

Encoding

A way to convert data from one format to another.

[ref: https://www.raywenderlich.com/books/swift-apprentice/v6.0/chapters/22-encoding-decoding-types]

- A character encoding
 - A way to convert text data into binary numbers.
 - Assigning unique numeric values to specific characters and converting those numbers in binary language.
 - Why?
 - To either store it inside a computer (machine) or transfer over a digital network

Terminologies

- Character Set
 - A table of different characters like letters, numbers and other symbols.

D	0100
E	0101
F	0110
G	0111
Н	1000
I	1001

- Terminologies
 - Encoding Scheme
 - A way to represent a character in binary.
 - An encoding must follow a specific character set.
 - The value of character A in the UTF character set is decimal 65

character	encoding				bits
A	UTF-8				01000001
A	UTF-16			0000000	01000001
A	UTF-32	0000000	0000000	0000000	01000001
あ	UTF-8		11100011	1000001	10000010
あ	UTF-16			00110000	01000010
あ	UTF-32	0000000	0000000	00110000	01000010

[ref: https://stackoverflow.com/questions/2241348/what-is-unicode-utf-8-utf-16]

- Terminologies
 - Code Point
 - A decimal value associated with a character in a character set.
 - The atomic unit of information.
 - E.g. the code point of character A in the UTF character set is 65.
 - Text is a sequence of code points.

[ref: https://www.geeksforgeeks.org/java-program-to-determine-the-unicode-code-point-at-given-index-in-string/]

- ASCII Encoding
 - American Standard Code for Information Interchange
 - An encoding and charset developed by USA in the 1960s.
 - Mainly developed for electronic communications in the United States.
 - Encoding English characters, numbers and other symbols used generally in the US only
 - A total of 128 characters
 - A unique value between 0 and 127.
 - 8 bit encoding for computer storage
 - The first bit 0 (MSB)

ASCII Encoding

- Examples
 - **0**1000001 \rightarrow 41₁₆ \rightarrow 65₁₀ \rightarrow A
 - **0**1100001 \rightarrow 61₁₆ \rightarrow 91₁₀ \rightarrow a
 - **0**0100000 \rightarrow 20₁₆ \rightarrow 32₁₀ \rightarrow (*space*)
- Pros and Cons
 - One of the simplest encodings schemes
 - Small text file size
 - Easier to read and write.
 - Applicable only to English language data.

- Unicode Consortium and UTF encodings
 - A universally accepted character set and encoding
 - Applicable to every language
 - The Unicode Consortium
 - A non-profit organization that maintains the Unicode standard.
 - Unicode (an abbreviation for **Uni**versally **Code**d Character Set).
 - The Unicode Consortium also maintains the standard for UTF (Unicode Transformation Format) encodings.
 - Unicode characters are most commonly referred by their 4digit hexadecimal representations (0000 to FFFF)

- Unicode Consortium and UTF encodings
 - Unicode
 - A coded character set
 - A set of characters and a mapping between the characters and integer code points representing them
 - However, "Unicode" is unfortunately used in various different ways, depending on the context.
 - Both the UCS standards and the UTF standards encode the code points as defined in Unicode.
 - These encodings were made to encode Unicode code points.

- Unicode Consortium and UTF encodings
 - UCS Encodings
 - Universal Coded Character Set
 - 16-bit and 32-bit fixed-width encoding schemes to support characters from basic languages used across the world.
 - UCS-2
 - Now obsolete
 - UCS-4
 - Identical to UTF-32

- UTF Encodings
 - A variable-width encoding in the unit of byte
 - Multiple encoding schemes, both fixed-width and variablewidth.
 - UTF-8, UTF-16, and UTF-32.

- UTF-8
 - The encoding of the codepoints.
 - one possible encoding scheme for Unicode text.
 - An 8-bit variable-length encoding scheme designed to be compatible with ASCII encoding.
 - A variable length from 1 up to 4 bytes
 - Using the UTF character set for character code points.
 - The main idea to encode all the characters that could possibly exist on the planet but at the same time support ASCII encoding.
 - An ASCII encoded character will look exactly similar in UTF-8.

