

Synthèse de filtres

Roland Badeau, roland.badeau@telecom-paris.fr

Master Sciences et Technologies Parcours ATIAM - UE TSM

Partie I

Filtrage discret

2/68

Une école de l'IMT

Synthèse de filtres

Causalité et stabilité

- ► Causalité :
 - \triangleright y(n) ne dépend que de x(k), k < n
 - ► CNS : h(m) = 0 si m < 0
 - ► Propriété : entrée causale ⇒ sortie causale
 - ▶ Remarque : indispensable pour des traitements temps-réel
- ► Stabilité :

3/68

- ► Définition : entrée bornée ⇒ sortie bornée
- $ightharpoonup ext{CNS}: \sum\limits_{m=-\infty}^{+\infty} |h(m)| < +\infty \ (h ext{ dans } I^1(\mathbb{Z}))$
- ► Propriété : réponse fréquentielle continue
- ► Remarque : indispensable numériquement
 - Si $x_q = x + e$, alors $y_q = y + h * e$.
 - ▶ Si $h \in l^1(\mathbb{Z})$, $||h * e||_{\infty} \le ||h||_1 ||e||_{\infty}$, sinon h * e peut diverger.

- ► Filtre passe-bas (spectre périodique)
 - ► Réponse en fréquence : $H(e^{2i\pi v}) = \begin{cases} 1 & \text{si } |v| < v_c \\ 0 & \text{si } |v| > v_c \end{cases}$
 - ▶ Réponse impulsionnelle : $h(n) = 2v_c \operatorname{sinc}(2v_c n)$
- ► Exercice : filtre passe-bande
 - ► Réponse en fréquence : $H(e^{2i\pi v}) = \begin{cases} 1 & \text{si } ||v| |v_0|| < v_c \\ 0 & \text{si } ||v| |v_0|| > v_c \end{cases}$
 - ► Réponse impulsionnelle : $h(n) = 4v_c \operatorname{sinc}(2v_c n) \cos(2\pi v_0 n)$
- ► Causalité? Stabilité?

Régimes transitoire et stationnaire

- **Exemple**:
 - \rightarrow x(n) est un échelon : $x(n) = 1_{[0,+\infty[}(n)$
 - ▶ h(n) est un filtre moyenneur : $h(n) = \frac{1}{N} \mathbb{1}_{[0,N-1]}(n)$
 - ▶ De n = 0 à N 2 : régime transitoire (rampe)
 - ▶ De n = N 1 à $+\infty$: régime stationnaire ou permanent (constante)

Partie II

Transformée en Z

Retards de phase et de groupe

- ► Réponse en fréquence : $H(e^{i2\pi v}) = H_R(v)e^{i\phi(v)}$
- ► Retards de phase et de groupe

$$\begin{cases} \tau_p(v_0) &= -\frac{1}{2\pi} \frac{\phi(v_0)}{v_0} \\ \tau_g(v_0) &= -\frac{1}{2\pi} \frac{d\phi}{dv}(v_0) \end{cases}$$

 \triangleright Réponse en fréquence au voisinage de v_0

$$H(e^{i2\pi v}) \simeq H_R(v_0) e^{-i2\pi(v_0\tau_p(v_0)+(v-v_0)\tau_g(v_0))}$$

Filtrage d'un signal à bande étroite (y = h * x)

$$x(n) = a(n)e^{i2\pi v_0 n} \Rightarrow y(n) \simeq H_R(v_0)a(n - \tau_g(v_0))e^{i2\pi v_0(n - \tau_p(v_0))}$$

Filtres à phase linéaire (retard constant)

Une école de l'IMT

Synthèse de filtres

Synthèse de filtres

Une école de l'IMT

Synthèse de filtres

Transformée en Z

▶ Définition : $H(z) = \sum_{n=-\infty}^{+\infty} h(n)z^{-n}$, appelée Fonction de

