XIX Espaces vectoriels

26août2025

Table des matières

1.	Espa	aces vectoriels et combinaisons linéaires.	1
	1.1.	Définitions	1
		Règles de calcul.	1
			2
		Combinaisons linéaires	3
2.	Sous-espaces vectoriels.		
	2.1.	Définitions	4
		Exemples	5
		Opérations sur les sous-espaces vectoriels	5
		a. Intersection	5
		b. Sous-espace vectoriel engendré par une partie	6
		c. Sous-espace vectoriel engendré par une famille finie.	8
		d. Somme	8
	2.4.	Somme directe et supplémentaires	9
3.	Tran	slations, sous-espaces affines.	11
	3.1.	Translations	11
		Sous-espaces affines	11
		Barycentres (hors programme)	13
		Convexité (hors programme)	14

Dans tout ce chapitre, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . L'important est que \mathbb{K} soit un corps, mais le programme se limite à $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

1. Espaces vectoriels et combinaisons linéaires.

1.1. Définitions.

Définition 1.1.1.

On appelle \mathbb{K} -espace vectoriel ou espace vectoriel sur \mathbb{K} (noté \mathbb{K} -ev) tout triplet $(E,+,\cdot)$ où E est un ensemble muni d'une loi interne + appelée addition et d'une loi externe \cdot , i.e. une application $\cdot: \mathbb{K} \times E \to E$, vérifiant :

- (i) (E, +) est un groupe commutatif dont le neutre est noté 0;
- (ii) En notant 1 (ou $1_{\mathbb{K}}$) le neutre de \mathbb{K} pour la multiplication, on a : $\forall x \in E \ 1 \cdot x = x$:
- (iii) $\forall (\lambda, \mu) \in \mathbb{K}^2 \quad \forall x \in E \quad (\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x$ (distributivité à droite) ;
- (iv) $\forall \lambda \in \mathbb{K} \quad \forall x, y \in E \quad \lambda \cdot (x+y) = \lambda \cdot x + \lambda \cdot y$ (distributivité à gauche) ;
- $(\mathbf{v}) \ \forall \lambda, \mu \in \mathbb{K} \quad \forall x \in E \quad (\lambda \times \mu) \cdot x = \lambda \cdot (\mu.x) \ (\text{associativit\'e mixte}).$

Les éléments de E sont appelés vecteurs, et ceux de $\mathbb K$ sont appelés scalaires.

Remarque 1.1.2.

Les vecteurs mathématiques étant des objets mathématiques comme les autres, on ne les marquera plus d'une flèche comme c'est traditionnellement l'usage dans le secondaire (cet usage est d'ailleurs réservé à la géométrie euclidienne, alors qu'on verra de nombreux exemples d'espaces vectoriels où les vecteurs ne sont ni ceux du plan, ni ceux de l'espace euclidien).

Remarque 1.1.3.

On omet souvent, pour alléger les notations, de noter le · de la multiplica-

tion scalaire. Ainsi, on pourra écrire λx au lieu de $\lambda \cdot x$, pour un scalaire λ et un vecteur x.

- **Exemple 1.1.4.** 1. L'ensemble des vecteurs du plan euclidien, celui des vecteurs de l'espace euclidien, ou de façon équivalente 1 (\mathbb{R}^2 , +, ·) et (\mathbb{R}^3 , +, ·), d'où les mots «vecteur» et «scalaire». De manière générale, tous les \mathbb{R}^n .
- 2. $(\mathbb{R}, +, \times)$ est un \mathbb{R} -espace vectoriel. Remarquez que la loi \times est à la fois loi interne et externe sur \mathbb{R} (c'est aussi un \mathbb{Q} -espace vectoriel).
- 3. $(\mathbb{C}, +, \times)$ est à la fois un \mathbb{C} -espace vectoriel et un \mathbb{R} -espace vectoriel (et également un \mathbb{Q} -espace vectoriel).
- 4. \mathbb{N} , \mathbb{Z} et \mathbb{Q} ne sont pas des espaces vectoriels ni sur \mathbb{R} ni sur \mathbb{C} avec les opérations usuelles 2 .
- 5. $\mathbb{R}[X]$, $\mathbb{C}[X]$, $\mathbb{R}(X)$ et $\mathbb{C}(X)$ sont des espaces-vectoriels (sur quels corps ?)
- 6. $\mathcal{M}_{n,p}(\mathbb{K})$ est un \mathbb{K} -ev.

Remarque 1.1.5.

Tout \mathbb{C} -espace vectoriel est aussi un \mathbb{R} -espace vectoriel. La réciproque est fausse : \mathbb{R} n'est pas un \mathbb{C} -espace vectoriel, du moins pas avec les lois usuelles 3

Dans toute la suite, $(E, +, \cdot)$ désigne un \mathbb{K} -ev.

1.2. Règles de calcul.

Théorème 1.2.1 (Règles de calcul). Soit $\lambda \in \mathbb{K}$ et $x \in E$.

^{1.} Il conviendrait, en anticipant un peu, de dire plutôt : «de façon isomorphe».

^{2.} En fait, c'est même vrai quelle que soit la loi qu'on essaie d'y définir. Pourquoi?

^{3.} Il y aurait moyen d'en définir une, qui serait complètement «tordue» en utilisant le fait que $\mathbb R$ et $\mathbb C$ peuvent être mis en bijection mais ça n'aurait vraisemblablement aucun intérêt.

П

- (i) $\lambda \cdot x = 0_E \Leftrightarrow \lambda = 0_{\mathbb{K}}$ ou $x = 0_E$ et, en particulier, $0_{\mathbb{K}} \cdot x = 0_E$ et $\lambda \cdot 0_E = 0_E$.
- (ii) $-x = (-1) \cdot x$ (l'opposé de x dans (E, +) est égal à l'opposé de 1 dans $(\mathbb{K}, +, \times)$ multiplié par x).

Démonstration. (i) a) Remarquons tout d'abord qu'on a $0 \cdot x = (0+0) \cdot x = 0 \cdot x + 0 \cdot x$ et donc par simplification dans (E, +), donc $0 \cdot x = 0$.

- b) Remarquons ensuite qu'on a $\lambda \cdot 0 = \lambda(0+0) = \lambda \cdot 0 + \lambda \cdot 0$, d'où $\lambda \cdot 0 = 0$.
- c) On en déduit $\lambda = 0_{\mathbb{K}}$ ou $x = 0_E \Rightarrow \lambda \cdot x = 0_E$.
- d) Réciproquement, supposons $\lambda \cdot x = 0$. Alors, si $\lambda \neq 0$, on a $x = 1 \cdot x = \left(\lambda \times \frac{1}{\lambda}\right) \cdot x = \frac{1}{\lambda} \cdot (\lambda \cdot x) = \frac{1}{\lambda} \cdot 0 = 0$
- (ii) On a $x+(-1)\cdot x=1\cdot x+(-1)\cdot x=(1-1)\cdot x=0\cdot x=0.$ Donc $(-1)\cdot x$ est bien l'opposé de x dans (E,+).

1.3. Exemples.

Théorème 1.3.1 (Espace vectoriel produit).

Soient $n \in \mathbb{N}^*$ et $(E_1, +_1, \cdot_1) \dots (E_n, +_n, \cdot_n)$ des \mathbb{K} -ev. On considère l'ensemble produit $E = E_1 \times \dots \times E_n$ que l'on munit des deux lois $+ : E \times E \to E$ et $\cdot : \mathbb{K} \times E \to E$ définies, par les relations suivantes pour toutes familles $(x_k)_{k \in [\![1,n]\!]}$ et $(y_k)_{k \in [\![1,n]\!]}$ et tout $\lambda \in \mathbb{K}$:

$$(x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 +_1 y_1, \ldots, x_n +_n y_n)$$

 $\lambda \cdot (x_1, \ldots, x_n) = (\lambda \cdot_1 x_1, \ldots, \lambda \cdot_n x_n)$

Alors, $(E, +, \cdot)$ est un K-ev appelé espace vectoriel produit.

Démonstration.

Il suffit de vérifier les 5 points de la définition d'espace vectoriel :

- (i) (E, +) est un groupe (cf. exercices sur les groupes produits vu en TD), et commutatif car tous les E_i le sont.
- (ii) Soit $(x_1, \ldots, x_n) \in E$, on a $1 \cdot (x_1, \ldots, x_n) = (1 \cdot_1 x_1, \ldots, 1 \cdot_n x_n) = (x_1, \ldots, x_n)$.

(iii) Soit $(\lambda, \mu) \in \mathbb{K}^2$, $(x_1, \dots, x_n) \in E$. En posant

$$z = (\lambda + \mu) \cdot (x_1, \dots, x_n)$$

on a successivement:

$$z = ((\lambda + \mu) \cdot_1 x_1, \dots, (\lambda + \mu) \cdot_n x_n)$$

$$= (\lambda \cdot_1 x_1 + \mu \cdot_1 x_1, \dots, \lambda \cdot_n x_n + \mu \cdot_n x_n)$$

$$= (\lambda \cdot_1 x_1, \dots, \lambda \cdot_n x_n) + (\mu \cdot_1 x_1, \dots, \mu \cdot_n x_n)$$

$$= \lambda \cdot (x_1, \dots, x_n) + \mu \cdot (x_1, \dots, x_n).$$

(iv) Soit $\lambda \in \mathbb{K}$, $(x_1, \ldots, x_n) \in E$ et $(y_1, \ldots, y_n) \in E$. En posant

$$z = \lambda \cdot (x_1 +_1 y_1, \dots, x_n +_n y_n)$$

on a successivement:

$$z = (\lambda \cdot (x_1 +_1 y_1), \dots, \lambda \cdot (x_n +_n y_n))$$

$$= (\lambda \cdot_1 x_1 +_1 \lambda \cdot_1 y_1, \dots, \lambda \cdot_n x_n +_n \lambda \cdot_n y_n)$$

$$= (\lambda \cdot_1 x_1, \dots, \lambda \cdot_n x_n) + (\lambda \cdot_1 y_1, \dots, \lambda \cdot_n y_n)$$

$$= \lambda \cdot (x_1, \dots, x_n) + \lambda \cdot (y_1, \dots, y_n).$$

(v) Soit $(\lambda, \mu) \in \mathbb{K}^2$ et $(x_1, \dots, x_n) \in E$. On a successivement :

$$(\lambda \times \mu) \cdot (x_1, \dots, x_n) = ((\lambda \times \mu) \cdot_1 x_1, \dots, (\lambda \times \mu) \cdot_n x_n)$$

$$= (\lambda \cdot_1 (\mu \cdot_1 x_1), \dots, \lambda \cdot_n (\mu \cdot_n x_n))$$

$$= \lambda \cdot (\mu \cdot_1 x_1, \dots, \mu \cdot_n x_n)$$

$$= \lambda \cdot [\mu \cdot (x_1, \dots, x_n)].$$

Remarque 1.3.2.

Cas particuliers :

- 1. Déjà vu : \mathbb{R}^2 .
- 2. Se généralise à tous les \mathbb{R}^n , $n \in \mathbb{N}^*$. Exemple de calcul dans \mathbb{R}^6 .

Théorème 1.3.3 (Espaces d'applications).

Soit X un ensemble non vide et E un \mathbb{K} -ev. On considère $\mathscr{F}=E^X,$ que l'on munit de deux lois :

$$+: \left\{ \begin{array}{ccc} \mathscr{F} \times \mathscr{F} & \longrightarrow & \mathscr{F} \\ (f,g) & \longmapsto & \left\{ \begin{array}{ccc} X & \to & E \\ x & \mapsto & f(x) + g(x) \end{array} \right. \end{array} \right.$$

et

$$\cdot : \left\{ \begin{array}{ccc} K \times \mathscr{F} & \longrightarrow & \mathscr{F} \\ (\lambda, f) & \longmapsto & \left\{ \begin{array}{ccc} X & \to & E \\ x & \mapsto & \lambda \cdot (f(x)) \end{array} \right. \end{array} \right.$$

Alors $(\mathcal{F}, +, \cdot)$ est un \mathbb{K} -ev.

Démonstration.

Il suffit de vérifier les 5 points de la définition d'ev. On a déjà vu que $(E^X, +)$ était un groupe commutatif. Le lecteur saura vérifier les points (ii) à (v).

- **Exemple 1.3.4.** 1. Soit I un intervalle, alors $(\mathbb{R}^I, +, \times)$ est un \mathbb{R} -espace vectoriel, $(\mathbb{C}^I, +, \times)$ est à la fois un \mathbb{R} -espace vectoriel et un \mathbb{C} -espace vectoriel.
 - 2. L'ensemble des suites à valeurs réelles $\mathbb{R}^{\mathbb{N}}$ est un \mathbb{R} -espace vectoriel, celui des suites à valeurs complexes est à la fois un \mathbb{R} -espace vectoriel et un \mathbb{C} -espace vectoriel.

1.4. Combinaisons linéaires.

Définition 1.4.1.

Soient u_1, \ldots, u_n des vecteurs de E, avec $n \in \mathbb{N}$. On appelle combinaison linéaire de u_1, \ldots, u_n tout vecteur de la forme $u = \sum_{k=1}^n \lambda_k \cdot u_k = \lambda_1 \cdot u_1 + \ldots + \lambda_n \cdot u_n$, avec $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$.

Par convention la combinaison linéaire de 0 vecteur vaut 0_E .

- **Exemple 1.4.2.** 1. 0 est toujours combinaison linéaire de deux vecteurs quelconques u et v car $0_E = 0_{\mathbb{K}}u + 0_{\mathbb{K}}v$.
- 2. Décomposition dans une base dans le plan ou l'espace.

Remarque 1.4.3.

Attention : il n'y a pas nécessairement unicité des λ_i . Exemple :

$$(1,1) = 1 \cdot (1,0) + 1 \cdot (1,3) + 1 \cdot (-1,-2)$$
$$(1,1) = \frac{1}{2} \cdot (1,0) + 0 \cdot (1,3) - \frac{1}{2} \cdot (-1,-2)$$

Exemple 1.4.4.

Exemples menant, comme souvent, à la résolution d'un système :

- 1. (3,-3,0) est-il combinaison linéaire de (1,0,0), (0,-1,2) et (1,0,-3) ?
- 2. (-1,2,3) est-il combinaison linéaire de (1,1,0) et (-1,1,3) ?
- 3. (0,3+3i) est-il combinaison linéaire de (i,1-i) et (1-i,1) ?

Remarque 1.4.5.

Pour la deuxième question, on sait y répondre avec le déterminant. Pour l'instant ce n'est possible que pour les vecteurs du plan mais bientôt... (à suivre).

On peut généraliser la définition précédente au cas des familles quelconques.

Définition 1.4.6.

Soit I un ensemble $(x_i)_{i\in I}$ une famille de vecteurs indexées par I. On appelle combinaison linéaire de la famille $(x_i)_{i\in I}$ tout vecteur de la forme

$$\sum_{i \in I} \lambda_i \cdot x_i$$

où $(\lambda_i)_{i\in I}$ est une famille de scalaire à **support fini** c'est-à-dire telle que l'ensemble des $i\in I$ tels que $\lambda_i\neq 0$ **soit fini**.

Exemple 1.4.7.

Quelles sont les combinaisons linéaires de la famille $\left(X^k\right)_{k\in\mathbb{N}}$ dans $\mathbb{R}[X]$? et de la famille $\left(X^{2k}\right)_{k\in\mathbb{N}}$ dans $\mathbb{R}[X]$?

