Is Sharing Caring?

Elucidating the Effects of the Presence of CRISPR-Cas Systems on Rates of Horizontal Gene Transfer Using Network Analysis

Siddharth Reed Biology Undergraduate Symposium

> Golding Lab, Biology Department, McMaster University

April 10, 2019

Networks

 Useful mathematical abstraction of real world system

- abstraction of real world system
- Nodes represent objects

Useful mathematical

- Useful mathematical abstraction of real world system
- Nodes represent objects
- Edges represent relationshisps

- Useful mathematical abstraction of real world system
- Nodes represent objects
- Edges represent relationshisps
- Nodes and edges can have attributes

- Useful mathematical abstraction of real world system
- Nodes represent objects
- Edges represent relationshisps
- Nodes and edges can have attributes
- Nodes are OTUs, edges are inferred HGT rates

Horizontal Gene Transfer

 Transformation: Incorporation of free-floating DNA into the genome (Popa and Dagan, 2011)

- Transformation: Incorporation of free-floating DNA into the genome (Popa and Dagan, 2011)
- Conjugation: Transfer of DNA through cell-cell connections (Popa and Dagan, 2011)

(Popa and Dagan, 2011)

- Transformation: Incorporation of free-floating DNA into the genome (Popa and Dagan, 2011)
- Conjugation: Transfer of DNA through cell-cell connections (Popa and Dagan, 2011)
- Transduction: Transfer of DNA through phage (Popa and Dagan, 2011)

CRISPR-Cas systems

 Adaptive Bacterial Immune System

(Rath et al., 2015)

- Adaptive Bacterial Immune System
- Failed "infection" → spacer acquisition → targeted degredation for next "infection"

(Rath et al., 2015)

- Adaptive Bacterial Immune System
- Failed "infection" → spacer acquisition → targeted degredation for next "infection"
- Protects against foreign DNA

(Rath et al., 2015)

- Adaptive Bacterial Immune System
- Failed "infection" → spacer acquisition → targeted degredation for next "infection"
- Protects against foreign DNA
- Requires Cas proteins and CRISPR loci

(Rath et al., 2015)

- Adaptive Bacterial Immune System
- Failed "infection" → spacer acquisition → targeted degredation for next "infection"
- Protects against foreign DNA
- Requires Cas proteins and CRISPR loci
- 45% of bacteria have CRISPR loci (n = 6782) (Grissa, I. and Drevet, C. and Couvin, D., 2017)

(Rath et al., 2015)

Do CRISPR Systems Affect Horizontal Gene Transfer?

Yes

 Gophna et al. (2015) found no relation between the presence of CRISPR systems and HGT over short evolutionary timescales

- Gophna et al. (2015) found no relation between the presence of CRISPR systems and HGT over short evolutionary timescales
 - Assume all singletons arose from HGT

- Gophna et al. (2015) found no relation between the presence of CRISPR systems and HGT over short evolutionary timescales
 - Assume all singletons arose from HGT
 - Used GC% to identify HGT

- Gophna et al. (2015) found no relation between the presence of CRISPR systems and HGT over short evolutionary timescales
 - Assume all singletons arose from HGT
 - Used GC% to identify HGT
- Contradicted by a former undergraduate thesis student

- Gophna et al. (2015) found no relation between the presence of CRISPR systems and HGT over short evolutionary timescales
 - o Assume all singletons arose from HGT
 - Used GC% to identify HGT
- Contradicted by a former undergraduate thesis student
 - Can see inhibitory effects of CRIPSR on HGT over short evolutionary time scales

- Gophna et al. (2015) found no relation between the presence of CRISPR systems and HGT over short evolutionary timescales
 - Assume all singletons arose from HGT
 - Used GC% to identify HGT
- Contradicted by a former undergraduate thesis student
 - Can see inhibitory effects of CRIPSR on HGT over short evolutionary time scales
 - Higher gene indel rates for CRISPR containing OTUs than non-CRISPR containing outgroups

My Project

Objectives

Objectives

Within Network Comparisons

For genera with CRISPR containing OTUs, compare the node statistics of CRIPSR containing OTUs to non-CRISPR containing OTUs.

Objectives

Within Network Comparisons

For genera with CRISPR containing OTUs, compare the node statistics of CRIPSR containing OTUs to non-CRISPR containing OTUs.

Gene Indel Rates vs. Network Statistics

Compare gene Indel rates to node/network statistics for CRISPR containing and non-CRISPR containing OTUs

Workflow (Per Genus)

Workflow (Per Genus)

Workflow (Per Genus)

Results

Example "Consensus" Network

Mean Node Degree

Gene Indel Rates

Gene Indel Rates

Gene Indel Rate Vs. Fraction of CRISPR OTUs

Gene Indel Rate Vs. Fraction of CRISPR OTUs

Mean Node Weighted Clustering Coefficient

Conclusion

• Large variation in HGT rate between genera.

