ГЛАВА ІІІ

Нормальные системы ОДУ

§ 1. ОСНОВНЫЕ ОБОЗНАЧЕНИЯ И ПОНЯТИЯ

 1^0 . Виды систем.

В общем виде система из n обыкновенных дифференциальных уравнений с n неизвестными выглядит следующим образом

$$\begin{cases}
F_1(x, y_1, y'_1, \dots, y_1^{(m_1)}, \dots, y_n, y'_n, \dots, y_n^{(m_n)}) = 0, \\
\dots \\
F_n(x, y_1, y'_1, \dots, y_1^{(m_1)}, \dots, y_n, y'_n, \dots, y_n^{(m_n)}) = 0.
\end{cases}$$
(3.1*)

Решением системы будем называть n функций $y_1(x), \ldots, y_n(x)$, определенных на некотором промежутке $\langle a, b \rangle$ таких, что подстановка их в систему (3.1^*) обращает ее в n тождеств на $\langle a, b \rangle$.

Система (3.1*) называется системой, не разрешенной относительно старших производных функций $y_1(x), \ldots, y_n(x)$.

$$\begin{cases} y_1^{(m_1)} = f_1(x, y_1, y_1', \dots, y_1^{(m_1-1)}, \dots, y_n, y_n', \dots, y_n^{(m_n-1)}), \\ \dots \\ y_n^{(m_n)} = f_n(x, y_1, y_1', \dots, y_1^{(m_1-1)}, \dots, y_n, y_n', \dots, y_n^{(m_n-1)}). \end{cases}$$
(3.1**)

Система (3.1^{**}) , естественно, называется системой, разрешенной относительно старших производных.

Система

$$\begin{cases} y_1' = f_1(x, y_1 \dots, y_n), \\ \dots \\ y_n' = f_n(x, y_1 \dots, y_n), \end{cases}$$
(3.1)

называется нормальной системой обыкновенных дифференциальных уравнений порядка n

$$y^{(m)} = f(x, y, y', \dots, y^{(m-1)}), \tag{3.2}$$

называется обыкновенным дифференциальным уравнением порядка m, разрешенным относительно старшей производной.

Уравнение

--- ---

2^{0} . Решение нормальной системы.

В дальнейшем будет рассматриваться нормальная система (3.1)

$$\begin{cases} y_1' = f_1(x, y_1 \dots, y_n), \\ \dots \\ y_n' = f_n(x, y_1 \dots, y_n), \end{cases}$$

в которой вещественные функции $f_1, \ldots, f_n \in C(G)$, т. е. непрерывны в области $G \subset \mathbb{R}^{n+1}$ пространстве переменных x, y_1, \ldots, y_n .

- **Df.** Решением нормальной системы (3.1) называются n непрерывных на промежутке $\langle a,b \rangle$ функций $y_1 = \varphi_1(x), \ldots, y_n = \varphi_n(x),$ для всякого $x \in \langle a,b \rangle$ удовлетворяющих следующим трем условиям:
 - 1) функции $\varphi_1(x), \dots, \varphi_n(x)$ дифференцируемые,
 - 2) точка $(x, \varphi_1(x), \dots, \varphi_n(x)) \in G$,
 - 3) $\varphi_i'(x) = f_i(x, \varphi_1(x), \dots, \varphi_n(x)) \quad (i = \overline{1, n}).$

Теорема (о существовании решения). Пусть в нормальной системе (3.1) функции $f_1, \ldots, f_n \in C(G)$, тогда через каждую точку области G проходит по крайней мере одно решение системы (3.1), определенное на каком-либо отрезке Пеано.

3^{0} . Геометрическая интерпретация решений.

Пусть $y_1 = \varphi_1(x), \dots, y_n = \varphi_n(x)$ это решение системы (3.1), определенное на интервале (a,b).

Df. Кривая, образуемая множеством точек $(x, \varphi_1(x), \dots, \varphi_n(x))$, где $x \in (a, b)$, называется дугой интегральной кривой. Максимальная дуга интегральной кривой называется интегральной кривой.

геометрическое определение интегральной кривой.

