8.8 Part 2, Computing the Index of L

D. Zack Garza

Monday 25th May, 2020

Contents

What we're trying to prove:

- 8.1.5: $(d\mathcal{F})_u$ is a Fredholm operator of index $\mu(x) \mu(y)$.
- Define

$$L: W^{1,p}\left(\mathbf{R} \times S^1; \mathbf{R}^{2n}\right) \longrightarrow L^p\left(\mathbf{R} \times S^1; \mathbf{R}^{2n}\right)$$
$$Y \longmapsto \frac{\partial Y}{\partial s} + J_0 \frac{\partial Y}{\partial t} + S(s,t)Y$$

where

$$S: \mathbb{R} \times S^1 \longrightarrow \operatorname{Mat}(2n; \mathbb{R})$$
$$S(s,t) \stackrel{s \longrightarrow \pm \infty}{\longrightarrow} S^{\pm}(t).$$

- 8.7: Shows L is Fredholm
- By the end of 8.8: replace L by L_1 with the same index
 - (not the same kernel/cokernel)
- Compute Ind L_1 : explicitly describe ker L_1 , coker L_1 .
- Replace in two steps:
 - $-L \rightsquigarrow L_0$, modified outside $B_{\sigma_0}(0)$ in s.
 - * Replace S(s,t) by a matrix

$$\tilde{S}(s,t) = \begin{cases} S^{-}(t) & s \le -\sigma_0 \\ S^{+}(t) & s \ge \sigma_0 \end{cases}.$$

- * Idea: approximate by cylinders at infinity.
- * Use invariance of index under small perturbations.
- $-L_0 \rightsquigarrow L_1$ by a homotopy, where $S_{\lambda}: S \rightsquigarrow S(s)$ a diagonal matrix that is a constant matrix outside $B_{\varepsilon}(0)$.
 - * Use invariance of index under homotopy.