සබරගමුව පළාත් අධ්‍යාපන දෙපරිත Sabaragamuwa Provincial Depar සබරගමුව පළාත් අධ්‍යාපන දෙපරිත Sabaragamuwa Provincial Depar සබරගමුව පළාත් අධ්‍යාපන දෙපරිත Sabaragamuwa Provincial Depar

සබරගමුව පළාත් අධාාපත දෙපර්තමේත්තුව சப்மரகமுவ பர்டசைத் திணைக்களம

Sabaragamuwa Provincial Department of Education

මෙන්තුව සබරගමුව පළාත් a Provincial Department of මන්තුව සබරගමුව පළාත් a Provincial Department of මෙන්තුව සබරගමුව පළාත් a Provincial Department of

පෙරහුරු පරීක්ෂණය 2022 - 13 ශ්ලණීය (3 වන වාරය)

සංයුක්ත ගණිතය - I

10 S II

පැය තුනයි 03 Hours

නම

(40)

පත්තිය

විභාග අංකය

උපදෙස් :

- මෙම ප්‍රශ්න පත්‍ර කොටස් දෙකකින් සමන්විත වේ. A කොටස (ප්‍රශ්න 1 – 10) සහ B කොටස (ප්‍රශ්න 11 – 17)
- A කොටස සියලුම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සදහා ඔබේ පිළිතුරු සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම් ඔබට අමතර ලියන කඩදාසි භාවිතා කළ හැක.
- නියමිත කාලය අවසන් වූ පසු A කොටස B කොටස උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- 💠 පුශ්න පතුයෙහි B කොටස පමණක් ශාලාවෙන් පිටතට ගෙනයාමට ඔබට අවසර ඇත.

පරික්ෂකගේ පුයෝජනය සදහා පමණි

200-200	(10) සංයුක්ත ගණි	
කොටස	පුශ්න අංකය	ලකුණු
	1	
A	2	
	3	
	4	
	5	
	6	1
	7	
0 /	8 0	100
/ /-	9	
	10	la la
	11	
	12	
	13	
В	14	
	15	ı
	16	
	17	
	එකතුව	
	පුතිශතය	

I පතුය	
II පනුය	
එකතුව	
අවසාන ලකුණු	

අවසාන ලකුණු

ඉලක්කමෙන්	3.1	
අකුරෙන්		

උත්තර පතු පරික්ෂක

1
පරික්ෂා කළේ
2
අධීක්ෂණය කළේ

1

AT	126	123	/10	-S-I
AL	120	140	/10	1-0-1

	ගණිත අභපුහන මූලධර්මය භාවිතයෙන්, සියලු $n\in\mathbb{Z}^+$ සඳහා $\sum_{r=1}^n r=rac{1}{2}(n^2+n)$ බව සාධනයකරන්න.
	1 /1 0/00 I 0/00 0/00 0/00 1/0
2	A/L 33 papers group
02)	එක ම රූප සටහනක $y=2 x+1 $ හා $y= x +2$ හි පුස්ථාරවල දළ සටහන් අඳින්න.
02)	එක ම රූප සටහනක $y=2 x+1 $ හා $y= x +2$ හි පුස්ථාරවල දළ සටහන් අඳින්න. නයින් හෝ අනු අයුරකින් හෝ $ x +2>2 x+1 $ අසමානතාව සපුරාලන x හි සියලු තාත්වික අගයන් සොයන්න.
02)	නයින් හෝ අනු අයුරකින් හෝ $ x +2>2 x+1 $ අසමානතාව සපුරාලන x හි සියලු
02)	නයින් හෝ අනු අයුරකින් හෝ $ x +2>2 x+1 $ අසමානතාව සපුරාලන x හි සියලු
02)	නයින් හෝ අනු අයුරකින් හෝ $ x +2>2 x+1 $ අසමානතාව සපුරාලන x හි සියලු
02)	නයින් හෝ අනු අයුරකින් හෝ $ x +2>2 x+1 $ අසමානතාව සපුරාලන x හි සියලු
02)	නයින් හෝ අනු අයුරකින් හෝ $ x +2>2 x+1 $ අසමානතාව සපුරාලන x හි සියලු තාත්වික අගයන් සොයන්න.
02)	නයින් හෝ අනු අයුරකින් හෝ $ x +2>2 x+1 $ අසමානතාව සපුරාලන x හි සියලු තාත්වික අගයන් සොයන්න.
02)	නයින් හෝ අනු අයුරකින් හෝ $ x +2>2 x+1 $ අසමානතාව සපුරාලන x හි සියලු තාත්වික අගයන් සොයන්න.
02)	නයින් හෝ අනු අයුරකින් හෝ $ x +2>2 x+1 $ අසමානතාව සපුරාලන x හි සියලු තාත්වික අගයන් සොයන්න.
02)	නයින් හෝ අනු අයුරකින් හෝ $ x +2>2 x+1 $ අසමානතාව සපුරාලන x හි සියලු තාත්වික අගයන් සොයන්න.
02)	නයින් හෝ අනු අයුරකින් හෝ $ x +2>2 x+1 $ අසමානතාව සපුරාලන x හි සියලු තාත්වික අගයන් සොයන්න.
02)	නයින් හෝ අනු අයුරකින් හෝ $ x +2>2 x+1 $ අසමානතාව සපුරාලන x හි සියලු තාත්වික අගයන් සොයන්න.
02)	නයින් හෝ අනු අයුරකින් හෝ $ x +2>2 x+1 $ අසමානතාව සපුරාලන x හි සියලු තාත්වික අගයන් සොයන්න.
02)	නයින් හෝ අනු අයුරකින් හෝ $ x +2>2 x+1 $ අසමානතාව සපුරාලන x හි සියලු තාත්වික අගයන් සොයන්න.
02)	නයින් හෝ අනු අයුරකින් හෝ $ x +2>2 x+1 $ අසමානතාව සපුරාලන x හි සියලු තාත්වික අගයන් සොයන්න.
02)	නයින් හෝ අනු අයුරකින් හෝ $ x +2>2 x+1 $ අසමානතාව සපුරාලන x හි සියලු තාත්වික අගයන් සොයන්න.
02)	නයින් හෝ අනු අයුරකින් හෝ $ x +2>2 x+1 $ අසමානතාව සපුරාලන x හි සියලු තාත්වික අගයන් සොයන්න.
02)	නයින් හෝ අනු අයුරකින් හෝ $ x +2>2 x+1 $ අසමානතාව සපුරාලන x හි සියලු තාත්වික අගයන් සොයන්න.
02)	නයින් හෝ අනු අයුරකින් හෝ $ x +2>2 x+1 $ අසමානතාව සපුරාලන x හි සියලු

