24 Nilpotent groups

24.1. Recall that if G is a group then

$$Z(G) = \{a \in G \mid ab = ba \text{ for all } b \in G\}$$

Note that $Z(G) \lhd G$. Take the canonical epimorphism $\pi \colon G \to G/Z(G)$. Since $Z(G/Z(G)) \lhd G/Z(G)$ we have:

$$\pi^{-1}\left(Z\left(G/Z(G)\right)\right)\lhd G$$

Define:

$$\begin{split} Z_1(G) := & Z(G) \\ Z_i(G) := & \pi_i^{-1} \left(Z\left(G/Z_{i-1}(G) \right) \right) \qquad \text{for } i > 1 \end{split}$$

where $\pi_i \colon G \to G/Z_{i-1}(G)$. We have $Z_i(G) \lhd G$ for all i.

24.2 Definition. The *upper central series* of a group G is a sequence of normal subgroups of G:

$$\{e\} = Z_0(G) \subseteq Z_1(G) \subseteq Z_2(G) \subseteq \dots$$

24.3 Definition. A group G is *nilpotent* if $Z_i(G) = G$ for some i.

If G is a nilpotent group then the *nilpotency class* of G is the smallest $n \geq 0$ such that $Z_n(G) = G$.

24.4 Proposition. Every nilpotent group is solvable.

Proof. If G is nilpotent group then the upper central series of G

$$\{e\} = Z_0(G) \subseteq Z_1(G) \subseteq \ldots \subseteq Z_n(G) = G$$

is a normal series.

Moreover, for every i we have

$$Z_i(G)/Z_{i-1}(G) = Z(G/Z_{i-1}(G))$$

so all quotients of the upper central series are abelian.

24.5 Note. Not every solvable group is nilpotent. Take e.g. G_T . We have $Z(G_T) = \{I\}$, and so

$$Z_i(G_T) = \{I\}$$

for all i. Thus G_T is not nilpotent. On the other hand G_T is solvable with a composition series

$$\{I\} \subseteq \{I, R_1, R_2\} \subseteq G_T$$

24.6 Proposition.

- 1) Every abelian group is nilpotent.
- 2) Every finite p-group is nilpotent.

Proof.

- 1) If G is abelian then $Z_1(G) = G$.
- 2) If G is a p-group then so is $G/Z_i(G)$ for every i. By Theorem 16.4 if $G/Z_i(G)$ is non-trivial then its center $Z(G/Z_i(G))$ a non-trivial group. This means that if $Z_i(G) \neq G$ then $Z_i(G) \subseteq Z_{i+1}(G)$ and $Z_i(G) \neq Z_{i+1}(G)$. Since G is finite we must have $Z_n(G) = G$ for some G.
- **24.7 Definition.** A *central series* of a group G is a normal series

$$\{e\} = G_0 \subseteq \ldots \subseteq G_k = G$$

such $G_i \triangleleft G$ and $G_{i+1}/G_i \subseteq Z(G/G_i)$ for all i.

24.8 Proposition. If $\{e\} = G_0 \subseteq \ldots \subseteq G_k = G$ is a central series of G then $G_i \subseteq Z_i(G)$

Proof. Exercise. □

24.9 Corollary. A group G is nilpotent iff it has a central series.

Proof. If *G* is nilpotent then

$$\{e\} = Z_0(G) \subseteq Z_1(G) \subseteq \ldots \subseteq Z_n(G) = G$$

is a central series of G.

Conversely, if

$$\{e\} = G_0 \subseteq \ldots \subseteq G_k = G$$

is a central series of G then by (24.9) we have $G=G_k\subseteq Z_k(G)$, so $G=Z_k(G)$, and so G is nilpotent. \Box

24.10 Note. Given a group G define

$$\begin{split} &\Gamma_0(G) := &G \\ &\Gamma_i(G) := &[G,\Gamma_{i-1}(G)] \quad \text{ for } i > 0. \end{split}$$

