Answer Set Programming

(1) Semantics of ASP programs

Abdallah Saffidine

COMP4418

Overview of the Lecture

- Semantics of ASP programs
- Extensions of ASP programs
- Handling of variables in ASP
- ASP as modelling language

Consider the following logic program:

■ a.

а.

 $c \leftarrow a, b.$ $d \leftarrow a, \text{not } b.$ c:-a,b.

d :- a, not b.

- **a**.
 - $c \leftarrow a, b$.
 - $d \leftarrow a$, not b.
- Prolog proves by SLD resolution:

- **a**.
 - $c \leftarrow a, b$.
 - $d \leftarrow a$, not b.
- Prolog proves by SLD resolution:
 - ightharpoonup Proves a (for a is a fact)

- **a**.
 - $c \leftarrow a, b$.
 - $d \leftarrow a$, not b.
- Prolog proves by SLD resolution:
 - Proves a (for a is a fact)
 - Cannot prove b (for b is in no head)

- **a**.
 - $c \leftarrow a, b$.
 - $d \leftarrow a$, not b.
- Prolog proves by SLD resolution:
 - Proves a (for a is a fact)
 - ► Cannot prove *b* (for *b* is in no head)
 - ► Cannot prove *c* (for cannot prove *b*)

Consider the following logic program:

- **a**.
 - $c \leftarrow a, b$.
 - $d \leftarrow a$, not b.
- Prolog proves by SLD resolution:
 - Proves a (for a is a fact)
 - Cannot prove b (for b is in no head)
 - Cannot prove c (for cannot prove b)
 - ▶ Proves *d* (for prove *a* but not *b*)

Algorithm defines what Prolog does

Consider the following logic program:

- **a**.
 - $c \leftarrow a, b$.
 - $d \leftarrow a$, not b.
- Prolog proves by SLD resolution:
 - Proves a (for a is a fact)
 - Cannot prove b (for b is in no head)
 - Cannot prove c (for cannot prove b)
 - ▶ Proves *d* (for prove *a* but not *b*)

Algorithm defines what Prolog does

What is the semantics of this logic program?

Consider the following logic program:

а.

 $c \leftarrow a, b$.

- $a \wedge b \rightarrow c$
- $d \leftarrow a$, not b. $a \land \neg b \rightarrow d$
- Prolog proves by SLD resolution:
 - Proves a (for a is a fact)
 - Cannot prove b (for b is in no head)
 - Cannot prove *c* (for cannot prove *b*)
 - Proves *d* (for prove *a* but not *b*)

Algorithm defines what Prolog does

- What is the *semantics* of this logic program?

Consider the following logic program:

$$a$$
 a $c \leftarrow a, b$ $a \wedge b \rightarrow c$ $d \leftarrow a, \text{not } b$ $a \wedge \neg b \rightarrow d$

- Prolog proves by SLD resolution:
 - Proves a (for a is a fact)
 - Cannot prove b (for b is in no head)
 - Cannot prove c (for cannot prove b)
 - Proves d (for prove a but not b)

Algorithm defines what Prolog does

■ What is the *semantics* of this logic program?

▶ M_1 corresponds to Prolog, what is special about M_1 ?

Consider the following logic program:

$$a$$
. a $c \leftarrow a, b$. $a \wedge b \rightarrow c$ $d \leftarrow a, \text{not } b$. $a \wedge \neg b \rightarrow d$

- Prolog proves by SLD resolution:
 - Proves a (for a is a fact)
 - Cannot prove b (for b is in no head)
 - Cannot prove c (for cannot prove b)
 - Proves d (for prove a but not b)

Algorithm defines what Prolog does

■ What is the *semantics* of this logic program?

$$M_2 = egin{bmatrix} a & b & c & d \ \hline 1 & 1 & 1 & 0 \ \end{bmatrix}$$

- \blacktriangleright M_1 corresponds to Prolog, what is special about M_1 ?
- M_1 is a **stable model** a.k.a. **answer set**: M_1 only satisfies *justified* propositions

ASP gives **semantics** to **logic programming**

Intuition

The motivating guidelines behind stable model semantics are:

- A stable model satisfies all the rules of a logic program
- The reasoner shall not believe anything they are not forced to believe the **rationality principle**

Intuition

The motivating guidelines behind stable model semantics are:

- A stable model satisfies all the rules of a logic program
- The reasoner shall not believe anything they are not forced to believe the **rationality principle**

Next: formalisation of this intuition

For now: only ground programs, i.e., no variables

Syntax

Definition: normal logic program (NLP)

A **normal logic program** P is a set of (normal) rules of the form $A \leftarrow B_1, \dots, B_m, \text{not } C_1, \dots, \text{not } C_n$.

where A, B_i, C_i are atomic propositions.

