Calculus – Lecture Notes

Amedeo Zucchetti

May 1, 2016

Based on the course of Prof. Michael Bronstein at USI

Contents

L	Sets, groups and fields	2
2	Spaces	4
3	Sequences	5
4	Series	7
5	Functions and continuity	8
3	Limits of functions	9
7	Power series	11

1 Sets, groups and fields

Definition Natural numbers N

- (i) $1 \in \mathbb{N}$
- (ii) $n \in \mathbb{N} \Rightarrow n+1 \in \mathbb{N} \ (n+1 \text{ is the successor of } n)$
- (iii) $\nexists n \in \mathbb{N} : n+1=1$ (no number is predecessor of 1)
- (iv) $m, n \in \mathbb{N}$ and $m+1=n+1 \Rightarrow m=n$
- (v) $A \subseteq \mathbb{N}, n \in A \text{ and } n+1 \in A \Rightarrow A = \mathbb{N}$

Definition Group

A set X and an operation \circ form a group (X, \circ) if the following rules are satisfied for all $a, b, c \in X$:

- (i) Closure: $a \circ b \in X$
- (ii) Associativity: $(a \circ b) \circ c = a \circ (b \circ c)$
- (iii) Identity: $\exists ! 0 \in X : a \circ 0 = 0 \circ a = a$
- (iv) Inverse: $\exists ! (-a) \in X : a \circ (-a) = (-a) \circ a = 0$

The group (X, \circ) is abellian if the following rule is satisfied too:

(v) Commutativity: $a \circ b = b \circ a$

Definition Field

Given a set X, then $(X, +, \cdot)$ is a field if it satisfies the following properties for all $a, b, c \in X$:

- (i) $a+b \in X$ $a \cdot b \in X$
- (ii) (a+b)+c=a+(b+c) $(a\cdot b)\cdot c=a\cdot (b\cdot c)$
- (iii) $\exists !0 \in X : a + 0 = 0 + a = a$ $\exists !1 \in X : a \cdot 1 = 1 \cdot a = a$
- (iv) $\exists ! (-a) \in X : a + (-a) = (-a) + a = 0$ $\forall a \neq 0, \exists ! a^{-1} : a \cdot a^{-1} = a^{-1} \cdot a = 1$
- (v) a+b=b+a $a \cdot b = b \cdot a$
- (vi) $a \cdot (b+c) = a \cdot b + a \cdot c$

 $\textbf{Definition} \quad \mathbb{Q} = \{ \tfrac{p}{q} : p,q \in \mathbb{Z}, q \neq 0 \}$

Remark $(\mathbb{Q}, +, \cdot)$ is a field.

Definition Ordered field

Let \leq be an order relation. Then the field $(X, +, \cdot, \leq)$ is an ordered field if the following properties are satisfied for $a, b, c \in X$:

- (i) Either $a \leq b$ or $b \leq a$
- (ii) If $a \leq b$ and $b \leq a$, then a = b
- (iii) If $a \leq b$ and $b \leq c$, then $a \leq c$
- (iv) If $a \le b$, then $a + c \le b + c$
- (v) If $a \leq b$ and $0 \leq c$, then $a \cdot c \leq b \cdot c$

Example Application of the order axioms

Let's take $(\mathbb{Q}, +, \cdot, \leq)$, $a, b \in \mathbb{Q}$. We want to show that if $a \leq b$, then $(-b) \leq (-a)$: $a \leq b \iff a + ((-a) + (-b)) \leq b + ((-a) + (-b)) \iff (a + (-a)) + (-b) \leq (-a) + (b + (-b)) \iff (-b) + 0 \leq (-a) + 0 \iff (-b) \leq (-a)$

Definition A set A is countably infinite if it exists a function $f: A \to \mathbb{N}$ bijective.

