面包板实验 1 门电路逻辑功能及性能测试实验报告模板

姓名: 学号:

一、实验目的

- 1. 掌握了解 CMOS、TTL 系列门电路的逻辑功能。
- 2. 熟悉门电路基本性能参数的测试方法。
- 3. 熟悉实验箱的使用和掌握实验测试设备的操作方法。

二、实验仪器及器件

- 1. 实验仪器: 数电实验箱、数字万用表
- 2. 器件:

74LS00 四路二输入端与非门 1片 74HC00 四路二输入端与非门 1片 74LS04 六路反相器 1片 74HC04 六路反相器 1片 74HC14 六路斯密特反相器 1片 74HC15 三态门 1片

三、实验步骤

本实验所用到的集成电路的引脚功能图见附录。选择实验用的集成电路,按自己设计的实验接线图接好连线,特别注意 Vcc 接电源线、GND 接地。线连接好后经检查无误方可通由实验。

1 门由路功能验证

任选 74HC00 中任意一个两输入与非门,验证与非门电路的功能:输入端 $A \times B$ 分别接逻辑电平开关 $S1 \times S2$,输出端 Y 接电平指示灯发光二极管 L1,芯片 7 脚接地,14 脚接电源。改变逻辑电平开关 $S1 \times S2$ 的电平状态,观察发光二极管 L1 的状态,并将输出状态填入表中:

输入	输出
S1 S2	74HC00
0 0	1
0 1	1
1 0	1
1 1	0
逻辑表达式	F=s1' +s2'
逻辑功能	仅当输入都
	为1时输出
	为 0

2. 三态门逻辑功能测试

根据下图,将74HC125中两个三态门的输出端Y1和Y2连接到74HC00一个与非门输入端B1,74HC125的使能端C1、C2分别接到74HC04反相器输出端O1和输入端I1,74HC04输入端I1、74HC125的输入端A1和A2以及74HC00的另一个输入端B2分别连接到逻辑电平开关上。测试当输入端逻辑电平设置为不同值时,三态门输出端Y1/Y2和与非门输出Y3的电压值,并把测量到的数据填入下表中。

输入电平			输出电压		
I1	A1	A2	B2	Y1/Y2	¥3
		L	L	-0.15	0.00
	T	L	Н	1.06	1.64
	L	Н	L	0.76	0.08
L		Н	Н	1.39	1.96
L		L	L	1.02	0.20
	II	L	Н	1.30	1.86
	Н	Н	L	1.62	0.76
		Н	Н	1.93	2. 52
		L	L	0.73	0.12
	T	L	Н	1.37	1.98
Н	L	Н	L	0.73	0.11
		Н	Н	1.42	2.04
	Н -	L	L	1.23	0.30
		L	Н	1.76	2.34
		Н	L	2.70	2. 15
		Н	Н	3.64	3.65

3. 测试三种不同系列反相器 74LS04、74HC04、74HC14 电压传输特性

门电路的输出电压 V_0 随输入电压 V_i 而变化的曲线 V_0 = $f(V_i)$ 称为门的电压传输特性,通过它可读得门电路的一些重要参数,如输出高电平 V_{OH} 、输出低电平 V_{OL} 、关门电平 V_{OF} 、开门电平 V_{ON} 、阈值电平 V_T 及直流噪声容限等值。

(1) 将反相器04的输入端1脚连接到电位器的输出,调整电位器,严格按照上升和下降次序连续输入相应的电压值;把万用表测试量程换到20V,测量输出端2脚的电压,画出74LS04、74HC04、74HC14的电压传输特性曲线(两人一组,同时使用两只万用表)。

输入 V _i	74LS04	输入 V _i	74LS04
单调上	输出 Vo	单调下	输出 Vo
升 (V)	(V)	降 (V)	(V)
0.0	4. 44	5.0	0. 135
0.5	4. 44	4.5	0.134
1.0	4. 39	4.0	0.134
1.5	1.20	3. 5	0.134
2.0	0.13	3.0	0.134
2.1	0.13	2. 5	0.134
2. 15	0.130	2.4	0.137
2.2	0. 131	2. 35	0.136
2. 25	0. 133	2.3	0.136
2.3	0.135	2. 25	0.136
2. 35	0.160	2.2	0.136
2.4	0.174	2. 15	0.136
2.5	0.135	2.1	0. 125
3.0	0. 136	2.0	0. 125
3.5	0. 135	1.5	0. 131
4.0	0.135	1.0	4. 38
4.5	0. 135	0.5	4. 45
5.0	0. 135	0.0	4. 45

