Machine Learning for Graphs and Sequential Data

Graphs - Semi-Supervised Learning

Lecturer: Prof. Dr. Stephan Günnemann

www.daml.in.tum.de

Summer Term 2020

Roadmap

Chapter: Graphs

- 1. Graphs & Networks
- 2. Generative Models
- 3. Clustering
- 4. Node Embeddings
- 5. Ranking
- 6. Semi-Supervised Learning
 - Label Propagation
 - Graph Neural Networks
- 7. Limitations of GNNs

Types of Machine Learning Problems on Graphs

- So far we have discussed unsupervised learning problems on graphs
 - generative modeling
 - clustering / community detection
 - node embeddings
 - ranking
- What about supervised learning tasks, such as
 - classifying role of a protein in a PPI network
 - detecting fraudsters in an e-commerce system
 - predicting user's preferences in a social network

assuming that some training data is given

More generally, how do we label/categorize/classify instances in a graph?

Collective Classification

- Consider the following problem
 - Graph represents a social network, nodes = users, edges = friendship
 - Labels are known for some labeled nodes
 - Goal is to classify the unlabeled nodes

- Standard assumption: Homophily (a.k.a. assortativity)
 - "birds of a feather flock together"
 - a.k.a. smoothness assumptions
 - that is, if nodes are connected by an edge, they are likely to have same labels

Label Propagation

- Consider the binary case (two classes)
- Formal definition of the problem
 - Nodes $V = S \cup U$
 - Labeled instances S (seeds) and unlabeled instances U

- $-\hat{y}_i \in \{0,1\}$ for $i \in S$ // given class labels for the nodes in S
- $y_i \in \{0,1\}$ for $i \in V$ // class labels we want to **predict** for each node

smoothness: adjacent nodes should have same class label

0-0

happy, low energy

unhappy, high energy

Energy Minimization as MAP Inference

• Goal: find the labeling $y \in \{0,1\}^N$ that minimizes the energy

$$\min_{\mathbf{y}} E(\mathbf{y}) = \min_{\mathbf{y}} \frac{1}{2} \sum_{ij} w_{ij} (y_i - y_j)^2$$

This is equivalent to the optimization problem

$$\arg\min_{\mathbf{y}\in\{0,1\}^N} E(\mathbf{y}) = \arg\max_{\mathbf{y}\in\{0,1\}^N} \exp(-E(\mathbf{y}))$$

Consider the following approximation to the posterior

$$p(\mathbf{y}_{\mathbf{U}}|\mathbf{W},\mathbf{y}_{\mathbf{L}}) = \frac{1}{Z}\exp(-E(\mathbf{y}))$$

where $Z = \sum_{y} \exp(-E(y))$ is the normalizing constant.

- Energy minimization is equivalent to MAP inference in this model!
- Such approaches are called "Energy-Based Learning".
- In general: any nonnegative energy function E(y) corresponds to a probability distribution over y (if dom(y) is finite, restrictions apply in other cases).

Label Propagation

Two aspects: Smoothness + Matching the seed labels

$$\min_{\mathbf{y} \in \{0,1\}^{|V|}} \frac{1}{2} \sum_{ij} w_{ij} (y_i - y_j)^2 \text{ subject to } y_i = \hat{y}_i \text{ for all } i \in S$$

- Constrained integer optimization problem
- We know how to rewrite the above problem!

$$\min_{\boldsymbol{y} \in \{0,1\}^{|V|}} \boldsymbol{y}^T \boldsymbol{L} \boldsymbol{y}$$
 subject to $y_i = \hat{y}_i$ for all $i \in S$

• Drop the integer constraint: $y_i \ (i \in U)$ can be any real value

Label Propagation: Solution

■ Task: $\min_{\boldsymbol{y} \in \mathbb{R}^{|V|}} \boldsymbol{y}^T \boldsymbol{L} \boldsymbol{y}$ subject to $y_i = \hat{y}_i$ for all $i \in S$

- Solution:
 - w.l.o.g. assume the Laplacian matrix is partitioned into blocks for labeled and unlabeled nodes

$$L = \begin{bmatrix} L_{SS} & L_{SU} \\ L_{US} & L_{UU} \end{bmatrix}$$

- Accordingly let $y = \begin{bmatrix} y_S \\ y_U \end{bmatrix} = \begin{bmatrix} \widehat{y}_S \\ y_U \end{bmatrix}$ the vector of labels to be learned
- Then: $\boldsymbol{y}_U = -\boldsymbol{L}_{UU}^{-1} \cdot \boldsymbol{L}_{US} \cdot \widehat{\boldsymbol{y}}_S$

Label Propagation: Generalization

- What if we have K labels?
 - Use one-hot notation $y_{ik} = \begin{cases} 1 \\ 0 \end{cases}$ if node i is of class k
 - Energy function $E(\mathbf{Y}) = \sum_{i,j} w_{ij} (\mathbf{y}_i \mathbf{y}_j)^T (\mathbf{y}_i \mathbf{y}_j)^T$
- Other types of **network effects** encode with a compatibility matrix **H**

"birds of a feather flock together"

Energy function $E(Y) = \sum_{i,j} w_{ij} (y_i - y_j)^T H(y_i - y_i)$

Label Propagation vs. SBM

- At first glance both models seem very similar
 - labels y_i look a lot like community affiliations z_i
 - compatibility matrix $m{H}$ from LP looks like $m{\eta}$ from SBM
- Is LP equivalent to inference in SBM with some z_i s observed?
 - Label propagation is a discriminative model that only models the conditional distribution of labels given the similarity graph p(Y|W)
 - on the other hand, SBM is a generative model that models Pr(A|Z) and Pr(Z)
 - we can use SBM to generate new graphs not the case for LP!
 - for SBM we get the posterior $\Pr(\mathbf{Z}|\mathbf{A}) = \frac{\Pr(\mathbf{A}|\mathbf{Z})\Pr(\mathbf{Z})}{\Pr(\mathbf{A})}$ using Bayes' formula
- SBM and LP solve different problems
 - SBM: estimate what parameters generated a given graph A (unsupervised)
 - LP: predict labels of the nodes in U given observed labels and W (supervised)

Non-Graph Data

- What if we only have vector data (no graph is available)?
- Simply construct a graph connecting similar data points
 - graph construction: see section on spectral clustering (e.g. k-NN graph)
- Apply label propagation just like before.
- Features are used to construct the graph, but then only the graph is used for classification.

Transductive Learning

- Label Propagation is a special case of so-called transductive learning.
 - Given
 - (i) a set of labeled training instances $T = \{(x_i, y_i)_{i=1...N}\} \subset \mathcal{X} \times \mathcal{Y}$
 - (ii) a set of unlabeled test instances $U = \{(x_i)_{i=1...M}\} \subset \mathcal{X}$
 - [+ potentially some other knowledge (graph structure W, affinity matrix H)]
 - Goal
 - predict labels **only** for the unlabeled instances U (i.e. learn $f \colon U \to \mathcal{Y}$)
 - "When trying to solve some problem, one should not solve a more difficult problem as an intermediate step" – Vapnik's principle
- "Traditional" supervised learning (e.g. NN, SVM) is inductive learning:
 - Given
 - (i) a set of labeled training instances $T = \{(x_i, y_i)_{i=1...N}\} \subset \mathcal{X} \times \mathcal{Y}$
 - [+ potentially some other knowledge]
 - Goal
 - learn a prediction function (mapping) $f: \mathcal{X} \to \mathcal{Y}$ (that can be applied to any $x_{new} \in \mathcal{X}$)

Transduction vs. Semi-Supervised Learning

- LP in graphs is often referred to as "graph-based semi-supervised learning"
 - not a complete misnomer, but a more specific term would be: graph-based transductive learning
- Semi-supervised learning (SSL) is a more generic principle.
- Standard definition:
 - Given: labeled data $T = \{(x_i, y_i)_{i=1...N}\}$ and unlabeled data $U = \{(x_i)_{i=1...M}\}$.
 - Main idea: Use **both** T **and** U to learn a mapping f. This can be either inductive $(f: \mathcal{X} \to \mathcal{Y})$ or transductive $(f: U \to \mathcal{Y})$.
- Transductive learning is almost always semi-supervised:
 - We are given T and U. The goal is to predict labels only for U.
 - Of course we will use U to do this! \Rightarrow Semi-supervised learning

Why Semi-Supervised Learning Works?

- How can unlabeled data be helpful?
 - Unlabeled data helps us to better model the data distribution

Caveat:

Example from [Belkin et al., JMLR 2006]

- We need to make assumptions about the data/label distribution
 (e.g. manifold / smoothness / cluster / low-density separation assumptions)
- If the assumptions are wrong, SSL may perform even worse than simple SL!

Semi-supervised Learning: Motivation

- Why semi-supervised learning?
- Large amounts of unlabeled data, small amounts of labeled data
- Labeling/annotating data is expensive

Roadmap

Chapter: Graphs

- 1. Graphs & Networks
- 2. Generative Models
- 3. Clustering
- 4. Node Embeddings
- 5. Ranking
- 6. Semi-Supervised Learning
 - Label Propagation
 - Graph Neural Networks
- 7. Limitations of GNNs

(Semi-supervised) Deep Learning on Graphs

- Neural Networks have achieved outstanding performance for many data types
 - However: usually restricted to simple grid-like (images) or sequential data (text)
- How about neural network for graphs?
- Additional motivation: In a lot of real world graphs the nodes have attributes
 - In citation networks nodes are papers, the text gives rise to attributes, and edges are citations; in protein-protein interaction networks the properties of the proteins can be considered as attributes
 - Label propagation, however, considers only the network structure
 - How can we perform semi-supervised learning on graphs taking both the network structure and the attributes into account?
- Idea: Differentiable message passing
 - a.k.a. neural message passing, graph convolutions, (or more general: graph neural networks)

Differentiable Message Passing Framework (I)

Given:

- A graph G = (V, E) with a set of nodes V, E set of edges, E_{vu} edge weight
- Each node v has features $x_v \in \mathbb{R}^d$
- A subset of labeled nodes $S \subseteq V$, where y_v denotes the label of node $v \in S$
- Let $h_v^{(k-1)}$ be the hidden representation of node v at previous k-1 layer
- For each node do:
 - 1. Gather messages from all neighbors $m_v^{(k)} = \sum_{u \in N(v)} M(h_v^{(k-1)}, h_u^{(k-1)}, E_{vu})$
 - 2. Update the hidden representation $h_v^{(k)} = U(h_v^{(k-1)}, m_v^{(k)})$
- lacktriangleq M and U are any differentiable functions, e.g. neural networks

Differentiable Message Passing Framework (II)

- For each node do:
 - 1. Gather messages from all neighbors $m_v^{(k)} = \sum_{u \in N(v)} M(h_v^{(k-1)}, h_u^{(k-1)}, E_{vu})$
 - 2. Update the hidden representation $h_v^{(k)} = U(h_v^{(k-1)}, m_v^{(k)})$
- Example: Calculating the update for the node in orange

- 1. Gather message from all neighbors
- 2. Update hidden representation

Example Instantiation of the Framework

- $\blacksquare \quad \text{Let } h_v^{(0)} = x_v$
 - At the first layer the representations are the node features
- Set the message aggregation function to be the average over the neighbors

$$m_v^{(k)} = \sum_{u \in N(v)} \frac{1}{d_v} (W^{(k)} h_u^{(k-1)} + b^{(k)})$$

Calculate hidden representations as simple NNs with a non-linearity

$$h_{v}^{(k)} = relu(Q^{(k)}h_{v}^{(k-1)} + p^{(k)} + m_{v}^{(k)})$$

■ Here $W^{(k)}$, $b^{(k)}$, $Q^{(k)}$, $p^{(k)}$ are the **trainable parameters** of the k-th layer

Recursive View of Differentiable Message Passing

 The hidden representation of each node is recursively defined in terms of the hidden representation of its neighbors

How do Neighbors Influence a Given Node?

