Formation au langage de programmation Python

Initiation à Python

Partie II interpréteurs – types prédéfinis – exercices

Formateur : IBRAHIM M. S. ibrahim.ms@gmail.com

du 17/10 au 20/10 2016

1 / 14

Plan

- Version installée/prioritaire
- Python en mode intéractif
- Types numériques prédéfinis
- Les chaînes de caractères : type string
- 5 Typage conversion évaluation
- 6 Mots-clés et mots réservés
- Conteneurs : types composés
- Opérations sur les conteneurs
- Exercices

Testez dans un terminal la version de Python installée

```
# python
>>> print " La configuration installée est opérationnelle."
```

Messages d'erreur possibles

- 1 : Python non trouvé : il faut alors mettre à jour la variable système \$PATH
- 2 : Code non interprété (parenthéses) c'est normal! la machine est utilisable
- 3 : pas de message d'erreur : Python 2.7.xy installée mettre à jour

La version installée ou prioritaire est

```
# python
```

```
>>> from sys import version as v ;print(v)
3.4.5 |Anaconda 2.3.0 (x86_64)| (default, Jul 2 2016, 17 :47 :57)
[GCC 4.2.1 Compatible Apple LLVM 4.2 (clang-425.0.28)]
```

• Python 3.x.y installée – c'est bon! pas de problème, vous pouvez continuer

Python en mode interactif : interpréteurs

entre autres : python, iPython, bPython, notebook, idle, terminal, Jupiter

Invite de commande

- on lance python
- on saisi les commandes
- on récupére le résultat
- on dispose d'un historique

Indentation

- organise le programme
- aide de l'éditeur de texte
- facilite (re)-lecture de code
- éviter les tabulations

Indentation

- délimiteur de fin de bloc
- constitutif du langage
- structure le programme
- nombre d'espaces fixe

Séparateurs

- ; instructions sur 1 ligne
- , constructeur de séquences
- syntaxe pour for if while
- | → structure du programme

Types numériques prédéfinis

Entiers longs: int

- pas de limite de taille
- x**y puissance
- // quotient % reste
- $divmod(a,b) \rightarrow (q,r)$

Flottants: float

- approximation des réels
- conversions implicites
- $a/b \neq a//b$
- $a^{**}b = e^{b \cdot \ln a}$

Complexes: complex

- a = complex(x,y)
- a = x + y * 1j
- a.real, a.imag , abs(a)
- a.conjugate()

Booléens: bool

- True / False
- ullet b == a , a != b , not c
- $\bullet \ 1 < 4$, z is s
- x in R , a is not c

Le type string : chaîne de caractères

Chaînes de caractères : string

- 'caracteres' ou "caracteres"
- mot = "ceci n'est pas un mot"
- nb = len(mot)
- B = 'non, '
- mot is B
- B+mot (concaténation)
- mot[0], mot[-1], mot[7:11]
- mot[9 :-2], mot[-2 :3], mot[:-1]
- mot[-9 :-2], mot[4 :2]
- for i in mot : print(i)
- pas de caractère simple (char)
- Unicode pris en charge

Opérations possibles

- mot.upper()
- mot.lower()
- mot.isdigit()
- mot.isalpha()
- mot.strip(",'-?!")
- mot.count("e")
- mot.split(" ")
- mot.format()
- mot.startwith("a")
- mot.endswith("a")
- mot.join('ajout de mots')
- **.**.

Typage – conversion – évaluation

Typage dynamique faible

- l'interpréteur déduit
- type le plus approprié
- le met à jour si besoin
- pas toujours le meilleur

Connaitre le type

type(variable)

Conversion

- float() int() str()
- v = input("x=(entier)")

Opérations disponibles

- dir(variable)
- dir(type)

eval

eval("string")

exec

exec("string")

Un type spécial

None

Mots-clés et mots réservés du langage

Attention!

• seuls les mots clés ne peuvent être redéfinis — à éviter tout de même

Mots clés : eux seuls sont essentiels

and assert break class continue def del elif else except exec finally for from global if import in is lambda not or pass print raise return try while yield

True False None

Fonctions

help() dir() print() input()
raw_input() len() range() ord()
locals() globals() str() int()

Modules: importés avant tout import

anydbm array atexit bisect calendar cmath codecs collections commands ConfigParser copy ctypes datetime decimal dummy_thread dummy_threading exceptions encodings.aliases formatter heapq gettext locale linecache marshall math mmap operator os pickle Queue re shelve shutil signal stat string StringlO struct subprocess sys textwrap tempfle thread threading time timeit traceback unicodedata xml.sax warnings whichdb _winreg

Commentaires

- # commentaire court
- """ sur plusieurs lignes """
- """ docstrings """
- import proj; proj.___doc___

Conteneurs : types composés prédéfinis

Tuple

- élèments de types quelconques
- entre () séparateur ,
- singleton (a,) et vide ()
- immuable c-à-d figé
- accés par index

Ensemble: set

- sans répétition,
- non ordonnés
- entre $\{\}$ séparateur [,]
- singleton $\{a\}$ et vide $\{\ \}$
- fonction set()

