Algèbre linéaire - Chapitre 3 Familles de vecteurs

1 Combinaisons linéaires

- Dans \mathbb{R}^2 , u=(1,2) est-il combinaison linéaire de $e_1=(1,-2)$ et $e_2=(2,3)$?
- Dans \mathbb{R}^2 , u = (1,2) est-il combinaison linéaire de $e_1 = (1,-2), e_2 = (2,3), e_3 = (-4,5)$?
- Dans \mathbb{R}^3 , u=(2,5,3) est-il combinaison linéaire de $e_1=(1,3,2)$ et $e_2=(1,-1,4)$?
- Dans \mathbb{R}^3 , u = (3, 1, m) est-il combinaison linéaire de $e_1 = (1, 3, 2)$ et $e_2 = (1, -1, 4)$? (discuter suivant la valeur de m)

Si oui, donner toutes les combinaisons linéaires possibles.

1. u est combinaison linéaire de e_1 et e_2 si et seulement si il existe $a, b \in \mathbb{R}$ tels que $u = ae_1 + be_2$. Trouver a et b nous conduit à un système linéaire :

$$a + 2b = 1$$
$$-2a + 3b = 2$$

On trouve a = -1/7 et b = 4/7. Donc u est combinaison linéaire de e_1 et e_2 .

2. u est combinaison linéaire de e_1,e_2 et e_3 si et seulement si il existe $a,b,c\in\mathbb{R}$ tels que $u=ae_1+be_2+ce_3$.

Trouver a, b et c nous conduit à un système linéaire :

$$a + 2b - 4c = 1$$
$$-2a + 3b + 5c = 2$$

La première étape du pivot de gauss nous donne :

$$a + 2b - 4c = 1$$

 $0 + 7b - 3c = 3$

On peut choisir c comme on veut dans \mathbb{R} . b et a sont ensuite déterminés en fonction de c.

3. u est combinaison linéaire de e_1 et e_2 si et seulement si il existe $a, b \in \mathbb{R}$ tels que $u = ae_1 + be_2$.

Trouver a et b nous conduit à un système linéaire :

$$a+b=2$$
$$3a-b=5$$
$$2a+4b=3$$

Les premières étapes du pivot de Gauss nous donnent :

$$a+b=2$$
$$0-4b=1$$
$$0+2b=-1$$

Le système est donc incompatible et u n'est pas combinaison linéaire de e_1 et e_2 .

4. u est combinaison linéaire de e_1 et e_2 si et seulement si il existe $a, b \in \mathbb{R}$ tels que $u = ae_1 + be_2$.

Trouver a et b nous conduit à un système linéaire :

$$a+b=3$$
$$3a-b=1$$
$$2a+4b=m$$

Les premières étapes du pivot de Gauss nous donnent :

$$a+b=3$$
$$0-4b=-8$$
$$0+2b=m-6$$

Le système est compatible si et seulement si m=10, dans ce cas, u est combinaison linéaire de e_1 et e_2 .

Si $m \neq 10$, le système est incompatible et u n'est pas combinaison linéaire de e_1 et e_2 .

2 Sous-espace engendré

Dans \mathbb{R}^3 , on pose $u_1 = (1, -1, 2)$ et $u_2 = (1, 1, -1)$.

- Les vecteurs $v_1 = (3, 1, 0)$ et $v_2 = (1, 5, -1)$ sont-ils combinaison linéaire de u_1 et u_2 ?
- Soit $a, b, c \in \mathbb{R}$. Démontrer que v = (a, b, c) est combinaison linéaire de u_1 et u_2 si et seulement si -a + 3b + 2c = 0.
- En déduire un vecteur de \mathbb{R}^3 qui n'est pas combinaison linéaire de u_1 et de u_2 .

1. v_1 est combinaison linéaire de u_1 et u_2 si et seulement si il existe $a, b \in \mathbb{R}$ tels que $v_1 = au_1 + bu_2$.

Trouver a et b nous conduit à un système linéaire :

$$a+b=3$$
$$-a+b=1$$
$$2a-b=0$$

Les premières étapes du pivot de Gauss nous donnent :

$$a+b=3$$
$$0+2b=4$$
$$0-3b=-6$$

Les deux dernières lignes correspondent à la même équation, le système possède donc une solution.

2. v_2 est combinaison linéaire de u_1 et u_2 si et seulement si il existe $a,b\in\mathbb{R}$ tels que $v_2=au_1+bu_2$.

Trouver a et b nous conduit à un système linéaire :

$$a+b=1$$
$$-a+b=5$$
$$2a-b=-1$$

Les premières étapes du pivot de Gauss nous donnent :

$$a+b=1$$
$$0+2b=6$$
$$0-3b=-3$$

Le système est incompatible et v_2 n'est pas combinaison linéaire de u_1 et u_2 .

3. v=(a,b,c) est combinaison linéaire de u_1 et u_2 si et seulement si le système suivant possède une solution :

$$x + y = a$$
$$-x + y = b$$
$$2x - y = c$$

Les premières étapes du pivot de Gauss nous donnent :

$$x + y = a$$
$$0 + 2y = a + b$$
$$0 - 3y = c - 2a$$

qu'on peut réécrire :

$$x + y = a$$
$$y = (a + b)/2$$
$$y = (2a - c)/3$$

Le système est compatible si et seulement si (2a-c)/3 = (a+b)/2, c'est-à-dire

$$4a - 2c = 3a + 3b$$

c'est-à-dire

$$a - 3b - 2c = 0$$

c'est bien l'équation de l'énoncé.

4. Il suffit de trouver trois nombres a, b, c qui ne vérifient pas l'équation de l'énoncé. Par exemple, (1,0,0) n'est pas combinaison linéaire de u_1 et u_2 .

