COMP 446 / 546 ALGORITHM DESIGN AND ANALYSIS

LECTURE 13 LINEAR PROGRAMMING ALPTEKİN KÜPÇÜ

Based on slides of Xukai Zou, Shafi Goldwasser, Jeff Erickson, and Alexander Zelikovsky

LINEAR PROGRAMMING

- A very general problem that can be used to express a wide variety of problems.
 - e.g., max-flow and min-cut
 - Many more optimization problems...
- Focus on how to express various problems as linear programs
- At the end, briefly discuss an algorithm for solving linear programming problems

EXAMPLE SCENARIO

Politics: How to campaign to win an election

Estimate votes obtained per dollar spent advertising on a particular issue:

			demographic			
<u>Variable</u>	Policy	urban	<u>suburban</u>	<u>rural</u>		
x ₁	building roads	-2	5	3		
\mathbf{x}_{2}	gun control	8	2	-5		
X_3	farm subsidies	0	0	10		
X ₄	gasoline tax	10	0	-2		

Want to win majority in each demographic by spending minimum amount of money

demographic:	<u>urban</u>	<u>suburban</u>	<u>rural</u>
population:	100.000	200.000	50.000
majority:	50.000	100.000	25.000

LINEAR PROGRAMMING DEFINITION

- Suppose all the numbers below are real numbers.
- Given a linear function (called objective function)

•
$$f(x_1, x_2,..., x_n) = c_1 x_1 + c_2 x_2 + ... + c_n x_n = \sum_{j=1}^n c_j x_j$$

With constraints

•
$$\sum_{i=1}^{n} a_{ij} x_j \le b_i \quad \text{for } i=1,2,...,m \quad \text{(linear constraints)}$$

- $x_i \ge 0$ for j=1,2,...,n (non-negativity)
- Find values for $x_1, x_2, ..., x_n$ which maximize $f(x_1, x_2, ..., x_n)$
- Or change $\leq b_i$ to $\geq b_i$, then minimize $f(x_1, x_2, ..., x_n)$

LINEAR PROGRAMMING

Vector Form

Maximize: cx

Subject to: $Ax \le b$

$$C = (C_1, C_2, ..., C_n)$$

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \cdot \\ \cdot \\ x_n \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} b_1 \\ \cdot \\ \cdot \\ b_n \end{pmatrix}$$

Summation Form

Maximize: ∑c_ix_i

Subject to:

$$\sum a_{1i}x_i \leq b_1$$

$$\sum a_{2i}x_i \leq b_2$$

•

$$\sum a_{mi} x_i \leq b_m$$

EXAMPLE SCENARIO

		demographic			
<u>Variable</u>	Policy		<u>urban</u>	<u>suburban</u>	<u>rural</u>
X ₁	building roads		-2	5	3
X_2	gun control		8	2	-5
X_3	farm subsidies		0	0	10
X_4	gasoline tax		10	0	-2
		Population:	100K	200K	50K
		Majority:	50K	100K	25K

4 variables

- x₁ is the # of thousands of dollars on advertising on building roads.
- x_2 is the # of thousands of dollars on advertising on gun control.
- x₃ is the # of thousands of dollars on advertising on farm subsidies.
- x₄ is the # of thousands of dollars on advertising on gasoline tax.

EXAMPLE SCENARIO

			demographic		
Variable	Policy		<u>urban</u>	<u>suburban</u>	<u>rural</u>
X ₁	building roads		-2	5	3
X_2	gun control		8	2	-5
X_3	farm subsidies		0	0	10
X ₄	gasoline tax		10	0	-2
		Population:	100K	200K	50K
		Majority:	50K	100K	25K

Formulate this problem as:

Minimize:	X_1	+	X_2	+	X_3	+	X_4	
Subject to:	-2x ₁	+	$8x_2$	+	$0x_3$	+	10x ₄	≥ 50
	$5x_1$	+	$2x_2$	+	$0x_3$	+	$0x_4$	≥100
	$3x_1$	+	-5x ₂	+	10x ₃	+	-2x ₄	≥ 25
	X ₁ , >	ζ_2, X_3	, X ₄		-			≥ 0

The solution of this linear program yields an optimal strategy for the politician (minimizes the cost while getting majority votes).

