Practicas de Matlab

Resolución de EDO con métodos monopaso

Hoja 3

Nombre:

Apellido:

DNI:

Table of Contents

Practicas de Matlab	1
Resolución de EDO con métodos monopaso	
Hoja 3	
1. Implementación de métodos explícitos	
Práctica 1 (Implementación del método de Euler explícito)	
Práctica 2 (Implementación del método de Euler modificado explícito)	
Práctica 3 (Implementación del método de Euler mejorado explícito)	2
Práctica 4 (Implementación del método de Runge-Kutta explícito)	
Práctica 5 (EDO de corazón)	
Apéndice código: funciones de Euler, Euler modificado, Euler meiorado y Runge-Kutta 4	

1. Implementación de métodos explícitos

Práctica 1 (Implementación del método de Euler explícito)

Escribir en el Apéndice A1 una función implementando el método de Euler (explícito)

$$\begin{cases} y_{i+1} = y_i + hf(t_i, y_i) & i = 0, \dots, N-1 \\ y_0 \approx a \end{cases}$$

para el PVI (problema de valor inicial para sistemas de EDOs) y que responda a la sintaxis

El pseudocódigo correspondiente se encuentra en el CV (campus virtual).

Práctica 2 (Implementación del método de Euler modificado explícito)

Escribir en el Apéndice A1 una función que implemente el método de Euler modificado (explícito)

$$y_{i+1} = y_i + hf\left(t_i + \frac{h}{2}, y_i + \frac{h}{2}f(t_i, y_i)\right), \quad i = 0, \dots, N-1$$

 $y_0 \approx a$

para el PVI (problema de valor inicial para sistemas de EDOs) y que responda a la sintaxis

Práctica 3 (Implementación del método de Euler mejorado explícito)

Escribir en el Apéndice A1 una función que implemente el método de Euler mejorado (explícito)

$$y_{i+1} = y_i + \frac{h}{2}(f(t_i, y_i) + f(t_{i+1}, y_i + hf(t_i, y_i)), i = 0, ..., N - 1$$

 $y_0 \approx a$

para el PVI (problema de valor inicial para sistemas de EDOs) y que responda a la sintaxis [t,y]=mieulermej(f,intv,y0,N)

Práctica 4 (Implementación del método de Runge-Kutta explícito)

Escribir en el Apéndice A1 una función que implemente el método de Euler mejorado (explícito)

$$y_{i+1} = y_i + h\Phi(t_i, y_i, h), \quad i = 0, \dots, N-1$$

 $y_0 \approx a$

donde $\Phi(t,y,h) = \frac{1}{6}(F_1 + 2F_2 + 2F_3 + F_4)$ y

$$F_{1} = f(t, y)$$

$$F_{2} = f\left(t + \frac{h}{2}, y + \frac{h}{2}F_{1}\right)$$

$$F_{3} = f\left(t + \frac{h}{2}, y + \frac{h}{2}F_{2}\right)$$

$$F_{4} = f(t + h, y + hF_{3}),$$

para el PVI (problema de valor inicial para sistemas de EDOs) y que responda a la sintaxis

Práctica 5 (EDO de corazón)

Considera el siguiente PVI

$$\frac{dx_1}{dt} = x_2$$

$$\frac{dx_2}{dt} = -16x_1 + 4\sin(2t)$$

$$x_1(0) = 0$$

$$x_2(0) = 2$$

en el intervalo, $[0,2\pi]$. Ahora intenta resolverla numéricamente usando

- 1. el método de Euler N = 100,400,800
- 2. el método de Euler modificado
- 3. el método de Euler mejorado
- 4. el método de Runge Kutta 4

Solución

Diagrama de fase (Corazon), met=mieuler,intv=[0 6.28319],

Diagrama de fase (Corazon), met=mieulermej,intv=[0 6.28319], x0=[0 2], N=100

Diagrama de fase (Corazon), met=mieulermod,intv=[0 6.28319],

Apéndice código: funciones de Euler, Euler modificado, Euler mejorado y Runge-Kutta 4

function [t,y]=mieuler(f,intv,y0,N)
end

etc