Jame, group no:	

1. (10 points) Consider the function $f(x,y)=x^3-3y^3+2xy$. Using the total differential find the approximate value of f(1.98,0.99).

Name, group no:	

2. (10 points) Consider the system

$$\begin{cases} 3x^3 + y^3 + z^2 = 5\\ x + x^3 + 2y^3x = 4 \end{cases}$$

- (a) Check whether the functions z(y) and x(y) are defined at a point (1,1,1);
- (b) Find z'(y) if possible.

Name, group no:		

3. (10 points) Consider the function $h(b) = f(f(f(b \cdot f(b))))$. Find dh/db for b = 1 if it is known that f(1) = 2, f(2) = 3, f(3) = 1, f'(1) = 3, f'(3) = 2, f'(2) = 1.

Name, group no:		

- 4. (10 points) Consider the function $f(x,y)=xyz^3$, the vector v=(1,2) and the point A=(-1,-1).
 - (a) Find the gradient of f at the point A.
 - (b) Find the directional derivative of f at the point A in the direction given by v.

Name, group no:	
	• • • • • • • • • • • • • • • • • • • •

5. (10 points) Provide an explicit example of a sequence in \mathbb{R}^2 that is unbounded and has exactly two accumulation points.

Name, group no:	

6. Two identical firms compete in a labor market with the supply function $w(L) = w_0 + aL$, where $w_0 > 0$, a > 0 and L is the labor amount supplied at the wage rate w.

In order to find equilibrium one has to solve the system of equations

$$\begin{cases} f(L_1) - ME_1 = 0 \\ f(L_2) - ME_2 = 0 \end{cases},$$

where f'(L) < 0 for all L > 0 and ME_1 , ME_2 are marginal expenses which are found by differentiation, $ME_i = \partial(w(L)L_i)/\partial L_i$ for $i \in \{1,2\}$ and $L = L_1 + L_2$.

Suppose the equilibrium exists.

- (a) (10 points) Prove that $L_1^* = L_2^*$.
- (b) (15 points) Find $\partial L_1^*/\partial w_0$.

Jame, group no:	

1. (10 points) Consider the function $f(x,y)=x^3-3y^3-3xy$. Using the total differential find the approximate value of f(1.98,0.99).

Name, group no:

2. (10 points) Consider the system

$$\begin{cases}
-3x^3 + y^3 + z^2 = -1 \\
x + x^3 + 2y^3x = 4
\end{cases}$$

- (a) Check whether the functions z(y) and x(y) are defined at a point (1,1,1);
- (b) Find z'(y) if possible.

Name, group no:		

3. (10 points) Consider the function $h(b) = f(f(f(b \cdot f(b))))$. Find dh/db for b = 1 if it is known that f(1) = 2, f(2) = 3, f(3) = 1, f'(1) = 3, f'(3) = 2, f'(2) = 1.

Naı	m	e, į	gı	oı	ıр	n	10:																																		
					•			•	 	•		 	 							 			 •			 					•		•				 		•	•	

- 4. (10 points) Consider the function $f(x,y)=xyz^3$, the vector v=(1,2) and the point A=(1,-2).
 - (a) Find the gradient of f at the point A.
 - (b) Find the directional derivative of f at the point A in the direction given by v.

Name, group no:	

5. (10 points) Provide an explicit example of a sequence in \mathbb{R}^2 that is unbounded and has exactly two accumulation points.

Name, group no:	

6. Two identical firms compete in a labor market with the supply function $w(L) = w_0 + aL$, where $w_0 > 0$, a > 0 and L is the labor amount supplied at the wage rate w.

In order to find equilibrium one has to solve the system of equations

$$\begin{cases} f(L_1) - ME_1 = 0 \\ f(L_2) - ME_2 = 0 \end{cases},$$

where f'(L) < 0 for all L > 0 and ME_1 , ME_2 are marginal expenses which are found by differentiation, $ME_i = \partial(w(L)L_i)/\partial L_i$ for $i \in \{1,2\}$ and $L = L_1 + L_2$.

Suppose the equilibrium exists.

- (a) (10 points) Prove that $L_1^* = L_2^*$.
- (b) (15 points) Find $\partial L_2^*/\partial w_0$.

