

DMH/LMT/pdd
September 7, 2000

-1-

Date: 9/7/00 Express Mail Label No. EL552573612VS

Inventors: Eric S. Lander, Michele Cargill, James S. Ireland, Stacey

Bolk, George Q. Daley and Jeanette J. McCarthy

Attorney's Docket No.: 2825.1027-001

SINGLE NUCLEOTIDE POLYMORPHISMS IN GENES

RELATED APPLICATIONS

- This application claims the benefit of U.S. Provisional Application Serial No. 60/153,357, filed September 10, 2000, U.S. Provisional Application Serial No. 5 60/220,947, filed July 26, 2000, and U.S. Provisional Application Serial No. 60/225,724, filed August 16, 2000, the entire teachings of all of which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

- The genomes of all organisms undergo spontaneous mutation in the course of 10 their continuing evolution, generating variant forms of progenitor nucleic acid sequences (Gusella, *Ann. Rev. Biochem.* 55, 831-854 (1986)). The variant form may confer an evolutionary advantage or disadvantage relative to a progenitor form, or may be neutral. In some instances, a variant form confers a lethal disadvantage and is not transmitted to subsequent generations of the organism. In other instances, a variant 15 form confers an evolutionary advantage to the species and is eventually incorporated into the DNA of many or most members of the species and effectively becomes the progenitor form. In many instances, both progenitor and variant form(s) survive and co-

exist in a species population. The coexistence of multiple forms of a sequence gives rise to polymorphisms.

- Several different types of polymorphism have been reported. A restriction fragment length polymorphism (RFLP) is a variation in DNA sequence that alters the 5 length of a restriction fragment (Botstein *et al.*, *Am. J. Hum. Genet.* 32, 314-331 (1980)). The restriction fragment length polymorphism may create or delete a restriction site, thus changing the length of the restriction fragment. RFLPs have been widely used in human and animal genetic analyses (see WO 90/13668; W090/11369; Donis-Keller, *Cell* 51, 319-337 (1987); Lander *et al.*, *Genetics* 121, 85-99 (1989)).
- 10 When a heritable trait can be linked to a particular RFLP, the presence of the RFLP in an individual can be used to predict the likelihood that the animal will also exhibit the trait.

Other polymorphisms take the form of short tandem repeats (STRs) that include tandem di-, tri- and tetra-nucleotide repeated motifs. These tandem repeats are also 15 referred to as variable number tandem repeat (VNTR) polymorphisms. VNTRs have been used in identity and paternity analysis (US 5,075,217; Armour *et al.*, *FEBS Lett.* 307, 113-115 (1992); Horn *et al.*, W0 91/14003; Jeffreys, EP 370,719), and in a large number of genetic mapping studies.

Other polymorphisms take the form of single nucleotide variations between 20 individuals of the same species. Such polymorphisms are far more frequent than RFLPs, STRs and VNTRs. Some single nucleotide polymorphisms (SNP) occur in protein-coding nucleic acid sequences (coding sequence SNP (cSNP)), in which case, one of the polymorphic forms may give rise to the expression of a defective or otherwise variant protein and, potentially, a genetic disease. Examples of genes in 25 which polymorphisms within coding sequences give rise to genetic disease include β -globin (sickle cell anemia), apoE4 (Alzheimer's Disease), Factor V Leiden (thrombosis), and CFTR (cystic fibrosis). cSNPs can alter the codon sequence of the gene and therefore specify an alternative amino acid. Such changes are called "missense" when another amino acid is substituted, and "nonsense" when the alternative codon specifies a

stop signal in protein translation. When the cSNP does not alter the amino acid specified the cSNP is called "silent".

Other single nucleotide polymorphisms occur in noncoding regions. Some of these polymorphisms may also result in defective protein expression (e.g., as a result of 5 defective splicing). Other single nucleotide polymorphisms have no phenotypic effects.

Single nucleotide polymorphisms can be used in the same manner as RFLPs and VNTRs, but offer several advantages. Single nucleotide polymorphisms occur with greater frequency and are spaced more uniformly throughout the genome than other forms of polymorphism. The greater frequency and uniformity of single nucleotide 10 polymorphisms means that there is a greater probability that such a polymorphism will be found in close proximity to a genetic locus of interest than would be the case for other polymorphisms. The different forms of characterized single nucleotide polymorphisms are often easier to distinguish than other types of polymorphism (e.g., by use of assays employing allele-specific hybridization probes or primers).

15 Only a small percentage of the total repository of polymorphisms in humans and other organisms has been identified. The limited number of polymorphisms identified to date is due to the large amount of work required for their detection by conventional methods. For example, a conventional approach to identifying polymorphisms might be to sequence the same stretch of DNA in a population of individuals by dideoxy 20 sequencing. In this type of approach, the amount of work increases in proportion to both the length of sequence and the number of individuals in a population and becomes impractical for large stretches of DNA or large numbers of persons.

SUMMARY OF THE INVENTION

Work described herein pertains to the identification of polymorphisms which can 25 predispose individuals to disease, by resequencing large numbers of genes in a large number of individuals. Various genes from a number of individuals have been resequenced as described herein, and SNPs in these genes have been discovered (see the Table and Fig. 3). Some of these SNPs are cSNPs which specify a different amino acid

sequence, some of the SNPs are silent cSNPs and some of these cSNPs specify a stop signal in protein translation. Some of the identified SNPs were located in non-coding regions.

- The invention relates to a gene which comprises a single nucleotide polymorphism at a specific location. In a particular embodiment the invention relates to the variant allele of a gene having a single nucleotide polymorphism, which variant allele differs from a reference allele by one nucleotide at the site(s) identified in the Table and Fig. 3. Complements of these nucleic acid sequences are also included. The nucleic acid molecules can be DNA or RNA, and can be double- or single-stranded.
- 10 Nucleic acid molecules can be, for example, 5-10, 5-15, 10-20, 5-25, 10-30, 10-50 or 10-100 bases long.

The invention further provides allele-specific oligonucleotides that hybridize to the reference or variant allele of a gene comprising a single nucleotide polymorphism or to the complement thereof. These oligonucleotides can be probes or primers.

- 15 The invention further provides a method of analyzing a nucleic acid from an individual. The method determines which base is present at any one of the polymorphic sites shown in the Table and/or Fig. 3. Optionally, a set of bases occupying a set of the polymorphic sites shown in the Table and /or Fig. 3 is determined. This type of analysis can be performed on a number of individuals, who are tested for the presence of a
- 20 disease phenotype. The presence or absence of disease phenotype is then correlated with a base or set of bases present at the polymorphic site or sites in the individuals tested.

- Thus, the invention further relates to a method of predicting the presence, absence, likelihood of the presence or absence, or severity of a particular phenotype or disorder associated with a particular genotype. The method comprises obtaining a nucleic acid sample from an individual and determining the identity of one or more bases (nucleotides) at polymorphic sites of genes described herein, wherein the presence of a particular base is correlated with a specified phenotype or disorder, thereby

predicting the presence, absence, likelihood of the presence or absence, or severity of the phenotype or disorder in the individual.

The thrombospondins are a family of extracellular matrix (ECM) glycoproteins that modulate many cell behaviors including adhesion, migration, and proliferation.

- 5 Thrombospondins (also known as thrombin sensitive proteins or TSPs) are large molecular weight glycoproteins composed of three identical disulfide-linked polypeptide chains. The results described herein also reveal an important association between alterations, particularly SNPs, in TSP genes, particularly TSP-1 and TSP-4, and vascular disease. In particular, SNPs in these genes which are associated with
- 10 premature coronary artery disease (CAD)(or coronary heart disease) and myocardial infarction (MI) have been identified and represent a potentially vital marker of upstream biology influencing the complex process of atherosclerotic plaque generation and vulnerability.

Thus, the invention relates to the TSP gene SNPs identified as described herein, both singly and in combination, as well as to the use of these SNPs, and others in TSP genes, particularly those nearby in linkage disequilibrium with these SNPs, for diagnosis, prediction of clinical course and treatment response for vascular disease, development of new treatments for vascular disease based upon comparison of the variant and normal versions of the gene or gene product, and development of cell-culture based and animal models for research and treatment of vascular disease. The invention further relates to novel compounds and pharmaceutical compositions for use in the diagnosis and treatment of such disorders. In preferred embodiments, the vascular disease is CAD or MI.

The invention relates to isolated nucleic acid molecules comprising all or a portion of the variant allele of TSP-1 (e.g., as exemplified by SEQ ID NO: 1), and to isolated nucleic acid molecules comprising all or a portion of the variant allele of TSP-4 (e.g., as exemplified by SEQ ID NO: 3). Preferred portions are at least 10 contiguous nucleotides and comprise the polymorphic site, e.g., a portion of SEQ ID NO: 1 which is at least 10 contiguous nucleotides and comprises the "G" at position 2210, or a

portion of SEQ ID NO: 3 which is at least 10 contiguous nucleotides and comprises the "C" at position 1186. The invention further relates to isolated gene products, e.g., polypeptides or proteins, which are encoded by a nucleic acid molecule comprising all or a portion of the variant allele of TSP-1 or TSP-4 (e.g., SEQ ID NO: 1 or SEQ ID NO: 5, respectively). The invention also relates to nucleic acid molecules which hybridize to and/or share identity with the variant alleles identified herein (or their complements) and which also comprise the variant nucleotide at the SNP site.

The invention further relates to isolated proteins or polypeptides comprising all or a portion of the variant amino acid sequence of TSP-1 (e.g., as exemplified by SEQ ID 10 NO: 2), and to isolated proteins or polypeptides comprising all or a portion of the variant amino acid sequence of TSP-4 (e.g., as exemplified by SEQ ID NO: 4). Preferred polypeptides are at least 10 contiguous amino acids and comprise the polymorphic amino acid, e.g., a portion of SEQ ID NO: 2 which is at least 10 contiguous amino acids and comprises the serine at residue 700, or a portion of SEQ ID 15 NO: 4 which is at least 10 contiguous amino acids and comprises the proline at residue 387. The invention further relates to isolated nucleic acid molecules encoding such proteins and polypeptides, as well as to antibodies which bind, e.g., specifically, to such proteins and polypeptides.

The invention further relates to a method of diagnosing or aiding in the diagnosis 20 of a disorder associated with the presence of one or more of (a) a G at nucleotide position 2210 of SEQ ID NO: 1; or (b) a C at nucleotide position 1186 of SEQ ID NO: 3 in an individual. The method comprises obtaining a nucleic acid sample from the individual and determining the nucleotide present at one or more of the indicated nucleotide positions, wherein presence of one or more of (a) a G at nucleotide position 25 2210 of SEQ ID NO: 1; or (b) a C at nucleotide position 1186 of SEQ ID NO: 3 is indicative of increased likelihood of said disorder in the individual as compared with an appropriate control, e.g., an individual having the reference nucleotide at one or more of said positions. In a particular embodiment the disorder is a vascular disease selected from the group consisting of atherosclerosis, coronary heart or artery disease, MI,

stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism. In a preferred embodiment, the vascular disease is selected from the group consisting of CAD and MI.

The invention further relates to a method of diagnosing or aiding in the diagnosis 5 of a disorder associated with one or more of (a) a G at nucleotide position 2210 of SEQ ID NO: 1; or (b) a C at nucleotide position 1186 of SEQ ID NO: 3 in an individual. The method comprises obtaining a nucleic acid sample from the individual and determining the nucleotide present at one or more of the indicated nucleotide positions, wherein presence of one or more of (a) an A at nucleotide position 2210 of SEQ ID NO: 1; or (b) 10 a G at nucleotide position 1186 of SEQ ID NO: 3 is indicative of decreased likelihood of said disorder in the individual as compared with an appropriate control, *e.g.*, an individual having the variant nucleotide at said position. In a particular embodiment the disorder is a vascular disease selected from the group consisting of atherosclerosis, coronary heart or artery disease, MI, stroke, peripheral vascular diseases, venous 15 thromboembolism and pulmonary embolism. In a preferred embodiment, the vascular disease is selected from the group consisting of CAD and MI.

In one embodiment, the invention relates to a method for predicting the likelihood that an individual will have a vascular disease (or aiding in the diagnosis of a vascular disease), comprising the steps of obtaining a DNA sample from an individual to be 20 assessed and determining the nucleotide present at one or more of nucleotide positions 2210 of SEQ ID NO: 1 or 1186 of SEQ ID NO: 3. The presence of the reference nucleotide at one or more of these positions indicates that the individual has a lower likelihood of having a vascular disease than an individual having the variant nucleotide at one or more of these positions, or a lower likelihood of having severe symptomology. 25 In a particular embodiment, the individual is an individual at risk for development of a vascular disease.

The invention further relates to a method of diagnosing or aiding in the diagnosis of a disorder associated with the presence of one or more of (a) a serine at amino acid position 700 of SEQ ID NO: 2; or (b) a proline at amino acid position 387 of SEQ ID

NO: 4 in an individual. The method comprises obtaining a biological sample containing the TSP-1 and/or TSP-4 protein or relevant portion thereof from the individual and determining the amino acid present at one or more of the indicated amino acid positions, wherein presence of one or more of (a) a serine at amino acid position 700 of SEQ ID

- 5 NO: 2; or (b) a proline at amino acid position 387 of SEQ ID NO: 4 is indicative of increased likelihood of said disorder in the individual as compared with an appropriate control, *e.g.*, an individual having the reference amino acid at one or more of said positions.

The invention further relates to a method of diagnosing or aiding in the diagnosis
10 of a disorder associated with one or more of (a) a serine at amino acid position 700 of SEQ ID NO: 2; or (b) a proline at amino acid position 387 of SEQ ID NO: 4 in an individual. The method comprises obtaining a biological sample containing the TSP-1 and/or TSP-4 protein or relevant portion thereof from the individual and determining the amino acid present at one or more of the indicated amino acid positions, wherein
15 presence of one or more of (a) an asparagine at amino acid position 700 of SEQ ID NO: 2; or (b) an alanine at amino acid position 387 of SEQ ID NO: 4 is indicative of decreased likelihood of said disorder in the individual as compared with an appropriate control, *e.g.*, an individual having the variant amino acid at one or more of said positions.

20 In one embodiment, the invention relates to a method for predicting the likelihood that an individual will have a vascular disease (or aiding in the diagnosis of a vascular disease), comprising the steps of obtaining a biological sample comprising the TSP-1 and/or TSP-4 protein or relevant portion thereof from an individual to be assessed and determining the amino acid present at one or more of amino acid positions 700 of SEQ
25 ID NO: 2 or 387 of SEQ ID NO: 4. The presence of the reference amino acid at one or more of these positions indicates that the individual has a lower likelihood of having a vascular disease than an individual having the variant amino acid at one or more of these positions, or a lower likelihood of having severe symptomology. In a particular

embodiment, the individual is an individual at risk for development of a vascular disease.

In another embodiment, the invention relates to pharmaceutical compositions comprising a reference TSP-1 and/or TSP-4 gene or gene product, or active portion thereof, for use in the treatment of vascular diseases. The invention further relates to the use of agonists and antagonists of TSP-1 and TSP-4 activity for use in the treatment of vascular diseases. In a particular embodiment the vascular disease is selected from the group consisting of atherosclerosis, coronary heart or artery disease, MI, stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism. In a preferred embodiment, the vascular disease is selected from the group consisting of CAD and MI.

BRIEF DESCRIPTION OF THE DRAWINGS

Figs. 1A-1D show the reference nucleotide (SEQ ID NO: 1) and amino acid (SEQ ID NO: 2) sequences for TSP-1.

15 Figs. 2A-2C show the reference nucleotide (SEQ ID NO: 3) and amino acid (SEQ ID NO: 4) sequences for TSP-4.

Fig. 3 shows a table providing detailed information about the SNPs identified herein. Column one shows the internal polymorphism identifier. Column two shows the accession number for the reference sequence in the TIGR database
20 (http://www.tigr.org/tdb/hgi/searching/hgi_reports.html). Column three shows the nucleotide position for the SNP site. Column four shows the gene in which the polymorphism was identified. Column five shows the polymorphic site and additional flanking sequence on each side of the polymorphism. Column six shows the type of mutation produced by the polymorphism. Columns seven and eight show the reference
25 and alternate (variant) nucleotides, respectively, for the SNP. Columns nine and ten show the reference and alternate (variant) amino acids, respectively, encoded by the alleles of the gene.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to a gene which comprises a single nucleotide polymorphism (SNP) at a specific location. The gene which includes the SNP has at least two alleles, referred to herein as the reference allele and the variant allele. The 5 reference allele (prototypical or wild type allele) has been designated arbitrarily and typically corresponds to the nucleotide sequence of the gene which has been deposited with GenBank or TIGR under a given Accession number. The variant allele differs from the reference allele by one nucleotide at the site(s) identified in the Table. The present invention also relates to variant alleles of the described genes and to 10 complements of the variant alleles. The invention also relates to nucleic acid molecules which hybridize to and/or share identity with the variant alleles identified herein (or their complements) and which also comprise the variant nucleotide at the SNP site.

The invention further relates to portions of the variant alleles and portions of complements of the variant alleles which comprise (encompass) the site of the SNP and 15 are at least 5 nucleotides in length. Portions can be, for example, 5-10, 5-15, 10-20, 5-25, 10-30, 10-50 or 10-100 bases long. For example, a portion of a variant allele which is 21 nucleotides in length includes the single nucleotide polymorphism (the nucleotide which differs from the reference allele at that site) and twenty additional nucleotides which flank the site in the variant allele. These nucleotides can be on one or both sides 20 of the polymorphism. Polymorphisms which are the subject of this invention are defined in the Table with respect to the reference sequence deposited in GenBank or TIGR under the Accession number indicated. For example, the invention relates to a portion of a gene (e.g., AT3) having a nucleotide sequence as deposited in GenBank (e.g., U11270) comprising a single nucleotide polymorphism at a specific position (e.g., 25 nucleotide 11918). The reference nucleotide for AT3 is shown in column 8, and the variant nucleotide is shown in column 9 of the Table. The nucleotide sequences of the invention can be double- or single-stranded.

The invention further provides allele-specific oligonucleotides that hybridize to the reference or variant allele of a gene comprising a single nucleotide polymorphism or to the complement thereof. These oligonucleotides can be probes or primers.

The invention further provides a method of analyzing a nucleic acid from an individual. The method determines which base is present at any one of the polymorphic sites shown in the Table and/or Fig. 3. Optionally, a set of bases occupying a set of the polymorphic sites shown in the Table and/or Fig. 3 is determined. This type of analysis can be performed on a number of individuals, who are tested for the presence of a disease phenotype. The presence or absence of disease phenotype is then correlated with a base or set of bases present at the polymorphic site or sites in the individuals tested.

Thus, the invention further relates to a method of predicting the presence, absence, likelihood of the presence or absence, or severity of a particular phenotype or disorder associated with a particular genotype. The method comprises obtaining a nucleic acid sample from an individual and determining the identity of one or more bases (nucleotides) at polymorphic sites of genes described herein, wherein the presence of a particular base is correlated with a specified phenotype or disorder, thereby predicting the presence, absence, likelihood of the presence or absence, or severity of the phenotype or disorder in the individual.

20 DEFINITIONS

A nucleic acid molecule or oligonucleotide can be DNA or RNA, and single- or double-stranded. Nucleic acid molecules and oligonucleotides can be naturally occurring or synthetic, but are typically prepared by synthetic means. Preferred nucleic acid molecules and oligonucleotides of the invention include segments of DNA, or their complements, which include any one of the polymorphic sites shown in the Table. The segments can be between 5 and 250 bases, and, in specific embodiments, are between 5-10, 5-20, 10-20, 10-50, 20-50 or 10-100 bases. For example, the segment can be 21

bases. The polymorphic site can occur within any position of the segment. The segments can be from any of the allelic forms of DNA shown in the Table.

As used herein, the terms "nucleotide", "base" and "nucleic acid" are intended to be equivalent. The terms "nucleotide sequence", "nucleic acid sequence", "nucleic acid molecule" and "segment" are intended to be equivalent.

- Hybridization probes are oligonucleotides which bind in a base-specific manner to a complementary strand of nucleic acid. Such probes include peptide nucleic acids, as described in Nielsen *et al.*, *Science* 254, 1497-1500 (1991). Probes can be any length suitable for specific hybridization to the target nucleic acid sequence. The most appropriate length of the probe may vary depending upon the hybridization method in which it is being used; for example, particular lengths may be more appropriate for use in microfabricated arrays, while other lengths may be more suitable for use in classical hybridization methods. Such optimizations are known to the skilled artisan. Suitable probes and primers can range from about 5 nucleotides to about 30 nucleotides in length. For example, probes and primers can be 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 25, 26, 28 or 30 nucleotides in length. The probe or primer preferably overlaps at least one polymorphic site occupied by any of the possible variant nucleotides. The nucleotide sequence can correspond to the coding sequence of the allele or to the complement of the coding sequence of the allele.
- As used herein, the term "primer" refers to a single-stranded oligonucleotide which acts as a point of initiation of template-directed DNA synthesis under appropriate conditions (*e.g.*, in the presence of four different nucleoside triphosphates and an agent for polymerization, such as DNA or RNA polymerase or reverse transcriptase) in an appropriate buffer and at a suitable temperature. The appropriate length of a primer depends on the intended use of the primer, but typically ranges from 15 to 30 nucleotides. Short primer molecules generally require cooler temperatures to form sufficiently stable hybrid complexes with the template. A primer need not reflect the exact sequence of the template, but must be sufficiently complementary to hybridize with a template. The term primer site refers to the area of the target DNA to which a

primer hybridizes. The term primer pair refers to a set of primers including a 5' (upstream) primer that hybridizes with the 5' end of the DNA sequence to be amplified and a 3' (downstream) primer that hybridizes with the complement of the 3' end of the sequence to be amplified.

- 5 As used herein, linkage describes the tendency of genes, alleles, loci or genetic markers to be inherited together as a result of their location on the same chromosome. It can be measured by percent recombination between the two genes, alleles, loci or genetic markers.

- As used herein, polymorphism refers to the occurrence of two or more genetically determined alternative sequences or alleles in a population. A polymorphic marker or site is the locus at which divergence occurs. Preferred markers have at least two alleles, each occurring at frequency of greater than 1%, and more preferably greater than 10% or 20% of a selected population. A polymorphic locus may be as small as one base pair. Polymorphic markers include restriction fragment length polymorphisms, variable number of tandem repeats (VNTR's), hypervariable regions, minisatellites, dinucleotide repeats, trinucleotide repeats, tetranucleotide repeats, simple sequence repeats, and insertion elements such as Alu. The first identified allelic form is arbitrarily designated as the reference form and other allelic forms are designated as alternative or variant alleles. The allelic form occurring most frequently in a selected population is sometimes referred to as the wildtype form. Diploid organisms may be homozygous or heterozygous for allelic forms. A diallelic or biallelic polymorphism has two forms. A triallelic polymorphism has three forms.

- Work described herein pertains to the resequencing of large numbers of genes in a large number of individuals to identify polymorphisms which can predispose individuals to disease. For example, polymorphisms in genes which are expressed in liver may predispose individuals to disorders of the liver. By altering amino acid sequence, SNPs may alter the function of the encoded proteins. The discovery of the SNP facilitates biochemical analysis of the variants and the development of assays to characterize the variants and to screen for pharmaceutical that would interact directly

with one or another form of the protein. SNPs (including silent SNPs) also enable the development of specific DNA, RNA, or protein-based diagnostics that detect the presence or absence of the polymorphism in particular conditions.

A single nucleotide polymorphism occurs at a polymorphic site occupied by a
5 single nucleotide, which is the site of variation between allelic sequences. The site is usually preceded by and followed by highly conserved sequences of the allele (e.g., sequences that vary in less than 1/100 or 1/1000 members of the populations).

A single nucleotide polymorphism usually arises due to substitution of one nucleotide for another at the polymorphic site. A transition is the replacement of one
10 purine by another purine or one pyrimidine by another pyrimidine. A transversion is the replacement of a purine by a pyrimidine or vice versa. Single nucleotide polymorphisms can also arise from a deletion of a nucleotide or an insertion of a nucleotide relative to a reference allele. Typically the polymorphic site is occupied by a base other than the reference base. For example, where the reference allele contains the
15 base "T" at the polymorphic site, the altered allele can contain a "C", "G" or "A" at the polymorphic site.

The invention also relates to nucleic acid molecules which hybridize to the variant alleles identified herein (or their complements) and which also comprise the variant nucleotide at the SNP site. Hybridizations are usually performed under stringent
20 conditions, for example, at a salt concentration of no more than 1 M and a temperature of at least 25°C. For example, conditions of 5X SSPE (750 mM NaCl, 50 mM NaPhosphate, 5 mM EDTA, pH 7.4) and a temperature of 25-30°C, or equivalent conditions, are suitable for allele-specific probe hybridizations. Equivalent conditions can be determined by varying one or more of the parameters given as an example, as
25 known in the art, while maintaining a similar degree of identity or similarity between the target nucleotide sequence and the primer or probe used.

The invention also relates to nucleic acid molecules which share substantial sequence identity to the variant alleles identified herein (or their complements) and which also comprise the variant nucleotide at the SNP site. Particularly preferred are

nucleic acid molecules and fragments which have at least about 60%, preferably at least about 70, 80 or 85%, more preferably at least about 90%, even more preferably at least about 95%, and most preferably at least about 98% identity with nucleic acid molecules described herein. The percent identity of two nucleotide or amino acid sequences can

5 be determined by aligning the sequences for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first sequence). The nucleotides or amino acids at corresponding positions are then compared, and the percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % identity = # of identical positions/total # of positions x 100). In certain

10 embodiments, the length of a sequence aligned for comparison purposes is at least 30%, preferably at least 40%, more preferably at least 60%, and even more preferably at least 70%, 80% or 90% of the length of the reference sequence. The actual comparison of the two sequences can be accomplished by well-known methods, for example, using a mathematical algorithm. A preferred, non-limiting example of such a mathematical

15 algorithm is described in Karlin *et al.*, *Proc. Natl. Acad. Sci. USA*, 90:5873-5877 (1993). Such an algorithm is incorporated into the NBLAST and XBLAST programs (version 2.0) as described in Altschul *et al.*, *Nucleic Acids Res.*, 25:389-3402 (1997). When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., NBLAST) can be used. See <http://www.ncbi.nlm.nih.gov>. In

20 one embodiment, parameters for sequence comparison can be set at score=100, wordlength=12, or can be varied (e.g., W=5 or W=20).

The term "isolated" is used herein to indicate that the material in question exists in a physical milieu distinct from that in which it occurs in nature. For example, an isolated nucleic acid of the invention may be substantially isolated with respect to the

25 complex cellular milieu in which it naturally occurs. In some instances, the isolated material will form part of a composition (for example, a crude extract containing other substances), buffer system or reagent mix. In other circumstance, the material may be purified to essential homogeneity, for example as determined by PAGE or column

chromatography such as HPLC. Preferably, an isolated nucleic acid comprises at least about 50, 80 or 90 percent (on a molar basis) of all macromolecular species present.

I. Novel Polymorphisms of the Invention

Some of the novel polymorphisms of the invention are shown in the Table.

- 5 Columns one and two show designations for the indicated polymorphism. Column three shows the Genbank or TIGR Accession number for the wild type (or reference) allele. Column four shows the location of the polymorphic site in the nucleic acid sequence with reference to the Genbank or TIGR sequence shown in column three. Column five shows common names for the gene in which the polymorphism is located.
- 10 Column six shows the polymorphism and a portion of the 3' and 5' flanking sequence of the gene. Column seven shows the type of mutation; N, non-sense, S, silent, M, missense. Columns eight and nine show the reference and alternate nucleotides, respectively, at the polymorphic site. Columns ten and eleven show the reference and alternate amino acids, respectively, encoded by the reference and variant, respectively, alleles. Other novel polymorphisms of the invention are shown in Fig. 3.
- 15

II. Analysis of Polymorphisms

A. Preparation of Samples

- Polymorphisms are detected in a target nucleic acid from an individual being analyzed. For assay of genomic DNA, virtually any biological sample (other than pure red blood cells) is suitable. For example, convenient tissue samples include whole blood, semen, saliva, tears, urine, fecal material, sweat, buccal, skin and hair. For assay 20 of cDNA or mRNA, the tissue sample must be obtained from an organ in which the target nucleic acid is expressed. For example, if the target nucleic acid is a cytochrome P450, the liver is a suitable source.

- 25 Many of the methods described below require amplification of DNA from target samples. This can be accomplished by e.g., PCR. *See generally PCR Technology: Principles and Applications for DNA Amplification* (ed. H.A. Erlich, Freeman Press,

NY, NY, 1992); *PCR Protocols: A Guide to Methods and Applications* (eds. Innis, et al., Academic Press, San Diego, CA, 1990); Mattila et al., *Nucleic Acids Res.* 19, 4967 (1991); Eckert et al., *PCR Methods and Applications* 1, 17 (1991); *PCR* (eds. McPherson et al., IRL Press, Oxford); and U.S. Patent 4,683,202.

5 Other suitable amplification methods include the ligase chain reaction (LCR) (see Wu and Wallace, *Genomics* 4, 560 (1989), Landegren et al., *Science* 241, 1077 (1988), transcription amplification (Kwoh et al., *Proc. Natl. Acad. Sci. USA* 86, 1173 (1989)), and self-sustained sequence replication (Guatelli et al., *Proc. Natl. Acad. Sci. USA*, 87, 1874 (1990)) and nucleic acid based sequence amplification (NASBA). The latter two
10 amplification methods involve isothermal reactions based on isothermal transcription, which produce both single stranded RNA (ssRNA) and double stranded DNA (dsDNA) as the amplification products in a ratio of about 30 or 100 to 1, respectively.

B. Detection of Polymorphisms in Target DNA

There are two distinct types of analysis of target DNA for detecting
15 polymorphisms. The first type of analysis, sometimes referred to as *de novo* characterization, is carried out to identify polymorphic sites not previously characterized (i.e., to identify new polymorphisms). This analysis compares target sequences in different individuals to identify points of variation, i.e., polymorphic sites. By analyzing groups of individuals representing the greatest ethnic diversity among humans
20 and greatest breed and species variety in plants and animals, patterns characteristic of the most common alleles/haplotypes of the locus can be identified, and the frequencies of such alleles/haplotypes in the population can be determined. Additional allelic frequencies can be determined for subpopulations characterized by criteria such as geography, race, or gender. The *de novo* identification of polymorphisms of the
25 invention is described in the Examples section. The second type of analysis determines which form(s) of a characterized (known) polymorphism are present in individuals under test. There are a variety of suitable procedures, which are discussed in turn.

1. Allele-Specific Probes

- The design and use of allele-specific probes for analyzing polymorphisms is described by e.g., Saiki *et al.*, *Nature* 324, 163-166 (1986); Dattagupta, EP 235,726, Saiki, WO 89/11548. Allele-specific probes can be designed that hybridize to a
- 5 segment of target DNA from one individual but do not hybridize to the corresponding segment from another individual due to the presence of different polymorphic forms in the respective segments from the two individuals. Hybridization conditions should be sufficiently stringent that there is a significant difference in hybridization intensity between alleles, and preferably an essentially binary response, whereby a probe
- 10 hybridizes to only one of the alleles. Some probes are designed to hybridize to a segment of target DNA such that the polymorphic site aligns with a central position (e.g., in a 15-mer at the 7 position; in a 16-mer, at either the 8 or 9 position) of the probe. This design of probe achieves good discrimination in hybridization between different allelic forms.
- 15 Allele-specific probes are often used in pairs, one member of a pair showing a perfect match to a reference form of a target sequence and the other member showing a perfect match to a variant form. Several pairs of probes can then be immobilized on the same support for simultaneous analysis of multiple polymorphisms within the same target sequence.
- 20 **2. Tiling Arrays**
- The polymorphisms can also be identified by hybridization to nucleic acid arrays, some examples of which are described in WO 95/11995. One form of such arrays is described in the Examples section in connection with de novo identification of polymorphisms. The same array or a different array can be used for analysis of
- 25 characterized polymorphisms. WO 95/11995 also describes subarrays that are optimized for detection of a variant form of a precharacterized polymorphism. Such a subarray contains probes designed to be complementary to a second reference sequence, which is an allelic variant of the first reference sequence. The second group of probes is

designed by the same principles as described in the Examples, except that the probes exhibit complementarity to the second reference sequence. The inclusion of a second group (or further groups) can be particularly useful for analyzing short subsequences of the primary reference sequence in which multiple mutations are expected to occur

- 5 within a short distance commensurate with the length of the probes (e.g., two or more mutations within 9 to 21 bases).

3. Allele-Specific Primers

- An allele-specific primer hybridizes to a site on target DNA overlapping a polymorphism and only primes amplification of an allelic form to which the primer
- 10 exhibits perfect complementarity. See Gibbs, *Nucleic Acid Res.* 17, 2427-2448 (1989). This primer is used in conjunction with a second primer which hybridizes at a distal site. Amplification proceeds from the two primers, resulting in a detectable product which indicates the particular allelic form is present. A control is usually performed with a second pair of primers, one of which shows a single base mismatch at the
 - 15 polymorphic site and the other of which exhibits perfect complementarity to a distal site. The single-base mismatch prevents amplification and no detectable product is formed. The method works best when the mismatch is included in the 3'-most position of the oligonucleotide aligned with the polymorphism because this position is most destabilizing to elongation from the primer (see, e.g., WO 93/22456).

20 4. Direct-Sequencing

- The direct analysis of the sequence of polymorphisms of the present invention can be accomplished using either the dideoxy chain termination method or the Maxam - Gilbert method (see Sambrook *et al.*, *Molecular Cloning, A Laboratory Manual* (2nd Ed., CSHP, New York 1989); Zyskind *et al.*, *Recombinant DNA Laboratory Manual*,
25 (Acad. Press, 1988)).

5. Denaturing Gradient Gel Electrophoresis

Amplification products generated using the polymerase chain reaction can be analyzed by the use of denaturing gradient gel electrophoresis. Different alleles can be identified based on the different sequence-dependent melting properties and

- 5 electrophoretic migration of DNA in solution. Erlich, ed., *PCR Technology, Principles and Applications for DNA Amplification*, (W.H. Freeman and Co, New York, 1992), Chapter 7.

6. Single-Strand Conformation Polymorphism Analysis

- Alleles of target sequences can be differentiated using single-strand conformation
10 polymorphism analysis, which identifies base differences by alteration in electrophoretic migration of single stranded PCR products, as described in Orita *et al.*, *Proc. Nat. Acad. Sci.* 86, 2766-2770 (1989). Amplified PCR products can be generated as described above, and heated or otherwise denatured, to form single stranded amplification products. Single-stranded nucleic acids may refold or form secondary
15 structures which are partially dependent on the base sequence. The different electrophoretic mobilities of single-stranded amplification products can be related to base-sequence differences between alleles of target sequences.

7. Single-Base Extension

- An alternative method for identifying and analyzing polymorphisms is based on
20 single-base extension (SBE) of a fluorescently-labeled primer coupled with fluorescence resonance energy transfer (FRET) between the label of the added base and the label of the primer. Typically, the method, such as that described by Chen *et al.*, (*PNAS* 94:10756-61 (1997), incorporated herein by reference) uses a locus-specific oligonucleotide primer labeled on the 5' terminus with 5-carboxyfluorescein (FAM).
25 This labeled primer is designed so that the 3' end is immediately adjacent to the polymorphic site of interest. The labeled primer is hybridized to the locus, and single base extension of the labeled primer is performed with fluorescently labeled

dideoxyribonucleotides (ddNTPs) in dye-terminator sequencing fashion, except that no deoxyribonucleotides are present. An increase in fluorescence of the added ddNTP in response to excitation at the wavelength of the labeled primer is used to infer the identity of the added nucleotide.

5 III. Methods of Use

After determining polymorphic form(s) present in an individual at one or more polymorphic sites, this information can be used in a number of methods.

A. Forensics

Determination of which polymorphic forms occupy a set of polymorphic sites in
10 an individual identifies a set of polymorphic forms that distinguishes the individual.

See generally National Research Council, *The Evaluation of Forensic DNA Evidence* (Eds. Pollard *et al.*, National Academy Press, DC, 1996). The more sites that are analyzed, the lower the probability that the set of polymorphic forms in one individual is the same as that in an unrelated individual. Preferably, if multiple sites are analyzed,
15 the sites are unlinked. Thus, polymorphisms of the invention are often used in conjunction with polymorphisms in distal genes. Preferred polymorphisms for use in forensics are biallelic because the population frequencies of two polymorphic forms can usually be determined with greater accuracy than those of multiple polymorphic forms at multi-allelic loci.

20 The capacity to identify a distinguishing or unique set of forensic markers in an individual is useful for forensic analysis. For example, one can determine whether a blood sample from a suspect matches a blood or other tissue sample from a crime scene by determining whether the set of polymorphic forms occupying selected polymorphic sites is the same in the suspect and the sample. If the set of polymorphic markers does
25 not match between a suspect and a sample, it can be concluded (barring experimental error) that the suspect was not the source of the sample. If the set of markers does match, one can conclude that the DNA from the suspect is consistent with that found at

the crime scene. If frequencies of the polymorphic forms at the loci tested have been determined (e.g., by analysis of a suitable population of individuals), one can perform a statistical analysis to determine the probability that a match of suspect and crime scene sample would occur by chance.

- 5 p(ID) is the probability that two random individuals have the same polymorphic or allelic form at a given polymorphic site. In biallelic loci, four genotypes are possible: AA, AB, BA, and BB. If alleles A and B occur in a haploid genome of the organism with frequencies x and y, the probability of each genotype in a diploid organism is (see WO 95/12607):

10 Homozygote: $p(AA) = x^2$
 Homozygote: $p(BB) = y^2 = (1-x)^2$
 Single Heterozygote: $p(AB) = p(BA) = xy = x(1-x)$
 Both Heterozygotes: $p(AB+BA) = 2xy = 2x(1-x)$

- The probability of identity at one locus (i.e, the probability that two individuals, 15 picked at random from a population will have identical polymorphic forms at a given locus) is given by the equation:

$$p(ID) = (x^2)^2 + (2xy)^2 + (y^2)^2.$$

- These calculations can be extended for any number of polymorphic forms at a given locus. For example, the probability of identity p(ID) for a 3-allele system where 20 the alleles have the frequencies in the population of x, y and z, respectively, is equal to the sum of the squares of the genotype frequencies:

$$p(ID) = x^4 + (2xy)^2 + (2yz)^2 + (2xz)^2 + z^4 + y^4$$

In a locus of n alleles, the appropriate binomial expansion is used to calculate p(ID) and p(exc).

- 25 The cumulative probability of identity (cum p(ID)) for each of multiple unlinked loci is determined by multiplying the probabilities provided by each locus.

$$\text{cum } p(ID) = p(ID1)p(ID2)p(ID3)\dots p(IDn)$$

The cumulative probability of non-identity for n loci (i.e. the probability that two random individuals will be different at 1 or more loci) is given by the equation:

$$\text{cum p(nonID)} = 1 - \text{cum p(ID)}.$$

- If several polymorphic loci are tested, the cumulative probability of non-identity for random individuals becomes very high (e.g., one billion to one). Such probabilities can be taken into account together with other evidence in determining the guilt or innocence of the suspect.

B. Paternity Testing

- The object of paternity testing is usually to determine whether a male is the father of a child. In most cases, the mother of the child is known and thus, the mother's contribution to the child's genotype can be traced. Paternity testing investigates whether the part of the child's genotype not attributable to the mother is consistent with that of the putative father. Paternity testing can be performed by analyzing sets of polymorphisms in the putative father and the child.
- If the set of polymorphisms in the child attributable to the father does not match the set of polymorphisms of the putative father, it can be concluded, barring experimental error, that the putative father is not the real father. If the set of polymorphisms in the child attributable to the father does match the set of polymorphisms of the putative father, a statistical calculation can be performed to determine the probability of coincidental match.

The probability of parentage exclusion (representing the probability that a random male will have a polymorphic form at a given polymorphic site that makes him incompatible as the father) is given by the equation (see WO 95/12607):

$$p(\text{exc}) = xy(1-xy)$$

- where x and y are the population frequencies of alleles A and B of a biallelic polymorphic site.

(At a triallelic site $p(\text{exc}) = xy(1-xy) + yz(1-yz) + xz(1-xz) + 3xyz(1-xyz))$, where x, y and z are the respective population frequencies of alleles A, B and C).

The probability of non-exclusion is

$$p(\text{non-exc}) = 1 - p(\text{exc})$$

The cumulative probability of non-exclusion (representing the value obtained when n loci are used) is thus:

5 $\text{cum } p(\text{non-exc}) = p(\text{non-exc1})p(\text{non-exc2})p(\text{non-exc3}) \dots p(\text{non-exc}n)$

The cumulative probability of exclusion for n loci (representing the probability that a random male will be excluded)

$$\text{cum } p(\text{exc}) = 1 - \text{cum } p(\text{non-exc}).$$

- If several polymorphic loci are included in the analysis, the cumulative
- 10 probability of exclusion of a random male is very high. This probability can be taken into account in assessing the liability of a putative father whose polymorphic marker set matches the child's polymorphic marker set attributable to his/her father.

C. Correlation of Polymorphisms with Phenotypic Traits

- The polymorphisms of the invention may contribute to the phenotype of an
- 15 organism in different ways. Some polymorphisms occur within a protein coding sequence and contribute to phenotype by affecting protein structure. The effect may be neutral, beneficial or detrimental, or both beneficial and detrimental, depending on the circumstances. For example, a heterozygous sickle cell mutation confers resistance to malaria, but a homozygous sickle cell mutation is usually lethal. Other polymorphisms
- 20 occur in noncoding regions but may exert phenotypic effects indirectly via influence on replication, transcription, and translation. A single polymorphism may affect more than one phenotypic trait. Likewise, a single phenotypic trait may be affected by polymorphisms in different genes. Further, some polymorphisms predispose an individual to a distinct mutation that is causally related to a certain phenotype.
- 25 Phenotypic traits include diseases that have known but hitherto unmapped genetic components (e.g., agammaglobulinemia, diabetes insipidus, Lesch-Nyhan syndrome, muscular dystrophy, Wiskott-Aldrich syndrome, Fabry's disease, familial hypercholesterolemia, polycystic kidney disease, hereditary spherocytosis, von

Willebrand's disease, tuberous sclerosis, hereditary hemorrhagic telangiectasia, familial colonic polyposis, Ehlers-Danlos syndrome, osteogenesis imperfecta, and acute intermittent porphyria). Phenotypic traits also include symptoms of, or susceptibility to, multifactorial diseases of which a component is or may be genetic, such as autoimmune diseases, inflammation, cancer, diseases of the nervous system, and infection by pathogenic microorganisms. Some examples of autoimmune diseases include rheumatoid arthritis, multiple sclerosis, diabetes (insulin-dependent and non-independent), systemic lupus erythematosus and Graves disease. Some examples of cancers include cancers of the bladder, brain, breast, colon, esophagus, kidney, leukemia, liver, lung, oral cavity, ovary, pancreas, prostate, skin, stomach and uterus.

Phenotypic traits also include characteristics such as longevity, appearance (e.g., baldness, obesity), strength, speed, endurance, fertility, and susceptibility or receptivity to particular drugs or therapeutic treatments.

The correlation of one or more polymorphisms with phenotypic traits can be facilitated by knowledge of the gene product of the wild type (reference) gene. The genes in which cSNPs of the present invention have been identified are genes which have been previously sequenced and characterized in one of their allelic forms.

Correlation is performed for a population of individuals who have been tested for the presence or absence of a phenotypic trait of interest and for polymorphic markers sets. To perform such analysis, the presence or absence of a set of polymorphisms (i.e. a polymorphic set) is determined for a set of the individuals, some of whom exhibit a particular trait, and some of which exhibit lack of the trait. The alleles of each polymorphism of the set are then reviewed to determine whether the presence or absence of a particular allele is associated with the trait of interest. Correlation can be performed by standard statistical methods such as a χ^2 -squared test and statistically significant correlations between polymorphic form(s) and phenotypic characteristics are noted. For example, it might be found that the presence of allele A1 at polymorphism A correlates with heart disease. As a further example, it might be found that the combined

presence of allele A1 at polymorphism A and allele B1 at polymorphism B correlates with increased milk production of a farm animal.

- Such correlations can be exploited in several ways. In the case of a strong correlation between a set of one or more polymorphic forms and a disease for which
- 5 treatment is available, detection of the polymorphic form set in a human or animal patient may justify immediate administration of treatment, or at least the institution of regular monitoring of the patient. Detection of a polymorphic form correlated with serious disease in a couple contemplating a family may also be valuable to the couple in their reproductive decisions. For example, the female partner might elect to undergo *in*
- 10 *vitro* fertilization to avoid the possibility of transmitting such a polymorphism from her husband to her offspring. In the case of a weaker, but still statistically significant correlation between a polymorphic set and human disease, immediate therapeutic intervention or monitoring may not be justified. Nevertheless, the patient can be motivated to begin simple life-style changes (e.g., diet, exercise) that can be
- 15 accomplished at little cost to the patient but confer potential benefits in reducing the risk of conditions to which the patient may have increased susceptibility by virtue of variant alleles. Identification of a polymorphic set in a patient correlated with enhanced receptiveness to one of several treatment regimes for a disease indicates that this treatment regime should be followed.
- 20 For animals and plants, correlations between characteristics and phenotype are useful for breeding for desired characteristics. For example, Beitz *et al.*, US 5,292,639 discuss use of bovine mitochondrial polymorphisms in a breeding program to improve milk production in cows. To evaluate the effect of mtDNA D-loop sequence polymorphism on milk production, each cow was assigned a value of 1 if variant or 0 if
- 25 wildtype with respect to a prototypical mitochondrial DNA sequence at each of 17 locations considered. Each production trait was analyzed individually with the following animal model:

$$Y_{ijkpn} = \mu + YS_i + P_j + X_k + \beta_1 + \dots + \beta_{17} + PE_n + a_n + e_p$$

where Y_{ijkn} is the milk, fat, fat percentage, SNF, SNF percentage, energy concentration, or lactation energy record; μ is an overall mean; YS_i is the effect common to all cows calving in year-season; X_k is the effect common to cows in either the high or average selection line; β_1 to β_{17} are the binomial regressions of production record on mtDNA D-loop sequence polymorphisms; PE_n is permanent environmental effect common to all records of cow n; a_n is effect of animal n and is composed of the additive genetic contribution of sire and dam breeding values and a Mendelian sampling effect; and e_p is a random residual. It was found that eleven of seventeen polymorphisms tested influenced at least one production trait. Bovines having the best polymorphic forms for milk production at these eleven loci are used as parents for breeding the next generation of the herd.

D. Genetic Mapping of Phenotypic Traits

The previous section concerns identifying correlations between phenotypic traits and polymorphisms that directly or indirectly contribute to those traits. The present section describes identification of a physical linkage between a genetic locus associated with a trait of interest and polymorphic markers that are not associated with the trait, but are in physical proximity with the genetic locus responsible for the trait and cosegregate with it. Such analysis is useful for mapping a genetic locus associated with a phenotypic trait to a chromosomal position, and thereby cloning gene(s) responsible for the trait. See Lander *et al.*, *Proc. Natl. Acad. Sci. (USA)* 83, 7353-7357 (1986); Lander *et al.*, *Proc. Natl. Acad. Sci. (USA)* 84, 2363-2367 (1987); Donis-Keller *et al.*, *Cell* 51, 319-337 (1987); Lander *et al.*, *Genetics* 121, 185-199 (1989)). Genes localized by linkage can be cloned by a process known as directional cloning. See Wainwright, *Med. J. Australia* 159, 170-174 (1993); Collins, *Nature Genetics* 1, 3-6 (1992).

Linkage studies are typically performed on members of a family. Available members of the family are characterized for the presence or absence of a phenotypic trait and for a set of polymorphic markers. The distribution of polymorphic markers in an informative meiosis is then analyzed to determine which polymorphic markers co-

segregate with a phenotypic trait. See, e.g., Kerem *et al.*, *Science* 245, 1073-1080 (1989); Monaco *et al.*, *Nature* 316, 842 (1985); Yamoka *et al.*, *Neurology* 40, 222-226 (1990); Rossiter *et al.*, *FASEB Journal* 5, 21-27 (1991).

Linkage is analyzed by calculation of LOD (log of the odds) values. A lod value 5 is the relative likelihood of obtaining observed segregation data for a marker and a genetic locus when the two are located at a recombination fraction θ , versus the situation in which the two are not linked, and thus segregating independently (Thompson & Thompson, *Genetics in Medicine* (5th ed, W.B. Saunders Company, Philadelphia, 1991); Strachan, "Mapping the human genome" in *The Human Genome* 10 (BIOS Scientific Publishers Ltd, Oxford), Chapter 4). A series of likelihood ratios are calculated at various recombination fractions (θ), ranging from $\theta = 0.0$ (coincident loci) to $\theta = 0.50$ (unlinked). Thus, the likelihood at a given value of θ is: probability of data if loci linked at θ to probability of data if loci unlinked. The computed likelihoods are usually expressed as the \log_{10} of this ratio (i.e., a lod score). For example, a lod score 15 of 3 indicates 1000:1 odds against an apparent observed linkage being a coincidence. The use of logarithms allows data collected from different families to be combined by simple addition. Computer programs are available for the calculation of lod scores for differing values of θ (e.g., LIPED, MLINK (Lathrop, *Proc. Nat. Acad. Sci. (USA)* 81, 3443-3446 (1984)). For any particular lod score, a recombination fraction may be 20 determined from mathematical tables. See Smith *et al.*, *Mathematical tables for research workers in human genetics* (Churchill, London, 1961); Smith, *Ann. Hum. Genet.* 32, 127-150 (1968). The value of θ at which the lod score is the highest is considered to be the best estimate of the recombination fraction.

Positive lod score values suggest that the two loci are linked, whereas negative 25 values suggest that linkage is less likely (at that value of θ) than the possibility that the two loci are unlinked. By convention, a combined lod score of +3 or greater (equivalent to greater than 1000:1 odds in favor of linkage) is considered definitive evidence that two loci are linked. Similarly, by convention, a negative lod score of -2 or less is taken as definitive evidence against linkage of the two loci being compared. Negative linkage

data are useful in excluding a chromosome or a segment thereof from consideration.

The search focuses on the remaining non-excluded chromosomal locations.

IV. Modified Polypeptides and Gene Sequences

The invention further provides variant forms of nucleic acids and corresponding proteins. The nucleic acids comprise one of the sequences described in the Table, column 5, in which the polymorphic position is occupied by one of the alternative bases for that position. Some nucleic acids encode full-length variant forms of proteins. Similarly, variant proteins have the prototypical amino acid sequences encoded by nucleic acid sequences shown in the Table, column 5, (read so as to be in-frame with the 10 full-length coding sequence of which it is a component) except at an amino acid encoded by a codon including one of the polymorphic positions shown in the Table. That position is occupied by the amino acid coded by the corresponding codon in any of the alternative forms shown in the Table.

Variant genes can be expressed in an expression vector in which a variant gene is operably linked to a native or other promoter. Usually, the promoter is a eukaryotic promoter for expression in a mammalian cell. The transcription regulation sequences typically include a heterologous promoter and optionally an enhancer which is recognized by the host. The selection of an appropriate promoter, for example trp, lac, phage promoters, glycolytic enzyme promoters and tRNA promoters, depends on the 20 host selected. Commercially available expression vectors can be used. Vectors can include host-recognized replication systems, amplifiable genes, selectable markers, host sequences useful for insertion into the host genome, and the like.

The means of introducing the expression construct into a host cell varies depending upon the particular construction and the target host. Suitable means include 25 fusion, conjugation, transfection, transduction, electroporation or injection, as described in Sambrook, *supra*. A wide variety of host cells can be employed for expression of the variant gene, both prokaryotic and eukaryotic. Suitable host cells include bacteria such as *E. coli*, yeast, filamentous fungi, insect cells, mammalian cells, typically

immortalized, *e.g.*, mouse, CHO, human and monkey cell lines and derivatives thereof.

Preferred host cells are able to process the variant gene product to produce an appropriate mature polypeptide. Processing includes glycosylation, ubiquitination, disulfide bond formation, general post-translational modification, and the like. As used

5 herein, "gene product" includes mRNA, peptide and protein products.

The protein may be isolated by conventional means of protein biochemistry and purification to obtain a substantially pure product, *i.e.*, 80, 95 or 99% free of cell component contaminants, as described in Jacoby, *Methods in Enzymology* Volume 104, Academic Press, New York (1984); Scopes, *Protein Purification, Principles and*

10 *Practice*, 2nd Edition, Springer-Verlag, New York (1987); and Deutscher (ed), *Guide to Protein Purification, Methods in Enzymology*, Vol. 182 (1990). If the protein is secreted, it can be isolated from the supernatant in which the host cell is grown. If not secreted, the protein can be isolated from a lysate of the host cells.

15 The invention further provides transgenic nonhuman animals capable of expressing an exogenous variant gene and/or having one or both alleles of an endogenous variant gene inactivated. Expression of an exogenous variant gene is usually achieved by operably linking the gene to a promoter and optionally an enhancer, and microinjecting the construct into a zygote. *See Hogan et al., "Manipulating the Mouse Embryo, A Laboratory Manual," Cold Spring Harbor Laboratory.* Inactivation 20 of endogenous variant genes can be achieved by forming a transgene in which a cloned variant gene is inactivated by insertion of a positive selection marker. *See Capecchi, Science* 244, 1288-1292 (1989). The transgene is then introduced into an embryonic stem cell, where it undergoes homologous recombination with an endogenous variant gene. Mice and other rodents are preferred animals. Such animals provide useful drug 25 screening systems.

In addition to substantially full-length polypeptides expressed by variant genes, the present invention includes biologically active fragments of the polypeptides, or analogs thereof, including organic molecules which simulate the interactions of the peptides. Biologically active fragments include any portion of the full-length

polypeptide which confers a biological function on the variant gene product, including ligand binding, and antibody binding. Ligand binding includes binding by nucleic acids, proteins or polypeptides, small biologically active molecules, or large cellular structures.

- 5 Polyclonal and/or monoclonal antibodies that specifically bind to variant gene products but not to corresponding prototypical gene products are also provided. Antibodies can be made by injecting mice or other animals with the variant gene product or synthetic peptide fragments thereof. Monoclonal antibodies are screened as are described, for example, in Harlow & Lane, *Antibodies, A Laboratory Manual*, Cold
10 Spring Harbor Press, New York (1988); Goding, *Monoclonal antibodies, Principles and Practice* (2d ed.) Academic Press, New York (1986). Monoclonal antibodies are tested for specific immunoreactivity with a variant gene product and lack of immunoreactivity to the corresponding prototypical gene product. These antibodies are useful in diagnostic assays for detection of the variant form, or as an active ingredient in a
15 pharmaceutical composition.

V. Kits

- The invention further provides kits comprising at least one allele-specific oligonucleotide as described herein. Often, the kits contain one or more pairs of allele-specific oligonucleotides hybridizing to different forms of a polymorphism. In some
20 kits, the allele-specific oligonucleotides are provided immobilized to a substrate. For example, the same substrate can comprise allele-specific oligonucleotide probes for detecting at least 10, 100 or all of the polymorphisms shown in the Table. Optional additional components of the kit include, for example, restriction enzymes, reverse-transcriptase or polymerase, the substrate nucleoside triphosphates, means used to label
25 (for example, an avidin-enzyme conjugate and enzyme substrate and chromogen if the label is biotin), and the appropriate buffers for reverse transcription, PCR, or hybridization reactions. Usually, the kit also contains instructions for carrying out the methods.

- The thrombospondins are a family of extracellular matrix (ECM) glycoproteins that modulate many cell behaviors including adhesion, migration, and proliferation. Thrombospondins (also known as thrombin sensitive proteins or TSPs) are large molecular weight glycoproteins composed of three identical disulfide-linked polypeptide chains. TSPs are stored in the alpha-granules of platelets and secreted by a variety of mesenchymal and epithelial cells (Majack *et al.*, *Cell Membrane* 3:57-77 (1987)). Platelets secrete TSPs when activated in the blood by such physiological agonists such as thrombin. TSPs have lectin properties and a broad function in the regulation of fibrinolysis and as a component of the ECM, and are one of a group of ECM proteins which have adhesive properties. TSPs bind to fibronectin and fibrinogen (Lahav *et al.*, *Eur J Biochem* 145:151-6 (1984)), and these proteins are known to be involved in platelet adhesion to substratum and platelet aggregation (Leung, *J Clin Invest* 74:1764-1772 (1986)).
- Recent work has implicated TSPs in response of cells to growth factors.
- Submitogenic doses of PDGF induce a rapid but transitory, increase in TSP synthesis and secretion by rat aortic smooth muscle cells (Majack *et al.*, *J Biol Chem* 101:1059-70 (1985)). PDGF responsiveness to TSP synthesis in glial cells has also been shown (Asch *et al.*, *Proc Natl Acad Sci* 83:2904-8 (1986)). TSP mRNA levels rise rapidly in response to PDGF (Majack *et al.*, *J Biol Chem* 262:8821-5 (1987)). TSPs act synergistically with epidermal growth factor to increase DNA synthesis in smooth muscle cells (Majack *et al.*, *Proc Natl Acad Sci* 83:9050-4 (1986)), and monoclonal antibodies to TSPs inhibit smooth muscle cell proliferation (Majack *et al.*, *J Biol Chem* 106:415-22 (1988)). TSPs modulate local adhesions in endothelial cells, and TSPs, particularly TSP-1 primarily derived from platelet granules, are known to be an important activator of transforming growth factor beta-1 (TGFB-1) (Crawford *et al.*, *Cell* 93:1159 (1998)) and appear to be a potential link between platelet-thrombosis and development of atherosclerosis.

To determine pivotal genes associated with premature coronary artery disease, we analyzed DNA from 347 patients with MI or coronary revascularization before age 40

(men) or 45 (women) and 422 general population controls. Cases were drawn (one per family) from a retrospective collection of sibling pairs with premature CAD. Controls were ascertained through random-digit dialing. Both cases and controls were Caucasian. A complete database of phenotypic and laboratory variables for the affected patients afforded logistic regression to control for age, diabetes, body mass index, gender.

Thrombospondin (TSP) 4 and 1 emerged as important SNPs associated with premature CAD and MI. For CAD, 148 of 347 patients carried at least one copy of the TSP-4 variant compared with 142 of 422 control subjects; adjusted odds ratio 1.47, p=0.01. For premature MI, the association was even stronger: 91 of 187 cases vs. 142 of 422 controls had the variant; adjusted odds ratio 2.08, p=0.0003. The TSP-1 SNP was rare. Nonetheless, homozygosity for the variant allele gave an adjusted odds ratio of 9.5, p=.04.

Specific reference nucleotide (SEQ ID NO: 1) and amino acid (SEQ ID NO: 2) sequences for TSP-1 are shown in Figs. 1A-1D. Specific reference nucleotide (SEQ ID NO: 3) and amino acid (SEQ ID NO: 4) sequences for TSP-4 are shown in Figs. 2A-2C. It is understood that the invention is not limited by these exemplified reference sequences, as variants of these sequences which differ at locations other than the SNP sites identified herein can also be utilized. The skilled artisan can readily determine the SNP sites in these other reference sequences which correspond to the SNP sites identified herein by aligning the sequence of interest with the reference sequences specifically disclosed herein, and programs for performing such alignments are commercially available. For example, the ALIGN program in the GCG software package can be used, utilizing a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4, for example.

Two SNPs have been specifically studied as described herein. The first (G334u4) is a change from A (reference nucleotide) to G (alternate or variant nucleotide) at nucleotide position 2210 of the nucleic acid sequence of TSP-1 (Figs. 1A-1D), resulting in a missense amino acid mutation from asparagine (reference) to serine (alternate) at

amino acid 700. The second SNP (G355u2) is a change from G (reference) to C (alternate) at nucleotide position 1186 of the nucleic acid sequence of TSP-4 (Figs. 2A-2C), resulting in a missense amino acid alteration from alanine (reference) to proline (alternate) at amino acid 387. With respect to the G355u2 SNP, individuals with CAD 5 carried at least one copy of the variant "C" allele more frequently than control individuals (43% as compared with 34%). With respect to the G355u2 SNP, individuals with MI carried at least one copy of the variant "C" allele more frequently than control individuals (49% as compared with 34%). With respect to the G334u4 SNP, individuals with CAD carried two copies of the variant "G" allele more frequently than 10 control individuals (1.7% as compared with 0.2%). With respect to the G334u4 SNP, individuals with MI carried two copies of the variant "G" allele more frequently than control individuals (2% as compared with 0.2%).

As used herein, the term "polymorphism" refers to the occurrence of two or more genetically determined alternative sequences or alleles in a population. A polymorphic 15 marker or site is the locus at which divergence occurs. Preferred markers have at least two alleles, each occurring at frequency of greater than 1%, and more preferably greater than 10% or 20% of a selected population. A polymorphic locus may be as small as one base pair, in which case it is referred to as a single nucleotide polymorphism (SNP).

Thus, the invention relates to a method for predicting the likelihood that an 20 individual will have a vascular disease, or for aiding in the diagnosis of a vascular disease, or predicting the likelihood of having altered symptomology associated with a vascular disease, comprising the steps of obtaining a DNA sample from an individual to be assessed and determining the nucleotide present at one or more of nucleotide positions 2210 of the TSP-1 gene or 1186 of the TSP-4 gene. In a preferred 25 embodiment, the nucleotides present at both of these nucleotide positions are determined. In one embodiment the TSP-1 gene has the nucleotide sequence of SEQ ID NO: 1 and the TSP-4 gene has the nucleotide sequence of SEQ ID NO: 3. The presence of one or more of a G (the variant nucleotide) at position 2210 of SEQ ID NO: 1 or a C (the variant nucleotide) at position 1186 of SEQ ID NO: 1186 indicates that the

individual has a greater likelihood of having a vascular disease, or a greater likelihood of having severe symptomology associated with a vascular disease, than if that individual had the reference nucleotide at one or more of these positions. Conversely, the presence of one or more of an A (the reference nucleotide) at position 2210 of SEQ 5 ID NO: 1 or a G (the reference nucleotide) at position 1186 of SEQ ID NO: 3 indicates that the individual has a reduced likelihood of having a vascular disease or a likelihood of having reduced symptomology associated with a vascular disease than if that individual had the variant nucleotide at one or more of these positions.

In a particular embodiment, the individual is an individual at risk for development 10 of a vascular disease. In another embodiment the individual exhibits clinical symptomology associated with a vascular disease. In one embodiment, the individual has been clinically diagnosed as having a vascular disease. Vascular diseases include, but are not limited to, atherosclerosis, coronary heart disease, myocardial infarction (MI), stroke, peripheral vascular diseases, venous thromboembolism and pulmonary 15 embolism. In preferred embodiments, the vascular disease is CAD or MI.

The genetic material to be assessed can be obtained from any nucleated cell from the individual. For assay of genomic DNA, virtually any biological sample (other than pure red blood cells) is suitable. For example, convenient tissue samples include whole blood, semen, saliva, tears, urine, fecal material, sweat, skin and hair. For assay of 20 cDNA or mRNA, the tissue sample must be obtained from a tissue or organ in which the target nucleic acid is expressed.

Many of the methods described herein require amplification of DNA from target samples. This can be accomplished by e.g., PCR. *See generally PCR Technology: Principles and Applications for DNA Amplification* (ed. H.A. Erlich, Freeman Press, 25 NY, NY, 1992); *PCR Protocols: A Guide to Methods and Applications* (eds. Innis, et al., Academic Press, San Diego, CA, 1990); Mattila et al., *Nucleic Acids Res.* 19, 4967 (1991); Eckert et al., *PCR Methods and Applications* 1, 17 (1991); *PCR* (eds. McPherson et al., IRL Press, Oxford); and U.S. Patent 4,683,202.

Other suitable amplification methods include the ligase chain reaction (LCR) (see Wu and Wallace, *Genomics* 4, 560 (1989), Landegren *et al.*, *Science* 241, 1077 (1988), transcription amplification (Kwoh *et al.*, *Proc. Natl. Acad. Sci. USA* 86, 1173 (1989)), and self-sustained sequence replication (Guatelli *et al.*, *Proc. Nat. Acad. Sci. USA*, 87, 5 1874 (1990)) and nucleic acid based sequence amplification (NASBA). The latter two amplification methods involve isothermal reactions based on isothermal transcription, which produce both single stranded RNA (ssRNA) and double stranded DNA (dsDNA) as the amplification products in a ratio of about 30 or 100 to 1, respectively.

The nucleotide which occupies the polymorphic site of interest (e.g., nucleotide 10 position 2210 in TSP-1 and/or nucleotide position 1186 in TSP-4) can be identified by a variety of methods, such as Southern analysis of genomic DNA; direct mutation analysis by restriction enzyme digestion; Northern analysis of RNA; denaturing high pressure liquid chromatography (DHPLC); gene isolation and sequencing; hybridization of an allele-specific oligonucleotide with amplified gene products; single base extension 15 (SBE). In a preferred embodiment, determination of the allelic form of TSP is carried out using SBE-FRET methods as described herein, or using chip-based oligonucleotide arrays as described herein.

The invention also relates to a method for predicting the likelihood that an individual will have a vascular disease, or for aiding in the diagnosis of a vascular 20 disease, or predicting the likelihood of having altered symptomology associated with a vascular disease, comprising the steps of obtaining a biological sample comprising TSP-1 and/or TSP-4 protein or relevant portion thereof from an individual to be assessed and determining the amino acid present at one or more of amino acid positions 700 of the TSP-1 gene product (e.g., as exemplified by SEQ ID NO: 2) or 387 of the TSP-4 gene 25 product (e.g., as exemplified by SEQ ID NO: 4). In a preferred embodiment, the amino acids present at both of these amino acid positions are determined. As used herein, the term "relevant portion" of the TSP-1 and TSP-4 proteins is intended to encompass any portion of the protein which comprises the polymorphic amino acid positions. The presence of one or more of a serine (the variant amino acid) at position 700 of SEQ ID

NO: 2, or a proline (the variant amino acid) at position 387 of SEQ ID NO: 4 indicates that the individual has a greater likelihood of having a vascular disease, or a greater likelihood of having severe symptomology associated with a vascular disease, than if that individual had the reference amino acid at one or more of these positions.

- 5 Conversely, the presence of one or more of an asparagine (the reference amino acid) at position 700 of SEQ ID NO: 2, or an alanine (the reference amino acid) at position 387 of SEQ ID NO: 4 indicates that the individual has a reduced likelihood of having a vascular disease or a likelihood of having reduced symptomology associated with a vascular disease, than if that individual had the varaint amino acid at one or more of
10 these positions.

In a particular embodiment, the individual is an individual at risk for development of a vascular disease. In another embodiment the individual exhibits clinical symptomology associated with a vascular disease. In one embodiment, the individual has been clinically diagnosed as having a vascular disease.

- 15 In this embodiment of the invention, the biological sample contains protein molecules from the test subject. *In vitro* techniques for detection of protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence. Furthermore, *in vivo* techniques for detection of protein include introducing into a subject a labeled anti-protein antibody. For example, the
20 antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques. Polyclonal and/or monoclonal antibodies that specifically bind to variant gene products but not to corresponding reference gene products, and vice versa, are also provided. Antibodies can be made by injecting mice or other animals with the variant gene product or synthetic peptide
25 fragments thereof comprising the variant portion. Monoclonal antibodies are screened as are described, for example, in Harlow & Lane, *Antibodies, A Laboratory Manual*, Cold Spring Harbor Press, New York (1988); Goding, *Monoclonal antibodies, Principles and Practice* (2d ed.) Academic Press, New York (1986). Monoclonal antibodies are tested for specific immunoreactivity with a variant gene product and lack

of immunoreactivity to the corresponding prototypical gene product. These antibodies are useful in diagnostic assays for detection of the variant form, or as an active ingredient in a pharmaceutical composition.

The polymorphisms of the invention may be associated with vascular disease in different ways. The polymorphisms may exert phenotypic effects indirectly via influence on replication, transcription, and translation. Additionally, the described polymorphisms may predispose an individual to a distinct mutation that is causally related to a certain phenotype, such as susceptibility or resistance to vascular disease and related disorders. The discovery of the polymorphisms and their correlation with CAD and MI facilitates biochemical analysis of the variant and reference forms and the development of assays to characterize the variant and reference forms and to screen for pharmaceutical agents that interact directly with one or another form of the protein.

Alternatively, these particular polymorphisms may belong to a group of two or more polymorphisms in the TSP gene(s) which contributes to the presence, absence or severity of vascular disease. An assessment of other polymorphisms within the TSP gene(s) can be undertaken, and the separate and combined effects of these polymorphisms, as well as alternations in other, distinct genes, on the vascular disease phenotype can be assessed.

Correlation between a particular phenotype, e.g., the CAD or MI phenotype, and the presence or absence of a particular allele is performed for a population of individuals who have been tested for the presence or absence of the phenotype. Correlation can be performed by standard statistical methods such as a Chi-squared test and statistically significant correlations between polymorphic form(s) and phenotypic characteristics are noted. This correlation can be exploited in several ways. In the case of a strong correlation between a particular polymorphic form, e.g., the variant allele for TSP-1 and/or TSP-4, and a disease for which treatment is available, detection of the polymorphic form in an individual may justify immediate administration of treatment, or at least the institution of regular monitoring of the individual. Detection of a polymorphic form correlated with a disorder in a couple contemplating a family may

also be valuable to the couple in their reproductive decisions. For example, the female partner might elect to undergo *in vitro* fertilization to avoid the possibility of transmitting such a polymorphism from her husband to her offspring. In the case of a weaker, but still statistically significant correlation between a polymorphic form and a particular disorder, immediate therapeutic intervention or monitoring may not be justified. Nevertheless, the individual can be motivated to begin simple life-style changes (e.g., diet modification, therapy or counseling) that can be accomplished at little cost to the individual but confer potential benefits in reducing the risk of conditions to which the individual may have increased susceptibility by virtue of the particular allele. Furthermore, identification of a polymorphic form correlated with enhanced receptiveness to one of several treatment regimes for a disorder indicates that this treatment regimen should be followed for the individual in question.

Furthermore, it may be possible to identify a physical linkage between a genetic locus associated with a trait of interest (e.g., CAD or MI) and polymorphic markers that are or are not associated with the trait, but are in physical proximity with the genetic locus responsible for the trait and co-segregate with it. Such analysis is useful for mapping a genetic locus associated with a phenotypic trait to a chromosomal position, and thereby cloning gene(s) responsible for the trait. See Lander *et al.*, *Proc. Natl. Acad. Sci. (USA)* 83, 7353-7357 (1986); Lander *et al.*, *Proc. Natl. Acad. Sci. (USA)* 84, 2363-2367 (1987); Donis-Keller *et al.*, *Cell* 51, 319-337 (1987); Lander *et al.*, *Genetics* 121, 185-199 (1989)). Genes localized by linkage can be cloned by a process known as directional cloning. See Wainwright, *Med. J. Australia* 159, 170-174 (1993); Collins, *Nature Genetics* 1, 3-6 (1992). Linkage studies are discussed in more detail above.

In another embodiment, the invention relates to pharmaceutical compositions comprising a reference TSP-1 and/or TSP-4 gene or gene product for use in the treatment of vascular disease, e.g., CAD and MI. As used herein, a reference TSP gene product is intended to mean gene products which are encoded by the reference allele of the TSP gene. In addition to substantially full-length polypeptides expressed by the genes, the present invention includes biologically active fragments of the polypeptides,

or analogs thereof, including organic molecules which simulate the interactions of the peptides. Biologically active fragments include any portion of the full-length polypeptide which confers a biological function on the variant gene product, including ligand binding, and antibody binding. Ligand binding includes binding by nucleic acids, proteins or polypeptides, small biologically active molecules, or large cellular structures.

For instance, the polypeptide or protein, or fragment thereof, of the present invention can be formulated with a physiologically acceptable medium to prepare a pharmaceutical composition. The particular physiological medium may include, but is not limited to, water, buffered saline, polyols (e.g., glycerol, propylene glycol, liquid polyethylene glycol) and dextrose solutions. The optimum concentration of the active ingredient(s) in the chosen medium can be determined empirically, according to procedures well known to medicinal chemists, and will depend on the ultimate pharmaceutical formulation desired. Methods of introduction of exogenous peptides at the site of treatment include, but are not limited to, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, oral and intranasal. Other suitable methods of introduction can also include rechargeable or biodegradable devices and slow release polymeric devices. The pharmaceutical compositions of this invention can also be administered as part of a combinatorial therapy with other agents and treatment regimens.

The invention further pertains to compositions, e.g., vectors, comprising a nucleotide sequence encoding reference or variant TSP-1 and/or TSP-4 gene products. For example, reference genes can be expressed in an expression vector in which a reference gene is operably linked to a native or other promoter. Usually, the promoter is a eukaryotic promoter for expression in a mammalian cell. The transcription regulation sequences typically include a heterologous promoter and optionally an enhancer which is recognized by the host. The selection of an appropriate promoter, for example trp, lac, phage promoters, glycolytic enzyme promoters and tRNA promoters, depends on the host selected. Commercially available expression vectors can be used. Vectors can

include host-recognized replication systems, amplifiable genes, selectable markers, host sequences useful for insertion into the host genome, and the like.

- The means of introducing the expression construct into a host cell varies depending upon the particular construction and the target host. Suitable means include
- 5 fusion, conjugation, transfection, transduction, electroporation or injection, as described in Sambrook, *supra*. A wide variety of host cells can be employed for expression of the variant gene, both prokaryotic and eukaryotic. Suitable host cells include bacteria such as *E. coli*, yeast, filamentous fungi, insect cells, mammalian cells, typically immortalized, e.g., mouse, CHO, human and monkey cell lines and derivatives thereof.
- 10 Preferred host cells are able to process the variant gene product to produce an appropriate mature polypeptide. Processing includes glycosylation, ubiquitination, disulfide bond formation, general post-translational modification, and the like.

- It is also contemplated that cells can be engineered to express the reference allele of the invention by gene therapy methods. For example, DNA encoding the reference
- 15 TSP gene product, or an active fragment or derivative thereof, can be introduced into an expression vector, such as a viral vector, and the vector can be introduced into appropriate cells in an animal. In such a method, the cell population can be engineered to inducibly or constitutively express active reference TSP gene product. In a preferred embodiment, the vector is delivered to the bone marrow, for example as described in
- 20 Corey *et al.* (*Science* 244:1275-1281 (1989)).

- The invention further relates to the use of compositions (i.e., agonists) which enhance or increase the activity of the reference (or variant) TSP (e.g., TSP-1 or TSP-4) gene product, or a functional portion thereof, for use in the treatment of vascular disease. The invention also relates to the use of compositions (i.e., antagonists) which
- 25 reduce or decrease the activity of the variant (or reference) TSP (e.g., TSP-1 or TSP-4) gene product, or a functional portion thereof, for use in the treatment of vascular disease.

The invention also relates to constructs which comprise a vector into which a sequence of the invention has been inserted in a sense or antisense orientation. For

- example, a vector comprising a nucleotide sequence which is antisense to the variant TSP-1 or TSP-4 allele may be used as an antagonist of the activity of the TSP-1 or TSP-4 variant allele. Alternatively, a vector comprising a nucleotide sequence of the TSP-1 or TSP-4 reference allele may be used therapeutically to treat vascular diseases. As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors, expression vectors, are capable of directing the expression of genes to which they are operably linked. In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids (vectors). However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses) that serve equivalent functions.
- Preferred recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell. This means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operably linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, "operably linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an *in vitro* transcription/translation system or in a host cell when the vector is introduced into the host cell). The term "regulatory sequence" is intended to include promoters, enhancers and other expression control

elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, *Gene Expression Technology: Methods in Enzymology 185*, Academic Press, San Diego, CA (1990). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and 5 those which direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc.

The expression vectors of the invention can be introduced into host cells to 10 thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein. The recombinant expression vectors of the invention can be designed for expression of a polypeptide of the invention in prokaryotic or eukaryotic cells, e.g., bacterial cells such as *E. coli*, insect cells (using baculovirus expression vectors), yeast cells or mammalian cells. Suitable host cells are discussed 15 further in Goeddel, *supra*. Alternatively, the recombinant expression vector can be transcribed and translated *in vitro*, for example using T7 promoter regulatory sequences and T7 polymerase.

Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and 20 "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term 25 as used herein. A host cell can be any prokaryotic or eukaryotic cell. For example, a nucleic acid of the invention can be expressed in bacterial cells (e.g., *E. coli*), insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.

Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (*e.g.*, DNA) into a host cell, including

- 5 calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, *et al.* (*supra*), and other laboratory manuals.

A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (*i.e.*, express) a polypeptide of the invention. Accordingly, the invention further provides methods for producing a polypeptide using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of the invention (into which a recombinant expression vector encoding a polypeptide of the invention has been introduced) in a suitable medium such that the polypeptide is produced. In another embodiment, the method further comprises isolating the polypeptide from the medium or the host cell.

The host cells of the invention can also be used to produce nonhuman transgenic animals. For example, in one embodiment, a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which a nucleic acid of the invention has been introduced. Such host cells can then be used to create non-human transgenic animals in which exogenous nucleotide sequences have been introduced into their genome or homologous recombinant animals in which endogenous nucleotide sequences have been altered. Such animals are useful for studying the function and/or activity of the nucleotide sequence and polypeptide encoded by the sequence and for identifying and/or evaluating modulators of their activity. As used herein, a "transgenic animal" is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc. A transgene is exogenous DNA which is integrated into the

genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal. As used herein, an "homologous recombinant animal" is a non-human animal, preferably a mammal, more 5 preferably a mouse, in which an endogenous gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.

A transgenic animal of the invention can be created by introducing a nucleic acid 10 of the invention into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal. The sequence can be introduced as a transgene into the genome of a non-human animal. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene. A 15 tissue-specific regulatory sequence(s) can be operably linked to the transgene to direct expression of a polypeptide in particular cells. Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866 and 4,870,009, U.S. Patent No. 4,873,191 and in Hogan, *Manipulating the 20 Mouse Embryo* (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986). Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the transgene in its genome and/or expression of mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. 25 Moreover, transgenic animals carrying a transgene encoding the transgene can further be bred to other transgenic animals carrying other transgenes.

The invention also relates to the use of the variant and reference gene products to guide efforts to identify the causative mutation for vascular diseases or to identify or synthesize agents useful in the treatment of vascular diseases, e.g., CAD and MI.

Amino acids that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham *et al.*, *Science*, 244:1081-1085 (1989)). The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then 5 tested for biological activity *in vitro*, or *in vitro* activity. Sites that are critical for polypeptide activity can also be determined by structural analysis such as crystallization, nuclear magnetic resonance or photoaffinity labeling (Smith *et al.*, *J. Mol. Biol.*, 224:899-904 (1992); de Vos *et al.* *Science*, 255:306-312 (1992)).

Another aspect of the invention pertains to monitoring the influence of agents 10 (e.g., drugs, compounds) on the expression or activity of proteins of the invention in clinical trials. An exemplary method for detecting the presence or absence of proteins or nucleic acids of the invention in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting the protein, or nucleic acid (e.g., mRNA, genomic DNA) that 15 encodes the protein, such that the presence of the protein or nucleic acid is detected in the biological sample. A preferred agent for detecting mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to mRNA or genomic DNA sequences described herein, preferably in an allele-specific manner. The nucleic acid probe can be, for example, a full-length nucleic acid, or a portion thereof, such as an oligonucleotide 20 of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to appropriate mRNA or genomic DNA. Other suitable probes for use in the diagnostic assays of the invention are described herein.

The invention also encompasses kits for detecting the presence of proteins or nucleic acid molecules of the invention in a biological sample. For example, the kit can 25 comprise a labeled compound or agent (e.g., nucleic acid probe) capable of detecting protein or mRNA in a biological sample; means for determining the amount of protein or mRNA in the sample; and means for comparing the amount of protein or mRNA in the sample with a standard. The compound or agent can be packaged in a suitable

container. The kit can further comprise instructions for using the kit to detect protein or nucleic acid.

The following Examples are offered for the purpose of illustrating the present invention and are not to be construed to limit the scope of this invention. The teachings
5 of all references cited herein are hereby incorporated herein by reference.

EXAMPLES

Identification of Single Nucleotide Polymorphisms

The polymorphisms shown in the Table were identified by resequencing of target sequences from individuals of diverse ethnic and geographic backgrounds by
10 hybridization to probes immobilized to microfabricated arrays. The strategy and principles for design and use of such arrays are generally described in WO 95/11995.

A typical probe array used in this analysis has two groups of four sets of probes that respectively tile both strands of a reference sequence. A first probe set comprises a plurality of probes exhibiting perfect complementarity with one of the reference
15 sequences. Each probe in the first probe set has an interrogation position that corresponds to a nucleotide in the reference sequence. That is, the interrogation position is aligned with the corresponding nucleotide in the reference sequence, when the probe and reference sequence are aligned to maximize complementarity between the two. For each probe in the first set, there are three corresponding probes from three additional
20 probe sets. Thus, there are four probes corresponding to each nucleotide in the reference sequence. The probes from the three additional probe sets are identical to the corresponding probe from the first probe set except at the interrogation position, which occurs in the same position in each of the four corresponding probes from the four probe sets, and is occupied by a different nucleotide in the four probe sets. In the present
25 analysis, probes were 25 nucleotides long. Arrays tiled for multiple different references sequences were included on the same substrate.

Publicly available sequences for a given gene were assembled into Gap4 (<http://www.biozentrum.unibas.ch/~biocomp/staden/Overview.html>). PCR primers covering each exon were designed using Primer 3 (<http://www-genome.wi.mit.edu/cgi-bin/primer/primer3.cgi>). Primers were not designed in regions where there were
5 sequence discrepancies between reads. Genomic DNA was amplified in at least 50 individuals using 2.5 pmol each primer, 1.5 mM MgCl₂, 100 μM dNTPs, 0.75 μM AmpliTaq GOLD polymerase, and 19 ng DNA in a 15 μl reaction. Reactions were assembled using a PACKARD MultiPROBE robotic pipetting station and then put in MJ 96-well tetrad thermocyclers (96°C for 10 minutes, followed by 35 cycles of 96°C
10 for 30 seconds, 59°C for 2 minutes, and 72°C for 2 minutes). A subset of the PCR assays for each individual were run on 3% NuSieve gels in 0.5X TBE to confirm that
the reaction worked.

For a given DNA, 5 μl (about 50 ng) of each PCR or RT-PCR product were pooled (Final volume = 150-200 μl). The products were purified using QiaQuick PCR
15 purification from Qiagen. The samples were eluted once in 35 μl sterile water and 4 μl 10X One-Phor-All buffer (Pharmacia). The pooled samples were digested with 0.2 μ DNaseI (Promega) for 10 minutes at 37°C and then labeled with 0.5 nmols biotin-N6-ddATP and 15 μ Terminal Transferase (GibcoBRL Life Technology) for 60 minutes at 37°C. Both fragmentation and labeling reactions were terminated by incubating the
20 pooled sample for 15 minutes at 100°C.

Low-density DNA chips (Affymetrix, CA) were hybridized following the manufacturer's instructions. Briefly, the hybridization cocktail consisted of 3M TMACl, 10 mM Tris pH 7.8, 0.01% Triton X-100, 100 mg/ml herring sperm DNA (Gibco BRL), 200 pM control biotin-labeled oligo. The processed PCR products were
25 denatured for 7 minutes at 100°C and then added to prewarmed (37°C) hybridization solution. The chips were hybridized overnight at 44°C. Chips were washed in 1X SSPET and 6X SSPET followed by staining with 2 μg/ml SARPE and 0.5 mg/ml acetylated BSA in 200 μl of 6X SSPET for 8 minutes at room temperature. Chips were scanned using a Molecular Dynamics scanner.

Chip image files were analyzed using Ulysses (Affymetrix, CA) which uses four algorithms to identify potential polymorphisms. Candidate polymorphisms were visually inspected and assigned a confidence value: high confidence candidates displayed all three genotypes, while likely candidates showed only two genotypes

5 (homozygous for reference sequence and heterozygous for reference and variant). Some of the candidate polymorphisms were confirmed by ABI sequencing. Identified polymorphisms were compared to several databases to determine if they were novel. Results are shown in the Table.

Association of Thrombospondin Gene Polymorphisms with Vascular Disease

- 10 To determine pivotal genes associated with premature coronary artery disease, we analyzed DNA from 347 patients with MI or coronary revascularization before age 40 (men) or 45 (women) and 422 general population controls. Cases were drawn (one per family) from a retrospective collection of sibling pairs with premature CAD. Controls were ascertained through random-digit dialing. Both cases and controls were
- 15 Caucasian. A complete database of phenotypic and laboratory variables for the affected patients afforded logistic regression to control for age, diabetes, body mass index, gender.

Thrombospondin (TSP) 4 and 1 emerged as important SNPs associated with premature CAD and MI. For CAD, 148 of 347 patients carried at least one copy of the

20 TSP-4 variant compared with 142 of 422 control subjects; adjusted odds ratio 1.47, p=0.01. For premature MI, the association was even stronger: 91 of 187 cases vs. 142 of 422 controls had the variant; adjusted odds ratio 2.08, p=0.0003. The TSP-1 SNP was rare. Nonetheless, homozygosity for the variant allele gave an adjusted odds ratio of 9.5, p=.04.

Poly ID	WIAF ID	Genebank or TIGR Accession Number	Position in Sequence	Gene Description	Ranking Seq	Mutation Type		Ref NT	Ref AA	Alt NT	Alt AA
						N	G				
AT3a7	WIAF-13246	UJ1270	11918	AT3, antithrombin III		CTGGCAGGAGT [G/A]	GCTGGATGAA	N	G	A	*
DRD5u22	WIAF-12913	M67439	310	DRD1, dopamine receptor D1		CATCTGGACC [C/T]	TGCTGGCAA	S	C	T	L
DRD5u23	WIAF-12914	M67439	332	DRD1, dopamine receptor D1		GTGCTGGTGT [G/C]	CGCACCCATC	M	G	C	S
DRD5u24	WIAF-12915	M67439	369	DRD1, dopamine receptor D1		TGGCGCCAA [C/G]	ATGACCAAACG	M	C	G	K
DRD5u25	WIAF-12916	M67439	522	DRD1, dopamine receptor D1		TGTGCTCCAC [T/C]	GCCTCCATCC	S	T	C	T
DRD5u26	WIAF-12917	M67439	953	DRD1, dopamine receptor D1		GCAGAGAACG [C/T]	GCAGAGCTGC	M	C	T	V
DRD5u27	WIAF-12918	M67439	635	DRD1, dopamine receptor D1		ATGGTCGGC [T/C]	GGCATGGACC	M	T	C	P
DRD5u28	WIAF-12919	M67439	606	DRD1, dopamine receptor D1		GCAAGATGAC [T/C]	CAGGCCATGG	S	T	C	T
DRD5u29	WIAF-12920	M67439	845	DRD1, dopamine receptor D1		TGGCTCATCA [G/A]	CTTCTACATC	M	G	A	N
DRD5u30	WIAF-12921	M67439	720	DRD1, dopamine receptor D1		GGGCCGGGCT [G/T]	GACCTGCCAA	S	G	T	L
DRD5u31	WIAF-12922	M67439	1044	DRD1, dopamine receptor D1		AGACCCCTGTG [G/A]	GTGATCATGG	S	G	A	S
DRD5u32	WIAF-12923	M67439	766	DRD1, dopamine receptor D1		GAAGGGGAC [T/G]	TTTGGGAGCC	M	T	G	V
DRD5u33	WIAF-12924	M67439	777	DRD1, dopamine receptor D1		TTTGGGAGCC [C/T]	GAAGTGAATG	S	C	T	P
DRD5u34	WIAF-12925	M67439	786	DRD1, dopamine receptor D1		CCGAGCTGAA [T/G]	GCAGAGAACT	M	T	G	N

DRD5u35	WIAF-12926	M67439	887	DRD1,	dopamine receptor D1	ACCTAACCGC [G/A] CATCTACCGC	M	G	A	R	H
DRD5u36	WIAF-12927	M67439	1279	DRD1,	dopamine receptor D1	GTGCAGCCAC [T/G] TCTGCTCCCG	M	T	G	F	V
DRD5u37	WIAF-12928	M67439	1370	DRD1,	dopamine receptor D1	GAATGCCAG [C/T] TGCTCATACTC	M	C	T	A	V
DRD5u38	WIAF-12929	M67439	1500	DRD1,	dopamine receptor D1	ACCCCTGGC [T/A] GAGTCTGTCT	S	T	A	A	A
DRD5u39	WIAF-12930	M67439	1338	DRD1,	dopamine receptor D1	TCTCCTACAA [C/T] CAAGACATCG	S	C	T	N	N
DRD5u40	WIAF-12931	M67439	1215	DRD1,	dopamine receptor D1	CACTGAACCC [C/A] GTCATCTATG	S	C	A	P	P
DRD5u41	WIAF-12932	M67439	1242	DRD1,	dopamine receptor D1	ACGCCACTT [T/C] CAGAGGGTGT	S	T	C	F	F
DRD5u42	WIAF-12933	M67439	1441	DRD1,	dopamine receptor D1	CGAGGAGGAG [G/A] GTCCCTTCGA	M	G	A	G	S
DRD5u43	WIAF-12934	M67439	1460	DRD1,	dopamine receptor D1	GATCGCATGT [T/C] CCAGAGTCTAT	M	T	C	F	S
DRD5u44	WIAF-12960	M67439	399	DRD1,	dopamine receptor D1	TGTCCTGGC [C/T] GTGTCCTGACC	S	C	T	A	A
DRD5u45	WIAF-12961	M67439	162	DRD1,	dopamine receptor D1	TGCCGCCAGG [C/G] AGCAACGGCA	S	C	G	G	G
DRD5u46	WIAF-12962	M67439	195	DRD1,	dopamine receptor D1	GGCAGTTGCG [T/G] CTATAACCGC	S	T	G	A	A
DRD5u47	WIAF-12963	M67439	264	DRD1,	dopamine receptor D1	TGGGCCCTC [A/G] CAGGTGGTCA	S	A	G	S	S
DRD5u48	WIAF-12964	M67439	465	DRD1,	dopamine receptor D1	TGCCGGTTA [C/T] TGGCCCTTGT	S	C	T	Y	Y
DRD5u49	WIAF-12965	M67439	511	DRD1,	dopamine receptor D1	CTTCGACATC [A/T] TGTGCTCCAC	M	A	T	M	L
DRD5u50	WIAF-12966	M67439	557	DRD1,	dopamine receptor D1	ATCAGCGTGG [A/G] CGCTACTCG	M	A	G	D	G
DRD5u51	WIAF-12967	M67439	476	DRD1,	dopamine receptor D1	TGGCCCTTGTG [G/A] ACCGTTCTGC	M	G	A	G	E
DRD5u52	WIAF-12968	M67439	1004	DRD1,	dopamine receptor D1	AGCCCTGGCGG [C/T] TTCCATCAAG	M	C	T	A	V
DRD5u53	WIAF-12969	M67439	1036	DRD1,	dopamine receptor D1	GGTTCTCAAG [A/C] CCTGTCGGT	M	A	C	T	P
DRD5u54	WIAF-12970	M67439	859	DRD1,	dopamine receptor D1	CTACATCCCC [G/A] TTGCCATCAT	M	G	A	V	I
DRD5u55	WIAF-12971	M67439	931	DRD1,	dopamine receptor D1	GATTTCCTCC [C/T] TGAGGGGC	S	C	T	L	L

G10u1	WIAF-10234	J04111	1308	v-jun avian sarcoma virus 17 oncogene homolog	CCCTCAACGC [C/T] TCGTTTCCTCC	S C T A A
G10u2	WIAF-10235	J04111	1471	v-jun avian sarcoma virus 17 oncogene homolog	GCTGCTCAAG [C/T] TGGCGTCGCC	S C T L L
G10u3	WIAF-10253	J04111	2010	v-jun avian sarcoma virus 17 oncogene homolog	TGAGTCCCCA [G/A] GAGGGATCA	S G A Q Q
G1001u1	WIAF-13746	D26135	993	gamma (90kD)	CCCAGTGGT [G/A] TACCTGAAGG	S G A V V
G1001u2	WIAF-13764	D26135	2313	gamma (90kD)	ATGTGATGAG [A/T] GAGAACATC	M A T R S
G1002u1	WIAF-13918	X57206	334	inositol 1,4,5-trisphosphate 3-kinase B	CCCCAAGATC [A/C] GGACAAGCCT	M A C Q P
G1002u2	WIAF-13925	X57206	575	inositol 1,4,5-trisphosphate 3-kinase B	CCAACTCAGC [T/C] TTCCCTGCATA	S T C A A
				PIK4CA, phosphatidylinositol 4-kinase, catalytic, alpha polypeptide	GCCGCTCAGA [C/T] TCCGAGGATG	S C T D D
G1004u1	WIAF-13567	I36151	1854	PRKCA, protein kinase C, alpha	GTTACAAAGTT [G/A] CTTAACCAAG	S G A L L
G1006u1	WIAF-12375	HT2690	858	PRKCAZ, protein kinase C, zeta	CTGGCCCTGCC [A/G] TGTCCGGAG	S A G P P
G1008u1	WIAF-12397	HT2136	300	PRKCAZ, protein kinase C, zeta	GCTGCCACGG [C/T] CTCGTCGCC	S C T C D D
G1008u2	WIAF-12398	HT2136	246	PRKCAZ, protein kinase C, zeta	AGTGCAAGGA [T/C] GAAGGGCTCA	S T C D D
G1008u3	WIAF-12399	HT2136	504	PRKCAZ, protein kinase C, zeta	GCTGCCACGG [C/T] CTCGTCGCC	S C T G G
G1008u4	WIAF-12403	HT2136	807	PRKCAZ, protein kinase C, zeta	AGAAGATGA [C/T] CAAATTAGC	S C T D D
G1008u5	WIAF-12404	HT2136	1514	PRKCAZ, protein kinase C, zeta	GGATTTCTG [A/T] CATCAAGTCC	M A T D V
G1008u6	WIAF-12412	HT2136	166	PRKCAZ, protein kinase C, zeta	CAAGTGGGTG [G/A] ACAGCCAGG	M G A D N
G1008u7	WIAF-12418	HT2136	560	PRKCAZ, protein kinase C, zeta	TCCCCAAGAGGC [C/T] TCCAGTAGAC	M C T P L
G1009u1	WIAF-12396	L05186	2495	PTK2, protein tyrosine kinase 2	TGATCAAACAA [G/A] ATGAAACTGG	S G A K K
G1011u1	WIAF-11988	X07876	1250	WNT2, wingless-type MMTV integration site family member 2	TCCCCATGTCA [C/A] CGGGATGACC	M C A T N
G1011u2	WIAF-11997	X07876	788	WNT2, wingless-type MMTV integration site family member 2	GACTATGGGA [T/C] CAAATTTGCC	M T C I T

G1011u3	WIAF-12014	X07876	1338	WNT2, wingless-type MMTV integration site family member 2	TGGCACACATG [C/A] AAGGCCCGA	N C A C *
G1011u4	WIAF-13475	X07876	856	WNT2, wingless-type MMTV integration site family member 2	CCTCATGAAT [C/T] TTCACAAACA	M C T L F
G1011u5	WIAF-13476	X07876	958	WNT2, wingless-type MMTV integration site family member 2	GACATGCTGG [C/T] TGCCATGGC	S C T L L
G1011u6	WIAF-13477	X07876	789	WNT2, wingless-type MMTV integration site family member 2	ACTATGGAT [C/T] AAATTGGCC	S C T I I
G1011u7	WIAF-13478	X07876	823	WNT2, wingless-type MMTV integration site family member 2	TGCAAAGGA [A/G] GGAAAGAAA	M A G R G
G1012u1	WIAF-12408	HT48910	1574	WNT2B, wingless-type MMTV integration site family, member 2B	ATACTTGCAA [A/G] GCCCCCCAAGA	S A G K K
G1016a1	WIAF-12125	Z22534	793	ACVR1, activin A receptor, type I	GGCAAGGGGA [A/G] AAATGTGCCG	S A G E E
G1016u2	WIAF-12392	Z22534	373	ACVR1, activin A receptor, type I	CTGGCCAAGC [T/C] GTGGAGTGCT	S T C A A
G1018u1	WIAF-12413	X74210	1150	ADCY2, adenylylate cyclase 2 (brain)	CAAATTGGGA [G/T] TGGGTATTAA	M G T V L
G1019u1	WIAF-12394	U83867	5475	SPTAN1, spectrin, alpha, non-erythrocytic 1 (alpha-fodrin)	GGGACCTAAC [T/C] GGCCTGCAGA	S T C T T
G1019u2	WIAF-12406	U83867	1223	SPTAN1, spectrin, alpha, non-erythrocytic 1 (alpha-fodrin)	GCCCTCATCA [A/G] TGCAATGAG	M A G N S
G1019u3	WIAF-12409	U83867	3555	SPTAN1, spectrin, alpha, non-erythrocytic 1 (alpha-fodrin)	CTGAAAGGTCT [T/C] ATGCAAGAGG	S T C L L
G1019u4	WIAF-12415	U83867	3369	SPTAN1, spectrin, alpha, non-erythrocytic 1 (alpha-fodrin)	TCCCGTGAAGC [G/A] AATGAACTAC	S G A A A
G1019u5	WIAF-12417	U83867	5839	SPTAN1, spectrin, alpha, non-erythrocytic 1 (alpha-fodrin)	TGAGACAGAC [T/A] TCACCGTCCA	M T A F I
G1022u1	WIAF-12393	U45945	631	ATP1B2, ATPase, Na ⁺ /K ⁺ transporting, beta 2 polypeptide	CATGAATGTT [A/G] CCTTGCTGG	M A G T A

G1022u2	WIAF-12400	U45945	432	ATP1B2, ATPase, Na+/K+ transporting, beta 2 polypeptide	GGCCGCCCTGG [G/A] CGCTTATTACG	S G A G G
G1023u1	WIAF-12401	D89722	395	ARNTL, aryl hydrocarbon receptor nuclear translocator-like	AACATTAAGA [G/C] GTGCCACCAA	M G C G R
G1023u2	WIAF-12407	D89722	681	ARNTL, aryl hydrocarbon receptor nuclear translocator-like	CTCATAGATG [C/T] AAAAACATGGA	M C T A V
G1024u1	WIAF-12410	U85946	731	Homo sapiens brain secretory protein hSec10p (HSEC10) mRNA, complete cds.	GATAGATTTT [C/T] AGAAAGTAAA	M C T S L
G1027u1	WIAF-12402	I47647	1135	CKB, creatine kinase, brain	TGGAGATGGA [A/G] CAGCGGCTGG	S A G E E
G1027u2	WIAF-12405	I47647	499	CKB, creatine kinase, brain	GGGAGGCCG [A/C] GCCATGAGA	S A C R R
G103u1	WIAF-10427	HT2269	335	ERCC5, excision repair cross-complementing rodent repair deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G (Cockayne syndrome))	GGGATCGCCA [T/C] GGGAAACTCAA	S T C H H
G103u2	WIAF-10429	HT2269	1221	ERCC5, excision repair cross-complementing rodent repair deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G (Cockayne syndrome))	CCCTCCCTTC [C/T] CRAGAACTTT	M C T P S
G103u3	WIAF-10431	HT2269	1783	ERCC5, excision repair cross-complementing rodent repair deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G (Cockayne syndrome))	TCTCCAACTT [G/C] TACAAATTCT	M G C C S

G103u4	WIAF-10432	HT2269	2077	ERCC5, excision repair cross-complementing rodent repair deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G (Cockayne syndrome))	ACTGAATCTG [C/A] AGGCCAGGAT	M C A A E
G103u5	WIAF-10446	HT2269	3338	ERCC5, excision repair cross-complementing rodent repair deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G (Cockayne syndrome))	AATTGAGCT [A/T] CTTGATAAGG	S A T L L
G103u6	WIAF-10447	HT2269	3487	ERCC5, excision repair cross-complementing rodent repair deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G (Cockayne syndrome))	TCAAGATCAT [C/T] TGATGGATCT	M C T S R
G103u7	WIAF-10448	HT2269	3507	ERCC5, excision repair cross-complementing rodent repair deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G (Cockayne syndrome))	TTCAAAGTCAA [C/G] ATGGCTGAAAG	M C G H D
G103u8	WIAF-10457	HT2269	1388	ERCC5, excision repair cross-complementing rodent repair deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G (Cockayne syndrome))	CTCTTGACGA [T/G] GACGAAAGATG	M T G D E
G103u9	WIAF-10458	HT2269	1362	ERCC5, excision repair cross-complementing rodent repair deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G (Cockayne syndrome))	CCGGACTCTT [T/C] CAGGCCATTAA	M T C S P

			ERCC5, excision repair cross-complementing rodent repair deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G (Cockayne syndrome))	CTGAGAAAGA [T/C] GCGGAAGATT	S T C D D
G103u10	WIAF-10459	HT2269	2357		
G103u11	WIAF-10462	HT2269	3109	TGAAACAGAA [C/T] GAAGACAGAT	M C T T M
G103u12	WIAF-10463	HT2269	3138	GTTTCCTGTA [T/C] TAAAGCACT	S T C I L
G103u14	WIAF-10484	HT2269	3553	AGAACAGCTG [C/T] GAAAGAGCCA	M C T A V
G103u15	WIAF-10485	HT2269	1429	GATGTGCAAGA [C/T] GGGAGGGCCA	M C T T M
G103a16	WIAF-12097	HT2269	3335	AGAATTGAG [G/T] CTACTTGATA	M G T E D

G1030u1	WIAF-12411	U073558	ZPK, zipper (leucine) protein kinase	ACACTCTGAG[C/T]TGCCTCCCG	S C T D D
G1030u2	WIAF-12416	U073558	ZPK, zipper (leucine) protein kinase	GCCACCCAT[G/T]AACCTGGAGG	N G T E *
G1031a1	WIAF-12124	U87460	GPR37, G protein-coupled receptor 37 (endothelin receptor type B-like)	GAGTCACCAC[C/T]TTCACCTTAT	S C T T T
G1032u1	WIAF-12381	U57911	C11ORF8, chromosome 11 open reading frame 8	ACGTACATCA[A/C]TGCTCGACG	M A C N T
G1033u1	WIAF-12437	M65188	GJAL, gap junction protein, alpha 431_1, 43kD (connexin 43)	TCTGTACCCA[C/T]ACTCTTGAC	M C T T I
G1033u2	WIAF-12438	M65188	GJAL, gap junction protein, alpha 169_1, 43kD (connexin 43)	AGGCAAATG[G/C]GTGACTGGAG	M G C G R
G1033u3	WIAF-12439	M65188	GJAL, gap junction protein, alpha 467_1, 43kD (connexin 43)	TATGTGATGC[G/A]AAAGGGAGAG	M G A R Q
G1033u4	WIAF-12440	M65188	GJAL, gap junction protein, alpha 263_1, 43kD (connexin 43)	TTCATTTC[G/A]AATCCCTGCTG	M G A R Q
G1033u5	WIAF-12441	M65188	GJAL, gap junction protein, alpha 218_1, 43kD (connexin 43)	CAAGCCTACT[C/T]AACTGGCTGA	M C T S L
G1033u6	WIAF-12442	M65188	GJAL, gap junction protein, alpha 498_1, 43kD (connexin 43)	AGAAAGAGGA[A/G]GAACTCAAGG	S A G E E
G1033u7	WIAF-12465	M65188	GJAL, gap junction protein, alpha 550_1, 43kD (connexin 43)	GCACCTGAAG[C/A]AGATTGAGAT	M C A Q K
G1033u8	WIAF-12466	M65188	GJAL, gap junction protein, alpha 548_1, 43kD (connexin 43)	ATGCCACTTGA[A/G]GCAGATTGAG	M A G K R
G1033u9	WIAF-12486	M65188	GJAL, gap junction protein, alpha 933_1, 43kD (connexin 43)	CGCTGAGCCCC[T/C]GCCZAAGACT	S T C P P
G1033u10	WIAF-12487	M65188	GJAL, gap junction protein, alpha 990_1, 43kD (connexin 43)	CCTCACCAAC[C/T]GCTCCCTCT	S C T T T
G1033u11	WIAF-12488	M65188	GJAL, gap junction protein, alpha 1034_1, 43kD (connexin 43)	AAGCTCGTTA[C/A]TGGCCACAGA	M C A T N

G1033u12	WIAF-12489	M65188	1158 1, 43kD (connexin 43)	GJAI, gap junction protein, alpha	CTAACTCCCA [T/C] GCACAGGCCCT	S T C H H
G1033u13	WIAF-12490	M65188	1222 1, 43kD (connexin 43)	GJAI, gap junction protein, alpha	TGACATGAA [T/C] TACGGCACT	S T C L L
G1033u14	WIAF-12491	M65188	1069 1, 43kD (connexin 43)	GJAI, gap junction protein, alpha	CCGAAATTAC [A/G] ACAAGGAAGC	M A G N D
G1033u15	WIAF-12492	M65188	1250 1, 43kD (connexin 43)	GJAI, gap junction protein, alpha	GTGGACCAAGC [G/A] ACCTTCAAGC	M G A R Q
G1033u16	WIAF-12496	M65188	423 1, 43kD (connexin 43)	GJAI, gap junction protein, alpha	TATTTGTC [T/C] GTACCCACAC	S T C S S
G1033u17	WIAF-12503	M65188	880 1, 43kD (connexin 43)	GJAI, gap junction protein, alpha	CGTTAAGGAT [C/T] GGTTTAAGGG	M C T R W
G1033u18	WIAF-12504	M65188	855 1, 43kD (connexin 43)	GJAI, gap junction protein, alpha	AACITCTCTA [T/C] GTTTTCTCTCA	S T C Y Y
G1033u19	WIAF-12505	M65188	576 1, 43kD (connexin 43)	GJAI, gap junction protein, alpha	AGTTCAAGTA [C/T] GGTTATGAAAG	S C T Y Y
G1033u20	WIAF-12512	M65188	1255 1, 43kD (connexin 43)	GJAI, gap junction protein, alpha	CCAGGGACCT [T/G] CAAGCAGAGC	M T G S A
G1033u21	WIAF-12513	M65188	1078 1, 43kD (connexin 43)	GJAI, gap junction protein, alpha	CAACAGCAA [G/A] CAAGTGAGCA	M G A A T
G1033u22	WIAF-12514	M65188	1097 1, 43kD (connexin 43)	GJAI, gap junction protein, alpha	CAAAACTGGG [C/G] TAATTACAGT	M C G A G
G1034u1	WIAF-12443	J03544	1201 brain	PYGB, phosphorylase, glycogen;	AGACCTGTGC [A/G] TACACCAACC	S A G A A
G1034u2	WIAF-12469	J03544	771 brain	PYGB, phosphorylase, glycogen;	GACACCCCG [T/C] GCCCGCTAC	M T C V A
G1034u3	WIAF-12470	J03544	1465 brain	PYGB, phosphorylase, glycogen;	TCCACTCGA [G/C] ATCGTGAAC	M G C E D
G1034u4	WIAF-12471	J03544	1583 brain	PYGB, phosphorylase, glycogen;	GGGGCTGGCC [G/A] ATACCATCGT	M G A D N

G1034u5	WIAF-12472	J03544	1774	PYGB, phosphorylase, glycogen; brain	CCTATGTTCCA [T/C] GTGCATGTGA	S T C D
G1034u6	WIAF-12474	J03544	2449	PYGB, phosphorylase, glycogen; brain	AGGTGGACCA [G/A] CTGTACCGGA	S G A Q Q
G1034u7	WIAF-12508	J03544	718	PYGB, phosphorylase, glycogen; brain	CCCCGACGG [C/T] GTGAAATGGCC	S C T G G
G1035u1	WIAF-12484	U97105	1962_2	DPYSL2, dihydropyrimidinase-like	GCAGAGGAGC [A/G] GCAGAGGATC	M A G Q R
G1035u2	WIAF-12485	U97105	2842_2	DPYSL2, dihydropyrimidinase-like	ATGACGGACC [T/C] GTGTTGTAAAG	S T C P P
G1035u3	WIAF-12511	U97105	2062_2	WASL, Wiskott-Aldrich syndrome-like	CCATCACCAT [C/T] GCCAACACAGA	S C T I I
G1036u1	WIAF-12444	D88460	311	PTK2, PCTAIRE protein kinase 2	TAGAACAAAG [G/A] TATIGCATCG	S C T S S
G1038u1	WIAF-12445	HT2746	994	PTK2, PCTAIRE protein kinase 2	TAGAACAAAG [G/A] TATIGCATCG	M G A V I
G1039u1	WIAF-12429	HT2747	955	serine/threonine kinase, PCTAIRE-3	ATCCAAAGAGT [C/T] GCATTCAGC	M C T R C
G1039u2	WIAF-12458	HT2747	808	serine/threonine kinase, PCTAIRE-3	CAAGAAAGAG [A/T] CGTGGCCGG	M A T T S
G1041u1	WIAF-12459	X72886	544	H. sapiens TYRO3 mRNA.	CAACTGGTG [G/C] CCCTGGAGAG	M G C A P
G1041u2	WIAF-12460	X72886	693	H. sapiens TYRO3 mRNA.	TGGCCGAA [C/T] CGCCCTGAAAC	S C T N N
G1041u3	WIAF-12502	X72886	561	H. sapiens TYRO3 mRNA.	AGAGCTGGC [C/T] GACAACCTGT	S C T A A
G1043u1	WIAF-12448	M94055	5481	Human voltage-gated sodium channel mRNA, complete cds.	CTCTGAGTGA [G/A] GATGACTTGT	S G A E E
G1043u2	WIAF-12449	M94055	5205	Human voltage-gated sodium channel mRNA, complete cds.	TGAGACCTT [T/C] GGCAAACGCA	S T C F F
G1043u3	WIAF-12450	M94055	5224	Human voltage-gated sodium channel mRNA, complete cds.	CATGATCTGC [C/T] TGTTCCAAT	S C T L L
G1043u4	WIAF-12451	M94055	5514	Human voltage-gated sodium channel mRNA, complete cds.	AGGTGGGA [G/C] AACATTGATC	S G A E E
G1043u5	WIAF-12452	M94055	5217	Human voltage-gated sodium channel mRNA, complete cds.	GCAACAGCAT [G/C] ATCTGCCCTGT	M G C M I
G1043u6	WIAF-12453	M94055	5334	Human voltage-gated sodium channel mRNA, complete cds.	GCTCAGTTAA [A/G] GGAGACTGTG	S A G K K

G1043u7	WIAF-12454	M94055	5424	Human voltage-gated sodium channel mRNA, complete cds.	TGTACATCGC [G/C] GTCATCCCTGG	S G C A A
G1043u8	WIAF-12455	M94055	5322	Human voltage-gated sodium channel mRNA, complete cds.	ATCACCCCTGG [A/C] AGCTCACTTA	S A C G G
G1043u9	WIAF-12456	M94055	1200	Human voltage-gated sodium channel mRNA, complete cds.	ATGGCTACAC [G/A] AGCTTGTACA	S G A T T
G1043u10	WIAF-12499	M94055	1170	Human voltage-gated sodium channel mRNA, complete cds.	TCTGTGTGAA [G/T] GCTCTGTAGAA	M G T K N
G1046a1	WIAF-13187	U50352	267	ACCN1, amiloride-sensitive cation channel 1, neuronal (degenerin)	TCCCAGGTGT [G/A] ACCCTCTGTAA	S G A V V
G1046a2	WIAF-13188	U50352	282	ACCN1, amiloride-sensitive cation channel 1, neuronal (degenerin)	TCTGTAACT [C/g] AAATGGTTCC	S C G L L
G1046a3	WIAF-13189	U50352	315	ACCN1, amiloride-sensitive cation channel 1, neuronal (degenerin)	TCACCAACAA [C/t] GACCTGTACC	S C t N N
G1046a4	WIAF-13190	U50352	386	ACCN1, amiloride-sensitive cation channel 1, neuronal (degenerin)	CCCCATCTGG [C/a] TGACCCCTCC	M C a A D
G1046a5	WIAF-13191	U50352	417	ACCN1, amiloride-sensitive cation channel 1, neuronal (degenerin)	CCCTGGGA [G/A] AAGGCCAACT	S G A Q Q
G1048u1	WIAF-12641	HT5174S	3214	REST, RE1-silencing transcription factor	CACCTCAAAGC [G/A] GCTTAAAGGAG	S G A A A
G1048u2	WIAF-12642	HT5174S	3199	REST, RE1-silencing transcription factor	CAAGGAAGC [C/G] TTGGCAGTCA	S C G A A
G1048u3	WIAF-12657	HT5174S	2125	REST, RE1-silencing transcription factor	CTTCCCATGGAA [G/T] ACTTGCTCAGA	M G T E D
G1048u4	WIAF-12660	HT5174S	2333	REST, RE1-silencing transcription factor	GAAACCTGTT [A/C] AGATAAGCT	M A C K Q
G1051u1	WIAF-12431	HT28321	658	SCNN1G, sodium channel, nonvoltage-gated 1, Gamma	ATGAGACCTC [C/T] GACTGTGCCA	S C T S S
G1051u2	WIAF-12434	HT28321	1735	SCNN1G, sodium channel, nonvoltage-gated 1, Gamma	AAGCCAAGGA [G/A] TGCTGGGCCT	S G A E E
G1051u3	WIAF-12473	HT28321	409	SCNN1G, sodium channel, nonvoltage-gated 1, Gamma	AGTCCCTGTA [T/C] GGCTTTCACAG	S T C Y Y

G1051u4	WIAF-12475	HT28321	953	SCNN1G, sodium channel, nonvoltage-gated 1, gamma	AGTCATTTTG [T/C] ACATAAACGA	M T C Y H
G1051u5	WIAF-12476	HT28321	975	SCNN1G, sodium channel, nonvoltage-gated 1, gamma	GAGGAATAACA [A/G] CCCATTCCCTC	M A G N S
G1051u6	WIAF-12477	HT28321	1192	SCNN1G, sodium channel, nonvoltage-gated 1, gamma	CTGCCCTACTC [G/A] CTCCAGATCT	S G A S S
G1053a1	WIAF-13192	HT2201	4085	SCN5A, sodium channel, voltage-gated, type V, alpha polypeptide (long (electrocardiographic) QT syndrome 3)	CGTCCCTCTGA [G/A] AGCTCTGTCA	M G A R K
G1053a2	WIAF-13193	HT2201	5607	SCN5A, sodium channel, voltage-gated, type V, alpha polypeptide (long (electrocardiographic) QT syndrome 3)	ACTTTCGGAA [C/T] GCCCTCTCTG	S C T D D
G1053a3	WIAF-13194	HT2201	5828	SCN5A, sodium channel, voltage-gated, type V, alpha polypeptide (long (electrocardiographic) QT syndrome 3)	GAGCCCCATCA [C/T] CACCAACACTC	M C T T I
G1053a4	WIAF-13202	HT2201	713	SCN5A, sodium channel, voltage-gated, type V, alpha polypeptide (long (electrocardiographic) QT syndrome 3)	GCGTTCACTT [T/A] CCTTCGGGAC	M T A F Y
G1053a5	WIAF-13203	HT2201	6148	SCN5A, sodium channel, voltage-gated, type V, alpha polypeptide (long (electrocardiographic) QT syndrome 3)	CCACAGTGAA [G/T] ATCTCGCCGA	M G T D Y
G1053a6	WIAF-13204	HT2201	6217	SCN5A, sodium channel, voltage-gated, type V, alpha polypeptide (long (electrocardiographic) QT syndrome 3)	GGCCCTGGCTG [G/T] CCAGGCACACA	- G T -
G1053a7	WIAF-13205	HT2201	6324	SCN5A, sodium channel, voltage-gated, type V, alpha polypeptide (long (electrocardiographic) QT syndrome 3)	ATGGGGCTC [G/A] GCCCCCGGGA	- G A -

G1054u1	WIAF-12419	HT2202	2252	SCN4A, sodium channel, voltage-gated, type IV, alpha polypeptide	TGGCAAGAG [C/T] TACAAGGAGT	S C T S S
G1054u2	WIAF-12423	HT2202	4559	SCN4A, sodium channel, voltage-gated, type IV, alpha polypeptide	TGGTCATGTT [C/T] ATCTACTCCA	S C T F F
G1054u3	WIAF-12424	HT2202	4856	SCN4A, sodium channel, voltage-gated, type IV, alpha polypeptide	TCAACATGTA [C/G] ATGCCCATCA	N C G Y *
G1054u4	WIAF-12425	HT2202	4777	SCN4A, sodium channel, voltage-gated, type IV, alpha polypeptide	GTCAACGGTG [A/G] CTGGCGAAC	M A G D G
G1054u5	WIAF-12426	HT2202	4863	SCN4A, sodium channel, voltage-gated, type IV, alpha polypeptide	GTACATGCC [A/G] TCATCCTGGA	M A G I V
G1054u6	WIAF-12427	HT2202	4566	SCN4A, sodium channel, voltage-gated, type IV, alpha polypeptide	GTTCATCTACT [T/G] CCATCTTCGG	M T G S A
G1054u7	WIAF-12428	HT2202	4923	SCN4A, sodium channel, voltage-gated, type IV, alpha polypeptide	TGCTGAAGAT [G/T] ACTTTGAGAT	M G T D Y
G1054u8	WIAF-12446	HT2202	3595	SCN4A, sodium channel, voltage-gated, type IV, alpha polypeptide	TTCTGGCTGA [T/C] CTTCAGCATC	M T C I T
G1054u9	WIAF-12447	HT2202	4203	SCN4A, sodium channel, voltage-gated, type IV, alpha polypeptide	GCAGACAGAC [G/A] ACCAGAGCCA	M G A D N
G1054u10	WIAF-12495	HT2202	4811	SCN4A, sodium channel, voltage-gated, type IV, alpha polypeptide	TCTGCTTCCTT [C/A] TGCAAGTATA	M C A F L
G1054u11	WIAF-12497	HT2202	5555	SCN4A, sodium channel, voltage-gated, type IV, alpha polypeptide	CACGGCAGAC [T/G] GTCGCCAG	S T G T T
G1054u12	WIAF-12498	HT2202	5480	SCN4A, sodium channel, voltage-gated, type IV, alpha polypeptide	CAGGGGACGC [C/T] GGACCCACTA	S C T A A
G1059u1	WIAF-12432	HT33704	112	APLPL, amyloid beta (A4) precursor-like protein 1	CGCTTCTGCT [G/A] CCACTATTGC	S G A L L
G1059u2	WIAF-12433	HT33704	140	APLPL, amyloid beta (A4) precursor-like protein 1	TCTGGCGCG [C/T] AGCCGCCAT	N C T Q *
G1059u3	WIAF-12435	HT33704	1344	APLPL, amyloid beta (A4) precursor-like protein 1	CAGCATGTGG [C/T] CGCCCTGGAT	M C T A V

G1059u4	WIAF-12457	HT33704	APLP1, amyloid beta (A4)	ATAGGGAAA [G/A] GTGAATGCGT	S G A K K
G1059u5	WIAF-12500	HT33704	APLP1, amyloid beta (A4)	GGTCCTGAG [A/G] GCCAAGATGG	S A G R R
G1059u6	WIAF-12501	HT33704	APLP1, amyloid beta (A4)	GTAGGGCTGT [A/G] TCGGGTCTGC	S A G V V
G1060u1	WIAF-12436	HT1418	APLP2, amyloid beta (A4)	CCAGAAATT [C/G] AAGAGGAAT	M C G Q E
G1060u2	WIAF-12467	HT1418	APLP2, amyloid beta (A4)	ATACAGGCTGGT [T/G] GATGCTGAGG	M T G V G
G1060u3	WIAF-12468	HT1418	APLP2, amyloid beta (A4)	GCACTGGAT [C/T] GTGGAGGTG	S C T I I
G1066a1	WIAF-13195	HT3538	566 CCKBR, cholecystokinin B receptor	CTTGGGACC [G/A] TCATCTGCAA	M G A V I
G1066a2	WIAF-13196	HT3538	607 CCKBR, cholecystokinin B receptor	GGGTCTGTG [G/A] AGTGTGTCGA	S G A V V
G1066a3	WIAF-13206	HT3538	864 CCKBR, cholecystokinin B receptor	CTGCTGCTTC [T/A] GCTCTGGTC	M T A L Q
G1067u1	WIAF-12478	HT0830	KCNAL, potassium voltage-gated channel, shaker-related subfamily, member 1 (episodic ataxia with myokymia)	AACGGCTGTG [C/T] ATCATCTGT	S C T C C
G1067u2	WIAF-12479	HT0830	722 myokymia)		
G1067u3	WIAF-12480	HT0830	KCNAL, potassium voltage-gated channel, shaker-related subfamily, member 1 (episodic ataxia with myokymia)	GTCGGCTCT [T/C] CGCCTGCC	M T C F S
G1067u4	WIAF-12509	HT0830	KCNAL, potassium voltage-gated channel, shaker-related subfamily, member 1 (episodic ataxia with myokymia)	ATTTCATCAC [C/G] CTGGCACCG	S C G T I
G1068u1	WIAF-12493	HT0831	774 member 2	TGTGGCATCAT [C/T] TGCTCTCC	S C T I I
				TGAACATCAT [T/A] GACATTTGTTGG	S T A I I

G1070a1	WIAF-13197	HT277728	522 member 6	KCNJ6, potassium inwardly-rectifying channel, subfamily J, member 6	CACAGTGACC [T/C] GGCTCTTTTT	M T C W R
G1070a2	WIAF-13201	HT277728	1244 member 6	KCNJ6, potassium inwardly-rectifying channel, subfamily J, member 6	CCTGGAGGA [T/C] GGTTCTACG	S T C D D
G1070a3	WIAF-13207	HT277728	707 member 6	KCNJ6, potassium inwardly-rectifying channel, subfamily J, member 6	ATAAATGCC [G/A] GAGGGATTAA	S G A P P
G1071u1	WIAF-12422	HT48672	1534 member 3	KCNJ3, potassium inwardly-rectifying channel, subfamily J, member 3	TTCGGCAA [C/T] TCAGAGAAA	S C T N N
G1073u1	WIAF-12461	HT4556	1127 member 1	KCNJ1, potassium inwardly-rectifying channel, subfamily J, member 1	CACTGTCCA [T/C] GTGCCCTTAT	M T C M T
G1074u1	WIAF-12462	HT27804	289 beta member 2	KCNAB2, potassium voltage-gated channel, shaker-related subfamily, member 2	ACCTCTTGA [T/C] ACAGCGAAG	S T C D D
G1079u1	WIAF-12463	HT27383	1130 rectifying	potassium channel, inwardly rectifying (GB:D50582)	ACCTGGCGA [T/A] GAGATCCCTGT	M T A D E
G1079u2	WIAF-12464	HT27383	1192 rectifying	potassium channel, inwardly rectifying (GB:D50582)	CGTTACTCTG [T/G] GGACTACTCC	M T G V G
G1079u3	WIAF-12481	HT27383	708 rectifying	potassium channel, inwardly rectifying (GB:D50582)	GCTTGGCTGC [A/G] TCTTCATGAA	M A G I V
G1079u4	WIAF-12482	HT27383	779 rectifying	potassium channel, inwardly rectifying (GB:D50582)	CGGTGATCGC [T/C] CTGGCCACG	S T C A A
G1079u5	WIAF-12483	HT27383	276 rectifying	potassium channel, inwardly rectifying (GB:D50582)	GGACCTGCC [G/A] AGCCAGGTA	M G A E K
G1079u6	WIAF-12510	HT27383	489 rectifying	potassium channel, inwardly rectifying (GB:D50582)	GTGGCTCATC [G/A] CCUTTGCCCCA	M G A A T
G1080u1	WIAF-12536	HT4412	1099 member 4	KCNJ4, potassium inwardly-rectifying channel, subfamily J, member 4	TGGACTACTC [A/G] CGTTTTCACA	S A G S S

G1080u2	WIAF-12537	HT4412	KCNJ4, potassium inwardly-rectifying channel, subfamily J, member 4	GGCACCGCT [T/A] TGAGCCGTG	M T A F Y
G1081u1	WIAF-12538	HT27724	KCNJ2, potassium inwardly-rectifying channel, subfamily J, member 2	GGCZACCGCT [A/T] TGAGCCGTG	M A T Y F
G1082u1	WIAF-12662	HT28319	potassium channel, inwardly-rectifying, high conductance, alpha subunit	CGCGGTAC [C/T] GAGGAGGGCG	S C T T T
G1082u2	WIAF-12663	HT28319	potassium channel, inwardly-rectifying, high conductance, 854 alpha subunit	CTGGTTCGC [C/T] CATCACCATC	M C T P L
G1082u3	WIAF-12679	HT28319	potassium channel, inwardly-rectifying, high conductance, 471 alpha subunit	TCTCCATCGA [G/C] ACGCACACCA	M G C E D
G1084a1	WIAF-13198	HT0383	KCNB1, potassium voltage-gated channel, Shab-related subfamily, member 1	CACCCCCAG [C/A] AAGACTGGG	M C A S R
G1084a2	WIAF-13199	HT0383	KCNB1, potassium voltage-gated channel, Shab-related subfamily, 2033 member 1	CCAGCAAGA [C/G] TGGGGCAGC	M C G T S
G1084a3	WIAF-13200	HT0383	KCNB1, potassium voltage-gated channel, Shab-related subfamily, 2321 member 1	GAGTGTGCCA [C/A] GCTTTGGAC	M C A T K
G1084a4	WIAF-13208	HT0383	KCNB1, potassium voltage-gated channel, Shab-related subfamily, 870 member 1	AACAACCCCA [G/A] CTGGCCCAAG	S G A Q Q
G1088u1	WIAF-12516	HT0522	KCNA5, potassium voltage-gated channel, shaker-related subfamily, 1503 member 5	TCCCTGGCAA [G/A] ACCTTGCAGG	S G A K K
G1088u2	WIAF-12519	HT0522	KCNA5, potassium voltage-gated channel, shaker-related subfamily, 1249 member 5	CGAGCTGCTC [G/A] TGCGCTTCCTT	M G A V M

G1088u3	WIAF-12520	HT0522	973	KCNA5, potassium voltage-gated channel, shaker-related subfamily, member 5	CTCTGGTCC [G/A] CGGGGCCAT	M G A A T
G1088u4	WIAF-12521	HT0522	1013	KCNA5, potassium voltage-gated channel, shaker-related subfamily, member 5	GTATCCTCA [T/C] CTCCATCATC	M T C I T
G1090u1	WIAF-12651	HT1497	1836	KCNA6, potassium voltage-gated channel, shaker-related subfamily, member 6	CAACCAGCCA [G/A] TCGAGGGGCC	M G A S N
G1091u1	WIAF-12714	HT0222	843	KCNA3, potassium voltage-gated channel, shaker-related subfamily, member 3	CATCATCTGG [T/C] TCTCCCTTCGA	M T C F L
G1094a1	WIAF-13218	HT27381	1280	KCNJ8, potassium inward-rectifying channel, subfamily J, member 8	GTGTATTCTG [T/a] GGATTACTCC	M T a V E
G1095u1	WIAF-12532	HT2629	765	KCNMA1, potassium large conductance calcium-activated channel, subfamily M, alpha member 1	TTCCTCTACTT [C/T] GGCTTCGGT	S C T F F
G1095u2	WIAF-12533	HT2629	2441	KCNMA1, potassium large conductance calcium-activated channel, subfamily M, alpha member 1	GTGGCTCCA [T/C] CTTGGGAGAC	M T C I T
G1095u3	WIAF-12534	HT2629	2714	KCNMA1, potassium large conductance calcium-activated channel, subfamily M, alpha member 1	GATGATACTT [C/G] GCTGCAGGAC	M C G S W
G1095u4	WIAF-12535	HT2629	2439	KCNMA1, potassium large conductance calcium-activated channel, subfamily M, alpha member 1	TCTGGTCTG [C/T] ATCTTTGGCG	S C T C C

G1095u5	WIAF-12539	HT2629	KCNMA1, potassium large conductance calcium-activated channel, subfamily M, alpha member 1	CACTCATGAG [C/T] GCGACGCTACT	S C T S S
G1095u6	WIAF-12544	HT2629	KCNMA1, potassium large conductance calcium-activated channel, subfamily M, alpha member 1	GGATGTTCA [C/T] TGGTGTGCAC	S C T H H
G1095u7	WIAF-12545	HT2629	KCNMA1, potassium large conductance calcium-activated channel, subfamily M, alpha member 1	CATCCCTGACT [C/T] GAAGTGAAGC	N C T R *
G1095u8	WIAF-12546	HT2629	KCNMA1, potassium large conductance calcium-activated channel, subfamily M, alpha member 1	CTGGCAATGA [T/C] CAGATTGACA	S T C D D
G1095u9	WIAF-12548	HT2629	KCNMA1, potassium large conductance calcium-activated channel, subfamily M, alpha member 1	AGTTTTGGA [C/T] CAAGAGATG	S C T D D
G1095u10	WIAF-12549	HT2629	KCNMA1, potassium large conductance calcium-activated channel, subfamily M, alpha member 1	TGCCACGGAT [G/A] TTACGTGAAAC	M G A M I
G1096u1	WIAF-12547	L26318	PRKMB, protein kinase mitogen-activated 8 (MAP kinase)	TCTCTGTTAAT [A/T] GATGCCATCTA	S A T I I
G1098u1	WIAF-12515	L19711	DAG1, dystroglycan 1 (dystrophin-associated glycoprotein 1)	TCTACCTGGA [C/T] ACAGTCATTC	S C T H H
G110u1	WIAF-10385	HT27392	meiosis-specific reCA homolog, HsLim15	CAAGGGATA [C/T] AGATGACAC	N C T Q *
G110u2	WIAF-10397	HT27392	meiosis-specific reCA homolog, HsLim15	CTGTGAAAATC [A/G] AGCCACCTTC	M A G E G
G110u3	WIAF-10399	HT27392	meiosis-specific reCA homolog, HsLim15	TGAAACATCAG [A/G] TGGAGCTACT	M A G M V

G1106u1	WIAF-12647	HT5073	5781	MAP1B, microtubule-associated protein 1B	ACTAAGAGAA [G/A] ATAGAGAGAA	S G A K K
G1106u2	WIAF-12648	HT5073	5916	MAP1B, microtubule-associated protein 1B	CTGAAGAGGG [C/T] GGGTACTCAT	S C T G G
G1106u3	WIAF-12650	HT5073	1837	MAP1B, microtubule-associated protein 1B	AGACAAAGCCA [G/A] TAAAMCAGA	M G A V I
G1106u4	WIAF-12653	HT5073	2476	MAP1B, microtubule-associated protein 1B	CACCAAGCA [G/A] CTGTCTATGGC	M G A A T
G1106u5	WIAF-12656	HT5073	3913	MAP1B, microtubule-associated protein 1B	GCCCAATGAG [A/G] TTAAAGTCCTC	M A G I V
G1106u6	WIAF-12667	HT5073	559	MAP1B, microtubule-associated protein 1B	GATTITTCACC [G/A] ATCAAAGAGAT	M G A D N
G1106u7	WIAF-12668	HT5073	570	MAP1B, microtubule-associated protein 1B	ATCAAGAGAT [C/T] GGGGAGTTAC	S C T I I
G1106u8	WIAF-12669	HT5073	6175	MAP1B, microtubule-associated protein 1B	TACTTCGACA [T/C] ACTGTCTACGA	M T C Y H
G1106u9	WIAF-12670	HT5073	1215	MAP1B, microtubule-associated protein 1B	TCACTCTCCA [G/C] TACCTTAACAA	M G C Q H
G1106u10	WIAF-12672	HT5073	1821	MAP1B, microtubule-associated protein 1B	AGGTAAATGGT [G/A] AAAAAGACAA	S G A V V
G1106u11	WIAF-12673	HT5073	2727	MAP1B, microtubule-associated protein 1B	GTCCCTGCAGA [G/T] TCCCCCTGATG	M G T E D
G1106u12	WIAF-12674	HT5073	2739	MAP1B, microtubule-associated protein 1B	CCCCCTGATGA [G/A] GGAATCTACTA	S G A E E
G1106u13	WIAF-12676	HT5073	3643	MAP1B, microtubule-associated protein 1B	AGATGCCACT [G/A] ATGGCAAGGA	M G A D N
G1106u14	WIAF-12677	HT5073	3609	MAP1B, microtubule-associated protein 1B	CACCGCTCAA [C/T] GGATTTCTG	S C T N N
G1106u15	WIAF-12682	HT5073	4752	MAP1B, microtubule-associated protein 1B	TTCAGAGGCC [A/T] ACAAACAGATG	S A T P P
G1110u1	WIAF-12517	HT1096	1527	myelin associated glycoprotein	GGGGCCCTGTT [G/C] CTCACCAAGCA	S G C V V
G1110u2	WIAF-12518	HT1096	1678	myelin associated glycoprotein	TGTGGGGGCC [G/T] TGGTGGCCTT	M G T V L
G1110u3	WIAF-12522	HT1096	1271	myelin associated glycoprotein	GCGGTGTGAC [C/T] CGAGGTATGAT	M C T P L
G1113u1	WIAF-12523	HT2242	353	myelin transcription factor 1	ATTCCGATC [G/T] GATCCCTCAGG	M G T R L
G1116a1	WIAF-13217	HT28451	417	myelin oligodendrocyte glycoprotein (MOG)	CAAGCTTATC [G/A] AGACCCCTCTC	S G A S S
G1116a2	WIAF-13219	HT28451	913	myelin oligodendrocyte glycoprotein (MOG)	GGAGATCACT [C/G] TTGGCCCTGTT	M C G L V

G1116a3	WIAF-13220	HT28451	myelin oligodendrocyte 922 glycoprotein (MOG)	TCTTGGCCTC [G/A] TCTTCCTCTG	M	G	A	V	I
G1120u1	WIAF-12525	HT3695	1200 neurofilament, subunit H	TAGAGATAGC [T/C] GCCTAACAGAA	S	T	C	A	A
G1123u1	WIAF-12542	HT2569	OMG, oligodendrocyte myelin glycoprotein	CAGCTGCAAC [T/C] CTAACATTTC	S	T	C	T	T
G1126u1	WIAF-12526	HT28354	PSEN2, presenilin 2 (Alzheimer disease 4)	GAGGGAAGCA [T/C] GTGATCATGC	S	T	C	H	H
G1126u2	WIAF-12527	HT28354	PSEN2, presenilin 2 (Alzheimer disease 4)	ATGGAGAGAA [T/C] ACTGCCAGT	S	T	C	N	N
G1126u3	WIAF-12528	HT28354	PSEN2, presenilin 2 (Alzheimer disease 4)	TAATGTGGC [C/T] GAGGCCCCA	S	C	T	A	A
G1126u4	WIAF-12543	HT28354	PSEN2, presenilin 2 (Alzheimer disease 4)	GACCCCTGACC [G/A] CTATGTCGT	M	G	A	R	H
G117u1	WIAF-10391	HT27765	GTBP, G/T mismatch-binding protein	ACTTCCTCAC [A/G] GGAGATTGG	S	A	G	P	P
G117u2	WIAF-10392	HT27765	GTBP, G/T mismatch-binding protein	AACCTGAGA [T/C] GAAGCTTAA	S	T	C	D	D
G117u3	WIAF-10407	HT27765	GTBP, G/T mismatch-binding protein	CCCACTGTAG [T/C] GGAGGTGGT	S	T	C	S	S
G117u4	WIAF-10411	HT27765	GTBP, G/T mismatch-binding protein	CATTTGTGCA [G/A] ATTAGACT	M	G	A	R	K
G117u5	WIAF-10412	HT27765	GTBP, G/T mismatch-binding protein	GACAGGAGGG [C/T] TATAATGTAT	M	C	T	A	V
G117u6	WIAF-10413	HT27765	GTBP, G/T mismatch-binding protein	AGAGTCAGA [A/T] CCACCCAGAC	M	A	T	N	I
G125u1	WIAF-10371	HT28632	1999 groups A, C and D) ATM, ataxia telangiectasia mutated (includes complementation	CAGTAATTT [C/T] CTCATCTTGT	M	C	T	P	S
G125u2	WIAF-10372	HT28632	2631 groups A, C and D) ATM, ataxia telangiectasia mutated (includes complementation	TAATGAATGA [C/A] ATTGCAAGATA	M	C	A	D	E
G125u3	WIAF-10373	HT28632	3084 groups A, C and D) ATM, ataxia telangiectasia mutated (includes complementation	CAATGGAGA [T/G] GTTCTTGAAAC	M	T	G	D	E
G125u5	WIAF-10375	HT28632	4767 groups A, C and D)	CACTTATACC [C/T] CTTGTGTATG	S	C	T	P	P

G125u6	WIAF-10383	HT28632	8713	ATM, ataxia telangiectasia mutated (includes complementation groups A, C and D)	ATCTTGAT [C/T] CAGCTTATTG	M C T P S
G125u7	WIAF-10396	HT28632	1825	ATM, ataxia telangiectasia mutated (includes complementation groups A, C and D)	GACTTGGCA [C/G] TGACCAACCAG	M C G L V
G125u8	WIAF-10398	HT28632	2924	ATM, ataxia telangiectasia mutated (includes complementation groups A, C and D)	ACTACTGCTC [A/G] GACCAAATCT	M A G Q R
G125u9	WIAF-10405	HT28632	8967	ATM, ataxia telangiectasia mutated (includes complementation groups A, C and D)	TTGAAGGTGT [C/T] TTTCAGAAAGAT	S C T V V
G125u10	WIAF-10408	HT28632	6954	ATM, ataxia telangiectasia mutated (includes complementation groups A, C and D)	CCAAACACCT [T/C] GTAGAACCT	S T C L L
G125u11	WIAF-10409	HT28632	6855	ATM, ataxia telangiectasia mutated (includes complementation groups A, C and D)	TTCAAGGAGCC [T/C] ATCATGGCTC	S T C P P
G125u12	WIAF-10410	HT28632	6801	ATM, ataxia telangiectasia mutated (includes complementation groups A, C and D)	TATATATTA [G/T] TGCCAGAAC	M G T K N
G125u13	WIAF-10421	HT28632	335	ATM, ataxia telangiectasia mutated (includes complementation groups A, C and D)	CATTCAAGATT [C/G] CAAACAGGA	M C G S C
G125u14	WIAF-11607	HT28632	3966	ATM, ataxia telangiectasia mutated (includes complementation groups A, C and D)	TTCACACATCT [G/A] GTGATTAAGAA	S G A L L
G125u15	WIAF-13130	HT28632	8642	ATM, ataxia telangiectasia mutated (includes complementation groups A, C and D)	GAGAAATATG [A/C] AGTCTTGTATG	M A C E A

			MLHL, mutL (<i>E. coli</i>) homolog 1 (colon cancer, nonpolyposis type 2)	AGGAGAAAAG [C/T] TTTAAAAAAT	M C T A V
G136u1	WIAF-10388	HT3337	535	MLHL, mutL (<i>E. coli</i>) homolog 1 (colon cancer, nonpolyposis type 2)	TTCAAAATGA [A/G] TGGTTACATA
G136u2	WIAF-10389	HT3337	769	FOS, v-fos FBJ murine osteosarcoma viral oncogene homolog	CCCTGTGCACT [C/T] CGGTGGTCAC
G144u1	WIAF-11638	HT3625	1129	FOS, v-fos FBJ murine osteosarcoma viral oncogene homolog	TTGCCAGAA [G/A] TCCAGAAC
G1461u1	WIAF-12562	HT0329	684	prB-binding protein	ATGATCCATG [G/C] GTAGAACATG
G1466u1	WIAF-12571	HT27849	2128	API2, apoptosis inhibitor 2	M G C W C
G1468u1	WIAF-12563	HT4986	1928	apoptosis inhibitor, neuronal	CCACCAAGACC [A/T] GACCGGGGC
G1468u2	WIAF-12564	HT4986	3057	apoptosis inhibitor, neuronal	TTTCCAATTTC [C/G] TTCAAGGGAG
G1472u1	WIAF-12565	HT28478	242	BAK1, BCL2-antagonist/killer 1	S C T P P
G1472u2	WIAF-12572	HT28478	509	BAK1, BCL2-antagonist/killer 1	GGCAGGGAGTG [C/T] GGAGAGGCTG
G1473u1	WIAF-12568	HT28606	394	CASP6, caspase 6, apoptosis- related cysteine protease	TGCAAGCCAC [G/A] GCAGAGAAATG
G1473u2	WIAF-12576	HT28606	411	CASP6, caspase 6, apoptosis- related cysteine protease	GGGTCAACT [G/C] TTAGCCACGC
G1479u1	WIAF-12550	Y09077	711	ATR, ataxia telangiectasia and Rad3 related	S C T A A
G1479u2	WIAF-12551	Y09077	4303	ATR, ataxia telangiectasia and Rad3 related	ACGGAGATGC [C/T] GATTGGTTG
G1479u3	WIAF-12552	Y09077	1894	ATR, ataxia telangiectasia and Rad3 related	ACTTATTTAA [T/C] GGTTCTTACT
G1479u4	WIAF-12553	Y09077	1855	ATR, ataxia telangiectasia and Rad3 related	TTGCGTATGC [T/C] GATAATAGCC
G1479u5	WIAF-12558	Y09077	5287	ATR, ataxia telangiectasia and Rad3 related	ATTCATGATGA [T/C] GGCTGTTAA
					S T C D D
					S T C Y Y

G1479u6	WIAF-12559	Y09077	5539	ATR, ataxia telangiectasia and Rad3 related	CAGCTTTTA [T/C] GACTCACTGA	S	T	C	Y	Y
G1479u7	WIAF-12569	Y09077	1540	ATR, ataxia telangiectasia and Rad3 related	ATCCCTGTTAT [T/C] GAGATGTTAG	S	T	C	I	I
G1479u8	WIAF-12570	Y09077	2521	ATR, ataxia telangiectasia and Rad3 related	ATTTAATGGA [A/G] GATCCAGACAA	S	A	G	E	E
G1482u1	WIAF-12560	HT127870	3176	BLM, Bloom syndrome	AAAATAAAC [G/A] GAATGCAGGA	S	G	A	T	T
G1482u2	WIAF-12561	HT127870	3605	BLM, Bloom syndrome	AAAATAAGC [C/A] CAAACTGTAC	S	C	A	A	A
G1482u3	WIAF-12573	HT127870	2677	BLM, Bloom syndrome	TAATGATTAC [C/T] GAAAAAGCCT	M	C	T	P	L
G1483u1	WIAF-12597	HT1470	1910	MYBL2, v-myb avian myeloblastosis viral oncogene homolog-like 2	GGATGAGGAT [G/A] TGAAGCTGAT	M	G	A	V	M
G1483u2	WIAF-12610	HT1470	244	MYBL2, v-myb avian myeloblastosis viral oncogene homolog-like 2	ATGAGGAGGA [C/T] GAGGGCTGA	S	C	T	D	D
G1483u3	WIAF-12611	HT1470	1406	MYBL2, v-myb avian myeloblastosis viral oncogene homolog-like 2	CACCTGAGAAT [A/G] GCACCCAGTCT	M	A	G	S	G
G1485u1	WIAF-12581	HT1432	1941	BCR, breakpoint cluster region	TGGAGATGAG [A/G] AAATCGGTCC	S	A	G	R	R
G1485u2	WIAF-12582	HT1432	3144	BCR, breakpoint cluster region	TGACCATCAA [T/C] AAGGAAGATG	S	T	C	N	N
G1485u3	WIAF-12583	HT1432	3777	BCR, breakpoint cluster region	ATAACAGGA [T/C] GTGCGGTGA	S	T	C	D	D
G1485u4	WIAF-12603	HT1432	2831	BCR, breakpoint cluster region	CAGATCAAGA [G/A] TGACATTCAG	M	G	A	S	N
G1485u5	WIAF-12608	HT1432	4217	BCR, breakpoint cluster region	ATCCCCTGCCC [C/T] GGACACCAAG	M	C	T	P	L
G1486u1	WIAF-12578	HT33770	1909	BRCA2, breast cancer 2, onset	ATTGATPATG [G/A] AAGCTGGCCA	M	G	A	G	E
G1486u2	WIAF-12579	HT33770	3623	BRCA2, breast cancer 2, onset	AGTTTGGAAA [A/G] CCAAGCTACA	S	A	G	K	K
G1486u3	WIAF-12586	HT33770	1341	BRCA2, breast cancer 2, onset	AAATGTTAGCA [A/C] ATCAGGAGCC	M	A	C	N	H
G1486u4	WIAF-12594	HT33770	446	BRCA2, breast cancer 2, onset	CTTATAATCA [G/A] CTGGCTTCAA	S	G	A	Q	Q
G1486u5	WIAF-12598	HT33770	3013	BRCA2, breast cancer 2, onset	ACCATGGTTT [T/C] ATATGGAGAC	M	T	C	L	S

G1486u6	WIAF-12599	HT33770	BRCA2, breast cancer 2, early onset	GAAAAAATA [A/T] TGATTACATG	M A T N I
G1486u7	WIAF-12604	HT33770	BRCA2, breast cancer 2, early onset	AGCATGTGAG [A/C] CCATTGAGAT	M A C T P
G1486u8	WIAF-12607	HT33770	BRCA2, breast cancer 2, early onset	ATGATTCTGT [C/T] GTTCAATG	S C T V V
G1487u1	WIAF-12584	HT27632	BRCA1, breast cancer 1, early onset	AGTCAGTGTG [C/G] AGGATTGAA	M C G A G
G1487u2	WIAF-12587	HT27632	BRCA1, breast cancer 1, early onset	CATCTCAAGA [G/C] GAGCTCATTAA	M G C E D
G1487u3	WIAF-12595	HT27632	BRCA1, breast cancer 1, early onset	TCTCCCTGAAC [A/G] TCTAAAAGAT	M A G H R
G1487u4	WIAF-12600	HT27632	BRCA1, breast cancer 1, early onset	ACCGTCCAGA [A/G] AGGAGAGCTT	M A G K R
G1487u5	WIAF-12601	HT27632	BRCA1, breast cancer 1, early onset	TATGGGAAGT [A/G] GTCATGCATC	M A G S G
G1487u6	WIAF-12602	HT27632	BRCA1, breast cancer 1, early onset	ATCTGCCAG [A/G] GTCCAGCTGC	M A G S G
G1487u7	WIAF-12605	HT27632	BRCA1, breast cancer 1, early onset	AGTACAACCA [A/G] ATGCCAGTCA	S A G Q Q
G1487u8	WIAF-12614	HT27632	BRCA1, breast cancer 1, early onset	TCTCCACAAA [G/A] TGTGACACAA	S G A K K
G1492u1	WIAF-12585	HT3506	cell death-associated kinase	TCCAGGTCCG [T/C] GGCTTGAGA	S T C R R
G1492u2	WIAF-12593	HT3506	cell death-associated kinase	TACAACACCA [A/G] TAACGGGCT	M A G N S
G1492u3	WIAF-12606	HT3506	cell death-associated kinase	GCAATTGGA [C/T] ATCTCCAAACA	S C T D D
G1492u4	WIAF-12612	HT3506	cell death-associated kinase	TGAAATTCTCT [C/T] ACTGACAAACA	S C T L L
G1494u1	WIAF-12589	HT28507	cell death-inducing protein Bik	TTCACCAACAC [T/C] TAAGGGAAC	M T C L P
G1495u1	WIAF-12580	HT27803	CSE1L, chromosome segregation 1 (yeast homolog)-like	TTTCCTCCCT [G/C] ATCCCTGATCT	S G C L L
G1501u1	WIAF-13502	HT1949	MCC, mutated in colorectal cancers	CAGGAAATGAC [A/C] TTCCCCCTCGC	M A C I L
G1501u2	WIAF-13503	HT1949	MCC, mutated in colorectal cancers	CAGCTGAGAA [C/T] GCTGCCAAGG	S C T N N
G1501u3	WIAF-13504	HT1949	MCC, mutated in colorectal cancers	TGTCCCTAGC [T/C] GAACTTAGGA	S T C A A
G1501u4	WIAF-13521	HT1949	MCC, mutated in colorectal cancers	ACGAAACGAC [G/A] CTTCGCTATG	S G A T T

G1501u5	WIAF-13522	HT1949	MCC, mutated in colorectal cancers	AAAGCAATGC [T/C] GAGAGGTGA	S T C A A
G1501u6	WIAF-13527	HT1949	MCC, mutated in colorectal cancers	TTCGTGAATG [A/G] TCTAAAGGG	M A G D G
G1502u1	WIAF-12633	HT1547	CCND1, cyclin D1 (PRAD1: parathyroid adenomatosis 1)	AGTGTGACCC [A/G] GACTGCCTCC	S A G P P
G1503u1	WIAF-13741	U37022	1151 CDK4, cyclin-dependent kinase 4	CATGCCAATT [G/A] CATCGTCAC	M G A C Y
G1503u2	WIAF-13742	U37022	1410 CDK4, cyclin-dependent kinase 4	CTGAAGCCGA [C/T] CAGTTGGCA	S C T D D
G1503u3	WIAF-13743	U37022	1328 CDK4, cyclin-dependent kinase 4	TATGGAACAC [C/T] TGTTGACATG	M C T P L
G1503u4	WIAF-13780	U37022	1194 CDK4, cyclin-dependent kinase 4	TTCCTGGTGAC [A/G] AGTGGTGGAA	S A G T T
G1503u5	WIAF-13781	U37022	1443 CDK4, cyclin-dependent kinase 4	TGATTCGGGT [G/A] CCTCCAGGG	S G A L L
G1503u6	WIAF-13787	U37022	1633 CDK4, cyclin-dependent kinase 4	CTCTPATCTA [C/T] ATAAAGGTGA	M C T H Y
G1517u1	WIAF-12618	HT1132	ERBB3, v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 3	CAGACCTCAG [T/C] GCCTCTCTGG	S T C S S
G152u1	WIAF-11608	HT3854	1673 like 1	GTGAGTGATG [A/C] AGTTTGAAAG	M A C E A
G152u2	WIAF-11629	HT3854	1683 like 1	AAGGTTGAA [G/A] GGCAAGGATA	S G A K K
G152u3	WIAF-11609	HT3854	1478 like 1	GTCAZAGCCA [C/T] GGACZAGAGC	M C T T M
G152u4	WIAF-11610	HT3854	1443 like 1	TGACGTTTGA [C/T] ATTGATGCCA	S C T D D
G152u1	WIAF-12162	HT1175	2211 5' end	TGACCGTGG [C/T] GAGGGTGTCC	S C T D D
G152u2	WIAF-12166	HT1175	546 5' end	DNA excision repair protein ERCC2, CCACACTGCCG [A/C] TTTCATGAGG	S A C R R
G1527u1	WIAF-12168	HT0086	577 M2 (muscle)	TCAATCCCG [A/C] TTTCAGGGCT	S A C R R
G1527u2	WIAF-12169	HT0086	644 M2 (muscle)	ACCTGTGTC [A/T] CAAAGATGGC	M A T T S
G1527u3	WIAF-12171	HT0086	100 M2 (muscle)	ACTCAAGCTA [C/T] GAGGAAAGA	S C T Y Y
G1527u4	WIAF-12172	HT0086	41 M2 (muscle)	GGGTACTGG [A/G] ACATCCCGGG	M A G N D

G1527u5	WIAF-12173	HT0086	215 M2 (muscle)	GSTM2, glutathione S-transferase	GATGATGG [A/G] CTCACAAGAT	M A G T A
G1527u6	WIAF-12194	HT0086	238 M2 (muscle)	GSTM2, glutathione S-transferase	CCAGAGCA [T/C] GCCATCTGC	S T C N N
G1528u1	WIAF-11950	HT1811	529 M3 (brain)	GSTM3, glutathione S-transferase	GTTATTGCA [C/G] CCCAAGTGCC	M C G D E
G1528u2	WIAF-11951	HT1811	674 M3 (brain)	GSTM3, glutathione S-transferase	CAACAAGCCT [G/A] TATGCTGAGC	M G A V I
G1528u3	WIAF-11989	HT1811	572 M3 (brain)	GSTM3, glutathione S-transferase	GGCTTCTATG [T/G] GCCGGTTTGA	M T G C G
G1528u4	WIAF-13470	HT1811	240 M3 (brain)	GSTM4, glutathione S-transferase	CAGGCAATG [C/A] CATCTTGC	M C A A D
G1529u1	WIAF-14146	HT2006	797 M4	GSTM4, glutathione S-transferase	TGGACGCCCTT [C/T] CGAAATCTGA	S C T F F
G153u1	WIAF-12163	HT3856	1212 HSPA1B, heat shock 70kd protein 1	TGGGGCTGGA [G/A] ACGGCCGAG	S G A E E	
G153u2	WIAF-12182	HT3856	676 HSPA1B, heat shock 70kd protein 1	GCCCCGGGAC [A/G] CCCACCTGGG	M A G T A	
G153u3	WIAF-12183	HT3856	1695 HSPA1B, heat shock 70kd protein 1	TCAAGGAGGC [C/G] GACAAGAAAGA	S C G A A	
G153u4	WIAF-12189	HT3856	330 HSPA1B, heat shock 70kd protein 1	ACAAAGGGGA [G/C] ACCAAGGCAT	M G C E D	
G153u5	WIAF-12190	HT3856	1053 HSPA1B, heat shock 70kd protein 1	AGCTGCTGCA [A/G] GACTTC	S A G Q Q	
G1530u1	WIAF-11964	HT3010	673 M5	GSTM5, glutathione S-transferase	ATCCCTCGA [G/A] GTCTTTGTT	M G A G S
G1530u2	WIAF-11995	HT3010	593 M5	GSTM5, glutathione S-transferase	GACGCCCTCC [T/C] AAACCTGAAG	M T C L P
G1530u3	WIAF-13473	HT3010	693 M5	GSTM5, glutathione S-transferase	TTGGAAAGTC [A/G] GCTAATGGA	S A G S S
G1533u1	WIAF-13458	HT27460	543 theta 2	GSTT2, glutathione S-transferase	CTCTCGGCTA [C/T] GAACCTTTG	S C T Y Y
G1533u2	WIAF-13460	HT27460	417 theta 2	GSTT2, glutathione S-transferase	TTGGAAAGTC [A/G] GCTAATGGA	M G A M I
G1533u3	WIAF-13461	HT27460	359 theta 2	GSTT2, glutathione S-transferase	GGACTGCCC [G/A] GACCAAGGCC	M G A G E
G1533u4	WIAF-13462	HT27460	363 theta 2	GSTT2, glutathione S-transferase	TGTTGGGCC [A/C] CTCAATTGGG	S A C P P
G1533u5	WIAF-13463	HT27460	385 theta 2	GSTT2, glutathione S-transferase	CAGGTGGCC [G/A] AGGAGAAGGT	M G A E K
G1535u1	WIAF-11952	HT0436	517 HCK, hemopoietic cell kinase	CCGGCTTAC [T/C] CTCTGGAGAC	M T C S P	

G1535u2	WIAF-12013	HT0436	783	HCK,	hemopoietic cell kinase	TGGACCACTA [C/T] AAGAAAGGGGA	S	C	T	Y	Y
G1535u3	WIAF-13464	HT0436	357	HCK,	hemopoietic cell kinase	TGATCGTGTGT [T/C] GCCTGTATG	S	T	C	V	V
G1535u4	WIAF-13465	HT0436	387	HCK,	hemopoietic cell kinase	CCATTGCCCA [C/T] GAGGACTCTCA	S	C	T	H	H
G1535u5	WIAF-13466	HT0436	471	HCK,	hemopoietic cell kinase	CCCTGGCCAC [C/G] CGGAAGGAGG	S	C	G	T	T
G1535u6	WIAF-13467	HT0436	240	HCK,	hemopoietic cell kinase	CCAGGGCCAG [C/T] CCAACACTGTC	S	C	T	S	S
G1535u7	WIAF-13468	HT0436	394	HCK,	hemopoietic cell kinase	CCACGAAAGAC [C/T] TCAGCTTCCA	M	C	T	L	F
G1537u1	WIAF-12020	U04045	1514		MSH2, mutS (<i>E. coli</i>) homolog 2 (colon cancer, nonpolyposis type)	GTGAAATTAAAG [A/G] GAATAATAGA	S	A	G	R	R
G1537u2	WIAF-12044	U04045	599		MSH2, mutS (<i>E. coli</i>) homolog 2 (colon cancer, nonpolyposis type)	GACATGTTGTA [A/T] TTCCCTGTATA	M	A	T	E	D
G1537u3	WIAF-12045	U04045	1452		MSH2, mutS (<i>E. coli</i>) homolog 2 (colon cancer, nonpolyposis type)	AGATATGGAT [C/T] AGGTGGAAA	N	C	T	Q	*
G1537u4	WIAF-12076	U04045	938		MSH2, mutS (<i>E. coli</i>) homolog 2 (colon cancer, nonpolyposis type)	GACAGTTGTA [A/T] CTGACTACTT	M	A	T	E	D
G1537u5	WIAF-12077	U04045	1878		MSH2, mutS (<i>E. coli</i>) homolog 2 (colon cancer, nonpolyposis type)	TCTAGTAGAT [G/A] CTGTTGGTCAG	M	G	A	A	T
G1543u1	WIAF-13856	J00119	553	MOS,	v-mos Moloney murine sarcoma viral oncogene homolog	GAGTTCCTGG [G/T] CTGAGCTCAA	M	G	T	A	S
G1543u2	WIAF-13857	J00119	621	MOS,	v-mos Moloney murine sarcoma viral oncogene homolog	GCAAGGCCAC [G/A] CCCGGAGGGT	S	G	A	T	T
G1544u1	WIAF-12018	U59464	3821	PTCH,	patched (Drosophila) homolog	CATCCCCGAAT [C/T] CAGGGCATCAC	M	C	T	S	F
G1544u2	WIAF-12019	U59464	3618	PTCH,	patched (Drosophila) homolog	GGTGGTTCGG [C/T] TTGCGCATGTC	S	C	T	R	R
G1544u3	WIAF-12027	U59464	1761	PTCH,	patched (Drosophila) homolog	ATTTCGGCAT [G/T] GTTCGGCTCA	M	G	T	M	I
G1544u4	WIAF-12029	U59464	4074	PTCH,	patched (Drosophila) homolog	CTGGCCATGGG [C/T] AGCTCCGTGC	S	C	T	G	G

G1544u5	WIAF-12043	U59464	PTCH, patched (Drosophila)	3845 homolog	CCTCGAACCC [C/T] GAGACAGCAG	M C T P L
G1544u6	WIAF-12056	U59464	PTCH, patched (Drosophila)	1433 homolog	CTGCTGGTG [C/T] ACTGTCACTG	M C T A V
G1544u7	WIAF-12058	U59464	PTCH, patched (Drosophila)	3298 homolog	CACCGTTCAC [G/C] TTGCTTGGC	M G C V L
G1544u8	WIAF-12062	U59464	PTCH, patched (Drosophila)	3986 homolog	TCTACTGAAG [G/A] GCATTCGGC	M G A G E
G1544u9	WIAF-13489	U59464	PTCH, patched (Drosophila)	1665 homolog	CCATGAGCAA [T/C] GTCAACAGCCT	S T C N N
G1544u10	WIAF-13490	U59464	PTCH, patched (Drosophila)	2396 homolog	AAATACTTTT [C/T] TTCTACAAC	M C T S F
G1544u11	WIAF-13491	U59464	PTCH, patched (Drosophila)	2199 homolog	GGACACTCTC [A/G] TCTTTTGCTG	S A G S S
G1544u12	WIAF-13492	U59464	PTCH, patched (Drosophila)	2222 homolog	AAGCACTATG [C/T] TCCCTTCCTC	M C T A V
G1544u13	WIAF-13500	U59464	PTCH, patched (Drosophila)	1686 homolog	TCTTCATGGC [C/T] GCGTTAATCC	S C T A A
G1545u1	WIAF-12032	HT0473	RAG1, recombination activating gene 1	1835 gene 1	GGACATGGAA [G/A] AAAGACATCTT	M G A E K
G1545u2	WIAF-12035	HT0473	RAG1, recombination activating gene 1	2519 gene 1	TGACATTTGGC [A/G] ATGCCAGCTGA	M A G N D
G1545u3	WIAF-12046	HT0473	RAG1, recombination activating gene 1	3045 gene 1	CGAAAATGAA [A/G] TGCCCAAGCAG	M A G N S
G1545u4	WIAF-12047	HT0473	RAG1, recombination activating gene 1	3146 gene 1	TCATAATGCA [T/C] TAAAAACCTC	S T C L L
G1545u5	WIAF-12075	HT0473	RAG1, recombination activating gene 1	2513 gene 1	CCACTGTGAC [A/T] TTGGCPATGC	M A T I F
G1545u6	WIAF-13484	HT0473	RAG1, recombination activating gene 1	1322 gene 1	GTGCTGACT [C/T] GGAGAGCTCA	M C T R W
G1545u7	WIAF-13494	HT0473	RAG1, recombination activating gene 1	2571 gene 1	GAAGTGTATA [A/G] GAATCCCAAT	M A G K R
G1545u8	WIAF-13498	HT0473	RAG1, recombination activating gene 1	1018 gene 1	TTCTGGCTGA [C/A] CCTGTGAGA	M C A D E
G1545u9	WIAF-13499	HT0473	RAG1, recombination activating gene 1	2782 gene 1	ATCTTTACCT [G/C] AAGATGAAAC	S G C L L
G1548u1	WIAF-12015	HT4999	IFT27, interferon, alpha- inducible protein 27	133	CTCTGGCTA [G/A] TTGCCCCCT	M G A V I
G1548u2	WIAF-13482	HT4999	IFT27, interferon, alpha- inducible protein 27	380	ATCCCTGGCT [C/T] CATGGGTCT	M C T S F
G1548u3	WIAF-13483	HT4999	IFT27, interferon, alpha- inducible protein 27	135	CTGCCGTAGT [T/C] TTGCCCCCTGG	S T C V V

G155u1	WIAF-11634	HT3962	991	CHC1, chromosome condensation 1	AGCTGGATGT [G/A] CCTGTGGTAA	S G A V V
G155u2	WIAF-11635	HT3962	1271	CHC1, chromosome condensation 1	CGGCTTCGGC [C/T] TCTCCAACTA	M C T L F
G155u3	WIAF-11636	HT3962	1192	CHC1, chromosome condensation 1	GCCGGGCCA [C/T] GTGAGATTCC	S C T H H
G155u4	WIAF-11637	HT3962	1267	CHC1, chromosome condensation 1	TGTACGGCTT [C/T] GGCTCTCCA	S C T F F
G155u5	WIAF-11649	HT3962	1657	CHC1, chromosome condensation 1	TGATGGCAA [A/G] CAAGTGAGA	S A G K K
G155u1				LYN, v-yes-1 Yamaguchi sarcoma 611 viral related oncogene homolog	GCAAGTCCC [T/G] TTAAACAAAA	M T G L R
G155u2	WIAF-12057	M16038		LYN, v-yes-1 Yamaguchi sarcoma 1371 viral related oncogene homolog	TGGCATACAT [C/T] GAGGGAGA	S C T I I
G155u3	WIAF-12061	M16038		LYN, v-yes-1 Yamaguchi sarcoma 1059 viral related oncogene homolog	AAAGGCTTGG [C/T] GCTGGGAGT	S C T G G
G155u4	WIAF-12080	M16038		LYN, v-yes-1 Yamaguchi sarcoma 996 viral related oncogene homolog	AGCCACAGAA [G/A] CCATCGGATA	S G A K K
G1552u1	WIAF-12081	M16038		PMS1, postmeiotic segregation increased (S. cerevisiae) 1	CCTGCTTATT [A/T] AAAGACTTCT	N A T K *
G1552u2	WIAF-12031	HT4578	2355	PMS1, postmeiotic segregation increased (S. cerevisiae) 1	ACAAAGTTGA [C/T] TTAGAGAGA	S C T D D
G1552u3	WIAF-12040	HT4578	617	PMS1, postmeiotic segregation increased (S. cerevisiae) 1	TCATGAGCTT [T/C] GGATATCCTTA	S T C F F
G1552u4	WIAF-12063	HT4578	1723	PMS1, postmeiotic segregation increased (S. cerevisiae) 1	TCATGTAACA [A/G] AAAATCAAAT	M A G K R
G1552u5	WIAF-12064	HT4578	1732	PMS1, postmeiotic segregation increased (S. cerevisiae) 1	AAAAAAACAA [A/G] TGTAATAGAT	M A G N S
G1552u6	WIAF-12065	HT4578	1660	PMS1, postmeiotic segregation increased (S. cerevisiae) 1	TTACCATGTA [A/G] AGTAAGTAAT	M A G K R

G1552u7	WIAF-12066	HT4578	1975	PMS1, postmeiotic segregation increased (<i>S. cerevisiae</i>) 1	CAACGATACA [A/G] TAGTCAAATG	M · A · G · N · S
G1552u8	WIAF-12067	HT4578	1881	PMS1, postmeiotic segregation increased (<i>S. cerevisiae</i>) 1	TTTAGAGGAT [G/T] CTAACACTACA	M · G · T · A · S
G1552u9	WIAF-12068	HT4578	2454	PMS1, postmeiotic segregation increased (<i>S. cerevisiae</i>) 1	TTTAGACGTT [T/A] TATATAAAAT	M · T · A · L · I
G1552u10	WIAF-12069	HT4578	2457	PMS1, postmeiotic segregation increased (<i>S. cerevisiae</i>) 1	AGACGGTTTA [T/C] ATAAAATGAC	M · T · C · Y · H
G1552u11	WIAF-12082	HT4578	2557	PMS1, postmeiotic segregation increased (<i>S. cerevisiae</i>) 1	ATTACCGAGG [T/C] TTCAATTACT	M · T · C · V · A
G1552u12	WIAF-12083	HT4578	971	PMS1, postmeiotic segregation increased (<i>S. cerevisiae</i>) 1	TTRTCCTTCT [G/T] AAATCAGATG	S · G · T · L · L
G1554u1	WIAF-12028	HT4161	1500	ELK3, ELK3, ETS-domain protein (SRF accessory protein 2) NOTE: Symbol and name provisional.	CTCAGAAATC [C/T] TGATGACGTC	S · C · T · S · S
G1554u2	WIAF-12059	HT4161	1380	ELK3, ELK3, ETS-domain protein (SRF accessory protein 2) NOTE: Symbol and name provisional.	CTGCCAGGCT [G/A] CAAGGGCCAA	S · G · A · L · L
G1554u3	WIAF-12060	HT4161	1436	ELK3, ELK3, ETS-domain protein (SRF accessory protein 2) NOTE: Symbol and name provisional.	CACATGCCAG [T/C] GCCAATCCCC	M · T · C · V · A
G1562u1	WIAF-12024	HT28220	804	PDCD1, programmed cell death 1	GGGGCTCAGC [T/C] GACGGCCCTC	S · T · C · A · A
G1562u2	WIAF-13488	HT28220	644	PDCD1, programmed cell death 1	GACCCCTCAG [C/T] CGTGCCTGTG	M · C · T · A · V
G1563u1	WIAF-13493	HT1187	1748	EGFR, epidermal growth factor receptor (avian erythroblastic leukemia viral (v-erb-b) oncogene homolog)	CCGGAGCCCA [G/A] GGACTCGTC	M · G · A · R · K

G1563u2	WIAF-13497	HT1187		EGFR, epidermal growth factor receptor (avian erythroblastic leukemia viral (v-erb-b) oncogene homolog)	ACGGATGCCAC [T/A] GGGCCAGGTG	S T A T
G1566u1	WIAF-12016	HT27594	235	PDCD2, programmed cell death 2	GCGCGCTGC [C/G] TGGCCGCCCG	M C G P R
G1566u2	WIAF-12033	HT27594	904	PDCD2, programmed cell death 2	TGGAATTCC [A/G] GGTCATGCC	M A G Q R
G1566u3	WIAF-12041	HT27594	331	PDCD2, programmed cell death 2	AATGAACTAC [C/T] CACGAAAAC	M C T P L
G1566u4	WIAF-12071	HT27594	649	PDCD2, programmed cell death 2	CCTGAGGTGG [T/C] GGAAAAGGAA	M T C V A
G1566u5	WIAF-12072	HT27594	633	PDCD2, programmed cell death 2	AGAGATGAG [A/T] TTATGCCCTGA	M A T I F
G1567u1	WIAF-12042	M95936	293	AKT2, v-akt murine thymoma viral oncogene homolog 2	GAGAGCCGC [G/A] ACCCAAACACC	M G A R Q
G1572u1	WIAF-12212	HT3998	1894	proto-oncogene c-abl, tyrosine protein kinase, alt. transcript 2	TGTTTCAGGA [A/G] TCCAGTATCT	S A G E E
G1572u2	WIAF-12233	HT3998	3694	proto-oncogene c-abl, tyrosine protein kinase, alt. transcript 2	AGCTTCAGAT [C/T] TGCCCGGCA	S C T I I
G1572u3	WIAF-12234	HT3998	3721	proto-oncogene c-abl, tyrosine protein kinase, alt. transcript 2	GCAGTGGTCC [G/A] GCGGCCACTC	S G A P P
G1573u1	WIAF-12021	HT0642	343	CBL, Cas-Br-M (murine) retroviral transforming sequence	TCATGGACAA [G/C] GTGGTCCGGT	M G C K N
G1573u2	WIAF-12022	HT0642	363	CBL, Cas-Br-M (murine) ecotropic transforming sequence	TTGTGTCAAGA [A/T] CCCAAAGCTG	M A T N I
G1573u3	WIAF-12034	HT0642	2364	CBL, Cas-Br-M (murine) ecotropic transforming sequence	AATATTCAAGT [C/T] CCAGGGGCCA	M C T S F
G1573u4	WIAF-12049	HT0642	387	CBL, Cas-Br-M (murine) ecotropic transforming sequence	CTAAAGATA [G/A] CCCACCTTAT	M G A S N
G1573u5	WIAF-12050	HT0642	947	CBL, Cas-Br-M (murine) ecotropic transforming sequence	AACTCATCCT [G/A] GCTACATGGC	M G A G S

G1573u6	WIAF-12070	HT0642	2740	CBL, Cas-Br-M (murine) ecotropic CBL, Cas-Br-M (murine) transforming sequence	TGGAGAACCT [C/T] ATGAGTCAGG	S C T L L
G1573u7	WIAF-12073	HT0642	661	CBL, Cas-Br-M (murine) ecotropic CBL, Cas-Br-M (murine) transforming sequence	TCTTCCAAG [T/C] GGACTCTTC	S T C S S
G1573u8	WIAF-12074	HT0642	2569	CBL, Cas-Br-M (murine) ecotropic CBL, Cas-Br-M (murine) transforming sequence	CTCTGGATGG [T/C] GATCCTACAA	S T C G G
G1573u9	WIAF-13486	HT0642	2006	CBL, Cas-Br-M (murine) ecotropic CBL, Cas-Br-M (murine) transforming sequence	CCGGCACTCA [C/T] TTCCATTTC	M C T L F
G1574u1	WIAF-12037	HT11508	2493	FES, feline sarcoma (Snyder-Theilen) viral (v-fes)/Fujinami avian sarcoma (PRCII) viral (v-fps) oncogene homolog	AGCGCCCCAG [C/T] TTCCAGCACCA	S C T S S
G1574u2	WIAF-12051	HT11508	189	FES, feline sarcoma (Snyder-Theilen) viral (v-fes)/Fujinami avian sarcoma (PRCII) viral (v-fps) oncogene homolog	CCACACGGGT [C/T] AAAGAGTGACA	S C T V V
G1574u3	WIAF-12052	HT11508	1441	FES, feline sarcoma (Snyder-Theilen) viral (v-fes)/Fujinami avian sarcoma (PRCII) viral (v-fps) oncogene homolog	GAAGCCCCTG [C/T] ATGAGCAGCT	M C T H Y
G1574u4	WIAF-12053	HT11508	2202	FES, feline sarcoma (Snyder-Theilen) viral (v-fes)/Fujinami avian sarcoma (PRCII) viral (v-fps) oncogene homolog	GAGAGGAAGC [C/T] GATGGGTCT	S C T A A
G1574u5	WIAF-12054	HT11508	2088	FES, feline sarcoma (Snyder-Theilen) viral (v-fes)/Fujinami avian sarcoma (PRCII) viral (v-fps) oncogene homolog	CTGGCTGGCAT [G/T] GAGTACTCTGG	M G T M I
G1574u6	WIAF-12078	HT11508	1577	FES, feline sarcoma (Snyder-Theilen) viral (v-fes)/Fujinami avian sarcoma (PRCII) viral (v-fps) oncogene homolog	GATGGCTGC [C/T] CCGGCCACTTC	M C T P L

G1574u7	WIAF-13495	HT1508	FES, feline sarcoma (Snyder-Theilen) viral (v-fes) /Fujinami avian sarcoma (PRCII) viral (v-fps) oncogene homolog	FES, feline sarcoma (Snyder-Theilen) viral (v-fes) /Fujinami avian sarcoma (PRCII) viral (v-fps) oncogene homolog	GTGACAGGC [T/C] AAGGACAAGT	S T C A A
G1575u1	WIAF-12079	HT1052	FGR, Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog	FGR, Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog	TGGCCACGG [C/T] TGCTTCGGG	S C T G G
G1575u2	WIAF-13487	HT1052	CRK, v-crk avian sarcoma virus CT10 oncogene homolog	CRK, v-crk avian sarcoma virus CT10 oncogene homolog	CAGAAGCTAC [G/A] GGCCACACAGA	M G A G R
G1585u1	WIAF-12017	HT1675	CRK, v-crk avian sarcoma virus CT10 oncogene homolog	CRK, v-crk avian sarcoma virus CT10 oncogene homolog	TGGATCAAACA [G/A] AAATCCCGATG	S G A Q Q
G1585u2	WIAF-12036	HT1675	446 CT10 oncogene homolog	446 CT10 oncogene homolog	ACTACAAACGT [T/C] GATAGAACCA	M T C L S
G1587u1	WIAF-12023	HT0590	1473 proto-oncogene dbl	1473 proto-oncogene dbl	GGCCCAATCCA [A/G] TTTCGTCGTAC	S A G Q Q
G1587u2	WIAF-12025	HT0590	2549 proto-oncogene dbl	2549 proto-oncogene dbl	GTGCCAGGCTT [C/T] TAATGAGAT	N C T S F
G1587u3	WIAF-12026	HT0590	2828 proto-oncogene dbl	2828 proto-oncogene dbl	GCATCACAAAT [C/T] TGGCAGAAATC	M C T S F
G1587u4	WIAF-12038	HT0590	982 proto-oncogene dbl	982 proto-oncogene dbl	AAATTCTCG [G/C] AGCTTAATTC	M G C E Q
G1587u5	WIAF-12039	HT0590	2343 proto-oncogene dbl	2343 proto-oncogene dbl	AACCAATGCA [G/T] CGACACCTTT	M G T Q H
G1587u6	WIAF-12048	HT0590	683 proto-oncogene dbl	683 proto-oncogene dbl	GACACGAAG [G/A] AGCTGTCACT	M G A G E
G1587u7	WIAF-12055	HT0590	2686 proto-oncogene dbl	2686 proto-oncogene dbl	TTCTCTCTCG [C/T] AGAAATGTA	N C T Q *
G1587u8	WIAF-13485	HT0590	2136 proto-oncogene dbl	2136 proto-oncogene dbl	ACTGTGAGG [T/A] TCIGCTCTGT	S T A G G
G1587u9	WIAF-13496	HT0590	1566 proto-oncogene dbl	1566 proto-oncogene dbl	AAAATCAGAG [C/T] AACTTAAAAA	S C T S S
G159u1	WIAF-11616	HT4209	1059 homolog B	RAD23B, RAD23 (S. cerevisiae)	AGTACTGGGG [C/T] TCCTCTAGTCT	M C T A V
G159u1	WIAF-13897	HT2455	1257 oncogene homolog 2	ET52, v-ets avian erythroblastosis virus E26 oncogene homolog 2	GCAGCTCTCT [C/G] TGCCCTCAATA	S C G L L
G1590u2	WIAF-13913	HT2455	1107 oncogene homolog 2	ET52, v-ets avian erythroblastosis virus E26 oncogene homolog 2	ATTCCTGGAC [T/G] CCCAAAGACC	S T G T T
G1590u3	WIAF-13914	HT2455	1314 oncogene homolog 2	ET52, v-ets avian erythroblastosis virus E26 oncogene homolog 2	GGAGTGACCC [A/G] GTGGAGGAAG	S A G P P
G1591u1	WIAF-13924	HT2333	417 viral oncogene homolog	HRAS, v-Ha-ras Harvey rat sarcoma oncogene homolog 2	TCCAGAAACCA [T/C] TTTCGTCGACG	S T C H H
G1595u1	WIAF-12262	HT33778	1302 transcript 1	proto-oncogene 1-myc, alt.	GCATAACCTCA [G/C] TGGCTACTAA	M G C S T

G1597u1	WIAF-12243	HT0410	900	MAS1, MAS1 oncogene	CCATCTTGTT [C/T] GTGAGATCC	S C T V V
G160u1	WIAF-11630	HT4247	RAD23A, 690 homolog A	AGAGCCAGGT [A/G] TCGGAGCAGC	S A G V V	
G1602u1	WIAF-14180	HT1903	1321 proto-oncogene pim-1	GTCGCCGGG [C/A] CCAGCAATA	M C A P T	
G1604u1	WIAF-12319	HT2788	REL, V-rel avian reticuloendotheliosis viral oncogene homolog	CCTCCCAAAG [T/C] GCTGGGATTAA	S T C S S	
G1609u1	WIAF-12358	HT33646	1182 RIPK1, receptor (TNFRSF) - interacting serine-threonine kinase 1	GACGGAGGT [C/T] TCCCCATGACC	S C T V V	
G161u1	WIAF-11654	HT4251	1522 homolog RAD52	TATGATCCAT [C/T] TTAACTGAGG	M C T S F	
G1610u1	WIAF-12101	HT27727	501 replication protein Rpa4,	TGCAACTCTCT [G/A] CTATTAAGAC	M G A A T	
G1610u2	WIAF-12102	HT27727	554 replication protein Rpa4,	TACCCGTGAA [C/T] GTGAAACAGC	S C T N N	
G1610u3	WIAF-12207	HT27727	450 replication protein Rpa4,	TTCTGCTGCT [G/A] ATGGACCGAG	M G A D N	
G1610u4	WIAF-12320	HT27727	1037 replication protein Rpa4,	TGATTCATGA [G/C] TGTCCTCATC	M G C E D	
G1610u5	WIAF-12321	HT27727	857 replication protein Rpa4,	TAGAGGACAT [G/A] AACGAGTTCA	M G A N I	
G1610u6	WIAF-12343	HT27727	539 replication protein Rpa4,	GAATTCTAGGA [C/T] GTTGTACCGT	S C T D D	
G1630u1	WIAF-12302	HT3563	4312 DCC, deleted in colorectal carcinoma	ACTCATGAAAG [C/T] AGCTTATGC	N C T Q *	
G1632u1	WIAF-13572	HT27355	742 tumor suppressor, PDGF receptor beta-like	TTTATGACAT [G/C] AAAGGGGGCT	M G C M I	
G1632u2	WIAF-13584	HT27355	1102 tumor suppressor, PDGF receptor beta-like	TGGAAGACTT [C/T] GAGACGATTG	S C T F F	
G1632u3	WIAF-13601	HT27355	258 tumor suppressor, PDGF receptor beta-like	AAGACGGAGT [C/T] TATCATGATG	M C T S F	
G1633u1	WIAF-13957	HT1778	FER, FER (fps/fes related) tyrosine kinase (phosphoprotein NCF94)	TTCAAGGCAA [T/C] GAGATCATGT	S T C N N	
G1633u2	WIAF-13958	HT1778	2407 FBR, FBR (fps/fes related) tyrosine kinase (phosphoprotein NCF94)	TATGTGTTAT [C/T] TCGAGAGTAA	M C T L F	
G1634u1	WIAF-13505	HT3216	1569 ELKL, member of ETS oncogene family	TCTCGACCCC [C/T] GTGGTGTCTCT	S C T P P	

G1634u2	WIAF-13858	HT3216	ELK1, ELK1, member of ETS oncogene family	GGCTGTGGGG [A/G] CTACGGAAAGA	S A G G G
G1634u3	WIAF-13859	HT3216	ELK1, ELK1, member of ETS oncogene family	AGGCC2AGGC [G/A] GTTTCGGCAGC	M G A G S
G1638u1	WIAF-14172	HT1224	uracil-DNA Glycosylase	GCTGGGACT [G/C] TTCCCAAAAT	- G C - -
G1643u1	WIAF-13517	HT3751	DXS648E, DNA segment on chromosome X (unique) 648 expressed sequence	TACATCCCCA [G/A] TCGTGCCCCCT	M G A S N
G1645u1	WIAF-14087	D21089	XPC, xeroderma pigmentosum, complementation group C	AAAACCTCAA [G/A] GTTATAAAGG	S G A K K
G1645u2	WIAF-14088	D21089	XPC, xeroderma pigmentosum, complementation group C	TGCATTCAG [G/A] GACACCTGGC	S G A R R
G1645u3	WIAF-14089	D21089	XPC, xeroderma pigmentosum, complementation group C	GGGAGCCATC [G/A] TAAGGACCCA	M G A R H
G1645u4	WIAF-14090	D21089	XPC, xeroderma pigmentosum, complementation group C	AGCTTGCAG [T/C] GGCAATCTCA	M T C V A
G1645u5	WIAF-14091	D21089	XPC, xeroderma pigmentosum, complementation group C	CCCATTTGAG [A/C] AGCTGTGAGC	M A C K Q
G1645u6	WIAF-14103	D21089	XPC, xeroderma pigmentosum, complementation group C	ATGACCTGAG [G/A] GACTTTCCAA	S G A R R
G1645u7	WIAF-14104	D21089	XPC, xeroderma pigmentosum, complementation group C	GGGACCGGAA [C/G] TGCGCGGCCA	M C G L V
G1645u8	WIAF-14105	D21089	XPC, xeroderma pigmentosum, complementation group C	AAGGGGTCTA [C/T] TCCAGGGATT	S C T Y Y
G167u1	WIAF-11632	HT4579	PMS2L8, postmeiotic segregation increased 2-like 8	CCTATTGATC [G/A] GAAGTCAGTC	M G A R Q
G167u2	WIAF-11633	HT4579	PMS2L8, postmeiotic segregation increased 2-like 8	GAGTGGATCT [T/C] ATTGAAGTTT	S T C L L
G167u3	WIAF-11644	HT4579	PMS2L8, postmeiotic segregation increased 2-like 8	TGCCCCCTAG [T/C] GACTCCGTG	S T C S S

G167u4	WIAF-11622	HT4579	1645	PMS2L8, increased 2-like 8	postmeiotic segregation	GAAAGGCCCT [G/A] AAACTGACGA		M	G	A	E	K							
G167u5	WIAF-11645	HT4579	1512	PMS2L8, increased 2-like 8	postmeiotic segregation	ACTCGGGCCA [C/T] GGCAGGACTT		S	C	T	H	H							
G167u6	WIAF-11646	HT4579	1619	PMS2L8, increased 2-like 8	postmeiotic segregation	TGGCAGGAAC [A/G] TGTGGACTCT		M	A	G	H	R							
G167u7	WIAF-11647	HT4579	1432	PMS2L8, increased 2-like 8	postmeiotic segregation	CGTCCCTGAGA [C/T] CTCAGAAAGA		M	C	T	P	S							
G167u8	WIAF-11625	HT4579	2490	PMS2L8, increased 2-like 8	postmeiotic segregation	GGACTGCTCT [T/C] AACACAGCG		S	T	C	L	L							
G167u9	WIAF-11619	HT4579	804	PMS2L8, increased 2-like 8	postmeiotic segregation	TGAGCTGTTTC [G/C] GATGCTCTGCG		S	G	C	S	S							
G167u10	WIAF-11623	HT4579	1555	PMS2L8, increased 2-like 8	postmeiotic segregation	CATCCCAGAC [A/G] CGGGCCGCTCA		N	A	G	T	A							
G167u11	WIAF-11624	HT4579	2364	PMS2L8, increased 2-like 8	postmeiotic segregation	CCTTCGGACC [C/T] CAGGACCTCG		S	C	T	P	P							
G167u12	WIAF-11626	HT4579	2348	PMS2L8, increased 2-like 8	postmeiotic segregation	ACTAGTAAAA [A/G] CTGGACCTTC		M	A	G	N	S							
G181u1	WIAF-11697	HT48793	3114	ERCC4, excision repair cross-complementing rodent repair deficiency, complementation group 4	excision repair cross-complementing rodent repair deficiency, complementation group 4	ATATTGGCA [C/T] AAAGTAGGATA		M	C	T	T	I							
G181u2	WIAF-11698	HT48793	2954	ERCC4, excision repair cross-complementing rodent repair deficiency, complementation group 4	excision repair cross-complementing rodent repair deficiency, complementation group 4	CACACAAGGT [G/C] GTGTATATT		M	G	C	G	R							
G181u3	WIAF-11699	HT48793	2344	ERCC4, excision repair cross-complementing rodent repair deficiency, complementation group 4	excision repair cross-complementing rodent repair deficiency, complementation group 4	TTCGAAACACCT [C/T] CCTCGCCGTG		S	C	T	L	L							

G181u4	WIAF-11704	HT48793	808 4	ERCC4, excision repair cross-complementing rodent repair deficiency, complementation group	TTTGTGGCAC [C/T] AGCTTGGAGC	N C T Q *
G181u5	WIAF-11705	HT48793	640 4	ERCC4, excision repair cross-complementing rodent repair deficiency, complementation group	TTCTATGACA [C/T] CTACCATGCT	M C T P S
G181u6	WIAF-11670	HT48793	1117 4	ERCC4, excision repair cross-complementing rodent repair deficiency, complementation group	AGAAAAGCAAC [C/T] CAAAGTGGGA	M C T P S
G185u1	WIAF-11668	HT5122	319 IIB	ACVR2B, activin A receptor, type	TCTGAAACGA [G/A] CGCTTCACTC	S G A E E
G185u2	WIAF-11707	HT5122	70 IIB	ACVR2B, activin A receptor, type	AGACAGGGGA [G/C] TGCAATCTACT	M G C E D
G185u3	WIAF-11672	HT5122	812 IIB	ACVR2B, activin A receptor, type	CCCTCACGGAT [T/C] ACCTCAAGGG	M T C Y H
G185u4	WIAF-13542	X77533	1109 IIB	ACVR2B, activin A receptor, type	GGCTCTTGAG [G/A] TGCTCGAGGG	M G A V M
G185u5	WIAF-13558	X77533	997 IIB	ACVR2B, activin A receptor, type	TGCTGAAGAG [C/T] GACCTCACAG	S C T S S
G187u1	WIAF-11669	HT97400	183 androgen		CCAGAGACAG [C/T] GCGAACCGGA	M C T R C
G191u1	WIAF-10176	AF025375	414 receptor 4 (fusin)	CXCR4, chemokine (C-X-C motif), receptor 4 (fusin)	ACTGCGCAT [C/T] GTCCCAGCCA	S C T I I
G193u1	WIAF-10178	D29984	231 receptor 2	CCR2, chemokine (C-C motif)	AGTGCCTGAC [T/A] GACATTAC	S T A T T
G193u2	WIAF-10179	D29984	190 receptor 2	CCR2, chemokine (C-C motif)	CATGCTGGTC [G/A] TCCTCATCTT	M G A V I
G197u1	WIAF-10211	D43767	121 subfamily A (Cys-Cys), member 17	SCYA17, small inducible cytokine	ACATCCACGC [A/C] GCTCGAGGG	S A C A A
G197u1	WIAF-10167	D50403	1515 (might include Leishmaniais)	NRAMP1, natural resistance-associated macrophage protein 1	GETGGCTAGTC [T/C] GCGCCATCAA	M T C C R
G197u2	WIAF-10173	D50403	1629 (might include Leishmaniais)	NRAMP1, natural resistance-associated macrophage protein 1	CAACTACCTG [G/C] TCTGGACCTG	M G C V L

G20u1	WIAF-10249	U14722	896 IB	ACVR1B, activin A receptor, type	CGGTACACAG [T/C] GACAATGAG	M T C V A
G20u2	WIAF-10250	U14722	866 IB	ACVR1B, activin A receptor, type	GAGCACGGGT [C/T] CCTGTTTGAT	M C T S F
G20u3	WIAF-10251	U14722	1391 IB	ACVR1B, activin A receptor, type	CAGAGTTATG [A/T] GGCACTGCGG	M A T E V
G20u4	WIAF-10252	U14722	1236 IB	ACVR1B, activin A receptor, type	TATATTGGGA [G/C] ATTGCTCGAA	M G C E D
G20u5	WIAF-10261	U14722	518 IB	ACVR1B, activin A receptor, type	GAGATGGTC [T/C] CTCCAAAGAC	M T C L P
G207a1	WIAF-10516	L25259	866(2) mRNA, complete cds.	Human CTLA4 counter-receptor (B7-AGCTGTACTT [C/T] CAACAGTTAT	M C T P S	
G208u1	WIAF-10204	L31581	85 receptor 7	CCR7, chemokine (C-C motif) GCGGAACCCA [A/G] TGAAAAGCGT	M A G M V	
G211u1	WIAF-10213	M24545	174 1, homologous to mouse Sig-je)	SCYA2, small inducible cytokine A2 (monocyte chemoatactic protein TCACCTGCTG [T/C] TATAACTTCA	S T C C C	
G214u1	WIAF-10191	M27533	452 ligand 1, B7-1 antigen	CD80, CD80 antigen (CD28 antigen PRFL, perforin 1 (preforming	TGAAAGAAGT [G/A] GCAAGGCTGT	S G A V V
G215u1	WIAF-11659	M28393	822 protein)	PRFL, perforin 1 (preforming	GCATCTCTGC [C/T] GAAGGCCAAGG	S C T A A
G215u2	WIAF-11723	M28393	159 protein)	PRFL, perforin 1 (preforming	TGACCAAGCCT [C/T] CGCCGCTCGG	S C T L L
G215u3	WIAF-11724	M28393	96 protein)	PRFL, perforin 1 (preforming	CAGAGTGAA [G/A] CGCAGGCCACA	S G A K K
G215u4	WIAF-11725	M28393	1377 protein)	PRFL, perforin 1 (preforming	ATAACAACCC [C/T] ATCTGGTCAG	S C T P P
G215u5	WIAF-11726	M28393	1326 protein)	PRFL, perforin 1 (preforming	TGAAAGCTCTT [C/T] TTTCGGTGGCC	S C T F F
G215u6	WIAF-11727	M28393	1076 protein)	PRFL, perforin 1 (preforming	CGGGGGGAGG [C/T] ACTGAAAGGG	M C T A V
G217u1	WIAF-11691	M31932	649 affinity IIb, receptor for (CD32)	FCGR2B, Fc fragment of IgG, low	S A G S S	
G217u2	WIAF-11692	M31932	625 affinity IIb, receptor for (CD32)	FCGR2B, Fc fragment of IgG, low	S A G Q Q	

G217u3	WIAF-11712	M31932		FCGR2B, Fc fragment of IgG, low affinity IIb, receptor for (CD32)	GAUTGGCCAG [A/C] CCAGCCCTGAG	M	A	C	T	P
G217u4	WIAF-11713	M31932	332	FCGR2B, Fc fragment of IgG, low affinity IIb, receptor for (CD32)	GGCTTCTGCA [G/T] ACAGTCAAAGC	M	G	T	D	Y
G218u1	WIAF-10184	M36712	101	CD88I, CD8 antigen, beta	TTTTACAAAT [A/G] AGCGAGGAT	N	A	G	*	*
G218u2	WIAF-10188	M36712	677	CD88I, CD8 antigen, beta	GGTGTGTTTC [G/C] GGATGCAGC	M	G	C	R	P
G218u3	WIAF-10189	M36712	326	CD88I, CD8 antigen, beta	CTACTAACATG C/T) GGATCTACTG	M	C	T	R	C
G218u4	WIAF-10190	M36712	196	CD88I, CD8 antigen, beta	AGGCCAGGC [A/C] CCGAGCAGTG	S	A	C	A	A
G218u5	WIAF-10194	M36712	225	CD88I, CD8 antigen, beta	GGTGGCTGGC [G/A] TCCCTGGTCT	M	G	A	V	I
G218u6	WIAF-10208	M36712	583	CD88I, CD8 antigen, beta	TGAAGCCGGA [A/G] GACAGTGGCA	S	A	G	E	E
G218u7	WIAF-10209	M36712	372	CD88I, CD8 antigen, beta	CTGGATGATC [G/T] TCGGGAGCCC	M	G	T	V	F
G218u8	WIAF-10210	M36712	400	CD88I, CD8 antigen, beta	TCTGGATTCTC [C/T] GCAAAAGGA	S	C	T	S	S
G218a9	WIAF-10518	M36712	270	CD88I, CD8 antigen, beta	CTGGATGATC [G/T] TCGGGAGCCC	M	G	T	V	F
G218a10	WIAF-13223	M36712	618	CD88I, CD8 antigen, beta	GAATGGCCAT [C/G] AACCTGTGCT	M	C	G	I	M
G218a11	WIAF-13224	M36712	556	CD88I, CD8 antigen, beta	TTGTAGCCCC [A/G] TCACCCCTGG	M	A	G	I	V
G22u1	WIAF-10301	U86136	836	CD88I, CD8 antigen, beta	CTGTGTGTGA [T/C] GTGGCATGGGA	-	T	C	-	-
G22u2	WIAF-10302	U86136	6719	Human telomerase-associated protein TP-1 mRNA, complete cds.	GTTGGTAACC [G/A] TCGGACTTGA	M	G	A	V	I
G22u3	WIAF-10311	U86136	7537	Human telomerase-associated protein TP-1 mRNA, complete cds.	CTGATGGGAT [C/G] CTATGAACC	M	C	G	I	I
G22u4	WIAF-10312	U86136	1798	Human telomerase-associated protein TP-1 mRNA, complete cds.	ATGATGCCAT [T/C] GATGCCAAAGG	S	T	C	I	I
					CTGTCTCTGG [C/T] TGGCCAAAGG	M	C	T	A	V

G22u5	WIAF-10313	U86136	Human telomerase-associated 3289 protein TP-1 mRNA, complete cds.	AGAAAGGGAT [A/C] ACCTGCCGCA	S A C I I
G22u6	WIAF-10314	U86136	Human telomerase-associated 3242 protein TP-1 mRNA, complete cds.	AGAGGCCGCA [T/C] GTGGGATCTC	M T C C R
G22u7	WIAF-10315	U86136	Human telomerase-associated 4482 protein TP-1 mRNA, complete cds.	CCGTTTGCTT [G/A] CCTCGTCCAG	M G A C Y
G22u8	WIAF-10316	U86136	Human telomerase-associated 4363 protein TP-1 mRNA, complete cds.	GTTCGACTGT [G/A] GACCAAGCTGC	S G A V V
G22u9	WIAF-10317	U86136	Human telomerase-associated 4230 protein TP-1 mRNA, complete cds.	GTGTCCTGAGA [G/A] ACTCCGGACC	M G A R K
G22u10	WIAF-10318	U86136	Human telomerase-associated 4419 protein TP-1 mRNA, complete cds.	GGGACTAAGA [G/C] CTGGGAAGAA	M G C S T
G22u11	WIAF-10319	U86136	Human telomerase-associated 5269 protein TP-1 mRNA, complete cds.	TCTCCCATGA [T/C] ACACCTCTTC	S T C D D
G22u12	WIAF-10320	U86136	Human telomerase-associated 5015 protein TP-1 mRNA, complete cds.	GCTGCTCTCC [C/T] GGAGATGGCA	M C T R W
G22u13	WIAF-10321	U86136	Human telomerase-associated 5133 protein TP-1 mRNA, complete cds.	GTGGCTTTCT [C/T] CACCATGGG	M C T S F
G22u14	WIAF-10322	U86136	Human telomerase-associated 7764 protein TP-1 mRNA, complete cds.	ACAGCCCTCC [A/G] TGTCGTACCT	M A G H R
G22u15	WIAF-10323	U86136	Human telomerase-associated 7884 protein TP-1 mRNA, complete cds.	TCCCTGGAC [C/T] TTGGCTGGC	M C T P L
G22u16	WIAF-10324	U86136	Human telomerase-associated 7744 protein TP-1 mRNA, complete cds.	AGATTCACTC [G/A] GGCTCTGTCA	S G A S S
G22u17	WIAF-10337	U86136	Human telomerase-associated 1018 protein TP-1 mRNA, complete cds.	CCATTGCTGC [T/C] TTCTTGGCG	S T C A A
G22u18	WIAF-10338	U86136	Human telomerase-associated 1000 protein TP-1 mRNA, complete cds.	TGGCCAATAA [C/A] ATCTTGGCA	M C A N K

G22u19	WIAF-10339	U86136	1182	Human telomerase-associated protein TP-1 mRNA, complete cds.	ATGACGGACA [A/G] ATTTGCCAG	M	A	G	K	R
G22u20	WIAF-10340	U86136	1939	Human telomerase-associated protein TP-1 mRNA, complete cds.	AGCAGCTTCG [T/G] ATGGCAATGA	S	T	G	R	R
G22u21	WIAF-10341	U86136	2227	Human telomerase-associated protein TP-1 mRNA, complete cds.	TCACGAGGGC [G/A] GAGGAGGTGG	S	G	A	A	A
G22u22	WIAF-10342	U86136	2776	Human telomerase-associated protein TP-1 mRNA, complete cds.	GGCGGAGCAT [C/T] CGGCCTTTCA	S	C	T	I	I
G22u23	WIAF-10343	U86136	2877	Human telomerase-associated protein TP-1 mRNA, complete cds.	GCCCCTCACC [G/A] TATCACCCRT	M	G	A	R	H
G22u24	WIAF-10344	U86136	3087	Human telomerase-associated protein TP-1 mRNA, complete cds.	TCAAGGGCGCT [C/T] TGTTGACAGAG	M	C	T	S	F
G22u25	WIAF-10345	U86136	3662	Human telomerase-associated protein TP-1 mRNA, complete cds.	CAGGGTGCCTA [C/T] CATTAGTCCT	M	C	T	P	S
G22u26	WIAF-10346	U86136	4762	Human telomerase-associated protein TP-1 mRNA, complete cds.	TTTCGAAGTT [C/T] CTTACCAACC	S	C	T	F	F
G22u27	WIAF-10351	U86136	1737	Human telomerase-associated protein TP-1 mRNA, complete cds.	CTCCAGGATG [G/C] GAAGTCGGTG	M	G	C	G	A
G22u28	WIAF-10352	U86136	3543	Human telomerase-associated protein TP-1 mRNA, complete cds.	ACAGTGCAC [A/G] GCTGTAAGCTG	M	A	G	Q	R
G22u29	WIAF-10353	U86136	4232	Human telomerase-associated protein TP-1 mRNA, complete cds.	GTCTGAGAGA [C/T] TCCGGACCT	M	C	T	L	F
G22u30	WIAF-10354	U86136	4523	Human telomerase-associated protein TP-1 mRNA, complete cds.	GGAGGGCCCT [C/T] TGGAGGGCCC	S	C	T	L	L
G22u31	WIAF-10355	U86136	5333	Human telomerase-associated protein TP-1 mRNA, complete cds.	TGGTTGTCG [G/T] TGCTGAGAC	M	G	T	V	L
G22u32	WIAF-10356	U86136	6208	Human telomerase-associated protein TP-1 mRNA, complete cds.	AGCTGCTGAC [G/A] CGGCCACACA	S	G	A	T	T

G22u33	WIAF-10357	U86136		Human telomerase-associated 7703 protein TP-1 mRNA, complete cds.	TAGTGAGGCCA [A/G] CACCACTCT	M A G T A
G22u34	WIAF-10360	U86136	3881	Human telomerase-associated protein TP-1 mRNA, complete cds.	CATCGATGGG [G/A] CTGATAGGT	M G A A T
G22u1	WIAF-11700	M57230	697	IL6ST, interleukin 6 signal transducer (gp130, oncostatin M receptor)	TGACTGGAT [G/C] GTGGAAGGGA	M G C G R
G22u2	WIAF-11701	M57230	708	IL6ST, interleukin 6 signal transducer (gp130, oncostatin M receptor)	GGGAAAGGGA [A/G] ACACACTTGG	S A G E E
G22u3	WIAF-11702	M57230	677	IL6ST, interleukin 6 signal transducer (gp130, oncostatin M receptor)	GAGGGAAAGA [A/G] AATGAGGT	M A G K R
G22u4	WIAF-11706	M57230	1616	IL6ST, interleukin 6 signal transducer (gp130, oncostatin M receptor)	AAGAAATATA [T/C] ACTTGAGTGG	M T C I T
G22u5	WIAF-11667	M57230	1444	IL6ST, interleukin 6 signal transducer (gp130, oncostatin M receptor)	TGATCCGTT [C/G] TAGGAAACCT	M C G L V
G22u6	WIAF-11708	M57230	981	IL6ST, interleukin 6 signal transducer (gp130, oncostatin M receptor)	TCTTAATT [G/C] ACATGGACCA	M G C L F
G22u1	WIAF-11714	M85079	869	TGFBR2, transforming growth factor, beta receptor II (70-80kD)	CACTGGAGT [T/C] GCCATATCTG	S T C V V
G22u2	WIAF-11715	M85079	1749	TGFBR2, transforming growth factor, beta receptor II (70-80kD)	AGATTATGAG [C/T] CTCCAATTGG	M C T P S
G22u3	WIAF-11716	M85079	1601	TGFBR2, transforming growth factor, beta receptor II (70-80kD)	TGGAACATTC [A/G] AGATACTGG	S A G A A
G22u4	WIAF-11721	M85079	1256	TGFBR2, transforming growth factor, beta receptor II (70-80kD)	TACTCCAGTT [C/G] CTGACGGCTG	M C G F L
G22u5	WIAF-11722	M85079	1502	TGFBR2, transforming growth factor, beta receptor II (70-80kD)	TCGTGAAGAA [C/T] GACCTAACCT	S C T N N
G22u6	WIAF-11671	M85079	888	TGFBR2, transforming growth factor, beta receptor II (70-80kD)	TGTOATCATC [A/C] TCTTCTACTG	M A C I L

G226u7	WIAF-11674	M85079	1425	TGFBR2, transforming growth factor, beta receptor II (70-80KD)	CCTCCACAGT [G/A] ATCACACTCC	M	G	A	D	N
G227u1	WIAF-10197	M86511	685	CD14, CD14 antigen	CCCTGTCTGAC [A/G] ATCCCTGGACT	M	A	G	N	D
G227u2	WIAF-10212	M86511	497	CD14, CD14 antigen	GAAGCCACAG [G/A] ACTTGCACTT	M	G	A	G	E
G2278u1	WIAF-14117	AF034611	959	cubilin (intrinsic factor-cobalamin receptor)	AGATAATAA [T/C] GGCGGGCTGTT	S	T	C	N	N
G2278u2	WIAF-14118	AF034611	781	cubilin (intrinsic factor-cobalamin receptor)	GGGTGGATGT [C/T] TTCACCCAAC	M	C	T	S	F
G2278u3	WIAF-14119	AF034611	641	cubilin (intrinsic factor-cobalamin receptor)	CTGAGACGTA [C/T] GGACCCCAGT	S	C	T	Y	Y
G2278u4	WIAF-14121	AF034611	1185	cubilin (intrinsic factor-cobalamin receptor)	TGGTTATGGG [C/A] CAATGATG	M	C	A	P	T
G2278u5	WIAF-14133	AF034611	1532	cubilin (intrinsic factor-cobalamin receptor)	TCTGGTTAT [C/G] AAAACTGAAA	M	C	G	I	M
G2278u6	WIAF-14134	AF034611	2208	cubilin (intrinsic factor-cobalamin receptor)	GCCCTTCACT [C/T] ACACCAAGCA	M	C	T	H	Y
G228u1	WIAF-10199	U00672	586	IL10RA, alpha	GGAAAGGTGCC [G/A] GGAAACTTCA	S	G	A	P	P
G228u2	WIAF-10200	U00672	731	IL10RA, alpha	AGAGGAGTGC [A/G] TCTCCCTCAC	M	A	G	I	V
G228u1	WIAF-13970	AD001515	1747	RYR3, ryanodine receptor 3	CAGGTATCTT [G/A] GAAGTTTTCG	S	G	A	L	L
G228u2	WIAF-13974	AD001515	8593	RYR3, ryanodine receptor 3	TAGAACCAT [T/C] GTCAAGCAGTG	S	T	C	I	I
G228u1	WIAF-12694	D00726	263	FECH, ferrochelatase (protoporphyrria)	ACATGGGAGG [C/T] CCTGAAACTC	S	C	T	G	G
G228u2	WIAF-12695	D00726	514	FECH, ferrochelatase (protoporphyrria)	TACTATATTG [G/A] ATTTCGGTAC	M	G	A	G	E
G2285u1	WIAF-12688	D16611	673	CPO, coproporphyrinogen oxidase (coproporphyrin, harderoporphyrin)	AGAAAGACCT [G/A] TCCATTTCGA	M	G	A	V	I
G2285u2	WIAF-12689	D16611	783	CPO, coproporphyrinogen oxidase (coproporphyrin, harderoporphyrin)	ATCGTGGACA [G/A] CGGGGGCA	S	G	A	E	E
G2287u1	WIAF-12687	D28472	502	PTGER4, prostaglandin E receptor 4 (subtype EP4)	GGGCCCTCAAG [C/T] TCTTTCGACT	M	C	T	L	F
G2287u2	WIAF-12691	D28472	1309	PTGER4, prostaglandin E receptor 4 (subtype EP4)	TGAAATGGC [C/T] TTGGAGGGAG	M	C	T	L	F
G2287u3	WIAF-12707	D28472	243	PTGER4, prostaglandin E receptor 4 (subtype EP4)	AGGAGACGAC [C/T] TTCTACACCC	S	C	T	T	T

