Mercury Delay Line Emulation: Reconstructing Memory for EDSAC

Joshua Tyler August 30 2017

What is EDSAC?

How did memory work in EDSAC?

Reconstruction Effort

Reconstruction Effort

Where I come in

- If you're going to cheat cheat big!
- Using modern technology to create delay lines for EDSAC as close to the original as possible in terms of:
 - Form
 - Function
 - · Electrical interface
 - · N.B. This includes being 'phantom powered'
- · Creation of a test harness which can emulate the memory interface of EDSAC

Literature

208 Electronic Engineering July, 1948 An Ultrasonic Memory Unit for the

EDSAC

By M. V. WILKES, M.A.+ W. RENWICK, B.Sc.†

Introduction

THE successful completion of the ENIAC by the Moore School of Electrical Engineering in Philadelphia marked a new stage in the application of electronic devices to computing.1.2 This machine suffers. however, from two major drawbacks: its great complexity-it contains in all 18,000 valves—and its very limited memory capacity. The latter defect, although unimportant when solving the ordinary differential equations for which the machine was primarily intended, seriously limits its sphere of application. In order to deal with problems in partial differential equations, for thousands of numbers.

Fig. 5. General view of the computer racks with a completed battery of delay units in the foreground

design presents many problems of train of pulses, the presence of a whole machine.

interest to electronic engineers, it is pulse indicating a "1" and the thought that a description of its absence of a pulse a "0," Fig. 1 example, one really needs storage main features may be of interest in will make this clear. This system is capacity for hundreds or even advance of the completion of the adopted for the EDSAC and all internal operations in the machine

Specification

Item	Specification	Justification
1	Must be capable of producing a delayed copy of the EDSAC pulse train presented to it's input	This is the primary function of the device.
2	Must be powered from the input signal driven by EDSAC, with only minimal non-intrusive modifications made to EDSAC.	The goal of the device is to faithfully recreate the appearance and electrical interface of EDSAC, and thus large modifications such as power supply wires must be avoided.
3	Must be able to have a nominal delay of 1.15 ms, adjustable by at least \pm 10%.	1.15 ms is the nominal delay of a long tube, as discussed in the report. An adjustable delay allows synchronisation with the system clock, with may vary.
4	Must have a maximum per burst deviation from the nominal delay of 50 ns.	This ensures that the delay line output will be able to synchronise with the clock of EDSAC. 50 ns is the maximum deviation derived in the report
5	Must be able to interface with input waveforms AC coupled bursts of 13.5 MHz carrier, with peak voltages in the range of 25 V to 35 V.	This is necessary to mimic the performance of the original delay line, 25 V to 35 V is the range derived in the report.
6	Must be able to have an adjustable nominal output voltage in the range of 10 mV to 100 mV (peak to peak), driving into 70 Ω .	An adjustable output voltage in this range allows compatibility with both the original electrical interface, and that used by the reconstruction effort, 10 mV to 100 mV is the range derived in the report.
7	Must be encapsulated in a metal tube of 4.44 cm outer diameter, and 165.5 cm length.	This diameter allows the design to have the same appearance of the main memory store tubes of the original EDSAC design, the width and diameter are discussed in the report
8	Must be accompanied by a testing device capable of emulating the signals produced by EDSAC.	This allows the delay line to be tested separately to the reconstruction project.

What I've done – FPGA delay line

What I've done – Analogue interface

What I've done - Phantom power

What I've done – Digital test harness

What I've done - Test harness interface

What I've done – System integration

What I've done - Problems

- Many!
- · Phantom powering not as simple as first thought
- · Crosstalk between input and output stages
- · High speed, high voltage, high power amplifier design
- Finding harmony between:
 - · The literature
 - · What the reconstruction project has made
 - Very old circuits
 - Very new circuits

Conclusion

- Success!
- · What was achieved:
 - Analysis of EDSAC's 'memory problem'
 - A working recreation of EDSAC's delay lines that looks and performs as the original (except for phantom power)
 - A working test harness capable of generating the correct output signals, and analysis of the input signals
 - A memory system which able to recreate all of the delay line memory in EDSAC, pending careful PCB design and implementation

