Maoyuan 'Raymond' Song

Department of Computer Science, Purdue University 305 N. University St, West Lafayette, IN 47907

CONTACT

Email: MaoyuanRS (at) gmail (dot) com

Personal Page: maoyuans.github.io

RESEARCH INTERESTS

Online algorithms; Beyond worst-case analysis; Learning-augmented algorithms; Sublinear-time and sublinear-space algorithms; Computational complexity; Learning theory.

EDUCATION

Ph.D. Student in Computer Science

August 2020 - Present West Lafayette, IN

Purdue University

• Advisors: Elena Grigorescu, Paul Valiant.

M.S. in Computer Science

May 2019 - May 2020

Pittsburgh, PA

Carnegie Mellon University

Advisor: Carleton Kingsford.
Thesis: Linear Time Addition of Fibonacci Encodings.

B.S. in Computer Science

Aug 2015 - May 2020

Pittsburgh, PA

Carnegie Mellon University

- Minor: Discrete Mathematics and Logic.
- Graduated with University Honors.

EMPLOYMENT

Senior Project Member, Content Manager

Carnegie Mellon University Computer Science Academy

January 2018 - May 2020

Pittsburgh, PA

- Participated as a senior member in the development of CMU Computer Science Academy, a university-sponsored non-profit organization aiming to provide accessible and effective experiences with CS for highschool students and educators.
- Created and managed contents including student exercises, quality assurance, and support resources for educators.

PUBLICATIONS

3. Optimality in Mean Estimation: Beyond Worst-Case, Beyond Sub-Gaussian, Beyond $1+\alpha$ Moments.

Trung Dang, Jasper C.H. Lee, **Maoyuan Song**, Paul Valiant.

Conference on Neural Information Processing Systems (NeurIPS) (2023).

2. Learning-Augmented Algorithms for Online Linear and Semidefinite Programming.

Elena Grigorescu, Young-San Lin, Sandeep Silwal, **Maoyuan Song**, Samson Zhou

Conference on Neural Information Processing Systems (NeurIPS) (2022). Selected for spotlight presentation.

1. Linear Time Addition of Fibonacci Encodings.

Maoyuan (Raymond) Song.

Master's Thesis (2020).

TEACHING

Purdue University, Department of Computer Science

Graduate Teaching Assistant

• CS588 Randomized Algorith	Spring 2022
• CS584 Theory of Computation	ion Fall 2021
• CS381 Introduction to the A	Analysis of Algorithms Spring 2021

Carnegie Mellon University, Department of Computer Science

Graduate Teaching Assistant

• 15-451 Algorithm Design and Analysis

• CS251 Data Structures and Algorithms

Spring 2020, Fall 2019

Fall 2020

AWARDS

Purdue Research Fundation Ross-Lynn Research Scholars Grant. Fall 2022

PROFESSIONAL SERVICE

External Conference Reviewer

- ACM Symposium on Theory of Computing (STOC) 2023.
- Innovations in Theoretical Computer Science (ITCS) 2023, 2022.
- Conference on Neural Information Processing Systems (NeurIPS) 2022, 2021.
- International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC) 2023, 2022.
- Journal of Artificial Intelligence Research (JAIR) 2022.

Organizer

- TCS Reading Group at Purdue, Fall 2023
- Theoretical Computer Science Seminar at Purdue, Fall 2022 Fall 2023.
- Advanced Algorithm Reading Group at Purdue, Fall 2020.

TALKS and PRESENTATIONS

- Beyond Worst-Case Optimality in Mean Estimation.
 Carnegie Mellon University Theory Lunch, Sept 2023.
- Beyond Worst-Case Optimality in Mean Estimation. Rutgers/DIMACS Theory of Computing Seminar, Sept 2023.
- Beyond Worst-Case Optimality in Mean Estimation. Northwestern Theory Seminar, July 2023.
- Learning-Augmented Algorithms for Online Linear and Semidefinite Programming.

Conference on Neural Information Processing Systems (NeurIPS), December 2022.

- Learning-Augmented Algorithms for Online General Covering LPs. Theory Reading Group at Purdue, November 2022.
- Online Facility Location Problem with Recourse. Theory Reading Group at Purdue, March 2021.
- Linear Time Addition of Fibonacci Encodings. Master's Thesis Defense, April 2020.