Lista 8: formas diferenciais e integração

27 de junho de 2025

- 1. Seja $V_n(r)$ o volume da bola fechada de raio r em \mathbb{R}^n .
 - (a) Mostre que existem constantes c_n tais que $V_n(r) = c_n r^n$.
 - (b) Demonstre (de maneira independente) as seguintes fórmulas recursivas para c_n :

$$c_n = \left(\int_{-\pi/2}^{\pi/2} \cos^n \theta d\theta \right) c_{n-1} \quad \text{e} \quad c_n = \frac{2\pi}{n} c_{n-2}.$$

(c) Usando qualquer uma das duas fórmulas, mostre que

$$V_{2k+1}(r) = 2\frac{(2\pi)^k}{(2k+1)!!}r^{2k+1}, \qquad V_{2k}(r) = \frac{(2\pi)^k}{(2k)!!}r^{2k},$$

onde $m!! = \prod_{i=1}^{\lceil m/2 \rceil - 1} (m-2i)$. É também possível dar uma fórmula que não depende da paridade, usando a função Γ de Euler:

$$V_n(r) = \frac{\pi^{n/2}}{\Gamma(1+n/2)}r^n.$$

- (d) Conclua que $V_n(1)$ tende para 0 quando n tende a infinito.
- 2. Considere a (n-1)-forma $\omega = \sum_{i=1}^{n} (-1)^{i+1} x_i dx_1 \wedge \cdots \wedge \widehat{dx_i} \wedge \cdots \wedge dx_n$ em $\mathbb{R}^n \setminus \{0\}$.
 - (a) Mostre que $d\omega = dx_1 \wedge \cdots \wedge dx_n$.
 - (b) Use o teorema de Stokes para obter uma fórmula para o volume (n-1)-dimensional da esfera de raio r em \mathbb{R}^n .
- 3. Use o teorema de Fubini para mostrar o teorema de Schwarz (sobre a ordem das derivadas de ordem 2 de uma função de classe C^2).
- 4. Sejam $F:M\to N$ e $G:N\to P$ aplicações suaves entre variedades suaves e $\omega\in\Omega^k(P)$ uma k-forma diferencial em P. Mostre que

$$F^*(G^*\omega) = (G \circ F)^*\omega.$$

- 5. Considere as seguintes 1-formas em \mathbb{R}^2 : $\omega_1 = dx$, $\omega_2 = xdy$ e $\omega_3 = dr^2$, onde $r^2 = x^2 + y^2$. Calcule os valores de ω_i nos seguintes vetores tangentes:
 - (a) $u = (0,1) \in T_{(0,0)} \mathbb{R}^2$,
 - (b) $v = (-1, -1) \in T_{(2,2)} \mathbb{R}^2$,
 - (c) $w = (1, -1) \in T_{(2,2)} \mathbb{R}^2$.
- 6. Sejam M uma variedade suave, $U \subset M$ um aberto e $\varphi_1, \dots, \varphi_m : U \to \mathbb{R}$ funções suaves. Mostre que as seguintes propriedades são equivalentes:

1

(a) $\varphi = (\varphi_1, \dots, \varphi_m) : U \to \mathbb{R}^d$ é uma carta local de M;

(b) para toda 1-forma $\omega \in \Omega^k(U)$, existem únicos $f_i \in C^{\infty}(U)$ tais que

$$\omega = f_1 d\varphi_1 + \dots + f_m d\varphi_m.$$

- 7. Calcule o pullback da 2-forma $dx \wedge dy$ em \mathbb{R}^2 pela aplicação $(r, \theta) \mapsto (r \cos \theta, r \sin \theta)$.
- 8. Considere as seguintes 2-formas em \mathbb{R}^2 : $\omega_1 = dx \wedge dy$, $\omega_2 = x dx \wedge dy y dy \wedge dx$ e $\omega_3 = r dr \wedge d\theta$, onde $x = r \cos \theta$ e $y = r \sin \theta$. Calcule os valores de ω_i nos seguintes pares de vetores tangentes:
 - (a) $u_1 = (1,0)$ e $u_2 = (1,1)$ em $T_{(1,1)}\mathbb{R}^2$,
 - (b) $v_1 = (1, -1) e v_2 = (0, 1) em T_{(0,1)} \mathbb{R}^2$
 - (c) $w_1 = (-1,0)$ e $w_2 = (0,1)$ em $T_{(1,2)}\mathbb{R}^2$.
- 9. Em \mathbb{R}^3 , calcule o valor das 2-formas $\omega_1 = dy \wedge dz$, $\omega_2 = xdz \wedge dy$ e $\omega_3 = dz \wedge dr^2$, onde $r^2 = x^2 + y^2 + z^2$, no par de vetores tangentes $v_1 = (1, 1, 1)$ e $v_2 = (1, 2, 3)$ no ponto p = (2, 0, 0).
- 10. Seja M uma 3-variedade suave e (x_1, x_2, x_3) e (y_1, y_2, y_3) dois sistemas de coordenadas definidos num mesmo aberto U. Dada uma 2-forma $\omega \in \Omega^2(U)$, podemos escrever

$$\omega = f_1 dx_2 \wedge dx_3 + f_2 dx_3 \wedge dx_1 + f_3 dx_1 \wedge dx_2 = g_1 dy_2 \wedge dy_3 + g_2 dy_3 \wedge dy_1 + g_3 dy_1 \wedge dy_2.$$

Descreva g_1, g_2, g_3 em função de f_1, f_2, f_3 .

