pequenos

► Todo reticulado não limitado não será álgebra Booleana

- ► Todo reticulado não limitado não será álgebra Booleana
- ► Todo elemento deverá ter um único complemento

- ► Todo reticulado não limitado não será álgebra Booleana
- ► Todo elemento deverá ter um único complemento
- O reticulado  $D_p$ , onde  $p = p_1 \times p_2 \times \cdots \times p_k$ , com  $p_1 \neq p_2 \neq \cdots \neq p_k$ , é álgebra Booleana?
  - ▶  $S = (\{p_1, ..., p_k\})$ , então  $D_p = (S, |)$

- ► Todo reticulado não limitado não será álgebra Booleana
- ► Todo elemento deverá ter um único complemento
- O reticulado  $D_p$ , onde  $p = p_1 \times p_2 \times \cdots \times p_k$ , com  $p_1 \neq p_2 \neq \cdots \neq p_k$ , é álgebra Booleana?
  - ▶  $S = (\{p_1, ..., p_k\})$ , então  $D_p = (S, |)$
  - Note que existe um isomorfismo f, de modo que  $\forall T \in \mathcal{P}(S), \ f(T) = t_1 \dots t_k$

- ► Todo reticulado não limitado não será álgebra Booleana
- ► Todo elemento deverá ter um único complemento
- O reticulado  $D_p$ , onde  $p = p_1 \times p_2 \times \cdots \times p_k$ , com  $p_1 \neq p_2 \neq \cdots \neq p_k$ , é álgebra Booleana?
  - ▶  $S = (\{p_1, ..., p_k\})$ , então  $D_p = (S, |)$
  - Note que existe um isomorfismo f, de modo que  $\forall T \in \mathcal{P}(S), \ f(T) = t_1 \dots t_k$
  - ▶ Portanto, *D<sub>p</sub>* é uma álgebra Booleana

- lacksquare Defina uma álgebra Booleana como  $(S,\lor,\land,\lnot,\bot,\top)$ 
  - Ou seja, um conjunto finito S, operações binárias de junção e encontro, operação unária de complemento, elementos mínimo e máximo

- ▶ Defina uma álgebra Booleana como  $(S, \lor, \land, \neg, \bot, \top)$ 
  - Ou seja, um conjunto finito S, operações binárias de junção e encontro, operação unária de complemento, elementos mínimo e máximo
- Então, as leis abaixo são verdade
  - Associatividade, comutatividade, absorção, identidade, distributividade, complementação

- ▶ Defina uma álgebra Booleana como  $(S, \lor, \land, \neg, \bot, \top)$ 
  - Ou seja, um conjunto finito S, operações binárias de junção e encontro, operação unária de complemento, elementos mínimo e máximo
- Então, as leis abaixo são verdade
  - Associatividade, comutatividade, absorção, identidade, distributividade, complementação
- Note que estes axiomas são derivados das definições de reticulado limitado, distributivo e complementado

- Outras três propriedades podem ser derivadas
- ▶ Para elementos quaisquer x, y de uma álgebra Booleana

- Outras três propriedades podem ser derivadas
- ightharpoonup Para elementos quaisquer x, y de uma álgebra Booleana
  - $ightharpoonup \neg(\neg x) = x$  (lei da involução)

- Outras três propriedades podem ser derivadas
- ightharpoonup Para elementos quaisquer x, y de uma álgebra Booleana
  - $\neg (\neg x) = x$  (lei da involução)
  - ▶  $\neg(x \land y) = \neg x \lor \neg y$  (lei de De Morgan I)
  - ▶  $\neg(x \lor y) = \neg x \land \neg y$  (lei de De Morgan II)

- Outras três propriedades podem ser derivadas
- ightharpoonup Para elementos quaisquer x, y de uma álgebra Booleana
  - $\neg (\neg x) = x$  (lei da involução)
  - ▶  $\neg(x \land y) = \neg x \lor \neg y$  (lei de De Morgan I)
  - ▶  $\neg(x \lor y) = \neg x \land \neg y$  (lei de De Morgan II)
- Assim como em conjuntos, pois para S qualquer e  $A, B \subseteq S$  quaisquer

#### Material de estudo

- Kolman, B., Busby, R., and Ross, S. (1999). Discrete Mathematical Structures. 4th edition.
- Rosen, K. H. (2011).

  Discrete Mathematics and Its Applications.
  7th edition.
  - ➤ Kolman: leitura das páginas 217-223 (especialmente p. 222) e resolução dos exercícios 1-21
  - ► Rosen: leitura das páginas 811-817 e resolução dos exercícios 1-4, 24-28