Neural Networks Can Approximate Continuous Functions

Abstract

A clean Tex version of the proof seen during the lectures that neural networks with ReLU activation can approximate continuous functions.

1 Statement

Definition. C([a,b]) is the set of real continuous functions on [a,b].

Definition. $\mathcal{P}(n,l)$ is the set of rectangle 1D-1D perceptrons with l hidden layers and n neurons in each hidden layer.

Theorem (Particular case of the universal approximation theorem¹).

$$\forall f \in \mathcal{C}([a,b]), \ \forall \varepsilon > 0, \ \exists N \in \mathbb{N} \ and \ p \in \mathcal{P}(N,1) \ s.t. \ \|p-f\|_{\infty} < \varepsilon$$

Where $||g||_{\infty}$ is infinity norm of g on [a,b]; i.e. $||g||_{\infty} = \max_{x \in [a,b]} (|g(x)|)$.

2 Idea

The idea of the proof is to split the interval [a, b] in sub intervals such that f has variation less than ε in the sub-intervals. Then, choose the weights of the neural network to interpolate linearly f et the beginning and end of the sub-intervals.

A live version of this proof process is available here: https://pauldubois98.github.io/NeuralNetworkLiveProof/.

Start with a given function $f \in [a, b]$:

 $^{^{1} \}mathrm{See}\ \mathtt{https://en.wikipedia.org/wiki/Universal_approximation_theorem}\ \mathrm{for}\ \mathrm{details}.$

Interpolate f linearly from the beginning to the end of each interval:

Create a network with weights that fit this interpolation:

3 Proof

Let $\varepsilon > 0$ and $f \in \mathcal{C}([a,b])$ with $a,b \in \mathbb{R}$, we want $N \in \mathbb{N}$ and $p \in \mathcal{P}(N,1)$ such that $\|p - f\|_{\infty} < \varepsilon$.

ReLU Network If $p \in \mathcal{P}(N, 1)$, then

$$p(x) = \xi + \sum_{k=0}^{N-1} \gamma_k (\alpha_k x + \beta_k)_+$$

where $(x)_+$ is ReLU(x).

All we need to do is to find the right coefficients $\xi, \alpha_k, \beta_k, \gamma_k (0 \le k < N)$ such that $|f(x) - p(x)| < \varepsilon \quad (\forall x \in [a, b])$.

Uniform Continuity Since f is continuous on a compact set, so f is uniformly continuous. Thus, $\forall x_1, x_2 \in [a, b], \exists \delta > 0$ such that

$$|x_1 - x_2| < \delta \implies |f(x_1) - f(x_2)| < \varepsilon.$$

Sub-intervals Let $c_0 = a$ and $c_{i+1} = c_i + \delta$. Let $N \in \mathbb{N}$ be such that $c_N \geq b$ and redefine $c_N = b$.

Coefficients Take:

- $\alpha_k = 1 \quad (0 < k < N)$
- $\bullet \ \beta_k = -c_k \quad (0 \le k < N)$
- $\tilde{\gamma_k} = \frac{f(c_{k+1}) f(c_k)}{c_{k+1} c_k} \quad (0 \le k < N)$
- $\gamma_0 = \tilde{\gamma 0}$
- $\gamma_k = \tilde{\gamma_{k+1}} \tilde{\gamma_k}$ (0 < k < N)
- $\xi = f(a)$

Thus,

$$p(x) = \xi + \sum_{k=0}^{N-1} \gamma_k (\alpha_k x + \beta_k)_+$$

becomes

$$p(x) = f(a) + \sum_{k=0}^{N-1} \gamma_k (x - c_k)_+.$$

Intermediate Result

Claim ('The network interpolates linearly from c_n to c_{n+1} '). If $x \in [c_n, c_{n+1}]$, then $p(x) = f(c_n) + \tilde{\gamma_n}(x - c_n)$.

