# **Empirical Methods for Policy Evaluation**

Matteo Bobba

Toulouse School of Economics (TSE)

TSE PhD Program (MRes) Fall 2025

## Motivation/Background

- Debate on economic theory ⇔ econometric modeling and estimation
  - ⇒ Design-based vs. model-based approaches to policy evaluation
- Natural synergy for a better characterization of policy impacts
  - Middle ground approach dates back to Marschak (1953)
  - Many advocates since then....
- ⇒ We will focus on both methods and applications (Labor, Devo, Public,..)

## Overview of the Course - Design-based Methods

- 1 Randomized Control Trials
- 2 Regression Discontinuity Designs
- 3 Difference-in-Differences and Event Studies
- 4 Shift-Share Instrumental Variables

#### Overview of the Course – Model-based Methods

- RCT1 Risk sharing models
- RCT2 Dynamic factor models
  - RD1 Discrete choice models
  - RD2 GE model of education and the labor market
    - DD Job search models
    - IV1 Firm dynamics
    - IV2 Spatial equilibrium models

## Overview of the Course - Applications

- ⇒ Seasonal migration in Indonesia
- ⇒ Human capital accumulation in Colombia
- ⇒ Teacher sorting and student outcomes in Peru
- ⇒ The equilibrium effect of a schooling expansion in India
- ⇒ Informal labor markets and schooling investments in Mexico
- ⇒ Rural-urban migration in Brazil
- ⇒ Urban public works in India

#### Course Evaluation

- Problem sets [55% of the grade, you can work in pairs]
  - ⇒ Three exercises based on class material (I will provide the datasets)
- 2 Referee report [30% of the grade, individual assignment]
  - ⇒ Pick one paper from a list that I will circulate soon
- 3 Class participation [15% of the grade]
  - ⇒ Take a look at required readings (\* in the syllabus) before class

## Causal inference meets structural models (and viceversa)

- Ex-ante policy evaluation
  - ⇒ Chapter 2 in Wolpin's book (MIT press, 2013)
- Principles for combining descriptive and model-based analysis
  - ⇒ Mahoney (JEP, 2022)

1/29

# Ex-ante policy evaluation

## The Causal Inference Approach

 $\bullet$  Binary random variable  $D_i = \{0,1\}$  and potential outcomes  $(Y_i^1,Y_i^0)$ 

$$\begin{split} \mathsf{ATE} &= \mathbb{E}(Y_i^1 - Y_i^0) \\ &= \mathbb{E}(Y_i^1 \mid D_i = 1) - \mathbb{E}(Y_i^0 \mid D_i = 0) \\ &= \underbrace{\mathbb{E}(Y_i^1 - Y_i^0 \mid D_i = 1)}_{\mathsf{ATT}} + \underbrace{\mathbb{E}(Y_i^0 \mid D_i = 1) - \mathbb{E}(Y_i^0 \mid D_i = 0)}_{\mathsf{Selection bias}} \end{split}$$

- ⇒ Research designs attempt to eliminate bias by means of assumptions:
  - **RCT** Random assignment
    - RD Continuity of potential outcomes around cutoff
    - DD Same trend in potential outcomes over time
- IV(LATE) First-stage + exclusion restriction (+ Monotonicity)



# The (Old School) Structural Approach

- Lay out an economic model of the phenomenon being studied
- Addition of a stochastic structure if the model itself does not possess one
- Identification of the parameters given the data and model
- parametric: Two sets of parameters yielding the same likelihood are necessarily equal non-param: Observables pick only one set of parameters irrespectively of unobservables
  - Estimation technique given model, identification, and data
  - Empirical comparative statics, welfare metrics, and/or policy experiments

3/29

#### Ex-ante Policy Evaluation

- Economic models allow predicting the effects of public policies
  - ⇒ Before they are implemented and/or variants of existing policies
- The structural approach is particularly suitable for informing policy
  - ⇒ Improve program design to maximize impacts given costs
  - $\Rightarrow$  Inform targeting by identifying sub-populations for which impacts are highest
  - ⇒ Analyze program impacts over a longer time horizon than variation in data
  - ⇒ Study the effect of programs in the presence of spillover or GE effects

#### An Example

- Many governments have adopted conditional cash transfer (CCT) programs
  - Provide cash transfers to HHs conditional on school attendance of children
  - ⇒ Alleviate poverty and stimulate human capital investments
- Can we evaluate those programs before they are implemented?
  - ⇒ A model of schooling decisions where transfer decreases schooling costs

