

Задание №18, Сбор монет

Теория

Динамическое программирование — способ решения сложных задач путём разбиения их на более простые подзадачи.

Жадный алгоритм — алгоритм, заключающийся в принятии локально оптимальных решений на каждом этапе, допуская, что конечное решение также окажется оптимальным.

Описанные выше принципы применяются в решении данной задачи. Основная идея похожа на алгоритм Дейкстры: в новой таблице в каждую ячейку записываем сумму её исходного значения и наиболее длинного/короткого пути из ячеек, из которых в неё можно попасть. Есть два основных равноправных способа решения:

• <u>"ИЗ"</u>. Передаём в функцию МИН/МАКС ячейки, из которых можно попасть в текущую. Распространяя функцию на всю таблицу, мы получаем в ячейках наиболее длинный/короткий путь, который можно построить из начальной ячейки. Наглядно показывает путь до конечной ячейки, но если таких ячеек несколько, из них нужно выбрать нужную. Также важно обращать внимание на то, не появилось ли несколько начальных ячеек из-за углов в границах

Для ходов вниз и вправо:

=МИН(Y27;Z26)+A1	103
117	131

• <u>"В"</u>. Передаём в функцию МИН/МАКС ячейки, в которые можно попасть из текущей

Распространяя функцию на всю таблицу, мы получаем в начальной ячейке наиболее длинный/короткий существующий в таблице путь. Не понятно, какая именно ячейка была конечной для этого пути, но ответ уже находится в начальной ячейке. Но если конечных ячеек может быть несколько, а в условии требуется найти путь до конкретной самой крайней ячейки, то в лишних конечных ячейках можно записать слишком большое/маленькое значение, чтобы они не учитывались для подсчёта пути.

На что стоит обратить внимание:

- Какие действия допустимы для робота: это могут быть как самые распространённые и простые перемещения вправо/вниз или влево/вверх, так и особые варианты скачки (см. задачу 3 ниже), перемещения в любую клетку слева или любую клетку вниз и т.д. От этого пункта часто зависит следующий.
- Определите начало и конец пути: в задачах с границами, образующими "углы", формула может считать не ту ячейку за конечную/начальную, которая вам нужна. Обычно, в условии начало всегда задаётся однозначно, а конец может быть любым, лишь бы путь был максимальный/наименьший (но бывают и исключения, читайте условие). Соответственно важно проверять, что начало и конец вашего найденного пути соответствуют задаче. Для этого можно поменять значение ячейки-начала или конца вручную и посмотреть, поменяется ли наш ответ в ячейке. Или можно поменять способ решения с "ИЗ" на "В" или наоборот.
- Отрицательные ячейки: при их наличии следите, чтобы формула максимума не воспринимала пустые ячейки как 0 и не выбирала их вместо отрицательного значения. Решением может быть заполнение пустых ячеек заведомо неприемлемым значением (намного меньшим или большим), чтобы формула их не учитывала, или банально убирать такие ячейки (например, выход за границы таблицы) из функции.
- Про выход за внешние границы таблицы: при типичных условиях внешняя граница не влияет на решение. Но если у нас появляются удвоения, утроения значений ячейки или что-то подобное, то обязательно следим за тем, чтобы формулы (на границах) не брали ячейки за пределами таблицы.
- Вторую таблицу для высчитывания путей обязательно делайте на расстоянии от изначальной, чтобы формулы не затрагивали лишние ячейки из неё. Лучший вариант по диагонали от исходной.

- Если вы в формуле МИН/МАКС при удалении аргумента оставляете ";", то фактически вы оставляете аргумент "0", что может влиять на результат. Поэтому из МАКС(A1;A2) удаляем A2 не так MAKC(A1;), а так MAKC(A1).
- Если формулы в ячейках не выводят результат, а просто показываются текстом выделяете ячейки и через ПКМ меняете формат ячеек на "общий".

Алгоритм решения

https://drive.google.com/drive/folders/1Miv8a_AcD7yzT9pov6vJx6RiTklrBlnP?usp=drive_link - файлы.

Типичная задача ЕГЭ (2 задача)

Квадрат разлинован на N * N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз.

Команда вправо перемещает Робота в соседнюю правую ячейку, команда вниз — в соседнюю нижнюю. В случае если Робот выйдет за границы данного квадрата или пересечет внутренние границы — он разбивается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Ваша задача — найти максимальную и минимальную суммы монет, собранные исполнителем (это относится и к начальной, и к последней ячейке квадрата), если Робот начинает движение из левой верхней ячейки в конечную остановку. Конечная остановка робота — клетка, ограниченная стенкой справа и снизу. Из этой клетки робот ходить дальше не может, а накопленная сумма считается итоговой.

