In [329]: import pandas as pd

In [330]: data=pd.read_csv("/home/placement/Downloads/Titanic Dataset.csv")

In [331]: data.describe()

Out[331]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [332]: data.head(10)

Out	[332]

:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
•	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
	5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
	6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
	7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
	8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
	9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	С

In [333]: data.shape

Out[333]: (891, 12)

```
In [334]: data.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 891 entries, 0 to 890
          Data columns (total 12 columns):
               Column
                             Non-Null Count Dtype
                _ _ _ _ _ _
                                              ----
               PassengerId 891 non-null
                                              int64
                             891 non-null
           1
               Survived
                                              int64
               Pclass
           2
                             891 non-null
                                              int64
            3
                             891 non-null
                                              obiect
                Name
           4
                             891 non-null
                                              object
                Sex
                             714 non-null
                                              float64
            5
               Age
                             891 non-null
                                              int64
               SibSp
           7
               Parch
                             891 non-null
                                              int64
                             891 non-null
                                              obiect
               Ticket
                                              float64
           9
               Fare
                             891 non-null
           10
               Cabin
                             204 non-null
                                              obiect
           11 Embarked
                             889 non-null
                                              object
          dtypes: float64(2), int64(5), object(5)
          memory usage: 83.7+ KB
In [335]: data.isna().sum()
Out[335]: PassengerId
                            0
          Survived
                            0
                            0
          Pclass
                            0
          Name
                            0
          Sex
                          177
          Age
          SibSp
                            0
          Parch
                            0
          Ticket
                            0
          Fare
                            0
          Cabin
                          687
          Embarked
                            2
```

dtype: int64

```
In [336]: data['Pclass'].unique()
Out[336]: array([3, 1, 2])
In [337]: data['Survived'].unique()
Out[337]: array([0, 1])
In [338]: data['Age'].unique()
Out[338]: array([22. , 38. , 26. , 35. , nan, 54. , 2. , 27. , 14. ,
                4. , 58. , 20. , 39. , 55. , 31. , 34. , 15. , 28. ,
                          , 40. , 66. , 42. , 21.
                                                    , 18.
                                                          , 3.
                          , 65. , 28.5 , 5. , 11.
                                                   , 45.
                                                          , 17.
                                                          , 46.
               16. , 25.
                          , 0.83, 30. , 33. , 23.
                                                   , 24.
               71. , 37. , 47. , 14.5 , 70.5 , 32.5 , 12.
               51. , 55.5 , 40.5 , 44. , 1. , 61. , 56. , 50. , 36. ,
               45.5 , 20.5 , 62. , 41. , 52. , 63. , 23.5 , 0.92, 43. ,
               60. , 10. , 64. , 13. , 48. , 0.75, 53. , 57. , 80. ,
               70. , 24.5 , 6. , 0.67, 30.5 , 0.42, 34.5 , 74. ])
```

```
In [339]: data['PassengerId'].unique()
Out[339]: array([ 1,
                         2,
                                   4,
                                        5,
                                              6,
                                                        8,
                                                             9,
                                                                 10,
                                                                       11,
                                                                            12,
                              3,
                                                   7,
                                                                                 13.
                                                            22,
                        15.
                             16,
                                  17,
                                       18,
                                             19,
                                                  20,
                                                       21,
                                                                  23,
                                                                       24,
                                                                            25.
                                                                                 26.
                   14,
                                  30,
                                                  33,
                                                       34,
                                                            35,
                                                                            38,
                   27,
                        28,
                             29,
                                       31,
                                             32,
                                                                  36,
                                                                       37,
                                                                                 39,
                   40.
                        41,
                             42,
                                  43,
                                       44,
                                             45,
                                                  46,
                                                       47,
                                                            48,
                                                                  49,
                                                                       50,
                                                                            51.
                                                                                 52.
                        54,
                             55,
                                  56,
                                       57,
                                             58,
                                                  59,
                                                            61,
                                                                  62,
                   53,
                                                       60,
                                                                       63,
                                                                            64,
                                                                                 65,
                                            71,
                                                  72,
                   66,
                        67,
                             68,
                                  69,
                                       70,
                                                       73,
                                                            74,
                                                                 75,
                                                                       76,
                                                                            77,
                                                                                 78,
                                             84,
                                                            87,
                        80.
                             81,
                                  82,
                                       83,
                                                  85,
                                                       86,
                                                                 88,
                                                                       89,
                        93,
                             94,
                                  95,
                                       96,
                                            97,
                                                  98,
                                                       99, 100, 101, 102, 103, 104,
                   92,
                  105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
                  118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,
                  131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143,
                  144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156,
                  157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169,
                  170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182,
                  183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195,
                  196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208,
                  209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221,
                  222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234,
                  235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247,
                  248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260,
                  261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273,
                  274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286,
                  287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299
                  300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312,
                  313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325,
                  326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338,
                  339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351,
                  352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364,
                  365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377,
                  378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390,
                  391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403,
                  404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416,
                  417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429
                  430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442,
                  443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455,
                  456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468,
                  469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481,
                  482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494,
                  495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507,
```

