Building Kafka-based Microservices with Akka Streams and Kafka Streams

Strata London 2018

Boris Lublinsky and Dean Wampler, Lightbend

boris.lublinsky@lightbend.com dean.wampler@lightbend.com

- Overview of streaming architectures
 - Kafka, Spark, Flink, Akka Streams, Kafka Streams
- Running example: Serving machine learning models
- Streaming in a microservice context
 - Akka Streams
 - Kafka Streams
- Wrap up

About Streaming Architectures

Why Kafka, Spark, Flink, Akka Streams, and Kafka Streams?

Ossu Mar

O'REILLY"

Fast Data Architectures for Streaming Applications

Getting Answers Now from Data Sets that Never End

By Dean Wampler, Ph. D., VP of Fast Data Engineering

Get Your Free Copy

Today's focus:

Kafka - the data backplane

Akka Streams and KafkaStreams streamingmicroservices

A Topic and Its Partitions

Consumer Groups

Kafka Producers and Consumers

Code time

- 1.Project overview
- 2.Explore and run the *client* project
 - Creates in-memory ("embedded") Kafka instance and our topics
 - Pumps data into them

Kafka:

 Simplify dependencies between services

Improved data consistency

Minimize data transmissions

 Reduce data loss when a service crashes

Kafka:

- M producers, N consumers
 - Improved extensibility
- Simplicity of one "API" for communication

Streaming Engines:

Spark, Flink - services to which you submit work. Large scale, automatic data partitioning.

Streaming Engines:

Spark, Flink - services to which you submit work. Large scale, automatic data partitioning.

Streaming Frameworks:

Akka Streams, Kafka Streams - libraries for "data-centric micro services". Smaller scale, but great flexibility.

Machine Learning and Model Serving: A Quick Introduction

Serving Machine Learning Models

A Guide to Architecture, Stream Processing Engines, and Frameworks

By Boris Lublinsky, Fast Data Platform Architect

Get Your Free Copy

ML Is Simple

Maybe Not

Even If There Are Instructions

The Reality

What Is The Model?

A model is a function transforming inputs to outputs -y = f(x)

for example:

Linear regression:
$$y = a_c + a_1 * x + ... + a_n * x_n$$

Neural network: $f(x) = K(\Sigma_i w_i g_i(x))$

Such a definition of the model allows for an easy implementation of model's composition. From the implementation point of view it is just function composition

Model Learning Pipeline

UC Berkeley AMPLab introduced <u>machine learning pipelines</u> as a graph defining the complete chain of data transformation.

Traditional Approach to Model Serving

- Model is code
- This code has to be saved and then somehow imported into model serving

Why is this problematic?

Impedance Mismatch

Continually expanding Data Scientist toolbox

Defined Software Engineer toolbox

Alternative - Model As Data

Standards

Exporting Model As Data With PMML

There are already a lot of export options

https://github.com/jpmml/jpmml-sparkml

https://github.com/jpmml/jpmml-sklearn

https://github.com/jpmml/jpmml-r

https://github.com/jpmml/jpmml-tensorflow

Evaluating PMML Model

There are also a few PMML evaluators

https://github.com/jpmml/jpmml-evaluator

https://github.com/opendatagroup/augustus

Exporting Model As Data With Tensorflow

- Tensorflow execution is based on Tensors and Graphs
- Tensors are defined as multilinear functions which consist of various vector variables
- A computational graph is a series of Tensorflow operations arranged into graph of nodes
- Tensorflow supports exporting graphs in the form of binary protocol buffers
- There are two different export format optimized graph and a new format - saved model

Evaluating Tensorflow Model

- Tensorflow is implemented in C++ with a Python interface.
- In order to simplify Tensorflow usage from Java, in 2017 Google introduced Tensorflow Java API.
- Tensorflow Java API supports importing an exported model and allows to use it for scoring.

Additional Considerations - Model Lifecycle

- Models tend to change
- Update frequencies vary greatly from hourly to quarterly/yearly
- Model version tracking
- Model release practices
- Model update process

The Solution

A streaming system allowing to update models without interruption of execution (dynamically controlled stream).

Model Representation (Protobufs)

```
// On the wire
syntax = "proto3";
// Description of the trained model.
message ModelDescriptor {
 string name = 1; // Model name
 string description = 2; // Human readable
 string dataType = 3; // Data type for which this model is applied.
 enum ModelType { // Model type
                                                       ModelType modeltype = 4;
   TENSORFLOW = 0;
                                                       oneof MessageContent {
   TENSORFLOWSAVED = 2;
                                                         // Byte array containing the model
   PMML = 2;
                                                         bytes data = 5;
                                                         string location = 6;
```

Model Representation (Scala)

```
trait Model {
def score(input : Any) : Any
def cleanup(): Unit
def toBytes() : Array[Byte]
def getType : Long
def ModelFactoryl {
def create(input : ModelDescriptor) : Model
def restore(bytes : Array[Byte]) : Model
```


Side Note: Monitoring

Model monitoring should provide information about usage, behavior, performance and lifecycle of the deployed models

```
case class ModelToServeStats(
                                     // Model name
name: String,
   description: String,
                                     // Model descriptor
   modelType: ModelDescriptor.ModelType, // Model type
                                     // Start time of model usage
   since: Long,
                                     // Number of servings
   var usage: Long = 0,
   var duration : Double = 0.0,
                                     // Time spent on serving
                                    // Min serving time
   var min: Long = Long.MaxValue,
                                     // Max serving time
   var max : Long = Long.MinValue
```

Queryable State

Queryable state: ad hoc query of the state in the stream. Different than the normal data flow.

