

United International University (UIU) Dept. of Computer Science & Engineering (CSE)

Mid Exam Fall 2023

CSE 2233/CSI 233: Theory of Computation/Theory of Computing

Total Marks: **30** Duration: 1 Hour 45 Minutes

Answer all questions. Figures in the right-hand margin indicate full marks.

Any examinee found adopting unfair means will be expelled from the trimester/program as per UIU disciplinary rules.

1.	Design DFAs that accept the following languages:	3 x 3
	a) L = accepts any string that has an even number of 'a' or odd number of 'b' over alphabet {a, b}	
	b) L = accepts any string which starts with an odd number of 'r' and ends with 'brb' over the alphabet {b, r}	
	c) L = accepts any string where the last two symbols are different over the alphabet {a, b}	
2.	Design NFAs that accept the following languages:	3 x 3
	a) L= {w w starts with 'a' or 'b' and contains 'cca' and ends with 'b' or 'c'} $\Sigma = \{a, b, c\}$	
	b) L= {w w starts <i>and</i> ends with different symbols with a total length of at least 2} Σ = {0, 1}	
	c) $L = \{w \mid w \text{ contains 'xyz' or 'yzx' or 'zxx' } and \text{ ends with 'yz'}\} \mid \Sigma = \{x, y, z\}$	

3.	Consider the following NFA, and show with the help of NFA-tree whether the string "aababa"
	is accepted.

Convert the following NFA over the alphabet $\Sigma = \{0, 1\}$ to an equivalent DFA.

5. a) Convert the following regular expressions to finite automata:

1.5 x 2

3

- i) $(ab)^* + (a+ab)^* b^* (a+b)^*$
- ii) $[a + ba (a + b)]^* a (ba)^* b^*$
- b) Convert the following languages to their corresponding regular expression:

- 1 x 2
- i) $L = \{\text{strings such that the 4th symbol from the right is b over the alphabet } \{a, b\} \}$
- ii) $L = \{\text{strings such that they start and end with 'a' over the alphabet } \{a, b, c\}\}$