# PHILIPS



# Interface Products Business Line Specialty Logic Product Line I<sup>2</sup>C Logic Family Overview

2Q 2004

Steve Blozis - I<sup>2</sup>C International Product Marketing Manager Jean-Marc Irazabal – I<sup>2</sup>C Technical Marketing Manager

# Introduction

### How the I<sup>2</sup>C Bus Works

The I<sup>2</sup>C (Inter-Integrated Circuit) Bus is a two-wire, low to medium speed, communication bus (a path for electronic signals) developed by Philips Semiconductors in the early 1980s. I<sup>2</sup>C was created to reduce the manufacturing costs of electronic products.

#### **Low Cost**

Prior to I<sup>2</sup>C, chip-to-chip communications used many pins in a parallel interface. Many of these pins were used for inter-chip addressing, selection, control, and data transfers. In a parallel interface, 8 data bits are typically transferred from a sender IC to a receiver IC in a single operation.

I<sup>2</sup>C performs chip-to-chip communications using only two wires in a serial interface, allowing ICs to communicate with fewer pins. The two wires in the I<sup>2</sup>C Bus carry addressing, selection, control, and data, one bit at a time. The Data (SDA) wire carries the data, while the Clock (SCL) wire synchronizes the sender and receiver during the transfer. ICs that use the I<sup>2</sup>C Bus can perform the same function as their larger parallel interface counterparts, but with far fewer pins.



I<sup>2</sup>C Serial Interface

# How the I<sup>2</sup>C Bus Works (II)



One I<sup>2</sup>C Master, Multiple Slaves

#### **Master-Slave Hierarchy**

I<sup>2</sup>C devices are classified as master or slave. A device that initiates a message is called a master, while a device that responds to a message is called a slave. A device can be master-only, slave-only, or switch between master and slave, as the application requires.

#### **Multiple Devices**

I<sup>2</sup>C can connect many ICs on just two-wires. Each I<sup>2</sup>C slave device has its own unique slave address. When a master sends a message, it includes the slave address at the beginning of the message. All devices on the bus hear the message, but only the slave that recognizes its own address participates in the transfer.

# How the I<sup>2</sup>C Bus Works (III)



#### **Multi-Master Support**

Multi-Master, Multi-Slave

I<sup>2</sup>C also supports multiple master devices on the bus at the same time, a powerful feature that optimizes bus use by keeping bus message traffic to a minimum. To support multiple masters, I<sup>2</sup>C must resolve signal conflicts, should two or more master devices try to talk on the bus at the same time. This feat, called bus arbitration loss detection, allows a master to detect when its bus signals are conflicting with those of another master. A master that detects arbitration loss terminates its use of the bus, allowing the message generated by another master to cross the bus unharmed.

The I<sup>2</sup>C Bus is a time-proven, industry standard, communication protocol used in a wide variety of electronic products. I<sup>2</sup>C is found in products we use every day, like cellular and conventional telephones, computers, and ATMs (automatic teller machines). Its low cost and powerful features make I<sup>2</sup>C ideal for low to medium speed chip-to-chip communications.



Data Transfer Rate (Mbps)

### **Transmission Standards**



# **Typical Applications**

- Cell phones
- PDA's
- Lap top computers
- Digital cameras
- Portable test equipment
- Servers
- cPCI and AdvancedTCA















# Typical I<sup>2</sup>C Bus Arrangement





# Complex I<sup>2</sup>C Bus Arrangement



### I<sup>2</sup>C Bus Features

- Only 2 bus lines required: data (SDA) and clock (SCL)
- Each device connected to the bus is software addressable by a unique address
- 2 modes: Master-Transmitter and as Master-Receiver
- Multi-master capable protocol:
  - > collision detection
  - > arbitration
- Serial bi-directional data transfers:

➤ 100 kbit/s Standard-mode

➤ 400 kbit/s Fast-mode

➤ 3.4 Mbit/s High-speed mode

 Maximum bus capacitance = 400 pF (without repeaters) which is about 20 – 30 devices or 10 ft of wire

### I<sup>2</sup>C Bus Benefits

- Well known bus:
  - Created and developed by Philips
  - More than 20 years of existence
  - Has become a world-wide standard
- Standard adopted by all the industry:

  - Computing Networking

- Automotive

- Industrial Telecom

- Consumer

- Used in many types of applications:
  - PC

- DVD

- Cell Phones

- Printers
- Set Top Boxes

- PDA
- Adopted by a lot of leading High-Tech companies
  - Intel

- IBM

Compaq

- Nokia

- Cisco

- HP
- Life of products: designed to stay in the market several years

# I<sup>2</sup>C Designer Benefits

- No need to design bus interfaces because the I<sup>2</sup>C-bus interface is already integrated on-chip.
- Integrated addressing and data-transfer protocol allow systems to be completely software-defined.
- The same IC types can often be used in many different applications.
- ICs can be added to or removed from a system without affecting any other circuits on the bus.
- Fault diagnosis and debugging are simple; malfunctions can be immediately traced.
- Software development time can be reduced by assembling a library of reusable software modules.

