EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

10206718

PUBLICATION DATE

07-08-98

APPLICATION DATE

17-01-97

APPLICATION NUMBER

09006485

APPLICANT: NIKON CORP;

INVENTOR: FUKUDA MITSURU;

INT.CL.

G02B 7/09 G02B 15/14

TITLE

ZOOM LENS

ABSTRACT :

PROBLEM TO BE SOLVED: To obtain a zoom lens in which the effective diameter of a 1st lens group is made small and which has high variable power ratio and high close-up photographing magnification by adopting a double focus system where a rear focus system and a front focus system are concurrently used.

SOLUTION: This zoom lens is constituted of the 1st lens group G1 having positive refractive power, a 2nd lens group G2 moving for the purpose of variable power and having negative refractive power, a 3rd lens group G3 moving for the purpose of the variable power and having the positive refractive power, a 4th lens group G4 having the negative refractive power and a 5th lens group G5 having the positive refractive power. which are arranged in order from an object side on an optical axis. At least one lens group out of the 3rd lens group G3 to the 5th lens group G5 is moved on the optical axis so as to correct an image point position, and the 1st lens group G1 is manually moved on the optical axis so as to perform manual focusing, then at least one lens group out of the 3rd lens group G3 to the 5th lens group G5 is automatically moved on the optical axis so as to perform automatic focusing.

COPYRIGHT: (C)1998,JPO

BEST AVAILABLE COPY

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-206718

(43)公開日 平成10年(1998)8月7日

(51) Int.Cl.⁶

識別記号

G 0 2 B 7/09 15/14 FΙ

G 0 2 B 7/04 15/14 Α

審査請求 未請求 請求項の数4 OL (全 15 頁)

(21)出願番号

特願平9-6485

(22)出願日

平成9年(1997)1月17日

(71)出願人 592171153

株式会社栃木ニコン

栃木県大田原市実取770番地

(71)出願人 000004112

株式会社ニコン

東京都千代田区丸の内3丁目2番3号

(72)発明者 福田 充

栃木県太田原市実取770番地 株式会社栃

木ニコン内

(74)代理人 弁理士 大西 正悟

(54) 【発明の名称】 ズームレンズ

(57)【要約】

【課題】 リアフォーカス式とフロントフォーカス式を 併用するダブルフォーカス式を採用し、第1レンズ群の 有効径を小さくでき、且つ高変倍比で高い近接撮影倍率 を有するズームレンズを得る。

【解決手段】 光軸上において物体側から順に配置された、正の屈折力を有する第1レンズ群G1、変倍のために可動であるとともに負の屈折力を有する第2レンズ群G2、変倍のために可動であるとともに正の屈折力を有する第3レンズ群G3、負の屈折力を有する第4レンズ群G4および正の屈折力を有する第5レンズ群G5からズームレンズが構成される。そして、第3レンズ群〜第5レンズ群の少なくとも一つのレンズ群を手動で光軸上移動させて手動フォーカス調整を行い、第3レンズ群〜第5レンズ群の少なくとも一つのレンズ群を自動で光軸上移動させて自動フォーカス調整を行う。

【特許請求の範囲】

【請求項1】 光軸上において物体側から順に配置され た、正の屈折力を有する第1レンズ群、変倍のために可 動であるとともに負の屈折力を有する第2レンズ群、変 倍のために可動であるとともに正の屈折力を有する第3 レンズ群、負の屈折力を有する第4レンズ群および正の 屈折力を有する第5レンズ群から構成され、

前記第3レンズ群〜第5レンズ群の少なくとも一つのレ ンズ群を光軸上移動させて像点位置の補正を行い、前記※

条件式:

【請求項2】 全変倍域内において前記第2レンズ群の 担う倍率β2と、全変倍域内において前記第3レンズ群 の担う倍率 β3と、全変倍域内において前記第4レンズ

群の担う倍率β4とが、全変倍域内のいずれの変倍状態 についても、 $0.8 < (|\beta 2|/|\beta 3|) < 1.2$

> $|\beta 2| < |\beta 4|$ | B3 | < | B4 |

を満足することを特徴とする請求項1 に記載のズームレ ンズ。

【請求項3】 前記第1レンズ群の合成焦点距離 f 1 と、前記第2レンズ群の合成焦点距離 f 2とが、全変倍 域内のいずれの変倍状態についても、

3. 0 < (f1/|f2|) < 4.0を満足することを特徴とする請求項1もしくは2に記載 のズームレンズ。

【請求項4】 前記像点位置の補正を行うレンズ群と、 前記自動フォーカス調整を行うレンズ群とは、同一レン ズ群であることを特徴とする請求項1~3のいずれかに 記載のズームレンズ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はズームレンズに関 し、特に、固体撮像素子を用いるカムコーダーや小型マ イクロカメラ等に好適なズームレンズに関する。

[0002]

