Correlation between linguistic content and social links in an on-line network

Raúl Aranovich, Rachael Duke, Joshua Gomez, Vladimir Filkov.

University of California Davis Research supported by NSF Award #1445079

Introduction

 General question: Why do busy people choose to be active participants in Public Virtual Communites (PVC)?

- a. Simple answer: direct individual benefit
- b. Alternative answer (Wasko & Faraj 2005, Von Krogh et al. 2012): indirect reward, by being members of a team that reaps collective benefits.

Introduction

• **Hypothesis 1**: If indirect rewards matter more than direct benefits, users in a PVC should be more likely to contribute to threads that are semantically related.

Methods

- Build a network of users × threads (documents)
- Documents are classified according to their content, using NLP techniques.
- Edges should develop between users and documents of similar semantic class.
- Expectation: A network modeling a PVC will have a community structure determined by the content of the documents.

Introduction

 Focus of investigation: communities in the online technical forum StackOverflow

dasblinkenlight United States 4,355

c#, java, c++

Felix Kling Sunnyvale, CA 4,154

javascript, jquery, ajax

- StackOverfow
 - "...a community of 7.2 million programmers, just like you, helping each other."
 - Question-answer threads, member-generated.
 - Up/down answer votes determine reputation.

- Steps
 - Web scraping (Selenium)
 - Corpus construction (NLTK, BeautifulSoup, ElementTree)
 - Text processing (Sklearn: tf/idf scaling, LSA)
 - Clustering (Scipy: agglomerative clust.)
 - Social Network Analysis and Visualization (Networkx, Cytoscape)

- Output
 - A corpus of SOF posts including the text of the post, and the users who contributed to that post.
 - Top-voted posts on security.
 - Corpus size: 315 posts; 441253 tokens
 - A bipartite network of StackOverflow posts (as documents) and users
 - Posts are classified according to their latent semantic similarities into semantic classes (22)
- Question: Can we detect a community structure in this network with respect to the semantic class attribute?

• Contents of the groups: One outlier, two primary clusters corresponding to client-side and server-side issues.

OUTLIER	1	SQL servers
SERVER-SIDE	2-3	asp-net, permissions, root
	4-6	Mobile, oath, authentication, securestring
	7	Java, Iframe, jquery
	8	Servers
	9-14	Users, passwords, encryption, databases, SQL injection
CLIENT-SIDE	15	Session security (cookies, remember user, etc.)
	16	web browsers: json
	17	web browsers: http, chrome firefox
	18	SSL, certificates
	19	Encryption
	20-22	a bit of everything (applications?), Java, vulnerabilities

- Explore social links among posts
 - Use Information about posts and common users to build a bipartite network.
 - 721 users; 2219 edges
- Problem: community detection in (bipartite) networks (Fortunato 2010)
- Solution: Map the network onto one of its partitions
 - Classify nodes according to semantic class
 - Run clustering tests on it.
 - Example: Semantic class 15.

- Evaluate clustering
- Attribute Assortativity (Newman 2003)
 - Are nodes mostly connected to similar nodes?
 - Assortativity coefficient for semantic class: 0.0384
- Intra-cluster density: A community will have:
 - a. more internal than external edges $(d_i d_e > 0)$
 - b. higher relative density than the whole network $(d_i d > 0)$

Group density (communities indicated by * or **)

GROUP	#n	#e	d(i)	d(e)	d(i)-d(e)	d(i)-d	GROUP	#n	#e	d(i)	d(e)	d(i)-d(e)	d(i)-d
1	. 7	1	0.048	0.053	-0.005	-0.048	**12	19	59	0.345	0.124	0.221	0.249
2	10	0	0.000	0.021	-0.021	-0.096	13	14	4	0.044	0.052	-0.008	-0.052
3	14	2	0.022	0.036	-0.014	-0.074	*14	54	274	0.191	0.101	0.090	0.095
**4	. 3	4	1.333	0.154	1.179	1.237	**15	12	19	0.288	0.107	0.181	0.192
**5	5	4	0.400	0.072	0.328	0.304	16	6	1	0.067	0.078	-0.012	-0.029
6	14	3	0.033	0.025	0.008	-0.063	17	13	7	0.090	0.035	0.054	-0.006
*7	10	7	0.156	0.070	0.085	0.060	18	7	2	0.095	0.069	0.026	-0.001
8	7	1	0.048	0.041	0.006	-0.048	19	5	1	0.100	0.119	-0.019	0.004
9	6	1	0.067	0.007	0.060	-0.029	**20	10	10	0.222	0.110	0.113	0.126
**10	22	145	0.628	0.134	0.493	0.532	**21	16	25	0.208	0.084	0.124	0.112
*11	16	16	0.133	0.071	0.062	0.037	*22	45	100	0.101	0.091	0.010	0.005

- Graph
 - Size: # posts
 - Shade: density
 - Edge color: weight

- Evaluate clustering
 - Hypothesis 1 cannot be rejected, but it is not as strong as we would like.
 - There is a core component, connected by heavy weight edges: Not all users are the same?
 - There is evidence for clusters (communities) forming around posts with the same value for the semantic attribute, but more for some groups than others.

Linguistic and social factors

 Why do people take the time to contribute to PVCs like StackOverflow?

- Immediate self-benefit: A high reputation (intangible remuneration) can be leveraged to land a good job or advance one's career
- Triumph of the commons: Benefits are bestowed to the members of a group if the group itself thrives; members forgo of personal benefits to reap the collective benefits.

Linguistic and social factors

- Interpretation of results: dual composition of PVCs
 - A PVC may have a core of users that tend to the commons and reap collective benefits ("wardens").
 - There may also be a swarm of users ("poachers") that ony contribute to the site occasionally for individual benefit.
 - Some content may be more attractive to one class of user than another.
 - Further research: Are both types of users necessary in the ecosystem of the thriving PVC?

Conclusions

- We have built a copus of SOF posts
- We classified the posts according to content and we mapped them onto a network according to social links
- We found that posts form communities based on their content, but in a non-uniform way.
- The findings support a view of PVCs in which members may have dual motives to participate.
- Using social links to enhance the extration of semantic information 9Yazdani & Popescu-Belis 2013).

Selected References

Fortunato, Santo (2010). Community detection in graphs. *Physics Reports* 486 75–174

von Krogh, G.; Haefliger, S.; Spaeth, S.; & Wallin, M. W. (2012). Carrots and Rainbows: Motivation and Social Practice in Open Source Software Development. *MIS Quarterly* 36(2): 649-676.

Newman, M. E. J. (2003). Mixing patterns in networks. *Physical Review* E 67, 026126 1-13

Wasko, M. M.; & Faraj, S (2005). Why should I share? Examining social capital and knowledge contribution in electronic networks of practice. *MIS Quarterly* 29(1): 35-57.

Yazdani, Majid & Andrei Popescu-Belis (2013). Computing text semantic relatedness using the contents and links of a hypertext encyclopedia. *Artificial Intelligence* 194: 176–202