П

Remarque 1.4.8 (Opérations sur les combinaisons linéaires).

Une combinaison linéaire de combinaisons linéaires d'une famille de vecteurs est une combinaison linéaire des vecteurs de cette famille.

On montre en effet très simplement les points suivants.

- La somme de deux combinaisons linéaires d'une même famille est encore une combinaison linéaire de cette famille.
- Le produit par un scalaire d'une combinaison linéaire d'une famille est encore une combinaison linéaire de cette famille.

2. Sous-espaces vectoriels.

Dorénavant, nous omettrons d'écrire le \cdot de la multiplication scalaire.

2.1. Définitions.

Définition 2.1.1.

Soit $F \subset E$. On dit que F est un sous-espace vectoriel (sev) de E si :

- (i) $0 \in F$;
- (ii) F est stable par combinaisons linéaires quelconques de deux vecteurs, i.e. pour tout $\lambda, \mu \in \mathbb{K}$, et pour tous $x, y \in F$, $\lambda x + \mu y \in F$.

Remarque 2.1.2.

Il est clair que tout sous-espace vectoriel est stable par multiplication externe ainsi que par l'addition. Par récurrence, on en déduit que, pour tout $n \in \mathbb{N}$, toute combinaison linéaire de n vecteurs d'un sous-espace vectoriel appartient encore à ce sous-espace vectoriel. Donc tout sous-espace vectoriel est stable par toute combinaison linéaire de ses vecteurs.

Proposition 2.1.3.

Soit $F \subset E$. Toutes les propositions suivantes sont équivalentes :

(i) F est un sous-espace vectoriel de E;

- (ii) F est non vide, stable par addition et par multiplication externe;
- (iii) F est un sous-groupe de E stable par multiplication externe ;
- (iv) F est non vide et $\forall \lambda, \mu \in \mathbb{K} \quad \forall (x, y) \in F^2 \quad \lambda x + \mu y \in F$.
- (v) F est non vide et $\forall \lambda \in \mathbb{K} \quad \forall (x,y) \in F^2 \quad \lambda x + y \in F$;
- (vi) $0_E \in F$ et $\forall \lambda \in \mathbb{K} \quad \forall (x, y) \in F^2 \quad \lambda x + y \in F$.

Démonstration.

On remarque successivement:

- (i) \Rightarrow (ii) Il suffit de prendre $\lambda=1$ pour la stabilité par addition et y=0 pour la stabilité par multiplication externe.
- (ii) \Rightarrow (iii) Supposons (ii). Alors F est stable par multiplication externe, donc en particulier $\forall x \in F$ $(-1).x \in F$. Ainsi, F est stable par opposé. Par ailleurs, F est non vide et stable par addition, c'est donc un sous-groupe de E.
- (iii) \Rightarrow (iv) Supposons (iii). Alors F est un sous-groupe donc n'est pas vide. Soit $\lambda, \mu \in \mathbb{K}$ et $(x,y) \in F^2$. F est stable par multiplication externe, donc $\lambda x \in F$ et $\mu y \in F$. F est un sous-groupe de E, donc $\lambda x + \mu y \in F$.
- (iv) \Rightarrow (v) Direct avec $\mu = 1$.
- (v) \Rightarrow (vi) Supposons (v). Alors F est non vide et contient donc un élément x_0 , donc contient 0_E car $0_E = (-1) \cdot x_0 + x_0$. On en déduit (vi).
- (vi) \Rightarrow (i) Supposons (vi). Alors, pour tout $(x,y) \in F^2$ et pour tout $(\lambda,\mu) \in \mathbb{K}^2$, $\lambda x = \lambda x + 0$ donc $\lambda x \in F$. De plus, $\lambda x + \mu y = \mu y + (\lambda x)$, qui appartient donc bien à F avec (vi), et l'on a (i).

Remarque 2.1.4.

En pratique pour montrer qu'un sous-ensemble de E est un sous-espace vectoriel, on utilisera (iv) ou (v), qui est généralement le plus rapide à démontrer.

Exemple 2.1.5.

E et $\{0\}$ sont des sev de E, dits triviaux.

Exemple 2.1.6.

L'ensemble des solutions d'une équation différentielle linéaire homogène dont la variable est une fonction de I dans \mathbb{R} est un sev de \mathbb{R}^I .

Théorème 2.1.7.

Soit F un sous-ensemble de E. Alors F muni des lois induites de E est un \mathbb{K} -espace vectoriel si et seulement si F est un sous-espace vectoriel de E.

- **Démonstration.** Supposons que F muni des lois de E soit un \mathbb{K} -espace vectoriel. Alors (F,+) est un groupe abélien donc c'est un sous-groupe de (E,+). De plus, F est stable par multiplication externe, donc c'est bien un sous-espace vectoriel de E.
 - Réciproquement, si F est un sous-espace vectoriel de E, on sait qu'il s'agit d'un sous-groupe de (E, +), donc (F, +) est un groupe abélien. De plus, F est stable par multiplication externe, donc la multiplication externe de E induit bien une multiplication externe sur F. On peut aisément vérifier que les propriétés (ii) à (v) des espaces vectoriels sont alors vérifiées par les lois induites sur F.

Remarque 2.1.8.

En pratique, pour montrer qu'un ensemble est un espace vectoriel, il est plus rapide de montrer que c'est un sous-espace vectoriel d'un espace vectoriel plus gros : on le fera donc quasiment **TOUJOURS**, et l'on ne reviendra presque **JAMAIS** à la définition complète.

2.2. Exemples.

Exemples géométriques :

Droites dans \mathbb{R}^2 Soient $(a, b, c) \in \mathbb{R}^3$, avec $(a, b) \neq (0, 0)$. À quelle condition la droite d'équation ax + by = c est-elle un sous-espace vectoriel de \mathbb{R}^2 ?

Plans dans \mathbb{R}^3 Même question pour un plan d'équation ax + by + cz + d = 0.

Cercles dans \mathbb{R}^2 Même question pour un cercle dans le plan.

Exemples avec polynômes et fractions rationnelles : quels sont les liens entre \mathbb{R} , \mathbb{C} , $\mathbb{R}_n[X]$, $\mathbb{C}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$, $\mathbb{R}[X]$ et $\mathbb{C}(X)$?

Exemples avec les fonctions : soit I un intervalle et n un entier naturel, $\mathscr{C}^n(I,\mathbb{K})$ est un sous-espace vectoriel de \mathbb{K}^I .

2.3. Opérations sur les sous-espaces vectoriels.

Dans toute la suite du chapitre, F et G sont deux sous-espaces vectoriels de E.

a. Intersection.

Théorème 2.3.1. 1. $F \cap G$ est un sous-espace vectoriel de E.

- 2. $F \cup G$ est un sous-espace vectoriel de E si et seulement si $F \subset G$ ou $G \subset F$.
- **Démonstration.** 1. On a évidemment $0 \in F \cap G$. On vérifie aisément que pour tout $(x,y) \in (F \cap G)^2$ et tout $\lambda \in \mathbb{K}$, on a $\lambda x + y \in F \cap G$.
- 2. Si un des deux espaces vectoriels est inclus dans l'autre, alors $F \cup G$ est trivialement un sous-espace vectoriel de E.

Supposons à l'inverse qu'aucun des deux sous-espaces vectoriels ne soit inclus dans l'autre et montrons qu'alors $F \cup G$ n'est pas un sous-espace vectoriel. $F \setminus G$ contient au moins un élément x, et $G \setminus F$ au moins un élément y. Posons alors z = x + y. Si z appartenait à F, on aurait $y = z - x \in F$ ce qui n'est pas le cas. De même, on ne peut avoir $z \in G$. Donc $z \notin F \cup G$, donc $F \cup G$ n'est pas stable par addition.

Exemple 2.3.2.

