Signaturi multisortate. Mulțimi și funcții multisortate.

• O signatură multisortată este o pereche (S, Σ) , unde $S \neq \emptyset$ este o mulțime de sorturi și Σ este o mulțime de simboluri de operații $\sigma: s_1 s_2 \dots s_n \to s$. Dacă n = 0, atunci $\sigma: \to s$ este simbolul unei constante.

Fixăm o mulțime de sorturi S.

- O multime S-sortată este o familie de multimi $A = \{A_s\}_{s \in S}$.
- O funcție S-sortată $f: A \to B$ este o familie de funcții $f = \{f_s\}_{s \in S}$, unde $f_s: A_s \to B_s$, pt. or. $s \in S$. Dacă $f: A \to B$ şi $g: B \to C$, definim compunerea $f; g: A \to C$, $(f; g)_s(a) = g_s(f_s(a))$, or. $a \in A_s$.
- O funcție S-sortată $f: A \to B$ este injectivă, (surjectivă, bijectivă) dacă f_s este injectivă, (surjectivă, bijectivă), or. $s \in S$. O funcție S-sortată $f = \{f_s\}_{s \in S}: A \to B$ este inversabilă dacă există $g: B \to A$ astfel încât $f; g = 1_A$ și $g; f = 1_B$.

Propoziție 1. O funcție S-sortată $f: A \to B$ este inversabilă \Leftrightarrow este bijectivă.

Algebre multisortate.

- O algebră multisortată de tip (S, Σ) este $\mathcal{A} = (A_S, A_{\Sigma})$ unde $A_S = \{A_s\}_{s \in S}$ este o mulțime S-sortată și $A_{\Sigma} = \{A_{\sigma}\}_{\sigma \in \Sigma}$ este o familie de operații astfel încât
 - dacă $\sigma: s_1 \dots s_n \to s$ în Σ , atunci $A_{\sigma}: A_{s_1} \times \dots \times A_{s_n} \to A_s$.
 - $-\operatorname{dac\check{a}} \sigma: \to s \text{ în } \Sigma, \text{ atunci } A_{\sigma} \in A_s.$

Morfisme de algebre multisortate.

- Un morfism de (S, Σ) -algebre $h: A \to \mathcal{B}$ este o funcție S-sortată $h = \{h_s\}_{s \in S}: \{A_s\}_{s \in S} \to \{B_s\}_{s \in S}$ care verifică condiția de compatibilitate:
 - $-h_s(A_\sigma)=B_\sigma$, or. $\sigma:\to s\in\Sigma$,
 - $-\ h_s(A_\sigma(a_1,\ldots,a_n)) = B_\sigma(h_{s_1}(a_1),\ldots,h_{s_n}(a_n)), \text{ or. } \sigma:s_1\ldots s_n \to s \in \Sigma \text{ §i or. } a_1 \in A_{s_1},\ldots,a_n \in A_{s_n}.$

Propoziție 2. Compunerea a două Σ -morfisme este un Σ -morfism.

Izomorfisme de algebre multisortate.

- Un Σ -morfism $h: \mathcal{A} \to \mathcal{B}$ se numește *izomorfism* dacă există un Σ -morfism $g: \mathcal{B} \to \mathcal{A}$ astfel încât $h; g = 1_A$ și $g; h = 1_B$. Deoarece g este unic, se notează cu h^{-1} .
- Două Σ -algebre \mathcal{A} și \mathcal{B} sunt izomorfe ($\mathcal{A} \simeq \mathcal{B}$) dacă există un izomorfism $f : \mathcal{A} \to \mathcal{B}$.

Propoziție 3. Fie $h: \mathcal{A} \to \mathcal{B}$ un Σ -morfism. Atunci h este izomorfism \Leftrightarrow este funcție S-sortată bijectivă.

Propoziție 4. Compunerea a două izomorfisme $f: A \to B$ și $g: B \to C$ este un izomorfism. Mai mult, $(f; g)^{-1} = g^{-1}; f^{-1}$.

Tipuri abstracte de date.

