UNIVERSIDAD DE EL SALVADOR FACULTAD MULTIDISCIPLINARIA DE OCCIDENTE DEPARTAMENTO DE INGENIERIA.

GUIA DE EJERCICIOS Nº 7. (CÁLCULO DIFERENCIAL DE INGENIERIA)

A) Determinar la derivada que se pide para cada una de las funciones dadas .

	<u>FUNCIÓN</u>	<u>DERIVADA</u>
1)	$f(x) = x^5 - 3x^3 + 8x - 5$	$f^{(4)}(x)$
2)	$f(x) = (x^2 - 3x)^6$	f"(x)
3)	$f(x) = sen(x^2)$	f'''(x)
4)	$f(x) = \frac{2}{x^2}$	f'''(x)
5)	$f(x) = \frac{x}{2 - x}$	f"(x)
6)	$y = x^2 - \frac{1}{\sqrt[3]{x}}$	у""
7)	$y = (2x^3 + 2)^5$	у '''
8)	$y = \frac{x^2}{x^2 + 1}$	у'''
9)	$y = \frac{1}{2x + 5}$	$f^{(4)}(x)$
10)	$f(x) = 4x^5 + 3x^3 - \frac{1}{x}$	$f^{(4)}(x)$
11)	$f(x) = \frac{2x+1}{3x-2}$	$f^{(2)}\left(x\right)$
12)	$f(x) = -9x + 15\ln x$	$f^{(3)}(x)$

1

13)
$$f(x) = e^{2x+1}$$
 $f^{(n)}(x)$

14)
$$f(x) = 2x^6 - 7\sqrt{x} + 5$$
 $f^{(6)}(x)$

15)
$$f(x) = \tan^3(2x - 1)$$
 $f^{(2)}(x)$

16)
$$f(x) = \cot^{-1}(x^3)$$
 $f''(x)$

17)
$$f(x) = \ln(\sin x^2)$$
 $f''(x)$

18)
$$f(x) = \sqrt{5x - 1}$$
 $f'''(x)$

19)
$$f(x) = \frac{1-x}{1+x}$$
 $f'''(x)$

20)
$$f(x) = 5^{\tan x}$$
 $f'''(x)$

21)
$$f(x) = \frac{1}{\sqrt{2-3x}}$$
 $f'''(x)$

22)
$$f(x) = \sqrt{x}$$

$$f^{(n)}(x)$$

23)
$$f(x) = \frac{1}{(1-x)^2}$$
 $f^{(n)}(x)$

24)
$$f(x) = \frac{1}{3x^3}$$
 $f^{(n)}(x)$

25)
$$y = e^{-2x}$$
 $y^{(n)}$

26)
$$y = xe^{-x}$$
 $y^{(n)}$

27)
$$f(x) = \text{sen } x$$
 $f^{(n)}(x)$

28)
$$f(x) = \cos x$$
 $f^{(n)}(x)$

29)
$$f(x) = \cos 2x$$
 $f^{(n)}(x)$

30)
$$f(x) = (2x + 1)^{-1}$$
 $f^{(n)}(x)$

B) Aplicando diferenciación implícita determine x' e y' para las siguientes ecuaciones.

1)
$$x^2 + 3x + xy = 5$$
 2) $x^2 + y^2 = 8$

3)
$$x^4 + x^2y^3 - y^5 = 2x + 1$$
 4) $\sqrt{x} + \sqrt{y} = 4$

5)
$$y^2 - 2y = x$$
 6) $4x^2 + y^2 = 8$

$$7) \qquad 3\sqrt{x} - 5xy = \sqrt{5y}$$

8)
$$3y + \cos y = x^2$$

9)
$$(y-1)^2 = 4(x+2)$$

10)
$$y^3 - 2y + 2x^3 = 4x + 1$$

11)
$$x^3y^2 = 2x^2 + y^2$$

12)
$$x^5 - 6xy^3 + y^4 = 1$$

13)
$$(x^2 + y^2)^6 = x^3 - y^3$$

14)
$$y = (x - y)^2$$

15)
$$y^{-3}x^6 + y^6x^{-3} = 2x + 1$$
 16) $y^4 - y^2 = 10x - 3$

16)
$$v^4 - v^2 = 10x - 3$$

17)
$$\frac{y}{x-y} = x^2 + 1$$

$$18) \quad \frac{x+y}{x-y} = x$$

19)
$$y^2 = \frac{x-1}{x+2}$$

$$20) \quad \frac{x}{y^2} + \frac{y^2}{x} = 5$$

21)
$$x \operatorname{sen}(y) + \cos(2y) = \cos y$$
 22) $xy = \operatorname{sen}(xy)$

