

## Aprendizaje Automático

Clase 10:

Ingeniería de Atributos

## Garbage in... garbage out









## ¿Por qué trabajar sobre los atributos?



Figure 1-5. Data in research versus data in production. Source: Adapted from an image by Andrej Karpathy<sup>24</sup>

[Designing Machine Learning Systems: An Iterative Process for Production-Ready Applications" (Chip Huyen).]

## ¿Por qué trabajar sobre los atributos?

**Ingeniería de Atributos:** Tareas relacionadas a diseñar un conjunto de features. Por ejemplo:

- Tratamiento de valores faltantes.
- Conversión de atributos.
- Normalización.
- Codificación
- etc

"Buenos atributos permiten que un modelo simple supere a un modelo complejo" (Peter Norvig)

"Es incalculable el tiempo que se pierde por subestimar este tema" (Pablo Brusco :P)

| ID | Age | Gender | Annual income | Marital status | Number of children | Job      | Buy? |
|----|-----|--------|---------------|----------------|--------------------|----------|------|
| 1  |     | A      | 150,000       |                | 1                  | Engineer | No   |
| 2  | 27  | В      | 50,000        |                |                    | Teacher  | No   |
| 3  |     | A      | 100,000       | Married        | 2                  |          | Yes  |
| 4  | 40  | В      | 2             |                | 2                  | Engineer | Yes  |



## Operaciones comunes de ingeniería de atributos:

## Escalado de atributos







- Contribución equitativa de atributos (¿deseado?).
- Velocidad de convergencia (SGD)
- Algoritmos basados en distancia (KNN, SVM, K-Means, etc),
- Adaptabilidad a nuevas distribuciones (reutilización de modelos existentes en datos nuevos)
- etc.

**Normalización** (Min-Max Scaling): Se reescalan los atributos a un rango fijo, generalmente entre a=0 y b=1.

**Estandarización** ("standardization", z-scores):
Se centra la distribución en media 0 y con una desvío estándar 1. Los z-scores se pueden interpretar como cuántas desviaciones estándar está un punto de datos por encima o por debajo de la media del conjunto.

**Escalado robusto** (Robust Scaling): Utiliza la mediana y el rango intercuartil en lugar de la media y la desviación estándar, lo que lo hace más robusto frente a valores atípicos.

from sklearn.preprocessing import MinMaxScaler

$$X'_{j} = a + \frac{(X_{j} - X_{j}^{\min})(b - a)}{X_{j}^{\max} - X_{j}^{\min}}$$

from sklearn.preprocessing import StandardScaler

$$X_j' = \frac{X_j - \mu_j}{\sigma_j}$$

from sklearn.preprocessing import RobustScaler

$$X_j' = \frac{X_j - \text{mediana}_j}{\text{IQR}_j}$$

IQR = rango entre el primer cuartil y el tercer cuartil (percentil 25 - percentil 75).

## **Normalización** (Min-Max Scaling):

- X Sensible a Outliers
- X Datos nuevos pueden caer fuera de rango

## **Estandarización** ("standardization", z-scores):

- X Supone distribución Normal.
- X Sensible a Outliers (no tanto como min-max)

## **Escalado robusto** (Robust Scaling):

X Ignora extremos (cuyo valor puede afectar negativamente a los algoritmos)

from sklearn.preprocessing import MinMaxScaler

$$X'_{j} = a + \frac{(X_{j} - X_{j}^{\min})(b - a)}{X_{j}^{\max} - X_{j}^{\min}}$$

from sklearn.preprocessing import StandardScaler

$$X_j' = \frac{X_j - \mu_j}{\sigma_j}$$

from sklearn.preprocessing import RobustScaler

$$X_j' = \frac{X_j - \text{mediana}_j}{\text{IQR}_j}$$

IQR = rango entre el primer cuartil y el tercer cuartil (percentil 25 - percentil 75).

