

EPREUVE SPECIFIQUE - FILIERE MP

MATHEMATIQUES 2

Durée: 4 heures

Les calculatrices sont autorisées.

* * *

NB : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

* * *

QUELQUES APPLICATIONS DES MATRICES DE GRAM À LA GÉOMÉTRIE

Dans tout le problème, E est un espace vectoriel euclidien de dimension $n \ge 2$ et on note (|) un produit scalaire sur E et || || la norme associée.

Si $x_1, x_2, ..., x_p$ sont p vecteurs de E, on appelle matrice de GRAM de $x_1, x_2, ..., x_p$, notée $G(x_1, x_2, ..., x_p)$, la matrice de $\mathcal{M}_p(\mathbb{R})$ de terme général $\left(x_i \mid x_j \right)$ pour $1 \le i \le p$ et $1 \le j \le p$:

$$G(x_{1}, x_{2}, ..., x_{p}) = \begin{pmatrix} (x_{1} | x_{1}) & (x_{1} | x_{2}) & ... & (x_{1} | x_{p}) \\ (x_{2} | x_{1}) & . & ... & . \\ . & . & ... & ... \\ (x_{p} | x_{1}) & . & ... & (x_{p} | x_{p}) \end{pmatrix}$$

on notera $\Gamma(x_1, x_2, ..., x_p)$ son déterminant : $\Gamma(x_1, x_2, ..., x_p) = \det G(x_1, x_2, ..., x_p)$.

Si A est une matrice de $\mathcal{M}_{p,q}(\mathbb{R})$, le noyau de A est, par définition,

$$\operatorname{Ker}(A) = \left\{ X \in \mathcal{M}_{q,1}(\mathbb{R}), AX = 0 \right\}$$

Par ailleurs, on note:

pour n entier $n \ge 2$, E_n l'espace \mathbb{R}^n muni du produit scalaire canonique à la fois considéré comme espace vectoriel euclidien et espace affine euclidien.

I. GÉNÉRALITÉS

- 1. Résultat préliminaire
 - **a.** Que peut-on dire d'une matrice $Y \in \mathcal{M}_{n,1}(\mathbb{R})$ vérifiant 'Y Y = 0?
 - **b.** Si $A \in \mathcal{M}_{n,p}(\mathbb{R})$, montrer que Ker (${}^{t}AA$) \subset Ker A puis en déduire que rang (${}^{t}AA$) = rang A.
- **2.** On donne $x_1, x_2, ..., x_p$ p vecteurs de E.

Si $\mathcal{B} = (e_1, e_2, ..., e_n)$ est une base orthonormale de E, et si A est la matrice de $\mathcal{M}_{n,p}(\mathbb{R})$ dont les colonnes sont les composantes des vecteurs $x_1, x_2, ..., x_p$ dans la base \mathcal{B} , montrer que $G(x_1, x_2, ..., x_p) = {}^t A A$.

Quel lien existe entre le rang de la matrice $G(x_1, x_2, ..., x_p)$ et le rang de la famille de vecteurs $(x_1, x_2, ..., x_p)$?

- **3.** Dans cette question, p = n.
 - a. Déterminer une condition nécessaire et suffisante portant sur $\Gamma(x_1, x_2, ..., x_n)$ pour que la famille $(x_1, x_2, ..., x_n)$ soit liée.
 - **b.** Montrer que la famille $(x_1, x_2, ..., x_n)$ est libre si, et seulement si, $\Gamma(x_1, x_2, ..., x_n) > 0$.
- **4.** Application

L'angle géométrique d'un couple (u,v) de vecteurs non nuls de E_n est le réel $\alpha \in [0, \pi]$ vérifiant : $\cos \alpha = \frac{(u \mid v)}{\|u\| \|v\|}$.

Si A, B et C sont trois points de E_3 situés sur la sphère de centre O et de rayon 1, si on désigne par α , β et γ l'angle géométrique des couples respectifs $(\overrightarrow{OA}, \overrightarrow{OB})$, $(\overrightarrow{OB}, \overrightarrow{OC})$ et $(\overrightarrow{OA}, \overrightarrow{OC})$, montrer en utilisant une matrice de GRAM que :

$$1 + 2\cos\alpha \; \cos\beta \; \cos\gamma \geq \cos^2\alpha + \cos^2\beta + \cos^2\gamma \; .$$

Que se passe-t-il dans le cas où les points A, B et C sont sur un même cercle ?