Familles

3 Familles libres

Les familles suivantes sont-elles libres dans \mathbb{R}^3 ?

- -(u, v) avec u = (1, 2, 3) et v = (-1, 4, 6);
- -(u, v, w) avec u = (1, 2, -1), v = (1, 0, 1) et w = (0, 0, 1);
- -(u, v, w) avec u = (1, 2, -1), v = (1, 0, 1) et w = (-1, 2, -3);

Sans calcul supplémentaire, dire si elles sont génératrices.

4 Dimension

On considère, dans \mathbb{R}^4 , les vecteurs :

$$v_1 = (1, 2, 3, 4), \quad v_2 = (1, 1, 1, 3), \quad v_3 = (2, 1, 1, 1), \quad v_4 = (-1, 0, -1, 2), \quad v_5 = (2, 3, 0, 1).$$

Soit F l'espace vectoriel engendré par $\{v_1, v_2, v_3\}$ et soit G celui engendré par $\{v_4, v_5\}$. Calculer les dimensions respectives de $F, G, F \cap G$.

- 1. G est engendré par deux vecteurs donc dim $G \leq 2$. Clairement v_4 et v_5 ne sont pas liés donc dim $G \geq 2$ c'est-à-dire dim G = 2.
- 2. F est engendré par trois vecteurs donc dim $F \leq 3$. Un calcul montre que la famille $\{v_1, v_2, v_3\}$ est libre, d'où dim $F \geq 3$ et donc dim F = 3.
- 3. Essayons d'abord d'estimer la dimension de $F \cap G$.

D'une part $F \cap G \subset G$ donc $\dim(F \cap G) \leq 2$.

Utilisons d'autre part la formule $\dim(F+G) = \dim F + \dim G - \dim(F \cap G)$.

Comme $F + G \subset \mathbb{R}^4$, on a dim $(F + G) \leq 4$ d'où on tire l'inégalité dim $(F \cap G) \geq 1$. Donc soit dim $(F \cap G) = 1$ ou bien dim $(F \cap G) = 2$.

Supposons que dim $(F \cap G)$ soit égale à 2. Comme $F \cap G \subset G$ on aurait dans ce cas $F \cap G = G$ et donc $G \subset F$. En particulier il existerait $\alpha, \beta, \gamma \in \mathbb{R}$ tels que $v_4 = \alpha v_1 + \beta v_2 + \gamma v_3$. On

Auteur : M. Berger

vérifie aisément que ce n'est pas le cas, ainsi $\dim(F \cap G)$ n'est pas égale à 2.

On peut donc conclure $\dim(F \cap G) = 1$

Dimension

5 Dimension

Déterminer la dimension des espaces vectoriels suivants. La dimension d'un espace vectoriel correspond au nombre de paramètres scalaires nécessaires pour décrire un vecteur.

- 1. L'ensemble des polynômes de degré inférieur ou égal à n sur \mathbb{R} .
- 2. L'ensemble des matrices 2×3 à coefficients réels.
- 3. L'ensemble des fonctions continues de \mathbb{R} dans \mathbb{R} .
- 4. L'ensemble des suites réelles $(u_n)_{n\in\mathbb{N}}$.
- 5. L'ensemble des polynômes de degré inférieur ou égal à n qui s'annulent en 0.
- 6. L'ensemble des vecteurs de \mathbb{R}^n dont la somme des coordonnées est nulle.

6 Bases

Les familles de vecteurs suivantes sont-elles libres? sont-elles génératrices?

- Dans \mathbb{R}^2 :
 - La famille $\{(1,0),(0,1)\}$ dans l'espace \mathbb{R}^2

```
La famille \{(1,0),(0,1)\} est libre et génératrice.
```

— La famille $\{(1,2),(2,4)\}$ dans l'espace \mathbb{R}^2

```
La famille \{(1,2),(2,4)\} n'est pas libre (les vecteurs sont colinéaires).
```

— La famille $\{(1,0)\}$ n'est pas génératrice de \mathbb{R}^2

La famille $\{(1,0)\}$ n'est pas génératrice de \mathbb{R}^2 (ne permet pas d'obtenir tous les vecteurs du plan).

- Dans \mathbb{R}^3 :
 - La famille $\{(1,0,0),(0,1,0),(0,0,1)\}$ dans l'espace \mathbb{R}^3

```
La famille \{(1,0,0),(0,1,0),(0,0,1)\} est une base de \mathbb{R}^3.
```

— La famille $\{(1,1,1),(1,2,3)\}$ dans l'espace \mathbb{R}^3

La famille $\{(1,1,1),(1,2,3)\}$ est libre mais pas génératrice.

— La famille $\{(1,0,0),(0,1,0),(1,1,0)\}$ dans l'espace \mathbb{R}^3

La famille $\{(1,0,0),(0,1,0),(1,1,0)\}$ n'est ni libre ni génératrice (car (1,1,0)=(1,0,0)+(0,1,0)).

- Dans l'espace des polynômes de degré inférieur ou égal à 2 :
 - La famille $\{1,X,X^2\}$ dans l'espace des polynômes de degré inférieur ou égal à 2

Auteur: M. Berger p. 5

La famille $\{1, X, X^2\}$ est une base de $\mathbb{R}_2[X]$.

— La famille $\{1+X,X+X^2,1+X^2\}$ dans l'espace des polynômes de degré inférieur ou égal à 2

La famille $\{1+X,X+X^2,1+X^2\}$ est une base de $\mathbb{R}_2[X]$.

— La famille $\{1,X,X\}$ dans l'espace des polynômes de degré inférieur ou égal à 2

La famille $\{1, X, X\}$ n'est pas libre car X est pris deux fois.

Auteur : M. Berger p. 6