

Corso di Laurea in Informatica

Identificazione di vulnerabilità SQL Injection tramite Taint Analysis: Analisi della letteratura e Confronto Empirico

Prof. Andrea De Lucia

Dott. Emanuele lannone

Angelo Santangelo

Mat.: 0512112615

La Sicurezza nelle applicazioni web è una preoccupazione.

SQL Injection al terzo posto nella lista delle 10 vulnerabilità più comuni.

Query:

"SELECT * FROM product WHERE categoria = " + userInput

Query:

"SELECT * FROM product WHERE categoria = " + userInput

Esempio:

Identificazione di Vulnerabilità SQL Injection tramite Taint

Query:

"SELECT * FROM product WHERE categoria =

Esempio:

Identificazione di Vulnerabilità SQL Injection tramite Taint

Query:

"SELECT * FROM product WHERE categoria = computer

Esempio:

Identificazione di Vulnerabilità SQL Injection tramite Taint

Query:

"SELECT * FROM product WHERE categoria = " + userInput

Query:

"SELECT * FROM product WHERE categoria =

Query:

"SELECT * FROM product WHERE categoria = 0' DROP TABLE product; - -

Come si può evitare l'attacco?

Come si può evitare l'attacco?

Sanificazione

Come si può evitare l'attacco?

Sanificazione

Query:

"SELECT * FROM product WHERE categoria = 0' DROP TABLE product; --

Come si può evitare l'attacco?

Sanificazione

Query:

"SELECT * FROM product WHERE categoria = 0' DROP TABLE product; --

0 DROP TABLE product

Come si può evitare l'attacco?

Sanificazione

Query:

"SELECT * FROM product WHERE categoria = 0' DROP TABLE product; --

0 DROP TABLE product

Query:

"SELECT * FROM product WHERE categoria = 0 DROP TABLE product

Tecnica che permette la sanificazione dell'input?

Tecnica che permette la sanificazione dell'input?

Taint Analysis:

Query su Google Scholar, usando le seguenti keywords:

- > Taint analysis
- > SQL injection

Query su Google Scholar, usando le seguenti keywords:

- > Taint analysis
- > SQL injection
- ➤ Tool Benchmark Suite

Query su Google Scholar, usando le seguenti keywords:

- > Taint analysis
- > SQL injection
- > Tool Benchmark Suite
- ➤ Java PHP Android

Query su Google Scholar, usando le seguenti keywords:

- > Taint analysis
- > SQL injection
- > Tool Benchmark Suite
- ➤ Java PHP Android

Numero di risultati ottenuti: 1300

Query su Google Scholar, usando le seguenti keywords:

- > Taint analysis
- > SQL injection
- > Tool Benchmark Suite
- > Java PHP Android

Numero di risultati ottenuti: 1300

Dopo **100** risultati, la rilevanza dei risultati diminuiva per l'obiettivo di tesi

Criteri di Inclusione/Esclusione:

- > [E]: non si fa menzione di SQL Injection
- > [E]: non si fa menzione di Taint Analysis

Criteri di Inclusione/Esclusione:

- > [E]: non si fa menzione di SQL Injection
- > [E]: non si fa menzione di Taint Analysis
- > [I]: si presenta un tool di individuazione di SQL injection, tramite T.A.
- > [I]: si presenta un dataset/benchmark

Criteri di Inclusione/Esclusione:

- > [E]: non si fa menzione di SQL Injection
- > [E]: non si fa menzione di Taint Analysis
- > [I]: si presenta un tool di individuazione di SQL injection, tramite T.A.
- > [I]: si presenta un dataset/benchmark

Numero di risultati ottenuti: 30

Criteri di Inclusione/Esclusione:

- > [E]: non si fa menzione di SQL Injection
- > [E]: non si fa menzione di Taint Analysis
- > [I]: si presenta un tool di individuazione di SQL injection, tramite T.A.
- > [I]: si presenta un dataset/benchmark

Risultati rilevanti (a valle della lettura completa): 19

Domande di Ricerca:

> [RQ1.1]: quali tool esistono?

