MTE321 Formulas

Stresses

Deformation Elongation

$$\delta = \frac{FL}{EA}$$
$$\delta = \frac{\sigma L}{E}$$

Torsional Forumals

Stress

R is the radial distance

$$\tau = \frac{Tr}{J}$$

$$Z_p = \frac{J}{c}$$

$$\tau_{max} = \frac{T}{Z_p}$$

Deformation

 θ is the angle of twist across L For non-circular shafts K is section polar second moment of area and

$$T = \frac{P}{\omega} \quad T_{lb \cdot in} = 63000 \frac{P}{\omega}$$

$$\theta = \frac{TL}{GJ}$$

$$Non-Circular \quad \tau = \frac{T}{Q}$$

$$Non-Circular \quad \theta = \frac{TL}{GK}$$

Thin-Walled Closed Tubes

A = median area boundary, U is length of median boundary

$$K = \frac{4A^2t}{U}$$
$$Q = 2tA$$

Shear Stress

V section shear force, Q is the first moment area, and t is the section thickness

$$\tau_{(y)} = \frac{VQ}{It}$$
 Rectangular Beam $\tau_{max} = \frac{3V}{2A}$ Solid Round Beam $\tau_{max} = \frac{4V}{3A}$ Hollow Round Beam $\tau_{max} = \frac{2V}{A}$

Beam Bending

M is the moment at the section, y is the distance from the neutral axis

$$\sigma_y = -\frac{My}{I}$$

Stress Concentrations

Stress Concentration Factor

 \mathbf{K}_{t} is material and loading dependent, values greater than 3 are a waste

$$\sigma_{max} = K_t \sigma_{nom}$$

Curved Beam Bending

$$\sigma_{(r)} = \frac{M(\theta)(R-r)}{Ar(r_c - R)}$$

Thermal Strain

$$\epsilon_x^m = -\alpha \delta T$$

Principle Stresses

$$tan2 heta_{\sigma} = rac{2 au_{xy}}{\sigma_{x} - \sigma_{y}} \ \sigma_{1,2} = rac{\sigma_{x} + \sigma_{y}}{2} \pm \sqrt{\left(rac{\sigma_{x} - \sigma_{y}}{2}
ight)^{2} + au_{xy}^{2}}$$