Dans l'espace, toute droite passant par 0 est l'intersection de deux plans passant par 0, donc est un sous-espace vectoriel.

Cette propriété se généralise en fait à une intersection d'une famille quelconque de sous-espaces vectoriels :

Théorème 2.3.3.

Soit $(F_i)_{i\in I}$ (resp. \mathscr{F}) une famille (resp. un ensemble) de sous-espaces vectoriels de E. Alors

$$\bigcap_{i \in I} F_i \quad \text{resp.} \quad \bigcap_{F \in \mathscr{F}} F$$

est un sous-espace vectoriel de E.

de E.

Démonstration.

Remarquons que le cas de l'intersection d'un ensemble se traite comme le cas particulier d'une famille : il s'agit de l'intersection de la famille des $(F_i)_{F \in I}$ où $I = \mathscr{F}$ et pour tout $G \in I$, $F_G = G$.

La démonstration s'effectue alors comme la précédente. Notons F l'intersection des F_i pour $i \in I$.

- 1. On a évidemment $0 \in F_i$ pour tout $i \in I$, donc $0 \in F$.
- 2. Pour tout $(x,y) \in F^2$ et tout $\lambda \in \mathbb{K}$, on a successivement :

$$\forall i \in I \quad (x,y) \in F_i^2$$

$$\forall i \in I \quad \lambda x + y \in F_i$$

$$\lambda x + y \in \bigcap_{i \in I} F_i$$

Un exemple important d'intersection a priori infinie est donnée dans la partie suivante.

b. Sous-espace vectoriel engendré par une partie.

Définition 2.3.4 (Sous-espace vectoriel engendré par une partie). Soit X une partie (quelconque) du \mathbb{K} -espace vectoriel E. On appelle \mathbb{K} -sous-espace vectoriel engendré par X et on note $\mathrm{Vect}_{\mathbb{K}}(X)$ (ou $\mathrm{Vect}(X)$ lorsqu'il n'y a pas d'ambiguïté) le plus petit sous-espace vectoriel de E contenant X (« plus petit » est à entendre au sens de l'inclusion).

Démonstration.

Cette définition présuppose qu'un tel sous-espace existe et qu'il est unique. L'unicité sous réserve d'existence du plus petit élément d'un ensemble muni d'une relation d'ordre est connue. Montrons l'existence.

Notons ${\mathscr F}$ l'ensemble des F tels que :

- 1. F est un sous-espace vectoriel de E;
- 2. et $X \subset F$.

On veut montrer que cet ensemble ${\mathscr F}$ possède un plus petit élément pour l'inclusion. Posons alors

$$V = \bigcap_{F \in \mathscr{F}} F$$

et montrons que V est ce plus petit élément.

Comme $E \in \mathcal{F}$, on a $F \neq \emptyset$, donc V est bien défini.

Montrons tout d'abord $V \in \mathscr{F}$.

Pour tout $F \in \mathcal{F}$, on a $X \subset F$, donc

$$X\subset \bigcap_{F\in \mathscr{F}}F=V$$

De plus, V est une intersection de sous-espaces vectoriels de E donc c'est un sous-espace vectoriel de E.

Donc on a $V \in \mathcal{F}$.

Il suffit donc maintenant de montrer que V est un minorant de \mathscr{F} , c'est-à-dire que pour tout $F \in \mathscr{F}$, on a $V \subset F$.

Soit $F \in \mathcal{F}$. On a

$$V = \bigcap_{G \in \mathscr{F}} G$$

donc tout élément de V appartient à tout élément de \mathscr{F} , donc en particulier à F. On a donc $V \subset F$.

V minore donc \mathscr{F} pour l'inclusion.

V est donc un élément de $\mathscr F$ qui minore $\mathscr F$: c'est donc son plus petit élément. \square

Remarque 2.3.5. 1. Tout sous-espace vectoriel de E contenant X contient donc Vect(X).

2. Si F est un sous-espace vectoriel de E, alors F est le plus petit sous-espace vectoriel contenant F, donc Vect(F) = F.

Remarque 2.3.6.

Soit I un ensemble et $(x_i)_{i\in I}$ une famille de vecteurs de E. On notera $\operatorname{Vect}((x_i)_{i\in I})$ le sous-espace $\operatorname{Vect}(\{x_i\mid i\in I\})$. En particulier si I est de la forme [1,n], on notera $\operatorname{Vect}(x_1,\ldots,x_n)$ le sous-espace $\operatorname{Vect}(\{x_1,\ldots,x_n\})$.

Le procédé de construction de Vect(X) présenté plus haut est très élégant et peut s'utiliser dans de nombreuses situations. En revanche, il est assez peu concret. Heureusement, le théorème suivant nous dit très précisément ce que contient Vect(X).

Théorème 2.3.7.

Soit X une partie de E. Alors $\mathrm{Vect}(X)$ est exactement l'ensemble de toutes les combinaisons linéaires d'éléments de X. Autrement dit :

- 1. Toute combinaison linéaire d'éléments de X appartient à Vect(X).
- 2. Pour tout élément x de Vect(X), il existe une famille de coefficients $(\lambda_{\alpha})_{\alpha \in X}$ à support fini telle qu'on a

$$x = \sum_{\alpha \in X} \lambda_{\alpha} \alpha.$$

Dit autrement : il existe un entier $n \in \mathbb{N}$, des vecteurs u_1, \ldots, u_n de X ($\forall k \in [1, n], u_k \in X$) et des scalaires $\lambda_1, \ldots, \lambda_n$ tels qu'on a

$$x = \sum_{k=1}^{n} \lambda_k u_k.$$

Démonstration.

Notons V l'ensemble des combinaisons linéaires d'éléments de X.

Pour montrer V = Vect(X), nous allons montrer que V est le plus petit sous-espace vectoriel de E contenant X.

- 1. V est un sous-espace vectoriel de E. En effet :
 - a) il contient 0_E (combinaison linéaire de 0 vecteur de X);
 - b) il est stable par addition car la somme d'une combinaison linéaire de p vecteurs de X et d'une combinaison linéaire de q vecteurs de X est une combinaison linéaire (d'au plus) p+q vecteurs de X;
 - c) il est stable par multiplication par un scalaire car le produit par un scalaire λ d'une combinaison linéaire de n vecteurs de X est la combinaison linéaire de ces mêmes vecteurs où les coefficients ont tous été multiplié par λ .
- 2. V contient X. En effet pour tout $x \in X$, x est la combinaison linéaire $1 \cdot x$, donc appartient à V. Donc $X \subset V$.
- 3. V minore l'ensemble des sous-espaces vectoriels de E contenant X. En effet, soit F un sous-espace vectoriel de E contenant X. Montrons $V \subset F$.

Soit $x \in V$ alors x est combinaison linéaire d'éléments de X. Or F contient X et est un sous-espace-vectoriel donc est stable par combinaison linéaire. Il contient donc x en particulier. On a donc $\forall x \in V \quad x \in F$.

Donc $V \subset F$.

Donc V est le plus petit sous-espace vectoriel de E contenant X.

Remarque 2.3.8.

En particulier, pour toute famille finie de vecteurs x_1, \ldots, x_n , $\text{Vect}(x_1, \ldots, x_n)$ est l'ensemble

$$\left\{ \left. \sum_{k=1}^{n} \lambda_k x_k \right| (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n \right\}.$$

Exemple 2.3.9. 1. Pour $\alpha \in \mathbb{R}$, on note

$$f_{\alpha}: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \mathrm{e}^{\,\alpha x} \end{array} \right.$$

Alors $\operatorname{Vect}\left((f_{\alpha})_{\alpha\in\mathbb{R}}\right)$ est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{R}}$ qui contient les fonctions sh, ch mais pas sin ni th (indication : il suffit de remarquer que les seules fonctions bornées de ce sous-espace vectoriel sont les fonctions constantes).