When m = n = 0, we omit the " \leftarrow " and just write A.

Syntax

Definition: normal logic program (NLP)

A **normal logic program** P is a set of (normal) rules of the form $A \leftarrow B_1, \dots, B_m, \text{not } C_1, \dots, \text{not } C_n$.

where A, B_i, C_i are atomic propositions.

When m = n = 0, we omit the " \leftarrow " and just write A.

For such a rule r, we define:

- $\blacksquare \operatorname{Head}(r) = \{A\}$
- Body $(r) = \{B_1, \ldots, B_m, \text{not } C_1, \ldots, \text{not } C_n\}$

In code, r is written as $A : -B_1, \ldots, B_m, \operatorname{not} C_1, \ldots, \operatorname{not} C_n$.

Definition: interpretation, satisfaction

An **interpretation** S is a set of atomic propositions.

$$S$$
 satisfies $A \leftarrow B_1, \ldots, B_m, \operatorname{not} C_1, \ldots, \operatorname{not} C_n$ iff $A \in S$ or some $B_i \notin S$ or some $C_j \in S$.

- *S* satisfies rule iff *S* satisfies the head or falsifies the body
- S falsifies body iff S falsifies some B_i or satisfies some C_j

Definition: interpretation, satisfaction

An **interpretation** S is a set of atomic propositions.

$$S$$
 satisfies $A \leftarrow B_1, \ldots, B_m, \operatorname{not} C_1, \ldots, \operatorname{not} C_n$ iff $A \in S$ or some $B_i \notin S$ or some $C_j \in S$.

- *S* satisfies rule iff *S* satisfies the head or falsifies the body
- **S** falsifies body iff S falsifies some B_i or satisfies some C_j

$$\underline{\mathsf{Ex.}} \mathsf{:} \mathsf{Let} P = \{a. \quad c \leftarrow a, b. \quad d \leftarrow a, \mathsf{not} \, b.\}$$

Definition: interpretation, satisfaction

An **interpretation** S is a set of atomic propositions.

$$S$$
 satisfies $A \leftarrow B_1, \ldots, B_m, \operatorname{not} C_1, \ldots, \operatorname{not} C_n$ iff $A \in S$ or some $B_i \notin S$ or some $C_j \in S$.

- *S* satisfies rule iff *S* satisfies the head or falsifies the body
- S falsifies body iff S falsifies some B_i or satisfies some C_j

Definition: interpretation, satisfaction

An **interpretation** S is a set of atomic propositions.

$$S$$
 satisfies $A \leftarrow B_1, \ldots, B_m, \operatorname{not} C_1, \ldots, \operatorname{not} C_n$ iff $A \in S$ or some $B_i \notin S$ or some $C_j \in S$.

- *S* satisfies rule iff *S* satisfies the head or falsifies the body
- **S** falsifies body iff S falsifies some B_i or satisfies some C_j

Ex.: Let
$$P = \{a. \quad c \leftarrow a, b. \quad d \leftarrow a, \operatorname{not} b.\}$$
 $S = \{a, b, c\}$ satisfies a , but it does not satisfy (not b). It satisfies $c \leftarrow a, b$ because it satisfies the head because $c \in S$

Definition: interpretation, satisfaction

An **interpretation** S is a set of atomic propositions.

$$S$$
 satisfies $A \leftarrow B_1, \ldots, B_m, \operatorname{not} C_1, \ldots, \operatorname{not} C_n$ iff $A \in S$ or some $B_i \notin S$ or some $C_j \in S$.

