

[27]:	plt.xlabel(plt.ylabel(
	10 ⁻²⁶ -	Hanford Livingston
	10 ⁻³⁵ -	
t[27]:		10 ⁻¹ 10 ⁰ 10 ¹ 10 ² 10 ³ f [Hz] mooth the noise, using the smoothing function shown in class. This function effectively takes the noise array and convolves it in filter, which has the effect of removing all the small jitters in the power spectrum, but also broadens all features.
[28]:	<pre>n=len(v x=np.ar x[n//2: kernel= kernel= vecft=r kernelf vec_smc</pre>	_vector(vec, sig): vec) range(n) :]=x[n//2:]-n =np.exp(-0.5*x**2/sig**2) #make a Gaussian kernel =kernel/kernel.sum() np.fft.rfft(vec) ft=np.fft.rfft(kernel) poth=np.fft.irfft(vecft*kernelft) #convolve the data with the kernel vec_smooth
	L_noise_smo	<pre>(fs[:-1],np.abs(H_noise_smooth),label = 'Hanford') (fs[:-1],np.abs(L_noise_smooth),label = 'Livingston') ('f [Hz]') (r'\$PSD\$')</pre>
	10 ⁻²⁷ -	<u> </u>
	10 ⁻³¹ -	
:[32]:	10 ⁻³⁹ - 10 ⁻⁴¹ - <matplotlib< th=""><th>— Hanford — Livingston 10^{-1} 10^{0} 10^{1} 10^{2} 10^{3} f [Hz] 0.legend.Legend at $0x17752002b50>$</th></matplotlib<>	— Hanford — Livingston 10^{-1} 10^{0} 10^{1} 10^{2} 10^{3} f [Hz] 0.legend.Legend at $0x17752002b50>$
[33]:	because we can outside these k	Late our N^{-1} matrix from there. However, we will set our entries of that matrix to 0 if we are above 1500 Hz or below 20Hz, annot understand the noise from outside these bounds. Therefore, we will not use the frequencies components coming from bounds when performing our match filter. $ V_{\perp} = 1/L_{\perp} = 1/L_{$
	templates. So d is our data, fo We then want	rm a match filter, which is basically a way of performing a least-squares fit for every possible shift between our data and our we want to perform our usual operations $m=(A^TN^{-1}A)^{-1}(A^TN^{-1}d)$ where A is the template, N is the noise matrix, and for every possible overlap of the data and template. However, N is not diagonal in this case because we have stationary noise. to write our least squares fit in a space where N is diagonal, in other words, we want to pre whiten our data and template. for loks like the following: $m=(A^TN^{-1}A)^{-1}(A^TN^{-1}d)$
	, , ,	$m = (A^T N^{-1/2} I N^{-1/2} A)^{-1} (A^T N^{-1/2} I N^{-1/2} d)$ $m = (((N^{-1/2})^T A)^T I N^{-1/2} A)^{-1} (((N^{-1/2})^T A)^T I N^{-1/2} d)$ $m = (((N^{-1/2})^T A)^T I N^{-1/2} A)^{-1} (((N^{-1/2})^T A)^T I N^{-1/2} d)$ $M = ((N^{-1/2} A)^T I N^{-1/2} A)^{-1} ((N^{-1/2} A)^T I N^{-1/2} d)$ $m = (\tilde{A}^T I \tilde{A})^{-1} (\tilde{A}^T I \tilde{d})$ $N^{-1/2} M \text{ and is the pre-whitened array}$
