Problem Set 2

Alexei Onatski

Problem 1. This problem is based on Box (1953) "Non-normality and tests on variances," Biometrika 40, 318-335. In that paper, Box coined the term "robustness". Let $Y_{11}, ..., Y_{1n_1}$ and $Y_{21}, ..., Y_{2n_2}$ be two independent samples, each sample being i.i.d. with cumulative distribution function $G_j(y)$, mean μ_j and variance σ_j^2 , j=1,2. The sample means and variances are $\bar{Y}_j = n_j^{-1} \sum_{i=1}^{n_j} Y_{ji}$ and $s_i^2 = (n_j - 1)^{-1} \sum_{i=1}^{n_j} (Y_{ji} - \bar{Y}_j)^2$. Suppose that you would like to test for $H_0: \sigma_1^2 = \sigma_2^2$. The usual test (based on the assumption that the data are normally distributed) is to compare s_1^2/s_2^2 to an F distribution with $n_1 - 1$ and $n_2 - 1$ degrees of freedom.

(a) Consider the logarithm of the normal theory test statistic s_1^2/s_2^2 , standardized by sample sizes:

$$T = \left(\frac{n_1 n_2}{n_1 + n_2}\right)^{1/2} \left[\log s_1^2 - \log s_2^2\right].$$

Prove that asymptotically as n_1 and n_2 go to infinity, the usual test is equivalent to comparing T to a N(0,2) distribution. (Hint: as $n_1, n_2 \to \infty$, an F distribution with $n_1 - 1$ and $n_2 - 1$ would put all mass at 1 because both its 'numerator' and 'denominator' converge in probability to one. But what about small deviations of the 'numerator' and 'denominator' from unity? Can you use a CLT to figure out how these deviations behave, and therefore derive an approximate distribution of the lograithm of F, multiplied by $\left(\frac{n_1 n_2}{n_1 + n_2}\right)^{1/2}$?)

(b) Now, suppose that

$$G_1(y) = F_0((y - \mu_1) / \sigma_1)$$
 and $G_2(y) = F_0((y - \mu_2) / \sigma_2)$,

where F_0 is a non-Gaussian cdf with $\int y dF_0(y) = 0$ and $\int y^2 dF_0(y) = 1$. Show that as n_1 and n_2 go to infinity, under the null hypothesis, T converges in distribution to $N(0, \kappa - 1)$, where κ is the kurtosis of F_0 , that is

$$\kappa = \int y^4 \mathrm{d}F_0(y)$$

is the *i*-th central moment of F_0 . (Hint: you might want to use the fact that $Var\left\{\left(\frac{Y_{ji}-\mu_j}{\sigma_j}\right)^2\right\} = \kappa - 1$)

- (c) Using the result from (b), demonstrate that, if the populations have kurtosis greater than 3, comparison of s_1^2/s_2^2 to an F distribution is asymptotically equivalent to comparing an $N(0, \kappa 1)$ random variable to an N(0, 2) distribution. What would the true asymptotic level of a nominal $\alpha = 0.05$ one-sided test would be if $\kappa = 5$?
- (d) The file wage.xlsx contains data on hourly wages for 3296 working individuals. Variable "male" equals 1 for males and 0 for females. Suppose that we would like to test a hypothesis that the population variance of the <u>logarithm</u> of wage for males equals that for females against the alternative that the variance for females is larger than the variance for males. The above discussion suggests that a test robust to non-normality of the population would compare $T/\sqrt{\hat{\kappa}-1}$ to N(0,1), where

$$\hat{\kappa} = \frac{(n_1 + n_2) \sum_{j=1}^{2} \sum_{i=1}^{n_j} (Y_{ji} - \bar{Y}_j)^4}{\left[\sum_{j=1}^{2} \sum_{i=1}^{n_j} (Y_{ji} - \bar{Y}_j)^2\right]^2}$$

is an estimate of κ . Conduct such a test, then perform the standard (normal theory) test based on s_1^2/s_2^2 and compare the results.

