AP Calculus Class 20

Honework 19. 3. h=0,2, estimate y(1). y' = (-xy) y(0) = 0 $\Rightarrow (x_0, y_0) = (0, 0)$ X-coordinates; 0, 0.2, 0.4, 0.6, 0.8, 1. 4, = 40 + h F(xo, yo) = 0 + 0.2(1-0)=0+0.2=0.2. (0.2,0.2) $y_e = y_1 + h F(x_1, y_1)$ =0.2+0.2(1-0.2.0.2) =0,2+0,2(0,96) =0.2+0.196=0.392 \longrightarrow (0.4,0.392)ys = 0,782 \rightarrow (1,0,782)y(1) × 0.782.

6.
$$\frac{dy}{dt} = ky$$
, $y = 0$

$$2 y_0 = y_0 e^{k(10)} \Rightarrow 2 = e^{k(10)}$$

$$= 2 \ln 2 = k(0) = k = \frac{\ln 2}{10} \approx 0.069$$

A

Parametric Equations.

Parametric equ > Tangents

Polar coordinates > Areas

Vector funn > Arc Lengths

$$y = f(x)$$

Introduce a third variable "t."

(et
$$x=f(t)$$
 $y=g(t)$

t: parameter

X=f(t) and y=g(t); parametric equations.

The curve C (in red) (x,y)=(f(t),g(t)) is called a parametric curve.

Example: Sketch and identify the curve defined by the parametric equi

$$\chi = t^2 - 2t$$
 $y = t + 1$

t	X	y
0	0	
	- /	2
2	0	3
3	3	4
4	8	5
- (3	0
- 2	8	-

In general, the curve with parametric equal X = f(t), Y = g(t) $a \le t \le b$.

has initial point (f(a), g(a)) and terminal point (f(b), g(b))

Example: What curve is represented by the following parametric equi.

 $x = \cos t$ $y = \sin t$. $0 \le t \le 2\pi$

sin°tt cos²t=1

=> x2+y2=/

Example: Shetch the curve

w/ parametric equin

x=sint y=sin2t

=> g=sin2t =x2

Since $-1 \le \sin t \le |$ then $X \in [-1, 1]$.

Calculus w/ Parametric Equations.

- Tangents
- Areas
- Arc Lengths

Parametric Equⁿ;
$$X = f(t)$$
, $y = g(t)$.
 $y = F(X)$ \Rightarrow $g(t) = F(f(t))$
 $g'(t) = F'(f(t)) = F'(f(t)) \cdot f'(t) = F'(X) f'(t)$
 \Rightarrow $f'(X) = \frac{g'(t)}{f'(t)}$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \qquad \text{if} \quad \frac{dx}{dt} \neq 0.$$

$$\frac{d}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \qquad \frac{dx}{dt} \neq 0.$$

$$\frac{d^2y}{dx^2} = \frac{d^2y}{dt^2}$$

$$\frac{d^2y}{dt^2}$$

$$\frac{d}{dx}\left(\frac{dx}{dx}\right) = \frac{\frac{d}{dx}\left(\frac{dx}{dx}\right)}{\frac{dx}{dt}}$$

$$\frac{d^{2}y}{dx^{2}} - \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(\frac{dy}{dx}\right)$$

$$\frac{d}{dx}\left(\frac{dy}{dx}\right)$$

$$\frac{d}{dx}\left(\frac{dy}{dx}\right)$$

Example: A curve C is defined by the parametric equin $X=t^2$, $y=t^3-3t$.

$$Sol^n$$
; a) $y=t^3-5t=t(t^2-3)=0$

$$t(t^2-3)=0$$
. \Rightarrow $t=0$ or $t=\pm \sqrt{3}$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{3t^2 - 3}{2t} = \frac{3}{2}(t - \frac{1}{t})$$

Sub
$$t=f\sqrt{3}$$
 into $\frac{dy}{dx}$

$$=) \pm \frac{3}{2} \left(\sqrt{3} - \frac{1}{\sqrt{3}} \right) = \pm \frac{6}{2\sqrt{3}} = \pm \sqrt{3}$$

$$\frac{dy}{dx} = \pm \sqrt{3}$$

$$\Rightarrow y = \sqrt{3}(x-3)$$
 and $y = -\sqrt{3}(x-3)$.

$$\frac{dy}{dx} = 0 \implies \frac{dy}{dt} = 0 \qquad \frac{dx}{dt} \neq 0.$$

$$\frac{dx}{dt} \neq 0$$
.

$$\Rightarrow \frac{dy}{dt} = 0 = 3t^{2} - 3 = 0$$
 $\Rightarrow t^{2} = 1$ $\Rightarrow t = \pm 1$.

Sup
$$t=\pm 1$$
 into $x=t^2$, $y=t^3-3t$.

$$\Rightarrow$$
 (1,-2) and (1,2).

For vertial tangents,

$$\frac{dx}{dt} = 0$$

$$\frac{dx}{dt} = 0. \qquad \frac{dx}{dt} = 2t$$

Areas w/ Parametric Egun

$$\chi = f(t)$$
, $y = g(t)$, $y = F(x)$.

$$y = F(x)$$
.

