Crank-Nicolson Method for Partial Differential Equations

Elijan Jakob Mastnak Student ID: 28181157

December 2020

Contents

1	Theory							
	1.1	Basic Crank-Nicolson Solution	3					
	1.2	Higher-Order Position Approximation						
	1.3	Higher-Order Time Evolution						
2	Initial Solution Steps							
	2.1	Finding Complex Roots $z_s^{(M)}$	7					
	2.2	Finding Coefficients $c_k^{(r)}$	7					
	2.3	Constructing the Matrix A						
	2.4	Solving for the Wavefunction						
3	The Problem's Relevant Quantum Mechanics							
	3.1	Particle in a Harmonic Potential	8					
	3.2	Free Gaussian Wave Packet	S					
4	Coherent State in a Harmonic Potential 1							
	4.1	Accuracy	10					
5	Gaussian Wave Packet in Free Space							
	5.1		12					
	5.2	A Note on Efficiency and Computation Time	13					

Assignment

1. Analyze the time evolution of the initial state

$$\psi(x,0) = \frac{\alpha^{1/2}}{\pi^{1/4}} e^{-\frac{\alpha^2}{2}(x-a)^2}$$

in the harmonic potential $V(x) = \frac{kx^2}{2}$, where $k = \omega^2$ and $\alpha = k^{1/4}$ and .

Use the parameters $\omega = 0.2$ and a = 10. Use a position grid $x \in [-40, 40]$ with N = 300 points. Choose a time step Δt suited to the oscillatory period $T = \frac{2\pi}{\omega}$. Observe the time evolution over ten oscillatory periods.

2. Analyze the time evolution of the initial Gaussian wave packet

$$\psi(x,0) = (2\pi\sigma_0^2)^{-1/4} e^{ik_0(x-a)} e^{-(x-a)^2/(2\sigma_0)^2}$$

in free space with V=0. Use the parameters $\sigma_0=\frac{1}{20}, k_0=50\pi, a=0.25$. Use the position values $x\in[-0.5,1.5]$ and a time step $\Delta t=2\Delta x^2$. Observe the time evolution until the wave packet's center reaches $x\approx0.75$.

3. Optional: Solve the same problems with a higher-order approximation of the position and time derivatives, as discussed in van Dijk [1].

Before flooding you with 9 pages of theory, here is a friendly, colorful picture:

Figure 1: A free wave packet's probability density traveling along the x axis.

1 Theory

To skip the introductory theory, see Section 2. To skip preliminary solution steps and jump right to the results, see Section 4.

This report involves solving the time-dependent Schrödinger equation

$$\left(i\hbar\frac{\partial}{\partial t} - H\right)\psi(x,t) = 0$$

with a time-independent Hamiltonian operator of the form

$$H = -\frac{\hbar}{2m} \frac{\partial^2}{\partial x^2} + V(x)$$

For numerical computation, it is more convenient to work in natural units. To do so, we introduce the change of variables

$$\frac{H}{\hbar} \to H, \qquad x \sqrt{\frac{m}{\hbar}} \to x, \qquad \frac{1}{h} V \left(x \sqrt{\frac{m}{\hbar}} \right) \to V(x)$$

This change of variables effectively sets $\hbar=m=1$ and produces the Hamiltonian

$$H = -\frac{1}{2}\frac{\partial^2}{\partial x^2} + V(x) \tag{1}$$

1.1 Basic Crank-Nicolson Solution

We approximate the time evolution of the state $\psi(x,t)$ to $\psi(x,t+\Delta t)$ with a Taylor approximation of the time evolution operator $e^{-H\Delta t}$

$$\psi(x, t + \Delta t) = e^{-iH\Delta t}\psi(x, t) \approx \frac{1 - \frac{1}{2}iH\Delta t}{1 + \frac{1}{2}iH\Delta t}\psi(x, t)$$
 (2)

This approximation is unitary, with an error of order $\mathcal{O}(\Delta t^3)$.

