In addition, we saw in Prop.1.1 that the validity of such a spectral mapping theorem implies

$$s(A) = \omega(A)$$

for the spectral- and growth bounds and therefore guarantees that the location of the spectrum of A determines the asymptotic behavior of T . As we have seen in Examples 1.3 and 1.4 the last statement does not hold in general. We therefore present a detailed analysis, where and why it fails and what additional assumptions are needed for its validity. Before doing so we have another look at the examples.

6.1 The counterexamples revisited.

(i) Take the nilpotent translation semigroup from A-I,2.6. Then $\sigma(A) = \emptyset$ and $\sigma(T(t)) = 0$ for every t > 0. By this trivial example and since $e^Z \neq 0$ for every $z \in \mathbb{C}$, it is natural to read the 'spectral mapping theorem' modulo the addition of $\{0\}$, i.e.

$$\sigma(T(t)) \cup \{0\} = \exp(t\sigma(A)) \cup \{0\} \text{ for } t \ge 0$$
.

(ii) The spectrum of the generator A of the τ -periodic rotation group $(R_{\tau}(t))_{t\geq 0}$ on $C(\Gamma)$ is $\sigma(A) = 2\pi i/\tau \cdot Z$ and $\exp(2\pi i n t/\tau)$, $n\in Z$, is an eigenvalue of $R_{\tau}(t)$ for every $t\geq 0$ (see Example 5.6). If t/τ is irrational these eigenvalues form a dense subset of Γ . Since the spectrum is closed we obtain $\sigma(T(t)) = \Gamma$ for these t. Therefore in this example the spectral mapping theorem is valid only in the following 'weak' form:

$$\sigma(T(t)) = \overline{\exp(t\sigma(A))}$$
, $t \ge 0$.

- (iii) By Example 1.3 there exists a semigroup $T=(T(t))_{t\geq 0}$ with generator A such that s(A)=-1 and $\omega(T)=0$. This implies that for preassigned real numbers $\alpha<\beta$ there exists a semigroup $S=(S(t))_{t\geq 0}$ with generator B such that $s(B)=\alpha$ and $\omega(S)=\beta$: Take $S(t):=e^{\beta t}T((\beta-\alpha)t)$ and observe that $B=(\beta-\alpha)A+\beta Id$. In that case $\exp(t\sigma(B))$ is contained in the circle about 0 with radius $e^{\alpha t}$ by Lemma 1.1; hence there must be points in $\sigma(S(t))$ which are not in the closure of $\exp(t\sigma(B))$.
- (iv) The Example 1.3 can be strengthend in order to yield a semigroup $\mathcal{T}=(T(t))_{t\geq 0}$ with generator A such that $\sigma(A)=\emptyset$ but $\|T(t)\|=r(T(t))=1$ for $t\geq 0$, i.e. $s(A)=-\infty$, $\omega=0$ and $s(A)<\omega$: