LAPLACE TRANSFORM TABLE

	LaPlace Transform
Time Function	Larrace Transform
δ (t)	
	1
u(t)	$\frac{1}{2}$
	S
t	1
	$\begin{array}{c} s \\ \frac{1}{s^2} \end{array}$
2	1
$\frac{t^2}{t^2}$	$\frac{1}{3}$
t ² / ₂ t ^{k-1}	$\frac{\frac{1}{s^3}}{\frac{(k-1)!}{s^k}}$
+k−1	$\frac{(k-1)!}{(k-1)!}$
	sk
ot	1_
e ^{—at}	
	s+a 1
te ^{-at}	
	$(s+a)^{2}$
tk-le-at	$\frac{(s+a)^2}{(k-1)!}$
t ⁻ e	$(s+a)^{k}$
1-e ^{-at}	a
	s(s + a)
_at	a
$t-\frac{1-e^{-at}}{1-e^{-at}}$	
a	s ² (s+a)
$1-(1+at)e^{-at}$	a ²
1-(1-al)o	
·	$s(s+a)^2$
e ^{-at} -e ^{-bt}	<u>b-a</u>
"	(s+a)(s+b)
sin bt	b
	$\frac{1}{s^2+b^2}$
cos bt	<u>s</u>
	$\overline{s^2+b^2}$
t sin bt	$\frac{2bs}{(s^2+b^2)^2}$
	$\frac{1}{(a^2+b^2)^2}$
	(S TD)
t cos bt	s^2-b^2
	$(s^2+b^2)^2$
	(S +D)
e ^{-at} sin bt	$\frac{b}{(s+a)^2+b^2}$
Shi ot	$(s+a)^2+b^2$
e ^{-at} cos bt	$\frac{s+a}{(s+a)^2+b^2}$
	$(s+a)^2+b^2$