First, we partition the x interval $[x_0, x_J]$ into a grid of J+1 points $\{x_j\}_0^J$ separated by the uniform step size

$$\Delta x = \frac{x_j - x_0}{J - 1} \implies x_j = x_0 + j\Delta x, \quad j = 0, 1, \dots, J - 1$$

We solve the Schrödinger equation for $t \in [t_0, t_N]$, and find the discrete time points with $t_n = t_0 + n\Delta t$ for n = 0, 1, ..., N. We approximate the second position derivative $\frac{\partial^2}{\partial x^2}$ with a finite difference approximation

$$\frac{\partial^2 \psi}{\partial x^2} \approx \frac{\psi(x+\Delta x,t) - 2\psi(x,t) + \psi(x-\Delta x,t)}{\Delta x^2} \equiv \frac{\psi_{j+1}^n - 2\psi_j^n + \psi_{j-1}^n}{\Delta x^2}$$

where $V(x_j) = V_j$ and $\psi(x_j, t_n) \equiv \psi_j^n$. Substituting this expression into the approximate Schrödinger equation (Eq. 2) and writing the Hamiltonian in the dimensionless form of Equation 1 produces the system of equations

$$\psi_{j}^{n+1} - i\frac{\Delta t}{4\Delta x^{2}} \left[\psi_{j+1}^{n+1} - 2\psi_{j}^{n+1} + \psi_{j-1}^{n+1} \right] + i\frac{\Delta t}{2} V_{j} \psi_{j}^{n+1}$$

$$= \psi_{j}^{n} + i\frac{\Delta t}{4\Delta x^{2}} \left[\psi_{j+1}^{n} - 2\psi_{j}^{n} + \psi_{j-1}^{n} \right] - i\frac{\Delta}{2} V_{j} \psi_{j}^{n}$$

We assume homogeneous boundary conditions and set $\psi_j^n = 0$ for j < 0 and j > N. We then introduce the vector

$$\boldsymbol{\psi}^n = \left[\psi_0^n, \psi_1^n, \dots, \psi_J^n\right]^T \in \mathbb{C}^{J+1},$$

and write the system of equations as a matrix:

$$\mathbf{A}\psi^{n+1} = \mathbf{A}^*\psi^n, \text{ where } \mathbf{A} = \begin{pmatrix} d_0 & a & & & \\ a & d_1 & a & & & \\ & a & d_2 & a & & \\ & & \ddots & \ddots & \ddots & \\ & & & a & d_{J-1} & a \\ & & & & a & d_J \end{pmatrix} \in \mathbb{C}^{J+1\times J+1}$$

where

$$b = i \frac{\Delta t}{2\Delta x^2}, \qquad a = -\frac{b}{2}, \qquad d_j = 1 + b + i \frac{\Delta t}{2} V_j$$

Finding $\psi(x,t)$ thus reduces to repeatedly solving the matrix equation

$$\mathbf{A}\boldsymbol{\psi}^{n+1} = \mathbf{A}^*\boldsymbol{\psi}^n$$

1.2 Higher-Order Position Approximation

Note that the following comes directly from [1]. I have retyped it only to solidify my own understanding, but the work is wholly unoriginal. For a higher-order position approximation, we discretize the second spatial derivative according to

$$y''(x) = \frac{1}{h^2} \sum_{k=-r}^{r} c_k^{(r)} y(x+kh) + \mathcal{O}(h^{2r})$$

The $c_k^{(r)}$ are real constants coming from the Taylor expansions of y(x+kh) and y(x-kh) and satisfy $c_{-k}^{(r)}=c_k^{(r)}$ for $k=1,2,\ldots,r$. See e.g. Equations 2.6 to 2.8 of [1] for a thorough discussion. Table 1 shows the constants $c_k^{(r)}$ for $r=1,\ldots,7$; see [2] for an algorithm to calculate the coefficients for arbitrarily large n.

\overline{r}	k = 0	1	2	3	4	5	6	7
1	-2	1						
2	$-\frac{5}{2}$	$\frac{4}{2}$	$-\frac{1}{12}$					
3	$-\frac{49}{18}$	$\frac{3}{2}$	$-\frac{3}{20}$	$\frac{1}{90}$				
4	$-\frac{205}{72}$	<u>8</u>	$-\frac{1}{5}$	$\frac{8}{315}$	$-\frac{1}{560}$			
5	$-\frac{52\overline{6}9}{1800}$	$\frac{5}{3}$ $\frac{12}{3}$	$-\frac{5}{21}$	Э	$-\frac{5}{1008}$	$\frac{1}{3150}$		
6	$-\frac{5369}{1800}$	$\frac{12}{7}$	$-\frac{15}{56}$	$\frac{\overline{126}}{189}$	$-\frac{1}{112}$	$\frac{\frac{1}{2}}{1925}$	$-\frac{1}{16632}$	
7	$-\frac{266681}{88200}$	$\frac{7}{4}$	$-\frac{30}{24}$	$\frac{139}{108}$	$-\frac{17}{528}$	$\frac{1325}{3300}$	$-\frac{7}{30888}$	$\frac{1}{84084}$

Table 1: Coefficients $c_k^{(r)}$ for $r = 1, \ldots, 7$.

