SAMPLE STATISTICS

Statistic	Formula
Sample mean	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
Sample variance	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} X_{i}^{2} - n\overline{X}^{2} \right]$
Sample proportion	$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$, $X_i = 0, 1$
Coefficient of variation	$CV = \frac{S}{\overline{X}} \times 100$
Covariance	$S_{XY} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})$
Pearson's correlation coefficient	$r = \frac{S_{XY}}{S_X S_Y}$

PROPERTIES OF THE PROBABILITY DISTRIBUTIONS' PARAMETERS

Expected value (Mean)	Variance	Covariance
E(a) = a	Def.: $V(X) = E[(X - \mu)^2]$	Def.: Cov(X, Y) = $E[(X - \mu_X)(Y - \mu_Y)]$
E(aX) = aE(X)	$V(X) = E(X^2) - E(X)^2$	Cov(X, Y) = E(XY) - E(X)E(Y)
E(X + Y) = E(X) + E(Y)	V(a) = 0	Cov(aX, bY) = abCov(X, Y)
	$V(aX) = a^2V(X)$	Cov(X+a, Y+b) = Cov(X, Y)
	$V(X \pm Y) = V(X) + V(Y) \pm 2Cov(X, Y)$	If X and Y are independent then $Cov(X, Y) = 0$

THEOREMS

- If X₁, X₂,...,X_n are iid N(μ , σ) then $\sum_{i=1}^{n} \left(\frac{X_i \mu}{\sigma}\right)^2 = \sum_{i=1}^{n} Z_i^2 \sim \chi^2_{(n)}$ where Z_i~N(0,1)
- If Z~N(0, 1) and Y~ $\chi^2_{(n)}$ are independent random variables then $T = \frac{z}{\sqrt{Y/_n}} \sim t_{(n)}$
- $\blacksquare \quad \text{If $X^{\sim}\chi^2_{(n)}$ and $Y^{\sim}\chi^2_{(m)}$ are independent random variables then $T=\frac{X/_n}{Y/_m}\sim F_{(n,\,m)}$ }$
- If X₁, X₂,...,X_n are iid N(μ , σ) then $\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i \bar{X}}{\sigma}\right)^2 \sim \chi^2_{(n-1)}$

SAMPLING DISTRIBUTIONS

Statistic	σ^2	Population	Sample size	Sampling distribution				
	2.	Normal	n	$Z = \overline{X} - \mu$				
	σ^2 known	Any	Large*	$Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0; 1)$				
$ar{X}$	σ^2 unknown	Normal	n	$T = \frac{\overline{X} - \mu}{\frac{S}{\overline{S}}} \sim t_{(n-1)}$				
		Any	Large	$Z = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} \stackrel{a}{\sim} N(0; 1)$				
ŷ	- Bernoulli	Bernoulli	np ≥ 5 and nq ≥ 5	$Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \stackrel{a}{\sim} N(0; 1)$				

^{*} When the sample is large and the statistic's distribution is indicated as Normal, this distribution is asymptotic.

POINT ESTIMATION

Property	Definition
Unbiasedness	$bias(\hat{\theta}) = E(\hat{\theta}) - \theta = 0$
Mean squared error (efficiency)	$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] = V(\hat{\theta}) + (bias(\hat{\theta}))^2$
Consistency	The <i>unbiased</i> estimator $\hat{\theta}_n$ is consistent if $\lim_{n \to +\infty} V(\hat{\theta}_n) = 0$
Consistency in Mean Square Error	The estimator $\hat{\theta}_n$ is consistent if $\lim_{n \to +\infty} MSE(\hat{\theta}_n) = 0$

INTERVAL ESTIMATION*

Parameter	σ^2	Population	Sample size	C.I. $(1-lpha)$ 100%
μ	σ^2 known	Normal	n	$\bar{V} + z = \frac{\sigma}{\sigma}$
	σ- known	Any	Large	$\bar{X} \pm z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$
	σ^2 unknown	Normal	n	$\bar{X} \pm t_{n-1;1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}$
		Any	Large	$\bar{X} \pm z_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}$

^{*} When the sample is large and the statistic's distribution is indicated as Normal, the confidence level is approximate.

