MUNI

Enriched purity: towards enriched model theory

Giacomo Tendas

17 September 2023

Purity in logic

Let $\mathbb L$ be a language with function and relation symbols. A positive-primitive formula is one of the form

$$\psi(x) := \exists y \ \varphi(x, y)$$

where ψ is a conjunction of atomic formulas. E.g. $\varphi(x,y)=(t(x,y)=s(x,y))\wedge R(x,y)$.

Definition

A monomorphisms of \mathbb{L} -structures $f\colon M\to L$ is called pure if for any pp-formula $\psi(x)$ and any $a\in M^n$ we have

$$M \models \psi(a)$$
 iff $L \models \psi(fa)$

Purity in logic

Let \mathbb{L} be a language with function and relation symbols. A positive-primitive formula is one of the form

$$\psi(x) := \exists y \ \varphi(x, y)$$

where ψ is a conjunction of atomic formulas. E.g. $\varphi(x,y)=(t(x,y)=s(x,y))\wedge R(x,y)$.

Definition

A monomorphisms of \mathbb{L} -structures $f\colon M\to L$ is called pure if for any pp-formula $\psi(x)$ and any $a\in M^n$ we have

$$M \models \psi(a)$$
 iff $L \models \psi(fa)$

$$\downarrow \qquad \qquad \downarrow^{f^n}$$

$$\downarrow \qquad \qquad \downarrow^{f^n}$$

$$\parallel \Psi \parallel_L \rightarrowtail \qquad \downarrow^{f^n}$$

Theorem (classical)

The following are equivalent for a full subcategory \mathcal{H} of $\mathsf{Str}(\mathbb{L})$:

- $\mathcal{H} = \mathsf{Mod}(\mathbb{T})$ for a regular \mathbb{L} -theory \mathbb{T} ;
- H is closed under products, filtered colimits, and pure subobjects.

Injectivity classes

Note: to say that A satisfies $\varphi(x) = \exists y \ \psi(x,y)$ is the same as requiring that the composite

$$\psi_A = \{(a,b) \mid A \models \psi(a,b)\} \xrightarrow{i} A \times A \xrightarrow{\pi_1} A$$

is surjective.

Injectivity classes

Note: to say that A satisfies $\varphi(x) = \exists y \ \psi(x,y)$ is the same as requiring that the composite

$$\psi_A = \{(a,b) \mid A \models \psi(a,b)\} \xrightarrow{i} A \times A \xrightarrow{\pi_1} A$$

is surjective.

The categorical analogue of regular theories are injectivity classes:

Definition

An object M is injective w.r.t. a morphism $f:A\to B$ in a category $\mathcal K$ if

$$\forall u \colon A \to M, \exists v \colon B \to M \ (vf = u).$$

Injectivity classes

Note: to say that A satisfies $\varphi(x) = \exists y \ \psi(x,y)$ is the same as requiring that the composite

$$\psi_A = \{(a,b) \mid A \models \psi(a,b)\} \xrightarrow{i} A \times A \xrightarrow{\pi_1} A$$

is surjective.

The categorical analogue of regular theories are injectivity classes:

Definition

An object M is injective w.r.t. a morphism $f:A\to B$ in a category $\mathcal K$ if

$$\forall u \colon A \to M, \exists v \colon B \to M \ (vf = u).$$

Equivalently, if $\mathcal{K}(f, M) : \mathcal{K}(B, M) \longrightarrow \mathcal{K}(A, M)$ is surjective.

An injectivity class in \mathcal{K} is a full subcategory of \mathcal{K} spanned by the objects injective with respect to a set $\{f_i \colon A_i \to B_i\}_{i \in I}$.

Injectivity classes II

Theorem (Rosický-Adámek-Borceux)

TFAE for a full subcategory ${\cal H}$ of a locally finitely presentable category ${\cal K}$:

- \mathcal{H} is a (finite) injectivity class in \mathcal{K} ;
- H is closed under products, filtered colimits, and pure subobjects.

Injectivity classes II

Theorem (Rosický-Adámek-Borceux)

TFAE for a full subcategory $\mathcal H$ of a locally finitely presentable category $\mathcal K$:

- \mathcal{H} is a (finite) injectivity class in \mathcal{K} ;
- H is closed under products, filtered colimits, and pure subobjects.

