Trabajo

Trabajo de una fuerza constante: $W = F \cdot \Delta x \cdot \cos \alpha$ Trabajo de una fuerza de fricción: $W = -F_{fr} \cdot \Delta x$

Energía

Energía cinética: $E_c = \frac{1}{2} m \cdot v^2$

Energía potencial gravitatoria-cerca de la superficie del planeta- : $E_p = M \cdot g \cdot h$

Energía potencial gravitatoria: $E_p = -G \cdot \frac{M \cdot m}{R}$ Energía potencial elástica: $E_k = \frac{1}{2} \cdot K \cdot \Delta x^2$ Energía mecánica: $E_M = E_c + E_p$;

Energía mecánica en un campo conservativo: $\Delta E_M = 0$ Energía mecánica en un campo conservativo: $\Delta E_M \neq 0$

Teorema de las fuerzas vivas: $W_{Total} = \Delta E_c$; $\Delta E_c = E_{c \ Final} - E_{c \ inicial}$

Impulso y cantidad de movimiento

$$\vec{P} = m \cdot \vec{v}$$
 ; $\vec{I} = \vec{F} \cdot t$; $\vec{P} = \vec{I}$;

Choque inelástico: Se conserva la cantidad de movimiento.

$$\vec{P}_{antes} = \vec{P}_{despu\acute{e}s} \rightarrow \ m_1 \cdot \vec{v}_1 + m_2 \cdot \vec{v}_2 = (m_1 + \ m_2) \ \vec{v}$$

Choque elástico: Se conserva la cantidad de movimiento y la energía cinética.

Potencia:

$$P_m = \frac{W}{\Delta t}; P_m = F \cdot v_m$$

Unidades:

Fuerza: N

Constante gravitatoria universal G: $6,67 \cdot 10^{-11} \ N \cdot m^2/K_a^2$

K del muelle: N/m

Cantidad de movimiento P: Kg·m/s

Trabajo, Energía : J Potencia W : 1 W = $\frac{1J}{1s}$ 1 cal. = 4,184 J 1 CV = 735,498 W

 $1 \text{ K} \cdot \text{W} \cdot \text{h} = 3.6 \cdot 10^6 \text{ J}$