Problem 3:

a) Cell-Centered flux:

In this case, $\alpha=0$ for all graphs. When $\Delta_i=0.4$ we observe negative flux. This is the case as requirement stated in problem 2; mesh spacing $(\Delta_i)<2\mu/\Sigma_t$ doesn't hold true (0.4<0.2).

b) Impact of α when $\alpha = [-0.9, -0.5, 0.25, 0.5, 0.9]. Let's look at different <math>\alpha$'s at $\Delta_i = 0.125$. Graphs at other Δ_i are present in the folder.

When α term is introduced, the requirement stated in problem 2 is changed by factor of $1+\alpha$ in this case because of going x=0 to x=2. $\Delta_i*(1+\alpha)<2\mu/\Sigma_t$ should hold true to prevent negative flux.

c) Adding source:

Graphs at $\mu = 0.7$, $\alpha = 0.5$, and for all mesh spaces here. Other graphs are in the folder.

d)
$$\alpha = 0, \Sigma_s = 0.9$$

d) $\alpha=0,\,\Sigma_s=0.9;$ As we increases $\Sigma_s,$ the scalar flux increase and there is point of inflection on the graphs.