DATA ENCRYPTION STANDARD (DES)

Outline

- History
- Encryption
- Key Generation
- Decryption
- Strength of DES
- Ultimate

History

In 1971, IBM developed an algorithm, named LUCIFER which operates on a block of 64 bits, using a 128-bit key

Walter Tuchman, an IBM researcher, refined LUCIFER and reduced the key size to 56-bit, to fit on a chip.

History

In 1977, the results of Tuchman's project of IBM was adopted as the Data Encryption Standard by NSA (NIST).

A Simplified DES-Type Algorithm

- Suppose that a message has 12 bits and is written as L₀R₀, where L₀ consists of the first 6 bits and R₀ consists of the last 6 bits.
- The key K has 9 bits. The *i*th round of the algorithm transforms an input L_{i-1}R_{i-1} to the output L_iR_i using an 8bit key K_i derived from K.
- The main part of the encryption process is a function f(R_{i-1},K_i) that takes a 6-bit input

R_{i-1} and an 8-bit input K_i and produces a 6-bit output which will be described later.

The output of the *i*th round is defined as:

$$L_i = R_{i-1}$$
 and $R_i = L_{i-1} XOR f(R_{i-1}, K_i)$

The decryption is the reverse of encryption.

$$[L_n] [R_n XOR f(L_n, K_n)] = ... = [R_{n-1}] [L_{n-1}]$$

The Operations of f Function

- $E(L_i)=E(011001)=E(01010101)$ (Expander)
- S-boxes
- S₁ 101 010 001 110 011 100 111 000 001 100 110 010 000 111 101 011 S₂ 100 000 110 101 111 001 011 010 101 011 010 011 010 011 010 011 010 The input for an S-box has 4 bits. The first bit specifies which row will be used: 0 for 1st

- The other 3 bits represent a binary number that specifies the column: 000 for the 1st column, 001 for the 2nd column, ... 111 for the 7th column. For example, an input 1010 for S₁ box will yield the output 110.
- The key K consists of 9 bits. K_i is the key for the ith round starting with the ith bit of K. Let K=010011001, then $K_4=01100101$.

R_{i-1} =100110 and K_i =01100101

• $E(R_{i-1})$ XOR $K_i = 10101010$ XOR 01100101 = 11001111

$$S_1(1100)=000$$

 $S_2(1111)=100$
Thus, $R_i = f(R_{i-1}, K_i)=000100$, $L_i = R_{i-1}=100110$

$$L_{i-1}R_{i-1} = 011100100110 \rightarrow (?) L_iR_i$$

100110011000

Encryption

Encryption (cont.)

Encryption (cont.)

- Plaintext: X
- Initial Permutation: IP()
- Round_i: 1≤ i ≤ 16
- 32-bit switch: SW()
- Inverse IP: IP-1()
- Ciphertext: Y

•

$$Y = IP^{-1}(SW(Round_i(IP(X), Key_i)))$$

Encryption (IP, IP-1)

IP

Bit	0	1	2	3	4	5	6	7
1	58	50	42	34	26	18	10	2
9	60	52	44	36	28	20	12	4
17	62	54	46	38	30	22	14	6
25	64	56	48	40	32	24	16	8
33	57	49	41	33	25	17	9	1
41	59	51	43	35	27	19	11	3
49	61	53	45	37	29	21	13	5
57	63	55	47	39	31	23	15	7

● IP⁻¹

Bit	0	1	2	3	4	5	6	7
1	40	8	48	16	56	24	64	32
9	39	7	47	15	55	23	63	31
17	38	6	46	14	54	22	62	30
25	37	5	45	13	53	21	61	29
33	36	4	44	12	52	20	60	28
41	35	3	43	11	51	19	59	27
49	34	2	42	10	50	18	58	26
57	33	1	41	9	49	17	57	25

Note: $IP(IP^{-1}) = IP^{-1}(IP) = I$

Encryption (Round)

