Expected Loss Based Analysis

Rain

5/27/2021

This analysis is based on Bayesian result according to expected loss < threshold of caring. Threshold of caring is different from problem to problem.

Recall that

Case ID	Application	Distribution	Effect	The shold of Caring
1	Payer Conversion	Bernoulli	False	0.001
2	Payer Conversion	Bernoulli	True	0.001
3	Total Moves	Poisson	False	0.00001
4	Total Moves	Poisson	True	0.00001
5	Revenue	Bernoulli-Exponential	False	0.001
6	Revenue	Bernoulli-Exponential	True	0.001

False/True Positive Rate

All the percentages in the following tables are proportion of the simulated experiments that led to the conclusion that the treatment is chosen.

In Case 1 and 3 where the underlying treatment and control have no difference, the percentages mean false positive rates. Therefore, the lower the percentage, the better.

In Case 2 and 4 where the treatment is better than control, the percentages mean true positive rates. Therefore, the higher the percentage, the better.

Areas of Analysis

1. Effect of peeking

We calculate peek_multiplier - how many times more likely we would choose treatment if monitor daily and stop the experiment earlier when we see a result that's positive enough. Note that only sample size of 500 is used because when the sample size is large enough, % of accepting treatment goes to 100% very quickly and would skew the peek_multiplier.

Result: Bayesian suffers from peeking as well.

case	$avg_peek_multiplier_freq$	$avg_peek_multiplier_bayes$
1	5.33	4.20
3	5.87	4.33
5	19.55	8.10

2. Effect of sample size

Conclusion: When treatment is not better than control, the false positive rate is controled at 5%.

	case	$sample_size_per_$	_dawyyfreqtreat	avg_freq_treat	t_peekavg_bayes_treat	avg_bayes_treat_peek
_	1	500	4.45%	23.3%	2.4%	9.65%
	1	5000	4.45%	25.2%	7.2%	20.75%
	1	50000	5.2%	28.25%	19.4%	43.9%
	3	500	5.07%	28.53%	1%	4.27%
	3	5000	4.93%	27.47%	3%	9.6%
	3	50000	5.33%	28.73%	5.73%	19.6%
	5	500	5.75%	79.75%	11.75%	94.75%
	5	5000	4.5%	81.75%	29%	99.75%

Conclusion: When treatment is better than control, Bayesian has slightly more power.

case	sample_size_per_	dawyy_freq_treat	avg_freq_tr	eat_peekavg_bayes_treat	avg_bayes_treat_peek
2	500	23.78%	42.98%	26.02%	37.9%
2	5000	60.42%	71.72%	69.23%	78.3%
2	50000	97.8%	99%	99.88%	99.95%
4	500	14.73%	38.13%	6.57%	13.93%
4	5000	52.4%	65.37%	51.97%	57.23%
4	50000	62.57%	74.43%	70.87%	79.53%
6	500	4.33%	79.33%	10%	93.5%
6	5000	6.5%	86.08%	21.92%	98.83%

3. Effect of prior parameter selections

We compare average false/true positive rate by directional, confident, and wrong priors.

Conclusio: Bayesian's prior parameters do not matter much for the sample sizes we have.

case	prior	avg_freq_	treat avg_freq_tre	eat_peekvg_bayes_t	reatavg_bayes_treat_peel
1	confident	4.8%	26.2%	9.8%	24.6%
1	directional	4.6%	25%	9.93%	25%
1	neutral	5.27%	26.8%	10.8%	25.8%
1	wrong	4.13%	24.33%	8.13%	23.67%
2	confident	60.73%	70%	64.63%	70.6%
2	directional	60.47%	71.93%	64.77%	72.57%
2	neutral	60.07%	70.93%	64.57%	72.33%
2	wrong	61.4%	72.07%	66.2%	72.7%
3	confident	5.53%	27.2%	3.2%	11.87%
3	directional	5.6%	28.27%	3.67%	11.33%
3	wrong	4.2%	29.27%	2.87%	10.27%
4	confident	42.6%	59.6%	42.37%	49.93%
4	directional	43.67%	58.73%	43.73%	50.83%
4	wrong	43.43%	59.6%	43.3%	49.93%
5	directional-	8.5%	81.5%	22%	98%
	directional				
5	directional-wrong	2.5%	79.5%	17.5%	98.5%

case	prior	avg_freq_	_treat avg_freq_treat	_peekvg_bayes	_treatavg_bayes_treat_peek
5	wrong-directional	6.5%	81%	22%	97.5%
5	wrong-wrong	3%	81%	20%	95%
6	directional- directional	5.17%	83.33%	13.67%	95.67%
6	directional-wrong	5.17%	82.33%	17.5%	96%
6	wrong-directional	5.33%	83.17%	16.17%	96.83%
6	wrong-wrong	6%	82%	16.5%	96.17%