This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

U.S. Application No.: 09/424,300

and that repeated torsion value RT (turns/100D) of the steel wire, which is defined as sum of forward twisting and reverse twisting given until a crack is formed on a steel wire in a test wherein a steel wire is subjected to a repetition of forward twisting equivalent to 3 turns per 100D and reverse twisting to the original state with the axis of the steel wire kept straight, satisfies following formula;

log RT>2-0.001 {TS-(2250-1450logD)}.

2. (Amended) A steel wire according to claim 1, having tensile strength TS (N/mm2) satisfying following formulas,

TS \section 2750-1450 log D.

6. (Amended) A method of manufacturing a steel wire according to claim 8, wherein ε at the final die is set from 3.5 to 4.2.

7. (Amended) A method of manufacturing a steel wire according to clam 8, wherein a bending operation with tension is applied to the steel wire drawn through the final die.

8. (New) A method of manufacturing a steel wire comprising; a wire diameter ranging from 0.10mm to 0.40mm obtained by subjecting a high-carbon steel wire material having a carbon content ranging from 0.70% to 0.90% in weight to heat treatment and wire drawing, characterized in;

a tensile strength TS (N/mm 2) of the steel wire satisfies following formula, TS \geq 2250-1450logD

wherein D is the diameter of the steel wire in mm and log means common logarithm,

and that repeated torsion value RT (turns/100D) of the steel wire, which is defined as sum of forward twisting and reverse twisting given until a crack is formed on a steel wire in a test wherein a steel wire is subjected to a repetition of forward twisting equivalent to 3 turns per 100D and reverse twisting to the original state with the axis of the steel wire kept straight, satisfies following formula-

 $logRT \ge 2-0.001 \{TS-(2250-1450logD)\},\$

said method comprising the steps of heat treating drawing a high-carbon steel wire material after heat treatment, wherein the step of drawing is carried out according to following conditions;

- 1. reduction per die is set form (22.67 ε +3)% to 29% for dies at which ε is less than χ^{2} 0.75,
- 2. reduction per die is set from 20% to 29% for dies at which ϵ is not less than 0.75 and not more than 2.25,
- 3. reduction per dies is set from (-5.56 ϵ +32.5)% to (-6.22 ϵ +43)% for dies at which ϵ is more than 2.25 except for the final die,

67

U.S. Application No.: 09/424,300

- 4. reduction per die is set from 4% to $(8.3 \epsilon + 40.6)$ % for the final die, and
- 5. ε at the final die is set from 3.0 to 4.3,

wherein ε is drawing strain expressed by a formula $\varepsilon = 2\ln(d_0/d)$, d_0 is diameter of the steel wire material in mm before drawing, d is diameter of the steel wire in mm after passing through a die, and 1n means natural logarithm.

9. (New) A steel wire comprising wire diameter ranging from 0.10mm to 0.40mm obtained by subjecting a high-carbon steel wire material having a carbon content ranging from 0.70% to 0.90% in weight to heat treatment and wire drawing,

the steel wire manufactured by drawing a high-carbon steel wire material after heat treatment, wherein the drawing is carried out according to following condition;

- 1. reduction per die is set form (22.67 ϵ +3)% to 29% for dies at which ϵ is less than 0.75,
- 2. reduction per die is set from 20% to 29% for dies at which ϵ is not less than 0.75 and not more than 2.25,
- 3. reduction per dies is set from (-5.56 ϵ +32.5)% to (-6.22 ϵ +43)% for dies at which ϵ is more than 2.25 except for the final die,
- 4. reduction per die is set from 4% to $(8.3 \epsilon + 40.6)$ % for the final die, and
- 5. ε at the final die is set from 3.0 to 4.3,

wherein ε is drawing strain expressed by a formula $\varepsilon = 2\ln(d_0/d)$, d_0 is diameter of the steel wire material in mm before drawing, d is diameter of the steel wire in mm after passing through a die,

U.S. Application No.: 09/424,300

and 1n means natural logarithm and the tensile strength TS (N/mm²) of the steel wire satisfies following formula,

TS\ge 2250-1450logD

wherein D is the diameter of the steel wire in mm and log means common logarithm,

and that repeated torsion value RT (turns/100D) of the steel wire, which is defined as sum of forward twisting and reverse twisting given until a crack is formed on a steel wire in a test wherein a steel wire is subjected to a repetition of forward twisting equivalent to 3 turns per 100D and reverse twisting to the original state with the axis of the steel wire kept straight, satisfies following formula,

 $logRT \ge 2-0.001 \{TS-(2250-1450logD)\}$

10. (New) A steel wire according to claim 9, having tensile strength TS (N/mm2) satisfying following formula.

TS≥2750-1450logD.

11. (New) A steel wire according to claim 10, having repeated torsion value RT not \(\cdot \) less than 60% of RT of the same steel wire the surface layer of which has been removed by the amount equivalent to 10% of total volume.

U.S. Application No.: 09/424,300

12. (New) A steel wire according to claim 9, having breaking torsion value, which is defined as an amount of twisting to one direction subjected to a steel wire until the steel wire is broken, not less than 20 turns per 100D when the steel wire has been given such a preforming that the steel wire has minimum radius of curvature of 10 to 60 times its diameter and embedded in rubber and taken out from the rubber after vulcanization.