- *S* satisfies rule iff *S* satisfies the head or falsifies the body
- S falsifies body iff S falsifies some B_i or satisfies some C_j

Definition: stable model for programs without negation

For *P* without negated literals:

S is a **stable model** of P iff

Definition: stable model for programs without negation

For *P* without negated literals:

S is a **stable model** of P iff

$$\underline{\mathsf{Ex.}} : P = \{a. \quad c \leftarrow a, b.\}$$

Definition: stable model for programs without negation

For *P* without negated literals:

S is a **stable model** of P iff

Ex.:
$$P = \{a. \quad c \leftarrow a, b.\}$$

 $S_1 = \{a\}$ is a stable model of P

Definition: stable model for programs without negation

For *P* without negated literals:

S is a **stable model** of P iff

Ex.:
$$P = \{a. c \leftarrow a, b.\}$$

 $S_1 = \{a\}$ is a stable model of P
 $S_2 = \{a, b\}$ is not a stable model of P

Definition: stable model for programs without negation

For *P* without negated literals:

S is a **stable model** of P iff

S is a minimal set (w.r.t. \subseteq) that satisfies all $r \in P$.

Ex.: $P = \{a. c \leftarrow a, b.\}$ $S_1 = \{a\}$ is a stable model of P $S_2 = \{a, b\}$ is not a stable model of P $S_3 = \{a, b, c\}$ is not a stable model of P

Definition: stable model for programs without negation

For *P* without negated literals:

S is a **stable model** of P iff

S is a minimal set (w.r.t. \subseteq) that satisfies all $r \in P$.

Ex.: $P = \{a. c \leftarrow a, b.\}$ $S_1 = \{a\}$ is a stable model of P $S_2 = \{a, b\}$ is not a stable model of P $S_3 = \{a, b, c\}$ is not a stable model of P

Theorem: unique-model property

If P is negation-free (i.e., contains no (not C)), then there is exactly one stable model, which can be computed in linear time.

- $S^0 = \{\}$
- $lacksquare S^{i+1} = S^i \cup \bigcup_{r \in P: S \text{ satisfies Body}(r)} \operatorname{Head}(r) \quad \operatorname{until} \quad S^{i+1} = S^i$

- $S^0 = \{\}$
- $lacksquare S^{i+1} = S^i \cup \bigcup_{r \in P: S \text{ satisfies } \mathrm{Body}(r)} \mathrm{Head}(r) \quad \mathrm{until} \quad S^{i+1} = S^i$

- $lacksquare S^{i+1} = S^i \cup igcup_{r \in P:S \text{ satisfies Body}(r)} \operatorname{Head}(r) \quad \operatorname{until} \quad S^{i+1} = S^i$

$$\begin{array}{l} \underline{\operatorname{Ex.}} \colon P_1 = \{a. \quad b \leftarrow a.\} \\ S^0 = \{\} \qquad S^1 = \{a\} \qquad S^2 = \{a,b\} \qquad \text{Fixpoint} \\ \underline{\operatorname{Ex.}} \colon P_2 = \{a \leftarrow b. \quad b \leftarrow a.\} \\ S^0 = \{\} \qquad \text{Fixpoint} \end{array}$$

$$S^0 = \{\}$$

$$lacksquare S^{i+1} = S^i \cup \bigcup_{r \in P: S \text{ satisfies } \mathrm{Body}(r)} \mathrm{Head}(r) \quad \mathrm{until} \quad S^{i+1} = S^i$$

$$\begin{array}{l} \underline{\operatorname{Ex.}} : P_1 = \{a. \quad b \leftarrow a.\} \\ S^0 = \{\} \qquad S^1 = \{a\} \qquad S^2 = \{a,b\} \qquad \text{Fixpoint} \\ \underline{\operatorname{Ex.}} : P_2 = \{a \leftarrow b. \quad b \leftarrow a.\} \\ S^0 = \{\} \qquad \text{Fixpoint} \\ \underline{\operatorname{Ex.}} : P_3 = \{a \leftarrow b. \quad b \leftarrow a. \quad a.\} \\ S^0 = \{\} \qquad S^1 = \{a\} \qquad S^2 = \{a,b\} \qquad \text{Fixpoint} \end{array}$$

Definition: reduct

The **reduct** P^S of P relative to S is the least set such that if $A \leftarrow B_1, \ldots, B_m, \operatorname{not} C_1, \ldots, \operatorname{not} C_n \in P$ and $C_1, \ldots, C_n \notin S$ then $A \leftarrow B_1, \ldots, B_m \in P^S$.

