Matric No.: 208651 Assigned Date: 03 December 2021

LAB 5: SCHEMATIC DESIGN ENTRY (Simulation)

1.0 Objectives

- Creating a schematic design entry using Quartus Prime design software.
- Compiling and simulating a simple light circuit and a 1-bit full adder on the FGPA.

2.0 Results and Simulation

A. Schematic Design Entry

The truth table was created from the obtained output from the functional simulation. The value 0 represents OFF and 1 represents ON. The inputs are SW[0] and SW[1]. The output is LEDR[0].

SW[0] / x ₁	$SW[1]/x_2$	$\operatorname{LEDR}[0]/f$		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

The results obtained from the simulation of the schematic design was the same as that obtained from the Verilog design from Lab 1A.

Figure 1: Schematic Design from Quartus_Prime_Schematic.pdf

	tatu	From	То	Assignment Name	Value	Enabled	Entity	Comment	Tag
1	~	=	in_ x2	Location	PIN_AC12	Yes			
2	~		out f	Location	PIN_V16	Yes			
3	~		in_ x1	Location	PIN_AB12	Yes			
1		< <new>></new>	< <new>>></new>	< <new>></new>					

Figure 2: Pin Assignments for Schematic Design from Quartus_Prime_Schematic.pdf

Assigned Date: 03 December 2021

Figure 3: Functional Simulation for Schematic Design rom Quartus_Prime_Schematic.pdf

B. Design of 1-bit Full Adder

Figure 4: Schematic Design of 1-bit Full Adder

t	atu	From	То	Assignment Name	Value	Enabled	Entity	Comment	Tag
1 1	/		in_ B	Location	PIN_AC12	Yes			
2 1	*		in_ Cin	Location	PIN_AB12	Yes			
3 •	/		out Cout	Location	PIN_W16	Yes			
4 4	*		SUM	Location	PIN_V16	Yes			
5 4	/		in_ A	Location	PIN_AF9	Yes			
6	<<	<new>></new>	< <new>></new>	< <new>></new>					

Figure 5: Pin Assignments for 1-bit Full Adder

Table A: Truth table of 1-bit full adder obtained from the functional simulation.

	INPUT	OUTPUT						
SW[2] / A	SW[1] / B	SW[0] / Cin	LEDR[0] / Sum	LEDR[1] / Cout				
0	0	0	0	0				
0	0	1	1	0				
0	1	0	1	0				
0	1	1	0	1				
1	0	0	1	0				
1	0	1	0	1				
1	1	0	0	1				
1	1	1	1	1				

Truth table is the same as that of theoretical truth table of a 1-bit full adder.

Assigned Date: 03 December 2021

Figure 6: Functional Simulation for 1-bit Full Adder

3.0 Discussion

- a) Very complex schematic design circuits tend to become unreadable and difficult to follow. Often these designs are printed on paper and a very complex circuit will be difficult to comprehend in such a scenario.
- b) Schematic designs would be best used for simple circuits due to quicker design implementation as well as being very clear and any connection errors can be seen straight away. Verilog design entry would be best suited for more complex circuits where the circuitry would be too 'large' to detect connection errors and instead the behavioural approach would give a better representation for implementation.

4.0 Conclusion

The objectives of the experiment were all successfully fulfilled.

Assigned Date: 03 December 2021

LAB 4 & 5 [Extra]: SCHEMATIC DESIGN (BLOCK DESIGN ENTRY - Simulation)

1.0 Objectives

- Creating a block design entry using Quartus Prime design software.
- Designing and simulating a 4-bit adder.

2.0 Results and Simulation

a) Block Diagram Entry

Figure 7: Adder display block diagram with successful analysis

Assigned Date: 03 December 2021

b) Seven-segment Display

Figure 8: Full-adder with seven-segment display

ŧ	ado	ler_disp.bdf	Tabina_1bit_fulladder.	bdf 🗵 🌼	seven_seg.v	×	Compilation R	eport - ado
<<	new>> ▼ [☑ Filter on node names:	*					
	tatu F	From To	Assignment Name	Value	Enabled	Entity	Comment	Tag
1	*	in_ B	Location	PIN_AC12	Yes			
2	~	in_ Cin	Location	PIN_AF9	Yes			
3	✓	out Cout	Location	PIN_V16	Yes			
4	✓	out HEX[0]	Location	PIN_AE26	Yes			
5	✓	out HEX[1]	Location	PIN_AE27	Yes			
6	✓	out HEX[2]	Location	PIN_AE28	Yes			
7	✓	out HEX[3]	Location	PIN_AG27	Yes			
8	✓	out HEX[4]	Location	PIN_AF28	Yes			
9	✓	out HEX[5]	Location	PIN_AG28	Yes			
10	~	out HEX[6]	Location	PIN_AH28	Yes			
11	✓	in_ A	Location	PIN_AB12	Yes			
40								

