Image processing

Lab 3

Бинаризация, сегментация, анализ формы объектов.

- 1. Реализовать алгоритм сегментации (на выбор).
- 2. Протестировать работу алгоритма. Тестовую базу найти самостоятельно или самостоятельно сформировать.

Results

Otsu's method

Metoд [править | править код]

Метод Оцу ищет порог, уменьшающий дисперсию внутри класса, которая определяется как взвешенная сумма дисперсий двух классов:

$$\sigma_w^2(t) = \omega_1(t)\sigma_1^2(t) + \omega_2(t)\sigma_2^2(t)$$
 ,

где веса ω_i — это вероятности двух классов, разделенных порогом t,

 σ_i^2 — дисперсия этих классов.

Оцу показал, что минимизация дисперсии $\mathit{внутри}$ класса равносильна максимизации дисперсии $\mathit{междy}$ классами: $^{[1]}$

$$\sigma_b^2(t) = \sigma^2 - \sigma_w^2(t) = \omega_1(t)\omega_2(t)[\mu_1(t) - \mu_2(t)]^2$$

которая выражается в терминах вероятности ω_i и среднего арифметического класса μ_i , которое, в свою очередь, может обновляться итеративно. Эта идея привела к эффективному алгоритму.

Алгоритм [править | править код]

Пусть дано монохромное изображение $G(i,j), i=\overline{1, Height}, j=\overline{1, Width}$. Счетчик повторений k=0.

- 1. Вычислить гистограмму p(l) изображения и частоту N(l) для каждого уровня интенсивности изображения G.
- 2. Вычислить начальные значения для $\omega_1(0), \omega_2(0)$ и $\mu_1(0), \mu_2(0)$.
- 3. Для каждого значения $t=\overline{1, max(G)}$ полутона горизонтальная ось гистограммы:
 - 1. Обновляем ω_1, ω_2 и μ_1, μ_2
 - 2. Вычисляем $\sigma_b^2(t) = \omega_1(t)\omega_2(t)[\mu_1(t) \mu_2(t)]^2$.
 - 3. Если $\sigma_h^2(t)$ больше, чем имеющееся, то запоминаем σ_h^2 и значение порога t.
- 4. Искомый порог соответствует максимуму $\sigma_b^2(t)$.

$$N_T = \sum_{i=0}^{max(G)} p(i)$$
 ,

$$\omega_1(t) = rac{\sum_{i=0}^{t-1} p(i)}{N_T} = \sum_{i=0}^{t-1} N(i), \quad \omega_2(t) = 1 - \omega_1(t)\,.$$

$$\mu_T = rac{\sum_{i=0}^{max(G)} i \cdot p(i)}{N_T} = \sum_{i=0}^{max(G)} i \cdot N(i)$$
 ,

$$\mu_1(t) = rac{\sum_{i=0}^{t-1} i \cdot p(i)}{N_T \cdot \omega_1(t)} = rac{\sum_{i=0}^{t-1} i \cdot N(i)}{\omega_1(t)}, \quad \mu_2(t) = rac{\mu_T - \mu_1(t) \cdot \omega_1(t)}{\omega_2(t)}.$$

K-Means method

Алгоритм

данных

Итак, если мера близости до центроида определена, то разбиение объектов на кластеры сводится к определению центроидов этих кластеров. Число кластеров k задается исследователем заранее.

Рассмотрим первоначальный набор k средних (центроидов) μ_1, \dots, μ_k в кластерах S_1, S_2, \dots, S_k . На первом этапе центроиды кластеров выбираются случайно или по определенному правилу (например, выбрать центроиды, максимизирующие начальные расстояния между кластерами).

Относим наблюдения к тем кластерам, чье среднее (центроид) к ним ближе всего. Каждое наблюдение принадлежит только к одному кластеру, даже если его можно отнести к двум и более кластерам.

Затем центроид каждого і-го кластера перевычисляется по следующему правилу:

$$\mu_i = \frac{1}{s_i} \sum_{\mathbf{x}^{(i)} \in S_i} \mathbf{x}^{(i)}$$

Таким образом, алгоритм k-средних заключается в перевычислении на каждом шаге центроида для каждого кластера, полученного на предыдущем шаге.

Алгоритм останавливается, когда значения μ_i не меняются: $\mu_i^{\max t} = \mu_i^{\max t+1}$

Важно: Неправильный выбор первоначального числа кластеров k может привести к некорректным результатам. Именно поэтому при использовании метода k-средних важно сначала провести проверку подходящего числа кластеров для данного набора данных.

Итак, еще раз подчеркнем некоторые особенности метода k-средних:

- 1. В качестве метрики используется Евклидово расстояние
- 2. Число кластеров заранее не известно и выбирается исследователем заранее
- 3. Качество кластеризации зависит от первоначального разбиения