- Observation 1: K hidden layers equal to K steps of message passing
 - At step 1, node v aggregates information from its 1-hop neighbors
 - At step 2, node v (implicitly) aggregates information from the neighbors of its 1-hop neighbors, i.e. from its 2-hop neighbors
 - ...
 - At step K, node v (implicitly) aggregates information from its K-hop neighbors
- Observation 2: K hidden layers mean that the representation $h_v^{(K)}$ of node v is based on information from all nodes in its K-hop neighborhood

How to Perform Semi-Supervised Node Classification?

- Consider the representations $h_v^{(K)}$ at the final layer (K) as logits
- lacktriangle And use the softmax function to obtain the probability of node v to belong to class c

$$p_{v} = softmax\left(h_{v}^{(K)}\right)$$

- Train the network using the standard cross entropy loss between the predicted probabilities and the observed labels
 - Recall: y_{vc} is the one-hot vector encoding the label for node v
 - Denote with p_{vc} the probability that node v to belong to class c
 - Denote with C the set of all classes, and S the set of labeled nodes

$$\min_{\{W^{(k)},Q^{(k)},p^{(k)},b^{(k)}\}_{k=1..K}} - \sum_{v \in S} \sum_{c \in \mathcal{C}} y_{vc} \log p_{vc}$$

Graph Neural Networks

- Exploding interest in recent years:
 - Graph Neural Network (Gori et al., 2005)
 - Spectral Networks and Locally Connected Networks ... (Bruna et al., 2014)
 - Gated Graph Neural Network (Li et al., 2016)
 - Convolutional Neural Networks on Graphs with Fast ... (Defferrard et al., 2017)
 - Neural Message Passing for Quantum Chemistry (Gilmer et al., 2017)
 - Semi-Supervised Classification with Graph Convolutional Nets (Kipf et al., 2017)
 - Graph Attention Networks (Veličković et al., 2018)
 - Predict then Propagate: Graph Neural Networks meet Personalized PageRank (Klicpera et al., 2019)
- Many tasks beyond semi-supervised node classification
 - graph classification, recommendation, 3d-shape-matching, etc.
- Sometimes called geometric deep learning

Graph Neural Networks

- Increasing interest in recent years:
 - Graph Neural Network (Gori et al., 2005)
 - Spectral Networks and Locally Connected Networks ... (Bruna et al., 2014)
 - Gated Graph Neural Network (Li et al., 2016)
 - Convolutional Neural Networks on Graphs with Fast ... (Defferrard et al., 2017)
 - Neural Message Passing for Quantum Chemistry (Gilmer et al., 2017)
 - Semi-Supervised Classification with Graph Convolutional Nets (Kipf et al., 2017)
 - Graph Attention Networks (Veličković et al., 2018)
 - Predict then Propagate: Graph Neural Networks meet Personalized PageRank (Klicpera et al., 2019)
- Many tasks beyond semi-supervised node classification
 - graph classification, recommendation, 3d-shape-matching, etc.
- Sometimes called geometric deep learning

From Matrix Convolution ...

 Alternative view of message passing framework is that we are essentially performing a "graph convolution"

Recap: CNNs

Update for a single pixel:

- ullet Transform messages individually ${f W}_i{f h}_i$
- ullet Add everything up $\sum_i \mathbf{W}_i \mathbf{h}_i$
- Images are a special kind of graph: every pixel is a node connected to 8 other nodes (up, down, left, right, etc. pixels)

... to Graph Convolution

- Alternative view of message passing framework is that we are essentially performing a "graph convolution"
 - Note: Unlike sequences/images, where the convolution operation is clearly defined, there are various versions for graphs. Indeed, one often distinguishes between spatial and spectral approaches.