### I<sup>2</sup>C Manufacturer Benefits

- Simplicity: 2 wire protocol
  - Minimum inter connections
  - Minimum footprint
  - Simpler, smaller and less expensive PCB
- Robustness of the protocol
  - Completely integrated protocol
  - No need for address decoding and "glue logic"
  - Interrupt oriented architecture
  - Multi-master capable
- Upgrade path:
  - Speed: 100 kHz → 400 kHz
  - Modular architecture allowing easy design and architecture updates and upgrades

# Technical

#### **PHILIPS**

### I<sup>2</sup>C Product Characteristics

- Package Offerings
   Typically DIP, SO, SSOP,
   TSSOP and/or HVQFN packages
- Frequency Range
   Older devices 100 kHz operation
   Newer devices operating up to 400 kHz
- Operating Supply Voltage Range
  2.3 to 5.5 V or
  3.0 to 3.6 V with 5 V tolerance
- Operating temperature range
   Typically -40 to +85 °C
   Some 0 to +70 °C
- Hardware address pins

Typically three  $(A_0, A_1, A_2)$  are provided to allow up to eight of the identical device on the same  $I^2C$  bus but sometimes due to pin limitations there are fewer address pins



24 pin 16-bit PCA9555 shown

### I<sup>2</sup>C Bus Basics - Address and Data

The master always sends the SCL (clock) signal.



New devices or functions can be easily 'clipped on to an existing bus!

Each device is addressed individually by software with a unique address that can be modified by hardware pins.

The open drain/collector outputs provide for a "wired-AND" connection that allows devices to be added or removed without impact and always require a pull-up resistor.



S = Start condition A = Acknowledge

P = Stop condition

Write data Master Slave W transmitter slave address A Α data data receiver n data bytes > Read data slave address R receiver Α data data transmitter

< n data bytes > last data byte

Semiconductors

 $R/\overline{W}$  = read / write not  $\overline{A}$  = Not Acknowledge

# I<sup>2</sup>C Bus Basics - Bus Operation



The SCL falling edge 'requests' data when reading, or 'advises' data coming when writing The SDA data changes during the SCL low and is <u>used</u> during or just after the SCL rising edge

#### **Typical bus communication waveforms**

The I<sup>2</sup>C specification and other useful application information can be found on Philips Semiconductors I<sup>2</sup>C web site at www.semiconductors.philips.com/i<sup>2</sup>c



### **Typical Signaling Characteristics**







#### **PHILIPS**

| I <sup>2</sup> C by | the numbers           | Standard-Mode | Fast-Mode | _            | Speed-<br>ode |
|---------------------|-----------------------|---------------|-----------|--------------|---------------|
| ,                   | Bit Rate<br>(kbits/s) | 0 to 100      | 0 to 400  | 0 to<br>1700 | 0 to<br>3400  |
|                     | Max Cap Load<br>(pF)  | 400           | 400       | 400          | 100           |
|                     | Rise time<br>(ns)     | 1000          | 300       | 160          | 80            |
|                     | Spike Filtered (ns)   | N/A           | 50        | 10           |               |
|                     | Address Bits          | 7 and 10      | 7 and 10  | 7 an         | d 10          |



# I<sup>2</sup>C Signal Conversion

These microcontrollers have I<sup>2</sup>C and UART (RS-232) ports to allow conversion

- P87C6xxx2 family (661 has two byte oriented I<sup>2</sup>C interfaces)
- P87C55x
- P87LPC76x family
- P89C66x
- P89LPC932 and future LPC9xx products

These microcontrollers have I<sup>2</sup>C and SPI ports to allow conversion

- XA
- 87C51MX (future product)
- 89LPC9xx (future product)

These microcontrollers and USB devices allow a two device conversion between I<sup>2</sup>C and USB

- PDIUSBD12 + P89C66x -> 100 kHz I<sup>2</sup>C and USB1.1
- ISP1181 + P89C66x -> 100 kHz I<sup>2</sup>C and USB1.1
- ISP1581 + P89LPC932 -> 400 kHz I<sup>2</sup>C and USB2.0

These ucontrollers have I<sup>2</sup>C and CAN ports to allow conversion

- P87C591 8 bit solution
- PXA-C37 16 bit solution

Products from > <u>www.semiconductors.philips.com/microcontrollers</u>
Support > <u>www.PhilipsMCU.com/products/standard/microcontrollers/support/feedback/</u>
Semiconductors

# Device Overview

# Philips I<sup>2</sup>C Logic Devices

- Bus Controllers
- Temperature Sensors
- I/O Expanders
- LED Blinkers
- Serial EEPROMs

- DIP Switches
- Multiplexers and Switches
- Repeaters/Hubs/Extenders
- Segment Drivers
- Analog/Digital Converters

I<sup>2</sup>C Logic devices are broken down into 10 different categories

Philips offers over 63 different I<sup>2</sup>C Logic devices

# Bus Controllers

#### Parallel Bus to I<sup>2</sup>C Bus Controller



#### **FEATURES**

- Provides both master and slave functions.
- Controls all the I<sup>2</sup>C bus specific sequences, protocol, arbitration and timing
- Internal oscillator (PCA9564 only)
- Hardware Reset pin and Power On Reset \ (POR)

#### **KEY POINTS**

- Serves as an interface between most standard parallel-bus microcontrollers/ microprocessors and the serial I<sup>2</sup>C bus.
- Allows the parallel bus system to communicate with the I<sup>2</sup>C bus

|         | Voltage range             | Max I <sup>2</sup> C freq | Clock source | Parallel interface |
|---------|---------------------------|---------------------------|--------------|--------------------|
| PCF8584 | 4.5 - 5.5V                | 90 kHz                    | External     | 3 MHz - Slow       |
| PCA9564 | 2.3 - 3.6V w/5V tolerance | 320 kHz                   | Internal     | 50 MHz - Fast      |



# **Application – Add I<sup>2</sup>C Bus Port**



• The PCA9564 converts 8-bit parellel data into a multiple master capable I<sup>2</sup>C port for microcontrollers, microprocessors, custom ASICs, DSPs, etc.., that need to interface with I<sup>2</sup>C or SMBus components.



