LEMMA [Inversion of the Typing Relation]:

- 1. If $\Gamma \mid \Sigma \vdash x : R$, then $x : R \in \Gamma$
- 2. If $\Gamma \mid \Sigma \vdash \lambda x : T_1 \cdot t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 , with Γ , $x : T_1 \vdash t_2 : R_2$.
- 3. If $\Gamma \mid \Sigma \vdash t_1 \ t_2 : R$, then there is some type T_{11} such that $\Gamma \mid \Sigma \vdash t_1 : T_{11} \to R$ and $\Gamma \mid \Sigma \vdash t_2 : T_{11}$.
- 4. If $\Gamma \mid \Sigma \vdash ref \ t : R$, then $R = Ref \ T_1$ for some T_1 and $\Gamma \mid \Sigma \vdash t_1 : T_1$.
- 5. If $\Gamma \mid \Sigma \vdash !t : R$, then $\Gamma \mid \Sigma \vdash t : Ref R$.
- 6. If $\Gamma \mid \Sigma \vdash t_1 := t_2 : R$, then R = Unit, $\Gamma \mid \Sigma \vdash t_1 : Ref T_1$, for some T_1 and $\Gamma \mid \Sigma \vdash t_2 : T_1$.
- 7. If $\Gamma \mid \Sigma \mid l : R$, then $R = Ref T_1$, for some T_1 , and $\Sigma(l) = T_1$.

Proof: Immediate from the definition of the typing relation.

LEMMA [Canonical Forms]:

- 1. If v is a value of type $T_1 \to T_2$, then $v = \lambda x : T_1.t_2$.
- 2. If v is a value of type Unit, then v = unit.
- 3. If v is a value of type Ref T, then v = l.

Proof: Straightforward.

THEOREM [Progress]: Suppose t is a closed, well-typed term (that is, $\varnothing \mid \Sigma \vdash t : T$ for some T). Then either t is a value or else, for any store μ such that $\varnothing \mid \Sigma \vdash \mu$, there is some term t' with $t \mid \mu \longrightarrow t' \mid \mu'$.

Proof: Straightforward induction on typing derivations.

- 1. The variable case cannot occur (because t is closed).
- 2. The abstraction case is immediate, since abstractions are values.
- 3. For application, where $t = t_1$ t_2 , with $\varnothing \mid \Sigma \vdash t_1 : T_{11} \longrightarrow T_{12}$ and $\varnothing \mid \Sigma \vdash t_2 : T_{11}$, for the inversion lemma. Then, by the induction hypothesis, either t_1 is a value or else it can make a step of evaluation, and likewise t_2 . If t_1 can take a step, then rule EApp1 applies to t. If t_1 is a value and t_2 can take a step, then rule EApp2 applies. Finally, if both t_1 and t_2 are values, then the canonical forms lemma tells us that t_1 has the form $\lambda x : T_{11}.t_{12}$, and so rule EAppAbs applies to t.
- 4. The *unit* case is immediate, since *unit* is a value.
- 5. If $t = Ref \ t_1$, then $T = Ref \ T_1$, for some T_1 , and $\varnothing \mid \Sigma \vdash t_1 : T_1$. By the induction hypothesis, either t_1 is a value or else it can make a step of evaluation. If t_1 can take a step, then for any store μ such that $\varnothing \mid \Sigma \vdash \mu$, there is some term t'_1 with $t_1 \mid \mu \longrightarrow t'_1 \mid \mu'$. For this reason, for any store μ such that $\varnothing \mid \Sigma \vdash \mu$, the rule ERef applies to t, which guarantees the existence of t' and μ' . If t_1 is a value $(t_1 = Ref \ v_1)$ then the rule ERefV applies to t, obtaining that t' = l, with $l \not\in dom(\mu)$ and $\mu' = (\mu, l \mapsto v_1)$.

- 6. If $t = !t_1$, then $\varnothing \mid \Sigma \vdash t_1 : Ref\ T$. By the induction hypothesis, either t_1 is a value or else it can make a step of evaluation. If t_1 can take a step, then for any store μ such that $\varnothing \mid \Sigma \vdash \mu$, there is some term t'_1 with $t_1 \mid \mu \longrightarrow t'_1 \mid \mu'$. For this reason, for any store μ such that $\varnothing \mid \Sigma \vdash \mu$, the rule EDeref applies to t, which guarantees the existence of t' and μ' . If t_1 is a value ($t_1 = l$, for the Canonical Forms Lemma) then the rule EDerefLoc applies to t (since $\varnothing \mid \Sigma \vdash l : Ref\ T$ and $\varnothing \mid \Sigma \vdash \mu$ then $\mu(l)$ is defined), obtaining that $t' = \mu(l)$, and $\mu' = \mu$.
- 7. If $t = t_1 := t_2$, then then T = Unit, $\varnothing \mid \Sigma \vdash t_1 : Ref \ T_1$, for some T_1 and $\varnothing \mid \Sigma \vdash t_2 : T_1$. By the induction hypothesis, either t_1 is a value or else it can make a step of evaluation, and likewise t_2 . If t_1 can take a step, then for any store μ such that $\varnothing \mid \Sigma \vdash \mu$, there is some term t_1' with $t_1 \mid \mu \longrightarrow t_1' \mid \mu'$. For this reason, for any store μ such that $\varnothing \mid \Sigma \vdash \mu$, the rule EAssing1 applies to t, which guarantees the existence of t' and μ' . If t_2 can take a step, is the same, but with the rule EAssing2. Finally, if both t_1 and t_2 are values, then the canonical forms lemma tells us that t_1 has the form t. Then the rule EAssing applies to t, which guarantees the existence of t' and μ' .
- 8. If t = l, then it is immediate, since locations are values.

