Laura Colmenarejo

Universidad de Sevilla

ECCO 2016 June 20, 2016

CONTENTS

Framework

Reduced Kronecker coefficients

Generating functions

Plane partitions

Quasipolynomials

Framework

Reduced Kronecker coefficients

Generating functions

Plane partitions

Quasipolynomials

Symmetric functions

Let X be an (infinite) alphabet and $\lambda \vdash n$. The **Schur function** is define as

$$s_{\lambda} = \sum_{T \in SSYT} x^{T}$$

Let X be an (infinite) alphabet and $\lambda \vdash n$. The **Schur function** is define as

$$s_{\lambda} = \sum_{T \in SSYT} x^{T}$$

We define the ordinary product

$$\begin{array}{ccc} \textit{Sym} \otimes \textit{Sym} & \longrightarrow & \textit{Sym} \\ (f,g) & \longrightarrow & f \cdot g \end{array}$$

Let X be an (infinite) alphabet and $\lambda \vdash n$. The **Schur function** is define as

$$s_{\lambda} = \sum_{T \in SSYT} x^{T}$$

We define the ordinary product

$$\begin{array}{ccc} \mathit{Sym} \otimes \mathit{Sym} & \longrightarrow & \mathit{Sym} \\ (f,g) & \longrightarrow & f \cdot g \end{array}$$

Consider the following case

$$s_{\lambda}s_{\mu}=\sum c_{\lambda\mu}^{\lambda}s_{
u}$$

SYMMETRIC FUNCTIONS

Let X be an (infinite) alphabet and $\lambda \vdash n$. The **Schur function** is define as

$$s_{\lambda} = \sum_{T \in SSYT} x^{T}$$

We define the ordinary product

$$\begin{array}{ccc} \mathit{Sym} \otimes \mathit{Sym} & \longrightarrow & \mathit{Sym} \\ (f,g) & \longrightarrow & f \cdot g \end{array}$$

Consider the following case

$$s_{\lambda}s_{\mu}=\sum_{
u}c_{\lambda\mu}^{\lambda}s_{
u}$$

Littlewood-Richardson coefficients: $c_{\lambda\mu}^{
u}$

Littlewood-Richardson rule The Littlewood-Richardson coefficient $c^{\nu}_{\lambda\mu}$ counts the number of <u>Littlewood-Richardson tableaux</u> of shape ν/λ and weight μ .

Littlewood-Richardson rule The Littlewood-Richardson coefficient $c_{\lambda\mu}^{\nu}$ counts the number of <u>Littlewood-Richardson tableaux</u> of shape ν/λ and weight μ .

Example:

$$s_{21} \cdot s_{21} = s_{42} + s_{411} + s_{33} + 2s_{321} + s_{3111} + s_{222} + s_{2211}$$

Littlewood-Richardson rule The Littlewood-Richardson coefficient $c_{\lambda\mu}^{\nu}$ counts the number of <u>Littlewood-Richardson tableaux</u> of shape ν/λ and weight μ .

Example:

$$s_{21} \cdot s_{21} = s_{42} + s_{411} + s_{33} + 2s_{321} + s_{3111} + s_{222} + s_{2211}$$

► The Littlewood-Richardson rule was stated in 1934.

Littlewood-Richardson rule The Littlewood-Richardson coefficient $c_{\lambda\mu}^{\nu}$ counts the number of <u>Littlewood-Richardson tableaux</u> of shape ν/λ and weight μ .

Example:

$$s_{21} \cdot s_{21} = s_{42} + s_{411} + s_{33} + 2s_{321} + s_{3111} + s_{222} + s_{2211}$$

- ► The Littlewood-Richardson rule was stated in 1934.
- ► The first rigorous proofs of the rule were given by Schützenberger (1977) and Thomas (1974). They use the Robinson-Schensted correspondence.

Littlewood-Richardson rule The Littlewood-Richardson coefficient $c_{\lambda\mu}^{\nu}$ counts the number of <u>Littlewood-Richardson tableaux</u> of shape ν/λ and weight μ .

Example:

$$s_{21} \cdot s_{21} = s_{42} + s_{411} + s_{33} + 2s_{321} + s_{3111} + s_{222} + s_{2211}$$

- ▶ The Littlewood-Richardson rule was stated in 1934.
- ► The first rigorous proofs of the rule were given by Schützenberger (1977) and Thomas (1974). They use the Robinson-Schensted correspondence.
- ▶ Description in terms of *integral hives* and *honeycombs*, by T. Tao and A. Knutson (1999).

