(11) EP 0 857 894 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:

16.04.2003 Bulletin 2003/16

(51) Int Cl.7: **F16H 61/02**, B60K 41/08 // F16H63:44

(21) Application number: 98300842.6

(22) Date of filing: 05.02.1998

(54) Sensing manual shift into automated upper ratios

Signalisierung von manuellem Schalten in einen höheren automatisierten Gangwechsel Détection d'un mode de changement de vitesse manuel en un mode automatique pour les rpports plus élevés

(84) Designated Contracting States: **DE FR GB IT SE**

(30) Priority: 05.02.1997 US 796001

(43) Date of publication of application: 12.08.1998 Bulletin 1998/33

(73) Proprietor: EATON CORPORATION Cleveland, Ohio 44114-2584 (US)

(72) Inventors:

Steeby, Jon A.
 Schoolcraft, MI 49087-9780 (US)

Janeke, Daniel P.
 Kalamazoo, MI 49001-4323 (US)

 (74) Representative: Clarke, Geoffrey Howard et al Eaton B.V.
 P.O.Box 75777
 1118 ZX Luchthaven Schiphol (NL)

(56) References cited:

EP-A- 0 410 593 WO-A-97/05411 US-A- 5 582 558 EP-A- 0 547 829 DE-A- 19 622 665

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

15

40

BACKGROUND OF THE INVENTION

5 RELATED APPLICATIONS

[0001] This application is related to the following copending EP applications, all assigned to EATON CORPORATION, the assignee of this application:

10 EP-A-0742393 published on 13, 11, 1996

Title: AUTOMATIC AND MANUAL SPLITTER SHIFTING CONTROL VALVE ASSEMBLY

EP-A-0805062 published on 5.11.1997

Title: SYNCHRONIZING AND GEAR ENGAGEMENT SENSING LOGIC FOR AUTOMATED MECHANICAL TRANSMISSION SYSTEMS

EP-A-0857899 published on 12.8.1998

Title: AUTOMATED TRANSMISSION SYSTEM POWER-DOWN

EP-A-0857604 published on 12.8.1998

25 Title: AUTO-MODE-TO-NEUTRAL LOGIC

EP-A-0857898 published on 12.8.1998

Title: ANTI-HUNT LOGIC

30

EP-A-0857895 published on 12.8.1998

Title: DISENGAGEMENT CONFIRMATION

35 EP-A-0857896 published on 12.8.1998

Title: ENGAGEMENT OF GEAR RATIO CONFIRMATION

EP-A-0857897published on 12.8.1998

Title: TRANSITION TO DEGRADED MODE OF OPERATION

FIELD OF THE INVENTION

[0002] The present invention relates to semi-automated mechanical transmission systems having automated shifting in the upper two or more ratios thereof and requiring a manual shift into the automated upper ratios. In particular, the present invention relates to a transmission automated in the upper ratios and logic for sensing an operator intent to manually shift from a lower ratio into one of the automated upper ratios.

50 DESCRIPTION OF THE PRIOR ART

[0003] Partially automated vehicular transmission systems requiring manual shifting in the lower ratios and having a control for automated shifting in the upper ratios are known in the prior art, as may be seen by reference to U.S. Patents No. 4,722,248; 4,850,236; 5,038,627; 5,393,276; 5,393,277 and 5,498,195.

⁵⁵ [0004] Splitter and combined range and splitter-type compound vehicular transmissions requiring manual splitter shifting are well known in the prior art, as may be seen by reference to U.S. Patents No. 3,799,002; 4,754,665; 4,974,468; 5,000,060; 5,370,013 and 5,390,561.

SUMMARY OF THE INVENTION

[0005] In accordance with the present invention which is defined in the characterizing parts of claims 1 and 7, a new and improved partially automated vehicular transmission having automated shifting in the upper ratios and requiring manual shifting into the automated upper ratios is provided. The features outlined in the precharacterized portion of claims 1 and 6 are known in the prior art, sold in USA as so-called "TOP 2" by EATON.

[0006] The foregoing is accomplished by providing a system controller which will sense or determine, on the basis of rotational speed signals, throttle position signals and logic rules, an operator intent to manually shift into one of the automated ratios and will initiate automatic synchronizing for engagement of the appropriate automated ratio. Briefly, if a manual shift into neutral from the gear sequentially adjacent to the upper group of automated upper ratios (*i.e.*, the "entry gear") occurs when vehicle speed is at or above the vehicle speed at which an upshift from the entry gear ratio is expected to occur and if throttle position is less than a reference value (about 40% to 60% of full throttle displacement), then an operator intent to upshift into one of the automated ratios is confirmed and the system controller will assume control of engine fueling and splitter shifting to provide easy engagement of the appropriate automated ratio. If these conditions are not sensed, the operator retains manual control of fueling and, after a delay (about 600 milliseconds), of splitter shifting and is permitted to complete an upshift or downshift as required. The delay allows time to confirm engagement of an 8-9 shift if the driver increases throttle displacement prior to confirmation of engagement. Upon confirmation of engagement of a ratio within the group of upper automated ratios, automatic shifting between the automated upper ratios will commence.

[0007] Accordingly, it is an object of the present invention to provide a new and improved partially automated transmission having automatic shifting in the upper ratios and automatic synchronization for manually initiated shifts into one of the automated ratios.

[0008] This and other objects and advantages of the present invention will become apparent from a reading of the following description of the preferred embodiment taken in connection with the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009]

20

25

30

35

40

Figures 1 and 1A are sectional views of a typical splitter or combined splitter and range-type compound transmission.

Figure 2 is a schematic illustration of the manual shift pattern and ratio steps for the transmission of Figures 1 and 1A

Figure 3 is a schematic illustration of a partially automated vehicular mechanical transmission system having both manual and automatic splitter shifting and utilizing the control of the present invention.

Figure 4 is a valve table for the control valve assembly utilized in the system of Figure 3.

