FISEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Structural requirements of manganese oxides for methane oxidation: XAS spectroscopy and transition-state studies

Xiuyun Wang^a, Yi Liu^a, Yangyu Zhang^a, Tianhua Zhang^a, Huazhen Chang^b, Yongfan Zhang^a, Lilong Jiang^{a,*}

- a National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian, 350002, China
- ^b School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China

ARTICLE INFO

Keywords: Mn oxides Crystallographic structure Methane combustion H₂O/CO₂ DFT+U calculation

ABSTRACT

Different crystallographic structures of Mn oxides usually lead to diverse coordination geometries and oxidation states of MnO₆, which in turn show strikingly different catalytic activities. In this study, methane oxidation performances over Mn oxides with various crystalline structures were investigated, including α -MnO₂ (double chains of Mn⁴⁺O₆ octahedra), α -Mn₂O₃ (symmetry-inequivalent Mn³⁺O₆), two-dimensional mesoporous β -MnO₂ (labels as Meso-MnO₂, single chains of Mn⁴⁺O₆ octahedra) and one-dimensional β -MnO₂ (single chains of Mn^{3+/4+}O₆ octahedra). The results demonstrate that the methane oxidation activities are dependent on their crystallographic structures, and follow an order of α -MnO₂ > β -MnO₂ > α -Mn₂O₃ > Meso-MnO₂. Meanwhile, α -MnO₂ exhibits good durability and excellent 9.5vol%H₂O/10vol%CO₂ resistance ability. EXAFS, Raman, XPS, O₂-TPD-MS and CH₄-TPR-MS studies indicate that the outstanding catalytic activity over α -MnO₂ is due to higher surface Mn concentration, more active oxygen species and mono- μ -oxo bridged corner-shared [MnO₆] sites, and excellent reducibility. More importantly, a new insight into reaction mechanism of methane oxidation over Mn oxides was proposed at the molecular level.

1. Introduction

Methane (CH₄), as the main component of natural gas, has a greenhouse effect more than 20 times that of CO_2 . Combustion catalysts have been extensively explored to reduce the emission of CH_4 , and the catalytic combustion of CH_4 at relatively low temperature ($< 600\,^{\circ}C$) has been a topic of interest for decades [1]. Supported noble metal catalysts, especially palladium-based ones, are observed to have the best activities for CH_4 combustion, but high precious metal loading is needed, which restricts their further application because of high cost and sintering at high temperature [2].

A promising alternative to the precious-metal-based catalysts is the use of transition-metal oxides (TMOs) including MnO_2 , $\mathrm{Co}_3\mathrm{O}_4$, NiO , etc., among which Mn oxides is one of the most efficient catalysts in CH_4 oxidation [3]. However, the catalytic activity of the promising TMOs candidates is still not satisfactory at low temperature [4]. Recently, many studies have demonstrated that catalytic activities are dependent on catalyst compositions and crystallographic structures, shapes and pore structures, and there is a strong relationship between these properties and catalytic performance of a catalyst [5]. Therefore, the design and controllable preparation of Mn oxides catalyst is a key to

achieve a considerably high catalytic activity as that of noble metals. The different polymorphic structures of Mn oxides, such as α - and β -MnOx, display different ways to link together the basic octahedral [MnO₆] units, thereby showing strikingly different catalytic activities [6]. Additionally, a general picture for the oxidation of methane over Mn oxides has not been established [7]. Contradictory claims on the oxidation of methane were reported such as that based on Langmuir-Hinshelwood (L-H) mechanism involving adsorbed oxygen and that based on Mars-van Krevelen (MvK) mechanism concerning lattice oxygen [8-10]. After all, it is believed that methane are activated by surface adsorbed oxygen species following the L-H route. Meanwhile, the L-H route may contend with an indirect oxidation process that involves lattice oxygen (MvK route) [8], depending on whether there is the formation of oxygen vacancies. Nonetheless, the MvK route has been proposed for the oxidation of C-H bond over TMOs with d° configuration [7], where the activation of O2 via electron transfer is impossible over the empty d-bands. On the contrary, p-type TMOs such as those of Mn^{4+} ($d^{n > 0}$), can activate O_2 to generate surface active oxygen species via the L-H route through the donation of electrons. Therefore, it is necessary to elucidate the reaction pathways of methane oxidation over Mn oxides at a molecular level.

E-mail address: jll@fzu.edu.cn (L. Jiang).

^{*} Corresponding author.

Herein, various structures of Mn oxides including $\alpha\text{-MnO}_2$ (double chains of Mn^{4+}O_6 octahedra), $\alpha\text{-Mn}_2\text{O}_3$ (double chains symmetry-inequivalent Mn^{3+}O_6), Meso-MnO₂ (single chains of Mn^{4+}O_6 octahedra) and $\beta\text{-MnO}_2$ (single chains of $\text{Mn}^{3+/4+}\text{O}_6$ octahedra) were synthesized by facile methods. The synthesized Mn oxides were systematically studied in the catalytic oxidation of CH_4 . A detailed investigation on the catalyst structures for the catalytic oxidation of methane over synthesized Mn oxides was conducted by means of Raman and XAS, reaction kinetics, XPS and *in situ* DRIFTS, aiming to acquire insights into the reaction mechanism at a molecular level. The results demonstrate that the catalytic activity for methane oxidation is closely associated with mono- μ -oxo bridged corner-shared MnO₆ sites, surface Mn concentration and oxygen species as well as reducibility.

2. Experimental

2.1. Catalyst preparation

The preparation of $\alpha\text{-MnO}_2$ nanowires consists of the following steps. 3 mol MnSO₄·H₂O and 2 mol KMnO₄ were dissolved into 50 mL distilled water. Then, the solution was moved to a Teflon-lined stainless-steel autoclave of 100 mL, and the sealed autoclave with its content was heated at 160 °C for 12 h. Thereafter, the obtained precipitate was washed with deionized water for several times, and successive drying at 100 °C. Ultimately, the powders were calcined at 500 °C for 3 h, and the obtained catalyst is labeled herein as $\alpha\text{-MnO}_2$.

Highly ordered mesoporous Meso-MnO $_2$ was prepared via the nanocasting method. 1 g Mn (NO $_3$) $_2$ -4H $_2$ O was dissolved in ethanol (60 mL). After stirring at 25 °C for 1 h, 0.5 g SBA-15 was added into the above solution. The suspension was stirred and followed by calcination at 500 °C for 3 h. Finally, the SBA-15 hard template was removed using 2 M NaOH solution at 60 °C under stirring conditions. Centrifugal separation was used to eliminate sodium silicate, and the sample was dried. The obtained catalyst is labeled as Meso-MnO $_2$.

