重庆八中周赛Round#27

时间: 2024年3月15日

题目名称	文件名	时间限制	空间限制	题目类型	比较方式
放学回家	back	1000ms	512M	传统题	全文比较
任务分配	matching	2000ms	1024M	传统题	全文比较
最小中位数	median	1000ms	512M	传统题	全文比较
网格上的车	rook	1000ms	512M	传统题	全文比较

编译选项

对C++语言	-O2 -std=c++14 -static
--------	------------------------

注意事项

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3. 选手提交的程序源文件必须不大于 100KB。
- 4. 程序可使用的栈空间内存限制与题目的内存限制一致。

T1 放学回家 back

时间限制: 1000ms 空间限制: 512M

题目描述

勤勤是 HF 中学的一名学生,他每天都要骑自行车往返于家和学校。

他上学需要经过数段道路,相邻两段道路之间设有至多一盏红绿灯。

重庆市的红绿灯是这样工作的:每盏红绿灯有红、黄、绿三盏灯和一个能够显示倒计时的显示牌。

假设红绿灯被设定为红灯 r 秒,黄灯 y 秒,绿灯 g 秒,那么从 0 时刻起,[0,r) 秒内亮红灯,车辆不许通过;[r,r+g) 秒内亮绿灯,车辆允许通过;[r+g,r+g+y) 秒内亮黄灯,车辆不许通过,然后依次循环。

倒计时的显示牌上显示的数字 l(l>0) 是指距离下一次信号灯变化的秒数。

HF中学附近最近实施了名为"智慧光明"的智慧城市项目。

具体到交通领域,通过"智慧光明"终端,可以看到光明区所有红绿灯此时此刻的状态。

勤勤的学校也安装了"智慧光明"终端,勤勤想利用这个终端给出的信息,估算自己放学回到家的时间。

一次放学的时候,勤勤已经规划好了自己回家的路线,并且能够预测经过各个路段的时间。

同时,勤勤通过学校里安装的"智慧光明"终端,看到了出发时刻路上经过的所有红绿灯的指示状态。

请帮忙计算勤勤此次回家所需要的时间。

输入格式

第一行包含空格分隔的三个正整数 r、y、g,表示红绿灯的设置。这三个数均不超过 10^6 。

第二行包含一个正整数 n,表示勤勤总共经过的道路段数和路过的红绿灯数目。

接下来的 n 行,每行包含空格分隔的两个整数 k、t。k=0 表示经过了一段道路,将会耗时 t 秒,此处 t 不超过 10^6 ; k=1、2、3 时,分别表示**出发时刻**,此处的红绿灯状态是红灯、黄灯、绿灯,且倒计时显示牌上显示的数字是 t,此处 t 分别不会超过 t 、t 、t 、t 。

输出格式

输出一个数字,表示此次勤勤放学回家所用的时间。

样例

样例输入1

```
30 3 30

8

0 10

1 5

0 11

2 2

0 6

0 3

3 10

0 3
```

46

样例解释 1

勤勤先经过第一段路,用时10秒。

第一盏红绿灯出发时是红灯,还剩5秒;勤勤到达路口时,这个红绿灯已经变为绿灯,不用等待直接通过。

接下来经过第二段路,用时11秒。

第二盏红绿灯出发时是黄灯,还剩两秒;勤勤到达路口时,这个红绿灯已经变为红灯,还剩11秒。

接下来经过第三、第四段路,用时 9 秒。第三盏红绿灯出发时是绿灯,还剩 10 秒;勤勤到达路口时,这个红绿灯已经变为红灯,还剩两秒。

接下来经过最后一段路,用时3秒。共计10 + 11 + 11 + 9 + 2 + 3 = 46秒。

数据规模

 $1 \le r, y, g \le 10^6$.

