Atmosféra

Pracovní list č. 1

Českolipská vesmírná agentura

Atmosféra je plynný obal Země a lze ji rozdělit do 5 vrstev troposféra, stratosféra, mezosféra, termosféra a exosféra

1 Vrstvy

Troposféra

Vrstva nejblíže Zemi. Sahá v průměru do 15 km nad zemský povrch. Jedná se o tři čtvrtiny hmotnosti celé atmosféry mj. proto, že se zde nachází téměř všechna atmosférická voda. V této vrstvě se nejčastěji vyskytují přírodní jevy jako tvorba oblaků, blesků a deště.

Stratosféra

Nejnižší část sahá k 10 km a nejvyšší část až do 50 km. Největší zvláštností pro stratosféru je výskyt ozonu O₃, vzácné molekuly kyslíku zachytávající UV záření. Velice zvláštními a úžasnými úkazy, které se vyskytují v této vrstvě, jsou tzv. gigantické výtrysky - sloupy plazmy sahající až několik desítek kilometrů.

Mezosféra

Nejnižší část sahá k 50 km a nejvyšší část až do 85 km. Většina meteoritů se vypaří v této vrstvě, kde zanechávají částice železa a dalších kovů. Zvláštními úkazy v této vrstvě jsou tzv. skřítci - načervenalé výboje plazmy.

Termosféra

Nejnižší část sahá k 85 km a nejvyšší část až do 1000 km. Díky proměnlivé aktivitě Slunce se tato část splaskává, nafukuje a vyšší hranice se může snížit až k 500 km. Na rozdíl od nižších vrstev se vzduch díky vysoké radiaci ze Slunce skládá z atomů, nikoliv molekul. V této vrstvě se taktéž vyskytuje polární záře, která je způsobena absorpcí fotonů atomy.

Exosféra

Většinou se horní limit exosféry uvádí na cca. 190 000 km, jelikož zde fotony působí na atomy větší silou než gravitační pole Země. Vzduch v exosféře je tak řídký, že se atomy nesráží. Díky tomu se mohou pohybovat po svých balistických křivkách. Existuje však malá pravděpodobnost, že atom získá dostatek energie a odletí do volného vesmíru.

2 Složení

Obecně lze atmosféru Země rozdělit podle složení na čistý vzduch, vodu a aerosoly. Vzduch se skládá z 78 % dusíku, 21 % kyslíku a vzácných plynů - argon - popřípadě stopových plynů jako CO₂. Celkové zastoupení vody v atmosféře je 4 % a velká většina se vyskytuje do 10 km, kde ji nalezneme ve všech třech skupenstvích - vodní pára v podobě oblačnosti, kapalná voda ve formě deště a vlhkosti a také krystalky ledu v podobě sněhu. Aerosoly se v atmosféře díky své hustotě vyskytují převážně v té nejnižší vrstvě. Spadá mezi ně hlavně prach a písek ze země, kouř z komínů ale také sůl z moře, pyl z rostlin a kapky chemikálií.

3 Historie meteorologie

Meteorologie v prastarých časech byla pouze o předpovídání počasí na základě okem viditelných atmosférických jevů, cyklů a chování zvířat. Nejednalo se o žádnou vědeckou disciplínu, nýbrž o předpověď počasí úzce propojenou s náboženstvím.

První pokus spojit všechny jevy do jednoho celku a vysvětlit je se objevuje v prvních třech částech Aristotelovy *Meteorologica* ze 4. st. př. l. Jsou zde sepsány první teorie o cyklech vody a vysvětlení např. blesků a meteoritů. První text o předpovídání počasí na základě všemožných jevů je však připisován Aristotelovu příteli Theofrastosovi, který je sepsal v knize *Et signus*. Další větší pokroky v meteorologii však přišly až v 17. st., kdy E. Torricelli sestrojil první barometr a F. II. Medicejský první teploměr. Tyto vynálezy umožnily zapisování přesných dat a jejich spojení s počasím.

Skutečně užitečná se meteorologie stala až s příchodem telegrafu, který umožňoval přenos předpovědi na velké vzdálenosti ještě před tím, než předpovězené počasí přišlo. Poslední velký skok přišel v 20. století s počítači, které umožňovaly rychlý výpočet Richardsonových rovnic a vypouštění meteorologických satelitů a balonů.

4 Úlohy

a) **Přiřaďte názvy k atmosférickým jevům.** (Skřítci, gigantická tryska, blesky, polární záře)

b) Vyluštěte tajenku. Na některé otázky budete potřebovat použít i jiné zdroje.

- 1. jev v termosféře, můžeme jej vidět na pólech, projevuje se jako zelená záře na obloze; latinsky
- 2. výboje plazmy v mezosféře
- 3. silný výboj z mraku, doprovázen charakteristickým zvukem
- 4. perleťové zbarvení oblačnosti
- 5. můžeme tam pozorovat meteory
- 6. voda v atmosféře, ovlivňuje teplotu a vlhkost povrchu Země
- 7. astronaut, který čekal ve vesmíru na jeho kolegy při přistání Apolla 11
- 8. menší objekt vesmírného původu, který v atmosféře neshoří a doletí na zem

~		
Rešení t	a ienky•	

c) Spojte dvojice

a)

a) 78 % atmosféry	1.) voda
b) 25-35 km	2.) kyslík
c) 0 - 10 km	3.) dusík
d) 21 % armosféry	4.) ozon

c)

b)

d) Napište alespoň 3 funkce atmosféry.

Pomohou vám přesmyčky.

- (a) chroaan řepd vu
- (b) lenpáte zaociel
- (c) dacnhíý
- e) Má člověk vliv na atmosféru? Pozitivní nebo negativní? Jmenujte příklady.
- f) BONUS: Zhlédněte video a odpovězte na otázky:

d)

- 1. Co způsobuje polární záři?
- 2. Kde a proč právě tam ji můžeme pozorovat?
- 3. Do jaké velikosti se nafoukl jejich stratosférický balon?
- 4. Kolik balonů vypustili a kolik z nich pořídilo fotky polární záře?

https://www.youtube. com/watch?v=50-wAYKBBSc