## Econometrics I Homework 1

#### Eric Schulman

February 3, 2018

#### 1 Part I

2.2 E(E(xy|x)) = E(xE(y|x)) = E(a(x + bE(x))|x) a(x + bE(x))

2.4  $E(y|x=0) = E(y^{2}|x=0) = .8$   $E(y|x=1) = E(y^{2}|x=1) = .6$   $E(y^{2}|x=0) - (E(y|x=0))^{2} = .16$   $E(y^{2}|x=1) - (E(y|x=1))^{2} = .24$ 

2.5 a) 
$$E((e^2 - g(x))^2)$$

b) Minimize  $E((e^2 - h(x))^2)$ 

c) 
$$E((e^2 - g(x))^2)$$

$$= E((e^2 - \sigma^2(x) + \sigma^2(x) - h(x))^2)$$

$$= E((e^2 - \sigma^2(x))^2) + E((\sigma^2(x) - h(x))^2) + 2E((\sigma^2(x) - h(x))(e^2 - \sigma^2(x)))$$

Since

$$E((\sigma^{2}(x) - h(x))(e^{2} - \sigma^{2}(x)))$$

$$= E(E((\sigma^{2}(x) - h(x))(e^{2} - \sigma^{2}(x))|x))$$

$$= E(E(e^{2}\sigma^{2}(x) - e^{2}g(x) + g(x)\sigma^{2}(x) + \sigma^{2}(x)\sigma^{2}(x)|x))$$

$$= E(\sigma^{2}(x)\sigma^{2}(x) - \sigma^{2}(x)g(x) + g(x)\sigma^{2}(x) + \sigma^{2}(x)\sigma^{2}(x)) = 0$$

We have

$$E((e^2-g(x))^2)=E((e^2-\sigma^2(x))^2)+E((\sigma^2(x)-h(x))^2)\geq E((e^2-\sigma^2(x))^2)$$

2.7

$$E(y^2|x) - (E(y|x))^2 = V(y|x) = V(\beta x + e|x) = V(e|x) = \sigma^2(x)$$

2.10 True

$$E(x^2e) = E(x^2E(e|x)) = 0$$

2.11 False

Suppose e has a degenerate distribution and p(x = 1) = .5 and p(x = -1) = .5

$$E(ex) = 0$$

$$E(ex^2) = \bar{e}$$

2.12 False.

Suppose e, x are uniformly distributed across the unit circle around (0,0). The conditional distribution of e given x is uniform over the interval  $(-\sqrt{1-x^2}, \sqrt{1-x^2})$ , So its expectation, found by integrating the conditional density, is zero.

However, they share a distribution so they are not independent.

$$E(e|x) = 0$$

2.13 Use the same counter example as 2.11

$$E(ex) = 0$$

$$E(e|x) = \bar{e}$$

2.14 False

Suppose e, x are uniformly distributed across the unit square around (0,0). The conditional distribution of e given x is uniform over the interval (-1,1), So its expectation, found by integrating the conditional density, is zero. Similarly, the variance along this interval is 1

Again, they share a distribution so they are not independent.

### 2 Part II

a) Below is the histogram.



|    | Years | Observations |
|----|-------|--------------|
|    | 12    | 13896        |
| b) | 16    | 11640        |
|    | 18    | 4670         |
|    | 20    | 1875         |

c) Below are the kernel density plots.









d) The table below show the results.

| Years | Mean  | Variance |
|-------|-------|----------|
| 12    | 2.712 | 0.329    |
| 16    | 3.201 | 0.416    |
| 18    | 3.381 | 0.363    |
| 20    | 3.689 | 0.619    |

By the table, we can see 20 years of education has the highest variance.

e) The table below show the results.

| Year | 25th  | 50th  | 75th  |
|------|-------|-------|-------|
| 12   | 2.403 | 2.733 | 3.055 |
| 16   | 2.839 | 3.180 | 3.585 |
| 18   | 3.062 | 3.362 | 3.710 |
| 20   | 3.275 | 3.690 | 4.089 |

f) The table below show the results.

| Years | Difference |
|-------|------------|
| 12    | 0          |
| 16    | 0.489      |
| 18    | 0.669      |
| 20    | 0.977      |

g) The table below show the results.

| Year 1 | Year 2 | Diff      | SE               | T-Value        | Reject |
|--------|--------|-----------|------------------|----------------|--------|
| 12     | 12     | 0.0       | 0.00486691158299 | 0.0            | False  |
| 12     | 16     | -0.488918 | 0.00486691158299 | -100.457462777 | True   |
| 12     | 18     | -0.669176 | 0.00486691158299 | -137.494970241 | True   |
| 12     | 20     | -0.976912 | 0.00486691158299 | -200.725245359 | True   |
| 16     | 12     | 0.488918  | 0.00597543294539 | 81.821282852   | True   |
| 16     | 16     | 0.0       | 0.00597543294539 | 0.0            | False  |
| 16     | 18     | -0.180258 | 0.00597543294539 | -30.1665629463 | True   |
| 16     | 20     | -0.487994 | 0.00597543294539 | -81.6667908266 | True   |
| 18     | 12     | 0.669176  | 0.00882675326792 | 75.8122316274  | True   |
| 18     | 16     | 0.180258  | 0.00882675326792 | 20.4218095382  | True   |
| 18     | 18     | 0.0       | 0.00882675326792 | 0.0            | False  |
| 18     | 20     | -0.307736 | 0.00882675326792 | -34.8640263334 | True   |
| 20     | 12     | 0.976912  | 0.0181678405989  | 53.7714989472  | True   |
| 20     | 16     | 0.487994  | 0.0181678405989  | 26.8603431317  | True   |
| 20     | 18     | 0.307736  | 0.0181678405989  | 16.9385104793  | True   |
| 20     | 20     | 0.0       | 0.0181678405989  | 0.0            | False  |
|        |        |           |                  |                |        |

h) The table below show the results.

| Dep. Variable:    | lwage            | R-squared:          | 0.203     |
|-------------------|------------------|---------------------|-----------|
| Model:            | OLS              | Adj. R-squared:     | 0.203     |
| Method:           | Least Squares    | F-statistic:        | 2727.     |
| Date:             | Sat, 03 Feb 2018 | Prob (F-statistic): | 0.00      |
| Time:             | 13:45:04         | Log-Likelihood:     | -30104.   |
| No. Observations: | 32081            | AIC:                | 6.022e+04 |
| Df Residuals:     | 32077            | BIC:                | 6.025e+04 |
| Df Model:         | 3                |                     |           |

|                | coef   | std err   | t             | P> t     | [0.025        | 0.975]   |
|----------------|--------|-----------|---------------|----------|---------------|----------|
| const          | 2.7121 | 0.005     | 516.939       | 0.000    | 2.702         | 2.722    |
| educ_16        | 0.4889 | 0.008     | 62.916        | 0.000    | 0.474         | 0.504    |
| educ_18        | 0.6692 | 0.010     | 63.969        | 0.000    | 0.649         | 0.690    |
| educ_20        | 0.9769 | 0.015     | 64.203        | 0.000    | 0.947         | 1.007    |
| Omnibus:       |        | 10460.946 | Durbin        | -Watson  | 1:            | 1.767    |
| Prob(Omnibus): |        | 0.000     | <b>Jarque</b> | -Bera (J | <b>B):</b> 21 | 3631.163 |
| Skew:          |        | -1.068    | Prob(J        | B):      |               | 0.00     |
| Kurtosis:      |        | 15.460    | Cond.         | No.      |               | 4.98     |

# 3 Python Code