El escalado de atributos es una fuente común de data leakage.

¿Sobre qué datos computar min, max, mu, sigma, IOR, etc?

```
from sklearn.preprocessing import
StandardScaler

scaler = StandardScaler()

scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

from sklearn.preprocessing import MinMaxScaler

$$X'_j = a + \frac{(X_j - X_j^{\min})(b - a)}{X_j^{\max} - X_j^{\min}}$$

from sklearn.preprocessing import StandardScaler

$$X_j' = \frac{X_j - \mu_j}{\sigma_j}$$

from sklearn.preprocessing import RobustScaler

$$X_j' = \frac{X_j - \text{mediana}_j}{\text{IQR}_j}$$

IQR = rango entre el primer cuartil y el tercer cuartil (percentil 25 - percentil 75).

## Operaciones comunes de ingeniería de atributos:

## Tratar Valores Faltantes (missing values)



| Nombre              | Edad | Profesión       |
|---------------------|------|-----------------|
| Emanuel Ginobili    | 45.0 | Basquetbolista  |
| Ada Lovelace        | NaN  | Programadora    |
| Juan Pablo Galeotti | NaN  | Director del DC |
| Chuck Norris        | 83.0 | Todas           |
| Mirta Legrand       | NaN  | Conductora      |

"Obviously, the best way to treat missing data is not to have them".



#### Posibles soluciones

- Aceptarla y utilizar algoritmos diseñados para datos faltantes
- Eliminar datos con problemas
- ے نے Eliminar **filas** o **columnas**? ¿Y cuando llega un dato nuevo:
- Convertir missing en una categoría más (para categóricas
- Rellenar (Imputers)
  - Generales
    - Media / Mediana / Moda / Constante
    - Random Forest Imputer, KNN imputer, MICE, etc
  - o Para series temporales:
    - Last Observation Carried Forward (LOCF)
    - Next Observation Carried Backward (NOCB)
    - Interpolación (lineal, pesada, splines, etc)
- Imputación + columnas indicadoras (dummy variables)

En **scikit-learn:** (ojo porque son especialmente malos con este tema) https://scikit-learn.org/stable/module s/tree.html#missing-values-support





- Aceptarla y utilizar algoritmos diseñados para datos faltantes
- Eliminar datos con problemas
  - ¿Eliminar filas o columnas? ¿Y cuando llega un dato nuevo?
- Convertir missing en una categoría más (para categóricas
- Rellenar (Imputers)
  - Generales
    - Media / Mediana / Moda / Constante
    - Random Forest Imputer, KNN imputer, MICE, etc
  - o Para series temporales:
    - Last Observation Carried Forward (LOCF)
    - Next Observation Carried Backward (NOCB)
    - Interpolación (lineal, pesada, splines, etc)
- Imputación + columnas indicadoras (dummy variables)

| Nombre              | Edad | Profesión       |
|---------------------|------|-----------------|
| Emanuel Ginobili    | 45.0 | Basquetbolista  |
| Ada Lovelace        | NaN  | Programadora    |
| Juan Pablo Galeotti | NaN  | Director del DC |
| Chuck Norris        | 83.0 | Todas           |
| Mirta Legrand       | NaN  | Conductora      |



- Aceptarla y utilizar algoritmos diseñados para datos faltantes
- Eliminar datos con problemas
  - ¿Eliminar filas o columnas? ¿Y cuando llega un dato nuevo?
- Convertir missing en una categoría más (para categóricas
- Relienar (Imputers)
  - o Generales:
    - Media / Mediana / Moda / Constante
    - Random Forest Imputer, KNN imputer, MICE, etc
  - Para series temporales:
    - Last Observation Carried Forward (LOCF)
    - Next Observation Carried Backward (NOCB)
    - Interpolación (lineal, pesada, splines, etc)
- Imputación + columnas indicadoras (dummy variables)





- Aceptarla y utilizar algoritmos diseñados para datos faltantes
- Eliminar datos con problemas
  - ¿Eliminar filas o columnas? ¿Y cuando llega un dato nuevo?
- Convertir missing en una categoría más (para categóricas)
- Rellenar (Imputers)
  - Generales
    - Media / Mediana / Moda / Constante
    - Random Forest Imputer, KNN imputer, MICE, etc
  - Para series temporales:
    - Last Observation Carried Forward (LOCF)