In [340]: data['Parch'].unique()

In [341]: data['SibSp'].unique()

Out[340]: array([0, 1, 2, 5, 3, 4, 6])

Out[341]: array([1, 0, 3, 4, 2, 5, 8])

```
508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520,
521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533,
534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546,
547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559,
560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572,
573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585,
586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598,
599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611,
612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624,
625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637,
638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650,
651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663,
664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676,
677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689,
690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702,
703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715,
716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728,
729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741,
742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754,
755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767,
768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780,
781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793,
794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806,
807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819,
820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832,
833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845,
846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858,
859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871,
872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884,
885, 886, 887, 888, 889, 890, 891])
```

```
localhost:8888/notebooks/Titanic.ipynb
```

```
In [342]: data['Sex'].unique()
Out[342]: array(['male', 'female'], dtype=object)
In [343]: data['Cabin'].unique()
Out[343]: array([nan, 'C85', 'C123', 'E46', 'G6', 'C103', 'D56', 'A6',
                 'C23 C25 C27', 'B78', 'D33', 'B30', 'C52', 'B28', 'C83', 'F33',
                 'F G73', 'E31', 'A5', 'D10 D12', 'D26', 'C110', 'B58 B60', 'E101',
                 'F E69', 'D47', 'B86', 'F2', 'C2', 'E33', 'B19', 'A7', 'C49', 'F4',
                 'A32', 'B4', 'B80', 'A31', 'D36', 'D15', 'C93', 'C78', 'D35',
                 'C87', 'B77', 'E67', 'B94', 'C125', 'C99', 'C118', 'D7', 'A19',
                 'B49', 'D', 'C22 C26', 'C106', 'C65', 'E36', 'C54'
                 'B57 B59 B63 B66', 'C7', 'E34', 'C32', 'B18', 'C124', 'C91', 'E40',
                 'T', 'C128', 'D37', 'B35', 'E50', 'C82', 'B96 B98', 'E10', 'E44',
                 'A34', 'C104', 'C111', 'C92', 'E38', 'D21', 'E12', 'E63', 'A14',
                 'B37', 'C30', 'D20', 'B79', 'E25', 'D46', 'B73', 'C95', 'B38',
                               'C86', 'C70', 'A16', 'C101', 'C68', 'A10', 'E68',
                  'B41', 'A20', 'D19', 'D50', 'D9', 'A23', 'B50', 'A26', 'D48',
                 'E58', 'C126', 'B71', 'B51 B53 B55', 'D49', 'B5', 'B20', 'F G63',
                 'C62 C64', 'E24', 'C90', 'C45', 'E8', 'B101', 'D45', 'C46', 'D30'
                 'E121', 'D11', 'E77', 'F38', 'B3', 'D6', 'B82 B84', 'D17', 'A36',
                 'B102', 'B69', 'E49', 'C47', 'D28', 'E17', 'A24', 'C50', 'B42',
                  'C148'], dtype=object)
```

```
In [344]: data['Ticket'].unique()
Out[344]: array(['A/5 21171', 'PC 17599', 'STON/02, 3101282', '113803', '373450',
                  '330877', '17463', '349909', '347742', '237736', 'PP 9549',
                 '113783', 'A/5. 2151', '347082', '350406', '248706', '382652',
                 '244373', '345763', '2649', '239865', '248698', '330923', '113788',
                 '347077', '2631', '19950', '330959', '349216', 'PC 17601',
                 'PC 17569', '335677', 'C.A. 24579', 'PC 17604', '113789', '2677',
                 'A./5. 2152', '345764', '2651', '7546', '11668', '349253',
                 'SC/Paris 2123', '330958', 'S.C./A.4. 23567', '370371', '14311',
                 '2662', '349237', '3101295', 'A/4. 39886', 'PC 17572', '2926',
                 '113509', '19947', 'C.A. 31026', '2697', 'C.A. 34651', 'CA 2144',
                  '2669'. '113572', '36973', '347088', 'PC 17605', '2661',
                 'C.A. 29395', 'S.P. 3464', '3101281', '315151', 'C.A. 33111',
                 'S.O.C. 14879', '2680', '1601', '348123', '349208', '374746',
                 '248738', '364516', '345767', '345779', '330932', '113059',
                 'SO/C 14885', '3101278', 'W./C. 6608', 'SOTON/OO 392086', '343275',
                 '343276', '347466', 'W.E.P. 5734', 'C.A. 2315', '364500', '374910',
                 'PC 17754', 'PC 17759', '231919', '244367', '349245', '349215',
                 '35281', '7540', '3101276', '349207', '343120', '312991', '349249',
                 '371110', '110465', '2665', '324669', '4136', '2627',
```

```
In [345]: data['Fare'].unique()
                                                               8.05
Out[345]: array([ 7.25
                              71.2833,
                                          7.925 ,
                                                   53.1
                                                                          8.4583.
                                        11.1333,
                                                   30.0708,
                                                              16.7
                   51.8625.
                              21.075 ,
                                                                         26.55
                   31.275 ,
                               7.8542,
                                        16.
