The Symplectic Group

A natural starting place is the study of the symplectic group. The symplectic group is one of the classical matrix groups that arises in the study of bilinear forms.

Let V be a vector space over $F = \mathbb{R}$ or \mathbb{C} .

Definition 1.1. We define a bilinear form on V as a function $B: V \times V \to F$ such that $B_x: y \mapsto B(x,y)$ and $B_y: x \mapsto B(x,y)$ are linear. If $(x_i)_{i=1}^n$ is a choice of basis for V, then B has a matrix representation

$$(B(x_i, x_j))_{i,j \in [n]}$$
 where $B(x, y) = B(\sum_{i=1}^n a_i x_i, \sum_{i=1}^n b_i x_i) = x^{\mathsf{T}} B y = \sum_{i=1}^n \sum_{j=1}^n a_i b_j B(x_i, x_j).$

Definition 1.2. We say that bilinear form B is nondegenerate if the matrix form of B is of full rank.

It makes sense to assume our bilinear form is nondegerate. If it weren't, we could produce a linear subspace V' of V such that B restricted to V' was of full rank.

Definition 1.3. We say that B is symmetric if $\forall x, y \in V, B(x, y) = B(y, x)$ and that B is alternating if $\forall x \in V, B(x, x) = 0$.

When the characteristic of the underlying field is not 2, other words for alternating are anti-symmetric and skew-symmetric. These definitions are particularly important for Proposition 1.4.

Proposition 1.4. Let B be a bilinear form on V and say $x \perp_B y$ iff B(x,y) = 0. Then $(x \perp_B y \implies y \perp_B x)$ iff B is symmetric or alternating.

Proof. \Leftarrow Suppose B is symmetric. If B(x,y) = 0, then B(y,x) = B(x,y) = 0. Suppose B is alternating. From

$$B(x+y,x+y) = B(x,x) + B(x,y) + B(y,x) + B(y,y) = B(x,y) + B(y,x) = 0,$$

we have that B(x,y) = -B(y,x). If B(x,y) = 0, then B(y,x) = -B(x,y) = 0. \Rightarrow Since B is bilinear

$$B(x, B(x, y)z - B(x, z)y) = B(x, y)B(x, z) - B(x, z)B(x, y) = 0.$$
 (1.1)

Now suppose that $x \perp_B y \implies y \perp_B x$. Then by 1.1

$$B(B(x,y)z - B(x,z)y,x) = B(x,y)B(z,x) - B(x,z)B(y,x) = 0.$$
 (1.2)

If we set z = x in the above equation, we get B(x,x)(B(x,y) - B(y,x) = 0. So

$$\forall x \in V, \text{ either } B(x, x) = 0 \text{ or } \forall y \in VB(x, y) = B(y, x). \tag{1.3}$$

Now suppose that B is not symmetric. Then there exists $x, y \in V$ such that $B(x, y) \neq B(y, x)$. Then B(x, x) = B(y, y) = 0 by 1.3. We wish to prove that B is alternating, so suppose that $\exists z \in V$ such that $B(z, z) \neq 0$. By 1.3, B(z, x) = B(x, z) and B(z, y) = B(y, z). By 1.2, we have that

$$B(x,y)B(z,x) - B(x,z)B(y,x) = B(x,z)(B(x,y) - B(y,x)) = 0$$

and

$$B(y,x)B(z,y) - B(y,z)B(x,y) = B(z,y)(B(y,x) - B(x,y)) = 0.$$

Since $B(x,y) \neq B(y,x)$, B(x,z) = B(x,z) = B(z,y) = B(y,z) = 0. But then

$$B(x, z + y) = B(x, y) \neq B(y, x) = B(z + y, x).$$

By 1.3,
$$B(z+y,z+y) = B(z,z) + B(z,y) + B(y,z) + B(y,y) = B(z,z) = 0$$
, a contradiction. Therefore B is alternating, completing the proof.

 \perp_B should be an obvious generalization of the notion of perpendicularity.