We have

$$\ldots \subseteq \Gamma_1(G) \subseteq \Gamma_0(G) = G$$

24.11 Proposition. If G is a group then

1)
$$\Gamma_i(G) \triangleleft G$$
 for all i

2) $\Gamma_{i+1}(G)/\Gamma_i(G) \subseteq Z(G/\Gamma_i(G))$ for all i
Proof. Exercise.
24.12 Definition. If $\Gamma_n(G)=\{e\}$ then
$\{e\} = \Gamma_n(G) \subseteq \ldots \subseteq \Gamma_0(G) = G$
is a central series of G . It is called the <i>lower central series</i> of G .
24.13 Proposition. A group G is nilpotent iff $\Gamma_n(G) = \{e\}$
Proof. Exercise.
24.14 Theorem.
1) Every subgroup of a nilpotent group is nilpotent.
2) Ever quotient group of a nilpotent group is nilpotent.
3) If $H \lhd G$, and both H and G/H are nilpotent groups then G is also nilpotent.
<i>Proof.</i> Similar to the proof of Theorem 23.6.
24.15 Corollary. If G_1, \ldots, G_k are nilpotent groups then the direct produc $G_1 \times \cdots \times G_k$ is also nilpotent.
<i>Proof.</i> Follows from part 3) of Theorem 24.14.

24.16 Corollary. If p_1, \ldots, p_k are primes and P_i is a p_i -group then $P_1 \times \ldots \times P_k$ is a nilpotent group.

Proof. Follows from (24.6) and (24.15).

- **24.17 Theorem.** Let G be a finite group. The following conditions are equivalent.
 - 1) G is nilpotent.
 - 2) Every Sylow subgroup of G is a normal subgroup.
 - *G* isomorphic to the direct product of its Sylow subgroups.
- **24.18 Lemma.** If G is a finite group and P is a Sylow p-subgroup of G then

$$N_G(N_G(P)) = N_G(P)$$

Proof. Since $P \subseteq N_G(P) \subseteq G$ and P is a Sylow p-subgroup of G therefore P is a Sylow p-subgroup of $N_G(P)$. Moreover, $P \lhd N_G(P)$, so P is the only Sylow p-subgroup of G.

Take $a \in N_G(N_G(P))$. We will show that $a \in N_G(P)$. We have

$$aPa^{-1} \subseteq aN_G(P)a^{-1} = N_G(P)$$

As a consequence aPa^{-1} is a Sylow p-subgroup of $N_G(P)$, and thus $aPa^{-1}=P$. By the definitions of normalizer this gives $a \in N_G(P)$.

24.19 Lemma. If H is a proper subgroup of a nilpotent group G (i.e. $H \subseteq G$, and $H \neq G$), then H is a proper subgroup of $N_G(H)$.

Proof. Let $k \geq 0$ be the biggest integer such that $Z_k(G) \subseteq H$. Take $a \in Z_{k+1}(G)$ such that $a \notin H$. We will show that $a \in N_G(H)$.

We have

$$H/Z_k(G) \subseteq G/Z_k(G)$$
 and $Z_{k+1}(G)/Z_k(G) = Z(G/Z_k(G))$

If follows that for every $h \in H$ we have

$$ahZ_k(G) = (aZ_k(G))(hZ_k(G)) = (hZ_k(G))(aZ_k(G)) = haZ_k(G)$$

Therefore ha=ahh' for some $h'\in Z_k(G)\subseteq H$, and so $a^{-1}ha=hh'\in H$. As a consequence $a^{-1}Ha=H$, so $a^{-1}\in N_G(H)$, and so also $a\in N_G(H)$.

Proof of Theorem 24.17.

1) \Rightarrow 2) Let P be a Sylow p-subgroup of G. It suffices to show that $N_G(P) = G$.

Assume that this is not true. Then $N_G(P)$ is a proper subgroup G, and so by Lemma 24.19 it is also a proper subgroup of $N_G(N_G(P))$. On the other hand by Lemma 24.18 we have $N_G(N_G(P)) = N_G(P)$, so we obtain a contradiction.

- 2) \Rightarrow 3) Exercise.
- 3) \Rightarrow 1) Follows from Corollary 24.16.

25 Rings

- **25.1 Definition.** A *ring* is a set R together with two binary operations: addition (+) and multiplication (\cdot) satisfying the following conditions:
 - 1) R with addition is an abelian group.
 - 2) multiplication is associative: (ab)c = a(bc)
 - 3) addition is distributive with respect to multiplication:

$$a(b+c) = ab + ac (a+b)c = ac + bc$$

The ring R is commutative if ab = ba for all $a, b \in R$.

