Import Required Libraries

```
In [1]: import pandas as pd import numpy as np
```

Load Data

```
In [2]: movies_credits = pd.read_csv('./data/tmdb_5000_credits.csv')
    movies = pd.read_csv('./data/tmdb_5000_movies.csv')
```

1.0 Initial Data Analysis

```
In [3]: # Top 10 movies ranked by the number of votes
        movies.sort values('vote count', ascending=False).head(10)['title']
Out[3]: 96
                              Inception
        65
                       The Dark Knight
        0
                                Avatar
        16
                          The Avengers
        788
                              Deadpool
        95
                          Interstellar
        287
                      Django Unchained
               Guardians of the Galaxy
        94
        426
                      The Hunger Games
                    Mad Max: Fury Road
        Name: title, dtype: object
In [4]: # Top 10 movies ranked by the revenue
        movies.sort_values('revenue', ascending=False).head(10)['title']
Out[4]: 0
                                    Avatar
        25
                                   Titanic
                              The Avengers
        16
        28
                           Jurassic World
        44
                                 Furious 7
        7
                  Avengers: Age of Ultron
        124
                                    Frozen
        31
                                Iron Man 3
        546
                                   Minions
               Captain America: Civil War
        Name: title, dtype: object
```

2.0 Recommendation Engines

2.1 Initial Data Cleaning

```
In [5]: movies_credits.drop('title', axis = 1, inplace = True)
    movies_credits.head()
```

Out[5]:

	movie_id	cast	crew		
0	19995	[{"cast_id": 242, "character": "Jake Sully", "	[{"credit_id": "52fe48009251416c750aca23", "de		
1	285	[{"cast_id": 4, "character": "Captain Jack Spa	[{"credit_id": "52fe4232c3a36847f800b579", "de		
2	206647	[{"cast_id": 1, "character": "James Bond", "cr	[{"credit_id": "54805967c3a36829b5002c41", "de		
3	49026	[{"cast_id": 2, "character": "Bruce Wayne / Ba	[{"credit_id": "52fe4781c3a36847f81398c3", "de		
4	49529	[{"cast_id": 5, "character": "John Carter", "c	[{"credit_id": "52fe479ac3a36847f813eaa3", "de		

```
In [6]: movies_credits.columns = ['id', 'cast', 'crew']
    movies = movies.merge(movies_credits, on='id')
    movies.head()
```

Out[6]:

	budget	genres	homepage	id	keywords	original_language
0	237000000	[{"id": 28, "name": "Action"}, {"id": 12, "nam	http://www.avatarmovie.com/	19995	[{"id": 1463, "name": "culture clash"}, {"id":	en
1	300000000	[{"id": 12, "name": "Adventure"}, {"id": 14, "	http://disney.go.com /disneypictures/pirates/	285	[{"id": 270, "name": "ocean"}, {"id": 726, "na	en
2	245000000	[{"id": 28, "name": "Action"}, {"id": 12, "nam	http://www.sonypictures.com/"}, /movies/spectre/		[{"id": 470, "name": "spy"}, {"id": 818, "name	en
3	250000000	[{"id": 28, "name": "Action"}, http://www.thedarkknightrises.com/ "id": 80, "nam		49026	[{"id": 849, "name": "dc comics"}, {"id": 853,	en
4	260000000	[{"id": 28,		49529	[{"id": 818, "name": "based on novel"}, {"id":	en

5 rows × 22 columns

2.2 Demographic Filtering - Trending now for All Users

```
In [8]: m = movies['vote count'].quantile(0.8)
         m
 Out[8]: 957.6000000000004
 In [9]: qualified_movies_demographic = movies.copy().loc[movies['vote_count'] >= m]
         {\tt qualified\_movies\_demographic.shape}
Out[9]: (961, 22)
In [10]: def weighted rating score(data, m=m, C=C):
             v = data['vote count']
             R = data['vote_average']
             # weighted rating score calculation formula
             return (v/(v+m) * R) + (m/(m+v) * C)
In [11]: # calculate weighted rating score for each movie we have
         qualified_movies_demographic['weighted_score'] = qualified_movies_demographic.appl
         y(weighted_rating_score, axis=1)
In [12]: # descending sort movies based on the weighted rating score
         qualified_movies_demographic = qualified_movies_demographic.sort_values('weighted_
         score', ascending=False)
```