Transfert

- ▶ Domaine de convergence : $\mathscr{D} = \{z/\sum_{n=-\infty}^{+\infty} |h(n)||z|^{-n} < +\infty\}$
- ► Cas causal : $R = \inf\{|z|, z \in \mathbb{C}/\sum h(n)z^{-n} < +\infty\}$, $\in \mathbb{R} \cup \{+\infty\}$

$$z=1$$
 en $v=0$

$$z = i$$
 en $v = 1/4$

- ▶ Filtres RIF : $D = \mathbb{C} \setminus 0$ ou ∞
- ► Anti-causalité : 𝒯 est un disque
- ► Causalité : ② est le complémentaire d'un disque
- ► Cas général : gest une couronne (ou 0)

D IP PARIS

Une école de l'IMT

Exemples de TZ

- ▶ Stabilité : la couronne 𝒯 contient le cercle unité
 - ▶ La TZ coïncide avec la TFTD sur le cercle unité
- ► Linéarité : $a_1h_1 + a_2h_2 \rightarrow a_1H_1 + a_2H_2$ ($\mathcal{D} \supset \mathcal{D}_1 \cup \mathcal{D}_2$)
- ▶ Retard : $y(n) = x(n-k) \Leftrightarrow Y(z) = z^{-k}X(z)$
- ► Produit de convolution
 - ► Si y = h * x, Y(z) = H(z)X(z), $\mathcal{D}_{v} \supset \mathcal{D}_{h} \cap \mathcal{D}_{x}$
- ▶ Insertion de zéros : $Y(z) = X(z^L) \Leftrightarrow y(nL) = x(n), y = 0$ ailleurs
- ► Filtre inverse
 - ▶ Si $h * h_i = \delta$, $H(z)H_i(z) = 1$ pour $z \in \mathcal{D}_h \cap \mathcal{D}_{h_i}$

- $h(n) = \delta(n) \Rightarrow H(z) = 1 \ \forall z \in \mathbb{C}$
- $h(n) = \mathbf{1}_{[0,+\infty[}(n) \Rightarrow H(z) = \frac{1}{1-z^{-1}} \ \forall |z| > 1$
- ► $h(n) = \mathbf{1}_{[0...N-1]}(n) \Rightarrow H(z) = \frac{1-z^{-N}}{1-z^{-1}} \ \forall z \neq 0$
- ► Filtre AR1 :
 - $h(n) = \begin{cases} a^n & \text{si } n \ge 0 \\ 0 & \text{si } n < 0 \end{cases} \Rightarrow H(z) = \frac{1}{1 az^{-1}},$ $\mathscr{D} = \{ z \in \mathbb{C}/|z| > |a| \}$
 - $h(n) = \begin{cases} -a^n & \text{si } n < 0 \\ 0 & \text{si } n \ge 0 \end{cases} \Rightarrow H(z) = \frac{1}{1 az^{-1}},$ $\mathcal{D} = \{ z \in \mathbb{C}/|z| < |a| \}$

D IP PARIS

68 Une école de l'IMT

Synthèse de filtres

Une école de l'IMT

Synthèse de filtres

Filtre autorégressif d'ordre 1

Relation E/S y(n) - ay(n-1) = x(n)Fonction de transfert $H(z) = \frac{1}{1-az^{-1}}$

 $\begin{array}{|c|c|c|c|c|}\hline \text{Implémentation} & y(n) = ay(n-1) + x(n) & y(n) = \frac{y(n+1) - x(n+1)}{a} \\ \text{RI } (x(n) = \delta_0(n)) & h(n) = a^n \mathbf{1}_{\{n \geq 0\}} & h(n) = -a^n \mathbf{1}_{\{n < 0\}} \\ \text{Domaine } \mathscr{D} & \{z \in \mathbb{C}/|z| > |a|\} & \{z \in \mathbb{C}/|z| < |a|\} \\ \text{Propriétés} & \text{causale, stable si } |a| < 1 & \text{anti-causale, stable si } |a| > 1 \\ \hline \end{array}$

Partie III

Filtres récursifs

Filtres récursifs

- ▶ Relation entrée-sortie : $\sum_{k=0}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$
- ► Calcul de la sortie (implémentation causale)

$$y(n) = \frac{1}{a_0} \left[\sum_{k=0}^{M} b_k x(n-k) - \sum_{k=1}^{N} a_k y(n-k) \right]$$