# **Bus Controller vs Bit-banging**

Hardware I<sup>2</sup>C

**Disadvantages:** additional cost

**Advantages:** frees up the micro to perform other tasks, multi-master capability, glitch filters, bus error detection and recovery, can easily be added to most microcontrollers, simple code (code for a hardware I<sup>2</sup>C is relatively simple to write (to write a byte, just load the I2CDAT register with a byte and the hardware does the rest) but you may need to take into consideration all the different error conditions (such as lost arbitration, etc))

#### **Bit-banging**

**Disadvantages:** ties up the micro during the transmission and very difficult to use in a multi-master environment

**Advantages:** inexpensive, can be incorporated into any micro and very little code required (code required for bit-banging an 80C51 micro is only about 50 bytes)

# Application – Add additional I<sup>2</sup>C Bus Ports



• The PCA9564 can be used to convert 8-bit parallel data into additional multiple master capable I<sup>2</sup>C port for microcontrollers, microprocessors, custom ASICs, DSPs, etc.., that already have an I<sup>2</sup>C port but need one or more additional I<sup>2</sup>C ports to interface with more I<sup>2</sup>C or SMBus components or components that cannot be located on the same bus (e.g., 100 kHz and 400 kHz slaves).



# **Application – Lower Voltage & Higher Frequency Migration Path for PCF8584**



- The PCA9564 does the same type of parallel to serial conversion as the PCF8584. Although not footprint compatible, the PCA9564 provides improvements such as:
  - Operating at 3.3 V and 2.5 V voltage nodes
  - Allows interface with I<sup>2</sup>C or SMBus components at speeds up to 400 kHz.
  - The built-in oscillator provides a cost effective solution since the external clock input is no longer required.

28

• Parallel data can be exchanged at speeds up to 50 MHz allowing the use of faster processors. The PCA9564 is optimized for the Intel 8051 architecture.

# Application – Convert 8 bits of parallel data into I<sup>2</sup>C serial data stream



• Functioning as a slave transmitter, the PCA9564 can convert 8-bit parallel data into a two wire I<sup>2</sup>C data stream. This prevents having to run 8 traces across the entire width of the PC board.

# Temperature Sensors

# I<sup>2</sup>C Temperature Sensors - Industrial



#### **FEATURES**

- Temperature range of 55 to 125 °C
- Open drain interrupt output

#### **KEY POINTS**

- Sense temperature via I<sup>2</sup>C
- SE95 accurate to ± 1 °C from 0 to 100 °C
- SE96 accurate to ± 0.5 °C from 0 to 100 °C



Digital Temperature Sensor and Thermal Watchdog™



Ultra High Accuracy Digital
Temperature

Sensor and Thermal Watchdog™



## I<sup>2</sup>C Temperature Sensors - PC



#### I<sup>2</sup>C Temperature Monitor



±1°C Accurate, Remote/Local
Digital Temperature Sensor with
Over Temperature Alarms

#### **FEATURES**

- High temperature accuracy
- SA56004 has eight address





# I<sup>2</sup>C Temperature and Voltage Monitor (Heceta4)

11

10 D+

12V<sub>IN</sub>/VID4

9 D-/NTEST\_IN

VID1 6

VID2

VID3 8

#### **KEY POINTS**

- Sense temperature and/or monitor voltage via I<sup>2</sup>C
- Remote sensor can be internal to microprocessor

### **SA56004 Application**

#### **APPLICATIONS**

- System thermal management in laptops, desktops, servers and workstations
- Computers and office electronic equipment
- Electronic test equipment & instrumentation
- HVAC
- Industrial controllers and embedded systems



#### **FEATURES**

- On-chip local and remote microprocessor thermal diodes or diode connected transistors temperature sensing within ±1 °C
- Offset registers available for adjusting the remote temperature accuracy
- Programmable under/over temperature alarms: ALERT and T\_CRIT
- SMBus 2.0 compatible interface, supports TIMEOUT and 100/400 kHz I<sup>2</sup>C interface
- 11-bit, 0.125 °C resolution
- 8 different device addresses are available for server applications. The SA56004-ED/EDH with marking code ARW is address compatible with the National LM86, the MAX6657/8 and the ADM1032.

# I/O Expanders

## Quasi Output I<sup>2</sup>C I/O Expanders



#### **KEY POINTS**

- Transfers keyboard, ACPI Power switch, keypad, switch or other inputs to microcontroller via I<sup>2</sup>C bus
- Expand microcontroller via I<sup>2</sup>C bus where I/O can be located near the source or on various cards
- Use outputs to drive LEDs, sensors, fans, enable and other input pins, relays and timers
- Quasi outputs can be used as Input or Output without the use of a configuration register
- The PCA9501 has 6 address pins, allowing up to 64 devices to share the same I<sup>2</sup>C Bus.
- Application Note, AN469 GPIO Selection, discusses pros and cons of GPIOs

| # of Outputs                                   | Interrupt   | 2Kbit<br>EEPROM | Interrupt and 2Kbit EEPROM |  |  |  |  |
|------------------------------------------------|-------------|-----------------|----------------------------|--|--|--|--|
| Quasi Output (20-25 ma sink and 100 uA source) |             |                 |                            |  |  |  |  |
| 8                                              | PCF8574/74A | PCA9500/58      | PCA9501                    |  |  |  |  |
| 16                                             | PCF8575/75C | -               | -                          |  |  |  |  |

# Quasi Output I<sup>2</sup>C I/O Expanders - Registers

#### To program the outputs



Multiple writes are possible during the same communication

#### To read input values



Multiple reads are possible during the same communication

#### Important to know

- At power-up, all the I/O's are HIGH (except PCF8575C); Only a current source to V<sub>DD</sub> is active
- Upper transistor is on for one clock cycle to provide strong pull-up and allow for faster rising edge rate
- I/O's should be HIGH before using them as inputs

