

DS017 (v1.0) June 1, 2000

XCR3064XL 64 Macrocell CPLD

Preliminary Product Specification

Features

- 6.0 ns pin-to-pin logic delays
- System frequencies up to 145 MHz
- 64 macrocells with 1,500 usable gates
- Available in small footprint packages
 - 100-pin TQFP (64 user I/O pins)
 - 44-pin VQFP (32 user I/O)
 - 56-ball CP BGA (44 user I/O)
- Optimized for 3.3V systems
 - Ultra-low power operation
 - 5V tolerant I/O pins with 3.3V core supply
 - Advanced 0.35 micron five metal layer reprogrammable process
 - FZP™ CMOS design technology
- Advanced system features
 - In-system programming
 - Input registers
 - Predictable timing model
 - Up to 23 available clocks per logic block
 - Excellent pin retention during design changes
 - Full IEEE Standard 1149.1 boundary-scan (JTAG)
 - Four global clocks
 - Eight product term control terms per logic block
- Fast ISP programming times
- Port Enable pin for dual function of JTAG ISP pins
- 2.7V to 3.6V industrial temperature range
- Programmable slew rate control per macrocell
- Security bit prevents unauthorized access
- Refer to XPLA3 family data sheet (DS012) for architecture description

Description

The XCR3064XL is a 3.3V, 64-macrocell CPLD targeted at power sensitive designs that require leading edge programmable logic solutions. A total of four logic blocks provide 1,500 usable gates. Pin-to-pin propagation delays are 6.0 ns with a maximum system frequency of 145 MHz.

TotalCMOS™ Design Technique for Fast Zero Power

Xilinx offers a TotalCMOS CPLD, both in process technology and design technique. Xilinx employs a cascade of CMOS gates to implement its sum of products instead of the traditional sense amp approach. This CMOS gate implementation allows Xilinx to offer CPLDs that are both high performance and low power, breaking the paradigm that to have low power, you must have low performance. Refer to Figure 1 and Table 1 showing the I_{CC} vs. Frequency of our XCR3064XL TotalCMOS CPLD (data taken with four up/down, loadable 16-bit counters at 3.3V, 25°C).

© 2000 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Figure 1: I_{CC} vs. Frequency at V_{CC} = 3.3V, 25°C

Table 1: I_{CC} vs. Frequency ($V_{CC} = 3.3V, 25^{\circ}C$)

Frequency (MHz)	0	1	5	10	20	40	60	80	100	120	140
Typical I _{CC} (mA)	0	0.2	1.0	2.0	3.9	7.6	11.3	14.8	18.5	22.1	25.6

DC Electrical Characteristics Over Recommended Operating Conditions⁽¹⁾

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
V _{OH}	Output High voltage for 3.3V outputs	I _{OH} = -8 mA	2.4	-	V
V _{OL}	Output Low voltage for 3.3V outputs	I _{OL} = 8 mA	-	0.4	V
I _{IL}	Input leakage current	$V_{IN} = GND \text{ or } V_{CC}$	-10	10	μΑ
I _{IH}	I/O High-Z leakage current	$V_{IN} = GND \text{ or } V_{CC}$	-10	10	μΑ
I _{CCSB}	Standby current	V _{CC} = 3.6V	-	100	μΑ
I _{CC}	Dynamic current ^(2,3)	f = 1 MHz	-	0.5	mA
		f = 50 MHz	-	15	mA
C _{IN}	Input pin capacitance ⁽⁴⁾	f = 1 MHz	-	8	pF
C _{CLK}	Clock input capacitance ⁽⁴⁾	f = 1 MHz	-	12	pF
C _{I/O}	I/O pin capacitance ⁽⁴⁾	f = 1 MHz	-	10	pF

Notes:

- 1. See XPLA3 family data sheet (DS012) for recommended operating conditions.
- 2. See Table 1, Figure1 for typical values.
- 3. This parameter measured with a 16-bit, loadable up/down counter loaded into every logic block, with all outputs disabled and unloaded. Inputs are tied to V_{CC} or ground. This parameter guaranteed by design and characterization, not testing.
- 4. Typical values not tested.

