Scilab Textbook Companion for Modern Electronics Communication by J. S. Beasley and G. Miller¹

Created by
Shruthi Murugan Thevar
electronics and telecommunication
Electrical Engineering
Anjuman-e-Islam's Kalsekar Technical Campus
College Teacher
Prof. Chaya.s
Cross-Checked by
Prof. Ramjan Khatik

March 7, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Modern Electronics Communication

Author: J. S. Beasley and G. Miller

Publisher: Phi Publications

Edition: 9

Year: 2008

ISBN: 9788120340046

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
1	Introductory topics	8
2	Amplitude Modulation Transmission	18
3	Amplitude Modulation Reception	24
4	Single Sideband Communications	27
5	Frequency Modulation Transmission	29
6	Frequency Modulation Reception	35
7	Communication Techniques	37
8	Digital Communication Coding Technique	40
9	Wired Digital Communications	43
10	Wireless Digital Communication	46
12	Transmission Lines	48
13	Wave Propagation	54
14	Antennas	58
16	Microwaves and Lasers	61

17 Television	63
18 Fibre Optics	65

List of Scilab Codes

Exa 1.1	example1	8
Exa 1.2	example2	9
Exa 1.3	example3	9
Exa 1.4	example4	10
Exa 1.5	example5	10
Exa 1.6	example6	10
Exa 1.7	example7	11
Exa 1.8	example8	13
Exa 1.9	example9	13
Exa 1.10	example10	14
Exa 1.11	example11	14
Exa 1.12	example12	15
Exa 1.13	example13	16
Exa 1.14	example14	16
Exa 2.1	example1	18
Exa 2.2	example $2 \dots \dots \dots \dots \dots$	19
Exa 2.3	example3	19
Exa 2.4	example4	20
Exa 2.5	example5	20
Exa 2.6	example6	21
Exa 2.7	example7	21
Exa 2.8	example8	22
Exa 2.9	example9	22
Exa 3.1	example1	24
Exa 3.2	$example 2 \dots \dots \dots \dots \dots$	25
Exa 3.3	example3	25
Exa 4.1	example1	27
Exa 4.2	$example 2 \dots \dots \dots \dots$	28

Exa 4.4	example4	28
Exa 5.1	example1	29
Exa 5.3	example3	30
Exa 5.4	example4	30
Exa 5.5	example5	30
Exa 5.6	example6	32
Exa 5.7	example7	32
Exa 5.8	example8	33
Exa 5.9	example9	33
Exa 6.1	example1	35
Exa 6.2	example2	35
Exa 7.6	example	37
Exa 7.7	example7	37
Exa 7.8	example8	38
Exa 7.9	example9	39
Exa 7.10	example10	39
Exa 8.1	example1	40
Exa 8.2	example2	40
Exa 8.3	example3	41
Exa 8.4	example4	41
Exa 9.1	example1	43
Exa 9.2	example2	44
Exa 9.3	example 3	44
Exa 9.4	example4	44
Exa 9.5	example4	45
Exa 10.2	example2	46
Exa 10.3	example3	46
Exa 12.1	example1	48
Exa 12.2	example2	48
Exa 12.3	example3	49
Exa 12.4	example4	49
Exa 12.5	example5	50
Exa 12.7	example7	50
Exa 12.8	example8	51
Exa 12.9	example9	52
Exa 12.10	example10	52
Exa 13.1	example1	54
Exa 13 2	example2	54

Exa 13.3	example3	55
Exa 13.4	example4	56
Exa 13.5	example5	56
Exa 14.1	example1	58
Exa 14.2	example2	58
Exa 14.3	example3	59
Exa 14.4	example4	59
Exa 16.1	example1	61
Exa 16.2	example2	61
Exa 16.3	example3	62
Exa 17.1	example1	63
Exa 17.2	$example 2 \dots \dots \dots \dots$	63
Exa 18.1	example1	65
Exa 18.2	$example 2 \dots \dots \dots \dots \dots$	65
Exa 18.3	example3	66
Exa 18.4	example4	66
Exa 18.5	$example 5 \dots \dots \dots \dots \dots \dots$	66

Introductory topics

Scilab code Exa 1.1 example1

```
1 //Introductory Topics: example 1-1: (pg no. 8)
2 P1=0.001;
3 dB=10*log(0.001/0.001);
4 x = 10^0;
5 y=x*P1*600;
6 V = sqrt(y);
7 printf ("\ndB = 10\log (P1/P2) = 10\log (1mW/1mW) = \%. f
     dBm", dB);
8 //0 dBm indicates result was obtained to a 1-mW
      reference
9 // voltage measured across 600 ohm load for 0dBm
      level is 0.775 V
10 printf ("\ndB = 10\log(P1/P2) \nwhere P2=V2^2/600 \nP1
      =0.001 \text{ W}');
11 printf("\n0 dBm = 10\log((V2^2)/600))/0.001");
12 printf("\nV2 = \%.5 f \ V", V);
13 //value of V2 is used to calculate the dBm(600)
      value
14 printf ("\ndBm(600) = 20\log(V2/0.775)");
```

Scilab code Exa 1.2 example2

```
1 //Introductory Topics : example 1-2 : (pg no. 9 & 10)
2 P = 0.001;
3 R=75;
4 R1=50;
5 x = (8/20);
6 y = (10^x);
7 V2=(y*0.775);
8 V=sqrt(P*R);
9 V1=sqrt(P*R1);
10 //It is a 600 ohm system so 0.775 V reference is
11 printf("\ndBm(600) = 20 \log (V2/0.775)");
12 printf("\nV2 = \%.3 f \ V", V2);
13 //voltage reference for 75-ohm system
14 printf ("\nV = sqrt(P*R) = \%.3 f V", V);
15 printf("\ndBm(75) = 20 \log (V/0.274)");
16 //voltage reference for 50-Ohm system
17 printf ("\nV = sqrt(P*R) = \%.4 f V", V1);
18 printf("\ndB(50)= 20 \log (V/0.2236)");
```

Scilab code Exa 1.3 example3

```
1 //Introductory Topics : example 1-3 : (pg no. 10)
2 x=(10/10);
3 y=(10^x);
4 P2=(y*0.001);
5 a=(log10(0.01/1));
6 z=(10*a);
7 //Converting +10dBm to Watts
8 printf("\n+10dBm =10log(P2/0/001)");
```

```
9 printf("\nP2 =%.2 f W",P2);
10 //Converting +10dBm to dBW
11 printf("\ndBW = 10 log (0.01W/1W)");
12 printf("\ndBW = %. f dBW",z);
```

Scilab code Exa 1.4 example4

Scilab code Exa 1.5 example5

```
1 //Introductory Topics :example 1-5 : (pg no. 16)
2 k=(1.38*10^-23);
3 T=(27+273);
4 f=(4*10^6);
5 R=100;
6 x=sqrt(4*k*T*f*R);
7 // to convert degres to kelvin, add 273 to it
8 printf("\nen = sqrt(4kT.delta(f)R) \nen = %.8 f Vrms",x);
```

