Lightning Network

Joseph Poon joseph@lightning.network Thaddeus Dryja rx@awsomnet.org

Problems

- Transactions aren't instant
- Micropayments don't actually work
 - High transaction fees
- "Bitcoin Doesn't Scale"

"Bitcoin Doesn't Scale"

- 1 MB blocks:
 - 7 transactions per second @ 250 bytes/tx
 - ~220 million transactions per year
 - Not enough for a city, let alone the world
- 1 Billion transactions per day:
 - o 1.6 GB blocks (1655 MB)
 - o 87 Terabytes/year (87029089 MB)
 - Maybe enough for one large metro area?
 - Centralization (mining!)

"Bitcoin Doesn't Scale"

- 7 billion people doing 2 blockchain transactions per day
 - o 24 GB blocks
 - o 3.5 TB/day
 - o 1.27 PB/year
- Bigger blocks = Centralization
 - Very few full nodes
 - Very few miners
 - De facto inability to validate blockchain

Scalability Solutions

- The SQL Database Model
 - Very scalable, very fast
 - Off chain transactions implemented today with ChangeTip, Coinbase, others
- Sidechains
 - Many blockchains with inter-chain transfers
- Payment Channels
 - Many payments between two pre-determined parties

Scalability Solutions

- The SQL Database Model
 - Also implemented by MTGox Redeemable Codes
- Sidechains
 - Not primarily a scalability solution
 - Sending funds between chains is two transactions
- Payment Channels
 - Only helps when people pay each other many times (recurring billing, time-based microtransactions)

Anyone to Anyone Payments

- In bitcoin, any output can pay to any other
- In the SQL database model:
 - I need to have an entry in your SQL db
- On Sidechains:
 - I need to be on your sidechain
- In a Payment Channel:
 - I need to have a channel open with you

- Payment channels between many parties in a multi-hop hub and spoke model (similar to internet routing)
- Minimally trusted intermediaries (they can't take your coins)
- With a malleability fix via a soft-fork, Bitcoin can scale to billions of transactions per day

What are Payment Channels

- Introduced a while ago (not a new idea)
- Uses multi-sig
- Allows two people to send transactions to each other without hitting the Bitcoin blockchain

Bidirectional Channel - Payment

Bidirectional Channel - Payment

Reversing Direction

Closing Bidirectional Channel

3 Party Payments

Alice wants to pay Carol, they both have a channel open with Bob

3 Party Payments

3 Party Payments

3 Party Payments - Trust Issues

3 Party Payments - Trust Issues

Problem: Bob can simply keep the 0.01 BTC Problem: Carol can claim she never got the coins!

- Using one-way hash functions, Alice can prove she sent funds to Carol off-chain
- Pay to Contract
 - Knowledge of secret R hashed into hash H proves receipt
 - Receiver signs a contract stating if R is disclosed funds have been received

Problem!

- If Carol refuses to disclose R, she will hold up the channel between Alice and Bob
 - If her channel expires after Alice and Bob's she can steal funds by redeeming the hashlock!
- Bob has to be rich for this to really work
 3rd party low-trust multisig and/or extremely small values sent can mostly work today

Hashed Time-Lock Contract

- If Bob can produce to Alice input R from hash H within 3 days, Alice will pay Bob 0.01 BTC
- 2. The above clause is void after 3 days
- 3. Either party may agree to settle terms using other methods if both agree
- 4. Violation of terms incurs a maximum penalty of funds in this contract

Hashed Time-Lock Contract

OP_DEPTH 3 OP_EQUAL OP_IF OP_HASH160 <R> OP_EQUALVERIFY OP_0 2 <AlicePubkey1> <BobPubkey1> 2 OP_CHECKMULTISIG OP_ELSE OP_0 2 <AlicePubkey2> <BobPubkey2> 2 OP_CHECKMULTISIG OP_END

Alice wants to send funds to Dave via Bob and Carol

Dave sends Alice hash H produced from random data R

Implications

- Blockchain transactions can be circuits instead of packets
 - Only uncooperative channels get broadcast early on the blockchain
 - Nearly all transactions occur off-chain securely with near-zero custodial default risk
 - Creating new channels are infrequent
- Relative OP CHECKLOCKTIMEVERIFY
- Instant Transactions, Scalable Micropayments

Bitcoin Can Scale

- 7 billion people making 2 blockchain transactions per day
 - 24 GB blocks (~2,400 MB)
 - 7e9 * 2txs * 250Bytes / 144 block/day
 - ~50 Mbit/s best-case with IBLT @ 2tx/day/person
- 7 billion people roll-over 2 channels per year
 - 133 MB blocks unlimited transactions count
 - 7e9 * 2 txs * 500Byte / 52560blocks/yr
 - ~3 Mbit/s with IBLT

Bitcoin Can Scale

- Full Blockchain Archive
 - 7 TB/year (7,000 GB) /w ~unlimited transactions
 - \$300/year blockchain archival storage (2015 prices)
- Blockchain Pruning
 - Server nodes and miners only keeping recent blocks and UTXOs have enough storage today (2 TB, common in current-gen desktops)
- Mobile Wallets (Lightweight SPV clients)
 - Several megabytes of storage