

NAWCWPNS TP 8249

# Active Impedance Matching for Superdirective, Super-Gain HTS Antenna Arrays

by  
D. J. White  
*Comarco*  
and  
D. R. Bowling and P. L. Overfelt  
*Research & Technology Division*

MARCH 1996

**NAVAL AIR WARFARE CENTER WEAPONS DIVISION  
CHINA LAKE, CA 93555-6001**



Approved for public release; distribution is unlimited

## LESSON 10

19960409 206

# Naval Air Warfare Center Weapons Division

---

## FOREWORD

This report presents the electromagnetic circuit of a colocated electrically small dipole and loop antenna employing feedback matching. This work was performed at the Naval Air Warfare Center Weapons Division, China Lake, Calif., during fiscal year 1994 in support of an Accelerated Technology Initiative investigating High-Temperature Superconducting Antennas sponsored by the Office of Naval Research, Information, Electronics and Surveillance Science and Technology Department (ONR31). This work was monitored by Dr. Donald H. Liebenberg under fund document N0001495WX20154.

This report is a working document subject to change and was reviewed for technical accuracy by Michael M. Neel.

Approved by  
R. L. DERR, *Head*  
*Research & Technology Division*  
29 February 1996

Under authority of  
D. B. McKINNEY  
RAdm., U.S. Navy  
*Commander*

Released for publication by  
S. HAALAND  
*Director for Research & Engineering*

NAWCWPNS Technical Publication 8249

Published by . . . . . Scientific and Technical Documentation  
Collation . . . . . Cover, 66 leaves  
First printing . . . . . 70 copies

# REPORT DOCUMENTATION PAGE

Form Approved  
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                                        |                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------|
| 1. AGENCY USE ONLY <i>(Leave blank)</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 | 2. REPORT DATE<br>March 1996                                           |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 | 3. REPORT TYPE AND DATES COVERED<br>Interim—January - March 1995       |                                      |
| 4. TITLE AND SUBTITLE<br>ACTIVE IMPEDANCE MATCHING FOR SUPER-DIRECTIVE, SUPER-GAIN HTS<br>ANTENNA ARRAYS (U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 | 5. FUNDING NUMBERS<br>N0001495WX20154<br><br>ONR<br><br>Element 65153N |                                      |
| 6. AUTHOR(S)<br><br>D. J. White, D. R. Bowling, and P. L. Overfelt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                 | 8. PERFORMING ORGANIZATION<br>REPORT NUMBER<br><br>NAWCWPNS TP 8249    |                                      |
| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)<br><br>Naval Air Warfare Center Weapons Division<br>China Lake, CA 93555-6001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                                                        |                                      |
| 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)<br><br>Dr. Donald Liebenberg<br>Office of Naval Research<br>Code 312<br>Washington, DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                 | 10. SPONSORING/MONITORING<br>AGENCY REPORT NUMBER                      |                                      |
| 11. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 |                                                                        |                                      |
| 12A. DISTRIBUTION/AVAILABILITY STATEMENT<br><br>A Statement; public release; distribution unlimited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                 | 12B. DISTRIBUTION CODE                                                 |                                      |
| 13. ABSTRACT <i>(Maximum 200 words)</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 |                                                                        |                                      |
| <p>(U) The radiation pattern of a super-gain antenna array is determined by specifying the antenna element currents in both magnitude and phase. The spacing between elements in such an array is small with respect to a wavelength and interelement coupling cannot be ignored. The specification of the element currents together with this coupling produces an active input impedance to each element that may be very different from the usual antenna impedance of the individual elements.</p> <p>(U) For those active impedances with a positive real part, the element-matching network must match this impedance. Furthermore, each matching network must be supplied with the proper input signal, in magnitude and phase, to ensure a match with the specified currents. If the active impedance has a negative real part, the matching network must be replaced with negative impedance. To avoid excess loss, this impedance can be replaced with a lossless two port, presenting this impedance to the antenna with its output signal then combined (added) to the overall input signal driving the array.</p> |                                                                 |                                                                        |                                      |
| 14. SUBJECT TERMS<br><br>Antennas, Mutual Impedance, Electric Dipole, Magnetic Loop, Complementary Antennas, Colocated Antennas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                                        | 15. NUMBER OF PAGES<br>129           |
| 16. PRICE CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                 |                                                                        |                                      |
| 17. SECURITY CLASSIFICATION<br>OF REPORT<br><br>UNCLASSIFIED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18. SECURITY CLASSIFICATION<br>OF THIS PAGE<br><br>UNCLASSIFIED | 19. SECURITY CLASSIFICATION<br>OF ABSTRACT<br><br>UNCLASSIFIED         | 20. LIMITATION OF ABSTRACT<br><br>UL |

## CONTENTS

|                                                                                                                                                                                                                                                             |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Introduction .....                                                                                                                                                                                                                                          | 3   |
| Theory .....                                                                                                                                                                                                                                                | 5   |
| Numerical Examples .....                                                                                                                                                                                                                                    | 22  |
| Conclusions .....                                                                                                                                                                                                                                           | 30  |
| References .....                                                                                                                                                                                                                                            | 32  |
| Appendices:                                                                                                                                                                                                                                                 |     |
| A. Y-Parameters for Mixed-Mode Array (Y-Reciprocity Not Enforced) .....                                                                                                                                                                                     | A-1 |
| B. Y-Parameters for Mixed-Mode Array (Y-Reciprocity Enforced) .....                                                                                                                                                                                         | B-1 |
| C. MathCad Analysis for Mixed-Mode Array (Y-Reciprocity Enforced) .....                                                                                                                                                                                     | C-1 |
| D. MathCad Analysis for Mixed-Mode Array (Y-Reciprocity Enforced) .....                                                                                                                                                                                     | D-1 |
| E. MathCad Analysis to Calculate Required Coupling Factor and<br>Additional Phase Shift .....                                                                                                                                                               | E-1 |
| F. Touchstone Analysis of Mixed-Mode Array (No Feedback) .....                                                                                                                                                                                              | F-1 |
| G. Touchstone Analysis of Mixed-Mode Array (Weak Coupled Feedback) .....                                                                                                                                                                                    | G-1 |
| H. Touchstone Analysis of Mixed-Mode Array (Optimum Feedback -<br>Determined by Touchstone Opt.) .....                                                                                                                                                      | H-1 |
| I. Touchstone Analysis of Mixed-Mode Array (Optimum Feedback -<br>Determined by MathCad) .....                                                                                                                                                              | I-1 |
| J. Derivation of Z-Matrix for a Tee-Section .....                                                                                                                                                                                                           | J-1 |
| Figures:                                                                                                                                                                                                                                                    |     |
| 1. Power Divider, Phase Shifters, and Matching Circuits to Produce Specified<br>Currents $I_1, I_2, \dots, I_n$ on an Antenna Array Where Antenna Elements Are<br>Represented by Their Reflection Coefficients, $\Gamma_1, \Gamma_2, \dots, \Gamma_n$ ..... | 6   |
| 2. Two-Element (Antenna) Array as a General Two-Port Network With<br>Attendant (S), (Y), and (Z) Matrices .....                                                                                                                                             | 9   |
| 3. Two-Element Array as Represented by the Active Reflection Coefficients<br>$\Gamma_1, \Gamma_2$ , With Matching Networks ( $S_A$ ) and ( $S_B$ ) .....                                                                                                    | 10  |
| 4. Two-Element Array Matched System in Which Neither Input Impedance,<br>$Z_1$ nor $Z_2$ , has a Negative Real Part .....                                                                                                                                   | 14  |

## Figures (Contd.)

|                                                                                                                                                                                                           |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 5. Termination of Port 1 of a Two-Element Array in an Impedance $Z_a$ to Maintain the Required Current, $I_1$ , at That Port for the Case Where the Active Impedance $Z_1$ Has a Negative Real Part ..... | 15 |
| 6. Represents Figure 5 by Breaking Figure Into Two Parts Using the Concept of Active Impedances and Reflection Coefficients .....                                                                         | 16 |
| 7. Lossless Two-Port Network, $(S_A)$ , to Feed Back the Excess Signal, $ b_1  >  a_1 $ , in the Case of an Active Negative Resistance of Port 1 of the Array .....                                       | 17 |
| 8. Circuit Equivalent to Figure 7 When the Proper Operating Currents $I_1$ and $I_2$ (or Their Ratio) Are Maintained .....                                                                                | 20 |
| 9. Colocated Antenna Geometry for Method of Moments Analysis .....                                                                                                                                        | 24 |

## INTRODUCTION

Electrically small antennas are sometimes required by missile systems because of limited space, reduction in radar cross section, or desired operation at a longer wavelength.

Where a longer operating wavelength supplies the motivation, super-gain/super-directive arrays represent a potential solution. Antenna gain is defined as  $4\pi$  times the radiation intensity in a given direction divided by the net power accepted by the antenna (Reference 1). Radiation intensity is defined as the real part of the complex Poynting vector times  $r^2$ , where  $r$  is the distance from the antenna to the observation point. (This multiplication removes the  $1/r$  dependence of the radiated electromagnetic fields.)

Therefore, antenna gain is closely related to the antenna efficiency that we define as the ratio of the total radiated power to this same input power. The efficiency is  $1/4\pi$  times the integral of the gain over the increment of solid angle on a sphere enclosing the antenna.

The requirement for high efficiency leads to the choice of a high-temperature superconductor (HTS) because antennas that are small with respect to a wavelength have a high-conductor loss as compared to their radiation resistance when conventional conductors are used.

Directivity is defined as the maximum directive gain. In turn, directive gain is the ratio of the radiation intensity in a certain direction to the average radiation intensity. The average radiation intensity is the total power radiated divided by  $4\pi$ , which is the average intensity per unit solid angle (steradian).

The directive gain is  $4\pi$  times the radiation intensity in a given direction divided by the power actually radiated. Antenna gain is the antenna efficiency times the directive gain, where both have the same reference direction, so that the maximum antenna gain is the efficiency times the directivity (Reference 1).

In general, the smaller the antenna or an antenna array is with respect to a wavelength, the greater the beamwidth and the lower the directivity is expected to be. Typically for an antenna array occupying some area, the directivity can be expected, as this area is made smaller, to decrease as four  $\pi$  times this area divided by the wavelength squared. This is the directivity of a uniformly excited rectangular aperture (Reference 1).

A superdirective array, then, is a small array that exhibits a much higher directivity than a uniformly excited rectangular aperture of the same area. A super-gain array is one that not only has a high directivity but shows much higher efficiency than might be expected, considering the usual ohmic (conductor) losses.

Although it seems counterintuitive, small arrays could, theoretically, have directivities exceeding this nominal value by properly driving the element currents in magnitude and

phase. Proof can be seen by considering two small dipoles separated by a fraction of a wavelength. The dipoles produce fields each according to the currents driving them, and the total field at any point in space is the superposition of these fields. It is important to note that the total power radiated is not the sum of the powers these two dipoles would radiate if each were considered in isolation.

For example, if the two antennas were separated by many wavelengths with currents in phase and equal in magnitude, the total power radiated would be essentially  $2P_r$ , where  $P_r$  is the radiated power produced by one dipole driven with this current. As the separation is decreased, the total power radiated would increase until, at zero separation, it becomes  $4P_r$ —the equivalent of driving one dipole with twice the current. Consequently, the directivity of the widely separated dipoles decreases to that of a single infinitesimal dipole—1.27.

On the other hand, if these dipoles were driven by equal currents 180 degrees out of phase, the two currents would still be  $2P_r$  when the elements are widely separated. However, as the spacing is decreased, the power radiated decreases, going to zero when the separation is zero. Zero separation is equivalent to driving one dipole with zero current.

The directivity is a different matter. Imagine these dipoles as oriented in the Z-direction, spaced along the X-axis at  $L/2$  and  $-L/2$  about the origin. No radiation will occur in the YZ plane ( $X = 0$ ) because the superposed fields will exactly cancel at that point. However, along the X-axis the superposed fields vary as  $1 - \exp(-jkL)$ .

If  $L$  is small then the total (superposed) field is small, but as long as  $L$  is greater than zero, some radiation will occur in the X-direction. For example, if  $L = \lambda/16$ ,  $1 - \exp(-jkL) = 0.0761 - j 0.3827$  with a magnitude of 0.3902. While this is not the  $1 + \exp(jkL) = 1.9299 - j 0.3827$  with magnitude 1.9675, which would be the case if the currents were in phase, some power radiates in the X-direction but not in the Y-direction, and the directivity of the out-of-phase dipoles is greater than that of the in-phase dipoles.

This dependence of the directivity and total power radiated on the relative phases and magnitudes of the driving currents can be explained by antenna coupling. What is described is the inherent coupling between two dipoles or antennas that obviously become large as the antenna separation goes to zero. Additional coupling exists in the case of actual rather than theoretical antennas because of the presence of driving and mounting structures, ground planes, etc.

The example of two dipoles illustrates another unfortunate tendency of small superdirective arrays, the trade-off in power radiated for directivity. In going from something approaching  $4P_r$  with in-phase driving currents to something just greater than zero power radiated with out-of-phase currents of the same magnitude, the radiation resistance of each dipole evidently is decreased because the power radiated is essentially the current magnitude squared times the radiation resistance.

Clearly, at least for conventional antenna designs (Reference 2), the conductor losses as compared to the radiation resistances are even more important for superdirective arrays than for the small antennas that form the elements of the array. This loss increases the need for HTS for both the elements and the matching circuits for the elements, and further increases the difficulty of designing matching circuits because the "Q" is increased.

This report examines the problem of matching into the active impedances, which are the result of this interelement coupling, and lays out a procedure for determining the required scattering parameters for the element-matching circuits given the driving currents.

## THEORY

The radiation integral for the vector potential in the time harmonic case is

$$\bar{A} = \frac{\mu}{4\pi} \iiint \frac{\bar{J}(\bar{r}')}{|\bar{r} - \bar{r}'|} e^{-jk|\bar{r} - \bar{r}'|} d\bar{v} \quad (1)$$

where

$\bar{J}$  = current density

For wire antennas—dipoles, monopoles, loops—this reduces to the integral

$$\bar{A} = \frac{\mu}{4\pi} \int \frac{\bar{I}(\bar{r}')}{|\bar{r} - \bar{r}'|} e^{-jk|\bar{r} - \bar{r}'|} d\bar{\ell} \quad (2)$$

where

$\bar{I}$  = current in the wire elements

The pattern and polarization, the magnitudes and phases of the electromagnetic fields, near and far, are determined by the vector potential  $\bar{A}$ . This relationship is true whether our antenna is a single continuous antenna or an array of individual antenna elements, each with a different magnitude and phase of the driving current.

Put another way, given an array of antennas, we can, in principle, shape the antenna pattern and determine the radiation direction by specifying the drive currents on the antenna elements without regard to how such drive currents could be realized in proper relative magnitude and phase in practice.

For commonly implemented antenna arrays where the spacing between elements is on the order of a half wavelength and the coupling between elements is small enough to be ignored, the problem of supplying the required currents can be solved in a straightforward manner. Conceptually, the input signal to the  $N$ -element array is divided by an  $N$ -way power divider into  $N$  signals of the proper magnitudes (Figure 1).



FIGURE 1. Power Divider, Phase Shifters, and Matching Circuits to Produce Specified Currents  $I_1, I_2, \dots, I_n$  on an Antenna Array Where Antenna Elements Are Represented by Their Reflection Coefficients,  $\Gamma_1, \Gamma_2, \dots, \Gamma_n$ .

The power divider is designed to give zero reflection at the input port, if output ports 1 through  $N$  are terminated in the characteristic impedance  $Z_0$ . The (uneven) power divider is designed to give outputs  $b_1$  through  $b_N$  of the proper magnitude to maintain the specified current magnitudes  $I_1$  through  $I_N$  of the inputs to the antenna elements.

Each power divider output port is followed by an (ideal) phase shifter with the phase adjusted to maintain the proper phase relations (at a given frequency) between the currents  $I_{1,2-N}$ . These phase shifters are followed by matching networks ( $S_j$ ), which match into the antenna element impedances such that  $b_{j1} = 0$  at the matching network inputs.

If, as is often the case for the usual antenna array, the elements are all identical,  $\Gamma_1 = \Gamma_2 = \dots = \Gamma_n = \Gamma$ , the problem is greatly simplified. In general,

$$Z_0 I_j = b_{j2} - a_{j2} = b_{j2} (1 - \Gamma_j) \quad (3)$$

For a lossless perfect match, the matching condition is

$$S_{j22} = \Gamma_j^* \quad (4)$$

where \* indicates complex conjugate. Furthermore, in general,

$$b_{j2} = \frac{S_{j12} e^{j\phi_j} b_j}{1 - S_{j22} \Gamma_j} \quad (5a)$$

If the array elements are identical, making the matching networks identical (as, indeed, they must be, theoretically, to within an arbitrary phase shift) is convenient and Equation (5a) becomes

$$b_{j2} = \frac{S_{12} e^{j\phi_j} b_j}{1 - S_{22} \Gamma} \quad (5b)$$

It follows that

$$\frac{b_{j2}}{b_{k2}} = \frac{b_j e^{j\phi_j}}{b_k e^{j\phi_k}} = \frac{I_j}{I_k} \quad (6)$$

Therefore, the power divider itself needs only to produce outputs in which the ratios of its output magnitudes are the same as the relative magnitudes of the antenna currents, while the phase shifters must be adjusted to yield a relative phase shift,  $\phi_j - \phi_k$  equal to the relative antenna current phase shift,  $\phi_{Ij} - \phi_{Ik}$ .

The problem of nonidentical antenna elements is more involved but still straightforward. We have

$$\frac{I_j}{I_k} = \frac{b_{j2} (1 - \Gamma_j)}{b_{k2} (1 - \Gamma_k)} = \frac{S_{j12} e^{j\phi_j} (1 - \Gamma_j)}{1 - S_{j22} \Gamma_j} \cdot \frac{1 - S_{k22} \Gamma_k}{S_{k12} e^{j\phi_k} (1 - \Gamma_k)} \frac{b_j}{b_k}$$

or

$$\frac{b_j}{b_k} = \frac{S_{k12}(1-\Gamma_k)(1-S_{j22}\Gamma_j)}{S_{j12}(1-\Gamma_j)(1-S_{k22}\Gamma_k)} \cdot \frac{e^{j\phi_k} I_j}{e^{j\phi_j} I_k} \quad (7)$$

While Equation (7) is more complicated than Equation (6), all the values are known so finding the power divider ratios and the setting of the phase shifters is possible.

In our case, however, we are dealing with arrays and array elements that, although small with respect to a wavelength, are generally closely spaced with values of the antenna input currents, which differ widely in both phase and magnitude. We cannot ignore the interelement coupling because changing the current on any one antenna changes all the input currents, and this effect must be accounted for.

The procedure for active impedance matching in the case of nonnegligible interelement coupling is also, with pitfalls, straightforward, provided the array impedance ( $Z$ ), admittance ( $Y$ ), or scattering ( $S$ ) matrix is known. Typically, this information is supplied by a design (CAD) program but could also be supplied by measurement.

The ( $S$ ), ( $Y$ ), and ( $Z$ ) matrices are related by the matrix equations

$$(Z) = (Y)^{-1} = Z_0((U) + (S))((U) - (S))^{-1} \quad (8a)$$

and

$$(S) = ((Z_0) + (Z))^{-1}((Z) - (Z_0)) \quad (8b)$$

where

$$\begin{aligned} (U) &= \text{unit matrix} \\ (Z_0) &= Z_0(U). \end{aligned}$$

The assumption is made that the same reference impedance,  $Z_0$ , is used throughout.

The active impedance-matching procedure is easiest to deal with by considering the two-element array shown in Figure 2. If  $N$ -antennas are in the array, the array can be considered an  $N$ -port for purposes of active impedance matching.

Referring to the two-port network in Figure 2, the assumption is made that the currents  $I_1$  and  $I_2$  are specified to give a particular array performance—pattern, radiation direction—and that ( $Z$ ) is known (or derivable from a known ( $Y$ ) or ( $S$ ) matrix).



FIGURE 2. Two-Element (Antenna) Array as a General Two-Port Network With Attendant (S), (Y), and (Z) Matrices.

In this case

$$V_1 = Z_{11}I_1 + Z_{12}I_2 \quad (9a)$$

$$V_2 = Z_{12}I_1 + Z_{22}I_2 \quad (9b)$$

and the active input impedances of ports 1 and 2 are then

$$Z_1 = V_1/I_1 = Z_{11} + Z_{12} I_2/I_1 \quad (10a)$$

$$Z_2 = V_2/I_2 = Z_{22} + Z_{12} I_1/I_2 \quad (10b)$$

It follows that  $Z_1 = R_1 + jX_1$  and  $Z_2 = R_2 + jX_2$  are actual fixed, complex impedances, if we are to use a particular antenna array with specified antenna/input currents. The actual problem to be solved is then represented by Figure 3, where

$$\Gamma_i = \frac{Z_i - Z_0}{Z_i + Z_0}; i = 1, 2 \quad (11)$$



FIGURE 3. Two-Element Array as Represented by the Active Reflection Coefficients  $\Gamma_1$ ,  $\Gamma_2$ , With Matching Networks  $(S_A)$  and  $(S_B)$ .

In essence, we have decoupled the input ports of our antenna array. In so doing, since

$$I_1 = \frac{1}{Z_0} (b_{a2} - a_{a2}) \quad (12a)$$

$$I_2 = \frac{1}{Z_0} (b_{B2} - a_{B2}) \quad (12b)$$

designing matching networks for  $\Gamma_1$  and  $\Gamma_2$  is not sufficient. We must employ the proper drive levels  $a_{A1}$  and  $b_{B1}$  in magnitude and phase so that the specified currents,  $I_1$  and  $I_2$ , are maintained. Failure to do so means not only are the currents at the antenna inputs not the designed ones, but the active impedances are changed and the matching networks no longer supply a match.

The extension to an  $N$ -element array is straightforward. Here the active input impedance at the  $j^{\text{th}}$  port is given by

$$Z_j = Z_{j1} \frac{I_1}{I_j} + Z_{j2} \frac{I_2}{I_j} + \dots + Z_{jj} + \dots + Z_{jN} \frac{I_N}{I_j} \quad (13)$$

The problem becomes one of finding the proper matching network for each  $Z_j$  and finding the correct magnitude and phase of the drive level for each matching network.

Returning to Figures 2 and 3—the simple example of a two-port network—rewrite Equations (10(a)) and (10(b)) as (Reference 2)

$$Z_1 = R_1 + jX_1 = R_{11} + \frac{|I_2|}{|I_1|} R_{12} \cos \phi - \frac{|I_2|}{|I_1|} X_{12} \sin \phi \\ (14a)$$

$$+ j \left( X_{11} + \frac{|I_2|}{|I_1|} X_{12} \cos \phi + \frac{|I_2|}{|I_1|} R_{12} \sin \phi \right) \\ Z_2 = R_2 + jX_2 = R_{22} + \frac{|I_1|}{|I_2|} R_{12} \cos \phi + \frac{|I_1|}{|I_2|} X_{12} \sin \phi \\ (14b)$$

$$+ j \left( X_{22} - \frac{|I_1|}{|I_2|} R_{12} \sin \phi + \frac{|I_1|}{|I_2|} X_{12} \cos \phi \right)$$

where  $\phi$  is the relative phase shift between  $I_2$  and  $I_1$ .

Depending on the angle  $\phi$ , the relative magnitudes of  $I_1$  and  $I_2$ , the magnitude of  $R_{12}$ , and the magnitude and sign of  $X_{12}$ , the active impedance,  $Z_1$  or  $Z_2$ , may possess a negative resistance (real part), even though  $R_{11}$  and  $R_{22}$  must be positive.

Physically, we associate a negative resistance with amplification, but, in this case, the voltage wave leaving an antenna input port is larger in magnitude than the wave entering the port. The excess signal is supplied via coupling to the other ports. In Figure 2, if  $R_1$  is negative,  $|b_1| > |a_1|$  and the extra magnitude for  $b_1$  is supplied by the input,  $a_2$ , to port 2 via the coupling between the antenna elements.

For the two-port network in Figure 2, only one port can exhibit a negative resistance for the active impedance, the other must be positive. Similarly, conservation of energy requires, for an  $N$ -element array, that at least one of the ports must show a positive active input resistance.

If the real part of  $Z_i$  is negative, substitution into Equation (11) always leads to  $|\Gamma_i| > 1$ . Conversely, if the real part is positive,  $|\Gamma_i| < 1$ , and if it is zero,  $|\Gamma_i| = 1$ .

The process of active impedance matching divides naturally into two cases: where  $R_i > 0$  and  $R_i \leq 0$ . We will deal with the simplest case first, where the real part of the active impedance is positive, as determined by Equations (14(a)) and (14(b)).

First, the active reflection coefficients are found from Equation (11). A perfect match implies  $b_{A1} = b_{B1} = 0$  (Figure 3). To avoid loss in the matching network,  $(S_A)$  and  $(S_B)$

must be unitary, leading to the following lossless two-port network conditions (Reference 3):

$$|S_{H11}| = |S_{H22}| \quad (15a)$$

$$|S_{H12}|^2 + |S_{H22}|^2 = 1 \quad (15b)$$

$$2\phi_{H12} = \phi_{H11} + \phi_{H22} \pm \pi; H = A, B \quad (15c)$$

(The assumption is made that the  $S_{ij}$  are voltage wave-scattering coefficients and the same reference impedance,  $Z_0$ , is used everywhere).

To match any reflection coefficient,  $\Gamma (|\Gamma| < 1)$ , with a lossless two-port network, we must have

$$S_{H22} = \Gamma_i^* \quad ; \quad H = A, B \quad , \quad i = 1, 2 \quad (16)$$

Thus, knowing  $\Gamma_i$ , we know  $|S_{H22}|$ ,  $\phi_{H22}$  and, with Equations (15(a)) through (15(c)),  $|S_{H11}|$  and  $|S_{H12}|$ . One of the phase shifts in Equation (15(c)),  $\phi_{H12}$  or  $\phi_{H11}$ , can be chosen arbitrarily. This is readily seen by a Gedanken experiment: adding a length of line of characteristic impedance  $Z_0$  and phase shift  $\phi_L$  to port 1 creates a new two-port network with reflection coefficients of the same magnitude, with  $\phi_{H12}$  increased by  $\phi_L$  and  $\phi_{H11}$  by  $2\phi_L$ .

Although the choice of  $\phi_{H11}$  or  $\phi_{H12}$  is arbitrary, some choices can lead to difficulty. For example, choosing  $\phi_{H11} = 0$  may lead to a scattering matrix (S) that cannot be converted to a (Z) matrix since

$$\text{DET}(U - (S)) = 0 \quad (17)$$

Because working with (Z) rather than (S) may be desirable at UHF/VHF frequencies, where small lumped elements are viable, it is probably wise to avoid the situation of Equation (17). A choice that works well is

$$\phi_{H11} = \phi_{H22} \quad ; \quad H = A, B \quad (18)$$

Having made this choice, we have from Equations (15(a)) through (15(c))

$$|S_{H11}| = |S_{H22}| = |\Gamma_i| \quad ; \quad H = A, i = 1 \text{ or } H = B, i = 2 \quad (19a)$$

$$|S_{H12}|^2 + |\Gamma_i|^2 = 1 \quad (19b)$$

$$2\phi_{H12} = -2\phi_i \pm \pi \quad (19c)$$

where

$$\Gamma_i = |\Gamma_i| \exp(j\phi_i)$$

Although the scattering parameters of the matching networks have now been specified, the proper input currents  $I_1$  and  $I_2$  must be maintained, if there is to be no reflection loss ( $b_{A1} = b_{B1} = 0$  in Figure 3). Thus, the drive levels,  $a_{A1}$  and  $a_{B1}$ , must be found as a function of  $I_1$  and  $I_2$  for the array to work as designed.

From Figure 3:  $b_{A2} = S_{A12} a_{A1} + S_{A22} \Gamma_1 b_{A2}$  or  $b_{A2} = \frac{S_{A12} a_{A1}}{1 - |\Gamma_1|^2}$ . Then, because

$a_{A2} = \Gamma_1 b_{A2}$ , we have

$$I_1 = \frac{1}{Z_0} (b_{A2} - a_{A2}) = \frac{1}{Z_0} (1 - \Gamma_1) b_{A2} = \frac{1}{Z_0} (1 - \Gamma_1) \frac{S_{A12} a_{A1}}{1 - |\Gamma_1|^2}$$

and thus

$$a_{A1} = \frac{Z_0 (1 - |\Gamma_1|^2) I_1}{S_{A12} (1 - \Gamma_1)} \quad (20)$$

By analogy

$$a_{B1} = \frac{Z_0 (1 - |\Gamma_2|^2) I_2}{S_{B12} (1 - \Gamma_2)} \quad (21)$$

Equations (20) and (21) are special cases of the general equation

$$a_1 = \frac{Z_0(1 - S_{22}\Gamma)}{S_{21}(1 - \Gamma)} I \quad (22)$$

which relates the voltage wave,  $a_1$ , of the input of port 1 of a two-port network to the current,  $I$ , through the termination at port 2. This equation applies regardless of match or loss in the two-port network, reducing to Equations (20) and (21) for the lossless matched cases.

At this point the active impedance matching is completed, although the problem remains of designing a power divider to supply  $a_{A1}$  and  $a_{B1}$ , as they are assumed coherent, and thus proceeding ultimately from the same source or generator. The complete block diagram for a two-element array is shown in Figure 4.



FIGURE 4. Two-Element Array Matched System in Which Neither Input Impedance  $Z_1$  nor  $Z_2$  Has a Negative Real Part. PD is a power divider designed to yield  $a_{A1}$  and  $a_{B1}$  in the proper magnitudes and phases to give the design values of the input currents  $I_1$  and  $I_2$ .

For the case where all the active input impedances,  $Z_i$ , have a positive real part, the extension to an  $N$ -element array ( $N$ -port) is obvious and straightforward.

We now deal with the case for negative real parts of the active input impedances,  $Z_i$ , again using Figure 2 as an example. Assume that  $Z_1$  exhibits a negative resistance; then  $Z_2$  must have a positive real part. A matching network for port 2 can be formulated as previously by setting  $S_{B22} = \Gamma_2^*$ .

