ARE213 Problem Set #3

Peter Alstone & Frank Proulx

December 1, 2013

Part A: Linear models to motivate RD

(i) LM results comparison

Using a series of linear models (with heteroskedasticity consistent "robust" standard errors), we find that for a range of model formulations there is a significant effect on housing price from the presence of hazardous waste cleanup sites, but not in the direction one would expect. Instead of a reduction in housing value we estimate an increase in the value, which does not seem likely to be true. The coefficient for the hazardous waste indicator variable (npl2000) takes a wide range of values depending on which additional explanatory variables are included in the model, from 0.04 (i.e., approximately a 4% increase) for the simple model only including 1980 housing values and npl2000 to estimate 2000 housing values, to 0.09 for a model including both housing and demographic characteristics.

Requirements for Unbiased Estimates [add to this]: For our estimates to be unbiased we would need to include all of the potential sources of variation in housing price in a linear model. A particular challenge is that there are very few sites with NPL2000 status (only 2% of sites), so while the overall sample size is large there is very little support for estimates related to NPL2000 status compared to other covariates. Critically, the overlap assumption must hold for the regression to be successful.

(ii) Comparing covariates

We compare the covariates between census tracts and sites in a series of contingency tables and find that there are wide disparities between census tracts with and without NPL2000 status. This erodes confidence that there is support in the data to use tract-level linear regression models, since the overlap assumption may be violated from wide differences in the other characteristics on the tract level. On the site level, simply comparing over / under the trigger limit for the national priorities list (HRS score of 28.5) seems to solve some but not all the problems with overlap. While many covariates cannot be said to come from different distributions there are still some that have significant differences. Narrowing into a window from 16.5 - 40.5 (with the 28.5 dividing line) results in comparisons for which the hypothesis that the covariates are from the same distribution is not rejected. Overall, these comparisons motivate the regression discontinuity design. By narrowing in on a region where overlap in distribution for the covariates holds we have a fighting chance to identify a treatment effect, albeit with difficulty in establishing external validity.

Part B: RDD setup

Based on the plot of the density distribution (Figure 1) using default values for bandwidth and bin width $(h \approx 12.6, b \approx 1.6)$, it does not appear that there is a significant discontinuity in the neighborhood of HRS=28.5. The estimated value lines appear to nearly match with each other, and more importantly

Table 1: Linear models for effect of NPL(2000) on housing value (with many additional state fixed effects omitted)

	simple model	+housing char.	+demographics	+state fixed effects
	(1)	(2)	(3)	(4)
npl2000	0.040*** (0.012)	0.055^{***} (0.012)	$0.090^{***} (0.010)$	0.068***(0.009)
lnmeanhs8	0.856*** (0.011)	0.866*** (0.018)	0.619*** (0.022)	$0.514^{***} (0.022)$
firestoveheat80		0.074***(0.020)	0.182*** (0.023)	0.230*** (0.033)
nofullkitchen80		-1.776***(0.176)	-0.751****(0.164)	-0.559****(0.152)
zerofullbath80		1.243*** (0.139)	1.044*** (0.124)	$0.863^{***} (0.116)$
bedrms1_80occ		$0.421^* (0.249)$	0.404* (0.237)	$0.240 \ (0.234)$
bedrms2_80occ		-0.436*(0.229)	$0.156 \ (0.216)$	-0.004 (0.214)
bedrms3_80occ		-0.524**(0.230)	-0.147 (0.217)	-0.153 (0.214)
$bedrms4_80occ$		-0.111 (0.226)	0.004 (0.217)	-0.213(0.214)
bedrms5_80occ		0.721***(0.231)	0.732^{***} (0.222)	$0.430^* (0.220)$
blt0_1yrs80occ		-0.216***(0.045)	$-0.010 \ (0.044)$	0.109**(0.045)
blt2_5yrs80occ		-0.295****(0.029)	$0.011\ (0.028)$	$0.039 \ (0.026)$
blt6_10yrs80occ		-0.271^{***} (0.021)	-0.048**(0.021)	0.002(0.021)
blt10_20yrs80occ		$-0.242^{***} (0.017)$	-0.136***(0.015)	-0.123^{***} (0.014)
blt20_30yrs80occ		-0.191****(0.017)	-0.181****(0.014)	-0.156****(0.013)
blt30_40yrs80occ		-0.190****(0.026)	-0.121***(0.025)	-0.104****(0.023)
occupied80		$0.730^{***} (0.050)$	0.242*** (0.046)	-0.093**(0.044)
pop_den8			$0.00001^{***} (0.00000)$	0.00001*** (0.00000
shrblk8			-0.161***(0.014)	-0.058****(0.013)
shrhsp8			-0.329***(0.021)	-0.100***(0.022)
child8			-0.630***(0.058)	$-0.431^{***} (0.052)$
old8			-0.737****(0.047)	-0.447^{***} (0.044)
shrfor8			$1.377^{***} (0.048)$	$0.567^{***} (0.041)$
ffh8			-0.006 (0.034)	-0.084***(0.032)
smhse8			$0.407^{***} (0.022)$	0.323****(0.022)
hsdrop8			$0.010 \; (0.025)$	0.042^* (0.024)
no_hs_diploma8			-0.537****(0.039)	$-0.262^{***}(0.034)$
ba_or_better8			0.112*** (0.034)	$0.450^{***} (0.035)$
unemprt8			-0.654***(0.071)	-1.420***(0.076)
povrat8			$-0.275^{***} (0.051)$	0.118** (0.048)
welfare8			1.271*** (0.070)	$0.284^{***} (0.067)$
avhhin8			0.00001*** (0.00000)	0.00001*** (0.00000
as.factor(statefips)2				-0.129****(0.027)
as.factor(statefips)4				$0.011 \ (0.015)$
as.factor(statefips)5				$-0.150^{***} (0.025)$
as.factor(statefips)6				$0.340^{***} (0.017)$
as.factor(statefips)8				$0.207^{***} (0.015)$
as.factor(statefips)9				$0.157^{***} (0.015)$
as.factor(statefips)10				0.230*** (0.018)
as.factor(statefips)11				$0.102^{***} (0.024)$
as.factor(statefips)12				$-0.005 \ (0.013)$
as.factor(statefips)13				$0.182^{***} (0.015)$
as.factor(statefips)15				$0.081^{**} (0.038)$
as.factor(statefips)16				0.039*(0.020)

Notes:

^{***}Significant at the 1 percent level.

**Significant at the 5 percent level.

*Significant at the 10 percent level.