    - Next Observation Carried Backward (NOCB)
    - Interpolación (lineal, pesada, splines, etc)
- Imputación + columnas indicadoras (dummy variables)



Pausa: ¿pero por qué no están?

| Nombre              | Edad | Profesión       | ¿Vive? |
|---------------------|------|-----------------|--------|
| Emanuel Ginobili    | 45.0 | Basquetbolista  | True   |
| Ada Lovelace        | NaN  | Programadora    | False  |
| Juan Pablo Galeotti | NaN  | Director del DC | True   |
| Chuck Norris        | 83.0 | Todas           | True   |
| Mirta Legrand       | NaN  | Conductora      | True   |

## ¿Por qué puede faltar un valor?

**Entender** por qué faltan ayuda a pensar cuál es la manera **correcta** de trabajar con ellos.



Pausa: ¿pero por qué no están?

| Nombre              | Edad | Profesión       | ¿Vive? |
|---------------------|------|-----------------|--------|
| Emanuel Ginobili    | 45.0 | Basquetbolista  | True   |
| Ada Lovelace        | NaN  | Programadora    | False  |
| Juan Pablo Galeotti | NaN  | Director del DC | True   |
| Chuck Norris        | 83.0 | Todas           | True   |
| Mirta Legrand       | NaN  | Conductora      | True   |

1- Faltante al azar (MCAR - Missing Completely at Random)
Los datos faltantes no están relacionados con ningún dato
- observado o no observado.

Ej: no se entiende la letra de la persona que hizo la encuesta.

2- Faltante con dependencias (MAR - Missing at Random)
Los datos faltantes están relacionados con los datos
observados, pero no con los datos faltantes en sí.

**3- Faltante sospechoso (MNAR - Missing Not at Random)**: Los datos faltantes están relacionados con el motivo por el cual faltan.

Ej: ¿Cuánto gana? (si es muy alto quizás no contestan)

[Rubin, Donald B. 1976]



Pausa: ¿pero por qué no están?

| Nombre              | Edad | Profesión       | ¿Vive? |
|---------------------|------|-----------------|--------|
| Emanuel Ginobili    | 45.0 | Basquetbolista  | True   |
| Ada Lovelace        | NaN  | Programadora    | False  |
| Juan Pablo Galeotti | NaN  | Director del DC | True   |
| Chuck Norris        | 83.0 | Todas           | True   |
| Mirta Legrand       | NaN  | Conductora      | True   |

#### 1- Faltante al azar (MCAR - Missing Completely at Random)

Los datos faltantes no están relacionados con ningún dato observado o no observado.

Ej: no se entiende la letra de la persona que hizo la encuesta.

#### 2- Faltante con dependencias (MAR - Missing at Random)

Los datos faltantes están relacionados con los datos observados, pero no con los datos faltantes en sí.

Ej: Falta la nota del recu, pero la persona aprobó el parcial.

3- Faltante sospechoso (MNAR - Missing Not at Random):

Los datos faltantes están relacionados con el motivo por el cual faltan

Ej: ¿Cuánto gana? (si es muy alto quizás no contestan)

[Rubin, Donald B. 1976]



Pausa: ¿pero por qué no están?

| Nombre              | Edad | Profesión       | ¿Vive? |
|---------------------|------|-----------------|--------|
| Emanuel Ginobili    | 45.0 | Basquetbolista  | True   |
| Ada Lovelace        | NaN  | Programadora    | False  |
| Juan Pablo Galeotti | NaN  | Director del DC | True   |
| Chuck Norris        | 83.0 | Todas           | True   |
| Mirta Legrand       | NaN  | Conductora      | True   |

### 1- Faltante al azar (MCAR - Missing Completely at Random)

Los datos faltantes no están relacionados con ningún dato observado o no observado.

Ej: no se entiende la letra de la persona que hizo la encuesta.

#### 2- Faltante con dependencias (MAR - Missing at Random)

Los datos faltantes están relacionados con los datos observados, pero no con los datos faltantes en sí.

Ej: Falta la nota del recu, pero la persona aprobó el parcial.

#### **3- Faltante sospechoso (MNAR - Missing Not at Random)**:

Los datos faltantes están relacionados con el motivo por el cual faltan.

