Pabna University of Science & Technology

Department of Computer Science and Engineering B.Sc. Engineering Examination 2nd Year 2nd Semester-2019

Course Title: Digital System Course No: CSE -2205

Time: 3:00 hours (For PART-A and PART-B)

NB:		Full Marks: 33
1.	Answer any three questions.	
ii.	Separate answer script must be used for answering the question of PART-A.	
iii.	Figures in the right margin indicate marks.	
	b and a grant market marks.	
	DADTA	
	PART-A	

1.	a)	Briefly explain the differences between digital system and analog system with necessary	5.67
		example?	
	b)	Draw and define Universal gates with necessary truth table and explain why they called	06
		Universal gates?	
2.	a)	Subtract the followings,	6
		i) 1010-1111, ii) 11011-10101, iii) 0101-1001	
	b)	Simplify the following Boolean function, F with don't care function, d:	5.67
		$F(A,B,C,D)=\sum (0,1,2,4,6,8,11)$	
		$d(A,B,C,D)=\sum (3,7,9,10,12)$	
3.	a)	Draw a binary full adder and briefly explain with an example.	6.67
	b)	Draw a BCD adder and describe how it works.	5
4.	a)	What is the truth table and logic symbol of a three-input OR gate?	1
	b)	Explain how basic gates can be realized by NOR gates. Realize the function F=A+BCD	4.67
		using NAND gates only.	
	c)	Simplify the following expressions: (A+B+C)(A+B+C)(A+B+C)(A+B+C)	3
	d)	State and explain the basic Boolean logic operations.	3

Pabna University of Science & Technology

Department of Computer Science and Engineering

B.Sc. Engineering Examination 2nd Year 2nd Semester-2019

Course Title: Digital System Course No: CSE -2205

Time: 3:00 hours (For PART-A and PART-B)

NB:
i. Answer any three questions.
ii. Separate answer script must be used for answering the question of PART-B.
iii. Figures in the right margin indicate marks.

PART-B

1.	a)	What do you mean by Multiplexer? Draw and explain the operation of a basic Multiplexer.	6.67
	b)	Define Decoder. Draw and explain the operation of a decoder.	5
2			3.67
2.	a)	Draw the logic circuit that has the expression: $y = AB(\overline{C+D})$	
	b)	Simplify the following function to a minimum number of literals: $F = xz + x\overline{y}z$.	02
	c)	Convert the following function to other canonical form: $F(A, B, C, D) = \Lambda(0,1,2,3,4,6,12)$	03
	d)	X_1X_0 represents a two-bit binary number that can have any value (00, 01, 10 or 11) for example,	03
		when $X_1=1$ and $X_0=0$, the binary number is 10, and so on. Similarly Y_1Y_0 represents a two-bit	
		binary number. Design a logic circuit using $X_1,\;X_0,Y_1$ and Y_0 inputs, whose output will be	
		HIGH only when the two binary numbers X_1X_0 and Y_1Y_0 are equal.	
3.	a)	What is the function of a clock in sequential circuit?	2.67
	b)	Briefly explain the operation of T and D flip-flop with necessary circuit and truth table.	9
4.	a)	Define and explain Sequential logic with necessary figures and example.	6.67
	b)	Draw and explain demultiplexer with necessary indications.	5

B.Sc. Engineering Examination 2nd Year 2nd Semester 2020

Course Title: Algorithms Course No: CSE 2201

Time: 3:00 hours (For PART-A and PART-B)

N.B: i. Answer any Three questions. ii. Separate answer script must be used for answering the questions of PART-A. iii. Figures in the right margin indicate marks.

1. a. Define complexity of algorithms. Describe constant time, linear time and logarithmic time 6 2/3 complexity with example.

b. What is *space complexity* of an algorithm? Calculate the *space complexity* for the following 5 procedure:

```
int Summation(int A[],int n)
{
   int sum=0;i;
   for(i=1;i<=n;i++)
   {
      sum=sum+A[i];
   }
   return sum;</pre>
```

a. Define divide-and-conquer strategy.
b. Write down the pseudo code for bucket sort. Write down applications for bucket sort. When 5 bucket sort is used instead of counting sort.

c. Analyze the time complexity of *merge sort* algorithm.

3. a. Illustrate the steps of *quick sort* to sort the following dataset in ascending order: $5\frac{2}{3}$ {27, 5, 40, 45, 10, 20, 35, 32, 25, 12}

b. Re-construct the following heap when node 14 is deleted.

11

4. a. Which sort technique is better to sort the following array list compare among (i) bubble 7 (ii)merge (iii) insertion sort technique.