- if $(\text{not } C) \in \text{Body}(r)$ for some $C \in S$: drop the rule
- \blacksquare else: remove all negated literals and add to P^S

Definition: reduct

The **reduct** P^S of P relative to S is the least set such that if $A \leftarrow B_1, \ldots, B_m, \text{not } C_1, \ldots, \text{not } C_n \in P$ and $C_1, \ldots, C_n \notin S$ then $A \leftarrow B_1, \ldots, B_m \in P^S$.

- if $(\text{not } C) \in \text{Body}(r)$ for some $C \in S$: drop the rule
- \blacksquare else: remove all negated literals and add to P^S

$$\underline{\mathsf{Ex.}} : P = \{a. \quad c \leftarrow a, b. \quad d \leftarrow a, \mathsf{not}\, b.\}$$

Definition: reduct

The **reduct** P^S of P relative to S is the least set such that if $A \leftarrow B_1, \ldots, B_m, \text{not } C_1, \ldots, \text{not } C_n \in P$ and $C_1, \ldots, C_n \notin S$ then $A \leftarrow B_1, \ldots, B_m \in P^S$.

- if $(\text{not } C) \in \text{Body}(r)$ for some $C \in S$: drop the rule
- \blacksquare else: remove all negated literals and add to P^S

$$\underline{\text{Ex.}}: P = \{a. \quad c \leftarrow a, b. \quad d \leftarrow a, \text{not } b.\}$$

$$S_1 = \{a\} \quad \Rightarrow \quad P^{S_1} = \{a. \quad c \leftarrow a, b. \quad d \leftarrow a, \frac{\text{not } b}{}.\}$$

Definition: reduct

The **reduct** P^S of P relative to S is the least set such that if $A \leftarrow B_1, \ldots, B_m, \text{not } C_1, \ldots, \text{not } C_n \in P$ and $C_1, \ldots, C_n \notin S$ then $A \leftarrow B_1, \ldots, B_m \in P^S$.

- if $(\text{not } C) \in \text{Body}(r)$ for some $C \in S$: drop the rule
- \blacksquare else: remove all negated literals and add to P^S

$$\underline{\text{Ex.}}: P = \{a. \quad c \leftarrow a, b. \quad d \leftarrow a, \text{not } b.\}$$

$$S_1 = \{a\} \quad \Rightarrow \quad P^{S_1} = \{a. \quad c \leftarrow a, b. \quad d \leftarrow a, \frac{\text{not } b}{\text{otherwise}}.\}$$

$$S_2 = \{a, b\} \quad \Rightarrow \quad P^{S_2} = \{a. \quad c \leftarrow a, b. \quad \frac{d \leftarrow a, \text{not } b}{\text{otherwise}}.\}$$

Definition: reduct

The **reduct** P^S of P relative to S is the least set such that if $A \leftarrow B_1, \ldots, B_m, \text{not } C_1, \ldots, \text{not } C_n \in P$ and $C_1, \ldots, C_n \notin S$ then $A \leftarrow B_1, \ldots, B_m \in P^S$.

- if $(\text{not } C) \in \text{Body}(r)$ for some $C \in S$: drop the rule
- \blacksquare else: remove all negated literals and add to P^S

$$\underline{\text{Ex.:}} P = \{a. \quad c \leftarrow a, b. \quad d \leftarrow a, \text{not } b.\}$$

$$S_1 = \{a\} \quad \Rightarrow \quad P^{S_1} = \{a. \quad c \leftarrow a, b. \quad d \leftarrow a, \text{not } b.\}$$

$$S_2 = \{a, b\} \quad \Rightarrow \quad P^{S_2} = \{a. \quad c \leftarrow a, b. \quad d \leftarrow a, \text{not } b.\}$$

$$S_3 = \{a, d\} \quad \Rightarrow \quad P^{S_3} = \{a. \quad c \leftarrow a, b. \quad d \leftarrow a, \text{not } b.\}$$

Definition: reduct

The **reduct** P^S of P relative to S is the least set such that if $A \leftarrow B_1, \ldots, B_m, \text{not } C_1, \ldots, \text{not } C_n \in P$ and $C_1, \ldots, C_n \notin S$ then $A \leftarrow B_1, \ldots, B_m \in P^S$.

