

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑩ Publication number:

0 353 021
A1

⑪

EUROPEAN PATENT APPLICATION

⑫

⑬ Application number: 89307537.4

⑮ Int. Cl.⁵: A 23 L 3/34

⑭ Date of filing: 25.07.89

flushing

⑯ Priority: 29.07.88 NZ 225620

⑰ Applicant: TRANSFRESH CORPORATION
607 Brunkin Avenue
Salinas California 93902 (US)

⑲ Date of publication of application:
31.01.90 Bulletin 90/05

⑱ Inventor: Harris, Samuel
45 Evelyn Place
Northcote Auckland 9 (NZ)

⑳ Designated Contracting States:
AT BE CH DE ES FR GB GR IT LI LU NL SE

⑳ Representative: Ayers, Martyn Lewis Stanley et al
J.A. KEMP & CO, 14 South Square Gray's Inn
London, WC1R 5EU (GB)

④ Controlled environment transportation of respiring comestibles.

⑤ A method of transporting a quantity of a comestible which may be subject to degradation as a result of respiration during transportation, comprising the steps of:

within said container but if necessary may additionally or instead include a positive infusion of ambient air into the container.

(a) sealing or substantially sealing said quantity of the respiring comestible within a container as hereinbefore described sufficiently to ensure that less oxygen of the ambient air can diffuse into the container than is required for full respiration by the respiring comestible, flushing the container with an oxygen low or oxygen free gas so as to provide a reduced oxygen level in the sealed or substantially sealed container, such flushing occurring before, during and/or after said sealing or substantial sealing, and

(b) transporting the container with the respiring comestible therein while (i) monitoring the oxygen level within said container and automatically adjusting the oxygen level as necessary by a positive infusion of ambient air into the container in response to such monitoring towards an optimum or predetermined value or range of values and (ii) monitoring the carbon dioxide level within said container and adjusting the carbon dioxide level as necessary in response to such monitoring towards an optimum or predetermined value or range of values without reliance upon flushing with an oxygen low or oxygen free gas, said adjustment being firstly by means of a scrubbing of the air

FIG.2

EP 0 353 021 A1

Bundesdruckerei Berlin

Description**CONTROLLED ENVIRONMENT TRANSPORTATION OF RESPIRING COMESTIBLES**

It is therefore an object of the present invention to provide a method and related apparatus which will provide some safeguard in the event the carbon dioxide content of the container rises above a desirable level.

Accordingly the present invention, in one aspect, consists in a method of transporting a quantity of comestible which may be subject to degradation as a result of respiration during transportation, comprising the steps of:

(a) sealing or substantially sealing said quantity of the respiring comestible within a container as hereinbefore described sufficiently to ensure that less oxygen of the ambient air can diffuse into the container than is required for full respiration by the respiring comestible, flushing the container with an oxygen low or oxygen free gas so as to provide a reduced oxygen level in the sealed or substantially sealed container, such flushing occurring before, during and/or after said sealing or substantial sealing, and

(b) transporting the container with the respiring comestible therein while (i) monitoring the oxygen level within said container and automatically adjusting the oxygen level as necessary by a positive infusion of ambient air into the container in response to such monitoring towards an optimum or predetermined value or range of values and (ii) monitoring the carbon dioxide level within said container and adjusting the carbon dioxide level as necessary in response to such monitoring towards an optimum or predetermined value or range appropriate in other carriage spaces, e.g. the cargo hold of an aircraft, ship, train or the like and therefore for the purposes of the present specification the word "container" as used herein relates not only to shipping containers but to any means defining a storage space for such comestibles.

In a system such as disclosed in the aforementioned patent specifications the quantity of carbon dioxide capable of being absorbed is finite where reliance is placed upon a finite amount of a carbon dioxide absorbing medium such as, for example, a scrubbing unit including hydrated lime. Moreover there is also the prospect of carbon dioxide build up where for some reason or another a flow of the gaseous environment of the container can not be ducted through any such carbon dioxide scrubbing device.

of values without reliance upon flushing with an oxygen low or oxygen free gas, said adjustment being firstly by means of a scrubbing of the air within said container but if necessary may additionally or instead include a positive infusion of ambient air into the container.

Preferably said container is refrigerated and there is automatic adjustment of the temperature.

