

September 1983 Revised February 1999

MM74HC151 8-Channel Digital Multiplexer

General Description

The MM74HC151 high speed Digital multiplexer utilizes advanced silicon-gate CMOS technology. Along with the high noise immunity and low power dissipation of standard CMOS integrated circuits, it possesses the ability to drive 10 LS-TTL loads. The MM74HC151 selects one of the 8 data sources, depending on the address presented on the A, B, and C inputs. It features both true (Y) and complement (W) outputs. The STROBE input must be at a low logic level to enable this multiplexer. A high logic level at the STROBE forces the W output HIGH and the Y output LOW

The 74HC logic family is functionally as well as pin-out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

Features

- Typical propagation delay data select to output Y: 26 ns
- Wide operating supply voltage range: 2–6V
- Low input current: 1 µA maximum
- Low quiescent supply current: 80 µA maximum (74HC)
- High output drive current: 4 mA minimum

Ordering Code:

Order Number	Package Number	Package Description
MM74HC151M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC151SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC151MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC151N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Truth Table

	Inputs				Outputs	
	Select	t	Strobe			
С	С В А		s	Υ	W	
Х	Х	Х	Н	L	Н	
L	L	L	L	D0	D0	
L	L	Н	L	D1	D1	
L	Н	L	L	D2	D2	
L	Н	Н	L	D3	D3	
Н	L	L	L	D4	D4	
Н	L	Н	L	D5	D5	
Н	Н	L	L	D6	D6	
Н	Н	Н	L	D7	D7	

H = HIGH Level, L = LOW Level, X = Don't Care D0, D1...D7 = the level of the respective D input

MM74HC151 Logic Diagram STROBE -

Absolute Maximum Ratings(Note 1)

Storage Temperature Range (T_{STG}) Power Dissipation (P_D)

(Note 2)

(Note 3) 600 mW S.O. Package only 500 mW Lead Temperature (T_L) 260°C

-65°C to +150°C

(Soldering 10 seconds)

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage	0	V_{CC}	V
(V_{IN}, V_{OUT})			
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	V _{CC}	T _A = 25°C		T _A = -40 to 85°C	T _A = -55 to 125°C	Units	
Symbol		Conditions	*CC	Тур		Guaranteed L	imits	Units	
V_{IH}	Minimum HIGH Level		2.0V		1.5	1.5	1.5	V	
	Input Voltage		4.5V		3.15	3.15	3.15	V	
			6.0V		4.2	4.2	4.2	V	
V_{IL}	Maximum LOW Level		2.0V		0.5	0.5	0.5	V	
	Input Voltage		4.5V		1.35	1.35	1.35	V	
			6.0V		1.8	1.8	1.8	V	
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH}$ or V_{IL}							
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	2.0	1.9	1.9	1.9	V	
			4.5V	4.5	4.4	4.4	4.4	V	
			6.0V	6.0	5.9	5.9	5.9	V	
		$V_{IN} = V_{IH}$ or V_{IL}							
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	4.2	3.98	3.84	3.7	V	
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	5.7	5.48	5.34	5.2	V	
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$ or V_{IL}							
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	0.1	V	
			4.5V	0	0.1	0.1	0.1	V	
			6.0V	0	0.1	0.1	0.1	V	
		$V_{IN} = V_{IH}$ or V_{IL}							
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V	
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	0.2	0.26	0.33	0.4	V	
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μΑ	
	Current								
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		8.0	80	160	μА	
	Supply Current	$I_{OUT} = 0 \mu A$							

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{O2}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

AC Electrical Characteristics

 $V_{CC} = 5V$, $T_A = 25^{\circ}C$, $C_L = 15$ pF, $t_r = t_f = 6$ ns

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay A, B or C to Y		26	35	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay A, B or C to W		27	35	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay Any D to Y		22	29	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay any D to W		24	32	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay Strobe to Y		17	23	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay Strobe to W		16	21	ns

AC Electrical Characteristics

 $C_L = 50$ pF, $t_r = t_f = 6$ ns (unless otherwise specified)

Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C		$T_A = -40$ to $85^{\circ}C$	T _A = -55 to 125°C	Units
Symbol				Тур		Guaranteed Limits		
t _{PHL} , t _{PLH}	Maximum Propagation Delay		2.0V	90	205	256	300	ns
	A, B or C to Y		4.5V	31	41	51	60	ns
			6.0V	26	35	44	51	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay		2.0V	95	205	256	300	ns
	A, B or C to W		4.5V	32	41	51	60	ns
			6.0V	27	35	44	51	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay		2.0V	70	195	244	283	ns
	any D to Y		4.5V	27	39	49	57	ns
			6.0V	23	33	41	48	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay		2.0V	75	185	231	268	ns
	any D to W		4.5V	29	37	46	54	ns
			6.0V	25	32	40	46	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay		2.0V	50	140	175	203	ns
	Strobe to Y		4.5V	21	28	35	41	ns
			6.0V	18	24	30	35	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay		2.0V	45	127	159	185	ns
	Strobe to W		4.5V	20	25	32	37	ns
			6.0V	17	22	28	32	ns
t _{TLH} , t _{THL}	Maximum Output Rise		2.0V	30	75	95	110	ns
	and Fall Time		4.5V	8	15	19	22	ns
			6.0V	7	13	16	19	ns
C _{PD}	Power Dissipation	(per package)		110				pF
	Capacitance (Note 5)							
C _{IN}	Maximum Input			5	10	10	10	pF
	Capacitance							

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$.

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 7.72 TYP. DIMENSIONS METRIC ONLY (1.78 TYP) 0.42 TYP LAND PATTERN RECOMMENDATION GAGE PLANE 6.4 0.25 4.4 ± 0.1 -B-3.2 SEATING PLANE 0.6 ± 0.1 DETAIL A △ 0.2 C B A ALL LEAD TIPS TYPICAL, SCALE: 40X SEE DETAIL A PIN #1 IDENT. (0.90) O.1 C--c-0.10 ± 0.05 TYP 0.09-0.20 TYP 0.65 TYP - 0.30 TYP Φ 0.13 M B (S) Α MTC16 (REV C)

16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC16

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com