Factorizarea QR

Valentin-Ioan VINTILĂ

Facultatea de Automatică și Calculatoare - CTI Universitatea POLITEHNICA București

7 martie 2023 (Lab. 2)

Valentin-Ioan VINTIL

E----

martie 2023 (Lab. 2)

Ce este factorizarea QR?

Cuprins

- Factorizarea Gram-Schmidt
- S Factorizarea Householder
- 4 Factorizarea Givens
- Bibliografie

Valentin-Ioan VINTILĂ

Factorizarea QF

2 / 61

Chestiuni organizatorice (1)

Deoarece a avut loc și primul curs, știm că laboratorul valorează:

- 1p, dacă dati partial;
- (probabil) 2p, dacă nu dați parțial.

Indiferent, notarea la laborator se va face astfel:

- Lucrare neanuntată din matrice 50%:
- Lucrare neanunțată din funcții 50%;
- Bonus la laborator până la 50%.

Nota se trunchiază la 100%.

Valentin-Ioan VINTIL

actorizarea Q

7 martie 2023 (Lab. 2)

Valentin-Ioan VINTIL

Factorizarea (

7 martie 2023 (Lab. 2)

4/61

Matrice ortogonale

Definitie (matrice ortogonală)

Fie $Q\in\mathbb{R}^{n\times n}$, $n\in\mathbb{N}^*$ o matrice nesingulară. Aceasta se consideră **ortogonală** dacă și numai dacă $Q^{-1}=Q^T$.

Valentin-Ioan VINTILA

Factorizarea QF

7 martie 2023 (Lab. 2)

5/61

Chestiuni organizatorice (2)

Punctajul pe laborator se anulează COMPLET și IREVOCABIL:

- Dacă nu aveți minim 8 prezențe la laborator;
- Dacă ați copiat la oricare dintre lucrări (teste/teme).

În cazul din urmă, va fi înștiințat și cadrul didactic.

Matrice ortogonale - exemplu

Spre exemplu, următoarea matrice este ortogonală:

$$Q = \begin{bmatrix} 0.6 & -0.8 \\ 0.8 & 0.6 \end{bmatrix}$$

Cum demonstrăm? Calculăm Q^T și verificăm că aceasta este de fapt inversa, adică $QQ^T = Q^TQ = I_2$:

$$Q^{T} = \begin{bmatrix} 0.6 & 0.8 \\ -0.8 & 0.6 \end{bmatrix} \Rightarrow \begin{cases} QQ^{T} = \begin{bmatrix} 0.6^{2} + 0.8^{2} & 0 \\ 0 & 0.8^{2} + 0.6^{2} \end{bmatrix} = I_{2} \\ \text{analog}, \ Q^{T}Q = I_{2} \end{cases}$$

Valentin-Ioan VINTIL

Factorizarea QF

7 martie 2023 (Lab. 2)

6/61

Matrice ortogonale - proprietăți

Având în vedere definiția matricelor ortogonale ($Q^{-1}=Q^T$), reies următoarele proprietăți:

- $QQ^T = Q^TQ = I_n$ (din proprietățile inversei);
- $ext{ det}(Q) = \pm 1 ext{ (demonstrația la tablă)};$

Factorizarea QR

Pentru o matrice $A\in\mathbb{R}^{n\times n}$, $n\in\mathbb{N}$, ne propunem să găsim două matrice $Q\in\mathbb{R}^{n\times n}$ și $R\in\mathbb{R}^{n\times n}$ astfel încât:

- Q să fie ortogonală;
- R să fie superior triunghiulară;
- **9** Produsul să revină în A, adică A = QR

Valentin-loan VINTILĂ Factorizarea QR 7 martie 2023 (Lab. 2) 7 / 61

entin-Ioan VINTILĂ F

vizarea QR 7 martie 20

Din punct de vedere istoric:

- Jørgen Pedersen Gram publică în 1883 metoda;
- Erhard Schmidt publică o hârtie în 1907 ce face cunoscut algoritmul.

J.P. Gram și E. Schmidt

Erhard Schmidt (1876-1959)

Valentin-Ioan VINTILĂ

Factorizarea QR

martie 2023 (Lab. 2)

Valentin-Ioan VINTILĂ

Vectori ortogonali

Definiție (vectori ortogonal)

În acest caz, se notează $u \perp v$.

