МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский государственный университет аэрокосмического приборостроения»

ФАКУЛЬТЕТ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ОТЧЕТ О ПРАКТИКЕ			
ЗАЩИЩЕН С ОЦЕНК	ЮЙ		
РУКОВОДИТЕЛЬ			
преподавател	Ь		Попов И.Д.
должность, уч. степень, з	вание	подпись, дата	инициалы, фамилия
	отчет по у	УЧЕБНОЙ ПРАКТИКЕ	
D. C	OCTADE HDOAI		NHVH G
		ЕССИОНАЛЬНОГО МС	
ПМ.01 «Выпол	нение работ по п	роектированию сетевой	инфраструктуры»
ОТЧЕТ ВЫПОЛНИЛ			
Студент группы	C142		П.А. Бондарчук
10	номер группы	подпись, дата	инициалы, фамилия

Аттестационный лист по учебной практике

Бондарчук Павел Антонович

(фамилия, имя, отчество студента)

Обучающийся на 3 курсе в группе С142 по специальности СПО

09.02.06 Сетевое и системное администрирование

код и наименование специальности

успешно прошел учебную практику по профессиональному модулю

ПМ.01 ВЫПОЛНЕНИЕ РАБОТ ПО ПРОЕКТИРОВАНИЮ СЕТЕВОЙ ИНФРАСТРУКТУРЫ

код и наименование профессионального модуля

в объеме 108 часов с «06» апреля 2024 г. по «26» апреля 2024 г.

в организации ФСПО ГУАП, лаб. сетевых технологий, Московский пр., 149-в

наименование организации, структурное подразделение, юридический адрес

Виды и качество выполнения работ

Виды и объем работ,	Качество выполнения работ в с	оответствии с технологией и		
выполненных обучающимся	требованиями организации, в которой проходила практика			
во время практики				
Виды работ	Формы и методы контроля по	Качество выполненной		
	каждому виду работ	работы (по пятибалльной		
		шкале)		
Проектирование сетевой	Экспертная оценка результата			
инфраструктуры	выполненных работ			
Организация сетевого	Экспертная оценка результата			
администрирования	выполненных работ			
Управление сетевыми	Экспертная оценка результата			
сервисами	выполненных работ			
Модернизация сетевой	Экспертная оценка результата			
инфраструктуры	выполненных работ			
Оформление отчета по	Защита отчета			
выполненной работе				

Характеристика профессиональной деятельности обучающегося во время учебной практики: получен практический опыт по проектированию архитектуры локальной сети в соответствии с поставленной задачей; установке и настройке сетевых протоколов и сетевого оборудования в соответствии с поставленной задачей; использованию специального программного обеспечения для моделирования, проектирования и тестирования компьютерных сетей; настройке механизмов фильтрации трафика на базе списков контроля доступа.

Характеристика на обучающегося по освоению общих и профессиональных компетенций в период прохождения практики:

Освоены общие компетенции: ОК 1-5, 9, 10 и профессиональные компетенции:

ПК 1.1. Выполнять проектирование кабельной структуры компьютерной сети;

ПК 1.2. Осуществлять выбор технологии, инструментальных средств и средств вычислительной техники при организации процесса разработки и исследования объектов профессиональной деятельности;

ПК 1.3. Обеспечивать защиту информации в сети с и средств.	спользованием программно-аппаратных
Дифференцированный зачет по учебной практике «_	»
Дата «26» апреля 2024 г.	
Руководитель практики от факультета СПО	Попов И.Д.

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ

на прохождение учебной практики обучающегося по специальности 09.02.06 Сетевое и системное администрирование

код и наименование специальности

- 1. Фамилия, имя, отчество обучающегося: Иванов Иван Иванович
- 2. Группа: C142 Сроки проведения практики: с «06» апреля 2024 г. по «26» апреля 2024 г.
- 3. Тема задания: приобретение первичных профессиональных умений и навыков, начального опыта практической деятельности, овладение необходимыми компетенциями по профессиональному модулю.

ПМ.01 ВЫПОЛНЕНИЕ РАБОТ ПО ПРОЕКТИРОВАНИЮ СЕТЕВОЙ ИНФРАСТРУКТУРЫ

код и наименование профессионального модуля

- 4. Вопросы, подлежащие изучению:
 - 1) Проектирование сетевой инфраструктуры.
 - 2) Организация сетевого администрирования.
 - 3) Управление сетевыми сервисами.
 - 4) Модернизация сетевой инфраструктуры.
- 5. Выполнение комплексных работ по проектированию архитектуры локальной сети; установке и настройке сетевых протоколов и сетевого оборудования; использованию специального программного обеспечения для моделирования, проектирования и тестирования компьютерных сетей; настройке механизмов фильтрации трафика на базе списков контроля доступа.
- 6. Содержание отчетной документации:
 - 6.1.1. Отчёт, включающий в себя:
 - титульный лист;
 - индивидуальное задание;
 - материалы о выполнении индивидуального задания;
 - список использованных источников.
 - 6.1.2. Аттестационный лист.
- 7. Срок представления отчета заместителю декана по учебно-производственной работе: «26» апреля 2024 г.

Руководитель практики от факультета СПО

преподаватель	<u> Пвигр</u> 06.04.2024 г.	И.Д. Попов
должность, уч. степень, звание	подпись, дата	инициалы, фамилия
Задание принял к исполнени Обучающийся	ю:	
06.04.2024 г.	Болд	П.А. Бондарчук

СОДЕРЖАНИЕ

ВВЕДЕНИЕ
1 Проектирование сетевой инфраструктуры
1.1 Изучение предметной области
1.2 ІР-план и схемы сети
2 Организация сетевого администрирования
2.1 Выполнение настроек VLAN, агрегирования и VRRP в филиалах 14
2.2 Настройка выхода в Интернет с использованием NAT и port
forwarding
2.3 Настройка файлового сервера
3 Управление сетевыми сервисами
3.1 Настройка DHCP-сервера. 26
3.2 Настройка туннелирования и OSPF между GRE
3.3 Настройка кеширующих DNS-серверов
3.4 Настройка telnet и файрволла
4 Модернизация сетевой инфраструктуры
Источники
ПРИЛОЖЕНИЕ А
ПРИЛОЖЕНИЕ Б
ПРИЛОЖЕНИЕ В
ПРИЛОЖЕНИЕ Г

