Homework #1 Due by Friday 4/20 11:55pm

Submission instructions:

- 1. You should submit your homework in the NYU Classes system.
- 2. For this assignment you should turn in a '.pdf' file with your answers. Name your file 'YourNetID_hw1.pdf'
- 3. For questions 1-3, make sure to include the conversion calculations, not just the final answer.

Question 1:

- A. Convert the following numbers to their decimal representation:
 - 1. $10011011_2 =$
 - $2. 456_7 =$
 - 3. $38A_{16} =$
 - 4. $2214_5 =$
- B. Convert the following numbers to their binary representation:
 - 1. $69_{10} =$
 - $2. 485_{10} =$
 - 3. $6D1A_{16} =$
- C. Convert the following numbers to their hexadecimal representation:
 - 1. $1101011_2 =$
 - 2. $895_{10} =$

Question 2:

Solve the following, do all calculation in the given base:

- 1. $7566_8 + 4515_8 =$
- 2. $10110011_2 + 1101_2 =$
- 3. $7A66_{16} + 45C5_{16} =$
- 4. $3022_5 2433_5 =$

Question 3:

- A. Convert the following numbers to their 8-bits two's complement representation:
 - 1. $124_{10} =$
 - 2. $-124_{10} =$
 - 3. $109_{10} =$
 - 4. $-79_{10} =$
- B. Convert the following numbers (represented as 8-bit two's complement) to their decimal representation:
 - 1. $000111110_{8 \text{ bit 2's comp}} =$
 - 2. $11100110_{8 \text{ bit } 2's \text{ comp}} =$
 - 3. $00101101_{8 \text{ bit 2's comp}} =$
 - 4. $10011110_{8 \text{ bit 2's comp}} =$

Question 4:

- A. For each of the following sets, determine whether 2 is a member of that set.
 - **a)** $\{x \in \mathbb{R} | x \text{ is an integer greater than } 1\}$
- **b)** {2, {2}}}
- c) $\{x \in R \mid x \text{ is the square of an integer}\}$
- **d)** {{2}, {{2}}}}

e) {{2}, {2, {2}}}}

- **f)** {{{2}}}}
- B. Determine whether each of these statements is true or false.
 - a) $x \in \{x\}$
- **b)** $\{x\} \subseteq \{x\}$
- c) $\{x\} \in \{x\}$

- **d)** {*x*}∈{{*x*}}
- e) $\varnothing \subseteq \{x\}$
- **f)** $\emptyset \in \{x\}$
- C. Find two sets A and B such that $A \subseteq B$ and $A \subseteq B$.
- D. For each of these pairs of sets, determine whether the first is a subset of the second, the second is a subset of the first, or neither is a subset of the other.
 - i. the set of airline flights from New York to New Delhi, the set of nonstop airline flights from New York to New Delhi.
- ii. the set of people who speak English, the set of people who speak Chinese $\,$
- iii. the set of flying squirrels, the set of living creatures that can fly

Question 5:

Let $A = \{a, b, c, d, e\}$ and $B = \{a, b, c, d, e, f, g, h\}$. Find:

- a) *A U B*
- b) *A*∩ *B*
- c) A-B
- d) B-A

Question 6:

Draw the Venn diagrams for each of these combinations of the sets *A*, *B*, and *C*.

- a) $A \cap (B C)$
- b) $(A \cap B) \cup (A \cap C)$
- c) $(A \cap \overline{B}) \cup (A \cap \overline{C})$

Question 7:

Let *A*, *B*, and *C* be sets. Use a membership table to show that:

$$\mathbf{a})A\cup(B\cap C)=(A\cup B)\cap(A\cup C)$$

b)
$$(B - A) \cup (C - A) = (B \cup C) - A$$

c)
$$\overline{(A \cap B \cap C)} = (\overline{A} \cup \overline{B} \cup \overline{C})$$

$$d)(A-C)\cap (C-B)=\varnothing$$

$$e(A - B) - C \subseteq (A - C)$$

Question 8:

Let *A*, *B*, and *C* be sets. Use a set identities to show that:

a)
$$A - B = \overline{B} - \overline{A}$$

b)
$$(A \cap B) \cup (A \cap \overline{B}) = A$$

c)
$$A - (B - C) = (A - B) \cup (A - \overline{C})$$

Question 9:

Can you conclude that A=B, if A, B, and C are sets, such that:

a)
$$A \cup C = B \cup C$$
?

b)
$$A \cap C = B \cap C$$
?

c)
$$(A \cup C = B \cup C)$$
 and $(A \cap C = B \cap C)$?

Question 10:

Find $\bigcup_{i=1}^{\infty} A_i$ and $\bigcap_{i=1}^{\infty} A_i$, if for every positive integer *i*:

a)
$${\bf A_i} = \{-i, \ -i+1, \ldots, -1, 0, 1, \ldots, i-1, i\}$$

b)
$$A_i = \{-i, i\}$$

c)
$$A_i = [-i, i]$$
, that is, the set of real numbers x with $-i \le x \le i$

d)
$$A_i = [-i, \infty)$$
, that is, the set of real numbers x with $x \ge -i$