INTERVAL ESTIMATION* (continued)

Parameter	σ^2	Population	Sample size	C.I. $(1-lpha)$ 100%
	2 2	Normal	n_1, n_2	σ_{c}^{2} σ_{c}^{2}
	σ_1^2 , σ_2^2 known	Any	Large	$(\bar{X}_1 - \bar{X}_2) \pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
		Normal	n_1, n_2	$(\bar{X}_1 - \bar{X}_2) \pm t_{n_1 + n_2 - 2; 1 - \frac{\alpha}{2}} S^* \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$ $S^* = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$
$\mu_1 - \mu_2$	$\sigma_1^2 = \sigma_2^2$ unknown	Any	Large	$(\bar{X}_1 - \bar{X}_2) \pm z_{1-\frac{\alpha}{2}} S^* \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$ $S^* = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$
	$\sigma_1^2 eq \sigma_2^2$ unknown	Normal	n_1, n_2	$\begin{split} (\bar{X}_1 - \bar{X}_2) &\pm t_{r;1-\frac{\alpha}{2}} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} \\ \text{where } r \text{ is the integer part of} \\ r^* &= \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{1}{n_1-1}\left(\frac{S_1^2}{n_1}\right)^2 + \frac{1}{n_2-1}\left(\frac{S_2^2}{n_2}\right)^2} \end{split}$
		Any	Large	$(\bar{X}_1 - \bar{X}_2) \pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$
	σ_D^2 known	Normal	Paired	$\overline{D} \pm z_{1-rac{lpha}{2}} rac{\sigma_D}{\sqrt{n}}$
$\mu_1 - \mu_2$	$\sigma_{\!\scriptscriptstyle D}^2$ unknown	Normal	Paired	$\overline{D} \pm t_{n-1;1-\frac{\alpha}{2}} \frac{S_D}{\sqrt{n}}$
	σ_D^2 unknown	Any	Paired & Large	$\overline{D} \pm z_{1-rac{lpha}{2}}rac{\mathcal{S}_{D}}{\sqrt{n}}$
р	-	Bernoulli	np ≥ 5 and nq ≥ 5	$\hat{P} \pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{P}(1-\hat{P})}{n}}$
$p_1 - p_2$	-	Bernoulli	$n_1p_1 \ge 5$; $n_1q_1 \ge 5$ $n_2p_2 \ge 5$; $n_2q_2 \ge 5$	$(\hat{p}_1 - \hat{p}_2) \pm z_{1 - \frac{\alpha}{2}} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$
σ^2	-	Normal or approximately symmetrical	-	$\frac{\left \frac{(n-1)S^2}{\chi^2_{n-1;1-\frac{\alpha}{2}}};\frac{(n-1)S^2}{\chi^2_{n-1;\frac{\alpha}{2}}}\right }{ x ^2_{n-1;\frac{\alpha}{2}}}$

^{*} When the sample is large and the statistic's distribution is indicated as Normal, the confidence level is approximate.