					УП.09.02.	06	\mathbf{C}	2П3	
Изм.	Лист	№ докум.	Подп.	Дата	311.07.02.	υc	<i>)</i> . \cup	2115	
Разраб	5 .	Бондарчук П. А.				Лиг	г.	Лист	Листов
Пров.		Попов И. Д.						4	
					Отчет по учебной				
Н. кон	тр.				практике			ФСПО	ГУАП
Утв.					приктике				

ВВЕДЕНИЕ

Я, Бондарчук Павел Антонович, являюсь студентом третьего курса Факультета среднего профессионального образования Государственного университета аэрокосмического приборостроения (ГУАП) и проходил учебную практику по профессиональному модулю ПМ.01 «Выполнение работ по проектированию сетевой инфраструктуры». Целью моего проекта стало создание сетевой инфраструктуры для городской библиотеки, включающей в себя три филиала, включая главный офис, а также провайдерскую сеть с тремя автономными системами.

В современных условиях ключевым требованием к библиотекам является наличие эффективной сетевой инфраструктуры. Библиотеки оперируют большими объемами данных, включая каталоги книг, реестры читателей и операции по выдаче и возврату литературы. Надлежащая сетевая инфраструктура обеспечивает быстрый и точный доступ к этой информации, минимизируя задержки и ошибки, что в свою очередь обеспечивает эффективную работу библиотеки и удовлетворение потребностей посетителей.

При разработке инфраструктуры учтены различные факторы, включая отказоустойчивость и наличие файлового сервера для хранения всей доступной литературы. Также была решена задача обеспечения доступа к глобальной интернет-сети для всех пользователей. В одном из филиалов предусмотрена точка доступа Wi-Fi с использованием технологии HotSpot на оборудовании MikroTik. Это позволяет гостям библиотеки регистрироваться в сети, используя логин и пароль, а также перенаправляться на рекламную страницу учреждения.

Изм.	Лист	№ докум.	Подп.	Дата

1 Проектирование сетевой инфраструктуры

Цели и задачи:

- спроектировать отказоустойчивую сеть в организации, состоящей из главного офиса из нескольких филиалов;
- выбрать оборудование, технологии и протоколы;
- объединить удаленные сети с помощью технологии VPN (можно незащищенную);
- построить схемы L1, L2, L3 и IP-план;

Используемое оборудование, инструменты, программное обеспечение:

- Visio/Diagrams.net;
- калькулятор ІР;
- редактор таблиц.

Последовательность выполнения и описание действий:

1.1 Изучение предметной области

Предметной областью моего курсового проекта является библиотека.

Определение количества филиалов для библиотеки— это стратегически важный шаг, который должен соответствовать не только текущим потребностям, но и будущим перспективам развития. В данном контексте было принято решение о создании двух филиалов и одного главного офиса по следующим причинам:

Оптимизация распределения ресурсов: имея два филиала и главный офис, мы можем оптимально распределить ресурсы и управлять коллекцией книг и другими материалами. Это позволяет обеспечить максимальную доступность к литературным ресурсам для читателей в разных частях города или района.

Улучшение обслуживания посетителей: распределение библиотечных услуг между филиалами и главным офисом позволяет сократить время ожидания для посетителей и улучшить качество обслуживания. Это особенно актуально для студентов и исследователей, которым может потребоваться

Изм.	Лист	№ докум.	Подп.	Дата

доступ к специализированным материалам.

Гибкость и масштабируемость: имея два филиала, мы создаем систему, которая может легко масштабироваться и адаптироваться к изменяющимся потребностям и условиям. Это позволяет быстро реагировать на изменения в библиотечных коллекциях и повышать уровень обслуживания читателей.

Эффективное управление: ограниченное количество филиалов упрощает управление библиотечной системой, позволяя быстрее и эффективнее принимать решения и координировать деятельность между различными частями учреждения.

Экономическая выгода: оптимальное количество филиалов позволяет снизить операционные расходы без ущерба для качества обслуживания. Это особенно важно для муниципальных и региональных библиотек, где финансовые ресурсы могут быть ограничены.

Таким образом, использование двух филиалов и одного главного офиса представляется наиболее эффективным и перспективным решением для организации современной библиотечной системы, обеспечивая высокий уровень доступности, качества обслуживания и управляемости учреждения.

Выбор технологий и протоколов для сетевой инфраструктуры библиотеки основывается на нескольких ключевых принципах, включая надежность, масштабируемость, безопасность и эффективность управления ресурсами. Рассмотрим подробнее примененные решения:

GRE туннели и OSPF протокол:

Надежность и масштабируемость: использование GRE туннелей и OSPF протокола обеспечивает надежное и масштабируемое соединение между филиалами. Это позволяет эффективно управлять трафиком и обеспечивать высокую доступность сетевых ресурсов.

Маршрутизация между VLAN в филиалах:

Безопасность и гибкость: настройка маршрутизации между VLAN позволяет разделять сетевой трафик на клиентскую и административную части, обеспечивая более гибкие возможности по настройке безопасности и

Изм.	Лист	№ докум.	Подп.	Дата

контроля доступа в будущем.

DHCP-сервер:

Эффективность и автоматизация: использование DHCP-сервера для выдачи адресов в филиалах упрощает процесс управления сетевыми настройками и обеспечивает автоматическую конфигурацию клиентских устройств.

Двойное подключение к провайдерам и VRRP:

Надежность и высокая доступность: каждый филиал подключен сразу к двум провайдерам и роутеры получают глобальные IPv4 адреса от DHCP-серверов в провайдерской сети. Двойное подключение к провайдерам и использование VRRP адресов обеспечивает высокую доступность интернет-соединения и надежную работу локальной сети в филиалах.

Кеширующие DNS сервера и введение в домен Bondarchuk2.up:

Быстродействие и идентификация: настройка кеширующих DNS серверов позволяет ускорить процесс разрешения доменных имен и интегрировать организацию в доменное имя Bondarchuk2.up, обеспечивая единое идентификационное пространство для всех сотрудников и посетителей.

WI-FI точка доступа на Mikrotik с HotSpot технологией:

Удобство и безопасность: установка WI-FI точки доступа с технологией HotSpot на Mikrotik обеспечивает удобный и безопасный доступ к интернету для посетителей, требуя аутентификации и предоставляя возможность перехода на рекламную страницу библиотеки.