However, matching port 1 with a passive network is impossible because  $|\Gamma_1| \geq 1$ . (The equal sign is employed because, strictly speaking, if there is zero loss,  $R_1 = 0$ , and you cannot match into  $Z_1$  because no physical means of dissipating power exists.) That  $|\Gamma_1| \geq 1$  can easily be shown.

$$|\Gamma_1|^2 = \left| \frac{Z_1 - Z_0}{Z_1 + Z_0} \right|^2 = \left| \frac{-|R_1| + jX_1 - Z_0}{-|R_1| + jX_1 + Z_0} \right|^2$$

or

$$|\Gamma_1|^2 = \frac{-(|R_1| + Z_0) + jX_1}{(Z_0 - |R_1|) + jX_1} \cdot \frac{-(|R_1| + Z_0) - jX_1}{(Z_0 - |R_1|) - jX_1}$$

and

$$|\Gamma_1|^2 = \frac{(|R_1| + Z_0)^2 + X_1^2}{(Z_0 - |R_1|)^2 + X_1^2} \quad (23)$$

Since  $(Z_0 + |R_1|)^2 \geq (Z_0 - |R_1|)^2$ , we must have  $|\Gamma_1| \geq 1$ .

However, port 1 must be terminated in a reflection coefficient that produces the proper current,  $I_1$ , at this port. Thus, we need to deal with the situation depicted in Figure 5.



FIGURE 5. Termination of Port 1 of a Two-Element Array in an Impedance  $Z_A$  to Maintain Required Current,  $I_1$ , at That Port for the Case Where the Active Impedance  $Z_1$  Has a Negative Real Part.

The first step is to determine the value of  $Z_A$  needed to ensure the correct current,  $I_1$ , of port 1 of the array. Because Figure 5 can be represented by Figure 6, this determination is straightforward. We find that

$$a_1 = \Gamma_A b_1 = \Gamma_A \Gamma_1 a_1 \quad (24)$$

Therefore

$$\Gamma_A = 1/\Gamma_1 \quad (25)$$



FIGURE 6. Represents Figure 5 by Breaking Figure Into Two Parts Using the Concept at Active Impedance and Reflection Coefficients.

The real part of  $Z_1$  is negative, therefore

$$Z_1 = -|R_1| + jX_1 \quad (26)$$

From Equation (23) it follows that

$$\frac{Z_A - Z_0}{Z_A + Z_0} = \frac{Z_1 + Z_0}{Z_1 - Z_0}$$

or

$$Z_A = -Z_1 \quad (27a)$$

$$R_A = |R_1| \quad (27b)$$

$$X_A = -X_1 \quad (27c)$$

The required input drive level,  $a_{B1}$ , for a specific value of the current  $I_2$  and, hence,  $I_1$ , can still be found from Equation (21). However, since the ratio  $I_2/I_1$  generally determines the antenna array performance in terms of pattern, sidelobe level, and directivity, this ratio evidently will remain unchanged regardless of  $a_{B1}$ , once  $(S_B)$  and  $Z_A$  are determined for Figure 5.

If  $Z_2$  instead of  $Z_1$  has the negative real part, we obviously would design a matching network  $(S_a)$  as before and terminate port 2 of the array with  $Z_B = |R_2| - jX_2$ . Furthermore, the extension to an  $N$ -element array also is obvious.

Unfortunately, a serious problem exists in dealing with an active negative resistance in the fashion of Figures 5 and 6. Because  $R_A$  is a positive real resistance, it represents actual power loss, lowering the radiation efficiency of an array. This efficiency loss tends to negate the reason for using HTS antenna elements in the first place.

One solution to this problem is shown in Figure 7. Port 1 feeds a lossless two-port network ( $S_A$ ) with

$$S_{A22} = \frac{1}{\Gamma_1} \quad (28)$$



FIGURE 7. Lossless Two-Port Network, ( $S_A$ ), to Feed Back the Excess Signal, ( $b_1$ ) > ( $a_1$ ), in the Case of an Active Negative Resistance of Port 1 of the Array.

and the excess signal,  $b_{A1}$ , is fed to a reflectionless power combiner, ( $S_C$ ), to be combined with the overall input signal,  $a_{C1}$ , to produce  $a_{B1}$ . This combiner, to work properly, requires  $S_{C11} = S_{C22} = 0$  and the coupling coefficients,  $S_{C14}$  and  $S_{C24}$ , must be chosen such that

$$b_{C4} = S_{C14}a_{C1} + S_{C24}a_{C2} = 0 \quad (29)$$

Because  $S_{A22}$  is fixed by Equation (28),  $|S_{A11}|$  and  $|S_{A12}|$  are also known via Equations (15(a)) and (15(b)). For a reflectionless combiner,  $S_{A11}$  evidently has no effect on the operation of the circuit. There is no need to obtain a value for  $\phi_{A11}$ , nor for that matter,  $\phi_{A12}$ , except that as

$$a_{C2} = b_{A1}e^{j\theta} = |S_{A12}|b_1e^{j\theta}e^{j\phi_{A12}} = |S_{A12}|b_1|\exp(\theta + \phi_{A12} + \phi_{b1}) \quad (30)$$

the phase shift,  $\theta$ , must be such that Equation (29) is satisfied. Because  $b_{B1}$  and  $a_{c4}$  are zero in Figure 7, the values of  $S_{c33}$  and  $S_{c44}$  are not required in the analysis. But as a practical matter, to take care of any residual reflections from  $S_{B11}$  and  $Z_0$  due to manufacturing errors and to simplify the mathematics, we set these values equal to zero also.

It is also evident from the circuit as shown that  $S_{c12} = 0$  is required to avoid dissipating power in the source impedance. By the previous arguments, we will set  $S_{c34} = 0$  as well. The combiner scattering matrix now has the form

$$(S_c) = \begin{pmatrix} 0 & 0 & S_{c13} & S_{c14} \\ 0 & 0 & S_{c23} & S_{c24} \\ S_{c13} & S_{c23} & 0 & 0 \\ S_{c14} & S_{c24} & 0 & 0 \end{pmatrix} \quad (31)$$

To make  $(S_c)$  lossless, the unitary matrix condition is imposed, leading to the following set of equations:

$$|S_{c13}|^2 + |S_{c14}|^2 = 1 \quad (32a)$$

$$S_{c13}S_{c23}^* + S_{c14}S_{c24}^* = 0 \quad (32b)$$

$$|S_{c23}|^2 + |S_{c24}|^2 = 1 \quad (32c)$$

$$|S_{c13}|^2 + |S_{c23}|^2 = 1 \quad (32d)$$

$$S_{c13}S_{c14}^* + S_{c23}S_{c24}^* = 0 \quad (32e)$$

$$|S_{c14}|^2 + |S_{c24}|^2 = 1 \quad (32f)$$

From Equations (32(a)) and (32(d)), it is seen that

$$|S_{c14}| = |S_{c23}| \quad (33a)$$

and then from Equations (30(a)) and (30(f))

$$|S_{c13}| = |S_{c24}| \quad (33b)$$

From Equations (32(b)) and (32(c)), we have

$$\phi_{c13} - \phi_{c23} = \phi_{c14} - \phi_{c24} \pm \pi \quad (34a)$$

$$\phi_{c13} - \phi_{c14} = \phi_{c23} - \phi_{c24} \pm \pi \quad (34b)$$

and these are seen to be the same equation. As far as the phases are concerned, one equation has four unknowns, so three of the phases are arbitrary. For symmetry and mathematical simplicity, we choose  $\phi_{c13} = \phi_{c24} = 0$  and  $\phi_{c23} = \phi_{c14}$ . It follows that  $\phi_{c14} = \pm \pi/2$ . Choosing the minus sign, Equation (31) becomes

$$\begin{aligned} (S_c) &= \begin{bmatrix} 0 & 0 & S_{c13} & S_{c14} \\ 0 & 0 & S_{c14} & S_{c13} \\ S_{c13} & S_{c14} & 0 & 0 \\ S_{c14} & S_{c13} & 0 & 0 \end{bmatrix} \\ &= \begin{bmatrix} 0 & 0 & \frac{S_{c13}}{\sqrt{1-S_{c13}^2}} & \frac{j\sqrt{1-S_{c13}^2}}{S_{c13}} \\ 0 & 0 & \frac{j\sqrt{1-S_{c13}^2}}{S_{c13}} & S_{c13} \\ \frac{S_{c13}}{\sqrt{1-S_{c13}^2}} & \frac{j\sqrt{1-S_{c13}^2}}{S_{c13}} & 0 & 0 \\ \frac{j\sqrt{1-S_{c13}^2}}{S_{c13}} & S_{c13} & 0 & 0 \end{bmatrix} \end{aligned} \quad (35)$$

Equation (35) is the basic equation for the scattering matrix of a dual-directional coupler.

To recapitulate, we have, in principle, found the scattering parameter values for  $(S_B)$  and  $(S_A)$ , and the values of  $(S)$ ,  $Z_1$ ,  $Z_2$ ,  $\Gamma_1$ ,  $\Gamma_2$ ,  $I_1$ , and  $I_2$ , or at least the ratio of  $I_2/I_1$ , are known. The values for  $(S_c)$ ,  $S_{c14}$ , and  $S_{c13}$ , as well as  $\theta$ , remain to be determined.

The easiest way to find these values is to specify particular values for  $I_1$  and  $I_2$ , even though only their ratio is important for array performance. For example, specify  $I_1 = 1$  and  $I_2$  is then equal to the given ratio. Once constructed properly, the circuit will maintain the proper ratio,  $I_2/I_1$ , as  $a_{c1}$  is varied. At the specified currents  $I_1$  and  $I_2$ , Figure 7 can be replaced with Figure 8.



FIGURE 8. Circuit Equivalent to Figure 7 When the Proper Operating Currents  $I_1$  and  $I_2$  (or Their Ratio) Are Maintained.

The voltage wave  $b_{A1}$  can be found from  $(S_A)$  and the known  $I_1$ , at which time it will also be a known quantity, i.e.,

$$b_{A1} = \frac{S_{A12}Z_0\Gamma_1}{1-\Gamma_1} I_1 \quad (36)$$

The value of  $a_{B1}$  is also found from Equation (25) and added to the list of known quantities.

From Figure 8 we have the equations

$$a_{B1} = S_{c13}a_{c1} + S_{c14}e^{j\theta}b_{A1} \quad (37a)$$

$$0 = S_{c14}a_{c1} + S_{c13}e^{j\theta}b_{A1} \quad (37b)$$

Solving Equation (37(b)) for  $a_{c1}$  and substituting into Equation (37(a)), we have

$$a_{B1} = \frac{-S_{c13}^2}{S_{c14}}e^{j\theta}b_{A1} + S_{c14}e^{j\theta}b_{A1}$$

Substituting for  $S_{c14}$  from Equation (35), where  $S_{c13}$  is a real number,

$$\frac{a_{B1}}{b_{A1}} = \frac{\left(j\sqrt{1-S_{c13}^2}\right)^2 - S_{c13}^2}{j\sqrt{1-S_{c13}^2}} e^{j\theta} = \frac{-e^{j\theta}}{j\sqrt{1-S_{c13}^2}} \quad (38)$$

then

$$\frac{|a_{B1}|^2}{|b_{A1}|^2} = \frac{je^{-j\theta}}{\sqrt{1-S_{c13}^2}} \cdot \frac{-je^{j\theta}}{\sqrt{1-S_{c13}^2}} = \frac{1}{1-S_{c13}^2}$$

or

$$S_{c13}^2 = 1 - \frac{|b_{A1}|^2}{|a_{B1}|^2} \quad (39)$$

A glance at Figure 7 shows  $|a_{B1}|^2 \geq |b_{A1}|^2$  by conservation of energy. The positive square root is used to find  $S_{c13}$ , as we have previously assumed  $\phi_{c13} = 0$ .

$S_{c14}$  is defined in Equation (35), so the only remaining quantity is the phase shift,  $\theta$ . Substituting Equation (39) into Equation (38) yields

$$\frac{a_{B1}}{b_{A1}} = \frac{je^{j\theta}}{|b_{A1}|/|a_{B1}|}$$

or

$$je^{j\theta} = \frac{|b_{A1}|}{|a_{B1}|} \frac{a_{B1}}{b_{A1}} = \frac{e^{j\phi_{aB1}}}{e^{j\phi_{bA1}}}$$

or

$$\theta = \phi_{aB1} - \phi_{bA1} - \frac{\pi}{2} \quad (40)$$

Although the mathematical arguments involved in the case of a negative real part to an active impedance at an array port have been more complicated, the actual circuit is no more complicated than the case where the active resistances are all real, as can be seen by comparing Figures 7 and 4. In Figure 4, we have a reflectionless power divider, PD,

whereas in Figure 7, we have a power combiner, PC. The phase shift  $e^{j\theta}$  was shown extraneous to the combiner, PC, in Figure 7; but, in practice, could be included as part of the combiner design. In fact, an equivalent phase shift is needed for the power divider, PD, in Figure 4—by implication the phase shift is just included in the power divider.

The equivalence of Figures 4 and 7 becomes, perhaps, even clearer if you examine the two-port network,  $(S_A)$ , in Figure 7 more closely. Even though  $(S_A)$  does not, strictly speaking, form a match to  $Z_1$ , it is a lossless match to some load.

Since  $Z_1 = -|R_1| + jX_1$  and  $S_{A22} = 1/\Gamma_1$ , we see

$$S_{A22} = \frac{-|R_1| + jX_1 + Z_0}{-|R_1| + jX_1 - Z_0} = \frac{|R_1| - Z_0 - jX_1}{|R_1| + Z_0 - jX_1} \quad (41)$$

From Equation (16) we know that  $S_{A22}$  must match some load,  $\Gamma_\ell$ , such that  $\Gamma_\ell = S_{A22}^*$  or

$$\Gamma_\ell = \frac{|R_1| + jX_1 - Z_0}{|R_1| + jX_1 + Z_0} \quad (42)$$

That is, if we ignored the fact that  $Z_1 = -|R_1| + jX_1$ , treated it as if it were  $Z_1 = |R_1| + jX_1$ , and designed the appropriate matching network for this impedance, we would have the correct design for  $(S_A)$ ! Figure 7 can be as well represented by Figure 4 as for the case of positive real parts for the active impedances, except for changing the letters PD to PC and deleting the wave  $a_{A1}$ , changing the direction of its arrow and replacing it with  $b_{A1}$ .

The case where  $Z_2$  has the negative real part instead of  $Z_1$  is obviously handled in the same fashion. For an  $N$ -element array where some of the elements have negative real parts and some positive, the approach to the matching networks is the same. Our power combiner has to be designed, if more than one element has a positive real part, as both a combiner and divider.

## NUMERICAL EXAMPLES

This section contains numerical examples of active impedance-matching networks for a colocated magnetic loop and electric dipole array.

## MOTIVATION

The motivation for such an investigation arose from the discovery that the active input resistances of such an array increased when the antenna elements were excited in

quadrature (Reference 2). Correspondingly, the Q associated with such an array was significantly lower than the Q of isolated elements in free space. With lower Q comes the potential ultimate payoff of increased bandwidth for electrically small antennas.

Wheeler (Reference 4), Chu (Reference 5), and others have formulated relationships governing the efficiency and bandwidth versus the electrical size of single-mode (i.e., electrical or magnetic) antennas. However, in these developments the relationships derived between bandwidth and efficiency apparently did not address the simultaneous presence of both types of antennas. Therefore, the following heuristic argument for mixed-mode antenna arrays is postulated. First, consider the energy flow in single magnetic loop (inductive and its associated matching network (capacitive)). The energy oscillates back and forth between storage in the magnetic field of the antenna and the electric field in the matching network capacitor. In the steady state the antenna radiates a small amount of energy during the portion of the cycle when the magnetic field is high (i.e., high current). Correspondingly, a small amount of energy is supplied from the external generator. For a single electric dipole, a dual model can be postulated.

For a mixed-mode array, we can postulate that energy is radiated during both portions of the cycle: from the loop during the period of high-magnetic field and from the dipole during the period of high-electric field. In this way the radiation is increased beyond that of the isolated single elements. This heuristic argument was initially used to account for the apparent increase in the active resistance of the mixed-mode array.

## MUTUAL COUPLING EFFECTS

Upon closer examination, the active resistances of a quadrature-fed mixed-mode array were observed to be opposite in sign. One of the elements exhibited a negative resistance. In circuit theory a negative resistance is usually associated with power generation. In this case, the negative resistance indicated that power was flowing from the element rather than being supplied to it. Thus, the following physical picture is suggested. For a quadrature-fed, colocated, mixed-mode array, a very strong mutual coupling exists between elements. The increase in resistance levels is due, in part, to power flow, which is mutually coupling to the adjacent element. Power entering one element is not only radiated but is coupled to the load connected to the adjacent element. Thus, while the bandwidth increase due to the lower Q (higher resistance levels) was welcomed, the lower efficiency due to the power loss in the load of the adjacent antenna element was not. Wheeler's condition governing the efficiency bandwidth product seems to be reasserting itself.

## FEEDBACK SOLUTION PROPOSED

The solution delineated in the Introduction and Theory sections of this report was proposed to couple the power emanating from the adjacent element back to the input of the driven element in such a way as to maintain the proper quadrature current excitations and impedance matching. A quadrature coupler was envisioned to provide the required coupling characteristics. The Theory section of this report derives the required coupling coefficient and differential phase requirements as functions of the desired currents and resulting active reflection coefficients at the antenna ports. The approach seemed feasible, but further numerical examples were deemed necessary to determine the achievable bandwidth of such a feedback approach.

The work presented in this report is a collection of MathCad and Touchstone computer programs, which analyze the mixed-mode array with feedback matching.

## ANTENNA ARRAY MODELLED USING NEC-3D

The antenna geometry (Figure 9) consisted of a center-fed dipole oriented along the  $z$ -axis with a length of  $0.02 \lambda$  and wire radius of  $0.001 \lambda$ . Surrounding the dipole (in the  $y$ - $z$  plane) is a square loop with side length  $0.025 \lambda$  and wire radius  $0.001 \lambda$ . The loop is fed at the point  $x = 0$ ,  $y = 0.0125 \lambda$ ,  $z = 0$  and the dipole is fed at the origin. The dipole is modelled using five segments and the loop is modelled using five segments per side. Lossless conductors are assumed. The extended kernal of NEC-3D was used.

The Y-parameters for the array were generated by sequentially exciting each port with 1 volt (with remaining ports short circuited) and calculating the current flow at each port. Appendix A contains a printout of the Y-matrix as a function of frequency for the antenna geometry described.



FIGURE 9. Colocated Antenna Geometry for Method of Moments Analysis.

We soon discovered that small nonsymmetries between Y12 and Y21 in the Y-matrix caused significant errors in computing the amplitudes of the waves entering and emanating from the matching networks of the mixed-mode array. To correct the problem reciprocity was enforced by using the averaged value for both Y12 and Y21. Appendix B contains a printout of the Y-matrix with symmetry enforced.

### **MATHCAD PROGRAM WRITTEN TO ANALYZE FEEDBACK MATCHING**

The MathCad program in Appendix C was written to design the feedback-matching networks for the mixed-mode antenna. The design procedure is outlined as follows.

1. The Y-matrix (calculated by NEC) is read in as input data.
2. The Z-matrix is calculated by taking the inverse of the Y-matrix.
3. The required current amplitude and phases are calculated based on the requirement for zeroing the radial component of the reactive energy (Equations (40) and (41), Reference 2).
4. The active impedances of the array are calculated.

The MathCad program displays the active impedance results for both the dipole and loop. Notice that the dipole resistance is negative, indicating that power is being coupled from the loop to the dipole. The dipole reactance is quite high. Notice the Q values are much lower than would be observed for isolated elements (i.e., Q = 36 for dipole, 31 for loop versus Q > 1000 for isolated elements).

5. The scattering parameters of a lossless matching network are derived (using equations derived in the the Theory section of this report), which match the active impedances to 50 ohms. Selection of 50 ohms as the transformed impedance level is arbitrary but commonly chosen. (Selecting a lower impedance value for bandwidth enhancement considerations may be desirable.) The matching networks are assumed lossless and symmetric. The method of S-parameter calculation differs, depending on whether the port exhibits a positive or negative active resistance.

6. The Z-matrices of the required matching networks are computed from the S-matrices.

7. A tee-network-matching topology was arbitrarily selected. The element values (capacitor and inductors) were calculated at each frequency. As shown in Appendix C, the required matching values are not constant with frequency. In the Touchstone simulations to follow, the midfrequency (500 MHz) values were selected. This simplification certainly limits the achievable bandwidth performance. Other circuit topologies that could reduce this variability and improve bandwidth should be investigated in the future.

8. The amplitude and phase of the waves incident upon the loop-matching network and emanating from the dipole-matching network are computed. The graph in Appendix C compares the wave amplitudes versus frequency. Notice that the amplitude of bA1 (the wave emanating from the dipole-matching network) is greater than the amplitude of aB1

(the wave incident upon the loop matching network), which violates the conservation of energy. Upon closer examination, the origin of this anomaly was traced to the nonreciprocal  $Y_{12}$  and  $Y_{21}$  values computed by NEC. Reciprocity can be enforced by using the average values of  $Y_{12}$  and  $Y_{21}$ , as shown in Appendix B.

Appendix D contains the results when Y-matrix reciprocity is enforced. Notice in this case the amplitude of  $aB1$  (incident wave on loop) is greater than  $bA1$  (emanating wave from dipole) and power is conserved. Furthermore, as will be demonstrated in the Touchstone simulations, if the power delivered to the load (on port 2 of the coupler) is forced to zero by proper selection of differential phase shift, the difference in power represented by amplitudes of  $aB1$  and  $bA1$  exactly equals the radiated power.

9. The required coupling parameter  $k$  and the amount of additional phase shift can be calculated. Appendix E is included to show the computation of additional phase shift required to provide cancellation at port 2 of an ideal quarter-wavelength directional coupler. The phase of the direct and coupled paths is compared at 500 MHz (Appendix E), illustrating the signal cancellation at port 2.

## TOUCHSTONE ANALYSIS OF MIXED-MODE FEEDBACK MATCHING

### Case I. Analysis Without Feedback

Appendices F, G, and H contain Touchstone simulations for feedback matching of the mixed-mode antenna described.

Appendix F analyzes only the mixed-mode array and matching networks. Appendix F also contains the Touchstone circuit file, a diagram of the circuit file, and the Y-parameters of the mixed-mode antenna whose geometry has previously been described. Reciprocity has not been imposed for this case. Also displayed in Appendix F are the S-parameters (in a 50-ohm system) calculated for the array based on the NEC3D Y-parameters. Notice only a very slight nonreciprocity in the  $S_{12}$  and  $S_{21}$  values. Also included in Appendix F are tee-section matching networks for the loop and dipole and the scattering parameters for the combined antenna and matching networks. Notice the agreement between the phase angle of  $S_{21}$  and that shown in Appendixes C and D for the phase angle of  $bA1/aB1$ . Appendix further contains Touchstone's calculation of active impedances for the dipole and loop. Good agreement with MathCad results is observed (see Appendix C). Wave calculations for the case in which the loop-matching network is excited by a 50-ohm generator and the dipole-matching network is terminated in a 50-ohm load. As shown the bulk of the input power (95.3%) is simply coupled directly to the output load. Only 4.7% of the input power is actually radiated. A plot is included of the transmission coefficient as a function of frequency. The half-power (0.707) bandwidth is approximately 16 MHz for a  $Q$  of (500/16) or 31, which agrees with our earlier estimate of  $Q$ . The efficiency (in percent) bandwidth (in percent) product of the array (with no feedback) is  $0.047 \times 0.032 = 1.47 \times 10^{-3}$ .

According to Wheeler the gain bandwidth product of an electrically small antenna is given by

$$\text{Eff} * \text{BW} = 8/3 * \pi^3 * (L/\lambda)^3$$

where L is the radius of a sphere that encloses the antenna.

Choosing the diagonal of the square loop ( $D = 0.025\lambda * 1.414 = 0.0353\lambda$ ) equal to the desired sphere diameter, a Wheeler efficiency bandwidth product of  $4.55 \times 10^{-4}$  is predicted. If this interpretation of the Wheeler condition is correct, an increase of a factor of 3 in the efficiency-bandwidth product is observed. Much further study and empirical verification is needed, however, before definitively declaring an improvement over the Wheeler limit.

Appendix F contains the voltages and currents predicted by Touchstone for the mixed-mode antenna and tee-section matching with no feedback. The current ratio calculated by Touchstone is slightly different (+5%) from the prescribed current ratio calculated by the MathCad program in Appendixes C and D. The slight variation may well be due to the apparent nonreciprocity of the antenna Y matrix. Further study is needed to isolate the origin of the difference. Appendix F also contains a circuit configuration that allows Touchstone to automatically normalize calculated current values to the dipole current.

### **Case II. Analysis with Nonoptimum Feedback—Zero Additional Phase Shift, Weak Coupling**

Appendix G contains the Touchstone circuit file, circuit diagram, and data. The incident and reflected waves are calculated at the coupler ports. Incident waves  $a_2$  and  $a_4$  are zero as expected;  $a_1$  (the input) is defined as unity, and  $a_3$  is observed to be greater than unity. These results point out an interesting aspect of feedback not previously appreciated. A significant amount of stored energy exists in the feedback loop. These results will be important in assessing the bandwidth performance of mixed-mode arrays with feedback matching. Appendix G includes the values calculated for the reflected waves from the coupler ports. Relected waves  $b_1$  and  $b_3$  are zero, indicating good impedance matching. Wave  $b_4$  is greater than unity due to stored energy in the feedback loop. Wave  $a_3$  is smaller than  $b_4$  due to radiation from the antenna. Appendix G also contains a plot of the transmission to port 2 of the coupler. Significant differences are noted as compared to the previous case with no feedback (see Appendix F). The frequency response is nonsymmetric with very little cancellation observable. The bandwidth has increased slightly to 17.5 MHz.

### **Case III. Analysis With Optimum Feedback (Touchstone Optimizer)**

Appendix H contains the results for the case of optimum feedback. The data in Appendix H were generated before the conditions of optimum feedback contained in Appendix E had been finalized. Optimum feedback was determined by using Touchstone's optimizer and simultaneously optimizing for minimum  $b_1$  and  $b_2$ . Optimum coupling and differential phase shift values were very close to those predicted in Appendix E.

| Parameter                                | Touchstone | Predicted |
|------------------------------------------|------------|-----------|
| Coupling factor, $k$                     | 0.99822    | 0.99788   |
| Added differential phase shift, $\theta$ | 63.44      | 63.41     |

Several significant differences were noted in the Case III simulation. As shown in Appendix H, the active impedance values observed were quite different from previous cases. The resistance of the dipole dropped by 12%. The resistance of the loop increased by 12%. Correspondingly, the excitation current ratio also shifted slightly.

| Parameter     | Optimum feedback | Weak feedback | No feedback |
|---------------|------------------|---------------|-------------|
| I Loop        | 8.946            | 0.598         | 0.567       |
| I Dipole      | 1.936            | 0.112         | 0.106       |
| Ratio (IL/ID) | 4.621            | 5.339         | 5.349       |

Clearly, the current amplitudes have increased substantially (a factor of 15 to 18) under conditions of optimum feedback.

Appendix H also contains the calculated values for the incident and reflected waves at the input to the matching networks. Notice the slight levels of reflection at port 3 of the coupler and the input to the loop-matching network. In terms of dB (power), the reflection levels are as follows.

| Parameter         | Optimum Feedback | Weak feedback | No feedback |
|-------------------|------------------|---------------|-------------|
| $a_d$             | 1.198            | 0             | 0           |
| $b_L$             | 1.201            | 0             | 0           |
| $20\log(a_d/b_d)$ | -22.9 dB         |               |             |
| $20\log(b_L/a_L)$ | -22.9 dB         |               |             |

The incident and reflected waves at the coupler ports are included in Appendix H. The data show cancellation at port 2 of the coupler and -22.9 dB reflection at the input (port 1) of the coupler. The frequency response of the wave amplitude delivered to the load on port 2 of the coupler are also included. The bandwidth of the response is extremely narrow (approximately 40 KHz). The efficiency of the antenna array can be computed (since both the matching networks and antenna conductors are assumed lossless) as

$$Prad/Pin = 1 - (0.0172)^2 - (0.001)^2 / 1 - (0.0172)^2 = 100\%$$

The corresponding efficiency bandwidth product is given by

$$\text{Eff}(\%) \times \text{BW}(\%) = 1.00 * (.040/500) = 8.0 \times 10^{-5}$$

which is about 5.7 times smaller than the Wheeler limit of  $4.55 \times 10^{-4}$  calculated.

#### Case IV. Analysis With Optimum Feedback, Using Predicted Coupling and Added Phase Shift Values

The feedback parameters for Case IV are as follows.

| Parameter                                | Predicted |
|------------------------------------------|-----------|
| Coupling factor, $k$                     | 0.99788   |
| Added differential phase shift, $\theta$ | 63.41     |

Appendix I contains the incident and reflected wave values for Case IV. In general the cancellation at port 2 of the coupler was degraded (-16.2 dB vs. -58.7 dB for the Touchstone optimized feedback in Case III). The input match (reflection coefficient) was improved slightly (-23.1 dB versus -22.9 dB for Case III.) Due to the increased power in the load at port 2 of the coupler, the radiation efficiency for Case IV was computed as

$$\text{Prad/Pin} = 1 - (.070)^2 - (.146)^2 / 1 - (.070)^2 = 97.9\%$$

Appendix J contains the derivation of a Z-matrix for a tee-section and the frequency response for Case IV. The incomplete cancellation at port 2 is evident by noting the value at 500 MHz.

#### SIMULATION CONCLUSIONS

Clearly, high efficiencies can be obtained using feedback-matching techniques. However, if high efficiencies are desired, the ever-present bandwidth reduction trade-off is observed. Whether the mixed-mode antenna array follows the Wheeler limit has not yet been determined. Preliminary calculations for the mixed-mode array show that (1) without feedback matching the Wheeler limit has been exceeded by a factor of 3, and (2) with optimum feedback a limit reduction factor of 5.7 is observed. Additional work is needed to verify these preliminary results.

It is well recognized that high-circulating currents arise between the matching network and an isolated electrically small element. From a wave perspective, large incident and reflected waves are found at the matching network and antenna interfaces. For a single isolated antenna, the incident and reflected waves are present in the same transmission line. Impedance matching is accomplished by zeroing the wave incident upon the external load (or generator).