Figure 5 is a schematic illustration, similar to Figure 2, of the shift pattern and ratio steps for the transmission system of Figure 3.

Figure 6 is a graphical representation of the disengagement confirmation logic of the system of Figure 3.

Figure 7 is a schematic illustration, in flow chart format, of the control logic of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT

[0010] Figures 1, 1A and 2 illustrate a typical combined splitter and range-type compound mechanical transmission 10 of the type advantageously utilized in connection with the control of the present invention.

[0011] Transmission 10 comprises a main transmission section 12 connected in series with an auxiliary transmission section 14 having both range and splitter-type gearing. Typically, transmission 10 is housed within a single multi-piece housing 16 and includes an input shaft 18 driven by a prime mover (such as a diesel engine) through a selectively disengaged, normally engaged friction master clutch.

[0012] In the main transmission section 12, the input shaft 18 carries an input gear 20 for driving at least one countershaft assembly 22. Preferably, as is well known in the prior art and as is illustrated in U.S. Patents No. 3,105,395 and 3,335,616, input gear 20 simultaneously drives a plurality of substantially identical main section countershaft assemblies at substantially identical rotational speeds. Each of the main section countershaft assemblies comprises a main section countershaft 24 supported by bearings 26 and 28 in housing 16 and is provided with main section countershaft gears 30, 32, 34, 36 and 38 fixed thereto. A plurality of main section drive or main shaft gears 40, 42 and 44 surround the transmission main shaft 46 and are selectively clutchable, one at a time, to the main shaft 46 for rotation therewith by sliding clutch collars 48 and 50, as is well known in the art. Clutch collar 48 may also be utilized to clutch input gear 20 to the main shaft 46 to provide a direct drive relationship between the input shaft 18 and the main shaft

46. Preferably, each of the main section main shaft gears encircles the main shaft 46 and is in continuous meshing engagement with and is floatingly supported by the associated countershaft gear groups, which mounting means and special advantages resulting therefrom are explained in greater detail in aforementioned U.S. Patents No. 3,105,395 and 3,335,616. Typically, clutch collars 48 and 50 are axially positioned by means of shift forks or yokes 52 and 54, respectively, associated with a shift bar housing assembly 56 of the type illustrated in U.S. Patents No. 4,920,815 and 5,000,060. Clutch collars 48 and 50 are, in the preferred embodiment, of the well-known, non-synchronized, double-acting jaw clutch type.

[0013] Main section main shaft gear 44 is the reverse gear and is in continuous meshing engagement with countershaft gears 38 by means of conventional intermediate idler gears 57 (see Figure 1A). Main section countershaft gear 32 is provided for powering power takeoff devices and the like. Jaw clutches 48 and 50 are 3-position clutches in that they may be positioned in a centered axially non-displaced, non-engaged position as illustrated or in a fully rightwardly engaged or fully leftwardly engaged position.

[0014] Auxiliary transmission section 14 is connected in series with main transmission section 12 and is of the 3-layer, 4-speed combined splitter/range type, as illustrated in above-mentioned U.S. Patent No. 4,754,665. Main shaft 46 extends into the auxiliary section 14 and is journaled in the inward end of the output shaft 58 which extends from the rearward end of the transmission.

[0015] Auxiliary transmission section 14 includes, in the preferred embodiment thereof, a plurality of substantially identical auxiliary countershaft assemblies 60 (see Figure 1A), each comprising an auxiliary countershaft 62 supported by bearings 64 and 66 in housing 16 and carrying three auxiliary section countershaft gears 68, 70 and 72 fixed for rotation therewith. Auxiliary countershaft gears 68 are constantly meshed with and support auxiliary section splitter/range gear 74. Auxiliary countershaft gears 70 are constantly meshed with and support auxiliary section splitter/range gear 76 which surrounds the output shaft 58 at the end thereof adjacent the coaxial inner end of main shaft 46. Auxiliary section countershaft gears 72 constantly mesh with and support auxiliary section range gear 78, which surrounds the output shaft 58. Accordingly, auxiliary section countershaft gears 68 and splitter gear 74 define a first gear layer, auxiliary section countershaft gears 70 and splitter/range gear 76 define a second gear layer and auxiliary section countershaft gears 72 and range gear 78 define a third layer, or gear group, of the combined splitter and range-type auxiliary transmission section 14.

20

25

30

50

55

[0016] A sliding 2-position jaw clutch collar 80 is utilized to selectively couple either the splitter gear 74 or the splitter/range gear 76 to the main shaft 46, while a 2-position synchronized clutch assembly 82 is utilized to selectively couple the splitter/range gear 76 or the range gear 78 to the output shaft 58.

[0017] The splitter jaw clutch 80 is a 2-position clutch assembly which may be selectively positioned in the rightward-most or leftwardmost positions for engaging either gear 76 or gear 74, respectively, to the main shaft 46. Splitter jaw clutch 80 is axially positioned by means of a shift fork 84 controlled by a 2-position piston actuator 86, which normally is operable by a driver selection switch such as a button or the like on the shift knob, as is known in the prior art. Two-position synchronized range clutch assembly 82 is also a 2-position clutch which may be selectively positioned in either the rightwardmost or leftwardmost positions thereof for selectively clutching either gear 78 or 76, respectively, to output shaft 58. Clutch assembly 82 is positioned by means of a shift fork 88 operated by means of a 2-position piston device 90, the actuation and control of which is described in greater detail in aforementioned U.S. Patent No. 4,974,468.

[0018] As may be seen by reference to Figures 1-2, by selectively axially positioning both the splitter clutch 80 and the range clutch 82 in the forward and rearward axial positions thereof, four distinct ratios of main shaft rotation to output shaft rotation may be provided. Accordingly, auxiliary transmission section 14 is a 3-layer auxiliary section of the combined range and splitter type providing four selectable speeds or drive ratios between the input (main shaft 46) and output (output shaft 58) thereof. The main section 12 provides a reverse and three potentially selectable forward speeds. However, one of the selectable main section forward gear ratios, the low speed gear ratios associated with main shaft gear 42, is not utilized in the high range. Thus, transmission 10 is properly designated as a "(2+1)x(2x2)" type transmission providing nine or ten selectable forward speeds, depending upon the desirability and practicality of splitting the low gear ratio.

[0019] While clutch 82 (the range clutch) should be a synchronized clutch, double-acting clutch collar 80 (the splitter clutch) is not required to be synchronized. The shift pattern for manually shifting transmission 10 is schematically illustrated in Figure 2. Divisions in the vertical direction at each gear lever position signify splitter shifts, while movement in the horizontal direction from the 3/4 and 5/6 leg of the H pattern to the 7/8 and 9/10 leg of the H pattern signifies a shift from the low range to the high range of the transmission. As discussed above, manual splitter shifting is accomplished in the usual manner by means of a vehicle operator-actuated splitter button or the like, usually a button located at the shift lever knob, while operation of the range clutch shifting assembly is an automatic response to movement of the gear shift lever between the central and rightwardmost legs of the shift pattern, as illustrated in Figure 2. Range shift devices of this general type are known in the prior art and may be seen by reference to U.S. Patents No. 3,429,202; 4,455,883; 4,561,325 and 4,663,725. Manually operated splitter and range shift actuators are known in the prior art and may be seen by reference to U.S. Patents No. 5,193,410; 5,199,314 and 5,329,826.

[0020] A partially automated vehicular mechanical transmission system 92 utilizing the control system of the present invention is illustrated in Figure 3. Partially automated system 92 is of the type requiring manual shifting in the lower gear ratios (first through eighth) and, after initial manual selection of one of the upper two ratios, providing automatic shifting in the upper gear ratios (ninth and tenth), as described in aforementioned U.S. Patents No. 4,722,248; 4,850,236; 5,038,027 and 5,393,276. The shift pattern for partially automated operation of the system 92 is schematically illustrated in Figure 5.

[0021] The system includes a splitter control valve assembly 94 and a prime mover (such as diesel engine 96) driving the input shaft 18 of transmission 10 through a master friction clutch 98. The transmission 10 includes a shift lever 100 having a shift knob 102, which is associated with the shift bar housing 56 for manually shifting main section 12 and the range clutch 82 of auxiliary section 14.

10

20

25

30

45

50

55

[0022] A manually operated splitter valve 104, having a selector lever or button 106, is provided, usually on or integral with the shift knob, for manually shifting the splitter clutch 80. Splitter valve 104 is a 2-position, 3-way manually operated valve effective to selectively connect a first pilot conduit 108 to exhaust (" E_x ") or to pilot pressure, respectively, to manually select either the high or low splitter ratio. The pilot pressure may be equal to supply pressure ("S") or to a lower value. In a typical onboard pneumatic system, supply is filtered, regulated air at about 60 to 80 psi.

[0023] The first pilot conduit 108 may fluidly communicate with a second pilot conduit 110 in series through the control valve assembly 94 of the present invention. The second pilot conduit 110 is effective to act on a 2-position, 3-way pilot valve 112, which is effective to normally vent or selectively pressurize a control chamber 114 of the splitter piston/cylinder actuator assembly 86. Chamber 114 is exposed to the larger area face 116 of a differential area piston 118 having a smaller area face 120 constantly exposed to supply pressure in biasing chamber 122. As is known, a spring may be utilized in place of or in combination with smaller area piston face 120 to bias piston 118 rightwardly, as seen in Figure 3.

[0024] As may be seen, when pilot conduit 110 is exhausted, pilot valve 112 will connect control chamber 114 to exhaust, and supply pressure acting on smaller area face 120 will cause shift fork 84 to move splitter clutch 80 to engage gear 76 for the low splitter ratio, and when pilot conduit 110 is pressurized, valve 112 will move against a bias to a position for pressurizing control chamber 114, causing the piston 118 to move leftwardly to cause splitter clutch 80 to engage gear 74 for the high splitter ratio.

[0025] Except for interposing the control valve assembly 94 in series between pilot conduits 108 and 110, the above-described components are structurally and functionally equivalent to components utilized to shift the manually shifted transmission of Figures 1, 1A and 2.

[0026] To provide the partially automated operation of system 92, a controller 124, preferably a microprocessor-based controller, is provided for receiving input signals 126 and for processing same according to predetermined logic rules to issue command output signals 128 to various system actuators, such as an engine fuel control 130 and a solenoid driver and fault detection unit 132. Controllers of this type may be seen by reference to U.S. Patents No. 4,361,060 and 4,595,986. The program for controller 124 is stored on a computer-usable medium such as a floppy disk, hard drive, CD-rom, tape or other external or internal storage medium.

[0027] Sensors for sensing engine speed (ES) and/or input shaft speed (IS) and output shaft speed (OS) may be provided, as well as sensors for sensing engine fueling THL and solenoid faults SF, all of which provide input signals indicative thereof to the controller 124. With the clutch 98 engaged, input shaft speed may be assumed to equal engine speed.

[0028] As is known, the engine 96 may have a built-in controller 96A and/or may communicate with controller 124 by an electronic data link of the type conforming to SAE J-1922, SAE J-1939, ISO 11898 or the like. All or a portion of controller 124 may be defined by hardware and/or software associated with engine controller 96A. A sensor may be provided for providing a signal (GR) indicative of engaged gear ratio or gear ratio may be calculated and confirmed by dividing input shaft speed or engine speed by output shaft speed (GR = (IS or ES)/OS \mp error?). The data link will typically include information as to throttle position (THL), or a separate throttle position sensor may be provided.

[0029] The control valve assembly 94 of the present invention is interposed in series between the standard manual splitter shift selection valve 104 and the standard pilot valve 112/splitter actuator 86 and is operated in response to command output signals from controller 124. The assembly includes, in series, a first 2-position, 3-way solenoid-controlled valve 134 and a second 2-position, 3-way solenoid-controlled valve 136 and a solenoid driver and fault detection unit 132 operating in response to command output signals from the controller.

[0030] Valve 134 has an inlet 138 connected to pilot conduit 108 and two outlets 140 (connected to one inlet 142 of valve 136) and 144 (connected to exhaust). Valve 134 has a first normal or default position wherein inlet 138 is connected to outlet 140, and thus, to inlet 142 of valve 136, while outlet 144 of valve 134 is blocked. Valve 134 has a second or actuated position upon energizing the first solenoid S#1 wherein outlet 140 is connected to exhaust at outlet 144 and inlet 138 is blocked.

[0031] Valve 136 has two inlets 142 (connected to the outlet 140 of valve 134) and 146 (connected to the source of pressurized fluid) and an outlet 148 connected to the second pilot conduit 110 controlling the pilot valve 112. Valve 136

has a first normal or default position wherein inlet 142 is connected to outlet 148 and the inlet 146 from source pressure is blocked, and a second actuated position upon energizing the second solenoid S#2 wherein inlet 142 is blocked and source pressure at inlet 146 communicates with outlet 148 and pilot conduit 110.

[0032] The valve table for operation of the solenoid-operated valves is set forth in Figure 4.

[0033] The controller 124 senses a manual splitter operation mode by sensing a shift bar condition GR other than AUTO (see Figure 5). In this mode (*i.e.*, gear ratios 1-8), the solenoid driver is commanded to deenergize both of the solenoids, and the valves 134 and 136 will assume the default positions thereof. Pilot conduit 108 will communicate with pilot conduit 110 through the valves 134 and 136, and the actuator 86 will be under the manual control of selector valve 104.

[0034] AUTO or not-AUTO mode conditions may be sensed by position sensors or, preferably, by processing the ES and OS signals according to predetermined logic rules.

[0035] Upon sensing a manual shift to the AUTO position, the controller will cause the solenoid driver 132 to energize the first solenoid S#1 to create an automatic-only splitter situation, as valve 134 moves to its second position, wherein the pilot conduit 108 controlled by manual selector valve 104 is blocked at inlet 138, and thus, the series connection through port 140 to the pilot valve 112 is blocked. With valve 134 in the second or actuated position thereof, the manual selector 104 is ineffective to control pilot valve 112 or splitter actuator 86.

[0036] In the current example, ninth and tenth speeds are the AUTO mode gear ratios, while eighth speed is the "entry gear ratio". A shift or intent to shift into the AUTO mode is confirmed when either:

- (1) gear ratio is the entry gear ratio, and
- (2) vehicle speed exceeds a first reference value (REF₁), followed by
- (3) a shift into neutral;

OR

25

30

45

55

20

- (1) vehicle speed exceeds the first reference value, and
- (2) gear ratio is one of the AUTO mode ratios.

[0037] The first reference value (REF₁) is an output shaft speed at which a manual upshift from the entry gear is expected to occur, usually about the minimum output shaft speed at which an upshift from the entry gear is expected to occur.

[0038] When in the AUTO mode of operation, manual control 104 is bypassed and, based upon vehicle speed as indicated by the output shaft speed OS and/or the other sensed parameters, the control 124 will automatically determine if an automatic upshift from ninth to tenth or an automatic downshift from tenth to ninth is required, and will control engine fueling and the second solenoid-controlled valve 136 to implement same. With valve 134 actuated and valve 136 in its normal or default position, pilot conduit 110 is exhausted at port 144 of valve 134, and pilot valve 112 will exhaust the control chamber 114 of the piston/cylinder assembly 86, causing the piston to urge the splitter clutch in the low splitter ratio direction. With the second solenoid-controlled valve 136 actuated, pilot conduit 110 is connected to source pressure through inlet 146 and outlet 148 of valve 136, regardless of the position of valve 134, and pilot valve 112 will cause control chamber 114 to be pressurized, causing the piston 118 to urge the splitter clutch in the high splitter ratio direction. Valve 134 may be deactivated whenever valve 136 is energized to reduce heat generation.

[0039] In addition to causing the splitter clutch to be properly positioned in the AUTO mode, controller 124 will also cause the engine to be properly fueled to disengage the existing splitter ratio and synchronized for engaging the target splitter ratio. Upon sensing an eighth-to-ninth upshift into AUTO mode, the engine will be caused to synchronize for the required main and splitter clutch engagement.

[0040] According to the present invention, as schematically illustrated in Figure 7, logic is provided allowing the system to sense if a lever shift from the entry ratio (eighth) is intended to be a downshift to a lower ratio or an upshift into one of the AUTO mode ratios (ninth or tenth). If a possible downshift from the entry ratio is sensed, the driver retains manual control of engine fueling and manual control of splitter shifting (solenoids S1 and S2 are turned off). If an upshift into AUTO mode is sensed, the system initiates automatic engine synchronizing for engaging the appropriate ratio.

[0041] The driver's intent during a shift from the entry ratio is inferred as follows:

- (1) when in the entry ratio, a shift into neutral with vehicle speed below a first reference value or with throttle at greater than a second reference value (about 50% throttle displacement), is taken as a possible attempted downshift; and
- (2) when in the entry ratio, a shift into neutral at a vehicle speed above the first reference value and with throttle setting below the second reference value, is taken as an intended upshift into the AUTO mode group of ratios.

[0042] Of course, once engagement of an AUTO mode ratio is confirmed, with or without automatic synchronization assistance, the vehicle will operate under AUTO mode logic until a shift from AUTO mode is sensed.

[0043] In the current example, continuing operation in the AUTO mode is confirmed when either:

- (1) the confirmed gear ratio is an AUTO mode ratio (i.e., ninth or tenth), and
- (2) vehicle speed exceeds the first reference value (OS*GR_{ENTRY} ≥ the expected manual upshift RPM from the entry gear);

OR

an AUTO mode shift (ninth-tenth, tenth-ninth) is in progress.

[0044] Upon sensing that a shift from AUTO mode has occurred, the controller 124 will cause solenoid driver 132 to deactivate both solenoids to return splitter control to the operator. In the current example, a not-AUTO mode condition is confirmed when either:

- (1) an AUTO mode shift is not in progress, and
- (2) vehicle speed is less than a second reference value (REF2), followed by
- (3) a shift into neutral;

OR

20

25

5

10

15

- (1) an AUTO shift is in progress, and
- (2) after a given period of time, engagement in an AUTO mode ratio cannot be confirmed;

OR

engagement in a non-AUTO mode ratio is confirmed.

[0045] The first, immediately preceding example involves a downshift out of AUTO mode, while the second example involves an apparent operator shift to main section neutral during an AUTO mode shift event.

[0046] In causing synchronous conditions for engagement of a target gear ratio, the engine is commanded to assume a rotational speed equal to true synchronous speed (ES = OS*GR_T) plus or minus an offset value X equal to about 30 to 50 RPM. Accordingly, the engine is alternately commanded to a speed (ES = (OS + X)*GR_T), and then a speed (ES = (OS - X)*GR_T).

[0047] To confirm engagement/non-engagement, the value of ES/OS is compared over a period of time to known gear ratios plus or minus a given percent Y (such as 0.5 to 1.5%). Thus, by way of example, over a period of time, if ES/OS = $GR^*(1 \mp Y\%)$, then confirmation of engagement of GR is true. The offset X and the percentage error Y are selected so that at ES = $(OS + X)^*GR_T$, or at ES = $(OS - X)^*GR_T$, ES/OS will not equal $GR^*(1 \mp Y\%)$.

[0048] The foregoing, as discussed in aforementioned copending U.S. Patent Application Serial No. 08/649,829, allows the use of speed signals to confirm engaged and neutral conditions without false readings due to engine synchronizing.

[0049] To confirm disengagement (of the entry gear ratio or of one of the AUTO mode ratios), the quotient of ES/OS is compared to the numerical value of the disengaging gear, plus or minus a disengaging gear error value, which may exceed the magnitude of the gear error value used to confirm engagement. For example, the disengaging gear error value may equal 1.5%, while the engaging gear error value may equal 1%.

[0050] Additionally, the gear error value used for confirming disengagement may be set larger on the positive side of synchronous of the disengaging gear than on the negative side to minimize false indications of neutral. Speed separations while still in gear tend to be higher on the positive side of synchronous due to the higher driving torque (the engine driving the vehicle tends to produce a greater positive torque magnitude than the negative torque produced when coasting with the vehicle driving the engine). Providing a larger Pos_Disengage_Gear_Error and a smaller Neg_Disengage_Gear_Error allows for protection against false indications of neutral on the positive side caused by aggressive throttle application, while still providing for a quick confirmation of neutral in the negative direction (the direction in which neutral is confirmed on most shifts).

[0051] In the preferred embodiment, the calculated gear ratio, ES/OS, is compared to an expanding window of error values and will be confirmed as disengaged only if it continues to remain outside the window. In the current example (see Figure 6), the calculated gear ratio must fall outside a range from:

55

50

[Engaged GR*(1&(40*Counter*Loop_Time*Neg_Disengage_Gear_Error))]

to

[Engaged GR*(1+(40*Counter*Loop_Time*Pos_Disengage_Gear_Error))],

where Counter is incremented by one each time this is true and decremented each time this is not true (minimizing at a value of 1). Disengagement is confirmed when the Counter reaches or exceeds a value equal to (Synch_Disengage_Time/Loop_Time). In the preferred embodiment, the values of Neg_Disengage_Gear_Error = 1%, Pos_Disengage_Gear_Error = 1.5%, and the maximum value of (40*Counter*Loop_Time) = 6.

[0052] The advantage of this "expanding window" over a fixed error band (prior art) is that it allows disengagement confirmation to start sooner (using the relatively small initial error window) while simultaneously providing better protection against false confirmations of neutral (using the relatively large, fully expanded window before confirming). If the calculated gear ratios fall back within the window during the disengagement confirmation process, the window will decrement to the next smaller value (or to the smallest window) and upon the calculated gear ratio falling outside the window, the disengagement process will continue. The advantage gained with this "contracting window" over immediately resetting to the smallest error window is that it maintains a quick confirmation of true disengagement even if one data point falls inside the expanding error bounds, while preventing false neutral confirmation with transient speed separations induced by large torque oscillations.

[0053] Upon an electrical power failure, the solenoid-controlled valves will return to the open positions thereof, fluidly connecting conduits 108 and 110, and allowing manual selection of all ten forward ratios. Upon the solenoid driver detecting conditions indicative of a failure at one or both solenoids, the controller will cause both solenoids to be deenergized again, causing the two valves 134 and 136 to assume the open positions thereof, and allow manual selection of all ten forward ratios.

[0054] The control valve assembly 94, thus, provides a control allowing both manual and automatic splitter shifting, provides a favorable failure mode and as a module requires only four additional fluid connections (conduit 108 to port 138, conduit 110 to port 148, source S to port 146 and exhaust E_x to port 144) to the normally utilized manual splitter control.

[0055] As used herein, "main section" ratio positions will include the 1/2, 2/3, 3/4, 5/6, 7/8 and 9/10(A) ratio positions, and the range section is considered a portion of the manually shifted main section.

[0056] Accordingly, it may be seen that an improved compound transmission and shift control unit has been provided.

Claims

5

25

30

35

40

45

- 1. A vehicular, partially automated mechanical transmission system (52) including a mechanical transmission (10) having a lower group of ratios requiring manual shifting and an upper group of automated ratios, shifting between the ratios within said automated group of ratios being automated, shifting from a ratio in said lower group of ratios to a ratio in said upper group of automated ratios requiring a manually initiated shifting operation, said system including a controller (124) for receiving input signals, including signals indicative of eventually one or more of engine speed (ES) and transmission input shaft speed (15), but of at least of transmission output shaft speed and of operator-set throttle position of an engine (THL), and for processing same in accordance with predetermined logic rules to issue command output signals to system controllers including an engine fueling controller (96A) and a transmission shift controller, said system characterized by said logic rules including rules effective upon sensing (a) a manual shift into transmission neutral from the highest ratio in said lower group of ratios, (b) output shaft speed exceeding a first reference value, and (c) throttle position being less than a second reference value to declare an operator intent to manually engage one of the ratios in the upper group of automated ratios and to initiate automatic engine synchronizing for engagement of said one of the ratios in said upper group of ratios.
- The system of claim 1 wherein said transmission is a splitter-type transmission and said upper group of automated ratios comprises only the top two ratios.
- The system of claim 1 or 2 wherein said engine including an engine controller, said shift controller defined by said engine controller.
 - 4. The system of claim 1 wherein said logic rules are further effective, upon sensing a manual shift into transmission neutral from the highest ratio in said lower group of ratios and one or more of (d) output shaft speed being less than said first reference value, and (e) throttle position being greater than said second reference, to allow the operator to retain manual control of engine fueling and of all transmission shifting.
 - 5. The system of claim 1, 2, 3 or 4 wherein said first reference value corresponds to a vehicle speed at which an

upshift from said highest ratio in said lower group of ratios is expected.

- The system of claim 1, 2, 3, 4 or 5 wherein said second reference value corresponds to about 40% to 60% of full throttle displacement.
- 7. A method for controlling shifting of a vehicular, partially automated mechanical transmission system (92) including a mechanical transmission (10) having a lower group of ratios requiring manual shifting and an upper group of automated ratios, shifting between the ratios within said automated group of ratios being automated, shifting from a ratio in said lower group of ratios to a ratio in said upper group of automated ratios requiring a manually initiated shifting operation, said system including a controller (124) for receiving input signals, including signals indicative of eventually one or more of engine speed (ES) and transmission input shaft speed (15), but of at least of transmission output shaft speed and of operator-set throttle position of an engine (THL) and for processing same in accordance with predetermined logic rules to issue command output signals to system controllers including an engine fueling controller (96A) and a transmission shift controller, said method being characterized by comprising, upon sensing (a) a manual shift into transmission neutral from the highest ratio in said lower group of ratios, (b) output shaft speed exceeding a first reference value, and (c) throttle position being less than a second reference value, declaring an operator intent to manually engage one of the ratios in the upper group of automated ratios and initiating automatic engine synchronizing for engagement of said one of the ratios in said upper group of ratios.
- 8. The method of claim 7 wherein said transmission is a splitter-type transmission and said upper group of automated ratios comprises only the top two ratios.
 - 9. The method of claim 7 or 8 wherein said engine including an engine controller, said shift controller defined by said engine controller.
 - 10. The method of claim 7 further comprising, upon sensing a manual shift into transmission neutral from the highest ratio in said lower group of ratios and one or more of (d) output shaft speed being less than said first reference value, and (e) throttle position being greater than said second reference, allowing the operator to retain manual control of engine fueling and of all transmission shifting.
 - 11. The method of claim 7, 8 or 10 wherein said first reference value corresponds to a vehicle speed at which an upshift from said highest ratio in said lower group of ratios is expected.
- 12. The method of claim 7, 8 or 10 wherein said second reference value corresponds to about 40% to 60% of full throttle displacement.

Patentansprüche

5

10

15

25

30

40 1. Teilweise automatisiertes mechanisches Fahrzeuggetriebesystem (92) mit einem mechanischen Getriebe (10), das eine niedrigere Gruppe von Gangstufen, die ein manuelles Schalten erfordern, und eine höhere Gruppe von automatisierten Gangstufen aufweist, wobei ein Schalten zwischen den Gangstufen innerhalb der automatisierten Gruppe von Gangstufen automatisiert erfolgt, ein Schalten aus einer Gangstufe der niedrigeren Gruppe von Gangstufen in eine Gangstufe der höheren Gruppe von automatisierten Gangstufen einen manuell initiierten Schaltvor-45 gang erfordert, das System einen Controller (124) aufweist, der dazu dient, Eingangssignale entgegen zu nehmen, zu denen Signale gehören, die möglicherweise für die Motordrehzahl (ES) und/oder die Drehzahl der Eingangswelle des Getriebes (IS), jedoch mindestens für die Drehzahl der Ausgangswelle des Getriebes und eine durch den Fahrer eingestellte Gaspedal-/Drosselstellung (THL) eines Motors kennzeichnend sind, und dieselben gemäß vorbestimmter logischer Regeln zu verarbeiten, um Ausgangsbefehlssignale an Systemcontroller auszugeben, zu 50 denen ein Controller (96A) für die Treibstoffzufuhr des Motors und ein Controller für das Schalten des Getriebes gehören, wobei das System dadurch gekennzeichnet ist, dass die logischen Regeln Regeln enthalten, die bei einem Erfassen (a) eines manuellen Schaltens des Getriebes aus der höchsten Gangstufe der niedrigeren Gruppe von Gangstufen in die Leerlaufstellung, (b) einer Ausgangswellendrehzahl, die einen ersten Referenzwert überschreitet, und (c) einer Gaspedal-/Drosselstellung, die geringer ist als ein zweiter Referenzwert, dahingehend 55 wirksam werden, dass sie die Absicht eines Fahrers feststellen, eine der Gangstufen aus der höheren Gruppe von automatisierten Gangstufen manuell einzurücken, und dass sie eine automatische Synchronisierung des Motors für das Einrücken der betreffenden Gangstufe der höheren Gruppe von Gangstufen initiieren.

- System nach Anspruch 1, bei dem das Getriebe ein Getriebe vom Split-Typ ist und bei dem die h\u00f6here Gruppe von automatisierten Gangstufen lediglich die zwei h\u00f6chsten Gangstufen enth\u00e4lt.
- 3. System nach Anspruch 1 oder 2, bei dem zu dem Motor ein Motorcontroller gehört, wobei der Controller für das Schalten des Getriebes durch diesen Motorcontroller definiert ist.

5

10

20

25

30

35

45

- 4. System nach Anspruch 1, bei dem die logischen Regeln ferner bei Erfassen eines manuellen Schaltens aus der höchsten Gangstufe der niedrigeren Gruppe von Gangstufen in die Leerlaufstellung des Getriebes sowie (d) einer Ausgangswellendrehzahl, die geringer ist als der erste Referenzwert, und/oder (e) einer Gaspedal-/Drosselstellung, die größer ist als der zweite Referenzwert, dahingehend wirksam werden, dass sie dem Fahrer ermöglichen, die manuelle Steuerung der Treibstoffzufuhr des Motors sowie sämtlicher Schaltvorgänge des Getriebes beizubehalten.
- System nach Anspruch 1, 2, 3 oder 4, bei dem der erste Referenzwert einer Fahrzeuggeschwindigkeit entspricht,
 bei der ein Hochschalten aus der besagten höchsten Gangstufe in der niedrigeren Gruppe von Gangstufen erwartet wird.
 - 6. System nach Anspruch 1, 2, 3, 4 oder 5, bei dem der zweite Referenzwert ungefähr 40% bis 60% der maximalen Drossel-/Gaspedalverstellung entspricht.
 - 7. Verfahren zur Steuerung/Regelung des Schaltens eines teilweise automatisierten mechanischen Fahrzeuggetriebesystems (92) mit einem mechanischen Getriebe (10), das eine niedrigere Gruppe von Gangstufen, die ein manuelles Schalten erfordern, und eine höhere Gruppe von automatisierten Gangstufen aufweist, wobei ein Schalten zwischen den Gangstufen innerhalb der automatisierten Gruppe von Gangstufen automatisiert erfolgt, ein Schalten aus einer Gangstufe der niedrigeren Gruppe von Gangstufen in eine Gangstufe der höheren Gruppe von automatisierten Gangstufen einen manuell initiierten Schaltvorgang erfordert, das System einen Controller (124) aufweist, der dazu dient, Eingangssignale entgegen zu nehmen, zu denen Signale gehören, die gegebenenfalls für eine oder mehrere der Größen Motordrehzahl (ES) und Drehzahl der Eingangswelle des Getriebes (IS), jedoch mindestens für die Drehzahl der Ausgangswelle des Getriebes und eine durch den Fahrer eingestellte Gaspedal-/ Drosselstellung (THL) eines Motors kennzeichnend sind, und dieselben gemäß vorbestimmter logischer Regeln zu verarbeiten, um Ausgangsbefehlssignale an Systemcontroller auszugeben, zu denen ein Controller (96A) für die Treibstoffzufuhr des Motors und ein Controller zum Schalten des Getriebes gehören, wobei zu dem Verfahren gehört, dass bei einem Erfassen (a) eines manuellen Schaltens aus der höchsten Gangstufe der niedrigeren Gruppe von Gangstufen in die Leerlaufstellung des Getriebes, (b) einer Ausgangswellendrehzahl, die einen ersten Referenzwert überschreitet, und (c) einer Gaspedal-/Drosselstellung, die geringer ist als ein zweiter Referenzwert, festgestellt wird, dass die Absicht eines Fahrers besteht, eine der Gangstufen aus der höheren Gruppe von automatisierten Gangstufen manuell in Eingriff zu bringen, und eine automatische Synchronisierung der Motordrehzahl initiiert wird, um einen Eingriff der betreffenden Gangstufe der höheren Gruppe von Gangstufen zu ermöglichen.
- 8. Verfahren nach Anspruch 7, bei dem das Getriebe ein Getriebe vom Split-Typ ist und die h\u00f6here Gruppe von automatisierten Gangstufen lediglich die zwei h\u00f6chsten Gangstufen enth\u00e4lt.
 - Verfahren nach Anspruch 7 oder 8, bei dem zu dem Motor ein Motorcontroller gehört, wobei der Controller für das Schalten des Getriebes durch diesen Motorcontroller definiert ist.
 - 10. Verfahren nach Anspruch 7, zu dem ferner gehört, dass bei Erfassen eines manuellen Schaltens aus der höchsten Gangstufe der niedrigeren Gruppe von Gangstufen in die Leerlaufstellung des Getriebes sowie (d) einer Ausgangswellendrehzahl, die geringer ist als der erste Referenzwert, und/oder (e) einer Gaspedal-/Drosselstellung, die größer ist als der zweite Referenzwert, es dem Fahrer ermöglicht wird, die manuelle Steuerung über die Treibstoffzufuhr des Motors sowie über sämtliche Schaltvorgänge des Getriebes beizubehalten.
 - 11. Verfahren nach Anspruch 7, 8 oder 10, bei dem der erste Referenzwert einer Fahrzeuggeschwindigkeit entspricht, bei der ein Hochschalten aus der höchsten Gangstufe der niedrigeren Gruppe von Gangstufen erwartet wird.
- 12. Verfahren nach Anspruch 7, 8 oder 10, bei dem der zweite Referenzwert ungefähr 40 bis 60% der maximalen Drossel-/Gaspedalverstellung entspricht.

Revendications

5

10

15

20

25

30

35

40

45

50

- 1. Système de transmission mécanique partiellement automatisé (52), pour véhicule, comprenant une transmission mécanique (10) ayant un groupe inférieur de rapports qui exige un passage manuel des rapports et un groupe supérieur de rapports automatisés, le passage entre les rapports dans le groupe automatisé de rapports étant automatisé, le passage d'un rapport dudit groupe inférieur de rapports à un rapport dudit groupe supérieur de rapports automatisé exigeant une opération de passage de rapport déclenchée manuellement, ledit système comprenant un contrôleur (124) destiné à recevoir des signaux d'entrée, qui comprennent des signaux indicatifs d'éventuellement un ou plusieurs des suivants : la vitesse du moteur (ES) et la vitesse de l'arbre d'entrée de la transmission (IS), mais au moins de la vitesse de l'arbre de sortie de la transmission et de la position des gaz d'un moteur (THL) fixée par le conducteur, et à les traiter en appliquant des règles logiques prédéterminées pour transmettre des signaux de sortie d'ordre à des contrôleurs de système comprenant un contrôleur d'alimentation du moteur en carburant (96A), et un contrôleur de passage des rapports de la transmission, ledit système étant caractérisé en ce que lesdites règles logiques comprennent des règles qui entrent en jeu en réponse à la détection (a) d'un passage manuel au point mort de la transmission à partir du plus haut rapport du groupe inférieur de rapports, (b) du fait que la vitesse de l'arbre de sortie excède une première valeur de référence, et (c) du fait que la position des gaz est inférieure à une deuxième valeur de référence pour annoncer une intention du conducteur d'engager manuellement un des rapports du groupe supérieur de rapports automatisés et pour déclencher une synchronisation automatique du moteur pour l'engagement dudit un des rapports du groupe supérieur de rapports,
- Système selon la revendication 1, dans lequel ladite transmission est une transmission du type à division et ledit groupe supérieur de rapports automatisés comprend seulement les deux rapports supérieurs.
- Système selon la revendication 1 ou 2, dans lequel ledit moteur comprend un contrôleur de moteur, ledit contrôleur de passage de rapport étant défini par ledit contrôleur de moteur.
- 4. Système selon la revendication 1, dans lequel lesdites règles logiques entrent aussi en jeu, en réponse à la détection d'un passage manuel au point mort de la transmission à partir du plus haut rapport du groupe inférieur de rapports et d'un ou plusieurs des évènements suivants (d) la vitesse de l'arbre de sortie est inférieure à ladite première valeur de référence, et (e) la position des gaz est supérieure à ladite deuxième valeur de référence, pour permettre au conducteur de conserver la commande manuelle de l'alimentation du moteur en carburant et de tous les passages de rapport de la transmission.
- 5. Système selon la revendication 1, 2, 3 ou 4, dans lequel ladite première valeur de référence correspond à une vitesse du véhicule à laquelle on s'attend à un passage de rapport en montée à partir du plus haut rapport dudit groupe inférieur de rapports.
 - Système selon la revendication 1, 2, 3, 4 ou 5, dans lequel ladite deuxième valeur de référence correspond à environ 40 % à 60 % de la pleine course des gaz.
 - 7. Procédé pour commander le passage des rapports d'un système de transmission mécanique partiellement automatisé (92), pour véhicule, comprenant une transmission mécanique (10) ayant un groupe inférieur de rapports qui exige un passage manuel des rapports et un groupe supérieur de rapports automatisés, le passage entre les rapports dans le groupe automatisé de rapports étant automatisé, le passage d'un rapport dudit groupe inférieur de rapports à un rapport dudit groupe supérieur de rapports automatisé exigeant une opération de passage de rapport déclenchée manuellement, ledit système comprenant un contrôleur (124) destiné à recevoir des signaux d'entrée, qui comprennent des signaux indicatifs d'éventuellement un ou plusieurs des suivants : la vitesse du moteur (ES) et la vitesse de l'arbre d'entrée de la transmission (IS), mais au moins de la vitesse de l'arbre de sortie de la transmission et de la position des gaz d'un moteur (THL) fixée par le conducteur, et à les traiter en appliquant des règles logiques prédéterminées pour transmettre des signaux de sortie d'ordre à des contrôleurs de système comprenant un contrôleur d'alimentation du moteur en carburant (96A), et un contrôleur de passage des rapports de la transmission, ledit procédé étant caractérisé en ce qu'il consiste, en réponse à la détection (a) d'un passage manuel au point mort de la transmission à partir du plus haut rapport du groupe inférieur de rapports, (b) du fait que la vitesse de l'arbre de sortie excède une première valeur de référence, et (c) du fait que la position des gaz est inférieure à une deuxième valeur de référence, à annoncer une intention du conducteur d'engager manuellement un des rapports du groupe supérieur de rapports automatisés et à déclencher une synchronisation automatique du moteur pour l'engagement dudit un des rapports du groupe supérieur de rapports.

- 8. Procédé selon la revendication 7, dans lequel ladite transmission est une transmission du type à division et ledit groupe supérieur de rapports automatisés comprend seulement les deux rapports supérieurs.
- Procédé selon la revendication 7 ou 8, dans lequel ledit moteur comprend un contrôleur de moteur, ledit contrôleur de passage de rapport étant défini par ledit contrôleur de moteur.
- 10. Procédé selon la revendication 7, consistant en outre, en réponse à la détection d'un passage manuel au point mort de la transmission à partir du plus haut rapport du groupe inférieur de rapports et d'un ou de plusieurs des évènements suivants (d) la vitesse de l'arbre de sortie est inférieure à ladite première valeur de référence, et (e) la position des gaz est supérieure à ladite deuxième valeur de référence, à permettre au conducteur de conserver la commande manuelle de l'alimentation du moteur en carburant et de tous les passages de rapport de la transmission.
- 11. Procédé selon la revendication 7, 8 ou 10, dans lequel ladite première valeur de référence correspond à une vitesse du véhicule à laquelle on s'attend à un passage de rapport en montée à partir du plus haut rapport dudit groupe inférieur de rapports.
 - 12. Procédé selon la revendication 7, 8 ou 10, dans lequel ladite deuxième valeur de référence correspond à environ 40 % à 60 % de la pleine course des gaz.

FIG. 2 PRIOR ART

VALVE TABLE

GEAR	S#/	5#2
1-8	01-1-	OFF
9	ON.	OFF
10	OFF/ON	ON

F16-4.

Fig.5

Fig.6

