

Experimento 7

Laboratório de Circuitos Elétricos

Autoria Matrícula Pedro Henrique Dornelas Almeida 18/0108140

> Engenharia de Redes de Comunicação Universidade de Brasília

> > 10 de abril de 2021

1 Plataforma Utilizada

Tina-TI: versão 9.2.30.221 SF-TI

2 Procedimento Experimental

Valores utilizados:

$$R1 = 1k\Omega$$
, $R2 = 1,5k\Omega$
 $C1 = 100nF$, $C2 = 100nF$

Atividade 1

T_{1a})

Para calcular os valores utilizou-se da equação (2) presente no roteiro, apenas sendo necessário trocar os valores para Z_1 e Z_2 , e assim foi possível fazer:

Caso 1:

$$Z_{1} = R1 , Z_{2} = R2 || \frac{1}{sC2} = \frac{R2}{R2C2s + 1}$$

$$G(s) = -\frac{Z2}{Z1} = -\frac{R2}{R1} \cdot \frac{1}{R2C2s + 1}$$

$$G(j\omega) = \frac{R2}{R1\sqrt{1 + (R2C2\omega)^{2}}} \angle \pi - tan^{-1}(R2C2\omega)$$

$$20log|G(j\omega)| = 20log\left(\frac{R2}{R1\sqrt{1 + (R2C2\omega)^{2}}}\right)$$

$$arg\{G(j\omega)\} = \pi - tan^{-1}(R2C2\omega)$$

Caso 2:

$$Z_{2} = R2 , Z_{1} = R1 + \frac{1}{sC1} = \frac{R1C1s + 1}{C1s}$$

$$G(s) = -\frac{Z2}{Z1} = -R2C1s \cdot \frac{1}{R1C1s + 1}$$

$$G(j\omega) = \frac{R2C1\omega}{\sqrt{1 + (R1C1\omega)^{2}}} \angle -\frac{\pi}{2} - tan^{-1}(R1C1\omega)$$

$$20log|G(j\omega)| = 20log\left(\frac{R2C1\omega}{\sqrt{1 + (R1C1\omega)^{2}}}\right)$$

$$arg\{G(j\omega)\} = -\frac{\pi}{2} - tan^{-1}(R1C1\omega)$$

Caso 3:

$$Z_{1} = R1 + \frac{1}{sC1} = \frac{R1C1s + 1}{C1s}, Z_{2} = R2||\frac{1}{sC2} = \frac{R2}{R2C2s + 1}$$

$$G(s) = -\frac{Z2}{Z1} = -R2C1s \cdot \frac{1}{R1C1s + 1} \cdot \frac{1}{R2C2s + 1}$$

$$G(j\omega) = \frac{R2C1\omega}{\sqrt{(1 - R2C2R1C1\omega^{2})^{2} + [w(R2C2 + R1C1)]^{2}}} \angle -\frac{\pi}{2} - tan^{-1} \left(\frac{\omega(R2C2 + R1C1)}{1 - R2C2R1C1\omega^{2}}\right)$$

$$20log|G(j\omega)| = 20log\left(\frac{R2C1\omega}{\sqrt{(1 - R2C2R1C1\omega^{2})^{2} + [w(R2C2 + R1C1)]^{2}}}\right)$$

$$arg\{G(j\omega)\} = \angle -\frac{\pi}{2} - tan^{-1} \left(\frac{\omega(R2C2 + R1C1)}{1 - R2C2R1C1\omega^{2}}\right)$$

T1b)

Pode-se observar do item anterior que nos casos:

Caso 1: Pode ser considerado um passa-baixas, pois não atenua as frequências antes da frequência de corte dada por:

$$f_{corte} = \frac{1}{2\pi R_{2}C_{2}}[Hz]$$

Caso 2: Pode ser considerado um passa-altas pois deixa passar as frequências após a frequência de corte dada por:

$$f_{corte} = \frac{1}{2\pi R1C1}[Hz]$$

Caso 3: Pode ser considerado um passa-faixas em que a sua banda passante está entre:

$$f_{corte1} = \frac{1}{2\pi R2C2}[Hz]$$

$$f_{corte2} = \frac{1}{2\pi R1C1}[Hz]$$

Em que $f_{corte1} < f_{corte2}$.

Neste caso também a frequência de ressonância, está é dada pela média entre as frequências de corte, e pode ser definida como:

$$f_{ressonancia} = \frac{R1C1 + R2C2}{4\pi R2C2R1C1}$$

T1c)

Caso 1: Um exemplo para este tipo de filtro é para aplicações de áudio, em que é necessário filtrar frequências altas para que possa ter um som de qualidade.

Caso 2: Um exemplo deste filtro é para separar frequências altas que devem ir para os alto falantes *Tweeters*, feito para propagar sons agudos, e então, não mandar frequências baixas de áudio para eles.

Caso 3: Podemos usar um passa-faixas em algum sistema de comunicação em que a onda da portadora tem a maior DEP em uma certa faixa de frequências, então para enviar no canal de comunicação podemos fazer um passa-faixas para enviar somente a quantidade necessária para se obter o sinal mensagem no receptor.

