

计算智能导论 大作业报告

课 程: 计算智能

作业题目: 基于多尺度小波融合与灰度直方图

模糊聚类的 SAR 图像变化检测

学院:人工智能学院

姓 名: 黄奕聪

班级学号: 15020510020

指导老师: 公茂果

使用环境: anaconda-spyder

作业时间: 2018.06

1、问题描述

SAR 图像变化检测:专指利用多时相获取的同一地表区域的 SAR 图像来确定和分析地表变化,能提供地物的空间展布及其变化的定性与定量信息。

图像变化检测方法可以如下图所示。

本次试验采用论文介绍的基于图像融合与改进FCM聚类的图像差异检测。

(Maoguo Gong, Zhiqiang Zhou, et al. Change Detection in Synthetic Aperture Radar Images based on Image Fusion and Fuzzy Clustering. IEEE Trans. Image Processing, 2012)

2、问题与论文理解

该解决方案的根本思路是,给定变化前图像和变化后图像(默认已经过几何校正与对齐),能否通过某一种图像融合方式得到融合图像,该图像能够突出变化区域并压制未变化区域,然后通过聚类,得到变化后的像素区域与未变化的像素区域。

第一个问题是如何进行图像融合。

先考虑构造某一算子,最后应能够突出变化区域并压制未变化区域,由此提出比值算子:

$$X_m = 1 - \min\left(\frac{\mu_1}{\mu_2}, \frac{\mu_2}{\mu_1}\right)$$

其中 µ 1 µ 2 分别表示两图中某一像素的领域的均值,由此构造的比值算子可以将两图中变化强烈的地方提取出来。但是比值算子也把斑点噪声考虑进来了,因此需要构造另一个算子弥补噪声影响造成的缺陷,由此提出对数算子:

$$X_l = \left| \log \frac{X_2}{X_1} \right| = \left| \log X_2 - \log X_1 \right|$$

对数算子其中一个重要作用就是把乘性噪声变为加性噪声。在假设"变化前后图像的噪声分布相同"下,两者相减用以消去噪声,得到抑制噪声而不损坏有用信息的效果。

以上就完成了两个差异图的构建,比起原本的变化前后图像起到了抑制噪声的关键作用。而后,考虑一种融合方法融合两个差异图。

作者的思路是从多尺度小波分析入手,由于低频分量和高频分量代表了不同 的图像信息,对图像低频分量和高频分量的融合一般采用不同的方法,具体的融 合规则根据图像的特点有较大的差别。已知小波系数的低频分量反映了图像的大 致轮廓信息,对于差异影像图来说,低频分量能够充分的体现出变化区域的信息。

为了增强变化区域,作者选用了均值算子来融合两幅 差异图的低频子带小波系数。依据均值比值差异图的特点,均值规则可防止变化信息的丢失,同时也能增强变化区域的轮廓及小面积的变化区域。小波变换的高频分量所包含的是图像的细节信息,如图像的边缘、噪声及纹理部分,从抑制背景区域(非变化区域)

的角度来分析,作者选用了小波系数局部能量最小规则,该规则可提取出两幅图像高频分量中的同质性区域以抑制背景杂点。考虑到对数比值图像的非变化区域较平滑,提取其高频分量进行融合可有效抑制背景。其具体规则为:

$$\begin{split} D_{\mathrm{LL}}^F &= \frac{D_{\mathrm{LL}}^m + D_{\mathrm{LL}}^l}{2} \\ D_{\varepsilon}^F(i,j) &= \begin{cases} D_{\varepsilon}^m(i,j), & E_{\varepsilon}^m(i,j) < E_{\varepsilon}^l(i,j) \\ D_{\varepsilon}^l(i,j), & E_{\varepsilon}^m(i,j) \geq E_{\varepsilon}^l(i,j) \end{cases} \end{split}$$

融合后的图像具有所需要的性质,对其进行聚类(2类)即可获得变化检测的结果。已知类别数,数据为一维(仅有灰度值),分布建模为类球型,因此可以用 FCM 进行聚类得到较好效果。

然而原始 FCM 存在很严重的问题,聚类需要遍历所有数据点,在图像分割的情况下,当图像为 512*512 大小时,其运算代价已经很高,更不用说更大的图像,因此提出需要优化的 FCM 进行图像分割。

考虑一个重要假设,"所有相同灰度值的像素都应该属于同一类"。那么图像分割中灰度相同的像素点其实非常多,因此很大的计算量都是冗余的,不妨利用统计灰度直方图进行改进。对 0-255 的灰度值确定隶属度矩阵,用对应灰度值的像素点数量改良加权平均聚类中心,其运算量能够限制在 256 个灰度值以内,因此可以大大降低运算复杂度。

另外,作者提到 Szilagyi 等人提出的增强 FCM 算法,通过引入邻域信息构造了一个线性加权均值图像,计算方法为:

$$\xi_k = \frac{1}{1+\alpha} \left(x_k + \frac{\alpha}{N_R} \sum_{j \in N_k} x_j \right)$$

该算子利用领域信息来抑制噪声,用参数 α 来调整原图与滤波图像的比重,寻求噪声抑制与图像细节之间的平衡。 而在图像融合以后进行双边滤波也可以达到类似的效果,但是参数的调节更加繁琐。

以上即可获得图像变化的检测结果。

3、实验仿真结果

测试 1: 越南红河三角洲, 1996.08.24 与 1999.08.14

测试 2: 印尼爪哇岛, 1994.02.16 与 1994.03.06

测试 3: 法国高卢机场, 1997. 7. 24 与 1998. 10. 24

4、总结

原本想过另一种检测方法,假设两图变化前后非变化区域像素值相似,变化后差别较大。那么利用变化前后图像的灰度值建立二维坐标,未变化像素坐标点应该能够回归到某一线性方程上,变化区域像素坐标点会较大程度偏离该直线。因此利用局部加权线性回归,再设定某一阈值分离未变化坐标与变化坐标即可。而横纵坐标均只有256个值,而像素点的数量远远大于该值,根据假设"所有相同灰度值的像素都应该属于同一类",可以大大减少需要的存储空间进行回归计算。但是最大的问题在于没有任何先验知识的情况下,阈值选取几乎只能靠测试,且对于斑点噪声无能为力,故最后舍去该方法。

在阅读了不少相关文献以后,有了很清晰的思路,虽然没有什么创新点,但 是在如何利用灰度分布来改良 FCM 的运算速度如醍醐灌顶,收获良多。

5、代码附录

 $https://github.\ com/kurobaneHITOMI/exercise-in-university/tree/master/Change%20Detection%20in%20SAR%20based%20on%20image%20fusion%20and%20FCM$