Figure 9: Pin assignments for adder with seven-segment display

Matric No.: 208651 Assigned Date: 03 December 2021

Figure 10: Functional simulation of full-adder with seven-segment display

c) 4-bit Full Adder

Figure 11: 4-bit full-adder circuit with seven-segment display [Attempt 1]

Assigned Date: 03 December 2021

```
12128 Elaborating entity "seven_seg" for hierarchy "adder_disp:inst3|seven_seg:inst1"
 12002 Port "seg_out[0]" does not exist in macrofunction "inst2"
12002 Port "seg_out[1]" does not exist in macrofunction "inst2"
12002 Port "seg_out[2]" does not exist in macrofunction "inst2"
12002 Port "seg_out[3]" does not exist in macrofunction "inst2"
 12002 Port "seg_out[4]" does not exist in macrofunction "inst2" 12002 Port "seg_out[5]" does not exist in macrofunction "inst2"
 12002 Port "seg_out[6]" does not exist in macrofunction "inst2"
 12002 Port "seg_out[0]" does not exist in macrofunction "inst1"
 12002 Port "seg_out[1]" does not exist in macrofunction "inst1"
 12002 Port "seg_out[2]" does not exist in macrofunction "inst1"
12002 Port "seg_out[3]" does not exist in macrofunction "inst1"
 12002 Port "seg_out[4]" does not exist in macrofunction "inst1"
 12002 Port "seg_out[5]" does not exist in macrofunction "inst1"
 12002 Port "seg_out[6]" does not exist in macrofunction "inst1"
12002 Port "seg_out[0]" does not exist in macrofunction "inst"
12002 Port "seg_out[1]" does not exist in macrofunction "inst"
 12002 Port "seg_out[2]" does not exist in macrofunction "inst" 12002 Port "seg_out[3]" does not exist in macrofunction "inst"
 12002 Port "seg_out[4]" does not exist in macrofunction "inst"
 12002 Port "seq_out[5]" does not exist in macrofunction "inst"
 12002 Port "seg_out[6]" does not exist in macrofunction "inst"
 12002 Port "seg_out[0]" does not exist in macrofunction "inst3" 12002 Port "seg_out[1]" does not exist in macrofunction "inst3"
 12002 Port "seg_out[2]" does not exist in macrofunction "inst3"
12002 Port "seg_out[3]" does not exist in macrofunction "inst3" 12002 Port "seg_out[4]" does not exist in macrofunction "inst3"
12002 Port "seg_out[6]" does not exist in macrofunction "inst3"
12002 Port "seg_out[6]" does not exist in macrofunction "inst3"
        Quartus Prime Analysis & Synthesis was unsuccessful. 28 errors, 1 warning
293001 Quartus Prime Full Compilation was unsuccessful. 30 errors, 1 warning
```

Figure 12: 4-bit full-adder circuit with seven-segment display error messages [Attempt 1]

Name: TABINA KAMAL Matric No.: 208651

Assigned Date: 03 December 2021

Figure 13: 4-bit full-adder circuit with seven-segment display [Attempt 2]

