Losers' Consent and Democratic Stability: Experimental Evidence from Chile and Estonia

Hector Bahamonde ¹ Inga Saikkonen ² Mart Trasberg ³

Authors in alphabetical order. All contributed equally to this project.

¹University of Turku, Finland

²Åbo Akademi, Finland

³Monterrey Tec, Mexico

December 11, 2023

Motivation

neory

jument

mpirics

iscussion

ppendix

Bibliograph

Democratic Backsliding

- Parece existir un consenso en que algunas democracias están en riesgo de retroceder, acercándose más a sistemas autoritarios.
- Estos retrocesos han sido estudiados en un sinnúmero de casos.
 - Kaufman and Haggard (2019) explican que "a transition to competitive authoritarianism in the United States is unlikely, although not impossible."
 - Caso 2.
 - Caso 3.

Desafortunadamente, la majoría ha concentrado sus esfuerzos en cómo el **ejecutivo** *agranda* sus poderes.

- Pérez-Liñán (2018, p. 2) explica que "most threats to democracy originate in the executive, not in congress."
- "Democratic backsliding is the incremental erosion of institutions [...] that results from the actions of [...] elected governments (Haggard and Kaufman 2021, p. 27)."
- Corrales (2020, p. 41) explica que "electoral irregularities contributed to democratic backsliding in Venezuela under chavista rule."

What about the lossers?

Motivation

Qué ocurre con los que pierden la elección? Existen diferencias sistemáticas en cuanto la tolerancia de acciones no democráticas entre "ganadores" y "perdedores"?

heory O gument

mpirics

iscussion

ppendix

Bibliography

Nuestro Paper

- A diferencia de la mayoría de las investigaciones que se concentran en posibles violaciones de los valores democráticos por parte de los "ganadores," nosotros dirigimos nuestra atención hacia los "perdedores" electorales.
- Hicimos un survey experiment (pre-registrado) en dos democracias recientes, Chile (y Estonia).
- Entender si los votantes que apoyaron al candidato perdedor están más abiertos a respaldar acciones anti-sistémicas contra el incumbente.
- Para esto, incluimos una teoría enfocada en pérdidas y loss aversion (prospect theory, e.g., Kahneman and Tversky 1979).

Pre-registered findings

Encontramos que los votantes de **Kast** *no* son mas proclives que los votantes de **Boric** a apoyar acciones antisistémicas (protestas) que pongan en peligro el status quo.

Democratic Backsliding

Democratic Backsliding

Test

Prospect Theory

Prospect Theory

Test

Argument

Test.

Argument

Case

- We follow a "least-likely case design" (Levy 2008). Finland has been consistently considered as:
 - A 'democratic' (Polity-V).
 - An 'economic egalitarian' (Waltl 2022).
 - A 'gender egalitarian.'
 - A 'social-mobility prone' country (Erola 2009).
- Thus, it should be hard to find any correlation between class-congruent use of status symbols and voting.

...and yet, we do.

```
Y_i = \text{Votes}_i \sim \text{Poisson}
log(Votes_i) = \beta_1 Occupation-Appearance Congruence_i \times Social Class_i +
                   \beta_2Age<sub>i</sub>+
                   y1Partu;+
                   \nu2Citu;+
                   \Theta_i
```

- In Θ we also control for: Attractiveness, Masculinity, and Femininity,
- Full, but also partition the data (male & female).
- We focus on the **marginal effects** of the interaction term.

```
Y_i = \text{Votes}_i \sim \text{Poisson}
log(Votes_i) = \beta_1 Occupation-Appearance Congruence_i \times Social Class_i +
                   \beta_2Age<sub>i</sub>+
                   y1Partu;+
                   \nu2Citu;+
                   \Theta_i
```

- In Θ we also control for: Attractiveness, Masculinity, and Femininity,
- Full, but also partition the data (male & female).
- We focus on the **marginal effects** of the interaction term.

```
Y_i = \text{Votes}_i \sim \text{Poisson}
log(Votes_i) = \beta_1 Occupation-Appearance Congruence_i \times Social Class_i +
                  \beta_2Age:+
                  y1Partu;+
                  \nu2Citu;+
                  \Theta_i
```

- In Θ we also control for: Attractiveness, Masculinity, and Femininity,
- Full, but also partition the data (male & female).
- We focus on the **marginal effects** of the interaction term.

```
Y_i = \text{Votes}_i \sim \text{Poisson}
log(Votes_i) = \beta_1 Occupation-Appearance Congruence_i \times Social Class_i +
                   \beta_2Age<sub>i</sub>+
                   y1Partu;+
                   \nu2Citu;+
                   \Theta_i
```

- In Θ we also control for: Attractiveness, Masculinity, and Femininity,
- Full, but also partition the data (male & female).
- We focus on the **marginal effects** of the interaction term.

```
Y_i = \text{Votes}_i \sim \text{Poisson}
log(Votes_i) = \beta_1 Occupation-Appearance Congruence_i \times Social Class_i +
                    \beta_2Age<sub>i</sub>+
                    y1Partu;+
                    \nu^2Citu:+
                    \Theta_i
```