Factorizarea QF

7 martie 2023 (Lab. 2)

b. 2) 10 / 61

Produs scalar

Definiție (produs scalar)

Fie $u,v\in\mathbb{R}^n$ doi vectori, $n\in\mathbb{N}$. Definim **produsul scalar** al acestora prin:

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^T \mathbf{v}$$
 Cu alte cuvinte, dacă $\mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$ și $\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$, atunci:
$$\langle \mathbf{u}, \mathbf{v} \rangle = \sum_{k=1}^n u_k v_k$$

Valentin-Ioan VINTIL

Factorizarea QF

7 martie 2023 (Lab. 2) 1

AZ L. STATE

Factorizarea (

Fie $u,v\in\mathbb{R}^n$ doi vectori, $n\in\mathbb{N}$. Acești vectori se consideră **ortogonali** unul fată de celălalt dacă și numai dacă produsul lor scalar este egal cu 0:

 $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^T \mathbf{v} = 0$

7 martie 2023 (Lab. 2) 12

Norma vectorilor

Definiție (norma Euclidiană)

Fie $\mathbf{u} \in \mathbb{R}^n$ un vector, $n \in \mathbb{N}$. Definim **norma** sa (Euclidiană) prin formula:

$$||\mathbf{u}|| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$$

Dacă $\mathbf{u},\mathbf{v}\in\mathbb{R}^n$ sunt ortogonali $(\mathbf{u}\perp\mathbf{v})$ și $||\mathbf{u}||=||\mathbf{v}||=1$, acești vectori se numesc **ortonormați**.

Valentin-Ioan VINTILĂ

Factorizarea QI

7 martie 2023 (Lab. 2)

3/61

Algoritmul Gram-Schmidt - vectorial (1)

Să considerăm o mulțime de vectori din subspațiul \mathbb{R}^n , unde $n\in\mathbb{N}^*$, ce formează o bază $B=\{\mathbf{a}_1,\dots,\mathbf{a}_n\}$.

Factorizarea Gram-Schmidt își propune să genereze o bază ortonormată $Q = \{\mathbf{q}_1, \dots, \mathbf{q}_n\}$ în funcție de baza B.

Fiecare vector \mathbf{a}_i din baza B, $\forall i=\overline{1,n}$, va trece printr-un proces de transformare, descris foarte simplist prin intermediul acestor doi pași:

$$\left[\mathbf{a_i}
ightarrow \mathbf{v_i}
ightarrow \mathbf{q_i}
ight], \ orall i = \overline{1,n}$$

Valentin-Ioan VINTIL

Factorizarea Q

7 martie 2023 (Lab. 2)

14 / 61

Algoritmul Gram-Schmidt - vectorial (2)

Vrem $a_i \rightarrow \textbf{v}_i \rightarrow \textbf{q}_i$ - respectăm următorul set de reguli:

- Fiecare vector \mathbf{a}_i , $\forall i = \overline{1, n}$, se va transforma pe rând, adică întâi a_1 , apoi a_2 , apoi a_3 etc.;
- Vectorul v_i (i > 1) va proveni din a_i și va fi ortogonal cu fiecare vector v₁,..., v_{i-1} aflat înaintea sa; prin convenție, v₁ = a₁;
- $\textbf{ 0} \ \, \text{Vectorul } \textbf{q}_i \ \, \text{va reprezenta normalizarea lui } \textbf{v}_i, \text{ aṣadar } \textbf{q}_i = \frac{\textbf{v}_i}{||\textbf{v}_i||}.$

Corolar. $v_i \perp v_i \Leftrightarrow v_i \perp q_i$

Algoritmul Gram-Schmidt - exemplu (1)

Stim
$$B = \left\{ \begin{bmatrix} 3\\4\\0 \end{bmatrix}, \begin{bmatrix} 6\\0\\8 \end{bmatrix}, \begin{bmatrix} 0\\7\\0 \end{bmatrix} \right\}$$
. Vrem $Q = \{\mathbf{q_1}, \mathbf{q_2}, \mathbf{q_3}\}$.