G2287u4	WIAF-12710	D28472	1343 4 (subtype EP4)	PTGER4, prostaglandin E receptor	GGCTGCCCC [G/A] CATGGCCCTG	M G A G D
G229u1	WIAF-10185	U16752	202 1	SDF1, stromal cell-derived factor	CATGGGCCA [G/A] AGCCAAACGTC	M G A R K
G2295u1	WIAF-12727	D89079	613	LTB4R, leukotriene b4 receptor (chemokine receptor-like 1)	CTATGTCGC [G/C] GAGTCAGCAT	M G C G R
G2295u2	WIAF-12728	D89079	1248	LTB4R, leukotriene b4 receptor (chemokine receptor-like 1)	AGGGCACGGG [T/C] TCGAGGGGT	S T C G G
G2295u3	WIAF-12753	D89079	1348	LTB4R, leukotriene b4 receptor (chemokine receptor-like 1)	CCTCACTGCC [T/G] CCAGCCCTCT	M T G S A
G230u1	WIAF-10201	U31628	627	IL15RA, interleukin 15 receptor, alpha	ACAGCCAAGA [A/C] CTGGAACTC	M A C N T
G2300u1	WIAF-12735	J02959	102	LTA4H, leukotriene A4 hydrolase	ACCTGACACT [G/T] CGCTTGAGCG	S G T L L
G2300u2	WIAF-12738	J02959	1380	LTA4H, leukotriene A4 hydrolase	CCTGGCTCTA [C/T] TCTCTGGAC	S C T Y Y
G2302u1	WIAF-12741	J03037	627	CA2, carbonic anhydrase II	TCTCTGAATCC [C/T] TGGATTACTG	S C T L L
G2302u2	WIAF-12742	J03037	819	CA2, carbonic anhydrase II	GCCACTGAG [A/G] ACAGGCAAAT	M A G N D
G2303u1	WIAF-12751	J03571	304	ALOX5, arachidonate 5- lipoxygenase	CGCTGAGAC [G/A] CCCCAAGGGG	S G A T T
G2303u2	WIAF-12752	J03571	794	ALOX5, arachidonate 5- lipoxygenase	AGAGCTGCC [G/A] AGAACCTCCC	M G A E K
G2304u1	WIAF-12772	J03575	840	PDHAL, pyruvate dehydrogenase (lipoamide) alpha 1	TCGAGAGGC [A/G] ACAAGGTTG	S A G A A
G2304u2	WIAF-12779	J03575	1044	PDHAL, pyruvate dehydrogenase (lipoamide) alpha 1	CCAGTGTGGA [A/C] GAACTAAGG	M A C E D
G2305u1	WIAF-12763	J03576	456	PDHB, pyruvate dehydrogenase (lipoamide) beta	TCTTCAGGG [A/G] CCCAATGCG	S A G G G
G2305u2	WIAF-12764	J03576	650	PDHB, pyruvate dehydrogenase (lipoamide) beta	GTTCCTTTG [A/C] ATTTCCTCCG	M A C E A
G231u1	WIAF-10202	U32324	734	IL11RA, interleukin 11 receptor, alpha	CCAGGGCTTC [C/T] CGGTAGAGTC	M C T R W

G2312u1	WIAF-12762	J05096	ATPase, Na+/K+ transporting, alpha 2 (+)	TGAGAACCA [C/T] ACAGAGATCG	S C T H H
G2313u1	WIAF-12760	J05200	RYR1, ryanodine receptor 1 (skeletal)	TGCAATTCAA [A/G] GATGGTACAG	S A G K K
G2313u2	WIAF-12767	J05200	RYR1, ryanodine receptor 1 (skeletal)	CGGCGAGAC [A/G] ACACTGGTGG	S A G T T
G2313u3	WIAF-12768	J05200	RYR1, ryanodine receptor 1 (skeletal)	ATGGCACAA [C/T] GTCTGGGCC	S C T N N
G2313u4	WIAF-12777	J05200	RYR1, ryanodine receptor 1 (skeletal)	GCATCTTGG [C/T] GATGAGGATG	S C T G G
G2313u5	WIAF-12780	J05200	RYR1, ryanodine receptor 1 (skeletal)	GCTCGCTGCT [C/T] ATCGTCAGA	S C T L L
G2313u6	WIAF-12781	J05200	RYR1, ryanodine receptor 1 (skeletal)	AGCCCTGAGTG [C/T] TTGGACCCG	S C T C C
G2313u7	WIAF-12782	J05200	RYR1, ryanodine receptor 1 (skeletal)	ACCAAGGGC [G/A] TCCATGGTGC	S G A A A
G2313u8	WIAF-12784	J05200	RYR1, ryanodine receptor 1 (skeletal)	CAGACGCC [A/G] GCTGTGGTCA	S A G P P
G2313u9	WIAF-12786	J05200	RYR1, ryanodine receptor 1 (skeletal)	TCCAAGAAG [G/A] AGGAAGCTGG	M G A E K
G2313u10	WIAF-12789	J05200	RYR1, ryanodine receptor 1 (skeletal)	ACATCCAGC [G/A] CGCCGAAACC	S G A A A
G2314u1	WIAF-12771	J05272	IMPDH1, IMP (inosine monophosphate) dehydrogenase 1	TGAAGATGCG [A/G] CAGGGTGTCT	S A G A A
G2319u1	WIAF-12814	K03191	CYP1A1, cytochrome P450, subfamily I (aromatic compound-inducible), polypeptide 1	CCCCTAACGG [T/C] ATGTGGTGT	M T C Y H
G232u1	WIAF-11657	U58917	1490 complete cds.	TGAAATCATGAT [C/T] CTCCCCGACT	S C T I I
G232u2	WIAF-11677	U58917	1293 complete cds.	CGAGGCCATC [T/C] CGGAGGCCGG	M T C S P
G232u3	WIAF-11658	U58917	1132 complete cds.	GGCTGCTGCCT [C/T] GGCTGACCTG	M C T A V
G232u4	WIAF-11679	U58917	905 complete cds.	GGAGCTGCCT [C/T] AATGACTGCC	S C T L L

G232u5	WIAF-11682	U58917	1794	Homo sapiens IL-17 receptor mRNA, complete cds.	GTTCGAATGT [G/T] AGAACCTCTA	N G T E *
G232u7	WIAF-11660	U58917	743	Homo sapiens IL-17 receptor mRNA, complete cds.	TGACCAAGTTT [T/C] CGGCACATGG	S T C F F
G232u11	WIAF-12853	L01406	1316	GHRHR, growth hormone releasing hormone receptor	CTGACATCTA [T/C] GTGCTTAGGGT	M T C M T
G232u1	WIAF-12845	L20316	1285	GCGR, glucagon receptor	TGCCGGCACG [G/C] CGCATGCACC	S G C R R
G232u11	WIAF-12850	L22214	713	ADORA1, adenosine A1 receptor	TGCTGGCAAT [T/C] GTCTGTGGACC	S T C I I
G232u2	WIAF-12851	L22214	716	ADOR1, adenosine A1 receptor	TGCGCAATTGC [T/G] GTGACCGCCT	S T G A A
G2335a1	WIAF-12136	L32961	265	ABAT, 4-aminobutyrate aminotransferase	CCTAGATCTC [A/G] GGAGTTAAATG	M A G Q R
G2335a2	WIAF-12137	L32961	407	ABAT, 4-aminobutyrate aminotransferase	TCTCCCTCTGT [T/C] CCCATAGGGT	S T C V V
G2335u3	WIAF-12838	L32961	365	ABAT, 4-aminobutyrate aminotransferase	TTGATGTGGG [C/T] GGCAACCGAA	S C T D D
G2335u4	WIAF-12839	L32961	583	ABAT, 4-aminobutyrate aminotransferase	ATCACCATGG [C/T] CTGGCTGCCTCC	M C T A V
G2335u5	WIAF-12841	L32961	1082	ABAT, 4-aminobutyrate aminotransferase	TGACGAGGT [C/A] CAGACCCGAG	S C A V V
G2335u6	WIAF-12852	L32961	227	ABAT, 4-aminobutyrate aminotransferase	ATATAGATGG [G/A] CCTCTCATGA	S G A G G
				ALDH5A1, aldehyde dehydrogenase 5 family, member A1 (succinate- semialdehyde dehydrogenase)		
G2337u1	WIAF-13577	L34820	149	transferrin	TGTTCTCGAA [A/G] GAATGCCAAG	M A G K R
G2342a1	WIAF-12138	M12530	1602	transferrin	GCCTAAACCT [G/C] TGTGAAACCA	S G C L L
G2342a2	WIAF-12139	M12530	1795	transferrin	TACCGGGAAA [C/T] CTGTGGAGGA	M C T P S
G2346u1	WIAF-12829	M13928	234	ALAD, aminolevulinic, delta-, dehydratase	TGGCCAGGTA [T/C] GTGTGTGAAGC	S T C Y Y
G2346u2	WIAF-12830	M13928	529	ALAD, aminolevulinic, delta-, dehydratase	TGAGGTGGCA [T/C] TGGCGTATGC	S T C L L
G2346u3	WIAF-12843	M13928	480	ALAD, aminolevulinic, delta-, dehydratase	TGAGTGGAAA [C/T] GGAGCATTC	S C T N N
G2348u1	WIAF-12835	M14016	621	UROD, uroporphyrinogen decarboxylase	CTCTGGTCCC [A/G] TATCTGGTAG	S A G P P

G235u1	WIAF-11678	U83171	100	SCYA22, small inducible cytokine subfamily A (Cys-Cys), member 22	CAGGCCCTA [C/T] GCGGCCAACAA	S C T Y Y
G2363a1	WIAF-10519	M37435	596	CSF1, colony stimulating factor 1 (macrophage)	GACAAAGGACT [G/T] GAATATTTC	M G T W L
G2363a2	WIAF-13225	M37435	498	CSF1, colony stimulating factor 1 (macrophage)	AAGAGCATGA [C/T] AAGGCCTGG	S C T D D
G2363a3	WIAF-13226	M37435	712	CSF1, colony stimulating factor 1 (macrophage)	CAGTGACCCG [G/T] CCTCTGTCTC	M G T A S
G2369u1	WIAF-12854	M30773	857	PPP3R1, protein phosphatase 3 (formerly 2B), regulatory subunit B (19kD), alpha isoform (calcineurin B, type I)	TTCGATTGGAA [C/T] AAATTCGGTT	S C T D D
G2369u2	WIAF-12855	M30773	1274	PPP3R1, protein phosphatase 3 (formerly 2B), regulatory subunit B (19kD), alpha isoform (calcineurin B, type I)	ATGCTGTGACT [C/T] TTATCGAGA	- C T - -
G237u1	WIAF-11662	U86358	311	SCYA25, small inducible cytokine subfamily A (Cys-Cys), member 25	CACCAACA [T/C] GCAGACCTTC	M T C M T
G237u2	WIAF-11680	U86358	134	SCYA25, small inducible cytokine subfamily A (Cys-Cys), member 25	GTGCTCGGG [G/A] CGCCCTGACT	M G A R H
G237u3	WIAF-11681	U86358	133	SCYA25, small inducible cytokine subfamily A (Cys-Cys), member 25	TGTGCTCGGG [C/T] GCGCTCTGGAC	M C T R C
G237u5	WIAF-11661	U86358	302	SCYA25, small inducible cytokine subfamily A (Cys-Cys), member 25	GCAAAGCTTC [A/G] CCACACATG	M A G H R
G237u6	WIAF-11663	U86358	378	SCYA25, small inducible cytokine subfamily A (Cys-Cys), member 25	AGTTATCATC [A/G] TCCAAGTTTA	S A G S S
G237u1	WIAF-12870	M36935	500	B2RP, benzodiazapine receptor (peripheral)	GCTGGCCTTC [G/A] CGACCAACT	M G A A T
G237u1	WIAF-13025	M57414	979	TACR2, tachykinin receptor 2	CTGCTGCCA [T/C] GGGTCACACC	M T C W R
G238u1	WIAF-10177	X01394	239	TNF, tumor necrosis factor (TNF superfamily, member 2)	GCTOCAGGCC [G/T] TGCTTGTTOC	S G T R R

G2381u1	WIAF-12894	M59941		CSF2RB, colony stimulating factor 2 receptor, beta, low-affinity (granulocyte-macrophage)	CAGAGGTTTG [C/T] TGGGACTCCC	S C T C C
G2381u2	WIAF-12896	M59941	730	CSF2RB, colony stimulating factor 2 receptor, beta, low-affinity (granulocyte-macrophage)	CGATCTGGAG [C/T] GAGTGGAGTG	S C T S S
G2381u3	WIAF-12900	M59941	1306	CSF2RB, colony stimulating factor 2 receptor, beta, low-affinity (granulocyte-macrophage)	CGATGGACC [G/A] GGACAGGCCG	S G A P P
G2381u4	WIAF-12901	M59941	1972	CSF2RB, colony stimulating factor 2 receptor, beta, low-affinity (granulocyte-macrophage)	GGACAGGCC [G/A] TGGAAAGTGGAA	M G A V M
G2381u5	WIAF-12942	M59941	1982	CSF2RB, colony stimulating factor 2 receptor, beta, low-affinity (granulocyte-macrophage)	CCAGAACCTG [G/C] AGTGGCTCTT	M G C E Q
G2381u6	WIAF-12946	M59941	773	CSF2RB, colony stimulating factor 2 receptor, beta, low-affinity (granulocyte-macrophage)	CCCCACAGCC [C/A] GAGGGCCCTCC	S C A P P
G2384u1	WIAF-12903	M61831		AHCY, S-adenosylhomocysteine hydrolase	GCGGTGGAGA [A/C] GGTGAACATC	M A C K T
G2387u1	WIAF-12910	M63967	2458	ALDH5, aldehyde dehydrogenase 5 (granulocyte-macrophage)	CTGCTGAACC [T/G] CCTGGCAGAC	M T G L R
G2387u2	WIAF-12911	M63967	2996	ALDH5, aldehyde dehydrogenase 5	TATGGCCCA [C/G] AGCAGGTGGCG	M C G T R
G2387u3	WIAF-12954	M63967	2522	ALDH5, aldehyde dehydrogenase 5	GCCCCGGAAAG [C/T] CTTCGGCTCTG	M C T A V
G2387u4	WIAF-12955	M63967	2448	ALDH5, aldehyde dehydrogenase 5	ACCCCTACAC [C/T] GGGGAGGTCA	S C T T T

G2387u5	WIAF-12956	M63967	2460	ALDH5, aldehyde dehydrogenase 5	GGAGGTCTAT[C/T] GGGCACCCGGC	S C T I I
G2387u6	WIAF-12957	M63967	2991	ALDH5, aldehyde dehydrogenase 5	CGGGTATGG [C/T] CCAAACAGGAG	S C T G G
G2387u7	WIAF-12958	M63967	3022	ALDH5, aldehyde dehydrogenase 5	CGCCCOAGGAC [A/G] TGGATGTGA	M A G M V
G2387u8	WIAF-12959	M63967	2943	ALDH5, aldehyde dehydrogenase 5	CCCTOATCAA [G/C] GAGGCAGGCT	M G C K N
G2388u1	WIAF-12888	M64590	588	system protein P)	TGCCACAGAC [G/A] ATTTTGCGGA	S G A T T
G2388u2	WIAF-12889	M64590	651	GLDC, glycine dehydrogenase (decarboxylating; glycine decarboxylase, glycine cleavage system protein P)	ACCAAGCCTGA [G/A] GTGTCTCAGG	S G A E E
G2388u3	WIAF-12890	M64590	698	GLDC, glycine dehydrogenase (decarboxylating; glycine decarboxylase, glycine cleavage system protein P)	CAGACCATGG [T/C] GTGTGACATC	M T C V A
G2388u4	WIAF-12891	M64590	557	GLDC, glycine dehydrogenase (decarboxylating; glycine decarboxylase, glycine cleavage system protein P)	TATATTGCCA [T/C] GGGCTATTAT	M T C M T
G2388u5	WIAF-12938	M64590	587	GLDC, glycine dehydrogenase (decarboxylating; glycine decarboxylase, glycine cleavage system protein P)	GTGCCACAGGA [C/G] GATTTTCGGG	M C G T R
G2388u6	WIAF-12939	M64590	518	GLDC, glycine dehydrogenase (decarboxylating; glycine decarboxylase, glycine cleavage system protein P)	CTGCATGCCA [T/C] TTCAAGGAAA	M T C I T

								S C T L L
G2388u7	WIAF-12940	M64590	810	GLDC, glycine dehydrogenase (decarboxylating; glycine decarboxylase, glycine cleavage system protein P)		GGAAATTCT [C/T] GTTGATCCCC		
G2388u8	WIAF-12941	M64590	1481	GLDC, glycine dehydrogenase (decarboxylating; glycine decarboxylase, glycine cleavage system protein P)		CATTTGGCTT [G/A] CTCACTGAAG	M G A C Y	
G2388u9	WIAF-12947	M64590	1841	GLDC, glycine dehydrogenase (decarboxylating; glycine decarboxylase, glycine cleavage system protein P)		AAACTGAACA [G/A] TTCTGTCTGAA	M G A S N	
G2388u10	WIAF-12948	M64590	2325	GLDC, glycine dehydrogenase (decarboxylating; glycine decarboxylase, glycine cleavage system protein P)		GACAGGTCTA [C/T] CTAGACGGGG	S C T Y Y	
G2388u11	WIAF-12949	M64590	2362	GLDC, glycine dehydrogenase (decarboxylating; glycine decarboxylase, glycine cleavage system protein P)		GGGGAAATC [T/A] GTCGCCCTGG	M T A C S	
G2388u12	WIAF-12950	M64590	3220	GLDC, glycine dehydrogenase (decarboxylating; glycine decarboxylase, glycine cleavage system protein P)		TTAGTCCTCT [C/G] TCCCTTAAGTT	- C G - -	
G2391u1	WIAF-12998	M69238	623	ARNT, aryl hydrocarbon receptor nuclear translocator		TGGTGTATGT [G/C] TCTGACTCCG	S G C V V	
G2391u2	WIAF-13002	M69238	1072	ARNT, aryl hydrocarbon receptor nuclear translocator		TGCCCTAGTGG [C/T] CATGGCAGA	M C T A V	
G2391u3	WIAF-13021	M69238	966	ARNT, aryl hydrocarbon receptor nuclear translocator		ACCTCACTTC [G/A] TGCTGGTCCA	M G A V M	
G2394u1	WIAF-13003	M73747	2061	TSHR, thyroid stimulating hormone receptor		TTGCTGGTAC [T/A] CTTCTATCCA	M T A L H	

G2394u2	WIAF-13004	M73747	2248	TSHR, thyroid stimulating hormone receptor	TPIACCACGA [C/G] ATGAGGCCAGG	M C G D E
G2396u1	WIAF-12995	M74542	1027	ALDH3, aldehyde dehydrogenase 3	CCCCCAGTCC [C/G] CGGTGATGCA	M C G P A
G2396u2	WIAF-13019	M74542	1295	ALDH3, aldehyde dehydrogenase 3	GGCTAGAAGA [G/A] CTTCGAGACT	M G A S N
G2403u1	WIAF-13583	M83670	280	CA4, carbonic anhydrase IV	TACCGATAAGA [A/T] GCGAACGTGG	M A T K M
G2409u1	WIAF-10010	HT2156	1268	AGTR1, angiotensin receptor 1	CCACTCAAAC [C/T] TTTCACAAAA	M C T L F
G2411u1	WIAF-13541	M97759	210	ADORA2B, adenosine A2b receptor	TGGCGGGCAA [C/T] GTGCTGGTGT	S C T N N
G2422u1	WIAF-14077	S90469	375	POR, P450 (cytochrome) oxidoreductase	GCAGGCTGCC [A/G] GAGATGACA	S A G P P
G2422u2	WIAF-14078	S90469	852	POR, P450 (cytochrome) oxidoreductase	TCTCTGGCTGC [A/G] GTCACCCACCA	S A G A A
G2422u3	WIAF-14082	S90469	1496	POR, P450 (cytochrome) oxidoreductase	AAGGAGCCTG [T/C] CGGGGAGAAC	M T C V A
G2422u4	WIAF-14099	S90469	1443	POR, P450 (cytochrome) oxidoreductase	AGACCAAGGC [C/T] GGCCGCATCA	S C T A A
G2422u5	WIAF-14100	S90469	1704	POR, P450 (cytochrome) oxidoreductase	GCGGCCGCTC [G/A] GATGAGGACT	S G A S S
G2427u1	WIAF-14079	U07919	1369	ALDH6, aldehyde dehydrogenase 6	ACTATGGACT [C/T] ACAGCCGCCG	S C T L L
G2427u2	WIAF-14096	U07919	1347	ALDH6, aldehyde dehydrogenase 6	ATAAAAAGAG [C/T] GAATAAGCACC	M C T A V
G243u1	WIAF-11684	X57522	926	TAP1, transporter 1, ABC (ATP binding cassette)	ATAGCCAGTG [C/G] AGTGTGGAG	M C G A G
G243u2	WIAF-11685	X57522	627	TAP1, transporter 1, ABC (ATP binding cassette)	ACCTTAACGCC [C/T] TTTCGTGTCA	S C T A A
G243u3	WIAF-11686	X57522	538	TAP1, transporter 1, ABC (ATP binding cassette)	CCTGCCGGGA [C/G] TTGCCTGTGTT	M C G L V
G243u4	WIAF-11687	X57522	798	TAP1, transporter 1, ABC (ATP binding cassette)	TAGTATTTCAG [G/T] GTATGGCTCT	M G T G C
G243u5	WIAF-11689	X57522	1465	TAP1, transporter 1, ABC (ATP binding cassette)	TGGTGGCTCT [C/G] TCCTCTCTTG	S C G L L
G243u6	WIAF-11690	X57522	177	TAP1, transporter 1, ABC (ATP binding cassette)	AGAGTCCCGAG [A/G] CCCGGCCGGG	S A G R R
G243u7	WIAF-11693	X57522	1067	TAP1, transporter 1, ABC (ATP binding cassette)	ACATCATGTCAGT [C/T] TCGGGTAACA	M C T S F
G243u8	WIAF-11665	X57522	1207	TAP1, transporter 1, ABC (ATP binding cassette)	GTCACCCCTG [A/G] TCACCTCTGCC	M A G I V

			TAPI, transporter 1, ABC (ATP binding cassette)	CCAAACCGCC [C/T] AGATGTCCTTA	M C T P L
G243u9	WIAF-11664	X57522	1757	TNFRSF5, tumor necrosis factor receptor superfamily, member 5	S A G E E
G244u1	WIAF-10174	X60592	239	SLC12A2, solute carrier family 12 (sodium/potassium/chloride transporter), member 2	TGCTTAAGGA [A/G] AGCGAAATTCC
G244iu1	WIAF-13682	U30246	1355	SLC12A2, solute carrier family 12 (sodium/potassium/chloride transporter), member 2	TGCTTAAGGA [A/G] CATTCACATA
G244iu2	WIAF-13714	U30246	2691	SLC12A2, solute carrier family 12 (sodium/potassium/chloride transporter), member 2	AGCCAAATAT [C/G] AGCGATGGCT
G2443u1	WIAF-14004	U37143	1456	CYP2J2, cytochrome P450, subfamily IIJ (arachidonic acid epoxidase) polypeptide 2	CTGAAAGTTTA [G/A] AAATGGGTATC
G2443u2	WIAF-14032	U37143	376	CYP2J2, cytochrome P450, subfamily IIJ (arachidonic acid epoxidase) polypeptide 2	TTTAAGAAAA [A/G] TGGATTGATT
G2443u3	WIAF-14033	U37143	1502	CYP2J2, cytochrome P450, subfamily IIJ (arachidonic acid epoxidase) polypeptide 2	TCTGCGCTGT [T/A] CCTCACTGTGT
G2444u1	WIAF-14065	U37519	771	ALDH3, aldehyde dehydrogenase 3	CCCGCAGGGA [A/G] TTGCGTGTGT
G2444u2	WIAF-14056	U37519	1698	ALDH3, aldehyde dehydrogenase 3	AAGGAGATCC [G/A] CTACCCACCC
G2445u1	WIAF-14114	U38178	236	CNP, 2',3'-cyclic nucleotide 3' phosphodiesterase	TGCCGGCGC [G/A] CCTCTCTGCTG
G2445u2	WIAF-14115	U38178	849	CNP, 2',3'-cyclic nucleotide 3' phosphodiesterase	GTGCCGGCGA [A/G] GAAAAAGTGC
G2445u3	WIAF-14122	U38178	1655	CNP, 2',3'-cyclic nucleotide 3' phosphodiesterase	GTATCTTGC [A/T] GAGATCTCTG
G2445u4	WIAF-14241	X95520	941	CNP, 2',3'-cyclic nucleotide 3' phosphodiesterase	TGAAAAATAT [T/C] CAGGAGACCG

G2445u5	WIAF-14242	X95520	1057	CNP, 2',3'-cyclic nucleotide 3' phosphodiesterase	TGGAGTTGAT[C/T]TTTCAGTGT	?	C	T	?	?
G2445u6	WIAF-14243	X95520	1583	CNP, 2',3'-cyclic nucleotide 3' phosphodiesterase	TCTACTGGCT[C/G]TCTAACTAAT	?	C	G	?	?
G2448u1	WIAF-13973	U46689	1895	ALDH10, aldehyde dehydrogenase 10 (fatty aldehyde dehydrogenase)	TGGTCAAGGC[A/T]GAATATTACT	S	A	T	A	A
G2457u1	WIAF-13898	U90277	1304	GRIN2A, glutamate receptor, ionotropic, N-methyl D-aspartate 2A	GGTCCCCGATG[C/T]ACACCTTGCA	M	C	T	H	Y
G2457u2	WIAF-13899	U90277	1934	GRIN2A, glutamate receptor, ionotropic, N-methyl D-aspartate 2A	AGAAAGTAAT[G/T]GCACCGGCTC	M	G	T	G	C
G2457u3	WIAF-13900	U90277	2230	GRIN2A, glutamate receptor, ionotropic, N-methyl D-aspartate 2A	TGGCTGTCTCAT[A/G]TTCCCTGGCTA	M	A	G	I	M
G2457u4	WIAF-13902	U90277	2916	GRIN2A, glutamate receptor, ionotropic, N-methyl D-aspartate 2A	GGCAGCTTACA[G/A]CTGGCATTCAT	M	G	A	S	N
G2457u5	WIAF-13903	U90277	3251	GRIN2A, glutamate receptor, ionotropic, N-methyl D-aspartate 2A	CTATGTATTTC[C/T]AGGGACAAACA	N	C	T	Q	*
G2457u6	WIAF-13917	U90277	2756	GRIN2A, glutamate receptor, ionotropic, N-methyl D-aspartate 2A	GGACATTGAC[A/G]ACATGGGG	M	A	G	N	D
G2468u1	WIAF-13642	X04011	1017	CYBB, cytochrome b-245, beta polypeptide (chronic granulomatous disease)	AGGTGTCCAA[G/A]CTGGAACTGGC	S	G	A	K	K
G2473u1	WIAF-13670	X06990	1417	ICAM1, intercellular adhesion molecule 1 (CD54), human rhinovirus receptor	GATCACCCGCG[G/A]AGGTGACCGT	M	G	A	E	K
G2473u2	WIAF-13695	X06990	179	ICAM1, intercellular adhesion molecule 1 (CD54), human rhinovirus receptor	GACCAGGCC[A/T]GTGTGTGGGC	M	A	T	K	M
G2480u1	WIAF-14148	X55330	800	AGA, aspartylglucosaminidase	TTGGCATGTT[T/G]GTAATCCATA	S	T	G	V	V
G2480u2	WIAF-14149	X55330	852	AGA, aspartylglucosaminidase	AAATGGTATA[A/T]AATTCAAAT	N	A	T	K	*

G2480u3	WIAF-14158	X55330	616 AGA, aspartylglucosaminidase	TTATCTACCA [G/C] TGCCTTCCTCAA	M G C S T
G2485u1	WIAF-13612	X59543	2301 polypeptide	RRM1, ribonucleotide reductase M1	M G A S N
G2485u2	WIAF-13613	X59543	2410 polypeptide	RRM1, ribonucleotide reductase M1	ATTGATCAA [G/A] CCAATCTTTC
G2485u3	WIAF-13651	X59543	548 polypeptide	RRM1, ribonucleotide reductase M1	ATTAAGGAC [G/A] AGACCAGCG
G2485u4	WIAF-13652	X59543	199 polypeptide	RRM1, ribonucleotide reductase M1	CAAGTCAACA [T/C] TGGATATGT
G2485u5	WIAF-13653	X59543	1037 polypeptide	RRM1, ribonucleotide reductase M1	TGGATGTGAT [C/T] AACCGAGATG
G2485u6	WIAF-13660	X59543	1955 polypeptide	RRM1, ribonucleotide reductase M1	CAACACAGCT [C/A] GATATGTGGA
G2485u7	WIAF-13877	X59543	860 polypeptide	RRM1, ribonucleotide reductase M1	GAAGATTGCA [A/C] AGTATGGTAT
G2486u1	WIAF-14075	X59618	543 polypeptide	RRM2, ribonucleotide reductase M2	M G C A K Q
G2486u2	WIAF-14076	X59618	189 polypeptide	RRM2, ribonucleotide reductase M2	TCAGGACTGG [G/C] AAATCCCTGAA
G2486u3	WIAF-14092	X59618	524 polypeptide	RRM2, ribonucleotide reductase M2	TGGCTTGGCC [T/G] CCACATATGCT
				POLR2B, polymerase (RNA) II (DNA directed) polypeptide B (140kD)	- T G -
G2488u1	WIAF-13585	X63563	1633	POLR2B, polymerase (RNA) II (DNA directed) polypeptide B (140kD)	S C G C E Q
G2488u2	WIAF-13586	X63563	2452	POLR2B, polymerase (RNA) II (DNA directed) polypeptide B (140kD)	S C T R R
G2488u3	WIAF-13587	X63563	2740	POLR2B, polymerase (RNA) II (DNA directed) polypeptide B (140kD)	S C T S S
G2488u4	WIAF-13602	X63563	1411	POLR2B, polymerase (RNA) II (DNA directed) polypeptide B (140kD)	S A G Q Q
G2488u5	WIAF-13603	X63563	2386	POLR2B, polymerase (RNA) II (DNA directed) polypeptide B (140kD)	CATTGTCGC [C/T] ATTGCATCAT
G2488u1	WIAF-14181	X63564	1346	POLR2A, polymerase (RNA) II (DNA directed) polypeptide A (220kD)	TGCTGGACAA [T/C] GAGCTGCC

G2489u2	WIAF-14236	X63564	1847	POLR2A, polymerase (RNA) II (DNA directed) polypeptide A (220kD)	TGATCTTAG [C/T] GTGACAACTC	? C T ?
G2489u3	WIAF-14237	X63564	2678	POLR2A, polymerase (RNA) II (DNA directed) polypeptide A (220kD)	CTGATACAA [C/T] AACCTCAAGT	? C T ?
G2489u4	WIAF-14238	X63564	3059	POLR2A, polymerase (RNA) II (DNA directed) polypeptide A (220kD)	AGCTGGCTA [C/T] GGGAAAGACG	? C T ?
G2489u5	WIAF-14239	X63564	3827	POLR2A, polymerase (RNA) II (DNA directed) polypeptide A (220kD)	TGGCCAGTC [C/T] GCTCGAGATG	? C T ?
G2489u6	WIAF-14240	X63564	3992	POLR2A, polymerase (RNA) II (DNA directed) polypeptide A (220kD)	TGCCCTGACIT [T/C] GATGTGGCCC	? T C ?
G2489u7	WIAF-14245	X63564	3938	POLR2A, polymerase (RNA) II (DNA directed) polypeptide A (220kD)	CCCAAGAGCAC [G/A] GTGGTGGCAG	? G A ?
G250u1	WIAF-11696	HT0155	1113	IL3RA, interleukin 3 receptor, alpha (low affinity)	CTGTCCTTC [G/C] TGATCTGCAG	N G C V L
G251u1	WIAF-11666	HT0240	179	interleukin 1 beta convertase	TGGATAAGAC [C/T] CGAGCTTTGA	S C T T
G251u2	WIAF-11694	HT0240	973	interleukin 1 beta convertase	GATGCTATTAA [A/G] GAAGCCAC	N A G K R
G251u3	WIAF-11695	HT0240	783	interleukin 1 beta convertase	CCAGAGATA [C/T] TACAACCAA	S C T L L
G2513u1	WIAF-13736	HT27365	1721	PLCB3, phospholipase C, beta 3 (phosphatidylinositol-specific)	AACTATCPAT [G/A] AAAAGCCAAA	M G A M I
G2513u2	WIAF-13737	HT27365	1741	PLCB3, phospholipase C, beta 3 (phosphatidylinositol-specific)	AACTATGGG [A/T] AATGTGTTCA	M A T E V
G2513u3	WIAF-13738	HT27365	1697	PLCB3, phospholipase C, beta 3 (phosphatidylinositol-specific)	AACTCTGTTCA [A/G] TACAGGGATT	S A G Q Q

G2513u4	WIAF-13739	HT27365	PLCB3, phospholipase C, beta 3 (phosphatidylinositol-specific)	1908	CTCTCAGATT [G/A] TAGCAAATGAA	M	G	A	V	I
G2513u5	WIAF-13740	HT27365	PLCB3, phospholipase C, beta 3 (phosphatidylinositol-specific)	2172	TATAGAGATA [C/T] ACGGAATTC	M	C	T	H	Y
G2513u6	WIAF-13744	HT27365	PLCB3, phospholipase C, beta 3 (phosphatidylinositol-specific)	3019	TGAAGGGCC [A/G] AGGAGATCTG	M	A	G	Q	R
G2513u7	WIAF-13745	HT27365	PLCB3, phospholipase C, beta 3 (phosphatidylinositol-specific)	3024	GGCCCAAGGA [G/A] ATCTGTGAA	M	G	A	D	N
G2513u8	WIAF-13771	HT27365	PLCB3, phospholipase C, beta 3 (phosphatidylinositol-specific)	1079	ACATTTTGA [T/C] CCTTGAGCAA	S	T	C	D	D
G2513u9	WIAF-13772	HT27365	PLCB3, phospholipase C, beta 3 (phosphatidylinositol-specific)	1546	AAGTTCCTT [C/T] TGATCCAGAT	M	C	T	S	F
G2513u10	WIAF-13773	HT27365	PLCB3, phospholipase C, beta 3 (phosphatidylinositol-specific)	1514	AATTAAAAG [A/T] ATGATCATTG	M	A	T	R	S
G2513u11	WIAF-13774	HT27365	PLCB3, phospholipase C, beta 3 (phosphatidylinositol-specific)	1445	AGGTCTTGG [C/T] AATAAACCT	S	C	T	G	G
G2513u12	WIAF-13778	HT27365	PLCB3, phospholipase C, beta 3 (phosphatidylinositol-specific)	2087	TTCATATCAA [G/A] ATCATCAGTG	S	G	A	K	K
G2513u13	WIAF-13779	HT27365	PLCB3, phospholipase C, beta 3 (phosphatidylinositol-specific)	2367	TGAATGTTTG [C/T] AGGCCTGGATA	N	C	T	Q	*

G2513u14	WIAF-13782	HT27365	PLCB3, phospholipase C, beta 3 (phosphatidylinositol-specific)	CTCATCACCA [G/A] TGACAACTACT	M G A S N
G2513u15	WIAF-13783	HT27365	PLCB3, phospholipase C, beta 3 (phosphatidylinositol-specific)	TTGATGACAT [C/T] TTTAAATAAG	S C T I I
G2513u16	WIAF-13784	HT27365	PLCB3, phospholipase C, beta 3 (phosphatidylinositol-specific)	TAGAAATGGC [G/A] GACACAGTCC	S G A A A
G2513u17	WIAF-13785	HT27365	PLCB3, phospholipase C, beta 3 (phosphatidylinositol-specific)	TGACATCTTT [A/T] AAATACGGT	N A T K *
G2513u18	WIAF-13786	HT27365	PLCB3, phospholipase C, beta 3 (phosphatidylinositol-specific)	TCTGTCACTCT [C/T] GGCTCATCAC	M C T R W
G252u1	WIAF-10195	HT0425	FCER2, Fc fragment of IgE, low affinity II, receptor for (CD23A)	GAGGGCTGCC [C/T] GGAACGTC	M C T R W
G252u2	WIAF-10206	HT0425	FCER2, Fc fragment of IgE, low affinity II, receptor for (CD23A)	ATGGGAGCCA [T/C] GTGGACTACA	S T C H H
G253u1	WIAF-10175	HT0573	IFNBL1, interferon, beta 1, fibroblast	GGCTTGAAATA [C/T] TGCCCTTAAGG	S C T Y Y
G254u1	WIAF-10196	HT0611	466 IL4R, interleukin 4 receptor	TCAGTGCGGA [T/C] AACTATACAC	S T C D D
G254u2	WIAF-10198	HT0611	1474 IL4R, interleukin 4 receptor	CATGCCCTTCT [T/C] CCACCTTCGG	S T C L L
G254u3	WIAF-10207	HT0611	1902 IL4R, interleukin 4 receptor	AGTGGCTATC [A/G] GGAGTTTGTAA	M A G Q R
G260u1	WIAF-10186	HT1090	453 type I	TGTTATAATG [C/G] ACAAGCCATA	M C G A G
G261u1	WIAF-10187	HT1101	434 IL7R, interleukin 7 receptor	CCTCAGTGTCA [A/G] TCTATCGGA	M A G I V
G261u2	WIAF-10203	HT1101	517 IL7R, interleukin 7 receptor	TTTAATGCA [T/C] GATGTAGCTT	S T C H H
G267u1	WIAF-11735	HT1877	IL2RB, interleukin 2 receptor, 881 beta	TCCCTCGTGGG [C/T] CTGAGCGGG	S C T G G

G267u2	WIAF-11759	HT1877	379 beta	IL2RB, interleukin 2 receptor,	AGTCAGGAT [C/T] CTGGGCCCTGC	M C T S F
G268u1	WIAF-11758	HT1285	568 CD19 antigen	GCCTCCGGTG [G/C] TCCCCACCGAG	M G C V L	
G268u2	WIAF-11734	HT1985	783 CD19 antigen	ACGATGCCCG [G/T] GCCAGAGATA	S G T P P	
G270u1	WIAF-11736	HT2415	530 IL6R, interleukin 6 receptor	AGGAGGTGGC [A/G] AGAGGGGTC	S A G A A	
G270u2	WIAF-11760	HT2415	1590 IL6R, interleukin 6 receptor	CATTGCCATT [G/A] TTCTGAGGGT	M G A V I	
G270u3	WIAF-11737	HT2415	1510 IL6R, interleukin 6 receptor	CCAGTGCAAG [A/C] TTCTTCTTCA	M A C D A	
G270u4	WIAF-11761	HT2415	1451 IL6R, interleukin 6 receptor	CTACTAA [A/T] GACGATGATA	M A T K N	
G270u5	WIAF-11766	HT2415	1843 IL6R, interleukin 6 receptor	TTCGCCAGAT [A/G] GTCTGGCTGGG	N A G * W	
G270u6	WIAF-11767	HT2415	1829 IL6R, interleukin 6 receptor	ATACAGACTA [C/T] TTCTTCCCCA	S C T Y Y	
G271u1	WIAF-11762	HT2531	577 blood cell receptor	CD2, CD2 antigen (p50), sheep red	TCAGAGGTC [A/G] TCACACACAA	M A G I V
G271u2	WIAF-11739	HT2531	861 blood cell receptor	CD2, CD2 antigen (p50), sheep red	GGAAAGCCCA [A/C] CAAATTCCAG	M A C X H
G271u3	WIAF-11768	HT2531	818 blood cell receptor	CD2, CD2 antigen (p50), sheep red	CTGGACCAA [G/A] AGCCCCAGA	M G A R K
G271u4	WIAF-11738	HT2531	736 blood cell receptor	CD2, CD2 antigen (p50), sheep red	CCTCTTGATG [G/A] TCTTTCTGGC	M G A V I
G273u1	WIAF-11763	HT3139	667 alpha	IL2RA, interleukin 2 receptor,	ATCATGGTGC [C/T] TGCTGCCAG	M C T P L
G273u2	WIAF-11764	HT3139	956 alpha	IL2RA, interleukin 2 receptor,	AAAGTCCCAT [G/C] CAGCCAGTGG	M G C M I
G273u3	WIAF-11765	HT3139	701 alpha	IL2RA, interleukin 2 receptor,	ACGATGACCC [G/A] CCAGAGATCC	S G A P P
G273u4	WIAF-11740	HT3139	1133 alpha	IL2RA, interleukin 2 receptor,	AAATGACCCA [C/T] GGGAAAGACA	S C T H H
G273u5	WIAF-11769	HT3139	1163 alpha		AGCCCGAGT [C/A] ATATGCCACAG	S C A L L
G276u1	WIAF-10192	HT3670	644 CD4 antigen		CTCGTAGTAG [C/G] CCCTCACTGTC	M C G S R
G276u2	WIAF-10193	HT3670	1535 CD4 antigen		CTCTGCCAGTG [T/C] CCTCACCCGGT	S T C C C
G276u3	WIAF-10205	HT3670	1217 CD4 antigen		TCATGCTGAG [T/C] TTGAAACTCG	S T C S S

G277u1	WIAF-10007	D10232	851	RENBP, renin-binding protein	CACTGATTC [A/G] CAAGTTCCCTA	M	A	G	D	G
G277u2	WIAF-10032	D10232	842	RENBP, renin-binding protein	CTTGAGGCC [A/G] CGTGATGTAC	M	A	G	H	R
G277u3	WIAF-10042	D10232	634	RENBP, renin-binding protein	GCTGGCGGC [A/G] AATAACGCCAGA	M	A	G	K	E
G279u1	WIAF-10047	K01740	1658	F8C, coagulation factor VIIIC, procoagulant component (hemophilia A)	ACTGATGTCC [G/A] TCCTTGTAT	M	G	A	R	H
G279u2	WIAF-10049	K01740	2328	F8C, coagulation factor VIIIC, procoagulant component (hemophilia A)	CCTTACTGAA [G/A] GTTCTAGTT	S	G	A	K	K
G279u3	WIAF-10050	K01740	4650	F8C, coagulation factor VIIIC, procoagulant component (hemophilia A)	CTGTTCTCCC [G/A] AACCCAGACT	S	G	A	P	P
G279u4	WIAF-10061	K01740	6919	F8C, coagulation factor VIIIC, procoagulant component (hemophilia A)	CCAGAAAGACA [A/G] TGAAAGTCAC	M	A	G	M	V
G279u5	WIAF-10080	K01740	480	F8C, coagulation factor VIIIC, procoagulant component (hemophilia A)	TGAGACAT [G/A] GCTTCCCATC	M	G	A	M	I
G279u6	WIAF-10082	K01740	2129	F8C, coagulation factor VIIIC, procoagulant component (hemophilia A)	TACATTCTAA [G/A] CATGGAGCA	M	G	A	S	N
G279u7	WIAF-10084	K01740	2533	F8C, coagulation factor VIIIC, procoagulant component (hemophilia A)	GTGGCACAC [A/G] GAACACCTAT	M	A	G	R	G
G279u8	WIAF-10086	K01740	6639	F8C, coagulation factor VIIIC, procoagulant component (hemophilia A)	ACCTCTCAAAT [T/C] ATTGCTCGAT	S	T	C	I	I
G279u9	WIAF-10087	K01740	5957	F8C, coagulation factor VIIIC, procoagulant component (hemophilia A)	GAGAATTATC [G/A] CTTCCATGCA	M	G	A	R	H
G279a10	WIAF-10495	K01740	5829	F8C, coagulation factor VIIIC, procoagulant component (hemophilia A)	TGACAGTACA [G/A] GAATTGGTC	S	G	A	Q	Q
G279a11	WIAF-10496	K01740	5852	F8C, coagulation factor VIIIC, procoagulant component (hemophilia A)	TTTTTCACCA [T/G] CTTTGATGAG	M	T	G	I	S
G279a12	WIAF-10502	K01740	2492	F8C, coagulation factor VIIIC, procoagulant component (hemophilia A)	ACCAAAATTTC [C/T] AGAAAATGAC	M	C	T	P	L

G279a13	WIAF-10503	K01740	6906 A)	F8C, coagulation factor VIIIC, procoagulant component (hemophilia	TGAACTGGAA [C/T] TTCCAGAGA	S C T D D
G279a14	WIAF-13120	K01740	1980 A)	F8C, coagulation factor VIIIC, procoagulant component (hemophilia	CAGAAATAT [A/c] CAACGGTTTC	S A C I I
G279a15	WIAF-13121	K01740	1982 A)	F8C, coagulation factor VIIIC, procoagulant component (hemophilia	GAGATATA [A/c] ACGTTTCTC	M A C Q P
G282u1	WIAF-10067	L25615	976 receptor 1A	AVPR1A, arginine vasopressin	CGCCCTTCCTT [C/A] ATCATCAGA	M C A F L
G282u2	WIAF-10070	L25615	460 receptor 1A	AVPR1A, arginine vasopressin	TCGGCATGTT [T/C] GCGTCGGCT	S T C F P
G282u3	WIAF-10071	L25615	343 receptor 1A	AVPR1A, arginine vasopressin	GCCTGGCCGA [C/T] CTGGCCGTGG	S C T D D
G282u4	WIAF-10072	L25615	68 receptor 1A	AVPR1A, arginine vasopressin	TCTCTCGGCC [G/A] GTCCGGACGC	M G A G S
G282u5	WIAF-10073	L25615	535 receptor 1A	AVPR1A, arginine vasopressin	AGACTCTGCA [A/G] CAGCCGGCGC	S A G Q Q
G282u6	WIAF-10092	L25615	1075 receptor 1A	AVPR1A, arginine vasopressin	CCCTGAAATAG [C/A] TGCTTGTAATC	M C A S R
G282a7	WIAF-10499	L25615	1089 receptor 1A	AVPR1A, arginine vasopressin	TGTAATCCCT [G/A] GATATAATCATG	N C A W *
G284u1	WIAF-10182	M16827	1179 straight chain	ACADM, acyl-Coenzyme A dehydrogenase, C-4 to C-12	AATATCCCTGT [A/G] GAAAAGCTAA	S A G V V
G284a2	WIAF-10515	M16827	696 straight chain	ACADM, acyl-Coenzyme A dehydrogenase, C-4 to C-12	TGTGGAAAGC [A/G] GATACCCCOAG	S A G A A
G285u1	WIAF-10108	M28372	ZNF9, zinc finger protein 9 (a cellular retroviral nucleic acid binding protein)			S T C D D
G289u1	WIAF-10041	M63012	172 PON1, paraoxonase 1	LRPAP1, low density lipoprotein-related protein-associated protein 1 (alpha-2-macroglobulin receptor-associated protein 1)	CCTCTCCAGA [T/C] ATTGGTTATC CTCTGAAAGAC [A/T] TGGAGTACT	M A T M L
G290u1	WIAF-10085	M63959	354 associated protein 1)	CCTATACGCC [A/G] CCTCTAACATGTC	M A G N S	

G290a2	WIAF-13122	M63959	LIRPAP1, low density lipoprotein-related protein-associated protein 1 (alpha-2-macroglobulin receptor-associated protein 1)	AGGACTGCA [T/A] CTTCCCTCCCG	M T A H Q
G292u1	WIAF-10180	M74096	ACADL, acyl-Coenzyme A dehydrogenase, long chain	AGTGCACAT [A/C] AATTAGCAGA	M A C K Q
G293u1	WIAF-10068	M74775	LIPA, lipase A, lysosomal acid, cholesterol esterase (Wolman disease)	AAGGACTTAT [T/C] TGGAGACAAA	M T C F S
G293a2	WIAF-10497	M74775	LIPA, lipase A, lysosomal acid, cholesterol esterase (Wolman disease)	TGAGGGGTCT [G/A] GAGGGAAACT	M G A G R
G293a3	WIAF-10498	M74775	LIPA, lipase A, lysosomal acid, cholesterol esterase (Wolman disease)	GCTTCCTCTGG [C/A] CCCCTGCATT	M C A P T
G295u1	WIAF-10057	U04270	KCNH2, potassium voltage-gated channel, subfamily H, member 2	AAAGGGCGGA [A/T] CCCACAAATG	M A T T S
G295u2	WIAF-10062	U04270	KCNH2, potassium voltage-gated channel, subfamily H, member 2	CGCACCTGGCT [A/G] GCCTGGATCT	S A G L L
G295u3	WIAF-10064	U04270	KCNH2, potassium voltage-gated channel, subfamily H, member 2	ACTTCACCTT [C/T] AGCGGCCCTCA	S C T F F
G295u4	WIAF-10088	U04270	KCNH2, potassium voltage-gated channel, subfamily H, member 2	CGGGCCGAT [C/T] GCCGGTCACT	S C T I I
G295u5	WIAF-10090	U04270	KCNH2, potassium voltage-gated channel, subfamily H, member 2	CCCTCATGTA [T/C] GCTAGGATCT	S T C Y Y
G295u1	WIAF-14147	HT0030	ZNF42, zinc finger protein 42 (myeloid-specific retinoic acid-responsive)	CCCTGCTCTTG [A/G] TCACACCCG	M A G I V
G295u2	WIAF-14157	HT0030	ZNF42, zinc finger protein 42 (myeloid-specific retinoic acid-responsive)	ACCGAGCTTAC [G/A] CACACCGAGG	S G A T T

G2959u1	WIAF-13501	HT0134	1014	GRILFL1, glucocorticoid receptor DNA binding factor 1	GTGGAGAGAC [T/C] CTGCATAGCT	S T C T T
G2959u2	WIAF-13518	HT0134	1853	GRILFL1, glucocorticoid receptor DNA binding factor 1	GAAGCCATCTT [A/C] CAGCCTGTT	M A C Y S
G2961	WIAF-10514	U12778	961	ACADS8, acyl-Coenzyme A dehydrogenase, short/branched chain	TATTCATAT [A/G] TTAAGAAAG	M A G I V
G2968u1	WIAF-12699	HT0244	1754	SMARCA1, SWI/SNF related, matrix associated, actin dependent, actin dependent regulator of chromatin, subfamily a, member 1	CAGAAGAAC [C/T] AGTACGTGTA	M C T P L
G2968u2	WIAF-12716	HT0244	2624	SMARCA1, SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 1	TGGAAACGTT [G/T] CAATGAAATT	M G T C F
G2971u1	WIAF-10109	U16660	402	ECH1, enoyl Coenzyme A hydratase 1, peroxisomal	ACATGCCCTTC [G/A] GACATCCTGCG	S G A S S
G2971u2	WIAF-10110	U16660	149	ECH1, enoyl Coenzyme A hydratase 1, peroxisomal	GCACAAAGGG [A/C] GGCTTCGGGA	M A C E A
G2970u1	WIAF-12746	HT0281	682	BR140: bromodomain-containing protein, 140kD (peregrin)	ATGACATGGA [C/T] GAGGGAGCT	S C T D D
G2975u1	WIAF-12729	HT0334	1104	B-cell specific transcription factor	AGTTTTCCGG [G/A] AGTCCCTACA	S G A G G
G2975u2	WIAF-12730	HT0334	1185	B-cell-specific transcription factor	GCTCCCCCTA [C/T] TATTATAGCG	S C T Y Y
G2976a1	WIAF-12129	HT0340	1600	SATB1, special AR-rich sequence binding protein 1 (binds to nuclear matrix/scaffold- associating DNA's)	GTCCTGGCCC [C/A] CTCATCAGCA	S C A P P
G2976a2	WIAF-12743	HT0340	2116	SATB1, special AR-rich sequence binding protein 1 (binds to nuclear matrix/scaffold- associating DNA's)	TGGCCTCTCC [A/G] GCAGAGTCAG	S A G P P

G298u1	WIAF-12721	HT0346	1140	MSX1, msh (Drosophila) homeo box precursor, mRNA, complete cds.	CATAGAGGGT [C/T] CCAGGTCCCC	- C T - -
G298u1	WIAF-10048	U33837	8995	Human glycoprotein receptor gp330 precursor, mRNA, complete cds.	CCGACAGGA [G/A] GTCATTCCTCC	M G A R K
G298u2	WIAF-10051	U33837	13217	Human glycoprotein receptor gp330 precursor, mRNA, complete cds.	ATGAGCCAT [C/T] GAATGCCATA	S C T I I
G298u3	WIAF-10077	U33837	6298	Human glycoprotein receptor gp330 precursor, mRNA, complete cds.	AACCTTTCA [T/C] TGTTGTTCA	M T C I T
G298u4	WIAF-10078	U33837	6371	Human glycoprotein receptor gp330 precursor, mRNA, complete cds.	CCATGGGCC [G/A] GTGGAGGCC	S G A P P
G298u5	WIAF-10079	U33837	6914	Human glycoprotein receptor gp330 precursor, mRNA, complete cds.	ACTCTGAAGT [G/A] ATTCTTATG	S G A V V
G298u6	WIAF-10081	U33837	8718	Human glycoprotein receptor gp330 precursor, mRNA, complete cds.	GTTCCTATGC [G/A] CATCTGGCG	M G A A T
G298u7	WIAF-10083	U33837	9088	Human glycoprotein receptor gp330 precursor, mRNA, complete cds.	ACTTGCTCTG [A/G] AAATGGATT	M A G E G
G298u8	WIAF-10096	U33837	6949	Human glycoprotein receptor gp330 precursor, mRNA, complete cds.	ACTCCTATG [G/C] CATCACTGTT	M G C G A
G298u9	WIAF-10097	U33837	7149	Human glycoprotein receptor gp330 precursor, mRNA, complete cds.	TTGCTTGGAA [A/G] ACAATGGTG	M A G N D
G298u10	WIAF-10100	U33837	8590	Human glycoprotein receptor gp330 precursor, mRNA, complete cds.	TGACAAAAAT [G/A] TCATAATTC	M G A C Y
G298u11	WIAF-10101	U33837	12948	Human Glycoprotein receptor gp330 precursor, mRNA, complete cds.	CATCTTGAA [G/C] ACCAGTTATA	M G C D H
G298u11	WIAF-12723	HT0356	437 E (sp1)	TLE1, transducin-like enhancer of split 1, homolog of Drosophila	TCATGCCAC [G/A] GACCCCACT	M G A G R

G2980u2	WIAF-12726	HT0356	TLE1, transducin-like enhancer of split 1, homolog of Drosophila 2044 E(spl)	AGTGGCTGGC [A/G] GTGGGCATGG	S A G A A
G2980u3	WIAF-12747	HT0356	TLE1, transducin-like enhancer of split 1, homolog of Drosophila 379 E(spl)	CCATGGCAGA [G/A] TTGAATGCCA	S G A E E
G2980u4	WIAF-12748	HT0356	TLE1, transducin-like enhancer of split 1, homolog of Drosophila 276 E(spl)	ATCCCAAGA [G/A] ATTGAATAACG	M G A R K
G2980u5	WIAF-12749	HT0356	TLE1, transducin-like enhancer of split 1, homolog of Drosophila 1876 E(spl)	GCCACACAGA [C/T] GGACCCAGCT	S C T D D
G2980u6	WIAF-12750	HT0356	TLE1, transducin-like enhancer of split 1, homolog of Drosophila 1759 E(spl)	CCGCCCTGCTA [C/T] GCCCCTGGCCA	S C T Y Y
G2981u1	WIAF-12720	HT0357	TLE2, transducin-like enhancer of split 2, homolog of Drosophila 2206 E(spl)	ACAAATACAT [T/C] GTGACAGGCT	S T C I I
G2981u2	WIAF-12737	HT0357	TLE2, transducin-like enhancer of split 2, homolog of Drosophila 1036 E(spl)	CGGACAGGGT [C/T] GCCCTTGAGGA	S C T V V
G2981u3	WIAF-12740	HT0357	TLE2, transducin-like enhancer of split 2, homolog of Drosophila 2181 E(spl)	CTGAGTTTG [A/T] CATCTCCAGA	M A T D V
G2983u1	WIAF-12833	HT0360	TLE3, transducin-like enhancer of split 3, homolog of Drosophila 636 E(spl)	TGTCAACCTTC [G/C] GAAAGCCCTCC	S G C S S
G2983u2	WIAF-12834	HT0360	TLE3, transducin-like enhancer of split 3, homolog of Drosophila 1944 E(spl)	TGGACAACAC [G/A] GTGGGCTCT	S G A T T

G2983u3	WIAF-12848	HT0360	TLE3, split 3, transducin-like enhancer of Drosophila	ACCTTGGCCTC [G/A] CCCACGGCCCC GGCTTTCGCCA [G/A] CGCCAAACCTG	S G A S S
G2985u1	WIAF-12724	HT0421	995 homeotic protein D3	CAGCGCCAAC [C/T] TGCAGGGCGG	S C T L L
G2985u2	WIAF-12725	HT0421	1003 homeotic protein D3		
G2986u1	WIAF-14124	HT0468	1197 CSDA, cold shock domain protein A	CGCCGTGATA [C/T] CGCCGTCCCC	S C T Y Y
G2987u1	WIAF-12758	HT0474	ZNF7, zinc finger protein 7 (K0X clone HF.16)	ATGTTGTTTA [C/T] GAATATGGAA	S C T Y Y
G2987u2	WIAF-12773	HT0474	985 4, zinc finger protein 7 (K0X clone HF.16)	GAGAAGGCC [G/C] TAGGAATGTG	S G C P P
G2987u3	WIAF-12775	HT0474	1278 4, zinc finger protein 7 (K0X clone HF.16)	ACCCAGCAGT [C/T] GCAGCTGGTT	M C S L
G3005a1	WIAF-12133	HT0735	1441 homeotic protein 5.1	GAGGCAGGG [C/T] CCCGGGCTG	S C T G G
G3008a1	WIAF-12134	HT0753	ATF4, activating transcription factor 4 (tax-responsive enhancer element B67)	TAAAGAGAG [G/A] GCGGATATCCC	S G A R R
G3008u2	WIAF-12798	HT0753	ATF4, activating transcription factor 4 (tax-responsive enhancer element B67)	CCCTTGACCC [C/A] GTCGGGTTTG	M C A P Q
G3008u3	WIAF-12812	HT0753	946 ATF4, activating transcription factor 4 (tax-responsive enhancer element B67)	CACTGCTTAC [G/A] TTGCCZTGAT	M G A V I
G3008u4	WIAF-12813	HT0753	1482 ATF4, activating transcription factor 4 (tax-responsive enhancer element B67)	CCTAAAGA [G/C] AGGGGGATT	M G C E D
G301u1	WIAF-10127	U71285	MTR, 5-methyltetrahydrofolate- homocysteine methyltransferase	TCTGGAGACT [C/T] GCAGAGCATCG	S C T L L
G3012u1	WIAF-12794	HT0873	402 MAD, MAX dimerization protein	TGGTGGCCACT [G/T] GGACCCGAT	S G T L L
G3014u1	WIAF-14183	HT0899	274 homeotic protein 2, distal-less	AAAGACTCA [G/A] TACTTGGCT	S G A Q Q

G3020u1	WIAF-12797	HT0956		MLLT3, myeloid/lymphoid or mixed-lineage leukemia (trithorax (Drosophila) homolog); translocated to, 3	GTGCCCTCAA [A/G] GAACCTTCCA	S A G K K
G3023u1	WIAF-13724	HT0966	381 A	zinc finger, X-linked, duplicated	GTCAGCAA [G/A] CAATATGACA	S G A K K
G3023u2	WIAF-13725	HT0966	220 A	zinc finger, X-linked, duplicated	GGCCAAACTC [G/A] GCGGCCACCA	M G A G S
G3023u3	WIAF-13726	HT0966	69 A	zinc finger, X-linked, duplicated	AGTCGCAGGA [T/C] AAACTGCGGC	S T C D D
G3023u4	WIAF-13727	HT0966	249 A	zinc finger, X-linked, duplicated	ACTTCGAACC [C/T] GAGGGCCTT	S C T P P
G3023u5	WIAF-13765	HT0966	661 A	zinc finger, X-linked, duplicated	CAGGTCTCT [G/A] CTTCGGAGTAG	M G A A T
G3023u6	WIAF-13766	HT0966	1302 A	zinc finger, X-linked, duplicated	TGACTCTCTTC [G/T] AGCACCCTTTG	S G T S S
G3027u1	WIAF-12800	HT1035	124 HOXB7, homeo box B7	TTATGGAAAT [G/A] CTTTATTTC	M G A A T	
G3027u2	WIAF-12816	HT1035	450 HOXB7, homeo box B7	GGGACTCGGA [C/T] TTGGGGGCCG	S C T D D	
G3028u1	WIAF-12806	HT1037	701 homeotic protein C8	AGACCCCTGGA [A/G] CTGGGAGAAGG	S A G E E	
G3029u1	WIAF-14153	HT1100	441 zinc finger protein 8	TCAGACTCG [G/A] GAAAATGCG	S G A R R	
G3029u2	WIAF-14155	HT1100	1416 zinc finger protein 8	GGCGTGAAACA [A/G] TCCTTCGAGCA	S A G Q Q	
				LRP1, low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)	ATGGAGCTGG [G/A] GCCCGAAC	M G A G E
G303u1	WIAF-10000	X13916	4110	LRP1, low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)	GGGAGCTCTG [C/T] GACCAAGTCT	S C T C C
G303u2	WIAF-10001	X13916	4012	LRP1, low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)	GCTGCCCCG [C/T] ATTGAGGGAG	S C T R R
G303u3	WIAF-10002	X13916	4702	LRP1, low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)	CTGGATCGCA [G/A] GCAACATCTA	M G A G S
G303u4	WIAF-10003	X13916	6395	LRP1, low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)	AAGGACCAA [C/T] GTGTGCGCGG	S C T N N
G303u5	WIAF-10004	X13916	6937	LRP1, low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)		

				LRP1, low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)	GGCTGAAGGA [T/C] GACGGCCGA	S T C D D
G303u6	WIAF-10005	X13916	9391	LRP1, low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)	GGCTGAAGGA [T/C] GACGGCCGA	S T C D D
G303u7	WIAF-10011	X13916	766	LRP1, low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)	ACTGCAATGGA [C/T] GGCTCAAGATG	S C T D D
G303u8	WIAF-10015	X13916	9040	LRP1, low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)	ACCCGACCTG [C/T] GGCCCCAGTG	S C T C C
G303u9	WIAF-10019	X13916	11749	LRP1, low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)	CCCTCGGCTG [C/T] AACATGTTTCG	S C T C C
G303u10	WIAF-10020	X13916	1917	LRP1, low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)	GACCCAGTATG [G/A] GAAGGCCGGT	M G A G E
G303u11	WIAF-10021	X13916	4810	LRP1, low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)	AGAAGGCAT [C/T] CTTTGGATTG	S C T I I
G303u12	WIAF-10022	X13916	6367	LRP1, low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)	TGGCCGTGT [G/C] GAGGGCATG	S G C V V
G303u13	WIAF-10023	X13916	6247	LRP1, low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)	CTCTCGGGAT [C/T] GACTTCCACG	S C T I I
G303u14	WIAF-10024	X13916	8371	LRP1, low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)	ACGGCCTCAGA [T/C] GAGATGAACT	S T C D D
G303u15	WIAF-10030	X13916	11395	LRP1, low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)	ACGGCAGGCCA [C/T] GAGGAGGGCT	S C T D D

G303u16	WIAF-10031	X13916		LRP1, low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)	ACCTTGTGA [G/A] GATTACATCT	S G A E E
G303u17	WIAF-10035	X13916	12763	LRP1, low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)	ACGGATCTGA [C/T] GAGGCCCTG	S C T D D
G303u18	WIAF-10037	X13916	640	LRP1, low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)	GCCGCCCTGT [C/T] TAATGGCAG	S C T V V
G303u19	WIAF-10038	X13916	1609	LRP1, low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)	GATGCCCTATC [T/G] GGACTATATT	M T G L R
G303u20	WIAF-10039	X13916	1629	LRP1, low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)	CACCAAGTAC [C/T] TCATTCGCCG	M C T L F
G303u21	WIAF-10043	X13916	2210	LRP1, low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)	GATGGCTCCA [G/A] GAGGATCACC	M G A R K
G303u22	WIAF-10044	X13916	7287	LRP1, low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)	CTCTGACCGAG [A/G] TCCCTTGCAA	M A G I V
G303u23	WIAF-10045	X13916	8258	LRP1, low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)	GTGGCGACCG [A/G] GAAACGGGC	M A G E G
G303u1	WIAF-14097	HT1128	11871	PSMC3, proteasome (prosome, macropain) 26S subunit, ATPase, 3	TGGGGATCCA [A/G] CCTCCAAAG	S A G Q Q
G303u11	WIAF-12836	HT1182	137	TCE12, transcription factor 12 (HTF4, helix-loop helix transcription factors 4)	ATAAGGGAGC [G/A] TGAGGGAGTCT	M G A R H

G3034u2	WIAF-12837	HT1182		TCF12, transcription factor 12 (HTF4, helix-loop-helix transcription factors 4)	ATCTTCAATT [A/G] TCGGTTCCCTT	M A G M V
G3038u1	WIAF-12864	HT1373	1700	NFKB1, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (p105)	AGACAGGGCT [A/G] TGCAGTTGC	M A G M V
G3038u2	WIAF-12881	HT1373	1936	NFKB1, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (p105)	TGTACCAAGAC [G/A] CCCTTGACT	S G A T T
G3038u3	WIAF-12882	HT1373	2641	NFKB1, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (p105)	AGCTGGAGCT [G/C] TATAAGTTAC	S G C L L
G3039u1	WIAF-13027	HT1375	3761	GLI3, GLI-Kruppel family member GLI3 (Greig cephalopolysyndactyly syndrome)	AACAGCCCCG [G/T] AAAGTGCCACC	M G T G V
G3039u2	WIAF-13028	HT1375	3963	GLI3, GLI-Kruppel family member GLI3 (Greig cephalopolysyndactyly syndrome)	CGCCAATGAA [G/T] TCAGCTGGCA	M G T E D
G304u1	WIAF-12242	HT637	158	FABP3, fatty acid binding protein 3, muscle and heart (mammary- derived growth inhibitor)	CTCACCCCTAA [A/G] AACACACAGC	M A G K R
G3043u1	WIAF-12867	HT1486	842	IRF2, interferon regulatory factor 2	GTGCCGAGGG [G/A] CGGCCACACT	S G A G G
G3047u1	WIAF-12875	HT1518	1233	transcription factor 1, nucleolar	TCCGTTTCCCT [C/T] GAGAGCTGC	S C T L L
G3047u2	WIAF-12876	HT1518	1746	transcription factor 1, nucleolar	GGATTAAGAA [G/A] GGAGCGGAAG	S G A K K
G3047u3	WIAF-12877	HT1518	1829	transcription factor 1, nucleolar	TCCAAAGAAGAT [T/C] GAAATTCCAG	M T C M T
G3048u1	WIAF-12884	HT1530	628	transcription factor USF	ATGCGAGCGGT [C/T] GCCGGCGAGA	M C T R C
G305u1	WIAF-10150	HT0034	777	polyl 4-hydroxylase, beta subunit/protein disulfide isomerase/thyroid hormone-binding protein, alt. transcript 1	CCCTTGTCAT [C/T] GAGTTACCCG	S C T I I

