MATHEMATICS APPLICATIONS

MAWA Semester 2 (Units 3 & 4) Examination 2016

Calculator-Assumed

Marking Key

© MAWA, 2016

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to
 anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing
 them how the work is marked but students are not to retain a copy of the paper or marking guide until the
 agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

• the end of week 1 of term 4, 2016

Section Two: Calculator-assumed (109 Marks)

Question 7 (a)

Solution	
$\frac{3500}{23500} \times 100 = 15\%$	
Marking key/mathematical behaviours	Marks
shows correct ratio of populations in calculation of %	1

Question 7 (b)

Solution					
Number of years after Dec 31,2012	1	2	3	4	5
Population of Baldivis	23 500	27 025	31 078	35 740	41 101
Marking key/mathematical behaviours				Marks	
 determines 2 co 	rrect values				1
 determines anot 	her 2 correct	values			1

Question 7 (c)

Solution	
$n = 8, P_8 = 62510$ people	
Marking key/mathematical behaviours	Marks
identifies required term (8 th)	1
 determines correct population 	1

Question 7 (d)

Solution	
$T_n = 29500(1.08)^{n-1}$	
Marking key/mathematical behaviours	Marks
Substitutes correct value for r	1
States rest of formula correct, even if r is incorrect	1

Page **2** © MAWA 2016

Question 7 (e)

Solution					
Number of years after Dec 31,2012	1	2	3	4	5
Population of Ellenbrook	29 500	31 860	34 408	37 161	40 134
Marking key/mathematical	behaviours				Marks
determines first and	d second tern	ns			1
determines other 3	correct value	es			1

Question 7 (f)

Solution	
The year 2017	
Marking key/mathematical behaviours	Marks
Determines correct value.	1

Question 8 (a)

Solution	
Q	
Marking key/mathematical behaviours	Marks
determines correct node	1

Question 8 (b)

Solution	
40 kilolitres per hour	
Marking key/mathematical behaviours	Marks
determines correct value	1

Question 8 (c)		
Solution		
32 kilolitres per hour		
System of paths for maximum flow	is not unique. One possible system	
MBWQ = 4 kL/h	MPRQ = 5 kL/h	
MBQ = 6 kL/h	MDPRQ = 2 kL/h	
MBPQ = 5 kL/h	MDRQ = 5 kL/h	
MPQ = 5 kL/h		
Marking key/mathematical behavior	urs	Marks
 determines correct value fo 	r maximum flow	1
 determines correct capacity 	for 2 paths	1
 determines correct capacity 	for another 2 paths	1
 determines correct capacity 	for remaining paths	1

Question 8 (d)

Question 8 (e)

Solution

The total capacity along the edges of the minimum cut is equal to the maximum flow through the network

Marking key/mathematical behaviours	
 describes equal values of edges and maximum capacity 	1

Question 8 (f)

Solution	
The maximum flow increases by 5 kL per hour	
Paths MPQ (up by 5), MPRQ (down by 4) and MDPRQ (up by 4) are affected	
Marking key/mathematical behaviours	Marks
determines correct decision	1
justifies decision	1

Question 9 (a)

Solution	
0.9920	
Marking key/mathematical behaviours	Marks
determines correct correlation coefficient	1

Question 9 (b)

Solution	
temperature	
Marking key/mathematical behaviours	Marks
identifies correct response variable	1

Page **4** © MAWA 2016

Question 9 (c)

Solution	
97.4%	
Marking key/mathematical behaviours	Marks
interprets coefficient of determination	1

Question 9 (d)

Solution	
No. A strong association may be due to another associated variable.	
Marking key/mathematical behaviours Marks	
explains correlation not implying causality	1

Question 9 (e)

5	OI	uτ	Ю	n

Graph A

Points are closer to the line AND greater coefficient of determination (or correlation coefficient)

Marking key/mathematical behaviours	
identifies graph with stronger linear relationship	1
links strength to closeness of points to the line	1
links strength to relevant statistic	1

Question 9 (f)

