Activité 3.3 – Modéliser une action par une force

Objectifs:

- Comprendre la notion de force.
- Connaître des exemples de forces.

Document 1 - Force et action mécanique

Un corps exerce une action mécanique sur un système étudié

Une action mécanique est modélisée par une force.

La force exercée par un corps A sur un corps B est représentée par un vecteur $\overrightarrow{F}_{A/B}$. Ce vecteur possède les caractéristiques suivantes :

- Une valeur notée $F_{A/B}$, qui s'exprime en newton noté N.
- Une direction et un sens qui dépendent de la situation.
- Une origine, appelée point d'application : le centre du système B.

 $\[\]$ Une personne pousse un carton. Représenter la force $\overrightarrow{F}_{\text{personne/carton}}$ qu'exerce la personne sur le carton.

Document 2 – Exemples de forces

On distingue 2 types d'actions :

- les actions de contact (contact entre l'objet qui donne la force et l'objet qui la reçoit),
- les actions à distance (pas de contact).

Force	Valeur	Direction, sens
poids \overrightarrow{P}	$P = m \times g$	verticale, vers le bas
réaction du support \overrightarrow{R}	égale au poids $R = P$	perpendiculaire au support, vers le haut
frottements \overrightarrow{f}	dépend du cas étudié	opposés à la vitesse \overrightarrow{v}

- \overrightarrow{P} représente l'interaction gravitationnelle de la Terre.
- \bullet \overrightarrow{R} représente l'action exercée par le support sur un objet posé dessus.
- \overrightarrow{f} représentent l'action d'un milieu (gaz, liquide, support solide).

⚠ Si un objet est immobile par rapport au milieu, il n'y a pas de frottements.

1 – Parmi les forces \overrightarrow{P} , \overrightarrow{R} et \overrightarrow{f} , indiquer celles qui modélisent une action de contact et celles modélisent une action à distance.	qui

- \triangle En vous aidant des documents 1 et 2, compléter le tableau :
- Schématiser la ou les forces entrant en jeu, en faisant attention à leurs points d'application.
- Tracer la somme de toutes les forces entrant en jeu.

⚠ Pour tracer la somme de trois forces, il faut d'abords faire la somme de deux forces, puis utiliser le vecteur obtenu pour l'additionner avec la troisième force.

▲ Si deux vecteurs ont la même longueur, la même direction, mais un sens opposé, alors leur somme est le vecteur nul.