# **Totem Pole Output I<sup>2</sup>C I/O Expanders**



### **KEY POINTS**

- Transfers keyboard, ACPI Power switch, keypad, switch or other inputs to microcontroller via I<sup>2</sup>C bus
- Use totem pole outputs to drive LEDs, sensors, fans, enable and other input pins, relays and timers
- Extra command byte needed for Input,
   Output, Polarity and I/O Configuration
- Application Note, AN469 GPIO Selection, discusses pros and cons of GPIOs

| # of Outputs | None                                          | Reset   | Interrupt      | Interrupt and<br>Reset |  |  |  |  |
|--------------|-----------------------------------------------|---------|----------------|------------------------|--|--|--|--|
|              | Totem Output (20-25 ma sink and 10 mA source) |         |                |                        |  |  |  |  |
| 4            | PCA9536                                       |         |                | PCA9537                |  |  |  |  |
| 8            |                                               | PCA9557 | PCA9534/54/54A | PCA9538                |  |  |  |  |
| 16           | -                                             | -       | PCA9535/55     | PCA9539                |  |  |  |  |

### **PHILIPS**

# Totem Output I<sup>2</sup>C I/O Expanders - Registers

To configure the device



No need to access Configuration and Polarity registers once programmed

To program the outputs

| S Address | WA | 01 <sub>H</sub> | A | OUTPUT<br>DATA | A | P |
|-----------|----|-----------------|---|----------------|---|---|
|-----------|----|-----------------|---|----------------|---|---|

Multiple writes are possible during the same communication

To read input values



Multiple reads are possible during the same communication

### Totem Pole Output I<sup>2</sup>C I/O Expanders - Example



39

### 4-bit GPIO



- Similar to the PCA9554 but only 4 bits in an 8 pin SO or TSSOP package
- Fixed I<sup>2</sup>C address of 1000001R/W
  - PCA9536 4-Bit I<sup>2</sup>C GPIO

# 4-bit GPIO with Interrupt and Reset

| /RESET | 1 | 10 | VCC |
|--------|---|----|-----|
| 100    | 2 | 9  | SDA |
| 101    | 3 | 8  | SCL |
| 102    | 4 | 7  | ИΝΤ |
| GND    | 5 | 6  | 104 |

- Similar to the PCA9538 but only 4 bits of GPIO in an 10 pin TSSOP package
- Fixed I<sup>2</sup>C address of 1001001R/W
  - PCA9537 4-Bit I<sup>2</sup>C GPIO with Interrupt and Reset

# 8-bit GPIO with Interrupt and Reset





**HVQFN** 

- Based on PCA9534 die with a metal mask option to tie A2 high internally and bring out the POR circuit to the hardware reset pin.
- Polling for input changes is not required since Interrupt output signals master.
- Reset pin is needed for higher bus reliability to allow all devices to be reset should the bus hang up.
  - PCA9538 8-Bit GPIO with Interrupt and Reset

# 16-bit GPIO with Interrupt and Reset



SO and TSSOP



**HVQFN** 

- Based on PCA9535 die with metal mask option to tie A2 high internally and bring out the POR circuit to the hardware reset pin.
- Polling for input changes is not required since Interrupt output signals master.
- Reset pin is needed for higher bus reliability to allow all devices to be reset should the bus hang up.
  - PCA9539 16-Bit GPIO with Interrupt and Reset

# LED Blinkers

### I<sup>2</sup>C LED Dimmers/Blinkers



| # of Outputs | Reset and POR |
|--------------|---------------|
| 2            | PCA9530/50    |
| 4            | PCA9533/53    |
| 8            | PCA9531/51    |
| 16           | PCA9532/52    |

**Application Note AN264** 

### **KEY POINTS**

- I<sup>2</sup>C/SMBus is not tied up by sending repeated transmissions to turn LEDs on and then off to "blink" LEDs.
- Frees up the micro's timer
- Continues to blink LEDs even when no longer connected to bus master
- Can be used to cycle relays and timers
- Higher frequency rate allows LEDs to be dimmed by varying the duty cycle for Red/Green/Blue color mixing applications.

### **FEATURES**

- 25 mA open drain outputs
- Internal oscillator (+/- 15%)
- Two user definable blink rates and duty cycles adjustable between 160 Hz and 1.6 seconds (3x Dimmers) or 40 Hz and 6.4 seconds (5x Blinkers) in 256 steps
- Unused pins can be used for normal GPIO
- Hardware Reset pin and Power On Reset (POR)

### PCA955x I<sup>2</sup>C LED Blinkers

|            | 0 (00 <sub>H</sub> ) | 255 (FF <sub>H</sub> ) |
|------------|----------------------|------------------------|
| Frequency  | 40 Hz                | 6.4 s                  |
| Duty Cycle | 100 %                | 0.4 %                  |





### PCA953x I<sup>2</sup>C LED Dimmers

|                   | 0 (00 <sub>H</sub> ) | 255 (FF <sub>H</sub> ) |
|-------------------|----------------------|------------------------|
| Frequency         | 160 Hz               | 1.6 s                  |
| <b>Duty Cycle</b> | 0 %                  | 99.6 %                 |

PWM<sub>0</sub> ON LED ON 256 OFF = **LED OFF OFF**  $PSC_0 + 1$ 160 PWM<sub>1</sub> 256 OFF ON ON OFF ON PSC<sub>1</sub> + 1 160

State machine defaults to highest frequency at power on and duty cycle goes from 0% (off) to 99.6% (almost always on) for better dimming control.