【従来の技術】従来から写真カメラやビデオカメラ用と して広角域から望遠域まで高変倍比で高い光学性能を持 つ小型のズームレンズに対する要求があった。このた め、物体側から正負正負正の順に配置された5群タイプ のズームレンズなどが提供されてきている。

【0003】ところで、このようなズームレンズにおい て最も物体側の第1レンズ群を光軸上で移動させてフォ ーカス調整を行う方式、すなわちフロントフォーカス式 であると、周辺光量を確保するために、第1レンズ群に は大きな有効径が求められ、第1レンズ群が大径化する という問題がある。とのため、例えば、特開平5-21 5967号公報、特開平7-151972号公報、特開 平8-5913号公報等に開示されているように、リア フォーカス式のズームレンズが提案されている。

[0004]

【発明が解決しようとする課題】しかしながら、リアフ ォーカス式の場合には、他のレンズ群などのようなフォ ーカスレンズ群の移動を制限する部材があるためフォー カス調整のための移動に制約があり、従来のリアフォー カス式ズームレンズでは近接撮影倍率が低かった。例え 50 で、リアフォーカス式とフロントフォーカス式を併用す

ば、上記公開公報のズームレンズでは、フォーカス調整 のためのレンズ群の移動範囲の制約のために、近接撮影 倍率は大きくても $\beta = -0$. 1程度でしかなかった。

* 第1レンズ群を手動で光軸上移動させて手動フォーカス

調整を行い、前記第3レンズ群~第5レンズ群の少なく

とも一つのレンズ群を自動で光軸上移動させて自動フォ

ーカス調整を行うことを特徴とするズームレンズ。

【0005】また、従来におけるこのようなズームレン ズでは高変倍比を得るために第2レンズ群の屈折力(バ ワー)が強くなっており、一般に変倍による広角端での 歪曲収差が大きくなっている。さらに、第1レンズ群に 比べて第2レンズ群の屈折力が遥かに強いため、第1レ ンズ群を光軸上で物体側に移動させてフロントフォーカ スに使用することは、レンズ有効径が大きくなるため難 しいという問題があった。

【0006】さらに、特開昭58-129404号公報 には、正負正正正の順に配置された5群レンズ群からな り、第1レンズ群を手動で移動させて手動フォーカス調 整を行うとともに第5レンズ群を自動移動させて自動フ ォーカス調整を行うようにしたズームレンズが開示され ている。このズームレンズは収納時のコンパクト化を目 的の一つとしているため、第1レンズ群と第4レンズ群 により変倍を行っており、第1および第5レンズ群によ りフォーカス調整を行うようになっている。このズーム レンズの場合には、第1レンズ群を変倍のために使用し ているためその有効径が大きいという問題があり、ま た、光学性能も十分ではなく、変倍比も小さく、近接撮 影領域もあまり広くはないという問題がある。

【0007】以上のように、第3レンズ群以降のいずれ かのレンズ群によるリアフォーカス式では第1レンズ群 の有効径が小さくなるばかりでなく、フォーカス時の移 動量が少なくてすみ全体を小型化できるという利点があ る。しかし、他のレンズ群等のような移動を制限する部 材が近くにあるため、フォーカス調整のための移動量が 制約され、フォーカス可能な範囲が狭いという欠点を有 している。一方、第1レンズ群によるフロントフォーカ ス式の場合には、移動範囲の制限はなく、無限違から近 距離まで広いフォーカス範囲を有するが、周辺光量を確 保するため第1レンズ群の有効径を大きくする必要があ り、小型化が難しいという欠点を有している。

【0008】本発明はこのような長所短所を鑑みた上

وسية على <u>خل</u> من ال

るダブルフォーカス式を採用し、第1レンズ群の有効径 を小さくでき、且つ高変倍比で高い近接撮影倍率を有す るズームレンズを提供することを目的とする。

[0009]

【課題を解決するための手段】このような目的達成のため、本発明のズームレンズは、光軸上において物体側から順に配置された、正の屈折力を有する第1レンズ群、変倍のために可動であるとともに負の屈折力を有する第2レンズ群、変倍のために可動であるとともに正の屈折力を有する第3レンズ群、負の屈折力を有する第4レンズ群および正の屈折力を有する第5レンズ群から構成される。そして、第3レンズ群〜第5レンズ群の少なくとも一つのレンズ群を光軸上移動させて集点位置の補正を行い、第1レンズ群を手動で光軸上移動させて手動フォーカス調整を行い、第3レンズ群〜第5レンズ群の少なくとも一つのレンズ群を自動で光軸上移動させて自動フォーカス調整を行うように構成される。

【0010】上述のように第3レンズ群以降の少なくとも一つのレンズ群を光軸上移動させてフォーカス調整を行うと、変倍による広角端での周辺光量が増し、第1レンズ群でのフロントフォーカスにより周辺光量が減少することを緩和することができる。このため、本発明では、第1レンズ群を手動で移動させ、且つ第3レンズ群以降の少なくとも一つのレンズ群を自動で移動させてフォーカスを行うダブルフォーカス式を採用し、近接撮影倍率を高くするとともに第1レンズ群の有効径も小さく抑えることができるようにした。すなわち、本発明で *

【0014】条件式(1)の下限値を下回ると、第2レ

ンズ群が変倍のために移動する範囲が広がり、より広角

 $0.8 < (|\beta 2|/|\beta 3|) < 1.2$

 $|\beta 2| < |\beta 4|$ $|\beta 3| < |\beta 4|$

側に変倍域を拡げようとすると第1レンズ群と第2レン ズ群との間隔が狭くなりすぎ(両者が干渉するようにな り)、あまり広角側に変倍域を広げることができないと いう問題が生じる。また、変倍による広角端でのフロン トフォーカスは、撮影倍率が下がるとき、すなわち無限 遠方向にフォーカスするときには第1レンズ群が光軸上 で像面側に移動するため、第1レンズ群と第2レンズ群 との間隔が狭いと第1レンズ群によるフォーカス範囲が 40 制限されることになり好ましくない。さらに、条件式 (1)の範囲内のレンズと同じズーム比を得ようとする と、これに比べて全長が長くなるという問題もある。 【0015】また、条件式(1)の上限値を超える場合 には、第2レンズ群が変倍のために移動する範囲が狭く て良いので、変倍域をより広角端側に広げることは容易 である。しかし、第2レンズ群の倍率が大きいと第1レ ンズ群の入射主光線高が光軸から大きく離れるのので、 光量を確保するため第1レンズ群のレンズ有効径を大き くする必要があり好ましくない。また、第1レンズ群と 50

*は、手動によるフロントフォーカスと、自動によるリア フォーカスとを組み合わせて、両方式の欠点を補い、長 所を生かすようにした。

【0011】なお、手動フォーカスに際しては、第1レンズ群が光軸上を移動するので、変倍の如何に拘わらず同じ繰り出し量でフォーカス調整を行うことができるという長所を有する。また、自動フォーカスに際しては第1レンズ群とは別の第3レンズ群以降の少なくとも一つのレンズ群が光軸上を移動してフォーカスを行うので、

手動および自動フォーカス調整のいずれも互いに機構上の干渉無く行うことが可能である。このため、フロントフォーカス式のみのズームレンズに比べて第1レンズ群の有効径を小さくすることができ、リアフォーカス式のみのズームレンズに比べてフォーカス可能な範囲が広く、小型で近接撮影倍率の高いズームレンズを実現できる

【0012】本発明のズームレンズにおいては、全変倍域内において第2レンズ群の担う倍率β2と、全変倍域内において第3レンズ群の担う倍率β3と、全変倍域内において第4レンズ群の担う倍率β4とが、全変倍域内のいずれの変倍状態についても、次の条件式(1)~

(3)を満足するようにレンズ諸元設定を行うのが好ましい。これら条件式は高変倍比でフロントフォーカスおよびリアフォーカスをともに可能にし、且つ近接撮影倍率を高くするための条件式である。

[0013]

【数1】

 \cdots (1)

...(2)

. . . (3)

第2レンズ群との倍率の差が大きくなるので、フロントフォーカス時の収差変動が大きくなるという問題がある。

【0016】条件式(2), (3) については、これを満足しない場合には、軸外射出光線高が光軸から大きく隔たり、光量を確保するためには第3レンズ群以降のレンズ有効径を大きくする必要があり、第3レンズ群以降のレンズが大径化、大型化するという問題がある。また、フォーカス調整のための第3レンズ群以降のレンズ群の移動量が増え、効率の良いリアフォーカス調整が困難になるという問題が生じる。

【0017】本発明のズームレンズにおいては、さらに、第1レンズ群の合成焦点距離f1と、第2レンズ群の合成焦点距離f2とが、全変倍域内のいずれの変倍状態についても、次の条件式(4)を満足するようにレンズ諸元を設定するのことが望ましい。この条件式は、第1レンズ群によりフォーカス調整、すなわち、フロントフォーカスを行うときの条件を示す。

[0018]

) 【数2】

3. 0 < (f1/|f2|) < 4.0

【0019】この条件式の下限値を下回ると、変倍のた めの第2レンズ群の移動量が増えるため、広角端側への 変倍時に第2レンズ群が第1レンズ群により近づく。従 って、広角端側への変倍時に第1レンズ群と第2レンズ 群との間隔が狭くなりすぎ、両者の干渉の問題が生じる など広角域への高変倍化が困難となる。また、この条件 式の上限値を超えると、高変倍化には有利となるが、軸 外入射光線高が光軸から大きく隔たるために第1レンズ 群のレンズ有効径が大きくなってしまうという問題があ 10 る。この状態でフロントフォーカスを行わせるためには*

*レンズ有効径をさらに大きくする必要があり、第1レン ズ有効径が大きくなりすぎるという問題が生じる。 【0020】また、高変倍比でありながら第1レンズ群

 \cdots (4)

