

SEQUENCE LISTING

<110> White, David

<120> COMPOSITIONS, KITS, AND METHODS FOR PROGNOSTICATION, DIAGNOSIS, PREVENTION, AND TREATMENT OF BONE-RELATED DISORDERS AND OTHER DISORDERS

<130> 10147-16U1

<140> US 09/628,495
<141> 2000-07-28

<150> US 60/146,614
<151> 1999-07-30

<160> 9

<170> PatentIn version 3.1

<210> 1
<211> 613
<212> PRT
<213> Homo sapiens

<400> 1

Met Gly Pro Thr Leu Ala Val Pro Thr Pro Tyr Gly Cys Ile Gly Cys
1 5 10 15

Lys Leu Pro Gln Pro Glu Tyr Pro Pro Ala Leu Ile Ile Phe Met Phe
20 25 30

Cys Ala Met Val Ile Thr Ile Val Val Asp Leu Ile Gly Asn Ser Met
35 40 45

Val Ile Leu Ala Val Thr Lys Asn Lys Lys Leu Arg Asn Ser Gly Asn
50 55 60

Ile Phe Val Val Ser Leu Ser Val Ala Asp Met Leu Val Ala Ile Tyr
65 70 75 80

Pro Tyr Pro Leu Met Leu His Ala Met Ser Ile Gly Gly Trp Asp Leu
85 90 95

Ser Gln Leu Gln Cys Gln Met Val Gly Phe Ile Thr Gly Leu Ser Val
100 105 110

Val Gly Ser Ile Phe Asn Ile Val Ala Ile Ala Ile Asn Arg Tyr Cys
115 120 125

Tyr Ile Cys His Ser Leu Gln Tyr Glu Arg Ile Phe Ser Val Arg Asn

130

135

140

Thr Cys Ile Tyr Leu Val Ile Thr Trp Ile Met Thr Val Leu Ala Val
145 150 155 160

Leu Pro Asn Met Tyr Ile Gly Thr Ile Glu Tyr Asp Pro Arg Thr Tyr
165 170 175

Thr Cys Ile Phe Asn Tyr Leu Asn Asn Pro Val Phe Thr Val Thr Ile
180 185 190

Val Cys Ile His Phe Val Leu Pro Leu Leu Ile Val Gly Phe Cys Tyr
195 200 205

Val Arg Ile Trp Thr Lys Val Leu Ala Ala Arg Asp Pro Ala Gly Gln
210 215 220

Asn Pro Asp Asn Gln Leu Ala Glu Val Arg Asn Phe Leu Thr Met Phe
225 230 235 240

Val Ile Phe Leu Leu Phe Ala Val Cys Trp Cys Pro Ile Asn Val Leu
245 250 255

Thr Val Leu Val Ala Val Ser Pro Lys Glu Met Ala Gly Lys Ile Pro
260 265 270

Asn Trp Leu Tyr Leu Ala Ala Tyr Phe Ile Ala Tyr Phe Asn Ser Cys
275 280 285

Leu Asn Ala Val Ile Tyr Gly Leu Leu Asn Glu Asn Phe Arg Arg Glu
290 295 300

Tyr Trp Thr Ile Phe His Ala Met Arg His Pro Ile Ile Phe Phe Pro
305 310 315 320

Gly Leu Ile Ser Asp Ile Arg Glu Met Gln Glu Ala Arg Thr Leu Ala
325 330 335

Arg Ala Arg Ala His Ala Arg Asp Gln Ala Arg Glu Gln Asp Arg Ala
340 345 350

His Ala Cys Pro Ala Val Glu Glu Thr Pro Met Asn Val Arg Asn Val
355 360 365

Pro Leu Pro Gly Asp Ala Ala Ala Gly His Pro Asp Arg Ala Ser Gly
370 375 380

His Pro Lys Pro His Ser Arg Ser Ser Ser Ala Tyr Arg Lys Ser Ala
385 390 395 400

Ser Thr His His Lys Ser Val Phe Ser His Ser Lys Ala Ala Ser Gly
405 410 415

His Leu Lys Pro Val Ser Gly His Ser Lys Pro Ala Ser Gly His Pro
420 425 430

Lys Ser Ala Thr Val Tyr Pro Lys Pro Ala Ser Val His Phe Lys Gly
435 440 445