PARAMETRIC TESTS*

H_0	H_1	σ^2	Population	Sample size	Test statistic	
$\mu = \mu_0$	$\mu \neq \mu_0$		Normal	n	$\bar{X} - \mu_0$	
$\mu \ge \mu_0$	$\mu < \mu_0$	σ^2 known	Any	Large	$Z_{obs} = \frac{\bar{X} - \mu_0}{\underline{\sigma}} \sim N(0; 1)$	
$\mu \leq \mu_0$	$\mu > \mu_0$		Ally	Large	\sqrt{n}	
$\mu = \mu_0$	$\mu \neq \mu_0$				$\bar{X} - \mu_0$	
$\mu \ge \mu_0$	$\mu < \mu_0$		Normal	n	$T_{obs} = \frac{X - \mu_0}{\frac{S}{\sqrt{n}}} \sim t_{n-1}$	
$\mu \leq \mu_0$	$\mu > \mu_0$	σ^2 unknown			\sqrt{n}	
$\mu = \mu_0$	$\mu \neq \mu_0$				$Z_{obs} = \frac{\overline{X} - \mu_0}{s} \stackrel{a}{\sim} N(0; 1)$	
$\mu \geq \mu_0$	$\mu < \mu_0$		Any	Large	$Z_{obs} \equiv \frac{S}{S} \sim N(0; 1)$	
$\mu \leq \mu_0$	$\mu > \mu_0$				\sqrt{n}	
$\mu_1 - \mu_2 = D_0$			Normal	n_1 , n_2	$Z_{\text{obs}} = \frac{(\bar{X}_1 - \bar{X}_2) - D_0}{N(0.1)}$	
	$\mu_1 - \mu_2 > D_0$	σ_1^2 , σ_2^2 known	Any	Large	$Z_{obs} = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{\sigma_1^2}{r} + \frac{\sigma_2^2}{r}}} \sim N(0; 1)$	
$\mu_1 - \mu_2 \ge D_0$	$\mu_1 - \mu_2 < D_0$,	J	$\sqrt{n_1 \cdot n_2}$	
$\mu_1 - \mu_2 = D_0$		$\sigma^2 - \sigma^2$			$T_{\perp} = \frac{(\bar{X}_1 - \bar{X}_2) - D_0}{2} \sim t_0$	
$\mu_1 - \mu_2 \le D_0$		$\sigma_1^2 = \sigma_2^2$ unknown	Normal	n_1, n_2	$T_{obs} = \frac{(\bar{X}_1 - \bar{X}_2) - D_0}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{(n_1 + n_2 - 2)}$	
$\mu_1 - \mu_2 \ge D_0$	$\mu_1 - \mu_2 < D_0$				$\sqrt{n_1+n_2-2}$ $\sqrt{n_1}$ n_2	
$\mu_1 - \mu_2 = D_0$	$\mu_1-\mu_2\neq D_0$	2 2			$(\bar{X}_1 - \bar{X}_2) - D_0 \qquad a_{N(0,1)}$	
$\mu_1 - \mu_2 \le D_0$	$\mu_1 - \mu_2 > D_0$	$\sigma_1^2 = \sigma_2^2$ unknown	Any	Large	$Z_{obs} = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2^2}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} {\alpha \choose n_1 + \frac{1}{n_2}} N(0; 1)$	
$\mu_1 - \mu_2 \ge D_0$	$\mu_1 - \mu_2 < D_0$				$\sqrt{n_1+n_2-2}$ $\sqrt{n_1}$ $+$ $\sqrt{n_2}$	
$\mu_1 - \mu_2 = D_0$	$\mu_1 - \mu_2 \neq D_0$	$\sigma_1^2 \neq \sigma_2^2$			$T_{obs} = \frac{(X_1 - X_2) - D_0}{\left[\frac{S_1^2}{2} + \frac{S_2^2}{2}\right]} \sim t_{(r)}$	
$\mu_1 - \mu_2 \le D_0$	$\mu_1 - \mu_2 > D_0$		$\sigma_1^2 eq \sigma_2^2$ Normal	n_1, n_2	$\sqrt{n_1}$ ' n_2 where r is the integer part of	
$\mu_1 - \mu_2 \ge D_0$	$\mu_1 - \mu_2 < D_0$				$r^* = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1} \left(\frac{S_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1} \left(\frac{S_2^2}{n_2}\right)^2}$	
$\mu_1 - \mu_2 = D_0$	$\mu_1-\mu_2\neq D_0$	2 . 2			$(\bar{X}_1 - \bar{X}_2) - D_{0} a_{N(0,1)}$	
$\mu_1 - \mu_2 \le D_0$	$\mu_1 - \mu_2 > D_0$	$\sigma_1^2 \neq \sigma_2^2$ unknown	Any	Large	$Z_{obs} = \frac{(X_1 - X_2) - D_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim N(0; 1)$	
$\mu_1 - \mu_2 \ge D_0$	$\mu_1 - \mu_2 < D_0$				$\sqrt{n_1 + n_2}$	
$\mu_1 - \mu_2 = D_0$	$\mu_1 - \mu_2 \neq D_0$				$\overline{D} - D_0$	
$\mu_1 - \mu_2 \le D_0$	$\mu_1 - \mu_2 > D_0$	σ_D^2 known			$Z_{obs} = \frac{\overline{D} - D_0}{\frac{\sigma_D}{\sqrt{c_0}}} \sim N(0; 1)$	
	$\mu_1 - \mu_2 < D_0$		Normal	Paired	γn	
$\mu_1 - \mu_2 = D_0$					$\overline{D} - D_0$	
	$\mu_1 - \mu_2 > D_0$	σ_D^2 unknown			$T_{obs} = \frac{\overline{D} - D_0}{\frac{S_D}{\sqrt{n}}} \sim t_{(n-1)}$	
$\mu_1 - \mu_2 \ge D_0$					\sqrt{n}	
$\mu_1 - \mu_2 = D_0$		2 .			$\overline{D} - D_{0} a_{M(0,1)}$	
	$\mu_1 - \mu_2 > D_0$	$\sigma_{\!\scriptscriptstyle D}^2$ known			$Z_{obs} = \frac{\overline{D} - D_0}{\frac{\sigma_D}{\sqrt{D}}} \stackrel{a}{\sim} N(0; 1)$	
	$\mu_1 - \mu_2 < D_0$		Any	Paired & large	γn	
$\mu_1 - \mu_2 = D_0$		-2ml		iuige	$Z_{obs} = \frac{\overline{D} - D_0}{\frac{S_D}{\sqrt{\overline{c}}}} {}^a N(0; 1)$	
	$\mu_1 - \mu_2 > D_0$	$\sigma_{ar{D}}$ unknown			$\frac{S_D}{\sqrt{n}}$	
	$\mu_1 - \mu_2 < D_0$				VII.	
$p = p_0$ $n > n$	$p \neq p_0$		Porpoulli	Largo	$Z_{obs} = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \stackrel{a}{\sim} N(0; 1)$	
$p \ge p_0$ $n < n$	$p < p_0$	•	Bernoulli	Large	$\frac{ p_0(1-p_0) }{r}$	
$p \le p_0$	$p > p_0$				V n	

