|Chapter 3 Dealing with Numerical Data

3.1 Univariate EDA

Key Concepts

- Numerical variables can be analyzed through Exploratory Data Analysis (EDA) to summarize and understand data.
- Focus: Distribution of numerical variables (e.g., Age, Resale Price).
- Distribution: A breakdown of data points by their observed number or frequency.

Example: HDB Resale Prices

- Variables:
 - "Month" (time of transaction)
 - "Floor area sqm" (size of flat)
 - "Resale price" (sale value of flat)

Visualizing Distributions

- 1. Frequency Tables: Tabulate counts of each value.
- 2. Histograms: Group values into ranges (bins) for visualization.
 - Example: HDB flat "Age" distribution using bin width = 2 years.
 - Key takeaway: The bin size affects insights drawn from histograms. Experiment with different sizes.

Describing Distributions

1. Shape:

- Peaks: Unimodal, Bimodal, Multimodal.
- Skewness:
 - Left-skewed: Long tail on the left.
 - Right-skewed: Long tail on the right.
 - Symmetrical: Bell curve (e.g., IQ scores).

2. Center:

- Mean: Average.
- Median: Middle value.
- Mode: Most frequent value.
- Relationships:
 - Right-skewed: mode < median < mean.

3. Spread:

- Range: Difference between max and min.
- Standard Deviation: Measure of variability.
- IQR: IQR = Q3 Q1.
- Outliers:
 - Rule:

Q1-1.5 imes IQR (lower bound)

 $Q3 + 1.5 imes IQR ext{ (upper bound)}$

3.2 Bivariate EDA

Key Concepts

- Analyze relationships between two numerical variables.
- Scatter Plots: Visualize relationships (e.g., Age vs. Resale Price).

Describing Bivariate Data

1. Direction:

- Positive: Both variables increase together.
- Negative: One increases as the other decreases.
- None: No clear relationship.

2. **Form**:

- Linear: Points scatter about a straight line.
- Non-linear: Points follow a curve (e.g., exponential).

3. Strength:

- Strong: Points closely follow the trend.
- Weak: Points are widely scattered.

3.3 Correlation Coefficient

Definition

- Correlation Coefficient (r): Measures strength and direction of linear association between two variables.
- Range: $-1 \le r \le 1$.
 - r > 0: Positive association.
 - r < 0: Negative association.
 - r=0: No linear association.

Rules for r:

- 1. Interchanging \boldsymbol{x} and \boldsymbol{y} does not change \boldsymbol{r} .
- 2. Adding/multiplying a constant to all values of \boldsymbol{x} or \boldsymbol{y} does not change $\boldsymbol{r}.$

Strength Interpretation

- ullet $|r|\in[0.7,1]$: Strong.
- $|r| \in [0.3, 0.7]$: Moderate.
- ullet $|r|\in[0,0.3]$: Weak.

Example:

 $\bullet\,$ HDB resale prices and floor area: r=0.626 (strong positive correlation).

3.4 Linear Regression

Definition

- Fit a straight line to describe the relationship between two variables.
- Equation: Y = mX + b.
 - m: Slope (rate of change).
 - b: Y-intercept (value of Y when X = 0).

Prediction

- Use regression line to estimate Y for a given X.
- Example: Predict resale price of a 40-year-old flat.

• Interpretation: The average resale price is \$431,577 for a 40-year-old flat.

Method: Least Squares

• Minimizes the sum of squared errors:

$$e^2 = \sum_{i=1}^n (y_i - \hat{y}_i)^2 \ e^2_1 + e^2_2 + \ldots + e^2_n$$

Limitations

- 1. Valid only within the observed range of X.
- 2. Sensitive to outliers.

Summary

- 1. Histograms vs. Boxplots:
 - Histograms: Shape, frequency distribution.
 - Boxplots: Outliers, comparisons.
- 2. Bivariate Analysis:
 - Use scatter plots and correlation coefficient for linear relationships.
 - Check for non-linear associations.
- 3. Regression:
 - Predict values within range of data.
 - Avoid extrapolation.