

Análise e Síntese de Algoritmos DFS. CLRS Cap. 22

Prof. Pedro T. Monteiro

IST - Universidade de Lisboa

2024/2025

P.T. Monteiro ASA @ LEIC-T 2024/2025

1/36

TÉCNICO LISBOA

Grafos

Grafo G = (V, E) é definido por:

- um conjunto de *V* vértices
- um conjunto de $E \subseteq V \times V$ arcos
 - Se $|E| \ll |V \times V|$, o grafo diz-se esparso
 - Caso contrário, diz-se denso

Grafos podem ser ou não dirigidos

Grafo Dirigido

Grafo Não Dirigido

Contexto

- Revisão [CLRS, Cap.1-13]
 - Fundamentos; notação; exemplos
- Técnicas de Síntese de Algoritmos [CLRS, Cap.15-16]
 - Programação dinâmica [CLRS, Cap.15]
 - Algoritmos greedy [CLRS, Cap.16]
- Algoritmos em Grafos [CLRS, Cap.21-26]
 - Algoritmos elementares
 - Caminhos mais curtos [CLRS, Cap.22,24-25]
 - Árvores abrangentes [CLRS, Cap.23]
 - Fluxos máximos [CLRS, Cap.26]
- Programação Linear [CLRS, Cap.29]
 - Algoritmos e modelação de problemas com restrições lineares
- Tópicos Adicionais
 - Complexidade Computacional [CLRS, Cap.34]

P.T. Monteiro

ASA @ LEIC-T 2024/2025

TÉCNICO LISBOA

Grafos

Representação dos arcos

- Matriz de adjacências: arcos representados por matriz
- ightarrow para grafos densos
- Listas de adjacências: arcos representados por listas
 - \rightarrow para grafos esparsos

Grafo Dirigido

Listas de Adjacências

Matriz de Adjacências

Grafos

Representação dos arcos

- Matriz de adjacências: arcos representados por matriz
 → para grafos densos
- Listas de adjacências: arcos representados por listas
 - ightarrow para grafos esparsos

Grafo Não Dirigido

Matriz de Adjacências

	1	2	3	4	5	
1	0	1	0	0	1	
2	1	0	1	1	1	
3	0	1	0	1	0	
4	0	1	1	0	1	
5	1	1	0	1	0	

P.T. Monteiro

ASA @ LEIC-T 2024/2025

5/36

Grafos

Questões

- Dado um grafo denso, qual a representação adequada para os arcos?
- E se a operação mais frequente for ler o peso dos arcos?
- E se quiser representar o grafo da World Wide Web?

Grafos

Matriz de Adjacências

• $\Theta(V^2)$ para qualquer grafo

Listas de adjacências

- Tamanho das listas é |E| para grafos dirigidos
- Tamanho das listas é 2 | E | para grafos não dirigidos
- Tamanho total das listas de adjacências é $\Theta(V+E)$

Grafos pesados

- Existência de uma função de pesos $\omega: E \to IR$
- Função de pesos ω associa um peso a cada arco $(u, v) \in E$

P.T. Monteiro

ASA @ LEIC-T 2024/2025

TÉCNICO

Procura em profundidade primeiro (DFS)

Intuição

Grafo pesquisado dando prioridade aos arcos dos vértices visitados mais recentemente

Aplicações

- Resolução de labirintos
- Detecção de ciclos
- Ordenação topológica
- Testar se um grafo é bipartido
- Descobrir componentes fortemente ligados/conexos

Implementação

- d[v]: tempo de início (de visita do vértice)
- f[v]: tempo de fim (de visita do vértice)
- $\pi[v]$: predecessor de v na árvore DF
- color[v]: cor do vértice v: branco/cinzento/preto

P.T. Monteiro

ASA @ LEIC-T 2024/2025

DFS(G)

```
for u \in G.V do
    color[u] \leftarrow white
    d[\mathbf{u}] \leftarrow \infty
   f[\mathbf{u}] \leftarrow \infty
   \pi[\mathbf{u}] \leftarrow \mathtt{NIL}
end for
\texttt{time} \, \leftarrow \, \mathbf{1}
for u \in G.V do
   if color[u] == white then
       DFS-Visit(G, u)
   end if
end for
```

DFS-Visit(G,u)

```
color[u] \leftarrow gray
d[u] \leftarrow time
\texttt{time} \leftarrow \texttt{time} + 1
for v \in G.Adj[u] do
   if color[v] == white then
      \pi[v] \leftarrow u
      DFS-Visit(G, v)
   end if
end for
color[u] \leftarrow black
f[u] \leftarrow time
\texttt{time} \leftarrow \texttt{time} + 1
```

ASA @ LEIC-T 2024/2025 P.T. Monteiro

Procura em profundidade primeiro (DFS)

Procura em profundidade primeiro (DFS)

Exemplo

Exemplo

Procura em profundidade primeiro (DFS)

Exemplo

ASA @ LEIC-T 2024/2025 P.T. Monteiro

Exemplo

P.T. Monteiro ASA @ LEIC-T 2024/2025

Procura em profundidade primeiro (DFS)

Procura em profundidade primeiro (DFS)

Exemplo

Exemplo

P.T. Monteiro ASA @ LEIC-T 2024/2025 P.T. Monteiro ASA @ LEIC-T 2024/2025

Procura em profundidade primeiro (DFS)