#### **Economic Model**

• Consider the following (static) optimization problem for the household

$$\max_{s \in \{0,1\}} U(c,s) \text{ s.t. } \begin{cases} c = y + w(1-s) \\ c = y + w(1-s) + \tau s \end{cases}$$

Optimal schooling choices without and with the subsidy

$$s^{\star}=g(y,w)$$
 
$$s^{\star\star}=g(\tilde{y},\tilde{w}), \text{ where } \tilde{y}=y+\tau \text{ and } \tilde{w}=w-\tau$$

⇒ The subsidy acts as an income-compensated reduction in child wages

#### Bringing the Model to the Data

• Add observable and unobservable preference shifters

$$U(c,s;X,\epsilon)$$

Unobserved heterogeneity is not systematically related to wages and income

$$f(\epsilon|y, w, X) = f(\epsilon|X)$$
 (CIA)

⇒ Given CIA, variations in wages and income identify the impact of the program

#### Estimation

Ex-ante average treatment effect is:

$$\mathsf{ExATE}_{np} = \frac{1}{N} \sum_{j=1}^{N} \left[ \underbrace{\hat{\mathbb{E}}(s_i \mid w_i = w_j - \tau_j, y_i = y_j + \tau_j, X_i)}_{\mathsf{Predicted schooling under the program}} - \underbrace{s_j(w_j, y_j, X_j)}_{\mathsf{Observed schooling}} \right]$$

- ullet  $\mathbb{E}(s_i \mid ilde{w}_i, ilde{y}_i, X_i)$  can be estimated non-parametrically (kernel, LLR, or series)
  - $\Rightarrow$  Need common support in the data:  $(w,y) \in \mathbb{R}^2$  such that f(w,y) > 0

#### Counterfactual Subsidy Levels

|       | Boys           |          |               |  |  |  |  |
|-------|----------------|----------|---------------|--|--|--|--|
| Ages  | 2* Original    | Original | 0.75*Original |  |  |  |  |
| 12-13 | 0.04           | 0.01     | 0.003         |  |  |  |  |
| 12-13 |                | 1        |               |  |  |  |  |
| 4445  | (59%)          | (87%)    | (98%)         |  |  |  |  |
| 14-15 | 0.24           | 0.01     | 0.05          |  |  |  |  |
|       | (45%)          | (83%)    | (98%)         |  |  |  |  |
| 12-15 | 0.12           | 0.06     | 0.02          |  |  |  |  |
|       | (53%)          | (86%)    | (98%)         |  |  |  |  |
|       | Girls          |          |               |  |  |  |  |
|       | 2* Original    | Original | 0.75*Original |  |  |  |  |
| 12-13 | 0.06           | 0.06     | 0.05          |  |  |  |  |
|       | (48%)          | (91%)    | (98%)         |  |  |  |  |
| 14-15 | 0.23           | 0.07     | 0.03          |  |  |  |  |
|       | (51%)          | (89%)    | (98%)         |  |  |  |  |
| 12-15 | 0.14           | 0.06     | 0.05          |  |  |  |  |
|       | (50%)          | (90%)    | (98%)         |  |  |  |  |
|       | Boys and Girls |          |               |  |  |  |  |
|       | 2* Original    | Original | 0.75*Original |  |  |  |  |
| 12-13 | 0.05           | 0.04*    | 0.03          |  |  |  |  |
|       | (54%)          | (89%)    | (98%)         |  |  |  |  |
| 14-15 | 0.23           | 0.09     | 0.04          |  |  |  |  |
|       | (48%)          | (86%)    | (98%)         |  |  |  |  |
| 12-15 | 0.13           | 0.06     | 0.03          |  |  |  |  |
|       | (52%)          | (88%)    | (98%)         |  |  |  |  |

† Bandwidth equals 200 pesos. Trimming implemented using the 2% quantile of positive density values as the cut-off point.