- Large variation in HGT rate between genera.
- CRISPR-Cas systems broadly associated with lower HGT rates, with prominent exceptions

- Large variation in HGT rate between genera.
- CRISPR-Cas systems broadly associated with lower HGT rates, with prominent exceptions
- Population level effects of CRISPR-Cas systems may decrease HGT rates

- Large variation in HGT rate between genera.
- CRISPR-Cas systems broadly associated with lower HGT rates, with prominent exceptions
- Population level effects of CRISPR-Cas systems may decrease HGT rates
- Interplay of CRISPR-Cas systems and HGT is complex and warrants further study

 Intergenic comparisons: Combine any set of fasta files from OTUs for analyzing transfer dynamics

- Intergenic comparisons: Combine any set of fasta files from OTUs for analyzing transfer dynamics
- **Inferring direction**: Directed networks more available analytic tools than undirected networks ones

- Intergenic comparisons: Combine any set of fasta files from OTUs for analyzing transfer dynamics
- **Inferring direction**: Directed networks more available analytic tools than undirected networks ones
- Continuous CRISPR activity: Labeling nodes by estimated CRISPR activity (array length, transciptomic data, etc.)

- Intergenic comparisons: Combine any set of fasta files from OTUs for analyzing transfer dynamics
- Inferring direction: Directed networks more available analytic tools than undirected networks ones
- Continuous CRISPR activity: Labeling nodes by estimated CRISPR activity (array length, transciptomic data, etc.)
- Considering bacterial ecology and environments: Consider geographically close OTUs or differences between networks due to environmental factors

- Intergenic comparisons: Combine any set of fasta files from OTUs for analyzing transfer dynamics
- Inferring direction: Directed networks more available analytic tools than undirected networks ones
- Continuous CRISPR activity: Labeling nodes by estimated CRISPR activity (array length, transciptomic data, etc.)
- Considering bacterial ecology and environments: Consider geographically close OTUs or differences between networks due to environmental factors
- Gene function analysis: Considering the transfer dynamics of different functional classes of genes

- Intergenic comparisons: Combine any set of fasta files from OTUs for analyzing transfer dynamics
- Inferring direction: Directed networks more available analytic tools than undirected networks ones
- Continuous CRISPR activity: Labeling nodes by estimated CRISPR activity (array length, transciptomic data, etc.)
- Considering bacterial ecology and environments: Consider geographically close OTUs or differences between networks due to environmental factors
- Gene function analysis: Considering the transfer dynamics of different functional classes of genes
- Studying movement of CRISPR systems: Studying how frequently CRISPR systems themselves are transferred from arrays, Cas genes

Is Sharing Caring?

Is Sharing Caring?

Yes, for researchers

Is Sharing Caring?

Yes, for researchers Jury's still out for bacteria

Thanks

Thank you to

- Dr. G. Brian Golding
- Dr. Ben Evans
- The Golding lab
 - Caitlin Simopoulos
 - Daniella Lato
 - Zachery Dickson
 - Sam Long
 - George Long
 - Lucy Zhang
 - Brianne Laverty
 - Nicole Zhang
- Everyone here for listening

All code used for this project is available at https://github.com/DJSiddharthVader/thesis_SidReed

Branch Partition Example

Network Sampling

CRISPR One Database Entry

CRISPRone report for GCA_000014485.1_ASM1448v1

Genus Size Distribution

Network Statistics

- Average Node Degree: $\frac{1}{|N_u|} \sum_{uv}^{N_u} w_{uv}$ where N_u is the set of nodes incident to u
- Node Clustering Coefficient: $\frac{1}{k_u(k_u-1)} \sum_{vw}^{T(u)} (\hat{w}_{uw} \hat{w}_{vw} \hat{w}_{uv})^{\frac{1}{3}}$ where T(u) is the set of triangles containing u (Onnela et al., 2005)
- Node Assortativity: $A = \frac{Tr(M) ||M^2||}{1 ||M^2||}$ Where M is the mixing matrix of a given attribute and ||M|| is the sum of all elements of M. $A \in [-1,1]$. (Newman, 2002)
- Network Modularity: $Q = \frac{1}{2m} \sum_{uv}^{W} [W_{uv} \frac{k_u k_v}{2m}] \delta(u, v)$ where m is the total weight of alledges, k_u is the degree of u and $\delta(u, v)$ is 1 if u and v both have or do not have CRISPR systems and 0 otherwise. $Q \in [-1, 1]$ (Newman, 2004)