Remark Let A, B sets:

- If $|A| = |B| \iff$ exists a bijection between A and B
- If $|A| \leq |B| \iff$ exists an injection from A to B
- If $|A| < |B| \iff$ exists an injection, but not a bijection

Proposition \mathbb{Z} is countably infinite

Proposition \mathbb{Q} is countably infinite

Proposition \mathbb{R} is not countable

Proposition
$$|\mathbb{R}| = |\mathbb{R}^2|$$

Definition Power set

Let A be a set. The power set of A is $2^A = \{A' : A' \subseteq A\}$, the set containing all subsets of A. $|2^A| = 2^{|A|}$

Proposition
$$|2^{\mathbb{N}}| = |\mathbb{R}|$$

Proposition $\sqrt{2} \notin \mathbb{Q}$

2 SPACES CALCULUS

Definition Bounds

Let A, X be sets, such that $A \subseteq X$, and $x \in X$, then:

- x is upper bound of A if $a \leq x$, for all $a \in A$
- x is lower bound of A if $x \leq a$, for all $a \in A$

Definition Supremum and infimum

Let A be a set:

- \bullet The supremum is the smallest upper bound of A
- \bullet The infimum is the greatest lower bound of A

Definition Maximum and minimum

Let A be a set:

- The maximum is the biggest element of A (if $\sup(A) \in A$, then $\max(A) = \sup(A)$)
- The minimum is the smallest element of A (if $\inf(A) \in A$, then $\min(A) = \inf(A)$)

2 Spaces

Definition Topology

Let X be a set. Then $\tau \subseteq 2^X$ is a topology if:

- (i) $X \in \tau$
- (ii) $\emptyset \in \tau$
- (iii) $A_{\alpha} \in \tau$, then $\bigcup_{\alpha} A_{\alpha} \in \tau$ (the union of any element of τ is also contained in τ)
- (iv) $A_i \in \tau$, then $\bigcap_{i=1}^n A_i \in \tau$ (any finite intersection of elements of τ is also contained in τ)

Definition Topological space

Let X be a set, τ a topology, then (X,τ) is a topological space.

Definition Neighborhood in a topological space (X, τ)

A set N is a neighborhood of $x \in X$ if there exists a set $U \in \tau$ such that $x \in U$ and $U \subseteq N$.

Definition Metric

Let X be a set, $x, y, z \in X$. The function $d: X \times X \to \mathbb{R}$ is a metric if:

- (i) d(x, y) = d(y, x)
- (ii) $d(x,y) = 0 \iff x = y$
- (iii) $d(x,z) \leq d(x,y) + d(x,z)$

3 SEQUENCES CALCULUS

Definition Metric space

Let X be a set, d be a metric, then (X, d) is a metric space.

Definition Ball in a metric space (X, d)

 $B_r(x) = \{y \in X : d(x,y) < r\}$ is a ball of center x and radius r. $B_r(x)$ is subset of X.

Definition Open set in a topological space (X, τ)

A set U is open in (X, τ) if $U \in \tau$.

Definition Open set in a metric space (X, d)

A set U is open in (X, d) if for all $x \in U$ exists $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq U$.

Definition $C \subseteq X$ is closed if $X \setminus C$ is open. A set is closed if its complement is open.

Proposition Let S = (X, x) be a space (x a metric or a topology), then:

- (i) X is open in S
- (ii) \emptyset is open in S
- (iii) For all A_{α} open in S, then $\bigcup_{\alpha} A_{\alpha}$ is open in S (any union of any open set is also open)
- (iv) For all A_i open in S, then $\bigcap_{i=1}^n A_i$ is open in S (any finite intersection of any open set is also open)

3 Sequences

Definition Sequence

A sequence (x_n) is a function $x: \mathbb{N} \to X$, where $x(n) = x_n$.

The elements of a sequence can be listed in an ordered set with repetition: $(x_n) = (x_1, x_2, x_3, x_4, \ldots)$

Definition Cauchy sequence

A sequence (x_n) is a Cauchy sequence if for all $\varepsilon > 0$ exists N_{ε} such that $d(x_n, x_m) < \varepsilon$, for all $n, m \ge N_{\varepsilon}$. That is, starting from an index N_{ε} all values x_n are contained in an interval $[x_{N_{\varepsilon}} - \varepsilon, x_{N_{\varepsilon}} + \varepsilon]$.

Definition Convergence in a metric space (X, d)

A sequence (x_n) converges to a limit x if for all $\varepsilon > 0$ exists N_{ε} such that $d(x_n, x) < \varepsilon$, for all $n \ge N_{\varepsilon}$.

Definition Convergence in a topological space (X, τ)

A sequence (x_n) converges to a limit x if for all $U \in \tau$ such that $x \in U$, it exists N_U such that $x_n \in U$, for all $n > N_U$.

That is, x is a limit of a sequence, if all sets of τ that contain x also contain the tail of the sequence.