                                                   29.125 ,
                                                              13.
                                                                         18.
                    7.225 .
                                          8.0292,
                                                   35.5
                                                              31.3875, 263.
                              26.
                    7.8792,
                               7.8958,
                                        27.7208, 146.5208,
                                                               7.75
                   82.1708,
                              52.
                                          7.2292,
                                                               9.475 ,
                                                  11.2417,
                                                                         21.
                                        21.6792,
                                                              39.6875,
                   41.5792.
                              15.5
                                                   17.8
                                                              80.
                                                                         83.475 ,
                   76.7292,
                              61.9792,
                                        27.75
                                                   46.9
                   27.9
                              15.2458,
                                          8.1583,
                                                    8.6625,
                                                              73.5
                                                                         14.4542,
                   56.4958,
                               7.65
                                         29.
                                                   12.475 ,
                                                               9.
                                                                          9.5
                    7.7875.
                              47.1
                                        15.85
                                                   34.375 ,
                                                              61.175 .
                                                                         20.575 .
                                        23.
                   34.6542,
                              63.3583,
                                                   77.2875,
                                                               8.6542,
                                                                          7.775 ,
                                        14.4583, 247.5208,
                   24.15
                               9.825 ,
                                                               7.1417,
                                                                         22.3583,
                    6.975 ,
                               7.05
                                         14.5
                                                   15.0458,
                                                              26.2833,
                                                                          9.2167,
                                        11.5
                   79.2
                               6.75
                                                   36.75
                                                               7.7958,
                                                                         12.525 ,
                   66.6
                               7.3125,
                                         61.3792,
                                                    7.7333,
                                                              69.55
                                                                         16.1
                              20.525 ,
                                        55.
                                                   25.925 ,
                                                              33.5
                   15.75
                                                                         30.6958,
                                                              39.
                   25.4667,
                              28.7125,
                                          0.
                                                   15.05
                                                                         22.025 ,
                                          6.4958,
                   50.
                               8.4042,
                                                   10.4625,
                                                              18.7875,
                                                                         31.
                              27.
                                                   90.
                                                               9.35
                                                                         13.5
                  113.275 ,
                                         76.2917,
                    7.55
                              26.25
                                        12.275 ,
                                                    7.125 .
                                                              52.5542,
                                                                         20.2125,
                   86.5
                            512.3292,
                                        79.65
                                                , 153.4625, 135.6333,
                                                                         19.5