Liste

- élèments de types quelconques
- entre [] séparateur [,
- singleton [a] et vide []
- ajout insertion suppression
- accés par index

Dictionnaire

- tableau associatif de type
 key → value
- $\bullet \ \{k_1: v_1, k_2: v_2, k_3: v_3, \ldots\}$
- accés par la clé
- unicité des clés

Principales opérations sur les conteneurs

Tuple

- t[i :j :k] len(t) in
- tuple() conversion
- t[0] lecture possible
- t[0] = 2 erreur en écriture

Ensemble: set

- | : ∪ & : ∩ < : ⊂
- ^: sym-diff \cup - : diff
- set() conversion
- .add(x) .remove(x) len()

Liste

- t[i :j :k] del[i :j :k]
- len(l) − sum(l) − in
- list() conversion
- I[0] lecture possible
- I[0] = 2 écriture possible

Dictionnaire

- d[key] = value len()
- in max() : sur les clés
- dict() conversion
- .keys() .values() .items()
- iter_items|keys|values()

Exercices

Exécuter et interpréter les résultats

```
liste=['P','6','-','U', 'P', 'M', 'C', 'u', 'U', 'n', 'i', 'v', 'e', 'r', 's', 'i', 't', 'e', 'u', 'P', 'a', 'r', 'i', 's', 'u', 'V', 'l']
list(liste)
tuple(liste)
str(liste)
dict((x.0) \text{ for } x \text{ in liste})
set(liste)
len (liste)
chaine='P6-JPMC. Universite.. Paris.. VI'
list (chaine)
tuple (chaine)
str(chaine)
dict((x,0)) for x in chaine)
set (chaine)
len (chaine)
ensemble={'P','6','-','U', 'P', 'M', 'C', 'u', 'U', 'n', 'i', 'v', 'e', 'r', 's', 'i', 't', 'e', 'u', 'P', 'a', 'r', 'i', 's', 'u', 'V','I'}
list (ensemble)
tuple (ensemble)
str(ensemble)
dict((x,0) \text{ for } x \text{ in ensemble})
set (ensemble)
len (ensemble)
nuplet=('P','6','-','U', 'P', 'M', 'C', 'u', 'U', 'n', 'i', 'v', 'e', 'r', 's', 'i', 't', 'e', 'u', 'P', 'a', 'r', 'i', 's', 'u', 'V','I')
list (nuplet)
tuple (nuplet)
str(nuplet)
dict((x,0) \text{ for } x \text{ in nuplet})
set(nuplet)
len (nuplet)
```

Exercices 1/2

Exercice 01 - maxint

• maxint = ...

Exercice 02

 \bullet 1+2+...9999999 = ...

Exercice 03

- 7+14+..+2199113 =
- 7+14+..+2199113 =

Exercice 01 - solution

• il n'y en a pas

Exercice 02 - solution

• sum(range(9999999+1))

Exercice 03 – solution

- sum(range(7,2199113+1,7))
- sum([i for i in range(1, 2199113+1) if i%7==0])

Exercices 2/2

KasparovKarpov = 1. e4 e5 2. Nf3 Nc6 41. Nf7"

• Kasparov : e4 Nf3 Nf7

• Karpov : e5 Nc6 Rb8

• liste inversée des déplacements : Nf7 Rb8 e5 e4

Proportion de triplets $(a,b,c) \in \{a,..,z,A,..Z\}$

• strictement distincts, puis strictement croissants

gnu = "GNU GENERAL PUBLIC LIC ... lgpl.html>."

- nombre de caractères, nombre de symboles différents
- dictionnaire des fréquences des symboles
- liste des fréquences décroissantes des symboles

KasparovKarpov = 1. e4 e5 2. Nf3 Nc6 41. Nf7"

```
\bullet \;\; \mathsf{Kasparov} : \qquad \qquad \mathsf{Kasparov} = \mathsf{KasparovKarpov.split('\;')[1\;::3]}
```

• Karpov :
$$Karpov = KasparovKarpov.split(' ')[2 ::3]$$

```
coups = KasparovKarpov.split(' ')
```

```
([ coups[i] for i in range(len(coups)) if i % 3!= 0])[ ::-1]
```

Proportion de triplets $(a,b,c) \in \{a,..,z,A,..Z\}$

```
• [(x, y, z) \text{ for } x \text{ in range}(13) \text{ for } y \text{ in range}(13) \text{ for } z \text{ in range}(13) \text{ if } len(set((x,y,z)))==3]
```

```
• [(x, y, z) \text{ for } x \text{ in range}(52) \text{ for } y \text{ in range}(52) \text{ for } z \text{ in range}() \text{ if } x>y>z]
```

gnu = "GNU GENERAL PUBLIC LIC ... lgpl.html>."

- len(gnu), len(set(gnu))
- fr = dict((c,gnu.count(c)) for c in set(gnu))
 - $Ii_{fr} = list((x,fr[x]) \text{ for } x \text{ in } fr.keys())$
- li_fr.sort(reverse=True)
 - li_fr.sort(key=lambda b :b[1] , reverse=True)