Pasul 1. Calcularea lui q₁:

$$\bullet \ \mathbf{q}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|} = \begin{bmatrix} 3/5 \\ 4/5 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.6 \\ 0.8 \\ 0 \end{bmatrix}$$

elentin-loan VINTILĂ Factorizarea QR 7 martie 2023 (Lab. 2) 15/

tin-Ioan VINTILĂ Fa

rea QR 7 martie 202

Algoritmul Gram-Schmidt - exemplu (2)

$$\text{Stim } B = \left\{ \begin{bmatrix} 3 \\ 4 \\ 0 \end{bmatrix}, \begin{bmatrix} 6 \\ 0 \\ 8 \end{bmatrix}, \begin{bmatrix} 0 \\ 7 \\ 0 \end{bmatrix} \right\}. \text{ Vrem } Q = \{\mathbf{q_1} = \begin{bmatrix} 0.6 \\ 0.8 \\ 0 \end{bmatrix}, \mathbf{q_2}, \mathbf{q_3}\}.$$

$\textbf{Pasul 2.} \ \, \mathsf{Calcularea} \ \, \mathsf{lui} \ \, \textbf{q}_2 :$

- $\bullet \ \, \textbf{v}_{\textbf{2}} \perp \textbf{v}_{\textbf{1}} \Rightarrow \textbf{v}_{\textbf{2}} \perp \textbf{q}_{\textbf{1}} \Leftrightarrow \langle \textbf{v}_{\textbf{2}}, \textbf{q}_{\textbf{1}} \rangle = \textbf{0} \,\, (\text{din corolar});$
- ullet a_2 (poate) depinde de q_1 , deci:

$$\mathbf{a_2} = \mathbf{v}_2 + \alpha_{21}\mathbf{q}_1 \Rightarrow \mathbf{v}_2 = \mathbf{a_2} - \alpha_{21}\mathbf{q}_1$$

• Din aceste ecuatii:

$$\begin{split} \langle \mathbf{v_2}, \mathbf{q_1} \rangle &= \mathbf{0} \Rightarrow \langle \mathbf{a_2} - \alpha_{21} \mathbf{q_1}, \mathbf{q_1} \rangle = \mathbf{0} \\ &\Rightarrow \langle \mathbf{a_2}, \mathbf{q_1} \rangle - \alpha_{21} \cdot \langle \mathbf{q_1}, \mathbf{q_1} \rangle = \mathbf{0} \end{split}$$

 \bullet Ştim însă $||\mathbf{q_1}||=1 \Rightarrow \alpha_{21}=\langle \mathbf{a_2}, \mathbf{q_1}\rangle=3.6$

• $\mathbf{v}_2 = \mathbf{a_2} - \alpha_{21}\mathbf{q}_1$

 $oldsymbol{a}$ $lpha_{21}=\langle oldsymbol{a_2}, oldsymbol{q_1}
angle=3.6$

Algoritmul Gram-Schmidt - exemplu (4)

Stim
$$B = \left\{ \begin{bmatrix} 3 \\ 4 \\ 0 \end{bmatrix}, \begin{bmatrix} 6 \\ 0 \\ 8 \end{bmatrix}, \begin{bmatrix} 0 \\ 7 \\ 0 \end{bmatrix} \right\}$$
. Vrem
$$Q = \left\{ \mathbf{q_1} = \begin{bmatrix} 0.6 \\ 0.8 \\ 0 \end{bmatrix}, \mathbf{q_2} \approx \begin{bmatrix} 0.4116 \\ -0.3078 \\ 0.8575 \end{bmatrix}, \mathbf{q_3} \right\}$$
. Analog, pentru $\mathbf{q_3}$:

ullet v₃ oxed v₁ și v₃ oxed v₂ sau, prin corolar, v₃ oxed q₁ și v₃ oxed q₂, decis

$$\mathbf{a_3} = \mathbf{v_3} + \alpha_{31}\mathbf{q_1} + \alpha_{32}\mathbf{q_2} \Rightarrow \mathbf{v_3} = \mathbf{a_3} - \alpha_{31}\mathbf{q_1} - \alpha_{32}\mathbf{q_2}$$

se va reduce la:

$$\mathbf{v_3} = \mathbf{a_3} - \langle \mathbf{a_3}, \mathbf{q_1} \rangle \cdot \mathbf{q_1} - \langle \mathbf{a_3}, \mathbf{q_2} \rangle \cdot \mathbf{q_2}$$

Algoritmul Gram-Schmidt - exemplu (5)

Algoritmul Gram-Schmidt - exemplu (3)

 $\operatorname{Stim} B = \left\{ \begin{bmatrix} 3 \\ 4 \\ 0 \end{bmatrix}, \begin{bmatrix} 6 \\ 0 \\ 8 \end{bmatrix}, \begin{bmatrix} 0 \\ 7 \\ 0 \end{bmatrix} \right\}. \ \operatorname{Vrem} \ Q = \{ \mathbf{q_1} = \begin{bmatrix} 0.6 \\ 0.8 \\ 0 \end{bmatrix}, \mathbf{q_2}, \mathbf{q_3} \}.$