As in the basic CN scheme, partition the time and position values according to

$$x_j = x_0 + j\Delta x,$$
 $j = 0, 1, ..., J$
 $t_n = t_0 + n\Delta t,$ $n = 0, 1, ..., N$

Next, we insert the generalized finite difference approximation for y''(x) into approximate unitary Schrödinger equation to get the system of equations

$$\psi_{j,n+1} - \frac{i\hbar\Delta t}{4m(\Delta x)^2} \left[\sum_{k=-r}^r c_k^{(r)} \psi(j+k,n+1) \right] + \frac{i\Delta t}{2\hbar} V_j \psi_{j,n+1}$$
$$= \psi_{j,n} + \frac{i\hbar\Delta t}{4m(\Delta x)^2} \left[\sum_{k=-r}^r c_k^{(r)} \psi(j+k,n) \right] - \frac{i\Delta t}{2\hbar} V_j \psi_{j,n}$$

for j = 0, 1, ... J. For homogeneous boundaries, we set $\psi_{j,n} = 0$ for j < 0 and j > J. To simplify the system of equations, we define the auxiliary quantities

$$b \equiv \frac{i\hbar\Delta t}{2m(\Delta x)^2}, \quad z_1^{(1)} \equiv -2, \quad a_k^{(r)} \equiv \frac{b}{z_1^{(1)}} c_k^{(r)}$$
 (3)

where the $c_k(r)$ are defined in Table 1. In terms of $a_k^{(r)}$, b and $z_1^{(1)}$, we define d_j as

$$d_j = 1 + a_0^{(r)} - \frac{i\Delta t}{\hbar} \frac{V_j}{z_1^{(1)}}, \quad j = 0, 1, \dots, J$$
(4)

The solution for the wavefunction $\psi_{i,n+1}$ comes from solving

$$\mathbf{A}\boldsymbol{\psi}_{n+1} = \mathbf{A}^*\boldsymbol{\psi}_n, \quad n = 0, 1, \dots N - 1$$
 (5)

where $\psi_n = [\psi_{0,n}, \psi_{1,n}, \dots, \psi_{J,n}]^T \in \mathbb{C}^{J+1}$ is the system's wavefunction at time t_n and $\psi_0 = [\phi_0, \phi_1, \dots, \phi_J]^T$ is the initial wavefunction $\phi(x)$ evaluated at $x = x_j$. The matrix **A** generalizes to a (2r+1)-diagonal matrix of the form

$$\mathbf{A} = \begin{pmatrix} d_0 & a_1 & a_2 & \cdots & a_r \\ a_1 & d_1 & a_1 & \cdots & a_{r-1} & a_r \\ a_2 & a_1 & d_2 & \cdots & a_{r-2} & a_{r-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_r & a_{r-1} & a_{r-2} & \cdots & d_r & a_1 \\ 0 & a_r & a_{r-1} & \cdots & a_1 & d_{r+1} \\ & & & & \ddots \\ & & & & & d_{J-1} & a_1 \\ & & & & & a_1 & d_J \end{pmatrix} \in \mathbb{C}^{J+1 \times J+1} \quad (6)$$

where the superscript $a^{(r)}$ is left implicit for compactness.