- 11. (Qualificação 2006) Seja $f: A \to \mathbb{R}$ uma função contínua no bloco $A \subset \mathbb{R}^n$. Mostre que o gráfico de f tem medida nula em \mathbb{R}^{n+1} .
- 12. (Qualificação 2023) Defina uma 1-forma ω em $\mathbb{R}^2 \setminus \{0\}$ por:

$$\omega = \left(\frac{-y}{x^2 + y^2}\right)dx + \left(\frac{x}{x^2 + y^2}\right)dy.$$

Calcule a integral de ω ao longo de um círculo de raio r centrado na origem. Essa forma é exata? Mostre que o campo de vetores

$$\left(\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2}\right)$$

não é o gradiente de nenhuma função.

- 13. (Qualificação 2023) Seja $G: \mathbb{R}^3 \to \mathbb{R}^3$ de classe C^1 tal que $\langle G(x), x \rangle > 0$ para todo x com ||x|| = 1. Mostre que não existe $F: \mathbb{R}^3 \to \mathbb{R}^3$ de classe C^2 tal que G = rot(F).
- 14. (Qualificação 2022) Seja M uma k-variedade compacta orientada \mathbb{R}^n . Sejam $h: \mathbb{R}^n \to \mathbb{R}^n$ uma isometria k0 e k1 e k2 uma função contínua. Mostre que k3 é uma k2 variedade compacta orientada em k3 e k4 e k5 e k6 uma k7 e

$$\int_{N} f dV = \int_{M} (f \circ h) dV,$$

onde dV denota a forma volume. Conclua que M e N têm o mesmo volume.

- 15. (Qualificação 2022) Considere a variedade (com bordo) $M = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1, z \ge 1/2\}$ e a 2-forma $\beta = 2xdx \wedge dz + 2zdy \wedge dz$.
 - (a) Encontre uma forma α tal que $\beta = d\alpha$.
 - (b) Exiba uma parametrização de ∂M .
 - (c) Calcule $\int_M \beta$.

¹Isto é, h é um difeomorfismo tal que Jh(x) é uma uma matriz ortogonal para todo $x \in \mathbb{R}^n$.

16. (Qualificação 2021) Enuncie o teorema de Green e o utilize para provar que não existe solução periódica para o sistema de equações diferenciais

$$\begin{cases} x'(t) = x(t) + x(t)^5 \\ y'(t) = -y(t) + y(t)^5, \end{cases}$$

isto é, que não existe uma curva fechada $\gamma(t) = (x(t), y(t))$ satisfazendo o sistema de equações.

- 17. (Qualificação 2019) Seja $M = \{(x, y, z) \in \mathbb{R}^3 : 4x^2 + y^2 + 4z^2 = 4, y \ge 0\}$ e $\omega = ydx + 3xdz$.
 - (a) Calcule $\int_{\partial M} \omega$ diretamente (sem utilizar o teorema de Stokes).
 - (b) Calcule $\int_M d\omega$.
- 18. (Qualificação 2019) Seja $f: \mathbb{R} \to \mathbb{R}$ dada por

$$f(x) = \begin{cases} \frac{1+\cos(x)}{2}, & x \in [-\pi, \pi], \\ 0, & \text{caso contrário.} \end{cases}$$

Seja $\{\phi_j\}_{j\geq 0}$ a família de funções dada por $\phi_{2m+1}(x)=f(x-m\pi)$ e $\phi_{2m}(x)=f(x+m\pi)$. Por exemplo, $\phi_3(x)=f(x-\pi)$ e $\phi_4(x)=f(x+2\pi)$.

- (a) Defina partição da unidade associada a uma coleção de abertos de \mathbb{R}^n .
- (b) Mostre que $\{\phi_j\}_{j\geq 0}$ é uma partição da unidade em \mathbb{R} .
- 19. Mostre que uma variedade M é orientável (isto é, M admite uma forma de orientação) se, e somente se, existe um atlas $\{\varphi_i: U_i \to \mathbb{R}^m\}_{i \in I}$ de M tal que det $J(\varphi_j \circ \varphi_i^{-1}) > 0$ para todos $i, j \in I$.
- 20. (Qualificação 2018) Seja B(n,r) a bola de raio r em \mathbb{R}^n . Note que vol $B(2,r)=\pi r^2$ e vol $B(3,r)=4\pi r^3/3$, como aprendemos no colégio. Mostre que vol $B(4,r)=\pi^2 r^4/2$. [Dica: parametrize a bola por coordenadas esféricas e use o teorema de Stokes.]
- 21. (Qualificação 2017) Considere a 2-forma em $\mathbb{R}^3 \setminus \{0\}$ dada por