In [13]: # print out the top 20 movies based on the weighted_score
 qualified_movies_demographic[['title', 'vote_count', 'vote_average', 'weighted_score']].head(20)

Out[13]:

	title	vote_count	vote_average	weighted_score
1881	The Shawshank Redemption	8205	8.5	8.248353
662	Fight Club	9413	8.3	8.096134
3337	The Godfather	5893	8.4	8.077404
3232	Pulp Fiction	8428	8.3	8.074738
65	The Dark Knight	12002	8.2	8.044250
809	Forrest Gump	7927	8.2	7.972814
96	Inception	13752	8.1	7.969290
95	Interstellar	10867	8.1	7.937399
1990	The Empire Strikes Back	5879	8.2	7.904757
1818	Schindler's List	4329	8.3	7.900080
3865	Whiplash	4254	8.3	7.894325
329	The Lord of the Rings: The Return of the King	8064	8.1	7.886879
2294	Spirited Away	3840	8.3	7.859318
2912	Star Wars	6624	8.1	7.846400
1553	Se7en	5765	8.1	7.813995
262	The Lord of the Rings: The Fellowship of the Ring	8705	8.0	7.810927
2731	The Godfather: Part II	3338	8.3	7.807818
690	The Green Mile	4048	8.2	7.796760
330	The Lord of the Rings: The Two Towers	7487	8.0	7.783656
77	Inside Out	6560	8.0	7.756979

2.3 Content Based Filtering - using Movie Overviews

```
In [14]: # use scikit-learn's TfIdfVectorizer
    from sklearn.feature_extraction.text import TfidfVectorizer

# remove english stop words like 'the', 'a' and define a TF-IDF Vectorizer Object.
    tfidf = TfidfVectorizer(stop_words='english')

# change NaN into an empty string
    movies['overview'] = movies['overview'].fillna('')

# build the TF-IDF matrix
    tfidf_matrix = tfidf.fit_transform(movies['overview'])
```

```
In [15]: # import linear kernel
         from sklearn.metrics.pairwise import linear_kernel
         # build the cosine similarity matrix
         cosine_sim_overviews = linear_kernel(tfidf_matrix, tfidf_matrix)
In [16]: # build a reverse map of movie titles and indices
         indices = pd.Series(movies.index, index=movies['title']).drop duplicates()
In [17]: # recommend similar movies to users given a movie title input
         def get recommendation movies(title, cosine sim):
             # get the movie index
             idx = indices[title]
             # calculate the pairwsie similarity scores with that movie
             sim scores = list(enumerate(cosine sim[idx]))
             # sort the movies based on the similarity scores
             sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
             # get the 10 most similar movies scores
             sim_scores = sim_scores[1:11]
             # get movie indices
             movie_indices = [i[0] for i in sim_scores]
             # return the recommended similar movies
             return movies['title'].iloc[movie indices]
In [18]: get_recommendation_movies('The Dark Knight Rises', cosine_sim_overviews)
Out[18]: 65
                                          The Dark Knight
         299
                                           Batman Forever
         428
                                           Batman Returns
         1359
                                                   Batman
         3854
                 Batman: The Dark Knight Returns, Part 2
         119
                                            Batman Begins
         2507
                                                Slow Burn
                      Batman v Superman: Dawn of Justice
         1181
                                                      JFK
         210
                                           Batman & Robin
         Name: title, dtype: object
In [19]: get recommendation movies ('The Avengers', cosine sim overviews)
Out[19]: 7
                         Avengers: Age of Ultron
         3144
                                          Plastic
         1715
                                          Timecop
         4124
                              This Thing of Ours
         3311
                           Thank You for Smoking
         3033
                                   The Corruptor
                Wall Street: Money Never Sleeps
         588
         2136
                      Team America: World Police
         1468
                                    The Fountain
         1286
                                      Snowpiercer
         Name: title, dtype: object
```