Ej: ¿Cuánto gana? (si es muy alto quizás no contestan)

[Rubin, Donald B. 1976]



- Aceptarla y utilizar algoritmos diseñados para datos faltantes
- Eliminar datos con problemas
  - ¿Eliminar filas o columnas? ¿Y cuando llega un dato nuevo?
- Convertir missing en una categoría más (para categóricas)
- Rellenar (Imputers)
  - o Generales:
    - Media / Mediana / Moda / Constante
    - Random Forest Imputer, KNN imputer, MICE, etc
  - Para series temporales:
    - Last Observation Carried Forward (LOCF
    - Next Observation Carried Backward (NOCB)
    - Interpolación (lineal, pesada, splines, etc)
- Imputación + columnas indicadoras (dummy variables)

| Nombre                               | Edad              | Profesión                             |
|--------------------------------------|-------------------|---------------------------------------|
| Emanuel Ginobili                     | 45.0              | Basquetbolista                        |
| Ada Lovelace                         | NaN               | Programadora                          |
| Juan Pablo Galeotti                  | NaN               | Director del DC                       |
| Chuck Norris                         | 83.0              | Todas                                 |
|                                      | MISNI             | Conductora                            |
| Mirta Legrand                        | NaN               | Conductora                            |
| 200                                  | Edad              | Profesión                             |
| 200                                  |                   | J conductora                          |
| Nombre                               | Edad              | Profesión                             |
| Nombre<br>Emanuel Ginobili           | Edad<br>45        | Profesión Basquetbolista              |
| Nombre Emanuel Ginobili Ada Lovelace | <b>Edad</b> 45 45 | Profesión Basquetbolista Programadora |

- Aceptarla y utilizar algoritmos diseñados para datos faltantes
- Eliminar datos con problemas
  - ¿Eliminar filas o columnas? ¿Y cuando llega un dato nuevo?
- Convertir missing en una categoría más (para categóricas)
- Rellenar (Imputers)
  - Generales:
    - Media / Mediana / Moda / Constante
    - Random Forest Imputer, KNN imputer, MICE, etc
  - Para series temporales:
    - Last Observation Carried Forward (LOCF)
    - Next Observation Carried Backward (NOCB)
    - Interpolación (lineal, pesada, splines, etc)
- Imputación + columnas indicadoras (dummy variables)





- Aceptarla y utilizar algoritmos diseñados para datos faltantes
- Eliminar datos con problemas
  - ¿Eliminar filas o columnas? ¿Y cuando llega un dato nuevo?
- Convertir missing en una categoría más (para categóricas)
- Rellenar (Imputers)
  - Generales:
    - Media / Mediana / Moda / Constante
    - Random Forest Imputer, KNN imputer, MICE, etc
  - o Para series temporales:
    - Last Observation Carried Forward (LOCF)
    - Next Observation Carried Backward (NOCB)
    - Interpolación (lineal, pesada, splines, etc)
- Imputación + columnas indicadoras (dummy variables)

| Edad | edad_was_none |
|------|---------------|
| 45   | False         |
| 45   | True          |
| 45   | True          |
| 83   | False         |
| 83   | True          |

## KNN-imputter

Cada atributo faltante  $X_m$  se imputa utilizando los valores de los **n-vecinos** más cercanos que tienen un valor para  $X_{m'}$  promediando uniformemente o ponderando por distancia.

Por defecto, se utiliza una métrica de distancia euclidiana que soporta valores faltantes, **nan\_euclidean\_distances**, para encontrar los vecinos más cercanos.

Ej, la distancia entre [3, na, na, 6] y [1, na, 4, 5] es :

$$\sqrt{rac{4}{2}((3-1)^2+(6-5)^2)}$$

En donde 4/2 es la fracción: #total / #definidos.