によるフロントフォーカス調整を可能にするには、次の 条件式(5)を満足するようにレンズ諸元設定を行うの が好ましい。この条件式(5)は、上記条件式(4)の 下限値をさらに限定する条件式である。

[0021]

【数3】

3. 5 < (f 1/|f 2|) < 4.0

. . . (5)

【0022】上述した理由と同様の理由から、この条件 式(5)の下限値を下回ると、物理的に広角端を広角域 側に広げることが困難になる傾向があるが、全画角が4 5度を超えるような広角域をズームレンズの広角端に持 たせるためには、条件式(5)の下限値を下回らないよ うな設定が必要である。

※【0023】なお、本発明のズームレンズにおいてはさ らに、次の条件式(6)を満足することが一層望まし 4.5

[0024]

[0028]

【数4】

1. 0 < (|f2|/|f4|) < 1. 2

【0025】との条件式(6)の下限値を下回ると、高 20 ズとしても使用できる。 変倍比のためには有利であるが、リアフォーカスのため のレンズ群の移動量が増えるので、望遠側において球面 収差がプラス側に傾き、収差補正の点からみて望遠側に 変倍域を広げることが困難になる。また、逆に広角側へ 変倍域を広げると、入射光量確保のために第1レンズ群 の有効径を大きくする必要が生じるという問題がある。 一方、条件式(6)の上限値を超えると、広角側におけ る第1レンズ群と第2レンズ群との間隔が狭くなり、広 角側に変倍域を広げることが困難となる。なお、この場 合にはリアフォーカスのためのレンズ群移動量が小さく なるが、フロントフォーカスによる近接撮影を行えるよ うにするためには、光量確保のためにレンズ有効径を大 きくする必要があり好ましくない。

【発明の実施の形態】本発明のズームレンズは、図1に 示すように、物体から順に配設された第1~第5レンズ 群G1~G5までの五つのレンズ群から構成され、各群 の屈折率は図示のように正負正負正となっている。第1 レンズ群は、物体側に凸面を向けた負メニスカスレンズ および両凸レンズの貼り合わせレンズと、物体側に凸面 を向けた正メニスカスレンズを有して構成される。第2 レンズ群は、少なくとも 1 枚の負レンズと、物体側に凹 面を向けた正メニスカスレンズおよび両凹レンズの貼り 合わせレンズを有して構成される。第3レンズ群は少な くとも1枚の正レンズを有して構成され、第4レンズ群 は少なくとも1枚の負レンズを有して構成され、第5レ ンズ群は少なくとも1枚の正レンズと、両凸レンズおよ

び物体側に凹面を向けた負メニスカスレンズの貼り合わ

せレンズとを有して構成されている。

【0026】本発明に係るズームレンズでは、第3レン ズ群以降の少なくとも一つのレンズ群のみで広角端から 望遠端まで自動フォーカス調整が可能であるが、望遠端 において第3レンズ群以降の少なくとも一つのレンズ群 による自動フォーカス調整と、第1レンズ群による手動 フォーカス調整とをともに使用すると、近接撮影倍率を 一層高くするととが可能となる。もちろん、全変倍域に おいて第1レンズ群の移動のみで手動フォーカス調整す ることも可能である。すなわち、二つのフォーカス調整 用レンズ群を任意の組み合わせで光軸方向移動させると とにより、同じ撮影倍率でも異なった共役長になる。と のことから分かるように、撮影目的に応じて様々なフォ ーカス調整が可能であり、通常では困難であった撮影領 域での撮影が容易に行えるようになる。

【0029】 このズームレンズにおいて、広角端から望 遠端に変倍するに伴い、第2レンズ群は物体側から像面 側に光軸上移動するとともに、第3レンズ群は像面側か ら物体側に光軸上移動し、第5レンズ群の光軸上での移 動により像面位置の補正と自動フォーカス調整が行わ れ、第1レンズ群の光軸上での手動移動によりフロント 側手動フォーカス調整が行われる。ここで、第5 レンズ 群により、像面位置補正とともに自動フォーカス調整と をともに行わせるようにしているので、移動のための機 構を簡単にすることができ、且つ自動フォーカスのため にレンズ群が移動できる範囲を大きく確保することがで きる。このように大きな移動範囲が確保できると、近接 撮影時のフォーカス調整が行いやすくなる。

【0027】なお、本発明に係るズームレンズでは、変 倍における広角端を長焦点側に寄せることにより、無限 遠に対するフォーカス調整が可能になり、一般撮影レン 50

[0030]

【実施例1】本発明の第1実施例に係るズームレンズ構 成を図2に示しており、このズームレンズは、図示のよ うに、第1から第5レンズ群G1~G5により構成され る。第1レンズ群G1は、物体側に凸面を向けた負メニ スカスレンズ11aおよび両凸レンズ11bの貼り合わ せレンズ11と、物体側に凸面を向けた正メニスカスレ ンズとからなる。第2レンズ群G2は、両凹レンズ21 と、物体側に凹面を向けた正メニスカスレンズ22aお よび両凹レンズ22bの貼り合わせレンズ22とから構 成される。第3レンズ群G3は、両凸レンズ31aおよ 10 は、Fno=2.8~4.0であり、画角は、2ω=3 び物体側に凹面を向けた負メニスカスレンズ31bの貼 り合わせレンズ31と、両凸レンズ32とから構成され る。第4レンズ群G4は、物体側に凹面を向けた正メニャ