In English: for each rule *r* from *P*,

- if $(\text{not } C) \in \text{Body}(r)$ for some $C \in S$: drop the rule
- \blacksquare else: remove all negated literals and add to P^S

$$\underline{\text{Ex.:}} P = \{a. \quad c \leftarrow a, b. \quad d \leftarrow a, \text{not } b.\}
S_1 = \{a\} \quad \Rightarrow P^{S_1} = \{a. \quad c \leftarrow a, b. \quad d \leftarrow a.\}
S_2 = \{a, b\} \quad \Rightarrow P^{S_2} = \{a. \quad c \leftarrow a, b.\}
S_3 = \{a, d\} \quad \Rightarrow P^{S_3} = \{a. \quad c \leftarrow a, b. \quad d \leftarrow a.\}$$

Definition: reduct

The **reduct** P^S of P relative to S is the least set such that if $A \leftarrow B_1, \ldots, B_m, \operatorname{not} C_1, \ldots, \operatorname{not} C_n \in P$ and $C_1, \ldots, C_n \notin S$ then $A \leftarrow B_1, \ldots, B_m \in P^S$.

In English: for each rule *r* from *P*,

- if $(\text{not } C) \in \text{Body}(r)$ for some $C \in S$: drop the rule
- \blacksquare else: remove all negated literals and add to P^S

$$\begin{array}{lll} \underline{\mathsf{Ex.}} : P = \{a. & c \leftarrow a, b. & d \leftarrow a, \mathsf{not}\,b.\} \\ S_1 = \{a\} & \Rightarrow & P^{S_1} = \{a. & c \leftarrow a, b. & d \leftarrow a.\} \\ S_2 = \{a, b\} & \Rightarrow & P^{S_2} = \{a. & c \leftarrow a, b.\} \\ S_3 = \{a, d\} & \Rightarrow & P^{S_3} = \{a. & c \leftarrow a, b. & d \leftarrow a.\} \end{array}$$

Definition: stable model for programs with negation

For *P* with negated literals:

Definition: reduct

The **reduct** P^S of P relative to S is the least set such that if $A \leftarrow B_1, \ldots, B_m, \operatorname{not} C_1, \ldots, \operatorname{not} C_n \in P$ and $C_1, \ldots, C_n \notin S$ then $A \leftarrow B_1, \ldots, B_m \in P^S$.

In English: for each rule *r* from *P*,

- if $(\text{not } C) \in \text{Body}(r)$ for some $C \in S$: drop the rule
- \blacksquare else: remove all negated literals and add to P^S

$$\begin{array}{lll} \underline{\mathsf{Ex.}} : P = \{a. & c \leftarrow a, b. & d \leftarrow a, \mathsf{not}\, b.\} \\ S_1 = \{a\} & \Rightarrow P^{S_1} = \{a. & c \leftarrow a, b. & d \leftarrow a.\} \\ S_2 = \{a, b\} & \Rightarrow P^{S_2} = \{a. & c \leftarrow a, b.\} \\ S_3 = \{a, d\} & \Rightarrow P^{S_3} = \{a. & c \leftarrow a, b. & d \leftarrow a.\} \end{array}$$

Definition: stable model for programs with negation

For *P* with negated literals:

Definition: reduct

The **reduct** P^S of P relative to S is the least set such that if $A \leftarrow B_1, \ldots, B_m, \operatorname{not} C_1, \ldots, \operatorname{not} C_n \in P$ and $C_1, \ldots, C_n \notin S$ then $A \leftarrow B_1, \ldots, B_m \in P^S$.

In English: for each rule *r* from *P*,

- if $(\text{not } C) \in \text{Body}(r)$ for some $C \in S$: drop the rule
- \blacksquare else: remove all negated literals and add to P^S

$$\underline{\text{Ex.:}} P = \{a. \quad c \leftarrow a, b. \quad d \leftarrow a, \text{not } b.\} \\
S_1 = \{a\} \quad \Rightarrow P^{S_1} = \{a. \quad c \leftarrow a, b. \quad d \leftarrow a.\} \\
S_2 = \{a, b\} \quad \Rightarrow P^{S_2} = \{a. \quad c \leftarrow a, b.\} \\
S_3 = \{a, d\} \quad \Rightarrow P^{S_3} = \{a. \quad c \leftarrow a, b. \quad d \leftarrow a.\}$$

Definition: stable model for programs with negation

For *P* with negated literals:

Definition: reduct

The **reduct** P^S of P relative to S is the least set such that if $A \leftarrow B_1, \ldots, B_m, \operatorname{not} C_1, \ldots, \operatorname{not} C_n \in P$ and $C_1, \ldots, C_n \notin S$ then $A \leftarrow B_1, \ldots, B_m \in P^S$.