FTP файловый сервер в главном офисе для хранения литературы:

Централизация и удобство доступа: введение FTP файлового сервера для хранения всей литературы библиотеки обеспечивает централизованное и надежное хранение ресурсов. Это упрощает процесс управления и обновлениями коллекции книг, журналов и других материалов, а также обеспечивает удобный доступ к литературным ресурсам для сотрудников и посетителей библиотеки, улучшая эффективность и качество обслуживания

Изм.	Лист	№ докум.	Подп.	Дата

пользователей.

Таким образом, выбранные технологии и протоколы обеспечивают комплексное решение для современной библиотечной сети, сочетая в себе высокую надежность, эффективность управления, гибкость настройки безопасности и удобство использования для сотрудников и посетителей.

Примерная схема сети, спроектированная в программе draw.io, изображена на рисунке 1.

Рисунок 1 – Примерная схема сети

Изм.	Лист	№ докум.	Подп.	Дата

1.2 IP-план и схемы сети

Схема сети L1 показана в приложении A.

Схема сети L2 показана в приложении Б.

Схема сети L3 показана в приложении В.

Диаграмма маршрутизации показана в приложении Г.

Далее приведены ІР-планы филиалов:

В таблице 1 показан ІР-план главного офиса.

Таблица 1 – ІР-план главного офиса

	Главный	і офис	
Оборудование	Интерфейс	IP-адрес	Маска
	ether0	DHCP (200.2.1.254)	24
	ether1 (vlan 301)	10.2.4.10	24
	ether1 (vlan 302)	10.2.5.2	24
	vrrp301	10.2.4.1	24
NA:l+:l- 7 4 4 2 /D4E 2)	vrrp302	10.2.5.1	24
Mikrotik 7.14.2 (R15-2)	lo	2.15.15.15	32
	GRE_to_R17	175.2.175.15	24
	GRE_to_R18	185.2.185.15	24
	GRE_to_R19	195.2.195.15	24
	GRE_to_R20	215.2.215.15	24
	lo	2.16.16.16	32
	vrrp301	10.2.4.1	24
	ether1 (vlan301)	10.2.4.20	24
	vrrp302	10.2.5.1	24
Milesotile 7 14 2 (D16 2)	ether1 (vlan 302)	10.2.5.3	24
Mikrotik 7.14.2 (R16-2)	GRE_to_R17	176.2.176.16	24
	GRE_to_R18	186.2.186.16	24
	GRE_to_R19	196.2.196.16	24
	GRE_to_R20	216.2.216.16	24
	ether0	DHCP (200.2.2.254)	24
MO_Client-2	ens32	DHCP (10.2.5.240)	24
MO_DNS-2	ens4	10.2.4.150	24
MO_File-2	ens32	DHCP (10.2.4.101)	24
MO_Admin-2	ens4	DHCP (10.2.4.102)	24
SW2-2	vlan 301	10.2.4.2	24
SW3-2	vlan 301	10.2.4.3	24
SW4-2	vlan 301	10.2.4.4	24
SW5-2	vlan 301	10.2.4.5	24

			·	
Изм.	Лист	№ докум.	Подп.	Дата

В таблице 2 показан ІР-план филиала №1.

Таблица 2 — IP-план филиала 1

	Филиал 1		
Оборудование	Интерфейс	IP-адрес	Маска
	ether0	DHCP (200.2.5.254)	24
	ether1 (vlan 101)	10.2.6.3	24
	ether1 (vlan 102)	10.2.7.3	24
Nail-matile 7 4 4 2 (B40 2)	vrrp101	10.2.6.1	24
Mikrotik 7.14.2 (R19-2)	vrrp102	10.2.7.1	24
	lo	2.19.19.19	32
	GRE_to_R15	195.2.195.19	24
	GRE_to_R16	196.2.196.19	24
	ether0	DHCP (200.2.6.254)	24
	ether1 (vlan 101)	10.2.6.2	24
	ether1 (vlan 102)	10.2.7.2	24
Mikrotik 7.14.2 (R20-2)	vrrp101	10.2.6.1	24
WIRIOUR 7.14.2 (R20-2)	vrrp102	10.2.7.1	24
	lo	2.20.20.20	32
	GRE_to_R15	215.2.215.20	24
	GRE_to_R16	216.2.216.20	24
F1_DNS-2	ens4	10.2.6.150	24
F1_Admin-2	ens4	DHCP (10.2.6.100)	24
F1_Client-2	ens32	DHCP (10.2.7.190)	24
SW15-2	vlan 101	10.2.6.15	24
SW16-2	vlan 101	10.2.6.16	24
SW17-2	vlan 101	10.2.6.17	24
SW18-2	vlan 101	10.2.6.18	24

В таблице 3 показан ІР-план филиала №2.

Таблица 3 — ІР-план филиала 2

	Филиал 2		
Оборудование	Интерфейс	IP-адрес	Маска
	ether0	DHCP (200.2.3.254)	24
	ether1 (vlan 201)	10.2.8.2	24
	ether1 (vlan 202)	10.2.9.2	24
	vrrp201	10.2.8.1	24
Mikrotik 7.14.2 (R17-2)	vrrp202	10.2.9.1	24
	lo	2.17.17.17	32
	GRE_to_R15	175.2.175.17	24
	GRE_to_R16	176.2.176.17	24

Изм.	Лист	№ докум.	Подп.	Дата

Продолжение таблицы 3

	ether0	DHCP (200.2.4.254)	24
	ether1 (vlan	10.2.8.3	24
	201)		
	ether1 (vlan	10.2.9.3	24
	202)		
Mikrotik 7.14.2 (R18-2)	vrrp201	10.2.8.1	24
	vrrp202	10.2.9.1	24
	lo	2.18.18.18	32
	GRE_to_R15	185.2.185.18	24
	GRE_to_R16	186.2.186.18	24
F2_DNS-2	ens4	10.2.8.150	24
F2_Admin-2	ens4	DHCP (10.2.8.100)	24
F2_Client-2	ens32	DHCP (10.2.9.239)	24
SW9-2	vlan 201	10.2.8.9	24
SW10-2	vlan 201	10.2.8.10	24
SW11-2	vlan 201	10.2.8.11	24
SW12-2	vlan 201	10.2.8.12	24

2 Организация сетевого администрирования.

