FIELD THEORY (ELEC 2204)

Time Allotted: 2½ hrs Full Marks: 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 4 (four) from Group B to E, taking one from each group.

Candidates are required to give answer in their own words as far as practicable.

1.

		Grou	p – A				
Answe	er any twelve:					12 × 1 = 1	2
	Choos	se the correct alter	native for	the follov	ving		
(i)	For ferromagnet (a) greater then		erials, the relative permeability (b) lesser than 1 (c) equa		y is ıl to 1	(d) zero.	
(ii)	For diamagnetic (a) greater then	materials, the rela 1 (b) lesser	-	neability i (c) equa		(d) zero.	
(iii)	Magnitude of Lorentz force experienced by a charge q moving with a velocin magnetic field B is given by (a) $q(v \times B)$ (b) $q(v \cdot B)$ (c) $q \times (v \times B)$ (d) 0						
(iv)	A circular coil of intensity at the c (a) 1 A/m	radius 2m carries entre is (b) 0.2 A/m				e of magnetic fie	lc
(v)	O A	el conductors carry r metre of each co (b) 0.5 N/m	nductor i	S			20
(vi)	(a) a scalor	divergence of a ve			(b) a ve		
(vii)		, for a scalar field ` (b) harmonic					
(viii)		between \overline{E} and V : (b) $\overline{E} = \nabla^2 V$		$-\nabla^2 V$	(d) V =	$-\nabla \overline{\mathrm{E}}$	
(ix)	$P = \int_{V} \overline{E} \cdot \overline{J} dV \text{ is k}$ (a) Gauss's law	nown as (b) Ohm's law	(c) Joule	e's law	(d) Cont	tinuity equation.	ı

- Which one of the following statements is true? (x) (a) In lossless dielectric \overline{E} and \overline{H} are in time phase with each other (b) In lossless dielectric \overline{E} leands \overline{H} by 90° (c) In good conductors \overline{E} leands \overline{H} by 90° (d) In good conductors \overline{E} and \overline{H} are in time phase with each other. Fill in the blanks with the correct word The coefficient of coupling is given by _____. (xi) Magnitude of Lorentz force on a charge q moving with a velocity v in magnetic (xii) field *B* is given by _____. Poisson's equation is ______. (xiii) (xiv) The expression of \overline{D} for a point charge Q is
- (xv) The expression of skin depth δ in terms of σ is _____.

Group - B

- 2. (a) Given the point A(r=6, θ =30°, ϕ = 150°), determine the Cartesian coordinates of A. [(CO1)(Evaluate/HOCQ)]
 - (b) Write the expressions of differential areas in spherical coordinate system.

 [(CO1)(Understand/LOCQ)]
 - (c) Examine divergence theorem for the following field: $\overline{A} = (x^2 y) \widehat{a}_x + (y^2 z) \widehat{a}_y + (z^2 x) \widehat{a}_z \text{ for a region defined by } 0 \leq x \leq 1, \, 0 \leq y \leq 2 \text{ , } 0 \leq z \leq 3.$ [(CO2)(Analyze/IOCQ)]

3 + 3 + 6 = 12

- 3. (a) Write the expressions of differential length in Cartesian , cylindrical and spherical coordinates. [(CO1)(Understand/LOCQ)]
 - (b) Convert the given rectangular coordinates A(8,6,4) into corresponding cylindrical coordinates. [(CO1)(Evaluate/HOCQ)]
 - (c) Categorise vector fields by their divergence and curl. [(CO2)(Analyze/IOCQ)]
 - (d) Determine the Curl of the vector field at (2, 3, 4): $\vec{B} = \hat{a}_x + y^2 \hat{a}_y$ [(CO2)(Analyze/IOCQ)] 3 + 3 + 4 + 2 = 12

Group - C

- 4. (a) Show the derivation of the electric flux density \overrightarrow{D} with the help of Gauss's Law at any point due to infinite sheet of charge. [(CO3)(Understand/LOCQ)]
 - (b) Assume $\vec{D} = (4xy^3z^2)\hat{a}_x + (2xy^2z^2)\hat{a}_y + (2xy^2)\hat{a}_z$ pC/m² in free space to calculate (i) total electrical flux passing through the surface x=3, $0 \le y \le 3$, $0 \le z \le 3$ in a direction away from the origin. (ii) the total charge contained in a sphere of a radius 1mm centered at point P(2,3,4). [(CO3)(Analyze/IOCQ)]
 - (c) Conclude the relationship between \overrightarrow{E} and V. The symbols have their usual meaning. [(CO3)(Evaluate/IOCQ)]

4 + 5 + 3 = 12

5. (a) How $P = I^2R$ can be derived from $V = \int_L \overline{E} \cdot d\overline{l}$ and $I = \int_S \overline{J} \cdot d\overline{s}$?

