

Building Damage Assessment Using Satellite Imagery

Xiaoyu Lin, Maaheen Yasin, Yuan Chang

1. Introduction

- Task: Enhance DAHiTrA to better separate adjacent buildings
- Motivation: Improve damage assessment accuracy in post-disaster satellite imagery
- Key insight: Use Edge-Aware Loss or SAM2 to preserve fine-grained building boundaries
- Contribution: Extend DAHiTrA with prompt-based segmentation and edge-sensitive loss functions

2. Problem Statement

Ground Truth

Solution

DAHiTrA

- Existing models like DAHiTrA merge closely located buildings in post-disaster imagery
- Small structures are often missed entirely
- Limits usability in high-stakes, real-world disaster response
- Introduced an Edge-Aware Loss Function
- Integrated SAM2 to enhance segmentation

3. Methodology

We combine SAM2-based segmentation with an edge-aware loss that emphasizes boundary regions using weighted supervision.

4. Results

- Edge-aware loss improved boundary segmentation quality.
- SAM2 was trained on LEVIR-CD and xBD for better masks.
- DAHiTrA was re-trained to ensure fair comparison.
- SAM2 faced GPU limits and struggled with small objects.

Model	loU	F1-Score	0 class	1 class
DAHiTrA	0.842	0.908	0.991	0.825
Our result	0.834	0.903	0.990	0.817

- GPU Memory Constraints
- Limited Sensitivity to Small Objects
- Reduced Performance on Dense or Dispersed Targets