 $\bullet \ \boxed{ \mathbf{v_2} = \mathbf{a_2} - \langle \mathbf{a_2}, \mathbf{q_1} \rangle \cdot \mathbf{q_1} } \ \text{sau, numeric, } \mathbf{v_2} = \begin{bmatrix} 3.84 \\ -2.88 \\ 8 \end{bmatrix}$

Prin calcul, ajungem de la baza
$$B = \left\{ \begin{bmatrix} 3 \\ 4 \\ 0 \end{bmatrix}, \begin{bmatrix} 6 \\ 0 \\ 8 \end{bmatrix}, \begin{bmatrix} 0 \\ 7 \\ 0 \end{bmatrix} \right\}$$
 la baza $Q = \left\{ \begin{bmatrix} 0.6 \\ 0.8 \\ 0 \end{bmatrix}, \begin{bmatrix} 0.4116 \\ -0.3078 \\ 0.8757 \end{bmatrix}, \begin{bmatrix} -0.6865 \\ 0.5154 \\ 0.5129 \end{bmatrix} \right\}.$

Algoritmul Gram-Schmidt - generalizare

În baza exemplului anterior, concluzionăm că:

$$\mathbf{v_i} = \mathbf{a_i} - \sum_{k=1}^{i-1} \langle \mathbf{q_k}, \mathbf{q_j}
angle \cdot \mathbf{q_k}$$

Evident, $\mathbf{q_i}$ rămâne $\mathbf{q_i} = \frac{\mathbf{v_i}}{||\mathbf{v_i}||}$

Factorizarea Gram-Schmidt

Vrem A = QR, unde Q este **ortogonală** și R **superior triunghiulară**.

Aplicăm algoritmul GS considerând baza inițială $B = \{a_1, \dots, a_n\}$, adică vectorii coloană componenti ai matricei A.

Obținem baza ortonormată Q, adică matricea ortogonală Q.

Matricea
$$R = (r_{ij})$$
 devine
$$\begin{cases} 0, & i > j \\ ||v_i||, & i = j \text{ (ca temă, puteți verifica).} \\ \langle a_j, q_i \rangle, & i < j \end{cases}$$

Factorizarea Gram-Schmidt - concluzii

Complexitate? $O(n^3)$

O folosim în practică? NU! E instabilă numeric!

Factorizarea Gram-Schmidt modificată

Pentru a fi folosită factorizarea GS, se modifică ordinea operațiilor.

Stim
$$r_{ij} = \langle \mathbf{a_i}, \mathbf{q_k} \rangle$$
.

Mai știm
$$\mathbf{q_k} \perp \mathbf{q_j} \Rightarrow \langle \mathbf{q_k}, \mathbf{q_j} \rangle = 0 \Rightarrow \langle r_{kj} \mathbf{q_k}, \mathbf{q_j} \rangle = 0.$$

Aşadar,
$$r_{ij}$$
 se rescrie ca $r_{ij} = \left\langle \mathbf{a_j} - \sum_{k=1}^{i-1} r_{kj} \mathbf{q_k}, \mathbf{q_i} \right\rangle$

Factorizarea Householder

Schimbăm abordarea și căutăm o alternativă pentru GSM, întrucât acesta este în continuare instabil numeric.

Alston Scott Householder

Alston Scott Householder (1904-1993)

Reflector Householder

Definiție (reflector Householder)

Fie un vector $\mathbf{u} \in \mathbb{R}^n$, $n \in \mathbb{N}^*$, cu norma sa euclidiană $||\mathbf{u}||$. Atunci, se definește matricea $H \in \mathbb{R}^{n \times n}$ astfel încât:

$$H = I_n - 2 \cdot \frac{\mathbf{u}\mathbf{u}^T}{||\mathbf{u}||^2} = I_n - 2 \cdot \frac{\mathbf{u}\mathbf{u}^T}{\mathbf{u}^T\mathbf{u}}$$

Matricea H se numește reflector Householder.

