Bases de Données

S5 – INFO, DL BI

Tr. d'après Georges Gardarin

http://www.gardarin.org/

http://e-campus2.uvsq.fr

Administratif

- Cours magistral (à partir du 13 sept.)
 - Mercredi 9h45-11h15, Amphi B
- Responsable du cours : Iulian SANDU POPA (<u>iulian.sandu-popa@uvsq.fr</u>)
- Groupes de TD (à partir de la <u>semaine du 25 sept.</u>)
 - G1 (bât. Buffon, (pour le moment) salle RC9) : mardi 13h30-16h45
 - G2 (bât. Descartes, salle Alsace): mercredi 13h30-16h45
- Chargés de TD :
 - G1 : Laurent Yeh
 - G2 : Iulian Sandu Popa

Plan du cours

Bases de données

- Introduction (1 cours)
- Modèle Entité-Association (1/2 cours)
- Modèle et algèbre relationnelle (1/2 cours)
- Le langage SQL (3-4 cours)
- Vues (1/2 cours)
- Contrôle d'accès (1/2 cours)

Applications Web

- Introduction au Web et à la conception d'un site web (1/2 cours)
- Le langage HTML (1/2 cours)
- Le langage PHP (2-3 cours)
- Nous ne parlerons (presque) pas de l'optimisation!

Support de cours conseillé

• Bases de données, Eyrolles, Georges Gardarin

 Database System Concepts, Abraham Silberschatz, Henry F. Korth, S. Sudarshan

 Database Systems: The Complete Book, Hector Garcia-Molina, Jeff Ullman, Jennifer Widom

Aspects pratiques

- TD sur papier et sur machine avec MySQL/HTML/PHP
 - Autres BDs: PostgreSQL, Oracle, SQL Server, IBM DB2 ...
 - Cartable numérique ou ordinateur personnel

Evaluation

- CC (40%): partie SQL (1-2 contrôles) (50%) + mini-site web
 (MySQL, HTML, CSS, PHP) (50%)
- Examen final (60%)
- Support de cours et TD disponible sur le Web
 - http://e-campus2.uvsq.fr/
 - IN507 Bases de Données

Introduction

Les BD au quotidien

• Site http://www.transilien.fr/

FEUIL	LE DE F	ROUTE			
Départ	GARE ST LAZARE - Paris				
Arrivée	GARE DE MONTREUIL - Versailles				
le 8 Septembre arrivée à 13:00					
Heure	Mode	Lieu		Durée	Plan
12h32 12h57	P	De l'arrêt GARE ST LAZARE (Paris) Prendre le Train VALE Direction GARE DE VERSAILLES RIVE DROITE jusqu'à GARE DE MONTREUIL (Versailles)	SNCF	25 min	ام ام
·		D	urée totale	du trajet :	25 mir
< Hor. Préd	édents	Les horaires de votre recherche		Hor. Sui	vants :
NOUVELLE RECHERCHE AJUSTER VOTRE RECHERCHE PRIX DES TITRES AIDE ?					
ENVOYER À UN AMI IMPRIMER					

1. Introduction

- Les entreprises gèrent des volumes de données très grands
 - Giga, Terra, Péta -octets
 - en 2014 Google stockait plus de 10 exabytes (1 exabyte = 1 million de terrabytes)
 - Numériques, textuelles, multimédia (images, films,...), capteurs (GPS, température, pollution ...)
- Il faut pouvoir facilement
 - Archiver les données sur mémoires secondaires permanentes
 - Retrouver les données pertinentes à un traitement
 - Mettre à jour les données variant dans le temps
- Les données sont structurées et identifiées
 - Données élémentaires ex: votre salaire, votre note en BD
 - Données composées ex: votre CV, vos résultats de l'année
 - Identifiant humain ex: NSS ou machine: P26215
- Qu'est-ce qu'une BD ?
 - Collection de données structurées reliées par des relations
 - Interrogeable et modifiable par des langages de haut niveau

La hiérarchie des mémoires

 Un accès disque est environ 100,000 fois plus lent qu'un accès mémoire!

- lacksquare
 - Eviter les accès disques
 - grande mémoire principale
 - Amortir les accès disques
 - placement des données
 - Minimiser le nombre d'accès disques
 - méthodes d'accès

Un peu d'histoire

- Années 60:
 - Récipients logique de données → fichiers sur disque
 - Accès séquentiel puis sur clé
 - Lire (Nomf, Article), Ecrire (Nomf, Article)
 - Lire (Nomf, Article, Clé), Ecrire (Nomf, article, Clé)
- Années 70:
 - Avènement des Bases de Données Réseaux (BD)
 - Ensemble de fichiers reliés par des pointeurs
 - Langage d'interrogation par navigation
- Années 80:
 - Avènement des Bases de Données Relationnelles (BDR)
 - Relations entre ensemble de données
 - Langage d'interrogation par assertion logique
- Années 90:
 - Orientation décisionnelle (Data mining, OLAP)
- Années 2000:
 - Avènement du Web (Alta-vista, yahoo!, google...)