Problem 2. Consider a linear regression model

$$y_i = x_i'\beta + \epsilon_i, \quad i = 1, ..., n.$$

1

Suppose that the large sample OLS assumptions hold. That is

- (y_i, x_i) are i.i.d. across $i = 1, \ldots, n$
- $E(x_i x_i')$ has full rank
- $E(\epsilon_i|x_i) = 0$
- $Var(\epsilon_i|x_i) = \sigma^2$
- the fourth moments of ϵ_i and of the components of x_i are finite

Consider the ridge regression estimator of β , $\hat{\beta}_r = (X'X + \lambda I_k)^{-1}X'Y$ with fixed $\lambda > 0$.

- (a) Is $\hat{\beta}_r$ a conditionally unbiased estimator of β ? Is $\hat{\beta}_r$ consistent for β ?
- (b) Find the asymptotic distribution of $\sqrt{n}(\hat{\beta}_r \beta)$ as $n \to \infty$.

Problem 3. This problem is based on Hastie et al (2022) "Surprises in High-dimensional Ridgeless Least Squares Interpolation", Annals of Statistics 50, pp.949-986. It is related to a fascinating "double descent" phenomenon in machine learning, recently pointed out by Belkin et al (2019) "Reconciling modern machine-learning practice and the classical bias-variance trade-off" Proc. Matl. Acad. Sci. USA 116.

Let X and ϵ be, respectively, an $n \times p$ matrix and an $n \times 1$ vector with i.i.d. N(0,1) elements. Consider a linear regression model

$$Y = X\beta + \epsilon$$
.

Let $\hat{\beta}$ be standard OLS if $n \geq p$. If n < p, let us define it as $\hat{\beta} = (X'X)^+ X'Y$, where $(X'X)^+$ is the so called Moore-Penrose pseudo-inverse of X'X. The Moore-Penrose pseudo-inverse is defined in terms of the eigenvalue-eigenvector pairs $(\lambda_i, v_i), i = 1, ..., p$ of X'X. Note that when $n < p, \lambda_{n+1} = ... = \lambda_p = 0$, so that

$$X'X = \lambda_1 v_1 v_1' + \dots + \lambda_n v_n v_n'.$$

The Moore-Penrose pseudo-inverse is simply

$$(X'X)^+ = \frac{1}{\lambda_1}v_1v_1' + \dots + \frac{1}{\lambda_n}v_nv_n'.$$

It can be shown that, if n < p, $(X'X)^+X' = X'(XX')^{-1}$ so that $\hat{\beta}$ is the minimum ℓ_2 norm least squares estimator derived in class. In particular, $X\hat{\beta}$ exactly equals Y, so that the regression "interpolates" (exactly fits) the data.

We would like to explore the risk $\hat{\beta}$

$$R_X(\hat{\beta}, \beta) = E(\|\hat{\beta} - \beta\|^2 | X) = E((\hat{\beta} - \beta)'(\hat{\beta} - \beta) | X),$$

in the limit as both n and p go to infinity (big data).

(a) Establish the risk decomposition into bias and variance part:

$$R_X(\hat{\beta}, \beta) = \underbrace{\|E(\hat{\beta}|X) - \beta\|^2}_{B_X(\hat{\beta}, \beta)} + \underbrace{\operatorname{trace}\left[Var(\hat{\beta}|X)\right]}_{V_X(\hat{\beta}, \beta)}.$$

(b) Let $\Pi = v_{n+1}v'_{n+1} + ... + v_pv'_n$ if p > n and $\Pi = 0$ if $p \le n$. Show that

$$B_X(\hat{\beta}, \beta) = \beta' \Pi \beta = \|\Pi \beta\|^2$$
, and $V_X(\hat{\beta}, \beta) = \operatorname{trace} \left[(X'X)^+ \right]$.

Note that for $n \ge p$, these are the usual formulas for the squared Euclidean norm of the OLS bias (zero for $n \ge p$) and the trace of the variance of the OLS estimator (when $\sigma^2 = 1$). For n < p, vector $\Pi \beta$ is sometimes called the non-identifiable part of β . Why do you think this name is used?

