$\Pi\Lambda H30$

ΕΝΟΤΗΤΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ

Μάθημα 3.6: Μη Κανονικές Γλώσσες

Δημήτρης Ψούνης

Α. Σκοπός του Μαθήματος

Β. Θεωρία

- 1. Το Λήμμα της Άντλησης
 - 1. Ορισμός
 - 2. Παραδείγματα
- 2. Απόδειξη με Ιδιότητες Κλειστότητας
 - 1. Μεθοδολογία
 - 2. Παραδείγματα
- 3. Απόδειξη με χρήση του ελάχιστου αριθμού καταστάσεων αυτομάτου
 - 1. Μεθοδολογία
 - 2. Παραδείγματα

Γ.Ασκήσεις

Α. Σκοπός του Μαθήματος

Οι στόχοι του μαθήματος είναι:

Επίπεδο Α

> Το λήμμα της άντλησης για απόδειξη μη κανονικότητας.

Επίπεδο Β

> Απόδειξη μη κανονικότητας με το ελάχιστο πλήθος καταστάσεων.

Επίπεδο Γ

> Απόδειξη μη κανονικότητας με ιδιότητες κλειστότητας.

1. Το Λήμμα της Άντλησης

1. Ορισμός

Το Λήμμα Άντλησης για Κανονικές Γλώσσες:

Έστω L μια άπειρη κανονική γλώσσα. Τότε υπάρχει ένας αριθμός n (μήκος άντλησης) τέτοιος ώστε κάθε $x \in L$ με $|\mathbf{x}| \geq n$ να μπορεί να γραφεί στην μορφή x = uvw όπου για τις συμβολοσειρές u,v και w ισχύει:

- $\geqslant |uv| \leq n$
- $\triangleright v \neq \varepsilon$
- $> uv^m w \in L$ για κάθε φυσικό $m \ge 0$
- Κάθε συμβολοσειρά μιας κανονικής γλώσσας επαληθεύει τις 3 ιδιότητες του λήμματος άντλησης.
- > Άρα για να δείξουμε ότι μία γλώσσα δεν είναι κανονική:
 - Υποθέτουμε ότι είναι κανονική.
 - ightharpoonup Επιλέγουμε μια κατάλληλη συμβολοσειρά $s \in L$
 - > Εντοπίζουμε τι σύμβολα θα έχουν τα u,ν λόγω των δύο πρώτων ιδιοτήτων.
 - ightharpoonup Δείχνουμε ότι για κάποιο $m \ge 0$ το $uv^m w \notin L$
 - Άτοπο από το λήμμα της άντλησης. Άρα η γλώσσα δεν είναι κανονική.

1. Το Λήμμα της Άντλησης

2. Παραδείγματα

$$L_1 = \{0^n 1^n \mid n \ge 0\} - \mathsf{A} \mathsf{\Pi} \mathsf{O} \mathsf{\Delta} \mathsf{E} \mathsf{I} \mathsf{\Xi} \mathsf{H}$$

Η L είναι άπειρη. Υποθέτουμε ότι είναι κανονική. Έστω ρ το μήκος άντλησής της.

Η συμβολοσειρά $s=0^p1^p$ ανήκει στην γλώσσα και έχει μήκος $2p\geq p$. Η συμβολοσειρά μπορεί να γραφεί στην μορφή s=uvw με 0<|v| και $|uv|\leq p$. Επιπλέον για κάθε φυσικό k θα ισχύει $uv^kw\in L$

Επειδή $|uv| \le p$ έπεται ότι το uv θα περιέχεται στο 0^p . Έτσι η λέξη s θα αποτελείται από τα εξής τμήματα:

$$\begin{cases} u = 0^{i}, & i \ge 0 \\ v = 0^{j}, & j > 0 \\ w = 0^{p-i-j} 1^{p} \end{cases}$$

Η συμβολοσειρά uv^2w θα είναι $0^{p+j}1^p$ συνεπώς δεν θα ανήκει στην L αφού δεν θα έχει ίσα 0 και 1

Άτοπο από το λήμμα άντλησης. Συνεπώς η γλώσσα δεν είναι κανονική.