The synthetic procedure of $\beta\text{-MnO}_2$ nanorod was similar to that of $\alpha\text{-MnO}_2$ nanowires. 4 mol MnSO₄·H₂O and 5 mol (NH₄)₂S₂O₈ were dissolved in 160 mL of distilled water to generate a homogeneous solution, which was then moved to a 100 mL Teflon-lined stainless steel autoclave, and the sealed autoclave with its content was heated at 140 °C for 12 h. The subsequent steps were identical to those described for the synthesis of the $\alpha\text{-MnO}_2$ nanowires.

 $\alpha\text{-Mn}_2O_3$ was obtained by decomposition of MnCO $_3$ at 500 $^{\circ}\text{C}$ for 3 h under air.

2.2. Testing of catalytic activity

The catalytic performances were tested in a continuous flow fixed-bed quartz reactor (i.d. = 6.0 mm). Before activity test, 0.1 g of the sample (40–60 mesh) was treated with Ar at 350 °C for 30 min. The gas mixture composed of 1%CH₄, 20% O₂ and balance N₂. The total gas flow rate is 150 mL/min and corresponds to a weight hourly space velocity (WHSV) of 90,000 mL/(g h). After steady operation of 30 min, the inlet and outlet gases were tested by an on-line gas chromatograph (Agilent 7890A, USA) equipped with flame ionization detector (FID) and thermal conductivity detector (TCD). To examine the effects of CO₂ on methane conversion, we conduct the oxidation of methane in the presence of 10.0 vol% CO₂ in α -MnO₂. For water vapor addition, 9.5 vol % of H₂O was provided by a mass flow controller using a water saturator. The methane conversion (X_{methane}) and turnover frequency of TOF_{Mn} were calculated according to the following equations:

$$Xmethane = \frac{Cin - Cout}{cout} *100\%$$
 (1)

$$TOFMn = \frac{Cmethane*Xmethane*Vgas}{nMn} \quad [s^{-1}]$$
 (2)

where $C_{\rm in}$ and $C_{\rm out}$ are the inlet and outlet methane concentration, respectively, $V_{\rm gas}$ represents the total molar flow rate, $C_{\rm methane}$ is the methane concentration in the inlet gas; $n_{\rm Mn}$ is the molar amounts of Mn. The kinetics parameter was measured while the oxidation of methane was conducted in the fixed-bed reactor, having the conversions kept below 19%.

2.3. Characterization

Powder X-ray diffraction (XRD) was measured on a Panalytical X'Pert Pro diffractometer using Co-K $_{\alpha}$ radiation. N $_2$ physisorption measurements were carried out at 77 K on an ASAP 2020 apparatus. Scanning Electron Microscope (SEM) was performed on a JSM6700-F instrument. High-resolution transmission electron microscopy (HR-TEM) measurement was measured on a JEM-2010 microscope. H $_2$ temperature-programmed reduction (H $_2$ -TPR) was measured on an AutoChem II 2920 equipment using TCD, having the catalyst treated in an Ar flow (30 mL/min) at 400 °C for 30 min. After cooling to room temperature, the sample was heated to 700 °C in a gas flow of H $_2$ /Ar (vol/vol = 10/90; rate = 30 mL/min). O $_2$ -TPD-MS and CH $_4$ -TPR-MS experiments were carried out on a Micromeritics Autochem II 2920 instrument equipped with a Hiden QIC-20 mass spectrometer (for more details see the supporting information).

X-ray photoelectron spectroscopy (XPS) analysis was tested on Physical Electronics Quantum 2000, equipped with monochromatic Al- K_{α} source ($K_{\alpha}=1486.6$ eV) and a charge neutralizer. Raman spectra of samples were collected under ambient condition on a Renishaw spectrometer, and a laser beam ($\lambda=532\,\mathrm{nm}$) was used for excitation. X-ray absorption near edge structure (XANES) and the extended X-ray absorption fine structure (EXAFS) measurements were undertaken at Beamlines 1W1B at Beijing Synchrotron Radiation Facility (BSRF). In situ diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) was performed on a Nicolet Nexus FT-IR spectrometer in the range of 650–4000 cm $^{-1}$ (for more details see the supporting information). DFT + U calculations with dispersion corrections were performed utilizing the VASP and PAW method (for more details see the supporting information).

3. Results and discussions

3.1. Morphologic, structural and textural characterization

X-ray diffraction peaks (Fig. 1) in α -MnO $_2$ are assigned to the tetragonal MnO $_2$, with lattice constants $a=9.8150\,\mbox{\normalfont\AA}$ and $c=2.8470\,\mbox{\normalfont\AA}$. The crystalline nature of α -MnO $_2$ is also evidenced by the TEM images, which show a uniform nanowire morphology (Fig. 2A) with diameter about 28 nm (Fig. 2B). The interplanar distances of 0.473 and 0.278 nm

Fig. 1. XRD patterns of $\alpha\text{-MnO}_2, \text{ Meso-MnO}_2, \beta\text{-MnO}_2 \text{ and } \alpha\text{-Mn}_2O_3.$

Fig. 2. TEM and HR-TEM images of (A-C) α-MnO₂; (D-F) Meso-MnO₂; (G-I) β-MnO₂ and (J-L) α-Mn₂O₃.

correspond to (100) and (101) planes of α-MnO₂ (Fig. 2C). The statistical results of HR-TEM images (Fig. S1) show that the mainly exposed crystal facet of α-MnO₂ is (100). The XRD pattern of Meso-MnO₂ shows several weak diffraction peaks correspond to β-MnO2 phase. To be noted, TEM (Fig. 2D-F) and HR-TEM (Fig. 2E) images illustrate that Meso-MnO₂ shows highly ordered nature of mesoporous framework. Moreover, the low-angle XRD pattern (Fig. S2) of Meso-MnO₂ presents three diffraction peaks, which can be assigned to (10), (11) and (20) reflections, matching with the p6m symmetry characteristic for the twodimensional order mesoporous structure. XRD peaks of β-MnO₂ correspond to the standard diffraction characteristic of pyrolusite. TEM images (Fig. 2G-I) show that β-MnO₂ exhibits a nanorod morphology with a $2\,\mu$ (L) \times 180 nm (i.d.) dimension. HR-TEM image (Fig. 2I) shows that β -MnO₂ displays an interplanar distance of 0.313 nm, which is associated with MnO2 (110) facet. It reveals that the nanorod has a preferential growth along the [001] direction, which is perpendicular to the [110] direction. In the Mn(CO₃)₂ pyrolysis derived flower-like (Fig. S2D and Fig. 2L) manganese oxide with a cubic α -Mn₂O₃ phase. The relatively small d spacing is confirmed by HR-TEM in Fig. 2O; i.e., an interplanar distance of 0.284 nm matches with the (111) planar spacing.

