Chapitre: Dérivation (nombre dérivé, tangente)

Dans tout le chapitre, sauf mention contraire, on aura :

Soit f une fonction définie sur un intervalle I de \mathbb{R} , C_f sa représentation graphique dans un repère du plan. Soit a un réel de I et A le point de C_f d'abscisse a.

Soit h un réel non nul tel que a + h appartient à I. Soit M(a + h; f(a + h)) un point de C_f .

Rappel 2nd: Déterminer une équation de droite

Exercice 1 : Déterminer une éguation de droite

Déterminer l'équation de la droite (AB)

- a. A(7;0) et B(0;7)
- b. A(8;3) et B(8;-3)c. A(-7;-3) et B(12;-3)

- d. A(-2;0) et B(0;2)
- e. A(1;-2) et $B\left(-\frac{1}{2};-5\right)$
- f. $A(0:\sqrt{5}-2)$ et $B(4:\sqrt{5}+2)$

Exercice 2: Associer une fonction affine à une droite

Déterminer une éguation de chaque droite représentée ci-contre.

Exercice 3 : Représenter dans un repère orthonormé des droites

Représenter dans un repère orthonormé $(0; \vec{i}, \vec{j})$ les droites suivantes :

a. $(d_1): v = 2$ b. $(d_2): x = -1$

- d. $(d_4): y = x 3$

- c. $(d_3): y = -2x$
- e. $(d_5): y = 2x 1$ f. $(d_6): y = -x 2$
- g. $(d_7): y = \frac{1}{2}x + 2$ h. $(d_8): y = -\frac{5}{8}x 3$ i. $(d_9): y = \frac{2}{3}x \frac{1}{2}$

Activité

La courbe ci-dessous représente le profil d'une piste de ski, partant d'une vallée O, en passant par un col C et arrivant dans la vallée A.

En abscisse est indiquée la distance horizontale depuis le point de départ O, en ordonnée l'altitude par rapport à O. L'unité sur chaque axe est l'hectomètre.

Le point H désigne un hameau, le point R un refuge.

Le guide prétend qu'au hameau H, la pente de la piste est de 120%.

Quelle construction peut-on envisager pour vérifier cette valeur?

En réalité la courbe est celle de la fonction f définie par $f(x) = 0.1x^2(x-4)^2$ sur [0: 4]

Utilisation de GeoGebra:

• Dans la ligne de saisie, entrer la fonction.

Remarque : Pour faire une restriction à un intervalle, taper : $Si[x \ge 0 \land x \le 4, f(x)]$ une fois f(x) déjà saisie.

- Créer un curseur a variant de 0 à 4 avec un pas de 0,1
- Créer un curseur h variant de -1 à 1 avec un pas de 0,01
- Dans la ligne de saisie, entrez M=(a,f(a)) (laisser la valeur par défaut)
- Dans la ligne de saisie, entrez N=(a+h,f(a+h)) (laisser la valeur par défaut)
- 1. Sur quelle courbe sont situés *M* et *N*? Pourquoi?
- 2. Faire apparaître la droite (MN)
- 3. Faire varier h sur le curseur. Que constatez-vous lorsque h=0?

Que constatez-vous lorsque $h \neq 0$ mais de plus en plus proche de 0?

4. Faire varier le curseur a pour choisir un autre point de la piste et recommencer l'analyse.

- 5. Entrer dans la ligne de saisie: Tangente[a, f]
- 6. Faire varier le curseur a.

Répondre aux questions suivantes:	III. <u>Taux de variation</u>
Évaluer la pente de la piste au refuge R .	Définition 1 :
Quelle est la pente de la piste au col ${\cal C}$? au départ ${\cal O}$? à l'arrivée ${\cal A}$?	Le taux de variation d'une fonction f entre a et $a+h$ est le nombre :
$f(x) = 0.1x^2(x-4)^2$	
Les calculs: Les calculs vont être faits dans le cas où $a=1$	$\tau_a(h) =$
1. Calculer $f(1)$.	
	Ce nombre est la pente de la droite (AM) , sécante à C_f passant par les point A et M .
	ce nombre est la pente de la droite (AM), secante à cy passant par les point A et M.
	Application A. Coit Community
2. Calculer $f(1+h)$.	Application 1 : Soit $f: x \mapsto x^2$.
	a) Calculer le taux de variation de la fonction f entre 1 et $1 + h$ avec $(h \neq 0)$
3. Calculer $f(1+h) - f(1)$ et factoriser par h .	
	b) Généralité: Calculer le taux de variation de la fonction f entre a et $a+h$ avec ($h\neq 0$)
On appelle $\tau_1(h)$ le quotient: $\tau_1(h) = \frac{f(1+h)-f(1)}{h}$ avec $h \neq 0$.	
Commentaire: La lettre grecque τ se lit 'tau " ce qui nous arrange bien puisqu'un taux de variation (ou	
$\frac{commenture}{d}$ to rettre greeque t set it that the quotient de l'accroissement des valeurs images Δy par	
I'accroissement des valeurs antécédentes Δx .	
Tuccioissement des valeurs antecedentes dx.	
4. Que représente $\tau_1(h)$ pour la droite (MN) ? Vers quel réel se rapproche $\tau_1(h)$ lorsque h se rapproche	
de 0 aussi près que l'on veut ?	Propriété 1: Soit f une fonction affine définie sur \mathbb{R} par : $f(x) = mx + p$ avec m et p des
de o dassi presique i on vede .	réels.
	Le taux de variation de la fonction f est le de la droite
	d'équation $y = mx + p$.
	Preuve: Soit $f: x \mapsto mx + p$
	1.00.01_00ic j - w - r iliw 1 p
	Application 2 : Donner, sans calcul, le taux d'accroissement de la fonction $g: x \mapsto 4x + 7$

