Experiments.....

Application on Multi-modal Fake News Detection

- EQ3: Can MVNN help improve the performance of multi-modal fake news detection?
- experiment with three fusing methods as follows:
 - attRNN (ACM MM, 2017)
 - EANN (ACM SIGKDD, 2018)
 - MVAE (ACM WWW, 2019)

Experiments.....

Application on Multi-modal Fake News Detection

- MVNN consistently outperforms other baselines
 - MVNN by over 5.2% in accuracy, MVNN can easily replace existing methods to obtain the representations of visual contents
- FF+LR in attRNN is obviously worse than EANN and MVAE
- attRNN can hardly utilize the semantic alignment between the text and the forensics features to fuse the textual and visual information

	Method	Accuracy	Precision	Recall	F1
attRNN	FF+LR	0.735	0.801	0.665	0.727
	Pre-trained VGG	0.821	0.813	0.862	0.837
	Fine-tuned VGG	0.849	0.888	0.818	0.852
	ConvAE	0.816	0.848	0.796	0.821
	MVNN	0.901	0.911	0.901	0.906
EANN	FF+LR	0.780	0.840	0.724	0.778
	Pre-trained VGG	0.821	0.861	0.791	0.824
	Fine-tuned VGG	0.841	0.883	0.807	0.843
	ConvAE	0.823	0.863	0.794	0.827
	MVNN	0.897	0.930	0.872	0.900
MVAE	FF+LR	0.777	0.776	0.815	0.795
	Pre-trained VGG	0.813	0.893	0.737	0.804
	Fine-tuned VGG	0.832	0.875	0.798	0.835
	ConvAE	0.827	0.831	0.847	0.839
	MVNN	0.891	0.896	0.898	0.897