Цели и задачи:

- настроить коммутацию, резервные каналы, маршрутизацию;
- настроить выход в Интернет;
- настроить механизмы безопасности;
- проверить работоспособность выполненных настроек.

Используемое оборудование, инструменты, программное обеспечение:

- VMware/VirtualBox;
- GNS3/EVE-NG/eNSP;
- образы маршрутизаторов, коммутаторов;
- PuTTY/SuperPuTTY/Xshell/τ.π.;
- Debian, Alpine, RedOS в качестве серверов и конечных устройств.

						Лист
					VП 09 02 06 02ПЛ	12
Изм.	Лист	№ докум.	Подп.	Дата	311.07.02.00.021174	13

Последовательность выполнения и описание действий:

2.1 Выполнение настроек VLAN, агрегирования и VRRP в филиалах.

В каждом филиале была произведена настройка VLAN. Один VLAN создавался для административной сети и сетевых устройств, другой для клиентской подсети. Маршрутизация между VLAN была произведена с помощью метода Router-on-a-stick. Также коммутаторам тоже были заданы IP-адреса на VLAN-интерфейсы и на них был настроен маршрут по умолчанию на административный адрес VRRP, который делят между собой два роутера. Пример настройки VLAN, агрегирования и VRRP в главном офисе продемонстрирован ниже.

Административный VLAN в главном офисе – 301.

Клиентский VLAN в главном офисе – 302.

На рисунке 2 продемонстрировано объявление VLAN'ов на коммутаторе SW2-2:

SW2#s	show vlan brief					
VLAN	Name	Status	Ports			
1	default	active		Et2/0, Et3/0,		
301	vlan301	active				
302	vlan302	active	Et1/2			
1002	fddi-default	act/unsup				
1003	token-ring-default	act/unsup				
1004	fddinet-default	act/unsup				
1005	trnet-default	act/unsup				

Рисунок 2 – Объявленные VLAN на SW2-2

На рисунке 3 продемонстрирована настройка ір-адреса на vlanинтерфейсе коммутатора SW2-2 и настройка маршрута по умолчанию:

Изм.	Лист	№ докум.	Подп.	Дата

Лист

```
!
interface Vlan301
ip address 10.2.4.2 255.255.255.0
!
ip forward-protocol nd
!
!
no ip http server
no ip http secure-server
ip route 0.0.0.0 0.0.0.0 10.2.4.1
```

Рисунок 3 – Назначенный маршрут и ІР-адрес

На рисунке 4 продемонстрирована настройка access и trunk портов и выполненное агрегирование с помощью PAGP и LACP на коммутаторе SW2-2.

```
interface Port-channel 1
switchport trunk encapsulation dot1g
switchport mode trunk
interface Port-channel2
switchport trunk encapsulation dot1q
switchport mode trunk
interface Ethernet0/0
switchport trunk encapsulation dot1g
switchport mode trunk
interface Ethernet0/1
switchport trunk encapsulation dot1q
switchport mode trunk
channel-protocol pagp
channel-group 2 mode desirable
interface Ethernet0/2
switchport trunk encapsulation dot1q
switchport mode trunk
channel-protocol pagp
channel-group 2 mode desirable
interface Ethernet0/3
switchport trunk encapsulation dot1q
switchport mode trunk
channel-group 1 mode on
interface Ethernet 1/0
switchport trunk encapsulation dot1q
switchport mode trunk
channel-group 1 mode on
interface Ethernet 1/1
switchport trunk encapsulation dot1q
interface Ethernet 1/2
switchport access vlan 302
switchport mode access
```

Рисунок 4 — Hастройка access, trunk портов и агрегирования

						Лист
					УП.09.02.06.02ПД	15
Изм.	Лист	№ докум.	Подп.	Дата	311.07.02.00.021174	13

Настройка VRRP на R15 (RM) для vlan 301 показана на рисунке 5.

Рисунок 5 – Настройка VRRP для VLAN 301 на R15 (RM)

Настройка VRRP на R15 (RM) для vlan 302 показана на рисунке 6.

Рисунок 6 – Настройка VRRP для VLAN 302 на R15 (RM)

Изм.	Лист	№ докум.	Подп.	Дата

Настройка VRRP на R16 (В) для vlan 301 показана на рисунке 7.

Рисунок 7 – Настройка VRRP для VLAN 301 на R16 (B)

Настройка VRRP на R16 (B) для vlan 302 показана на рисунке 8.

Рисунок 8 — Настройка VRRP для VLAN 302 на R16 (B)

				·
Изм.	Лист	№ докум.	Подп.	Дата

На рисунках выше была продемонстрирована примерная настройка VLAN, агрегирования и VRRP в главном филиале. В остальных филиалах настройка производится аналогичным образом. В результате настройки у нас должно получится так, что для каждого VLAN (административного и клиентского) будет создан VLAN-интерфейс на роутере. На этих интерфейсах будет назначен адрес из сети необходимого VLAN, а на VLAN-интерфейсах будет выполнена настройка VRRP для того, чтобы для каждой сети (клиентской и административной) роутеры делили между собой виртуальный адрес. Позже на VRRP интерфейсы будут установлены DHCP-сервера, чтобы в качестве шлюза по умолчанию устройства из клиентского или административного VLAN, получали соответствующий адрес gateway в виде виртуального адреса VRRP.

Также в результате настройки на каждом коммутаторе в локальной сети должны быть объявлены оба VLAN'а (клиентский и административный), должен быть назначен ір-адрес на интерфейс административного VLAN'а и произведена настройка маршрута по умолчанию на административный VRRP-адрес.

В итоге у нас получается достаточно отказоустойчивая схема локальной сети в каждом филиале. В случае неработоспособности одного из роутеров ему на помощь придёт второй и связность между VLAN'ами никуда не исчезнет.

2.2 Настройка выхода в Интернет с использованием NAT и port forwarding.

В этом отчёте я не буду останавливаться на настройке сети провайдера, но ниже будет продемонстрирована настройка выхода в Интернет с использованием NAT.

На рисунке 9 показано подключение хоста (моего ноутбука) адаптером VMNet8 к схеме для обеспечения доступа в Интернет.