The ring R is a ring with identity if there is and element $1 \in R$ such that a1 = 1a = a for all $a \in R$. (Note: if such identity element exists then it is unique)

25.2 Examples.

- 1) \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} are commutative rings with identity.
- 2) $\mathbb{Z}/n\mathbb{Z}$ is a ring with multiplication given by

$$k(n\mathbb{Z}) \cdot l(n\mathbb{Z}) := kl(n\mathbb{Z})$$

3) If R is a ring then

$$R[x] = \{a_0 + a_1 x + \ldots + a_n x^n \mid a_i \in R, \ n \ge 0\}$$

is the ring of polynomials with coefficients in ${\cal R}$ and

$$R[[x]] = \{a_0 + a_1 x + \dots \mid a_i \in R\}$$

is the ring of formal power series with coefficients in ${\cal R}.$

If R is a commutative ring then so are R[x], R[[x]]. If R has identity then R[x], R[[x]] also have identity.

- 4) If R is a ring then $M_n(R)$ is the ring of $n \times n$ matrices with coefficients in R.
- 5) The set $2\mathbb{Z}$ of even integers with the usual addition and multiplication is a commutative ring without identity.
- 6) If G is an abelian group then the set $\mathrm{Hom}(G.G)$ of all homomorphisms $f\colon G\to G$ is a ring with multiplication given by composition of homomorphisms and addition defined by

$$(f+g)(a) := f(a) + g(a)$$

7) If R is a ring and G is a group then define

$$R[G] := \{ \sum_{g \in G} a_g g \mid a_g \in R, \ a_g \neq 0 \text{ for finitely many } g \text{ only } \}$$

addition in R[G]:

$$\sum_{g \in G} a_g g + \sum_{g \in G} b_g g = \sum_{g \in G} (a_g + b_g) g$$

multiplication in R[G]:

$$\left(\sum_{g \in G} a_g g\right) \left(\sum_{g \in G} b_g G\right) = \sum_{g \in G} \left(\sum_{hh' = g} a_h a_{h'}\right) g$$

The ring R[G] is called the *group ring* of G with coefficients in R.

25.3 Definition. Let R be a ring. An element $0 \neq a \in R$ is a *left (resp. right)* zero divisor in R if there exists $0 \neq b \in R$ such that ab = 0 (resp. ba = 0).

An element $0 \neq a \in R$ is a zero divisor if it is both left and right zero divisor.

25.4 Example. In $\mathbb{Z}/6\mathbb{Z}$ we have $2 \cdot 3 = 0$, so 2 and 3 are zero divisors.

25.5 Definition. An *integral domain* is a commutative ring with identity $1 \neq 0$ that has no zero divisors.

25.6 Proposition. Let R be an integral domain. If $a,b,c\in R$ are non-zero elements such that

$$ac = bc$$

then a = b.

Proof. We have (a-b)c=0. Since $c\neq 0$ and R has no zero divisors this gives a-b=0, and so a=b.

25.7 Definition. Let R be a ring with identity. An element a has a *left (resp. right) inverse* if there exists $b \in R$ such that ba = 1 (resp. there exists $c \in R$ such that cb = 1).

An element $a \in R$ is a *unit* if it has both a left and a right inverse.

25.8 Proposition. If a is a unit of R then the left inverse and the right inverse of a coincide.

Proof. If ba = 1 = ac then

$$b = b \cdot 1 = b(ac) = (ba)c = 1 \cdot c = c$$

25.9 Note. The set of all units of a ring R forms a group R^* (with multiplication). E.g.:

$$\mathbb{Z}^* = \{-1, 1\} \cong \mathbb{Z}/2\mathbb{Z}$$

 $\mathbb{R}^* = \mathbb{R} - \{0\}$
 $(\mathbb{Z}/14\mathbb{Z})^* = \{1, 3, 5, 9, 11, 13\} \cong \mathbb{Z}/6\mathbb{Z}$

104

25.10 Definition. A *division ring* is a ring R with identity $1 \neq 0$ such that every non-zero element of R is a unit.

A field is a commutative division ring.

25.11 Examples.

- 1) \mathbb{R} , \mathbb{Q} , \mathbb{C} are fields.
- 2) \mathbb{Z} is an integral domain but it is not a field.
- 3) The ring of real quaternions is defined by

$$\mathbb{H} := \{a + bi + cj + dk \mid a, b, c, d \in \mathbb{R}\}\$$

Addition in \mathbb{H} is coordinatewise. Multiplication is defined by the identities:

$$i^2 = j^2 = k^2 = -1, \quad ij = -ji = k, \quad jk = -kj = i, \quad ki = -ik = j$$

The ring $\mathbb H$ is a (non-commutative) division ring with the identity

$$1 = 0 + 0i + 0j + 0k$$

The inverse of an element z=a+bi+cj+dk is given by

$$z^{-1} = (a/\|z\|) - (b/\|z\|)i - (c/\|z\|)j - (d/\|z\|)k$$

where $||z|| = \sqrt{a^2 + b^2 + c^2 + d^2}$

25.12 Proposition. The following conditions are equivalent.

- 1) $Z/n\mathbb{Z}$ is a field.
- 2) $\mathbb{Z}/n\mathbb{Z}$ is an integral domain.
- 3) n is a prime number.

