

Varianta 031

Subjectul I

a)
$$|\vec{v}| = 13$$
. b) $d(D, \Pi) = \frac{\sqrt{30}}{10}$. c) $A\left(\frac{\sqrt{10}}{5}, \frac{3\sqrt{10}}{5}\right)$; $B\left(-\frac{\sqrt{10}}{5}, -\frac{3\sqrt{10}}{5}\right)$. d) $a = -3$. e) 2. f) $a = -\frac{1}{2}$; $b = \frac{\sqrt{3}}{2}$.

Subjectul II

1. a) 8. b)
$$\frac{2}{7}$$
. c) $C_3^0 + C_3^1 + C_3^2 + C_3^3 = 2^3 = 8$. d) $x = 0$. e) $\log_3 4 > \log_4 3 \Leftrightarrow$
 $\Leftrightarrow \log_3 4 > \frac{1}{\log_3 4} \Leftrightarrow (\log_3 4)^2 > 1 \Leftrightarrow \log_3 4 > 1$, evidenta.

2. a)
$$f'(x) = 3 + 2\sin x$$
. b) $\int_0^{\pi} (3x - 2\cos x) dx = \frac{3\pi^2}{2}$.

c) $f'(x) = 3 + 2\sin x > 0, \forall x \in \mathbb{R}$, decarece $-1 \le \sin x \le 1$, deci f este strict crescatoare pe \mathbb{R}

d)
$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = f'(1) = 3 + 2\sin 1. e$$
 $\int_0^1 \frac{x}{(x^2 + 1)^2} dx = \frac{1}{2} \int_0^2 \frac{dt}{t^2} = \frac{1}{2} \left(-\frac{1}{t} \right) \Big|_1^2 = \frac{1}{4}.$

Subjectul III

a)
$$g = x^4 + 1 + 2x^2 - 2x^2 = (x^2 + 1)^2 - 2x^2 = (x^2 - \sqrt{2}x + 1)(x^2 + \sqrt{2}x + 1).$$

b) $\det V = (x_2 - x_1)(x_3 - x_1)(x_4 - x_1)(x_3 - x_2)(x_4 - x_2)(x_4 - x_3)$ (Vandermonde).
c) $(x^2 - \sqrt{2}x + 1)(x^2 + \sqrt{2}x + 1) = 0 \Rightarrow x^2 - \sqrt{2}x + 1 = 0 \Rightarrow \Delta_1 = 2 - 4 < 0 \Rightarrow$
 $\Rightarrow x_{1,2} = \frac{\sqrt{2} \pm i\sqrt{2}}{2}$ sau $x^2 + \sqrt{2}x + 1 = 0 \Rightarrow \Delta_2 = -2 < 0 \Rightarrow x_{3,4} = \frac{-\sqrt{2} \pm i\sqrt{2}}{2},$
 $x_1 \neq x_2 \neq x_3 \neq x_4 \Rightarrow \det V \neq 0 \Rightarrow rangV = 4.$

d) Vom demonstra pentru elementele de pe coloana 1: $a + bx_1 + cx_1^2 + dx_1^3 = f(x_1)$. $-d + ax_1 + bx_1^2 + cx_1^3 = dx_1^4 + ax_1 + bx_1^2 + cx_1^3 = x_1(a + bx_1 + cx_1^2 + dx_1^3) = x_1f(x_1)$ $-c - dx_1 + ax_1^2 + bx_1^3 = cx_1^4 + dx_1^5 + ax_1^2 + bx_1^3 = x_1^2(a + bx_1 + cx_1^2 + dx_1^3) = x_1^2f(x_1)$ $-b + c(-x_1) - dx_1^2 + ax_1^3 = bx_1^4 + cx_1^5 + dx_1^4 + ax_1^3 = x_1^3(a + bx_1 + cx_1^2 + dx_1^3) = x_1^3f(x_1)$ Am folosit $x_1^4 = -1$ deoarece x_1 este radacina a lui $g \Rightarrow g(x_1) = 0 \Rightarrow x_1^4 + 1 = 0$.

e)
$$\det(A \cdot V) = f(x_1) f(x_2) f(x_3) f(x_4) \begin{vmatrix} 1 & 1 & 1 & 1 \\ x_1 & x_2 & x_3 & x_4 \\ x_1^2 & x_2^2 & x_3^2 & x_4^2 \\ x_1^3 & x_2^3 & x_3^3 & x_4^3 \end{vmatrix} = f(x_1) f(x_2) f(x_3) f(x_4) \det V \Rightarrow$$

$$\Rightarrow$$
 det $A = f(x_1)f(x_2)f(x_3)f(x_4)$;

f) Singura descompunere a lui g în $\mathbf{R}[X]$ este cea de la a), care nu este descompunere in $\mathbf{Q}[X]$.

g)
$$\det A = 0 \Rightarrow f(x_1)f(x_2)f(x_3)f(x_4) = 0 \Rightarrow x_1$$
 (de exemplu) rădăcină a lui $f \Rightarrow f \vdots g$, dar grad $f < \operatorname{grad} g$ și $f \in Q[X] \Rightarrow f = 0 \Rightarrow a = b = c = d = 0$.

Subjectul IV

a)
$$a_{n+1} - a_n = \frac{1}{(n+1)!} > 0 \Rightarrow (a_n)_{n \ge 1}$$
 este strict crescator.

b)
$$b_{n+1} - b_n = a_{n+1} - a_n + \frac{1}{(n+1)!(n+1)} - \frac{1}{n!n} = \frac{-1}{n(n+1)(n+1)!} < 0 \Rightarrow (b_n)_{n \ge 1}$$
 este strict descrescator.

$$c)\lim_{n\to\infty}b_n=\lim_{n\to\infty}\left(a_n+\frac{1}{n!n}\right)=\lim_{n\to\infty}a_n+\lim_{n\to\infty}\frac{1}{n!n}=e.$$

d)
$$(a_n)_{n\geq 1}$$
 strict crescator si $\lim_{n\to\infty} a_n = e \Rightarrow a_n < e, (\forall) n \in \mathbf{N}^*. (b_n)_{n\geq 1}$ strict descrescator si $\lim_{n\to\infty} b_n = e \Rightarrow e < b_n, (\forall) n \in \mathbf{N}^*.$ Din cele doua relatii obtinem $a_{n+1} < e < b_{n+1}, (\forall) n \in \mathbf{N}^*.$

e) Din punctul c)
$$\Rightarrow a_n + \frac{1}{(n+1)!} < e < a_n + \frac{1}{n!n}, (\forall)n \in \mathbf{N}^* \Rightarrow \frac{1}{(n+1)!} < e - a_n < \frac{1}{n!n}, (\forall)n \in \mathbf{N}^*.$$

f) Presupunem prin reducere la absurd ca
$$e \in \mathbb{Q} \Rightarrow e = \frac{p}{q}, p \in \mathbb{N}, q \in \mathbb{Z}^*$$
. Aplicam relatia

de la punctul e) pentru n=q si obtinem
$$\frac{1}{(q+1)!} < \frac{p}{q} - a_q < \frac{1}{q!q}$$
. Inmultim inegalitatile cu $q!$

$$\text{vom avea } 0 < \frac{1}{q+1} < p(q-1)! - a_q q! < \frac{1}{q!} \le 1 \Rightarrow 0 < p(q-1)! - a_q q! < 1. \text{ Dar } p(q-1)! - a_q q! \in \mathbf{Z} \text{ fals.}$$

Decie∉ O

g) Fie
$$c_n = \frac{n^k}{n!} \Rightarrow c_{n+1} = \frac{(n+1)^k}{(n+1)!}; c_n > 0 \Rightarrow (c_n)_{n \ge 1}$$
 märginit

$$\frac{c_{n+1}}{c_n} = \left(\frac{n+1}{n}\right)^k \frac{1}{n+1} = \left(1 + \frac{1}{n}\right)^k \frac{1}{n+1} < 1 \Rightarrow c_{n+1} = c_n \left(1 + \frac{1}{n}\right)^k \frac{1}{n+1} \text{ sirul } (c_n)_{n \ge 1} \text{ este convergent}$$

si au limita
$$l \Rightarrow c_n \rightarrow l \Rightarrow c_{n+1} \rightarrow l \Rightarrow l = l \cdot 0 = 0 \Rightarrow \lim_{n \rightarrow \infty} \frac{n^k}{n!} = 0;$$

h) Presupunem că există
$$f, g \in \mathbf{R}[X]$$
 astfel încât $a_n = \frac{f(n)}{g(n)}, (\forall) n \in \mathbf{N}^*$. Atunci

$$\frac{1}{(n+1)!} = a_{n+1} - a_n = \frac{f(n+1)}{g(n+1)} - \frac{f(n)}{g(n)} = \frac{u(n)}{v(n)} \text{ sau } u(n) = \frac{v(n)}{(n+1)!}. \text{ Dar}$$

$$\lim_{n\to\infty} \frac{v(n)}{(n+1)!} = 0 \Rightarrow \lim_{n\to\infty} u(n) = 0 \Rightarrow u \text{ este polinomul nul, fals } \left(\text{am avea } \frac{1}{(n+1)!} = 0\right).$$