





## **Table of Content What will We Learn Today?**

- 1. Machine Learning
- 2. ML approaches
- 3. Bias and Variance Tradeoff
- 4. Classification vs Regression
- 5. Logistic Regression







## **Machine Learning**







#### What is Machine Learning

- Cabang kecerdasan buatan (Artificial Intelligence/ AI), yang berkaitan dengan desain dan pengembangan algoritma yang memungkinkan komputer mengembangkan perilaku berdasarkan data empiris.
- Karena kecerdasan membutuhkan pengetahuan, maka komputer perlu memperoleh pengetahuan.







- Machine learning adalah pemrograman komputer untuk mengoptimalkan kinerja menggunakan contoh data atau pengalaman masa lalu.
- Learning digunakan ketika:
  - Keahlian manusia tidak ada (navigating on Mars),
  - Manusia tidak mampu menjelaskan keahliannya (speech recognition)
  - Solusi yg perlu disesuaikan dengan kasus tertentu (user biometrics)







#### **ML vs Traditional Programming**

- Traditional programming adalah proses manual—artinya seseorang (programmer) membuat program.
- Sedangkan di machine learning, algoritma secara otomatis merumuskan aturan (rules) dari data.







## **ML** Approaches







#### **Types of Learning**

- 1. Supervised learning
  - Training data mempunyai target class
  - Classification, regression/ prediction
- 2. Unsupervised learning
  - Training data tidak mempunyai target class
  - Clustering
- 3. Semi-supervised learning
  - Sebagian training data memiliki outputs
- 4. Reinforcement learning
  - Rewards diberikan ketika agent mengerjakan tugas tertentu



| Tid | Attrib1 | Attrib2 | Attrib3 | Class |
|-----|---------|---------|---------|-------|
| 1   | Yes     | Large   | 125K    | No    |
| 2   | No      | Medium  | 100K    |       |
| 3   | No      | Small   | 70K     |       |
| 4   | Yes     | Medium  | 120K    |       |
| 5   | No      | Large   | 95K     |       |
| 6   | No      | Medium  | 60K     | No    |
| 7   | Yes     | Large   | 220K    | No    |
| 8   | No      | Small   | 85K     | Yes   |
| 9   | No      | Medium  | 75K     |       |
| 10  | No      | Small   | 90K     | Yes   |

| Ha | AUTIDT | AttribZ | Attilba |
|----|--------|---------|---------|
| 1  | Yes    | Large   | 125K    |
| 2  | No     | Medium  | 100K    |
| 3  | No     | Small   | 70K     |
| 4  | Yes    | Medium  | 120K    |
| 5  | No     | Large   | 95K     |
| 6  | No     | Medium  | 60K     |
| 7  | Yes    | Large   | 220K    |
| 8  | No     | Small   | 85K     |
| 9  | No     | Medium  | 75K     |
| 10 | No     | Small   | 90K     |





#### Stage in Machine Learning

- Data preprocessing
  - Data cleaning, filling missing value, remove outlier
- Train models
  - Select the algorithm
  - Feature selection and extraction
- Evaluate model
  - Assess performance
  - Model comparison
- Deploy model
  - Apply model to new data
  - Real-time demonstration





Train models



Evaluate models



Deploy model







## Why Data Preprocessing?

- Data in the real world is dirty
  - Missing or incomplete: lacking attribute values,
    - e.g., occupation=""
  - Noisy: containing errors or outliers
    - e.g., Salary="-10"
  - Inconsistent: containing discrepancies in codes or names
    - e.g., sex="Girl" vs. sex="Female"
- No quality data, no quality mining results!
  - Quality decisions must be based on quality data