► Fonction de transfert : $H(z) = \frac{\sum\limits_{k=0}^{M} b_k z^{-k}}{\sum\limits_{k=0}^{N} a_k z^{-k}} = \frac{b_0}{a_0} \frac{\prod\limits_{k=1}^{M} (1 - c_k z^{-1})}{\prod\limits_{k=1}^{N} (1 - d_k z^{-1})}$

Exemples de filtres récursifs

Filtres Auto-Régressifs (si M = 0, AR d'ordre N)

$$y(n) = \frac{b_0}{a_0} x(n) - \sum_{k=1}^{N} \frac{a_k}{a_0} y(n-k)$$

- ► Filtres à Réponse Impulsionnelle Finie
 - Si N = 0, filtre RIF de taille M $h(n) = \begin{cases} \frac{b_n}{a_0} & \text{si } n = 0 \dots M \\ 0 & \text{sinon} \end{cases}$
 - ► Filtres causaux, inconditionnellement stables
 - ► Si la RI est symétrique ou antisymétrique, la phase est linéaire

/68 Une école de l'IMT

Synthèse de filtres

№ IP PARIS 14/68

Une école de l'IMT

Synthèse de filtres

D IP PARIS

Filtres récursifs

► Fonction de transfert d'un filtre récursif

$$H(z) = \frac{\sum\limits_{k=0}^{M} b_k z^{-k}}{\sum\limits_{k=0}^{N} a_k z^{-k}} = \frac{b_0}{a_0} \frac{\prod\limits_{k=1}^{M} (1 - c_k z^{-1})}{\prod\limits_{k=1}^{N} (1 - d_k z^{-1})}$$

- ► Définition des pôles et des zéros
- ▶ Domaine de convergence : 𝒯 est une couronne limitée par 2 pôles, et n'en contenant aucun
- ► Filtres stables : 𝒯 est la plus grande couronne contenant le cercle unité et aucun pôle
- ► Filtres stables et causaux : dont tous les pôles sont strictement à l'intérieur du cercle unité
- ▶ Si les a_k et b_k sont réels, les pôles et zéros sont soit réels, soit vont par paires conjuguées

Calcul de la RI à partir de la TZ

- 1. Extraire si nécessaire de H(z) un terme en z^n , de sorte que les numérateur et dénominateur de H(z) ne contiennent plus que des puissances négatives de z plus une constante
- 2. Factoriser le numérateur et dénominateur en monômes en z^{-1}
- 3. Décomposer H(z) en éléments simples en z^{-1}
- 4. Développer les éléments simples en séries entières :
 - en z^{-1} si on calcule la RI causale, ou si on calcule la RI stable et que le pôle est à l'intérieur du cercle unité;
 - ▶ en z si on calcule la RI anti-causale, ou si on calcule la RI stable et que le pôle est à l'extérieur du cercle unité.
- 5. Identifier l'expression obtenue avec $H(z) = \sum_{n \in \mathbb{Z}} h(n) z^{-n}$

Exemple :
$$H(z) = \frac{1}{1 - \frac{5}{2}z^{-1} + z^{-2}}$$

Une école de l'IMT

Interprétation géométrique de la RF

Exemple (filtre AR 2) :
$$H(z) = \frac{1}{1+a_1z^{-1}+a_2z^{-2}} = \frac{1}{(1-pz^{-1})(1-p^*z^{-1})}$$

$$|H(z)| = \frac{1}{PM \times QM}$$

$$\arg H(z) = 2\arg(OM) - \arg(PM) - \arg(QM)$$

Partie IV

Filtres RIF à phase linéaire

Une école de l'IMT

Synthèse de filtres

Une école de l'IMT

Synthèse de filtres

Filtres RIF à phase linéaire

- ▶ Réponse impulsionnelle : $h(n) \in \mathbb{R}$, n = 0...N-1
- ► Réponse en fréquence : $H(e^{i2\pi v}) = e^{i2\pi(\beta \alpha v)}H_{R}(v)$
- ▶ Retards de groupe et de phase constants et égaux (si $\beta = 0$)
- ► Avantages : toujours causaux et stables, conservent la forme d'onde d'un signal à bande étroite (si $\beta = 0$)
- ► Inconvénient : complexité de calcul élevée