В ответ укажите 2 числа без пробела — сначала максимальную сумму, затем минимальную. Пример входных данных:

14	6	21	1
3	5	9	14
11	4	17	5
8	11	8	2

Δ	Α	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	P
1	11	9	76	15	63	98	4	69	79	47	49	29	42	68	13	94
2	22	42	70	94	40	19	47	58	14	10	80	47	30	7	39	43
3	1	19	87	66	17	76	27	82	32	45	80	77	79	17	56	5
4	71	57	6	11	32	5	49	51	80	2	74	20	83	57	54	24
5	73	95	56	26	9	12	100	68	52	45	59	30	10	18	53	38
6	79	11	15	15	55	45	55	70	10	28	62	89	78	18	100	73
7	70	15	27	54	51	22	51	20	56	69	88	99	41	79	74	80
8	64	70	60	50	23	85	80	55	18	55	29	71	30	40	50	92
9	37	56	32	85	85	61	23	87	27	30	5	84	2	99	56	43
10	100	24	89	39	73	82	90	51	84	60	22	27	43	94	69	88
11	28	92	43	71	6	49	4	4	86	86	90	41	84	87	20	99
12	33	34	48	14	99	88	42	29	28	71	87	15	39	90	32	6
13	59	13	26	62	64	98	59	30	64	30	22	9	23	34	90	12
14	88	32	3	41	68	69	46	38	33	37	83	8	14	69	13	74
15	66	92	92	4	43	85	96	86	79	5	10	15	93	18	46	93
16	86	7	19	54	33	21	95	21	81	15	34	27	37	21	83	95
17																

1. Копируем заданную таблицу так, чтобы формулы МАКС/МИН не брали значения из исходной таблицы.

2. В условии указано движение робота: вправо - соседняя правая ячейка, вниз - соседняя нижняя ячейка. Учитывая это, пишем формулу в начальную ячейку новой таблицы: =MAKC(A18;B17)+A1. Для каждой ячейки мы смотрим, из каких ячеек мы можем в неё попасть (синяя и красная ячейки на скриншоте, противоположные движениям робота), и

выбираем максимальную сумму монет, прибавляя при этом значение самой ячейки из исходной таблицы (А1).

3. Потянув за правый нижний уголок, растягиваем формулу на все ячейки второй таблицы. Чтобы не потерять внутренние границы, выбираем в правом нижнем окошке опцию "Заполнить только значения" (если такой опции нет, копируем исходную таблицу и через ПКМ в параметрах вставки выбираем "Форматирование", вставляем в новую таблицу).

4. Теперь для всех приграничных ячеек (в нашем случае для тех, кто правее или ниже границ) убираем из формул недостижимые ячейки (которые проходят сквозь границы). Растягиваем изменения на все идентичные ячейки.

342	371	432	490	512
461	521	571	594	679
517	553	656	=MAKC	(F25)+E9
552	642	695	814	896
648	691	766	820	945
682	739	780	919	1033
695	765	842	983	1131
768	771	883	1051	1200
894	986	990	1094	1285
	L	J94	0/5	
	5 🕩	679	740	
	5	752	834	
	5	758	883	
)	857	971	
	2	921	10€	
	3	989	113	
)	1033	P	

5. Т.к. по условию конечная остановка - любая ячейка, ограниченная справа и снизу, выбираем максимальное значение среди них: 1944

6. Через сочетание клавиш ctrl+f переходим в "Найти", открываем вкладку "Заменить" и меняем "МАКС" на "МИН" нажатием "Заменить всё".

7. Также среди них выбираем минимальное: 556. Ответ 1994556

Нетипичное движение, удвоение по диагонали (12 задача)

В файле содержится таблица N на M клеток. При перемещении исполнитель собирает монеты из клеток, в которые ходит. Робот имеет возможность перемещаться по ячейкам данной таблицы выполняя за одно перемещение одну из трёх команд: вправо, вниз и диагональ.

- 1. По команде вправо в соседнюю правую.
- 2. По команде вниз в соседнюю нижнюю.
- 3. По команде диагональ робот ходит одновременно вправо и вниз (по диагонали) и собирает удвоенное количество монет в той клетке, куда он пришел.

При попытке пересечь внешние границы исполнитель разрушается.