(c) Using large Random Matrix Theory results, it is possible to show that as $n, p \to \infty$ so that $p/n \to \gamma \neq 1$,

$$R_X(\hat{\beta}, \beta) \stackrel{p}{\to} \begin{cases} \frac{\gamma}{1-\gamma} & \text{for } \gamma < 1\\ \|\beta\|^2 \frac{\gamma-1}{\gamma} + \frac{1}{\gamma-1} & \text{for } \gamma > 1. \end{cases}$$

Verify this result using simulations for n = 300 and p = 100 + 30j with j = 0, 1, 2, ..., 20. According to your simulations, which part of the above formula for the case $\gamma > 1$ corresponds to bias and which part corresponds to variance?

(d) Suppose that n = 300, p = 200 and you know Y and X. By the Gauss-Markov theorem, OLS is the best unbiased estimator, so you compute $\hat{\beta}$ to estimate β . Your friend, who is a machine learning geek, suggests that you should, instead, run minimum ℓ_2 norm least squares regression of Y on X and W, where W is an 300×800 matrix of additional regressors with all entries of W being i.i.d. N(0,1), independent from X and ϵ (so, you suspect that your friend is a lunatic because these additional regressors are clearly rubbish). Using the theoretical formula for $R_X(\hat{\beta},\beta)$ from (e), compare the risk of your OLS estimator and the estimator proposed by your friend, assuming that $\|\beta\| = 1$. What do you conclude? [Hint: your friend's model is accommodated by the above framework with all the coefficients on W equal to zero, so you can use the formula from (e) for the comparison of the two estimators.] If you do not believe the theoretical formula, do simulations for the comparison.

Problem 4 In the discussion of OLS under serial correlation, we assumed that (y_t, x_t) is strictly stationary. In particular, the variance-covariance matrix of (y_t, x_t) stays constant for t = 1, 2, ..., T. Does this mean that we are considering serial correlation without heteroskedasticity? Discuss briefly.

Problem 5 Consider a regression model with only constant as the explanatory variable, that is,

$$y_t = \beta + \varepsilon_t$$
.

Suppose that ε_t is serially correlated. Precisely, let it satisfy the autoregression of order 1, AR(1),

$$\varepsilon_t = \rho \varepsilon_{t-1} + \zeta_t, \qquad |\rho| < 1, \qquad \zeta_t \overset{\text{i.i.d.}}{\sim} N(0, 1).$$

(a) Represent ε_t is the infinite moving average, $MA(\infty)$ form:

$$\varepsilon = c_0 \zeta_t + c_1 \zeta_{t-1} + c_2 \zeta_{t-2} + \dots$$

What is the value of the long-run variance of ε_t ?

- (b) Let $\hat{\beta}$ be the OLS estimator of β from the regression of y_t , t = 1, ..., T on constant only. What is the asymptotic distribution of $\sqrt{T}(\hat{\beta} \beta)$ as $T \to \infty$?
- (c) Using your favourite computer language/package, simulate $y_1, ..., y_{100}$ for $\beta = 0$ and three choices of ρ : $\rho = 0, 0.5, 0.95$. For each of the obtained three datasets, report the OLS estimate of β and the default values of t-statistics for testing the hypothesis that $\beta = 0$. Briefly discuss.
- (d) For each of the three simulated datasets, compute Newey-West standard errors (with G=4) and the corresponding t-statistics. Compare with the t-statistics from (c).
- (e) For each of the three simulated datasets, compute the Kiefer-Vogelsang-Bunzel t-statistics based on the fixed-b approach (with b=1).
- (f) Simulate Brownian motion (for example, by simulating 1000 observations of random walk) many times (say 2000), so that you have 2000 Brownian motions. Using these simulations, approximate the p-values corresponding to the Kiefer-Vogelsang-Bunzel t-statistic reported in (e). Compare with the default and the Newey-West results.