IRSwap 설명서

- 이 모델은 이자율 스왑의 현재 Swap Rate 또는 기존 Swap 가치를 계산하는 모델입니다.
 - 1. 자신의 엑셀 bit수 확인

파일>계정>엑셀정보

- 2. Alt + F11로 VBA창 키기
- 3. VBA 모듈 들어가서 다음 순서에 따라 dll의 디렉토리 바꾸기 (현재 dll이 설치되어있는 디렉토리로 바꾸기)

또한 엑셀이 64bit일 경우 Declare Function -> Declare PtrSafe Function으로 선언해야함 3-1. 비트에 따라 dll의 디렉토리 복사하기

저장하기

4. 발행정보 및 파라미터 입력하기 (Receive Leg, Payment Leg)

참조 금리가 Libor, CD 형태인지 SOFR 형태인지 선택 가능합니다. (참조 금리가 Swap 금리인 것도 가능합니다.)

SOFR의 경우 공휴일을 입력 가능합니다.

5. 가격계산 매크로 실행

IRSwap 함수 및 구조체 매핑정의

IRSwap_Excel: 스왑 Rate 및 가치 계산함수

double* PayDisc_Rate,

```
DLLEXPORT(long) IRSwap_Excel(
                               // PricingDate ExcelType
    long PriceDate_Exl,
                               // Greek산출 Flag
    long GreekFlag,
    long NAFlag,
                               // Notional Amount 사용 Flag
    long* CRS_Flag,
                               // [0]CRS Pricing Flag [1]FX선도 Term 개수
    double* CRS_Info,
                               // [0~N-1] FX Forward Term, [N-1~2*N-1] FX Forward
                               // Rcv 기초금리 0: Libor/CD 1: Swap 2: SOFR 3:SOFR Swap
    long Rcv RefRateType.
    long Rcv_SwapYearlyNPayment, // Rcv_RefRateType가 1, 3일 때 스왑 연 지급회수
    double Rcv SwapMaturity.
                               // Rcv RefRateType가 1, 3일 때 스왑만기
                               // Rcv Fix/Flo Flag
    long Rcv_FixFloFlag,
                               // Rcv DayCountConvention 0:Act365 1: Act360
    long Rcv_DayCount,
    double Rcv_NotionalAMT,
                               // Rcv Leg Notional Amount
    long Rcv_NotionalPayDate,
                               // Rcv Leg Notional Payment Date
                               // Rcv Leg 할인 금리 Term 개수
    long RcvDisc_NTerm,
    double* RcvDisc_Term,
                               // Rcv Leg 할인 금리 Term Array
    double* RcvDisc_Rate,
                               // Rcv Leg 할인 금리 Rate Array
    long RcvRef_NTerm,
                               // Rcv Leg 레퍼런스 금리 Term 개수
                               // Rcv Leg 레퍼런스 금리 Term Array
    double* RcvRef_Term,
    double* RcvRef_Rate,
                               // Rcv Leg 레퍼런스 금리 Rate Array
    long NRcvCF.
                               // Rcv Leg CashFlow 개수
    long* RcvCashFlowSchedule,
                               // Rcv Forward Start, End, 기산, 기말, 지급일 ExIDate
    double* Rcv_Slope,
                               // Rcv Leg 변동금리 기울기 Array
    double* Rcv_CPN,
                               // Rcv Leg 고정쿠폰 Array
    double* Rcv_FixedRefRate,
                               // Rcv Leg 과거 확정금리 Array
    long Pay_RefRateType,
                               // Pay 기초금리 0: Libor/CD 1: Swap 2: SOFR 3:SOFR Swap
    long Pay_SwapYearlyNPayment, // Pay_RefRateType가 1, 3일 때 스왑 연 지급회수
    double Pay_SwapMaturity,
                               // Pay_RefRateType가 1, 3일 때 스왑만기
    long Pay_FixFloFlag,
                               // Pay Fix/Flo Flag
    long Pay_DayCount,
                               // Pay DayCountConvention 0:Act365 1: Act360
    double Pay_NotionalAMT,
                               // Pay Leg Notional Amount
    long Pay_NotionalPayDate,
                               // Pay Leg Notional Payment Date
    long PayDisc_NTerm,
                               // Pay Leg 할인 금리 Term 개수
                               // Pay Leg 할인 금리 Term Array
    double* PayDisc Term.
```