### **LED Dimmers/Blinkers vs Micros**

Difference between using a LED Blinker/Dimmer or a micro:

- Easier software generation to control LEDs
  - > Don't have to use micro timer
  - Don't have to continually send on and off command to blink or dim LEDs
- Frequency fixed by device, not dependant on processor clock frequency
- I<sup>2</sup>C devices have higher sink current capability per bit and larger sink current capability per device

# Serial EPROIS

### I<sup>2</sup>C Serial CMOS RAM/EEPROMs



### **FEATURES**

- Wide voltage range of 2.5 to 5.5V
- 1,000,000 read and write cycles
- 10 year data retention

### **KEY POINTS**

- I<sup>2</sup>C bus is used to read and write information to and from the memory
- Wide voltage range minimizes the number of EEPROMs that need to be in inventory

### 1024 X 8 CMOS Security EEPROM

| SYMBOL | NAME AND FUNCTION          |
|--------|----------------------------|
| NC     | No connect                 |
| PROT   | Protection input           |
| GND    | Ground                     |
| SDA    | Serial data open drain I/O |
| SCL    | Serial clock input         |
| WP     | Write protect input        |
| Vcc    | Supply voltage             |

### **FEATURES**

- Nonvolatile memory serial interface
- Compatible with a Standard 24C08 Serial EEPROM
- Programmable access protection to limit reads or writes
- Lock/unlock function
- Highly-reliable EEPROM memory
- 8 k bits (1 k bytes), organized as 8 blocks of 128 bytes
- 16-byte page write, 10 ms write time
- 10 years retention, 100 k write cycle endurance
- Operating temperature range 40 to +85 °C
- Operating power supply voltage range of 2.5 V to 3.6 V
- Packages offered: SO8 and TSSOP8



### **DESCRIPTION**

The PCA24S08 functions as a dual access EEPROM with a wired serial port used to access the memory. Access permissions are set from the serial interface side to isolate blocks of memory from improper access.

10101B<sub>2</sub>B<sub>1</sub>.

Only 1 device allowed per bus

PCA24S08 - 1024 X 8 CMOS EEPROM with access protection

# DIP Switches

### **PHILIPS**

### I<sup>2</sup>C DIP Switches



|         | # of Pins | # of Non Volatile<br>Registers | # of Register Bits | # of Hardware<br>Input Pins | # of Muxed<br>Outputs | Non-Muxed<br>Output |
|---------|-----------|--------------------------------|--------------------|-----------------------------|-----------------------|---------------------|
| PCA8550 | 16        | 1                              | 5                  | 4                           | 4                     | YES                 |
| PCA9558 | 28        | 1                              | 6                  | 5                           | 5                     | YES                 |
| PCA9559 | 20        | 1                              | 6                  | 5                           | 5                     | YES                 |
| PCA9560 | 20        | 2                              | 6                  | 5                           | 5                     | YES                 |
| PCA9561 | 20        | 4                              | 6                  | 6                           | 6                     | NO                  |

Application Note AN250

6 bit output value is dependant on the mux select pin position or command from I<sup>2</sup>C master

EEPROM 0 is default output

# Multiplexers Switches

### **PHILIPS**

# I<sup>2</sup>C Multiplexers and Switches



**Application Note AN262** 

# I<sup>2</sup>C Multiplexers: Address Deconflict







# I<sup>2</sup>C Switches: Voltage Level Shifting





### I<sup>2</sup>C Switches: Branch isolation





### **PHILIPS**

# I<sup>2</sup>C Multiplexers: Multi-card Application



Semiconductors

59

### 2 to 1 I<sup>2</sup>C Master Selector w/Interrupt Logic and Reset



#### **FEATURES**

- Select one of two I<sup>2</sup>C masters to a single channel
- I<sup>2</sup>C/SMBus commands used to select channel
- Reset or Power On Reset (POR) resets state machine
- Interrupt outputs also report demultiplexer status
- Sends 9 clock pulses and stop condition to clear slave card prior to transferring master

#### **KEY POINTS**

- Allows primary and backup master to communicate to one downstream slave card.
- Arbitration circuit between bus masters
- Doesn't isolate bus capacitance
- Allows voltage translation between 1.8 V, 2.5 V, 3.3 V and 5 V
- Idle detect for live insertion protection
- PCA9541/01 defaults to channel 0 on start-up/reset
- PCA9541/02 defaults to channel 0 on start-up/reset after stop condition
- PCA9541/03 defaults to off on start-up/reset, master commands channel

### PCA9541 - Multi-Point Application



In a typical multi-point application, as shown in the diagram, the two masters (e.g., primary and back-up) are located on separate I<sup>2</sup>C buses that connect to multiple downstream I<sup>2</sup>C bus slave cards via a PCA9541 to provide high reliability of the I<sup>2</sup>C bus.

This way one of the controller cards can fail or be removed from the system and control of the line cards is maintained. A bent pin or other hard failure is confined to one bus and control is maintained on the other bus. I<sup>2</sup>C commands are sent via the primary or back-up master and either master at any time can gain control of the slave devices if the other master is disabled or removed from the system. The failed master is isolated from the system and will not affect communication between the on-line master and the slave devices located on the line cards.

### PCA9541 – Shared Resources



Some masters may not be multi-master capable or some masters may not work well together and continually lock up the bus. The PCA9541 can be used to separate the masters, but still allow shared access to slave devices, such as Field Replaceable Unit (FRU) EEPROMs or temperature sensors such as is represented by Slave A0 and Slave B0.