| Sex    | Age | BMI | DM type | DM duration | FBS | Sys BP      | Dias BP | Retinopathy |
|--------|-----|-----|---------|-------------|-----|-------------|---------|-------------|
| Male   | 65  | 25  | II      | 20          | 129 | 130         | 80      | Yes         |
| Male   | 42  | 27  | II      | 300         | 210 | 140         | 90      | No          |
| Female | 31  | 21  | I       | 11          | 164 | 145         | 80      | Yes         |
| Male   | 70  | 32  | II      | 29          | 208 | 160         | 100     | Yes         |
| Female | 54  | 34  | Ш       | 6           | 183 | 155         | 95      | No          |
|        | 46  | 29  | II      | 7           | 198 | 160         | 100     | No          |
| Female | 16  | 24  | I       | -1          | 250 | 135         | 80      | No          |
| Male   | 67  | 30  | II      | 12          | 243 | 165         | 90      | Yes         |
| Female | 51  | 28  | II      | 7           | 163 | 130         | 85      | No          |
| Girl   | 70  | 36  | II      | 20          | 250 | 150         | 90      | Yes         |
| Female | 63  | 35  | П       | 14          | 203 | 160         | 110     | No          |
| Male   | 44  | 39  | II      | 3           | 149 | 140         | 90      | No          |
| Boy    | 51  | 24  | 11      | 9           | 160 | <b>1</b> 55 | 80      | No          |
| Male   | 27  | 19  | 1       | 5           | 170 | 140         | 90      | No          |





#### **Model construction**









### **Use the Model in Prediction**

Tenured?



Yes





#### Bias and variance tradeoff







#### Bias and variance

#### Bias

- Bias adalah perbedaan antara rata rata hasil prediksi dari model ML yang kita develop dengan data nilai yang sebenarnya.
- Bias yang tinggi dikarenakan dalam pembangunan model ML, dilakukan terlalu sederhana (oversimplified).

#### Variance

- Variance adalah variabel dari prediksi yang memberikan kita informasi perserbaran data hasil prediksi.
- Model yang memiliki variance tinggi memiliki korelasi kuat hanya pada training set, sehingga akan berkinerja baik pada training data saja.







#### **Bias variance tradeoff**









## **Underfitting and overfitting**









## Classification vs Regression







## Regression

- Regression (regresi) = metode yang mencoba untuk menentukan kekuatan dan karakter hubungan antara satu variabel dependen dan serangkaian variabel lainnya (variabel independen).
- Algoritma regresi = nilai kontinu (seperti harga, gaji, usia, dll).
- Algoritma klasifikasi = nilai diskrit (seperti stroke atau normal, spam atau bukan spam, dll)
- Both are supervised learning









#### Classification, regression, clustering

| price    | bedrooms | bathrooms | sqft_living | sqft_lot | floors | waterfront | view | condition | grade | sqft_above | sqft_basement | yr_built |
|----------|----------|-----------|-------------|----------|--------|------------|------|-----------|-------|------------|---------------|----------|
| 221900.0 | 3        | 1.00      | 1180        | 5650     | 1.0    | 0          | 0    | 3         | 7     | 1180       | 0             | 1955     |
| 538000.0 | 3        | 2.25      | 2570        | 7242     | 2.0    | 0          | 0    | 3         | 7     | 2170       | 400           | 1951     |
| 180000.0 | 2        | 1.00      | 770         | 10000    | 1.0    | 0          | 0    | 3         | 6     | 770        | 0             | 1933     |
| 604000.0 | 4        | 3.00      | 1960        | 5000     | 1.0    | 0          | 0    | 5         | 7     | 1050       | 910           | 1965     |
| 510000.0 | 3        | 2.00      | 1680        | 8080     | 1.0    | 0          | 0    | 3         | 8     | 1680       | 0             | 1987     |