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 9 — Подключение хоста виртуальным адаптером к сети провайдера для обеспечения доступа в интернет

Теперь необходимо настроить получение адреса и маршрута по умолчанию в Интернет по DHCP на R9-2 маршрутизаторе. Это показано на рисунке 10.

Рисунок 10 – Получение адреса из сети Интернет и маршрута по умолчанию на R9-2

						Лист
					УП.09.02.06.02ПД	10
Изм.	Лист	№ докум.	Подп.	Дата	311.07.02.00.021174	19

Теперь необходимо настроить распространение маршрута по умолчанию на R9-2 другим маршрутизаторам в провайдерской сети. Делается это в BGP соединении с помощью галочки около пункта — Default Originate Always. Так как R9-2 является Router-Reflector'ом для своей автономной системы, то все маршрутизаторы получат маршрут по умолчанию через него и для того, чтобы был реализован выход в Интернет необходимо настроить NAT на R9-2, чтобы все локальные адреса скрывались за его адресом. Настройка NAT на R9-2 продемонстрирована на рисунках 11-12.

Рисунок 11 – Настройка NAT на R9-2 (General)

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 12 – Настройка NAT на R9-2 (Action)

После данной настройки доступ в Интернет был успешно получен, осталось настроить port forwarding, чтобы при обращении хоста к глобальному адресу R9-2 мы попадали на файловый сервер, который находится в локальной сети филиала. Настройка port forwarding продемонстрирована на рисунках 13-16.

Рисунок 13 – Hастройка port forwarding на R9-2 (General)

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 14 – Настройка port forwarding на R9-2 (Action)

Рисунок 15 – Настройка port forwarding на R15-2 (General)

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 16 – Hacтройка port forwarding на R15-2 (Action)

В результате настройки при обращении по протоколу ftp к глобальному адресу, который получает R9-2 мы будем попадать на R15-2 и оттуда на файловый сервер.

2.3 Настройка файлового сервера.

Настройка файлового сервера на операционной системе REDOS, который будет находится в главном офисе продемонстрирована ниже:

Для начала необходимо обновить пакеты и установить vsftpd с помощью следующих команд:

sudo apt update

sudo apt install vsftpd

После этого необходимо открыть конфигурационный файл vsftpd с помощью следующей команды для дальнейшего редактирования:

sudo nano /etc/vsftpd.conf

Добавляем в файл строчки, представленные на рисунке 17.

				·
Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 17 – Редактирование конфигурационного файла vsftpd.conf

Теперь необходимо создать общую папку и установить права доступа с помощью следующих команд:

sudo mkdir /home/biblioteka

sudo chmod 2775 /home/biblioteka

sudo chown root:users /home/biblioteka

Далее создаем пользователей для подключения к файловому серверу (админа и клиента) и задаем им пароли с помощью следующих команд:

sudo adduser admin

sudo adduser client

sudo passwd admin

sudo passwd client

Теперь настраиваем права доступа к общей папке для каждого пользователя. Админ должен иметь полные права, а клиент только на просмотр и исполнение. Настройка продемонстрирована ниже:

Изм.	Лист	№ докум.	Подп.	Дата

sudo setfacl -R -m u:admin:rwx /home/biblioteka

sudo setfacl -R -m u:client:rx /home/biblioteka

Теперь необходимо перезапустить сервис vsftpd с помощью следующей команды и файловый сервер будет успешно настроен:

sudo systemctl restart vsftpd

Проверка правильности настроек:

Установим любой FTP клиент на компьютер (в моем случае выбор пал на FileZilla Client) и подключимся к глобальному адресу R9-2 по протоколу ftp для проверки всех настроек (рисунок 18).

Рисунок 18 – Проверка правильности настроек файлового сервера и port forwarding

Изм.	Лист	№ докум.	Подп.	Дата

25

3 Управление сетевыми сервисами.

Цели и задачи:

- настроить DHCP и DNS-серверы;
- объединить офисы с помощью технологии VPN;
- настроить удаленный доступ к сетевым устройствам для администратора.

Используемое оборудование, инструменты, программное обеспечение:

- аналогично п.2;
- bind9, dnsmasq, встроенный в сетевое оборудование сервер, прочее;

Последовательность выполнения и описание действий:

3.1 Настройка DHCP-сервера.

Первым делом необходимо в каждой локальной сети филиалов настроить DHCP-сервер. DHCP сервер будет установлен на VRRP интерфейсы роутеров для каждого из VLAN'ов. Результат настройки DHCP серверов на R15 продемонстрирован на рисунках 19-20.

Рисунок 19 – DHCP-сервера на R15

DHCP Server										
DHCP	Networks	Le	ases	Options	Op	otion Sets	Option M	latcher	Alerts	
+										
Address		∇	Gatew	ay		DNS Serv	ers	Domain	1	WINS S
10.2.5.0/24			10.2.5.1							
10.2.4.0/	24		10.2.4.1							

Рисунок 20 – Сети, которые выдают DHCP сервера

						Лист
					УП.09.02.06.02ПД	26
Изм.	Лист	№ докум.	Подп.	Дата	311.07.02.00.021174	20

Настройки на остальных маршрутизаторах в филиалах аналогичны тем настройкам, которые представлены на рисунках 19-20.

3.2 Настройка туннелирования и OSPF между GRE.

Для связности филиалов с главным офисом необходимо настроить GREтуннели. Их настройка на R17 продемонстрирована на рисунках 21-22.

Рисунок 21 – Туннель на R17-2 в сторону главного офиса (R15-2)

Рисунок 22 – Туннель на R17-2 в сторону главного офиса (R16-2)

						Лист
					УП.09.02.06.02ПД	27
Изм.	Лист	№ докум.	Подп.	Дата	311.07.02.00.021174	27

Аналогичным образом настраиваются GRE туннели на остальных маршрутизаторах в филиалах. В главном офисе в сторону R17-2, R18-2, R19-2, R20-2 и в филиалах в сторону R15-2 и R16-2.

GRE-туннелям необходимо задать IP-адреса и для связности с главным офисом назначить филиалам маршрут по умолчанию на GRE-туннель в сторону главного офиса. Также необходимо указать статичный маршрут к удаленному адресу GRE-туннеля через ближайший к филиалу маршрутизатор, чтобы он знал, как туда добраться.

