

Theoretical Exercise 1

Date Published: April 20th 2023

This is the sample solution.

Exercise 1 Clustering

(a) K-Means

Draw the underlying Voronoi Diagram to compute the assignment of each point to the corresponding cluster centers. Compute the new cluster centers after the assignment.

Solution

$$\mu_{1} = \frac{1}{4} \left[\begin{pmatrix} 1\\2 \end{pmatrix} + \begin{pmatrix} 1\\3 \end{pmatrix} + \begin{pmatrix} 2\\2 \end{pmatrix} + \begin{pmatrix} 3\\2 \end{pmatrix} \right] = \frac{1}{4} \begin{pmatrix} 7\\9 \end{pmatrix} = \begin{pmatrix} 1.75\\2.25 \end{pmatrix}$$

$$\mu_{2} = \frac{1}{2} \left[\begin{pmatrix} 4\\2 \end{pmatrix} + \begin{pmatrix} 5\\2 \end{pmatrix} \right] = \begin{pmatrix} 4.5\\2 \end{pmatrix}$$

$$\mu_{3} = \frac{1}{3} \left[\begin{pmatrix} 2\\5 \end{pmatrix} + \begin{pmatrix} 3\\4 \end{pmatrix} + \begin{pmatrix} 4\\5 \end{pmatrix} \right] = \frac{1}{3} \begin{pmatrix} 9\\14 \end{pmatrix} = \begin{pmatrix} 3\\4.66 \end{pmatrix}$$

(b) K-Means

Assume you could pick the perfect positions for 3 K-Means cluster centers. Draw a dataset (consisting of 3 clusters) where K-Means would not recover the ground truth clusters.

Solution

Anything with non-convex clusters or very uneven sizes.

(c) Clustering Methods

Categorize the different clustering methods according to the shapes can model.

method	shape
K-Means	Voronoi Cell Shapes
GMM	Ellipsoids
Mean Shift	no particular shape
Hierarchical Clustering	no particular shape
Spectral Clustering	no particular shape

(d) Mean Shift Clustering

Given are the following sampling and density plots:

For each density plot draw in the cluster boundaries you would obtain with mean shift clustering. Which parameter of the algorithm needs to be varied, to obtain these different results?

Solution

In Mean-Shift clustering we do gradient ascent on the density function for each point. All points where this procedure converges to the same goal build a cluster together. This can easily be done graphically (at least approximately).

The bandwidth parameter of Mean-Shift Clustering can be seen as the area over which we smooth the density. So varying this parameter results in the different plots we see here.

(e) DBSCAN

Classify each point according to the DBSCAN clustering method. The radius ϵ is visualized in blue. The minimum number of neighbours is 3.

