Учреждение образования Гомельский государственный технический университет имени П.О. Сухого

Кафедра «Маркетинг и отраслевая экономика»

Лабораторная работа № 2 «Однофакторный нелинейный регрессионный анализ с помощью функции ЛГРФПРИБЛ»

по дисциплине: "Эконометрика и экономико-математические методы и модели"

Дата сдачи отчета 14.03.2021 Выполнил студ

Выполнил студент группы МГ-21 Мельников О.В.

Допуск к защите Принял к.э.н., доцент Винник О.Г.

Цель работы: моделирование задач с произвольным количеством независимых факторов, определяющих экономическую ситуацию. Для моделирования используется метод регрессионного анализа с использованием инструментов Exce1.

Теоретическая часть:

Существует множество задач, в которых каждое значение у определяется целым набором независимых факторов х1, х2, ..., хп, значения которых определяются не только временными интервалами. В этих случаях при моделировании неизвестных оценок У определяемого фактора у уже требуется учитывать взаимосвязи фактических данных. Они определяются на основе взятых из наблюдений данных, которые задаются следующей матрицей (1):

y_1	x_{II}	x_{12}	 x_{In}
y_2	x_{21}	x ₂₂	 x_{2n}
\mathcal{Y}_m	x_{mI}	x_{m2}	 x_{nn}

В таких задачах используют метод регрессионного анализа. Регрессия – ЭТО статистический метод, позволяющий найти уравнение, которое наилучшим образом описывает множество данных. Уравнение регрессии $Y=f(x_1,x_2,...,x_{\Pi})$ (2) выбирают исходя характера взаимосвязей ИЗ (наблюдаемого опыте или на графиках). Параметры (коэффициенты, свободный член) находят по методу наименьших квадратов, находя сумму квадратов отклонений L фактических значений уі от найденных Уі по уравнению регрессии (2) при значениях факторов хік, взятых из матрицы (1):

$$L = \sum_{i=1}^{m} \left[V_{i} - Y C_{i1}, x_{i2}, ... x_{in} \right]^{2}$$

и затем минимизируя ее. Регрессионный анализ позволяет исследовать линейные и нелинейные взаимосвязи между задаваемыми факторами х1, х2, ..., хп и определяемым фактором у. Этот метод применяют как для прогнозирования, так и для оценки значений у при варьировании факторов х1, х2, ..., хп внутри интервалов их допустимых значений, например, для принятия решений по вопросам финансирования операций, проведения маркетинговых исследований и т. п.

Ехсе1 предоставляет следующие возможности для анализа:

- инструменты Пакета анализа (Регрессия и др.);
- функции ЛИНЕЙН, ТЕНДЕНЦИЯ, ЛГРФПРИБЛ для построения уравнений регрессии;
- функции FPACП, СТЬЮДРАСП для оценки достоверности уравнения регрессии и его коэффициентов;
- диаграммы и линии тренда для графической иллюстрации взаимосвязей.

Однофакторный линейный регрессионный анализ

Регрессия называется однофакторной (или парной), если она описывает зависимость между функцией и одной переменной. При однофакторном анализе в матрице (1) остаются только первый и второй столбцы данных, а уравнение регрессии (2) выглядит как Y=f(x1) или просто Y=f(x). Оно может быть как линейным Y=a*x+B, так и нелинейным.

Для получения уравнения регрессии необходимо:

- определить значения коэффициентов в уравнении;
- оценить достоверность полученного уравнения.

Задания к практической части:

Задание 4. Рассчитайте прогнозное значение спроса на бытовую технику по данным предыдущих периодов х. Исходные данные для выполнения расчетов приведены в Таблице 2.

Задание 5. Постройте нелинейную регрессию по данным, составленным самостоятельно. На основании данных о периодичности измерения спроса, взятых из таблицы 2, расположите их в порядке убывания. Определите значение R2 и проиллюстрируйте результаты на диаграмме.

Задание 6. По данным таблицы 3 выполните то же, что и в задании 5.

Выполнение:

Выполнение задания 4:

1. Занёс данные в рабочий лист Excel в соответствии с вариантом, определяемом номером в журнале.

Период	Величина спроса
0,1	4
1	23
2	30
3	46
4	52
5	60

Рисунок 1 – исходные данные

Выделил блок ячеек из 5 строк и 2 столбцов и ввёл знак "=", далее с помощью Мастера функций внес формулу массива ЛГРФПРИБЛ. После появления диалогового окна скопировал диапазон данных о размере спроса на бытовую технику в «Изв_знач_у», а диапазон данных о периодичности измерения спроса в «Изв_знач_х». В окна «Константа» и «Стат» ввел слово «истина».

Для получения результата одновременно нажал Ctrl, Shift, Enter. В первой строке массива результатов выданы коэффициенты уравнения регрессии, в третьей ячейке первого столбца выдано значение R 2. Оценил достоверность регрессии.

8,276442014
0,41142512
0,560372077
4
1,25606746

Рисунок 2 – Итог выполнения подпункта 1.

2. Подсчитал прогноз для всех значений х из диапазона исходных данных, характеризующих периодичность измерения спроса по следующей формуле:

где C14 – ссылка на ячейку, содержащую значение коэффициента b уравнения регрессии;

В14 – ссылка на ячейку, содержащую значение коэффициента т уравнения регрессии;

ВЗ – ссылка на ячейку, содержащую первое значение х из массива исходных данных.

Далее скопировал данную формулу во все ячейки столбца, которые следовали за массивом исходных данных, получив следующий итог:

Прогноз
8,675854945
13,25957893
21,24299706
34,03312627
54,52402412
87,35222213

Рисунок 3 – Итог выполнения подпункта 2.

3. Построил диаграмму, выделив диапазон исходных данных и прогнозных значений у и выбрав команду ВСТАВКА->ДИАГРАММА ина этой же диаграмме для сравнения построил линию тренда Линейная, сравнив графики и значения R2, которая выглядела следующим образом:

. Рисунок 4 — Графическая интерпретация результатов Выполнение залания **5**:

Выполнение комбинации действий было полностью идентично действиям, описанным сверху в задании 4.

Период	Величина спроса	Прогноз		
0,1	60	86,00621035	0,620094833	90,21609
1	52	55,9425313	0,130008118	0,393654906
2	46	34,68967462	0,771578025	0,536168568
3	30	21,51088801	13,51145	4
4	23	13,33879051	3,884227502	1,149906932
5	4	8,271315081		

Pисунок 5 — Итог выполнения задания 5, не включая графической интерпретации.

Рисунок 6 — Итог выполнения задания 5, изображённый на диаграмме. **Выполнение задания 6:**

Выполнение комбинации действий было полностью идентично действиям, описанным сверху в заданиях 4 и 5.

Период	Величина спроса	Прогноз		
0,1	. 52	78,30519458	0,644637742	81,81991052
1	. 46	52,74420238	0,160624443	0,48635886
2	60	34,00090353	0,651325481	0,662433846
3	23	21,91826568	7,472016987	4
4	30	14,1293413	3,278860034	1,7552744
5	4	9,108306674		

Рисунок 7 — Итог выполнения задания 6, не включая графической интерпретации.

Рисунок 8 – Итог выполнения задания 6, изображённый на диаграмме. Таким образом, мной был выполнен и освоен однофакторный нелинейный регрессионный анализ с помощью функции ЛГРФПРИБЛ.