### PCA9541 – Gatekeeper Multiplexer

• The PCA9541/03 acts as the gatekeeper to each card that have identically I<sup>2</sup>C addressed EEPROMs. The master turns each uniquely addressed PCA9541/03 on (master 0) and off, one at a time, to communicate with the EEPROMs.



• The alternative is to use a PCA9548 to 1 to 8 multiplexer on the master card and then run 8 I<sup>2</sup>C buses, one to each EEPROM card. You use the same number of card pins but have 8 times the number of traces on the backplane.

# I<sup>2</sup>C Bus Bi-Directional Voltage Level Translation



- Voltage translation between any voltage from 1.0 V to 5.0 V
- Bi-directional with no direction pin
- Reference voltage clamps the input voltage with low propagation delay
- Application Note AN10145

- GTL2000 22-Bit
- GTL2002 2-Bit
- GTL2010 10-Bit



# I<sup>2</sup>C Multiplexers and Switches

|         | 0                    |                 | Fe             | eatur              | es             |           | Pa          | cka       | ges   |       |
|---------|----------------------|-----------------|----------------|--------------------|----------------|-----------|-------------|-----------|-------|-------|
| Device  | Multiplexer (In/Out) | Switch (In/Out) | # of Addresses | Interrupt (In/Out) | Hardware RESET | Pin Count | SO (Narrow) | so (wide) | TSSOP | HVQFN |
| PCA9540 | 1-2                  |                 | 1              |                    |                | 8         | D           |           | DP    |       |
| PCA9541 | 2-1                  |                 | 16             | 1-2                | >              | 16        | D           |           | PW    | BS    |
| PCA9542 | 1-2                  |                 | 00             | 2-1                |                | 14        | D           |           | PW    |       |
| PCA9543 |                      | 1-2             | 4              | 2-1                | >              | 14        | D           |           | PW    |       |
| PCA9544 | 1-4                  |                 | 00             | 4-1                |                | 20        |             | D         | PW    | BS    |
| PCA9545 |                      | 1-4             | 4              | 4-1                | >              | 20        |             | D         | PW    | BS    |
| PCA9546 |                      | 1-4             | 8              |                    | >              | 16        | D           |           | PW    | BS    |
| PCA9548 |                      | 1-8             | 8              |                    | <b>&gt;</b>    | 24        |             | D         | PW    | BS    |

# **Bus Buffers**

### **PHILIPS**

I<sup>2</sup>C Bus repeater (PCA9515) and Hub (PCA9516)



PCA9515 and PCA9516 were designed to isolate up to 400 pF on each segment and uses an offset  $V_{OL}$  to allow bi-directional signaling without use of a direction pin. They were not designed to operate on the same bus since a low signal is not passed through two devices.

### **PHILIPS**



### Level Translation I<sup>2</sup>C Bus Buffer



- Isolates capacitance allowing 400pF on each side of the device
- Enable/disable pin allows isolation of bus
- Dual V<sub>CC</sub>s allow voltage translation with optimum noise margin on the low voltage side
- Drop in replacement for the PCA9515

# I<sup>2</sup>C Hot Swap Bus Buffer



- Isolate capacitance
- Stop and Idle detect
- SDA/SCL Precharge
- Rise Time Accelerators



# I<sup>2</sup>C Hot Swap Bus Buffer

| Feature                                                              | PCA9510  | PCA9511 | PCA9513 | PCA9514 | PCA9512 |
|----------------------------------------------------------------------|----------|---------|---------|---------|---------|
| Alternate source to Linear Tech LTC4300-1ISM8                        | Similar  | Yes     | Similar | Similar | -       |
| Alternate source to Linear Tech LTC4300-2ISM8                        | -        | -       | -       | -       | Yes     |
| Idle Detect                                                          | Yes      | Yes     | Yes     | Yes     | Yes     |
| High Impedance SDA, SCL pins for Vcc = 0V                            | Yes      | Yes     | Yes     | Yes     | Yes     |
| Rise Time Accelerator Circuitry on all SDA and SCL lines             | No       | Yes     | Yes     | Yes     | Yes     |
| Rise Time Accelerator Circuitry Hardware Enable Pin                  | -        | -       | -       | -       | Yes     |
| Rise Time Accelerator threshold 0.8 V vs 0.6 V improves noise margin | -        | -       | Yes     | Yes     | -       |
| Low lcc chip disable < 1 uA                                          | Yes      | Yes     | Yes     | Yes     | No      |
| Ready Open Drain Output                                              | Yes      | Yes     | Yes     | Yes     | No      |
| Separate Vccs to support 5 V to 3.3 V level translation              | -        | -       | -       | -       |         |
| 1V Precharge on all SDA and SCL Lines                                | bus side | Yes     | No      | No      | Yes     |
| 92 uA Current Source on SCLIN and SDAIN for PICMG applications       | -        | -       | Yes     | -       | -       |
| Improve acknowledge and clock stretching behavior                    | Yes      | Yes     | Yes     | Yes     | Yes     |

### **Intelligent Platform Management Interface**

- Intel initiative in conjunction with hp, NEC and Dell to standardize the maintenance and monitoring of non hot swap server applications.
- Consists of three specifications:
  - Intelligent Platform Management Interface (IPMI) for software extensions
  - Intelligent Platform Management Bus (IPMB) for intra-chassis (in side the box) extensions and is I<sup>2</sup>C based
  - Inter Chassis Management Bus (ICMB) for inter-chassis (outside of the box) extensions
- Needed since as the complexity of systems increase, MTBF decreases
- Defines a standardized, abstracted, message-based interface to intelligent platform management hardware.
- Defines standardized records for describing platform management devices and their characteristics.
- Provides a self monitoring capability increasing reliability of the systems
- More information www.intel.com/design/servers/ipmi/ipmi.htm
   Semiconductors

