(SE3081 왕고식을 설계와 분명 HW L 답

3. 71.
$$\sum_{k=1}^{1} k = \frac{\lambda(\lambda+1)}{2}$$

|
$$\frac{1}{2}$$
 | $\frac{1}{2}$ | $\frac{$

 $I = 2^{\log_2(n+1)} - \log_2(n+1) - 1 = n - \log_2(n+1)$

$$C = 0$$
;
 $L = 1$; $j = 1$; $m = 0$ $// n > 0$ or $n > 1$
 $while (j <= n) {$
 $i + t$;
 $j = j + i$;
 $m = m + 2$;
 $C + t$;
}

$$\frac{1}{\text{Jbefore}} = \frac{1}{1+2} + \frac{1+2+3}{1+2+3+4} + \frac{1+2+\cdots+p}{1+2+\cdots+p} = \frac{1+2+2+\cdots+p}{1+2+\cdots+p} = \frac{1+2+2+\cdots+p}{1+2+\cdots+p} = \frac{1+2+\cdots+p}{1+2+\cdots+p} = \frac{1+2+\cdots+p}{1+2+\cdots+p} = \frac{1+2+\cdots+p}{1+2+\cdots+p} = \frac{1+2+\cdots+p}{1+2+\cdots+p} = \frac{1+2+\cdots+p}{1+2+\cdots+p} = \frac{1+2+\cdots+p}{1+2+\cdots+p} = \frac{1+2+\cdots+$$