- 03) එක ම ආගන්ඩි සටහනක
 - i) $Arg(Z-2) = 2^{\pi}/3$ so
 - |Z + 2 3i| = 2 සපුරාලන Z

සංකීර්ණ සංඛාා තිරූපණය කරන ලක්ෂාවල පථයන්හි දළ සටහන් අඳින්න.

ඒ නයින්, මෙම පථයන්හි ඡේදන ලක්ෂා මඟින් නිරූපණය කරනු ලබන සංකීර්ණ සංඛාහ ලියා දක්වන්න.

04) a නිශ්ශුනා නියතයක් වන $(a+bx)^{10}$ හි ද්විපද පුසාරණයේ x හි සංගුණකය හා x^2 හි සංගුණකය පිළිවෙළින් 10240 හා 2566 නම් a හා b හි අගයන් සොයන්න.

05)	lim	$x^2 \sin 2x$	_2/	ລຄ	පෙන්වන්න
05)	$x \to 0$	$sin^3 2x - x^3 cos 4x$	/7	බව	පෙනවනන.

A/L අන [papers group]

06) $y=rac{x}{x+1}$ ශූතය මගින් y=0 හා x=2 අතර වටවන වර්ගඵලය 2π රේඩියන්වලින් භුමණය කිරීමෙන් සෑදෙන ඝනවස්තුවේ පරිමාව $\pi(8/3-2ln3)$ බව පෙන්වන්න.

 $\frac{x^2}{16} + \frac{y^2}{9} = 1$ ඉලිප්සයට $P(4co\theta, 3Sin\theta)$ හි දී අදින අභිලම්භයේ සමීකරණය

4Sin heta x + 3Cos heta y = 25Sin heta Cos heta බව පෙන්වා $heta = 2\pi/3$ විට අදින ස්පර්ෂකය සොයන්න.

VI æs I naners droup

(08) කේන්දු $C_1(2,3),\,C_2(3,2)$ ලක්ෂාවල ඇති පොදු ජනායේ දිග $3\sqrt{2}$ වන වෘත්ත 2 සොයන්න.

09)	$P(a,3a),Q(5a-a)$ යැයි ගනිමු. අරය ඒකක $12\sqrt{2}$ ක් වූ $S=0$ වෘත්තයේ කේන්දුය P වන අතර එය Q හරහා යයි. P හා Q හි ඛණ්ඩාංක සොයන්න. $S=0$ වෘත්තයේ සමීකරණය සොයන්න.
Α/	Ta8fpapers group I
1	
10)	$tan^{-1}\left(rac{x-1}{2x} ight)-tan^{-1}\left(rac{x+1}{3x} ight)=\pi/_4\;; x eq 0$ සමීකරණය x සඳහා විසඳන්න.
10)	$\frac{1}{2x} \int \frac{dx}{dx} = \frac{1}{4} \int \frac{dx}{dx}$

පුශ්න හයකට පමණක් පිළිතුරු සපයන්න.

- 11. (a) $p \in \mathbb{R}$ හා $f(x) = x^2 + (7+p)x + p$ යැයි ගනිමු. p හි ඕනෑම් තාත්ත්වික අගයක් සඳහා f(x) = 0 සමීකරණයට තාත්ත්වික පුහින්න මූල දෙකක් තිබෙන බව පෙන්වන්න.
 - f(x)=0 හි මුල දෙකෙහි අන්තරය අවම වන විට p හි අගය සොයන්න.
 - f(x)=0 හි මුල දෙකෙහි අවම අන්තරය $2\sqrt{6}$ බව පෙන්වන්න.
 - g(x) යනු ඉහත සොයා ගන්නා ලද p හි අගයට අනුරූප f(x) ශිූතය යැයි ගනිමු.
 - g(x) යන්න $g(x) = (x-a)^2 + b$ ආකාරයට ලිවිය හැකි බව පෙනවන්න; මෙහි a හා b යනු නිර්ණය කළ යුතු නියත වේ.
 - ඒ නයින් හෝ වෙනත් ආකාරයකින් හෝ, y=g(x) හි පුස්තාරයේ ගුණ පුකාශ කරන්න. y=g(x) හි පුස්තාරයේ දළ සටහනක් අඳින්න.
 - (b) $\lambda, \mu \in \mathbb{R}$ හා $h(x) = x^4 + ax^3 x^2 + bx + 2$ යැයි ගනිමු. (x-1) හා (x+2) යනු h(x) හි සාධක නම්, a හා b හි අගයන් සොයන්න. ඒ නයින් හෝ වෙනත් ආකාරයකින් හෝ, h(x) හි අනෙක් වර්ගජ සාධකය සොයන්න.
- 12. (a) එක්තරා අධ්‍යාපන ආයතනයක ව්‍යාපෘති නිලධාරීහු 9 දෙනෙක් සිටිති. එක එකක යටත් පිරිසෙන් ව්‍යාපෘති නිලධාරීන් දෙදෙනෙකු වත් සිටින සේ ව්‍යාපෘති නිලධාරීන් 9 දෙනා කණ්ඩායම් තුනකට බෙදා වෙන් කිරීමට ආයතනයට අවශාව ඇත. පිළියෙල කර ගත හැකි කණ්ඩායම් ගණන සොයන්න.
 - (b) $n \in \mathbb{Z}^+$ හා $u = \frac{2^r}{2^{2r} 3 \ 2^r + 1}$ යැයි ගනිමු.

 $n \in \mathbb{Z}^+$ සඳහා $u_r = f(r) - f(r+1)$ වන පරිදි f(r) සොයන්න.

ඒ නයින් $\sum_{r=1}^n u_r = 1 - rac{1}{2^{n+1}-1}$ බව පෙන්වන්න.

- 13. (a) ඕනෑම z සංකීර්ණ සංඛ්‍යාවක් සඳහා සුපුරුදු අංකනයෙන්,
 - $(i) |z|^2 = z\bar{z} ,$
 - $(ii) \quad |\bar{z}| = |z|.$
 - (iii) $|z| \ge \text{Re}(z)$ බව පෙන්වන්න.
 - (b) z_1 හා z_2 යනු සංකීර්ණ සංඛ z_2 දෙකක් යැයි ගනිමු. සුපුරුදු අංකනයෙන්,
 - $(i) \overline{z_1}\overline{z_2} = \overline{z_1} \ \overline{z_2},$
 - (ii) $|z_1z_2| = |z_1||z_2|$,
 - (iii) $|z_1 z_2| \ge Re(z_1 \bar{z}_2)$,
 - $||z_1| |z_2|| \le |z_1 + z_2|$

බව පෙන්වන්න.

|z| = 2 නම්, $|z^4 + 5z^2 + 6| \ge 2$ බව පෙන්වන්න.

(c) $P \equiv \begin{pmatrix} 0 & -2 & 1 \\ 2 & 1 & 0 \end{pmatrix}$ හා $Q^T \equiv \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ ලෙස ගනිමු.

PQ ගුණිතය වන R නහාසය සොයන්න.

R නාාසයේ පුතිලෝම නාාසය සොයන්න.

 $RSR^{-1} = 2R^2 + 3R$ වන පරිදි S නහාසය සොයන්න.

- $\mathbf x$ විෂයයෙන් $\sec \ \mathbf x$ හි වහුත්පන්නය, පුමුලධර්මවලින් සොයන්න. (a)
 - $y = \frac{x}{(x-1)^2}$ ශුිතය වැඩිවන අඩුවන අගය පරාස, හැරුම් ලක්ෂා, ස්පර්ශමුඛ හා නතිවර්තන දක්වමින් පුස්තාරයේ දළ සටහනක් අඳින්න.
 - (c) OABC යනු OA=8 ඒකක හා OC=1 ඒකක සහිත අවල ඍජුකෝණාසුයක් වේ. Oලක්ෂාය ඔස්සේ යන සරල රේඛාවක් දික්කරන BA රේඛාව P හිදී ද BC රේඛාව Qලක්ෂායේ දී ද කපයි. P හා Q ලක්ෂා, B ලක්ෂාය ඔස්සේ යන වෘත්තයක් මත විචලනය වෙයි නම් වෘත්තයේ අරයට තිබිය හැකි අවම අගය සොයන්න.
- $\int \frac{4x-1}{x^2-6x+13} dx$ සොයන්න. (a) 15.
 - (b) කොටස් වශයෙන් අනුකලනය යොදාගනිමින් හෝ වෙනත් ආකාරයකින් හෝ $\int x^4 \ln(5+x^2) dx$ සොයන්න.
 - (c) $\int \frac{dx}{\sin 2x + \cos 2x}$ සොයන්න.

 $I=\int_0^{\pi} \frac{\cos^2 x}{\sin x + \cos x} \ dx$ හා $J=\int_0^{\pi} \frac{\sin^2 x}{\sin x + \cos x} \ dx$ යැයි ගනිමු. සුදුසු ආදේශයක් උපයෝගී කර ගනිමින් හෝ වෙනත් ආකාරයකින් හෝ I=J බව

පෙන්වන්න.

ඒ නයින් හෝ වෙනත් ආකාරයකින් හෝ $m{l}$ හි අගය සොයන්න.

- ABCD යනු රොම්බසයකි. AB හි සමීකරණය 4x-3y+15=0 ද, BD විකර්ණයේ 16. (a) සමීකරණය 2x+y-5=0 ද, A=(-3,1) ද වෙයි. AC විකර්ණයේ සමීකරණය හා රොම්බසයේ අනෙක් පාද තුනෙහි සමීකරණ සොයන්න.
 - $x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0$ so $x^2 + y^2 + 2g_2x + 2f_2y + c_2 = 0$ දෙක එකිනෙක ස්පර්ශ කරයි නම් ඒවායේ ස්පර්ශ ලක්ෂාය $2(g_1 - g_2)x + 2(f_1 - f_2)y + c_1 - c_2 = 0$ so $(f_1-f_2)x-(g_1-g_2)y+f_1g_2-f_2g_1=0$ සරල රේඛා මත පිහිටන බව පෙන්වන්න.

 $x^2 + y^2 + 4x + 2y + k = 0$ හා $x^2 + y^2 + 4x - 4y + 4 = 0$ වෘත්ත දෙක එකිනෙක ස්පර්ශ කරයි නම් kට තිබිය හැකි අගයන් සොයන්න.

එක් එක් අවස්ථාවේදී වෘත්ත දෙක ස්පර්ශ කෙරෙන්නේ අභාාන්තර හෝ බාහිර ලෙස දැයි නිර්ණය කරන්න.

ABC තුිකෝණයක් සඳහා සුපුරුදු අංකනයෙන්, කෝසයින් නීතිය පුකාශ කර සාධනය කරන්න.

$$(i) \qquad \frac{1}{secA} + \frac{1}{secB} + \frac{1}{secC} \ = \ \frac{a}{bc} \left(\frac{b+c-a}{2} \right) + \frac{b}{ac} \left(\frac{c+a-b}{2} \right) + \frac{c}{ab} \left(\frac{a+b-c}{2} \right) \quad \text{all} \quad \xi,$$

$$(ii)$$
 $bc \cos^2\frac{A}{2} + ac \cos^2\frac{B}{2} + ab \cos^2\frac{C}{2} = \frac{(a+b+c)^2}{2}$ බව ද පෙන්වන්න.