Treats the stream processing layer as a lightweight embedded database. Directly query the current state of a stream processing application. No need to materialize that state to a database, etc. first.

Microservice All the Things!

Microservices, for when your in-process methods have too little latency.

Dave Cheney @davecheney

Microservices, for when function calls are too reliable.

4:11 AM - 25 Feb 2018

207 Retweets 566 Likes

A Spectrum of Microservices

Event-driven µ-services

"Record-centric" µ-services

Events

Records

A Spectrum of Microservices

Event-driven µ-services

Akka emerged from the left-hand side of the spectrum, the world of highly *Reactive* microservices.

Akka Streams pushes to the right, more data-centric.

Events

Records

A Spectrum of Microservices

Emerged from the right-hand side.

Kafka Streams pushes to the left, supporting many event-processing scenarios.

"Record-centric" µ-services

Akka Streams

📤 akka streams

- A library
- Implements Reactive Streams.
 - http://www.reactive-streams.org/
 - Back pressure for flow control

akka streams

bounded queue

📤 akka streams

- Part of the Akka ecosystem
 - Akka Actors, Akka Cluster, Akka HTTP, Akka Persistence, ...
 - Alpakka rich connection library
 - like Camel, but implements Reactive
 Streams
 - Commercial support from Lightbend

• A very simple example to get the "gist"...


```
import akka.stream._
import akka.stream.scaladsl._
import akka.NotUsed
import akka.actor.ActorSystem
import scala.concurrent._
import scala.concurrent.duration._
```

```
implicit val system = ActorSystem("QuickStart")
implicit val materializer = ActorMaterializer()
```

```
val source: Source[Int, NotUsed] = Source(1 to 10)
val factorials = source.scan(BigInt(1)) ( (acc, next) => acc * next )
factorials.runWith(Sink.foreach(println))
```



```
implicit val system = ActorSystem("QuickStart")
implicit val materializer = ActorMaterializer()
```

```
val source: Source[Int, NotUsed] = Source(1 to 10)
val factorials = source.scan(BigInt(1)) ( (acc, next) => acc * next )
factorials.runWith(Sink.foreach(println))
```

Initialize and specify now the stream is "materialized"

implicit val system = ActorSystem("QuickStart")
implicit val materializer = ActorMaterializer()

val source: Source[Int, NotUsed] = Source(1 to 10)
val factorials = source.scan(BigInt(1)) ((acc, next) => acc * next)
factorials.runWith(Sink.foreach(println))

implicit val system = ActorSystem("QuickStart")
implicit val materializer = ActorMaterializer()

Create a Source of Ints. Second type represents a hook used for "materialization" - not used here

val source: Source[Int, NotUsed] = Source(1 to 10)
val factorials = source.scan(BigInt(1)) ((ass, next) = acc * next)
factorials.runWith(Sink.foreach(println))

implicit val system = ActorSystem("QuickStart")
implicit val materializer = ActorMaterializer()

Scan the Source and compute factorials, with a seed of 1, of type BigInt

```
val source: Source[int, NotOsed] = Source(1 to 10)
val factorials = source.scan(BigInt(1)) ( (acc, next) => acc * next )
factorials.runWith(Sink.forcach(println))
```

```
import akka.stream._
import akka.stream.scaladsl._
import akka.NotUsed
import akka.actor.ActorSystem
import scala.concurrent._
import scala.concurrent.duration._
```

implicit val system = ActorSystem("QuickStart")
implicit val materializer = ActorMaterializer()

Output to a Sink, and run it

```
val source: Source[Int, NotUsed] = Source(1 to 10)
val factorials - source.scan(Bigint(1)) ( (acc, next) => acc * next )
factorials.runWith(Sink.foreach(println))
```

implicit val system = ActorSystem("QuickStart")
implicit val materializer = ActorMaterializer()

A source, flow, and sink constitute a graph

📤 akka streams

- This example is included in the project:
 - akkaStreamsModelServer/simple-akka-streams-example.sc
- To run it (showing the different prompt!):

\$ sbt: sbt:akkaKafkaTutorial> project akkaStreamsModelServer sbt:akkaStreamsModelServer> console scala> :load akkaStreamsModelServer/simple-akka-streams-example.sc

Implementations

- How do we integrate model serving (or any other new capability) into an Akka Streams app? We'll look at two approaches:
 - Implement a Custom Stage. Once implemented, you use it like any other "step" in the Akka Streams app.
 - Make asynchronous calls to Akka Actors to do anything you want...

Using Custom Stage

Create a custom stage, a fully type-safe way to encapsulate new functionality. Like adding a new "operator".

