1 Całki

1.1 Metody całkowania

1.1.1 Przez części

$$\int u \ dv = uv - \int v \ du$$

1.1.2 Completing the square

$$ax^{2} + bx + c \Rightarrow a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{\Delta}{4a^{2}}\right)$$

1.1.3 Metoda nieoznaczonych współczynników

W i R to wielomiany zmiennej x. W jest wielomianem stopnia n

$$\int \frac{W_n}{\sqrt{R}} dx = W_{n-1} \sqrt{R} + \int \frac{A}{\sqrt{R}} dx \wedge n > 1 \Rightarrow$$
$$\Rightarrow W_n = W'_{n-1} R + W_{n-1} \frac{1}{2} R' + A$$

1.2 Wzory praktyczne

1.2.1 Długość łuku krzywej

$$|l| = \int_a^b \sqrt{1 + (f'(x))^2} dx$$

1.2.2 Długość łuku krzywej parametrycznej

$$|l| = \int_a^b \sqrt{(x'(t))^2 + (y'(t))^2} dt$$

1.2.3 Objętość obrotu OX

$$|V| = \pi \int_a^b (f(x))^2 dx$$

1.2.4 Objętość obrotu OY

$$|V| = 2\pi \int_a^b x f(x) dx$$

1.2.5 Pole obrotu OX

$$|P| = 2\pi \int_{a}^{b} f(x)\sqrt{1 + (f'(x))^{2}}dx$$

1.2.6 Pole obrotu OY

$$|P| = 2\pi \int_a^b x \sqrt{1 + (f'(x))^2} dx$$

- 2 Szeregi
- 2.1 Warunek konieczny zbieżności

$$\lim_{n \to \infty} a_n = 0$$

- 3 Trygonometria
- 3.1 Jedynka trygonometryczna

$$1 = \sin^2 x + \cos^2 x$$

3.2 Podwojony kąt

$$\cos 2x = \cos^2 x - \sin^2 x$$

3.3 Iloczyn funkcji

$$\sin a \sin b = \frac{1}{2}(\cos(a-b) - \cos(a+b))$$
$$\cos a \cos b = \frac{1}{2}(\cos(a-b) + \cos(a+b))$$
$$\sin a \cos b = \frac{1}{2}(\sin(a-b) + \sin(a+b))$$

${\bf 3.4}\quad {\bf Og\'olne\ podstawienie\ trygonometryczne}$

$t = \tan \frac{x}{2}$	$t = \tan x$
$dx = \frac{2dt}{1+t^2}$	$dx = \frac{dt}{1+t^2}$
$\sin x = \frac{2t}{1+t^2}$	$\sin^2 x = \frac{t^2}{1+t^2}$
$\cos x = \frac{1 - t^2}{1 + t^2}$	$\cos^2 x = \frac{1}{1+t^2}$
_	$\sin x \cos x = \frac{t}{1+t^2}$

3.5 Trywialne wzory

$\int f(x)dx \ (+ \ C)$	f(x)	f'(x)
$\frac{a^x}{\ln a}$	a^x	$a^x \ln a$
$\frac{1}{a}e^{ax}$	e^{ax}	ae^{ax}
$x \ln x - x$	$\ln x$	$\frac{1}{x}$
$\ln f(x) $	$\frac{f'(x)}{f(x)}$	_
$\frac{c}{a}\ln ax+b $	$\frac{c}{ax+b}$	_
$\frac{1}{a} \tan^{-1} \frac{x}{a}$	$\frac{1}{x^2 + a^2}$	_
$\frac{1}{2a} \ln \left \frac{x-a}{x+a} \right $	$\frac{1}{x^2 - a^2}$	_
$\ln x + \sqrt{a^2 + x^2} $	$\frac{1}{\sqrt{a^2+x^2}}$	_
$\sin^{-1}\frac{x}{a}$	$\frac{1}{\sqrt{a^2 - x^2}}$	_
$-\cos x$	$\sin x$	$\cos x$
$\sin x$	$\cos x$	$-\sin x$
$-\ln \cos x $	$\tan x$	$\frac{1}{\cos^2 x}$
$\ln \sin x $	$\cot x$	$-\frac{1}{\sin^2 x}$
_	$\sin^{-1} x$	$\frac{1}{\sqrt{1-x^2}}$
_	$\cos^{-1} x$	$-\frac{1}{\sqrt{1-x^2}}$
_	$\int \tan^{-1} x$	$\frac{1}{1+x^2}$
_	$\cot^{-1} x$	$-\frac{1}{1+x^2}$