A parallel situation arises for the mixed-mode array with feedback matching. While incident and reflected waves are still present between the matching network and elements (i.e., loop and dipole), incident and reflected waves to and from the matched array are also present. Indeed, as was discovered in the simulations, the amplitudes of these feedback waves can become quite large. Additional work needs to be conducted in comparing the amplitudes of the feedback waves to the amplitudes of the waves between matching network and antenna elements.

Using the wave perspective, an additional degree of freedom appears to have been introduced that can be characterized by an intermediate matching-network impedance level. No longer are antenna element-matching networks restricted to output levels of 50 ohms but rather can be designed for arbitrary intermediate levels, perhaps even a complex value. Intuitively, to minimize energy storage in both the antenna and matching networks, the complementary nature of the mixed-mode antenna elements (i.e., inductance and capacitance) could be used to reduce the level of reactance needed for overall matching. In the extreme case, perhaps mutually resonant antenna elements with equal and opposite reactances could be designed. However, it may well turn out that since the matching networks considered here are all lossless, the best we can hope for is the bandwidth, which corresponds to the ratio of energy stored in the near field of both antennas to the energy radiated by both antennas. Much additional theoretical and empirical work is needed to assess the efficiency bandwidth performance of this array compared to the Wheeler limit.

## CONCLUSIONS

The whole process can be broken down into simple steps. Given the ( $Z$ ) matrix of the array and the antenna element currents, or their ratios, find the active impedance of each input port (antenna element). Design the "appropriate" two-port lossless-matching networks for each of these active impedances. Design the appropriate power divider/combiner that will give the correct currents at each element in amplitude and phase.

In Figure 7, a four-port directional coupler was chosen as the power combiner, arranged so that one port is decoupled for the proper excitations needed to give the correct antenna currents. A directional coupler is particularly simple but that does not mean other configurations cannot be used. In Figure 4, for example, just by drawing a box as the power-divider and two matching circuits, a universal three port is created.

Although the mathematics would be complicated, we could have tried to specify the s-parameters of this three port in such a fashion as to produce the proper currents,  $I_1$  and  $I_2$ , be lossless, and have zero overall reflection. Once we had an appropriate set of s-parameters, we could have tried to design an appropriate three-port whose implementation might have been quite different than would naturally be arrived at using the approach achieved.

In any case, the virtue of active impedance matching as outlined in this report is that it breaks the problem into simple steps that are reasonably easily implemented.

**REFERENCES**

1. W. L. Stutzman and G. A. Thiele. *Antenna Theory and Design*. New York, John Wiley & Sons, Inc., 1981.
2. Naval Air Warfare Center Weapons Division. *A Colocated Magnetic Loop, Electric Dipole Antenna Array (Preliminary Results)*, by P. L. Overfelt, D. R. Bowling, and D. J. White. China Lake, Calif., NAWCWPNS, September 1994. 32 pp. (NAWCWPNS TP 8212, publication UNCLASSIFIED.)
3. R. E. Collin. *Foundations for Microwave Engineering*. New York, McGraw-Hill, 1966.
4. H. A. Wheeler. "Fundamental Limitations of Small Antennas," *Proc. IRE* 35 (1947).
5. L. J. Chu. "Physical Limitations on Omnidirectional Antennas," *J. Appl. Phys.*, Vol. 19 (1948), pp. 1163-75.

**Appendix A**

**Y-PARAMETERS FOR MIXED-MODE ARRAY  
(Y-RECIPROCITY NOT ENFORCED)**

# NAWCWPNS TP 8249

## MIXMODE2.S2P

```
! Simple Dipole Antenna located on Z-axis, center fed
! Dipole length = .02 wavelengths at 500 MHz
! Dipole radius = .001 wavelengths at 500 MHz
! Square loop in yz plane with side length = .025 wavelengths at 5
00 MHz
# GHZ Y RI R 1 !required
! data unmodified from NEC3D
!F(GHz) Y11r      Y11i      Y21r      Y21i      Y12r      Y12i
Y22r      Y2
.45 7.4255E-10 3.0686E-4 4.9090E-9 -5.2599E-5 5.0949E-9 -5.0303E-5
1.1422E-6 -1.1622E-2
.46 8.1044E-10 3.1370E-4 5.3603E-9 -5.3785E-5 5.5636E-9 -5.1437E-5
1.1949E-6 -1.1355E-2
.47 8.8286E-10 3.2055E-4 5.8421E-9 -5.4973E-5 6.0639E-9 -5.2572E-5
1.2489E-6 -1.1098E-2
.48 9.6001E-10 3.2740E-4 6.3556E-9 -5.6161E-5 6.5972E-9 -5.3708E-5
1.3042E-6 -1.0852E-2
.49 1.0421E-09 3.3425E-4 6.9023E-9 -5.7350E-5 7.1650E-9 -5.4845E-5
1.3608E-6 -1.0616E-2
.50 1.1293E-09 3.4111E-4 7.4836E-9 -5.8541E-5 7.7687E-9 -5.5983E-5
1.4187E-6 -1.0389E-2
.51 1.2218E-09 3.4796E-4 8.1008E-9 -5.9733E-5 8.4098E-9 -5.7123E-5
1.4779E-6 -1.0170E-2
.52 1.3198E-09 3.5482E-4 8.7554E-9 -6.0927E-5 9.0899E-9 -5.8264E-5
1.5385E-6 -9.9601E-3
.53 1.4236E-09 3.6168E-4 9.4490E-9 -6.2121E-5 9.8105E-9 -5.9405E-5
1.6004E-6 -9.7574E-3
.54 1.5334E-09 3.6854E-4 1.0183E-8 -6.3317E-5 1.0573E-8 -6.0549E-5
1.6636E-6 -9.5619E-3
.55 1.6493E-09 3.7541E-4 1.0959E-8 -6.4514E-5 1.1379E-8 -6.1693E-5
1.7282E-6 -9.3732E-3
```

**Appendix B**

**Y-PARAMETERS FOR MIXED-MODE ARRAY  
(Y-RECIPROCITY ENFORCED)**

# NAWCWPNS TP 8249

## MIXMODE3.S2P

```
! Simple Dipole Antenna located on Z-axis, center fed
! Dipole length = .02 wavelengths at 500 MHz
! Dipole radius = .001 wavelengths at 500 MHz
! Square loop in yz plane with side length = .025 wavelengths at 5
00 MHz
# GHZ Y RI R 1 !required
! Y21 and Y12 values set to average value
!F(GHz) Y11r      Y11i      Y21r      Y21i      Y12r      Y12i
Y22r      Y2
.45 7.4255E-10 3.0686E-4 5.0020E-9 -5.1451E-5 5.0020E-9 -5.1451E-5
1.1422E-6 -1.1622E-2
.46 8.1044E-10 3.1370E-4 5.4620E-9 -5.2611E-5 5.4620E-9 -5.2611E-5
1.1949E-6 -1.1355E-2
.47 8.8286E-10 3.2055E-4 5.9530E-9 -5.3773E-5 5.9530E-9 -5.3773E-5
1.2489E-6 -1.1098E-2
.48 9.6001E-10 3.2740E-4 6.4764E-9 -5.4935E-5 6.4764E-9 -5.4935E-5
1.3042E-6 -1.0852E-2
.49 1.0421E-09 3.3425E-4 7.0337E-9 -5.6098E-5 7.0337E-9 -5.6098E-5
1.3608E-6 -1.0616E-2
.50 1.1293E-09 3.4111E-4 7.6262E-9 -5.7262E-5 7.6262E-9 -5.7262E-5
1.4187E-6 -1.0389E-2
.51 1.2218E-09 3.4796E-4 8.2553E-9 -5.8428E-5 8.2553E-9 -5.8428E-5
1.4779E-6 -1.0170E-2
.52 1.3198E-09 3.5482E-4 8.9227E-9 -5.9596E-5 8.9227E-9 -5.9596E-5
1.5385E-6 -9.9601E-3
.53 1.4236E-09 3.6168E-4 9.6298E-9 -6.0763E-5 9.6298E-9 -6.0763E-5
1.6004E-6 -9.7574E-3
.54 1.5334E-09 3.6854E-4 1.0378E-8 -6.1933E-5 1.0378E-8 -6.1933E-5
1.6636E-6 -9.5619E-3
.55 1.6493E-09 3.7541E-4 1.1169E-8 -6.3104E-5 1.1169E-8 -6.3104E-5
1.7282E-6 -9.3732E-3
```

**Appendix C**

**MATHCAD ANALYSIS FOR MIXED-MODE ARRAY  
(Y-RECIPROCITY NOT ENFORCED)**

Consider the following mixed-mode antenna with feedback matching



Read in the Y-matrix for the mixed-mode antenna. Port 1 is the dipole and port 2 is the loop.

$Y2P = \text{READPRN}(\text{mixmodel})$

$m = 1..11$

$j = 1..2$   
 $k = 1..2$

$$\text{Freq}_m = 450 \cdot 10^6 + (M-1) \cdot 10 \cdot 10^6$$

$$Y_{450j,k} = Y_{2P1,j \cdot 4+k \cdot 2-5} + Y_{2P1,j \cdot 4+k \cdot 2-4}i \quad Z_{450} = Y_{450}^{-1}$$

$$Y_{460j,k} = Y_{2P2,j \cdot 4+k \cdot 2-5} + Y_{2P2,j \cdot 4+k \cdot 2-4}i \quad Z_{460} = Y_{460}^{-1}$$

$$Y_{470j,k} = Y_{2P3,j \cdot 4+k \cdot 2-5} + Y_{2P3,j \cdot 4+k \cdot 2-4}i \quad Z_{470} = Y_{470}^{-1}$$

$$Y_{480j,k} = Y_{2P4,j \cdot 4+k \cdot 2-5} + Y_{2P4,j \cdot 4+k \cdot 2-4}i \quad Z_{480} = Y_{480}^{-1}$$

$$Y_{490j,k} = Y_{2P5,j \cdot 4+k \cdot 2-5} + Y_{2P5,j \cdot 4+k \cdot 2-4}i \quad Z_{490} = Y_{490}^{-1}$$

$$Y_{500j,k} = Y_{2P6,j \cdot 4+k \cdot 2-5} + Y_{2P6,j \cdot 4+k \cdot 2-4}i \quad Z_{500} = Y_{500}^{-1}$$

$$Y_{510j,k} = Y_{2P7,j \cdot 4+k \cdot 2-5} + Y_{2P7,j \cdot 4+k \cdot 2-4}i \quad Z_{510} = Y_{510}^{-1}$$

$$Y_{520j,k} = Y_{2P8,j \cdot 4+k \cdot 2-5} + Y_{2P8,j \cdot 4+k \cdot 2-4}i \quad Z_{520} = Y_{520}^{-1}$$

$$Y_{530j,k} = Y_{2P9,j \cdot 4+k \cdot 2-5} + Y_{2P9,j \cdot 4+k \cdot 2-4}i \quad Z_{530} = Y_{530}^{-1}$$

$$Y_{540j,k} = Y_{2P10,j \cdot 4+k \cdot 2-5} + Y_{2P10,j \cdot 4+k \cdot 2-4}i \quad Z_{540} = Y_{540}^{-1}$$

$$Y_{550j,k} = Y_{2P11,j \cdot 4+k \cdot 2-5} + Y_{2P11,j \cdot 4+k \cdot 2-4}i \quad Z_{550} = Y_{550}^{-1}$$

**DESCRIPTION OF MIXED-MODE ARRAY**

Mixed-mode antenna is comprised of a center-fed dipole (along the z-axis) whose length is  $0.020\lambda$  and whose wire radius is  $0.001\lambda$ . Surrounding the dipole (in the y-z plane) is a square loop with side length of  $0.025\lambda$  and wire radius of  $0.001\lambda$ . The loop is fed at the point where  $x = 0$ ,  $y = 0.0125\lambda$ , and  $z = 0$ . This mixed-mode antenna is modelled using NEC3D. The dipole is modelled using five segments and the loop is modelled using five segments per side. The extended kernal is used. Lossless conductors are assumed.

Compute wavelength in inches

$$\lambda_{inch_m} = \frac{2.997925 \cdot 10^{10}}{2.54 \cdot Freq_m}$$

Enter physical length of dipole (inches)

$$Ldipole = 0.472114173$$

Enter side length of square loop (inches)

$$Lloop = 0.590142717$$

Normalize to wavelength

$$Ld_m = \frac{Ldipole}{\lambda_{inch_m}} \quad Freq\_MHz_m = \frac{Freq_m}{10^6}$$

$$Sloop_m = \frac{Lloop}{\lambda_{inch_m}}$$

$$ILoverId_m = \frac{Ld_m}{2 \cdot \pi \cdot (Sloop_m)^2}$$

Dipole current

$$Iin_{m,1} = 1 \cdot \exp\left(-j \cdot 90 \frac{\pi}{180}\right)$$

$$Iin_{1,1} = -i$$

Loop current

$$Iin_{m,2} = ILoverId_m$$

Required Current Ratio as Function of Frequency



$$Iin_{1,2} = 5.65884$$

Calculate the active impedance

$$j = 1..2$$

$$Z450a_j = Z450_{j,1} \cdot \frac{Iin_{1,1}}{Iin_{1,j}} + Z450_{j,2} \cdot \frac{Iin_{1,2}}{Iin_{1,j}} \quad Z450a = \begin{pmatrix} -83.39155 - 3.2564 \cdot 10^3 i \\ 2.49917 + 85.97993 i \end{pmatrix}$$

$$Z460a_j = Z460_{j,1} \cdot \frac{Iin_{2,1}}{Iin_{2,j}} + Z460_{j,2} \cdot \frac{Iin_{2,2}}{Iin_{2,j}} \quad Z460a = \begin{pmatrix} -83.51475 - 3.18528 \cdot 10^3 i \\ 2.61575 + 85.9986 i \end{pmatrix}$$

$$Z470a_j = Z470_{j,1} \cdot \frac{Iin_{3,1}}{Iin_{3,j}} + Z470_{j,2} \cdot \frac{Iin_{3,2}}{Iin_{3,j}} \quad Z470a = \begin{pmatrix} -83.64797 - 3.11711 \cdot 10^3 i \\ 2.73547 + 90.0332 i \end{pmatrix}$$

$$Z480a_j = Z480_{j,1} \cdot \frac{Iin_{4,1}}{Iin_{4,j}} + Z480_{j,2} \cdot \frac{Iin_{4,2}}{Iin_{4,j}} \quad Z480a = \begin{pmatrix} -83.77837 - 3.05178 \cdot 10^3 i \\ 2.85805 + 92.07076 i \end{pmatrix}$$

$$Z490a_j = Z490_{j,1} \cdot \frac{Iin_{5,1}}{Iin_{5,j}} + Z490_{j,2} \cdot \frac{Iin_{5,2}}{Iin_{5,j}} \quad Z490a = \begin{pmatrix} -83.91002 - 2.98912 \cdot 10^3 i \\ 2.98358 + 94.11403 i \end{pmatrix}$$

$$Z500a_j = Z500_{j,1} \cdot \frac{Iin_{6,1}}{Iin_{6,j}} + Z500_{j,2} \cdot \frac{Iin_{6,2}}{Iin_{6,j}} \quad Z500a = \begin{pmatrix} -83.04509 - 2.9289 \cdot 10^3 i \\ 3.11211 + 96.16673 i \end{pmatrix}$$

$$Z510a_j = Z510_{j,1} \cdot \frac{Iin_{7,1}}{Iin_{7,j}} + Z510_{j,2} \cdot \frac{Iin_{7,2}}{Iin_{7,j}} \quad Z510a = \begin{pmatrix} -84.19096 - 2.87112 \cdot 10^3 i \\ 3.24406 + 98.23371 i \end{pmatrix}$$

$$Z520a_j = Z520_{j,1} \cdot \frac{Iin_{8,1}}{Iin_{8,j}} + Z520_{j,2} \cdot \frac{Iin_{8,2}}{Iin_{8,j}} \quad Z520a = \begin{pmatrix} -84.33095 - 2.8155 \cdot 10^3 i \\ 3.37873 + 100.29986 i \end{pmatrix}$$

$$Z530a_j = Z530_{j,1} \cdot \frac{Iin_{9,1}}{Iin_{9,j}} + Z530_{j,2} \cdot \frac{Iin_{9,2}}{Iin_{9,j}} \quad Z530a = \begin{pmatrix} -84.47664 - 2.76199 \cdot 10^3 i \\ 3.51663 + 102.37928i \end{pmatrix}$$

$$Z540a_j = Z540_{j,1} \cdot \frac{Iin_{10,1}}{Iin_{10,j}} + Z540_{j,2} \cdot \frac{Iin_{10,2}}{Iin_{10,j}} \quad Z540a = \begin{pmatrix} -84.62726 - 2.71046 \cdot 10^3 i \\ 3.65784 + 104.46809i \end{pmatrix}$$

$$Z550a_j = Z550_{j,1} \cdot \frac{Iin_{11,1}}{Iin_{11,j}} + Z550_{j,2} \cdot \frac{Iin_{11,2}}{Iin_{11,j}} \quad Z550a = \begin{pmatrix} -84.77924 - 2.66074 \cdot 10^3 i \\ 3.80212 + 106.5663i \end{pmatrix}$$

Put active impedances into array

$$Za = \begin{bmatrix} \text{Dipole} & \text{Loop} \\ \begin{matrix} \text{Re}(Z450a_1) & \text{Im}(Z450a_1) & \text{Re}(Z450a_2) & \text{Im}(Z450a_2) \\ \text{Re}(Z460a_1) & \text{Im}(Z460a_1) & \text{Re}(Z460a_2) & \text{Im}(Z460a_2) \\ \text{Re}(Z470a_1) & \text{Im}(Z470a_1) & \text{Re}(Z470a_2) & \text{Im}(Z470a_2) \\ \text{Re}(Z480a_1) & \text{Im}(Z480a_1) & \text{Re}(Z480a_2) & \text{Im}(Z480a_2) \\ \text{Re}(Z490a_1) & \text{Im}(Z490a_1) & \text{Re}(Z490a_2) & \text{Im}(Z490a_2) \\ \text{Re}(Z500a_1) & \text{Im}(Z500a_1) & \text{Re}(Z500a_2) & \text{Im}(Z500a_2) \\ \text{Re}(Z510a_1) & \text{Im}(Z510a_1) & \text{Re}(Z510a_2) & \text{Im}(Z510a_2) \\ \text{Re}(Z520a_1) & \text{Im}(Z520a_1) & \text{Re}(Z520a_2) & \text{Im}(Z520a_2) \\ \text{Re}(Z530a_1) & \text{Im}(Z530a_1) & \text{Re}(Z530a_2) & \text{Im}(Z530a_2) \\ \text{Re}(Z540a_1) & \text{Im}(Z540a_1) & \text{Re}(Z540a_2) & \text{Im}(Z540a_2) \\ \text{Re}(Z550a_1) & \text{Im}(Z550a_1) & \text{Re}(Z550a_2) & \text{Im}(Z550a_2) \end{matrix} \end{bmatrix}$$

Active impedances at 500 MHz

$$Z500a = \begin{pmatrix} -84.04509 - 2.9289 \cdot 10^3 i \\ 3.11211 + 96.16673i \end{pmatrix} \begin{matrix} \text{Dipole} \\ \text{Loop} \end{matrix}$$

Z-matrix

$$Z500 = \begin{pmatrix} 0.00934 - 2.9289 \cdot 10^3 i & 9.13542 \cdot 10^{-5} + 16.50405i \\ -8.52033 \cdot 10^{-5} + 15.78289i & 0.01314 + 96.16672i \end{pmatrix}$$

Y-matrix

$$Y_{500} = \begin{pmatrix} 1.1293 \cdot 10^{-9} + 3.4111 \cdot 10^{-4}i & 7.4836 \cdot 10^{-9} - 5.8541 \cdot 10^{-5}i \\ 7.7687 \cdot 10^{-9} - 5.5983 \cdot 10^{-5}i & 1.4187 \cdot 10^{-6} - 0.01039i \end{pmatrix}$$

Dipole Resistance



Dipole Reactance



Loop Resistance



Loop Reactance



Next, calculate the scattering parameters of the required matched networks

$$Z_0 = 50$$

Matching network for positive R ( $S22 = \Gamma i^*$ )

$$S22loop_m = \left[ \operatorname{Re} \left[ \frac{(Za_{m,3} - Z0) + Za_{m,4} \cdot i}{(Za_{m,3} - Z0) + Za_{m,4} \cdot i} \right] + i \cdot \operatorname{Im} \left[ \frac{(Za_{m,3} - Z0) + Za_{m,4} \cdot i}{(Za_{m,3} - Z0) + Za_{m,4} \cdot i} \right] \right]$$

$$S22loopmag_m = |S22loop_m|$$

$$S22loop_6 = 0.55993 - 0.79681i$$

$$S22loopang_m = \arg(S22loop_m) \cdot \frac{180}{\pi}$$

$$S22loopmag_6 = 0.97387$$

$$S22loopang_6 = 54.90393$$

Matching network for negative R ( $S22 = 1/\Gamma i$ )

$$S22dipole_m = \operatorname{Re} \left( \frac{Za_{m,1} + Z0 + Za_{m,2} \cdot i}{Za_{m,1} - Z0 + Za_{m,2} \cdot i} \right) + i \cdot \operatorname{Im} \left( \frac{Za_{m,1} + Z0 + Za_{m,2} \cdot i}{Za_{m,1} - Z0 + Za_{m,2} \cdot i} \right)$$

$$S22dipolemag_m = |S22dipole_m|$$

$$S22dipole_6 = 0.99844 + 0.03407ii$$

$$S22dipoleang_m = \arg(S22dipole_m) \cdot \frac{180}{\pi}$$

$$S22dipolemag_6 = 0.99902$$

$$S22dipoleang_6 = 1.95443$$



Calculate S12 for matching network of both dipole and loop

$$S12dipolemag_m = \sqrt{1 - (S22dipolemag_m)^2}$$

$$S12loopmag_m = \sqrt{1 - (S22loopmag_m)^2}$$

$$S12dipoleang_m = S22dipoleang_m - 90$$

$$S12loopang_m = S22loopang_m - 90$$

Formulate matching network S-matrix for dipole

$$\begin{array}{ll}
 Sd450_{1,1} S22dipolemag_1 \cdot e^{(j \cdot S22dipoleang_1) \cdot \frac{\pi}{180}} & Sd450_{2,2} S22dipolemag_1 \cdot e^{(j \cdot S22dipoleang_1) \cdot \frac{\pi}{180}} \\
 Sd450_{1,2} S12dipolemag_1 \cdot e^{(j \cdot S12dipoleang_1) \cdot \frac{\pi}{180}} & Sd450_{2,1} S12dipolemag_1 \cdot e^{(j \cdot S12dipoleang_1) \cdot \frac{\pi}{180}} \\
 Sd460_{1,1} S22dipolemag_2 \cdot e^{(j \cdot S22dipoleang_2) \cdot \frac{\pi}{180}} & Sd460_{2,2} S22dipolemag_2 \cdot e^{(j \cdot S22dipoleang_2) \cdot \frac{\pi}{180}} \\
 Sd460_{1,2} S22dipolemag_2 \cdot e^{(j \cdot S12dipoleang_2) \cdot \frac{\pi}{180}} & Sd460_{2,1} S12dipolemag_2 \cdot e^{(j \cdot S12dipoleang_2) \cdot \frac{\pi}{180}} \\
 Sd470_{1,1} S22dipolemag_3 \cdot e^{(j \cdot S22dipoleang_3) \cdot \frac{\pi}{180}} & Sd470_{2,2} S22dipolemag_3 \cdot e^{(j \cdot S22dipoleang_3) \cdot \frac{\pi}{180}} \\
 Sd470_{1,2} S12dipolemag_3 \cdot e^{(j \cdot S12dipoleang_3) \cdot \frac{\pi}{180}} & Sd470_{2,1} S12dipolemag_3 \cdot e^{(j \cdot S12dipoleang_3) \cdot \frac{\pi}{180}} \\
 Sd480_{1,1} S22dipolemag_4 \cdot e^{(j \cdot S22dipoleang_4) \cdot \frac{\pi}{180}} & Sd480_{2,2} S22dipolemag_4 \cdot e^{(j \cdot S22dipoleang_4) \cdot \frac{\pi}{180}} \\
 Sd480_{1,2} S12dipolemag_4 \cdot e^{(j \cdot S12dipoleang_4) \cdot \frac{\pi}{180}} & Sd480_{2,1} S12dipolemag_4 \cdot e^{(j \cdot S12dipoleang_4) \cdot \frac{\pi}{180}} \\
 Sd490_{1,1} S22dipolemag_5 \cdot e^{(j \cdot S22dipoleang_5) \cdot \frac{\pi}{180}} & Sd490_{2,2} S22dipolemag_5 \cdot e^{(j \cdot S22dipoleang_5) \cdot \frac{\pi}{180}} \\
 Sd490_{1,2} S12dipolemag_5 \cdot e^{(j \cdot S12dipoleang_5) \cdot \frac{\pi}{180}} & Sd490_{2,1} S12dipolemag_5 \cdot e^{(j \cdot S12dipoleang_5) \cdot \frac{\pi}{180}} \\
 Sd500_{1,1} S22dipolemag_6 \cdot e^{(j \cdot S22dipoleang_6) \cdot \frac{\pi}{180}} & Sd500_{2,2} S22dipolemag_6 \cdot e^{(j \cdot S22dipoleang_6) \cdot \frac{\pi}{180}} \\
 Sd500_{1,2} S12dipolemag_6 \cdot e^{(j \cdot S12dipoleang_6) \cdot \frac{\pi}{180}} & Sd500_{2,1} S12dipolemag_6 \cdot e^{(j \cdot S12dipoleang_6) \cdot \frac{\pi}{180}}
 \end{array}$$

$$\begin{array}{ll}
 Sd510_{1,1} S22dipolemag_7 \cdot e & \left( j \cdot S22dipoleang_7 \right) \cdot \frac{\pi}{180} \\
 & Sd510_{2,2} S22dipolemag_7 \cdot e & \left( j \cdot S22dipoleang_7 \right) \cdot \frac{\pi}{180} \\
 Sd510_{1,2} S12dipolemag_7 \cdot e & \left( j \cdot S12dipoleang_7 \right) \cdot \frac{\pi}{180} \\
 & Sd510_{2,1} S12dipolemag_7 \cdot e & \left( j \cdot S12dipoleang_7 \right) \cdot \frac{\pi}{180} \\
 Sd520_{1,1} S22dipolemag_8 \cdot e & \left( j \cdot S22dipoleang_8 \right) \cdot \frac{\pi}{180} \\
 & Sd520_{2,2} S22dipolemag_8 \cdot e & \left( j \cdot S22dipoleang_8 \right) \cdot \frac{\pi}{180} \\
 Sd520_{1,2} S12dipolemag_8 \cdot e & \left( j \cdot S12dipoleang_8 \right) \cdot \frac{\pi}{180} \\
 & Sd520_{2,1} S12dipolemag_8 \cdot e & \left( j \cdot S12dipoleang_8 \right) \cdot \frac{\pi}{180} \\
 Sd530_{1,1} S22dipolemag_9 \cdot e & \left( j \cdot S22dipoleang_9 \right) \cdot \frac{\pi}{180} \\
 & Sd530_{2,2} S22dipolemag_9 \cdot e & \left( j \cdot S22dipoleang_9 \right) \cdot \frac{\pi}{180} \\
 Sd530_{1,2} S12dipolemag_9 \cdot e & \left( j \cdot S12dipoleang_9 \right) \cdot \frac{\pi}{180} \\
 & Sd530_{2,1} S12dipolemag_9 \cdot e & \left( j \cdot S12dipoleang_9 \right) \cdot \frac{\pi}{180} \\
 Sd540_{1,1} S22dipolemag_{10} \cdot e & \left( j \cdot S22dipoleang_{10} \right) \cdot \frac{\pi}{180} \\
 & Sd540_{2,2} S22dipolemag_{10} \cdot e & \left( j \cdot S22dipoleang_{10} \right) \cdot \frac{\pi}{180} \\
 Sd540_{1,2} S12dipolemag_{10} \cdot e & \left( j \cdot S12dipoleang_{10} \right) \cdot \frac{\pi}{180} \\
 & Sd540_{2,1} S12dipolemag_{10} \cdot e & \left( j \cdot S12dipoleang_{10} \right) \cdot \frac{\pi}{180} \\
 Sd550_{1,1} S22dipolemag_{11} \cdot e & \left( j \cdot S22dipoleang_{11} \right) \cdot \frac{\pi}{180} \\
 & Sd550_{2,2} S22dipolemag_{11} \cdot e & \left( j \cdot S22dipoleang_{11} \right) \cdot \frac{\pi}{180} \\
 Sd550_{1,2} S12dipolemag_{11} \cdot e & \left( j \cdot S12dipoleang_{11} \right) \cdot \frac{\pi}{180} \\
 & Sd550_{2,1} S12dipolemag_{11} \cdot e & \left( j \cdot S12dipoleang_{11} \right) \cdot \frac{\pi}{180}
 \end{array}$$

Formulate matching network S-matrix for loop

$$\begin{array}{ll}
 Sl450_{1,1} S22loopmag_1 \cdot e & \left( j \cdot S22loopang_1 \right) \cdot \frac{\pi}{180} \\
 & Sl450_{2,2} S22loopmag_1 \cdot e & \left( j \cdot S22loopang_1 \right) \cdot \frac{\pi}{180} \\
 Sl450_{1,2} S12loopmag_1 \cdot e & \left( j \cdot S12loopang_1 \right) \cdot \frac{\pi}{180} \\
 & Sl450_{2,1} S12loopmag_1 \cdot e & \left( j \cdot S12loopang_1 \right) \cdot \frac{\pi}{180} \\
 Sl460_{1,1} S22loopmag_2 \cdot e & \left( j \cdot S22loopang_2 \right) \cdot \frac{\pi}{180} \\
 & Sl460_{2,2} S22loopmag_2 \cdot e & \left( j \cdot S22loopang_2 \right) \cdot \frac{\pi}{180} \\
 Sl460_{1,2} S22loopmag_2 \cdot e & \left( j \cdot S12loopang_2 \right) \cdot \frac{\pi}{180} \\
 & Sl460_{2,1} S12loopmag_2 \cdot e & \left( j \cdot S12loopang_2 \right) \cdot \frac{\pi}{180}
 \end{array}$$