- UTF-8
 - The starting bits of the code unit for byte length

Number of bytes	Bits for code point	First code point	Last code point	Byte 1	Byte 2	Byte 3	Byte 4
1	7	U+0000	U+007F	0xxxxxxx			
2	11	U+0080	U+07FF	110xxxxx	10xxxxxx		
3	16	U+0800	U+FFFF	1110xxxx	10xxxxxx	10xxxxxx	
4	21	U+10000	U+10FFFF	11110xxx	10xxxxxx	10xxxxx	10xxxxx

The default encoding of a HTML document in HTML5

- UTF-8
 - Pros and Cons
 - Compatibility with ASCII
 - Any ASCII encoded document is a valid UTF-8 document.
 - Memory efficient encoding
 - Self-synchronizing.
 - Easy to locate the start of encoding with random jump
 - Critical to any good character encoding.
 - The de facto standard for encoding in web and internet.
 - Information about its encoding in Content-Type header
 - » Content-Type: <MIME Type>; charset=<encoding>.
 - » Content-Type: text/html; charset=UTF-8

- UTF-16
 - A 16-bit variable length encoding scheme
 - Represented in 1 or 2 code units.
 - 16 or 32 bits of memory based on its code point.
 - The initial 6 bits of the code unit for position and length
 - Leaving only 10 bits to encode the code point of a character per code unit.
 - 20 bits of the memory for encoding for 2 code units
 - The default character encoding scheme in Java and JavaScript

- Encoding
 - Converting character into integers
 - UTF-8 for Korean
 - Encoding each character into 3 bytes
 - How to find default encoding in python
 - Import sys
 - sys,stdin.encoding

```
import sys : '한국어'.encode('utf-8')
sys.stdin.encoding : b'\xed\x95\x9c\xea\xb5\xad\xec\x96\xb4'
```


- Encoding for Korean
 - Unicode
 - A standard coded character set to represent characters from almost all languages.
 - Every Unicode character is encoded using a unique integer code point between 0 and 0x10FFFF.
 - The range for Korean
 - "AC00 ~ D7AF"

- Encoding for Korean
 - 2) UTF8 (Unicode Transformation Set 8 bit)
 - A variable-width character encoding used for electronic communication
 - Defined by the Unicode Standard
 - Basic unit of 8 bits
 - 3 byte for Korean while 1~4 byte depending on language
 - Unicode: "AC00 ~ D7AF"
 - Representing byte length with prefix in blue color
 - 0 \rightarrow 1byte, 110 \rightarrow 2byte, 1110 \rightarrow 3byte, 11110 \rightarrow 4byte
 - Inserting unicode in x position

- Encoding for Korean
 - 2) UTF8 (Unicode Transformation Set 8 bit)

Unicode		UTF8		
U+0000~U+007F	0 - 127	0xxxxxxx	(1byte)	ASCII
U+0080~U+07FF	128 - 2047	110xxxxx 10xxxxxx	(2byte)	C280 - DFDF
U+0800~U+FFFF	2,048 - 65,535	1110xx 10xxxx 10xxxxx 10xxxxx	(3byte)	E0A080 - EFBFBF
U+10000~U+10FFFF	65,536 - 1,114,111	11110xx 10xxxxx 10xxxxx 10xxxxx	(4byte)	F0908080 - F090BD9F

• "안"

- Unicode: "U+C548"

» C:1100/5:0101/4:0100/8:1000

b'\xec\x95\x88'

'안'.encode('utf8')

- 이며, UTF8 인코딩 값은 "0xEC9588" 입니다.

Binary 11101100 10010101 10001000 hexa e c 9 5 8 8

Encoding for Korean

```
a='자연어'.encode('UTF-8')
b'\xec\x9e\x90\xec\x97\xb0\\xec\x96\xb4'
print('\mathfrak{"xec\mathfrak{"x9e\mathfrak{"x90\mathfrak{"x97\mathfrak{"xb0\mathfrak{"xec\mathfrak{"x96\mathfrak{"xb4"}}}
print(b'\xec\x9e\x90\xec\x97\xb0\xec\x96\xb4')
print(a)
print(a.decode('UTF-8'))
print(b'\mathbf{xec\mathbf{x}9e\mathbf{x}9e\mathbf{x}90'.decode('UTF-8'))
print(b'\mathbf{w}xec\mathbf{w}x97\mathbf{w}xb0'.decode('UTF-8'))
print(b'\mathbf{xec}\mathbf{x}96\mathbf{x}b4'.decode('UTF-8'))
11-"-1
b'\xec\x9e\x90\xec\x97\xb0\xec\x96\xb4'
b'\xec\x9e\x90\xec\x97\xb0\xec\x96\xb4\
자연어
자
```

References

- [1] https://guzene.tistory.com/150
- [2] https://bytes.com/topic/python/answers/701188-reload-sys
- [3] https://redscreen.tistory.com/m/163
- [4] https://financedata.github.io/posts/faq_crawling_data_e ncoding.html
- [5] https://financedata.github.io/posts/faq_crawling_data_e ncoding.html
- [6] https://medium.com/jspoint/introduction-to-character-encoding-3b9735f265a6

