Flaskautomaten

Ett design-exempel av Ingo Sander

William Sandqvist william@kth.se

System Control

Vi skall designa blocket systemstyrningen, **System Control**

Flaskutkast (DROP BOTTLE)

Myntutkast (COIN RETURN)

Retur bara med 10 cent mynt.

Myntinkast

Systemstyrningsenheten styr ett flertal delsystem från andra leverantörer. Myntinkast. Flaskutkast. Returmyntutkast.

En ACCUMULATOR räknar ihop summan erlagda mynt.

- Signalen COIN_PRESENT indikerar att det finns mynt och "antalet" anges med signalerna GT_1_EURO, EQ_1_EURO, LT_1_EURO.
- Med signalerna DEC_ACC och CLR_ACC kan systemstyrenheten minska summan med 10 cent eller 0-ställa ACCUMULATORN.

Myntutkast

Med en puls på RETURN_10_CENT så lämnar myntutkastet 10 cent, och signalerar CHANGER_READY när detta är utfört och enheten är redo för nästa kommando.

Flaskutkast

Med en puls på DROP så lämnar flaskutkastet en flaska, och signalerar DROP_READY när detta är utfört och enheten är redo för nästa kommando.

Blockdiagram

Signalegenskaper

- DROP_READY är aktiv för en klockperiod efter att flaskan har matats ut
- CHANGER_READY är aktiv för en klockperiod efter att ett 10 Cent mynt har matats ut
- På grund av de mekaniska egenskaper är följande signaler aktiva respektive inaktiva för flera klockperioder:
 - COIN PRESENT (aktiv f
 ör flera klockperioder efter myntinkastet)
 - DROP_READY (aktiv f\u00f6r flera klockperioder vid flaskutmatning)
 - CHANGER_READY (inaktiv f
 ör flera klockperioder vid myntutmatning)

Använd Moore-automat

- Konstruktion av en tillståndsmaskin för styrenheten till flaskautomaten
- Antaganden
 - Moore-Automat
 - Tillståndsregistret implementeras med D-vippor

Funktionsdiagram för flaskautomaten

William Sandqvist william@kth.se

Vi ritar ett tillståndsdiagram från funktionsdiagrammet: Tillståndsdiagram

Tillståndsdiagram

- (a) Vänta på myntinkast
- (b) Registrering av myntinkast
- (c) Myntinkast är registrerat (3 fall)
- (d) Flaskutmatning
- (e) Nollställ summan
- (f) Retur 10 Cent
- (g) Minska summan med 10 Cent

Blockschema

William Sandqvist william@kth.se

Tillståndskodning

Idé: Låt tillstånd som är nära varandra i tillståndsdiagrammet ha koder på enhetsavstånd.

- (b) bredvid (c)
- (d) bredvid (e)
- (a) bredvid (b)
- (f) bredvid (g)

7 tillstånd kräver 3 tillståndsvariabler A, B, C

		AB				
		00	01	11	10	
	0	a	Ø	d	f	
С	1	b	c	e	g	
(Ø = don't care)						

Antalet insignaler är stort, 6 st, totalt kan det bli 9 variabler i Karnaughdiagrammen ???

Tillståndskodningen

Kodad tillståndstabell?

 $A^{\dagger}B^{\dagger}C^{\dagger} = f(ABC, CP, DR, CR, GT, LT, EQ)$

	AB 00	01	11	10
0	(a): $\overline{CP} \rightarrow 000 (a)$ $CP \rightarrow 001 (b)$	Ф:Ф	$(d): \frac{\overline{DR} \rightarrow 110 (d)}{DR \rightarrow 111 (e)}$	$(f): \frac{\overline{CR} \to 100 (f)}{CR \to 101 (g)}$
C 1	$CP \rightarrow 001 (b)$	$GT \rightarrow 100 (f)$ (c): $EQ \rightarrow 110 (d)$ $LT \rightarrow 000 (a)$	(e):→000 (a)	(g):→011(c)

Från tillståndsdiagrammet kan man ställa upp följande kodade tillståndstabell.

Hur undviker vi komplexiteten med **nio** variabler?

Variable-Entered Mapping (VEM)

Variable-Entered Mapping kan vara till hjälp när man behöver Karnaugh-diagram med många variabler. Man skriver funktions-uttryck i Karnaugh-diagrammet.

Nästa tillstånd - $D_{\rm A}$

 $A^+B^+C^+ = f(ABC, CP, DR, CR, GT, LT, EQ)$

	AB 00	01	11	10	
0	$(a): \frac{\overline{CP} \to 000 (a)}{CP \to 001 (b)}$	Ф:Ф	$(d): \overline{DR} \to 10 (d)$ $DR \to 111 (e)$	$(f): \frac{\overline{CR} \to 100 (f)}{CR \to 101 (g)}$	
1	$(b): \frac{CP}{CP} \rightarrow 001 (b) \\ 011 (c)$	$GT \longrightarrow 100 (f)$ $(c): EQ \longrightarrow 110 (d)$ $LT \longrightarrow 000 (a)$	$(e): \rightarrow 000 (a)$	(g):→ <mark>0</mark> 11(c)	