In a further aspect the present invention consists in apparatus for transporting a quantity of respiring

comestibles which may be degraded by respiration, said apparatus comprising:

- 5 transportable means defining a volume of a gaseous environment for said comestibles capable of being substantially sealed and in which the comestibles to be transported can be carried,
- 10 means to seal or substantially seal said volume after loading with said comestibles such that less oxygen from the ambient air can diffuse into the environment than is required for the respiration,
- 15 means to enable flushing of the environment with an oxygen microprocessor 1, which operates according to a program stored in read-only memory 2. The microprocessor reads and writes to and from read/write memory 3 and a removable cassette in cassette unit 4. A gas pump 5 continuously draws air from the container through inlet 15 and consecutively through O₂ detector 6 and CO₂ detector 7. Outlet 16 may return the sampled air to the container or its surroundings. A temperature detector 8 monitors approximately the temperature of the controller itself. Analog multiplexer 9 passes any of the three detector output signals to analog-to-digital converter 10 in response to commands by the microprocessor. The selected detector signal is then passed to the microprocessor on a common data/address bus 11.
- 20 Microprocessor 1 calculates actual CO₂ and O₂ levels by applying corrections to the detected levels as necessary depending on the detectors used. The CO₂ and O₂ levels according to the most recent sample are then shown on display 12, and may at suitable intervals be stored on the cassette, in addition to the detected temperature and the time according to real time clock 13. The microprocessor compares the actual CO₂ and O₂ levels with predetermined setpoints, these being preferred levels which vary with particular comestibles. Action of the container valves is controlled by the the O₂ level and setpoint are being compared, a positive error indicates that the level is above the setpoint and the external valve should be closed, while a negative error indicates that the level is undesirably low and the external valves should be controller described in relation to Figures 8-10 of those specifications. Such figures and the description thereof is hereby herein incorporated by way of reference. The controller is a microprocessor based unit which measures, controls, displays and logs the levels of carbon dioxide and oxygen in a container as hereinbefore defined, particularly a refrigerated marine shipping container. Control of the gas levels may be achieved via solenoid valves built into the container and connected to the controller. In the case of CO₂, valves are provided to (i) allow passage of container air through a scrubber unit in order to prevent the CO₂ level of the container air rising above a predetermined level, and (ii) allow an infusion of ambient air to the container should the CO₂ level rise above a higher predetermined level, such as in the event of failure of the scrubber action.
- 25
- 30
- 35
- 40
- 45
- 50
- 55
- 60

In the case of O₂, the external valves of (ii) allow an infusion of ambient air to the container in order to prevent the O₂ level of the container air from falling below a predetermined level. The controller is intended to be portable and of a size and shape to fit in the electrical power control box of such containers.

Referring to Figure 1, the controller schematically comprises a opened or remain open.

Principal features of a specific embodiment of the invention will now be described. In this embodiment the microprocessor 1 is an Intel 8085 8-bit processor. The other components of the controller shown in Figure 1 interface with the data/address bus via an 8255 programmable peripheral interface, except that the external ports 15 include an 8251 programmable communications interface for connection of the controller to a further microprocessor if desired. The ROM 2 in which the microprocessor program is stored comprises two 32K 2732 EPROMS while the RAM 3 comprises a 2K 6116 static RAM. The analog multiplexer 9 and analog-to-digital converter 10 comprise 4051 and ADC0802 chips respectively. The setpoints for a particular container load are stored in the cassette after input from a portable computer via the 8251 interface as noted above, and the controller cannot exercise the routine of Figure 2 unless the cassette is in place. Deadband values (O₂: ±0.3%, CO₂: ±0.5%) are stored in the EPROMS and are not varied between loads.

A "Teledyne" type A5 microfuel cell detects oxygen in the container air up to 25% by volume and with 10% accuracy of reading. The cell output is temperature dependent for which compensation is achieved via a thermistor in the cell output circuit.

* Teledyne Analytical Instruments
Box 1580
City of Industry
CA 91749 USA

A four filament "Gowmac" thermal conductivity cell is used to detect the presence of carbon dioxide in the container air up to 25% by volume. Each filament of the detector comprises one arm of a That part of the microprocessor program which enacts the present invention will now be described with reference to the flow charts of Figures 2 and 3.

* Gowmac USA
Box 32
NH 08805 USA

In Figure 2, action may be taken in respect of the container CO₂ and O₂ levels, provided that the container is not undergoing defrosting. The microprocessor then proceeds to compare the CO₂ level with the CO₂ setpoint and then with the CO₂ high limit value. If the CO₂ high limit is exceeded, ambient air is drawn into the container to lower the container air CO₂ level, otherwise the O₂ level is compared with the O₂ setpoint. CO₂ high limit control thus overrides O₂ level control. In making each comparison and operating valves if necessary, program execution passes to the routine shown in Figure 3.