Reflector Householder - proprietăți

Câteva proprietăți ai reflectorului Householder cuprind:

- **Simetria**: $H = H^T$
- **2** Ortogonalitatea și involuția: $H^TH = HH^T = I_n$

Demonstrație Householder geometric (1)

Fie $\mathbf{u},\mathbf{v}\in\mathbb{R}^2$ aleși astfel încât $\mathbf{u}\perp\mathbf{v}$ și $||\mathbf{u}||=1.$

 $\textbf{x}_u \parallel \textbf{u}.$ Deoarece \textbf{x}_u este proiecția lui x pe u avem:

Demonstrațiile rămân ca temă!

Orice vector $\textbf{x} \in \mathbb{R}^2$ poate fi descompus ca $\textbf{x} = \textbf{x}_{\textbf{v}} + \textbf{x}_{\textbf{u}}$, unde $\textbf{x}_{\textbf{v}} \parallel \textbf{v}$ și

 $\mathbf{x}_u = \frac{u u^T}{||u||^2} \cdot \mathbf{x} = u u^T \mathbf{x}$

 $H\mathbf{x} = (I - 2\mathbf{u}\mathbf{u}^T)(\mathbf{x}_{\mathbf{v}} + \mathbf{u}\mathbf{u}^T\mathbf{x}) = \mathbf{x}_{\mathbf{v}} - \mathbf{u}\mathbf{u}^T\mathbf{x} = \mathbf{x}_{\mathbf{v}} - \mathbf{x}_{\mathbf{u}}$

Reflector Householder - geometric

Produsul Hx (cu H reflector și x vector) va reflecta vectorul x relativ față de planul perpendicular pe ${\bf u}$.

Să demonstrăm cazul 2D...

Demonstrație Householder geometric (2)

Interpretarea geometrică a reflectorului Householder. Cu turcoaz este desenat 'planul" (dreapta) perpendicular(ă) vectorului **u**.

Aflarea relfectorului

Aplicăm acum transformarea $H\mathbf{x}$:

Fie $\mathbf{x},\mathbf{y}\in\mathbb{R}^n$ $(n\in\mathbb{N}^*)$ astfel încât $H\mathbf{x}=\mathbf{y}$, unde H este un reflector Householder. Atunci:

$$H = I_n - 2\mathbf{u}\mathbf{u}^T$$
, unde $\mathbf{u} = \frac{\mathbf{x} - \mathbf{y}}{||\mathbf{x} - \mathbf{y}||}$

Demonstrația se face prin simpla înlocuire.

Fundamentul factorizării (1)

Fie $A=\begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix} \in \mathbb{R}^{n \times n}$ și vectorul e_1 din baza subspațiului aritmetic \mathbb{R}^n ($n \in \mathbb{N}^*$). Vrem $a_1 \to ||a_1||e_1$. Cum?

$$\boxed{H_1 = \textit{I}_n - 2\textit{u}_1\textit{u}_1^\mathsf{T}}, \text{ unde } \textit{u}_1 = \frac{\textit{a}_1 - \rho_1\textit{e}_1}{||\textit{a}_1 - \rho_1\textit{e}_1||} \text{ și } \rho_1 = ||\textit{a}_1||$$

Aplicând operația H_1A , obținem:

$$\begin{bmatrix} H_1 A = \begin{bmatrix} H_1 \mathbf{a_1} & H_1 \mathbf{a_2} & \dots & H_1 \mathbf{a_n} \end{bmatrix} = \begin{bmatrix} \rho_1 & R_{1,2:n} \in \mathbb{R}^{1 \times (n-1)} \\ \mathbf{0} & B \in \mathbb{R}^{(n-1) \times (n-1)} \end{bmatrix}$$

Continuând recursiv pe matricea B (cu vectorul e1 din baza subspațiului

 $\hat{H}_2 = I_{n-1} - 2\mathbf{u}_2\mathbf{u}_2^{\mathsf{T}}, \ \mathbf{u}_2 = \frac{\mathbf{b}_1 - \rho_2 \mathbf{e}_1}{||\mathbf{b}_1 - \rho_2 \mathbf{e}_1||} \text{ si } \rho_2 = ||\mathbf{b}_2||$

Fundamentul factorizării (2)

aritmetic \mathbb{R}^{n-1}), obtinem:

și, dacă $H_2=\begin{bmatrix} 1 & 0 \\ 0 & \hat{H_2} \end{bmatrix}$, obținem:

Fundamentul factorizării (3)

De exemplu, pentru o matrice 4 × 4, procesul va arăta cam așa:

$$\rightarrow H_2H_1A = \begin{bmatrix} \boxtimes & \boxtimes & \boxtimes & \boxtimes \\ 0 & \boxtimes & \boxtimes & \boxtimes \\ 0 & 0 & \boxtimes & \boxtimes \\ 0 & 0 & \boxtimes & \boxtimes \end{bmatrix} \rightarrow \dots$$

Factorizarea Householder

Vrem A = QR, unde Q este ortogonală și R superior triunghiulară.