What is purity in this context?

Definition

A morphism $f\colon M\to L$ in $\mathcal K$ is pure provided that in each commutative diagram on the right, where A and B are finitely presentable, there is a morphism $t\colon B\to M$ such that tg=u.

$$\begin{array}{ccc}
A & \xrightarrow{g} & B \\
\downarrow \downarrow & & \downarrow \downarrow \\
M & \xrightarrow{f} & L
\end{array}$$

Note: \mathcal{H} is a (finite) injectivity class in some locally finitely presentable category \mathcal{K} if and only if $\mathcal{M} \simeq \mathbf{Mod}(\mathbb{T})$ for some regular theory \mathbb{T} on a language \mathbb{L} .

Injectivity classes II

Theorem (Rosický-Adámek-Borceux)

TFAE for a full subcategory \mathcal{H} of a locally finitely presentable category \mathcal{K} :

- \mathcal{H} is a (finite) injectivity class in \mathcal{K} ;
- H is closed under products, filtered colimits, and pure subobjects.

What is purity in this context?

Definition

A morphism $f\colon M\to L$ in $\mathcal K$ is pure provided that in each commutative diagram on the right, where A and B are finitely presentable, there is a morphism $t\colon B\to M$ such that tg=u.

$$\begin{array}{ccc}
A & \xrightarrow{g} & B \\
\downarrow & \downarrow & \downarrow \\
M & \xrightarrow{f} & L
\end{array}$$

Note: \mathcal{H} is a (finite) injectivity class in some locally finitely presentable category \mathcal{K} if and only if $\mathcal{M} \simeq \mathbf{Mod}(\mathbb{T})$ for some regular theory \mathbb{T} on a language \mathbb{L} .

Enrichment

We fix:

- a symmetric monoidal closed category $\mathcal{V} = (\mathcal{V}_0, \otimes, I)$ which is locally presentable;
- ullet a factorization system $(\mathcal{E},\mathcal{M})$ on \mathcal{V} ;

To keep in mind:

- Set and Ab with (epi, mono);
- Met with (dense, closed isometry);
- **3 DGAb** with (regular epi, mono).

Enrichment

We fix:

- a symmetric monoidal closed category $\mathcal{V} = (\mathcal{V}_0, \otimes, I)$ which is locally presentable;
- a factorization system $(\mathcal{E}, \mathcal{M})$ on \mathcal{V} ;

To keep in mind:

- Set and Ab with (epi, mono);
- Met with (dense, closed isometry);
- **3 DGAb** with (regular epi, mono).

Then there is an enriched notion of \mathcal{E} -injectivity:

Definition (Lack-Rosický)

An object M is \mathcal{E} -injective w.r.t. a morphism $f:A\to B$ in a \mathcal{V} -category \mathcal{K} if the map

$$\mathcal{K}(f,M)\colon \mathcal{K}(B,M)\longrightarrow \mathcal{K}(A,M)$$

lies in \mathcal{E} . An \mathcal{E} -injectivity class in \mathcal{K} is a full subcategory of \mathcal{K} spanned by the objects \mathcal{E} -injective with respect to a set $\{f_i \colon A_i \to B_i\}_{i \in I}$.

A corresponding notion of purity was missing.

The result below is based on some assumptions on $\mathcal E$ and a class of objects $\mathcal G\subseteq\mathcal V$ such that powers by $\mathcal G$ satisfy a stability condition with respect to $\mathcal E$. Then we can prove:

Theorem

TFAE for a full subcategory ${\cal H}$ of a locally finitely presentable ${\cal V}$ -category ${\cal K}$:

- H is a (finite) E-injectivity class in K;
- \mathcal{H} is closed under products, filtered colimits, powers by \mathcal{G} , and \mathcal{E} -pure subobjects.

What is an \mathcal{E} -pure morphism?

The result below is based on some assumptions on \mathcal{E} and a class of objects $\mathcal{G}\subseteq\mathcal{V}$ such that powers by \mathcal{G} satisfy a stability condition with respect to \mathcal{E} . Then we can prove:

Theorem

TFAE for a full subcategory $\mathcal H$ of a locally finitely presentable $\mathcal V$ -category $\mathcal K$:

- \mathcal{H} is a (finite) \mathcal{E} -injectivity class in \mathcal{K} ;
- \mathcal{H} is closed under products, filtered colimits, powers by \mathcal{G} , and \mathcal{E} -pure subobjects.