Proposition 1.5. Suppose B is a nondegenerate alternating bilinear form on a vector space V over F. Then V is of even dimension.

The most direct way to show this is to construct a basis so that the matrix representation of your alternating bilinear form is of the form of 1.4.

Definition 1.6. Let B be a nondegenerate, alternating bilinear form over V. Then we say that (V, B) is a symplectic vector space.

Here we are continuing with our generalization of inner product spaces.

Proposition 1.7. Let (V, B) be a symplectic vector space of dimension 2n. Then V has a basis in which B is of the form

$$J_n = \begin{bmatrix} 0 & -I_n \\ I_n & 0 \end{bmatrix}. \tag{1.4}$$

Such a basis is called a symplectic basis of (V, B).

Proof. We choose an ordered basis $(w_i)_{i=1}^{2n}$ by a greedy algorithm. Set $W_i = \text{span}\{(w_j)_{j=1}^i\} \cup \text{span}\{(w_j)_{j=n+1}^{n+i}\}$, defined at the appropriate time as we specify our basis. For any subspace $W \subset V$, define the W^{\perp} by

$$W^{\perp} = \{ v \in V \mid B(v, w) = 0 \text{ for } w \in W \}.$$

Suppose $w \in W_i$. Since B is nondegenerate, so is B restricted to W_i . Let $(w'_k)_{k=1}^i$ be an ordered basis for W_i , regardless of our prior choices of w_i . Let $B(w'_i, w'_j) = b_{i,j}$ be the matrix elements of the restriction of B to W_i in basis $(w'_k)_{k=1}^i$. Write $w = \sum_{j=1}^i c_j w'_j$.

We wish to prove that $w \notin W_i^{\perp}$. If $B(w, w_k') = 0$ for all $k \in [i]$, then B(w, w') = 0 for all $w' \in W$. Hence $w \in W^{\perp}$ iff $B(w, w_k') = 0$ for all $k \in [i]$. Finally

$$w \in W_i^{\perp} \text{ iff } B(w, w_k') = \sum_{j=1}^i c_j B(w_j', w_k') = \sum_{j=1}^i c_j b_{j,k} = 0.$$

But since B restricted to W_i is nondegenerate, $\sum_{j=1}^i c_j b_{j,k} = 0 \implies c_j = 0 \forall j \in [i]$. Hence w = 0 and we can conclude that $W_i \cap W_i^{\perp} = 0$.

Since W^{\perp} is a linear subspace of V and B is nondegenerate, B restricted to W^{\perp} is nondegenerate. Thus $\exists w_{i+1}, w'_{n+i+1} \in W^{\perp}_i$ such that $B(w_{i+1}, w'_{n+i+1}) \neq 0$. Suppose $B(w_{i+1}, w'_{n+i+1}) = b$. Then set $w_{n+i+1} = -\frac{w_{n+i+1}}{b}$ so that $B(w_{i+1}, w_{n+i+1}) = -1 = -B(w_{n+i+1}, w_{i+1})$. Let

$$y = x - \sum_{k=1}^{i} B(x, w_{n+i+1}) w_i + \sum_{k=1}^{i} B(x, w_i) w_{n+i+1}.$$

Then $y \in W_i^{\perp}$

If $W_i \neq V$, then $\exists w_{i+1}, w'_{n+i+1} \in W_i^{\perp}$ such that $B(w_{i+1}, w'_{n+i+1}) \neq 0$. Suppose $B(w_{i+1}, w'_{n+i+1}) = b$. Then set $w_{n+i+1} = -\frac{w_{n+i+1}}{b}$ so that $B(w_{i+1}, w_{n+i+1}) = -1 = -B(w_{n+i+1}, w_{i+1})$. The algorithm terminates when $W_{2n} = V$ and $(w_i)_{i=1}^{2n}$ is an order basis in which B has matrix form J.

This particular J is chosen because it is "nice." We can easily construct such a basis for proposition 1.7 using a greedy algorithm.

