

Note For Finite Element Methods

Zhejiang University

作者: Shuang Hu

组织: Zhejiang University

时间: Sept 14, 2022

版本: 1.0

简介: 2022 秋冬学季"有限元方法"课程笔记

目录

第1章	引人	1
1.1	为什么需要有限元方法?	1
1.2	从一维边值问题说起	1
1.3	有限元思想的导出	2

第1章 引入

1.1 为什么需要有限元方法?

此前在《微分方程数值解》课程中,我们已经学习了有限差分法和有限体积法。这两种方法有不少优点:首先,比较直观,只要知道如何利用差分近似导数即可得到对应的差分公式;其次,在一些情形下,有限差分和有限体积方法可以实现较高的计算精度。

但是,这两种算法有一些明显的缺陷。

- 算法稳定性的分析比较复杂。
- 处理不规则区域的问题时较为麻烦,需要多次利用插值近似。
- 只是求解离散格点的近似点值/离散网格的近似积分平均值,未能给出函数整体的近似。

为此,基于函数逼近论的**有限元方法**被提出。该算法能弥补有限差分法的一些明显缺陷,目前是最主流的数值算法之一。

1.2 从一维边值问题说起

考虑如下例子:

$$\begin{cases}
-u'' + u = f(x), x \in (0, 1) \\
u(0) = u(1) = 0.
\end{cases}$$
(1.1)

类似于"偏微分方程"课程中对弱解的讨论方式,在(1.1)两边同时乘某个函数 ν 并在 [0,1] 上积分,得到如下形式:

$$\int_0^1 (-u'' + u)v dx = \int_0^1 f v dx.$$
 (1.2)

定义函数空间 V 如下:

$$V := \left\{ v \mid v(0) = v(1) = 0, \int_0^1 ((v')^2 + v^2) dx < \infty \right\}.$$
 (1.3)

如果函数 $v \in V$, 利用分部积分法, (1.1)可以转化为以下问题:

例题 1.1 记 $a(u,v) = \int_0^1 (u'v' + uv) dx$, $h(v) = \int_0^1 fv dx$, $v \in V$. 求 $u \in V$,使得 $a(u,v) = h(v) \forall v \in V$. 下面的定理说明了该问题可以转化为一个优化问题:

定理 1.1

记泛函 $J(v):=\frac{1}{2}a(v,v)-h(v)$,问题1.1与最小化 J(v) 的优化问题等价。即: 如果 $a(u,v)=h(v) \forall v \in V$,那 么 $J(u) \leq J(v) \forall v \in V$ 。

证明 ⇒:

$$J(v) - J(u) = \frac{1}{2}a(v, v) - h(v) - \frac{1}{2}a(u, u) + h(u)$$

$$= \frac{1}{2}(a(v, v) - a(u, u) - 2h(v - u))$$

$$= \frac{1}{2}(a(v, v) - a(u, u) - 2a(u, v - u))$$

$$= \frac{1}{2}(a(v, v) + a(u, u) - 2a(v, u))$$

$$= \frac{1}{2}(a(v - u, v - u)) \ge 0.$$
(1.4)

由(1.4)可得,如果 a(u,v) = h(v),那么 $J(u) \leq J(v)$.

 \Leftarrow : $\forall v \in V, t \in \mathbb{R}$, 有 $J(u+tv) \ge J(u)$ 。我们定义函数 g(t) := J(u+tv),根据上面的讨论可知:g'(0) = 0。另一方面,计算 g(t) 的表达式,有:

$$g(t) = J(u+tv)$$

$$= \frac{1}{2} \int_0^1 ((u'+tv')^2 + (u+tv)^2) dx - \int_0^1 f(u+tv) dx$$
(1.5)

对(1.5)求一阶导数,可得:

$$g'(0) = \int_0^1 (u'v' + uv) dx - \int_0^1 fv dx.$$
 (1.6)

根据 g 的一阶条件, 可得 a(u,v) = h(v)。又由于 v 的任意性, 结论得证。

如此,我们把一个解微分方程的问题,利用1.1和1.2转化为了一个变分问题。由于 V 是一个无穷维空间,我们不能期望利用算法给出这个变分问题的精确解,但我们可以考虑对空间 V 进行有限维近似,并在有限维空间上近似求解这个变分问题。

1.3 有限元思想的导出

接下来,根据上一节的思路,我们继续问题(1.1)的近似求解。根据上面的分析,我们的数值算法需要解决两个问题:

- 如何对函数空间 V 进行有限维近似?
- 在进行有限维近似之后,如何在有限维空间中对变分问题进行求解?

首先,我们考虑第二个问题。根据上面的讨论,近似求解变分问题有两种不同的思路,分别对应的是 Galerkin 近似方法和 Ritz 近似方法。

1.3.1 Galerkin 近似