*スカスレンズ41aおよび両凹レンズ41bの貼り合わ せレンズ41と、両凹レンズ42とから構成される。第 5レンズ群G5は、両凸レンズ51と、両凸レンズ52 a および物体側に凹面を向けた負メニスカスレンズ52 bの貼り合わせレンズ52と、両凸レンズ53とから構 成される。

【0031】第1実施例に係るズームレンズのレンズ諸 元を表1に示す。なお、このズームレンズの変倍倍率 は、 $\beta = -0.028 \sim -0.20$ であり、Fナンバー 8. 6° ~0. 9° である。

[0032]

【表1】

	曲率半径			
(S)	(r)	(d)	(v)	<u> </u>
	88.388	1. 2	25.35	1.80518
2)	27.791	5.0	60.14	1.62041
3)	-59.783	0.1		
4)	30.396	3.0	60.14	1.62041
5)	360.668	(可変)		
6)	-54.002	1. 0	57.53	1.67025
7)	15.224	1. 7		
8)	-32.820	1.8	25.35	1.80518
9)	-8.685	1. 0	57.53	1.67025
10)	14.926	(可変)		
11)	38.981	2. 0	48.97	1. 53172
.12)	-7.827	1.0	25.35	1.80518
13)	-17.820	0.1		
14)	13.183	1.5	82.52	1. 49782
15)	-37.249	(可変)		
16)	-19.600	1.5	27.61	1.75520
17)	-5.567	1. 0	57.03	1.62280
18)	60.748	0.8		
19)	-15.583	1. 0	54.01	1.61720
20)	8.932	(可変)		
21)	36.025	2. 5	53.75	1.69350
22)	-32.621	0.1		
23)	18.037	4. 5	82.52	1. 49782
24)	-11.551	1. 0	25.35	1.80518
25)	-44.948	0.1		
26)	18.900	2. 5	64.10	1.51680
27)	-42.501	13.1		

【0033】このズームレンズによる変倍を行う場合 に、広角端位置(POS. 1)、中間位置(POS.

※の関係を表2に示す。なお、この表には各位置での倍率 βも示している。 [0034]

2) および望遠端位置 (POS. 3) において、レンズ 第1面から物体までの距離 (d0) と上記各可変となっ

【表2】

ている面間隔 (d5, d10, d15, d20) の値と※

	POS. 1	POS. 2	POS. 3
	(広角端)	(中間)	(望遠端)
倍率8	-0.028	-0 130	-0 200

9			
d 0	274.70	274.70	274.70
d 5	3.30	15.06	16.50
d 10	25.77	7.55	2.73
d 15	6.62	13.08	16.46
d 2 0	7.92	8.32	7.79

【0035】とのように変倍操作を行ったときにおける フォーカス調整後の可変面間隔の値の例を表3に示す。 なお、この表3において、POS. 4は広角端(PO S. 1) において第1レンズ群と第5レンズ群とにより ダブルフォーカス調整した場合を示し、POS. 5は広 10 【0036】 角端 (POS. 1) において第1レンズ群のみにより手 動フォーカス調整した場合を示し、POS. 6は望遠端×

* (POS. 3) において第5レンズ群により自動フォー カス調整した場合を示し、POS. 7は望遠端(PO S. 3) において第1レンズ群および第5レンズ群によ りダブルフォーカス調整した場合を示す。

【表3】

	POS. 4	POS. 5	POS. 6	POS. 7
	(広角端)	(広角端)	(望遠端)	(望遠端)_
倍率β	-0.010	-0.016	-0.270	-0.500
d 0	748.93	454.16	236.77	140.98
d 5	1.55	1.55	16.50	20.69
d 1 0	25.77	25.77	2.73	2.73
d 15	6.62	6.62	16.46	16.46
d 2 0	7.98	7.92	3.70	3.70

【0037】第1実施例のズームレンズの場合における 上述の条件式(1)~(4)に対応する値、すなわち、 条件対応値は表4のようになる。

% [0038] 【表4】

β	-0.028	-0.130	<u>-0.200</u>
B2	0.41	0.96	1.16
1831	0.48	0.94	1.22
B 4	2.02	2.18	1.98
f 1 = 32.0	ı		
f 2 = -8.3			

 $|\beta 2|/|\beta 3| = 0.84 \sim 1.02$ f1/|f2| = 3.86

【0039】第1実施例のズームレンズにおいて、上記 POS. 1、POS. 3、POS. 4、POS. 7にそ れぞれ対応する諸収差を図3~図6に示す。これらの収 差図において、dがd線を、gがg線の収差をそれぞれ 表し、非点収差において実線がサジタル像面、破線がメ リジオナル像面を示す。