Devine evident că $R = H_{n-1}H_{n-2}...H_1A$.

- Produsul de matrice ortogonale este o matrice ortogonală (demonstrația la tablă);
- \bullet $H^2 = HH^T = H^TH = I_n$ (unde H este reflector Householder).

Obținem $Q = H_1H_2 \dots H_{n-1}$ (demonstrația se face prin calcul).

Factorizarea Householder - exemplu (1)

Fie $A=\begin{bmatrix}2&4&5\\1&-1&1\\2&1&-1\end{bmatrix}$. Vrem să găsim $Q,R\in\mathbb{R}^3$ astfel încât A=QR.

Pasul 1. Calculăm H_1 si B

Stim $\mathbf{a_1} = \begin{bmatrix} 2 & 1 & 2 \end{bmatrix}^T$, deci $\rho_1 = ||\mathbf{a_1}|| = 3$, aşadar:

$$\mathbf{u_1} = \frac{\mathbf{a_1} - \rho_1 \mathbf{e_1}}{||\mathbf{a_1} - \rho_1 \mathbf{e_1}||} = \frac{1}{\sqrt{6}} \begin{bmatrix} -1\\1\\2 \end{bmatrix}$$

Factorizarea Householder - exemplu (2)

 $\mbox{Fie }A=\begin{bmatrix}2&4&5\\1&-1&1\\2&1&-1\end{bmatrix}. \mbox{ Vrem să găsim }Q,R\in\mathbb{R}^3 \mbox{ astfel încât }A=QR. \mbox{ Pasul 1. Calculăm }H_1 \mbox{ și }B.$

Trecând la $H_1 = I_3 - 2\mathbf{u}_1\mathbf{u}_1^T$ obținem:

$$H_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} -1 & 1 & 2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & -1 & -2 \\ -1 & 1 & 2 \\ -2 & 2 & 4 \end{bmatrix}$$

Calculăm H_1A pentru a afla B:

$$H_1A = \begin{bmatrix} 3 & 3 & 3 \\ 0 & 0 & 3 \\ 0 & 3 & 3 \end{bmatrix} \Rightarrow B = \begin{bmatrix} 0 & 3 \\ 3 & 3 \end{bmatrix}$$

Factorizarea Householder - exemplu (3)

Fie $A=\begin{bmatrix}2&4&5\\1&-1&1\\2&1&-1\end{bmatrix}$. Vrem să găsim $Q,R\in\mathbb{R}^3$ astfel încât A=QR .

Ştim $\mathbf{b_1} = \begin{bmatrix} 0 & 3 \end{bmatrix}^T$, deci $\rho_2 = ||\mathbf{b_1}|| = 3$, aşadar:

$$\mathbf{u_2} = \frac{\mathbf{b_2} - \rho_2 \mathbf{e_1}}{||\mathbf{b_2} - \rho_2 \mathbf{e_1}||} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\1 \end{bmatrix} \text{ (amintim că } \mathbf{e_1} \in \mathbb{R}^2 \text{)}$$

Factorizarea Householder - exemplu (4)

Fie $A=egin{bmatrix}2&4&5\\1&-1&1\\2&1&-1\end{bmatrix}$. Vrem să găsim $Q,R\in\mathbb{R}^3$ astfel încât A=QR .

Calculăm rapid \hat{H}_2 și H_2 :

$$\hat{H_2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} -1 \\ 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \Rightarrow H_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Calculăm și matricea R:

$$R = H_2 H_1 A = 3 \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Factorizarea Householder - exemplu (5)

Am obținut deci că matricea $A = \begin{bmatrix} 2 & 4 & 5 \\ 1 & -1 & 1 \\ 2 & 1 & -1 \end{bmatrix}$ se descompune QR astfel: $Q = H_1H_2 = \frac{1}{3}\begin{bmatrix} 2 & 2 & 1 \\ 1 & -2 & 2 \\ 2 & -1 & -2 \end{bmatrix}$ și $R = H_2H_1A = 3\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.