- In Θ we also control for: Attractiveness, Masculinity, and Femininity,
- Full, but also partition the data (male & female).
- We focus on the **marginal effects** of the interaction term.

```
Y_i = \text{Votes}_i \sim \text{Poisson}
log(Votes_i) = \beta_1 Occupation-Appearance Congruence_i \times Social Class_i +
                   \beta_2Age<sub>i</sub>+
                   y1Partu;+
                   \nu2Citu;+
                   \Theta_i
```

- In Θ we also control for: Attractiveness, Masculinity, and Femininity,
- Full, but also partition the data (male & female).
- We focus on the **marginal effects** of the interaction term.

```
Y_i = \text{Votes}_i \sim \text{Poisson}
log(Votes_i) = \beta_1 Occupation-Appearance Congruence_i \times Social Class_i +
                   \beta_2Age<sub>i</sub>+
                   y1Partu;+
                   \nu2Citu;+
                   \Theta_i
```

- In Θ we also control for: Attractiveness_i, Masculinity_i and Femininity_i.
- Full, but also partition the data (male & female).
- We focus on the **marginal effects** of the interaction term.

```
Y_i = \text{Votes}_i \sim \text{Poisson}
log(Votes_i) = \beta_1 Occupation-Appearance Congruence_i \times Social Class_i +
                   \beta_2Age<sub>i</sub>+
                   y1Partu;+
                   \nu2Citu;+
                   \Theta_i
```

- In Θ we also control for: Attractiveness, Masculinity, and Femininity,
- Full, but also partition the data (male & female).
- We focus on the **marginal effects** of the interaction term.

```
Y_i = \text{Votes}_i \sim \text{Poisson}
log(Votes_i) = \beta_1 Occupation-Appearance Congruence_i \times Social Class_i +
                   \beta_2Age<sub>i</sub>+
                   y1Partu;+
                   \nu2Citu;+
                   \Theta_i
```

- In Θ we also control for: Attractiveness, Masculinity, and Femininity,
- Full, but also partition the data (male & female).
- We focus on the **marginal effects** of the interaction term.

```
Y_i = \text{Votes}_i \sim \text{Poisson}
log(Votes_i) = \beta_1 Occupation-Appearance Congruence_i \times Social Class_i +
                   \beta_2Age<sub>i</sub>+
                   y1Partu;+
                   \nu2Citu;+
                   \Theta_i
```

- In Θ we also control for: Attractiveness, Masculinity, and Femininity,
- Full, but also partition the data (male & female).
- We focus on the **marginal effects** of the interaction term.

```
Y_i = \text{Votes}_i \sim \text{Poisson}
log(Votes_i) = \beta_1 Occupation-Appearance Congruence_i \times Social Class_i +
                   \beta_2Age<sub>i</sub>+
                   y1Partu;+
                   \nu2Citu;+
                   \Theta_i
```

- In Θ we also control for: Attractiveness, Masculinity, and Femininity,
- Full, but also partition the data (male & female).
- We focus on the **marginal effects** of the interaction term.

```
Y_i = \text{Votes}_i \sim \text{Poisson}
\log(\text{Votes}_i) = \beta_1 \frac{\text{Occupation-Appearance Congruence}_i \times \text{Social Class}_i + \beta_2 \text{Age}_i + \gamma_1 \text{Party}_i + \gamma_2 \text{City}_i + \Theta_i
```

- In Θ we also control for: Attractiveness_i, Masculinity_i and Femininity_i.
- Full, but also partition the data (male & female).
- We focus on the marginal effects of the interaction term.

At a Glance

Main Results

test

Wrapping Up

Main Takeaways

✓ Test.

Wrapping Up

Theory

gument

Empirics

Discussion

ssion Appe

Thank you

to check updates on this project.

Summary Stats

Test

- Corrales, Javier. 2020. "Democratic Backsliding Through Electoral Irregularities."

 European Review of Latin American and Caribbean Studies, no. 109, 41–65.
- Haggard, Stephan, and Robert Kaufman. 2021. "The Anatomy of Democratic Backsliding." *Journal of Democracy* 32 (4): 27–41.
- Kahneman, Daniel, and Amos Tversky. 1979. "Prospect Theory: An Analysis of Decision under Risk." *Econometrica* 47 (2): 263.
- Kaufman, Robert, and Stephan Haggard. 2019. "Democratic Decline in the United States: What Can We Learn from Middle-Income Backsliding?" *Perspectives on Politics* 17 (02): 417–432.
- Pérez-Liñán, Aníbal. 2018. "Impeachment Or Backsliding? Threats To Democracy In The Twentyfirst Century." *Revista Brasileira de Ciencias Sociais* 33 (98): 1–15.