Kronecker Coefficients

Let X and Y be two alphabets.

- ▶ Sum: $X + Y = x_1 + y_1 + x_2 + y_2 + \dots$
- ▶ Product: $XY = x_1y_1 + x_1y_2 + \cdots + x_2y_1 + x_2y_2 + \cdots$

Let X and Y be two alphabets.

- ▶ Sum: $X + Y = x_1 + y_1 + x_2 + y_2 + \dots$
- ► Product: $XY = x_1y_1 + x_1y_2 + \cdots + x_2y_1 + x_2y_2 + \cdots$

The Littlewood-Richardson coefficients can be obtained as

$$s_{\nu}[X+Y] = \sum_{\lambda,\mu} c^{\nu}_{\lambda\mu} s_{\lambda}[X] \cdot s_{\mu}[Y]$$

where we sum over all the partitions such that $|\lambda| + |\mu| = |\nu|$.

Let X and Y be two alphabets.

- ▶ Sum: $X + Y = x_1 + v_1 + x_2 + v_2 + \dots$
- ▶ Product: $XY = x_1y_1 + x_1y_2 + \cdots + x_2y_1 + x_2y_2 + \cdots$

The Littlewood-Richardson coefficients can be obtained as

$$s_{\nu}[X+Y] = \sum_{\lambda,\mu} c^{\nu}_{\lambda\mu} s_{\lambda}[X] \cdot s_{\mu}[Y]$$

where we sum over all the partitions such that $|\lambda| + |\mu| = |\nu|$.

$$s_{
u}[XY] = \sum_{\lambda,\mu} g^{
u}_{\lambda\mu} s_{\lambda}[X] s_{\mu}[Y]$$

where we sum over all the partitions such that $|\lambda| = |\mu| = |\nu|$.

Kronecker Coefficients

Let X and Y be two alphabets.

- ▶ Sum: $X + Y = x_1 + v_1 + x_2 + v_2 + \dots$
- ▶ Product: $XY = x_1y_1 + x_1y_2 + \cdots + x_2y_1 + x_2y_2 + \cdots$

The Littlewood-Richardson coefficients can be obtained as

$$s_{\nu}[X+Y] = \sum_{\lambda,\mu} c^{\nu}_{\lambda\mu} s_{\lambda}[X] \cdot s_{\mu}[Y]$$

where we sum over all the partitions such that $|\lambda| + |\mu| = |\nu|$.

$$s_{
u}[XY] = \sum_{\lambda,\mu} g^{
u}_{\lambda\mu} s_{\lambda}[X] s_{\mu}[Y]$$

where we sum over all the partitions such that $|\lambda| = |\mu| = |\nu|$.

Kronecker coefficients:

► There is **NO** description in general.

Kronecker Coefficients

- ▶ There is **NO** description in general.
- ► Case of two rows partitions: Thibon, R. Orellana, E. Briand and M. H. Rosas.

- ▶ There is **NO** description in general.
- ► Case of two rows partitions: Thibon, R. Orellana, E. Briand and M. H. Rosas.
- Case of hooks: Blasiak, Remmel.

Kronecker Coefficients

- ► There is **NO** description in general.
- ► Case of two rows partitions: Thibon, R. Orellana, E. Briand and M. H. Rosas.
- Case of hooks: Blasiak, Remmel.
- Case of one partition with two parts: R. Orellana and C. Ballantine.

- ► There is **NO** description in general.
- Case of two rows partitions: Thibon, R. Orellana, E. Briand and M. H. Rosas.
- Case of hooks: Blasiak, Remmel.
- Case of one partition with two parts: R. Orellana and C. Ballantine.
- ► Stability properties and complexity: G. Panova and I. Pak.

- ▶ There is **NO** description in general.
- Case of two rows partitions: Thibon, R. Orellana, E. Briand and M. H. Rosas.
- Case of hooks: Blasiak, Remmel.
- Case of one partition with two parts: R. Orellana and C. Ballantine.
- Stability properties and complexity: G. Panova and I. Pak.

