

FEG2C3 Elektromagnetika I Karakteristik Material

Program Studi S1 Teknik Telekomunikasi Fakultas Teknik Elektro Universitas Telkom 2014

Tujuan Pembelajaran

- Mahasiswa memahami bagaimana reaksi suatu material apabila dikenai medan listrik dan/atau medan magnet eksternal,
- Mahasiswa memahami sifat-sifat material (konduktor, dielektrik, magnetik) berdasarkan parameter-parameter yang dimilikinya (konduktivitas, permitivitas, permaebilitas),

Organisasi Materi

- Pendahuluan
- Konduktor
- Bahan Dielektrik
- Bahan Magnetik

Pendahuluan

- Material akan memberikan reaksi terhadap medan eksternal (medan listrik atau medan magnet) yang mengenainya.
- Reaksi yang diberikan oleh material ditentukan oleh jenis material.
- Berdasarkan reaksi terhadap medan eksternal (medan listrik atau medan magnet) yang mengeninya, maka material dapat diklasifikasikan menjadi 3 jenis, yaitu:
 - 1. Bahan Konduktor
 - 2. Bahan Dielektrik
 - 3. Bahan Magnetik

Konduktor

- Bahan konduktor ditandai dengan banyak elektron bebas.
- Jika bahan konduktor dikenai pengaruh medan listrik luar, maka elektron bebas akan bergerak, sehingga timbul aliran elektron yang berkaitan dengan arus konduksi.
- Rapat arus konduksi yang terjadi sebanding dengan medan listrik yang mengenainya :

$$\vec{J}_c = \sigma \vec{E}$$

dimana σ adalah konduktivitas material.

Konduktor

Berikut adalah nilai konduktivitas beberapa material:

Material	σ (S/m)
Perak	$6,1 \times 10^7$
Tembaga	$5,7 \times 10^7$
Emas	$4,1 \times 10^7$
Aluminium	$3,5 \times 10^7$
Air Laut	4
Tanah basah	10-3
Silikon	3,9 x 10 ⁻⁴

Bahan Dielektrik

- Bahan dielektrik sama dengan bahan isolator.
- Muatan-muatan dalam bahan dielektrik masih terikat (tidak bebas).
- Jika bahan dielektrik dipengaruhi medan listrik luar tidak terjadi aliran elektron bebas.
- Bahan dielektrik memiliki kemampuan untuk menyimpan energi listrik.

Bahan Dielektrik

 Jika bahan dielektrik dikenai medan listrik, maka reaksi yang diberikan oleh bahan dielektrik disebut Polarisasi.

$$\vec{P} = \varepsilon_0 \chi_e \vec{E}$$

dimana χ_e adalah suseptibilitas listrik.

$$\chi_e + 1 = \varepsilon_r$$

dimana ε_r adalah permitivitas relatif.

Rapat arus polarisasi:

$$\vec{J}_P = \frac{\partial \vec{P}}{\partial t} = \frac{\partial \left(\varepsilon_0 \chi_e \vec{E}\right)}{\partial t}$$

Bahan Dielektrik

 Reaksi bahan dielektrik apabila dikenai medan listrik luar dalam bentuk polarisasi memberikan fakta bahwa di dalam bahan dielektrik tersebut rapat muatan polarisasi.

$$\rho_p = - \left(\vec{\nabla} \bullet \vec{P} \right)$$

Bahan Dielektrik

Berikut adalah nilai permitivitas relatif beberapa material:

Material	$\mathbf{\epsilon}_{\mathrm{r}}$
Udara	1
Kaca	6
Lucite	3,2
Polystyrene	2,5
Tanah basah	3
Teflon	2,1
Destilled water	81

Bahan Magnetik

- Bahan magnetik memiliki kemampuan untuk menyimpan energi magnet.
- Apabila suatu bahan magnetik diberi pengaruh medan magnet luar, maka pada bahan tersebut akan timbul momen dipol magnet.

$$\vec{m} = I_S \vec{S}$$

dengan *Is* adalah arus permukaan dan *S* adalah luas permukaan dimana arus *Is* mengelilinginya.

Bahan Magnetik

- Dalam bahan magnetik, ada istilah magnetisasi, yaitu momen dipol per satuan volume.
- Untuk bahan magnet linier, magnetisasi ini sebanding dengan intensitas medan magnet yang mengenainya.

$$\vec{M} = \chi_m \vec{H}$$

dimana χ_m adalah suseptibilitas magnet.

$$\chi_m + 1 = \mu_r$$

dimana μ adalah permeabilitas relatif.

Bahan Magnetik

 \circ Berkaitan dengan magnetisasi M, terdapat besaran rapat arus magnetisasi J_M

$$ec{J}_{\scriptscriptstyle M} = ec{
abla} imes ec{M}$$

 Rapat arus magnetisasi J_M ini bertindak sebagai rapat arus tambahan selain rapat arus sumber jika bahan magnetik dikenai medan magnet luar.

Bahan Magnetik

Berikut adalah nilai permeabilitas relatif beberapa material:

Material	$\mu_{ m r}$
Perak	0,99998
Tembaga	0,999991
Nikel	600
Baja	2000
Besi	5000

