

Chapter 7

Multiple Division Techniques

Outline

- Frequency Division Multiple Access (FDMA)
- Time Division Multiple Access (TDMA)
- Code Division Multiple Access (CDMA)
- Comparison of FDMA, TDMA, and CDMA
- Walsh Codes
- Near-far Problem
- Types of Interferences
- Analog and Digital Signals
- Basic Modulation Techniques
 - Amplitude Modulation (AM)
 - Frequency Modulation (FM)
 - Frequency Shift Keying (FSK)
 - Phase Shift Keying (PSK)
 - Quadrature Phase Shift Keying (QPSK)
 - Quadrature Amplitude Modulation (QAM)

Frequency Division Multiple Access (FDMA)

- Single channel per carrier
- All first generation systems use FDMA

Time Division Multiple Access (TDMA)

- Multiple channels per carrier
- Most of second generation systems use TDMA

Code Division Multiple Access (CDMA)

- Users share bandwidth by using code sequences that are orthogonal to each other
- Some second generation systems use CDMA
- Most of third generation systems use CDMA

Types of Channels

- Control channel
 - Forward (Downlink) control channel
 - Reverse (Uplink) control channel
- Traffic channel
 - Forward traffic (information) channel
 - Reverse traffic (information) channel

Types of Channels (Cont'd)

FDMA

FDMA: Channel Structure

TDMA

Reverse channels
(Uplink)

Forward channels (Downlink)

TDMA: Channel Structure

(a). Forward channel

f'

(b). Reverse channel

TDMA: Frame Structure (Cont'd)

TDMA: Frame Structure (Cont'd)

Frequency

Code Division Multiple Access (CDMA)

Note: C_i ' $\times C_j$ ' = 0, i.e., C_i ' and C_j ' are orthogonal codes, $C_i \times C_j = 0$, i.e., C_i and C_j are orthogonal codes

(Uplink)

Comparisons of FDMA, TDMA, and CDMA (Example)

Operation	FDMA	TDMA	CDMA
Allocated Bandwidth	12.5 MHz	12.5 MHz	12.5 MHz
Frequency reuse	7	7	1
Required channel BW	0.03 MHz	0.03 MHz	1.25 MHz
No. of RF channels	12.5/0.03=416	12.5/0.03=416	12.5/1.25=10
Channels/cell	416/7=59	416/7=59	12.5/1.25=10
Control channels/cell	2	2	2
Usable channels/cell	57	57	8
Calls per RF channel	1	4*	40**
Voice channels/cell	57x1=57	57x4=228	8x40=320
Sectors/cell	3	3	3
Voice calls/sector	57/3=19	228/3=76	320
Capacity vs FDMA	1	4	16.8

^{*} Depends on the number of slots

^{**} Depends on the number of codes

Concept of Direct Sequence Spread Spectrum

Concept of Frequency Hopping Spread Spectrum

An Example of Frequency Hopping Pattern

Frequency

Walsh Codes (Orthogonal Codes)

Near-far Problem

Types of Interference

Interference in spread spectrum system

Adjacent Channel Interference

Power Control

Controlling transmitted power affects the CIR

$$\frac{P_r}{P_t} = \frac{1}{\left(\frac{4\pi df}{c}\right)^{\alpha}}$$

 P_t = Transmitted power

 P_r = Received power in free space

d = Distance between receiver and transmitter

f = Frequency of transmission

c =Speed of light

 α = Attenuation constant

Modulation

- Why need modulation?
 - Small antenna size

Antenna size is inversely proportional to frequency

e.g., $3 \text{ kHz} \rightarrow 50 \text{ km}$ antenna

 $3 \text{ GHz} \rightarrow 5 \text{ cm}$ antenna

- Limit noise and interference,e.g., FM (Frequency Modulation)
- Multiplexing techniques,

e.g., FDM, TDM, CDMA

Analog and Digital Signals

Analog Signal (Continuous signal)

Amplitude

Digital Signal (Discrete signal)

Amplitude

Hearing, Speech, and Voice-band Channels

Amplitude Modulation (AM)

Amplitude of carrier signal is varied as the message signal to be transmitted. Frequency of carrier signal is kept constant.

Frequency Modulation (FM)

FM integrates message signal with carrier signal by varying the instantaneous frequency. Amplitude of carrier signal is kept constant.

Frequency Shift Keying (FSK)

• 1/0 represented by two different frequencies slightly offset from carrier frequency

Phase Shift Keying (PSK)

• Use alternative sine wave phase to encode bits

30

QPSK Signal Constellation

All Possible State Transitions in $\pi/4$ QPSK

Quadrature Amplitude Modulation (QAM)

Combination of AM and PSK

Two carriers out of phase by 90 deg are amplitude modulated

Rectangular constellation of 16QAM