После необходимых настроек был настроен OSPF между GRE-туннелями для того, чтобы филиалы и главный офис знали про локальные сети друг друга. Пример настройки OSPF между GRE туннелями изображен на рисунках 23 – 25.

Рисунок 23 – Создание ospf instance

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 24 – Создание ospf area

OSPF Interface Tem	plate		□×
Interfaces:	<u> </u>	\$	OK
	GRE_to_R15	\$	Cancel
	GRE_to_R16	\$	Apply
	vmp201 ▼ \$	\$	1117
	vmp202 ▼ 	\$	Disable
Area:	ospf-area-1	F	Comment
Networks:		‡	Сору
Network Type:	broadcast	•	Remove
Prefix List:	•	•	
Instance ID:	0		
Cost:	1		
Priority:	128		
	Passive		

Рисунок 25 — Включение интерфейсов в OSPF

Изм.	Лист	№ докум.	Подп.	Дата

Аналогичным образом необходимо настроить динамическую маршрутизацию с помощью OSPF между GRE-туннелями на остальных маршрутизаторах в филиалах. После настройки в маршрутах можно увидеть, что все маршрутизаторы в филиалах узнали про локальные сети друг друга. Маршруты, полученные по OSPF между GRE-туннелями представлены на рисунке 26.

ישוש	P 2.20.20.20/02	170.2.170.10 WGINE_t0_1110
DAo	▶ 10.2.4.0/24	175.2.175.15%GRE_to_R15
DAo	▶ 10.2.5.0/24	175.2.175.15%GRE_to_R15
DAo+	▶ 10.2.6.0/24	175.2.175.15%GRE_to_R15
DAo+	▶ 10.2.6.0/24	176.2.176.16%GRE_to_R16
DAo+	▶ 10.2.7.0/24	175.2.175.15%GRE_to_R15
DAo+	▶ 10.2.7.0/24	176.2.176.16%GRE_to_R16
DAC+	▶ 10.2.8.0/24	vlan201
DAC+	▶ 10.2.8.0/24	vmp201
DAC+	▶ 10.2.9.0/24	vlan202
DAC+	10.2.9.0/24	vmp202

Рисунок 26 – Маршруты, полученные по OSPF между GRE-туннелями

Также на выходных физических интерфейсах маршрутизаторов в филиалах необходимо настроить NAT, чтобы локальные адреса филиалов, скрывались за глобальными адресами роутеров. Пример настройки NAT на R17 представлен на рисунках 27-28.

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 27 – NAT на R17 (General)

Рисунок 28 – NAT на R17 (Action)

Изм.	Лист	№ докум.	Подп.	Дата

Выполнение данных настроек на всех маршрутизаторах в филиалах обеспечило связность между локальными сетями филиалов.

3.3 Настройка кеширующих DNS-серверов.

В проектируемой сети библиотеки есть 3 филиала. Для введения устройств в домен и обеспечения name resolving'а было принято решение установить в каждом филиале кеширующие DNS сервера на операционной системе Debian с помощью dnsmasq, так как этот вариант более простой в настройке и ближайший его конкурент bind9 больше подходит для полноценной настройки больших корпораций с трансфером зон между доменами, так что в данной сети его функционал будет излишним. Каждый DNS-сервер будет ответственным исключительно за свою зону. Филиалы, в случае отсутствия записей на локальном DNS сервере должны будут обращаться за помощью к DNS серверу в главном офисе. Доменом главного офиса будет Bondarchuk2.up, а филиалы будут обслуживать зоны в доменах f1.Воndarchuk2.up и f2.Воndarchuk2.up. Кеширующий DNS сервер в главном офисе будет перенаправлять все неизвестные запросы на DNS сервер Google, а запросы, адресованные к первому или второму филиалу на соответствующие DNS сервера. Настройка DNS сервера в главном филиале представлена ниже.

Обновляем пакеты и устанавливаем dnsmasq с помощью следующей команды:

apt install dnsmasq

После заходим в конфигурационный файл dnsmasq с помощью следующей команды:

nano /etc/dnsmasq.conf

Записываем в конфигурационный файл следующий набор команд:

domain = Bondarchuk 2.up

expand-hosts

conf-dir=/etc/dnsmasq.d/,*.conf

interface=ens4

			·	
Изм.	Лист	№ докум.	Подп.	Дата

bind-interfaces server=/f2.Bondarchuk2.up/10.2.8.150 server=/f1.Bondarchuk2.up/10.2.6.150

server=8.8.8.8

Далее создаем файл с описанием зоны, за которую ответственен dns сервер в главном офисе и заходим сразу в его редактирование с помощью следующей команды:

nano /etc/dnsmasq.d/Bondarchuk2.conf

И записываем туда записи о каждом устройстве в данной зоне:

address=/modns.Bondarchuk2.up/10.2.4.150

address=/mocli.Bondarchuk2.up/10.2.5.240

address=/mofile.Bondarchuk2.up/10.2.4.101

address=/moadmin.Bondarchuk2.up/10.2.4.102

address=/r15.Bondarchuk2.up/10.2.4.10

address=/r16.Bondarchuk2.up/10.2.4.20

address=/sw2.Bondarchuk2.up/10.2.4.2

address=/sw3.Bondarchuk2.up/10.2.4.3

address = /sw4. Bondarchuk 2. up/10.2.4.4

 $address \!\!=\!\!/sw5. Bondarchuk 2. up/10.2.4.5$

Аналогичным образом настраиваем кеширующие DNS сервера в филиалах, но в файле dnsmasq.conf указываем только один сервер для перенаправления – сервер в главном офисе.