- Un tip abstract de date este o clasă $\mathfrak C$ de (S,Σ) -algebre cu proprietatea că oricare două (S,Σ) -algebre din $\mathfrak C$ sunt izomorfe.
- $\mathfrak{I}_{(S,\Sigma)}=\{\mathcal{I}\mid\mathcal{I}\;(S,\Sigma)\text{-algebră inițială}\}$ este un tip abstract de date.

Termeni. Algebre de termeni.

- O mulțime de variabile este o mulțime S-sortată $X = \{X_s\}_{s \in S}$ astfel încât $X_s \cap X_{s'} = \emptyset$, or. $s, s' \in S$, $s \neq s'$, $X_s \cap \{\sigma\}_{\sigma:s_1...s_n \to s \in \Sigma} = \emptyset$ și $X_s \cap \{\sigma\}_{\sigma:\to s \in \Sigma} = \emptyset$.
- Mulțimea S-sortată a termenilor cu variabile din X, $T_{\Sigma}(X)$, este cea mai mică mulțime de șiruri finite peste alfabetul $L = \bigcup_{s \in S} X_s \cup \bigcup_{w,s} \Sigma_{w,s} \cup \{(,)\} \cup \{,\}$ care verifică:
 - $-X \subseteq T_{\Sigma}(X),$
 - $-\operatorname{dac\check{a}} \sigma:\to s$ în Σ , atunci $\sigma\in T_{\Sigma}(X)_s$,
 - $\ \mathrm{dac\check{a}} \ \sigma: s_1 \dots s_n \to s \ \mathrm{\hat{in}} \ \Sigma \ \mathrm{gi} \ t_i \in T_\Sigma(X)_{s_i}, \ \mathrm{or.} \ 1 \leq i \leq n, \ \mathrm{atunci} \ \sigma(t_1, \dots, t_n) \in T_\Sigma(X)_s.$
- - pasul inițial: $\mathbf{P}(x) = true$, or. $x \in X$, și $\mathbf{P}(\sigma) = true$, or. $\sigma : \to s$.
 - pasul de inducție: pt. or. $\sigma: s_1 \dots s_n \to s$ și or. $t_1 \in T_{\Sigma}(X)_{s_1}, \dots, t_n \in T_{\Sigma}(X)_{s_n}$, dacă $\mathbf{P}(t_1) = \dots = \mathbf{P}(t_n) = true$, atunci $\mathbf{P}(\sigma(t_1, \dots, t_n)) = true$.

Atunci $\mathbf{P}(t) = true$, oricare $t \in T_{\Sigma}(X)$.

• Mulţimea S-sortată a termenilor $T_{\Sigma}(X)$ este o (S, Σ) -algebră, numită algebra termenilor cu variabile din X, cu operaţiile definite astfel: pt. or. $\sigma: \to s$ din Σ , operaţia corespunzătoare este $T_{\sigma}: = \sigma \in T_{\Sigma}(X)_s$ şi pt. or. $\sigma: s_1 \dots s_n \to s$ din Σ , operaţia corespunzătoare este $T_{\sigma}: T_{\Sigma}(X)_{s_1 \dots s_n} \to T_{\Sigma}(X)_s$, $T_{\sigma}(t_1, \dots, t_n): = \sigma(t_1, \dots, t_n)$, or. $t_1 \in T_{\Sigma}(X)_{s_1}, \dots, t_n \in T_{\Sigma}(X)_{s_n}$. T_{Σ} algebra termenilor fără variabile $(X = \emptyset)$.

Algebră inițială.

• O (S, Σ) -algebră $\mathcal I$ este inițială într-o clasă de (S, Σ) -algebre $\mathfrak K$ dacă pentru orice $\mathcal B \in \mathfrak K$, există un unic (S, Σ) -morfism $f: \mathcal I \to \mathcal B$.

Propoziție 5.

- (1) Dacă \mathcal{I} este inițială în \mathfrak{K} și $\mathcal{A} \in \mathfrak{K}$ astfel încât $\mathcal{A} \simeq \mathcal{I}$, atunci \mathcal{A} este inițială în \mathfrak{K} .
- (2) Dacă A_1 și A_2 sunt inițiale în \Re , atunci $A_1 \simeq A_2$.