Alptekin Küpçü

LINEAR PROGRAMMING IN STANDARD FORM

- Standard form contains all non-negativity constraints, and only inequality type linear constraints
 - Can represent any linear program in standard form.
- If some variable x_i , does not have non-negativity constraint:
 - Delete x_i but introduce two variables x_i' and x_i'' ,
 - Replace each occurrence of x_i with $x_i'-x_i''$.
 - Add constraints: $x_i' \ge 0$ and $x_i'' \ge 0$.

LINEAR PROGRAMMING IN STANDARD FORM

If there are equality constraints:

• Replace
$$\sum_{j=1}^{n} a_{ij}x_j = b_i$$
 with $\sum_{j=1}^{n} a_{ij}x_j \le b_i$ and $\sum_{j=1}^{n} a_{ij}x_j \ge b_i$

- Then change $\sum_{j=1}^{n} a_{ij}x_j \le b_i$ to $\sum_{j=1}^{n} a_{ij}x_j \ge -b_i$ for minimization
- Or $\sum_{i=1}^{n} a_{ij}x_j \ge b_i$ to $\sum_{i=1}^{n} a_{ij}x_j \le -b_i$ for maximization.

LINEAR PROGRAMMING IN SLACK FORM

- In slack form, except non-negativity constraints, all other constraints are equalities.
- Change standard form to slack form:
 - If $\sum_{j=1}^{n} a_{ij}x_j \le b_i$, then introduce new variable s, and set:
 - $s_i = b_i \sum_{i=1}^n a_{ij} x_i$ and $s_i \ge 0$ (i=1,2,...,m).
 - If $\sum_{j=1}^{n} a_{ij}x_j \ge b_i$, then introduce new variable s, and set:
 - $s_i = \sum_{j=1}^n (a_{ij}x_j) b_i$ and $s_i \ge 0$ (i=1,2,...,m).

LP FOR SHORTEST PATH

(Single pair) Shortest path:

- Given a weighted directed graph G=<V,E> with weighted distance function w: E→R, a source s and a target t
- Compute d[t] which is the total weighted distance of the shortest path from s to t.

Change to LP

• For each vertex v, introduce a variable d[v]: the distance of the shortest path from s to v.

maximize: d[t]

subject to: $d[v] \le d[u] + w(u, v)$ for each $(u, v) \in E$

d[s] = 0

LP FOR SHORTEST PATH

maximize: d[t]

subject to: $d[v] \le d[u] + w(u, v)$ for each $(u, v) \in E$

d[s] = 0

- What if there are negative weights?
- Add additional constraint: $d[v] \ge 0$ for all $v \in V$.
- If the LP has no solution, it means the graph has a negative-weight cycle that can be reached from s.
 - (now this LP is equivalent to the Bellman-Ford algorithm)

LP FOR MAXIMUM FLOW

Max-flow problem:

- Given a directed graph G=<V,E>, a capacity function on each edge $c(u,v) \ge 0$, source s and target t.
- A flow is a function $f: V \times V \rightarrow R$ that satisfies:
 - Capacity constraints: for all $(u,v) \in E$, $f(u,v) \le c(u,v)$
 - Flow conservation: for all $u \in V \{s, t\}$, $\sum_{(u, u) \in E} f(u, v) = \sum_{(u, v) \in E} f(u, v)$
- Find a maximum flow from s to t.

maximize:
$$\sum f(s,v)$$
 OR $\sum f(v,t)$

subject to:
$$f(u,v) \le c(u,v)$$
 for each $(u,v) \in E$

$$\sum_{(u,u)\in E} f(u,v) = \sum_{(u,v)\in E} f(u,v) \quad \text{for each } u\in V-\{s,t\}$$

$$0 \le f(u,v)$$
 for each $(u,v) \in E$

- 13

DUALITY

Duality:

$$\max \vec{c} \cdot \vec{x} \qquad \equiv \qquad \min \vec{b}^{\mathsf{T}} \cdot \vec{y}$$
s.t. $\mathbf{A}\vec{x} \leq \vec{b}$ s.t. $\mathbf{A}^{\mathsf{T}}\vec{y} \geq \vec{c}$

$$\vec{x} \geq \mathbf{0} \qquad \qquad \vec{y} \geq \mathbf{0}$$

Example:

MAX-FLOW

MIN-CUT

Important: if LP is unbounded (optimal value is $\pm \infty$) then dual LP is infeasible (has no solution)

If they have a solution, their values are equal.