 Images are a special kind of graph: every pixel is a node connected to 8 other nodes (up, down, left, right, etc. pixels)

Graph Convolutional Neural Networks

- In the spatial domain, a graph convolution updates each nodes' features by considering the local neighborhood.
 - In effect it is some kind of message passing
 - Example: $X_i^{(t+1)} = X_i^{(t)} + \sum_{(i,j) \in E} X_i^{(t)}$ or in matrix notation $X^{(t+1)} = X^{(t)} + AX^{(t)} = (A + I_n)X^{(t)}$
- Similar to a (learnable) convolutional layer we can formulate a (learnable) graph convolutional layer

$$H^{(l+1)} = \sigma \left(\widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right)$$

- Non-linearity Message Passing
 - **Feature Transformation**
- Normalizing the propagation matrix avoids exploding gradients
 - Choose $\widetilde{D}^{-1/2}\widetilde{A}\widetilde{D}^{-1/2}$ where $\widetilde{A}=A+I_n$ and $D_{ii}=\sum_j \widetilde{A}_{ij}$ is the degree matrix of \widetilde{A}

[Kipf2017]

How Deep are Graph Neural Networks?

- In an MLP or CNN, depth means the number of non-linear transformations of the input
- On graphs we can also consider the furthest distance that a model propagates information as depth

$$H^{(l+1)} = \sigma \left(\widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right)$$

- GCNs apply 1 transformation per message passing step
- Transformation depth and propagation depth are orthogonal in GNNs
 - We could transform the messages with a multi-layer network in each step or propagate without transforming for multiple steps

3 layers

2 layers

1 layer

Single vs. Multi-graph Learning

- So far we had a single graph G = (V, E) and we learned targets for the nodes
 - For example predict the classes for each node (red, green or blue) in a single large graph

- What if we have multiple graphs as input and the target is for the graph?
 - For example each input is a molecule (i.e. a graph of atoms) and the graph level target is whether it is a effective drug against some disease

Multi-graph Learning Framework

- Given:
 - A set of graphs $G = \{G_i = (V_i, E_i)\}_{i=1..N}$
 - A subset of labeled graphs $\mathcal{H} \subseteq \mathcal{G}$, with y_{G_i} denotes the graph level target of the graph $G_i \in \mathcal{H}$
- Obtain the hidden representation of the last layer for all nodes in all graphs according to the message passing framework
 - Let $H_{G_i} = \left[h_1^{(K)}, h_2^{(K)}, \dots, h_{|V_i|}^{(K)}\right]$ be a matrix where we stacked the final representations **for all nodes** for graph G_i
- Define an aggregation function $R(H_{G_i})$ over the node representations of a given graph that produces a representation for the **entire** graph $h_{G_i} = R(H_{G_i})$
- For classification: consider h_{G_i} as the logits and train a model using standard cross-entropy loss, i.e. $\mathcal{L}(y_{G_i}, softmax(h_{G_i}))$
 - For regression, e.g. predicting functional properties of molecules you can use squared loss
- Example agg. function $R(H_{G_i}) = \frac{1}{|V_i|} \sum_{v \in V_i} h_v^{(K)}$ is the average of the node embedding

Summary

- Semi-supervised learning / graph-based transductive learning
 - Leverage unlabeled data to improve performance of supervised learning
 - Helps if assumptions about the data distribution are correct, e.g. homophily
- Label Propagation spreads labels along the edges of a graph by minimizing the difference between neighbors
 - Usually assumes smoothness but other kinds of network effects can be modeled as well
- Differentiable message passing:
 - Flexible framework to apply the power of deep learning to graphs
 - The nodes aggregate information from their k-hop neighbors
 - Message passing is a generalization of convolution from grids to general graphs
- We distinguish between node-level learning (e.g. node classification) and graph-level learning (e.g. graph classification)

Questions

• Consider the graph below. What is the influence of the green node on the unlabeled nodes in Label Propagation? Why? How about GNNs with K=2?

- Does semi-supervised learning exist outside of learning on graphs?
- What could be alternative aggregation functions beside summation in the Gather step of GNNs?
- Can you apply GNNs to vector data without a specified graph structure?

Reading Material

- [Zhu2002] Zhu, X., & Ghahramani, Z. (2002). Learning from labeled and unlabeled data with label propagation. Center for Automated Learning and Discovery, CMU: Carnegie Mellon University, USA.
- [Kipf2017] Kipf, T. N., & Welling, M. (2017). Semi-Supervised Classification with Graph Convolutional Networks. In ICLR 2017: International Conference on Learning Representations 2017