Fast Iterative Graph Computation with Block Updates

Wenlei Xie*, Guozhang Wang+, David Bindel*, Alan Demers* and Johannes Gehrke*

*Cornell University, +LinkedIn

Multicore Speedup for Graph Applications

Belief Propagation

PageRank

Computation Load: Heavy vs. Light

Vertex vs. Block Update

Block-Oriented Computation

- Block Formulation
- Block: Closely connected subgraph
- Graph is pre-partitioned into disjoint blocks
- -Efficient software: (e.g. METIS)
- Block Update Function
 - $S_B^{\text{new}} = \mathsf{BlockUpdate}(S_B^{\text{old}}, S_{NV(B)}, S_{NE(B)}),$
 - Naturally extends the vertex update function

Two-Level Scheduling

- Define block update as iteratively applying vertex update
 - -BlockUpdate = VertexUpdate × InnerScheduler
 - -Block-Level Scheduler
- Benefits
 - Better Cache Utilization
 - Reduced Scheduling Overhead

Example: Shortest Path

Datasets and Applications

Data Set	Vertices	Edges	Partition	Application
	$ imes 10^3$	$ imes 10^3$	Time (s)	
DBLP	968	7,050	38	PPR
Web-Google	876	5,105	34	PPR
LiveJournal	4,848	68,994	659	SSSP
3D Grid	1,728	9,858	N/A	Etch Sim
UK02	18,520	298,114	1034	PPR

Microbenchmark: Cache Performance

Scheduler	Time	# Updates	# LLC Misses
Non Cache-Aware	9.52	34,152,807	197,500,000
Cache-Aware	5.15	34,152,807	37,500,000

Experimental Results

