The bad guys in AI

atacando sistemas de machine learning

¿Porqué...?

Javier Ordóñez & Alicia Pérez

Data Scientists @Style_Sage

Redes neuronales

Qué es una red neural profunda y cómo aprende a clasificar datos

Red neural profunda

La imagen de entrada se transforma aplicando patrones organizados en una estructura jerárquica, extraídos mediante un método de optimización y una señal supervisora, para dar lugar a un vector de probabilidades.

CNN Demo

Aprendizaje de características

- Inicialización aleatoria de los parámetros.
- Convergencia gracias a métodos de optimización.

- Optimización basada en métodos de descenso del gradiente.
- Los parámetros se van moviendo hacia un punto que minimice el error del sistema.

Modelos discriminativos

- Dado un vector de características, predice una etiqueta.
- Probabilidad condicional.
- Modelan la dependencia entre una etiqueta (salida) y las características (datos de entrada)

Modelos generativos

- Crea ejemplos en vez de evaluarlos.
- Probabilidad conjunta.
- Modela cómo se distribuyen las características (datos de entrada) de cada tipo de etiqueta.

Evaluación de modelos discriminativos

$$p(Mopa) = 87\%$$
$$p(Perro) = 13\%$$

Evaluación de modelos generativos

Arquitecturas adversarias

Redes generativas adversarias

- La salida del bloque generativo es una muestra o ejemplo.
- La salida del bloque discriminativo es la clasificación de la muestra. La señal supervisora de la que se aprende.

Generación de datos sintéticos

El modelo generativo comienza aleatoriamente y converge hacia representaciones que se asemejan a los datos usados para entrenar al modelo discriminativo.

No aprende a **clasificar** Aprende a **engañar**

Ejemplo de generación de imágenes

Ejemplo de generación de imágenes

Concepto de ataque

Ejemplo antagónico

Muestra perteneciente a la distribución de los datos alterada mínimamente para que sea clasificada incorrectamente.

Ataque antagónico

Entrenamiento de modelo generativo adversario que es capaz de crear muestras sintéticas para engañar a un modelo discriminativo objetivo.

Tipos de ataque

No orientado

El más habitual

Sólo se busca que el clasificador ofrezca un resultado incorrecto

Orientado

Más difícil

Busca obtener una clase específica.

Caja blanca

Tenemos acceso al modelo:

- Arquitectura
- Parametrización
- \Box Datos

Caja negra

Sólo disponemos de la salida del modelo a atacar

Ataque no orientado de caja negra Etiquetar con el **Crear datos** Entrenar modelo Crear ejemplos "sustituto" antagónicos modelo "oráculo" sintéticos

Ataque no orientado de caja negra

Crear datos sintéticos

Etiquetar con el modelo "oráculo"

Entrenar modelo "sustituto"

Crear ejemplos antagónicos

Demo time

Cómo atacar un sistema de clasificación de imágenes de comida

Antes de empezar...

How to draw a panda

Ataqu

- 1. E
- 2. E ir
- 3. A

Step-3

Step-4

iiNo es trivial!!

clasificar

Dataset

Food-11- Etiquetas con 11 tipos de comida. Imágenes: 16643

Food-5K - Etiquetas binarias. Imágenes: 2500 comida, 2500 no comida

Food-12

- Incluye 12 etiquetas
- Tamaño: 19125 imágenes
- Dividido en:
 - Entrenamiento
 - Validación
 - o Test
- Tamaño de entrenamiento aumentado

Categoria	Imágenes
Bread	1724
Dairy product	721
Dessert	2500
Egg	1648
Fried food	1461
Meat	2206
Noodles/Pasta	734
Rice	472
Seafood	1505
Soup	2500
Vegetable/Fruit	1154
Non food	2500