// Pay Leg 할인 금리 Rate Array

```
// Pay Leg 레퍼런스 금리 Term 개수
long PayRef_NTerm,
                           // Pay Leg 레퍼런스 금리 Term Array
double* PayRef_Term,
double* PayRef Rate.
                           // Pay Leg 할인 금리 Rate Array
                            // Pay Leg CashFlow 개수
long NPayCF,
                           // Pay Forward Start, End, 기산, 기말, 지급일 ExIDate
long* PayCashFlowSchedule,
double* Pay_Slope,
                           // Pay Leg 변동금리 기울기 Array
double* Pay_CPN,
                           // Pay Leg 고정쿠폰 Array
double* Pay_FixedRefRate,
                           // Pay Leg 과거 확정금리 Array
double* ResultPrice,
                           // Out [0] Current Swap Rate [1] Rcv Value [2] Pay Value
double* ResultRefRate.
                           // Out 기초금리 Array
double* ResultCPN,
                           // Out 추정 쿠폰 Array
                           // Out Discount Factor Array
double* ResultDF,
double* PV01,
                           // Out PV01[0~2]Rcv Disc, Ref, both[3~5]Pay Disc, Ref, both
double* KeyRateRcvPV01,
                           // Output Rcv Key Rate PV01 .rehaped(-1)
double* KeyRatePayPV01,
                            // Output Pay KeyRate PV01 .reshaped(-1)
                            // [0~5] Rcv LockOut LookBackFlag Pay LockOut LookBackFlag
long* SOFRConv,
long* HolidayCalcFlag,
                            // Holiday관련 인풋 Flag [0]: Rcv [1]: Pay
long* NHolidays.
                           // Holiday 개수 [0] NRcvRef [1] NPayRef
long* Holidays,,
                           // Holiday Exceltype
long* NHistory,
                           // OverNight History 개수
                           // OverNight History ExIDate
long* HistoryDateExl,
                           // OverNight Rate History
double* HistoryRate
);
```

SCHD(schd_info): 스케줄 관련 정보

```
typedef struct schd_info {
long PriceDate_C;
                     // PricingDate CType
long ReferenceType;
                     // Reference Rate type
long FixedFlotype;
                     // Fix or Flo Flag 0:Fix 1: Flo
long DayCount;
                     // DayCountConvention 0:365 1:365
double NotionalAmount;
                     // Notional Amount
                     // Notional 지급여부
long NAFlag;
long RefSwapFlag;
                     // 레퍼런스금리가 스왑금리인지여부
                     // 레퍼런스금리가 스왑금리라면 연 쿠폰지급 수
long NSwapPayAnnual;
double RefSwapMaturity;
                     // 레퍼런스 금리가 스왑금리라면 만기
long NCF;
                      // 현금흐름개수
                      // 금리추정시작일
long* ForwardStart_C;
long* ForwardEnd_C;
                     // 금리추정종료일
long* StartDate_C;
                     // Fraction 시작일(기산일)
long* EndDate_C;
                     // Fraction 종료일(기말일)
long* PayDate_C;
                     // 지급일
long NotionalPayDate_C; // 액면금액 지급일
long* Days_ForwardStart; // 평가일 to 추정시작일
long* Days_ForwardEnd; // 평가일 to 추정종료일
```

```
long* Days_StartDate; // 평가일 to 기산일
long* Days_EndDate;// 평가일 to 기말일long* Days_PayDate;// 평가일 to 지급일
long HolidayFlag_Ref; // 기초금리 Holiday Calc Flag
long NHolidays_Ref;
                              // 기초금리 Holiday 개수
long* Days_Holidays_Ref;
                              // 기초금리 평가일 to Holiday
double* FixedRefRate;
                                // 과거 확정금리 데이터
                                // 기초금리에 대한 페이오프 기울기
double* Slope;
double* CPN;
                               // 쿠폰이자율
long Days_Notional; // 평가일 to Notional 지급일
long LockOutRef; // LockOut 날짜 N영업일
long LookBackRef; // LookBack 날짜
long ObservationShift; // Observation Shift 할
                           // LookBack 날짜
// Observation Shift 할 지여부
                            // 주말개수(길이 = NCF)
long *NWeekendDate;
                               // 주말 Array 리스트
long** WeekendList;
                          // 오버나이트 히스토리 개수
// 오버나이트 히스토리 상대날짜
// 오버나이트 크고 하다
long NRefHistory;
long* RefHistoryDate;
double* RefHistory;
                               // 오버나이트 금리 히스토리
} SCHD;
```

기타함수:

```
double FSR: Forward Swap Rate 계산

double Calc_Current_IRS: 현재 IRS 또는 CRS Rate 계산

double SOFR_Forward_Compound: T0~T1 SOFR 금리 추정

double Calc_Current_SOFR_Swap: 현재 SOFR Swap Rate 계산

double Calc Forward SOFR Swap: SOFR Forward Swap Rate 계산
```

IRSwap 평가로직

1. Floating Leg

$$ForwardRate(T_0, T_1) = \frac{1}{Fraction(T_0, T_1)} \times \left(\frac{DF(T_0)}{DF(T_1)} - 1\right)$$

 $ForwardValue\big(T_0,T_1,T_{Pay}^{\mathit{Flo}}\big) = ForwardRate(T_0,T_1) \times DF\big(T_{Pay}^{\mathit{Flo}}\big)$

FloatingValue =
$$\sum_{i=1}^{N} ForwardValue(T_{i-1}, T_i, T_{Pay(i)}^{Flo})$$

2. Fixed Leg

FixedValue =
$$\sum_{i=1}^{N} Fraction(T_{i-1}, T_i) \times S \times DF(T_{Pay}^{Fix})$$

3. Swap Rate

$$\textbf{Current Swap Rate} = \frac{\sum_{i=1}^{N} ForwardValue\big(T_{i-1}, T_{i}, T_{Pay(i)}^{Flo}\big)}{\sum_{i=1}^{N} Fraction(T_{i-1}, T_{i}) \times DF\big(T_{Pay}^{Fix}\big)}$$