Q1 1 Point
Which of the following statements is true about the population proportion (p)?
O It is the same as the sample proportion
O It varies from sample to sample
O It can be calculated directly from a sample
It is a parameter that describes the entire population
Q2 1 Point
If you take a different sample, the sample proportion (\hat{p}):
Could be different
 Will always be the same
O Cannot be calculated
 Will always be equal to the population proportion (p)
Q3 1 Point
Which of the following is true about the standard error?
O It increases as the sample size increases
O It is the same as the standard deviation of the population
It decreases as the sample size increases
O It is not related to the sample size

Q4 1 Point
The Central Limit Theorem is important in statistics because:
O It is only applicable when the population is normally distributed
\bigcirc It tells us that the sample proportion is always normally distributed
It allows us to make inferences about population parameters
O It tells us that larger samples lead to less variability
Q5 1 Point
Which of the following is a key assumption of the Central Limit Theorem (CLT)?
aThe sample size must be at least 30 for the CLT to be applicable
 The population from which the samples are drawn must be normally distributed
All of the above
The samples must be drawn independently
Q6 1 Point
What does a confidence interval in statistics provide?
The population mean
O The sample mean
The exact value of the population parameter
A range of values that may contain the population parameter

Q7

1 Point

Which of the following statements is true about a 95% confidence interval?

- O It is calculated using 2 standard deviations from the mean
- It will always contain the true population parameter
- O It is less accurate than a 90% confidence interval
- If we were to take 100 different samples and create a confidence interval from each sample, we expect about 95 of them to contain the true population parameter.

Q8

1 Point

Which of the following is the correct formula for constructing a 95% confidence interval for a population proportion?

$$\bigcirc I = (\hat{p} - 1.96 \cdot SD_{\hat{p}}, \hat{p} + 1.96 \cdot SD_{\hat{p}})$$

$$igotimes I = (\hat{p} - 1.96 \cdot SE_{\hat{p}}, \hat{p} + 1.96 \cdot SE_{\hat{p}})$$

$$\bigcirc I = (\hat{p} - 2 \cdot SE_{\hat{p}}, \hat{p} + 2 \cdot SE_{\hat{p}})$$

$$\bigcirc I = (\hat{p} - 1.64 \cdot SE_{\hat{p}}, \hat{p} + 1.64 \cdot SE_{\hat{p}})$$

Q9

1 Point

What is the z-score corresponding to a 99% confidence interval?

- 2.33
- 0 1.64
- 2.58
- 0 1.96