1.3 Higher-Order Time Evolution

For a higher-order solution in time, we approximate the time advance operator $e^{-iH\Delta t}$ using the Padé approximation

$$e^{z} = \frac{a_0 + a_1 + \dots + a_M z^M}{b_0 + b_1 + \dots + b_M z^M} = \frac{\sum_{m=0}^{M} a_m z^m}{\sum_{m'=0}^{M} b_{m'} z^{m'}}$$
(7)

By convention, we set $b_0 = 1$, from which the identity $e^0 = 1$ implies $a_0 = 1$. We solve for a_m and $b_{m'}$ by multiplying Equation 7 by the denominator to get

$$\left(\sum_{m'=0}^{M} b_{m'} z^{m'}\right) \left(\sum_{i=0}^{\infty} c_i z^i\right) = \left(\sum_{m=0}^{M} a_m z^m\right)$$

where we've inserted the Taylor series for e^z . We then multiply the sums on the left side of the equation and equate the coefficients of z to z^{2M} , giving a system of 2M equations for 2M unknowns a_m and $b_{m'}$. See [3] for a list of the numerator coefficients a_m up to M=7.

Once the a_m and $b_{m'}$ are known, it is possible to write the diagonal approximation of the exponential function in the form

$$e^z = \prod_{s=1}^{M} \left(\frac{1 - z/z_s^{(M)}}{1 + z/\bar{z}_s^{(M)}} \right)$$

where $z_s^{(M)}$ are the roots of the numerator in Equation 7, found with the known coefficients a_m . The terms $\bar{z}_s^{(M)}$ are the complex conjugates of $z_s^{(M)}$, although only $z_s^{(M)}$ are needed for this problem. With the z_s^M known, we define the operator $K_s^{(M)}$,

$$K_s^{(M)} \equiv \frac{1 - \frac{iH\Delta t/\hbar}{z_s^{(M)}}}{1 + \frac{iH\Delta t/\hbar}{\bar{z}_s^{(M)}}}$$

which, using the Padé approximant of e^z , allows use to write the time evolution operator as

$$e^{-iH\Delta t/\hbar} pprox \prod_{s=1}^{M} K_s^{(M)}$$

The higher-order time evolution of ψ from ψ_n to ψ_{n+1} now takes $s=1,2,\ldots,M$ intermediate steps of the form

$$\psi_{n+1} = e^{-iH\Delta t/\hbar}\psi_n = \prod_{s=1}^{M} K_s^{(M)}\psi_n$$
 (8)

If we define the intermediate wavefunction

$$\psi_{n+\frac{s}{M}} \equiv K_s^{(M)} \psi_{n+\frac{s-1}{M}},$$

we can solve recursively for ψ_{n+1} , starting with

$$\boldsymbol{\psi}_{n+\frac{1}{M}} = K_1^{(M)} \boldsymbol{\psi}_n$$

2 Initial Solution Steps

I must confess that I skipped ahead when solving the problem—I neglected an explicit implementation of the basic r=1, M=1 Crank-Nicolson (CN) solution in Subsection 1.1 and jumped directly to a generalized implementation that could solve for arbitrary r and M, as long as the coefficients $c_k^{(r)}$ and $z_s^{(M)}$ are known. I could then retrospectively investigate the basic CN solution by setting r=M=1. I proceeded as outlined in the following sections.

2.1 Finding Complex Roots $z_s^{(M)}$

I found the complex roots $z_z^{(M)}$ needed for higher-order approximation of the time derivative by constructing a look-up table as shown in the Python code below. The polynomial coefficients, denoted by **c** in the code below, are taken from [3], and the corresponding roots are found with Numpy's np.roots function.

```
import numpy as np
def get_zsM_example(s, M):
    """ Returns the s-th complex roots of the numerator of the M-th order
    diagonal Pade approximation to the exponential function """

if M == 1:
    c = [1, 2] # c is the coefficients of the numerator polynomial
    elif M == 2:
        c = [1, 6, 12] # x^2 + 6x + 12
    # and so on for higher M...
    z_M = np.sort(np.roots(c)) # length-M vector
    return z_M[s-1] # return s-th element z_sM (using 1-based indexing)
```

I implemented the table up to M=8, but only show up to M=2 for conciseness.

2.2 Finding Coefficients $c_k^{(r)}$

Fornberg [2] gives a powerful algorithm for the coefficients of an arbitrary finite difference scheme, which I implemented in Python to find $c_{k}^{(r)}$ for arbitrary r.

