

TensorRT的INT8量化原理

- Goal: Convert FP32 CNNs into INT8 without significant accuracy loss.
- Why: INT8 math has higher throughput, and lower memory requirements.
- Challenge: INT8 has significantly lower precision and dynamic range than FP32.
- Solution: Minimize loss of information when quantizing trained model weights to INT8 and during INT8 computation of activations.
- Result: Method was implemented in TensorRT. It does not require any additional fine tuning or retraining.

INT8 Inference

Challenge

INT8 has significantly lower precision and dynamic range compared to FP32.

	Dynamic Range	Min Positive Value
FP32	$-3.4 \times 10^{38} \sim +3.4 \times 10^{38}$	1.4 x 10 ⁻⁴⁵
FP16	-65504 ~ +65504	5.96 x 10 ⁻⁸
INT8	-128 ~ +127	1

Requires more than a simple type conversion from FP32 to INT8.

Linear quantization

Representation:

Tensor Values = FP32 scale factor * int8 array + FP32 bias

Symmetric linear quantization

Representation:

Tensor Values = FP32 scale factor * int8 array

One FP32 scale factor for the entire int8 tensor

Quantization

• No saturation: map |max| to 127

• Saturate above | threshold | to 127

• Significant accuracy loss, in general

- Weights: no accuracy improvement
- Activations: improved accuracy
- Which | threshold | is optimal?

Q: How to optimize threshold selection?

It's always a tradeoff between range and precision of the INT8 representation.

A: Minimize information loss, since FP32 → INT8 is just re-encoding information.

"Relative Entropy" of two encodings

- INT8 model encodes the same information as the original FP32 model.
- We want to minimize loss of information.
- Loss of information is measured by Kullback-Leibler divergence (AKA relative entropy or information divergence).
 - P, Q two discrete probability distributions.
 - o KL_divergence(P,Q):= SUM(P[i] * log(P[i] / Q[i]), i)
- Intuition: KL divergence measures the amount of information lost when approximating a given encoding.

Solution: Calibration

- Run FP32 inference on Calibration Dataset.
- For each Layer:
 - collect histograms of activations.
 - generate many quantized distributions
 with different saturation thresholds.
 - pick threshold which minimizes KL_divergence(ref_distr, quant_distr).
- Entire process takes a few minutes on a typical desktop workstation.

如何寻找最优的阈值T使得精度的损失最小?

NVIDIA选择的是KL-divergence,其实就是相对熵。相对熵表述的就是两个分布的差异程度,这里就是量化前后两个分布的差异程度。差异最小就是最好的了,因此问题转换为求相对熵的最小值。

$$D_{KL}(p||q) = \sum_{i=1}^N p(x_i) \cdot (\log p(x_i) - \log q(x_i))$$

KL散度来精确测量这种最优和次优之间的差异。

F32就是原来的最优编码,INT8就是次优的编码,用KL散度来描述这两种编码之间的差异。

相对熵表示的是采用次优编码时会多需要多少个bits来编码,也就是与最优编码之间的bit差;而交叉熵表示的是用次优编码方式时确切需要多少个bits来表示;

因此,最优编码所需要的bits=交叉熵-相对熵。

Typical workflow in TensorRT

You will need:

- Model trained in FP32.
- Calibration dataset.

TensorRT will:

- Run inference in FP32 on calibration dataset.
- Collect required statistics.
- \circ Run calibration algorithm o optimal scaling factors.
- \circ Quantize FP32 weights \rightarrow INT8.
- Generate "CalibrationTable" and INT8 execution engine.

校准算法:

calibration: 基于实验的迭代搜索阈值。

•提供一个样本数据集(最好是验证集的子集), 称为"校准数据集", 用来做校准。

• 在校准数据集上运行FP32推理。收集激活的直方图,并生成一组具有不同阈值的8位表示法,并选择具有最少KL散度的表示。

KL散度是在参考分布(即FP32激活)和量化分布之间(即8位量化激活)之间。

TRT提供了IInt8EntropyCalibrator,该接口需要由客户端实现,以提供校准数据集和一些用于缓存校准结果的样板代码。

Entropy Calibration - pseudocode

Input: FP32 histogram H with 2048 bins: bin[0], ..., bin[2047]

```
For i in range( 128, 2048):
      reference_distribution_P = [ bin[ 0 ] , ..., bin[ i-1 ] ]
                                                                                    // take first ' i ' bins from H
      outliers_count = sum( bin[ i ] , bin[ i+1 ] , ... , bin[ 2047 ] )
      reference distribution P[i-1] += outliers count
      P = sum(P)
                                                                                    // normalize distribution P
      candidate_distribution_Q = quantize [ bin[ 0 ], ..., bin[ i-1 ] ] into 128 levels // explained later
      expand candidate_distribution_Q to 'i' bins
                                                                                    // explained later
                                                                                    // normalize distribution Q
      Q = sum(Q)
      divergence[i] = KL divergence(reference distribution P, candidate distribution Q)
End For
Find index 'm' for which divergence[ m ] is minimal
threshold = (m + 0.5)* (width of a bin)
```

上面就是一个循环,不断地构造P和Q,并计算相对熵,然后找到最小(截断长度为m)的相对熵,此时表示Q能比较好地拟合P分布了。而阈值就等于(m + 0.5)*一个bin的长度。

要做INT8量化,需要:

- 原来的未量化的模型
- 一个校准数据集
- 进行量化过程的校准器

校准过程我们是不用参与的,全部都由TensorRT内部完成,但是,需要告诉校准器如何获取一个batch的数据,也就是说,需要重写校准器类中的一些方法。

- 准备一个校准集,用于在转换过程中寻找使得转换后的激活值分布与原来的FP32类型的激活值分布 差异最小的阈值;
- 写一个校准器类,该类需继承trt.llnt8EntropyCalibrator2父类,并重写get_batch_size, get_batch, read_calibration_cache, write_calibration_cache这几个方法。
- 使用时,需额外指定cache_file,该参数是校准集cache文件的路径,会在校准过程中生成,方便下一次校准时快速提取。

Check if Your GPU Supports FP16/INT8

1. check your GPU Compute Capability

visit https://developer.nvidia.com/cuda-gpus#compute and check your GPU compute capability.

For example, GTX1080 is 6.1, Tesla T4 is 7.5.

2. check the hardware-precision-matrix

visit https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#hardware-precision-matrix and check the matrix.

For example, compute capability 6.1 supports FP32 and INT8. 7.5 supports FP32, FP16, INT8, FP16 tensor core, etc.