```
2.1 . 12, 13, 16, 19, 21-24
```

$$y = (m \times a + b)$$
 $m = g'(a) = -\frac{1}{a^2}$

$$\frac{1}{a} = -\frac{1}{a^2} \cdot a + b = b = \frac{2}{a}$$

solution:
$$y = -\frac{x}{a^2} + \frac{2}{a}$$
.

$$\lim_{h\to 0^+} \frac{f(h) - f(0)}{h} = \lim_{h\to 0^+} \frac{f(h' - 0)}{h} = + \infty$$

$$\lim_{h\to 0^-} \frac{f(h) - f(h)}{h} = \lim_{h\to 0^-} \frac{f(h' - 0)}{h} = -\infty$$

$$16 - g.(x) = 1x^2 - 11$$

$$-3 f(x) = x^{2} - 1 for x \ge 1 or x \le -1$$

$$= 1 - x^{2} for -1 < x < 1$$

$$=1-x^2$$
. for $=1 < x < 1$

$$= \lim_{h \to 0^+} \frac{2h + h^2}{h} = 2$$

$$\lim_{h\to 0^{+}} \frac{f(1+h)-f(1)}{h} = \lim_{h\to 0^{-}} \frac{1-(1+h)^{2}}{h} = -2$$
 Ly no tangent line,

.19. Slope of the tangent line of
$$g(x) = x^3$$
 at $x = a$.

(a) $= g'(a) = 3a^2$

(b)
$$f'(x) = 3x^2 = 3 \implies x = \pm 1$$

L₂ tangent lines at (1,1) and (-1,-1)

at (1,1) $y = 3x - 2$ at (-1,-1) = $y = 3x + 2$

at $f'(x) = x^2 - x + 1$

tangent line has alogic 1.?

 $f'(x) = 3x^2 - 1 = 2 \implies x = \pm 1$

22. $f'(x) = \frac{1}{x}$

tangent line priper discilor to $y = 4x - 3 \implies 5lope : -\frac{1}{4}$
 $f'(x) = -\frac{1}{x^2} = -\frac{1}{4} \implies x = \pm 2$

23. $x + y = k$ and $y = x^2$ priper discilor at entraction $y = k \times x = x^2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$

24. At intraction $y = k \times x = x^2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$

25. $f'(x) = x^2 + 2 \implies x = \pm 2$

26. At intraction: $f(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$

27. At intraction $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$

28. $f'(x) = x^2 + 2 \implies x = \pm 2$

29. $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$

29. $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$

At intraction: $f(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^2 + 2 \implies x = \pm 2$
 $f'(x) = x^$

6) not differentiable at 0 and 11.

(25)
$$f(x) = x \cdot sgn(x) = |x| \cdot (4t \times \pm 6)$$

Lime
$$\frac{f(h)-f(0)}{h} = \lim_{h\to 0} \frac{h^2 s s n(h)-0}{h} = \lim_{h\to 0} h \cdot s s n(h) = 0$$
.
so $f(x)$ is differentiable at $x=0$ and $f'(0)=0$.

(27)
$$h(x) = 1x^2 + 3x + 21 = 1(x+1)(x+2)$$

=
$$(x+1)(x+2)$$
 for $x \ge -1$ or $x \le -2$ _> $f'(x) = 2x + 3$
= $-(x+1)(x+2)$ for $-2 < x < -1$ $f'(x) = -2x - 3$

At
$$x=-1$$
, $\beta_{+}^{7}(-1)=2(-1)+3=1$ $\Rightarrow \beta_{-}^{7}(1)$ does not exist: $\beta_{-}^{7}(-1)=-2(-1)-3=-1$

$$x = -2$$
 $f'(-2) = 2(-2) + 3 = -1$ $-3 f'(2)$ does not exist. $f'(-2) = -2(-2) - 3 = +1$

2.3 33.
$$\frac{2}{dx} \left(\frac{x^2}{f(x)} \right) \Big|_{x=2} = \frac{2 \times f(x) - x^2 f'(x)}{(f(x))^2} \Big|_{x=2} = \frac{2 \cdot 2 \cdot f(2) - 2^2 f'(2)}{(f(2))^2} = \frac{8 - 4 \cdot 3}{z^2} = -1$$

34.
$$\frac{L}{dx} \left(\frac{f(x)}{x^2} \right) \Big|_{x=2} = \frac{f'(x) \cdot x^2 - 2x \cdot f(x)}{x^4 \cdot 3} = \frac{f'(2) \cdot 2 - 2f(2)}{2^3} = \frac{6 - 4}{8} = \frac{1}{4}$$

35.
$$\frac{d}{dx} (x^2 f(x)) \Big|_{x=2} = (2x f(x) + x^2 f'(x)) \Big|_{x=2} = 2 \cdot 2 \cdot f(2) + 2^2 f(2) = 20.$$

3.6.
$$\frac{d}{dx} \left(\frac{f(x)}{x^2 + f(x)} \right) \Big|_{x=2} = \frac{f'(x) \cdot (x^2 + g(x)) - (2x + f'(x))}{(x^2 + f(x))^2} \Big|_{x=2}$$

$$=\frac{f'(2)\cdot 2^2-2\cdot f(2)}{(\cdot 2^2+f(2))^2}=\frac{12-8}{(4+2)^2}=\frac{1}{9}$$

23.
$$\frac{d}{dx} (f(Sx-x^2)) = (S-2x) \cdot f'(Sx-x^2)$$

24.
$$\frac{1}{dx} \left[\beta \left(\frac{2}{x} \right) \right]^3 = 3 \left(\beta \left(\frac{2}{x} \right) \right)^2 \cdot \beta \left(\frac{2}{x} \right) \cdot \frac{-2}{x^2}$$

$$2(-\frac{2}{\sqrt{3}}) \frac{3+2f(x)}{\sqrt{3+2f(x)}} = \frac{1}{2\sqrt{3+2f(x)}} \cdot \frac{2f'(x)}{\sqrt{3+2f(x)}} = \frac{g'(x)}{\sqrt{3+2f(x)}}$$

26.
$$\frac{d}{dt} f(3+2+) = f'(3+2+) \frac{2}{2(3+2+)} = \frac{f'(3+2+)}{2(3+2+)}$$

24. $\frac{d}{dx} f'(3+2|x) = f'(3+2|x) \frac{d}{dx} = \frac{f'(3+2|x|)}{\sqrt{x}}$

24.
$$f(3+2) = f'(3+2) = f'(3+2) = f'(3+2) \times f$$

28.
$$\frac{d}{dx}\left(\int_{-1}^{1}(x)f(x)\right) = \int_{-1}^{1}(x)f(x)$$
. 2. $\int_{-1}^{1}(x)f(x)$. 3. $\int_{-1}^{1}(x)$

11. $\int_{-1}^{1}(x)f(x) = \int_{-1}^{1}(x)f(x)$. 12. $\int_{-1}^{1}(x)f(x) = \int_{-1}^{1}(x)f(x)$. 13. $\int_{-1}^{1}(x)f(x) = \int_{-1}^{1}(x)f(x)$. 14. $\int_{-1}^{1}(x)f(x) = \int_{-1}^{1}(x)f(x) = \int_{-$

$$f(x) = \cos(ax) - \int_{-\infty}^{\infty} f(x) = -a \sin(ax) - \int_{-\infty}^{\infty} f(x) = -a^{2} \cos(ax)$$

$$f^{(2n)}(x) = (-1)^{n} a^{(2n)} \cos(ax)$$

$$f^{(2n+1)}(x) = (-1)^{n+1} a^{(n+1)} \sin(ax)$$