Caractérisation

- ▶ 1 périodicité de $H(e^{2i\pi v}) \Rightarrow \alpha = p/2, p \in \mathbb{Z}$ et H_R 2-periodique
- Symétrie hermitienne $\Rightarrow d = e^{2i\pi\beta} = 1$ ou i et H_R paire ou impaire
- ► Comme $H_R(v)$ est 2-périodique, on peut définir $G(e^{2i\pi v}) = dH_R(2v)$ où g(n) est réelle, paire ou impaire
- ▶ On peut donc écrire $H(z^2) = z^{-p}G(z)$ (filtre de longueur 2N-1
- ▶ On choisit p = N 1 pour un filtre causal
- ▶ 4 possibilités selon d et la parité de N :
 - b d=1, N pair ou impair : h(n)=h(N-1-n)
 - d = i, N pair ou impair : h(n) = -h(N-1-n)

Une école de l'IMT

Types de filtres

Types de filtres

▶ Type 1 : N impair, symétrique (d = 1)

$$H(e^{i2\pi v}) = e^{-i2\pi v \frac{N-1}{2}} \sum_{n=0}^{\frac{N-1}{2}} a_n \cos(2\pi v n)$$

▶ Utilisation : passe-bas, passe-haut, passe-bande

▶ Type 2 : N pair, symétrique (d = 1)

- ▶ Propriété : $H(-1) = 0 \ (v = \frac{1}{2})$
- ▶ Utilisation : passe-bas, passe-bande

./68 Une école de l'IMT

Synthèse de filtres

№ IP PARIS 22/68

Une école de l'IMT

Synthèse de filtres

IP PARIS

Types de filtres

- ▶ Propriété : H(1) = H(-1) = 0 (v = 0 ou $\frac{1}{2}$)
- ▶ Utilisation : différenciateur $(H(f) = i2\pi f)$, transformateur de Hilbert $(H(f) = -i\operatorname{sign}(f))$ sous forme de passe-bande

Types de filtres

▶ Type 4 : N pair, antisymétrique (d = i)

- ▶ Propriété : $H(1) = 0 \ (v = 0)$
- ▶ Utilisation : différenciateur $(H(f) = i2\pi f)$, transformateur de Hilbert $(H(f) = -i\operatorname{sign}(f))$ sous forme de passe-haut

Une école de l'IMT

Synthèse de filtres

Synthèse de filtres

№ IP PARIS 26/68

Une école de l'IMT

Position des zéros

Synthèse de filtres

Position des zéros

► Zéros complexes hors du cercle unité :

$$(1-\rho e^{i\theta}z^{-1})(1-\rho e^{-i\theta}z^{-1})(1-\frac{1}{\rho}e^{i\theta}z^{-1})(1-\frac{1}{\rho}e^{-i\theta}z^{-1})$$

► Zéros sur le cercle unité

Zéros réels

► Zéro réel sur le cercle unité

En résumé

Type I	, , , , , ,		Passe-bas
N impair	1 1	-	Passe-Haut
symétrique			Passe-Bande
Type II	1 1		Passe-bas,
N pair		H(-1) = 0	, ·
symétrique		, ,	Passe-bande
Symetrique			D:((()) .
Type III	1.		Différenciateur,
· .		H(1) =	Transformateur
N impair		H(-1) = 0	de Hilbert,
antisym.			Passe-bande
Type IV	1 -		Différenciateur,
Type IV		<i>∐</i> (1) _ 0	Transformateur
N pair	1	H(1) = 0	de Hilbert,
antisym.			Passe Haut

Partie V

Filtres RIF : méthode de la fenêtre

Une école de l'IMT

Synthèse de filtres

⊗ IP PARIS 30/68

Une école de l'IMT

Synthèse de filtres

Méthode de la fenêtre

- ► Exemple : le filtre passe-bas
- Filtre passe-bas idéal : $h(n) = 2v_c \operatorname{sinc}(2v_c n)$
 - ► La réponse est RII non causale, non stable

- ▶ Synthèse d'un filtre RIF causal de type I
 - ► Troncature et décalage temporel