Scilab code Exa 1.6 example6

```
1 //Introductory Topics : example 1-6 : (pg no. 18 &
      19)
2 x = 10;
3 y = 5;
4 z = (x/y);
5 a = (10 * log 10(z));
6 b=(10*log10(x));
7 c = (10 * log 10 (y));
8 d=(b-c);
9 //part(a)
10 printf("\nNR = ((Si/Ni)/(So/No)) = \%.f",z);
11 //part(b)
12 printf("\nNF = 10 \log ((Si/Ni)/(So/No)) = 10 \log NR \
      nNF = \%. f dB",a);
13 //part(c)
14 printf("\n 10\log(Si/Ni) = \%. f dB",b);
15 printf("\n 10log(So/No) = \%. f dB",c);
16 printf("\ntheir difference = \%. f dB",d);
```

Scilab code Exa 1.7 example?

```
//Introductory Topics :example 1-7 : (pg no. 21 & 22)

BW=200*10^3;
k=(1.38*10^-23);
T=(273+22);//converting degrees C into kelvin
R=(10*10^3);
R1=300;
NF1=3;
NF2=8;
NF2=8;
NR1=2;
NR2=6.31;
df=((%pi/2)*BW);
Pn=(k*T*df);
en=sqrt(4*Pn*R);
```

```
14 x=(14+20+20); //sum of the power gain of the three
      stages
15 y=(x/10);
16 Pg = (10^{y});
17 Po=(Pn*Pg);
18 eno=sqrt(Po*R1);
19 pg1 = (10^{(1.4)});
20 \text{ pg2} = (10^{(20)});
21 NR = (NR1 + ((NR2 - 1)/pg1) + ((NR2 - 1)/(pg1 * pg2)));
22 \text{ NF} = 10 * \frac{\log 10}{\ln R};
23 No=(NR*Pn*Pg);
24 \quad a = sqrt(No*R1);
25 //part(a)
26 printf("\ndelta(f)= (pi/2)*BW = \%.f Hz", df);//
       effective noise bandwidth
27 printf("\nPn = k.T.delta(f) = \%.17f W", Pn); // at the
       input
  printf("\nen=sqrt(4.k.T.delta(f).R) = \%.8 \text{ f V}", en); //
       Voltage
  printf("\nTpg = 14dB+20dB+20dB = \%. f dB",x);//total
      power gain in decibels
30 printf("\n54dB = 10\log PG \nPG = \%.f", Pg); // total
      power gain
31 printf("\nPn(out) = Pn(in).PG = \%.12 f W", Po); //
      assuming perfect noiseless amplifiers
32 printf("\nen(out) = \%.6 f V", eno); //output driven by
      300 Ohm load & P=V^2/R
33 //part(b)
34 printf("\nPG1=14dB = 25.1 \nPG2=PG3= 20dB = 100 \nNF1
      = 3dB \ \ NR1=2 \ \ NF2=NF3=8dB \ \ \ NR2=NR3=6.31");
35 \operatorname{printf}("\operatorname{NNR=NR1+(NR2-1/PG1)} + \ldots + (\operatorname{NRn-1/PG1.PG2} \ldots)
      PG(n-1))"); // friiss 's formula
36 printf("\nNR = \%.3 f", NR); // noise ratio
37 printf("\nNF = \%.2 \, f \, dB", NF); // noise figure
38 //part(c)
39 printf ("\nNR = (Si/Ni)/(So/No) \ \nPG = \%.1 \ f*10^5", pg1
      );
40 printf("\nNR = No/(Ni*PG) \nNo = \%.12 f W", No);
```

```
41 printf("\nNo = (en^2)/R \ nen = \%.6 f V",a);//outputnoise voltage
```

Scilab code Exa 1.8 example8

```
1 //Introductory Topics :example 1-8 : (pg no. 24)
2 k=1.38*10^-23;
3 T=(35+40+52);//total temperature
4 df=(1*10^6);
5 Teq=52;
6 To=290;
7 Pn=(k*T*df);
8 x=(Teq/To);
9 NR=(x+1);
10 NF=(10*log10(NR));
11 printf("\nPn = k.T.delta(f) = %.17f W',Pn);//Noise power
12 printf("\nTeq = To(NR-1) \nNR = %.2f",NR);//noise ratio
13 printf("\nNF = 10log(NR) = %.3f dB",NF);//noise figure
```

Scilab code Exa 1.9 example9

```
//Introductory Topics :example 1-9 : (pg no. 25)
x=7*10^-3;
y=0.18*10^-3;
z=10*log10(x/y);
// o/p power measured 400-Hz audio signal modulates
a carrier
printf("\nS+N+D = %.3 f W',x);
// o/p power measured when a filter cancels 400-Hz
portion of the o/p
```

```
8 printf("\nN+D = %.5 f W",y);
9 printf("\nSINAD = 10 log(S+N+D/N+D)");
10 printf("\nSINAD = %.1 f dB",z);
```

Scilab code Exa 1.10 example10

```
//Introductory Topics : example 1-10 : (pg no. 26)
i = 14*10^-3; //dc current
R=50;
x = (20*i*R);
y=10*log10(x);
printf("\nNR = 20.Idc.R = %.f",x); // noise ratio
printf("\nNF = 10log(NR) = %.2f dB",y); // noise
figure
```

Scilab code Exa 1.11 example11

```
1 //Introductory Topics : example 1-11 : (pg no. 37)
2 f = (12*10^3);
3 L=3*10^-3;
4 C=(0.1*10^-6);
5 R = 30;
6 x = L *C;
7 y = sqrt(x);
8 z = (2*\%pi*y);
9 a = (1/z);
10 X1 = (2 * \%pi * f * L);
11 Xc = (1/(2*\%pi*f*C));
12 b = (X1 - Xc)^2;
13 c=R^2;
14 d=sqrt(c+b);
15 printf("\nfr = 1/2.pi.sqrt(LC) = %.f Hz",a);
16 / at 12 kHz
```

