1 Matrix Inverses

An inverse of a matrix A is a matrix that $AA^{-1} = A^{-1}A = I$.

1.1 Examples

- $A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -1 \\ -1 & 2 \end{bmatrix}$ are inverses
- Since $AB = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, we can write $B = A^{-1}$
- Not all matrices have inverses: $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ has no inverse

1.2 Connection to Linear Transformations

If T is a linear transformation with standard matrix A (so $T(x) = A\vec{x}$), then the inverse transformation exists if and only if A^{-1} exists.

2 2x2 Inverse Formula

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then if $ad - bc \neq 0$:

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

This is a special case of a more general formula (involving the determinant and adjugate) that works for any size matrix.

2.1 Using Gauss-Jordan to Find the Inverse

Suppose A has inverse A^{-1} . Then:

$$AA^{-1} = I$$

$$A[A^{-1}] = [I]$$

So to find A^{-1} , we need to solve the system $Ax = e_i$ for each standard basis vector e_i . Instead of solving $[A|e_1], [A|e_2], \ldots, [A|e_n]$ individually, we can streamline the process by solving [A|I] in one go.

1

2.2 Invertibility Conditions

If A is $n \times n$, then the following are equivalent:

- A has an inverse
- Ax = 0 has only the trivial solution
- The RREF of A is I
- A has n pivots
- $\det A \neq 0$

3 Example: Finding A^{-1}

Let
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$
. Find A^{-1} , if it exists.

$$[A|I] = \begin{bmatrix} 2 & 1 & 0 & | & 1 & 0 & 0 \\ 1 & 2 & 1 & | & 0 & 1 & 0 \\ 0 & 1 & 2 & | & 0 & 0 & 1 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & 0 & | & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{8} \\ 0 & 1 & 0 & | & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{4} \\ 0 & 0 & 1 & | & \frac{1}{8} & -\frac{1}{4} & \frac{5}{8} \end{bmatrix}$$

Therefore,

$$A^{-1} = \begin{bmatrix} \frac{3}{4} & -\frac{1}{4} & -\frac{1}{8} \\ -\frac{1}{2} & \frac{1}{2} & -\frac{1}{4} \\ \frac{1}{8} & -\frac{1}{4} & \frac{5}{8} \end{bmatrix}$$

3.1 Using Inverses to Solve Systems

If A is invertible, we can solve Ax = b by multiplying both sides by A^{-1} :

$$A^{-1}Ax = A^{-1}b$$
$$Ix = A^{-1}b$$
$$x = A^{-1}b$$

However, this is not an efficient method for solving systems in practice.