What is an \mathcal{E} -pure morphism? Definition by examples:

Met:

$$d(fu, vg) \leq \varepsilon \qquad A \xrightarrow{g} B \\ \downarrow \downarrow \downarrow v \\ K \xrightarrow{f} L$$

DGab:

$$du = dv = 0 \qquad A \xrightarrow{g} B$$

$$\downarrow v$$

$$\downarrow K \xrightarrow{f} L$$

The result below is based on some assumptions on $\mathcal E$ and a class of objects $\mathcal G\subseteq\mathcal V$ such that powers by $\mathcal G$ satisfy a stability condition with respect to $\mathcal E$. Then we can prove:

Theorem

TFAE for a full subcategory $\mathcal H$ of a locally finitely presentable $\mathcal V$ -category $\mathcal K$:

- \mathcal{H} is a (finite) \mathcal{E} -injectivity class in \mathcal{K} ;
- \mathcal{H} is closed under products, filtered colimits, powers by \mathcal{G} , and \mathcal{E} -pure subobjects.

What is an \mathcal{E} -pure morphism? Definition by examples:

Met:

$$d(fu, vg) \leq \varepsilon \qquad A \xrightarrow{g} B$$

$$d(tg, u) \leq 2\varepsilon \qquad K \xrightarrow{g} L$$

DGab:

$$du = dv = 0 \qquad A \xrightarrow{g} B$$

$$\downarrow u \qquad \downarrow v \qquad \downarrow v$$

The result below is based on some assumptions on $\mathcal E$ and a class of objects $\mathcal G\subseteq\mathcal V$ such that powers by $\mathcal G$ satisfy a stability condition with respect to $\mathcal E$. Then we can prove:

Theorem

TFAE for a full subcategory \mathcal{H} of a locally finitely presentable \mathcal{V} -category \mathcal{K} :

- \mathcal{H} is a (finite) \mathcal{E} -injectivity class in \mathcal{K} ;
- \mathcal{H} is closed under products, filtered colimits, powers by \mathcal{G} , and \mathcal{E} -pure subobjects.

What is an \mathcal{E} -pure morphism? Definition by examples:

Met:

$$d(fu, vg) \leq \varepsilon \qquad A \xrightarrow{g} B$$

$$d(tg, u) \leq 2\varepsilon \qquad K \xrightarrow{f} L$$

DGab:

$$du = dv = 0$$

$$dt \neq 0 \text{ generally}$$

$$A \xrightarrow{g} B$$

$$\downarrow v$$

$$K \xrightarrow{f} L$$

A logical interpretation

• The canonical language $\mathbb L$ on a locally finitely presentable $\mathcal V$ -category $\mathcal K$ is has sorts and function symbols given by the objects and morphisms of $\mathcal K_f^{\mathsf{op}}$.

Every object M of K defines an \mathbb{L} -structure in V:

- a sort A is assigned to $M_A := \mathcal{K}(A, M)$;
- a function symbol f:(A,B) is assigned to $M_f:=\mathcal{K}(f,M):M_A\to M_B$.

pp-formulas:

$$\psi(x) \equiv \exists y \ \phi(x,y)$$

where $\phi(x, y)$ is a conjunction of

$$(f(x) = g(y))$$

for some $f: B \to A$, $g: B \to C$.

Interpretation:

e.g.:
$$\psi(x) \equiv \exists y \ (f(x) = g(y))$$

A logical interpretation

ullet The canonical language $\mathbb L$ on a locally finitely presentable $\mathcal V$ -category $\mathcal K$ is has sorts and function symbols given by the objects and morphisms of $\mathcal K_f^{\mathrm{op}}$.

Every object M of K defines an \mathbb{L} -structure in V:

- a sort A is assigned to $M_A := \mathcal{K}(A, M)$;
- a function symbol f:(A,B) is assigned to $M_f:=\mathcal{K}(f,M):M_A\to M_B$.

pp-formulas:

$$\psi(x) \equiv \exists y \ \phi(x,y)$$

where $\phi(x, y)$ is a conjunction of

$$(f(x) = g(y))$$

for some $f: B \to A$, $g: B \to C$.