Scilab code Exa 1.12 example12

```
1 //Introductory Topics : example 1-12 : (pg no. 38 &
      39)
2 R1 = 20;
3 R2=1;
4 L=1*10^-3;
5 C=0.4*10^-6;
6 ein=50*10^-3;
7 f = 12 * 10^3;
8 x = sqrt(L*C);
9 y=(1/(2*\%pi*x));
10 eo = ein * (R2/(R2+R1));
11 XL = (2*\%pi*f*L);
12 XC = (1/(2*\%pi*f*C));
13 a=(R1+R2)^2;
14 b = (XL - XC)^2;
15 z = sqrt(a+b);
16 zo = sqrt((R2^2) + b);
17 m = (ein*(zo/z));
18 printf("\nfr = 1/2.pi.sqrt(LC) = %.f Hz",y);//
      resonant frequency
19 printf("\neout = ein *(R2/R1+R2) = \%.5 f V", eo); //o/p
       voltage at resonance
20 // at f=12 kHz
21 printf("\nXL = 2.pi.f.L = %.1 f Ohm", XL);
22 printf ("\nXC = 1/2. pi.f.C = \%.1 f Ohm", XC);
23 printf ("\nZtotal = sqrt ((R1+R2)^2 +(XL-XC)^2) = \%.1 f
       Ohm",z);
24 printf("\nZout = sqrt(R2^2) + (XL-XC)^2 = \%.1 f Ohm", zo
```

```
); 25 printf("\neout = \%.4\,\mathrm{f} V",m);//o/p voltage at 12kHz
```

Scilab code Exa 1.13 example13

```
1 //Introductory Topics : example 1-13 : (pg no. 40 &
      41)
2 a=460*10^3;
3 b=450*10^3;
4 BW=a-b;
5 fr=455*10<sup>3</sup>;
6 \quad Q = (fr/BW);
7 C=0.001*10^-6;
8 x = (fr*2*\%pi);
9 y=(1/x)^2;
10 z=y/C;
11 R = (2 * \%pi * z * BW);
12 //part(a) : bandwidth
13 printf("\nBW = fhc-flc = %. f Hz", BW);
14 //part(b) : Quality factor
15 //filter's peak o/p occurs at 455kHz
16 printf("\nQ = fr/BW = \%.1 f kHz",Q);
17 //part(c) : value of inductance
18 printf("\nfr = 1/2.pi.sqrt(LC) = \%.5 \, \text{f H}",z);
19 //part(d): total circuit resistance
20 printf("\nBW = R/2.pi.L \nR = \%.2f Ohm",R);
```

Scilab code Exa 1.14 example14

```
1 //Introductory Topics :example 1-14 : (pg no. 42)
2 R=2;
3 L=3*10^-3;
4 C=0.47*10^-6;
```

```
5 x=(2*%pi*sqrt(L*C));
6 y=1/x;
7 XL = (2 * \%pi * y * L);
8 Q = (XL/R);
9 Z = ((Q^2) * R);
10 BW = (R/(2*\%pi*L));
11 //part(a) : resonant frequency
12 printf("\nfr = 1/2.pi.sqrt(LC) = %.f Hz",y);
13 //part(b) : Quality factor
14 printf("\nQ = XL/R \ \n XL = 2.pi.f.L \ \nXL = \%.1f \ Ohm",
      XL);
15 printf("\nQ = \%.1 \, f",Q);
16 //part(c) : maximum impedance
17 printf("\nZmax = Q^2*R = \%. f Ohm",Z);
18 //part(d) : Bandwidth
19 printf("\nBW = R/2.pi.L = %.f Hz",BW);
```

Amplitude Modulation Transmission

Scilab code Exa 2.1 example1

```
1 // Amplitude Modulation-Transmission : example 2-1
     : pg(74 \& 75)
2 //upper sideband is equal to the sum of carrier and
      intelligence frequencies
3 c=1.4*10^6;
4 m1 = 20;
5 m2=10*10^3;
6 Ur1=c+m1;
7 Ur2=c+m2;
8 \text{ Lr1=c-m1};
9 Lr2=c-m2;
10 //range of upper sideband (usb)
11 printf("\nupper sideband will include frequencies
     from %.f Hz", Ur1);
12 printf("\nto \n \%. f Hz", Ur2);
13 //range of lower sideband (lsb)
14 printf("\nlower sideband will include frequencies
      from %. f Hz", Lr1);
15 printf("\nto \n \%. f Hz", Lr2);
```

Scilab code Exa 2.2 example2

```
1 // Amplitude Modulation-Transmission : example 2-2 :
       pg (78)
2 b=100;
3 a=60;
4 d=125;
5 c = 35;
6 x = 180;
7 y = 0;
8 m1 = ((b-a)/(b+a))*100;
9 m2=((d-c)/(d+c))*100;
10 m3 = ((x-y)/(y+x))*100;
11 //part(a)
12 printf("\npercent(m) = (B-A/B+A)*100 percent = %. f
      percent", m1);
13 //part(b)
14 printf ("\npercent (m) = (B-A/B+A)*100 percent = %. f
      percent", m2);
15 //part(c)
16 printf ("\npercent (m) = (B-A/B+A)*100 percent = \%. f
      percent", m3);
17 //part(d): this is a case of overmodulation
18 //part(e): this is a distorted AM wave as the
      increase > decrease in carrier's amplitude
```

Scilab code Exa 2.3 example3

```
1 // Amplitude Modulation-Transmission : example 2-3 : pg\left(79 \& 80\right) 2 // m=1 or 100 percent
```

```
//each side frequency = 1/2 the carrier amplitude
//power is proportional to (V)^2
//each side band power = 1/4 carrier power
c=1*10^3;
seb= 1/4*(c);
stsp=(esb*2);
printf("\nESF = mEc/2");
printf("\nESF = mEc/2");
printf("\nCarrier power = %.f W",c);
printf("\n Each side-band power = 1/4 of carrier power = %.f W",esb);
printf("\nTotal side-band power = %.f W",tsp);
printf("\nTotal transmitted power = %.f W",tp);
```

Scilab code Exa 2.4 example4

```
1  // Amplitude Modulation-Transmission : example 2-4 :
                pg(81)
2  m=0.9;  // modulation index
3  Pc=500;  // carrier Power
4  x=(m^2)/2;
5  y=(1+x)*Pc;
6  printf("\nPt = Pc*(1+(m^2)/2)");
7  printf("\nPt = %.1 f W",y); // total transmitted powwer
```

Scilab code Exa 2.5 example5

```
1 // Amplitude Modulation-Transmission : example 2-5 :
                pg(81)
2 m=0.95; // modulation index
3 Pt= 50*10^3; // total transmitted power
4 x=(m^2)/2;
5 y=1+x;
```

Scilab code Exa 2.6 example6

Scilab code Exa 2.7 example?