Modelo discriminativo

Red neuronal InceptionV3

- 23.851.784 parámetros
- 159 capas
- Pre-entrenada en Imagenet
- Reentrenamiento de capas profundas


```
from keras.applications.inception v3 import preprocess input
from keras.preprocessing.image import ImageDataGenerator
IM WIDTH, IM HEIGHT = 299, 299 # fixed size for InceptionV3
BATCH SIZE = 32
train datagen = ImageDataGenerator(
   preprocessing function = preprocess input,
   rotation range =30,
   width shift range = 0.2,
   height shift range = 0.2,
   shear range = 0.2,
   zoom range = 0.2,
   horizontal flip=True)
training path = os.path.join(source path, 'training/')
train generator = train datagen.flow from directory(
   training path,
   target size = (IM WIDTH, IM HEIGHT),
  batch size=BATCH SIZE)
nb classes = train generator.num classes
```

```
IM WIDTH, IM HEIGHT = 299, 299 # fixed size for InceptionV3
BATCH SIZE = 32
train datagen = ImageDataGenerator (
   rotation range=30,
   width shift range=0.2,
                                                               "Aumento" del dataset
                                                                 de entrenamiento
   height shift range=0.2,
   shear range=0.2,
   zoom range=0.2,
   horizontal flip=True)
train generator = train datagen.flow from directory(
   training path,
   target size=(IM WIDTH, IM HEIGHT),
                                                              Carga de los datos con
   batch size=BATCH SIZE)
                                                                     Keras
nb classes = train generator.num classes
```

```
from keras.applications.inception v3 import InceptionV3
from keras.callbacks import EarlyStopping
from keras.models import Model, load model
from keras.layers import Dense, GlobalAveragePooling2D
from keras.optimizers import SGD
base model = InceptionV3(weights='imagenet', include top=False)
x = base model.output
x = GlobalAveragePooling2D()(x)
x = Dense(FC SIZE, activation='relu')(x) # new FC layer, random init
predictions = Dense(nb classes, activation='softmax') (x)
model = Model(input=base model.input, output=predictions)
for layer in model.layers[:NB IV3 LAYERS TO FREEZE]:
    layer.trainable = False
    model.compile(optimizer=SGD(lr=0.0001, momentum=0.9),
                  loss='categorical crossentropy',
                  metrics=['accuracy'])
early ft = EarlyStopping(monitor="val loss", patience=3)
history ft = model.fit generator(train generator,
 samples per epoch=nb train samples,
 nb epoch=NB EPOCHS FINETUNE,
 validation data=validation generator,
nb val samples=nb val_samples,
 class weight='auto',
 callbacks=[early ft])
model.save(OUTPUT MODEL FILE)
                                               discriminative/model_manager.py
```

```
Carga de Inception
base model = InceptionV3(weights='imagenet', include top=False)
for layer in model.layers[:NB IV3 LAYERS TO FREEZE]:
    layer.trainable = False
                                                                    Transfer learning
    model.compile(optimizer=SGD(lr=0.0001, momentum=0.9),
                  loss='categorical crossentropy',
                  metrics=['accuracy'])
history ft = model.fit generator(train generator,
 samples per epoch=nb train samples,
                                                                  Entrenamiento de las
 nb epoch=NB EPOCHS FINETUNE,
                                                                     últimas capas
 validation data=validation generator,
 nb val samples=nb val samples,
 class weight='auto',
 callbacks=[early ft])
```

discriminative/model_manager.py

Rendimiento - 91% exactitud

Modelo generativo

"An adversarial example library for constructing attacks, building defenses, and benchmarking both"

by Goodfellow and Papernot

- La librería más actual y completa (v2.1.0):
 - Modelos (en Tensorflow, Keras, Pytorch...)
 - Ataques (Fast gradient sign method, Carlini-Wagner attack...)
 - Defensas (Adversarial training)
 - 0

Ataque no orientado de caja negra


```
train generator = train datagen.flow from directory(
    '/data/pycon18/data/randomfood/training',
    target size = (IM WIDTH, IM HEIGHT),
    batch size = BATCH SIZE,
validation generator = test datagen.flow from directory(
    '/data/pycon18/data/randomfood/evaluation',
    target size = (IM WIDTH, IM HEIGHT),
    batch size=BATCH SIZE,
x train, y train = train generator.next()
x test, y test = validation generator.next()
# Initialize substitute training set reserved for adversary
X \text{ sub} = x \text{ test}
Y sub = np.argmax(y test, axis=1)
```

```
validation generator = test datagen.flow from directory(
                                                                 Carga de imágenes
x train, y train = train generator.next()
x test, y test = validation generator.next()
# Initialize substitute training set reserved for adversary
X \text{ sub} = x \text{ test}
Y sub = np.argmax(y test, axis=1)
                                                                Necesitamos separar
                                                                 train y eval para el
```

