

GRAU DE MATEMÀTIQUES

Treball final de grau

EL MEU TFG

Autor: Víctor Rubio Jiménez

Director: Dr. Ignasi Mundet i Riera

Realitzat a: Departament de matemàtiques i informàtica

Barcelona, 23 de febrer de 2025

Abstract

My wonderful abstract.

Resum

- Explicar diferència entre Continu i Diferenciable i totes les restriccions
- Explicar C1 i mobius
- Mirar tor ambient space isometric embeddings square flat torus
- MIrar article Nash, Gromov
- Mirar quin Cn agafa al paper band

Agraïments

Bla, bla, bla

Índex

1	Introducció	iv
2	Comencem	1
3	Teorema Nash-Kuiper C1 3.1 Explicació del Sung-Jin Oh	2 2
4	Paper Mobius strip	6
5	Conclusions	7

Introducció

Objectius del treball

 \bullet Explicats

Estructura de la memòria

Tremendo

Guia de lectura

Faig servir incrustació, que potser hauria de dir immersió?

Comencem

Teorema Nash-Kuiper C1

3.1 Explicació del Sung-Jin Oh

Teorema 3.1.1. Sigui (M,g) una superfície, $N \ge \dim M + 1$ i $u : M \to \mathbb{R}^N$ una incrustació estrictament curta, és a dir, tal que la longitud de cada vector en M s'escurça (estrictament) sota ∇u . Aleshores u es pot aproximar uniformement per incrustacions isomètriques C^1 .

Haurem d'explicar què és una incrustació isomètrica, i mirar si cal que li canviem el nom

Per exemple, l'homotècia $\mathbb{S}^2 \to \varepsilon \mathbb{S}^2$ amb $\varepsilon \in (0,1)$ és una aplicació *curta*.

Observació 3.1.2. De fet, qualsevol incrustació C^2 isomètrica $u: \mathbb{S}^2 \hookrightarrow \mathbb{R}^3$ ha de ser igual a la incrustació estàndard $\mathbb{S}^2 \hookrightarrow \{x \in \mathbb{R}^3 : |X| = 1\}$ fins translació i rotació.

El teorema 3.1.1 es demostra amb integració convexa.

Sung-Jin Oh demostra aquí el Baby Nash theorem.

Sigui $D = \{x \in \mathbb{R}^2 : |x| < 1\}$ el disc unitat, i $g = g_{ij}(x)$ una mètrica de D. Una aplicació $u : D \to \mathbb{R}^n$ és una *immersió* per ara direm incrustació als embeddings i immersions als *immersions* si $\nabla u(x)$ és injectiva per tot x. La mètrica en D induïda per u és de la forma Haurem de recordar i controlar el que era la mètrica induïda

$$\nabla u^{\mathsf{T}}(x)\nabla u(x) = \begin{pmatrix} \nabla_1 u \nabla_1 u & \nabla_1 u \nabla_2 u \\ \nabla_2 u \nabla_1 u & \nabla_2 u \nabla_2 u \end{pmatrix}$$

Diem que l'aplicació és isomètrica també estaria bé comentar isometries si $\nabla u^{\mathsf{T}} \nabla u = g$, i diem que és (estrictament) curta si $\nabla u(x)^{\mathsf{T}} \nabla u(x) - g(x) \leq 0$ per tot $x \in D$.

Teorema 3.1.3. Sigui $n \geq 4$ i $u: D \to \mathbb{R}^n$ una immersió isomètrica estrictament curta. Per qualsevol $\varepsilon > 0$, existeix una immersió isomètrica C^1 $\tilde{u}: D \to \mathbb{R}^n$ tal que $||u-v||_{C^0(D)} < \varepsilon$. Aquí cal motivar l'interès d'aquest resultat. Entenc que la idea és que partim d'una immersió que és estrictament curta i volem trobar una que sigui contínua i isomètrica. Vull mirar continuïtats.

Observació 3.1.4. Aquest teorema necessita que la co-dimensió sigui com a mínim 2.

La manera de demostrar aquest resultat és a través d'un mètode iteratiu amb passos altament oscil·lants. Sigui $u_1=u+U$ amb

$$U = \sum_{I \in \mathcal{I}} U_I$$

Volem que cada component U_I^j sigui complex, per tal que oscil·li com $e^{ix\cdot\xi}$, però que el resultat del sumatori sigui real. Així, imposem que per cada $I\in\mathcal{I}$ que existeixi $\overline{I}\in\mathcal{I}$ tal que

$$U_{\overline{I}} = \overline{U}_I, \quad \overline{\overline{I}} = I.$$

Ara tenim un error mètric $h_1 = g - \nabla u_1^{\mathsf{T}} \nabla u_1$. On entenem que l'error mètric és la diferència entre la mètrica i la mètrica induïda per la immersió? Té sentit, però cal veure per què només agafo el primer terme.

$$h_1 = \left(h - \sum_I \nabla \overline{U}_I^\mathsf{T} \nabla U_I \right) - \sum_I \left(\nabla u^\mathsf{T} \nabla U_I + \nabla U_I^\mathsf{T} \nabla u \right) - \sum_{I,J:J \neq \overline{I}} \nabla U_I^\mathsf{T} \nabla U_J.$$

I anomenem els tres sumands, en ordre, $q_{\text{mèt}}$, q_{lin} i q_{alt} .