Table 2: Contingency table for a range of factors by npl2000 status

	N	0	1	Combined	Test Statistic
		N = 47260	N = 985	N = 48245	
npl1990:0	48245	100% (47260)	24% (239)	98% (47499)	$\chi_1^2 = 36355, \ P < 0.001^1$
1		0% (0)	$76\% \ (746)$	2% (746)	
pop_den8	48245	580 2677 6178	$147 \ 522 \ 1701$	$548\ 2605\ 6080$	$F_{1,48243} = 525, P < 0.001^2$
shrblk8	48245	$0.00\ 0.02\ 0.08$	$0.00\ 0.02\ 0.07$	0.00 0.02 0.08	$F_{1,48243} = 0.35, P = 0.55^2$
shrhsp8	48245	$0.01\ 0.02\ 0.06$	$0.01\ 0.01\ 0.03$	$0.01\ 0.02\ 0.06$	$F_{1,48243} = 39, \ P < 0.001^2$
child8	48245	$0.24\ 0.29\ 0.33$	$0.26\ 0.30\ 0.33$	$0.24\ 0.29\ 0.33$	$F_{1,48243} = 35, \ P < 0.001^2$
shrfor8	48245	$0.02\ 0.04\ 0.08$	$0.02\ 0.03\ 0.06$	$0.02\ 0.04\ 0.08$	$F_{1,48243} = 44, \ P < 0.001^2$
ffh8	48245	$0.10\ 0.15\ 0.24$	$0.09\ 0.13\ 0.20$	$0.10\ 0.15\ 0.24$	$F_{1,48243} = 40, P < 0.001^2$
smhse8	48245	$0.42\ 0.53\ 0.63$	$0.47\ 0.56\ 0.64$	$0.42\ 0.53\ 0.63$	$F_{1,48243} = 34, P < 0.001^2$
hsdrop8	48245	$0.05\ 0.11\ 0.19$	$0.06\ 0.12\ 0.19$	$0.05\ 0.11\ 0.19$	$F_{1,48243} = 3.8, P = 0.051^2$
no_hs_diploma8	48245	$0.18 \ 0.29 \ 0.43$	$0.23\ 0.33\ 0.43$	$0.19\ 0.29\ 0.43$	$F_{1,48243} = 42, P < 0.001^2$
ba_or_better8	48245	0.08 0.14 0.24	$0.07\ 0.11\ 0.18$	$0.08\ 0.14\ 0.24$	$F_{1,48243} = 52, P < 0.001^2$
unemprt8	48245	$0.04\ 0.06\ 0.08$	$0.04\ 0.06\ 0.08$	$0.04\ 0.06\ 0.08$	$F_{1,48243} = 22, P < 0.001^2$
povrat8	48245	$0.05\ 0.08\ 0.14$	$0.05 \ 0.08 \ 0.13$	$0.05\ 0.08\ 0.14$	$F_{1.48243} = 0.02, P = 0.9^2$
welfare8	48245	$0.03\ 0.05\ 0.09$	$0.03\ 0.05\ 0.09$	$0.03\ 0.05\ 0.09$	$F_{1,48243} = 4.2, P = 0.041^2$
favinc8	48245	18786 22882 27697	18943 22085 25676	18789 22863 27660	$F_{1,48243} = 15, P < 0.001^2$
avhhin8	48245	16349 20383 25211	16766 19957 23589	16358 20371 25166	$F_{1,48243} = 5.7, P = 0.017^2$
meanrnt80	48115	223 268 324	217 256 303	223 268 323	$F_{1,48113} = 27, \ P < 0.001^2$
mdvalhs9	48245	43929 69394 125500	48500 72700 130600	44000 69400 125600	$F_{1,48243} = 6.1, P = 0.014^2$
meanrnt9	48190	390 491 636	378 471 620	389 491 635	$F_{1,48188} = 6.3, P = 0.012^2$
mdvalhs0	48245	82500 120700 178000	85400 120400 166200	82600 120700 177800	$F_{1,48243} = 0.28, P = 0.6^2$
meanrnt0	48127	520 646 822	515 621 800	520 645 821	$F_{1,48125} = 5, P = 0.025^2$
tothsun8		874 1278 1735	937 1343 1807	875 1280 1737	$F_{1,48125} = 3, P = 0.023$ $F_{1,48243} = 9, P = 0.003^2$
	48245			450 751 1091	$F_{1,48243} = 9, P = 0.003$ $F_{1,48243} = 60, P < 0.001^2$
ownocc8	48245	448 748 1089	566 878 1212		$F_{1,48243} = 60, P < 0.001^2$
owner_occupied80	48245	0.48 0.67 0.79	0.58 0.71 0.80	0.49 0.67 0.79	$F_{1,48243} = 38, \ P < 0.001^2$
bltlast5yrs80	48245	0.02 0.09 0.22	0.05 0.12 0.20	0.02 0.09 0.22	$F_{1,48243} = 24, P < 0.001^2$
bltlast10yrs80	48245	0.07 0.22 0.45	0.13 0.26 0.40	0.07 0.22 0.45	$F_{1,48243} = 14, P < 0.001^2$
firestoveheat80	48245	0.00 0.01 0.04	0.01 0.03 0.07	0.00 0.01 0.05	$F_{1,48243} = 132, P < 0.001^2$
noaircond80	48245	0.17 0.40 0.66	0.30 0.47 0.68	0.17 0.40 0.66	$F_{1,48243} = 58, \ P < 0.001^2$
nofullkitchen80	48245	$0.00\ 0.01\ 0.02$	$0.01\ 0.01\ 0.02$	$0.00\ 0.01\ 0.02$	$F_{1,48243} = 20, P < 0.001^2$
zerofullbath80	48245	0.00 0.01 0.03	0.01 0.02 0.03	0.00 0.01 0.03	$F_{1,48243} = 48, P < 0.001^2$
northeast: 0	48245	78% (36651)	62% (611)	77% (37262)	$\chi_1^2 = 132, \ P < 0.001^1$
1		22% (10609)	38% (374)	23% (10983)	
midwest: 0	48245	77% (36338)	78% (770)	77% (37108)	$\chi_1^2 = 0.89, \ P = 0.34^1$
1		23% (10922)	22% (215)	23% (11137)	
south: 0	48245	69% (32425)	$76\% \ (753)$	69% (33178)	$\chi_1^2 = 28, \ P < 0.001^1$
1		31% (14835)	$24\% \ (232)$	31% (15067)	
west: 0	48245	77% (36366)	83% (821)	77% (37187)	$\chi_1^2 = 22, \ P < 0.001^1$
1		23% (10894)	$17\% \ (164)$	23% (11058)	_
meanhs8	48245	$38270\ 52659\ 73074$	38213 49126 64321	38269 52576 72906	$F_{1,48243} = 20, P < 0.001^2$
$bedrms02_80$	48245	$0.32\ 0.46\ 0.62$	$0.33\ 0.43\ 0.55$	$0.32\ 0.45\ 0.62$	$F_{1,48243} = 10, P = 0.001^2$
$bedrms34_80$	48245	$0.36\ 0.52\ 0.65$	$0.43\ 0.55\ 0.63$	$0.36\ 0.52\ 0.65$	$F_{1,48243} = 9.7, P = 0.002^2$
detach80	43074	$0.45\ 0.70\ 0.84$	$0.57\ 0.73\ 0.83$	$0.46\ 0.70\ 0.84$	$F_{1,43072} = 16, P < 0.001^2$
bedrms0_80occ	48245	0 0 0	0 0 0	0 0 0	$F_{1,48243} = 0.22, P = 0.64^2$
bedrms1_80occ	48245	$0.01\ 0.03\ 0.06$	$0.02\ 0.03\ 0.06$	$0.01\ 0.03\ 0.06$	$F_{1,48243} = 7.4, P = 0.007^2$
bedrms2_80occ	48245	$0.15\ 0.25\ 0.36$	$0.19\ 0.27\ 0.35$	$0.16\ 0.25\ 0.36$	$F_{1.48243} = 16, P < 0.001^2$
bedrms3_80occ	48245	$0.39\ 0.48\ 0.57$	$0.43\ 0.49\ 0.55$	$0.39\ 0.48\ 0.57$	$F_{1,48243} = 1.2, P = 0.27^2$
bedrms4_80occ	48245	$0.09\ 0.14\ 0.22$	$0.10\ 0.15\ 0.21$	$0.09\ 0.14\ 0.22$	$F_{1,48243} = 0.27, P = 0.61^2$
bedrms5_80occ	48245	0.01 0.02 0.05	0.01 0.03 0.04	$0.01\ 0.02\ 0.05$	$F_{1,48243} = 1.5, P = 0.22^2$
blt0_1yrs80occ	48245	$0.00\ 0.01\ 0.05$	$0.01\ 0.02\ 0.05$	$0.00\ 0.01\ 0.05$	$F_{1,48243} = 44, P < 0.001^2$
blt2_5yrs80occ	48245	0.01 0.06 0.17	0.02 0.09 0.16	0.01 0.06 0.17	$F_{1,48243} = 42, \ P < 0.001^2$
blt6_10yrs80occ	48245	0.01 0.08 0.19	0.05 0.12 0.19	0.01 0.09 0.19	$F_{1,48243} = 52, P < 0.001^2$
blt10_20yrs80occ	48245	0.07 0.16 0.26	0.12 0.18 0.25	0.07 0.16 0.26	$F_{1,48243} = 29, P < 0.001^2$
blt20_30yrs80occ	48245	0.06 0.14 0.26	0.12 0.16 0.25	0.07 0.16 0.26	$F_{1,48243} = 25, P < 0.001$ $F_{1,48243} = 31, P < 0.001^2$
blt30_40vrs80occ	48245 48245	0.03 0.07 0.14	0.05 0.08 0.13	0.07 0.14 0.26 0.03 0.07 0.14	$F_{1,48243} = 31, P < 0.001$ $F_{1,48243} = 21, P < 0.001^2$
blt40_yrs80occ			0.05 0.08 0.13 0.07 0.18 0.32		$F_{1,48243} = 21, P < 0.001^2$ $F_{1,48243} = 11, P = 0.001^2$
	48245	0.03 0.14 0.43		0.03 0.14 0.42	$F_{1,48243} = 11, F = 0.001^{2}$
detach80occ	48245	0.86 0.96 0.99	0.83 0.93 0.98	0.86 0.96 0.99	$F_{1,48243} = 40, P < 0.001^2$
attach80occ	48245	0.00 0.01 0.04	0.00 0.01 0.02	0.00 0.01 0.04	$F_{1,48243} = 40, P < 0.001^2$
mobile80occ	48245	0.00 0.00 0.06	0.00 0.04 0.13	0.00 0.00 0.06	$F_{1,48243} = 238, \ P < 0.001^2$
occupied80	48245	0.92 0.95 0.97	0.93 0.95 0.97	0.92 0.95 0.97	$F_{1,48243} = 3.4, P = 0.066^2$
bltmore30_80	48245	0.08 0.27 0.56	0.17 0.31 0.46	0.08 0.28 0.55	$F_{1,48243} = 8.8, P = 0.003^2$
nbr_dummy: 0	48245	89% (41989)	$56\% \ (\ 551)$	88% (42540)	$\chi_1^2 = 1002, \ P < 0.001^1$
1		$11\% \ (5271)$	44% (434)	12% (5705)	

 $a\ b\ c$ represent the lower quartile a, the median b, and the upper quartile c for continuous variables.

N is the number of non–missing values.

Numbers after percents are frequencies.

Tests used:

 $^{^{1}\}mathrm{Pearson}$ test; $^{2}\mathrm{Wilcoxon}$ test

Table 3: Contingency table by HRS test status (over/under 28.5)

	N	FALSE	TRUE	Combined	Test Statistic
has 92	487	$\frac{N = 181}{7.5 \ 16.5 \ 23.1}$	$N = 306$ $36.3 \ 42.3 \ 51.9$	$N = 487$ $20.2 \ 34.7 \ 46.0$	$F_{1,485} = 1135, \ P < 0.001^{1}$
hrs_82 npl1990 : 0	487	87% (158)	1% (3)	33% (161)	$\chi_1^2 = 383, \ P < 0.001^2$
1	401		99% (303)	67% (326)	$\chi_1 = 565, \ P < 0.001$
npl2000 : 0	487	13% (23) 84% (152)	1% (3)	32% (155)	$\chi_1^2 = 361, \ P < 0.001^2$
1	401	16% (29)	99% (303)	68% (332)	$\chi_1 = 501, T < 0.001$
pop_den8	487	146 533 1939	146 483 1415	145 504 1568	$F_{1.485} = 0.4, P = 0.53^{1}$
shrblk8	487	0.00 0.01 0.06	0.00 0.02 0.05	0.00 0.01 0.05	$F_{1,485} = 0.45, P = 0.5^1$
shrhsp8	487	0.00 0.01 0.03	0.00 0.01 0.03	0.00 0.01 0.03	$F_{1,485} = 0.27, P = 0.6^1$
child8	487	0.26 0.30 0.33	0.27 0.30 0.33	0.26 0.30 0.33	$F_{1.485} = 0.01, P = 0.93^{1}$
shrfor8	487	$0.01\ 0.03\ 0.05$	0.02 0.03 0.06	0.01 0.03 0.06	$F_{1.485} = 4.7, P = 0.03^{1}$
ffh8	487	$0.11\ 0.15\ 0.21$	0.08 0.13 0.19	$0.09\ 0.14\ 0.20$	$F_{1,485} = 7.4, P = 0.007^1$
smhse8	487	$0.52\ 0.61\ 0.68$	$0.48\ 0.57\ 0.66$	$0.50\ 0.59\ 0.66$	$F_{1,485} = 8.5, P = 0.004^{1}$
hsdrop8	487	$0.07\ 0.13\ 0.20$	$0.06\ 0.11\ 0.18$	$0.07\ 0.12\ 0.19$	$F_{1,485} = 2.9, P = 0.09^{1}$
no_hs_diploma8	487	$0.30\ 0.39\ 0.50$	$0.24\ 0.34\ 0.42$	$0.26\ 0.36\ 0.46$	$F_{1,485} = 20, P < 0.001^{1}$
ba_or_better8	487	$0.05\ 0.08\ 0.13$	$0.07\ 0.11\ 0.18$	$0.06\ 0.10\ 0.16$	$F_{1,485} = 22, P < 0.001^{1}$
unemprt8	487	$0.05\ 0.07\ 0.10$	$0.04\ 0.06\ 0.09$	$0.05\ 0.07\ 0.09$	$F_{1,485} = 11, P < 0.001^1$
povrat8	487	$0.06\ 0.09\ 0.14$	$0.05\ 0.07\ 0.13$	$0.05\ 0.08\ 0.13$	$F_{1,485} = 3.9, P = 0.048^{1}$
welfare8	487	$0.04\ 0.07\ 0.09$	$0.04\ 0.05\ 0.09$	$0.04\ 0.06\ 0.09$	$F_{1,485} = 9.7, P = 0.002^{1}$
favinc8	487	$18744\ 21026\ 24470$	$19054\ 22301\ 26440$	$18906\ 21693\ 25444$	$F_{1,485} = 4.8, P = 0.029^{1}$
avhhin8	487	$16862\ 19578\ 22230$	$17198 \ 20209 \ 23805$	16939 19869 23172	$F_{1,485} = 3.9, P = 0.05^1$
meanrnt80	484	$208\ 242\ 284$	$218\ 256\ 309$	214 249 300	$F_{1,482} = 9.3, P = 0.002^{1}$
mdvalhs9	487	43800 58300 116100	50335 73500 131175	46800 67407 125450	$F_{1,485} = 8.4, P = 0.004^{1}$
meanrnt9	487	$352\ 412\ 569$	$380\ 470\ 629$	369 449 596	$F_{1,485} = 13, \ P < 0.001^1$
mdvalhs0	487	73900 101000 145400	87850 121200 161800	82150 114400 156650	$F_{1,485} = 14, \ P < 0.001^{1}$
meanrnt0	485	470 560 700	$520\ 618\ 824$	501 594 777	$F_{1,483} = 18, \ P < 0.001^{1}$
tothsun8	487	891 1273 1677	905 1304 1753	902 1292 1728	$F_{1,485} = 0.24, \ P = 0.63^{1}$
ownocc8	487	571 832 1157	585 872 1210	576 860 1180	$F_{1,485} = 0.12, P = 0.73^{1}$
owner_occupied80	487	$0.61\ 0.71\ 0.79$	$0.61\ 0.72\ 0.80$	$0.61\ 0.72\ 0.80$	$F_{1,485} = 0.32, P = 0.57^1$
bltlast5yrs80	487	$0.02\ 0.10\ 0.17$	$0.05 \ 0.12 \ 0.20$	$0.04\ 0.11\ 0.19$	$F_{1,485} = 5.8, P = 0.017^{1}$
bltlast10yrs80	487	$0.09\ 0.22\ 0.34$	$0.14\ 0.25\ 0.41$	$0.12\ 0.24\ 0.38$	$F_{1,485} = 7.5, P = 0.006^{1}$
firestoveheat80	487	0.01 0.02 0.07	0.01 0.02 0.06	0.01 0.02 0.06	$F_{1,485} = 0.05, \ P = 0.82^1$
noaircond80	487	0.34 0.50 0.70	0.29 0.47 0.67	0.31 0.48 0.68	$F_{1,485} = 1.4, \ P = 0.23^{1}$
nofullkitchen80	487	0.01 0.01 0.03	0.00 0.01 0.02	0.00 0.01 0.02	$F_{1,485} = 2.6, P = 0.11$
zerofullbath80	487	0.01 0.02 0.04	0.01 0.02 0.03	0.01 0.02 0.03	$F_{1,485} = 5.3, P = 0.021^{1}$
northeast: 0	487	67% (121) 33% (60)	52% (160) 48% (146)	58% (281)	$\chi_1^2 = 9.9, \ P = 0.002^2$
1 midwest: 0	197	` '.	\ /	42% (206) 73% (355)	$\chi_1^2 = 8.7, \ P = 0.003^2$
1	487	65% (118) $35% (63)$	77% (237) 23% (69)	73% (355) $27% (132)$	$\chi_1 = 6.7, F = 0.003$
south: 0	487	78% (142)	81% (247)	80% (389)	$\chi_1^2 = 0.36, \ P = 0.55^2$
1	401	22% (39)	19% (59)	20% (98)	$\chi_1 = 0.50, T = 0.55$
west: 0	487	90% (162)	90% (274)	90% (436)	$\chi_1^2 = 0, P = 0.99^2$
1	401	10% (19)	10% (32)	10% (51)	$\chi_1 = 0, T = 0.55$
meanhs8	487	30749 41910 55157	37082 48084 62641	35536 46152 59844	$F_{1,485} = 16, \ P < 0.001^{1}$
bedrms02_80	487	0.37 0.46 0.56	0.33 0.43 0.54	0.35 0.44 0.54	$F_{1,485} = 4.7, P = 0.031^{1}$
bedrms34_80	487	0.42 0.52 0.61	0.44 0.55 0.63	0.43 0.54 0.62	$F_{1.485} = 3.7, P = 0.055^{1}$
detach80	400	$0.55\ 0.74\ 0.84$	$0.58\ 0.74\ 0.86$	$0.57\ 0.74\ 0.85$	$F_{1.398} = 1.4, P = 0.23^{1}$
bedrms0_80occ	487	0 0 0	0 0 0	0 0 0	$F_{1,485} = 0.02, \ P = 0.88^{1}$
$bedrms1_80occ$	487	$0.02\ 0.03\ 0.06$	$0.02\ 0.03\ 0.05$	$0.02\ 0.03\ 0.05$	$F_{1,485} = 0.44, P = 0.51^{1}$
$bedrms2_80occ$	487	$0.22\ 0.30\ 0.40$	$0.19\ 0.26\ 0.34$	$0.20\ 0.28\ 0.36$	$F_{1,485} = 12, P < 0.001^{1}$
$bedrms3_80occ$	487	$0.42\ 0.48\ 0.54$	$0.44\ 0.50\ 0.56$	$0.43\ 0.50\ 0.55$	$F_{1.485} = 1.7, P = 0.2^{1}$
$bedrms4_80occ$	487	$0.09\ 0.13\ 0.17$	$0.10\ 0.15\ 0.21$	$0.09\ 0.14\ 0.20$	$F_{1,485} = 13, P < 0.001^{1}$
$bedrms5_80occ$	487	$0.01\ 0.02\ 0.04$	$0.01\ 0.03\ 0.04$	$0.01\ 0.02\ 0.04$	$F_{1,485} = 7.2, P = 0.008^{1}$
$blt0_1yrs80occ$	487	$0.00\ 0.02\ 0.04$	$0.01\ 0.02\ 0.05$	$0.00\ 0.02\ 0.04$	$F_{1,485} = 4.2, P = 0.04^{1}$
$blt2_5yrs80occ$	487	$0.01\ 0.06\ 0.13$	$0.02\ 0.09\ 0.16$	$0.02\ 0.08\ 0.14$	$F_{1,485} = 7.5, P = 0.006^{1}$
$blt6_10yrs80occ$	487	$0.03\ 0.09\ 0.16$	$0.05\ 0.12\ 0.20$	$0.04\ 0.11\ 0.18$	$F_{1,485} = 6.6, P = 0.011^{1}$
$blt10_20yrs80occ$	487	$0.10\ 0.17\ 0.23$	$0.13\ 0.19\ 0.26$	$0.12\ 0.18\ 0.25$	$F_{1,485} = 7.4, P = 0.007^1$
$blt20_30yrs80occ$	487	$0.09\ 0.15\ 0.25$	$0.11\ 0.16\ 0.24$	$0.10\ 0.16\ 0.25$	$F_{1,485} = 1.6, P = 0.2^{1}$
blt30_40yrs80occ	487	$0.05 \ 0.09 \ 0.16$	$0.05 \ 0.08 \ 0.12$	$0.05 \ 0.08 \ 0.14$	$F_{1,485} = 2.1, P = 0.15^{1}$
blt40_yrs80occ	487	0.11 0.23 0.44	0.08 0.17 0.33	0.09 0.19 0.36	$F_{1,485} = 6.8, P = 0.009^1$
detach80occ	487	0.84 0.91 0.97	0.84 0.94 0.99	0.84 0.93 0.99	$F_{1,485} = 2.5, \ P = 0.12^{1}$
attach80occ	487	0.00 0.01 0.02	0.00 0.01 0.01	0.00 0.01 0.02	$F_{1,485} = 0.49, P = 0.49^1$
mobile80occ	487	0.00 0.04 0.12	0.00 0.03 0.12	0.00 0.03 0.12	$F_{1,485} = 0.21, P = 0.65^{1}$
occupied80	487	0.93 0.95 0.97	0.92 0.95 0.97	0.92 0.95 0.97	$F_{1,485} = 0.03, P = 0.87^{1}$
bltmore30_80	487	0.24 0.38 0.55	0.16 0.30 0.46	0.19 0.32 0.51	$F_{1,485} = 10, P = 0.001^{1}$
og82list: 1	487	100% (181)	100% (306)	100% (487)	4
0	405	0% (0)	0% (0)	0% (0)	2 07 D 00002
nbr_dummy: 0	487	80% (144)	66% (203)	71% (347)	$\chi_1^2 = 9.7, \ P = 0.002^2$
1		20% (37)	34% (103)	29% (140)	

 $a\ b\ c$ represent the lower quartile a, the median b, and the upper quartile c for continuous variables.

Table 4: Contingency table by HRS test status (JUST over/under 28.5)

	N	$FALSE \\ N = 90$	$\begin{array}{c} \text{TRUE} \\ N = 137 \end{array}$	Combined $N = 227$	Test Statistic
hrs_82	227	19 23 25	32 35 38	24 30 37	$F_{1.225} = 573, \ P < 0.001$
npl1990 : 0	227	78% (70)	1% (2)	32% (72)	$\chi_1^2 = 146, \ P < 0.001^2$
1		22% (20)	99% (135)	68% (155)	X1 110, 1 (0.001
npl2000 : 0	227	73% (66)	1% (2)	30% (68)	$\chi_1^2 = 134, \ P < 0.001^2$
1		27% (24)	99% (135)	70% (159)	χ1 101, 1 (0.001
pop_den8	227	114 357 1340	142 427 1178	118 417 1192	$F_{1.225} = 0.14, P = 0.71$
shrblk8	227	0.00 0.01 0.03	0.00 0.02 0.05	0.00 0.01 0.05	$F_{1,225} = 0.11, T = 0.11$ $F_{1,225} = 2.5, P = 0.12^{1}$
shrhsp8	227	0.00 0.01 0.02	0.00 0.01 0.02	0.00 0.01 0.02	$F_{1,225} = 0.03, P = 0.87$
child8	227	0.26 0.30 0.33	0.26 0.30 0.34	0.26 0.30 0.33	$F_{1,225} = 0.05, P = 0.82$ $F_{1,225} = 0.05, P = 0.82$
shrfor8	227	0.01 0.03 0.05	0.01 0.03 0.06	0.01 0.03 0.05	$F_{1,225} = 0.09, P = 0.76$
ffh8	227	0.10 0.15 0.20	0.09 0.13 0.21	0.09 0.14 0.20	$F_{1,225} = 0.32, P = 0.57$ $F_{1,225} = 0.32, P = 0.57$
smhse8	227	0.51 0.59 0.65	0.48 0.57 0.66	0.50 0.59 0.65	$F_{1,225} = 0.32, \ P = 0.37$ $F_{1,225} = 0.75, \ P = 0.39$
hsdrop8	227	0.07 0.13 0.20	0.48 0.57 0.00	0.07 0.12 0.20	$F_{1,225} = 0.75, T = 0.39$ $F_{1,225} = 1.2, P = 0.27^{1}$
•	$\frac{227}{227}$				$F_{1,225} = 1.2, \ P = 0.27$ $F_{1,225} = 3.1, \ P = 0.077$
no_hs_diploma8		0.30 0.38 0.48	0.24 0.35 0.44	0.29 0.36 0.45	$F_{1,225} = 5.1, F = 0.077$
ba_or_better8	227	0.05 0.10 0.13	0.06 0.10 0.17	0.06 0.10 0.16	$F_{1,225} = 2.3, P = 0.13^{1}$
unemprt8	227	0.05 0.07 0.09	0.05 0.06 0.10	0.05 0.06 0.09	$F_{1,225} = 0.54, P = 0.47$
povrat8	227	0.05 0.09 0.13	0.05 0.09 0.14	0.05 0.09 0.13	$F_{1,225} = 0, P = 0.95^{1}$
welfare8	227	0.04 0.06 0.09	0.04 0.05 0.09	0.04 0.06 0.09	$F_{1,225} = 2.7, P = 0.1^1$
favinc8	227	18951 21005 24908	18603 21513 26037	18843 21343 25095	$F_{1,225} = 0.19, P = 0.67$
avhhin8	227	17176 19521 22221	16237 19523 23189	$16768 \ 19523 \ 22558$	$F_{1,225} = 0, P = 0.98^{1}$
meanrnt80	227	219 245 285	215 244 293	$216\ 245\ 287$	$F_{1,225} = 0, P = 0.97^1$
mdvalhs9	227	45556 64100 121550	44041 68177 118334	$44800\ \ 66600\ 120453$	$F_{1,225} = 0.06, P = 0.81$
meanrnt9	227	$358\ 422\ 579$	$365\ 432\ 563$	364 431 568	$F_{1,225} = 0.03, P = 0.86$
mdvalhs0	227	76600 108750 143600	78300 114400 151800	76600 111700 150200	$F_{1,225} = 0.26, P = 0.61$
meanrnt0	225	490 577 701	487 550 710	487 568 704	$F_{1,223} = 0.08, P = 0.78$
tothsun8	227	901 1280 1693	886 1308 1713	888 1290 1708	$F_{1,225} = 0.01, P = 0.93$
ownocc8	227	594 912 1160	558 879 1238	576 900 1198	$F_{1.225} = 0.5, P = 0.48$
owner_occupied80	227	$0.62\ 0.73\ 0.79$	$0.61\ 0.73\ 0.81$	$0.61\ 0.73\ 0.80$	$F_{1,225} = 0, P = 0.95^1$
bltlast5yrs80	227	$0.05\ 0.12\ 0.20$	$0.05\ 0.11\ 0.19$	$0.05\ 0.12\ 0.20$	$F_{1,225} = 0.14, P = 0.71$
bltlast10yrs80	227	0.13 0.26 0.36	0.14 0.25 0.38	0.13 0.25 0.37	$F_{1,225} = 0.01, P = 0.92$
firestoveheat80	227	0.01 0.04 0.09	0.01 0.02 0.06	0.01 0.03 0.07	$F_{1,225} = 0.67, P = 0.41$
noaircond80	227	0.34 0.52 0.71	0.34 0.52 0.68	0.34 0.52 0.70	$F_{1,225} = 0.07, P = 0.88$
nofullkitchen80	227	0.01 0.02 0.71	0.00 0.01 0.02	0.01 0.02 0.70	$F_{1,225} = 0.96, P = 0.33$
zerofullbath80	227	0.01 0.02 0.03	0.01 0.02 0.04	0.01 0.02 0.04	$F_{1,225} = 0.06, T = 0.05$ $F_{1,225} = 2.1, P = 0.15$
northeast: 0	227	61% (55)	58% (79)	59% (134)	$\chi_1^2 = 0.27, P = 0.6^2$
1	221	39% (35)	42% (58)	41% (93)	$\chi_1 = 0.27, T = 0.0$
midwest: 0	227	68% (61)	72% (98)	70% (159)	$\chi_1^2 = 0.37, \ P = 0.55^2$
1	221	32% (29)	28% (39)	30% (68)	$\chi_1 = 0.57, T = 0.55$
south: 0	227	81% (73)	80% (109)	80% (182)	$\chi_1^2 = 0.08, \ P = 0.78^2$
1	221	19% (17)	20% (28)	20% (45)	$\chi_1 = 0.08, T = 0.78$
	227				$\chi_1^2 = 0.1, P = 0.75^2$
west: 0	227	90% (81)	91% (125)	91% (206)	$\chi_1 = 0.1, P = 0.75$
1	007	10% (9)	9% (12)	9% (21)	E 0.80 D 0.20
meanhs8	227	33651 44351 55707	34417 46152 61835	34115 45384 59721	$F_{1,225} = 0.82, P = 0.36$
bedrms02_80	227	0.37 0.45 0.54	0.33 0.44 0.53	0.35 0.44 0.54	$F_{1,225} = 1.3, P = 0.25$
bedrms34_80	227	0.44 0.53 0.59	0.44 0.54 0.63	0.44 0.53 0.62	$F_{1,225} = 0.83, P = 0.36$
detach80	179	0.61 0.74 0.84	0.57 0.76 0.85	0.57 0.75 0.85	$F_{1,177} = 0.09, P = 0.76$
bedrms0_80occ	227	0 0 0	0 0 0	0 0 0	$F_{1,225} = 0.03, P = 0.86$
bedrms1_80occ	227	0.02 0.03 0.06	0.02 0.03 0.05	0.02 0.03 0.06	$F_{1,225} = 1, \ P = 0.31^1$
bedrms2_80occ	227	$0.22\ 0.30\ 0.39$	$0.19\ 0.27\ 0.34$	$0.20\ 0.29\ 0.36$	$F_{1,225} = 4.2, P = 0.041$
bedrms3_80occ	227	$0.41\ 0.47\ 0.53$	$0.43 \ 0.50 \ 0.55$	$0.43 \ 0.48 \ 0.54$	$F_{1,225} = 1.5, P = 0.21$
bedrms4_80occ	227	$0.10\ 0.14\ 0.18$	$0.09\ 0.15\ 0.21$	$0.10\ 0.14\ 0.20$	$F_{1,225} = 2.4, P = 0.12$
$bedrms5_80occ$	227	$0.01\ 0.02\ 0.04$	$0.01\ 0.03\ 0.05$	$0.01\ 0.03\ 0.04$	$F_{1,225} = 0.68, P = 0.41$
$blt0_1yrs80occ$	227	$0.01\ 0.02\ 0.04$	$0.01\ 0.02\ 0.04$	$0.01\ 0.02\ 0.04$	$F_{1,225} = 0.18, P = 0.68$
$blt2_5yrs80occ$	227	$0.02\ 0.09\ 0.16$	$0.02\ 0.09\ 0.15$	$0.02\ 0.09\ 0.15$	$F_{1,225} = 0.05, P = 0.83$
blt6_10yrs80occ	227	$0.06\ 0.12\ 0.17$	$0.05\ 0.11\ 0.18$	$0.05\ 0.11\ 0.18$	$F_{1,225} = 0.17, P = 0.68$
blt10_20yrs80occ	227	$0.12\ 0.18\ 0.24$	$0.14\ 0.19\ 0.24$	$0.13\ 0.19\ 0.24$	$F_{1,225} = 0.76, P = 0.38$
blt20_30yrs80occ	227	$0.10\ 0.16\ 0.26$	$0.12\ 0.17\ 0.25$	$0.11\ 0.16\ 0.25$	$F_{1,225} = 0.15, P = 0.7$
blt30_40yrs80occ	227	$0.05\ 0.08\ 0.13$	$0.06\ 0.08\ 0.12$	$0.05\ 0.08\ 0.12$	$F_{1,225} = 0.01, P = 0.94$
blt40_yrs80occ	227	$0.11\ 0.19\ 0.33$	$0.11\ 0.19\ 0.34$	$0.11\ 0.19\ 0.34$	$F_{1,225} = 0.04, P = 0.85$
detach80occ	227	0.82 0.91 0.97	0.85 0.93 0.98	0.83 0.92 0.97	$F_{1,225} = 2.8, P = 0.098$
attach80occ	227	0.00 0.00 0.01	0.00 0.00 0.01	0.00 0.00 0.01	$F_{1,225} = 0.05, P = 0.82$
mobile80occ	227	0.00 0.00 0.01	0.00 0.03 0.12	0.00 0.04 0.13	$F_{1,225} = 0.06, T = 0.02$ $F_{1,225} = 1.5, P = 0.23$
occupied80	227	0.93 0.95 0.97	0.92 0.95 0.96	0.92 0.95 0.96	$F_{1,225} = 1.3, \ P = 0.23$ $F_{1,225} = 0.09, \ P = 0.7$
bltmore30_80	$\frac{227}{227}$	0.21 0.34 0.51	0.21 0.34 0.49	0.21 0.34 0.49	$F_{1,225} = 0.09, \ P = 0.7$ $F_{1,225} = 0.11, \ P = 0.7$
					$F_{1,225} = 0.11, P = 0.74$
og82list : 1	227	100% (90)	100% (137)	100% (227)	_
0 nbr_dummy : 0	227	$0\% \ (0)$ $76\% \ (68)$	0% (0) $71% (97)$	0% (0) $73% (165)$	$\chi_1^2 = 0.62, \ P = 0.43^2$
				(3 V/a (1 lb b)	

 $a\ b\ c$ represent the lower quartile a, the median b, and the upper quartile c for continuous variables.

the upperbound 95% C.I. for values below HRS=28.5 and the estimated value above HRS=28.5 overlap, and vice versa for the lowerbound 95% C.I. for values above HRS = 28.5. This has us convinced that the Regression Discontinuity Design is not appropriate around this value. In addition, this lack of discontinuity appears to be consistent across various bandwidth values (tested with values $h = \{4, 8, 16, 20\}$).

Density distribution of HRS

Figure 1: Density distribution histogram for 1982 HRS.

NOTES: The way they picked is good, it means that 28.5 is not some magic number above which things get demonstrably worse but is as good as random. So any discontinuity is due to the vagaries of program design and not endogenous variation.

Part C: RDD First Stage

The first stage equation is $\mathbf{1}\{NPL_{2000}\} = \gamma_1 HRS_{82} + x_i \gamma_2 + u_i$.

Part D: RDD Second Stage

Part E: Synthesis

Part F: Appendix: Code Listings

```
1| # Econometrics helper functions for [R]
 2 #
 3| # Peter Alstone and Frank Proulx
 4 # 2013
 5 # version 1
 6 # contact: peter.alstone AT gmail.com
 8
   # Category: Data Management -----
 9
10
11 # Category: Data Analysis -----
12
|13| # Function: Find adjusted R^2 for subset of data
|14| # This requires a completed linear model...pull out the relevant y-values and residuals and feed them to
       function
15 [# [TODO @Peter] Improve function so it can simply evaluate lm or glm object, add error handling, general
       clean up.
16 adjr2 <- function(y,resid){
17
     r2 \leftarrow 1-sum(resid^2) / sum((y-mean(y))^2)
18
     return(r2)
|19|} #end adjr2
20
21
22| # Category: Plots and Graphics -----
23
24 | ## Function for arranging ggplots. use png(); arrange(p1, p2, ncol=1); dev.off() to save.
25 require(grid)
26 | \text{vp.layout} \leftarrow \text{function(x, y)} \text{ viewport(layout.pos.row=x, layout.pos.col=y)}
27 arrange_ggplot2 <- function(..., nrow=NULL, ncol=NULL, as.table=FALSE) {
     dots <- list(...)</pre>
     n <- length(dots)</pre>
30
     if(is.null(nrow) & is.null(ncol)) { nrow = floor(n/2) ; ncol = ceiling(n/nrow)}
31
     if(is.null(nrow)) { nrow = ceiling(n/ncol)}
32
     if(is.null(ncol)) { ncol = ceiling(n/nrow)}
33
     ## NOTE see n2mfrow in grDevices for possible alternative
\begin{array}{c} 34 \\ 35 \end{array}
     grid.newpage()
     pushViewport(viewport(layout=grid.layout(nrow,ncol)))
36
37
38
39
     ii.p <- 1
     for(ii.row in seq(1, nrow)){
       ii.table.row <- ii.row</pre>
       if(as.table) {ii.table.row <- nrow - ii.table.row + 1}</pre>
40
       for(ii.col in seq(1, ncol)){
\begin{array}{c} 41 \\ 42 \end{array}
         ii.table <- ii.p</pre>
          if(ii.p > n) break
\frac{12}{43}
44
          print(dots[[ii.table]], vp=vp.layout(ii.table.row, ii.col))
          ii.p <- ii.p + 1
45
46
     }
47 }
48
49| robust <- function(model){ #This calculates the Huber-White Robust standard errors -- code from http://
       thetarzan.wordpress.com/2011/05/28/heteroskedasticity-robust-and-clustered-standard-errors-in-r/
50
       s <- summary(model)
51
       X <- model.matrix(model)</pre>
52
       u2 <- residuals(model)^2
53
       XDX <- 0
54
55
       for(i in 1:nrow(X)) {
56
            XDX <- XDX +u2[i]*X[i,]%*%t(X[i,])</pre>
57
58
59 # inverse(X'X)
60
       XX1 <- solve(t(X)%*%X)
61
62 | #Compute variance/covariance matrix
63
       varcovar <- XX1 %*% XDX %*% XX1
64
65 # Degrees of freedom adjustment
66
       dfc <- sqrt(nrow(X))/sqrt(nrow(X)-ncol(X))</pre>
67
68
       stdh <- dfc*sqrt(diag(varcovar))</pre>
69
70
       t <- model$coefficients/stdh
71
       p <- 2*pnorm(-abs(t))</pre>
       results <- cbind(model$coefficients, stdh, t, p)
```

```
dimnames(results) <- dimnames(s$coefficients)</pre>
 74
 75 }
 76
 77
   ## Two functions for clustered standard errors below from: http://people.su.se/~ma/clustering.pdf -----
78
79 clx <-
80
81
      function(fm, dfcw, cluster){
        # R-codes (www.r-project.org) for computing
\begin{array}{c} 82 \\ 83 \\ 84 \\ 85 \\ 86 \end{array}
        # clustered-standard errors. Mahmood Arai, Jan 26, 2008.
        # The arguments of the function are:
        # fitted model, cluster1 and cluster2
        # You need to install libraries 'sandwich' and 'lmtest'
87
88
        # reweighting the var-cov matrix for the within model
89
        library(sandwich); library(lmtest)
90
        M <- length(unique(cluster))</pre>
91
        N <- length(cluster)
92
        K <- fm$rank
93
        dfc \leftarrow (M/(M-1))*((N-1)/(N-K))
94
        uj <- apply(estfun(fm),2, function(x) tapply(x, cluster, sum));</pre>
95
        vcovCL \leftarrow dfc*sandwich(fm, meat=crossprod(uj)/N)*dfcw
96
        coeftest(fm, vcovCL) }
97
98 | mclx <-
99
      function(fm, dfcw, cluster1, cluster2){
100
        # R-codes (www.r-project.org) for computing multi-way
101
        # clustered-standard errors. Mahmood Arai, Jan 26, 2008.
        \# See: Thompson (2006), Cameron, Gelbach and Miller (2006)
102
103
        # and Petersen (2006).
104
        # reweighting the var-cov matrix for the within model
105
106
        # The arguments of the function are:
107
        # fitted model, cluster1 and cluster2
108
        # You need to install libraries 'sandwich' and 'lmtest'
109
110
        library(sandwich); library(lmtest)
111
        cluster12 = paste(cluster1,cluster2, sep="")
112
        M1 <- length(unique(cluster1))</pre>
113
        M2 <- length(unique(cluster2))</pre>
114
        M12 <- length(unique(cluster12))
            <- length(cluster1)
115
        N
116
            <- fm$rank
        K
117
        dfc1 <- (M1/(M1-1))*((N-1)/(N-K))
118
        dfc2 <- (M2/(M2-1))*((N-1)/(N-K))
119
        dfc12 \leftarrow (M12/(M12-1))*((N-1)/(N-K))
120
               <- apply(estfun(fm), 2, function(x) tapply(x, cluster1, sum))</pre>
        u1j
121
               <- apply(estfun(fm), 2, function(x) tapply(x, cluster2, sum))</pre>
        u2j
122
        u12j <- apply(estfun(fm), 2, function(x) tapply(x, cluster12, sum))
123
        vc1
               <- dfc1*sandwich(fm, meat=crossprod(u1j)/N )</pre>
124
               <- dfc2*sandwich(fm, meat=crossprod(u2j)/N )
        vc2
125
        \label{eq:cossprod} \verb|vc12| <- dfc12*sandwich(fm, meat=crossprod(u12j)/N)| \\
126
        vcovMCL <- (vc1 + vc2 - vc12)*dfcw
127
        coeftest(fm, vcovMCL)}
128
129| ## Function to compute ols standard errors , robust, clustered...
130| ## Based on http://diffuseprior.wordpress.com/2012/06/15/standard-robust-and-clustered-standard-errors-
        computed-in-r/
131| ols.hetero <- function(form, data, robust=FALSE, cluster=NULL,digits=3){
132
      r1 <- lm(form, data)
133
      if(length(cluster)!=0){
134
        data <- na.omit(data[,c(colnames(r1$model),cluster)])</pre>
135
        r1 <- lm(form, data)
136
137
      X <- model.matrix(r1)</pre>
138
      n \leftarrow dim(X)[1]
      k <- dim(X)[2]
139
140
      if(robust==FALSE & length(cluster)==0){
141
        se <- sqrt(diag(solve(crossprod(X)) * as.numeric(crossprod(resid(r1))/(n-k))))</pre>
142
        res <- cbind(coef(r1),se)
143
144
      if(robust == TRUE) {
145
        u <- matrix(resid(r1))
146
        meat1 <- t(X) %*% diag(diag(crossprod(t(u)))) %*% X</pre>
```

```
147
         dfc <- n/(n-k)
148
         se <- sqrt(dfc*diag(solve(crossprod(X))) %*% meat1 %*% solve(crossprod(X))))
149
         res <- cbind(coef(r1),se)
150
151
       if(length(cluster)!=0){
152
         clus <- cbind(X,data[,cluster],resid(r1))</pre>
153
         colnames(clus)[(dim(clus)[2]-1):dim(clus)[2]] <- c(cluster, "resid")</pre>
154
         m <- dim(table(clus[,cluster]))</pre>
155
         dfc \leftarrow (m/(m-1))*((n-1)/(n-k))
156
         uclust <- apply(resid(r1)*X,2, function(x) tapply(x, clus[,cluster], sum))</pre>
157
         \texttt{se} \leftarrow \texttt{sqrt}(\texttt{diag}(\texttt{solve}(\texttt{crossprod}(\texttt{X})) \ \%*\% \ (\texttt{t}(\texttt{uclust}) \ \%*\% \ \texttt{uclust}) \ \%*\% \ \texttt{solve}(\texttt{crossprod}(\texttt{X})))*\texttt{dfc})
158
         res <- cbind(coef(r1),se)
159
160
       res <- cbind(res,res[,1]/res[,2],(1-pnorm(abs(res[,1]/res[,2])))*2)
       res1 <- matrix(as.numeric(sprintf(paste("%.",paste(digits,"f",sep=""),sep=""),res)),nrow=dim(res)[1])
161
162
       rownames(res1) <- rownames(res)</pre>
163
       \verb|colnames(res1)| <- c("Estimate", "Std. Error", "t value", "Pr(>|t|)")| \\
164
       return(res1)
165 }
```

../util/are213-func.R