 $\alpha\text{-MnO}_2$ structure is constructed by double chains of [MnO₆] octahedra (Fig. 3A), while $\beta\text{-MnO}_2$ is comprised of single chains of edgesharing [MnO₆] octahedra (Fig. 3B) [11]. However, Mn₂O₃ has a closepacked structure and has five symmetry-inequivalent Mn³+O₆ sites in the unit cell (Fig. 3D) [11]. The textural properties of as-prepared samples were characterized by N₂ adsorption (Fig. S3 and Table 1). Meso-MnO₂ displays the highest BET surface area (110 m²/g) and the largest pore volume (0.508 cm³/g), while $\beta\text{-MnO}_2$ possesses the lowest surface area (12 m²/g) and the smallest pore volume (0.08 cm³/g). In the case of $\alpha\text{-MnO}_2$ and $\alpha\text{-Mn}_2\text{O}_3$, they show BET surface area of 24 and 29 m²/g, respectively.

Fig. 3. Structural depictions of (A) α -MnO₂; (B) Meso-MnO₂; (C) β -MnO₂ and (D) α -Mn₂O₃.

3.2. Catalytic performances

3.2.1. Catalytic activity and kinetic studies

The catalytic performances of methane oxidation over Mn oxides are shown in Fig. 4A. The temperatures at a methane conversion of 50% (T_{50}) and 90% (T_{90}), are both important indicators of catalytic combustion activity, which are listed in Table 1. The results suggest that catalytic efficiency is in the order of $\alpha\text{-MnO}_2 > \beta\text{-MnO}_2 > \alpha\text{-Mn}_2O_3 > \text{Meso-MnO}_2$ at 200–425 °C. Specifically, the $T_{50\%}$ and $T_{90\%}$ values of $\alpha\text{-MnO}_2$ are 355 and 415 °C, respectively, which are much lower than those of $\beta\text{-MnO}_2$ and $\alpha\text{-Mn}_2O_3$ []. Notably, methane conversion in $\beta\text{-MnO}_2$ is higher than that in $\alpha\text{-Mn}_2O_3$ at 200–425 °C, but lower at 425–500 °C. Moreover, the turnover frequency per surface Mn (TOF_{Mn}) values (Fig. 4B) obey the order of $\alpha\text{-MnO}_2 > \beta\text{-MnO}_2 > \alpha\text{-Mn}_2O_3 > \text{Meso-MnO}_2$. The result further confirms that $\alpha\text{-MnO}_2$ exhibits the highest catalytic efficiency. Additionally, $\alpha\text{-MnO}_2$ exhibits good durability in methane combustion (Fig. 4C), attaining CO₂ selectivity more than 98% in the whole period.

The kinetic studies of methane combustion over the catalysts were performed with methane conversion kept less than 20%. Based on the

slopes of the Arrhenius plots (Fig. 4D), the apparent activation energies (Table 1) decrease in the order of Meso-MnO $_2$ (93 kJ/mol) $> \alpha$ -Mn $_2O_3$ (64 kJ/mol) $> \beta$ -MnO $_2$ (61 kJ/mol) $> \alpha$ -MnO $_2$ (55 kJ/mol), matching with the sequence of catalytic performance at 200–425 °C. The E_a in α -MnO $_2$ is found to be lower than those of some Pt-based catalysts (67–138 kJ mol $^{-1}$) []. These results indicate that relatively lower reaction temperature and higher TOF $_{\rm Mn}$ value among the asprepared catalysts makes the α -MnO $_2$ a promising catalyst for methane combustion. To investigate the structure-efficiency relationship, more characterization is needed.

3.2.2. Effects of H₂O and CO₂

To examine the effects of $\rm H_2O$ and $\rm CO_2$ on methane conversion, we conduct the catalytic oxidation of methane in the presence of 9.5 vol% $\rm H_2O$ and/or 10.0 vol% $\rm CO_2$ in α -MnO₂. As shown in Fig. 5A, the addition of 9.5 vol% $\rm H_2O$ results in an obvious decrement of methane conversion at relatively low-temperature (T < 350 °C). These results indicate that the competitive adsorption of $\rm H_2O$ and $\rm CH_4/O_2$ on MnO₂, and the adsorption of $\rm H_2O$ is stronger than that of $\rm CH_4/O_2$ [12a], which has been proved by *in situ* DRIFT spectroscopy (*infra*). Notably, the

 $\label{eq:table 1} \textbf{Table 1} \\ \textbf{Textural properties, surface element concentration, reaction temperature, } O_{latt}/(O_{ads}+O_{latt}) \text{ ratio and activation energy } (E_a) \text{ of catalysts.} \\ \textbf{Textural properties, surface element concentration, reaction temperature, } O_{latt}/(O_{ads}+O_{latt}) \text{ ratio and activation energy } (E_a) \text{ of catalysts.} \\ \textbf{Textural properties, surface element concentration, reaction temperature, } O_{latt}/(O_{ads}+O_{latt}) \text{ ratio and activation energy } (E_a) \text{ of catalysts.} \\ \textbf{Textural properties, surface element concentration, reaction temperature, } O_{latt}/(O_{ads}+O_{latt}) \text{ ratio and activation energy } (E_a) \text{ of catalysts.} \\ \textbf{Textural properties, surface element concentration, reaction temperature, } O_{latt}/(O_{ads}+O_{latt}) \text{ ratio and activation energy } (E_a) \text{ of catalysts.} \\ \textbf{Textural properties, } O_{latt}/(O_{ads}+O_{latt}) \text{ ratio } O_{latt}/(O_{latt}) \text{ ratio } O_{latt}/(O_{latt}/(O_{latt})) \text{ ratio } O_{latt}/(O_{latt}/(O_{latt}/(O_{latt})) \text{ ratio } O_{latt}/(O_{latt$

Sample	$S_{BET} (m^2 g^{-1})$	Pore volume (cm 3 g $^{-1}$)	Average pore radius (nm)	Surface Mn Concentration ^a (%)	T _{50%} (°C)	T _{90%} (°C)	$O_{latt}/(O_{ads} + O_{latt)}$ (%)	E _a (kJ/mol)
α-MnO ₂	24	0.148	12.4	27.6	355	415	67	55
Meso-MnO ₂	110	0.508	9.2	20.1	456	-	44	93
β -MnO ₂	12	0.080	16.8	22.3	388	499	63	61
α -Mn ₂ O ₃	29	0.187	12.8	26.6	408	481	67	64

a XPS results.