Asp Ser Val His Phe Lys Gly Asp Ser Val His Phe Lys Pro Asp Ser
450 455 460

Val His Phe Lys Pro Ala Ser Ser Asn Pro Lys Pro Ile Thr Gly His
465 470 475 480

His Val Ser Ala Gly Ser His Ser Lys Ser Ala Phe Ser Ala Ala Thr
485 490 495

Ser His Pro Lys Pro Ile Lys Pro Ala Thr Ser His Ala Glu Pro Thr
500 505 510

Thr Ala Asp Tyr Pro Lys Pro Ala Thr Thr Ser His Pro Lys Pro Ala
515 520 525

Ala Ala Asp Asn Pro Glu Leu Ser Ala Ser His Cys Pro Glu Ile Pro
530 535 540

Ala Ile Ala His Pro Val Ser Asp Asp Ser Asp Leu Pro Glu Ser Ala
545 550 555 560

Ser Ser Pro Ala Ala Gly Pro Thr Lys Pro Ala Ala Ser Gln Leu Glu
565 570 575

Ser Asp Thr Ile Ala Asp Leu Pro Asp Pro Thr Val Val Thr Thr Ser
580 585 590

Thr Asn Asp Tyr His Asp Val Val Val Val Asp Val Glu Asp Asp Pro
595 600 605

Asp Glu Met Ala Val
610

<210> 2
<211> 1939
<212> DNA
<213> Homo sapiens

<400> 2
tgtttctgt ctggacctgg ctgctgatcc tgagcctgct gggagatctt aacgatcccc 60
aggagcaaca tggggcccac cctagcggtt cccacccct atggctgtat tggctgtaag 120
ctaccccaagc cagaataaccc accggctcta atcatctta tggtctgcgc gatggttatc 180
accatcgttg tagacctaatt cgccaactcc atggtcattt tggctgtgac gaagaacaag 240
aagctccgga attctggcaa catcttcgtg gtcagtctct ctgtggccga tatgctggtg 300
gccatctacc catacccttt gatgctgcat gccatgtcca ttgggggctg ggatctgagc 360
cagttacagt gccagatggc cggttcatc acaggctga gtgtggtcgg ctccatcttc 420
aacatcggtt caatcgctat caaccgttac tgctacatct gccacagcct ccagtagaa 480
cgatcttca gtgtgcgcaa tacctgcattc tacctggtca tcacctggat catgaccgtc 540
ctggctgtcc tgcccaacat gtacattggc accatcgagt acgatcctcg cacctacacc 600
tgcatcttca actatctgaa caaccctgtc ttcaactgttca ccacgtctg catccacttc 660
gtcctccctc tcctcatcg tggtttctgc tacgtgagga tctggaccaa agtgcgtggcg 720
gcccgtgacc ctgcaggca gaatcctgac aaccaacttg ctgaggttcg caatttctt 780
accatgtttg tgatcttccct cctcttgca gtgtgctggt gcccstatcaa cgtgcact 840
gtcttggtgg ctgtcagtcc gaaggagatg gcaggcaaga tccccaaactg gctttatctt 900
gcagcctact tcatacgctt cttcaacagc tgcctcaacg ctgtgatcta cgggctccctc 960
aatgagaatt tccgaagaga atactggacc atcttccatg ctatgcggca ccctatcata 1020
ttcttccctg gcctcatcg tgatattcg tggatgcagg aggccctac cctggcccg 1080
gcccgtgccc atgctcgca ccaagctcgta gaaaaagacc gtgcccattgc ctgtcctgct 1140
gtggaggaaa ccccgatgaa tgtccggat gttccattac ctgggtgatgc tgcagctggc 1200
caccggacc gtgcctctgg ccaccctaag cccattcca gatcctccctc tgcctatcgc 1260
aaatctgcctt ctacccacca caagtctgtc ttttagccact ccaaggctgc ctctggtcac 1320
ctcaaggctg tctctggcca ctccaaggctt gctctggtc accccaagtc tgccactgtc 1380
taccctaagg ctgcctctgtt ccattcaag ggtgactctg tccattcaa gggtgactct 1440