Teoremă 1. Pentru orice (S, Σ) -algebră \mathcal{B} , există un unic morfism $f: T_{\Sigma} \to \mathcal{B}$.

Corolar 1. T_{Σ} este (S, Σ) -algebra iniţială.

Algebre libere.

• O (S, Σ) -algebră $\mathcal{A} = (A_S, A_{\Sigma})$ este liber generată de X dacă $X \subseteq A_S$, i.e. există funcția S-sortată incluziune a lui X în A_S $i_A : X \hookrightarrow A_S$, și pentru orice (S, Σ) -algebră $\mathcal{B} = (B_S, B_{\Sigma})$ și orice funcție S-sortată $f : X \to B_S$, există un unic (S, Σ) -morfism $\tilde{f} : \mathcal{A} \to \mathcal{B}$ astfel încât $i_A : \tilde{f} = f$.

Teoremă 2. Dacă \mathcal{A} și \mathcal{B} sunt liber generate de X, atunci $\mathcal{A} \simeq \mathcal{B}$.

Teoremă 3. Fie $\mathcal{B}=(B_S,B_\Sigma)$ o (S,Σ) -algebră. Orice funcție S-sortată $e:X\to B_S$ se extinde unic la un (S,Σ) -morfism $\tilde{e}:T_\Sigma(X)\to\mathcal{B}$.

Corolar 2. $T_{\Sigma}(X)$ este (S, Σ) -algebra liber generată de X.

Propoziție 6. Fie $h: A \to \mathcal{B}$ un (S, Σ) -morfism surjectiv și X o mulțime de variabile. Pentru orice (S, Σ) -morfism $f: T_{\Sigma}(X) \to \mathcal{B}$, există un (S, Σ) -morfism $g: T_{\Sigma}(X) \to A$ astfel încât g; h = f.

Dacă $f: \mathcal{A} \to \mathcal{B}$ este un (S, Σ) -morfism și $X \subseteq A_S$, $f \upharpoonright_X$ este restricția lui f la X, i.e. $(f \upharpoonright_X)_s(x) = f_s(x)$, or. $x \in X_s$.

Propoziție 7. Fie \mathcal{B} o (S, Σ) -algebră și X o mulțime de variabile. Dacă $f: T_{\Sigma}(X) \to \mathcal{B}$ și $g: T_{\Sigma}(X) \to \mathcal{B}$ sunt morfisme, atunci $g = f \Leftrightarrow g \upharpoonright_X = f \upharpoonright_X$.

Propoziție 8. Dacă $X \simeq Y$, atunci $T_{\Sigma}(X) \simeq T_{\Sigma}(Y)$.

Congruențe.

- O relație S-sortată $\equiv \{\equiv_s\}_{s\in S}\subseteq A_S\times A_S$ este o congruență dacă $\equiv_s\subseteq A_s\times A_s$ este echivalență, or. $s\in S$, și \equiv este compatibilă cu operațiile: pt. or. $\sigma:s_1\dots s_n\to s$ și or. $a_i,b_i\in A_{s_i},\ i=1,\dots,n,\ a_i\equiv_{s_i}b_i$, or. $i=1,\dots,n\Rightarrow A_{\sigma}(a_1,\dots,a_n)\equiv_s A_{\sigma}(b_1,\dots,b_n)$.
- Fie \mathcal{A} o (S, Σ) -algebră și \equiv o congruență pe \mathcal{A} . Definim:
 - $-[a]_{\equiv s}:=\{a'\in A_s\mid a\equiv_s a'\}$ (clasa de echivalență a lui a) și $A_s/_{\equiv s}:=\{[a]_{\equiv s}\mid a\in A_s\}$, or. $s\in S$.
 - $\text{ algebr\check{a} } c\hat{a} \text{ a lui } \mathcal{A} \text{ prin congruen} \\ \xi \equiv \text{notat\check{a} } \mathcal{A}/_{\equiv} : A/_{\equiv} := \{A_s/_{\equiv s}\} \text{ cu operațiile: } (A/_{\equiv})_{\sigma} := [A_{\sigma}]_{\equiv s}, \text{ or. } \sigma : \rightarrow s, \\ \xi \text{ i } (A/_{\equiv})_{\sigma}([a_1]_{\equiv s_1}, \dots, [a_n]_{\equiv s}, \\ (A_{\sigma}(a_1, \dots, a_n)]_{\equiv s}, \text{ or. } \sigma : s_1 \dots s_n \rightarrow s \\ \xi \text{ i } a_1 \in A_{s_1}, \dots, a_n \in A_{s_n}.$
 - $-\ [\cdot]_{\equiv}: \mathcal{A} \to \mathcal{A}/_{\equiv}, \ a \mapsto [a]_{\equiv_s}, \ \text{or.} \ a \in A_s, \ \text{morfism surjectiv. Avem} \ [a]_{\equiv_s} = [b]_{\equiv_s} \Leftrightarrow a \equiv_s b \Leftrightarrow (a,b) \in \equiv_s.$
- Dacă $f: A \to \mathcal{B}$ un morfism de (S, Σ) -algebre, nucleul lui f este $Ker(f) = \{Ker(f_s)\}_{s \in S}$, unde $Ker(f_s) := \{(a, a') \in A_s \times A_s \mid f_s(a) = f_s(a')\}$, or $s \in S$.