	every possible So using a cro We repeat this	an expression for our least-squares fit where we can use our noise model to perform our fit as usual. We still need to do it for a shift of the data and template so $m(\tau) = (\tilde{A}(t-\tau)^T\tilde{A}(t-\tau))^{-1}(\tilde{A}(t-\tau)^T\tilde{d}(t))$ ass-correlation, we can retreive our match filter as a function of time, which is $MF(t) = IFFT(FFT(\tilde{A})^* \times FFT(\tilde{d}))$ of for every event and every detector, using the corresponding template. We can then estimate the noise by taking the absolute one series of the MFs. Because the match filter is mostly noise except at the detection time, this will give us an estimate of the
[34]:	scatter in the n the noise estim fig,ax = pl comb_SNRs =	non-detection part of the filter. We can then compute the SNR by taking the ratio between the max amplitude of the filter and mate. All of this is reported in the figure below. Lt.subplots(len(L_events), 2, figsize = (9,8))
	for i in ra ax[i][0 H_strai L_strai	<pre>ange(len(H_events)): 0].set_ylabel(fnames[i][10:-16]) in = H_events[i][0] in = L_events[i][0] events[i][1]*np.arange(len(H_strain))</pre>
	L_strai tp = te tpft = H_tp_fi L_tp_fi H_mf =	<pre>inft = np.fft.rfft(win*H_strain) inft = np.fft.rfft(win*L_strain) emplates[i][0] np.fft.rfft(tp*win) iltered = tpft[:-1]*Ninv_H iltered = tpft[:-1]*Ninv_L np.abs(np.fft.fftshift(np.fft.irfft(np.conj(H_tp_filtered)*H_strainft[:-1]))) np.abs(np.fft.fftshift(np.fft.irfft(np.conj(L_tp_filtered)*L_strainft[:-1])))</pre>
	L_mfs.a ax[i][0 ax[i][1 H_noise L_noise	<pre>append(H_mf) append(L_mf) D].plot(t[:-2],H_mf) 1].plot(t[:-2],L_mf) e_est = np.mean(H_mf[len(H_mf)//4:-len(H_mf)//4]) e_est = np.mean(L_mf[len(L_mf)//4:-len(L_mf)//4]) e_est = np.mean(L_mf[len(L_mf)//4:-len(L_mf)//4])</pre>
	ax[i][0 ax[i][1] comb_SN TP_adj opt_SNF opt_SNF	<pre>= np.max(np.abs(L_mf))/L_noise_est O].set_xlabel('Noise = {} \nSNR = {}'.format(H_noise_est, H_SNR)) L].set_xlabel('Noise = {} \nSNR = {}'.format(L_noise_est, L_SNR)) NRs[i] = (H_SNR+L_SNR)/2 = tp[::2] Rs_H = np.sqrt(TP_adj.T@(Ninv_H*TP_adj)) Rs_L = np.sqrt(TP_adj.T@(Ninv_L*TP_adj)) Rs[i] = 0.5*(opt_SNRs_H+opt_SNRs_L)</pre>
		et_title('Hanford detector') et_title('Livingston detector') layout() Hanford detector Livingston detector 2
	0.6 T	1- 5 10 15 20 25 30 Noise = 0.12764472109978994 SNR = 22.439123256700768 1- 0 5 10 15 20 25 30 Noise = 0.1243288358807913 SNR = 16.641307058985937
	GW151226 0.0 - 0.0 0.0 - 0	0.4 - 0.2 - 0.0 - 0.4 - 0.2 - 0.0 - 0.5 -
	0.0 - 0.0 - 0	0.75 - 0.50 - 0.25 - 0.00 - 0.
	0.6 - 0.4 - 0.2 - 0.0 - 0.0 -	0.4 - 0.2 - 0.0 -
	whitened temp	above, we also computed the ideal SNR given our templates and noise, that is, what would be the SNR given that our pre plates were exactly representative of the signals. The analytical SNR would then be $\frac{A^TA}{\sqrt{A^TA}} = \sqrt{A^TA}$. In our case, our noise tity matrix, so we have to account for that and use the pre-whitened template so our optimal SNR is $\sqrt{\tilde{A}^T\tilde{A}} = \sqrt{A^TN^{-1}A}$.
