Universidade Federal de Santa Catarina

MTM 5161 - Cálculo A

Professor Adriano Né

4ª Lista de Exercícios

1) Encontre as derivadas das seguintes funções utilizando a definição, ou seja, $\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}.$

(a)
$$f(x) = x^2$$

(b)
$$f(x) = x^2 - 3x + 4$$

(c)
$$f(x) = x^3 - 3x + 4$$

(d)
$$f(x) = \sqrt{x-3}$$

(d)
$$f(x) = \sqrt{x-3}$$
 (e) $f(x) = \left(\frac{2+x}{3-x}\right)$

2) Verifique se existe derivada no ponto x_1 nas seguintes funções:

(a)
$$f(x) = \begin{cases} 2-4x, \text{ se } x \le -4 \\ \frac{x^2}{2}, \text{ se } x > -4 \end{cases}$$
; $x_1 = -4$

(b)
$$f(x) = \begin{cases} 3-2x, \text{ se } x < 2 \\ 3x-7, \text{ se } x \ge 2 \end{cases}$$
; $x_1 = 2$

(c)
$$f(x)=|x-3|$$
; $x_1=3$

(d)
$$f(x)=1+|x+2|$$
; $x_1=-2$

(e)
$$f(x) = \begin{cases} x^2 - 4, \text{ se } x < 2 \\ \sqrt{x - 2}, \text{ se } x \ge 2 \end{cases}$$
; $x_1 = 2$

(f)
$$f(x) = \begin{cases} x^2, & \text{se } x \le 1 \\ x+1, & \text{se } x > 1 \end{cases}$$
; $x_1 = 1$

3) Ache os valores de \mathbf{a} e \mathbf{b} tais que f seja derivável em x = 1 se $f(x) = \begin{cases} x^2 & \text{se } x < 1 \\ ax + b & \text{se } x > 1 \end{cases}$

4) Ache os valores de \mathbf{a} e \mathbf{b} tais que f seja derivável em x = 2 se

$$f(x) = \begin{cases} 2x^2 - 1, \text{ se } x \ge 2 \\ ax + b, \text{ se } x < 2 \end{cases}$$

5) Calcule a derivada de cada uma das funções lembrando-se da Regra da Cadeia.

(a)
$$v = e^{2x}$$

(b)
$$v = ln(x^2 + 3)$$

(c)
$$v = 2^{x + \cos x}$$

(d)
$$v = (3 + 2x)^8$$

(e)
$$y = 5^{x^2 + x}$$

(f)
$$y = e^{x^2 + \cos x}$$

(g)
$$y = arcsen(x^2 - 3)$$

(h)
$$y = arctg(2x^3 + x)$$

(i)
$$y = ln(sec^2 x)$$

(j)
$$y=e^{e^x}$$

(k)
$$y = e^{tgx}$$

(I)
$$y = tg(e^x)$$

(m)
$$y = log_a(1 + sen^2 x)$$

(n)
$$v = arccos(x + e^x)$$

(o)
$$y = ln(x + cos3x)$$

(p)
$$v = ln(x^2 + e^{sen4x})$$

(q)
$$v = \sqrt{x^2 + \cos x}$$

(r)
$$v = \sqrt[3]{x^4 + 3x \, sen x}$$

(s)
$$y = (x^2 + x)e^{x^3}$$

(t)
$$y = \frac{1 + e^{2x}}{sen x}$$

6) Calcule a derivada das funções trigonométricas a seguir:

(a)
$$y = cossec\left(\frac{1}{x^2}\right)$$

(b)
$$y = \frac{\sec 5x}{tg 3x}$$

(c)
$$y = sec(senx)$$

(d)
$$y = \sqrt{1 + \cot g \, 5x}$$

7) Obtenha as derivadas das equações a seguir utilizando a derivação implícita, considere y=f(x):

(a)
$$y = x \ln y$$

(b)
$$y = (\ln x)(\ln y)$$

(c)
$$xy = \ln(seny)$$

(d)
$$xy + x^2 \ln^2 y = 4$$

8) Escreva a equação da reta tangente às curvas a seguir no ponto P indicado.

(a)
$$y = x^3$$
; $P(2.8)$

(b)
$$y = \frac{1}{x-1}$$
; $P(2,1)$

(c)
$$y=x^3+3x^2-4x-5$$
; $P(1,-5)$ (d) $y=\frac{3}{x^2}-\frac{4}{x^3}$; $P(-1,7)$

(d)
$$y = \frac{3}{x^2} - \frac{4}{x^3}$$
; $P(-1,7)$

(e)
$$y = \frac{3x^2}{x^2 + x + 1}$$
; $P(-1,3)$

9) Encontre a equação da reta tangente à curva no ponto dado.