#### CompactPCI, AdvancedTCA and VME use IPMI

| Known as    | Specification | Based on | Comments                               |
|-------------|---------------|----------|----------------------------------------|
| cPCI        | PICMG 2.0     | NA       | No IPMB                                |
| cPCI        | PICMG 2.9     | IPMI 1.5 | Single hot swap IPMB optional          |
| AdvancedTCA | PICMG 3.x     | IPMI 1.5 | Dual redundant hot swap IPMB mandatory |

- IPMI is used as the basis for the management and monitoring of these hot swap telecom applications
  - PICMG 2.0: CompactPCI Core
  - PICMG 2.9: System Management
  - PICMG 3.0: AdvancedTCA Core
    - 3.1 Ethernet Star (1000BX and XAUI)
    - 3.2 InfiniBand® Star & Mesh
    - 3.3 StarFabric
    - 3.4 PCI Express
  - VME will use PICMG 2.9 specifications
- AdvancedTCA tutorial >

http://www.picmg.org/advancedTCA\_Tutorial\_0503.stm

These systems will use the PCA9510/11/12/13/14 to help buffer capacitance and provide hot swap protection.

### **Bus Buffers used on every ATCA board!**





#### **KEY POINTS**

- High drive outputs are used to extend the reach of the I<sup>2</sup>C bus and exceed the 400 pF/system limit. Can be used in 400 kHz systems.
- Possible distances range from 50 meters at 85 kHz to 1km at 31 kHz over twisted-pair phone cable.
- P82B96 has split high drive outputs allowing differential transmission or Opto-isolation of the I<sup>2</sup>C Bus.
- The 715 doesn't isolate capacitance beyond 3000 pF but doesn't use offset V<sub>OI</sub> like the 96 so it is better for V<sub>OI</sub> sensitive applications.
- See Application Note AN255 for more details.

# Driving I<sup>2</sup>C bus signals long distances



- Normal I<sup>2</sup>C logic levels (3.3 or 5 V)
- I<sup>2</sup>C currents (3mA)

- Conventional CMOS logic levels (2-15V)
- Higher current option, up to 30mA static sink

- Normal I<sup>2</sup>C logic levels (3.3 or 5 V)
- I<sup>2</sup>C currents (3mA)

#### **PHILIPS**

#### Changing I<sup>2</sup>C bus signals for multi-point applications!



77

#### Changing I<sup>2</sup>C bus signals for multi-point applications!



Twisted-pair
telephone wires,
USB or flat ribbon
cables
Up to 15V logic
levels, Include V<sub>CC</sub> &
GND

NO LIMIT to the number of connected bus devices!

Connect servers together

#### Changing I<sup>2</sup>C bus signals for Opto-isolation



 Low cost Optos can be directly driven (10-30mA) 4N36 Optos for ~5kHz 6N137 for 100kHz HCPL-060L for 400 kHz

- Controlling equipment on phone lines
- AC Mains switches, lamp dimmers, power supplies
- Isolating medical or industrial equipment

## I<sup>2</sup>C Bus Buffers

|         | Usage      |                      |                                |                        |                             |                                  |
|---------|------------|----------------------|--------------------------------|------------------------|-----------------------------|----------------------------------|
| Product | Bus Buffer | Long Distance<br>Bus | Bus Isolation/<br>Multiplexing | Voltage<br>Translation | Multi-Point<br>Distribution | Opto-<br>Electrical<br>Isolation |
| P82B715 | 3000pF     | <b>&lt;</b>          |                                |                        | <b>&gt;</b>                 |                                  |
| P82B96  | 4000pF     | <b>/</b>             | <b>\</b>                       | <b>///</b>             | <b>/</b> /                  | <b>&lt;</b>                      |
| PCA9511 | 800pF      | <b>&lt;</b>          | <b>&gt;</b>                    | >                      | <b>/</b>                    |                                  |
| PCA9512 | 800pF      | <                    | <b>\</b>                       | >                      | <b>\</b>                    |                                  |
| PCA9513 | 800pF      | <                    | <b>\</b>                       | >                      | <b>/</b>                    |                                  |
| PCA9514 | 800pF      | >                    | >                              | >                      | <b>&gt;</b>                 |                                  |
| PCA9515 | 800pF      |                      | >                              | >                      |                             |                                  |
| PCA9516 | 2000pF     |                      | <b>/</b>                       | <b>/</b>               |                             |                                  |
| PCA9518 | 2000pF x n |                      | <b>/</b> /                     | <b>/</b>               |                             |                                  |

# Segment Drivers

#### **SAA1064 Driving Four 7 Segment plus Decimal**



# A/D Converters

# **Analog to Digital Converter**



#### **KEY POINTS**

 Converts signals from digital to analog and analog to digital

#### **FEATURES**

- 4 channel A to D
- 1 channel D to A
- Internal oscillator
- Power On Reset (POR)

|         | Voltage range             | Max I <sup>2</sup> C freq | Resolution |
|---------|---------------------------|---------------------------|------------|
| PCF8591 | 2.5 - 5.5V w/5V tolerance | 100 kHz                   | 8-bit      |