gtccatttca agcctgactc tggcatttc aagcctgctt ccagcaaccc caagccccatc	1500
actggccacc atgtctctgc tggcagccac tccaagtctg cttcagtgc tgccaccaggc	1560
caccctaaac ccatcaagcc agctaccaggc catgctgagc ccaccactgc tgactatccc	1620
aaggcctgcca ctaccagcca ccctaagccc gctgctgctg acaaccctga gctctctgcc	1680
tcccattgcc ccgagatccc tgccattgcc caccctgtgt ctgacgacag tgacctccct	1740
gagtcggcct ctagccctgc cgctggccc accaaggctg ctgccagcca gctggagtct	1800
gacaccatcg ctgaccttcc tgaccctact gtagtcacta ccagtaccaa tgattaccat	1860
gatgtcggtgg ttgttgatgt tgaagatgat cctgatgaaa tggctgtgtg aaaaatgctc	1920
tcgttaggtgg ccagggcagt	1939

<210> 3
<211> 591
<212> PRT
<213> Mus sp.

<400> 3

Met Ala Thr Val Pro Lys Ser Asn Met Gly Pro Thr Lys Ala Val Pro			
1	5	10	15

Thr Pro Phe Gly Cys Ile Gly Cys Lys Leu Pro Lys Pro Asp Tyr Pro			
20	25	30	

Pro Ala Leu Ile Ile Phe Met Phe Cys Ala Met Val Ile Thr Val Val			
35	40	45	

Val Asp Leu Ile Gly Asn Ser Met Val Ile Leu Ala Val Thr Lys Asn			
50	55	60	

Lys Lys Leu Arg Asn Ser Gly Asn Ile Phe Val Ala Ser Leu Ser Val			
65	70	75	80

Ala Asp Met Leu Val Ala Ile Tyr Pro Tyr Pro Leu Met Leu Tyr Ala			
85	90	95	

Met Ser Val Gly Gly Trp Asp Leu Ser Gln Leu Gln Cys Gln Met Val			
100	105	110	

Gly Leu Val Thr Gly Leu Ser Val Val Gly Ser Ile Phe Asn Ile Thr			
115	120	125	

Ala Ile Ala Ile Asn Arg Tyr Cys Tyr Ile Cys His Ser Leu Gln Tyr

130

135

140

Lys Arg Ile Phe Ser Leu Arg Asn Thr Cys Ile Tyr Leu Val Val Thr
145 150 155 160

Trp Val Met Thr Val Leu Ala Val Leu Pro Asn Met Tyr Ile Gly Thr
165 170 175

Ile Glu Tyr Asp Pro Arg Thr Tyr Thr Cys Ile Phe Asn Tyr Val Asn
180 185 190

Asn Pro Ala Phe Thr Val Thr Ile Val Cys Ile His Phe Val Leu Pro
195 200 205

Leu Ile Ile Val Gly Tyr Cys Tyr Thr Lys Ile Trp Ile Lys Val Leu
210 215 220

Ala Ala Arg Asp Pro Ala Gly Gln Asn Pro Asp Asn Gln Phe Ala Glu