3 4 5 6 7 8

b. How depth-first search differs from breadth-first search?

PART-B

Full Mark: 35

5

N.B:

- i. Answer any Three questions.
- ii. Separate answer script must be used for answering the questions of PART-B.
- iii. Figures in the right margin indicate marks.

1. a.

What do you understand by a spanning tree? Construct a spanning tree from the following graph using Prim's algorithm.

b. Write down the pseudo-code for Kruskal's algorithm.

2. a. How Matrix Chain Multiplication (MCM) works? Write down the algorithms for MCM. $5\frac{2}{3}$

b. Run Dijkstra's algorithm on the weighted graph below, using vertex A as the source. Write the vertices in the order which they are marked.

- 3. a. What do you mean by dynamic programming? Write down usages of dynamic 62 programming. Write down the practical example of dynamic programming.
 - b. A thief went to a shop to steal. He wants to take products so that profit would be maximized. Find an optimal solution using *fractional knapsack* problem for the following specifications.

Number of products in the shop=6
Knapsack capacity= 18 kg

Item	Weight (kg)	Profit (Tk)
p-1	8	28
p-2	4	16
p-3	1	3
p-4	7	28
p-5	6	12
p-6	2	4

- 4. a. Write a short note on greedy algorithms. Why knapsack problem is called a greedy algorithm?
 - b. Suppose you want to design a Dictionary word search system. Calculate the complexity of using linear search, index search and which one is better.

B.Sc. Engineering Examination 2nd Year 2nd Semester-2020

Course Title: Theory of Computation Course No: CSE-2203

Time: 3:00 hours (For PART-A and PART-B)

	PART-A Marks 35	
N.B i. ii. iii.	Answer any Three questions. Separate answer script must be used for answering the questions of PART-A. Figures in the right margin indicate marks.	
1. a.	Differentiate among Complexity theory, Computability theory and Automata theory.	3
b.	Describe the application of Automata Theory in Computer Science.	4 2 3
c.	Define empty string and powers of an alphabet. Suppose set of alphabet, $\Sigma = \{0,1\}$. Find out length of string consisting of binary representation of 17 and also find Σ^3 .	4
2 a.	Describe about formal definition of Deterministic Finite Automata and Non-deterministic finite automata. Also write down differences between Deterministic Finite Automata and Non-deterministic finite automata.	$5\frac{2}{3}$
*	What is transition diagram? Draw a transition diagram of an FA that accepts all strings of 0's and 1's in which both the number of 0's and number of 1's are even.	6
3. 12.	Show that the class of regular languages is closed under the regular operations	5
b.	Construct an NFA over the alphabet $\Sigma = \{0,1\}$ that accepts the set of strings that contain an odd number of occurrences of substring 011. Then convert this NFA to an equivalent DFA.	$6\frac{2}{3}$
A. a.	Consider the following context free grammar G: S T XRX R R T T XTX X E X T T XTX X E X T T XTX X E X T XTX X E	6
	(ii) What are the terminals of G?(iii) Which is the start variable of G?(iv) Check whether G generates the string 'aaaabbb' and if it does, also draw the parse tree.	
b.	Prove that, regular languages are context free.	$5\frac{2}{3}$

B.Sc. Engineering Examination 2nd Year 2nd Semester-2020

Course Title: Theory of Computation Course No: CSE-2203

Time: 3:00 hours (For PART-A and PART-B)

PART-B

ii. Separate answer script must be used for answering the questions of PART-B.

N.B: i. Answer any Three questions.

iii. Figures in the right margin indicate marks. $6\frac{2}{3}$ State and prove the technique to determine a regular language. 5 16. Prove that the language $A = \{0^n 1^n 2^n \mid n \ge 0\}$ is not regular by above technique. $6\frac{2}{3}$ Prove that class of regular languages is closed under 'concat' operation. Compute Regular Expressions for the following languages: b (i) $L = \{w \mid w \text{ begins with a } 0 \text{ and ends with a } 0\}.$ (ii) $L = \{w \mid w \text{ has length at least 4 and its third symbol is a 1}\}.$ (iii) $L = \{w \mid w \text{ contains an odd number of } 0' \text{ s or exactly two 1's} \}.$ (iv) $L = \{w \mid w \text{ is any string except } \Pi \text{ and } \Pi \}$. (v) L = {w | w contains at least three 0's and at most one 1} Formally describe Chomsky Normal Form. What are the steps to convert a context free grammar to CNF? Consider a context free grammar as follows: 6 S->ASB|SC|BS A->aBC| E B->b|Ac| E C->c Convert it to CNF grammar. Write down languages formed by the regular expression: (a|b)* and (001 | 100)3. 2 Design an NFA over the alphabet L = {a, b} which accepts all and only the strings of a. nonzero length having nonzero odd number of a's at the end. Also design its equivalent Regular expression. 3 Give example of an NP-hard problem in complexity theory. b. Draw a DFA for the regular expression (10 U 11)*. C.

Marks 35

In he way of

Pabna University of Science and Technology Department of Computer Science and Engineering

B.Sc. Engineering Examination 2nd Year 2nd Semester-2020

Course Title: Complex Analysis, Laplace and Fourier Transformations

Course No: MATH-2201

Time: 3:00 hours (For PART-A and PART-B)

PART-A

Marks 35

- N.B
 - Answer any Three questions.
 - Separate answer script must be used for answering the questions of PART-A. ii.
 - iii. Figures in the right margin indicate marks.
- 01. (a) What is complex number? If z_1 and z_2 be two complex numbers, then prove that (i) $\overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}$, (ii) $|z_1 + z_2| \le |z_1| + |z_2|$ (iii) $|z| \ge Re(z)$.
 - 05 (b) Describe geometrically the region (i) $|z + 3i| \ge 4$, (ii) $|z - 4| \ge |z|$
- 02. (a) Define limit and continuity. Using the definition of derivative find the derivative of 4.67 the function $f(z) = z^3 + 2z^2 + i$ at z = 2.
 - 04 (b) What is singular point? Show that $\frac{d}{dz}(\bar{z})$ does not exist anywhere.
 - (c) Show that the function $u = x^3 3xy^2$ is a harmonic function. Determine its 03 harmonic conjugate.
- 4.67 03. (a) State and prove Cauchy-Reimann (C-R) theorem in polar form.
 - (b) Verify that the Cauchy-Reimann (C-R) equations are satisfied for the functions (i) 07 $f(z) = \cos 2z$, (ii) $f(z) = e^{z^2}$.
- 04. (a) State Cauchy's integral formula. Using Cauchy's evaluate $\int_c \frac{zdz}{(9-z^2)(z+i)}$, where c is 04 the circle |z| = 2 describe in the positive sense.
 - (b) Show that $\int_c \frac{e^{2z}}{(z+1)^4} dz = \frac{8\pi l e^{-2}}{3}$, where c is the circle |z| = 3. 04
 - 3.67 (c) Evaluate $\int_C \frac{4-3z}{z(z-1)(z-2)} dz$, where c is the circle $|z| = \frac{3}{2}$.

B.Sc. Engineering Examination 2nd Year 2nd Semester-2020 Course Title: Complex Analysis, Laplace and Fourier Transformations Course No: MATH-2201

Time: 3:00 hours (For PART-A and PART-B)

PART-B

ii. Separate answer script must be used for answering the questions of PART-B.

i. Answer any Three questions.

iii. Figures in the right margin indicate marks. 03 01. (a) If $L\{F(t)\} = f(s)$, then show that $L\left[\int_0^t F(u)du\right] = \frac{f(s)}{s}$. If $L\{F(t)\} = f(s)$, then prove that $L\{F'''(t)\} = s^3 f(s) - s^2 F(0) - s F'(0) - F''(0)$. 04 4.67 Define Laplace transformation. Find $L\{t^2e^{2t} + e^t \sin 2t - t^2 \cos 2t\}$ What is inverse Laplace transform? Find (i) $L^{-1}\left\{\frac{1}{s^3(s^2+1)}\right\}$, (ii) $L^{-1}\left\{\frac{8s+20}{s^2-12s+32}\right\}$ 07 02. (a) Solve the ODE by using Laplace transformation $Y''(t) + 9Y(t) = \cos 2t$; Y(0) = 1, 4.67 (b) $Y\left(\frac{\pi}{2}\right) = -1.$ Define Fourier cosine and sine series. Find the coefficient values of a_0 , a_n and b_n for 5.67 **03**. (a) even function. Find the Fourier series expansion of the function $f(x) = \begin{cases} 0, & -\pi < x \le 0 \\ x, & 0 < x \le \pi \end{cases}$. Hence 06 (b) evaluate the sum $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$ Find the Fourier series expansion of the function f(x) = |x| in the interval $[-\pi, \pi]$. 5.67 04. (a) Hence evaluate the sum $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$. Find the series of sine and cosine of multiples of x which represents f(x) in the interval 06 $-\pi \le x \le \pi \text{ where } f(x) = \begin{cases} 0, & -\pi < x \le 0 \\ \frac{\pi x}{4}, & 0 < x \le \pi \end{cases} \text{ and deduce that } \frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$

Marks 35

Pabna University of Science and Technology Department of Computer Science and Engineering B. Sc. Engineering 2nd Year 2nd Semester Examination-2019

Course Title: Theory of Statistics Course No: STAT 2201

Time: 3:00 hours (For PART-A and PART-B)

PART-A

N.B:

Answer any Three questions.

	iii.	Figures in the right margin indicate marks.	
1.	a.	Define degrees of freedom with an example	2
	b.	Find the moment generating function of a chi-square variate with k degrees of freedom.	6
	c.	Hence, find the mean and variance of that variate. Write the properties and application of a chi-square distribution.	3 2 3
2.	a. b.	What is central limit theorem? The service times for the customers coming through a checkout counter in a retail store are independent random variables with mean of 1.5 minutes and variance of 1. Approximate the probability that 100 customers can be serviced in less than 2 hours of total service time. Also,	$\frac{2}{3}$
	c.	Define F and t statistic. Show that the distribution of t-statistic tends to the standard normal distribution as the sample size tends to infinity.	6
3.	a.	What are the differences between estimator and statistic? Write the criteria of a good estimator?	4
	b.	Let $x_1, x_2, x_3, \dots, x_n$ be a random variable from a normal distribution with mean μ and variance 4. Show that \bar{x} is an unbiased and consistent estimator of μ .	5
	c.	Define efficiency, Cramer-Rao lower bound, sampling distribution.	2 3
4.	a.	What are the different methods of finding point estimator? Describe the maximum likelihood method of finding a point estimator.	3 2 3 8
	b.	Let $x_1, x_2, x_3, \dots, x_n$ be a random sample of size n from a normal distribution with mean μ and variance σ^2 . Find the maximum likelihood estimators (MLEs) of μ and σ^2 ? Is the MLE of σ^2 unbiased? Consistent? Efficient?	8

Pabna University of Science and Technology

Department of Computer Science and Engineering B. Sc. Engineering 2nd Year 2nd Semester Examination-2019

Course Title: Theory of Statistics Course No: STAT 2201

Time: 3:00 hours (For PART-A and PART-B)

PART-B

N.B:

Answer any Three questions.

	v. vi.	Separate answer script must be used for answering the questions of PART-B. Figures in the right margin indicate marks.	
1.	a.	Define order statistic with example. Let odd number of random samples $x_1, x_2, x_3, \dots, x_n$ is drawn from a population with density function $f(x) = \frac{x}{8}$, $0 < x < 4$. Find the	6
	b.	distribution of the median of the random sample. Find the distribution of the range of a random sample $x_1, x_2, x_3, \dots, x_n$ with density function $f(x)dx = -\infty < x < \infty$.	$5\frac{2}{3}$
2.	a.	Define the following terms with example (i) Null hypothesis (ii) Alternative hypothesis (iii) Test statistic (iv) Probability of the type	7
	b.	one error (v) Power of test (vi) Critical region (vii) Level of significance The mean and standard deviation of scores obtained from a random sample of 40 students at a college were 2.8 and 0.40 respectively. Can you conclude that that the sample has come from the entire group of students, which has mean score of 2.5. Use a 5% level of significance.	$4\frac{2}{3}$
3.	a.	Describe the procedure of testing a hypothesis.	$3\frac{2}{3}$
	c.	What do you mean by p-value and confidence interval? The sample data show that 120 adult males born in rural area have a mean height of 62 inches with a standard deviation of 2.50 inches, and 140 adult males born in the urban area have a mean height of 61.5 inches with a standard deviation of 2.60 inches. Test the hypothesis that the mean heights in the two areas from which the samples have been drawn do not differ. Compute also the 95% confidence interval for the difference in population mean and interpret.	6
4.	a.	Define non-parametric test. What does it differ to parametric test?	$3\frac{2}{3}$
	b.	Describe test a hypothesis about a median using the sign test.	3
	c.	A consumer test to determine the preference for decaffeinated versus regular coffee. Use the 0.10 significance level. The null and alternate hypothesis are: H_0 : π =0.50	5
		(i) Is this a one-tailed or a two-tailed test hypothesis? (ii) Show the decision rule in a chart.	
		(iii) Letting consumer preference for decaffeinated coffee be a "+" and preference for regular coffee a "-", it was found that two customers preferred decaffeinated. What is your decision? Explain.	