Interpretation:

e.g.:
$$\psi(x) \equiv \exists y \ (f(x) = g(y))$$

$$\| \phi \|_{\mathcal{M}} \longrightarrow \mathcal{M}_A \times \mathcal{M}_C \xrightarrow{M_f p_1} \mathcal{M}_B$$

A logical interpretation

• The canonical language $\mathbb L$ on a locally finitely presentable $\mathcal V$ -category $\mathcal K$ is has sorts and function symbols given by the objects and morphisms of $\mathcal K_f^{\mathsf{op}}$.

Every object M of K defines an \mathbb{L} -structure in V:

- a sort A is assigned to $M_A := \mathcal{K}(A, M)$;
- a function symbol f:(A,B) is assigned to $M_f:=\mathcal{K}(f,M):M_A\to M_B$.

pp-formulas:

$$\psi(x) \equiv \exists y \ \phi(x,y)$$

where $\phi(x, y)$ is a conjunction of

$$(f(x) = g(y))$$

for some $f: B \to A$, $g: B \to C$.

Interpretation:

e.g.:
$$\psi(x) \equiv \exists y \ (f(x) = g(y))$$

$$\| \phi \|_{M} \xrightarrow{\mathcal{E}} M_{A} \times M_{C} \xrightarrow{\rho_{1}} M_{A}$$

$$\| \psi \|_{M}$$

A logical interpretation II

Definition

Let $f: M \to L$ be a morphism in a locally finitely-presentable \mathcal{V} -category \mathcal{K} . We say that f is elementary with respect to a pp-formula ψ if the square below is a pullback.

$$\downarrow \qquad \qquad \downarrow \downarrow f_A
\downarrow \downarrow \downarrow f_A
\parallel \psi \parallel_L \longrightarrow L_A$$

Theorem

Let $\mathcal K$ be a locally finitely presentable $\mathcal V$ -category and $f:M\to L$ be a morphism in it. Then f is $\mathcal E$ -pure if and only if it is elementary with respect to any pp-formula in the canonical language associated to $\mathcal K$.

Can we talk about languages, structures, terms, and formulas in general?

Towards enriched model theory

Introduce enriched languages, structures, and terms:

Definition

• A (single-sorted) enriched (operational) language \mathbb{L} is the data of a set of operation symbols f:(X,Y) whose arities X and Y are objects of \mathcal{V}_f .

Towards enriched model theory

Introduce enriched languages, structures, and terms:

Definition

- A (single-sorted) enriched (operational) language \mathbb{L} is the data of a set of operation symbols f:(X,Y) whose arities X and Y are objects of \mathcal{V}_f .
- An \mathbb{L} -structure is the data of an object $A \in \mathcal{V}$ together with a morphism $f_A \colon A^X \to A^Y$ in \mathcal{V} for any operation symbol $f \colon (X,Y)$ in \mathbb{L} .

Towards enriched model theory

Introduce enriched languages, structures, and terms:

Definition

- A (single-sorted) enriched (operational) language \mathbb{L} is the data of a set of operation symbols f:(X,Y) whose arities X and Y are objects of \mathcal{V}_f .
- An \mathbb{L} -structure is the data of an object $A \in \mathcal{V}$ together with a morphism $f_A \colon A^X \to A^Y$ in \mathcal{V} for any operation symbol $f \colon (X,Y)$ in \mathbb{L} .
- The class of L-terms is defined recursively as follows:
 - **①** Every morphism $f: Y \to X$ of \mathcal{V}_f is an (X, Y)-ary term;
 - **2** Every operation symbol f:(X,Y) of \mathbb{L} is an (X,Y)-ary term;
 - **3** If t is a (X, Y)-ary term and Z is an arity, then t^Z is a $(Z \otimes X, Z \otimes Y)$ -ary term;
 - 4 If t and s are (X, Y)-ary and (Y, W)-ary terms; then $s \circ t$ is a (X, W)-ary term.

Then one can define equational theories: to appear soon.

What about regular theories???

Thank You