- 2. En géométrie dans \mathbb{R}^2 , si $(\overrightarrow{\imath}, \overrightarrow{\jmath})$ est une base, tout vecteur de \mathbb{R}^2 est combinaison linéaire de $\overrightarrow{\imath}$ et $\overrightarrow{\jmath}$, donc $\mathbb{R}^2 = \text{Vect}(\overrightarrow{\imath}, \overrightarrow{\jmath})$.
- 3. Dans \mathbb{R}^3 , si \mathscr{D} est une droite vectorielle de vecteur directeur u, alors $\mathscr{D} = \{ \lambda u \mid \lambda \in \mathbb{K} \} = \operatorname{Vect}(u)$. Si \mathscr{P} est un plan vectoriel de vecteurs directeurs $u = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$ et $v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$, alors en écrivant une équation

paramétrique de \mathscr{P} , on voit que tout point P de l'espace est dans \mathscr{P} si et seulement s'il existe $t_1, t_2 \in \mathbb{R}$ tel que $P = t_1 u + t_2 v$, donc $\mathscr{P} = \text{Vect}(u, v)$. Exemple avec 2x - y + z = 0.

- 4. $\mathbb{R} = \operatorname{Vect}_{\mathbb{R}}(1)$ et $\mathbb{C} = \operatorname{Vect}_{\mathbb{C}}(1) = \operatorname{Vect}_{\mathbb{R}}(1, i)$.
- 5. $E = (\mathscr{F}(\mathbb{R}, \mathbb{R}), +, .)$ est un ev. On note les fonctions suivantes, définies sur \mathbb{R} par $\exp: x \mapsto e^x$; $\exp: x \mapsto e^{-x}$; $f: x \mapsto x \sin(2x)$ et $g: x \mapsto x \sin(3x)$. Avec $F = \mathrm{Vect}(\exp, \exp)$ et $G = \mathrm{Vect}(f, g)$, on a $\mathrm{ch} \in F$ mais $\sin \notin G$.
- 6. L'ensemble des solutions de l'équation différentielle y'' + y' 2y = 0 est Vect(f, g) avec $f : \mathbb{R} \to \mathbb{R}, x \mapsto e^{-2x}$ et $g = \exp$.

Proposition 2.3.10.

Soit X et Y deux parties de E. Alors :

- 1. $X \subset Y \Rightarrow \operatorname{Vect}(X) \subset \operatorname{Vect}(Y)$;
- 2. Vect(Vect(X)) = Vect(X).

Démonstration. 1. Supposons $X \subset Y$. Alors $X \subset Y \subset \text{Vect}(Y)$. Donc Vect(Y) est un sous-espace vectoriel de E contenant X donc contient Vect(X).

- 2. Posons F = Vect(X). F est un sous-espace vectoriel de E. Donc d'après la remarque faite plus haut, Vect(F) = F.
- c. Sous-espace vectoriel engendré par une famille finie.

Dans cette sous-partie, on s'intéressera exclusivement au cas où I = [1, n]. La famille $(x_i)_{i \in I}$ est donc le n-uplet (x_1, \ldots, x_n) .

Proposition 2.3.11. 1. $Vect(x_1, ..., x_n)$ n'est pas modifié si l'on permute deux vecteurs de $(x_1, ..., x_n)$.

- 2. si pour un $i \in [1, n]$ on a x_i qui est combinaison linéaire des autres vecteurs (en particulier, si $x_i = 0$), alors $\text{Vect}(x_1, \dots, x_n) = \text{Vect}(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$, c'est-à-dire que l'on peut ôter x_i de la famille sans modifier le sev engendré.
- 3. Vect (x_1, \ldots, x_n) n'est pas modifié si l'on remplace un des x_i par une combinaison linéaire en x_1, \ldots, x_n dont le coefficient en x_i est non nul.

Démonstration. 1. C'est une conséquence directe du fait que $\text{Vect}(x_1, \dots, x_n) = \text{Vect}\{x_1, \dots, x_n\}.$

2. C'est une conséquence du fait que pour toutes parties X et Y de E, si $X\subset Y\subset {\rm Vect}(X),$ alors

$$\operatorname{Vect}(X) \subset \operatorname{Vect}(Y) \subset \operatorname{Vect}(\operatorname{Vect}(X)) = \operatorname{Vect}(X)$$

3. Quitte à permuter les vecteurs, on peut supposer que i=n. Considérons un vecteur x' obtenu par combinaison linéaire des x_k pour $k \in [\![1,n]\!]$ dont le coefficient de x_n est non nul. Posons $V = \mathrm{Vect}(x_1,\ldots,x_n)$ et $V' = \mathrm{Vect}(x_1,\ldots,x_{n-1},x')$ et montrons V = V'. Posons $V'' = \mathrm{Vect}(x_1,\ldots,x_{n-1},x_n,x')$. x' étant combinaison linéaire des x_k pour $k \in [\![1,n]\!]$, on a V'' = V d'après le point précédent. De plus, le coefficient de x_n dans cette combinaison linéaire est non nul, donc x_n peut s'exprimer comme combinaison linéaire de x_1,\ldots,x_{n-1} et x'. Donc, toujours d'après le point précédent, V'' = V'. On a donc V = V'' = V'.

Remarque 2.3.12.

 0_E est toujours combinaison linéaire de toute famille de vecteurs : on peut donc « l'enlever » d'une famille sans modifier le sev engendré par cette famille.

Exemple 2.3.13.

Dans \mathbb{R}^3 , avec $u_1 = (1, 0, 0)$, $u_2 = (0, 1, 0)$ et $u_3 = (1, 1, 0)$.

1.

$$Vect (u_1, u_2, u_3) = Vect (u_1, u_2)$$

= $Vect (u_1, u_3)$.

2. Déterminer une CNS sur $w \in \mathbb{R}^3$ pour que Vect $(u_1, u_2, u_3, w) \neq$ Vect (u_1, u_2, u_3) .

d. Somme.

Définition 2.3.14.

On appelle $somme\ de\ F\ et\ G$ l'ensemble de E noté F+G défini par $F+G=\{\ x+y\mid x\in F, y\in G\ \}.$

Théorème 2.3.15. 1. F + G est un sev de E.

2. F + G est le plus petit sev qui contient F et G:

$$F + G = \text{Vect}(F \cup G).$$

Démonstration. 1. Immédiat.

2. Montrons d'abord que $F \subset F + G$: soit $f \in F$. alors f = f + 0, et $0 \in G$, donc $f \in F + G$. On montre bien sûr de même que $G \subset F + G$. On a donc $(F \cup G) \subset (F + G)$.

Il suffit ensuite de montrer que pour tout sous-espace vectoriel H de E contenant $F \cup G$, on a $(F + G) \subset H$.

Soit H un sous-espace vectoriel de E. Supposons $F\subset H$ et $G\subset H$. Montrons $(F+G)\subset H$.

Soit $z \in F + G$. Alors il existe $x \in F$ et $y \in G$ vérifiant z = x + y. On a alors $x \in H$ et $y \in H$ donc $x + y \in H$, donc $z \in H$.

Donc $F + G \subset H$.

Remarque 2.3.16.

Par conséquent,

$$F + G = \text{Vect}(F) + \text{Vect}(G)$$
$$= \text{Vect}(F \cup G)$$
$$= \text{Vect}(G \cup F)$$
$$= G + F.$$

Remarque 2.3.17.

Si A=F+G et $a\in A$, il n'y a pas forcément unicité de la décomposition a=f+g, avec $f\in F$ et $g\in G$, loin de là ! Considérer par exemple le cas F+F.

Exemple 2.3.18.

Si $F \subset G$, alors F + G = G.

$$F + G \neq F \cup G$$
 (sauf si $F \subset G$ ou $G \subset F$).

Exemple 2.3.19.