Using Akka Actors

Use a router actor to forward requests to the actor(s) responsible for processing requests for a specific model type. Clone for scalability!!

Akka Streams Example

Code time

- 1. Run the *client* project (if not already running)
- 2. Explore and run akkaStreamsModelServer project
 - 1. Use the c or custom (or default) commandline argument for the *custom stage*
 - 2. Use the a or actor command-line argument for the *actor model server*
 - 3. Use -h or —help for help

Exercises!

We've prepared some exercises. We may not have time during the tutorial to work on them.

To find them, search for "// Exercise".

Other Production Concerns

- Scale scoring with workers and routers, across a cluster
- Persist actor state with AkkaPersistence
- •Connect to *almost* anything with Alpakka
- Lightbend Enterprise Suite
 - for production monitoring, etc.

Using Akka Cluster

Two levels of scalability:

- Kafka partitioned topic allow to scale listeners according to the amount of partitions.
- Akka cluster sharing allows to split model serving actors across clusters.

Go Direct or Through Kafka?

- Extremely low latency
- Minimal I/O and memory overhead
- No marshaling overhead

- Higher latency (including queue depth)
- Higher I/O and processing (marshaling) overhead
- Better potential reusability

Go Direct or Through Kafka?

- •Reactive Streams back pressure
- •Direct coupling between sender and receiver, but indirectly through a URL

- Very deep buffer (partition limited by disk size)
- Strong decoupling M
 producers, N consumers,
 completely disconnected

- Important stream-processing concepts, e.g.,
 - Distinguish between event time and processing time
 - Windowing support.
 - For more on these concepts, see
 - Dean's book;)
 - Talks, blog posts, writing by Tyler Akidau

- KStream per-record transformations
- KTable key/value store of supplemental data
 - Efficient management of application state

çç kafka

- Low overhead
- Read from and write to Kafka topics, memory
 - Could use Kafka Connect for other sources and sinks
- Load balance and scale based on partitioning of topics
- Built-in support for Queryable State

- Two types of APIs:
 - Process Topology
 - Compare to <u>Apache Storm</u>
 - DSL based on collection transformations
 - Compare to Spark, Flink, Scala collections.

& kafka

- Provides a Java API
- Lightbend donated a Scala API to Apache Kafka
 - https://github.com/lightbend/kafka-streams-scala
 - See also our convenience tools for distributed, queryable state: https://github.com/lightbend/kafka-streams-query
- SQL yes, but requires a specialized application (i.e., not a library like in Spark)

- Ideally suited for:
 - ETL -> KStreams
 - State -> KTable
 - Joins, including Stream and Table joins
 - "Effectively once" semantics
- Commercial support from Confluent, Lightbend, and others

Model Serving With Kafka Streams

State Store Options We'll Explore

- "Naive", in memory store (no durability!)
 - Also uses the KS <u>Processor Topology API</u>
- Built-in key/value store provided by Kafka Streams
 - Uses the KS DSL
- Custom store
 - Also uses the DSL

Model Serving With Kafka Streams

Code time

- 1. Run the *client* project (if not already running)
- 2. Explore and run kafkaStreamsModelServer project
 - 1. Use the c or custom (or default) commandline argument for the *custom state store*
 - 2. Use the s or standard command-line argument for the KS built-in *standard store*
 - 3. Use the mor memory command-line argument for the *in-memory store*

4. Use -h or -help for help

Wrapping Up

To Wrap Up

Event-driven µ-services

"Record-centric" µ-services

Events

In Our Remaining Time Today... (1/2)

- 1. Explore the code we didn't discuss (there is a lot;)
 - 1. Study the different model serving techniques
 - 2. Study the "model" subproject
 - 3. Look at how the following are implemented
 - 1. queryable state
 - 2. embedded web servers
 - 3. use of Akka Persistence
 - 4. model serialization
- 2. ...

In Our Remaining Time Today... (2/2)

- 1. ...
- 2. Try the exercises search for "// Exercise" in the code
- 3. Ask us for help on anything...
- 4. Visit <u>lightbend.com/fast-data-platform</u>
- 5. Profit!!

Thanks for coming

Questions?

- Executive Briefing: What you need to know about fast data (Dean)
 - 14:55–15:35 Wednesday, 23 May 2018, Capital Suite 17
- Meet the Expert (Dean)
 - Thursday 11:50 12:30, O'Reilly Booth, Expo Hall
- AMA, Streaming Applications and Architectures (Boris and Dean)
 - 14:05–14:45 Thursday, 24 May 2018, Capital Suite 14

And don't miss:

- Kafka in jail: Running Kafka in container-orchestrated clusters (Sean Glover)
 - 16:35–17:15 Wednesday, 23 May 2018, Capital Suite 8/9
- Processing fast data with Apache Spark: A tale of two APIs (Gerard Maas)
 - 11:15–11:55 Wednesday, 23 May 2018, Capital Suite 8/9
- Machine-learned model quality monitoring in fast data and streaming applications (Emre Velipasaoglu)
 - 14:55–15:35 Wednesday, 23 May 2018, Expo Hall

lightbend.com/products/fast-data-platform boris.lublinsky@lightbend.com dean.wampler@lightbend.com