- **Df.** Интегральная кривая это любая гладкая кривая, лежащая в области G, направление касательной к которой в каждой точке совпадает с направлением поля в этой точке.
- **Df.** Решение задачи Коши с начальными данными $x_0, y_1^0, \ldots, y_n^0$ существует, если можно указать такой интервал (α, β) , содержащий точку x_0 , что на нем определено решение $y_1 = \varphi_1(x), \ldots, y_n = \varphi_n(x)$ системы (3.1) и $y_1^0 = \varphi_1(x_0), \ldots, y_n^0 = \varphi_n(x_0)$.

- **Df.** Решение задачи Коши с начальными данными $x_0, y_1^0, \ldots, y_n^0$ единственно для системы (3.1), если для любых двух решений $y_1 = \widetilde{\varphi}_1(x), \ldots, y_n = \widetilde{\varphi}_n(x)$ и $y_1 = \widehat{\varphi}_1(x), \ldots, y_n = \widehat{\varphi}_n(x)$ этой задачи Коши можно указать такой интервал (α, β) , содержащий точку x_0 , на котором оба эти решения определены и тождественно совпадают, т. е. $\widetilde{\varphi}_i(x) \stackrel{(\alpha,\beta)}{\equiv} \widehat{\varphi}_i(x)$ $(i=\overline{1,n})$.
- **Df.** Точка $(x_0, y_1^0, \dots, y_n^0) \in G$ называется точкой единственности для системы (3.1), если единственно решение задачи Коши с начальными данными x_0, y_1^0, \dots, y_n^0 .
- $\mathbf{Df.}$ Область $\widetilde{G} \subset G$ называется областью единственности, если каждая ее точка является точкой единственности.
- **Df.** Набор из n непрерывных функций $y_i = \varphi_i(x, C_1, \ldots, C_n)$ $(i = \overline{1,n})$ называется общим решением системы (3.1) в области единственности \widetilde{G} , если для любой точки $(x_0, y_1^0, \ldots, y_n^0) \in \widetilde{G}$ существует и единственно решение C_1^0, \ldots, C_n^0 алгебраической системы $y_1^0 = \varphi_1(x_0, C_1, \ldots, C_n), \ldots, y_n^0 = \varphi_n(x_0, C_1, \ldots, C_n)$ такое, что функции $y_i = \varphi_i(x, C_1^0, \ldots, C_n^0)$ есть решения задачи Коши системы (3.1) с начальными данными $x_0, y_1^0, \ldots, y_n^0$.
 - **Df.** Множество точек $(x_1(t), \dots, x_n(t))$ фазового пространства при $t \in (a,b)$ называется траекторией движения.
- **Df.** Если в системе (3.1_m) функции f_1, \ldots, f_n определены и непрерывны для $\forall t \in \mathbb{R}$ и есть решение $x_1(t) = x_1^0, \ldots, x_n(t) = x_n^0$, определенное для всякого вещественного t, то это решение называется состоянием (положением) равновесия, или точкой покоя, или особой точкой системы (3.1_m) .
 - 60. Системы в симметричной форме.
 - $\mathbf{Df.}$ Систему дифференциальных уравнений порядка n

$$\frac{d x_1}{X_1(x_1, \dots, x_{n+1})} = \dots = \frac{d x_{n+1}}{X_{n+1}(x_1, \dots, x_{n+1})},$$
 (3.6)

где X_1, \ldots, X_{n+1} определены и непрерывны в области G пространства (x_1, \ldots, x_{n+1}) , называют системой в симметричной форме.

Df. Точка $x^0 = (x_1^0, \dots, x_{n+1}^0)$ из области G называется особой для системы (3.6), если $X_i(x^0) = 0$ для всякого $i = \overline{1, n+1}$. В противном случае точка называется обыкновенной.

Теорема (о связи системы в симметричной форме и нормальной системы). Для любой обыкновенной точки $x^0 \in G$ существует окрестность $V(x^0)$, в которой система в симметричной форме (3.6) эквивалентна нормальной системе (3.1) порядка n.

70. Векторная запись нормальных систем.

