Capítulo 9

Semana 11

Ejercicio 1. Sea $f: \mathbb{R}^n \to \mathbb{R}^n$ una función diferenciable que fija el origen. Demuestre que, si 1 no es valor propio del diferencial $df_0: \mathbb{R}^n \to \mathbb{R}^n$, entonces el origen es un punto fijo aislado de f.

Solución. Puesto que 1 no es autovalor de df_0 , la transformación lineal df_0 – id es invertible. Por lo tanto, existe una constante $\varepsilon > 0$ tal que, para todo $x \in \mathbb{R}^n$, se cumple

$$||x - df_0(x)|| \ge 2\varepsilon \cdot ||x||$$

Asimismo, puesto que f es diferenciable en el origen, tenemos

$$\lim_{x \to 0} \frac{f(x) - f(0) - df_0(x)}{\|x\|} = 0$$

En particular, existe una vecindad $U \subset \mathbb{R}^n$ del origen en la cual

$$||f(x) - df_0(x)|| < \varepsilon \cdot ||x||$$

Combinando estos resultados, tenemos

$$||x - f(x)|| \ge ||x - df_0(x)|| - ||f(x) - df_0(x)|| \ge \varepsilon \cdot ||x||$$

Por lo tanto, el origen es el único punto fijo de f contenido en U.

Ejercicio 2. Determine los puntos más cercanos al origen en el elipsoide

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Solución. Sea $\varphi: \mathbb{R}^3 \to \mathbb{R}^3$ el automorfismo lineal (y, por ende, difeomorfismo) que contrae los ejes x, y, z por los factores a, b, c, respectivamente. Debemos hallar los puntos mínimos de

$$f(x, y, z) = x^2 + y^2 + z^2$$

en la superficie regular compacta $S \subset \mathbb{R}^3$ definida por $f \circ \varphi(p) = 1$. Dado $p \in S$, son equivalentes:

- p es un punto crítico de $f \mid S$.
- df_p se anula en T_pS .
- ∇f_p es paralelo a $\nabla (f \circ \varphi)_p$.
- p es paralelo a $\varphi^2(p)$.
- p es un vector propio de φ^{-2} .

En este caso, $f(p) = \lambda^2$, donde $\lambda^2 \in \{a^2, b^2, c^2\}$ es el valor propio correspondiente. Por lo tanto, los puntos mínimos de $f \mid S$ forman la intersección de S con el espacio propio $E \subset \mathbb{R}^3$ del valor propio más pequeño $\lambda^2 = \min(a^2, b^2, c^2)$ de g^{-2} . Dependiendo de la multiplicidad de λ^2 , tenemos tres posibilidades:

- ullet E es un eje coordenado y $S\cap E$ son dos puntos equidistantes del origen.
- E es un plano coordenado y $S \cap E$ es un círculo centrado en el origen.
- E es todo el espacio \mathbb{R}^3 y $S \cap E = S$ es una esfera centrada en el origen.

Ejercicio 3. Determine los puntos críticos de la función $f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ definida por $f(x,y) = \langle x,y \rangle$, restricta a la esfera unitaria en $\mathbb{R}^{2n} \cong \mathbb{R}^n \times \mathbb{R}^n$.

Solución. La esfera unitaria $S \subset \mathbb{R}^{2n}$ es compacta, regular y está definida por

$$g(x,y) = ||x||^2 + ||y||^2 = 1$$

Dado un punto $p \in S$, las siguientes proposiciones son equivalentes:

- p = (x, y) es un punto crítico de $f \mid S$.
- df_p se anula en T_pS .
- ∇f_p es paralelo a ∇g_p .
- (y,x) es paralelo a (x,y).
- $y = \pm x$

Entonces los puntos críticos de $f \mid S$ forman las esferas unitarias en los n-planos y = x, y = -x.

Ejercicio 4. Sea $U \subset \mathbb{R}^n$ un subconjunto abierto y sean $f, g: U \to \mathbb{R}^n$ funciones diferenciables en $p \in U$ tales que f(p) = g(p). Demuestre que f'(p) = g'(p) si y sólo si

$$\lim_{v \to 0} \frac{f(p+v) - g(p+v)}{\|v\|}$$

Solución. Las siguientes proposiciones son equivalentes:

- f'(p) = g'(p)
- $||df_n(v) dg_n(v)|| \le \varepsilon \cdot ||v||$ para todo $\varepsilon > 0$.
- Se cumple que

$$0 = \lim_{v \to 0} \frac{f(p+v) - f(p) - df_p(v)}{\|v\|} - \lim_{v \to 0} \frac{g(p+v) - g(p) - dg_p(v)}{\|v\|}$$

$$= \lim_{v \to 0} \frac{f(p+v) - g(p+v)}{\|v\|} - \lim_{v \to 0} \frac{df_p(v) - dg_p(v)}{\|v\|}$$

$$= \lim_{v \to 0} \frac{f(p+v) - g(p+v)}{\|v\|}$$