Propoziție 9.

- (1) Ker(f) este o congruență pe A.
- (2) $Dac\breve{a} \equiv este \ o \ congruent\breve{a} \ pe \ \mathcal{A}, \ atunci \ Ker([\cdot]_{\equiv}) = \equiv.$

Teoremă 4 (Proprietatea de universalitate a algebrei cât). Pentru orice (S, Σ) -algebră \mathcal{B} și pentru orice morfism $h : \mathcal{A} \to \mathcal{B}$ $a.\hat{i}. \equiv \subseteq Ker(h)$, există un unic morfism $\overline{h} : \mathcal{A}/_{\equiv} \to \mathcal{B}$ a.i. $[\cdot]_{\equiv}; \overline{h} = h.$

Propoziție 10. Fie \Re o clasă de (S, Σ) -algebre. Dacă $\equiv_{\Re} := \bigcap \{Ker(h) \mid h : T_{\Sigma} \to \mathcal{B} \in \Re \text{ morfism}\}$, atunci următoarele proprietăți sunt adevărate:

- (1) $\equiv_{\mathfrak{K}}$ este congruența pe T_{Σ} ,
- (2) pt. or. $\mathcal{B} \in \mathfrak{K}$, există un unic morfism $\overline{h}: T_{\Sigma}/_{\equiv_{\mathfrak{K}}} \to \mathcal{B}$.

Ecuații. Relația de satisfacere.

- O (S, Σ) -ecuație $(\forall X)t =_s t'$ este formată dintr-o mulțime de variabile X și doi termeni $t, t' \in T_{\Sigma}(X)_s$.
- O (S, Σ) -algebră $\mathcal{A} = (A_S, A_{\Sigma})$ satisface o ecuație $(\forall X)t \stackrel{\cdot}{=}_s t'$
 - dacă pentru orice funcție S-sortată $e: X \to A_S$, $\tilde{e}_s(t) = \tilde{e}_s(t')$.
 - dacă pentru orice morfism $f: T_{\Sigma}(X) \to A, f_s(t) = f_s(t').$
- O (S, Σ) -ecuație condiționată $(\forall X)t \doteq_s t'$ if H este formată dintr-o mulțime de variabile X, doi termeni de același sort $t, t' \in T_{\Sigma}(X)_s$ și o mulțime H de ecuații $u \doteq_{s'} v$, cu $u, v \in T_{\Sigma}(X)_{s'}$.
- O (S, Σ) -algebră $\mathcal{A} = (A_S, A_{\Sigma})$ satisface o ecuație condiționată $(\forall X)t \stackrel{.}{=}_s t'$ if H
 - dacă pentru orice funcție S-sortată $e: X \to A_S$, $\tilde{e}_{s'}(u) = \tilde{e}_{s'}(v)$, or. $u =_{s'} v \in H \Rightarrow \tilde{e}_s(t) = \tilde{e}_s(t')$.
 - dacă pentru orice morfism $f: T_{\Sigma}(X) \to A$, $f_{s'}(u) = f_{s'}(v)$, or. $u =_{s'} v \in H \Rightarrow f_s(t) = f_s(t')$.