Definition 1.8. Let (V_1, B_1) and (V_2, B_2) be two symplectic vector spaces. A linear transformation $L: V_1 \to V_2$ is a symplectomorphism of (V_1, B_1) , (V_2, B_2) if

$$B_2(L(x), L(y)) = B_1(x, y), \forall x, y \in V_1.$$

Most classical matrix are defined in this way as isogenies.

Definition 1.9. The group of symplectic automorphisms of (V, B), (V, B) is called the symplectic group Sp((V, B)).

We have a collection of morphisms and we want to find linear representations of those morphisms. That will give us $\operatorname{Sp}_n(F)$.

Proposition 1.10. Let (V, B) be a symplectic vector space of dimension 2n with a fixed symplectic basis. Then M is a matrix representation of some symplectic automorphism of (V, B) iff

$$M^{\mathsf{T}}J_nM=J_n.$$

Proof. Fix a symplectic basis of V. Let [u] represent the coordinate vector for $u \in V$ in the symplectic basis. Then

$$B(v,w) = [w]^T J[v].$$

Let M be a matrix of a linear transformation $\phi: V \to V$ in the symplectic basis. Then ϕ is symplectic if and only if

$$B(\phi(v), \phi(w)) = \phi(v, w)$$
, for all $v, w \in V$.

In the symplectic basis this condition says

$$[\phi(w)]^T J [\phi(v)] = [w]^T J [v]$$

or

$$[w]^T M^T J M[v] = [w]^T J[v]$$
, for all $v, w \in V$,

Since v, w are arbitrary this is equivalent to the statement.

This characterization follows directly from the fact that any symplectomorphism can be represented by J under an appropriate choice of basis.

Definition 1.11. The symplectic matrix group is defined by

$$Sp_{2n}(S) = \{ M \in M_{2n}(S) \mid M^{\mathsf{T}}JM = J \}$$

where $S = \mathbb{Z}, \mathbb{Q}, \mathbb{R}$, or \mathbb{C} .

The following properties come in handy when working with the symplectic group.

Proposition 1.12. For $A, B, C, D \in M_n(S)$, the following are equivalent:

1.
$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in Sp_{2n}(S)$$

2.
$$A^{\mathsf{T}}C = C^{\mathsf{T}}A$$
, $B^{\mathsf{T}}D = D^{\mathsf{T}}B$, $A^{\mathsf{T}}D - C^{\mathsf{T}}B = I_n$.

Proof. Follows from the block representation of M on the condition $M^TJM = J$. \square

Proposition 1.13. For all $M \in Sp_{2n}(S)$, det(M) = 1.

Complex Structures of Real Symplectic Spaces

As vector spaces over \mathbb{R} , $\mathbb{R}^{2n} \cong \mathbb{C}$ by the map

$$v = \begin{bmatrix} x \\ y \end{bmatrix} \leftrightarrow z = x + iy.$$

The operation $z \mapsto iz$ corresponds to $v \mapsto -J_n v$, giving \mathbb{R}^{2n} a complex structure. It is now natural to ask the ways in which we can equip \mathbb{R}^{2n} a complex structure.

Definition 2.1. Let V be a vector space over \mathbb{R} . We say that $J \in \operatorname{Aut} V$ is a complex structure on V if

$$J^2 = -\operatorname{id}_V.$$

If V is a symplectic vector space, we may ask that the complex structure J be compatible with the symplectic structure on V.

Definition 2.2. Let B be a symplectic form on V. We say that complex structure J is compatible with B if $\forall v, w \in V$, B(Jx, Jy) = B(x, y).

