

Event-based Robot Vision

Prof. Dr. Guillermo Gallego

Chair: Robotic Interactive Perception

guillermo.gallego@tu-berlin.de

http://www.guillermogallego.es

Case study

Image reconstruction from events in case of rotating event camera with known motion

Reference: Kim et al. BMVC 2014

 Recall: Events are generated any time a single pixel sees a change in brightness larger than C

The intensity signal at the event time can be reconstructed by **integration** of $\pm C$

Cook et al., IJCNN 2011

Kim et al., BMVC 2014

Given the events and the camera motion (rotation), recover the absolute brightness

High Dynamic Range property comes "for free" with the sensor

Input events

HDR reconstructed intensity

Standard camera (narrow dynamic range)

Given the events and the camera motion (rotation), recover the absolute brightness

- How is it possible?
- Intuitive explanation: an event camera naturally responds to edges, hence, if we
 know the motion, we can relate the events to "world coordinates" to get an
 edge/gradient map. Then, integrate the gradient map to get absolute intensity.

Steps:

2. Integrate the gradient to obtain brightness

Solve Poisson Eq.

Image intensity

Step 1: compute gradient map

Event generated due to brightness change of size CLet $L = \log I$,

$$\Delta L(t) \equiv L(t) - L(t - \Delta t) = C$$

In terms of the brightness map M(x,y) (panorama):

$$M(\mathbf{p}_m(t)) - M(\mathbf{p}_m(t - \Delta t)) = C$$

Using Taylor 1st order approximation:

$$M(\mathbf{p}_m(t)) - M(\mathbf{p}_m(t - \Delta t)) \approx \mathbf{g} \cdot \mathbf{v} \Delta t$$

where brightness gradient $m{g}=m{
abla}Mig(m{p}_m(t)ig)$ displacement $m{v}\Delta t=ig(m{p}_m(t)-m{p}_m(t-\Delta t)ig)$

Image reconstruction (detailed)

Step 1: compute gradient map

Idea: use the event generation model and set up an EKF for every map pixel (mosaic)

• Event generation model:

An event is fired at a pixel p_c if there is a brightness change of size C.

Letting
$$L = \log I$$
,

$$\Delta L(t) \equiv L(t) - L(t - \Delta t) = C$$

- This is an eq. on the image plane.
 Let us write it in map coordinates:
 - Let M(x, y) be the brightness of the world map (mosaic)
 - At t, the pixel p_c sees the map point $p_m(t)$, where the brightness is $L(t) = M(p_m(t))$
 - At $t \Delta t$, the pixel p_c saw the point $p_m(t \Delta t)$, where the brightness was $L(t \Delta t) = M(p_m(t \Delta t))$

Hence, the brightness change in terms of the map is:

$$C = \Delta L = \Delta M = M(\boldsymbol{p}_m(t)) - M(\boldsymbol{p}_m(t - \Delta t))$$

Image reconstruction (detailed)

Step 1: compute gradient map

Event generation model

The brightness change in terms of the map is:

$$\Delta M = M(\boldsymbol{p}_m(t)) - M(\boldsymbol{p}_m(t - \Delta t)) = C$$

Linearization:

To first order, the brightness change can be computed using the map slope (i.e., gradient). By Taylor's approximation,

$$M(\mathbf{p} + \Delta \mathbf{p}) \approx M(\mathbf{p}) + \nabla M(\mathbf{p}) \cdot \Delta \mathbf{p}$$

$$M(\boldsymbol{p}_m(t)) - M(\boldsymbol{p}_m(t-\Delta t)) \approx \underbrace{\nabla M(\boldsymbol{p}_m(t))}_{\boldsymbol{g}} \cdot \underbrace{(\boldsymbol{p}_m(t) - \boldsymbol{p}_m(t-\Delta t))}_{\Delta \boldsymbol{p}}$$

Assuming a linear motion between the map points, $\Delta p \approx v \Delta t$ Hence, the event generation in terms of the map is

$$\Delta M = \boldsymbol{g} \cdot \boldsymbol{v} \Delta t \approx C$$

Brightness map M

Step 1: compute gradient map

Event generation model

The event generation in terms of the map is

$$\Delta M = \boldsymbol{g} \cdot \boldsymbol{v} \Delta t \approx C$$

Similar interpretation as on the image plane: the contrast $\Delta M \propto g \cdot v$ is proportional to the dot product between:

- the brightness gradient $oldsymbol{g}$
- the "motion flow" $oldsymbol{v}$ of points on the map

Extreme cases:

- g and v are perpendicular $\rightarrow \Delta M = 0$. No event is generated
- g and v are parallel $\rightarrow \Delta M = C$, events are triggered the fastest (minimum Δt)

Step 1: compute gradient map

Extended Kalman Filter

The event generation in terms of the map is

$$\mathbf{g} \cdot \mathbf{v} \Delta t \approx C$$

In this equation, only g is unknown, and it is constant. Let us use an EKF to estimate this constant vector. (one EKF per map point)

- State eq: $g_k = g_{k-1}$
- Observation equation: $h_k = \frac{g_k \cdot v_k}{c}$

map ref. frame (m)Thus, we use the "event rate" at the map point p_m as observation: $z_k = \frac{1}{\Lambda t}$

Step 1: compute gradient map

Extended Kalman Filter

Iteration equations:

- Innovation: $v_k = z_k h_k$
- Innovation covariance: $S_k = H_k P_{k-1} H_k^{\mathsf{T}} + R_k$
 - Measurement matrix is the Jacobian:

$$H_k = \frac{\partial h_k}{\partial g_k} = \frac{v_k}{C}$$

- R_k is the covariance of the measurement z_k
- Kalman gain: $K_k = P_{k-1}H_k^{\mathsf{T}}S_k^{-1}$
- Gradient update: $g_k = g_{k-1} + K_k v_k$
- Covariance of gradient update: $P_k = P_{k-1} K_k S_k K_k^{\mathsf{T}}$

past: $t - \Delta t$ present: t

 $c_{
m amera}$ ref. $f_{
m rame}\left(c
ight)$

map ref. frame (m)

Step 1: compute gradient map

Extended Kalman Filter (one per map pixel)

Step 1: compute gradient map

Extended Kalman Filter (one per map pixel)

Step 1: compute gradient map

Extended Kalman Filter (one per map pixel)

Step 1: compute gradient map

Extended Kalman Filter (one per map pixel)

Step 1: compute gradient map

Extended Kalman Filter (one per map pixel)

Step 1: compute gradient map

Extended Kalman Filter (one per map pixel)

Step 1: compute gradient map

Extended Kalman Filter

Convergence: evolution of the trace of the covariance of some points

Step 2: Poisson integration

Integrate gradient map $oldsymbol{g}$ to get absolute brightness M

Original Image

Gradient in x direction $(g_x = \partial_x I)$

Gradient in y direction $(g_y = \partial_y I)$

Reconstructed Image

2D Integration

Solve Poisson eq: $(\Delta \tilde{I} = \operatorname{div} \boldsymbol{g})$ fast using the FFT

Divergence $(\operatorname{div} oldsymbol{g} = \partial_{\mathrm{x}} g_{\mathrm{x}} + \partial_{\mathrm{y}} g_{\mathrm{y}})$

Gradient in X direction

Gradient g: magnitude (radius) and orientation (color)

Trace of the covariance P, in log10-scale. Confident points are those with small trace (black)... precisely at the edges!

1

0.5

0

-0.5

-1

-1.5

-2

-2.