[0040]

【実施例2】本発明の第2実施例に係るズームレンズ構 成を図7に示しており、このズームレンズも、図示のよ 40 元を表5に示す。なお、このズームレンズの変倍倍率 うに、第1から第5レンズ群G1~G5により構成され る。第1レンズ群G1は、物体側に凸面を向けた負メニ スカスレンズおよび両凸レンズの貼り合わせレンズと、 物体側に凸面を向けた正メニスカスレンズとからなる。 第2レンズ群G2は、両凹レンズと、物体側に凹面を向 けた正メニスカスレンズおよび両凹レンズの貼り合わせ★

★レンズとから構成される。第3レンズ群G3は、両凸レ ンズおよび物体側に凹面を向けた負メニスカスレンズの 貼り合わせレンズと、両凸レンズとから構成される。第 4レンズ群G4は、二枚の両凹レンズから構成される。 第5レンズ群G5は、両凸レンズと、両凸レンズおよび 物体側に凹面を向けた負メニスカスレンズの貼り合わせ レンズと、両凸レンズとから構成される。

【0041】第2実施例に係るズームレンズのレンズ諸 は、 $\beta = -0.028 \sim -0.20$ であり、Fナンバー は、Fno=2.8であり、画角は、2ω=38.6°~ 1.0°である。

[0042]

【表5】

レンズ面	曲率半径	面間隔	アッベ数	屈折率
(S)	(r)	(d)	(v)	N
1)	93.014	1. 2	25.35	1.80518
2)	28.003	6.0	60.64	1.60311

	11				12
3)	-62.	805	0.1		
4)	28.	016	4.0	60.14	1.62041
5)	352.	202	(可変)		
6)	-71.	668	1. 0	57.53	1.67025
7)	16.	952	2. 0		
8)	-17.	471	2. 2	25.35	1.80518
9)	-8.	182	1. 0	58.50	1.651.60
10)	19.	056	(可変)		
11)	23.	896	3.6	48.97	1. 53172
12)	-9.	079	1. 2	25.35	1.80518
13)	-17.	328	0.1		
14)	14.	710	2. 5	82.52	1.49782
15)	-102.	121	(可変)		
16)	-29.	107	1. 0	57.03	1.62280
17)	12.	730	0.8		
18)	-21.	783	1. 0	54.01	1.61720
19)	16.	8 1 4	(可変)		
20)	50.	058	2. 0	55.60	1.69680
21)	-28.	001	0.1		
22)	27.	289	4. 0	82.52	1.49782
23)	-9.	6 1 8	1. 0	25.35	1.80518
24)	-26.	971	0.1		
25)	19.	550	3. 0	64.10	1.51680
26)	-29.	402	13.7		

【0043】 Cのズームレンズによる変倍を行う場合に、広角端位置(POS.1)、中間位置(POS.2) および望遠端位置(POS.3) において、レンズ第1面から物体までの距離(d0)と、上記各可変となっている面間隔(d5,d10,d15,d19)の値*

*との関係を表6に示す。なお、この表には各位置での倍率8も示している。

[0044]

【表6】

	POS. 1	POS. 2	POS. 3
	(広角端)	(中間)	(望遠端)
倍率 _β	-0.028	-0.130	-0.200
d 0	273.14	273.14	273.14
d 5	2.59	14.35	15.79
d 1 0	24.75	6.53	1.17
d 1 5	6.26	12.72	16.10
d 1 9	7.40	7.73	7.22

【0045】 とのように変倍操作を行ったときにおけるフォーカス調整後の可変面間隔の値の例を表7に示す。なお、この表7において、POS. 4は広角端(PO 4S. 1)において第1レンズ群と第5レンズ群とによりダブルフォーカス調整した場合を示し、POS. 5は広角端(POS. 1)において第5レンズ群のみにより自動フォーカス調整した場合を示し、POS. 6は望遠端※

- 【0045】とのように変倍操作を行ったときにおける※ (POS. 3) において第5レンズ群により自動フォーフォーカス調整後の可変面間隔の値の例を表7に示す。カス調整した場合を示し、POS. 7は望遠端(POなお、この表7において、POS. 4は広角端(PO40S. 3) において第1レンズ群および第5レンズ群によ
 - りダブルフォーカス調整した場合を示す。

[0046]

【表7】

	POS. 4	POS. 5	POS. 6	POS. 7
	(広角端)	(広角端)	(望遠端)	(望遠端)
倍率B	-0.010	-0.015	-0.280	-0.500
d 0	782.18	535.29	236.77	144.43
d 5	1.74	2.59	15.79	19.62
d 1 0	24.75	24.75	1.71	1.71

13 14 d 1 5 6 . 2 6 6 . 2 6 1 6 . 1 0 1 6 . 1 0 d 1 9 7 . 5 4 7 . 5 5 2 . 6 8 2 . 6 8