Proposition $x_n \to x$ in $(X,d) \iff$ for all $U \subseteq X$ open exists N_U such that $x_n \in U$, for all $n \ge N_U$.

3 SEQUENCES CALCULUS

Theorem If a sequence converges to a limit in a metric space, then the limit is unique.

Remark This isn't true in a topological space. In a topological space, a sequence can converge to multiple limits.

Proposition $x_n \to x$ in (X, d) metric space, then for all $y \in X$, $d(x_n, y) \to d(x, y)$.

Proposition Properties of real sequences

For all $(x_n), (y_n)$ such that $x_n \to x, y_n \to y$, we have the following properties:

(i)
$$\lim_{n \to \infty} (\alpha x_n + \beta y_n) = \alpha \lim_{n \to \infty} x_n + \beta \lim_{n \to \infty} y_n$$

(ii)
$$\lim_{n \to \infty} x_n x_y = \lim_{n \to \infty} x_n \lim_{n \to \infty} y_n$$

(iii)
$$\lim_{n \to \infty} \frac{x_n}{x_y} = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n}$$

Definition A sequence (x_n) is bounded if exists c such that $|s_n| \leq c$.

Theorem Convergent real sequences are bounded (not the opposite).

Definition Monotonic sequences

- (x_n) is monotonic increasing if $x_n \leq x_{n+1}$ for all n
- (x_n) is monotonic decreasing if $x_{n+1} \leq x_n$ for all n

Theorem If a sequence monotonic and bounded \Rightarrow convergent

Definition Limit superior and inferior of (x_n)

- $\limsup_{n\to\infty} x_n = \lim_{n\to\infty} \sup\{x_k : k \ge n\}$
- $\liminf_{n\to\infty} x_n = \lim_{n\to\infty} \inf\{x_k : k \ge n\}$

Definition Subsequence

 $(x_{n_k})\subseteq (x_n)$ is a subsequence of (x_n) . Only some terms of a sequence are part of a subsequence.

Theorem If $x_n \to x \Rightarrow x_{n_k} \to x$. If a sequence converges, all subsequences converge to the same limit.

Definition x_n is a dominant term if $x_m < x_n$ for all n < m.

Theorem Every sequence has a monotonic subsequence.

Theorem Bolzano-Weierstrass

Every bounded sequence has a convergent subsequence.

Definition $X \subseteq \mathbb{R}^n$ is compact $\iff X$ is closed and bounded (this is not true for \mathbb{R}^{∞}).

4 SERIES CALCULUS

4 Series

Definition Series

 (x_n) sequence. $s_n = \sum_{k=1}^n x_k$ is a series (also known as the partial sum). A series is the summation of the terms of a sequence.

Definition Convergence of series

$$s_n = \sum_{k=1}^n x_k$$
 a series. $\lim_{n\to\infty} s_n = \lim_{n\to\infty} \sum_{k=1}^n x_k = \sum_{k=1}^\infty x_k$.

Definition Absolute convergence of a series $s_n = \sum_{k=1}^n x_k$

 s_n converges absolutely if $\sum_{k=1}^{\infty} |x_k| < \infty$.

Proposition Absolute convergence \Rightarrow convergence. If $\sum_{k=1}^{\infty} |x_k| < \infty$, then $\sum_{k=1}^{\infty} x_k < \infty$.

Definition Cauchy criterion for series

 $s_n = \sum_{k=1}^n x_k$, and $\sum_{k=1}^\infty x_k < \infty$ is a Cauchy series if for all $\varepsilon > 0$ it exists N such that:

$$\forall N \le m \le n \Rightarrow |s_n - s_m| = \left| \sum_{k=1}^n x_k - \sum_{k=1}^m x_k \right| = \left| \sum_{k=m}^n x_k \right| < \varepsilon$$

Proposition Comparison test, for x_n, y_n sequences and $x_n \ge 0$

(i) If
$$\sum_{k=1}^{\infty} x_k < \infty$$
 and $|y_n| \le x_n \Rightarrow \sum_{k=1}^{\infty} y_k < \infty$

(ii) If
$$\sum_{k=1}^{\infty} x_k = +\infty$$
 and $x_n \le y_n \Rightarrow \sum_{k=1}^{\infty} y_k = +\infty$

Proposition Ratio test, for x_n sequence, $x_n \neq 0$ and $s_n = \sum_{k=1}^n x_k$ series:

- (i) s_n converges absolutely if $\limsup_{n\to\infty} \left|\frac{x_{n+1}}{x_n}\right| < 1$
- (ii) s_n diverges if $\liminf_{n\to\infty} \left|\frac{x_{n+1}}{x_n}\right| > 1$

Proposition Root test, Let $s_n = \sum_{k=1}^n x_k$ a series, $\alpha = \limsup_{n \to \infty} \sqrt[n]{|x_n|}$:

- (i) s_n converges absolutely if $\alpha < 1$
- (ii) s_n diverges if $\alpha > 1$

5 Functions and continuity

Definition Given a function $f: X \to Y$, the image of f is defined as: $Im_f(X) = \{f(x) : x \in X\}$. It contains all the images of all elements of X.

Definition Given a function $f: X \to Y$, the preimage of f is defined as: $PreIm_f(Y) = \{x : f(x) \in Y\}$. It contains all the elements of X that have an image in Y.

Definition Continuity of $f:(X,d_x)\to (Y,d_y)$ (in a metric space) f is continuous at $x\in X$ if:

$$\forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0 : \forall x' \in X, d_x(x, x') < \delta_{\varepsilon} \Rightarrow d_y(f(x), f(x')) < \varepsilon$$

Remark Continuity can also be defined as follows:

$$\forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0 : Im_f(B_{\delta_{\varepsilon}}^{d_x}(x)) \subseteq B_{\varepsilon}^{d_y}(f(x))$$

This means that the image of each ball around each x is contained in another ball around f(x).

Definition Continuity of $f:(X,\tau_x)\to (Y,\tau_y)$ (in a topological space) f is continuous at $x\in X$ if for all $U\in \tau_y$ such that $f(x)\in U$, then $PreIm_f(U)\in \tau_x$.

Proposition Continuous functions map open sets into open sets. If $f:(X,d_x)\to (Y,d_y)$ continuous, then $PreIm_f(A)$ is open, for all $A\subseteq Y$ open.

Theorem Continuous functions map limits to limits:

$$f$$
 continuous, $x_n \to x \iff f(x_n) \to f(x)$

Proposition $f, g : \mathbb{R} \to \mathbb{R}$ continuous at $x \Rightarrow f + g$, $f \cdot g$ and $\frac{f}{g}$ (for $g(x) \neq 0$) are continuous at x.

Proposition f continuous at x and g continuous at $f(x) \Rightarrow g \circ f = g(f(x))$ is continuous at x.

Definition $f:(X,d) \to (X,d)$ is a contraction \iff it exists $0 \le c < 1$ such that $d(f(x),f(y)) \le cd(x,y)$, for all $x,y \in X$.

Theorem Banach fixed point

Let's take (X, d) complete (Cauchy \iff convergence) and $f: (X, d) \to (X, d)$ a contraction, then:

- (i) $\exists ! x^* \in X : f(x^*) = x^*$
- (ii) $x_0 \in X$, $x_{n+1} = f(x_n) \Rightarrow x_n \to x^*$

6 Limits of functions

Definition f converges to c at $x_0 \iff$ for all (x_n) such that $x_n \to x_0$ we have $f(x_n) \to c$. We write $\lim_{x \to x_0} f(x) = c$.

- f converges from above if, for all (x_n) , then $x_0 < x_n$. We write $\lim_{x \to x_0^+} f(x) = c$.
- f converges from below if, for all (x_n) , then $x_n < x_0$. We write $\lim_{x \to x_0^-} f(x) = c$.

Definition $f: \mathbb{R} \to \mathbb{R}$ is bounded on $X \subseteq \mathbb{R}$ if $Im(X) = \{f(x) : x \in X\}$ is bounded. That is, it exists c such that $|f(x)| \le c$ for all $x \in X$.

Theorem Extreme value

If $f:[a,b]\to\mathbb{R}$ is continuous, then:

- (i) f is bounded on [a, b]
- (ii) f has a maximum and a minimum on [a, b] $\exists x_{minimizer}, x_{maximizer} \in [a, b] : f(x_{mininizer}) \leq f(x) \leq f(x_{maximizer}), \forall x \in [a, b]$

Remark This isn't true if the interval is open:

- $f: \mathbb{R} \to \mathbb{R}(0,1), f(x) = \frac{1}{x}$ is unbounded, since f(x) goes to infinity for x small
- $f: (-1,1) \to$, $f(x) = x^2$, doesn't have a max, since $\sup\{Im((-1,1))\} = 1$ is f(1) or f(-1), but 1 and $-1 \notin (-1,1)$

Theorem Intermediate value (IVT)

f continuous on [a, b], $f(a) < c < f(b) \Rightarrow \exists x \in [a, b] : f(x) = c$.

