Oefening 1

We gaan de Black-Scholes PDE in het discretisatie rooster (s_i) beschouwen met volgende notatie.

$$u', u'_{j} = u_{t}, u_{t}(s_{j}, t)$$

 $c^{2}, c^{1}, c^{0} = \frac{1}{2}\sigma^{2}s^{2}, rs, r$

Benaderingen van u zullen aangeduid worden met U.

De Black-Scholes vergelijking met deze notatie wordt:

$$u' = c_2 u_{ss} + c_1 u_s - c_0 u.$$

Dit zijn tweede orde benaderingen voor de afgeleiden van \boldsymbol{u} (tweede orde centraal):

$$u_s = \frac{u(s+h) - u(s-h)}{2h} + O(h^2)$$
$$u_{ss} = \frac{u(s+h) - 2u(s) + u(s-h)}{h^2} + O(h^2)$$

Hiermee wordt de benaderde Black-Scholes vergelijking in het rooster:

$$U_j' = \frac{c_j^2}{h^2}(U_{j+1} - 2U_j + U_{j-1}) + \frac{c_j^1}{2h}(U_{j+1} - U_{j-1}) - c_j^0 U_j.$$

Dit kunnen we eenvoudiger schrijven in matrix vorm. Voer eerst volgende notatie in

$$D_{j} = \left[\left(\frac{c_{j}^{2}}{h^{2}} + \frac{c_{j}^{1}}{2h} \right), \left(-2\frac{c_{j}^{2}}{h^{2}} - c_{j}^{0} \right), \left(\frac{c_{j}^{2}}{h^{2}} - \frac{c_{j}^{1}}{2h} \right) \right].$$

Hiermee wordt dit

$$U'_{i} = D_{i} (U_{i-1}, U_{i}, U_{i+1})^{T} \text{ voor } 1 \le j \le m.$$

Nog meer notatie

$$\begin{split} U' &= (U_1', U_2', ..., U_m')^T \\ U_d &= (U_0, U_2, ..., U_{m+1})^T \\ A_d &= \mathrm{Diag}(D_j) \\ U &= U_d \text{ zonder de eerste en laatste rij} \\ A &= A_d \text{ zonder de eerste en laatste kolom} \end{split}$$

Hiermee wordt dit

$$U' = A_d U_d$$
.

Figuur 1: $||e^{At}||_2$ vs t voor verschillende m

Door de beginvoorwaarden zijn we enkel geïnteresseerd in U. Door de structuur van A_d en de beginvoorwaarden kunnen we U_0 en U_{m+1} wegwerken in een term g(t).

$$U' = AU + (D_1)_0 U_0 e_1 + (D_m)_2 U_{m+1} e_m.$$

Merk op dat in deze opgave $U_0 = 0$.

Deze notatie wordt geïmplementeerd in ../scr/Model.py

Oefening 2

Kijk naar figuur 1 voor de gevraagde grafiek. Dit suggereert da
t $\omega=0$ en K=2stabiliteit constanten zijn voor deze semi discreti
satie.

Als $m \to \infty$ dan wordt de bijhorende grafiek waarschijnlijk een rechte.

Oefening 3

Kijk naar figuur
2 voor $\mu_2(A)$ voor verschillende m. $\mu_2(A)$ groeit even s
nel als m^2 (kijk grafiek). Dit kan waarschijnlijk bewezen worden me
t μ_1, μ_2 afschatting. Dit betekent dat voor K de stabiliteit constante bij
 $T=\infty:K>1$.

Figuur 2: $(\mu_2(A), m^2)$ vs m

Oefening 4

In dit geval is de impliciete trapezium regel:

$$U(t_{n+1}) = U(t_n) + \frac{1}{2}\tau(AU(t_n) + g(t_n) + AU(t_{n+1}) + g(t_{n+1})).$$

Verzamel $U(t_{n+1})$ (omdat die onbekend is) dit ziet er zo uit:

$$(I - \frac{\tau}{2}A)U(t_{n+1}) = U(t_n) + \frac{\tau}{2}(AU(t_n) + g(t_n) + g(t_{n+1})).$$

Dit is een ijl stelsel die een unieke oplossing heeft voor kleine τ . LU+backsubben is hier de meest voor de hand liggende methode omdat we dit stelsel herhaaldelijk moeten oplossen en niet afhangt van de tijd.

Oefening 5

De implementatie is te vinden in ../scr/DOcall_numer.py (deze convergeert niet naar de exacte oplossing en werkt niet voor somige m waarden by 200.)

Oefening 6

De implementatie is te vinden in ../scr/DOcall exact.py.

Oefening 7

De numerieke oplossing convergeert niet naar de exacte om een of andere redenen. Daarom wordt hier ook een numeriek buurt fout uitgerekend. De implementatie is te vinden in ../scr/foutanalyse.py.

Oefening 8

Figuur 3: exacte oplossing m = 50

Figuur 4: ok

m vs buurtfout numeriek

Figuur 5: ok