LP FOR MINIMUM CUT

- Minimum cut: (S, T = V-S)
 - S_v : is $v \in S$? (0 or 1)
 - x(u,v): is $u \in S \& v \in T$? (0 or 1)

minimize: $\sum_{(u,v)\in E} c(u,v) \cdot x(u,v)$

subject to:

$$S_u - S_v \le x(u,v)$$

for each $(u,v) \in E$

$$S_s = 1$$

(source is in S)

$$S_t = 0$$

(target is not in S)

$$x(u,v) \geq 0$$

for each (u,v) ∈ E

- We want to be able to say
 - $S_u \in \{0,1\}$ for all $u \in V$

• $x(u,v) \in \{0,1\}$ for all $(u,v) \in E$

These are not linear constraints!!

INTEGER LINEAR PROGRAMMING

Vector Form

Maximize: cx

Subject to : $Ax \le b$

and $x \in \{0,1\}$

$$C = (C_1, C_2, ..., C_n)$$

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \cdot \\ \cdot \\ \mathbf{X}_n \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} \mathbf{b}_1 \\ \cdot \\ \cdot \\ \mathbf{b}_n \end{bmatrix}$$

Summation Form

Maximize: ∑cixi

Subject to:

$$\sum a_1 i x_i \le b_1$$

$$\sum a_{2i}x_i \leq b_2$$

•

 $\sum a_{mi} x_i \leq b_m$

and $x \in \{0,1\}$

In general, x must be an integer

Unfortunately, ILP is NP-complete!!

ILP FOR MAXIMUM INDEPENDENT SET

- Maximum Independent Set (MIS)
 - Given a graph G = (V, E)
 - Find the maximum subset of nodes which are pairwise non-adjacent (independent)
- ILP: For any $v \in V$ make a variable $x_v \in \{0, 1\}$
 - $x_v = 0 \Leftrightarrow v \notin MIS$ which means v is not chosen
 - $x_v = 1 \Leftrightarrow v \in MIS$ which means v is chosen

maximize: $\sum_{v \in V} x_v$

subject to: $x_u + x_v \le 1$ $\forall (u, v) \in E$

 $x_v \in \{0, 1\} \quad \forall v \in V$

EXAMPLE ILP: MAXIMUM INDEPENDENT SET

maximize: $X_1 + X_2 + X_3 + X_4 + X_5 + X_6$

subject to:

$$x_1 + x_6 \le 1$$

$$x_1 + x_2 \le 1$$

$$x_2 + x_3 \le 1$$

$$x_3 + x_6 \le 1$$

$$x_3 + x_5 \le 1$$

$$x_6 + x_5 \le 1$$

$$x_3 + x_4 \le 1$$

$$x_4 + x_5 \le 1$$

and $x_1, x_2,..., x_6 \in \{0,1\}$

LP RELAXATION (LPR) VS. ILP

- LP relaxation (LPR) for Max Independent Set problem (MIS) may provide a different solution than the actual maximum independent set.
 - The difference is called integrality gap.
- For some problems, a carefully-crafted LPR works really well...

ILP for MIS

maximize: $\sum x_i$ i $\subseteq V$

subject to:

 $x_i + x_j \le 1$, for each edge $(x_i, x_j) \in E$

 $x_i \in \{0, 1\}$

LPR for MIS

maximize: $\sum x_i$ i $\subset V$

subject to:

 $x_i + x_j \le 1$, for each edge $(x_i,x_j) \in E$

 $0 \le x_i \le 1$

EXAMPLE LPR: MAXIMUM

INDEPENDENT SET

maximize: $X_1 + X_2 + X_3 + X_4 + X_5 + X_6$

subject to:

$$x_1 + x_6 \le 1$$

$$x_1 + x_2 \le 1$$

$$x_2 + x_3 \le 1$$

$$x_3 + x_6 \le 1$$

$$x_3 + x_5 \le 1$$

$$x_6 + x_5 \le 1$$

$$x_3 + x_4 \le 1$$

$$x_4 + x_5 \le 1$$

and $0 \le x_1, x_2, ..., x_6 \le 1$

ILP

$$X_1 = X_3 = X_5 = 1$$

$$\Sigma x_i = 3$$

LPR

$$X_i = \frac{1}{2}$$

$$\Sigma x_i = 3$$

HOW TO SOLVE LP

- OK, cool, now we know the definition an LP.
- YES, I can convert a given optimization problem to LP.
 - Not easy for all problems though.
 - But I can do it for many problems.
- If so, you are ready to learn about solving an LP rather than just formulating it...
 - Hint: It might be easier to keep the matrix formulation in mind, and seeing n-tuples as a point in n-dimensional space.