Fig. 4. (A) Methane conversion as a function of temperature; (B) TOF_{Mn} of as-prepared catalysts at 275 °C; (C) time on stream of methane conversion and CO_2 selectivity over α -MnO₂ at 500 °C. (D) Arrhenius plots for methane oxidation.

addition of 9.5 vol% $\rm H_2O$ has little effect on methane conversion with only a slight deactivation by less than 3% at a relative high temperature (T > = 350 °C), which may be associated with strong lattice oxygen mobility at high temperature, leading to the adsorption of oxygen is stronger than that of $\rm H_2O$ [12a]. However, the addition of 10 vol% $\rm CO_2$ results in an obvious decrement of methane conversion, which can be ascribed to surface active sites of $\rm \alpha\text{-MnO}_2$ are covered by carbonate species [12]. The significant effect of $\rm CO_2$ on the methane conversion over $\rm \alpha\text{-MnO}_2$ demonstrate in the present study agrees well with the previous reports [12].

Additionally, the stability of $\alpha\text{-MnO}_2$ was also tested by a time-on-stream experiment where the catalyst was kept on-line at 475 °C in the presence of 9.5 vol% H_2O and/or 10.0 vol% CO_2 . Fig. 5B indicates that no significant change in catalytic activity is found in $\alpha\text{-MnO}_2$ in the presence of 9.5 vol% H_2O . The addition of 10 vol%CO $_2$ results in a decrement of methane conversion from 99% to 94% in $\alpha\text{-MnO}_2$. Notably, the co-existence of 9.5 vol% H_2O and 10 vol%CO $_2$ lead to a

decrement of methane conversion from 99% to 93% in α -MnO $_2$. These results indicate that the significant effect of CO $_2$ on the methane conversion over α -MnO $_2$ at low temperature rather than high temperature. In order to understand the effect of CO $_2$ on the catalytic stability over α -MnO $_2$ at different temperatures, XPS of used α -MnO $_2$ have been added in Fig. S4. XPS spectrum of Mn 2p shows that surface Mn concentration is decreased from 27.6% in fresh MnO $_2$ to 16.29% in the used counterpart (10%CO $_2$, 1%CH $_4$, 20% O $_2$ and balance N $_2$ at 350 °C for 5 h) (Table S1), indicating that partial surface Mn active sites are covered by carbonate species [12], therefore an obvious decrease in catalytic stability. Interestingly, surface Mn concentration over used α -MnO $_2$ -475 °C (10%CO $_2$, 1%CH $_4$, 20% O $_2$ and balance N $_2$ at 475 °C for 5 h) is slightly decreased to 25.21% (Table S1), probably due to that surface carbonate species are decomposed at such a high temperature.

Fig. 5. (A) Effect of 9.5 vol% H_2O and 10vol% CO_2 on methane conversion at different reaction temperatures in α -MnO₂. (B) Effect of 9.5 vol% H_2O and 10% CO_2 on methane conversion at 475 °C in α -MnO₂.

Fig. 6. (A) Normalized Mn K-edge XANES spectra; (B) The energy position of main absorption of Mn K-edge; (C) Pre-edge of XANES spectra at the Mn K-edge of catalysts; (D) XPS Mn3s spectra; (E) Mn2p, (F) O1s, (G) Mn K-edge EXAFS spectra, (H) Raman spectra and the relation of interatomic distance in (I) MnO₂ structure.

3.3. Oxidation states and electronic structure

X-ray absorption near-edge spectroscopy (XANES) was employed to clarify the oxidation states of Mn species, and the results are shown in Fig. 6A–C. The Mn valence states (Fig. 6A–B) of the catalysts follow the order of: $\alpha\text{-MnO}_2$ (+3.78) ~ Meso-MnO $_2$ (+3.77) > $\beta\text{-MnO}_2$ (+3.53) > $\alpha\text{-Mn}_2O_3$ (+2.79). These results indicate that the dominant state of Mn ions in $\alpha\text{-MnO}_2$ and $\alpha\text{-Mn}_2O_3$ are +4 and +3, respectively. However, the co-existence of Mn³+ (47%) and Mn⁴+ (53%) ions in $\beta\text{-MnO}_2$. Additionally, $\alpha\text{-MnO}_2$, Meso-MnO $_2$ and $\beta\text{-MnO}_2$ (Fig. 6C) exhibit a broad pre-edge peak, indicating the stabilization of Mn ions over the octahedral site because of the separation of degenerated 3d levels under the octahedral crystal field of 1s \rightarrow 3d (t $_{2g}$) and 1s \rightarrow 3d (e $_{9}$) transition [13].

The surface oxidation state of Mn was further investigated by XPS. Notably, $\Delta Mn3s$ in MnO_x is in the order of $\alpha\text{-MnO}_2$ (4.65) $<\beta\text{-MnO}_2$ (5.0) < Meso-MnO $_2$ (5.10) $<\alpha\text{-Mn}_2O_3$ (5.45). The larger value of Mn3s peak splitting, the more Mn^{3+} species on the surface [13]. That is, $\alpha\text{-Mn}_2O_3$ possesses the largest amount of surface Mn^{3+} species. The binding energies of $Mn2p_{3/2}$ for $\alpha\text{-MnO}_2$ are more than 642 eV, indicating surface Mn valence state is close to +4. This is supported by the magnitude of ΔE3s , which are in the range between 4.4 eV (+4) and 5.1 eV (+3) [14]. Additionally, XPS spectra of $Mn2p_{3/2}$ results (Fig. 6E) further indicate that the co-existence of Mn^{3+} (642.0 eV) and Mn^{4+} (644.0 eV) in $\beta\text{-MnO}_2$ [15].