Definition A Darboux function is a function that satisfies the intermediate value property.

Proposition Continuous implies Darboux, but not the opposite.

Proposition Continuous functions map intervals to intervals.

Definition Connectedness

Let (X,τ) a topological space, the $A\subseteq X$ is disconnected if the two equivalent definitions hold:

- There exist $U, V \in \tau$ such that:
 - $-(A\cap U)\cap (A\cap V)=\emptyset$, and
 - $-(A \cap U) \cup (A \cap V) = A$, and
 - $-A \cap U \neq \emptyset \neq A \cap V$
- There exist $U, V \subseteq A$ such that:
 - $-A = U \cup V$, and
 - $-\ \overline{U}\cap V=\emptyset=U\cap \overline{V}$! NOT SURE !

A set is connected if it is not disconnected.

Proposition Continuous functions preserve connectedness.

$$f:(X,\tau_x)\to (Y,\tau_y),\ A\subseteq X$$
 connected in (X,τ_x) , then $Im(A)\subseteq Y$ is connected in (Y,τ_y) .

Definition Uniform continuity

 $f:(X,d_x)\to (Y,d_y)$ is uniformly continuous on X if:

$$\forall \varepsilon > 0 \quad \exists \delta_{\varepsilon} > 0 : \forall x, x' \in X : d_x(x, x') < \delta \Rightarrow d_y(f(x), f(x')) < \varepsilon$$

Remark Uniform continuity is different from normal continuity. In normal continuity the δ depends on both ε and x, while in uniform continuity δ depends solely on ε . In fact, f is "normally" continuous on $x_0 \in X$ if:

$$\forall \varepsilon > 0 \quad \exists \delta_{\varepsilon, \tau_0} > 0 : \forall x \in X : d_{\tau}(x_0, x) < \delta \Rightarrow d_{\tau}(f(x_0), f(x)) < \varepsilon$$

Theorem f continuous on A, closed and bounded $\Rightarrow f$ is uniformly continuous on A.

Theorem f uniformly continuous on S, $(s_n) \subseteq S$ is Cauchy sequence $\Rightarrow f(s_n)$ is Cauchy sequence.

Definition Sequence of functions

 $(f_n) \subseteq \{f: S \to \mathbb{R}\}$ is a sequence of functions. A sequence of function can converge to a function: $f_n \to f$.

Definition f_n converges pointwise to $f \iff \lim_{n \to \infty} f_n(x) = f(x)$ for all $x \in S$.

$$\forall \varepsilon > 0, x \in S \exists N_{\varepsilon} : |f_n(x) - f(x)| < \varepsilon$$

Definition $d_{\infty}(f_n, f) = \sup\{|f_n(x) - f(x)| < \varepsilon\}$

Definition f_n converges uniformly to f if exists N_{ε} such that $d_{\infty}(f_n, f) < \varepsilon$ for all $n \geq N_{\varepsilon}$.

7 POWER SERIES CALCULUS

Theorem Uniform limit of a continuous function is continuous $f_n(x)$ continuous and $f_n(x) \xrightarrow{unif.} f(x) \Rightarrow f(x)$ is continuous.

7 Power series

Definition Power series

Let $(a_n)_{n\geq 0}\subseteq \mathbb{R}$ a sequence. Then $\sum_{n=0}^{\infty}a_nx^n$ is a power series. We have three cases:

- The series converges for all $x \in \mathbb{R}$.
- The series converges for x = 0 only.
- The series converges for some bounded interval.

Theorem Let $\beta = \limsup \sqrt[n]{|a_n|}$ and $R = \frac{1}{\beta}$ $(R = \infty \text{ if } \beta = 0, R = 0 \text{ if } \beta = \infty)$. Then $\sum_{n=0}^{\infty} a_n x^n$:

- Converges for |x| < R.
- Diverges for |x| > R.

The same can be done with $\beta = \limsup \left| \frac{a_n}{a_{n+1}} \right|$.