In English: for each rule *r* from *P*,

- if $(\text{not } C) \in \text{Body}(r)$ for some $C \in S$: drop the rule
- \blacksquare else: remove all negated literals and add to P^S

Definition: stable model for programs with negation

For *P* with negated literals:

$$\underline{\mathsf{Ex.}} : P = \{ a \leftarrow \mathsf{not} \, b. \quad b \leftarrow \mathsf{not} \, a. \}$$

$$\underline{\text{Ex.:}} P = \{ a \leftarrow \text{not } b. \quad b \leftarrow \text{not } a. \}$$

$$S_1 = \{ \} \qquad \Rightarrow P^{S_1} = \{ \}$$

$$\underline{\text{Ex.:}} P = \{ a \leftarrow \text{not } b. \quad b \leftarrow \text{not } a. \}$$

$$S_1 = \{ \} \qquad \Rightarrow P^{S_1} = \{ a \leftarrow \text{not } b. \quad b \leftarrow \text{not } a. \}$$

```
\underline{\text{Ex.:}} P = \{ a \leftarrow \text{not } b. \quad b \leftarrow \text{not } a. \} 

S_1 = \{ \} \qquad \Rightarrow P^{S_1} = \{ a \leftarrow \text{not } b. \quad b \leftarrow \text{not } a. \} 

S_2 = \{ a \} \qquad \Rightarrow P^{S_2} =
```

```
\underline{\text{Ex.:}} P = \{ a \leftarrow \text{not } b. \quad b \leftarrow \text{not } a. \} 

S_1 = \{ \} \qquad \Rightarrow P^{S_1} = \{ a \leftarrow \text{not } b. \quad b \leftarrow \text{not } a. \} 

S_2 = \{ a \} \qquad \Rightarrow P^{S_2} = \{ a \leftarrow \text{not } b. \quad b \leftarrow \text{not } a. \}
```

```
\underline{\operatorname{Ex.:}} P = \{ a \leftarrow \operatorname{not} b. \quad b \leftarrow \operatorname{not} a. \} 

S_1 = \{ \} \qquad \Rightarrow P^{S_1} = \{ a \leftarrow \operatorname{not} b. \quad b \leftarrow \operatorname{not} a. \} 

S_2 = \{ a \} \qquad \Rightarrow P^{S_2} = \{ a \leftarrow \operatorname{not} b. \quad b \leftarrow \operatorname{not} a. \} 

S_3 = \{ b \} \qquad \Rightarrow P^{S_3} =
```

```
\begin{array}{ll} \underline{\operatorname{Ex.}}: P = \{a \leftarrow \operatorname{not} b. \quad b \leftarrow \operatorname{not} a.\} \\ S_1 = \{\} & \Rightarrow P^{S_1} = \{a \leftarrow \operatorname{not} b. \quad b \leftarrow \operatorname{not} a.\} \\ S_2 = \{a\} & \Rightarrow P^{S_2} = \{a \leftarrow \operatorname{not} b. \quad b \leftarrow \operatorname{not} a.\} \\ S_3 = \{b\} & \Rightarrow P^{S_3} = \{a \leftarrow \operatorname{not} b. \quad b \leftarrow \operatorname{not} a.\} \\ S_4 = \{a, b\} & \Rightarrow P^{S_4} = \{a \leftarrow \operatorname{not} b. \quad b \leftarrow \operatorname{not} a.\} \end{array}
```

```
\underline{\text{Ex.:}} P = \{ a \leftarrow \text{not } b. \quad b \leftarrow \text{not } a. \} 

S_1 = \{ \} \qquad \Rightarrow P^{S_1} = \{ a. \quad b \} 

S_2 = \{ a \} \qquad \Rightarrow P^{S_2} = \{ a. \} 

S_3 = \{ b \} \qquad \Rightarrow P^{S_3} = \{ b. \} 

S_4 = \{ a, b \} \qquad \Rightarrow P^{S_4} = \{ \}
```

```
\underline{\text{Ex.:}} P = \{ a \leftarrow \text{not } b. \quad b \leftarrow \text{not } a. \} 

S_1 = \{ \} \qquad \Rightarrow P^{S_1} = \{ a. \quad b \} 

S_2 = \{ a \} \qquad \Rightarrow P^{S_2} = \{ a. \} 

S_3 = \{ b \} \qquad \Rightarrow P^{S_3} = \{ b. \} 

S_4 = \{ a, b \} \qquad \Rightarrow P^{S_4} = \{ \}
```