- (1) Επιλέγουμε μια **συμβολοσειρά s** που ανήκει στην γλώσσα που <u>το πρώτο σύμβολο είναι</u>
- (α) υψωμένο τουλάχιστον στην ρ
- (β) ανήκει οριακά στην γλώσσα
- (2) Υπολογίζουμε το μήκος της συμβολοσειράς που επιλέξαμε στο (1)
- (3) Το υν θα περιέχεται στο πρώτο σύμβολο που έχουμε επιλέξει.
- (4) Το πρώτο σύμβολο της s υψωμένο στην i
- (5) Το πρώτο σύμβολο της ε υψωμένο στην j
- (6) Ακριβώς ίδια συμβολοσειρά με την \mathbf{s} όπου στον εκθέτη του $\mathbf{1}^{\text{ou}}$ σύμβολου $\mathbf{\theta}$ α έχει αφαιρε $\mathbf{\theta}$ εί το -i-j
- (7) Θα είναι:
- uv^2w ή
- uv^0w
- (8) Αντίστοιχα από την επιλογή μας στο (7)
- Θέτουμε + j στον 1° εκθέτη της s.
- Θέτουμε j στον 1° εκθέτη της s.
- (9) Αιτιολογούμε γιατί η συμβολοσειρά που έχουμε δεν ανήκει στην γλώσσα.

www.psounis.gr

Β. Θεωρία

- 1. Το Λήμμα της Άντλησης
- 2. Παραδείγματα

 $L_2 = \{w \in \{0,1\}^* \mid w \ εχει ισα \ 0 \ και \ 1\}$ δεν είναι κανονική.

Η L είναι άπειρη. Υποθέτουμε ότι είναι κανονική. Έστω ρ το μήκος άντλησής της.

Η συμβολοσειρά $s=\underline{0^p1^p}$ ανήκει στην γλώσσα και έχει μήκος $\underline{2p}\geq p$. Η συμβολοσειρά μπορεί να γραφεί στην μορφή s=uvw με 0<|v| και $|uv|\leq p$. Επιπλέον για κάθε φυσικό k θα ισχύει $uv^kw\in L$

Επειδή $|uv| \le p$ έπεται ότι το uv θα περιέχεται στο 0^p . Έτσι η λέξη s θα αποτελείται από τα εξής τμήματα:

$$\begin{cases} u = \underline{0}^{i}, & i \ge 0 \\ v = \underline{0}^{j}, & j > 0 \\ w = \underline{0}^{p-i-j} \underline{1}^{p} \end{cases}$$

Η συμβολοσειρά $\underline{uv^2w}$ θα είναι $\underline{0^{p+j}1^p}$ συνεπώς δεν θα ανήκει στην L αφού $\underline{\delta}$ εν θα έχει ίσα $\underline{0}$ και $\underline{1}$

Άτοπο από το λήμμα άντλησης. Συνεπώς η γλώσσα δεν είναι κανονική.

1. Το Λήμμα της Άντλησης

2. Παραδείγματα

 $L_3 = \{ww^R \mid w \in \{0,1\}^*\}$ δεν είναι κανονική.

Η L είναι άπειρη. Υποθέτουμε ότι είναι κανονική. Έστω p το μήκος άντλησής της.

Επειδή $|uv| \le p$ έπεται ότι το uv θα περιέχεται στο 0^p . Έτσι η λέξη s θα αποτελείται από τα εξής τμήματα:

$$\begin{cases} u = \underline{0}^i, & i \ge 0 \\ v = \underline{0}^j, & j > 0 \\ w = \underline{0}^{p-i-j} \underline{1}^p \underline{1}^p \underline{0}^p \end{cases}$$

Η συμβολοσειρά uv^2w θα είναι $0^{p+j}1^p1^p0^p$ συνεπώς δεν θα ανήκει στην L αφού δεν είναι παλινδρομική (διότι τα 0 της αρχής είναι περισσότερα από τα 0 του τέλους)

Άτοπο από το λήμμα άντλησης. Συνεπώς η γλώσσα δεν είναι κανονική.

Σημείωση:

Αν w μια συμβολοσειρά τότε w^R είναι η αντιστροφή της (διάβασμα από δεξιά προς τα αριστερά) Π.χ. αν w=0110001 τότε $w^R=1000110$

1. Το Λήμμα της Άντλησης

2. Παραδείγματα

 $L_4 = \{a^n b^n c^n | n \ge 0\}$ δεν είναι κανονική.

Η L είναι άπειρη. Υποθέτουμε ότι είναι κανονική. Έστω p το μήκος άντλησής της.

