Лабораторная работа №4 **ПРОЕКТИРОВАНИЕ ЦИФРОВЫХ ФИЛЬТРОВ**

Классификация фильтров по рабочей области и структуре построения

По области	По внутренней структуре	
применения	На основе свёртки (КИХ-фильтры)	С рекурсивной структурой (БИХ фильтры)
Фильтры временной области (сглаживание, устранение постоянной составляющей)	Однородные фильтры	Однополюсные рекурсивные фильтры
Фильтры частотной области (частотная селекция)	Оконные фильтры	Фильтры Чебышева
Специальные фильтры (коррекция AЧX), оптимальная фильтрация	Специальные КИХ- фильтры	Фильтры с итеративной структурой

3. Задание

- 1. Ознакомьтесь с теоретической частью.
- 2. Для сигнала, заданного в лабораторной работе №1, реализовать КИХ и БИХ фильтр.
- 2.1 На вход фильтра, применяемых для сглаживания, подавать сигнал искаженный аддитивной шумовой помехой.
- 2.1 На вход фильтра, применяемых для частотной селекции, входной сигнал необходима представить в частотной области.
- 3. получить график заданной функции, график по результатам КИХ фильтра, график по результатам БИХ фильтра;
 - 4. Оформить отчет.

Содержание отчета:

- исходные данные;
- краткое описание алгоритма работы программы;
- график заданной функции, график по результатам КИХ фильтра, график по результатам БИХ фильтра;
- выводы.

Варианты заданий

№ варианта	Фильтр №1	Фильтр №2
1	Режекторный оконный	Однополюсный фильтр НЧ
	фильтр. Окно Хэмминга	
2	Полосовой оконный	Однополюсный фильтр ВЧ
	фильтр. Окно Хэмминга	
3	ВЧ оконный фильтр.	Режекторный узкополосный
	Окно Хэмминга	фильтр
4	НЧ оконный фильтр.	Полосовой узкополосный фильтр
	Окно Хэмминга	
5	Режекторный оконный	Фильтр Чебышева
	фильтр. Окно Блэкмана	
6	Полосовой оконный	4-х каскадный НЧ фильтр
	фильтр. Окно Блэкмана	однополюсовый
7	ВЧ оконный фильтр.	Однородный рекурсивный фильтр
	Окно Блэкмана	
8	НЧ оконный фильтр.	Однородный нерекурсивный
	Окно Блэкмана	фильтр

Литература

- 1. С. Смит Цифровая обработка сигналов. Практическое руководство для инженеров и научных работников
- 2. Р. Лайонс Цифровая обработка сигналов