225 230 235 240

Val Arg Asn Phe Leu Thr Met Phe Val Ile Phe Leu Leu Phe Ala Val
245 250 255

Cys Trp Cys Pro Val Asn Val Leu Thr Val Leu Val Ala Val Ile Pro
260 265 270

Lys Glu Met Ala Gly Lys Ile Pro Asn Trp Leu Tyr Leu Ala Ala Tyr
275 280 285

Cys Ile Ala Tyr Phe Asn Ser Cys Leu Asn Ala Ile Ile Tyr Gly Ile
290 295 300

Leu Asn Glu Ser Phe Arg Arg Glu Tyr Trp Thr Ile Phe His Ala Met
305 310 315 320

Arg His Pro Ile Leu Phe Ile Ser His Leu Ile Ser Asp Ile Arg Glu
325 330 335

Thr Trp Glu Thr Arg Ala Leu Thr Arg Ala Arg Val Arg Ala Arg Asp
340 345 350

Gln Val Arg Glu Gln Glu Arg Ala Arg Ala Cys Val Ala Val Glu Gly
355 360 365

Thr Pro Arg Asn Val Arg Asn Val Leu Leu Pro Gly Asp Ala Ser Ala
370 375 380

Pro His Ser Asp Arg Ala Ser Val Arg Pro Lys Pro Gln Thr Arg Ser
385 390 395 400

Thr Ser Val Tyr Arg Lys Pro Ala Ser Ile His His Lys Ser Ile Ser
405 410 415

Gly His Pro Lys Ser Ala Ser Val Tyr Pro Lys Pro Ala Ser Ser Val
420 425 430

His Cys Lys Pro Ala Ser Val His Phe Lys Pro Ala Ser Val His Phe
435 440 445

Lys Gly Asp Ser Val Tyr Phe Lys Gly Asp Thr Val His Tyr Arg Ala
450 455 460

Ala Ser Lys Leu Val Thr Ser His Arg Ile Ser Ala Gly Pro Ser Thr
465 470 475 480

Ser His Pro Thr Ser Met Ala Gly Tyr Ile Lys Ser Gly Thr Ser His
485 490 495

Pro Ala Thr Thr Thr Val Asp Tyr Leu Glu Pro Ala Thr Thr Ser His
500 505 510

Ser Val Leu Thr Ala Val Asp Leu Pro Glu Val Ser Ala Ser His Cys
515 520 525

Leu Glu Met Thr Ser Thr Gly His Leu Arg Ala Asp Ile Ser Ala Ser
530 535 540

Val Leu Pro Ser Val Pro Phe Glu Leu Ala Ala Thr Pro Pro Asp Thr
545 550 555 560

Thr Ala Ile Pro Ile Ala Ser Gly Asp Tyr Arg Lys Val Val Leu Ile
565 570 575

Asp Asp Asp Ser Asp Asp Ser Asp Cys Ser Asp Glu Met Ala Val
580 585 590

<210> 4
<211> 1800
<212> DNA

<213> Mus sp.