Scilab code Exa 2.8 example8

Scilab code Exa 2.9 example9

```
1 // Amplitude Modulation-Transmission : example 2-9 :
        pg(100)
2 a=1;
3 b=0.03;
4 c=0.05;
5 d=0.02;
6 e=0.04;
7 x=sqrt((b^2+c^2+d^2+e^2)/a^2);
8 y=x*100;
9 printf("\nTHD = sqrt((V2^2)+(V3^3)+(V4^2)+(V5^2)/(V1^2)) \nTHD = %.5 f",x);
10 printf("\nTHD = %.2 f percent",y);//total harmonic distortion
```

Amplitude Modulation Reception

Scilab code Exa 3.1 example1

```
1 // Amplitude Modulation-Reception : example 3-1 : (
      pg 120)
2 fr=550*10<sup>3</sup>;
3 L=10*10^-6;
4 fr1=1550*10<sup>3</sup>;
5 a=fr*2*%pi;
6 x = fr1 * 2 * \%pi;
7 b=1/a;
8 y=1/x;
9 C1=((b)^2/L);
10 C2 = ((y)^2/L);
11 fr2=1100*10<sup>3</sup>;
12 BW=10*10^3;
13 Q=(fr2/BW);
14 BW1=(fr1/Q);
15 BW2=(fr/Q);
16 //part(a) : calculate C at 550kHz
17 printf("\nfr = 1/2.pi.(LC)\nC1= %.12 f F",C1);
18 // at 1550 \text{ kHz}
```

Scilab code Exa 3.2 example2

```
// Amplitude Modulation-Reception : example 3-2 : (
    pg 134)

f=620*10^3;

IF=455*10^3;

LO=f+IF;

X=IF+LO;

// image frequency of local oscillator

//station frequency = 620 kHz

printf("\nLO - 620 kHz = IF");

printf("\nLO = %. f Hz", LO);

// determining at what other frequency, when mixed with 1075kHz, yields an o/p component at 455kHz

printf("\nX-1075kHz=IF \nX = %. f Hz", X);
```

Scilab code Exa 3.3 example3

```
5 dBm=10*log10(P/0.001);
6 dBW=10*log10(P/1);
7 a=(-89+8+3+24+26+26-2+34);
8 x=(a/10);
9 y=10^x;
10 z=y*0.001;
11 printf("\nP = V^2/R = %.15f W",P);//input power in Watts
12 printf("\ndBm = 10log(P/lmW) = %.f dBm",dBm);//input power in dBm
13 printf("\ndBW = 10log(P/lW) = %.f dBW",dBW);//input power in dBW
14 printf("\nPout(dBm) = %.f dBm into speaker",a);//o/p power in dBm
15 printf("\nPout(dBW) = %.f W",z);
```

Single Sideband Communications

Scilab code Exa 4.1 example1

```
1 // Single-Sideband Communications : example 4-1 : (pg
       172 \& 173)
2 x=1*10^6;
3 y=10^(80/20);
4 z = sqrt(y);
5 	ext{ df} = 200;
6 Q=(x*z)/(4*df);
7 a=100*10^3;
8 Q1=(a*z)/(4*df);
9 disp(Q1);
10 //part(a) : Q when 1-MHz & 80-dB sideband
      suppression
11 printf ("\nQ1 = fc.(log^-1(dB/20)^1/2)/4*delta(f) = \%
      . f ", Q);
12 //part(b) : Q when 100-kHz & 80-dB sideband
      suppression
13 printf ("\nQ2 = fc.(log^-1(dB/20)^1/2)/4*delta(f) = \%
      .f",Q1);
```

Scilab code Exa 4.2 example2

Scilab code Exa 4.4 example4

```
1 //Single-Sideband Communications : example 4-4 : (pg
       187)
2 a = 455;
3 x = 2000 + 1;
4 y = 2000 + 3;
5 c = 2000 + 455;
6 d=2455-2001;
7 e = 2455 - 2003;
8 f = 455 - 454;
9 g = 455 - 452;
10 mprintf("\nRF and first mixer input: \n \%.f kHz \n\%.
      f \text{ kHz}", x, y);
11 printf("\nlocal oscillator = \%. f kHz",c);
12 mprintf("\nFirst mixer output: \n\%.f kHz \n\%.f kHz",
      d,e);//IF amp and second mixer input
13 printf("\nBFO = \%. f kHz",a);
14 mprintf("\nSecond mixer output & audio amp: \n%.f
```

Frequency Modulation Transmission

Scilab code Exa 5.1 example1

```
1 //Frequency Modulation : Transmission : example 5-1
     : (pg 209)
2 v = 25 * 10^{-3};
3 f=750; //deviation constant
4 vg=10*10^-3; // deviation constant
5 pfd=v*(f/vg);//positive frequency deviation
6 nfd=-v*(f/vg);//negative frequency deviation
7 //part(a)
8 printf("\npositive frequency deviation = \%.f Hz", pfd
9 printf("\nnegative frequency deviation = \%. f Hz", nfd
10 mprintf("\nThe total deviation is written as +-2.25
     kHz for the given input signal level");
11 //part(b)
12 printf("\nThe input frequency (fi) is 400 Hz
      therefore, by eqn \nfout = fc+kei");
13 mprintf("\nThe carrier wil deviate %.f Hz and %.f Hz
       at a rate of 400 Hz", pfd, nfd);
```

Scilab code Exa 5.3 example3

Scilab code Exa 5.4 example4

Scilab code Exa 5.5 example5

```
1 //Frequency Modulation : Transmission : example 5-5
      : (pg 215)
2 fc=(2*\%pi*(10^8))/2*\%pi;
3 \text{ Vm} = 2000;
4 R=50;
5 P = (2000/sqrt(2))^2/R;
6 mf=2; //by inspection of FM equation
7 fi=(\%pi*10^4)/(2*\%pi);
8 d=(mf*fi);
9 BW=mf *40;
10 bw=2*(d+fi);
11 P1 = ((0.58*2000/sqrt(2))^2)/R;
12 P2=((0.3*2000/sqrt(2))^2)/R;
13 //part(a)
14 printf("\nfc = \%. f Hz", fc); //by inspection of FM
      equation
15 //part(b)
16 printf("\nthe peak voltage is 2000V \ \text{nP} = \%. f W",P);
17 //part(c)
18 printf("\nmf = 2"); //by inspection of FM equation
19 //part(d)
20 printf("\nthe intelligence frequency fi = \%.f Hz", fi
      );
21 //part(e)
22 printf("\nmf = d/fi \nd = \%. f Hz",d); //d is maximum
      deviation
23 printf ("\nas mf=2, significant sidebands exist to J4
      \nBW = \%. f Hz", BW);
  printf("\n BW = \%. f Hz", bw); //using carson's rule (
     BW = 2(dmax + fimax)
25 //part(f)
26 printf("\nJ1 is the largest sideband at at 0.58
      times the unmodulated carrier amplitude");
27 printf("\nP = \%. f W', P1);
28 printf("\nor 2*135 = 27kW for two sidebands at +-5
      kHz from carrier");
29 printf("\nThe smallest sideband J4 is 0.03 times the
       carrier = \%. f W', P2);
```