10 / 12

$$\underline{\text{Ex.:}} P = \{ a \leftarrow \text{not } b. \quad b \leftarrow \text{not } a. \}
S_1 = \{ \} \quad \Rightarrow P^{S_1} = \{ a. \quad b \}
S_2 = \{ a \} \quad \Rightarrow P^{S_2} = \{ a. \}
S_3 = \{ b \} \quad \Rightarrow P^{S_3} = \{ b. \}
S_4 = \{ a, b \} \quad \Rightarrow P^{S_4} = \{ \}$$

$$\underline{\text{Ex.:}} P = \{a \leftarrow \text{not } b. \ b \leftarrow \text{not } a.\}
S_1 = \{\} \Rightarrow P^{S_1} = \{a. \ b\}
S_2 = \{a\} \Rightarrow P^{S_2} = \{a.\}
S_3 = \{b\} \Rightarrow P^{S_3} = \{b.\}
S_4 = \{a,b\} \Rightarrow P^{S_4} = \{\}$$

$$\underline{\operatorname{Ex.}} : P = \{ a \leftarrow \operatorname{not} b. \quad b \leftarrow \operatorname{not} a. \}$$

$$S_1 = \{ \} \qquad \Rightarrow P^{S_1} = \{ a. \quad b \}$$

$$S_2 = \{ a \} \qquad \Rightarrow P^{S_2} = \{ a. \}$$

$$S_3 = \{ b \} \qquad \Rightarrow P^{S_3} = \{ b. \}$$

$$S_4 = \{ a, b \} \qquad \Rightarrow P^{S_4} = \{ \}$$
Two stable models!

Ex.: $P = \{a \leftarrow \text{not } a.\}$

$$\underline{\operatorname{Ex.}}: P = \{a \leftarrow \operatorname{not} b. \quad b \leftarrow \operatorname{not} a.\}$$

$$S_1 = \{\} \quad \Rightarrow P^{S_1} = \{a. \quad b\}$$

$$S_2 = \{a\} \quad \Rightarrow P^{S_2} = \{a.\}$$

$$S_3 = \{b\} \quad \Rightarrow P^{S_3} = \{b.\}$$

$$S_4 = \{a, b\} \quad \Rightarrow P^{S_4} = \{\}$$
Two stable models!

$$\underline{\text{Ex.:}} P = \{a \leftarrow \text{not } a.\}$$

$$S_1 = \{\} \Rightarrow P^{S_1} = \{\}$$

$$\underline{\operatorname{Ex.}}: P = \{a \leftarrow \operatorname{not} b. \quad b \leftarrow \operatorname{not} a.\}$$

$$S_1 = \{\} \quad \Rightarrow \quad P^{S_1} = \{a. \quad b\}$$

$$S_2 = \{a\} \quad \Rightarrow \quad P^{S_2} = \{a.\}$$

$$S_3 = \{b\} \quad \Rightarrow \quad P^{S_3} = \{b.\}$$

$$S_4 = \{a,b\} \quad \Rightarrow \quad P^{S_4} = \{\}$$
Two stable models!

$$\underline{\operatorname{Ex.}}: P = \{a \leftarrow \operatorname{not} a.\}$$

$$S_1 = \{\} \quad \Rightarrow \quad P^{S_1} = \{a \leftarrow \operatorname{not} a.\}$$

$$\underline{\text{Ex.:}} P = \{a \leftarrow \text{not } b. \quad b \leftarrow \text{not } a.\}$$

$$S_1 = \{\} \quad \Rightarrow P^{S_1} = \{a. \quad b\}$$

$$S_2 = \{a\} \quad \Rightarrow P^{S_2} = \{a.\}$$

$$S_3 = \{b\} \quad \Rightarrow P^{S_3} = \{b.\}$$

$$S_4 = \{a, b\} \quad \Rightarrow P^{S_4} = \{\}$$

$$\underline{\text{Ex.:}} P = \{a \leftarrow \text{not } a.\}$$

$$S_1 = \{\} \Rightarrow P^{S_1} = \{a \leftarrow \text{not } a.\}$$

$$S_2 = \{a\} \Rightarrow P^{S_2} = \{a \leftarrow \text{not } a.\}$$

Two stable models!

