Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-226. Вариант 22

- 1. Пусть $z = \frac{3}{2} \frac{3\sqrt{3}i}{2}$. Вычислить значение $\sqrt[5]{z^2}$, для которого число $\frac{\sqrt[5]{z^2}}{2\sqrt{3} 2i}$ имеет аргумент $-\frac{7\pi}{6}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(-4+9i) + y(10-14i) = 218+61i \\ x(-5+11i) + y(9+6i) = 72+119i \end{cases}$$

- 3. Найти корни многочлена $-4x^6 8x^5 + 8x^4 + 216x^3 404x^2 1408x + 20800$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = 2 + 3i$, $x_2 = -3 + 4i$, $x_3 = 4$.
- 4. Даны 3 комплексных числа: 18-26i, -20-5i, 5-14i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = \frac{3\sqrt{3}}{2} + \frac{3i}{2}, z_2 = \frac{3}{2} + \frac{3\sqrt{3}i}{2}$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+1+i| < 2\\ |arg(z-5-5i)| < \frac{\pi}{4} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (-1, -9, 5), b = (2, -6, 5), c = (0, 6, -4). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-5, -9, 5) и плоскость P: 20x 14y 12z + 404 = 0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(10, -12, -1), $M_1(2, -10, 4)$, $M_2(-9, 1, 4)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} 9x + 8y - 17z + 175 = 0 \\ -9x + 18y - 9z + 189 = 0 \end{cases}$$

$$L_2: \begin{cases} 18x - 10y - 8z + 2426 = 0 \\ 9x - 19y - 13z + 2100 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L_1 и L_2 .