Η συμβολοσειρά $\mathbf{s} = a^p b^p c^p$ ανήκει στην γλώσσα και έχει μήκος $3p \ge p$. Η συμβολοσειρά μπορεί να γραφεί στην μορφή s = uvw με $0 < |\mathbf{v}|$ και $|uv| \le p$. Επιπλέον για κάθε φυσικό k θα ισχύει $uv^k w \in L$

Επειδή $|uv| \le p$ έπεται ότι το uv θα περιέχεται στο a^p . Έτσι η λέξη s θα αποτελείται από τα εξής τμήματα:

$$\begin{cases} u = \underline{a}^{i}, & i \ge 0 \\ v = \underline{a}^{j}, & j > 0 \\ w = \underline{a}^{p-i-j} b^{p} c^{p} \end{cases}$$

Η συμβολοσειρά $\underline{uv^2w}$ θα είναι $\underline{a^{p+j}b^pc^p}$ συνεπώς δεν θα ανήκει στην L $\underline{\alpha}$ φού δεν έχει ίσα a,b και c

Άτοπο από το λήμμα άντλησης. Συνεπώς η γλώσσα δεν είναι κανονική.

- 1. Το Λήμμα της Άντλησης
- 2. Παραδείγματα

 $L_5 = \{ww \mid w \in \{0,1\}^*\}$ δεν είναι κανονική.

Η L είναι άπειρη. Υποθέτουμε ότι είναι κανονική. Έστω p το μήκος άντλησής της.

Η συμβολοσειρά $s=0^p10^p1$ ανήκει στην γλώσσα και έχει μήκος $2p+2\geq p$. Η συμβολοσειρά μπορεί να γραφεί στην μορφή s=uvw με 0<|v| και $|uv|\leq p$. Επιπλέον για κάθε φυσικό k θα ισχύει $uv^kw\in L$

Επειδή $|uv| \le p$ έπεται ότι το uv θα περιέχεται στο 0^p . Έτσι η λέξη s θα αποτελείται από τα εξής τμήματα:

$$\begin{cases} u = \underline{0}^{i}, & i \ge 0 \\ v = \underline{0}^{j}, & j > 0 \\ w = \underline{0}^{p-i-j} \underline{10}^{p} \underline{1} \end{cases}$$

Η συμβολοσειρά uv^2w θα είναι $0^{p+j}10^p1$ συνεπώς δεν θα ανήκει στην L αφού δεν είναι παράθεση 2 ομοίων συμβολοσειρών (τα 0 της αρχής είναι περισσότερα από τα 0 της μέσης).

Άτοπο από το λήμμα άντλησης. Συνεπώς η γλώσσα δεν είναι κανονική.

Σημείωση:

Η συγκεκριμένη γλώσσα έχει το χαρακτηριστικό ότι περιέχει συμβολοσειρές που είναι η παράθεση 2 όμοιων συμβολοσειρών.

1. Το Λήμμα της Άντλησης

2. Παραδείγματα

 $L_4 = \{a^n b^{3n} | n \ge 0\}$ δεν είναι κανονική.

Η L είναι άπειρη. Υποθέτουμε ότι είναι κανονική. Έστω p το μήκος άντλησής της.

Η συμβολοσειρά $s=\underline{a^pb^{3p}}$ ανήκει στην γλώσσα και έχει μήκος $\underline{4p}\geq p$. Η συμβολοσειρά μπορεί να γραφεί στην μορφή s=uvw με 0<|v| και $|uv|\leq p$. Επιπλέον για κάθε φυσικό k θα ισχύει $uv^kw\in L$

Επειδή $|uv| \le p$ έπεται ότι το uv θα περιέχεται στο a^p . Έτσι η λέξη s θα αποτελείται από τα εξής τμήματα:

$$\begin{cases} u = \underline{a}^{i}, & i \ge 0 \\ v = \underline{a}^{j}, & j > 0 \\ w = \underline{a}^{p-i-j}b^{3p} \end{cases}$$

Η συμβολοσειρά uv^2w θα είναι $a^{p+j}b^{3p}$ συνεπώς δεν θα ανήκει στην L αφού δεν ισχύει η αναλογία 1:3 των α με τα β.

Άτοπο από το λήμμα άντλησης. Συνεπώς η γλώσσα δεν είναι κανονική.

