Домашнее задание 5

Дедлайн: 2025-06-01, 23:59. Оцениваемые залачи:

- 1. Величины (y_i) независимы и экспоненциально распределены с интенсивностью λ . Количество наблюдений n велико. Тестируем гипотезу H_0 : $\lambda=2$ против альтернативы $\lambda\neq 2$.
 - а) Выведите формулы для теста отношения правдоподобия LR, теста множителей Лагранжа LM и теста Вальда W.
 - б) Проведите тесты для конкретной выборки с $n=1000,\, \bar{y}=2.2$ и уровня значимости 1%.
- 2. Величины (y_i) независимы и нормально распределены $\mathcal{N}(\mu, 1)$. Количество наблюдений n велико. Тестируем гипотезу H_0 : $\mu = 0$ против альтернативы $\mu \neq 0$.
 - а) Выведите формулы для теста отношения правдоподобия LR, теста множителей Лагранжа LM и теста Вальда W.
 - б) Проведите тесты для конкретной выборки с $n=1000, \sum y_i=1000, \sum y_i^2=4000$ и уровня значимости 1%.

Неоцениваемые задачи в удовольствие:

- 3. Гипотеза H_0 описывается 5-ю независимыми уравнениями, неограниченный максимум лог-правдоподоб равен $\ell_{UR}=-200$, а ограниченный $-\ell_R=-209$. Число наблюдений n велико. Альтернативная гипотеза состоит в том, что хотя бы одно уравнение не выполнено.
 - а) Отвергается ли H_0 на уровне значимости 1%?
 - б) Найдите p-значение.
- 4. Оценка неизвестного вектора параметров $a=(a_1,a_2,a_3)$ равна $\hat{a}=(1,2,3)$ с оценкой ковариационной матрицы

$$\widehat{\mathbb{V}\mathrm{ar}}(\hat{a}) = \begin{pmatrix} 9 & -1 & 2 \\ & 16 & -1 \\ & & 10 \end{pmatrix}.$$

Число наблюдений велико. Рассмотрим гипотезу H_0 : $a_1=a_2=a_3$ против альтернативы о том, что хотя бы одно уравнение не выполнено.

- а) Предложите естественную оценку \hat{b} для вектора $b=(a_1-a_2,a_2-a_3).$
- б) Оцените ковариационную матрицу $\widehat{\mathbb{V}\mathrm{ar}}(\hat{b}).$
- в) Переформулируйте H_0 в терминах вектора b.
- г) Проведите тест Вальда гипотезы H_0 на уровне значимости 5%.

5. Мы оцениваем три неизвестных параметра, $(\theta_1, \theta_2, \theta_3)$. При максимизации с учётом ограничений гипотезы H_0 оказывается, что градиент лог-правдоподобия равен grad $\ell=(-0.1,0.2,0)$, а матрица Гессе в точке ограниченного экстремума равна

$$H = \begin{pmatrix} -5 & -2 & 0\\ & -6 & 0\\ & & -10 \end{pmatrix}$$

Число наблюдений велико.

- а) Чему равен градиент лог-правдоподобия в точке неограниченного экстремума?
- б) Протестируйте H_0 на уровне значимости 1% с помощью теста множителей Лагранжа.
- 6. Вспомним классический хи-квадрат тест Пирсона на соответствие выборки заданному дискретному закону распределения со статистикой

$$S = \sum_{i=1}^{k} \frac{(f_i - np_i)^2}{np_i},$$

где k — число клеток таблицы, f_i — количество наблюдений, попавших в i-ую клетку таблицы, а $p_1, p_2, ..., p_k$ — вероятности, предполагаемые в H_0 .

С каким тестом (LR/LM/W) совпадает данная статистика?

7.

8.