2.4 Content Based Filtering - using Movie Metadata ('genres', 'keywords', 'cast', 'crew', 'production_companies')

In [22]: movies.head(3)

Out[22]:

	budget	genres	homepage	id	keywords	original_language	origina
0	237000000	[{'id': 28, 'name': 'Action'}, {'id': 12, 'nam	http://www.avatarmovie.com/	19995	[{'id': 1463, 'name': 'culture clash'}, {'id':	en	Avatar
1	300000000	[{'id': 12, 'name': 'Adventure'}, {'id': 14, '	http://disney.go.com /disneypictures/pirates/	285	[{'id': 270, 'name': 'ocean'}, {'id': 726, 'na	en	Pirates the Caribb At Wor End
2	245000000	[{'id': 28, 'name': 'Action'}, {'id': 12, 'nam	http://www.sonypictures.com /movies/spectre/	206647	[{'id': 470, 'name': 'spy'}, {'id': 818, 'name	en	Spectri

3 rows × 22 columns

```
In [23]: # helper function: extract director name

def get_director(crew_data):
    for i in crew_data:
        if i['job'] == 'Director':
            return i['name']
    return np.nan
```

```
In [24]: # helper function: transfer into list data objects

def get_list(data):
    if isinstance(data, list):
        names = [i['name'] for i in data]
        # return only the first three items
    if len(names) > 3:
        names = names[:3]
    return names

return []
```

```
In [25]: # use helper functions to parse features

movies['director'] = movies['crew'].apply(get_director)

features = ['genres', 'keywords', 'cast', 'production_companies']
    for feature in features:
        movies[feature] = movies[feature].apply(get_list)
```

Out[26]:

	title	genres	keywords	cast	production_companies	director
C	Avatar	[Action, Adventure, Fantasy]	[culture clash, future, space war]	[Sam Worthington, Zoe Saldana, Sigourney Weaver]	[Ingenious Film Partners, Twentieth Century Fo	James Cameron
1	Pirates of the Caribbean: At World's End	[Adventure, Fantasy, Action]	[ocean, drug abuse, exotic island]	[Johnny Depp, Orlando Bloom, Keira Knightley]	[Walt Disney Pictures, Jerry Bruckheimer Films	Gore Verbinski
2	! Spectre	[Action, Adventure, Crime]	[spy, based on novel, secret agent]	[Daniel Craig, Christoph Waltz, Léa Seydoux]	[Columbia Pictures, Danjaq, B24]	Sam Mendes

```
In [27]: # convert all strings into lower case and
# strip the spaces between names so as to be specific

def clean_data(data):
    if isinstance(data, list):
        return [str.lower(i.replace(" ", "")) for i in data]
    else:
        if isinstance(data, str):
            return str.lower(data.replace(" ", ""))
        else:
            return ''
```

```
In [28]: features = ['genres', 'keywords', 'cast', 'production_companies', 'director']

for feature in features:
    movies[feature] = movies[feature].apply(clean_data)
```

```
In [29]: def create data soup(x):
             return ' '.join(x['keywords']) + ' ' + ' '.join(x['cast']) + ' ' + x['director
          '] + ' ' + ' '.join(x['genres']) + ' ' + ' '.join(x['production companies'])
In [30]: movies['data_soup'] = movies.apply(create_data_soup, axis=1)
In [31]: # import CountVectorizer, create count matrix
         from sklearn.feature_extraction.text import CountVectorizer
         count = CountVectorizer(stop words='english')
         count matrix = count.fit transform(movies['data soup'])
In [32]: | # compute the Cosine Similarity matrix
         from sklearn.metrics.pairwise import cosine similarity
         cosine_sim_metadata = cosine_similarity(count_matrix, count_matrix)
In [33]: # reset the indices of our main DataFrame, construct reverse mapping
         movies = movies.reset index()
         indices = pd.Series(movies.index, index=movies['title'])
In [34]: | get_recommendation_movies('The Dark Knight Rises', cosine_sim_metadata)
Out[34]: 65
                          The Dark Knight
         119
                            Batman Begins
         14
                             Man of Steel
         1196
                             The Prestige
         4638
                 Amidst the Devil's Wings
         10
                         Superman Returns
         1035
                                 Jonah Hex
         299
                           Batman Forever
         303
                                  Catwoman
                           Gangster Squad
         Name: title, dtype: object
In [35]: | get_recommendation_movies('The Avengers', cosine_sim_metadata)
Out[35]: 7
                            Avengers: Age of Ultron
                         Captain America: Civil War
         26
         79
                                          Iron Man 2
         169
                 Captain America: The First Avenger
         85
                Captain America: The Winter Soldier
         174
                                 The Incredible Hulk
         31
                                          Iron Man 3
         68
                                            Iron Man
         182
                                             Ant-Man
         94
                            Guardians of the Galaxy
         Name: title, dtype: object
```