G305u2	WIAF-10154	HT0034		prolyl 4-hydroxylase, beta subunit/protein disulfide isomerase/thyroid hormone-binding protein, alt. transcript 1	TGGCGCCCCA [C/A] AAGTACCTGC	M C A H Q
G305u3	WIAF-10155	HT0034	186	prolyl 4-hydroxylase, beta subunit/protein disulfide isomerase/thyroid hormone-binding protein, alt. transcript 1	TGGCGCCCCA [C/A] AAGTACCTGC	M C A H Q
G305u1	WIAF-12860	HT1558	1428	FSRG1: female sterile homeotic-related gene 1 (mouse homolog)	GGACGGTCAT [T/C] GATTACAAACG	S T C I I
G305u2	WIAF-12861	HT1558	2098	FSRG1: female sterile homeotic-related gene 1 (mouse homolog)	AACATTGCAA [T/C] GGCAATTGGA	S T C N N
G305u3	WIAF-12862	HT1558	2845	FSRG1: female sterile homeotic-related gene 1 (mouse homolog)	TAGGCCCTTC [T/C] GGCAATTGGA	S T C S S
G305u4	WIAF-12874	HT1558	3409	FSRG1: female sterile homeotic-related gene 1 (mouse homolog)	CCTCGTGTGC [G/A] TCCTTGAGACA	S G A S S
G305u5	WIAF-12878	HT1558	1699	FSRG1: female sterile homeotic-related gene 1 (mouse homolog)	TCTCTCTGTG [G/C] TCACACACAG	S G C V V
G305u6	WIAF-12879	HT1558	2093	FSRG1: female sterile homeotic-related gene 1 (mouse homolog)	GTAAACAT [T/G] GCAATGGCAT	M T G C G
G305u1	WIAF-12866	HT1569	2746	FSRG1: female sterile homeotic-related gene 1 (mouse homolog)	CTGGGGCGGA [C/T] GAAGATGACA	S C T D D
				MEF2B, MADS box transcription enhancer factor 2, polypeptide B	CTTGCGCCAC [G/A] GCTGGCCCCCG	S G A T T
G305u2	WIAF-13022	HT1569	1423	(myocyte enhancer factor 2B)		
G305u1	WIAF-12142	HT1669	661	MEF2B, MADS box transcription enhancer factor 2, polypeptide B		
G305u2	WIAF-12143	HT1669	5565	661 (myocyte enhancer factor 2B)	CAGACTACAC [C/T] GAGCCCCACG	S C T S S
G305u1				alpha-fetoprotein enhancer-binding protein	AGACTGCTCT [T/C] GAGGCTCATATA	S T C L L
G305u2				alpha-fetoprotein enhancer-binding protein	CTCTGCTGC [G/A] ATGCTCTTAG	S G A A A

G3057u3	WIAF-12144	HT1669	5664	alpha-fetoprotein enhancer-binding protein	GGGACTTCCA [G/T] ATGAAAGGAG	M	G	T	Q	H
G3057u4	WIAF-12145	HT1669	5703	alpha-fetoprotein enhancer-binding protein	GCTTTCCCA [C/T] CTACCCCCAA	S	C	T	H	H
G3057u5	WIAF-12885	HT1669	2227	alpha-fetoprotein enhancer-binding protein	TCTGGAGATC [C/T] ATATGAGGTG	M	C	T	H	Y
G3057u6	WIAF-12892	HT1669	3720	alpha-fetoprotein enhancer-binding protein	AGACCTTGC [G/A] GCTCAGCTAC	S	G	A	P	P
G3057u7	WIAF-12893	HT1669	4137	alpha-fetoprotein enhancer-binding protein	CAAGGTTAAC [G/A] GACTACAGC	S	G	A	T	T
G3057u8	WIAF-12897	HT1669	4783	alpha-fetoprotein enhancer-binding protein	GAAGACCAAC [A/C] CTCCCCAGCA	M	A	C	T	P
G3057u9	WIAF-12898	HT1669	5215	alpha-fetoprotein enhancer-binding protein	TCCAACTTCC [A/C] CAATGAACAC	M	A	C	T	P
G3057u10	WIAF-12904	HT1669	7266	alpha-fetoprotein enhancer-binding protein	CCCTGGAGGC [C/T] GCGTGTACTT	S	C	T	A	A
G3057u11	WIAF-12907	HT1669	8345	alpha-fetoprotein enhancer-binding protein	CCAACAGACG [A/C] CTATTGGAG	M	A	C	D	A
G3057u12	WIAF-12943	HT1669	4257	alpha-fetoprotein enhancer-binding protein	TGGTGTGGTT [T/C] CAGAAATGCC	S	T	C	F	F
G3057u13	WIAF-12951	HT1669	7333	alpha-fetoprotein enhancer-binding protein	ACAGGGCTTT [T/A] CTCCCTTATA	M	T	A	S	T
G3057u14	WIAF-13030	HT1669	303	alpha-fetoprotein enhancer-binding protein	GCAGGCCCTGTC [G/A] GAGGACGAT	S	G	A	S	S
G3057u15	WIAF-13031	HT1669	777	alpha-fetoprotein enhancer-binding protein	GCCTTCCAGA [G/A] GAGGACGAGG	S	G	A	E	E
G306u1	WIAF-10118	HT0040	1618	CPT2, carnitine palmitoyltransferase II	CCTCTACTGCC [G/A] TCCACTTGA	M	G	A	V	I
G307u1	WIAF-10076	HT0114	110	EDN2, endothelin 2	CGTFIGCCTA [G/A] CCCTGCTCTGT	M	G	A	A	T
G307u1	WIAF-12972	HT2085	625	pre-B-cell leukemia transcription factor 3	AGAAATATGA [A/G] CAGGCACTGA	S	A	G	E	E
G307u2	WIAF-12973	HT2085	841	pre-B-cell leukemia transcription factor 3	GTACTTCAG [T/C] AACAGGCCA	S	T	C	S	S
G307u1	WIAF-12886	HT2086	995	AGER, advanced glycosylation end product-specific receptor	CCCTCGAGGC [T/C] GTGATGATCC	S	T	C	A	A
G307u2	WIAF-12887	HT2086	1475	AGER, advanced glycosylation end product-specific receptor	GAGGCCAGAT [C/G] TACAGCCAC	M	C	G	I	M
G307u3	WIAF-12935	HT2086	933	AGER, advanced glycosylation end product-specific receptor	ACGGATGGTG [A/G] GCATCATCCA	M	A	G	S	G

G3071u4	WIAF-12936	HT2086	1052	AGER, advanced glycosylation end product-specific receptor	GTAACCTTCAG [C/T] AAACAGGCCA	S C T S S
G3071u5	WIAF-12937	HT2086	836	AGER, advanced glycosylation end product-specific receptor	AGAGTATGA [G/A] CAGGCATGTG	S G A E E
G308u1	WIAF-10094	HT0192	484	ANX4, annexin IV (placental anticoagulant protein II)	ATGGAAAGGAG [C/G] CTTCGAAGATG	M C G S R
G308u2	WIAF-10095	HT0192	333	ANX4, annexin IV (placental anticoagulant protein III)	GGGATCATGA [C/T] GCCTCAAGGTG	M C T T M
G3081u1	WIAF-12997	HT2188	689	PSMC2, proteasome (prosome, macropain) 26S subunit, ATPase, 2	GCCATTTGAGC [C/T] TCCCCAAGGGC	M C T P L
G3083u1	WIAF-12976	HT2228	106	IGHMBP2, immunoglobulin mu binding protein 2	TGCTGGAGCT [T/C] GAGAGGAGCG	S T C L L
G3083u2	WIAF-12985	HT2228	2260	IGHMBP2, immunoglobulin mu binding protein 2	TGAGTTCTAT [G/C] GCCAGGAAGA	M G C M I
G3083u3	WIAF-12986	HT2228	2060	IGHMBP2, immunoglobulin mu binding protein 2	GGGACCTGCT [A/G] CGTCCACCAG	M A G T A
G2083u4	WIAF-12987	HT2228	2365	IGHMBP2, immunoglobulin mu binding protein 2	AGACAGATTC [C/T] GGGGAAGGGA	S C T S S
G3083u5	WIAF-13005	HT2228	411	IGHMBP2, immunoglobulin mu binding protein 2	TTTGATGAGT [C/T] CCACGATTTC	M C T S F
G3083u6	WIAF-13006	HT2228	272	IGHMBP2, immunoglobulin mu binding protein 2	ATACGGGTCC [G/A] CGGCAGCTCT	M G A A T
G3083u7	WIAF-13010	HT2228	2581	IGHMBP2, immunoglobulin mu binding protein 2	TCAGGGGCC [G/A] CAGGGGCAGC	S G A A A
G3083u8	WIAF-13011	HT2228	2594	IGHMBP2, immunoglobulin mu binding protein 2	GUGGCAGGCC [G/A] CCAGCAAGGA	M G A A T
G3088u1	WIAF-12984	HT2318	884	HIVEP1, human immunodeficiency virus type I enhancer-binding protein 1	TGTGGCACTA [C/T] GTGCCCTTC	M C T T M
G3088u2	WIAF-12988	HT2318		HIVEP1, human immunodeficiency virus type I enhancer-binding protein 1	TCTTGTGTCACTA [A/G] CGTCACAACACC	S A G P P

G3088u3	WIAF-12989	HT2318		HIVEP1, human immunodeficiency virus type I enhancer-binding protein 1 3066	TTCCTGGTAC [T/C] GGACAGTCCC	S T C T T
G3088u4	WIAF-12991	HT2318		HIVEP1, human immunodeficiency virus type I enhancer-binding protein 1 4008	TTATCGGCA [G/T] CACAAACATCC	M G T Q H
G3088u5	WIAF-12992	HT2318		HIVEP1, human immunodeficiency virus type I enhancer-binding protein 1 4880	CAAATCCATG [C/G] ACCGCCTAGC	M C G A G
G3088u6	WIAF-12993	HT2318		HIVEP1, human immunodeficiency virus type I enhancer-binding protein 1 5148	TTGACAGCAT [G/A] TCTTAATTGCG	M G A M I
G3088u7	WIAF-12999	HT2318		HIVEP1, human immunodeficiency virus type I enhancer-binding protein 1 5834	CCAGCTGTATA [A/G] TTTCATGAAACA	M A G N S
G3088u8	WIAF-13000	HT2318		HIVEP1, human immunodeficiency virus type I enhancer-binding protein 1 6065	CAAGTCAAC [G/A] GCCAGTCACT	M G A R Q
G3088u9	WIAF-13001	HT2318		HIVEP1, human immunodeficiency virus type I enhancer-binding protein 1 7652	CATAGGAATA [C/T] GGTCAACGAA	M C T T M
G3088u10	WIAF-13008	HT2318		HIVEP1, human immunodeficiency virus type I enhancer-binding protein 1 741	TTCTGCAGGA [A/G] CCATCTGAC	S A G Q Q
G3088u11	WIAF-13009	HT2318		HIVEP1, human immunodeficiency virus type I enhancer-binding protein 1 948	CAGAACTGAG [C/T] ACCTTGTCAC	S C T S S
G3088u12	WIAF-13012	HT2318		HIVEP1, human immunodeficiency virus type I enhancer-binding protein 1 1909	TGAAACTTAA [C/T] TAAAATCAAG	S C T L L

G3088u13	WIAF-13013	HT2318		HIVEP1, human immunodeficiency virus type I enhancer-binding protein 1	TCTTCTGTCT [G/A] TACCTTCACT	M G A V I
G3088u14	WIAF-13015	HT2318	3342	HIVEP1, human immunodeficiency virus type I enhancer-binding protein 1	GCGGTCTGCA [A/G] CCTCAGATTC	S A G Q Q
G3088u15	WIAF-13016	HT2318	3542	HIVEP1, human immunodeficiency virus type I enhancer-binding protein 1	CCTAACATA [G/A] TGTTACCATTA	M G A S N
G3088u16	WIAF-13017	HT2318	4972	HIVEP1, human immunodeficiency virus type I enhancer-binding protein 1	TGGGTCTTCT [A/G] AAAGTGAGGA	M A G K E
G3095u1	WIAF-12994	HT2435	701	TCF2, transcription factor 2, hepatic; LF-B3; variant hepatic nuclear factor	CCGCTCTGTA [C/T] ACCTGGTAGG	S C T Y Y
G3095u2	WIAF-13018	HT2435	362	TCF2, transcription factor 2, hepatic; LF-B3; variant hepatic nuclear factor	GGGCCGAGCC [C/T] GACACCAAGC	S C T P P
G3095u3	WIAF-13020	HT2435	1620	TCF2, transcription factor 2, zinc finger protein 141 (clone pHZ-44)	CCAGTTCTGCC [C/T] AGCAGCTGCA	N C T Q *
G3100a1	WIAF-12147	HT2483	526	NRFL, nuclear respiratory factor	GAATGAGTGT [A/G] AGTTGCAGAA	M A G K E
G3102u1	WIAF-12975	HT2508	259	E2F1, E2F transcription factor 2	CGGCCTTCCTC [G/T] CCCGAGGACA	S G T S S
G3103u1	WIAF-13617	HT2511	1106	E2F2, E2F transcription factor 2	CCTTGGACCA [G/T] CTTCATCCAGA	M G T Q H
G3103u2	WIAF-13659	HT2511	1154	E2F2, E2F transcription factor 2	CTGAGGACAA [G/A] GCCAACAAAGA	S G A K K
G311u1	WIAF-10291	HT0402	1339	A2M, alpha-2-macroglobulin	GTCCCTGTAA [C/T] GGCTTACCACT	S C T Y Y
G311u2	WIAF-10292	HT0402	1201	A2M, alpha-2-macroglobulin	TCATATTCTAT [C/T] AGAGGAATG	S C T I I
G311u3	WIAF-10293	HT0402	3041	A2M, alpha-2-macroglobulin	TACTCCAGAG [G/A] TCAGGTCCAA	M G A V I

G311u4	WIAF-10294	HT0402	3676 A2M,	alpha-2-macroglobulin	TGACATCCTA[T/C] GTGCTCCCTCG	S T C Y Y
G311u5	WIAF-10296	HT0402	3364 A2M,	alpha-2-macroglobulin	ATATCACCAT[C/T] GCCCTTCCTGG	S C T I I
G311u6	WIAF-10297	HT0402	3203 A2M,	alpha-2-macroglobulin	CCAAGCTCGA[G/T] CCTACATCTT	M G T A S
G311a7	WIAF-10494	HT0402	1122 A2M,	alpha-2-macroglobulin	TCAACTTTC[G/A] ACAGGGATT	M G A R Q
G3119u1	WIAF-13947	HT2654	2876	GLI, glioma-associated oncogene homolog (zinc finger protein)	TTTCCTGGGG [G/A] TTCCCCAGTT	M G A G D
G3119u2	WIAF-13959	HT2654	654	GLI, glioma-associated oncogene homolog (zinc finger protein)	AGTGCGGGGA [G/A] GAACCCCTGG	S G A E E
G3119u3	WIAF-13965	HT2654	3376	GLI, glioma-associated oncogene homolog (zinc finger protein)	TGGGGAAACA[G/C] AAATTCTCAA	M G C E Q
G312u1	WIAF-10006	HT0428	898	PIAU, plasminogen activator, urokinase	CTCACCAAA[C/T] GACATGGCCT	S C T N N
G312u2	WIAF-10029	HT0428	498	PIAU, plasminogen activator, urokinase	GGCCCTAAAGC[C/T] GCTTGTCCAA	M C T P L
G312a3	WIAF-10521	HT0428	767	PIAU, plasminogen activator, urokinase	TGATTACCCA[A/C] AGAACGGAGGA	M A C K Q
G3125u1	WIAF-13675	HT2674	740	GTF2F2, general transcription factor IIIF, polypeptide 2 (30kD subunit)	ACATCACAA[A/G] CAACCTGTGG	S A G K K
G313u1	WIAF-10129	HT0462	3086	platelet-derived growth factor, alpha polypeptide (GB:M21574)	CATGCCGTGCG [G/A] ACTCAGACAA	M G A D N
G313u2	WIAF-10130	HT0462	1078	platelet-derived growth factor, alpha polypeptide (GB:M21574)	ATAGAAAAGG[T/G] TTCAATGAAA	S T G G G
G313u3	WIAF-10133	HT0462	1571	platelet-derived growth factor, alpha polypeptide (GB:M21574)	GGAGATCCAC[T/C] CCCGAGACAG	M T C S P
G313u4	WIAF-10135	HT0462	2611	platelet-derived growth factor, alpha polypeptide (GB:M21574)	CTCGAAACGT[C/T] CTGCTGGCAC	S C T V V
G314u1	WIAF-10069	HT0467	1890	AlOX15, arachidonate 15-lipoxygenase	TCAAGGAGGA[G/A] CTGGCTGCC	S G A E E

G3141u1	WIAF-13934	HT27498	878	NFATC3, nuclear factor of activated T-cells, cytoplasmic 3	CCACAGGATA [G/A] CTGGCTACTC	M G A S N
G3141u2	WIAF-13936	HT27498	1189	NFATC3, nuclear factor of activated T-cells, cytoplasmic 3	GCTCTGCCTCA [T/C] GCZATGGAA	M T C C R
G3141u3	WIAF-13938	HT27498	2241	NFATC3, nuclear factor of activated T-cells, cytoplasmic 3	CTCTGCCGGG [T/C] TTCCCTTCAG	S T C G G
G3141u4	WIAF-13944	HT27498	702	NFATC3, nuclear factor of activated T-cells, cytoplasmic 3	ATGCCCTCTGA [C/T] GAGGGAGCCC	S C T D D
G3159u1	WIAF-13891	HT2757	523	SP4, Sp4 transcription factor	CTTCAAAAGA [G/A] AAATACGTT	S G A E E
G3159u2	WIAF-13892	HT2757	1514	SP4, Sp4 transcription factor	ACAGAATGTT [C/T] AACHTCAAGC	N C T Q *
G3159u3	WIAF-13893	HT2757	2236	SP4, Sp4 transcription factor	TGTTTGTGG [C/T] AAAAGATTCA	S C T G G
G3165u1	WIAF-13860	HT27636	437	transcription factor B-ATF	AGCAGCTCAC [A/G] GAGGAACTGA	S A G T T
G3165u2	WIAF-13861	HT27636	512	transcription factor B-ATF	CCAGCAGGCC [C/G] TCGCCCCCG	S C G P P
G3173u1	WIAF-13556	HT2772	1686	ZNF74, zinc finger protein 74 (Coss2)	TGCACAGCGA [G/A] GGGAAACCT	S G A E E
G3175u1	WIAF-13948	HT2776	2037	transcriptional regulator, via glucocorticoid receptor	TGTTTCGAC [A/G] GAAGGCCCA	S A G P P
G3182u1	WIAF-14036	HT2783	1614	MHC Class II transactivator	ATCCTAGACG [C/G] CTTCGAGGAG	M C G A G
G3182u2	WIAF-14037	HT2783	2791	MHC2TA, MHC class II transactivator	TCAGCGAAC [G/A] GTGGCGCTGT	S G A T T
G3182u3	WIAF-14059	HT2783	1657	MHC2TA, MHC class II transactivator	TGGCACAGCAC [G/A] TGCGGACCG	S G A T T
G3182u4	WIAF-14060	HT2783	1606	MHC2TA, MHC class II transactivator	TTCTGCTCAT [C/T] CTAGACGCC	S C T I I
G3183u1	WIAF-13950	HT27861	392	zinc finger protein C2H2-150	TACTCTAGAG [G/A] AGCCTGTTTG	M G A E K
G3184u1	WIAF-13864	HT27862	271	zinc finger protein C2H2-171	GAAACTCCAG [T/G] TCAAAGACTT	M T G F V
G3184u2	WIAF-13865	HT27862	248	zinc finger protein C2H2-171	CTGCTTGAAT [T/C] CATGTATGAR	M T C F S
G320u1	WIAF-10136	HT0791	552	ANX7, annexin VII (synexin)	CCAACTTCGA [T/C] GCTTATAAGAG	S T C D D

G320u2	WIAF-10137	HT0791	1350 ANX7, annexin VII (synnexin)	TGACCTTGT [A/G] CAAATAAAC	S A G V V
G320u1	WIAF-14186	HT27930	485 zinc finger protein ZNF37A	GTGAGAAGTC [A/G] GCCCTTAATTG	S A G S S
G321u1	WIAF-13526	HT28104	zinc finger protein ZNF169, 187 Krueppel-type	CCCGACAGCT [C/T] ATTAAGAAAG	M C T H Y
G323u1	WIAF-10066	HT0915	Homo sapiens inducible nitric oxide synthase (NOS) mRNA, complete cds.	ACTTCCTGTGA [C/T] GTCCAGGGCT	S C T D D
G325u1	WIAF-10106	HT0962	FBN1, fibrillin 1 (Marfan syndrome)	TGTGATGCC [C/T] GCCTGGCCAT	M C T P L
G325u2	WIAF-10113	HT0962	FBN1, fibrillin 1 (Marfan syndrome)	AGATAGCTCC [T/G] TCCTGTGGCT	S T G P P
G325u3	WIAF-10114	HT0962	FBN1, fibrillin 1 (Marfan syndrome)	GATCTGCAAT [A/C] ATGGACGCTG	M A C N H
G325u4	WIAF-10116	HT0962	FBN1, fibrillin 1 (Marfan syndrome)	GAACTGCACA [G/C] ACATIGACGA	M G C D H
G325u5	WIAF-10117	HT0962	FBN1, fibrillin 1 (Marfan syndrome)	TCTGCGATGAA [C/T] GGGCGTTGCG	S C T N N
G326u1	WIAF-10036	HT1009	KLKBL, kallikrein B plasma, Fletcher factor 1	GGAAACACAA [C/T] GGAATGTGGC	S C T N N
G327u1	WIAF-10052	HT1011	HRG, histidine-rich glycoprotein	AGCCAGACAA [A/T] TCAGCCCTTT	M A T N I
G327u2	WIAF-10054	HT1011	HRG, histidine-rich glycoprotein	COACTATGTC [C/T] CATGTCCTGC	M C T P L
G327u3	WIAF-10055	HT1011	HRG, histidine-rich glycoprotein	GCCCCAAAGAC [A/G] TTCTCTATAAT	M A G H R
G325u1	WIAF-10145	HT1087	255 SAA1, serum amyloid A1	GGCCCTGGGC [T/C] CGCAAGTGA	S T C A A
G328a2	WIAF-10511	HT1087	248 SAA1, serum amyloid A1	CCTGGGGGTC [C/T] CTGGGTGCA	M C T A V
G328a3	WIAF-10512	HT1087	305 SAA1, serum amyloid A1	TCTTTGGGCC [A/G] TGTTGGGAG	M A G H R
G328a4	WIAF-13126	HT1087	295 SAA1, serum amyloid A1	TATCCAGAGA [T/C] TCTTTGGCCA	M T C F L
G328a5	WIAF-13127	HT1087	82 SAA1, serum amyloid A1	CTTGGTCCCTG [G/A] GTGTCAAGCAG	M G A G S
G329u1	WIAF-10140	HT1141	PLCG1, phospholipase C, gamma 1 (formerly subtype 148)	CTGACCTTCA [T/C] CAAGAGCGCC	M T C I T
G329u2	WIAF-10162	HT1141	PLCG1, phospholipase C, gamma 1 (formerly subtype 148)	TATGCCGGA [C/A] ACCATGAACA	M C A D E
G329u3	WIAF-10163	HT1141	PLCG1, phospholipase C, gamma 1 (formerly subtype 148)	GTTCATGCTC [A/G] GTTTCCTCCG	M A G S G

G3295u1	WIAF-14017	HT3460	FUBP, far upstream element binding protein	CCATAAAAG [C/T] ATAAGCCAGC	S C T S S
G3296u1	WIAF-14168	HT3466	transcription factor TFIIC, RNA polymerase III, alpha subunit	CAGCTGGAC [G/A] AGAGCCCCAT	M G A E K
G3296u2	WIAF-14179	HT3466	transcription factor TFIIC, RNA polymerase III, alpha subunit	GGGCATCAGC [T/A] TCTATGAGGA	M T A F I
G3298u1	WIAF-13523	HT3504	1803 DNA-binding protein HRFX2	ACTTTGCCAA [C/T] GTGCAGGAGC	S C T N N
G3298u2	WIAF-13524	HT3504	1743 DNA-binding protein HRFX2	GGGCGGTGCT [G/A] CAGAACACGT	S G A L L
G3298u3	WIAF-13528	HT3504	2002 DNA-binding protein HRFX2	GTTCUTGCTG [A/G] AATGGTCTT	M A G K E
G33u1	WIAF-10254	X82540	1044 INHBC, inhibin, beta C	AAGGCAACA [C/T] AGCTGAGGCC	M C T T I
G33u2	WIAF-10255	X82540	1136 INHBC, inhibin, beta C	CAGCAACATT [G/A] TCAAGACTGA	M G A V I
G33u3	WIAF-10256	X82540	1185 INHBC, inhibin, beta C	GGGTGCGAGT [A/G] GTCTATGTGT	N A G * W
G33u4	WIAF-10259	X82540	892 INHBC, inhibin, beta C	TTCITGTGGA [C/T] TTCCGTGAGA	S C T D D
G3303u1	WIAF-13566	HT3523	POU6F1, POU domain, class 6, transcription factor 1	CAGGCCAGGA [G/A] ATCACTGAAA	S G A E E
G3304u1	WIAF-13932	HT3544	970 SP2, Sp2 transcription factor	TCAAACACCT [C/T] GTGAAAGCCA	S C T L L
G3304u2	WIAF-13935	HT3544	1891 SP2, Sp2 transcription factor	AGAAGGACGT [T/G] TGCCACATCC	S T G V V
G3304u3	WIAF-13943	HT3544	920 SP2, Sp2 transcription factor	TGTGGTGAG [T/C] TGACAGGTGG	S T C L L
G3311u1	WIAF-13839	HT3585	757 GATA3, GATA-binding protein 3	CCCACTCCG [T/C] GGCAGGATGA	S T C R R
G3311u2	WIAF-13840	HT3585	901 GATA3, GATA-binding protein 3	TGGATGCAA [G/A] TCCAGGCCA	S G A K K
G3316u1	WIAF-13818	HT3607	zinc finger protein HKE-TL, Kruppel-like	AAAGAGTTTC [A/G] GTCAGAGTTTC	M A G S G
G3319u1	WIAF-14214	HT3613	SMARCA3, SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 3	AAACTCTTAC [A/G] GCCATGCG	S A G T T
G3319u2	WIAF-14221	HT3613	SMARCA3, SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 3	TAGATGTAGT [G/C] AACAAACCCAG	M G C E Q
G3320u1	WIAF-13692	HT3622	BCL6, B-cell CLL/Lymphoma 6 (zinc finger protein 51)	ATTCGGGA [G/C] GGCAACATCA	M G C E D

G3320u2	WIAF-13717	HT3622	1062	BCL6, B-cell CLL/lymphoma 6 (zinc finger protein 51)	ACAGCCGGCC [G/A] ACTTTCGAGG	S G A P P
G3321u1	WIAF-13761	HT3641	235	STAT2, signal transducer and activator of transcription 2, 113KD	TCTTGGATCA [G/C] CTGAACTATG	M G C Q H
G3321u2	WIAF-13762	HT3641	774	STAT2, signal transducer and activator of transcription 2 , 113KD	CAAAAGCCT [G/C] CATCAGAGCT	M G C C S
G3328u1	WIAF-13543	HT3681	1550	transcription factor znf6	CCACAATGTTA [A/G] TCGAGGAGG	S A G V V
G3328u2	WIAF-13544	HT3681	1389	transcription factor znf6	AGGGGATTAA [G/C] AGGAAGATGA	M G C E Q
G3336u1	WIAF-13848	HT3732	216	XBP1, X-box binding protein 1	ACCTTGAGGCC [C/T] GAGGAGAAG	S C T P P
G334u1	WIAF-10008	HT1220	893	THBS1, thrombospondin 1	TACATTTGGCC [A/C] CAAGACAAAG	M A C H P
G334u2	WIAF-10009	HT1220	2000	THBS1, thrombospondin 1	TCACAGCCCT [T/C] CGGGCAGGGT	M T C F S
G334u3	WIAF-10016	HT1220	1521	THBS1, thrombospondin 1	CCACAGATGAA [T/C] GGGAAACCTT	S T C N N
G334u4	WIAF-10017	HT1220	2210	THBS1, thrombospondin 1	GCCTGGCCCA [A/G] TGAGAACCTG	M A G N S
G334u5	WIAF-10018	HT1220	2979	THBS1, thrombospondin 1	GTGAGACCGA [T/C] TTCCGGCGAT	S T C D D
G334u6	WIAF-10033	HT1220	1136	THBS1, thrombospondin 1	TGTCATCTGTC [A/G] GAACTCAGTT	M A G Q R
G334u7	WIAF-10034	HT1220	1859	THBS1, thrombospondin 1	AGTGSAAATG [G/A] CATCCAGTGC	M G A G D
G3343u1	WIAF-13545	HT3770	1104	ZNF76, zinc finger protein 76 (expressed in testis)	GCAGTGCCCA [C/T] GGCGGAGCTGG	S C T H H
G3343u2	WIAF-13561	HT3770	425	ZNF76, zinc finger protein 76 (expressed in testis)	GAGGCACTATG [C/A] CAGGAAAGTT	M C A A D
G3343u3	WIAF-13562	HT3770	143	ZNF76, zinc finger protein 76 (expressed in testis)	CACCAAGTGA [C/T] GGTACACAAA	M C T T M
G3343u4	WIAF-13563	HT3770	646	ZNF76, zinc finger protein 76 (expressed in testis)	GAAGAGGCCAC [G/T] TTCTGTACCCA	M G T V F
G3343u5	WIAF-13564	HT3770	611	ZNF76, zinc finger protein 76 (expressed in testis)	ACCTGTGGAA [A/G] GGCTCTTGCC	M A G K R
G3344u1	WIAF-13664	HT3772	925	zinc finger protein MAZ	ACCTGTGGAA [C/T] TCGGACGAGA	S C T H H
G3345u1	WIAF-13508	HT3823		TCF6L1, transcription factor 6-like 1 (mitochondrial 315 transcript factor 1-like)	TTCGATTTTC [T/C] AAAGAACAC	S T C S S

G3345u2	WIAF-13509	HT3823		TCF6L1, transcription factor 6-like 1 (mitochondrial transcription factor 1-like)	[GGCCTGCTGA [G/C] TGCCCTGGAA	M G C S T
G3345u3	WIAF-13531	HT3823	167 625	TCF6L1, transcription factor 6-like 1 (mitochondrial transcription factor 1-like)	TATTAACGTT [T/G] ATGTAGCTGA	M T G Y D
G3352u1	WIAF-13589	HT4005		MITF, microphthalmia-associated transcription factor	CTCGGAACTG [G/A] GACTGAGGCC	M G A G E
G3352u2	WIAF-13604	HT4005	1190 1156	MITF, microphthalmia-associated transcription factor	TCTCACGGAT [G/A] GCACCATCAC	M G A G S
G3353u1	WIAF-13937	HT4010	360	GTF2H3, General transcription factor IIH, polypeptide 3 (34kD subunit)	ATCTAAATGAC [C/A] AAAACTGACA	S C A T T
G3358u1	WIAF-13671	HT4187	398	ETV5, ets variant gene 5 (ets-related molecule)	GATGATGAAAC [A/G] GTTTTGTCCCA	M A G Q R
G3358u2	WIAF-13672	HT4187	223	ETV5, ets variant gene 5 (ets-related molecule)	TGAGCAAGTC [C/T] CTTTTATGGT	M C T P S
G3358u3	WIAF-13673	HT4187	1236	ETV5, ets variant gene 5 (ets-related molecule)	GACTGGAAGG [C/G] AAAGTCAAAC	S C G G
G3358u4	WIAF-13674	HT4187	1678	ETV5, ets variant gene 5 (ets-related molecule)	TTACCTCTCTG [G/A] ACATGGACCG	M G A D N
G3358u5	WIAF-13706	HT4187	414	ETV5, ets variant gene 5 (ets-related molecule)	TCCCAAGATT [T/C] CAGTCTGATA	S T C F F
G3358u6	WIAF-13707	HT4187	1238	ETV5, ets variant gene 5 (ets-related molecule)	CTCGAAGGGCA [A/G] AGTCAAACAG	M A G K R
				ACAT1, acetyl-Coenzyme A acetyltransferase 1 (acetoacetyl Coenzyme A thiolase)		
G336u1	WIAF-10152	HT1258		566	AGAGCATGTC [C/A] AATGTTCCAT	S C A S S
G3369u1	WIAF-14047	HT4302		614 zinc finger protein DB1	ATCTCAATCG [A/G] CACAAAGCTCT	S A G R R
G337u1	WIAF-10268	HT1259		464 EDNRB, endothelin receptor type B	AAAGGAGACA [G/T] GACGGCAGGA	M G T R M
G337u2	WIAF-10298	HT1259	1281	EDNRB, endothelin receptor type B	TGAAAGCTCAC [T/A] CTTTTATAATC	S T A T T

G3373u1	WIAF-14203	HT4342	1253	MTFL, metal-regulatory transcription factor 1	CTCAACAGAC [A/G] GCTTCCCTCGA	S A G T T
G3390u1	WIAF-14182	HT4483	680	ZNF133, zinc finger protein 133	AGAGCCAGAG [C/T] TCTACCTCGA	M C T L F
G3390u2	WIAF-14184	HT4483	1026	(clone pHZ-13) zinc finger protein 133	GCTTAGACAG [G/A] GAACCCCTGAG	M G A G E
G3390u3	WIAF-14185	HT4483	1423	(clone pHZ-13) zinc finger protein 133	AAAAGCCTTA [T/C] GTGTGCCGGG	S T C Y Y
G3390u4	WIAF-14197	HT4483	811	(clone pHZ-13) zinc finger protein 133	CTGGGATCC [A/G] GGCCAGGGG	S A G P P
G3390u5	WIAF-14198	HT4483	1420	(clone pHZ-13) zinc finger protein 133	GGGAAAAGCC [T/G] TATGTGTGCC	S T G P P
G3390u6	WIAF-14199	HT4483	2143	(clone pHZ-13) zinc finger protein 133	CAGCTCTAAT [C/T] ACACACAAAGC	S C T I I
G3391u1	WIAF-13631	HT4484	391	(clone pHZ-20) zinc finger protein 136	AGCATTTGAT [A/G] TGAGAAAGTC	M A G Y C
G3396u1	WIAF-13978	HT4491	1283	ZNF136, zinc finger protein 136	CACAGGTCTCT [C/T] GCTTAGGCCAG	M C T S L
G3396u2	WIAF-13979	HT4491	1296	(clone pHZ-17) zinc finger protein 135	TCAGGCCAGCA [C/T] GAAAGGACGC	S C T H H
G3396u3	WIAF-13980	HT4491	1028	(clone pHZ-17) zinc finger protein 135	AGTCACAGCT [C/T] GTCCCCTCACC	M C T S L
G3396u4	WIAF-13981	HT4491	1057	(clone pHZ-17) zinc finger protein 135	GCGAATCOC [A/G] CTGGGGAGAA	M A G T A
G3396u5	WIAF-13982	HT4491	1152	(clone pHZ-17) zinc finger protein 135	CAGGAGAGAA [A/G] CCCTATGAAAT	S A G K K
G3396u6	WIAF-13983	HT4491	1243	(clone pHZ-17) zinc finger protein 135	AAAGCCGTAT [G/C] GGTGCATGA	M G C G R
G3396u7	WIAF-13984	HT4491	1045	(clone pHZ-17) zinc finger protein 135	CACCAAACAT [C/T] AGCGAAATCCA	N C T Q *
				CYP27A1, cytochrome P450, subfamily XXVIIA (steroid 27-hydroxylase, cerebrotendinous xanthomatosis), polypeptide 1		
G340u1	WIAF-10139	HT1386	459		CCTATGGGCC [G/A] TTCCACCA CGG	S G A P P
G340u2	WIAF-10160	HT1386	801	xanthomatosis), polypeptide 1	TCCCCAAGTGTG [G/A] ACTCGCCCCG	N G A W *

G341u1	WIAF-10121	HT1388	912	MUT, methylmalonyl Coenzyme A mutase	GAGCTGGCCT [A/G] TACTTTACCA	M	A	G	Y	C
G341u2	WIAF-10128	HT1388	2087	MUT, methylmalonyl Coenzyme A mutase	TGCTGTGGGC [G/A] TAAGCACCCCT	M	G	A	V	I
G341u1	WIAF-13749	HT4550	1720	zinc finger homeodomain protein	TGAGTCCTCT [G/T] TTTCATCGGC	M	G	T	V	F
G341u2	WIAF-13750	HT4550	2843	zinc finger homeodomain protein	AACATCATT [T/C] GATTGAACAC	M	T	C	L	S
G341u3	WIAF-13751	HT4550	2745	zinc finger homeodomain protein	AGATATTCCA [A/T] AACAGTAGTT	M	A	T	Q	H
G341u4	WIAF-13775	HT4550	236	zinc finger homeodomain protein	AGGAAAGGGA [A/C] TGCTAAAGAAC	M	A	C	N	T
G341u5	WIAF-13776	HT4550	195	zinc finger homeodomain protein	TGCCAACAGA [C/T] CAGACAGTGT	S	C	T	D	D
G341u6	WIAF-13777	HT4550	606	zinc finger homeodomain protein	ATTAACCTTAG [T/C] TGCTCCCTGT	S	T	C	S	S
G341u7	WIAF-13793	HT4550	2073	zinc finger homeodomain protein	CAGTTTACCA [A/G] GTGGGATCAA	S	A	G	P	P
G343u1	WIAF-10120	HT1552	561	HK1, hexokinase 1	CTTGCTAACCA [A/G] TCCAAAATAG	S	A	G	Q	Q
G343u2	WIAF-10124	HT1552	159	HK1, hexokinase 1	ACAAGTATCT [G/C] TATGCCATGC	S	G	C	L	L
G348u1	WIAF-10269	HT1906	2212	PECAM1, platelet/endothelial cell adhesion molecule (CD31 antigen)	TGACCATGTC [A/G] GAAACCATGC	S	A	G	G	G
G348u2	WIAF-10277	HT1906	1656	PECAM1, platelet/endothelial cell adhesion molecule (CD31 antigen)	GCATTCCTCA [C/T] GCCAAATGT	S	C	T	H	H
G348u3	WIAF-10283	HT1906	577	PECAM1, platelet/endothelial cell adhesion molecule (CD31 antigen)	AGAGTACCAAG [C/G] TGTGGTGA	S	C	G	V	V
G348a5	WIAF-13119	HT1906	?	PECAM1, platelet/endothelial cell adhesion molecule (CD31 antigen)	ATTTGTTCCCC [C/G]	?	C	G		
G351u1	WIAF-10123	HT1990	1047	OSBP, oxysterol binding protein	TGCTGGCAGA [G/A] TCAGATGAAT	S	G	A	E	E
G351u2	WIAF-10132	HT1990	1023	OSBP, oxysterol binding protein	TGGCCAAGGC [C/A] AAAGCTGTGA	S	C	A	A	A
G355u1	WIAF-10146	HT2143	1670	THBS4, thrombospondin 4	AACTGCTCTGA [G/A] TGTCTTAAT	M	G	A	S	N
G355u2	WIAF-10165	HT2143	1186	THBS4, thrombospondin 4	TCGAAATGGA [G/C] CGTGGCGTCC	M	G	C	A	P

G355a3	WIAF-10510	HT2143	1962	THBS4, thrombospondin 4	ACTGCCCAAC [C/G] GTCATTAAACA	S C G T T
G355a4	WIAF-13125	HT2143	1963	THBS4, thrombospondin 4	CTGGCCACC [G/A] TCATTAACG	M G a V I
G3552u1	WIAF-12701	HT28101	1006	CLCN2, chloride channel 2	AAGAGACTAT [T/C] ACAGCCCTCT	S T C I I
G3552u2	WIAF-12731	HT28101	1823	CLCN2, chloride channel 2	CCGCCACCAG [C/T] AGTACCGGGT	N C T Q *
G3552u3	WIAF-12736	HT28101	2254	CLCN2, chloride channel 2	GGAGGCAGA [G/C] TCGCAGGCA	M G C E D
G3565u1	WIAF-12744	HT2896	334	calcyclin	GCCCTCAAGG [G/A] CTGAAATAA	M G A G D
G357u1	WIAF-10267	HT2244	4300	C4B, complement component 4B	ATAGTAGCA [T/C] GAGCTCCAG	S T C D D
G357u2	WIAF-10280	HT2244	5095	C4B, complement component 4B	TCACTGGTCT [G/A] GATGGGCCA	S G A L L
G357u3	WIAF-10295	HT2244	2996	C4B, complement component 4B	CTCAGATCCA [T/C] TGGAACATTT	S T C L L
G359u1	WIAF-10026	HT2411	936	PLAT, plasminogen activator, tissue	CGCAGGCTGA [A/G] GTGGGAGTAC	M A G T M
G359a2	WIAF-10520	HT2411	1444	PLAT, plasminogen activator, tissue	AGGCCCTGTCTC [T/C] CCTTTCTATT	S T C S S
G3592u1	WIAF-12759	HT4214	743	CLCN4, chloride channel 4	CTTCATAACGA [G/A] ACCACTTTTG	S G A B E
G3592u2	WIAF-12761	HT4214	835	CLCN4, chloride channel 4	GCTTACATTC [T/G] GAATTACTTA	M T G L R
G361u1	WIAF-10053	HT2479	857	cystathionine beta synthase, alt. transcript 1	TGGCTACTA [C/T] GACACCACCG	S C T Y Y
G361u2	WIAF-10056	HT2479	1097	cystathionine beta synthase, alt. transcript 1	TCACTCCCAC [G/A] GTGCTGACAA	S G A T T
G362u1	WIAF-10058	HT2638	223	ADRB2, adrenergic, beta-2-, receptor, surface	GGCACCCAAAT [G/A] GAAGCCATGC	M G A G R
G362u2	WIAF-10059	HT2638	429	ADRB2, adrenergic, beta-2-, receptor, surface	TCATGGGCT [G/A] GCAGTGGTGC	S G A L L
G362u3	WIAF-10060	HT2638	256	ADRB2, adrenergic, beta-2-, receptor, surface	CCTCACCGAG [G/C] AAAGGGAGGA	M G C B Q
G362u4	WIAF-10093	HT2638	1230	ADRB2, adrenergic, beta-2-, receptor, surface	AGGCCTATGG [G/C] AATGGCTACT	S G C G G
G3620u1	WIAF-12808	HT97200	458	ACATN, acetyl-Coenzyme A transporter	CACTCTCTGG [A/G] TATGAAGAGC	M A G D G
G3627u1	WIAF-12820	HT97387	347	NAPG, N-ethylmaleimide-sensitive factor attachment protein, gamma	GGAGAAACTA [C/T] CAGGGCCGT	M C T P S
G366u1	WIAF-10046	HT2764	987	BDKRB2, bradykinin receptor B2	GCCCTCCTCA [T/C] GGCTTACAGC	M T C M T
G366a2	WIAF-10500	HT2764	820	BDKRB2, bradykinin receptor B2	AGATCCAGAC [G/A] GAGGAGGG	S G A T T

G366a3	WIAF-10501	HT2764	961	BDKRB2, bradykinin receptor B2	GGTCATCGA[T/C]GTAATCACAC	S	T	C	D
G367u1	WIAF-10156	HT27685	6965	ACACA, acetyl-Coenzyme A carboxylase alpha	ATCATCCATA[T/C]GACGCAGCAC	N	T	C	*
G370u1	WIAF-10281	HT27888	3250	LEPR, leptin receptor	AAATTCTCC[G/A]TGAAGGATT	S	G	A	P
G370u2	WIAF-10282	HT27888	3229	LEPR, leptin receptor	TGACCAAGTG[C/T]TTCTCTAGCA	S	C	T	C
G370u3	WIAF-10284	HT27888	1005	LEPR, leptin receptor	CAATATCAAG[T/C]GAAATAATTCA	M	T	C	V
G370u4	WIAF-10285	HT27888	1894	LEPR, leptin receptor	CGAGAAATA[C/T]CTTCAATTCTCC	S	C	T	N
G370u5	WIAF-10299	HT27888	1222	LEPR, leptin receptor	TTCTGACAG[G/T/C]GTTCGGTCTTA	S	T	C	S
G370u6	WIAF-10300	HT27888	2161	LEPR, leptin receptor	CTATGAAAAA[G/C]GAGAAAATG	M	G	C	K
G371u1	WIAF-10107	HT27943	349	CRAT, carnitine acetyltransferase	TCATCTACTC[G/C]AGCCAGGCC	S	G	C	S
G371a2	WIAF-12093	HT27943	287	CRAT, carnitine acetyltransferase	GGAGAACTGG[G/T]TGCTGAGTG	S	C	T	L
G372a1				HADHA, hydroxyacyl-Coenzyme A dehydrogenase/3-ketacyl-Coenzyme A thiolase/enoyl-Coenzyme A hydratase (trifunctional protein), alpha subunit	TGAGGCTCCA[C/A]AGAACGGATG	M	C	A	Q
G374u1	WIAF-10103	HT28496	1099	fatty acid synthase	ACCCCTCCAC[G/A]TCCCAGGAGT	M	G	A	V
G374u2	WIAF-10104	HT28496	4435	fatty acid synthase	CTGGAGAGGG[T/C]GACCGAGAG	M	T	C	V
G374u3	WIAF-10105	HT28496	5996	fatty acid synthase	TCATGCTGGAGTAC[A/G]TCATGCTGG	M	A	G	I
G374u4	WIAF-10115	HT28496	5644	fatty acid synthase	CAAGACATC[A/G]TCATGCTGG	S	C	T	I
G374u5	WIAF-10119	HT28496	6387	fatty acid synthase	TGGCACACAT[C/T]CTGGGATCC	S	C	T	N
G374a6	WIAF-12094	HT28496	567	fatty acid synthase	GGGGCATCAA[C/T]GTCCCTCTGA	S	A	G	Q
					ACATGGCCA[A/G]GGGAAGCACA	S	A	G	Q
G377u1	WIAF-10142	HT2996	929	PCCB, propionyl Coenzyme A carboxylase, beta polypeptide	GGACCCGGCT[T/C]CCGTCCGTGA	M	T	C	S
G377u2	WIAF-10143	HT2996	1416	PCCB, propionyl Coenzyme A carboxylase, beta polypeptide	CACCTTGTG[G/A]TGATACCAAC	M	G	A	G
G380u1	WIAF-10122	HT3159	831	INSR, insulin receptor	TCTACCCNGA[C/T]GGCAGGGTGT	S	C	T	D
G380u2	WIAF-10126	HT3159	1698	INSR, insulin receptor	GCAGGGATGC[A/G]TGTGGTICCA	S	A	G	A
G380u4	WIAF-11605	HT3159	2382	INSR, insulin receptor	GGTGCCCA[G/A]AGTCCGGAGG	S	G	A	T
G383u1	WIAF-10125	HT33546	3633	phospholipase C, beta 3, alt.	ACGAGGGG[G/A]AGGCTCCCC	M	G	A	R
G385u1	WIAF-10141	HT3383	1505	PRCP, prolylcarboxypeptidase (angiotensinase C)	ATGACAGTG[G/A]GGAAAGGCC	S	A	G	A

G385u2	WIAF-10157	HT3383	PRCP, prolylcarnoxypeptidase 1360 (angiotsinase C)	ATCACAGACA [C/G] TCTGGTTCGA	M C G T S
G387u1	WIAF-11729	HT3439	SREBF2, sterol regulatory element 2697 binding transcription factor 2	CACTCTCCAG [G/C] AGCTCCGTGC	M G C R S
G387u2	WIAF-11770	HT3439	SREBF2, sterol regulatory element 1901 binding transcription factor 2	GCTCTGCCG [C/G] CAACCTACAA	M C G A G
G388u1	WIAF-10270	HT3440	SELPG, selectin P ligand 245	CTCCAGAAAT [G/A] CTGAGGAACA	M G A M I
G390u1	WIAF-10276	HT3568	NOS3, nitric oxide synthase 3 2049 (endothelial cell)	TTCGCTGTGC [C/G] GTGGACACAC	S C G A A
G391u1	WIAF-10013	HT3630	VWF, von Willebrand factor 6205	AGGACCTGGA [G/C] GTGATTCTCC	M G C E D
G391u2	WIAF-10265	HT3630	VWF, von Willebrand factor 4554	GCCCCCTGAGA [A/G] CAAGGCCCTC	M A G N S
G391u3	WIAF-10266	HT3630	VWF, von Willebrand factor 7489	TGGCCCTAAC [C/T] GCCAACCAATG	S C T T T
G391u4	WIAF-10272	HT3630	VWF, von Willebrand factor 2470	ACTGTACCAT [G/A] AGTGGAGTC	M G A M I
G391u5	WIAF-10273	HT3630	VWF, von Willebrand factor 2615	GCTCGAGTGT [A/G] CCAAAACGTG	M A G T A
G391u6	WIAF-10274	HT3630	VWF, von Willebrand factor 2635	GCCAGAACTA [T/C] GACCTGGAGT	S T C Y Y
G391u7	WIAF-10275	HT3630	VWF, von Willebrand factor 4045	TCTCGAAACC [G/A] CCGTTGACCG	S G A P P
G391u8	WIAF-10278	HT3630	VWF, von Willebrand factor 4446	AACTTTGTC [G/A] CTACGTCCAG	M G A R H
G391u9	WIAF-10279	HT3630	VWF, von Willebrand factor 5152	GCCCTTAATGC [C/T] AACGTGGAGG	S C T A A
G391u10	WIAF-10286	HT3630	VWF, von Willebrand factor 3448	TTACCACTGA [C/T] GTCTTCAGG	S C T D D
G391u11	WIAF-10287	HT3630	VWF, von Willebrand factor 4891	AGATGGTGCAC [C/T] GTGGAAATGAC	S C T T T
G391u12	WIAF-10288	HT3630	VWF, von Willebrand factor 4805	CACGAGCAAG [G/A] AGTTCTATGCA	M G A E K
G391u13	WIAF-10289	HT3630	VWF, von Willebrand factor 4943	CTCTGCAGCGG [G/T] TCCGAGAGAT	M G T V L
G391u14	WIAF-10290	HT3630	VWF, von Willebrand factor 4915	TCAGGGAGGC [A/C] CAGTCACAG	S A C A A

G391a15	WIAF-10517	HT3630	6194	VWF,	von Willebrand factor	AAACAAGGAG [C/T] AGGACCTGGG	N C T Q *
G391a16	WIAF-132222	HT3630	6419	VWF,	von Willebrand factor	TCACCTTGGT [C/T] ACATCTTCAC	M C T H Y
G3941u1	WIAF-14123	HT3464	1265	mannosidase, alpha,	lysosomal	CAGGTGTGCA [A/G] CCAGCTGGAG	M A G N S
G3941u2	WIAF-14135	HT3464	965	mannosidase, alpha,	lysosomal	ACCAACCACA [C/T] TGTCATGACC	M C T T I
G3951u1	WIAF-10271	HT4158	1627	ECE1, enzyme 1	endothelin converting	TCACTGCCGA [T/C] CAGCTCACCA	S T C D D
G395a2	WIAF-13110	HT4158	1493	ECE1, enzyme 1	endothelin converting	CATCTACAAAC [A/T] TGATGGATA	M A T M L
G3959u1	WIAF-13634	HT4490	250	ADTB1,	adaptin, beta 1 (beta prime)	TGAAAGCT [G/A] GTATACCTCT	S G A L L
G3959u2	WIAF-13640	HT4490	2029	ADTB1,	adaptin, beta 1 (beta prime)	TTCTTGGGG [T/C] GGCTTGA	S T C G G
G3959u3	WIAF-13641	HT4490	2395	ADTB1,	adaptin, beta 1 (beta prime)	AGGTCCACGC [G/A] CCACTCAGCC	S G A A A
G3967u1	WIAF-13997	HT2958	918	ACTC,	actin, alpha, cardiac muscle	GAGGCCACAC [T/C] ATGTACCTCG	S T C T T
G3968u1	WIAF-14159	HT1986	1747	ACTN3,	actinin, alpha 3	CGAGGCTGAC [C/T] GAGAGCGAGG	N C T R *
G3968u2	WIAF-14164	HT1986	1900	ACTN3,	actinin, alpha 3	GGTGCCCCAGG [C/T] GTGACCAAGAC	M C T R C
G3968u3	WIAF-14165	HT1986	2184	ACTN3,	actinin, alpha 3	ACACCGCTCA [C/T] AGCATGGAGC	S C T Y Y
G3968u4	WIAF-14167	HT1986	2557	ACTN3,	actinin, alpha 3	GATCTGGCA [G/A] GAGAACAGAA	M G A G R
G3968u5	WIAF-14175	HT1986	1212	ACTN3,	actinin, alpha 3	GGCTGCTCTC [G/A] GAGATCCGGC	S G A S S
G3979u1	WIAF-13884	HT0623	776	GPC1,	glypican 1	TGCTGCTGCC [T/G] GATGACTACC	S T G P P
G3979u2	WIAF-13885	HT0623	680	GPC1,	glypican 1	TGTAATCCG [G/C] GGTGCCAAC	S C T R R
G3979u3	WIAF-13886	HT0623	1361	GPC1,	glypican 1	AGCTGCTCTC [T/C] GAGGCCAAGG	S T C S S
G3979u4	WIAF-13887	HT0623	1163	GPC1,	glypican 1	AGAGTCTCAT [C/T] GGAGGCGTC	S C T I I
G3979u5	WIAF-13888	HT0623	1670	GPC1,	glypican 1	ACGCCAGTGA [C/T] GAAGGAGCG	S C T D D
G3979u6	WIAF-13905	HT0623	1069	GPC1,	glypican 1	CTGGCAACC [A/T] GGCGAACCTG	M A T Q L
G3979u7	WIAF-13906	HT0623	1514	GPC1,	glypican 1	TCATGGTGA [C/T] GGCTGGCCA	S C T D D
G3979u8	WIAF-13907	HT0623	1720	GPC1,	glypican 1	GACCTCTGCG [G/C] CCCGAAGGTC	M G C G A
G3979u9	WIAF-13908	HT0623	1676	GPC1,	glypican 1	GTGACGACGG [C/T] AGGGGCTCGG	S C T G G
G3979u10	WIAF-13909	HT0623	1719	GPC1,	glypican 1	TGACCTCTGC [G/A] GCCGGAAAGGT	M G A G S
G399u1	WIAF-10102	HT48511	450	AQP3,	aquaporin 3	TCTGGGACTT [T/C] GCCCACAAAC	S T C F F
G399u12	WIAF-10111	HT48511	192	AQP3,	aquaporin 3	GCTCCCTGGC [C/T] CAGCTTGTGC	S C T A A
G399u13	WIAF-10112	HT48511	165	AQP3,	aquaporin 3	CCCTCATCCT [C/G] GTGATGTTTG	S C G L L
G3997u1	WIAF-13649	HT27682	473	MFAP2,	microfibrillar-associated protein 2	TGTTGGCCCA [C/T] GAGGAGCTCC	S C T H H
G3997u2	WIAF-13650	HT27682	377	MFAP2,	microfibrillar-associated protein 2	CCATACACAG [G/T] CCTTGAAAC	M G T R S

			MFAP2, microfibrillar-associated protein 2		GGAGATCTGT [G/T] TTTGGTACAGT	M G T V F
G3997u3	WIAF-13876	HT27682	453	TGML, transglutaminase 1 (K polypeptide epidermal type I, protein-glutamine-gamma-protein-glutamyltransferase)	TGGCTGCTGT [T/C] CATGCCGAA	M T C S P
G4022u1	WIAF-14020	HT2426	240	TGML, transglutaminase 1 (K polypeptide epidermal type I, protein-glutamine-gamma-protein-glutamyltransferase)	TGGCTGCTGT [T/C] CATGCCGAA	M T C S P
G4022u2	WIAF-14021	HT2426	371	TGML, transglutaminase 1 (K polypeptide epidermal type I, protein-glutamine-gamma-protein-glutamyltransferase)	CCCGGGCAG [C/T] GGTTCAATG	S C T S S
G4022u3	WIAF-14022	HT2426	506	TGML, transglutaminase 1 (K polypeptide epidermal type I, protein-glutamine-gamma-protein-glutamyltransferase)	ACGAGGTGAT [A/G] GTGCCCGCG	M A G I M
G4022u4	WIAF-14031	HT2426	2491	LAMB3, laminin, beta 3 (nicein (125kD), kalinin (140kD), BM600 (125kD))	GCTGGAGTC [A/T] CAGTCACTTA	M A T D V
G4038u1	WIAF-13998	HT4211	411	LAMB3, laminin, beta 3 (nicein (125kD), kalinin (140kD), BM600 (125kD))	GCTGGAGTC [C/A] CAGAAATGATG	S C A S S
G4038u2	WIAF-13999	HT4211	258	LAMB3, laminin, beta 3 (nicein (125kD), kalinin (140kD), BM600 (125kD))	CTTCATCTAC [C/T] TGTTGGACTGA	S C T T T
G4038u3	WIAF-14002	HT4211	1830	LAMB3, laminin, beta 3 (nicein (125kD), kalinin (140kD), BM600 (125kD))	GAGGCTACTG [C/T] AAATCGTACC	S C T C C
G4038u4	WIAF-14003	HT4211	2668	LAMB3, laminin, beta 3 (nicein (125kD), kalinin (140kD), BM600 (125kD))	GACCAAGGGAG [A/T] TGATTTAGGGC	M A T M L
G4038u5	WIAF-14018	HT4211	248	LAMB3, laminin, beta 3 (nicein (125kD), kalinin (140kD), BM600 (125kD))	TTTCCTCCAG [C/T] TTCACTTAC	M C T A V
G4038u6	WIAF-14019	HT4211	887	LAMB3, laminin, beta 3 (nicein (125kD), kalinin (140kD), BM600 (125kD))	CACGGCCATG [C/T] TGATGGCTGC	M C T A V
G4038u7	WIAF-14023	HT4211	1266	LAMB3, laminin, beta 3 (nicein (125kD), kalinin (140kD), BM600 (125kD))	ACTTGTGATCC [G/A] GATGGGGAG	S G A P P
G4038u8	WIAF-14025	HT4211	1693	LAMB3, laminin, beta 3 (nicein (125kD), kalinin (140kD), BM600 (125kD))	CTATGGAGAC [G/A] TGGCCACAGG	M G A V M

G4038u9	WIAF-14026	HT4211	1553	LAMB3, laminin, beta 3 (nicein (125kD), kalinin (140kD), BM600 (125kD))	GGCTGTGAAC [C/T] GTGTGCCCTGC	M C T P L
G4038u10	WIAF-14029	HT4211	3562	LAMB3, laminin, beta 3 (nicein (125kD), kalinin (140kD), BM600 (125kD))	CCTCACAGGA [C/T] TGGAGAAGCG	S C T L L
G4038u11	WIAF-14030	HT4211	3546	LAMB3, laminin, beta 3 (nicein (125kD), kalinin (140kD), BM600 (125kD))	TGCTTGCGCTC [A/G] GCGGACCTGAA	S A G S S
G4045u1	WIAF-13571	HT0652	1266	adducin, beta subunit	TGGAGCAGGA [G/T] AAGGACCGGC	M G T E D
G4050u1	WIAF-14106	HT1466	1366	villin	CGTTTGGCAG [G/A] GCAGGCCAGGC	M G A G S
G4050u2	WIAF-14107	HT1466	1468	villin	GGTCCCATAATG [G/A] GCAGGGAGCC	M G A G S
G4050u3	WIAF-14108	HT1466	1932	villin	CCACAGAGAT [C/T] CCTGACTTCA	S C T I I
G4050u4	WIAF-14110	HT1466	2438	villin	TTTGGGATGAA [C/T] TCCAGGCTGCC	M C T T I
G4057u1	WIAF-13648	HT33633	371	CNN3, calponin 3, acidic	TTTACGGCTTA [T/C] GGATATGAAAC	S T C Y Y
G4066u1	WIAF-13676	HT4301	654	troponin T, beta, skeletal	AGATGACAA [G/A] TTCCAGTTTG	S G A K K
G4066u2	WIAF-13677	HT4301	774	troponin T, beta, skeletal	GCAAAGTCGG [C/T] GGGGGCTGGG	S C T G G
G4066u3	WIAF-13708	HT4301	625	troponin T, beta, skeletal	GGAGCTCTGG [G/C] AGACCCCTGCA	M G C E Q
G4080u1	WIAF-14142	HT1396	13130	heparan sulfate proteoglycan 2 (perlecan)	GATTCTCCTC [G/A] GGCATACAG	S G A S S
G4080u2	WIAF-14150	HT1396	10340	heparan sulfate proteoglycan 2 (perlecan)	TTGAGTTCCA [C/T] TGTTGCTGTGC	S C T H H
G4080u3	WIAF-14151	HT1396	12392	heparan sulfate proteoglycan 2 (perlecan)	AATGCTATGA [T/C] AGCTTCCCCAT	S T C D D
G4080u4	WIAF-14152	HT1396	3416	heparan sulfate proteoglycan 2 (perlecan)	TGGCTGTGC [C/T] GAGGAACCG	S C T P P
G4080u5	WIAF-14154	HT1396	4588	heparan sulfate proteoglycan 2 (perlecan)	GTGCCGCTGG [T/C] GGCCACCAT	M T C V A
G4080u6	WIAF-14156	HT1396	9582	heparan sulfate proteoglycan 2 (perlecan)	HSPG2, heparan sulfate proteoglycan 2 (perlecan)	M G A A T
G4096u1	WIAF-13890	HT4237	394	motor protein	CGACAGCCAC [G/A] CGGTGGCTGCA	S G A S S
G4096u2	WIAF-13910	HT4237	455	motor protein	CAAGAAATC [G/A] ATTCACTCGG	M C T P S
G4096u3	WIAF-13911	HT4237	1150	motor protein	ATCTAAACAG [C/T] CTGCCCTACA	S A G V V
G4109u1	WIAF-14034	HT28223	1238	phosphoglucomutase-related protein	CTAAGGTGTG [A/G] TCTCACTATC	M C T A V
G4109u2	WIAF-14035	HT28223	1043	phosphoglucomutase-related protein	TACAGCCTGG [C/T] GAAGACCGAT	M C A A D
G4112u1	WIAF-13615	HT4401	374	KIF5A, kinesin family member 5A	ATATTGCTG [C/A] CGGGAAAGCAG	M G A A T
G4112u2	WIAF-13623	HT4401	2767	KIF5A, kinesin family member 5A	AGATGTCCTT [G/A] CTGGCTTACAA	M G T K N

G4114u1	WIAF-14113	HT4160	830	fibrinogen-like protein pT49 MYL5, myosin, light polypeptide	AACTTCACCA [G/A] AACATGGCAA TCGATGTGGC [G/A] GGCAACCTGG	M G A R K S G A A A
G4118u1	WIAF-14010	HT0841	564	5, regulatory MYL5, myosin, light polypeptide	TCTGAAACCTTG TCACCATGT [T/C] TCTGAAACCTG	M T C F S M T C F S
G4118u2	WIAF-14011	HT0841	368	5, regulatory MYL5, myosin, light polypeptide	GAGGTGGACC [A/G] GATGTGCCAG TCGAGAACCT [A/G] CGCGGGCAT	M A G Q R S A G L L
G4118u3	WIAF-14012	HT0841	533	5, regulatory MYL5, myosin, light polypeptide	GAGGTGGACC [A/G] GATGTGCCAG TCGAGAACCT [A/G] CGCGGGCAT	M A G Q R S A G L L
G4122u1	WIAF-13955	HT97538	161	myosin-I		
				TGM3, transglutaminase 3 (E polypeptide, protein-glutamine- gamma-glutamyltransferase)	TCGCTGGCAT [G/A] CTGGCAGTAG	M G A M I
G4124u1	WIAF-13895	HT0925	1517			
				TGM3, transglutaminase 3 (E polypeptide, protein-glutamine- gamma-glutamyltransferase)	AACCCGAAACAC [G/A] CCATTGCGG ACTCTCTACTC [C/G] TTCCGGGTCT	S G A T T S C G S S
G4124u2	WIAF-13896	HT0925	1433	gamma-glutamyltransferase	AGAGAGGGAG [G/C] CTGGAGTGG	M G C G A
G4126u1	WIAF-13830	HT2465	1039	myosin binding protein H		
G4126u2	WIAF-13853	HT2465	369	myosin binding protein H		
G4130u1	WIAF-13614	HT1657	198	cofilin 1 (non-muscle)	CTGTCGAGCA [T/C] CCCTAGCCA	S T C D D
G4138u1	WIAF-13598	HT33664	601	MAGP2: Microfibril-associated glycoprotein-2	GAAAATGAG [C/T] TTTCGCGCTCA	M C T L F
G4138u2	WIAF-13599	HT33664	405	MAGP2: Microfibril-associated glycoprotein-2	ATGACTTGGC [C/T] TCCCCTGAATG	S C T A A
G4138u3	WIAF-13600	HT33664	327	MAGP2: Microfibril-associated glycoprotein-2	AAGATCTAA [T/C] CTGGCTGAATG	S T C N N
G4159u1	WIAF-14048	HT3443	1119	SMN, singed (Drosophila)-like (sea urchin fascin homolog like)	GCTGCTACTT [T/C] GACATGAGT	S T C F F
G4170u1	WIAF-13580	HT5069	1131	brefeldin A-sensitive Golgi protein, peripheral,	GAATAATACC [A/G] TAAGTATGGA	M A G I V
G4170u2	WIAF-13581	HT5069	930	brefeldin A-sensitive Golgi protein, peripheral,	GTATAATAAA [C/T] TCCTGGAGTT	M C T L F
G4170u3	WIAF-13582	HT5069	2312	brefeldin A-sensitive Golgi protein, peripheral,	ACAGGCCCTTA [A/G] GCATCTGGAA	N A G * *
G4170u4	WIAF-13596	HT5069	359	brefeldin A-sensitive Golgi protein, peripheral,	TCAACCCAGT [T/G] TCTGTGCCTT	S T G L L
G4170u5	WIAF-13597	HT5069	1007	brefeldin A-sensitive Golgi protein, peripheral,	AAAAAGGCAA [T/A] ACTGTTCTCG	M T A N K
G4171u1	WIAF-13688	HT1587	667	Kinesin family member 5B	TTTTAAATT [T/C] ATTAACTCCA	S T C Y Y