The Kronecker coefficients define a new product on Sym

$$\begin{array}{ccc} \textit{Sym} \otimes \textit{Sym} & \longrightarrow & \textit{Sym} \\ (s_{\lambda}, s_{\mu}) & \longrightarrow & s_{\lambda} * s_{\mu} \end{array}$$

where

$$s_{\lambda} * s_{\mu} := \sum_{
u} g^{
u}_{\lambda \mu} s_{
u}$$

Reduced Kronecker coefficients

Reduced Kronecker coefficients: $\overline{g}_{\lambda\mu}^{\nu}$

$$s_{(10,2)} * s_{(10,2)} = s_{(12)} + s_{(11,1)} + 2 \cdot s_{(10,2)} + s_{(10,1,1)} + + s_{(9,3)} + 2 \cdot s_{(9,2,1)} + s_{(9,1,1,1)} + + s_{(8,4)} + s_{(8,3,1)} + s_{(8,2,2)}$$

Reduced Kronecker coefficients: $\overline{g}_{\lambda}^{\nu}$

$$s_{(10,2)} * s_{(10,2)} = s_{(12)} + s_{(11,1)} + 2 \cdot s_{(10,2)} + s_{(10,1,1)} + + s_{(9,3)} + 2 \cdot s_{(9,2,1)} + s_{(9,1,1,1)} + + s_{(8,4)} + s_{(8,3,1)} + s_{(8,2,2)}$$

$$s_{(\bullet,2)} * s_{(\bullet,2)} = s_{(\bullet)} + s_{(\bullet,1)} + 2 \cdot s_{(\bullet,2)} + s_{(\bullet,1,1)} + s_{(\bullet,3)} + 2 \cdot s_{(\bullet,2,1)} + s_{(\bullet,1,1,1)} + s_{(\bullet,4)} + s_{(\bullet,3)} + s_{(\bullet,2,2)}$$

$$s_{(\bullet,2)} * s_{(\bullet,2)} = s_{(\bullet)} + s_{(\bullet,1)} + 2 \cdot s_{(\bullet,2)} + s_{(\bullet,1,1)} + s_{(\bullet,3)} + 2 \cdot s_{(\bullet,2,1)} + s_{(\bullet,1,1,1)} + s_{(\bullet,4)} + s_{(\bullet,3,1)} + s_{(\bullet,2,2)}$$

The **reduced Kronecker coefficients** $\overline{g}^{\nu}_{\lambda\mu}$ are the stable values of the sequence of Kronecker coefficients, after we disregard the first part.

RELATION WITH KRONECKER COEFFICIENTS

Kronecker coefficients can be recovered from reduced Kronecker coefficients.

$$g^{
u}_{\lambda\mu} = \sum_{i=1}^{\ell(\lambda)\ell(\mu)} (-1)^{i+1} \overline{g}^{
u^{\dagger i}}_{\overline{\lambda}\overline{\mu}}$$

Kronecker coefficients can be recovered from reduced Kronecker coefficients.

$$g^{
u}_{\lambda\mu} = \sum_{i=1}^{\ell(\lambda)\ell(\mu)} (-1)^{i+1} \overline{g}^{
u^{\dagger i}}_{\overline{\lambda}\overline{\mu}}$$

Reduced Kronecker coefficients are Kronecker coefficients.

 Kronecker coefficients can be recovered from reduced Kronecker coefficients

$$g_{\lambda\mu}^{
u} = \sum_{i=1}^{\ell(\lambda)\ell(\mu)} (-1)^{i+1} \overline{g}_{\overline{\lambda}\overline{\mu}}^{
u^{\dagger i}}$$

Reduced Kronecker coefficients are Kronecker coefficients.

Proposition (E. Briand - R. Orellana - M. Rosas, 2011)

$$\overline{g}_{\lambda\mu}^{\nu}=g_{\lambda[n]\;\mu[n]}^{\nu[n]}$$

with $\lambda[n] = (n - |\lambda|, \lambda_1, \lambda_2, ...)$ and n sufficiently large.

