Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет систем управления и робототехники

Типовой расчет № 1 "Функции нескольких переменных "

по дисциплине Математический анализ

Выполнила: студентка гр. R3238

Нечаева А. А.

Преподаватель: Бойцев Антон Александрович

Санкт-Петербург, 2023-2024

1 задание.

Найти частные производные данной функции f(x,y) в точке (0,0). Выяснить, является ли функция дифференцируемой в точке (0,0). Найти её дифференциал. Пункт 2.

$$f(x,y) = y + \cos\sqrt[3]{x^2 + y^2} \tag{1}$$

1.1 Частные производные

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{\Delta x \to 0} \frac{\Delta_x f}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$
(2)

Производная по x в точке (0,0):

$$\frac{\partial f}{\partial x}(0,0) = \lim_{\Delta x \to 0} \frac{\cos \sqrt[3]{(\Delta x)^2} - \cos 0}{\Delta x} = -2 \lim_{\Delta x \to 0} \frac{\sin^2 \frac{\sqrt[3]{(\Delta x)^2}}{2}}{\Delta x} =$$

$$= -2 \lim_{\Delta x \to 0} \frac{\sin^2 \frac{\sqrt[3]{(\Delta x)^2}}{2}}{4\left(\frac{\sqrt[3]{(\Delta x)^2}}{2}\right)^2} = 0 \quad (3)$$

Производная по y в точке (0,0):

$$\frac{\partial f}{\partial y}(0,0) = \lim_{\Delta y \to 0} \frac{\Delta y + \cos \sqrt[3]{(\Delta y)^2} - \cos 0}{\Delta y} = \lim_{\Delta y \to 0} \left(1 + \frac{\cos \sqrt[3]{(\Delta y)^2} - 1}{\Delta y} \right) =
= 1 - 2 \lim_{\Delta y \to 0} \frac{\sin^2 \frac{\sqrt[3]{(\Delta y)^2}}{2}}{\Delta y} = 1 - 2 \lim_{\Delta y \to 0} \frac{\sin^2 \frac{\sqrt[3]{(\Delta y)^2}}{2} \sqrt[3]{\Delta y}}{4 \left(\frac{\sqrt[3]{(\Delta y)^2}}{2}\right)^2} = 1 \quad (4)$$

1.2 Дифференцируемость в точке (0,0)

1.3 Дифференциал

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy \tag{5}$$

Найдем частные производные:

$$\frac{\partial f}{\partial x} = \left(y + \cos\sqrt[3]{x^2 + y^2}\right)_x' = -\frac{2x}{3} \frac{\sin\sqrt[3]{x^2 + y^2}}{\sqrt[3]{(x^2 + y^2)^2}} \tag{6}$$

$$\frac{\partial f}{\partial y} = \left(y + \cos\sqrt[3]{x^2 + y^2}\right)_y' = 1 - \frac{2y}{3} \frac{\sin\sqrt[3]{x^2 + y^2}}{\sqrt[3]{(x^2 + y^2)^2}} \tag{7}$$

Терерь запишем полный дифференциал:

$$df = -\frac{2x}{3} \frac{\sin \sqrt[3]{x^2 + y^2}}{\sqrt[3]{(x^2 + y^2)^2}} dx + \left(1 - \frac{2y}{3} \frac{\sin \sqrt[3]{x^2 + y^2}}{\sqrt[3]{(x^2 + y^2)^2}}\right) dy$$
 (8)

2 задание

Найти производную данной функции в направлении данного вектора в заданной точке M. Пункт 8.

$$f(x,y,z) = exp(x + 2xy + 3xyz) \tag{9}$$

по направлению внутренней нормали к поверхности $x^2+y^2+z^2+2z=1,$ $M\left(\frac{1}{2},\frac{\sqrt{3}}{2},0\right)$

Найдем уравнение касательной плоскости к поверхности $x^2+y^2+z^2+2z=1$ в точке $M\left(\frac{1}{2},\frac{\sqrt{3}}{2},0\right)$:

$$F'_{x}(M) \cdot (x - x_{0}) + F'_{y}(M) \cdot (y - y_{0}) + F'_{z}(M) \cdot (z - z_{0}) = 0$$
 (10)

$$F_x' = (x^2 + y^2 + z^2 + 2z - 1)_x' = 2x$$
(11)

$$F_y' = (x^2 + y^2 + z^2 + 2z - 1)_y' = 2y$$
(12)

$$F_z' = (x^2 + y^2 + z^2 + 2z - 1)_z' = 2z + 2$$
(13)

$$F_x'(M) = 2\frac{1}{2} = 1 \tag{14}$$

$$F_y'(M) = 2\frac{\sqrt{3}}{2} = \sqrt{3} \tag{15}$$

$$F_z'(M) = 0 (16)$$

3 задание

Произвести указанную замену в данном дифференциальном уравнении. Решить полученное дифференциальное уравнение в новых переменных. По-казать, что найденное решение (в исходных переменных) удовлетворяет исходному уравнению. Пункт 3.

u и v – новые независимые переменные, w – новая функция. u = x + y, v = x - y, w + z = xy,

$$\frac{\partial^2 z}{\partial x^2} + 2\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0 \tag{17}$$

z = z(x, y), w = w(u, v), u = u(x, y), v = v(x, y)

Для начала найдем все производные второго порядка функции w по переменным x и y:

$$w'_{x} = w'_{u} \cdot u'_{x} + w'_{v} \cdot v'_{x} = w'_{u} + w'_{v}$$
(18)

$$w_{ux}'' = w_{uu}'' \cdot u_x' + w_{uv}'' \cdot v_x' = w_{uu}'' + w_{uv}''$$
(19)

$$w_{vx}'' = w_{vu}'' \cdot u_x' + w_{vv}'' \cdot v_x' = w_{vu}'' + w_{vv}''$$
(20)

Вторая производная по x:

$$w_{xx}'' = w_{yy}'' + 2w_{yy}'' + w_{yy}'' \tag{21}$$

$$w'_{y} = w'_{u} \cdot u'_{y} + w'_{v} \cdot v'_{y} = w'_{u} - w'_{v}$$
(22)

$$w_{uy}'' = w_{uu}'' \cdot u_y' + w_{uv}'' \cdot v_y' = w_{uu}'' - w_{uv}''$$
(23)

$$w_{vy}'' = w_{vu}'' \cdot u_y' + w_{vv}'' \cdot v_y' = w_{vu}'' - w_{vv}''$$
(24)

Вторая производная по y:

$$w_{uu}'' = w_{uu}'' - 2w_{uv}'' + w_{vv}'' \tag{25}$$

Вторая производная по x и y:

$$w_{yx}'' = w_{xy}'' = w_{yy}'' - w_{yy}'' \tag{26}$$

Теперь выразим z''_{xx} , z''_{xy} и z''_{yy} из w+z=xy: