14th Week Wednesday

24 Mayıs 2023 Çarşamba 14:32

8-9 questions of Final Exam

3 highest quizzes will be taken.

finding a basis for a subspace

Anxn

eig ervolves

eligenspaces eligenvectors

(de+ (A-21) = 0

→ nth degree polynomial of A. → Find the real roots Figervalues of A.

$$(A - \lambda I) \vec{\lambda} = 0$$

always.

 $(A - \lambda I) \vec{x} = 0$ \Rightarrow (inf. many solutions) \Rightarrow solution space \Rightarrow eigenspace

-> basis vectors -> eigenvectors of this space

we are able to write A in this form of

A is "diagonalizable!

We'll make use of eigenvalues and eigenvectors-

n distinct eigenvalues > A is diagonalizable!

 $A = XDX^{-1}$

X = | | | | | | |

the corresponding eigenvectors for 2, 2 in the same order with D.

n distinct eigenvalues => A may or may not be less than has

() (1) mate Cr 215)

2)]{	$A_{n\times n}$	has less than a distinct (we have multiple roots	eligenualizes \Rightarrow A may or may not be diagonalized for $\lambda'(s)$ \Rightarrow We should find all eigenvectors
$\lambda_3 \Rightarrow$	D =	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 → if we have n lin. ind. eigenvectors in total → A is diagonalizable. Otherwise , A is NOT diagonalizable.

5