G417u2	WIAF-13689	HT1587	1036 KIF5B, kinesin family member 5B	TAGTAAAC [T/C] GGAGCTGAG	S T C T T
G417u1	WIAF-14204	HT33754	130 tenascin R (restrictin, TNR, tenascin R (restrictin, 130 janusin))	GCTCATGGC [G/A] TCAACCCTGAT	M G A V I
G417u2	WIAF-14205	HT33754	463 tenascin R (restrictin, TNR, tenascin R (restrictin, 463 janusin))	CTCTCCATGT [G/T] CCAGTTGAG	M G T A S
G417u3	WIAF-14206	HT33754	249 tenascin R (restrictin, TNR, tenascin R (restrictin, 249 janusin))	ACTACAACAC [G/A] TCCAGCAAAG	S G A T T
G417u4	WIAF-14208	HT33754	2009 tenascin R (restrictin, TNR, tenascin R (restrictin, 2009 janusin))	CTGGTCCCCA [G/A] GGGCATTTGT	M G A R K
G417u5	WIAF-14209	HT33754	2175 tenascin R (restrictin, TNR, tenascin R (restrictin, 2175 janusin))	CAGGCCTCTC [G/A] GAGACCTCCA	S G A S S
G417u6	WIAF-14210	HT33754	3318 tenascin R (restrictin, TNR, tenascin R (restrictin, 3318 janusin))	AATCCACCGA [C/T] GGAGCCGCA	S C T D D
G417u7	WIAF-14211	HT33754	3221 tenascin R (restrictin, TNR, tenascin R (restrictin, 3221 janusin))	CCGGCAAACC [T/C] GAGAGCAGT	M T C L P
G417u8	WIAF-14217	HT33754	1635 tenascin R (restrictin, TNR, tenascin R (restrictin, 1635 janusin))	TCTCCGACAC [C/T] GTGGCTTTTG	S C T T T
G4178u1	WIAF-14138	HT0224	2827 ACTN2, actinin, alpha 2	GCTGGTTCTC [C/T] TTCCGGCACTC	M C T S F
G4178u2	WIAF-14139	HT0224	2818 ACTN2, actinin, alpha 2	CTGGATTACG [C/T] TGCGTTCTCT	M C T A V
G418u1	WIAF-11750	L07594	TGFBR3, transforming growth factor, beta receptor III (betaglycan, 300kd)	GAGTGACTT [C/T] CCTATCCGC	S C T F F
G418u2	WIAF-11751	L07594	TGFBR3, transforming growth factor, beta receptor III (betaglycan, 300kd)	AGAAAGCTT [C/T] ACCAACCCCC	S C T F F
G418u3	WIAF-11752	L07594	TGFBR3, transforming growth factor, beta receptor III (betaglycan, 300kd)	AATTTCCTCCA [C/T] CAATTTCICA	M C T P S
G418u4	WIAF-11771	L07594	TGFBR3, transforming growth factor, beta receptor III (betaglycan, 300kd)	TGTGTGAACCT [G/T] TCACCTGTCA	S G T L L
G418u5	WIAF-11744	L07594	TGFBR3, transforming growth factor, beta receptor III (betaglycan, 300kd)	CTGATGAGCT [T/C] CTGTTAGCC	M T C F S

G418u6	WIAF-11772	L07594	TGFBR3, transforming growth factor, beta receptor III (betaglycan, 300kD)	AGCTACGGAT [C/T] CTGCTGGGCC	S C T I I
G418u7	WIAF-11773	L07594	TGFBR3, transforming growth factor, beta receptor III (betaglycan, 300kD)	TCTTGAAGTG [C/A] AAAAGCTG	N C A C *
G418u8	WIAF-11745	L07594	TGFBR3, transforming growth factor, beta receptor III (betaglycan, 300kD)	CCCTCTGAGC [T/C] ACGGATCCGT	M T C L P
G418u9	WIAF-11746	L07594	TGFBR3, transforming growth factor, beta receptor III (betaglycan, 300kD)	ATGTTGAGGT [A/G] TCCTTTACTA	S A G V V
G418u1	WIAF-14207	HT2008	SPTBN1, spectrin, beta, non-erythrocytic 1	CTCTTCGGGG [C/T] TTCTTGAGCG	M C T L F
G418u2	WIAF-14213	HT2008	SPTBN1, spectrin, beta, non-erythrocytic 1	AGACAGGGAT [C/T] GCCTCGGAGG	S C T I I
G418u3	WIAF-14218	HT2008	SPTBN1, spectrin, beta, non-erythrocytic 1	ACTCTCTGGA [A/G] TGGAATTGAAAC	S A G E E
G418u4	WIAF-14219	HT2008	SPTBN1, spectrin, beta, non-erythrocytic 1	AGCTCGAGGC [C/T] GAGAAATTAC	S C T A A
G418u5	WIAF-14220	HT2008	SPTBN1, spectrin, beta, non-erythrocytic 1	ACATCAAGAA [T/C] GAGATGACA	S T C N N
G418u1	WIAF-13976	HT2640	TPM4, tropomyosin 4	CCAAGGCACT [T/C] GCGGAAAGGG	S T C I I
G418u1	WIAF-13554	HT3451	MFAP1, microfibrillar-associated protein 1	AAGGCCAGAC [T/G] ATGCCCTAT	M T G Y D
G418u2	WIAF-13555	HT3451	MFAP1, microfibrillar-associated protein 1	CCAAACAAAGC [T/G] GTAAAGGCCA	S T G A A
G418u3	WIAF-13570	HT3451	MFAP1, microfibrillar-associated protein 1	CTATGGAACT [C/T] TCAGATTAAGG	S C T S S
G4196u1	WIAF-13665	HT97558	NUP88, nucleoporin 88kD	GGTCCCATG [C/A] CCATGGCATCT	M C A A D
G4196u2	WIAF-13666	HT97558	NUP88, nucleoporin 88kD	ATGACCAAC [G/A] TCAGAAAGT	S G A T T
G4196u3	WIAF-13667	HT97558	NUP88, nucleoporin 88kD	TCCATCCAGC [G/A] TCTCCCTCCC	S G A A A
G4196u4	WIAF-13668	HT97558	NUP88, nucleoporin 88kD	AGGGTGAACT [T/C] ATAAGGAAAA	S T C H H
G4196u5	WIAF-13669	HT97558	NUP88, nucleoporin 88kD	CCATCCCTGAA [A/G] GAGGGCGTG	S A G K K
G4208u1	WIAF-13921	HT1122	1329 VCL, vinculin	TGATCCCTAAA [G/C] AAAGAGATGA	M G C E Q
G4208u2	WIAF-13922	HT1122	2438 VCL, vinculin	CCATCTCCCC [A/G] ATGGTGATCG	S A G P P
G4208u3	WIAF-13941	HT1122	818 VCL, vinculin	GGCATGAAGA [T/C] GCCTGGCCA	S T C D D
G4208u4	WIAF-13942	HT1122	1556 VCL, vinculin	AACCACAGCC [G/A] TGGATGTATA	S G A R R

G4213u1	WIAF-13605	HT2813	163	NUP153,	nucleoporin 153kD	GCCACGGCTGG [T/C] TACAAAGATA	S	T	C	L	L
G4213u2	WIAF-13606	HT2813	742	NUP153,	nucleoporin 153kD	GAATTCCTCA [A/G] TCCTTAACAC	N	A	G	I	V
G4213u3	WIAF-13609	HT2813	1800	NUP153,	nucleoporin 153kD	TTAGACCTGC [A/C] GAATTCCTGA	S	A	C	A	A
G4213u4	WIAF-13627	HT2813	1829	NUP153,	nucleoporin 153kD	AGTTGCTAG [A/C] TATTCTGAAA	M	A	C	D	A
G4213u5	WIAF-13632	HT2813	3258	NUP153,	nucleoporin 153kD	CTTTTGCAA [C/T] GTGGACCTG	S	C	T	N	N
G4213u6	WIAF-13635	HT2813	4162	NUP153,	nucleoporin 153kD	CTCTGAAACA [A/G] CTCCCTAAC	M	A	G	T	A
G4218u1	WIAF-13854	HT1681	1122	phosphatidyl-inositol glycan, class A		AACTTATAA [T/C] TTATGTGAG	N	T	C	I	T
G4223u1	WIAF-14160	HT1684	1434	CD36 antigen (collagen type I receptor, thrombospondin receptor)-like 2 (lysosomal integral membrane protein II)							
G4223u2	WIAF-14173	HT1684	696	CD36L2,	CD36 antigen (collagen type I receptor, thrombospondin receptor)-like 2 (lysosomal integral membrane protein II)	ATTAGATGAC [T/C] TTGTTGAAAC	M	T	C	F	L
G4223u3	WIAF-14174	HT1684	986	CD36L2,	CD36 antigen (collagen type I receptor, thrombospondin receptor)-like 2 (lysosomal integral membrane protein II)	GTGGTCCAG [G/A] TGCACTTCCT	M	G	A	V	M
G4223u4	WIAF-14176	HT1684	1437	CD36L2,	CD36 antigen (collagen type I receptor, thrombospondin receptor)-like 2 (lysosomal integral membrane protein II)	CAGACAAGTG [C/T] AAATATGATTA	S	C	T	C	C
G4227u1	WIAF-14056	HT1929	912	proteoglycan 2		AGATGACTTT [G/A] TTGAAACGGG	M	G	A	V	I
G4227u2	WIAF-14057	HT1929	1254	proteoglycan 2		ATGCCCTCAA [G/A] AAAGATCGGG	S	G	A	K	K
G4227u3	WIAF-14058	HT1929	1321	proteoglycan 2		GGAACTTTGC [G/A] TAATGGCTG	S	G	A	A	A
G4229u1	WIAF-13961	HT1689	74	SDC4, syndecan 4 (amphiglycan, ryudocan)		CCGAGGGGC [T/C] ACTGGCTG	M	T	C	Y	H
G4240u1	WIAF-13525	HT4995	602	TRAM protein		GCTGCTGCTG [T/C] TCTTCCTGAGG	M	T	C	F	L
G4243u1	WIAF-14169	HT2901	406	KRT17,	keratin 17	CCATAAACCTG [A/C] TGACATTTCA	M	A	C	N	L
G4243u2	WIAF-14170	HT2901	478	KRT17,	keratin 17	ACCTGGAGGT [G/A] AGATCCGGT	S	G	A	V	V
G4243u3	WIAF-14171	HT2901	389	KRT17,	keratin 17	AGAGGACAA [T/C] GAGGAGTGC	S	T	C	I	I
G4243u4	WIAF-14178	HT2901	564	KRT17,	keratin 17	CTGGCTGCTG [A/C] TGACTTCGC	M	A	G	N	D
G4244u1	WIAF-14086	HT1056	386	clathrin, light polypeptide a		ATCGATGCC [G/C] TCAGAGCTG	M	G	C	Q	H
G4246u1	WIAF-14044	HT97492	259	SLN, sarcoplipin		CTCTCTATCAG [T/C] ACTGAGAGGC	M	T	C	Y	H
G4246u2	WIAF-14045	HT97492	189	SLN, sarcoplipin		ACACCCGGGA [G/A] CTGTTCTCA	S	G	A	E	E

G4254u1	WIAF-13546	HT3393	86	TNNI2, troponin I, skeletal, fast	ACTGAGAG [C/T] GTGATCTGC	S C T S S
G4254u2	WIAF-13553	HT3393	530	TNNI2, troponin I, skeletal, fast	TCGAGGAA [G/C] TCTGGATGG	M G C K N
G4255u1	WIAF-13644	HT2907	562	CRYAB, crystallin, alpha B	AGTTCCACAG [G/A] AAATAACGGA	S G A R R
G4255u2	WIAF-13645	HT2907	367	CRYAB, crystallin, alpha B	CCTCCCTTCT [G/A] CGGGCACCA	S G A L J
G4255u3	WIAF-13872	HT2907	271	CRYAB, crystallin, alpha B	CCAGGCCCT [C/T] TTTGACCACT	S C T L J
G4255u4	WIAF-13873	HT2907	580	CRYAB, crystallin, alpha B	GGATCCAGC [T/C] GATGTAGACC	S T C A A
G4257u1	WIAF-14052	HT1694	394	PIGF, phosphatidylinositol glycan, class F	TAGAGTGGC [A/G] TTGGAAACAT	S A G A A
G4257u2	WIAF-14053	HT1694	252	PIGF, phosphatidylinositol glycan, class F	TATTTAGTAG [T/C] GAAACCAAAT	M T C V A
G4257u3	WIAF-14069	HT1694	291	PIGF, phosphatidylinositol glycan, class F	TCATTATGAC [A/G] CAAGCTTACT	M A G H R
G4264u1	WIAF-13519	HT0968	1720	TJPL, tight junction protein 1 (zona occludens 1)	CGCTCAGTGG [C/T] TTCCAGCCAG	M C T A V
G4264u2	WIAF-13520	HT0968	2272	TJPL, tight junction protein 1 (zona occludens 1)	CATGCTGATG [A/G] TCACACACCT	M A G D G
G4264u3	WIAF-13529	HT0968	5408	TJPL, tight junction protein 1 (zona occludens 1)	AGCCTCCCTGA [A/T] GCTGATGGTG	M A T E D
G434u1	WIAF-11748	M21121	286	SCYAS5, small inducible cytokine A5 (RANTES)	TACATCAACT [C/T] TTGGAGATG	M C T S F
G434u2	WIAF-11749	M21121	137	SCYAS5, small inducible cytokine A5 (RANTES)	GCTTTGCCTA [C/T] ATTGCCCGCC	S C T Y Y
G435u1	WIAF-11741	M31933	754	FCGR2B, Fc fragment of IgG, low affinity IIb, receptor for (CD32)	GTCACTGGG [T/C] TGCTGTAGCG	M T C I T
G435u2	WIAF-11743	M31933	395	FCGR2B, Fc fragment of IgG, low affinity IIb, receptor for (CD32)	GGGAGTACAC [G/A] TGCCAGACTG	S G A T T

G435u3	WIAF-11742	M31933		FCGR2B, Fc fragment of IgG, low affinity IIb, receptor for (CD32)	TACACCGCTGT [T/A] CTCATCCAAAG	M	T	A	F	Y
G4369u1	WIAF-13728	HT0900	1176 type IV)	GBE1, glucan (1,4-alpha-), branching enzyme 1 (glycogen branching enzyme, Andersen disease, glycogen storage disease type IV)	TACAGTCCAT [G/A] CTTTATCATC	M	G	A	M	I
G4369u2	WIAF-13729	HT0900	1609 type IV)	GBE1, glucan (1,4-alpha-), branching enzyme 1 (glycogen branching enzyme, Andersen disease, glycogen storage disease type IV)	GAGTGTCTG [A/G] CTCCCTTTAC	M	A	G	T	A
G4373u1	WIAF-13559	HT0940	1117 dehydrogenase 2	HSD17B2, hydroxysteroid (17-beta) dehydrogenase 2	GCCAGGAAAG [A/T] CCTCTCTCCG	M	A	T	D	V
G4373u2	WIAF-13560	HT0940	1195 dehydrogenase 2	HSD17B2, hydroxysteroid (17-beta) dehydrogenase 2	CCAGGGAAAC [G/A] CGCTTACTTG	M	G	A	G	D
G438u1	WIAF-11830	M63121	583 receptor superfamily, member 1A	TNFRSF1A, tumor necrosis factor receptor superfamily, member 1A	ACCGTGTCTG [G/A] CTGCCAGAAC	M	G	A	G	D
G438u2	WIAF-11790	M63121	618 receptor superfamily, member 1A	TNFRSF1A, tumor necrosis factor receptor superfamily, member 1A	TATATTGGAGT [G/A] AAAACCTTTT	M	G	A	E	K
G440u1	WIAF-11806	M74447	261 binding cassette)	TAP2, transporter 2, ABC (ATP binding cassette)	TGCTAAAGCT [A/C] AGAGGGCTGC	S	A	G	L	L
G440u2	WIAF-11807	M74447	2089 binding cassette)	TAP2, transporter 2, ABC (ATP binding cassette)	CAGGGTGCAG [G/A] CAGTTCAGCG	M	G	A	A	T
G440u3	WIAF-11808	M74447	2155 binding cassette)	TAP2, transporter 2, ABC (ATP binding cassette)	TGCCCGCTTC [C/T] AGGAGGGACA	N	C	T	Q	*
G440u4	WIAF-11818	M74447	1789 binding cassette)	TAP2, transporter 2, ABC (ATP binding cassette)	GAACAACATT [G/A] CTTATGGCT	M	G	A	A	T
G440u5	WIAF-11819	M74447	1565 binding cassette)	TAP2, transporter 2, ABC (ATP binding cassette)	AGGGGGCTCA [C/T] GTTTACCTA	M	C	T	T	M
G440u6	WIAF-11820	M74447	1254 binding cassette)	TAP2, transporter 2, ABC (ATP binding cassette)	TGCACTTGGGG [G/T] GTGCAGATGC	S	G	T	G	G
G440u7	WIAF-11788	M74447	1231 binding cassette)	TAP2, transporter 2, ABC (ATP binding cassette)	GTACCTGTCTC [A/G] TAAGGAGGGT	M	A	G	I	V
C440u8	WIAF-11821	M74447	1404 binding cassette)	TAP2, transporter 2, ABC (ATP binding cassette)	TGCTCTAGCAA [C/T] GTGGGAGCTG	S	C	T	N	N

G440u9	WIAF-11783	WT4447	TAP2, transporter 2, ABC (ATP binding cassette)	CCGGCTCTGGT [T/G] CAGGAGCGGC	S T G V V
G440u10	WIAF-11786	WT4447	TAP2, transporter 2, ABC (ATP binding cassette)	TGATAAGGTG [A/G] TGCGGGCTGC	M A G M V
G440u1	WIAF-14007	HT97396	839 A33	GCCAATCAA [G/T] GAGGGCTCAC	M G T K N
G440u1	WIAF-14013	HT1215	109 lysosomal	CGCCCCACC [G/A] GGCGGGAGT	M G A R Q
G440u2	WIAF-14016	HT1215	1271 lysosomal	ACGCCACGT [C/T] GCAGATGGG	S C T V V
G440u1	WIAF-13661	HT3564	872 ACPP, acid phosphatase, prostate	ACAAAAAAACT [T/C] ATCATGATT	S T C L L
G440u2	WIAF-13662	HT3564	839 ACPP, acid phosphatase, prostate	ATCACATGAA [G/A] AGAGCAACTC	S G A K K
G440u3	WIAF-13881	HT3564	741 ACPP, acid phosphatase, prostate	AGAAATTGTCGA [G/T] AATTGTCCT	N G T E *
G441u1	WIAF-10166	WT7349	TGBBI, transforming growth factor, beta-induced, 68kD	GTGCCCCGCT [C/G] CTGAAAGCCG	S C G L L
G441u2	WIAF-10168	M77349	1028 factor, beta-induced, 68kD	CCCTGTCTCT [R/G] GAGACCTGG	S A G V V
G441u3	WIAF-10169	M77349	1667 factor, beta-induced, 68kD	ACACAGCTTT [T/C] GCTCCCAAA	S T C F F
G441u4	WIAF-10171	M77349	TGBBI, transforming growth factor, beta-induced, 68kD	GTAATAGCCT [C/T] TGCAATGAGA	S C T L L
G441u1	WIAF-14005	HT97468	492 acyl-CoA	GCTGACCAAT [A/G] AGGCAACCT	M A G K E
G441u2	WIAF-14008	HT97468	1076 acyl-CoA	TCCCAGAAC [C/T] GAGGAAGAA	S C T T T
G441u1	WIAF-13576	HT1882	657 chain	GGAAAACAG [G/A] GCATCAGTGC	M G A G S
G441u2	WIAF-13579	HT1882	1022 chain	TGACCTGGG [C/T] GCTGCCATGC	S C T R R
G441u1	WIAF-14080	HT2503	2170 acyltransferase	TCATTATATT [C/T] GAGGAGATTG	S C T P P
G441u2	WIAF-14081	HT2503	1993 acyltransferase	TTTCAGTTCC [C/T] TATTTCCTGT	S C T P P

G4428u1	WIAF-13954	HT97524	ADFP, adipose differentiation-related protein; adipophilin	TGGTCAACCT [G/A] CCCTTGTTGA	S G A L L
G4434u1	WIAF-13506	HT0863	551 ARF3, ADP-ribosylation factor 3	TCTGGAGACA [C/T] TACTTCACAGA	S C T H H
G444u1	WIAF-10172	U28694	CCR3, chemokine (C-C motif) receptor 3	CGAGATCTT [T/G] TCATAATTCCT	M T G F V
G444u2	WIAF-10181	U28694	CCR3, chemokine (C-C motif) receptor 3	TCTCTATAAA [A/G] TACAGGAGGC	S A G K K
G4440u1	WIAF-14054	HT1392	ADRBK1, adrenergic, beta, receptor kinase 1	GCAAAGAGAT [A/C] CTGCTGCCCG	S A C I I
G445u1	WIAF-10183	U40373	Human cell surface glycoprotein CD44 mRNA, complete cds.	TAGAAGGGCA [C/T] GTGGTGATT	S C T H H
G4456u1	WIAF-13629	HT0626	ALDOC, aldolase C, fructose-bisphosphate	CCCTGCTCAA [G/A] CCCAACATGG	S G A K K
G446u1	WIAF-11832	U64198	IL12RB2, interleukin 12 receptor, beta 2	TGAAGGCCCTTC [C/G] CATGTAATT	S C G S S
G446u2	WIAF-11795	U64198	IL12RB2, interleukin 12 receptor, beta 2	TTTCTCAAC [G/A] CATTACTTCC	S G A T T
G446u3	WIAF-11833	U64198	IL12RB2, interleukin 12 receptor, beta 2	TGCAAGGTAA [A/G] GCCATTGGA	S A G K K
G446u4	WIAF-11835	U64198	IL12RB2, interleukin 12 receptor, beta 2	CTCTCTGCCA [G/C] GTCTCTGCCAA	M G C Q H
G446u5	WIAF-11793	U64198	IL12RB2, interleukin 12 receptor, beta 2	GTGGAGGAGA [G/A] ATCTCTGTTG	S G A E E
G446u6	WIAF-11794	U64198	IL12RB2, interleukin 12 receptor, beta 2	AGTTCCCAACG [G/C] AAATGAGAGG	M G C G A
G446a7	WIAF-13128	U64198	IL12RB2, interleukin 12 receptor, beta 2	GGTGACTCTGG [C/G] AGCCTCCAG	M C G Q E
G446a8	WIAF-13129	U64198	IL12RB2, interleukin 12 receptor, beta 2	TCTAAACTGG [C/G] TACGGAGTCG	M C G L V
G447u1	WIAF-11796	X03663	CSF1R, colony stimulating factor 1 receptor, formerly McDonough feline sarcoma viral (v-fms) oncogene homolog	CCAGTGTCCC [C/T] GAGGTCTTCG	S C T P P
G447u2	WIAF-11836	X03663	CSF1R, colony stimulating factor 1 receptor, formerly McDonough feline sarcoma viral (v-fms) oncogene homolog	ACAAACAAC [T/C] AAGCTGCCAA	S T C T T

G447u3	WIAF-11837	X03663		CSF1R, colony stimulating factor 1 receptor, formerly McDonough feline sarcoma viral (v-fms) oncogene homolog	886	GCTGAAAGTG [C/A] AGAACATCAT	M	C	A	Q	K
G447u4	WIAF-11797	X03663		CSF1R, colony stimulating factor 1 receptor, formerly McDonough feline sarcoma viral (v-fms) oncogene homolog	2425	GAGAAATAT [G/A] TCCGGGGGA	M	G	A	V	I
G447u1	WIAF-13904	HT1352		FUCAL, fucosidase, alpha-L-1, tissue	860	TTCAAGGCCAC [A/G] GAGCTTCCA	M	A	G	Q	R
G447u2	WIAF-13916	HT1352		FUCAL, fucosidase, alpha-L-1, tissue	440	ACAAACTGGC [C/T] GAGTCCTGTG	M	C	T	P	L
G447u1	WIAF-13637	HT1995		AMPD2, adenosine monophosphate deaminase 2 (isoform L)	2465	CCCTCAATGA [G/T] CCTGGTCCAT	-	G	T	-	-
G447u2	WIAF-13866	HT1995		AMPD2, adenosine monophosphate deaminase 2 (isoform L)	1258	TGATGTGCA [T/C] GCGGACAGGA	S	T	C	H	H
G447u3	WIAF-13867	HT1995		AMPD2, adenosine monophosphate deaminase 2 (isoform L)	1280	CACTTTCAT [C/T] GTTTCACAA	M	C	T	R	C
G447u4	WIAF-13868	HT1995		AMPD2, adenosine monophosphate deaminase 2 (isoform L)	1201	TGCGGGAGT [C/T] TTTGAAGCA	S	C	T	V	V
G447u5	WIAF-13869	HT1995		AMPD2, adenosine monophosphate deaminase 2 (isoform L)	1579	GTACCAACGG [C/T] CAGCTGCCA	S	C	T	G	G
G4492u1	WIAF-14084	HT3390		ANX11, annexin XI (56kD autoantigen)	866	CCTGGGAGT [C/T] GCTCCACAA	M	C	T	R	C
G4492u2	WIAF-14085	HT3390		ANX11, annexin XI (56kD autoantigen)	850	AGGCCATCAT [T/C] GACTGGCTGG	S	T	C	I	I
G450u1	WIAF-10170	X85740		CCR4, chemokine (C-C motif) receptor 4	1196	TCCAAATTAA [C/T] TCTGCTGACA	S	C	T	Y	Y
G4502u1	WIAF-13510	HT4840		ASS, argininosuccinate synthetase	165	AGGCTATGA [C/T] GTCATTCGCT	S	C	T	D	D
G4502u2	WIAF-13511	HT4840		ASS, argininosuccinate synthetase	369	GCCCCTGCA [C/T] GCCCGAAAC	S	C	T	I	I
G4502u3	WIAF-13512	HT4840		ASS, argininosuccinate synthetase	73	AATCCCCAGAC [G/A] CTATGTCAG	-	G	A	-	-

G4502u4	WIAF-13513	HT4840	129 ASS,	argininosuccinate synthetase	TGGACACCTC [G/C] TGCATCTCG	S G C S S
G4502u5	WIAF-13514	HT4840	285 ASS,	argininosuccinate synthetase	AGTTTGTGGA [G/A] GAGTTCATCT	S G A E E
G4502u6	WIAF-13515	HT4840	234 ASS,	argininosuccinate synthetase	AGGCACTGAA [G/A] CTTCGGCCA	S G A K K
G4502u7	WIAF-13516	HT4840	316 ASS,	argininosuccinate synthetase	CCAGTCCAGC [G/A] CACTGTATGA	M G A A T
G4502u8	WIAF-13537	HT4840	426 ASS,	argininosuccinate synthetase	TGTCGCCACGG [C/T] GCCACAGGAA	S C T G G
G4502u9	WIAF-13538	HT4840	530 ASS,	argininosuccinate synthetase	GAATTCTACA [A/G] CCGGHTCAAG	M A G N S
G4502u10	WIAF-13539	HT4840	750 ASS,	argininosuccinate synthetase	TTCTCGAGAT [C/T] GAGTTCAAAA	S C T I I
G4502u11	WIAF-13540	HT4840	960 ASS,	argininosuccinate synthetase	ATGCTCATTT [A/G] GACATGAGG	S A G L L
G4508u1	WIAF-13663	HT28557	1767 ARSD,	arylsulfatase D	CAGTTTTCCA [T/C] GAGGTAACATC	M T C M T
G4508u2	WIAF-13693	HT28557	433 ARSD,	arylsulfatase D	TTCACTGGAA [C/T] GGAGGCTTCAG	S C T N N
G4508u3	WIAF-13694	HT28557	747 ARSD,	arylsulfatase D	GGTTTCTTCT [C/G] TGTCTTCGGG	M C G S C
G4508u4	WIAF-13696	HT28557	1012 ARSD,	arylsulfatase D	CCACZAGTGC [A/G] TTCCCTGGGA	S A G A A
G4508u5	WIAF-13697	HT28557	1302 ARSD,	arylsulfatase D	CGAGTGAATTG [G/A] AGAGCCACCG	M G A G E
G4508u6	WIAF-13698	HT28557	1285 ARSD,	arylsulfatase D	GGGTGCTCCC [G/A] GCCGGCGAG	S G A P P
G4508u7	WIAF-13699	HT28557	1807 ARSD,	arylsulfatase D	AGCCGTGCTG [C/T] GGACATTTCC	S C T C C
G4508u8	WIAF-13718	HT28557	483 ARSD,	arylsulfatase D	GCAAGATCT [T/C] GCAGZAGCAT	M T C L S
G4518u1	WIAF-13809	HT3430	515 ASPA,	aspartoacylase (aminoacylase 2, Canavan disease)	ACAAACCCAC [C/T] TCCTAACATGG	S C T T T
G4518u2	WIAF-13810	HT3430	851 ASPA,	aspartoacylase (aminoacylase 2, Canavan disease)	AAGTTGATTAA [C/T] CCCCGGGATG	S C T Y Y
G4518u3	WIAF-13811	HT3430	787 ASPA,	aspartoacylase (aminoacylase 2, Canavan disease)	CATCATTTCA [A/G] TGAAGGGAAA	M A G N S
G4518u4	WIAF-13837	HT3430	618 ASPA,	aspartoacylase (aminoacylase 2, Canavan disease)	ACCCCTGCTAC [G/A] TTATCTGAT	M G A V I
G452a1	WIAF-10509	HT0695	553 ADOA4,	apolipoprotein A-IV	ACCCAGGTCA [A/G] CACGGAGGCC	M A G N S
G452a2	WIAF-13124	HT0695	563 ADOA4,	apolipoprotein A-IV	ACACGGAGGC [C/T] GAGGAGCTGC	S C T A A

G4524u1	WIAF-14120	HT1541		ATP5A1, ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit, isoform 1, cardiac muscle	CTCATTGCT[A/G]TTCACACAAAT	M A G I V
G4524u2	WIAF-14131	HT1541	726	ATP5A1, ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit, isoform 1, cardiac muscle		
G4526u1	WIAF-14130	HT4994	153	ATP5D, ATP synthase, H+ transporting, mitochondrial F1 complex, delta subunit	TCCATCGCAG[T/C]GAACGGCCGAC	M T C V A
G453u1	WIAF-10138	HT0768	400	PDGFRB, platelet-derived growth factor receptor, beta polypeptide	CTGCGGCCCA[C/T]GCTGCTGGGG	M C T T M
G453u2	WIAF-10147	HT0768	1747	PDGFRB, platelet-derived growth factor receptor, beta polypeptide	TTCATGCTTT[A/G]AACTGGATGG	S A G L L
G453u3	WIAF-10148	HT0768	2957	PDGFRB, platelet-derived growth factor receptor, beta polypeptide	TTTGGCTTG[A/G]AACTGGATGG	
G453u4	WIAF-10149	HT0768	3608	PDGFRB, platelet-derived growth factor receptor, beta polypeptide	AGCCGGAGCC[A/G]GAGCTGGAAC	S A G P P
G453u5	WIAF-10151	HT0768	457	PDGFRB, platelet-derived growth factor receptor, beta polypeptide	CAGGGCTGG[T/G]CGTCAGCACCC	M T G V G
G453u6	WIAF-10153	HT0768	1505	PDGFRB, platelet-derived growth factor receptor, beta polypeptide	CAGGGCTGG[T/G]CGTCAGCACCC	M T G V G
G453u7	WIAF-10161	HT1618	3446	PDGFRB, platelet-derived growth factor receptor, beta polypeptide	AGCTGAAACT[G/C]GTTGGGTGTA	S G C T P P
G4533u1	WIAF-13616		2030	PDGFRB, platelet-derived growth factor receptor, beta polypeptide	ACCCAAACC[C/T]GAGGTGGCTG	S C T P P
G4534u1	WIAF-13569	HT3556	343	ATP synthase, H+ transporting, subunit D, vacuolar	TTTGGCAGAA[G/A]AAGCCACGTT	S G A K K
			654	ATP6E, ATPase, H+ transporting, lysosomal (vacuolar proton pump) 31KD	GTACATGAT[C/T]GACAACGTGA	S C T I I
					TAAGGGTTTC[C/T]AACACCCCTGG	S C T S S

G4535u1	WIAF-13747	HT27972	357	ATP50, ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit (oligomycin sensitivity conferring protein)	TCACTTACCAA [C/T] CTGATCAATT	S C T N N
G4535u2	WIAF-13748	HT27972	144	ATP50, ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit (oligomycin sensitivity conferring protein)	AGGTATACGG [T/C] ATTGAAGGTC	S T C G G
G4535u3	WIAF-13792	HT27972	329	ATP50, ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit (oligomycin sensitivity conferring protein)	ATCACAGCAA [A/G] AGAGAGGTTG	M A G K R
G4539u1	WIAF-13711	HT48520	288	ATPase, 14 kDa subunit, vacuolar	TGCCCTGGAC [G/A] CCCAACAGCA	M G A A T
G4548u1	WIAF-14127	HT1574	3138	ATPase, Ca2+ transporting, plasma membrane, isoform 2	CGCAATGTCCT [T/C] TGACCCGCATC	M T C F S
G4548u2	WIAF-14137	HT1574	2089	ATPase, Ca2+ transporting, plasma membrane, isoform 2	GCACTATCTG [C/T] GTGGCCCTACC	S C T C C
G4548u3	WIAF-14140	HT1574	2924	ATPase, Ca2+ transporting, plasma membrane, isoform 2	CAGGACCATG [A/T] TGAAAGAACAT	M A T M L
G4549u1	WIAF-14161	HT1346	524	ATP2B4, ATPase, Ca++ transporting, plasma membrane	TGGACTGACC [C/T] AGATTAAATGT	N C T Q *
G4549u2	WIAF-14162	HT1346	715	ATP2B4, ATPase, Ca++ transporting, plasma membrane	ATGTCAGCT [C/T] ATCATCTGG	S C T L L
G4549u3	WIAF-14163	HT1346	508	ATP2B4, ATPase, Ca++ transporting, plasma membrane	AGCTGCGTTC [G/A] AGGGATGGCAC	S G A S S
G4549u4	WIAF-14166	HT1346	1084	ATP2B4, ATPase, Ca++ transporting, plasma membrane	TGATCCDAGG [G/A] AATGATCTGA	S G A G G
G4552u1	WIAF-13630	HT0867	710	ATP7A, ATPase, Cu++ transporting, alpha polypeptide (Menkes syndrome)	TACTAGGACTA [A/G] TTGAAAGGAAA	M A G I V

G456u1	WIAF-10074	HT2834	408	EDN1, endothelin 1	CCTGGGGCT [T/G] CGCCGGTCCA	S	T	G	L	L	
G456u2	WIAF-10075	HT2834	585	EDN1, endothelin 1	CAGACCGTGA [A/G] AATAGATGCC	S	A	G	E	E	
G456a3	WIAF-10507	HT2834	861	EDN1, endothelin 1	TGAAAGCAA [T/G] CCCTCCAGAG	M	T	G	K	N	
G4565u1	WIAF-14041	HT28561	320	transporting, gamma 1 polypeptide	ATP1G1, ATPase, Na+/K+	S	G	A	L	L	
G4565u2	WIAF-14062	HT28561	216	transporting, gamma 1 polypeptide	ATP1G1, ATPase, Na+/K+	S	G	A	L	L	
G4565u3	WIAF-14063	HT28561	315	transporting, gamma 1 polypeptide	ATP1G1, ATPase, Na+/K+	S	G	A	D	N	
G4565u4	WIAF-14064	HT28561	531	transporting, gamma 1 polypeptide	ATP1G1, ATPase, Na+/K+	N	T	C	*	R	
G4568u1	WIAF-14212	HT0082	717	receptor	AMFR, autocrine motility factor	TGCCCTATGC [A/G] TACGTUCCAC	M	A	G	I	V
G457a1	WIAF-10489	HT2903	321	adhesion molecule 1)	SELL, selectin L (lymphocyte	ACAAATCTCT [C/T] ACTGAGAAG	S	C	T	L	L
G457a2	WIAF-10490	HT2903	577	adhesion molecule 1)	SELL, selectin L (lymphocyte	COAGTGTCA [T/C] TTGTGATTCA	M	T	C	F	L
G457a3	WIAF-10491	HT2903	601	adhesion molecule 1)	SELL, selectin L (lymphocyte	TGAGCCTTTG [G/C] AGGCCAGA	M	G	C	E	Q
G457a4	WIAF-10492	HT2903	637	adhesion molecule 1)	SELL, selectin L (lymphocyte	CTGTACTCAC [C/T] CTTTGGAAA	M	C	T	P	S
					MGAT2, mannosyl (alpha-1,6-) -						
G4573u1	WIAF-13568	HT28320	943		glycoprotein beta-1,2-N- acetylglucosaminyltransferase	C3GACAACCT [G/T] ACGGCGGGT	S	G	T	L	L
G4574u1	WIAF-13805	HT0198	163		beta-1,4 N- acetylgalactosaminyltransferase	CGGCCTCGGG [C/G] TACCTCTTGC	M	C	G	L	V
G4574u2	WIAF-13806	HT0198	415		beta-1,4 N- acetylgalactosaminyltransferase	TGCCACAAAGA [G/A] AGCAGGAGTT	M	G	A	E	K

G4574u3	WIAF-13807	HT0198	726	beta-1,4 N-acetylgalactosaminyltransferase	AACTACAAC [G/T] GTCACTTACA	S G T L L
G4574u4	WIAF-13836	HT0198	559	beta-1,4 N-acetylgalactosaminyltransferase	AGGGCTGAGC [C/A] TTCTGGCAGC	M C A L I
G4575u1	WIAF-13626	HT0341	1251	GCNT1, Glucosaminyl (N-acetyl) transferase 1, core 2 (beta-1,6-N-acetylglucosaminyltransferase)	ACTATGATCT [A/G] TCTGACATGC	S A G L L
G4577u1	WIAF-13971	HT1495	1268	SIAT1, sialyltransferase 1 (beta-galactoside alpha-2,6-sialytransferase)	ATTTCCTTTAA [C/T] AACTAACAAA	S C T N N
G458u1	WIAF-10063	HT2968	1464	ALB, albumin	GTGGCAAGAA [C/A] TATCTATCCG	M C A D E
G458u2	WIAF-10089	HT2968	1470	ALB, albumin	AAGACTATCT [A/C] TCCCTGGTCC	S A C L L
G458u3	WIAF-10091	HT2968	1707	ALB, albumin	TGTTTGAGCT [C/T] GTGAAACACA	S C T L L
G458a4	WIAF-10504	HT2968	889	ALB, albumin	CAGGGCGAC [C/T] TTGGCAAAGTA	M C T L F
G458a5	WIAF-10508	HT2968	1475	ALB, albumin	TATCTPATCCG [T/A] GGTCCTGAAAC	M T A V E
G458a6	WIAF-12091	HT2968	1330	ALB, albumin	CCAGAATGGC [C/T] TATTTAGTCG	S C T L L
G458a7	WIAF-12092	HT2968	1408	ALB, albumin	CCTAGGAAA [G/A] TGCGGAGCAA	M G a V M
G4592u1	WIAF-14126	HT2128	985	branched chain keto acid dehydrogenase E1, alpha polypeptide	ACAGGCCCTT [T/C] CTCATCGAGG	S T C F F
G4593u1	WIAF-13574	HT97373	1743	BARD1, ERCA1 associated RING domain 1	GCTAGCCACT [G/C] CTCAGTAATG	M G C C S
G4593u2	WIAF-13592	HT97373	1167	BARD1, ERCA1 associated RING domain 1	TGTTCTTCAC [C/T] ACCTTATGC	M C T P L
G4593u3	WIAF-13593	HT97373	1591	BARD1, ERCA1 associated RING domain 1	AGAATGGCA [C/T] GTGGATAATAG	S C T H H
G4593u4	WIAF-13594	HT97373	2030	BARD1, ERCA1 associated RING domain 1	AAAGTATGAA [A/G] TTCCCTGAAGG	M A G I V
G4595u5	WIAF-13595	HT97373	2006	BARD1, ERCA1 associated RING domain 1	AAGAAAAGTA [T/C] GTGAAACAGGA	M T C C R
G4599u1	WIAF-13920	HT4273	1803	CDH13, cadherin 13, H-cadherin (heart)	TGTTACCCGA [C/T] GTCTCTTACG	S C T D D
G4614u1	WIAF-13733	HT4835	91	S100A3, S100 calcium-binding protein A3	AGGATGGCCA [G/A] GCCTCTGGAG	M G A R K
G4614u2	WIAF-13734	HT4835	203	S100A3, S100 calcium-binding protein A3	TCTGCGAGAA [G/A] GAGCTGGCCA	S G A K K
G4614u3	WIAF-13769	HT4835	344	S100A3, S100 calcium-binding protein A3	TCTACTGCCA [C/T] GAGTACTICA	S C T H H

G462u1	WIAF-10134	HT4753	PDGFA, platelet-derived growth factor alpha polypeptide	ACGGGGTCCA [C/T] GCCACTAACG GGGGCCATA [C/T] TGGACATPAT CAACACACC [T/C] AGTGGAAAGCA	S C T H H S C T L L S T C P P
G462u1	WIAF-14042	HT0771	186 ANX6, annexin VI (p68)		
G462u2	WIAF-14043	HT0771	1664 ANX6, annexin VI (p68)		
G462u3	WIAF-14067	HT0771	1498 ANX6, annexin VI (p68)	AACGAGGACT [A/G] TCACAAAGTC	M A G Y C
G4644u1	WIAF-13801	HT1736	1990 synthetase 1, mitochondrial	TGGGGAGAA [G/A] TGAGTGACAG	S G A K K
G4644u2	WIAF-13802	HT1736	1866 synthetase 1, mitochondrial	ATGGCTACC [C/T] AGTGATGATC	M C T P L
G4644u3	WIAF-13803	HT1736	1993 synthetase 1, mitochondrial	TGGAGAAGTC [A/C] GTGACAGCGTT	S A C S S
G4644u4	WIAF-13804	HT1736	1860 synthetase 1, mitochondrial	GACACCATTG [G/A] CTACCCAGTG	M G A G D
G4644u5	WIAF-13831	HT1736	1087 synthetase 1, mitochondrial	AGCCCTGTTT [G/T] ATATACACAA	M G T L F
G4644u6	WIAF-13835	HT1736	1958 synthetase 1, mitochondrial	CACAAAGGCC [T/C] TTGCTATGAC	M T C F L
G4644u7	WIAF-13855	HT1736	1332 synthetase 1, mitochondrial	AAAGGTACCA [C/A] CATPACATCA	M C A T N
G4659u1	WIAF-14143	HT1183	1830 catenin, alpha	GTGCCAACGT [T/C] CCTGACCCGT	S T C V V
G466u1	WIAF-10164	U00968	2403 SREBF1, sterol regulatory element binding transcription factor 1	AGCAGTGGCC [G/A] CCAGGCCCTGC	M G A R H
G4662u1	WIAF-13710	HT2142	2183 CTNNB1, catenin (cadherin-associated protein), beta 1 (88kD) receptor	TTTTGTTTCG [A/C] ATGTCCTGAGG	S A C R R
G467a1	WIAF-13304	X72861	827 ADRB3, adrenergic, beta-3-, receptor	GGCCATGGCC [T/C] GGACTCCGGAG	M T C W R
G467a2	WIAF-13305	X72861	832 ADRB3, adrenergic, beta-3-, receptor	TCGCCTGAGC [T/A] CCGAGACTCC	S T A T T
G467a3	WIAF-13306	X72861	870 ADRB3, adrenergic, beta-3-, receptor	TTCTGTGACTT [C/T] GCTGGCGCA	M C T S L
G467a4	WIAF-13307	X72861	1761 ADRB3, adrenergic, beta-3-, receptor	TGCGCCGCC [C/T] CGGCCCGCC	M C T A V

G467a5	WIAF-13308	X72861	1899	ADRB3, adrenergic, beta-3-, receptor	TCTGTTGATC [A/C] GAACCTGTGG	-	A	C	-
G467u1	WIAF-13956	HT1925	161	NDUFB7, (ubiquinone) 1 beta subcomplex, 7 (18kD, B18)	TGGTGGCCAC [A/G] CAAGGAGAG	S	A	G	T
G467u1	WIAF-13889	HT0191	1349	CDC25A, cell division cycle 25A	TCTGGGCCA [G/C] CCCCAAAGAG	M	G	C	S
G467u1	WIAF-13821	HT1393	261	CDC25B, cell division cycle 25B	ACGACCTCGC [C/T] GGGCTGGCA	S	C	T	A
G467u2	WIAF-13822	HT1393	1297	CDC25B, cell division cycle 25B	GATGGTGGCC [C/T] TATIGACGGG	S	C	T	L
G467u3	WIAF-13823	HT1393	1083	CDC25B, cell division cycle 25B	ATAAGGGAG [G/A] CGGAGCGTGA	S	G	A	R
G467u4	WIAF-13827	HT1393	1446	CDC25B, cell division cycle 25B	AGAGCCCCAT [C/T] GCGCCCTGTAA	S	C	T	I
G468a1	WIAF-13309	137019	192	ASIP, agouti (mouse)-signaling protein	AAATCCAAAAC [C/A] GATCGGCAGA	M	C	A	P
G469u1	WIAF-13753	HT97602	179	receptor 9 CMKBR9, chemokine (C-C motif)	TATAGCCTGA [T/A] TTTTGCTTGT	M	T	A	I
G469u2	WIAF-13754	HT97602	134	receptor 9 CMKBR9, chemokine (C-C motif)	AAGGATGCCAG [T/C] GGTTGTCCTTT	M	T	C	V
G469u3	WIAF-13755	HT97602	193	receptor 9 CMKBR9, chemokine (C-C motif)	TGTGTGGCC [C/T] TCAGGGGAA	M	C	T	L
G469u4	WIAF-13756	HT97602	770	receptor 9 CMKBR9, chemokine (C-C motif)	AAAATAGCTG [C/T] AGCCTTGGTG	M	C	T	A
G469u5	WIAF-13759	HT97602	1130	receptor 9 CMKBR9, chemokine (C-C motif)	TCTGAGAACT [A/C] CCCTAACAAAG	M	A	C	Y
G469u6	WIAF-13796	HT97602	482	receptor 9 CMKBR9, chemokine (C-C motif)	AGGCTGAGGA [C/A] CCGGGCCAAG	M	C	A	T
G469u7	WIAF-13797	HT97602	259	receptor 9 CMKBR9, chemokine (C-C motif)	GATGGTGGAG [A/G] TCTATCTGCT	M	A	G	I
G469u8	WIAF-13798	HT97602	434	receptor 9 CMKBR9, chemokine (C-C motif)	ATGAGCCCTGG [A/G] CAAGTACCTG	M	A	G	D
G469u9	WIAF-13799	HT97602	755	receptor 9 CMKBR9, chemokine (C-C motif)	CAGGGCGGG [C/T] TTTAAAAATA	M	C	T	A
G469u10	WIAF-14040	HT4277	1426	BAAT, bile acid Coenzyme A: amino acid N-acyltransferase (Glycine N- choloyltransferase)	TICCAAGATGT [G/T] ACCAGTCAAC	S	G	T	V

G4726u1	WIAF-14128	HT48614	AOC3, amine oxidase, copper containing 3 (vascular adhesion protein 1)	TCCACCCAG [T/C] GGGCCATAG	S T C S S
G4726u2	WIAF-14129	HT48614	AOC3, amine oxidase, copper containing 3 (vascular adhesion protein 1)	TRCTAACAC [A/G] GTGACTGTGG	S A G T T
G4726u3	WIAF-14141	HT48614	AOC3, amine oxidase, copper containing 3 (vascular adhesion protein 1)	CCCTGCCCTAT [C/T] ACCGACGCC	M C T H Y
G4744u1	WIAF-13683	HT2599	CTH, cystathionase (cystathione gamma-lyase)	ATATTGCCA [T/C] AAGCATGGAG	S T C H H
G4748u1	WIAF-14144	HT1061	CYBA, cytochrome b-245, alpha polypeptide	GGGACAGAAAG [C/T] ACATGACCGC	M C T H Y
G4748u2	WIAF-14145	HT1061	CYBA, cytochrome b-245, alpha polypeptide	TGCTGAAGCT [G/C] TTTCGGGCCCT	S G C L L
G4750u1	WIAF-14116	HT48417	CYB5, cytochrome b-5	TGAAGTACTA [C/T] ACCCTAGAGG	S C T Y Y
G4751u1	WIAF-13770	HT1285	UQCRC2, ubiquinol-cytochrome c reductase core protein II	AGAAATTTCGT [C/A] GTTGGGAAGT	M C A R S
G4788u1	WIAF-13931	HT28249	desmocollin 3	CTGTTGATCC [T/C] GATGAACTGT	S T C P P
G4788u2	WIAF-13933	HT28249	desmocollin 3	TGGATTCAA [G/T] AATATAACCCT	N G T E *
G4788u3	WIAF-13945	HT28249	desmocollin 3	ACACTTAATC [G/A] GAGTGCGACA	S G A S S
G479u1	WIAF-12567	U36310	GPD2, glycerol-3-phosphate dehydrogenase 2 (mitochondrial)	GGAAACTGC [A/G] TGTCCTATTG	M A G T R S
G479u2	WIAF-12574	U36310	GPD2, glycerol-3-phosphate dehydrogenase 2 (mitochondrial)	CTGGCAAAAG [G/T] TGTCCTATTG	M G T R S
G479u3	WIAF-12575	U36310	GPD2, glycerol-3-phosphate dehydrogenase 2 (mitochondrial)	GTATTTCT [T/C] CTTACCCCTGG	M T C F S
G480u1	WIAF-12175	HT336	GRB2, growth factor receptor-bound protein 2	ATGAAACCA [C/A] ATCCGGGGTT	M C A H N
G481u1	WIAF-13985	HT9576	EYAI, eyes absent (Drosophila) homolog 1	CCCTGGCACCA [T/C] GCCTTGGAAC	S T C H H
G482u1	WIAF-12181	J04501	GYS1, glycogen synthase 1 (muscle)	CTGACGTCTT [T/C] CTGGAGGCAT	S T C F F

G482u2	WIAF-12195	J04501	1406	GSY1, glycogen synthase 1 (muscle)	CCTTCGGAC [A/G] TGAACAAAGAT	M A G M V
G4827u1	WIAF-14177	HT97477	68	elongation	CGAGCTGGCC [A/G] TATGGTGT	M A G H R
G483a1	WIAF-12113	HT4341	1850	GSY2	TGACAGCAT [G/T] CC2GACACCT	M G T A S
G483u2	WIAF-12148	HT4341	1130	GSY2	GTTCCTATT [A/C] TGCTGCCAA	M A C M L
G483u3	WIAF-12149	HT4341	880	GSY2	GCTTGAATGT [T/G] AACAAATT	S T G V V
G483u4	WIAF-12150	HT4341	1115	GSY2	CATCAAGTG [G/A] TGGTGT	M G A V M
G483u5	WIAF-12156	HT4341	1230	GSY2	GAAAGTTG [G/A] AAAAACCT	M G A G E
G483u6	WIAF-12159	HT4341	2033	GSY2	TGAGAGATAAC [G/A] ATCGGAGA	M G A D N
G483u7	WIAF-12160	HT4341	1836	GSY2	TACTTAGCCA [G/C] ATATTACCG	M G C R T
G483u8	WIAF-12161	HT4341	1678	GSY2	CTTACGGTAT [T/C] TAGATGTTG	S T C I I
G483u9	WIAF-12177	HT4341	790	GSY2	GGCTCAGCT [G/C] TTGACACGG	S G C V V
G483u10	WIAF-12188	HT4341	1728	GSY2	TGCAATCAGC [T/C] GACTAAGTT	M T C L P
G484u1	WIAF-12151	HT5111	487	GSY3	CATCAAAGTG [A/G] TTGCAATGG	M A G I V
G484u2	WIAF-12187	HT5111	1141	GSY3	AACCCGGAA [C/T] AAATCCGAGA	N C T Q *
G489u1	WIAF-12152	HT2607	1181	IRS1, insulin receptor substrate	AGAAAGTGGC [G/A] GCACAAATCG	M G A R Q
G489u2	WIAF-12184	HT2607	1031	IRS1, insulin receptor substrate	ATGGCGAGCC [C/T] TCCGGAGAC	M C T P L
G492a1	WIAF-13345	I08603	307	MC4R, melanocortin 4 receptor	AGAAACCATT [A/G] TCATCACCCCT	M A G I V
G493u1	WIAF-12154	X67594	346	MC1R, melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor)	CGGGCTGGTG [G/T] TGGCACCAT	M G T V L
G493u2	WIAF-12167	X67594	646	MC1R, melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor)	GACCCCTGGCG [C/T] GGCGCGGGCA	M C T R W
G493u3	WIAF-12170	X67594	1110	MC1R, melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor)	AGGTGCTGAC [A/G] TGCTCTGGT	S A G T T
G493u4	WIAF-12186	X67594	442	MC1R, melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor)	CGGGAGGAAAC [G/T] TGCTGGAGAC	M G T V L
G498u1	WIAF-11809	J04127	1305	CYP19, cytochrome P450, subfamily XIX (aromatization of androgens)	CTTATAGSTA [C/T] TTTCAAGCCAT	S C T Y Y

G498u2	WIAF-11810	J04127	CYP19, cytochrome P450, subfamily XIX (aromatization of androgens)	TGAAAGCCAT [C/T] CTCGTTAACAC	S C T I I
G498u3	WIAF-11811	J04127	CYP19, cytochrome P450, subfamily XIX (aromatization of androgens)	CGATTCCACG [T/C] GAAGACATTG	M T C V A
G498u4	WIAF-11838	J04127	CYP19, cytochrome P450, subfamily XIX (aromatization of androgens)	ATTCGGTGAGA [G/A] AGACATTAAG	M G A R K
G498u5	WIAF-11800	J04127	CYP19, cytochrome P450, subfamily XIX (aromatization of androgens)	ATGGCAAAGC [A/G] CCCTTAATGT	M A G H R
G499u1	WIAF-11785	HT1439	1001 ESRL, estrogen receptor 1	TCCCTGCCAC [A/G] GTCTGAGAAGC	S A G T T
G499u2	WIAF-11801	HT1439	2142 ESRL, estrogen receptor 1	CCCCTGAAACC [G/A] TCGGAGCTC	M G A R H
G500u1	WIAF-11803	X99101	443 ESRL, estrogen receptor 1	CATGATCAGC [T/C] GGCCCAAGAA	M T C W R
G500u2	WIAF-11816	X99101	793 ESRL, estrogen receptor 1	GGAAAGTGTAA [C/T] GAAGTGGGAA	S C T Y Y
G500u3	WIAF-11817	X99101	489 ESRL, estrogen receptor 1	AGGCGCTGCCG [A/G] CTTCGGAAACT	S A G R R
G505u1	WIAF-11824	HT1113	474 ESRL, estrogen receptor 1	GCTTTGAAAGG [G/A] CTATAGCATG	M G A G D
G505u2	WIAF-11827	HT1113	1063 PRLR, prolactin receptor	GCAACATCAA [G/A] CAAGTCAGG	M G A S N
G505u3	WIAF-11787	HT1113	2083 PRLR, prolactin receptor	GAGGACATAC [A/G] TCTATGATGT	M A G I V
G505u4	WIAF-11802	HT1113	582 PRLR, prolactin receptor	CCCTGTGAA [A/C] TTGGATTAAGA	M A C I L
			SRD5A1, steroid-5-alpha-reductase, alpha polypeptide 1 (3-oxo-5 alpha-steroid delta 4-dehydrogenase alpha 1)	CACTGTTGGC [A/G] TGTCACATGG	S A G A A
G509u1	WIAF-11789	M32313	582 regulatory protein	CCAATGTCAA [G/A] GAGATGAAAG	S C A K K
G510a1	WIAF-13348	UL7280	STAR, steroidogenic acute	CCAATGTGAT [T/C] GTGGAGGGAGT	S T C I I
G520u1	WIAF-13507	D31770	517 II	CTTATTTCCTC [G/A] GAGATGAAAG	S G A P P
G520u2	WIAF-13532	D31770	ACVR2, activin A receptor, type II	CAGCTTGCAAT [T/G] GCTGAGCTTG	M T G I M
G520u3	WIAF-13533	D31770	ACVR2, activin A receptor, type II	CTGACTTTGG [G/C] TTGGCCCTAA	S G C G G
G520u4	WIAF-13534	D31770	ACVR2, activin A receptor, type II	TCTCTTGAA [T/C] GAACTTGTC	S T C N N
G523u1	WIAF-12155	HT4996	538 OXTR, oxytocin receptor	TGAGGGAA [C/T] GCGTGTGTC	S C T N N

G523u2	WIAF-12180	HT4996	1057	OXTR, oxytocin receptor	TCTGGAGAA [C/T] TTGCGGCTCA	S C T N N
G524a1	WIAF-13349	L05144	190	PKKL, phosphoenolpyruvate carboxykinase 1 (soluble)	TGGACAGCT [G/A] CCCAGGCAG	S G A L L
G528u1	WIAF-11831	V00572	988	PGKL, phosphoglycerate kinase 1	AACCCACTGT [G/C] GCTTCCTGCCA	S G C V V
G53u1	WIAF-10307	HT0508	723	DNA repair protein XRCC1	CCAGCGACCC [G/A] GCAGGACCTA	S G A P P
G53u2	WIAF-10308	HT0508	746	DNA repair protein XRCC1	TATGAGCTG [C/T] TACCCCTCCAG	M C T A V
G53u3	WIAF-10309	HT0508	1884	DNA repair protein XRCC1	GGGATCCCG [C/T] TTGAGGAGG	S C T S S
G53u4	WIAF-10362	HT0508	425	DNA repair protein XRCC1	AACCCAAACC [G/A] CGTTTCGATG	M G A R H
G534a1	WIAF-13310	U28281	1284	SCTR, secretin receptor	GCTTCCTCAA [T/C] GGGGAGGTGC	S T C N N
G534a2	WIAF-13311	U28281	1404	SCTR, secretin receptor	AGGAGGCCA [G/A] GGCACTGCA	S G A Q Q
G535u1	WIAF-12157	HT5001	1158	SHC1	ATGCTCTTCG [G/C] GTGCCTCCAC	S G C R R
G535u2	WIAF-12196	HT5001	774	SHC1	ATAGGAGGA [G/A] GAAGGCCAC	S G A E E
G536u1	WIAF-13923	M20747		SLC2A4, solute carrier family 2 (facilitated glucose transporter), member 4	GCCTGGCCA [C/T] GCTGCTGCTC	S C T N N
G538u1	WIAF-11812	M55531	438	SLC2A5, solute carrier family 2 (facilitated Glucose transporter), member 5	GCACAGACT [C/T] GCCACATCAT	S C T V V
G538u2	WIAF-11813	M55531	124	SLC2A5, solute carrier family 2 (facilitated glucose transporter), member 5	GCACGTTGTG [C/T] TTGGCCCTGGC	M C T V V
G538u3	WIAF-11791	M55531	816	SLC2A5, solute carrier family 2 (facilitated glucose transporter), member 5	ACAGGGAGGT [G/A] GCCCAAGATCC	S G A V V
G539u1	WIAF-12158	K03195	224	Human (HepG2) glucose transporter mRNA, complete cds.	TCATGGCTGGC [T/C] GTGGGAGGAG	S T C A A
G539u2	WIAF-12191	K03195	1244	Human (HepG2) glucose transporter gene mRNA, complete cds.	CCATCGGGCT [A/G] GCACTCCTGG	S A G L L
G540a1	WIAF-12114	HT960	1100	SOS1	ATGAAAGATC [A,C] AGAACGCAAG	M A C Q P
G540u2	WIAF-12165	HT960	933	SOS1	ATGATCGTTT [C/T] CTTAATGCTAGT	S C T F F
G540u3	WIAF-12178	HT960	399	SOS1	TAGTAGCTAGT [C/T] TTAGAAATACA	S C T V V
G540u4	WIAF-12193	HT960	195	SOS1	CTCAGCCCCG [A,C] AGTGCCTTCAG	S A C R R
G540u5	WIAF-12197	HT960	1329	SOS1	GTGTTAAATGA [A,G] TTTTATAATGG	S A G E E
G540u6	WIAF-12198	HT960	1339	SOS1	ATTATAATG [G/A] AAGGAACTCT	M G A E K
G543a1	WIAF-13312	J003206	1373	SST, somatostatin	AAGCAGGAAAC [T/C] GGCCAACTAC	M T C L P

G543a2	WIAF-13313	J00306	1603	SST, somatostatin	AGTATTGTCCT[A/G]TATCAGACT	-	A	G	-	-
G544u1	WIAF-12174	HT27489	982	SUR, sulfonylurea receptor (hyperinsulinemia)	CCATTGACAT[G/C]GCCACGGAAA	M	G	C	M	I
G546u1	WIAF-13618	HT225	426	TKT, transketolase (Wernicke-Korsakoff syndrome)	GCTACATTTGC[C/T]GAGCAGAAC	S	C	T	A	A
G551u1	WIAF-11709	HT1118	257	TNFRSF1B, tumor necrosis factor receptor superfamily, member 1B	GCTGCAGCAA[A/G]TGCTCGCCGG	S	A	G	K	K
G551u2	WIAF-11710	HT1118	449	TNFRSF1B, tumor necrosis factor receptor superfamily, member 1B	TCTGCACCTG[C/T]AGGCCGGGT	S	C	T	C	C
G551u3	WIAF-11719	HT1118	648	TNFRSF1B, tumor necrosis factor receptor superfamily, member 1B	GATCTGAAAC[G/A]TGGTGGCCAT	M	G	A	V	M
G551u4	WIAF-11673	HT1118	676	TNFRSF1B, tumor necrosis factor receptor superfamily, member 1B	AATGCAAGCA[T/G]GGATGCACTC	M	T	G	M	R
G551u5	WIAF-11720	HT1118	808	TNFRSF1B, tumor necrosis factor receptor superfamily, member 1B	CCAAGCACCT[C/T]CTTCCTGGCTC	M	C	T	S	F
G552u1	WIAF-12229	HT5108	384	TRAP3	GCGCTGCCC[G/A]CTCATGCTGA	S	G	A	P	P
G55u1	WIAF-12211	U94592	478	UCP2, uncoupling protein 2 (mitochondrial, proton carrier)	CGCGCTACAG[T/C]CAGGCCCGAG	M	T	C	V	A
G556u1	WIAF-11804	AF001787	480	UCP2, uncoupling protein 2 (mitochondrial, proton carrier)	TGGGCCCTTA[T/C]GACTCGCTCA	S	T	C	Y	Y
G556u2	WIAF-11805	AF001787	563	UCP2, uncoupling protein 2 (mitochondrial, proton carrier)	TGCACCAZACAG[G/A]AGCCATGGCG	M	G	A	G	E
G556u3	WIAF-11823	AF001787	1113	UCP2, uncoupling protein 2 (mitochondrial, proton carrier)	TACGGGAATC[A/G]CCGGTTTGAA	S	A	G	S	S
G556u4	WIAF-11782	AF001787	386	UCP2, uncoupling protein 2 (mitochondrial, proton carrier)	ATCCTGACCA[T/C]GGTGGGACT	M	T	C	M	T
G561a1	WIAF-12111	HT1176	2430	IDE, insulin-degrading enzyme	ACTGTGGCAT[C/A]GAGATTAATCT	S	C	A	I	I
G561u2	WIAF-12222	HT1176	3099	IDE, insulin-degrading enzyme	ATATTAACCT[C/G]ATGGCTCCAA	M	C	G	F	L

				tumor necrosis factor receptor type 1 associated protein	CCTGTAGTGA [A/C] TCGGCCCTG	M	A	C	N	T
G562u1	WIAF-12223	HT27503	680	tumor necrosis factor receptor						
G562u2	WIAF-12224	HT27503	900	tumor necrosis factor receptor type 1 associated protein	CGCTGCAGC [C/A] CTGGTGAGG	S	C	A	R	R
G573u1	WIAF-12199	HT28094	469	SSTR1, somatostatin receptor 1	GGACCGCTAC [G/C] TGGCCCTGGT	M	G	C	V	L
G573u2	WIAF-12208	HT28094	480	SSTR1, somatostatin receptor 1	TGGCCGTGGT [G/A] CATTCCCATCA	S	G	A	V	V
G573u3	WIAF-12209	HT28094	879	SSTR1, somatostatin receptor 1	TGGAGCTGGT [T/C] AACGTGTTTG	S	T	C	V	V
G574u1	WIAF-11822	HT4058	1054	SSTR5, somatostatin receptor 5	GGCAAGGAGC [C/T] GGCTCCAGAC	M	C	T	P	L
G575u1	WIAF-12200	HT28095	99	SSTR3, somatostatin receptor 3	ACGTGTGGG [G/A] GGCCCAAAGCC	S	G	A	A	A
G575u2	WIAF-12217	HT28095	453	SSTR3, somatostatin receptor 3	CCACCCGCTC [G/A] GCCCCGTC	S	G	A	S	S
G585u1	WIAF-12204	HT1022	1133	PYGL, phosphorylase, glycogen; liver (Hers disease, glycogen storage disease type VI)	AGCTGAATGA [T/C] ACTCACCTC	S	T	C	D	D
G585u2	WIAF-12205	HT1022	1988	PYGL, phosphorylase, glycogen; liver (Hers disease, glycogen storage disease type VI)	AGCTGATCAC [T/C] TCAGTGGCAG	S	T	C	T	T
G585u3	WIAF-12225	HT1022	1883	PYGL, phosphorylase, glycogen; liver (Hers disease, glycogen storage disease type VI)	TGTACAAACCG [C/T] ATTAGAAAG	S	C	T	R	R
G585u4	WIAF-12226	HT1022	2037	PYGL, phosphorylase, glycogen; liver (Hers disease, glycogen storage disease type VI)	AAGCAAGTTG [A/G] AAGTCATCTT	M	A	G	K	E
G585u5	WIAF-12231	HT1022	1387	PYGL, phosphorylase, glycogen; liver (Hers disease, glycogen storage disease type VI)	CATGTGGACC [C/G] TCTGAAAGG	M	C	G	P	R
G586a1	WIAF-12112	HT1878	2410	PFKM, phosphofructokinase, muscle	CCGGGAAAC [T/G] CCCGTCTAAA	S	T	G	A	A

G586u2	WIAF-12206	HT1878	375	PFKM, phosphofructokinase,	muscle	GGACGACTCC [G/A] AGCTGCCAAC	M	G	A	R	Q
G586u3	WIAF-12207	HT1878	322	PFKM, phosphofructokinase,	muscle	TGGAGGGCAC [G/A] GTGATTGGAA	S	G	A	T	T
G586u4	WIAF-12227	HT1878	334	PFKM, phosphofructokinase,	muscle	TGATTGGAAAG [T/C] GCCCGGTGCA	S	T	C	S	S
G586u5	WIAF-12228	HT1878	408	PFKM, phosphofructokinase,	muscle	CGTGGATCA [C/G] CAAATCTCTGT	M	C	G	T	S
G586u6	WIAF-12235	HT1878	717	PFKM, phosphofructokinase,	muscle	CACTGCGGAT [A/G] CCTGGCCCTT	M	A	G	Y	C
G587u1	WIAF-12615	HT3847	366	phosphofructokinase,	liver	ATGGCTAGCC [T/C] ACAGGTGCCA	S	T	C	L	L
G589u1	WIAF-12210	I39211	1327	CPT1A, carnitine palmitoyltransferase I,	liver	CAGCGTTCTT [C/T] GTCAGGTAG	S	C	T	F	F
G589u2	WIAF-12215	I39211	2080	CPT1A, carnitine palmitoyltransferase I,	liver	AATATCTCGC [T/C] GTGGAGGCC	S	T	C	A	A
G589u3	WIAF-12216	I39211	679	CPT1A, carnitine palmitoyltransferase I,	liver	ACTTCAAACG [G/T] ATGAGGCCAC	S	G	T	R	R
G589u4	WIAF-12218	I39211	1844	CPT1A, carnitine palmitoyltransferase I,	liver	CCTCACTAAC [G/C] AGGCCCTCAT	M	G	C	E	Q
G592u1	WIAF-11814	X96586	1089	NSMAF, (N-SMase) factor	NSMAF, neutral sphingomyelinase (N-SMase) activation associated factor	TCCGGATCT [C/T] AGTAAGCCAG	S	C	T	L	L
G592u2	WIAF-11815	X96586	2020	NSMAF, (N-SMase) factor	NSMAF, neutral sphingomyelinase (N-SMase) activation associated factor	AGTATATCA [T/G] TTTCAAAATAT	M	T	G	F	V
G592u3	WIAF-11834	X96586	1673	NSMAF, (N-SMase) activation associated factor	NSMAF, neutral sphingomyelinase (N-SMase) activation associated factor	GTAGCCATGC [T/C] TAGGCCAATC	M	T	C	L	P