- $sin2\theta = 2sin\theta cos\theta + 1 = 0$ හි සාධාරණ විසඳුම, රේඩියනවලින් සොයන්න. (b)
- (c) $\alpha = tan^{-1}\left(\frac{1}{3}\right), \beta = tan^{-1}\left(\frac{1}{4}\right)$ හා $\gamma = tan^{-1}\left(\frac{2}{9}\right)$ නම්, $0<lpha+eta+\gamma<rac{\pi}{2}$ බව පෙන්වන්න.

ඒ නයින් $\alpha+\beta+\gamma<\frac{\pi}{4}$ බව පෙන්වන්න.

සබරගමුව පළාත් අධ්යාපන දෙපර්ත Sabaragamuwa Provincial Depart සබරගමුව පළාත් අධ්යාපන දෙපර්ත Sabaragamuwa Provincial Departi සබරගමුව පළාත් අධ්යාපන දෙපර්ත Sabaragamuwa Provincial Depart

සබරගමුව පළාත් අධාාපත දෙපර්තමේන්තුව சப்மரகமுவ பர்டசைத் திணைக்களம මින්තුව සබරගමුව පළාත් Provincial Department of මින්තුව සබරගමුව පළාත් Provincial Department of මින්තුව සබරගමුව පළාත් Provincial Department of

Provincial Departi தில் விடியாக அடியாக அடிய

පෙරහුරු පරීක්ෂණය 2022 - 13 ශේණීය (3 වන වාරය)

සංයුක්ත ගණිතය - II

10 S II

පැය තුනයි 03 Hours

නම

පන්තිය

විභාග අංකය

උපදෙස් :

- මෙම ප්‍රශ්න පත්‍ර කොටස් දෙකකින් සමන්විත වේ. A කොටස (ප්‍රශ්න 1 – 10) සහ B කොටස (ප්‍රශ්න 11 – 17)
- A කොටස සියලුම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සදහා ඔබේ පිළිතුරු සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම් ඔබට අමතර ලියන කඩදාසි භාවිතා කළ හැක.
- නියමිත කාලය අවසන් වූ පසු A කොටස B කොටස උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- 💠 පුශ්න පනුයෙහි B කොටස පමණක් ශාලාවෙන් පිටතට ගෙනයාමට ඔබට අවසර ඇත.

පරික්ෂකගේ පුයෝජනය සදහා පමණි

	(10) සංයුක්ත ගණි	තය I
කොටස	පුශ්න අංකය	ලකුණු
	1	
	2	
	3	
	4	
\boldsymbol{A}	5	
	6	
00	A /7	0100
	8	P()
4	9	-
	10	
1	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	එකතුව	
	පුතිශතය	

I පනුය	
II පතුය	
එකතුව	
අවසාන ලකුණු	

අවසාන ලකුණු

ඉලක්කමෙන්	
අකුරෙන්	

සංකේත අංකනය

උත්තර පනු පරික්ෂක	
1 පරික්ෂා කළේ 2	
අධීක්ෂණය කළේ	

		ගමන්කර ගැටේ. A හා B ගැටුමට පසු පුවේග සොයා චාලක ශක්ති හානිය සොයන්න. පුතාහාගති සංගුණකය e වේ.
2	A	Læs[papers group]
	02.	තිරස් තලයක 0 ලක්ෂයක සිට අංශුවක් තිරසට $\propto (\frac{\pi}{4} < \propto < \frac{\pi}{2})$ කෝණයකින් $u = 2\sqrt{ga}$ ආරම්භක පුවේගයෙන් පුක්ෂේපණය කරන ලදි. අංශුව තිරසට $2a$ දුරකින් ඇති උස a තාප්පයකින්
		ආරම්භක පිවෙගයෙන් පික්ෂේපීමාය කරන ලදී. අංශ්ව තරස්ට 20 දරකන ඇති උසි 0 තාප්පියකන
		යාන්තමින් යයි නම් $tan^2 \propto -4tan \propto +3 = 0$ බව පෙන්වා \propto සොයන්න.
		යාන්තමින් යයි නම් $tan^2 \propto -4tan \propto +3 = 0$ බව පෙන්වා \propto සොයන්න.
		යාන්තමින් යයි නම් $tan^2 \propto -4tan \propto +3 = 0$ බව පෙන්වා \propto සොයන්න.
		යාන්තමින් යයි නම් $tan^2 \propto -4tan \propto +3 = 0$ බව පෙන්වා \propto සොයන්න.
		යාන්තමින් යයි නම් $tan^2 \propto -4tan \propto +3 = 0$ බව පෙන්වා \propto සොයන්න.
		යාන්තමින් යයි නම් $tan^2 \propto -4tan \propto +3 = 0$ බව පෙන්වා \propto සොයන්න.
		යාන්තමින් යයි නම් $tan^2 \propto -4tan \propto +3 = 0$ බව පෙන්වා \propto සොයන්න.
		යාන්නමින් යයි නම් $tan^2 \propto -4tan \propto +3 = 0$ බව පෙන්වා \propto සොයන්න.
		යාන්තමින් යයි නම් $tan^2 \propto -4tan \propto +3 = 0$ බව පෙන්වා \propto සොයන්න.

	03.	එක එකක ස්කන්ධය m හා $2m$ වූ A හා B අංශු දෙකක්, අචල සුමට කප්පියක් මතින් යන සැහැල්ලු අවිතනා තන්තුවක දෙකෙළවරට ඇඳා, A අංශුව තිරස් ගෙබිමක සිට h උසකින් ඇතිව ද B අංශුව ගෙබිම ස්පර්ශ කරමින් ද සමතුලිතතාවයේ පිහිටා ඇත. දැන් A මතට I ආචේගයක් පහළට දෙනු ලැබේ. ආවේගයට පසු ගෝලවල පුවේග හා තන්තුවේ ආවේගී ආතතිය සොයන්න.
2:	2 A	/L #85 L papers group I
	04.	ස්කන්ධය Mkg වූ කාරයක්, විශාලත්වය RN වූ නියත පුතිරෝධයකට එරෙහිව ඍජු තිරස්
		මාර්ගයක ධාවනය වේ. කාරයේ එන්ජිම λkw ජවයකින් කිුයා කරමින් කාරය Vms^{-1} පුවේගයෙන් ධාවනය වන විට එහි ත්වරණය සොයන්න.

05.	සුපුරුදු අංකනයෙන්, O අවල මූලයකට අනුබද්ධයෙන් A හා B ලක්ෂා දෙකක පිහිටුම් දෛශික පිළිවෙලින් $2\underline{i}$ හා $2\underline{i}-\underline{J}$ යැයි ගනිමු. C යනු OB මත $A\hat{C}B=\frac{\pi}{2}$ වන පරිදි ලක්ෂායකි. \overrightarrow{OC} දෛශික \underline{i} හා \underline{J} ඇසුරින් ලියන්න.
A	/L &8 [papers group]
06.	දිග a හා බර w වූ AB ඒකාකාර දණ්ඩක් රූපයේ දක්වා ඇති පරිදි A කෙළවර සුමට සිරස් බිත්තියකට එරෙහිව C හි තබා ඇති සුමට නාදැත්තක් මගින් සමතුලිතතාවේ තබා ඇත. A හි දී බිත්තිය මගින් ඇති කරන පුතිකිුයාව හා C හිදී පුතිකිුයාව සොයන්න. $AC:CB=1:3$ වන පරිදි C පිහිටා ඇත. දණ්ඩ තිරසට \propto ආනත වේ. $\propto=\frac{\pi}{4}$ බව ද පෙන්වන්න.

(07	7.	$ABCD$ යනු $AB=2m$ හා $B\hat{A}D=rac{\pi}{3}$ වූ රොම්බසයකි. විශාලත්වය $5N,2N,3N,PN$ හා QN වන
			බල පිළිවෙලින් AD,BA,BD,DC හා CB දිගේ අක්ෂර අනුපිළිවෙලට කිුයා කරයි. සම්පුයුක්තයේ
			විශාලත්වය හා කිුයා රේඛාව සෙවීමට පුමාණවත් සමීකරණ ලියන්න.
22	2 /	4	/L @6 papers group
	08	3.	A බෑගයක රතු පාට බෝල R_1 ක් හා කළු පාට බෝල B_1 ද තවත් B බෑගයක රතු පාට බෝල
			R_2 ක් හා කළු පාට බෝල B_2 ක් ඇත. A හා B බෑගවල ඇති බෝල පාටින් හැර අන් සෑම අයුරින්
			ම සමාන වේ. A බෑගයෙන් සසම්භාවි ලෙස බෝලයක් ඉවතට ගෙන B බෑගය තුළට දමනු ලැබේ.
			දැන් B බෑගයෙන් සසම්භාවී ලෙස බෝලයක් ඉවතට ගනු ලැබේ.
			 B බෑගයෙන් ඉවතට ගත් බෝලය කළුපාට එකක් වීම.
			(ii) A බෑගයකින් ඉවතට ගත් බෝලය රතු පාට එකක් බව දී ඇති විට, B බෑගයෙන් ඉවතට
			ගත් බෝලය කළු පාට එකක් වීමේ සම්භාවිතා සොයන්න.

AT	121	122	110	0	T
ΑL	1121	140	/ 11)-S-	ı

	09.	A හා B යනු Ω නියදි අවකාශයක සිද්ධි දෙකක් යැයි ගනිමු. සුපුරුදු අංකනයෙන් $P(A^1)=2/5$	Ō,
		$P(A^1 \cup B^1) = 3/5$ හා $P(B-A) = 1/10$ බව දී ඇත. $P(B^1)$ හා $P(A \cup B)$ මසායන්න	٥.
		මෙහි A^1 හා B^1 වලින් පිළිවෙලින් A හා B හි අනුපූරක සිද්ධි දැක්වේ.	
		विकास मार्थिक विकास विकास मार्थिक विकास मुख्या विकास मार्थिक विकास मार्थिक विकास मार्थिक विकास मार्थिक विकास म	
			••
		- /! 0 [**
	7	A ll aas Inapers group	
+		<u> </u>	

	10.	එක්තරා කර්මාන්තශාලාවක සේවකයින් 100 දෙනෙකු තම නිවසේ සිට සේවා ස්ථානයට ගමන	ภ์
		කිරීමට ගනු ලබන කාලය (මිනිත්තුවලින්) පහත වගුවේ දී ඇත. ඉහත වහාප්තියේ මධාස්ථය හ	C
		මාතය සොයන්න.	
- 1			
		කාලය සේවකයින් සංඛ්යාව	
		කාලය සේවකයින් සංඛ්‍යාව 0 – 10 7	
		කාලය සේවකයින් සංඛ්යාව	
		කාලය සේවකයින් සංඛ්‍යාව 0 – 10 7 10 – 20 33 20 – 30 45 30 – 40 8	
		කාලය සේවකයින් සංඛ්‍යාව 0 – 10 7 10 – 20 33 20 – 30 45	
		කාලය සේවකයින් සංඛ්‍යාව 0 – 10 7 10 – 20 33 20 – 30 45 30 – 40 8	••)
		කාලය සේවකයින් සංඛ්‍යාව 0 – 10 7 10 – 20 33 20 – 30 45 30 – 40 8	
		කාලය සේවකයින් සංඛ්යාව 0-10 7 10-20 33 20-30 45 30-40 8 40-50 7	••)
		කාලය සේවකයින් සංඛ්‍යාව 0 – 10 7 10 – 20 33 20 – 30 45 30 – 40 8	•••
		කාලය සේවකයින් සංඛ්යාව 0-10 7 10-20 33 20-30 45 30-40 8 40-50 7	
		කාලය සේවකයින් සංඛ්‍යාව 0-10 7 10-20 33 20-30 45 30-40 8 40-50 7	
		කාලය මස්වකයින් සංඛාහව 0-10 7 10-20 33 20-30 45 30-40 8 40-50 7	
		කාලය සේවකයින් සංඛ්‍යාව 0 - 10	
		කාලය සේවකයින් සංඛ්යාව 0-10 7 10-20 33 20-30 45 30-40 8 40-50 7	
		කාලය සේවකයින් සංඛ්‍යාව	
		කාලය සේවකයින් සංඛ්‍යාව 0-10 7 10-20 33 20-30 45 30-40 8 40-50 7	
		කාලය සේවකයින් සංඛ්‍යාව	

පුශ්න හයකට පමණක් පිළිතුරු සපයන්න.