BD sur le Web

- Archivage et recherche de données multimédias
 - Texte (livres, articles, journaux, ...)
 - Images (instagram, flickr)
 - Films (youtube, etc.)
 - Données géographiques (cartes 2D, 2.5 D OpenStreetMap, google maps)
 - Données spatiales (3D), temporelles et spatio-temporelles

- Recherche par proximité
 - Textes : liste de mots-clés (à la Google)
 - Images : par proximité (couleur, forme, texture ...)
 - Cartes: par rectangle englobant, distance, zoom

Systèmes de fichiers

Caractéristiques

Chirurgie

Problèmes

Consultations

Psychiatrie

Format des fichiers

Caractéristiques

Plusieurs applications

- plusieurs formats
- plusieurs langages

Problèmes

→ Difficultés de gestion

Redondance (données)

Caractéristiques

Plusieurs applications

- plusieurs formats
- plusieurs langages

Redondance de données

- → Difficultés de gestion
- **→** Incohérence des données

Interrogations

Caractéristiques

Plusieurs applications

- → plusieurs formats
- plusieurs langages

Redondance de données

Pas de facilité d'interrogation

→ Question ⇒développement

- → Difficultés de gestion
- → Incohérence des données
- **→** Coûts élevés
- **→** Maintenance difficile

Pannes ???

Caractéristiques

Plusieurs applications

- plusieurs formats
- plusieurs langages

Redondance de données

Pas de facilité d'interrogation

→ Question ⇒développement

Redondance de code

- **→** Difficultés de gestion
- → Incohérence des données
- **→** Coûts élevés
- **→** Maintenance difficile
- **→** Gestion de pannes ???

Partage de données

Caractéristiques

Plusieurs applications

- → plusieurs formats
- plusieurs langages

Redondance de données

Pas de facilité d'interrogation

→ Question ⇒développement

Redondance de code

- → Difficultés de gestion
- **→** Incohérence des données
- **→** Coûts élevés
- **→** Maintenance difficile
- **→** Gestion de pannes ???
- → Partage des données ???

Confidentialité

Caractéristiques

Plusieurs applications

- → plusieurs formats
- plusieurs langages

Redondance de données

Pas de facilité d'interrogation

→ Question ⇒développement

Redondance de code

- → Difficultés de gestion
- **→** Incohérence des données
- → Coûts élevés
- **→** Maintenance difficile
- **→** Gestion de pannes ???
- → Partage des données ???
- → Confidentialité ???

L'approche "Bases de données"

- Modélisation des données
 - → Eliminer la **redondance** de données
 - → Centraliser et organiser correctement les données
 - → Plusieurs niveaux de modélisation
 - → Outils de conception

- Logiciel «Système de Gestion de Bases de Données»
 - → Factorisation des modules de contrôle des applications
 - Interrogation, cohérence, partage, gestion de pannes, etc...
 - → Administration facilitées des données

Modélisation du réel

Modélisation Relationnelle (1)

Relation ou table

Champs, attributs, colonnes

Id-D	Nom	Prénom
1	Dupont	Pierre
2	Durand	Paul
3	Masse	Jean

Tuples, lignes ou nuplets

Modélisation Relationnelle (2)

Docteurs

Id-D	Nom	Prénom
1	Dupont	Pierre
2	Durand	Paul
3	Masse	Jean

Visites

Id-D	Id-P	Id-V	Date	Prix
1	2	1	15 juin	250
1	1	2	12 août	180
2	2	3	13 juillet	350
2	3	4	1 mars	250

Prescriptions

Id-V	Ligne	Id-M	Posologie
1	1	12	1 par jour
1	2	5	10 gouttes
2	1	8	2 par jour
2	2	12	1 par jour
2	3	3	2 gouttes
• • • •		• • • •	

Patients

Id-P	Nom	Prénom	Ville
1	Lebeau	Jacques	Paris
2	Troger	Zoe	Evry
3	Doe	John	Paris
4	Perry	Paule	Valenton

Médicaments

Id-M	Nom	Description
1	Aspegic 1000	
2	Fluisédal	
3	Mucomyst	

2. Objectifs des SGBD

I - Indépendance Physique

- Indépendance des programmes d'applications vis à vis du modèle physique :
 - Possibilité de modifier les structures de stockage (fichiers, index, chemins d'accès, ...) sans modifier les programmes;
 - Ecriture des applications par des non-spécialistes des fichiers et des structures de stockage;
 - Meilleure portabilité des applications et indépendance vis à vis du matériel.

II - Indépendance Logique

Les applications peuvent définir des vues logiques de la BD

Avantages de l'indépendance logique

- Possibilité pour chaque application d'ignorer les besoins des autres (bien que partageant la même BD).
- Possibilité d'évolution de la base de données sans réécriture des applications :
 - ajout de champs, ajout de relation, renommage de champs.
- Possibilité d'intégrer des applications existantes sans modifier les autres.
- Possibilité de limiter les conséquences du partage : données confidentielles.

III - Manipulation aisée

- La manipulation se fait via un langage déclaratif
 - La question déclare l'objectif sans décrire la méthode
 - Le langage suit une norme commune à tous les SGBD
 - SQL : Structured Query Langage
- Sémantique
 - Logique du 1er ordre ++
- Syntaxe (aperçu!)
 - SELECT <structure des résultats>
 - FROM <relations>
 - WHERE <conditions>

IV – Des vues multiples des données

- Les vues permettent d'implémenter l'indépendance logique en permettant de créer des relations virtuelles
- Vue = Question stockée
- Le SGBD stocke la définition et non le résultat
- Exemple:
 - la vue des patients parisiens
 - la vue des docteurs avec leurs patients
 - la vue des services statistiques

— ...

V – Exécution et Optimisation

- Traduction automatique des questions déclaratives en programmes procéduraux :
 - → Utilisation de l'algèbre relationnelle
- Optimisation automatique des questions
 - → Utilisation de l'aspect déclaratif de SQL
 - → Gestion centralisée des chemins d'accès (index, hachages, ...)
 - → Techniques d'optimisation poussées
- Economie de l'astuce des programmeurs
 - milliers d'heures d'écriture et de maintenance de logiciels

VI - Intégrité Logique

- Objectif : Détecter les mises à jour erronées
- Contrôle sur les données élémentaires
 - Contrôle de types: ex: Nom alphabétique
 - Contrôle de valeurs: ex: Salaire mensuel entre 5 et 50kf
- Contrôle sur les relations entre les données
 - Relations entre données élémentaires:
 - Prix de vente > Prix d'achat
 - Relations entre objets:
 - Un électeur doit être inscrit sur une seule liste électorale

Contraintes d'intégrité

• Avantages :

- simplification du code des applications
- sécurité renforcée par l'automatisation
- mise en commun des contraintes

• Nécessite :

- un langage de définition de contraintes d'intégrité
- la vérification automatique de ces contraintes

VII - Intégrité Physique

- Motivations : Tolérance aux fautes
 - Transaction Failure : Contraintes d'intégrité, Annulation
 - System Failure : Panne de courant, Crash serveur ...
 - Media Failure : Perte du disque
 - Communication Failure : Défaillance du réseau

Objectifs:

- Assurer l'atomicité des transactions
- Garantir la durabilité des effets des transactions commises

• Moyens:

- Journalisation : Mémorisation des états successifs des données
- Mécanismes de reprise

Transaction

Begin

CEpargne = CEpargne - 3000

CCourant = CCourant + 3000

Commit T1

Atomicité et Durabilité

ATOMICITE

Begin

CEpargne = CEpargne - 3000

CCourant = CCourant + 3000

Commit T1

→ Annuler le débit !!

DURABILITE

Begin

CEpargne = CEpargne - 3000

CCourant = CCourant + 3000

Commit T1

Crash disque

S'assurer que le virement a été fait !

VIII - Partage des données

- Accès concurrent aux mêmes données
- → Conflits d'accès !!

Isolation et Cohérence

- Le SGBD gère les accès concurrents
- → Chacun à l'impression d'être seul (Isolation)
- → Cohérence conservée (Pas de maj conflictuelles)

IX – Confidentialité

- Objectif : Protéger les données de la BD contre des accès non autorisés
- Deux niveaux :
 - Connexion restreinte aux usagers répertoriés (mot de passe)
 - Privilèges d'accès aux objets de la base
- Usagers: Usager ou groupe d'usagers
- Objets : Relation, Vue, autres objets (procédures, etc.)

X - Standardisation

- L'approche bases de données est basée sur plusieurs standards
 - Langage SQL (SQL1, SQL2, SQL3)
 - Communication SQL CLI (ODBC / JDBC)
 - Transactions (X/Open DTP, OSI-TP)

- Force des standards
 - Portabilité
 - Interopérabilté
 - Applications multisources...