LEMMA[Permutation]: If $\Gamma \mid \Sigma \vdash t : T$ and Δ is a permutation of Γ , then $\Delta \mid \Sigma \vdash t : T$. *Proof*: Straightforward induction on typing derivations.

LEMMA[Weakening]: If $\Gamma \mid \Sigma \vdash t : T$ and $x \notin dom(\Gamma)$, then $\Gamma, x : S \mid \Sigma \vdash t : T$. *Proof*: Straightforward induction on typing derivations.

LEMMA [Preservation of types under substitution]: If $\Gamma, x : S \mid \Sigma \vdash t : T$ and $\Gamma \mid \Sigma \vdash s : S$, then $\Gamma \mid \Sigma \vdash [x \mapsto s]t : T$.

Proof: By induction on a derivation of the statement $\Gamma, x : S \vdash t : T$. For a given derivation, we proceed by cases on the final typing rule used in the proof.

LEMMA [1]: If $\Gamma \mid \Sigma \vdash \mu$, $\Sigma(l) = T$ and $\Gamma \mid \Sigma \vdash v : T$ then $\Gamma \mid \Sigma \vdash [l \mapsto v]\mu$. *Proof*: Straightforward induction.

LEMMA [2]: If $\Gamma \mid \Sigma \vdash t : T$ and $\Sigma \subseteq \Sigma'$ then $\Gamma \mid \Sigma' \vdash t : T$. *Proof*: Straightforward induction.

LEMMA[Preservation]: If $\Gamma \mid \Sigma \vdash t : T$ and $t \longrightarrow t'$, then $\Gamma \mid \Sigma \vdash t' : T$.

Proof: By induction on a derivation of t:T. At each step of the induction, we assume that the desired property holds for all subderivations (i.e., that if s:S and $s\longrightarrow s'$, then s':S, whenever s:S is proved by a subderivation of the present one) and proceed by case analysis on the final rule in the derivation.

- 1. Case TVar: It cannot be the case that $t \longrightarrow t'$ for any t', and the requirements of the theorem are vacuously satisfied.
- 2. Case TAbs: $t = \lambda x : T_2.t_1$, with $T = T_2 \to T_1$ and $\Gamma, x : T_2 \vdash t_1 : T_1$. If the last rule in the derivation is TAbs, then we know from the form of this rule that t must be a function $\lambda x : T_2.t_1$ and T must be $T_2 \to T_1$, with $\Gamma, x : T_2 \vdash t_1 : T_1$. But then t is a value, so it cannot be the case that $t \to t'$ for any t', and the requirements of the theorem are vacuously satisfied.

- 3. Case TApp: $t = t_1 \ t_2$, $\vdash \ t_1 : T_2 \to T$ and $\vdash \ t_2 : T_2$. If the last rule in the derivation is TApp, then we know from the form of this rule that t must have the form $t_1 \ t_2$, for some t_1 and t_2 . We must also have a subderivation with conclusions $\vdash t_1 : T_2 \to T$ and $\vdash t_2 : T_2$. Now, looking at the evaluation rules with this form on the left-hand side, we find that there are three rules by which $t \longrightarrow t'$ can be derived: EApp1, EApp2 and EAppAbs. We consider each case separately.
 - Subcase EApp1: $t_1 \longrightarrow t_1'$, $t' = t_1'$ t_2 . By the induction hypothesis, $\vdash t_1' : T_2 \to T$, then we can apply rule TApp, to conclude that $\vdash t_1'$ $t_2 : T$, that is $\vdash t' : T$.
 - Subcase $EApp2: t_2 \longrightarrow t_2', \ t' = t_1 \ t_2'$. By the induction hypothesis, $\vdash t_2' : T_2$, then we can apply rule TApp, to conclude that $\vdash t_1 \ t_2' : T$, that is $\vdash t' : T$.
 - Subcase EAppAbs: $t_1 = \lambda x : T_1.t_{12}, t_2 = v_2, t' = [x \mapsto v_2]t_{12}$ and $\vdash t_{12} : T$ for the inversion lemma. The resulting term $\vdash [x \mapsto v_2]t_{12} : T$, for the Substitution lemma, that is $\vdash t' : T$.