Guillermo Vazquez

PHD STUDENT · COMPUTATIONAL MATERIALS SCIENTIST

College Station, Texas, USA (+1) 979 739 66 89 | ■ guillermo.vazquez@tamu.edu | □ vzguille.me

Summary.

- 5+ years of experience of Materials Design from materials simulations and data analytics.
- 7+ years of experience on Density Functional Theory (DFT).
- 8+ years of experience in Python and computational science most popular modules such as scikit-learn, pandas, TensorFlow, etc. Dexterity in any programming language for computational science (Matlab, C++, JavaScript, R, FORTRAN, etc.).
- Fast growing author in academia with 150+ citations in 7 peer-reviewed (3 first author) journal publications during my PhD. Expected to publish 4 more (1 first author) during my last year.

Education

Texas A&M University

College Station, Texas

Aug. 2019 - Aug. 2024

PHD IN MATERIALS SCIENCE AND ENGINEERING

Advisor: Dr. Raymundo Arróvave.

• Materials Design via Ab Initio and Machine Learning methods.

Autonomous University of Queretaro

Queretaro, Mexico

Aug. 2013 - Aug. 2018

B.S. IN NANOTECHNOLOGY ENGINEERING

• Honors thesis/Undergrad Research Advisor: Dr. Diego Espinosa

• Thesis: Development of a Special Quasirandom Structures (SQS) algorithm for alloy systems calculation for the Density Functional Theory method (DFT) (in Spanish)

Skills_

Programming Python, BASH, MATLAB, C++, JavaScript, R, FORTRAN, SQL, HTML/CSS

Operative Systems LINUX, Windows, MacOS

Scientific Software VASP, QuantumEspresso, VESTA, Xcrysden, Thermo-Calc, OpenCalphad, PANDAT, Origin, Pandas,

scikit-learn, spaCy pyTorch, TensorFlow, OpenCV

Other Github, ET_EX, Inkscape, Origin, Gnuplot, Word, PowerPoint, Excel

Languages English, Spanish

Teaching Experience ____

Thermodynamics of Materials

Texas A&M University

Jan. 2024 - May 2024

- Continued to expand on the work done the previous year, creating new class resources such as quizzes and homework for the next generations of engineers.
- Filled in as substitute teacher on multiple occasions.
- Created a Thermo-Calc walk-through designed for engineering students at an undergrad level.

Thermodynamics of Materials

Texas A&M University

MSFN 210

Jan. 2023 - May 2023

- Created and graded a challenging yet comprehensive homework set that helped the student approach thermodynamics from a Materials Science point of view.
- Created online supporting material weekly.
- Hold multiple office hours a week and a personal interest in struggling students in a class of more than 90 undergraduates.

Thermodynamics in Materials Science

Texas A&M University Aug. 2022 - Dec. 202

• Hold office hours, graded homework, and papers for more than 60 graduate students.

Mentoring Texas A&M University

• Currently guiding a team of undergraduate students Capstone Project focusing on Machine Learning applied to next generation Magnetic Materials. (2023-24)

• I guided a team of undergraduate students through a Capstone Project in the development of hightemperature HEAs through the use of DFT modelling method, data visualization and regression models (2022-

• Student Mentor of NSF Research Experiments for Undergraduate (REU) Program twice (2021, 2022).

Research Experience _____

Texas A&M University

Computational Materials Science Lab., College Station, TX.

Aug. 2019 - Present

- High-Throughput DFT Calculation and Graph Neural Network Regressor Training for Acceleration of Expensive DFT Frameworks for Metallic Alloys.
 - Conducted high-throughput runs of distinct structural configurations through DFT to replace it with a more efficient surrogate model for commonly expensive DFT tasks.
- Phase Constitution Estimation for a High Entropy System Using a Deep Neural Network Regressor.
 - Utilized the CALPHAD method via ThermoCalc for high-throughput calculation of millions of datapoints within a high entropy system.
 - Developed a custom architecture Deep Neural Network regressor to estimate phase constitution, applied in optimization tasks for Material Design.
- Shape Memory Alloy Design.
 - Experimental-théoretical Multidisciplinary Shape Memory Alloy design through hysteresis optimization via Active Learning in a Batch Bayesian Optimization based framework.
- Elastic Constants Model for High Entropy Alloys.