2. Απόδειξη με ιδιότητες κλειστότητας

1. Μεθοδολογία

Χρησιμοποιούμε τις ιδιότητες κλειστότητας των γλωσσών (συνήθως της τομής) προκειμένου να δείξουμε ότι μία γλώσσα δεν είναι κανονική. Η απόδειξη έχει την εξής δομή:

- Έστω ότι μας ζητείται να δείξουμε ότι η γλώσσα L₁ δεν είναι κανονική.
- Υποθέτουμε ότι είναι κανονική.
- Βρίσκουμε μία κανονική γλώσσα L₂ η οποία ξέρουμε ότι είναι κανονική.
- Δείχνουμε ότι η γλώσσα L₁ ∩ L₂ ΔΕΝ είναι κανονική.
- Συνεπώς η γλώσσα L_1 δεν μπορεί να είναι κανονική.
- > Καθοδηγούμαστε για να επιλέξουμε την απόδειξη αυτή:
 - ightarrow Στην εκφώνηση της άσκησης μας δίνεται να αποδείξουμε ότι η L_1 δεν είναι κανονική, ενώ μας λέει ότι δίνεται ότι μία άλλη γλώσσα δεν είναι κανονική.
 - ightharpoonup Τότε συνήθως η γλώσσα που μας δίνει εκφράζει την $L_1 \cap L_2$
 - Άρα ψάχνουμε για την γλώσσα L₂ που η τομή της με την L₁ μας δίνει την γλώσσα που μας δίνεται ότι δεν είναι κανονική.

2. Απόδειξη με ιδιότητες κλειστότητας

2. Παραδείγματα

Δείξτε ότι η γλώσσα $\mathbf{L}=\{w\in\{0,1\}^*\mid w\ \varepsilon\chi\varepsilon\iota\ \iota\sigma\alpha\ 0\ \kappa\alpha\iota\ 1\}$ δεν είναι κανονική δεδομένου ότι η γλώσσα $\mathbf{L}'=\{0^n1^n|\ n\geq 0\}$ δεν είναι κανονική

Απόδειξη:

Έστω ότι η L = $\{w \in \{0,1\}^* \mid w \in \chi \in \iota \sigma \alpha \mid 0 \kappa \alpha \iota \mid 1\}$ είναι κανονική.

Θεωρώ την γλώσσα $L_2 = 0^*1^*$. Η γλώσσα αυτή είναι κανονική, δεδομένου ότι περιγράφεται από κανονική έκφραση.

Ισχύει όμως: $L \cap L_2 = \{0^n 1^n | n ≥ 0\} = L'$

Επειδή οι κανονικές γλώσσες είναι κλειστές ως προς την τομή, έπεται ότι και η γλώσσα L' θα έπρεπε να είναι κανονική (αφού οι L, L_2 είναι κανονικές)

Άτοπο γιατί η L' δεν είναι κανονική. Άρα και η L δεν είναι κανονική.

2. Απόδειξη με ιδιότητες κλειστότητας

2. Παραδείγματα

Δείξτε ότι η γλώσσα $\mathbf{L}=\{0^n1^m|\ n\neq m\}$ δεν είναι κανονική δεδομένου ότι η γλώσσα $\mathbf{L}'=\{0^n1^n|\ n\geq 0\}$ δεν είναι κανονική

Απόδειξη:

Έστω ότι η L = $\{0^n 1^m | n \neq m\}$ είναι κανονική.

Η \bar{L} θα είναι επίσης κανονική λόγω κλειστότητας των κανονικών γλωσσών στην πράξη του συμπληρώματος. Η \bar{L} είναι η γλώσσα που θα αποτελείται από όλες τις συμβολοσειρές της μορφής $\{0^n1^n|\ n\geq 0\}$ αλλά και όλες τις υπόλοιπες συμβολοσειρές του Σ^* πλην αυτών της L.

Θεωρώ και την γλώσσα L_2 =0*1* η οποία είναι κανονική δεδομένου ότι περιγράφεται από κανονική έκφραση.

Ισχύει όμως:
$$\bar{L}$$
 ∩ $L_2 = \{0^n 1^n | n \ge 0\} = L'$

Επειδή οι κανονικές γλώσσες είναι κλειστές ως προς την τομή, έπεται ότι και η γλώσσα L' θα έπρεπε να είναι κανονική (αφού οι L, L_2 είναι κανονικές)

Άτοπο γιατί η L' δεν είναι κανονική. Άρα και η L δεν είναι κανονική.