22)
$$xy = sen(xy)$$

23)
$$x + y = \cos(xy)$$

24)
$$x = \sec y$$

25)
$$x \operatorname{sen} y - y \cos x = 1$$

26)
$$xy = cot(xy)$$

27)
$$x = \cot^{-1}(\frac{1}{y})$$

28)
$$xy + \cos^{-1}(xy^2) = x^2y$$

29)
$$sen^{-1} (sen (xy)) = sen (x + y)$$

30)
$$\csc^{-1}(x^2 + y^2) = x + y$$

Determine $\frac{d^2y}{dx^2}$ mediante diferenciación implícita. C)

1)
$$x^3 + y^3 = 1$$

2)
$$4v^3 = 6x^2 + 1$$

3)
$$xy^4 = 5$$

4)
$$x^2 - y^2 = 25$$

5)
$$x^2 + 4y^2 = 16$$

$$6) \quad \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

7)
$$x + y = \operatorname{sen} y$$

8)
$$y^2 - x^2 = \tan 2x$$

9)
$$x^2 + 2xy - y^2 = 1$$
 10) $\sqrt{x} + \sqrt{y} = 1$

$$10) \quad \sqrt{x} + \sqrt{y} = 1$$

D) Determine la ecuación general de la recta tangente a la curva en el punto indicado.

1)
$$x^4 + y^3 = 24$$

$$P(-2, 2)$$

2)
$$\frac{1}{x} + \frac{1}{y} = 1$$
 $x = 3$

3)
$$y^2 = x^3(2-x)$$
 P(1,1)

4)
$$\tan y = x$$
 $y = \frac{\pi}{4}$

5)
$$3y + \cos y = x^2$$
 $P(1, 0)$

6)
$$x \cos y = 1$$
 $P(2, \frac{\pi}{3})$

E) Encuentre el o los puntos sobre la gráfica de la ecuación dada donde la recta tangente es horizontal.

1)
$$x^2 - xy + y^2 = 3$$
 2) $y^2 = x^2 - 4x + 7$

- **F)** En cada uno de los siguientes literales haga lo que se pide.
 - 1) Determine el o los puntos sobre la gráfica de $x^2 + y^2 = 25$ donde la pendiente de la tangente es $\frac{1}{2}$.
 - 2) Encuentre el punto donde se cortan las rectas tangentes a la gráfica de $x^2 + y^2 = 25$ en (-3, 4) y (-3, -4).
 - 3) Encuentre el o los puntos sobre la gráfica de $y^3 = x^2$ donde la recta tangente es perpendicular a la recta y + 3x 5 = 0.
 - 4) Encuentre el o los puntos sobre la gráfica de $x^2 xy + y^2 = 27$ donde la recta tangente es paralela a la recta y = 5.
- **G)** Compruebe que las gráficas de las ecuaciones dadas son ortogonales en el punto de intersección indicado .

1)
$$y^2 = x^3$$
 $2x^2 + 3y^2 = 5$ (1,1)

2)
$$y^3 + 3x^2y = 13$$
 $2x^2 - 2y^2 = 3x$ (2,1).

H) Demuestre que :

- 1) La recta normal a $x^3 + y^3 = 3xy$ en el punto $(\frac{3}{2}, \frac{3}{2})$ pasa por el origen.
- 2) Las gráficas de $2x^2 + y^2 = 6$ e $y^2 = 4x$ se intersectan en ángulos rectos .
- 3) Las hipérbolas xy = 1 y $x^2 y^2 = 1$ se intersectan en ángulos rectos .
- G) ¿A qué altura h debe estar el foco de la siguiente figura, si el punto (1.25,0) está en el borde de la región iluminada?

H) Suponga que las curvas C_1 y C_2 se intersecan en (a,b) con pendientes m_1 y m_2 , respectivamente, como se muestra a continuación. Entonces el ángulo positivo θ de C_1 (es decir, desde la recta tangente a C_1 en (a,b)) a C_2 satisface

$$\tan \theta \, = \, \frac{m_2 \, - \, m_1}{1 \, + \, m_1 m_2}$$

I) Compruebe por derivación implícita que la tangente a la elipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ \ \text{en el punto} \ \ (x_0 \, , y_0) \ \text{viene dada por} \ \ \frac{x_0 x}{a^2} + \frac{y_0 y}{b^2} = 1 \ \ .$$

J) Demuestre las siguientes proposiciones .

1) Si
$$x^2 + y^2 = 1$$
 entonces $\frac{d^2y}{dx^2} = -\frac{1}{y^3}$

2) Si
$$\sqrt{x} + \sqrt{y} = 2$$
 entonces $\frac{d^2y}{dx^2} = \frac{1}{\sqrt[3]{x^2}}$

3) Si
$$x^2 + 25y^2 = 100$$
 entonces $\frac{d^2y}{dx^2} = -\frac{4}{25y^3}$