In our case, $c_k^{(r)}$ are the coefficients of a second-order finite difference approximation containing 2r+1 points centered at the middle point. For example, in the basic r=1 finite difference scheme, the coefficients are 1,-2,1. Since the coefficients are symmetric about the central point, we only consider the $c_k^{(r)}$ for non-negative k. Table 1 shows the $c_k^{(r)}$ up to r=7. The code for finding the $c_k^{(r)}$ is long, so I'm leaving it out for conciseness. See the functions $\text{get_cr}(r)$ and $\text{get_ckr}(k, r)$ in the accompanying cn.py file for the implementation.

2.3 Constructing the Matrix A

To find the matrix **A** in Equation 6, I first implemented functions to find the auxiliary quantity b, the off-diagonal elements $a_k^{(r)}$, and the diagonal elements d_j . These functions are straightforward implementations of Equations 3 and 4 using the known $c_k^{(r)}$ and $z_s^{(M)}$ from the previous step—I'm leaving the code out for brevity. Using the known b, $a_k^{(r)}$, and d_j , I constructed **A** according to Equation 6:

```
def get_A(x0, dx, dt, J, r, s, M, V, Vargs):

""" Returns (J+1) by (J+1) complex matrix A for use with a CN scheme """

d = get_d(x0, dx, dt, J, r, s, M, V, Vargs) # returns d_j

A = np.diag(d, k=0) # initial diagonal

for k in range(1, r+1, 1): # off diagonals for k = 1,..., r

a = np.zeros(J+1-k, dtype=complex) # preallocate

a[0:J+1-k] = get_a(dt, dx, k, r, s, M) # returns a_kr

A += np.diag(a, k=k) + np.diag(a, k=-k) # add off-diagonal

return A
```

I've left out docstring documentation for conciseness—the notation for x0 through M is the same as used in the rest of the report; V and Vargs are the potential energy function and its extra parameters (e.g. k for the harmonic potential).

2.4 Solving for the Wavefunction

To keep this section somewhat concise, I assume the reader is familiar with the content of Subsections 1.1 through 1.3 (or the equivalent content in van Dijk [1]).

With the matrix **A** known, I solved for the wavefunction $\psi(x,t)$ by solving the system of equations

$$\mathbf{A}\boldsymbol{\psi}_{n+1} = \mathbf{A}^*\boldsymbol{\psi}_n$$

(as in Eq. 5). For a single time step, i.e. M=1 we have simply

$$\psi_{n+1} = \mathbf{A}^{-1}\mathbf{A}^*\psi_n \implies \psi_n = \left(\mathbf{A}^{-1}\mathbf{A}^*\right)^n \phi$$

Alternatively, for n = 1, 2, ..., N, repeatedly solve the system

$$\mathbf{A}\boldsymbol{\psi}_{n+1} = \mathbf{A}^*\boldsymbol{\psi}_n$$

using a banded matrix solving scheme, e.g. SciPy's solve_banded. In this report I used the simpler multiplication by the inverse A^{-1} given above.

For multiple time steps $M=2,3,\ldots$ we have (see Eq. 8)

$$\boldsymbol{\psi}_{n+1} = \left(\mathbf{A}_{M}^{-1}\mathbf{A}_{M}^{*}\right)\left(\mathbf{A}_{M-1}^{-1}\mathbf{A}_{M-1}^{*}\right)\cdots\left(\mathbf{A}_{1}^{-1}\mathbf{A}_{1}^{*}\right)\boldsymbol{\psi}_{n} = \prod_{s=1}^{M}\left(\mathbf{A}_{s}^{-1}\mathbf{A}_{s}^{*}\right)\boldsymbol{\psi}_{n}$$

where \mathbf{A}_s is analogous to \mathbf{A} as defined in Equation 6, but with $z_1^{(1)}$ replaced by $z_s^{(M)}$. The matrices $(\mathbf{A}_s^{-1}\mathbf{A}_s^*)$ commute and can be applied in any order. Conveniently, the product of the $(\mathbf{A}_s^{-1}\mathbf{A}_s^*)$ can be computed once and reused for all n. This leads to the expression

$$oldsymbol{\psi}_n = \left[\prod_{s=1}^M \left(\mathbf{A}_s^{-1}\mathbf{A}_s^*
ight)
ight]^n oldsymbol{\phi}$$

where ϕ holds the initial wavefunction $\phi(x)$.