^{*} When the sample is large and the statistic's distribution is indicated as Normal, the significance level is approximate.

PARAMETRIC TESTS* (continued)

H_0	H_1	σ^2	Population	Sample size	Test statistic
$p_{1} - p_{2} = 0$ $p_{1} - p_{2} \ge 0$ $p_{1} - p_{2} \le 0$	$p_{1} - p_{2} \neq 0$ $p_{1} - p_{2} < 0$ $p_{1} - p_{2} > 0$	-	Bernoulli	Large	$Z_{obs} = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n_1} + \frac{\hat{p}(1-\hat{p})}{n_2}}} \stackrel{a}{\sim} N(0;1), \qquad \hat{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}$
$p_1 - p_2 = D_0$ $p_1 - p_2 \ge D_0$ $p_1 - p_2 \le D_0$	$p_1 - p_2 \neq D_0$ $p_1 - p_2 < D_0$	-	Bernoulli	Large	$Z_{obs} = \frac{(\hat{p}_1 - \hat{p}_2) - D_0}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}} \overset{a}{\sim} N(0; 1)$
$\sigma^2 = \sigma_0^2$ $\sigma^2 \ge \sigma_0^2$ $\sigma^2 \le \sigma_0^2$	$\sigma^2 < \sigma_0^2$	-	Normal	n	$\chi_{obs}^{2} = \frac{(n-1)S^{2}}{\sigma_{0}^{2}} \sim \chi_{(n-1)}^{2}$
0	$\frac{\sigma_1^2}{\sigma_2^2} \neq \left(\frac{\sigma_1^2}{\sigma_2^2}\right)_0$ $\frac{\sigma_1^2}{\sigma_2^2} < \left(\frac{\sigma_1^2}{\sigma_2^2}\right)_0$ $\frac{\sigma_1^2}{\sigma_2^2} > \left(\frac{\sigma_1^2}{\sigma_2^2}\right)_0$		Normal	n_1, n_2	$F_{obs} = \frac{S_1^2}{S_2^2} \left(\frac{\sigma_2^2}{\sigma_1^2}\right)_0 \sim F_{(n_1 - 1; n_2 - 1)}$
$\rho = 0$ $\rho \ge 0$ $\rho \le 0$	$\rho \neq 0$ $\rho < 0$ $\rho > 0$	-	Bivariate Normal	n	$T_{obs} = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} \sim t_{(n-2)}$
$\rho = \rho_0(\neq 0)$ $\rho \ge \rho_0(\neq 0)$	$\rho \neq \rho_0$ $\rho < \rho_0$	-	Bivariate Normal	n	$Z_{obs} = \frac{\frac{1}{2} \ln \left(\frac{1+r}{1-r} \right) - \frac{1}{2} \ln \left(\frac{1+\rho_0}{1-\rho_0} \right)}{\frac{1}{\sqrt{n-3}}} \sim N(0; 1)$

^{*} When the sample is large and the statistic's distribution is indicated as Normal, the significance level is approximate.