```
from sklearn.impute import KNNImputer
X = [[1, 2, np.nan],
    [3, 4, 3],
     [np.nan, 6, 5],
     [8, 8, 7]]
imputer = KNNImputer(n neighbors=2)
imputer.fit transform(X)
# devuelve:
         [[1., 2., 4.],
          [3., 4., 3.],
          [5.5, 6., 5.]
          [8., 8., 7.]]
```

## Imputación por iteraciones

**Repetir** #iteraciones (o hasta cumplir criterio de convergencia):

- Fijar valores iniciales para los valores faltantes con cualquier otro método (promedios, knn, etc)
- 2. Seleccionar una variable con valores faltantes.
  - a. Crear un modelo que prediga valores a partir del valor del resto de los atributos.
     El modelo puede ser regresión lineal, de regresión logística, árboles de decisión, etc, dependiendo de la naturaleza de los datos.
  - b. Utilizar el modelo para predecir los faltantes.
- Continuar el proceso el resto de las variables, utilizando en cada paso la versión imputada de las otras variables.

```
from sklearn.impute import IterativeImputer
X = [[1, 2, np.nan],
     [3, 4, 3],
     [np.nan, 6, 5],
     [8, 8, 7]]
imputer = IterativeImputer(
     random state=0,
     max iter=10
     initial strategy='mean',
     add indicator=True
imputer.fit transform(X)
# devuelve:
          [[1., 2., 1.2, 0., 1.],
           [3., 4., 3., 0., 0.],
          [5.5, 6., 5., 1., 0.],
          [8., 8., 7., 0., 0.]
```

Imputación Múltiple - midiendo incertidumbre

En la comunidad estadística, es común realizar "imputaciones múltiples" para poder medir incertidumbre:

MICE: Multivariate Imputation by Chained Equations

- Generar m versiones del dataset imputado (utilizando subsets de la data para imputar cada vez, a lo Bagging).
- 2. Calcular **m** resultados finales del análisis que se esté realizando (o de modelos finales)
- 3. Obtener, además de los resultados agregados a partir de los m sub-resultados (ej, la media) alguna medida de varianza. Permite responder:
  - "¿cómo difieren los resultados debido a la **incertidumbre** inherente causada por los valores faltantes?"



[Samad, M. D., Abrar, S., & Diawara, N. (2022). Missing value estimation using clustering and deep learning within multiple imputation framework. *Knowledge-based systems*, 249, 108968.]

En el paper hay análisis cuando las variables son MCAR, MAR y MNR)

## Técnicas de imputación

Warning: Puede crear combinaciones inexistentes (ej., niño de 1 año, altura 1.80cm)

**Warning:** Destruir relaciones determinísticas (ej., suma de notas de examen y las notas individuales)

**Warning:** Puede crear datos sin sentido (ej., lugar de trabajo para un desocupado).

Warning: La imputación de valores faltantes es una de las maneras más comunes de filtrar información

| sklearn.impute                                                                |                                                                          |  |  |  |  |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|--|--|--|
| Transformers for missing value imputation.                                    |                                                                          |  |  |  |  |
| User guide. See the Imputation of missing values section for further details. |                                                                          |  |  |  |  |
| IterativeImputer                                                              | Multivariate imputer that estimates each feature from all the others.    |  |  |  |  |
| KNNImputer                                                                    | Imputation for completing missing values using k-Nearest Neighbors.      |  |  |  |  |
| <u>MissingIndicator</u>                                                       | Binary indicators for missing values.                                    |  |  |  |  |
| SimpleImputer                                                                 | Univariate imputer for completing missing values with simple strategies. |  |  |  |  |
|                                                                               |                                                                          |  |  |  |  |

## fit / transform / fit\_transform

## fit / transform / fit\_transform

#### fit

Calcula los parámetros necesarios para la transformación a partir de los datos de entrenamiento.

#### fit\_transform

Ajusta y transforma los datos de entrenamiento en una sola llamada.

## transform

Aplica la transformación a datos nuevos utilizando los parámetros calculados por fit.

# Operaciones comunes de ingeniería de atributos:

## Conversión de Variables





## Conversión de variables

Los modelos sólo entienden vectores de números. ¿Si las features no son números? Muchas veces estos atributos contienen mucha información comprimida.

### Tipos de variables a tratar

- Numéricas: edad.
- Nominales: nacionalidad.
- Ordinales: tamaño remera.
- Fechas / Hora del día
- Ubicaciones (lat/long)











¿Cómo convertir Categóricas? (Parte I)

- ► Label encoding: Asignar números 1,2,3,4, etc.
  Para ordinales puede funcionar.
  nominales: en general, mala idea (¿rojo > verde?)
- One-Hot encoding: Por cada valor posible, crear un atributo binarios. Ej: valor "remera\_roja" = <0, 0, 0, 1, 0, 0>

<u>Variante 1:</u> Dummy Variables, 1 o 0 por todas las categorías menos una. La ausencia de todas significa presencia de la categoría no encodeada.

<u>Variante 2:</u> Effect Coding Scheme (-1 en vez de todo 0)

para ayudar a los modelos.

Cardinalidad: ¿Cuántas dimensiones se agregan?

- Target encoding, count encoding (googlearlas)
- Categorical Embeddings (próxima slide)



## Conversión de variables

Los modelos sólo entienden vectores de números. ¿Si las features no son números? Muchas veces estos atributos contienen mucha información comprimida.

#### Tipos de variables a tratar

- Numéricas: edad.
- Nominales: nacionalidad.
- Ordinales: tamaño remera.
- Fechas / Hora del día
- Ubicaciones (lat/long)











### **Categorical Embeddings**

Convertir cada categoría en un **vector**. En donde dos categorías cercanas estarán cerca en el espacio de embeddings.

- **Opción 1**: Si los nombres de las categorías son palabras conocidas. Usar un embedder pre-entrenado (word2vec).
- Opción 2: Entrenar el modelo por separado (no supervisado).
- **Opción 3**: Entrenarla como parte de una red más grande)



## Categorical Embeddings: Esquema más realista



## Categorical Embeddings: Ejemplo pytorch