Γ -algebre.

• Dacă Γ este o mulțime de ecuații condiționate, o (S, Σ) -algebră \mathcal{A} este o Γ -algebră dacă $\mathcal{A} \models \gamma$, or. $\gamma \in \Gamma$. Notăm cu $Alg(S, \Sigma, \Gamma)$ clasa tuturor Γ -algebrelor.

Teoremă 5. Fie \mathcal{A} și \mathcal{B} două (S, Σ) -algebre $a.\hat{i}.$ $\mathcal{A} \simeq \mathcal{B}$ și $\gamma := (\forall X)t =_s t'$ if H. Atunci $\mathcal{A} \models \gamma \Leftrightarrow \mathcal{B} \models \gamma.$

- O ecuație condiționată θ este consecință semantică a lui Γ dacă $\mathcal{A} \models \Gamma$ implică $\mathcal{A} \models \theta$, pentru orice (S, Σ) -algebră \mathcal{A} .
- $\bullet\,$ O congruență \equiv pe ${\mathcal A}$ este $\hat{\imath}nchisă$ la substituție dacă

$$CS(\Gamma, \mathcal{A}) \quad \text{or. } (\forall X)t \stackrel{\cdot}{=}_s t' \text{ if } H \in \Gamma, \text{ or. } e: X \to A_S \\ \tilde{e}_{s'}(u) \equiv_{s'} \tilde{e}_{s'}(v), \text{ or. } u \stackrel{\cdot}{=}_{s'} v \in H \Rightarrow \tilde{e}_s(t) \equiv_s \tilde{e}_s(t').$$

Propoziție 11. Dacă \equiv este o congruență pe \mathcal{A} închisă la substituție, atunci $\mathcal{A}/_{\equiv} \models \Gamma$.

• Pentru Γ şi $\mathcal{A} = (A_S, A_\Sigma)$, definim $\equiv_{\Gamma, \mathcal{A}} := \bigcap \{ Ker(h) \mid h : \mathcal{A} \to \mathcal{B}, \ \mathcal{B} \models \Gamma \}$. Dacă $\mathcal{A} = T_\Sigma(X)$, notăm $\equiv_{\Gamma, T_\Sigma(X)}$ cu \equiv_{Γ} . Avem $t \equiv_{\Gamma_s} t' \Leftrightarrow \Gamma \models (\forall X)t \doteq_s t'$.

Propoziție 12. $\equiv_{\Gamma, \mathcal{A}}$ este o congruență pe \mathcal{A} închisă la substituție.

Propoziție 13. $\equiv_{\Gamma, \mathcal{A}}$ este cea mai mică congruență pe \mathcal{A} închisă la substituție.

Teoremă 6. $T_{\Sigma}/_{\equiv_{\Gamma,T_{\Sigma}}}$ este Γ -algebra inițială.

Specificații algebrice.

- O specificație algebrică este un triplet (S, Σ, Γ) , unde (S, Σ) este o signatură multisortată și Γ este o mulțime de ecuații condiționate. Specificația (S, Σ, Γ) definește clasa modelelor $Alg(S, \Sigma, \Gamma)$.
- Două specificații (S, Σ, Γ_1) și (S, Σ, Γ_2) sunt *echivalente* dacă definesc aceeași clasă de modele.
- O specificație (S, Σ, Γ) este adecvată pentru \mathcal{A} dacă \mathcal{A} este Γ -algebră inițială, i.e. $\mathcal{A} \in \mathfrak{I}_{(S, \Sigma, \Gamma)}$.

Algoritmul de unificare.

- O substituție a variabilelor din X cu termeni din $T_{\Sigma}(Y)$ este o funcție S-sortată $\tau: X \to T_{\Sigma}(Y)$.
- Un unificator pentru U este o substituție $\nu: X \to T_{\Sigma}(X)$ a.î. $\nu(t_i) = \nu(t_i')$, or. $i = 1, \ldots, n$.
- Un unificator ν pentru U este un cel mai general unificator dacă pentru orice alt unificator ν' pentru U, există o substituție μ astfel încât $\nu' = \nu; \mu$.

	Lista soluţie	Lista de rezolvat
	S	R
Iniţial	Ø	$t_1 \stackrel{.}{=} t'_1, \dots, t_n \stackrel{.}{=} t'_n$
SCOATE	S	$R',t\stackrel{.}{=}t$
	S	R'
DESCOMPUNE	S	$R', f(t_1,\ldots,t_n) \stackrel{\cdot}{=} f(t_1',\ldots,t_n')$
	S	$R', t_1 \stackrel{.}{=} t'_1, \dots t_n \stackrel{.}{=} t'_n$
REZOLVĂ	S	$R', x \stackrel{.}{=} t$ sau $t \stackrel{.}{=} x, x$ nu apare în t
	$x \stackrel{.}{=} t, S[x \leftarrow t]$	$R'[x \leftarrow t]$
Final	S	Ø

2. Logica ecuațională

Deducție ecuațională - cazul necondiționat.

ullet E mulțime de ecuații necondiționate

$$R \quad \overline{(\forall X)t \stackrel{.}{=}_s t}$$

S
$$\frac{(\forall X)t_1 \stackrel{.}{=}_s t_2}{(\forall X)t_2 \stackrel{.}{=}_s t_1}$$

T
$$(\forall X)t_1 \stackrel{\cdot}{=}_s t_2, (\forall X)t_2 \stackrel{\cdot}{=}_s t_3$$

 $(\forall X)t_1 \stackrel{\cdot}{=}_s t_3$

$$C\Sigma \quad \frac{(\forall X)t_1 =_{s_1} t'_1, \dots, (\forall X)t_n =_{s_n} t'_n}{(\forall X)\sigma(t_1, \dots, t_n) =_s \sigma(t'_1, \dots, t'_n)}$$

, unde
$$\sigma: s_1 \dots s_n \to s \in \Sigma$$

$$Sub_E \quad \overline{(\forall X)\theta(t) \stackrel{\cdot}{=}_s \theta(t')}$$

$$(\forall Y)t \stackrel{.}{=}_s t' \in E$$
 și $\theta: Y \to T_\Sigma(X)$

- Ecuația $\epsilon := (\forall X)t \stackrel{.}{=}_s t'$ se deduce din E dacă ex. o secvență $\epsilon_1, \dots, \epsilon_n$ a.î. $\epsilon_n = \epsilon$ și pt. or. $1 \le i \le n$:
 - $-\epsilon_i \in E$ sau
 - $-\epsilon_i$ se obține din $\epsilon_1, \ldots, \epsilon_{i-1}$ aplicând una din reg. R, S, T, C Σ , Sub_E.

Deducție ecuațională - cazul condiționat.

 $\bullet~\Gamma$ mulțime de ecuații condiționate

$$R \quad \overline{(\forall X)t \stackrel{.}{=}_s t}$$

$$S \quad \frac{(\forall X)t_1 \stackrel{.}{=}_s t_2}{(\forall X)t_2 \stackrel{.}{=}_s t_1}$$

T
$$\frac{(\forall X)t_1 \stackrel{.}{=}_s t_2, \ (\forall X)t_2 \stackrel{.}{=}_s t_3}{(\forall X)t_1 \stackrel{.}{=}_s t_3}$$

$$C\Sigma \quad \frac{(\forall X)t_1 \doteq_{s_1} t'_1, \dots, (\forall X)t_n \doteq_{s_n} t'_n}{(\forall X)\sigma(t_1, \dots, t_n) \doteq_{s} \sigma(t'_1, \dots, t'_n)}$$

, unde
$$\sigma: s_1 \dots s_n \to s \in \Sigma$$

$$\operatorname{Sub}_{\Gamma} \frac{(\forall X)\theta(u_1) \stackrel{.}{=}_{s_1} \theta(v_1), \dots, (\forall X)\theta(u_n) \stackrel{.}{=}_{s_n} \theta(v_n)}{(\forall X)\theta(t) \stackrel{.}{=}_{s} \theta(t')}$$

unde
$$(\forall Y)t \stackrel{.}{=}_s t'$$
 if $\{u_1 \stackrel{.}{=}_{s_1} v_1, \dots, u_n \stackrel{.}{=}_{s_n} v_n\} \in \Gamma, \theta : Y \to T_{\Sigma}(X).$