- 5. Interprétation géométrique de la matrice de GRAM
 - **a.** Si a, b et y sont trois vecteurs de E tels que le vecteur a soit orthogonal à la fois au vecteur b et au vecteur y, trouver une relation entre les déterminants $\Gamma(a+b,y)$, $\Gamma(a,y)$ et $\Gamma(b,y)$.
 - **b.** Si (x, y) est une famille libre de deux vecteurs de E_2 , si $F = \text{vect}\{y\}$ et si z est le projeté orthogonal du vecteur x sur F, montrer que $\Gamma(x, y) = \Gamma(x z, y)$.

- c. En déduire que si A, B et C sont trois points non alignés de E_2 , $\frac{1}{2}\sqrt{\Gamma(\overrightarrow{AB}, \overrightarrow{AC})}$ est l'aire du triangle ABC (donc, $\sqrt{\Gamma(\overrightarrow{AB}, \overrightarrow{AC})}$ est l'aire du parallélogramme « formé par A, B et C»).
- **6.** De la même façon on montre que si A, B, C et D sont quatre points non coplanaires de E_3 , $\sqrt{\Gamma(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD})}$ est le volume du parallélépipède « formé par A, B, C et D » que l'on désignera par parallélépipède ABCD.

On ne demande pas de prouver ce résultat.

- **a.** Vérifier que ce résultat permet de retrouver la formule usuelle du volume du parallélépipède rectangle.
- **b.** A l'aide de ce résultat écrire un petit algorithme en français qui, avec la donnée des coordonnées des points A, B, C et D, calcule le volume du parallélépipède ABCD ou affiche que les points sont coplanaires.

On pourra considérer que l'algorithme suppose connu le calcul du déterminant.

c. Après avoir entré cet algorithme dans la calculatrice, indiquer les résultats qu'elle donne dans chacun des cas suivants :

i.
$$A = (1, 2, 0), B = (1, -1, 3), C = (-1, -2, 0) \text{ et } D = (3, -1, 0).$$

ii.
$$A = (1, -1, 2), B = (3, 4, -7), C = (0, 3, 0) \text{ et } D = (0, 2, 1).$$

iii.
$$A = (8, 0, \frac{3}{2}), B = (0, 1, -1), C = (-\frac{1}{2}, 2, 0) \text{ et } D = (3, 3, 0).$$

II. POINTS ÉQUIDISTANTS SUR UNE SPHÈRE EUCLIDIENNE

Dans cette partie, m est un entier naturel, $m \ge 2$, et t est un réel, $t \ne 1$.

La famille de m vecteurs distincts $(x_1, x_2, ..., x_m)$ de l'espace E, de dimension $n \ge 2$, est solution du problème P(m, t) si :

tous les vecteurs $x_1, x_2, ..., x_m$ sont de norme 1

et

pour tout couple (i, j) d'entiers distincts entre 1 et m, $(x_i \mid x_j) = t$.

- 7. Résultats préliminaires
 - **a.** Montrer que si $(x_1, x_2, ..., x_m)$ est solution du problème P(m, t) alors, pour tout couple (i, j) d'entiers distincts entre 1 et m, $||x_i x_j||$ est constant.
 - **b.** Sans aucun calcul de déterminant, donner en le justifiant, le polynôme caractéristique de la matrice $J \in \mathcal{M}_m(\mathbb{R})$ dont tous les éléments sont égaux à 1.
 - **c.** En déduire que si $(x_1, x_2, ..., x_m)$ est solution du problème P(m, t), alors $\Gamma(x_1, x_2, ..., x_m) = (1-t)^{m-1}(1+(m-1)t)$.
- **8.** Conditions nécessaires
 - **a.** Montrer que, pour que $(x_1, x_2, ..., x_m)$ soit une famille libre de vecteurs solution du problème P(m, t), il est nécessaire que $t \in \left] \frac{-1}{m-1}, 1 \right[$ et que $m \le n$.

- **b.** Montrer que, pour que $(x_1, x_2, ..., x_m)$ soit une famille liée de vecteurs solution du problème P(m, t), il est nécessaire que $t = \frac{-1}{m-1}$ et que $m \le n+1$ (on pourra montrer qu'alors, la famille $(x_1, x_2, ..., x_{m-1})$ est libre).
- c. Application Existe-t-il dans E_3 cinq vecteurs distincts qui deux à deux forment un même angle obtus θ , c'est-à-dire tel que $\theta \in \left[\frac{\pi}{2}, \pi\right]$?
- Exemple du cas n = 2Déterminer pour $m \ge 3$, une famille $(A_1, A_2, ..., A_m)$ de points de E_2 , telle que la famille de vecteurs $(\overrightarrow{OA_1}, \overrightarrow{OA_2}, ..., \overrightarrow{OA_m})$ soit solution du problème P(m, t) en précisant le couple (m, t). Placer ces points sur une figure.
- 10. Exemple du cas n = 3On suppose que n = 3 et $t \in \left[\frac{-1}{2}, 1 \right[$. On pose $a = \sqrt{\frac{2-2t}{3}}$ et $b = \sqrt{\frac{2t+1}{3}}$.
 - **a.** Soit u un vecteur unitaire de \mathbb{R}^3 et H un sous espace supplémentaire orthogonal de vect $\{u\}$ dans \mathbb{R}^3 , justifier qu'il existe une famille (y_1, y_2, y_3) de vecteurs de H solution du problème $P(3, \frac{-1}{2})$.
 - **b.** Si on pose alors pour tout $i \in \{1, 2, 3\}$, $x_i = a y_i + b u$, montrer que (x_1, x_2, x_3) est une famille libre de vecteurs solution au problème P(3, t).
 - c. A quelle condition nécessaire portant sur $\alpha \in]0,\pi[$, existe-t-il trois points A_1, A_2 et A_3 de la sphère de centre O et de rayon 1 de E_3 tels que les trois angles géométriques des couples $(\overrightarrow{OA_1}, \overrightarrow{OA_2}), (\overrightarrow{OA_1}, \overrightarrow{OA_3})$ et $(\overrightarrow{OA_2}, \overrightarrow{OA_3})$ soient égaux à α ?

Remarque : on demande de ne pas utiliser le résultat de la question 4.

III. THÉORÈMES d'APOLLONIUS

On rappelle que si $\mathcal{B}=(a_1,a_2,...,a_n)$ est une base de E et si f est une forme bilinéaire symétrique sur $E\times E$, la matrice de f dans la base \mathcal{B} est la matrice symétrique S de $\mathcal{M}_n(\mathbb{R})$ définie par : $S=\left(f(a_i,a_j)\right)$. Par ailleurs, si x et y sont deux vecteurs de E où X et Y sont les matrices de $\mathcal{M}_{n,1}(\mathbb{R})$ représentant leurs composantes dans la base \mathcal{B} , on a $f(x,y)={}^t X S Y$.

11. Soit $\langle \ , \ \rangle$ un autre produit scalaire sur E, on considère $(a_1, a_2, ..., a_n)$ et $(b_1, b_2, ..., b_n)$ deux bases orthonormales de E pour ce produit scalaire. On note P la matrice de passage de la base $(a_1, a_2, ..., a_n)$ vers la base $(b_1, b_2, ..., b_n)$.

Montrer que, pour le produit scalaire (||), $G(b_1, b_2, ..., b_n) = P^{-1}$ $G(a_1, a_2, ..., a_n)$ P puis justifier que $\sum_{i=1}^{n} (a_i | a_i) = \sum_{i=1}^{n} (b_i | b_i)$.

- **12.** Dans E_2 , de repère orthonormé (O, e_1, e_2) , on considère l'ellipse C d'équation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ où a et b sont deux réels strictement positifs.
 - **a.** Justifier que l'on définit un produit scalaire sur \mathbb{R}^2 par $\langle U, V \rangle = \frac{u \, v}{a^2} + \frac{u' \, v'}{b^2}$ si U = (u, u') et V = (v, v') dans la base (e_1, e_2) .
 - **b.** Deux vecteurs U et V de E_2 sont des diamètres conjugués de C si (U,V) est une base orthonormale pour le produit scalaire $\langle \ , \ \rangle$.