11. (a) සමාන P හා Q අංශු දෙකක්, AB=4d වන ආකාරයට තිරස් තලයක් මත පිහිටි A හා B අවල ලක්ෂාවල පිළිවෙළින් තබා ඇත. t=0 කාලයේ දී, P අංශුව, A ලක්ෂායේ දී නිශ්චලතාවයෙන් ආරම්භ කර, $u(<2\sqrt{fd})$ වේගයට පැමිණෙන තෙක් f නියත ත්වරණයෙන් ද, ඉන්පසුව u වේගයෙන් ඒකාකාර ලෙස ද, AB දිශාවට චලනය වේ. P අංශුව u වේගයට පැමිණෙන මොහොතේ දී, Q අංශුව, B ලක්ෂායේ දී ආරම්භ කර 3u වේගයෙන් ඒකාකාර ලෙස BA දිශාවට චලනය වේ. P අංශුවේ චලිතය සඳහා පුවේග-කාල පුස්තාරයක් අඳින්න.

Q අංශුවේ චලිතය සඳහා පුවේග-කාල පුස්තාරයක් එම රූප සටහනෙහි ම අඳින්න. මෙම පුවේග-කාල පුස්තාර යොදාගෙන,

- (i) P අංශුව නියත ත්වරණයෙන් ගමන් කළ දුර සොයන්න.
- (ii) $\frac{8fd-u^2}{8uf}+\frac{u}{f}$ කාලයේ දී P හා Q අංශු දෙක එකිනෙක පසු කර යන බව පෙන්වන්න.
- (iii) Q අංශුව හමුවීම සඳහා P අංශුව ගමන් කරන ලද මුළු දුර සොයන්න.
- (b) දකුණු දිශාවට $u\ km\ h^{-1}$ වේගයෙන් චලනය වන A නම් නැවකට t=0 කාලයේ දී අධිවේග බෝට්ටුවක් $\sqrt{2u}\ km\ h^{-1}$ වේගයෙන් චලනය වනු දර්ශනය වෙයි. එම මොහොතේදී ම, උතුරෙන් බටහිරට 75^0 ක දිශාවට චලනය වන B නම් දෙවන නැවකට අධිවේග බෝට්ටුව නැගෙනහිර දිශාවට $u\ km\ h^{-1}$ වේගයෙන් වලනය වනු දර්ශනය වෙයි. A නැවේ හා B නැවේ චලිත සඳහා සාපේක්ෂ පුවේගවල පුවේග තිුකෝණ එකම රූප සටහනක අඳින්න.

B නැවේ වේගය ද, අධිවේග බෝට්ටුවේ පුවේගය ද සොයන්න. t=0 කාලයේ දී, A නැව අධිවේග බෝට්ටුවට බටහිර දෙසට $d\ km$ දුරකින් ද, B නැව අධිවේග බෝට්ටුවට ගිණිකොන දෙසට $d\ km$ දුරකින් ද පිහිටා තිබෙයි නම්, අධිවේග බෝට්ටුවට සාපේක්ෂව A නැවේ හා B නැවේ පෙත් එකම රූප සටහනක අඳින්න.

ඒ නයින් තදන්තර චලිතයේ දී අධිවේගී බෝට්ටුවේ සිට, A හා B නැව් එක එකකට ඇති කෙටි ම දුර සොයන්න.

12. (a) ස්කන්ධය m වන සුමට කුඤ්ඤයක ස්කන්ධ කේන්දුය ඔස්සේ යන්නා වූ ද, BC ඔස්සේ යන මුහුණන තිරස් අවල සුමට මේසයක් මත තබා ඇත්තා වූ ද, ABC තිකෝණාකාර සිරස් හරස්කඩෙහි A ශීර්ෂයේ දී ස්කන්ධය M වන P නම් අංශුවක් තබා ඇත. AB හා AC යනු අදාළ මුහුණත්වල වැඩිතම බෑවුම් රේඛා ද, $B\hat{A}C = \frac{\pi}{2}$, $A\hat{B}C = \alpha$ හා BC = a ද වෙයි. පද්ධතිය නිශ්චලතාවෙන් මුදා හැරෙයි.P අංශුව AB දිගේ පහළට චලනය α වේ යැයි උපකල්පනය කරමින්, AB දිගේ P අංශුව සඳහා ද, තිරසට α

පද්ධතිය සඳහා ද චලිත සමීකරණ ලියා දක්වන්න.

කුඤ්ඤයට සාපේක්ෂව P අංශුවේ ත්වරණයේ විශාලත්වය සොයා කුඤ්ඤයේ ත්වරණයේ විශාලත්වය

 $rac{Mg\sin2lpha}{2(m+M\,\sin^2\!lpha)}$ බව පෙන්වන්න.

