Reynoldssche Mittelung

Reynoldssche Dekomposition

$$\hat{U}_{j}(x_{i},t) = \overline{U}_{j}(x_{i}) + u'_{j}(x_{i},t)$$

mit
$$\overline{U}_j(x_i) = \lim_{T \to \infty} \frac{1}{T} \int_0^T \hat{U}_j(x_i, t) dt$$

zeitgemittelte Kontinuitätsgleichung für mittleres Strömungsfeld

$$\frac{\partial \overline{U}_j}{\partial x_i} = 0$$

zeitgemittelte Navier-Stokes-Gleichung (RANS = Reynolds Averaged Navier Stokes)

$$\rho \left(\frac{\partial \overline{U}_{j}}{\partial t} + \frac{\partial \left(\overline{U}_{i} \overline{U}_{j} \right)}{\partial x_{i}} \right) = -\frac{\partial \overline{P}}{\partial x_{j}} + \mu \frac{\partial^{2} \overline{U}_{j}}{\partial x_{i}^{2}} + \rho g_{j} - \rho \frac{\partial}{\partial x_{i}} \underbrace{\left(\overline{u}_{i} u_{j}^{'} \right)}_{i} \right)$$

Reynoldsscher Spannungstensor

Schließungsproblem

Reynoldsscher Spannungstensor

$$\overline{u_{i}'u_{j}'} = \begin{bmatrix}
\overline{u_{1}'^{2}} & \overline{u_{1}'u_{2}'} & \overline{u_{1}'u_{3}'} \\
\underline{u_{2}'u_{1}'} & \underline{u_{2}'^{2}} & \overline{u_{2}'u_{3}'} \\
\overline{u_{3}'u_{1}'} & \overline{u_{3}'u_{2}'} & \overline{u_{3}'^{2}}
\end{bmatrix}$$

symmetrischer Tensor $\overline{u_i'u_j'} = \overline{u_j'u_i'}$ Einführung 6 neuer Unbekannter

Folgerung

10 unabhängige Variablen: \overline{U}_1 , \overline{U}_2 , \overline{U}_3 , \overline{P} , $\overline{u_1'u_1'}$, $\overline{u_1'u_2'}$, $\overline{u_1'u_3'}$, $\overline{u_2'u_1'}$, $\overline{u_2'u_1'}$, $\overline{u_3'u_3'}$

4 unabhängige Gleichungen: 1 x Kontinuität + 3 x Impuls

das Gleichungssystem ist nicht geschlossen!

Turbulenzmodellierung

Wirbelviskosität

Boussinesqsche Näherung

Molekularer Impulstransport

$$\overline{\tau}_{ij} = -\mu \left(\frac{\partial \overline{U}_j}{\partial \mathbf{x}_i} + \frac{\partial \overline{U}_i}{\partial \mathbf{x}_j} \right) = -\rho \nu \left(\frac{\partial \overline{U}_j}{\partial \mathbf{x}_i} + \frac{\partial \overline{U}_i}{\partial \mathbf{x}_j} \right)$$

ν: Viskosität

Turbulenter Impulstransport

$$\rho \overline{u_i' u_j'} = \tau_{ij}^T = -\rho v_T \left(\frac{\partial \overline{U}_j}{\partial x_i} + \frac{\partial \overline{U}_i}{\partial x_j} \right)$$

 v_T : Wirbelviskosität / turbulente Viskosität

Wirbelviskositätsmodelle I

Wirbelviskosität

$$v_T = c_\mu u_c I_c$$

 c_u : Konstante

 u_c : charakteristische Geschwindigkeit des turbulenten Impulstransports

 I_c : charakteristische Länge des turbulenten Impulstransports

Folgerung

7 unabhängige Variablen: $\overline{U}_1, \overline{U}_2, \overline{U}_3, \overline{P}, v_T, u_c, I_c$

5 unabhängige Gleichungen: 1 x Kontinuität + 3 x Impuls + 1 x Wirbelviskosität

die Wirbelviskositätsmodelle sind nicht geschlossen bis u_c und l_c festgelegt sind!

Wirbelviskositätsmodelle II

Numerische Methoden

Methode	DNS Direkte Numerische Simulation	RANS	LES Large Eddy Simulation
Gleichungen	Navier-Stokes	Reynolds-gemittelte Navier-Stokes	gefilterte Navier- Stokes
Modellierung	0%	100%	0-100%
Rechenzeit	extrem hoch	niedrig	mittel
Genauigkeit	exakt	normal	mittel
Re	niedrig	hoch	hoch
Anwendung	Validierung und Kalibrierung von Turbulenzmodellen	am meisten genutzte Näherung für CFD	noch in der Erforschung