AC Electrical Characteristics Over Recommended Operating Conditions^(1,2)

		-6		-7		-10		
Symbol	Parameter		Max.	Min.	Max.	Min.	Max.	Unit
T _{PD1}	Propagation delay time (single p-term)		5.5	-	7.0	-	9.1	ns
T _{PD2}	Propagation delay time (OR array) ⁽³⁾	-	6.0	-	7.5	-	10.0	ns
T _{CO}	Clock to output (global synchronous pin clock)	-	4.0		5.0	-	6.5	ns
T _{SUF}	Setup time fast	2.0	-	2.5	-	3.0	-	ns
T _{SU}	Setup time	4.0	-	4.8	-	6.3	-	ns
T _H	Hold time	0	-	0	-	0	-	ns
T _{WLH}	Global Clock pulse width (High or Low)	2.5	-	3.0	-	4.0	-	ns
Tt _{PLH}	P-term clock pulse width	4.0	-	5.0	-	6.0	-	ns
T _R	Input rise time	-	20	-	20	-	20	ns
T _L	Input fall time	-	20	-	20	-	20	ns
f _{SYSTEM}	Maximum system frequency	-	145	-	119	-	95	MHz
T _{CONFIG}	Configuration time ⁽⁴⁾	-	20.0	-	20.0	-	20.0	μs
T _{POE}	P-term OE to output enabled	-	7.5	-	9.3	-	11.2	ns
T _{POD}	P-term OE to output disabled ⁽⁵⁾	-	7.5	-	9.3	-	11.2	ns
T _{PCO}	P-term clock to output	-	6.5	-	8.3	-	10.7	ns
T _{PAO}	P-term set/reset to output valid	-	8.0	-	9.3	-	11.2	ns

Notes:

- 1. Specifications measured with one output switching.
- 2. See XPLA3 family data sheet (DS012) for recommended operating conditions.
- 3. See Figure 4 for derating.
- 4. Typical current draw during configuration is 8 mA at 3.6V.
- 5. Output $C_L = 5 pF$.

Timing Model

The XPLA3 architecture follows a simple timing model that allows deterministic timing in design and redesign. The basic timing model is shown in Figure 2. One key feature of the XPLA3 CPLD is the ability to have up to 48 product term inputs into a single macrocell and maintain consistent timing. This is achieved through the use of a fully populated PLA (Programmable AND Programmable OR Array) which also has the ability to share product terms and only use the required amount of product terms per macrocell. There is a fast path ($T_{\rm LOGI1}$) into the macrocell which is used if there is

a single product term. The T_{LOGI2} path is used for multiple product term timing. For optimization of logic, the XPLA3 CPLD architecture includes a Fold-back NAND path (T_{LOGI3}). There is a fast input path to each macrocell if used as an Input Register (T_{FIN}). XPLA3 also includes universal control terms (T_{UDA}) that can be used for synchronization of the macrocell registers in different logic blocks. There is also slew rate control and output enable control on a per macrocell basis.

Figure 2: XPLA3 Timing Model

Internal Timing Parameters

		-6 -7		7	-10			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Buffer De	lays	<u>'</u>		ı	•	•		
T _{IN}	Input buffer delay	-	1.3	-	1.6	-	2.2	ns
T _{FIN}	Fast Input buffer delay	-	1.8	-	2.5	-	3.1	ns
T _{GCK}	Global Clock buffer delay	-	0.8	-	1.0	-	1.3	ns
T _{OUT}	Output buffer delay	-	2.2	-	2.7	-	3.6	ns
T _{EN}	Output buffer enable/disable delay	-	4.2	-	5.0	-	5.7	ns
Internal R	egister and Combinatorial Delays				•	•	•	
T _{LDI}	Latch transparent delay	-	1.3	-	1.6	-	2.0	
T _{SUI}	Register setup time	1.0	-	1.0	-	1.2	-	ns
T _{HI}	Register hold time	4.0	-	5.5	-	6.7	-	ns
T _{ECSU}	Register clock enable setup time	2.0	-	2.5	-	3.0	-	ns
T _{ECHO}	Register clock enable hold time	3.0	-	4.5	-	5.5	-	ns
T _{COI}	Register clock to output delay	-	1.0	-	1.3	-	1.6	ns
T _{AOI}	Register async. S/R to output delay	-	2.5	-	2.3	-	2.1	ns
T _{RAI}	Register async. recovery	-	4.0	-	5.0	-	6.0	ns
T _{LOGI1}	Internal logic delay (single p-term)	-	2.0	-	2.7	-	3.3	ns
T _{LOGI2}	Internal logic delay (PLA OR term)	-	2.5	-	3.2	-	4.2	ns
Feedback	Delays	·						
T _F	ZIA delay	-	2.4	-	2.9	-	3.5	ns
Time Add	ers							
T _{LOGI3}	Fold-back NAND delay	-	6.0	-	7.5	-	9.5	ns
T _{UDA}	Universal delay	-	1.5	-	2.0	-	2.5	ns
T _{SLEW}	Slew rate limited delay	-	4.0	-	5.0	-	6.0	ns

Switching Characteristics

Component	Values
R1	390Ω
R2	390Ω
C1	35 pF

Measurement	S1	S2
T _{POE} (High)	Open	Closed
T _{POE} (Low)	Closed	Open
T _P	Closed	Closed

Note: For T_{POD} , C1 = 5 pF

DS017_03_050200

Figure 3: AC Load Circuit

Figure 4: Derating Curve for T_{PD2}

Measurements:

All circuit delays are measured at the +1.5V level of inputs and outputs, unless otherwise specified.