Определите, какое минимальное и максимальное количество монет может собрать исполнитель, пройдя из левой верхней в правую нижнюю клетку. В ответ запишите два целых числа без пробела и иных разделителей – сначала минимальное, затем максимальное.
Файл: 18.7.xisx 8

Фаил: <u>18.7.xtsx</u>

Пример входных данных:

14	6	21	1
3	5	9	14
11	4	17	5
8	11	8	2

	м	ы	C	U	L		U	- 11			IX.	L	IVI	IN	U	-	ų	IN C
1	10	3	14	26	2	96	17	37	56	31	91	54	58	27	63	69	27	13
2	97	22	90	99	95	35	11	60	66	25	66	37	99	76	20	31	15	38
3	37	65	96	34	66	82	50	65	68	28	42	20	68	48	11	21	32	4
4	59	5	33	59	5	26	96	83	29	38	35	93	65	12	33	3	80	33
5	38	98	26	81	97	51	23	43	10	17	30	64	11	20	62	26	30	27
5	20	53	46	48	84	59	78	95	34	55	73	58	27	50	88	15	75	44
7	82	15	41	1	53	31	37	80	25	65	95	9	66	93	39	77	35	26
3	48	96	38	9	93	81	66	68	14	68	63	70	72	37	69	17	10	1
Э	77	79	36	87	40	5	52	99	1	92	37	55	21	59	79	22	31	38
.0	62	94	68	83	81	38	95	48	24	63	82	10	7	8	52	39	50	56
.1	35	12	96	90	55	11	40	14	33	31	24	10	85	17	75	47	85	18
.2	73	47	2	77	57	34	24	74	44	19	37	40	14	45	87	46	97	53
.3	66	25	69	49	76	16	96	39	90	96	49	80	40	68	86	68	12	9
.4	68	79	96	16	56	39	33	32	96	87	31	28	22	63	63	85	26	41
.5	78	29	2	2	49	16	59	63	86	14	26	23	25	87	45	95	79	1
.6	53	72	31	96	79	62	3	11	77	87	22	89	88	93	43	22	26	73
.7	3	31	7	50	50	44	16	30	82	15	46	63	9	66	36	88	91	44
.8	84	42	77	7	6	91	5	36	14	68	17	50	88	55	76	93	74	24

1. Копируем заданную таблицу так, чтобы формулы МАКС/МИН не брали значения из исходной таблицы.

2. В условии указано нестандартное движение робота: вправо - соседняя правая ячейка, вниз - соседняя нижняя ячейка, диагональ - соседняя ячейка по диагонали + удвоенное значение этой ячейки. Учитывая это, пишем формулу в начальную ячейку новой таблицы:

=MAKC(E22;F21;F22+B2)+A1. Для каждой ячейки мы смотрим, в какие ячеек мы можем из них попасть. Если мы попадаем в диагональную, то обязательно учитываем, что в этом случае значение ячейки придется прибавить ещё раз (удвоить): F22+B2 в функции MAKC.

3. Потянув за правый нижний уголок, растягиваем формулу на все ячейки второй таблицы. Получаем значение максимального пути в начальной ячейке.

4. Через сочетание клавиш ctrl+f переходим в "Найти", открываем вкладку "Заменить" и меняем "МАКС" на "МИН" нажатием "Заменить всё".

5. Перед тем, как давать ответ, стоит заметить, что при таком подходе у нас крайние нижние и правые ячейки полностью идентичны исходным значениям таблицы. Это явно указывает на ошибку. Уберём из формул этих ячеек те ячейки, которые выходят за границы таблицы: удаляем из функции МИН синюю (ЕЗ9) и фиолетовую (F39+B19) ячейки (не забываем удалять;) и через тот же правый нижний уголок распространяем это

изменение на все нижние ячейки. Аналогично делаем для крайних правых ячеек.