A^+	D_{A}		AB			
		00	01	11	10	
~	0	0	Ø	1	1	
С	1	0	EQ + GT	0	0	

EQ : EQ_1_EURO *GT* : GT_1_EURO

$$A^{+} = D_{A} = \overline{A} \cdot B \cdot EQ + \overline{A} \cdot B \cdot GT + A \cdot \overline{C}$$

Nästa tillstånd - $D_{ m B}$

 $A^{\dagger}B^{\dagger}C^{\dagger} = f(ABC, CP, DR, CR, GT, LT, EQ)$

	AB 00	01	11	10
0	$(a): \frac{\overline{CP} \to 000 (a)}{CP \to 001 (b)}$	Ф:Ф	$(d): \overline{DR} \to 110 (d)$ $DR \to 111 (e)$	$(f): \frac{\overline{CR} \to 100 (f)}{CR \to 101 (g)}$
C 1	$(b): \frac{CP \to 001}{CP \to 0} (b)$	$GT \rightarrow 100 (f)$ $(c): EQ \rightarrow 1 0 (d)$ $LT \rightarrow 000 (a)$	(e):→0 <mark>0</mark> 0 (a)	(g): →011(c)

B^+D_B			A	В	
		00	01	11	10
C C	0	0	Ø	1	0
С	1	CP	EQ	0	Q

EQ: EQ_1_EURO

CP : COIN_PRESENT

$$B^{+} = D_{B} = \overline{A} \cdot B \cdot EQ + B \cdot \overline{C} + \overline{B} \cdot C \cdot \overline{CP} + A \cdot \overline{B} \cdot C$$

Lätt att missa!

Nästa tillstånd - $D_{ m C}$

 $A^{\dagger}B^{\dagger}C^{\dagger} = f(ABC, CP, DR, CR, GT, LT, EQ)$

	AB 00	01	11	10
0	(a): $\overline{CP} \rightarrow 000 (a)$ $CP \rightarrow 001 (b)$	Ф:Ф	$(d): \overline{DR} \to 110 (d)$ $DR \to 11 (e)$	$(f): \frac{\overline{CR} \to 100 (f)}{CR \to 101 (g)}$
1	$(b): \frac{CP \to 001}{CP \to 011}(c)$	$GT \rightarrow 100$ (f) (c): $EQ \rightarrow 110$ (d) $LT \rightarrow 000$ (a)	$(e): \rightarrow 000$ (a)	(g):→01(1)(c)

CP : COIN_PRESENT

DR: DROP_READY

CR: CHANGER_READY

$$C^{+} = D_{C} = \overline{A} \cdot \overline{C} \cdot CP + B \cdot \overline{C} \cdot DR$$
$$+ A \cdot \overline{B} \cdot CR + \overline{B} \cdot C$$

Utgångssignalerna är de "pulser" som genereras när man passerar igenom tillstånden d, f, e, g.

$$DROP = AB\overline{C}$$

$$CLR _ACC = ABC$$

$$RETURN _10 _CENT = A\overline{B}\overline{C}$$

$$DEC _ACC = A\overline{B}C$$

Implementering av automaten ...

"kursdeltagarna ska behärska konstruktion av enkla kombinatoriska och sekventiella digitala system"

Det gör ni ju nu!

När dom ringer från CocaCola så är det bara för er alla "Digital Designers" att antaga uppdraget ...

Vad händer i Φ tillståndet?

		AB				
		00	01	11	10	
	0	a	Ø	d	f	
С	1	b	c	e	g	

$$\Phi = (010)_{ABC}$$

$$A^{+} = \overline{A} \cdot B \cdot EQ + \overline{A} \cdot B \cdot GT + A \cdot \overline{C} \implies A^{+}(010)_{ABC} = 1 \cdot 1 \cdot EQ + 1 \cdot 1 \cdot GT + 0 \cdot 1 = EQ + GT$$

$$B^{+} = \overline{A} \cdot B \cdot EQ + B \cdot \overline{C} + \overline{B} \cdot C \cdot \overline{CP} + A \cdot \overline{B} \cdot C \implies B^{+}(010)_{ABC} = 1 \cdot 1 \cdot EQ + 1 \cdot 1 + \dots = 1$$

$$C^{+} = \overline{A} \cdot \overline{C} \cdot CP + B \cdot \overline{C} \cdot DR + A \cdot \overline{B} \cdot CR + \overline{B} \cdot C$$

$$A^{+}B^{+}C^{+} = -1 - = 010, 110, 011, 111 \rightarrow \Phi, d, c, e$$

 $\Rightarrow C^{+}(010)_{ABC} = 1 \cdot 1 \cdot CP + 1 \cdot 1 \cdot DR + 0 \cdot 0 \cdot CR + 0 \cdot 0 = CP + DR$

William Sandqvist william@kth.se

Vad händer i Φ tillståndet?

 $A^{+}B^{+}C^{+} = -1 - = 010, 110, 011, 111 \rightarrow \Phi, d, c, e$

I Φ-tillståndet fastnar vi, eller går till (c) och sedan vidare. Eller går till (d) och bjuder på läsk, eller går till (e) och 0-ställer eventuell tidigare delbetalning.

Helt uppenbart behöver vi köpa en RESET-krets som ser till att automaten alltid startar i (a) **000**! Annars riskerar vi få berättigade klagomål från kunderna!