ANALYSIS OF VARIANCE (ANOVA)

 $k \rightarrow$ nr. levels of the factor (nr. of groups)

 $\mathbf{n}_i \rightarrow \text{nr. observations of the level } i \text{ (i=1,...,k)}$

$$n = \sum_{i=1}^{k} n_i$$

$${S_{i}}^{2} = \frac{1}{n_{i} - 1} \sum_{j=1}^{n_{i}} \left(X_{ij} - \overline{X}_{i\bullet} \right)^{2} = \frac{1}{n_{i} - 1} \left(\sum_{j=1}^{n_{i}} X_{ij}^{2} - n_{i} \overline{X}_{i\bullet}^{2} \right)$$

$$\overline{X}_{i\bullet} = \frac{1}{n_i} \sum_{j=1}^{n_i} X_{ij} = \frac{X_{i\bullet}}{n_i}; \quad X_{i\bullet} = \sum_{j=1}^{n_i} X_{ij}$$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{n_i} X_{ij} = \frac{1}{n} \sum_{i=1}^{k} X_{i \bullet} = \frac{1}{n} \sum_{i=1}^{k} n_i \overline{X}_{i \bullet}$$

$$S_{i}^{\;2} = \frac{1}{n_{i}-1} \sum_{j=1}^{n_{i}} \left(X_{ij} - \overline{X}_{i\bullet}\right)^{2} = \frac{1}{n_{i}-1} \left(\sum_{j=1}^{n_{i}} X_{ij}^{\;2} - n_{i} \overline{X}_{i\bullet}^{\;2}\right) \\ S^{2} = \frac{1}{n-1} \sum_{j=1}^{k} \sum_{j=1}^{n_{i}} \left(X_{ij} - \overline{X}\right)^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} X_{ij}^{\;2} - n \overline{X}^{2}\right) \\ S^{2} = \frac{1}{n-1} \sum_{j=1}^{k} \sum_{j=1}^{n_{i}} \left(X_{ij} - \overline{X}\right)^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} X_{ij}^{\;2} - n \overline{X}^{2}\right) \\ S^{2} = \frac{1}{n-1} \sum_{j=1}^{k} \sum_{j=1}^{n_{i}} \left(X_{ij} - \overline{X}\right)^{2} = \frac{1}{n-1} \left(\sum_{j=1}^{k} \sum_{j=1}^{n_{i}} X_{ij}^{\;2} - n \overline{X}^{2}\right) \\ S^{2} = \frac{1}{n-1} \sum_{j=1}^{k} \sum_{j=1}^{n_{i}} \left(X_{ij} - \overline{X}\right)^{2} = \frac{1}{n-1} \left(\sum_{j=1}^{k} \sum_{j=1}^{n_{i}} X_{ij}^{\;2} - n \overline{X}^{2}\right) \\ S^{2} = \frac{1}{n-1} \sum_{j=1}^{k} \sum_{j=1}^{n_{i}} \left(X_{ij} - \overline{X}\right)^{2} = \frac{1}{n-1} \left(\sum_{j=1}^{k} \sum_{j=1}^{n_{i}} X_{ij}^{\;2} - n \overline{X}^{2}\right) \\ S^{2} = \frac{1}{n-1} \sum_{j=1}^{k} \sum_{j=1}^{n_{i}} \left(X_{ij} - \overline{X}\right)^{2} = \frac{1}{n-1} \left(\sum_{j=1}^{k} \sum_{j=1}^{n_{i}} X_{ij}^{\;2} - n \overline{X}^{2}\right) \\ S^{2} = \frac{1}{n-1} \sum_{j=1}^{k} \sum_{i=1}^{n_{i}} \left(X_{ij} - \overline{X}\right)^{2} = \frac{1}{n-1} \left(\sum_{j=1}^{k} \sum_{i=1}^{n_{i}} X_{ij}^{\;2} - n \overline{X}^{2}\right) \\ S^{2} = \frac{1}{n-1} \sum_{j=1}^{k} \sum_{j=1}^{n_{i}} \left(X_{ij} - \overline{X}\right)^{2} = \frac{1}{n-1} \left(\sum_{j=1}^{k} X_{ij}^{\;2} - n \overline{X}\right)^{2} \\ S^{2} = \frac{1}{n-1} \sum_{j=1}^{k} \sum_{j=1}^{n_{i}} \left(X_{ij} - \overline{X}\right)^{2} = \frac{1}{n-1} \left(\sum_{j=1}^{k} X_{ij}^{\;2} - n \overline{X}\right)^{2} \\ S^{2} = \frac{1}{n-1} \sum_{j=1}^{k} \sum_{j=1}^{n_{i}} \left(X_{ij} - \overline{X}\right)^{2} = \frac{1}{n-1} \left(\sum_{j=1}^{k} X_{ij}^{\;2} - n \overline{X}\right)^{2} \\ S^{2} = \frac{1}{n-1} \sum_{j=1}^{k} \left(X_{ij} - \overline{X}\right)^{2} = \frac{1}{n-1} \left(\sum_{j=1}^{k} X_{ij}^{\;2} - n \overline{X}\right)^{2} \\ S^{2} = \frac{1}{n-1} \sum_{j=1}^{k} \sum_{j=1}^{n_{i}} \left(X_{ij} - \overline{X}\right)^{2} = \frac{1}{n-1} \left(\sum_{j=1}^{k} X_{ij}^{\;2} - n \overline{X}\right)^{2} \\ S^{2} = \frac{1}{n-1} \sum_{j=1}^{k} \sum_{j=1}^{n_{i}} \left(X_{ij} - \overline{X}\right)^{2} \\ S^{2} = \frac{1}{n-1} \sum_{j=1}^{k} \sum_{j=1}^{n_{i}} \left(X_{ij} - \overline{X}\right)^{2} \\ S^{2} = \frac{1}{n-1} \sum_{j=1}^{k} \sum_{j=1}^{n_{i}} \left(X_{ij} - \overline{X}\right)^{2} \\ S^{2} = \frac{1}{n-1} \sum_{j=1}^{k} \sum_{j=1}^{n_{i}} \left(X_{ij} - \overline{X}\right)^{2} \\ S^{2} = \frac{1}{n-1} \sum_{j=1}^{n_{i}} \left(X_{ij} - \overline{X}$$

