UAS Pengenalan Pola

Dyline Melynea F/185314125

Data Gunung Merapi terdapat 19 entri. Dari 19 tersebut, terdapat 6 kolom yang 1 kolomnya menjadi label yaitu kolom 'status'. Kolom lainnya selain 'status' dianggap sebagai fitur kecuali kolom 'Data ke' karena kolom tersebut berfungsi sebagai index. Maka didapatkan 4 feature dan 1 label. Namun, dilakukan juga proses seleksi ciri untuk menentukan feature/ciri mana yang memberikan dampak.

Berikut adalah perhitungan untuk menyeleksi ciri dengan software Orange:

Scoring Methods		#	lefe esie
✓ Information Gain	M =:	, #	Info. gain
Information Gain Ratio	עד 🔞		0.286
	N Data ke		0.241
Gini Decrease	N VJ		0.241
ANOVA			0.225
☐ X ²	N GH		0.223
ReliefF	N VDA		0.110
FCBF			

Selain itu juga dilakukan perhitungan manual di excel yang sebelumnya membuat kelompok/range dari masing-masing feature agar membentuk kelasnya (detail ada di file data sheet 'f.selection'):

Hitung inf	o gain					
VJ	normal	siaga	waspada	Banyak kasus	Entropi	Gain
0-10	2	2	6	10	0.864974	
11-20	0	1	1	2	0	
31-60	1	0	1	2	0	0.544751
61-90	1	0	1	2	0	
111-160	0	1	2	3	0	
נד	normal	siaga	waspada	Banyak kasus	Entropi	Gain
0-30	2	3	4	9	0.965634	
31-80	0	1	5	6	0	
111-140	1	0	2	3	0	0.517183
GH	normal	siaga	waspada	Banyak kasus	Entropi	Gain
0-20	3	3	6	12	0.946395	
41-70	0	0	3	3	0	
101-120	1	0	2	3	0	
151-160	0	1	0	1	0	0.402277
VDA	normal	siaga	waspada	Banyak kasus	Entropi	Gain
0-20	4	3	8	15	0.91899	
61-80	0	1	1	2	0	
111-150	0	0	2	2	0	0.274482

Dari kedua cara tersebut, sama-sama dihasilkan fitur yang layak digunakan ada 3 yaitu: 'VJ', 'TJ', dan 'GH'

Kemudian dilakukan klasifikasi. Pertama dicoba dengan manual menggunakan excel, data dibagi menjadi 10 untuk training, dan 9 untuk testing. Digunakan KNN dengan metric/distance Manhattan dan banyak neighbor yaitu 1 untuk manual.

Didapatkan hasilnya seperti berikut (detail ada di file data sheet 'data olahan'):

indeks	train															pred 1nn	label		
	VJ	ŢJ	GH	Status	test1	test2	test3	test4	test5	test6	test7	test8	test9	test1	52	normal	waspada	F	akurasi
2	2	68	41	waspada	104	86	122	192	91	88	214	74	130	test2	17	waspada	siaga	F	0.33333
3	0	35	0	waspada	152	40	112	202	57	82	172	2	60	test3	90	normal	normal	Т	
7	144	131	53	waspada	263	303	213	219	304	211	147	291	273	test4	98	normal	waspada	F	
9	1	13	0	waspada	173	17	135	191	34	103	193	23	41	test5	34	waspada	siaga	F	
18	52	16	7	waspada	178	62	190	130	75	156	146	76	20	test6	82	waspada	waspada	Т	
6	2	15	63	waspada	107	55	197	125	60	163	253	83	99	test7	75	siaga	waspada	F	
10	17	25	157	siaga	74	174	296	130	175	262	322	182	188	test8	2	waspada	waspada	Т	
16	111	79	0	siaga	231	191	179	187	204	145	75	153	137	test9	20	waspada	normal	F	
17	1	25	109	normal	52	112	232	98	117	200	290	120	156						
8	78	135	0	normal	254	214	90	224	227	96	164	176	160						
	test																		
indeks	VJ	Ţ	GH	Status															
4	19	54	114	waspada															
5	2	10	13	siaga															
11	0	147	0	normal															
12	85	19	101	waspada															
13	4	1	19	siaga															
14	2	115	0	waspada															
15	157	50	0	waspada															
19	2	35	0	waspada															
20	39	15	1	normal															

Dicoba juga ketika data baru masuk yaitu mendapatkan status waspada, dan hasilnya adalah tidak sesuai dengan kelas labelnya.