Soit \mathscr{D} et \mathscr{D}' deux droites du plan passant par 0 et non confondues. Alors $\mathbb{R}^2 = \mathscr{D} + \mathscr{D}'$.

Exercice 2.3.20.

Soit \mathscr{P}_1 le plan de représentation cartésienne x+3z=0 et \mathscr{P}_2 le plan de représentation cartésienne x+y+z=0.

Montrer que $\mathbb{R}^3 = \mathscr{P}_1 + \mathscr{P}_2$.

Lemme 2.3.21.

Soit X et Y des parties de E. Alors

$$\operatorname{Vect}(X) + \operatorname{Vect}(Y) = \operatorname{Vect}(X \cup Y).$$

Démonstration.

 $\operatorname{Vect}(X \cup Y)$ est un sous-espace vectoriel contenant $X \cup Y$, donc contient X. Or tout espace vectoriel contenant X contient $\operatorname{Vect}(X)$, donc $\operatorname{Vect}(X \cup Y)$ contient $\operatorname{Vect}(X)$. De même, il contient $\operatorname{Vect}(Y)$. $\operatorname{Vect}(X \cup Y)$ est donc un espace vectoriel contenant les deux sous-espaces vectoriels $\operatorname{Vect}(X)$ et $\operatorname{Vect}(Y)$, donc il contient leur somme. On a donc $\operatorname{Vect}(X) + \operatorname{Vect}(Y) \subset \operatorname{Vect}(X \cup Y)$.

Par ailleurs, $\operatorname{Vect}(X) + \operatorname{Vect}(Y)$ contient $\operatorname{Vect}(X)$, donc contient X. De même, il contient Y. Il contient donc $X \cup Y$. Or $\operatorname{Vect}(X) + \operatorname{Vect}(Y)$ est un sous-espace vectoriel, donc il contient $\operatorname{Vect}(X \cup Y)$. On a donc $\operatorname{Vect}(X \cup Y) \subset \operatorname{Vect}(X) + \operatorname{Vect}(Y)$.

On a donc $Vect(X \cup Y) = Vect(X) + Vect(Y)$.

Remarque 2.3.22.

On peut aussi définir la notion de somme de plus de deux sev.

2.4. Somme directe et supplémentaires.

Étant donné des sous-espaces vectoriels F, G de E, F+G est l'ensemble des vecteurs x de E pouvant s'écrire au moins d'une façon sous la forme f+g avec, $f \in F$ et $g \in G$.

On va s'intéresser ici au cas où, pour tout x, la décomposition est unique.

Définition 2.4.1 (Somme directe).

Soit F, G deux sev de E, on dit que la somme F + G est directe si

$$\forall x \in F + G, \exists ! (f, g) \in F \times G, x = f + g.$$

Dans ce cas, le sous-espace vectoriel F + G est noté

$$F \oplus G$$
.

Remarque 2.4.2.

On peut de même définir la notion de somme directe pour plus de deux sev.

Proposition 2.4.3 (Caractérisation d'une somme directe de deux sev). Soit F, G deux sev de E. Les trois propositions suivantes sont équivalentes.

- 1. F + G est directe.
- 2. $\forall f \in F, \ \forall g \in G, f + g = 0_E \Rightarrow f = g = 0_E$.
- 3. $F \cap G = \{0_E\}.$

Démonstration.

Supposons que F+G est directe. Soit $f\in F,\,g\in G$ vérifiant $f+g=0_E.$ Alors,

$$\underbrace{f}_{\in F} + \underbrace{g}_{\in G} = \underbrace{0_E}_{\in F} + \underbrace{0_E}_{\in G},$$

donc par unicité on a $f = g = 0_E$.

Supposons que $\forall f \in F, \ \forall g \in G, f+g=0_E \Rightarrow f=g=0_E.$ Soit $x \in F \cap G$, alors

$$\underbrace{x}_{\in F} + \underbrace{-x}_{\in G} = 0_E$$

donc $x=0_E$. Comme $F\cap G$ est un sev de $E,\,0_E\in F\cap G$, donc $F\cap G=\{0_E\}$. Supposons que $F\cap G=\{0_E\}$, montrons que F+G est directe. Soit $x\in F+G$, soit $f,f'\in F,\,g,g'\in G$ vérifiant

$$x = f + g = f' + g'.$$

Alors,

$$f - f' = g' - g \in F \cap G$$

donc $0_E = f - f' = g' - g$, donc f = f' et g = g', donc F + G est directe.

Définition 2.4.4.

On dit que F est un supplémentaire de G (ou que F et G sont supplémentaires) si

$$E = F \oplus G$$
,

 $\it i.e.$ si les deux conditions suivantes sont remplies :

- 1. la somme F + G est directe;
- 2. E = F + G.

Proposition 2.4.5.

F et G sont supplémentaires si et seulement si tout élément de E s'écrit de manière unique comme somme d'un élément de F et d'un élément de G.

Démonstration.

Direct d'après les définitions.

Exemple 2.4.6.

Montrons que dans \mathbb{R}^2 , deux droites passant par 0 et non confondues sont toujours supplémentaires.

Exercice 2.4.7.

Dans \mathbb{R}^2 , on note \mathscr{D} : $x+y=0, \mathscr{D}'$: x-y=0 et \mathscr{D}'' : x-2y=0.

- 1. Montrer $\mathbb{R}^2 = \mathscr{D} \oplus \mathscr{D}'$
- 2. Montrer $\mathbb{R}^2 = \mathscr{D} \oplus \mathscr{D}''$

Remarquez qu'il n'y a donc pas unicité du supplémentaire (croire le contraire est une faute classique et très grave !).

Remarque 2.4.8.

On peut montrer de même que dans \mathbb{R}^3 , un plan et une droite passant par 0 et tel que le plan ne contienne pas la droite sont toujours supplémentaires.

Exemple 2.4.9.

 $\begin{picture}(t) \put(0,0){\line(0,0){10}} \put(0,0){\$

Exemple 2.4.10.

 \mathbb{R} et $i\mathbb{R}$ dans \mathbb{C} .

Exercice 2.4.11.

On note E l'ensemble des applications de \mathbb{R} dans \mathbb{R} , I celui des applications impaires, et P celui des applications paires.

Montrer $E = I \oplus P$.

3. Translations, sous-espaces affines.

Les sous-espaces affines (sea) généralisent la notion de sev, en s'affranchissant de la contrainte « passer par 0 ». Ainsi, dans la théorie des ev, un sev passe toujours par 0.

Là encore on pourra identifier points et vecteurs, mais on essaiera de noter les points avec des majuscules et les vecteurs avec des minuscules, comme en géométrie, mais nous passerons souvent d'un point de vue à l'autre.

Définition 3.0.1.

Soit $A, B \in E$, on note $\overrightarrow{AB} = B - A$.

Remarque 3.0.2.

La loi + des ev permet de donner un sens à B-A, vus comme points, qui vaut alors $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$.

3.1. Translations.

Définition 3.1.1.

Soit un vecteur $u \in E.$ On appelle translation de vecteur u l'application $E \rightarrow E$.

 $x \mapsto x + u$

3.2. Sous-espaces affines.

Définition 3.2.1.

On appelle sous-espace affine de E toute partie de E qui est le translaté d'un sev de E, i.e. toute partie $\mathscr F$ de la forme $\mathscr F=u+F=\{u+x\mid x\in F\}$, où F est un sev de E et u est un vecteur de E, ensemble que l'on note aussi u+F.

L'ensemble $\{b-a \mid (a,b) \in \mathscr{F}^2\}$ est appelé la direction de \mathscr{F} et ses éléments sont appelés les vecteurs directeurs de \mathscr{F} .

Proposition 3.2.2.

Soit $u \in E$, F un sous-espace vectoriel de E. Alors la direction du sous-espace affine u + F est F. En particulier cette direction est un espace vectoriel.