После этого настройка dns серверов будет закончена. Убедимся в этом с помощью выполнения следующей команды, представленной на рисунке 29.

```
root@debian:/home/debian# ping fladmin.fl.Bondarchuk2.up
PING fladmin.fl.Bondarchuk2.up (10.2.6.100) 56(84) bytes of data.
64 bytes from 10.2.6.100 (10.2.6.100): icmp_seq=1 ttl=61 time=28.4 ms
64 bytes from 10.2.6.100 (10.2.6.100): icmp_seq=2 ttl=61 time=19.2 ms
64 bytes from 10.2.6.100 (10.2.6.100): icmp_seq=3 ttl=61 time=47.3 ms
64 bytes from 10.2.6.100 (10.2.6.100): icmp_seq=4 ttl=61 time=69.1 ms
```

Рисунок 29 – Успешный ping по доменному имени со второго на

первый филиал

				·
Изм.	Лист	№ докум.	Подп.	Дата

Как видно на рисунке 29 перенаправление работает корректно. Давайте также убедимся, что преобразуются у нас не только имена из локального домена, но и из глобальной сети интернет (рисунок 30).

```
root@debian:/home/debian# ping guap.ru
PING guap.ru (194.226.199.248) 56(84) bytes of data.
64 bytes from webl.cit2.guap.ru (194.226.199.248): icmp_seq=1 ttl=125 time=15.8
ms
64 bytes from webl.cit2.guap.ru (194.226.199.248): icmp_seq=2 ttl=125 time=15.3
ms
64 bytes from webl.cit2.guap.ru (194.226.199.248): icmp_seq=3 ttl=125 time=47.2
ms
64 bytes from webl.cit2.guap.ru (194.226.199.248): icmp_seq=4 ttl=125 time=60.7
ms
^C
--- guap.ru ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3006ms
rtt min/avg/max/mdev = 15.250/34.750/60.662/19.779 ms
```

Рисунок 30 – Успешный ping guap.ru

Настройка кеширующих DNS серверов для введения компьютеров в домен Bondarchuk2.up прошла успешно.

3.4 Настройка telnet и файрволла.

Для начала нам необходимо обеспечить возможность подключения по telnet ко всем устройствам на схеме. Возможность подключения к Mikrotik по telnet доступна по умолчанию. Необходимо настроить возможность подключения к коммутаторам cisco, серверам на Debian и ReDOS.

Настройка подключения по telnet на cisco коммутаторах выполняется с помощью следующих команд:

Conf t

Line vty 0 4

Transport input telnet

Password 1234

Login

Exit

Enable password 1234

Изм.	Лист	№ докум.	Подп.	Дата

УП.09.02.06.02ПД

Лист

Настройка подключения по telnet на debian выполняется с помощью установки пакета telnetd.

Настройка подключения по telnet к redos выполняется с помощью установки пакета telnet-server.x86-64

Теперь настроим firewall на маршрутизаторах в филиалах, чтобы только администратор в главном офисе (10.2.4.102) мог подключаться по telnet ко всем сетевым устройствам. Также настроим преобразование адресов с помощью NAT из админской сети в клиенсткую, чтобы с помощью правил запретить все новые соединения от клиентов к администраторам.

Настройки Firewall на R15-2 представлены на рисунках 31 - 33.

Рисунок 31 – Address Lists на R15-2

Рисунок 32 – NAT на R15-2

Рисунок 33 – Filter Rules на R15-2

Изм.	Лист	№ докум.	Подп.	Дата

Аналогичным образом настраиваем Firewall на R16-2.

Настройки Firewall на R17-2 представлены на рисунках 34 - 36.

Рисунок 34 – Address Lists на R17-2

Рисунок 35 – NAT на R17-2

Рисунок 36 – Filter Rules на R17-2

Аналогичным образом настраиваем Firewall на R18-2.

Настройки Firewall на R19-2 представлены на рисунках 37 - 39.

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 37 – Filter Rules на R19-2

Рисунок 38 – NAT на R19-2

Рисунок 39 – Filter Rules на R19-2

Аналогичным образом настраиваем Firewall на R20-2.

Проверяем работоспособность выполненных настроек на рисунках 40-

42.

Изм.	Лист	№ докум.	Подп.	Дата

```
debian@debian:~$ telnet 10.2.8.101
Trying 10.2.8.101...
Connected to 10.2.8.101.
Escape character is '^]
Debian GNU/Linux 11
debian login: debian
Linux debian 5.10.0-28-cloud-amd64 #1 SMP Debian 5.10.209-2 (2024-01-31) x86 64
The programs included with the Debian GNU/Linux system are free software; the exact distribution terms for each program are described in the individual files in /usr/share/doc/*/copyright.
Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Fri Apr 26 01:01:20 UTC 2024 from 10.2.4.102 on pts/0
debian@debian:~$
Connection closed.
root@moadmin:/home/debian# telnet 10.2.6.101
Connected to 10.2.6.101.
Escape character is '^]'.
Debian GNU/Linux 11
debian login: debian
Linux debian 5.10.0-28-cloud-amd64 \sharp1 SMP Debian 5.10.209-2 (2024-01-31) x86 64
The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the individual files in /usr/share/doc/*/copyright.
Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent permitted by applicable law.
Last login: Fri Apr 26 01:08:53 UTC 2024 on ttyS0
debian@debian:~$
telnet> quit
coot@moadmin:/home/debian#
```

Рисунок 40 – Успешное подключение по telnet с главного офиса к филиалам

```
root@debian:/home/debian# telnet 10.2.4.150
Trying 10.2.4.150...
^C
root@debian:/home/debian# telnet 10.2.8.101
Trying 10.2.8.101...
^C
```

Рисунок 41 — Безуспешное подключение с 1 филиала к главному офису и 2 филиалу

```
debian@debian:~$ telnet 10.2.6.101
Trying 10.2.6.101...
^C
debian@debian:~$ telnet 10.2.4.150
Trying 10.2.4.150...
^C
```

Рисунок 42 — Безуспешное подключение с 2 филиала к главному офису и 1 филиалу

						Лист
					УП.09.02.06.02ПД	38
Изм.	Лист	№ докум.	Подп.	Дата	311.07.02.00.021174	30

Проверка показала, что все настройки Firewall'а были выполнены верно. В сети библиотеки была обеспечена безопасность.

4 Модернизация сетевой инфраструктуры.

Цели и задачи:

- выполнить изменения в сети организации;
- внедрить новые технологии в сети организации;

Используемое оборудование, инструменты, программное обеспечение:

- аналогично п.2;
- беспроводной маршрутизатор MikroTik;
- WinBox;
- eNSP.

Последовательность выполнения и описание действий:

Было получено задание по внедрению в организацию беспроводной сети и беспроводных клиентов, настроив точку доступа Wi-Fi на MikroTik с технологией HotSpot.