```
class ModeloEjemplo(nn.Module): # para 2 variables categóricas
    def __init__(self, num_categories1, num_categories2, num_numerical_features, output_dim):
        # en Pytorch "Embedding" espera indices. "Linear" espera vectores (one-hot)
         embedding dim1 = embedding dim2 = 3 # Cada attr será representado con 3 números.
        self.embedding1 = nn.Embedding(num categories1, embedding dim1)
        self.embedding2 = nn.Embedding(num categories2, embedding dim2)
        total embedding dim = embedding dim1 + embedding dim2
        total input dim = total embedding dim + num_numerical_features
        # capas Fully Connected:
        self.fc1 = nn.Linear(total input dim, 64)
        self.fc2 = nn.Linear(64, output_dim)
    def forward(self, categorical_data, numerical_data):
        cat1 embed = self.embedding1(categorical data[:, 0])
        cat2 embed = self.embedding2(categorical data[:, 1])
        # Concatenar embeddings y features numéricos
        x = torch.cat([cat1 embed, cat2 embed, numerical data], dim=1)
        # Pasada foward por el resto de la red.
        x = relu(self.fc1(x))
        x = self.fc2(x)
        return x
```

## Conversión de variables

#### Datos con estructura oculta

Los modelos sólo entienden vectores de números. ¿Si las features no son números? Muchas veces estos atributos contienen mucha información comprimida.

#### Tipos de variables a tratar

- Numéricas: edad.
- Nominales: nacionalidad.
- Ordinales: tamaño remera.
- Fechas / Hora del día
- Ubicaciones (lat/long)













¿Cómo usar fechas / horas?

- Timestamp (segs desde 1/1/1970)
- Día de semana vs fin de semana
- ¿Horario laboral? ¿Principio de mes?
- Estación del año / Número de semana / Mes / Año
- Tiempo desde algún evento de interés
- Cantidad de días para que sea navidad
- etc.

#### ¿Cómo usar geolocations?

- Convertir a zonas (knn si no se conocen de antemano)
- Distancia geodésica a algún punto de interés
- País / Región / Provincia / Ciudad / Barrio.
- etc



## Conversión de variables



Extracción a partir de texto