                   29.7
                              77.9583,
                                         20.25
                                                   78.85
                                                              91.0792,
                                                                         12.875 ,
                           , 151.55
                                         30.5
                                                   23.25
                                                             12.35
                    8.85
                                                                     , 110.8833,
                  108.9
                              24.
                                         56.9292,
                                                   83.1583, 262.375 ,
                                                                         14.
                                          6.2375,
                                                              28.5
                  164.8667, 134.5
                                                   57.9792,
                                                                      , 133.65
                                         35.
                   15.9
                                                   75.25
                                                              69.3
                                                                         55.4417,
                               9.225 ,
                  211.5
                               4.0125, 227.525 ,
                                                   15.7417,
                                                               7.7292,
                                                                         12.
                              12.65
                                        18.75
                                                              32.5
                                                                          7.875 ,
                  120.
                                                    6.8583,
                   14.4
                              55.9
                                          8.1125,
                                                   81.8583,
                                                              19.2583,
                                                                         19.9667,
                   89.1042,
                              38.5
                                          7.725 ,
                                                   13.7917,
                                                               9.8375,
                                                                          7.0458,
                              12.2875,
                                          9.5875,
                    7.5208,
                                                   49.5042,
                                                              78.2667,
                                                                         15.1
                              22.525 ,
                    7.6292,
                                        26.2875,
                                                   59.4
                                                               7.4958,
                                                                         34.0208,
                   93.5
                           , 221.7792, 106.425 ,
                                                   49.5
                                                              71.
                                                                         13.8625,
                    7.8292.
                              39.6
                                                   51,4792.
                                                              26.3875,
                                         17.4
                                                                         30.
                   40.125 ,
                               8.7125,
                                        15.
                                                   33.
                                                              42.4
                                                                         15.55
                              32.3208,
                                          7.0542,
                                                    8.4333,
                                                              25.5875,
                                                                          9.8417,
                   65.
                             10.1708, 211.3375,
                                                   57.
                                                              13.4167.
                                                                          7.7417.
                    8.1375.
                    9.4833,
                              7.7375,
                                         8.3625, 23.45 ,
                                                              25.9292,
                                                                          8.6833,
```

```
8.5167,
                           7.8875, 37.0042,
                                                6.45 , 6.95 ,
                                                                    8.3
                   6.4375, 39.4 , 14.1083, 13.8583, 50.4958,
                                                                    5.
                   9.8458, 10.5167])
In [346]: list(data)
Out[346]: ['PassengerId',
           'Survived',
           'Pclass',
           'Name',
           'Sex',
           'Age',
           'SibSp',
           'Parch',
           'Ticket',
           'Fare',
           'Cabin',
           'Embarked']
In [347]: | data1=data.drop(['PassengerId','Name','Ticket','Cabin','SibSp'],axis=1)
```