35]:	<pre>for i in ra print(' print(')</pre>	for each event and each detector, and we take the mean of both the SNR from the scatter in the MFs and the analytical SNR ange (len (comb_SNRs)): "Event {}:\n'.format(fnames[i][10:-16])) "combined SNR from scatter in MF = {}'.format(comb_SNRs[i])) "optimal SNR = {}'.format(opt_SNRs[i]))
	optimal SNR Event GW151 combined SN	NR from scatter in MF = 19.540215157843353 R = 115.69781047995036
	Event GW170 combined SN optimal SNR Event LVT15 combined SN	0104: NR from scatter in MF = 11.355919384588177 R = 91.55731658122947 51012: NR from scatter in MF = 7.377957531597901
	We see that the cannot be exact this event had	R from scatter in MF = 7.377957531597901 R = 62.43612045709274 The SNR from the scatter in the MFs is considerably smaller than the optimal SNRs, which makes sense, as the templates used ct representations of the physical events. For the event GW121226, we hit about 1/3 of the optimal SNR, which means that the most accurate template.
	whitened temp looking for in the adding up frequency corre	to determine the frequency of each event. To do so, we can take the cumulative sum of the power spectrum of each pre- plate. Looking at the power spectrum of the pre-whitened templates tell us what frequency components we are effectively the data. Taking the cumulative sum of that spectrum tells us "how much" of the filtered template we are reconstructing by quency components up to this frequency. Therefore, we can look at where this cumulative sum hits its halfway point, the responding to that point is the frequency for which half of the weight is above, and half of the weight is below.
[36]:	<pre>for i in ra tp = te tpft = tp_filt ps = np ps2 = p</pre>	<pre>plt.subplots(len(templates),2,figsize = (8,8)) ange(len(templates)): emplates[i][0] np.fft.rfft(tp*win) tered = tpft[:-1]*np.sqrt(np.mean([Ninv_L,Ninv_H],axis = 0)) p.abs(tp_filtered)**2 ps[ps!=0] fs[:-1][np.l=0]</pre>
	<pre>ps2 = p fs2 = f ax[i][0 ps_cums ax[i][1 mid = p diff = idx = r ax[i][1 ax[i][0</pre>	<pre>ps[ps!=0] fs[:-1][ps!=0] 0].loglog(fs2,ps2) sum = np.cumsum(ps2) 1].loglog(fs2,ps_cumsum) ps_cumsum[-1]/2 np.abs(ps_cumsum-mid) np.where(diff==np.min(diff)) 1].axvline(fs2[idx],linestyle = '',c='k') 1].set_title('Midpoint frequency = {} Hz'.format(fs2[idx][0]),loc = 'left') 0].set_ylabel(fnames[i][10:-16])</pre>
	ax[i][0].s ax[-1][0].s ax[-1][1].s fig.tight_1	D].set_ylabel(fnames[i][10:-16]) set_xlabel('\$f\$') set_xlabel('\$f\$')
	SI 10 ⁻⁶ -	$10^{6} - 10^{4} - 10^{2} = 10^{3}$ Midpoint frequency = 92.21875 Hz $10^{6} - 10^{$
	10 ³ -	$10^{6} - 10^{4} - 10^{2} = 10^{3}$ Midpoint frequency = 101.0 Hz $10^{8} - 10^{10} = 10^{10}$
	10 ³ - 10 ¹⁰ 10 ⁻² - 10 ⁻⁷ -	10^{6} 10^{4} 10^{2} 10^{3} 10^{2} 10^{3} Midpoint frequency = 92.8125 Hz
	10 ² -	Midpoint frequency = 92.8125 Hz 10^{6} 10^{4} 10^{2} 10^{3} 10^{3} 10^{3} 10^{3}
	width of the pe	ertainty on the detection time, we look at the width of the peak of the match filter. The 1- σ uncertainty corresponds to half the eak when it drops below its maximum minus the estimate of the noise for that match filter. The peak is generally asymmetrical, e mean of the upper and lower limit to get an estimate. This gives an estimate of the error in the detection time for an individual
	detector. The ti	time delay between both detectors is simply $\Delta t = t_H - t_L $. We can get the error on the time delay, $\sigma_{\Delta t} = \sqrt{\sigma_{t,H}^2 + \sigma_{t,L}^2}$ with the angle that the source makes with the vertical is $\theta = \arcsin(\frac{c\Delta t}{D})$, where c is the speed of light, and D is the error the detectors. We propagate the error through the derivative method and get that $\sigma_\theta = \frac{c\Delta t}{D} \frac{1}{\sqrt{1-(\frac{c\sigma_{\Delta t}}{D})^2}}$ call uncertainty, we here average over all time delays and time delay errors. The plot shows an example on the upper and is for the Hanford events.