#### Regression (house price dataset)

|      | id    | gender | age  | hypertension | heart_disease | ever_married | work_type     | Residence_type    | avg_glucose_level | bmi  | smoking_status  | stroke |
|------|-------|--------|------|--------------|---------------|--------------|---------------|-------------------|-------------------|------|-----------------|--------|
| 0    | 9046  | Male   | 67.0 | 0            | 1             | Yes          | Private       | Urban             | 228.69            | 36.6 | formerly smoked | 1      |
| 1    | 51676 | Female | 61.0 | 0            | 0             | Yes          | Self-employed | Rural             | 202.21            | NaN  | never smoked    | 1      |
| 2    | 31112 | Male   | 80.0 | 0            | 1             | Yes          | Private       | Rural             | 105.92            | 32.5 | never smoked    | 1      |
| 3    | 60182 | Female | 49.0 | 0            | 0             | Yes          | Private       | Urban             | 171.23            | 34.4 | smokes          | 1      |
| 4    | 1665  | Female | 79.0 | 1            | 0             | Yes          | Self-employed | Rural             | 174.12            | 24.0 | never smoked    | 1      |
|      |       | 1000   | 1922 | 2020         | 922           | 1220         | 620           | 10 / 100<br>00 mm | 1993              | 1.12 | (22)            | us:    |
| 5105 | 18234 | Female | 80.0 | 1            | 0             | Yes          | Private       | Urban             | 83.75             | NaN  | never smoked    | 0      |
| 5106 | 44873 | Female | 81.0 | 0            | 0             | Yes          | Self-employed | Urban             | 125.20            | 40.0 | never smoked    | 0      |
| 5107 | 19723 | Female | 35.0 | 0            | 0             | Yes          | Self-employed | Rural             | 82.99             | 30.6 | never smoked    | 0      |
| 5108 | 37544 | Male   | 51.0 | 0            | 0             | Yes          | Private       | Rural             | 166.29            | 25.6 | formerly smoked | 0      |
| 5109 | 44679 | Female | 44.0 | 0            | 0             | Yes          | Govt_job      | Urban             | 85.28             | 26.2 | Unknown         | 0      |
|      |       |        |      |              |               |              |               |                   |                   |      |                 |        |

Classification (stroke dataset)



Clustering (customer dataset)





#### **Linear Regression**

- Membentuk hubungan antara dua variabel menggunakan garis lurus.
  - Simple linear regression: Y = a + bX + u
  - Multiple linear regression:  $Y = a + b_1X_1 + b_2X_2 + b_3X_3 + ... + b_tX_t + u$

#### Where:

- Y = the variable that you are trying to predict (dependent variable).
- X = the variable that you are using to predict Y (independent variable).
- a = the intercept.
- b = the slope.
- u = the regression residual.







#### **Linear Regression**

- Regresi linier mencoba menggambar garis yang paling dekat dengan data dengan menemukan slope dan intercept dan meminimalkan regression errors.
- Ordinary Least Squares (OLS) adalah metode estimasi yang paling umum untuk model linier



the best line would have the lowest sum of squared errors (SSE)











#### **Linear Regression**

- Example
  - y (dependent variable) = price (house price)
  - x (independent variable ) = sqft\_living (square feet)





Q = House with 1000 square feet, approximate price? A = USD 237562.663











- Logistic Regression adalah algoritma klasifikasi Machine Learning yang digunakan untuk memprediksi ketika variabel dependen (target) adalah kategoris.
- Target adalah variabel biner yang berisi kelas 1 (untuk kasus benar/ya) atau 0 (untuk kasus salah/tidak).



Glucose





- Merupakan sebuah kasus khusus regresi linier di mana responsnya adalah 'log of odds'.
- Model Regresi Logistik memprediksi P(Y=1) dengan memasukkan data ke fungsi logit.

#### **Linear Regression**

#### Input features



$$\hat{y} = \hat{b} + \widehat{w}_1 \cdot x_1 + \cdots + \widehat{w}_n \cdot x_n$$

#### Linear models for classification: Logistic Regression

#### Input features









p = 1/(1 + np.exp (-(0.04033676\*x -5.6523997)))



Q = Patient with BG 190 mg/dL, is it diagnosed as diabetes? A = Probability diabetes is 0.882





```
#hold out, dibagi menjadi training dan testing set
X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=42)
#scaling
scaler = StandardScaler().fit(X train)
X train = scaler.transform(X train)
X test = scaler.transform(X test)
# data preprocessing selesai
#mulai melakukan modelling. model ML learning dari training set
model=LogisticRegression()
model.fit(X train, y train)
# membuat prediksi
y pred = model.predict(X test)
#menghitung performa model, dengan accuracy dll
print('Accuracy ',accuracy score(y test, y pred))
print('Precision ',precision score(y test, y pred, average='macro'))
print('Recall ',recall score(y test, y pred, average='macro'))
print('Confusion matrix ', confusion matrix(y test, y pred))
plot_confusion matrix(model, X test, y test, cmap=plt.cm.Blues)
plt.show()
```





# Thank YOU

