Single Value Decomposition: - (SVD) [factorization of the malrie] There are several ways of decomposing matrices.
Decomposition is clone to convert the oxiginal matrix into new form which is easy to work with
2 or more matrices.
OVD - matrix factorization technique
SVD takes oxiginal Data matrix and converts ox xather decomposes it into 3 matrices.
$A = U \ge V^{T}$ mxn
≥ → is a cliagonal matrix (i.e only diagonal mxm elements)
diagonal ells are sorted from large to smaller values.
Lingular value matrix.
U → left singular value matrix m×n → A·A (we find eigenvectors)
NX → sight singular value malsix. nxn → A T. A. (we find rigen vectors)

Example:
Find SVD of A= 3 1 1
VI 3 1
Solution:
Computing "u" - part I
a) $\mathcal{R} = A \cdot A^{T} = \begin{bmatrix} 3 & 1 & 1 & 3 & -1 & = & 11 & 1 \\ & & -1 & 3 & 1 & 1 & 3 & & 1 & 1 \end{bmatrix}$
2×3 1 1 2×2
3×2
b) computing sigenvalues (2) and sigen vectors
of A.A.
$AV = \lambda V$
here A -> A.A T say P. = 11
D OT -O
$P = \lambda I = 0$
$\begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 2 \\ 0 \end{bmatrix} = 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$11-\lambda \qquad 1 \qquad = 0$
$1 11-\lambda$
$(11-\lambda)(11-\lambda) - (1)(1) = 0$
$12 - \lambda- \lambda+ \lambda^2- =0$
$\lambda^2 = 22\lambda + 120 = 0$
$\lambda = 10 \text{OR} \lambda_2 = 12$
$\lambda_1 = 10 \text{OR} \lambda_2 = 12.$ $\longrightarrow \text{ sigen values}.$

$$-x+y = 0$$
 — (3)
 $+x-y = 0$ — (4)

$$x = y$$
 ie if $x = y = 1$

$$x = y$$

$$x - y = 0$$

Normalizing the above vector.

unit length =
$$\sqrt{(1)^2 + (1)^2} = \sqrt{2}$$
.

[Græater the 'A' value - rigen vectors of that a would be written first].

Hence,
$$U = \begin{bmatrix} 1 & 1 \\ \sqrt{2} & \sqrt{2} \end{bmatrix}$$

Computing VT - part II.

a.)
$$V = A^{T}$$
. $A = \begin{bmatrix} 3 & -1 \\ 1 & 3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \\ 2 & 4 & 2 \end{bmatrix}$

$$3x2 \qquad 2x3$$

b) Computing sign values 2 signivertors of

Since the malain is 3-D.

writing characteristic eq. of A.A.

$$\lambda^3 - S_1 \lambda^2 + S_2 \lambda - S_3 = 0$$

3 = 8km of chagonal elts = 10+10+2 = 22

32 = 8×m of minox3 of diagonal elts = 10 4 + 10 2 + 10 20 H 2 2 2 1970

$$=$$
 $4+16+100 = 120$

33 = determinant of ATA

$$\lambda^{3} - 22\lambda^{2} + 120\lambda - 0 = 0$$

$$\lambda_1 = 12, \lambda_2 = 10, \lambda_3 = 0.$$

eigen vectors of $\lambda_1 = 013$, $\lambda_2 = 10$ Q. $\lambda_3 = 0$

when $\lambda_1 = 12$.

$$A V = \lambda V$$

				-	~				
1	10	0	2	20	=	12	100		
	0	10	H	4			y		
	. 2	H	2	*			ス		

$$-2x + 0y + 2z = 0 \qquad -(1)$$

$$0x - 2y + HZ = 0 \qquad -(2)$$

$$2x + Hy - 10z = 0 \qquad -(3)$$

consider eq. (1) and eq. (2).

$$n = -y = \chi$$
 $0 = \chi$
 $-2 = \chi$
 $-2 = \chi$
 $0 = \chi$
 $0 = \chi$
 $0 = \chi$

Normalizing. vector.

$$\sqrt{(1)^2 + (-2)^2 + (1)^2} = \sqrt{6}$$

when
$$\lambda = 10$$
.

10	0	2	~%	E	10	n	
O	01	4	y			4	
2	4	2	ス			z	
		-	_				7

$$0x + 0y + 2x = 0 - (1)$$

$$0x + 0y + 4x = 0 - (2)$$

$$2x + 4y = 82 = 0 - (3)$$

Normalizing vector:-

$$\sqrt{1^2+2^2+(-5)^2}=\sqrt{30}$$

$$\frac{1}{2}$$
 $\frac{1}{\sqrt{30}}$ $\frac{1}{\sqrt{30}}$ $\frac{2}{\sqrt{30}}$ $\frac{1}{\sqrt{30}}$

Hence,

$$\sqrt{1} = \frac{1}{\sqrt{6}} - \frac{2}{\sqrt{6}}$$
 $\sqrt{6}$
 $\sqrt{6}$
 $\sqrt{6}$
 $\sqrt{6}$
 $\sqrt{6}$
 $\sqrt{6}$
 $\sqrt{6}$
 $\sqrt{5}$
 $\sqrt{5}$
 $\sqrt{5}$
 $\sqrt{5}$
 $\sqrt{5}$
 $\sqrt{30}$
 $\sqrt{30}$
 $\sqrt{30}$

Computing & part III.

eigen values = diagonal ells in

Hence, decomposed matrix A is

U Z VI