Valentin-Ioan VINTIL

actorizarea QR

martie 2023 (Lab. 2)

41 / 61

Complexitate? $O(n^3)$

O folosim în practică? DA! Este foarte stabilă și rapidă!

...și atunci de ce nu se încheie prezentarea?

Factorizarea Householder - concluzii

Volentia Inna VINITII A

Factorizarea QF

42 / 61

Wallace Givens

James Wallace Givens, Jr (1910-1993)

Matrice Givens 2D (1)

Ideea principală este de a roti un vector în plan folosind o matrice.

Pentru a roti un vector $\mathbf{x} \in \mathbb{R}^2$ cu $\varphi \in \mathbb{R}$ radiani, folosim:

 $G_{\varphi} = \begin{bmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{bmatrix}$ (demonstrația rămâne ca temă).

Valentin-Ioan VINTIL

Factorizarea C

7 martie 2023 (Lab. 2) 43

Valentin-Ioan VINTIL

Eactorizarea O

Matrice Givens 2D (2)

Rotirea lui ${\bf x}$ în sensul acelor de ceasornic cu φ radiani, folosind matricea ${\it G}$, adică ${\it G}{\bf x}$

Eliminarea unei coordonate în 2D

Fie
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 și $\mathbf{y} = \begin{bmatrix} ||\mathbf{x}|| \\ 0 \end{bmatrix}$ doi vectori aleși astfel încât $\mathbf{y} = G\mathbf{x}$.

$$\boxed{\cos\varphi = \frac{\mathit{x}_1}{||\mathbf{x}||} = \frac{\mathit{x}_1}{\sqrt{\mathit{x}_1^2 + \mathit{x}_2^2}}} \hspace{0.1cm} \text{ si } \boxed{\sin\varphi = \frac{\mathit{x}_2}{||\mathbf{x}||} = \frac{\mathit{x}_2}{\sqrt{\mathit{x}_1^2 + \mathit{x}_2^2}}}$$

Aceste formule se dovedesc rapid:

$$\mathbf{y} = G\mathbf{x} = \begin{bmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} ||\mathbf{x}|| \\ 0 \end{bmatrix}$$

Valentin-Ioan VINTILÀ

Factorizarea QF

7 martie 2023 (Lab. 2)

Valentin-Ioan

7 martie 2023 (Lab. 2) 46 / 0

Matrice Givens (1)

Matricea de rotație 2D poate fi generalizată pentru mai multe dimensiuni, rotind un vector în planul definit de coordonatele i și j:

$$G_{ij} = \begin{bmatrix} 1 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & \cos \varphi & \dots & \sin \varphi & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & -\sin \varphi & \dots & \cos \varphi & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 1 \end{bmatrix}$$

Matrice Givens (2)

$$g_{ab} = \begin{cases} \cos \varphi, & a=b=i \text{ sau } a=b=j\\ \sin \varphi, & a=i,\ b=j\\ -\sin \varphi, & a=j,\ b=i\\ 1, & a=b,\ a\neq i,\ a\neq j\\ 0, & \text{ în rest} \end{cases}$$

Valentin-Ioan VINTIL

Factorizarea C

a QR

martie 2023 (Lab. 2)

7/61

Valentin-Ioan VINT

Factorizarea (

7 martie 2023 (Lab. 2)

Eliminarea unei coordonate (1)

Simpla operație conduce către: $G_{ij}\mathbf{x} = \begin{bmatrix} x_i \cos \varphi + x_i \sin \varphi \\ \vdots \\ x_j \cos \varphi + x_j \sin \varphi \\ \vdots \\ -x_j \sin \varphi + x_j \cos \varphi \end{bmatrix}$

Vrem să eliminăm partea cu rosu.

Asadar, pentru a elimina coordonata i si a o păstra pe i:

Eliminarea unei coordonate (2)

$$G_{ij}\mathbf{x} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \text{ unde } y_k = \begin{cases} \sqrt{x_i^2 + x_j^2}, & k = i \\ 0, & k = j \\ x_k, & k \neq i, \ k \neq j \end{cases}$$

Eliminarea unei coordonate (3)

La modul general, operația $\mathbf{x} \to ||\mathbf{x}|| \mathbf{e}_1$ devine:

$$G_{12}\mathbf{x} = \begin{bmatrix} \sqrt{x_1^2 + x_2^2} \\ 0 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} \to (G_{13} \cdot G_{12})\mathbf{x} = \begin{bmatrix} \sqrt{x_1^2 + x_2^2 + x_3^2} \\ 0 \\ 0 \\ \vdots \\ x_n \end{bmatrix} \to \dots$$

Eliminarea unei coordonate (4)

La modul general, operatia $\mathbf{x} \to ||\mathbf{x}|| \mathbf{e}_1$ devine:

$$(G_{1n} \dots G_{13} \cdot G_{12}) \mathbf{x} = \begin{bmatrix} \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} ||\mathbf{x}|| \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Factorizarea Givens (2)

Aşadar, $R = G_{n-1} \dots G_1 A$

Se poate demonstra că:

Vrem A = QR, unde Q este ortogonală și R superior triunghiulară.

