Лабораторная работа №6

Задание 1. (10 баллов) Сгенерируйте ряд длиной 1000 наблюдений в соответствии с моделью ARCH(q) по уравнению:

№	q	Уравнение модели
1	4	$\sigma_t^2 = 1 + 0.3\varepsilon_{t-1}^2 + 0.25\varepsilon_{t-2}^2 + 0.15\varepsilon_{t-3}^2 + 0.1\varepsilon_{t-4}^2$
2	3	$\sigma_t^2 = 0.9 + 0.3\varepsilon_{t-1}^2 + 0.25\varepsilon_{t-2}^2 + 0.35\varepsilon_{t-3}^2$
3	5	$\sigma_t^2 = 0.8 + 0.05\epsilon_{t-1}^2 + 0.25\epsilon_{t-2}^2 + 0.15\epsilon_{t-3}^2 + 0.1\epsilon_{t-4}^2 + 0.2\epsilon_{t-5}^2$
4	3	$\sigma_t^2 = 0.9 + 0.1\varepsilon_{t-1}^2 + 0.35\varepsilon_{t-2}^2 + 0.25\varepsilon_{t-3}^2$
5	4	$\sigma_t^2 = 0.6 + 0.3\varepsilon_{t-1}^2 + 0.15\varepsilon_{t-2}^2 + 0.25\varepsilon_{t-3}^2 + 0.1\varepsilon_{t-4}^2$
6	5	$\sigma_t^2 = 0.5 + 0.15\epsilon_{t-1}^2 + 0.2\epsilon_{t-2}^2 + 0.25\epsilon_{t-3}^2 + 0.05\epsilon_{t-4}^2 + 0.1\epsilon_{t-5}^2$
7	4	$\sigma_t^2 = 0.4 + 0.1\varepsilon_{t-1}^2 + 0.05\varepsilon_{t-2}^2 + 0.15\varepsilon_{t-3}^2 + 0.2\varepsilon_{t-4}^2$
8	5	$\sigma_t^2 = 0.3 + 0.05\varepsilon_{t-1}^2 + 0.1\varepsilon_{t-2}^2 + 0.15\varepsilon_{t-3}^2 + 0.2\varepsilon_{t-4}^2 + 0.25\varepsilon_{t-5}^2$
9	3	$\sigma_t^2 = 0.2 + 0.1\varepsilon_{t-1}^2 + 0.25\varepsilon_{t-2}^2 + 0.15\varepsilon_{t-3}^2$
10	4	$\sigma_t^2 = 0.1 + 0.1\epsilon_{t-1}^2 + 0.15\epsilon_{t-2}^2 + 0.05\epsilon_{t-3}^2 + 0.2\epsilon_{t-4}^2$
11	1	$\sigma_t^2 = 0.7 + 0.3\varepsilon_{t-1}^2$
12	2	$\sigma_t^2 = 0.8 + 0.15\epsilon_{t-1}^2 + 0.25\epsilon_{t-2}^2$
13	1	$\sigma_t^2 = 0.6 + 0.4\varepsilon_{t-1}^2$
14	2	$\sigma_t^2 = 0.5 + 0.15\epsilon_{t-1}^2 + 0.1\epsilon_{t-2}^2$
15	1	$\sigma_t^2 = 0.4 + 0.2\varepsilon_{t-1}^2$
16	2	$\sigma_t^2 = 0.3 + 0.05\varepsilon_{t-1}^2 + 0.15\varepsilon_{t-2}^2$
17	1	$\sigma_t^2 = 0.1 + 0.5\varepsilon_{t-1}^2$

Вместо начальных значений квадратов ошибок возьмите безусловную дисперсию. Будет ли процесс стационарным в широком смысле?

В действительности мы имеем только ряд наблюдений, а вид и параметры модели неизвестны.

Задание 2. (15 баллов) Методом наименьших квадратов (или методом максимального правдоподобия) оцените модель ARCH(q). Сравните оценки с истинными параметрами модели. Сравните динамику оценки условной дисперсии и ее истинных значений.

Задание 3. (5 баллов) Проиллюстрируйте графически ряд ARCH(q).

Задание 4. (20 баллов) Рассчитайте описательные статистики ряда: среднее, дисперсию, нормированную ковариационную функцию (автокорреляцию), асимметрию и эксцесс. Соответствуют ли полученные статистики теории?

Лабораторная работа №7

Задание 1. (15 баллов) Построить графики выбранных финансовоэкономических временных рядов. Вычислить описательные статистики. Построить эмпирическую плотность распределения. Вычислить автокорреляционную функцию и построить ее график. Сделать вывод об особенностях распределения.

Задание 2. (15 баллов) Оценить классическую GARCH(1,1)-модель для доходностей рядов (возможна модель в виде $r_t = \mu + \epsilon_t$). Исследовать на стационарность. Вычислить и представить графически автокорреляционную функцию квадратов GARCH(1,1)-процессов.

Задание 3. (15 баллов) Построить график условной дисперсии. Вычислить нормированные остатки, исследовать их на независимость и N(0,1) распределение. Построить автокорреляционную функцию нормированных остатков.

Задание 4. (**20 баллов**) Построить условный доверительный интервал прогнозов GARCH(1, 1)-процессов в виде плюс/минус двух среднеквадратических ошибок прогноза. Изобразить на одном графике истинные значения и интервальный прогноз.