#### Unconditional Income Grant

|       | ·         | · · · · · · · · · · · · · · · · · · · |                       |  |  |  |  |
|-------|-----------|---------------------------------------|-----------------------|--|--|--|--|
|       |           | Boys                                  |                       |  |  |  |  |
| Ages  | Predicted | Sample-Sizes‡                         | % overlapping support |  |  |  |  |
| 12-13 | -0.02     | 374, 610                              | 89%                   |  |  |  |  |
|       | (0.03)    |                                       |                       |  |  |  |  |
| 14-15 | -0.06     | 309, 569                              | 90%                   |  |  |  |  |
|       | (0.05)    |                                       |                       |  |  |  |  |
| 12-15 | -0.04     | 683, 1179                             | 89%                   |  |  |  |  |
|       | (0.03)    |                                       |                       |  |  |  |  |
|       |           | Girls                                 |                       |  |  |  |  |
|       | Predicted | Sample-Sizes‡                         | % overlapping support |  |  |  |  |
| 12-13 | -0.03     | 361, 589                              | 88%                   |  |  |  |  |
|       | (0.04)    |                                       |                       |  |  |  |  |
| 14-15 | 0.00      | 316, 591                              | 88%                   |  |  |  |  |
|       | (0.05)    |                                       |                       |  |  |  |  |
| 12-15 | -0.02     | 677, 1180                             | 88%                   |  |  |  |  |
|       | (0.03)    |                                       |                       |  |  |  |  |
|       |           | d Girls                               |                       |  |  |  |  |
|       | Predicted | Sample-Sizes‡                         | % overlapping support |  |  |  |  |
| 12-13 | -0.03     | 735, 1199                             | 88%                   |  |  |  |  |
|       | (0.03)    |                                       |                       |  |  |  |  |
| 14-15 | -0.03     | 625, 1160                             | 89%                   |  |  |  |  |
|       | (0.03)    |                                       |                       |  |  |  |  |
| 12-15 | -0.03     | 1360, 2359                            | 89%                   |  |  |  |  |
|       | (0.02)    |                                       |                       |  |  |  |  |

<sup>†</sup>Standard errors based on 500 bootstrap replications. Bandwidth equals 200 pesos. Trimming implemented using the 2% quantile of positive density values as the cut-off point.

‡The first number refers to the total control sample and the second to the subset of controls that satisfy the PROGRESA eligibility criteria.

#### Adding Home Production

• Allow for an alternative use of children's time, home production  $l \in \{0,1\}$ 

$$\max_{(s,l)} U(c,l,s) \text{ s.t. } \begin{cases} c = y + w(1-s-l) \\ c = y + w(1-s-l) + \tau s \end{cases}$$

Optimal schooling choices without and with the subsidy are different

$$s^{\star} = g(y, w)$$
$$s^{\star \star} = h(\tilde{y}, \tilde{w}, \tau)$$

Non-parametric ex-ante approach is not feasible in this case



11/29

## Parametric Approach

ullet Consider the following functional form (no child leisure and no X)

$$U(C,s;\epsilon) = C + \alpha s + \beta C s + \epsilon s, \; \epsilon \sim N(0,\sigma_{\epsilon}^2)$$

The probability of school attendance under the subsidy is

$$P(s=1) = 1 - \Phi\left(\frac{(w-\tau) - \alpha - \beta(y+\tau)}{\sigma_{\epsilon}}\right)$$

 $\Rightarrow$  Model parameters can be estimated by ML from data with no subsidy ( au=0)

12 / 29

## Parametric Approach

ullet Given parameter estimates, the effect of au on the attendance rate is

$$\mathsf{ExATE}_p = \Phi\left(\frac{(w-\tau) - \hat{\alpha} - \hat{\beta}(y+\tau)}{\hat{\sigma}_{\epsilon}}\right) - \Phi\left(\frac{w - \hat{\alpha} - \hat{\beta}y}{\hat{\sigma}_{\epsilon}}\right)$$

 $\Rightarrow$  There is no condition on the support of y and w

#### Wrapping Up on Ex-Ante Policy Evaluation

- Estimating ex-ante policy impact does not require specifying a full model
- Nonparametric approaches may be feasible
  - ⇒ Even when there is no variation in the data on the policy (price of schooling)
- If not feasible, extra-assumptions on the distribution of unobs. heterogeneity

14 / 29

# Principles for combining descriptive and model-based analysis

## The Progresa Program in Mexico

- Large scale anti-poverty program
  - Began in 1997 in rural areas and rapidly expanded throughout the country
  - About 20% of Mexican families participating
- Educational grants to mothers to encourage children's school attendance
  - Benefits levels increase with grades attained, higher for girls
  - Subsidies amount to about 20% of average annual income
- Data from the initial rural evaluation of the program
  - ⇒ Randomized phase-in design at the village level
    - Within villages, both eligible and non-eligible HHs (wealth index)

## Static vs. Dynamic Model to Evaluate a CCT Program

- Child's wage may increase with past work experience
- Past education could change attitudes towards attendance
- Parents' utility=f(stock of educ.), so current attendance affects future utility
- The grant itself creates dynamics
  - $\Rightarrow$  Not going to school one year reduces the number of years of the subsidy
  - ⇒ The grant is only available until age 17

