MATH5301 Elementary Analysis. Homework 9. Due: 11/05/2021, 11:59 pm

First Name: Last Name:

9.1

Let $\|\cdot\|_a$ and $\|\cdot\|_b$ be two equivalent norms on \mathbb{R}^n .

- (a) Prove that if the set A is closed in the a-norm, then it is closed in b-norm.
- (b) Prove that if the set A is compact in the a-norm, then it is compact in b-norm.

Consider the set ℓ^{∞} of all real-valued sequences, endowed with the sup-norm: $||l||_{\infty} = \sup_{n \in \mathbb{N}} |l_n|$.

- (a) Prove that ℓ^{∞} is complete.
- (b) Prove that ℓ^{∞} is not compact.

Consider the set $\mathbb{B}([0,1],\mathbb{R})$ of all bounded real-valued functions on the unit interval, endowed with the sup-norm: $\|f\|_{\infty} = \sup_{x \in [0,1]} |f(x)|$. Denote by $B_1 := \{f \in \mathbb{B} : \|f\|_{\infty} \le 1\}$ be close unit ball.

- (a) Prove B_1 is closed.
- (b) Prove that B_1 is bounded.
- (c) Prove that B_1 is not compact.

Let $\{V, \|\cdot\|\}$ be a normed space. Show that the function $f(x) = \|x\| : V \to \mathbb{R}$ is continuous on V.

Let (X, d_1) and (Y, d_2) are two metric spaces. Assume also that Y is a vector space. Construct an example of two continuous functions $f, g: X \to Y$ such that f + g is discontinuous.

Construct an example of a sequence $\{f_n\}$ of nowhere continuous functions $[0,1] \to \mathbb{R}$ such that f_n converge in sup-norm to continuous function.