Family 1
$$\overline{g}_{(k^a),(k^a)}^{(k)}$$

Family 2
$$\overline{g}_{((k+i)^a),(k^a)}^{(k)}$$

► Family 3
$$\overline{g}_{(k^{a+1}),(k+i,k^a)}^{(k)}$$

CONTENTS

Framework

Reduced Kronecker coefficients

Generating functions

Plane partitions

Quasipolynomials

Theorem (L. C. - M. Rosas, 2015)

Consider the reduced Kronecker coefficients $\left\{\overline{g}_{(k^a),(k^a)}^{(k)}\right\}_{k>0}$. Their generating functions is

FAMILY 1

Theorem (L. C. - M. Rosas, 2015)

Consider the reduced Kronecker coefficients $\left\{\overline{g}_{(k^a),(k^a)}^{(k)}\right\}_{k>0}$. Their generating functions is

$$\mathcal{F}_{a} = \frac{1}{(1-x)(1-x^{2})^{2}\cdots(1-x^{a})^{2}(1-x^{a+1})}$$

FAMILY 1

Theorem (L. C. - M. Rosas, 2015)

Consider the reduced Kronecker coefficients $\left\{\overline{g}_{(k^a),(k^a)}^{(k)}\right\}_{k>0}$. Their generating functions is

$$\mathcal{F}_{a} = \frac{1}{(1-x)(1-x^{2})^{2}\cdots(1-x^{a})^{2}(1-x^{a+1})}$$

Kronecker tableau

KRONECKER TABLEAU

Kronecker tableau

- $\triangleright \alpha$ -condition:
 - If $\alpha_1 = \alpha_2$, there is no condition.
 - If $\alpha_1 > \alpha_2$, then

$$(#1)_{2nd Row} = \alpha_1 - \alpha_2$$

$$(#2)_{1st Row} = \alpha_1 - \alpha_2$$

- $\triangleright \alpha$ -condition:
 - If $\alpha_1 = \alpha_2$, there is no condition.
 - If $\alpha_1 > \alpha_2$, then

$$(\#1)_{2nd \ Row} = \alpha_1 - \alpha_2$$

 $(\#2)_{1st \ Row} = \alpha_1 - \alpha_2$

▶ The reverse reading word is an α - lattice permutation.

Kronecker tableau

EXAMPLE FOR
$$a = 4$$
, $k = 7$, $\alpha = (3, 2, 1, 1)$, $sh = (21, 7, 7, 7, 7)/\alpha$, $ty = (18, 5, 6, 6, 7)$

			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	3	5
		1	2	2	2	2														
	1	3	3	3	3	3														
	4	4	4	4	4	4														
1	5	5	5	5	5	5														

Using a result of R. Orellana and C. Ballantine,

$$\overline{g}_{(k^a)(k^a)}^{(k)} = \# \left\{ \begin{array}{l} \text{Kronecker tableau with} \\ sh = (3k, k^a)/\alpha \\ ty = (3k, k^a)/\alpha \\ \alpha \vdash k \end{array} \right\}$$

Using a result of R. Orellana and C. Ballantine,

$$\overline{g}_{(k^a)(k^a)}^{(k)} = \# \left\{ \begin{array}{l} \text{Kronecker tableau with} \\ sh = (3k, k^a)/\alpha \\ ty = (3k, k^a)/\alpha \\ \alpha \vdash k \end{array} \right\}$$

Looking at the generating function \mathcal{F}_a ,

$$\mathcal{F}_{a} = \frac{1}{(1-x)(1-x^{2})^{2}\cdots(1-x^{a})^{2}(1-x^{a+1})}$$

Coefficient of
$$x^k$$
 in \mathcal{F}_a = $\#$ $\left\{\begin{array}{c} \text{colored sequences of } k \\ \text{with parts in} \\ \{1, 2, \overline{2}, \dots, a, \overline{a}, a+1\} \end{array}\right\}$

There exists a bijection

$$\left\{ \begin{array}{l} \text{colored sequences of } k \\ \text{with parts in} \\ \{1,2,\overline{2},\ldots,a,\overline{a},a+1\} \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{l} \text{Kronecker tableau} \\ sh = (3k,k^a)/\alpha \\ ty = (3k,k^a)/\alpha \\ \alpha \vdash k \end{array} \right\}$$

There exists a bijection

$$\left\{ \begin{array}{c} \text{colored sequences of } k \\ \text{with parts in} \\ \{1,2,\overline{2},\ldots,a,\overline{a},a+1\} \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{c} \text{Kronecker tableau} \\ sh = (3k,k^a)/\alpha \\ ty = (3k,k^a)/\alpha \\ \alpha \vdash k \end{array} \right\}$$

It is based on the following identification

L. Colmenarejo

RKC, plane partitions and quasypolynomials

EXAMPLE: a = 4 AND $\beta = (1, \overline{2}, \overline{4})$

EXAMPLE: a = 4 AND $\beta = (1, \overline{2}, \overline{4})$

STEP 0. We know that $\lambda = \nu = (21, 7, 7, 7, 7)$.