(CO3)(Remember/LOCQ)]

- (b) Develop boundary conditions of electric field for conductor-free space boundary. [(CO3)(Apply/IOCQ)]
- (c) Let $\vec{E}=12\hat{a}_x-6\hat{a}_y+7\hat{a}_z$ kV/m exists at conductor- free space boundary. Determine (i) $|\vec{E}|$ (ii) E_T (iv) surface charge density ρ_s . [(CO3)(Evaluate/HOCQ)]

4 + 5 + 3 = 12

Group - D

6. (a) Prove that the flux density at a distance h on a line passing through the centre of circular loop radius a and carrying current I is given by, $B = \frac{\mu_0 I a^2}{2(a^2 + h^2)^{3/2}}$. The loop is in the XY plane and the line is perpendicular to the plane of the loop [(CO4)(Evaluate/HOCQ)]

(b) State Ampere's Law. [(CO4)(Remember/LOCQ)]

- Using Ampere's Law, show that the magnetic field H at a radius r within a copper conductor carrying a current I is given by $H = \frac{I}{2\pi r}$, when $r > r_0$, where the radius of the cylindrical conductor is r_0 . Assume the current to be uniformly distributed throughout the conductor's cross-section.

 [(CO4)(Evaluate/HOCQ)]
- (d) A steady current I flows in a conductor bent in the form of square. Determine the magnetic field intensity at the centre of the loop. The length of each side of the square loop is a.

 [(CO4)(Evaluate/HOCQ)]
- (e) A toroid has a core of cross sectional area of 2500 mm², mean diameter 250 × 10^{-6} m and μ_r = 1000. Determine the number of turns to be wound on the core to obtain an inductance of 1 Henry. [(CO4)(Evaluate/HOCQ)]

4 + 2 + 2 + 2 + 2 = 12

7. (a) Derive the expression of energy stored in Inductor or Magnetic Field.

[(CO4)(Evaluate/HOCQ)]

(b) What is inductance?

[(CO4)(Remember/LOCQ)]

(c) Derive the expression of Inductance of a solenoid.

[(CO4)(Evaluate/HOCQ)]

(d) A solenoid with 200 turns is 300 mm long and 20 mm in diameter. If the current is 600 mA, determine (i) Inductance (ii) energy stored in solenoid.

[(CO4)(Evaluate/HOCQ)]

(e) Write the first and second boundary conditions of magnetic field.

[(CO4)(Remember/LOCQ)]

4 + 1 + 3 + 2 + 2 = 12

Group - E

- 8. (a) How is Maxwell's third equation in differential form derived from Faraday's Law? [(CO5)(Remember/LOCQ)]
 - (b) A straight conductor of 0.3 m lies on the x axis with one end at the origin. The conductor is subjected to a magnetic flux density $\vec{B} = 0.05 \, \hat{a}_z$ Tesla and velocity $\vec{u} = 6 \text{Sin} 10t \, \hat{a}_y$ m/s. Calculate the motional electric field intensity and emf induced in the conductor. [(CO5)(Apply/IOCQ)]

Identify the attenuation constant, phase constant, wavelength, intrinsic (c) impedance and corresponding magnetic field while an electric field is represented by $\overline{E}_y = 20 \, \text{Cos}(3\pi 10^8 t - \beta x) \hat{a}_y \, \text{V/m}$ is propagating at a frequency of 250 MHz through a medium having $\mu_r=1$ and $\epsilon_r=75.$ [(CO6)(Apply/IOCQ)]

3 + 3 + 6 = 12

Assume a square loop of side a recedes with a uniform velocity $u_0 \hat{a}_v$ from an 9. (a) infinite long filament carrying current I along $\boldsymbol{\hat{a}}_z$ as shown in Fig. 1. Assuming $\rho=\rho_o$ at time t=0, show that the emf induced in the loop at t>0 is $V_{emf}=$ $2\pi\rho(\rho+a)$

Fig. 1

[(CO5)(Analyze/IOCQ)]

Develop the relationship between ac resistance and dc resistance. (b)

[(CO6)(Apply/IOCQ)]

(c) Develop the expressions of different parameters associated with a plane wave propagating in good conductors. [(CO6)(Create/HOCQ)]

6 + 3 + 3 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	22.90	44.80	32.30

Course Outcome (CO):

After the completion of the course students will be able to

CO1: Apply knowledge of different co-ordinate systems for field analysis problems.

CO2: Apply different techniques of vector calculus to analyze electromagnetic fields to reach substantiated conclusions.

CO 3: Solve static electric field problems for different engineering applications by using vector calculus.

CO4: Solve static magnetic field problems for different engineering applications by using vector calculus.

CO5: Apply the knowledge of Maxwell's equation in solving wave propagation problems.

CO6: Understand and analyze the concepts of electromagnetic waves.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question.