PA1 – Part 1 Report

CS6303: Topics in Large Language Models

 $\begin{array}{c} {\rm Muhammad~Ahmad~Sarfraz} \\ 27100345 \end{array}$

October 6, 2025

Abstract

This report presents the results and analysis for Part 1 of Programming Assignment 1 (PA1) in CS6303: Topics in Large Language Models. The objective was to investigate how chunk size, overlap, top-k retrievals, and similarity thresholds influence the performance of a Retrieval-Augmented Generation (RAG) pipeline. The results demonstrate strong sensitivity to chunk size and overlap, while retrieval parameters (k, threshold) have minor effects.

1 Experimental Setup

Each run produced results in the format $d\{dataset\}_cs\{cs\}_ov\{ov\}_k\{k\}_th\{th\}.txt$, where:

• Chunk size (cs): 200, 400, 600 tokens

• Overlap (ov): 50, 100, 150 tokens

• Top-K (k): 1, 2, 3

• Threshold (th): 0.3, 0.5, 0.7

Accuracy was computed as the ratio of correctly predicted answers to total evaluated questions (case-insensitive string comparison). The primary focus of analysis is the **dataset 2 (d2)** subset containing answerable questions.

2 Results Summary

Table 1: Average accuracy across configurations

Chunk Size (cs)	Overlap (ov)	k	Threshold (th)	Accuracy Range
200	50 - 150	1 - 3	0.3 – 0.7	0.7-0.9
400	50 – 150	1 - 3	0.3 – 0.7	0.9–1.0
600	50 – 150	1 - 3	0.3 – 0.7	0.9–1.0

The performance improves consistently with larger chunk sizes and moderate overlap, while threshold changes have minimal influence. Notably, configurations with **chunk** $\operatorname{size} \geq 400$ and $\operatorname{overlap} \geq 100$ achieve near-perfect accuracy.

3 Graphical Analysis

3.1 Accuracy vs Top-K

Figure 1: Accuracy vs Top-K for different chunk sizes (Dataset 2). Accuracy remains stable across k.

3.2 Accuracy vs Overlap

Figure 2: Accuracy vs Overlap for different chunk sizes (Dataset 2). Higher overlap slightly improves accuracy.

3.3 Heatmap: Chunk Size \times Top-K

Figure 3: Heatmap showing accuracy across chunk size and top-K. Larger chunks achieve higher accuracy across all k.

3.4 Threshold Sensitivity

Figure 4: Accuracy vs threshold for different Top-K values. Model performance is relatively threshold-insensitive.

3.5 Mean Accuracy per Chunk Size

Figure 5: Mean accuracy per chunk size. Accuracy sharply increases from 200 to 400 tokens, plateauing afterward.

3.6 Dataset Comparison (d1 vs d2)

Figure 6: Accuracy comparison between datasets d1 and d2. Dataset 2 (answerable subset) shows clearer parameter sensitivity.

4 Discussion and Insights

• Chunk Size: Increasing chunk size yields higher accuracy by preserving semantic continuity and reducing context fragmentation.

- Overlap: Moderate overlap (100 tokens) balances recall and efficiency, preventing information loss at chunk boundaries.
- **Top-K:** Retrieval beyond the top-1 chunk adds little benefit, implying redundancy among retrieved contexts.
- Threshold: Similarity threshold has minimal effect within the range tested (0.3–0.7), suggesting robust embedding separation.

The overall trend indicates that contextual completeness (via larger, overlapping chunks) dominates performance, while retriever-specific tuning provides marginal gains.

5 Conclusion

The experiment demonstrates that chunking strategy is the most influential factor in RAG performance. Specifically, using chunk sizes between 400–600 with overlaps of 100 tokens consistently yields near-perfect accuracy.