Assignment 2

Haohu Shen UCID: 30063099 CPSC 359 - Computing Machinery II Mar 6, 2019

Step 1

State the problem in words:

A 4-bit Gray Code counter counts upwards from decimal 0 to 15 and using the patterns below:

- \bullet When the counter reaches decimal 0, it is mapping to bits 0000
- \bullet When the counter reaches decimal 1, it is mapping to bits 0001
- $\bullet\,$ When the counter reaches decimal 2, it is mapping to bits 0011
- When the counter reaches decimal $3,\,\mathrm{it}$ is mapping to bits 0010
- $\bullet\,$ When the counter reaches decimal 4, it is mapping to bits 0110
- \bullet When the counter reaches decimal 5, it is mapping to bits $0111\,$
- When the counter reaches decimal 6, it is mapping to bits $0101\,$
- When the counter reaches decimal $7, \, \mbox{it}$ is mapping to bits 0100
- $\bullet\,$ When the counter reaches decimal 8, it is mapping to bits 1100
- $\bullet\,$ When the counter reaches decimal 9, it is mapping to bits 1101
- $\bullet\,$ When the counter reaches decimal 10, it is mapping to bits 1111
- When the counter reaches decimal 11, it is mapping to bits 1110
- $\bullet\,$ When the counter reaches decimal 12, it is mapping to bits 1010
- $\bullet\,$ When the counter reaches decimal 13, it is mapping to bits 1011
- ullet When the counter reaches decimal 14, it is mapping to bits 1001
- ullet When the counter reaches decimal 15, it is mapping to bits 1000
- Once 1000 (15 in decimal) is reached, the code "wraps around" to 0000 (0 in decimal)

Design a synchronous sequential logic circuit that implements a 4-bit Gray Code counter such that

- it has one input called **Direction**: if 0, the counter counts up; if 1, the counter counts down
- ullet it has 4 outputs such that each output is corresponding to each bit in the Gray Code
- it uses JK flip-flops

Step 2

Create a state diagram for the design:

Step 3

Determine the inputs, outputs, number of flip-flops needed and their type:

Input

• Direction (we can call it x)

1

Output

 $4\ \mathsf{LED}$ lights, we can call them:

- LED A
- LED B
- LED C
- LED **D**

The number of flip-flops

• 4 JK flip-flops

Step 4

Base on the naming convention mentioned in the previous step, we derive the excitation table for the state machine as below:

A(t)	B(t)	C(t)	D(t)	x	A(t+1)	B(t+1)	C(t+1)	D(t+1)	J_A	K_A	J_B	K_B	J_C	K_C	J_D	K_D
0	0	0	0	0	0	0	0	1	0	x	0	x	0	x	1	x
0	0	0	0	1	1	0	0	0	1	x	0	x	0	x	0	x
0	0	0	1	0	0	0	1	1	0	x	0	x	1	x	x	0
0	0	0	1	1	0	0	0	0	0	x	0	x	0	x	x	1
0	0	1	1	0	0	0	1	0	0	x	0	x	x	0	x	1
0	0	1	1	1	0	0	0	1	0	x	0	x	x	1	x	0
0	0	1	0	0	0	1	1	0	0	x	1	x	x	0	0	x
0	0	1	0	1	0	0	1	1	0	x	0	x	x	0	1	x
0	1	1	0	0	0	1	1	1	0	x	x	0	x	0	1	x
0	1	1	0	1	0	0	1	0	0	x	x	1	x	0	0	x
0	1	1	1	0	0	1	0	1	0	x	x	0	x	1	x	0
0	1	1	1	1	0	1	1	0	0	x	x	0	x	0	x	1
0	1	0	1	0	0	1	0	0	0	x	x	0	0	x	x	1
0	1	0	1	1	0	1	1	1	0	x	x	0	1	x	x	0

0	1	0	0	0	1	1	0	0	1	x	x	0	0	x	0	x
0	1	0	0	1	0	1	0	1	0	x	x	0	0	x	1	x
1	1	0	0	0	1	1	0	1	x	0	x	0	0	x	1	x
1	1	0	0	1	0	1	0	0	x	1	x	0	0	x	0	\boldsymbol{x}
1	1	0	1	0	1	1	1	1	x	0	x	0	1	x	x	0
1	1	0	1	1	1	1	0	0	x	0	x	0	0	x	x	1
1	1	1	1	0	1	1	1	0	x	0	x	0	x	0	x	1
1	1	1	1	1	1	1	0	1	x	0	x	0	x	1	x	0
1	1	1	0	0	1	0	1	0	x	0	x	1	x	0	0	x
1	1	1	0	1	1	1	1	1	x	0	x	0	x	0	1	x
1	0	1	0	0	1	0	1	1	x	0	0	x	x	0	1	x
1	0	1	0	1	1	1	1	0	x	0	1	x	x	0	0	x
1	0	1	1	0	1	0	0	1	x	0	0	x	x	1	x	0
1	0	1	1	1	1	0	1	0	x	0	0	x	x	0	x	1
1	0	0	1	0	1	0	0	0	x	0	0	x	0	x	x	1
1	0	0	1	1	1	0	1	1	x	0	0	x	1	x	x	0
1	0	0	0	0	0	0	0	0	x	1	0	x	0	x	0	x
1	0	0	0	1	1	0	0	1	x	0	0	x	0	x	1	x