 - Developed a database of stiffness constants through DFT calculations.
 Implemented a state-of-the-art ML model to accelerate sampling of alloy space, enabling a highthroughput analysis of high entropy alloy elastic properties.
- · High Entropy Diboride System Analysis.
 - Studied diboride coatings properties in the high entropy realm from a DFT-ensemble perspective.
 - Calculated properties such as energy and stiffness for various configurations using DFT, and approximated finite temperature properties through statistical methods.
- ML-Model for the Discovery of New Rare-Earth Materials.
 - Developed a SISSO ML model for estimating formation energy, contributing to a larger rare-earth study using data provided by colleagues.
- ML-Model for Estimation of SFE Values in FCC High-Entropy Alloys.
 - Conducted a study on FCC-stability using Stacking Fault Energy values calculated via DFT.
 - Contributed a ML-model for rapid estimation and feature importance analysis.
- NiTi-based Shape Memory Alloys High-Throughput Analysis via DFT and ML.
 - Primarily focused on DFT estimation for composition development of a CALPHAD-based TDB for the BCC/B19' lattice in NiTi-based Shape Memory Alloys.
 - Consulted for the development of the ML-model and alloy space screening via CALPHAD-ThermoCalc for single solid solution BCC.

Center for Engineering and Industrial Development

Surface Engineering and Advanced Manufacturing Lab., Querétaro, México

Aug. 2017 - Aug. 2019

• Conducted a Nitride system calculation using Density Functional Theory (DFT).

Developed an algorithm to generate structures simulating a random alloy environment in DFT. This
project marked my initial exploration into computational materials science and served as the focal point
of my undergraduate thesis.

Honors & Awards

Oct., 2023	Texas A&M University Major League Hacking DATATHON 2023, Computer Vision Challenge	College Station,
	Winner, used Tensorflow to train a Convolutional Neural Network for pattern recognition.	Texas
May, 2023	Outstanding Teacher , Department of Materials Science & Engineering Awards for my outstanding	College Station,
	work as a TA in the MSEN 210 Course.	Texas
Jun., 2020	D3EM Certificate Recipient, Admited for the Data-Enabled Discovery and Design of Energy	College Station,
	Materials (D3EM) Certificate.	Texas
Sep. 2015	Youth of Excellence , Prestigious Scholarship awarded to the brightest students in their undergrad class.	Queretaro, Mexico

Professional Development & Certificates _____

Jun., 2022 SATA 2022 - School for Advanced thermodynamics Assessments, Nov., 2021 1st Online VASP Workshop: Introduction to Ab-initio Simulation,	Toulouse, France Online
Jun. 2021 Computational Materials Science Summer School 2021,	College Station, Texas
Jun., 2020 AFLOW Summer School on Computational Materials Science Across Scales Texas A&M University 2020,	Online

Publications _____

VAZQUEZ, G., SARITURK, D., AND ARRÓYAVE, R.(2024). **HIGH-THROUGHPUT EXPLORATION OF ORDERING IN THE BCC-FCC ALCOCRCUFEMNNIV HEA SYSTEM**. *In Progress*

VAZQUEZ, G., KARAMAN, I., AND ARRÓYAVE, R.(2024). **OPTIMIZATION METHODS TO ESTIMATE THE NITICUHF B19' PHASE LATTICE PARAMETERS VIA HT-DFT.** In Progress

MINGZHOU, F., , VAZQUEZ, G., ARRÓYAVE, R.(2024) AND QIAN, X. BAYESIAN ACTIVE LEARNING TO ACCELERATE HIGH THROUGHPUT PHASE IDENTIFICATION. In Review

Vazquez, G., Sauceda, D., and Arróyave, R.(2024). Deciphering Chemical Ordering in High Entropy Materials: A Machine Learning-Accelerated High-throughput Cluster Expansion Approach. Acta Materialia Pre-published https://doi.org/10.1016/J.actamat.2024.120137

BROUCEK, J., KHATAMSAZ, D., CAKIRHAN, C., ZADEH, S.H., FAN, M., VAZQUEZ, G., ATLI, K.C., QIAN, X., ARRÓYAVE, R., KARAMAN, I., (2024). **DESIGN OF**HIGH-TEMPERATURE NITICUHF SHAPE MEMORY ALLOYS WITH MINIMUM
THERMAL HYSTERESIS USING BAYESIAN OPTIMIZATION. *In Review*

SAUCEDA, D., SINGH, P., FALKOWSKI, A.R., CHEN, Y., DOUNG, T., **VAZQUEZ, G.**, RADOVIC, M. AND ARROYAVE, R., (2021). **HIGH-THROUGHPUT REACTION ENGINEERING TO ASSESS THE OXIDATION STABILITY OF MAX PHASES.** *npj Computational Materials*, *7*(1), *pp.1-13*. HTTPS://DOI.ORG/10.1038/S41524-020-00464-7

Khan, T.Z., Kirk, T., **Vazquez**, G., Singh, P., Smirnov, A.V., Johnson, D.D., Youssef, K. and Arróyave, R., (2022). **Towards stacking fault energy engineering in FCC high entropy alloys.** *Acta Materialia*, *224*, *p.117472*. https://doi.org/10.1016/j.actamat.2021.117472