ANALYSIS OF VARIANCE (ANOVA)

Source of variace	Degrees of freedom (df)	Sum of squares	Mean squares	F
Treatments (between)	k – 1	$SSTr = \sum_{i=1}^{k} n_{i} (\bar{X}_{i \cdot} - \bar{X})^{2}$ $= \sum_{i=1}^{k} \frac{\bar{X}_{i \cdot}^{2}}{n_{i}} - n\bar{X}^{2}$	$MSTr = \frac{SSTr}{k-1}$	$F = \frac{MSTr}{MSE}$
Error (within)	n – k	$SSE = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_{i.})^2$ $= \sum_{i=1}^{k} (n_i - 1) S_i^2$	$MSE = \frac{SSE}{n-k}$	
Total	n – 1	$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \bar{X})^2$ $= (n-1)S^2$		

Tukey's HSD test

Tukey-Kramer test

$$H_0$$
: $\mu_i = \mu_j (i \neq j)$

$$W = \frac{\left|\overline{X}_{i\bullet} - \overline{X}_{j\bullet}\right|}{\sqrt{\frac{S^2}{b}}} \sim q_{(k;n-k)}$$

$$b = n_1 = n_2 = ... = n_k$$

 $S^2 = MSE$;

$$n_1 = n_2 = ... = n_k$$

$$W = \frac{\left|\overline{X}_{i\bullet} - \overline{X}_{j\bullet}\right|}{\sqrt{\frac{S^2}{2} \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}} \sim q_{(k;n-k)}$$

 $q_{(k; n-k)} \rightarrow quantile of the Studentized Range distribution$

Reject H_0 if: $W_{obs} \ge q_{(k; n-k);1-\alpha}$

Bartlett's test

$$H_0$$
: $\sigma_1^2 = \sigma_2^2 = ... = \sigma_k^2 = \sigma^2$

$$Q = \frac{(n-k) \ln S^2 - \sum_{i=1}^k (n_i - 1) \ln S_i^2}{1 + \frac{1}{3(k-1)} \left(\sum_{i=1}^k \frac{1}{n_i - 1} - \frac{1}{n-k} \right)} \sim \chi^2_{(k-1)} \hspace{1cm} S^2 = MSE$$

