Non-Specular Reflectance in the Extreme Ultraviolet

Quintin Nethercott Cody Petrie Dr. Steven Turley

Extreme Ultraviolet (EUV)

3 nm – 120 nm

Non-Specular Reflection

- Characterizing surface roughness
 - Non-specular reflection in the EUV
- Applications in the EUV
 - Lithography
 - Space based Astronomy
 - Medical imaging

Overview

- Chrome samples
- Equipment/Procedure
- Analysis of reflection data
- Proof of principle
- Further work

Chrome Samples

- Lawrence Livermore National Laboratory
 - Equipment sensitive in the EUV
 - Reduce non-specular reflection

Groove width: \sim 18 ± 1 µm

Equipment/Procedure

Measurements

- Dark Counts
- Background
- Beam Profile
- Reflectance

Analysis

Things we accounted for:

- Dark Counts from detector
- Background noise
- Our measurements are a convolution of the original beam with:
 - Detector hole (a circular aperture)
 - Smearing off sample
- Normalize with incident beam

Can we understand surface features based on reflection data?

Proof of Principle:

- Modeling surfaces
- Vary surface parameters
- Match to reflection data

Modeling Surfaces

Random Gaussian

Filtered

Image shows periodic features

Sin²

Periodic Surface

Geometric optics to calculate reflection

Sine function:

Does not match reflection data

Varying Parameters

Parameters of Sin²:

- Period
- Height of bump
- Height of noise
- Length of surface

Matching Reflection Data

25.6 nm at 10°

30.4 nm at 20°

30.4 nm at 10°

Non-specular reflection can be used to characterize surface roughness

Conclusion

- Measuring non-specular reflectance
- We can learn about surface features

Further Work:

- Reflection data on a variety of samples
- Compare with more complex models
- Compare with atomic force microscopy

Wikipedia

Acknowledgements

- Dr. R. Steven Turley
- John Ellsworth
- Brigham Young University Physics Department
- Lawrence Livermore National Laboratory

25.6 nm at 10°

30.4 nm at 10°

30.4 nm at 20°