Class 2

08/30 2021

Identification

What is Identification?

- Many people say "identification" is important for empirical work.
- ▶ What does "identification" mean???
 - ► Informally?
 - ► Formally?

What is Identification?

- ▶ Theory f: Primitives \rightarrow Set of outcomes
- ▶ Empirics f^{-1} : Realized outcome (a.k.a.data) → Primitives ▶ Roughly speaking, identification is about whether f is invertible
- ► Theorists like unique equilibrium (*f* is a singleton) c.f. multiple eqm.
- ▶ Empirical people like f^{-1} to be a singleton (point identification) c.f. partial ID
 - Relationship between multiple eqm and (point) ID?
 - ► Tamer (03): multiple eqm, point ID

Motivating Example

Ex.1 SP Auctions, Sealed Bid.

- K (known) symmetric bidders (buyers) with private values.
- ► Each bidder draws valuation from $F_i^* = F^*$
- Sealed-bid second-price auction (high bid wins, pays second highest bid)
- ▶ Researcher observes bids $b_1^t \cdots b_K^t$ for each auction t.
- Primitives: F^* . Data: $(b_1^t \cdots b_K^t)_{t \in \{1, \dots T\}}$
- ► Want to know *F**.
- ▶ Q: Propose a consistent estimate of $F^*(\tau)$ $\tau \in R$.

Motivating Example

Ex.1 SP Auctions, Sealed Bid.

- K (known) symmetric bidders (buyers) with private values.
- ► Each bidder draws valuation from $F_i^* = F^*$
- Sealed-bid second-price auction (high bid wins, pays second highest bid)
- ▶ Researcher observes bids $b_1^t \cdots b_K^t$ for each auction t.
- Primitives: F^* . Data: $(b_1^t \cdots b_K^t)_{t \in \{1, \dots T\}}$
- ▶ Want to know F*.
- Q: Propose a consistent estimate of $F^*(\tau)$ $\tau \in R$.
 - Variations: Observe winning bid only, FPA, auction heterogeneity, asymmetric bidders, common values, interdependent values, unobserved heterogeneity, etc.

Motivating Example

Ex.1 SP Auctions, Sealed Bid.

- K (known) symmetric bidders (buyers) with private values.
- ▶ Each bidder draws valuation from $F_i^* = F^*$
- Sealed-bid second-price auction (high bid wins, pays second highest bid)
- ▶ Researcher observes bids $b_1^t \cdots b_K^t$ for each auction t.
- Primitives: F^* . Data: $(b_1^t \cdots b_K^t)_{t \in \{1, \dots T\}}$
- ▶ Want to know F*.
- ▶ Q: Propose a consistent estimate of $F^*(\tau)$ $\tau \in R$.
 - Variations: Observe winning bid only, FPA, auction heterogeneity, asymmetric bidders, common values, interdependent values, unobserved heterogeneity, etc.
- Goal of empirical work is to go from data to model.

Definition

Formal Definition

- Let *m** be the profile of true unknown model primitives
- Let *M* be the set of all possible primitives.
- Let *m* be generic element of *M*.
 - ▶ In Ex 1, $m^* = F^*$, M is the set of all proper c.d.fs, m is some distribution F.

Definition

Formal Definition

Let P(m) denote the joint distribution of observable variables under the assumption that the data is generated under m.

▶ In **Ex 1**,
$$P(F) = \overbrace{F \times F \times \cdots F}$$
 (joint dist. of bids)

- ▶ $(m \in M)$ + (assump. about behavior) generate P(m).
 - assumptions about behavior include
 - utility/profit maximazation
 - avoid dominated strategies
 - play rationalizable strategies
 - various notions of Nash
 - In purely statistical models, no need for assump. on behavior.
- ▶ Often, should write P(m, E), where E is some kind of equilibrium notion, but typically suppress E.
- As sample size goes to infinity, we will learn $P(m^*)$ for sure.

Definition

Formal Definition

Definition

 $m^* \in M$ is identified in M iff $\forall m \in M$ s.t. $m \neq m^*$, $P(m) \neq P(m^*)$.

Definition

 $m^* \in M$ is not identified in M iff $\exists m \in M$, $m \neq m^*$, $P(m) = P(m^*)$.

If for some m and m', we have P(m) = P(m'), we say that m and m' are **observationally equivalent**.

Identification is about invertibility of $P(\cdot)$ in M.

NB: check dimensionality of M and P(M) to see if there's any hope of identification

NB: m (given some notion of equilibrium) should fully specify the complete data generating process.

NB: if M is a subset of a finite dimensional space, we say that the model M is parameteric. c.f. nonparametric, semiparametric

Ex2 Linear regression with one variable:

$$y = \beta_0^* + \beta_1^* x + \varepsilon$$
, $\varepsilon \sim N(\mu^*, \sigma^{*2})$, $\varepsilon \perp x$;

(x, y) are observable, ε is unobservable.

Purely statistical model, no need for E.

Ex2 Linear regression with one variable:

$$y = \beta_0^* + \beta_1^* x + \varepsilon$$
, $\varepsilon \sim N(\mu^*, \sigma^{*2})$, $\varepsilon \perp x$;

- Purely statistical model, no need for E.
- ▶ What is *m*, *M*?

Ex2 Linear regression with one variable:

$$y = \beta_0^* + \beta_1^* x + \varepsilon$$
, $\varepsilon \sim N(\mu^*, \sigma^{*2})$, $\varepsilon \perp x$;

- Purely statistical model, no need for E.
- ▶ What is *m*, *M*?
 - $ightharpoonup m = (\beta_0, \beta_1, \mu, \sigma^2), M = \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^+. M$ is parametric.

Ex2 Linear regression with one variable:

$$y = \beta_0^* + \beta_1^* x + \varepsilon$$
, $\varepsilon \sim N(\mu^*, \sigma^{*2})$, $\varepsilon \perp x$;

- Purely statistical model, no need for E.
- \blacktriangleright What is m, M?
 - $ightharpoonup m = (\beta_0, \beta_1, \mu, \sigma^2), M = \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^+. M \text{ is parametric.}$
- ▶ What is P(m)?

Ex2 Linear regression with one variable:

$$y = \beta_0^* + \beta_1^* x + \varepsilon$$
, $\varepsilon \sim N(\mu^*, \sigma^{*2})$, $\varepsilon \perp x$;

- Purely statistical model, no need for E.
- ▶ What is *m*, *M*?
 - $ightharpoonup m = (\beta_0, \beta_1, \mu, \sigma^2), M = \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^+. M$ is parametric.
- \blacktriangleright What is P(m)?
 - ▶ Joint distribution of x and y, F_{xy} .

Ex2 Linear regression with one variable:

$$y = \beta_0^* + \beta_1^* x + \varepsilon$$
, $\varepsilon \sim N(\mu^*, \sigma^{*2})$, $\varepsilon \perp x$;

- Purely statistical model, no need for E.
- \blacktriangleright What is m, M?
 - $ightharpoonup m = (\beta_0, \beta_1, \mu, \sigma^2), M = \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^+. M$ is parametric.
- ▶ What is P(m)?
 - ▶ Joint distribution of x and y, F_{xy} .
- ► Is $m^* = (\beta_0^*, \beta_1^*, \mu^*, \sigma^{*2})$ identified?

Ex2 Linear regression with one variable:

$$y = \beta_0^* + \beta_1^* x + \varepsilon$$
, $\varepsilon \sim N(\mu^*, \sigma^{*2})$, $\varepsilon \perp x$;

- Purely statistical model, no need for E.
- \blacktriangleright What is m, M?
 - $ightharpoonup m = (\beta_0, \beta_1, \mu, \sigma^2), M = \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^+. M$ is parametric.
- \blacktriangleright What is P(m)?
 - ▶ Joint distribution of x and y, F_{xy} .
- ▶ Is $m^* = (\beta_0^*, \beta_1^*, \mu^*, \sigma^{*2})$ identified?
 - ▶ No. $m^* = (\beta_0^*, \beta_1^*, \mu^*, \sigma^{*2})$, and $m' = (\beta_0^* + \mu^*, \beta_1^*, 0, \sigma^{*2})$ are observationally equivalent.

EX2') Linear regression with one variable:

$$y = \beta_0^* + \beta_1^* x + \varepsilon$$
, $\varepsilon \sim N(0, \sigma^{*2})$, $\varepsilon \perp x$

Same as **EX2**, but with $\mu^* = 0$.

ls $m^* = (\beta_0^*, \beta_1^*, \sigma^{*2})$ identified?

EX2') Linear regression with one variable:

$$y = \beta_0^* + \beta_1^* x + \varepsilon$$
, $\varepsilon \sim N(0, \sigma^{*2})$, $\varepsilon \perp x$

Same as **EX2**, but with $\mu^* = 0$.

- ls $m^* = (\beta_0^*, \beta_1^*, \sigma^{*2})$ identified?
- Yes (under weak regularity conditions)

EX2') Linear regression with one variable:

$$y = \beta_0^* + \beta_1^* x + \varepsilon$$
, $\varepsilon \sim N(0, \sigma^{*2})$, $\varepsilon \perp x$

Same as **EX2**, but with $\mu^* = 0$.

- ls $m^* = (\beta_0^*, \beta_1^*, \sigma^{*2})$ identified?
- Yes (under weak regularity conditions)
- ▶ To show this, let's show that $P(m^*) = P(m') \Rightarrow m^* = m'$.

PF:

Take $m^* = (\beta_0^*, \beta_1^*, \sigma^{2*})$ and consider $F_{v|x}(\cdot; m^*)$:

$$F_{y|x}(\tau; \mathbf{m}^*) = \Phi\left(\frac{\tau - \beta_0^* - \beta_1^* x}{\sigma^*}\right).$$

Now take $m^{'}=(\beta_{0}^{'},\beta_{1}^{'},\sigma^{2'})$ and consider $F_{y|x}(\tau;m')$:

$$F_{y|x}(\tau; m') = \Phi\left(\frac{\tau - \beta'_0 - \beta'_1 x}{\sigma'}\right).$$

If $P(m^*)=P(m')$, then $F_{y|x}(\tau;m^*)=F_{y|x}(\tau;m')$ for all τ and a.e. x. Hence,

$$\frac{\tau - \beta_0^* - \beta_1^* x}{\sigma^*} = \frac{\tau - \beta_0' - \beta_1' x}{\sigma'} \text{ for all } \tau, \text{ a.e. } x$$

Hence, $\beta_0^* = \beta_0'$, $\beta_1^* = \beta_1'$, $\sigma^{*2} = \sigma^{'2}$, i.e., $m' = m^*$.

Proving Identification

- Two popular ways of proving identification.
 - 1) Take m', and m^* , and proceed as in definition, i.e., prove that $P(m') \neq P(m^*)$ if $m' \neq m^*$.
 - 1)' Show $P(m^*) = P(m') \Rightarrow m^* = m'$.
- ▶ 2)Express m as a function of P(m) for all $m \in M$, as m = T(P(m)) for some fn. T (T should not depend on m).
- Why is 2) a proof?
 - ▶ Take m' and m^* and assume $P(m^*) = P(m')$.
 - ▶ Then $m^* = T(P(m^*)) = T(P(m')) = m'$. That is, we have shown the following: $P(m') = P(m^*) \Rightarrow m' = m^*$.

- Let's give alternative pf of Ex2 using method 2).
- Note that

$$\mathbf{E}[y|x=0] = \mathbf{E}[\beta_0 + \varepsilon|x=0] = \beta_0.$$

Now consider $\mathbf{E}[y|x=1]$.

$$\mathbf{E}[y|x=1] = \mathbf{E}[\beta_0 + \beta_1 + \varepsilon | x = 1] = \beta_0 + \beta_1.$$

 \triangleright So, can express β_1 as

$$\beta_1 = \mathbf{E}[y|x=1] - \mathbf{E}[y|x=0].$$

- ► Lastly, $\sigma^2 = Var(y|x=0)$
- ▶ Objects such as $\mathbf{E}[y|x=1]$, $\mathbf{E}[y|x=0]$, etc. is a function of P(m).

- So what's the intuition???
- ▶ As sample size goes to infinity, we will learn $P(m^*)$.
- ▶ $\mathbf{E}[y|x=0;m^*]$, $\mathbf{E}[y|x=1;m^*] \mathbf{E}[y|x=0;m^*]$, and $Var(y|x=0;m^*)$ are all known functions of (can be derived from) $P(m^*)$.
- Hence we will learn these objects too, as sample size goes to infinity.
- ▶ AND $\mathbf{E}[y|x=0;m^*] = \beta_0^*$, $\mathbf{E}[y|x=1;m^*] \mathbf{E}[y|x=0;m^*] = \beta_1^*$, and $Var(y|x=0;m^*) = \sigma^{2*}$.