Atividade 2

Aqui foram montados os circuitos da seguinte maneira:

Circuito Caso 1

Circuito Caso 2

Circuito Caso 3

Atividade 3

Neste momento foi necessário criar um osciloscópio para visualização das curvas de entrada e saída do circuito e também um gerador de função para variar a frequência da fonte. Colocando a frequência de corte em cada um dos casos foi possível observar:

Fig. 1a - Caso 1

Fig. 1b - Caso 2

Fig. 1c - Caso 3

A3a)

Não são muitos seletivos, é possível observar uma banda de transição bem grande em que a amplitude do sinal ainda é preservada com uma potência possível de ser observada.

Atividade 4

Neste momento foi necessário retirar o voltímetro da fonte para conseguir observar o diagrama de bode do sinal de saída, para a amplitude e fase. Gerando esses gráficos e posicionando o cursor nas frequências de corte foi possível observar como as seguintes imagens:

Fig. 2a - Caso 1

Fig. 2b - Caso 2

Fig. 2c - Caso 3

Neste momento foi possível retirar os arquivos .txt para obter os valores experimentais para preencher as tabelas P.1 a P.3, apenas precisando colocar em uma escala adequada.

A4a)

3 Conclusão

Aqui pode-se concluir que o experimento foi realizado com sucesso conseguindo obter todas as medidas necessárias, somente não consegui realizar os cálculos teóricos devido a quantidade de dados a se obter.

De toda forma, pôde-se observar com clareza os comportamentos de filtros, como é o diagrama de bode deles e como as suas respostas em amplitude e em fase se comportam para diferentes frequências.

4 Tabelas

Identificação

ſ	Turma	Bancada	Matrícula	Nome
	6A	2	18/0108140	Pedro Henrique Dornelas Almeida

Tabelas do Procedimento Experimental

Tabela P.1 - Ganho máximo em dB, frequência de corte e de ressonância para os casos 1, 2 e 3

	Caso 1		Caso 2		Caso 3	
	Calculado Medido		Calculado	Medido	Calculado	Medido
$\max\{G_v(j\omega) _{dB}\}$	3,4834	3,4831	-0,0005	-0,0005	-6,0140	-6,0179
$f'_{corte}(Hz)$	1061	1061	1541	1541	1061	1061
$f''_{corte}(Hz)$	-	-	-	-	1541	1541
$f_{resson\hat{a}ncia}^{\prime\prime}(Hz)$	-	-	-	-	1301	1301

Tabela P.2 - Valores calculados e medidos do Diagrama de Bode do caso 1 da Figura F.2

	Valor Calculado		Valor Medido		$\operatorname{Erro}(\%)$	
Frequência(Hz)	Magnitude(dB)	Fase(Graus)	Magnitude(dB)	Fase(Graus)	Magnitude(dB)	Fase(Graus)
100			3,4831	174,6015		
158			3,4256	171,4818		
251			3,2842	166,6457		
398			2,9482	159,3797		
631			2,2036	149,1831		
1000			0,7557	136,5883		
1585			-1,5789	123,6578		
2512			-4,6830	112,7043		
3981			-8,2620	104,6415		
6310			-12,0677	99,1190		
10000			-15,9507	95,3952		
15849			-19,8102	92,7968		

Tabela P.3 – Valores calculados e medidos do Diagrama de Bode do caso 2 da Figura F.2

	Valor Calculado		Valor M	Iedido	Erro(%)	
Frequência(Hz)	Magnitude(dB)	Fase(Graus)	Magnitude(dB)	Fase(Graus)	Magnitude(dB)	Fase(Graus)
100			-5,4811	-122,1497		
158			-3,0278	-134,8944		
251			-1,4648	-147,6674		
398			-0,6427	-158,2543		
631			-0,2666	-165,9167		
1000			-0,1073	-171,0760		
1585			-0,0422	-174,4557		
2512			-0,0161	-176,6768		
3981			-0,0057	-178,1902		
6310			-0,0017	-179,3155		
10000			-0,0005	-180,2937		
15849			-0,0011	-181,3353		

Tabela P.4 – Valores calculados e medidos do Diagrama de Bode do caso 3 da Figura F.2

	Valor Calculado		Valor Medido		Erro(%)	
Frequência(Hz)	Magnitude(dB)	Fase(Graus)	Magnitude(dB)	Fase(Graus)	Magnitude(dB)	Fase(Graus)
100			-24,0706	-97,1966		
158			-20,1220	-101,3835		
251			-16,2497	-107,9535		
398			-12,5627	-118,1140		
631			-9,3025	-133,2975		
1000			-6,9237	-154,3678		
1585			-6,0179	-179,9033		
2512			-6,8930	-205,5021		
3981			-9,2459	-226,7354		
6310			-12,4784	-242,1490		
10000			-16,1163	-252,6155		
15849			-19,8752	-259,6144		