Exemplo

ASA @ LEIC-T 2024/2025

P.T. Monteiro

17/36

Exemplo

P.T. Monteiro ASA @ LEIC-T 2024/2025

18/36

Procura em profundidade primeiro (DFS)

Procura em profundidade primeiro (DFS)

Exemplo

Exemplo

P.T. Monteiro ASA @ LEIC-T 2024/2025 19/36 P.T. Monteiro ASA @ LEIC-T 2024/2025 2

Procura em profundidade primeiro (DFS)

Exemplo

P.T. Monteiro

ASA @ LEIC-T 2024/2025

21/36

Exemplo

P.T. Monteiro

ASA @ LEIC-T 2024/2025

22/36

Procura em profundidade primeiro (DFS)

Procura em profundidade primeiro (DFS)

Exemplo

Exemplo

23/36 P.T. Monteiro ASA @ LEIC-T 2024/2025

Procura em profundidade primeiro (DFS)

Exemplo

P.T. Monteiro

ASA @ LEIC-T 2024/2025

0= /05

Complexidade

- Inicialização: ⊖(V)
- Chamadas a DFS-Visit dentro de DFS: $\Theta(V)$
- Arcos analisados em DFS-Visit: $\Theta(E)$
 - Chamadas a DFS-Visit dentro de DFS-Visit: O(V)
 - Mas $\sum_{v \in V} |Adj[v]| = \Theta(E)$

Tempo de execução: $\Theta(V+E)$

P.T. Montei

ASA @ LEIC-T 2024/2025

Procura em profundidade primeiro (DFS)

Resultado da DFS

Floresta Depth-First (DF)

- $G_{\pi}=(V,E_{\pi})$
- $E_{\pi} = \{ (\pi[v], v) : v \in V \land \pi[v] \neq NIL \}$
- Floresta DF composta por várias árvores DF

Procura em profundidade primeiro (DFS)

Propriedade: Estrutura de parêntesis

Se considerarmos que:

- (u representa a descoberta de u
- u) representa o fim de u

a história de descobertas e fim formam uma expressão bem formada com parêntesis aninhados

Exemplo

```
s z y x x y w w z s ( ( ( ( ) ) ) ( ) ) )
```

P.T. Monteiro ASA @ LEIC-T 2024/2025

Teorema dos parêntesis

Para qualquer DFS de G = (V, E), para cada par de vértices $u \in V$ apenas um dos 3 casos seguintes é verdade:

- $[d[u], f[u]] \cap [d[v], f[v]] = \emptyset$ u e v não são relacionados $\rightarrow u$ não ascendente/descendente de v
- $[d[u], f[u]] \subset [d[v], f[v]]$ u é descendente de v na árvore DF
- $[d[v], f[v]] \subset [d[u], f[u]]$ v é descendente de u na árvore DF
- [d[u], f[u]] e [d[v], f[v]] não se podem intersectar parcialmente

P.T. Monteiro

Procura em profundidade primeiro (DFS)

Propriedade: Classificação de arcos (u, v)

- Arcos de árvore: (tree edges)
 - -d[u] < d[v] < f[v] < f[u]
 - color[v] = white quando (u, v) é analisado
- Arcos para trás: (back edges)
 - -d[u] < d[v] < f[v] < f[u]
 - color[u] = gray quando (v, u) é analisado
- Arcos para a frente: (forward edges)
 - -d[u] < d[v] < f[v] < f[u]
 - color[v] = black quando (u, v) é analisado
- Arcos de cruzamento: (cross edges)
 - -d[v] < f[v] < d[u] < f[u]
 - color[v] = black quando (u, v) é analisado

Procura em profundidade primeiro (DFS)

Propriedade: Classificação de arcos (u, v)

- Arcos de árvore: (tree edges)
 - arcos na floresta DF, G_{π}
 - -(u, v) é arco de árvore se v foi visitado devido ao arco (u, v) ser visitado
- Arcos para trás: (back edges)
 - ligam vértice u a vértice v antecessor na mesma árvore DF
- Arcos para a frente: (forward edges)
 - ligam vértice v a vértice descendente na mesma árvore DF
- Arcos de cruzamento: (cross edges)
 - na mesma árvore DF, se u (ou v) não antecessor de v (ou u)
 - ou entre árvores DF diferentes

Procura em profundidade primeiro (DFS)

P.T. Monteiro

ASA @ LEIC-T 2024/2025

Procura em profundidade primeiro (DFS)

Propriedade

Dado G = (V, E) não dirigido, cada arco é arco de árvore ou para trás i.e., não existem arcos para a frente e de cruzamento

Teorema caminho branco

Numa floresta DF (grafo dirigido ou não dirigido): v descendente de $u \Leftrightarrow$ existe caminho de vértices brancos de u para v

Qualquer vértice w descendente de u verifica
 [d[w], f[w]] ⊂ [d[u], f[u]], pelo que w é branco quando u é
 descoberto

P.T. Monteiro

ASA @ LEIC-T 2024/2025

34/36

Questões?

Dúvidas?

P.T. Monteiro ASA @ LEIC-T 2024/2025 35/36 P.T. Monteiro ASA @ LEIC-T 2024/2025