3. Με χρήση του ελάχιστου αριθμού καταστάσεων αυτομάτου

1. Ορισμοί

Διαισθητικά:

- Για κάθε κανονική γλώσσα υπάρχει πεπερασμένο αυτόματο.
- Κάθε κατάσταση του αυτομάτου ενσωματώνει όλην την απαράιτητη
 πληροφορία για τα σύμβολα που έχουμε διαβάσει και τι χρειάζεται ακόμη να
 διαβάσουμε για να αποφασίσουμε αν η συμβολοσειρά ανήκει στη γλώσσα.
- Θα χρειαστούμε τόσες καταστάσεις στο αυτόματο, όσες και οι περιπτώσεις που απαιτούν διαφορετική συγκράτηση πληροφορίας.
- Χρήσιμοι θα φανούν οι ακόλουθοι ορισμοί:

Έστω L μια κανονική γλώσσα. Ορίζουμε ότι:

- Δύο συμβολοσειρές x,y είναι διακρινόμενες ανά δυο αν και μόνο αν υπάρχει συμβολοσειρά z τέτοια ώστε μια μόνο από τις xz και yz να ανήκει στην γλώσσα.
- ΘΕΩΡΗΜΑ: Αν μια γλώσσα έχει η διακρινόμενες ανά δύο συμβολοσειρές, τότε το αυτόματό της θα πρέπει να έχει τουλάχιστον η καταστάσεις.

3. Με χρήση του ελάχιστου αριθμού καταστάσεων αυτομάτου

2. Παράδειγμα για Κανονική Γλώσσα

Μελετάμε την εφαρμογή του ορισμού για την κανονική γλώσσα $L = \{w \in \{0,1\}^* | w \text{ έχει περιττά 1}\}.$

- x=1 που θέλει άρτιο πλήθος από 1 για να είναι σε τελική κατάσταση.
- > y=11 που θέλει περιττό πλήθος από 1 για να είναι σε τελική κατάσταση.
 - Για να αποδείξουμε ότι είναι διακρινόμενες εντοπίζουμε π.χ. την συμβολοσειρά z=11 με την οποία έχω xz=111 ανήκει στην γλώσσα και yz=1111 δεν ανήκει στην γλώσσα.
- Ενδιαφέρον έχει ότι δεν υπάρχει άλλη συμβολοσειρά που που να είναι διακρινόμενη με τις παραπάνω 2.
 - Π.χ. η w=101 δεν είναι διακρινόμενη με την y αφου και οι δύο θέλουν περιττό πλήθος 1 για να βρεθούν σε τελική κατάσταση
 - Π.χ. η w=010 δεν είναι διακρινόμενη με την x αφου και οι δύο θέλουν άρτιο πλήθος 1 για να βρεθούν σε τελική κατάσταση.
- Έπεται λοιπόν ότι το αυτόματο της L θα έχει τουλάχιστον 2 καταστάσεις (πράγματι το αυτόματο που δώσαμε στο μάθημα 3.2 είχε ακριβώς 2 καταστάσεις)

3. Με χρήση του ελάχιστου αριθμού καταστάσεων αυτομάτου

3. Μεθοδολογία

Τα βήματα που ακολουθούμε για να δείξουμε ότι μία γλώσσα δεν είναι κανονική με χρήση του θεωρήματος για το ελάχιστο πλήθος καταστάσεων του αυτομάτου:

- Υποθέτουμε ότι είναι κανονική.
- Συνεπώς θα υπάρχει αυτόματο με η καταστάσεις που αναγνωρίζει τις συμβολοσειρές της.
- Βρίσκουμε m>n διακρινόμενες ανά δύο συμβολοσειρές της.
- Συνεπώς από το θέωρημα κάθε αυτόματό της θα έχει τουλάχιστον m καταστάσεις.
- Άτοπο! Άρα δεν είναι κανονική γλώσσα.

3. Με χρήση του ελάχιστου αριθμού καταστάσεων αυτομάτου

4. Παραδείγματα

Δείξτε ότι η γλώσσα $L = \{0^n 1^n | n \ge 0\}$ δεν είναι κανονική

Απόδειξη:

Υποθέτουμε ότι είναι κανονική. Συνεπώς θα υπάρχει πεπερασμένο αυτόματο με η καταστάσεις που την αναγνωρίζει.