(a)
$$y = \sqrt[4]{x}$$
, (1, 1)

(a)
$$y = \sqrt[4]{x}$$
, (1, 1) (b) $y = x^4 + 2e^x$, (0, 2) (c) $y = 3x^2 - x^3$, (1, 2)

(c)
$$y=3x^2-x^3$$
, (1, 2)

- **10)** Mostre que a curva $y = 6x^3 + 5x 3$ não tem reta tangente com a inclinação 4.
- 11) Encontre equações para ambas as retas tangentes à curva y = 1 + x³ e que são paralelas à reta 12x - y = 1.
- **12)** Encontre uma equação para a reta normal à parábola $y = x^2 5x + 4$ que seja paralela à reta x - 3y = 5.
- **13)** Seja r(x)=f(g(h(x))) onde h(1)=2, g(2)=3, h'(1)=4, g'(2)=5 e f'(3)=6. Encontre r'(1).
- 14) A Cefeu é uma constelação cujo brilho é variável. A estrela mais visível dessa constelação é a Delta Cefeu, para a qual o intervalo de tempo entre os brilhos máximos é de 5.4 dias. O brilho médio dessa estrela é de 4.0, com uma variação de ± 0.35 . Em vista destes dados, o brilho da Delta Cefeu no instante t, onde t é medido em dias, foi modelado pela função

$$B(t) = 4.0 + 0.35 \operatorname{sen}\left(\frac{2\pi t}{5.4}\right)$$

- (a) Escreva a taxa de variação do brilho após t dias.
- (b) Encontre, correta até dua casas decimais, a taxa de crescimento após 1 dia.
- 15) Use a derivação implícita para encontrar uma equação da reta tangente à curva no ponto dado.

(a)
$$x^2 + xy + y^2 = 3$$
, (1, 1)
(Elipse)

(b)
$$x^2+y^2=(2x^2+2y^2-x^2)^2$$
, (0, 1/2) (Cardioide)

Respostas: 1) (a)
$$2x$$
; (b) $2x - 3$; (c) $3x^2 - 3$; (d) $\frac{1}{2 \cdot \sqrt{x - 3}}$; (e) $\frac{5}{(3 - x)^2}$. 2) (a) Não; (b) Não; (c) Não; (d) Não; (e) Não; (f) Não. 3) $a = 2$, $b = -1$. 4) $a = 8$, $b = -9$. 5) (a) $2 \cdot e^{2x}$; (b) $\frac{2x}{x^2 + 3}$; (c) $(1 \cdot senx) \ln 2 \cdot 2^{x + cosx}$; (d) $16(3 + 2x)^7$; (e) $(2x + 1) \ln 5 \cdot 5^{x^2 + x}$; (f) $(2x - senx) e^{x^2 + cosx}$; (g) $\frac{2x}{\sqrt{1 - (x^2 - 3)^2}}$; (h) $\frac{6x^2 + 1}{1 + (2x^3 + x)^2}$; (i) $2 tgx$; (j) $e^{x} \cdot e^{x}$; (k) $e^{tgx} \cdot sec^2x$; (l) $e^x \cdot sec^2e^x$; (m) $\frac{sen 2x}{(1 + sen^2x) \ln a}$; (n) $-\frac{1 + e^x}{\sqrt{1 - (x + e^x)^2}}$; (o) $\frac{1 - 3 sen 3x}{x + cos 3x}$; (p) $\frac{2x + 4 \cos 4x \cdot e^{sen 4x}}{x^2 + e^{sen 4x}}$; (q) $\frac{2x - sex}{2\sqrt{x^2 + cosx}}$; (r) $\frac{4x^3 + 3 sen x + 3 x cos x}{3 \cdot \sqrt[3]{x^4 + 3 x sen x}^2}$; (s) $e^{x^3}(3x^4 + 3x^3 + 2x + 1)$; (t) $\frac{2e^{2x} sen x - (1 + e^{2x}) cos x}{sen^2x}$. 6) (a) $\frac{2 \cot g\left(\frac{1}{x^2}\right) cossec\left(\frac{1}{x^2}\right)}{x^3}$; (b) $\frac{5tg 3x sec 5x tg 5x - 3 sec 5x sec^2 3x}{tg^2 3x}$; (c) $[sec(sen x) tg(sen x)] cos x$; (d) $\frac{-5 cossec^2 5x}{2\sqrt{1 + cotg 5x}}$. 7) (a) $\frac{y \ln y}{y - x}$; (b) $\frac{y \ln y}{x(y - \ln x)}$; (c) $\frac{y}{-x + cotg y}$; (d) $\frac{-y^2 - 2xy \ln^2 y}{xy + 2x^2 \ln y}$. 8) (a) $12x - y = 16$; (b) $x + y = 3$; (c) $5x - y = 10$; (d) $18x - y = -25$; (e) $3x + y = 0$. 9) (a) $y = \frac{x}{4} + \frac{3}{4}$; (b) $y = 2x + 2$; (c) $y = 3x - 1$. 11) $y = 12x - 15$ e $y = 12x + 17$. 12) $y = \frac{x}{3} - \frac{1}{3}$. 13) 120. 14) (a) $\frac{dB}{dt} = \frac{7\pi}{54} \cos\left(\frac{2\pi t}{54}\right)$; (b) 0,16. 15) (a) $y = -x + 2$; (b) $y = x + 1/2$; (c) $y = (9/2)x - 5/2$.