

Congruent Triangles Ex 10.1 Q3

Answer:

It is given that

 $\triangle PQRS$ is a square and $\triangle SRT$ is an equilateral triangle.

We have to prove that

(1)
$$PT = QT$$
 and (2) $\angle TQR = 15^{\circ}$

Since,

$$\angle PSR = 90^{\circ}$$
 (Angle of square)

$$\angle TSR = 60^{\circ}$$
 (Angle of equilateral triangle)

Now, adding both

$$\angle PSR + \angle TSR = 90^{\circ} + 60^{\circ}$$

$$\angle PST = 150^{\circ}$$

Similarly, we have $\angle QRT = 150^{\circ}$

Thus in ΔPST and ΔORT we have

PS = QR (Side of square)

$$\angle PST = \angle QRT = 150^{\circ}$$

And ST = RT (equilateral triangle side)

So by SAS congruence criterion we have

$$\Delta PST \cong \Delta QRT$$

Hence
$$PT = QT$$

(2)

Since

QR = RS (Sides of Square)

RS = RT (Sides of Equilateral triangle)

We get

QR = RT

Thus, we get

 $\angle TQR = \angle RTQ$ (Angles opposite to equal sides are equal)

Now, in the triangle TQR, we have

$$\angle TQR + \angle RTQ + \angle QRT = 180^{0}$$

$$\angle TQR + \angle TQR + 150^0 = 180^0$$

$$2\angle TQR + 150^0 = 180^0$$

$$2\angle TQR = 180^0 - 150^0$$

$$2\angle TQR = 30^0$$

$$\angle TQR = \frac{30^0}{2} = 15^0$$

Congruent Triangles Ex 10.1 Q4

Answer:

We have to prove that the median of an equilateral triangle are equal.

Let $\triangle ABC$ be an equilateral triangle with AD, BE, and CF as its medians.

Let
$$AB = AC = BC$$

In $\triangle BFC$ and $\triangle CEB$ we have

$$BF = CE$$
 (Since $AB = AC = \frac{1}{2}AB = \frac{1}{2}AC$ similarly $BF = CE$)

 $\angle ABC = \angle ACB$ (In equilateral triangle, each angle = 60°)

And BC = BC (common side)

So by SAS congruence criterion we have

 $\Delta BFC \cong \Delta CEB$

This implies that,

BE = CF

Similarly we have AD = BE

Hence AD = BE = CF

********* END ********