Algoritmi de sortare

Analiza algoritmilor

n	log n	n	n log n	n ²	n³	2 ⁿ	n!
10	3	10	33	10 ²	10 ³	10 ³	10 ⁵
10 ²	7	10 ²	664	104	10 ⁶	10 ³⁰	1094
10 ³	10	10 ³	9966	106	109	10 ³⁰¹	10 ¹⁴³⁵
104	13	104	132877	108	1012	103010	10 ¹⁹³³⁵
10 ⁵	17	10 ⁵	1660964	1010	1015	1030103	10 ²⁴³³³⁸
10 ⁶	20	10 ⁶	19931569	1012	10 ¹⁸	10301030	10 ²⁹³³³⁶⁹

- Complexitatea algoritmilor
- Timp minim, mediu, maxim
- Caz favorabil (cel mai bun caz), nefavorabil (cel mai rau caz)

Sortarea

• Comparison Sorting Visualization (usfca.edu)

• <u>Data Structure Visualization (usfca.edu)</u>

INDICII VECT somt [1,---, n] Sortare prin selectie - sortare crescatoare n=wr.de elemente V: 18, 4, 2, 6, 7 8, 3, 910 ->2,3,4,6,7,8,9,10

// determina cel mai mic elem din V[1], V[2], ---, V[m] à = indicele celui mai mic // determina cel moie mic elem din j = indicele celui mai mic VC23, VC37, --, V[n] // determinam cel mai nic elun din v[n-1], v[n]

Op. de baza = comparatia

```
Sortare prin selectie
```

```
• For i=1, n-1
    // determinam min din secventa v[i],..., v[n]. Fie j indicele lui.
     min = v[i], j = i
     for k = i+1, n
          if v[k] < min then min = v[k], j=k
          endif
      endfor
```

- if j != i then v[i] <-> v[j] // interschimba
- endif
- endfor

1+2+...+ K = K (K+1)

Indiferent de vectorul V, nr. de comparation este acelari.
Alg este de ordin $O(n^2)$.

Sortare prin inserare

PP V[1] < V[2] < < V[i] vrem sa inseron v [i+1] ai dupa V[1] LV[2] <--- < V[i+1]

234678910.

in dici , 6, J= 1 while (j>1 4 v[j] < v[j-1]) 7 (-1)

Analiza algoritmului

timp min = O(n)timp maxim = $O(n^2)$ Se poate arata co timp mediu $nO(n^2)$