Find the corresponding Z-matrix  $Sd500 = \begin{pmatrix} 0.99844 + 0.03407i & 0.00151 - 0.04419i \\ 0.00151 - 0.04419i & 0.99844 + 0.03407i \end{pmatrix}$

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad Z0 = 50 \quad Sl500 = \begin{pmatrix} 0.55993 - 0.79681i & -0.18581 - 0.13057i \\ -0.18581 - 0.13057i & 0.55993 - 0.79681i \end{pmatrix}$$

$$\begin{aligned}
 Zd450 &= (I - Sd450)^{-1} \cdot (I + Sd450) \cdot Z0 & Zl450 &= (I - Sl450)^{-1} \cdot (I + Sl450) \cdot Z0 \\
 Zd460 &= (I - Sd460)^{-1} \cdot (I + Sd460) \cdot Z0 & Zl460 &= (I - Sl460)^{-1} \cdot (I + Sl460) \cdot Z0 \\
 Zd470 &= (I - Sd470)^{-1} \cdot (I + Sd470) \cdot Z0 & Zl470 &= (I - Sl470)^{-1} \cdot (I + Sl470) \cdot Z0 \\
 Zd480 &= (I - Sd480)^{-1} \cdot (I + Sd480) \cdot Z0 & Zl480 &= (I - Sl480)^{-1} \cdot (I + Sl480) \cdot Z0 \\
 Zd490 &= (I - Sd490)^{-1} \cdot (I + Sd490) \cdot Z0 & Zl490 &= (I - Sl490)^{-1} \cdot (I + Sl490) \cdot Z0 \\
 Zd500 &= (I - Sd500)^{-1} \cdot (I + Sd500) \cdot Z0 & Zl500 &= (I - Sl500)^{-1} \cdot (I + Sl500) \cdot Z0 \\
 Zd510 &= (I - Sd510)^{-1} \cdot (I + Sd510) \cdot Z0 & Zl510 &= (I - Sl510)^{-1} \cdot (I + Sl510) \cdot Z0 \\
 Zd520 &= (I - Sd520)^{-1} \cdot (I + Sd520) \cdot Z0 & Zl520 &= (I - Sl520)^{-1} \cdot (I + Sl520) \cdot Z0 \\
 Zd530 &= (I - Sd530)^{-1} \cdot (I + Sd530) \cdot Z0 & Zl530 &= (I - Sl530)^{-1} \cdot (I + Sl530) \cdot Z0 \\
 Zd540 &= (I - Sd540)^{-1} \cdot (I + Sd540) \cdot Z0 & Zl540 &= (I - Sl540)^{-1} \cdot (I + Sl540) \cdot Z0 \\
 Zd550 &= (I - Sd550)^{-1} \cdot (I + Sd550) \cdot Z0 & Zl550 &= (I - Sl550)^{-1} \cdot (I + Sl550) \cdot Z0
 \end{aligned}$$

Next, find elements of equivalent tee-network

$$Zd500 = \begin{pmatrix} -4.3015 \cdot 10^3 i & -5.57725 \cdot 10^3 i \\ -5.57725 \cdot 10^3 i & -4.315 \cdot 10^3 i \end{pmatrix}$$

$$Zl500 = \begin{pmatrix} -102.54964i & 28.46349i \\ 28.4639i & -102.54964i \end{pmatrix}$$

$$\begin{aligned}
 Zds_1 &= Zd450_{1,1} - Zd450_{1,2} & Zdp_1 &= Zd450_{1,2} \\
 Zds_2 &= Zd460_{1,1} - Zd460_{1,2} & Zdp_2 &= Zd460_{1,2} \\
 Zds_3 &= Zd470_{1,1} - Zd470_{1,2} & Zdp_3 &= Zd470_{1,2} \\
 Zds_4 &= Zd480_{1,1} - Zd480_{1,2} & Zdp_4 &= Zd480_{1,2} \\
 Zds_5 &= Zd490_{1,1} - Zd490_{1,2} & Zdp_5 &= Zd490_{1,2} \\
 Zds_6 &= Zd500_{1,1} - Zd500_{1,2} & Zdp_6 &= Zd500_{1,2} \\
 Zds_7 &= Zd510_{1,1} - Zd510_{1,2} & Zdp_7 &= Zd510_{1,2} \\
 Zds_8 &= Zd520_{1,1} - Zd520_{1,2} & Zdp_8 &= Zd520_{1,2} \\
 Zds_9 &= Zd530_{1,1} - Zd530_{1,2} & Zdp_9 &= Zd530_{1,2} \\
 Zds_{10} &= Zd540_{1,1} - Zd540_{1,2} & Zdp_{10} &= Zd540_{1,2} \\
 Zds_{11} &= Zd550_{1,1} - Zd550_{1,2} & Zdp_{11} &= Zd550_{1,2}
 \end{aligned}$$

$$Lds_m = \frac{Zds_m}{j \cdot 2 \cdot \pi \cdot Freq\ MHz_m \cdot 10^6} \cdot 10^9$$

$$Cdp_m = \frac{1}{j \cdot 2 \cdot \pi \cdot Freq\ MHz_m \cdot 10^6 \cdot Zdp_m} \cdot 10^{12}$$

Dipole-Matching Network  
Series Inductance vs. Frequency



Dipole-Matching Network  
Parallel Capacitance vs. Frequency



$$\begin{aligned}
Zls_1 &= Zl450_{1,1} - Zl450_{1,2} & Zlp_1 &= Zl450_{1,2} & Zlp_1 &= 23.11637i \\
Zls_2 &= Zl460_{1,1} - Zl460_{1,2} & Zlp_2 &= Zl460_{1,2} & Zlp_2 &= 24.12184i \\
Zls_3 &= Zl470_{1,1} - Zl470_{1,2} & Zlp_3 &= Zl470_{1,2} \\
Zls_4 &= Zl480_{1,1} - Zl480_{1,2} & Zlp_4 &= Zl480_{1,2} \\
Zls_5 &= Zl490_{1,1} - Zl490_{1,2} & Zlp_5 &= Zl490_{1,2} \\
Zls_6 &= Zl500_{1,1} - Zl500_{1,2} & Zlp_6 &= Zl5000_{1,2} \\
Zls_7 &= Zl510_{1,1} - Zl510_{1,2} & Zlp_7 &= Zl510_{1,2} \\
Zls_8 &= Zl520_{1,1} - Zl520_{1,2} & Zlp_8 &= Zl520_{1,2} \\
Zls_9 &= Zl530_{1,1} - Zl530_{1,2} & Zlp_9 &= Zl530_{1,2} \\
Zls_{10} &= Zl540_{1,1} - Zl540_{1,2} & Zlp_{10} &= Zl540_{1,2} \\
Zls_{11} &= Zl550_{1,1} - Zl550_{1,2} & Zlp_{11} &= Zl550_{1,2} \\
\\
Zls_6 &= 131.0134i & Zlp_2 &= Zl460_{1,2}
\end{aligned}$$

$$Llp_m = \frac{Zlp_m}{j \cdot 2 \cdot \pi \cdot Freq\ MHz_m \cdot 10^6} \cdot 10^9$$

$$Cl_s_m = \frac{1}{j \cdot 2 \cdot \pi \cdot Freq\ MHz_m \cdot 10^6 \cdot Zls_m} \cdot 10^{12}$$

Loop-Matching Network  
Parallel Inductance vs. Frequency



Loop-Matching Network  
Series Capacitance vs. Frequency



| Freq_MHz = | Lds =        | Cdp =      | Clz =      | Llp =       |
|------------|--------------|------------|------------|-------------|
| 1 450      | 1 505.85268  | 1 0.05369  | 1 3.10213  | 1 8.27578   |
| 2 460      | 2 483.85428  | 2 0.05386  | 2 2.94731  | 2 8.44848   |
| 3 470      | 3 463.22143  | 3 0.05404  | 3 2.80225  | 3 8.62545   |
| 4 480      | 4 443.87617  | 4 0.05423  | 4 2.6666   | 4 8.80504   |
| 5 490      | 5 425.70801  | 5 0.05441  | 5 2.53949  | 5 8.98773   |
| 6 500      | 6 408.61049  | 6 0.05459  | 6 2.42014  | 6 9.17388   |
| 7 510      | 7 392.51047  | 7 0.0548   | 7 2.3078   | 7 9.36457   |
| 8 520      | 8 377.33279  | 8 0.05499  | 8 2.20234  | 8 9.55756   |
| 9 530      | 9 363.00674  | 9 0.05519  | 9 2.10291  | 9 9.75465   |
| 10 540     | 10 349.46726 | 10 0.0554  | 10 2.00914 | 10 9.95575  |
| 11 550     | 11 336.65439 | 11 0.05561 | 11 1.92062 | 11 10.16064 |

Calculate the wave emanating from the dipole-matching network (negative active resistance)

$$\Gamma_{adipole_m} = \left[ \frac{(Za_{m,1} + j \cdot Za_{m,2}) - Z_0}{(Za_{m,1} + j \cdot Za_{m,2}) + Z_0} \right]$$

$$bAl_m = \frac{S12dipolemag_m \cdot \exp\left(j \cdot S12dipoleang_m \cdot \frac{\pi}{180}\right) \cdot (\Gamma_{adipole_m}) \cdot Iin_{m,1} \cdot Z_0}{[1 - (\Gamma_{adipole_m})]}$$

Values for 500 MHz

$$Freq MHz_6 = 500$$

$$\Gamma_{adipole_6} = 1.004 - 0.03414i$$

$$S12dipolemag_6 = 0.04422$$

$$Iin_{6,1} = -i$$

$$S12dipoleang_6 = -88.04557$$

$$bAl_6 = 0.75346 + 64.82042i$$

$$Za_{6,1} = -84.04509$$

$$bAldB_6 = 10 \cdot \log\left[\left(|bAl_6|\right)^2\right]$$

$$Za_{6,2} = 2.9289 \cdot 10^3$$

$$bAlB_6 = 36.23482$$

$$|\Gamma_{adipole_6}| = 1.00098$$

$$\arg(\Gamma_{adipole_6}) \cdot \frac{180}{\pi} = -1.95443$$

$$|bAl_6| = 64.8248$$

$$\arg(bAl_6) \cdot \frac{180}{\pi} = 89.33403$$

Calculate the wave incident upon the loop-matching network (positive active resistance)

$$\Gamma_{aloop_m} = \left[ \frac{(Za_{m,2} + j \cdot Za_{m,4}) - Z0}{(Za_{m,3} + j \cdot Za_{m,4}) + Z0} \right]$$

$$aBl_m = \frac{\left[ 1 - (\Gamma_{aloop_m})^2 \right] \cdot Iin_{m,2} \cdot Z0}{S12loopmag_m \cdot \exp\left(j \cdot S12loop_m \cdot \frac{\pi}{180}\right) \cdot [1 - (a\Gamma_{loop_m})]}$$

Values for 500 MHz

$$Freq\ MHz_6 = 500$$

$$\Gamma_{aloop_6} = 0.55961 + 0.79632i$$

$$|\Gamma_{aLOOP_6}| = 0.97329$$

$$S12loopmag_6 = 0.22959$$

$$Iin_{6,2} = 5.09296$$

$$\arg(\Gamma_{aLOOP_6}) \cdot \frac{180}{\pi} = 54.90218$$

$$S12loopang_6 = 144.90218$$

$$aBl_6 = -57.76716 - 28.12295i$$

$$|aBl_6| = 64.24909$$

$$Za_{6,3} = 3.18291$$

$$aBl dB_6 = 10 \cdot \log \left[ (|aBl_6|)^2 \right]$$

$$\arg(aBl_6) \cdot \frac{180}{\pi} = 154.04166$$

$$Za_{6,4} = 96.16667$$

$$aBl B_6 = 36.15734$$



$$Z_{500} = \begin{pmatrix} 0.00934 - 2.9289 \cdot 10^3 i & 9.13542 \cdot 10^{-5} + 16.50405 i \\ -8.52033 \cdot 10^{-5} + 15.78289 i & 0.01314 + 96.16672 i \end{pmatrix}$$

$$Y_{500} = \begin{pmatrix} 1.1293 \cdot 10^{-9} + 3.4111 \cdot 10^{-4} i & 7.4836 \cdot 10^{-9} - 5.8541 \cdot 10^{-5} i \\ 7.7687 \cdot 10^{-9} - 5.5983 \cdot 10^{-5} i & 1.4187 \cdot 10^{-6} - 0.01039 i \end{pmatrix}$$

Calculate coupling parameter

$$Sc13_m = \sqrt{1 - \frac{(|bAl_m|)^2}{(|aBl_m|)^2}} \quad \theta_{c13_m} = \arg(aBl_m) \cdot \frac{180}{\pi} - \arg(bAl_m) \cdot \frac{180}{\pi} - 90$$

$$Sc13_6 = 0.06514i \quad Sc13dB = 20 \cdot \log(Sc13_6) \quad Sc13dB = -23.72358$$

$$k_m = \frac{|bAl_m|}{|aBl_m|} \quad k_6 = 0.99788 \quad \theta_{aBl_m} = \arg\left(aBl_m \cdot \frac{180}{\pi}\right) \quad \theta_{bAl_m} = \arg\left(bAl_m \cdot \frac{180}{\pi}\right)$$



$$\frac{|bAl_6|}{|aBl_6|} = 1.02037 \arg\left(\frac{bAl_6}{aBl_6}\right) \cdot \frac{180}{\pi} = -116.65838$$

| $\theta_{aB1_m}$ |
|------------------|
| -151.08092       |
| -151.69905       |
| -152.30197       |
| -152.8867        |
| -153.45472       |
| -154.00758       |
| -154.54713       |
| -155.07011       |
| -155.58048       |
| -156.07787       |
| -156.56271       |

| $\theta_{bA1_m}$ |
|------------------|
| 89.4125          |
| 89.39717         |
| 89.38154         |
| 89.36585         |
| 89.35004         |
| 89.33403         |
| 89.31772         |
| 89.3014          |
| 89.28484         |
| 89.26806         |
| 89.25112         |

| $\theta_{c13_m}$ |
|------------------|
| -330.49342       |
| -331.09622       |
| -331.68351       |
| -332.25256       |
| -332.80476       |
| -333.34162       |
| -333.86485       |
| -334.3715        |
| -334.86532       |
| -335.34594       |
| -335.81382       |



**Appendix D**

**MATHCAD ANALYSIS FOR MIXED-MODE ARRAY  
(Y-RECIPROCITY NOT ENFORCED)**

Consider the following mixed-mode antenna with feedback matching

### Antenna Y-matrix reciprocity enforced



Read in the Y-matrix for the mixed-mode antenna. Port 1 is the dipole and port 2 is the loop.

Y2P = READPRN(mixmodel) m = 1..11

$$j = 1..2 \quad Freq_m = 450 \cdot 10^6 + (m-1) \cdot 10 \cdot 10^6$$

$$k = 1..2$$

$$Y450_{j,k} = Y2P_{1,j+4+k \cdot 2-5} + Y2P_{1,j+4+k \cdot 2-4} \cdot i \quad Z450 = Y450^{-1}$$

$$Y460_{j,k} = Y2P_{0,j+4+k \cdot 2-5} + Y2P_{0,j+4+k \cdot 2-4} \cdot i \quad Z460 = Y460^{-1}$$

$$Y470_{j,k} = Y2P_{3,j \cdot 4 + k \cdot 2 - 5} + Y2P_{3,j \cdot 4 + k \cdot 2 - 4} \cdot i \quad Z470 = Y470^{-1}$$

$$-150j, k = -14, j \cdot 4 + k \cdot 2 - 3 + 1 - 14, j \cdot 4 + k \cdot 2 - 4 + \dots \equiv 150 \pmod{1400}$$

$$Y_{490}{}_{j,k} = Y2P_{5,j \cdot 4 + k \cdot 2 - 5} + Y2P_{5,j \cdot 4 + k \cdot 2 - 4} \cdot i \quad Z_{490} = Y_{490}^{-1}$$

$$Y_{500}{}_{j,k} = Y2P_{6,j \cdot 4 + k \cdot 2 - 5} + Y2P_{6,j \cdot 4 + k \cdot 2 - 4} \cdot i \quad Z_{500} = Y_{500}^{-1}$$

$$Y510_{j,k} = Y2P_{7,j \cdot 4+k \cdot 2-5} + Y2P_{7,j \cdot 4+k \cdot 2-4} \cdot i \quad Z510 = Y510^{-1}$$

$$\begin{aligned}
 Y520_{j,k} &= Y2P_{8,j \cdot 4+k \cdot 2-5} + Y2P_{8,j \cdot 4+k \cdot 2-4} \cdot i & Z520 &= Y520^{-1} \\
 Y530_{j,k} &= Y2P_{9,j \cdot 4+k \cdot 2-5} + Y2P_{9,j \cdot 4+k \cdot 2-4} \cdot i & Z530 &= Y530^{-1} \\
 Y540_{j,k} &= Y2P_{10,j \cdot 4+k \cdot 2-5} + Y2P_{10,j \cdot 4+k \cdot 2-4} \cdot i & Z540 &= Y540^{-1} \\
 Y550_{j,k} &= Y2P_{11,j \cdot 4+k \cdot 2-5} + Y2P_{11,j \cdot 4+k \cdot 2-4} \cdot i & Z550 &= Y550^{-1}
 \end{aligned}$$

## DESCRIPTION OF MIXED-MODE ARRAY

Mixed-mode antenna is comprised of a center-fed dipole (along the z-axis) whose length is  $0.20 \lambda$  and whose wire is  $0.001 \lambda$ . Surrounding the dipole (in the y-z plane) is a square loop with side length of  $0.025 \lambda$  and wire radius of  $0.001 \lambda$ . The loop is fed at the point where  $x = 0$ ,  $y = 0.0125 \lambda$ , and  $z = 0$ . This mixed-mode antenna is modelled using NEC 3D. The dipole is modelled using five segments and the loop is modelled using five segments per side. The extended kernal is used. Lossless conductors are assumed.

Compute wavelength in inches

$$\lambda_{inch_m} = \frac{2.997925 \cdot 10^{10}}{2.54 \cdot Freq_m}$$

Enter physical length of dipole (inches)

$$Ldipole = 0.472114173$$

Enter side length of square loop (inches)

$$Lloop = 0.590142717$$

Normal to wavelength

$$Ld_m = \frac{Ldipole}{\lambda_{inch_m}}$$

$$Freq\_MHz_m = \frac{Freq_m}{10^6}$$

$$Sloop_m = \frac{Lloop}{\lambda_{inch_m}}$$

$$ILoverId_m = \frac{Ld_m}{2 \cdot \pi \cdot (Sloop_m)^2}$$

Required Current Ratio as Function of Frequency

Dipole current

$$Iin_{m,1} = 1 \cdot \exp\left(-j \cdot 90 \frac{\pi}{180}\right)$$

$$Iin_{1,1} = -i$$



Loop current

$$Iin_{m,2} = IloverId_m$$

$$Iin_{1,2} = 5.65884$$

Calculate the active impedance

$$j = 1..2$$

$$Z450a_j = Z450_{j,1} \cdot \frac{Iin_{1,1}}{Iin_{1,j}} + Z450_{j,2} \cdot \frac{Iin_{1,2}}{Iin_{1,j}} \quad Z450a = \begin{pmatrix} -81.57129 - 3.2564 \cdot 10^3 i \\ 2.55601 + 85.97989 i \end{pmatrix}$$

$$Z460a_j = Z460_{j,1} \cdot \frac{Iin_{2,1}}{Iin_{2,j}} + Z460_{j,2} \cdot \frac{Iin_{2,2}}{Iin_{2,j}} \quad Z460a = \begin{pmatrix} -81.69161 - 3.18528 \cdot 10^3 i \\ 2.67524 + 87.99855 i \end{pmatrix}$$

$$Z470a_j = Z470_{j,1} \cdot \frac{Iin_{3,1}}{Iin_{3,j}} + Z470_{j,2} \cdot \frac{Iin_{3,2}}{Iin_{3,j}} \quad Z470a = \begin{pmatrix} -81.82181 - 3.11711 \cdot 10^3 i \\ 2.79773 + 90.03315 i \end{pmatrix}$$

$$Z480a_j = Z480_{j,1} \cdot \frac{Iin_{4,1}}{Iin_{4,j}} + Z480_{j,2} \cdot \frac{Iin_{4,2}}{Iin_{4,j}} \quad Z480a = \begin{pmatrix} -81.94926 - 3.05178 \cdot 10^3 i \\ 2.92309 + 92.07071 i \end{pmatrix}$$

$$Z490a_j = Z490_{j,1} \cdot \frac{Iin_{5,1}}{Iin_{5,j}} + Z490_{j,2} \cdot \frac{Iin_{5,2}}{Iin_{5,j}} \quad Z490a = \begin{pmatrix} -82.07796 - 2.98912 \cdot 10^3 i \\ 3.05146 + 94.11397 i \end{pmatrix}$$

$$\begin{aligned}
 Z500a_j &= Z500_{j,1} \cdot \frac{Iin_{6,1}}{Iin_{6,j}} + Z500_{j,2} \cdot \frac{Iin_{6,2}}{Iin_{6,j}} \quad Z500a = \begin{pmatrix} -82.20864 - 2.9289 \cdot 10^3 i \\ 3.18291 + 96.16667 i \end{pmatrix} \\
 Z510a_j &= Z510_{j,1} \cdot \frac{Iin_{7,1}}{Iin_{7,2,j}} + Z510_{j,2} \cdot \frac{Iin_{7,2}}{Iin_{7,j}} \quad Z510a = \begin{pmatrix} -82.35137 - 2.87112 \cdot 10^3 i \\ 3.31785 + 98.23365 i \end{pmatrix} \\
 Z520a_j &= Z520_{j,1} \cdot \frac{Iin_{87,1}}{Iin_{8,j}} + Z520_{j,2} \cdot \frac{Iin_{8,2}}{Iin_{8,j}} \quad Z520a = \begin{pmatrix} -84.48841 - 2.8155 \cdot 10^3 i \\ 3.45562 + 100.29979 i \end{pmatrix} \\
 Z530a_j &= Z530_{j,1} \cdot \frac{Iin_{9,1}}{Iin_{9,j}} + Z530_{j,2} \cdot \frac{Iin_{9,2}}{Iin_{9,j}} \quad Z530a = \begin{pmatrix} -82.62966 - 2.76199 \cdot 10^3 i \\ 3.59664 + 102.3792 i \end{pmatrix} \\
 Z540a_j &= Z540_{j,1} \cdot \frac{Iin_{10,1}}{Iin_{10,j}} + Z540_{j,2} \cdot \frac{Iin_{10,2}}{Iin_{10,j}} \quad Z540a = \begin{pmatrix} -82.77717 - 2.71046 \cdot 10^3 i \\ 3.74104 + 104.468 i \end{pmatrix} \\
 Z550a_j &= Z550_{j,1} \cdot \frac{Iin_{11,1}}{Iin_{11,j}} + Z550_{j,2} \cdot \frac{Iin_{11,2}}{Iin_{11,j}} \quad Z550a = \begin{pmatrix} -82.92604 - 2.66074 \cdot 10^3 i \\ 3.88863 + 106.56654 i \end{pmatrix}
 \end{aligned}$$

Put active impedances into array

$$Za = \begin{bmatrix} \text{Dipole} & \text{Loop} \\ \text{Re}(Z450a_1) & \text{Im}(Z450a_1) & \text{Re}(Z450a_2) & \text{Im}(Z450a_2) \\ \text{Re}(Z460a_1) & \text{Im}(Z460a_1) & \text{Re}(Z460a_2) & \text{Im}(Z460a_2) \\ \text{Re}(Z470a_1) & \text{Im}(Z470a_1) & \text{Re}(Z470a_2) & \text{Im}(Z470a_2) \\ \text{Re}(Z480a_1) & \text{Im}(Z480a_1) & \text{Re}(Z480a_2) & \text{Im}(Z480a_2) \\ \text{Re}(Z490a_1) & \text{Im}(Z490a_1) & \text{Re}(Z490a_2) & \text{Im}(Z490a_2) \\ \text{Re}(Z500a_1) & \text{Im}(Z500a_1) & \text{Re}(Z500a_2) & \text{Im}(Z500a_2) \\ \text{Re}(Z510a_1) & \text{Im}(Z510a_1) & \text{Re}(Z510a_2) & \text{Im}(Z510a_2) \\ \text{Re}(Z520a_1) & \text{Im}(Z520a_1) & \text{Re}(Z520a_2) & \text{Im}(Z520a_2) \\ \text{Re}(Z530a_1) & \text{Im}(Z530a_1) & \text{Re}(Z530a_2) & \text{Im}(Z530a_2) \\ \text{Re}(Z540a_1) & \text{Im}(Z540a_1) & \text{Re}(Z540a_2) & \text{Im}(Z540a_2) \\ \text{Re}(Z550a_1) & \text{Im}(Z550a_1) & \text{Re}(Z550a_2) & \text{Im}(Z550a_2) \end{bmatrix}$$

Active impedances at 500 MHz

$$Z500a = \begin{pmatrix} -82.20864 - 2.9289 \cdot 10^3 i \\ 3.18291 + 96.16667 i \end{pmatrix} \begin{matrix} \text{Dipole} \\ \text{Loop} \end{matrix}$$

Z-matrix

$$Z_{500} = \begin{pmatrix} 0.00934 - 2.9289 \cdot 10^3 i & 3.05869 \cdot 10^{-6} + 16.14346 i \\ 3.05869 \cdot 10^{-6} + 16.14346 i & 0.01314 + 96.16667 i \end{pmatrix}$$

Y-matrix

$$Y_{500} = \begin{pmatrix} 1.1293 \cdot 10^{-9} + 3.4111 \cdot 10^{-4} i & 7.6262 \cdot 10^{-9} - 5.7262 \cdot 10^{-5} i \\ 7.6262 \cdot 10^{-9} - 5.7262 \cdot 10^{-5} i & 1.4187 \cdot 10^{-6} - 0.01039 i \end{pmatrix}$$