Meanwhile, structural defects can be correlated with the O1s spectra shown in Fig. 6F. The peak at 529.3–529.8 eV can be assigned to lattice oxygen (O_{latt}), while that at 531.1–531.4 eV to surface oxygen species (O_{ads}), resulting from the adsorption of gaseous O_2 into oxygen vacancies [3]. The results demonstrate that the $O_{latt}/(O_{latt}+O_{ads})$ ratio of

as-prepared catalysts follows the trend of Meso-MnO₂ (44%) < β -MnO₂ (63%) < α -MnO₂ (67%) ~ α -Mn₂O₃ (67%), suggesting that α -MnO₂ and α -Mn₂O₃ display more surface oxygen vacancies [5]. After CH₄-TPR test (vide infra), the surface atomic ratio of O/Mn in α -MnO₂ is decrease to 0.52 in comparison with the fresh one (1.96), indicating that surface oxygen is obviously consumed during the reaction.

Moreover, Mn K-edge EXAFS spectra (Fig. 6G) of α-MnO₂, Meso-MnO₂ and β -MnO₂ show several main (< 4 Å) Fourier-transformed (FT) peaks at 1.53, 2.50 and 3.03 Å, corresponding to "Mn-O" shell, edgeshared and corner-shared "Mn-Mn" shells [15], respectively. The FT peak at 2.50 Å is associated with di-µ-oxo bridging (edge-shared) between Mn⁴⁺ ions, while the FT peaks at 3.03 and 3.52 Å indicate the presence of mono-µ-oxo bridged Mn ions (corner-sharing octahedra) [16]. Base on the peak intensities, there are more mono- μ -oxo bridged (corner-shared) MnO_6 octahedra in α - MnO_2 when compared to the other catalysts. Thus, a higher fraction of longer Mn-O-Mn bridges is existed in α -MnO₂, indicative of a more disordered structure. To be mentioned, the FT peaks values in α-Mn₂O₃ are slightly higher than that of the Mn₂O₃ standard (Fig. S5), likely due to a mixture of MnO_x phases. Raman spectra of fresh (Fig. 6H, for more details see the supporting information) and aged α-MnO₂ (Fig. S6) further confirm that mono-µ-oxo bridged MnO6 are involved in the catalytic reaction (for more details see the supporting information). In order to understand more clearly how is the interatomic distance related to the coordination geometry of different Mn ions, the schematics of interatomic distance of edge-shared and corner-shared "Mn-Mn" atoms in MnO₂ is presented in Fig. 6I. Combining with EXAFS, XPS and catalytic activity results, it can be inferred that mono- μ -oxo bridged MnO₆ sites and surface Mn concentration (Table 1) can be associated with the catalytic oxidation of methane.

Fig. 7. H_2 -TPR profiles of as-prepared catalysts.

3.4. Reducibility and oxygen desorption properties

3.4.1. H₂-TPR and CH₄-TPR

Reducibility performances of various samples were evaluated by H_2 -TPR, and the results are illustrated in Fig. 7. As for MnO2, the reduction process could be reasonably divided into two stages: (1) Mn^{4+} to Mn^{3+} and (2) Mn^{3+} to Mn^{2+} [5]. The reduction temperatures of Mn species in $\beta\text{-MnO}_2$ (321 and 436 °C) are lower than those of Meso-MnO2 (348 and 458 °C) and $\alpha\text{-MnO}_2$ (361 °C), suggesting the former catalyst exhibits better low-temperature reducibility performance. Furthermore, the amount of H_2 consumption (Table S2) is smaller than the theoretical amount (11.5 mmol/g) required for full reduction of MnO2 to MnO. The result implies the existence of Mn species of lower valence (< +4), which is in consistent with the Mn2p2/3 XPS and Mn K-edge XANES results. Moreover, H_2 consumption of 6.33 mmol/g is required if the Mn2O3 is completely reduced to MnO. Herein, the total H_2 consumption

Fig. 9. O₂-TPD-MS profiles of as-prepared catalysts.

is 5.66 mmol/g of the $\rm Mn_2O_3$, indicating the existence of mixture Mn species.

To illustrate the reduction behaviors of as-prepared catalysts under a flowing methane environment, the profiles of CH4-TPR-MS are presented in Fig. 8. For α-MnO₂ (Fig. 8A), the first methane consumption peak is assigned to the reaction between CH₄ and Mn⁴⁺ species starting from 345 °C. Meanwhile, the mass signal of CO₂ and CH₃* are observed at the same temperature, indicating that methane is activated and dehydrogenized to form $\mathrm{CH_3}^*$ and $\mathrm{H_2}$. Then, $\mathrm{CO_2}$ is produced by the reaction of carbon intermediates with the lattice oxygen from MnO₂. The second methane consumption peak around 600-750 °C is accompanied by the formation of CH3* and CO, which could be due to the partial oxidation of methane by the oxygen species at the interface of Mn $_{\text{interface}} \rightarrow \text{CO} + 2\text{H}_2\text{O},$ $(CH_4 + 2O)$ CH₄ + O_{interface} → $CO + 2H_2$) and the CH_4 cracking $(2CH_4 \rightarrow 2CH_3 + H_2)$ [17]. The reaction behavior in β -MnO₂ is similar to that in α -MnO₂. However, the

Fig. 8. CH₄-TPR-MS profiles of (A) α -MnO₂; (B) Meso-MnO₂; (C) β -MnO₂ and (D) α -Mn₂O₃.

Fig. 10. (A) CH₄ adsorption at 250 °C in α-MnO₂; (B) O₂ reacting with CH₄ pre-adsorbed at 250 °C in α-MnO₂; (C) O₂ reacting with CH₄ pre-adsorbed at 350 °C in α-MnO₂; (D) O₂ reacting with CH₄ pre-adsorbed at 450 °C in α-MnO₂ and (E) CH₄ adsorption at 250 °C in the presence of H₂O and CO₂ over α-MnO₂.

temperature of the methane consumption peaks for $\beta\text{-MnO}_2$ (T = 430 °C, Fig. 8C) are much higher than that for $\alpha\text{-MnO}_2$, suggesting that $\alpha\text{-MnO}_2$ possesses better methane combustion performance. Additionally, CH₄-TPR-MS profiles of used $\alpha\text{-MnO}_2$ are shown in Fig. S7. In the case of used MnO₂-350 °C (Fig. S7A), the signals of CH₃ * , CH₄ and CO₂ are different from those of fresh sample. The temperature of methane consumption peak is increased up to 383 °C, resulting in decreased methane conversion. In contrast, for used MnO₂-475 °C, the signals of CH₃ * , CH₄ and CO₂ are similar to those of fresh sample (Fig. S7B).

