

Roko Čubrić, Borna Gojšić, David Janjić, Roko Karničić, Sveučilište u Zagrebu, Fakultet elektrotehnike i računarstva

Odnosi informacijskih mjera – pregledni prikaz

Igor S. Pandžić et al. (2009.), *Uvod u teoriju informacije i kodiranje*, Element

ENTROPIJA KAO MJERA

$$I(E) = -\log_b(p(E))$$
 - Količina informacije

$$H(X) = -\sum_{x} p(x) \log_{b}(p(x))$$
 - Prosječna količina informacije

Entropiju jednodimenzionalne slučajne varijable X s kontinuiranom razdiobom definiramo izrazom

$$H(X) = E\left[-\log f_X(X)\right] = -\int_{-\infty}^{\infty} f_X(x) \log f_X(x) dx,$$

Entropija Bernoullijeve slučajne variable u ovisnosti o p - Wiki

KODIRANJE I SAVRŠENI KODOVI

- Code[n,k(,d)]
- n = r + k
- Mogućnost detektiranja d-1 grešaka i ispravljanja (d-1)/2
- Paritetni bitovi

Bits	P ₁	P ₂	D ₁	P ₃	D ₂	D_3	D_4	P ₄	D_5	D_6	D ₇	D ₈	D ₉	D ₁₀	D ₁₁
P ₁	Х		X		X		X		X	 	Χ		X		X
P ₂		X	X			X	X			X	X		 	X	X
P ₃				X	X	X	X				+ 	X	X	X	X
P ₄						 		X	X	X	Χ	X	X	X	X

Hamming[15,11,3]

Slika 4.2: Grafičke interpretacije svojstava Hammingove udaljenosti

PERFEKTAN KÔD: Binarni (n, M, 2t + 1) kôd koji zadovoljava izraz:

$$M = \frac{2^n}{\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots \binom{n}{t}}$$

20XX

ZADATAK - DAN 3

 Osmisliti zaštitni kod u kanalu čiji šum može prouzročiti do 10 pogrešaka na 100 bitova

Golay[24,12,8]

Golay[23,12,7] je perfektan kod

Djeljenje 100 zaštitnih bitova u 8 grupa po 12

Hamming[7,4,3] za preostala 4 bita poruke

BOLJE RJEŠENJE – REED-SOLOMON KODOVI

• d = n-k+1

Primjena	RS parametri	Zašto?
CD/DVD (ECC)	RS(28, 24)	Ispravlja greške nastale ogrebotinama
QR kodovi	RS(26, 16)	Omogućuje čitanje oštećenih kodova
NASA Deep Space	RS(255, 223)	Otporan na šum u svemirskoj komunikaciji
SSD/HDD (NAND flash)	RS(128, 112)	Ispravlja višebitne greške u memoriji
DVB-S2 (satelitski TV)	RS(204, 188)	Zaštita od gubitaka u prijenosu

U BANKOVNIM TRANSAKCIJAMA

- 1. Inicijalizacija transakcije
- 2. Validacija i autorizacija
- 3. Procesiranje transakcije u bazi podataka
- 4. Potvrda i završetak transakcije

DJELOVI TRANSAKCIJE KOJI TREBAJU ZAŠTITU

- Potencijalne greške na fizičkom sloju:
 - Bit-flipovi (Single Event Upset SEU) Reed-Solomon, Golay,...
 - Kvarovi u mrežnoj infrastrukturi
 - Kvarovi u pohrani podataka (SSD/HDD) Hammingovi kodovi
 - Problemi u HSM (Hardware Security Module)
- Danas u upotrebi:
 - Optika
 - Bakreni kabeli (Ethernet) i bežični prijenos se izbjegavaju zbog učestalosti grešaka
- Cilj brzina i sigurnost = efikasnost