Les questions de cours portent sur les éléments du chapitre 7 : topologie réelle, précédés d'un astérisque. Les exercices portent sur le chapitre 6 : calcul intégral, équations différentielles. Les notions de primitives sont encore mal assimilées.

Chapitre 7 : Topologie réelle.

- Ensembles $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$. Droite réelle achevée $(\mathbb{R} \cup \{-\infty, +\infty\}, \leq)$. Approximations décimales à l'ordre n par excès (resp. par défaut) d'un réel x donné. (\star) Encadrement et convergence. Intervalle ouvert. Une partie X de \mathbb{R} est dense dans \mathbb{R} ssi elle rencontre tout intervalle ouvert non vide. (\star) Caractérisation séquentielle de la densité. (\star) \mathbb{Q} et $\mathbb{R}\setminus\mathbb{Q}$ sont denses dans \mathbb{R} . Application aux fonctions additives. Tout intervalle ouvert non vide contient une infinité de rationnels et une infinité d'irrationnels.
- Toute partie non vide majorée de $\mathbb R$ admet une borne supérieure. (★) Caractérisation pour X non vide majorée et a réel : $a = \sup(X) \iff (\forall x \in X, x \le a) \land (\forall y < a, \exists x \in X, y < x)$. Convention $\sup\emptyset = -\infty$ si X vide et $\sup(X) = +\infty$ si X non vide non majorée. (★) Si X admet un maximum, $\sup(X) = \max(X)$. Croissance de la borne supérieure par rapport à l'inclusion sur les parties non vides majorées de $\mathbb R$. (★) Caractérisation séquentielle de la borne supérieure pour X non vide majorée et a réel : $a = \sup(X) \iff (\forall x \in X, x \le a) \land (\exists (x_n)_{n \in \mathbb N} \in X^{\mathbb N}, x_n \longrightarrow a)$. Les étudiants peuvent « passer au sup » dans les inégalités $\forall x \in X, x \le a \Rightarrow \sup(X) \le a$ mais doivent savoir l'expliquer à l'oral. Exemple $\sup(A + B), \sup(\lambda A)$ pour $\lambda > 0$.
- Borne inférieure d'une partie non vide minorée de \mathbb{R} . (★) Toute partie non vide minorée de \mathbb{R} admet une borne inférieure et inf(A) = $-\sup(-A)$. Traductions de toutes les propriétés précédentes. inf(\emptyset) = $+\infty$ pour X vide, et inf(X) = $-\infty$ et non vide non minorée. Caractérisations, cas de la borne inf atteinte, décroissance pour l'inclusion. Exemple $d(y,X) = \inf\{|y-x||x \in X\}$. Étude de la fonction $x \mapsto d(x,\mathbb{Z})$. Même remarque pour les « passages à l'inf ».
- On rappelle que les intervalles de \mathbb{R} ont été définis par une liste de dix cas. Partie convexe de \mathbb{R} . Tout intervalle est convexe (\star) Toute partie convexe de \mathbb{R} est un intervalle. Démonstration de la bonne définition de la partie entière d'un réel x. Croissance de la partie entière. \mathbb{R} est archimédien.
- Bornes supérieure et inférieure d'une application à valeurs réelles. Etude de la norme infinie $||f||_{\infty} = \sup_{x \in \mathbb{R}} |f(x)|$ sur l'ensemble des fonctions bornées de \mathbb{R} dans \mathbb{R} .

* * * * *