Démonstration.

Notons D la direction de u + F.

On a

$$D = \left\{ b - a \mid (a, b) \in \mathscr{F}^2 \right\}$$

$$= \left\{ (u + x) - (u + y) \mid (x, y) \in F^2 \right\}$$

$$= \left\{ x - y \mid (x, y) \in F^2 \right\}.$$

Or on a directement

$$F \subset \{ x - 0 \mid x \in F \} \subset \{ x - y \mid (x, y) \in F^2 \} \subset F,$$

donc D = F.

Remarque 3.2.3.

Notation fréquente : \mathscr{F} étant un sea de E, on note F ou $\overrightarrow{\mathscr{F}}$ sa direction.

Exemple 3.2.4.

Tout sev est un sea.

Exemple 3.2.5.

Dessin dans l'espace.

Exemple 3.2.6.

 $E = \mathbb{R}^{\mathbb{R}}$. On considère l'équation différentielle $y' + 3y = x^2$ (E). Montrer que l'ensemble \mathscr{S}_0 des solutions de l'équation homogène forme un sev de E, et l'ensemble \mathscr{S} des solutions de (E) forme un sea de direction \mathscr{S}_0 .

П

Théorème 3.2.7.

Soit \mathcal{F} un sea de direction F.

- (i) \mathscr{F} est le translaté de sa direction par n'importe lequel de ses points : $\forall a \in \mathscr{F} \quad \mathscr{F} = a + F$.
- (ii) Soit $a \in \mathscr{F}$ et $b \in E$. Alors on a

$$b \in \mathscr{F} \iff a - b \in F$$
.

Démonstration.

 \mathscr{F} est de la forme c+F, où $c\in E$.

(i) Soit $a \in \mathcal{F}$. On a alors $a \in c + F$, il existe donc $u \in F$ tel que a = c + u. Si $v \in F$, alors $a + v = c + (u + v) \in c + F$, donc $a + F \subset \mathcal{F}$.

Réciproquement, si $v \in F$, alors $c+v=a+(v-u) \in a+F$, donc $\mathscr{F} \subset a+F$. Ainsi, $a+F=\mathscr{F}$.

(ii) On a donc $\mathscr{F} = a + F$.

Si $b \in \mathcal{F}$, alors par définition de la direction $a - b \in F$.

Réciproquement, si $a-b\in F$, alors $b-a\in F$ et $b=a+(b-a)\in a+F$, donc $b\in \mathscr{F}$.

On a donc bien $b \in \mathscr{F} \iff a - b \in F$.

Remarque 3.2.8.

Tout sea contenant 0 est donc un sev.

Corollaire 3.2.9.

Deux sea sont égaux si et seulement s'ils ont même direction et un point en commun.

Démonstration.

 \Rightarrow : évident.

 \Leftarrow : soient \mathscr{F}_1 et \mathscr{F}_2 de même direction F et $a \in \mathscr{F}_1 \cap \mathscr{F}_2$. Alors d'après le théorème précédent, $\mathscr{F}_1 = a + F = \mathscr{F}_2$.

Définition 3.2.10.

Soient \mathscr{F} et \mathscr{G} deux sea de directions F et G.

- (i) On dit que \mathscr{F} est parallèle à \mathscr{G} si $F \subset G$.
- (ii) On dit que \mathscr{F} et \mathscr{G} sont parallèles si F=G.

Vocabulaire : « être parallèle à » n'est pas une relation symé-

Exemple 3.2.11.

Une droite est parallèle à un plan, mais certainement pas l'inverse.

Théorème 3.2.12 (Intersections de sea).

Soient \mathscr{F} et \mathscr{G} deux sea de directions F et G. Si $\mathscr{F} \cap \mathscr{G} \neq \emptyset$, alors on dit que \mathscr{F} et \mathscr{G} sont *concourants* ou *sécants*, et dans ce cas $\mathscr{F} \cap \mathscr{G}$ est un sea de direction $F \cap G$.

Démonstration.

Supposons $\mathscr{F}\cap\mathscr{G}\neq\varnothing$, alors il existe $a\in\mathscr{F}\cap\mathscr{G}$. Donc $\mathscr{F}=a+F$ et $\mathscr{G}=a+G$. Montrons alors que $\mathscr{F}\cap\mathscr{G}=a+F\cap G$:

Soit $b \in E$. On a successivement :

$$\begin{array}{l} b \in \mathscr{F} \cap \mathscr{G} \iff b \in \mathscr{F} \text{ et } b \in \mathscr{G} \\ \iff b-a \in F \text{ et } b-a \in G \\ \iff b-a \in F \cap G \\ \iff b \in a+F \cap G \end{array}$$

D'où le résultat.

Théorème 3.2.13 (Parallélisme et intersection).

Si \mathscr{F} est parallèle à \mathscr{G} , alors soit $\mathscr{F} \cap \mathscr{G} = \varnothing$, soit $\mathscr{F} \subset \mathscr{G}$.

En particulier si \mathscr{F} et \mathscr{G} sont parallèles, alors soit $\mathscr{F}\cap\mathscr{G}=\varnothing,$ soit $\mathscr{F}=\mathscr{G}.$

Démonstration.

Supposons $F \subset G$. Si $\mathscr{F} \cap \mathscr{G} \neq \varnothing$, alors il existe $a \in \mathscr{F} \cap \mathscr{G}$, donc $\mathscr{F} = a + F$, or $F \subset G$, donc $a + F \subset a + G = \mathscr{G}$.

Dans le cas particulier où \mathscr{F} et \mathscr{G} sont parallèles, on a $\mathscr{F} \subset \mathscr{G}$ et $\mathscr{G} \subset \mathscr{F}$, d'où $\mathscr{F} = \mathscr{G}$.

3.3. Barycentres (hors programme)

Le barycentre est maintenant hors-programme. Cette partie ne sera pas nécessairement traitée en cours mais est laissée :

- à titre culturel:
- parce qu'elle peut être utile en sciences physiques.

Définition 3.3.1.

- On appelle système pondéré toute famille de la forme $((A_1, \lambda_1), \ldots, (A_n, \lambda_n))$, où chaque élément (A_i, λ_i) est appelé point pondéré, avec $n \in \mathbb{N}^*$, A_1, \ldots, A_n n points de E, et $\lambda_1, \ldots, \lambda_n$ n scalaires de \mathbb{K}
- Avec les notations précédentes, on pose $\Lambda = \sum_{k=1}^{n} \lambda_k$.
 - (i) Si $\Lambda=0$, alors le vecteur $\sum_{k=1}^n \lambda_k \overrightarrow{MA_k}$ ne dépend pas du point M.
- (ii) Si $\Lambda \neq 0$, il existe un unique point G tel que $\sum_{k=1}^{n} \lambda_k \overrightarrow{GA_k} = 0$. Ce point est appelé le barycentre du système pondéré $(A_i, \lambda_i)_{i \in \llbracket 1, n \rrbracket}$ et il vérifie $G = \frac{1}{\Lambda} \sum_{k=1}^{n} \lambda_k A_k$.

Démonstration. (i) Supposons $\Lambda = 0$. Soit $(M, N) \in E^2$. On a

$$\sum_{k=1}^{n} \lambda_k \overrightarrow{MA_k} = \sum_{k=1}^{n} \lambda_k \overrightarrow{MA_k} + \sum_{k=1}^{n} \lambda_k \overrightarrow{NM}$$
$$= \sum_{k=1}^{n} \lambda_k (\overrightarrow{NM} + \overrightarrow{MA_k})$$
$$= \sum_{k=1}^{n} \lambda_k \overrightarrow{NA_k}$$

(ii) Supposons $\Lambda \neq 0$. On a successivement :

$$\sum_{k=1}^{n} \lambda_k \overrightarrow{GA_k} = 0 \Leftrightarrow \sum_{k=1}^{n} \lambda_k (A_k - G) = 0$$

$$\Leftrightarrow \sum_{k=1}^{n} \lambda_k A_k - \left(\sum_{k=1}^{n} \lambda_k\right) G = 0$$

$$\Leftrightarrow G = \frac{1}{\Lambda} \sum_{k=1}^{n} \lambda_k A_k$$

Définition 3.3.2.