More Definition

Definition

A coordinate m_i^* of $m^*(=(m_i^*, m_{-i}^*))$ is identified in M iff $\forall m = (m_i, m_{-i}) \in M$, $m_i \neq m_i^*$, $P(m) \neq P(m^*)$. c.f. **EX 2**, β_1^* , σ^{*2} are identified although β_0^* and μ_0^* are not.

Definition

A function $c^* = C(m^*)$ is identified in C(M) iff $\forall c' \in C(M)$, $c' \neq c^*$, $\{P(m)|C(m) = c^*\} \cap \{P(m)|C(m) = c'\} = \phi$. c.f. **EX 2**, $\beta_0^* + \mu^*$ is identified.

Definition

 $m^* \in M$ is partially identified in M if there is a subset N of M, and $\forall m' \in N \subset M$, $m' \neq m^*$, $P(m') \neq P(m^*)$.

Example: SPA with only winning bid observed

- ▶ Let K^t be the number of bidders in auction t, $(2 \le K^t \le \bar{K})$
- ▶ Symmetric IPV $(v_1, ... v_{K^t})$ drawn from $F_v^* \times \cdots \times F_v^*$.
- Sealed Bid.
- ▶ Observe winning bid y^t (i.e., 2nd highest bid) and K^t in auction t.
- ▶ Data: $(\{y^1, \dots, y^T\}, \{K^1, \dots, K^T\})$.
- ▶ M is the set of all distributions on \mathbb{R}^1 (nonparametric).
- $ightharpoonup m^* = F_v^*$
- ▶ P(m) is joint dist. of (y^t, K^t) , $F_{y,K}$.
- ▶ Is $F_v^* \in M$ identified?

Example: SPA with only winning bid observed

- ▶ Assume $K^1 = K^2 = \cdots = K^T = K$ (if not, what do you do?)
- ▶ To show F_v^* is identified, let's show $F_v = T(F_y)$.
- ► Consider distribution of *y* given F_v : $F_y(\cdot; F_v)$

$$\begin{aligned} F_{y}(\tau; F_{v}) &= & \operatorname{Pr}(y \leq \tau; F_{v}) \\ &= & \operatorname{Pr}(\operatorname{At \ least} \ K - 1 \ \text{of} \ \{v_{1}, ..., v_{K}\} \leq \tau) \\ &= & \underbrace{KF_{v}(\tau)^{K-1}(1 - F_{v}(\tau))}_{K} + \underbrace{F_{v}(\tau)^{K}}_{K} \end{aligned}$$

▶ Identification boils down to "Can I uniquely solve for $F_v(\tau)$ as a function of $F_v(\tau; F_v)$?"

SPA, Sealed Bid

▶ Now, consider the following function on $X \in [0, 1]$

$$a(X) = (1 - K)X^{K} + KX^{K-1}.$$

Consider the derivative of a(X):

$$\frac{d}{dx}a(X) = (1-K)KX^{K-1} + K(K-1)X^{K-2}$$

$$= (K-1)K[x^{K-2} - x^{K-1}].$$

- ▶ a(X) is str. incr. on $X \in [0, 1]$.
- ▶ Image of a(X) ($X \in [0,1]$) is [0,1].
- ▶ We can define $a^{-1}(X)$ on [0, 1].

SPA, Sealed Bid

Recall

$$F_{y}(\tau; F_{v}) = (1 - K)F_{v}(\tau)^{K} + KF_{v}(\tau)^{K-1}.$$

Previous argument implies we can solve for $F_{\nu}(\tau)$ as a function of $F_{\nu}(\tau; F_{\nu})$,

$$F_{\nu}(\tau) = a^{-1}(F_{\nu}(\tau; F_{\nu}))$$
 for all τ .

Notice we have now expressed F_{ν} as $T(P(F_{\nu}))$.

SPA, Sealed Bid

- ▶ Proof of identification through showing m = T(P(m)) leads to a way of estimation as well.
- ▶ In the previous example, note that $F_y(\tau) = \Pr(y \le \tau)$ can be consistently estimated by

$$\widehat{\Pr(y \leq \tau)} = \frac{1}{T} \sum_{t=1}^{T} 1_{\{(y_t \leq \tau)\}}$$

$$= \frac{(\# \text{ of auctions with winning bid } \leq \tau)}{(\# \text{ of auctions})}$$

▶ This means that $F_{\nu}(\tau)$ can be consistently estimated by

$$\widehat{F_{\nu}(\tau)} = a^{-1} \left(\frac{1}{T} \sum_{t=1}^{T} 1_{\{(y_t \le \tau)\}} \right).$$

▶ In general, if m = T(P(m)), then $\widehat{m} = T(\widehat{P(m)})$.

Exmaple: Search (Hong and Shum Rand '06)

- ► Hong and Shum (06) consider both simultaneous and sequential search.
- ► Here, we consider simultaneous search.
- ▶ Based on Burdett and Judd (1983), model of price dispersion with firm mixed strategies. (Do you know this model?)

Hong and Shum, Setting

▶ Setting: online prices of books from various vendors

RAW HISTOGRAMS OF ONLINE PRICES

Model

- Consumer i has search cost Ci.
- Decides how many times to search ex-ante (i.e., simultaneous).
- ▶ Primitive: $F_C(\cdot)$. Assume F_C has support on $[\underline{C}, \overline{C}]$, $\underline{C} > 0$. ▶ We take as given that \underline{C} and \overline{C} are known.
- Consumer's utility is value of good $-(n-1)C_i$ price p_i p_i
- For now, assume away the decision of whether or not to buy (say lower bound of v_i is higher than upper bound of p_i)
- \triangleright Consider identification of F_C .
- ▶ Given distribution of prices F_P (known to consumer), consumer samples $n(C_i)$ prices from the distribution.

► Consumer *i*'s problem

$$n(C_i) = \underset{n \ge 1}{\arg \min} (n-1)C_i + \int_{\underline{\rho}}^{\overline{\rho}} pn(1 - F_P(p))^{n-1} f_P(p) dp$$

- What is $\int_p^{\overline{p}} pn(1 F_P(p))^{n-1} f_P(p) dp$?
- $\int_{\underline{p}}^{\overline{p}} pn(1 F_P(p))^{n-1} f_P(p) dp = \mathbf{E}[\text{lowest price out of } n \text{ draws}]$

► Consumer *i*'s problem

$$n(C_i) = \underset{n \ge 1}{\arg \min} (n-1)C_i + \int_{\underline{\rho}}^{\overline{\rho}} pn(1 - F_P(p))^{n-1} f_P(p) dp$$

- What is $\int_p^{\overline{p}} pn(1 F_P(p))^{n-1} f_P(p) dp$?
- $ightharpoonup n(C_i)$ is nonincreasing in C_i (why?)

Consumer i's problem

$$n(C_i) = \underset{n \ge 1}{\arg \min} (n-1)C_i + \int_{\underline{\rho}}^{\overline{\rho}} pn(1 - F_P(p))^{n-1} f_P(p) dp$$

- What is $\int_p^{\overline{p}} pn(1 F_P(p))^{n-1} f_P(p) dp$?
- $ightharpoonup n(C_i)$ is nonincreasing in C_i (why?)
- ► Incremental cost: C_i

Consumer i's problem

$$n(C_i) = \underset{n \ge 1}{\arg \min} (n-1)C_i + \int_{\underline{\rho}}^{\overline{\rho}} pn(1 - F_P(p))^{n-1} f_P(p) dp$$

- ▶ What is $\int_{p}^{\overline{p}} pn(1 F_P(p))^{n-1} f_P(p) dp$?
- $ightharpoonup n(C_i)$ is nonincreasing in C_i (why?)
- ► Incremental cost: *C_i*
- ▶ Incremental Benefit: $\mathbf{E}[\text{lowest price out of } n+1 \text{ draws}] \mathbf{E}[\text{lowest price out of } n \text{ draws}]$