Dipole Resistance



Dipole Reactance



Loop Resistance



Loop Reactance



Next, calculate the scattering parameters of the required matching networks

$$Z_0 = 50$$

Matching network for positive R ( $S_{22} = \Gamma i^*$ )

$$S_{22loopm} = \left[ \operatorname{Re} \left[ \frac{(Za_{m,3} - Z_0) + Za_{m,4} \cdot i}{(Za_{m,3} - Z_0) + Za_{m,4} \cdot i} \right] + i \cdot \operatorname{Im} \left[ \frac{(Za_{m,3} - Z_0) + Za_{m,4} \cdot i}{(Za_{m,3} - Z_0) + Za_{m,4} \cdot i} \right] \right]$$

$$S_{22loopmagm} = |S_{22loopm}|$$

$$S_{22loop6} = 0.55993 - 0.79681i$$

$$S_{22loopangm} = \arg(S_{22loopm}) \cdot \frac{180}{\pi}$$

$$S_{22loopmag6} = 0.97387$$

$$S_{22loopang6} = 54.90393$$

Matching network for negative R ( $S_{22} = 1/\Gamma i$ )

$$S_{22dipolem} = \operatorname{Re} \left( \frac{Za_{m,1} + Z_0 + Za_{m,2} \cdot i}{Za_{m,1} - Z_0 + Za_{m,2} \cdot i} \right) + i \cdot \operatorname{Im} \left( \frac{Za_{m,1} + Z_0 + Za_{m,2} \cdot i}{Za_{m,1} - Z_0 + Za_{m,2} \cdot i} \right)$$

$$S_{22dipolemagm} = |S_{22dipolem}|$$

$$S_{22dipole6} = 0.99844 + 0.03407ii$$

$$S_{22dipoleangm} = \arg(S_{22dipolem}) \cdot \frac{180}{\pi}$$

$$S_{22dipolemag6} = 0.99902$$

$$S_{22dipoleang6} = 1.95443$$



Calculate S12 for matching network of both dipole and loop

$$S12dipolemag_m = \sqrt{1 - (S22dipolemag_m)^2}$$

$$S12loopmag_m = \sqrt{1 - (S22loopmag_m)^2}$$

$$S12dipoleang_m = S22dipoleang_m - 90$$

$$S12loopang_m = S22loopang_m - 90$$

Formulate matching network S-matrix for dipole

|                                                                                       |                                                                                       |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| $Sd450_{1,1} S22dipolemag_1 \cdot e^{(j \cdot S22dipoleang_1) \cdot \frac{\pi}{180}}$ | $Sd450_{2,2} S22dipolemag_1 \cdot e^{(j \cdot S22dipoleang_1) \cdot \frac{\pi}{180}}$ |
| $Sd450_{1,2} S12dipolemag_1 \cdot e^{(j \cdot S12dipoleang_1) \cdot \frac{\pi}{180}}$ | $Sd450_{2,1} S12dipolemag_1 \cdot e^{(j \cdot S12dipoleang_1) \cdot \frac{\pi}{180}}$ |
| $Sd460_{1,1} S22dipolemag_2 \cdot e^{(j \cdot S22dipoleang_2) \cdot \frac{\pi}{180}}$ | $Sd460_{2,2} S22dipolemag_2 \cdot e^{(j \cdot S22dipoleang_2) \cdot \frac{\pi}{180}}$ |
| $Sd460_{1,2} S22dipolemag_2 \cdot e^{(j \cdot S12dipoleang_2) \cdot \frac{\pi}{180}}$ | $Sd460_{2,1} S12dipolemag_2 \cdot e^{(j \cdot S12dipoleang_2) \cdot \frac{\pi}{180}}$ |
| $Sd470_{1,1} S22dipolemag_3 \cdot e^{(j \cdot S22dipoleang_3) \cdot \frac{\pi}{180}}$ | $Sd470_{2,2} S22dipolemag_3 \cdot e^{(j \cdot S22dipoleang_3) \cdot \frac{\pi}{180}}$ |
| $Sd470_{1,2} S12dipolemag_3 \cdot e^{(j \cdot S12dipoleang_3) \cdot \frac{\pi}{180}}$ | $Sd470_{2,1} S12dipolemag_3 \cdot e^{(j \cdot S12dipoleang_3) \cdot \frac{\pi}{180}}$ |
| $Sd480_{1,1} S22dipolemag_4 \cdot e^{(j \cdot S22dipoleang_4) \cdot \frac{\pi}{180}}$ | $Sd480_{2,2} S22dipolemag_4 \cdot e^{(j \cdot S22dipoleang_4) \cdot \frac{\pi}{180}}$ |
| $Sd480_{1,2} S12dipolemag_4 \cdot e^{(j \cdot S12dipoleang_4) \cdot \frac{\pi}{180}}$ | $Sd480_{2,1} S12dipolemag_4 \cdot e^{(j \cdot S12dipoleang_4) \cdot \frac{\pi}{180}}$ |
| $Sd490_{1,1} S22dipolemag_5 \cdot e^{(j \cdot S22dipoleang_5) \cdot \frac{\pi}{180}}$ | $Sd490_{2,2} S22dipolemag_5 \cdot e^{(j \cdot S22dipoleang_5) \cdot \frac{\pi}{180}}$ |
| $Sd490_{1,2} S12dipolemag_5 \cdot e^{(j \cdot S12dipoleang_5) \cdot \frac{\pi}{180}}$ | $Sd490_{2,1} S12dipolemag_5 \cdot e^{(j \cdot S12dipoleang_5) \cdot \frac{\pi}{180}}$ |
| $Sd500_{1,1} S22dipolemag_6 \cdot e^{(j \cdot S22dipoleang_6) \cdot \frac{\pi}{180}}$ | $Sd500_{2,2} S22dipolemag_6 \cdot e^{(j \cdot S22dipoleang_6) \cdot \frac{\pi}{180}}$ |
| $Sd500_{1,2} S12dipolemag_6 \cdot e^{(j \cdot S12dipoleang_6) \cdot \frac{\pi}{180}}$ | $Sd500_{2,1} S12dipolemag_6 \cdot e^{(j \cdot S12dipoleang_6) \cdot \frac{\pi}{180}}$ |

$$\begin{aligned}
 Sd510_{1,1} S22dipolemag_7 \cdot e & \quad (j \cdot S22dipoleang_7) \cdot \frac{\pi}{180} & Sd510_{2,2} S22dipolemag_7 \cdot e & \quad (j \cdot S22dipoleang_7) \cdot \frac{\pi}{180} \\
 Sd510_{1,2} S12dipolemag_7 \cdot e & \quad (j \cdot S12dipoleang_7) \cdot \frac{\pi}{180} & Sd510_{2,1} S12dipolemag_7 \cdot e & \quad (j \cdot S12dipoleang_7) \cdot \frac{\pi}{180} \\
 Sd520_{1,1} S22dipolemag_8 \cdot e & \quad (j \cdot S22dipoleang_8) \cdot \frac{\pi}{180} & Sd520_{2,2} S22dipolemag_8 \cdot e & \quad (j \cdot S22dipoleang_8) \cdot \frac{\pi}{180} \\
 Sd520_{1,2} S12dipolemag_8 \cdot e & \quad (j \cdot S12dipoleang_8) \cdot \frac{\pi}{180} & Sd520_{2,1} S12dipolemag_8 \cdot e & \quad (j \cdot S12dipoleang_8) \cdot \frac{\pi}{180} \\
 Sd530_{1,1} S22dipolemag_9 \cdot e & \quad (j \cdot S22dipoleang_9) \cdot \frac{\pi}{180} & Sd530_{2,2} S22dipolemag_9 \cdot e & \quad (j \cdot S22dipoleang_9) \cdot \frac{\pi}{180} \\
 Sd530_{1,2} S12dipolemag_9 \cdot e & \quad (j \cdot S12dipoleang_9) \cdot \frac{\pi}{180} & Sd530_{2,1} S12dipolemag_9 \cdot e & \quad (j \cdot S12dipoleang_9) \cdot \frac{\pi}{180} \\
 Sd540_{1,1} S22dipolemag_{10} \cdot e & \quad (j \cdot S22dipoleang_{10}) \cdot \frac{\pi}{180} & Sd540_{2,2} S22dipolemag_{10} \cdot e & \quad (j \cdot S22dipoleang_{10}) \cdot \frac{\pi}{180} \\
 Sd540_{1,2} S12dipolemag_{10} \cdot e & \quad (j \cdot S12dipoleang_{10}) \cdot \frac{\pi}{180} & Sd540_{2,1} S12dipolemag_{10} \cdot e & \quad (j \cdot S12dipoleang_{10}) \cdot \frac{\pi}{180} \\
 Sd550_{1,1} S22dipolemag_{11} \cdot e & \quad (j \cdot S22dipoleang_{11}) \cdot \frac{\pi}{180} & Sd550_{2,2} S22dipolemag_{11} \cdot e & \quad (j \cdot S22dipoleang_{11}) \cdot \frac{\pi}{180} \\
 Sd550_{1,2} S12dipolemag_{11} \cdot e & \quad (j \cdot S12dipoleang_{11}) \cdot \frac{\pi}{180} & Sd550_{2,1} S12dipolemag_{11} \cdot e & \quad (j \cdot S12dipoleang_{11}) \cdot \frac{\pi}{180}
 \end{aligned}$$

Formulate matching network S-matrix for loop

$$\begin{aligned}
 Sl450_{1,1} S22loopmag_1 \cdot e & \quad (j \cdot S22loopang_1) \cdot \frac{\pi}{180} & Sl450_{2,2} S22loopmag_1 \cdot e & \quad (j \cdot S22loopang_1) \cdot \frac{\pi}{180} \\
 Sl450_{1,2} S12loopmag_1 \cdot e & \quad (j \cdot S12loopang_1) \cdot \frac{\pi}{180} & Sl450_{2,1} S12loopmag_1 \cdot e & \quad (j \cdot S12loopang_1) \cdot \frac{\pi}{180} \\
 Sl460_{1,1} S22loopmag_2 \cdot e & \quad (j \cdot S22loopang_2) \cdot \frac{\pi}{180} & Sl460_{2,2} S22loopmag_2 \cdot e & \quad (j \cdot S22loopang_2) \cdot \frac{\pi}{180} \\
 Sl460_{1,2} S22loopmag_2 \cdot e & \quad (j \cdot S12loopang_2) \cdot \frac{\pi}{180} & Sl460_{2,1} S12loopmag_2 \cdot e & \quad (j \cdot S12loopang_2) \cdot \frac{\pi}{180}
 \end{aligned}$$



Find the corresponding Z-matrix

$$Sd500 = \begin{pmatrix} 0.99846 + 0.03407i & 0.00149 - 0.04371i \\ 0.00149 - 0.04371i & 0.99846 + 0.03407i \end{pmatrix}$$

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad Z0 = 50$$

$$Sl500 = \begin{pmatrix} 0.55961 - 0.79632i & -0.18785 - 0.13001i \\ -0.18785 - 0.13001i & 0.55961 - 0.79632i \end{pmatrix}$$

$$Zd450 = (I - Sd450)^{-1} \cdot (I + Sd450) \cdot Z0 \quad Zl450 = (I - Sl450)^{-1} \cdot (I + Sl450) \cdot Z0$$

$$Zd460 = (I - Sd460)^{-1} \cdot (I + Sd460) \cdot Z0 \quad Zl460 = (I - Sl460)^{-1} \cdot (I + Sl460) \cdot Z0$$

$$Zd470 = (I - Sd470)^{-1} \cdot (I + Sd470) \cdot Z0 \quad Zl470 = (I - Sl470)^{-1} \cdot (I + Sl470) \cdot Z0$$

$$Zd480 = (I - Sd480)^{-1} \cdot (I + Sd480) \cdot Z0 \quad Zl480 = (I - Sl480)^{-1} \cdot (I + Sl480) \cdot Z0$$

$$Zd490 = (I - Sd490)^{-1} \cdot (I + Sd490) \cdot Z0 \quad Zl490 = (I - Sl490)^{-1} \cdot (I + Sl490) \cdot Z0$$

$$Zd500 = (I - Sd500)^{-1} \cdot (I + Sd500) \cdot Z0 \quad Zl500 = (I - Sl500)^{-1} \cdot (I + Sl500) \cdot Z0$$

$$Zd510 = (I - Sd510)^{-1} \cdot (I + Sd510) \cdot Z0 \quad Zl510 = (I - Sl510)^{-1} \cdot (I + Sl510) \cdot Z0$$

$$Zd520 = (I - Sd520)^{-1} \cdot (I + Sd520) \cdot Z0 \quad Zl520 = (I - Sl520)^{-1} \cdot (I + Sl520) \cdot Z0$$

$$Zd530 = (I - Sd530)^{-1} \cdot (I + Sd530) \cdot Z0 \quad Zl530 = (I - Sl530)^{-1} \cdot (I + Sl530) \cdot Z0$$

$$Zd540 = (I - Sd540)^{-1} \cdot (I + Sd540) \cdot Z0 \quad Zl540 = (I - Sl540)^{-1} \cdot (I + Sl540) \cdot Z0$$

$$Zd550 = (I - Sd550)^{-1} \cdot (I + Sd550) \cdot Z0 \quad Zl550 = (I - Sl550)^{-1} \cdot (I + Sl550) \cdot Z0$$

Next, find elements of equivalent tee-network

$$Zd500 = \begin{pmatrix} -4.54675 \cdot 10^3 i & -5.83044 \cdot 10^3 i \\ -5.83044 \cdot 10^3 i & -4.54675 \cdot 10^3 i \end{pmatrix}$$

$$Zl500 = \begin{pmatrix} -102.70466i & 28.8206i \\ 28.8206i & -102.70466i \end{pmatrix}$$

$$Zds_1 = Zd450_{1,1} - Zd450_{1,2}$$

$$Zdp_1 = Zd450_{1,2}$$

$$Zds_2 = Zd460_{1,1} - Zd460_{1,2}$$

$$Zdp_2 = Zd460_{1,2}$$

$$Zds_3 = Zd470_{1,1} - Zd470_{1,2}$$

$$Zdp_3 = Zd470_{1,2}$$

$$Zds_4 = Zd480_{1,1} - Zd480_{1,2}$$

$$Zdp_4 = Zd480_{1,2}$$

$$\begin{aligned}
 Zds_5 &= Zd490_{1,1} - Zd490_{1,2} & Zdp_5 &= Zd490_{1,2} \\
 Zds_6 &= Zd500_{1,1} - Zd500_{1,2} & Zdp_6 &= Zd500_{1,2} \\
 Zds_7 &= Zd510_{1,1} - Zd510_{1,2} & Zdp_7 &= Zd510_{1,2} \\
 Zds_8 &= Zd520_{1,1} - Zd520_{1,2} & Zdp_8 &= Zd520_{1,2} \\
 Zds_9 &= Zd530_{1,1} - Zd530_{1,2} & Zdp_9 &= Zd530_{1,2} \\
 Zds_{10} &= Zd540_{1,1} - Zd540_{1,2} & Zdp_{10} &= Zd540_{1,2} \\
 Zds_{11} &= Zd550_{1,1} - Zd550_{1,2} & Zdp_{11} &= Zd550_{1,2}
 \end{aligned}$$

$$Lds_m = \frac{Zds_m}{j \cdot 2 \cdot \pi \cdot Freq\ MHz_m \cdot 10^6} \cdot 10^9$$

$$Cdp_m = \frac{1}{j \cdot 2 \cdot \pi \cdot Freq\ MHz_m \cdot 10^6 \cdot Zdp_m} \cdot 10^{12}$$

Dipole-Matching Network  
Series Inductance vs. Frequency



Dipole-Matching Network  
Parallel Capacitance vs. Frequency



$$\begin{aligned}
 Zls_1 &= Zl450_{1,1} - Zl450_{1,2} & Zlp_1 &= Zl450_{1,2} & Zlp_1 &= 23.39923i \\
 Zls_2 &= Zl460_{1,1} - Zl460_{1,2} & Zlp_2 &= Zl460_{1,2} & Zlp_2 &= 24.41836i \\
 Zls_3 &= Zl470_{1,1} - Zl470_{1,2} & Zlp_3 &= Zl470_{1,2} \\
 Zls_4 &= Zl480_{1,1} - Zl480_{1,2} & Zlp_4 &= Zl480_{1,2} \\
 Zls_5 &= Zl490_{1,1} - Zl490_{1,2} & Zlp_5 &= Zl490_{1,2} \\
 Zls_6 &= Zl500_{1,1} - Zl500_{1,2} & Zlp_6 &= Zl5000_{1,2} \\
 Zls_7 &= Zl510_{1,1} - Zl510_{1,2} & Zlp_7 &= Zl510_{1,2} \\
 Zls_8 &= Zl520_{1,1} - Zl520_{1,2} & Zlp_8 &= Zl520_{1,2}
 \end{aligned}$$

$$\begin{aligned}
 Zls_9 &= Zl530_{1,1} - Zl530_{1,2} & Zlp_9 &= Zl530_{1,2} \\
 Zls_{10} &= Zl540_{1,1} - Zl540_{1,2} & Zlp_{10} &= Zl540_{1,2} \\
 Zls_{11} &= Zl550_{1,1} - Zl550_{1,2} & Zlp_{11} &= Zl550_{1,2}
 \end{aligned}$$

$$Zls_6 = 131.52525i \quad Zlp_{10} = 33.77907i$$

$$Llp_m = \frac{Zlp_m}{j \cdot 2 \cdot \pi \cdot Freq\ MHz_m \cdot 10^6} \cdot 10^9$$

$$Cls_m = \frac{1}{j \cdot 2 \cdot \pi \cdot Freq\ MHz_m \cdot 10^6 \cdot Zls_m} \cdot 10^{12}$$

Loop-Matching Network  
Parallel Inductance vs. Frequency



Loop-Matching Network  
Series Capacitance vs. Frequency



|    | 1   |
|----|-----|
| 1  | 450 |
| 2  | 460 |
| 3  | 470 |
| 4  | 480 |
| 5  | 490 |
| 6  | 500 |
| 7  | 510 |
| 8  | 520 |
| 9  | 530 |
| 10 | 540 |
| 11 | 550 |

Lds =

|    |           |
|----|-----------|
| 1  | 505.85268 |
| 2  | 483.85428 |
| 3  | 463.22143 |
| 4  | 443.87617 |
| 5  | 425.70801 |
| 6  | 408.61049 |
| 7  | 392.51047 |
| 8  | 377.33279 |
| 9  | 363.00674 |
| 10 | 349.46726 |
| 11 | 336.65439 |

|    | 1       |
|----|---------|
| 1  | 0.05369 |
| 2  | 0.05386 |
| 3  | 0.05404 |
| 4  | 0.05423 |
| 5  | 0.05441 |
| 6  | 0.05459 |
| 7  | 0.0548  |
| 8  | 0.05499 |
| 9  | 0.05519 |
| 10 | 0.0554  |
| 11 | 0.05561 |

Cdp =

Cls =

|    |         |
|----|---------|
| 1  | 3.10213 |
| 2  | 2.94731 |
| 3  | 2.80225 |
| 4  | 2.6666  |
| 5  | 2.53949 |
| 6  | 2.42014 |
| 7  | 2.3078  |
| 8  | 2.20234 |
| 9  | 2.10291 |
| 10 | 2.00914 |
| 11 | 1.92062 |

Llp =

|    |          |
|----|----------|
| 1  | 8.27578  |
| 2  | 8.44848  |
| 3  | 8.62545  |
| 4  | 8.80504  |
| 5  | 8.98773  |
| 6  | 9.17388  |
| 7  | 9.36457  |
| 8  | 9.55756  |
| 9  | 9.75465  |
| 10 | 9.95575  |
| 11 | 10.16064 |

Calculate the wave emanating from the dipole-matching network (negative active resistance)

$$\Gamma_{adipole_m} = \left[ \frac{(Za_{m,1} + j \cdot Za_{m,2}) - Z0}{(Za_{m,1} + j \cdot Za_{m,2}) + Z0} \right]$$

$$bAl_m = \frac{S12dipolemag_m \cdot \exp\left(j \cdot S12dipoleang_m \cdot \frac{\pi}{180}\right) \cdot (\Gamma_{adipole_m}) \cdot Iin_{m,1} \cdot Z0}{[1 - (\Gamma_{adipole_m})]}$$

Values for 500 MHz

$$Freq\ MHz_6 = 500 \quad \Gamma_{adipole_6} = 1.00038 - 0.03414i \quad |\Gamma_{adipole_6}| = 1.00096$$

$$S12dipolemag_6 = 0.04373 \quad Iin_{6,1} = -i \quad \arg(\Gamma_{adipole_6}) \cdot \frac{180}{\pi} = -1.9545$$

$$S12dipoleang_6 = -88.0455 \quad bAl_6 = 0.70499 + 64.10877i$$

$$Za_{6,1} = -82.20864 \quad bAldB_6 = 10 \cdot \log\left(\left(|bAl_6|\right)^2\right)$$

$$Za_{6,2} = 2.9289 \cdot 10^3 \quad bAlB_6 = 36.13887 \quad |bAl_6| = 64.11265$$

$$\arg(bAl_6) \cdot \frac{180}{\pi} = 89.36995$$

Calculate the wave incident upon the loop-matching network (positive active resistance)

$$\Gamma_{aloop_m} = \left[ \frac{(Za_{m,2} + j \cdot Za_{m,4}) - Z0}{(Za_{m,3} + j \cdot Za_{m,4}) + Z0} \right]$$

$$aBl_m = \frac{\left[ 1 - \left( |\Gamma_{aloop_m}| \right)^2 \right] \cdot Iin_{m,2} \cdot Z0}{S12loopmag_m \cdot \exp\left(j \cdot S12loop_m \cdot \frac{\pi}{180}\right) \cdot [1 - (a\Gamma_{loop_m})]}$$

## Values for 500 MHz

$$Freq\ MHz_6 = 500$$

$$S12loopmag_6 = 0.22959$$

$$S12loopang_6 = 144.90218$$

$$Za_{6,3} = 3.18291$$

$$Za_{6,4} = 96.16667$$

$$\Gamma aloop_6 = 0.55961 + 0.79632i$$

$$Iin_{6,2} = 5.09296$$

$$aBl_6 = -57.76716 - 28.12295i$$

$$aBldB_6 = 10 \cdot \log \left[ \left( |aBl_6| \right)^2 \right]$$

$$aBlB_6 = 36.15734$$

$$|\Gamma aLOOP_6| = 0.97329$$

$$\arg(\Gamma aLOOP_6) \cdot \frac{180}{\pi} = 54.90218$$

$$|aBl_6| = 64.24909$$

$$\arg(aBl_6) \cdot \frac{180}{\pi} = 154.04166$$



$$Z500 = \begin{pmatrix} 0.00934 - 2.9289 \cdot 10^3 i & 3.05869 \cdot 10^{-6} + 16.14346i \\ 3.05869 \cdot 10^{-6} + 16.14346i & 0.01314 + 96.1667i \end{pmatrix}$$

$$Y500 = \begin{pmatrix} 1.1293 \cdot 10^{-9} + 3.4111 \cdot 10^{-4} i & 7.6262 \cdot 10^{-9} - 5.7262 \cdot 10^{-5} i \\ 7.6262 \cdot 10^{-9} - 5.7262 \cdot 10^{-5} i & 1.4187 \cdot 10^{-6} - 0.01039i \end{pmatrix}$$

Calculate coupling parameter

$$Sc13_m = \sqrt{1 - \frac{(|bAl_m|)^2}{(|aBl_m|)^2}} \quad \theta c13_m = \arg(aBl_m) \cdot \frac{180}{\pi} - \arg(bAl_m) \cdot \frac{180}{\pi} - 90$$

$$Sc13_6 = 0.20288i \quad Sc13dB = 20 \cdot \log(Sc13_6) \quad Sc13dB = -13.85522 + 13.64376i$$

$$k_m = \frac{|bAl_m|}{|aBl_m|} \quad k_6 = 1.02037 \quad \theta aBl_m = \arg\left(aBl_m \cdot \frac{180}{\pi}\right) \quad \theta bAl_m = \arg\left(bAl_m \cdot \frac{180}{\pi}\right)$$



$$\frac{|bAl_6|}{|aBl_6|} = 1.02037 \arg\left(\frac{bAl_6}{aBl_6}\right) \cdot \frac{180}{\pi} = -116.65838$$

| $\theta aBl_m$ |
|----------------|
| - 151.10994    |
| - 151.72907    |
| - 152.33303    |
| - 152.91877    |
| - 153.48779    |
| - 154.04166    |
| - 154.58221    |
| - 155.10622    |
| - 155.61759    |
| - 156.11599    |
| - 156.60185    |

| $\theta bAl_m$ |
|----------------|
| 89.44453       |
| 89.42996       |
| 89.4151        |
| 89.40019       |
| 89.38515       |
| 89.36995       |
| 89.35443       |
| 89.33889       |
| 89.32315       |
| 89.30716       |
| 89.29102       |

| $\theta c13_m$ |
|----------------|
| - 330.55446    |
| - 331.15903    |
| - 331.74813    |
| - 332.31896    |
| - 332.87294    |
| - 333.41161    |
| - 333.93664    |
| - 334.4451     |
| - 334.94074    |
| - 335.42316    |
| - 335.89287    |



**Appendix E**

**MATHCAD ANALYSIS TO CALCULATE REQUIRED COUPLING  
FACTOR AND ADDITIONAL PHASE SHIFT**

Mathcad program to calculate the coupling and phase shift required for mixed-mode antenna matching-network feedback



Desire  $b_2 = 0$

$$b_2 = S_{21} \cdot a_1 + S_{22} \cdot a_2 + S_{23} \cdot a_3 + S_{24} \cdot a_4$$

Assume matched conditions such that  $a_2 = 0$  and  $a_4 = 0$

$$b_2 = S_{21} \cdot a_1 + S_{23} \cdot a_3$$

Using Dave's notation and relating required phase shift line length

$$a_3 = \exp(-j \cdot \theta) \cdot b_{A1}$$

Substituting

$$b_2 = S_{21} \cdot a_1 + S_{23} \cdot (\exp(-j \cdot \theta) \cdot b_{A1})$$

Since we desire that  $b_2 = 0$

$$a_1 = -S_{23} \cdot b_{A1} \cdot \frac{\exp(-j \cdot \theta)}{S_{21}}$$

Substituting for  $a1$

$$\begin{aligned}
 aBl &= S41 \cdot \left( -S23 \cdot bAl \cdot \frac{\exp(-j \cdot \theta)}{S21} \right) + S43 \cdot (\exp(-j \cdot \theta) \cdot bAl) \\
 aBl &= \left( -S41 \cdot S23 \cdot \frac{\exp(-j \cdot \theta)}{S21} + S43 \cdot \exp(-j \cdot \theta) \right) \cdot bAl \\
 aBl &= \left( -S41 \cdot \frac{S23}{S21} + S43 \right) \cdot bAl \cdot \exp(-j \cdot \theta)
 \end{aligned}$$

Examine S-parameters of directional coupler

Directly coupled ports can be described by  $Sd = S14, S41, S23, S32$   
 Cross-coupled ports can be described by  $Sc = S12, S21, S43, S34$

Substituting  $Sd$  and  $Sc$

$$\begin{aligned}
 aBl &= \left( -Sd \cdot \frac{Sd}{Sc} + Sc \right) \cdot bAl \cdot \exp(-j \cdot \theta) \\
 aBl &= \left( \frac{Sc^2 - Sd^2}{Sc} \right) \cdot bAl \cdot \exp(-j \cdot \theta)
 \end{aligned}$$

Write expression for  $Sd$  and  $Sc$  (from IRE Trans MTT "Coupled-Strip-Transmission-Line Filters and Directional Couplers," Jones and Bolljahn, April 1956).

$$k = \frac{Z_{oo} - Z_{oe}}{Z_{oo} + Z_{oe}}$$

Writing expression for coupler S-parameters as function of  $k$  at frequency where coupling length is a quarter wavelength

$$Sd = -j \cdot \sqrt{1 - k^2} \quad Sc = k \quad Sd = -0.06508 \quad Sc = -0.99788$$

Substituting for b1

$$aBl = \left( \frac{Sc^2 - Sd^2}{Sc} \right) \cdot bAl \cdot \exp(-j \cdot \theta)$$

$$aBl = \left[ \frac{(-k)^2 - (-j \cdot \sqrt{1-k^2})^2}{-k} \right] \cdot bAl \cdot \exp(-j \cdot \theta)$$

$$aBl = \frac{-1}{k} \cdot bAl \cdot \exp(-j \cdot \theta)$$

Solving for the ratio of bAl/aBl in terms of k and theta.

Define the feedback ratio (bAl/aBl)=K as

$$K = -k \cdot \exp(j \cdot \theta)$$

$$K = k \cdot \exp(j \cdot (+180))$$

$$\theta = \arg\left(\frac{bAl}{aBl}\right) - 180$$

Compute value of additional phase shift.

Enter bAl and aBl

$$bAl = 0.70499 + j \cdot 64.10877$$

$$aBl = -57.76716 - j \cdot 28.12295$$

$$\arg(bAl) \cdot \frac{180}{\pi} = 89.36996$$

$$\arg(aBl) \cdot \frac{180}{\pi} = -154.04166$$

$$\arg\left(\frac{bAl}{aBl}\right) \cdot \frac{180}{\pi} = -116.58838$$

$$\theta = \arg\left(\frac{bAl}{aBl}\right) \cdot \frac{180}{\pi} - 180$$

$$\theta = -296.58838$$

Or in terms of positive phase shift

$$\theta = \left( \arg\left(\frac{bAl}{aBl}\right) \cdot \frac{180}{\pi} - 180 \right) + 360$$

$$\theta = 63.41162$$



**Appendix F**

**TOUCHSTONE ANALYSIS OF MIXED-MODE ARRAY  
(NO FEEDBACK)**

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE1.CKT Tue Jan 31 18:00:28 1995

DIM  
 FREQ GHZ  
 RES OH  
 IND NH  
 CAP PF  
 LNG MIL  
 TIME PS  
 COND /OH  
 ANG DEG



\*\*\*\*\*

VAR

\*\*\*\*\*  
 ! VARIABLES ASSOCIATED WITH MIXED MODE ANTENNA  
 !\*\*\*\*\*  
 ! DIPOLE MATCHING NETWORK (TEE SECTION)  
 !\*\*\*\*\*  
 LSD = 406.0848  
 CPD = .05707  
 !\*\*\*\*\*  
 ! LOOP MATCHING NETWORK (TEE SECTION)  
 !\*\*\*\*\*  
 CSL = 2.4296  
 LPL = 9.06021  
 !\*\*\*\*\*  
 !ON  
 !\*\*\*\*\*  
 , CKT  
 \*\*\*\*\*  
 ! . Antenna Y-matrix (passive) from NEC MOM  
 S2PA 1 2 0 mixmode2.S2P  
 \* DEF2P 1 2 ANTENNA  
 current & voltage monitor  
 S4PA 1 2 3 4 IVMETER.S4P  
 DEF4P 1 2 3 4 IVMETER  
 reflection coefficient monitor  
 S4PB 1 2 3 4 REFLMETR.S4P  
 \* DEF4P 1 2 3 4 REFLMON  
 !\*\*\*\*\*  
 ! . Dipole Matching Network  
 !\*\*\*\*\*  
 . \* IND 1 2 L^LSD  
 CAP 2 0 C^CPD  
 IND 2 3 L^LSD  
 DEF2P 1 3 DMN  
 \*\*\*\*\*

```

! Loop Matching Network
*****!
* CAP 1 2 C^CSL
* IND 2 0 L^LPL
* CAP 2 3 C^CSL
* DEF2P 1 3 LMN
*****!
! Define 6-port Channel #1 (DIPOLE)
*****!
REFLMON 1 4 2 3
DMN 4 5
IVMETER 5 8 6 7
DEF6P 1 2 3 6 7 8 CHAN1
*****!
Define 6-port Channel #2 (LOOP)
*****!
REFLMON 1 4 2 3
LMN 4 5
IVMETER 5 8 6 7
DEF6P 1 2 3 6 7 8 CHAN2
*****!
Define 2-port to measure Passive S-Parameters of antenna and matching NW
*****!
DMN 1 2
LMN 4 3
ANTENNA 2 3
DEF2P 1 4 SPASSV
*****!
. Define 3-port to measure Reflected waves at input to matching Networks
! Select REFL S21 to measure reflected wave in channel 1 (DIPOLE)
Select REFL S31 to measure reflected wave in channel 2 (LOOP)
*****!
RES 1 0 R=50
CHAN1 1 2 3 4 5 6
CHAN2 7 8 9 10 11 12
ANTENNA 6 12
DEF3P 7 3 9 REFL
*****!
. Define 3-port to measure Incident waves at input to matching Networks
! Select INC S21 to measure incident wave in channel 1 (DIPOLE)
Select INC S31 to measure incident wave in channel 2 (LOOP)
*****!
RES 1 0 R=50
CHAN1 1 2 3 4 5 6
CHAN2 7 8 9 10 11 12
ANTENNA 6 12
DEF3P 7 2 8 INC
*****!
. Define 3-port to measure VANT (voltage at antenna) for all Channels
! Select VANT S21 for Voltage at DIPOLE
Select VANT S31 for Voltage at LOOP
*****!
RES 1 0 R=50
CHAN1 1 2 3 4 5 6
CHAN2 7 8 9 10 11 12
ANTENNA 6 12
DEF3P 7 5 11 VANT
*****!