Soit I un ensemble. On appelle partition finie de I tout k-uplet, pour $k \in \mathbb{N}$, (I_1, \ldots, I_k) où les I_i sont des ensembles vérifiant $I_j \cap I_i = \emptyset$ si $i \neq j$ et $\bigcup_{1 \leq i \leq k} I_i = I$. Autrement dit, une partition est un ensemble de

parties de I deux à deux disjointes, dont la réunion est I (on parle aussi de recouvrement de I par des parties deux à deux disjointes).

- **Exemple 3.3.3.** La partition de l'Europe par le traité de Verdun en 843 est une partition à trois éléments de l'ensemble des points de l'empire de Charlemagne.
- Notons C_0 , C_1 et C_2 les parties de \mathbb{Z} contenant respectivement les entiers congrus à 0, 1 et 2 modulo 3. Alors (C_0, C_1, C_2) est une partition de \mathbb{Z} .

Théorème 3.3.4 (Associativité du barycentre).

Soient I un ensemble non vide, $(A_i, \lambda_i)_{i \in I}$ un système de points pondérés de somme non nulle, et soit (I_1, \ldots, I_n) une partition de I. Pour tout $k \in [\![1, n]\!]$, on note $\Lambda_k = \sum_{i \in I_k} \lambda_i$, on suppose que Λ_k est non nul et on note

alors G_k le barycentre du système pondéré $(A_i, \lambda_i)_{i \in I_k}$.

Alors le barycentre G de $(A_i, \lambda_i)_{i \in I}$ est aussi le barycentre du système pondéré $(G_k, \Lambda_k)_{k \in [1,n]}$.

Démonstration.

On sait que
$$G = \frac{1}{\Lambda} \sum_{i \in I} \lambda_i A_i$$
 et $\Lambda_k G_k = \sum_{i \in I_k} \lambda_i A_i$, donc $G = \frac{1}{\Lambda} \sum_{k=1}^n (\sum_{i \in I_k} \lambda_i A_i) = \frac{1}{\Lambda} \sum_{k=1}^n \Lambda_k G_k$, et $\Lambda = \sum_{k=1}^n \Lambda_k$.

Exercice 3.3.5.

En déduire :

- 1. que les médianes d'un triangle sont concourantes au centre de gravité;
- 2. que les droites reliant les milieux des arêtes opposées d'un tétraèdre et les droites reliant les centre de gravité des faces au sommet opposé sont toutes concourantes en un même point qu'on précisera.

Centre de gravité d'un triangle (ABC)= isobarycentre. Si I est le milieu de [A, B], alors G = bar((C, 1), (I, 2)).

Théorème 3.3.6.

Un sea contient tous les barycentres obtenus à partir de ses points.

Démonstration.

Soit \mathscr{F} un sea, $A_1 \dots A_n$ n points de \mathscr{F} , et $\lambda_1 \dots \lambda_n$ les poids correspondants, $\Lambda = \sum_{k=1}^n \lambda_k \neq 0$. On note $G = \text{bar}((A_k, \lambda_k))$.

 $\overline{k=1\atop A_1\in\mathscr{F}}\ \mathrm{donc}\ \mathscr{F}=A_1+F.\ \mathrm{Donc}\ G\in\mathscr{F}\ \mathrm{ssi}\ G-A_1\in F.$

Or
$$G - A_1 = \frac{1}{\Lambda} \sum_{k=1}^{\infty} \lambda_k (A_i - A_1)$$
, et tous les membres de cette somme sont dans F . \square

Théorème 3.3.7.

Réciproquement, tout sous-ensemble non vide de E stable par barycentre (et même seulement par barycentre de deux points) est un sea.

Démonstration.

Soit \mathscr{F} un sous-ensemble non vide de E et a un de ses points. Posons $F=\{b-a\mid b\in\mathscr{F}\}$. On a $\mathscr{F}=a+F$, il suffit donc de montrer que F est un sous-espace vectoriel de E.

F est une partie de E non vide car $0 \in F$.

Soit $x \in F$ et $\lambda \in \mathbb{K}$. Alors a+x et a sont deux éléments de \mathscr{F} , donc leur barycentre $\lambda(a+x)+(1-\lambda)a$ appartient aussi à \mathscr{F} . Or ce barycentre est $a+\lambda x$, donc $\lambda x \in F$. F est donc stable par multiplication externe.

Soit $(x,y) \in F$. Alors, \mathscr{F} étant stable par barycentre, $\frac{1}{2}((a+x)+(a+y)) \in \mathscr{F}$, donc $a+\frac{1}{2}(x+y) \in \mathscr{F}$, donc $\frac{1}{2}(x+y) \in F$. D'après ce qui précède, on a alors $x+y=2\times\frac{1}{2}(x+y) \in F$. Donc F est stable par addition

Donc F est un sous-espace vectoriel de E. Donc $\mathscr F$ est un sous-espace affine de E.

3.4. Convexité (hors programme)

Cette partie est laissée à titre culturel mais ne sera pas nécessairement traitée en cours.

Dans ce paragraphe, on prend $\mathbb{K} = \mathbb{R}$.

Définition 3.4.1.

On appelle segment de E tout ensemble de la forme $\{\lambda A+(1-\lambda)B,\lambda\in[0,1]\}$ avec $A,B\in E$. Ce segment est noté [AB] ou [A,B].

Remarque 3.4.2.

[AB] est l'ensemble des barycentres de A et B avec des poids positifs (facultatif : dont la somme est 1). Faire un dessin.

Définition 3.4.3.

Soit \mathscr{P} une partie de E. On dit que \mathscr{P} est convexe si $\forall (A,B) \in \mathscr{P}^2$ $[AB] \subset \mathscr{P}$.

Exemple 3.4.4.

Faire des dessins dans \mathbb{R}^2 , puis dans \mathbb{R}^3 .

Théorème 3.4.5.

Tout sea est convexe.

Démonstration.

Immédiat avec le théorème 3.3.6.

Exemple 3.4.6.

On reprend un exemple ancien : pour montrer qu'un cercle n'est pas un sea (ou un sev), on peut montrer qu'il n'est pas convexe.

La réciproque est fausse, même si le convexe contient 0. Par exemple, considérons [-1,1] dans \mathbb{R} .

Exemple 3.4.7.

Dans \mathbb{C} , tout disque (fermé ou ouvert) est convexe. Se fait avec inégalité triangulaire en revenant à la définition.

Théorème 3.4.8.

Toute intersection de convexes est convexe.

Démonstration.

Soit I un ensemble et $(\mathscr{P}_i)_{i\in I}$ une famille de convexes.

Posons $\mathscr{P}=\bigcap_{i\in I}\mathscr{P}_i$ l'intersection de cette famille et montrons qu'elle est convexe, c'est-à-dire

$$\forall (A,B) \in \mathscr{P}^2 \quad [AB] \subset \mathscr{P}$$

Soit $(A,B) \in \mathscr{P}^2$. Il suffit de montrer que pour tout $i \in I$, $[AB] \subset \mathscr{P}_i$. Soit $i \in I$. On a $A \in \mathscr{P}$, donc $A \in \mathscr{P}_i$. De même $B \in \mathscr{P}_i$. Donc $[AB] \subset \mathscr{P}_i$. On a donc $\forall i \in I \quad [AB] \subset \mathscr{P}_i$, donc $[AB] \in \bigcap_{i \in I} \mathscr{P}_i$.