MATH 450 Assignment 1

Please submit using your Crowdmark link for this assignment by the due date.

- (1) Show that the topologies on \mathbb{R}_{ℓ} and \mathbb{R}_{K} are not comparable.
- (2) Let X be a set.
 - (a) Let \mathcal{T}_c be the collection of all subsets U of X such that X-U is either countable or is all of X. Show that \mathcal{T}_c is a topology on X.
 - (b) Let \mathcal{T}_{∞} be the collection of all subsets U of X such that X-U is infinite or empty or all of X. Is \mathcal{T}_{∞} a topology on X?
- (3) For $a, b \in \mathbb{Z}$, b > 0, let $N_{a,b} = \{a + nb : n \in \mathbb{Z}\}$. Let \mathcal{T} be the collection of sets $O \subseteq \mathbb{Z}$ such that either O is empty or for every $a \in O$ there is some b>0 such that $N_{a,b}\subseteq O$.
 - (a) Show that \mathcal{T} is a topology on \mathbb{Z} .
 - (b) Show that any non-empty open set is infinite and the set $N_{a,b}$ is closed.
 - (c) Any $x \in \mathbb{Z}$, $x \neq 1, -1$ has a prime divisor p, and hence is contained in $N_{0,p}$. Thus, $\mathbb{Z}-\{-1,1\}=\cup_p N_{0,p}$, where p runs through all primes of \mathbb{Z} . Use this and the previous parts to prove there are infinitely many primes.
- (4) Show that if A is a basis for a topology on X, then the topology generated by \mathcal{A} equals the intersection of all topologies on X which contain \mathcal{A} .
- (5) Consider the set Y = [-1, 1] as a subspace of \mathbb{R} . Which of the following sets are open in Y? Which are open in \mathbb{R} ? Justify your answers.
 - (a) $A = \left\{ x : \frac{1}{2} < |x| < 1 \right\}$

 - (b) $B = \left\{ x : \frac{1}{2} < |x| \le 1 \right\}$ (c) $C = \left\{ x : \frac{1}{2} \le |x| < 1 \right\}$ (d) $D = \left\{ x : \frac{1}{2} \le |x| \le 1 \right\}$
 - (e) $E = \{x : 0 < |x| < 1 \text{ and } \frac{1}{x} \notin \mathbb{N} \}$
- (6) Show that the countable collection

$$\{(a,b) \times (c,d) : a < b, c < d, a, b, c, d \in \mathbb{Q}\}\$$

is a basis for \mathbb{R}^2 .

1