[37]:	fig, ax = p deltats = r	
	for i in ra H_idx = L_idx =	<pre>plt.subplots(len(H_mfs),1,figsize = (7,8)) np.zeros(len(H_mfs)) r = np.zeros(len(H_mfs)) ange(len(H_mfs)): = np.where(np.abs(H_mfs[i]) == np.max(np.abs(H_mfs[i])))[0][0] = np.where(np.abs(L_mfs[i]) == np.max(np.abs(L_mfs[i])))[0][0]</pre>
	for i in rate H_idx = L_idx = L_idx = AH = np AL = np BH = np BL = np H_up_id L_up_id H_low_i L_low_i	<pre>np.zeros(len(H_mfs)) r = np.zeros(len(H_mfs)) ange(len(H_mfs)): = np.where(np.abs(H_mfs[i]) == np.max(np.abs(H_mfs[i])))[0][0] = np.where(np.abs(L_mfs[i]) == np.max(np.abs(L_mfs[i])))[0][0] p.abs((np.abs(H_mfs[i][H_idx:]) - (np.max(np.abs(H_mfs[i])) - H_noise_est))) p.abs((np.abs(L_mfs[i][L_idx:]) - (np.max(np.abs(H_mfs[i])) - H_noise_est))) p.abs((np.abs(H_mfs[i][:H_idx]) - (np.max(np.abs(H_mfs[i])) - L_noise_est))) p.abs((np.abs(L_mfs[i][:L_idx]) - (np.max(np.abs(H_mfs[i])) - L_noise_est))) dx = np.where(AH==np.min(AH))[0][0]+H_idx dx = np.where(AH==np.min(AH))[0][0]+L_idx didx = np.where(BH==np.min(BH))[0][0] didx = np.where(BH==np.min(BH))[0][0]</pre>
	for i in rate H_idx = L_idx = L_idx = L_idx = RAH = RA	<pre>np.zeros(len(H_mfs)) r = np.zeros(len(H_mfs)) ange(len(H_mfs)): = np.where(np.abs(H_mfs[i]) == np.max(np.abs(H_mfs[i])))[0][0] = np.where(np.abs(L_mfs[i]) == np.max(np.abs(L_mfs[i])))[0][0] p.abs((np.abs(H_mfs[i]) = np.max(np.abs(H_mfs[i]))) = np.max(np.abs(H_mfs[i])) = np.max(np.abs(H</pre>
	for i in rate H_idx = L_idx = L_idx = L_idx = RAH = RA	<pre>np.zeros(len(H_mfs)) r = np.zeros(len(H_mfs)) ange(len(H_mfs)): = np.where(np.abs(H_mfs[i]) == np.max(np.abs(H_mfs[i])))[0][0] = np.where(np.abs(L_mfs[i]) == np.max(np.abs(L_mfs[i])))[0][0] p.abs((np.abs(H_mfs[i][H_idx:]) - (np.max(np.abs(H_mfs[i])) - H_noise_est))) p.abs((np.abs(L_mfs[i][L_idx:]) - (np.max(np.abs(H_mfs[i])) - H_noise_est))) p.abs((np.abs(L_mfs[i][:L_idx]) - (np.max(np.abs(H_mfs[i])) - L_noise_est))) p.abs((np.abs(L_mfs[i][:L_idx]) - (np.max(np.abs(H_mfs[i])) - L_noise_est))) dx = np.where(AH==np.min(AH))[0][0] + H_idx dx = np.where(AH==np.min(AH))[0][0] + L_idx dx = np.where(BH==np.min(BH))[0][0] sidx = np.where(BL==np.min(BH))[0][0] sidx = np.where(BL==np.min(BH))[0][0] scil = np.abs(t(H_idx] - t(L_idx)) r = 0.5*(np.abs((t(H_up_idx) - t(H_idx))) + np.abs(t(H_low_idx) - t(H_up_idx))) scerr[i] = np.sqrt(t_H_err**2+t_L_err**2) clot(t(E2],np.abs(H_mfs[i])) set_xlim(t(H_low_idx) - 50*dt, t(H_up_idx) + 50*dt) vlines((t(H_idx)), t(H_low_idx), t(H_up_idx)), 0, (np.abs(H_mfs[i](H_idx)), np.abs(H_mfs[i](H_low_idx)) vlines((t(H_idx)), t(H_low_idx), t(H_up_idx)), 0, (np.abs(H_mfs[i](H_idx)), np.abs(H_mfs[i](H_low_idx)) vlines((t(H_idx)), t(H_low_idx), t(H_up_idx)), 0, (np.abs(H_mfs[i](H_idx)), np.abs(H_mfs[i](H_low_idx)) vlines((t(H_idx)), t(H_idx)), t(H_idx), t(H_idx</pre>
