3) (v_n) définie par $v_n = \ln u_n - \ln 2$ pour tout $n \in \mathbb{N}$.

3.a) Calculons v_0 : $v_0 = \ln u_0 - \ln 2 = \ln 1 - \ln 2 = -\ln 2$.

Exprimons v_{n+1} en fonction de u_n :

$$v_{n+1} = \ln u_{n+1} - \ln 2 = \ln \sqrt{2u_n} - \ln 2 = \ln (2u_n)^{\frac{1}{2}} - \ln 2 = \frac{1}{2} \ln 2u_n - \ln 2 = \frac{1}{2} \ln 2 + \frac{1}{2} \ln u_n - \ln 2$$

$$v_{n+1} = \frac{1}{2} (\ln u_n - \ln 2)$$

C'est à dire $v_{n+1} = \frac{1}{2}v_n$.

Donc, (v_n) est une suite géométrique de raison $\frac{1}{2}$ et de premier terme $v_0 = -\ln 2$.

3.b) De ce qui précède, on peut écrire :
$$v_n = -\left(\frac{1}{2}\right)^n \ln 2 = \ln 2^{-\left(\frac{1}{2}\right)^n}$$
.

Alors
$$\ln u_n - \ln 2 = \ln 2^{-\left(\frac{1}{2}\right)^n}$$
 et $\ln u_n = \ln 2 + \ln 2^{-\left(\frac{1}{2}\right)^n} = \ln 2 \times 2^{-\left(\frac{1}{2}\right)^n} = \ln 2^{1-\left(\frac{1}{2}\right)^n}$.
D'où $u_n = 2^{1-\left(\frac{1}{2}\right)^n}$.

3.c) Quand
$$n \to +\infty$$
, $\left(\frac{1}{2}\right)^n \to 0$ et $1 - \left(\frac{1}{2}\right)^n \to 1$

D'où
$$\lim_{n\to+\infty} (u_n) = 2$$

3.d)

Variables: n est un entier naturel

u est un réel

Initialisation : Affecter à n la valeur 0

Affecter à u la valeur 1

Traitement : Tant que u < 1,999

....Affecter à u la valeur $\sqrt{2u}$

....Affecter à n la valeur n + 1

Fin tant

Sortie : Afficher *n*

NB) L'application de l'algorithme donne n = 11.