

Logistic Regression

Classification

Machine Learning

Classification

- → Email: Spam / Not Spam?
- → Online Transactions: Fraudulent (Yes / No)?
- > Tumor: Malignant / Benign?

$$y \in \{0,1\}$$
 0: "Negative Class" (e.g., benign tumor) 1: "Positive Class" (e.g., malignant tumor)
$$y \in \{0,1\}$$
 1: "Positive Class" (e.g., malignant tumor)

 \rightarrow Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \geq 0.5$$
, predict "y = 1"
$$\text{If } h_{\theta}(x) < 0.5 \text{, predict "y = 0"}$$

Classification:
$$y = 0$$
 or 1

$$h_{\theta}(x)$$
 can be ≥ 1 or ≤ 0

Logistic Regression:
$$0 \le h_{\theta}(x) \le 1$$

$$0 \le h_{\theta}(x) \le 1$$

Machine Learning

Logistic Regression

Hypothesis Representation

Logistic Regression Model

Want
$$0 \le h_{ heta}(x) \le 1$$
 $h_{ heta}(x) = 9(heta^T x)$

Sigmoid functionLogistic function

So the two terms are basically interchangeable

Interpretation of Hypothesis Output

$$h_{\theta}(x)$$
 = estimated probability that $y = 1$ on input $x \leftarrow$

Example: If
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ \text{tumorSize} \end{bmatrix}$$

Tell patient that 70% chance of tumor being malignant

$$h_{\Theta}(x) = P(y=1|x;\Theta)$$

$$y = 0 \text{ or } 1$$

"probability that y = 1, given x, parameterized by θ "

$$P(y=0|y) + P(y=1|y) = 1$$

$$\rightarrow P(y=0|x;\theta) = 1 - P(y=1|x;\theta)$$

Machine Learning

Logistic Regression

Decision boundary

Logistic regression

$$h_{\theta}(x) = g(\theta^T x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict "
$$y=1$$
" if $h_{\theta}(x) \geq 0.5$

predict "
$$y=0$$
" if $h_{\theta}(x)<0.5$

Decision Boundary

$$h_{\theta}(x) = g(\theta_0 + \underline{\theta}_1 x_1 + \underline{\theta}_2 x_2)$$

Decision boundary

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$

OTX

Non-linear decision boundaries

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_1^2 x_2 + \theta_5 x_1^2 x_2^2 + \theta_6 x_1^3 x_2 + \dots)$$

Logistic Regression

Cost function

Machine Learning

 $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(m)}, y^{(m)})\}$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\underline{\theta}^T x}}$$

How to choose parameters θ ?

Cost function

-> Linear regression:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

 \rightarrow (ost(he(x))

$$\operatorname{Cost}(h_{\theta}(x^{\bullet}), y^{\bullet}) = \frac{1}{2} \left(h_{\theta}(x^{\bullet}) - y^{\bullet} \right)^{2} \longleftarrow$$

Logistic regression cost function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Overall cost function j of theta will be convex and local optima free.

Logistic regression cost function

Machine Learning

Logistic Regression

Simplified cost function and gradient descent

this cost function can be derived from statistics using the principle of maximum likelihood estimation.

Logistic regression cost function

Logistic regression cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

To fit parameters θ :

$$\min_{\theta} J(\theta)$$
 Great Θ

To make a prediction given new x:

Output
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

Vant
$$\underline{\min_{\theta} J(\theta)}$$
:

Repeat $\{$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

$$\{ \text{simultaneously update all } \theta_j \}$$

$$\frac{\partial}{\partial \phi_j} J(\phi) = \frac{1}{m} \underbrace{\{ (h_{\phi}(x^{(i)}) - y^{(i)}) \times j \}}$$

Gradient Descent

$$J(\theta) = -\frac{1}{m} [\sum_{i=1}^m y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))]$$
 Want $\min_{\theta} J(\theta)$:
$$\theta_j := \theta_j - \alpha \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

$$\text{(simultaneously update all } \theta_j)$$

Algorithm looks identical to linear regression!

Machine Learning

Logistic Regression

Advanced optimization

Optimization algorithm

Cost function $\underline{J(\theta)}$. Want $\min_{\theta} J(\underline{\theta})$.

Given θ , we have code that can compute

Gradient descent:

$$\rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Optimization algorithm

Given θ , we have code that can compute

$$egin{bmatrix} \textbf{-} & J(heta) & \leftarrow & \ \textbf{-} & rac{\partial}{\partial heta_j} J(heta) & \leftarrow & \text{(for } j=0,1,\dots,n \text{)} \ & \qquad \qquad$$
 這是除gradient de

Optimization algorithms:

- Gradient descent
 - Conjugate gradient
 - BFGS
 - L-BFGS

這是除gradient descent外的另外三種方法的advantages:

Advantages:

- No need to manually pick α
- Often faster than gradient descent.

Disadvantages:

- More complex <

```
Example: min 3(0)
                                                function [jVal, gradient]
\Rightarrow \theta = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} \quad \text{o.s.} \quad \text{o.s.}
                                                               = costFunction(theta)
                                                   jVal = (\underline{theta(1)-5)^2} + \dots
                                                               (theta(2)-5)^2;
J(\theta) = (\theta_1 - 5)^2 + (\theta_2 - 5)^2
                                                   gradient = zeros(2,1)_;
\rightarrow \frac{\partial}{\partial \theta_1} J(\theta) = 2(\theta_1 - 5)
                                                   gradient(1) = 2*(theta(1)-5);
                                                  -gradient(2) = 2*(theta(2)-5);
\rightarrow \frac{\partial}{\partial \theta_2} J(\theta) = 2(\theta_2 - 5)
-> options = optimset(\(\frac{\GradObj', \on'}{\on'}\), \(\frac{\MaxIter', \on'}{\OMBOSON}\));
\rightarrow initialTheta = zeros(2,1);
 [optTheta, functionVal, exitFlag] ...
       = fminunc(@costFunction, initialTheta, options);
                                         Ochd d>2
```

```
\begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix} = \begin{cases} \text{theta(i)} \\ \text{theta(2)} \\ \text{theta(nti)} \end{cases}
function (jVal) gradient) = costFunction(theta)
           jVal = [code to compute J(\theta)];
          gradient(1) = [code to compute \frac{\partial}{\partial \theta_0} J(\theta)
          gradient(2) = [code to compute \frac{\partial}{\partial \theta_1} J
          gradient(n+1) = [code to compute \frac{\partial}{\partial \theta_n} J(\theta)
```


Machine Learning

Logistic Regression

Multi-class classification: One-vs-all

Multiclass classification

Email foldering/tagging: Work, Friends, Family, Hobby

Weather: Sunny, Cloudy, Rain, Snow

Binary classification:

Multi-class classification:

What we're going to do is take our training set and turn this into three separate binary classification problems.

One-vs-all (one-vs-rest):

One-vs-all

Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class \underline{i} to predict the probability that $\underline{y}=\underline{i}$.

On a new input x, to make a prediction, pick the class i that maximizes whichever value of i gives us the highest probable i

$$\max_{\underline{i}} \underline{h_{\theta}^{(i)}(x)}$$

whichever value of i gives us the highest probability we then predict y to be that value.

即來了一個x後, 我們分別算h^(x), h^2(x), h^3(x), 若h^2(x)最大, 則我們認為y=2.