Scilab code Exa 5.6 example6

```
1 //Frequency Modulation : Transmission : example 5-6
      : (pg 218)
2 d=75*10^3;
3 fi=30*10^3;
4 fi1=15*10<sup>3</sup>;
5 d1=1*10<sup>3</sup>;
6 \text{ fi2=100};
7 fi3=2*10^3;
8 a=d/fi;
9 b=d/fi1;
10 c=d1/fi2;
11 d=d1/fi3;
12 DR=d1/fi3;
13 //part(a)
14 printf("\nThe maximum deviation in broadcast FM is
      75 kHz");
15 printf ("\nmf = \%.f",a); // for fi = 30kHz
16 printf("\nFor fi = 15kHz, \nmf1 = \%. f",b);
17 //part(b)
18 printf("\nmf2 = \%.f",c);//for fi=100Hz and d=1kHz
19 printf("\nfor fi=2kHz \nmf3 = \%.f",d);
20 printf("\nDR = fdev(max)/fi(max) = \%.1 \text{ f}",DR);//
      deviation ratio
```

Scilab code Exa 5.7 example7

```
1 // Frequency Modulation : Transmission : example 5-7 : (pg 218 & pg 219) 2 mf=0.25;
```

```
3 a=0.98;
4 b=0.12;
5 x=10*10^3;
6 P=(a^2)*x;
7 P1=(b^2)*x;
8 t=P+2*P1;
9 printf("\nFor mf=0.25, the carrier is equal to0.98
    times its unmodulated amplitude & the only
    significant sideband is J1 with a relative
    amplitude of 0.12");
10 printf("\ncarrier power = %.f W",P);
11 printf("\npower of each sideband = %.f W",P1);
12 printf("\ntotal power = %.f W",t)
```

Scilab code Exa 5.8 example8

Scilab code Exa 5.9 example9

Frequency Modulation Reception

Scilab code Exa 6.1 example1

```
//Frequency Modulation - Reception : example 6-1 : (
    pg 265)

G=200000;

v=200*10^-3;//quieting voltage
in=v/G;
printf("\nTo reach quieting, the input must be %.8f
    V",in);//reciever's sensitivity
```

Scilab code Exa 6.2 example2

```
6 y=f2*2;
7 printf("\nThe capture occurred at %.f Hz from the
    free-running VCO frequency.",f1);
8 printf("\nAssume symmetrical operation, which implies
    a capture range of %.f Hz",x)
9 mprintf("\nOnce captured the VCO follows the input
    to a %.f Hz deviation, implying a lock range of %.
    f Hz",f2,y);
```

Communication Techniques

Scilab code Exa 7.6 example

```
//Communication Techniqu; es : example 7-6 : (pg 304)
Q=60;
IF=455*10^3;
x=680*10^3;
imf=x+2*(IF);//image frequency
a=(imf/x);
b=(x/imf);
c=(Q*(a-b));
d=20*log10(c);
printf("\nimage rejection(dB)=20log((fi/fs-fs/fi).Q)");
printf("\nThe image frequency is %.f Hz",imf);
printf("\nimage rejection = %.f dB",d);
```

Scilab code Exa 7.7 example?

```
1 //Communication Techniqu; es : example 7-7 : (pg 314) 2 NF=20;
```

```
3  df=10^6;
4  x=10*log10(df);
5  S=-174+NF+x;
6  a=5;//input intercept
7  dr=2/3*(a-S);
8  printf("\nS = -174dBm + NF + 10log10df + S/N = %.f
    dB",S);//sensitivity
9  printf("\ndynamic range = 2/3.(input intercept-noise
    floor) = %.d dB",dr);
```

Scilab code Exa 7.8 example8

```
1 // Communication Techniqu; es : example 7-8 : (pg 315)
2 \text{ nf} = 5;
3 x = 24;
4 y = 20;
5 \text{ NRO} = 10^{(nf/10)};
6 NR1=10^(y/10);
7 PG1=10^(x/10);
8 NR = NRO + ((NR1 - 1)/PG1);
9 \text{ NF} = 10 * \frac{10}{10} (NR);
10 S = -174 + NF + 60;
11 a=nf-x; //the system's third-order intercept point
12 dr = 2/3*(a-S);
13 printf("\nNR = antilog(NF/10)"); //noise ratio
14 printf("\nNR1 = \%.2 \, f", NRO);
15 printf("\nNR2 = \%.f", NR1);
16 printf("\nOverall NR = NR1+NR2-1/PG1");
17 printf ("\nPG1= antilog (24dB/10) = \%. f", PG1);
18 printf("\nNR = \%.2 f", NR);
19 printf("\nNF = \%.1 \text{ f dB}", NF); //total system noise
      figure
20 printf("\nS = \%.1 f dBm",S); //sensitivity
21 printf("\nthe systems third-order intercept point is
       %. f dBm",a);
```

```
22 printf("\ndynamic range = \%.1 \, f \, dB", dr);
```

Scilab code Exa 7.9 example9

```
//Communication Techniqu; es : example 7-9 : (pg 315
& 316)

x = 24;
nf = -5;
NR = 3.16+(99/10);
NF = 10*log10(NR);
S = -174+NF+60;
dr = 2/3*(nf-S);
printf("\nNR = %.1f",NR); // noise ratio
printf("\nNF = %.1f dB",NF); // noise figure
printf("\nS = %.1f dBm",S); // sensitivity
printf("\ndynamic range = %.1f dB",dr);
```

Scilab code Exa 7.10 example 10

Digital Communication Coding Technique

Scilab code Exa 8.1 example1

```
1 // Digital Communication-Coding Techniques : example
8-1 : (pg 357)
2 fa=20*10^3;
3 fs=2*fa; //minimum sample rate
4 printf("\nfs >= 2.fa \nfs >= %.f Hz",fs);
```

Scilab code Exa 8.2 example2

```
7 printf("\nDR = 6.02 \, dB/bit(n) \ n = \%.3 \, f",n);

8 printf("\nS/N = \%.2 \, f \, dB",x);

9 printf("\nL = 2^10 = \%.f",1);

10 printf("\n(S/N)q(dB) = 10 \log 3L^2 = \%.2 \, f \, dB",y);
```

Scilab code Exa 8.3 example3

```
1 // Digital Communication-Coding Techniques : example
     8-3: (pg 368)
2 R=100*10^3;
3 Rf = 10 * 10^3;
4 Vref = -10;
5 Vo=-(Vref)*(Rf/R); // resolution
6 a = (10/100);
7 b = (10/50);
8 c = (10/25);
9 d=(10/12.5);
10 V=-(Vref)*(a+b+c+d);//output voltage
11 printf("\nThe step-size is determined by leaving all
       switches open and closing the lsb");
12 printf("\nVo = -(-10V)(Rf/R) = \%.1 f", Vo);
13 printf("\nThe resolution is 1.0. If all switches are
       closed, a logic 1 is input.");
14 printf ("\nVo = \%. f V", V);
```