GEOMETRIC VIEW OF LP

- \vec{x} is a point in \mathbb{R}^d
- \vec{c} is a direction vector (length is irrelevant)
- Maximize: $\vec{c} \cdot \vec{x}$ (find \vec{x} most in the direction \vec{c})
- Constraints: $\vec{a} \cdot \vec{x} \le \mathbf{b}$ (halfspace bounded by plane)
 - Constraints form a polytope with $\leq n$ polygonal facets
 - Possibly unbounded ("open")

GEOMETRIC VIEW OF LP

- \vec{x} is a point in \mathbb{R}^d
- \vec{c} is a direction vector (length is irrelevant)
- Maximize: $\vec{c} \cdot \vec{x}$ (find \vec{x} most in the direction \vec{c})
- Constraints: $\vec{a} \cdot \vec{x} \le b$ (halfspace bounded by plane)
 - Constraints form a polytope with $\leq n$ polygonal facets
 - Possibly unbounded ("open")

• Can rotate entire problem so that goal is to find highest point \vec{x} in polytope

• Essentially, $\vec{c} = \begin{bmatrix} 0 \\ \vdots \\ 1 \end{bmatrix}$

GEOMETRIC VIEW OF LP

Incremental Algorithm for 2D

- Must maintain polygon in balanced search tree
- Add ith constraint:
 - 0, 1, or 2 intersections
 - Can find in O(log n) similar to binary search
- Discard now-irrelevant constraints
- O(n log n) time

Higher dimensions:

• # vertices = $\binom{n}{d}$ \approx n^d in the worst case (EXPONENTIAL)

ALGORITHMS FOR SOLVING LP

- Simplex algoritm: \vec{x} walks from vertex to vertex in direction \vec{c}
 - practical but worst-case exponential (see book)
- Ellipsoid algorithm: Guarantee OPT ∈ ellipsoid; reduce ellipsoids.
 - First poly-time, useful in theory, impractical
- Interior-point method: \vec{x} flows inside polytope vaguely in direction of \vec{c}
 - Poly-time & quite practical
- Random sampling: [Bertsimas & Vempala 2004]
 - Sample to estimate center of mass, slice OPT estimate, repeat
- Randomized simplex: [Kelner & Spielman 2006]
 - Reduce to testing boundedness; randomize \vec{b} ; simplex; repeat

SIMPLEX ALGORITHM

- Works well in practice
 - Fast in general
 - Worst-case exponential
- Algorithmically simple concept
- Demonstrate using an example

Maximize: $3x_1 + x_2 + 2x_3$ (29.53)

Subject to:

$$x_1 + x_2 + 3x_3 \le 30 \tag{29.54}$$

$$2x_1 + 2x_2 + 5x_3 \le 24 \tag{29.55}$$

$$4x_1 + x_2 + 2x_3 \le 36 \tag{29.56}$$

$$x_1, x_2, x_3 \ge 0$$
 (29.57)

Slack form:

Maximize: $z = 3x_1 + x_2 + 2x_3$ (29.58)

Subject to:

$$x_4 = 30 - x_1 - x_2 - 3x_3 \tag{29.59}$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3 \tag{29.60}$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3 \tag{29.61}$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

SIMPLEX DEFINITIONS

Feasible solutions:

- An assignment to variables whose values satisfy all constraints.
- There are infinitely-many feasible solutions since we work with real numbers.

Basic solution:

- Basic variables: left-hand side variables
- Free variables: right-hand side variables
- Set all free variables to 0 and compute all basic variables to obtain basic solution

Basic feasible solution:

When a basic solution is also feasible

SIMPLEX ALGORITHM STEPS

- Iteratively re-write the set of equations such that
 - No change to the underlying LP problem
 - The feasible solution set stays the same
- However the basic solution changes, resulting in a greater objective value each time:
 - Select a free variable x_i whose coefficient in objective function is positive
 - Increase value of x_i as much as possible without violating any of constraints
 - Re-write the problem such that x_i is now basic and some other variable is now free.