В отличие от геометрии, где обычно используется евклидова норма вектора или норма ℓ_2 : $\|a\| = \sqrt{a_1^2 + \ldots + a_n^2}$, в дифференциальных уравнениях удобно использовать норму ℓ_∞ :

$$||a|| = \max_{j=1,\dots,n} |a_j|.$$

Df. Последовательность векторов $a^{(1)}, a^{(2)}, \dots, a^{(k)}, \dots$ сходится к предельному вектору a, если $||a^{(k)} - a|| \to 0$ при $k \to +\infty$.

$$\begin{split} &\int_a^b y(x)dx = \begin{pmatrix} \int_a^b y_1(x)dx \\ \dots \\ \int_a^b y_n(x)dx \end{pmatrix}, \ \ y'(x) = \begin{pmatrix} y_1'(x) \\ \dots \\ y_n'(x) \end{pmatrix}. \\ &\text{В частности, легко проверить, что } \left\| \int_a^b y(x)\,dx \right\| \leq \left| \int_a^b \|y(x)\|\,dx \right|. \end{split}$$

Положим
$$y=\begin{pmatrix}y_1\\\ldots\\y_n\end{pmatrix},\ y'=\begin{pmatrix}y'_1\\\ldots\\y'_n\end{pmatrix},\ f=\begin{pmatrix}f_1\\\ldots\\f_n\end{pmatrix}$$
, тогда система
$$(3.1)\ \text{примет вид}$$

$$y'=f(x,y).$$

§ 2. ФОРМУЛА КОНЕЧНЫХ ПРИРАЩЕНИЙ, УСЛОВИЯ ЛИПШИЦА

10. Лемма Адамара.

 $u(s) = \tilde{y} + s(\hat{y} - \tilde{y})$, где $s \in [0,1]$ В результате получаем формулу конечных приращений для скалярной функции векторного аргумента

$$f(x,\hat{y}) - f(x,\tilde{y}) = \sum_{j=1}^{m} \int_{0}^{1} \frac{\partial f(x,u(s))}{\partial y_{j}} ds \cdot (\hat{y}_{j} - \tilde{y}_{j}). \tag{3.7}$$

Лемма Адамара. Если вектор-функция f(x,y) непрерывна вместе со своей частной производной по y в выпуклой по y области G, то для любых $(x, \tilde{y}), (x, \hat{y}) \in G$ существуют непрерывные вектор-функции $h^{(1)}(x, \tilde{y}, \hat{y}), \ldots, h^{(m)}(x, \tilde{y}, \hat{y})$ такие, что

$$f(x, \hat{y}) - f(x, \tilde{y}) = \sum_{j=1}^{m} h^{(j)}(x, \tilde{y}, \hat{y}) \cdot (\hat{y}_j - \tilde{y}_j).$$

Действительно,
$$h^{(j)}(x, \tilde{y}, \hat{y}) = \int_0^1 \frac{\partial f(x, u(s))}{\partial y_j} ds$$
.

20. Локальное и глобальное условия Липшица.

Df. Функция f(x,y) удовлетворяет условию Липшица глобально по y на множестве D или $f(x,y) \in \operatorname{Lip}_y^{gl}(D)$, если найдется такая константа $L = L_D > 0$, что

$$\forall (x, \tilde{y}), (x, \hat{y}) \in D \implies ||f(x, \hat{y}) - f(x, \tilde{y})|| \le L||\hat{y} - \tilde{y}||.$$
 (3.8)

Df. Функция f(x,y) удовлетворяет условию Липшица локально по y в области G или $f(x,y) \in \operatorname{Lip}_y^{loc}(G)$, если для любой точки (x_0,y^0) из G существуют окрестность $V(x_0,y^0)$, лежащая в G, и константа Липшица $L=L_V>0$ такие, что для любых двух точек $(x,\tilde{y}),(x,\hat{y})$ из $V(x_0,y^0)$ выполняется неравенство (3.8).

Лемма (о связи между локальным и глобальным условиями Липшица). Если $f(x,y) \in \operatorname{Lip}_y^{loc}(G)$, то для любого компакта \overline{H} из G следует, что $f(x,y) \in \operatorname{Lip}_y^{gl}(\overline{H})$.

3⁰. Связь между дифференцируемостью и условием Липшица.

Лемма (о достаточном условии для локальной липшицевости). Если вектор-функция f(x,y) непрерывна вместе со своей частной производной по у в области G, то она удовлетворяет условию Липшица по у локально в G.

§3. МЕТОД ПОСЛЕДОВАТЕЛЬНЫХ ПРИБЛИЖЕНИЙ ПИКАРА

1^{0} . Теорема Пикара.

Теорема Пикара. Пусть в системе (3.1) $f(x,y) \in C(G)$, $f(x,y) \in \operatorname{Lip}_y^{loc}(G)$ и пусть для любой точки (x_0,y^0) из области G последовательные приближения Пикара $y^{(k)}(x)$ $(k=0,1,\ldots)$ с начальными данными x_0, y^0 определены на некотором отрезке $[\alpha, \beta]$, причем существует такой компакт $\overline{H} \subset G$, что для любых $k \geq 0$ и $x \in [\alpha, \beta]$ точка $(x, y^{(k)}(x)) \in \overline{H}$. Тогда функции $y^{(k)}(x)$ равномерно относительно $[\alpha, \beta]$ стремятся при $k \to \infty$ к предельной функции y(x), которая является решением задачи Коши системы (3.1) с начальными данными x_0, y^0 на отрезке $[\alpha, \beta]$.

2^{0} . Существование и единственность решения системы.

Теорема (о существовании и единственности). Пусть в системе (3.1) f(x,y) непрерывна и удовлетворяет условию Липшица по у локально в области G, тогда для любой точки $(x_0, y^0) \in G$ существует и единственно решение задачи Коши с начальными данными x_0, y^0 , определенное на некотором отрезке Пеано $P_h(x_0, y^0)$.

§4. ПРОДОЛЖЕНИЕ РЕШЕНИЙ

10. Условия продолжения за границу интервала.

Лемма (о продолжении решения за интервал). Пусть $y = \varphi(x)$ — решение системы (3.1), определенное на интервале (a,b). Для того чтобы оно могло быть продолжено вправо за точку b, необходимо и достаточно, чтобы 1) \exists $\eta = \lim_{x \to b^-} \varphi(x)$, 2) $(b,\eta) \in G$. Аналогичны условия продолжимости влево за точку a).

- **Df.** Интервал (α, β) называется максимальным интервалом существования решения $y = \varphi(x)$ системы (3.1), если это решение определено на (α, β) и не может быть продолжено ни на какой промежуток, содержащий (α, β) внутри себя.
- **Df.** Интегральной кривой системы (3.1) называется график любого ее решения $y = \varphi(x)$, определенного на максимальном интервале существования (α, β) .

Поведение решений вблизи границ максимального интервала существования.

Теорема (о поведении интегральной кривой при стремлении аргумента решения к границе максимального интервала существования). Пусть в системе (3.1) $f(x,y) \in C(G)$, тогда при стремлении аргумента любого решения к границе своего максимального интервала существования интегральная кривая стремится к границе области G, т. е. покидает любой компакт $\overline{H} \subset G$ и никогда в него не возвращается.

Следствие. Пусть $G = (a,b) \times D$, где D — область фазового пространства \mathbb{R}^n . Тогда либо решение $y = \varphi(x)$ системы (3.1) определено на всем интервале (a,b), либо при стремлении аргумента x к границе максимального интервала существования его интегральная кривая покидает любой компакт $\overline{D}_1 \subset D$ и никогда в него не возвращается.

-- ---

§6. ЗАВИСИМОСТЬ РЕШЕНИЙ ОТ НАЧАЛЬНЫХ ДАННЫХ И ПАРАМЕТРОВ

Непрерывность решений нормальной системы по начальным данным и параметрам.

Рассмотрим нормальную систему (3.1), зависящую от параметра $\mu = (\mu_1, \dots, \mu_m)$, изменяющегося в окрестности расчетной точки μ^0

$$y' = f(x, y, \mu),$$
 (3.15)

где функция $f(x, y, \mu)$ непрерывна в области $F = G \times \mathfrak{M} \subset \mathbb{R}^{n+m}$, область изменения параметров $\mathfrak{M} = \{\mu \mid ||\mu - \mu^0|| < c\}$.

