Predicting Malignancy from Mammography Findings and Surgical Biopsies

BIBM 2011 – November 13th 2011 – Atlanta, USA

Pedro Miguel Ferreira

Nuno A. Fonseca Inês Dutra Ryan Woods Elizabeth Burnside

Outline

- Breast Cancer
- Objectives
- Data
- Methodology
- Results and Analysis
- *MammoClass* (online application)
- Conclusions and Future Work

Outline

- Breast Cancer
- Objectives
- Data
- Methodology
- Results and Analysis
- MammoClass (online application)
- Conclusions and Future Work

Breast Cancer

• USA:

- 1 woman dies of breast cancer every 13 minutes
- In 2011:
 - 230.480 invasive cancers
 - 39.520 (≈ 17%) expected to die

Source: *U. S. Breast Cancer Statistics* – October 2011

Portugal:

- Per year:
 - 4500 new cases
 - 1500 deaths (33%)

Source: *Liga Portuguesa Contra o Cancro –* November 2011

Breast Screening Programs

• Reduction of death rate in 30%

• Mammography:

The cheapest and most eficient method to detect cancer in a preclinical stage

Mammography

Outline

- Breast Cancer
- Objectives
- Data
- Methodology
- Results and Analysis
- *MammoClass* (online application)
- Conclusions and Future Work

in Studying the relevance of Breast Imaging Features – HEALTHINF 2011

Objectives

Build classifiers capable of predicting mass
 density and malignancy from a reduced set of mammography findings

Reduce the number of unnecessary biopsies

Outline

- Breast Cancer
- Objectives
- Data
- Methodology
- Results and Analysis
- *MammoClass* (online application)
- Conclusions and Future Work

Data

- Source:
 - Ryan Woods (M.D.)
 - Elizabeth Burnside (M.D.)

- 348 cases
- Each case refers to a breast nodule **retrospectively** classified according to BI-RADS® system
- From mammographies results
- Collected between October
 2005 and December 2007

Attributes

age_at_mammo

CLOCKFACE_LOCATION_OR_REGION

MASS_SHAPE

MASS_MARGINS

SIDE

DEPTH

MASS_MARGINS_worst

QUADRANT_LOCATION_def

SIZE

OVERALL_BREAST_COMPOSITION

Density_num

retro_density

outcome_num

Masses classification

Prospective

- Classification of feature mass density for 180 cases just by one radiologist:
 - low density;
 - iso-dense:
 - high density;
- Brief and superficial medical report (at the time of imaging);
- Classification under stress.

Retrospective

- Classification by a group of experienced physicians that re-assess all exams (348);
- Review of mass density classification made by radiologist (prospective study);
- Classification without stress;
- Reference standard for mass density.

Masses classification

(**prospectively** classified)

Outline

- Breast Cancer
- Objectives
- Data
- Methodology
- Results and Analysis
- *MammoClass* (online application)
- Conclusions and Future Work

Methodology

• WEKA

- Paired Corrected T-Tester
 - Significance level: 0.05

Methodology - Algorithms applied

internal parameter variation

Methodology - Experiments

10 x stratified. c. v.

180

- **E₁** Predicting malignancy with *retro_density*
- **E**₂ Predicting malignancy with *density_num*
- **E**₃ Predicting malignancy without mass density
- **E**₄ Predicting *retro_density*
- **E**₅ Predicting *density_num*

Results

Results - Experiments

10 x stratified. c. v.

180

Exp.	Algorithm	CCI	K	F	AUROC
E1	SMO	85.6 ± 7.3	0.69 ± 0.16	0.80 ± 0.11	0.84±0.08
E1	DTNB	81.6 ± 8.2	0.60 ± 0.18	0.74 ± 0.13	0.88 ± 0.07
E1	NaiveBayes	81.3±9.5	0.61 ± 0.20	0.76 ± 0.12	0.88 ± 0.08
E1	J48	80.7 ± 9.3	0.59 ± 0.20	0.75 ± 0.13	0.79 ± 0.11
E2	SMO	83.9 ± 7.7	0.66±0.17	0.78 ± 0.11	0.82 ± 0.08
E2	NaiveBayes	80.3±9.3	0.59 ± 0.19	0.75 ± 0.12	0.87 ± 0.09
E2	DTNB	79.8 ± 9.5	0.56 ± 0.21	0.72 ± 0.15	0.86 ± 0.09
E2	J48	75.4 ± 9.5	0.47 ± 0.21	0.65 ± 0.15	0.73 ± 0.12
E3	SMO	83.8±7.7	0.65 ± 0.17	0.78±0.11	0.82±0.09
E3	J48	76.3 ± 9.9	0.49 ± 0.22	0.67 ± 0.15	0.76 ± 0.13
E3	NaiveBayes	76.2 ± 9.9	0.51 ± 0.20	0.71 ± 0.13	0.85 ± 0.09
E3	DTNB	75.7 ± 9.0	0.48 ± 0.19	0.67 ± 0.13	0.81 ± 0.10
E4	SMO	81.3 ± 8.2	0.52 ± 0.21	0.64±0.17	0.75 ± 0.11
E4	J48	74.4 ± 8.8	0.32 ± 0.24	0.47 ± 0.21	0.67 ± 0.15
E4	DTNB	73.5 ± 10.0	0.34 ± 0.24	0.51 ± 0.19	0.76 ± 0.12
E4	NaiveBayes	72.8 ± 9.9	0.37 ± 0.23	0.56 ± 0.18	0.77 ± 0.11
E5	NaiveBayes	67.2 ± 12.1	0.33 ± 0.25	0.62 ± 0.15	0.72 ± 0.14
E5	SMO	66.8 ± 10.7	0.31 ± 0.22	0.55 ± 0.16	0.65 ± 0.11
E5	J48	63.6 ± 10.1	0.26 ± 0.21	0.56 ± 0.15	0.62 ± 0.13
E5	DTNB	62.1 ± 11.9	$0.22{\scriptstyle\pm0.24}$	$0.54{\scriptstyle\pm0.16}$	0.64 ± 0.14

Results - Experiments

Predicting density

180

Results - Experiments

10 x stratified. c. v.

• **E**₄ – Predicting *retro_density*

SVM's

CCI: 81.3% (+/-8.2)

K: 0.52 (+/- 0.21)

F: 0.64 (+/- 0.17)

Radiologist's accuracy = 70 % Our classifier ≈ 81 %

168

Results - Experiments

TEST

• **E**₆ – Predicting *retro_density* (model E₄ applied)

SVM's

CCI: 84.5%

K: 0.46

F: 0.91

CCI: 81.3% (+/-8.2)

K: 0.52 (+/- 0.21)

F: 0.64 (+/- 0.17)

Results - Experiments

Predicting malignancy

180

Results - Experiments

10 x stratified. c. v.

• **E**₁ – Predicting malignancy with retro_density

CCI: 85.6% (+/-7.3)

K: 0.69 (+/- 0.16)

F: 0.80 (+/-0.11)

168

Results - Experiments

TEST

180 SVM's

CCI: 85.6% (+/-7.3)

K: 0.69 (+/- 0.16)

F: o.80 (+/- 0.11)

• E₈ – Predicting malignancy with *retro_density* (model E₁ applied)

with real values

of retro density

SVM's

CCI: 81.0%

K: 0.50

F: 0.87

SVM's

CCI: 78.0%

K: 0.45

F: 0.85

with **predicted** values of

retro_density
by classifier E₆

MammoClass

- Online application freely available at:
 - http://cracs.fc.up.pt/mammoclass/

MammoClass

Classification of a mammogram based in a reduced set of mammography findings

To obtain a prediction in terms of malignancy for a certain mass is only necessary to provide the values of the findings, annotated through the Breast Imaging Reporting and Data System (BIRADS), in the form bellow. It is also possible to get a prediction of the attribute *mass density* in case this feature is not known.

The output will indicate the probability of a certain mass being benign or malignant. In the latter case it is suggested that the patient should perform a biopsy. The probabilities are computed using machine learning models built as described in:

 P.Ferreira, N. A. Fonseca, I. Dutra, R. Woods, and E. Burnside,
 Predicting Malignancy from Mammography Findings and Surgical Biopsies

Enter Data

Patient's age	
Mass size	
Breast Composition	Select a value
Mass shape	Select a value
Mass clockface location	Select a value
Mass margins (1)	Select a value V
Mass margins (2)	Select a value V

Misclassified Instances

 E_1

 E_4

Conclusions and Future Work

- Automatic classification of a mammography can reach equal or better results than the classification performed by a radiologist;
- b) Machine learning **classifiers** can **predict mass density** with **higher quality** than the one obtained by radiologists
 - a) our classifier can **predict malignancy** in the absence of mass density, since we can **fill up** this **attribute** using our **mass density predictor.**

Conclusions and Future Work

- a) Apply other machine learning techniques based on statistical relational learning;
- b) Investigate how other features can affect malignancy or are related to the other attributes;
- c) Study why the **parameter variation** on **WEKA algorithms** has a strong **impact** on the **performance** of **classifiers**;
- d) Investigate with the radiologist why some **instances** are **consistently misclassified** by all algorithms.

Thank you!

FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA

Pedro Miguel Ferreira

pedroferreira@dcc.fc.up.pt nunofonseca@acm.org ines@dcc.fc.up.pt

http://cracs.fc.up.pt

Appendices

Methodology

10-fold stratified cross-validation

Data distribution

• 348

348	retro_density		
outcome_num	high	iso	Total
malignant	59 (70.2%)	59 (22.3%)	118 (33.9%)
benign	25 (29.8%)	205 (77.7%)	230 (66.1%)
Total	84 (24.1%)	264 (75.9%)	

Data distribution

• 180

180	retro_density		
outcome_num	high	iso	Total
malignant	42 (75.0%)	29 (23.4%)	71 (39.4%)
benign	14 (25.0%)	95 (76.6%)	109 (60.6%)
Total	56 (31.1%)	124 (68.9%)	

180	density_num		
outcome_num	high	iso	Total
malignant	51 (63.0%)	20 (20.2%)	71 (39.4%)
benign	30 (37.0%)	79 (79.8%)	109 (60.6%)
Total	81 (45.0%)	99 (55.0%)	

Data distribution

• 168

168	retro_density		
outcome_num	high	iso	Total
malignant	17 (60.7%)	30 (21.4%)	47 (28.0%)
benign	11 (39.3%)	110 (78.6%)	121 (72.0%)
Total	28 (16.7%)	140 (83.3%)	

WEKA algorithms used

Classifiers' performance for each task. Values not in bold are statistically significantly worse than the classifier with highest accuracy (using paired T-test with $\alpha=0.05$).

Exp.	Algorithm	CCI	K	F	AUROC
E1	SMO	85.6±7.3	0.69 ± 0.16	0.80 ± 0.11	0.84 ± 0.08
E1	DTNB	81.6 ± 8.2	0.60 ± 0.18	0.74 ± 0.13	0.88 ± 0.07
E1	NaiveBayes	81.3±9.5	0.61 ± 0.20	0.76 ± 0.12	0.88 ± 0.08
E1	J48	80.7±9.3	0.59 ± 0.20	0.75 ± 0.13	0.79 ± 0.11
E2	SMO	83.9 ± 7.7	0.66 ± 0.17	0.78 ± 0.11	0.82 ± 0.08
E2	NaiveBayes	80.3±9.3	0.59 ± 0.19	0.75 ± 0.12	0.87 ± 0.09
E2	DTNB	79.8 ± 9.5	0.56 ± 0.21	0.72 ± 0.15	0.86 ± 0.09
E2	J48	75.4 ± 9.5	0.47 ± 0.21	0.65 ± 0.15	0.73 ± 0.12
E3	SMO	83.8±7.7	0.65 ± 0.17	0.78 ± 0.11	0.82 ± 0.09
E3	J48	76.3 ± 9.9	0.49 ± 0.22	0.67 ± 0.15	0.76 ± 0.13
E3	NaiveBayes	76.2 ± 9.9	0.51 ± 0.20	0.71 ± 0.13	0.85 ± 0.09
E3	DTNB	75.7 ± 9.0	0.48 ± 0.19	0.67 ± 0.13	0.81 ± 0.10
E4	SMO	81.3 ± 8.2	0.52 ± 0.21	0.64 ± 0.17	0.75 ± 0.11
E4	J48	74.4 ± 8.8	0.32 ± 0.24	0.47 ± 0.21	0.67 ± 0.15
E4	DTNB	73.5 ± 10.0	0.34 ± 0.24	0.51 ± 0.19	0.76 ± 0.12
E4	NaiveBayes	72.8 ± 9.9	0.37 ± 0.23	0.56 ± 0.18	0.77 ± 0.11
E5	NaiveBayes	67.2 ± 12.1	0.33 ± 0.25	0.62 ± 0.15	0.72 ± 0.14
E5	SMO	66.8 ± 10.7	0.31 ± 0.22	0.55 ± 0.16	0.65 ± 0.11
E5	J48	63.6 ± 10.1	0.26 ± 0.21	0.56 ± 0.15	0.62 ± 0.13
E5	DTNB	62.1 ± 11.9	0.22 ± 0.24	0.54 ± 0.16	0.64 ± 0.14

Parameter variation in WEKA algorithms

 (E_1) Predicting outcome num with retro density,

→ SMO '-C 0.05 –N1 PK –E 1.0'

Best parameter selection

SMO '-C 0.05 -N2 PK -E 1.0'

- (E_2) Predicting outcome_num with density_num,
- (E_3) Predicting outcome_num without mass density,
- (E4) Predicting retro density,
- (E₅) Predicting density_num;

Parameters Selection:

SMO:

- -C (complexity parameter)
- -N (filter Type)
 - (filter Lype) 0 - Normalise training data
 - 1 Standardize training data
 - 2 No normalisation/standardisation

PK (Poly Kernel)
-E (exponent value)

	•
debug	False ▼
displayModelInOldFormat	False ▼
useKernelEstimator	False ▼
useSupervisedDiscretization	False ▼

naïve Baves default