VJ	TJ	GH	Status	VJ	TJ	GH	Status	test10			
2	68	41	waspada	49	92	7	siaga	105	79	waspada	F
0	35	0	waspada					113			
144	131	53	waspada					180			
1	13	0	waspada					134			
52	16	7	waspada					79			
2	15	63	waspada					180			
17	25	157	siaga					249			
111	79	0	siaga					82			
1	25	109	normal					217			
78	135	0	normal					79			

Dicoba juga dengan program menggunakan bahasa python3. Data dibagi menjadi 50% training, dan 50% testing. Berikut adalah dokumentasi dan rekapan dari percobaan tuning parameter.

Manhhatan, neighbot = 1, akurasi= 30%

Manhattan, neighbors = 3, akurasi 40%

```
In [16]: knn = KNeighborsClassifier(n_neighbors = 3, metric = 'manhattan'
                                     weights = 'uniform', algorithm = 'ball_tree', leaf_size=5)
         knn.fit(x_train, y_train)
Out[16]: KNeighborsClassifier(algorithm='ball_tree', leaf_size=5, metric='manhattan',
                              metric_params=None, n_jobs=None, n_neighbors=3, p=2,
weights='uniform')
In [17]: y_pred=knn.predict(x_test)
In [18]: y_pred
Out[18]: array([3, 1, 3, 3, 3, 3, 1, 3, 3], dtype=int64)
In [19]: print(metrics.classification_report(y_test, y_pred))
                       precision
                                    recall f1-score support
                                      0.00
                            0.00
                                                 0.00
                            0.00
                                      0.00
                                                 0.00
                                                 0.57
                                                 0.40
                                                             10
             accuracy
                            0.17
                                      9.22
                                                 0.19
                                                             10
         weighted avg
                            0.30
                                      0.40
                                                 0.34
                                                             10
```

Euclidean, neighbors = 1, akurasi = 30%

```
knn.fit(x_train, y_train)
Out[20]: KNeighborsClassifier(algorithm='ball_tree', leaf_size=5, metric='euclidean', metric_params=None, n_jobs=None, n_neighbors=1, p=2, weights='uniform')
In [21]: y_pred=knn.predict(x_test)
In [22]: v pred
Out[22]: array([3, 2, 3, 3, 3, 1, 3, 2, 3, 3], dtype=int64)
In [23]: print(metrics.classification_report(y_test, y_pred))
                      precision
                                 recall f1-score support
                           0.00
                                    0.00
                                             0.00
            accuracy
                                             0.30
                           0.14
                                    0.17
            macro avg
                                             0.15
         weighted avg
                          0.26
                                    0.30
                                             0.28
                                                        10
```

Euclidean, neighbors = 3, akurasi = 40%

```
knn.fit(x_train, y_train)
Out[24]: KNeighborsClassifier(algorithm='ball_tree', leaf_size=5, metric='euclidean', metric_params=None, n_jobs=None, n_neighbors=3, p=2, weights='uniform')
In [25]: y_pred=knn.predict(x_test)
In [26]: y_pred
Out[26]: array([3, 1, 3, 3, 3, 3, 1, 3, 3], dtype=int64)
In [27]: print(metrics.classification_report(y_test, y_pred))
                      precision
                                 recall f1-score support
                           0.00
                                     0.00
                                              0.00
                           0.50
                                    0.67
                                              0.57
                                                          6
                                              0.40
                                                          10
             accuracy
         macro avg
weighted avg
                           0.17
                                     0.22
                                              0.19
                                              0.34
                                     0.40
```

Digunakan maksimal banyak neighborsnya 3 karena ada 2 kelas yang memiliki entri hanya 4, dan jumlah neighbor lebih baik ganjil, sehingga dipilih 1 atau 3, dari hasil program ini maka didapatkan hasil paling baik yaitu dengan neighbors sebanyak 3 dengan akurasi 40% baik untuk metric/distance Manhattan maupun Euclidean.

Kemudian juga dilakukan Time series cross validation yaitu seperti berikut:

$n_split = 3$

```
In [38]: from sklearn.model_selection import TimeSeriesSplit
In [39]: tscv = TimeSeriesSplit()
         TimeSeriesSplit(max_train_size=None, n_splits=3)
Out[39]: TimeSeriesSplit(max_train_size=None, n_splits=3)
In [41]: for train_index, test_index in tscv.split(x):
            knn = KNeighborsClassifier(n_neighbors = 3, metric = 'manhattan',
                                  weights = 'uniform', algorithm = 'ball_tree', leaf_size=5)
            knn.fit(X_train, y_train)
            y_pred=knn.predict(X_test)
print("hasil prediksi:", y_pred)
            print(metrics.classification_report(y_test, y_pred),"\n")
                  TRAIN (index data): [0 1 2 3] TEST (index data): [4 5 6]
                  hasil prediksi: [3 3 3]
                                 precision
                                                recall f1-score support
                                       0.00
                                                   0.00
                                                              0.00
                              3
                                       0.67
                                                  1.00
                                                              0.80
                                                                             2
                                                              0.67
                                                                             3
                      accuracy
                                       0.33
                                                  0.50
                     macro avg
                                                              0.40
                                                                             3
                  weighted avg
                                       0.44
                                                  0.67
                                                              0.53
                                                                             3
                  TRAIN (index data): [0 1 2 3 4 5 6] TEST (index data): [7 8 9]
                  hasil prediksi: [3 3 3]
                                 precision
                                                recall f1-score
                              1
                                       0.00
                                                  0.00
                                                              0.00
                                                                             1
                              2
                                       0.00
                                                  0.00
                                                              0.00
                                                                             1
                                                  1.00
                              3
                                       0.33
                                                              0.50
                                                                             1
                                                                             3
                                                              0.33
                      accuracy
                     macro avg
                                       0.11
                                                  0.33
                                                              0.17
                                                                             3
                                       0.11
                                                  0.33
                                                                             3
                  weighted avg
                                                              0.17
               TRAIN (index data): [0 1 2 3 4 5 6 7 8 9] TEST (index data): [10 11 12]
               hasil prediksi: [3 3 3]
                                     recall f1-score support
                          precision
                                      1.00
                                               0.80
                                               0.67
                  accuracy
                               0.33
                                       0.50
                                               0.40
               weighted avg
                                               0.53
                                       0.67
               TRAIN (index data): [ 0 1 2 3 4 5 6 7 8 9 10 11 12] TEST (index data): [13 14 15]
               hasil prediksi: [3 3 3]
                          precision
                                     recall f1-score support
                               0.33
                                      1.00
                                               0.50
                                                         1
                                               0.33
                  accuracy
               macro avg
weighted avg
                               A 11
                                       0.33
                                               0.17
                                               0.17
                               0.11
                                       0.33
```

```
TRAIN (index data): [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15] TEST (index data): [16 17 18]
hasil prediksi: [2 3 3]
                          recall f1-score
             precision
                                             support
          1
                  0.00
                            0.00
                                      0.00
                                                   1
                  0.00
                            0.00
                                      0.00
          2
                                                   0
                  0.50
                            0.50
                                      0.50
                                                   2
          3
    accuracy
                                      0.33
                                                   3
                  0.17
                            0.17
                                      0.17
   macro avg
                                                   3
weighted avg
                  0.33
                            0.33
                                      0.33
                                                   3
```

Dari percobaan time series cross validation tersebut didapatkan hasil yang paling baik yaitu dengan skor 67% untuk iterasi pertama dan ketiga, detail indeks data yang dipakai ada seperti gambar mengenai hasil cross validation di atas. Untuk knn, konfigurasinya yang digunakan yaitu dengan Manhattan dan banyak neighbors = 3 karena neighbors 3 adalah yang paling baik sebelumnya, dan digunakan Manhattan karena hasil dari Euclidean maupun Manhattan adalah sama sebelumnya, sehingga dipilih Manhattan agar lebih sesuai dengan percobaan manual menggunakan excel.

Dari program juga dicoba untuk memprediksi data baru, didapatkan hasilnya yaitu seperti berikut:

Hasil prediksi terhadap data baru yaitu '1' yang artinya statusnya normal. Hasilnya tidak sesuai dengan yang dicantumkan di kelas label.

Kesimpulan:

Dengan rangkaian percobaan di atas, didapatkan hasil akurasi maksimal yaitu 67%. Dan juga setelah dilakukan percobaan pada data baru, hasilnya baik menggunakan excel maupun program yaitu sama-sama tidak sesuai dengan kelas labelnya. Dapat dikatakan bahwa model KNN kurang cocok untuk prediksi data Gunung Merapi.