Proof. Exercise.

26 Ring homomorphisms and ideals

26.1 Definition. Let R, S be rings. A ring homomorphism is a map

$$f \colon R \to S$$

such that

- 1) f(a+b) = f(a) + f(b)
- 2) f(ab) = f(a)f(b)

26.2 Note. If R, S are rings with identity then these conditions do not guarantee that $f(1_R) = 1_S$.

Take e.g. rings with identity R_1, R_2 and define

$$R_1 \oplus R_2 = \{(r_1, r_2) \mid r_1 \in R_1, R_2\}$$

with addition and multiplication defined coordinatewise. Then $R_1 \oplus R_2$ is a ring with identity $(1_{R_1}, 1_{R_2})$. The map

$$f: R_1 \to R_1 \oplus R_2, \quad f(r_1) = (r_1, 0)$$

is a ring homomorphism, but $f(1_{R_1}) \neq (1_{R_1}, 1_{R_2})$.

26.3 Note. Rings and ring homomorphisms form a category $\Re ing$.

26.4 Proposition. A ring homomorphism $f: R \to S$ is an isomorphism of rings iff f is a bijection.

Proof. Exercise.

26.5 Definition. If $f: R \to S$ is a ring homomorphism then

$$Ker(f) = \{ a \in R \mid f(a) = 0 \}$$

26.6 Proposition. A ring homomorphism is 1-1 iff $Ker(f) = \{0\}$

Proof. The same as for groups (4.4).

26.7 Definition. A *subring* of a ring R is a subset $S \subseteq R$ such that S is an additive subgroup of R and it is closed under the multiplication.

A *left ideal* of R is a subring $I \subseteq R$ such that for every $a \in I$ and $b \in R$ we have $ab \in I$. A *right ideal* of R is defined analogously.

A *ideal* of R is a subring $I \subseteq R$ such that I is both left and right ideal.

- **26.8 Notation.** If *I* is an ideal of *R* then we write $I \triangleleft R$.
- **26.9 Proposition.** If $f: R \to S$ is a ring homomorphism then $\mathrm{Ker}(f)$ is an ideal of R.

Proof. Exercise. □

26.10 Definition. If I is an ideal of a ring R then the *quotient ring* R/I is defined as follows.

R/I := the set of left cosets of I in R

Addition: (a+I)+(b+I)=(a+b)+I, multiplication: (a+I)(b+I)=ab+I.

26.11 Note. If $I \triangleleft R$ then the map

$$\pi \colon R \to R/I, \quad \pi(a) = a + I$$

is a ring homomorphism. It is called the *canonical epimorphism* of R onto R/I.

26.12 Theorem. If $f \colon R \to S$ is a homomorphism of rings then there is a unique homomorphism

$$\bar{f} \colon R/\operatorname{Ker}(f) \to S$$

such that the following diagram commutes:

Moreover, \bar{f} is a monomorphism and $\mathrm{Im}(\bar{f})=\mathrm{Im}(f).$

Proof. Similar to the proof of Theorem 6.1 for groups.

26.13 First Isomorphism Theorem. If $f: R \to S$ is a homomorphism of rings that is an epimorphism then

$$R/\operatorname{Ker}(f) \cong S$$

Proof. Take the map $\bar{f}: R/\operatorname{Ker}(f) \to S$. Then $\operatorname{Im}(\bar{f}) = \operatorname{Im}(f) = S$, so \bar{f} is an epimorphism. Also, \bar{f} is 1-1. Therefore \bar{f} is a bijective homomorphism and thus it is an isomorphism.

26.14 Note. Let $I, J \triangleleft R$. Check:

1) <i>I</i>	\cap	J	\triangleleft	R
_	, -		0	7	- 0

2)
$$I+J \triangleleft R$$
 where $I+J=\{a+b \mid a \in I, b \in J\}$

26.15 Second Isomorphism Theorem. If I,J are ideals of R then

$$I/(I \cap J) \cong (I+J)/J$$

Proof. Exercise. □

26.16 Third Isomorphism Theorem. If I,J are ideals of R and $J\subseteq I$ then I/J is a ideal of R/J and

$$(R/J)/(I/J) \cong R/I$$

Proof. Exercise. □