G592u4	WIAF-11784	X96586		NSMAF, neutral sphingomyelinase (N-SMase) activation associated factor	CACGAGCACT [A/G] TAAAATCCAC	M A G Y C
G592u5	WIAF-11798	X96586	1889	NSMAF, neutral sphingomyelinase (N-SMase) activation associated factor	CCATGCTTAC [G/A] CAAATCTGG	S G A T T
G592u6	WIAF-11799	X96586	1677	NSMAF, neutral sphingomyelinase (N-SMase) activation associated factor	TGCCATTCA [G/C] GATTGTATGT	M G C G A
G592a7	WIAF-13156	X96586	2429	NSMAF, neutral sphingomyelinase (N-SMase) activation associated factor	ATTCCTGCATC [G/A] TGGGACTCTA	S G A S S
G594u1	WIAF-10065	HT3921	1153	annexin V, alt. transcript 2	TTTGCTGAAATC [T/A] ATTCGAAAGTA	S T A S S
G594u2	WIAF-10098	HT3921	567	annexin V, alt. transcript 2	CGAAAGTAAATG [C/T] TCAGCCAG	M C T A V
G594u3	WIAF-10099	HT3921	774	annexin V, alt. transcript 2	ATTGCTTCAA [G/C] GACACCTGAA	M G C R T
G594a4	WIAF-10505	HT3921	424	annexin V, alt. transcript 2	GAGTAGTCGC [C/T] ATGGCACAGG	- C T - -
G594a5	WIAF-13123	HT3921	571	annexin V, alt. transcript 2	GTAATGCTCA [G/C] CGCCAGGAAA	M G C Q H
G595u1	WIAF-12203	HT27983	1008	NRIP1, nuclear receptor interacting protein 1	TGCAAGATTA [C/T] AGGTGTGTC	N C T Q *
G595u2	WIAF-12220	HT27983	785	NRIP1, nuclear receptor interacting protein 1	CCCTCAGTCA [T/C] GATTCTTTAA	S T C H H
G595u3	WIAF-12232	HT27983	1231	NRIP1, nuclear receptor interacting protein 1	GTTCGGCAATT [A/T] CCAGCCCCA	M A T Y F
G595u4	WIAF-12261	HT27983	2048	NRIP1, nuclear receptor interacting protein 1	GCACTACTCA [G/A] TCTGAAAGC	S G A Q Q
G595u5	WIAF-12274	HT27983	2376	NRIP1, nuclear receptor interacting protein 1	TCTGAAACCA [G/T] GGCTTCTGG	M G T G W
G595u6	WIAF-12275	HT27983	3498	NRIP1, nuclear receptor interacting protein 1	ACTATATTAC [A/G] TGCTTCAAAA	M A G M V
G595u7	WIAF-12276	HT27983	3671	NRIP1, nuclear receptor interacting protein 1	ACAATAGCCA [T/C] ATGGGAATA	S T C H H
G595u8	WIAF-12294	HT27983	2020	NRIP1, nuclear receptor interacting protein 1	ATCAAATGGA [A/G] TTCCCCACCA	M A G N S

G595u9	WIAF-12295	HT27983	NRIP1, nuclear receptor interacting protein 1	ATTTGTCCCC [G/A] CACAGAACTA	S G A P P
G596u1	WIAF-10144	HT3537	3299 PC, pyruvate carboxylase	TGGGTCCAT [C/T] TGGTCAAGG	S C T I I
G596u2	WIAF-10158	HT3537	2662 PC, pyruvate carboxylase	ACCAACTGCA/C] CTGCCAGGCC	M A C H P
G596u3	WIAF-10159	HT3537	2156 PC, pyruvate carboxylase	CCATCTCAT [C/A] ACGGCCAGG	N C A Y *
G598a1	WIAF-12118	HT48666	HERC1, hect (homologous to the E6 AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl) -like domain (RLD) 1	GGGACCTATG [C/T] TGATAAACTG	M C T A V
G598u2	WIAF-12236	HT48666	HERC1, hect (homologous to the E6 AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl) -like domain (RLD) 1	CCCTTAATA [T/C] TAGGAGTAAAG	S T C L L
G598u3	WIAF-12237	HT48666	HERC1, hect (homologous to the E6 AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl) -like domain (RLD) 1	GGTAATGAAG [G/T] CACGTGTGTT	M G T G V
G598u4	WIAF-12240	HT48666	HERC1, hect (homologous to the E6 AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl) -like domain (RLD) 1	GTACCTTTGT [C/T] ATCCAGGCCA	S C T V V
G598u5	WIAF-12241	HT48666	HERC1, hect (homologous to the E6 AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl) -like domain (RLD) 1	CCAGGCAGAT [C/G] GAGGCCCTAC	M C G T M
G598u6	WIAF-12244	HT48666	HERC1, hect (homologous to the E6 AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl) -like domain (RLD) 1	GAGTAATCAT [T/A] GAAGATGTGG	S T A I I
G598u7	WIAF-12245	HT48666	HERC1, hect (homologous to the E6 AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl) -like domain (RLD) 1	TCCAATAATC [A/T] GTCAAATTAA	M A T Q L

G598u8	WIAF-122250	HT48666	5854 (RLD) 1	HERC1, hect (homologous to the E6 AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl)-like domain	TTCAAAAGCA [A/T] TTCCCATACAA	M A T I F
G598u9	WIAF-122251	HT48666	6754 (RLD) 1	HERC1, hect (homologous to the E6 AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl)-like domain	TATTCAGCTC [G/A] TCCGGTATCCCT	M G A V I
G598u10	WIAF-122252	HT48666	7635 (RLD) 1	HERC1, hect (homologous to the E6 AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl)-like domain	ATCTTTTACCT [C/T] GGTGCTATGA	S C T L L
G598u11	WIAF-122254	HT48666	9189 (RLD) 1	HERC1, hect (homologous to the E6 AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl)-like domain	GTGGAAATCC [A/G] TACTACTGT	S A G P P
G598u12	WIAF-122255	HT48666	10119 (RLD) 1	HERC1, hect (homologous to the E6 AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl)-like domain	TTGTGGCATT [G/C] CTAGCAGACA	M G C L F
G598u13	WIAF-122257	HT48666	11109 (RLD) 1	HERC1, hect (homologous to the E6 AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl)-like domain	ATCCATCTAT [T/C] GTAAATGGCA	S T C I I
G598u14	WIAF-122258	HT48666	13513 (RLD) 1	HERC1, hect (homologous to the E6 AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl)-like domain	CTATGGACCT [C/T] AGATACTGT	N C T Q *
G598u15	WIAF-122259	HT48666	13697 (RLD) 1	HERC1, hect (homologous to the E6 AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl)-like domain	ACCATCACAG [A/G] GATGTCGCCAG	M A G E G

G598u16	WIAF-12265	HT48666	1098 (RLD) 1	HERC1, hec (homologous to the E6-AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl)-like domain	CCCTTTACCA [G/A] GCAGCATTAT	S G A E E
G598u17	WIAF-12272	HT48666	6079 (RLD) 1	HERC1, hec (homologous to the E6-AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl)-like domain	TATGTGGGAG [A/G] CACCCATTGC	M A G T A
G598u18	WIAF-12273	HT48666	9551 (RLD) 1	HERC1, hec (homologous to the E6-AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl)-like domain	AGAGCTCT [C/T] TGGGAGAAATA	M C T S F
G598u19	WIAF-12277	HT48666	666 (RLD) 1	HERC1, hec (homologous to the E6-AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl)-like domain	GTCCTTGCAA [C/T] GATGTGATTG	S C T N N
G598u20	WIAF-12278	HT48666	882 (RLD) 1	HERC1, hec (homologous to the E6-AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl)-like domain	GCTCATTEGG [A/G] TATCTCTCTTG	S A G R R
G598u21	WIAF-12279	HT48666	893 (RLD) 1	HERC1, hec (homologous to the E6-AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl)-like domain	TATCTCTTG [A/T] ATGGATAGAA	M A T E V
G598u22	WIAF-12280	HT48666	13276 (RLD) 1	HERC1, hec (homologous to the E6-AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl)-like domain	AGAAGTCAGC [A/G] TTTCACACGGT	M A G I V
G598u23	WIAF-12283	HT48666	6519 (RLD) 1	HERC1, hec (homologous to the E6-AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl)-like domain	CTCTGTGTGT [A/T] GACATGGAAAG	M A T L F

G598u24	WIAF-12284	HT48666	8386	HERC1, hect (homologous to the E6 AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl)-like domain (RLD) 1	GGGGTTCTCT [C/T] TTGGGAGAT	M C T L F
G598u25	WIAF-12286	HT48666	10266	HERC1, hect (homologous to the E6 AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl)-like domain (RLD) 1	CAGCTCAGGA [A/T] CTGGGGCA	M A T Q H
G598u26	WIAF-12287	HT48666	10099	HERC1, hect (homologous to the E6 AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl)-like domain (RLD) 1	CTTGTGTATA [A/G] CACAGGCCCT	M A G T A
G598u27	WIAF-12289	HT48666	11835	HERC1, hect (homologous to the E6 AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl)-like domain (RLD) 1	AQAATGTCT [G/C] CCTGACCCCTG	S G C L L
G598u28	WIAF-12290	HT48666	12689	HERC1, hect (homologous to the E6 AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl)-like domain (RLD) 1	TAAACCCACA [C/T] TTGGGAGTC	M C T T I
G598u29	WIAF-12291	HT48666	14655	HERC1, hect (homologous to the E6 AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl)-like domain (RLD) 1	ACGTGGACAA [C/T] GCCGAGGCCT	S C T N N
G598u30	WIAF-12296	HT48666	393	HERC1, hect (homologous to the E6 AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl)-like domain (RLD) 1	ATTCCCCATT [T/C] GCCGGGGCAC	S T C F F
G598u31	WIAF-12297	HT48666	479	HERC1, hect (homologous to the E6 AP (UBE3A) carboxyl terminus) domain and RCC1 (CHCl)-like domain (RLD) 1	GCGAAGGTGA [A/G] GCAGCAGCAG	M A G K R

G598u32	WIAF-12298	HT48666	1197	HERC1, hect (homologous to the E6 AP (UBE3A) carboxyl terminus domain and RCC1 (CHCl)-like domain	ATGCTCCCAT [T/C] GTCCTCCGAA	S T C I I
G598u33	WIAF-12300	HT48666	3595	HERC1, hect (homologous to the E6 AP (UBE3A) carboxyl terminus domain and RCC1 (CHCl)-like domain	TCAGAGGAA [C/T] AGGACACTGC	N C T Q *
G598u34	WIAF-12301	HT48666	3661	HERC1, hect (homologous to the E6 AP (UBE3A) carboxyl terminus domain and RCC1 (CHCl)-like domain	CACTCCCTCAA [T/C] TGGATTAATG	S T C L L
G601u1	WIAF-12246	HT27734	106	PRKMK5, protein kinase, mitogen-activated, kinase 5 (MAP kinase 5)	TGGAGAACCA [G/A] GTGGCTGGTAA	S G A Q Q
G601u2	WIAF-12247	HT27734	351	PRKMK5, protein kinase, mitogen-activated, kinase 5 (MAP kinase 5)	GTAATGGAC [A/G] GTAAATTAGAG	M A G Q R
G601u3	WIAF-12292	HT27734	617	PRKMK5, protein kinase, mitogen-activated, kinase 5 (MAP kinase 5)	AGCATATCAT [G/C] TCCCCGAGTCG	M G C V L
G603u1	WIAF-12248	HT4291	1336	mitogen-activated protein (MAP) kinase p38	ATGTCATCAGC [T/C] TTGTGCCCCACC	M T C F L
G603u2	WIAF-12281	HT4291	1230	mitogen-activated protein (MAP) kinase p38	CTCAGTACCA [C/T] GATCCGTGATG	S C T H H
G610u1	WIAF-12249	HT48690	1012	protein kinase, mitogen-activated, p38Beta (MAP kinase p38Beta)	CCGAGGCCATA [T/C] GATCGAGGCG	S T C Y Y
G610u2	WIAF-12263	HT48690	799	protein kinase, mitogen-activated, p38Beta (MAP kinase p38Beta)	AAATCTCCTC [G/A] GAACACGCC	S G A S S
G610u3	WIAF-12264	HT48690	848	protein kinase, mitogen-activated, p38Beta (MAP kinase p38Beta)	GCCCCAGAAG [G/A] ACCTGAGCAG	M G A D N
G610u4	WIAF-12282	HT48690	439	protein kinase, mitogen-activated, p38Beta (MAP kinase p38Beta)	TCCTGGTTAA [C/T] CAGCTGCTGC	S C T Y Y

G612u1	WIAF-12344	HT1436	RAF1, v-raf-1 murine leukemia viral oncogene homolog 1	TTGGCATGCA [A/G] AGAACATCAT	M A G K E
G614u1	WIAF-12267	HT321	BRAF, v-raf murine sarcoma viral oncogene homolog B1	GACAGTCTAA [A/G] GAAACCACTG	M A G K R
G614u2	WIAF-12268	HT321	BRAF, v-raf murine sarcoma viral oncogene homolog B1	CCAAACAGAG [G/A] ATTTTAGTCT	M G A D N
G614u3	WIAF-12299	HT321	BRAF, v-raf murine sarcoma viral oncogene homolog B1	AGGAAGAGGC [G/A] TCCTTGGCAG	S G A A A
G616u1	WIAF-12253	HT48746	TRAF-interacting protein (I-TRAF)	AAGAAGACAA [G/T] AGGTTTCTTC	N G T E *
G616u2	WIAF-12269	HT48746	TRAF-interacting protein (I-TRAF)	GCATATACTC [C/G] GAGTAGTGTGA	M C G R G
G616u3	WIAF-12285	HT48746	TRAF-interacting protein (I-TRAF)	ATAAACAATT [T/C] GGCTGTGTC	S T C Y Y
G616u4	WIAF-12288	HT48746	TRAF-interacting protein (I-TRAF)	TGAAATTCTAG [G/A] GAATTGACCC	M G A G R
G617u1	WIAF-12256	HT1614	PPPICA, protein phosphatase 1, 52 catalytic subunit, alpha isoform	GAAGCTAAC [C/T] TGGAATCGAT	S C T L L
G617u2	WIAF-12270	HT1614	PPPICA, protein phosphatase 1, 792 catalytic subunit, alpha isoform	AGAGCGCTA [C/T] GAGTTCTTTC	S C T Y Y
G618u1	WIAF-12238	HT27508	protein phosphatase, 2A B56-alpha subunit	CATTCAAACCA [A/C] CACAGTTCAA	M A C T P
G618u2	WIAF-12271	HT27508	protein phosphatase, 2A B56-alpha subunit	ATCAGAAATT [C/T] GTACAAACAGC	S C T F F
G62u1	WIAF-10369	HT0855	ERCC6, excision repair cross-complementing rodent repair deficiency, complementation group 6	AGGAGTACCT [G/C] TCCTTTCGTT	S G C L L
G62u2	WIAF-10370	HT0855	ERCC6, excision repair cross-complementing rodent repair deficiency, complementation group 6	AAAACGTCTT [T/C] TTGAAAGGAA	M T C F L
G62u3	WIAF-10428	HT0855	ERCC6, excision repair cross-complementing rodent repair deficiency, complementation group 6	ACCACGGCAC [C/T] GCAGGCCGG	M C T T M

G62u4	WIAF-10430	HT0855	3368	ERCC6, excision repair cross-complementing rodent repair deficiency, complementation group 6	TGACCTTCAC [A/G] TGAGTAGTAA	M A G M V
G62u5	WIAF-10451	HT0855	1376	ERCC6, excision repair cross-complementing rodent repair deficiency, complementation group 6	TTCTGGGAA [G/A] AAGCTGAAGC	M G A E K
G62u6	WIAF-10452	HT0855	3716	ERCC6, excision repair cross-complementing rodent repair deficiency, complementation group 6	TAAGCATATGC [A/G] GAGACGCCAA	M A G R G
G62u7	WIAF-10453	HT0855	3967	ERCC6, excision repair cross-complementing rodent repair deficiency, complementation group 6	CCCTGAAAAGC [A/C] CTGAGGGCTCT	S A C A A
G62u8	WIAF-10454	HT0855	4016	ERCC6, excision repair cross-complementing rodent repair deficiency, complementation group 6	TGGTGTTCCTC [A/G] CCTGAGCTGG	M A G T A
G62u9	WIAF-10455	HT0855	3979	ERCC6, excision repair cross-complementing rodent repair deficiency, complementation group 6	TGAGGCTCTC [T/C] CGTCAAGGGT	S T C S S
G62u10	WIAF-10456	HT0855	3729	ERCC6, excision repair cross-complementing rodent repair deficiency, complementation group 6	GAGGCCAACT [T/G] TGAAGGAACT	M T G F C
G62u11	WIAF-10476	HT0855	1275	ERCC6, excision repair cross-complementing rodent repair deficiency, complementation group 6	TCTGGAGATG [G/A] TACTGACTAT	M G A G D
G62u12	WIAF-10477	HT0855	2017	ERCC6, excision repair cross-complementing rodent repair deficiency, complementation group 6	TGATCTTGGAC [C/T] GAAGGCACACA	S C T D D
G62u13	WIAF-10479	HT0855	3265	ERCC6, excision repair cross-complementing rodent repair deficiency, complementation group 6	CTAACATATC [T/C] GTAAATGATG	S T C S S

G62u14	WIAF-10481	HT0855		ERCC6, excision repair cross-complementing rodent repair deficiency, complementation group 6	GGCACCTGC [A/G] GGAAGCTTCT	M A G Q R
G620a1	WIAF-12116	HT1943	1256	PPP2CB, protein phosphatase 2 (formerly 2A), catalytic subunit, beta isoform	TATCATGAA [T/A] TAGATGACAC	M T A L I
G620a2	WIAF-12117	HT1943	1326	PPP2CB, protein phosphatase 2 (formerly 2A), catalytic subunit, beta isoform	CCTCATGTTA [C/G] ACGGGCCACC	M C G T R
G620u3	WIAF-12239	HT1943	819	PPP1CB, protein phosphatase 2 (formerly 2A), catalytic subunit, beta isoform	TTTATGATG [A/G] ATGTCCTCGGA	M A G E G
G623u1	WIAF-12260	HT3979	459	PPP1CB, protein phosphatase 1, catalytic subunit, beta isoform	TTCATGGACA [A/G] TATAACAGATT	S A G Q Q
G625u1	WIAF-12266	HT1961	227 B (BR 52)	PPP2R2A, protein phosphatase 2 (formerly 2A), regulatory subunit, alpha isoform	CATTCTGGAG [A/G] ATTACTAGGA	M A G E G
G628a1	WIAF-12104	HT2780	1104	PPP1CC, protein phosphatase 1, catalytic subunit, gamma isoform	AGGGGTATGA [T/A] CACAAAGCAA	M T A I N
G628a2	WIAF-12105	HT2780	973	PPP1CC, protein phosphatase 1, catalytic subunit, gamma isoform	CCAATTATTG [C/T] GGAGAGTTTG	S C T C C
G628u3	WIAF-12311	HT2780	888	PPP1CC, protein phosphatase 1, catalytic subunit, gamma isoform	GGCTTATAT [G/T] TAGAGCCAT	M G T C F
G630a1	WIAF-12103	HT5086	704	protein phosphatase 2A, 130 kDa regulatory subunit	AAAGATGGAG [A/G] TCCTGAACCTCT	M A G D G
G630a2	WIAF-12106	HT5086	1015	protein phosphatase 2A, 130 kDa regulatory subunit	CGATGGAAAC [G/T] CCCCTCCCTT	M G T A S
G630a3	WIAF-12107	HT5086	1024	protein phosphatase 2A, 130 kDa regulatory subunit	CGCCCCATCC [T/C] TTGGTTTACT	M T C F L
G630a4	WIAF-12108	HT5086	837	protein phosphatase 2A, 130 kDa regulatory subunit	ACTTAAAGGA [T/C] ATTGGAGGAG	S T C D D
G630u5	WIAF-12325	HT5086	1200	protein phosphatase 2A, 130 kDa regulatory subunit	TAAGATGTC [C/T] TTGGACATCT	S C T C C

G630u6	WIAF-12326	HT5086	2810	protein phosphatase 2A, 130 kDa	ATGGTCAAGGG [C/T] TGCCAGGGAA	M C T A V
G630u7	WIAF-12351	HT5086	512	regulatory subunit	ATTATGGCAG [C/T] AACTTACAGA	M C T A V
G630u8	WIAF-12352	HT5086	703	protein phosphatase 2A, 130 kDa	CAAAGATGCA [G/A] ATCTGAACTC	M G A D N
G630u9	WIAF-12353	HT5086	1069	regulatory subunit	ACCTTGTCT [C/T] ATAGAAACTC	M C T H Y
G634u1	WIAF-11825	X04434	2283	IGF1R, insulin-like growth factor 1 receptor	TGCAAGTGCG [C/T] AACACZCCA	S C T A A
G634u2	WIAF-11826	X04434	2279	IGF1R, insulin-like growth factor 1 receptor	GTCAATGCCAG [T/C] GGCCAAACCC	M T C V A
G634u3	WIAF-11781	X04434	1731	IGF1R, insulin-like growth factor 1 receptor	ACAAGGACCT [G/A] GAGGCCGGCA	S G A V V
G634a4	WIAF-13106	X04434	948	IGF1R, insulin-like growth factor 1 receptor	TCCACGAGG [C/A] GAGTGCATGC	S C A G G
G634a5	WIAF-13107	X04434	1089	IGF1R, insulin-like growth factor 1 receptor	CCTCTGCTCA [G/C] ATGCTCCAG	M G C Q H
G634a6	WIAF-13108	X04434	2539	IGF1R, insulin-like growth factor 1 receptor	AGAAGGAGGA [G/A] ATGACATTC	M G A D N
G634a7	WIAF-13109	X04434	2606	IGF1R, insulin-like growth factor 1 receptor	AAGTGGCGG [A/C] ACCTGAGAAT	M A C E A
G634a8	WIAF-13111	X04434	1543	IGF1R, insulin-like growth factor 1 receptor	CTTCACCACCA [A/T] CGTGGAGAA	M A T T S
G634a9	WIAF-13112	X04434	1549	IGF1R, insulin-like growth factor 1 receptor	CACCAAGTCTGA [A/G] AGAATGCGAT	M A G K E
G634a10	WIAF-13113	X04434	1596	IGF1R, insulin-like growth factor 1 receptor	CCCCCTGACTA [C/T] AGGGATCTCA	S C T Y Y
G645u1	WIAF-12332	HT5191	1127	retinoic acid-binding protein II	TCTGCGACT [C/T] TTTCAGGAGAG	M C T L F
G645u2	WIAF-12333	HT5191	1048	retinoic acid-binding protein II	AGGATTAGA [G/A] GCCTTACAGA	S G A E E
				EMR1, egg-like module containing, mucin-like, hormone receptor-like sequence 1	CAAATATCCA [T/C] GTGGACTAAA	M T C M T
G646u1	WIAF-12303	X81479	1204		TCTGCTGTG [T/G] CGCTCCATCC	M T G C W
G646u2	WIAF-12304	X81479	1919			

G646u3	WIAF-12316	X81479	590	EMR1, egf-like module containing, mucin-like, hormone receptor-like sequence 1	CTGCCAGA [G/T] CATGCCAACTT	M G T E D
G646u4	WIAF-12317	X81479	799	EMR1, egf-like module containing, mucin-like, hormone receptor-like sequence 1	GCACCAAGCA [G/A] TGGAACAGTTG	M G A S N
G646u5	WIAF-12318	X81479	558	EMR1, egf-like module containing, mucin-like, hormone receptor-like sequence 1	TGAAAGACGTG [A/G] ATGAAATGTGC	M A G N D
G646u6	WIAF-12334	X81479	207	EMR1, egf-like module containing, mucin-like, hormone receptor-like sequence 1	TTACTATGCG [A/G] CTTGCCAAACA	M A G T A
G646u7	WIAF-12335	X81479	458	EMR1, egf-like module containing, mucin-like, hormone receptor-like sequence 1	TCACCAAGCAG [G/C] GTCTGGCCCTG	M G C R S
G646u8	WIAF-12336	X81479	1308	EMR1, egf-like module containing, mucin-like, hormone receptor-like sequence 1	CTCAGCAAAAT [G/A] TCACITCCGGC	M G A V I
G646u9	WIAF-12337	X81479	1285	EMR1, egf-like module containing, mucin-like, hormone receptor-like sequence 1	AACACTGGCAT [C/T] TTTTTGGAAA	M C T S F
G646u10	WIAF-12338	X81479	2026	EMR1, egf-like module containing, mucin-like, hormone receptor-like sequence 1	GACAAACAAGA [C/T] TGGCTGGCC	M C T T M
G647u1	WIAF-12339	HT5190	174	RARA, retinoic acid receptor, alpha	TGGCTCCCTA [C/T] GCCTTCTCT	S C T Y Y
G648a1	WIAF-13332	HT0070	469	retinoic acid receptor, beta	AACGTGAGGCC [A/G] GGAGCAGCGT	- A G - -
G648a2	WIAF-13333	HT0070	532	retinoic acid receptor, beta	ATTCCTTTTA [A/G] GGTCAGAAAT	- A G - -
G650u1	WIAF-12323	X52773	862	RXRA, retinoid X receptor, alpha	CTCGCCGAAC [G/A] ACCCTGTAC	M G A D N
G650u2	WIAF-12341	X52773	102	RXRA, retinoid X receptor, alpha	TCCCTGCCGCT [C/T] GATTCTCCA	S C T L L

G650u3	WIAF-12348	X52773	673	RXRA, retinoid X receptor, alpha	GGCCATGGGG [A/G] TGAGGGGA	M A G M V
G650u4	WIAF-12349	X52773	902	RXRA, retinoid X receptor, alpha	GACAAACAGC [T/C] TTTCACCCCTG	M T C L P
G653a1	WIAF-13326	HT1458	439	RARB, retinoic acid receptor, beta	AGGAGAAAGC [T/C] CTCAAAGCAT	S T C A A
G655a1	WIAF-13327	J05252	1158	PCSK2, proprotein convertase subtilisin/kexin type 2	CCTTCAGCAA [C/T] GGAGGGAAA	S C T N N
G655a2	WIAF-13334	J05252	678	PCSK2, proprotein convertase subtilisin/kexin type 2	CCTATCCTTA [C/A] CCTCGGTACA	N C A Y *
G655a3	WIAF-13335	J05252	744	PCSK2, proprotein convertase subtilisin/kexin type 2	TTTCCTGGTC [C/T] GCCAACAAACA	S C T A A
G658u1	WIAF-11856	J02943	971	CBG, corticosteroid binding globulin	TCTATGACTT [T/C] GGAGAGTGC	S T C L L
G658u2	WIAF-13407	J02943	771	CBG, corticosteroid binding globulin	CCCTTCATGAC [T/G] CAGAGCTCCC	M T G S A
G658u3	WIAF-13408	J02943	773	CBG, corticosteroid binding globulin	TTCATGACTC [A/G] GAGCTCCCT	S A G S S
G658u4	WIAF-13409	J02943	1046	CBG, corticosteroid binding globulin	TCACCCAGGA [C/T] GCCCAAGCTGA	S C T D D
G663u1	WIAF-13400	HT3157	1202	TPO, thyroid peroxidase	CGCCACGGC [G/A] CCTGGGGCCT	S G A A A
G663u2	WIAF-13401	HT3157	1282	TPO, thyroid peroxidase	GGCCGGCCA [G/C] CGAGGTCCCC	M G C S T
G668a1	WIAF-13350	U53506	350	DIO2, deiodinase, iodothyronine, type II	TGATGCCATA [C/A] AAACAGGTGA	N C A Y *
G668a2	WIAF-13351	U53506	354	DIO2, deiodinase, iodothyronine, type II	TCCTTACAAA [C/A] AGGTGAATT	M C A Q K
G668a3	WIAF-13352	U53506	408	DIO2, deiodinase, iodothyronine, type II	TGTCCTCCAGT [A/G] CAGAAGGGG	M A G T A
G673a1	WIAF-13328	M57464	1723	Human ret proto-oncogene mRNA for tyrosine kinase.	CGAGCCTGGGG [G/A] AGCCCCGGGG	M G A E K
G673a2	WIAF-13336	M57464	1186	Human ret proto-oncogene mRNA for tyrosine kinase.	GGCTCGCCGA [T/A] TTGCCCCAGT	M T A F I
G673a3	WIAF-13337	M57464	1227	Human ret proto-oncogene mRNA for tyrosine kinase.	ACTGCCAGGC [G/A] TTCAAGTGGCA	S G A A A
G673a4	WIAF-13338	M57464	2118	Human ret proto-oncogene mRNA for tyrosine kinase.	TTGGAAAAAC [T/A] CTTAGGAGAG	S T A T T
G673a5	WIAF-13339	M57464	2238	Human ret proto-oncogene mRNA for tyrosine kinase.	CGACTGAGCTT [T/G] CGAGACCTGC	S T G L L

G678a1	WIAF-13353	D49492	1439	GDF10, growth differentiation factor 10	TGGCTGGAA [T/A] GAAATGGATAA	M T A N K
G68u1	WIAF-10434	HT1115	1214	ERCC3, excision repair cross-complementing rodent repair deficiency, complementation group 3 (xeroderma pigmentosum group B complementing)	CTGTGAGCA [G/A] TGGAAGCCC	S G A Q Q
G68u2	WIAF-10435	HT1115	1155	BRCC3, excision repair cross-complementing rodent repair deficiency, complementation group 3 (xeroderma pigmentosum group B complementing)	TG TGACTGCT [G/C] CATGCCACTGT	M G C A P
G68u3	WIAF-10436	HT1115	1327	ERCC3, excision repair cross-complementing rodent repair deficiency, complementation group 3 (xeroderma pigmentosum group B complementing)	AGCACCTACT [C/T] CATGCTGGCC	M C T S E
G68u4	WIAF-10461	HT1115	926	ERCC3, excision repair cross-complementing rodent repair deficiency, complementation group 3 (xeroderma pigmentosum group B complementing)	AGGAAATGAT [T/C] GAGGAACCTCC	S T C I I
G68u5	WIAF-10464	HT1115	1430	ERCC3, excision repair cross-complementing rodent repair deficiency, complementation group 3 (xeroderma pigmentosum group B complementing)	AAGTGCACAC [C/T] ATACCGCCA	S C T T T
G684a1	WIAF-13359	X51801	712	BMP7, bone morphogenetic protein 7 (osteogenic protein 1)	GTTTATCAGG [T/G] GCTCCAGGAG	M T G V G
G684a2	WIAF-13360	X51801	719	BMP7, bone morphogenetic protein 7 (osteogenic protein 1)	AGGTGCTCA [G/A] GAGGACTTGG	S G A Q Q
G684a3	WIAF-13361	X51801	796	BMP7, bone morphogenetic protein 7 (osteogenic protein 1)	GCTGGCTTG [T/G] GTTTGACATTC	M T G V G

G684a4	WIAF-13362	X51801	862	BMP7, bone morphogenetic protein BMP7, bone morphogenetic protein 1)	GGCTGCAGC [T/G] CTGGTGGAG	M	T	G	L	R
G684a5	WIAF-13363	X51801	658	BMP7, bone morphogenetic protein BMP7, bone morphogenetic protein 1)	ATCTACAAGG [A/G] CTACATCCGG	M	A	G	D	G
G684a6	WIAF-13834	X51801	1421	BMP7, bone morphogenetic protein BMP7, bone morphogenetic protein 1)	GCCACTAGCT [C/T] CTCCGAGAAT	-	C	T	-	-
G685a1	WIAF-13329	D89675	882	BMPR1B, bone morphogenetic protein receptor, type IB	GTTCCTTTA [T/G] GATTATCTGA	N	T	G	Y	*
G685a2	WIAF-13330	D89675	920	BMPR1B, bone morphogenetic protein receptor, type IB	GCTAAATCAA [T/C] GCTGAGTTA	M	T	C	M	T
G685a3	WIAF-13331	D89675	770	BMPR1B, bone morphogenetic protein receptor, type IB	TATCAGACAG [T/G] GTTGATGAGG	M	T	G	V	G
G685a4	WIAF-13340	D89675	1303	BMPR1B, bone morphogenetic protein receptor, type IB	TCCTTATCAT [G/A] ACCTAGTGCC	M	G	A	D	N
G685a5	WIAF-13341	D89675	1372	BMPR1B, bone morphogenetic protein receptor, type IB	GTACGCC [T/G] CATTCACAA	M	T	G	S	A
G685a6	WIAF-13342	D89675	1173	BMPR1B, bone morphogenetic protein receptor, type IB	TGTTGGACGA [G/A] AGCTTGAACA	S	G	A	E	E
G686u1	WIAF-13816	Z48923	2705	BMPR2, bone morphogenetic protein receptor, type II (serine/threonine kinase)	AAATTGGCA [G/A] CAAGCACAAA	M	G	A	S	N
G686u2	WIAF-13817	Z48923	2749	BMPR2, bone morphogenetic protein receptor, type II (serine/threonine kinase)	TGAGTTGCC [A/T] AGATGATAAC	N	A	T	K	*
G687a1	WIAF-13343	HT1455	626	CALB1, calbindin 1, (28kD)	ATGATCAGGA [C/T] GGCAATGGAT	S	C	T	D	D
G696u1	WIAF-11839	HT27700	1075	calcium-sensing receptor	GGGCACAAAT [G/C] CAGCTGATGA	M	G	C	A	P
G696u2	WIAF-11840	HT27700	1551	calcium-sensing receptor	TACCTGTGGA [C/T] ACCCTTCCTGA	S	C	T	D	D
G696u3	WIAF-11841	HT27700	1688	calcium-sensing receptor	TTACGGATAT [C/T] CTACAATG TG	M	C	T	S	F
G696u4	WIAF-11842	HT27700	1698	calcium-sensing receptor	CCTACAACT [G/T] TACTTAGCAG	S	G	T	V	V
G696u5	WIAF-11858	HT27700	1767	calcium-sensing receptor	GAGAGGGCT [C/T] TTACACCATG	S	C	T	L	L
G696u6	WIAF-11859	HT27700	1689	calcium-sensing receptor	TACGGATATC [C/T] TACAATGCT	S	C	T	S	S
G696u7	WIAF-11860	HT27700	2541	calcium-sensing receptor	TCTGCTCTG [C/T] ATCTCATGCA	S	C	T	C	C

G696u8	WIAF-11861	HT27700	2581	calcium-sensing receptor	TCTCCCTCG [G/A] TGTTTGAGGC	M	G	A	V	M
G696u9	WIAF-11863	HT27700	3159	calcium-sensing receptor	TCTCCCGCAA [G/C] CGGTCCAGCA	M	G	C	K	N
G696u10	WIAF-11872	HT27700	562	calcium-sensing receptor	TCTTATTCTAT [T/A] TTGGAGTAGC	M	T	A	F	I
G696u11	WIAF-11878	HT27700	2941	calcium-sensing receptor	CATTCCAGCC [T/G] ATGCCAGGCAC	M	T	G	Y	D
G696u12	WIAF-13386	HT27700	1145	calcium-sensing receptor	AGGGATATCT [G/A] CATGACTTC	M	G	A	C	Y
G696u13	WIAF-13395	HT27700	670	calcium-sensing receptor	GATATTGCC [A/G] TAGAGGAGAT	M	A	G	I	V
G696u14	WIAF-13396	HT27700	2243	calcium-sensing receptor	TTCTGGTCCA [A/G] TGACAAACCAC	M	A	G	N	S
G696u15	WIAF-13397	HT27700	2742	calcium-sensing receptor	AGCTGGAGGA [T/C] GAGATCACT	S	T	C	D	D
G698u1	WIAF-13547	X61598	393	CBP1, collagen-binding protein 1	TCAGGAACTC [G/C] ACGGCGCGCA	S	G	C	S	S
G698u2	WIAF-13549	X61598	628	CBP1, collagen-binding protein 1	CGGGCCCCTG [C/T] TAGTCAACGC	S	C	T	L	L
G698u3	WIAF-13550	X61598	1230	CBP1, collagen-binding protein 1	GCGGCTCCCT [G/A] CTATTCTATG	S	G	A	L	L
G701u1	WIAF-12382	HT27657	706	CGRP type I receptor	AACGGATGTTG [C/A] AGCGAGGACT	M	C	A	A	E
G701u2	WIAF-12391	HT27657	841	CGRP type I receptor	TGGACAATT [A/T] TACCCAGTGT	M	A	T	Y	F
G704u1	WIAF-14046	X60382	1396	COL10A1, collagen, type X, alpha 1 (Schmid metapheal chondroplasia)	AGGCATTCCA [G/A] GATTCCCTGG	M	G	A	G	R
G704u2	WIAF-14070	X60382	1648	COL10A1, collagen, type X, alpha 1 (Schmid metapheal chondroplasia)	TGCCAACAG [G/C] CATTGAAAG	M	G	C	G	R
G704u3	WIAF-14071	X60382	1824	COL10A1, collagen, type X, alpha 1 (Schmid metapheal chondroplasia)	CATACCACGT [G/C] CATTGAAAG	S	G	C	V	V
G704u4	WIAF-14072	X60382	1582	COL10A1, collagen, type X, alpha 1 (Schmid metapheal chondroplasia)	AGTCATGGCT [G/C] AGGGTTTAT	M	G	C	E	Q
G705a1	WIAF-13228	J04177	686	COL11A1, collagen, type XI, alpha 1	AGAAGAAAAC [T/A] GTGACAAATGA	S	T	A	T	T
G705a2	WIAF-13229	J04177	698	COL11A1, collagen, type XI, alpha 1	TGACAATGAT [T/A] GTTGATGTTA	S	T	A	I	I
G705a3	WIAF-13230	J04177	888	COL11A1, collagen, type XI, alpha 1	TAGTCCAGAC [T/A] GTGACTCTTC	M	T	A	C	S
G705a4	WIAF-13231	J04177	894	COL11A1, collagen, type XI, alpha 1	AGACTGTGAC [T/A] CTTCAGCACC	M	T	A	S	T
G705a5	WIAF-13232	J04177	651	COL11A1, collagen, type XI, alpha 1	TCACGGAAAG [T/A] GGCATCGGT	M	T	A	W	R

G705a6	WIAF-13233	J04177	661 1	COL11A1, collagen, type XI, alpha	TGGCATCGGG [T/A] AGGAATCAGC	M T A V E
G705a7	WIAF-13234	J04177	1597 1	COL11A1, collagen, type XI, alpha	CGTCCTGGCT [T/C] ACCGGGGCT	M T C L S
G705a8	WIAF-13235	J04177	2745 1	COL11A1, collagen, type XI, alpha	TGGTTTCCA [G/A] GTGCCAATGG	M G A G S
G705a9	WIAF-13236	J04177	4385 1	COL11A1, collagen, type XI, alpha	GTCCAGAAGG [T/A] CTGGGGCCA	S T A G G
G705a10	WIAF-13237	J04177	4576 1	COL11A1, collagen, type XI, alpha	GAAAAGGTG [A/T] CCAGGGCTC	M A T D V
G705a11	WIAF-13238	J04177	4306 1	COL11A1, collagen, type XI, alpha	GCTAACGGGG [A/C] AGCAAGGTGCA	M A C E A
G705a12	WIAF-13239	J04177	4837 1	COL11A1, collagen, type XI, alpha	AGACATACTG [A/G] AGGGATGCAA	M A G E G
G705a13	WIAF-13240	J04177	4931 1	COL11A1, collagen, type XI, alpha	AACAAGACAT [C/T] GAGGATATGA	S C T I I
G705a14	WIAF-13346	J04177	2991	COL11A1, collagen, type XI, alpha	AAGCACTAGA [T/G] TTTCACAAATT	M T G D E
G705a15	WIAF-13347	J04177	2225 1	COL11A1, collagen, type XI, alpha	GGAGGCCTGG [G/C] CCTCCAGGTC	S G C G G
G705u6	WIAF-13679	J04177	5493 1	COL11A1, collagen, type XI, alpha	AATTGATCAA [G/A] TACCTATTGT	M G A V I
G705u7	WIAF-13700	J04177	3484 1	COL11A1, collagen, type XI, alpha	GGAGTCAAG [G/A] TCCTGTGTGT	M G A G D
G705u8	WIAF-13709	J04177	5392 1	COL11A1, collagen, type XI, alpha	GAGATGTCT [A/T] TGACATAATA	M A T Y F
G707u1	WIAF-12363	U32169	4996 2	COL11A2, collagen, type XI, alpha	TCCCCTGAGA [C/T] TCCGTGGGC	M C T L F
G707u2	WIAF-12374	U32169	3580 2	COL11A2, collagen, type XI, alpha	CATGGGCCT [G/A] ATGGCCOACA	M G A D N
G707u3	WIAF-12385	U32169	2059 2	COL11A2, collagen, type XI, alpha	GCTGGGTCA [G/A] ACGGACCCC	M G A D N
G708a1	WIAF-13354	U73778	1885 alpha 1	COL12A1, collagen, type XII,	GCCTCTCCCTC [C/T] TGCAGAGACC	M C T P L
G708a2	WIAF-13355	U73778	3630 alpha 1	COL12A1, collagen, type XII,	TGTTGGACAA [G/A] AAATGACAC	M G A E K
G708a3	WIAF-13356	U73778	3905 alpha 1	COL12A1, collagen, type XII,	GCTTGTTGCA [A/T] GCTGTGGCAA	M A T Q H
G708a4	WIAF-13357	U73778	7051 alpha 1	COL12A1, collagen, type XII,	ATTCACCAAG [C/A] CGGGGATGTA	M C A A D
G708a5	WIAF-13358	U73778	8036 alpha 1	COL12A1, collagen, type XII,	AGCAAGTAA [G/A] ACATTATTT	S G A K K

G708a6	WIAF-13364	U73778	1461 alpha 1	COL12A1, collagen, type XII,	TGGCTCCTAT [A/T] GCATTGGGAT	M A T S C
G708a7	WIAF-13365	U73778	2344 alpha 1	COL12A1, collagen, type XII,	ATTACTTGGAA [C/T] TCAAGGTCCA	M C T T I
G708a8	WIAF-13366	U73778	5207 alpha 1	COL12A1, collagen, type XII,	CAGATAAGAT [G/A] GAGACCATCT	M G A M I
G708a9	WIAF-13367	U73778	6592 alpha 1	COL12A1, collagen, type XII,	GAGCCCATGG [A/T] AGCCTTGTGTT	M A T E V
G708a10	WIAF-13368	U73778	7434 alpha 1	COL12A1, collagen, type XII,	CCAGGATGAG [G/A] TCAGAGGCC	M G A V I
G708a11	WIAF-13369	U73778	9108 alpha 1	COL12A1, collagen, type XII,	ACCTCGGGGG [C/G] TGCGTGGGCC	M C G L V
G708a12	WIAF-13370	U73778	9111 alpha 1	COL12A1, collagen, type XII,	TGCGGGCTG [C/T] CTGGGCCCCCC	M C T P S
G708a13	WIAF-13371	U73778	9196 alpha 1	COL12A1, collagen, type XII,	CCCCCTGGCC [G/A] TCCCTGGAAC	M G A R H
G708u4	WIAF-13972	U73778	3044 alpha 1	COL12A1, collagen, type XII,	CAGTATTGCG [C/A] ACTTAACAGCA	S C A A A
G708u5	WIAF-13977	U73778	5853 alpha 1	COL12A1, collagen, type XII,	TGTGACTGTA [G/C] TTCCCGTTA	M G C V L
G710u1	WIAF-12371	D38163	3082 alpha 1	COL19A1, collagen, type XIX,	AGGAAACAAAG [G/T] GCTCCATGGG	M G T G C
G710u2	WIAF-12388	D38163	2089 alpha 1	COL19A1, collagen, type XIX,	TCAGGGACT [C/T] CAGGGATGA	M C T P S
G711u1	WIAF-12360	L25286	1449 1	COL15A1, collagen, type XV, alpha	TGTGGTCCA [A/G] GCAGTGAAGA	M A G S G
G711u2	WIAF-12372	L25286	4001 1	COL15A1, collagen, type XV, alpha	ATATTCCAAAT [A/G] TACTCTTTG	M A G I N
G711u3	WIAF-12373	L25286	3867 1	COL15A1, collagen, type XV, alpha	CCATTGGAA [G/T] ATCTGGCCAC	M G T D Y
G711a4	WIAF-13372	L25286	395 1	COL15A1, collagen, type XV, alpha	CCAGCAGGAC [C/T] CGTGGTGGCG	S C T T T
G711a5	WIAF-13373	L25286	3101 1	COL15A1, collagen, type XV, alpha	AAGGGACCA [G/A] GGAGCCAGG	S G A Q Q
G712u1	WIAF-13619	M92642	3608 alpha 1	COL16A1, collagen, type XVI,	GCGGACCAAGG [G/A] ATTCAAGGC	M G A G E
G712u2	WIAF-13620	M92642	4944 alpha 1	COL16A1, collagen, type XVI,	CCATGAAAAC [C/T] ATGAAAGGGGC	S C T T T
G712u3	WIAF-13621	M92642	4707 alpha 1	COL16A1, collagen, type XVI,	CCAAAGGCTGA [A/C] AAAGGGGACA	M A C E D
G712u4	WIAF-13654	M92642	421 alpha 1	COL16A1, collagen, type XVI,	GGCCACGGCA [C/A] GAGTATTCCC	S C A R R

G712u5	WIAF-13655	M92642	444 alpha 1	COL16A1, collagen, type XVI,	GGGCTCTCCC [G/A] GAGGAGTTTG	S G A P P
G712u6	WIAF-13656	M92642	338 alpha 1	COL16A1, collagen, type XVI,	CTCATGAAGA [A/C] GTCTGCACATC	M A C K T
G712u7	WIAF-13862	M92642	3227 alpha 1	COL16A1, collagen, type XVI,	CCTGGTCCTC [C/T] GGATTGCCA	M C T P L
G712u8	WIAF-13863	M92642	3199 alpha 1	COL16A1, collagen, type XVI,	TCCCTGGCTGT [G/T] TTGGAGCCCC	M G T V F
G712u9	WIAF-13878	M92642	318 alpha 1	COL16A1, collagen, type XVI,	ACTCTATCCA [C/T] CGACTCGGCC	S C T H H
G712u10	WIAF-13882	M92642	1346 alpha 1	COL16A1, collagen, type XVI,	ACAGGGAGA [A/G] GGCCAGAAA	M A G K R
G712u11	WIAF-13883	M92642	1309 alpha 1	COL16A1, collagen, type XVI,	GTCAAGGAGT [C/T] TGGGACCCCTC	S C T L L
G715a1	WIAF-13344	Z74615	3504 COL1A1,	collagen, type I, alpha 1 TCCTGGTGA [C/G] AAGGTCCCTC	M C G Q E	
G717u1	WIAF-12639	Z74616	3988 COL1A2,	collagen, type I, alpha 2 ATGAGGAGAC [T/C] GGCAACCTGA	S T C T T	
G720u1	WIAF-123367	X14420	3494	COL3A1, collagen, type III, alpha 1 (Ehlers-Danlos syndrome type IV, autosomal dominant)	GGTGCATCG [G/A] CAGTCAGGA	M G A G D
G720u2	WIAF-123383	X14420	3035	COL3A1, collagen, type III, alpha 1 (Ehlers-Danlos syndrome type IV, autosomal dominant)	GGTGTCAAGG [G/A] TGAAAGTCGG	M G A G D
G720a3	WIAF-13374	X14420	214	COL3A1, collagen, type III, alpha 1 (Ehlers-Danlos syndrome type IV, autosomal dominant)	TCTTGGTCAG [T/C] CCTATGCCGA	M T C S P
G720a4	WIAF-13375	X14420	1953	COL3A1, collagen, type III, alpha 1 (Ehlers-Danlos syndrome type IV, autosomal dominant)	CTGGACCTCA [A/G] GGACCCCCAG	S A G Q Q
G720a5	WIAF-13376	X14420	2194	COL3A1, collagen, type III, alpha 1 (Ehlers-Danlos syndrome type IV, autosomal dominant)	TAGAGGTGG [G/A] CTGGTCCCC	M G A A T
G720a6	WIAF-13377	X14420	3731	COL3A1, collagen, type III, alpha 1 (Ehlers-Danlos syndrome type IV, autosomal dominant)	GGGATTGGAG [G/A] TGAAAAGCT	M G A G D

G722u1	WIAF-14132	HT3162	140 2	COL4A2, collagen, type IV, alpha	GAGATTGGCG [C/T] GACTGGTGAT	N C T A V
G724a1	WIAF-12120	X81053	3892 4	COL4A4, collagen, type IV, alpha	CTCGTGGAAA [G/A] AAAGGTCCCC	S G A K K
G724a2	WIAF-12121	X81053	4187 4	COL4A4, collagen, type IV, alpha	AAAGGACCA [A/G] TGGCATTCCTCC	M A G N V
G724a3	WIAF-12122	X81053	3802 4	COL4A4, collagen, type IV, alpha	ATGATGTGGG [G/A] CCACCTGGTC	S G A G G
G724a4	WIAF-12123	X81053	1838 4	COL4A4, collagen, type IV, alpha	ACCGAAAG [C/A] ATGGTGCCCTC	M C A H N
G724u5	WIAF-12364	X81053	376 4	COL4A4, collagen, type IV, alpha	CTGTTGCCA [C/T] TGTTGTTCTG	S C T H H
G724u6	WIAF-12365	X81053	2018 4	COL4A4, collagen, type IV, alpha	TCCAGGGAT [C/G] ATGAAAGATGC	M C G H D
G724u7	WIAF-12366	X81053	4756 4	COL4A4, collagen, type IV, alpha	GCCTTCGGT [A/G] TTAGCACGC	S A G V V
G724u8	WIAF-12377	X81053	3595 4	COL4A4, collagen, type IV, alpha	CTGGACCAC [A/G] GGGTGCCAG	S A G P P
G724u9	WIAF-12378	X81053	3516 4	COL4A4, collagen, type IV, alpha	GGAGCATCCG [G/C] AGAGGZGGGC	M G C G A
G724u10	WIAF-12379	X81053	4288 4	COL4A4, collagen, type IV, alpha	CTGGTCCTCC [A/G] GGTCAGAG	S A G P P
G724u11	WIAF-12380	X81053	5140 4	COL4A4, collagen, type IV, alpha	GCCACTTTT [C/A] GCAAATAAGT	M C A F L
G724u12	WIAF-12387	X81053	207 4	COL4A4, collagen, type IV, alpha	GACTTGCTG [C/T] GATGTTGCTCT	- C T - -
G727u1	WIAF-12362	D90279	5135	COL5A1, collagen, type V, alpha 1	TTCAGGGTTT [A/T] CTGCACTTC	M A T Y F
G727u2	WIAF-12369	D90279	4686	COL5A1, collagen, type V, alpha 1	AACAGGGPAT [C/T] ACTGGTCCTT	S C T I I
G727u3	WIAF-12370	D90279	4608	COL5A1, collagen, type V, alpha 1	TGGTCCCTCC [G/C] GGTGAACAGG	S G C P P
G727a4	WIAF-13300	D90279	2034	COL5A1, collagen, type V, alpha 1	ACGGCCCTGGCCT [T/A] GGGTTGCCAG	S T A A A
G727a5	WIAF-13301	D90279	2073	COL5A1, collagen, type V, alpha 1	GTTGACCCCTGG [T/C] CCTTCCGGCC	S T C C G
G727a6	WIAF-13302	D90279	3763	COL5A1, collagen, type V, alpha 1	CGGGCAGAAA [G/A] GTGATGAGG	M G A G S

				COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)	ATGGACTTGGAA [G/A] CCGAGATACTG	S G A E K
G729u1	WIAP-11844	L02870	2345	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)	TATCCCTGGCG [G/A] CCACTCAGAG	S G A R R
G729u2	WIAP-11845	L02870	3083	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)	GACTGGTGA [C/T] TTGGCCTGG	M C T T I
G729u3	WIAP-11846	L02870	3031	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)	CGTACATGA [G/T] GTGACCGTGA	M G T E D
G729u4	WIAP-11851	L02870	1289	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)	CGGAACTGACT [G/T] TGATTTGCCCT	M G T V L
G729u5	WIAP-11852	L02870	1032	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)	CGCCGGGAGC [C/T] GGAAACTCCA	M C T P L
G729u6	WIAP-11853	L02870	1897	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)	GCTTAGCTAC [A/T] CTGTCGGGT	M A T T S
G729u7	WIAP-11854	L02870	1827	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)	TGTCGCCCGG [G/A] AGCCGGAAAC	M G A E K
G729u8	WIAP-11855	L02870	1893	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)		

G729u9	WIAF-11864	L02870	2142	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)	GGCCCTGCT [G/A] CAGTCATCGT	M	G	A	A	T					
G729u10	WIAF-11865	L02870	2353	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)	GAGCCAGATA [C/T] TGAGTATAACG	M	C	T	T	I					
G729u11	WIAF-11866	L02870	2221	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)	TCATCTGTCA [C/T] CATTACCTGG	M	C	T	T	I					
G729u12	WIAF-11869	L02870	6585	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)	ACCAAGGAG [C/T] GIGGTTATGGC	M	C	T	R	C					
G729u13	WIAF-11870	L02870	8169	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)	GGTGACCGA [G/T] GCCTTGACGG	M	G	T	G	C					
G729u14	WIAF-11877	L02870	438	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)	CGCCATCCGT [G/A] AGCTTAGCTA	M	G	A	E	K					
G729u15	WIAF-11882	L02870	3481	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)	AGGAAACCGTG [A/T] CATGCCCTAC	M	A	T	D	V					
G729u16	WIAF-11883	L02870	5654	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)	ACGGAGAAACC [T/C] GGGGACCCCTG	S	T	C	P	P					

G729u17	WIAF-11884	L02870	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)	TGCCAGGGCC [G/C] CGAGGGAGA	S G C P P
G729u18	WIAF-11885	L02870	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)	GCTTCGATGG [T/C] GACAAAGGAC	S T C G G
G729u19	WIAF-13389	L02870	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)	ACCGTCTCTTC [C/T] CACTGGACCA	M C T P L
G729u20	WIAF-13390	L02870	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)	TCCTAGGGCC [G/A] GCTGGAAAG	S G A P P
G729u21	WIAF-13399	L02870	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)	CCAGGGAGAT [C/T] CTGGAAAGGA	M C T P S
G729u22	WIAF-13411	L02870	COL7A1, collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)	ATCTTGAAA [G/A] GATCCGTGAC	M G A R K
G730a1	WIAF-13303	X57527	COL8A1, collagen, type VIII, alpha 1	ATGGGCAAGG [A/G] AGCCGTCCC	M A G E G
G732u1	WIAF-12616	M95610	COL9A2, collagen, type IX, alpha 2	CAGGGGGAC [A/G] GCCCGGAAGT	S A G T T
G732u2	WIAF-12617	M95610	COL9A2, collagen, type IX, alpha 2	AGGGAGAGA [C/T] GGGCCCTCAT	S C T D D
G732u3	WIAF-12619	M95610	COL9A2, collagen, type IX, alpha 2	AAGTGGGTGA [C/T] CCAGGGGTGG	M C T P S
G732u4	WIAF-12620	M95610	COL9A2, collagen, type IX, alpha 2	CCACCAAGGSC [C/G] TAGGGGTGT	M C G P R

G737u1	WIAF-13394	ML3436	?	TINHBA, inhibin, beta A (activin A, activin AB alpha polypeptide)	TGCTCCCTG [G/T]	?	G	T
G738a1	WIAF-13383	M58349	183	NGP, matrix Gla protein	ATGGAGACT [A/G] AAGTCCAAA	M	A	G
G738a2	WIAF-13384	M58349	330	NGP, matrix Gla protein	GCGCCGAGGG [A/G] CCAAATGAGA	M	A	G
G739u1	WIAF-11867	U94332	862	TNFRSF11B, tumor necrosis factor receptor superfamily, member 11b (osteoprotegerin)	TGCTGAAGTT [A/G] TGGAACATC	S	A	G
G739u2	WIAF-11874	U94332	1244	TNFRSF11B, tumor necrosis factor receptor superfamily, member 11b (osteoprotegerin)	GTATCAGAAC [T/C] TATTTTTAGA	S	T	C
G743u1	WIAF-13402	HT847	1669	PTHRI, parathyroid hormone receptor 1	CCCTGGAGAC [C/A] CTCGAGACCA	S	C	A
G747u1	WIAF-12414	J03040	123	SPARC, secreted protein, acidic, cysteine-rich (osteonectin)	CTCAGGAAGA [A/G] GCCCTGCTG	S	A	G
G748u1	WIAF-12628	HT0157	117	VDR, vitamin D (1,25-dihydroxyvitamin D3) receptor	CCCTTAGGAA [T/C] GGAGGCCATG	M	T	C
G748u2	WIAF-12629	HT0157	1171	VDR, vitamin D (1,25-dihydroxyvitamin D3) receptor	CCGGCTGTAT [T/C] GAGGCCATCC	S	T	C
G748u3	WIAF-12640	HT0157	172	VDR, vitamin D (1,25-dihydroxyvitamin D3) receptor	TTGACCGGAA [C/T] GTGCCCGGA	S	C	T
G749u1	WIAF-11862	HT3734	679	osteopontin, alt. transcript 1	ATCACCTCAC [A/T] CATGGAAAGC	M	A	T
G749u2	WIAF-11875	HT3734	386	osteopontin, alt. transcript 1	AAAGATGATGA [A/G] GACCATGTGG	S	A	G
G749u3	WIAF-11876	HT3734	419	osteopontin, alt. transcript 1	CCATTGACTC [G/A] AACGACTCTG	S	G	A
G749a4	WIAF-12084	HT3734	171	osteopontin, alt. transcript 1	TAACAGGCT [G/A] ATTCTGAAAG	M	G	A
G749u5	WIAF-13387	HT3734	738	osteopontin, alt. transcript 1	CCAGGACCTG [A/C] ACCGGCCTTC	M	A	C
G749u6	WIAF-13388	HT3734	716	osteopontin, alt. transcript 1	CATAACAAGGC [C/A] ATCCCCGTTG	S	C	A
G751u1	WIAF-12631	HT5036	410	ADM, adrenomedullin	GAGGAGTGT [C/G] GATGCCGCC	M	C	G

G752u1	WIAF-11843	HT1782	CHGA, chromogranin A (parathyroid secretory protein 1)	CGCCATTGA [A/G] GCAGAGCTGG	S A G E E
G752u2	WIAF-11873	HT1782	CHGA, chromogranin A (parathyroid secretory protein 1)	GGACAACGG [G/A] ACAGTTCAT	M G A D N
G754a1	WIAF-13382	K02043	NPPA, natriuretic peptide precursor A	GTACAATGCC [G/A] TGTCCTAACGC	M G A V M
G756u1	WIAF-12395	HT3508	SCNN1A, sodium channel, nonvoltage-gated 1, alpha	CAGTTCCTCC [A/G] CCTGTTCTCTT	M A G T A
G757u1	WIAF-12420	HT28563	SCNN1B, sodium channel, nonvoltage-gated 1, beta (Liddle syndrome)	CCTGCCAGGCC [A/C] CCAACATCTT	M A C T P
G757u2	WIAF-12421	HT28563	SCNN1B, sodium channel, nonvoltage-gated 1, beta (Liddle syndrome)	GAACTGAATT [C/T] GGCCCTGAACT	S C T F F
G757u3	WIAF-12430	HT28563	SCNN1B, sodium channel, nonvoltage-gated 1, beta (Liddle syndrome)	TCAATGACTT [T/C] GTGTGGATCA	S T C F F
G757u4	WIAF-12494	HT28563	SCNN1B, sodium channel, nonvoltage-gated 1, beta (Liddle syndrome)	AAGCAGCTCA [G/C] CATCAAGAAA	M G C A P
G757u5	WIAF-12506	HT28563	SCNN1B, sodium channel, nonvoltage-gated 1, beta (Liddle syndrome)	GATGCTTOAC [G/C] AGCAAGGGTC	M G C E Q
G757u6	WIAF-12507	HT28563	SCNN1B, sodium channel, nonvoltage-gated 1, beta (Liddle syndrome)	ACTTGCAATTG [G/T] CATGTCCAAG	M G T G V
G758u1	WIAF-12621	HT27856	SCNN1D, sodium channel, nonvoltage-gated 1, delta	CGGAAACCA [C/T] GTCGCCGAG	M C T R C
G758u2	WIAF-12632	HT27856	SCNN1D, sodium channel, nonvoltage-gated 1, delta	CCTCTTGAG [C/T] GTCACTGGCA	M C T R C
G758u3	WIAF-12634	HT27856	SCNN1D, sodium channel, nonvoltage-gated 1, delta	ATGGCCTCTG [G/A] ACAGCTCAGC	N G A W *
G758u4	WIAF-12635	HT27856	SCNN1D, sodium channel, nonvoltage-gated 1, delta	CGTGGAGGTG [G/C] AGCTGGTACA	M G C E Q
G762u1	WIAF-12622	HT27531	NPR3, natriuretic peptide receptor C/quanylate cyclase C (atrionatriuretic peptide receptor C)	TAGGAGCTGG [C/T] TTGCTPATGG	S C T G G

G762u2	WIAF-12623	HT27531	NPR3, natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide receptor)	AGAAGAAAGT [A/G] ACCCTGGAAA	M A G N D
G762u3	WIAF-12624	HT27531	NPR3, natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide receptor)	CAAATGATCA [G/T] GTGGCCCTAGA	M G T G C
G762u4	WIAF-12636	HT27531	NPR3, natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide receptor)	GAAGATTCCA [T/C] CAGATCCCAT	M T C I T
G763u1	WIAF-12659	HT3183	NPR2, natriuretic peptide receptor B/guanylate cyclase B (atrionatriuretic peptide receptor)	CTGGGCCCTT [C/T] CCTGTATGAAAC	M C T S F
G763u2	WIAF-12678	HT3183	NPR2, natriuretic peptide receptor B/guanylate cyclase B (atrionatriuretic peptide receptor)	TGCCATCACT [T/C] CTGCGCTTGG	S T C L I
G763u3	WIAF-12684	HT3183	NPR2, natriuretic peptide receptor B/guanylate cyclase B (atrionatriuretic peptide receptor)	TGTTTGAACT [C/T] AAACATATGA	S C T L I
G764u1	WIAF-12698	HT1221	NPRL, natriuretic peptide receptor A/guanylate cyclase A (atrionatriuretic peptide receptor)	CCCCGTTACT [G/T] TCTCTTGGG	M G T C F
G764u2	WIAF-12708	HT1221	NPRL, natriuretic peptide receptor A/guanylate cyclase A (atrionatriuretic peptide receptor)	GAGGCCTAAG [C/T] GCTCATGCTC	M C T A V

G764u3	WIAF-12709	HT1221	NPR1, natriuretic peptide receptor A/guanylate cyclase A (atrionatriuretic peptide receptor)	GTCGGCTGG [G/A] AGCCTGCAGG	S G A G G
G765u1	WIAF-10012	HT2456	DCP1, dipeptidyl carboxypeptidase 1 (angiotensin I converting enzyme)	GCTGGCACAA [A/G] GCTGGGGCA	S A G N N
G765u2	WIAF-10014	HT2456	DCP1, dipeptidyl carboxypeptidase 1 (angiotensin I converting enzyme)	TGATGGCCAC [A/G] TCCCCGGAAAT	S A G T T
G765u3	WIAF-10025	HT2456	DCP1, dipeptidyl carboxypeptidase 1 (angiotensin I converting enzyme)	CCCACTGGCAC [C/A] AGCTGTGACAT	M C A Q K
G765u4	WIAF-10027	HT2456	DCP1, dipeptidyl carboxypeptidase 1 (angiotensin I converting enzyme)	TCCCCCTTCAG [C/T] TACCTTGCTCG	S C T S S
G765u5	WIAF-10028	HT2456	DCP1, dipeptidyl carboxypeptidase 1 (angiotensin I converting enzyme)	TCAAGGTACTT [T/C] GTCAAGCTTCA	S T C F P
G765u6	WIAF-10040	HT2456	DCP1, dipeptidyl carboxypeptidase 1 (angiotensin I converting enzyme)	AGCCCCCTCA [C/T] CTGAACCTCC	S C T Y Y
G772u1	WIAF-12626	HT2121	AVPR2, arginine vasopressin receptor 2 (nephrogenic diabetes insipidus)	TCAAGCAGCAG [C/T] GTGTCTTCAG	S C T S S
G772u2	WIAF-12627	HT2121	AVPR2, arginine vasopressin receptor 2 (nephrogenic diabetes insipidus)	CCTTTGTGCT [A/G] CTCATGTTGC	S A G L L
G773u1	WIAF-12644	HT2141	SLC6A6, solute carrier family 6 (neurotransmitter transporter, taurine), member 6	CTAGCAAAGAT [C/T] GACTTGTGC	S C T I I

G773u2	WIAF-12645	HT2141	445	SLC6A6, solute carrier family 6 (neurotransmitter transporter, taurine), member 6	TGGTCATCCT [G/C] GCCTGGCCA	S G C L L
G773u3	WIAF-12665	HT2141	289	SLC6A6, solute carrier family 6 (neurotransmitter transporter, taurine), member 6	TGTTGGAG [C/T] GGCTGGCTG	S C T S S
G773u4	WIAF-12666	HT2141	382	SLC6A6, solute carrier family 6 (neurotransmitter transporter, taurine), member 6	CCTGTCTC [T/C] GGATGGCT	S T C S S
G776u1	WIAF-11857	U66088	1457	SLC5A5, solute carrier family 5 (sodium iodide symporter), member 5	TAGAGACCT [C/T] ATCAAACCTC	S C T L L
G776u2	WIAF-11871	U66088	2039	SLC5A5, solute carrier family 5 (sodium iodide symporter), member 5	GATTGTTGTT [G/C] TGGGACTCTCG	M G C W C
G776u3	WIAF-13398	U66088	1379	SLC5A5, solute carrier family 5 (sodium iodide symporter), member 5	GGCTTTTCCT [G/A] GCCCTGTCCTT	S G A L L
G777u1	WIAF-12646	HT27843	4348	SMRT	ATACAATACTC [A/G] GCCZGCTGG	M A G S G
G777u2	WIAF-12654	HT27843	2031	SMRT	CGAGCTGGG [T/C] AAGCCGGGC	S T C G G
G777u3	WIAF-12655	HT27843	2052	SMRT	AGAGCCCT [G/A] ACCTATGAGG	S G A L L
G777u4	WIAF-12675	HT27843	2205	SMRT	CTGCTGAGAT [C/T] GCCAGGCC	S C T I I
G778u1	WIAF-14093	HT1449	8212	TG, thyroglobulin	ATCTCTCTC [T/C] GAAGACATCT	M T C L P
G778u2	WIAF-14111	HT1449	6033	TG, thyroglobulin	ATGIGACGA [C/T] GGTGGATGC	M C T R W
G778u3	WIAF-14112	HT1449	6894	TG, thyroglobulin	GTATCTCAAT [G/T] TGTTCATCCC	M G T V L
G778u4	WIAF-14125	HT1449	2375	TG, thyroglobulin	ATGGGCCTCC [T/C] GAGGGGTCT	S T C P P
G778u5	WIAF-14136	HT1449	1931	TG, thyroglobulin	AGGATCTCCA [A/G] TGCTTTCCG	S A G Q Q
G783u1	WIAF-12649	X97674	4008	H.sapiens mRNA for transcriptional intermediary factor 2.	CTAGTGGTAT [G/C] CCAGGAACTA	M G C M I
G783u2	WIAF-12658	X97674	2566	H.sapiens mRNA for transcriptional intermediary factor 2.	GCTGGCAGT [G/A] AGCTGGACAA	M G A E K
G783u3	WIAF-12671	X97674	3828	H.sapiens mRNA for transcriptional intermediary factor 2.	CTCTGAGGCC [T/C] GGAGTACCAA	S T C P P
G785u1	WIAF-13385	HT1291	386	TTR, transthyretin (prealbumin, amyloidosis type I)	CCAAAGACTC [C/T] GGCCCCGCC	S C T S S