# Roadmap

#### **PHILIPS**



#### **PHILIPS**

|   |                | PCA9564               |                         | PCF8582C-2    | NE1617A             |
|---|----------------|-----------------------|-------------------------|---------------|---------------------|
|   | 200000         |                       |                         | PCA8594C-2    | NE1618              |
|   | PCA9504A       | <b>Bus Controller</b> |                         | PCF8598C-2    | NÉ1619              |
|   |                |                       |                         | PCA24508      | LM75A               |
|   |                | GPIO                  | Released                | PCF85102C-2   | <u>SE95/96</u>      |
|   |                |                       | <u>Sampling</u>         | PCF85103C-2   | <b>SA5600</b> 4-X   |
|   |                | PCA9500               | In Development          | PCF85116-3    | Famous Comments     |
|   | Other          | PCA9501               |                         |               | Temp Sensor         |
|   |                | PCA9534               | I <sup>2</sup> C DEVICE | <b>EEPROM</b> | Papartan/Hub        |
|   | LED Driver     | PCA9535               | FAMILY                  |               | Repeater/Hub        |
|   | and Blinker    | PCA9536               |                         | Multiplexer/  | PCA9510             |
|   |                | PCA9537               | Mux/Latch               | Switch        | CA9511/11A          |
|   | PCA9530        | PCA9538               | 100000                  | SWITCH        | PCA9512             |
|   | PCA9531        | PCA9539               | PCA8550                 | PCA9540B      | PCA9513             |
|   | PCA9532        | PCA9554               | PCA9559                 | PCA9541       |                     |
|   | PCA9533        | PCA9554A              | PCA9560                 | PCA9542A      | PCA9514             |
|   | PCA9550        |                       |                         | PCA9543A      | PCA9515/ <u>15A</u> |
|   | PCA9551        | PCA9555               | PCA9561                 |               | PCA9517             |
|   | PCA9552        | PCA9556               |                         | PCA9544A      | PCA9516/16A         |
|   |                | PCA9557               |                         | PCA9545A      | PCA9518             |
|   | PCA9553        | PCA9558               |                         | PCA9546A      | P82B715             |
| S | Semiconductors |                       |                         | PCA9548A      | P82B96 87           |



### MLP/HVQFN



New Heat Sink Very Thin Quad Flat pack No Lead Packages are 75% Smaller than TSSOP

# Support Material

#### Combined I<sup>2</sup>C and UART Demo Board



(Data and Control Signals)

### **PCA9564 Demo Board Picture**



# **PCA9564 Demo Board Layout**



### **I2C 2002-1A Evaluation Board Kit**



- Converts Personal Computer parallel port to I2C bus master
- Simple to use graphical interface for I<sup>2</sup>C commands with new expert mode
- Win-I2CNT software compatible with Windows 95, 98, ME, NT, XP and 2000
- Order kits at <a href="https://www.demoboard.com">www.demoboard.com</a>
- Support tools > http://www.semiconductors.philips.com/buses/i2c/tools/index.html

#### PCA9551 LED Blinkers Win-I2CNT Interface Screen



# I<sup>2</sup>C Product Flyers and Selection Guides



# Provide overview of all the devices to



2003 I<sup>2</sup>C Selection Guide Order Number: 9397 750 10591

2003 CBT Selection Guide Order Number: 9397 750 10336

NE1617A/18/19 Order Number: 9397 750 07609

PCA8550 Order Number: 9397 750 04323

PCA9500/01 Order Number: 9397 750 09897

PCA9504A Order Number: 9397 750 08562

PCA9515/16 Order Number: 9397 750 08205

PCA9540/42/44 Order Number: 9397 750 06542

PCA954X Order Number: 9397 750 09222

PCA9550/51/52 Order Number: 9397 750 09208

PCA9554/54A/55 Order Number: 9397 750 08924

PCA9556 Order Number: 9397 750 06812

PCA9558 Order Number: 9397 750 08211

PCA9559 Order Number: 9397 750 06813

PCA9560/61 Order Number: 9397 750 09206

PCF EEPROM Order Number: 9397 750 09209

P82B96 Order Number: 9397 750 09084







# I<sup>2</sup>C Device Data Sheets, IBIS models Application Notes and Other Information



# **Technical Support Information**

#### **Application Notes**

AN250 PCA8550 4-Bit Multiplexed/1-Bit Latched 5-Bit I<sup>2</sup>C E2PROM

AN255 I<sup>2</sup>C and SMBus Hubs, Buffers, and Repeaters

AN444 P82B715 I<sup>2</sup>C Bus Buffer

AN460 Introducing the P82B96 I<sup>2</sup>C Bus Buffer

AN262 PCA954X Multiplexers and Switches

AN264 I<sup>2</sup>C Devices for LED Display Control

AN469 I<sup>2</sup>C I/O Port Selection

AN10145 Bi-Directional Voltage Translators

AN10146 I<sup>2</sup>C 2002-1A Evaluation Board

AN10148 PCA9564 Bus Controller

AN10149 PCA9564 Eval Board

AN10160 I<sup>2</sup>C Hot Swap Bus Buffers \*\* (Jun)

AN10216 I<sup>2</sup>C Manual

Provide in-depth technical support to make it easier to design in the device.

Download from > www.philipslogic.com/support/appnotes/

#### **PHILIPS**

# I<sup>2</sup>C Sample Kit



The I<sup>2</sup>C Sample Kit consists of eight different I<sup>2</sup>C devices in tape inserted into the I<sup>2</sup>C Sample Kit box with an informative insert.

Devices include three each of the GTL2010PW, P82B96TD, PCA9551D, PCA9545D, PCA9555D, PCA9557D, PCA9515D and PCA9501D

Provide small quantity of free samples to make it easy to assemble and test your system.

Request I<sup>2</sup>C Sample Kit or individual samples from your Philips Sales Representative or directly from I2C.Support at philips.com



# Easy Access to I<sup>2</sup>C Technical Help



Access from > www.semiconductors.philips.com/buses/i2c/





www.semiconductors.philips.com/i2c www.philipslogic.com/i2c