Notably, the second methane consumption peak is not observed in the case of Meso-MnO $_2$ (Fig. 8B). For α -Mn $_2$ O $_3$, nevertheless, there are different reaction behaviors with varying temperature ranges (Fig. 8D). A higher concentration of CO and H $_2$ in α -Mn $_2$ O $_3$ indicates that Mn 3 + species can accelerate the lattice oxygen diffusion from the bulk to the interface to react with absorbed CH $_3$ intermediates [18]. To be noted,

the temperature of the methane consumption peak for Meso-MnO $_2$ (T = 380 °C) is lower than that of $\beta\text{-MnO}_2$ (T = 430 °C), but the latter one exhibits better catalytic activity. The results suggest that there are other factors influencing the catalytic activity, such as Mn coordination environments and oxygen species.

3.4.2. O₂-TPD-MS

Notably, oxygen species in the redox reactions are usually transformed through the following pathway: O_2 (ad) $\rightarrow O_2^-$ (ad) $\rightarrow O^-$ (ad) $\rightarrow O^2$ (latt) [19].Thus, O_2 -TPD-MS experiments of as-prepared catalysts were carried out. As shown in Fig. 9, oxygen desorbed at 400–600 °C and 600–800 °C are ascribed to superoxide peroxide (O $^-$) and lattice oxygen (O 2 -), respectively [19]. Oxygen desorption peaks are observed in the cases of α -MnO $_2$ (566 and 747 °C), Meso-MnO $_2$ (553 and 781 °C) and β -MnO $_2$ (484 and 587 °C). The peak area (< 600 °C) in α -MnO $_2$ is much higher than other catalysts, indicating that α -MnO $_2$

Fig. 11. The calculated energy profiles over (A) α -MnO $_2$ (100) and (B) β -MnO $_2$ (101).

possesses more active oxygen species. Meanwhile, the desorption temperature of O^{2-} (latt) in α -MnO₂ (747 °C) is lower than those in Meso-MnO₂ (781 °C) and α -MnO₂ (794 °C), implying that O^{2-} (latt) is released in an easier manner for α -MnO₂ [17]. The relatively easy release of O^{2-} (latt) in α -MnO₂ surface is considered to be the primary active species for activating the C–H bond.

3.5. In situ DRIFTS

In situ DRIFTS experiments were performed to determine the intermediate species presented in the catalytic oxidation of methane over α -MnO₂. In the case of a flow of 1% CH₄+N₂ (Fig. 10A), the band at 3016 cm⁻¹ is related to C–H stretching vibrations of CH_n species [20]. The band at 1613 cm⁻¹ is associated with asymmetric and symmetric vibrations of -0-CH(=0) species. Moreover, the bands at 1539 and 1304 cm⁻¹ are ascribed to ν_a (COO) and ν_s (COO) stretching on Mn⁴⁺ sites, while the peak at 1149 cm⁻¹ is related to C–O vibrational frequency of surface COO-[21]. Regarding the weak absorption bands at 2343 and 2894 cm⁻¹, they are attributed to gaseous CO₂ and C–H stretching vibration of the surface -0CH₃ species, respectively.

In the presence of $20\%O_2$ at $250\,^{\circ}$ C (Fig. 10B), new band at $3602\,\mathrm{cm}^{-1}$ associated with $\alpha\text{-MnO}_2$ surface hydroxyl groups appears. Further heating up to $350\,^{\circ}$ C (Fig. 10C), the $2894\,\mathrm{cm}^{-1}$ band intensity decreases, giving rise to an additional band at $2993\,\mathrm{cm}^{-1}$ associated with the surface formate species. These results confirm the oxidation of the adsorbed $-\text{CH}_3\text{O}$ species to the formate species. After the introduction of O_2 flow at $450\,^{\circ}$ C for $20\,\mathrm{min}$ (Fig. 10D), the above bands almost disappear, indicating that intermediate species are completely oxidized to CO_2 and $H_2\text{O}$.

When 9.5vol% H_2O (Fig. 10E) was introduced into the system, CH_n , CH_n –O–CH(=O) and -COO stretching vibration bands are greatly decreased in intensity, while the -OH stretching vibration band at 3484 cm $^{-1}$ is increased in intensity, indicating the competitive adsorption of H_2O and CH_4 on MnO_2 , resulting in the decrement of

catalytic activity in the presence of $9.5\,\text{vol}\%H_2O$ at relatively low temperature. When $\alpha\text{-MnO}_2$ was exposed to $1\,\text{vol}\%CH_4 + 10\,\text{vol}\%CO_2$ and balanced by N_2 at $200\,^{\circ}C$, a strong band appears around $998\,\text{cm}^{-1}$, suggesting the formation of the carbonate species [20]. These carbonate species may cover surface Mn^{4+} active sites, resulting in a quick decrement of methane conversion.

3.6. Transition-state analysis and reaction mechanism

3.6.1. Transition-state studies

According to HR-TEM results, α -MnO₂ and β -MnO₂ mainly contain (100) and (101) exposed planes, respectively, thus, DFT calculation was carried out to further identify the reaction sites and the C–H dissociation modes in α -MnO₂(100) and β -MnO₂(101). The calculated energy profiles of α -MnO₂ (100) and β -MnO₂ (101) surface are displayed in Fig. 11. The optimized structures of intermediates pathway in CH₄ oxidation over α -MnO₂ (100) and β -MnO₂ (101) surfaces are shown in Fig. 12. Additionally, the top and side views of clean α -MnO₂ (100) and β -MnO₂ (101) surfaces are provided in Fig. S8, and more configurations involved in the minimum energy path (MEP) of methane oxidation are provided in the Supporting Information (see Fig. S9).

Firstly, CH₄ adsorbs on the surface of α-MnO₂ (100) (Fig. 11A) and β-MnO₂ (101) (Fig. 11B) via physical adsorption, and their adsorption energies are close to each other calculated by DFT + U (adsorption energy is defined as a net difference between the total energy of the adsorption system and those of each pristine state). Then, an surface bridged oxygen atoms (O*) together with a Mn site, forms a metal-oxygen site-pair (*-O* Mn) that assists with the kinetically relevant H abstraction from CH₄, forming an adsorbed CH₃* and H* species on both α-MnO₂ (100) and β-MnO₂(101). The formed CH₃ intermediate species have been proved by in situ DRIFTS and CH4-TPR-MS results. Meanwhile, the formed CH3* continues to adsorb on the surface bridged oxygen atoms only on β-MnO₂ surface. Secondly, a dissociation process of CH_3^* to CH_2^* takes place on both $\alpha\text{-MnO}_2$ and $\beta\text{-MnO}_2$, which is similar to that of CH₄ to CH₃*. Briefly, the H atom abstracted from CH₃ transfers to bridged oxygen atom, resulting in the generation of H₂O (g) and O-vacancy on these Mn oxides surface. O2 gas molecule is adsorbed on the surface bridging oxygen defect site, which is attributed to H2O being removed from the surface of α-MnO₂ (100). To be noted, the energy barrier of CH_3^* to CH_2^* in α -MnO₂ (E_b = 0.54 eV) is lower than that in β -MnO₂ (E_b = 0.96 eV), suggesting the transformation of CH₃ to CH₂* species is easier in the former catalyst.

Thirdly, the intermediate CH₂* transforms to CH* by means of CH₂* dehydrogenation on surface O-vacancy (Fig. 12). Furthermore, the DFT + U calculation results suggest that the pathway from CH* to H* is more difficult than that of CH₂* dehydrogenation over both α-MnO₂ and β-MnO₂. Removal of the fourth H atom needs to overcome the energy barrier of 0.84 eV in α-MnO2, lower than that in β-MnO2 $(E_b = 0.97 \text{ eV})$. Thus, the transformation of CH^{*} to H^{*} species occur more easily for α-MnO₂. Note that surface active oxygen plays an important role in the CH* dehydrogenation process. Specifically, H atom in CH* transfers to surface active oxygen atoms of Mn oxides, giving rise to the formation of CO₂. Meanwhile, the reduced surface oxygen defects are regenerated immediately through the desorption of gaseous CO₂. The energy profiles of CH₄ oxidation indicate that the oxidation of methane over α -MnO₂ is easier with respect to β -MnO₂. The rate-determining step in α-MnO₂ is the removal of the last H atom, while that in β-MnO₂ is the dehydrogenation of CH₃* to CH₂* and CH* to H*.

3.6.2. Regeneration of surface active sites

Despite hydrogen transfer between surface bridged oxygen probably temporarily recover the reactivity of oxygen species close to the reaction intermediate, the continuously accumulated H atoms will block these sites eventually once they cannot leave the surface. Therefore, the desorption of hydrogen-containing species for the removal of these hydrogen atoms are important to the catalytic cycle. According to the *in*

Fig. 12. The optimized structures of intermediates pathway in CH_4 oxidation over (A) α -MnO₂ (100) and (B) β -MnO₂ (101).

situ DRIFTS results, carboxylates are the primary intermediate species, and these possible -COOH and $-\text{CH}_3\text{O}$ species containing H can be converted into H₂O and CO₂ in the presence of oxygen atmosphere at a relatively high temperature. Furthermore, the barrier of the H* unites with the O atom can be easily conquered, converting to CO₂ and H₂O at relatively high temperature. Finally, complete faces of α -MnO₂ and β -MnO₂ are regenerated by mean of gaseous O₂ adsorbing on the surface defects (Fig. 12).

3.6.3. Reaction mechanism

Based on in situ DRIFTS and TSS results, CH₄ dissociates on Mn⁴⁺ sites to generate CH3*, CH2* and CH*. Subsequently, CH* interacts with surface active oxygen species to form H* and CO2. On the other hand, methane is activated on the reduced Mn sites to form CH_n^* and H^* . During these processes, a hydrogen atom leaves the cracked CH₄ and stays as H+ on the surface and probably links to an oxide ion, giving rise to -OH. Additionally, H* is able to readily shift among various surface oxygen species to generate adsorbed H₂O* for the rapid regeneration of surface active oxygen species. Then, active oxygen species react with CH₃* to form the -COO and -CH₃O species, and the whole process involves the interaction of σ and σ^* C-H orbitals with 3d electrons. EXAFS results indicate that a higher fraction of longer Mn-O-Mn bridges is existed in α-MnO2, that is a more disordered structure in the octahedra ligand field of the fixed oxo bridges. The surface oxo sites where gases (CH₄ or O₂) can bind are expected to be relatively labile for the antibonding electron. This could be a key contributor to the release of surface oxygen species [16]. O2-TPD-MS studies indicate that $\alpha\text{-MnO}_2$ possesses more active oxygen species and easier release of O^{2-} species than Meso-MnO₂, β -MnO₂ and α -Mn₂O₃.

These oxygen species are considered to be the primary active species for activating the C—H bond, as illustrated by the following equation:

$$CH_x(ads) + O^{2-} + 2Mn^{4+} \rightarrow CO_2(ads) + H_2O(ads) + 2Mn^{3+}$$

Moreover, CH_4 -TPR-MS results also suggest that α -MnO $_2$ displays lower activation temperature for dissociating CH_4 to CH_n^* and H^* compared to other catalysts. After adding 20%O $_2$, the -COO and $-CH_3O$ intermediate species can be oxidized to CO_2 and H_2O . Additionally, the TSS study results show that the dehydrogenation of CH^* to H^* ($E_b = 0.84 \, eV$) products is the rate-determining step in α -MnO $_2$. Combined with the above analysis, methane combustion over MnO $_2$ catalyst also proceeds via both the routes of MvK and L-H mechanisms while the latter is also predominant.

