SOLUTIONS: DESIGN OF LINEAR MULTIVARIABLE CONTROL SYSTEMS

1. a) Let the realisation be partitioned compatibly with P and Q as

Let the realisation be partitioned compatibly with
$$P$$
 and Q as
$$G(s) \stackrel{s}{=} \begin{bmatrix} A_{11} & A_{12} & B_1 \\ A_{21} & A_{22} & B_2 \\ \hline C_1 & C_2 & 0 \end{bmatrix} \cdot \text{Then}$$

$$A^T Q + QA + C^T C = \begin{bmatrix} C_1^T C_1 & A_{21}^T Q_2 + C_1^T C_2 \\ * & A_{22}^T Q_2 + Q_2 A_{22} + C_2^T C_2 \end{bmatrix} = 0 \qquad (1.1)$$

$$AP + PA^T + BB^T = \begin{bmatrix} A_{11}P_1 + P_1A_{11}^T + B_1B_1^T & P_1A_{21} + B_1B_2^T \\ * & B_2B_2^T \end{bmatrix} = 0(1.2)$$

It follows that $C_1 = 0$, $B_2 = 0$ and $A_{21} = 0$. Thus the realisation decomposes into two subsystems $G_1: \dot{x}_1 = A_{11}x_1 + B_1u + A_{12}x_2$ with n_1 modes and $G_2: \dot{x}_2 =$ $A_{22}x_2$, $y = C_2x_2$ with n_2 modes. Since A is stable, both sub-systems are stable.

- G_1 is unobservable since $C_1 = 0$. We prove controllability. Let $z'A_{11} =$ $\lambda z', z \neq 0$. It follows from the (1,1) entry of (1.2) that $(\lambda + \bar{\lambda})z'P_1z +$ $z'B_1B_1'z = 0$. If $z'B_1 = 0$ then $\lambda + \bar{\lambda} = 0$ which contradicts the assumption that A is stable. Thus the realisation is controllable.
- ii) For the subsystem G_2 it is clear that all the modes are uncontrollable and observable using a dual argument to the above.

- Using the result that A is stable if and only if there exists $P = P^T > 0$ b) i) such that $AP + PA^T \prec 0$ we have \mathcal{S} is simultaneously stabilisable if and only if there exist $K \in \mathcal{R}^{m \times n}$ and $P_i = P_i^T \succ 0$ such that $(A_i +$ $B_iK)P_i + P_i(A_i + B_iK)^T \prec 0, i = 1,...,N.$
 - ii) The above conditions are nonlinear, but can be linearised by taking $P_i = P$, and defining a variable $\hat{K} := KP$ and so a set of sufficient conditions is: \mathcal{S} is simultaneously stabilisable if there exist $\hat{K} \in \mathcal{R}^{m \times n}$ and $P = P^T > 0$ such that $A_i P + P A_i^T + B_i \hat{K} + \hat{K}^T B_i^T < 0$, i = 1, ..., N. If the conditions are satisfied, then $K = \hat{K}P^{-1}$.

- 2. a) i) The (1,1) block of the inequality gives $A^TP + PA < 0$. Let $Az = \lambda z$, $z \neq 0$. Then multiplying the inequality from the left by z^T and from the right by z gives $(\lambda + \bar{\lambda})z^TPz < 0$. Since P > 0 it follows that $z^TPz > 0$ and it follows that $\lambda + \bar{\lambda} < 0$ so that A is stable.
 - Since A is stable, $||H||_{\infty} < \gamma$ if and only if, with x(0) = 0, $J := \int_0^{\infty} y^T y \gamma^2 u^T u dt < 0$, for all u(t) such that $||u||_2 < \infty$. If $||u||_2$ is bounded, then $\lim_{t \to \infty} x(t) = 0$. Now, $\int_0^{\infty} \frac{d}{dt} [x^T P x] dt = x(\infty)^T P x(\infty) x(0)^T P x(0) = 0$. So,

$$0 = \int_0^\infty (\dot{x}^T P x + x^T P \dot{x}) dt = \int_0^\infty [x^T (A^T P + P A) x + x^T P B u + u^T B^T P x] dt.$$

Use y = Cx + Du and add the last expression to J

$$J = \int_0^\infty [x^T (A^T P + PA + C^T C)x + 2x^T (PB + C^T D)u + u^T (D^T D - \gamma^2 I)u]dt$$

$$= \int_0^\infty [x^T u^T] \overbrace{\begin{bmatrix} A^T P + PA + C^T C & PB + C^T D \\ B^T P + D^T C & D^T D - \gamma^2 I \end{bmatrix}}^M \begin{bmatrix} x \\ u \end{bmatrix} dt.$$

It follows that J < 0, and so $||H||_{\infty} < \gamma$, if M < 0. This proves the result.