Now suppose that J is a complex structure on V compatible with B. Define

$$B'(x,y) \coloneqq B(v,Jy) \text{ for } x,y \in V.$$

Since J and B are compatible,

$$g(Jx,y) = B(x,y),$$

and since $J^2 = -1$ and B is alternating,

$$g(x,y) = g(y,x)$$

and

$$g(Jx,Jy)=g(x,y).$$

Therefore g is symmetric and non-degenerate. If g is positive semi-definite, then it is also Hermitian. In that case, we say that J is a positive compatible complex structure and the triple (V, B, J) a Kähler vector space. As before, a natural question to ask is what are the positive compatible complex structures on a real vector space.

Lagrangian Subspaces and Polarizations

Definition 3.1. Let (V, B) be a symplectic vector space and W a linear subspace of V. Then the B-orthogonal complement of W is

$$W^{\perp} = \{ v \in V \mid B(v, w) = 0 \text{ for all } w \in W \}.$$

W is Lagrangian iff $W^{\perp} = W$.

Definition 3.2. Suppose W_1 and W_2 are Lagrangian subspaces of V. Then $W_1 \diamond_V W_2$ iff $V = W_1 \oplus W_2$. We denote $T(W_1) = \{W_2 \subset V \mid W_1 \diamond_V W_2\}$.

Proposition 3.3. For any Lagrangian subspace W_1 of V, there exists Lagrangian subspace W_2 of V such that $W_1 \diamond_W W_2$.

Proposition 3.4. Let L(V) ddenote the Lagrangian subspaces $L \subset V$. Then $L(\mathbb{R}^{2n}) \cong U(n)/O(n)$.

Proof. test

Proposition 3.5. test

test

Proposition 3.6. Suppose $W_1 \diamond W_2$ in V. Then there exists a symplectic basis $\{x_i\}_{i=1}^{2n}$ of V such that $\{x_i\}_{i=1}^n$ is a basis of W_1 and $\{x_i\}_{i=n+1}^{2n}$ is a basis of W_2 . Such a basis is called adapted to the decomposition.

Proposition 3.7. The set of symplectomorphisms that preserve W act transitively on T(W).

Proposition 3.8. Suppose W_1 , W_2 , and W_3 and Lagrangian subspaces of V and that $W_1 \diamond_V W_2$ and $W_1 \diamond_V W_3$. Then there is a symplectomorphism $\phi: V \to V$ such that $\phi(W_1) = W_1$ and $\phi(W_2) = W_3$.

For a real symplectic vector space $(V_{\mathbb{R}}, B_{\mathbb{R}})$, denote its complexification by $(V_{\mathbb{C}}, B_{\mathbb{C}})$ where

$$V_{\mathbb{C}} = \mathbb{C} \otimes_{\mathbb{R}} V_{\mathbb{R}}.$$

and $B_{\mathbb{R}}$ is extended to $V_{\mathbb{C}}$ by linearity over \mathbb{C} . We define conjugation in $V_{\mathbb{C}}$ by

$$\overline{cv} = \overline{c}v \text{ for } v \in \mathbb{R}$$

real-linearly extended to $V_{\mathbb{C}}$.

Definition 3.9. A Lagrangian subspace is real if it is a complexification of a Lagrangian subspace in $V_{\mathbb{R}}$. We say that a Lagrangian subspace W is positive iff

$$-iB(x,\overline{x}) > 0, \forall x \in W.$$

Theorem 3.10. Let W_1 be a real Lagrangian subspace and W_2 be a positive Lagrangian subspace of of $V_{\mathbb{C}}$. Then $W_1 \diamond_V W_2$.

Let
$$\overline{W} = {\overline{x} \in V \mid x \in W}.$$

Definition 3.11. If $W \diamond_V \overline{W}$ and W is positive, then $W \oplus \overline{W}$ is a positive polarization of $V_{\mathbb{C}}$.

Theorem 3.12. There is a natural bijection between the collection of positive complex structures on V_R and the collection of positive polarizations of $V_{\mathbb{C}}$.