- Define $\Delta_n = \mathbf{E}[p_{1:n} p_{1:n+1}]$ where $p_{1:n}$ is the lowest realization from n independent samples from F_P .
 - $ightharpoonup \Delta_n$ is a function of P(m). Hence Δ_n are all identified.
 - \triangleright Δ_n : incremental value of an extra search.
 - If $C_i > \Delta_n$, then (incremental cost of search) > (incremental value of search)
 - If $C_i < \Delta_n$, then (incremental cost of search) < (incremental value of search)
 - Δ_n corresponds to the threshold search cost that determines whether consumer searches n or n+1 times.
 - ► Can show $\Delta_{n+1} \leq \Delta_n$ (decreasing marginal benefit), and $\Delta_n \to 0$ as $n \to \infty$.
- Define $q_1 = 1 F_C(\Delta_1)$: mass of consumers who only take one price draw
- ▶ Define $q_K = F_C(\Delta_{K-1}) F_C(\Delta_K)$ for $K = 2 \cdots \overline{K}$.
 - $ightharpoonup q_K$ is the mass of consumers who take K draws.
 - Note that $\underline{C} > 0$ implies \overline{K} is finite.

Graphically...

- ▶ We now show that $q_K = F_C(\Delta_{K-1}) F_C(\Delta_K)$ are identified.
- To do so, use firms' eqm condition in a mixed-strategy price dispersion model based on Burdett and Judd.
- Firm profit from charging price p:

$$\Pi(p) \ltimes \overbrace{(p-r)}^{\text{Margin}} \sum_{K=1}^{\overline{K}} q_K K \times \underbrace{(1-F_P(p))^{K-1}}^{\text{Prob. } p \text{ is lower than } K-1 \text{ other draws}}_{K-1}$$

- $ightharpoonup q_K$: mass of consumers who take K price quotes.
- q_KK: probability that a given price quote is received by a person who takes K price quotes.
- ▶ Needs $\Pi(p) = \Pi(p')$ for all p, p' (b/c mixed strategy).
- ▶ In particular, $\Pi(p) = \Pi(p^M)$ where p^M is monopoly price (why?).
 - ▶ Observe that p^M should be the upper support of F_P .

Let $p_1 < p_2 < \cdots < p_T = p^M$ be any price in the support of F_P .

$$(p^M - r)q_1 = (p_i - r)\sum_{K=1}^{\overline{K}} q_K K (1 - F_P(p_i))^{K-1}$$
 for all i .

- As long as $T > \overline{K}$, there is generically a unique solution $(r, q_1, \dots, q_{\overline{K}})$ that solves equation above.
- ▶ Hence $(q_1, \cdots q_{\overline{K}})$ are identified.
- ▶ This means that F_C is identified on \overline{K} points $(\Delta_1 \cdots \Delta_{\overline{K}})$
 - $ightharpoonup q_1 = 1 F_C(\Delta_1)$, and $q_K = F_C(\Delta_{K-1}) F_C(\Delta_K)$ for $K = 2 \cdots \overline{K}$.
- ► F_C is not identified on all other points (partial identification)
- ▶ Q: propose an estimator for $F_C(\Delta_1) \cdots F_C(\Delta_{\overline{K}})$.

TABLE 2 Search-Cost Distribution Estimates for Nonsequential-Search Model

		M^{b}	$ar{q}_1^{ m c}$	$ ilde{q}_2$	$ ilde{q}_3$	Selling Cost r	MEL Value
Product	K^{a}						
Parameter estimate	es and stan	dard errors	: nonsequential-sea	rch model			
Stokey-Lucas	3	5	.480 (.170)	.288 (.433)		49.52 (12.45)	102.62
Lazear	4	5	.364 (.926)	.351 (.660)	.135 (.692)	27.76 (8.50)	84.70
Billingsley	3	5	.633 (.944)	.309 (.310)		69.73 (68.12)	199.70
Duffie	3	5	.627 (1.248)	.314 (.195)		35.48 (96.30)	109.13
Search-cost distrib	ution estim	ates					
	Δ_1		$F_c(\Delta_1)$	Δ_2	$F_c(\Delta_2)$	Δ_3	$F_c(\Delta_3)$
Stokey-Lucas	2.32		.520	.68	.232		
Lazear	1.31		.636	.83	.285	.57	.150
Billingsley	2.90		.367	2.00	.058		
Duffie	2.41		.373	1.42	.059		