Для начала необходимо было подключить реальный физический маршрутизатор MikroTik к хосту (ноутбуку) и через виртуальный адаптер Vmnet0 (Bridge) подключить ноутбук к локальной сети в GNS3 (рисунок 43).

Рисунок 43 – Подключение ноутбука к локальной сети в GNS3 через Bridge адаптер

						Лист
					УП.09.02.06.02ПД	39
Изм.	Лист	№ докум.	Подп.	Дата	311.07.02.00.021174	39

Теперь необходимо дождаться, когда ноутбук получит IP-адрес по DHCP из локальной сети (рисунок 44) и подключиться к MikroTik для дальнейшей настройки через WinBox.

```
Адаптер Ethernet Ethernet:

DNS-суффикс подключения . . . :
Локальный IPv6-адрес канала . . : fe80::3059:7e6c:8af6:7079%19
IPv4-адрес. . . . . . . . . : 10.2.9.238
Маска подсети . . . . . . . . : 255.255.255.0
Основной шлюз. . . . . . . . :
```

Рисунок 44 – Полученный ноутбуком адрес от DHCP сервера

Теперь нужно зайти во вкладку Wireless и отредактировать интерфейс WLAN1 таким образом, как это сделано на рисунке 45.

Рисунок 45 – Настройка интерфейса wlan1

				·
Изм.	Лист	№ докум.	Подп.	Дата

После настройки wlan1 нужно получить адрес на интерфейс MikroTik, который подключен к ноутбуку. В моём случае это ether2 и получение адреса по DHCP на данный интерфейс продемонстрировано на рисунке 46.

Рисунок 46 – Получение адреса по DHCP на MikroTik

Теперь необходимо выбрать любой незанятый интерфейс на MikroTik и выдать ему адрес из другой сети, адреса из которой будут получать клиенты. В качестве такого интерфейса был выбран ether3, и настройка адреса на нём продемонстрирована на рисунке 47.

Addre	ess List	□×	
+	- 0 0 =	7	Find
	Address A	Network	Interface -
D	+ 10.2.9.236/24	10.2.9.0	ether2
	÷ 192.168.4.1/24	192.168.4.0	ether3

Рисунок 47 – Настройка адреса на ether3

После этого был создан Bridge интерфейс. Его создание продемонстрировано на рисунке 48.

				·
Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 48 – Создание Bridge интерфейса

После создания интерфейса были выбраны порты, которые будут включены в созданный Bridge. Включенные в Bridge порты продемонстрированы на рисунке 49.

Рисунок 49 – Включенные в Bridge порты

Изм.	Лист	№ докум.	Подп.	Дата

После этого был настроен DNS на MikroTik, чтобы подключенные клиенты воспринимали MikroTik как DNS сервер. Настройка DNS продемонстрирована на рисунке 50.

Рисунок 50 – Настройка DNS

После настройки DNS была совершена настройка HotSpot через кнопку HotSpot Setup. В качестве интерфейса был выбран созданный ранее bridge. В качестве гейтвея был выбран адрес из глобальной сети, то есть ether3 (192.168.4.1), все остальные настройки выбирались по умолчанию, а в профиле пользователя был выбран логин guest и пароль 12345678. Результат настроенного HotSpot сервера продемонстрирован на рисунке 51.

Рисунок 51 – Настроенный hotspot

Изм.	Лист	№ докум.	Подп.	Дата

На рисунках 52 - 54 будет продемонстрирован процесс подключения с телефона к созданной раннее точке доступа.

Рисунок 52 – Подключение к Wi-Fi

Рисунок 53 – Авторизация в сети через страничку HotSpot

						Лист
					УП.09.02.06.02ПД	44
Изм.	Лист	№ докум.	Подп.	Дата	311.07.02.00.021174	44

Рисунок 54 – Успешное подключение к сети Wi-Fi

Также было дано задание подключиться к файловому серверу с телефона. В качестве проводника, поддерживающего FTP был выбран СХ проводник. С помощью него было выполнено подключение к файловому серверу по его локальному адресу 10.2.4.101. Результат подключения продемонстрирован на рисунке 55.

Рисунок 55 – Успешное подключение к файловому серверу

						Лист
					УП.09.02.06.02ПД	15
Изм.	Лист	№ докум.	Подп.	Дата	311.07.02.00.021174	45

После подключения можно увидеть активную сессию во вкладке Active и временные файлы (Cookies), что говорит о том, что 4 задание было выполнено успешно. Сессия и файлы cookies продемонстрированы на рисунках 56-57.

Рисунок 56 – Активная сессия HotSpot

Pисунок 57 – Cookies HotSpot

Изм.	Лист	№ докум.	Подп.	Дата

Источники

Учебная литература

1. Дибров, М. В. Компьютерные сети и телекоммуникации.

Маршрутизация в IP-сетях в 2 ч. Часть 1 : учебник и практикум для среднего профессионального образования / М. В. Дибров. — Москва : Издательство Юрайт, 2020. — 333 с. — (Профессиональное образование). — Текст : электронный // ЭБС Юрайт [сайт]. — URL: https://urait.ru/bcode/452574

2. Дибров, М. В. Компьютерные сети и телекоммуникации. Маршрутизация в IP-сетях в 2 ч. Часть 2 : учебник и практикум для среднего профессионального образования / М. В. Дибров. — Москва : Издательство Юрайт, 2020. — 351 с. — (Профессиональное образование). — Текст : электронный // ЭБС Юрайт [сайт]. — URL: https://urait.ru/bcode/453065

Дополнительные источники информации

- 3. https://redos.red-soft.ru/
- 4. https://rus-linux.net/
- 5. https://interface31.ru/tech_it/
- 6. https://ubuntu.ru/doku.php
- 7. https://www.easycoding.org/
- 8. https://habr.com/
- 9. https://mnorin.com/
- 10. https://mikrotiklab.ru/
- 11. https://mikrotik.wiki/
- 12. https://global-hotspot.ru/nastroyka-hotspot-na-mikrotik/
- 13. https://it-nik.com/articles/nastraivaem-hotspot-na-mikrotik/

Изм.	Лист	№ докум.	Подп.	Дата

ПРИЛОЖЕНИЕ А

Схема L1

приложение б

Схема L2

приложение в

Схема L3

ПРИЛОЖЕНИЕ Г Диаграмма маршрутизации

