RL seminar # 5: Multi-armed bandits

Eugene Golikov

MIPT, Deep learning lab & iPavlov.ai

December 2, 2017

Problem setup

Full RL:

We have:

- ► Episode length *T* (let it be finite)
- ightharpoonup State space \mathcal{S} , action space \mathcal{A}
- ▶ Initial state distribution $p(s_0)$ (unknown)
- ▶ Transition distribution p(s'|s, a) (unknown)
- ▶ Reward distribution p(r|s, a) (unknown)

Problem setup

Full RL:

We have:

- ► Episode length *T* (let it be finite)
- ▶ State space S, action space A
- ▶ Initial state distribution $p(s_0)$ (unknown)
- ▶ Transition distribution p(s'|s, a) (unknown)
- ▶ Reward distribution p(r|s, a) (unknown)

Goal: derive policy $\pi^*(a|s)$, that maximizes the expected total reward over episode:

$$\pi^* = rg \max_{\pi} \mathbb{E}_{\tau \sim \pi} R_T, \quad \text{where } R_T = \sum_{t=1}^T r_t$$

Problem setup

Multi-armed bandit:

A special case: $|\mathcal{S}| = 1$.

So we have:

- ▶ Number of trials *T* (let it be finite)
- ▶ Action space A (let it be finite)
- ▶ Reward distribution p(r|a) (unknown)

Goal: derive policy $\pi^*(a)$, that maximizes the expected total reward over all amount of trials:

$$\pi^* = rg \max_{\pi} \mathbb{E}_{\tau \sim \pi} R_T, \quad \text{where } R_T = \sum_{t=1}^T r_t$$

Goal: derive policy $\pi^*(a)$, that maximizes the expected total reward over all amount of trials:

$$\pi^* = rg \max_{\pi} \mathbb{E}_{ au \sim \pi} R_T, \quad \text{where } R_T = \sum_{t=1}^{t} r_t$$

However, since trials are independent,

$$\mathbb{E}_{\tau \sim \pi} R_T = \mathbb{E}_{\tau \sim \pi} \sum_{t=1}^T r_t = \sum_{t=1}^T \mathbb{E}_{a_t \sim \pi(a_t)} \mathbb{E}_{r_t \sim \rho(r_t|a_t)} r_t = T \mathbb{E}_{a \sim \pi(a)} \mathbb{E}_{r \sim \rho(r|a)} r$$

Goal: derive policy $\pi^*(a)$, that maximizes the expected total reward over all amount of trials:

$$\pi^* = rg \max_{\pi} \mathbb{E}_{\tau \sim \pi} R_T, \quad \text{where } R_T = \sum_{t=1}^{I} r_t$$

However, since trials are independent,

$$\mathbb{E}_{\tau \sim \pi} R_T = \mathbb{E}_{\tau \sim \pi} \sum_{t=1}^T r_t = \sum_{t=1}^T \mathbb{E}_{a_t \sim \pi(a_t)} \mathbb{E}_{r_t \sim \rho(r_t|a_t)} r_t = T \mathbb{E}_{a \sim \pi(a)} \mathbb{E}_{r \sim \rho(r|a)} r$$

Action-value function:

Let
$$Q^*(a) = \mathbb{E}_{r \sim p(r|a)} r$$
, then

$$\mathbb{E}_{ au \sim \pi} R_T = T \mathbb{E}_{a \sim \pi(a)} Q^*(a)$$

Goal: derive policy $\pi^*(a)$, that maximizes the expected total reward over all amount of trials:

$$\pi^* = rg \max_{\pi} \mathbb{E}_{ au \sim \pi} R_T, \quad ext{where } R_T = \sum_{t=1}^I r_t$$

However, since trials are independent,

$$\mathbb{E}_{\tau \sim \pi} R_T = \mathbb{E}_{\tau \sim \pi} \sum_{t=1}^T r_t = \sum_{t=1}^T \mathbb{E}_{a_t \sim \pi(a_t)} \mathbb{E}_{r_t \sim \rho(r_t|a_t)} r_t = T \mathbb{E}_{a \sim \pi(a)} \mathbb{E}_{r \sim \rho(r|a)} r$$

Action-value function:

Let $Q^*(a) = \mathbb{E}_{r \sim p(r|a)} r$, then

$$\mathbb{E}_{ au \sim \pi} R_T = T \mathbb{E}_{a \sim \pi(a)} Q^*(a)$$

So.

$$\pi^*(a) = \operatorname*{arg\,max}_{\pi} \mathbb{E}_{a \sim \pi(a)} Q^*(a)$$

We have:

$$\pi^*(a) = \argmax_{\pi} \mathbb{E}_{a \sim \pi(a)} Q^*(a)$$

What is the optimal policy?

We have:

$$\pi^*(a) = rg \max_{\pi} \mathbb{E}_{a \sim \pi(a)} Q^*(a)$$

What is the optimal policy?

