Early development in zebrafish and xenopus

曹莹

yingcao@tongji.edu.cn Tongji Univ.

To improve learning in class

 Structure of my teaching one phenomena (one concept) how is this formed (process)? What's the mechanism?

what's the function/derivatives?

To remember concepts
 find the connection among different
 concepts

read more about one concept (BMP)

References

https://www.ncbi.nlm.nih.gov/pubmed/

Adult zebrafish

Zebrafish life cycle

Adult Xenopus Lavis

Xenopus life cycle

Why xenopus and zebrafish?

Features of zebrafish and xenopus

Common feature:

 large cells, develop ex vivo,
 develop very fast, vertebrate

Zebrafish embryonic development

zebrafish

24 hpf

human

week 5

Features of zebrafish and xenopus

Common feature:

 large cells, develop ex vivo,
 develop very fast

- xenopus: transplantation
- zebrafish: genetic screen

Transplantation in xenopus

(newt)

genetics

gene A is mutated in blind fish

gene A is required for eye development

Forward genetics (phenotypes → genes): Genetic screen in zebrafish

Zebrafish development

outline

- Fertilization (受精)
- Cleavage and blastula stage (卵 裂期和囊胚期)
- Gastrulation (原肠胚期)
 - 1) Cell migration and germ layers formation (细胞运动)
 - 2) Mesoderm induction (中胚层诱导)
 - 3) Specifying body axis (胚轴分化)

outline

- Fertilization (受精)
- Cleavage and blastula stage (卵 裂期和囊胚期)
- Gastrulation (原肠胚期)
 - 1) Cell migration and germ layers formation (细胞运动)
 - 2) Mesoderm induction (中胚层诱导)
 - 3) Specifying body axis (胚轴分化)

Fertilization (受精)

Fertilization

Fertilization (受精)

Formation of the microtubule array (微管束) in xenopus egg

(A-C) Vegital view.
NT: normalized time

Similar process in zebrafish

outline

- Fertilization (受精)
- Cleavage and blastula stage (卵 裂期和囊胚期)
- Gastrulation (原肠胚期)
 - 1) Cell migration and germ layers formation (细胞运动)
 - 2) Mesoderm induction (中胚层诱导)
 - 3) Specifying body axis(胚轴分化)

cleavage

Different ways of cleavage:

Xenopus: Holoblastic Cleavage (全裂)

zebrafish: Meroblastic Cleavage (偏裂)

blastula (囊胚期)

xenopus (H)
Blastocoel

zebrafish

MBT: mid-blastula transition (maternal→zygotic)

outline

- Fertilization (受精)
- Cleavage and blastula stage (卵 裂期和囊胚期)
- Gastrulation (原肠胚期)
 - 1) Cell migration and germ layers formation (细胞运动)
 - 2) Mesoderm induction (中胚层诱导)
 - 3) Specifying body axis(胚轴分化)

gastrula (原肠胚期)

Gastrulation in xenopus (爪蟾的原肠运动)

Gastrulation in zebrafish (斑马鱼的原肠运动)

Internal cell movement during epiboly in Xenopus

Cell migration during gastrula: epiboly (外包), involution (内卷)

Early movements of Xenopus gastrulation

epiboly (外包) initiates at dorsal lip

dorsal lip (背唇)

Epiboly is accomplished by cell division and intercalation

外包机制: 细胞分裂 相互置入

Xenopus gastrulation continues

外包→外胚层 内卷→中胚层 汇聚延伸→中轴中胚层

Cell movement during zebrafish epiboly

Summary (I)

Key words:

- Grey crescent (灰色新月区),
- Cleavage and blastula (卵裂期和囊胚期),
- Gastrulation (原肠运动)

Event:

- Fertilization
- Cleavage and blastula
- Cell migration during gastrulation

outline

- Fertilization (受精)
- Cleavage and blastula stage (卵 裂期和囊胚期)
- Gastrulation (原肠胚期)
 - 1) Cell migration and germ layers formation (细胞运动)
 - 2) Mesoderm induction (中胚层诱导)
 - 3) Specifying body axis(胚轴分化)

body axis formation

St. 8

St. 12.5

- Anterior-posterior patterning (前后分化)
- Dorso-ventral patterning (背腹分化)
- Left-right patterning (左右分化)

Spemann's demonstration of nuclear equivalence in newt cleavage

newt: 蝾螈

But...