Theorem 3.13. Let $V_{\mathbb{R}}$ be a symplectic vector space of dimension 2n. The set of positive polarizations $V_{\mathbb{C}} = W \oplus \overline{W}$ is parameterized by the Siegel upper half plane

 $\mathbb{H}_n = \{ M \in M_n(\mathbb{C}) \mid M \text{ symmetric and } \text{Im } M \text{ positive definite} \} \cong Sp_n(\mathbb{R})/U(g).$

Moduli Space of Polarized Tori

Definition 4.1. Let $b = \{b_1, b_2, ..., b_{2q}\}$ be \mathbb{R} -linearly independent vectors in \mathbb{C}^n . Then

$$L = \mathbb{Z}b_1 + \mathbb{Z}b_2 + \ldots + \mathbb{Z}b_{2n}$$

is a lattice subgroup of \mathbb{C}^n .

Definition 4.2. $X = \mathbb{C}^n/L$ is an n-dimensional complex torus.

Theorem 4.3. Any connected compact complex Lie group X of dimension n is a complex torus.

Definition 4.4. Given a lattice L of \mathbb{C}^n with basis $b = \{b_1, b_2, ..., b_{2n}\}$, the matrix

$$\Pi_b = \begin{bmatrix} b_1 & b_2 & \dots & b_{2n} \end{bmatrix}$$

is called a period matrix of lattice L with respect to basis b.

Proposition 4.5. Two bases $a = \{a_1, a_2, ..., a_{2n}\}$ and $b = \{b_1, b_2, ..., b_{2n}\}$ generate the same lattice iff

$$\Pi_a = M\Pi_b$$

with $M \in M_{n,n}(\mathbb{Z})$ and $det(M) = \pm 1$.

Definition 4.6. An algebraic set is the locus of zeros of a finite collection of polynomials.

Definition 4.7. A complex manifold X is called projective algebraic if there is a holomorphic embedding $\phi: X \to \mathbb{P}^N$ such that $\phi(X)$ is a regular algebraic set.

Definition 4.8. A torus X is an abelian variety if it is projective algebraic.

Theorem 4.9. All complex tori are compact Kähler manifolds.

Theorem 4.10. A compact Kähler manifold endowed with a positive line bundle admits a projective embedding.

Definition 4.11. A positive polarization on $X = \mathbb{C}^n/L$ is a positive definite hermitian form H on \mathbb{C}^n that Im H is integer valued and alternating on L.

Theorem 4.12. If torus X is equipped with a positive definite hermitian form H, then the corresponding line bundle is positive.

Proposition 4.13. Let L_1 and L_2 be lattices of \mathbb{C}^n and let ϕ be a linear isomorphism of \mathbb{C}^n that takes L_1 to L_2 . Then ϕ induces a homeomorphism ϕ' of \mathbb{C}^n/L_1 and \mathbb{C}^n/L_2 .

$$\begin{array}{ccc}
\mathbb{C}^n & \stackrel{\phi}{\longrightarrow} \mathbb{C}^n \\
\downarrow & & \downarrow \\
\mathbb{C}^n/L_1 & \stackrel{\phi'}{\longrightarrow} \mathbb{C}^n/L_2
\end{array}$$

Definition 4.14. We say that two polarized abelian varieties (X_1, H_1) and (X_2, H_2) are isomorphic if there exists and isomorphism $\phi': X_1 \to X_2$ such that

$$H_1(x,y) = H_2(\phi'(x), \phi'(y)).$$

Proposition 4.15. Fix a complex vector space V. There is a bijection f between hermitian forms H on V and real-valued alternating forms E on V that satisfy E(ix,iy) = E(x,y) given by

$$E(x,y) = \operatorname{Im} H(x,y)$$
 and $H(x,y) = E(ix,y) + iE(x,y)$

Proposition 4.16. A real-valued alternating form E provides a polarization on torus X via bijection f iff the following Riemann Relations are satisfied:

- 1. $\Pi_e[E]_e^{-1}\Pi_e^{\mathsf{T}}$
- 2. $i\Pi_e[E]_e^{-1}\overline{\Pi_e^{\mathsf{T}}}$

Proposition 4.17. Let $X = \mathbb{C}^n/L$ be a torus with polarization H. There exists a basis e of L such that $E = \operatorname{Im} H$ has the matrix representation

$$[E]_e = \begin{bmatrix} 0 & D \\ -D & 0 \end{bmatrix}$$

where $D = diag(d_1, ..., d_n)$ with integers $d_i \ge 0$ and $d_i \mid d_{i+1}$.

Definition 4.18. Such a basis e is called a symplectic basis of L. $D = \text{diag}(d_1, ..., d_n)$ is called the type of the polarization of the abelian variety. A polarization is called principal if it is of type (1, 1, ..., 1).

Lemma 4.19. Given n relatively prime integers $(m_i)_{i=1}^n$, there exists

$$M = \begin{bmatrix} m_1 & m_2 & \dots & m_n \\ * & * & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ * & * & \dots & * \end{bmatrix}$$

such that $M \in GL_n(\mathbb{Z})$.

Proposition 4.20. Let L be a polarized lattice in \mathbb{C}^n with polarization of type $D = diag(d_i)_{i=1}^n$ and symplectic basis $e = \{e_i\}_{i=1}^{2n}$. Let $e' = \{\frac{1}{d_i}e_i\}_{i=1}^n$ be a basis for \mathbb{C}^n . Then

$$\Pi_{e'} = \begin{bmatrix} D & Z \end{bmatrix},$$

where $Z \in \mathbb{H}_n$. Let this map from abelian varieties of specified type to \mathbb{H}_n be called g_D .

Proposition 4.21. To type D and $Z \in \mathbb{H}_n$, we can construct a polarized abelian variety A such that $g_D(A) = Z$.

Proposition 4.22. Given a type D, the Siegel upper half space \mathbb{H}_n is a moduli space for polarized abelian varieties of type D with symplectic basis.

Definition 4.23. Let

$$G_D \coloneqq \{ M \in \operatorname{Sp}(\mathbb{Q}) \mid M^{\mathsf{T}} L_D \subset L_D \}$$

and for $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in G_D$ and $Z \in \mathbb{H}_n$, define the fractional linear transformation action by

$$M(Z) = (AZ + B)(CZ + D)^{-1}.$$

Theorem 4.24. For Z_1 , $Z_2 \in \mathbb{H}$ with polarization type D fixed, the following are equivalent:

- polarized abelian varieties $g_D(Z_1)$ and $g_D(Z_2)$ are isomorphic
- $Z_2 = M(Z)$ for some $M \in G_D$

Theorem 4.25. When n = 2, $G_{\text{diag}(1,N)}$ is the paramodular group

$$K(N) = Sp_4(\mathbb{Q}) \cap \begin{bmatrix} \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & N\mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & N\mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & N\mathbb{Z} \\ \frac{1}{N}\mathbb{Z} & \frac{1}{N}\mathbb{Z} & \frac{1}{N}\mathbb{Z} & \mathbb{Z} \end{bmatrix}$$

References

- Berndt, R. (2001). An Introduction to Symplectic Geometry. Providence, RI: American Mathematical Society.
- Bruinier, J. H., van der Gree, G., Harder, G., & Zagier, D. (2008). The 1-2-3 of Modular Forms. Berlin, GER: Springer-Verlag Berlin Heidelberg.
- Diamond, F., & Shurman, J. (2005). A First Course in Modular Forms. Providence, RI: Graduate Texts in Mathematics. Springer.
- Fritzsche, K., & Grauert, H. (2002). From Holomorphic Functions to Complex Manifolds. Providence, RI: Graduate Texts in Mathematics. Springer.
- Jacobson, N. (1985). Basic Algebra I. New York City, NY: Dover Publications.
- Lange, H., & Berkenhake, C. (1992). Complex Abelian Varieties. New York City, NY: Springer-Verlag.
- Poor, C., Shurman, J., & Yuen, D. S. (????). Computing Siegel Modular Forms.