IV. Nombre dérivé

Définition 2:

Le nombre dérivé de la fonction f en a est, si elle existe, la limite du taux de variation $\frac{f(a+h)-f(a)}{h}$ quand h tend vers 0 , on note ce nombre ______.

On écrit alors :

$$f'(a) =$$

Application 1 (suite) : Soit $f: x \mapsto x^2$.

c)	Calculer le nombre dérivé de	f en	(a =)	1

d) Calculer le nombre dérivé de f en en un point guelconque $a \neq 0$.

Remarques:

- En cinématique, on peut interpréter un taux de variation comme une vitesse moyenne et un nombre dérivé comme une vitesse instantanée :
- Dans un cadre économique, le nombre dérivé est relié au coût marginal.

Exercice 4 : Taux de variation et nombre dérivé

Le taux de variation d'une fonction f, dérivable en 2 est tel que $\frac{f(2+h)-f(2)}{h}=4+h$, avec $h\neq 0$. Calculer f'(2).

Exercice 6 : Taux de variation et nombre dérivé

Soit f la fonction définie sur \mathbb{R} par f(x) = 3x + 2et h un réel non nul.

- 1. Calculer f(4)
- 2. Vérifier que f(4 + h) = 14 + 3h
- 3. Montrer que le taux de variation de f entre 4 et | 2. Vérifier que le taux de variation de f entre -24 + h est égal à 3
- 4. En déduire que *f* est dérivable en 4 et déterminer f'(4).

Exercice 5 : Taux de variation et nombre dérivé

Le taux de variation d'une fonction f, dérivable en 1 est tel que $\frac{f(1+h)-f(1)}{h} = \frac{3h+2}{(1+h)^2}$, avec $h \neq 0$ et $1 + h \neq 0$. Calculer f'(1).

Exercice 7 : Taux de variation et nombre dérivé

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 + 1$ et h un réel non nul.

- 1. Calculer f(-2) et f(-2+h).
- et -2 + h est égal à -4 + h
- 3. En déduire que f est dérivable en -2 et déterminer f'(-2).

Exercice 8 : Taux de variation et nombre dérivé

Prouver l'existence du nombre dérivé au point a de la fonction f indiquée, puis calculer sa valeur. a) $f(x) = \frac{1}{x}$ et a = -1b) $f(x) = -x^2 + 2x$ et a = 3c) $f(x) = x - \frac{1}{x}$ et a = 1d) $f(x) = x^2 - 5x + 3$ et a = 2e) $f(x) = \frac{1}{x-1}$ et a = -1f) $f(x) = x^3 + 1$ et a = 2e) $f(x) = \frac{1}{x-1}$ et a = -1h) $f(x) = (x-3)^3$ et a = 0i) $f(x) = \frac{3}{x}$ et $a \in \mathbb{R}$

a)
$$f(x) = \frac{1}{x} \text{ et } a = -1$$

$$f(x) = x^2 - 5x + 3$$
 et $a = 2$

g)
$$f(x) = x^3 + 1$$
 et $a = 2$

c)
$$f(x) = x - \frac{1}{x}$$
 et $a = 1$

f)
$$f(x) = x^{3} - 3x \text{ et } a \in \mathbb{F}$$

$$f(x) = \frac{3}{x} \text{ et } a \in \mathbb{I}$$

V. Tangente

Définition 3 : La tangente en un point d'une courbe est la position limite d'une sécante passant par ce point et un point voisin de la courbe, lorsque ce point vient se confondre avec le premier point.

Remarque : Dire que f est dérivable en a signifie que le coefficient directeur des sécantes (AM) tend vers un réel f'(a) correspondant au coefficient directeur de « la position limite » de ces sécantes.

On obtient alors ces définitions :

Définition 4:

• Si f est dérivable en a , alors la tangente à la courbe représentative C de f au point A de

le nombre dérivé de f en a.

• Le coefficient directeur de la tangente à la courbe de f en a est

Remarque: Le point A(a; f(a)) est le point de contact de la tangente et de C_f .

Application 3 : La courbe de la fonction f définie sur \mathbb{R} est donnée ci-contre en rouge.