Proof. Case k = 0: Let $x \in [c_0, c_1]$, then:

$$p(x) = f(a) + \sum_{k=0}^{N-1} \gamma_k (x - c_k)_+$$

since $x \le c_1$, $(x - c_k)_+ = 0$ $\forall k > 0$, and $(x - c_k)_+ = x - c_k$:

$$p(x) = f(a) + \gamma_0(x - c_0)$$

as $\tilde{\gamma_0} = \gamma_0$ and $a = c_0$, we finally have $p(x) = f(a) + \tilde{\gamma_0}(x - c_0)$, as expected. **Recursion:**

- Suppose that if $x \in [c_n, c_{n+1}]$, then $p(x) = f(c_n) + \tilde{\gamma}_n(x c_n)$.
- We want to show that if $x \in [c_{n+1}, c_{n+2}]$, then $p(x) = f(c_{n+1}) + \tilde{\gamma_{n+1}}(x c_{n+1})$.

Let $x \in [c_{n+1}, c_{n+2}]$, let's calculate p(x):

$$p(x) = f(a) + \sum_{k=0}^{N-1} \gamma_k (x - c_k)_+$$

if k > n+1, then $c_k \ge x$, so $(x-c_k)_+ = 0$; similarly, if $k \le n+1$, then $c_k < x$, so $(x-c_k)_+ = x-c_k$ thus:

$$p(x) = f(a) + \sum_{k=0}^{n+1} \gamma_k (x - c_k)$$

Now, let's split $(x - c_k)$ to $(x - c_{n+1}) + (c_{n+1} - c_k)$:

$$p(x) = f(a) + \sum_{k=0}^{n+1} \gamma_k (x - c_{n+1}) + \sum_{k=0}^{n+1} \gamma_k (c_{n+1} - c_k)$$

We can add again $(c_{n+1} - c_k)_+$ for n+1 < k < N (this is just adding zeros) to the second sum to make $p(c_{n+1})$ appear:

$$p(x) = f(a) + \sum_{k=0}^{N-1} \gamma_k (c_{n+1} - c_k) + \sum_{k=0}^{n+1} \gamma_k (x - c_{n+1})$$

$$= f(c_{n+1}) + \sum_{k=0}^{n+1} \gamma_k(x - c_{n+1})$$

Now, $\gamma_k = \tilde{\gamma_k} - \tilde{\gamma_{k-1}}$ 0 < k < N and $\tilde{\gamma_0} = \gamma_0$, so:

$$p(x) = f(c_{n+1}) + \gamma_0(x - c_{n+1}) + \sum_{k=1}^{n+1} (\tilde{\gamma_k} - \tilde{\gamma_{k-1}})(x - c_{n+1})$$

This is a telescoping series, after simplification, we have:

$$p(x) = f(c_{n+1}) + \tilde{\gamma}_{n+1}(x - c_{n+1})$$

As expected.

Therefore, we have that $\forall 0 \leq n < N$, if $x \in [c_n, c_{n+1}]$, then $p(x) = f(c_n) + \tilde{\gamma}_n(x - c_n)$.

Bounds for f(x) and p(x) on $[c_n, c_{n+1})$ Take $x \in [c_n, c_{n+1})$, then we have: $|c_n - x| < \delta$, so $|f(x) - f(c_n)| < \varepsilon$.

WLOG², take $f(c_n) \le f(c_{n+1})$: - $f(c_n) \le p(x) \le f(c_{n+1})$ and $|f(c_{n+1}) - f(c_n)| \le \varepsilon$ so $|p(x) - f(c_n)| \le \varepsilon$.

 $^{^2}$ Without Loss Of Generalities

Bound for f(x) - p(x) on [a, b]

$$|f(x) - p(x)| = |f(x) - f(c_n) + f(c_n) - p(x)|$$

$$\leq |f(x) - f(c_n)| + |p(x) - f(c_n)|$$

$$< \varepsilon + \varepsilon = 2\varepsilon$$

This is true $\forall 0 \le n < N, \ \forall x \in [c_n, c_{n+1})$, it is true $\forall x \in [a, b)$. Moreover, p(b) = f(b) (from the property above), so $|f(x) - p(x)| < 2\varepsilon$ on all of [a, b].

Thus, we finally have $||f - p||_{\infty} < 2\varepsilon$.

Conclusion Now, taking $\tilde{\varepsilon} = \frac{1}{2}\varepsilon$, we get $||f - p||_{\infty} < \tilde{\varepsilon}$ with the same reason-

Hence, f can be ϵ approximated by a single hidden layer perceptron.