<400> 4
aagatcctga gcttcctgg gaggaatggc cacggcccc aagagcaaca tgggacctac 60
aaaggcggtt cccacccat tcggctgcat tggctgttaag ctgccaagg ccgactacc 120
gccagctcta atcatcttca tggtctgcgc aatggtcattc acagtcgtcg tagacctgat 180
cgggaactcc atggtcattt tggctgtgac caagaacaag aagctccgaa attctggcaa 240
catctttgtg gccagcctct ctgtggcaga catgctggtg gccatctacc cctacccttt 300
gatgctgtat gccatgtcag ttgggggctg ggatctgagt cagctccagt gccagatgg 360
cgggttggtc acaggactga gcgttagtcgg ttccatcttc aacattactg ccattgccat 420
caaccgttac tgctacatct gccacagcc ccaatacaag cggatcttca gcctgcgcaa 480
cacttgcattc tatctggtcg ttacctgggt catgactgtc ctggctgtcc tgcttaacat 540
gtacattggc accattgagt atgaccctcg cacctacacc tgcatcttca actatgtgaa 600
caatcctgcc tttaccgtga ccattgtctg catccacttc gtccctccctc tcatcatagt 660
tggttattgc tacacgaaaa tctggatcaa agtgctggca gcccgtgacc cagctggaca 720
gaatcctgac aaccagtttgc tgaggttcg aaatttcttta accatgttttgc tgatcttcct 780
ccttttgca gttgctggtg ccctgtcaat gtgctcaactg tggtggtggc tgtcattcca 840
aaggaaatgg caggcaagat ccccaactgg ctttatcttgc cagcctactg catagcctac 900
ttcaacagct gcctcaacgc catcatctac ggtatcctca atgagagttt ccgaagagaaa 960
tactggacca tcttccatgc tatgcggcac cctatcctgt tcatctctca cctcatcagt 1020
gatattcggg agacttggga gacccgagct ctcactcgtg cccgtgtccg tgcccgtgat 1080
caagtccgag agcaagagcg tgctcgtgcc tggctcgctg tggaggggac cccaaggaac 1140
gtccggaatg ttctactgcc tggtgatgca tcagcacccc actctgatcg tgctctgtc 1200
cgtcccaagc cccaaaccag gtctacttct gtctaccgca aacctgcctc tatccaccac 1260
aagtctattt ctggccaccc caagtctgcc tctgtttacc ctaagccagc ctccctgtc 1320
cattgcaagc ctgcctctgt ccatttcaaa cccgcctctg ttcatttcaa gggtgactct 1380
gtctatttca agggagacac tgtccattac agggctgctt ccaaacttgt caccagtcac 1440
cgtatctctg ctggcccttc caccagtcac cctacatcca tggctggcta cattaaatct 1500
ggtaccagcc accctgccac caccactgtt gactatctcg aacctgccac caccagccac 1560
tctgtgctca ctgctgtcga cctccctgag gtctcagcct cccattgcct tgagatgacc 1620
agcactggcc acctcagagc tgacatttct gcctctgtc ttccttctgt acccttcgag 1680

cttgctgcca cccctcctga taccactgca atccccattg cctctggta ttacgcagg 1740
gtcggtctta ttgatgatga ttctgatgat tctgattgct ctgatgagat ggctgtgtga 1800

<210> 5
<211> 119
<212> PRT
<213> Rattus sp.

<400> 5

Tyr Cys Tyr Ile Cys His Ser Leu Gln Tyr Asn Ala Asp Leu Gln Pro
1 5 10 15

Ala Asn Thr Cys Ile Tyr Leu Val Val Thr Trp Val Met Thr Val Leu
20 25 30

Asp Val Leu Pro Asn Val Tyr Ile Gly Thr Ile Glu Tyr Asp Pro Arg
35 40 45

Thr Tyr Thr Cys Tyr Phe Asn Tyr Val Asn Asn Pro Ala Phe Thr Val
50 55 60

Thr Ile Val Cys Ile His Phe Val Leu Pro Leu Ile Ile Val Gly Tyr
65 70 75 80

Cys Tyr Thr Lys Ile Trp Ile Lys Val Leu Ala Asp Arg Asp Pro Ala
85 90 95

Gly Gln Asn Pro Asp Asn Gln Phe Ala Glu Val Arg Asn Phe Leu Thr
100 105 110

Met Phe Val Ile Phe Leu Leu
115

<210> 6
<211> 357
<212> DNA
<213> Rattus sp.

<400> 6
tactgtaca tctgccacag cctccagttac aatgcggatc ttctgcctgc taacacttgc 60
atctatctgg ttgttacctg ggtcatgact gttctggatg tcctgcctaa tgtgtacatt 120
ggcaccattg agtatgaccc tcgcacccatc acctgtact tcaactatgt gaacaaccct 180
gcctttactg tgaccattgt ctgcattccac ttctgcctcc ctctcatcat agtcggttat 240
tgctacaccaa aaatctggat caaaatgtctg qcagacccggg acccagctgg acagaatcc 300