modelo sustituto

```
model = load_model('/data/pycon18/inceptionv3-ft120_910acc.model')
kmodel = KerasModelWrapper(model)
bbox_preds = kmodel.get_probs(x)

# You could replace this by a remote labeling API for instance
```

```
class ModelSubstitute (Model):
   def init (self, scope, nb classes, nb filters=200, **kwargs):
       del kwarqs
       Model. init (self, scope, nb classes, locals())
        self.nb filters = nb filters
   def fprop(self, x, **kwargs):
       del kwarqs
       my dense = functools.partial(
           tf.layers.dense, kernel initializer = HeReLuNormalInitializer)
       with tf.variable scope (self.scope, reuse=tf.AUTO REUSE):
           y = tf.layers.flatten(x)
           y = my dense(y, self.nb filters, activation=tf.nn.relu)
           y = my dense(y, self.nb filters, activation=tf.nn.relu)
           logits = my dense(y, self.nb classes)
           return {self.0 LOGITS: logits,
                   self.O PROBS: tf.nn.softmax(logits=logits)}
```

```
def init (self, scope, nb classes, nb filters=200, **kwargs):
def fprop(self, x, **kwargs):
                                            Configuración de una red "sencilla"
    my dense = functools.partial(
        tf.layers.dense, kernel initializer=HeReLuNormalInitializer)
   with tf.variable scope(self.scope, reuse=tf.AUTO REUSE):
        y = tf.layers.flatten(x)
        y = my dense(y, self.nb filters, activation=tf.nn.relu)
        y = my dense(y, self.nb filters, activation=tf.nn.relu)
        logits = my dense(y, self.nb classes)
```

```
# Define TF model graph (for the black-box model)
model_sub = ModelSubstitute('model_s', nb_classes)
preds_sub = model_sub.get_logits(x)
loss sub = CrossEntropy(model sub, smoothing=0)
```



```
# Train the substitute and augment dataset alternatively
for rho in xrange(data aug):
    print("Substitute training epoch #" + str(rho))
   train params = { 'nb epochs': nb epochs s, 'batch size': batch size,
        'learning rate': learning rate }
   train (sess, loss sub, x, y, X sub, to categorical (Y sub, nb classes),
          init all=False, args=train params, rng=rng,
         var list = model sub.get params())
    if rho < data aug - 1:</pre>
        lmbda coef = 2 * int(int(rho / 3) != 0) - 1
       X sub = jacobian augmentation (sess, x, X sub, Y sub, grads,
                                      lmbda coef * lmbda , aug batch size)
       Y sub = np.hstack([Y sub, Y sub])
       X sub prev = X sub[int(len(X sub)/^2):]
       eval params = {'batch size': batch size}
       bbox val = batch eval(sess, [x], [bbox preds], [X sub prev],
                              args =eval params)[0]
       Y sub [int(len(X sub)/2):] = np.argmax(bbox val, axis=1)
```

```
# Train the substitute and augment dataset alternatively
for rho in xrange(data aug):
                                                               Entrenamiento del
                                                                   sustituto
    train(sess, loss sub, x, y, X sub, to categorical(Y sub, nb classes),
          init all=False, args=train params, rng=rng,
          var list=model sub.get params())
                                                              Generación de datos
    if rho < data aug - 1:</pre>
                                                               sintéticos (opcional)
        lmbda coef = 2 * int(int(rho / 3) != 0) - 1
        X sub = jacobian augmentation(sess, x, X_sub, Y_sub, grads,
                                        lmbda coef * lmbda, aug batch size)
```

```
# Initialize the Fast Gradient Sign Method (FGSM) attack object.

fgsm_par = {'eps': 0.3, 'ord': np.inf, 'clip_min': 0., 'clip_max': 1.}

fgsm = FastGradientMethod (model_sub, sess=sess)

# Generate adversarial images

x_adv_sub = fgsm.generate(x, **fgsm_par)
adv_images = sess.run(x_adv_sub, feed_dict={x: x_test})
```

```
# Initialize the Fast Gradient Sign Method (FGSM) attack object.

fgsm_par = {'eps': 0.3, 'ord': np.inf, 'clip_min': 0., 'clip_max': 1.}

fgsm = FastGradientMethod (model_sub, sess=sess)

# Generate adversarial images

x_adv_sub = fgsm.generate(x, **fgsm_par)

adv images = sess.run(x adv sub, feed dict={x: x test})
Generación de ejemplos antagónicos
```