Continuând recursiv, $G_2 \begin{bmatrix} R_{1,2:n} \\ B_2 \end{bmatrix} = \begin{bmatrix} R_{12} & R_{1,3:n} \\ \|\mathbf{b}_2\| & R_{2,3:n} \\ 0 & C \end{bmatrix}$.

Factorizarea Givens (1)

Vrem A = QR, unde Q este ortogonală și R superior triunghiulară.

Aplicăm algoritmul Givens considerând $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} \in \mathbb{R}^{n \times n}$.

Definim matricele G_1, \ldots, G_{n-1} :

$$G_k = G_{kn}G_{k(n-1)}\dots G_{k(k+1)}$$

Prin
$$G_1A$$
 ajungem la forma:
$$G_1A = \begin{bmatrix} G_1a_1 & G_1a_2 & \dots & G_1a_n \end{bmatrix} = \begin{bmatrix} ||a_1|| & R_{1,2:n} \\ 0 & B \end{bmatrix}.$$

 $Q = G_1^T \cdot G_2^T \dots G_n^T = \prod_{i=1}^n G_i^T$

Fundamentul factorizării Givens (1)

De exemplu, pentru o matrice 4×4 , procesul va arăta cam așa:

$$A = egin{bmatrix} oxtimes & ox & oxtimes & ox & ox$$

$$\rightarrow G_2G_1A = \begin{bmatrix} \boxtimes & \boxtimes & \boxtimes & \boxtimes \\ 0 & \boxtimes & \boxtimes & \boxtimes \\ 0 & 0 & \boxtimes & \boxtimes \\ 0 & 0 & \boxtimes & \boxtimes \end{bmatrix} \rightarrow \dots$$

...deci la fel ca la Householder!

Fundamentul factorizării Givens (2)

Puteti demonstra rezultatul ca temă:

Putem însă să vedem lucrurile mai în profunzime:

$$\rightarrow G_{13}G_{12}A = \begin{bmatrix} \boxtimes & \boxtimes & \boxtimes & \boxtimes \\ 0 & \boxtimes & \boxtimes & \boxtimes \\ 0 & \boxtimes & \boxtimes & \boxtimes \\ \boxtimes & \boxtimes & \boxtimes & \boxtimes \end{bmatrix} \rightarrow \dots$$

Avem deci acces la granularitate

Factorizarea Givens - exemplu

Ca temă, puteți să factorizați Givens următoarea matrice:

$$A = \begin{bmatrix} 0 & -1 & 1 \\ 4 & 2 & 0 \\ 3 & 4 & 0 \end{bmatrix}$$

$$\mbox{Veți obține: } A \approx \begin{bmatrix} 0 & -0.447 & 0.894 \\ 0.8 & -0.537 & -0.268 \\ 0.6 & 0.716 & 0.358 \end{bmatrix} \cdot \begin{bmatrix} 5 & 4 & 0 \\ 0 & 2.236 & -0.447 \\ 0 & 0 & 0.897 \end{bmatrix}.$$

Complexitate? $O(n^3)$

O folosim în practică? DA!

Factorizarea Givens - concluzii

Când o preferăm în detrimentul Householder? (dau bonus!)

MATRICE SPARSE

Pentru cine și-a notat...

Am lăsat în această prezentare 5 exerciții și/sau demonstrații ca temă.

Cei care le lucrează individual până data viitoare și le aduc scrise pe o hârtie semnată, pot primi până la 15% din bonus!

Sfârșit

Multumesc frumos pentru atenție!

Vă rog frumos să completați formularul de feedback!

Bibliografie

Pentru aceste prezentări, am utilizat:

• Cărțile Matrix Decomposition and Applications, respectiv Numerical Matrix Decomposition and its Modern Applications: A Rigorous First Course ale lui Jun Lu.