LOG BOOK [Week 7] **Name:** TABINA KAMAL

Matric No.: 208651

Assigned Date: 03 December 2021

```
Message

275083 Bus "seg_out3[3]" found using same base name as "seg_out", which might lead to a name conflict.

275083 Bus "seg_out3[4]" found using same base name as "seg_out", which might lead to a name conflict.

275083 Bus "seg_out3[5]" found using same base name as "seg_out", which might lead to a name conflict.

275083 Bus "seg_out3[6]" found using same base name as "seg_out", which might lead to a name conflict.

275080 Converted elements in bus name "seg_out" using legacy naming rules. Make any assignments on the new names, not on the original names.

275080 Converted elements in bus name "seg_out1" using legacy naming rules. Make any assignments on the new names, not on the original names.

275080 Converted elements in bus name "seg_out2" using legacy naming rules. Make any assignments on the new names, not on the original names.

275080 Converted elements in bus name "seg_out3" using legacy naming rules. Make any assignments on the new names, not on the original names.

12128 Elaborating entity "Tabina_lbit_fulladder" for hierarchy "Tabina_lbit_fulladder:inst33"

12128 Elaborating entity "seven_seg" for hierarchy "seven_seg:inst1"

12002 Port "seg_in3" does not exist in macrofunction "inst4"

12002 Port "seg_out3[1]" does not exist in macrofunction "inst4"
   12002 Port seg_unds[1]" does not exist in macrofunction "inst4" 12002 Port "seg_outs[2]" does not exist in macrofunction "inst4" 12002 Port "seg_outs[3]" does not exist in macrofunction "inst4" 12002 Port "seg_outs[3]" does not exist in macrofunction "inst4" 12002 Port "seg_outs[5]" does not exist in macrofunction "inst4" 12002 Port "seg_outs[5]" does not exist in macrofunction "inst4"
    12002 Port "seg_out3[6]" does not exist in macrofunction "inst4"
   12002 Port "seg_out2[0]" does not exist in macrofunction "inst3"
12002 Port "seg_out2[1]" does not exist in macrofunction "inst3"
12002 Port "seg_out2[2]" does not exist in macrofunction "inst3"
12002 Port "seg_out2[3]" does not exist in macrofunction "inst3"
   12002 Port "seg_out2[4]" does not exist in macrofunction "inst3" 12002 Port "seg_out2[5]" does not exist in macrofunction "inst3"
   12002 Port "seg_out2[6]" does not exist in macrofunction "inst3"
   12002 Port "seg_out2[0] does not exist in macrofunction "inst2"
12002 Port "seg_out1[1]" does not exist in macrofunction "inst2"
12002 Port "seg_out1[2]" does not exist in macrofunction "inst2"
12002 Port "seg_out1[3]" does not exist in macrofunction "inst2"
12002 Port "seg_out1[3]" does not exist in macrofunction "inst2"
   12002 Port "seg_out1[3]" does not exist in macrofunction "inst2" 12002 Port "seg_out1[4]" does not exist in macrofunction "inst2" 12002 Port "seg_out1[5]" does not exist in macrofunction "inst2" 12002 Port "seg_out1[6]" does not exist in macrofunction "inst2" 12002 Port "AO" does not exist in macrofunction "inst" 12002 Port "BO" does not exist in macrofunction "inst"
    12002 Port "Cout1" does not exist in macrofunction "inst'
   12002 Port "SO" does not exist in macrofunction "inst" 12002 Port "A1" does not exist in macrofunction "inst11'
   12002 Port "B1" does not exist in macrofunction "inst11"
    12002 Port "Cin1" does not exist in macrofunction "inst11'
    12002 Port "Cout2" does not exist in macrofunction "inst11"
   12002 Port "S1" does not exist in macrofunction "inst11' 12002 Port "A2" does not exist in macrofunction "inst22'
    12002 Port "B2" does not exist in macrofunction "inst22"
   12002 Port "cin2" does not exist in macrofunction "inst22" 12002 Port "Cout3" does not exist in macrofunction "inst22"
   12002 Port "S2" does not exist in macrofunction "inst2"
12002 Port "A3" does not exist in macrofunction "inst33"
12002 Port "B3" does not exist in macrofunction "inst33"
    12002 Port "Cin3" does not exist in macrofunction "inst33"
    12002 Port "Cout4" does not exist in macrofunction "inst33"
    12002 Port "S3" does not exist in macrofunction "inst33"
                    Quartus Prime Analysis & Synthesis was unsuccessful. 40 errors, 47 warnings
  293001 Quartus Prime Full Compilation was unsuccessful. 42 errors, 47 warnings
```

Figure 14: 4-bit full-adder circuit with seven-segment display error messages [Attempt 2]

3.0 Discussion

The expected results were obtained for parts A and B. However, part C was attempted numerous times and the same error messages were obtained in both cases.

4.0 Conclusion

The tasks were partially successful.