On Connected Strongly-Proportional Cake-Cutting

Zsuzsanna Jankó

Corvinus U. of Budapest, HUN-REN Centre for Economic and Regional Studies

Attila Joó University of Hamburg

Erel Segal-Halevi
Ariel University

Sheung Man Yuen
National U. of Singapore

Introduction

- Cake-cutting. The problem of fairly dividing a resource, also known as a cake, among n agents.
- -Cake is represented by a unit interval [0, 1].
- -Divisible. The cake can be cut into arbitrarily small parts.
- -Heterogenous. Each agent may have different valuations over different parts of the cake.
- Connectedness. Each agent receives a connected piece of cake.

• Applications. Dividing land between owners; or dividing the time slots of a meeting room between different teams.

• Strong-proportionality. Each agent i receives a piece of cake worth more than their entitlement w_i .

Questions

- What are the **conditions** for the existence of a connected strongly-proportional allocation?
- What are the query complexities to determine these conditions?

Hungry Agents with Equal Entitlements

- Hungry. An agent is hungry if every interval of the cake has positive value to them.
- Equal entitlements. Every agent's entitlement is exactly 1/n; therefore, a strongly-proportional allocation gives every agent more than 1/n.

Theorem 1. For n hungry agents with equal entitlements, a connected strongly-proportional allocation exists if and only if some t/n-mark of two agents are different.

- If every agent's t/n-marks are the same, then giving some agent more than 1/n will sacrifice some other agent's piece. X
- If two agents' t/n-marks are different, then we can first assign every agent 1/n of the cake, then slightly adjust the boundaries for all the pieces. \checkmark

Theorem 2. For n hungry agents with equal entitlements, the existence of a connected strongly-proportional allocation can be determined in $\Theta(n^2)$ queries.

- Upper bound. Verify the condition in Theorem 1 by asking every agent for their t/n-marks. This requires $n(n-1) \in O(n^2)$ queries.
- Lower bound. If some agent's t/n-mark is not known, then the condition in **Theorem 1** cannot be verified. This requires $n(n-1)/2 \in \Omega(n^2)$ queries.

Upper Bound for General Case

Theorem 3. A connected strongly-proportional allocation exists if and only if there exists a permutation σ of the agents such that $MARK_{\sigma}(0, \mathbf{w}) < 1$.

- Meaning of $Mark_{\sigma}(0, \mathbf{w})$: Agents go in sequence of σ and make their rightmost marks worth their entitlements on the cake one after another.
- If $Mark_{\sigma}(0, \mathbf{w}) < 1$ for some permutation σ , then each agent shall simply encroach on the piece to their right to get more than their entitlement.
- If a connected strongly-proportional allocation exists, then we define σ as the order based on that allocation, and we guarantee $Mark_{\sigma}(0, \mathbf{w}) < 1$.

Theorem 4. The existence of a connected strongly-proportional allocation can be determined in $O(n \cdot 2^n)$ queries.

- Verify the condition in **Theorem 3** by finding the best $MARK_{\sigma}(0, \mathbf{w})$.
- Use dynamic programming to reduce the number of queries to $O(n \cdot 2^n)$.

Lower Bound for Hungry Agents with Generic Entitlements

Theorem 5. Any algorithm that decides the existence of a connected strongly-proportional allocation for n hungry agents with generic entitlements requires $\Omega(n \cdot 2^n)$ queries.

- Construct two contrasting instances such that when fewer than $n \cdot 2^{n-2} \in \Omega(n \cdot 2^n)$ queries are made, the algorithm cannot differentiate between them.
- Instance 1: Every agent has uniform and identical distribution on the cake such that a connected strongly-proportional allocation does not exist.
- Instance 2: Some agent's marks are not fully known, so we adjust that agent's distribution from Instance 1 such that a connected strongly-proportional allocation exists.

Lower Bound for Agents with Equal Entitlements

Theorem 6. Any algorithm that decides the existence of a connected strongly-proportional allocation for n agents with equal entitlements requires $\Omega(n \cdot 2^n)$ queries.

Agent 1	0	$a_1/(n-2)$		0	$a_1/(n-2)$	0	$1 - a_1$	0
:	:	:	•••	:	:	:	:	:
Agent $n-1$	0	$a_{n-1}/(n-2)$	(total: $n-2$ identical copies)	0	$a_{n-1}/(n-2)$	0	$1 - a_{n-1}$	0
Agent n	1/n	0		1/n	0	1/n	0	1/n

- Construct the instance above and choose a_1, \ldots, a_{n-1} carefully.
- In a connected strongly-proportional allocation, agent n is forced to receive the two rightmost 1/n pieces.
- The remaining pieces are worth a_i to agent $i \in \{1, \ldots, n-1\}$.
- After removing "0" pieces and normalizing, the reduced cake is for n-1 hungry agents with generic entitlements—we make use of **Theorem 5**.

Conclusion

	hungry agents	general agents
equal entitlements	$\Theta(n^2)$	$\Theta(n \cdot 2^n)$
unequal entitlements	$\Theta(n \cdot 2^n)$	$\Theta(n \cdot 2^n)$

- Full version of our paper: Stronger than strongly-proportional; Pies.
- Future work: Chores; Other fairness notions; More complex topologies beyond the unit interval.