Step 5

Derive the circuit output functions and flip-flop input functions, using the map method:

We first derive the circuit output functions using the map method:

- ullet For K-Map of next state of $A(ext{that is, }A(t+1))$, we have
 - $\circ \ \ {\rm When} \ A=0$

$ABC \backslash Dx$	00	01	11	10
000	0	1	0	0
001	0	0	0	0
011	0	0	0	0
010	0	0	0	0

 $\circ \;\; {
m When} \; A=1$

$ABC \backslash Dx$	00	01	11	10
100	0	1	1	1
101	1	1	1	1
111	1	1	1	1
110	1	0	1	1

Thus we have

$$A(t+1) = AD + AC + B'C'D'x + BC'D'x'$$

such that
$$A=A(t)$$
, $B=B(t)$, $C=C(t)$, $D=D(t)$

- ullet For K-Map of next state of $B(ext{that is, }B(t+1))$, we have
 - $\circ \ \ {\rm When} \ A=0$

$ABC \backslash Dx$	00	01	11	10
000	0	0	0	0
001	1	0	0	0
011	1	0	1	1
010	1	1	1	1

$ABC \backslash Dx$	00	01	11	10
100	0	0	0	0
101	0	1	0	0
111	0	1	1	1
110	1	1	1	1

Thus we have

$$B(t+1) = BC' + BD + A'CD'x' + ACD'x$$

such that
$$A=A(t)$$
, $B=B(t)$, $C=C(t)$, $D=D(t)$

- ullet For K-Map of next state of C(that is, C(t+1)), we have
 - $\circ \ \ {\rm When} \ A=0$

$ABC \backslash Dx$	00	01	11	10
000	0	0	0	1
001	1	1	0	1
011	1	1	1	0
010	0	0	1	0

ullet When A=1

$ABC \backslash Dx$	00	01	11	10
100	0	0	1	0
101	1	1	1	0
111	1	1	0	1
110	0	0	0	1

Thus we have

$$C(t+1) = CD' + A'B'Dx' + A'BDx + AB'Dx + ABDx'$$

such that
$$A=A(t)$$
, $B=B(t)$, $C=C(t)$, $D=D(t)$

- ullet For K-Map of next state of $D(ext{that is, }D(t+1))$, we have
 - $\circ \ \ {\rm When} \ A=0$

$ABC \backslash Dx$	00	01	11	10
000	1	0	0	1
001	0	1	1	0
011	1	0	0	1
010	0	1	1	0

 $\circ \;\; {
m When} \; A=1$

$ABC \backslash Dx$	00	01	11	10
100	0	1	1	0
101	1	0	0	1
111	0	1	1	0
110	1	0	0	1

Thus we have

$$D(t+1) = A'B'C'x' + A'B'Cx + A'BC'x + A'BCx' + AB'C'x + AB'Cx' + ABC'x' +$$

Now we derive all $4\ \mbox{JK}$ flip-flop input functions using the map method:

- $\bullet \ \, \text{For K-Map of } J_A \text{, we have} \\$
 - $\circ \ \ {\rm When} \ A=0$

$ABC \backslash Dx$	00	01	11	10
000	0	1	0	0
001	0	0	0	0
011	0	0	0	0
010	1	0	0	0

 $\circ \ \ {\rm When} \ A=1$

$ABC \backslash Dx$	00	01	11	10
100	\boldsymbol{x}	\boldsymbol{x}	x	\boldsymbol{x}
101	x	\boldsymbol{x}	x	\boldsymbol{x}
111	x	\boldsymbol{x}	x	\boldsymbol{x}
110	x	\boldsymbol{x}	x	\boldsymbol{x}

Thus, we have

 $J_A = B'C'D'x + BC'D'x'$

- ullet For K-Map of K_A , we have
 - $\circ \ \ {\rm When} \ A=0$

$ABC \backslash Dx$	00	01	11	10
000	x	\boldsymbol{x}	x	\boldsymbol{x}
001	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}
011	x	x	x	x
010	x	\boldsymbol{x}	x	\boldsymbol{x}

