HOW TO MEASURE PERFORMANCE OF A PARALLEL CODE?

 T_1 - execution time of a serial algorithm

p - number of processes used

 T_p - execution time of a parallel algorithm on p processes

 $S_p = \frac{T_1}{T_p}$ - speedup of a parallel algorithm using p processes

1

HOW TO MEASURE PERFORMANCE OF A PARALLEL CODE?

$$S_p = \frac{T_1}{T_p}$$

$$S_{p} = \frac{T_{1}}{T_{p}}$$

$$Ideally, \quad T_{p} = \frac{T_{1}}{p}$$

which leads to a linear speedup: $S_p = p$

What if not all the code can be parallelized?

r - part of the code which remains serial

In that case, speedup looks as follows:

$$S_p = \frac{T_1}{T_p} = \frac{T_1}{(1 - r)\frac{T_1}{p} + rT_1}$$

So even for a very large p we get:

$$\lim_{p \to \infty} S_p = \lim_{p \to \infty} \frac{T_1}{(1 - r)^{\frac{T_1}{p}} + rT_1} = \frac{1}{r}$$

execution time

AMDAHL'S LAW

But we did not even account for communication overhead...

Speedup then becomes:

$$S_p = \frac{T_1}{(1-r)\frac{T_1}{p} + rT_1 + T_c}$$

Assuming perfectly parallel program (r=0):

$$S_p = \frac{T_1}{\frac{T_1}{p} + T_c}$$

For scalability S_p to be close to p (linear), we require:

$$T_c \ll \frac{T_1}{p}$$
 or $p \ll \frac{T_1}{T_c}$

SCALABILITY

Scalability - ability to maintain efficiency with increasing process count

increasing number of processes does not significantly decrease efficiency for a constant problem size

How fast can I run a problem of constant size given more computational resources?

Weak scaling:

increasing number of processes does not significantly decrease efficiency when we increase problem size commensurately to the number of processes

How big a problem can I run given more computational resources?

SCALABILITY

Strong scaling:

increasing number of processes does not significantly decrease efficiency for a constant problem size

nproc	N	N time	
1	8000	10 s	
2	8000	5 s	
4	8000	2.5 s	
8	8000	1.25 s	

Weak scaling:

increasing number of processes does not significantly decrease efficiency when we increase problem size commensurately to the number of processes

nproc	N	time	
1	1000	1.25 s	
2	2000	1.25 s	
4	4000	1.25 s	
8	8000	1.25 s	

EFFICIENCY

Strong scaling:

increasing number of processes does not significantly decrease efficiency for a constant problem size

Efficiency:

Work per process decreases commensurately with number of processes

$$E_p = \frac{S_p}{p} = \frac{T_1}{pT_p}$$

Weak scaling:

increasing number of processes does not significantly decrease efficiency when we increase problem size commensurately to the number of processes

Efficiency:

Work per process remains constant regardless of the number of processes.

$$E_p = \frac{T_1}{T_p}$$

SCALABILITY

Strong scaling:

increasing number of processes does not significantly decrease efficiency for a constant problem size

		problem size				
		1000	2000	4000	8000	
nproc	1	1.25	2.5	5	10	
	2	0.625	1.25	2.5	5	
	4	0.312	0.625	1.25	2.5	
	8	0.156	0.312	0.625	1.25	

Weak scaling:

increasing number of processes does not significantly decrease efficiency when we increase problem size commensurately to the number of processes

Strong scaling

Weak scaling

SO, ARE WE DOOMED TO FAIL...?

Müller, A., Kopera, M. A., Marras, S., Wilcox, L. C., Isaac, T., & Giraldo, F. X. (2015). Strong scaling for numerical weather prediction at petascale with the atmospheric model NUMA. *The International Journal of High Performance Computing Applications*.

SO, ARE WE DOOMED TO FAIL...?

Abdi, D. S., Wilcox, L. C., Warburton, T. C., & Giraldo, F. X. (2019). A GPU-accelerated continuous and discontinuous Galerkin non-hydrostatic atmospheric model. *The International Journal of High Performance Computing Applications*, 33(1), 81-109.