22 A/L අ웅 [p'apers group

222/10-sA/Læ8 [papers group

(b) අරය 2a හා කේන්දුය 0 වූ චතුර්ථභාග වෘත්තාකාර චාපයක හැඩයට වන සිහින් සුමට AB බටයක්, OA තිරස් ද, OB සිරස් ද, O කේන්දුය තිරස්පොළවක සිට 4a උසකින් ද පිහිටන පරිදි රූපයේ පෙන්වා ඇති ආකාරයට සවිකර ඇත. ස්කන්ධය m වූ P නම් අංශුවක් A හිදී නිශ්වලතාවයෙන් බටය දිගේ සිරස්ව පහළට මුදාහැරේ. ශක්ති සංස්ථිති මූලධර්මය යොදාගනිමින්, B ලක්ෂායේදී P අංශුවේ පුවේගය සොයන්න. ස්කන්ධය m වූ Q නම් වෙනත් සුමට අංශුවක්, P හා Q අංශු තිරස් ලෙස Bහි දී ගැටෙන ආකාරයට, O හිදී නිශ්වලතාවෙන් සිරස් ව පහළට මුදා හැරේ. ගැටුමෙන් මොහොතකට පසු, P අංශුවේ පුවේගය හා Q අංශුවේ පුවේගයේ තිරස් සංරචකය සොයන්න. මෙහි e යනු අංශු අතර පුතාාගති සංගුණකය වේ. Q අංශුව පොළොව මත වැටෙන ලක්ෂාකට දුර හා කාලය සොයන්න.

13. සුමට තිරස් මේසයක් මත AB=7l,BC=2l,CD=3l හා DE=2l වන ආකාරයට A,B,C,D හා E නම් ලක්ෂා පහක් සරල රේඛාවක් මත පිහිටයි. ස්වභාවික දිග 14l වන සැහැල්ලු පුතාාස්ථ තන්තුවක් මගින් A හා E ලක්ෂා සම්බන්ධ කෙරේ. ස්කන්ධය m වූ P නම් සුමට අංශුවක් A ලක්ෂායේ සිට 9l දුරින් තන්තුව මත පිහිටි ලක්ෂායකට සවි කෙරේ. P අංශුව AE දිගේ D ලක්ෂායට ඇද නිශ්චලතාවයෙන් මුදා හැරේ. P අංශුව, AE දිගේ A ලක්ෂායේ සිට x දුරින් පිහිටන විට, $9l \le x \le 12l$ සඳහා, P අංශුවේ චලිත සමීකරණය ලියා දක්වා සුපුරුදු අංකනයෙන් $\ddot{x} + \frac{\lambda}{9ml}(x-9l) = 0$ බව පෙන්වන්න ; මෙහි λ යනු තන්තුවේ පුතාස්ථතා මාපාංකය වෙයි.

y=x-9l යැයි ලිවීමෙන්, $\ddot{x}+rac{\lambda}{9ml}y=0$ බව පෙන්වන්න.

ඉහත සමීකරණයේ විසඳුම $y=Acos\omega t+Bsin\omega t$ ආකාරයේ යැයි උපකල්පනය කරමින් A,B හා ω නියත සොයන්න.

ඒ නයින් P අංශුව $\sqrt{\frac{9ml}{\lambda}}\cos^{-1}\frac{2}{3}$ කාලයකට පසුව $-5l\sqrt{\frac{\lambda}{9ml}}$ පුවේගය සහිත ව D' ලක්ෂාය පසුකර යන බව පෙන්වන්න. මෙහි D' යනු DD'=l වන පරිදි ලක්ෂායකි.

 $7l \leq x \leq 9l$ සඳහා P අංශුවේ චලිත සමීකරණය $\ddot{y} + \frac{\lambda}{5ml}y = 0$ ලෙස තබාගත හැකි බව පෙන්වන්න.

මෙම සමීකරණයේ විසඳුම $y=A'cos\omega'(t-t_0)+B'sin\omega'(t-t_0)$, ආකාරයේ යැයි උපකල්පනය කරමින්, A',B' හා ω' නියත සොයන්න ; මෙහි t_0 ඉහත D' වෙත ළඟා වන කාලය වෙයි.

14. (a) A,B,C හා D යනු පැත්තක දිග මීටර a වන සමචතුරසුාකාර ශීර්ෂ වේ. E යනු CD=DE වන ආකාරයට දික් කරන ලද CD මත පිහිටි ලක්ෂාය වෙයි. විශාලත්වය නිව්ටන $P,2P,3P,\frac{3}{\sqrt{2}}P,\frac{1}{\sqrt{2}}P$ හා 3P වන බව පිළිවෙළින් AB,AD,CD,AC,EA හා CB පාද දිගේ, අක්ෂර අවුපිළිවෙළින් දැක්වෙන දිශා අතට කිුයා කරයි. පද්ධතිය සමතුලිතතාවේ පවතින බව පෙන්වන්න.

EA දිගේ කියාකරන බලය DB දිගේ අක්ෂර අනුපිළිවෙළින් දැක්වෙන දිශා අතට කියා කරන එකම විශාලත්වයක් සහිත බලයක් මගින් පුතිස්ථාපනය කෙරේ. පද්ධතිය සමතුලිතතාවේ පවත්වා ගැනීම සඳහා යෙදිය යුතු යුග්මයේ විශාලත්වය හා අත සොයන්න.

(b) එක එකක බර W වන AB හා BC ඒකකාර සමාන දඬු දෙකක්, B හි දී සුවල ලෙස සන්ධි කර ඇති අතර ABC කෝණය සෘජු කෝණයක් වන ආකාරයට ද, A හා C කෙළවරවල් තිරස් රළු තලයක් මත පිහිටන සේ ද සිරස් තලයක නිශ්චල ව ඇත. BC හි මධා ලක්ෂායට සම්බන්ධ කරන ලද සැහැල්ලු අවිතනා තන්තුවක් අනුකුමයෙන් වැඩි වන P බලයකින් AC ට සමාන්තර දිශාවේ අදිනු ලැබෙයි. P බලය 2W ට අඩුවන විට පද්ධතිය සමතුලිතතාවේ පවතී නම්, A හා C හි දී, අභිලම්බ පුතිකුියාවට ඝර්ෂණයෙහි අනුපාත, සොයන්න.