注:如果输出电压不在密集测量区域发生跳变,请调整跳变点附近输入电压的变化幅度为0.05V。

输入 V _i	74HC04	输入 V _i	74HC04 输
单调上升	输出 Vo	单调下降	出 Vo(V)
((V)	(V)	(V)	
0.0	4.95	5.0	0
0.5	4.95	4.5	0
0.8	4.96	4.0	0
0.85	4.96	3.5	0
0.9	4.96	3.0	0
0.9	4.96	2.9	0
0.9	4.96	2.8	0
0.95	4.96	2.75	2. 25
1.0	4.96	2.70	2. 27
1.05	4.96	2.65	2.30
1.1	4.96	2.60	2. 34
1.15	4.96	2.5	2.40
1.5	4.96	2.4	2.45
2.0	4.96	2.3	2. 51
2.5	4.96	2.2	2. 56
2.6	4.96	2.0	2. 67
2.8	2. 26	1.5	3.06
2.9	2. 22	1.0	4.97
3. 0	2.18	0.5	4.98
3, 5	1.90	0.0	4.98
4.0	1.64		
4.5	1.38		
5. 0	0		

输入 V _i	74HC14 输	输入 V _i	74HC14 输
单调上升(V)	出 Vo (V)	单调下降	出 Vo (V)
		(V)	
0.0	5.00	5.0	0.00
0.5	5.01	4.5	0.00
1.0	5.01	4.0	0.00
1.5	5.01	3.5	0.00
2.0	5.01	3.0	0.00
2.5	5.00	2.5	0.00
2. 55	5.00	2.0	5.01
2.6	5.00	1.9	5.01
2.65	5.00	1.85	5.01
2.7	5.00	1.8	5.01
2.75	5.00	1.75	5.01
2.8	5.00	1.7	5.01
2.85	5.00	1.65	5.01
2.9	5.00	1.6	5. 01
3.0	5.00	1. 55	5.01
3.5	1.89	1.5	5.01
4.0	1.51	1.0	5.01
4.5	1.23	0.5	5.01
5.0	0.01	0.0	5. 01

注:如果输出电压不在密集测量区域发生跳变,请调整跳变点附近输入电压的变化幅度为0.05V。

在同一张图上分别画出 74LS04、74HC04、74HC14 电压传输特性曲线(包括上升和下降两种情形)

(2)比较电压传输特性曲线,说明各自的特性。 74S04输入高电平较低,74HC14是施密特元件,上升和下降跳转的输入高电平不同

(3) 从传输特性曲线计算出 74LS04、74HC04、74HC14 三种门电路的电压特性:

	74LS04	74HC04	74HC14
输出高电平 (VoH)	4. 39	4. 96	5.00
输出低电平 (Vol.)	0. 135	2. 26	1.89
输入高电平 (VIII)	1.50	2. 60	3.50
输入低电平 (VIL)	1.00	2.80	2.00
阈值电平 V₁	1. 25	2.70	3. 25/2. 05
低态直流噪声容限	0.5	0.2	3.11
高态直流噪声容限	0.5	0.05	0.05

4. 测量空载电流 I_{CCL}和 I_{CCH}(选做实验)

(1) 与非门处于不同的工作状态,电源提供的电流是不同的。 I_{CCL} 是指所有输入端接高电平时,输出端空载时,电源提供器件的电流。 I_{CCH} 是指输出端空截,所有输入端接地,电源提供给器件的电流。通常 I_{CCL} > I_{CCH} ,它们的大小标志着器件静态功耗的大小,器件的最大功耗为 P_{CCL} = $V_{CC}I_{CCL}$ 。

拆除 14 脚与+5V 电源的连线,将万用表量程设置成直流电流 20mA,并将万用表的"+" 极连接到+5V,万用表的"-"极连接到 14 脚,拆除负载 L1。分别设置 S1=S2=0 和 S1=S2=1,读出万用表中的数值,并记录下来。

接如下电路图,分别测试 74HC00 和 74LS00 的空载电流 I_{CCL} 和 I_{CCH} 。

四、实验报告

- 1、记录、整理实验结果,并对结果进行分析。
- 2、比较一下 TTL 逻辑门与 CMOS 逻辑门的异同点。
- 3、说明三态门的特性及其应用
- 4、说明斯密特反相器的特性及其应用