6. Получаем ответ **8992611**

899	889	899	885	859	894	804	823	794	744	757	666	612	554	570	594	538	543
938	886	886	861	884	822	787	786	766	713	704	655	673	574	507	525	511	530
841	864	858	762	789	800	776	726	700	688	660	618	598	535	487	494	524	492
858	799	801	782	723	718	765	696	632	680	660	644	583	518	506	473	562	488
824	866	768	824	817	720	669	646	603	642	625	604	540	529	521	470	485	455
786	795	742	743	811	755	743	679	593	650	595	571	536	509	508	444	469	428
833	751	736	695	749	696	665	628	559	619	607	513	551	513	420	441	394	384
876	828	732	694	703	686	655	589	534	554	512	504	485	470	433	364	368	358
906	847	768	732	645	605	659	619	520	541	449	454	413	444	426	347	362	357
829	849	805	737	654	600	620	559	519	520	484	402	392	385	377	325	331	319
790	755	803	707	617	562	551	511	497	464	433	409	462	377	360	286	348	263
844	788	741	776	699	657	623	599	525	481	462	425	385	371	326	239	278	245
812	746	739	703	702	626	672	583	602	543	462	459	397	403	335	249	181	192
766	721	736	654	659	616	577	544	512	489	416	385	357	335	290	254	169	183
747	669	640	638	636	587	610	551	488	402	388	362	339	314	227	255	217	142
805	797	749	805	709	630	568	565	554	545	458	436	384	296	203	160	138	141
752	749	718	734	684	634	590	574	544	462	447	401	338	329	263	227	139	68
907	823	781	704	697	691	600	595	559	545	477	460	410	322	267	191	98	24

Нетипичное перемещение (16 задача)

Квадрат разлинован на N * N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или скачок.

1. По команде вправо — в соседнюю правую ячейку.

2. По команде скачок — в самую левую клетку, находящуюся на один ряд ниже от текущего положения робота.

В случае если Робот выйдет за границы данного квадрата — он разбивается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 101. Ваша задача — найти максимальную и минимальную суммы монет, собранные исполнителем, если Робот начинает движение из левой верхней ячейки в правую нижнюю. В ответ укажите 2 числа без пробела — сначала максимальную сумму, затем минимальную.

Пример таблицы на 4 ячейки:

7	29	5	28
13	24	19	4
25	16	7	9
39	37	2	3
Файл	1		

Задание №18, Сбор монет

12

	А	В	C	U	E	۲	G	н	I	J	K	
	15	96	18	21	35	37	94	42	27	53	95	
	78	85	101	36	67	53	30	81	20	85	76	
	52	78	59	35	90	93	33	90	56	30	24	
	5	79	6	26	25	100	87	5	14	74	94	
	47	19	65	49	85	60	81	24	32	56	93	
	18	17	42	24	52	62	11	96	33	21	47	
	46	79	40	40	83	53	88	70	97	46	68	
	35	68	48	100	90	32	94	91	51	94	83	
	7	13	65	52	90	3	52	89	16	84	90	
)	11	74	27	14	99	79	34	16	59	98	85	
L	62	65	90	101	28	1	59	28	85	47	2	

1. Копируем таблицу по диагонали от исходной, чтобы формулы МАКС/МИН не брали значения из исходной таблицы.

2. В условии указано нестандартное движение робота: вправо - соседняя правая ячейка, скачок - самая левая клетка на строке ниже. Учитывая это, пишем формулу в начальную ячейку: =MAKC(N13;\$M14) + A1. Фиксируем в формуле столбец М, поставив \$ перед M14 (красная ячейка на скриншоте), чтобы при переносе формулы на другие ячейки у нас она все равно ссылалась на крайний левый столбец для этой таблицы.

=MAKC(N13;\$M14)+A1		96	18	21	35	37	94	42	27	53	95	
<u> </u>	78	85	101	36	67	53	30	81	20	85	76	
	52	78	59	35	90	93	33	90	56	30	24	
	5	79	6	26	25	100	87	5	14	74	94	
	47	19	65	49	85	60	81	24	32	56	93	
	18	17	42	24	52	62	11	96	33	21	47	
	46	79	40	40	83	53	88	70	97	46	68	
	35	68	48	100	90	32	94	91	51	94	83	
	7	13	65	52	90	3	52	89	16	84	90	
	11	74	27	14	99	79	34	16	59	98	85	
	62	65	90	101	28	1	59	28	85	47	2	

3. Потянув за правый нижний уголок, растягиваем формулу на все ячейки второй таблицы. Получаем значение максимального пути в начальной ячейке.

