

9. RF EXPOSURE TEST

9.1 APPLIED PROCEDURES / LIMIT

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ²or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

9.1.1 MEASUREMENT INSTRUMENTS LIST

Ite	m Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Power Meter	Anritsu	ML2487A	6K00004714	Feb. 10, 2010
2	Power Meter Sensor	Anritsu	MA2491A	34138	Feb. 10, 2010

Remark: "N/A" denotes No Model Name, Serial No. or No Calibration specified.

9.1.2 MPE CALCULATION METHOD

E (V/m)
$$=\frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) $=\frac{E^2}{377}$

 $\mathbf{E} = \text{Electric field (V/m)}$

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

Report No.: NEI-FCCP-1-R0909003A Page 72 of 78

No deviation.

9.1.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

9.1.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.6 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No.: NEI-FCCP-1-R0909003A Page 73 of 78

9.1.6 TEST RESULTS - CHIP

	High Power IEEE 802.11bg miniPCI Radio Module	Model Name :	DLM106
Temperature:	17 ℃	Relative Humidity:	89 %
Test Voltage:	AC 120V/60Hz		
Test Mode :	802.11b		

Frequency (MHz)	Antenna Gain (dBi)				Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm²)
2412	2.00	1.5849	17.9000	61.6595	0.019451	1
2437	2.00	1.5849	18.2100	66.2217	0.020891	1
2462	2.00	1.5849	15.4700	35.2371	0.011116	1

	High Power IEEE 802.11bg miniPCI Radio Module	Model Name :	DLM106
Temperature:	17 ℃	Relative Humidity:	89 %
Test Voltage:	AC 120V/60Hz		
Test Mode :	802.11g		

Frequency (MHz)	Antenna Gain (dBi)				Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm²)
2412	2.00	1.5849	22.4000	173.7801	0.054821	1
2437	2.00	1.5849	29.2300	837.5293	0.264211	1
2462	2.00	1.5849	22.3100	170.2159	0.053697	1

Remark:

(1) The SISO test requirement, MPE shall measure by using the total sum power of each transmitter chain.

Report No.: NEI-FCCP-1-R0909003A Page 74 of 78