$$\underline{\text{Ex.:}} P = \{ a \leftarrow \text{not } b. \quad b \leftarrow \text{not } a. \}
S_1 = \{ \} \quad \Rightarrow P^{S_1} = \{ a. \quad b \}
S_2 = \{ a \} \quad \Rightarrow P^{S_2} = \{ a. \}
S_3 = \{ b \} \quad \Rightarrow P^{S_3} = \{ b. \}
S_4 = \{ a, b \} \quad \Rightarrow P^{S_4} = \{ \}$$

$$\underline{\text{Ex.:}} P = \{a \leftarrow \text{not } a.\}$$

$$S_1 = \{\} \Rightarrow P^{S_1} = \{a \leftarrow \text{not } a.\}$$

$$S_2 = \{a\} \Rightarrow P^{S_2} = \{a \leftarrow \text{not } a.\}$$

Two stable models!

$$\underline{\text{Ex.:}} P = \{ a \leftarrow \text{not } b. \quad b \leftarrow \text{not } a. \}
S_1 = \{ \} \quad \Rightarrow P^{S_1} = \{ a. \quad b \}
S_2 = \{ a \} \quad \Rightarrow P^{S_2} = \{ a. \}
S_3 = \{ b \} \quad \Rightarrow P^{S_3} = \{ b. \}
S_4 = \{ a, b \} \quad \Rightarrow P^{S_4} = \{ \}$$

$$\underline{\text{Ex.:}} P = \{a \leftarrow \text{not } a.\}$$

$$S_1 = \{\} \Rightarrow P^{S_1} = \{a.\}$$

$$S_2 = \{a\} \Rightarrow P^{S_2} = \{\}$$

Two stable models!

$$\underline{\operatorname{Ex.}}: P = \{a \leftarrow \operatorname{not} a.\}
S_1 = \{\} \Rightarrow P^{S_1} = \{a.\}
S_2 = \{a\} \Rightarrow P^{S_2} = \{\}$$

$$\underline{Ex.}: P = \{a \leftarrow \text{not } b. \quad b \leftarrow \text{not } a.\}$$

$$S_1 = \{\} \qquad \Rightarrow P^{S_1} = \{a. \quad b\}$$

$$S_2 = \{a\} \qquad \Rightarrow P^{S_2} = \{a.\}$$

$$S_3 = \{b\} \qquad \Rightarrow P^{S_3} = \{b.\}$$

$$S_4 = \{a, b\} \Rightarrow P^{S_4} = \{\}$$

Two stable models!

$$\underline{\text{Ex.:}} \ P = \{ a \leftarrow \text{not } a. \}
S_1 = \{ \} \quad \Rightarrow \ P^{S_1} = \{ a. \}
S_2 = \{ a \} \quad \Rightarrow \ P^{S_2} = \{ \}$$

No stable model!

Semantics: Overview

Definition: reduct

The **reduct** P^S of P relative to S is the least set such that if $A \leftarrow B_1, \ldots, B_m, \operatorname{not} C_1, \ldots, \operatorname{not} C_n \in P$ and $C_1, \ldots, C_n \notin S$ then $A \leftarrow B_1, \ldots, B_m \in P^S$.

Definition: stable model

If *P* contains no (not *C*):

S is a **stable model** of P iff

S is a minimal set (w.r.t. \subseteq) that satisfies all $r \in P$.

If *P* contains (not *C*):

S is a **stable model** of P iff S is a stable model of P^S .

Theorem: necessary satisfaction condition

If S is a stable model and $A \in S$, then S satisfies some $r \in P$ with $A \in \operatorname{Head}(r)$.

Semantics - Examples

$$\underline{Ex.}: P = \{a \leftarrow a. \quad b \leftarrow \text{not } a.\}$$

$$S \qquad P^{S}$$

Stable model?

$$\underline{\text{Ex.}}: P = \{a \leftarrow \text{not } b. \quad b \leftarrow \text{not } c.\}$$

$$S \qquad \qquad P^{S}$$

Stable model?