Phénomène de Gibbs

Phénomène de Gibbs

三選記

Une école de l'IMT

Synthèse de filtres

№ IP PARIS 34/68

Une école de l'IMT

Synthèse de filtres

D PARIS

Phénomène de Gibbs

Phénomène de Gibbs

Phénomène de Gibbs

TELECOM Paris TELECOM Paris

17/68 Une école de l'IMT

Synthèse de filtres

№ IP PARIS 38/68

Une école de l'IMT

Synthèse de filtres

PARIS

Phénomène de Gibbs

Phénomène de Gibbs

Phénomène de Gibbs

Une école de l'IMT

Synthèse de filtres

№ IP PARIS 42/68

Une école de l'IMT

Synthèse de filtres

D IP PARIS

Choix d'une fenêtre adéquate

$h(n) = 2v_c \operatorname{sinc}(2v_c n) w(n)$

où w(n) est une fenêtre symétrique de support fini

Fenêtre rectangulaire

$$w(n) = \mathbf{1}_{[0...P-1]}(n)$$

► Largeur : 2/P, 2ème lobe : -13 dB, décroissance : -6 dB / octave

Fenêtre de Bartlett

$w(n) = 1 - \left| \frac{2n}{P-1} - 1 \right|$

► Largeur : 4/P, 2ème lobe : -26 dB, décroissance : -12 dB / octave

$$w(n) = 0.5 - 0.5\cos(2\pi n/(P-1))$$

► Largeur : 4/P, 2ème lobe : -31 dB, décroissance : -18 dB / octave

5/68 Une école de l'IMT

Synthèse de filtres

Une école de l'IMT

Synthèse de filtres

P PARIS

Fenêtre de Hamming

$w(n) = 0.54 - 0.46\cos(2\pi n/(P-1))$

► Largeur : 4/P, 2ème lobe : -41 dB, décroissance : -6 dB / octave

Fenêtre de Blackman

 $w(n) = 0.4266 - 0.4965\cos(2\pi n/(P-1)) + 0.076\cos(4\pi n/(P-1))$

► Largeur : 6/P, 2ème lobe : -57 dB, décroissance : -18 dB / octave

Méthode de la fenêtre

- ► Avantages :
 - ► Stabilité, causalité
 - ► Filtre à phase linéaire si fenêtre symétrique
- ► Inconvénients :
 - ▶ les bandes de transition sont élargies
 - ► les ondulations parasites
 - sont dues aux lobes secondaires
 - ▶ n'ont pas une amplitude constante
 - ▶ sont les mêmes en bandes passante et atténuée

Partie VI

Filtres RIF: méthodes itératives

Une école de l'IMT

Synthèse de filtres

№ IP PARIS 50/68

Une école de l'IMT

Gabarit d'un filtre

Synthèse de filtres

Méthodes itératives

Avantages

- ► Design optimal
- Méthode flexible
- ► Ondulations d'amplitude constante
- ▶ Ordre minimum pour un gabarit donné
- Inconvénients

51/68

- ► Synthèse coûteuse en temps de calcul
- ► Pas approprié pour du temps-réel
- ▶ Pas exploitable pour des filtres longs (problèmes numériques)

Synthèse de filtres

№ IP PARIS 52/68

Une école de l'IMT

Paramétrisation de H_R

▶ Factorisation : $H_R(v) = P(v)Q(v)$

$H_R(v)$	P(v)	Q(v)
$\sum_{n=0}^{\frac{N-1}{2}} a_n \cos(2\pi v n)$	$\sum_{n=0}^{\frac{N-1}{2}} a_n \cos(2\pi v n)$	1
$\sum_{n=1}^{\frac{N}{2}} b_n \cos\left(2\pi v \left(n - \frac{1}{2}\right)\right)$	$\sum_{n=0}^{\frac{N}{2}-1} b_n' \cos(2\pi v n)$	$\cos(\pi v)$
$\sum_{n=1}^{\frac{N-1}{2}} c_n \sin(2\pi v n)$	$\sum_{n=0}^{\frac{N-3}{2}} c_n' \cos(2\pi v n)$	$\sin(2\pi v)$
$\sum_{n=1}^{\frac{N}{2}} d_n \sin\left(2\pi v \left(n - \frac{1}{2}\right)\right)$	$\sum_{n=0}^{\frac{N}{2}-1} d_n' \cos(2\pi v n)$	$\sin(\pi v)$