Grey crescent is very important for dorsalization

Determination of ectoderm during newt gastrulation

(A) Transplantation in early gastrula

(B) Transplantation in late gastrula

Hans Spemann and Hilde Mangold: primary embryonic induction

背唇组织能够诱导第二 胚轴的形成,因此也称 之为组织者(organizer)

The Nobel Prize in Physiology or Medicine 1935: Hans Spemann

Organizer is induced by Nieuwkoop center

Nieuwkoop center → organizer

Vegetal cells are important for organizer formation

The dorsalmost vegetal blastomere induces dorsal mesoderm

Nieuwkoop center factor: β -catenin is important for DV patterning

Wnt signaling

Wnt signaling and DV patterning

goosecoid, downstream gene of wnt pathway, can induce 2nd axis

Wnt信号下游基因goosecoid能够诱导第二胚轴的形成

Hypothesis for organizer (dorsal mesoderm) induction

Model for mesoderm induction and organizer formation

The maternal RNA encoding Vg1 is tethered to the vegetal cortex of a Xenopus oocyte.

How does organizer direct DV patterning (induce neural ectoderm)?

(组织者如何在背腹分化中起作用?)

St. 8

St. 12.5

Working strategy

Dosalizing factor: Noggin

Rescue of dorsal structures by Noggin protein

Localization of *noggin* mRNA in the organizer tissue

Dosalizing factor: Chordin

Localization of chordin mRNA in the organizer tissue

Knockdown of chordin, noggin and follistatin suppresses dorsal structure

ctrl

chd, nog and fst mor

Sox2, marker for neural plate

Knockdown of bmp2, bmp4 and bmp7 enhances dorsal structure

ctrl

bmp2, bmp4 and bmp7 mor

Sox2, marker for neural tissue

Mechanism of organizer's function in DV patterning

DV patterning in zebrafish embryonic development

Mechanism of DV patterning in zebrafish

Summary (II)

Key words:

- mesoderm induction (中胚层诱导)
- organizer (组织者)
- Dorso-ventral patterning (背腹分化)
- Morphogen (形态素)
- Cell signaling(信号通路): BMP, Nodal, Wnt

Graph Summary

LR defect and human disease

Normal-situs solitus

Situs inversus

LR patterning

wt $pkd2^{hi4166}$

LR patterning is controlled by nodal signaling

Southpaw, one Nodal related gene, expresses on left side of zebrafish embryos

spaw expression is radomized in LR mutant

Absence of the Nodal cilia in Kif3B-/- mutant

Leftward flow in wt mouse node while not *Kif3b-/-* node

Devise for artificial nodal flow

LR patterning is reversed by artificial nodal flow

Pitx2-lacZ

LR is controled by flow in Kupffer's vesicle

15-somites

Model for LR patterning in zebrafish

FIGURE 11.13 Left-right asymmetry in the zebrafish embryo. (A) Model for asymmetric gene expression. Nodal cilia in Kupffer's vesicle create a current that causes the release of Ca²⁺ on the embryo's left side. Calcium ions stimulate Notch and BMP4 pathways on the left side and activate the Pitx2 transcription factor in the left-hand mesoderm (blue). FGF expression is seen predominantly on the right-hand side (red). (B) Brain asymmetry in zebrafish. Antibody staining of the Leftover (red) and Right-on (green) proteins in neurons of the habenular nucleus (a behavior-controlling region of the zebrafish forebrain) and the axonal projections to their midbrain target (the interpeduncular nucleus) reveals marked asymmetry. Most Leftover-positive axons emerge from the left habenula to innervate the target. (A after Okada et al. 2005; B from Gamse et al. 2005, photograph courtesy of M. Halpern.)

Model for LR patterning

Flow driven by cilia

Nodal genes express on left side

LR patterning

Mechanism of AP patterning in zebrafish

Summary (III)

Key word:
 LR patterning, Shh Signaling, Nodal signaling, Cilia

Event and mechanism:
 LR patterning, AP patterning