Solution	
Graph B because it is based on more data	
Marking key/mathematical behaviours	Marks
identifies more reliable indicator	1

Question 9 (g)

\sim		
C. V	lutio	~
. 7()	11 11 16)	

Collect data from different parts of the world, at different heights or at different times of the year

Marking key/mathematical behaviours	Marks
identifies the need for variety in the data collected.	1

Question 10 (a)

\sim	
C. V	lutior
. 7()	11 11 11 11 11

The two seasonal indices provided are moderately below 100%, or in each year except 2012, the number of dwellings in lowest in the March quarter

Marking key/mathematical behaviours	Marks
describes one aspect of the seasonal nature of data provided	1

Question 10 (b)

Solution	
5153 ÷ 94% = 5482 dwellings	
Marking key/mathematical behaviours	Marks
calculates deseasonalised value	1

Question 10 (c)

Solution	
$(105\% + 104\% + 109\% + 106\%) \div 4 = 106\%$	
Marking key/mathematical behaviours	Marks
 adds correct % to determine average 	1
 calculates seasonal index 	1

Question 10 (d)

Solution	
An increase of 175 per quarter	
Marking key/mathematical behaviours	Marks
specifies increase	1
determines number of dwellings per quarter as a rate	1

Question 10 (e)

Question 10 (e)	
Solution	
175 x 18 + 3453 = 6603	
6603 x 0.95 = 6273	
Marking key/mathematical behaviours	Marks
uses equation to determine deseasonal value	1
 makes seasonal adjustment 	1

Question 10 (f)

Solution		
The prediction is very inaccurate. It is about 600 more than occurred		
Marking key/mathematical behaviours	Marks	
concludes correctly about the accuracy of the prediction	1	
compares prediction with raw data	1	

Question 10 (g)

Solution	
The number of dwellings approved in 2015 has fallen compared to both 2013 and	d 2014
Marking key/mathematical behaviours	Marks
provides evidence of changing trend	1

Question 11 (a)

Question 11 (b)

Question 11 (c)

Solution	
(i) Too many odd nodes	
Marking key/mathematical behaviours	Marks
explains inability to travel network without repeating routes	1

Question 11 (c) (cont'd)

Solution	
(ii) Create extra route from U to K	
Marking key/mathematical behaviours	Marks
links two odd nodes	1
only links odd nodes with shortest route	1

Question 11 (c)

Question 11 (d)

Solution	
A: Hamiltonian circuit	
B: minimum spanning tree	
C: Eulerian trail	
Marking key/mathematical behaviours	Marks
identifies each of the projects correctly	3

Page **8** © MAWA 2016

Question 12 (a)

Question 12(b)

Solution	
Number of volunteers is increasing	
Marking key/mathematical behaviours	Marks
describes trend	1

Question 12 (c)

Solution	
Each peak is higher than the one before	
Marking key/mathematical behaviours	Marks
justifies choice in part (b)	1

CALCULATOR-ASSUMED MARKING KEY

Question 12 (d)

Solution	
Cyclic, systematic	
Marking key/mathematical behaviours	Marks
selects two features	1
 indicates non-acceptable features 	1

Question 12 (e)

_				
ടവ	h	ıtı	\sim	n

There are four major peaks – possibly associated with the new campaigns

After each peak there is a slight drop

After the slight drop numbers go down and stay down

The peaks do not occur at regular intervals

Marking key/mathematical behaviours	Marks
for each feature described 1 mark	3

Page **10** © MAWA 2016

Question 13 (a)

Solution	
$0.011 \times 60\ 000 = \$660$	
Marking key/mathematical behaviours	Marks
writes correct product	1
calculates correct amount of money	1

Question 13 (b)

Solution	
60660 - 2000 = \$58660	
Marking key/mathematical behaviours	Marks
adds interest and subtracts repayment	1
calculates correct amount of money.	1

Question 13 (c)

Solution	
$A_{n+1} = 1.011 A_n - 2000$, $A_0 = 60000$	
Marking key/mathematical behaviours	Marks
substitutes correct value for k	1

Question 13 (d)

Sol	ution			
(i)	\$57 305.26	(ii)	\$23 423.77	
Mai	king key/mathem	natical b	ehaviours	Marks
	• (i) determin	es cori	ect value.	1
	• (ii) determin	es corr	ect value.	1

Question 13 (e)

Solution	
3 years and 1 month	
Marking key/mathematical behaviours	Marks
determines correct value	1

Question 13 (f)

Solution	
Total repayments = \$2000× 36 + \$1203.22 = \$73 203.22	
Marking key/mathematical behaviours	Marks
calculates total regular repayments\$2000× 36	1
includes final repayment in total	1

Question 13 (g)

Solution	
Total repayments – \$60000	
= \$73203.22 - \$60000 = \$13203.22	
Marking key/mathematical behaviours	Marks
subtracts amount borrowed from total repayments	1

Page 11 © MAWA 2016

Question 14 (a)

Solution	
Total number of paths that lead from the gate to other features	3
Marking key/mathematical behaviours	Marks
identifies total links	1

Question 14 (b)

Solution	
2	
The number of paths between the rose garden and the kiosk	
Marking kay/mathamatical babayiaura	Maulea
Marking key/mathematical behaviours	Marks
identifies correct value	iwarks 1

Question 14 (c)

Solution	
Each 0 indicates that there is no path from that feature back to itself. The value of 1 indicates that there is a loop at the canoe hiring facility	
Marking key/mathematical behaviours	Marks
identifies significance of 0	1
identifies significance of 1	1

Question 14 (d)

Solution	
Symmetry about the leading diagonal indicates that the graph is a non-directed g (All paths can be travelled in both directions.)	raph.
Marking key/mathematical behaviours	Marks
identifies correct significance	1

Question 14 (e)

Solution	
No. There is a 0 in R4 of C1, so there is not a path from the gate to the canoe hir	e facility.
Marking key/mathematical behaviours	Marks
determines correct answer with correct .reason.	1

Page **12** © MAWA 2016

Question 14 (f)

Question 15 (a)

Solution	
Weight = 0.9465 x height - 89.635	
Marking key/mathematical behaviours	Marks
determines "gradient"	1
expresses relationship in linear format with correct intercept	1

Question 15 (b)

Solution	
0.8143	
Marking key/mathematical behaviours	Marks
calculates coefficient of determination	1

Question 15 (c)

Solution	
Weight = 0.9465 x 211 - 89.635 = 110 kg	
Marking key/mathematical behaviours	
determine prediction	1

Question 15 (d)

Solution	
Prediction not very reliable as it is extrapolated beyond the data	
Marking key/mathematical behaviours	Marks
describes reliability of prediction	1
justifies decision	1

Page **13** © MAWA 2016

Question 15 (e)

Solution											
Residuals	7	2	-12	-2	0	-2	8	3	-1	-2	
Marking key/r	Marking key/mathematical behaviours				Mar	ks	ı				
determines first 6 correct answer residuals				1							
determines remaining 4 correct residuals				1							

Question 15 (f)

Question 15 (g)

Solution				
A linear model seems suitable for this relationship				
Note the position of the residuals - they are scattered above and below the horixontal axis				
Marking key/mathematical behaviours	Marks			
describes suitability of using linear model	1			
justifies choice of linear model	1			

Question 16 (a)

Question 16 (b)

Solution	
Z-Q-W-R-M	
Marking key/mathematical behaviours	Marks
identifies all correct tasks in correct order	1

Question 16 (c)

Solution	
Float time for P = LSD - EST	
= 38 - 29 minutes $(53 - 15 = 38)$	
= 9 minutes	
Marking key/mathematical behaviours	Marks
indicates correct method	1
calculates required value correctly	1

Question 16 (d)

Solution	
The minimum completion time remains unchanged because task P has a float time minutes which covers the 8 extra minutes taken on the task.	ne of 9
Marking key/mathematical behaviours	Marks
determines correct conclusion	1
indicates correct reason	1

Page **15** © MAWA 2016

NEEDS MAWA ACKNOWLEDGEMENT

Page **16** © MAWA 2016