```
import re

titulos = X['Name'].str.extract(r',([A-Za-z ]{1,20})\.', expand=False)
titulos = titulos.apply(lambda x: x.strip())

# Contar la frecuencia de títulos
contador_titulos = titulos.value_counts()
print(contador_titulos)
```

| Mr     | 457 | Capt 1                   |
|--------|-----|--------------------------|
| Miss   | 167 | Mme 1                    |
| Mrs    | 114 | Lady 1                   |
| Master | 36  | the Countess 1           |
| Dr     | 7   | Ms 1                     |
| Rev    | 6   | Jonkheer 1               |
| Major  | 2   | Don 1                    |
| Mlle   | 2   | Sir 1                    |
| Col    | 2   | Name: Name, dtype: int64 |

## Operaciones comunes de ingeniería de atributos:

## Selección de variables



- Reduce la dimensión
- Favorece a la generalización
- Acelera la velocidad
- Mejora la interpretabilidad

## Selección de Features



Idea: Reducir la dimensión mediante eliminación de variables poco útiles

#### Métodos univariados

Ranking generado a través de algún método estadístico.

#### Métodos iterativos

Considera el problema de selección de features como un problema de búsqueda.

### Basados en importancia de atributos

Rankear variables según métodos internos de cada algoritmo

#### Métodos univariados

Objetivo: ¿Qué variable afecta más valor a predecir?

Test **univariados** (suponen independencia condicional) para ver la relación entre los atributos y el target:

- T-test / Anova (para datos continuos).
- Chi-cuadrado, Information Gain (para datos categóricos).
- Pearson's correlation con Y.
- Gini Index.
- Correlación entre pares de variables.
- Un modelo por variable
- etc

## Selección de Features



Idea: Reducir la dimensión mediante eliminación de variables poco útiles

#### Métodos univariados

Ranking generado a través de algún método estadístico.

#### Métodos iterativos

Considera el problema de selección de features como un problema de búsqueda.

## Basados en importancia de atributos

Rankear variables según métodos internos de cada algoritmo

#### Métodos iterativos

Objetivo: ¿Cuál es la mejor combinación de variables?

Se preparan **combinaciones**, se evalúan y se comparan a través de entrenar un modelo por combinación y luego, medir su performance.

- Heurísticas Greedy:
  - Forward stepwise selection (próxima slide)
  - Backward stepwise selection (próxima slide)
  - Random feature selection
- Best first search
- Random Climbing



Idea: Reducir la dimensión mediante eliminación de variables poco útiles

#### Métodos univariados

Ranking generado a través de algún método estadístico.

#### Métodos iterativos

Considera el problema de selección de features como un problema de búsqueda.

## Basados en importancia de atributos

Rankear variables según métodos internos de cada algoritmo



### Forward stepwise selection







#### **Backward** stepwise selection

Idea: Reducir la dimensión mediante eliminación de variables poco útiles

#### Métodos univariados

Ranking generado a través de algún método estadístico.

#### Métodos iterativos

Considera el problema de selección de features como un problema de búsqueda.

## Basados en importancia de atributos

Rankear variables según métodos internos de cada algoritmo



https://medium.com/@sagar.rawale3/feature-selection -methods-in-machine-learning-eaeef12019cc





Idea: Reducir la dimensión mediante eliminación de variables poco útiles

#### Métodos univariados

Ranking generado a través de algún método estadístico.

#### Métodos iterativos

Considera el problema de selección de features como un problema de búsqueda.

## Basados en importancia de atributos

Rankear variables según métodos internos de cada algoritmo

#### Basados en importancia de atributos

Rankear según **la importancia** que un modelo atribuye al atributo

- En árboles: para un árbol, calcular importancia de permutación o importancia Gini.
- Ensambles: combinar las importancias.
- En regresiones: Utilizar regularización (lasso, ridge, etc) y mirar los pesos.

**Riesgo 1**: ¿Estamos eliminando los features menos informativos o los más usados por el modelo particular?

**Riesgo 2**: ¿Si elimináramos un atributo malo, el resto quedaría igual?





Idea: Reducir la dimensión mediante eliminación de variables poco útiles

#### Métodos univariados

Ranking generado a través de algún método estadístico.

#### Métodos iterativos

Considera el problema de selección de features como un problema de búsqueda.

### Basados en importancia de atributos

Rankear variables según métodos internos de cada algoritmo

#### Basados en importancia de atributos

Algoritmo RFE (Recursive Feature Elimination)

- Entrenar un modelo (árbol de decisión por ejemplo)
- Obtener importancias a partir de un modelo.
- Eliminar la / las variables menos importantes
- Repetir desde el paso 1 incluido.

Si un grupo de variables comparte información, este mecanismo irá eliminando variables correlacionadas hasta dejar la más informativa.

## Pipelines

https://scikit-learn.org/stable/modules/compose.html

## Pipelines