Referring to Figure 3, the microprocessor calculates an error equal to the deviation of the CO₂ or O₂ level from the corresponding setpoint, and calculates a control value equal to the error magnitude

less the deadband amplitude. If the control value is negative the error is within the deadband and the existing valve status is maintained. If the control value is positive, the error is outside the deadband and action may be taken as follows. If the CO₂ level and setpoint are being compared, a positive error indicates that the level is undesirably high and the scrubber valve should be opened or remain open, while a negative error indicates that the level is below the setpoint and the scrubber valve should be closed or remain closed. If resistance bridge, two filaments being used for gas measurement and two filaments for reference. Such a detector is not intrinsically CO₂ sensitive but also reflects the O₂ and NO₂ levels of the container air. The microprocessor therefore compensates the conductivity cell output according to the detected O₂ level and an estimate of the N₂ level. The CO₂ detector is also temperature dependent for which further compensation is made by the microprocessor via the output of temperature detector 8. Overall, the CO₂ level obtained with 1% accuracy.

A "Wisa" vibrator type pump draws container air through the detectors at 0.2-0.5 l/minute. The air is filtered before passage through the CO₂ detector.

* Wisa Precision Pumps

Bayonne
NJ 07002 USA

Each detector output is read by the microprocessor approximately once every second and a running average for each level is calculated to overcome noise, the detector outputs being compensated as noted previously. The latest averages are displayed on the front panel of the controller and compared with the setpoints. The container CO₂ and O₂ levels and controller temperature are recorded on the cassette approximately every 8 hours when the container and controller are in use. There is provision to monitor and record the temperature within the container through a further communications port in the container, not shown in Figure 1, if desired.

Appendix I is a portion of an 8085 assembly language program listing in which lines 222-335 correspond approximately to the flow chart of Figure 2.

Appendix II is a portion of an 8085 assembly language program listing in which lines 1134-1168 carry out CO₂ level compensation for the CO₂ detector temperature, lines 1177-1200 carry out CO₂ level compensation in accord with the O₂ level, and lines 1219-1272 correspond approximately to the flow chart of Figure 3.

It is believed that apparatus and methods in accordance with the present invention define widespread application in the transportation industry.

Claims

1. A method of transporting a quantity of a combustible which may be subject to degradation as a result of respiration during transportation, comprising the steps of:
(a) sealing or substantially sealing said

quantity of the respiring comestible within a container as hereinbefore described sufficiently to ensure that less oxygen of the ambient air can diffuse into the container than is required for full respiration by the respiring comestible, flushing the container with an oxygen low or oxygen free gas so as to provide a reduced oxygen level in the sealed or substantially sealed container, such flushing occurring before, during and/or after said sealing or substantial sealing, and

(b) transporting the container with the respiring comestible therein while (i) monitoring the oxygen level within said container and automatically adjusting the oxygen level as necessary by a positive infusion of ambient air into the container in response to such monitoring towards an optimum or predetermined value or range of values and (ii) monitoring the carbon dioxide level within said container and adjusting the carbon dioxide level as necessary in response to such monitoring towards an optimum or predetermined value or range of values without reliance upon flushing with an oxygen low or oxygen free gas, said adjustment being firstly by means of a scrubbing of the air within said container but if necessary may additionally or instead include a positive infusion of ambient air into the container.

2. A method as claimed in claim 1 wherein said container is refrigerated and there is automatic adjustment of the temperature.

3. Apparatus for transporting a quantity of respiring comestibles which may be degraded by respiration, said apparatus comprising: transportable means defining a volume of a gaseous environment for said comestibles capable of being substantially sealed and in which the comestibles to be transported can be carried, means to seal or substantially seal said volume after loading with said comestibles such that less oxygen from the ambient air can diffuse into the environment than is required for the respiration, means to enable flushing of the environment with an oxygen free or low gas to reduce the oxygen content thereof below that of ambient air, means to monitor the oxygen content of the environment, means to monitor the carbon dioxide content of the environment, means responsive to the means to monitor said oxygen content to cause a positive infusion of ambient air into the environment should the oxygen content be or fall below a predetermined value, means responsive to the means to monitor said carbon dioxide content to cause passage of gas within the environment through means to scrub at least some of the carbon dioxide therefrom should said carbon dioxide content

rise above a first predetermined value, and means responsive to the means to monitor said carbon dioxide content to cause a positive infusion of ambient air into the environment should said carbon dioxide content not be maintained below a higher second predetermined value by said means to scrub at least some carbon dioxide from the environment.