In [348]: data1

Ο.	. 4. 1	T 2 4 0	٦.
O	IT I	I 348	1
0			

	Survived	Pclass	Sex	Age	Parch	Fare	Embarked
0	0	3	male	22.0	0	7.2500	S
1	1	1	female	38.0	0	71.2833	С
2	1	3	female	26.0	0	7.9250	S
3	1	1	female	35.0	0	53.1000	S
4	0	3	male	35.0	0	8.0500	S
886	0	2	male	27.0	0	13.0000	S
887	1	1	female	19.0	0	30.0000	S
888	0	3	female	NaN	2	23.4500	S
889	1	1	male	26.0	0	30.0000	С
890	0	3	male	32.0	0	7.7500	Q

891 rows × 7 columns

```
In [349]: data1.shape
Out[349]: (891, 7)
In [350]: data1['Sex']=data1['Sex'].map({'male':1,'female':0})
data1['Pclass'].unique()
Out[350]: array([3, 1, 2])
```

In [351]: data1

Λ	n± l	[35]	11
U	uL	LJJ.	- 1

	Survived	Pclass	Sex	Age	Parch	Fare	Embarked
0	0	3	1	22.0	0	7.2500	S
1	1	1	0	38.0	0	71.2833	С
2	1	3	0	26.0	0	7.9250	S
3	1	1	0	35.0	0	53.1000	S
4	0	3	1	35.0	0	8.0500	S
886	0	2	1	27.0	0	13.0000	S
887	1	1	0	19.0	0	30.0000	S
888	0	3	0	NaN	2	23.4500	S
889	1	1	1	26.0	0	30.0000	С
890	0	3	1	32.0	0	7.7500	Q

891 rows × 7 columns

In [352]: #data2=data1.fillna(data1.median)
data2.fillna(35,inplace=True)

In [353]: data2

Out[353]:

	Survived	Pclass	Sex	Age	Parch	Fare	Embarked
0	0	3	1	22.0	0	7.2500	S
1	1	1	0	38.0	0	71.2833	С
2	1	3	0	26.0	0	7.9250	S
3	1	1	0	35.0	0	53.1000	S
4	0	3	1	35.0	0	8.0500	S
886	0	2	1	27.0	0	13.0000	S
887	1	1	0	19.0	0	30.0000	S
888	0	3	0	$<\!$	2	23.4500	S
889	1	1	1	26.0	0	30.0000	С
890	0	3	1	32.0	0	7.7500	Q

891 rows × 7 columns

Out[354]: <Axes: >


```
In [355]: plt.hist(data1['Age'])
Out[355]: (array([ 54., 46., 177., 169., 118., 70., 45., 24., 9., 2.]),
           array([ 0.42 , 8.378, 16.336, 24.294, 32.252, 40.21 , 48.168, 56.126,
                 64.084, 72.042, 80. ]),
           <BarContainer object of 10 artists>)
           175
           150
           125
           100
            75
            50
            25
                             20
                                           40
                                                 50
                                                              70
                       10
                                    30
                                                        60
                                                                     80
```


In [359]: data2.describe()

Out[359]:

	Survived	Pclass	Sex	Parch	Fare
count	891.000000	891.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	0.647587	0.381594	32.204208
std	0.486592	0.836071	0.477990	0.806057	49.693429
min	0.000000	1.000000	0.000000	0.000000	0.000000
25%	0.000000	2.000000	0.000000	0.000000	7.910400
50%	0.000000	3.000000	1.000000	0.000000	14.454200
75%	1.000000	3.000000	1.000000	0.000000	31.000000
max	1.000000	3.000000	1.000000	6.000000	512.329200

```
In [360]: data1['Age'].unique()
Out[360]: array([22. , 38. , 26.
                                   , 35. ,
                                               nan, 54.
                                                         , 2. , 27. , 14. ,
                                    , 39. , 55. , 31.
                             , 20.
                                                                 , 15.
                     . 58.
                                                         , 34.
                             , 40.
                                   , 66. , 42. , 21.
                                                         , 18.
                                                                , 3.
                                                                        , 7.
                             , 65. , 28.5 , 5.
                                                  , 11.
                                                          , 45.
                                                                 , 17.
                 16. , 25.
                            , 0.83, 30.
                                           , 33.
                                                  , 23.
                                                         , 24.
                                                                , 46.
                 71. , 37. , 47. , 14.5 , 70.5 , 32.5 , 12.
                 51. , 55.5 , 40.5 , 44. , 1. , 61.
                                                        , 56.
                 45.5 , 20.5 , 62. , 41. , 52. , 63. , 23.5 , 0.92, 43. ,
                 60. , 10. , 64. , 13. , 48. , 0.75, 53. , 57. , 80. ,
                 70. , 24.5 , 6. , 0.67, 30.5 , 0.42, 34.5 , 74. ])
In [361]: data1['Age'].fillna(35,inplace=True)
In [362]: data1
Out[362]:
               Survived Pclass Sex Age Parch
                                             Fare Embarked
             0
                    0
                          3
                              1 22.0
                                        0 7.2500
                                                       S
            1
                    1
                          1
                              0 38.0
                                        0 71.2833
                                                       С
                    1
                          3
                              0 26.0
                                        0 7.9250
                    1
                          1
                              0 35.0
                                        0 53.1000
                    0
                              1 35.0
                                        0 8.0500
                                                       S
           886
                    0
                              1 27.0
                                        0 13.0000
                                                       S
           887
                    1
                          1
                              0 19.0
                                        0 30.0000
           888
                    0
                          3
                              0 35.0
                                        2 23.4500
           889
                    1
                          1
                              1 26.0
                                        0 30.0000
                                                       С
           890
                    0
                          3
                              1 32.0
                                        0 7.7500
                                                       Q
```

891 rows × 7 columns

In [363]: #data1.groupby(['Age']).count()

```
In [364]: data1['Pclass']=data1['Pclass'].map({1:'F',2:'S',3:'Third'})
In [365]: data1.isna().sum()
Out[365]: Survived
                        0
           Pclass
                        0
           Sex
                        0
           Age
           Parch
           Fare
           Embarked
           dtype: int64
In [366]: data1.head(5)
Out[366]:
              Survived Pclass Sex Age Parch
                                              Fare Embarked
                        Third
                               1 22.0
                                             7.2500
            0
                    0
                                                          S
            1
                    1
                               0
                                 38.0
                                         0 71.2833
                                                          С
                        Third
                               0 26.0
                                             7.9250
                                                          S
            2
                                                          S
            3
                    1
                               0 35.0
                                            53.1000
                        Third
                               1 35.0
                                             8.0500
                                                          S
In [367]: data1=pd.get_dummies(data1)
```

In [368]: data1

	Survived	Sex	Age	Parch	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_C	Embarked_Q	Embarked_S
0	0	1	22.0	0	7.2500	0	0	1	0	0	1
1	1	0	38.0	0	71.2833	1	0	0	1	0	0
2	1	0	26.0	0	7.9250	0	0	1	0	0	1
3	1	0	35.0	0	53.1000	1	0	0	0	0	1
4	0	1	35.0	0	8.0500	0	0	1	0	0	1
886	0	1	27.0	0	13.0000	0	1	0	0	0	1
887	1	0	19.0	0	30.0000	1	0	0	0	0	1
888	0	0	35.0	2	23.4500	0	0	1	0	0	1
889	1	1	26.0	0	30.0000	1	0	0	1	0	0
890	0	1	32.0	0	7.7500	0	0	1	0	1	0

891 rows × 11 columns

In [369]: data1.shape

Out[369]: (891, 11)

In [370]: data1.head(500)

Out[370]:

	Survived	Sex	Age	Parch	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_C	Embarked_Q	Embarked_S
0	0	1	22.0	0	7.2500	0	0	1	0	0	1
1	1	0	38.0	0	71.2833	1	0	0	1	0	0
2	1	0	26.0	0	7.9250	0	0	1	0	0	1
3	1	0	35.0	0	53.1000	1	0	0	0	0	1
4	0	1	35.0	0	8.0500	0	0	1	0	0	1
495	0	1	35.0	0	14.4583	0	0	1	1	0	0
496	1	0	54.0	0	78.2667	1	0	0	1	0	0
497	0	1	35.0	0	15.1000	0	0	1	0	0	1
498	0	0	25.0	2	151.5500	1	0	0	0	0	1
499	0	1	24.0	0	7.7958	0	0	1	0	0	1