Domande di Ricerca:

- > [RQ1.1]: quali tool esistono?
- > [RQ1.2]: quali sono i benchmark/dataset rilevati?

Domande di Ricerca:

- > [RQ1.1]: quali tool esistono?
- > [RQ1.2]: quali sono i benchmark/dataset rilevati?
- > [RQ2.1]: che grado di eseguibilità/usabilità hanno i tool?

Domande di Ricerca:

- > [RQ1.1]: quali tool esistono?
- > [RQ1.2]: quali sono i benchmark/dataset rilevati?
- > [RQ2.1]: che grado di eseguibilità/usabilità hanno i tool?
- > [RQ2.2]: come sono le prestazioni dei tool?

Risultati del processo di Literature Review

RQ1.1 – Analisi dei Tool Esistenti

> Numero di tool identificati: 14

Risultati del processo di Literature Review

RQ1.1 – Analisi dei Tool Esistenti

> Numero di tool disponibili online: 6

Risultati del processo di Literature Review

RQ1.1 – Analisi dei Tool Esistenti

> Numero di tool disponibili online: 6

RQ1.2 – Analisi dei Benchmark/Dataset Esistenti

Numero di benchmark identificati e disponibili online: 4

Università degli Studi di Salerno

Risultati Esecuzione Tool sui Benchmark

RQ2.1 – Usabilità / Eseguibilità dei Tool

- 3 Tool risultati eseguibili:
- > SQL-Scan
- > WAP
- > RIPS

Risultati Esecuzione Tool sui Benchmark

RQ2.1 – Usabilità / Eseguibilità dei Tool

3 Tool risultati eseguibili:

> SQL-Scan

PHP-Vulnerability-Test-Suite

Risultati Esecuzione Tool sui Benchmark

RQ2.1 – Usabilità / Eseguibilità dei Tool

- 3 Tool risultati eseguibili:
- > SQL-Scan

PHP-Vulnerability-Test-Suite

- > 8.640 istanze NO SQL Injection
- > 912 istanze Sì SQL Injection

Risultati Esecuzione Tool sui Benchmark

RQ2.1 – Usabilità / Eseguibilità dei Tool

- 3 Tool risultati eseguibili:
- > SQL-Scan
- ➤ WAP
 ➤ RIPS

PHP-Vulnerability-Test-Suite

> 8.640 istanze NO SQL Injection

> 912 istanze Sì SQL Injection

9.552

Università degli Studi di Salerno

RQ2.2 – Prestazioni dei Tool

	WAP	RIPS
Precision	12%	15%
Recall	14%	22%
Accuracy	82%	81%
F1 - score	13%	16%
Tempo di esecuzione	1 ora e 18 minuti	43,705 secondi

RQ2.2 – Prestazioni dei Tool

	WAP	RIPS
Precision	12%	15%
Recall	14%	22%
Accuracy	82%	81%
F1 - score	13%	16%
Tempo di esecuzione	1 ora e 18 minuti	43,705 secondi

WAP

RIPS

Identificazione di Vulnerabilità SQL Injection tramite Taint Analysis: Analisi della Letteratura e Confronto Empirico Angelo Santangelo

RQ2.2 – Prestazioni dei Tool

	WAP	RIPS
Precision	12%	15%
Recall	14%	22%
Accuracy	82%	81%
F1 - score	13%	16%
Tempo di esecuzione	1 ora e 18 minuti	43,705 secondi

WAP

RIPS

RIPS

Conclusioni

COMMENTI

Documentazione chiara e semplificare (ridurre) il processo di installazione e configurazione del tool.

SVILUPPI FUTURI

Creazione di un modello di Machine Learning che decreti il vincitore.

Università degli Studi di Salerno
DIPARTIMENTO DI INFORMATICA
Corso di Laurea Triennale in Informatica
Anno accademico 2022/2023

Identificazione di Vulnerabilità SQL Injection tramite Taint Analysis: Analisi della Letteratura e Confronto Empirico

Grazie per l'attenzione!

Angelo Santangelo

a.santangelo18@studenti.unisa.it