It is greedy:

$$\pi^*(a) = [a = a^*], \quad a^* = \underset{a \in \mathcal{A}}{\operatorname{arg \, max}} Q^*(a)$$

We can't derive it, since we don't know Q^* . Hence, we have to estimate it.

General training process:

Given: number of trials T

Goal: maximize the total reward R_T

- 1. Choose an initial estimate Q_0 , set trial counter t := 1
- 2. Derive policy π_t using current estimate Q_{t-1}
- 3. Take an action a_t according to policy π_t ; get a reward r_t
- 4. Correct estimate: $Q_{t-1} o Q_t$
- 5. If t < T, t := t + 1 and return to point 2, else finish.

General training process:

Given: number of trials T

Goal: maximize the total reward R_T

- 1. Choose an initial estimate Q_0 , set trial counter t := 1
- 2. Derive policy π_t using current estimate Q_{t-1}
- 3. Take an action a_t according to policy π_t ; get a reward r_t
- 4. Correct estimate: $Q_{t-1} o Q_t$
- 5. If t < T, t := t + 1 and return to point 2, else finish.

Questions:

- 1. How to choose initial estimate Q_0 ?
- 2. How to derive policy π_t ?
- 3. How to correct an estimate?

Trial-average:

$$Q_t(a) := rac{\sum_{k=1}^t r_k[a_k = a]}{\sum_{k=1}^t [a_k = a]}, ext{ if } a = a_t, ext{ else } Q_t(a) := Q_{t-1}(a)$$

Let
$$k_t(a) = \sum_{k=1}^t [a_k = a]$$

Motivation:

▶ If $k_t(a) \to \infty$ as $t \to \infty$ for every a, Q_t converges to Q^* according to the law of big numbers

Recurrent formula:

$$Q_t(a) := Q_{t-1}(a) + rac{1}{t}(r_t - Q_{t-1}(a)), ext{ if } a = a_t, ext{ else } Q_t(a) := Q_{t-1}(a)$$

1/t — value of an observation; decreases with time

How to correct an estimate?

Exponential running average:

Motivation:

- ▶ Sometimes *Q** can change with time unstationary problems
- ▶ In this setup, recent observations should be more valueable

Idea:

▶ Make value of an observation constant instead of 1/t

$$Q_t(a) := Q_{t-1}(a) + \alpha(r_t - Q_{t-1}(a)), \text{ if } a = a_t, \text{ else } Q_t(a) := Q_{t-1}(a)$$

The main tradeoff:

- $lackbox{ We want to have high rewards, so we want to take actions with high <math>Q^* \Leftarrow \mathsf{EXPLOITATION}$
- ▶ We want to know, what actions have higher Q^* , so we want to have better estimate Q_t
- We want to have better estimate Q_t , so we want to explore in action space \Leftarrow EXPLORARTION

Greedy:

Motivation:

▶ Take the "best" possible action

$$\pi_t(a) = \left[a = rg \max_a Q_t(a)
ight]$$

Why bad:

- ▶ The best according to Q_t is not necessarily the best according to Q^*
- ► No exploration at all!

ϵ -greedy:

Motivation:

▶ We should try to take different actions to know, which one is best

Idea:

lacktriangle Take "suboptimal" actions with some probability ϵ

$$\pi_t(a) = (1 - \epsilon) \left[a = rg \max_a Q_t(a)
ight] + rac{\epsilon}{|\mathcal{A}|}$$

Usually we want to gradually decrease epsilon during training

Greedy – ϵ -greedy policies comparison

Experimental setup (from Suttons book):

- |A| = 10, T = 1000
- $p(r|a) = N(Q^*(a), 1)$
- ▶ $Q^*(a) \sim N(0,1)$

Plots are averaged over 2000 independent experiments

Boltzmann policy:

Motivation:

 We want to find the best action, so no need to explore actions, which is already known to be bad

Idea:

ightharpoonup Sample probability should be higher for actions for which the estimate Q_t is higher

$$\pi_t = \operatorname{Softmax}(Q_t/\tau)$$

au o 0 — greedy policy, $au o \infty$ — all actions are sampled uniformly.

Upper confidence bound:

Motivation:

We want find the best action, so we want to explore actions that "has chance to be the best"

Idea:

► Take an action with highest Q-value upper bound

$$\pi_t(a) = \left[a = rg \max_{a} \left(Q_t(a) + c \frac{2 \ln t}{k_t(a)}\right)\right]$$

Interpretation:

- ▶ If $k_t(a)$ is small, we should explore the action a more
- ▶ In t encourages us to re-explore actions periodically

UCB – ϵ -greedy policies comparison

How to choose initial estimate?

Realistic estimate:

Idea:

▶ Initialize $Q_0(a)$ with some estimate on action rewards

Optimistic estimate:

Motivation:

▶ We want to encourage exploration at the beginning of training

Idea:

▶ Initialize $Q_0(a)$ with unrealistically large constant

Then even simple greedy strategy will try all of the actions available

Realistic – optimistic estimates comparison