- Ecuația $\epsilon := (\forall X)t =_s t'$ se deduce din Γ dacă ex. o secvență $\epsilon_1, \ldots, \epsilon_n$ a.î. $\epsilon_n = \epsilon$ si pt. or. $1 \le i \le n$:
 - $-\epsilon_i \in \Gamma$ sau
 - $-\epsilon_i$ se obține din $\epsilon_1,\ldots,\epsilon_{i-1}$ aplicând una din reg. R, S, T, C Σ , Sub Γ .

Corectitudinea logicii ecuationale.

• O regulă de deducție $\overbrace{\qquad \epsilon_1, \ldots, \epsilon_n \qquad}$ este corectă dacă $\Gamma \models \epsilon_1, \ldots, \Gamma \models \epsilon_n \Rightarrow \Gamma \models \epsilon$.

Propoziție 14. Regulile de deducție R, S, T, $C\Sigma$, Sub_{Γ} sunt corecte.

Teoremă 7 (Corectitudinea deducției). $\Gamma \vdash (\forall X)t \stackrel{.}{=}_s t' \Rightarrow \Gamma \models (\forall X)t \stackrel{.}{=}_s t'$.

Completitudinea logicii ecuationale.

 $\bullet\,$ O relație binară $\sim\subseteq T_\Sigma(X)\times T_\Sigma(X)$ este închisă la regula

Reg
$$\frac{(\forall X)t_1 \stackrel{.}{=}_{s_1} t'_1, \dots, (\forall X)t_n \stackrel{.}{=}_{s_n} t'_n}{(\forall X)t \stackrel{.}{=}_{s} t'}$$

dacă $t_1 \sim_{s_1} t'_1, \dots, t_n \sim_{s_n} t'_n \Rightarrow$

Propoziție 15. Sunt echivalente:

 $t \sim_s t'$.

- (1) \sim este congruență pe $T_{\Sigma}(X)$,
- (2) \sim este închisă la R, S, T, $C\Sigma$.

Propoziție 16. Sunt echivalente:

- (1) $\sim verifică CS(\Gamma, T_{\Sigma}(X))$ (i.e. închisă la substituție),
- (2) \sim este închisă la Sub_{Γ} .
- Definim $t \sim_{\Gamma_s} t' \Leftrightarrow \Gamma \vdash (\forall X)t \stackrel{\cdot}{=}_s t'$, or. $s \in S$.

Propoziție 17. \sim_{Γ} este o congruență pe $T_{\Sigma}(X)$ închisă la substituție.

Teoremă 8 (Completitudinea deducției). $\Gamma \models (\forall X)t \stackrel{\cdot}{=}_s t' \Rightarrow \Gamma \vdash (\forall X)t \stackrel{\cdot}{=}_s t'$.

Teorema de completitudine.

- Echivalența sintactică: $t \sim_{\Gamma_s} t' \Leftrightarrow \Gamma \vdash (\forall X) t \stackrel{\cdot}{=}_s t'$.
- Echivalența semantică: $t \equiv_{\Gamma_s} t' \Leftrightarrow \Gamma \models (\forall X) t \stackrel{.}{=}_s t'$.
- Corectitudinea deducției: $\sim_{\Gamma} \subseteq \equiv_{\Gamma}$.
- Completitudinea deducției: $\equiv_{\Gamma} \subseteq \sim_{\Gamma}$.

Teoremă 9 (Teorema de completitudine). $\Gamma \models (\forall X)t \stackrel{\cdot}{=} t' \Leftrightarrow \Gamma \vdash (\forall X)t \stackrel{\cdot}{=} t' (\equiv_{\Gamma} = \sim_{\Gamma})$

3. Rescrierea termenilor

Contexte.