Determin	ier:
f'(-4)	
f'(-1)	
f'(3)	

Exercice 9 : Coefficient directeur et nombre dérivé Exercice 10 : Coefficient directeur et nombre

Soit f dérivable en 0 et en 3 telle que : f'(0) = -4 et f'(3) = 2. Soit T_A la tangente à C_f au point Ad'abscisse 0 et T_R la tangente à C_f au point B d'abscisse 3.

- 1. Déterminer le coefficient directeur de la tangente T_{Δ} .
- 2. Déterminer le coefficient directeur de la tangente T_R .

dérivé

Soit f dérivable sur \mathbb{R} . La droite (AB) est tangente à C_f au point A d'abscisse -2.

- 1. Déterminer le coefficient directeur de la droite (AB).
- 2. En déduire le nombre dérivé de f en −2.

Exercice 12 : Coefficient directeur et nombre dérivé

On donne le tableau ci-contre :

x_A	-5	-1	2	4
$f(x_A)$	138	10	19	75
$f'(x_A)$	-52	-12	18	38

- 1. Donner le coefficient directeur de la tangente à la courbe C_f au point d'abscisse x_A .
- 2. Donner les coordonnées du point de tangence.

Exercice 13: Nombre dérivé et tangente

Soit une fonction f. Les droites T_1 , T_2 et T_3 sont les tangentes à C_f , respectivement aux points A, B et D Le point E(0;3) est un point de T_3 .

- 1. Déterminer :
- a) f(-2); f(-1) et f(1)
- b) f'(-2); f'(-1) et f'(1).
- 2. Vérifier qu'une équation de T_2 est : $y = \frac{3}{2}x + \frac{3}{2}$.
- 3. Déterminer une équation des tangentes T_1 et T_3 .

Exercice 11 : Coefficient directeur et nombre dérivé

Soit g dérivable sur \mathbb{R} . Les droites T et T' sont tangentes à C_g aux points A et B d'abscisses respectives 1 et 0. Déterminer les nombres dérivés de g en 1 et 0.

Exercice 14: Nombre dérivé et tangente

La fonction suivante est dérivable sur son domaine de définition. Par lecture graphique, donner la pente de chacune des tangentes tracées, puis donner une équation de chacune de ces tangentes.

Exercice 15 : Coefficient directeur et nombre dérivé

- 1. On donne pour tout réel x, f'(x) = -6x + 11
 - a) Calculer f'(0) et f'(3).
 - b) En déduire les coefficients directeurs respectifs des tangentes à C_f au point A d'abscisse 0 et au point B d'abscisse 3.
- 2. On donne pour tout réel x, f'(x) = 9 + 7x
 - a) Calculer f'(-11) et f'(8).
 - b) En déduire les coefficients directeurs respectifs des tangentes à C_f au point A d'abscisse -11 et au point B d'abscisse 8.

Application 4: Dans le plan muni du repère (O, I, J), soit C_f la courbe représentative d'une fonction f définie sur \mathbb{R} . La tangente à la courbe C_f au point A(-3; 1) passe par le point B(2; -1).

Déterminer le nombre dérivé '(-3) .

Propriété 2 : La tangente à la courbe représentative C_f au point A admet pour équation : $v = \frac{1}{2}$

Preuve : Méthode pour obtenir l'équation réduite de la tangente à C_f en A(a; f(a)):

On cherche à obtenir une équation de la tangente de la forme y = mx + p.

- m est le coefficient directeur de la tangente, donc m =
- pour obtenir p, on utilise le fait que A appartient à C_f et à la tangente

Application 1 (suite) : e) Déterminer l'équation de la tangente à $f:x$	$\rightarrow x^2$ en 1.
--	-------------------------

Exercice 16: Equation de tangentes

- 1. Déterminer une équation de la tangente au point A(-1;2) à C_f sachant que : f'(-1)=3.
- Déterminer une équation de la tangente T au point A(1;3) à C_f sachant que le coefficient directeur de T est 4.

Exercice 17 : Nombre dérivé et tangente

- 1. Le point A(1;7) appartient à \mathcal{C}_f et on donne f'(1)=5.
 - Placer le point A, puis tracer la tangente à C_f en A.
- 2. Le point B(2;7) appartient à C_f et on donne f'(2) = -2.

Placer le point B, puis tracer la tangente à C_f en B.

Exercice 18: Equation de tangentes

Soit f une fonction et f' sa fonction dérivée.

Donner une équation de la tangente au point A de C_f d'abscisse x_A sachant que :

1.
$$f(x) = x^2 - 5x + 3$$
 et $f'(x) = 2x - 5$ en $x_A = 2$

2.
$$f(x) = \frac{1}{x} \operatorname{et} f'(x) = -\frac{1}{x^2} \operatorname{en} x_A = -1$$

3.
$$f(x) = x^3 + 1$$
 et $f'(x) = 3x^2$ en $x_A = 2$