500 rows × 11 columns

In [371]: cor_mat=data1.corr()
 cor_mat

Out[371]:

	Survived	Sex	Age	Parch	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_C	Embarked_Q	Embarked_S
Survived	1.000000	-0.543351	-0.083713	0.081629	0.257307	0.285904	0.093349	-0.322308	0.168240	0.003650	-0.155660
Sex	-0.543351	1.000000	0.091930	-0.245489	-0.182333	-0.098013	-0.064746	0.137143	-0.082853	-0.074115	0.125722
Age	-0.083713	0.091930	1.000000	-0.196800	0.074199	0.302149	-0.022021	-0.242412	0.036953	0.040528	-0.065062
Parch	0.081629	-0.245489	-0.196800	1.000000	0.216225	-0.017633	-0.000734	0.015790	-0.011069	-0.081228	0.063036
Fare	0.257307	-0.182333	0.074199	0.216225	1.000000	0.591711	-0.118557	-0.413333	0.269335	-0.117216	-0.166603
Pclass_F	0.285904	-0.098013	0.302149	-0.017633	0.591711	1.000000	-0.288585	-0.626738	0.296423	-0.155342	-0.170379
Pclass_S	0.093349	-0.064746	-0.022021	-0.000734	-0.118557	-0.288585	1.000000	-0.565210	-0.125416	-0.127301	0.192061
Pclass_Third	-0.322308	0.137143	-0.242412	0.015790	-0.413333	-0.626738	-0.565210	1.000000	-0.153329	0.237449	-0.009511
Embarked_C	0.168240	-0.082853	0.036953	-0.011069	0.269335	0.296423	-0.125416	-0.153329	1.000000	-0.148258	-0.778359
Embarked_Q	0.003650	-0.074115	0.040528	-0.081228	-0.117216	-0.155342	-0.127301	0.237449	-0.148258	1.000000	-0.496624
Embarked_S	-0.155660	0.125722	-0.065062	0.063036	-0.166603	-0.170379	0.192061	-0.009511	-0.778359	-0.496624	1.000000

In [372]: #data.groupby('Survived').count()

Out[372]:

		PassengerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	
	Survived												_
٠	0	549	549	549	549	424	549	549	549	549	68	549	
	1	342	342	342	342	290	342	342	342	342	136	340	

In [377]: y=data1['Survived']
x=data1.drop('Survived',axis=1)

```
In [378]: y
Out[378]: 0
                  0
                  1
           2
                  1
           3
                  1
                  0
                  0
           886
           887
                  1
           888
                  0
           889
                  1
           890
           Name: Survived, Length: 891, dtype: int64
In [379]: from sklearn.model selection import train test split
           x train,x test,y train,y test = train test split(x,y,test size=0.33,random state=42)
In [380]: import warnings
           warnings.filterwarnings("ignore")
           from sklearn.linear model import LogisticRegression
           classifier= LogisticRegression()
           classifier.fit(x train,y train)
Out[380]: LogisticRegression()
           In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
           On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [381]: y_pred=classifier.predict(x_test)
```

```
In [382]: y pred
Out[382]: array([0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
                 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
                 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1,
                 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1,
                 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
                 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0,
                 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1,
                 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0,
                 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0,
                 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0,
                 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1,
                 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0,
                 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
                 1, 0, 0, 0, 0, 0, 1, 1, 0])
In [383]: from sklearn.metrics import confusion matrix
          confusion matrix(y test,y pred)
Out[383]: array([[153, 22],
                 [ 36, 8411)
In [385]: from sklearn.metrics import accuracy score
          accuracy score(y test, y pred)
Out[385]: 0.8033898305084746
 In [ ]:
```