- $nr_y(t) = \text{numărul de apariții ale lui } y \text{ în } t$
- Fie z a.î. $z \notin X$. Un termen $c \in T_{\Sigma}(X \cup \{z\})$ se numește context dacă $nr_z(c) = 1$.
- Dacă $t_0 \in T_{\Sigma}(X)$ și t_0 are același sort cu z, definim substituția $\{z \leftarrow t_0\} : X \cup \{z\} \to T_{\Sigma}(X)$, prin $\{z \leftarrow t_0\}(x) = \begin{cases} t_0, & \text{dacă } x = z \\ x, & \text{altfel} \end{cases}$ Pentru un context $c \in T_{\Sigma}(X \cup \{z\})$, notăm $c[z \leftarrow t_0] := \{z \leftarrow t_0\}(c)$.

Sistem de rescriere.

- O regulă de rescriere $l \to_s r$ (peste Y) este formată din $l, r \in T_{\Sigma}(Y)_s$ astfel încât l nu este variabilă și $Var(r) \subseteq Var(l)$.
- Un sistem de rescriere (TRS) este o mulţime finită de reguli de rescriere.
- Dacă R este un sistem de rescriere, pentru $t, t' \in T_{\Sigma}(X)_s$ definim relația $t \to_R t'$ astfel:

$$t \to_R t' \Leftrightarrow t \text{ este } c[z \leftarrow \theta_s(l)] \text{ și}$$

$$t' \text{ este } c[z \leftarrow \theta_s(r)], \text{ unde}$$

$$c \in T_\Sigma(X \cup \{z\}) \text{ context},$$

$$l \to_s r \in R \text{ cu } Var(l) = Y,$$

$$\theta : Y \to T_\Sigma(X) \text{ substituție}$$

• Dacă E este o mulțime de ecuații astfel încât, pt. or. $(\forall Y)l \doteq_s r \in E, l \notin Y$ (nu este variabilă) și $Var(r) \subseteq Var(l)$, definim sistemul de rescriere determinat de E $R_E := \{l \rightarrow_s r \mid (\forall Y)l \doteq_s r \in E\}$. Notăm relația de rescriere generată de R_E prin $\rightarrow_E := \rightarrow_{R_E}$.

Logica ecuațională și rescrierea termenilor.

- E mulțime de ecuații necondiționate: $\boxed{ \mathrm{SR}_E \quad \overline{(\forall X) c[z \leftarrow \theta(t)] \stackrel{.}{=}_{s'} c[z \leftarrow \theta(t')] } }, \text{ unde } (\forall Y) t \stackrel{.}{=}_s t' \in E, \ \theta: Y \rightarrow T_\Sigma(X), \ c \in T_\Sigma(X \cup \{z\})_{s'}, \ z \notin X, \ nr_z(c) = 1.$
- Γ mulţime de ecuaţii condiţionate: $SR_{\Gamma} \quad \frac{(\forall X)\theta(u_1) \stackrel{.}{=}_{s_1} \theta(v_1), \dots, (\forall X)\theta(u_n) \stackrel{.}{=}_{s_n} \theta(v_n)}{(\forall X)c[z \leftarrow \theta(t)] \stackrel{.}{=}_{s'} c[z \leftarrow \theta(t')]}, \text{ unde }$ $(\forall Y)t \stackrel{.}{=}_{s}t' \text{ if } \{u_1 \stackrel{.}{=}_{s_1} v_1, \dots, u_n \stackrel{.}{=}_{s_n} v_n\} \in \Gamma, \theta: Y \rightarrow T_{\Sigma}(X), c \in T_{\Sigma}(X \cup \{z\})_{s'}, z \notin X, nr_z(c) = 1.$

Propoziție 18. SR_{Γ} este regulă de deducție corectă.

Teoremă 10. Sunt echivalente:

- (1) $\Gamma \vdash_{R,S,T,C\Sigma,Sub_{\Gamma}} (\forall X)t \stackrel{.}{=}_s t'$,
- (2) $\Gamma \vdash_{R,S,T,SR_{\Gamma}} (\forall X)t \stackrel{.}{=}_s t'$.

Teoremă 11. $E \vdash (\forall X)t \stackrel{\cdot}{=}_s t' \Leftrightarrow t \stackrel{*}{\leftrightarrow}_E t'.$