2.5 Content Based Filtering - using Movie Metadata ('genres', 'keywords', 'cast', 'crew', 'production_companies') and voting scores

```
In [39]: def improved recommendations metadata votes(title, cosine sim):
             idx = indices[title]
             sim scores = list(enumerate(cosine sim[idx]))
             sim scores = sorted(sim scores, key=lambda x: x[1], reverse=True)
             sim scores = sim scores[1:36]
             movie_indices = [i[0] for i in sim_scores]
             movies_improved_recomm = movies.copy().iloc[movie_indices][['title', 'vote_cou
         nt', 'vote_average']]
             vote counts improved = movies improved recomm[movies improved recomm['vote cou
         nt'].notnull()]['vote count'].astype('int')
             vote_averages_improved = movies_improved_recomm[movies_improved_recomm['vote_a
         verage'].notnull()]['vote_average'].astype('int')
             C improved = vote counts improved.mean()
             m improved = vote averages improved.quantile(0.60)
             qualified improve = movies improved recomm[(movies improved recomm['vote count
         '] >= m_improved) & (movies_improved_recomm['vote_count'].notnull()) & (movies_imp
         roved_recomm['vote_average'].notnull())]
             qualified_improve['wr'] = qualified_improve.apply(weighted_rating_score, axis=
         1)
             qualified improve = qualified improve.sort values('wr', ascending=False).head(
         10)
             return qualified improve
```

In [40]: improved_recommendations_metadata_votes('The Dark Knight Rises', cosine_sim_metadata)

/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:15: SettingWithCopy Warning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy from ipykernel import kernelapp as app

Out[40]:

	title	vote_count	vote_average	wr
65	The Dark Knight	12002	8.2	8.044250
96	Inception	13752	8.1	7.969290
95	Interstellar	10867	8.1	7.937399
1196	The Prestige	4391	8.0	7.658427
119	Batman Begins	7359	7.5	7.337898
1663	Once Upon a Time in America	1069	8.2	7.204018
1052	Training Day	1634	7.3	6.853706
3854	Batman: The Dark Knight Returns, Part 2	419	7.9	6.642426
14	Man of Steel	6359	6.5	6.446623
1456	Bound by Honor	115	7.7	6.264557

In [41]: improved_recommendations_metadata_votes('The Avengers', cosine_sim_metadata)

/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:15: SettingWithCopy Warning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

from ipykernel import kernelapp as app

Out[41]: ___

	title	vote_count	vote_average	wr
94	Guardians of the Galaxy	9742	7.9	7.738202
85	Captain America: The Winter Soldier	5764	7.6	7.385186
68	Iron Man	8776	7.4	7.271335
158	Star Trek	4518	7.4	7.171280
47	Star Trek Into Darkness	4418	7.4	7.167026
7	Avengers: Age of Ultron	6767	7.3	7.150268
26	Captain America: Civil War	7241	7.1	6.982285
182	Ant-Man	5880	7.0	6.872859
1294	Serenity	1264	7.4	6.836273
31	Iron Man 3	8806	6.8	6.730577