$ABC \backslash Dx$	00	01	11	10
100	1	0	0	0
101	0	0	0	0
111	0	0	0	0
110	0	1	0	0

Thus, we have

$$K_A = B'C'D'x' + BC'D'x$$

- ullet For K-Map of J_B , we have
 - $\circ \ \ {\rm When} \ A=0$

$ABC \backslash Dx$	00	01	11	10
000	0	0	0	0
001	1	0	0	0
011	x	x	x	\boldsymbol{x}
010	x	\boldsymbol{x}	x	\boldsymbol{x}

 $\circ \;\; \mathsf{When} \; A = 1$

$ABC \backslash Dx$	00	01	11	10
100	0	0	0	0
101	0	1	0	0
111	x	x	x	x
110	\boldsymbol{x}	\boldsymbol{x}	x	\boldsymbol{x}

Thus, we have

$$J_B = A'CD'x' + ACD'x$$

- ullet For K-Map of K_B , we have
 - $\circ \ \ {\rm When} \ A=0$

$ABC \backslash Dx$	00	01	11	10
000	x	\boldsymbol{x}	x	\boldsymbol{x}
001	x	\boldsymbol{x}	x	\boldsymbol{x}
011	0	1	0	0
010	0	0	0	0

 $\circ \ \ {\rm When} \ A=1$

$ABC \backslash Dx$	00	01	11	10
100	\boldsymbol{x}	\boldsymbol{x}	x	\boldsymbol{x}
101	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}
111	1	0	0	0
110	0	0	0	0

Thus, we have

 $K_B = A'CD'x + ACD'x'$

- ullet For K-Map of J_C , we have
 - $\circ \ \ {\rm When} \ A=0$

$ABC \backslash Dx$	00	01	11	10
000	0	0	0	1
001	x	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}
011	x	x	x	\boldsymbol{x}
010	0	0	1	0

$ABC \backslash Dx$	00	01	11	10
100	0	0	1	0
101	\boldsymbol{x}	\boldsymbol{x}	x	\boldsymbol{x}
111	x	x	x	\boldsymbol{x}
110	0	0	0	1

Thus, we have

$$J_C = A'B'Dx' + A'BDx + AB'Dx + ABDx'$$

- ullet For K-Map of K_C , we have
 - $\circ \ \ \mathsf{When} \ A = 0$

$ABC \backslash Dx$	00	01	11	10
000	x	x	x	\boldsymbol{x}
001	0	0	1	0
011	0	0	0	1
010	x	x	x	x

 $\circ \;\; \mathsf{When} \; A = 1$

$ABC \backslash Dx$	00	01	11	10
100	x	\boldsymbol{x}	x	\boldsymbol{x}
101	0	0	0	1
111	0	0	1	0
110	x	x	x	x

Thus, we have

$$K_C = A'B'Dx + A'BDx' + AB'Dx' + ABDx$$

- ullet For K-Map of J_D , we have
 - $\circ \ \ {\rm When} \ A=0$

$ABC \backslash Dx$	00	01	11	10
000	1	0	x	\boldsymbol{x}
001	0	1	x	\boldsymbol{x}
011	1	0	x	\boldsymbol{x}
010	0	1	x	\boldsymbol{x}

 $\circ \ \ {\rm When} \ A=1$

$ABC \backslash Dx$	00	01	11	10
100	0	1	x	\boldsymbol{x}
101	1	0	x	x
111	0	1	x	x
110	1	0	x	x

Thus, we have

$$J_D = A'B'C'x' + A'B'Cx + A'BC'x + A'BCx' + AB'C'x + AB'Cx' + ABC'x' + ABCx$$

- ullet For K-Map of K_D , we have
 - $\circ \ \ \mathsf{When} \ A = 0$

$ABC \backslash Dx$	00	01	11	10
000	\boldsymbol{x}	x	1	0
001	x	\boldsymbol{x}	0	1
011	x	x	1	0
010	x	\boldsymbol{x}	0	1

$ABC \backslash Dx$	00	01	11	10
100	x	x	0	1
101	x	x	1	0
111	\boldsymbol{x}	\boldsymbol{x}	0	1
110	x	x	1	0

Thus, we have

$$K_D = A'B'C'x + A'B'Cx' + A'BC'x' + A'BCx + AB'C'x' + AB'Cx + ABC'x + ABCx'$$

Step 6

NOTE The file *assign2.circ* has been uploaded to D2L dropbox. And diagrams for J_A , K_A , J_B , K_B , J_C , J_D and the diagram for the whole circuit are shown below by hand-written: