Check-N-Run: a Checkpointing System for Training Deep Learning Recommendation Models

Assaf Eisenman, Kiran Kumar Matam, Steven Ingram, Dheevatsa Mudigere, Raghuraman Krishnamoorthi, Krishnakumar Nair, and Misha Smelyanskiy, Facebook; Murali Annavaram, Facebook and USC

USENIX NSDI'22

September 13th, 2022 Presented by Yejin Han yj0225@dankook.ac.kr

Introduction

Personalized recommendation is everywhere

Introduction

- Recommendation models are important
 - 40% of apps installs on Google Play
 - 60% of watch time on YouTube
 - 35% of purchase on Amazon
 - 75% of movie watches on Netflix

What is Recommendation Model?

Recommendation model

- Updates only a small fraction of the model during each iteration
- Exceed Terabytes, which stress planetary scale storage system

Figure 1: A typical recommendation model

Background

High performance training at Facebook

Figure 2: An Overview of Training and Checkpoint Systems

Why do we need checkpoints?

- Failure recovery
- Migrating training processes
- Publishing snapshots in real time
- Transfer learning

Figure 3: Training job failure CDF in our cluster. Jobs that fail within 5 minutes are removed since they are usually simple user setup errors.

What are the checkpoint challenges?

- Accuracy
- Frequency
- Write bandwidth
- Storage capacity

Figure 4: The normalized model size over the past 2 years

Check-N-Run

Checkpointing workflow

Figure 8: High-level data flow during training

Differential Checkpointing

- One-Shot Differential Checkpointing
 - Takes single checkpointing as a full baseline checkpoint
 - Stores modified vectors since the baseline checkpoint
- Consecutive Incremental Checkpointing
 - Stores the vectors that were modified only during the last interval
 - Requires keeping all previous incremental checkpoints for reconstructing the model
- Intermittent Differential Checkpointing
 - Does a full model checkpointing intermittently
 - Decides when to take a full checkpoint using a simple history based predictor

Evaluation

Differential Checkpointing Policy Comparison

Figure 15: Bandwidth measure: checkpoint size per interval of 30 minutes, for different checkpoint policies

Figure 16: Storage measure: the required storage capacity at each interval of 30 minutes, for different checkpoint policies

Checkpoint quantization

Compress checkpoint without degrading training accuracy

(source: https://gaussian37.github.io/dl-concept-quantization/)

Quantization strategies

- Uniform quantization
 - Symmetric, Asymmetric uniform quantization
- Non-uniform quantization using k-means
 - Embedding vectors are not all mapped into equally spaced buckets
- Adaptive uniform quantization
 - Leverage a greedy search algorithm to to select the Xmin and Xmax values

Figure 9: Mean ℓ_2 error of a quantized checkpoint for different quantization approaches

Evaluation

The training accuracy

Figure 14: Lifetime accuracy degradation in a training job of 4 billion training samples, when using: (a) 2-bit, (b) 3-bit, and (c) 4bit quantized checkpoints. The lines represent the number of times the job had to resume from a quantized checkpoint

Evaluation

Overall reduction in write bandwidth and storage capacity

Figure 17: Overall reduction of the checkpoint average write bandwidth and storage capacity. *L* represents the number of times the training job had to resume from a checkpoint.

Conclusion

The checkpointing of large recommendation systems at scale is challenging

Check-N-Run uses strategies of differential checkpointing and quantization

Check-N-Run significantly reduces the required write-bandwidth and storage capacity

Check-N-Run: a Checkpointing System for Training Deep Learning Recommendation Models

Assaf Eisenman, Kiran Kumar Matam, Steven Ingram, Dheevatsa Mudigere, Raghuraman Krishnamoorthi, Krishnakumar Nair, and Misha Smelyanskiy, Facebook; Murali Annavaram, Facebook and USC

USENIX NSDI'22

Thank You!

September 16th, 2022 Presented by Yejin Han yj0225@dankook.ac.kr

