Project Euler #126: Cuboid layers

This problem is a programming version of Problem 126 from projecteuler.net

The minimum number of cubes to cover every visible face on a cuboid measuring $3 \times 2 \times 1$ is twenty-two.

If we then add a second layer to this solid it would require forty-six cubes to cover every visible face, the third layer would require seventy-eight cubes, and the fourth layer would require one-hundred and eighteen cubes to cover every visible face.

However, the first layer on a cuboid measuring $5 \times 1 \times 1$ also requires twenty-two cubes; similarly the first layer on cuboids measuring $5 \times 3 \times 1$, $7 \times 2 \times 1$, and $11 \times 1 \times 1$ all contain forty-six cubes.

We shall define C(n) to represent the number of cuboids that contain n cubes in one of its layers. So C(22)=2, C(46)=4, C(78)=5, C(118)=8 and C(154)=10.

Given n, compute C(n).

Input Format

The first line of input contains T, the number of test cases. Each test case consists of a single line containing a single integer, n.

Constraints

$$1 \le T \le 50$$

 $1 \le n$

For the first few test files worth 25% of the total points:

 $n \le 10000$

For the next few test files worth 25% of the total points:

 $n \le 100000$

For the last few test files worth 50% of the total points:

 $n \leq 1000000$

Output Format

For each test case, output a single line containing a single integer, the value C(n).

Sample Input

78 118 154

Sample Output

Explanation

The sample I/O are mentioned in the problem statement.