F Test for Regression Relation

To test whether there is a regression relation between the response variable Y and the set of X variables X_1, \ldots, X_{p-1} , i.e., to choose between the alternatives:

$$H_0: \beta_1 = \beta_2 = \dots = \beta_{p-1} = 0$$

 $H_a: \text{ not all } \beta_k \ (k = 1, \dots, p-1) \text{ equal zero}$ (6.39a)

we use the test statistic:

$$F^* = \frac{MSR}{MSE} \tag{6.39b}$$

The decision rule to control the Type I error at α is:

If
$$F^* \le F(1-\alpha; p-1, n-p)$$
, conclude H_0
If $F^* > F(1-\alpha; p-1, n-p)$, conclude H_a (6.39c)

The existence of a regression relation by itself does not, of course, ensure that useful predictions can be made by using it.

Note that when p-1=1, this test reduces to the F test in (2.60) for testing in simple linear regression whether or not $\beta_1=0$.

Coefficient of Multiple Determination

The coefficient of multiple determination, denoted by R^2 , is defined as follows:

$$R^2 = \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO} \tag{6.40}$$

It measures the proportionate reduction of total variation in Y associated with the use of the set of X variables X_1, \ldots, X_{p-1} . The coefficient of multiple determination R^2 reduces to the coefficient of simple determination in (2.72) for simple linear regression when p-1=1, i.e., when one X variable is in regression model (6.19). Just as before, we have:

$$0 \le R^2 \le 1 \tag{6.41}$$

where R^2 assumes the value 0 when all $b_k = 0$ (k = 1, ..., p - 1), and the value 1 when all Y observations fall directly on the fitted regression surface, i.e., when $Y_i = \hat{Y}_i$ for all i.

Adding more X variables to the regression model can only increase R^2 and never reduce it, because SSE can never become larger with more X variables and SSTO is always the same for a given set of responses. Since R^2 usually can be made larger by including a larger number of predictor variables, it is sometimes suggested that a modified measure be used that adjusts for the number of X variables in the model. The adjusted coefficient of multiple determination, denoted by R_a^2 , adjusts R^2 by dividing each sum of squares by its associated degrees of freedom:

$$R_a^2 = 1 - \frac{\frac{SSE}{n-p}}{\frac{SSTO}{n-1}} = 1 - \left(\frac{n-1}{n-p}\right) \frac{SSE}{SSTO}$$
 (6.42)

This adjusted coefficient of multiple determination may actually become smaller when another X variable is introduced into the model, because any decrease in SSE may be more than offset by the loss of a degree of freedom in the denominator n - p.

Comments

- 1. To distinguish between the coefficients of determination for simple and multiple regression, we shall from now on refer to the former as the coefficient of simple determination.
- 2. It can be shown that the coefficient of multiple determination R^2 can be viewed as a coefficient of simple determination between the responses Y_i and the fitted values \hat{Y}_i .
- 3. A large value of R² does not necessarily imply that the fitted model is a useful one. For instance, observations may have been taken at only a few levels of the predictor variables. Despite a high R^2 in this case, the fitted model may not be useful if most predictions require extrapolations outside the region of observations. Again, even though R² is large, MSE may still be too large for inferences to be useful when high precision is required.

Coefficient of Multiple Correlation

The coefficient of multiple correlation R is the positive square root of \mathbb{R}^2 :

$$R = \sqrt{R^2}$$
 (6.43)

<u>a</u> -

When there is one X variable in regression model (6.19), i.e., when p-1=1, the coefficient of multiple correlation R equals in absolute value the correlation coefficient r in (2.73) for simple correlation.

Inferences about Regression Parameters 6.6

The least squares and maximum likelihood estimators in b are unbiased:

$$\mathbf{E}\{\mathbf{b}\} = \mathbf{\beta} \tag{6.44}$$

The variance-covariance matrix $\sigma^2\{\mathbf{b}\}$:

$$\sigma^{2}\{\mathbf{b}\} = \begin{bmatrix} \sigma^{2}\{b_{0}\} & \sigma\{b_{0}, b_{1}\} & \cdots & \sigma\{b_{0}, b_{p-1}\} \\ \sigma\{b_{1}, b_{0}\} & \sigma^{2}\{b_{1}\} & \cdots & \sigma\{b_{1}, b_{p-1}\} \\ \vdots & \vdots & & \vdots \\ \sigma\{b_{p-1}, b_{0}\} & \sigma\{b_{p-1}, b_{1}\} & \cdots & \sigma^{2}\{b_{p-1}\} \end{bmatrix}$$

$$(6.45)$$

is given by:

$$\sigma^{2}\{\mathbf{b}\} = \sigma^{2}(\mathbf{X}'\mathbf{X})^{-1}$$
(6.46)

The estimated variance-covariance matrix $s^2\{b\}$:

$$\mathbf{s}^{2}\{\mathbf{b}\} = \begin{bmatrix} s^{2}\{b_{0}\} & s\{b_{0}, b_{1}\} & \cdots & s\{b_{0}, b_{p-1}\} \\ s\{b_{1}, b_{0}\} & s^{2}\{b_{1}\} & \cdots & s\{b_{1}, b_{p-1}\} \\ \vdots & \vdots & & \vdots \\ s\{b_{p-1}, b_{0}\} & s\{b_{p-1}, b_{1}\} & \cdots & s^{2}\{b_{p-1}\} \end{bmatrix}$$

$$(6.47)$$

is given by:

$$\mathbf{s}^{2}\{\mathbf{b}\} = MSE(\mathbf{X}'\mathbf{X})^{-1}$$
 (6.48)