Write your name here			
Surname		Other names	s
Edexcel GCE	Centre Number		Candidate Number
Chemistr Advanced Subsidia Unit 2: Application	ary	ciples o	f Chemistry
Monday 7 June 2010 – Mo Time: 1 hour 30 minutes	•		Paper Reference 6CH02/01
Candidates may use a calcul	lator.		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box \boxtimes . If you change your mind, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

1	This question is about bond angles.	
	A 90°	
	B 104°	
	C 107°	
	D 109.5°	
	Select, from A to D above, the most likely value for the bond angle of	
	(a) HCH in methane, CH ₄ .	(1)
	⋈ A	(1)
	□ B	
	(b) FSF in sulfur hexafluoride, SF ₆ .	
		(1)
	$oxed{oxed}$ A	
	lacksquare B	
	$oxed{oxed}$ C	
	□ D	
	(c) FOF in oxygen difluoride, OF ₂ .	(1)
	⋈ A	(-)
	☑ D	
	(Total for Question 1 = 3 man	rks)

2 Consider the following compounds, P, Q, R and S.

Compound P

$$\begin{array}{c} CH_3 \\ | \\ CH_3CH_2CH_2CH_2Br \end{array} \qquad \begin{array}{c} CH_3 \\ | \\ H_3C - C - Br \\ | \\ CH_3 \end{array}$$

Compound R

Compound S

The boiling temperatures of compounds P, Q, R and S increase in the order

- \square A PQRS
- \square **B** R S P Q
- \square C QSPR
- \square **D** QPSR

(Total for Question 2 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

3 Buckminsterfullerene has the formula C_{60} . Its structure is shown below.

The bonding in buckminsterfullerene is similar to the bonding in graphite.

Which of the following is true?

- A All the bond angles in buckminsterfullerene are 120°.
- **B** The melting temperature of buckminsterfullerene is higher than that of graphite.
- There are delocalized electrons in buckminsterfullerene.
- **D** On complete combustion, buckminsterfullerene forms carbon dioxide and water.

(Total for Question 3 = 1 mark)

4 When concentrated sulfuric acid is added to solid sodium bromide, bromine is produced.

When concentrated sulfuric acid is added to solid sodium chloride, **no** chlorine is produced.

The reason for this difference is

- **A** sulfuric acid is a strong acid.
- **B** hydrogen chloride is a weak acid.
- C the chloride ion is a weaker reducing agent than the bromide ion.
- **D** bromine is less volatile than chlorine.

(Total for Question 4 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

5	the onl	ompound X is a white solid. On heating this compound, a colourless, acidic gas is e only gaseous product. A flame test is carried out on the solid residue and a reddish me is observed.		
	Compo	und X is		
	$\boxtimes \mathbf{A}$	calcium nitrate.		
	\square B	calcium carbonate.		
	\square C	magnesium carbonate.		
	\square D	strontium nitrate.		
		(Total for Question 5 = 1 mark)		
6		of the following does not apply to the elements Mg, Ca, Sr and Ba in Group 2 of iodic Table?		
	\square A	Their oxides, MO, are all basic.		
	\square B	Their metal hydroxides, M(OH) ₂ , become more soluble down the group.		
	\square C	Their oxides, MO, react with water to form the metal hydroxide, M(OH) ₂ .		
	\square D	Their carbonates, MCO ₃ , all decompose on gentle heating.		
		(Total for Question 6 = 1 mark)		
7	Which	of the following compounds shows hydrogen bonding in the liquid state?		
	⋈ A	Hydrogen bromide, HBr		
	\boxtimes B	Hydrogen sulfide, H ₂ S		
	区 C	Silane, SiH ₄		
	\square D	Ammonia, NH ₃		
		(Total for Question 7 = 1 mark)		
	Use th	is space for any rough working. Anything you write in this space will gain no credit.		

8 For the reversible reaction

$$X \rightleftharpoons Y$$

which of the following could represent the change in the concentrations of X and Y with time, starting with a mixture of both X and Y? Equilibrium is reached at time t_{eqm} .