	## AH = np ## AL = np ## BH = np ## BL = np ## Lup_id ## Low_i ## Low_i ## Low_i ## deltats ## t_H_err ## t_L_err ## deltats ## ax[i].p ## ax[i].v ## dx]),np.abs	<pre>np.zeros(len(H_mfs)) r = np.zeros(len(H_mfs)) ange(len(H_mfs)): = np.where(np.abs(H_mfs[i]) == np.max(np.abs(H_mfs[i])))[0][0] = np.where(np.abs(H_mfs[i]) == np.max(np.abs(L_mfs[i])))[0][0] p.abs((np.abs(H_mfs[i][H_idx:]) - (np.max(np.abs(H_mfs[i])) - H_noise_est))) p.abs((np.abs(L_mfs[i][L_idx:]) - (np.max(np.abs(H_mfs[i])) - H_noise_est))) p.abs((np.abs(H_mfs[i][:L_idx]) - (np.max(np.abs(H_mfs[i])) - L_noise_est))) p.abs((np.abs(L_mfs[i][:L_idx]) - (np.max(np.abs(H_mfs[i])) - L_noise_est))) dx = np.where(AH==np.min(AH))[0][0] + H_idx dx = np.where(AH==np.min(AH))[0][0] + L_idx idx = np.where(BH==np.min(BH))[0][0] s[i] = np.abs(t[H_idx] - t[L_idx]) r = 0.5*(np.abs((t[H_up_idx] - t[H_idx])) + np.abs(t[H_low_idx] - t[H_up_idx])) r = 0.5*(np.abs((t[L_up_idx] - t[L_idx])) + np.abs(t[L_low_idx] - t[L_up_idx])) seerr[i] = np.sqrt(t_H_err**2+t_L_err**2) clot(t[:-2],np.abs(H_mfs[i])) set_xlim(t[H_low_idx] - 50*dt, t[H_up_idx] + 50*dt) vlines([t[H_idx], t[H_low_idx], t[H_up_idx]], 0, [np.abs(H_mfs[i][H_idx]), np.abs(H_mfs[i][H_low_idx]) vlines([t[H_idx], t[H_idx], t[H_up_idx]], 0, [np.abs(H_mfs[i][H_idx]), np.abs(H_mfs[i][H_idx]) </pre>
	# in rate of the property of t	<pre>np.zeros(len(H_mfs)) r = np.zeros(len(H_mfs)) ange(len(H_mfs)); e = np.where(np.abs(H_mfs[i])==np.max(np.abs(H_mfs[i])))[0][0] e = np.where(np.abs(L_mfs[i])==np.max(np.abs(H_mfs[i])))[0][0] e = np.where(np.abs(L_mfs[i])==np.max(np.abs(H_mfs[i]))-H_noise_est))) e = np.where(np.abs(H_mfs[i])[L_idx:])-(np.max(np.abs(H_mfs[i]))-H_noise_est))) e = np.where(np.abs(H_mfs[i]:H_idx)-(np.max(np.abs(H_mfs[i]))-H_noise_est))) e = np.where(np.abs(H_mfs[i]:L_idx))-(np.max(np.abs(H_mfs[i]))-L_noise_est))) e = np.where(np.abs(H_mfs[i]:L_idx))-(np.max(np.abs(H_mfs[i]))-L_noise_est))) e = np.where(np.abs(H_mfs[i])-(np.max(np.abs(H_mfs[i]))-L_noise_est))) e = np.where(np.abs(H_mfs[i])-(np.max(np.abs(H_mfs[i]))-L_noise_est)) e = np.where(np.abs(H_mfs[i])-(np.abs(H_mfs[i])-L_noise_est)) e = np.where(np.abs(H_mfs[i])-(np.a</pre>
	for i in rath H_idx = H_idx = L_idx = AH = np AL = np BH = np BL = np H_up_id L_up_id H_low_i L_low_i L_low_i deltats t_H_err t_L_err deltats ax[i].p ax[i].v dx]),np.abs 3	pr_zeros(len(E_wfs)) = op_zeros(len(B_mfs)) = np_zeros(len(B_mfs)) =