3 The Problem's Relevant Quantum Mechanics

3.1 Particle in a Harmonic Potential

For the harmonic potential, the Schrödinger equation in natural units reads

$$\left(i\frac{\partial}{\partial t} + \frac{1}{2}\frac{\partial^2}{\partial x^2} - \frac{1}{2}kx^2\right)\psi(x,t) = 0$$

I use the initial wavefunction

$$\psi(x,0) = \frac{\alpha^{1/2}}{\pi^{1/4}} e^{-\frac{\alpha^2}{2}(x-a)^2}$$

where $\alpha^4 = \frac{mk}{\hbar^2} \to k$, $\omega = \sqrt{\frac{k}{m}} \to \sqrt{k}$ and a is the initial displacement from the origin. The analytic solution for this problem is the coherent state

$$\psi(x,t) = \frac{\alpha^{1/2}}{\pi^{1/4}} \exp\left[-\frac{1}{2} \left(\xi - \xi_0 \cos \omega t\right)^2 - i\left(\frac{\omega t}{2} + \xi \xi_0 \sin \omega t - \frac{1}{4} \xi_0^2 \sin 2\omega t\right)\right]$$

where $\xi = \alpha x$ and $\xi_0 = \alpha a$. Use $\omega = 0.2$, a = 10 and $x \in [x_0, x_J] = [-40, 40]$. The oscillatory period is thus $T = \frac{2\pi}{\omega} = 10\pi$.

3.2 Free Gaussian Wave Packet

The Schrödinger equation in natural units for the free particle reads

$$\left(i\frac{\partial}{\partial t} + \frac{1}{2}\frac{\partial^2}{\partial x^2}\right)\psi(x,t) = 0$$

I use the initial wavefunction

$$\psi(x,0) = (2\pi\sigma_0^2)^{-1/4} e^{ik_0(x-a)} \exp\left(-\frac{(x-a)^2}{(2\sigma_0)^2}\right)$$

The analytic solution is

$$\psi(x,t) = \frac{(2\pi\sigma_0^2)^{-1/4}}{\sqrt{1 + \frac{it}{2\sigma_0^2}}} \exp\left[\frac{-\frac{(x-a)^2}{(2\sigma_0)^2} + ik_0(x-a) - \frac{i}{2}k_0^2t}{1 + \frac{it}{2\sigma_0^2}}\right]$$

I use the parameters $\sigma_0 = \frac{1}{20}$, $k_0 = 50\pi$ and a = 0.25. I used the position grid $x \in [x_0, x_J]$ with $x_0 = -0.5$ and x_J varying from 1.5 to 4.5.

Figure 2: The coherent state's probability density over one period T_0 —the color gradient shows progression through time. Found with r = M = 5 and $\Delta t = 0.1\pi$.

4 Coherent State in a Harmonic Potential

After a mountain of theory, I will try to let the graphics do the talking for the remaining sections. Figure 2 (above) shows the quantum harmonic oscillator's (QHO) coherent state probability density over one period. As expected, the probability oscillates with amplitude a=10 about the equilibrium position x=0.

Figure 3: The coherent state's probability density after ten-period simulation for various r and M with $\Delta t = 0.2\pi$. The analytic solution is plotted with gray circles for reference. Note that the first-order-in-time M=1 solution fails completely.

Figure 3 shows the QHO's coherent state after a ten-period simulation time for various r and M using a time step $\Delta t = 0.2\pi$. The r = M = 5 solution show excellent agreement with the analytic solution; the M = 5, r = 1 solution roughly preserves the initial shape of a Gaussian wave packet; the M = 1, r = 5 solution fails completely. The results suggests that a higher-order time approximation (higher M) improves the solution more than a higher-order position approximation (higher r). Interestingly, I found this trend was reversed for the free wave packet.

4.1 Accuracy

I chose to quantify the accuracy of the numerical solution with the error

$$\mathcal{E} \equiv \int_{x_0}^{x_j} |\psi(x, t_N) - \psi_{\text{analytic}}(x, t_N)|^2 dx$$
 (9)

where ψ and ψ_{analytic} give the numerical and analytic wavefunction solutions, respectively, at the simulation end time t_N . Figure 4 show a three-dimensional visualization of error \mathcal{E} versus M and r for a ten-period simulation with $t_N = 10T_0$ and a time step $\Delta t = 0.2\pi$. I found the enormous decrease in error (over 10 orders of magnitude) from r = M = 1 to the higher-order r = M = 8 quite impressive. Note that accuracy does not improve beyond $r = M \gtrsim 8$, which likely corresponds to the onset of the regime of non-negligible floating-point arithmetic error.