Scilab code Exa 8.4 example4

```
6 a=(d/2)-1;
7 y = d1 - 1;
8 b=1/2*(d1-1);
9 z=d2-1;
10 c = (d2/2) - 1;
11 // part (a)
12 printf("\nDmin = 2, the no. of error detected is (
     D\min -1) = \%. f'', x);
13 printf("\nDmin is even, the no. of errors corrected
      equal = (D\min/2)-1 = \%. f",a);
14 printf("\nDmin = 3, the no. of error detected is (
     D\min -1) = \%. f", y);
15 printf("\nDmin is odd, the no. of errors corrected
      equal = (Dmin/2)-1 = \%. f", b);
16 printf("\nDmin = 4, the no. of error detected is (
     D\min -1) = \%. f", z);
17 printf("\nDmin is even, the no. of errors corrected
      equal = (Dmin/2)-1 = \%.f",c);
```

Wired Digital Communications

Scilab code Exa 9.1 example1

```
1 //Wired Digital Communications : example 9-1 : (pg
     405 & 406)
2 M = 110;
3 x = 7;
4 n = log2(M);
5 a = (log10(110)/log10(2));
6 b=2^a;
7 u=(a/x)*100;
8 y = log 10(b);
9 u1=(y/3)*100;
10 printf("\nIn binary system, n=\log 2M = \%.2 f",n);//
     number of bits
11 printf("\n2^6.78 = \%.f",b);
12 printf("\n7 bits are required and efficiency is u =
     %.f percent",u);
13 printf("\nIn a decimal system, the number of dits
     required is %.f i.e total of 3 dits",y);
14 printf("\nThe efficiency is %.f percent",u1);
```

Scilab code Exa 9.2 example2

Scilab code Exa 9.3 example 3

```
//Wired Digital Communications : example 9-3 : (pg
407)
Tb=1/9600; // bit frequency
Pt=0.8; // transmit power
Eb=Pt*Tb; // energy per bit
printf("\nbit frequency = %.7f", Tb);
printf("\nEb = Pt.Tb = %.8f J", Eb);
```

Scilab code Exa 9.4 example4

```
//Wired Digital Communications : example 9-4 : (pg
410)
bw=3*10^3; // bandwidth
x=1023; // signal-to-noise ratio
C=bw*log2(1+x); // capacity of telephone channel
printf("\nthe telephone channel has a bandwidth of about %. f Hz", bw);
printf("\nC = BW. log2(1+S/N) = %. f bits per second",
C);
```

Scilab code Exa 9.5 example4

```
1 //Wired Digital Communications : example 9-5 : (pg
411)
2 Tb=1/(8*10^3); // bit frequency
3 BWmin=1/(2*Tb); //minimum bandwidth
4 printf("\nTb = %.8 f s", Tb);
5 printf("\nBWmin = 1/2.Tb = %.f Hz", BWmin);
```

Wireless Digital Communication

Scilab code Exa 10.2 example2

```
// Wireless Digital Communications : example 10-2 : (
    pg 467)

n=3;

n1=7;

x=(2^n)-1;

y=(2^7)-1;

//part(a)

mprintf("\n n=%.f,PN sequence length = %.f",n,x);

//part(b)

mprintf("\n n=%.f,PN sequence length = %.f",n1,y);
```

Scilab code Exa 10.3 example3

```
1 // Wireless Digital Communications : example 10-3 : ( pg 477)
2 x=56; // modulation bit rate
```

```
3 y=560; //chip rate
4 a=256; //modulation bit rate
5 b=1792; //chip rate
6 z=y/x;
7 c=b/a;
8 //part(a)
9 printf("\nSpreading = %.f",z);
10 printf("\nSpreading = %.f",c);
```

Transmission Lines

Scilab code Exa 12.1 example1

```
1 //Transmission Lines : example 12-1 : (pg 575)
2 L=73.75*10^-9;
3 C=29.5*10^-12;
4 Z=sqrt(L/C);
5 x=5280;
6 z=sqrt((x*L)/(x*C));
7 printf("\nFor the 1-ft section , \nZ0 = sqrt(L/C) = % . f Ohm",Z);
8 printf("\nFor the 1-mi section , \nZ0 = %.f Ohm",z);
```

Scilab code Exa 12.2 example2

```
//Transmission Lines : example 12-2 : (pg 574 & 575)
a=2;//parallel wire line
//D/d where D is spacing between the wires n d is
diameter of 1 conductor
b=2.35;//coaxial line
D=0.285;
```

```
6 d=0.08;
7 e=1;//dielectric constant of insulating material
    relative to air
8 z=(276/e)*log10(2*2);
9 z1=(138/e)*log10(b);
10 z2=(138/sqrt(2.3)*log10(D/d));
11 //part(a) Zo of parallel wire with D/d = 2
12 printf("\nZo = 276/sqrt(e).log10.(2D/d) = %.f Ohm",z
);
13 //part(b) Zo of coaxial line with D/d = 2.35
14 printf("\nZo = 138/sqrt(e).log10.(D/d) = %.1f Ohm",
    z1);
15 //part(c) Zo of RG-8A/U coaxial cable with D=0.285
    in. & d=0.08 in.
16 printf("\nZo = 138/sqrt(2.3).log10.(D/d) = %.f Ohm",
    z2);
```

Scilab code Exa 12.3 example3

```
//Transmission Lines : example 12-3 : (pg 579)
L=73.75*10^-9;
C=29.5*10^-12;
d=1;//distance
t=sqrt(L*C);
Vp=d/t;
printf("\nthe delay introduced is t = sqrt(L.C) = % .11 f s",t);
printf("\nThe velocity of propagation is, \nVp = d/sqrt(L.C) = %. f ft/s", Vp);
```

Scilab code Exa 12.4 example4

```
1 //Transmission Lines : example 12-4 : (pg 580)
```

Scilab code Exa 12.5 example5

```
//Transmission Lines : example 12-5 : (pg 581)
c=3*10^8;//speed of light
f=100*10^6;//frequency of signal
x=2.07*10^8;//velocity of wave propagation
w=c/f;//wavelength in free-space
w1=x/f;//wavelength while traveling through an RG-8A
/U coaxial cable
printf("\nIn free space, lambda = c/f = %.f m",w);
printf("\nWhile traveling through RG-8A/U cable,
lamda = c/f = %.2f m",w1);
```