38]:	for i in rate	
	for i in ra H_idx = L_idx = AH = np AL = np BH = np BL = np H_up_id L_up_id L_low_i deltats t_H_err t_L_err deltats ax[i].p ax[i].s ax[i].v dx]),np.abs 3 7 2 - 0.6 - 0.4 - 0.2 - 0.0 - 16.5 0.6 - 0.4 - 0.2 - 0.0 - 16.5 0.6 - 0.7 16.5 0.7 16.5 1.0 - 1.0	## procedure (im fig) = mprocedure (im fig)
[39]:	for i in rate H_idx = L_idx =	### process (left (M miles) = mpt. process (mpt. miles (in (in miles (in miles (in (in m
39]:	for i in rate H_idx = L_idx =	10
[]:	for i in rate H_idx = L_idx =	10
[39]:	for i in rate H_idx = L_idx =	10
[39]:	for i in rate H_idx = L_idx =	10
[]:	for i in rate H_idx = L_idx =	The control (lamin (miles) The control (miles)
39]:	for i in rate H_idx = L_idx =	The control (lamin (miles) The control (miles)
[39]:	for i in rate H_idx = L_idx =	10
[]:	for i in rate H_idx = L_idx =	The control (lamin (miles) The control (miles)
39]:	for i in rate H_idx = L_idx =	10
[]:	for i in rate H_idx = L_idx =	The control (1811) The con
[]:	for i in rate H_idx = L_idx =	The control (1811) The con
39]:	for i in rate H_idx = L_idx =	The control (lamin (miles) The control (miles)
39]:	for i in rate H_idx = L_idx =	The control (1811) The con
39]:	for i in rate H_idx = L_idx =	The control (1811) The con
39]:	for i in rate H_idx = L_idx =	10
39]:	for i in rate H_idx = L_idx =	The control function
39]:	for i in rate H_idx = L_idx =	The control (lamin (miles) The control (miles)
39]:	for i in rate H_idx = L_idx =	10
39]:	for i in rate H_idx = L_idx =	The control (1811) The con
39]:	for i in rate H_idx = L_idx =	The control (1811) The con
39]:	for i in rate H_idx = L_idx =	The control (1811) The con
39]:	for i in rate H_idx = L_idx =	The control (lamin (miles) The control (miles)
[39]:	for i in rate H_idx = L_idx =	The control (lamin (miles) The control (miles)
[39]:	for i in rate H_idx = L_idx =	The control (lamin (miles) The control (miles)
[39]:	for i in rate H_idx = L_idx =	10
[39]:	for i in rate H_idx = L_idx =	10
	for i in rate H_idx = L_idx =	10
[39]:	for i in rate H_idx = L_idx =	10
39]:	for i in rate H_idx = L_idx =	10
[39]:	for i in rate H_idx = L_idx =	10
[39]:	for i in rate H_idx = L_idx =	Decrete (Len(I miler) - my_lector (Len(II miler)) - my_lector (Len(II mi
[39]:	for i in rate H_idx = L_idx =	Decrete (Len(I miler) - my_lector (Len(II miler)) - my_lector (Len(II mi
[]:	for i in rate H_idx = L_idx =	10
[]:	for i in rate H_idx = L_idx =	10
39]:	for i in rate H_idx = L_idx =	10
39]:	for i in rate H_idx = L_idx =	10