【0047】第2実施例のズームレンズの場合における * 【0048】 上述の条件式(1)~(4)に対応する値、すなわち、 【表8】

条件対応値は表8のようになる。

ß -0.028-0.130-0.2001B21 0.41 0.96 1. 15 0.48 0.95 1. 22 1831 2.02 2.18 1.98 | B4 |

f 1 = 32.0 f 2 = -8.3 $|\beta 2|/|\beta 3| = 0.84 \sim 1.02$ f 1/|f 2| = 3.86

【0049】第2実施例のズームレンズにおいて、上記POS.1、POS.3、POS.4、POS.7にそれぞれ対応する諸収差を図8~図11に示す。これらの収差図において、dがd線を、gがg線の収差をそれぞれ表し、非点収差において実線がサジタル像面、破線がメリジオナル像面を示す。

[0050]

【実施例3】本発明の第3実施例に係るズームレンズ構成を図12に示しており、このズームレンズも、図示のように、第1から第5レンズ群G1~G5により構成される。第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズおよび両凸レンズの貼り合わせレンズと、物体側に凸面を向けた正メニスカスレンズとからなる。第2レンズ群G2は、物体側に凹面を向けた負メニスカスレンズと、物体側に凹面を向けた正メニスカスレンズとがの間に凹面を向けた正メニスカスレンズとがの間に凹面を向けた正メニスカスレンズおよび両凹レンズの貼り合わせレンズとから構成さ※

※れる。第3レンズ群G3は、両凸レンズおよび物体側に 凹面を向けた負メニスカスレンズの貼り合わせレンズ と、両凸レンズとから構成される。第4レンズ群G4 は、物体側に凹面を向けた正メニスカスレンズおよび両 凹レンズの貼り合わせレンズと、両凹レンズとから構成 される。第5レンズ群G5は、両凸レンズと、両凸レン ズをよび物体側に凹面を向けた負メニスカスレンズの貼 り合わせレンズと、両凸レンズとから構成される。 【0051】第3実施例に係るズームレンズのレンズ諸 元を表9に示す。なお、このズームレンズの変倍倍率 は、β=-0.028~-0.17であり、Fナンバー は、Fno=2.5~3.3であり、画角は、2ω=4 7.4°~5.5°である。

【0052】 【表9】

レンズ面	i 曲率半径	面間隔	アッベ数	屈折率
<u>(S)</u>	(r)	(d)	(v)	N
1)	57.597	1. 2	25.35	1.80518
2)	23.164	6. 5	60.14	1.62041
3)	-100.907	0.1		
4)	25.708	3.8	60.14	1.62041
5)	134.852	(可変)		
6)	300.000	1. 0	57.53	1.67025
7)	9.186	3. 0		
8)	-35.946	2. 2	25.35	1.80518
9)	-14.807	1. 0	57.53	1.67025
10)	33.055	(可変)		
11)	16.719	2. 2	48.97	1.53172
12)	-19.826	1. 0	25.35	1.80518
13)	-35.747	0.1		
14)	15.332	1.6	82.52	1.49782
15)	-167.696	(可変)		
16)	-13.006	1.8	27.61	1.75520
17)	-7.843	1. 0	57.03	1.62280
18)	23.841	0.8		
19)	-18.514	1. 0	54.01	1.61720

15 20) 22.948 (可変) 21) 80.948 3. 0 53.75 1.69350 22) -18.463 0.1 23) 27.743 6. 0 82. 52 1. 49782 -9.854 24) 1.0 25.35 1.80518 25) -31.419 0.1 21.612 4.5 26) 64.10 1.51680 27) -25.879

【0053】このズームレンズによる変倍を行う場合 に、広角端位置(POS. 1)、中間位置(POS. 2) および望遠端位置 (POS. 3) において、レンズ 第1面から物体までの距離 (d0) と、上記各可変とな

*との関係を表10に示す。なお、この表には各位置での 10 倍率8も示している。

[0054]

【表10】

っている面間隔(d5, d10, d15, d20)の値*

	POS. 1	POS. 2	POS. 3
	(広角端)	(中間)	(望遠端)
倍率β	-0.028	-0.120	-0.170
d 0	213.38	213.38	213.38
d 5	0.75	13.18	14.79
d 1 0	25.42	7.82	3.68
d 1 5	3.75	8.92	11.45
d 2 0	5.81	4.93	4.93

【0055】とのように変倍操作を行ったときにおける フォーカス調整後の可変面間隔の値の例を表11に示 す。なお、この表11において、POS. 4は広角端 (POS. 1) において第1レンズ群と第5レンズ群と によりダブルフォーカス調整した場合を示し、POS. 5は広角端(POS. 1)において第1レンズ群のみに より手動フォーカス調整した場合を示し、POS. 6は※ ※望遠端(POS. 3) において第5レンズ群により自動 フォーカス調整した場合を示し、POS. 7は望遠端 (POS. 3) において第1レンズ群および第5レンズ 群によりダブルフォーカス調整した場合を示す。

