Física I, MI, flotante 29-09-2022						Ingeniería:					Parcial N°			
Turno:		Apellido y nombre:							N° alumno:					
Ejercicio n°1 1,5 Eje			Ejerc	icio n°2	2,5	Ejercicio n°3 1			Ejercicio n°4 2,5		2,5	Ejercicio n°5 1,5		1,5
a)	b)	c)	a)	b)	c)	a)	b)	c)	a)	b)	c)	a)	b)	

Problema 1: Un globo aerostático está ascendiendo con una velocidad de 12 m/s. Cuando éste se halla a una altura de 80 m sobre el suelo, se tira un paquete con una velocidad de 6m/s en dirección horizontal respecto al globo. A) ¿Cuánto tiempo tarda el paquete en tocar el suelo? B) ¿Cuál es la altura máxima que alcanza el paquete? C) Determine el vector posición y la velocidad 2 segundos después de iniciado su movimiento

Problema 2: Los bloques que están sobre la mesa tienen masas $m_1 = 1$ Kg y $m_2 = 2$ Kg. Los coeficientes de rozamiento entre los bloques y la superficie de la mesa poseen los siguientes valores: $\mu_e = 0.3$ y $\mu_d = 0.2$. Las masas de la polea y del cable son despreciables, y no hay rozamiento entre el cable y la polea.

A) Si la masa del bloque que cuelga m₀ fuese de 3Kg, hallar su aceleración. B) En dicha situación hallar la tensión del cable que une a los bloques m1 y m2. C) ¿cuál es el valor máximo de masa m₀, que se puede colgar para que el sistema esté en equilibrio?

Problema 3 El bloque de la figura, de 10 kg de masa se suelta desde el reposo en el punto A y se mueve a través de una superficie libre de fricción hasta llegar al tramo B-C el cual es el único que posee fricción. En su movimiento finalmente impactara contra el resorte comprimiéndolo 0,3 m. La constante elástica del resorte es de 2250 N/m.

A) Enuncie el teorema del trabajo y energía, explique su significado. ¿Cuándo existe energía potencial asociada al trabajo de una fuerza? B) El coeficiente de roce cinético en el tramo BC. C) La rapidez en el punto B y C.

Problema 4 Una bola de vidrio con m=1Kg se mueve a lo largo del eje x con una velocidad v_i =2 m/s. Debido a un defecto en su fabricación, se rompe en dos pedazos m_A =0,4Kg y m_B . Después de la ruptura, la masa A tiene una velocidad de 1m/s formando un ángulo de 53º con el eje x.

- A) Determinar la velocidad de la masa B después de la ruptura.
- B) Determinar el impulso que ejerce la parte B sobre la parte A.
- C) Determinar si se conserva la energía antes y después del choque.

Problema 5: Un bote se balancea hacia arriba y hacia abajo, si su desplazamiento vertical "y" viene dado por la expresión: $y = 1,2m \cos\left(\frac{t}{2s} + \frac{\pi}{6}\right)$

- A) Indicar el valor de la amplitud, frecuencia angular, fase inicial, frecuencia y período del movimiento.
- B) Hallar la expresión de la velocidad y de la aceleración en función de t.
- C) Calcular la posición inicial, la velocidad máxima y la aceración máxima del bote.

Física I, MI,	flotante 29-09-2022	Ingeniería	Parcial N
Turno:	Apellido y nombre:	:	Nº alumno: