**Username:** Pralay Patoria **Book:** C# 5.0 in a Nutshell, 5th Edition. No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

## **Diagnosing Memory Leaks**

The easiest way to avoid managed memory leaks is to proactively monitor memory consumption as an application is written. You can obtain the current memory consumption of a program's objects as follows (the true argument tells the GC to perform a collection first):

long memoryUsed = GC.GetTotalMemory (true);

If you're practicing test-driven development, one possibility is to use unit tests to assert that memory is reclaimed as expected. If such an assertion fails, you then have to examine only the changes that you've made recently.

If you already have a large application with a managed memory leak, the windbg.exe tool can assist in finding it. There are also friendlier graphical tools such as Microsoft's CLR Profiler, SciTech's Memory Profiler, and Red Gate's ANTS Memory Profiler.

The CLR also exposes numerous Windows WMI counters to assist with resource monitoring.