Reject H_0 if: $Q_{obs} \ge \chi^2_{(k-1; 1-\alpha)}$

NONPARAMETRIC TESTS

$$H_0$$
: $X \sim f(x)$

$$Q = \sum_{i=1}^{k} \frac{\left(O_{i} - E_{i}\right)^{2}}{E_{i}} \overset{a}{\sim} \chi^{2}_{(k-p-1)}$$

Reject H_0 if $Q_{obs} > Q_{crit}$

k → nr. categories or classes A_i

p -> nr. estimated parameters

 $O_i = n_i \rightarrow \text{observed absolute frequency of } A_i$

 $E_i \rightarrow$ estimated absolute frequency of A_i , under H_0

 $E_i = n\pi_i = n \times P(X \in A_i)$

Not more than 20% of classes with E_i <5

Shapiro-Wilk test

 H_0 : $X^{\sim}N(\mu, \sigma)$, μ and σ unknown

$$W = \frac{b^2}{(n-1)S^2}$$

Ordered sample: $x_{(1)} \le x_{(2)} \le ... \le x_{(n)}$

Reject H_0 if $W_{obs} < W_{crit}$

$$b = \begin{cases} \sum_{i=1}^{n/2} a_i \left(x_{(n-i+1)} - x_{(i)} \right), & \text{if } n \text{ is even} \\ \sum_{i=1}^{(n+1)/2} a_i \left(x_{(n-i+1)} - x_{(i)} \right), & \text{where } a_{\lfloor n/2 \rfloor + 1} = 0 \text{ if } n \text{ is odd} \end{cases}$$

Wilcoxon-Mann-Whitney test

R_i → ranks attached to the observations in the combined sorted sample (from 1 to N=n+m)

Small samples with a few ties (n \leq 20, m \leq 20)

 $W^* = Sum of R_i from sample X$

Wilcoxon signed-ranks test

 $n^{\iota} \xrightarrow{} \text{number of differences } D_i \text{ that are different from zero}$

 $R_i \boldsymbol{\rightarrow} \textit{rank}$ value of the absolute difference $|D_i|$ that is affected by the sign of D_i

 W_{crit} of the inferior quantile \rightarrow value of w_{α} in the table for n'

 W_{crit} of the superior quantile $\rightarrow w_{(1-\alpha)} = n'(n'+1)/2 - w_{\alpha}$

$$W^{+} = \sum_{\substack{i=1 \\ (D_{i} > 0)}}^{n'} R_{i}$$

Small samples with

a few ties

 $D_i = X_i - Y_i$

NONPARAMETRIC TESTS (continued)

Spearman's correlation test

 H_0 : X_i and Y_i are mutually independent, $\forall i$

 $R(X_i) \rightarrow rank \text{ of } X_i$

 $R(Y_i) \rightarrow rank \text{ of } Y_i$

 $n \leq 30$ and few ties \rightarrow superior quantiles $[w_{(1-\alpha)}]$ of the exact distribution of ρ are tabled; the inferior quantiles are symmetrical to the superior ones $[w_{\alpha} = -w_{(1-\alpha)}]$

n > 30 or many ties \rightarrow use approximation to N(0,1): $w_{\alpha} \approx z_{\alpha}/\sqrt{n-1}$

p-value of the two-sided test: $p-value \approx 2P\Big[Z>\left|\rho_{obs}\right|\sqrt{n-1}\Big]$

$$\rho = \frac{\displaystyle \sum_{i=1}^{n} R(X_{i}) R(Y_{i}) - n \bigg(\frac{n+1}{2} \bigg)^{2}}{\sqrt{\bigg(\displaystyle \sum_{i=1}^{n} \big[R(X_{i}) \big]^{2} - n \bigg(\frac{n+1}{2} \bigg)^{2} \bigg) \bigg(\displaystyle \sum_{i=1}^{n} \big[R(Y_{i}) \big]^{2} - n \bigg(\frac{n+1}{2} \bigg)^{2} \bigg)}}$$

