Neighborhood structures

a two-step approach is employed to apply neighborhood structures to a solution encoding. First, a randomly generated binary number is assigned to each segment. If the assigned number is one, then a neighborhood structure is applied to that segment otherwise, no change is applied. For example, in below figure we either select plants or warehouses randomly.

Suppliers							Plants						Warehouses							Distribution				
0							1						1						centers 0					
1 0 1 1 0 1				0	0	1	1	1	1	0	1	0	1	1	0	1	1	0	0					

Fig. solution representation

Shaking structures

- Move/inversion operator: A subsequence of cells is selected, inversed, and moved to a new position. For instance,

	S	upp	lie	ſS		Plants						<mark>Warehouses</mark>							Distribution centers			
1	0	1	1	0	1	0	0	1	1	1	1	0	1	0	1	1	0	1	1	0	0	

Suppliers								Pla	nts				W	<mark>areh</mark>	<mark>IOUS</mark>	<mark>es</mark>		D	istri cer	but iter	
1	0	1	1	0	1	0	0	1	1	1	1	0	1	1	1	0	0	1	1	0	0

- Multiple swaps: Values of pairs of randomly selected cells are exchanged for a specific number of iterations. For instance,

	S	upp	lie	rs				Pla	nts			Warehouses							Distribution centers			
1	0	1	1	0	1	0	0	1	1	1	1	0	1	0	1	1	0	1	1	0	0	

Suppliers						Plants							<mark>Warehouses</mark>							Distribution centers			
1	. 0	1	1	0	1	0	0	1	1	1	1	1	0	1	0	0	1	1	1	0	0		

Local search

- Two-exchange operator: Two cells are selected from selected segment (echelon). One has value 1 and the second is zero and then their values are exchanged.
- Adjacent swap operator: One cell is selected randomly and replaced with its nearest adjacent cell.