Volem una correcció que oscil·li en una sola direcció $\xi \in \mathbb{R}^2$, $|\xi| = 1$. Posem

$$U_I = W = \frac{1}{\lambda} a(x) \mathbf{n}(x) e^{\lambda i x \cdot \xi},$$

amb $a:D\to\mathbb{R}$ i $\mathbf{n}:D\to\mathbb{C}^n$ tal que $\mathbf{n}\cdot\overline{\mathbf{n}}=1$. Per tal que sigui real, definim també $\overline{I}\in\mathcal{I}$ tal que

$$U_{\overline{I}} = \overline{W} = \frac{1}{\lambda} a(x) \overline{\mathbf{n}}(x) e^{-\lambda i x \cdot \xi}.$$

Per eliminar el terme $q_{\text{mèt}}$, observem que

$$\nabla_{j}W = i\xi_{j}a(x)\mathbf{n}(x)e^{\lambda ix\cdot\xi} + \frac{1}{\lambda}\nabla_{j}(a(x)\mathbf{n}(x))e^{\lambda ix\cdot\xi}$$
$$= i\xi_{j}a(x)\mathbf{n}(x)e^{\lambda ix\cdot\xi} + O(\frac{1}{\lambda})$$

EXPLICAR PER QUÈ ÉS O(1/LAMBDA)!!! De fet, explicar d'on surt la lambda aquesta. I, per tant,

$$\nabla_i W^*(x) \nabla_j W(x) = (-i\xi_i a(x) e^{-\lambda i x \cdot \xi}) (i\xi_j a(x) e^{\lambda i x \cdot \xi}) \overline{\mathbf{n}}(x) \cdot \mathbf{n}(x) + O(\frac{1}{\lambda})$$
$$= \xi_i \xi_j a(x)^2 + O(\frac{1}{\lambda})$$

on definim $(\cdot)^* = (\bar{\cdot})^\intercal$. Així, l'oscil·lació és cancel·lada i en resulta un terme $a(x)^2 \xi_i \xi_j$.

Exemple 3.1.5. EXPLICAR MILLOR AQUEST EXEMPLE Posem que per un cert $x \in D$, l'error h és de la forma

$$h(x) = a^{2}(x)\xi \otimes \xi + b^{2}(x)\xi' \otimes \xi' + c^{2}(x)\xi'' \otimes \xi''$$

aleshores, amb això fem desaparèixer el terme $\xi \otimes \xi$. Repetint-ho per $\xi' \otimes \xi'$ i $\xi'' \otimes \xi''$ aconseguim reduir l'error h(x) a un terme $O(\frac{1}{\lambda})$.

Observació 3.1.6. EXPLICAR AQUESTA OBSERVACIÓ Aquest mètode requereix que h sigui curta, ja que $\nabla_i W^*(x) \nabla_j W(x)$ és un terme no-negatiu. De fet, per tal que h_1 sigui curt, necessitem que h sigui estrictament curt.

Ara bé, els autovectors ξ depenen d'x. Això es pot resoldre amb el següent lema.

Lema 3.1.7. (Descomposició de l'error mètric) Sigui \mathcal{P} l'espai de totes les matrius definides positives. Existeix una successió $\xi^{(k)}$ de vectors unitaris en \mathbb{R}^n i una successió $\Gamma_{(k)} \in C_c^{\infty}(\mathcal{P}; [0, \infty))$ tals que

$$A_{ij} = \sum_{k} \Gamma_{k}^{2}(A) \xi_{i}^{(k)} \xi_{j}^{(k)}$$

i aquesta suma és localment finita. És a dir, existeix $N \in \mathbb{N}$ tal que per tot $A \in \mathcal{P}$ com a màxim N termes de $\Gamma_{(k)}$ són no-nuls.

Observació 3.1.8. La demostració d'aquest teorema no l'escrivim aquí explícitament. ESTÀ AL SUNG-JIN OH.

