13
$$\chi_{1} - \chi_{n} \stackrel{\text{!!}}{\text{!!}} p_{\text{oison}}(\lambda)$$
 $\chi_{n} = \frac{1}{n} \sum_{i=1}^{n} (\chi_{i} - \chi_{i})^{2} = \lambda$
 $\chi_{n} = \frac{1}{n} \sum_{i=1}^{n} (\chi_{i} - \chi_{i})^{2} = \lambda$
 $\chi_{n} = \frac{1}{n} \sum_{i=1}^{n} (\chi_{i} - \chi_{i})^{2} = \lambda$
 $\chi_{n} = \frac{1}{n} \sum_{i=1}^{n} (\chi_{i} - \chi_{i})^{2} = \lambda$
 $\chi_{n} = \frac{1}{n} \sum_{i=1}^{n} (\chi_{i} - \chi_{i})^{2} = \lambda$
 $\chi_{n} = \frac{1}{n} \sum_{i=1}^{n} (\chi_{i} - \chi_{i})^{2} = \lambda$
 $\chi_{n} = \frac{1}{n} \sum_{i=1}^{n} (\chi_{i} - \chi_{i})^{2} = \lambda$
 $\chi_{n} = \frac{1}{n} \sum_{i=1}^{n} (\chi_{i} - \chi_{i})^{2} = \lambda$
 $\chi_{n} = \frac{1}{n} \sum_{i=1}^{n} (\chi_{i} - \chi_{i})^{2} = \lambda$
 $\chi_{n} = \frac{1}{n} \sum_{i=1}^{n} (\chi_{i} - \chi_{i})^{2} = \lambda$
 $\chi_{n} = \frac{1}{n} \sum_{i=1}^{n} (\chi_{i} - \chi_{i})^{2} = \lambda$
 $\chi_{n} = \frac{1}{n} \sum_{i=1}^{n} (\chi_{i} - \chi_{i})^{2} = \lambda$
 $\chi_{n} = \frac{1}{n} \sum_{i=1}^{n} (\chi_{i} - \chi_{i})^{2} = \lambda$
 $\chi_{n} = \frac{1}{n} \sum_{i=1}^{n} (\chi_{i} - \chi_{i})^{2} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \lambda$
 $\chi_{n} = \chi_{n} = \chi_{n} = \chi_{n} = \chi_{n}$

11.
$$X_{(1)} \cdot X_{(n)} \cdot Y_{(n)} \cdot$$

t2 T 即3HT3 出

18.
$$\chi_{1}$$
. χ_{2} χ_{3} χ_{4} χ_{5} χ_{5}

2):
$$X_1 - X_n$$
 \overrightarrow{A} \overrightarrow{A}