SINGH, P., DEL ROSE, T., **VAZQUEZ, G.**, ARROYAVE, R. AND MUDRYK, Y., 2022. **MACHINE-LEARNING ENABLED THERMODYNAMIC MODEL FOR THE DESIGN OF NEW RARE-EARTH COMPOUNDS.** *Acta Materialia*, 229, p.117759. HTTPS://DOI.ORG/10.1016/J.ACTAMAT.2022.117759

VAZQUEZ, G., SINGH, P., SAUCEDA, D., COUPERTHWAITE, R., BRITT, N., YOUSSEF, K., JOHNSON, D.D. AND ARRÓYAVE, R., (2022). EFFICIENT MACHINE-LEARNING MODEL FOR FAST ASSESSMENT OF ELASTIC PROPERTIES OF HIGH-ENTROPY ALLOYS.

Acta Materialia, 232, p.117924. https://doi.org/10.1016/j.actamat.2022.117924

ZADEH, S.H., BEHBAHANIAN, A., BROUCEK, J., FAN, M., VAZQUEZ, G., NOROOZI, M., TREHERN, W., QIAN, X., KARAMAN, I. AND ARROYAVE, R., 2023. AN INTERPRETABLE BOOSTING-BASED PREDICTIVE MODEL FOR TRANSFORMATION TEMPERATURES OF SHAPE MEMORY ALLOYS. Computational Materials Science, 226, p.112225. HTTPS://DOI.ORG/10.1016/J.COMMATSCI.2023.112225

VAZQUEZ, G., CHAKRAVARTY, S., GURROLA, R. AND ARRÓYAVE, R., 2023. A DEEP NEURAL NETWORK REGRESSOR FOR PHASE CONSTITUTION ESTIMATION IN THE HIGH ENTROPY ALLOY SYSTEM AL-CO-CR-FE-MN-NB-NI. npj Computational Materials, 9(1), p.68. https://doi.org/10.1038/s41524-023-01021-8

XIANG, Z., FAN, M., **VÁZQUEZ TOVAR, G.**, TREHERN, W., YOON, B.-J., QIAN, X., ARROYAVE, R., AND QIAN, X. (2021). **PHYSICS-CONSTRAINED AUTOMATIC FEATURE ENGINEERING FOR PREDICTIVE MODELING IN MATERIALS SCIENCE.** *Proceedings of the AAAI Conference on Artificial Intelligence*, *35(12)*, *10414-10421*. HTTPS://DOI.ORG/10.1609/AAAI.V35112.17247

Presentations

TMS 2024 Annual Meeting & Exhibition

CLUSTER EXPANSION APPROXIMATION ACCELERATED BY A GRAPH NEURAL NETWORK REGRESSOR.

Vazquez, G., Sauceda, D., and Arroyave, R.,

TMS 2023 Annual Meeting & Exhibition

DFT STUDY OF THE NITI-X SYSTEMS FOR SHAPE MEMORY ALLOYS (SMAS) DESIGN. Vazquez, G., Zadeh, S., Samanta, S., Van de Walle, A. and Arroyave, R., TMS 2022 Annual Meeting & Exhibition

DEEP NEURAL NETWORK REGRESSOR FOR PHASE FRACTION ESTIMATION ON THE HIGH ENTROPY ALLOY SYSTEM AL-CO-CR-FE-MN-NB-NI.

Vazquez, G., Chakravarty, S., Gurrola, R. and Arroyave, R.,

Orlando, Florida

Mar. 2024

San Diego, California Mar. 2023

Anaheim, California

Feb. 2022

TMS 2022 Annual Meeting & Exhibition

Physics Based Analytical Models for the Design of New Metastable Rare-earth Compounds.

Singh, P., Del Rose, Vazquez, G., Arroyave, R., and Mudryk, Y.

TMS 2021 Annual Meeting & Exhibition

ELASTIC PROPERTIES MACHINE-LEARNING-BASED DESCRIPTOR FOR A REFRACTORY HIGH ENTROPY ALLOY.

Vazquez, G., Singh, P., Sauceda, D. and Arroyave, R.,

TMS 2021 Annual Meeting & Exhibition

USING MACHINE LEARNING FOR TARGETED ALLOY DESIGN IN HIGH ENTROPY COMPOSITION SPACES.

Kirk, T., Coupertwaite, R., Vazquez, G., Sauceda, D., Honarmandi, P., Singh, P., and Arroyave, R.

Orlando, Florida | Online

Anaheim, California

Mar. 2021

Feb. 2022

Orlando, Florida | Online

Mar. 2021

Volunteer work

ESL Teacher at the Bryan Interfaith Immigration Network, Teaching English to Spanish

Jan., 2024 speakers at the Bryan Interfaith Immigration Network in College Station, Texas, was a way for me to give back to the vibrant Texas community that welcomed me during my PhD years.

College Station, Texas