Assume that the curve is traced out once at t goes from a to B.

$$A = \int_{a}^{b} F(x) dx$$

For
$$x = f(t)$$
,

For
$$x = f(t)$$
, let $\alpha = f(\alpha)$ and $\beta = f(b)$

$$\frac{dx}{dt} = f'(t)$$

$$\frac{dx}{dt} = f'(t) \qquad \Longrightarrow \qquad dx = f'(t) dt$$

$$\Rightarrow A = \int_{\alpha}^{\beta} F(x) f'(t) dt$$
$$= \int_{\alpha}^{\beta} F(f(t)) f'(t) dt$$

Since
$$y = F(X) = F(f(t)) = g(t)$$

$$A = \int_{\alpha}^{\beta} g(t) f'(t) dt$$

= 108 1

Example: Determine the area under the parametric curve given by $x = 6(t-\sin t) \qquad y = 6(1-\cos t) \qquad 0 \le t \le 2\pi.$

 $f'(t) = \frac{dx}{dt} = 6(1-\cos t) = 9$ $A = \int_{-\infty}^{P} g(t) f'(t) dt$ $= \int_{0}^{\infty} \left[6 \left(1 - \cos t \right) \right]^{2} dt$ = 36 J= (1-cost) dt $=36\int_{-\infty}^{2\pi} (1-2\cos t + \cos^2 t) dt$ = 36 52" (1-2005t + 2((+0052t)) dt = 36 pm (1-200st + = + = cos 2t) dt = 36 \(\frac{2}{2} - 2\cost + \frac{1}{2}\cos 2t \) dt = 36 [= t - 2 sint + + sin 2t]

Arc Lengths w/ Pavametric Egun

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

$$\chi = f(t)$$
 $y = g(t)$

Assume that the curve is traced out once from left to right.

$$\Rightarrow \frac{dx}{dt} > 0$$

$$L = \int_{a}^{b} \int \frac{1+\left(\frac{dy}{dx}\right)^{2}}{ds} dx$$

$$ds = \int \left(t \left(\frac{dy}{dx}\right)^2 dx \rightarrow if g$$

$$\rightarrow$$
 if $y = f(x)$

$$ds = \int [1 + \left(\frac{dx}{dy}\right)^2] dy \rightarrow if x = h(y)$$

$$\rightarrow$$
 if $x = h(g)$

We know that
$$X = f(t)$$
 $\Rightarrow \frac{dx}{dt} = f'(x)$

$$\Rightarrow$$
 $dx = f'(t)dt$

$$\Rightarrow dx = \frac{dx}{dt} dt$$

$$L = \int_{\alpha}^{\beta} \int \left[t \left(\frac{dy}{dx} \right)^{2} \right] \frac{dx}{dt} dt$$

$$\frac{dx}{dt} \neq 0,$$

$$= \int_{X}^{\beta} \int_{\left[+ \frac{\left(\frac{dy}{dx} \right)^{2}}{\left(\frac{dx}{dx} \right)^{2}} \right]} \frac{dx}{dt} dt.$$

$$= \int_{x}^{\beta} \sqrt{\frac{\left(\frac{dx}{dt}\right)^{2}}{\left(\frac{dx}{dt}\right)^{2}} + \frac{\left(\frac{dy}{dt}\right)^{2}}{\left(\frac{dx}{dt}\right)^{2}}} \frac{dx}{dt} dt$$

$$= \int_{\alpha}^{\beta} \frac{1}{\left|\frac{dx}{dt}\right|} \int_{\alpha}^{\beta} \frac{dx}{dt} \int_{\alpha}^{\beta} \frac{$$

Since we assumed that $\frac{dx}{dt} \ge 0$, we can get rid of the abs value sign.

$$= \sum_{\alpha} \left(\frac{dx}{dt} \right)^{2} + \left(\frac{dy}{dt} \right)^{2} dt$$

Example: For the following

$$\chi = \cos t$$
 $y = \sin t$ $0 \le t \le 2\pi$

$$\frac{dx}{dt} = -\sin t$$
 $\frac{dy}{dt} = \cos t$.

$$L = \int_{a}^{\beta} \int \frac{dx}{(dt)^{2}} + \left(\frac{dy}{dt}\right)^{2} dt$$

$$=\int_{0}^{2\pi} dt = t \int_{0}^{2\pi} = 2\pi$$

4.
$$h = 0.1$$
 $y(0.5) \approx ?$

$$F(x,y) = y' = y + xy.$$
 $y(0) = 1. \implies (x_0,y_0) = (0,1).$

$$y_1 = y_0 + h F(x_0, y_0)$$

= $1 + 0.1(1 + 0.1)$

$$= (+0.1(1)) = 1.1$$

$$(x_i, y_i) = (o, l, l, l)$$

$$= [.] + 0.] ([.21) = 1.221$$

$$(\chi_2, y_2) = (0.2, 1.221).$$

$$(x_s, y_s) = (0.5, 1.761).$$