#### Design-based ⇒ Model-based: Out of Sample Validation

- Plausibility of the assumptions determines the credibility of predictions
  - ⇒ Within-sample goodness-of-fit tests are necessary but not sufficient
- The credibility of the model is better assessed in terms of out-of-sample fit
  - ⇒ Estimate a model by holding out the treatment/control group
  - ⇒ Validate its predictions about program impacts

# Todd and Wolpin (AER 2006)

- Dynamic discrete choice of children's time allocation and family fertility
  - ⇒ Ex-ante evaluation (control group): MU of subsidy=MU of income
- Each year a married couple decides on whether
  - ⇒ Each of their children attend school/stay-at-home/work for wage
  - ⇒ The wife becomes pregnant
- Parental and children earnings are subject to idiosyn. time-varying shocks
  - No parental labor supply decisions
  - No saving or borrowing
  - No equilibrium effects of the subsidy on children's wages



# Model Validation: Within-Sample Fit (Control Group)

| Age   | Actual |       |       |        |       |       |          |
|-------|--------|-------|-------|--------|-------|-------|----------|
|       | School | Work  | Home  | School | Work  | Home  | $\chi^2$ |
| 6     | 0.933  | _     | 0.066 | 0.923  | _     | 0.077 | 0.58     |
| 7     | 0.981  | _     | 0.019 | 0.980  | _     | 0.020 | 0.02     |
| 8     | 0.987  | _     | 0.013 | 0.980  | _     | 0.020 | 0.99     |
| 9     | 0.994  | _     | 0.006 | 0.979  | _     | 0.021 | 3.49     |
| 10    | 0.982  | _     | 0.018 | 0.974  | _     | 0.026 | 0.86     |
| 11    | 0.977  | _     | 0.023 | 0.964  | _     | 0.036 | 1.45     |
| 12    | 0.885  | 0.021 | 0.094 | 0.846  | 0.039 | 0.115 | 3.99     |
| 13    | 0.780  | 0.084 | 0.136 | 0.736  | 0.078 | 0.186 | 4.51     |
| 14    | 0.677  | 0.157 | 0.166 | 0.619  | 0.191 | 0.190 | 3.41     |
| 15    | 0.490  | 0.276 | 0.235 | 0.520  | 0.251 | 0.229 | 0.88     |
| Girls |        |       |       |        |       |       |          |
| 6     | 0.965  | _     | 0.035 | 0.942  | _     | 0.058 | 3.84     |
| 7     | 0.976  | _     | 0.024 | 0.968  | _     | 0.032 | 0.77     |
| 8     | 0.989  | _     | 0.011 | 0.976  | _     | 0.024 | 1.96     |
| 9     | 0.991  | _     | 0.009 | 0.975  | _     | 0.025 | 3.26     |
| 10    | 0.979  | _     | 0.021 | 0.970  | _     | 0.030 | 0.93     |
| 11    | 0.969  | _     | 0.031 | 0.948  | _     | 0.052 | 2.97     |
| 12    | 0.896  | 0.007 | 0.097 | 0.854  | 0.020 | 0.126 | 4.61     |
| 13    | 0.726  | 0.028 | 0.245 | 0.676  | 0.025 | 0.299 | 2.85     |
| 14    | 0.582  | 0.089 | 0.329 | 0.566  | 0.092 | 0.342 | 0.22     |
| 15    | 0.419  | 0.123 | 0.458 | 0.402  | 0.157 | 0.442 | 1.68     |

*Note:*  $\chi^2$  (0.05, 1) = 3.84,  $\chi^2$  (0.05, 2) = 5.99.



## Out-of-Sample Model Validation Using the Experiment

|                                             | Girls age 12–15 |                                 |         | Girls age 12–15,<br>behind in school |                                 |         | Girls age 13–15, HGC ≥ 6, behind in school |                                 |         |  |
|---------------------------------------------|-----------------|---------------------------------|---------|--------------------------------------|---------------------------------|---------|--------------------------------------------|---------------------------------|---------|--|
|                                             | (1)<br>Actual   | (2)<br>Pred.<br>with<br>Subsidy | (2)–(1) | (1)                                  | (2)<br>Pred.<br>with<br>Subsidy | (2)–(1) | (1)                                        | (2)<br>Pred.<br>with<br>Subsidy | (2)–(1) |  |
| 97 Control                                  | 65.3            | 72.7                            | 7.4     | 58.3                                 | 67.0                            | 8.7     | 40.9                                       | 58.6                            | 17.7    |  |
| 98 Control                                  | 66.5            | 72.9                            | 6.4     | 58.7                                 | 66.9                            | 8.2     | 44.4                                       | 60.6                            | 16.2    |  |
| 97 Treatment Experimental treatment effect: | 62.9            | 73.0                            | 10.1    | 56.9                                 | 67.6                            | 10.7    | 30.3                                       | 56.2                            | 25.9    |  |
| Cross section                               |                 | 8.0 (4.6)                       |         |                                      | 12.8 (5.7)                      |         |                                            | 7.1 (8.6)                       |         |  |
| Difference-in-difference                    | 10.3 (6.7)      |                                 |         | 14.1 (8.3)                           |                                 |         | 17.7 (12.0)                                |                                 |         |  |
|                                             | Boys age 12-15  |                                 |         | Boys age 12–15,<br>behind in school  |                                 |         | Boys age 13–15, HGC ≥ 6, behind in school  |                                 |         |  |
|                                             | (1              | ) (2)                           | (2)–(1) | (1)                                  | (2)                             | (2)–(1) | (1)                                        | (2)                             | (2)–(1) |  |
| 97 Control                                  | 68              | .8 79.6                         | 10.8    | 64.0                                 | 75.8                            | 11.8    | 59.0                                       | 72.7                            | 13.7    |  |
| 98 Control                                  | 72              | .5 80.2                         | 7.7     | 67.4                                 | 78.0                            | 10.6    | 57.1                                       | 72.8                            | 15.7    |  |
| 97 Treatment                                | 69              | .5 79.4                         | 9.9     | 64.2                                 | 2 75.8                          | 11.6    | 52.6                                       | 71.6                            | 19.0    |  |
| Experimental treatment effect               | :               |                                 |         |                                      |                                 |         |                                            |                                 |         |  |
| Cross section                               |                 | 3.8 (4.2)                       |         |                                      | 4.2 (5.2)                       |         |                                            | 1.2 (8.4)                       |         |  |
| Difference-in-difference                    |                 | 3.1 (6.1)                       |         | 4.0 (7.4)                            |                                 |         | 3.8 (11.7)                                 |                                 |         |  |



## Design-based ⇒ Model-based: Identification/Estimation

- Use policy variation for estimation of the model parameters
  - ⇒ Allows researcher to relax some behavioral/distributional assumptions
- In the Progresa case, MU of subsidy≠MU of income
  - ⇒ Transfers to mothers, and who receives the money likely matters

21/29

# Attanasio, Meghir and Santiago (ReStud, 2012)

- Similar dynamic discrete choice structure with some differences
  - ⇒ No fertility decision
  - $\Rightarrow$  Binary choice: school vs. work
  - $\Rightarrow$  Each child's utility is independent of that of the parents/other children
  - ⇒ Allow for MU of the subsidy to differ from MU of other sources of income
  - ⇒ Allow for equilibrium effects of the program on children's wages

#### Identification and Estimation

- ⇒ Treatment-control + eligible-ineligible identify the effect of the subsidy
- ⇒ Within-grade variation in age identifies the effect of the subsidy amount
  - Parameters of the model are estimated by simulated maximum likelihood
    - (Discrete) distribution of unobservables assumed independent of all observables
    - Distance to school as an IV to solve initial condition problem

#### Model-based $\Rightarrow$ Design-based: GE Effect of Progresa

- An increase in child wages will reduce schooling
- Wages may be affected by the subsidy as it reduces children's labor supply
- This channel is important as it attenuates the program's impact on schooling
  - ⇒ Depends on the elasticity of substitution between child and adult labor
- $\Rightarrow$  Attanasio et al (2012) use Model+RCT to quantify this GE effect
  - Document an increase in the wage rate by 6%

24 / 29

## In-sample Fit of the Attanasio et al. Model



#### Validation vs. Identification?

- Counterfactuals from Todd and Wolpin (2006) may be more credible
- But Attanasio et al (2012) is more parsimonious, and yet more general
- $\Rightarrow$  Difficult to account for behavioral responses using only the control group
  - One should use (at least some) policy variation for identification/estimation
  - Then, if possible, use extra sources of variation for out-of-sample validation

## Toward a Synthesis Between the Two Approaches

- Show your data/variation with descriptive analysis
- Use the design-based analysis to provide preliminary evidence
- Clearly articulate the value-added of the model
- Use the design-based analysis to guide modeling choices and identification
- Ohoose parameters and counterfactuals that are linked to your variation

## Strength of assumptions and economically relevant results



#### Data-then-Model or Model-then-Data?

- Highly heterogenous preferences about types of model-based assumptions
- Readers accept model-based assumptions if they get something in return
- The Data-then-Model structure has some advantages
  - Allows readers to situate themselves at their favorite point on the frontier
  - "Get off the train" when they are no longer comfortable with the tradeoff