6122 6044 5959 5858 5822 5755 5702 5672 5591 5571 54 5410 5358 5280 5221 5186 5096 5003 4970 4880 4824 47 4770 4765 4686 4680 4654 4629 4529 4442 4437 4423 43 4255 4208 4189 4124 4075 3990 3930 3849 3825 3793 37 3644 3626 3609 3567 3543 3491 3429 3418 3322 3289 32 3221 3175 3096 3056 3016 2933 2880 2792 2722 2625 25 2511 2476 2408 2360 2260 2170 2138 2044 1953 1902 18 1725 1718 1705 1640 1588 1498 1495 1443 1354 1338 12											
5410 5358 5280 5221 5186 5096 5003 4970 4880 4824 477 4770 4765 4686 4680 4654 4629 4529 4442 4437 4423 43 4255 4208 4189 4124 4075 3990 3930 3849 3825 3793 37 3644 3626 3609 3567 3543 3491 3429 3418 3322 3289 32 3221 3175 3096 3056 3016 2933 2880 2792 2722 2625 25 2511 2476 2408 2360 2260 2170 2138 2044 1953 1902 18 1725 1718 1705 1640 1588 1498 1495 1443 1354 1338 12 1164 1153 1079 1052 1038 939 860 826 810 751	6655	6640	6544	6526	6505	6470	6433	6339	6297	6270	6217
4770 4765 4686 4680 4654 4629 4529 4442 4437 4423 4364 4255 4208 4189 4124 4075 3990 3930 3849 3825 3793 37 3644 3626 3609 3567 3543 3491 3429 3418 3322 3289 32 3221 3175 3096 3056 3016 2933 2880 2792 2722 2625 25 2511 2476 2408 2360 2260 2170 2138 2044 1953 1902 18 1725 1718 1705 1640 1588 1498 1495 1443 1354 1338 12 1164 1153 1079 1052 1038 939 860 826 810 751 6	6122	6044	5959	5858	5822	5755	5702	5672	5591	5571	5486
4255 4208 4189 4124 4075 3990 3930 3849 3825 3793 37 3644 3626 3609 3567 3543 3491 3429 3418 3322 3289 32 3221 3175 3096 3056 3016 2933 2880 2792 2722 2625 25 2511 2476 2408 2360 2260 2170 2138 2044 1953 1902 18 1725 1718 1705 1640 1588 1498 1495 1443 1354 1338 12 1164 1153 1079 1052 1038 939 860 826 810 751 6	5410	5358	5280	5221	5186	5096	5003	4970	4880	4824	4794
3644 3626 3609 3567 3543 3491 3429 3418 3322 3289 32 3221 3175 3096 3056 3016 2933 2880 2792 2722 2625 25 2511 2476 2408 2360 2260 2170 2138 2044 1953 1902 18 1725 1718 1705 1640 1588 1498 1495 1443 1354 1338 12 1164 1153 1079 1052 1038 939 860 826 810 751 6	4770	4765	4686	4680	4654	4629	4529	4442	4437	4423	4349
3221 3175 3096 3056 3016 2933 2880 2792 2722 2625 25 2511 2476 2408 2360 2260 2170 2138 2044 1953 1902 18 1725 1718 1705 1640 1588 1498 1495 1443 1354 1338 12 1164 1153 1079 1052 1038 939 860 826 810 751 6.	4255	4208	4189	4124	4075	3990	3930	3849	3825	3793	3737
2511 2476 2408 2360 2260 2170 2138 2044 1953 1902 18 1725 1718 1705 1640 1588 1498 1495 1443 1354 1338 12 1164 1153 1079 1052 1038 939 860 826 810 751 6	3644	3626	3609	3567	3543	3491	3429	3418	3322	3289	3268
1725 1718 1705 1640 1588 1498 1495 1443 1354 1338 12 1164 1153 1079 1052 1038 939 860 826 810 751 60	3221	3175	3096	3056	3016	2933	2880	2792	2722	2625	2579
1164 1153 1079 1052 1038 939 860 826 810 751 6.	2511	2476	2408	2360	2260	2170	2138	2044	1953	1902	1808
	1725	1718	1705	1640	1588	1498	1495	1443	1354	1338	1254
568 506 441 351 250 222 221 162 134 49	1164	1153	1079	1052	1038	939	860	826	810	751	653
	568	506	441	351	250	222	221	162	134	49	2

4. Через сочетание клавиш ctrl+f переходим в "Найти", открываем вкладку "Заменить" и меняем "МАКС" на "МИН" нажатием "Заменить всё".

5. Получаем минимальное значение в начальной ячейке. Ответ: 6655882

882	963	885	888	902	904	961	909	894	920	962
867	874	890	825	856	842	819	870	809	874	865
789	815	796	772	827	830	770	827	793	767	761
737	811	738	758	757	832	819	737	746	806	826
732	704	750	734	770	745	766	709	717	741	778
685	684	709	691	719	729	678	763	700	688	714
667	700	661	661	704	674	709	691	718	667	689
621	654	634	686	676	618	680	677	637	680	669
586	592	644	631	669	582	631	668	595	663	669
579	642	595	582	667	647	602	584	627	666	653
568	506	441	351	250	222	221	162	134	49	2