https://github.com/aliciapj/pycon18-attack

Predictions	
Bread	0.99288
Soup	0.00663
Dessert	0.00046
Egg	0.00001
Dairy product	0.00001

Predictions	
Dessert	0.99995
Bread	0.00004
Soup	0.00001
Non food	0.00000
Fried food	0.00000

Predictions	
Dessert	0.45860
Meat	0.42155
Fried food	0.11669
Dairy product	0.00191
Seafood	0.00062

Predictions	
Dairy product	0.96893
Dessert	0.02798
Fried food	0.00102
Meat	0.00075
Soup	0.00056

Predictions	
Dairy product	0.97058
Dessert	0.02939
Egg	0.00003
Seafood	0.00000
Soup	0.00000

Predictions	
Dessert	0.99279
Dairy product	0.00668
Egg	0.00030
Seafood	0.00021
Soup	0.00002

Predictions	
Non food	0.89039
Seafood	0.05469
Dessert	0.03103
Fried food	0.01078
Meat	0.00689

Predictions	
Seafood	0.91692
Dessert	0.07600
Fried food	0.00168
Non food	0.00164
Bread	0.00126

Predictions	
Non food	0.59072
Dessert	0.34936
Soup	0.05911
Seafood	0.00035
Egg	0.00026

Predictions	
Soup	0.36556
Seafood	0.28649
Bread	0.11913
Meat	0.10086
Dairy product	0.08910

Discusión

¿Cómo afecta a nuestros sistemas y algoritmos?

Ejemplos reales

¡Los ejemplos antagónicos funcionan incluso cuando son impresos y fotografiados a resoluciones estándar!

Ejemplos reales

Original - library (76%)

Antagónica -prison (52%)

Original - washer (54%)

Antagónica - doormat (35%)

Ejemplos reales

Señales de tráfico

• Dataset GTSRD

Cómo defendernos

¿Qúe podemos hacer?

- No es fácil. Vuestras APIs son vulnerables.
- 2. Todavía no existe un método infalible
- 3. La propuestas actuales se basan en las redes neuronales

Estrategia reactiva

- Intentar detectar y anular el ataque.
- Aumentar el tamaño de las entradas o la complejidad de la red para suponer mayor esfuerzo al sistema atacante.

Estrategia proactiva

- Crear modelos más robustos a los ataques.
- Técnicas relacionadas con el entrenamiento de la red.

Estrategias proactivas

Adversarial training

El dataset de entrenamiento del modelo se enriquece añadiendo ejemplos antagónicos creados por nosotros. Aumenta la robustez del modelo y sirve como factor regularizador.

Defensive distillation

Aplica el principio de entrar un modelo sustituto para reducir la confianza de las predicciones del sistema. El modelo se entrena sobre distribuciones de probabilidad en vez de etiquetas.

Gradient masking

Intenta ocultar el gradiente. Se ha demostrado que no es válido. El modelo sustituto lo hace inútil.

- La IA ya salido del ámbito teórico y la investigación.
- **Technical AI safety** es un campo nuevo, pero con mucho potencial.
- Ya presente en empresas como Google DeepMind, con su *DeepMind safety team*.

- Agente del juego CoastRunners (OpenAI). ¿Buen diseño de métricas?
- Los cimientos de muchas aplicaciones del futuro.

Reflexiones

gracias!

¿Alguna pregunta?

@alipeji | alicia@stylesage.co
@fjordonz | javier.ordonez@stylesage.co

We are hiring!!!