 \mathbf{X} \mathbf{A}

Concentration

Time

B

Concentration

Time

 \square C

Concentration

 \times **D**

Concentration

Time

(Total for Question 8 = 1 mark)

- **9** Which of the following molecules is polar?
 - \blacksquare **A** Carbon dioxide, CO₂
 - **B** Beryllium chloride, BeCl₂
 - C Ammonia, NH₃
 - \square **D** Boron trifluoride, BF₃

(Total for Question 9 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

10		ectronegativities of four pairs of elements are given below. Which pair would be compound with the greatest ionic character?
	\mathbb{X} A	0.7 and 4.0
	\boxtimes B	0.7 and 3.5
	\boxtimes C	1.0 and 4.0
	\boxtimes D	0.8 and 2.8
		(Total for Question 10 = 1 mark)
11	Which	of the following statements about the elements in Group 7 is incorrect ?
	\boxtimes A	They all show variable oxidation states in their compounds.
	\boxtimes B	They all form acidic hydrides.
	区 C	Electronegativity decreases as the group is descended.
	\boxtimes D	They all exist as diatomic molecules.
		(Total for Question 11 = 1 mark)
12	W /le a.k. a	
		re the products, other than water, when chlorine is passed through cold, dilute s sodium hydroxide solution?
	aqueou	
	aqueou	s sodium hydroxide solution?
	aqueou A B	s sodium hydroxide solution? NaCl and NaClO
	aqueou	s sodium hydroxide solution? NaCl and NaClO NaClO and NaClO ₃
	aqueou	NaCl and NaClO NaCl and NaClO ₃ NaCl and NaClO ₃
	aqueou A B C D	NaCl and NaClO NaClO and NaClO ₃ NaCl and NaClO ₃ NaCl and NaClO ₄
	aqueou A B C D	NaCl and NaClO NaClO and NaClO ₃ NaCl and NaClO ₃ NaCl and NaClO ₃ NaCl and NaClO ₄ (Total for Question 12 = 1 mark)
	aqueou A B C D	NaCl and NaClO NaClO and NaClO ₃ NaCl and NaClO ₃ NaCl and NaClO ₃ NaCl and NaClO ₄ (Total for Question 12 = 1 mark)
	aqueou A B C D	NaCl and NaClO NaClO and NaClO ₃ NaCl and NaClO ₃ NaCl and NaClO ₃ NaCl and NaClO ₄ (Total for Question 12 = 1 mark)
	aqueou A B C D	NaCl and NaClO NaClO and NaClO ₃ NaCl and NaClO ₃ NaCl and NaClO ₃ NaCl and NaClO ₄ (Total for Question 12 = 1 mark)
	aqueou A B C D	NaCl and NaClO NaClO and NaClO ₃ NaCl and NaClO ₃ NaCl and NaClO ₃ NaCl and NaClO ₄ (Total for Question 12 = 1 mark)

\boxtimes D	A strongly polar bond.
\boxtimes C	An unpaired electron.
\boxtimes B	A negative charge.
\boxtimes A	A lone pair of electrons.
6 Which	of the following is essential if a species is to act as a nucleophile?
	(Total for Question 15 = 1 mark)
\boxtimes D	the catalyst used in the polymerization of ethene is expensive.
⊠ C	poly(ethene) degrades to form toxic products.
⊠ B	large amounts of oil are consumed in producing the monomer, ethene.
\boxtimes A	the complete combustion of poly(ethene) produces dangerous fumes.
5 The us	e of poly(ethene) packaging has been criticised mainly because
	(Total for Question 14 = 1 mark)
\square D	heat red phosphorus, ethanol and iodine under reflux.
\boxtimes C	heat potassium iodide and ethanol with concentrated sulfuric acid.
⊠ B	react ethanol and potassium iodide in the presence of dilute acid.
⊠ A	heat iodine and ethanol under reflux.
4 The be	st method of converting ethanol, C ₂ H ₅ OH, into iodoethane, C ₂ H ₅ I, is to
	(Total for Question 13 = 1 mark)
■ D	$S_4O_6^{2-}$
	$S_2O_8^{2-}$
■ B	$S_2O_6^{2-}$
	$S_2O_4^{2-}$
\triangle A	

17 Calculate the volume of dilute sulfuric acid, concentration 0.500 mol dm⁻³, required to neutralize 20.0 cm³ aqueous sodium hydroxide, concentration 0.100 mol dm⁻³.

$$H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$$

- \triangle **A** 2.0 cm³
- \square **B** 4.0 cm³
- \square C 8.0 cm³
- \square **D** 20.0 cm³