Теорема (об интегральной непрерывности). Пусть в системе (3.15) функция $f(x,y,\mu)$ определена, непрерывна и удовлетворяет условию Липшица по у локально в области $F = G \times \mathfrak{M}$ пространства точек (x,y,μ) . И пусть $y = \varphi(x) = \varphi(x,\mu_0)$ есть решение системы (3.15₀), определенное на отрезке [a,b]. Тогда для системы (3.15) существуют число $\delta > 0$ и область начальных данных $U_{\delta} = \{(x_0,y^0,\mu) \mid a < x_0 < b, ||y^0 - \varphi(x_0)|| < \delta, ||\mu - \mu^0|| < \delta\}$ такие, что для любой точки $(x_0,y^0,\mu) \in U_{\delta}$ решение $y = y(x,x_0,y^0,\mu)$ определено для $\forall x \in [a,b]$ и является непрерывной функцией по совокупности своих аргументов в области $V_{\delta} = (a,b) \times U_{\delta}$ (эту теорему называют также теоремой о непрерывной зависимости решений от начальных данных и параметров).

 Дифференцируемость решений нормальной системы по начальным данным и параметрам. **Теорема** (о дифференцируемости решений по начальным данным и параметрам). Пусть в системе (3.15) функция $f(x,y,\mu)$ определена, непрерывна и имеет непрерывные f'_y , f'_μ в области F пространства точек (x,y,μ) , т. е. $f \in C^{0,1,1}_{x,y,\mu}(F)$. Тогда решение системы (3.15) $y = y(x,x_0,y^0,\mu) \in C^{1,1,1,1}_{x,x_0,y^0,\mu}(D) = C^1(D)$, где $D = \{(x,x_0,y^0,\mu) \mid (x_0,y^0,\mu) \in F, x \in I_{max}\}, I_{max}$ — максимальный интервал существования решения $y(x,x_0,y^0,\mu)$, причем

1) для $\forall j = \overline{1,m}$ вектор функция $\psi^{(j)}(x) = \partial y(x,x_0,y^0,\mu)/\partial \mu_j$ является решением задачи Коши линейной неоднородной системы

$$v' = \frac{\partial f(x, y(x, x_0, y^0, \mu), \mu)}{\partial y} v + \frac{\partial f(x, y(x, x_0, y^0, \mu), \mu)}{\partial \mu_j}$$
(3.17)

c начальными данными $x_0, \partial y^0(\mu)/\partial \mu_j;$

2) для $\forall i=\overline{1,n}$ вектор функция $\varphi^{(i)}(x)=\partial y(x,x_0,y^0,\mu)/\partial y_i^0$ является решением задачи Коши линейной однородной системы

$$u' = \frac{\partial f(x, y(x, x_0, y^0, \mu), \mu)}{\partial y} u \tag{3.18}$$

с начальными данными $x_0, e^{(i)}, \ \textit{где} \ e^{(i)} = (0, \dots, 1_i, \dots, 0);$

- 3) вектор функция $\varphi^{(0)}(x) = \partial y(x, x_0, y^0, \mu)/\partial x_0$ является решением задачи Коши той же самой линейной однородной системы в вариациях (3.17), но с начальными данным $x_0, -f(x_0, y^0, \mu)$.
- **Df.** Линейные системы (3.17) и (3.18) называются системами в вариациях вдоль решения $y(x, x_0, y^0, \mu)$.

Теорема (о существовании у решения производных высших порядков). Пусть в системе (3.15) функция $f(x,y,\mu) \in C^{0,k,k}_{x,y,\mu}(F)$, тогда решение системы (3.15) $y = y(x,x_0,y^0,\mu) \in C^{1,k,k,k}_{x,x_0,y^0,\mu}(D)$.

3⁰. Аналитичность решений нормальной системы по начальным данным и параметрам.

Теорема Ляпунова-Пуанкаре (о разложении решения в ряд по степеням начальных данных и параметров). Пусть в системе (3.15) выполнены предположения, сделанные выше для $f(x,y,\mu)$, и пусть система (3.15_0) $y' = f(x,y,\mu^0)$ имеет решение $y = \varphi(x,\mu^0)$, определенное на отрезке [a,b]. Тогда $\exists \rho > 0$ такое, что решение системы (3.15) $y = y(x,x_0,y^0,\mu)$ определено и непрерывно на множестве $[a,b] \times [a,b] \times K_{\rho}(\varphi(x_0),\mu^0)$ и для любых $x,x_0 \in [a,b]$ является вещественно-аналитической функцией переменных y^0,μ в поликруге $K_{\rho}(\varphi(x_0),\mu^0) = \{(y^0,\mu) \mid ||y^0-\varphi(x_0)|| < \rho, ||\mu-\mu^0|| < \rho\}$, т. е. $y = y(x,x_0,y^0,\mu)$ раскладывается в сходящийся степенной ряд:

$$y(x, x_0, y^0, \mu) = \sum_{p,q=0}^{\infty} y^{(p,q)}(x, x_0)(y^0 - \varphi(x_0))^p (\mu - \mu^0)^q,$$

где коэффициенты $y^{(p,q)}(x,x_0)$ непрерывны по $x,x_0 \in [a,b]$.