```
from sklearn.feature selection import SelectKBest, f classif
# Crear un pipeline con selección de atributos, un escalador y modelo de
regresión logística
pipeline = Pipeline([
    ('select', SelectKBest(score func=f classif, k=2)),
    ('scaler', StandardScaler()),
    ('log_reg', LogisticRegression())
])
# Ajustar el pipeline en los datos de entrenamiento
pipeline.fit(X train, y train)
# Predecir en los datos de prueba
y pred = pipeline.predict(X test)
# Evaluar el modelo
accuracy = pipeline.score(X_test, y_test)
print(f'Precisión (con selección de atributos): {accuracy}')
```

Permiten encadenar múltiples pasos de procesamiento en un solo objeto que se puede usar para ajustar y predecir.

Esto es particularmente útil para preprocesar datos, ajustar modelos y ajustar hiperparámetros de una manera limpia y repetible.

## Pipelines



Permiten encadenar múltiples pasos de procesamiento en un solo objeto que se puede usar para ajustar y predecir.

Esto es particularmente útil para preprocesar datos, ajustar modelos y ajustar hiperparámetros de una manera limpia y repetible.

## TAREA

- Leer capítulo 5 (feature engineering) del libro
   "Designing Machine Learning Systems: An Iterative Process for Production-Ready Applications" (Chip Huyen). Todo lo que no hable de embeddings
- Leer capítulo 6 (Algorithm Chains and Pipelines) del libro "Introduction to machine learning with Python: a guide for data scientists" (Müller, Andreas C., and Sarah Guido)
- Cuestionario