For few ties

$$\rho = 1 - \frac{6\sum_{i=1}^{n} [R(X_i) - R(Y_i)]^2}{n(n^2 - 1)}$$

DISCRETE DISTRIBUTIONS

Distribution	Probability function	Parameters' domain	Mean (μ)	Variance (σ²)	Moment generating function
Uniform	$\frac{1}{n}$ $x = 1, 2,, n$	$n\in { m I\! N}$	<u>n+1</u> 2	$\frac{n^2-1}{12}$	$\frac{e^{t}(1-e^{nt})}{n(1-e^{t})}$
Bernoulli	$p^{x} (1-p)^{1-x}$ x = 0, 1	$0 \le p \le 1$ $(q = 1 - p)$	p	pq	q + pe ^t
Binomial	$C_{x}^{n}p^{x}(1-p)^{n-x}$ $x = 0, 1,, n$	$0 \le p \le 1$ n = 1, 2, (q = 1 - p)	np	npq	$(q + pe^t)^n$
Hypergeometric	$\frac{C_x^m C_{n-x}^{N-m}}{C_n^N}$ $x = 0,, \min\{m; n\}$	N = 1, 2, $0 \le m \le N$ n = 1, 2,, N	$n\frac{k}{N}$	$\frac{nk(N-k)(N-n)}{N^2(N-1)}$	Not used
Poisson	$\frac{e^{-\lambda}\lambda^{x}}{x!}$ $x = 0, 1, 2, \dots$	λ > 0	λ	λ	exp[λ(e ^t - 1)]
Geometric	$p (1-p)^{x-1}$ x = 1, 2,	$0 \le p \le 1$ $(q = 1 - p)$	1 p	$\frac{q}{p^2}$	$\frac{pe^t}{1-qe^t}$

CONTINUOUS DISTRIBUTIONS

Distribution	Probability density function	Parameters' domain	Mean (μ)	Variance (σ²)	Moment generating function
Uniform	$\begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & o. v. \end{cases}$	$-\infty < a < b < +\infty$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt} - e^{at}}{(b-a)t}$
Normal	$\frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right]$ $-\infty < x < +\infty$	$-\infty < \mu < +\infty$ $\sigma > 0$	μ	σ^2	$\exp\left[\mu t + \frac{1}{2}\sigma^2 t^2\right]$
Gamma	$\begin{cases} \frac{1}{\beta^{\alpha}\Gamma(\alpha)} x^{\alpha-1} e^{-x/\beta}, & x > 0 \\ 0, & x \le 0 \end{cases}$	$\beta > 0$ $\alpha > 0$	αβ	$lphaeta^2$	$\left(\frac{1}{1-\beta t}\right)^{\alpha}, t < \frac{1}{\beta}$
Exponential (particular case of Gamma)	$\begin{cases} \frac{1}{\beta} e^{-x/\beta}, & x > 0 \\ 0, & x \le 0 \end{cases}$	β>0	β	eta^2	$\frac{1}{1-\beta t}, t < \frac{1}{\beta}$
χ² (particular case of Gamma)	$\begin{cases} \frac{x^{(n/2)-1}e^{-x/2}}{2^{n/2}\Gamma(n/2)}, & x > 0\\ 0, & x \le 0 \end{cases}$	n = 1, 2,	n	2n	$\frac{1}{(1-2t)^{n/2}}, t < \frac{1}{2}$
t	$\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)}$ $-\infty < x < +\infty$	n > 0	0 (n > 1)	$\frac{n}{n-2}$ $(n > 2)$	Does not exist
F	$\frac{\Gamma\!\!\left(\frac{m+n}{2}\!\right)\!\!\left(\frac{m}{n}\right)^{\!m/2}}{\Gamma\!\!\left(\frac{m}{2}\right)\!\!\Gamma\!\!\left(\frac{n}{2}\right)} \frac{\sqrt{\frac{m-2}{2}}}{\left(1\!+\!\frac{mx}{n}\right)^{\!\frac{m+n}{2}}}$	m = 1, 2, n = 1, 2,	$\frac{n}{n-2}$ $(n > 2)$	$\frac{2n^{2}(m+n-2)}{m(n-2)^{2}(n-4)}$ (n > 4)	Does not exist