Slack form:

Maximize: $z = 3x_1 + x_2 + 2x_3$ (29.58)

Subject to:

 $x_4 = 30 - x_1 - x_2 - 3x_3 \tag{29.59}$

 $x_5 = 24 - 2x_1 - 2x_2 - 5x_3 \tag{29.60}$

 $x_6 = 36 - 4x_1 - x_2 - 2x_3 \tag{29.61}$

 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

Free variables: x_1, x_2, x_3

Basic variables: x_4, x_5, x_6

Basic solution:

$$(x_1, x_2, x_3, x_4, x_5, x_6) = (0,0,0,30,24,36)$$

 $z = 3 \cdot 0 + 1 \cdot 0 + 2 \cdot 0 = 0$

Slack form:

Maximize:
$$z = 3x_1 + x_2 + 2x_3$$
 (29.58)

Subject to:

$$x_4 = 30 - x_1 - x_2 - 3x_3 \tag{29.59}$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3 \tag{29.60}$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3 \tag{29.61}$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

Try to increase the value of x_1 :

$$x_4 = 30 - x_1 - x_2 - 3x_3$$
 $(x_1 \le 30)$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$
 $(x_1 \le 12)$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$
 $(x_1 \le 9)$

Increase only up to 9 (limiting equation is 29.61)

Write
$$x_1 = 9 - x_2/4 - x_3/2 - x_6/4$$

Replace on all equations in the slack form

Now x_1 is basic and x_6 is free

Slack form:

Maximize: $z = 3x_1 + x_2 + 2x_3$ (29.58)

Subject to:

$$x_4 = 30 - x_1 - x_2 - 3x_3 \tag{29.59}$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3 \tag{29.60}$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3 \tag{29.61}$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

Updated Equivalent Slack form:

Maximize: $z = 27 + x_2/4 + x_3/2 - 3x_6/4$ (29.64)

Subject to:

$$x_4 = 21 - 3x_2/4 - 5x_3/2 + x_6/4$$
 (29.66)

$$x_5 = 6 - 3x_2/2 - 4x_3 + x_6/2$$
 (29.67)

$$x_1 = 9 - x_2/4 - x_3/2 - x_6/4$$
 (29.65)

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

SIMPLEX ALGORITHM PIVOTING

- This operation is called pivoting
 - A pivot operation chooses a free (entering) variable and a basic (leaving) variable, and changes their roles.
 - The pivot operation results in an equivalent LP.
 - It can be checked the original solution (0,0,0,30,24,36) satisfies the new equations.
- In the example
 - x_1 is entering variable, and x_6 is leaving variable.
 - x_2 , x_3 , x_6 are now free, and x_1 , x_4 , x_5 are now basic.
 - The basic solution for this is (9,0,0,21,6,0), with z=27.
 - Remember, all free variables are set to 0 in the basic solution
 - Improved objective value!

Updated Equivalent Slack form:

Maximize:
$$z = 27 + x_2/4 + x_3/2 - 3x_6/4$$
 (29.64)

Subject to:

$$x_4 = 21 - 3x_2/4 - 5x_3/2 + x_6/4$$
 (29.66)

$$x_5 = 6 - 3x_2/2 - 4x_3 + x_6/2$$
 (29.67)

$$x_1 = 9 - x_2/4 - x_3/2 - x_6/4$$
 (29.65)

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

Try to increase the value of x_3 : (x_2 also works but not x_6)

$$x_4 = 21-3x_2/4 - 5x_3/2 + x_6/4$$
 $(x_3 \le 42/5)$

$$x_5 = 6-3x_2/2 - 4x_3 + x_6/2$$
 $(x_3 \le 3/2)$

$$x_1 = 9 - x_2/4 - x_3/2 - x_6/4$$
 $(x_3 \le 18)$

Increase only up to 3/2 (limiting equation is 29.67)

Write
$$x_3 = 3/2 - 3x_2/8 - x_5/4 + x_6/8$$

Replace on all equations in the slack form

Now x_3 is basic and x_5 is free

Updated Equivalent Slack form (2):

Maximize:
$$z = 111/4 + x_2/16 - x_5/8 - 11x_6/16$$
 (29.68)

Subject to:

$$x_1 = 33/2 - x_2/16 + x_5/8 - 5x_6/16$$
 (29.69)

$$x_3 = 3/2 - 3x_2/8 - x_5/4 + x_6/8 (29.70)$$

$$x_4 = 69/4 + 3x_2/16 + 5x_5/8 - x_6/16 (29.71)$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

Free variables: x_2, x_5, x_6

Basic variables: x_1, x_3, x_4

Basic solution:

$$(x_1, x_2, x_3, x_4, x_5, x_6) = (33/4, 0, 3/2, 69/4, 0, 0)$$

 $z = 111/4$

NEXT: Try to increase the value of x_2 : **ON THE BOARD**

Updated Equivalent Slack form (3):

Maximize:
$$z = 28 - x_3/6 - x_5/6 - 2x_6/3$$

Subject to:

$$x_1 = 8 + x_3/6 + x_5/6 - x_6/3$$

 $x_2 = 4 - 8x_3/3 - 2x_5/3 + x_6/3$
 $x_4 = 18 - x_3/2 + x_5/2$
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

At this point, all coefficients in objective function are negative. So no further rewrite can be done. We have found the optimal solution.

Basic solution:

$$(x_1, x_2, x_3, x_4, x_5, x_6) = (8,4,0,18,0,0)$$
 with $z = 28$

The original variables are x_1 , x_2 , x_3 , with values (8,4,0) The original objective value of $z = 3x_1 + x_2 + 2x_3$ is 28

SIMPLEX RUNNING TIME

Lemma 29.7:

- Assuming that INITIALIZE-SIMPLEX returns a slack form for which the basic solution is feasible, SIMPLEX either reports that a linear program is unbounded, or it terminates with a feasible solution in at most $\binom{m+n}{m}$ iterations.
 - n+m variables
 - m equations
 - in the slack form
- Note: Simplex may cycle indefinitely (if not implemented carefully).
 - See Lemma 29.2 and Lemma 29.6

SIMPLEX QUESTIONS

- How do we determine whether a linear program is unbounded?
 - When no equation bounds a variable, then the LP is unbounded
 - Simplex algorithm detects this situation
- How do we choose the entering and leaving variables?
 - Bland's rule: Pick the variable with lowest index that has positive coefficient in the objective function
 - Prevents indefinite cycling
- How do we determine whether a linear program is feasible?
- What do we do if the linear program is feasible, but the initial basic solution is not feasible?

AUXILIARY LP

- Lemma 29.11:
 - Let L be a linear program in standard form.
 - Let x₀ be a new variable, and let L_{aux} be the following linear program with n+1 variables

maximize:
$$-x_0$$
 (29.106)

subject to:
$$\sum_{j=1}^{n} (a_{ij}x_{j}) - x_{0} \leq b_{i} \qquad for i = 1, 2, ..., m$$
 (29.107)
$$x_{j} \geq 0 \qquad for j = 0, 1, ..., n$$
 (29.108)

• Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

PROOF ??

FUNDAMENTAL THEOREM OF LINEAR PROGRAMMING

- Theorem 29.13:
 - Any linear program L, given in standard form, either
 - 1. has an optimal solution with a finite objective value, or
 - 2. is infeasible, or
 - 3. is unbounded.
- If L is infeasible, SIMPLEX returns "infeasible". If L is unbounded, SIMPLEX returns "unbounded". Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

http://en.wikipedia.org/wiki/Linear_programming#Open_problems_and_recent_work http://en.wikipedia.org/wiki/Time_complexity#Strongly_and_weakly_polynomial_time

CONCLUSIONS

- Linear Programming is a very useful and powerful way of formulating optimization problems
- Simplex is a practically-efficient algorithm to solve LP problems
 - Other algorithms with better theoretical guarantees are known
 - The practical performance of Simplex, despite its theoretical exponential worst-case, has challenged many researchers, and much more detailed analysis on Simplex have been performed
 - This has led to new areas on analysis of algorithms
 - An important problem is finding an input that gives the worst-case performance for a given algorithm
 - e.g., reverse-sorted array for quick sort (with the first element as pivot)
 - for Simplex, an input with run-time 2ⁿ-1 iterations is known