Jame, group no:	

1. (10 points) Consider the function $f(x,y)=x^3-3y^3+6xy$. Using the total differential find the approximate value of f(1.98,0.99).

Name, group no:	

2. (10 points) Consider the system

$$\begin{cases} 5x^3 + y^3 + z^2 = 7\\ x + x^3 + 2y^3x = 4 \end{cases}$$

- (a) Check whether the functions z(y) and x(y) are defined at a point (1,1,1);
- (b) Find z'(y) if possible.

Name, group no:		

3. (10 points) Consider the function $h(b) = f(f(f(b \cdot f(b))))$. Find dh/db for b = 1 if it is known that f(1) = 2, f(2) = 3, f(3) = 1, f'(1) = 2, f'(3) = 1, f'(2) = 3.

Name, group no:		

- 4. (10 points) Consider the function $f(x,y)=xyz^3$, the vector v=(1,2) and the point A=(1,-1).
 - (a) Find the gradient of f at the point A.
 - (b) Find the directional derivative of f at the point A in the direction given by v.

Name, group no:	

5. (10 points) Provide an explicit example of a sequence in \mathbb{R}^2 that is unbounded and has exactly two accumulation points.

Name, group no:	

6. Two identical firms compete in a labor market with the supply function $w(L) = w_0 + aL$, where $w_0 > 0$, a > 0 and L is the labor amount supplied at the wage rate w.

In order to find equilibrium one has to solve the system of equations

$$\begin{cases} f(L_1) - ME_1 = 0 \\ f(L_2) - ME_2 = 0 \end{cases},$$

where f'(L) < 0 for all L > 0 and ME_1 , ME_2 are marginal expenses which are found by differentiation, $ME_i = \partial(w(L)L_i)/\partial L_i$ for $i \in \{1,2\}$ and $L = L_1 + L_2$.

Suppose the equilibrium exists.

- (a) (10 points) Prove that $L_1^* = L_2^*$.
- (b) (15 points) Find $\partial L_1^*/\partial w_0$.

Name, group no:

1. (10 points) Consider the function $f(x,y)=x^3-3y^3+3xy$. Using the total differential find the approximate value of f(1.98,0.99).

Name, group no:	
	• • • • • • • • • • • • • • • • • • • •

2. (10 points) Consider the system

$$\begin{cases} 4x^3 + y^3 + z^2 = 6\\ x + x^3 + 2y^3x = 4 \end{cases}$$

- (a) Check whether the functions z(y) and x(y) are defined at a point (1,1,1);
- (b) Find z'(y) if possible.

Name, group no:		

3. (10 points) Consider the function $h(b) = f(f(f(b \cdot f(b))))$. Find dh/db for b = 1 if it is known that f(1) = 3, f(2) = 1, f(3) = 2, f'(1) = 3, f'(3) = 2, f'(2) = 1.

Name, group no:			
	• • • • • •	 • • •	• • •

- 4. (10 points) Consider the function $f(x,y)=xyz^3$, the vector v=(1,2) and the point A=(-1,1).
 - (a) Find the gradient of f at the point A.
 - (b) Find the directional derivative of f at the point A in the direction given by v.

Name, group no:	
	• • • • • • • • • • • • • • • • • • • •

5. (10 points) Provide an explicit example of a sequence in \mathbb{R}^2 that is unbounded and has exactly two accumulation points.

Name, group no:	

6. Two identical firms compete in a labor market with the supply function $w(L) = w_0 + aL$, where $w_0 > 0$, a > 0 and L is the labor amount supplied at the wage rate w.

In order to find equilibrium one has to solve the system of equations

$$\begin{cases} f(L_1) - ME_1 = 0 \\ f(L_2) - ME_2 = 0 \end{cases},$$

where f'(L) < 0 for all L > 0 and ME_1 , ME_2 are marginal expenses which are found by differentiation, $ME_i = \partial(w(L)L_i)/\partial L_i$ for $i \in \{1,2\}$ and $L = L_1 + L_2$.

Suppose the equilibrium exists.

- (a) (10 points) Prove that $L_1^* = L_2^*$.
- (b) (15 points) Find $\partial L_2^*/\partial w_0$.