DS017_05_042800

Figure 5: Voltage Waveform

Pin Descriptions

Table 2: XCR3064XL Pin Descriptions

Function	100VQFP	44VQFP	CP56	BScan Order
A0	85	35	C8	256
A1	84	34	A8	252
A2	83	-	-	248
A3	81	-	A9	244
A4	80	-	A5	240
A5	79	-	A10	236
A6	76	-	-	232
A7	75	33	B10	228
A8/TDO	73 (TDO)	32 (TDO)	C10 (TDO)	-
A9	71	31	D8	220
A10	69	30	E8	216
A11	68	-	-	212
A12	67	-	-	208
A13	65	28	F8	204
A14	64	27	E10	200
A15	63	-	-	196
В0	92	42	C4	128
B1	93	43	C3	124
B2	94	44	A1	120
В3	96	-	-	116
B4	97	-	B1	112
B5	98	-	-	108
B6	99	-	A2	104
В7	100	-	A3	100
B8/TDI	4 (TDI)	1 (TDI)	C1 (TDI)	-
В9	6	2	D1	92
B10	8	3	D3	88
B11	9	-	-	84
B12	10	-	-	80
B13	12	5	E3	76
B14	13	6	F1	72
B15	14	-	-	68
C0/TCK	62 (TCK)	26 (TCK)	F10 (TCK)	-
C1	61	25	G8	188
C2	60	-	-	184
C3	58	23	H10	180
C4	57	-	-	176
C5	56	-	-	172
C6	54	-	K8	168
C7	52		K10	164
C8	48	22	K9	160
C9	47	21	J10	156

Table 2: XCR3064XL Pin Descriptions (Continued)

Function	100VQFP	44VQFP	CP56	BScan Order
C10	46	20	H8	152
C11	45	19	H7	148
C12	44	18	H6	144
C13	42	-	-	140
C14	41	-	K7	136
C15	40	-	-	132
CLK0/IN0	90	40	C5	3
CLK1/IN1	89	39	C6	2
CLK2/IN2	88	38	C7	1
CLK3/IN3	87	37	A6	0
D0/TMS	15 (TMS)	7 (TMS)	G1 (TMS)	-
D1	16	8	F3	60
D2	17	-	-	56
D3	19	10	G3	52
D4	20	11	J1	48
D5	21	-	-	44
D6	23	-	-	40
D7	25	-	K1	36
D8	29	12	K4	32
D9	30	13	K2	28
D10	31	14	K3	24
D11	32	15	H3	20
D12	33	-	H4	16
D13	35	-	-	12
D14	36	-	K5	8
D15	37	-	-	4
PORT_EN	11 (PE)	4 (PE)	E1 (PE)	-
GND	26	-	-	-
GND	38	16	K6	-
GND	43	-	-	-
GND	59	24	G10	-
GND	74	-	-	-
GND	86	36	A7	-
GND	95	-	-	-
V _{CC}	82	-	-	-
V _{CC}	3	-	-	-
V_{CC}	18	9	H1	-
V_{CC}	34	-	-	-
V_{CC}	39	17	H5	-
V_{CC}	51	-	-	-
V_{CC}	66	29	D10	-
V _{CC}	91	41	A4	-

Ordering Information

Speed Options

-10: 10 ns pin-to-pin delay -7: 7.5 ns pin-to-pin delay -6: 6.0 ns pin-to-pin delay

Temperature Range

C = Commercial $T_A = 0$ °C to +70°C I = Industrial $T_A = -40$ °C to +85°C

Packaging Options

VQ100: 100-pin Very Thin Quad Flat Package VQ44: 44-pin Very Thin Quad Flat Package

CP56: 56-ball Chip Scale Package

Table 3: XCR3064XL JTAG Pinout by Package Type

Device	(Pin Number)						
XCR3064XL	тск	Port Enable	TMS	TDI	TDO		
100-pin TQFP	62	11	15	4	73		
44-pin VQFP	26	4	7	1	32		
56-ball CP BGA	F10	E1	G1	C1	C10		

Component Availability

Pins		100		44	
Туре		Plastic VQFP	Plastic BGA	Plastic VQFP	
Code		TQ100	CP56	VQ44	
XCR3064XL	-6	С	С	С	
	-7, -10	C,I	C,I	C,I	

Revision History

The following table shows the revision history for this document..

Date	Version	Revision		
06/01/00	1.0	Initial Xilinx release.		