4. Conclusions

To summarize, the roles of crystallographic structure in methane oxidation over Mn oxides were studied. The results demonstrate that catalytic activity follows an order of $\alpha\text{-MnO}_2 > \beta\text{-MnO}_2 > \alpha\text{-Mn}_2O_3 > \text{Meso-MnO}_2$. Meanwhile, $\alpha\text{-MnO}_2$ exhibits excellent 9.5 vol% H_2O and/or 10 vol%CO $_2$ resistance ability. The superior catalytic performances in $\alpha\text{-MnO}_2$ could be attributed to several factors, including the existence of more mono- μ -oxo bridged (corner-shared) MnO $_6$ sites, higher surface Mn concentration and active oxygen species, and better reducibility. Moreover, in situ DRIFTS studies demonstrate that -COO and $-\text{CH}_3O$ are the key intermediate species, which are oxidized by active oxygen species to CO $_2$ and H_2O . TSS studies in CH $_4$ combustion over $\alpha\text{-MnO}_2$ indicate that the dehydrogenation of CH * to H * is the rate-determining step. Besides, the combustions of methane over MnO $_2$

involve both the MvK and L-H mechanisms, and the latter is more dominant. Our study demonstrates that the structure-related catalytic activities could provide guidance in the further development of easily prepared, scalable, and low-cost catalysts for methane combustion based on TMOs and their derivatives.

Acknowledgments

This work was financially supported by National key research and development program (2016YFC0203902), the National Natural Science Foundation of China (21703037, 21407025, 21773030), and leading project of Fujian Province (2017H0049).

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.apcatb.2018.02.007.

References

- [1] (a) G. Ercolino, P. Stelmachowski, G. Grzybek, A. Kotarba, S. Specchia, Appl. Catal. B Environ. 206 (2017) 712–725;
 - (b) A. Gremminger, P. Lott, M. Merts, M. Casapu, J.-D. Grunwaldt,
 - O. Deutschmann, Appl. Catal. B Environ. 218 (2017) 833-843;
 - (c) J. Chen, X. Zhang, H. Arandiyan, Y. Peng, H. Chang, J. Li, Catal. Today 201 (2013) 12–18;
 - (d) Z. Rui, Y. Huang, Y. Zheng, H. Ji, X. Yu, J. Mol. Catal. A Chem. 372 (2013) 128–136.
- [2] (a) X. Zou, Z. Rui, H. Ji, ACS Catal. 7 (2017) 1615-1625;
 - (b) J.J. Willis, E.D. Goodman, L. Wu, A.R. Riscoe, P. Martins, C.J. Tassone, M. Cargnello, J. Am. Chem. Soc. 139 (2017) 11989–11997;
 - (c) S. Xie, Y. Liu, J. Deng, X. Zhao, J. Yang, K. Zhang, Z. Han, H. Arandiyan, H. Dai, Appl. Catal. B Environ. 206 (2017) 221–232;
 - (d) I.E. Beck, V.I. Bukhtiyarov, I.Y. Pakharukov, V.I. Zaikovsky, V.V. Kriventsov,

- Parmon.V. N. J. Catal. 268 (2009) 60-67.
- [3] F.F. Tao, J. Shan, L. Nguyen, Nat. Commun. 6 (2015) 7798.
- [4] L.F. Liotta, H. Wu, G. Pantaleo, A.M. Venezia, Catal. Sci. Technol. 3 (2013) 3085–3102.
- [5] F. Wang, H. Dai, J. Deng, G. Bai, K. Ji, Y. Liu, Environ. Sci. Technol. 46 (2012) 4034–4041.
- [6] Y. Meng, W. Song, H. Huang, Z. Ren, S. Chen, S.L. Suib, J. Am. Chem. Soc. 136 (2014) 11452–11464.
- [7] L.F. Liotta, H. Wu, G. Pantaleo, A.M. Venezia, Catal. Sci. Technol. 3 (2013) 3085–3102.
- [8] W. Hu, J. Lan, Y. Guo, X.-M. Cao, P. Hu, ACS Catal. 5 (2016) 5508-5519.
- [9] F. Zasada, W. Piskorz, Z. Sojka, J. Phys. Chem. C 119 (2015) 19180–19191.
- [10] F. Zasada, W. Piskorz, J. Janas, Jr. Grybos, P. Indyka, Z. Sojka, ACS Catal. 5 (2015) 6879–6892.
- [11] D.M. Robinson, Y.B. Go, M. Mui, G. Gardner, Z. Zhang, D. Mastrogiovanni, E. Garfunkel, J. Li, M. Greenblatt, G.C. Dismukes, J. Am. Chem. Soc. 135 (2013) 3494–3501.
- [12] (a) Y. Liu, H. Dai, J. Deng, S. Xie, H. Yang, W. Tan, W. Han, Y. Jiang, G. Guo, J. Catal. 309 (2014) 408–418;
 - (b) L.C. Wang, X.S. Huang, Q. Liu, Y.M. Liu, Y. Cao, H.Y. He, K.N. Fan, J.H. Zhuang, J. Catal. 259 (2008) 66–74.
- [13] (a) S.H. Lee, T.W. Kim, D.H. Park, J.-H. Choy, S.-J. Hwang, N. Jiang, S.-E. Park, Y.-H. Lee, Chem. Mater. 19 (2007) 5010–5017;
 - (b) A. Longo, L.F. Liotta, G.D. Carlo, F. Giannici, A.M. Venezia, A. Martorana, Chem. Mater. 22 (2010) 3952–3960.
- [14] Y. Luo, Y.-Q. Deng, W. Mao, X.-J. Yang, K. Zhu, J. Xu, Y.-F. Han, J. Phys. Chem. C 116 (2012) 20975–20981.
- [15] A.G.M. Silva, C.M. Kisukuri, T.S. Rodrigues, E.G. Candido, I.C. Freitas, A.H.M. Silva, J.M. Assaf, D.C. Oliveira, L.H. Andrade, P.H.C. Camargo, Appl. Catal. B Environ. 184 (2016) 35–43.
- [16] I. Zaharieva, P. Chernev, M. Risch, K. Klingan, M. Kohlhoff, A. Fischer, H. Dau, Energy Environ. Sci. 5 (2012) 7081–7089.
- [17] W. Si, Y. Wang, Y. Peng, J. Li, Angew. Chem. Int. Ed. 54 (2015) 7954-7957.
- [18] S. Chen, L. Zeng, H. Tian, X. Li, J. Gong, ACS Catal. 7 (2017) 3548-3559.
- [19] Y. Lou, J. Ma, W. Hu, Q. Dai, L. Wang, W. Zhan, Y. Guo, X.-M. Cao, Y. Guo, P. Hu, G. Lu, ACS Catal. 6 (2016) 8127–8139.
- [20] X. Zou, Z. Rui, S. Song, H. Ji, J. Catal. 338 (2016) 192-201.
- [21] P.J. Jodłowski, R.J. Jędrzejczyk, D. Chlebda, M. Gierada, J. Łojewska, J. Catal. 350 (2017) 1–12.