Assortativity Distributions

Modularity Distributions

Sphingomonas Species Tree

CRISPR Cost Complexity and Curbing It (Expanded)

- Cost trade off factors:
 - Metabolic maintenance (Rath et al., 2015)
 - Off-target effects (autoimmune) (Stern et al., 2010)
 - Environmental pressures (Dzidic and Bedeković, 2003)
 - Phage virulence/density (Bondy-Denomy and Davidson, 2014)
 - Anti-CRISPR systems (Bondy-Denomy and Davidson, 2014)
 - Prophage abundance (Watson, Staals, and Fineran, 2018)

- Cost Reduction Strategies
 - Selective CRISPR inactivation (Rath et al., 2015)
 - CRISPRs themselves can be transferred ⇒ population level immunity (Godde and Bickerton, 2006)
 - CRISPR can enhance transduction-mediated HGT (Watson, Staals, and Fineran, 2018)

Rate Influencing Factors

- Amount of exogenous DNA/cell density/phage density
- Selective pressures
- Metabolic costs
- Sequence compatibility

Pan-Genomes

(Rasko et al., 2008)

HGT Applications

(Berglund, 2015)

Prokaryotic "Net of Life"

(Kunin et al., 2005)

Phylogenomic Network Construction

(Ravenhall et al., 2015)

Indel Rate Pair Plot

References (1)

- Bondy, J. A. and U. S. R. Murty (2002). *Graph theory with applications*. Wiley.
 - Popa, Ovidiu and Tal Dagan (2011). "Trends and barriers to lateral gene transfer in prokaryotes". In: *Current Opinion in Microbiology* 14.5. Antimicrobials/Genomics, pp. 615–623. ISSN: 1369-5274.
 - Grissa, I. and Drevet, C. and Couvin, D. (2017). *CRISPRdb*. http://crispr.i2bc.paris-saclay.fr/. Online; accessed 22 October 2018.
 - Rath, Devashish et al. (2015). "The CRISPR-Cas immune system: Biology, mechanisms and applications". In: *Biochimie* 117. Special Issue: Regulatory RNAs, pp. 119–128. ISSN: 0300-9084.
 - Onnela, J. P. et al. (2005). "Intensity and coherence of motifs in weighted complex networks". In: *Phys Rev E Stat Nonlin Soft Matter Phys* 71.6 Pt 2, p. 065103.

References (2)

- Newman, M. E. (2002). "Assortative mixing in networks". In: *Phys. Rev. Lett.* 89.20, p. 208701.
- (2004). "Analysis of weighted networks". In: *Phys Rev E Stat Nonlin Soft Matter Phys* 70.5 Pt 2, p. 056131.
- Stern, Adi et al. (2010). "Self-targeting by CRISPR: gene regulation or autoimmunity?" In: *Trends in Genetics* 26.8, pp. 335–340. ISSN: 0168-9525.
- Dzidic, Senka and Vladimir Bedeković (2003). "Horizontal gene transfer-emerging multidrug resistance in hospital bacteria". In: *Acta pharmacologica Sinica* 24.6, pp. 519–526.
- Bondy-Denomy, J. and A. R. Davidson (2014). "To Acquire Or Resist: The Complex Biological Effects Of CRISPR-Cas systems". In: *Trends Microbio.* 22.4, pp. 218–25.

References (3)

- Watson, Bridget N. J., Raymond H. J. Staals, and Peter C. Fineran (2018). "CRISPR-Cas-Mediated Phage Resistance Enhances Horizontal Gene Transfer by Transduction". In: *mBio* 9.1. Ed. by Joseph Bondy-Denomy and Michael S. Gilmore.
- Godde, James S. and Amanda Bickerton (June 2006). "The Repetitive DNA Elements Called CRISPRs and Their Associated Genes: Evidence of Horizontal Transfer Among Prokaryotes". In: *Journal of Molecular Evolution* 62.6, pp. 718–729. ISSN: 1432-1432.
- Guimaraes, L. C. et al. (2015). "Inside the Pan-genome Methods and Software Overview". In: *Curr. Genomics* 16.4, pp. 245–252.
- Rasko, David A. et al. (2008). "The Pangenome Structure of Escherichia coli: Comparative Genomic Analysis of E. coli Commensal and Pathogenic Isolates". In: *Journal of Bacteriology* 190.20, pp. 6881–6893. ISSN: 0021-9193.

References (4)

- Kunin, V. et al. (2005). "The net of life: reconstructing the microbial phylogenetic network". In: *Genome Res.* 15.7, pp. 954–959.
- Ravenhall, Matt et al. (May 2015). "Inferring Horizontal Gene Transfer". In: *PLoS Computational Biology* 11.5, pp. 1–16.