

CVPR 2014 Visual SLAM Tutorial Efficient Inference

Michael Kaess

kaess@cmu.edu

The Robotics Institute
Carnegie Mellon University

The Mapping Problem (t=0)

Onboard sensors:

- Wheel odometry
- Inertial measurement unit (gyro, accelerometer)
- Sonar
- Laser range finder
- Camera
- RGB-D sensors

The Mapping Problem (t=1)

The Mapping Problem (t=n-1)

The Mapping Problem (t=n)

Odometry measurement

Mapping problem is incremental!

Factor Graph Representation

Odometry measurement

Factor Graph Representation

Nonlinear Least-Squares

Repeatedly solve linearized system (GN) $\operatorname{argmin}_{x} ||Ax - b||^{2}$

$$A = \begin{bmatrix} F_{11} & G_{11} & & & & \\ F_{12} & & G_{12} & & & \\ F_{13} & & & G_{13} & & \\ & F_{21} & G_{21} & & & \\ & F_{22} & & G_{22} & \\ & F_{23} & & & G_{23} \end{bmatrix}, x = \begin{bmatrix} \xi_1 \\ \xi_2 \\ \delta_1 \\ \delta_2 \\ \delta_3 \end{bmatrix}, b = \begin{bmatrix} b_{11} \\ b_{12} \\ b_{13} \\ b_{14} \\ b_{15} \\ b_{16} \end{bmatrix}$$

Solving the Linear Least-Squares System

Solve: $\operatorname{argmin}_{x} ||Ax - b||^{2}$

Normal equations

$$A^T A x = A^T b$$

Measurement Jacobian

Solving the Linear Least-Squares System

Can we simply invert A^TA to solve for x?

Normal equations $A^T A x = A^T h$

- Yes, but we shouldn't...
 The inverse of A^TA is dense -> O(n^3)
- Can do much better by taking advantage of sparsity!

Solving the Linear Least-Squares System

Solve: $\operatorname{argmin}_{x} ||Ax - b||^{2}$

Normal equations

$$A^T A x = A^T b$$

Matrix factorization

$$A^T A = R^T R$$

Measurement Jacobian

Square root information matrix

Matrix – Square Root Factorization

QR on A: Numerically More Stable

Cholesky on A^TA: Faster

Solving by Backsubstitution

After factorization: $R^TR x = A^Tb$

• Forward substitution $R^{T}y = A^{T}b$, solve for y

BacksubstitionR x = y, solve for x

Full Bundle Adjustment

From Strasdat et al, 2011 IVC "Visual SLAM: Why filter?"

- Graph grows with time:
 - Have to solve a sequence of increasingly larger BA problems
 - Will become too expensive even for sparse Cholesky

F. Dellaert and M. Kaess, "Square Root SAM: Simultaneous localization and mapping via square root information smoothing," IJRR 2006

Keyframe Bundle Adjustment

- Drop subset of poses to reduce density/complexity
- Only retain "keyframes" necessary for good map

Complexity still grows with time, just slower

Filter

- Keyframe idea not applicable: map would fall apart
- Instead, marginalize out previous poses
 - Extended Kalman Filter (EKF)
- Problems when used for Visual SLAM:
 - All points become fully connected -> expensive
 - Relinearization not possible -> inconsistent

Incremental Solver

• Back to full BA and keyframes:

- New information is added to the graph
- Older information does not change
- Can be exploited to obtain an efficient solution!

Incremental Smoothing and Mapping (iSAM)

Solving a growing system:

- R factor from previous step
- How do we add new measurements?

Key idea:

New measurements ->

- Append to existing matrix factorization
- "Repair" using Givens rotations

Incremental Smoothing and Mapping (iSAM)

Update and solution are O(1)

Are we done?

BA is nonlinear...

iSAM requires periodic batch factorization to relinearize Not O(1), we need iSAM2!

Fixed-lag Smoothing

plus some fillin

Cut here to marginalize

- Marginalize out all but last n poses and connected landmarks
 - Relinearization possible
- Linear case
- Nonlinear: need iSAM2

Matrix vs. Graph

Measurement Jacobian Factor Graph

Information Matrix

Markov Random Field

Square Root Inf. Matrix

- Choose ordering: l_1 , l_2 , x_1 , x_2 , x_3
- Eliminate one node at a time

 $p(I_1,x_1,x_2) = p(I_1|x_1,x_2) p(x_1,x_2)$

- Choose ordering: l_1 , l_2 , x_1 , x_2 , x_3
- Eliminate one node at a time

 $p(I_1,x_1,x_2) = p(I_1|x_1,x_2) p(x_1,x_2)$

- Choose ordering: l_1 , l_2 , x_1 , x_2 , x_3
- Eliminate one node at a time

- Choose ordering: l_1 , l_2 , x_1 , x_2 , x_3
- Eliminate one node at a time

- Choose ordering: l_1 , l_2 , x_1 , x_2 , x_3
- Eliminate one node at a time

- Choose ordering: l_1 , l_2 , x_1 , x_2 , x_3
- Eliminate one node at a time

 $p(x_3)$

iSAM2: Bayes Tree Data Structure

Step 2: Find cliques in reverse elimination order:

iSAM2: Bayes Tree Data Structure

Step 2: Find cliques in reverse elimination order:

iSAM2: Bayes Tree Example

How to update with new measurements / add variables?

iSAM2: Updating the Bayes Tree

Add new factor between x_1 and x_3 x_2, x_3 x_3 x_2, x_3 x_3 x_4 x_2 x_3

iSAM2: Updating the Bayes Tree

Add new factor between x_1 and x_3 x_2 $l_1, x_1 : x_2$ $l_2: x_3$ x_1, x_2, x_3 $x_{\mathbf{2}}$ $l_{\mathbf{1}}:x_{\mathbf{1}},x_{\mathbf{2}}$ x_3

iSAM2: Bayes Tree for Manhattan Sequence

Backup slides

Relevant Publications

- D. Rosen, M. Kaess, and J. Leonard, "RISE: An incremental trust-region method for robust online sparse least-squares estimation," IEEE Trans. on Robotics (TRO), 2014, to appear.
- M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert, "iSAM2: Incremental smoothing and mapping using the Bayes tree," Intl. J. of Robotics Research (IJRR), vol. 31, no. 2, pp. 217–236, Feb. 2012.
- M. Kaess, V. Ila, R. Roberts, and F. Dellaert, "The Bayes tree: An algorithmic foundation for probabilistic robot mapping," in Intl. Workshop on the Algorithmic Foundations of Robotics (WAFR), Singapore, Dec. 2010, pp. 157–173.
- M. Kaess, A. Ranganathan, and F. Dellaert, "iSAM: Incremental smoothing and mapping," IEEE Trans. on Robotics (TRO), vol. 24, no. 6, pp. 1365–1378, Dec. 2008.
- F. Dellaert and M. Kaess, "Square Root SAM: Simultaneous localization and mapping via square root information smoothing," Intl. J. of Robotics Research (IJRR), vol. 25, no. 12, pp. 1181–1204, Dec. 2006.

36

Retaining Sparsity: Variable Ordering

Fill-in depends on elimination order:

Default ordering (poses, landmarks)

Ordering based on COLAMD heuristic [Davis04] (best order: NP hard)

Variable Reordering – Constrained COLAMD

Greedy approach

Arbitrary placement of newest variable

Constrained Ordering

Newest variables forced to the end

Number of affected variables:

low high

Much cheaper!