2. TTL 集成电路的全名是晶体管-晶体管逻辑集成电路 (Transistor-Transistor Logic), 主要有 54/74 系列标准 TTL、高速型 TTL (H-TTL)、低功耗型 TTL (L-TTL)、肖特基型 TTL (S-TTL)、低功耗肖特基型 TTL (LS-TTL) 五个系列。标准 TTL 输入高电平最小 2V,输出高电平最小 2. 4V,典型值 3. 4V,输入低电平最大 0. 8V,输出低电平最大 0. 4V,典型值 0. 2V。S-TTL 输入高电平最小 2V,输出高电平最小 I 类 2. 5V, II、III类 2. 7V,典型值 3. 4V,输入低电平最大 0. 8V,输出低电平最大 0. 5V。LS-TTL 输入高电平最小 2V,输出高电平最小 I 类 2. 5V, II、III类 2. 7V,典型值 3. 4V,输入低电平最大 I 类 0. 7V, II、III类 0. 8V,输出低电平最大 I 类 0. 4V, II、III类 0. 5V,典型值 0. 25V。 TTL 电路的电源 VDD 供电只允许在+5V+10%范围内,扇出数为 10 个以下 TTL 门电路:

COMS 集成电路是互补对称金属氧化物半导体 (Compiementary symmetry metal oxide semicoductor) 集成电路的英文缩写,电路的许多基本逻辑单元都是用增强型 PMOS 晶体管和增强型 NMOS 管按照互补对称形式连接的,静态功耗很小。COMS 电路的供电电压 VDD 范围比较广在+5--+15V 均能正常工作,电压波动允许 ± 10 ,当输出电压高于 VDD-0.5V 时为逻辑 1,输出电压低于 VSS+0.5V (VSS 为数字地) 为逻辑 0,扇出数为 10--20 个 COMS 门电路

TTL 电平与 CMOS 电平的区别:

- (一) TTL 高电平 $3.6^{\circ}5V$,低电平 $0V^{\circ}2.4V$; CMOS 电平 Vcc 可达到 12V, CMOS 电路输出 高电平约为 0.9Vcc,而输出低电平约为 0.1Vcc。 CMOS 电路不使用的输入端不能悬空,会造成逻辑混乱。 TTL 电路不使用的输入端悬空为高电平。
- (二) TTL 电平是 5V,CMOS 电平一般是 12V。因为 TTL 电路电源电压是 5V,CMOS 电路电源电压一般是 12V。

(三)TTL 由平标准

输出 L: <0.8V; H: >2.4V。

输入 L: <1.2V ; H: >2.0V

TTL 器件输出低电平要小于 0.8V,高电平要大于 2.4V。输入,低于 1.2V 就认为是 0,高于 2.0 就认为是 1。

CMOS 电平:

输出 L: <0.1*Vcc; H: >0.9*Vcc。 输入 L: <0.3*Vcc; H: >0.7*Vcc.

3. 高电平,低电平,高阻态称为三态.可以具备这三种状态的器件就叫做三态高电平,低电平可以由内部电路拉高和拉低.而高阻态时引脚对地电阻无穷,此时读引脚电平时可以读到真实的电平值。当有多个输出连接在一起,那么,在同一时候应当只能有一个输出有效,而其它的输出端不能影响它,它们不能为0,也不能为1,只能处于高阻态。当有多个输出连接在一起,那么,在同一时候应当只能有一个输出有效,而其它的输出端不能影响它,它们不能为0,也不能为1—只能处于高阻态.

应用:如果设备端口要挂在一个总线上,必须通过三态缓冲器。因为在一个总线上同时只能有一个端口作输出,这时其他端口必须在高阻态,同时可以输入这个输出端口的数据。所以还需要有总线控制管理,访问到哪个端口,那个端口的三态缓冲器才可以转入输出状态。这是典型的三态门应用。

4. 施密特反相器也有两个稳定状态,但与一般触发器不同的是,施密特反相器采用电位触发方式,其状态由输入信号电位维持;对于负向递减和正向递增两种不同变化方向的输入信号,施密特反相器有不同的阈值电压。

作用:它是一种阈值开关电路,具有突变输入——输出特性的门电路。这种电路被设计成阻止输入电压出现微小变化(低于某一阈值)而引起的输出电压的改变。

利用施密特反相器状态转换过程中的正反馈作用,可以把边沿变化缓慢的周期性信号变换为边沿很陡的矩形脉冲信号。输入的信号只要幅度大于 vt+,即可在施密特反相器的输出端得到同等频率的矩形脉冲信号。

当输入电压由低向高增加,到达 V+时,输出电压发生突变,而输入电压 Vi 由高变低,到达 V-,输出电压发生突变,因而出现输出电压变化滞后的现象,可以看出对于要求一定延迟启动的电路,它是特别适用的.