EXAMPLE:
$$a = 4$$
 AND $\beta = (1, \overline{2}, \overline{4})$

STEP 0. We know that $\lambda = \nu = (21, 7, 7, 7, 7)$.

STEP 1. Column identification

STEP 2. Identify α : Looking at the picture, we have that $\alpha = (3, 2, 1, 1)$, which is a partition of 7.

EXAMPLE:
$$a = 4$$
 AND $\beta = (1, \overline{2}, \overline{4})$

STEP 0. We know that $\lambda = \nu = (21, 7, 7, 7, 7)$.

STEP 1. Column identification

STEP 2. Identify α : Looking at the picture, we have that $\alpha = (3, 2, 1, 1)$, which is a partition of 7.

STEP 3. Complete rest of the tableau

				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	3	5
ı			1	2	2	2	2														
ı		1	3	3	3	3	3														
ı		4	4	4	4	4	4														
	1	5	5	5	5	5	5														

Family 2: $\overline{g}_{((k+i)^a),(k^a)}^{(k)}$

Generating functions

Family 2:
$$\overline{g}_{((k+i)^a),(k^a)}^{(k)}$$

Table: Case a=2

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13
i= 0														
i=1														
i=2	0	0	0	0	0	0	1	1	3	4	7	9	14	17
i=3														

Family 2:
$$\overline{g}_{((k+i)^a),(k^a)}^{(k)}$$

Table: Case a=2

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13
i= 0	1	1	3	4	7	9	14	17	24	29	38	45	57	66
i=1	0	0	0	1	1	3	4	7	9	14	17	24	29	38
i= 2	0	0	0	0	0	0	1	1	3	4	7	9	14	17
i=3														

Theorem (L. C., 2015)

After some initial zeros, the generating function for the reduced Kronecker coefficients $\overline{g}_{((k+i)^a)(k^a)}^{(k)}$ is exactly \mathcal{F}_a .

Family 3: $\overline{g}_{((k+i),k^{a-1}),(k^a)}^{(k)}$

Table: Case a=2.

k	0	1	2	3	4	5	6	7	8	9	10	11	12
i= 0	1	1	3	4	7	9	14	17	24	29	38	45	57
i=1	0	1	2	4	7	11	16	23	31	41	53	67	83
i=2	0	0	1	2	5	8	14	20	30	40	55	70	91
i=3	0	0	0	1	2	5	9	15	23	34	47	64	84
i= 4													
i=5	0	0	0	0	0	1	2	5	9	16	25	38	54
i=6	0	0	0	0	0	0	1	2	5	9	16	25	39

Family 3:
$$\overline{g}_{((k+i),k^{a-1}),(k^a)}^{(k)}$$

Theorem (L. C., 2015)

The stable value of the j^{th} diagonal corresponds to the reduced Kronecker coefficients $\overline{g}_{(k^a),(2k-j,k^{a-1})}^{(k)}$, when $k \geq 2j$ and their generating function is

$$\mathcal{G}_{a} = \frac{1}{(1-x)^{2}(1-x^{2})^{3}\dots(1-x^{a-1})^{3}(1-x^{a})^{2}(1-x^{a+1})}$$

Framework

Reduced Kronecker coefficients

Generating functions

Plane partitions

Quasipolynomials

A plane partition is a two-dimensional array of non-negative integers $n_{i,j}$ (with positive integer indices i and j) that is non-increasing in both indices and for which only finitely many of the $n_{i,j}$ are nonzero.

A **plane partition** is a two-dimensional array of non-negative integers $n_{i,j}$ (with positive integer indices i and j) that is non-increasing in both indices and for which only finitely many of the $n_{i,j}$ are nonzero.

5	3	2	1
4	2	2	
2	2		
2	1		

A **plane partition** is a two-dimensional array of non-negative integers $n_{i,j}$ (with positive integer indices i and j) that is non-increasing in both indices and for which only finitely many of the $n_{i,j}$ are nonzero.

5	3	2	1
4	2	2	
2	2		
2	1		

A **plane partition** is a two-dimensional array of non-negative integers $n_{i,j}$ (with positive integer indices i and j) that is non-increasing in both indices and for which only finitely many of the $n_{i,j}$ are nonzero.