Now, $H(s)^T = D^T + B^T (sI - A^T)^{-1}C^T$. It follows that the dual conditions are: there exists a $P = P^T > 0$ such that

$$\begin{bmatrix} AP + PA^T + BB^T & PC^T + BD^T \\ CP + DB^T & DD^T - \gamma^2 I \end{bmatrix} \prec 0.$$

b) i) Substituting u(t) = Kx(t) into the dynamic equations gives

$$\dot{x}(t) = \underbrace{(A + BK)}_{A_{-}} x(t) + \underbrace{B_{d}}_{B_{c}} d(t), \qquad z(t) = \underbrace{(C + DK)}_{C_{-}} x(t) + \underbrace{D_{d}}_{D_{c}} d(t).$$

It follows that $T_{cd}(s) = D_c + C_c(sI - A_c)^{-1}B_c$.

Using the results of Part (aiii), by replacing A, B, C and D by A_c , B_c , C_c and D_c , we have that there exists a feasible K if there exists $P = P^T > 0$ such that

$$\left[\begin{array}{cc} (A+BK)P+P(A+BK)^T+B_dB_d^T & P(C+DK)^T+B_dD_d^T \\ (C+DK)P+D_dB_d^T & D_dD_d^T-\gamma^2I \end{array}\right] \prec 0.$$

Noting that the only nonlinearity is due to the product KP, we define $\hat{K} := KP$ and so there exists a feasible K if there exists $P = P^T \succ 0$ such that

$$\left[\begin{array}{cc} AP + PA^T + B\hat{K} + \hat{K}^TB^T + B_dB_d^T & PC^T + \hat{K}^TD^T + B_dD_d^T \\ CP + D\hat{K} + D_dB_d^T & D_dD_d^T - \gamma^2I \end{array}\right] \prec 0.$$

- 3. It is assumed that the triple (A, B, C) is minimal and that D has full column rank (so that D^TD is nonsingular). A suitable Lyapunov function for regulating x is $V = x^T P x$ where $P = P^T$.
 - b) Set u = -Fx. Provided that $P = P^T > 0$ and $\dot{V} < 0$ along closed-loop trajectories, we can assume $\lim_{t \to \infty} x(t) = 0$. Then $\dot{V} = \dot{x}^T P x + x^T P \dot{x} = x^T \left(A^T P + PA F^T B^T P PBF \right) x$. Using $x(\infty) = 0$, $\int_0^\infty \dot{V}(t) dt = \int_0^\infty x^T \left(A^T P + PA F^T B^T P PBF \right) x dt = -x_0^T P x_0$.
 - Let $R = D^T D$. Adding the last equation to the expression for J and completing a square:

$$J = x_0^T P x_0 + \int_0^\infty \{ x^T [A^T P + PA + C^T C - PBR^{-1} B^T P] x + \|D(F - R^{-1} B^T P) x\|^2 \} dt.$$

Since the last term is always nonnegative, it follows that the minimizing value of F is given by $F = R^{-1}B^TP$. We can set the term in square brackets to zero provided P satisfies the Riccati equation $A^TP + PA + C^TC - PBR^{-1}B^TP = 0$. It follows that the minimum value of J is $x_0^TPx_0$.

d) We prove that $A_c := A - BR^{-1}B'P$ is stable. The Riccati equation can be written as

$$A_c'P + PA_c + C^TC + PBR^{-1}B'P = 0.$$

Let $\lambda \in \mathscr{C}$ be an eigenvalue of A_c and $y \neq 0$ be the corresponding eigenvector. Pre– and post–multiplying the Riccati equation be y' and y respectively gives $(\lambda + \bar{\lambda})y'Py + y'C'Cy + y'PBR^{-1}B'Py = 0$. Since $P \succ 0$ and $y \neq 0$, y'Py > 0, $y'C'Cy \geq 0$ and $y'PBR^{-1}B'Py \geq 0$. It follows that $\lambda + \bar{\lambda} \leq 0$ with $\lambda + \bar{\lambda} = 0$ if and only if B'Py = 0 and Cy = 0. But this implies $Ay = \lambda y$ and Cy = 0, which contradicts the observability of the pair (A,C). This proves that $\lambda + \bar{\lambda} < 0$ and so the closed loop is stable.

e) Now,

$$\dot{x} = Ax + Bu = Ax + B(d - Fx)$$
$$= (A - BF)x + Bd$$
$$z_1 = Cx$$

it follows that $T_{z_1d} \stackrel{s}{=} (A - BF, B, C, 0)$. It follows from the bounded real lemma that $||T_{z_1d}||_{\infty} < 1$ if there exists $P = P^T > 0$ such that

$$\begin{bmatrix} P(A-BF) + (A-BF)^T P + C^T C & PB \\ B^T P & -I \end{bmatrix} \prec 0$$

Using a Schur complement argument, this inequality is equivalent to

$$P(A - BF) + (A - BF)^T P + C^T C + PBB^T P \prec 0.$$

However, it follows from the Riccati equation in Part c above that $P(A - BF) + (A - BF)^T P + C^T C + PBB^T P = 0$. Ignoring issues relating to strict matrix inequalities, this proves that $||T_{z_1d}||_{\infty} \le 1$.

4. a) The generalized regulator formulation is given by

$$\begin{bmatrix} z(s) \\ y(s) \end{bmatrix} = P(s) \begin{bmatrix} w(s) \\ u(s) \end{bmatrix}, \ u(s) = Fy(s), \ P(s) = \begin{bmatrix} P_{11}(s) & P_{12}(s) \\ P_{21}(s) & P_{22}(s) \end{bmatrix} \stackrel{s}{=} \begin{bmatrix} A & B_1 & B_2 \\ \hline C_1 & 0 & 0 \\ 0 & 0 & I \\ \hline I & 0 & 0 \end{bmatrix}$$

b) Let $J = ||z||_2^2 - \gamma^2 ||w||_2^2$ denote the cost function. Let V = x'Xx and set u = Fx. Provided that X = X' > 0 and $\dot{V} < 0$ along the closed-loop trajectory, we can assume $\lim_{t \to \infty} x(t) = 0$. Then

$$\dot{V} = \dot{x}' X x + x' X \dot{x} = x' (A'X + XA + F'B_2'X + XB_2F) x + x' XB_1 w_1 + w_1'B_1'Xx.$$

Integrating from 0 to ∞ and using $x(\infty) = 0$,

$$-x_0'Xx_0 = \int_0^\infty [x'(A'X + XA + F'B_2'X + XB_2F)x + x'XB_1w_1 + w_1'B_1'Xx]dt.$$

Using the definition of J, adding the last equation, and completing two squares,

$$J = x_0'Xx_0 + \int_0^\infty \left\{ x' \left[A'X + XA + C_1'C_1 - X \left(B_2B_2' - \gamma^{-2}B_1B_1' \right) X \right] x + \|Zx\|^2 - \|v\|^2 \right\} dt$$

where $Z = F + B_2'X$ and $v = \gamma v - \gamma^{-1}B_1'Xx$.

c) The requirement $||H||_{\infty} \le \gamma$ is equivalent to $J \le 0$ when $x_0 = 0$. Thus sufficient conditions for $J \le 0$ are Z = 0 and the existence of X such that

$$A'X + XA + C'_1C_1 - X(B_2B'_2 - \gamma^{-2}B_1B'_1)X = 0, \qquad X = X' > 0.$$

Setting Z=0, the control policy is F=-B'X. Setting v=0, the worst case disturbance is $w^*=\gamma^{-2}B_1'X$. The closed-loop with u=Fx and $w=w^*$ is $\dot{x}=A_cx$ where $A_c=A-\left(B_2B_2'-\gamma^{-2}B_1B_1'\right)$ and a further condition is $Re\ \lambda_i(A_c)<0$, $\forall\ i$.

d) Using the expression for J in Part b) and the solution in Part c) with $\gamma \to \infty$, it follows that $J \le x_0^T X x_0$ and the Riccati equation becomes

$$A'X + XA + C'_1C_1 - XB_2B'_2X = 0, X = X' > 0.$$

Thus, as $\gamma \to \infty$, the solution of the \mathcal{H}_{∞} regulator converges to that of the LQR in Question 3 (with $C = C_1, B = B_2$ and D = I).