# Lecture 2



# **Minimum Norm Solutions**

# Solving Linear Systems

Consider solving a linear system of equations in the form:

$$Xw = y$$

 $X \in \mathbb{R}^{nxd}$ 

Data vector n data points d dimensions

w: weights/coefficientsy: observations/labels

With training data  $X_{train}$  and  $y_{train}$ 

You want to come up with a linear equation of the form  $\hat{y} = x^T w$ Such that the error or residual

$$||Xw - y||_2^2$$

is minimized

### 4 Scenerios for Linear Equations

There are 4 scenarios in which we can determine a solution for w:

- 1. X is square (n = d) and full rank
- 2. X is tall or over determined (n > d) and full rank.
- 3. X is wide or under determined (n < d) and full rank.
- 4. X is rectangular  $(n \neq d)$  and not full rank.

# Underdetermined Equations and Minimum norm

For an underdetermined system of linear equations (scenario 3), our problem  $\mathbf{X}\mathbf{w} = \mathbf{y}$  has infinite solutions.

In such a scenario, we are interested in the minimum norm solution. As such, we can re-formulate our problem as:

$$\min_{w} \|w\| \text{ s.t. } Xw = y$$

Generally, these type of problems are useful for constrained optimization and control problems - which you may see in your engineering courses.

### Moore Penrose pseudo-inverse

When solving linear least squares problems in the form Xw = y (X data matrix, w coefficients, y observations to predict). Often, X is not square or directly invertible.

The Moore-Penrose pseudoinverse  $X^+$  gives us a generalization of the inverse matrix that can help us solve linear least squares solutions,  $w = X^+y$ .

A computationally simple and accurate of computing the pseudoinverse involves using the singular value decomposition. If  $X = USV^T$ , then the pseudo-inverse would be

$$X^+ = VS^+U^T$$

where  $S^+$  of a diagonal matrix of singular values S is obtained by taking the reciprocal of the nonzero diagonal entries, then transposing that matrix  $(S^{-1})^T$ .

#### **SVD** to Pseudo-Inverse

#### Overdetermined Matrix X



$$X^{T}X = (USV^{T})^{T}(USV^{T}) = VS^{2}V^{T}$$
 $(X^{T}X)^{-1} = VS^{-2}V^{T}$ 

$$X^{+} = (X^{T}X)^{-1} X^{T} = VS^{-2}V^{T}(VS^{T}U^{T}) = VS^{+}U^{T}$$



 $X^{+}X = VV^{T} = I$  so  $(X^{T}X)^{-1} X^{T}$  is left inverse of X.  $X (X^{T}X)^{-1} X^{T}$  gives projection onto Range(X)

#### **Underdetermined Matrix X**





 $XX^{+} = UU^{T} = I$  so  $X^{T}(XX^{T})^{-1}$  is right inverse of X.  $I - X^{T}(XX^{T})^{-1}X$  gives projection onto Null(X)

### 4 Scenerio: Block Form of Pseudoinverse

|    | row m, col n, rank r | $X^+$                                                           | = | V                                                                   | $oldsymbol{S}^+$                                                 | $oldsymbol{U}$                                                    |
|----|----------------------|-----------------------------------------------------------------|---|---------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|
| 1. | m = n = r            | $X^{-1}$                                                        | = | $egin{bmatrix} oldsymbol{V}_R \end{bmatrix}$                        | $\left[ oldsymbol{S}^{-1}  ight]$                                | $\left[oldsymbol{U}_{R}^{T} ight]$                                |
| 2. | m > n, n = r         | $egin{array}{c} oldsymbol{X}^+ \ oldsymbol{X}^{-L} \end{array}$ | = | $egin{bmatrix} oldsymbol{V}_R \end{bmatrix}$                        | $\left[ oldsymbol{S}^{-1} \ 0  ight]$                            | $egin{bmatrix} oldsymbol{U}_R^T \ oldsymbol{U}_N^T \end{bmatrix}$ |
| 3. | m = r, m < n         | $egin{array}{c} oldsymbol{X}^+ \ oldsymbol{X}^{-R} \end{array}$ | = | $\begin{bmatrix} oldsymbol{V}_R oldsymbol{V}_N \end{bmatrix}$       | $\begin{bmatrix} m{S}^{-1} \\ 0 \end{bmatrix}$                   | $\left[oldsymbol{U}_{R}^{T} ight]$                                |
| 4. | $m \neq n \neq r$    | $X^+$                                                           | = | $\begin{bmatrix} \boldsymbol{V}_R & \boldsymbol{V}_N \end{bmatrix}$ | $\begin{bmatrix} \boldsymbol{S}^{-1} \ 0 \\ 0 & 0 \end{bmatrix}$ | $egin{bmatrix} oldsymbol{U}_R^T \ oldsymbol{U}_N^T \end{bmatrix}$ |

# Moore Penrose Inverse Gives Us Minimum Norm for Underdetermined Systems

All of our solutions to this problem will have the form  $\{w|Xw=y\}=\{w_r+w_n|w_r\in R(X),w_n\in N(X)\}$ , where R(X) is the range of the columns of X and N(X) is the null space of the columns of X.