Theorem (MacMahon, 1915)

Let $r = \min(a, l)$ and $s = \max(a, l)$. Then, the generating function for the plane partitions fitting inside an $l \times a$ rectangle is

$$\prod_{i=r}^{s} \left(\frac{1}{1-x^{i}}\right)^{r} \cdot \prod_{i=1}^{r-1} \left(\frac{1}{1-x^{i}}\right)^{i} \left(\frac{1}{1-x^{s+i}}\right)^{r-i}$$

Theorem (L. C. - M. Rosas, 2015)

The reduced Kronecker coefficient $\overline{g}_{(k^a),(k^a)}^{(k)}$ counts the number of plane partitions of k fitting inside a $2 \times$ a rectangle.

RELATION WITH FAMILIES 1 AND 3

Theorem (L. C. - M. Rosas, 2015)

The reduced Kronecker coefficient $\overline{g}_{(k^a),(k^a)}^{(k)}$ counts the number of plane partitions of k fitting inside a $2 \times$ a rectangle.

The reduced Kronecker coefficient for a = 4 and k = 3 is $\overline{g}_{(3,3,3,3),(3,3,3,3)}^{(3)} = 5.$

RELATION WITH FAMILIES 1 AND 3

Theorem (L. C. - M. Rosas, 2015)

The reduced Kronecker coefficient $\overline{g}_{(k^a),(k^a)}^{(k)}$ counts the number of plane partitions of k fitting inside a $2 \times a$ rectangle.

Theorem (L. C., 2015)

For the stable values of the jth diagonal in Family 3,

$$\overline{\overline{g}}_{a}(j) = \sum_{l=0}^{j} \# \left\{ \begin{array}{c} \textit{plane partitions} \\ \textit{of } l \\ \textit{in } 3 \times (a-1) \end{array} \right\} \# \left\{ \begin{array}{c} \textit{plane partitions} \\ \textit{of } j - l \\ \textit{in } 2 \times 1 \end{array} \right\}$$

Quasipolynomials

CONTENTS

Framework

Reduced Kronecker coefficients

Generating functions

Plane partitions

Quasipolynomials

Let ℓ be the least common multiple of $1, 2, \ldots, a, a + 1$. The coefficients $\overline{g}_{(k^a),(k^a)}^{(k)}$ are described by a quasipolynomial of degree 2a-1 and period dividing ℓ . In fact, we have checked that the period is exactly ℓ for a < 10.

For a=2, the coefficients are given by the quasipolynomial of degree 3 and period 6:

$$\left\{ \begin{array}{ll} 1/72k^3 + 1/6k^2 + \ 2/3k + \ 1 & \text{if } k \equiv 0 \mod 6 \\ 1/72k^3 + 1/6k^2 + 13/24k + 5/18 & \text{if } k \equiv 1 \mod 6 \\ 1/72k^3 + 1/6k^2 + \ 2/3k + 8/9 & \text{if } k \equiv 2 \mod 6 \\ 1/72k^3 + 1/6k^2 + 13/24k + 1/2 & \text{if } k \equiv 3 \mod 6 \\ 1/72k^3 + 1/6k^2 + \ 2/3k + 7/9 & \text{if } k \equiv 4 \mod 6 \\ 1/72k^3 + 1/6k^2 + 13/24k + 7/18 & \text{if } k \equiv 5 \mod 6 \end{array} \right.$$

Description for Family 3

Theorem (L. C., 2015)

Let ℓ be the least common multiple of $1, 2, \ldots, a, a+1$. The coefficients $\overline{\overline{g}}_a(j)$ are described by a quasipolynomial of degree 3a-2 and period dividing ℓ . In fact, we have checked that the period is exactly ℓ for $a \leq 7$.

For a = 2, the coefficients are given by the quasipolynomial of degree 4 and period 6:

$$\left\{ \begin{array}{lll} 1/288j^4+1/16j^3+&7/18j^2+j+1&j\equiv 0\mod 6\\ 1/288j^4+1/16j^3+&7/18j^2+15/16j+175/288&j\equiv 1\mod 6\\ 1/288j^4+1/16j^3+&7/18j^2+j+8/9&j\equiv 2\mod 6\\ 1/288j^4+1/16j^3+&7/18j^2+15/16j+23/32&j\equiv 3\mod 6\\ 1/288j^4+1/16j^3+&7/18j^2+j+8/9&j\equiv 4\mod 6\\ 1/288j^4+1/16j^3+&7/18j^2+15/16j+175/288&j\equiv 5\mod 6 \end{array} \right.$$

¡Muchas gracias!