4⁰. Аналитичность решений нормальной системы по независимой переменной.

Теорема Коши (об аналитичности решения задачи Коши аналитической системы). Пусть в системе (3.1) f(x,y) является аналитической функцией x,y в области G, т. е. для любой точки $(x_0,y^0) \in G$ функция f раскладывается в этой точке в сходящийся степенной ряд: $f(x,y) = \sum_{k,p=0}^{\infty} f^{(k,p)}(x-x_0)^k (y-y^0)^p$, где $p = (p_1, \ldots, p_n), p_i \in \mathbb{Z}_+$, с радиусом сходимости $r = r(x_0, y^0) > 0$. Тогда решение системы $y = y(x, x_0, y^0)$ раскладывается в точке

 x_0 в сходящийся степенной ряд:

$$y(x, x_0, y^0) = \sum_{m=0}^{\infty} a^{(m)} (x - x_0)^m,$$

в котором $a^{(0)} = y^0$ и радиус сходимости которого $\rho = \rho(x_0)$ вне зависимости от величины r может быть достаточно мал.

30. Продолжимость решений почти линейных систем.

Df. Система (3.1) называется почти линейной, если функция $f(x,y) \in C(G)$, где область $G = (a,b) \times \mathbb{R}^n$, и существуют непрерывные и неотрицательные на (a,b) функции L(x), M(x) такие, что $||f(x,y)|| \le L(x) + M(x)||y||$ для $\forall (x,y) \in G$.

Теорема (о продолжимости решений почти линейных систем). Любое решение почти линейной системы продолжимо на (a,b).

§5. ЛИНЕЙНЫЕ СИСТЕМЫ. ВВЕДЕНИЕ

- 10. Существование и единственность решений.
- Df. Система (3.1) называется линейной, если она имеет вид

$$\begin{cases} y_1' = p_{11}(x)y_1 + \ldots + p_{1n}(x)y_n + q_1(x) \\ \vdots \\ y_n' = p_{n1}(x)y_1 + \ldots + p_{nn}(x)y_n + q_n(x) \end{cases}$$
(3.14)

или в векторной записи

$$y' = P(x)y + q(x),$$

где матрица $P(x) = \{p_{ij}(x)\}_{i,j=1}^n$, вектор $q(x) = (q_1(x), \dots, q_n(x))$, функции $p_{ij}(x)$ и $q_i(x)$ непрерывны на (a,b).

Таким образом, система (3.1) линейная, если f = P(x)y + q(x), а область $G = (a, b) \times \mathbb{R}^n$.

Df. Линейная система (3.14) называется однородной (ЛОС), если в ней $q(x) \stackrel{(a,b)}{\equiv} 0$, в противном случае линейная система неоднородная (ЛНС). Функция q(x) неоднородность системы (3.14).

Очевидно, что ЛОС всегда имеет тривиальное решение $y(x) \equiv 0$.

Df. Линейная система (3.14) называется вещественной, если все функции $p_{ij}(x)$, $q_i(x)$ принимают только вещественные значения.

Теорема (о существовании и единственности решений линейных систем). Для любой точки $x_0 \in (a,b)$ и для любого вектора $y^0 \in \mathbb{R}^n$ существует и единственно решение задачи Коши линейной системы (3.14) с начальными данными x_0, y^0 , определенное на некотором отрезке Пеано $P_h(x_0, y^0)$.

2^{0} . Продолжимость решений линейных систем.

Теорема (о продолжимости решений линейных систем). Любое решение линейной системы (3.14) продолжимо на (a,b).

3^{0} . Комплексные линейные системы.

решение линейной системы (3.14) с непрерывными на (a,b) комплексными коэффициентами существует, единственно и продолжимо на весь интервал (a,b).