Θεωρούμε τις συμβολοσειρές $0, 0^2, 0^3, 0^4, ..., 0^m$ (όπου m>n)

Οι παραπάνω συμβολοσειρές είναι διακρινόμενες ανά δύο: Π.χ. Έστω 0^i και 0^j με $i \neq j$. Πρέπει να βρούμε ένα z τέτοιο ώστε ένα μόνο από τα 0^iz και 0^jz να ανήκει στην γλώσσα. Επιλέγουμε $z=1^i$ οπότε 0^i1^i ανήκει στην γλώσσα και 0^j1^i δεν ανήκει στην γλώσσα. Συνεπώς οι m συμβολοσειρές είναι διακρινόμενες ανά δύο.

Συνεπώς κάθε αυτόματό της θα έχει τουλάχιστον m>n καταστάσεις.

Άτοπο. Άρα η L δεν είναι κανονική.

3. Με χρήση του ελάχιστου αριθμού καταστάσεων αυτομάτου

4. Παραδείγματα

Δείξτε ότι η γλώσσα $L = \{w \in \{0,1\}^* | w ειναι παλινδρομικη\}$ δεν είναι κανονική

Απόδειξη:

Υποθέτουμε ότι είναι κανονική. Συνεπώς θα υπάρχει πεπερασμένο αυτόματο με η καταστάσεις που την αναγνωρίζει.

Θεωρούμε τις συμβολοσειρές 01, 0^21 , 0^31 , 0^41 ,..., 0^m1 (όπου m>n)

Οι παραπάνω συμβολοσειρές είναι διακρινόμενες ανά δύο: Π.χ. Έστω 0^i1 και 0^j1 με $i\neq j$. Πρέπει να βρούμε ένα z τέτοιο ώστε ένα μόνο από τα 0^i1z και 0^j1z να ανήκει στην γλώσσα. Επιλέγουμε $z=0^i$ οπότε 0^i10^i ανήκει στην γλώσσα (είναι παλινδρομική) και 0^j10^i δεν ανήκει στην γλώσσα (δεν είναι παλινδρομική, αφού τα 0 της αρχής είναι περισσότερα από τα 0 του τέλους). Συνεπώς οι m συμβολοσειρές είναι διακρινόμενες ανά δύο.

Συνεπώς κάθε αυτόματό της θα έχει τουλάχιστον m>n καταστάσεις.

Άτοπο. Άρα η L δεν είναι κανονική.

Δείξτε ότι οι ακόλουθες γλώσσες δεν είναι κανονικές:

$$L_1 = \{ a^n b^{2n} | n \ge 0 \}$$

$$L_2 = \{a^m b^n a^n b^m | n, m \ge 0\}$$

$$L_3 = \{a^m b^n a^m b^n | n, m \ge 0\}$$

$$L_4 = \{a^{3n}b^{4n} | n, m \ge 0\}$$

Δείξτε ότι οι ακόλουθες γλώσσες δεν είναι κανονικές:

$$L_1 = \{wcw^R | w \in \{0,1\}^*\}$$

$$L_2 = \{1^{2n}0^{3n} | n \ge 0\}$$

$$L_3 = \{1^n 0^{3n} | n \ge 0\}$$

$$L_4 = \{a^n b^m c^{n+m} | n, m \ge 0\}$$

$$L_5 = \{a^n b^{n+m} c^m | n, m \ge 0\}$$

Δείξτε ότι οι ακόλουθες γλώσσες δεν είναι κανονικές:

 $L_1 = \{w \in \{0,1\}^* | \text{ το πλήθος των 0 της w είναι μικρότερο από το πλήθος των 1 } \}$

 $L_2 = \{w \in \{0,1\}^* | \text{ το πλήθος των } 0 \text{ της } w \text{ είναι μεγαλύτερο από το πλήθος των } 1 \}$

$$L_3 = \{0^n 1^m | n \ge m\}$$

$$L_4 = \{0^n 1^m | n \leq m\}$$

Έστω Σ={0,1} και L η γλώσσα που σχηματίζεται ακριβώς και μόνον με τους κανόνες:

- $\varepsilon \in L$
- Av x ∈ L τότε και 00x111 ∈ L

Δείξτε ότι η L δεν είναι κανονική.

<u>Γ. Ασκήσεις</u> Εφαρμογή 5

Έστω Σ={α,0,b} και L η γλώσσα που σχηματίζεται ακριβώς και μόνον με τους κανόνες:

- 0 ∈ L
- Av $x \in L$ tóte kai $a0x1bb \in L$

Δείξτε ότι η L δεν είναι κανονική.