```

```

! Define 3-port to measure IANT (current AT antenna) for all Channels
! Select IANT S21 for current at DIPOLE
! Select IANT S31 for current at LOOP
*****RES 1 0 R=50
CHAN1 1 2 3 4 5 6

CHAN2 7 8 9 10 11 12
ANTENNA 6 12
DEF3P 7 4 10 IANT
*****Define 6-port Current Reference Channel (#1) DIPOLE
*****DMN 1 2
IVMETER 2 5 3 4
IVMETER 5 8 6 7
DEF6P 1 3 4 6 7 8 CHANREF
*****Define 3 port current reference (Normalize antenna currents to DIPOLE)
*****RES 1 0 R=50
CHANREF 1 2 3 4 5 6
CHAN2 7 8 9 10 11 12
ANTENNA 6 12
DEF3P 7 2 4 [REF
:ERM
:ROC
  GAMMA = REFL / INC
  ZANT = VANT / IANT
  INORM = IANT / IREF
OUT
'Passive Antenna Data
  ANTENNA MAG[S11]
!  ANTENNA ANG[S11]
'  ANTENNA MAG[S12]
  ANTENNA ANG[S12]
:  ANTENNA MAG[S21]
!  ANTENNA ANG[S21]
  ANTENNA MAG[S22]
.  ANTENNA ANG[S22]
!Passive matching network S-paramters
  DMN MAG[S11]
  DMN ANG[S11]
!  LMN MAG[S11]
'  LMN ANG[S11]
  DMN MAG[S21]
:  DMN ANG[S21]
!  LMN MAG[S21]
  LMN ANG[S21]
.  DMN MAG[S22]
!  DMN ANG[S22]
  LMN MAG[S22]
  LMN ANG[S22]
! Passive Scattering Parameters of Antenna and Matching Networks
'  SPASSV DB[S11] GR1
  SPASSV ANG[S11] GR2
:  SPASSV DB[S22] GR1

```

```
! SPASSV ANG[S22] GR2
SPASSV DB[S12] GR1
. SPASSV ANG[S12] GR2
! SPASSV DB[S21] GR1
SPASSV ANG[S21] GR2

!Reflection coefficients
! GAMMA S21 SC2
! GAMMA S31 SC2
!Incident waves
! INC MAG[S21]
! INC ANG[S21]
! INC MAG[S31]
! INC ANG[S31]
! REFL MAG[S21]
! REFL ANG[S21]
! REFL MAG[S31]
! REFL ANG[S31]
!Antenna Voltages
! VANT S21
! VANT S31
!Antenna Currents
! IANT S21
! IANT S31
!Active impedances
! ZANT RE[S21]
! ZANT IM[S21]
! ZANT RE[S31]
! ZANT IM[S31]
!Reference currents
IREF MAG[S21]
IREF ANG[S21]
IREF MAG[S31]
IREF ANG[S31]
!Normalized Current Ratios
! Inorm MAG[S21]
! Inorm ANG[S21]
! Inorm MAG[S31]
! Inorm ANG[S31]
FREQ
SWEEP .450 .550 .010
! STEP .500
GRID
RANGE .450 .550 .010
GR1 0 -60 10
GR2 180 -180 30
OPT
```



#### CURRENT REFERENCE CHANNEL



#### CHANNEL TOPOLOGY



#### OVERALL TOPOLOGY



# NAWCWPNS TP 8249

## MIXMODE1.Y2P

```

! Simple Dipole Antenna located on Z-axis, center fed
! Dipole length = .02 wavelengths at 500 MHz
! Dipole radius = .001 wavelengths at 500 MHz
! Square loop in yz plane with side length = .025 wavelengths at 500 MHz
# GHZ Y RI R 1 !required
!F(GHz) Y11r      Y11i      Y21r      Y21i      Y12r      Y12i
Y22r      Y22i
!.450 7.4255E-10 3.0686E-4 5.0949E-9 -5.0303E-5 4.9090E-9 -5.2599E
-5 1.1422E-6 -1.1622E-2
!.460 8.1044E-10 3.1370E-4 5.5636E-9 -5.1437E-5 5.3603E-9 -5.3785E
-5 1.1949E-6 -1.1355E-2
!.470 8.8286E-10 3.2055E-4 6.0639E-9 -5.2572E-5 5.8421E-9 -5.4973E
-5 1.2489E-6 -1.1098E-2
!.480 9.6001E-10 3.2740E-4 6.5972E-9 -5.3708E-5 6.3556E-9 -5.6161E
-5 1.3042E-6 -1.0852E-2
!.490 1.0421E-09 3.3425E-4 7.1650E-9 -5.4845E-5 6.9023E-9 -5.7350E
-5 1.3608E-6 -1.0616E-2
.500 1.1293E-09 3.4111E-4 7.7687E-9 -5.5983E-5 7.4836E-9 -5.8541E
-5 1.4187E-6 -1.0389E-2
!.510 1.2218E-09 3.4796E-4 8.4098E-9 -5.7123E-5 8.1008E-9 -5.9733E
-5 1.4779E-6 -1.0170E-2
!.520 1.3198E-09 3.5482E-4 9.0899E-9 -5.8264E-5 8.7554E-9 -6.0927E
-5 1.5385E-6 -9.9601E-3
!.530 1.4236E-09 3.6168E-4 9.8105E-9 -5.9405E-5 9.4490E-9 -6.2121E
-5 1.6004E-6 -9.7574E-3
!.540 1.5334E-09 3.6854E-4 1.0573E-8 -6.0549E-5 1.0183E-8 -6.3317E
-5 1.6636E-6 -9.5619E-3
!.550 1.6493E-09 3.7541E-4 1.1379E-8 -6.1693E-5 1.0959E-8 -6.4514E
-5 1.7282E-6 -9.3732E-3

```

| FREQ-GHZ | MAG[S11] | ANG[S11] | MAG[S12] | ANG[S12] | MAG[S21] | ANG[S21] | MAG[S22] | ANG[S22] |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|          | ANTENNA  |
| 0.45000  | 1.000    | -1.758   | 0.004    | 119.286  | 0.005    | 119.286  | 1.000    | 60.322   |
| 0.46000  | 1.000    | -1.798   | 0.004    | 118.692  | 0.005    | 118.691  | 1.000    | 59.171   |
| 0.47000  | 1.000    | -1.837   | 0.005    | 118.113  | 0.005    | 118.112  | 1.000    | 58.052   |
| 0.48000  | 1.000    | -1.876   | 0.005    | 117.552  | 0.005    | 117.551  | 1.000    | 56.969   |
| 0.49000  | 1.000    | -1.915   | 0.005    | 117.008  | 0.005    | 117.007  | 1.000    | 55.919   |
| 0.50000  | 1.000    | -1.955   | 0.005    | 116.479  | 0.005    | 116.478  | 1.000    | 54.899   |
| 0.51000  | 1.000    | -1.994   | 0.005    | 115.963  | 0.005    | 115.962  | 1.000    | 53.907   |
| 0.52000  | 1.000    | -2.033   | 0.005    | 115.464  | 0.005    | 115.463  | 1.000    | 52.947   |
| 0.53000  | 1.000    | -2.072   | 0.005    | 114.978  | 0.006    | 114.977  | 1.000    | 52.013   |
| 0.54000  | 1.000    | -2.112   | 0.005    | 114.505  | 0.006    | 114.504  | 1.000    | 51.104   |
| 0.55000  | 1.000    | -2.151   | 0.006    | 114.044  | 0.006    | 114.043  | 1.000    | 50.221   |



S-parameters in 50 ohm system  
Y-Matrix Symmetry not enforced

# NAWCWPNS TP 8249

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE1.OUT Tue Jan 31 14:32:15 1995

FREQ-GHZ MAG[S11] ANG[S11] MAG[S21] ANG[S21] MAG[S22] ANG[S22]

|         | LMN   | LMN     | LMN   | LMN      | LMN   | LMN     |
|---------|-------|---------|-------|----------|-------|---------|
| 0.45000 | 0.988 | -46.881 | 0.156 | -136.881 | 0.988 | -46.881 |
| 0.46000 | 0.986 | -48.392 | 0.168 | -138.392 | 0.986 | -48.392 |
| 0.47000 | 0.983 | -49.948 | 0.182 | -139.948 | 0.983 | -49.948 |
| 0.48000 | 0.981 | -51.550 | 0.196 | -141.550 | 0.981 | -51.550 |
| 0.49000 | 0.977 | -53.201 | 0.211 | -143.201 | 0.977 | -53.201 |
| 0.50000 | 0.974 | -54.904 | 0.227 | -144.904 | 0.974 | -54.904 |
| 0.51000 | 0.970 | -56.661 | 0.244 | -146.661 | 0.970 | -56.661 |
| 0.52000 | 0.965 | -58.476 | 0.262 | -148.476 | 0.965 | -58.476 |
| 0.53000 | 0.960 | -60.350 | 0.281 | -150.350 | 0.960 | -60.350 |
| 0.54000 | 0.954 | -62.287 | 0.300 | -152.287 | 0.954 | -62.287 |
| 0.55000 | 0.947 | -64.289 | 0.321 | -154.289 | 0.947 | -64.289 |



Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE1.OUT Tue Jan 31 14:31:13 1995

FREQ-GHZ MAG[S11] ANG[S11] MAG[S21] ANG[S21] MAG[S22] ANG[S22]

|         | DMN   | DMN   | DMN   | DMN     | DMN   | DMN   |
|---------|-------|-------|-------|---------|-------|-------|
| 0.45000 | 0.999 | 2.239 | 0.048 | -87.761 | 0.999 | 2.239 |
| 0.46000 | 0.999 | 2.178 | 0.047 | -87.822 | 0.999 | 2.178 |
| 0.47000 | 0.999 | 2.119 | 0.046 | -87.881 | 0.999 | 2.119 |
| 0.48000 | 0.999 | 2.062 | 0.046 | -87.938 | 0.999 | 2.062 |
| 0.49000 | 0.999 | 2.007 | 0.045 | -87.993 | 0.999 | 2.007 |
| 0.50000 | 0.999 | 1.954 | 0.044 | -88.046 | 0.999 | 1.954 |
| 0.51000 | 0.999 | 1.903 | 0.044 | -88.097 | 0.999 | 1.903 |
| 0.52000 | 0.999 | 1.853 | 0.043 | -88.147 | 0.999 | 1.853 |
| 0.53000 | 0.999 | 1.805 | 0.042 | -88.195 | 0.999 | 1.805 |
| 0.54000 | 0.999 | 1.758 | 0.042 | -88.242 | 0.999 | 1.758 |
| 0.55000 | 0.999 | 1.713 | 0.041 | -88.287 | 0.999 | 1.713 |



Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE1.OUT Tue Jan 31 16:36:06 1995

FREQ-GHZ DB[S11] ANG[S11] DB[S22] ANG[S22] DB[S12] ANG[S12] DB[S21] ANG[S21]

|         | SPASSV  | SPASSV   | SPASSV  | SPASSV   | SPASSV  | SPASSV   | SPASSV  | SPASSV   |
|---------|---------|----------|---------|----------|---------|----------|---------|----------|
| 0.45000 | -0.001  | -13.547  | -0.002  | -52.916  | -35.567 | 56.751   | -35.179 | 56.750   |
| 0.46000 | -0.004  | -17.155  | -0.004  | -57.263  | -30.847 | 52.769   | -30.459 | 52.768   |
| 0.47000 | -0.014  | -23.273  | -0.016  | -63.904  | -25.021 | 46.376   | -24.633 | 46.376   |
| 0.48000 | -0.088  | -36.029  | -0.091  | -76.611  | -17.217 | 33.622   | -16.829 | 33.621   |
| 0.49000 | -1.449  | -77.663  | -1.468  | -115.861 | -5.685  | -6.895   | -5.297  | -6.896   |
| 0.50000 | -47.450 | -179.334 | -73.786 | -13.049  | -0.212  | -116.647 | 0.176   | -116.647 |
| 0.51000 | -1.811  | 77.831   | -1.837  | 23.508   | -4.887  | 140.818  | -4.499  | 140.817  |
| 0.52000 | -0.169  | 37.421   | -0.176  | -14.654  | -14.412 | 101.468  | -14.024 | 101.467  |
| 0.53000 | -0.041  | 24.526   | -0.045  | -27.601  | -20.557 | 88.523   | -20.168 | 88.523   |
| 0.54000 | -0.015  | 18.325   | -0.018  | -34.436  | -24.789 | 81.993   | -24.401 | 81.993   |
| 0.55000 | -0.007  | 14.669   | -0.010  | -38.967  | -27.937 | 77.894   | -27.549 | 77.894   |

# NAWCWPNS TP 8249

## Circuit for Passive S-Parameter Calculation



$$L_{sd} = 406.0848 \text{ nH}$$

$$C_{pd} = 0.05707 \text{ pFd}$$

$$C_{si} = 2.4296 \text{ pFd}$$

$$L_{pl} = 9.06021 \text{ nH}$$

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE1.OUT      Tue Jan 31 18:13:56 1995

| FREQ-GHZ | RE[S21] |          | IM[S21] |         | RE[S31] |      | IM[S31] |      |
|----------|---------|----------|---------|---------|---------|------|---------|------|
|          | ZANT    | ZANT     | ZANT    | ZANT    | ZANT    | ZANT | ZANT    | ZANT |
| 0.45000  | -75.324 | -2.6e+03 | 0.040   | 86.273  |         |      |         |      |
| 0.46000  | -76.879 | -2.6e+03 | 0.062   | 88.382  |         |      |         |      |
| 0.47000  | -78.534 | -2.7e+03 | 0.110   | 90.563  |         |      |         |      |
| 0.48000  | -80.264 | -2.8e+03 | 0.243   | 92.867  |         |      |         |      |
| 0.49000  | -82.103 | -2.9e+03 | 0.809   | 95.450  |         |      |         |      |
| 0.50000  | -84.035 | -2.9e+03 | 3.113   | 96.168  |         |      |         |      |
| 0.51000  | -86.083 | -3.0e+03 | 0.911   | 96.810  |         |      |         |      |
| 0.52000  | -88.274 | -3.1e+03 | 0.319   | 99.359  |         |      |         |      |
| 0.53000  | -90.548 | -3.2e+03 | 0.169   | 101.690 |         |      |         |      |
| 0.54000  | -92.978 | -3.3e+03 | 0.112   | 103.919 |         |      |         |      |
| 0.55000  | -95.565 | -3.3e+03 | 0.084   | 106.105 |         |      |         |      |

# NAWCWPNS TP 8249



From MathCad

$$Z_{\text{active dipole}} = -84.045 - j 2928.9$$

Good agreement!

$$Z_{\text{active loop}} = 3.11211 + j 96.16673$$

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODEL. OUT     Tue Jan 31 17:17:29 1995

|         | FREQ-GHZ | MAG[S21]          | ANG[S21]          | MAG[S31]          | ANG[S31]          | MAG[S21]          | ANG[S21]          | MAG[S31]          | ANG[S31]          |                   |
|---------|----------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|         |          | INC               | INC               | INC               | INC               | INC               | REFL              | REFL              | REFL              | REFL              |
|         |          | $a_1 \rightarrow$ | $a_8 \rightarrow$ | $a_8 \rightarrow$ | $b_3 \rightarrow$ | $b_3 \rightarrow$ | $b_3 \rightarrow$ | $b_4 \rightarrow$ | $b_4 \rightarrow$ | $b_4 \rightarrow$ |
| 0.45000 | 1.2e-09  | -123.249          | 1.000             | 0.000             | 0.017             | 56.751            | 1.000             | -52.916           |                   |                   |
| 0.46000 | 2.0e-09  | -127.231          | 1.000             | 0.000             | 0.029             | 52.769            | 0.999             | -57.263           |                   |                   |
| 0.47000 | 4.0e-09  | -133.524          | 1.000             | 0.000             | 0.056             | 46.376            | 0.998             | -63.904           |                   |                   |
| 0.48000 | 9.8e-09  | -146.378          | 1.000             | 0.000             | 0.138             | 33.622            | 0.990             | -76.611           |                   |                   |
| 0.49000 | 3.7e-08  | 173.105           | 1.000             | 0.000             | 0.520             | -6.895            | 0.845             | -115.861          |                   |                   |
| 0.50000 | 6.9e-08  | 63.353            | 1.000             | 0.000             | 0.976             | -116.647          | 2.0e-04           | -12.957           |                   |                   |
| 0.51000 | 4.1e-08  | -39.182           | 1.000             | 0.000             | 0.570             | 140.818           | 0.809             | 23.508            |                   |                   |
| 0.52000 | 1.4e-08  | -78.532           | 1.000             | 0.000             | 0.190             | 101.468           | 0.980             | -14.654           |                   |                   |
| 0.53000 | 6.7e-09  | -91.477           | 1.000             | 0.000             | 0.094             | 88.523            | 0.995             | -27.601           |                   |                   |
| 0.54000 | 4.1e-09  | -98.007           | 1.000             | 0.000             | 0.058             | 81.993            | 0.998             | -34.436           |                   |                   |
| 0.55000 | 2.9e-09  | -102.106          | 1.000             | 0.000             | 0.040             | 77.894            | 0.999             | -38.967           |                   |                   |

# NAWCWPNS TP 8249



$$|a_8|^2 = 1 \text{ watt} = \text{input power}$$

$$|b_3|^2 = |0.976|^2 = 0.952576 \text{ power dissipated in load}$$

$$\text{Power radiated} = 0.047424 \text{ watts}$$

$$\text{Efficiency} = \frac{\text{Power radiated}}{\text{Power input}} = 4.7\%$$

EEsof - Touchstone - Tue Feb 07 14:59:52 1995 - MIXNODE1



# NAWCWPNS TP 8249

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE1.OUT Tue Jan 31 17:32:02 1995

| FREQ-GHZ | MAG[S21] | ANG[S21] | MAG[S31] | ANG[S31] | MAG[S21] | ANG[S21] | MAG[S31] | ANG[S31] | VANT | VANT | VANT | VANT | IANT | IANT | IANT | IANT | Dipole | Loop |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|------|------|------|------|------|------|------|------|--------|------|
| 0.45000  | 4.910    | 145.631  | 8.269    | -26.563  | 0.002    | -122.682 | 0.096    | -116.537 |      |      |      |      |      |      |      |      |        |      |
| 0.46000  | 8.602    | 141.679  | 11.265   | -28.827  | 0.003    | -126.645 | 0.127    | -118.786 |      |      |      |      |      |      |      |      |        |      |
| 0.47000  | 17.108   | 135.316  | 16.428   | -32.391  | 0.006    | -133.018 | 0.181    | -122.321 |      |      |      |      |      |      |      |      |        |      |
| 0.48000  | 42.699   | 122.590  | 27.183   | -39.691  | 0.015    | -145.754 | 0.293    | -129.541 |      |      |      |      |      |      |      |      |        |      |
| 0.49000  | 163.620  | 82.100   | 56.814   | -65.914  | 0.057    | 173.750  | 0.595    | -155.428 |      |      |      |      |      |      |      |      |        |      |
| 0.50000  | 311.924  | -27.624  | 54.533   | -117.854 | 0.106    | 64.019   | 0.567    | 154.000  |      |      |      |      |      |      |      |      |        |      |
| 0.51000  | 184.763  | -130.134 | 59.568   | -161.230 | 0.061    | -38.495  | 0.615    | 109.309  |      |      |      |      |      |      |      |      |        |      |
| 0.52000  | 62.580   | -169.459 | 35.070   | 174.079  | 0.020    | -77.822  | 0.353    | 84.263   |      |      |      |      |      |      |      |      |        |      |
| 0.53000  | 31.268   | 177.620  | 24.981   | 166.679  | 0.010    | -90.744  | 0.246    | 76.774   |      |      |      |      |      |      |      |      |        |      |
| 0.54000  | 19.461   | 171.114  | 20.011   | 163.008  | 0.006    | -97.250  | 0.193    | 73.070   |      |      |      |      |      |      |      |      |        |      |
| 0.55000  | 13.715   | 167.038  | 17.105   | 160.646  | 0.004    | -101.325 | 0.161    | 70.692   |      |      |      |      |      |      |      |      |        |      |

$$\frac{I_{loop}}{I_{dipole}} = \frac{0.567}{0.106} \frac{154}{64.019} = 5.349 \ 89.91$$

From MathCad

$$I_{loop} = 5.09296 \ 0^\circ$$

$$I_{dipole} = 1.0000 \ -90$$

$$\frac{I_{loop}}{I_{dipole}} = 5.09296 \ 90^\circ$$



Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE1.OUT Tue Jan 31 18:37:28 1995

FREQ-GHZ MAG[S21] ANG[S21] MAG[S31] ANG[S31]  
 INORM INORM INORM INORM

|         | $I_d/I_d$ | $I_L/I_d$ |         |
|---------|-----------|-----------|---------|
| 0.45000 | 1.000     | 7.5e-05   | 49.929  |
| 0.46000 | 1.000     | 1.1e-05   | 38.962  |
| 0.47000 | 1.000     | -4.6e-04  | 28.655  |
| 0.48000 | 1.000     | -6.1e-05  | 19.036  |
| 0.49000 | 1.000     | 5.7e-04   | 10.377  |
| 0.50000 | 1.000     | 4.5e-05   | 5.324   |
| 0.51000 | 1.000     | 4.6e-05   | 89.981  |
| 0.52000 | 1.000     | -1.2e-04  | 10.021  |
| 0.53000 | 1.000     | -8.1e-06  | 17.427  |
| 0.54000 | 1.000     | -3.2e-04  | 24.924  |
| 0.55000 | 1.000     | -4.9e-06  | 32.229  |
|         |           |           | 162.085 |
|         |           |           | 167.518 |
|         |           |           | 170.320 |
|         |           |           | 172.016 |



$$\frac{I_{loop}}{I_{dipole}} = 5.324 \ 89.981^\circ$$

**Appendix G**

**TOUCHSTONE ANALYSIS OF MIXED-MODE ARRAY  
(WEAK COUPLED FEEDBACK)**

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE2.CKT Wed Feb 01 16:57:55 1995

DIM

FREQ GHZ  
 RES OH  
 IND NH  
 CAP PF  
 LNG MIL  
 TIME PS  
 COND /OH  
 ANG DEG



\*\*\*\*\*  
 VAR  
 !\*\*\*\*\*  
 ! VARIABLES ASSOCIATED WITH MIXED MODE ANTENNA  
 !\*\*\*\*\*  
 k = .21777 !Desired voltage coupling coefficient  
 Zin = 50. !Desired input impedance  
 !\*\*\*\*\*  
 ! DIPOLE MATCHING NETWORK (TEE SECTION)  
 !\*\*\*\*\*  
 LSD = 406.0848  
 CPD = .05707  
 !\*\*\*\*\*  
 ! LOOP MATCHING NETWORK (TEE SECTION)  
 !\*\*\*\*\*  
 CSL = 2.4296  
 LPL = 9.06021  
 !\*\*\*\*\*  
 EQN  
 !\*\*\*\*\*  
 ZOE = SQRT((1-k)/(1+k))\*Zin  
 ZOO = SQRT((1+k)/(1-k))\*Zin  
 CKT  
 !\*\*\*\*\*  
 ! Antenna Y-matrix (passive) from NEC MOM  
 S2PA 1 2 0 mixmode2.S2P  
 DEF2P 1 2 ANTENNA  
 ! current & voltage monitor  
 S4PA 1 2 3 4 IVMETER.S4P  
 DEF4P 1 2 3 4 IVMETER

```
! reflection coefficient monitor
S4PB 1 2 3 4 REFLMETR.S4P
DEF4P 1 2 3 4 REFLMON
```

```
!***** Dipole Matching Network
!*****
```

```
IND 1 2 L^LSD
CAP 2 0 C^CPD
IND 2 3 L^LSD
DEF2P 1 3 DMN
```



```
!***** Loop Matching Network
!*****
```

```
CAP 1 2 C^CSL
IND 2 0 L^LPL
CAP 2 3 C^CSL
DEF2P 1 3 LMN
```



```
!***** Ideal Directional Coupler
!*****
```

```
CLIN 1 2 3 4 ZE^Zoe Zo^Zoo E=90 F=.5
DEF4P 1 2 3 4 COUPLER
```

```
! Define 7-port Coupler and wave monitor network
!*****
```

```
REFLMON 1 4 2 3
COUPLER 4 9 10 5
REFLMON 6 9 7 8
RES 6 0 R=50
DEF7P 1 2 3 5 7 8 10 CPLMON
```



```
!***** Define 8-port Channel #1 (DIPOLE)
!*****
```

```
REFLMON 10 13 11 12
TLIN 13 1 Z=50 E=0 F=.5
REFLMON 1 4 2 3
DMN 4 5
IVMETER 5 8 6 7
DEF8P 10 11 12 2 3 6 7 8 CHAN1
```



# NAWCWPNS TP 8249

```
*****
! Define 6-port Channel #2 (LOOP)
*****
REFLMON 1 4 2 3
LMN 4 5
IVMETER 5 8 6 7
DEF6P 1 2 3 6 7 8 CHAN2


*****
```

```
!
! Define 2-port to measure Passive S-Parameters of antenna and matching NW
!
DMN 1 2
LMN 4 3
ANTENNA 2 3
DEF2P 1 4 SPASSV
*****
!
! Define 3-port to measure Reflected waves at input to matching Networks
! Select REFL S21 to measure reflected wave in channel 1 (DIPOLE)
! Select REFL S31 to measure reflected wave in channel 2 (LOOP)
!
CPLMON 1 2 3 4 10 11 12
CHAN1 12 13 14 15 16 17 18 19
CHAN2 4 5 6 7 8 9
ANTENNA 19 9
DEF3P 1 16 6 REFL
*****
!
! Define 3-port to measure Incident waves at input to matching Networks
! Select INC S21 to measure incident wave in channel 1 (DIPOLE)
! Select INC S31 to measure incident wave in channel 2 (LOOP)
!
CPLMON 1 2 3 4 10 11 12
CHAN1 12 13 14 15 16 17 18 19
CHAN2 4 5 -6 7 8 9
ANTENNA 19 9
DEF3P 1 15 5 INC
*****
!
! Define 3-port to measure VANT (voltage at antenna) for all Channels
! Select VANT S21 for Voltage at DIPOLE
! Select VANT S31 for Voltage at LOOP
!
CPLMON 1 2 3 4 10 11 12
CHAN1 12 13 14 15 16 17 18 19
CHAN2 4 5 6 7 8 9
ANTENNA 19 9
DEF3P 1 18 8 VANT
*****
!
! Define 3-port to measure IANT (current AT antenna) for all Channels
! Select IANT S21 for current at DIPOLE
! Select IANT S31 for current at LOOP
!
CPLMON 1 2 3 4 10 11 12
CHAN1 12 13 14 15 16 17 18 19
CHAN2 4 5 6 7 8 9
ANTENNA 19 9
DEF3P 1 17 7 IANT
```

```
*****
! Define 6-port Current Reference Channel (#1) DIPOLE
*****
TLIN 13 1 Z=50 E=0 F=.5
DMN 1 5
IVMETER 5 8 6 7
IVMETER 8 9 10 11
DEF6P 13 6 7 10 11 9 CHANREF
*****
: Define 3 port current reference (Normalize antenna currents to DIPOLE)
*****
CPLMON 1 2 3 4 10 11 12
CHANREF 12 13 14 15 16 19
CHAN2 4 5 6 7 8 9
ANTENNA 19 9
DEF3P 1 13 15 IREF
*****
: Define 5 port to measure incident waves at coupler ports
! Select S21 for incident wave at port 1 of coupler
! Select S31 for incident wave at port 2 of coupler
! Select S41 for incident wave at port 3 of coupler
! Select S51 for incident wave at port 4 of coupler
*****
CPLMON 1 2 3 4 10 11 12
CHAN1 12 13 14 15 16 17 18 19
CHAN2 4 5 6 7 8 9
ANTENNA 19 9
DEF5P 1 2 10 14 6 CPLINC
```



```
TERM
?PROC
  GAMMA = REFL / INC
  ZANT = VANT / IANT
  INORM = IANT / IREF
```

```

DUT
!Passive Antenna Data
!  ANTENNA MAG[S11]
!  ANTENNA ANG[S11]
!  ANTENNA MAG[S12]
!  ANTENNA ANG[S12]
!  ANTENNA MAG[S21]
!  ANTENNA ANG[S21]
!  ANTENNA MAG[S22]
!  ANTENNA ANG[S22]
!Passive matching network S-paramters
!  DMN MAG[S11]
!  DMN ANG[S11]
!  LMN MAG[S11]
!  LMN ANG[S11]
!  DMN MAG[S21]
!  DMN ANG[S21]
!  LMN MAG[S21]
!  LMN ANG[S21]
!  DMN MAG[S22]
!  DMN ANG[S22]
!  LMN MAG[S22]
!  LMN ANG[S22]
!  Passive Scattering Parameters of Antenna and Matching Networks
!  SPASSV DB[S11] GR1
!  SPASSV ANG[S11] GR2
!  SPASSV DB[S22] GR1
!  SPASSV ANG[S22] GR2
!  SPASSV DB[S12] GR1
!  SPASSV ANG[S12] GR2
!  SPASSV DB[S21] GR1
!  SPASSV ANG[S21] GR2
!Reflection coefficients
!  GAMMA S21 SC2
!  GAMMA S31 SC2
!Incident waves
  INC MAG[S21]
  INC ANG[S21]
  INC MAG[S31]
  INC ANG[S31]
  REFL MAG[S21]
  REFL ANG[S21]
  REFL MAG[S31]
  REFL ANG[S31]
'Antenna Voltages
  VANT S21
!  VANT S31
!Antenna Currents
  IANT S21
.  IANT S31
!Active impedances
  ZANT RE[S21]
  ZANT IM[S21]
!  ZANT RE[S31]
!  ZANT IM[S31]
Normalized Current Ratios
!  Inorm MAG[S21]
!  Inorm ANG[S21]
!  Inorm MAG[S31]
!  Inorm ANG[S31]

```

```

!Coupler S-parameters
: COPLER MAG[S11]
: COPLER ANG[S11]
! COPLER MAG[S22]
: COPLER ANG[S22]
! COPLER MAG[S33]
: COPLER ANG[S33]
! COPLER MAG[S44]
: COPLER ANG[S44]
! COPLER MAG[S12]
: COPLER ANG[S12]
! COPLER MAG[S21]
: COPLER ANG[S21]
! COPLER MAG[S34]
: COPLER ANG[S34]
! COPLER MAG[S43]
: COPLER ANG[S43]
! COPLER MAG[S13]
: COPLER ANG[S13]
! COPLER MAG[S31]
: COPLER ANG[S31]
! COPLER MAG[S24]
: COPLER ANG[S24]
! COPLER MAG[S42]
: COPLER ANG[S42]
! COPLER MAG[S14]
: COPLER ANG[S14]
! COPLER MAG[S41]
: COPLER ANG[S41]
! COPLER MAG[S23]
: COPLER ANG[S23]
! COPLER MAG[S32]
: COPLER ANG[S32]
! CPLINC MAG[S21]
: CPLINC ANG[S21]
! CPLINC MAG[S31]
: CPLINC ANG[S31]
! CPLINC MAG[S41]
: CPLINC ANG[S41]
CPLINC MAG[S51]
CPLINC ANG[S51]
! CPLREF MAG[S21]
: CPLREF ANG[S21]
CPLREF MAG[S31]
! CPLREF ANG[S31]
: CPLREF MAG[S41]
CPLREF ANG[S41]
CPLREF MAG[S51]
! CPLREF ANG[S51]
'REQ
  SWEEP .450 .550 .010
! STEP .500
GRID
  RANGE .450 .550 .010
  GR1 0 -60 10
  GR2 180 -180 30
)PT

```



Key

- Denotes the node numbers of final Touchstone Circuit
- Denotes the numbering sequence of defined multiports
- Denotes the internal node numbers of multiports

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE2.OUT Wed Feb 01 17:15:13 1995

| FREQ-GHZ | RE[S21]<br>ZANT | IM[S21]<br>ZANT | RE[S31]<br>ZANT | IM[S31]<br>ZANT |
|----------|-----------------|-----------------|-----------------|-----------------|
| 0.45000  | -62.636         | -3.1e+03        | 0.360           | 87.001          |
| 0.46000  | -71.491         | -3.0e+03        | 0.438           | 89.058          |
| 0.47000  | -78.804         | -3.0e+03        | 0.550           | 91.160          |
| 0.48000  | -83.363         | -2.9e+03        | 0.754           | 93.325          |
| 0.49000  | -84.043         | -2.9e+03        | 1.318           | 95.587          |
| 0.50000  | -84.038         | -2.9e+03        | 3.113           | 96.168          |
| 0.51000  | -132.121        | -3.1e+03        | 0.558           | 97.326          |
| 0.52000  | -645.136        | -3.4e+03        | 0.271           | 100.083         |
| 0.53000  | -1.1e+03        | -2.6e+03        | 0.282           | 102.412         |
| 0.54000  | -839.964        | -2.3e+03        | 0.316           | 104.611         |
| 0.55000  | -717.800        | -2.2e+03        | 0.350           | 106.763         |



Compare with active impedance from  $50 \Omega$  case

Dipole

-84.035      -2,900      3.113      96.168

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE2.OUT Wed Feb 01 16:54:03 1995

| FREQ-GHZ | MAG[S21] | ANG[S21] | MAG[S31] | ANG[S31] | MAG[S21] | ANG[S21] | MAG[S31] | ANG[S31] |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| INC      | INC      | INC      | INC      | INC      | REFL     | REFL     | REFL     | REFL     |
| 0.45000  | 0.216    | 52.211   | 1.005    | -83.465  | 0.223    | 34.757   | 1.003    | -136.576 |
| 0.46000  | 0.214    | 43.793   | 0.995    | -85.653  | 0.230    | 20.497   | 0.991    | -143.236 |
| 0.47000  | 0.210    | 32.922   | 0.977    | -87.878  | 0.248    | -0.280   | 0.968    | -152.349 |
| 0.48000  | 0.197    | 15.975   | 0.940    | -89.871  | 0.309    | -34.366  | 0.907    | -167.539 |
| 0.49000  | 0.140    | -21.046  | 0.854    | -87.485  | 0.563    | -95.295  | 0.645    | 157.197  |
| 0.50000  | 5.0e-05  | 102.086  | 1.056    | -78.142  | 1.030    | 165.211  | 2.3e-04  | -77.981  |
| 0.51000  | 0.209    | 101.654  | 1.074    | -94.716  | 0.510    | 60.069   | 0.959    | -76.589  |
| 0.52000  | 0.220    | 64.013   | 1.027    | -95.352  | 0.277    | 56.863   | 1.012    | -112.474 |
| 0.53000  | 0.219    | 48.731   | 1.019    | -97.190  | 0.250    | 51.037   | 1.011    | -125.998 |
| 0.54000  | 0.218    | 38.658   | 1.013    | -99.159  | 0.240    | 43.451   | 1.007    | -134.313 |
| 0.55000  | 0.216    | 30.666   | 1.007    | -101.098 | 0.233    | 36.070   | 1.003    | -140.547 |



Note  $\overleftarrow{b_L}$  and  $\overrightarrow{a_d}$  are zero as expected

$|a_L|$  is  $> 1$  because of the additional coupled power

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
MIXMODE2.OUT Wed Feb 01 17:05:35 1995



Compare with results with no coupler (terminated in  $50 \Omega$ )

$$311.924 \frac{V_d}{-27.624} \quad 54.533 \frac{V_L}{-117.854} \quad 0.106 \frac{I_d}{64.019} \quad 0.567 \frac{I_L}{154.000}$$

Coupler 50 r load

$$\frac{I_{\text{loop}}}{I_{\text{dipole}}} = \frac{0.598 \quad 75.856}{0.112 \quad -14.120} \quad \frac{0.567 \quad 154}{0.106 \quad 64.019} = 5.349 \quad 89.98$$

=5.339 89.976

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE2.OUT Wed Feb 01 17:19:54 1995

| FREQ-GHZ | MAG[S21]  | ANG[S21]  | MAG[S31]  | ANG[S31]  |
|----------|-----------|-----------|-----------|-----------|
|          | INORM     | INORM     | INORM     | INORM     |
|          | $I_d/I_d$ | $I_d/I_d$ | $I_d/I_d$ | $I_d/I_d$ |
| 0.45000  | 1.000     | -6.2e-05  | 13.643    | 19.013    |
| 0.46000  | 1.000     | -2.0e-04  | 13.203    | 22.039    |
| 0.47000  | 1.000     | -7.3e-04  | 12.353    | 25.597    |
| 0.48000  | 1.000     | -4.9e-04  | 10.830    | 30.645    |
| 0.49000  | 1.000     | -9.1e-05  | 8.205     | 41.555    |
| 0.50000  | 1.000     | 2.5e-04   | 5.324     | 89.976    |
| 0.51000  | 1.000     | 2.9e-04   | 15.944    | 149.075   |
| 0.52000  | 1.000     | 2.3e-04   | 51.407    | 130.361   |
| 0.53000  | 1.000     | 7.4e-05   | 65.902    | 82.930    |
| 0.54000  | 1.000     | -4.2e-04  | 54.269    | 64.395    |
| 0.55000  | 1.000     | -4.0e-05  | 47.650    | 59.340    |



Compare with 50 r results

$$I_d/I_d \quad 1.000 \quad 4.5e-05 \quad \frac{I_d}{I_d} \quad 5.324 \quad 89.981$$

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE2.OUT Wed Feb 01 17:39:35 1995

| FREQ-GHZ | MAG[S21] | ANG[S21] | MAG[S31] | ANG[S31] | MAG[S41] | ANG[S41] | MAG[S31] | ANG[S31] | REFL  | REFL  |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------|-------|
|          | CPLINC   |       |       |
| 0.45000  | 1.000    | 0.000    | 1.4e-08  | 71.892   | 0.223    | 34.757   | 1.003    | -136.576 | $q_1$ | $q_4$ |
| 0.46000  | 1.000    | 0.000    | 1.8e-08  | 63.841   | 0.230    | 20.497   | 0.991    | -143.236 | $q_2$ |       |
| 0.47000  | 1.000    | 0.000    | 2.3e-08  | 53.225   | 0.248    | -0.280   | 0.968    | -152.349 |       |       |
| 0.48000  | 1.000    | 0.000    | 3.3e-08  | 36.240   | 0.309    | -34.366  | 0.907    | -167.539 |       |       |
| 0.49000  | 1.000    | 0.000    | 5.5e-08  | -2.036   | 0.563    | -95.295  | 0.645    | 157.197  |       |       |
| 0.50000  | 1.000    | 0.000    | 6.9e-08  | -92.293  | 1.030    | 165.211  | 2.3e-04  | -77.981  |       |       |
| 0.51000  | 1.000    | 0.000    | 2.3e-08  | 128.976  | 0.510    | 60.069   | 0.959    | -76.589  |       |       |
| 0.52000  | 1.000    | 0.000    | 1.1e-08  | 90.071   | 0.277    | 56.863   | 1.012    | -112.474 |       |       |
| 0.53000  | 1.000    | 0.000    | 1.1e-08  | 74.789   | 0.250    | 51.037   | 1.011    | -125.998 |       |       |
| 0.54000  | 1.000    | 0.000    | 1.3e-08  | 65.031   | 0.240    | 43.451   | 1.007    | -134.313 |       |       |
| 0.55000  | 1.000    | 0.000    | 1.4e-08  | 57.478   | 0.233    | 36.070   | 1.003    | -140.547 |       |       |

Dipole Matching Network



Loop Matching Network

$a_2$  and  $a_4$  are zero as expected

$|a_3| > 1.0$  interesting!

$|a_1| = 1.0$

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE2.OUT Wed Feb 01 17:52:29 1995

| FREQ-GHZ | MAG[S21] | ANG[S21] | MAG[S31] | ANG[S31] | MAG[S41] | ANG[S41] | AG[S31] | ANG[S31] |
|----------|----------|----------|----------|----------|----------|----------|---------|----------|
|          | CPLREF   | CPLREF   | CPLREF   | CPLREF   | CPLREF   | CPLREF   | INC     | INC      |
| 0.45000  | 0.979    | 142.211  | 0.201    | -108.108 | 0.216    | 52.211   | 1.005   | -83.465  |
| 0.46000  | 0.968    | 133.793  | 0.251    | -116.159 | 0.214    | 43.793   | 0.995   | -85.653  |
| 0.47000  | 0.945    | 122.922  | 0.326    | -126.775 | 0.210    | 32.922   | 0.977   | -87.878  |
| 0.48000  | 0.885    | 105.975  | 0.461    | -143.760 | 0.197    | 15.975   | 0.940   | -89.871  |
| 0.49000  | 0.630    | 68.954   | 0.766    | 177.964  | 0.140    | -21.046  | 0.854   | -87.485  |
| 0.50000  | 2.2e-04  | -167.982 | 0.973    | 87.707   | 5.0e-05  | 102.086  | 1.056   | -78.142  |
| 0.51000  | 0.936    | -168.346 | 0.328    | -51.024  | 0.209    | 101.654  | 1.074   | -94.716  |
| 0.52000  | 0.987    | 154.013  | 0.148    | -89.929  | 0.220    | 64.013   | 1.027   | -95.352  |
| 0.53000  | 0.987    | 138.731  | 0.156    | -105.211 | 0.219    | 48.731   | 1.019   | -97.190  |
| 0.54000  | 0.983    | 128.658  | 0.179    | -114.969 | 0.218    | 38.658   | 1.013   | -99.159  |
| 0.55000  | 0.979    | 120.666  | 0.201    | -122.522 | 0.216    | 30.666   | 1.007   | -101.098 |



b<sub>2</sub> is not zero !

Need to try to adjust 50 ohm line length to force b<sub>2</sub> → 0

NAWCWPNS TP 8249

EEsof - Touchstone - Tue Feb 07 16:48:02 1995 - MIXMODE2



**Appendix H**

**TOUCHSTONE ANALYSIS OF MIXED-MODE ARRAY (OPTIMUM  
FEEDBACK - DETERMINED BY TOUCHSTONE OPT.)**

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE3.CKT Mon Feb 06 12:52:42 1995

DIM

FREQ GHZ  
 RES OH  
 IND NH  
 CAP PF  
 LNG MIL  
 TIME PS  
 COND /OH  
 ANG DEG



\*\*\*\*\*  
 VAR  
 \*\*\*\*\*  
 VARIABLES ASSOCIATED WITH MIXED MODE ANTENNA  
 !\*\*\*\*\*  
 k # .996 0.99822 1.0 ! .99788 !Desired voltage coupling coefficient  
 Zin = 50. !Desired input impedance  
 LL1 # 60. 63.44028 65. 189.44003 !Desired differential phase shift (i  
 !\*\*\*\*\*  
 DIPOLE MATCHING NETWORK (TEE SECTION)  
 !\*\*\*\*\*  
 LSD = 408.61049  
 CPD = .05459  
 !\*\*\*\*\*  
 !LOOP MATCHING NETWORK (TEE SECTION)  
 !\*\*\*\*\*  
 CSL = 2.42014  
 LPL = 9.17388  
 !\*\*\*\*\*  
 !QN  
 !\*\*\*\*\*  
 Zoe = SQRT((1-k)/(1+k))\*Zin !.62875  
 Zoo = SQRT((1+k)/(1-k))\*Zin !534.92  
 !KT  
 !\*\*\*\*\*

# NAWCWPNS TP 8249

```
Antenna Y-matrix (passive) from NEC MOM
S2PA 1 2 0 mixmode3.S2P
DEF2P 1 2 ANTENNA
current & voltage monitor
S4PA 1 2 3 4 IVMETER.S4P
DEF4P 1 2 3 4 IVMETER
reflection coefficient monitor
S4PB 1 2 3 4 REFLMETR.S4P
DEF4P 1 2 3 4 REFLMON
*****
Dipole Matching Network
*****
IND 1 2 L^LSD
CAP 2 0 C^CPD
IND 2 3 L^LSD
DEF2P 1 3 DMN
*****
Loop Matching Network
*****
CAP 1 2 C^CSL
IND 2 0 L^LPL
CAP 2 3 C^CSL
DEF2P 1 3 LMN
*****
! Ideal Directional Coupler
*****
CLIN 1 2 3 4 ZE^Zoe Zo^Zoo E=90. F=.5
DEF4P 1 2 3 4 COUPLER
*****
! Define 7-port Coupler and wave monitor network
*****
REFLMON 1 4 2 3
COUPLER 4 9 10 5
REFLMON 6 9 7 8
RES 6 0 R=50
DEF7P 1 2 3 5 7 8 10 CPLMON
*****
! Define 8-port Channel #1 (DIPOLE)
*****
REFLMON 10 13 11 12
TLIN 13 1 Z=50 E^LLL F=.5
REFLMON 1 4 2 3
DMN 4 5
IVMETER 5 8 6 7
DEF8P 10 11 12 2 3 6 7 8 CHAN1
*****
! Define 6-port Channel #2 (LOOP)
*****
REFLMON 1 4 2 3
LMN 4 5
IVMETER 5 8 6 7
DEF6P 1 2 3 6 7 8 CHAN2
*****
! Define 2-port to measure Passive S-Parameters of antenna and matching NW
*****
DMN 1 2
LMN 4 3
ANTENNA 2 3
DEF2P 1 4 SPASSV
*****
```

# NAWCWPNS TP 8249

```
! Define 3-port to measure Reflected waves at input to matching Networks
! Select REFL S21 to measure reflected wave in channel 1 (DIPOLE)
! Select REFL S31 to measure reflected wave in channel 2 (LOOP)
!*****
CPLMON 1 2 3 4 10 11 12
CHAN1 12 13 14 15 16 17 18 19
CHAN2 4 5 6 7 8 9
ANTENNA 19 9
DEF3P 1 16 6 REFL
*****  
Define 3-port to measure Incident waves at input to matching Networks
Select INC S21 to measure incident wave in channel 1 (DIPOLE)
Select INC S31 to measure incident wave in channel 2 (LOOP)
*****  
CPLMON 1 2 3 4 10 11 12
CHAN1 12 13 14 15 16 17 18 19
CHAN2 4 5 6 7 8 9
ANTENNA 19 9
DEF3P 1 15 5 INC
*****  
! Define 3-port to measure VANT (voltage at antenna) for all Channels
Select VANT S21 for Voltage at DIPOLE
Select VANT S31 for Voltage at LOOP
*****  
CPLMON 1 2 3 4 10 11 12
CHAN1 12 13 14 15 16 17 18 19
CHAN2 4 5 6 7 8 9
ANTENNA 19 9
DEF3P 1 18 8 VANT
*****  
! Define 3-port to measure IANT (current AT antenna) for all Channels
Select IANT S21 for current at DIPOLE
Select IANT S31 for current at LOOP
*****  
CPLMON 1 2 3 4 10 11 12
CHAN1 12 13 14 15 16 17 18 19
CHAN2 4 5 6 7 8 9
ANTENNA 19 9
DEF3P 1 17 7 IANT
*****  
! Define 6-port Current Reference Channel (#1) DIPOLE
*****  
TLIN 13 1 Z=50 E^LL1 F=.5
DMN 1 5
IVMETER 5 8 6 7
IVMETER 8 9 10 11
DEF6P 13 6 7 10 11 9 CHANREF
*****  
! Define 3 port current reference (Normalize antenna currents to DIPOLE)
*****  
CPLMON 1 2 3 4 10 11 12
CHANREF 12 13 14 15 16 19
CHAN2 4 5 6 7 8 9
ANTENNA 19 9
DEF3P 1 13 15 IREF
*****
```

```

Define 5 port to measure incident waves at coupler ports
Select S21 for incident wave at port 1 of coupler
Select S31 for incident wave at port 2 of coupler
Select S41 for incident wave at port 3 of coupler
Select S51 for incident wave at port 4 of coupler
*****
CPLMON 1 2 3 4 10 11 12
CHAN1 12 13 14 15 16 17 18 19
CHAN2 4 5 6 7 8 9
ANTENNA 19 9
DEF5P 1 2 10 14 6 CPLINC
*****
Define 5 port to measure reflected waves at coupler ports
Select S21 for reflected wave at port 1 of coupler
Select S31 for reflected wave at port 2 of coupler
! Select S41 for reflected wave at port 3 of coupler
! Select S51 for reflected wave at port 4 of coupler
*****
CPLMON 1 2 3 4 10 11 12
CHAN1 12 13 14 15 16 17 18 19
CHAN2 4 5 6 7 8 9
ANTENNA 19 9
DEF5P 1 3 11 13 5 CPLREF
!ERM
!ROC
  GAMMA = REFL / INC
  ZANT = VANT / IANT
  INORM = IANT / IREF
!DUT
!Passive Antenna Data
!  ANTENNA MAG[S11]
!  ANTENNA ANG[S11]
!  ANTENNA MAG[S12]
!  ANTENNA ANG[S12]
!  ANTENNA MAG[S21]
!  ANTENNA ANG[S21]
!  ANTENNA MAG[S22]
!  ANTENNA ANG[S22]
!Passive matching network S-paramters
!  DMN MAG[S11]
!  DMN ANG[S11]
!  LMN MAG[S11]
!  LMN ANG[S11]
!  DMN MAG[S21]
!  DMN ANG[S21]
!  LMN MAG[S21]
!  LMN ANG[S21]
!  DMN MAG[S22]
!  DMN ANG[S22]
!  LMN MAG[S22]
!  LMN ANG[S22]
Passive Scattering Parameters of Antenna and Matching Networks
SPASSV DB[S11] GR1
SPASSV ANG[S11] GR2
SPASSV DB[S22] GR1
SPASSV ANG[S22] GR2
SPASSV DB[S12] GR1
SPASSV ANG[S12] GR2
SPASSV DB[S21] GR1
SPASSV ANG[S21] GR2

```

## Reflection coefficients

GAMMA S21 SC2  
GAMMA S31 SC2

## Incident waves

INC MAG[S21]  
INC ANG[S21]  
INC MAG[S31]  
INC ANG[S31]  
REFL MAG[S21]  
REFL ANG[S21]  
REFL MAG[S31]  
REFL ANG[S31]

## Antenna Voltages

VANT S21  
VANT S31

## Antenna Currents

IANT S21  
IANT S31

## Active impedances

ZANT RE[S21]  
ZANT IM[S21]  
ZANT RE[S31]  
ZANT IM[S31]

## Normalized Current Ratios

Inorm MAG[S21]  
Inorm ANG[S21]  
Inorm MAG[S31]  
Inorm ANG[S31]

## Coupler S-parameters

COUPLER MAG[S11]  
COUPLER ANG[S11]  
COUPLER MAG[S22]  
COUPLER ANG[S22]  
COUPLER MAG[S33]  
COUPLER ANG[S33]  
COUPLER MAG[S44]  
COUPLER ANG[S44]  
COUPLER MAG[S12]  
COUPLER ANG[S12]  
COUPLER MAG[S21]  
COUPLER ANG[S21]  
COUPLER MAG[S34]  
COUPLER ANG[S34]  
COUPLER MAG[S43]  
COUPLER ANG[S43]  
COUPLER MAG[S13]  
COUPLER ANG[S13]  
COUPLER MAG[S31]  
COUPLER ANG[S31]  
COUPLER MAG[S24]  
COUPLER ANG[S24]  
COUPLER MAG[S42]  
COUPLER ANG[S42]  
COUPLER MAG[S14]  
COUPLER ANG[S14]  
COUPLER MAG[S41]  
COUPLER ANG[S41]  
COUPLER MAG[S23]  
COUPLER ANG[S23]  
COUPLER MAG[S32]  
COUPLER ANG[S32]

```

CPLINC MAG[S21]
CPLINC ANG[S21]
CPLINC MAG[S31]
CPLINC ANG[S31]
CPLINC MAG[S41]
CPLINC ANG[S41]
CPLINC MAG[S51]      5-PORT S-PARAMETERS NOT ALLOWED
CPLINC ANG[S51]      5-PORT S-PARAMETERS NOT ALLOWED
CPLREF DB[S21]      GR1
CPLREF ANG[S21]
CPLREF DB[S31]      GR1
CPLREF ANG[S31]
CPLREF MAG[S41]
CPLREF ANG[S41]
CPLREF MAG[S51]      5-PORT S-PARAMETERS NOT ALLOWED
CPLREF ANG[S51]      5-PORT S-PARAMETERS NOT ALLOWED
REQ
  SWEEP .450 .550 .010
  STEP .500
GRID
  RANGE .4995 .5005 .0001
  GR1 0 -60 10
  GR2 180 -180 30
DPT
! optimization target forces power at isolated port of coupled line = 0
CPLREF MAG[S31] = 0
CPLREF MAG[S21] = 0

```

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE3.OUT Mon Feb 06 10:54:50 1995

| FREQ-GHZ | MAG[S11] | ANG[S11] | MAG[S12] | ANG[S12] | MAG[S21] | ANG[S21] | MAG[S22] | ANG[S22] |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|          | ANTENNA  |
| 0.45000  | 1.000    | -1.758   | 0.004    | 119.286  | 0.004    | 119.286  | 1.000    | 60.322   |
| 0.46000  | 1.000    | -1.798   | 0.005    | 118.691  | 0.005    | 118.691  | 1.000    | 59.171   |
| 0.47000  | 1.000    | -1.837   | 0.005    | 118.112  | 0.005    | 118.112  | 1.000    | 58.052   |
| 0.48000  | 1.000    | -1.876   | 0.005    | 117.551  | 0.005    | 117.551  | 1.000    | 56.969   |
| 0.49000  | 1.000    | -1.915   | 0.005    | 117.007  | 0.005    | 117.007  | 1.000    | 55.919   |
| 0.50000  | 1.000    | -1.955   | 0.005    | 116.478  | 0.005    | 116.478  | 1.000    | 54.899   |
| 0.51000  | 1.000    | -1.994   | 0.005    | 115.963  | 0.005    | 115.963  | 1.000    | 53.907   |
| 0.52000  | 1.000    | -2.033   | 0.005    | 115.464  | 0.005    | 115.464  | 1.000    | 52.947   |
| 0.53000  | 1.000    | -2.072   | 0.005    | 114.977  | 0.005    | 114.977  | 1.000    | 52.013   |
| 0.54000  | 1.000    | -2.112   | 0.006    | 114.504  | 0.006    | 114.504  | 1.000    | 51.104   |
| 0.55000  | 1.000    | -2.151   | 0.006    | 114.043  | 0.006    | 114.043  | 1.000    | 50.221   |



S-parameters in 50 ohm system

Y-Matrix Symmetry enforced

$$Y_{21} = Y_{12} = (Y_{12} + Y_{21})/2$$

NAWCWPNS TP 8249

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE3.OUT Mon Feb 06 10:58:21 1995

| FREQ-GHZ |       | MAG[S11] | ANG[S11] | MAG[S21] | ANG[S21] | MAG[S22] | ANG[S22] |
|----------|-------|----------|----------|----------|----------|----------|----------|
|          |       | LMN      | LMN      | LMN      | LMN      | LMN      | LMN      |
| 0.45000  | 0.988 | -46.831  | 0.157    | -136.831 | 0.988    | -46.831  |          |
| 0.46000  | 0.985 | -48.350  | 0.170    | -138.350 | 0.985    | -48.350  |          |
| 0.47000  | 0.983 | -49.914  | 0.184    | -139.914 | 0.983    | -49.914  |          |
| 0.48000  | 0.980 | -51.525  | 0.198    | -141.525 | 0.980    | -51.525  |          |
| 0.49000  | 0.977 | -53.187  | 0.213    | -143.187 | 0.977    | -53.187  |          |
| 0.50000  | 0.973 | -54.902  | 0.230    | -144.902 | 0.973    | -54.902  |          |
| 0.51000  | 0.969 | -56.673  | 0.247    | -146.673 | 0.969    | -56.673  |          |
| 0.52000  | 0.964 | -58.502  | 0.265    | -148.502 | 0.964    | -58.502  |          |
| 0.53000  | 0.959 | -60.393  | 0.284    | -150.393 | 0.959    | -60.393  |          |
| 0.54000  | 0.953 | -62.349  | 0.304    | -152.349 | 0.953    | -62.349  |          |
| 0.55000  | 0.946 | -64.371  | 0.325    | -154.371 | 0.946    | -64.371  |          |



C = 2.42014 pFd  
 L = 9.17388 nH

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE3.OUT Mon Feb 06 11:02:08 1995

| FREQ-GHZ |       | MAG[S11] | ANG[S11] | MAG[S21] | ANG[S21] | MAG[S22] | ANG[S22] |
|----------|-------|----------|----------|----------|----------|----------|----------|
|          |       | DMN      | DMN      | DMN      | DMN      | DMN      | DMN      |
| 0.45000  | 0.999 | 2.235    | 0.047    | -87.765  | 0.999    | 2.235    |          |
| 0.46000  | 0.999 | 2.175    | 0.047    | -87.825  | 0.999    | 2.175    |          |
| 0.47000  | 0.999 | 2.117    | 0.046    | -87.883  | 0.999    | 2.117    |          |
| 0.48000  | 0.999 | 2.061    | 0.045    | -87.939  | 0.999    | 2.061    |          |
| 0.49000  | 0.999 | 2.007    | 0.044    | -87.993  | 0.999    | 2.007    |          |
| 0.50000  | 0.999 | 1.955    | 0.044    | -88.045  | 0.999    | 1.955    |          |
| 0.51000  | 0.999 | 1.904    | 0.043    | -88.096  | 0.999    | 1.904    |          |
| 0.52000  | 0.999 | 1.855    | 0.042    | -88.145  | 0.999    | 1.855    |          |
| 0.53000  | 0.999 | 1.807    | 0.042    | -88.193  | 0.999    | 1.807    |          |
| 0.54000  | 0.999 | 1.761    | 0.041    | -88.239  | 0.999    | 1.761    |          |
| 0.55000  | 0.999 | 1.716    | 0.041    | -88.284  | 0.999    | 1.716    |          |



L = 408.61099 nH  
 C = .05459 pFd

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE3.OUT Mon Feb 06 11:06:21 1995

| FREQ-GHZ |         | DB[S11]  | ANG[S11] | DB[S22]  | ANG[S22] | DB[S12]  | ANG[S12] | DB[S21]  | ANG[S21] |
|----------|---------|----------|----------|----------|----------|----------|----------|----------|----------|
|          |         | SPASSV   |
| 0.45000  | -0.001  | -13.350  | -0.002   | -52.961  | -35.342  | 56.827   | -35.342  | 56.827   |          |
| 0.46000  | -0.004  | -16.908  | -0.004   | -57.364  | -30.623  | 52.842   | -30.623  | 52.842   |          |
| 0.47000  | -0.014  | -22.942  | -0.016   | -64.099  | -24.796  | 46.445   | -24.796  | 46.445   |          |
| 0.48000  | -0.088  | -35.535  | -0.092   | -77.004  | -16.992  | 33.670   | -16.992  | 33.670   |          |
| 0.49000  | -1.461  | -76.700  | -1.479   | -116.882 | -5.463   | -6.925   | -5.463   | -6.925   |          |
| 0.50000  | -47.646 | -178.075 | -71.352  | -1.586   | -0.017   | -116.573 | -0.017   | -116.573 |          |
| 0.51000  | -1.822  | 76.881   | -1.848   | 24.829   | -4.672   | 141.005  | -4.672   | 141.005  |          |
| 0.52000  | -0.170  | 36.926   | -0.177   | -13.898  | -14.193  | 101.595  | -14.193  | 101.595  |          |
| 0.53000  | -0.041  | 24.190   | -0.045   | -27.034  | -20.338  | 88.638   | -20.338  | 88.638   |          |
| 0.54000  | -0.015  | 18.070   | -0.018   | -33.962  | -24.571  | 82.103   | -24.571  | 82.103   |          |
| 0.55000  | -0.007  | 14.465   | -0.010   | -38.548  | -27.721  | 78.001   | -27.721  | 78.001   |          |

# NAWCWPNS TP 8249

Circuit for Passive S-Parameter Calculation



$$Lsd = 408.61099 \text{ nH}$$

$$Cpd = .05459 \text{ pFd}$$

$$Csl = 2.42014 \text{ pFd}$$

$$Lpl = 9.17388 \text{ nH}$$

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE3.OUT Mon Feb 06 11:09:50 1995

| FREQ-GHZ    | RE[S21]  |          | IM[S21] |         | RE[S31] |      | IM[S31] |      |
|-------------|----------|----------|---------|---------|---------|------|---------|------|
|             | ZANT     | ZANT     | ZANT    | ZANT    | ZANT    | ZANT | ZANT    | ZANT |
| <u>Loop</u> |          |          |         |         |         |      |         |      |
| 0.45000     | -55.077  | -3.2e+03 | 3.618   | 86.747  |         |      |         |      |
| 0.46000     | -59.167  | -3.2e+03 | 3.579   | 88.631  |         |      |         |      |
| 0.47000     | -63.387  | -3.1e+03 | 3.537   | 90.535  |         |      |         |      |
| 0.48000     | -67.714  | -3.0e+03 | 3.494   | 92.446  |         |      |         |      |
| 0.49000     | -72.184  | -3.0e+03 | 3.449   | 94.366  |         |      |         |      |
| 0.50000     | -74.190  | -2.9e+03 | 3.487   | 96.537  |         |      |         |      |
| 0.51000     | -81.179  | -2.9e+03 | 3.365   | 98.250  |         |      |         |      |
| 0.52000     | -85.971  | -2.8e+03 | 3.313   | 100.203 |         |      |         |      |
| 0.53000     | -90.718  | -2.8e+03 | 3.264   | 102.172 |         |      |         |      |
| 0.54000     | -95.512  | -2.7e+03 | 3.213   | 104.153 |         |      |         |      |
| 0.55000     | -100.328 | -2.7e+03 | 3.161   | 106.146 |         |      |         |      |



## MathCad

$$Z_{\text{active dipole}} = -84.045 - j 2928.9$$

Differences observed

$$Z_{\text{active loop}} = 3.11211 + j 96.16673$$

# NAWCWPNS TP 8249

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE3.OUT Mon Feb 06 11:15:59 1995

|         |       | MAG[S21]          | ANG[S21] | MAG[S31]          | ANG[S31] | MAG[S21]         | ANG[S21] | MAG[S31]         | ANG[S31] | MAG[S21] | ANG[S21] |
|---------|-------|-------------------|----------|-------------------|----------|------------------|----------|------------------|----------|----------|----------|
|         |       | INC               | INC      | INC               | INC      | REFL             | REFL     | REFL             | REFL     | REFL     | REFL     |
|         |       | $a_d \rightarrow$ |          | $a_L \rightarrow$ |          | $\leftarrow b_d$ |          | $\leftarrow b_L$ |          |          |          |
| 0.45000 | 0.030 | -19.264           | 0.030    | -89.742           | 0.030    | -32.619          | 0.030    | -142.708         |          |          |          |
| 0.46000 | 0.029 | -19.805           | 0.030    | -84.653           | 0.030    | -36.568          | 0.029    | -141.872         |          |          |          |
| 0.47000 | 0.029 | -20.277           | 0.031    | -77.561           | 0.031    | -42.526          | 0.029    | -140.966         |          |          |          |
| 0.48000 | 0.029 | -20.562           | 0.033    | -66.130           | 0.033    | -52.842          | 0.029    | -139.875         |          |          |          |
| 0.49000 | 0.028 | -20.081           | 0.043    | -43.780           | 0.043    | -74.155          | 0.028    | -138.017         |          |          |          |
| 0.50000 | 1.198 | 22.075            | 16.748   | -90.001           | 16.718   | 153.439          | 1.201    | -94.485          |          |          |          |
| 0.51000 | 0.029 | -26.012           | 0.046    | -139.601          | 0.046    | 24.462           | 0.029    | -141.196         |          |          |          |
| 0.52000 | 0.029 | -25.569           | 0.034    | -119.916          | 0.034    | 5.802            | 0.029    | -139.376         |          |          |          |
| 0.53000 | 0.029 | -25.900           | 0.032    | -109.482          | 0.032    | -3.520           | 0.029    | -138.330         |          |          |          |
| 0.54000 | 0.029 | -26.426           | 0.031    | -102.789          | 0.031    | -9.080           | 0.029    | -137.478         |          |          |          |
| 0.55000 | 0.029 | -27.035           | 0.030    | -97.859           | 0.030    | -12.870          | 0.029    | -136.709         |          |          |          |



Note:  $b_L$  and  $a_d$  are not zero!

