Jaehah Shin

jaehah.shin@mail.utoronto.ca / (778) 222-4285 / Toronto, ON, Canada / https://jaehahshin.github.io/contact.html

EDUCATION

University of Toronto

Sep. 2022 – May. 2027

Bachelor of Applied Science in Engineering Science + PEY Co-op

Toronto, Ontario, Canada

Major: Robotics Engineering

Certificate: J.E.D.I (Justice, Equity, Diversity, and Inclusion)

Relative Courses: Microprocessors & Embedded Microcontrollers, System Software, Digital and Computer

Systems, Electronics for Robotics, Data Structures and Analysis

WORK EXPERIENCE

Ted Rogers Centre for Heart Research – https://franklinresearch.ca/

May. 2023 - Present

Undergraduate Researcher

Toronto, Ontario, Canada

Project 1: Design Flexible PCB (fPCB) for wearable heat regulation in hyperemia research.

- Tuning PID controller to maintain specific temperature (42°C) for certain duration to induce condition for the cutaneous hyperemia.
- Developed a fPCB for heater integration with PID temperature controller to maintain 42°C for 10 minutes.

Project 2 (On-Going): Working individually on optimizing System in Package (SiP) / System on Chip (SoC)

- Select and evaluate SiP and SoC through datasheets for integration with accelerometers and optical sensors.
- Assess and develop device drivers for usability within the Zephyr RTOS to communicate and configure data through SPI from the Maxim Integrated device with nRF52833 chip.
- Quantify and optimize battery consumption using power profiling kits.
- Design a prototype board in Eagle to integrate the best SiP/SoC into a compact wearable platform, ensuring fPCB compatibility with various circuit components for Franklin Research Lab.

EXTRACURRICULARS

UofT Wearable (University of Toronto Wearable)

Jun. 2024 – Present

Co-Founder, Co-President

Toronto, Ontario, Canada

- Co-founded and led the UofT Wearable design team, focusing on innovative wearable technology.
- Managed sub teams in Embedded Electronics, Companion Software, and Form and Function.
- Led training sessions for approximately 35 students on Zephyr RTOS, Bluetooth Low Energy, and communication protocols (UART, SPI, I2C), enhancing their technical proficiency and understanding.

Robotics Engineering at University of Toronto

Sep. 2024 - Present

Robotics Option Representative

Toronto, Ontario, Canada

 Collaborate with faculty and peers to manage workload adjustments based on student feedback and concerns.

PROJECTS

Continuous all-day Wearable ECG Signal Acquisition Device

Sep. 2024 – Present

- Led the project and meetings under UofT Wearable.
- Design and optimize device drivers for the MAX30001G and nRF52840 within Zephyr RTOS to enable ECG data collection via electrodes, using SPI for inter-chip communication, and transmit data through Bluetooth Low Energy to the application.
- Configure the form of the wearable device based on wearability, signal quality, comfort and aesthetic.

SKILLS

- Embedded System: Zephyr RTOS, NRF Connect, UART, I2C, SPI
- Hardware Design: SuperSpice, Eagle (PCB), FPGA, Oscilloscope, Micro-soldering
- Programming Language: C, Python, Assembly, LaTeX, MATLAB
- Framework & Software: ROS, LabVIEW, Autodesk Fusion 360, Git, ModelSim