Math Camp

Module #0 Introduction

Why are we here?

Who are we?

What is economics?

What is math?

Why is there math in economics?

There's not.

Definition. A *theory* is a set of assumptions together with the necessary implications.

Two approaches to forming theories

- 1. Construct a narrative to explain behavior witnessed in data
 - Pro: language allows for nuance and therefore realistic modeling assumptions
 - Con: language is imprecise so assumptions and their implications can be unclear

About math in economics (continued)

- 2. Use math to lay out precise assumptions and deduce necessary implications
 - Pro: meaning of assumptions and what implications follow cannot be debated; debate is limited to appropriateness of assumptions
 - Con: tractable assumptions are necessarily restrictive, limiting reach of theory

About this course

Four important points

- New concepts in mathematics are completely mysterious until they are trivial
- Simply reading the lecture slides/text may not be enough to understand the concepts
- Your ability to apply course concepts only comes through self practice
- Don't skip the exercises

Prereqs: Logic

Let *P* and *Q* be statements

- "A declarative sentence that is either true or false but not both"
- We can use logical operators to create new compound statements that are either true or false.

Logical Operators

- Conjunction: the conjunction of P and Q is the statement "P and Q", denoted P ∧ Q. Is only true if both P and Q are true.
- Disjunction: the disjunction of P and Q is the statement "P or Q", denoted P ∨ Q, and is only true if either P or Q are true.

Prereqs: Logic

Logical Operators cont.

- **Negation**: the negation of a statement P is the statement "not P", denoted $\neg P$, and is only true if P is false, and is only false if P is true.
- Conditional: the conditional statement is the statement "If P then Q, denoted P → Q, means that Q must be true whenever P is true, and is only false when P is true and Q is false.

Preregs: Numbers

- What about ℝ?
 - $\circ \ \mathbb{R}$ is the completion of the rational numbers
 - Let $A \subset \mathbb{R}$. The *supremum* of A, denoted $\sup A$ is the least upper bound of A (may be infinite).
 - ∘ If $A \subset \mathbb{R}$ is bounded above then $\sup A \in \mathbb{R}$. (!!!!!)
- What about C?
 - $\circ \ \mathbb{C}$ is algerbraically closed: every non-constant polynomial has a root in \mathbb{C}
 - \circ Every polynomial equation has a solution in $\mathbb C$

Definition. A *relation* on a set *X* is a subset *R* of $X \times X$

- if $(x,y) \in R$ then we write $x \sim y$
- R is an equivalence relation if it has the following properties
 - ∘ reflexivity $x \sim x$
 - symmetry $x \sim y \Rightarrow y \sim x$
 - transitivity $x \sim y$ and $y \sim z$ implies $x \sim z$
- the collection of all elements related to a given element is called an equivalence class

partition

Definition. A partition of a set X is a collection of non-intersecting subsets whose union is X.

More formally, $\{X_{\lambda}\}_{{\lambda}\in\Lambda}$ is a partition of X provided

- $X_{\lambda} \subset X$ for all $\lambda \in \Lambda$
- $X = \bigcup_{\lambda \in \Lambda} X_{\lambda}$
- $\lambda_1 \neq \lambda_2 \Rightarrow X_{\lambda_1} \cap X_{\lambda_2} = \emptyset$