[0056]

【表11】

	POS. 4	POS. 5	POS. 6	POS. 7
	(広角端)	(広角端)	(望遠端)	(望遠端)
倍率B	-0.010	-0.026	-0.200	-0.320
d 0	613.30	230.41	203.47	137.87
d 5	0.29	0.29	14.79	18.30
d 1 0	25.42	25.42	3.68	3.68
d 15	3.75	3.75	11.45	11.45
d 19	6.03	5.81	3.34	3.34

【0057】第3実施例のズームレンズの場合における ★【0058】 上述の条件式(1)~(4)に対応する値、すなわち、 条件対応値は表12のようになる。

【表12】

-			, ,		
_	β	<u>-0.</u>	028	-0.120	-0.170
	1821	0.	3 9	0.87	1.04
	B3	0.	48	0.89	1.08
	B 4	1.	19	1.10	1.09
f 1	= 32.0				
f 2	2 = -8.8				
16	32 1/1831	=	0.81	~0.98	
f 1	/ f2 =	3.	6 4		

【0059】第3実施例のズームレンズにおいて、上記 POS. 1、POS. 3、POS. 4、POS. 7 ሴ そ れぞれ対応する諸収差を図13~図16に示す。これら 50 がメリジオナル像面を示す。

の収差図において、dがd線を、gがg線の収差をそれ ぞれ表し、非点収差において実線がサジタル像面、破線 [0060]

【発明の効果】以上説明したように、本発明のズームレンズは、第3レンズ群〜第5レンズ群の少なくとも一つのレンズ群を光軸上移動させて像点位置の補正を行い、第1レンズ群を手動で光軸上移動させて手動フォーカス調整を行い、第3レンズ群〜第5レンズ群の少なくとも一つのレンズ群を自動で光軸上移動させて自動フォーカス調整を行うようになっている、すなわち、手動によるフロントフォーカスと、自動によるリアフォーカスとを組み合わせているので、両方式の欠点を補い、長所を生 10かすことができ、第1レンズ群の有効径を小さくでき、且つ高変倍比で高い近接撮影倍率を有するズームレンズを得ることができる。

【0061】本発明のズームレンズにおいては、全変倍域内において第2レンズ群の担う倍率β2と、全変倍域内において第3レンズ群の担う倍率β3と、全変倍域内において第4レンズ群の担う倍率β4とが、全変倍域内のいずれの変倍状態についても、前述の条件式(1)~(3)を満足するようにレンズ諸元設定を行うのが好ましく、これにより高変倍比でフロントフォーカスおよびリアフォーカスをともに可能にし、且つ近接撮影倍率を高くするととができる。

【0062】本発明のズームレンズにおいては、さらに、第1レンズ群の合成焦点距離 f 1と、第2レンズ群の合成焦点距離 f 2とが、全変倍域内のいずれの変倍状態についても、前述の条件式(4)を満足するようにレンズ諸元を設定することが望ましく、これにより、第1レンズ群の有効径は抑えたまま、広角域側での高い変倍状態で、第1レンズ群によりフォーカス調整が可能となる

【図面の簡単な説明】

【図1】本発明に係るズームレンズの各レンズ群の屈折 力配置を示す概念図である。 * *【図2】第1実施例に係るズームレンズのレンズ構成を 示す断面図である。

【図3】第1実施例のズームレンズにおけるPOS. 1 に対応する種々の諸収差を表す収差図である。

【図4】第1実施例のズームレンズにおけるPOS.3 に対応する種々の諸収差を表す収差図である。

【図5】第1実施例のズームレンズにおけるPOS. 4 に対応する種々の諸収差を表す収差図である。

【図6】第1実施例のズームレンズにおけるPOS. 7 に対応する種々の諸収差を表す収差図である。

【図7】第2実施例に係るズームレンズのレンズ構成を示す断面図である。

【図8】第2実施例のズームレンズにおけるPOS. 1 に対応する種々の諸収差を表す収差図である。

【図9】第2実施例のズームレンズにおけるPOS. 3 に対応する種々の諸収差を表す収差図である。

【図10】第2実施例のズームレンズにおけるPOS. 4に対応する種々の諸収差を表す収差図である。

【図11】第2実施例のズームレンズにおけるPOS. 7に対応する種々の諸収差を表す収差図である。

【図12】第3実施例に係るズームレンズのレンズ構成を示す断面図である。

【図13】第3実施例のズームレンズにおけるPOS. 1 に対応する種々の諸収差を表す収差図である。

【図14】第3実施例のズームレンズにおけるPOS. 3に対応する種々の諸収差を表す収差図である。

【図15】第3実施例のズームレンズにおけるPOS.

4に対応する種々の諸収差を表す収差図である。

【図16】第3実施例のズームレンズにおけるPOS. 7に対応する種々の諸収差を表す収差図である。

【符号の説明】

G1~G5 第1~第5レンズ群

[図1]

【図12】

【図16】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.