Donner un exemple simple de deux diamètres conjugués de \mathcal{C} .

- c. Dans cette question, on demande de faire une figure. Soit M_0 un point de coordonnées (x_0, y_0) de C, montrer en utilisant un vecteur gradient, que l'équation de la tangente T à la courbe C en M_0 est $\frac{x x_0}{a^2} + \frac{y y_0}{b^2} = 1$. En déduire que la droite D qui passe par O et parallèle à T a pour équation cartésienne $\langle \overrightarrow{OM_0}, \overrightarrow{OM} \rangle = 0$. Si on note M_0 ' un point d'intersection de D et C, montrer que les vecteurs $\overrightarrow{OM_0}$ et $\overrightarrow{OM_0}$ ' sont des diamètres conjugués de C.
- **d.** Si M et M' sont deux points de C tels que les vecteurs \overrightarrow{OM} et $\overrightarrow{OM'}$ soient des diamètres conjugués de C, démontrer les deux théorèmes d'Apollonius suivants :

i.
$$OM^2 + OM^{-2} = a^2 + b^2$$
 (précision : $OM^2 = (\overrightarrow{OM} \mid \overrightarrow{OM})$).

ii. L'aire du parallélogramme « formé par O, M et M'» est constante égale à ab.

IV. RECHERCHE D'UNE ISOMÉTRIE AFFINE

13. On note $O(E_n)$ le groupe des automorphismes orthogonaux de E_n . Soit $(x_1, x_2, ..., x_n)$ et $(y_1, y_2, ..., y_n)$ deux familles de vecteurs de E_n vérifiant $G(x_1, x_2, ..., x_n) = G(y_1, y_2, ..., y_n)$.

On veut montrer qu'il existe $u \in O(E_n)$ vérifiant : pour tout entier $i \in \{1, 2, ..., n\}$, $u(x_i) = y_i$.

On note $p = \text{rang}(x_1, x_2, ..., x_n) = \text{rang}(y_1, y_2, ..., y_n)$, et on considère que les vecteurs sont numérotés de sorte que $(x_1, x_2, ..., x_p)$ et $(y_1, y_2, ..., y_p)$ soient deux familles libres de vecteurs.

On pose alors
$$V = \text{vect}\{x_1, x_2, ..., x_p\} = \text{vect}\{x_1, x_2, ..., x_p, ..., x_n\},\$$

$$W = \text{vect}\{y_1, y_2, ..., y_p\} = \text{vect}\{y_1, y_2, ..., y_p, ..., y_n\},\$$

on note $(e_{p+1},e_{p+2},...,e_n)$ une base orthonormale de V^\perp et $(e'_{p+1},e'_{p+2},...,e'_n)$ une base orthonormale de W^\perp .

Soit u un endomorphisme de E défini par :

pour
$$i \in \{1, 2, ..., p\}$$
 $u(x_i) = y_i$ et pour $i \in \{p+1, p+2, ..., n\}$ $u(e_i) = e'_i$.

- **a.** Montrer que u conserve le produit scalaire.
- **b.** Pour tout entier $i \in \{p+1, p+2, ..., n\}$, montrer que $y_i u(x_i) \in W \cap W^{\perp}$.
- c. Conclure.
- 14. On donne $(A_1, A_2, ..., A_n)$ et $(B_1, B_2, ..., B_n)$ deux familles de points de E_n vérifiant pour tout couple d'entiers (i, j) compris entre 1 et n, $\|\overrightarrow{A_i}\overrightarrow{A_j}\| = \|\overrightarrow{B_i}\overrightarrow{B_j}\|$ et on veut montrer qu'il existe une isométrie affine f de E_n vérifiant pour tout entier $i \in \{1, 2, ..., n\}$, $f(A_i) = B_i$.
 - **a.** Si on pose pour tout entier $i \in \{1, 2, ..., n\}$, $x_i = \overline{A_1 A_i}$ et $y_i = \overline{B_1 B_i}$, montrer que, pour tout couple d'entiers (i, j) compris entre 1 et n, $(x_i \mid x_j) = (y_i \mid y_j)$.
 - **b.** Conclure.

Fin de l'énoncé