Fins ara no ha calgut especificar el vector $\mathbf{n}(x) \in \mathbb{C}^n$ per tal de minimitzar l'error mètric, més enllà que necessitem que sigui unitari. Veurem que el podem escollir de tal manera que els termes q_{lin} i q_{alt} desapareguin fins a terme $O(1/\lambda)$.

ullet Error de linearització. Substituïm el terme amb W

$$\nabla_i u^{\mathsf{T}} \nabla_i W = i \xi_i a(x) e^{ix \cdot \xi} \nabla_i u \cdot \mathbf{n} + O(1/\lambda)$$

i veiem que podem eliminar aquest component escollint un vector perpendicular a l'espai tangent de u(x), $\mathbf{n}(x) \perp \nabla_j u(x)$. Això es pot fer perquè l'espai té co-dimensió 1 (REVISAR!!!). Podem fer el mateix amb $\nabla_i W^{\dagger} \nabla_j u$ i obtenim

$$\nabla_i u^{\mathsf{T}} \nabla_j W + \nabla_i W^{\mathsf{T}} \nabla_j u = O(1/\lambda)$$

• Interferència altament oscil·lant. De nou, substituïm el terme

$$\nabla_i W^{\mathsf{T}} \nabla_i W = (-a^2(x)\xi_i \xi_j e^{2ix \cdot \xi}) \mathbf{n} \cdot \mathbf{n} + O(1/\lambda).$$

I ara només cal utilitzar que la incrustació té co-dimensió ≥ 2 per escollir un vector complex tal que $\mathbf{n} \cdot \mathbf{n} = 0$ Com està definit aquest producte?. Podem prendre, per exemple,

$$\mathbf{n} = \frac{1}{i\sqrt{2}}\zeta(x) + \frac{1}{\sqrt{2}}\eta(x)$$

on $\zeta(x)$ i $\eta(x)$ són vectors reals unitaris ortogonals a l'espai tangent $T_{u(x)}u(D)$.

• Forma final de la correcció. Tot plegat, tenim una correcció de la forma

$$W(x) = \frac{a(x)}{\lambda} \left(\sin(\lambda x \cdot \xi) \zeta(x) + \cos(\lambda x \cdot \xi) \eta(x) \right)$$

amb les següents propietats:

– Norma C^0 petita Explicar C-normes:

$$||W||_{C^0} \le C \frac{||a||_{C^0}}{\lambda}$$

- Terme principal en ∇W

$$\nabla W = a(x) \left(\cos(\lambda x \cdot \xi) \zeta(x) - \sin(\lambda x \cdot \xi) \eta(x) \right) + O_{\|a\|_{C^0}, \|\nabla a\|_{C^0}, \|\nabla \zeta\|_{C^0}, \|\nabla \eta\|_{C^0}} (1/\lambda)$$

- Error mètric petit:

$$\nabla_i W^{\dagger} \nabla_j W(x) - a^2(x) \xi_i \xi_j = O(1/\lambda)$$

- Error de linearització petit:

$$\nabla_i u^{\mathsf{T}} \nabla_i W + \nabla_i W^{\mathsf{T}} \nabla_i u = O(1/\lambda)$$

– Error d'interferència petita:

$$\nabla_i W^{\dagger} \nabla_j W = O(1/\lambda)$$

Observació 3.1.9. Aquesta derivada es pot entendre si l'escrius i fas els passos. Mirar si cal explicar-ho millor. Una manera alternativa d'arribar a la forma general de la correcció és la següent. Definim

$$\gamma = (\gamma_1, \gamma_2) : D \times \mathbb{T} \to \mathbb{R}^2$$

 $(x, t) \mapsto \gamma(x, t)$

on $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$. Posant $\dot{\gamma}$ la derivada respecte de t, tenim que

$$\nabla W^{\mathsf{T}}(x)\nabla W(x) = \left(\dot{\gamma}_1^2(x,\lambda x \cdot \xi) + \dot{\gamma}_2^2(x,\lambda x \cdot \xi)\right)\xi \otimes \xi + O(1/\lambda).$$

De manera que per cada x cal trobar $\gamma(x,\cdot)$ tal que (1) $\dot{\gamma}_1^2 + \dot{\gamma}_2^2 = a^2$ i (2) $t \mapsto \dot{\gamma}(x,t)$ sigui 2π -periòdic i $\int \dot{\gamma} dt = 0$ De manera que $t \mapsto \gamma(x,t)$ també ha de ser 2π -periòdica i el seu origen ha de pertànyer al disc unitat tancat \overline{D} . IMPORTANT Per a després, NASH ANOMENA STEP A CADA ADDICIÓ D'UNA CORRECCIÓ, que es carrega un terme a un error d'ordre $O(1/\lambda)$.

Lema 3.1.10. Sigui $u: D \to \mathbb{R}^n$ una immersió suau estrictament curta, tal que $h:= g - \nabla u^{\intercal} \nabla u$ obeeix

$$||h||_{C^0} \le e_h$$

per algun $e_h > 0$. Aleshores, per qualsevol $\varepsilon > 0$, existeix una immersió suau estrictament curta $u_{[1]} = u + U$, on

$$||U||_{C^0(D)} \le \varepsilon$$
$$||\nabla U||_{C^0(D)} \le Ce_h^{1/2}$$

$$i \ h_{[1]} := g - \nabla u_{[1]}^{\mathsf{T}} \nabla u_{[1]} \ observed$$

$$||h_{[1]} - h||_{C^0} \le \varepsilon.$$

Paper Mobius strip

Conclusions

Hem après un munt

Bibliografia

Autor1, A., & Autor2, B. (ANY). Nom del treball. Cambridge University Press.