- Separate plaintext as L₀R₀
 - L₀: left half 32 bits of plaintext
 - R₀: right half 32 bits of plaintext
- Expansion/permutation: E()
- Substitution/choice: S-box()
- Permutation: P()
- •

$$R_{i} = L_{i-1} \sim P(S_{box}(E(R_{i-1}) \sim Key_{i}))$$

$$L_{i} = R_{i-1}$$

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	45	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1 0

P

16	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
9	13	30	6	22	11	4	25

Expansion

Expansion

S-box

s_1	14	4 15	13 7	1 4	2 14	15 2	11 13	8	3 10	10 6	6 12	12 11	5	9	0	7	S ₅	2 14	12 11	4 2	1 12	7 4	10 7	11 13	6 1	8 5	5 0	3 15	15 10	13 3	0 9	14 8	9
1	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0		4	2	1	11 7	10 1	13 14	7	8 13	15 6	9 15	12 0	5	6 10	3	0	14
	15	12			. 4	. 9	. 1			. 11		. 14	10		. 0	13		•••						_									
7023	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10	c	12 10	1 15	10	15	9	2 12	6	8	0	13	3 13	4 14	14	7	5	11
\mathbf{s}_2	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5	s ₆	9	1/	15	5	2	2	12	3	7	0	13	10	1	13	ll	6
	0 13	14 8	10	11	10	15	4	2	11	6	7	12	9	5	14	15 9		4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13
																	k K																
c	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8	S ₇	13	11	2 11	14	15 4	9	8	13 10	3 14	12	9	12	2	10 15	8	6
s_3	13 13	6	1	9	3	15	3	10	11	δ	2	14	12	11 10	15 14	7	5/	1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
	1	10	13	Ó	6	9	8	7	4	15	14	3	11	5	2	12		6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12
									3) (1) (4) (2)			20411		a Ŷ	12	2	0		-	15	11		10	0	2	14	-	0	10	7
s_4	7	13	14 11	5	0	6 15	9	10	1	2	8	5 12	11	12 10	4 14	15 9	s ₈	13	15	13	8	10	3	7	4	10	5	6	14	0	14	12 9	2
-4	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4	0	7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14		2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11

Key Generation

Key Generation (cont.)

Key Generation (cont.)

- Original Key: Key₀
- Permuted Choice One: PC_1()
- Permuted Choice Two: PC_2()
- Schedule of Left Shift: SLS()

•

$$(C_0, D_0) = PC_1(Key_0)$$

•
$$(C_i, D_i) = SLS(C_{i-1}, D_{i-1})$$

 $Key_i = PC_2(SLS(C_{i-1}, D_{i-1}))$

Decryption

- The same algorithm as encryption.
- Reversed the order of key (Key₁₆, Key₁₅, ... Key₁).
- For example:
 - IP undoes IP-1 step of encryption.
 - 1st round with SK16 undoes 16th encrypt round.

Strength of DES

- Criticism
 - Reduction in key size of 72 bits
 - Too short to withstand with brute-force attack
 - S-boxes were classified.
 - Weak points enable NSA to decipher without key.
- 56-bit keys have $2^{56} = 7.2 \times 10^{16}$ values
 - Brute force search looks hard.
 - A machine performing one DES encryption per microsecond would take more than a thousand year to break the cipher.

Strength of DES (cont.)

- Avalanche effect in DES
 - If a small change in either the plaintext or the key, the ciphertext should change markedly.
- DES exhibits a strong avalanche effect.

(a) Chang	ge in Plaintext	(b) Change in Key						
Round	Number of bits that differ	Round	Number of bits that differ					
0	1	0	0					
1	6	1	2					
2	21	2	14					
3	35	3	28					
4	39	4	32					
5	34	5	30					
6	32	6	32					
7	31	7	35					
8	29	8	34					
9	42	9	40					
10	44	10	38					
11	32	11	31					
12	30	12	33					
13	30	13	28					
14	26	14	26					
15	29	15	34					
16	34	16	35					

Ultimate

- DES was proved insecure
 - In 1997 on Internet in a few months
 - in 1998 on dedicated h/w (EFF) in a few days
 - In 1999 above combined in 22hrs!

References

• [1] William Stallings, Cryptography and Network Security, 1999.