河海大学 2015~2016 学年第一学期 《实用数值分析》试题

考试对象: 15 级专业学位硕士研究生

班级	学号	姓名	成绩
一、填空	题(每题 3 分,共 30 分)	:	
1、近似数:	$x = 0.23$ 关于真值 $x^{\bullet} = 0.22$	945…有	位有效数字;
精确值。	$x^* = \frac{1}{6}$,它的近似值 $x = 0.1$	6666,则 <i>x</i> 有	位有效数字.
2、用二分剂	去求方程 $x^3 - \sin x + 2x - 1 =$	=0在区间[0,1]上的根	时,要使误差满足
$\left x_{k}-x^{*}\right $	$<\frac{1}{2} \times 10^{-5}$,那么至少要迭作	大次.	
3、己知矩阵		$\stackrel{1}{\mathbb{Z}}v_0=\left(1,1\right)^T$,用规范(化的幂法迭代 2 次,求得矩阵
A 的主特征	-	的特征向量为	(保留 4 位小数).
4、分别写日	出用下列迭代法求解方程 x^3 -	+10x - 20 = 0 根的迭化	代公式:
(1)牛顿剂	去	;	
(2)弦截剂	去		
5、已知: 2	$X = (1,-2)^T, A = \begin{pmatrix} 7 & -2 \\ -3 & 1 \end{pmatrix}$),则 $\ AX\ _{_{1}}=$, $\parallel A \parallel_{\scriptscriptstyle \infty} =$
			计算 $\int_{1}^{3} f(x)dx \approx$,
用辛普生公	式计算 $\int_{1}^{3} f(x)dx \approx$	(保留 4 位小数)
7、已知 <i>f</i> (.	$(x) = 3x^6 + 2x - 1$,则差商 f	$[2^0, 2^1] = $	$f[2^0, 2^1, \dots, 2^6] = \underline{\qquad}$

8、用改进欧拉(Euler)法解初值问题 $\begin{cases} y'=y^2 \\ y\big|_{x=0}=1 \end{cases}$,取步长 h=0.1,

则 $y_1 =$ ______ (要求取到小数后第 4 位).

9、在C[-1,1]上定义内积 $(f,g) = \int_{-1}^{1} f(x)g(x)dx$, 设 $f(x) = ax^2 + bx + 1$,与1,x都正交,

10、牛顿一柯特斯 (Newton-Cotes) 数值求积公式

$$\int_a^b f(x)dx \approx (b-a)\sum_{i=0}^n C_i^{(n)}f(x_i)$$

当n为奇数时,至少具有____次代数精度;当n为偶数时,至少具有____次代数精度.

二、解答下列各题(共70分):

11、(10分)给定数据表:

- (1) 构造差商表;
- (2) 求 f(x) 的三次牛顿插值多项式;
- (3) 应用所求的牛顿插值多项式求 f(-1/2) 的近似值(取小数点后四位).

12、(10 分) 已知方程组
$$Ax = b$$
,其中 $A = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 2 & 4 & 3 \\ 0 & 1 & 0 & 3 \end{pmatrix}$, $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$, $b = \begin{pmatrix} 5 \\ 3 \\ 17 \\ 7 \end{pmatrix}$,

- (1)求矩阵 A 的 Doolittle 分解,即分解成 A = LU 的形式,其中 L 为单位下三角矩阵,U 为上三角矩阵;
- (2)利用上述分解求解方程组 Ax = b.

13、(10 分) 对于方程组
$$\begin{cases} 3x_1 + 2x_2 + 10x_3 = 15 \\ 10x_1 - 4x_2 - x_3 = 5 \\ 2x_1 + 10x_2 - 4x_3 = 8 \end{cases}$$

通过适当调整,试建立收敛的雅可比迭代公式和高斯一塞德尔迭代公式,并说明收敛的理由.

14、(10分)已知下列实验数据:

X_i	1	2	3	4	5
y_i	1	4	7	8	6

试用最小二乘法求拟合这组数据的二次多项式 $p_2(x) = a_0 + a_1 x + a_2 x^2$.

15、(10 分) 确定求积公式 $\int_{-1}^{1} f(x) dx \approx A_0 f(-1) + A_1 f(-\frac{1}{2}) + A_2 f(0) + A_3 f(1)$ 中的待定参数 A_0, A_1, A_2, A_3 的值,使其代数精度尽量高,并指出所得公式的代数精度.

16、(10 分)在区间 [-1, 1] 上给定函数 $f(x) = 2x^3 + x^2 + 2x - 1$,求其在 $\Phi = \text{span}\{1, x, x^2\}$ 上关于权函数 $\rho(x) = 1$ 的最佳平方逼近多项

17、(10 分)用龙贝格算法计算积分 $I = \int_0^1 \frac{dx}{x+1}$ (要求二分三次).