$$\omega = \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}.$$

- (a) ω é fechada?
- (b) Mostre que $\int_{S^2} \omega = -4\pi$.
- (c) ω é exata?
- 22. (Qualificação 2017)
 - (a) Calcule $\int_0^{2\pi} \int_0^{2\pi} \sin^2(\theta) \cos(\phi) \sin(\phi) d\theta d\phi$.
 - (b) Seja $T^2 = S^1 \times S^1 \subset \mathbb{R}^4$ o toro descrito por

$$T^2 = \{(x, y, z, w) \in \mathbb{R}^4 : x^2 + y^2 = z^2 + w^2 = 1\}.$$

Calcule $\int_{T^2} xyzdw \wedge dy$.

23. (Qualificação 2016) Seja M uma n-variedade em \mathbb{R}^{n+k} . Mostre que, se existem k campos de vetores v_1, \ldots, v_k em \mathbb{R}^{n+k} contínuos normais a M ($v_j(p) \perp T_pM$ para todo $p \in M, j = 1, \ldots, k$) que são linearmente independentes em todo ponto de M, então M é orientável.

24. (Qualificação 2016) Sejam M uma (k+l+1)-variedade compacta orientada em \mathbb{R}^n , com ∂M com a orientação induzida, se $\partial M \neq \emptyset$, e, ω e η formas de classe C^1 de ordem k e l, respectivamente, definidas numa vizinhança de M, e com o suporte de uma delas contido no interior de M (isto é, $M \setminus \partial M$). Mostre que

$$\int_{M} d\omega \wedge \eta = -(-1)^{k} \int_{M} \omega \wedge d\eta.$$

- 25. (Qualificação 2015)
 - (a) Seja $\omega = ydx + (z\cos(yz) + x) dy + y\cos(yz) dz$. Mostre que ω é uma forma fechada. Ela é exata?
 - (b) Sejam ω_1 e ω_2 formas diferenciais de classe C^{∞} em uma variedade diferenciável M de classe C^{∞} . Mostre que $\omega_1 \wedge \omega_2$ é exata se ω_1 é fechada e ω_2 é exata.
- 26. (Qualificação 2015) Seja $\Omega \subset \mathbb{R}^n$ um aberto limitado tal que a fronteira $\partial \Omega$ é uma variedade conexa de classe C^{∞} . Suponha que $F : \mathbb{R}^n \to \mathbb{R}^n$ é um campo de classe C^1 .
 - (a) Usando o Teorema de Stokes (em sua forma mais geral), mostre que

$$\int_{\Omega} \operatorname{div}(F) \, dx = \int_{\partial \Omega} (F \cdot n) \, dS.$$

- (b) Mostre que se div $(F) \equiv 0$ então F é tangente a $\partial \Omega$ em algum ponto.
- (c) Seja $u: \mathbb{R}^n \to \mathbb{R}$ de classe C^2 . Mostre que

$$\int_{\Omega} \Delta u \, dx = \int_{\partial \Omega} \frac{\partial u}{\partial n} \, dS,$$

onde $\Delta u = \operatorname{div}(\nabla u) = \sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}} e^{\frac{\partial u}{\partial n}}$ denota a derivada normal de u em $\partial \Omega$.

- 27. (Qualificação 2013)
 - (a) Seja M uma k+l+1-variedade (de classe C^{∞}) em \mathbb{R}^n orientada e com bordo. Sejam ω uma k-forma e η uma l-forma, ambas (de classe C^{∞}) definidas em um aberto do \mathbb{R}^n contendo M. Mostre a "fórmula de integração por partes"

$$\int_{M} \omega \wedge d\eta = \int_{\partial M} \omega \wedge \eta - (-1)^{k} \int_{M} d\omega \wedge \eta.$$

(b) Usando o item (a), mostre que se M é uma n-variedade (de classe C^{∞}) em \mathbb{R}^n orientada com bordo (não vazio) e conexa, e f é uma função de classe C^{∞} em um aberto do \mathbb{R}^n contendo M, tal que

$$\Delta f|_{M} = 0$$
 $\left(\Delta f := \sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i}^{2}}\right)$

e

$$f|_{\partial M} = 0,$$

então

$$f|_{M} = 0.$$

[Dica: mostre que

$$\Delta f = d \left(\sum_{i=1}^{n} (-1)^{i+1} \frac{\partial f}{\partial x_i} dx_1 \wedge \dots \wedge \widehat{dx_i} \wedge \dots \wedge dx_n \right),$$

onde $\widehat{dx_i}$ significa que dx_i é omitido, e tome $\omega = f$ e $d\eta = \Delta f$.]