gacaaccagt ttgctgaggt tcgaaatttt ctaaccatgt ttgtgatctt cctcctt	357
<210> 7	
<211> 257	
<212> DNA	
<213> Homo sapiens	
<400> 7	
tttttgcgt ctggacctgg ctgctgatcc tgagcctgct gggagatctt aacgatcccc	60
aggagcaaca tggggcccac cctagcggtt cccacccct atggctgtat tggctgtaag	120
ctaccccccac cagaataaccc accggctcta atcatctta tggctgcgc gatggttatc	180
accatcggtt tagacctaatt cgccaactcc atggtcattt tggcttgac gaagaacaag	240
aagctccgga attctgg	257
<210> 8	
<211> 1320	
<212> DNA	
<213> Homo sapiens	
<400> 8	
ttcaggcaac atttcgtgg tcagtctctc tggggccat atgctggtgg ccatctaccc	60
ataccctttg atgctgcattt ccatgtccat tgggggctgg gatctgagcc agttacagtg	120
ccagatggtc gggatcatca cagggctgag tgggtcgcc tccatcttca acatcggtgc	180
aatcgctatc aaccgttact gctacatctg ccacagcctc cagtagaacc ggatcttcag	240
tgtgcgaat acctgcattt acctggcat cacctggatc atgaccgtcc tggctgtcct	300
gcccaacatg tacattggca ccatcgagta cgatctcgcc acctacaccc gcatcttcaa	360
ctatctgaac aaccctgtct tcactgttac catcgctgc atccacttcg tccctccctct	420
cctcatcggtt ggtttctgtt acgtgaggat ctggaccaaa gtgctggcgg cccgtgaccc	480
tgcaggccag aatcctgaca accaacttgc tgagggtcgcc aattttctaa ccatgtttgt	540
gatcttcctc ctctttgcag tggctgggtt ccatatcaac gtgctactg tcttggtggc	600
tgtcagtcgg aaggagatgg caggcaagat ccccaactgg ctttatcttgc cagcctactt	660
catagcctac ttcaacagct gcctcaacgc tgtgatctac gggctcctca atgagaattt	720
ccgaagagaa tactggacca tcttccatgc tatgcccac cctatcatat tcttctctgg	780
cctcatcgat gatattcggtt agatgcagga ggcggatcc ctggcccgcc cccgtgcccc	840
tgcctcgac caagctcggtt aacaagaccc tgcccatgcc tggctctgtt tggaggaaac	900
cccgatgaat gtccggatgt ttccattacc tggctgttgc gcagctggcc accccgaccg	960

tgcctctggc caccctaagc cccattccag atcctcctct gcctatcgca aatctgcctc	1020
tacccaccac aagtctgtct ttagccactc caaggctgcc tctggtcacc tcaagcctgt	1080
ctctggccac tccaaggctg cctctggtca ccccaagtct gccactgtct accctaagcc	1140
tgcctctgtc catttcaagg ctgactctgt ccatttcaag ggtgactctg tccatttcaa	1200
gcctgactct gttcatttca agcctgcttc cagcaacccc aagcccatca ctggccacca	1260
tgtctctgtct ggcagccact ccaagtctgc cttcagtgct gccaccagcc accctaaacc	1320

<210> 9
<211> 368
<212> DNA
<213> Homo sapiens

<400> 9	
catcaaggcca gctaccagcc atgctgagcc caccactgct gactatccca agcctgccac	60
taccagccac cctaagccca ctgctgctga caacccttag ctctctgct cccattgccc	120
cgagatccct gccattgccc accctgtgtc tgacgacagt gacctccctg agtcggccctc	180
tagccctgcc gctgggccccca ccaaggctgc tgccagccag ctggagtgctg acaccatcg	240
tgaccttcct gaccctactg tagtcactac cagtagccat gattaccatg atgtcggtgg	300
tattgtatgtt gaagatgtac ctgatgaaat ggctgtgtga aaaatgtct cgttaggtggc	360
caggcagt	368