4. Apparatus as claimed in claim 2 or 3 wherein said environment is within a container of the kind hereinbefore described.

5. Apparatus as claimed in claim 2 wherein there is provided means to monitor the temperature of the environment and additionally means responsive to the means to monitor the temperature of the environment to adjust at least downwardly the temperature of the environment towards a predetermined value.

6. A gas controller for a container of the kind hereinbefore described having means for extraction of CO₂ from the container air and means for exchange of ambient air with container air, said controller comprising:

a microprocessor, read-only memory and read-write memory connected to a common communication bus;

a carbon dioxide detector for monitoring the level of carbon dioxide in the container air;

an oxygen detector for monitoring the level of oxygen in the container air;

means for connecting the output of said detectors to said bus;

and an output port connected to said bus for output from said microprocessor of control signals which activate/deactivate said means for extraction and means for exchange; wherein said microprocessor executes a program stored in said read-only memory which program:

(a) monitors said carbon dioxide and oxygen level;

(b) activates/deactivates said means for extraction if said carbon dioxide level rises above/falls below a predetermined carbon dioxide level or range of levels;

(c) activates/deactivates said means for exchange if said carbon dioxide level rises above/falls below a predetermined carbon dioxide high limit or range of limits; and

(d) activates/deactivates said means for exchange if said oxygen level falls below/rises above a predetermined oxygen level or range of levels.

7. A gas controller according to claim 6 wherein said activation/deactivation comprises opening/closing of solenoid valves

8. A gas controller according to claim 6 or claim 7 wherein said predetermined levels are preferred levels for transport of respiring comestibles within said container.

9. A gas controller according to any one of claims 6 to 8 wherein said predetermined carbon dioxide limit is a limit above which unacceptable damage occurs to comestibles being transported in said container.

10. A gas controller according to any one of claims 6 to 9 wherein said means for connecting the output of said detectors to said bus comprises an analog multiplexer in series with an analog-to-digital converter.

11. A gas controller according to any one of

claims 6 to 10 wherein said program records at predetermined intervals said carbon dioxide and oxygen levels in a removable memory element connected to said microprocessor via said bus.

APPENDIX 1

113-II 8080/8085 MACRO ASSEMBLER, V4.1 TFCYF
TRANSFRESH 300 SERIES CONTROLLER

LOC	020	LINE	SOURCE STATEMENT	
00C0	CDD504	C 214	CALL	LOG
00C3	AF	215	XRA	A
00C4	32e400	D 216	STA	LOGF ;AND RESET LOG FLAG
		217		
		218	; COMPENSATE AND SCALE INPUTS	
00C7	CDA905	C 219	MAIN1: CALL	TFCMP
		220		
		221	; CONTROL OUTPUTS	
00CA	3A0400	222	LDA	PORTA
00CD	47	223	MOV	B,A
00CE	E620	224	ANI	DFFST ;DEFROSTING?
00D0	CAA801	C 225	JZ	DPPTR ;YES, EXIT
		226		
00D3	78	227	MOV	A,B
00D4	E690	228	ANI	CART ;CARTRIDGE INSERTED
00D6	C2A801	C 229	JNZ	DPPTR ;NO, EXIT
		230		
		231	; DO CONTROL ACTION ON CO2	
00D9	110A40	232	LXI	D,ESPCO2 ;GET CO2 SET POINT
00DC	CD1E08	C 233	CALL	SPCV ;CONVERT
		234		
00DF	012300	D 235	LXI	B,TCO2 ;CO2 VALUE
00E2	113300	D 236	LXI	D,TMP ;SET POINT
00E5	214300	C 237	LXI	H,DSCO2 ;DEADBAND
00E8	3E00	238	MVI	A,0 ;NEGATIVE CONTROL ACTION
00EA	CDD807	C 239	CALL	CTLA
		240		
00ED	DA0201	C 241	JC	CON3
00F0	79	242	MOV	A,C
00F1	B7	243	ORA	A
00F2	3A0530	244	LDA	PORTB
00F5	CAF030	C 245	JZ	CON1
00F8	25F2	246	ANI	NOT RYC02
00FA	C3FF00	C 247	JMP	CON2
00FD	F604	248	CON1: ORI	RYC02
00FF	320530	C 249	CON2: STA	PORTB
		250		
0102	213300	D 251	LXI	H,TMP ;CLEAR TEMP
0105	0604	252	MVI	B,4
0107	CD0000	E 253	CALL	CLRM
		254		
		255	;CHECK CO2 LIMIT	
010A	110A40	256	LXI	D,ESPCO2 ;GET CO2 SET POINT
010D	CD1E08	C 257	CALL	SPCV ;CONVERT
		258		
		259	; SET POINT < 3%	
0110	013300	D 260	LXI	B,TMP ;SET POINT
0113	114F00	C 261	LXI	D,FC3 ;- 3%
0116	213700	D 262	LXI	H,TMP+4
0119	CD0000	E 263	CALL	SUB32
011C	3A3400	D 264	LDA	TMP+7 ;GET SIGN BIT
011F	0F	265	RRC	; -VE
0120	DAE501	C 266	JC	CON4 ;YES, SET TO 3%
		267		
		268	> 3% SET POINT = SET POINT + 3%	