► Formulation du problème : minimisation de l'erreur

$$E(v) = W(v)|H_D(v) - H_R(v)|$$

à N, v_c et v_a fixés

Méthode de Remez

- ▶ On pose $W(v) = 1/\delta_1$ en bande passante, $W(v) = 1/\delta_2$ en bande atténuée, et W(v) = 0 en bande de transition
- Avec $P(v) = \sum_{n=0}^{M} a_n \cos(2\pi v n)$, on obtient :

$$E(v) = W(v)(H_D(v) - P(v)Q(v)) = W'(v)(H'_D(v) - P(v))$$

Une école de l'IMT

Synthèse de filtres

№ IP PARIS 54/68

Une école de l'IMT

Synthèse de filtres

D IP PARIS

Théorème d'alternance

► Minimisation au sens de Chebyshev :

$$H(e^{i2\pi v}) = \min_{H} ||E(v)||_{\infty}$$

sur un ensemble fermé de fréquences B

► Théorème d'alternance : l'unique et meilleure approximation est obtenue lorsque il existe M+2 fréquences $v_0 \dots v_{M+1}$ dans B telles que $E(v_k) = \pm (-1)^k \delta$ où $\delta = ||E(v)||_{\infty}$

Algorithme de Remez

- ▶ Initialisation : on fixe les M+2 alternances uniformément dans B
- Itération
 - Résolution directe du système linéaire

$$\sum_{n=0}^{M} a_n \cos(2\pi v_k n) + \frac{(-1)^k \delta}{W(v_k)} = H_D(v_k)$$

(ou solution par interpolation Lagrangienne)

- ► Recherche des extrema de ce polynôme
- ightharpoonup Choix des nouvelles valeurs des v_k
- ► Convergence en quelques itérations

TELECOM Paris 三選號

Une école de l'IMT

Synthèse de filtres

Synthèse de filtres

№ IP PARIS 58/68

Une école de l'IMT

Synthèse de filtres

D PARIS

Méthode de Remez

Méthode de Remez

P PARIS

Partie VII

Synthèse de filtres récursifs

• Exemple : $N(z) = \prod_{k} (1 - z_k z^{-1})$ avec des zéros aux fréquences 0.1, 0.2, 0.3, 0.4, 0.5

Une école de l'IMT

Synthèse de filtres

⊗ IP PARIS 62/68

Une école de l'IMT

Synthèse de filtres

Généralités

► Exemple :H(z) = N(z)/D(z) où $D(z) = (1 - pz^{-1})(1 - p^*z^{-1})$, avec $p = 0.95e^{i2\pi0.085}$

Filtres récursifs passe-bas

► Position des pôles et des zéros

Filtre réjecteur (effet Larsen)

$$H(z) = \frac{1 - e^{+i2\pi v_c} z^{-1}}{1 - \rho e^{+i2\pi v_c} z^{-1}} \frac{1 - e^{-i2\pi v_c} z^{-1}}{1 - \rho e^{-i2\pi v_c} z^{-1}}$$

$$= \frac{1 - 2\cos(2\pi v_c)z^{-1} + z^{-2}}{1 - 2\rho\cos(2\pi v_c)z^{-1} + \rho^2 z^{-2}}$$

ightharpoonup Remarque : la RI est longue si ho o 1

Transformation bilinéaire

- ► Filtres analogiques : $H_a(s) = \int_{\mathbb{R}} h_a(t)e^{-st}dt$ où $s = 2i\pi f$
- Filtres numériques : $H(z) = \sum_{\mathbb{Z}} h(n)z^{-n}$ où $z = e^{2i\pi v}$
- ► Méthode des trapèzes pour approcher

$$x(nT) = x((n-1)T) + \int_{(n-1)T}^{nT} x'(t)dt$$

- ▶ Exemple du système y(t) = x'(t) (filtre dérivateur : $H_a(s) = s$)
- ► Transformée bilinéaire : $s = \frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}$
- Lien fréquentiel : $f = \frac{1}{\pi T} \tan(\pi v)$

Une école de l'IMT

Synthèse de filtres

Synthèse de filtres

№ IP PARIS 66/68

Une école de l'IMT

Synthèse de filtres

D IP PARIS

Transformation bilinéaire

Passage du continu au discret

