Southern University of Science and Technology Advanced Linear Algebra Spring 2023

MA109- Quiz #6

2023/03/30

Name:		
Ctudent Number		

1. Show that there exist $\alpha_1, \alpha_2, \alpha_3$ are three roots of $f(x) = x^3 - 1$ and $\alpha_2 = \alpha_1^2, \alpha_3 = \alpha_1^3$. 证明 $f(x) = x^3 - 1$ 存在三个根 $\alpha_1, \alpha_2, \alpha_3$,并且满足 $\alpha_2 = \alpha_1^2, \alpha_3 = \alpha_1^3$.

Proof.

$$\alpha_1 = \frac{-1 + \sqrt{3}i}{2}, \quad \alpha_2 = \frac{-1 - \sqrt{3}i}{2} = \alpha_1^2, \quad \alpha_3 = 1 = \alpha_1^3$$

2. Suppose $T \in \mathcal{L}(V)$, and u_1, \dots, u_n and v_1, \dots, v_n are bases of V. Prove that T is invertible if and only if the columns of $\mathcal{M}(T)$ spans $\mathbf{F}^{n,1}$. Here $\mathcal{M}(T)$ means $\mathcal{M}(T,(u_1,\cdots,u_n),(v_1,\cdots,v_n))$. \bigcirc **Leads** \bigcirc 组可以张成 $\mathbf{F}^{n,1}$. 此处 $\mathcal{M}(T)$ 是 $\mathcal{M}(T,(u_1,\cdots,u_n),(v_1,\cdots,v_n))$.

Proof. " \Rightarrow ": Since T is invertible, then Tu_1, \dots, Tu_n is a basis of V.

Tu = $a_{1i}v_1 + \cdots + a_{ni}v_n$, if

Tu = $a_{1i}v_1 + \cdots + a_{ni}v_n$, if

Tu = $a_{1i}v_1 + \cdots + a_{ni}v_n$ Tu = $a_{1i}v_1 + \cdots + a_{ni}v_n$ $k_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix} + k_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{pmatrix} + \cdots + k_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{nn} \end{pmatrix} = 0$ then $k_1 \int u_1 + k_2 \int u_2 + \cdots + k_n \int u_n = n$ then

$$(k_1Tu_1 + k_2Tu_2 + \dots + k_nTu_n = (k_1a_{11} + \dots + k_na_{1n})v_1 + \dots + (k_1a_{n1} + \dots + k_na_{nn})v_n = 0$$

so $k_1 = k_2 = \cdots = k_n = 0$, then the columns of $\mathcal{M}(T, (u_1, \cdots, u_n), (v_1, \cdots, v_n))$ is linearly independent and also is a basis of $\mathbf{F}^{n,1}$, thus they can span $\mathbf{F}^{n,1}$.

" \Leftarrow ": Since the columns of $\mathcal{M}(T)$ spans $\mathbf{F}^{n,1}$, then they can be a basis of $\mathbf{F}^{n,1}$.

If $k_1Tu_1 + \cdots + k_nTu_n = 0$, then

$$(k_1a_{11} + \dots + k_na_{1n})v_1 + \dots + (k_1a_{n1} + \dots + k_na_{nn})v_n = 0$$

Since v_1, \dots, v_n is <u>linearly independent</u>, then $k_1 a_{11} + \dots + k_n a_{1n} = 0, \dots, k_1 a_{n1} + \dots + k_n a_{nn} = 0$, that is,

$$k_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix} + \dots + k_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{nn} \end{pmatrix} = 0$$

Since the columns of $\mathcal{M}(T)$ is linearly independent, then $k_1 = \cdots = k_n = 0$, so $\underline{Tu_1, \cdots, Tu_n}$ is also linearly independent, which is also a basis of V, thus T is invertible.