前2个测试点中不存在任何信号灯。

前 6 个测试点保证 $n \leq 10^3$ 。

所有测试点保证 $n \leq 10^5$ 。

T2 任务分配 matching

时间限制: 2000ms 空间限制: 1024 M

题目描述

有N个人和N项任务,每项任务都将分配给一个人,并且每个人只会分配一项任务。

给出大小为 $N \times N$ 的矩阵A,其中A[i][j]=1表示第i个人可以做第j项任务,反之亦然。现在求不同的分配任务的方案总数。

对于一个分配方案,只要有一个人的分配的任务不同则被视为不同的方案。

输入格式

第1行: 1个整数 $N(1 \le N \le 21)$, 表示人和任务的数量

接下来N行,每行N个整数,描述矩阵A

输出格式

第17: 1个整数,表示总共有多少种不同的任务分配方案。答案对 $10^9 + 7$ 取模。

样例输入1

```
3
0 1 1
1 0 1
1 1 1
```

样例输出1

3

样例输入2

```
21
0\; 0\; 0\; 0\; 0\; 0\; 0\; 1\; 1\; 0\; 1\; 1\; 1\; 1\; 0\; 0\; 0\; 1\; 0\; 0\; 1
1 1 1 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 1 0
0\;0\;1\;1\;1\;1\;0\;1\;1\;0\;0\;1\;0\;0\;1\;1\;0\;0\;0\;1\;1
0\ 1\ 1\ 0\ 1\ 1\ 0\ 1\ 0\ 1\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 1\ 1\ 0
0\ 1\ 1\ 0\ 1\ 1\ 1\ 0\ 1\ 1\ 1\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 1
0\;1\;0\;0\;0\;1\;0\;1\;0\;0\;0\;1\;1\;1\;0\;0\;1\;1\;0\;1\;0
0\; 0\; 0\; 0\; 1\; 1\; 0\; 0\; 1\; 1\; 0\; 0\; 0\; 0\; 0\; 1\; 1\; 1\; 1\; 1\; 1
0\; 0\; 1\; 0\; 0\; 1\; 0\; 0\; 1\; 0\; 1\; 0\; 1\; 1\; 1\; 0\; 0\; 1\; 0\; 1\; 0\; 1\; 1\; 1\; 1
0\; 0\; 0\; 0\; 1\; 1\; 0\; 0\; 1\; 1\; 1\; 0\; 0\; 0\; 0\; 1\; 1\; 0\; 0\; 0\; 1\\
0\ 1\ 1\ 0\ 1\ 1\ 0\ 0\ 1\ 1\ 0\ 0\ 1\ 1\ 1\ 1\ 0\ 1\ 1\ 0
0\ 1\ 1\ 0\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 1\ 0\ 1\ 1\ 0\ 1\ 0\ 1\ 1
1 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 1
0\; 0\; 0\; 1\; 1\; 0\; 1\; 1\; 1\; 1\; 0\; 0\; 0\; 0\; 0\; 0\; 1\; 1\; 1\; 1\; 1
101101010100100110101010
0\;0\;1\;1\;0\;0\;1\;1\;0\;0\;1\;1\;1\;1\;0\;0\;1
0\; 0\; 0\; 1\; 0\; 0\; 1\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 1\; 0\; 0\; 1\; 1\; 0\; 1
```

```
0\ 0\ 0\ 0\ 1\ 1\ 1\ 0\ 1\ 1\ 0\ 1\ 1\ 0\ 1\ 1\ 0
1\ 1\ 0\ 1\ 1\ 0\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 1\ 0
1\ 0\ 0\ 1\ 1\ 0\ 1\ 1\ 1\ 1\ 0\ 1\ 0\ 0\ 0
```

样例输出2

102515160

T3 最小中位数 median

时间限制: 1000ms 空间限制: 512 M

题目描述

给定一个 $n \times n$ 的矩阵 A,再给定一个数 k,求矩阵中所有大小为 $k \times k$ 的子矩阵的中位数的最小值。

一个 $k \times k$ 的矩阵的中位数被定义为将矩阵中的所有数从大到小排序后的第 $\left\lfloor \frac{k^2}{2} \right\rfloor + 1$ 个数。

输入格式

第一行两个正整数 n, k。

接下来n行,每行n个数,描述了一个矩阵。

输出格式

输出一行一个数,表示中位数的最小值。

样例

样例输入1

```
3 2
1 7 0
5 8 11
10 4 2
```

样例输出 1

4

样例解释 1

四个 2×2 的矩阵分别是:

1,7 7,0 5,8 8,11 5,8 8,11 4,2

中位数分别是5、7、5、4。最小值为: 4。

样例输入2

```
3 3
1 2 3
4 5 6
7 8 9
```

样例输出 2

5

数据规模

• $1 \le k \le n \le 800, 0 \le A_{i,j} \le 10^9$.

T4 网格上的车 rook

时间限制: 1000ms 空间限制: 512 M

题目描述

有一个网格,包含 H 行和 W 列。让我们用 (i,j) 表示第 i 行第 j 列的方格。

网格上有 M 个障碍物。第 i 个障碍物位于方格 (X_i, Y_i) 。

有一个车(国际象棋中的棋子),初始位于方格 (1,1)。在一次移动中,它可以向右或向下移动任意数量的方格,但不能经过有障碍物的方格。

求出车在不超过两次移动的情况下可以到达哪些方格,输出可以到达的方格总数。

输入格式

输入以以下格式给出:

```
H\,W\,M
```

 $X_1 Y_1$

:

 $X_M Y_M$

输出格式

输出车在不超过两次移动的情况下可以到达的方格数。

样例

输入样例1

4 3 2

2 2

3 3

输出样例1

10

样例1说明

除了有障碍物的方格,其他所有方格都可以在两次移动或更少的情况下到达。

样例输入2

5 4 4

3 2

3 4

4 2

5 2

样例输出 2

14

样例2说明

除了方格 (4,4) 和 (5,4), 其他所有没有障碍物的方格都可以在两次移动或更少的情况下到达。

样例输入3

200000 200000 0

样例输出3

4000000000

数据规模

 $1 \leq H, W \leq 2 imes 10^5$ $0 \leq M \leq 2 imes 10^5$ $1 \leq X_i \leq H$ $1 \leq Y_i \leq W$ $(X_i, Y_i) \neq (1, 1)$ (X_i, Y_i) 互不相同。
所有输入值都是整数。