The least norm solution will be:

$$w = X^T (XX^T)^{-1} y$$

To see that this is the least norm solution, let us consider another solution z, so we have y = Xz = Xw. Then X(z - w) = 0. Then we see

$$(z-w)^T w = (z-w)^T X^T (XX^T)^{-1} y = (X(z-w))^T (XX^T)^{-1} y = 0$$

So

$$||z||^2 = ||z + w - w||^2 = ||w||^2 + ||z - w||^2 \ge ||w||^2$$

Note that cross terms cancel. From this, we see that our least norm solution has the smallest norm.

# Lagrange Multipliers

Our problem is formulated as:

$$\min_{w} \|w\|_2$$
  
s.t. $Xw = y$ 

Let us introduce Lagrange Multipliers:

$$L(w,\lambda) = w^T w + \lambda^T (Xw - y)$$

Taking derivatives:

$$\nabla_w L = 2w + X^T \lambda = 0 \Rightarrow w = -\frac{X^T \lambda}{2}$$
$$\nabla_\lambda L = Xw - y = 0$$

### Lagrange Multipliers

Substituting w from the first equation into the 2nd equation, we get:

$$Xw - y = -X\frac{X^{T}\lambda}{2} - y = 0 \Rightarrow \lambda = -2(XX^{T})^{-1}y$$

And therefore we plug back into the first equation to get:

$$w = \frac{X^T \lambda}{2} = (X^T)(XX^T)^{-1}y$$

which is our minimum norm solution.

#### **General Norm Minimization**

More generally, we may have a problem of the form

$$\min_{w} \|Xw - y\|$$
 subject to  $Cw = d$ 

Here, least squares and least norm problems are a special case of the formulation above. The problem formulation is equivalent to saying:

$$\min_{w} \frac{1}{2} ||Xw - y||^2$$
  
subject to  $Cw = d$ 

#### **General Norm Minimization**

The Lagrangian is:

$$L(x,\lambda) = \frac{1}{2} ||Xw - y||^2 + \lambda^T (Cw - d)$$
  
=  $\frac{1}{2} w^T X^T X w - y^T X w + \frac{1}{2} y^T y + \lambda^T Cw - \lambda^T d$ 

Taking partial derivative to x and  $\lambda$  and setting to 0:

$$\nabla_w L = X^T X w - X^T y + C^T \lambda = 0$$
$$\nabla_\lambda L = C w - d = 0$$

or

$$\begin{bmatrix} X^T X & X^T \\ X & 0 \end{bmatrix} \begin{bmatrix} x \\ \lambda \end{bmatrix} = \begin{bmatrix} X^T y \\ d \end{bmatrix}$$

If the left-most block matrix is invertible, then we will have:

$$\begin{bmatrix} x \\ \lambda \end{bmatrix} = \begin{bmatrix} X^T X & X^T \\ X & 0 \end{bmatrix}^{-1} \begin{bmatrix} X^T y \\ d \end{bmatrix}$$

# Introduction to Brain Machine Interface

# **Basics of Electrophysiology**

- Neurons conduct via action potentials
  - Electrical pulses due to electrochemical gradient across membrane
  - Causes neurotransmitter release
  - With enough neurotransmitter, subsequent neurons activate action potentials and pass on the signal





# How signals are recorded: low level to high level



# Extract Spike Waveforms from neural recordings

- Filter Signal
- Detect spikes
- Waveform Extraction and Alignment
- Analysis



# Application of PCA: Spike Sorting



# Spike Waveform clustering



## **Brain Computer Interface**





Decode from neurons (spike class) and spike train (frequency)

### **Brain Computer Interface**

Example classifying hand movement intention



#### EEG signals

Ex: signal recorded during left or right hand motor imagery

# Feature extraction

Ex: band power in the μ and β rhythms for electrodes located over the motor cortex

#### Classification

Ex: Linear Discriminant Analysis (LDA)

# Estimated class

Ex: Left or Right (imagined hand movement)