信息学院 2004 级 线性代数 期末考试题 (A卷) [2005 年考试]

【注意:此次课本为《高等数学》,四川大学版】

- 一、 选择填空(每题2分,共10分)
 - 1. 设 A, B 均为 n 阶方阵, 且 AB = 0, 则必有()
 - (A) A = 0 $\stackrel{\circ}{x}$ B = 0 (B) A + B = 0 (C) |A| = 0 $\stackrel{\circ}{x}$ |B| = 0 (D) |A| + |B| = 0
 - 2. n 阶方阵 A 可逆,则下列说法中错误的是()
 - (A) A 所有的特征值均不为 0 (B) A 的特征值互不相等
 - (C) A 的列向量组线性无关 (D) $|A| \neq 0$
 - 3. 向量 β_1 , β_2 线性无关, $\alpha_1 = l_1\beta_1 + l_2\beta_2$, α_2 不能用 β_1 , β_2 线性表示,则对于任意常数 k 都有(
 - (A) $β_1$, $β_2$, $α_1+kα_2$ 线性相关 (B) $β_1$, $β_2$, $α_1+kα_2$ 线性无关
 - (C) β_1 , β_2 , $k \alpha_1 + \alpha_2$ 线性相关 (D) β_1 , β_2 , $k \alpha_1 + \alpha_2$ 线性无关
- 4. 设 A 是 m×n 矩阵,下列命题正确的是()
 - (A) 若 m < n, 则非齐次线性方程组 AX = β必有无穷多解。
 - (B) 若 r(A) = m,则齐次线性方程组 AX = 0 只有零解
 - (C) 若 $m \ge n$, 则非齐次线性方程组 $AX = \beta$ 要么无解,要么有唯一解,二者必居其一。
 - (D) 以上答案都不正确。
- 5. 设 A, B 为满足 AB = 0 的任意两个非零矩阵,则有()
 - (A) A 的行向量组线性相关, B 的行向量组线性相关
 - (B) A 的行向量组线性相关, B 的列向量组线性相关
 - (C) A 的列向量组线性相关, B 的行向量组线性相关
 - (D) A 的列向量组线性相关, B 的列向量组线性相关
- 二、求下列行列式的值 (每题7分, 共14分)

1.
$$\begin{vmatrix} a_1 - b_1 & a_1 - b_2 & \cdots & a_1 - b_n \\ a_2 - b_1 & a_2 - b_2 & \cdots & a_2 - b_n \\ \cdots & \cdots & \cdots & \cdots \\ a_n - b_1 & a_n - b_2 & \cdots & a_n - b_n \end{vmatrix} (n \ge 3)$$

2. 已知 abcd = 1, 计算行列式
$$D = \begin{vmatrix} a^2 + \frac{1}{a^2} & a & \frac{1}{a} & 1 \\ b^2 + \frac{1}{b^2} & b & \frac{1}{b} & 1 \\ c^2 + \frac{1}{c^2} & c & \frac{1}{c} & 1 \\ d^2 + \frac{1}{d^2} & d & \frac{1}{d} & 1 \end{vmatrix}$$

三、设
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \\ 3 & 4 & 3 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}, C = \begin{pmatrix} 1 & 3 \\ 2 & 0 \\ 3 & 1 \end{pmatrix}$$
,求矩阵 X 使其满足 AXB = C (本题 10 分)

四、在方程组 $\begin{cases} x_1 + 2x_2 + x_3 = 1 \\ x_1 + tx_2 + x_3 = t \end{cases}$ 中, t 为何值时,方程组无解,有唯一解、无穷解。有解 $\begin{cases} x_1 + 2x_2 + t^2 x_3 = t^2 \end{cases}$

时, 求其解 (13分)

五、在二阶方阵空间 $P^{2\times 2}$ 中,定义线性变换 $T\alpha = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} \alpha, \alpha \in P^{2\times 2}$ 。

在
$$\mathbf{P}^{2\times 2}$$
 的一组基底 $E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ 下,

- 求 (1) 线性变换 T 的矩阵 A
 - (2) 矩阵 A 的特征值和特征向量
 - (3) 可逆矩阵 P 及对角矩阵 Λ , 使 $P^{-1}AP = \Lambda$ (本题 16 分)
- 六. 把二次型 $f(x_1,x_2,x_3)=x_1^2+x_2^2+x_3^2+4x_1x_2+4x_1x_3+4x_2x_3$ 化成标准型,并写出所用的变换 矩阵(本题 10 分)
- 七. 已知 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ 求一组非零向量 α_2, α_3 ,使 $\alpha_1, \alpha_2, \alpha_3$ 两两正交。(本题 7 分)

八、已知向量组 $\alpha_1,\alpha_2,...,\alpha_{m-1}$ 线性相关, $\alpha_2,\alpha_3,...,\alpha_m$ 线性无关,

问: (1) α_1 能否由 $\alpha_2,\alpha_3,...,\alpha_m$ 线性表示

(2) $\alpha_{\rm m}$ 能否由 $\alpha_1,\alpha_2,...,\alpha_{m-1}$ 线性表示

说明你的理由(10分)

九、A,B,D 是 n 阶实矩阵,矩阵 $G = \begin{pmatrix} A & B \\ B' & D \end{pmatrix}$ 是正定矩阵。

证明: (1) A 是可逆矩阵 (4分)

- (2) D-B'A-1B是实对称矩阵 (4分)
- (3) *D-B'A*⁻¹*B*是正定矩阵 (2分)