Scilab code Exa 12.7 example?

```
//Transmission Lines : example 12-7 : (pg 592 & 593)
Zl=300;//load impedance
Zo=50;//characteristic impedance
v=2.07*10^8;//velocity in RG-8A/U cable
f=27*10^6;//operating frequency of citizen's band transmitter
Po=4;//output power of transmitter
1=10;//length of RG-8A/U cable
Rl=300;//input resistance of antenna
```

```
9 T=((Z1-Zo)/(Z1+Zo));//reflection coefficient
10 h=v/f; //length of cable in wavelength
11 le=1/h; // electrical length
12 \text{ x=R1/Zo;} / \text{VSWR}
13 y = ((1+T)/(1-T)); //VSWR
14 rp=(T)^2*Po;//reflected power
15 Pl=Po-rp; //load power
16 //part(a): The reflection coefficient
17 printf("\nT = ZL-Z0/ZL+Z0 = \%.2 f",T);
18 //part(b): The electrical length of the cable in
      wavelengths (h)
19 printf("\nh = v/f = \%.2 f m",h);
20 mprintf("\nBecause the cable is 10m long, its
      electrical length is (\%. f m)/(\%.2 f m/wavelength)
      = \%.1 \, \text{fh}",1,h,le);
21 / part(c): The VSWR
22 printf("\nBecause load is resistive, \nVSWR = \%.f",x
      );
23 printf("\nAn alternative solution, because T is
      known, \nVSWR = 1 + T/1 - T = \%. f", y);
24 //part(d) : absorbed power
25 mprintf("\nthe reflected voltage is T times the
      incident voltage,\nreflected voltage = \%.2 f W \
      nPload = \%.2 f W', rp, Pl);
```

Scilab code Exa 12.8 example8

```
1 //Transmission Lines : example 12-8 : (pg 597)
2 Zo=100; // characteristic impedance
3 j=%i;
4 Zl = 200-j*150; //load impedance
5 l=4.3; //length of transmission line
6 x=200/Zo;
7 y=150/Zo;
8 a=0.4*Zo;
```

```
9 b=0.57*Zo;
10 mprintf("\nTo normalize the load impedance: \nzL =
    ZL/Zo = %.f - j*%.1f",x,y);
11 //VSWR and equation of zin should b drawn from
    impedance smith chart, the plotted points should
    be read
12 printf("\n zin = 0.4 + j*0.57");//from smith chart
13 mprintf("\nZin = zin*Zo = %.f Ohm + j* %.f Ohm",a,b)
    ;
```

Scilab code Exa 12.9 example9

```
1 //Transmission Lines : example 12-9 : (pg 599)
2 j = \%i;
3 RL=120; //load resistance from smith chart
4 ZL=75+j*50; //load impedance
5 Z0=50; // characteristic impedance
6 a = 75/Z0;
7 y=50/Z0; //normalized load impedance
8 z=2.4; //normalized z at a point that is purely
      resistive
9 ar=z*Z0; //actual resistance
10 x = sqrt(Z0*RL);
11 printf("\nzl = ZL/Z0 = \%.1 f + j*\%. f",a,y);
12 //VSWR, zin, R can be found out from smith chart
     manually
13 printf("\nZ0^ = sqrt(Z0*RL) = \%.1 f Ohm",x);//
      characteristic impedance of matcing section
14 //^ indicates (') complement sign
```

Scilab code Exa 12.10 example10

```
1 //Transmission Lines : example 12-10 : (pg 601)
```

```
2 Z0=75;//characteristic impedance
3 j=%i;
4 ZL=50-j*100;//load impedance
5 x=50/Z0;
6 y=100/Z0;
7 mprintf("\nzL = ZL/Z0 = %.2f - j* %.2f",x,y);
8 //rest of the values have to be calculated manually by smith chart or by using smith chart's softwares
```

Wave Propagation

Scilab code Exa 13.1 example1

Scilab code Exa 13.2 example2

```
//Wave Propagation : example 13-2 : (pg 641 & 642)
S=83;//satellite longitude in degrees
N=90;//site longitude in degrees
L=35;//site latitude in degrees
G=S-N;
```

```
6 = a = atand(-0.128/0.5736);
7 A=180+a;
8 x = cosd(G) * cosd(L);
9 b=0.1512;
10 d=x-b;
11 n=(cosd(G))^2;
12 m = (cosd(L))^2;
13 o=1-(m*n);
14 w=sqrt(o);
15 y=d/w;
16 E=atand(y);
17 printf("\nThe azimuth is equal to A = 180 + \arctan)
      tanG/tanL) = %.f degrees",A);
18 printf("\nThe elevation calculated ,\ntan(E)=\cos G.
      \cos L - 0.1512 / \operatorname{sqrt} (1 - \cos^2 G \cdot \cos^2 L) = \%.4 \, f'', y);
19 printf("\nE = \%.3 f degrees", E);
```

Scilab code Exa 13.3 example3

```
1 //Wave Propagation : example 13-3 : (pg 646)
2 x = (32 + (44/60) + (36/3600)); // N latitude
y = (106 + (16/60) + (37/3600)); /W longitude
4 D=42.1642*10^6; // distance from the satellite to the
      center of the earth
5 R=6.378*10^6; //earth 's radius
6 \quad a=32.74333;
7 B = -7.27694;
8 m=D^2;
9 n=R^2;
10 e = 2 * D * R;
11 q=cosd(a)*cosd(B);
12 d = sqrt(m+n-(e*q));
13 c=2.997925*10^5; // velocity of light
14 \text{ de=d/c};
15 \text{ rd} = (2*d)/c;
```

```
printf("\n N latitude \nconverted into degrees = %.5
    f",x);
printf("\n W longitude \n coverted into degrees = %
        .7f",y);
printf("\nd = sqrt(D^2 + R^2 - 2.D.R.cosa.cosB) = %.
    f meters",d);
printf("\ndelay = d/c and roundtrip delay = 2d/c")
;
printf("\ndelay = 0.%.f seconds",de);
printf("\nroundtrip delay = 0.%.f seconds",rd);
```

Scilab code Exa 13.4 example4

```
//Wave Propagation : example 13-4 : (pg 651 & 652)
G=45; // antenna gain
nt=25; // antenna noise temperature
nt1=70; //LNB noise temperature
nt2=2; // noise temperature (reciever and passive components)
T=nt+nt1+nt2; // total noise temperature
x=G-10*log10(T); // figure of merit
printf("\nSum of all of the noise temperature contributions \nTs = %.f K",T);
printf("\nThe figure of merit (G/T) \nG/T = G-10.log (Ts) = %.2f dB",x);
```

Scilab code Exa 13.5 example5

```
1 //Wave Propagation : example 13-5 : (pg 652 & 653)
2 d=41.130383*10^6; // distance
3 c=2.997925*10^8; // velocity of light
4 f=14.25*10^9; // uplink frequency
5 h=c/f; // wavelength
```

Antennas

Scilab code Exa 14.1 example1

```
1 //Antennas : example 14-1 : pg(669)
2 c=3*10^8;
3 f=150*10^6;
4 h=c/f;
5 x=1/2;
6 D=0.5*2;
7 Rff=5*D;
8 printf("\nThe wavelength (h) for a h/2 dipole at 150 MHz is , \nh=c/f = %.f m/cycle",h);
9 printf("\nh/2 = 1m, which is the antennas dimension(D) \nD/h = 1/2 = %.1 f",x);
10 printf("\n Rff = 5D = %.f m",Rff);
```