Figure 4: Error in the coherent state solution after a ten-period simulation as a function of r and M—note the logarithmic scale. High M improves the solution more than high r (compare the curves at $r \equiv 1$ and $M \equiv 1$. Found with $\Delta t = 0.2\pi$; error is calculated according to Equation 9.

Figure 5: The free wave packet's probability density traveling along the x axis for $[t_0, t_N] = [0, 0.02]$ —the color gradient shows progression through time. Found with r = 10, M = 8 and N = 500.

5 Gaussian Wave Packet in Free Space

Figure 5 (retaken from the introductory Figure 1) shows the free wave packet's probability density as the packet travels from a = 0.25 to $a \approx 3.5$, corresponding to

 $[t_0, t_N] = [0, 0.02]$ with N = 500. I found such a large range in x is only possible with higher-order methods—assuming a reasonable N and J, the basic r = M = 1 CN method produces incorrect results for $x \gtrsim 1$. As expected from the theory, the wave packet slowly spreads out as it travels along the x axis.

Figure 6: The free wave packet's probability density at $x \approx 1$ for various r and M, using N = 500. The analytic solution is plotted with gray circles for reference. Although the r = M = 2 and r = M = 5 solutions appear macroscopically similar, the zoomed inset shows r = M = 5 is superior.

Figure 6 show the free wave packet's probability density at $x \approx 1$ for various r and M using N=500. The free wave packet is less demanding than the QHO—even the r=M=1 solution preserves the wave packet's general shape, while the r=M=2 solution shows good agreement with the analytic solution, although a closer look at the zoomed inset reveals the r=M=5 solution is decidedly superior.

5.1 Accuracy

I quantified the numerical solution's accuracy using the same definition of error (Eq. 9) as for the QHO coherent state. Figure 7 show a three-dimensional visualization of error versus M and r after the wave packet's journey from a=0.25 to $a\approx 1.0$ (corresponding to times in the range $[t_0,t_N]=[0,5\cdot 10^{-3}]$) using N=500. As before, the enormous decrease in error with increasing approximation order is quite impressive. Interestingly, the results in Figure 7 show that for the free wave packet, a better approximation of the position derivative (large r) improves the solution more than a higher-order approximation in time (higher M), which is the opposite of the trend seen with the QHO coherent state. Analogously to the harmonic oscillator, accuracy does not improve appreciably beyond $r \gtrsim 8$ or $M \gtrsim 4$, which is likely a consequence of floating-point arithmetic error.

Free Wave Packet Error versus M and r

Figure 7: Error in the numerical solution for the wave packet at $a \approx 1.0$ as a function of r and M—note the logarithmic scale. Higher r improves the solution more than high M (compare the curves at $r \equiv 1$ and $M \equiv 1$. Found with N = 500.

5.2 A Note on Efficiency and Computation Time

A complete analysis of the Crank-Nicolson method would consider the computation time needed to find a solution of a given accuracy for various values of r, M, J and N. I ran out of time to present such a study in my report, although I certainly experimented with efficiency informally. I found that increasing r and M lowered computation dramatically when searching for a solution at a given error. This improvement in efficiency, like the improvement in accuracy in Figures 4 and 7, spanned many orders of magnitude. For lack of an original option, I would direct the reader to Tables III and IV on pages 7 and 8, respectively, of [1] for more on efficiency.

References

- [1] W. van Dijk and F. M. Toyama. "Accurate numerical solutions of the time-dependent Schrödinger equation." Phys. Rev. E **75**, 036707 (2007). https://arxiv.org/pdf/physics/0701150.pdf
- [2] Bengt Fornberg, "Generation of finite difference formulas on arbitrarily spaced grids", In Mathematics of Computation 51, 184, pp. 699-706, 1988. https://web.njit.edu/~jiang/math712/fornberg.pdf
- [3] Barry, Paul. "A119274 Triangle of coefficients of numerators in Padé approximation to exp(x)". *The On-Line Encyclopedia of Integer Sequences*. 12 May 2006. https://oeis.org/A119274