Describing sequences

- Generating a sequence from a position-to-term rule
- Writing a position-to-term rule using algebra
- Using the relationship between a term-to-term rule and a rule for the *n*th term

Keywords

You should know

explanation 1

1 Copy and complete the table below for each position-to-term rule.

Position	1	2	3	4	5
Term					

- a Position \rightarrow +2 \rightarrow Term
- **b** Position \rightarrow \times 2 \rightarrow Term
- c Position \rightarrow $\times 2$ \rightarrow +2 \rightarrow Term
- d Position \rightarrow $\times 4$ \rightarrow -3 \rightarrow Term
- e Position \rightarrow \times 5 \rightarrow +4 \rightarrow Term
- f Position \rightarrow \times -2 \rightarrow +1 \rightarrow Term
- g Position $\rightarrow \times -3 \rightarrow -1 \rightarrow \text{Term}$
- h Position \rightarrow \times 1.5 \rightarrow -2 \rightarrow Term
- i Position \rightarrow $\times \frac{1}{4}$ \rightarrow +1 \rightarrow Term
- j Position \rightarrow $\div 4$ \rightarrow +1 \rightarrow Term
- 2 What do you notice about your answers to questions 1 i and 1 i? Why is this?

explanation 2

3 Find the position-to-term rules for these sequences.

a	Position	1	2	3	4	5
	Term	3	6	9	12	15

b	Position	1	2	3	4	5
	Term	4	7	10	13	16

c	Position	1	2	3	4	5
	Term	5	10	15	20	25

e	Position	1	2	3	4	5
	Term	3	5	7	9	11

f	Position	1	2	3	4	5
	Term	-3	-1	1	3	5

g	Position	1	2	3	4	5
	Term	6	7	8	9	10

h	Position	1	2	3	4	5
	Term	-4	-8	-12	-16	-20

i	Position	1	2	3	4	5
	Term	-3	-7	-11	-15	-19

j	Position	1	2	3	4	5
	Term	2.5	3	3.5	4	4.5

explanation 3

4 Convert these position-to-term rules into rules for the *n*th term.

a Position
$$\rightarrow$$
 +3 \rightarrow Term

c Position
$$\rightarrow$$
 $\times 2$ \rightarrow Term

d Position
$$\rightarrow$$
 \times 4 \rightarrow -1 \rightarrow Term

e Position
$$\rightarrow$$
 \times 6 \rightarrow +1 \rightarrow Term

- **5** Convert these position-to-term rules into rules for the *n*th term.
 - Position \rightarrow \times -2 \rightarrow +2 \rightarrow Term
 - Position \rightarrow $\times -3$
 - Position $\rightarrow \frac{1}{2}$
 - d Position \rightarrow $\div 2$ → + 3 → Term
 - Position → - 4 → Term
- **6** These are the rules for the *n*th terms of some arithmetic sequences. Write the first five terms of each sequence.
 - **a** 2*n*
- **b** 2n-1
- **c** 3n+4 **d** 5n-1

b

d

- **e** 3n-8 **f** 4n-4 **g** $\frac{1}{2}n$ **h** $\frac{1}{2}n+1$

- i -2n j -3n+6 k -n+1 l $-\frac{1}{4}n+2$
- **7** Each table shows an arithmetic sequence.
 - i Write the term-to-term rule for each sequence.
 - Write the rule for the *n*th term of each sequence.
 - a **Position** 2 5 1 3 4 **Term** 4 8 12 16 20

Position	1	2	3	4	5
Term	5	9	13	17	21

 \mathbf{c} 5 **Position** 1 3 4 **Term** 3 6 9 12 15

Position	1	2	3	4	5
Term	1	4	7	10	13

- e **Position** 1 2 3 4 5 **Term** 7 9 11 13 15
- f **Position** 1 2 3 4 5 -3-13 5 Term 1

8 Each table shows an arithmetic sequence.

Write the term-to-term rule and the *n*th term of each sequence.

a	Position	1	2	3	4	5
	Term	-2	-4	-6	-8	-10

b	Position	1	2	3	4	5
	Term	-4	-6	-8	-10	-12

c	Position	1	2	3	4	5
	Term	$-\frac{1}{2}$	0	$\frac{1}{2}$	1	$1\frac{1}{2}$

- **9** What do you notice about the term-to-term rules and the rules for the *n*th terms for the arithmetic sequences in questions 7 and 8?
- **10** Copy and complete these sentences.
 - The rule for the *n*th term is 3n + 1. The term-to-term rule is ...
 - The rule for the *n*th term is 4n + 6. The term-to-term rule is ...
 - The rule for the *n*th term is 2n 8. The term-to-term rule is ...
 - d The rule for the *n*th term is -3n + 1. The term-to-term rule is ...
 - The rule for the *n*th term is -5n 2. The term-to-term rule is ...
 - The term-to-term rule is + 2. A possible rule for the *n*th term is ...
 - The term-to-term rule is + 8. A possible rule for the *n*th term is ...
 - The term-to-term rule is -7. A possible rule for the *n*th term is ...
 - The term-to-term rule is $+\frac{1}{2}$. A possible rule for the *n*th term is ...
 - The term-to-term rule is $-\frac{1}{4}$. A possible rule for the *n*th term is ...
- 11 Write the rule for the *n*th term of these arithmetic sequences.
 - **a** 4, 5, 6, 7, 8
- **b** 10, 15, 20, 25, 30 **c** -2, 1, 4, 7, 10

- **d** 12, 22, 32, 42, 52 **e** 7, 13, 19, 25, 31 **f** -3, 2, 7, 12, 17

- **g** 0, -1, -2, -3, -4 **h** 6, 4, 2, 0, -2 **i** -5.5, -5, -4.5, -4, -3.5