Proof. Based on the definition of limits at infinity, the implication we are trying to prove is:

$$\forall \varepsilon > 0, \ \exists M \in \mathbb{R} \text{ s.t. } x > M \implies \left| \frac{1}{x} \right| < \varepsilon$$

Fix $\varepsilon > 0$. Let $M = \frac{1}{\varepsilon}$. If x > M, then $x > \frac{1}{\varepsilon} > 0$. Assuming x > M, it follows:

$$\begin{array}{ccc} x > M & \Longrightarrow & x > \frac{1}{\varepsilon} \\ & \Longrightarrow & \varepsilon x > 1 \\ & \Longrightarrow & \frac{1}{x} < \varepsilon \\ & \Longrightarrow & \left| \frac{1}{x} \right| < \varepsilon & (\text{since } \frac{1}{x} > 0) \end{array}$$

(b)

Proof. In order to prove that $\frac{1}{x^k} < \frac{1}{x}$ for all integers x > 1 and $k \ge 2$, we first have to prove that $x < x^k$ for all $k \ge 2$. This can be done with a proof by induction.

Base Case. The base case we have to prove is $x^2 > x$. Since x > 1, it follows:

$$x > 1 \implies x^2 > x$$

Induction Step. Following this, we need to prove for any natural $k \geq 2$:

$$x^k > x \implies x^{k+1} > x$$

We observe that $x^{k+1} = x^k \cdot x$. Thus, since x > 1:

$$x^{k} \cdot x > x^{k} > x \implies x^{k} \cdot x > x$$

 $\implies x^{k+1} > x$

Thus, we prove that $x < x^k$ for all $k \ge 2$ and in turn $\frac{1}{x^k} < \frac{1}{x}$. Since $x > 0, k > 0, x^k > 0 \implies \frac{1}{x^k} > 0$. Therefore,

$$0 < \frac{1}{x^k} < \frac{1}{x}$$
 for all integers $x > 1, k \ge 2$

(c)

Proof. We know from the Squeeze Theorem that for any three functions f, g, h:

- For x close to any point a but not $a, h(x) \leq g(x) \leq f(x)$;
- $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L;$

then
$$\lim_{x\to a} g(x) = L$$
.
 Let $h(x) = 0, g(x) = \frac{1}{x^k}, f(x) = \frac{1}{x}$.
 By (b) we know that

$$0 < \frac{1}{x^k} < \frac{1}{x}$$
 for all integers $x > 1, k \ge 2$

Therefore by the Squeeze Theorem,

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} h(x) = 0 \implies \lim_{x \to \infty} g(x) = 0$$

2