(Total for Question 17 = 1 mark)

18 Which of the following features is shown by the mass spectra of propanone and propanal?

propanone

propanal

		<i>m/e</i> of the molecular ion	Fragmentation pattern
X	A	same	same
×	В	same	different
×	C	different	same
	D	different	different

(Total for Question 18 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

- **19** A student carried out an experiment to determine the concentration of ethanoic acid in a solution of vinegar.
 - The student used a measuring cylinder to measure out 25.0 cm³ of the vinegar solution.
 - This solution was then transferred to a 250 cm³ volumetric flask and the liquid level was carefully made up to the mark with distilled water.
 - A pipette was used to transfer 25.0 cm³ portions of the acidic solution to conical flasks.
 - The solution was then titrated with sodium hydroxide solution, concentration 0.100 mol dm⁻³, using phenolphthalein as the indicator.

$$CH_3COOH(aq) + NaOH(aq) \rightarrow CH_3COONa(aq) + H_2O(1)$$

Results

Titration number	1	2	3	4
Burette reading (final) / cm ³	28.55	28.00	40.35	28.05
Burette reading (initial) / cm ³	0.00	0.05	12.30	0.05
Volume of NaOH used / cm ³	28.55	27.95	28.05	28.00

(a) In this titration, what is the colour change of the phenolphthalein indicator?

				(2)
From		to		
(b) Explain why the mo	ean titre should be b	ased only on titratior	ns 2, 3 and 4.	
				(1)

(c) Calculate the mean titre in cm ³ .	(1)
(d) (i) Using your answer to (c), calculate the number of moles of sodium hydroxide the mean titre.	in (1)
(ii) Hence state the number of moles of ethanoic acid, CH ₃ COOH, in 25.0 cm ³ of the diluted solution used in the titration.	(1)
(iii) Calculate the concentration of the diluted acid solution in mol dm ⁻³ .	(1)

(iv) Hence calculate the concentration of the ethanoic acid in the original vinegar solution in mol dm ⁻³ .	(1)
(v) Use your answer from (d)(iv) to state the concentration of the ethanoic acid in the original vinegar solution in units of g dm ⁻³ .	
[The molar mass of the ethanoic acid is 60 g mol ⁻¹ .]	(1)
(e) Suggest, with a reason, how the student's method of preparing the diluted solution could be improved. Improvement	(2)
Reason	

X	value of the titre in titration number 2 ? Between 27.90 and 28.00 cm ³	
Y	Between 27.925 and 27.975 cm ³	
Z	Between 27.85 and 28.05 cm ³	(1)
(ii)	Suggest ONE reason why a student may obtain volumes outside the uncertainty of the burette when performing a titration.	(1)

- ${f 20}$ (a) Propene, ${f C_3H_6}$, reacts with hydrogen bromide, HBr, in an electrophilic addition reaction.
 - 2-bromopropane is formed as the major product.

$$H_3CCH=CH_2 + HBr \rightarrow H_3CCH(Br)CH_3$$

(i) Complete the mechanism for the reaction, using 'curly arrows' where appropriate. Show clearly the structure of the intermediate carbocation formed.

(3)

Mechanism

	ne structure of the alternative carbocation that can be formed in the in between propene and hydrogen bromide.	(1)
(b) Four isomer	s, each with the molecular formula $C_4H_{10}O$, are shown below.	
Isomer A:	CH ₃ CH ₂ CH ₂ CH ₂ OH	
Isomer B :	CH ₃ CH ₂ CH(OH)CH ₃	
Isomer C:	$(CH_3)_3COH$	
Isomer D :	CH ₃ CH(CH ₃)CH ₂ OH	
(i) Which	isomer is a secondary alcohol? Justify your answer.	(2)
	isomer is resistant to oxidation when heated with acidified potassium nate(VI)? Justify your answer in terms of the structure of the isomer.	(2)

(iii)	Which isomer can be oxidized to a ketone?	Draw the displayed formula of	f the
	ketone produced.		

(1)

(iv) Which isomers can be oxidized to an aldehyde?

(1)

(v) Phosphorus(V) chloride (phosphorus pentachloride), PCl₅, is used to test for the presence of an –OH group.

What would you expect to see when any of the above four isomers, A, B, C or D, are reacted with phosphorus(V) chloride?

