

Project Batcomputer

Making DevOps work for Machine Learning

batcomputer.benco.io

Ben Coleman Phil Harvey

@BenCodeGeek
@CodeBeard

Background

Motivation

- Understand challenges in operationalisation of ML models
- "DevOps for AI"
- Integration of "all in in one" processes with real DevOps approach

Why Batcomputer?

- Police recorded crime and outcomes data
- Source data as CSV https://data.police.uk/data
- Build model of a given crime and region to predict "Would you get caught?"

Core Principals & Benefits

- Decouple model training experiments from operations/runtime
- Continuous Integration
 Automated training, API builds & deployment
- Versioned models and APIs
- A real RESTful API, not a thin HTTP wrapper
- Configuration as code, infrastructure as code
- Traceability

Conceptual Building Blocks

Conceptual Building Blocks – Project Batcomputer

Versioning – Many Touch Points

batcomputer-model

Also...

- Resource names in Azure controlled via ARM templates
- ACI DNS names & prefixes,
 e.g. batcomputer-43.westeurope.azurecontainer.io
- Object names in Kubernetes (pods, services), controlled via Helm chart

The 'Model Registry' – Not Just The Model

model.pkl

Scikit-learn model/classifier

Standard object rehydration, version sensitive

lookup.pkl

Python dictionary of dictionaries

Mapping parameters/strings to num for predict function

flags.pkl

Python array

Maps output of prediction function to human readable labels

DevOps

Continuous Integration / Continuous Delivery

Model Training & Deployment – End To End Flow

Core DevOps Practice - Continuous Integration

Development & experimentation

CI triggered training & testing job runs

Infrastructure As Code

Standard DevOps working practice

Define everything about your environment as "code" (YAML, JSON, etc)

Store with your application under source control / Git

azure-

Testing

Integration tests against the real API using Postman & Newman

Machine Learning & Training

Machine Learning – Training Scripts

The focus of Batcomputer project is not best practice machine learning or rigorous data science

Well known libraries: Scikit Learn + Pandas

Build a simple classification model using labelled data (supervised learning)

Small-ish data set (1.5GB)

Azure Machine Learning Service - AML

Azure Machine Learning service provides SDKs and services to prep data, train, and deploy machine learning models

Driven by Python SDK

Range of training & experimentation compute targets

Model management

"Project Batcomputer operationalisation Process"

Images

Deployment

https://docs.microsoft.com/python/api/overview/azure/ml/intro

upload-data.py

- Prepares environment
- Uploads local training data to Azure ML datastore

run-training.py

- Instructs Azure ML run an **experiment**
- Source training script is **separate** python file
- Training python is executed **remotely** in Azure ML **compute cluster**
- Registers resulting model in Azure ML model service

fetch-model.py

- **Downloads** serialised model from Azure ML **model service**
- In addition gets **supporting .pkl files** (more later)

Azure Machine Learning SDK for Python

Detailed Azure DevOps Flow

Azure ML Deployment

Azure ML provides a means to deploy your models, why not use it?

- "Highly Opinionated"
- Bypasses release process
- No control over container build process
- No choice of app structure, code or framework
- No infrastructure as code or release pipeline
- No integration or regression testing

Model API Wrapper App

Some Decision Points

- Include model in container image or fetch at runtime?
- Make generic or tied to a specific model?
- What are my API parameters?
- Which web framework; Flask, Django, Gunicorn?
- Base Python image, Alpine etc

Model API – Low Level Technology Stack

Wrapper App – Components

- Uses Flask web framework + Gunicorn
- Creates RESTful API for model parameters
- Consumes .pkl files

POST /api/predict

"month": 10

"force": "Thames Valley Police",

"crime": "Bicycle theft",

Swagger

- We want to be RESTful
- Dynamic
 - Generated from lookup & flags pickles at runtime
- Swagger UI
 - For testing & eye candy

"force_name": "Greater Manchester",
"offence_subgroup": "Theft from a vehicle"

Parameter content type application/json

Building the Container Image

```
FROM python:3.6-slim-stretch
# Install Python requirements
ADD requirements.txt .
RUN pip3 install -r requirements.txt
# Add in our app and the pickle files
WORKDIR /app
ADD src .
ADD pickles/*.pkl ./pickles/
# Runtime configuration & settings
EXPOSE 8000
# Start the Flask server
CMD ["python3", "server.py"]
```

Base image is Debian based

This makes installing Python packages MUCH faster

Add in app source and pickles

Alternative startup for Gunicorn Requires no code changes

```
# Start the app via Gunicorn WSGI server
ENV GUNICORN_CMD_ARGS "--bind=0.0.0.0:8000"
CMD ["gunicorn", "--access-logfile", "-", "server"]
```

Container Deployment

Azure Container Registry

\$ az container create
--image batcomputer:43

\$ helm install batcomputer

\$ az group deploy
--template-file bc.json

Kubernetes Service

App Service Containers

Demo

Summary

Some Learnings / Gotchas

- Pickled Scikit-learn models are version sensitive
- Keep Python version in sync everywhere
- Don't use Alpine, use Debian Slim as container image base
- Writing your own wrapper isn't hard
- Azure ML is has a complex but powerful SDK
- Tracking & managing parameters & variables can get tricky

Summary

Nothing new under the sun

 ML and AI might be "different", but standard software engineering practices can easily be applied

Bringing DevOps rigor to the machine learning process

It's not scary and saves work in the long run

"Closed box" services such as Azure ML can be used in a DevOps way

Requires a little creative thinking