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE3.OUT Mon Feb 06 11:22:00 1995

|         | VANT    | VANT     | VANT    | VANT     | IANT    | IANT     | IANT  | IANT    |
|---------|---------|----------|---------|----------|---------|----------|-------|---------|
|         | $V_d$   | $V_L$    | $I_d$   | $I_L$    |         |          |       |         |
| 0.45000 | 2.422   | -22.363  | 0.253   | -125.770 | 7.5e-04 | 68.609   | 0.003 | 146.619 |
| 0.46000 | 2.975   | -23.152  | 0.338   | -124.447 | 9.4e-04 | 67.916   | 0.004 | 147.866 |
| 0.47000 | 3.909   | -23.955  | 0.483   | -123.130 | 0.001   | 67.213   | 0.005 | 149.108 |
| 0.48000 | 5.790   | -24.782  | 0.776   | -121.824 | 0.002   | 66.492   | 0.008 | 150.341 |
| 0.49000 | 11.463  | -25.655  | 1.662   | -120.560 | 0.004   | 65.731   | 0.018 | 151.534 |
| 0.50000 | 5.7e+03 | -114.507 | 864.202 | 148.796  | 1.936   | -23.052  | 8.946 | 60.865  |
| 0.51000 | 11.330  | 152.950  | 1.909   | 62.322   | 0.004   | -115.430 | 0.019 | -25.716 |
| 0.52000 | 5.650   | 152.045  | 1.026   | 63.582   | 0.002   | -116.208 | 0.010 | -24.524 |
| 0.53000 | 3.767   | 151.177  | 0.735   | 64.880   | 0.001   | -116.945 | 0.007 | -23.290 |
| 0.54000 | 2.833   | 150.309  | 0.593   | 66.186   | 0.001   | -117.680 | 0.006 | -22.047 |
| 0.55000 | 2.278   | 149.435  | 0.511   | 67.495   | 8.5e-04 | -118.416 | 0.005 | -20.799 |



$$\frac{I_{Loop}}{I_{dipole}} = \frac{8.846 \ 60.865}{1.936 \ -23.052} = 4.6209 \ 83.917$$

previous 50 r load

coupler 0 = 0

$$\frac{I_L}{I_0} = \frac{0.598}{0.112} \frac{75.856}{-14.120}$$

$$\frac{0.567}{0.106} \frac{154}{64.019} = 5.349 \ 89.981$$

5.339 89.976

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE3.OUT Mon Feb 06 11:28:45 1995

| FREQ-GHZ | MAG[S21]  |          | ANG[S21]  |        | MAG[S31]  |       | ANG[S31]  |       |
|----------|-----------|----------|-----------|--------|-----------|-------|-----------|-------|
|          | INORM     | INORM    | INORM     | INORM  | INORM     | INORM | INORM     | INORM |
|          | $I_d/I_d$ |          | $I_d/I_d$ |        | $I_d/I_d$ |       | $I_d/I_d$ |       |
| 0.45000  | 1.000     | -4.6e-05 | 3.907     | 78.009 |           |       |           |       |
| 0.46000  | 1.000     | -1.0e-04 | 4.071     | 79.950 |           |       |           |       |
| 0.47000  | 1.000     | 1.2e-04  | 4.240     | 81.895 |           |       |           |       |
| 0.48000  | 1.000     | 2.1e-04  | 4.410     | 83.849 |           |       |           |       |
| 0.49000  | 1.000     | 7.4e-04  | 4.583     | 85.804 |           |       |           |       |
| 0.50000  | 1.014     | 0.020    | 4.685     | 83.936 |           |       |           |       |
| 0.51000  | 1.000     | 6.6e-04  | 4.923     | 89.714 |           |       |           |       |
| 0.52000  | 1.000     | -5.3e-04 | 5.106     | 91.683 |           |       |           |       |
| 0.53000  | 1.000     | -1.1e-04 | 5.287     | 93.655 |           |       |           |       |
| 0.54000  | 1.000     | -7.5e-05 | 5.468     | 95.633 |           |       |           |       |
| 0.55000  | 1.000     | 6.3e-05  | 5.652     | 97.617 |           |       |           |       |



Note:  $\frac{I_d}{I_d}$  should ideally always = 1 0°

resonance condition is affecting value slightly

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
MIXMODE3.OUT Mon Feb 06 11:46:07 1995

| FREQ-GHZ | MAG[S14] | ANG[S14] | MAG[S41] | ANG[S41] | MAG[S23] | ANG[S23] | MAG[S32] | ANG[S32] |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|          | COUPLER  |
| 0.45000  | 0.060    | -89.459  | 0.060    | -89.459  | 0.060    | -89.459  | 0.060    | -89.459  |
| 0.46000  | 0.060    | -89.568  | 0.060    | -89.568  | 0.060    | -89.568  | 0.060    | -89.568  |
| 0.47000  | 0.060    | -89.677  | 0.060    | -89.677  | 0.060    | -89.677  | 0.060    | -89.677  |
| 0.48000  | 0.060    | -89.785  | 0.060    | -89.785  | 0.060    | -89.785  | 0.060    | -89.785  |
| 0.49000  | 0.060    | -89.893  | 0.060    | -89.893  | 0.060    | -89.893  | 0.060    | -89.893  |
| 0.50000  | 0.060    | -90.000  | 0.060    | -90.000  | 0.060    | -90.000  | 0.060    | -90.000  |
| 0.51000  | 0.060    | -90.107  | 0.060    | -90.107  | 0.060    | -90.107  | 0.060    | -90.107  |
| 0.52000  | 0.060    | -90.215  | 0.060    | -90.215  | 0.060    | -90.215  | 0.060    | -90.215  |
| 0.53000  | 0.060    | -90.323  | 0.060    | -90.323  | 0.060    | -90.323  | 0.060    | -90.323  |
| 0.54000  | 0.060    | -90.432  | 0.060    | -90.432  | 0.060    | -90.432  | 0.060    | -90.432  |
| 0.55000  | 0.060    | -90.541  | 0.060    | -90.541  | 0.060    | -90.541  | 0.060    | -90.541  |



NAWCWPNS TP 8249

$$\begin{bmatrix} 0 & 0.998-180 & 0 & 0.060-90 \\ 0.998-180 & 0 & 0.060-90 & 0 \\ 0 & 0.060-90 & 0 & 0.998-180 \\ 0.060-90 & 0 & 0.998-180 & 0 \end{bmatrix}$$

$$k = 0.99822$$

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE3.OUT Mon Feb 06 11:47:06 1995

| FREQ-GHZ | MAG[S13] | ANG[S13] | MAG[S31] | ANG[S31] | MAG[S24] | ANG[S24] | MAG[S42] | ANG[S42] |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| COUPLER  |
| 0.45000  | 2.9e-11  | 0.000    | 2.9e-11  | 0.000    | 2.9e-11  | 0.000    | 2.9e-11  | 0.000    |
| 0.46000  | 1.9e-09  | 90.448   | 1.9e-09  | 90.448   | 1.9e-09  | 90.448   | 1.9e-09  | 90.448   |
| 0.47000  | 1.9e-09  | -90.000  | 1.9e-09  | -90.000  | 1.9e-09  | -90.000  | 1.9e-09  | -90.000  |
| 0.48000  | 7.3e-12  | 0.000    | 7.3e-12  | 0.000    | 7.3e-12  | 0.000    | 7.3e-12  | 0.000    |
| 0.49000  | 1.9e-09  | -89.888  | 1.9e-09  | -89.888  | 1.9e-09  | -89.888  | 1.9e-09  | -89.888  |
| 0.50000  | 1.9e-09  | -90.000  | 1.9e-09  | -90.000  | 1.9e-09  | -90.000  | 1.9e-09  | -90.000  |
| 0.51000  | 1.9e-09  | -90.112  | 1.9e-09  | -90.112  | 1.9e-09  | -90.112  | 1.9e-09  | -90.112  |
| 0.52000  | 7.3e-12  | 180.000  | 7.3e-12  | 180.000  | 7.3e-12  | 180.000  | 7.3e-12  | 180.000  |
| 0.53000  | 1.9e-09  | -89.105  | 1.9e-09  | -89.105  | 1.9e-09  | -89.105  | 1.9e-09  | -89.105  |
| 0.54000  | 1.5e-11  | 0.000    | 1.5e-11  | 0.000    | 1.5e-11  | 0.000    | 1.5e-11  | 0.000    |
| 0.55000  | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    |

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE3.OUT Mon Feb 06 11:48:14 1995

| FREQ-GHZ | MAG[S11] | ANG[S11] | MAG[S22] | ANG[S22] | MAG[S33] | ANG[S33] | MAG[S44] | ANG[S44] |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| COUPLER  |
| 0.45000  | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    |
| 0.46000  | 3.0e-08  | 0.448    | 3.0e-08  | 0.448    | 3.0e-08  | 0.448    | 3.0e-08  | 0.448    |
| 0.47000  | 3.0e-08  | 180.000  | 3.0e-08  | 180.000  | 3.0e-08  | 180.000  | 3.0e-08  | 180.000  |
| 0.48000  | 6.0e-08  | -179.888 | 6.0e-08  | -179.888 | 6.0e-08  | -179.888 | 6.0e-08  | -179.888 |
| 0.49000  | 1.2e-10  | -90.000  | 1.2e-10  | -90.000  | 1.2e-10  | -90.000  | 1.2e-10  | -90.000  |
| 0.50000  | 3.0e-08  | 180.000  | 3.0e-08  | 180.000  | 3.0e-08  | 180.000  | 3.0e-08  | 180.000  |
| 0.51000  | 5.8e-11  | 90.000   | 5.8e-11  | 90.000   | 5.8e-11  | 90.000   | 5.8e-11  | 90.000   |
| 0.52000  | 6.0e-08  | 179.776  | 6.0e-08  | 179.776  | 6.0e-08  | 179.776  | 6.0e-08  | 179.776  |
| 0.53000  | 3.0e-08  | -179.552 | 3.0e-08  | -179.552 | 3.0e-08  | -179.552 | 3.0e-08  | -179.552 |
| 0.54000  | 3.0e-08  | 180.000  | 3.0e-08  | 180.000  | 3.0e-08  | 180.000  | 3.0e-08  | 180.000  |
| 0.55000  | 4.7e-10  | -90.000  | 4.7e-10  | -90.000  | 4.7e-10  | -90.000  | 4.7e-10  | -90.000  |

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE3.OUT Mon Feb 06 11:49:22 1995

| FREQ-GHZ | MAG[S12] | ANG[S12] | MAG[S21] | ANG[S21] | MAG[S34] | ANG[S34] | MAG[S43] | ANG[COUPLER] | COUPLER |
|----------|----------|----------|----------|----------|----------|----------|----------|--------------|---------|
| 0.45000  | 0.998    | -179.459 | 0.998    | -179.459 | 0.998    | -179.459 | 0.998    | -179         |         |
| 0.46000  | 0.998    | -179.568 | 0.998    | -179.568 | 0.998    | -179.568 | 0.998    | -179         |         |
| 0.47000  | 0.998    | -179.677 | 0.998    | -179.677 | 0.998    | -179.677 | 0.998    | -179         |         |
| 0.48000  | 0.998    | -179.785 | 0.998    | -179.785 | 0.998    | -179.785 | 0.998    | -179         |         |
| 0.49000  | 0.998    | -179.893 | 0.998    | -179.893 | 0.998    | -179.893 | 0.998    | -179         |         |
| 0.50000  | 0.998    | -180.000 | 0.998    | -180.000 | 0.998    | -180.000 | 0.998    | -180         |         |
| 0.51000  | 0.998    | 179.893  | 0.998    | 179.893  | 0.998    | 179.893  | 0.998    | 179          |         |
| 0.52000  | 0.998    | 179.785  | 0.998    | 179.785  | 0.998    | 179.785  | 0.998    | 179          |         |
| 0.53000  | 0.998    | 179.677  | 0.998    | 179.677  | 0.998    | 179.677  | 0.998    | 179          |         |
| 0.54000  | 0.998    | 179.568  | 0.998    | 179.568  | 0.998    | 179.568  | 0.998    | 179          |         |
| 0.55000  | 0.998    | 179.459  | 0.998    | 179.459  | 0.998    | 179.459  | 0.998    | 179          |         |

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE3.OUT Mon Feb 06 11:58:15 1995

| FREQ-GHZ | DB[S21]        | ANG[S21]       | DB[S31]        | ANG[S31]       | MAG[S41] | ANG[S41] | <sup>AG[S31]</sup> | <sup>ANG[S31]</sup> | <sup>INC</sup>    | <sup>INC</sup> |
|----------|----------------|----------------|----------------|----------------|----------|----------|--------------------|---------------------|-------------------|----------------|
|          | b <sub>1</sub> | b <sub>2</sub> | b <sub>3</sub> | b <sub>4</sub> |          |          |                    |                     | $q_L \rightarrow$ |                |
| 0.45000  | -54.918        | 127.835        | -1.4e-05       | -179.458       | 0.030    | 37.833   | 0.030              | -89.742             |                   |                |
| 0.46000  | -55.070        | 128.561        | -1.4e-05       | -179.577       | 0.029    | 38.560   | 0.030              | -84.653             |                   |                |
| 0.47000  | -55.200        | 129.360        | -1.4e-05       | -179.699       | 0.029    | 39.357   | 0.031              | -77.561             |                   |                |
| 0.48000  | -55.319        | 130.344        | -1.7e-05       | -179.830       | 0.029    | 40.340   | 0.033              | -66.130             |                   |                |
| 0.49000  | -55.469        | 132.093        | -3.0e-05       | -179.999       | 0.028    | 42.091   | 0.043              | -43.780             |                   |                |
| 0.50000  | -22.902        | 175.515        | -58.715        | -178.790       | 1.198    | 85.515   | 16.748             | -90.001             |                   |                |
| 0.51000  | -55.141        | 128.699        | -3.8e-05       | -179.987       | 0.029    | 38.697   | 0.046              | -139.601            |                   |                |
| 0.52000  | -55.218        | 130.412        | -2.1e-05       | 179.844        | 0.029    | 40.409   | 0.034              | -119.916            |                   |                |
| 0.53000  | -55.203        | 131.349        | -1.6e-05       | 179.713        | 0.029    | 41.347   | 0.032              | -109.482            |                   |                |
| 0.54000  | -55.145        | 132.092        | -1.6e-05       | 179.591        | 0.029    | 42.090   | 0.031              | -102.789            |                   |                |
| 0.55000  | -55.053        | 132.751        | -1.6e-05       | 179.472        | 0.029    | 42.750   | 0.030              | -97.859             |                   |                |



Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE3.OUT Mon Feb 06 11:57:08 1995

| FREQ-GHZ | MAG[S21] | ANG[S21] | MAG[S31] | ANG[S31] | MAG[S41] | ANG[S41] | MAG[S31] | ANG[S31] | REFL | REFL |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|------|------|
|          | CPLINC   | CPLINC   | CPLINC   | CPLINC   | CPLINC   | CPLINC   |          |          |      |      |
| 0.45000  | 1.000    | 0.000    | 7.1e-08  | 0.542    | 0.030    | -89.715  | 0.030    | -142.708 |      |      |
| 0.46000  | 1.000    | 0.000    | 7.1e-08  | 0.423    | 0.030    | -94.933  | 0.029    | -141.872 |      |      |
| 0.47000  | 1.000    | 0.000    | 7.1e-08  | 0.301    | 0.031    | -102.160 | 0.029    | -140.966 |      |      |
| 0.48000  | 1.000    | 0.000    | 7.1e-08  | 0.170    | 0.033    | -113.745 | 0.029    | -139.875 |      |      |
| 0.49000  | 1.000    | 0.000    | 7.1e-08  | 7.6e-04  | 0.043    | -136.327 | 0.028    | -138.017 |      |      |
| 0.50000  | 1.000    | 0.000    | 8.3e-11  | 1.210    | 16.718   | 89.999   | 1.201    | -94.485  |      |      |
| 0.51000  | 1.000    | 0.000    | 7.1e-08  | 0.013    | 0.046    | -40.247  | 0.029    | -141.196 |      |      |
| 0.52000  | 1.000    | 0.000    | 7.1e-08  | -0.156   | 0.034    | -60.176  | 0.029    | -139.376 |      |      |
| 0.53000  | 1.000    | 0.000    | 7.1e-08  | -0.287   | 0.032    | -70.766  | 0.029    | -138.330 |      |      |
| 0.54000  | 1.000    | 0.000    | 7.1e-08  | -0.409   | 0.031    | -77.595  | 0.029    | -137.478 |      |      |
| 0.55000  | 1.000    | 0.000    | 7.1e-08  | -0.528   | 0.030    | -82.654  | 0.029    | -136.709 |      |      |



EEsof - Touchstone - Tue Feb 07 18:50:33 1995 - MIXMODE3



**Appendix I**

**TOUCHSTONE ANALYSIS OF MIXED-MODE ARRAY  
(OPTIMUM FEEDBACK - DETERMINED BY MATHCAD)**

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE3.OUT Mon Feb 06 18:08:23 1995

| FREQ-GHZ | MAG[S21] | ANG[S21] | MAG[S31] | ANG[S31] | MAG[S41] | ANG[S41] |
|----------|----------|----------|----------|----------|----------|----------|
|          | CPLINC   | CPLINC   | CPLINC   | CPLINC   | CPLINC   | CPLINC   |
| 0.45000  | 1.000    | 0.000    | 7.1e-08  | 0.591    | 0.033    | -89.641  |
| 0.46000  | 1.000    | 0.000    | 7.1e-08  | 0.461    | 0.033    | -94.871  |
| 0.47000  | 1.000    | 0.000    | 7.1e-08  | 0.326    | 0.033    | -102.111 |
| 0.48000  | 1.000    | 0.000    | 7.1e-08  | 0.181    | 0.036    | -113.710 |
| 0.49000  | 1.000    | 0.000    | 7.1e-08  | -0.010   | 0.047    | -136.314 |
| 0.50000  | 1.000    | 0.000    | 1.0e-08  | -113.051 | 16.341   | 97.250   |
| 0.51000  | 1.000    | 0.000    | 7.1e-08  | 0.026    | 0.050    | -40.217  |
| 0.52000  | 1.000    | 0.000    | 7.1e-08  | -0.165   | 0.038    | -60.158  |
| 0.53000  | 1.000    | 0.000    | 7.1e-08  | -0.310   | 0.035    | -70.759  |
| 0.54000  | 1.000    | 0.000    | 7.1e-08  | -0.444   | 0.034    | -77.599  |
| 0.55000  | 1.000    | 0.000    | 7.1e-08  | -0.575   | 0.033    | -82.669  |



NAWCWPNS TP 8249

$$20 \log \left( \frac{b_3}{a_3} \right) = -23.6 \text{ dB}$$

$$20 \log \left( \frac{a_4}{b_4} \right) = -23.65 \text{ dB}$$

$$20 \log \left( \frac{b_1}{a_1} \right) = -23.092 \text{ dB}$$

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE3.OUT Mon Feb 06 18:09:33 1995

| FREQ-GHZ | DB[S21] | ANG[S21] | DB[S31]  | ANG[S31] | MAG[S41] | ANG[S41] | CPLREF               | CPLREF               | CPLREF               | CPLREF               | CPLREF | CPLREF           |
|----------|---------|----------|----------|----------|----------|----------|----------------------|----------------------|----------------------|----------------------|--------|------------------|
| 0.45000  | -53.398 | 127.859  | -2.0e-05 | -179.409 | 0.032    | 37.857   | <i>b<sub>1</sub></i> | <i>b<sub>2</sub></i> | <i>b<sub>3</sub></i> | <i>b<sub>4</sub></i> |        |                  |
| 0.46000  | -53.550 | 128.574  | -2.0e-05 | -179.539 | 0.032    | 38.572   |                      |                      |                      |                      |        |                  |
| 0.47000  | -53.682 | 129.357  | -2.1e-05 | -179.674 | 0.032    | 39.356   |                      |                      |                      |                      |        |                  |
| 0.48000  | -53.802 | 130.324  | -2.3e-05 | -179.819 | 0.031    | 40.324   |                      |                      |                      |                      |        |                  |
| 0.49000  | -53.955 | 132.053  | -3.8e-05 | 179.990  | 0.031    | 42.052   |                      |                      |                      |                      |        |                  |
| 0.50000  | -23.092 | -170.020 | -16.722  | 66.949   | 1.074    | 99.980   |                      |                      |                      |                      |        | 16.371 < -82.779 |
| 0.51000  | -53.617 | 128.682  | -4.8e-05 | -179.974 | 0.032    | 38.681   |                      |                      |                      |                      |        |                  |
| 0.52000  | -53.698 | 130.371  | -2.7e-05 | 179.835  | 0.032    | 40.371   |                      |                      |                      |                      |        |                  |
| 0.53000  | -53.684 | 131.295  | -2.4e-05 | 179.690  | 0.032    | 41.294   |                      |                      |                      |                      |        |                  |
| 0.54000  | -53.626 | 132.026  | -2.1e-05 | 179.556  | 0.032    | 42.024   |                      |                      |                      |                      |        |                  |
| 0.55000  | -53.534 | 132.673  | -2.1e-05 | 179.425  | 0.032    | 42.671   |                      |                      |                      |                      |        |                  |

Touchstone (TM) - Configuration( 100 1600 100 15713 1604 1000 1 3294 )  
 MIXMODE3.OUT Mon Feb 06 18:07:27 1995

| FREQ-GHZ | MAG[S21] | ANG[S21] | MAG[S31] | ANG[S31] | MAG[S21] | ANG[S21] | MAG[S31] | ANG[S31] | INC                  | INC                  | INC                  | INC                  | REFL                 | REFL                 | REFL                 | REFL                 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| 0.45000  | 0.032    | -19.214  | 0.033    | -89.767  | 0.033    | -32.571  | 0.032    | -142.734 | <i>b<sub>1</sub></i> | <i>b<sub>2</sub></i> | <i>b<sub>3</sub></i> | <i>b<sub>4</sub></i> | <i>a<sub>5</sub></i> | <i>a<sub>6</sub></i> | <i>a<sub>7</sub></i> | <i>a<sub>8</sub></i> |
| 0.46000  | 0.032    | -19.767  | 0.033    | -84.679  | 0.033    | -36.532  | 0.032    | -141.899 |                      |                      |                      |                      |                      |                      |                      |                      |
| 0.47000  | 0.032    | -20.251  | 0.033    | -77.589  | 0.033    | -42.504  | 0.032    | -140.997 |                      |                      |                      |                      |                      |                      |                      |                      |
| 0.48000  | 0.031    | -20.551  | 0.036    | -66.160  | 0.036    | -52.835  | 0.031    | -139.911 |                      |                      |                      |                      |                      |                      |                      |                      |
| 0.49000  | 0.031    | -20.091  | 0.047    | -43.812  | 0.047    | -74.171  | 0.031    | -138.065 |                      |                      |                      |                      |                      |                      |                      |                      |
| 0.50000  | 1.074    | 36.568   | 16.371   | -82.779  | 16.341   | 160.661  | 1.076    | -80.020  |                      |                      |                      |                      |                      |                      |                      |                      |
| 0.51000  | 0.032    | -25.999  | 0.050    | -139.609 | 0.050    | 24.463   | 0.032    | -141.202 |                      |                      |                      |                      |                      |                      |                      |                      |
| 0.52000  | 0.032    | -25.577  | 0.038    | -119.935 | 0.038    | 5.790    | 0.032    | -139.394 |                      |                      |                      |                      |                      |                      |                      |                      |
| 0.53000  | 0.032    | -25.922  | 0.035    | -109.506 | 0.035    | -3.543   | 0.032    | -138.354 |                      |                      |                      |                      |                      |                      |                      |                      |
| 0.54000  | 0.032    | -26.461  | 0.034    | -102.817 | 0.034    | -9.114   | 0.032    | -137.505 |                      |                      |                      |                      |                      |                      |                      |                      |
| 0.55000  | 0.032    | -27.082  | 0.033    | -97.889  | 0.033    | -12.916  | 0.032    | -136.738 |                      |                      |                      |                      |                      |                      |                      |                      |

# NAWCWPNS TP 8249



EEsof - Touchstone - Tue Feb 07 18:01:22 1995 - MIXMODE3



**Appendix J**

**DERIVATION OF Z-MATRIX FOR A TEE-SECTION**

ABCD of a Tee Network



$$\begin{bmatrix} 1+Z_1Y & (1+Z_1Y)Z_2 + Z_1 \\ Y & YZ_2 + 1 \end{bmatrix} = ABCD \text{ Tee}$$

Convert back to Z matrix

$$Z_{11} = \frac{A}{C} \quad Z_{22} = \frac{D}{C}$$

$$Z_{12} = Z_{21} = \frac{1}{C}$$

$$\begin{bmatrix} \frac{1}{Y} + Z_1 & \frac{1}{Y} \\ \frac{1}{Y} & \frac{1}{Y} + Z_2 \end{bmatrix} = Z_{TEE}$$

let

$$Z_3 = \frac{1}{Y}$$

$$Z_{11} = Z_1 + Z_3 \quad Z_{12} = Z_{21} = Z_3$$

$$Z_{22} = Z_2 + Z_3$$

So

$$Z_{11} = Z_1 + Z_{12} \quad \text{or} \quad Z_1 = Z_{11} - Z_{12}$$

$$Z_{22} = Z_2 + Z_{12} \quad \text{or} \quad Z_2 = Z_{22} - Z_{12}$$

$$Z_3 = Z_{12}$$

$$Z_{TEE} \begin{bmatrix} Z_1 + Z_3 & Z_3 \\ Z_3 & Z_2 + Z_3 \end{bmatrix}$$

## INITIAL DISTRIBUTION

4 Chief of Naval Research, Arlington  
ONR-312  
    Dr. I. Mack (1)  
    Dr. Y. S. Park (1)  
    Dr. D. Van Vechten (1)  
    ONR-332, Dr. W. Smith (1)  
1 Naval Command Control and Ocean Surveillance Center, RDTE Division, San Diego (R. Dinger)  
1 Naval Research Laboratory (Dr. M. Nissenoff)  
2 Defense Technical Information Center, Alexandria  
1 Crale, Incorporated, State College, PA (D. M. Grimes)  
1 J. S. McLean, Mobile Antenna Research, Madison, WI  
1 Southwall Technologies, Palo Alto, CA (C. Grimes)  
5 Sverdrup, Incorporated, Ridgecrest, CA (D. White)  
2 University of Sheffield, England  
    G. Cook (1)  
    S. Khamas (1)

---

## ON SITE DISTRIBUTION

1 Code 400000D  
1 Code 455300D, L. Hagman  
1 Code 470000D  
1 Code 472E00D, D. Burdick  
2 Code 472210D  
    R. Chew (1)  
    R. Skatvold (1)  
4 Code 472220D  
    M. Afendykiw (1)  
    K. Deen (1)  
    S. Ghaleb (1)  
    T. Williams (1)  
2 Code 472300D  
    T. Hoppus (1)  
    M. Neel (1)  
1 Code 474T70D, B. Bailey  
1 Code 474100D, J. Stanford  
8 Code 474160D  
    D. Banks (1)  
    D. Bowling (5)  
    D. Decker (1)  
    A. Martin (1)  
11 Code 474180D  
    D. Marrs (1)  
    P. Overfelt (10)  
1 Code 474400D, S. Chesnut  
4 Code 474710D (3 plus Archives copy)