Lecture 4

Carry-Skip, Carry-Select, & Conditional-Sum Adders

Fixed-Block-Size Carry-Skip Adder (1)

Notation & Assumptions

Adder size - k-bits Fixed block size - b bits

Number of stages - t

Delay of skip logic = Delay of one stage of ripple-carry adder = 1 delay unit

Latency of the carry-skip adder with fixed block width

Latency_{fixed-carry-skip} =
$$(b-1)$$
 + 0.5 + $\frac{k}{b}$ - 2 + $(b-1)$
in block 0 OR gate skips in last block
= $2b$ + $\frac{k}{b}$ - 3.5

Fixed-Block-Size Carry-Skip Adder (2)

Optimal fixed block size

$$\frac{\text{dLatency}_{\text{fixed-carry-skip}}}{\text{db}} = 2 - \frac{k}{b^2} = 0$$

$$b_{\text{opt}} = \sqrt{\frac{k}{2}} \qquad t_{\text{opt}} = \left\lceil \frac{k}{b_{\text{opt}}} \right\rceil = \sqrt{2 k}$$

$$\text{Latency}_{\text{fixed-carry-skip}}^{\text{opt}} = 2\sqrt{\frac{k}{2}} + \frac{k}{\sqrt{\frac{k}{2}}} - 3.5 =$$

$$= \sqrt{2 k} + \sqrt{2 k} - 3.5 = 2\sqrt{2 k} - 3.5$$

		ı			
k	$\mathbf{b}_{\mathrm{opt}}$	t_{opt}	Latency _{fixed-carry-skip}	Latency _{ripple-carry}	Latency _{look-ahead}
32	4	8	12.5	32	6.5
128	8	16	28.5	128	8.5
16	2	8	8.5	16	4.5
	3	5	7.5		
64	5	13	18.5	64	6.5
	6	11	18.5		

Fixed-Block-Size Carry-Skip Adder (3)

Variable-Block-Size Carry-Skip Adder (1)

Notation & Assumptions

Adder size - k-bits

Number of stages - t

Block size - variable

First and last block size - b bits

Delay of skip logic = Delay of one stage of ripple-carry adder = 1 delay unit

Variable-Block-Size Carry-Skip Adder (2)

Optimum block sizes

$$b_{t\text{-}1} \quad b_{t\text{-}2} \quad b_{t\text{-}3} \quad \dots \quad b_{t/2\text{+}1} \quad b_{t/2\text{-}1} \ \dots \quad b_2 \quad b_1 \quad b_0$$

b
$$b+1$$
 $b+2$... $b+\frac{t}{2}-1$ $b+\frac{t}{2}-1$ $b+2$ $b+1$ b

Total number of bits

$$k = 2 [b + (b+1) + (b+2) + ... + (b + \frac{t}{2} + 1)] =$$

$$= t (b + \frac{t}{4} - \frac{1}{2})$$

Variable-Block-Size Carry-Skip Adder (3)

Number of bits in the first and last block

$$b = \frac{k}{t} - \frac{t}{4} + \frac{1}{2}$$

Latency of the carry-skip adder with variable block width

$$\begin{aligned} \text{Latency}_{\text{fixed-carry-skip}} &= (\ b - 1\) &+ 0.5 &+ t - 2 &+ (\ b - 1\) \\ &\text{in block 0} & \text{OR gate} & \text{skips} & \text{in last block} \\ &= 2\ b + t - 3.5 &= 2\left[\frac{k}{t} - \frac{t}{4} + \frac{1}{2}\right] + t - 3.5 &= \\ &= \frac{2k}{t} + \frac{1}{2}\ t - 2.5 \end{aligned}$$

Variable-Block-Size Carry-Skip Adder (4)

Optimal number of blocks

$$\frac{d\text{Latency}_{\text{variable-carry-skip}}}{dt} = -\frac{2k}{t^2} + \frac{1}{2} = 0$$

$$t_{\text{opt}} = \sqrt{\frac{1}{4} \cdot k} = 2\sqrt{\frac{1}{k}}$$

$$b_{\text{opt}} = \frac{k}{t_{\text{opt}}} - \frac{t_{\text{opt}}}{4} + \frac{1}{2} = \frac{1}{2}$$

$$b_{\text{opt}} = 1$$

$$\frac{k}{2\sqrt{\frac{1}{k}}} - \frac{2\sqrt{\frac{1}{k}}}{4} + \frac{1}{2} = \frac{1}{2}$$

Variable-Block-Size Carry-Skip Adder (5)

Optimal latency

Latency variable-carry-skip =
$$\frac{2k}{t} + \frac{1}{2}t - 2.5 =$$

$$= \frac{2k}{2\sqrt{k}} + \frac{2\sqrt{k}}{2} - 2.5 =$$

$$= 2\sqrt{k} - 2.5$$

Latency_{variable-carry-skip}
$$\approx \frac{\text{Latency}_{\text{fixed-carry-skip}}^{\text{opt}}}{\sqrt{\frac{2}{2}}}$$

Multilevel Carry-Skip Adders (1)

Notation & Assumptions

Adder size - k-bits

Number of stages - t

1 delay unit =

Generation of g_i and p_i signals =

Generation of a level i skip signal from level (i-1) signals

Delay of one stage of ripple-carry adder =

Delay of skip logic =

Delay of sum logic

Delay of a single OR gate proceeding the first skip neglected

Multilevel Carry-Skip Adders (4)

Number of first level subblocks

$$\gamma = \min(\beta - 1, \alpha)$$

Width of the i-th subblock

$$b_i = min (\beta - \gamma + i + 1, \alpha - i)$$