(1)

(vi) Complete the equation for the reaction shown below. State symbols are **not** required.

(2)

$$C_4H_9OH + PCl_5 \rightarrow$$

(Total for Question 20 = 13 marks)

	In the catalytic converter of a car engine's exhaust system, the following reaction	ion					
	 a) In the catalytic converter of a car engine's exhaust system, the following reaction occurs. 2NO(g) + 2CO(g) = N₂(g) + 2CO₂(g)						
	The temperature in a catalytic converter is high.						
		(2)					
Effect							
Reason	1						
	(ii) The gases from the engine are not cooled before entering the converter. Explain why this is so.	(2)					
	(iii) State the effect, if any, on the position of equilibrium if the pressure on the reacting gases is increased. Give a reason for your answer.	e (2)					
Effect							
Reason	1						

		rogen monoxide, NO, is formed when nitrate ions, NO ₃ , in acidic solution are uced by silver metal.	
	(i)	Calculate the oxidation number of nitrogen in NO and in NO ₃ .	(2)
In	NO		
In	NO ₃		
	(ii)	Balance the half-equation for the reduction of nitrate ions, NO ₃ , in acidic solution.	(1)
		$NO_3^- + \dots H^+ + \dots H_2O$	· /
	(iii)	Write the half-equation for the oxidation of silver metal, Ag, to silver ions, Ag ⁺ .	(1)
	(iv)	Hence deduce the full ionic equation for the reaction between silver metal and nitrate ions in acidic solution. State symbols are not required.	(2)
_		(Total for Question 21 = 12 mar TOTAL FOR SECTION B = 38 MAR	

SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

22 This question is about the chemistry of some halogenoalkanes.

Halothane is a colourless and sweet-smelling liquid. It has a boiling temperature of 50 °C. Halothane vapour was used as a general anaesthetic in hospitals during the mid to late 20th Century. Patients inhaled the halothane vapour under medical supervision. However, halothane was found to have some adverse side-effects and was therefore replaced by other halogenoalkane anaesthetics.

Halothane has the structure

In an experiment, halothane was heated in a test tube with aqueous silver nitrate and ethanol, using a water bath. Compound \mathbf{X} and bromide ions were formed. The structure of compound \mathbf{X} is shown below.

Compound X

(a) (i) Give the systematic name of halothane.

(1)

(ii) Suggest the types of intermolecular force present between molecules of liquid halothane.

(2)

(iii) In the above experiment, suggest ONE reason why a water bath was used rather than heating the test tube containing the reaction mixture directly over a Bunsen flame.					
		(1)			
(iv)	Suggest why ethanol was used in this experiment.	(1)			
(v)	What would be seen in the test tube as the reaction progressed?				
		(1)			
(vi)	Write an ionic equation to show the reaction between aqueous silver ions and aqueous bromide ions. Include state symbols in your equation.	(1)			
	broethane, C_2H_5Cl , can also be used as an anaesthetic. In an experiment, roethane was hydrolysed by aqueous sodium hydroxide, NaOH.				
	Name, and give the structural formula of, the organic product of the hydrolysis of chloroethane.	(2)			
ne					
uctural f	ormula				

(ii) The hydrolysis of chloroethane is an exothermic reaction which takes place in single step.	ı a
On the diagram below, draw the energy profile for the reaction. Label clearly the activation energy for the reaction.	,
	(3)
†	
Еномог	
Energy	
Progress of reaction	-
(c) In the early 1900s, the CFC with formula CCl ₂ F ₂ , was identified as a refrigerant	
which was both non-flammable and non-toxic.	
(i) What does the term CFC stand for?	(1)
(ii) Suggest ONE use for CFCs other than as a refrigerant.	(4)
	(1)

*(iii) In the stratosphere, CFCs are broken down by absorption of UV radiation to form chlorine free radicals.

The following two reactions occur.

$$Cl \cdot + O_3 \rightarrow ClO \cdot + O_2$$

$$ClO \bullet + O \rightarrow Cl \bullet + O_2$$

Combine these two equations to give the overall equation for the reaction of ozone in the stratosphere. State the role played by the chlorine free radical in the overall reaction. Hence explain why many scientists consider the effect of CFCs on ozone to be harmful.

(5)

(i)	Suggest why C–F bonds are not broken in the stratosphere.	(4)
		(1)
*(ii	The compound CH_2F_2 acts as a greenhouse gas when it absorbs a particular ty of radiation.	pe
	Name the type of radiation and explain why a molecule of CH ₂ F ₂ is able to absorb this radiation.	
		(2)
		(2)
		(2)

TOTAL FOR SECTION C = 22 MARKS TOTAL FOR PAPER = 80 MARKS

0 (8)	(18) 4.0 He hetium 2	20.2 Ne neon 10	Ar argon 18	83.8 krypton 36	Xenon xenon 54	[222] Rn radon 86	pa		
7	(21)	19.0 F fluorine 9	35.5 Cl chlorine 17	79.9 Br bromine 35	126.9 	[210] At astatine 85	een report	175 Lu lutetium 71	[257] Lr lawrencium
9	(16)	16.0 O oxygen 8	32.1 S sulfur 16	79.0 Se selenium 34	127.6 Te tellurium 52	[209] Po polonium 84	116 have b ticated	173 Yb ytterbium 70	No nobelium
'n	(15)	14.0 N nitrogen 7	31.0 P	74.9 AS arsenic 33	121.8 Sb antimony 51	209.0 Bi bismuth 83	Elements with atomic numbers 112-116 have been reported but not fully authenticated	169 Tm thulium 69	[256] Md mendelevlum
4	(14)	12.0 C carbon 6	Si Silicon 14	72.6 Ge germanium 32.	118.7 Sn tin 50	207.2 Pb tead 82	atomic nun but not fu	167 Er erbium 68	[253] Fm fermium
m	(13)	10.8 B boron 5	27.0 AI aluminium 13	Ga gallium 31	114.8 Indium 49	204.4 Tl thallium 81	ents with	165 Ho holmium 67	[254] Es
			(12)	Zn zinc 30	Cd cadmium 48	Hg mercury 80	Elem	163 Dy dysprosium 66	[251] [254] Cf Es californium einsteinium
			(11)	63.5 Cu copper 29	107.9 Ag silver 47	197.0 Au gold 79	[272] Rg roentgenium 111	159 Tb terbium 65	[245] Bk berkelium
			(01)	58.7 Ni nickel 28	Pd Palladium 46	195.1 Pt platinum 78	Ds damstadtum 110	157 Gd gadolinium 64	[247] Cm anium
			(6)	58.9 Co cobalt 27	Rh rhodium 45	192.2 r iridium 77	[268] [271]	152 Eu europium 63	[243] Am americium
	1.0 T hydrogen		(8)	55.8 Fe iron 26	Ru Ru ruthenium 44	190.2 Os osmium 76	(277] Hs hassium 108	150 Sm samarium 62	[242] Pu plutonium
			0	Mn Manganese 25	[98] Tc technetium 43	Re rhenium 75	[264] Bh bohrium 107	[147] Pm promethium 61	[237] [242] [243]
	Key relative atomic mass atomic symbol name atomic (proton) number	mass ool umber	(9)	52.0 54.9 Cr Mn chromium manganese 24 25	95.9 [98] Mo Tc molybdenum technetium 42 43	183.8 W tungsten 74	Sg seaborgium 106	144 Nd neodymium 60	238 U uranium
		Key ve atomic i name name (proton) n	(5)	50.9 V vanadium 23	92.9 Nb niobium 41	180.9 Ta tantalum 73	[262] Db dubnium 105	141 144 [147] praceodymium recodymium promethium 59 60 61	[231] Pa protactimum
		relati ato atomic	(4)	47.9 Ti titanium 22	91.2 Zr Zr zirconium 40	178.5 Hf hafmium 72	Rf nutherfordium 104	Cerium S8	232 Th thorium
			(3)	Sc scandium 21	88.9 Y yttrium 39	138.9 La* tanthanum 57	[227] Ac* actinium 89	'n	
7	(2)	9.0 Be beryllium 4	24.3 Mg magnesium 12	40.1 Ca calcium 20	87.6 Sr strontium	137.3 Ba barium 56	[226] Ra radium 88	Lanthanide series Actinide series	
-	3	6.9 Li lithium 3	Na Na sodium 11	39.1 K potassium 19	85.5 Rb nubiditum 37	CS CS caesium 55	[223] Fr francium 87	• Lanth	