ISIS-II 8030/8055 MACRO ASSEMBLER, V4.1
TRANSFRESH 300 SERIES CONTROLLER

TFCVF

LOC	OBJ	LINE	SOURCE STATEMENT	
0123	01S300	D 269	LXI	B,TMP ;SET POINT =
0126	115300	C 270	LXI	D,PCS ;SET POINT +
0129	213800	D 271	LXI	H,TMP+5 ;5%
0130	CD0000	E 272	CALL	A0932
012F	113800	D 273	LXI	D,TMP+5 ;-> SETPOINT + 5%
0132	033801	C 274	JMP	CONS
		275		
		276		< 5% SET POINT = 5%
0135	115300	C 277	LXI	D,PCS ;-> 5%
		278		
0138	012300	D 279	CONS:	LXI B,TC02 ;-> CO2 COMPENSATED
013B	214800	C 280	LXI	H,PC1 ;-> DEADBAND
013E	3E00	281	MVI	A,O ;CONTROL +VE
0140	CDD807	C 282	CALL	CTLA
		283		
		284		DO CONTROL ACTION
0143	DA5801	C 285	JC	CON6 ;ACTION REQUIRED, NO ->
0145	79	286	MOV	A,C ;ON OR OFF
0147	B7	287	ORA	A
0148	3A0530	288	LDA	PORTB ;GET PORT
014B	CA5301	C 289	JZ	CONA ;OFF ->
014E	E6FD	290	ANI	NOT RYTB ;LIMIT OFF
0150	C35501	C 291	JMP	CONS
0153	F602	292	ORI	RYTB ;LIMIT ON
0155	320530	C 293	STA	PORTB
		294		
0158	3A0530	295	CONS:	LDA PORTB ;CHECK LIMIT
0159	E502	296	ANI	RYTB ;LIMIT SET?
015D	CA6801	C 297	JZ	CONC ;NO, CONT
0160	3A0530	298	LDA	PORTB ;GET PORT AGAIN
0163	F601	299	ORI	RY02 ;YES, SET RY02
0165	320530	300	STA	PORTB
0168	C3A801	C 301	JMP	DPTR ;NEXT FUNCTION
		302		
016B	213300	D 303	CONS:	LXI H,TMP ;CLEAR TEMP
016E	6008	304	MVI	B,0
0170	CD0000	E 305	CALL	CLRM
		306		
		307		;DO CONTROL ACTION ON OXYGEN
0173	110240	D 308	LXI	D,ESPO2 ;OXYGEN SET POINT
0176	CD1E08	C 309	CALL	SPCV ;CONVERT
		310		
		311		;POINT TO APPROPRIATE O2 CELL FOR CONTROL
0179	210500	D 312	LXI	H,A02A ;-> O2A
017C	CA6900	D 313	LDA	O2CF ;FLAG SET?
017F	B7	314	ORA	A
0180	CA8601	C 315	JZ	CON7 ;NO, CONT
		316		
0183	210F00	D 317	LXI	H,A02B ;YES POINT TO REF
		318		
0186	44	319	CONS:	MOV B,H ;H,L -> O2 VALUE TO USE
0187	4D	320	MOV	C,L ;TRANSFER TO B,C
0188	113300	D 321	LXI	D,TMP ;-> O2 SET-POINT
018B	214700	C 322	LXI	H,D802 ;-> O2 DEAD BAND
018E	3EFF	323	MVI	A,0FFH

SIE-II 5090/8025 MACRO ASSEMBLER, V4.1
TRANSFRESH 300 SERIES CONTROLLER

TFCVF

LOC	OBJ	LINE	SOURCE	STATEMENT
0190	CDB607	C 324	CALL	CTLA
		325		
0193	DAE501	C 326	JC	DPPTR
0195	79	327	MOV	A,C
0197	B7	328	ORA	A
0198	3A0530	329	LDA	PORTB
0199	CAA501	C 330	JZ	CON8
019E	E6FE	331	ANI	NOT RY02
01A0	CAE501	C 332	JMP	CON9
01A3	F601	333	CON8:	ORI RY02
01A5	320530	334	CON9:	STA PORTB
		335		
		336		; SET DISPLAY POINTERS TO D02 AND D02
01A8	112300	D 337	DPPTR:	LXI D, TCC02 ;-> D02 AVERAGE
01A8	210500	D 338	LXI	H, A02A ;-> D2A AVERAGE
01AE	3A6900	D 339	LDA	D2CF ;D2 CONTROL FLAG
01B1	B7	340	ORA	A ;SET?
01B2	CAE501	C 341	JZ	KPR ;YES, LEAVE D02
01B5	210F00	D 342	LXI	H, A02B ;NO, CHANGE TO D02
		343		
		344		; ANY KEYS PRESSED
01B6	3A6500	D 345	KPR:	LDA KEYF
01B8	B7	345	ORA	A
01BC	CA1F02	C 347	JZ	MAIN3 ;NO, CONT
		348		
		349		; NOW SEE WHICH KEY
01BF	3A0630	350	LDA	PORTC ;GET KEY
01C2	E60F	351	ANI	OFH ;STRIP UPPER
01C4	210500	D 352	LXI	H, A02A ;-> D2A
01C7	110F00	D 353	LXI	D, A02B ;-> D2B
01CA	FE0D	354	CPI	SWP1 ;D2A & D2B REQUIRED?
01CC	CA0902	C 355	JZ	KPR1 ;YES, JUMP OUT
01CF	211300	D 356	LXI	H, AT1 ;NO, -> TEMP 1
01D2	111700	D 357	LXI	D, AT2 ;-> TEMP 2
01D5	FE07	358	CPI	SWP3
01D7	CA0902	C 359	JZ	KPR1
01DA	212700	D 360	LXI	H, TT4 ;TEMPS 3 & 4
01DD	111800	D 361	LXI	D, AT3
01E0	FE08	362	CPI	SWP4
01E2	CA0502	C 363	JZ	KPR1
01E5	B7	364	ORA	A ;KEY RELEASED?
01E6	CA0902	C 365	JZ	KPR1 ;YES, EXIT
01E9	212300	D 366	LXI	H, TMP ;CLEAR TEMP
01EC	0508	367	MVI	B, 8
01EE	CDB600	C 368	CALL	CLRM
01F1	110E40	369	LXI	D, ESPC02 ;D2 SET POINT
01F4	CD1E08	C 370	CALL	SFCV ;CONVERT
01F7	3A3400	D 371	LDA	TMP+1 ;GET VALUE
01FA	322800	D 372	STA	TMP+5
01FD	110E40	373	LXI	D, ESPC02 ;D2 SET POINT
0200	CD1E08	C 374	CALL	SFCV
0203	213700	D 375	LXI	H, TMP+4
0205	112300	D 376	LXI	D, TMP
		377		
		378		; KEY PRESSED

APPENDIX 2

IS-II 8080/8085 MACRO ASSEMBLER, V4.1 TFCVF
ANSFRESH 300 SERIES CONTROLLER

LOC	OBJ	LINE	SOURCE STATEMENT	
06FF	35	1120	DCR	H
0700	C2B106	C 1121	JNZ	AVERG
		1122		
0703	3EFF	D 1123	MVI	A, OFFH ;SET FIRST TIME FLAG
0705	326A00	D 1124	STA	FIRSTF
		1125		
		1126	;NOW COMPENSATE THE AVERAGE VALUES .	
		1127	;EXPAND TEMPERATURE SCALE	
0708	011F00	D 1128	TFCZ:	LXI B, AT4 ;AVERAGE TEMP
0709	11E307	C 1129	LXI	D, THR ; X 3 =
070E	212700	D 1130	LXI	H, TT4 ;TRUE TEMPERATURE
0711	CD00000	E 1131	CALL	MUL32
		1132		
		1133	;COMPENSATE CO2 FOR TEMPERATURE	
0714	012700	D 1134	LXI	B, TT4 ;DELTA T
0717	11CB07	C 1135	LXI	D, K4
071A	213D00	D 1136	LXI	H, TMP1
071D	CD00000	E 1137	CALL	SUB32
		1138		
0720	013D00	D 1139	LXI	B, TMP1 ;DELTA T X 200
0723	11CF07	C 1140	LXI	D, K8
0726	213300	D 1141	LXI	H, TMP
0729	CD00000	E 1142	CALL	MUL32
		1143		
072C	010700	D 1144	LXI	B, AC02 ;CO2A X 1000
072F	11D307	C 1145	LXI	D, K6
0732	212300	D 1146	LXI	H, TCO2
0735	CD00000	E 1147	CALL	MUL32
		1148		
0738	012300	D 1149	LXI	B, TCO2 ;(CO2A X 1000)
073B	113300	D 1150	LXI	D, TMP ; - ((TT4 - 64000) X 200)
073E	212300	D 1151	LXI	H, TCO2
0741	CD00000	E 1152	CALL	SUB32
		1153		
0744	013D00	D 1154	LXI	B, TMP1 ;(TT4 - 64000)/567
0747	11B707	C 1155	LXI	D, K7
074A	213D00	D 1156	LXI	H, TMP1
074D	CD00000	E 1157	CALL	DIV32
		1158		
0750	01D307	C 1159	LXI	B, K6 ;1000 - (DELTA T - 64000)
0753	113D00	D 1160	LXI	D, TMP1 ;-----
0756	213D00	D 1161	LXI	H, TMP1 ;----- 567
0759	CD00000	E 1162	CALL	SUB32
		1163		
076C	012300	D 1164	LXI	B, TCO2 ;A - 0.2(DELTA T)
075F	113D00	D 1165	LXI	D, TMP1 ;-----
0762	212300	D 1166	LXI	H, TCO2 ; 1 - 0.0043(DELTA T)
0765	CD00000	E 1167	CALL	DIV32
		1168		
		1169	;COMPENSATE CO2 FOR O2 CONCENTRATION	
0769	010B00	D 1170	LXI	B, AC02A ;-> O2A
076B	3A6900	D 1171	LDA	O2CF ;GET APPROPRIATE
076E	B7	1172	ORA	A ;O2 READING
076F	CA7307	C 1173	JZ	AVG1
0772	010F00	D 1174	LXI	B, AC02B

SIS-II 8080/8085 MACRO ASSEMBLER, V4.1
TRANSFRESH 300 SERIES CONTROLLER

TFCVF

LOC	OBJ	LINE	SOURCE STATEMENT		
		1175			
		1176	;COMPENSATE CO2 DATA		
0775	115B07	C 1177	AVG1:	LXI	D,TEN ;C2 / 10
0778	213D00	D 1178		LXI	H,TMP1
0778	CD0000	E 1179		CALL	DIV32
		1180			
0775	012300	D 1181		LXI	B,TC02 ;C02 + 02/10
0781	113D00	D 1182		LXI	D,TMP1
0784	213D00	D 1183		LXI	H,TMP1
0787	CD0000	E 1184		CALL	ADD32
		1185			
0784	013D00	D 1186		LXI	B,TMP1 ;(C02 + 02/10) - 2(UNITS)
078D	11AF07	C 1187		LXI	D,TWOU
0790	213D00	D 1188		LXI	H,TMP1
0793	CD0000	E 1189		CALL	SUB32
		1190			
0796	013D00	D 1191		LXI	B,TMP1 ;(C02 - 2 + 02/10)
0799	11B707	C 1192		LXI	D,NINE ;-----
079C	213D00	D 1193		LXI	H,TMP1 ; 9
079F	CD0000	E 1194		CALL	DIV32
		1195			
07A2	013D00	D 1196		LXI	B,TMP1 ;(C02 - 2 + 02/10) X 10/9
07A5	11B607	C 1197		LXI	D,TEN
07A8	212300	D 1198		LXI	H,TC02
07AB	CD0000	E 1199		CALL	MUL32
		1200			
07AE	C7		1201	RET	
		1202			
07AF	7C14		1203	TWOU:	DW 5244,0 ;TWO (UNITS)
07B1	0000		1204	THR:	DW 3,0 ;THREE
07B3	0300		1205	NINE:	DW 9,0 ;NINE
07B5	0000		1206	TEN:	DW 10,0 ;TEN
07B7	0900		1207	K1:	DW 6125,0 ;CONSTANT 1
07B9	0000		1208	K2:	DW 22565,0 ;CONSTANT 2
07B3	0A00		1209	K3:	DW 16,0 ;CONSTANT 3
07BD	0000		1210	K4:	DW 64000,0 ;CONSTANT 4
07BF	ED17		1211	K5:	DW 20,0 ;CONSTANT 5
07C1	0000		1212	K6:	DW 1000,0 ;CONSTANT 6
07C3	37E8		1213	K7:	DW 587,0 ;CONSTANT 7
07C5	0000				
07CF	1400		1214		
07D1	0000		1215	*****	
07D3	E803		1216		
07D5	0000		1217	CLTA:-	CONTROL ACTION SUBROUTINE
07D7	3902		1218		
07D9	0000				

115-II 8080/8085 MACRO ASSEMBLER, V4.1 TFCVF
SANGFRESH 300 SERIES CONTROLLER

LOC	CBJ	LINE	SOURCE STATEMENT		
		1219	;ENTER:	BC -> INPUT VARIABLE	
		1220	;DE ->	SET-POINT VALUE	
		1221	;HL ->	DEADBAND VALUE	
		1222	;A =	CONTROL ACTION, 00=+VE, FF=-VE	
		1223			
		1224	;EXIT:	CARRY, NO ACTION ERROR<DEADBAND	
		1225	C =	ACTION 00(OFF), FF(ON).	
		1226			
		1227	-----		
		1228			
07DB	F5	1229	CTLA:	PUSH PSW	;SAVE ACTION
07DC	E5	1230		PUSH H	;SAVE DEADBAND POINTER
		1231			
		1232		;ENTERS WITH BC, DE SET	
07DD	213300	D	1233	LXI H,TMP	;ERROR
07E0	CD0000	E	1234	CALL SUB32	
		1235			
07E3	AF	1236	XRA	A	;RESET
07E4	326800	D	1237	STA NEGF	;NEGATIVE FLAG
		1238			
07E7	213400	D	1239	LXI H,TMP+3	
07EA	7E	1240	MOV A,M		;ERROR -VE?
07EB	07	1241	RLC		
07EC	D2FA07	C	1242	JNC S+14	;NO, ->
07EF	3EFF		1243	MVI A, OFFH	;YES,
07F1	326800	D	1244	STA NEGF	;NEGATIVE FLAG
07F4	213300	D	1245	LXI H,TMP	
07F7	CD0000	E	1246	CALL COMPHL	;MAKE POSITIVE
		1247			
07FA	013300	D	1248	LXI B,TMP	;ERROR
07FD	D1	1249	POP D		;DEADBAND
07FE	213300	D	1250	LXI H,TMP	;CONTROL REQUIRED
0801	CD0000	E	1251	CALL SUB32	
		1252			
0804	3A3600	D	1253	LDA TMP+3	;ERROR < DEADBAND?
0807	07	1254	RLC		
0808	C1	1255	POP B		;GET ACTION
0809	D8	1256	RC		;ERROR < DEADBAND, RETURN
080A	78	1257	MOV A,B		
080B	B7	1258	ORA A		;ACTION + OR -
080C	CA1108	C	1259	JZ S+5	;ACTION +,RETURN WITH 00H
080F	3EFF		1260	MVI A, OFFH	;ACTION -,RETURN WITH OFFH
0811	4F		1261	MOV C,A	;PUT ACTION IN C
		1262			
0812	3A3600	D	1263	LDA NEGF	;WAS ERROR -VE?
0815	87	1264	ORA A		
0816	CA1008	C	1265	JZ S+6	;NO, ->
0817	77	1266	MOV A,C		;YES, COMPLEMENT
081A	2F	1267	CHM A		
081B	4F	1268	MOV C,A		
		1269			
081C	AF	1270	XRA A		;CLEAR ACTION FLAG
081D	C9	1271	RET		
		1272			
		1273	-----		

FIG.1

FIG. 3

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number

EP 89 30 7537

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (Int. Cl. 5)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
X	WO-A-8 705 782 (VETOSTAR LTD.) * abstract; claims 1,12 *	1	A 23 L 3/34
A	DE-A-3 140 337 (TYCZKA GMBH & CO.) * abstract; claims 1-6 *	1	
A	FR-A-2 520 592 (LUISSIER S.A.) * claims 1-7 *	1	
A	US-A-3 102 779 (A. L. BRODY et al.) * claims 1-8 *	1	
A	PATENT ABSTRACTS OF JAPAN vol. 4, no. 151 (C-28)(633), 23 October 1980; & JP - A - 55 99182 (SEIGOU TETSUKOU K.K.) 28.07.1980	1	
			TECHNICAL FIELDS SEARCHED (Int. Cl.5)
			A 23 L 3/00
<p>The present search report has been drawn up for all claims</p>			
Place of search	Date of completion of the search	Examiner	
BERLIN	26-10-1989	SCHULTZE D	
CATEGORY OF CITED DOCUMENTS		T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document	
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			

THIS PAGE BLANK (USPTO)