G787u1	WIAF-12652	HT27477	TRIP15: thyroid receptor 468 interacting protein 15	GAAGATTATA [T/C] TTAGAACGAG	S T C Y Y
G792u1	WIAF-12661	HT27476	265 thyroid receptor interactor 14	CAGCTGGAAC [G/A] TGAGAGGGC	M G A V M
G793u1	WIAF-12643	HT5152	458 thyroid receptor interactor 8	GGAAAGCTTT [C/G] AAACAAATGTT	N C G S *
G794u1	WIAF-12664	HT5136	PSMC5, proteasome (prosome, macropain) 26S subunit, ATPase, 5	GGGTGTGCA [G/A] GAAGCTGGCA	S G A T T
G797u1	WIAF-11847	HT3919	140 glutamate receptor 3, flip isoform	CTCACCGAGG [A/G] TTCCCCAACAA	S A G G G
G797u2	WIAF-11848	HT3919	759 glutamate receptor 3, flip isoform	GGTTTGATC [C/T] TAGGAAACAA	S C T L L
G797u3	WIAF-11849	HT3919	1253 glutamate receptor 3, flip isoform	GCTACTGGAA [C/T] GAGTAGAAA	S C T N N
G797u4	WIAF-11850	HT3919	1770 glutamate receptor 3, flip isoform	TCTTTTCCTTA [G/A] TCAGGCCGTT	M G A V I
G797u5	WIAF-13404	HT3919	2711 glutamate receptor 3, flip isoform	GCTACAAACGT [G/A] TATGAAACAG	S G A V V
G797u6	WIAF-13405	HT3919	2376 glutamate receptor 3, flip isoform	CTCAGCATTAA [G/A] GAACCCCTGT	M G A G R
G798u1	WIAF-11868	X77748	2655 metabotropic 3	TGCAAGGCAC [A/G] ACCATGTGCA	S A G T T
G798u2	WIAF-11879	X77748	2771 metabotropic 3	CACAGACTGC [A/G] CCTCACACGG	M A G H R
G798a3	WIAF-12085	X77748	2699 metabotropic 3	GTGGCTCTGG [G/C] CTGTTTGTGTT	M G C G A
G798a4	WIAF-12056	X77748	2738 metabotropic 3	ATCCCTGTTTC [A/G] ACCCCZGAAG	M A G Q R
G798a5	WIAF-12087	X77748	2072 metabotropic 3	ACACCCCTGG [T/C] CAAAGCATCG	M T C V A
G798a6	WIAF-12088	X77748	2235 metabotropic 3	CCCTGCTGAC [C/T] AAGACAAACT	S C T T T
G798u7	WIAF-13391	X77748	1131 metabotropic 3	GGCCAATGC [C/T] TCCCTTGACCT	S C T A A
G799u1	WIAF-11880	M81883	2000 (brain, 67kD)	GAD1, glutamate decarboxylase 1	
G799u2	WIAF-11881	M81883	1822 (brain, 67kD)	CAACAAATGC [C/T] TGGAACCTGGC	S C T L L
				AGGGTACT [C/T] CAAGGATGCA	S C T L L

G799u3	WIAF-13392	M81883	661	GAD1, Glutamate decarboxylase 1 (brain, 67kD)	GGTGGCCCA [T/C] GGATGCCCA	S T C H H
G799u4	WIAF-13393	M81883	556	GAD1, Glutamate decarboxylase 1 (brain, 67kD)	AGCTGATGGC [G/A] TCTTCGACCC	S G A A A
G799u5	WIAF-13410	M81883	1229	GAD1, Glutamate decarboxylase 1 (brain, 67kD)	CCTCATGGAA [C/T] AAATAAACCT	N C T Q *
G801u1	WIAF-13403	D49394	1596	HTR3, 5-hydroxytryptamine (serotonin) receptor 3	TITACCTGCT [A/G] GCGGTGCTGG	S A G L L
G803a1	WIAF-13118	U66406	1446	EFNB3, ephrin-B3	CTGGGCTGG [G/A] GGENTGGAGGT	M G A G E
G804u1	WIAF-11887	Z26653	7237	LAMA2, laminin, alpha 2 (merosin, congenital muscular dystrophy)	TCACTGATGG [G/T] CACATAAAAG	S G T C G
G804u2	WIAF-11901	Z26653	9351	LAMA2, laminin, alpha 2 (merosin, congenital muscular dystrophy)	GCAAGCCACT [G/C] GAGGTTTAATT	M G C W S
G804u3	WIAF-11924	Z26653	8740	LAMA2, laminin, alpha 2 (merosin, congenital muscular dystrophy)	ACACTACCCG [A/G] AGAAATTGGTC	S A G R R
G804u4	WIAF-11943	Z26653	8577	LAMA2, laminin, alpha 2 (merosin, congenital muscular dystrophy)	ACCAAATCA [A/G] TGATGCCAG	M A G N S
G804a5	WIAF-12089	Z26653	3372	LAMA2, laminin, alpha 2 (merosin, congenital muscular dystrophy)	CTCTGTGACT [G/A] CTTCCCTCCCT	M G A C Y
G804a6	WIAF-13227	Z26653	7047	LAMA2, laminin, alpha 2 (merosin, congenital muscular dystrophy)	GTCAGTCTC [A/g] GGTTGGAAAGAT	M A G Q R
G804u7	WIAF-13437	Z26653	6791	LAMA2, laminin, alpha 2 (merosin, congenital muscular dystrophy)	TGTGAGAGGC [C/T] TGGATGGACC	S C T L L
G805u1	WIAF-13416	U14755	799	LHX1, LIM homeobox protein 1	AAGTAACAGC [A/G] GTGTTGCCAA	M A G S G
G805u2	WIAF-13417	U14755	743	LHX1, LIM homeobox protein 1	GGCGAGAAC [T/C] CTACATCATC	M T C L P
G805u3	WIAF-13428	U14755	639	LHX1, LIM homeobox protein 1	GGCGTCAGGG [C/A] ATCTCCCTA	S C A G G
G806u1	WIAF-11886	AF026547	2656	CSPG3, chondroitin sulfate proteoglycan 3 (neurocan)	TTGGAGTTC [A/G] GCCATGTCTA	S A G P P

G806u2	WIAF-11895	AF026547	529	CSPG3, chondroitin sulfate proteoglycan 3 (neurocan)	TGACCTTCGG [T/C] GAGGCCAGG	S T C A A
G806u3	WIAF-11896	AF026547	477	CSPG3, chondroitin sulfate proteoglycan 3 (neurocan)	GAGGTGACAG [G/A] TGTTGTTTC	M G A G D
G806u4	WIAF-11917	AF026547	89	CSPG3, chondroitin sulfate proteoglycan 3 (neurocan)	ACAGGATATC [A/G] CCGATGCCAG	M A G T A
G806u5	WIAF-11918	AF026547	213	CSPG3, chondroitin sulfate proteoglycan 3 (neurocan)	ACGGGA2GCC [G/C] AGATGCCCT	M G C R P
G806u6	WIAF-11929	AF026547	769	CSPG3, chondroitin sulfate proteoglycan 3 (neurocan)	GCTTTCGCCG [G/A] GAGCTGGGG	S G A R R
G806u7	WIAF-11931	AF026547	3148	CSPG3, chondroitin sulfate proteoglycan 3 (neurocan)	ACATTGATGA [C/T] TGCCCTCTGCA	S C T D D
G806u8	WIAF-11949	AF026547	209	CSPG3, chondroitin sulfate proteoglycan 3 (neurocan)	GCCAANGCCA [G/A] CCCGAGATGC	M G A A T
G806a9	WIAF-13114	AF026547	3430	CSPG3, chondroitin sulfate proteoglycan 3 (neurocan)	ATGAAAACAC [G/A] TGGATCGCC	S G A T T
G806u10	WIAF-13420	AF026547	2113	CSPG3, chondroitin sulfate proteoglycan 3 (neurocan)	CCAGGGCAGA [C/G] TTCAGAGAAA	M C G D E
G806u11	WIAF-13431	AF026547	94	CSPG3, chondroitin sulfate proteoglycan 3 (neurocan)	ATATCACCGA [T/G] GCCAGGGAAA	M T G D E
G806u12	WIAF-13432	AF026547	275	CSPG3, chondroitin sulfate proteoglycan 3 (neurocan)	ACAGGACTTG [C/T] CCATTCCTGGT	M C T P S
G806a1	WIAF-13117	Y13276	177	TLX, tailless homolog (Drosophila)	GCATGAGCAA [G/A] CCAGCCGGAT	S G A K K
G810u1	WIAF-11890	X98248	990	SORT1, sortilin 1	ATAAGGATAC [C/A] ACAAGAGGA	S C A T T
G810u2	WIAF-11891	X98248	1093	SORT1, sortilin 1	GGCAGGCAAT [G/T] ATGACATGGT	M G T D Y
G810u3	WIAF-11907	X98248	1683	SORT1, sortilin 1	CAGACGAAAGG [T/G] CAATGCTGGC	S T G G G
G810u4	WIAF-11908	X98248	1433	SORT1, sortilin 1	ATCTCCCAA [A/C] ACTGAATGTT	M A C K T
G810u5	WIAF-11909	X98248	1354	SORT1, sortilin 1	GAAGCCTGAA [A/G] ACAGTGAATG	M A G N D
G810u6	WIAF-11910	X98248	2180	SORT1, sortilin 1	TACCGGAAA [T/A] TCCAGGGAC	M T A I N
G810u7	WIAF-11911	X98248	2265	SORT1, sortilin 1	AACTTTICA [G/A] TCCGGAAAA	M G A S N

G810u8	WIAF-11925	X98248	1993	SORT1, sortilin 1	TCCAGACTAT [G/A] TTGTGACCCA	M	G	A	V	I
G810u9	WIAF-11939	X98248	1351	SORT1, sortilin 1	GAGGAAGCCT [G/C] AAAAACAGTGA	M	G	C	E	Q
G810u10	WIAF-11940	X98248	2232	SORT1, sortilin 1	AACTAAAAAGA [C/T] TTAGAAAAAGA	S	C	T	D	D
G810u11	WIAF-13115	X98248	1769	SORT1, sortilin 1	TCCATGAATA [T/A] CAGCATTTGG	M	T	A	I	N
G810u12	WIAF-13116	X98248	1757	SORT1, sortilin 1	CCPTCGAGCTA [G/A] GTCCCATGAAT	M	G	A	R	K
G811u1	WIAF-11893	HT3676	900	synapsin I, alt. transcript 1	TGACCAAGAC [G/A] TATGCCACTG	S	G	A	T	T
G811u2	WIAF-11894	HT3676	758	synapsin I, alt. transcript 1	ACCTCTTACCC [C/T] CAATCACAAA	M	C	T	P	L
G811u3	WIAF-11927	HT3676	996	synapsin I, alt. transcript 1	CGTCAGTGTCA [A/T] GGGAACTGGA	S	A	T	S	S
G811u4	WIAF-11928	HT3676	1054	synapsin I, alt. transcript 1	CATGTCGTGAC [A/G] GATAACAAGT	M	A	G	R	G
G811u5	WIAF-13418	HT3676	249	synapsin I, alt. transcript 1	TGTCCAAACGC [G/A] GTCAAGCAGA	S	G	A	A	A
G811u6	WIAF-13419	HT3676	432	synapsin I, alt. transcript 1	TTAAAAGTAGA [G/A] CAGGGCCGAAT	S	G	A	E	E
G812u1	WIAF-11898	HT4564	163	STX1A, syntaxin 1A (brain)	CCAAACCCCGA [T/C] GAGAAAGACCA	S	T	C	D	D
G812u2	WIAF-11942	HT4564	604	STX1A, syntaxin 1A (brain)	TACACGACAT [G/T] TTCAATGACAA	M	G	T	M	I
G813u1	WIAF-11934	U72508	939	Human B7 mRNA, complete cds.	TATGACAGAG [G/A] ACAGAGGATG	M	G	A	G	E
G813u2	WIAF-11948	U72508	619	Human B7 mRNA, complete cds.	GCATCCACAT [G/C] GTGACAGGTC	M	G	C	M	I
G816u1	WIAF-11897	HT4230	151	HTR2B, 5-hydroxytryptamine (serotonin) receptor 2B	CTAACCTGGTC [T/G] GGATT2ACAGA	S	T	G	S	S
G816u2	WIAF-11930	HT4230	189	HTR2B, 5-hydroxytryptamine (serotonin) receptor 2B	GAATGAAAC [A/G] GATTGTGAG	M	A	G	Q	R
G818u1	WIAF-11902	HT2694	753	TPH, (tryptophan 5-monooxygenase)	GAGTTTTCA [C/T] TGCACCTCAAT	S	C	T	H	H
G818u2	WIAF-11903	HT2694	775	TPH, tryptophan hydroxylase	TCTGAGACAC [A/G] GTTCAGATCC	M	A	G	S	G
G818u3	WIAF-11904	HT2694	1211	(tryptophan 5-monooxygenase)	TATAATCCAT [A/C] TACACGGAGT	M	A	C	Y	S

G818u4	WIAF-11905	HT2694	TPH, tryptophan hydroxylase	GATTACCTGC [A/C] AACAGGAATG	M A C K Q
G818u5	WIAF-11933	HT2694	TPH, tryptophan hydroxylase (tryptophan 5-monooxygenase)	CCCTCTATAC [C/T] CCAGAGCCAG	S C T T T
G818u6	WIAF-11935	HT2694	TPH, tryptophan hydroxylase (tryptophan 5-monooxygenase)	TCTCTGAAAGA [C/T] ACCAAGAGCA	S C T D D
G822u1	WIAF-11906	HT0207	ASMT, acetylserotonin N-methyltransferase	CAAGCGAAA [G/T] TGCTCACACC	M G T K N
G822u2	WIAF-11919	HT0207	ASMT, acetylserotonin N-methyltransferase	TGGTGGACA [C/T] GGATAAAGCT	M C T R W
G822u3	WIAF-11936	HT0207	ASMT, acetylserotonin N-methyltransferase	GAAAGCTTT [C/T] TATCGAAACA	S C T F P
G822u4	WIAF-11937	HT0207	ASMT, acetylserotonin N-methyltransferase	AATGACTACTAG [C/T] CAACGGCTTC	M C T A V
G822u5	WIAF-11938	HT0207	ASMT, acetylserotonin N-methyltransferase	ACTGGGCAGA [C/T] GGAAAGGTGT	S C T D D
G822u6	WIAF-13427	HT0207	ADAR, adenosine deaminase, RNA-specific	ACTACGCCAA [C/A] GGCTTCATGG	M C A N K
G825u1	WIAF-11888	HT4974	ADAR, adenosine deaminase, RNA-specific	GCTCAGATAC [C/T] AGCAGCTGG	N C T Q *
G825u2	WIAF-11900	HT4974	ADAR, adenosine deaminase, RNA-specific	TCTTTGACAA [A/G] TCCCTGAGCG	S A G K
G825u3	WIAF-11912	HT4974	ADAR, adenosine deaminase, RNA-specific	CTTGATTCGG [G/C] AGAACCCAGAA	M G C E Q
G825u4	WIAF-11941	HT4974	ADAR, adenosine deaminase, RNA-specific	GATGGGTATG [A/G] CCTGGAGATC	M A G D G
G825a5	WIAF-12090	HT4974	ADAR, adenosine deaminase, RNA-specific	CCTGAGACCA [A/G] AAGAAACGCA	M A G K R
G825u6	WIAF-13426	HT4974	ADAR, adenosine deaminase, RNA-specific	CCGCAGGGAT [C/T] TACTGGAGCT	S C T L I
G826u1	WIAF-12554	X99383	ADARB1, adenosine deaminase, RNA-specific, B1 (homolog of rat RED1)	AGATTACCAA [A/G] CCCAACGTGT	S A G K K
G826u2	WIAF-12566	X99383	ADARB1, adenosine deaminase, RNA-specific, B1 (homolog of rat RED1)	TGTCCTGCAG [T/G] GACAAAGATTG	M T G S R
G829u1	WIAF-13735	U49262	DVL3, dishevelled 3 (homologous to <i>Drosophila</i> dsh)	GGGTGGAGG [T/C] CCGTGAATGCC	M T C V A

G83u1	WIAF-10449	HT1576		DNMT1, DNA (cytosine-5-) - methyltransferase 1	ATGATGACCC [G/A] TCTCTTGAG	S G A P P
G83u2	WIAF-10450	HT1576	1338	DNMT1, DNA (cytosine-5-) - methyltransferase 1	AAGCTGGTCT [A/G] CCAGATCTTC	M A G Y C
G83u3	WIAF-10468	HT1576	1871	DNMT1, DNA (cytosine-5-) - methyltransferase 1	AAATCCACAG [A/G] TTTCGTATGA	M A G I V
G83u4	WIAF-10469	HT1576	928	DNMT1, DNA (cytosine-5-) - methyltransferase 1	AAATCCACAG [A/G] TTTCGTATGA	M C T S L
G83u5	WIAF-10471	HT1576	1562	DNMT1, DNA (cytosine-5-) - methyltransferase 1	AAATCCGACT [C/T] GACCTATGAG	S G A S S
G83u6	WIAF-10473	HT1576	2424	DNMT1, DNA (cytosine-5-) - methyltransferase 1	GGGCCACGTC [G/A] GACCCTCTGG	S C T L L
G83u7	WIAF-10486	HT1576	3790	DNMT1, DNA (cytosine-5-) - methyltransferase 1	GTCTTCCTC [C/T] TGAGAGAATGT	S C A I I
			1581	DNMT1, DNA (cytosine-5-) - methyltransferase 1	AGGACCTGAT [C/A] AACAGGATCG	M G A G D
G832u1	WIAF-12577	U13387		PAPAH1B1, platelet-activating factor acetylhydrolase, isoform alpha subunit (45kD)	AGACATTCAAC [A/T] GGACAAACAGAG	S A T T T
G835u1	WIAF-12555	U38276	1129	SEMA3F, sema domain, immunoglobulin domain (Ig), short	CCTCTGGCTC [C/A] GTGTTTCGAG	S C A S S
G835u2	WIAF-12556	U38276	1311	SEMA3F, sema domain, immunoglobulin domain (Ig), short	ACTCACTTTG [A/T] TGAGCTCCAG	M A T D V
G835u3	WIAF-12557	U38276	1229	SEMA3F, sema domain, immunoglobulin domain (Ig), short	GAACCTTCAC [G/A] CCATCTATGA	S G A T T
G835a4	WIAF-13138	U38276	1473	SEMA3F, sema domain, immunoglobulin domain (Ig), short	TGACCAAGGAG [A/T] TGAGCTCCAG	M A T M L
G836u1	WIAF-12592	U28369	1726	SEMA3B, sema domain, immunoglobulin domain (Ig), short	AMCGACGTGG [G/A] CGGCCAGGC	M G A G D
G836u2	WIAF-12609	U28369	1479	SEMA3B, sema domain, immunoglobulin domain (Ig), short	GTGCTGCCA [C/T] TGCGGGGGCG	M C T T I

G838u1	WIAF-12590	U72671		ICAM5, intercellular adhesion molecule 5, telencephalin	1107	ICAM5, intercellular adhesion molecule 5, telencephalin	CCGAGCTGGG [A/G] CCCAAGCTCT	M A G T A
G838u2	WIAF-12591	U72671		ICAM5, intercellular adhesion molecule 5, telencephalin	966	SOS1, son of sevenless	CAAGCAGCTG [A/G] TCTGCCAACT	M A G I V
G840a1	WIAF-12109	HT961		(Drosophila) homolog 1	2232	(Drosophila) homolog 1	CTAGGCCAAAT/C] GGAGTAAAGCC	S T C N N
G840a2	WIAF-12110	HT961		(Drosophila) homolog 1	2404	(Drosophila) homolog 1	ACCGCTCTGAA [C/G] TTGTAGGGAG	M C G L V
G840u3	WIAF-12213	HT961		SOS1, son of sevenless	3813	(Drosophila) homolog 1	CAAGGTACCC [G/A] CGTCGATGCT	S G A P P
G841u1	WIAF-12153	HT97420		SMOH, smoothed (Drosophila)	1372	SMOH, smoothed (Drosophila)	TTTGGCTTC [C/G] TGCCCTTTGG	M C G L V
G841u2	WIAF-12179	HT97420		SMOH, homolog	858	SMOH, homolog	CCCGAGTTCAT [G/T] GATGGTGCCC	M G T M I
G841u3	WIAF-12185	HT97420		SMOH, smoothed (Drosophila)	1164	SMOH, homolog	CTGTGAGTGG [C/G] ATTGGTTTTCG	S C G G G
G847u1	WIAF-12588	I41939	2019	EPHB2, EPHB2	1806	EPHB2, EPHB2	GGTGTGAGT [G/T] GCCACCTGAA	M G T G C
G847u2	WIAF-12596	I41939	2885	EPHB2, EPHB2	2484	EPHB1, EPHB1	GTTGAGCTCAA [G/C] ATGGGGCAGT	S A C R R
G847u3	WIAF-12613	I41939	140636	EPHB1, EPHB1	2020	EPHB1, EPHB1	GTCACAGTA [A/G] CCTGGTGTGC	M G C K N
G848u1	WIAF-12685	I40636	140636	EPHB1, EPHB1	1544	EPHB6, EPHB6	CCTTACTTA [T/C] GAGGATCCCA	M A G N S
G848u2	WIAF-12690	I40636	D83492	EPHB6, EPHB6	3301	EPHB6, EPHB6	ACCTGNGTGG [C/T] TCATGAGAG	S T C Y Y
G849u1	WIAF-11920	D83492	D83492	EPHB6, EPHB6	1139	EPHB6, EPHB6	CTTGGGATA [C/T] TCATGTTGGGA	M C T L F
G849u2	WIAF-11921	D83492	D83492	EPHB6, EPHB6	1895	EPHB6, EPHB6	GAGACCTTCA [C/T] CCTTTACTAC	M C T T I
G849u3	WIAF-13412	D83492	D83492	EPHB6, EPHB6	2338	EPHB6, EPHB6	TTTGAGGTGG [A/C] AGGCTCAGCA	M A C O P
G849u4	WIAF-13413	D83492	D83492	EPHB6, EPHB6	2567	EPHB6, EPHB6	CTATGACCAG [G/A] CAGAGACGA	M G A A T
G849u5	WIAF-13414	D83492	D83492	EPHB6, EPHB6	2860	EPHB6, EPHB6	GGGGTTTGG [C/G] CTTCCTCCCTG	M C G A G
G849u6	WIAF-13415	D83492	D83492	EPHB6, EPHB6	D83492	EPHB6, EPHB6	GCCCCATCAG [G/A] CCCTGTGGGC	M G A A T
G849u7	WIAF-13422	D83492	D83492	EPHB6, EPHB6	D83492	EPHB6, EPHB6	GAGGGTATT [G/C] GGACGGGCTC	M G C R
G849u8	WIAF-13423	D83492	D83492	EPHB6, EPHB6	D83492	EPHB6, EPHB6	TTCCCTAGGC [A/G] GCGGGAGGGC	M A G Q R
G849u9	WIAF-13424	D83492	D83492	EPHB6, EPHB6	D83492	EPHB6, EPHB6	AGCCATGGGA [C/T] TGGAGTGCTA	S C T L I
G849u10	WIAF-13425	D83492	D83492	EPHB6, EPHB6				
G856u1	WIAF-12625	D45906		LIMK2, LIM domain kinase 2	1323	MAD51 (S. cerevisiae)	S G C L L	
G858u1	WIAF-12630	U65019		MADH2, MAD (mothers against decapentaplegic, Drosophila)	864	homolog 2	TTGGGTGTTTC [G/A] ATAGCATATT	S G A S S
G86u1	WIAF-10437	HT1701		RAD51, RAD51 homolog (E. coli RecA homolog)	263		TGAAGCCAAT [G/C] CAGATPACTTC	M G C A P

G86u2	WIAF-10465	HT1701	861	RAD51, RAD51 (S. cerevisiae) homolog (E coli RecA homolog)	GCATCAGCCA [T/C] GATGGTAA	M T C M T
G86u3	WIAF-10466	HT1701	924	RAD51, RAD51 (S. cerevisiae) homolog (E coli RecA homolog)	TATGAAACAG [A/G] CTACTCGGT	M A G D G
G864a1	WIAF-13139	X82324	183	POU3F4, POU domain, class 3, transcription factor 4	CAGGAATGGG [C/t] ATCCCCCTCGG	M C t H Y
G866u1	WIAF-12637	HT0101	2576	glutamate receptor (GB: M64752)	AAATCCCGTA [G/A] TGATATCCAAG	M G A S N
G866u2	WIAF-12638	HT0101	1131	glutamate receptor (GB: M64752)	TAACAGAAA [C/T] GTGCAAGTTA	S C T N N
G869u1	WIAF-13406	HT33620	3627	GRIN2C, glutamate receptor, ionotropic, N-methyl D-aspartate 2C	AGATCAGCAG [G/T] GTAGCCCGTG	M G T R S
				SLC1A1, solute carrier family 1 (neuronal/epithelial high affinity glutamate transporter, system Xag), member 1	CAGAGAGTC [C/G] TTGACACAGCTG	S C G S S
G870u1	WIAF-11889	HT4468	714			
G870u2	WIAF-11913	HT4468	314	SLC1A1, solute carrier family 1 (neuronal/epithelial high affinity glutamate transporter, system Xag), member 1	CTAGAGAAAT [T/A] CTACTTGCT	M T A F Y
G870u3	WIAF-11914	HT4468	579	SLC1A1, solute carrier family 1 (neuronal/epithelial high affinity glutamate transporter, system Xag), member 1	AAGTCAGTAC [G/A] GTGGGATGCCA	S G A T T
G870u4	WIAF-11922	HT4468	706	SLC1A1, solute carrier family 1 (neuronal/epithelial high affinity glutamate transporter, system Xag), member 1	CAACATGACA [G/A] AAGAGTCCTT	M G A E K

G870u5	WIAF-11923	HT4468	978	SLC1A1, solute carrier family 1 (neuronal/epithelial high affinity glutamate transporter, system xag), member 1	GGAGATCAT [A/G] GAAGTTGAAG	M A G I M
G871u1	WIAF-11892	HT3187	1004	SLC1A3, solute carrier family 1 (glial high affinity glutamate transporter), member 1	TTCCTTAAC [G/C] AAAGCCATCAT	M G C E Q
G871u2	WIAF-11915	HT3187	1154	SLC1A3, solute carrier family 1 (glial high affinity glutamate transporter), member 3	TGTTGCTTA [C/T] TCATTTCACGC	M C T L F
G871u3	WIAF-11926	HT3187	1412	SLC1A3, solute carrier family 1 (glial high affinity glutamate transporter), member 3	GGCTGCCATT [T/G] TCATTTGCTCA	M T G F V
G871u4	WIAF-11944	HT3187	1217	SLC1A3, solute carrier family 1 (glial high affinity glutamate transporter), member 3	AAACCCCTGG [G/A] TTTCATTGG	M G A V I
G872u1	WIAF-13433	HT4077	1271	SLC1A2, solute carrier family 1 (glial high affinity glutamate transporter), member 2	CTGTTGAGC [A/C] ACCATTAAACA	S A C A A
G879u1	WIAF-11899	HT28317	1273	GRM2, glutamate receptor, metabotropic 2	GACTTGTGC [T/C] CAACGTCAAG	M T C L P
G879u2	WIAF-11932	HT28317	2349	GRM2, glutamate receptor, metabotropic 2	CTTCTATGTC [A/G] CCTTCCAGTGA	M A G T A
G879u3	WIAF-13421	HT28317	2186	GRM2, glutamate receptor, metabotropic 2	ATGCAAGPAT [G/T] TTGGGGCTGCG	M G T M I
G879u4	WIAF-13429	HT28317	2567	GRM2, glutamate receptor, metabotropic 2	CCCAGTTGT [C/T] CCCACTGTTT	S C T V V
G879u5	WIAF-13436	HT28317	2046	GRM2, glutamate receptor, metabotropic 2	ACAGGTGGGC [A/G] TCTGCTGGC	M A G I V
G879u6	WIAF-13438	HT28317	2425	GRM2, glutamate receptor, metabotropic 2	GTGCTTGCT [G/T] CCTCTTGGCG	M G T C F
G879u7	WIAF-13439	HT28317	2463	GRM2, glutamate receptor, metabotropic 2	CCTCTTCCAG [C/T] CGCAGAGAA	M C T P S
G880u1	WIAF-12164	HT33719	2117	GRM4, glutamate receptor, metabotropic 4	AGCCCGACCT [T/G] GGCACCTGCT	S T G L L

G880u2	WIAF-12176	HT33719	GRM4, glutamate receptor, 2427 metabotropic 4	GGACCTGTCG [C/T] TCATCTGCC	M C T L F
G880u3	WIAF-12192	HT33719	GRM4, glutamate receptor, 2372 metabotropic 4	ACCAAGGGAC [A/G] CTCGACCCCC	S A G T T
G883a1	WIAF-13140	HT48863	GRM7, glutamate receptor, 1408 metabotropic 7	ATCGAAATG [C/a] ACAGGACAGG	N C a C *
G883a2	WIAF-13141	HT48863	GRM7, glutamate receptor, 2027 metabotropic 7	TCTCTGTCTTC [C/t] TGGCAATGTT	S C t L L
G883a3	WIAF-13147	HT48863	GRM7, glutamate receptor, 1813 metabotropic 7	TGGGACACT [A/g] CCATGTAAGC	S A g L L
G883a4	WIAF-13148	HT48863	GRM7, glutamate receptor, 1536 metabotropic 7	TGGTGTGACT [A/t] CCGGGGTGTG	M A t Y F
G883a5	WIAF-13149	HT48863	GRM7, glutamate receptor, 2473 metabotropic 7	AAGCCAGAGG [G/a] GTCCTCAAGT	S G a G G
G883a6	WIAF-13150	HT48863	GRM7, glutamate receptor, 2434 metabotropic 7	TCATAGACTA [C/t] GATGAAACACA	S C t Y Y
G884u1	WIAF-11916	U95025	GRM8, glutamate receptor, 1052 metabotropic 8	CGAACTCTTG [C/A] CAATAATCGA	M C A A D
G884u2	WIAF-11945	U95025	GRM8, glutamate receptor, 2016 metabotropic 8	AAACAAACCG [T/C] ATCCACGAA	S T C R R
G884u3	WIAF-11946	U95025	GRM8, glutamate receptor, 1852 metabotropic 8	GAGGGCTTCA [G/A] GACGGGAACT	M G A G R
G884u4	WIAF-11947	U95025	GRM8, glutamate receptor, 2078 metabotropic 8	ATTAGTCCAG [C/G] ATCTCAGCTG	M C G A G
G884u5	WIAF-13430	U95025	GRM8, glutamate receptor, 1897 metabotropic 8	TTTCTCTGT [T/G] ATTCAATCAC	M T G Y D
G884u6	WIAF-13435	U95025	GRM8, glutamate receptor, 2364 metabotropic 8	TTACCATGTA [T/C] ACCACCTGCA	S T C Y Y
G885u1	WIAF-13434	AF002700	GFRA2, GDNF family receptor alpha 1363 2	AACTCAGCC [C/A] CAGGCAAGGCC	M C A P H
G886a1	WIAF-13142	U95847	GFRA1, GDNF family receptor alpha 497 1	GAAGTCGTC [T/a] ACAACTGCCG	M T a Y N
G886a2	WIAF-13143	U95847	GFRA1, GDNF family receptor alpha 1385 1	GCTCTGAGAT [G/a] AAATTCAC	M G a E K
G886a3	WIAF-13151	U95847	GFRA1, GDNF family receptor alpha 781 1	GCGTGTCAA [T/c] GATGTCGCA	S T C N N
G892u1	WIAF-11956	U12140	NTRK2, neurotrophic tyrosine kinase, receptor, type 2	TGGCAAATCC [A/G] TTTACATGCT	S A G P P
G892u2	WIAF-11957	U12140	NTRK2, neurotrophic tyrosine kinase, receptor, type 2	GGATCAAGAC [T/A] CTCCAAGAGG	S T A T T

G892u3	WIAF-11958	U12140	956	NTRK2, neurotrophic tyrosine kinase, receptor, type 2	GCAAATCTGG [C/T] CGCACCTAAC	M C T A V
G892u4	WIAF-11960	U12140	1738	NTRK2, neurotrophic tyrosine kinase, receptor, type 2	CTCGAAGTTT [G/A] GCATGAAAGG	M G A G S
G892u5	WIAF-11962	U12140	2486	NTRK2, neurotrophic tyrosine kinase, receptor, type 2	GTCGGTGCC [A/G] CACATATGCTG	M A G H R
G892u6	WIAF-11965	U12140	1106	NTRK2, neurotrophic tyrosine kinase, receptor, type 2	TCCCTTAAGGA [T/C] AACTAACATT	M T C I T
G892u7	WIAF-11966	U12140	2085	NTRK2, neurotrophic tyrosine kinase, receptor, type 2	AGGATGCCAG [T/C] GACAATGCAC	S T C S S
G892u8	WIAF-11967	U12140	2230	NTRK2, neurotrophic tyrosine kinase, receptor, type 2	GGACCTCAAC [A/C] AGTTTCTCAG	M A C K Q
G892u9	WIAF-11968	U12140	2223	NTRK2, neurotrophic tyrosine kinase, receptor, type 2	AGCATGGGA [C/T] CTCAACAGT	S C T D D
G892u10	WIAF-11992	U12140	1602	NTRK2, neurotrophic tyrosine kinase, receptor, type 2	GTAATGAAT [C/T] CCTTCCACAG	S C T I I
G892u11	WIAF-11998	U12140	1354	NTRK2, neurotrophic tyrosine kinase, receptor, type 2	TACTAAATA [C/T] ATGTTACCAA	M C T H Y
G892u12	WIAF-11999	U12140	1944	NTRK2, neurotrophic tyrosine kinase, receptor, type 2	CATTGTCA [G/C] CACATTAAGC	M G C Q H
G892u13	WIAF-12000	U12140	2103	NTRK2, neurotrophic tyrosine kinase, receptor, type 2	CACGCAAGGA [C/T] TTCCCAACGTG	S C T D D
G892u14	WIAF-12001	U12140	1860	NTRK2, neurotrophic tyrosine kinase, receptor, type 2	CTGTCATTAT [T/C] GGAATGACCA	S T C I I
G892a15	WIAF-13144	U12140	1868	NTRK2, neurotrophic tyrosine kinase, receptor, type 2	ATGGAAATGA [C/G] CAAGATCCCT	M C G T S
G892a16	WIAF-13145	U12140	1903	NTRK2, neurotrophic tyrosine kinase, receptor, type 2	CGAGTACTTT [G/T] GCATCACCAA	M G T G C

G892a17	WIAF-13146	U12140	1965	NTRK2, kinase, receptor, type 2	GACATAACAT [T/G] GTTCGAAAA	M	T	G	I	M
G892u18	WIAF-13442	U12140	958	NTRK2, kinase, receptor, type 2	AAATCTGGCC [G/T] CACCTAACCT	M	G	T	A	S
G892u19	WIAF-13446	U12140	2502	NTRK2, kinase, receptor, type 2	TGGTCCCCAT [T/C] CGCTGGATGC	S	T	C	I	I
G892u20	WIAF-13447	U12140	2317	NTRK2, kinase, receptor, type 2	GATGGTGCA [A/T] TAGGCCAGCA	M	A	T	I	L
G892u21	WIAF-13448	U12140	2364	NTRK2, kinase, receptor, type 2	CGTCCCCAGCA [C/A] TTCTGTGACC	M	C	A	H	Q
G892u22	WIAF-13449	U12140	2507	NTRK2, kinase, receptor, type 2	CCCATTTGGCT [G/A] GATGCCCTCA	N	G	A	W	*
G892u23	WIAF-13471	U12140	2389	NTRK2, kinase, receptor, type 2	TTTGGCCACC [A/C] GGAACTGGCT	S	A	C	R	R
G892u24	WIAF-13472	U12140	2416	NTRK2, kinase, receptor, type 2	GGAGAACTTG [C/T] TGGTCAAAAT	S	C	T	L	L
G892u25	WIAF-13474	U12140	359	NTRK2, kinase, receptor, type 2	GGGATGTGCT [C/T] CTGGATAAGG	M	C	T	S	F
G892u26	WIAF-13479	U12140	1044	NTRK2, kinase, receptor, type 2	TGTATTGGGA [T/C] GTTGGTAACC	S	T	C	D	D
G9u1	WIAF-10222	J03826	1130	FDXR, ferredoxin reductase	GCTATAAGAG [C/T] CGCCCCCTCG	S	C	T	S	S
G9u2	WIAF-10258	J03826	388	FDXR, ferredoxin reductase	CCGGAGCTGC [A/G] GGAGCCCTAC	M	A	G	Q	R
G900u1	WIAF-11970	HT3470	497	STX4A, syntaxin 4A (placental)	TCCAATTCAA [T/C] GCAGTCGGAA	M	T	C	M	T
G901u1	WIAF-11969	HT27792	758	STX3A, syntaxin 3A	TCCACACAGT [G/A] GACCACTGG	S	G	A	V	V
G901u2	WIAF-11971	HT27792	317	STX3A, syntaxin 3A	ACGTCGGAA [C/A] AAACCTGAGA	M	C	A	N	K
G901u3	WIAF-12002	HT27792	611	STX3A, syntaxin 3A	AGCAAGCCCT [C/T] AGTGGAGATTG	S	C	T	L	L
G901u4	WIAF-12003	HT27792	909	STX3A, syntaxin 3A	GCTGAATTAA [G/A] AGTGGCTCAA	-	G	A	-	-
G901u5	WIAF-12004	HT27792	163	STX3A, syntaxin 3A	ATGTGAGGAA [C/T] TGGCTTPAAC	M	C	T	I	I
G901a6	WIAF-13152	HT27792	82	STX3A, syntaxin 3A	CAAGCTGACAC [A/G] GGATGATCAT	M	A	G	Q	R

G901u7	WIAF-13453	HT27792	828	STX3A, Syntaxin 3A		CCGGAAAGAA [T/C] TGATAATTAT	S	T	C	L	L
G901u8	WIAF-13455	HT27792	226	STX3A, Syntaxin 3A		TACAGTATCA [T/C] TCTCTCTCGCA	M	T	C	I	I
G902u1	WIAF-13454	HT27744	848	STX5A, Syntaxin 5A		ACTTCAGTC [T/A] GTCACCTCCA	S	T	A	S	S
G902u2	WIAF-13456	HT27744	338	STX5A, Syntaxin 5A		ATTCTGTGAG [A/G] GCCAAGGGCA	S	A	G	R	R
G905u1	WIAF-12202	HT27789	487	CREB1L, cAMP responsive element binding protein-like 1		TCCAGATCAA [C/T] GTTATCCCCA	S	C	T	N	N
G905u2	WIAF-12219	HT27789	151	CREB1L, cAMP responsive element binding protein-like 1		ATTCTGGCT [A/T] GATGAAGTGG	S	A	T	L	L
G905u3	WIAF-12230	HT27789	649	CREB1L, cAMP responsive element binding protein-like 1		AGTCCTGTC [C/G] CCTTCAGGAT	S	C	G	S	S
G906u1	WIAF-12214	HT4372	2127	N-ethylmaleimide-sensitive factor		AAGGGAAAGAA [G/A] GTCTGGATAG	S	G	A	K	K
G906u2	WIAF-12221	HT4372	514	N-ethylmaleimide-sensitive factor		GGGAGAGCCT [G/A] CGACAGGGAA	M	G	A	A	T
G908u1	WIAF-12201	HT3665	98	RAB5A, member RAS oncogene family		GCCCCAAATAC [T/G] GGAAATAAAA	S	T	G	T	T
G91u1	WIAF-10438	HT1848	496	ERCC1, excision repair cross-complementing rodent repair deficiency, complementation group 1 (includes overlapping anti-sense sequence)		TCTGTGCCAA [C/T] GTGCCCTGGC	S	C	T	N	N
G91u2	WIAF-10439	HT1848	367	ERCC1, excision repair cross-complementing rodent repair deficiency, complementation group 1 (includes overlapping antisense sequence)		CTGGGGCCAC [G/A] TGCCCCACAG	S	G	A	T	T
G91u4	WIAF-13210	HT3672	252	synaptobrevin 1		GCAGTGCTGC [C/A] AAGCTTAAGA	S	C	A	A	A
G91u5	WIAF-12115	D63506	1390	Homo sapiens mRNA for unc-18homologue, complete cds.		TTACCTTGGT [G/A] TTCCCCATTGT	M	G	A	V	I
G91u2	WIAF-12293	D63506	685	Homo sapiens mRNA for unc-18homologue, complete cds.		ACAGCTTGT [G/A] AAAAAAAGCT	M	G	A	E	K
G916a1	WIAF-13209	HT28523	308	Huntingtin associated protein 1-like protein		GAGGAGTTT [C/T] GGAGGCCAGC	M	C	T	S	L
G916a2	WIAF-13211	HT28523	762	Huntingtin associated protein 1-like protein		CGAGGAGTT [G/C] GTGCCCTAGG	M	G	C	L	F
G916a3	WIAF-13212	HT28523	566	Huntingtin associated protein 1-like protein		GAGCTCAGA [C/T] GTCTCTTAAGG	M	C	T	T	M

G917u1	WIAF-11972	U79734	1075	HIP1, huntingtin interacting protein 1	AGAGCCAGGG [G/A] GTTGTCTGCG	S	G	A	R	R
G917u2	WIAF-11973	U79734	1005	HIP1, huntingtin interacting protein 1	GNCACCAAA [T/C] TGAGCCACTA	M	T	C	I	T
G917u3	WIAF-11977	U79734	1539	HIP1, huntingtin interacting protein 1	CTGCAAGGA [G/A] CCTGGAAACT	M	G	A	S	N
G917u4	WIAF-12005	U79734	817	HIP1, huntingtin interacting protein 1	TGTGGTGT [C/T] CCTGCAGAAGG	S	C	T	I	I
G917u5	WIAF-12006	U79734	1906	HIP1, huntingtin interacting protein 1	GCTGGAGCCA [G/C] TATCTGGCT	M	G	C	Q	H
G917u6	WIAF-13157	U79734	993	HIP1, huntingtin interacting protein 1	AAGGATGAGA [A/G] GGACCACTTA	M	A	G	K	R
G919u1	WIAF-11974	D30742	707	CAMK4, calcium/calmodulin-dependent protein kinase IV	ACTGGCACCT [T/C] GAAATTCCTTA	S	T	C	P	P
G919u2	WIAF-11991	D30742	1139	CAMK4, calcium/calmodulin-dependent protein kinase IV	AGAGCCACAA [G/A] GCTAGCCGAG	S	G	A	K	K
G919u3	WIAF-12007	D30742	834	CAMK4, calcium/calmodulin-dependent protein kinase IV	CATGTTCAAGG [A/T] GAATTCTGAA	N	A	T	R	*
G919u4	WIAF-13443	D30742	1088	CAMK4, calcium/calmodulin-dependent protein kinase IV	TGGCCCTCTTC [C/G] CGGCCCTGGAA	S	C	G	S	S
G920u1	WIAF-11979	X78520	1952	CLCN3, chloride channel 3	ATGACATTCCTCC [T/C] GATGTCGCCAG	S	T	C	P	P
G920u2	WIAF-11980	X78520	1819	CLCN3, chloride channel 3	ATAGCCCTTCCC [C/T] TAATCCATAC	M	C	T	P	L
G920u3	WIAF-11981	X78520	2094	CLCN3, chloride channel 3	CATITGGAGCG [A/G] TCGGAGGAG	M	A	G	I	V
G920u4	WIAF-11983	X78520	2822	CLCN3, chloride channel 3	ATATTTCGG [A/G] AAGCTGGGAC	S	A	G	R	R
G920u5	WIAF-11984	X78520	2745	CLCN3, chloride channel 3	GCCATTGAAG [C/T] TTCTGAGCAT	M	C	T	J	F
G920u6	WIAF-11987	X78520	2499	CLCN3, chloride channel 3	TCCCTTAGCT [G/T] TCCTGACACA	N	G	T	V	F
G920u7	WIAF-12008	X78520	1251	CLCN3, chloride channel 3	CATCATCAGA [G/A] GTTACTTGGG	M	G	A	G	S
G920u8	WIAF-12011	X78520	888	CLCN3, chloride channel 3	AGTATGAAAC [C/T] TAACGGATT	S	C	T	L	L
G920u9	WIAF-13459	X78520	2804	CLCN3, chloride channel 3	CAATGGAGAT [T/C] GTTGGGGATA	S	T	C	I	I
G920u11	WIAF-11954	U79734	1005	CLU, clusterin (complement lysis inhibitor, SP-40,40, sulfated glycoprotein 2, testosterone-repressed prostate message 2, apolipoprotein J)						
G920u8	WIAF-11958	U79734	1005	GAGAGGGTTGA [C/T] CAGGGAAATAC	M	C	T	T	I	

G921u2	WIAF-11955	J02908	880	CLU, clusterin (complement lysis inhibitor, SP-40,40, sulfated glycoprotein 2, testosterone-repressed prostate message 2, apolipoprotein J)	CCCTOCCAGG [C/T] TAAGCTGGG	M C T A V
G921u3	WIAF-11990	J02908	1051	CLU, clusterin (complement lysis inhibitor, SP-40,40, sulfated glycoprotein 2, testosterone-repressed prostate message 2, apolipoprotein J)	CTCACCCAAG [G/C] CGAAAGACCAAG	M G C G A
G921u4	WIAF-13469	J02908	986	CLU, clusterin (complement lysis inhibitor, SP-40,40, sulfated glycoprotein 2, testosterone-repressed prostate message 2, apolipoprotein J)	TCAAGAACCTC [C/T] TCCTTCCTGG	S C T S S
G923u1	WIAF-11953	M19650	1059	Human 2',3'-cyclic nucleotide 3'-phosphodiesterase mRNA, complete cds.	GAGCTAAGCC [G/A] GGGGAAGCTC	M G A R Q
G923u2	WIAF-11954	M19650	1062	Human 2',3'-cyclic nucleotide 3'-phosphodiesterase mRNA, complete cds.	CTAAAGCCCCG [G/T] CAAGCTCTAT	M G T G V
G923u3	WIAF-13445	M19650	1141	Human 2',3'-cyclic nucleotide 3'-phosphodiesterase mRNA, complete cds.	TCTTCACCGG [G/A] TACTAACGGG	S G A G G
G925u1	WIAF-11953	L11315	666	CAK, cell adhesion kinase	GGTGTATGAG [T/C] GTCTTGCTGC	S T C S S
G925u2	WIAF-11959	L11315	2562	CAK, cell adhesion kinase	TGCTGCCCAT [C/T] CGCTGGATGG	S C T I I
G925u3	WIAF-11996	L11315	2049	CAK, cell adhesion kinase	AGATCTGGT [T/C] AGTCTTGATT	S T C V V
G925u4	WIAF-13440	L11315	1601	CAK, cell adhesion kinase	TACCAAGGAGC [C/T] CCGGCTCTGGT	M C T P L
G925u5	WIAF-13441	L11315	1629	CAK, cell adhesion kinase	CGCCCCACTC [C/T] GCTCCCTGTTG	S C T S S
G925u6	WIAF-13451	L11315	2262	CAK, cell adhesion kinase	TGGAGAACGG [C/T] GACCTGTAACC	S C T G G
G926u1	WIAF-11961	AF018956	577	NRPL, neuropilin 1	TCAAAGCTT [G/T] ACCTGASGCC	M G T D Y
G926u2	WIAF-11963	AF018956	1683	NRPL, neuropilin 1	CCACGCGATT [C/G] ATCAGGATCT	M C G F L
G926u3	WIAF-11975	AF018956	2176	NRPL, neuropilin 1	GACCTTCTGG [T/C] ATCACATGTC	M T C Y H

G926u4	WIAF-11976	AF018956	2092	NRPL, neuropilin 1	TTCCTAACGT [G/T] ACGAAAATCA	M	G	T	D	Y
G926a5	WIAF-13158	AF018956	747	NRPL, neuropilin 1	TTTTTACAC [C/T] GACAGGCCA	S	C	T	T	T
G926a6	WIAF-13159	AF018956	996	NRPL, neuropilin 1	ACTTCGGCTT [T/C] CTGGCGTTTG	S	T	C	L	L
G926u7	WIAF-13444	AF018956	644	NRPL, neuropilin 1	GAATCTGG [A/C] TGGATTCCCT	M	A	C	D	A
G926u8	WIAF-13450	AF018956	1738	NRPL, neuropilin 1	CAGATGGAG [C/G] TGCTGGCTG	M	C	G	L	V
G926u9	WIAF-13452	AF018956	537	NRPL, neuropilin 1	TGGTCTTGC [G/A] CCZAAAGATG	S	G	A	A	A
G926u10	WIAF-13457	AF018956	2197	NRPL, neuropilin 1	TGGTCCCC [G/A] TCGGCCACT	M	G	A	V	I
G927u1	WIAF-11978	AF022860	870	NRP2, neuropilin 2	GGATPGCTAA [T/C] GAAAGATCA	S	T	C	N	N
G927u2	WIAF-11982	AF022860	1674	NRP2, neuropilin 2	ATGACACCC [T/G] GACATCGAA	S	T	G	P	P
G927u3	WIAF-11985	AF022860	1250	NRP2, neuropilin 2	TGGGACTCTAG [G/A] TATGCCCTC	M	G	A	G	D
G927u4	WIAF-11986	AF022860	1071	NRP2, neuropilin 2	ATGGCTACTA [C/T] GTCAAACTCT	S	C	T	Y	Y
G927u5	WIAF-12009	AF022860	726	NRP2, neuropilin 2	GTTCATCGAC [G/A] GGGATCTCT	S	G	A	T	T
G927u6	WIAF-12010	AF022860	2522	NRP2, neuropilin 2	GCAACTCTAG [G/T] GTCTGGCGCC	M	G	T	G	V
G927u7	WIAF-12012	AF022860	123	NRP2, neuropilin 2	GCTATPATCAC [C/T] TCCTCCGGTT	S	C	T	T	T
G927a8	WIAF-13160	AF022860	2427	NRP2, neuropilin 2	CTTITGCACT [G/T] GACATCCAG	S	G	T	V	V
G927a9	WIAF-13161	AF022860	2430	NRP2, neuropilin 2	TTGGATGTGGA [C/G] ATCCGAAAA	M	C	G	D	E
G927a10	WIAF-13162	AF022860	2463	NRP2, neuropilin 2	AGGGATATGA [N/G] GATCAAATTG	S	A	G	E	E
G927a11	WIAF-13163	AF022860	2473	NRP2, neuropilin 2	AGATGAAATT [G/T] ATGTGATA	M	G	T	D	Y
G927u12	WIAF-13480	AF022860	724	NRP2, neuropilin 2	TGTTICATCG [A/T] CGGGGATCCCT	M	A	T	T	S
G927u13	WIAF-13481	AF022860	767	NRP2, neuropilin 2	ATGGCGTGG [C/T] CAAGGATGGC	M	C	T	A	V
G930a1	WIAF-13164	HT2608	609	GABA ₂ , gamma-aminobutyric acid (GABA) A receptor, alpha 2	ACAATGGAA [G/a] AAATCAGTAG	S	G	a	K	K
G931a1	WIAF-13153	HT2609	1111	GABA ₃ , gamma-aminobutyric acid (GABA) A receptor, alpha 3	ACTGGTCTCAT [A/g] GCCGTCTGTT	M	A	g	I	M
G931a2	WIAF-13165	HT2609	1448	(GABA) A receptor, alpha 3	TGTCAGGDAAG [G/A] TTGACAAAT	M	G	A	V	I
G932a1	WIAF-13154	HT27773	1077	(GABA) A receptor, alpha 4	CAAAAGAAAG [A/G] CATCAAAGCC	M	A	G	T	A
G932a2	WIAF-13155	HT27773	1189	(GABA) A receptor, alpha 4	AGAACAAATG [C/A] TTTCAGCTGCA	M	C	A	A	D
G936u1	WIAF-12308	HT3432	1027	(GABA) A receptor, beta 2	ATTAGATG [C/T] TTTCAGCTGCA	M	C	T	A	V
G936u2	WIAF-12327	HT3432	362	(GABA) A receptor, beta 2	AGGCTATGA [C/T] ATTTCAGCTGCA	S	C	T	D	D

G956u3	WIAF-12328	HT3432				GABRB2, (GABA) A receptor, beta 2		CCTGGGTGC [C/T] TGATACTAT		M	C	T	P	L							
G939u1	WIAF-12330	HT2236				GABRR2, (GABA) receptor, rho 2		CTGGATGAA [G/C] CTACAGTGAG		M	G	C	S	T							
G939u2	WIAF-12355	HT2236				GABRR2, (GABA) receptor, rho 2		ACACCATCA [T/C] CACGGCGGTG		M	T	C	I	T							
G939u3	WIAF-12356	HT2236				GABRR2, (GABA) receptor, rho 2		CGCTCCCTAC [G/A] TCAAGGCCGT		M	G	A	V	I							
G950u1	WIAF-13622	U64871				Human putative G protein-coupled receptor (GPR19) gene, complete cds.															
G950u2	WIAF-13624	U64871				Human putative G protein-coupled receptor (GPR19) gene, complete cds.		GATAACAGCA [A/C] GTTCACCACT		M	A	C	Q	P							
G950u3	WIAF-13625	U64871				Human putative G protein-coupled receptor (GPR19) gene, complete cds.		GATAACAGCA [A/C] GCCACATTG		M	A	C	K	T							
G955a1	WIAF-13166	HT3860				calcium channel, voltage-gated, alpha 1 subunit, L type, alt.		CTGGGTAGTC [C/T] AACGTGAAAG		M	C	T	A	V							
G955a2	WIAF-13167	HT3860				calcium channel, voltage-gated, alpha 1 subunit, L type, alt.		CTGGGCTCTT [T/C] ACCGGGGAGA		S	T	C	E	F							
G955a3	WIAF-13168	HT3860				calcium channel, voltage-gated, alpha 1 subunit, L type, alt.		CTAACCCAAAC [C/a] CAGAAACTAC		M	C	a	P	T							
G955a4	WIAF-13169	HT3860				calcium channel, voltage-gated, alpha 1 subunit, L type, alt.		GTGTCCCCCA [G/a] AGTCCGAGCC		M	G	a	E	K							
G955a5	WIAF-13170	HT3860				calcium channel, voltage-gated, alpha 1 subunit, L type, alt.		ATCACCTTCT [A/g] CATGCTCTGT		M	A	g	Y	C							
G955a6	WIAF-13171	HT3860				calcium channel, voltage-gated, alpha 1 subunit, L type, alt.		ACCAACCTGGA [T/c] GAGTTTAAAA		S	T	c	D	D							
G956u1	WIAF-14187	HT2199				calcium channel, voltage-gated, alpha 1D subunit, DHP-sensitive		CGGGCTCCAA [C/t] GCCAACATCA		S	C	t	N	N							

G956u2	WIAF-14188	HT2199	1452	calcium channel, voltage-gated, alpha 1D subunit, DHP-sensitive	AGAGGACCC [A/T] GCTCCATGTG	S	A	T	P	P
G956u3	WIAF-14189	HT2199	1614	calcium channel, voltage-gated, alpha 1D subunit, DHP-sensitive	GCTGACAGA [C/T] GTGCTCTACT	S	C	T	D	D
G956u4	WIAF-14190	HT2199	2540	calcium channel, voltage-gated, alpha 1D subunit, DHP-sensitive	GGCAAGTTA [A/T] TTTTGATGAA	M	A	T	N	I
G956u5	WIAF-14191	HT2199	3210	calcium channel, voltage-gated, alpha 1D subunit, DHP-sensitive	TGCTGAGCAG [T/C] GCTGCCCTGG	S	T	C	S	S
G956u6	WIAF-14192	HT2199	3326	calcium channel, voltage-gated, alpha 1D subunit, DHP-sensitive	TGAGAGATGA [C/T] AACTTTGGAA	M	C	T	T	I
G956u7	WIAF-14193	HT2199	3274	calcium channel, voltage-gated, alpha 1D subunit, DHP-sensitive	ACTGGTTAAC [T/C] TTGACTATGC	M	T	C	F	L
G956u8	WIAF-14194	HT2199	5127	calcium channel, voltage-gated, alpha 1D subunit, DHP-sensitive	TGCCCTCTCAA [C/T] AGTGACGGAA	S	C	T	N	N
G956u9	WIAF-14195	HT2199	5173	calcium channel, voltage-gated, alpha 1D subunit, DHP-sensitive	TGCTTGGT [C/T] GAACCGCTCT	N	C	T	R	*
G956u10	WIAF-14200	HT2199	1437	calcium channel, voltage-gated, alpha 1D subunit, DHP-sensitive	CAGATACTGTA/G/G GCTGAGAGG	S	A	G	V	V
G956u11	WIAF-14201	HT2199	2567	calcium channel, voltage-gated, alpha 1D subunit, DHP-sensitive	ACCAAGGGAA [G/T] CACCTTGAC	M	G	T	S	I
G956u12	WIAF-14202	HT2199	4464	calcium channel, voltage-gated, alpha 1D subunit, DHP-sensitive	TCACTTTTT [C/T] CGTCCTTCC	S	C	T	F	F
G956u13	WIAF-14215	HT2199	6927	calcium channel, voltage-gated, alpha 1D subunit, DHP-sensitive	GCTACAGGCA [C/T] GAAGAGCCAG	S	C	T	D	D
G956u14	WIAF-14216	HT2199	6858	calcium channel, voltage-gated, alpha 1D subunit, DHP-sensitive	CCCGAGCCAA [C/T] GGGGATGTGG	S	C	T	N	N
G957u1	WIAF-12306	HT4229	9152	calcium channel, voltage-gated, alpha 1E subunit, alt. transcript	TACATCGAGC [G/A] TGCTTCATGA	M	G	A	?	R

				calcium channel, voltage-gated, alpha 1E subunit, alt. transcript		GCCACTACAT [C/T] GTGAAACCTGC	S C T I I
G957u2	WIAF-12309	HT4229	3555 2	calcium channel, voltage-gated, alpha 1E subunit, alt. transcript		ATGTAGATCA [C/T] GAGAAAAAACAA	S C T H H
G957u3	WIAF-12310	HT4229	4116 2	calcium channel, voltage-gated, alpha 1E subunit, alt. transcript		AGAACGGAAA [T/C] GAAACGCTGCG	S T C N N
G957u4	WIAF-12313	HT4229	5181 2	calcium channel, voltage-gated, alpha 1E subunit, alt. transcript		TATGGACCCC [G/A] CGCGATGACGG	S G A T T
G957u5	WIAF-12314	HT4229	5971 2	calcium channel, voltage-gated, alpha 1E subunit, alt. transcript		ATGACGGACA [G/T] TTCCAAAGAAC	M G T Q H
G957u6	WIAF-12315	HT4229	5985 2	calcium channel, voltage-gated, alpha 1E subunit, alt. transcript		GCTGGCAGGA [G/A] GCCTTGATGAGA	M G A G S
G957u7	WIAF-12329	HT4229	3100 2	calcium channel, voltage-gated, alpha 1E subunit, alt. transcript		CCCTCTTTTC [C/T] TACAGCTCCCC	M C T ? R
G957u8	WIAF-12331	HT4229	6492 2	calcium channel, voltage-gated, alpha 1E subunit, alt. transcript		AACGCTTTGG [G/C] AACCAAACAAA	M G C G A
G957u9	WIAF-12354	HT4229	3839 2	calcium channel, voltage-gated, alpha 1E subunit, alt. transcript		TGACTTCATC [A/G] CCGTCATTGG	M A G T A
G957u10	WIAF-12357	HT4229	4753 2	calcium channel, voltage-gated, alpha 1E subunit, alt. transcript		TTGATGCCCT [C/T] TGATGGGCC	M C T S F
G960u1	WIAF-12305	HT3336	1246	CACNB3, calcium channel, voltage-dependent, beta 3 subunit		TGGACAGGAT [C/T] TTCAAGGGT	M C T F F
G960u2	WIAF-12340	HT3336	1288	CACNB3, calcium channel, voltage-dependent, beta 3 subunit		AGGCTCTCTT [C/T] GACTTCCTCA	S C T F F
G960u3	WIAF-12345	HT3336	641	CACNB3, calcium channel, voltage-dependent, beta 3 subunit		CATGGGGCCT [G/A] TGGTGGCTGTT	M G A V M
G960u4	WIAF-12346	HT3336	576	CACNB2, calcium channel, voltage-dependent, beta 3 subunit		ACTCTGCCTA [C/T] GTAGAGCCAA	S C T Y Y
G961u1	WIAF-12322	U95019	2037	CACNB2, calcium channel, voltage-dependent, beta 2 subunit			

G961u2	WIAF-12347	U95019	2007	CACNB2, calcium channel, voltage-dependent, beta 2 subunit	CATTGACTC [G/A] GAAACCCAGG	S G A S S
G962u1	WIAF-12324	U95020	1423	CACNB4, calcium channel, voltage-dependent, beta 4 subunit	CCATTGAAA [G/A] AGGAAGCTTA	M G A R K
G962u2	WIAF-12342	U95020	167	CACNB4, calcium channel, voltage-dependent, beta 4 subunit	GGAGGAGGT [G/T] AAAAGATCCG	M G T L F
G962u3	WIAF-12350	U95020	1571	CACNB4, calcium channel, voltage-dependent, beta 4 subunit	ACACITACAA [A/G] CCCCATAGGA	S A G K K
G965u1	WIAF-12312	U40583	1276	CHRNA7, cholinergic receptor, nicotinic, alpha polypeptide 7	TCCCTGCACGG [T/C] GGGCAACCCC	S T C G G
G968a1	WIAF-12119	HT27592	1008	CHRNA1, cholinergic receptor, nicotinic, alpha polypeptide 1 (muscle)	ACACACCCA [C/T] CGCTCACCCA	S C T H H
G968u2	WIAF-12368	HT27592	1136	CHRNA1, cholinergic receptor, nicotinic, alpha polypeptide 1 (muscle)	AGAGTTTTTA [C/T] AGAGAGACATT	M C T T I
G973a1	WIAF-13172	HT48774	800	CHRNA2, cholinergic receptor, nicotinic, alpha polypeptide 2 (neuronal)	ACACTTOAGA [C/t] GTGGTGATTG	S C t D D
G973a2	WIAF-13173	HT48774	927	CHRNA2, cholinergic receptor, nicotinic, alpha polypeptide 2 (neuronal)	CTGGAAACCC [G/a] CTGATTGTTGG	M G a A T
G977u1	WIAF-13949	Y08419	366	CHRNA5, cholinergic receptor, nicotinic, alpha polypeptide 5	AAGTTATAACG [T/C] GTTCCCTTCAG	S T C R R
G978a1	WIAF-13179	Y08417	1331	CHRNB3, cholinergic receptor, nicotinic, beta polypeptide 3	CCATTAGATA [C/a] ATTTCAGAC	N C a Y *
G983a1	WIAF-13214	HT0374	236	NPY, neuropeptide Y	GATACTACTC [G/A] GGCTCGAC	S G A S S
G983a2	WIAF-13215	HT0374	290	NPY, neuropeptide Y	GAAGAACGATC [C/T] AGCCCCAGA	S C T S S
G983a3	WIAF-13216	HT0374	111	NPY, neuropeptide Y	GGCACTGGGG [C/T] TGTCGGGACT	S C T L L
G987a1	WIAF-13174	HT27830	159	PYRYL, pancreatic polypeptide receptor 1	TGGTCTCAT [C/T] GTCACTTCCT	S C T I I
G987a2	WIAF-13175	HT27830	222	PPRL, pancreatic polypeptide receptor 1	TGATGTGTGT [G/A] ACTGTGAGGC	S G A V V
G987a3	WIAF-13176	HT27830	322	PPYRL, pancreatic polypeptide receptor 1	GCGCTGACC [G/T] CGGTCTACAC	M G T A S

G987a4	WIAF-13177	HT27830	PPYR1, pancreatic polypeptide receptor 1	1074	TGAGGGAGTC [G/A] GAGCATCTGC	S	G	A	S	S
G987a5	WIAF-13178	HT27830	PPYR1, pancreatic polypeptide receptor 1	975	CCGCCACCTG [C/T] GTCAAACCCAT	S	C	T	C	C
G987a6	WIAF-13180	HT27830	PPYR1, pancreatic polypeptide receptor 1	615	AGTTCTGGC [A/g] GATAAGGTGG	S	A	g	A	A
G987a7	WIAF-13181	HT27830	PPYR1, pancreatic polypeptide receptor 1	718	GGGCTTCATC [C/T] TGTTCTGTTA	S	C	T	L	L
G987a8	WIAF-13182	HT27830	PPYR1, pancreatic polypeptide receptor 1	745	CATTCTACCGG [C/t] GCCCTGAGAG	M	C	t	R	C
G987a9	WIAF-13183	HT27830	PPYR1, pancreatic polypeptide receptor 1	842	GTGATGGTG [T/A] GGCCTTGCC	M	T	A	V	E
G987a10	WIAF-13184	HT27830	PPYR1, pancreatic polypeptide receptor 1	852	TGGCCCTTGC [C/T] GTGCTCTGGC	S	C	T	A	A
G987a11	WIAF-13185	HT27830	PPYR1, pancreatic polypeptide receptor 1	889	CAACACCCTG [G/a] AAAGACTGGCA	M	G	a	E	K
G987a12	WIAF-13186	HT27830	PPYR1, pancreatic polypeptide receptor 1	924	CCATCTGCCA [C/T] GGGAACTCTCA	S	C	T	H	H
G989u1	WIAF-13573	D86519	NPY6R, neuropeptide Y receptor 6	891	TGACTCATGC [C/T] TACTGGGCA	S	C	T	A	A
G989u2	WIAF-13588	D86519	NPY6R, neuropeptide Y receptor 6	465	ACCAACCCAGC [A/G] TCTATAACAA	S	A	G	A	A
G989u3	WIAF-13591	D86519	NPY6R, neuropeptide Y receptor 6	980	GAGCCCTTCC [G/A] CAACCTCTCT	M	G	A	R	H
G991u1	WIAF-12390	HT197376	NOTCH4, Notch (Drosophila)	336	AAAGGTAATG [C/T] GTTTCAGAAA	S	C	T	C	C
G993u1	WIAF-12359	U95299	NOTCH4 homolog 4	1343	TCACACACT [G/T] CCTGTCTCAG	M	G	T	C	F
G993u2	WIAF-12361	U95299	NOTCH4, Notch (Drosophila) homolog 4	2020	TAGGACCG [A/G] AAGACAGGC	M	A	G	K	E
G993u3	WIAF-12384	U95299	NOTCH4, Notch (Drosophila) homolog 4	5775	CGGCCTATTG [G/T] CATTGGCGGA	S	G	T	S	S
G996a1	WIAF-13213	HT3329	OPRM1, opioid receptor, mu 1	356	CTTAGATGGC [A/G] ACCTGTGCGA	M	A	G	N	D
LPLa4	WIAF-13314	HT1320	Lipoprotein lipase	443	ATGTTATGGA [G/T] TTGGGGTCCA	M	G	T	S	I
LPLa5	WIAF-13315	HT1320	Lipoprotein lipase	579	GACAGGAGTGT [G/A] GCCCCGGTTA	S	G	A	V	V
LPLa6	WIAF-13316	HT1320	Lipoprotein lipase	609	TGGAGGAGGA [G/A] TTAACTAACCC	S	G	A	E	E
LPLa7	WIAF-13317	HT1320	Lipoprotein lipase	1338	CAATAAAGAC [C/A] TACTCCCTCC	S	C	A	T	T
LPLa8	WIAF-13318	HT1320	Lipoprotein lipase	1117	CAATCTGGGC [T/G] ATGAGATCAA	M	T	G	Y	D
LPLa9	WIAF-13319	HT1320	Lipoprotein lipase	715	CAGAATTAATC [G/A] GCCTCGATCC	M	G	A	G	S
LPLa10	WIAF-13320	HT1320	Lipoprotein lipase	834	CTGGTCGAG [C/A] ATTGGAAATCC	M	C	A	S	R
LPLa11	WIAF-13321	HT1320	Lipoprotein lipase	951	GACTTGGAGA [T/A] GTGGACCTAGC	M	T	A	D	E
LPLa12	WIAF-13322	HT1320	Lipoprotein lipase	1595	ATAAAGAAGT [C/G] AGGCTGAAC	N	C	G	S	*

LPLa13	WIAF-13323	HT1320	1597 LPL, lipoprotein lipase	TAGAAAGTCA [G/A] GCTGAAACTG	M	G	A	G	S
LPLa14	WIAF-13324	HT1320	1606 LPL, lipoprotein lipase	AGGCTGAAAC [T/C] GGGCGAACATCT	-	T	C	-	-
LPLa15	WIAF-13325	HT1320	1611 LPL, lipoprotein lipase	GAATACTGGGC [G/A] AATCTACAGA	-	G	A	-	-

While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.