- 15. (a) ABCDE පංචාසුයක් සෑදෙන ආකාරයට එක එකක බර W වන සමාන ඒකකාර දඬු පහක් සුවල ලෙස සන්ධි කර ඇත. තිරස් ඍජු කම්බියක් මත වලනය වීමට හැකිවන පරිදි B හා E සන්ධි කුඩා සුමට සැහැල්ලු මුදු මගින් සංරෝධනය කර ඇති අතර, AB හා AE එක එකක් තිරසට α කෝණයකින් ආනත ද, BC හා DE එක එකක් තිරසට β කෝණයකින් ආනත ද, BC, CD, DE දඬු A ට පහලින් ද වන ආකාරයට දඬු සිරස් තලයක සමතුලිතතාවෙන් එල්ලෙමින් තිබෙයි. B හා E හි දී සමාන හා පුතිවිරුද්ධ බල යෙදේ නම්, එක් එක් බලයේ විශාලත්වය $\frac{1}{2}W(\cos\alpha\sin\beta-2\cos\beta\sin\alpha)\cos\cos\alpha\sec\alpha\sec\beta$ බව පෙන්වන්න.
 - (b) OA,OB,OC,AB හා BC සැහැල්ලු දඬු පහක්, රූපයේ දැක්වෙන පරිදි රාමුකට්ටුවක් සෑදෙන ආකාරයට, ඒවායේ කෙළවරවලදී සුමට ලෙස සන්ධි කර ඇත ; මෙහි OC = OB = BCද, OA යන්න OCට ලම්බ ද, OB යන්න BCට ලම්බ ද වේ. රාමුකට්ටුව Oහි දී සුමට ලෙස අසවු කර ඇති අතර C හි දී නිව්ටන C තිරස් වන පරිදි C හි නිව්ටන C තිරස් බලයක් මගින් රාමුකට්ටුව සිරස් තලයක තබා ඇත.

- (ii) 0 හි පුතිකිුයාවේ විශාලත්වය හා දිශාව සොයන්න.
- (iii) බෝ අංකනය යෙදීමෙන්, රාමුකට්ටුව සදහා ප්‍රත්‍යාබල රූපසටහනක් ඇඳ, ඒ නයින් ආතති හා තෙරපුම් වෙන් කොට දක්වමින් දඬු සියල්ලෙහි ප්‍රත්‍යාබල සොයන්න.

16. කේන්දුයෙහි lpha කෝණයක් ආපාතනය කරන අරය a වන වෘත්තයක කේන්දික ඛණ්ඩයක ආකාරයේ වූ ඒකාකාර ආස්තරයක ස්කන්ධ කේන්දුය, එහි සමමිති අක්ෂය මත කේන්දුයේ සිට $4asinrac{lpha}{2}$

 $\frac{4a\sin{\frac{\pi}{2}}}{3\alpha}$ දුරකින් පිහිටන බව පෙන්වන්න.

පැත්තක දිග a හා $B\hat{O}E=rac{\pi}{3}$ වන ABOE නම් රොම්බසයකින්,

කේන්දුය 0 හා අරය $rac{a}{2}$ වන වෘත්තයක කෙන්දික ඛණ්ඩයක ආකාරයේ

වූ OCD කොටසක් රූපයේ පෙන්වා ඇති ආකාරයට ඉවත් කර $ABCDE_{p}$ ඒකකාර ආසතරයක් සාදා ඇත. සාදා ගන්නා ලද අස්තරයේ ස්කන්ධ

කේන්දුය වන G, එහි සමමිති අක්ෂය මත A සිට $\left(\frac{19-\sqrt{3}\pi}{(12\sqrt{3}-\pi)}\right)a$ දුරකින් පිහිටන බව පෙන්වන්න.

එක් කෙළවරක් සිවිලමකට හා අනෙක් කෙළවර B ලක්ෂායට සවිකොට ඇති සැහැල්ලු අවිතනා තන්තුවක් මගින් ආස්තරය සිරස් තලයක නිදහසේ එල්ලා තැබෙයි.

 a^{C}

BE යට අත් සිරස සමග heta කෝණයක් සාදයි නම් an heta සොයන්න. ආස්තරයේ තලයේ P නම් තිරස් බලයක් A හිදී යෙදීමෙන් AG තිරස් වන ආකාරයට ආස්තරය සමතුලිතතාවේ තැබෙයි. P බලය හා තන්තුවේ ආතතිය, Wහා heta ඇසුරෙන් සොයන්න.; මෙහි Wයනු ආස්තරයේ බර වෙයි.

17. (a) A හා B යනු Ω නියැදි අවකාශයක සිද්ධි දෙකක් යැයි ගනිමු.

පහත දැක්වෙන දෑ එක එකකින් අදහස් කරන්නේ කවරක් දැයි අර්ථ දක්වන්න.

- (i) A හා B යනු අනොහනා වශයෙන් බහික්ෂාර සිද්ධි වේ.
- (ii) A හා B යනු නිරවශේෂ සිද්ධි වේ.
- (iii) A දී ඇති විට B හි අසම්භාවා සම්භාවිතාව.
- (b) A_1 හා A_2 යනු Ω හි අනොනා වශයෙන් බහිෂ්කාර හා නිරවශේෂ සිද්ධි දෙකක් යැයි ගනිමු.

 ${\it C}$ යනු Ω හි ඕනෑම සිද්ධියක් යැයි ගනිමු.

(i)
$$P(C) = P(A_1)P(C|A_1) + P(\overline{A_2})P(C|A_2)$$
,

$$(ii) \quad P(A_1|C) = rac{P(A_1)P(C|A_1)}{P(A_1)P(C|A_1) + P(A_2)P(C|A_2)} \,,$$
 බව සාධනය කරන්න.

(c) සමූහිත සංඛ්‍යාත ව්‍‍‍‍ාාප්තියේ මධ්‍යන්‍‍‍‍ය හා සම්මත අපගමනය සොයන්න.

ස්කන්ධ පරාසය	ඌරන් ගණන
65 - 75	3
75 - 85	18
85 - 95	20
95 - 105	14
105 - 115	7

22 A/L අපි [papers group]