Scilab code Exa 14.2 example2

```
1 // Antennas : example 14-2 : pg(669)
2 c=3*10^8; // velocity of light
3 f=12*10^9; // frequency
```

```
4 D=4.5; // diameter of parabolic reflector
5 h=c/f; // wavelength
6 x=D/h;
7 R=(2*D^2)/h;
8 printf("\nThe wavelength, \nh= %.3 f m/cycle",h);
9 printf("\nD=4.5 meter \nD/h = %. f",x);
10 printf("\nselect equation, \nR > %. f m",R);
```

Scilab code Exa 14.3 example3

```
1 //Antennas : example 14-3 : pg (671)
2 Pt=10; //transmitted power
3 //dipoles have gain 2.15dB
4 Gr=10<sup>(2.15)</sup>;//recieving antenna gain(ratio)
      compared to isotropic radiator
5 Gt=Gr; //transmiting antenna gain (ratio) compared to
      isotropic radiator
6 \text{ Gr} = 1.64;
7 c=3*10^8; // velocity of light
8 f=144*10^6; // frequency
9 d=50*10^3; // distance between antennas
10 x=c/f; //wavelength
11 y=x^2;
12 z=Pt*Gt*Gr*y;
13 a=(16*(\%pi)^2);
14 b=a*(d^2);
15 Pr=z/b; //power recieved
16 printf ("\nPr = Pt.Gt.Gr.h^2/16.pi^2.d^2 = \%.12 f W',
      Pr);
```

Scilab code Exa 14.4 example4

```
1 //Antennas : example 14-4 : pg(674)
```

```
2 c=3*10^8; // velocity of light
3 f=100*10^6; // frequency
4 h=c/f; // wavelength
5 x=h/2; // dipole i.e h/2
6 l=0.95*x; // applying 95% correction, the actual optimum physical length
7 L=486/100; // alternative method to find length
8 printf("\nAt 100MHz, \nh=c/f = %.f m",h);
9 printf("\nlength of antenna = %.2f m",l);
10 mprintf("\nalternate method, L = 486/f = %.2f ft which is equal to %.2f m",L,l);
```

Microwaves and Lasers

Scilab code Exa 16.1 example1

```
//Microwaves and Lasers : example 16-1 : pg(753)
h=0.3;//curve depth of parabolic reflector

D=3;//diameter of parabolic reflector

f=D/(16*h);//focal length
printf("\nFocal length(f)= D/16.h = %.3 f m",f);
mprintf("\nThe focal length is %.3 f m out from the center of the parabolic reflector",f);
```

Scilab code Exa 16.2 example2

```
//Microwaves and Lasers : example 16-2 : pg(755)
D=3;//diameter of microwave dish
k=0.6;//efficiency of reflector
c=2.997925*10^8;//velocity of light
f=10*10^9;//frequency
h=c/f;//wavelength
x=(%pi*D)^2;
y=(h^2);
```

```
9 a=k*(x/y);
10 Ap=10*log10(a);//powergain
11 B=(70*h)/D;//beamwidth
12 printf("\nAp(dBi)=10logk(pi.D)^2/(h^2)");
13 printf("\nh= c/f = %.3 f m",h);
14 printf("\nAp(dBi) = %.2 f dBi", Ap);
15 printf("\nbeamwidth = 70h/D = %.1 f degrees",B);
```

Scilab code Exa 16.3 example3

```
//Microwaves and Lasers : example 16-3 : pg(756)
D=4.5;//diameter of parabolic reflector
k=0.62;//efficiency factor
x=(D/2)^2;
y=(k*%pi);
Ae=y*x;//aperture efficiency
i=(%pi*x);//ideal capture area
printf("\nAe = k.pi(D/2)^2 sq.m = %.2f sq.m",Ae);
mprintf("\nThe ideal capture area for %.1f m
    parabolic antenna is pi.(D/2)^2 = %.1f sq.m",D,i)
;
```

Television

Scilab code Exa 17.1 example1

```
//Television : example 17-1 : pg(822)
bw=5*10^6;//bandwidth
t=53.5*10^-6;//time allocated for each visible trace
T=2*bw*t;//increase in horizontal resolution
mprintf("\nThe %.8f s allocated for each visible
    trace could now a develop a maximum %.f Hz video
    signal",t,bw);
printf("\nThus, the total number of vertical lines
    resolvable is %.f lines",T);
```

Scilab code Exa 17.2 example2

```
1 //Television : example 17-2 : pg(822)
2 bw=5*10^6; //bandwidth
3 l=428; //horizontal resolution
4 t=1/(bw*2); //trace time
5 x=1/30; //time available for a full picture
6 y=t+10*10^-6; //assuming that 10 us is used for horizontal blanking
```

```
7 n=x/y;//no. of horizontal traces
8 c=600*0.7;//allowing 32 lines for vertical retrace
9 printf("\ntrace time = %.8 f s",t);
10 printf("\ntotal no. of horizontal traces = %.f lines ",n);
11 printf("\nvertical resolution = %.f lines",c);
```

Fibre Optics

Scilab code Exa 18.1 example1

```
//Fibre Optics : example 18-1 : pg(859)
c=3*10^8;//velocity of light
f=4.4*10^14;//frequency of red light
f1=7*10^14;//frequency of violet light
h1=c/f;//wavelength of red light
h2=c/f1;//wavelength of violet light
printf("\nFor red, \nh = c/f = %.9 f m",h1);
printf("\nFor violet \nh = c/f = %.9 f m",h2);
```

Scilab code Exa 18.2 example2

```
1 //Fibre Optics : example 18-1 : pg(859)
2 n1=1.535; //refractive index of fibre optics
3 n2=1.490; //refractive index of cladding
4 x=(n1^2)-(n2^2);
5 y=sqrt(x); //numerical aperture
6 z=asind(y); //theta
7 printf("\nNA = sin(theta)in(max) = sqrt(n1^2-n2^2) = %.3f",y);
```

```
8 printf("\n(theta)in(max) = \%.1f degrees",z);
```

Scilab code Exa 18.3 example3

```
//Fibre Optics : example 18-3 : pg(868)
w=22;//spectral width of LED

1=2;//length of fibre
d=95;//dispersion value
p=d*w;//pulse dispersion
pt=p*1;//total pulse dispersion
printf("\npulse dispersion = %.f ps/km",p);
printf("\ntotal pulse dispersion = pulse dispersion*
length = %.f ps/km",pt);
```

Scilab code Exa 18.4 example4

```
1 //Fibre Optics : example 18-4 : pg(885)
2 d=30;//length of fibre cable
3 l=0.4;//loss
4 T=d*1;//total cable loss
5 printf("\ntotal cable loss = %.f dB",T);
```

Scilab code Exa 18.5 example5

```
//Fibre Optics : example 18-5 : pg(887)
b=565;//Line bit rate of fibre 1
c=3.5;//Cable dispersion of fibre 1
t=4;//Transmitter spectral width of fibre 1
b1=1130;//Line bit rate of fibre 2
c1=3.5;//Cable dispersion of fibre 2
```