

Espacios Vectoriales

Definición (Espacio Vectorial)

Sea $V \neq \emptyset$ sobre el que están definidas dos operaciones (una llamada suma vectorial + y otra llamada producto por escalar *). Si los siguientes 10 axiomas se cumplen para todos $u,v,w\in V$ y para todo $c,d\in\mathbb{R}$, entonces V se denomina espacio vectorial.

- $0 u+v \in V$
- $\mathbf{2} \ cu \in V$
- **6** u + v = v + u
- (u+v) + w = u + (v+w)
- **6** u + O = u
- u + (-u) = 0
- c(u+v) = cu + cv
- (c+d)u = cu + du
- oc(du) = (cd)u
- $0 1(u) = u, \quad 1 \in \mathbb{R}$

Ejemplo $(\mathbb{R},\mathbb{R},+,*)$

El conjunto $V=\mathbb{R}$ bajo la suma + usual en \mathbb{R} y el producto entre ellos usual forma un e.v.

Ejemplo $(\mathbb{R}^2, \mathbb{R}, +, *)$

El conjunto $V=\mathbb{R}^2$ bajo la suma + estándar en \mathbb{R}^2 y el producto con escalares estándar forma un e.v.

Ejemplo $(\mathbb{R}^3, \mathbb{R}, +, *)$

El conjunto $V=\mathbb{R}^3$ bajo la suma + usual en \mathbb{R}^3 y el producto con escalares usual forma un e.v.

Ejemplo ($\mathbb{R}^n, \mathbb{R}, +, *$)

En general el conjunto $V = \mathbb{R}^n$ bajo la suma + estándar en \mathbb{R}^n y el producto con escalares estándar forma un e.v.

Ejemplo $(M_{m \times n}(\mathbb{R}), \mathbb{R}, +, *)$

El conjunto $V=M_{m\times n}(\mathbb{R})$ bajo la suma + usual en $M_{m\times n}(\mathbb{R})$ y el producto con escalares forma un e.v.

$\mathsf{Reto}{:}(\mathbb{R}^+,\mathbb{R},\textcolor{red}{+},\textcolor{red}{*})$

Definamos en el conjunto $V = \mathbb{R}^+ = (0, \infty)$ la siguiente suma: $\forall x, y \in \mathbb{R}^+$,

$$x+y = xy$$
 producto usual en \mathbb{R} ,

y $\forall x \in \mathbb{R}^+$ y $\forall c \in \mathbb{R}$, el producto con escalar como

$$* \implies cx = x^c$$
 potenciación usual en $\mathbb R.$

Determine si \mathbb{R}^+ bajo estas operaciones es un e.v., de lo contrario, describa cada axioma que no se cumple y por qué.

Teorema

Sean $v \in V$ y $c \in \mathbb{R}$ arbitrarios. Entonces se cumplen las siguientes propiedades:

- 0v = O
- O = O
- **3** Si cv = O, entonces c = 0 o bien v = O
- **○** (-1)v=-v

Ejemplo (Conjuntos que no son espacios vectoriales)

Definición (Subespacio vectorial)

Decimos que W es un subespacio de un espacio vectorial V si:

- lacksquare $W \subseteq V$, y
- $oldsymbol{2}\ W$ es un espacio vectorial bajo las operaciones +, * definidas en V.

Teorema (Condición para un subespacio vectorial)

El conjunto W es un subespacio de un e.v. V bajo las operaciones +, * en V si y sólo sí

- 2 El $O \in V$ también cumple que $O \in W$.
- (a) W satisface las condiciones de clausura.

Ejemplo (Subespacios de \mathbb{R}^2)

- ① $W=\mathbb{R}^2$, porque $\mathbb{R}^2\subseteq\mathbb{R}^2$ (subespacio trivial de dimensión 2).
- ② Toda recta que pase por el origen, $W = \{(x,y) : ax + by = 0\}$ (subespacios no triviales de dimensión 1).
- **3** $W = \{O\}$ (subespacio trivial de dimensión 0).

Ejemplo (Subespacios de \mathbb{R}^3)

- **1** $W = \mathbb{R}^3$ (s.t.-dim 3-).
- 2 Todo plano que contenga el origen (s.n.t.-dim 2-)
- 3 Toda recta que pase por el origen (s.n.t.-dim 1-)
- $W = \{O\}$ (s.t.-dim 0-).

to clement de dottos

Ejemplo (Subespacios de \mathbb{R}^n)

- ① Subespacios triviales dos: \mathbb{R}^n y $W = \{O\}$.
- ② Subespacios no triviales dim n-1
- **6**
- 4 Subespacios no triviales de dim 1.

Definición (Combinación Lineal)

Sea V un espacio vectorial. Decimos que $u\in V$ es una combinación lineal de elementos $v_1,v_2,...,v_n$ en V, si existen escalares $\alpha_1,...,\alpha_n\in\mathbb{R}$ tales que

$$\alpha_1 v_1 + \dots + \alpha_n v_n = u.$$

Ejemplo

El vector u=(25,3,-15) es combinación lineal de $v_1=(2,-1,4),\ v_2=(5,3,-3)$ y $v_3=(-3,2,7),$ porque

$$u = 2v_1 + 3v_2 - 2v_3 = 2\begin{pmatrix} 2\\ -1\\ 4 \end{pmatrix} + 3\begin{pmatrix} 5\\ 3\\ -3 \end{pmatrix} - 2\begin{pmatrix} -3\\ 2\\ 7 \end{pmatrix}$$

esto es

$$(25, 3, -15) = 2(2, -1, 4) + 3(5, 3, -3) - 2(-3, 2, 7).$$

Por lo tanto, los escalares son: 2,3,-2.

matemáticas para la ciencia de datos

Definición (Vectores linealmente independientes)

Un conjunto $S=\{v_1,...,v_n\}$ de elementos en un espacio vectorial V decimos que es linealmente independiente (l.i) si la combinación lineal

$$\alpha_1 v_1 + \dots + \alpha_k v_n = \mathbf{0}. \tag{1}$$

se satisface únicamente para cuando $\alpha_1=\alpha_2=\cdots=\alpha_n=0$ (la solución trivial). En caso contrario, esto es, si una constante $\alpha_i\neq 0$, diremos que es el conjunto es linealmente dependiente (l.d).

Observación 1: Un conjunto de vectores $S = \{v_1, ..., v_n\}$ en un espacio vectorial V es linealmente dependiente si al menos uno de los vectores es combinación lineal de los otros. El caso más sencillo es cuando dos vectores son paralelos.

Observación 2: Si un conjunto de vectores $S=\{v_1,...,v_n\}$ en un espacio vectorial V contiene al neutro de V, entonces S es linealmente dependiente linearly independent (1,2,3)(2,3,1)(1,2,3)

Teorema

Si $S = \{v_1, ..., v_n\}$ es linealmente independiente, entonces

- lacksquare Ninguno de los vectores v_i es el vector nulo,
- 2 cualquier subconjunto no vacío de él es también l.i.

Teorema

Un conjunto $S=\{v_1,...,v_n\}$ de elementos en un espacio vectorial V es l.d. si y sólo si al menos un vector de S es combinación lineal de los otros vectores en S.

Teorema

Todo conjunto $S=\{v_1,...,v_n\}$ de elementos en un espacio vectorial V que contenga el neutro O es $\mathit{I.d.}$

Definición (Conjunto generador)

Un conjunto $S=\{v_1,...,v_n\}$ de un espacio vectorial V decimos que genera o expande a V si todo elemento $u\in V$ se puede escribir como combinación lineal de elementos en S, en notación < S>=V, es decir,

$$\langle S \rangle = \{a_1v_1 + a_2v_2 + \dots + a_nv_n : a_i \in \mathbb{R}, \forall i = 1, \dots, n\}.$$

Otra notación para el generado de S es $gen\{S\}$ o $span\{S\}$.

Definición (Base para un espacio vectorial)

Decimos que un conjunto $S=\{v_1,v_2,...,v_n\}$ de un espacio vectorial V es una base para V, si cumple la siguientes dos condiciones:

- $oldsymbol{0}$ S es un conjunto linealmente independiente, y
- \bigcirc S genera a V.

A la cantidad de elementos n en la base se denomina dimensión del espacio V.

basis ((-1,1,0),((-1,0,1),(1,-1,0))

Ejemplo (Bases estándares o usuales)

En \mathbb{R}^2 la base estándar es

$$\beta = \{e_1, e_2\} = \{(1, 0), (0, 1)\},$$
 dimensión 2.

En \mathbb{R}^3 la base estándar es

$$\beta = \{e_1, e_2, e_3\} = \{(1,0,0), (0,1,0), (0,0,1)\}, \quad \textit{dimensión } 3.$$

En \mathbb{R}^n la base estándar es

$$\beta = \{e_1, e_2, ..., e_n\} = \{(1, 0, ..., 0), ..., (0, 0, ..., 0, 1)\}, \quad \textit{dimensión } n.$$

Ejemplo

Verifique que $S = \{(1,3), (2,5)\}$ es una base para \mathbb{R}^2 .

Ejemplo

Verifique que $S = \{(-1, 1, 3), (0, 2, 1), (1, -1, -5)\}$ es una base para \mathbb{R}^3 .

Teorema (Representación única)

Sea V un espacio vectorial y sea $\beta=\{v_1,...,v_n\}$ una base para V. Entonces para todo $u\in V$, existen escalares únicos $a_1,...,a_n$ tales que

$$u = a_1 v_1 + \cdots + a_n v_n.$$

En caso de que β genere a V pero no sea l.i., entonces los escalares no serán únicos, de hecho son infinitos.

Teorema (Bases y dependencia lineal)

Si $S=\{v_1,v_2,...,v_n\}$ una base para V, entonces todo conjunto que contenga más de n vectores en V es linealmente dependiente.