ENSF 614 - Fall 2021

Lab 1 – Tuesday, September 14

Student Name: Bhavyai Gupta

Submission date: September 20, 2021

Exercise B – Source Code

```
* File Name:
                          lab1exe B.c
                           ENSF 614 - Fall 2021
 * Course:
 * Lab # and Assignment #: Lab 1 Exercise B
 * Lab section:
                         Bhavyai Gupta
 * Completed by:
 * Submission Date: September 20, 2021
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
const double G = 9.8; /* gravitation acceleration 9.8 m/s^2 */
const double PI = 3.141592654;
void create_table(double v);
double projectile_travel_time(double a, double v);
double projectile_travel_distance(double a, double v);
double degree_to_radian(double d);
int main(void)
   int n;
   double velocity;
   printf("Please enter the velocity at which the projectile is launched (m/sec):
   n = scanf("%lf", &velocity);
   if (n != 1)
        printf("Invalid input. Bye...");
       exit(1);
```

```
while (velocity < 0)
       printf("please enter a positive number for velocity: ");
       n = scanf("%lf", &velocity);
       if (n != 1)
          printf("Invalid input. Bye...");
          exit(1);
   create_table(velocity);
   return 0;
 * Prints the table with relationship between trajectory angle and projectile
maximum
 * travel distance and time for a given initial velocity
void create_table(double v)
   printf("\nBelow is the table showing time (t) and distance (d) for various
 angles -\n\n");
   // print the header and subheader and dividers
   printf("+----+\n");
   printf("| %7s | %15s | %15s |\n", "Angle", "t ", "d ");
   printf("| %7s | %15s | %15s |\n", "(deg)", "(sec)", "(m)");
   printf("+----+\n");
   // loop from 0 deg to 90 deg
   for (int deg = 0; deg <= 90; deg = deg + 5)
       double rad = degree_to_radian((double)deg);
       printf("| %7d | %15.5lf | %15.5lf | \n", deg, projectile_travel_time(ra
d, v), projectile_travel_distance(rad, v));
   // print the dividers
   printf("+----+\n");
   return;
```

```
/**
  * Converts degrees to radians
  */
double degree_to_radian(double d)
{
    return (d * M_PI) / 180;
}

/**
  * Calculates travelling time for the projectile for a given angle a and veloc
ity v
  */
double projectile_travel_time(double a, double v)
{
    return ((2 * v * sin(a)) / G);
}

/**
  * Calculates travelling distance for the projectile for a given angle a and v
elocity v
  */
double projectile_travel_distance(double a, double v)
{
    return ((v * v * sin(2 * a)) / G);
}
```

Exercise B – Program Output

D:\GitHub\university-calgary\ENSF-614\lab1>gcc -Wall lab1exe_B.c -o lab1exe_B.exe

D:\GitHub\university-calgary\ENSF-614\lab1>.\lab1exe_B.exe
Please enter the velocity at which the projectile is launched (m/sec): 10

Below is the table showing time (t) and distance (d) for various angles -

+	 	
Angle	, t	d
(deg)	(sec)	(m)
1 0	 0.00000	 0.00000
j 5	0.17787	1.77192
10	0.35438	3.49000
j 15	0.52820	5.10204
20	0.69800	6.55906
25	0.86249	7.81678
30	1.02041	8.83699
35	1.17056	9.58870
40	1.31181	10.04906
45	1.44308	10.20408
50	1.56336	10.04906
55	1.67174	9.58870
60	1.76740	8.83699
65	1.84961	7.81678
70	1.91774	6.55906
75	1.97128	5.10204
80	2.00981	3.49000
85	2.03305	1.77192
90	2.04082	0.00000
+	 	

D:\GitHub\university-calgary\ENSF-614\lab1>

Exercise D Part Two – AR Diagram

Exercise E – Source Code

```
* File Name:
                         lab1exe E.c
                           ENSF 614 - Fall 2021
 * Course:
 * Lab # and Assignment #: Lab 1 Exercise E
 * Lab section:
                         Bhavyai Gupta
 * Completed by:
 * Submission Date: September 20, 2021
#include <stdio.h>
#include <stdlib.h>
void time_convert(int ms_time, int *minutes_ptr, double *seconds_ptr);
 * Converts time in milliseconds to time in minutes and seconds.
 * For example, converts 123400 ms to 2 minutes and 3.4 seconds.
 * REQUIRES:
     ms time >= 0.
     minutes_ptr and seconds_ptr point to variables.
 * PROMISES:
     0 <= *seconds_ptr & *seconds_ptr < 60.0</pre>
     *minutes_ptr minutes + *seconds_ptr seconds is equivalent to
     ms time ms.
int main(void)
   int millisec;
   int minutes;
   double seconds;
   int nscan;
    printf("Enter a time interval as an integer number of milliseconds: ");
    nscan = scanf("%d", &millisec);
    if (nscan != 1)
        printf("Unable to convert your input to an int.\n");
       exit(1);
```

Exercise E – Program Output

```
D:\GitHub\university-calgary\ENSF-614\lab1>gcc -Wall lab1exe_E.c -o lab1exe_E.exe

D:\GitHub\university-calgary\ENSF-614\lab1>.\lab1exe_E.exe
Enter a time interval as an integer number of milliseconds: 435300

Doing conversion for input of 435300 ms ...
That is equivalent to 7 minute(s) and 15.3000000 second(s).

D:\GitHub\university-calgary\ENSF-614\lab1>
```